TRABALHO 5

CINÉTICA DA REACÇÃO DE CORANTES COM O IÃO HIDRÓXIDO

Os corantes de trifenilmetano são compostos orgânicos, solúveis em água, que contém um catião responsável pela cor (cromóforo). A cor intensa deste ião é devida à extensão da conjugação do seu sistema de ligações duplas.

Composto	Cor	Máximo de absorvância
Violeta de cristal VC	violeta	590 nm
Malaquite verde MV	ciano	623 nm

$$(CH_3)_2N \qquad (CH_3)_2N \qquad (CH_$$

Quando ocorre reacção com um ião OH⁻, no átomo de carbono central, a conjugação entre os anéis de benzeno é interrompida e a solução torna-se incolor (ver esquema). A adição de hidróxido de sódio transforma o catião numa base carbinol (não ressonante).

$$(CH_3)_2N \longrightarrow N(CH_3)_2 \quad (CH_3)_2N \longrightarrow N(CH_3)_2 \quad (CH_3)_2N \longrightarrow N(CH_3)_2$$

$$(CH_3)_2N \longrightarrow N(CH_3)_2 \quad (CH_3)_2N \longrightarrow N(CH_3)_2$$

Esquema - Reacção de descoloração do violeta de cristal

Como a absorvância do catião trifenilmetano é directamente proporcional à sua concentração, o decorrer da reacção pode ser seguido medindo a absorvância em função do tempo. Trata-se de uma

reacção elementar bimolecular, com uma velocidade que obedece a uma cinética de 2ª ordem global, correspondendo à expressão (exemplificando para o VC):

$$v = - d[VC]/dt = k [OH^-][VC]$$

Se a concentração de OH⁻ em solução for muito maior do que a de violeta de cristal, a percentagem de OH⁻ consumida na reacção de descoloração é muito pequena, pelo que a concentração de OH⁻ se mantém aproximadamente constante e igual ao seu valor inicial [OH⁻]_O, obtendo-se:

$$- d[VC]/dt = k' [VC]$$
 (com k' = k [OH-]_O)

Resolvendo a expressão diferencial acima obtém-se:

$$ln([VC]/[VC]_{0}) = -k't$$

Admitindo a validade da lei de Beer, que estabelece a existência de proporcionalidade directa entre absorvância <u>A</u> e concentração, tem-se sucessivamente:

$$\ln (A/A_0) = -k't \qquad \text{ou seja}$$

$$\ln A = \ln A_0 - k't \qquad (1)$$

onde A₀ é a absorvância para o tempo inicial (t=0).

Representando graficamente In A em função do tempo, deverá obter-se uma recta de declive igual a (- k'), cuja a ordenada na origem indicará In A₀. Fazendo duas experiências à mesma temperatura com concentrações iniciais diferentes de OH⁻, obter-se-ão duas equações do tipo (1), dois valores de k['] que deverão conduzir ao mesmo valor de k. Como a constante cinética k só depende da temperatura, os valores obtidos para k deverão ser semelhantes.

Com a ajuda de um banho termostatizante pode se realizar a reacção a temperaturas diferentes, obtendo-se valores de k para diferentes temperaturas. Representando estes valores segundo a equação de Arrhenius (In k em função de 1/T)

$$\ln k = \ln A - E_a/R. 1/T$$

em que A é o factor pré-exponencial, do declive desta recta obtém-se a Energia de Activação E_a da reacção.

Procedimento Experimental

Distribuição dos trabalhos por grupos:

Turno	PL1, PL3, PL5, PL7, PL9		PL2, PL4, PL6, PL8; PL10		
Corante	Violeta de cristal		Malad	Malaquite verde	
	Grupo	Temperatura (°C)	Grupo	Temperatura (°C)	
	1	20	1	20	
	2	30	2	25	
	3	35	3	30	
	4	40	4	35	

Violeta de cristal

Aluno 1 - Selecione o comprimento de onda adequado no espectrofotómetro para o corante estudado em causa (590 nm para VC). Calibre o aparelho do modo que lhe for indicado pelo responsável pela aula prática. A calibração é válida para o comprimento de onda selecionado, o solvente usado e para a célula que usou na calibração. Familiarize-se com a escala de absorvâncias. Tenha em atenção que deverá usar apenas uma célula de espectrofotómetro por ensaio.

Aluno 2 - Ligue o banho termostatizante e regule-o para a temperatura a combinar com o responsável pela aula prática. O tempo de estabilização térmica deverá ser pelo menos de 15 minutos.

Aluno 3 - Prepare em três balões volumétricos de 100 cm³, a partir da solução-mãe de corante, e da solução-mãe de NaOH 0.1 M, as seguintes soluções (em cada caso, perfaça o volume de 100 cm³ com água destilada):

- (1): 20 cm³ da solução-mãe de VC em 100 cm³
- (2): 10 cm³ de NaOH 0,1 M em 100 cm³
- (3): 20 cm³ de NaOH 0,1 M em 100 cm³

Aluno 2- Pipete 20 cm³ da solução de corante para um copo de 50 cm3 e ligue a agitação magnética. Encha agora uma pipeta de 20 cm³ com a solução (2). Deixe a solução cair livremente para dentro do copo onde a solução de corante já está a agitar e, quando aproximadamente metade do líquido contido na pipeta já tiver saído, comece a contar o tempo de reação através de um cronómetro (**Aluno 1**) - este é o chamado instante de meia-adição que representa o início, o tempo t=0 da reação. Tenha em atenção que a queda livre da solução (2) não deve ser interrompida ao ligar o cronómetro.

Aluno 2 - Verta um pouco da solução reativa directamente do copo para dentro da célula. Rapidamente, coloque a célula no porta-amostras do aparelho (atenção à posição da marca).

Aluno 1 - Meça a absorvância (se não for rápido, verá a absorvância a diminuir progressivamente já que a reação continua a dar-se na célula). Assinale a absorvância medida e o tempo em que fez a medição.

Aluno 2 - Restitua a amostra analisada ao copo. Não lave a célula do espectrofotómetro entre medições. Repita a medição de meio em meio minuto ou de um em um minuto, ou seja, retire nova amostra e meça o respetivo valor da absorvância e do tempo a que fez essa medição. Repita a operação até ao instante t=15 min.

Aluno 3 – Num ficheiro excel represente no eixo dos yy o In A em função do tempo. Trace a reta mais provável passando pelos pontos experimentais, reta segundo o método dos mínimos desvios quadrados. A partir de agora, é a reta que representa os seus resultados. Verifique que o declive desta reta lhe dá acesso ao valor de k'.

Façam novo ensaio experimental em moldes idênticos ao anterior, adicionando agora 20 cm³ da solução (3) a 20 cm³ da solução de corante. **Podem renomear quem é agora o aluno 1, 2 e 3.**

Aluno 1, 2 e 3 - Passem todo o material que utilizou na aula por água da torneira e coloque-o dentro de tinas ou copos apropriados (estes últimos para as pipetas), de onde serão recolhidos para lavagem.

Malaquite Verde

Aluno 1 - Selecione o comprimento de onda adequado no espectrofotómetro para o corante estudado em cada ensaio (623 nm para MV). Calibre o aparelho do modo que lhe for indicado pelo responsável pela aula prática. A calibração é válida para o comprimento de onda selecionado, o solvente usado e para a célula que usou na calibração. Familiarize-se com a escala de absorvâncias. Tenha em atenção que deverá usar apenas uma célula de espectrofotómetro por ensaio.

Aluno 2 - Ligue o banho termostatizante e regule-o para a temperatura a combinar com o responsável pela aula prática. O tempo de estabilização térmica deverá ser pelo menos de 15 minutos.

Aluno 3 - Use diretamente a solução-mãe de corante, e prepare em dois balões volumétricos de 100 cm³, a partir da solução-mãe de NaOH 0,1 M, as seguintes soluções (em cada caso, perfaça o volume de 100 cm³ com água destilada):

- (1): 5 cm³ de NaOH 0,1 M em 100 cm³
- (2): 10 cm³ de NaOH 0,1 M em 100 cm³.

Introduza os balões com as soluções preparadas dentro do banho termostatizante e deixe-os estabilizar termicamente.

Aluno 2 - Pipete 20 cm³ da solução de corante para um copo de 50 cm3 e ligue a agitação magnética. Encha agora uma pipeta de 20 cm³ com a solução (2). Deixe a solução cair livremente para dentro do copo onde a solução de corante já está a agitar e, quando aproximadamente metade do líquido contido na pipeta já tiver saído, comece a contar o tempo de reação através de um cronómetro (**aluno 1**) - este é o chamado instante de meia-adição que representa o início, o tempo t=0 da reação. Tenha em atenção que a queda livre da solução (2) não deve ser interrompida ao ligar o cronómetro.

Aluno 2 - Verta um pouco da solução reativa directamente do copo para dentro da célula. Rapidamente, coloque a célula no porta-amostras do aparelho (atenção à posição da marca)

Aluno 1 - Meça a absorvância (se não for rápido, verá a absorvância a diminuir progressivamente já que a reação continua a dar-se na célula). Assinale a absorvância medida e o tempo em que fez a medição.

Aluno 2 - Restitua a amostra analisada ao copo. Não lave a célula do espectrofotómetro entre medições. Repita a medição de meio em meio minuto ou de um em um minuto, ou seja, retire nova amostra e meça o respetivo valor da absorvância e do tempo a que fez essa medição. Repita a operação até ao instante t=15 min.

Façam novo ensaio experimental em moldes idênticos ao anterior, adicionando agora 20 cm³ da solução (3) a 20 cm³ da solução de corante. **Podem renomear quem é agora o aluno 1, 2 e 3.**

Aluno 3 - Represente no eixo dos yy o In A em função do tempo. Trace a reta mais provável passando pelos pontos experimentais, reta segundo o método dos mínimos desvios quadrados. A partir de agora, é a reta que representa os seus resultados. Verifique que o declive desta reta lhe dá acesso ao valor de k'.

Aluno 1, 2 e 3 - Passem todo o material que utilizou na aula por água da torneira e coloque-o dentro de tinas ou copos apropriados (estes últimos para as pipetas), de onde serão recolhidos para lavagem.

TRABALHO Nº 5 - Orientações para o relatório

Nome:	Nº:			
Curso:				
Turno:	Data:			
1. Represente grafi T =	camente os resultad	os experimentais.		
2. Determine as eq	uações das duas re	ctas (tenha em atenç	ão que deverá repre	esentar In A em função
Corante utili	izado:	Equação da recta		r ²
Ensaio 1 (corante +	- sol.(2)), T=			
Ensaio 2 (corante +	- sol.(3)), T=			
3.				
	[OH⁻]₀ / M	k' / (unidades)	k / (unidades)	Média de k
Ensaio 1				
Ensaio 2				
Cálculos necessári	os à construção da t	abela:		

4.

T/K	1/T / K ⁻¹	k / (unidades)	ln k
		,	

Equação da recta de Ahrrenius, para cálculo da Energia de Activação

5. Comente os resultados e a técnica experimental, compare os valores das constantes cinéticas e da energia de activação obtidos para os dois corantes, não esquecendo o que foi afirmado no suporte teórico do trabalho.