PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

(51) International Patent Classification 6:		(11) International Publication Number: WO 98/55508
C07K 14/00	A2	(43) International Publication Date: 10 December 1998 (10.12.98)
(21) International Application Number: PCT/JP9 (22) International Filing Date: 3 June 1998 (0		(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT
(30) Priority Data: 9/144948 3 June 1997 (03.06.97)	J	Published Without international search report and to be republished upon receipt of that report.
(71) Applicants (for all designated States except US): S. CHEMICAL RESEARCH CENTER [JP/JP] Nishi-Ohnuma 4-chome, Sagamihara-shi, Ka 229-0012 (JP). PROTEGENE INC. [JP/JP]; Naka-cho, Meguro-ku, Tokyo 153-0065 (JP).	; 4– anagav	a l
(72) Inventors; and (75) Inventors/Applicants (for US only): KATO, Seishi 3-46-50, Wakamatsu, Sagamihara-shi, Ka 229-0014 (JP). SEKINE, Shingo [JP/JP]; R 101, 2-8-15, Atago, Ageo-shi, Saitama 362-00: YAMAGUCHI, Tomoko [JP/JP]; 5-13-11, Ta Katsushika-ku, Tokyo 125-0054 (JP).	anagav Remona 34 (JF	a u).
(74) Agents: AOYAMA, Tamotsu et al.; Aoyama & I IMP Building, 3-7, Shiromi 1-chome, Chuo-ku, Os Osaka 540-0001 (JP).		
(54) Title: HUMAN PROTEINS HAVING TRANSMEMI	BRAN	E DOMAINS AND DNAS ENCODING THESE PROTEINS
(57) Abstract		
Proteins comprising any of the amino acid sequences of the nucelotide sequences of SEQ ID NOS: 19 to 36 are p		ID NOS: 1 to 18 and DNAs encoding said proteins and comprising any d.
·		

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LÜ	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΛZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TĐ	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВЈ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	. MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland -		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

1

DESCRIPTION

Human Proteins Having Transmembrane Domains and DNAs Encoding These Proteins

5

FIELD OF THE INVENTION

The present invention relates to human proteins having transmembrane domains and cDNAs encoding these proteins. The membrane proteins of this invention can be used as pharmaceuti10 cals or as antigens for preparing antibodies against said proteins. The cDNAs of the invention can be used as probes for the gene diagnosis and gene sources for the gene therapy. The cDNAs can also be used as gene sources for large-scale production of the membrane proteins encoded by the same. The cells into which the genes encoding the membrane proteins are introduced for expression of such membrane proteins in large amounts can be used for detection of the corresponding ligands, screening of low molecular weight medicines, etc.

20 BACKGROUND OF THE INVENTION

Membrane proteins play important roles as signal receptors, ion channels, transporters, etc. for the material transportation or information transmission mediated by the cell membrane. For instance, they are known to serve as receptors for various cytokines, ion channels for sodium ion, potassium ion, chloride ion, etc., transporters for saccharides and amino acids, and so on. The genes for many of them have been cloned already.

In recent years, it was clarified that the abnormalities

PCT/JP98/02445 WO 98/55508

2

of these membrane proteins are related to a number of hitherto cryptogenic diseases. For example, a gene for a membrane protein having 12 transmembrane domains was identified as the gene responsible for cystic fibrosis [Rommens, J. M. et al., 5 Science 245: 1059-1065 (1989)]. It was also clarified that several membrane proteins act as the receptors when a virus infects the cells. For example, HIV-1 was revealed to infect into the cells through the mediation of a membrane protein fusin, a membrane protein on the T-cell membrane, having a CD-4 antigen and 7 transmembrane domains [Feng, Y. et al., Science 272: 872-877 (1996)]. Therefore, the discovery of new membrane proteins is anticipated to lead to the elucidation of the causes of many diseases, and the isolation of new genes coding for the membrane proteins is desired.

Heretofore, owing to the difficulty in their purification, many of membrane proteins have been isolated by an approach from the gene side. A general method is the so-called expression cloning which comprises transfection of a cDNA library in the animal cells to express the cDNA and detection 20 of the cells expressing the target membrane protein on the membrane by an immunological technique using an antibody or a physiological technique for the change in the membrane permeability. However, this method is applicable only to cloning of a gene for a membrane protein with a known function.

15

25 In general, membrane proteins possess hydrophobic transmembrane domains inside the proteins which are synthesized in the ribosome. Said domains remain in the phospholipid to be trapped in the membrane. Accordingly, the evidence of the cDNA for encoding the membrane protein is provided by determination

3

of the whole base sequence of a full-length cDNA and detection of highly hydrophobic transmembrane domains in the amino acid sequence of the protein encoded by said cDNA.

As a result of the extensive study, there have successful
1 ly been obtained human proteins having transmembrane domains,

particularly comprising any of the amino acid sequences of SEQ

ID NOS: 1 to 18, by cloning cDNAs coding for proteins having

transmembrane domains, particularly comprising any of the

nucleotide sequences of SEQ ID NOS: 19 to 36, from a human

10 full-length cDNA bank. The present invention is based on the

above success.

SUMMARY OF THE INVENTION

A main object of the present invention is to provide novel

human proteins having transmembrane domains, particularly
comprising any of the amino acid sequences of SEQ ID NOS: 1 to

18. Another object of this invention is to provide DNAs coding
for said novel proteins, particularly comprising any of the
nucleotide sequences of SEQ ID NOS: 19 to 36. A further object

of the invention is to provide expression vectors capable of in
vitro translating said DNAs or expressing said DNAs in
eukaryotic cells. A still further object of the invention is
to provide transformed eukaryotic cells capable of expressing
said DNAs to produce said proteins.

In one embodiment, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOS: 1 to 18 and their fragments.

In another embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of the nucleotide sequences of SEQ ID NOS: 19 to 36.

In a further embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of the nucleotide sequences of SEQ ID NOS: 37 to 54.

10 BRIEF DESCRIPTION OF DRAWINGS

- Figure 1: A figure depicting the structure of the secretory signal sequence detection vector pSSD3.
- Figure 2: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01263.
- Figure 3: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01299.
 - Figure 4: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01347.
- Figure 5: A figure depicting the hydrophobicity/hydrophi-20 licity profile of the protein encoded by clone HP01440.
 - Figure 6: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01526.
 - Figure 7: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10230.
- 25 Figure 8: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10389.
 - Figure 9: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10408.
 - Figure 10: A figure depicting the hydrophobicity/hydro-

5

philicity profile of the protein encoded by clone HP10412.

Figure 11: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10413.

Figure 12: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10415.

Figure 13: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10419.

Figure 14: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10424.

10 Figure 15: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10428.

Figure 16: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10429.

Figure 17: A figure depicting the hydrophobicity/hydro-15 philicity profile of the protein encoded by clone HP10432.

Figure 18: A figure depicting the hydrophobicity/hydro-philicity profile of the protein encoded by clone HP10433.

Figure 19: A figure depicting the hydrophobicity/hydro-philicity profile of the protein encoded by clone HP10480.

20

BEST MODE FOR CARRING OUT INVENTION

The proteins of the present invention can be obtained, for example, by isolation from human organs, cell lines, etc., by chemical synthesis on the basis of the amino acid sequences as herein disclosed, or by recombinant DNA technology using the DNA encoding the transmembrane domains of the invention. Among them, adoption of the recombinant DNA technology is preferred. Specifically, each of the proteins may be prepared by in vitro transcription of a vector comprising the cDNA of the invention

6

to make RNA and in vitro translation using this RNA as a template to accomplish in vitro expression. Also, each of the proteins may be prepared in a large amount by the use of Escherichia coli, Bacillus subtilis, yeasts, animal cells, etc. comprising a suitable expression vector having the DNA encoding

5 comprising a suitable expression vector having the DNA encoding such protein.

In the case of producing the protein of the invention by the use of a microorganism such as Escherichia coli, the translation region of the cDNA of the invention is constructed 10 in an expression vector having an origin, a promoter, a ribosome-binding site, a cDNA-cloning site, a terminator, etc. that can be replicated in the microorganism and, after transformation of the host cells with said expression vector, the resultant transformant is incubated, whereby the protein encoded by said cDNA can be produced in a large amount in the microorganism. In that case, a protein fragment containing an optional region can be obtained by performing the expression with inserting an initiation codon and a termination codon before and after the optional translation region. Alternatively, a fusion protein with another protein can be expressed. Only a protein portion encoding said cDNA can be obtained by cleavage of said fusion protein with an appropriate protease.

For production of the protein of the invention by expression of DNA coding for such protein in eukaryotic cells, the translation region of said cDNA may be recombined into an expression vector for eukaryotic cells having a promoter, a splicing domain, a poly(A) addition site, etc., followed by introduction into eukaryotic cells so that the protein of the invention is produced as a membrane protein on the cell

7

membrane surface. Examples of the expression vector are pKA1, pED6_dpc2, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV vector, pRS, pYES2, etc. As the eukaryotic cells, there are exemplified mammalian animal culture cells (e.g. simian kidney 5 cells COS7, chinese hamster ovary cells CHO), budding yeasts, Schizosaccharomyces pombe, silkworm cells, Xenopus laevis egg cells, etc., but any other eukaryotic cells may also be used insofar as the protein of the invention can be expressed on the membrane surface. In order to introduce the expression vector into eukaryotic cells, there may be adopted any conventional procedure such as electroporation, calcium phosphate method, liposome method or DEAE dextran method.

10

25

The proteins of the present invention include peptide fragments (5 or more amino acid residues) containing any 15 partial amino acid sequence of the amino acid sequences of SEQ ID NOS: 1 to 18. These fragments can be used as antigens for preparation of the antibodies. Also, the proteins of the invention that have signal sequences appear in the form of maturation proteins on the cell surface, after the signal 20 sequences are removed. Therefore, these maturation proteins shall come within the scope of the present invention. The Nterminal amino acid sequences of the maturation proteins can be easily identified by using the method for the cleavage-site determination in a signal sequence [Japan Patent Kokai No. 187100/96]. Further, many membrane proteins are subjected to the processing on the cell surface to be converted to the secretor forms. These secretor proteins or peptides shall come within the scope of the present invention. When glycosylation sites are present in the amino acid sequences, expression in

8

appropriate animal cells affords glycosylated proteins. Therefore, these glycosylated proteins or peptides also shall come within the scope of the invention.

The DNAs of the invention include all DNAs encoding the above-mentioned proteins. Said DNAs can be obtained using the method by chemical synthesis, the method by cDNA cloning, and so on.

Each of the cDNAs of the invention can be cloned from, for example, the cDNA libraries of the human cell origin. The cDNA is synthesized using as a template a poly(A)⁺ RNA extracted from human cells. The human cells may be cells delivered from the human body, for example, by the operation or may be the culture cells. The cDNA can be synthesized by using any method selected from the Okayama-Berg method [Okayama, H. and Berg, P., Mol. Cell. Biol. 2: 161-170 (1982)], the Gubler-Hoffman method [Gubler, U. and Hoffman, J. Gene 25: 263-269 (1983)], and so on, but it is preferred to use the capping method [Kato, S. et al., Gene 150: 243-250 (1994)] as illustrated in Examples in order to obtain a full-length clone in an effective manner.

The primary selection of a cDNA encoding a human protein having transmembrane domains is performed by the sequencing of a partial base sequence of the cDNA clone selected at random from the cDNA libraries, sequencing of the amino acid sequence encoded by the base sequence, and recognition of the presence or absence of hydrophobic site(s) in the resulting N-terminal amino acid sequence region. Next, the secondary selection is carried out by determination of the whole base sequence by the sequencing and the protein expression by the in vitro translation. The ascertainment of the cDNA of the present

20

25

9

invention for encoding the protein having the secretory signal sequence is performed by using the signal sequence detection method [Yokoyama-Kobayashi, M. et al., Gene 163: 193-196 (1995)]. In other words, the ascertainment for the coding portion of the inserted cDNA fragment to function as a signal sequence is provided by fusing a cDNA fragment encoding the N-terminus of the target protein with a cDNA encoding the protease domain of urokinase and then expressing the resulting cDNA in COS7 cells to detect the urokinase activity in the cell culture medium. On the other hand, the N-terminal region is judged to remain in the membrane in the case where the urokinase activity is not detected in the cell culture medium.

The cDNAs of the invention are characterized by containing any of the nucleotide sequences of SEQ ID NOS: 19 to 36 or any of the nucleotide sequences of SEQ ID NOS: 37 to 54. Table 1 summarizes the clone number (HP number), the cells affording the cDNA, the total nucleotide number of the cDNA, and the number of the amino acid residues of the encoded protein, for each of the cDNAs.

10

Table 1

5	Sequence Number	HP Number	Cells	Number of Nucleotides	Number of Amino Acid Residues
10	1, 19, 37	HP01263	Liver	1502	382
	2, 20, 38	HP01299	Liver	1349	317
	3, 21, 39	HP01347	Liver	1643	296
15	4, 22, 40	HP01440	Stomach cancer	729	197
	5, 23, 41	HP01526	Stomach cancer	1322	221
20	6, 24, 42	HP10230	Stomach cancer	3045	251
20	7, 25, 43	HP10389	КВ	653	106
	8, 26, 44	HP10408	Stomach cancer	439	78
25	9, 27, 45	HP10412	Stomach cancer	1131	314
	10, 28, 46	HP10413	Stomach cancer	1875	195
30	11, 29, 47	HP10415	Stomach cancer	1563	462
30	12, 30, 48	HP10419	Stomach cancer	2030	247
	13, 31, 49	HP10424	Stomach cancer	493	113
35	14, 32, 50	HP10428	КВ	2044	365
	15, 33, 51	HP10429	Stomach cancer	1043	226
40	16, 34, 52	HP10432	Liver	972	129
	17, 35, 53	HP10433	Liver	695	163
	18, 36, 54	HP10480	Stomach cancer	1914	193

45

Hereupon, the same clone as any of the cDNAs of the invention can be easily obtained by screening of the cDNA libraries constructed from the cell line or the human tissues employed in the invention, by the use of an oligonucleotide probe synthesized on the basis of the corresponding cDNA nucleotide sequence of SEQ ID NOS: 37 to 54.

In general, the polymorphism due to the individual difference is frequently observed in human genes. Therefore, any cDNA that is subjected to insertion or deletion of one or plural nucleotides and/or substitution with other nucleotides

11

in SEQ ID NOS: 37 to 54 shall come within the scope of the invention.

In a similar manner, any protein that is produced by these modifications comprising insertion or deletion of one or plural nucleotides and/or substitution with other nucleotides shall come within the scope of the present invention, as far as said protein possesses the activity of the corresponding protein having the amino acid sequence of SEQ ID NOS: 1 to 18.

The cDNAs of the invention include cDNA fragments (more than 10 bp) containing any partial nucleotide sequence of the nucleotide sequence of SEQ ID NOS: 19 to 36 or of the nucleotide sequence of SEQ ID NOS: 37 to 54. Also, DNA fragments consisting of a sense chain and an anti-sense chain shall come within this scope. These DNA fragments can be used as the probes for the gene diagnosis.

The present invention also provides genes corresponding to the polynucleotide sequences disclosed herein. "Corresponding genes" are the regions of the genome that are transcribed to produce the mRNAs from which cDNA polynucleotide sequences are derived and may include contiguous regions of the genome necessary for the regulated expression of such genes. Corresponding genes may therefore include but are not limited to coding sequences, 5' and 3' untranslated regions, alternatively spliced exons, introns, promoters, enhancers, and silencer or suppressor elements. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or primers from the disclosed sequence information for identification and/or amplification of genes in appropriate

12

genomic libraries or other sources of genomic materials. An "isolated gene" is a gene that has been separated from the adjacent coding sequences, if any, present in the genome of the organism from which the gene was isolated.

5 Organisms that have enhanced, reduced, or modified expression of the gene(s) corresponding to the polynucleotide sequences disclosed herein are provided. The desired change in gene expression can be achieved through the use of antisense polynucleotides or ribozymes that bind and/or cleave 10 the mRNA transcribed from the gene (Albert and Morris, 1994, Trends Pharmacol. Sci. 15(7): 250-254; Lavarosky et al., 1997, Biochem. Mol. Med. 62(1): 11-22; and Hampel, 1998, Prog. Nucleic Acid Res. Mol. Biol. 58: 1-39; all of which are incorporated by reference herein). Transgenic animals that 15 have multiple copies of the gene(s) corresponding to the polynucleotide sequences disclosed herein, preferably produced by transformation of cells with genetic constructs that are stably maintained within the transformed cells and their progeny, are provided. Transgenic animals that have modified 20 genetic control regions that increase or reduce gene expression levels, or that change temporal or spatial patterns of gene expression, are also provided (see European Patent No. 0 649 464 Bl, incorporated by reference herein). In addition, organisms are provided in which the gene(s) corresponding to 25 the polynucleotide sequences disclosed herein have been partially or completely inactivated, through insertion of extraneous sequences into the corresponding gene(s) or through deletion of all or part of the corresponding gene(s). Partial or complete gene inactivation can be accomplished through

WO 98/55508

13

PCT/JP98/02445

insertion, preferably followed by imprecise excision, of transposable elements (Plasterk, 1992, Bioessays 14(9): 629-633; Zwaal et al., 1993, Proc. Natl. Acad. Sci. USA 90(16): 7431-7435; Clark et al., 1994, Proc. Natl. Acad. Sci. USA 91(2): 719-722; all of which are incorporated by reference herein), or through homologous recombination, preferably detected by positive/negative genetic selection strategies (Mansour et al., 1988, Nature 336: 348-352; U.S. Patent Nos. 5,464,764; 5,487,992; 5,627,059; 5,631,153; 5,614, 10 5,616,491; and 5,679,523; all of which are incorporated by reference herein). These organisms with altered gene expression are preferably eukaryotes and more preferably are Such organisms are useful for the development of mammals. non-human models for the study of disorders involving the corresponding gene(s), and for the development of assay systems 15 for the identi fication of molecules that interact with the protein product(s) of the corresponding gene(s).

the protein of the present invention Where membrane-bound (e.g., is a receptor), the present invention 20 also provides for soluble forms of such protein. In such forms part or all of the intracellular and transmembrane domains of the protein are deleted such that the protein is fully secreted from the cell in which it is expressed. The intracellular and transmembrane domains of proteins of the invention can be 25 identified in accordance with known techniques for determination of such domains from sequence information.

Proteins and protein fragments of the present invention include proteins with amino acid sequence lengths that are at least 25% (more preferably at least 50%, and most preferably at

14

least 75%) of the length of a disclosed protein and have at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with that disclosed protein, where sequence identity is determined 5 by comparing the amino acid sequences of the proteins when aligned so as to maximize overlap and identity while minimizing sequence gaps. Also included in the present invention are proteins and protein fragments that contain a segment preferably comprising 8 or more (more preferably 20 or more, 10 most preferably 30 or more) contiguous amino acids that shares at least 75% sequence identity (more preferably, at least 85% identity; most preferably at least 95% identity) with any such segment of any of the disclosed proteins.

Species homologs of the disclosed polynucleotides and proteins are also provided by the present invention. As used herein, a "species homologue" is a protein or polynucleotide with a different species of origin from that of a given protein or polynucleotide, but with significant sequence similarity to the given protein or polynucleotide, as determined by those of skill in the art. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

The invention also encompasses allelic variants of the 25 disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous, or related to that encoded by the polynucleotides.

The invention also includes polynucleotides with sequences

15

complementary to those of the polynucleotides disclosed herein.

The present invention also includes polynucleotides capable of hybridizing under reduced stringency conditions, more preferably stringent conditions, and most preferably 5 highly stringent conditions, to polynucleotides described herein. Examples of stringency conditions are shown in the table below: highly stringent conditions are those that are at least as stringent as, for example, conditions A-F; stringent conditions are at least as stringent as, for example, conditions G-L; and reduced stringency conditions are at least as stringent as, for example,

Table 2

Stringency	Polynucleotide	Hybrid	Hybridization Temperature	Wash
Condition	Hybrid	Length	and Buffer [†]	Temperature
Condition	liybiid	(bp) [‡]	and Buller	and Buffer [†]
A	DNA : DNA	≥50	65°C; 1×SSC -or-	65°C; 0.3×SSC
			42°C; 1×SSC,50% formamide	55 5, 5.5
В	DNA : DNA	<50	T _B *; 1×SSC	T _B *; 1×SSC
C	DNA : RNA	≥50	67°C; 1×SSC -or-	67°C; 0.3×SSC
			45°C; 1×SSC,50% formamide	
D	DNA: RNA	<50	T _D *; 1×SSC	T _D *; 1×SSC
E	RNA: RNA	≥50	70°C; 1×SSC -or-	70℃; 0.3×SSC
			50℃; 1×SSC,50% formamide	
F	RNA: RNA	<50	T _F *; 1×SSC	T _F *; 1×SSC
G	DNA : DNA	≥50	65°C; 4×SSC -or-	65℃; 1×SSC
			42℃; 4×SSC,50% formamide	
H	DNA : DNA	<50	T _H *; 4×SSC	T _H *; 4×SSC
I	DNA: RNA	≥50	67°C; 4×SSC -or-	67℃; 1×SSC
			45°C; 4×SSC,50% formamide	
J	DNA : RNA	<50	T _J *; 4×SSC	T _J *; 4×SSC
K	RNA : RNA	≥50	70°C; 4×SSC -or-	67℃; 1×SSC
			50°C; 4×SSC,50% formamide	
L	RNA: RNA	<50	T _L *; 2×SSC	T _L *; 2×SSC
M	DNA : DNA	≥50	50°C; 4×SSC -or-	50°C; 2×SSC
			40°C; 6×SSC,50% formamide	
N	DNA : DNA	<50	T _N *; 6×SSC	T _N *; 6×SSC
О	DNA: RNA	≥50	55°C; 4×SSC -or-	55℃; 2×SSC
			42℃; 6×SSC,50% formamide	
P	DNA : RNA	<50	T _P *; 6×SSC	T _P *; 6×SSC
Q	RNA: RNA	≥50	60°C; 4×SSC -or-	60°C; 2×SSC
			45°C; 6×SSC,50% formamide	
R	RNA: RNA	<50	T _R *; 4×SSC	T _R *; 4×SSC

- ‡: The hybrid length is that anticipated for the hybridized region(s) of the hybridizing polynucleotides. When hybridizing a polynucleotide to a target polynucleotide of unknown sequence, the hybrid length is assumed to be that of the hybridizing polynucleotide. When polynucleotides of known sequence are hybridized, the hybrid length can be determined by aligning the sequences of the polynucleotides and identifying the region or regions of optimal sequence complementarity.
- †: SSPE (1×SSPE is 0.15M NaCl, 10mM NaH₂PO₄, and 1.25mM EDTA, pH7.4) can be substituted for SSC (1×SSC is 0.15M NaCl and 15mM sodium citrate) in the hybridization and wash buffers; washes are performed for 15 minutes after hybridization is complete.
- * T_B T_R : The hybridization temperature for hybrids anticipated to be less than 50 base pairs in length should be 5-10°C less than the melting temperature (T_m) of the hybrid, where T_m is determined according to the following equations. For hybrids less than 18 base pairs in length, T_m (°C)=2(#of A + T bases) + 4(# of G + C bases). For hybrids between 18 and 49 base pairs in length, T_m (°C)=81.5 + 16.6(log₁₀[Na⁺]) + 0.41 (%G+C) (600/N), where N is the number of bases in the hybrid, and [Na⁺] is the concentration of sodium ions in the hybridization buffer ([Na⁺] for 1×SSC=0.165M).

17

Additional examples of stringency conditions for polynucleotide hybridization are provided in Sambrook, J., E.F. Fritsch, and T. Maniatis, 1989, Molecular Cloning: A Laboratory

- Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, chapters 9 and 11, and Current Protocols in Molecular Biology, 1995, F.M. Ausubel et al., eds., John Wiley & Sons, Inc., sections 2.10 and 6.3-6.4, incorporated herein by reference.
- length that is at least 25%(more
 preferably at least 50%, and most preferably at least 75%) of
 the length of the polynucleotide of
 the present invention to which it hybridizes, and has at least
 60% sequence identity (more
 preferably, at least 75% identity; most preferably at least 90%
 or 95% identity) with the
 polynucleotide of the present invention to which it hybridizes,
 where sequence identity is
- 20 determined by comparing the sequences of the hybridizing polynucleotides when aligned so as to maximize overlap and identity while minimizing sequence gaps.

25 EXAMPLE

The present invention is embodied in more detail by the following examples, but this embodiment is not intended to restrict the present invention. The basic operations and the enzyme reactions with regard to the DNA recombination are

18

carried out according to the literature ["Molecular Cloning. A Laboratory Manual", Cold Spring Harbor Laboratory, 1989]. Unless otherwise stated, restrictive enzymes and a variety of modification enzymes to be used were those available from Takara Shuzo Co., Ltd. The manufacturer's instructions were used for the buffer compositions as well as for the reaction conditions, in each of the enzyme reactions. The cDNA synthesis was carried out according to the literature [Kato, S. et al., Gene 150: 243-250 (1994)].

10 (1) Preparation of Poly(A) + RNA

The epidermoid carcinoma cell line KB (ATCC CRL 17), tissues of stomach cancer delivered by the operation, and liver were used for human cells to extract mRNAs. The cell line was cultured by a conventional procedure.

of a 5.5 M guanidinium thiocyanate solution, total mRNAs were prepared in accordance with the literature [Okayama, H. et al., "Methods in Enzymology" Vol. 164, Academic Press, 1987]. These mRNAs were subjected to chromatography using an oligo(dT)-cellulose column washed with 20 mM Tris-hydrochloric acid buffer solution (pH 7.6), 0.5 M NaCl, and 1 mM EDTA to obtain a poly(A)⁺ RNA in accordance with the above-mentioned literature.

(2) Construction of cDNA Library

To a solution of 10 μg of the above-mentioned poly(A)⁺ RNA in 100 mM Tris-hydrochloric acid buffer solution (pH 8) was added one unit of an RNase-free, bacterium-origin alkaline phosphatase and the resulting solution was allowed to react at 37°C for one hour. After the reaction solution underwent the

WO 98/55508

phenol extraction followed by the ethanol precipitation, the obtained pellets were dissolved in a mixed solution of 50 mM sodium acetate (pH 6), 1 mM EDTA, 0.1% 2-mercaptoethanol, and 0.01% Triton X-100. Thereto was added one unit of a tobacco-origin pyrophosphatase (Epicenter Technologies) and the resulting solution at a total volume of 100 µl was allowed to react at 37°C for one hour. After the reaction solution underwent the phenol extraction followed by the ethanol precipitation, the thus-obtained pellets were dissolved in water to obtain a decapped poly(A)⁺ RNA solution.

19

PCT/JP98/02445

To a solution of the decapped poly(A)⁺ RNA and 3 nmol of a DNA-RNA chimeric oligonucleotide (5'-dG-dG-dG-dG-dA-dA-dT-dT-dC-dG-dA-G-G-A-3') in a mixed aqueous solution of 50 mM Trishydrochloric acid buffer solution (pH 7.5), 0.5 mM ATP, 5 mM MgCl₂, 10 mM 2-mercaptoethanol, and 25% polyethylene glycol were added 50 units of T4 RNA ligase and the resulting solution at a total volume of 30 μ l was allowed to react at 20°C for 12 hours. After the reaction solution underwent the phenol extraction followed by the ethanol precipitation, the thus-obtained pellets were dissolved in water to obtain a chimeric oligo-capped poly(A)⁺ RNA.

After the vector pKA1 developed by the present inventors (Japanese Patent Kokai Publication No. 1992-117292) was digested with KpnI, an about 60-dT tail was inserted by a terminal transferase. This product was digested with EcoRV to remove the dT tail at one side and the resulting molecule was used as a vectorial primer.

After 6 μ g of the previously-prepared chimeric oligo-capped poly(A)[†] RNA was annealed with 1.2 μ g of the vectorial

primer, the product was dissolved in a mixed solution of 50 mM Tris-hydrochloric acid buffer solution (pH 8.3), 75 mM KCl, 3 mM $MgCl_2$, 10 mM dithiothreitol, and 1.25 mM dNTP (dATP + dCTP + dGTP + dTTP), mixed with 200 units of a reverse transferase 5 (GIBCO-BRL), and the resulting solution at a total volume of 20 µl was allowed to react at 42°C for one hour. After the reaction solution underwent the phenol extraction followed by the ethanol precipitation, the thus-obtained pellets were dissolved in a mixed solution of 50 mM Tris-hydrochloric acid 10 buffer solution (pH 7.5), 100 mM NaCl, 10 mM MgCl $_2$, and 1 mM dithiothreitol. Thereto were added 100 units of EcoRI and the resulting solution at a total volume of 20 µl was allowed to react at 37°C for one hour. After the reaction solution underwent the phenol extraction followed by the ethanol 15 precipitation, the obtained pellets were dissolved in a mixed solution of 20 mM Tris-hydrochloric acid buffer solution (pH 7.5), 100 mM KCl, 4 mM MgCl₂, 10 mM (NH₄)₂SO₄, and 50 μ g/ml Thereto were added 60 units of bovine serum albumin. Escherichia coli DNA ligase and the resulting solution was 20 allowed to react at 16°C for 16 hours. To the reaction solution were added 2 µl of 2 mM dNTP, 4 units of Escherichia coli DNA polymerase I, and 0.1 unit of Escherichia coli DNase H and the resulting solution was allowed to react at 12°C for one hour and then at 22°C for one hour.

Next, the cDNA-synthesis reaction solution was used to transform *Escherichia coli* DH12S (GIBCO-BRL). The transformation was carried out by the electroporation method. A portion of the transformant was inoculated on a 2xYT agar culture medium containing 100 µg/ml ampicillin, which was

21

incubated at 37°C overnight. A colony grown on the culture medium was randomly picked up and inoculated on 2 ml of the 2xYT culture medium containing 100 µg/ml ampicillin, which was incubated at 37°C overnight. The culture medium was centrifuged 5 to separate the cells, from which a plasmid DNA was prepared by the alkaline lysis method. After the plasmid DNA was doubledigested with EcoRI and NotI, the product was subjected to 0.8% agarose gel electrophoresis to determine the size of the cDNA insert. In addition, by the use of the obtained plasmid as a 10 template, the sequence reaction using M13 universal primer labeled with a fluorescent dye and Taq polymerase (a kit of Applied Biosystems Inc.) was carried out and the product was analyzed by a fluorescent DNA-sequencer (Applied Biosystems Inc.) to determine the base sequence of the cDNA 5'-terminal of 15 about 400 bp. The sequence data were filed as a homo-protein cDNA bank data base.

(3) Selection of cDNAs Encoding Proteins Having
Transmembrane Domains

The base sequence registered in the homo-protein cDNA bank

20 data base was converted to three frames of amino acid sequences
and the presence or absence of an open reading frame (ORF)
beginning from the initiation codon. Then, the selection was
made for the presence of a signal sequence that is
characteristic to a secretory protein at the N-terminal of the

25 portion encoded by ORF. These clones were sequenced from the
both 5' and 3' directions by using the deletion method to
determine the sequence of the whole base sequence. The
hydrophobicity/hydrophilicity profiles were obtained for
proteins encoded by ORF by the Kyte-Doolittle method [Kyte, J.

WO 98/55508

& Doolittle, R. F., J. Mol. Bio. 157: 105-132 (1982)] to examine the presence or absence of a hydrophobic region. In the case in which there is a hydrophobic region of putative transmembrane domain(s) in the amino acid sequence of an encoded protein, this protein was considered as a membrane protein.

22

PCT/JP98/02445

(4) Construction of Secretory Signal Detection Vector pSSD3

One microgram of pSSD1 carrying the SV40 promoter and a cDNA encoding the protease domain of urokinase [Yokoyama-Kobayashi, M. et al., Gene 163: 193-196 (1995)] was digested with 5 units of BglII and 5 units of EcoRV. Then, after dephosphorylation at the 5' terminal by the CIP treatment, a DNA fragment of about 4.2 kbp was purified by cutting off from the gel of agarose gel electrophoresis.

Two oligo DNA linkers, L1 (5'-GATCCCGGGTCACGTGGGAT-3') and L2 (5'-ATCCCACGTGACCCGG-3'), synthesized were phosphorylated by T4 polynucleotide kinase. After annealing of the both linkers, followed by ligation with the previously-20 prepared pSSD1 fragment by T4 DNA ligase, Escherichia coli JM109 was transformed. A plasmid pSSD3 was prepared from the transformant and the objective recombinant was confirmed by the determination of the base sequence of the linker-inserted fragment. Figure 1 illustrates the structure of the thus-25 obtained plasmid. The present plasmid vector carries three types of blunt-end formation restriction enzyme sites, SmaI, PmaCI, and EcoRV. Since these cleavage sites are positioned in succession at an interval of 7 bp, selection of an appropriate site in combination of three types of frames for the inserting

cDNA allows to construct a vector expressing a fusion protein.

23

(5) Functional Verification of Secretory Signal Sequence Whether the N-terminal hydrophobic region in the secretory protein clone candidate obtained in the above-mentioned steps functions as the secretory signal sequence was verified by the method described in the literature [Yokoyama-Kobayashi, M. et al., Gene 163: 193-196 (1995)]. First, the plasmid containing the target cDNA was cleaved at an appropriate restriction enzyme site that existed at the downstream of the portion 10 expected for encoding the secretory signal sequence. In the case in which this restriction enzyme site was a protruding terminus, the site was blunt-ended by the Klenow treatment or treatment with the munq-bean nuclease. Digestion with HindIII was further carried out and a DNA fragment containing the SV40 15 promoter and a cDNA encoding the secretory sequence at the downstream of the promoter was separated by agarose gel electrophoresis. This fragment was inserted between the pSSD3 HindIII site and a restriction enzyme site selected so as to match with the urokinase-coding frame, thereby constructing a 20 vector expressing a fusion protein of the secretory signal portion of the target cDNA and the urokinase protease domain.

After Escherichia coli (host: JM109) bearing the fusionprotein expression vector was incubated at 37°C for 2 hours in
2 ml of the 2xYT culture medium containing 100 μg/ml
25 ampicillin, the helper phage M13KO7 (50 μl) was added and the
incubation was continued at 37°C overnight. A supernatant
separated by centrifugation underwent precipitation with
polyethylene glycol to obtain single-stranded phage particles.
These particles were suspended in 100 μl of 1 mM Tris-0.1 mM

24

EDTA, pH 8 (TE). Also, there was used as a control a suspension of single-stranded particles prepared in the same manner from the vector pLA1-UPA containing pSSD3 and a full-length cDNA of urokinase [Yokoyama-Kobayashi, M. et al., Gene 163: 193-196 (1995)].

5

25

simian-kidney-origin culture cells, COS7, The incubated at 37°C in the presence of 5% CO2 in the Dulbecco's modified Eagle's culture medium (DMEM) containing 10% bovine fetus albumin. Into a 6-well plate (Nunc Inc., 3 cm in the well 10 diameter) were inoculated 1 \times 10⁵ COS7 cells and incubation was carried out at 37°C for 22 hours in the presence of 5% CO2. After the culture medium was removed, the cell surface was washed with a phosphate buffer solution and then washed again with DMEM containing 50 mM Tris-hydrochloric acid (pH 7.5) 15 (TDMEM). To the cells were added 1 μ l of the single-stranded phage suspension, 0.6 ml of the DMEM culture medium, and 3 μ l of TRANSFECTAMTM (IBF Inc.) and the resulting mixture was incubated at 37°C for 3 hours in the presence of 5% CO2. After the sample solution was removed, the cell surface was washed 20 with TDMEM, 2 ml per well of DMEM containing 10% bovine fetus albumin was added, and the incubation was carried out at 37°C for 2 days in the presence of 5% CO2.

To 10 ml of 50 mM phosphate buffer solution (pH 7.4) containing 2% bovine fibrinogen (Miles Inc.), 0.5% agarose, and 1 mM potassium chloride were added 10 units of human thrombin (Mochida Pharmaceutical Co., Ltd.) and the resulting mixture was solidified in a plate of 9 cm in diameter to prepare a fibrin plate. Ten microliters of the culture supernatant of the

10

20

transfected COS7 cells were spotted on the fibrin plate, which was incubated at 37°C for 15 hours. The diameter of the thusobtained clear circle was taken as an index for the urokinase activity. In the case in which a cDNA fragment codes for the 5 amino acid sequence that functions as a secretory signal sequence, a fusion protein is secreted to form a clear circle by its urokinase activity. Therefore, in the case in which a clear circle is not formed, the fusion protein remains as trapped in the membrane and the cDNA fragment is considered to code for a transmembrane domain.

PCT/JP98/02445

(6) Protein Synthesis by In Vitro Translation

The plasmid vector carrying the cDNA of the present invention was utilized for the transcription/translation by the T_NT rabbit reticulocyte lysate kit (Promega Biotec). In this case, [35S]methionine was added and the expression product was labeled with the radioisotope. All reactions were carried out by following the protocols attached to the kit. Two micrograms of the plasmid was allowed to react at 30°C for 90 minutes in total 25 ml of a reaction solution containing 12.5 μ l of the T_NT rabbit reticulocyte lysate, 0.5 μ l of the buffer solution (attached to the kit), 2 µl of an amino acid mixture (methionine-free), 2 μ l (0.37 MBq/ μ l) of [35 S]methionine (Amersham Corporation), 0.5 μl of T7 RNA polymerase, and 20 U of RNasin. To 3 μ l of the reaction solution was added 2 μ l of an SDS sampling buffer (125 mM Tris-hydrochloric acid suffer solution, pH 6.8, 120 mM 2-mercaptoethanol, 2% SDS solution, 0.025% bromophenol blue, and 20% glycerol) and the resulting solution was heated at 95°C for 3 minutes and then subjected to SDS-polyacrylamide gel electrophoresis. The molecular weight of

26

the translation product was determined by carrying out the autoradiography.

(7) Expression in COS7

Escherichia coli bearing a vector expressing the protein of the invention was infected with helper phage M13KO7, and single-stranded phage particles were obtained according to the method as stated above. Using the thus obtained phages, each expression vecotr was introduced into simian-kidney-origin culture cells COS7 in the manner as stated above. After incubation at 37 °C for 2 days in the presence of 5 % CO₂, further incubation was carried out in a medium containing [35S]cysteine or [35S]methionine for 1 hour. The cells were collected, dissolved and then subjected to SDS-PAGE whereby a band corresponding to the expression product of each protein which is not present in COS7 cells was revealed. In Table 3, the molecular weight of each expression product is shown.

Table 3

HP Numbe	r Supernatant of culture	Membrane fraction
	(kDa)	(kDa)
HP01263	50	-
HP01299	-	30
HP01526	~	22
HP10230	-	24
HP10408	-	7
HP10415	- · · · · · · · · · · · · · · · · · · ·	45
HP10424	-	14
HP10429	-	27
HP10432		17
HP10480	-	22

27

(8) Clone Examples

<HP01263> (Sequence Number 1, 19, 37)

Determination of the whole base sequence for the cDNA insert of clone HP01263 obtained from the human liver cDNA 5 libraries revealed the structure consisting of a 5'-nontranslation region of 36 bp, an ORF of 1149 bp, and a 3'-nontranslation region of 316 bp. The ORF codes for a protein consisting of 382 amino acid residues with one transmembrane domain at the N-terminal. Figure 2 depicts the hydrophobicity 10 /hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in formation of a translation product of 42 kDa, which is almost consistent with the molecular weight of 42,054 as predicted On expression in COS cells, an expression from the ORF. 15 product of about 50 kDa was observed in the culture supernatant. Therefore, said protein can be understood to be a secreted protein. Application of the rule (-3, -1) as a method for anticipation of a cutting site in a secretion signal sequence suggested that the mature protein would start from 20 methionine at 19 position.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the human α -2-HS-glycoprotein (SWISS-PROT Accession No. P02765). Table 4 indicates the comparison of the amino acid sequences between the human protein of the present invention (HP) and the human α -2-HS-glycoprotein (GP). represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the

protein of the present invention. The both proteins possessed a homology of 25.5%. The cysteine position is reserved and this region is analogous to that in cystatins (thiol proteinase inhibitors). There are observed other analogy with histidine-rich glycoprotein (P04196, 30.9%/194 amino acid residues), kininogen (P01045, 24.1%/261 amino acid residues), tyrosine kinase inhibitor (A32827, 24.4%/291 amino acid residues), and so on.

Table 4

10 MGLLLPLALCILVLCCGAMSPPQLALNPSALLSR--GCNDSDVLAVAGFALRDINKDRKD . * . . . * . * . * * * . **.. GP MKSLVLLLCLAQLWGCHSAPHGPGLIYRQPNCDDPETEEAALVAIDYINQNLPW HP GYVLRLNRVNDAQEYRRGGLGSLFYLTLDVLETDCHVLRKKAWQDCGMRIFFE-SVYGQC 15 ${\tt GYKHTLNQIDEVKVWPQQPSGELFEIEIDTLETTCHVLDPTPVARCSVRQLKEHAVEGDC}$ HP K-AIFYMNNPSRVLYLAAYNCTLRPVSKKKIYMTCPDCPSSIPTDSSNHQVLEAATESLA GP DFQLLKLDGKFSVVY---AKCDSSPDSAEDVRKVCQDCPLLAPLN--DTRVVHAAKAALA 20 HP KYNNENTSKQYSLFKVTRASSQWVVGPSYFVEYLIKESPC---TKSQASSCSLQSSDSVP .*..*. * ...** . ** .**. ... * GP AFNAQNNGSNFQLEEISRAQLV-PLPPSTYVEFTVSGTDCVAKEATEAAKCNLLAEKQY-HP VGLCKGSLTRTHWEKFVSVTCDFFESQAPATGSENSAVNQK-PTNLPKVEESQQKNTPPT 25 GP -GFCKATLSEKLGGAEVAVTCTVFQTQPVTSQPQPEGANEAVPTPVVDPDAPPSPPLGAP HP DSPSKAGPRGSVQYLPDLDDKNSQEKGPQEAFPVHLDLTTNPQGETLDISFLFLEPMEEK . *. ..*..* GP GLPPAGSPPDSHVLLAAPPGHQLHRAHYDLRHTFMGVVSLGSPSGEVSHPRKTRTVVQPS HP LVVLPFPKEKARTAECPGPAQNASPLVLPP 30 GP VGAAAGPVVPPCPGRIRHFKV

WO 98/55508

PCT/JP98/02445

29

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. H57204), but it can not be assessed whether these ESTs with partial sequences code for the same protein as the protein of the present invention. Hereupon, most of ESTs matching with the present cDNA are available from liver cDNA libraries, whereby the present clone is considered to be expressed specifically in the liver.

The present protein, because of being a type-II membrane protein, is considered to exert its function as a receptor on the membrane surface with the C-terminal side exposed outside the cells or after undergoing a processing followed by being excreted in the serum. The present protein, because of bearing a cystatin-like domain, is considered to possess a proteinase-inhibitor activity as well as many physiological activities in the same manner as for other members of this family. In addition, the present protein, because of being expressed specifically in liver cells, is considered to play a significant role for maintaining the liver function.

<HP01299> (Sequence Number 2, 20, 38)

Determination of the whole base sequence for the cDNA insert of clone HP01299 obtained from the human liver cDNA libraries revealed the structure consisting of a 5'-non-translation region of 110 bp, an ORF of 954 bp, and a 3'-non-translation region of 285 bp. The ORF codes for a protein consisting of 317 amino acid residues with two or more transmembrane domains. Figure 3 depicts the hydrophobicity/hydrophilicity profile of the present protein

30

obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 32 kDa that was almost consistent with the molecular weight of 35,965 predicted from the ORF.

5 The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the rat retinol dehydrogenase (NBRF Accession No. A55884). Table 5 indicates the comparison of the amino acid sequences between the human protein of the present invention (HP) and the rat retinol dehydrogenase (RN). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 65.3% among the entire regions.

Table 5

		•
	HP	${\tt MWLYLAAFVGLYYLLHWYRERQVVSHLQDKYVFITGCDSGFGNLLARQLDARGLRVLAAC}$
5		**** *.**. ****. *******************
	RN	${\tt MWLYLLALVGLWNLLRLFRERKVVSHLQDKYVFITGCDSGFGNLLARQLDRRGMRVLAAC}$
	HP	${\tt LTEKGAEQLRGQTSDRLETVTLDVTKMESIAAATQWVKEHVGDRGLWGLVNNAGILTPIT}$
		**********.****************************
	RN	${\tt LTEKGAEQLRSKTSDRLETVILDVTKTESIVAATQWVKERVGNRGLWGLVNNAGISVPVG}$
10	HP	LCEWLNTEDSMNMLKVNLIGVIQVTLSMLPLVRRARGRIVNVSSILGRVAFFVGGYCVSK
		****.***.***.***.***.**.**.**.**.*
	RN	PNEWMRKKDFASVLDVNLLGVIEVTLNMLPLVRKARGRVVNIASTMGRMSLVGGGYCISK
	HP	YGVEAFSDILRREIQHFGVKISIVEPGYFRTGMTNMTQSLERMKQSWKEAPKHIKETYGQ
		******* ******** *.******. ***.**
15	RN	YGVEAFSDSLRRELTYFGVKVAIIEPGGFKTNVTNMERLSDNLKKLWDQTTEEVKEIYGE
	HP	QYFDALYNIMKEGLLNCSTNLNLVTDCMEHALTSVHPRTRYSAGWDAKFFFIPLSYLPTS
		* * ***.******** **********
	RN	KFQDSYMKAMESLVNTCSGDLSLVTDCMEHALTSCHPRTRYSPGWDAKFFYLPMSYLPTF
	HP	LADYILTRSWPKPAQAV
20		*.* ***.*.
	RN	LSDAVIHWGSVKPARAL

Furthermore, the search of GenBank using the base sequence 25 of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. R35197), but any of them was shorter than the present cDNA and did not contain the initiation codon.

The rat retinol dehydrogenase has been found as a 30 microsomal membrane protein participating in the retinoic acid

WO 98/55508

biosynthesis in the liver [Chai, X. et al., J. Biol. Chem. 270: 28408-28412 (1995)]. Accordingly, its homologue, the protein of the present invention, is considered to possess a similar function and can be utilized for diagnosis and treatment of diseases caused by the abnormality of this protein.

32

PCT/JP98/02445

<HP01347> (Sequence Number 3, 21, 39)

Determination of the whole base sequence for the cDNA insert of clone HP01347 obtained from the human liver cDNA libraries revealed the structure consisting of a 5'-non-10 translation region of 24 bp, an ORF of 891 bp, and a 3'-nontranslation region of 728 bp. The ORF codes for a protein consisting of 296 amino acid residues with one transmembrane domain at the N-terminal. Figure depicts hydrophobicity/hydrophilicity profile of the present protein 15 obtained by the Kyte-Doolittle method. It was indicated that the present protein remained in the membrane from the observation that the urokinase secretion was not identified and the urokinase activity was detected on the membrane surface, upon transduction into the COS7 cells of an expression vector in which a HindIII-SacI fragment (treated with the mung-bean nuclease) containing a cDNA fragment encoding the N-terminal 73 amino acid residues in the present protein was inserted at the HindIII-EcoRV site of pSSD3. Therefore, the present protein is considered to be a type-II membrane protein. The in vitro 25 translation resulted in the formation of a translation product of 33 kDa that was almost consistent with the molecular weight of 33,527 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was

33

analogous to the human HIV envelope glycoprotein gp120-binding C-type lectin (GenBank Accession No. M98457). Table 6 indicates the comparison of the amino acid sequences between the human protein of the present invention (HP) and the human HIV envelope glycoprotein gp120-binding C-type lectin (CL). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 85.6% among 284 amino acid residues. There is observed at the downstream of the transmembrane domain a sequence with seven repetition of Ile-Tyr-Gln-Xaa-Leu-Thr-Xaa-Leu-Lys-Ala-Ala-Val-Gly-Glu-Leu-Xaa-Xaa-Xaa-Ser-Lys-Xaa-Gln-Xaa.

15

34

-

Table 6

HP MSDSKEPRVQOLGLL-------GCLGHGALVLQLLSFMLLAGVLVAI ****** ***** ***** CL MSDSKEPRLQQLGLLEEEQLRGLGFRQTRGYKSLAGCLGHGPLVLQLLSFTLLAG----L HP LVQVSKVPSSLSQEQSEQDAIYQNLTQLKAAVGELSEKSKLQEIYQELTQLKAAVGELPE ************ CL LVQVSKVPSSISQEQSRQDAIYQNLTQLKAAVGELSEKSKLQEIYQELTQLKAAVGELPE KSKLQEIYQELTRLKAAVGELPEKSKLQEIYQELTRLKAAVGELPEKSKLQEIYQELTRL 10 ************** CL KSKLQEIYQELTRLKAAVGELPEKSKLQEIYQELTWLKAAVGELPEKSKMQEIYQELTRL HP KAAVGELPEKSKLQEIYQELTELKAAVGELPEKSKLQEIYQELTQLKAAVGELPDQSKQQ CL KAAVGELPEKSKQQEIYQELTRLKAAVGELPEKSKQQEIYQELTRLKAAVGELPEKSKQQ 15 HP QIYQELTDLKTAFERLCRHCPKDWTFFQGNCYFMSNSQRNWHDSVTACQEVRAQLVVIKT CL EIYQELTQLKAAVERLCHPCPWEWTFFQGNCYFMSNSQRNWHDSITACKEVGAQLVVIKS HP AEEQLPAVLEQWRTQQ *. *... **** 20 CL AEEQNFLQLQSSRSNRFTWMGLSDLNQEGTWQWVDGSPLLPSFKQYWNRGEPNNVGEEDC

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. H90360), but it can not be assessed whether these ESTs with partial sequences code for the same protein as the protein of the present invention.

The present protein, because of being a type-II membrane 30 protein, is considered to exert its function as a receptor on

WO 98/55508

PCT/JP98/02445

the membrane surface with the C-terminal side exposed outside the cells or after undergoing a processing followed by being excreted in the serum. Hereupon, the human HIV envelope glycoprotein gp120-binding C-type lectin that is highly homologous with the present protein has been found as a CD4-independent HIV receptor [Curtis, B. M. et al., Proc. Natl. Acad. Sci. USA 89: 8356-8360 (1992)].

35

<HP01440> (Sequence Number 4, 22, 40)

Determination of the whole base sequence for the cDNA insert of clone HP01440 obtained from the human stomach cancer cDNA libraries revealed the structure consisting of a 5'-non-translation region of 37 bp, an ORF of 594 bp, and a 3'-non-translation region of 98 bp. The ORF codes for a protein consisting of 197 amino acid residues with four transmembrane domains. Figure 5 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 21 kDa that was almost consistent with the molecular weight of 20,822 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the human tumor-associated antigen L6 (SWISS-PROT Accession No. P30408). Table 7 indicates the comparison of the amino acid sequences between the human protein of the present invention (HP) and the human tumor-associated antigen L6 (L6).

- represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and

. represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed

a homology of 47.0% among the entire regions.

Table 7

Furthermore, the search of GenBank using the base sequence 20 of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more and also containing the initiation codon (for example, Accession No. T55097), but many sequences were not distinct and the same ORF as that in the present cDNA was not identified.

25 The human tumor-associated antigen L6 is a member of a membrane antigen TM4 superfamily proteins which are expressed in large quantities on the surface of human tumor cells [Marken, J. S. et al., Proc. Natl. Acad. Sci. USA 89: 3503-3507 (1992)]. Since these membrane antigens are expressed 30 specifically on some specified cells or cancer cells,

WO 98/55508

20

antibodies against these antigens, if constructed, are useful for a variety of diagnoses and as carriers for the drug delivery. In addition, the cells in which genes of these membrane antigens are transduced and the membrane antigens are 5 expressed are applicable for detection of the corresponding ligands and so on.

37

PCT/JP98/02445

<HP01526> (Sequence Number 5, 23, 41)

Determination of the whole base sequence for the cDNA insert of clone HP01526 obtained from the human stomach cancer 10 cDNA libraries revealed the structure consisting of a 5'-nontranslation region of 83 bp, an ORF of 666 bp, and a 3'-nontranslation region of 573 bp. The ORF codes for a protein consisting of 221 amino acid residues with a hydrophobic region of putative six transmembrane domains. Figure 6 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 23 kDa that was almost consistent with the molecular weight of 25,030 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the mouse interstitial cell protein (GenBank Accession No. X96618). Table 8 indicates the comparison of the amino acid sequences between the human protein of the present 25 invention (HP) and the mouse interstitial cell protein (MM). represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed

38

a homology of 79.6% among the entire regions.

Table 8

Furthermore, the search of GenBank using the base sequence 20 of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more and also containing the initiation codon (for example, Accession No. H02682), but many sequences were not distinct and the same ORF as that in the present cDNA was not identified.

The mouse interstitial cell protein has been cloned as a membrane protein that is expressed with highly increasing in interstitial cells stimulated by a cytokine [Tagoh, H. et al., Biochem. Biophys. Res. Commun. 221: 744-749 (1996)]. Since these membrane proteins are expressed specifically on some specified cells and cancer cells, antibodies against these

39

proteins, if constructed, are useful for a variety of diagnoses and as carriers for the drug delivery. In addition, the cells in which genes of these membrane antigens are transduced and the membrane antigens are expressed are applicable for detection of the corresponding ligands and so on.

<HP10230> (Sequence Number 6, 24, 42)

Determination of the whole base sequence for the cDNA insert of clone HP10230 obtained from the human stomach cancer cDNA libraries revealed the structure consisting of a 5'-non-10 translation region of 190 bp, an ORF of 756 bp, and a 3'-nontranslation region of 2099 bp. The ORF codes for a protein consisting of 251 amino acid residues with at least one transmembrane domain. Figure 7 depicts hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 30 kDa that was almost consistent with the molecular weight of 28,800 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the nematode hypothetical protein F25D7.1 (GenBank Accession No. Z78418). Table 9 indicates the comparison of the amino acid sequences between the human protein of the present invention (HP) and the nematode hypothetical protein F25D7.1 (CE). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 49.8% among the entire regions.

40

Table 9

	HS	MSDIGDWFRSIPAITRYWFAATVAVPLVGKLGLISPAYLFL-WPEAFLYRFQIWRPITAT
		* ** .**** ***.*. *** ***.**
5	CE	MDLENFLLGIPIVTRYWFLASTIIPLLGRFGFINVQWMFLQW-DLVVNKFQFWRPLTAL
	HS	FYFPVGPGTGFLYLVNLYFLYQYSTRLETGAFDGRPADYLFMLLFNW-ICIVITGLAMDM
		.*.**.* *** .*. ****.**. ** **.*****.** .* .
	CE	IYYPVTPQTGFHWLMMCYFLYNYSKALESETYRGRSADYLFMLIFNWFFCSGLC-MALDI
	HS	QLLMIPLIMSVLYVWAQLNRDMIVSFWFGTRFKACYLPWVILGFNYIIGGSVINELIGNL
10		.*. ****** *.*.* ****** ** * ****. *** ****.* *
	CE	YFLLEPMVISVLYVWCQVNKDTIVSFWFGMRFPARYLPWVLWGFNAVLRGGGTNELVGIL
	HS	${\tt VGHLYFFLMFRYPMDLGGRNFLSTPQFLYRWLPSRRGGVSGFGVPPASMRRAADQNGGGG}$
		*** *** * * * * . * * *
	CE	VGHAYFFVALKYPDEYGV-DLISTPEFLHRLIPDEDGGIHGQDGNIRGARQQPRG
15	HS	RHNWGQGFRLGDQ
		* * * * **
	CE	-HQWPGGVGARLGGN

20 Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more and also containing the initiation codon (for example, Accession No. W01493), but many sequences were not distinct and the same ORF as that in the present cDNA was not identified.

<HP10389> (Sequence Number 7, 25, 43)

Determination of the whole base sequence for the cDNA insert of clone HP10389 obtained from the human epidermoid carcinoma cell line KBc cDNA libraries revealed the structure consisting of a 5'-non-translation region of 62 bp, an ORF of

WO 98/55508

41

PCT/JP98/02445

321 bp, and a 3'-non-translation region of 270 bp. The ORF codes for a protein consisting of 106 amino acid residues with a hydrophobic region of putative two transmembrane domains. Figure 8 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 12 kDa that was almost consistent with the molecular weight of 11,528 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any of known proteins. Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. H70816), but many sequences were not distinct and the same ORF as that in the present cDNA was not identified.

<HP10408> (Sequence Number 8, 26, 44)

20

Determination of the whole base sequence for the cDNA insert of clone HP10408 obtained from the human stomach cancer cDNA libraries revealed the structure consisting of a 5'-non-translation region of 74 bp, an ORF of 237 bp, and a 3'-non-translation region of 128 bp. The ORF codes for a protein consisting of 78 amino acid residues with a putative signal sequence at the N-terminal as well as a sequence of one putative interior transmembrane domain. Figure 9 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. It was indicated that the present protein remained in the membrane from the observation that the urokinase secretion was not identified

42

upon transduction into the COS7 cells of an expression vector in which a HindIII-BglII fragment (after the Klenow treatment) containing a cDNA fragment encoding the N-terminal 70 amino acid residues in the present protein was inserted at the HindIII-EcoRV site of pSSD3. The in vitro translation resulted in the formation of a translation product of 9 kDa that was almost consistent with the molecular weight of 8,396 predicted from the ORF.

of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. T94049), but they were shorter than the present cDNA and any molecule containing the initiation codon was not identified.

15 <HP10412> (Sequence Number 9, 27, 45)

20

25

Determination of the whole base sequence for the cDNA insert of clone HP10412 obtained from the human stomach cancer cDNA libraries revealed the structure consisting of a 5'-nontranslation region of 55 bp, an ORF of 945 bp, and a 3'-nontranslation region of 131 bp. The ORF codes for a protein consisting of 314 amino acid residues with one transmembrane Figure 10 depicts the N-terminal. domain at the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. It was indicated that the present protein remained in the membrane from the observation that the urokinase secretion was not identified upon transduction into the COS7 cells of an expression vector in which a HindIII-ApaI fragment (treated with mung-bean nuclease) containing a cDNA fragment encoding the N-terminal 65

43

amino acid residues in the present protein was inserted at the HindIII-EcoRV site of pSSD3. The in vitro translation resulted in the formation of a translation product of 44 kDa that was somewhat larger than the molecular weight of 35,610 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the nematode hypothetical protein of 28.5 kDa (SWISS-PROT Accession No. P34623). Table 10 indicates the comparison of the amino acid sequences between the human protein of the present invention (HP) and the nematode hypothetical protein of 28.5 kDa (CE). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 42.8% in the C-terminal region of 243 amino acid residues.

Table 10

	HP	MVAPVWYLVAAALLVGFILFLTRSRGRAASAGQEPLHNEELAGAGRVAQPGPLEPEEPRA
5	HP	GGRPRRRDLGSRLQAQRRAQRVAWAEADENEEEAVILAQEEEGVEKPAETHLSGKIG
		· * .*.***
	CE	MRRNARRRVNRDEQEDGFVNHMMNDGEDVEDLDGGAEQFEYDEDGKKIG
	ĦР	AKKLRKLEEKQARKAQREAEEAEREERKRLESQREAEWKKEEERLRLEEEQKEEEERK
		.* *** ** * ****** ** * **** . **. **
10	CE	KRKAAKLQAKEEKRQMREYEVREREERKRREEEREKKRDEERAKEEADEKAEEERLRK
	HP	AREEQAQREHEEYLKLKEAFVVEEEGVGETMTEEQSQSFLTEFINYIKQSKVVLLEDLAS
		.******** .******
	CE	EREEKERKEHEEYLAMKASFAIEEEG-TDAIEGEEAENLIRDFVDYVKTNKVVNIDELSS
	HP	QVGLRTQDTINRIQDLLAEGTITGVIDDRGKFIYITPEELAAVANFIRQRGRVSIAELAQ
15		. *****.* . **.******* **.**.**.**.
	CE	HFGLKSEDAVNRLQHFIEEGLVQGVMDDRGKFIYISDEEFAAVAKFINQRGRVSIHEIAE
	HP	ASNSLIAWGRESPAQAPA
		.**.** . *.*.
	CE	QSNRLIRLETPSAAE
20		

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. T09311), but it can not be assessed whether these ESTs with partial sequences code for the same protein as the protein of the present invention.

<HP10413> (Sequence Number 10, 28, 46)

Determination of the whole base sequence for the cDNA 30 insert of clone HP10413 obtained from the human stomach cancer

45

cDNA libraries revealed the structure consisting of a 5'-nontranslation region of 78 bp, an ORF of 588 bp, and a 3'-nontranslation region of 1209 bp. The ORF codes for a protein consisting of 195 amino acid residues with one transmembrane domain the N-terminal. 11 depicts at Figure hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. It was indicated that the present protein remained in the membrane from the observation that the urokinase secretion was not identified 10 upon transduction into the COS7 cells of an expression vector in which a HindIII-PmaCI fragment containing a cDNA fragment encoding the N-terminal 65 amino acid residues in the present protein was inserted at the HindIII-PmaCI site of pSSD3. The in vitro translation resulted in the formation of a translation 15 product of 28 kDa that was somewhat larger than the molecular weight of 21,671 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the swine steroidal membrane-binding protein (GenBank Accession No. X99714). Table 11 indicates the comparison of the amino acid sequences between the human protein of the present invention (HP) and the swine steroidal membrane-binding protein (SS). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 96.4% among the entire regions.

20

46

Table 11

	HP	${\tt MAAEDVVATGADPSDLESGGLLHEIFTSPLNLLLLGLCIFLLYKIVRGDQPAASGDSDDD}$

5	SS	MAAEDVAATGADPSELEGGGLLHEIFTSPLNLLLLGLCIFLLYKIVRGDQPAAS-DSDDD
	HP	EPPPLPRLKRRDFTPAELRRFDGVQDPR1LMAINGKVFDVTKGRKFYGPEGPYGVFAGRD

	SS	EPPPLPRLKRRDFTPAELRRFDGVQDPR1LMAINGKVFDVTKGRKFYGPEGPYGVFAGRD
	HP	${\tt ASRGLATFCLDKEALKDEYDDLSDLTAAQQETLSDWESQFTFKYHHVGKLLKEGEEPTVY}$
10		******************
	SS	${\tt ASRGLATFCLDKEALKDEYDDLSDLTPAQQETLNDWDSQFTFKYHHVGKLLKEGEEPTVY}$
	HP	SDEEEPKDESARKND
	•	******
	SS	SDEEEPKDESARKND
1 =		

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. AA021062), but many sequences were not distinct and the same ORF as that in the present cDNA was not identified.

<HP10415> (Sequence Number 11, 29, 47)

Determination of the whole base sequence for the cDNA insert of clone HP10415 obtained from the human stomach cancer cDNA libraries revealed the structure consisting of a 5'-non-translation region of 71 bp, an ORF of 1389 bp, and a 3'-non-translation region of 103 bp. The ORF codes for a protein consisting of 462 amino acid residues with one transmembrane domain at the N-terminal. Figure 12 depicts the hydrophobicity/hydrophilicity profile of the present protein

47

obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 48 kDa that was somewhat smaller than the molecular weight of 52,458 predicted from the ORF.

5 The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the cytochrome P450 as exemplified by the simian cytochrome P450IIIA8 (SWISS-PROT Accession No. P33268). Table 12 indicates the comparison of the amino acid sequences between 10 the human protein of the present invention (HP) and the simian cytochrome P450IIIA8 (CP). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The 15 both proteins possessed a homology of 21.3% among the entire regions.

48

Table 12

	HP	MLDFAIFAVTFLLALVGAVLYLYPASRQAAGIPGITPTEEKDGNLPDIVN-SGSLHEF
		.********
5	CP	MDLIPDLAVETWLLLAVTLVLLYLYGTHSHGLFKKLGIPGPTPLPLLGNILSYRKGFWTF
	HP	LVNLHERYGPVVSFWFGRRLVVSLGTVDVLKQHINPNKTLDPFETMLK-SLLRYQSGGGS
		** * .*. **. * *
	CP	DMECYKKYGKVWGFYDGRQPVLAITDPNMIK-TVLVKECYSVFTNRRPFGPVGFMKNAIS
	HP	VSENHMRKKLYENGVTDSLKSNFALLLKLSEELLDKWLSYPET-QHVPLSQHMLGF
10		**. *** * ***
	CP	IAEDEEWKRIRSLLSPTFTSGKLKEMVPIIAKYGDVLVRNLRREAETGKPVTLKDVFGAY
	HP	AMKSVTQMVMGSTF-EDDQEVIRFQKNHGTVWSEIGKGFLDGSLDKNM
		.** .* * *. * *.
	CP	${\tt SMDVITSTSFGVNIDSLNNPQDPFVENTKKLLRFDFLDPFFLSITIFPFIIPILEVLNIS}$
15	HP	TRKKQYEDALMQ-LESVLRNIIKE-RKGR-NFSQHIFIDSLVQGNLNDQQILEDS
		*
	CP	IFPREVTSFLRKSVKRIKESRLKDTQKHRVDFLQLMIDSQNSKETESHKALSDLELVAQS
	HP	MIFSLASCIITAKLCTWAICFLTTSEEVQKKLYEEINQVF-GNGPVTPEKIEQLRYCQHV
		.** .*
20	CP	IIFIFAGYETTSSVLSFIIYELATHPDVQQKLQEEIDTVLPNKAPPTYDTVLQMEYLDMV
	HP	${\tt LCETVRTAKLTPVSAQLQDIEGKIDRFIIPRETLVLYALGVVLQDPNTWPSPHKFDPDRF}$
		. **.*
	HP	VNETLRIFPIAMRLERVCKKDVEINGIFIPKGVVVMIPSYALHHDPKYWPEPEKFLPERF
	HP	DDELVMKTFSSLGFSGTQECPELRFAYMVTTVLLSVLVKRLHLLSVEGQVIETKYE
25		.** ****** * * *
	CP	SKKNNDNIDPYIYTPFG-SGPRNCIGMRFALMNMKLAIIRVLQNFSFKPCKETQIPLKLR
	HP	LVTSSREEAWITVSKRY
		*
	CP	LGGLLQTEKPIVLKIESRDGTVSGA
2.0		

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs

possessing the homology of 90% or more (for example, Accession No. AA381169), but it can not be assessed whether these ESTs with partial sequences code for the same protein as the protein of the present invention.

The cytochrome P450 participates in the drug metabolism and can be utilized as a catalyst in organic synthesis reactions such as oxidation and so on.

<HP10419> (Sequence Number 12, 30, 48)

5

Determination of the whole base sequence for the cDNA insert of clone HP10419 obtained from the human stomach cancer cDNA libraries revealed the structure consisting of a 5'-non-translation region of 170 bp, an ORF of 744 bp, and a 3'-non-translation region of 1116 bp. The ORF codes for a protein consisting of 247 amino acid residues with a hydrophobic region of putative seven transmembrane domains. Figure 13 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method.

The search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. AA340663), but it can not be assessed whether these ESTs with partial sequences code for the same protein as the protein of the present invention.

<HP10424> (Sequence Number 13, 31, 49)

Determination of the whole base sequence for the cDNA insert of clone HP10424 obtained from the human stomach cancer cDNA libraries revealed the structure consisting of a 5'-non-translation region of 97 bp, an ORF of 342 bp, and a 3'-non-translation region of 54 bp. The ORF codes for a protein

10

WO 98/55508 PCT/JP98/02445

50

consisting of 113 amino acid residues with one transmembrane domain at the N-terminal. Figure 14 depicts hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. It was indicated that the present protein remained in the membrane from the observation that the urokinase secretion was not identified upon transduction into the COS7 cells of an expression vector in which a HindIII-AccI fragment (after the Klenow treatment) containing a cDNA fragment encoding the N-terminal 58 amino acid residues in the present protein was inserted at the HindIII-SmaI site of pSSD3. The in vitro translation resulted in the formation of a translation product of 14 kDa that was somewhat larger than the molecular weight of 12,784 predicted from the ORF.

of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. AA401979), but it can not be assessed whether these ESTs with partial sequences code for the same protein as the protein of the present invention.

<HP10428> (Sequence Number 14, 32, 50)

Determination of the whole base sequence for the cDNA insert of clone HP10428 obtained from the human epidermoid carcinoma cell line KBc cDNA libraries revealed the structure consisting of a 5'-non-translation region of 287 bp, an ORF of 1098 bp, and a 3'-non-translation region of 659 bp. The ORF codes for a protein consisting of 365 amino acid residues with a hydrophobic region of putative nine transmembrane domains. Figure 15 depicts the hydrophobicity/hydrophilicity profile of

51

the present protein obtained by the Kyte-Doolittle method. The result of the in vitro translation did not reveal the formation of distinct bands and only revealed the formation of smeary bands at the high-molecular-weight position.

5 The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the baker's yeast hypothetical membrane protein YML038c (NBRF Accession No. S49741). Table 13 indicates the comparison of the amino acid sequences between the human 10 protein of the present invention (HP) and the baker's yeast hypothetical membrane protein YML038c (SC). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 26.3% among the N-terminal region of 281 amino acid residues.

52

Table 13

		
	HP	MGRWALDVAFLWKAVLTLGLVL-LYYCFSIGITFYNKWLTKSFHFPLFMTMLHLA
		**. *.* **.*.
5	sc	MNRTVFLAFVFGWYFCS-IALSIYNRWMFDPKDGLGIGYPVLVTTFHQA
	HP	VIFLFSALSRALVQCSSHRARVVLSWADYLRRVAPTALATALDVGLSNWSFLYVTVS
		.. * *
	sc	TLWLLSGIYIKLRHKPVKNVLRKNNGFNWSFFLKFLLPTAVASAGDIGLSNVSFQYVPLT
	HP	LYTMTKSSAVLFILIFSLIFKLEELRAALVLVVLLIAGGLFMFTYKSTQ-FN
10		.**** *.*. *.*
	sc	IYTIIKSSSIAFVLLFGCIFKLEKFHWKLALSVIIMFVGVALMVFKPSDSTSTKNDQALV
	HP	VEGFALVLGASFIGGIRWTLTQMLLQKAELGLQNPIDTMFHLQPLMFLGLFPLFAVFEGL
		. * *******
	sc	IFGSFLVLASSCLSGLRWVYTQLMLRNNPIQTNTAAAVEES-DGALFTENEDNVDNEPVV
15	HP	HLSTSEKIFRFQDT-GLLLRVLGSLFLGGILAFGLGFSEFLLVSRTSSLTLSIAGIFKEV
		.**
	sc	NLANNKMLENFGESKPHPIHTIHQLAPIMGITLLLTS-LLVEKPFPGIFS-SSIFRLD
	HP	CTLLLAAHLLGDQISLLNWLGFALCLSGISLHVALKALHSRGDGGPKALKGLGSSPDLEL
20	sc	TSNGGVGTETTVLSIVRGIVLLILPGFAVFLLTICEFSILEQTPVLTVSIVGIVKELLTV
	НЪ	LLRSSQREEGDNEEEEYFVAQGQQ
	sc	IFGIIILSERLSGFYNWLGMLIIMADVCYYNYFRYKQDLLQKYHSVSTQDNRNELKGFQD
		·

25

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. AA018345), but it can not be assessed whether these ESTs

with partial sequences code for the same protein as the protein of the present invention.

<HP10429> (Sequence Number 15, 33, 51)

Determination of the whole base sequence for the cDNA insert of clone HP10429 obtained from the human stomach cancer cDNA libraries revealed the structure consisting of a 5'-non-translation region of 156 bp, an ORF of 681 bp, and a 3'-non-translation region of 206 bp. The ORF codes for a protein consisting of 226 amino acid residues with four transmembrane domains. Figure 16 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 25 kDa that was almost consistent with the molecular weight of 25,321 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any known proteins. Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or 20 more (for example, Accession No. AA315933), but it can not be assessed whether these ESTs with partial sequences code for the same protein as the protein of the present invention.

<HP10432> (Sequence Number 16, 34, 52)

Determination of the whole base sequence for the cDNA insert of clone HP10429 obtained from the human liver cDNA libraries revealed the structure consisting of a 5'-non-translation region of 28 bp, an ORF of 390 bp, and a 3'-non-translation region of 554 bp. The ORF codes for a protein consisting of 129 amino acid residues with a signal-like

sequence at the N-terminal and one interior transmembrane domain. Therefore, the present protein is considered to be a type-I membrane protein. Figure 17 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any known proteins. Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. T74424), but the same ORF as that in the present cDNA was not identified.

<HP10433> (Sequence Number 17, 35, 53)

Determination of the whole base sequence for the cDNA insert of clone HP10433 obtained from the human liver cDNA libraries revealed the structure consisting of a 5'-nontranslation region of 72 bp, an ORF of 492 bp, and a 3'-nontranslation region of 131 bp. The ORF codes for a protein consisting of 163 amino acid residues with one transmembrane N-terminal. 20 domain at the Figure 18 depicts hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. It was indicated that the present protein remained in the membrane from the observation that the urokinase secretion was not identified 25 upon transduction into the COS7 cells of an expression vector in which a HindIII-Eco81I fragment (treated with the mung-bean nuclease) containing a cDNA fragment encoding the N-terminal 137 amino acid residues in the present protein was inserted at the HindIII-EcoRV site of pSSD3. Therefore, the present protein

55

is considered to be a type-II membrane protein. The in vitro translation resulted in the formation of a translation product of 21 kDa that was almost consistent with the molecular weight of 18,617 predicted from the ORF.

5 The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any known proteins. Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or 10 more (for example, Accession No. H84693), but many sequences are not distinct and the same ORF as that in the present cDNA was not identified.

<HP10480> (Sequence Number 18, 36, 54)

Determination of the whole base sequence for the cDNA insert of clone HP10480 obtained from the human stomach cancer cDNA libraries revealed the structure consisting of a 5'-non-translation region of 79 bp, an ORF of 582 bp, and a 3'-non-translation region of 1253 bp. The ORF codes for a protein consisting of 193 amino acid residues with four transmembrane domains. Figure 19 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 23 kDa that was somewhat larger than the molecular weight of 21,445 predicted from the ORF.

25 The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any known proteins. Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or

56

more (for example, Accession No. W93606), but many sequences are not distinct and the same ORF as that in the present cDNA was not identified.

The present invention provides human proteins having transmembrane domains and cDNAs encoding said proteins. All of the proteins of the present invention are putative proteins controlling the proliferation and differentiation of the cells, because said proteins exist on the cell membrane. Therefore, the proteins of the present invention can be used as 10 pharmaceuticals or as antigens for preparing antibodies against said proteins. Furthermore, said DNAs can be used for the expression of large amounts of said proteins. The cells expressing large amounts of membrane proteins with transfection of these membrane protein genes can be applied to the detection 15 of the corresponding ligands, the screening of novel low-molecular medicines, and so on.

In addition to the activities and uses described above, the polynucleotides and proteins of the present invention may exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified below. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or by administration or use of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA).

Research Uses and Utilities

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for

57

analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as 5 molecular weight markers on Southern gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA 10 sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known in the process of discovering other polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for 15 examination of expression patterns; to raise anti-protein antibodiesusing DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in 20 a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

25 The proteins provided by the present invention can similarly be used in assay to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in

assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can be used to identify the other protein with which binding occurs or to identify inhibitors of the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of 15 being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A 20 Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R. Kimmel eds., 1987.

25 <u>Nutritional Uses</u>

Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source

and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

Cytokine and Cell Proliferation/Differentiation

10 Activity

A protein of the present invention may exhibit cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of a protein of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e and CMK.

25 The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H.

60

Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., J. Immunol. 149:3778-3783, 1992; Bowman et al., J. Immunol. 152: 1756-1761, 1994.

Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Po lyclonal T cell stimulation, Kruisbeek, A.M. and Shevach, E.M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human Interferon γ, Schreiber, R.D. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L.S. and Lipsky, P.E. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6 -Nordan, R. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et

- al., Proc. Natl. Acad. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11 Bennett, F., Giannotti, J., Clark, S.C. and Turner, K. J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9 Ciarletta, A., Giannotti, J., Clark, S.C. and Turner, K.J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.
- 10 Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without Current limitation, those described in: Protocols 15 Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); 20 Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

Immune Stimulating or Suppressing Activity

A protein of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined

WO 98/55508

immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial orfungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

15 Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, 20 insulin dependent diabetes mellitis, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein of the present invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or 25 other respiratory problems. Other conditions, in which immune is suppression desired (including, for example, transplantation), may also be treatable using a protein of the present invention.

Using the proteins of the invention it may also be

PCT/JP98/02445 WO 98/55508

63

possible to immune responses, in a number of ways. regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. The functions of 5 activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, 10 which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent. 15

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as , for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in Typically, in tissue transplants, tissue transplantation. rejection of the transplant is initiated through 25 recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a molecule which inhibits or blocks interaction of a B7 lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2

20

64

activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen B7-1, B7-3) or blocking antibody), prior transplantation can lead to the binding of the molecule to the natural ligand(s) on the immune cells without transmitting the corresponding costimulatory signal. Blocking B lymphocyte antigen function in this matter prevents cytokine synthesis by immune cells, such as T cells, and thus acts as immunosuppressant. Moreover, the lack of costimulation may 10 also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular blocking reagents in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antigen function in vivo on the development of that disease.

65

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block costimulation of T cells by disrupting receptor: ligand interactions of B lymphocyte 10 antigens can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. 15 The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through stimulating B

lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the commoncold, and encephalitis might be alleviated by the administration of stimulatory forms of B lymphocyte 5 antigens systemically.

66

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or 10 together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein 15 of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

In another application, up regulation or enhancement of antigen function (preferably B lymphocyte antigen function) may be useful in the induction of tumor immunity. Tumor cells (e.g., sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least 25 one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a combination of peptides. For example, tumor cells obtained from a patient can be transfected ex vivo with an expression

20

67

vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression of the peptides on the surface of the transfected cell. Alternatively, gene therapy techniques can be used to target a tumor cell for transfection in vivo.

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the surface 10 of the tumor cell provides the necessary costimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class II 15 molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I α chain protein and β_2 microglobulin protein or an MHC class II a chain protein and an MHC class II b chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which 25 blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a

68

T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

5 Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays 10 for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 15 140:508-512, 1988; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Bowmanet al., J. Virology 61:1992-1998; Takai et al., J. Immunol. 140:508-512, Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J.J. and Brunswick, M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John

69

Wiley and Sons, Toronto. 1994.

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Thl and CTL responses) include, without limitation, those 5 described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in 10 Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that 15 activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990. 25

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in:

70

Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

Hematopoiesis Regulating Activity

A protein of the present invention may be useful in 15 regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation 20 of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production erythroid precursors and/or erythroid cells; in supporting the 25 growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting the growth and proliferation of megakaryocytes and consequently WO 98/55508

71

PCT/JP98/02445

of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation 5 of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and paroxysmal 10 nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo ex-vivo with or (i.e., in conjunction bone marrow transplantation or with progenitor peripheral cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney,

M.G. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, NY. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I.K. and Briddell, R.A. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, NY. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area cell assay, Ploemacher, R.E. Culture forming In 10 Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New York, NY. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, NY. 1994; Long term culture initiating cell assay, Sutherland, H.J. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.

Tissue Growth Activity

- A protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.
- A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing a protein of the

73

invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.

Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation. A protein of the present invention, 20 which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a 25 tendon/ligament-like tissue inducing protein prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue

74

formation induced by a composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of 5 tendons or ligaments. The compositions of the present invention may provide an environment to attract tendon- or ligament-forming cells, stimulate growth of tendonligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of 10 tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The protein of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as 20 mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a protein may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized 25 neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders,

WO 98/55508

PCT/JP98/02445

75

such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

Proteins of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

It is expected that a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate. A protein of the invention may also exhibit angiogenic activity.

A protein of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

The activity of a protein of the invention may, among other means, be measured by the following methods:

76

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. W095/16035 (bone, cartilage, tendon); International Patent Publication No. W095/05846 (nerve, neuronal); International Patent Publication No. W091/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, HI and Rovee, DT, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

Activin/Inhibin Activity

10

A protein of the present invention may also exhibit activinor inhibin-related activities. Inhibins characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of 20 the inhibin α family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the protein of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin- β group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, United States Patent 4,798,885. A protein of

the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.

5 The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

Chemotactic/Chemokinetic Activity

A protein of the present invention may have chemotactic or chemokinetic activity (e.g., act as a chemokine) for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. Chemotactic and chemokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell

WO 98/55508

78

PCT/JP98/02445

population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in 15 Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller 20 et al Eur. J. Immunol. 25: 1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153: 1762-1768, 1994.

Hemostatic and Thrombolytic Activity

A protein of the invention may also exhibit hemostatic or thrombolytic activity. As a result, such a protein is expected to be useful in treatment of various coagulation disorders (includinghereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A

protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system 5 vessels (e.g., stroke).

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

Receptor/Ligand Activity

A protein of the present invention may also demonstrate 15 activity as receptors, receptor ligands or inhibitors or agonists of receptor/ligand interactions. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors 20 involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses). 25 Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments receptors and ligands) may themselves be useful as inhibitors

of receptor/ligand interactions.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include

without limitation those described in:Current Protocols in
Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies,
E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and
Wiley-Interscience (Chapter 7.28, Measurement of Cellular
Adhesion under static conditions 7.28.1-7.28.22), Takai et al.,

Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al.,
J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp.
Med. 169:149-160 1989; Stoltenborg et al., J. Immunol.
Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

Anti-Inflammatory Activity

15 Proteins of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, cell adhesion), by 20 inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins exhibiting such activities can 25 be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis,

81

complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of ytokines such as TNF or IL-1. Proteins of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.

Tumor Inhibition Activity

In addition to the activities described above for immunological treatment or prevention of tumors, a protein of the invention may exhibit other anti-tumor activities. A protein may inhibit tumor growth directly or indirectly (such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing production of other factors, agents or cell types which inhibit tumor growth, or by suppressing, eliminating or inhibiting factors, agents or cell types which promote tumor growth

20 Other Activities

25

A protein of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in

bone form or shape); effecting biorhythms or caricadic cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, 5 protein, carbohydrate, vitamins, minerals, cofactors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent 10 behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related 15 diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another 20 material or entity which is cross-reactive with such protein.

Sequence Table

145

	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	1:							
5		(i) S	EQUE	NCE	CHAR	ACTE	RIST	ICS:							
				(A)	LEN	GTH:	382									
				(B)	TYP	E: A	mino	aci	d							
				(D)	TOP	OLOG	Y: L	inea	r							
		(ii)	SEQU	ENCE	KIN	D: P	rote	in							
10		(iii)	HYP	OTHE	TICA	L: N	0								
		(-	vi)	ORIG	INAL	sou	RCE:									
				(A)	ORG	ANIS	M: <i>H</i>	ото	sapi	ens						
				(B)	CEL	L KI	ND:	Live	r							
15				(D)	CLO	NE N	AME:	HPO:	1263							
		(:	xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	1:				
	Met	Gly	Leu	Leu	Leu	Pro	Leu	Ala	Leu	Cys	Ile	Leu	Val	Leu	Cys	Cys
20	1				5					10					15	
	Gly	Ala	Met	Ser	Pro	Pro	Gln	Leu	Ala	Leu	Asn	Pro	Ser	Ala	Leu	Leu
				20					25					30		
	Ser	Arg	Gly	Cys	Asn	Asp	Ser	Asp	Val	Leu	Ala	Val	Ala	Gly	Phe	Ala
			35					40					45			
25	Leu		Asp	Ile	Asn	Lys	Asp	Arg	Lys	Asp	Gly	Tyr	Va1	Leu	Arg	Leu
		50					55					60				
		Arg	Val	Asn	Asp	Ala	Gln	Glu	Tyr	Arg	Arg	G1y	Gly	Leu	Gly	Ser
	65		٠			70					75					80
	Leu	Phe	Tyr	Leu		Leu	Asp	Val	Leu	Glu	Thr	Asp	Cys	His	Val	Leu
30		_	_		85					90					95	
	Arg	Lys	Lys		Trp	Gln	Asp	Cys		Met	Arg	Ile	Phe	Phe	Glu	Ser
		_		100			_		105					110		
	val	Tyr		Gln	Cys	Lys	Ala		Phe	Tyr	Met	Asn		Pro	Ser	Arg
) E	17- 1		115	•		. •		120	_				125		_	_
35	val		Tyr	Leu	Ala	Ala		Asn	Cys	Thr	Leu		Pro	Val	Ser	Lys
		130					135					140				

Lys Lys Ile Tyr Met Thr Cys Pro Asp Cys Pro Ser Ser Ile Pro Thr

155

160

	Asp	Ser	Ser	Asn	His	Gln	Val	Leu	Glu	Ala	Ala	Thr	Glu	Ser	Leu	Ala
					165					170		•			175	
	Lys	Tyr	Asn	Asn	Glu	Asn	Thr	Ser	Lys	Gln	Tyr	Ser	Leu	Phe	Lys	Val
				180					185					190		
5	Thr	Arg	Ala	Ser	Ser	Gln	Trp	Val	Val	Gly	Pro	Ser	Tyr	Phe	Val	Glu
			195					200					205			
	Tyr	Leu	Ile	Lys	Glu	Ser	Pro	Cys	Thr	Lys	Ser	Gln	Ala	Ser	Ser	Cys
		210					215					220				
	Ser	Leu	Gln	Ser	Ser	Asp	Ser	Val	Pro	Val	Gly	Leu	Cys	Lys	Gly	Ser
10	225					230					235					240
	Leu	Thr	Arg	Thr	His	Trp	Glu	Lys	Phe	Val	Ser	Val	Thr	Cys	Asp	Phe
					245					250					255	
	Phe	Glu	Ser	Gln	Ala	Pro	Ala	Thr	Gly	Ser	Glu	Asn	Ser	Ala	Val	Asn
				260					265					270		
15	Gln	Lys	Pro	Thr	Asn	Leu	Pro	Lys	Val	Glu	Glu	Ser	Gln	Gln	Lys	Asn
			275					280					285			
	Thr	Pro	Pro	Thr	Asp	Ser	Pro	Ser	Lys	Ala	Gly	Pro	Arg	Gly	Ser	Val
		290					295					300				
	Gln	Tyr	Leu	Pro	Asp	Leu	Asp	Asp	Lys	Asn	Ser	Gln	Glu	Lys	Gly	Pro
20	305					310					315					320
	Gln	Glu	Ala	Phe	Pro	Val	His	Leu	Asp	Leu	Thr	Thr	Asn	Pro	Gln	Gly
					325					330					335	
	Glu	Thr	Leu	Asp	Ile	Ser	Phe	Leu	Phe	Leu	Glu	Pro	Met	Glu	Glu	Lys
				340					345					350		
25	Leu	Val	Val	Leu	Pro	Phe	Pro	Lys	Glu	Lys	Ala	Arg	Thr	Ala	Glu	Cys
			355					360					365			
	Pro	Gly	Pro	Ala	Gln	Asn	Ala	Ser	Pro	Leu	Val	Leu	Pro	Pro		
		370					375					380				
30																

- (2) INFORMATION FOR SEQ ID NO: 2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 317
 - (B) TYPE: Amino acid
- 35 (D) TOPOLOGY: Linear
 - (ii) SEQUENCE KIND: Protein
 - (iii) HYPOTHETICAL: No

85

(vi) ORIGINAL SOURC	Е	:
---------------------	---	---

(A) ORGANISM: Homo sapiens

(B) CELL KIND: Liver

(D) CLONE NAME: HP01299

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

		Trp	Leu	Tyr		Ala	Ala	Phe	Val	•	Leu	Tyr	Tyr	Leu		His
	1				5					10					15	
10	Trp	Tyr	Arg	Glu	Arg	Gln	Val	Val	Ser	His	Leu	Gln	Asp	Lys	Tyr	Val
				20					25					30		
	Phe	Ile	Thr	Gly	Cys	Asp	Ser	Gly	Phe	Gly	Asn	Leu	Leu	Ala	Arg	Gln
			35					40					45			
	Leu	Asp	Ala	Arg	Gly	Leu	Arg	Val	Leu	Ala	Ala	Cys	Leu	Thr	Glu	Lys
15		50					55					60				
	Gly	Ala	Glu	Gln	Leu	Arg	Gly	Gln	Thr	Ser	Asp	Arg	Leu	Glu	Thr	Val
	65					70					75					80
	Thr	Leu	Asp	Val	Thr	Lys	Met	Glu	Ser	Ile	Ala	Ala	Ala	Thr	Gln	Trp
					85					90					95	
20	Val	Lys	Glu	His	Val	Gly	Asp	Arg	Gly	Leu	Trp	Gly	Leu	Val	Asn	Asn
				100					105					110		
	Ala	Gly	Ile	Leu	Thr	Pro	Ile	Thr	Leu	Cys	Glu	Trp	Leu	Asn	Thr	G1u
			115					120					125			
	Asp	Ser	Met	Asn	Met	Leu	Lys	Val	Asn	Leu	Ile	Gly	Val	Ile	Gln	Val
25		130					135					140				
	Thr	Leu	Ser	Met	Leu	Pro	Leu	Val	Arg	Arg	Ala	Arg	Gly	Arg	Ile	Val
	145					150					155					160
	Asn	Val	Ser	Ser	Ile	Leu	Gly	Arg	Val	Ala	Phe	Phe	Val	Gly	Gly	Tyr
					165					170					175	
30	Cys	Val	Ser	Lys	Tyr	Gly	Val	Glu	Ala	Phe	Ser	Asp	Ile	Leu	Arg	Arg
				180					185					190		
	Glu	Ile	Gln	His	Phe	Gly	Val	Lys	Ile	Ser	Ile	Val	Glu	Pro	Gly	Tyr
			195			•		200					205		•	•
	Phe	Arg	Thr	Gly	Met	Thr	Asn	Met	Thr	Gln	Ser	Leu	Glu	Arg	Met	Lys
35		210		•			215					220				•
	Gln	Ser	Trp	Lys	Glu	Ala		Lys	His	Ile	Lys		Thr	Tyr	Gĺy	Gln
	225		•	-		230		•			235			•	•	240
	Gln	Tyr	Phe	Asp	Ala		Tyr	Asn	Ile	Met		Glu	Gly	Leu	Leu	Asn
		., .	, -				-,-				-, 5		,			

PCT/JP98/02445

WO 98/55508 86 245 250 255 Cys Ser Thr Asn Leu Asn Leu Val Thr Asp Cys Met Glu His Ala Leu 260 265 270 Thr Ser Val His Pro Arg Thr Arg Tyr Ser Ala Gly Trp Asp Ala Lys 280 Phe Phe Phe Ile Pro Leu Ser Tyr Leu Pro Thr Ser Leu Ala Asp Tyr 290 295 300 Ile Leu Thr Arg Ser Trp Pro Lys Pro Ala Gln Ala Val 305 310 315 10 (2) INFORMATION FOR SEQ ID NO: 3: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 296 15 (B) TYPE: Amino acid (D) TOPOLOGY: Linear (ii) SEQUENCE KIND: Protein (iii) HYPOTHETICAL: No 20 (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (B) CELL KIND: Liver (D) CLONE NAME: HP01347 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

Met Ser Asp Ser Lys Glu Pro Arg Val Gln Gln Leu Gly Leu Leu Gly 10 Cys Leu Gly His Gly Ala Leu Val Leu Gln Leu Leu Ser Phe Met Leu 30 20 25 30 Leu Ala Gly Val Leu Val Ala Ile Leu Val Gln Val Ser Lys Val Pro 40 Ser Ser Leu Ser Gln Glu Gln Ser Glu Gln Asp Ala Ile Tyr Gln Asn 50 55 60 35 Leu Thr Gln Leu Lys Ala Ala Val Gly Glu Leu Ser Glu Lys Ser Lys 65 70 Leu Gln Glu Ile Tyr Gln Glu Leu Thr Gln Leu Lys Ala Ala Val Gly 90 95

	Glu	Leu	Pro	Glu	Lys	Ser	Lys	Leu	Gln	Glu	Ile	Tyr	Gln	Glu	Leu	Thr
				100					105					110		
	Arg	Leu	Lys	Ala	Ala	Val	Gly	Glu	Leu	Pro	Glu	Lys	Ser	Lys	Leu	Gln
			115					120					125			
5	Glu	Ile	Tyr	Gln	Glu	Leu	Thr	Arg	Leu	Lys	Ala	Ala	Val	Gly	Glu	Leu
		130					135					140				
	Pro	Glu	Lys	Ser	Lys	Leu	Gln	Glu	Ile	Tyr	Gln	Glu	Leu	Thr	Arg	Leu
	145					150					155					160
	Lys	Ala	Ala	Val	Gly	Glu	Leu	Pro	Glu	Lys	Ser	Lys	Leu	Gln	Glu	Ile
10					165					170					175	
	Tyr	Gln	Glu	Leu	Thr	Glu	Leu	Lys	Ala	Ala	Val	Gly	Glu	Leu	Pro	Glu
				180					185					190	•	
	Lys	Ser	Lys	Leu	Gln	Glu	Ile	Tyr	Gln	Glu	Leu	Thr	G1n	Leu	Lys	Ala
			195					200					205			
15	Ala	Val	Gly	Glu	Leu	Pro	Asp	Gln	Ser	Lys	Gln	Gln	Gln	Ile	Tyr	Gln
		210					215					220				
	Glu	Leu	Thr	Asp	Leu		Thr	Ala	Phe	Glu	Arg	Leu	Cys	Arg	His	Cys
	225					230				•	235					240
	Pro	Lys	Asp	Trp	Thr	Phe	Phe	Gln	Gly	Asn	Cys	Tyr	Phe	Met	Ser	Asn
20					245					250					255	
	Ser	Gln	Arg		Trp	His	Asp	Ser	Val	Thr	Ala	Cys	Gln	Glu	Val	Arg
				260					265					270		
	Ala	Gln		Val	Val	Ile	Lys		Ala	Glu	Glu	Gln		Pro	Ala	Val
			275					280					285			
25	Leu		Gln	Trp	Arg	Thr		Gln								
		290					295									

- (2) INFORMATION FOR SEQ ID NO: 4:
- 30 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 197
 - (B) TYPE: Amino acid
 - (D) TOPOLOGY: Linear
 - (ii) SEQUENCE KIND: Protein
- 35 (iii) HYPOTHETICAL: No
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens

88

(B)	CELL	KIND:	Stomach	cancer
-----	------	-------	---------	--------

(D) CLONE NAME: HP01440

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

5 Met Cys Thr Gly Lys Cys Ala Arg Cys Val Gly Leu Ser Leu Ile Thr 5 Leu Cys Leu Val Cys Ile Val Ala Asn Ala Leu Leu Leu Val Pro Asn 25 10 Gly Glu Thr Ser Trp Thr Asn Thr Asn His Leu Ser Leu Gln Val Trp 35 40 Leu Met Gly Gly Phe Ile Gly Gly Gly Leu Met Val Leu Cys Pro Gly Ile Ala Ala Val Arg Ala Gly Gly Lys Gly Cys Cys Gly Ala Gly Cys 15 70 75 Cys Gly Asn Arg Cys Arg Met Leu Arg Ser Val Phe Ser Ser Ala Phe 90 Gly Val Leu Gly Ala Ile Tyr Cys Leu Ser Val Ser Gly Ala Gly Leu 105 20 Arg Asn Gly Pro Arg Cys Leu Met Asn Gly Glu Trp Gly Tyr His Phe Glu Asp Thr Ala Gly Ala Tyr Leu Leu Asn Arg Thr Leu Trp Asp Arg 135 140 Cys Glu Ala Pro Pro Arg Val Val Pro Trp Asn Val Thr Leu Phe Ser 25 145 150 155 160 Leu Leu Val Ala Ala Ser Cys Leu Glu Ile Val Leu Cys Gly Ile Gln 170 Leu Val Asn Ala Thr Ile Gly Val Phe Cys Gly Asp Cys Arg Lys Lys 180 185 190 Gln Asp Thr Pro His 30

- (2) INFORMATION FOR SEQ ID NO: 5:
 - (i) SEQUENCE CHARACTERISTICS:

35 (A) LENGTH: 221

- (B) TYPE: Amino acid
- (D) TOPOLOGY: Linear
- (ii) SEQUENCE KIND: Protein

89

(iii) HYPOTHETICAL: No

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

5 (B) CELL KIND: Stomach cancer

(D) CLONE NAME: HP01526

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

10	Met	Glu	Ala	Gly	Gly	Phe	Leu	Asp	Ser	Leu	Ile	Tyr	Gly	Ala	Cys	Val
	1				5					10					15	
	Val	Phe	Thr	Leu	Gly	Met	Phe	Ser	Ala	Gly	Leu	Ser	Asp	Leu	Arg	His
				20					25					30		
	Met	Arg	Met	Thr	Arg	Ser	Val	Asp	Asn	Val	Gln	Phe	Leu	Pro	Phe	Leu
15			35					40					45			
	Thr	Thr	Glu	Val	Asn	Asn	Leu	Gly	Trp	Leu	Ser	Tyr	Gly	Ala	Leu	Lys
		50					55					60				
	Gly	Asp	Gly	Ile	Leu	Ile	Val	Val	Asn	Thr	Val	Gly	Ala	Ala	Leu	Gln
	65					70					75					80
20	Thr	Leu	Tyr	Ile	Leu	Ala	Tyr	Leu	His	Tyr	Cys	Pro	Arg	Lys	Arg	Val
					85		•			90					95	
	Val	Leu	Leu	Gln	Thr	Ala	Thr	Leu	Leu	Gly	Val	Leu	Leu	Leu	Gly	Tyr
				100					105					110		
	Gly	Tyr		Trp	Leu	Leu	Val	Pro	Asn	Pro	Glu	Ála	Arg	Leu	Gln	Gln
25			115					120					125			
	Leu	Gly	Leu	Phe	Cys	Ser	Val	Phe	Thr	Ile	Ser	Met	Tyr	Leu	Ser	Pro
		130					135					140				
		Ala	Asp	Leu	Ala	•	Val	Ile	Gln	Thr	Lys	Ser	Thr	Gln	Cys	
	145					150					155					160
30	Ser	Tyr	Pro	Leu		Ile	Ala	Thr	Leu		Thr	Ser	Ala	Ser		Cys
	_	_			165					170					175	
	Leu	Tyr	Gly		Arg	Leu	Arg	Asp		Tyr	Ile	Met	Val	Ser	Asn	Phe
	_			180		_			185					190	_	
25	Pro	Gly		Val	Thr	Ser	Phe		Arg	Phe	Trp	Leu		Trp	Lys	Tyr
35	D	01	195					200	_	2	_		205			
	Pro		Glu	GIn	Asp	Arg		Tyr	Trp	Leu	Leu		Thr			
		210					215					220				

90

										90						
	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	6:							
		(i) S	EQUE	NCE	CHAR	ACTE	RIST	ics:							
				(A)	LEN	GTH:	251									
				(B)	TYP	E: A	mino	aci	d							
5				(D)	TOP	OLOG	Y: L	inea	r							
		(ii)	SEQU	ENCE	KIN	D: P	rote	in							
		(iii)	HYP	OTHE	TICA	L: N	0								
		(vi)	ORIG	INAL	sou	RCE:									
10				(A)	ORG.	ANIS	M: <i>H</i>	ото	sapi	ens						
				(B)	CEL	L KI	ND:	Stom	ach	canc	er					
				(D)	CLO	NE N	AME:	HP1	0230							
		(:	xi)	SEQU	ENCE	DES	CRIP'	TION	: SE	Q ID	NO:	6:				
15																
	Met	Ser	Asp	Ile	Gly	Asp	Trp	Phe	Arg	Ser	Ile	Pro	Ala	Ile	Thr	Ar
	1				5					10					15	
	Tyr	Trp	Phe		Ala	Thr	Val	Ala	Val	Pro	Leu	Val	Gly	Lys	Leu	Gl
				20					25					30		
20	Leu	Ile		Pro	Ala	Tyr	Leu		Leu	Trp	Pro	Glu		Phe	Leu	Ту
	_		35		_		_	40					45		_	
	Arg		GIn	lle	Trp	Arg		Ile	Thr	Ala	Thr		Tyr	Phe	Pro	Va]
	01	50	01	mi	0.1	D 1	55	m				60	_	5 1	•	
25		Pro	GIY	rnr	GIŸ		Leu	Tyr	Leu	Val		Leu	Tyr	Pne	Leu	
25	65	T	60=	ጥኤ	A	70	C1	m1	C1	41.	75 Dh.a	.	01	A	D	80
	GIII	TYL	261	1111	Arg 85	reu	GIU	ınr	стх	ALB ALB		Asp	СТА	Arg	Pro	
	Acn	ጥህም	Lau	Pho		t ou	Lou	Dho	400	,		C	710	Vo l	95 Ile	
	лор	1,1	neu	100	Met	ren	neu	riie	105	11.b	TIE	cys	116	110	116	1111
30	Glv	Len	Ala		Aen	Met	Gln	Lan		Mat	T16	Dro	Lau		Met	Set
	01)	200	115	1100	p	116.0	OIN	120	Deu	rie c	116	110	125	116	nec	Der
	Val	Leu		Va 1	Trn	Ala	Gln		Asn	Ara	Asn	Met		Val	Ser	Phe
		130	- J. -		p		135			••• Б	p	140	-10			- •••
	Trp		G1y	Thr	Arg	Phe		Ala	Cys	Tvr	Leu		Tro	Val	Ile	Leu
35	145		•		J	150	•		•	•	155		•			160

Gly Phe Asn Tyr Ile Ile Gly Gly Ser Val Ile Asn Glu Leu Ile Gly

Asn Leu Val Gly His Leu Tyr Phe Phe Leu Met Phe Arg Tyr Pro Met

WO 98/55508

	18	80	185	190
	Asp Leu Gly G	ly Arg Asn Phe	Leu Ser Thr Pro G	ln Phe Leu Tyr Arg
	195		200	205
	Trp Leu Pro Se	er Arg Arg Gly	Gly Val Ser Gly Pi	ne Gly Val Pro Pro
5	210	215	2:	20
	Ala Ser Met A	rg Arg Ala Ala	Asp Gln Asn Gly G	ly Gly Gly Arg His
	225	230	235	240
	Asn Trp Gly G	ln Gly Phe Arg	Leu Gly Asp Gln	
		245	250	
10				
	(2) INFORMATION	ON FOR SEQ ID N	0: 7:	
	(i) SEQU	UENCE CHARACTER	ISTICS:	
	(4	A) LENGTH: 106		
15	(1	B) TYPE: Amino	acid	
	(I	D) TOPOLOGY: Li	near	
	(ii) SEC	QUENCE KIND: Pr	otein	
	(iii) HY	YPOTHETICAL: No		
20	(vi) OR	IGINAL SOURCE:		
	(/	A) ORGANISM: Ho	mo sapiens	
	(E	B) CELL KIND: E	pidermoid carcinom	18.
	(0	C) CELL LINE: K	В	
	. (1	D) CLONE NAME:	HP10389	
25				
	(xi) SEC	QUENCE DESCRIPT	ION: SEQ ID NO: 7:	
	Met Ala Thr Pr	ro Gly Pro Val	Ile Pro Glu Val Pr	o Phe Glu Pro Ser
	1	5	10	15
30	Lys Pro Pro Va	al Ile Glu Gly 1	Leu Ser Pro Thr Va	1 Tyr Arg Asn Pro
		20	25	30
	Glu Ser Phe Ly	ys Glu Lys Phe V	Val Arg Lys Thr Ar	g Glu Asn Pro Val
	35		40	45
		ly Cys Leu Ala '	Thr Ala Ala Ala Le	u Thr Tyr Gly Leu
35	50	55	-	0
		is Arg Gly Asn	Ser Gln Arg Ser Gl	n Leu Met Met Arg
	65	70	75	80
	The Are Tio A1	la Ala Cla Cla I	Dho The Uol Ale Al	- Tie Ten Lon Cla

92

85 90 95

Leu Ala Val Thr Ala Met Lys Ser Arg Pro 100 105

5

- (2) INFORMATION FOR SEQ ID NO: 8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 78
- 10 (B) TYPE: Amino acid
 - (D) TOPOLOGY: Linear
 - (ii) SEQUENCE KIND: Protein
 - (iii) HYPOTHETICAL: No
 - 15 (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (B) CELL KIND: Stomach cancer
 - (D) CLONE NAME: HP10408
 - 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

Met Gly Ser Gly Leu Pro Leu Val Leu Leu Leu Thr Leu Leu Gly Ser

1 5 10 15

Ser His Gly Thr Gly Pro Gly Met Thr Leu Gln Leu Lys Leu Lys Glu

25 20 25 30

Ser Phe Leu Thr Asn Ser Ser Tyr Glu Ser Ser Phe Leu Glu Leu Leu

35 40 45

Glu Lys Leu Cys Leu Leu His Leu Pro Ser Gly Thr Ser Val Thr

50 55 60

30 Leu His His Ala Arg Ser Gln His His Val Val Cys Asn Thr 65 70 75

- (2) INFORMATION FOR SEQ ID NO: 9:
- 35 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 314
 - (B) TYPE: Amino acid
 - (D) TOPOLOGY: Linear

93

(ii)	SEQUENCE	KIND:	Protein
(iii)	HYPOTHE	CICAL:	No

(vi) ORIGINAL SOURCE:

210

5 (A) ORGANISM: Homo sapiens

(B) CELL KIND: Stomach cancer

(D) CLONE NAME: HP10412

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9: 10 Met Val Ala Pro Val Trp Tyr Leu Val Ala Ala Leu Leu Val Gly Phe Ile Leu Phe Leu Thr Arg Ser Arg Gly Arg Ala Ala Ser Ala Gly 25 15 Gln Glu Pro Leu His Asn Glu Glu Leu Ala Gly Ala Gly Arg Val Ala 40 Gln Pro Gly Pro Leu Glu Pro Glu Glu Pro Arg Ala Gly Gly Arg Pro 55 Arg Arg Arg Arg Asp Leu Gly Ser Arg Leu Gln Ala Gln Arg Arg Ala 20 70 75 Gin Arg Val Ala Trp Ala Glu Ala Asp Glu Asn Glu Glu Glu Ala Val Ile Leu Ala Gln Glu Glu Glu Gly Val Glu Lys Pro Ala Glu Thr His 105 Leu Ser Gly Lys Ile Gly Ala Lys Lys Leu Arg Lys Leu Glu Glu Lys 115 120 125 Gln Ala Arg Lys Ala Gln Arg Glu Ala Glu Glu Ala Glu Arg Glu Glu 135 140 Arg Lys Arg Leu Glu Ser Gln Arg Glu Ala Glu Trp Lys Lys Glu Glu 30 145 150 Glu Arg Leu Arg Leu Glu Glu Glu Glu Glu Glu Glu Glu Arg Lys 170 Ala Arg Glu Glu Gln Ala Gln Arg Glu His Glu Glu Tyr Leu Lys Leu 180 185 35 Lys Glu Ala Phe Val Val Glu Glu Glu Gly Val Gly Glu Thr Met Thr 200 205 Glu Glu Gln Ser Gln Ser Phe Leu Thr Glu Phe Ile Asn Tyr Ile Lys

215

94

Gln Ser Lys Val Val Leu Leu Glu Asp Leu Ala Ser Gln Val Gly Leu 225 230 235 240 Arg Thr Gln Asp Thr Ile Asn Arg Ile Gln Asp Leu Leu Ala Glu Gly 245 250 Thr Ile Thr Gly Val Ile Asp Asp Arg Gly Lys Phe Ile Tyr Ile Thr 265 Pro Glu Glu Leu Ala Ala Val Ala Asn Phe Ile Arg Gln Arg Gly Arg 275 280 285 Val Ser Ile Ala Glu Leu Ala Gln Ala Ser Asn Ser Leu Ile Ala Trp 10 295 300 Gly Arg Glu Ser Pro Ala Gln Ala Pro Ala 305 310 15 (2) INFORMATION FOR SEQ ID NO: 10: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 195 (B) TYPE: Amino acid (D) TOPOLOGY: Linear 20 (ii) SEQUENCE KIND: Protein (iii) HYPOTHETICAL: No (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens 25 (B) CELL KIND: Stomach cancer (D) CLONE NAME: HP10413 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10: 30 Met Ala Ala Glu Asp Val Val Ala Thr Gly Ala Asp Pro Ser Asp Leu Glu Ser Gly Gly Leu Leu His Glu Ile Phe Thr Ser Pro Leu Asn Leu 25 20 Leu Leu Cly Leu Cys Ile Phe Leu Leu Tyr Lys Ile Val Arg Gly 35 40 Asp Gln Pro Ala Ala Ser Gly Asp Ser Asp Asp Asp Glu Pro Pro 55

Leu Pro Arg Leu Lys Arg Arg Asp Phe Thr Pro Ala Glu Leu Arg Arg

VO 98/55508	PCT/JP98/0244
VV 20/22200	PU.1/JP90/U444

	65					70					75					80
	Phe	Asp	Gly	Val	Gln	Asp	Pro	Arg	Ile	Leu	Met	Ala	Ile	Asn	Gly	Lys
					85					90					95	
	Va1	Phe	Asp	Va1	Thr	Lys	Gly	Arg	Lys	Phe	Tyr	Gly	Pro	Glu	Gly	Pro
5				100					105					110		
	Tyr	Gly	Val	Phe	Ala	Gly	Arg	Asp	Ala	Ser	Arg	Gly	Leu	Ala	Thr	Phe
			115					120					125			
	Cys	Leu	Asp	Lys	Glu	Ala	Leu	Lys	Asp	Glu	Tyr	Asp	Asp	Leu	Ser	Asp
		130					135					140				
10	Leu	Thr	Ala	Ala	Gln	Gln	Glu	Thr	Leu	Ser	Asp	Trp	Glu	Ser	Gln	Phe
	145					150					155					160
	Thr	Phe	Lys	Tyr	His	His	Val	Gly	Lys	Leu	Leu	Lys	Glu	Gly	Glu	Glu
					165					170					175	
	Pro	Thr	Val	Tyr	Ser	Asp	Glu	Glu	Glu	Pro	Lys	Asp	Glu	Ser	Ala	Arg
15				180	·				185					190		
	Lys	Asn	Asp													
			195													
20	(2)			NOI												
		(:	L) SI	EQUE				RISTI	CS:							
						TH:										
							nino									
25							: Li									
25				EQUE					.n							
		()	111)	HYPO	THE	TICAL	_: NC)								
		/-	-i \ <i>(</i>	RIGI	T 3.7 A 7	COITE	OF.									
		()	,1, (a								
30							1: <i>Ho</i> ND: S		•							
50							ME:			ance	:[
				(5)	OHOI	12 117	u11.	111 110	,413							
		()	(i) S	EQUE	ENCE	DESC	RTPT	י אסדי	SEC	מד (NO:	11:				
		`-	, -	-40-					024	(10						
35	Met	Leu	Asp	Phe	Ala	Ile	Phe	Ala	Val	Thr	Phe	Leu	Leu	Ala	Leu	Val
	1		•		5				-· -	10					15	
	Gly	Ala	Val	Leu		Leu	Tyr	Pro	Ala		Arg	Gln	Ala	Ala		Ile
	•			20	•		•		25		J			30	•	

	Pro	Gly		Thr	Pro	Thr	Glu	Glu	Lys	Asp	Gly	Asn	Leu	Pro	Asp	Il
			35					40					45			
	Val	Asn	Ser	Gly	Ser	Leu	His	Glu	Phe	Leu	Val	Asn	Leu	His	Glu	Ar
		50					55					60				
5	Tyr	Gly	Pro	Val	Val	Ser	Phe	Trp	Phe	Gly	Arg	Arg	Leu	Val	Val	Se
	65					70					75					80
	Leu	Gly	Thr	Val	Asp	Val	Leu	Lys	Gln	His	Ile	Asn	Pro	Asn	Lys	Th
					85					90					95	
	Leu	Asp	Pro	Phe	Glu	Thr	Met	Leu	Lys	Ser	Leu	Leu	Arg	Tyr	Gln	Sei
10				100					105					110		
	Gly	Gly	Gly	Ser	Val	Ser	Glu	Asn	His	Met	Arg	Lys	Lys	Leu	Tyr	Glu
			115					120					125			
	Asn	Gly	Val	Thr	Asp	Ser	Leu	Lys	Ser	Asn	Phe	Ala	Leu	Leu	Leu	Lys
		130					135					140				
15	Leu	Ser	Glu	Glu	Leu	Leu	Asp	Lys	Trp	Leu	Ser	Tyr	Pro	Glu	Thr	Glr
	145					150					155					160
	His	Val	Pro	Leu	Ser	Gln	His	Met	Leu	Gly	Phe	Ala	Met	Lys	Ser	Val
					165					170					175	
	Thr	Gln	Met	Val	Met	Gly	Ser	Thr	Phe	Glu	Asp	Asp	Gln	Glu	Val	Ile
20				180					185					190		
	Arg	Phe	Gln	Lys	Asn	His	Gly	Thr	Val	Trp	Ser	Glu	Ile	Gly	Lys	Gly
			195					200					205			
	Phe	Leu	Asp	Gly	Ser	Leu	Asp	Lys	Asn	Met	Thr	Arg	Lys	Lys	Gln	Tyr
		210					215					220				
25		Asp	Ala	Leu	Met	Gln	Leu	Glu	Ser	Val	Leu	Arg	Asn	Ile	Ile	Lys
	225					230					2,35			•		240
	Glu	Arg	Lys	Gly	Arg	Asn	Phe	Ser	Gln	His	Ile	Phe	Ile	Asp	Ser	Leu
					245					250					255	
	Val	Gln	Gly	Asn	Leu	Asn	Asp	Gln	Gln	Ile	Leu	Glu	Asp	Ser	Met	Ile
30				260					265					270		
	Phe	Ser		Ala	Ser	Cys	Ile	Ile	Thr	Ala	Lys	Leu	Cys	Thr	Trp	Ala
			275					280					285			
	Ile		Phe	Leu	Thr	Thr	Ser	Glu	Glu	Val	Gln	Lys	Lys	Leu	Tyr	Glu
_		290					295					300				
35			Asn	Gln	Val		Gly	Asn	Gly	Pro		Thr	Pro	Glu	Lys	Ile
	305			-		310					315		-			320
	Glu	Gln	Leu	Arg	Tyr	Cys	Gln	His	Val	Leu	Cys	Glu	Thr	Val	Arg	Thr
					325					330					335	

97

	Ala	Lys	Leu		Pro	Val	Ser	Ala		Leu	Gln	Asp	Ile		Gly	Ly
			4	340	-1 .	-1			345	m)	•		•	350	41-	•
	116	Asp	_	rne	TTE	Ile	Pro	_	GIU	Tnr	ren	VEI		Tyr	ALB	ret
5	C1	V o 1	355	Lou	Cln	400	Dro	360	መኮ ~	Twn	Dwo	60=	365 Bro	ui e	Lvc	Ph
5	Gly	370	VAI	Leu	GIII	Asp	375	ASII	1111	irb	PIO	380	FLO	nrs	цуз	FIII
	۸۵۸		Acn	A = 0	Dho	Asp		C1	Lou	Vol.	Mat		Th-	Dha	Sar	Sai
	385	FLO	rsh	urg	rne	390	nsp	Giu	Leu	ANT	395	цуѕ	1411	rne	261	400
		G1v	Phe	Ser	G1v	Thr	Gln	Glu	Cvs	Pro		Leu	Arg	Phe	Ala	
LO		,			405				-, -	410					415	- ,
	Met	Val	Thr	Thr		Leu	Leu	Ser	Va1		Val	Lys	Arg	Leu		Let
				420					425			•	Ū	430		
	Leu	Ser	Val	Glu	Gly	Gln	Val	Ile	Glu	Thr	Lys	Tyr	Glu	Leu	Val	Thi
			435					440					445			
L 5	Ser	Ser	Arg	Glu	Glu	Ala	Trp	Ile	Thr	Val	Ser	Lys	Arg	Tyr		
		450					455					460				
	(2)	INFO	ORMA'	NOL	FOR	SEQ	ID N	10: 1	12:							
20		(:	i) SI	EQUE	NCE (CHARA	CTE	RISTI	CS:							
				(A)	LENG	STH:	247		,							
						E: An										
						DLOGY										
						KINI			.n							
25		(:	111)	HYPO	THE.	CICAI	.: NC)								
		/,	,;) (וסדמו	r Ni a t	SOUR	CF.									
		,,	<i>(</i>			ANISA 18INA		מתר	sania	on e						
						L KIN			_		er					
30						NE NA					-					
				•												
		(3	ci) S	EQUI	ENCE	DESC	RIPT	: NOI	SEC] ID	NO:	12:				
	Met	Gly	Ala	Ala	Val	Phe	Phe	Gly	Cys	Thr	Phe	Val	Ala	Phe	G1y	Pro
35	1				5					10					15	
	Ala	Phe	Ala	Leu	Phe	Leu	Ile	Thr	Val	Ala	Gly	Asp	Pro	Leu	Arg	Val
				20					25					3.0		

Ile Ile Leu Val Ala Gly Ala Phe Phe Trp Leu Val Ser Leu Leu Leu

		35					40					45			
Ala	Ser	Val	Val	Trp	Phe	Ile	Leu	Val	His	Val	Thr	Asp	Arg	Ser	Asp
	50					55					60				
Ala	Arg	Leu	Gln	Tyr	Gly	Leu	Leu	Ile	Phe	Gly	Ala	Ala	Val	Ser	Val
65					70					75					80
Leu	Leu	Gln	Glu	Val	Phe	Arg	Phe	Ala	Tyr	Tyr	Lys	Leu	Leu	Lys	Lys
				85					90					95	
Ala	Asp	Glu	Gly	Leu	Ala	Ser	Leu	Ser	Glu	Asp	Gly	Arg	Ser	Pro	Ile
			100					105				•	110		
Ser	Ile	Arg	Gln	Met	Ala	Tyr	Val	Ser	Gly	Leu	Ser	Phe	Gly	Ile	Ile
		115					120					125			
Ser	Gly	Val	Phe	Ser	Val	Ile	Asn	Ile	Leu	Ala	Asp	Ala	Leu	Gly	Pro
	130					135					140				
Gly	Val	Val	Gly	Ile	His	Gly	Asp	Ser	Pro	Tyr	Tyr	Phe	Leu	Thr	Ser
145					150					155					160
Ala	Phe	Leu	Thr	Ala	Ala	Ile	Ile	Leu	Leu	His	Thr	Phe	Trp	Gly	Val
				165					170					175	
Val	Phe	Phe		Ala	Cys	Glu	Arg	Arg	Arg	Tyr	Trp	Ala	Leu	Gly	Leu
								185					190		
Val	Val		Ser	His	Leu	Leu		Ser	Gly	Leu	Thr		Leu	Asn	Pro
_	<u>.</u>														
		Glu	Ala	Ser	Leu		Pro	Ile	Tyr	Ala		Thr	Val	Ser	Met
		_													
	Leu	Trp	Ala	Phe		Thr	Ala	Gly	Gly		Leu	Arg	Ser	Ile	
	_		_							235					240
Arg	Ser	Leu	Leu	-	Lys	Asp							•		
				245											
	Ala 65 Leu Ala Ser Gly 145 Ala Val Trp Gly 225	So Ala Arg 65 Leu Leu Ala Asp Ser Ile Ser Gly 130 Gly Val 145 Ala Phe Val Phe Val Val Trp Tyr 210 Gly Leu 225	Ala Ser Val 50 Ala Arg Leu 65 Leu Leu Gln Ala Asp Glu Ser Ile Arg 115 Ser Gly Val 130 Gly Val Val 145 Ala Phe Leu Val Phe Val Val Gly 195 Trp Tyr Glu 210 Gly Leu Trp 225	Ala Ser Val Val 50 Ala Arg Leu Gln 65 Leu Leu Gln Glu Ala Asp Glu Gly 100 Ser Ile Arg Gln 115 Ser Gly Val Phe 130 Gly Val Val Gly 145 Ala Phe Leu Thr Val Phe Leu Thr Val Phe Asp 180 Val Val Gly Ser 195 Trp Tyr Glu Ala 210 Gly Leu Trp Ala	Ala Ser Val Val Trp 50 Ala Arg Leu Gln Tyr 65 Leu Leu Gln Glu Val 85 Ala Asp Glu Gly Leu 100 Ser Ile Arg Gln Met 115 Ser Gly Val Phe Ser 130 Gly Val Val Gly Ile 145 Ala Phe Leu Thr Ala 165 Val Phe Phe Asp Ala 180 Val Val Gly Ser His 195 Trp Tyr Glu Ala Ser 210 Gly Leu Trp Ala Phe 225	Ala Ser Val Val Trp Phe 50 U Glm Tyr Gly 65 U Glm Gly Phe 65 U Glm Glm Phe 85 H Glm Glm Phe Ala Ala Asp Glm Glm Ala Ala Ser Gly Val Phe Ser Val Gly Val Phe Ala Ala Ala 145 U Thr Ala Cys Eu 140 Thr Ala Ala Cys Leu	Ala Ser Val Val Trp Phe Ile 50	Ala Ser Val Val Trp Phe Ile Leu 50	Ala Ser Val Val Trp Phe Ile Leu Val	Ala Ser Val Val Trp Phe Ile Leu Val His Ala Arg Leu Gln Tyr Gly Leu Leu Ile Phe 65	Ala Ser Val Val Trp Phe Ile Leu Val His Val 50	Ala Ser Val Val Trp Phe Ile Leu Val His Val Thr 55 Leu Leu Phe Gly Ala Ale Leu Ale Leu Ile Phe Gly Ala Ale Leu Leu Leu Phe Ala Tyr Lyr Ala Ala Tyr Lyr Ala Tyr Lyr Ly	Ala Ser Val Val Trp Phe Ile Leu Val His Val Thr Asp 50	Ala Ser Val Val Trp Phe Ile Leu Val His Val Thr Asp Arg	Ala Ser Val Val Trp Phe Ile Leu Val His Val Thr Asp Arg Ser 50

- 30 (2) INFORMATION FOR SEQ ID NO: 13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 113
 - (B) TYPE: Amino acid
 - (D) TOPOLOGY: Linear
- 35 (ii) SEQUENCE KIND: Protein
 - (iii) HYPOTHETICAL: No
 - (vi) ORIGINAL SOURCE:

99

- (A) ORGANISM: Homo sapiens
- (B) CELL KIND: Stomach cancer
- (D) CLONE NAME: HP10424
- 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

Met Asn Phe Tyr Leu Leu Leu Ala Ser Ser Ile Leu Cys Ala Leu Ile 1 5 10 15

Val Phe Trp Lys Tyr Arg Arg Phe Gln Arg Asn Thr Gly Glu Met Ser

10 20 25 30

Ser Asn Ser Thr Ala Leu Ala Leu Val Arg Pro Ser Ser Ser Gly Leu
35 40 45

Ile Asn Ser Asn Thr Asp Asn Asn Leu Ala Val Tyr Asp Leu Ser Arg
50 55 60

Asp Ile Leu Asn Asn Phe Pro His Ser Ile Ala Arg Gln Lys Arg Ile
65 70 75 80

Leu Val Asn Leu Ser Met Val Glu Asn Lys Leu Val Glu Leu Glu His
85 90 95

Thr Leu Leu Ser Lys Gly Phe Arg Gly Ala Ser Pro His Arg Lys Ser

20 100 105 110

Thr

- (2) INFORMATION FOR SEQ ID NO: 14:
- 25 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 365
 - (B) TYPE: Amino acid
 - (D) TOPOLOGY: Linear
 - (ii) SEQUENCE KIND: Protein
- 30 (iii) HYPOTHETICAL: No
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (B) CELL KIND: Epidermoid carcinoma
- 35 (C) CELL LINE: KB
 - (D) CLONE NAME: HP10428
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

	Met	Gly	Arg	Trp	Ala	Leu	Asp	Val	Ala	Phe	Leu	Trp	Lys	Ala	Val	Leu
	1				5					10					15	
	Thr	Leu	Gly	Leu	Val	Leu	Leu	Tyr	Tyr	Cys	Phe	Ser	Ile	Gly	Ile	Thr
				20					25					30		
5	Phe	Tyr	Asn	Lys	Trp	Leu	Thr	Lys	Ser	Phe	His	Phe	Pro	Leu	Phe	Met
			35					40					45			
	Thr	Met	Leu	His	Leu	Ala	Va1	Ile	Phe	Leu	Phe	Ser	Ala	Leu	Ser	Arg
		50					55					60				
	Ala	Leu	Val	Gln	Cys	Ser	Ser	His	Arg	Ala	Arg	Val	Val	Leu	Ser	Trp
10	65					70					75					80
	Ala	Asp	Tyr	Leu	Arg	Arg	Val	Ala	Pro	Thr	Ala	Leu	Ala	Thr	Ala	Leu
			•		85					90					95	
	Asp	Val	Gly	Leu	Ser	Asn	Trp	Ser	Phe	Leu	Tyr	Val	Thr	Val	Ser	Leu
				100					105					110		
15	Tyr	Thr	Met	Thr	Lys	Ser	Ser	Ala	Val	Leu	Phe	Ile	Leu	Ile	Phe	Ser
			115					120					125			
	Leu	Ile	Phe	Lys	Leu	Glu	Glu	Leu	Arg	Ala	Ala	Leu	Val	Leu	Val	Val
		130					135					140				
	Leu	Leu	Ile	Ala	Gly	Gly	Leu	Phe	Met	Phe	Thr	Tyr	Lys	Ser	Thr	Gln
20	145					150					155					160
	Phe	Asn	Val	Glu	Gly	Phe	Ala	Leu	Val	Leu	Gly	Ala	Ser	Phe	Ile	Gly
					165					170					175	
	Gly	Ile	Arg	Trp	Thr	Leu	Thr	Gln	Met	Leu	Leu	Gln	Lys	Ala	Glu	Leu
				180					185					190		
25	Gly	Leu	Gln	Asn	Pro	Ile	Asp	Thr	Met	Phe	His	Leu	Gln	Pro	Leu	Met
			195					200					205			
	Phe	Leu	G1y	Leu	Phe	Pro	Leu	Phe	Ala	Val	Phe	Glu	Gly	Leu	His	Leu
		210					215					220				
	Ser	Thr	Ser	Glu	Lys	Ile	Phe	Arg	Phe	Gln	Asp	Thr	Gly	Leu	Leu	Leu
30	225					230					235					240
	Arg	Val	Leu	Gly	Ser	Ļeu	Phe	Leu	Gly	Gly	Ile	Leu	Ala	Phe	Gly	Leu
					245					250					255	
	Gly	Phe	Ser	Glu	Phe	Leu	Leu	Val	Ser	Arg	Thr	Ser	Ser	Leu	Thr	Leu
				260					265					270		
35	Ser	Ile	Ala	Gly	Ile	Phe	Lys	Glu	Val	Cys	Thr	Leu	Leu	Leu	Ala	Ala
			275					280					285			
	His	Leu	Leu	Gly	Asp	Gln	Ile	Ser	Leu	Leu	Asn	Trp	Leu	Gly	Phe	Ala
		290					295					300				

WO 98/55508

PCT/JP98/02445

101

Leu Cys Leu Ser Gly Ile Ser Leu His Val Ala Leu Lys Ala Leu His 305 310 Ser Arg Gly Asp Gly Gly Pro Lys Ala Leu Lys Gly Leu Gly Ser Ser Pro Asp Leu Glu Leu Leu Arg Ser Ser Gln Arg Glu Glu Gly Asp 345 Asn Glu Glu Glu Tyr Phe Val Ala Gln Gly Gln Gln 355 360 365 10 (2) INFORMATION FOR SEQ ID NO: 15: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 226 (B) TYPE: Amino acid 15 (D) TOPOLOGY: Linear (ii) SEQUENCE KIND: Protein (iii) HYPOTHETICAL: No (vi) ORIGINAL SOURCE: 20 (A) ORGANISM: Homo sapiens (B) CELL KIND: Stomach cancer (D) CLONE NAME: HP10429 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15: 25 Met Pro Thr Thr Lys Lys Thr Leu Met Phe Leu Ser Ser Phe Phe Thr Ser Leu Gly Ser Phe Ile Val Ile Cys Ser Ile Leu Gly Thr Gln Ala 25 Trp Ile Thr Ser Thr Ile Ala Val Arg Asp Ser Ala Ser Asn Gly Ser 40 Ile Phe Ile Thr Tyr Gly Leu Phe Arg Gly Glu Ser Ser Glu Glu Leu 55 60 Ser His Gly Leu Ala Glu Pro Lys Lys Phe Ala Val Leu Glu Ile 35 65 70 Leu Asn Asn Ser Ser Gln Lys Thr Leu His Ser Val Thr Ile Leu Phe Leu Val Leu Ser Leu Ile Thr Ser Leu Leu Ser Ser Gly Phe Thr Phe

102

100 105 110 Tyr Asn Ser Ile Ser Asn Pro Tyr Gln Thr Phe Leu Gly Pro Thr Gly 115 120 Val Tyr Thr Trp Asn Gly Leu Gly Ala Ser Phe Val Phe Val Thr Met 5 135 140 Ile Leu Phe Val Ala Asn Thr Gln Ser Asn Gln Leu Ser Glu Glu Leu 145 150 155 Phe Gln Met Leu Tyr Pro Ala Thr Thr Ser Lys Gly Thr Thr His Ser 165 170 10 Tyr Gly Tyr Ser Phe Trp Leu Ile Leu Leu Val Ile Leu Leu Asn Ile 180 185 Val Thr Val Thr Ile Ile Ile Phe Tyr Gln Lys Ala Arg Tyr Gln Arg 200 Lys Gln Glu Gln Arg Lys Pro Met Glu Tyr Ala Pro Arg Asp Gly Ile 15 215 220 Leu Phe 225 20 (2) INFORMATION FOR SEQ ID NO: 16: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 129 (B) TYPE: Amino acid (D) TOPOLOGY: Linear 25 (ii) SEQUENCE KIND: Protein (iii) HYPOTHETICAL: No (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens 30 (B) CELL KIND: Liver (D) CLONE NAME: HP10432 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16: 35 Met Ala Arg Gly Ser Leu Arg Arg Leu Leu Arg Leu Leu Val Leu Gly Leu Trp Leu Ala Leu Leu Arg Ser Val Ala Gly Glu Gln Ala Pro Gly

103

Thr Ala Pro Cys Ser Arg Gly Ser Ser Trp Ser Ala Asp Leu Asp Lys 35 40 Cys Met Asp Cys Ala Ser Cys Arg Ala Arg Pro His Ser Asp Phe Cys 55 Leu Gly Cys Ala Ala Ala Pro Pro Ala Pro Phe Arg Leu Leu Trp Pro .70 75 Ile Leu Gly Gly Ala Leu Ser Leu Thr Phe Val Leu Gly Leu Leu Ser 85 90 Gly Phe Leu Val Trp Arg Arg Cys Arg Arg Arg Glu Lys Phe Thr Thr 10 105 Pro Ile Glu Glu Thr Gly Gly Glu Gly Cys Pro Ala Val Ala Leu Ile 115 120 125 G1n 15 (2) INFORMATION FOR SEQ ID NO: 17: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 163 20 (B) TYPE: Amino acid (D) TOPOLOGY: Linear (ii) SEQUENCE KIND: Protein (iii) HYPOTHETICAL: No 25 (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (B) CELL KIND: Liver (D) CLONE NAME: HP10433 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17: Met Arg Arg Leu Leu Ile Pro Leu Ala Leu Trp Leu Gly Ala Val Gly Val Gly Val Ala Glu Leu Thr Glu Ala Gln Arg Arg Gly Leu Gln Val 35 20 25 30 Ala Leu Glu Glu Phe His Lys His Pro Pro Val Gln Trp Ala Phe Gln 40

Glu Thr Ser Val Glu Ser Ala Val Asp Thr Pro Phe Pro Ala Gly Ile

104

50 55 60 Phe Val Arg Leu Glu Phe Lys Leu Gln Gln Thr Ser Cys Arg Lys Arg 70 Asp Trp Lys Lys Pro Glu Cys Lys Val Arg Pro Asn Gly Arg Lys Arg 5 90 Lys Cys Leu Ala Cys Ile Lys Leu Gly Ser Glu Asp Lys Val Leu Gly 100 105 110 Arg Leu Val His Cys Pro Ile Glu Thr Gln Val Leu Arg Glu Ala Glu 120 10 Glu His Gln Glu Thr Gln Cys Leu Arg Val Gln Arg Ala Gly Glu Asp 130 135 Pro His Ser Phe Tyr Phe Pro Gly Gln Phe Ala Phe Ser Lys Ala Leu 150 155 Pro Arg Ser 15 (2) INFORMATION FOR SEQ ID NO: 18: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 193 20 (B) TYPE: Amino acid (D) TOPOLOGY: Linear (ii) SEQUENCE KIND: Protein (iii) HYPOTHETICAL: No 25 (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (B) CELL KIND: Stomach cancer (D) CLONE NAME: HP10480 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18: Met Ile Arg Cys Gly Leu Ala Cys Glu Arg Cys Arg Trp Ile Leu Pro 10 Leu Leu Leu Ser Ala Ile Ala Phe Asp Ile Ile Ala Leu Ala Gly 35 20 Arg Gly Trp Leu Gln Ser Ser Asp His Gly Gln Thr Ser Ser Leu Trp 40

Trp Lys Cys Ser Gln Glu Gly Gly Gly Ser Gly Ser Tyr Glu Glu Gly

		50					55					60					
	Cys	Gln	Ser	Leu	Met	Glu	Tyr	Ala	Trp	Gly	Arg	Ala	Ala	Ala	Ala	Met	
	65					70					75					80	
	Leu	Phe	Cys	Gly	Phe	Ile	Ile	Leu	Val	Ile	Cys	Phe	Ile	Leu	Ser	Phe	
5					85					90					95		
	Phe	Ala	Leu	Cys	Gly	Pro	Gln	Met	Leu	Val	Phe	Leu	Arg	Val	Ile	Gly	
				100					105					110			
	Gly	Leu		Ala	Leu	Ala	Ala	Val	Phe	Gln	Ile	Ile	Ser	Leu	Va1	Ile	
			115					120					125				
10	Tyr		Val	Lys	Tyr	Thr		Thr	Phe	Thr	Leu	His	Ala	Asn	Arg	Ala	
	•	130	_		_		135					140					
		Thr	Tyr	Ile	Tyr		Trp	Ala	Tyr	Gly		Gly	Trp	Ala	Ala		
	145	T1.	Loss	T1.	C1	150	A 7 -	nt	nt -	nt -	155	•	•			160	
15	116	TIE	Leu	TTE	165	Cys	ALA	Pne	Pne		Cys	Cys	Leu	Pro	Asn	Tyr	
	Glu	Asn	Asn	ī.e.i		G1 v	Aen	م 1 ۵	Luc	170 Pro	4-0	Tur	Dha	Ф	175 Thr	Sor	
		тор	113 p	180	Deu	019	Vall	пта	185	FLO	ALE	lyr	FIIE	190	1111	Ser	
	Ala								103					170			
20																	
	(2)	INFO	RMAT	rion	FOR	SEQ	ID N	10: 1	9:				•				
		(i	.) SI	EQUEN	ICE C	HARA	CTER	RISTI	cs:								
				(A)	LENG	TH:	1146	i									
				(B)	TYPE	: Nu	clei	.c ac	id								
25				(C)	STRA	NDED	NESS	: Do	uble	:							
				(D)	TOPO	LOGY	: Li	near.	•								
		(i	.i) S	EQUE	ENCE	KIND	: cI	NA t	o mR	NA							
		(v	·i) (RIGI													
30					ORGA				-	ns							
					CELL												
				(D)	CLON	e na	ME:	нР01	.263								
		(v	41 C	FOITE	אור די	DECC	ם ד מי	TON.	020	. 70	NO.	10.					
35		(X	. _ _	EQUE	MOE	DESC	KIPT	TON:	SEQ.	TD	NO:	19:					
	ATGG	GTCT	GC T	ነርር ጥ ም	ימממר	ጥ ແር	САСТ	יטיים י	ል ጥ ሶ	ርጥ A C	ጥርር	ጥርጥር	ርጥርር	GG A	CC A A	TGTCT	6
																CCGAT	
																GCTAT	

	GTGCTGAGAC	TCAACCGAGT	GAACGACGCC	CAGGAATACA	GACGGGGTGG	CCTGGGATCT	240
	CTGTTCTATC	TTACACTGGA	TGTGCTAGAG	ACTGACTGCC	ATGTGCTCAG	AAAGAAGGCA	300
	TGGCAAGACT	GTGGAATGAG	GATATTTTT	GAATCAGTTT	ATGGTCAATG	CAAAGCAATA	360
	TTTTATATGA	ACAACCCAAG	TAGAGTTCTC	TATTTAGCTG	CTTATAACTG	TACTCTTCGC	420
5	CCAGTTTCAA	AAAAAAGAT	TTACATGACG	TGCCCTGACT	GCCCAAGCTC	CATACCCACT	480
	GACTCTTCCA	ATCACCAAGT	GCTGGAGGCT	GCCACCGAGT	CTCTTGCGAA	ATACAACAAT	540
	GAGAACACAT	CCAAGCAGTA	TTCTCTCTTC	AAAGTCACCA	GGGCTTCTAG	CCAGTGGGTG	600
	GTCGGCCCTT	CTTACTTTGT	GGAATACTTA	ATTAAAGAAT	CACCATGTAC	TAAATCCCAG	660
	GCCAGCAGCT	GTTCACTTCA	GTCCTCCGAC	TCTGTGCCTG	TTGGTCTTTG	CAAAGGTTCT	720
LO	CTGACTCGAA	CACACTGGGA	AAAGTTTGTC	TCTGTGACTT	GTGACTTCTT	TGAATCACAG	780
	GCTCCAGCCA	CTGGAAGTGA	AAACTCTGCT	GTTAACCAGA	AACCTACAAA	CCTTCCCAAG	840
	GTGGAAGAAT	CCCAGCAGAA	AAACACCCCC	CCAACAGACT	CCCCCTCCAA	AGCTGGGCCA	900
	AGAGGATCTG	TCCAATATCT	TCCTGACTTG	GATGATAAAA	ATTCCCAGGA	AAAGGGCCCT	960
	CAGGAGGCCT	TTCCTGTGCA	TCTGGACCTA	ACCACGAATC	CCCAGGGAGA	AACCCTGGAT	1020
l 5	ATTTCCTTCC	TCTTCCTGGA	GCCTATGGAG	GAGAAGCTGG	TTGTCCTGCC	TTTCCCCAAA	1080
	GAAAAAGCAC	GCACTGCTGA	GTGCCCAGGG	CCAGCCCAGA	ATGCCAGCCC	TCTTGTCCTT	1140
	CCGCCA						1146

- 20 (2) INFORMATION FOR SEQ ID NO: 20:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 951
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 25 (D) TOPOLOGY: Linear
 - (ii) SEQUENCE KIND: cDNA to mRNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- 30 (B) CELL KIND: Liver
 - (D) CLONE NAME: HP01299
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:
- ATGTGGCTCT ACCTGGCGGC CTTCGTGGGC CTGTACTACC TTCTGCACTG GTACCGGGAG

 AGGCAGGTGG TGÄGCCACCT CCAAGACAAG TATGTCTTTA TCACGGGCTG TGACTCGGGC

 TTTTGGGAACC TGCTGGCCAG ACAGCTGGAT GCACGAGGCT TGAGAGTGCT GGCTGCGTGT

 180

 CTGACGGAGA AGGGGGCCGA GCAGCTGAGG GGCCAGACGT CTGACAGGCT GGAGACGGTG

 240

	ACCCTGGATG	TTACCAAGAT	GGAGAGCATC	GCTGCAGCTA	CTCAGTGGGT	GAAGGAGCAT	300
	GTGGGGGACA	GAGGACTCTG	GGGACTGGTG	AACAATGCAG	GCATTCTTAC	ACCAATTACC	360
	TTATGTGAGT	GGCTGAACAC	TGAGGACTCT	ATGAATATGC	TCAAAGTGAA	CCTCATTGGT	420
	GTGATCCAGG	TGACCTTGAG	CATGCTTCCT	TTGGTGAGGA	GAGCACGGGG	AAGAATTGTC	480
5	AATGTCTCCA	GCATTCTGGG	AAGAGTTGCT	TTCTTTGTAG	GAGGCTACTG	TGTCTCCAAG	540
	TATGGAGTGG	AAGCCTTTTC	AGATATTCTG	AGGCGTGAGA	TTCAACATTT	TGGGGTGAAA	600
	ATCAGCATAG	TTGAACCTGG	CTACTTCAGA	ACGGGAATGA	CAAACATGAC	ACAGTCCTTA	660
	GAGCGAATGA	AGCAAAGTTG	GAAAGAAGCC	CCCAAGCATA	TTAAGGAGAC	CTATGGACAG	720
	CAGTATTTTG	ATGCCCTTTA	CAATATCATG	AAGGAAGGC	TGTTGAATTG	TAGCACAAAC	780
10	CTGAACCTGG	TCACTGACTG	CATGGAACAT	GCTCTGACAT	CGGTGCATCC	GCGAACTCGA	840
	TATTCAGCTG	GCTGGGATGC	TAAATTTTTC	TTCATCCCTC	TATCTTATTT	ACCTACATCA	900
•	CTGGCAGACT	ACATTTTGAC	TAGATCTTGG	CCCAAACCAG	CCCAGGCAGT	С	951

15 (2) INFORMATION FOR SEQ ID NO: 21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 888
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
- 20 (D) TOPOLOGY: Linear
 - (ii) SEQUENCE KIND: cDNA to mRNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens
- 25 (B) CELL KIND: Liver
 - (D) CLONE NAME: HP01347

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

30	ATGAGTGACT	CCAAGGAACC	AAGGGTGCAG	CAGCTGGGCC	TCCTGGGGTG	TCTTGGCCAT	60
	GGCGCCCTGG	TGCTGCAACT	CCTCTCCTTC	ATGCTCTTGG	CTGGGGTCCT	GGTGGCCATC	120
	CTTGTCCAAG	TGTCCAAGGT	CCCCAGCTCC	CTAAGTCAGG	AACAATCCGA	GCAAGACGCA	180
	ATCTACCAGA	ACCTGACCCA	GCTTAAAGCT	GCAGTGGGTG	AGCTCTCAGA	GAAATCCAAG	240
	CTGCAGGAGA	TCTACCAGGA	GCTGACCCAG	CTGAAGGCTG	CAGTGGGTGA	GTTGCCAGAG	300
35	AAATCCAAGC	TGCAGGAGAT	CTACCAGGAG	CTGACCCGGC	TGAAGGCTGC	AGTGGGTGAG	360
	TTGCCAGAGA	AATCCAAGCT	GCAGGAGATC	TACCAGGAGC	TGACCCGGCT	GAAGGCTGCA	420
	GTGGGTGAGT	TGCCAGAGAA	ATCCAAGCTG	CAGGAGATCT	ACCAGGAGCT	GACCCGGCTG	480
	AAGGCTGCAG	TGGGTGAGTT	GCCAGAGAAA	TCCAAGCTGC	AGGAGATCTA	CCAGGAGCTG	540

108

	ACGGAGCTGA	AGGCTGCAGT	GGGTGAGTTG	CCAGAGAAAT	CCAAGCTGCA	GGAGATCTAC	600
	CAGGAGCTGA	CCCAGCTGAA	GGCTGCAGTG	GGTGAGTTGC	CAGACCAGTC	CAAGCAGCAG	660
	CAAATCTATC	AAGAACTGAC	CGATTTGAAG	ACTGCATTTG	AACGCCTGTG	CCGCCACTGT	720
	CCCAAGGACT	GGACATTCTT	CCAAGGAAAC	TGTTACTTCA	TGTCTAACTC	CCAGCGGAAC	780
5	TGGCACGACT	CCGTCACCGC	CTGCCAGGAA	GTGAGGGCCC	AGCTCGTCGT	AATCAAAACT	840
	GCTGAGGAGC	AGCTTCCAGC	GGTACTGGAA	CAGTGGAGAA	CCCAACAA		888

(2) INFORMATION FOR SEQ ID NO: 22:

10 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 591
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- 15 (ii) SEQUENCE KIND: cDNA to mRNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens
- (B) CELL KIND: Stomach cancer
- 20 (D) CLONE NAME: HP01440

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

	ATGTGTACGG	GAAAATGTGC	CCGCTGTGTG	GGGCTCTCCC	TCATTACCCT	CTGCCTCGTC	60
25	TGCATTGTGG	CCAACGCCCT	CCTGCTGGTA	CCTAATGGGG	AGACCTCCTG	GACCAACACC	120
	AACCATCTCA	GCTTGCAAGT	CTGGCTCATG	GGCGGCTTCA	TTGGCGGGGG	CCTAATGGTA	180
	CTGTGTCCGG	GGATTGCAGC	CGTTCGGGCA	GGGGGCAAGG	GCTGCTGTGG	TGCTGGGTGC	240
	TGTGGAAACC	GCTGCAGGAT	GCTGCGCTCG	GTCTTCTCCT	CGGCGTTCGG	GGTGCTTGGT	300
	GCCATCTACT	GCCTCTCGGT	GTCTGGAGCT	GGGCTCCGAA	ATGGACCCAG	ATGCTTAATG	360
30	AACGGCGAGT	GGGGCTACCA	CTTCGAAGAC	ACCGCGGGAG	CTTACTTGCT	CAACCGCACT	420
	CTATGGGATC	GGTGCGAGGC	GCCCCTCGC	GTGGTCCCCT	GGAATGTGAC	GCTCTTCTCG	480
	CTGCTGGTGG	CCGCCTCCTG	CCTGGAGATA	GTACTGTGTG	GGATCCAGCT	GGTGAACGCG	540
	ACCATTGGTG	TCTTCTGCGG	CGATTGCAGG	AAAAAACAGG	ACACCCCTCA	С	591

- (2) INFORMATION FOR SEQ ID NO: 23:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 663

	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) SEQUENCE KIND: cDNA to mRNA	
5		
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Homo sapiens	
	(B) CELL KIND: Stomach cancer	
	(D) CLONE NAME: HP01526	
10		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:	
	ATGGAGGCGG GCGGCTTTCT GGACTCGCTC ATTTACGGAG CATGCGTGGT CTTCACCCTT	60
	GGCATGTTCT CCGCCGGCCT CTCGGACCTC AGGCACATGC GAATGACCCG GAGTGTGGAC	120
15	AACGTCCAGT TCCTGCCCTT TCTCACCACG GAAGTCAACA ACCTGGGCTG GCTGAGTTAT	180
	GGGGCTTTGA AGGGAGACGG GATCCTCATC GTCGTCAACA CAGTGGGTGC TGCGCTTCAG	240
	ACCCTGTATA TCTTGGCATA TCTGCATTAC TGCCCTCGGA AGCGTGTTGT GCTCCTACAG	300
	ACTGCAACCC TGCTAGGGGT CCTTCTCCTG GGTTATGGCT ACTTTTGGCT CCTGGTACCC	360
	AACCCTGAGG CCCGGCTTCA GCAGTTGGGC CTCTTCTGCA GTGTCTTCAC CATCAGCATG	420
20	TACCTCTCAC CACTGGCTGA CTTGGCTAAG GTGATTCAAA CTAAATCAAC CCAATGTCTC	480
	TCCTACCCAC TCACCATTGC TACCCTTCTC ACCTCTGCCT CCTGGTGCCT CTATGGGTTT	540
	CGACTCAGAG ATCCCTATAT CATGGTGTCC AACTTTCCAG GAATCGTCAC CAGCTTTATC	600
	CGCTTCTGGC TTTTCTGGAA GTACCCCCAG GAGCAAGACA GGAACTACTG GCTCCTGCAA	660
	ACC	663
25		
	(2) INFORMATION FOR SEQ ID NO: 24:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 753	
30	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) SEQUENCE KIND: cDNA to mRNA	
35	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Homo sapiens	
	(B) CELL KIND: Stomach cancer	
	(D) CLONE NAME: HP10230	

110

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

	ATGTCGGACA	TCGGAGACTG	GTTCAGGAGC	ATCCCGGCGA	TCACGCGCTA	TTGGTTCGCC	60
	GCCACCGTCG	CCGTGCCCTT	GGTCGGCAAA	CTCGGCCTCA	TCAGCCCGGC	CTACCTCTTC	120
5	CTCTGGCCCG	AAGCCTTCCT	TTATCGCTTT	CAGATTTGGA	GGCCAATCAC	TGCCACCTTT	180
	TATTTCCCTG	TGGGTCCAGG	AACTGGATTT	CTTTATTTGG	TCAATTTATA	TTTCTTATAT	240
	CAGTATTCTA	CGCGACTTGA	AACAGGAGCT	TTTGATGGGA	GGCCAGCAGA	CTATTTATTC	300
	ATGCTCCTCT	TTAACTGGAT	TTGCATCGTG	ATTACTGGCT	TAGCAATGGA	TATGCAGTTG	360
	CTGATGATTC	CTCTGATCAT	GTCAGTACTT	TATGTCTGGG	CCCAGCTGAA	CAGAGACATG	420
10	ATTGTATCAT	TTTGGTTTGG	AACACGATTT	AAGGCCTGCT	ATTTACCCTG	GGTTATCCTT	480
	GGATTCAACT	ATATCATCGG	AGGCTCGGTA	ATCAATGAGC	TTATTGGAAA	TCTGGTTGGA	540
	CATCTTTATT	TTTTCCTAAT	GTTCAGATAC	CCAATGGACT	TGGGAGGAAG	AAATTTTCTA	600
	TCCACACCTC	AGTTTTTGTA	CCGCTGGCTG	CCCAGTAGGA	GAGGAGGAGT	ATCAGGATTT	660
	GGTGTGCCCC	CTGCTAGCAT	GAGGCGAGCT	GCTGATCAGA	ATGGCGGAGG	CGGGAGACAC	720
15	AACTGGGGCC	AGGGCTTTCG	ACTTGGAGAC	CAG			753

(2) INFORMATION FOR SEQ ID NO: 25:

(i) SEQUENCE CHARACTERISTICS:

20

- (A) LENGTH: 318
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- (ii) SEQUENCE KIND: cDNA to mRNA

25

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (B) CELL KIND: Epidermoid carcinoma
 - (C) CELL LINE: KB

30

(D) CLONE NAME: HP10389

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

	ATGGCGACTC	CCGGCCCTGT	GATTCCGGAG	GTCCCCTTTG	AACCATCGAA	GCCTCCAGTC	60
35	ATTGAGGGGC	TGAGCCCCAC	TGTTTACAGG	AATCCAGAGA	GTTTCAAGGA	AAAGTTCGTT	120
	CGCAAGACCC	GCGAGAACCC	GGTGGTACCC	ATAGGTTGCC	TGGCCACGGC	GGCCGCCCTC	180
	ACCTACGGCC	TCTACTCCTT	CCACCGGGGC	AACAGCCAGC	GCTCTCAGCT	CATGATGCGC	240
	ACCCGGATCG	CCGCCCAGGG	TTTCACGGTC	GCAGCCATCT	TGCTGGGTCT	GGCTGTCACT	300

111

318

GCTATGAAGT CTCGACCC

	(2) INFORMATION FOR SEQ ID NO: 26:	
5	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 234	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
10	(ii) SEQUENCE KIND: cDNA to mRNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Homo sapiens	
	(B) CELL KIND: Stomach cancer	
15	(D) CLONE NAME: HP10408	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:	
	ATGGGGTCTG GGCTGCCCCT TGTCCTCCTC TTGACCCTCC TTGGCAGCTC ACATGGAACA	60
20	GGGCCGGGTA TGACTTTGCA ACTGAAGCTG AAGGAGTCTT TTCTGACAAA TTCCTCCTAT	120
	GAGTCCAGCT TCCTGGAATT GCTTGAAAAG CTCTGCCTCC TCCTCCATCT CCCTTCAGGG	180
	ACCAGCGTCA CCCTCCACCA TGCAAGATCT CAACACCATG TTGTCTGCAA CACA	234
25	(2) INFORMATION FOR SEC ID NO. 27.	
23	(2) INFORMATION FOR SEQ ID NO: 27: (i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 942	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
30	(D) TOPOLOGY: Linear	
	(ii) SEQUENCE KIND: cDNA to mRNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Homo sapiens	
35	(B) CELL KIND: Stomach cancer	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

(D) CLONE NAME: HP10412

	ATGGTGGCGC	CTGTGTGGTA	CTTGGTAGCG	GCGGCTCTGC	TAGTCGGCTT	TATCCTCTTC	60
	CTGACTCGCA	GCCGGGGCCG	GGCGGCATCA	GCCGGCCAAG	AGCCACTGCA	CAATGAGGAG	120
	CTGGCAGGAG	CAGGCCGGGT	GGCCCAGCCT	GGGCCCCTGG	AGCCTGAGGA	GCCGAGAGCT	180
	GGAGGCAGGC	CTCGGCGCCG	GAGGGACCTG	GGCAGCCGCC	TACAGGCCCA	GCGTCGAGCC	240
5	CAGCGGGTGG	CCTGGGCAGA	AGCAGATGAG	AACGAGGAGG	AAGCTGTCAT	CCTAGCCCAG	300
	GAGGAGGAAG	GTGTCGAGAA	GCCAGCGGAA	ACTCACCTGT	CGGGGAAAAT	TGGAGCTAAG	360
	AAACTGCGGA	AGCTGGAGGA	GAAACAAGCG	CGAAAGGCCC	AGCGTGAGGC	AGAGGAGGCT	420
	GAACGTGAGG	AGCGGAAACG	ACTCGAGTCC	CAGCGCGAAG	CTGAGTGGAA	GAAGGAGGAG	480
	GAGCGGCTTC	GCCTGGAGGA	GGAGCAGAAG	GAGGAGGAGG	AGAGGAAGGC	CCGCGAGGAG	540
10	CAGGCCCAGC	GGGAGCATGA	GGAGTACCTG	AAACTGAAGG	AGGCCTTTGT	GGTGGAGGAG	600
	GAAGGCGTAG	GAGAGACCAT	GACTGAGGAA	CAGTCCCAGA	GCTTCCTGAC	AGAGTTCATC	660
	AACTACATCA	AGCAGTCCAA	GGTTGTGCTC	TTGGAAGACC	TGGCTTCCCA	GGTGGGCCTA	720
	CGCACTCAGG	ACACCATAAA	TCGCATCCAG	GACCTGCTGG	CTGAGGGGAC	TATAACAGGT	780
	GTGATTGACG	ACCGGGGCAA	GTTCATCTAC	ATAACCCCAG	AGGAACTGGC	CGCCGTGGCC	840
15	AACTTCATCC	GACAGCGGGG	CCGGGTGTCC	ATCGCCGAGC	TTGCCCAAGC	CAGCAACTCC	900
	CTCATCGCCT	GGGGCCGGGA	GTCCCCTGCC	CAAGCCCCAG	CC		942

(2) INFORMATION FOR SEQ ID NO: 28:

20 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 585

(B) TYPE: Nucleic acid

(C) STRANDEDNESS: Double

(D) TOPOLOGY: Linear

25 (ii) SEQUENCE KIND: cDNA to mRNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(B) CELL KIND: Stomach cancer

30 (D) CLONE NAME: HP10413

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

	ATGGCTGCCG	AGGATGTGGT	GGCGACTGGC	GCCGACCCAA	GCGATCTGGA	GAGCGGCGGG	60
35	CTGCTGCATG	AGATTTTCAC	GTCGCCGCTC	AACCTGCTGC	TGCTTGGCCT	CTGCATCTTC	120
	CTGCTCTACA	AGATCGTGCG	CGGGGACCAG	CCGGCGGCCA	GCGGCGACAG	CGACGACGAC	180
	GAGCCGCCCC	CTCTGCCCCG	CCTCAAGCGG	CGCGACTTCA	CCCCGCCGA	GCTGCGGCGC	240
	TTCGACGGCG	TCCAGGACCC	GCGCATACTC	ATGGCCATCA	ACGGCAAGGT	GTTCGATGTG	300

113

	ACCAAAGGCC	GCAAATTCTA	CGGGCCCGAG	GGGCCGTATG	GGGTCTTTGC	TGGAAGAGAT	360
	GCATCCAGGG	GCCTTGCCAC	ATTTTGCCTG	GATAAGGAAG	CACTGAAGGA	TGAGTACGAT	420
	GACCTTTCTG	ACCTCACTGC	TGCCCAGCAG	GAGACTCTGA	GTGACTGGGA	GTCTCAGTTC	480
	ACTTTCAAGT	ATCATCACGT	GGGCAAACTG	CTGAAGGAGG	GGGAGGAGCC	CACTGTGTAC	540
5	TCAGATGAGG	AAGAACCAAA	AGATGAGAGT	GCCCGGAAAA	ATGAT		585

(2) INFORMATION FOR SEQ ID NO: 29:

(i) SEQUENCE CHARACTERISTICS:

10 (A) LENGTH: 1386

(B) TYPE: Nucleic acid

(C) STRANDEDNESS: Double

(D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: cDNA to mRNA

15

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(B) CELL KIND: Stomach cancer

(D) CLONE NAME: HP10415

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

ATGTTGGACT TCGCGATCTT CGCCGTTACC TTCTTGCTGG CGTTGGTGGG AGCCGTGCTC 60 TACCTCTATC CGGCTTCCAG ACAAGCTGCA GGAATTCCAG GGATTACTCC AACTGAAGAA 120 25 AAAGATGGTA ATCTTCCAGA TATTGTGAAT AGTGGAAGTT TGCATGAGTT CCTGGTTAAT 180 TTGCATGAGA GATATGGGCC TGTGGTCTCC TTCTGGTTTG GCAGGCGCCT CGTGGTTAGT 240 TTGGGCACTG TTGATGTACT GAAGCAGCAT ATCAATCCCA ATAAGACATT GGACCCTTTT 300 GAAACCATGC TGAAGTCATT ATTAAGGTAT CAATCTGGTG GTGGCAGTGT GAGTGAAAAC 360 CACATGAGGA AAAAATTGTA TGAAAATGGT GTGACTGATT CTCTGAAGAG TAACTTTGCC 420 30 CTCCTCCTAA AGCTTTCAGA AGAATTATTA GATAAATGGC TCTCCTACCC AGAGACCCAG CACGTGCCCC TCAGCCAGCA TATGCTTGGT TTTGCTATGA AGTCTGTTAC ACAGATGGTA 540 ATGGGTAGTA CATTTGAAGA TGATCAGGAA GTCATTCGCT TCCAGAAGAA TCATGGCACA 600 GTTTGGTCTG AGATTGGAAA AGGCTTTCTA GATGGGTCAC TTGATAAAAA CATGACTCGG 660 AAAAAACAAT ATGAAGATGC CCTCATGCAA CTGGAGTCTG TTTTAAGGAA CATCATAAAA 720 35 GAACGAAAAG GAAGGAACTT CAGTCAACAT ATTTTCATTG ACTCCTTAGT ACAAGGGAAC 780 CTTAATGACC AACAGATCCT AGAAGACAGT ATGATATTTT CTCTGGCCAG TTGCATAATA ACTGCAAAAT TGTGTACCTG GGCAATCTGT TTTTTAACCA CCTCTGAAGA AGTTCAAAAA 900 AAATTATATG AAGAGATAAA CCAAGTTTTT GGAAATGGTC CTGTTACTCC AGAGAAAATT 960

114

	GAGCAGCTCA	GATATTGTCA	GCATGTGCTT	TGTGAAACTG	TTCGAACTGC	CAAACTGACT	1020
	CCAGTTTCTG	CCCAGCTTCA	AGATATTGAA	GGAAAAATTG	ACCGATTTAT	TATTCCTAGA	1080
	GAGACCCTCG	TCCTTTATGC	CCTTGGTGTG	GTACTTCAGG	ATCCTAATAC	TTGGCCATCT	1140
	CCACACAAGT	TTGATCCAGA	TCGGTTTGAT	GATGAATTAG	TAATGAAAAC	TTTTTCCTCA	1200
5	CTTGGATTCT	CAGGCACACA	GGAGTGTCCA	GAGTTGAGGT	TTGCATATAT	GGTGACCACA	1260
	GTACTTCTTA	GTGTATTGGT	GAAGAGACTG	CACCTACTTT	CTGTGGAGGG	ACAGGTTATT	1320
	GAAACAAAGT	ATGAACTGGT	AACATCATCA	AGGGAAGAAG	CTTGGATCAC	TGTCTCAAAG	1380
	AGATAT						1386
10							
	(2) INFORM	ATION FOR SE	EQ ID NO: 30	D:		•	
	(i)	SEQUENCE CHA	ARACTERISTIC	cs:			
		(A) LENGTH	H: 741				
		(B) TYPE:	Nucleic ac	id			
15		(C) STRANI	DEDNESS: Dot	ıble			
		(D) TOPOLO	GY: Linear				
	(ii)	SEQUENCE KI	IND: cDNA to	mRNA			
	(vi)	ORIGINAL SO	OURCE:				
20		(A) ORGANI	ISM: Homo sa	spiens			
		(B) CELL K	CIND: Stomac	ch cancer			
		(D) CLONE	NAME: HP104	19	•		
	(xi)	SEQUENCE DE	SCRIPTION:	SEQ ID NO:	30:		
25							
	ATGGGGGCTG	CGGTGTTTTT	CGGCTGCACT	TTCGTCGCGT	TCGGCCCGGC	CTTCGCGCTT	60
	TTCTTGATCA	CTGTGGCTGG	GGACCCGCTT	CGCGTTATCA	TCCTGGTCGC	AGGGGCATTT	120
	TTCTGGCTGG	TCTCCCTGCT	CCTGGCCTCT	GTGGTCTGGT	TCATCTTGGT	CCATGTGACC	180
	GACCGGTCAG	ATGCCCGGCT	CCAGTACGGC	CTCCTGATTT	TTGGTGCTGC	TGTCTCTGTC	240
30	CTTCTACAGG	AGGTGTTCCG	CTTTGCCTAC	TACAAGCTGC	TTAAGAAGGC	AGATGAGGGG	300
	TTAGCATCGC	TGAGTGAGGA	CGGAAGATCA	CCCATCTCCA	TCCGCCAGAT	GGCCTATGTT	360
	TCTGGTCTCT	CCTTCGGTAT	CATCAGTGGT	GTCTTCTCTG	TTATCAATAT	TTTGGCTGAT	420
	GCACTTGGGC	CAGGTGTGGT	TGGGATCCAT	GGAGACTCAC	CCTATTACTT	CCTGACTTCA	480
	GCCTTTCTGA	CAGCAGCCAT	TATCCTGCTC	CATACCTTTT	GGGGAGTTGT	GTTCTTTGAT	540
35	GCCTGTGAGA	GGAGACGGTA	CTGGGCTTTG	GGCCTGGTGG	TTGGGAGTCA	CCTACTGACA	600
	TCGGGACTGA	CATTCCTGAA	CCCCTGGTAT	GAGGCCAGCC	TGCTGCCCAT	CTATGCAGTC	660
	ACTGTTTCCA	TGGGGCTCTG	GGCCTTCATC	ACAGCTGGAG	GGTCCCTCCG	AAGTATTCAG	720

741

CGCAGCCTCT TGTGTAAGGA C

	(2) INFORMATION FOR SEQ ID NO: 31:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 339	
5	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) SEQUENCE KIND: cDNA to mRNA	
10	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Homo sapiens	
	(B) CELL KIND: Stomach cancer	
	(D) CLONE NAME: HP10424	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:	
	(XI) DEGUENCE DESCRIPTION: SEQ ID NO: 31:	
	ATGAACTTCT ATTTACTCCT AGCGAGCAGC ATTCTGTGTG CCTTGATTGT CTTCTGGAAA	60
	TATCGCCGCT TTCAGAGAAA CACTGGCGAA ATGTCATCAA ATTCAACTGC TCTTGCACTA	120
	GTGAGACCCT CTTCTTCTGG GTTAATTAAC AGCAATACAG ACAACAATCT TGCAGTCTAC	180
20	GACCTCTCTC GGGATATTTT AAATAATTTC CCACACTCAA TAGCCAGGCA GAAGCGAATA	240
	TTGGTAAACC TCAGTATGGT GGAAAACAAG CTGGTTGAAC TGGAACATAC TCTACTTAGC	300
	AAGGGTTTCA GAGGTGCATC ACCTCACCGG AAATCCACC	339
25	(2) INFORMATION FOR SEQ ID NO: 32:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1095	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
30	(D) TOPOLOGY: Linear	
,	(ii) SEQUENCE KIND: cDNA to mRNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Homo sapiens	
35	(B) CELL KIND: Epidermoid carcinoma	

(C) CELL LINE: KB

(D) CLONE NAME: HP10428

116

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

	ATGGGGAGGT	GGGCCCTCGA	TGTGGCCTTT	TTGTGGAAGG	CGGTGTTGAC	CCTGGGGCTG	60
	GTGCTTCTCT	ACTACTGCTT	CTCCATCGGC	ATCACCTTCT	ACAACAAGTG	GCTGACAAAG	120
5	AGCTTCCATT	TCCCCCTCTT	CATGACGATG	CTGCACCTGG	CCGTGATCTT	CCTCTTCTCC	180
	GCCCTGTCCA	GGGCGCTGGT	TCAGTGCTCC	AGCCACAGGG	CCCGTGTGGT	GCTGAGCTGG	240
	GCCGACTACC	TCAGAAGAGT	GGCTCCCACA	GCTCTGGCGA	CGGCGCTTGA	CGTGGGCTTG	300
	TCCAACTGGA	GCTTCCTGTA	TGTCACCGTC	TCGCTGTACA	CAATGACCAA	ATCCTCAGCT	360
	GTCCTCTTCA	TCTTGATCTT	CTCTCTGATC	TTCAAGCTGG	AGGAGCTGCG	CGCGGCACTG	420
10	GTCCTGGTGG	TCCTCCTCAT	CGCCGGGGGT	CTCTTCATGT	TCACCTACAA	GTCCACACAG	480
	TTCAACGTGG	AGGGCTTCGC	CTTGGTGCTG	GGGGCCTCGT	TCATCGGTGG	CATTCGCTGG	540
٠	ACCCTCACCC	AGATGCTCCT	GCAGAAGGCT	GAACTCGGCC	TCCAGAATCC	CATCGACACC	600
	ATGTTCCACC	TGCAGCCACT	CATGTTCCTG	GGGCTCTTCC	CTCTCTTTGC	TGTATTTGAA	660
	GGTCTCCATT	TGTCCACATC	TGAGAAAATC	TTCCGTTTCC	AGGACACAGG	GCTGCTCCTG	720
15	CGGGTACTTG	GGAGCCTCTT	CCTTGGCGGG	ATTCTCGCCT	TTGGTTTGGG	CTTCTCTGAG	780
	TTCCTCCTGG	TCTCCAGAAC	CTCCAGCCTC	ACTCTCTCCA	TTGCCGGCAT	TTTTAAGGAA	840
	GTCTGCACTT	TGCTGTTGGC	AGCTCATCTG	CTGGGCGATC	AGATCAGCCT	CCTGAACTGG	900
	CTGGGCTTCG	CCCTCTGCCT	CTCGGGAATA	TCCCTCCACG	TTGCCCTCAA	AGCCCTGCAT	960
	TCCAGAGGTG	ATGGTGGCCC	CAAGGCCTTG	AAGGGGCTGG	GCTCCAGCCC	CGACCTGGAG	1020
20	CTGCTGCTCC	GGAGCAGCCA	GCGGGAGGAA	GGTGACAATG	AGGAGGAGGA	GTACTTTGTG	1080
	GCCCAGGGGC	AGCAG					1095

(2) INFORMATION FOR SEQ ID NO: 33:

25 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 678
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- 30 (ii) SEQUENCE KIND: cDNA to mRNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens
- (B) CELL KIND: Stomach cancer
- 35 (D) CLONE NAME: HP10429
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

	ATGCCTACCA CAAAGAAGAC ATTGATGTTC TTATCAAGCT TTTTCACCAG CCTTGGGTCC	60
	TTCATTGTAA TTTGCTCTAT TCTTGGGACA CAAGCATGGA TCACCAGTAC AATTGCTGTT	120
	AGAGACTCTG CTTCAAATGG GAGCATTTTC ATCACTTACG GACTTTTTCG TGGGGAGAGT	180
	AGTGAAGAAT TGAGTCACGG ACTTGCAGAA CCAAAGAAAA AGTTTGCAGT TTTAGAGATA	240
5	CTGAATAATT CTTCCCAAAA AACTCTGCAT TCGGTGACTA TCCTGTTCCT GGTCCTGAGT	300
	TTGATCACGT CGCTGCTGAG CTCTGGGTTT ACCTTCTACA ACAGCATCAG CAACCCTTAC	360
	CAGACATTCC TGGGGCCGAC GGGGGTGTAC ACCTGGAACG GGCTCGGTGC ATCCTTCGTT	420
	TTTGTGACCA TGATACTGTT TGTGGCGAAC ACGCAGTCCA ACCAACTCTC CGAAGAGTTG	480
	TTCCAAATGC TTTACCCGGC AACCACCAGT AAAGGAACGA CCCACAGTTA CGGATACTCG	540
10	TTCTGGCTCA TACTGCTCGT CATTCTTCTA AATATAGTCA CTGTAACCAT CATCATTTTC	600
	TACCAGAAGG CCAGATACCA GCGGAAGCAG GAGCAGAGAA AGCCAATGGA ATATGCTCCA	660
	AGGGACGGAA TTTTATTC	678
15	(2) INFORMATION FOR SEQ ID NO: 34:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 387	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
20	(D) TOPOLOGY: Linear	
	(ii) SEQUENCE KIND: cDNA to mRNA	
	(vi) ORIGINAL SOURCE:	
2.5	(A) ORGANISM: Homo sapiens	
25	(B) CELL KIND: Liver	
	(D) CLONE NAME: HP10432	
	(wi) GROUPHOR PROGRESSION AND TO US	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:	
30		
50	ATGGCTCGGG GCTCGCTGCG CCGGTTGCTG CGGCTCCTCG TGCTGGGGCT CTGGCTGG	60
	TTGCTGCGCT CCGTGGCCGG GGAGCAAGCG CCAGGCACCG CCCCCTGCTC CCGCGGCAGC	60
	TCCTGGAGCG CGGACCTGGA CAAGTGCATG GACTGCGCGT CTTGCAGGGC GCGACCGCAC	120
	AGCGACTTCT GCCTGGGCTG CGCTGCAGCA CCTCCTGCCC CCTTCCGGCT GCTTTGGCCC	180
35	ATCCTTGGGG GCGCTCTGAG CCTGACCTTC GTGCTGGGGC TGCTTTCTGG CTTTTTGGTC	240 300
	TGGAGACGAT GCCGCAGGAG AGAGAAGTTC ACCACCCCCA TAGAGGAGAC CGGCGGAGAG	360
	GGCTGCCCAG CTGTGGCGCT GATCCAG	387
		JU/

	(2) INFORMATION FOR SEQ ID NO: 35:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 489	
	(B) TYPE: Nucleic acid	
5	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) SEQUENCE KIND: cDNA to mRNA	
	(vi) ORIGINAL SOURCE:	
10	(A) ORGANISM: Homo sapiens	
	(B) CELL KIND: Liver	
	(D) CLONE NAME: HP10433	
	(with appropriately and the second	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:	
13	ATCCCACCCO TOOTTOATTOCC TOTTOCCOTOTTO TOOTTOCCOTOTTO	
	ATGCGACGGC TGCTGATCCC TCTGGCCCTG TGGCTGGGCG CGGTGGGCGT GGGCGTCGCC	60
	GAGCTCACGG AAGCCCAGCG CCGGGGCCTG CAGGTGGCCC TGGAGGAATT TCACAAGCAC	120
	CCGCCCGTGC AGTGGGCCTT CCAGGAGACC AGTGTGGAGA GCGCCGTGGA CACGCCCTTC	180
20	CCAGCTGGAA TATTTGTGAG GCTGGAATTT AAGCTGCAGC AGACAAGCTG CCGGAAGAGG	240
20	GACTGGAAGA AACCCGAGTG CAAAGTCAGG CCCAATGGGA GGAAACGGAA ATGCCTGGCC	300
	TGCATCAAAC TGGGCTCTGA GGACAAAGTT CTGGGCCGGT TGGTCCACTG CCCCATAGAG	360
	ACCCAAGTTC TGCGGGAGGC TGAGGAGCAC CAGGAGACCC AGTGCCTCAG GGTGCAGCGG	420
	GCTGGTGAGG ACCCCCACAG CTTCTACTTC CCTGGACAGT TCGCCTTCTC CAAGGCCCTG	480
25	CCCCGCAGC	489
2.5		
	(2) INFORMATION FOR SEQ ID NO: 36:	
	(1) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 579	
30	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) SEQUENCE KIND: cDNA to mRNA	
35	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Homo sapiens	
	(B) CELL KIND: Stomach cancer	
	(D) CLONE NAME: HP10480	

119

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:

	ATGATCCGCT GCGGCCTGGC CTGCGAGCGC TGCCGCTGGA TCCTGCCCCT GCTCCTACTC	60
	AGCGCCATCG CCTTCGACAT CATCGCGCTG GCCGGCCGCG GCTGGTTGCA GTCTAGCGAC	120
5	CACGGCCAGA CGTCCTCGCT GTGGTGGAAA TGCTCCCAAG AGGGCGGCGG CAGCGGGTCC	180
•	TACGAGGAGG GCTGTCAGAG CCTCATGGAG TACGCGTGGG GTAGAGCAGC GGCTGCCATG	240
	CTCTTCTGTG GCTTCATCAT CCTGGTGATC TGTTTCATCC TCTCCTTCTT CGCCCTCTGT	300
	GGACCCCAGA TGCTTGTCTT CCTGAGAGTG ATTGGAGGTC TCCTTGCCTT GGCTGCTGTG	360
	TTCCAGATCA TCTCCCTGGT AATTTACCCC GTGAAGTACA CCCAGACCTT CACCCTTCAT	420
10	GCCAACCGTG CTGTCACTTA CATCTATAAC TGGGCCTACG GCTTTGGGTG GGCAGCCACG	480
	ATTATCCTGA TCGGCTGTGC CTTCTTCTTC TGCTGCCTCC CCAACTACGA AGATGACCTT	540
	CTGGGCAATG CCAAGCCCAG GTACTTCTAC ACATCTGCC	579
15	(2) INFORMATION FOR SEQ ID NO: 37:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1502	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
20	(D) TOPOLOGY: Linear	
	(ii) SEQUENCE KIND: cDNA to mRNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Homo sapiens	
25	(B) CELL KIND: Liver	
	(D) CLONE NAME: HP01263	
	(ix) SEQUENCE CHARACTERISTICS:	
	(A) CHARACTERIZATION CODE: CDS	
30	(B) EXISTENCE POSITION: 37 1185	
	(C) CHARACTERIZATION METHOD: E	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:	
2 -		
35	ACAAACTGAC CCATCCTGGG CCTTGTTCTC CACAGA ATG GGT CTG CTC CTT CCC	54
	Met Gly Leu Leu Pro	
	1 5	

CTG GCA CTC TGC ATC CTA GTC CTG TGC TGC GGA GCA ATG TCT CCA CCC 102

	Leu	Ala	Leu	Cys	Ile	Leu	Val	Leu	Cys	Cys	Gly	Ala	Met	Ser	Pro	Pro	
				10					15					20			
	CAG	CTG	GCC	CTC	AAC	CCC	TCG	GCT	CTG	CTC	TCC	CGG	GGC	TGC	AAT	GAC	150
	Gln	Leu	Ala	Leu	Asn	Pro	Ser	Ala	Leu	Leu	Ser	Arg	Gly	Cys	Asn	Asp	
5			25					30					35				
	TCC	GAT	GTG	CTG	GCA	GTT	GCA	GGC	TTT	GCC	CTG	CGG	GAT	ATT	AAC	AAA	198
	Ser	Asp	Val	Leu	Ala	Val	Ala	Gly	Phe	Ala	Leu	Arg	Asp	Ile	Asn	Lys	
		40					45					50					
	GAC	AGA	AAG	GAT	GGC	TAT	GTG	CTG	AGA	CTC	AAC	CGA	GTG	AAC	GAC	GCC	246
10	Asp	Arg	Lys	Asp	Gly	Tyr	Val	Leu	Arg	Leu	Asn	Arg	Val	Asn	Asp	Ala	
	55					60					65					70	
	CAG	GAA	TAC	AGA	CGG	GGT	GGC	CTG	GGA	TCT	CTG	TTC	TAT	CTT	ACA	CTG	294
	Gln	Glu	Tyr	Arg	Arg	Gly	Gly	Leu	Gly	Ser	Leu	Phe	Tyr	Leu	Thr	Leu	
					75					80					85		
15	GAT	GTG	CTA	GAG	ACT	GAC	TGC	CAT	GTG	CTC	AGA	AAG	AAG	GCA	TGG	CAA	342
	Asp	Val	Leu	Glu	Thr	Asp	Cys	His	Val	Leu	Arg	Lys	Lys	Ala	Trp	Gln	
				90					95					100			
	GAC	TGT	GGA	ATG	AGG	ATA	TTT	TTT	GAA	TCA	GTT	TAT	GGT	CAA	TGC	AAA	390
	Asp	Cys	Gly	Met	Arg	Ile	Phe	Phe	Glu	Ser	Val	Tyr	Gly	Gln	Cys	Lys	
20			105					110					115				
	GCA	ATA	TTT	TAT	ATG	AAC	AAC	CCA	AGT	AGA	GTT	CTC	TAT	TTA	GCT	GCT	438
	Ala	Ile	Phe	Tyr	Met	Asn	Asn	Pro	Ser	Arg	Val	Leu	Tyr	Leu	Ala	Ala	
		120					125					130					
	TAT	AAC	TGT	ACT	CTT	CGC	CCA	GTT	TCA	AAA	AAA	AAG	ATT	TAC	ATG	ACG	486
25	Tyr	Asn	Cys	Thr	Leu	Arg	Pro	Val	Ser	Lys	Lys	Lys	Ile	Tyr	Met	Thr	
	135					140					145					150	
	TGC	CCT	GAC	TGC	CCA	AGC	TCC	ATA	ССС	ACT	GAC	TCT	TCC	AAT	CAC	CAA	534
	Cys	Pro	Asp	Cys	Pro	Ser	Ser	Ile	Pro	Thr	Asp	Ser	Ser	Asn	His	Gln	
					155					160					165		
30	GTG	CTG	GAG	GCT	GCC	ACC	GAG	TCT	CTT	GCG	AAA	TAC	AAC	AAT	GAG	AAC	582
	Val	Leu	Glu	Ala	Ala	Thr	Glu	Ser	Leu	Ala	Lys	Tyr	Asn	Asn	Glu	Asn	
				170					175					180			
	ACA	TCC	AAG	CAG	TAT	TCT	CTC	TTC	AAA	GTC	ACC	AGG	GCT	TCT	AGC	CAG	630
	Thr	Ser	Lys	Gln	Tyr	Ser	Leu	Phe	Lys	Val	Thr	Arg	Ala	Ser	Ser	Gln	
35			185					190					195				
	TGG	GTG	GTC	GGC	CCT	TCT	TAC	TTT	GTG	GAA	TAC	TTA	ATT	AAA	GAA	TCA	678
	Trp	Val	Val	Gly	Pro	Ser	Tyr	Phe	Val	Glu	Tyr	Leu	Ile	Lys	Glu	Ser	
		200					205					210					

	CCA	TGT	ACT	AAA	TCC	CAG	GCC	AGC	AGC	TGT	TCA	CTT	CAG	TCC	TCC	GAC	726
	Pro	Cys	Thr	Lys	Ser	Gln	Ala	Ser	Ser	Cys	Ser	Leu	Gln	Ser	Ser	Asp	
	215					220					225					230	
	TCT	GTG	CCT	GTT	GGT	CTT	TGC	AAA	GGT	TCT	CTG	ACT	CGA	ACA	CAC	TGG	774
5	Ser	Val	Pro	Val	Gly	Leu	Cys	Lys	Gly	Ser	Leu	Thr	Arg	Thr	His	Trp	
					235					240					245		
	GAA	AAG	TTT	GTC	TCT	GTG	ACT	TGT	GAC	TTC	TTT	GAA	TCA	CAG	GCT	CCA	822
	Glu	Lys	Phe	Val	Ser	Val	Thr	Cys	Asp	Phe	Phe	Glu	Ser	Gln	Ala	Pro	
•				250					255					260			
10	GCC	ACT	GGA	AGT	GAA	AAC	TCT	GCT	GTT	AAC	CAG	AAA	CCT	ACA	AAC	CTT	870
	Ala	Thr	Gly	Ser	Glu	Asn	Ser	Ala	Val	Asn	Gln	Lys	Pro	Thr	Asn	Leu	
			265					270					275				
	CCC	AAG	GTG	GAA	GAA	TCC	CAG	CAG	AAA	AAC	ACC	CCC	CCA	ACA	GAC	TCC	918
	Pro	Lys	Val	Glu	Glu	Ser	Gln	Gln	Lys	Asn	Thr	Pro	Pro	Thr	Asp	Ser	
15		280					285					290					
	CCC	TCC	AAA	GCT	GGG	CCA	AGA	GGA	TCT	GTC	CAA	TAT	CTT	CCT	GAC	TTG	966
	Pro	Ser	Lys	Ala	Gly	Pro	Arg	Gly	Ser	Val	Gln	Tyr	Leu	Pro	Asp	Leu	
	295					300					305					310	
	GAT	GAT	AAA	AAT	TCC	CAG	GAA	AAG	GGC	CCT	CAG	GAG	GCC	TTT	CCT	GTG	1014
20	Asp	Asp	Lys	Asn	Ser	Gln	Glu	Lys	Gly	Pro	Gln	Glu	Ala	Phe	Pro	Val	
					315					320					325		
	CAT	CTG	GAC	CTA	ACC	ACG	AAT	CCC	CAG	GGA	GAA	ACC	CTG	GAT	ATT	TCC	1062
	His	Leu	Asp	Leu	Thr	Thr	Asn	Pro	Gln	Gly	Glu	Thr	Leu	Asp	Ile	Ser	
				330					335					340			
25	TTC	CTC	TTC	CTG	GAG	CCT	ATG	GAG	GAG	AAG	CTG	GTT	GTC	CTG	CCT	TTC	1110
	Phe	Leu	Phe	Leu	Glu	Pro	Met	Glu	Glu	Lys	Leu	Val	Val	Leu	Pro	Phe	
			345					350					355				
															CAG		1158
	Pro		Glu	Lys	Ala	Arg	Thr	Ala	Glu	Cys	Pro	Gly	Pro	Ala	Gln	Asn	
30		360					365					370					
									TGAG	AATC	CAC A	CAGA	GTCI	T CT	GTAG	GG	1210
		Ser	Pro	Leu	Val		Pro	Pro									
	375					380	_	_									
2 =																GTGCA	1270
35																TGACT	1330
																ACTGC	1390
																ATGCC	1450
	TUTO	TATT	GT C	TTCA	\GCCA	C TO	CACTI	'A T'A A	AGA	TACT	ጥልጥ	CTTT	TCAG	CA G	T		1502

	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	38:								
		(i) S	EQUE	NCE	CHAR	ACTE	RIST	'ICS:								
				(A)	LEN	IGTH:	134	9									
5				(B)	TYF	E: N	ucle	ic a	cid								
				(C)	STR	ANDE	DNES	S: D	oubl	е							
				(D)	TOP	OLOG	Y: L	inea	r								
		(ii)	SEQU	ENCE	KIN	D: c	DNA	to m	RNA				•			
10		(vi)	ORIG	INAL	sou	RCE:										
				(A)	ORG	ANIS	M: <i>H</i>	lomo	sapi	ens							
				(B)	CEL	L KI	ND:	Live	r								
				(D)	CLO	NE N	AME:	HP0	1299								
15											•						
		(ix)	SEQU	ENCE	CHA	RACT	ERIS	TICS	:							
				(A)	СНА	RACT	ERIZ	ATIO	и со	DE:	CDS						
						STEN						064			•		
				(C)	CHA	RACT	ERIZ	ATIO	n me	THOD	: E						
20																	
		(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	38:					
																CAAGTC	
25	1617	AGGA	CIG	GACT	CTTC	CT A	AGCA.	AGTC	C GA	GAAG(GAAG	CAC	CCTC.				116
د ی														•	Met	Trp	
	CTC	ጥልሮ	ርጥር	ccc	ccc	መምር	CTC	000	C.T.C	m . o	m o	o m m	ama	040	l maa	m a O	
	164	INC	CIG	GCG	GUU	TTC	GIG	GGC	CTG	TAC	TAC	CTT	CTG	CAC	TGG	TAC	
		ጥህተ	Len	410	Δ1 n	Phe	Vo 1	C1	7	TT	M	T a	T 0	n; a	m	П	
30	204	-)-	5	nia	ALA	FILE	VAI	10	Leu	Tyt	lyr	Leu	15	nis	ırp	lyt	
	CGG	GAG		CAG	GTG	GTG	AGC		רייר	C	GAC	AAC		GTC	արարար	ልሞር	212
						Val											212
		20	0				25	1143	Deu	GIM	nop	30	1 7 1	Va.	rne	116	
	ACG		TGT	GAC	TCG	GGC		GGG	AAC	СТС	CTG		AGA	CAG	CTG	ር A T	260
35						Gly											200
	35	- •	, ,	7	- 	40		- - ,		204	45		••• Б		Lou	50	
		CGA	GGC	TTG	AGA	GTG	CTG	GCT	GCG	TGT		ACG	GAG	AAG	GGG		308
			_			Va 1											500

					55					60					65		
	GAG	CAG	CTG	AGG	GGC	CAG	ACG	TCT	GAC	AGG	CTG	GAG	ACG	GTG	ACC	CTG	356
	Glu	Gln	Leu	Arg	Gly	Gln	Thr	Ser	Asp	Arg	Leu	Glu	Thr	Val	Thr	Leu	
				70					75					80			
5	GAT	GTT	ACC	AAG	ATG	GAG	AGC	ATC	GCT	GCA	GCT	ACT	CAG	TGG	GTG	AAG	404
	Asp	Val	Thr	Lys	Met	Glu	Ser	Ile	Ala	Ala	Ala	Thr	Gln	Trp	Val	Lys	
			85					90					95				
	GAG	CAT	GTG	GGG	GAC	AGA	GGA	CTC	TGG	GGA	CTG	GTG	AAC	AAT	GCA	GGC	452
	Glu	His	Val	Gly	Asp	Arg	Gly	Leu	Trp	Gly	Leu	Val	Asn	Asn	Ala	Gly	
10		100	·				105					110					
	ATT	CTT	ACA	CCA	ATT	ACC	TTA	TGT	GAG	TGG	CTG	AAC	ACT	GAG	GAC	TCT	500
•	Ile	Leu	Thr	Pro	Ile	Thr	Leu	Cys	Glu	Trp	Leu	Asn	Thr	Glu	Asp	Ser	
	115					120					125					130	
	ATG	AAT	ATG	CTC	AAA	GTG	AAC	CTC	ATT	GGT	GTG	ATC	CAG	GTG	ACC	TTG	548
15	Met	Asn	Met	Leu	Lys	Val	Asn	Leu	Ile	Gly	Val	Ile	Gln	Val	Thr	Leu	
					135					140					145		
	AGC	ATG	CTT	CCT	TTG	GTG	AGG	AGA	GCA	CGG	GGA	AGA	ATT	GTC	AAT	GTC	596
	Ser	Met	Leu	Pro	Leu	Val	Arg	Arg	Ala	Arg	Gly	Arg	Ile	Val	Asn	Val	
				150					155					160			
20	TCC	AGC	ATT	CTG	GGA	AGA	GTT	GCT	TTC	TTT	GTA	GGA	GGC	TAC	TGT	GTC	644
	Ser	Ser	Ile	Leu	Gly	Arg	Val	Ala	Phe	Phe	Val	Gly	Gly	Tyr	Cys	Val	
			165					170					175				
	TCC	AAG	TAT	GGA	GTG	GAA	GCC	TTT	TCA	GAT	ATT	CTG	AGG	CGT	GAG	ATT	692
	Ser	Lys	Tyr	Gly	Val	Glu	Ala	Phe	Ser	Asp	Ile	Leu	Arg	Arg	Glu	Ile	
25		180					185					190					
			TTT														740
		His	Phe	Gly	Val	Lys	Ile	Ser	Ile	Val	Glu	Pro	Gly	Tyr	Phe	Arg	
	195					200					205					210	
			ATG														788
30	Thr	Gly	Met	Thr	Asn	Met	Thr	Gln	Ser	Leu	Glu	Arg	Met	Lys	Gln	Ser	
					215					220					225		
			GAA														836
	Trp	Lys	Glu		Pro	Lys	His	Ile	Lys	Glu	Thr	Tyr	Gly	Gln	Gln	Tyr	
2.5				230					235					240			
35			GCC														884
	rne	Asp	Ala	Leu	Tyr	Asn	Ile		Lys	Glu	Gly	Leu		Asn	Cys	Ser	
			245					250					255				
	ACA	AAC	CTG	AAC	CTG	GTC	ACT	GAC	TGC	ATG	GAA	CAT	GCT	CTG	ACA	TCG	932

124

	Thr Asn Leu Asn Leu Val Thr Asp Cys Met Glu His Ala Leu Thr Ser	
	260 265 270	
	GTG CAT CCG CGA ACT CGA TAT TCA GCT GGC TGG GAT GCT AAA TTT TTC	980
	Val His Pro Arg Thr Arg Tyr Ser Ala Gly Trp Asp Ala Lys Phe Phe	
5	275 280 285 290	
	TTC ATC CCT CTA TCT TAT TTA CCT ACA TCA CTG GCA GAC TAC ATT TTG	1028
	Phe Ile Pro Leu Ser Tyr Leu Pro Thr Ser Leu Ala Asp Tyr Ile Leu	
	295 300 305	
	ACT AGA TCT TGG CCC AAA CCA GCC CAG GCA GTC TAAAGAAAAC TGGGTTGGT	1080
10	Thr Arg Ser Trp Pro Lys Pro Ala Gln Ala Val	
	310 315	
	GCTTCTTGGA ATGAAGGCAA AAATCTGAAA TTGTTAGTGT CTCAGTAATC CTGATTTAGA	1140
	ACCCAGGCTT TTTGTAACAA TGTGTTTTCT TGCCTAAATT CATTTATCTG GCATCATCAG	1200
	AGTACTAACA TGTTTATATT TCAGATATCC AAAGCTTACC ACTTTAGGTG ATGAATCTTT	1260
15	ACTATTTTAG CCCTTTTTTG ATGAGACTAT TTGTCTAAAG TGAATCATTT GTTCTTGCCT	1320
	TATTAAACAG AGTAGATGGA AAACAATTT	1349
20	(2) INFORMATION FOR SEQ ID NO: 39: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1643 (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear (ii) SEQUENCE KIND: cDNA to mRNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (B) CELL KIND: Liver	
30	(D) CLONE NAME: HP01347	
	(ix) SEQUENCE CHARACTERISTICS:	
	(A) CHARACTERIZATION CODE: CDS	
	(B) EXISTENCE POSITION: 25 915	
35	(C) CHARACTERIZATION METHOD: E	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:

	AAC	ATCT(GGG (GACA	GCGG	GA A											5:
				-				net :	ser .	Asp (ser	Lys (GIU	PIO.	vra	ATT	
	CAG	CAG	CTG	GGC	CTC	CTG	GGG		CTT	GGC	CAT		GCC	CTG	GTG	CTG	99
5				Gly													
	10			·		15	•	•		•	20	•				25	
	CAA	CTC	CTC	TCC	TTC	ATG	CTC	TTG	GCT	GGG	GTC	CTG	GTG	GCC	ATC	CTT	147
	Gln	Leu	Leu	Ser	Phe	Met	Leu	Leu	Ala	Gly	Val	Leu	Val	Ala	Ile	Leu	
					30					35					40		
10	GTC	CAA	GTG	TCC	AAG	GTC	ccc	AGC	TCC	CTA	AGT	CAG	GAA	CAA	TCC	GAG	195
	Val	Gln	Val	Ser	Lys	Val	Pro	Ser	Ser	Leu	Ser	Gln	Glu	Gln	Ser	Gļu	
				45					50					55			
	CAA	GAC	GCA	ATC	TAC	CAG	AAC	CTG	ACC	CAG	CTT	AAA	GCT	GCA	GTG	GGT	243
	Gln	Asp	Ala	Ile	Tyr	Gln	Asn	Leu	Thr	Gln	Leu	Lys	Ala	Ala	Val	Gly	
15			60					65					70				
	GAG	CTC	TCA	GAG	AAA	TCC	AAG	CTG	CAG	GAG	ATC	TAC	CAG	GAG	CTG	ACC	291
	Glu	Leu	Ser	Glu	Lys	Ser	Lys	Leu	Gln	Glu	Ile	Tyr	Gln	Glu	Leu	Thr	
		75					80					85					
	CAG	CTG	AAG	GCT	GCA	GTG	GGT	GAG	TTG	CCA	GAG	AAA	TCC	AAG	CTG	CAG	339
20	Gln	Leu	Lys	Ala	Ala	Val	Gly	Glu	Leu	Pro	Glu	Lys	Ser	Lys	Leu	Gln	
	90					95					100					105	
	GAG	ATC	TAC	CAG	GAG	CTG	ACC	CGG	CTG	AAG	GCT	GCA	GTG	GGT	GAG	TTG	387
	Glu	Ile	Tyr	Gln	G1u	Leu	Thr	Arg	Leu	Lys	Ala-	-Ala	Val	Gly	Glu	Leu	
					110					115					120		
25				TCC													435
	Pro	Glu	Lys	Ser	Lys	Leu	Gln	Glu	Ile	Tyr	Gln	Glu	Leu	Thr	Arg	Leu	
				125					130					135			
				GTG													483
20	Lys	Ala		Val	Gly	Glu	Leu		Glu	Lys	Ser	Lys		Gln	Glu	Ile	
30	m 4 0	040	140	0.00		200	0.00	145					150			0.40	500
				CTG													531
	Tyr		GIU	Leu	Tnr	Arg		rys	Ala	ALA	Val	-	Glu	Leu	Pro	Glu	
		155	A A C	CTC	CAC	CAC	160	TA C	C 4 C	646	omo.	165		0.00		COT	570
35				CTG													579
<i>.</i> .	170	Ser	гλя	Leu	GIII	175	116	TÄL	GIN	GIU		inr	GIU	Leu	гаг	185	
		GTC	ССТ	GAG	ጥ ፓር		CAC	ΔΔΛ	TCC	A A C	180	CVG	GAG	Δጥር	тΔС		627
•				GIU													021

126

					190					195					200		
	GAG	CTG	ACC	CAG	CTG	AAG	GCT	GCA	GTG	GGT	GAG	TTG	CCA	GAC	CAG	TCC	675
	Glu	Leu	Thr	Gln	Leu	Lys	Ala	Ala	Val	Gly	Glu	Leu	Pro	Asp	Gln	Ser	
				205					210					215			
5	AAG	CAG	CAG	CAA	ATC	TAT	CAA	GAA	CTG	ACC	GAT	TTG	AAG	ACT	GĊA	TTT	723
	Lys	Gln	Gln	Gln	Ile	Tyr	Gln	Glu	Leu	Thr	Asp	Leu	Lys	Thr	Ala	Phe	
			220			,		225					230				
	GAA	CGC	CTG	TGC	CGC	CAC	TGT	ccc	AAG	GAC	TGG	ACA	TTC	TTC	CAA	GGA	771
	Glu	Arg	Leu	Cys	Arg	His	Cys	Pro	Lys	Asp	Trp	Thr	Phe	Phe	Gln	Gly	
10		235					240					245					
	AAC	TGT	TAC	TTC	ATG	TCT	AAC	TCC	CAG	CGG	AAC	TGG	CAC	GAC	TCC	GTC	819
	Asn	Cys	Tyr	Phe	Met	Ser	Asn	Ser	Gln	Arg	Asn	Trp	His	Asp	Ser	Val	
	250					255					260					265	
	ACC	GCC	TGC	CAG	GAA	GTG	AGG	GCC	CAG	CTC	GTC	GTA	ATC	AAA	ACT	GCT	867
15	Thr	Ala	Cys	Gln	Glu	Val	Arg	Ala	G1n	Leu	Val	Val	Ile	Lys	Thr	Ala	
					270					275					280		
	GAG	GAG	CAG	CTT	CCA	GCG	GTA	CTG	GAA	CAG	TGG	AGA	ACC	CAA	CAA		912
	Glu	Glu	Gln	Leu	Pro	Ala	Val	Leu	Ğlu	Gln	Trp	Arg	Thr	Gln	Gln		
				285					290					295			
20	TAG	CGGGA	AAT (GAAGA	ACTGI	rg co	GAAT	CTTAC	TGG	CAG	CGC	TGGA	ACGA	CA A	ATCGA	TGT	970
	GAC	STTGA	CA A	ATTAC	CTGGA	AT C	rgca <i>a</i>	AAAC	ccc	GCAG	CCT	GCTI	CAGA	GA C	CGAAI	AGTTG	1030
	TTTC	CCTC	CT A	AGCCI	CAGC	C TO	CATI	GTG	TAT	AGCA	GAA	CTTC	CACCO	CAC T	TGTA	AGCCA	1090
	GCGC	CTTCI	TC 7	CTCC	CATCO	T TO	GACC	TTCA	CAA	ATGO	CCT	GAGA	CGGI	TC I	CTGI	TCGAT	1150
	TTTT	CATO	cc c	CTATG	AACC	T G	GTCI	TAT	CTG	TCCI	TCT	GATG	CCTC	CA A	GTTI	CCCTG	1210
25	GTGT	'AGAG	CT 1	rgtgi	TCTI	G G	CCAT	CCTI	' GGA	GCTI	TAT	AAGI	GACC	TG A	GTGG	GATGC	1270
	ATT	AGGG	GG C	CGGGC	TTGG	T A	GTTG	TATG	TAA	CCAC	TCT	CTGT	TCCT	TT I	GGAG	ATTAG	1330
	ACTA	TTTG	GA 1	TCAT	GTGI	'A G	TGCC	CTGI	, ccc	CTGG	GGC	TTTA	TCTC	AT C	CATG	CAAAC	1390
	TACC	ATCI	GC 1	CAAC	TTCC	A GO	TACA	rcccc	GTG	CACC	CTT	TTGA	CTGG	GG A	CTTG	CTGGT	1450
	TGAA	GGAG	CT C	CATCI	TGCA	G GC	TGGA	AGCA	CCA	GGGA	TTA	AATT	cccc	CA G	TCAA	CCAAT	1510
30	GGCA	TCCA	GA G	AGGG	CATG	G AG	GCTC	CATA	CAA	CCTC	TTC	CACC	CCCA	CA T	CTTT	CTTTG	1570
	TCCT	ATAC	AT G	STCTT	CCAT	T TO	GCTG	TTTC	TGA	GTTG	TAG	CCTT	TATA	AT A	AAGT	GGTAA	1630
	ATGI	TGTA	AC 1	rgc													1643

35 (2) INFORMATION FOR SEQ ID NO: 40:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 729
 - (B) TYPE: Nucleic acid

				(C)	STR	ANDE	DNES	S: D	oubl	e							
				(D)	TOP	OLOG	Y: L	inea	r								
		(ii)	SEQU	ENCE	KIN	D: c	DNA	to m	RNA							
_																	
5		(V1)	ORIG													
						ANIS			-								
						L KI					er						
				(U)	CLO.	NE N.	AME:	HPO	1440								
10		(ix)	SEQU:	ENCE	CHA	RACT	ERIS	TICS	:							
						RACT					CDS						
				(B)	EXI	STEN	CE P	OSIT	ION:	38.	. 63	1					
				(C)	CHA	RACT	ERIZ.	ATIO:	N ME	THOD	: E						
15		(:	xi)	SEQU:	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	40:					
	ACT'	TTCA	CTC A	ACCG	CCTG	TC C	TTCC	TGAC	A CC	TCAC	C AT	G TG	T AC	G GG.	A AA	A TGT	55
											Me	t Cy	s Th	r Gl	y Ly	s Cys	
											:	1				5	
20	GCC	CGC	TGT	GTG	GGG	CTC	TCC	CTC	ATT	ACC	CTC	TGC	CTC	GTC	TGC	ATT	103
	Ala	Arg	Cys	Val	Gly	Leu	Ser	Leu	Ile	Thr	Leu	Cys	Leu	Val	Cys	Ile	
				10				-	15					20			
	GTG	GCC	AAC	GCC	CTC	CTG	CTG	GTA	CCT	AAT	GGG	GAG	ACC	TCC	TGG	ACC	151
	Val	Ala	Asn	Ala	Leu	Leu	Leu	Val	Pro	Asn	Gly	Glu	Thr	Ser	Trp	Thr	
25			25					30					35				
															TTC		199
	Asn		Asn	His	Leu	Ser	Leu	Gln	Val	Trp	Leu	Met	Gly	Gly	Phe	Ile	
		40					45					50					
															CGG		247
30		Gly	Gly	Leu	Met		Leu	Cys	Pro	Gly		Ala	Ala	Val	Arg		
	55	000				60					65					70	
															TGC		295
	GIÀ	GIÀ	Lys	Gly		Cys	Gly	Ala	Gly		Cys	Gly	Asn	Arg	Cys	Arg	
35	4 TP/C	O TO	000	maa.	75 ome	mma		maa		80					85		212
- ~				4.											GCC	4 44 1	343
	HEL	Leu	vtR	90	vai	rne	ser	ser		rne	GTÀ	val	Leu		Ala	TIE	
	ጥልሮ	ጥርር	ርምር		CTC.	ጥርጥ	CCA	C C TT	95	CTC	CC 4	тал	CCA	100	AGA	TCC	391

128

	Tyr	Cys	Leu	Ser	Val	Ser	Gly	Ala	Gly	Leu	Arg	Asn	Gly	Pro	Arg	Cys	
			105					110					115				
	TTA	ATG	AAC	GGC	GAG	TGG	GGC	TAC	CAC	TTC	GAA	GAC	ACC	GCG	GGA	GCT	439
	Leu	Met	Asn	Gly	Glu	Trp	Gly	Tyr	His	Phe	Glu	Asp	Thr	Ala	Gly	Ala	
5		120					125					130					
	TAC	TTG	CTC	AAC	CGC	ACT	CTA	TGG	GAT	CGG	TGC	GAG	GCG	CCC	CCT	CGC	487
	Tyr	Leu	Leu	Asn	Arg	Thr	Leu	Trp	Asp	Arg	Cys	Glu	Ala	Pro	Pro	Arg	
	135					140					145					150	
	GTG	GTC	CCC	TGG	AAT	GTG	ACG	CTC	TTC	TCG	CTG	CTG	GTG	GCC	GCC	TCC	535
10	Val	Val	Pro	Trp	Asn	Val	Thr	Leu	Phe	Ser	Leu	Leu	Val	Ala	Ala	Ser	
					155					160					165		
	TGC	CTG	GAG	ATA	GTA	CTG	TGT	GGG	ATC	CAG	CTG	GTG	AAC	GCG	ACC	ATT	583
	Cys	Leu	Glu	Ile	Val	Leu	Cys	Gly	Ile	Gln	Leu	Val	Asn	Ala	Thr	Ile	
				170					175					180			
15	GGT	GTC	TTC	TGC	GGC	GAT	TGC	AGG	AAA	AAA	CAG	GAC	ACC	CCT	CAC	TG	630
	Gly	Val	Phe	Cys	Gly	Asp	Cys	Arg	Lys	Lys	Gln	Asp	Thr	Pro	His		
			185					190					195				
	AGG	CTCCA	ACT (GACC	CCG	G TI	CACAC	CTG	TCC	CTTC	CTGG	ACG	CTAC	CT	GCTC	CGCTCA	690
	CTC	CCTT	GCT (CGCTA	AGAA	TA AA	ACTG	CTTTC	CGC	CTCT	CTT						729
20																	
						•											
	(2)		ORMAI			•											
		()	i) SI						CS:								
				• •	LENG												
25	٠,				TYPE												
		•			STRA					•							
					TOPO												
		()	ii) S	SEQUI	ENCE	KINI): cI	ONA t	o mF	RNA							
30				\D.T.O.T		007m											
3 U		(1	/i) (.								
					ORGA				•								
					CELI					ance	er						
				(ν)	CLON	IE INA	MIL:	HPU]	.326								
35		(1	lx) S	EOUE	ENCE	CHAR	ACTF	CR T ST	ידמאי								
-		``	, -	-	CHAF						DS						
					EXIS)					
											. •						

(C) CHARACTERIZATION METHOD: E

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:

	GAG	CCGC	AGG	TCTG	GGCT	GC A	GTAG	GTCC	C GG	CAAC	CGCA	4 GG	CTCG	CGGC	GGG	CGC	TGGG	60
	CGC	GGA'	rcc (GACT	CTAG	TC G	TA A	TG G	AG G	CG G	GC 0	GC	TTT	CTG	GAC	TCG	CTC	113
5							М	et G	lu A	la G	ly (31y	Phe	Leu	Asp	Ser	Leu	
								1				5					10	
	ATT	TAC	GGA	GCA	TGC	GTG	GTC	TTC	ACC	CTI	GGC	AT	G TT	с тс	C GC	C G	GC	161
	Ile	Tyr	Gly	Ala	Ċys	Val	Val	Phe	Thr	Leu	G13	, Me	t Ph	e Se	r Al	a G	ly	
					15					20)				2	2.5		
10	CTC	TCG	GAC	CTC	AGG	CAC	ATG	CGA	ATG	ACC	CGG	AG	T GT	G GA	C AA	C G	TC	209
	Leu	Ser	Asp	Leu	Arg	His	Met	Arg	Met	Thr	Arg	g Se	r Va	l As	p As	n V	al	
				30					35					4	0			
	CAG	TTC	CTG	CCC	TTT	CTC	ACC	ACG	GAA	GTC	AAC	AA C	C CT	G GG	C TG	G C	TG	257
	Gln	Phe	Leu	Pro	Phe	Leu	Thr	Thr	Glu	Val	Asr	ı Ası	n Le	u Gl	y Tr	p L	eu	
15			45					50					5	5				
	AGT	TAT	GGG	GCT	TTG	AAG	GGA	GAC	GGG	ATC	CTC	AT(C GT	C GT	C AA	C A	CA	305
	Ser	Tyr	Gly	Ala	Leu	Lys	Gly	Asp	Gly	Ile	Leu	Il	e Va	l Va	1 As	n T	hr	
		60					65					7	0					
	GTG	GGT	GCT	GCG	CTT	CAG	ACC	CTG	TAT	ATC	TTG	GC.	A TA	r ct	G CA	T T	AC	353
20	Val	Gly	Ala	Ala	Leu	Gln	Thr	Leu	Tyr	Ile	Leu	Ala	а Ту:	r Le	u Hi	s T	yr	
	75					80					85	i		•		!	90	
	TGC	CCT	CGG	AAG	CGT	GTT	GTG	CTC	CTA	CAG	ACT	GC/	A AC	CT	G CT	A G	GG	401
	Cys	Pro	Arg	Lys	Arg	Val	Val	Leu	Leu	Gln	Thr	Ala	a Th	r Le	u Le	u G	ly	
					95					100					10			
25													G GTA					449
	Val	Leu	Leu	Leu	Gly	Tyr	Gly	Tyr	Phe	Trp	Leu	Lei	u Val	l Pr	o As	n P	ro	
				110					115					12				
													T GT					497
2.0	Glu	Ala		Leu	Gln	Gln	Leu	-	Leu	Phe	Cys	Sei	r Val	L Ph	e Th	r I	le	
30			125					130					135					
							•						G GTO					545
	Ser		Tyr	Leu	Ser	Pro		Ala	Asp	Leu	Ala		s Val	l Il	e Gl	n Ti	nr	
		140					145					150						
. -													r GC					593
35		Ser	Thr	Gln	Cys		Ser	Tyr	Pro	Leu			e Ala	a Th	r Le			
	155	mc m	000	mc c	mc=	160	0.5.5				165						70	
													C AGA					641
	Inr	ser	ATB	ser	Trp	Cys	Leu	Tyr	Gly	Phe	Arg	Let	ı Arg	g As	p Pr	o Ty	/r	

	175 180 185	
	ATC ATG GTG TCC AAC TTT CCA GGA ATC GTC ACC AGC TTT ATC CGC TTC	689
	Ile Met Val Ser Asn Phe Pro Gly Ile Val Thr Ser Phe Ile Arg Phe	
	190 195 200	
5	TGG CTT TTC TGG AAG TAC CCC CAG GAG CAA GAC AGG AAC TAC TGG CTC	737
	Trp Leu Phe Trp Lys Tyr Pro Gln Glu Gln Asp Arg Asn Tyr Trp Leu	
	205 210 215	
	CTG CAA ACC TGAGGCTGCT CATCTGACCA CTGGGCACCT TAGTGCCAAC CTGA	790
	Leu Gln Thr	
10	220	
	ACCAAAGAGA CCTCCTTGTT TCAGCTGGGC CTGCTGTCCA GCTTCCCAGG TGCAGTGGGT	850
	TGTGGGAACA AGAGATGACT TTGAGGATAA AAGGACCAAA GAAAAAGCTT TACTTAGATG	910
	ATTGATTGGG GCCTAGGAGA TGAAATCACT TTTTATTTTT TAGAGATTTT TTTTTTTAAT	970
1 5	TTTGGAGGTT GGGGTGCAAT CTTTAGAATA TGCCTTAAAA GGCCGGGCGC GGTGGCTCAC	1030
15	GCCTGTAATC CCAGCACTT GGGAGGCCAA GGTGGGCGGA TCGCCTGAGG TCAGGAGTTC	1090
	AAGACCAACC TGACTAACAT GGTGAAACCC CATCTCTACT AAAAATACAA AATTAGCCAG GCATGATGGC ACATGCCTGT AATCCCAGAT ACTTGGGAGG CTGAGGCAGG AGAATTGCTT	1150
	GAACCCAGGA GGTGGAGGTT GCAGTGAGCT GAGATCGTGC CATTGTGATA TGAATATGCC	1210 1270
	TTATATGCTG ATATGAATAT GCCTTAAAAT AAAGTGTTCC CCACCCCTGC CC	1322
20		1722
	•	
	(2) INFORMATION FOR SEQ ID NO: 42:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 3045	
25	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) SEQUENCE KIND: cDNA to mRNA	
30	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Homo sapiens	
	(B) CELL KIND: Stomach cancer	
	(D) CLONE NAME: HP10230	
35	(ix) SEQUENCE CHARACTERISTICS:	
	(A) CHARACTERIZATION CODE: CDS	
	(B) EXISTENCE POSITION: 191 946	
	(C) CHARACTERIZATION METHOD: E	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:

	GTT'	rcgc	CTC	AGAA	GGCT	GC C	TCGC	TGGI	CCG	TTAA	CGGT	GGC	GCCA	CGT	CCGC	CCGTC	T 60
	CCG	CCTT	CTG	CATC	GCGG	CT T	CGGC	GGCI	T CC	ACCI	AGAC	ACC	TAAC	AGT	CGCG	GAGCC	G 120
5	GCC	CGT	CGT	GAGG	GGGT	CG G	CACG	GGGA	G TC	GGGC	GGTC	TTG	TGCA	TCT	TGGC	TACCT	G 180
	TGG	STCG	AAG .	ATG	TCG	GAC	ATC	GGA	GAC	TGG	TTC	AGG	AGC	ATC	CCG	GCG	229
				Met	Ser .	Asp	Ile	Gly	Asp	Trp	Phe	Arg	Ser	lle	Pro	Ala	
				1				5					10				
	ATC	ACG	CGC	TAT	TGG	TTC	GCC	GCC	ACC	GTC	GCC	GTG	ccc	TTG	GTC	GGC	277
10	Ile	Thr	Arg	Tyr	Trp	Phe	Ala	Ala	Thr	Val	Ala	Val	Pro	Leu	Val	Gly	
		15					20					25	ı				
	AAA	CTC	GGC	CTC	ATC	AGC	CCG	GCC	TAC	CTC	TTC	CTC	TGG	CCC	GAA	GCC	325
	Lys	Leu	Gly	Leu	Ile	Ser	Pro	Ala	Tyr	Leu	Phe	Leu	Trp	Pro	Glu	Ala	
	30					35					40					45	
15	TTC	CTT	TAT	CGC	TTT	CAG	ATT	TGG	AGG	CCA	ATC	ACT	GCC	ACC	TTT	TAT	373
	Phe	Leu	Tyr	Arg	Phe	Gln	Ile	Trp	Arg	Pro	Ile	Thr	Ala	Thr	Phe	Tyr	
					50					55					60		
							ACT										421
	Phe	Pro	Val	Gly	Pro	Gly	Thr	G1y	Phe	Leu	Tyr	Leu	Val	Asn	Leu	Tyr	
20				65					70					75			
							ACG										469
	Phe	Leu	Tyr	Gln	Tyr	Ser	Thr	Arg	Leu	Glu	Thr	Gly	Ala	Phe	Asp	Gly	
			80					85					90				
							TTC										517
25	Arg		Ala	Asp	Tyr	Leu	Phe	Met	Leu	Leu	Phe	Asn	Trp	Ile	Cys	Ile	
		95					100					105	•				
							ATG										565
		Ile	Thr	Gly	Leu		Met	Asp	Met	Gln		Leu	Met	Ile	Pro		
20	110					115					120					125	
30							GTC										613
	lle	Met	Ser	Val		Tyr	Val	Trp	Ala			Asn	Arg	Asp		Ile	
					130					135					140		
							ACA										661
3 F	Val	Ser	Phe		Phe	Gly	Thr	Arg			Ala	Cys	Tyr		Pro	Trp	
35				145					150					155			
							TAT										709
	Val	TTE		Gly	Phe	Asn	Tyr			Gly	Gly	Ser		Ile	Asn	Glu	
			160					165					170				

	CTT ATT GGA AAT CTG GTT GGA CAT CTT TAT TTT TTC CTA ATG TTC AGA	757
	Leu Ile Gly Asn Leu Val Gly His Leu Tyr Phe Phe Leu Met Phe Arg	Ş
	175 180 185	
	TAC CCA ATG GAC TTG GGA GGA AGA AAT TTT CTA TCC ACA CCT CAG TTT	805
5	Tyr Pro Met Asp Leu Gly Gly Arg Asn Phe Leu Ser Thr Pro Gln Phe	:
	190 195 200 205	i
•	TTG TAC CGC TGG CTG CCC AGT AGG AGA GGA GGA GTA TCA GGA TTT GGT	853
	Leu Tyr Arg Trp Leu Pro Ser Arg Arg Gly Gly Val Ser Gly Phe Gly	•
	210 215 220	
10	GTG CCC CCT GCT AGC ATG AGG CGA GCT GCT GAT CAG AAT GGC GGA GGC	901
*	Val Pro Pro Ala Ser Met Arg Arg Ala Ala Asp Gln Asn Gly Gly Gly	•
	225 230 235	
	GGG AGA CAC AAC TGG GGC CAG GGC TTT CGA CTT GGA GAC CAG TGAAGGG	950
	Gly Arg His Asn Trp Gly Gln Gly Phe Arg Leu Gly Asp Gln	
15	240 245 250	
	GCGGCCTCGG GCAGCCGCTC CTCTCAAGCC ACATTTCCTC CCAGTGCTGG GTGCGCTT	'AA 1010
	CAACTGCGTT CTGGCTAACA CTGTTGGACC TGACCCACAC TGAATGTAGT CTTTCAGT	AC 1070
	GAGACAAAGT TTCTTAAATC CCGAAGAAAA ATATAAGTGT TCCACAAGTT TCACGATT	CT 1130
	CATTCAAGTC CTTACTGCTG TGAAGAACAA ATACCAACTG TGCAAATTGC AAAACTGA	CT 1190
20	ACATTTTTG GTGTCTTCTC TTCTCCCCTT TCCGTCTGAA TAATGGGTTT TAGCGGGT	CC 1250
	TAGTCTGCTG GCATTGAGCT GGGGCTGGGT CACCAAACCC TTCCCAAAAG GACCCTTA	TC 1310
	TCTTTCTTGC ACACATGCCT CTCTCCCACT TTTCCCAACC CCCACATTTG CAACTAGA	AG 1370
	AGGTTGCCCA TAAAATTGCT CTGCCCTTGA CAGGTTCTGT TATTTATTGA CTTTTGCC	AA 1430
	GGCTTGGTCA CAACAATCAT ATTCACGTAA TTTTCCCCCT TTGGTGGCAG AACTGTAG	CA 1490
25	ATAGGGGGAG AAGACAAGCA GCGGATGAAG CGTTTTCTCA GCTTTTGGAA TTGCTTCG	AC 1550
	CTGACATCCG TTGTAACCGT TTGCCACTTC TTCAGATATT TTTATAAAAA AGTACCAC	TG 1610
	AGTCAGTGAG GGCCACAGAT TGGTATTAAT GAGATACGAG GGTTGTTGCT GGGTGTTT	GT 1670
	TTCCTGAGCT AAGTGATCAA GACTGTAGTG GAGTTGCAGC TAACATGGGT TAGGTTTA	
	CCGTGGGGGA TGCAACCCCT TTGCGTTTCA TATGTAGGCC TACTGGCTTT GTGTAGCT	
30	AGTAGTTGGG TTGCTTTGTG TTAGGAGGAT CCAGATCATG TTGGCTACAG GGAGATGC	
	TCTTTGAGAG GCTCCTGGGC ATTGATTCCA TTTCAATCTC ATTCTGGATA TGTGTTCA	
	GAGTAAAGGA GGAGAGACCC TCATACGCTA TTTAAATGTC ACTTTTTTGC CTATCCCC	CG 1970
	TTTTTTGGTC ATGTTTCAAT TAATTGTGAG GAAGGCGCAG CTCCTCTCTG CACGTAGA	
	ATTTTTTAAA GCTAATGTAA GCACATCTAA GGGAATAACA TGATTTAAGG TTGAAATG	
35	TTTAGAATCA TTTGGGTTTG AGGGTGTGTT ATTTTGAGTC ATGAATGTAC AAGCTCTG	
	AATCAGACCA GCTTAAATAC CCACACCTTT TTTTCGTAGG TGGGCTTTTC CTATCAGA	
	TTGGCTCATA ACCAAATAAA GTTTTTTGAA GGCCATGGCT TTTCACACAG TTATTTTA	
	TTATGACGTT ATCTGAAAGC AGACTGTTAG GAGCAGTATT GAGTGGCTGT CACACTTT	GA 2330

				133			
	GGCAACTAAA	AAGGCTTCAA A	.CGTTTTGAT	CAGTTTCTTT	TCAGGAAACA	TTGTGCTCTA	2390
	ACAGTATGAC	TATTCTTTCC C	CCACTCTTA	AACAGTGTGA	TGTGTGTTAT	CCTAGGAAAT	2450
	GAGAGTTGGC	AAACAACTTC T	CATTTTGAA	TAGAGTTTGT	GTGTACCTCT	CCATATTTAA	2510
	TTTATATGAT	AAAATAGGTG G	GGAGAGTCT	GAACCTTAAC	TGTCATGTTT	TGTTGTTCAT	2570
5	CTGTGGCCAC	AATAAAGTTT A	CTTGTAAAA	TTTTAGAGGC	CATTACTCCA	ATTATGTTGC	2630
	ACGTACACTC	ATTGTACAGG C	GTGGAGACT	CATTGTATGT	ATAAGAATAT	TCTGACAGTG	2690
	AGTGACCCGG	AGTCTCTGGT G	TACCCTCTT	ACCAGTCAGC	TGCCTGCGAG	CAGTCATTTT	2750
	TTCCTAAAGG	TTTACAAGTA T	TTAGAACTC	TTCAGTTCAG	GGCAAAATGT	TCATGAAGTT	2810
	ATTCCTCTTA	AACATGGTTA G	GAAGCTGAT	GACGTTATTG	ATTTTGTCTG	GATTATGTTT	2870
10	CTGGAATAAT	TTTACCAAAA C	AAGCTATTT	GAGTTTTGAC	TTGACAAGGC	AAAACATGAC	2930
	AGTGGATTCT	CTTTACAAAT T	GAAAAAAA	AATCCTTATT	TTGTATAAAG	GACTTCCCTT	2990
	TTTGTAAACT	AATCCTTTTT A	TTGGTAAAA	ATTGTAAATT	AAAATGTGCA	ACTTG	3045
15	, ,	TION FOR SEQ	•				
	(i) S	EQUENCE CHAR		CS:			
		(A) LENGTH:					
		(B) TYPE: N					
		(C) STRANDE		ıble			
20		(D) TOPOLOG					
	(ii)	SEQUENCE KIN	D: cDNA to	mRNA			
	(t)	ODICINAL COU	DCF.				
	(VI)	ORIGINAL SOU (A) ORGANIS					
25		(B) CELL KI		•	ama		
43		(C) CELL LI	-	.moid Carcii	iona		
	•	(D) CLONE N		180			
		(D) CLONE N	And: Hrio.	,69			
	(ix)	SEQUENCE CHA	RACTERISTI	CS:		•	
30	\ /	(A) CHARACT					
		(B) EXISTEN			}		
		(C) CHARACT					
		, - ,					
	(xi)	SEQUENCE DES	CRIPTION:	SEQ ID NO:	43:		
35	, -,	,	· · •	,			

ATGACCTTCA CCGGGAGGCT GAGGTCGGAG TCCCGATTTT CTCCTGCTGC TGTGGCCCGG 60

AC ATG GCG ACT CCC GGC CCT GTG ATT CCG GAG GTC CCC TTT GAA CCA 107

Met Ala Thr Pro Gly Pro Val Ile Pro Glu Val Pro Phe Glu Pro

134

		1				5					10					15		
	TCG		CCT	CCA	GTC	ATT	GAG	GGG	CTG	AGC	CCC	ACT	GTT	TAC	AGG	AAT	15	5
															Arg			
		,			20			•		25				•	30			
5	CCA	GAG	AGT	TTC	AAG	GAA	AAG	TTC	GTT	CGC	AAG	ACC	CGC	GAG	AAC	CCG	20	3
															Asn			
				35	-				40		•			45				
	GTG	GTA	ccc	ATA	GGT	TGC	CTG	GCC	ACG	GCG	GCC	GCC	CTC	ACC	TAC	GGC	25	1
	Val	Val	Pro	Ile	Gly	Cys	Leu	Ala	Thr	Ala	Ala	Ala	Leu	Thr	Tyr	Gly		
10			50					55					60					
	CTC	TAC	TCC	TTC	CAC	CGG	GGC	AAC	AGC	CAG	CGC	TCT	CAG	CTC	ATG	ATG	29	Э
	Leu	Tyr	Ser	Phe	His	Arg	Gly	Asn	Ser	Gln	Arg	Ser	Gln	Leu	Met	Met		
		65					70					75						
	CGC	ACC	CGG	ATC	GCC	GCC	CAG	GGT	TTC	ACG	GTC	GCA	GCC	ATC	TTG	CTG	34	7
15	Arg	Thr	Arg	Ile	Ala	Ala	Gln	Gly	Phe	Thr	Va1	Ala	Ala	Ile	Leu	Leu		
	80					85					90					95		
	GGT	CTG	GCT	GTC	ACT	GCT	ATG	AAG	TCT	CGA	CCC	TAAC	GCCCA	AGG (GTCT	GCCTT	400)
	Gly	Leu	Ala	Val	Thr	Ala	Met	Lys	Ser	Arg	Pro							
					100					105								
20																rgggac		
																rttgtg	520	
																CATACT		
					ATCT(CC CC	CTCCA	ACTC	C CC!	rgct'	TAAT	AAA(CTCTA	AAA A	AATC	CACTTG		
. -	TAT	l'TAA'	rtc A	AGT													65:	3
25																		
	/ 23	TATE	201441	T 7 7 37	EOD	050	TD 1	10	, ,									
	(2)			TION EQUE!		•												
		, (.	1) 3.	•		STH:		X151.	103:									
30							ucle	ic o	~ i d									
50									ouble	•								
				•			Y: L:			-								
		(ii) :	SEQUI						RNA							,	
		•	,															
35		(,	vi) (ORIG:	INAL	sou	RCE:											
		•	•					ото .	sapi	ens								
									ach (er							

(D) CLONE NAME: HP10408

135

(ix) SEQUENCE CHARACTERISTICS:

	(A)) CHARACTERIZ	ATION CODE	E: CDS			
	(B)	EXISTENCE F	POSITION:	75 311			
	(C)	CHARACTERIZ	ATION MET	HOD: E			
5							
	(xi) SEQU	JENCE DESCRIF	TION: SEQ	ID NO: 44	:		
	GTAGAAACAG GCCT	GTTAAG GAGAG	GCCAC CGG	GACTTCA GT	GTCTCCTC	CATCCCAGGA	60
	GCGCAGTGGC CACT	TATE GGG TOT	GGG CTG	CCC CTT GT	C CTC CTC	TTG ACC	110
10		Met Gly Ser	: Gly Leu H	Pro Leu Va	l Leu Leu	Leu Thr	
		1	5		10		
	CTC CTT GGC AGC	TCA CAT GGA	ACA GGG	CCG GGT AT	G ACT TTG	CAA CTG	158
	Leu Leu Gly Ser	Ser His Gly	Thr Gly F	Pro Gly Me	t Thr Leu	Gln Leu	
	15		20		25	•	
15	AAG CTG AAG GAG	TCT TTT CTG	ACA AAT 1	ICC TCC TA	T GAG TCC	AGC TTC	206
	Lys Leu Lys Glu	ser Phe Leu	Thr Asn S	Ser Ser Ty	r Glu Ser	Ser Phe	
	30	35	•	4	0	•	
	CTG GAA TTG CTT	GAA AAG CTC	TGC CTC C	CTC CTC CA	T CTC CCT	TCA GGG	254
	Leu Glu Leu Leu	ı Glu Lys Leu	Cys Leu I	Leu Leu Hi	s Leu Pro	Ser Gly	
20	45	50		55		60	
	ACC AGC GTC ACC	CTC CAC CAT	GCA AGA T	TCT CAA CA	C CAT GTT	GTC TGC	302
	Thr Ser Val Thr	Leu His His	Ala Arg S	Ser Gln Hi	s His Val	Val Cys	
		65	,	70		75	
	AAC ACA TGACAGO	CAT TGAAGCCT	GT GTCCTTC	CTTG GCCCG	GGCTT TTG	GCCGGG GA	360
25	Asn Thr						
	TGCAGGAGGC AGGC		CTTTC AGCA	AGGCCCC CA	CCCTCCTG	AGTGGCAATA	420
	AATAAAATTC GGTA	TGCTG				•	439
20							
30	(0) 7170014.000						
	(2) INFORMATION	•					
	-	NCE CHARACTE					
		LENGTH: 113					
35	•	TYPE: Nucle					
JJ	• •	STRANDEDNES					
		TOPOLOGY: L					
	(II) SECO	ENCE KIND: c	DNA TO MKN	MA			

WO 98/55508

(vi) ORIGINAL SOURCE:

				(A)	ORG	ANISI	M: H	ото	sapi	ens							
				(B)	CEL	L KII	ND:	Stom	ach (canc	er						
				(D)	CLO	NE NA	AME:	HP1	0412								
5																	
		(:	ix)	SEQU	ENCE	CHAI	RACT	ERIS'	rics	:							
				(A)	CHAI	RACT	ERIZA	ATIO	N CO	DE: (CDS						
				(B)	EXI	STEN	CE P	OSIT:	ion:	56.	. 10	00					
				(C)	CHAI	RACT	ERIZA	ATIO	ME'	THOD	: E						
10																	
		(:	xi) :	SEQU	ENCE	DES	CRIP'	rion	: SE	Q ID	NO:	45:					
	CTA:	rgag.	ATC (CCGG	CCTC	AG GO	GTGG	ACGC	A GT	GGTT(CTGC	ACT	GAGG	ccc '	TCGT(C ATG	58
																Met	
15	C TI C	666	CCT	CTC	mc¢.	m . c	mm/c	C TI A	000	000	C C M	OMC.	C TT A	C T C	000	1	7.04
															GGC		106
	vai	AIR	FLO	5	rrþ	TyL	Leu	vai	10	WIR	Ala	Leu	Leu	15	Gly	rne	
	A ጥር	CTC	ጥጥር	_	ΔСТ	CGC	AGC	CGG		cee	GCG	GCA	ТСΔ		GGC	CAA	154
20															Gly		45
		200	20	Dou	••••	5	001	25	01)		*****	1114	30	****	0-)		
	GAG	CCA		CAC	AAT	GAG	GAG		GCA	GGA	GCA	GGC		GTG	GCC	CAG	202
															Ala		
		35					40			•		45	Ū				
25	CCT	GGG	CCC	CTG	GAG	CCT	GAG	GAG	CCG	AGA	GCT	GGA	GGC	AGG	CCT	CGG	250
	Pro	Gly	Pro	Leu	Glu	Pro	Glu	Glu	Pro	Arg	Ala	Gly	Gly	Arg	Pro	Arg	
	50					55					60					65	
	CGC	CGG	AGG	GAC	CTG	GGC	AGC	CGC	CTA	CAG	GCC	CAG	CGT	CGA	GCC	CAG	298
	Arg	Arg	Arg	Asp	Leu	Gly	Ser	Arg	Leu	Gln	Ala	Gln	Arg	Arg	Ala	Gln	
30					70					75					80		
	CGG	GTG	GCC	TGG	GCA	GAA	GCA	GAT	GAG	AAC	GAG	GAG	GAA	GCT	GTC	ATC	346
	Arg	Va1	Ala		Ala	Glu	Ala	Asp	Glu	Asn	Glu	Glu	Glu	Ala	Val	Ile	**
				85					90					95			
															CAC		394
35	Leu	Ala		Glu	Glu	Glu	Gly		Glu	Lys	Pro	Ala		Thr	His	Leu	
	ምረረ	ccc	100	A mm	CC 4	COM	440	105	c m c	000		000	110	0.40		CAA	A A 0
															AAA Lvs		442
		U 1 Y	413		U 1 Y	- T- C	T 4 2	TI A D	ucu	UTK	T1 A 22	ᅩᄄᄖ	TIT	பாப	11 Y D		

		115					120					125					
	GCG	CGA	AAG	GCC	CAG	CGT	GAG	GCA	GAG	GAG	GCT	GAA	CGT	GAG	GAG	CGG	490
	Ala	Arg	Lys	Ala	Gln	Arg	Glu	Ala	Glu	Glu	Ala	Glu	Arg	Glu	Glu	Arg	
	130					135					140					145	
5	AAA	CGA	CTC	GAG	TCC	CAG	CGC	GAA	GCT	GAG	TGG	AAG	AAG	GAG	GAG	GAG	538
	Lys	Arg	Leu	Glu	Ser	Gln	Arg	Glu	Ala	Glu	Trp	Lys	Lys	Glu	Glu	Glu	
					150					155					160		
	CGG	CTT	CGC	CTG	GAG	GAG	GAG	CAG	AAG	GAG	GAG	GAG	GAG	AGG	AAG	GCC	586
	Arg	Leu	Arg	Leu	Glu	Glu	Glu	Gln	Lys	Glu	Glu	Glu	Glu	Arg	Lys	Ala	
10				165					170					175			
	CGC	GAG	GAG	CAG	GCC	CAG	CGG	GAG	CAT	GAG	GAG	TAC	CTG	AAA	CTG	AAG	634
•	Arg	Glu	Glu	Gln	Ala	Gln	Arg	Glu	His	Glu	Glu	Tyr	Leu	Lys	Leu	Lys	
			180					185					190				
	GAG	GCC	TTT	GTG	GTG	GAG	GAG	GAA	GGC	GTA	GGA	GAG	ACC	ATG	ACT	GAG	682
15	Glu	Ala	Phe	Val	Val	Glu	Glu	Glu	Gly	Val	Gly	Glu	Thr	Met	Thr	Glu	
		195					200					205					
	GAA	CAG	TCC	CAG	AGC	TTC	CTG	ACA	GAG	TTC	ATC	AAC	TAC	ATC	AAG	CAG	730
	Glu	Gln	Ser	Gln	Ser	Phe	Leu	Thr	Glu	Phe	Ile	Asn	Tyr	Ile	Lys	Gln	
	210					215					220					225	
20	TCC	AAG	GTT	GTG	CTC	TTG	GAA	GAC	CTG	GCT	TCC	CAG	GTG	GGC	CTA	CGC	778
	Ser	Lys	Val	Val	Leu	Leu	Glu	Asp	Leu	Ala	Ser	Gln	Val	Gly	Leu	Arg	
					230					235					240		
	ACT	CAG	GAC	ACC	ATA	AAT	CGC	ATC	CAG	GAC	CTG	CTG	GCT	GAG	GGG	ACT	826
	Thr	Gln	Asp	Thr	Ile	Asn	Arg	Ile	Gln	Asp	Leu	Leu	Ala	Glu	Gly	Thr	
25				245					250					255			
	ATA	ACA	GGT	GTG	ATT	GAC	GAC	CGG	GGC	AAG	TTC	ATC	TAC	ATA	ACC	CCA	874
	Ile	Thr	Gly	Val	Ile	Asp	Asp	Arg	Gly	Lys	Phe	Ile	Tyr	Ile	Thr	Pro	
			260					265					270				
				GCC													922
30	Glu	Glu	Leu	Ala	Ala	Val	Ala	Asn	Phe	Ile	Arg	Gln	Arg	Gly	Arg	Val	
		275					280					285					
				GAG													970
		Ile	Ala	Glu	Leu	Ala	Gln	Ala	Ser	Asn	Ser	Leu	Ile	Ala	Trp	Gly	
	290					295					300					305	
35				CCT		~		+		TGAC	CCCA	GT C	CTTC	CCTC	T TC	G a · · · · · ·	1020
	Arg	Glu	Ser	Pro		Gln	Ala	Pro	Ala								
					310												
	ACT	CAGAG	TT G	GTGT	GGCC	T AC	CTGG	CTAI	' ACA	TCTI	CAT	CCCI	CCCC	AC C	ATCC	TGGGG	1080

138

1131

303

AAGTGATGGT GTGGCCAGGC AGTTATAGAT TAAAGGCCTG TGAGTACTGC T

	(2) INFORMATION	FOR SEQ ID	NO: 46:					
5	(i) SEQUE	NCE CHARACTE	RISTICS:					
	(A)	LENGTH: 187	5					
	(B)	TYPE: Nucle	ic acid					
	(C)	STRANDEDNES	S: Double	2				
	(D)	TOPOLOGY: L	inear					
10	(ii) SEQU	ENCE KIND: c	DNA to mi	RNA				
	(vi) ORIG	INAL SOURCE:				•		
	(A)	ORGANISM: H	omo sapi	ens				
	(B)	CELL KIND:	Stomach o	cancer				
15	(D)	CLONE NAME:	HP10413					
	(ix) SEQU	ENCE CHARACT	ERISTICS:	ı				
	(A)	CHARACTERIZA	ATION COI	E: CDS				
	(B)	EXISTENCE PO	osition:	79 66	6			
20	(C)	CHARACTERIZA	ATION MET	THOD: E				
	(xi) SEQU	ENCE DESCRIP	TION: SEC	ID NO:	46:			
	CTCGCTCGCT CAGA	GGGAGG AGAAA	GTGGC GAG	TTCCGGA	TCCCTGC	CTA GCGCG	GCCCA	60
25	ACCTTTACTC CAGA	GATC ATG GCT	GCC GAG	GAT GTG	GTG GCG	ACT GGC	GCC	111
		Met Ala	Ala Glu	Asp Val	Val Ala	Thr Gly	Ala	
		1		5		10		
	GAC CCA AGC GAT	CTG GAG AGC	GGC GGG	CTG CTG	CAT GAG	ATT TTC	ACG	159
	Asp Pro Ser Asp	Leu Glu Ser	Gly Gly	Leu Leu	His Glu	Ile Phe	Thr	
30	15		20			25		
	TCG CCG CTC AAC							207
	Ser Pro Leu Asn	Leu Leu Leu	Leu Gly	Leu Cys	Ile Phe	Leu Leu	Tyr	
	30		35		40			
2 5	AAG ATC GTG CGC							255
35	Lys Ile Val Arg	Gly Asp Gln	Pro Ala	Ala Ser	GLY Asp	ser Asp	Asp	

GAC GAG CCG CCT CTG CCC CGC CTC AAG CGG CGC GAC TTC ACC CCC

Asp Glu Pro Pro Pro Leu Pro Arg Leu Lys Arg Arg Asp Phe Thr Pro

	60					65					70					75	
	GCC	GAG	CTG	CGG	CGC	TTC	GAC	GGC	GTC	CAG	GAC	CCG	CGC	ATA	CTC	ATG	351
	Ala	Glu	Leu	Arg	Arg	Phe	Asp	Gly	Val	Gln	Asp	Pro	Arg	Ile	Leu	Met	
					80					85					90		
5	GCC	ATC	AAC	GGC	AAG	GTG	TTC	GAT	GTG	ACC	AAA	GGC	CGC	AAA	TTC	TAC	399
	Ala	Ile	Asn	Gly	Lys	Val	Phe	Asp	Val	Thr	Lys	Gly	Arg	Lys	Phe	Tyr	
				95					100					105			
	GGG	CCC	GAG	GGG	CCG	TAT	GGG	GTC	TTT	GCT	GGA	AGA	GAT	GCA	TCC	AGG	447
	Gly	Pro	Glu	Gly	Pro	Tyr	Gly	Val	Phe	Ala	Gly	Arg	Asp	Ala	Ser	Arg	
10			110					115					120				
	GGC	CTT	GCC	ACA	TTT	TGC	CTG	GAT	AAG	GAA	GCA	CTG	AAG	GAT	GAG	TAC	495
	Gly	Leu	Ala	Thr	Phe	Cys	Leu	Asp	Lys	Glu	Ala	Leu	Lys	Asp	Glu	Tyr	
		125					130					135					
	GAT	GAC	CTT	TCT	GAC	CTC	ACT	GCT	GCC	CAG	CAG	GAG	ACT	CTG	AGT	GAC	543
15	Asp	Asp	Leu	Ser	Asp	Leu	Thr	Ala	Ala	Gln	Gln	Glu	Thr	Leu	Ser	Asp	
	140					145					150					155	
	TGG	GAG	TCT	CAG	TTC	ACT	TTC	AAG	TAT	CAT	CAC	GTG	GGC	AAA	CTG	CTG	591
	Trp	Glu	Ser	Gln	Phe	Thr	Phe	Lys	Tyr	His	His	Val	Gly	Lys	Leu	Leu	
					160					165					170		
20	AAG	GAG	GGG	GAG	GAG	ccc	ACT	GTG	TAC	TCA	GAT	GAG	GAA	GAA	CCA	AAA	639
	Lys	Glu	Gly	Glu	Glu	Pro	Thr	Val	Tyr	Ser	Asp	Glu	Glu	Glu	Pro	Lys	
				175					180					185			
	GAT	GAG	AGT	GCC	CGG	AAA	AAT	GAT	TAAA	AGCAI	TTC A	AGTGC	AAGI	CA TA	ATCTA	ΥT	690
	Asp	Glu	Ser	Ala	Arg	Lys	Asn	Asp									
25			190					195									
	TTTT	GTA?	rtt :	TGCAA	AATO	A T	TGTA	ACAG	TCC	CACTO	CTGT	CTTT	AAA!	ACA T	CAGTO	ATTAC	750
	AATA	ATTTA	AGA A	AAGTI	TTGA	G CA	CTTC	CTAI	' AAG	TTTI	ATT	TAAC	CATCA	CT A	AGTGA	CACTA	810
	ATA	TAAL	raa (CTTCI	TAGA	A TO	CATO	ATGT	GTI	TGT	TGT	CACA	AATC	CA C	DAAAG	TGAAC	870
	TGCA	GTG	CTG :	TAATA	CACA	T G	TAAT	CACTG	TTI	TTCI	TCT	ATCI	GTAG	STT A	AGTAC	AGGAT	930
30	GAAT	ATT?	AAT (GTGTI	TTTC	C TO	AGAC	ACAA	GGA	AGAC	TTG	GGTA	ATTTC	CCC A	AAAA	AGGTA	990
	AAAA	ATCT	raa A	ATGTO	CAC	A AC	AGC	AAAGG	ATO	CAACI	TTT	AGTO	CATGA	ATG T	TCTG	TAAAG	1050
	ACA/	CAA	ATC (CCTT	TTTT	T TO	TCAA	ATTGA	CTI	[AAC]	GCA	TGAT	TTCI	GT 7	ratt1	CTACC	1110
	TCTA	AAAG	CAA A	ATCT	CAGI	G T	CCAA	AGAC	TTI	GGTA	TGG	ATTA	AGCG	CT C	STCCA	GTAAC	1170
	AAA	ATGA/	AAT (CTCAA	AACA	G A	CTC	AGCTG	CAA	AAAA	GCA	TAT	TTCI	GT G	STTTC	TGGAC	1230
35	TGCA	CTG	TTG :	rccti	GCC	T CA	CATA	AGACA	CTC	CAGAC	CACC	CTCA	CAAA	CA C	CAGTA	GTCTA	1290
	TAG	TAGO	GAT :	AAA1	TAGG	A TO	TGA	CATI	CAA	AAGA	AAG	CTTT	GGAA	AAA A	AAAGA	GCTGG	1350
	CTG	CCTA	AAA A	AACCI	'AAA'	A TA	TGA	[GAAG	AT1	GTAG	GAC	TGTC	TTC	CA A	AGCCC	CATGT	1410
	TCAT	rggT	GG (GCAAI	GGTI	A TI	TGG	TATT	TTA	CTCA	ATT	GGTT	CACTO	TC A	ATTTG	AAATG	1470

WO 98/55508 PCT/JP98/02445

1530

1590

AGGGAGGGAC ATACAGAATA GGAACAGGTG TTTGCTCTCC TAAGAGCCTT CATGCACACC

CCTGAACCAC GAGGAAACAG TACAGTCGCT AGTCAAGTGG TTTTTAAAGT AAAGTATATT

	CATAAGGTAA CAGTTATTCT GTTGTTATAA AACTATACCC ACTGCAAAAG TAGTAGTCAA	1650
	GTGTCTAGGT CTTTGATATT GCTCTTTTGG TTAACACTAA GCTTAAGTAG ACTATACAGT	1710
5	TGTATGAATT TGTAAAAGTA TATGAACACC TAGTGAGATT TCAAACTTGT AATTGTGGTT	1770
	AAATAGTCAT TGTATTTTCT TGTGAACTGT GTTTTATGAT TTTACCTCAA ATCAGAAAAC	1830
	AAAATGATGT GCTTTGGTCA GTTAATAAAA ATGGTTTTAC CCACT	1875
10		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1563	
	(B) TYPE: Nucleic acid	
1 5	(C) STRANDEDNESS: Double	
15	(D) TOPOLOGY: Linear	
	(ii) SEQUENCE KIND: cDNA to mRNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Homo sapiens	
20	(B) CELL KIND: Stomach cancer	
	(D) CLONE NAME: HP10415	
	(ix) SEQUENCE CHARACTERISTICS:	
	(A) CHARACTERIZATION CODE: CDS	
25	(B) EXISTENCE POSITION: 72 1460	
	(C) CHARACTERIZATION METHOD: E	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:	
30	AAATTGGGCC AGGCTGAGGC GCTGCTGCTG GAGCGGCCGA TCCGAGACGT GGCTCCCTGG	60
	GCGGCAGAAC C ATG TTG GAC TTC GCG ATC TTC GCC GTT ACC TTC TTG CTG	110
	Met Leu Asp Phe Ala Ile Phe Ala Val Thr Phe Leu Leu	
	1 5 10	
	GCG TTG GTG GGA GCC GTG CTC TAC CTC TAT CCG GCT TCC AGA CAA GCT	158
35	Ala Leu Val Gly Ala Val Leu Tyr Leu Tyr Pro Ala Ser Arg Gln Ala	
	15 20 25	
	GCA GGA ATT CCA GGG ATT ACT CCA ACT GAA GAA AAA GAT GGT AAT CTT	206
	Ala Gly Ile Pro Gly Ile Thr Pro Thr Glu Glu Lys Asp Gly Asn Leu	

	30					35					40					45	
	CCA	GAT	ATT	GTG	AAT	AGT	GGA	AGT	TTG	CAT	GAG	TTC	CTG	GTT	AAT	TTG	254
	Pro	Asp	Ile	Val	Asn	Ser	Gly	Ser	Leu	His	Glu	Phe	Leu	Val	Asn	Leu	
					50					55					60		
5	CAT	GAG	AGA	TAT	GGG	CCT	GTG	GTC	TCC	TTC	TGG	TTT	GGC	AGG	CGC	CTC	302
	His	G1u	Arg	Tyr	Gly	Pro	Val	Val	Ser	Phe	Trp	Phe	Gly	Arg	Arg	Leu	
				65					70					75			
	GTG	GTT	AGT	TTG	GGC	ACT	GTT	GAT	GTA	CTG	AAG	CAG	CAT	ATC	AAT	CCC	350
	Val	Val	Ser	Leu	Gly	Thr	Val	Asp	Val	Leu	Lys	Gln	His	Ile	Asn	Pro	
LO			80					85					90				
	AAT	AAG	ACA	TTG	GAC	CCT	TTT	GAA	ACC	ATG	CTG	AAG	TCA	TTA	TTA	AGG	398
	Asn	Lys	Thr	Leu	Asp	Pro	Phe	Glu	Thr	Met	Leu	Lys	Ser	Leu	Leu	Arg	
		95					100					105					
	TAT	CAA	TCT	GGT	GGT	GGC	AGT	GTG	AGT	GAA	AAC	CAC	ATG	AGG	AAA	AAA	446
L 5	Tyr	Gln	Ser	Gly	Gly	Gly	Ser	Val	Ser	Glu	Asn	His	Met	Arg	Lys	Lys	
	110					115					120					125	
	TTG	TAT	GAA	AAT	GGT	GTG	ACT	GAT	TCT	CTG	AAG	AGT	AAC	TTT	GCC	CTC	494
	Leu	Tyr	Glu	Asn	Gly	Val	Thr	Asp	Ser	Leu	Lys	Ser	Asn	Phe	Ala	Leu	
					130					135					140		
20	CTC	CTA	AAG	CTT	TCA	GAA	GAA	TTA	TTA	GAT	AAA	TGG	CTC	TCC	TAC	CCA	542
	Leu	Leu	Lys	Leu	Ser	Glu	Glu	Leu	Leu	Asp	Lys	Trp	Leu	Ser	Tyr	Pro	
				145					150					155			
	GAG	ACC	CAG	CAC	GTG	CCC	CTC	AGC	CAG	CAT	ATG	CTT	GGT	TTT	GCT	ATG	590
	Glu	Thr	Gln	His	Val	Pro	Leu	Ser	Gln	His	Met	Leu	Gly	Phe	Ala	Met	
25			160					165					170				
	AAG	TCT	GTT	ACA	CAG	ATG	GTA	ATG	GGT	AGT	ACA	TTT	GAA	GAT	GAT	CAG	638
	Lys	Ser	Val	Thr	Gln	Met	Val	Met	Gly	Ser	Thr	Phe	Glu	Asp	Asp	Gln	
		175					180					185					
	GAA	GTC	ATT	CGC	TTC	CAG	AAG	AAT	CAT	GGC	ACA	GTT	TGG	TCT	GAG	ATT	686
30	Glu	Val	Ile	Arg	Phe	Gln	Lys	Asn	His	Gly	Thr	Val	Trp	Ser	Glu	Ile	
	190					195					200					205	
	GGA	AAA	GGC	TTT	CTA	GAT	GGG	TCA	CTT	GAT	AAA	AAC	ATG	ACT	CGG	AAA	734
	Gly	Lys	Gly	Phe	Leu	Asp	Gly	Ser	Leu	Asp	Lys	Asn	Met	Thr	Arg	Lys	
					210					215					220		
35							-						GTT				782
	Lys	Gln	Tyr	Glu	Asp	Ala	Leu	Met	Gln	Leu	Glu	Ser	Val	Leu	Arg	Asn	
				225					230					235			
	ATC	ATA	AAA	GAA	CGA	AAA	GGA	AGG	AAC	TTC	AGT	CAA	CAT	ATT	TTC	ATT	830

	Ile	Ile	Lys 240	G1u	Arg	Lys	Gly	Arg 245	Asn	Phe	Ser	Gln	His 250	Ile	Phe	Ile	·
	GAC	TCC	TTA	GTA	CAA	GGG	AAC	CTT	AAT	GAC	CAA	CAG	ATC	CTA	GAA	GAC	878
	Asp	Ser	Leu	Val	Gln	Gly	Asn	Leu	Åsn	Asp	Gln	Gln	Ile	Leu	Glu	Asp	
5		255					260					265					
	AGT	ATG	ATA	TTT	TCT	CTG	GCC	AGT	TGC	ATA	ATA	ACT	GCA	AAA	TTG	TGT	926
	Ser	Met	Ile	Phe	Ser	Leu	Ala	Ser	Cys	Ile	Ile	Thr	Ala	Lys	Leu	Cys	
	270					275					280					285	
	ACC	TGG	GCA	ATC	TGT	TTT	TTA	ACC	ACC	TCT	GAA	GAA	GTT	CAA	AAA	AAA	974
10	Thr	Trp	Ala	Ile	Cys	Phe	Leu	Thr	Thr	Ser	Glu	Glu	Val	Gln	Lys	Lys	
					290					295					300		
	TTA	TAT	GAA	GAG	ATA	AAC	CAA	GTT	TTT	GGA	AAT	GGT	CCT	GTT	ACT	CCA	1022
	Leu	Tyr	Glu	Glu	Ile	Asn	Gln	Val	Phe	Gly	Asn	Gly	Pro	Val	Thr	Pro	
				305					310					315			
15	GAG	AAA	ATT	GAG	CAG	CTC	AGA	TAT	TGT	CAG	CAT	GTG	CTT	TGT	GAA	ACT	1070
	Glu	Lys	Ile	Glu	Gln	Leu	Arg	Tyr	Cys	Gln	His	Val	Leu	Cys	Glu	Thr	
			320					325					330				
	GTT	CGA	ACT	GCC	AAA	CTG	ACT	CCA	GTT	TCT	GCC	CAG	CTT	CAA	GAT	ATT	1118
	Val	Arg	Thr	Ala	Lys	Leu	Thr	Pro	Val	Ser	Ala	G1n	Leu	Gln	Asp	Ile	
20		335					340					345					
	GAA	GGA	AAA	ATT	GAC	CGA	TTT	ATT	ATT	CCT	AGA	GAG	ACC	CTC	GTC	CTT	1166
	Glu	Gly	Lys	Ile	Asp	Arg	Phe	Ile	Ile	Pro	Arg	Glu	Thr	Leu	Val	Leu	
	350					355					360					365	
	TAT	GCC	CTT	GGT	GTG	GTA	CTT	CAG	GAT	CCT	AAT	ACT	TGG	CCA	TCT	CCA	1214
25	Tyr	Ala	Leu	Gly	Val	Val	Leu	Gln	Asp	Pro	Asn	Thr	Trp	Pro	Ser	Pro	
					370					375					380		
															AAA		1262
	His	Lys	Phe	-	Pro	Asp	Arg	Phe	-	Asp	Glu	Leu	Val		Lys	Thr	
				385					390					395			
30															TTG		1310
	Phe	Ser		Leu	Gly	Phe	Ser	•	Thr	Gln	Glu	Cys		Glu	Leu	Arg	
			400					405					410				1050
															AAG		1358
2 -	Pne		Tyr	Met	Val	Thr		Val	Leu	Leu	Ser		Leu	val	Lys	Arg	
35	000	415	Cm +		mo	0.00	420	004	0.45	o==		425		4.4.0	m v w	C A A	1406
															TAT		1406
		nis	ren	ren	ser		GIU	GIÀ	GIN	val		GIU	ınr	гуѕ	Tyr	445	
	430					435					440					447	

	ord ora non roa not one one ora ora nor ora non me non	143
	Leu Val Thr Ser Ser Arg Glu Glu Ala Trp Ile Thr Val Ser Lys Arg	
	450 455 460	
	TAT TAAAATTTTA TACATTTAAA ATCATTGTTA AATTGATTGA GGAAAACAAC CAT	151
5	Tyr	
	TTAAAAAAAA TCTATGTTGA ATCCTTTTAT AAACCAGTAT CACTTTGTAA TAT	156
10	(2) INFORMATION FOR SEQ ID NO: 48:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2030	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
15	(D) TOPOLOGY: Linear	
	(ii) SEQUENCE KIND: cDNA to mRNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Homo sapiens	
20	(B) CELL KIND: Stomach cancer	
	(D) CLONE NAME: HP10419	
	(in) SEQUENCE CHARACTER TOTAL	
	(ix) SEQUENCE CHARACTERISTICS:	
25	(A) CHARACTERIZATION CODE: CDS	
23	(B) EXISTENCE POSITION: 171 914 (C) CHARACTERIZATION METHOD: E	
	(C) CHARACTERIZATION PLETHOD: E	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:	
	(AI) DEGELIATION. DEG ID NO. 40.	
30	CATTTGGGGT TTCGGTTCCC CCCCTTCCCC TTCCCCGGGG TCTGGGGGTG ACATTGCACC	60
_	GCGCCCTCG TGGGGTCGCG TTGCCACCC ACGCGGACTC CCCAGCTGGC GCGCCCCTCC	120
	CATTTGCCTG TCCTGGTCAG GCCCCCACCC CCCTTCCCAC CTGACCAGCC ATG GGG	176
	Met Gly	
	1	
35	GCT GCG GTG TTT TTC GGC TGC ACT TTC GTC GCG TTC GGC CCG GCC TTC	224
	Ala Ala Val Phe Phe Gly Cys Thr Phe Val Ala Phe Gly Pro Ala Phe	
	5 10 15	
	GCG CTT TTC TTG ATC ACT GTG GCT GGG GAC CCG CTT CGC GTT ATC ATC	272
	·	

	Ala	Leu	Phe	Leu	Ile	Thr	Val	Ala	Gly	Asp	Pro	Leu	Arg	Val	Ile	Ile	
		20					25					30					
	CTG	GTC	GCA	GGG	GCA	TTT	TTC	TGG	CTG	GTC	TCC	CTG	CTC	CTG	GCC	TCT	320
	Leu	Val	Ala	Gly	Ala	Phe	Phe	Trp	Leu	Val	Ser	Leu	Leu	Leu	Ala	Ser	
5	35					40					45					50	
	GTG	GTC	TGG	TTC	ATC	TTG	GTC	CAT	GTG	ACC	GAC	CGG	TCA	GAT	GCC	CGG	368
	Val	Val	Trp	Phe	Ile	Leu	Val	His	Val	Thr	Asp	Arg	Ser	Asp	Ala	Arg	
					55					60					65		
	CTC	CAG	TAC	GGC	CTC	CTG	ATT	TTT	GGT	GCT	GCT	GTC	TCT	GTC	CTT	CTA	416
10	Leu	Gln	Tyr	Gly	Leu	Leu	Ile	Phe	Gly	Ala	Ala	Val	Ser	Val	Leu	Leu	
				70					75					80			
	CAG	GAG	GTG	TTC	CGC	TTT	GCC	TAC	TAC	AAG	CTG	CTT	AAG	AAG	GCA	GAT	464
	Gln	Glu	Val	Phe	Arg	Phe	Ala	Tyr	Tyr	Lys	Leu	Leu	Lys	Lys	Ala	Asp	
			85					90					95				
15	GAG	GGG	TTA	GCA	TCG	CTG	AGT	GAG	GAC	GGA	AGA	TCA	CCC	ATC	TCC	ATC	512
	Glu	Gly	Leu	Ala	Ser	Leu	Ser	Glu	Asp	Gly	Arg	Ser	Pro	Ile	Ser	Ile	
		100					105					110					
	CGC	CAG	ATG	GCC	TAT	GTT	TCT	GGT	CTC	TCC	TTC	GGT	ATC	ATC	AGT	GGT	560
	Arg	Gln	Met	Ala	Tyr	Val	Ser	Gly	Leu	Ser	Phe	Gly	Ile	Ile	Ser	Gly	
20	115					120					125					130	
	GTC	TTC	TCT	GTT	ATC	AAT	ATT	TTG	GCT	GAT	GCA	CTT	GGG	CCA	GGT	GTG	608
	Val	Phe	Ser	Val	Ile	Asn	Ile	Leu	Ala	Asp	Ala	Leu	Gly	Pro	Gly	Val	
					135					140					145		
	GTT	GGG	ATC	CAT	GGA	GAC	TCA	CCC	TAT	TAC	TTC	CTG	ACT	TCA	GCC	TTT	656
25	Val	Gly	Ile	His	Gly	Asp	Ser	Pro	Tyr	Tyr	Phe	Leu	Thr	Ser	Ala	Phe	
				150					155					160			
	CTG	ACA	GCA	GCC	ATT	ATC	CTG	CTC	CAT	ACC	TTT	TGG	GGA	GTT	GTG	TTC	704
	Leu	Thr	Ala	Ala	Ile	Ile	Leu	Leu	His	Thr	Phe	Trp	Gly	Val	Val	Phe	
			165					170					175				
30													GGC				752
	Phe	-	Ala	Cys	Glu	Arg	Arg	Arg	Tyr	Trp	Ala	Leu	Gly	Leu	Val	Val	
		180					185					190					
													AAC				800
	•	Ser	His	Leu	Leu		Ser	Gly	Leu	Thr	Phe	Leu	Asn	Pro	Trp	•	
35	195					200		_			205					210	.
													TCC				848
	Glu	Ala	Ser	Leu		Pro	Ile	Tyr	Ala		Thr	Val	Ser	Met		Leu	
					215					220					225		

	TGG GCC TTC	ATC ACA GCT	GGA GGG TCC	CTC CGA AGT ATT	CAG CGC AGC	896
	Trp Ala Phe	Ile Thr Ala	Gly Gly Ser	Leu Arg Ser Ile	Gln Arg Ser	
		230	235		240	
	CTC TTG TGT	AAG GAC TGAC	PACCTG GACTG	ATCGC CTGACAGATC	CCACCTGCC	950
5	Leu Leu Cys	Lys Asp				
	245	i				
	TGTCCACTGC	CCATGACTGA GC	CCAGCCCC AGC	CCGGGTC CATTGCCC	AC ATTCTCTGTC	1010
	TCCTTCTCGT	CGGTCTACCC CA	CTACCTCC AGG	GTTTTGC TTTGTCCT	TT TGTGACCGTT	1070
	AGTCTCTAAG	CTTTACCAGG AG	CAGCCTGG GT1	CAGCCAG TCAGTGAC	TG GTGGGTTTGA	1130
10	ATCTGCACTT	ATCCCCACCA CC	IGGGGACC CCC	TTGTTGT GTCCAGGA	CT CCCCCTGTGT	1190
	CAGTGCTCTG	CTCTCACCCT GC	CCAAGACT CAC	CTCCCTT CCCCTCTG	CA GGCCGACGGC	1250
	AGGAGGACAG	TCGGGTGATG GT	GTATTCTG CCC	TGCGCAT CCCACCCG	AG GACTGAGGGA	1310
	ACCTAGGGGG	GACCCCTGGG CC	rggggtgc cci	CCTGATG TCCTCGCC	CT GTATTTCTCC	1370
	ATCTCCAGTT	CTGGACAGTG CA	GGTTGCCA AGA	AAAGGGA CCTAGTTT	AG CCATTGCCCT	1430
15	GGAGATGAAA	TTAATGGAGG CT	CAAGGATA GAI	GAGCTCT GAGTTTCT	CA GTACTCCCTC	1490
	AAGACTGGAC	ATCTTGGTCT TT	ITCTCAGG CC1	GAGGGGG AACCATTT	TT GGTGTGATAA	1550
	ATACCCTAAA	CTGCCTTTTT TT	CTTTTTTG AGG	TGGGGGG AGGGAGGA	GG TATATTGGAA	1610
	CTCTTCTAAC	CTCCTTGGGC TA	PATTTTCT CTC	CTCGAGT TGCTCCTC	AT GGCTGGGCTC	1670
	ATTTCGGTCC	CTTTCTCCTT GG	CCCAGAC CT	GGGGGAA AGGAAGGA	AG TGCATGTTTG	1730
20	GGAACTGGCA	TTACTGGAAC TA	ATGGTTTT AAC	CTCCTTA ACCACCAG	CA TCCCTCCTCT	1790
	CCCCAAGGTG	AAGTGGAGGG TG	CTGTGGTG AGO	TGGCCAC TCCAGAGC	TG CAGTGCCACT	1850
	GGAGGAGTCA	GACTACCATG AC	ATCGTAGG GAA	GGAGGGG AGATTTT	TT GTAGTTTTTA	1910
	ATTGGGGTGT	GGGAGGGGG GG	GAGGTTTT CTA	TAAACTG TATCATTT	TC TGCTGAGGGT	1970
	GGAGTGTCCC	ATCCTTTTAA TC	AAGGTGAT TG	GATTTTG ACTAATAA	AA AAGAATTTGT	2030
25						

(2) INFORMATION FOR SEQ ID NO: 49:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 493
- (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
 - (ii) SEQUENCE KIND: cDNA to mRNA
- 35 (vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens
- (B) CELL KIND: Stomach cancer
- (D) CLONE NAME: HP10424

146

	(ix) SEQ	UENCE C	HARACT	ERISTIC	S:			
		(A) CHARA	CTERIZ	ATION C	ODE: CDS	3		
		(B) EXIST	ENCE P	OSITION	: 98 4	39		
		(C) CHARA	CTERIZA	ATION M	ETHOD: E	E		
5									
	(xi) SEQ	UENCE D	ESCRIP:	TION: S	EQ ID NO): 49:		
	AAAGTTT	CCC AAA	rccaggc	GGCTA	GAGGC C	CACTGCTT	C CCAACTA	CCA GCTGAGG	GGG 60
	TCCGTCC	CGA GAA	GGAGAA	GAGGC	CGAAG A	GGAAAC A	TG AAC TT	C TAT TTA C	TC 115
10						м	iet Asn Ph	e Tyr Leu L	eu
•							1	. 5	
	CTA GCG	AGC AG	C ATT C	TG TGT	GCC TT	ATT GT	C TTC TGG	AAA TAT CG	C 163
	Leu Ala	Ser Se	r Ile L	eu Cys	Ala Le	ı Ile Va	1 Phe Trp	Lys Tyr Ar	g
		10	כ		1	5 .		20	
15	CGC TTT	CAG AG	A AAC A	CT GGC	GAA AT	TCA TC	A AAT TCA	ACT GCT CT	T 211
	Arg Phe	Gln Ar	g Asn T	hr Gly	Glu Me	t Ser Se	r Asn Ser	Thr Ala Le	u
		25			30		35		
	GCA CTA	GTG AG	A CCC T	CT TCT	TCT GG	TTA AT	T AAC AGC	AAT ACA GA	C 259
	Ala Leu	Val Ar	g Pro S	er Ser	Ser Gl	, Leu Il	e Asn Ser	Asn Thr As	р
20	40			45			50		
	AAC AAT	CTT GCA	A GTC T	AC GAC	CTC TC	CGG GA	ATT TTA	AAT AAT TT	C 307
	Asn Asn	Leu Ala	Val T	yr Asp	Leu Sei	Arg As	p Ile Leu	Asn Asn Ph	е
	55			60		6	5	7	0
	CCA CAC	TCA ATA	GCC A	GG CAG	AAG CGA	ATA TT	G GTA AAC	CTC AGT AT	G 355
25	Pro His	Ser Ile	Ala A	rg Gln	Lys Arg	Ile Le	u Val Asn	Leu Ser Me	t
			75			80		85	
								AGC AAG GG	
	Val Glu	Asn Lys	Leu V	al Glu	Leu Glu	His Th	r Leu Leu	Ser Lys Gl	y
•		90			95			100	
30							C TAAAAGCO	STA CAGG	450
	Phe Arg	Gly Ala	Ser P	ro His	- •	Ser Th	r		
	. mag =	105			110				
	ATGTAAT	GCC AGTO	GTGGAA	ATCATI	AAAG A	CACTTTG	A GTAG		493

- (2) INFORMATION FOR SEQ ID NO: 50:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2044

		(B) TYP	E: Nucleic	acid				
		(C) STR	ANDEDNESS:	Double				
		(D) TOP	OLOGY: Line	ar				
	(ii)	SEQUENCE	KIND: cDNA	to mRNA				
5								
	(vi)	ORIGINAL	SOURCE:					
		(A) ORG	ANISM: Homo	sapiens				
		(B) CEL	L KIND: Epi	dermoid c	arcinoma			
		(C) CEL	L LINE: KB					
10		(D) CLO	NE NAME: HP	10428				
	(ix)	SEQUENCE	CHARACTERI	STICS:				
		(A) CHA	RACTERIZATI	ON CODE:	CDS			
		(B) EXI	STENCE POSI	TION: 288	1385			
15		(C) CHA	RACTERIZATI	ON METHOD	: E			
	(xi)	SEQUENCE	DESCRIPTIO	N: SEQ ID	NO: 50:			
20			CC CAGGGCCG.					60
20			TC AGCACCAG					120
			GA ATCATGGA					180
			CA GGAGCTCC					296
	100010000	COCIONOI	ON GGNGCIOO	36 166166	agoo goo.		Gly Arg	290
25						1	or, mg	
	TGG GCC CT	C GAT GTG	GCC TTT TT	TGG AAG	есе сте		CTG GGG	344
			Ala Phe Le					
	5			- 11p 2,0			201 -17	
		T CTC TAC	TAC TGC TT				TAC AAC	392
30			Tyr Cys Ph					
	20	·	25		30		35	
	AAG TGG CT	G ACA AAG	AGC TTC CA	TTC CCC	CTC TTC	ATG ACG	ATG CTG	440
	Lys Trp Le	u Thr Lys	Ser Phe Hi	s Phe Pro	Leu Phe	Met Thr	Met Leu	
		40		45			50	
35	CAC CTG GC	C GTG ATC	TTC CTC TT	C TCC GCC	CTG TCC	AGG GCG	CTG GTT	488
	His Leu Al	a Val Ile	Phe Leu Ph	e Ser Ala	Leu Ser	Arg Ala	Leu Val	
		55		60		65		
	CAG TGC TC	C AGC CAC	AGG GCC CG	r grg grg	CTG AGC	TGG GCC	GAC TAC	536

	Gln	Cys		Ser	His	Arg	Ala	_	Val	Val	Leu	Ser		Ala	Asp	Tyr	
			70					75					80				
						CCC											584
	Leu	Arg	Arg	Val	Ala	Pro	Thr	Ala	Leu	Ala	Thr	Ala	Leu	Asp	Val	Gly	
5		85					90					95					
	TTG	TCC	AAC	TGG	AGC	TTC	CTG	TAT	GTC	ACC	GTC	TCG	CTG	TAC	ACA	ATG	632
	Leu	Ser	Asn	Trp	Ser	Phe	Leu	Tyr	Val	Thr	Val	Ser	Leu	Tyr	Thr	Met	
	100					105					110					115	
	ACC	AAA	TCC	TCA	GCT	GTC	CTC	TTC	ATC	TTG	ATC	TTC	TCT	CTG	ATC	TTC	680
10	Thr	Lys	Ser	Ser	Ala	Val	Leu	Phe	Ile	Leu	Ile	Phe	Ser	Leu	Ile	Phe	
					120					125					130		
	AAG	CTG	GAG	GAG	CTG	CGC	GCG	GCA	CTG	GTC	CTG	GTG	GTC	CTC	CTC	ATC	728
	Lys	Leu	Glu	Glu	Leu	Arg	Ala	Ala	Leu	Val	Leu	Val	Val	Leu	Leu	Ile	
				135					140					145			
15	GCC	GGG	GGT	CTC	TTC	ATG	TTC	ACC	TAC	AAG	TCC	ACA	CAG	TTC	AAC	GTG	776
	Ala	Gly	Gly	Leu	Phe	Met	Phe	Thr	Tyr	Lys	Ser	Thr	Gln	Phe	Asn	Va1	
			150					155					160				
	GAG	GGC	TTC	GCC	TTG	GTG	CTG	GGG	GCC	TCG	TTC	ATC	GGT	GGC	ATT	CGC	824
	Glu	Gly	Phe	Ala	Leu	Val	Leu	Gly	Ala	Ser	Phe	Ile	Gly	G1y	Ile	Arg	
20		165					170					175	·				
	TGG	ACC	CTC	ACC	CAG	ATG	CTC	CTG	CAG	AAG	GCT	GAA	CTC	GGC	CTC	CAG	872
						Met											
	180					185				·	190					195	
	AAT	ccc	ATC	GAC	ACC	ATG	TTC	CAC	CTG	CAG	CCA	CTC	ATG	TTC	CTG	GGG	920
25						Met											
					200					205					210	·	
	CTC	TTC	CCT	CTC	TTT	GCT	GTA	TTT	GAA	GGT	CTC	CAT	TTG	TCC	ACA	TCT	968
						Ala											
				215					220	•				225			
30	GAG	AAA	ATC	TTC	CGT	TTC	CAG	GAC	ACA	GGG	CTG	CTC	CTG	CGG	GTA	CTT	1016
•						Phe											
		•	230					235					240	Ü			
	GGG	AGC	CTC	TTC	CTT	GGC	GGG	ATT	CTC	GCC	ттт	GGT	TTG	GGC	TTC	TCT	1064
						Gly											
35	-	245				•	250					255		,	•		
	GAG	TTC	CTC	CTG	GTC	TCC		ACC	TCC	AGC	CTC		CTC	TCC	ATT	GCC	1112
						Ser											
	260					265					270					275	

149

	GGC	ATT	TTT	AAG	GAA	GTC	TGC	ACT	TTG	CTG	TTG	GCA	GCT	CAT	CTG	CTG	1160
	Gly	Ile	Phe	Lys	Glu	Val	Cys	Thr	Leu	Leu	Leu	Ala	Ala	His	Leu	Leu	
					280					285					290		
	GGC	GAT	CAG	ATC	AGC	CTC	CTG	AAC	TGG	CTG	GGC	TTC	GCC	CTC	TGC	CTC	1208
5	Gly	Asp	Gln	Ile	Ser	Leu	Leu	Asn	Trp	Leu	Gly	Phe	Ala	Leu	Cys	Leu	
				295					300					305			
	TCG	GGA	ATA	TCC	CTC	CAC	GTT	GCC	CTC	AAA	GCC	CTG	CAT	TCC	AGA	GGT	1256
	Ser	Gly	Ile	Ser	Leu	His	Val	Ala	Leu	Lys	Ala	Leu	His	Ser	Arg	Gly	
			310					315					320				
10	GAT	GGT	GGC	CCC	AAG	GCC	TTG	AAG	GGG	CTG	GGC	TCC	AGC	CCC	GAC	CTG	1304
	Asp	Gly	Gly	Pro	Lys	Ala	Leu	Lys	Gly	Leu	Gly	Ser	Ser	Pro	Asp	Leu	
		325					330					335					•
	GAG	CTG	CTG	CTC	CGG	AGC	AGĊ	CAG	CGG	GAG	GAA	GGT	GAC	AAT	GAG	GAG	1352
	Glu	Leu	Leu	Leu	Arg	Ser	Ser	Gln	Arg	Glu	Glu	Gly	Asp	Asn	Glu	Glu	
15	340					345					350					355	
	GAG	GAG	TAC	TTT	GTG	GCC	CAG	GGG	CAG	CAG	TGAC	CAGC	CA C	GGC	TAAA		1400
	Glu	Glu	Tyr	Phe	Val	Ala	Gln	Gly	Gln	Gln							
					360					365							
	GGC!	rtag <i>i</i>	AAG (CAGG	CACT	C CC	CCAG	CTGC	TGC	CAGO	CACT	CACI	GTGC	CTC A	AAGCC	GCCAG	1460
20	GGC	CATO	CAT	GGTA	CTG	G AC	CTG	CGGAC	GGG	AGTO	CACC	AGGI	GGTG	GG G	CCAA	GCCAG	1520
	GGA	CTCAT	rga (CTTTI	rgccc	C TO	CCTI	CAGA	GCC	TGGT	CAC	ACAA	GGGG	CG A	AGCAC	CAGGC	1580
	CAG	CCTG	GGA (CTGGC	CAGA	G C	rgggc	CCAA	GCI	GCGC	TGG	AATC	GCAG	CA G	GAGA	GGGGA	1640
	GTG	GCT	GT 1	TCTTC	CCAC	C AC	CTTCC	CAGG	CTC	TGAC	CAGC	CGAG	ACTO	AT I	TCCA	AGGCA	1700
	CAG	CAGC	TTT (CTAAA	AGGGA	C TO	AGTI	TGGA	CTG	GGTI	TTG	GACC	TCCA	GG G	GCTG	GAGCT	1760
25	TCA?	CACC	CTG (GGCAG	TGTC	T T	TCTC	CAGAG	AGC	AGGI	TTC	TTTA	TAGI	TT G	GAAA	TAAAT	1820
	GGT	CAC	GT (CCACI	rggco	G CC	TTGT	GTTG	CTG	GAGA	CGT	GGGG	GCAG	GG A	GGGG	ACAGT	1880
	GTG	GCCI	rgg (CCTCI	CCTI	T CC	TTTC	CCTG	CCI	GGAG	CCT	TCTI	CAAA	TG I	CTGG	TCTTA	1940
	AGC	CAGGC	CT	CCTTC	CATTI	T CT	CGC1	CCTG	TTA	GAAC	ACC	AGTO	CCCI	cc c	CAGI	CGGGC	2000
	CCCA	ACTGO	CAC (CTGCT	rggca	G GA	ATAA	AATG	AAT	GTTI	ACT	GAGI	•				2044
30																	

(2) INFORMATION FOR SEQ ID NO: 51:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1043

(B) TYPE: Nucleic acid

35

(C) STRANDEDNESS: Double

(D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: cDNA to mRNA

150

(vi) ORIGINAL SOURCE:

		(4	A) ORG	ANISI	M: H	ото	sapi	ens							
		(1	B) CEL	L KII	ND:	Stom	ach	canc	er						
		(1	D) CLO	NE N	AME:	HP1	0429								
5															
	(:	ix) SE	QUENCE	CHAI	RACT	ERIS	TICS	:							
		(4	A) CHA	RACT	ERIZ	ATIO	N CO	DE: (CDS						
		(1	B) EXI	STEN	CE P	OSIT	ION:	157	8	37					
		((C) CHA	RACT	ERIZ	ATIO	N ME	THOD	: E						
10													•		
	(3	ki) SE	QUENCE	DES	CRIP	TION	: SE	Q ID	NO:	51:					
•															-
	ATTAGCA:														60
	TCCATTT														120
15	CTTTTTT	rgt cc:	TAGAGA.	AC T'	ratt'	TTCC	r GT	GAAA							174
										Pro	Thr	Thr	Lys	Lys	
	404 mmo	A.M.O. M.I	no mm.	mo A	400	mm m	mme	400	1	0 m m	000	maa	5 mmc	4 mm	000
	ACA TTG														222
20	Thr Leu		ne Leu 10	ser	ser	rne		inr	ser	Leu	сту	20	rne	116	
20	GTA ATT	_		ርጥጥ	ccc	A C A	15	CCA	TGG	ል ጥር	۸۲۲		ΔCΔ	ΔΤΤ	270
	Val Ile														270
		25		200	0_,	30	01		P		35				
	GCT GTT		AC TCT	GCT	TCA		GGG	AGC	ATT	TTC		ACT	TAC	GGA	318
25	Ala Val														
	40	_	•		45		•			50				·	
	CTT TTT	CGT G	GG GAG	AGT	AGT	GAA	GAA	TTG	AGT	CAC	GGA	CTT	GCA	GAA	366
	Leu Phe	Arg G	ly Glu	Ser	Ser	Glu	Glu	Leu	Ser	His	Gly	Leu	Ala	Glu	
	55			60					65					70	
30	CCA AAG	AAA AA	AG TTT	GCA	GTT	TTA	GAG	ATA	CTG	AAT	AAT	TCT	TCC	CAA	414
	Pro Lys	Lys Ly	ys Phe	Ala	Val	Leu	Glu	Ile	Leu	Asn	Asn	Ser	Ser	Gln	
			. 75					80					85		
	AAA ACT	CTG CA	AT TCG	GTG	ACT	ATC	CTG	TTC	CTG	GTC	CTG	AGT	TTG	ATC	462
	Lys Thr	Leu H	is Ser	Val	Thr	Ile	Leu	Phe	Leu	Val	Leu	Ser	Leu	Ile	
35			90				95					100			
	ACG TCG														510
	Thr Ser		eu Ser	Ser	Gly		Thr	Phe	Tyr	Asn		Ile	Ser	Asn	
		105				110					115				

151

	CCT	TAC	CAG	ACA	TTC	CTG	GGG	CCG	ACG	GGG	GTG	TAC	ACC	TGG	AAC	GGG	558
	Pro	Tyr	Gln	Thr	Phe	Leu	Gly	Pro	Thr	Gly	Val	Tyr	Thr	Trp	Asn	Gly	
		120					125					130					
	CTC	GGT	GCA	TCC	TTC	GTT	TTT	GTG	ACC	ATG	ATA	CTG	TTT	GTG	GCG	AAC	606
5	Leu	Gly	Ala	Ser	Phe	Val	Phe	Val	Thr	Met	Ile	Leu	Phe	Val	Ala	Asn	
	135					140					145					150	
	ACG	CAG	TCC	AAC	CAA	CTC	TCC	GAA	GAG	TTG	TTC	CAA	ATG	CTT	TAC	CCG	654
	Thr	Gln	Ser	Asn	Gln	Leu	Ser	Glu	Glu	Leu	Phe	Gln	Met	Leu	Tyr	Pro	
					155					160					165		
10	GCA	ACC	ACC	AGT	AAA	GGA	ACG	ACC	CAC	AGT	TAC	GGA	TAC	TCG	TTC	TGG	702
	Ala	Thr	Thr	Ser	Lys	Gly	Thr	Thr	His	Ser	Tyr	Gly	Tyr	Ser	Phe	Trp	
				170					175					180			
	CTC	ATA	CTG	CTC	GTC	ATT	CTT	CTA	AAT	ATA	GTC	ACT	GTA	ACC	ATC	ATC	750
	Leu	Ile	Leu	Leu	Val	Ile	Leu	Leu	Asn	Ile	Val	Thr	Val	Thr	Ile	Ile	
15			185					190					195				
	ATT	TTC	TAC	CAG	AAG	GCC	AGA	TAC	CAG	CGG	AAG	CAG	GAG	CAG	AGA	AAG	798
	Ile	Phe	Tyr	Gln	Lys	Ala	Arg	Tyr	Gln	Arg	Lys	Gln	Glu	Gln	Arg	Lys	
		200					205					210					
	CCA	ATG	GAA	TAT	GCT	CCA	AGG	GAC	GGA	ATT	TTA	TTC	TGAA	TTC	CT :	TCATC	850
20	Pro	Met	Glu	Tyr	Ala	Pro	Arg	Asp	Gly	Ile	Leu	Phe					
	215					220					225						
	TCAT	TTTT	GC G	STTGO	CATC	T A	GTAC	CATCA	A GCC	CTGA	GTA	GTAA	ACTGG	TT A	AGCT	CTCTG	910
	GACA	ATTO	CAG C	CATGO	CTAAC	G TO	ACTO	TCAT	CTG	TGAC	CAGC	ATT	rgtgi	TT C	CATGA	ACACTG	970
	TGTT	CTTC	CAT 7	GATO	CTG1	CO A	CCTC	AAAA	TT1	TTCC	CAC	AAG	TTGG	GG A	AATO	SAATGG	1030
25	GAAA	TGTO	CGC 1	rgg													1043
																•	

(2) INFORMATION FOR SEQ ID NO: 52:

(i) SEQUENCE CHARACTERISTICS:

30 (A) LENGTH: 972

- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- (ii) SEQUENCE KIND: cDNA to mRNA

35

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Homo sapiens
- (B) CELL KIND: Liver

152

(D) CLONE NAME: HP10432

(ix)	SEQUENCE	CHARACTER	ISTICS:

5

- (A) CHARACTERIZATION CODE: CDS
- (B) EXISTENCE POSITION: 29.. 418
 - (C) CHARACTERIZATION METHOD: E

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:

10	AGA	CAGC	GGC (GGGC	GCAG	GA C	GTGC							CTG			52
									net 1	AIA	Arg	GIÀ	ser 5	Leu	ALR	Arg	
	TTG	CTG	CGG	CTC	CTC	GTG	CTG	GGG	_	TGG	CTG	GCG	_	CTG	CGC	TCC	100
	Leu	Leu	Arg	Leu	Leu	Val	Leu	Gly	Leu	Trp	Leu	Ala	Leu	. Leu	Arg	Ser	
15		10					15	·		•		20)				
	GTG	GCC	GGG	GAG	CAA	GCG	CCA	GGC	ACC	GCC	CCC	TGC	TCC	CGC	GGC	AGC	148
	Val	Ala	Gly	Glu	Gln	Ala	Pro	Gly	Thr	Ala	Pro	Cys	Ser	Arg	Gly	Ser	
	25					30					35					40	
	TCC	TGG	AGC	GCG	GAC	CTG	GAC	AAG	TGC	ATG	GAC	TGC	GCG	TCT	TGC	AGG	196
20	Ser	Trp	Ser	Ala	Asp	Leu	Asp	Lys	Cys	Met	Asp	Cys	Ala	Ser	Cys	Arg	
					45					50					55	•	
	GCG	CGA	CCG	CAC	AGC	GAC	TTC	TGC	CTG	GGC	TGC	GCT	GCA	GCA	CCT	CCT	244
	Ala	Arg	Pro	His	Ser	Asp	Phe	Cys	Leu	Gly	Cys	Ala	Ala	Ala	Pro	Pro	
				60					65					70			
25	GCC	CCC	TTC	CGG	CTG	CTT	TGG	CCC	ATC	CTT	GGG	GGC	GCI	CTG	AGC	CTG	292
	Ala	Pro	Phe	Arg	Leu	Leu	Trp	Pro	Ile	Leu	Gly	Gly	Ala	Leu	Ser	Leu	
			75					80					85	,			
	ACC	TTC	GTG	CTG	GGG	CTG	CTT	TCT	GGC	TTT	TTG	GTC	TGG	AGA	CGA	TGC	340
	Thr	Phe	Val	Leu	Gly	Leu	Leu	Ser	Gly	Phe	Leu	Val	Trp	Arg	Arg	Cys	
30		90					95					100	١				
	CGC	AGG	AGA	GAG	AAG	TTC	ACC	ACC	CCC	ATA	GAG	GAG	ACC	GGC	GGA	GAG	388
	Arg	Arg	Arg	Glu	Lys	Phe	Thr	Thr	Pro	Ile	Glu	Glu	Thr	Gly	Gly	Glu	
	105					110					115					120	
	GGC	TGC	CCA	GCT	GTG	GCG	CTG	ATC	CAG	TGA	CA A	TGT	GCCC	CCTG	CC A	CCGG	440
35	Gly	Cys	Pro	Ala	Val	Ala	Leu	Ile	Gln								
					125												
	GGC	rcgc	CCA (CTCA!	rcat'	IC A	TTCA?	rcca'	T TC	TAGA	GCCA	GTC	TCTG	CCT	CCCA	GACGC.	G 500
	GCGC	GGAG	CCA A	AGCT	CTC	CA A	CCAC	AAGG(GG	GTGG	GGGG	CGG	TGAA	TCA	CCTC	TGAGG	C 560

153

620

CTGGGCCCAG GGTTCAGGGG AACCTTCCAA GGTGTCTGGT TGCCCTGCCT CTGGCTCCAG

	AACAGAAAGG GAGCCTCACG CTGGCTCACA CAAAACAGCT GACACTGACT AAGGAACTGC	680
	AGCATTTGCA CAGGGGAGGG GGGTGCCCTC CTTCCTAGAG GCCCTGGGGG CCAGGCTGAC	740
	TTGGGGGGCA GACTTGACAC TAGGCCCCAC TCACTCAGAT GTCCTGAAAT TCCACCACGG	800
5	GGGTCACCCT GGGGGGTTAG GGACCTATTT TTAACACTAG GGGGCTGGCC CACTAGGAGG	860
	GCTGGCCCTA AGATACAGAC CCCCCAACT CCCCAAAGCG GGGAGGAGAT ATTTATTTTG	920
	GGGAGAGTTT GGAGGGGAGG GAGAATTTAT TAATAAAAGA ATCTTTAACT TT	972
10	(2) INFORMATION FOR SEQ ID NO: 53:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 695	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
15	(D) TOPOLOGY: Linear	
	(ii) SEQUENCE KIND: cDNA to mRNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Homo sapiens	
20	(B) CELL KIND: Liver	
	(C) CELL LINE:	
	(D) CLONE NAME: HP10433	
25	(ix) SEQUENCE CHARACTERISTICS:	
25	(A) CHARACTERIZATION CODE: CDS	
	(B) EXISTENCE POSITION: 73 564	
	(C) CHARACTERIZATION METHOD: E	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:	
30	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 33:	
30	AAGATTTCAG CTGCGGGACG GTCAGGGGAA ACCTCCAGGC GCAGGGAAGG ACGGCCAGGG	60
	TGACACGGAA GC ATG CGA CGG CTG CTG ATC CCT CTG GCC CTG TGG CTG GGC	111
	Met Arg Arg Leu Leu Ile Pro Leu Ala Leu Trp Leu Gly	
	1 5 10	
35	GCG GTG GGC GTC GCC GAG CTC ACG GAA GCC CAG CGC CGG GGC	159
	Ala Val Gly Val Gly Val Ala Glu Leu Thr Glu Ala Gln Arg Arg Gly	
	15 20 25	
	CTG CAG GTG GCC CTG GAG GAA TTT CAC AAG CAC CCG CCC GTG CAG TGG	207

154

	Leu	Gln	Val	Ala	Leu	Glu	Glu	Phe	His	Lys	His	Pro	Pro	Val	Gln	Trp	
	30					35					40					45	
	GCC	TTC	CAG	GAG	ACC	AGT	GTG	GAG	AGC	GCC	GTG	GAC	ACG	CCC	TTC	CCA	255
	Ala	Phe	Gln	Glu	Thr	Ser	Val	Glu	Ser	Ala	Val	Asp	Thr	Pro	Phe	Pro	
5					50					55					60		
	GCT	GGA	ATA	TTT	GTG	AGG	CTG	GAA	TTT	AAG	CTG	CAG	CAG	ACA	AGC	TGC	303
	Ala	Gly	Ile	Phe	Val	Arg	Leu	Glu	Phe	Lys	Leu	Gln	Gln	Thr	Ser	Cys	
				65					70					75			
	CGG	AAG	AGG	GAC	TGG	AAG	AAA	CCC	GAG	TGC	AAA	GTC	AGG	CCC	AAT	GGG	351
10	Arg	Lys	Arg	Asp	Trp	Lys	Lys	Pro	Glu	Cys	Lys	Val	Arg	Pro	Asn	Gly	
			80					85					90				
	AGG	AAA	CGG	AAA	TGC	CTG	GCC	TGC	ATC	AAA	CTG	GGC	TCT	GAG	GAC	AAA	399
	Arg	Lys	Arg	Lys	Cys	Leu	Ala	Cys	Ile	Lys	Leu	Gly	Ser	Glu	Asp	Lys	
		95					100					105					
15	GTT	CTG	GGC	CGG	TTG	GTC	CAC	TGC	CCC	ATA	GAG	ACC	CAA	GT _. T	CTG	CGG	447
	Val	Leu	Gly	Arg	Leu	Val	His	Cys	Pro	Ile	Glu	Thr	Gln	Val	Leu	Arg	
	110					115					120					125	
	GAG	GCT	GAG	GAG	CAC	CAG	GAG	ACC	CAG	TGC	CTC	AGG	GTG	CAG	CGG	GCT	495
	Glu	Ala	Glu	Glu	His	Gln	Glu	Thr	Gln	Cys	Leu	Arg	Val	Gln	Arg	Ala	
20					130					135					140		
	GGT	GAG	GAC	CCC	CAC	AGC	TTC	TAC	TTC	CCT	GGA	CAG	TTC	GCC	TTC	TCC	543
	Gly	Glu	Asp	Pro	His	Ser	Phe	Tyr	Phe	Pro	Gly	Gln	Phe	Ala	Phe	Ser	
				145					150					155			
	AAG	GCC	CTG	CCC	CGC	AGC	TAAC	CCAC	GCA (CTGAC	CTG	CG TG	GTGC	CTC			590
25	Lys	Ala	Leu	Pro	Arg	Ser											
			160														
	CAG	ACC	GCT (CCGC	STGGT	CA AC	CAG	rgga.	A GAC	CCCCA	AGCC	CCCA	\GGG#	AGA (GAC	CCGTT	650
	CTA	rccc	CAG (CCATO	ATA	AT AA	AAGC	CCTC	TCC	CCAG	CTGC	CTCI	C				695
30																	
	(2)		ORMA!			-											
		(:	i) SI						ECS:								
					LENG												
					TYPI												
35					STRA					9					-		
				(D)	TOP	LOGY	: Li	inear									

(ii) SEQUENCE KIND: cDNA to mRNA

WO 98/55508

		(v	i) 0	RIGI	NAL	SOUR	CE:				_						
	(A) ORGANISM: Homo sapiens																
	(B) CELL KIND: Stomach cancer																
	(D) CLONE NAME: HP10480																
5																	
		(i	.x) S	EQUE	NCE	CHAF	RACTE	RIST	CICS:	1							
				(A)	CHAR	LACTI	ERIZA	MOIT	COL	E: C	DS						
	(B) EXISTENCE POSITION: 80 661																
				(C)	CHAR	RACTI	ERIZA	MOITA	ME]	HOD:	E						
10																	
•		(x	i) S	EQUE	ENCE	DESC	CRIPI	CION	SEC] ID	NO:	54:					
	ACTCTCTGCT GTCGCCCGTC CCGCGCGCTC CTCCGACCCG CTCCGCTCCG														60		
	ccc	CGCGC	cc c	CCGI	CAAC	CATO	ATC	CGC	TGC	GGC	CTC	GCC	TGC	GAG	G CG	CTGC	112
15	Met Ile Arg Cys Gly Leu Ala Cys Glu Arg Cys																
	1 5 10																
	CGC	TGG	ATC	CTG	CCC	CTG	CTC	CTA	CTC	AGC	GCC	ATC	GCC	TTC	GAC	ATC	160
	Arg	Trp	Ile	Leu	Pro	Leu	Leu	Leu	Leu	Ser	Ala	Ile	Ala	Phe	Asp	Ile	
				15					20					25			
20		GCG															208
	Ile	Ala		Ala	Gly	Arg	Gly		Leu	Gln	Ser	Ser		His	Gly	Gln	
			30					35					40			000	056
		TCC															256
	Thr	Ser	Ser	Leu	Trp	Trp		Cys	Ser	GIn	Glu		Gly	Gly	ser	GIÀ	
25	maa	45 TAC	0.4.0		000	mo m	50	400	CTIC.	A TIC	CAC	55 TAC	ccc	TCC	сст	464	304
		Tyr															304
	60	ıyı	GIU	Giu		65	GIII	261	neu	riec	70	131	1114	11 P	01)	75	
		GCG	GCT	GCC			TTC	TGT	GGC	TTC		ATC	CTG	GTG	ATC	TGT	352
30		Ala															
					80			•	•	85					90		
	TTC	ATC	CTC	TCC	TTC	TTC	GCC	CTC	TGT	GGA	ccc	CAG	ATG	CTT	GŤC	TTC	400
	Phe	Ile	Leu	Ser	Phe	Phe	Ala	Leu	Cys	Gly	Pro	Gln	Met	Leu	Val	Phe	
				95					100					105			
35	CTG	AGA	GTG	ATT	GGA	GĢT	CTC	CTT	GCC	TTG	GCT	GCT	GTG	TTC	CAG	ATC	448
	Leu	Arg	Val	Ile	Gly	Gly	Leu	Leu	Ala	Leu	Ala	Ala	Val	Phe	Gln	Ile	
			110					115					120				
	ATC	TCC	CTG	GTA	ATT	TAC	CCC	GTG	AAG	TAC	ACC	CAG	ACC	TTC	ACC	CTT	496

	ITe	Ser	Leu	Val	TIE	Tyr	Pro	Val	Lys	Tyr	Thr	Gin	Thr	Pne	Thr	Leu	
		125					130					135					
	CAT	GCC	AAC	CGT	GCT	GTC	ACT	TAC	ATC	TAT	AAC	TGG	GCC	TAC	GGC	TTT	544
	His	Ala	Asn	Arg	Ala	Val	Thr	Tyr	Ile	Tyr	Asn	Trp	Ala	Tyr	Gly	Phe	
5	140					145					150					155	
	GGG	TGG	GCA	GCC	ACG	ATT	ATC	CTG	ATC	GGC	TGT	GCC	TTC	TTC	TTC	TGC	592
	G1y	Trp	Ala	Ala	Thr	Ile	Ile	Leu	Ile	Gly	Cys	Ala	Phe	Phe	Phe	Cys	
					160					165					170		
	TGC	CTC	CCC	AAC	TAC	GAA	GAT	GAC	CTT	CTG	GGC	AAT	GCC	AAG	CCC	AGG	640
10	Cys	Leu	Pro	Asn	Tyr	Glu	Asp	Asp	Leu	Leu	Gly	Asn	Ala	Lys	Pro	Arg	
				175					180					185			
	TAC	TTC	TAC	ACA	TCT	GCC	TA A	ACTTO	GGG A	AATG	AATG'	rg go	GAGA	AAT	C GC	r	690
	Tyr	Phe	Tyr	Thr	Ser	Ala											
			190														
15	GCT	SCTGA	AGA '	TGGA	CTCCA	AG A	AGAA	GAAA	TG!	TTTC:	CCA	GGC	GACT	TTG A	AACC	CATTTT	750
	TTG	GCAG	GT '	TCATA	ATTA	TT A	AACT	AGTC	AAA	AATG	CTAA	AATA	AATT	rgg (GAGA	TATAA	810
	TTT)AAT1	GTA (GTGT	ATA1	GT T	rcat(GTTTA	A TC	rttt/	ATTA	TGT:	rttgi	GA A	AGTT(STGTCT	870
	TTT	CACTA	AAT '	TACC)ATA1	CT A	rgcc.	AATA	TT(CCTTA	TAT	CTA:	rcca?	'AA'	CATT	TATACT	930
	ACA:	rttgi	CAA (GAGA/	ATATO	GC A	CGTG	AAAC	AT 7	ACAC:	ATTT	TAAC	GTA.	AAA	ATGA	GTTTC	990
20	CAA	GATT	CAA '	TAATO	CTGA	rc A	AGTT(CTTGT	TA!	TTTC	CAAA	TAG	AATGO	AC '	rtgg:	CTGTT	1050
	AAG	GCTA	AAG (GAGA	AGAGO	GA A	GATA	AGGTT	AAA 1	AAGT:	rgtt	AATO	SACCA	AA (CATTO	CTAAAA	1110
	GAAA	ATGC	AAA A	AAAA	AAGT	TT A	rrtt(CAAG	CT	rcga/	ACTA	TTTA	AAGGA	AA (GCAAA	AATCAT	1170
	TTC	CTAAA	ATG (CATA	CAT:	TT G	rgag.	AATT	CTO	CATTA	ATA	TCC	rgaa'i	CA '	rtca:	TTCAG	1230
	CTA	AGGC	TTC .	ATGT	rgac:	rc G	ATAT	GTCA	CTA	AGGA	AAGT	ACTA	ATTTC	CAT	GGTC	CAAACC	1290
25	TGT	rgcc	ATA (GTTG	GTAAC	GG C	TTTC	CTTTA	A AG	TG TGA	TAA	ATT	ragar	GA A	AATT:	TCTCT	1350
	TTTA	AAAG	rtc '	TTTA	raggo	ST TA	AGGG'	TGTGC	G GA	AAAT	GCTA	TAT	TAA1	AA.	rctg:	ragtgt	1410
	TTTC	STGT	TA '	TATG	TCAC	GA A	CCAG	AGTAC	AC'	rgga:	TGA	AAGA	ATGG/	CT (GGT	TTAATT	1470
	TAT	CATGA	ACT (GATAC	GATC:	rg g	PAAT	GTTGT	C GTA	AGTA	AAGC	ATTA	AGGAG	GG :	rcat:	CTTGT	1530
	CACA	AAAA	TG (CCAC	AAA1	AC A	GCCT	CAGGA	A GA	ATAA	ATGA	CTT	CTTI	TC :	'AAA'	CTCAG	1590
30	GTT	ratc:	rgg (GCTCT	ratc <i>i</i>	AT A	raga(CAGG	C TTC	CTGA:	ragt	TTG	CAACI	GT A	AAGC	AGAAAC	1650
	CTA	CATA	rag '	TTAA	AATC	CT G	GTCT'	TTCT	r GG:	raaa(CAGA	TTT	raaa1	GT (CTGAI	AAATAT	1710
	ACA:	rgcc <i>i</i>	ACA (GGAGA	ATTO	CG G	GGAT'	TTGAC	TT:	rcrc:	rgaa	TAG	CATA	'AT	ATGAT	GCATC	1770
	GGA:	ragg:	CA '	TTATO	GATT	TT T	TACC	ATTTO	GAG	CTTAC	CATA	ATG	AAAA	CA A	ATTC	ATTTTA	1830
	AATA	ATCAC	GAT '	TATTA	ATTT:	rg t	AAGT'	TGTGC	AAA	AAAG(CTAA	TTG	ragti	TT (CATTA	ATGAAG	1890
35	ጥጥጥ	raca	AAT .	AAACC	ACC	יים מי	гст										1914

157

CLAIMS

- A protein comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ
 ID NOS: 1 to 18.
 - 2. A DNA encoding the protein according to claim 1.
- 3. A cDNA comprising a nucleotide sequence selected from the group consisting of the nucleotide sequences of SEQ ID NOS: 19 to 36.
 - 4. A cDNA according to claim 3, which comprises a nucleotide sequence selected from the group consisting of the nucleotide sequences of SEQ ID NOS: 37 to 54.
 - 5. An expression vector capable of in vitro translating the DNA according to any of claims 2 to 4 or expressing said DNA in an eukaryotic cell.

20

15

6. A transformed eukaryotic cell capable of expressing the DNA according to any of claims 2 to 4 to produce the protein according to claim 1.

Fig.1

Fig.2

Fig.3

Fig.4

Fig.5

Fig.6

Fig.7

Fig.8

Fig.9

Fig.10

Fig.11

 ${\tt H} \lambda {\tt q} {\tt xobyop;c;f} \lambda \backslash {\tt H} \lambda {\tt q} {\tt xoby;j;c;f} \lambda$

Fig.12

Fig.13

Fig.14

Fig.15

Fig.16

Fig.17

Fig.18

Fig.19