Guidelines

- Do **not** write your answers on this sheet. Responses written here will **not** be evaluated. Please use the separate answer sheet provided.
- The attached appendices may assist you with some questions.
- You may use these sheets for rough work, but they must be submitted at the end of the exam.
- Each question is worth 2 points. Total marks: 100 points. If you find any question difficult, proceed to the next one.

A1

Complete the truth table for OR

Give as your answer four digits without spaces - the values from row 1st to row 4th of the truth table. For example, 0000.

A2

You built an 8-bit Adder based on the Full Adder logic. If the inputs values are:

```
Unset
A = 10101010, B = 01010101
```

What will the output **S** value be? Give answer in form of 8 digits without spaces

A3

Using the ALU designed in you homework, what will the output out be when ALU inputs are:

```
Unset x = 11..1111, y = 00..0001, zx = 0, nx = 0, zy = 0, ny = 0, f = 0, no = 0
```

Give as an answer 4 lowest bits of the out. For example 0000

B1

How this instruction will be presented in memory: @10

- **A.** 0101010101010100
- 6. 0100000000000000
- D. 000000000001010

B2

And are given the following program:

```
Unset
@10
M=A
D=1
D=D+M
A=D
```

Give as an answer value of A register after executing this program. Give one decimal number, for example: 10

C1

Which instruction takes less cycles to be executed in the multicycle MIPS processor?

- A Jump (J)
- B. R-type
- C. Store (SW)
- D. Load (LW)

C2

What is the WAR hazard in a pipelined processor?

- A. When a processor's clock speed decreases to wait for slow read/write memory operation
- B. When read and write instructions accidentally swap places due to branch prediction errors
- When the processor runs out of empty registers to write during execution

 When a subsequent instruction writes to a register before a previous instruction reads from it

D1

Suppose access times of 1, 50, and 100 cycles for the L1 cache, L2 cache, and main memory Assume that the L1 and L2 caches have miss rates of 10% and 20%, respectively In this case average memory access time in cycles is:

- A. 10
- B. 42.66
- C. 8
- D. 4.5

D2

What is the difference between Paging and Segmentation?

- A. Paging allows to use any number of linear address spaces
- B. Segmentation is invisible for programmers
- C. Segments are never unloaded to disk, they always remain in RAM
- D. Size of segments, unlike pages, can be varied

D3

Which of the following is a way to resolve control conflicts in a pipeline processor:

- A. Commands transcoding
- B. Pipeline reversing
- C. Forwarding
- D. Reloading commands

Appendix 1. Hack processor ALU

pre-setting the x input		pre-setting the y input		selecting between computing + or &	post-setting the output	Resulting ALU output
zx	nx	zy	ny	f	no	out
if zx then x=0	if nx then x=!x	if zy then y=0	if ny then y=!y	if f then out=x+y else out=x&y	if no then out=!out	out(x,y)=
1	0	1	0	1	0	0
1	1	1	1	1	1	1
1	1	1	0	1	0	-1
0	0	1	1	0	0	x
1	1	0	0	0	0	у
0	0	1	1	0	1	!x
1	1	0	0	0	1	!y
0	0	1	1	1	1	-x
1	1	0	0	1	1	-у
0	1	1	1	1	1	x+1
1	1	0	1	1	1	y+1
0	0	1	1	1	0	x-1
1	1	0	0	1	0	y-1
0	0	0	0	1	0	x+y
0	1	0	0	1	1	x-y
0	0	0	1	1	1	y-x
0	0	0	0	0	0	x&y
0	1	0	1	0	1	x y

Appendix 2. Hack language commands encoding

Appendix 3. Hack computer screen memory mapping

Appendix 4. Complete multicycle MIPS processor

