# ELECTRICAL SCIENCE-II (15B11EC211)

#### ELECRTICAL SCIENCE-2 (15B11EC211)

At the end of the course, students will be able to:

| S.No. | Course Outcomes                                                                   | Cognitive     |
|-------|-----------------------------------------------------------------------------------|---------------|
|       |                                                                                   | levels/Blooms |
|       |                                                                                   | taxonomy      |
| CO1   | Study and analyze the complete response of the first order and second order       | Analyzing     |
|       | circuits with energy storage and/or non-storage elements.                         | (C4)          |
| CO2   | Understand two-port network parameters and study first order, second order        | Understanding |
|       | passive filters.                                                                  | (C2)          |
| CO3   | Study the properties of different types of semiconductors, PN junction diode,     | Analyzing     |
|       | zener diode and analyze diode applications.                                       | (C4)          |
| CO4   | Study the characteristics, operation of bipolar junction transistor (BJT) and its | Understanding |
|       | biasing, stability aspects.                                                       | (C2)          |

## constitutive relation of C,L, R



$$i_c = C \frac{av_c}{dt}$$



$$V_L = L \frac{a I_L}{dt}$$

$$v = i R$$

- If a circuit has one C or L then *circuit becomes dynamic* means
  - Its behaviour is a function of time.
    - Its behaviour is described by a (set of) differential equation(s).
      - It has a transient response as well as a steady state.
- Resistive circuits have no transient
  - When the switch is turned on, the voltage across R becomes V immediately (in zero time).

RL and RC circuits are called first-order circuits

#### Steady State and Transient Response Content

- The Simple *RL* Circuit.
  - Concept of Time Constant.
  - Meaning of Time Constant.
  - Growth of Current in Series *RL* Circuit.
- The Simple *RC* Circuit.
  - Discharging of a Capacitor.
  - Charging of a Capacitor.
- Comparison between RC and RL Circuits.

## **Steady State**

- Both the inductance and capacitance are energy-storing elements.
- When connected to a dc source, energy starts flowing to these elements.
- Initially the rate of flow of energy is high, but as more and more energy is stored, the rate of flow decreases.
- When maximum possible energy has been stored, the flow of energy stops altogether. We say that the circuit has reached its 'steady state'.

## **Transient Response**

- If we switch off the source, or switch over the network to another source, the circuit starts attaining another 'steady state'.
- The time taken by the circuit to change over from one steady-state condition to another steady-state condition is called *transient time*.
- The response of the circuit during this time is known as *transient response*.

# The Simple RL Circuit



At t = 0-, a steady current that has been flowing in the circuit,

$$I_0 = \frac{V_0}{R_0}$$

For t > 0+, applying KVL,

$$v_R + v_L = 0$$
 or  $Ri + L\frac{di}{dt} = 0$  or  $\frac{di}{dt} + \frac{R}{L}i = 0$ 

Re-writing the equation to separate variables and then integrating,

$$\frac{di}{i} = -\frac{R}{L}dt$$

$$\int_{I_0}^{i(t)} \frac{1}{i} di = \int_{0}^{t} \left(-\frac{R}{L}\right) dt \quad \text{or} \quad \ln i \Big|_{I_0}^{i} = -\frac{R}{L}t \Big|_{0}^{t}$$

$$R$$

or 
$$\ln i - \ln I_0 = -\frac{R}{L}(t-0)$$





At t = 0+, the current is  $I_0$ . As time increases, the current decreases and approaches zero.

### Concept of Time Constant

- From equation, we see that with larger L/R ratio, the current takes longer to decay.
- By doubling L/R, the "width" of the curve also doubles.
- The "width" is proportional to L/R.
- Instead of "width", we use the concept of "time constant  $(\tau)$ .
- It is the time that would be required for the current to drop to zero if it continued to drop at its initial rate.

#### The initial rate of decay

= the slope of line AB

$$= \frac{d}{dt} (i/I_0) \Big|_{t=0} = -\frac{R}{L} e^{-Rt/L} \Big|_{t=0} = -\frac{R}{L}$$

From triangle OAB,

$$\tan \theta = \frac{1}{\tau} \implies \frac{1}{\tau} = \frac{R}{L} \quad \text{or} \quad \tau = \frac{L}{R}$$

• The ratio L/R must have the units of time.

# Meaning of Time Constant

Determining the value of  $i(t)/I_0$  at  $t = \tau$ , we have

$$\frac{i(\tau)}{I_0} = e^{-1} = 0.368$$
 or  $i(\tau) = 0.368I_0$ 

Thus, in one time constant the response drops to 36.8 % of its initial value. Hence,

$$i(2\tau) = 0.368i(\tau) = 0.368 \times 0.368I_0 = 0.1354I_0$$

#### How long does it take for the current to decay to zero?

Ans.: To answer this question, let us calculate



$$i(3\tau) = 0.0498I_0,$$
  
 $i(4\tau) = 0.0183I_0,$   
 $i(5\tau) = 0.0067I_0,$ 

- It takes about **five time constants** for the current to decay to zero.
- At the end of this time interval, the current is less than one percent of its original value.