

WS 2014/15 02.12.2014, 08:15-09:15 Uhr Ulrich Schmidt

Abschlusstest: Konsolidierung der Grundlagen Mathematik / Analysis

Name, Vorname	Matrikelnummer	Unterschrift	Unterschrift		

	A1	A2	А3	A4	A5	A6	A7	A8	A9	A10	\sum Punkte	Ergebnis
Ī												

Aufgabe 1: (2 Punkte) Untersuchen Sie die Funktion f: $f(x) = (3 \sin x)^2$ auf Beschränktheit. Geben Sie ggf. ein absolutes Maximum oder Minimum an.

Aufgabe 2: (2 Punkte) Welches Symmetrieverhalten hat die Funktion f: $f(x) = \frac{\sin x \cdot \cos x}{x^3}$; begründen Sie Ihre Aussage.

Aufgabe 3: (3 Punkte) Bestimmen Sie die Umkehrfunktion $f^{-1}(x)$ und deren maximalen Definitionsbereich: $f(x) = {}^{1}x^{2} + {}^{2}x^{2} + {}^{2}x^{2$

 $f(x) = \frac{1}{2}x^2 - 2$, D (f)= \mathbb{R}^{+_0}

Aufgabe 4: (2 Punkte) Geben Sie die Gleichung der Tangente der Funktion f: $f(x) = 4\sqrt{x}$ an der Stelle $x_0 = 1$ an.

Aufgabe 5: (6 Punkte) Berechnen Sie jeweils die erste Ableitung der Funktion: a) $f(x) = (2x^2 + 5) \cdot e^{-2x}$ b) $f(x) = (\sin(x) + 7)^5$

Aufgabe 6: (2 Punkte) Bestimmen Sie den Grenzwert: $\lim_{x\to 0} \frac{1-e^x}{r^2-r}$

Aufgabe 7: (4 Punkte) Bestimmen Sie die Extrem- und Wendestellen der Funktion f: $f(x) = \frac{1}{3}x^3 - x^2 - 15x + 1$. (Die Berechnung der jeweiligen y-Werte ist nicht erforderlich.)

Aufgabe 8: (3 Punkte) Gegeben ist die Funktion f mit einer Nullstelle bei $x_1 = 3$: $f(x) = x^3 + 3x^2 - 13x - 15$. Bestimmen Sie weitere Nullstellen und zerlegen Sie f so weit wie möglich in Linearfaktoren.

Aufgabe 9: (3 Punkte) Untersuchen Sie die Funktion f auf Definitionslücken, Nullstellen, Polstellen und hebbare Singularitäten:

$$f(x) = \frac{x^2 - 4x - 5}{(x - 3)(x^2 - 2x - 15)}$$

Aufgabe 10: (3 Punkte) Bestimmen Sie eine möglichst einfache gebrochenrationale Funktion mit folgenden Eigenschaften:

f hat eine Nullstelle bei x = 1.

f hat bei x = -1 eine Polstelle ohne Vorzeichenwechsel.

f hat bei x = 2 eine hebbare Singularität.

Der Graph von f geht durch den Punkt $P(-3 \mid 6)$.