

Tutorium 8: Wiederholungstutorium

Matthias Schimek | 23. Juni 2017

TUTORIUM ZUR VORLESUNG ALGORITHMEN I IM SS17

Gliederung

- O-Kalkül
- 2 Mastertheorem und Rekurrenzen
- Werkettete Listen/Arrays
- 4 Hashing
- Sortieren
- Ganzzahliges Sortieren

Matthias Schimek - Tutorium 8: Wiederholungstutorium

O-Kalkül Definitionen

$$g \in \mathcal{O}(f)$$
:

$$\exists c > 0 \ \exists n_0 \in \mathbb{N} \ \forall n > n_0 : \ g(n) \leq c \cdot f(n)$$

$$g \in o(f)$$
:

$$g \in \Omega(f)$$
:

$$\exists c > 0 \ \exists n_0 \in \mathbb{N} \ \forall n > n_0 : \ g(n) \geq c \cdot f(n)$$

$$g \in \omega(f)$$
:

$$g \in \Theta(f)$$

O-Kalkül Definitionen

$$g \in \mathcal{O}(f)$$
:

$$\exists c > 0 \ \exists n_0 \in \mathbb{N} \ \forall n > n_0 : \ g(n) \leq c \cdot f(n)$$

$$g \in o(f)$$
:

$$g \in \Omega(f)$$
:

$$\exists c > 0 \ \exists n_0 \in \mathbb{N} \ \forall n > n_0 : \ g(n) \geq c \cdot f(n)$$

$$g \in \omega(f)$$
:

$$g \in \Theta(f)$$
?

Matthias Schimek - Tutorium 8: Wiederholungstutorium

Sortieren

O-Kalkül - Aufgaben

Beweise oder widerlege:

- $n^2 \in o(n^3)$
- $n^3 \in \Omega(n^2)$
- $n \in \Theta(\sqrt{n})$,
- $3^n \in \mathcal{O}(2^n)$

Matthias Schimek - Tutorium 8: Wiederholungstutorium

Mastertheorem

Mittels Mastertheorem lassen sich folgende Rekurrenzen lösen:

■ a, b, c und d positive Konstanten, $n \in \mathbb{N}$

$$T(n) = \begin{cases} a & \text{für } n = 1\\ d \cdot T(n/b) + c \cdot n & \text{für } n > 1 \end{cases}$$

Es gilt:

$$\mathsf{T}(n) \in \begin{cases} \Theta(n) & \text{für } d < b \\ \Theta(n \cdot \log n) & \text{für } d = b \\ \Theta(n^{\log_b d}) & \text{für } d > b \end{cases}$$

Mastertheorem

Mittels *Mastertheorem* lassen sich folgende Rekurrenzen lösen:

a, b, c und d positive Konstanten, $n \in \mathbb{N}$

$$T(n) = \begin{cases} a & \text{für } n = 1\\ d \cdot T(n/b) + c \cdot n & \text{für } n > 1 \end{cases}$$

Es gilt:

$$\mathsf{T}(n) \in \begin{cases} \Theta(n) & \text{für } d < b \\ \Theta(n \cdot \log n) & \text{für } d = b \\ \Theta(n^{\log_b d}) & \text{für } d > b \end{cases}$$

Mastertheorem - Aufgaben

Gib möglichst scharfe asymptotische Schranken mit Hilfe des Mastertheorems an:

i)
$$A(1) = 1$$
 und für $n \in \mathbb{N}_{>1} : A(n) = 5 \cdot A(\lceil n/5 \rceil) + 12 \cdot n$

ii)
$$B(1) = 1$$
 und für $n \in \mathbb{N}_{>1}$:
 $B(n) = 2 \cdot B(\lceil n/4 \rceil) + n + 3 \cdot \log n + 10$

23. Juni 2017

Listen - doppelt verkettet

Class Handle = Pointer to Item

- Aufgabe in Pseudocode Item C in Liste zwischen Item A und Item B

¹Quelle: Vorlesungsfolien, Algo I, KIT

Listen - doppelt verkettet

Class Handle = Pointer to Item

- Problem: Vorgänger erstes Element? Nachfolger von letztem Element?
- Lösung: dummy header
- **Aufgabe** in Pseudocode Item *C* in Liste zwischen Item *A* und Item *B* einfügen

Matthias Schimek - Tutorium 8: Wiederholungstutorium

23. Juni 2017

Listen - einfach verkettet

2

- Nur ein Zeiger
- Dummy Header
- Zeiger auf letztes Element für pushBack

²Quelle: Vorlesungsfolien, Algo I, KIT

O-Kalkül Mastertheorem und Rekurrenzen Verkettete Listen/Arrays

Hashing

lashing Sortier

23. Juni 2017

8/16

Unbounded Array

Unbounded Array = Bounded Array mit Füllstand

- w allozierte Größe des Bounded Arrays
- n Anzahl der gespeicherten Elemente im Array
- \bullet α Konstante > 1
- Invariante: $n \le w < \alpha \cdot n$
- ⇒ Wenn zu voll → umkopieren in größeres Array
- ⇒ Wenn zu leer → umkopieren in kleineres Array Wann genau wird umkopiert?

23. Juni 2017

Unbounded Array

Unbounded Array = Bounded Array mit Füllstand

- w allozierte Größe des Bounded Arrays
- n Anzahl der gespeicherten Elemente im Array
- \bullet α Konstante > 1
- Invariante: $n \le w < \alpha \cdot n$
- ⇒ Wenn zu voll → umkopieren in größeres Array
- ⇒ Wenn zu leer → umkopieren in kleineres Array Wann genau wird umkopiert?

Hashtabelle

- Speichere Menge $M \subset Universum$
- key(e) eindeutig für $e \in M$
- unterstützt folgende Operationen in *mathcalO*(1):
 - \blacksquare $M.insert(e): M:=M\cup\{e\}$
 - ullet M.remove(k: key): $M := M \setminus \{e\}, key(e) = k$
 - $M.find(k : key) : return \ e \in M \ with \ key(e) = k; \perp falls \ e \notin M$

10/16

Hashtabellen - Verkettete Listen

Implementiere die Folgen in den Tabelleneinträgen durch einfach verkettete Listen

insert(e): Füge e am Anfang von t[h(key(e))] ein.

remove(k): Durchlaufe t[h(k)].

Element e mit key(e) = k gefunden?

→ löschen und zurückliefern.

find(k): Durchlaufe t[h(k)].

Element e mit key(e) = k gefunden?

Sonst: \perp zurückgeben.

²Folien 'Algorithmen I', KIT

O-Kalkül

3

Mastertheorem und Rekurrenzen

Hashtabellen - Linear Probing

insert: axe, chop, clip, cube, dice, fell, hack, hash, lop, slash

T, T												
an	bo	ср	dq	er	fs	gt	hu	iv	jw	kх	ly	mz
tt = 0	1	2	3	4	5	6	7	8	9	10	11	12
上	上	上	ユ	axe	\perp	上	上	上	上	上	ユ	上
上	上	chop	丄	axe	上	上	上	上	上	上	上	上
\Box	上	chop	clip	axe	ユ	丄	上	上	上	上	上	上
\Box	上	chop	clip	axe	cube	上	上	上	上	上	上	上
上	上	chop	clip	axe	cube	dice	上	上	上	上	ユ	上
上	上	chop	clip	axe	cube	dice	上	上	上	上	fell	上
上	ユ	chop	clip	axe	cube	dice	上	上	上	hack	fell	丄
上	上	chop	clip	axe	cube	dice	hash	上	上	上	fell	丄
上	丄	chop	clip	axe	cube	dice	hash	lop	上	hack	fell	丄
	上	chop	clip	axe	cube	dice	hash	lop	slash	hack	fell	上

remove 🗸 clip

	上	\dashv	chop	CHIP	axe	cube	dice	hash	lop	slash	hack	fell	\perp
	丄	上	chop	lop	axe	cube	dice	hash	DOP	slash	hack	fell	上
	丄	上	chop	lop	axe	cube	dice	hash	slash	slash	hack	fell	上
Γ		上	chop	lop	axe	cube	dice	hash	slash	ユ	hack	fell	上

Hashing ○○●○

Hashing

Es sei die Hashfunktion $h: \mathbb{N} \to \{0...13\}, \ h(x) = x \mod 14$ und eine Hashtabelle mit 14 Einträgen gegeben.

Füge die Zahlen

75, 44, 46, 53, 14, 2, 40, 61, 87, 86, 13, 28 mittels

- Hashing mit verketteten Listen
- Hashing mit linearer Suche

ein

23. Juni 2017

Sortieralgorithmen

Sortieralgorithmen:

- Insertionsort
- Quicksort
- Mergesort
- Heapsort
- Bogosort

Funktionsweise? Laufzeit?

Aufgabe

Gegeben: Array mit n Zahlen a_i und $0 \le a_i \le (n-1)$. Sortiert das Array in $\mathcal{O}(n)$ Zeit

O-Kalkül

Mastertheorem und Rekurrenzen

Verkettete Listen/Arrays

Sortieren

Ganzzahliges Sortieren

Satz Vergleichsbasiertes Sortieren benötigt $\Omega(n \log n)$ Vergleiche

- Geht es anders?
- Wie funktioniert Bucketsort?
- Wie funktioniert LSD-Radixsort
- Was ist der unterschied zu MSD-Radixsort?

Matthias Schimek - Tutorium 8: Wiederholungstutorium

Ganzzahliges Sortieren

Satz Vergleichsbasiertes Sortieren benötigt $\Omega(n \log n)$ Vergleiche

- Geht es anders?
- Wie funktioniert Bucketsort?
- Wie funktioniert LSD-Radixsort
- Was ist der unterschied zu MSD-Radixsort?

