■ 반복이 없는 이원배치법

- 두 요인의 처리 효과를 알아보기 위한 실험 방법
- 교차설계(cross-over design) & 지분설계(nested design)

	교차설계					지분설계									
				A	7							A	7		
		1	2	3	4	5	6			1	2	3	4	5	6
	1	0	0	0	O	Ο	0		1	0	0				
В	2	0	0	0	0	O	0	В	2			0	0		
	3	0	0	0	0	O	O		3					0	O

□ 교차설계

- 실험 설계
 - \circ 수준 수가 a인 요인 A, 수준 수가 b인 요인 B
 - \circ $a \times b$ 실험 전체를 완전 확률화

○ 자료구조

요인 A 요인 B	A_1	A_2	•••	A_a
B_{1}	Y_{11}	Y_{21}	• • •	Y_{a1}
B_{2}	Y_{12}	Y_{22}	• • •	Y_{a2}
• •	•	•	•••	•
$B_{\!b}$	Y_{1b}	Y_{2b}	• • •	Y_{ab}

○ 구조식

○ 1-요인설계의 구조식

$$Y_{ij} = \mu_i + \varepsilon_{ij} = \mu + (\mu_i - \mu) + \varepsilon_{ij} = \mu + \tau_i + \varepsilon_{ij}$$

- τ_i : 요인의 처리효과
- 2-요인설계의 구조식

$$\Rightarrow Y_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}, \quad i = 1, ..., a, j = 1, ..., b$$

- *µ*: 전체 평균
- \circ α_i : 요인 A의 처리효과, $\sum_{i=1}^a \alpha_i = 0$
- \circ β_j : 요인 B의 처리효과, $\sum_{j=1}^b \beta_j = 0$
- \circ $arepsilon_{ij}\sim$ iid $N(0,\sigma^2)$: 오차항

○ 변동의 분해

$$\begin{split} Y_{ij} - \overline{Y}_{..} &= (\overline{Y}_{i.} - \overline{Y}_{..}) + (\overline{Y}_{.j} - \overline{Y}_{..}) + (Y_{ij} - \overline{Y}_{i.} - \overline{Y}_{.j} + \overline{Y}_{..}) \\ TSS &= SSA + SSB + SSE \end{split}$$

$$\circ$$
 $TSS = \sum_{i=1}^{a} \sum_{j=1}^{b} (Y_{ij} - \overline{Y}_{..})^2 = \sum_{i=1}^{a} \sum_{j=1}^{b} Y_{ij}^2 - \frac{Y_{..}^2}{N}$: 자유도 $N-1$

$$\circ SSA = b\sum_{i=1}^{a} (\overline{Y}_{i.} - \overline{Y}_{..})^2 = \sum_{i=1}^{a} \frac{Y_{i.}^2}{b} - \frac{Y_{..}^2}{N} : 자유도 a-1$$

$$\circ$$
 $SSB = a \sum_{j=1}^{b} (\overline{Y}_{.j} - \overline{Y}_{..})^2 = \sum_{j=1}^{b} \frac{Y_{.j}^2}{a} - \frac{Y_{..}^2}{N}$: 자유도 $b-1$

$$\circ$$
 $SSE = \sum_{i=1}^{a} \sum_{j=1}^{b} (Y_{ij} - \overline{Y}_{i.} - \overline{Y}_{.j} + \overline{Y}_{..})^2$: 자유도 $(a-1)(b-1)$

- SSE 자유도:
$$N-1-(a-1)-(b-1)=(a-1)(b-1)$$

○ 가설 검정

○ 요인 A의 처리 효과의 동일성 검정

$$H_0:\alpha_1=\alpha_2=\cdots=\alpha_a=0$$

○ 요인 B의 처리 효과의 동일성 검정

$$H_0: \beta_1 = \beta_2 = \cdots = \beta_b = 0$$

○ 분산분석표

변인	자유도	제곱합	평균제곱	F
모형(처리A)	a-1	SSA	MSA = SSA/(a-1)	MSA/MSE
모형(처리B)	b-1	SSB	MSB = SSB/(b-1)	MSB/MSE
오차	(a-1)(b-1)	SSE	MSE = SSE/((a-1)(b-1))	
전체	N-1	TSS		

● 어느 화학공장에서 제품의 생산량에 영향을 미치는 것으로 예상되는 반응온도와 원료를 요인으로 생각하여 반복이 없는 이원배치의 실험 실시

○ 반응온도(A) = 180, 190, 200, 210

○ 원료(B) = 미국 M사, 일본 Q사, 국내 P사

12개의 실험구를 완전 확률화하여 실험한 결과

온도 원료	180	190	200	210	합계
М	97.6	98.6	99.0	98.0	393.2
Q	97.3	98.2	98.0	97.7	391.2
Р	96.7	96.9	97.9	96.5	388.0
합계	291.6	293.7	294.9	292.2	1172.4

$$\circ TSS = \sum_{i=1}^{4} \sum_{j=1}^{3} y_{ij}^2 - \frac{y_{..}^2}{12} = 97.6^2 + \dots + 96.5^2 - \frac{1172.4^2}{12} = 6.22$$

$$\circ SSA = \frac{291.6^2 + 293.7^2 + 294.9^2 + 292.2^2}{3} - \frac{1172.4^2}{12} = 2.22$$

$$\circ SSB = \frac{393.2^2 + 391.2^2 + 388^2}{4} - \frac{1172.4^2}{12} = 3.44$$

$$\circ$$
 $SSE = TSS - SSA - SSB = 6.22 - 2.22 - 3.44 = 0.56$

변인	자유도	제곱합	평균제곱	F
모형(처리A)	3	2.22	0.74	7.96
모형(처리B)	2	3.44	1.72	18.49
오차	6	0.56	0.093	
전체	11	6.22		

- \circ $F_{0.05}(3,6)=4.76$, $F_{0.05}(2,6)=5.14$ \Rightarrow 유의수준 5%에서 두 요인 모두 유의함
 - ⇒ 반응온도와 원료의 종류에 따라 생산량의 차이가 있다고 할 수 있음

```
chemistry <- scan(what=list("","",1))
1 1 97.6 2 1 98.6 3 1 99.0 4 1 98.0
 2 97.3 2 2 98.2 3 2 98.0 4 2 97.7
1 3 96.7 2 3 96.9 3 3 97.9 4 3 96.5
names(chemistry) <- c("temp","material","amount")</pre>
chemistry <- data.frame(chemistry)</pre>
result <- Im(amount~temp+material, data=chemistry)
anova(result)
```

\bigcirc $\mu(A_i)$ 와 $\mu(B_j)$ 의 추정

- \circ $\mu(A_i)$ 의 구간추정: $\overline{Y}_{i.} \pm t_{\alpha/2,(a-1)(b-1)} \sqrt{\mathit{MSE/b}}$
- \circ $\mu(B_j)$ 의 구간추정: $\overline{Y}_{.j} \pm t_{lpha/2,(a-1)(b-1)} \sqrt{\mathit{MSE/a}}$

● 95% 신뢰구간

- $cont_{\alpha/2,(p-1)(q-1)} \sqrt{MSE/q} = 2.447 \sqrt{0.093/3} = 0.43$
- $cont_{\alpha/2,(p-1)(q-1)} \sqrt{MSE/p} = 2.447 \sqrt{0.093/4} = 0.37$
- \circ $\mu(A_1)$ 의 95% 신뢰구간 = 97.2 ± 0.43 = [96.77, 97.63]
- \circ $\mu(B_1)$ 의 95% 신뢰구간 = 98.3 ± 0.37 = [97.93, 98.67]

■ 확률화 블록설계법 (randomized complete block design)

- 확률화 완비(complete) 블록설계법
- 쌍을 이룬 비교의 일반화
- 블록(block) : 요인의 처리효과 비교의 정확도를 높이기 위해 예비지식을 활용하여 나눈 동질적인 실험단위
 - (예제) 처리: 운동화의 두 상표 block: 운동화를 신은 사람
 - (예제) 처리: 옥수수 품종 block: 지역

○ 실험 설계

- \circ a 개의 수준(처리)과 b개의 블록가 있다고 가정
- 각 블록 안에 처리에 대해 관측값은 하나
- 각 블록 안에 처리의 배열은 확률적으로 결정

- Weight of Chickens Snee (1985)
 - 사료에 성장촉진제 추가
 - Control (추가하지 않음), Low dose, High dose
 - 크기가 유사한 것으로 블록
 - 성숙기의 평균 무게(단위: pound)

Block	Control	Low dose	High dose	합계
1	3.93	3.99	3.96	11.88
2	3.78	3.96	3.94	11.68
3	3.88	3.96	4.02	11.86
4	3.93	4.03	4.06	12.02
5	3.84	4.10	3.94	11.88
6	3.75	4.02	4.09	11.86
7	3.98	4.06	4.17	12.21
8	3.84	3.92	4.12	11.88
합계	30.93	32.04	32.30	95.27

○ 실험설계

```
trt <- 3
block <- 8
design <- NULL
for (i in 1:block)
  design <- c(design,sample(1:trt,trt))
design <- data.frame(matrix(design,block,trt,byrow=T))
Block <- 1:block
design <- cbind(Block,design)</pre>
```

○ 통계적 모형

$$Y_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij'}$$
 $i = 1, ..., a, j = 1, ..., b.$

- \circ Y_{ij} : 블록 j에서 처리 i를 한 반응변수
- *µ*: 전체 평균
- \circ α_i : 처리효과, $\sum_{i=1}^a \alpha_i = 0$
- \circ β_j : 블록 효과, $\sum_{j=1}^b \beta_j = 0$
- \circ $arepsilon_{ij}\sim$ iid $N(0,\sigma^2)$

○ 가설 검정

- 처리효과의 동일성 검정
 - $H_0: \alpha_1 = \cdots = \alpha_a = 0$ vs $H_1:$ 최소한 하나 이상의 α_i 는 0이 아님
- 변동분해: TSS = SSA + SSBL + SSE

-
$$TSS = \sum_{i=1}^{a} \sum_{j=1}^{b} (Y_{ij} - \overline{Y}_{..})^2 = \sum_{i=1}^{a} \sum_{j=1}^{b} Y_{ij}^2 - \frac{Y_{..}^2}{N}$$
 : 자유도= $N-1$

-
$$SSA = b\sum_{i=1}^{a} (\overline{Y}_{i.} - \overline{Y}_{..})^2 = \sum_{i=1}^{a} \frac{Y_{i.}^2}{b} - \frac{Y_{..}^2}{N}$$
 : 자유도= $a-1$

-
$$SSBL = a \sum_{j=1}^{b} (\overline{Y}_{.j} - \overline{Y}_{..})^2 = \sum_{j=1}^{b} \frac{Y_{.j}^2}{a} - \frac{Y_{..}^2}{N}$$
 : 자유도= $b-1$

-
$$SSE = \sum_{i=1}^{a} \sum_{j=1}^{b} (Y_{ij} - \overline{Y}_{i.} - \overline{Y}_{.j} + \overline{Y}_{..})^2$$
 :
자유도= $N - (a-1) - (b-1) - 1 = (a-1)(b-1)$

○ 분산분석표

변인	자유도	제곱합	평균제곱	F
모형(처리A)	a-1	SSA	MSA = SSA/(a-1)	MSA/MSE
블록	b-1	SSBL	MSBL = SSBL/(b-1)	MSBL/MSE
오차	(a-1)(b-1)	SSE	MSE = SSE/((a-1)(b-1))	
전체	N-1	TSS		

- 블록효과의 동일성 검정
 - \circ 설계에 있어 ab개의 처리 조합은 실험 단위의 집합에 대해 확률적으로 배치된 것이 아님
 - 블록은 실험단위이고 확률화는 각 단위안에서 제한되어짐
 - 만약 두 개의 요인에 대해 관심이 있는 경우에는 다른 설계법을 설계
 - 이원설계의 상대적 효율성을 평가하는데 사용
 - F_b 가 1보다 크면 클수록 블록화의 효과가 좋음 \Rightarrow 이원설계가 일원설계에 비해 효율적임
 - F_b 가 1보다 작으면 실험을 다시 수행하는 경우 블록화에 주의 또는 블록화 포기 \Rightarrow 완전확률화 설계 실시

• Weight of Chickens

Block	Control	Low dose	High dose	합계	평균
1	3.93	3.99	3.96	11.88	3.960
2	3.78	3.96	3.94	11.68	3.893
3	3.88	3.96	4.02	11.86	3.953
4	3.93	4.03	4.06	12.02	4.007
5	3.84	4.10	3.94	11.88	3.960
6	3.75	4.02	4.09	11.86	3.953
7	3.98	4.06	4.17	12.21	4.070
8	3.84	3.92	4.12	11.88	3.960
합계	30.93	32.04	32.3	95.27	
평균	3.866	4.005	4.038		3.970

$$\circ TSS = \sum_{i=1}^{3} \sum_{j=1}^{8} y_{ij}^2 - \frac{y_{..}^2}{24} = 3.93^2 + \dots + 4.12^2 - \frac{95.27^2}{24} = 0.2533$$

$$\circ SSA = \frac{30.93^2 + 32.04^2 + 32.3^2}{8} - \frac{95.27^2}{24} = 0.1324$$

$$\circ SSBL = \frac{11.88^2 + \dots + 11.88^2}{3} - \frac{95.27^2}{24} = 0.0542$$

$$\circ$$
 $SSE = TSS - SSA - SSBL = 0.2533 - 0.1324 - 0.0542 = 0.0667$

○ 분산분석표

변인	자유도	제곱합	평균제곱	F	p-값
촉진제	2	0.1324	0.0662	13.889	0.0005
블록	7	0.0542	0.0077	1.626	0.2077
오차	14	0.0667	0.0048		
전체	23	0.2533			

- 5% 유의수준에서 $F_{0.05}(2,14) = 3.739$ < 13.889
 - ⇒ 성장촉진제 양에 따라 병아리 성장에 차이가 있음

● 4가지 옥수수 품종(A, B, C, D)의 생산량을 비교하기 위해 4곳의 지역에서 파종하여 옥수수 생산량을 조사

지역 1	지역 2	지역 3	지역 4
D	В	С	Α
С	Α	В	В
Α	A D		D
В	C	D	C

○ 실험결과

품종	지역 1	지역 2	지역 3	지역 4
Α	9.3	9.4	9.6	10.0
В	9.4	9.3	9.8	9.9
C	9.2	9.4	9.5	9.7
D	9.7	9.6	10.0	10.2

○ 분산분석표

변인	자유도	제곱합	평균제곱	F
품종	3	0.385	0.1283	14.42
블록	3	0.825	0.2750	
오차	9	0.080	0.0089	
전체	15	1.290		

- 5% 유의수준에서 $F_{0.05}(3.9) = 3.86 < 14.42$

⇒ 옥수수 품종에 따라 옥수수 생산량에 차이가 있음

○ 만약 이 실험을 완전 확률화 설계법으로 생각하고 분석을 했다면

변인	자유도	제곱합	평균제곱	F
품종	3	0.385	0.1283	1.70
오차	12	0.905	0.0754	
전체	15	1.290		

- 5% 유의수준에서 품종에 따라 옥수수 생산량에 차이가 있다고 할 수 없음 ⇨ 앞에서 블록에 의해 설명되는 변동이 모두 오차의 변동으로 포함됨

○ 처리효과에 대한 다중비교

- $H_0: \mu_{i.} = \mu_{k.}$ vs $H_1: \mu_{i.} \neq \mu_{k.}$ 또는 $\mu_{i.} \mu_{k.}$ 의 신뢰구간
- \bullet $\overline{Y}_{i.}$ $-\overline{Y}_{k.} \pm c\sqrt{MSE}\sqrt{2/b}$
 - \circ 최소유의차: $c = t_{\alpha/2,(a-1)(b-1)}$
 - \circ Bonferroni: $c=t_{lpha/(2k),(a-1)(b-1)}$, k= 비교검정의 경우의 수
 - \circ Scheffe: $c = \sqrt{(a-1)F_{\alpha,a-1,(a-1)(b-1)}}$
 - $\circ \quad \text{Tukey: } \frac{1}{\sqrt{2}} q_{\alpha,a,(a-1)(b-1)}$