## Day 5

## **Concept of Wave Function**

# Schrodinger Wave Theory-Wave Mechanics (1926)

Schrodinger proposed wave theory based on the assumption that: behavior of electrons in an atom can be described as an equation analogues to a vibrating string, fixed at both end.

The equation used for wave-motion:

$$\frac{\partial^2 \Psi}{\partial x^2} = 1/u^2 \frac{\partial^2 \Psi}{\partial t^2}$$



 $\Psi$  is the amplitude, 'u' is the speed of propagation. If 'u' does not depends on time,  $\Psi$  can be written as a product of two function (x and t):

$$\Psi = \Psi(x) \exp(i2\pi vt)$$
 [v = vibration frequency]

$$\frac{\partial^2 \Psi(\mathbf{x}) \exp(\mathrm{i}2\pi vt)}{\partial x^2} = 1/u^2 \frac{\partial^2 \Psi(\mathbf{x}) \exp(\mathrm{i}2\pi vt)}{\partial t^2}$$

$$\frac{\exp(i2\pi\nu t)\boldsymbol{\partial}^2\Psi(x)}{\boldsymbol{\partial}x^2} = \frac{1}{u^2}\Psi(x)(i2\pi\nu t)^2\exp(i2\pi\nu t)$$

$$\frac{\partial^2 \Psi(x)}{\partial x^2} = -\frac{4\pi^2 v^2}{u^2} \Psi(x)$$

$$v = \text{vibration frequency}$$

$$u = \text{speed}$$

$$\lambda = \text{wavelength}$$

Since,  $u = v \times \lambda$ 

$$\frac{\partial^2 \Psi(x)}{\partial x^2} = -\frac{4\pi^2}{\lambda^2} \Psi(x) \text{ [independent of time] (1)}$$

Eqn. 1 is independent of time and thus gives only the vibration of the amplitude function w.r.t 'x'.

The term  $\frac{\partial^2}{\partial x^2}$  is an operator which on operating over  $\Psi$  gives back the function  $\Psi$  multiplied by  $\frac{4\pi^2}{\lambda^2}$ , which is an *Eigen value?*.

In order that the function  $\Psi$  is an acceptable solution, it should have the following:

Must be 0 at each end of the string and amplitude=0

Must be single valued in between.



$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} = -\frac{4\pi^2}{\lambda^2} \Psi - (\text{for 3D})$$

 $abla^2 \Psi + \frac{4\pi^2}{\lambda^2} \Psi = 0 \ [\nabla \ \text{is called as Laplacian operator}]$ This eqn. can be applied to all sub atomic particles in atom and in order to do that Schrodinger replaced  $\lambda$  by h/P [ $\lambda$  = de Broglie's wavelength; P=momentum]  $abla^2 \Psi + \frac{4P^2\pi^2}{\hbar^2} \Psi = 0$ 

For electron,

E=Kinetic Energy + Potential Energy =  $(1/2)mv^2+V = P^2/2m + V = E$  $P^2=2m(E-V)$  Thus,

$$\nabla^2 \Psi + \frac{8\pi^2 m(E-V)}{h^2} \Psi = 0$$

This is the Schrodinger equation describes the behavior of e- in atom.

$$\nabla^2 \Psi = -\frac{8\pi^2 m(E-V)}{h^2} \Psi$$

#### **Postulates:**

- 1. For every state of a time independent physical system, a function ' $\Psi$ ' of the coordinates can be written, which describes the state of the system. All possible information can be derived from  $\Psi$
- Ψ- must be single values, continuous and finite throughout the space.
  - must be quadratically integrable. First derivative must be continuous.
  - should be normalized so that \$\PP\$\psi \PP\$\dt=1
- 2. To every observable in classical mechanics there corresponds a linear operator in quantum mechanics.
  - ✓ Momentum operator  $(P_x)$ :  $-i\hbar(d/dx)$
  - ✓ Kinetic energy operator (:  $-\hbar^2/2$ m (d<sup>2</sup>/dx<sup>2</sup>)
  - ✓ Potential energy operator: V(X)
  - **✓** Position operator: x

 Ψ- must be single values, continuous and finite throughout the space.

 $e^{-x}$  (0 to infinite);  $\sin^{-1}x$  (-1 to +1)

Infinite means electron is located at one space-impossible!

- must be quadratically integrable.
- first derivative bust be continuous.
- should be normalized so that ∫ΨΨ\*dτ=1

#### **Postulates:**

1. For every state of a time independent physical system, a function 'Ψ' of the coordinates can be written, which describes the state of the system. All possible information can be derived from Ψ.

(Say an electron confined to an atom!)





#### Quantum Mechanical Operators

An operator is a rule that transforms a given function into another function. Lets consider  $\hat{\mathbf{Z}}$  be the operator that differentiates a function w.r.t 'x'. If a function f(x) is differentiable, the result of operating on f(x) with  $\hat{\mathbf{Z}}$  is  $\hat{\mathbf{Z}}f(\mathbf{x})=f'(\mathbf{x})$ .

For example, 
$$\hat{\mathbf{Z}}\mathbf{f}(\mathbf{x}^2+3\mathbf{e}^{\mathbf{x}})=2\mathbf{x}+3\mathbf{e}^{\mathbf{x}}$$

Similarly we can do sum and difference of two operators

$$(\hat{A}+\hat{Z})f(x)=\hat{A}f(x)+\hat{Z}f(x)$$
 - sum  
 $(\hat{A}-\hat{Z})f(x)=\hat{A}f(x)-\hat{Z}f(x)$  - difference

Product of two operators:  $\hat{A}\hat{Z}f(x) = \hat{A}[\hat{Z}f(x)]$ ; the first operator will operate over the f(x) and then the left operator will operate.

 $3\hat{Z}f(x)=3[\hat{Z}f(x)]=3f'(x);$ No difference in the final result will be observed if we do:  $\hat{Z}3f(x)$ .

However if we assume operators d/dx and x, then

$$x(d/dx)[f(x)]\neq (d/dx)xf(x)$$

Using any two operators  $\hat{\mathbf{A}}$  and  $\hat{\mathbf{S}}$ , it is possible to construct a new operator  $\hat{\mathbf{A}}\hat{\mathbf{S}} - \hat{\mathbf{S}}\hat{\mathbf{A}}$ , called commutator of the two operators  $\hat{\mathbf{A}}$  and  $\hat{\mathbf{S}}$  written as  $[\hat{\mathbf{A}}, \hat{\mathbf{S}}]$  and  $[\hat{\mathbf{A}}, \hat{\mathbf{S}}] = \hat{\mathbf{A}}\hat{\mathbf{S}} - \hat{\mathbf{S}}\hat{\mathbf{A}}$ 

If  $\hat{A}\hat{S} = \hat{S}\hat{A}$  the  $[\hat{A}, \hat{S}] = 0$  and we say  $\hat{A}$  and  $\hat{S}$  commute

1. Find  $[x, P_x]$ 2. show that d/dx and x do not commute!

### **Linear Operator**

- An operator A is linear operator, if and only if it has the following property:
- $\hat{A}[f(x)+g(x)]=\hat{A}f(x)+\hat{A}g(x)$ ; f and g are arbitrary function
- $\hat{A}[cf(x)]=c\hat{A}f(x)$ ; c is an arbitrary constant.
- d/dx,  $x^2$ ,  $d^2/dx^2$  are linear. While 'root over', ()<sup>2</sup> –squares the function, Cos is not a linear operator.
- $\sqrt{(A+B)} \neq \sqrt{(A)} + \sqrt{(B)}$
- $(A+B)^2 \neq A^2 + B^2$

#### Postulate 3

• In any measurement of the observable (energy/momentum) associated with an operator  $\hat{A}$ , the only values that will ever be observed are eigenvalues  $a_n$ , which satisfy the eigenvalue equation:

$$\hat{A}\Psi_n = a_n\Psi_n$$

(We will see that various physical parameters can be derived from direct physical consideration and then solving the above equation)

### Eigen Function and Eigen Value

If the effect of operating on some function f(x) with the operator  $\hat{A}$  is simply to multiply f(x) by a certain constant K then we can say that f(x) is an Eigen function of  $\hat{A}$  with eigenvalue K.

$$Af(x) = Kf(x)$$

$$d/dx(e^{2x})=2e^{2x}$$

Hence  $e^{2x}$  is an *Eigen-function* of the operator d/dx with *Eigen value* of 2.

- Sin3x is not an Eigen function of d/dx. But what if  $d^2/dx^2$ ?
  - eax2 is not an Eigen function of d/dx,

As, 
$$d/dx(e^{ax^2}) = (2ax)e^{ax^2}$$

2x is not constant

• If we write  $2a(xe^{ax^2})$ , then 2a is constant but  $xe^{ax^2}$  is not the same function.

## Eigen Function and Eigen Value in simple words...



An operator A if operates upon a wave-function  $\Psi$  in such a way that  $A\Psi = \beta \Psi$  Where,  $\beta$  is real quantity and for selected value of  $\Psi$  is found to be physically significant the later is said to be Eigen function and  $\beta$  is Eigen value.

Lets consider:  $d^2/dx^2(\Psi) = -\lambda \Psi$ 

'In order to understand this we need to Get help from Mathematics!'