Topology Course Notes (KSM1C03)

Day 4: 20th August, 2025

product spaces

4.1 Product space

Definition 4.1: (Finite product)

Given X_1, \ldots, X_n , the *product space* is the Cartesian product $X = X_1 \times \cdots \times X_n$, equipped with the topology generated by the basis

$$\mathcal{B} \coloneqq \{U_1 \times \dots \times U_n \mid U_i \subset X_i \text{ is open for all } 1 \leq i \leq n\}.$$

Caution 4.2: (Product topology and basis)

Note that the product topology on $X \times Y$ is generated by the basis $\{U \times V \mid U \subset X, V \subset Y \text{ are open}\}$. In particular, not all open sets look like a product.

Exercise 4.3: (Finite product induced by projection)

Show that the product topology on $X := X_1 \times \cdots \times X_n$ is induced by the collection of projection maps $\{\pi_i : X \to X_i\}_{i=1}^n$.

Motivated by this, let us define the product of arbitrary many spaces.

Definition 4.4: (Product topology)

Let $\{X_{\alpha}\}_{{\alpha}\in\mathcal{I}}$ be an arbitrary collection topological spaces, indexed by the set \mathcal{I} . Denote the

product as the set of tuples

$$X := \prod_{\alpha \in \mathcal{I}} X_{\alpha} = \{(x_{\alpha}) \mid x_{\alpha} \in X_{\alpha} \text{ for all } \alpha \in \mathcal{I}\}.$$

Then, the *product topology* (or the *Tychonoff topology*) on X is defined as the topology induced by the collection of projection maps $\{\pi_{\alpha}: X \to X_{\alpha}\}_{\alpha \in \mathcal{I}}$

Proposition 4.5: (Product topology basis)

The product topology is generated by the basis

 $\mathcal{B} := \{ \Pi_{\alpha} U_{\alpha} \mid U_{\alpha} \subseteq X_{\alpha} \text{ is open, and } U_{\alpha} = X_{\alpha} \text{ for all but finitely many } \alpha \in \mathcal{I} \}$.

Proof

It is easy to see that ${\cal B}$ is a basis. Indeed, elements of ${\cal B}$ are of the form

$$\pi_{\alpha_1}^{-1}(U_{\alpha_1}) \cap \cdots \cap \pi_{\alpha_k}^{-1}(U_{\alpha_k}),$$

for some open sets $U_{\alpha_1} \subset X_{\alpha_1}, \dots, U_{\alpha_k} \subset X_{\alpha_k}$. The claim follows.

Definition 4.6: (Box topology)

Given a collection $\{X_{\alpha}\}$ of spaces, the **box topology** on $X = \Pi X_{\alpha}$ is generated by the subbasis

$$\mathcal{S} \coloneqq \{ \Pi U_{\alpha} \mid U_{\alpha} \subset X_{\alpha} \text{ is open} \} .$$

Clearly, the box topology is *finer* than the product topology. In particular, the projection maps are continuous with respect to the box topology as well.

Exercise 4.7: (Box and product topology)

Show that for a finite product $X_1 \times \cdots \times X_n$ of spaces, the box and the product topology agree. Moreover, show that for an infinite product, the box topology is always strictly finer than the product topology.

Caution 4.8: (Product topology always means Tychonoff topology)

Unless explicitly mentioned, always assume that a product space is given the Tychonoff topology. The box topology is usually too fine (i.e, has too many open sets), and is useful in constructing counter-examples.

Theorem 4.9: (Universal property of the product topology)

Let $\{X_{\alpha}\}_{{\alpha}\in\mathcal{I}}$ be a collection of topological spaces. For a space (Z,\mathcal{T}) , and a collection of continuous maps $g_{\alpha}:Z\to X_{\alpha}$, consider the following property.

 $\mathsf{P}(Z,g_{lpha})$: Given a space Y and any collection of continuous maps $f_{lpha}:Y\to X_{lpha}$, there exists a unique continuous map $h:Y\to Z$, such that $f_{lpha}=g_{lpha}\circ h.$

Then, the following holds.

- a) The product space $X=\Pi X_{\alpha}$ with the product topology, and the projection maps $\pi_{\alpha}:X\to X_{\alpha}$ satisfies the property $\mathsf{P}(X,\pi_{\alpha})$
- b) If (Z,g_{α}) is any other tuple satisfying the property $\mathsf{P}(Z,g_{\alpha})$, then there is a homeomorphism $\Phi:Z\to X$ such that $\pi_{\alpha}\circ\Phi=g_{\alpha}$

Proof

Given any $f_{\alpha}:Y\to X_{\alpha}$, define $h:Y\to X=\Pi X_{\alpha}$ by

$$h(y) = (f_{\alpha}(y)),$$

which clearly satisfies $\pi_{\alpha} \circ h = f_{\alpha}$, and hence, is unique. Let us show h is continuous. We only need to check continuity for subbasic open sets, which are of the form $\pi_{\alpha_0}^{-1}(U)$ for some $U \subset X_{\alpha_0}$ open. Now,

$$h^{-1}(\pi_{\alpha_0}(U)) = (\pi_{\alpha_0} \circ h)^{-1}(U) = f_{\alpha_0}^{-1}(U),$$

which is open as f_{α_0} is continuous. Thus, the property $\mathsf{P}(X,\pi_\alpha)$ holds.

The second part is a standard diagram chasing argument. Suppose (Z, γ_{α}) is a tuple satisfying $P(Z, \gamma_{\alpha})$. Then, consider the collection of commutative diagrams.

The existence of (unique) $\Psi: \Pi X_{\alpha} \to Z$ is justified by $P(Z, g_{\alpha})$. Next, consider the collection of commutative diagrams

Again, existence of (unique) Φ is justified by $P(\Pi X_{\alpha}, \pi_{\alpha})$. Now, consider the following case.

Let us observe that

$$\pi_{\alpha} \circ (\Phi \circ \Psi) = (\pi_{\alpha} \circ \Phi) \circ \Psi = g_{\alpha} \circ \Psi = \pi_{\alpha},$$

which follows from the previous two diagrams. Also, clearly

$$\pi_{\alpha} \circ \mathrm{Id} = \pi_{\alpha}.$$

Hence, by the *uniqueness* in $P(\Pi X_{\alpha}, \pi_{\alpha})$, we must have $\Phi \circ \Psi = \operatorname{Id}_{\Pi X_{\alpha}}$. By a similar argument, we get $\Psi \circ \Phi = \operatorname{Id}_{Z}$. Hence, Φ is a homeomorphism, with inverse given by Ψ .

Exercise 4.10: (Map into box topology)

Suppose $X=\mathbb{R}^{\mathbb{N}}$, equipped with the box topology. Show that the map $f:\mathbb{R}\to X$ defined by $f(t)=(t,t,\dots)$ is not continuous.

Hint

Consider the open set $U=\Pi(-\frac{1}{n},\frac{1}{n})=(-1,1)\times\left(-\frac{1}{2},\frac{1}{2}\right)\times\left(-\frac{1}{3},\frac{1}{3}\right)\times\cdots\subset X.$