CAPS:

Computational Aircraft Prototype Syntheses

Monthly Report – February 2018

Robert Haimes, PI John F. Dannenhoffer, III Julia Docampo-Sánchez

May 1, 2018

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DA	TE (DD-MM-	· · · · · · · · · · · · · · · · · · ·			3. DATES COVERED (From — To)	
yy-03-2018 Technical Report					1 February 2018 – 28 February 2018	
4. TITLE AND SUBTITLE					5a. CONTRACT NUMBER	
					FA8650-14-C-2472	
					5b. GRANT NUMBER	
CAPS Monthly Status Report						
					5c. PROGRAM ELEMENT NUMBER	
					Sc. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)					5d. PROJECT NUMBER	
Haimes, Robert					5e. TASK NUMBER	
Docampo-Snchez, Julia						
Dannenhoffer, John, F, III*					5f. WORK UNIT NUMBER	
31					SI. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)					8. PERFORMING ORGANIZATION REPORT NUMBER	
MITTER CO. 1 .	1 3.5.4				NOWIDER	
MIT, Cambridge MA Syracuse University, Syracuse NY*						
Syracuse University, Syracuse IVI						
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)					10. SPONSOR/MONITOR'S ACRONYM(S)	
					AFRL/RQVC	
Air Force Research Labs					11. SPONSOR/MONITOR'S REPORT	
Wright-Patterson AFB, OH					NUMBER(S)	
					Data Item No. A006	
12. DISTRIBUTION / AVAILABILITY STATEMENT						
Approval for public release; distribution is unlimited.						
Approval for public release, distribution is diminified.						
13. SUPPLEMENTARY NOTES						
14. ABSTRACT						
The objective of this effort is to establish a computational geometry, meshing and analysis model generation tool that						
can be used across AFRL/RQV. This common tool will enable collaboration between conceptual design, multidisciplinary						
optimization and high fidelity simulation efforts.						
15. SUBJECT TERMS						
10. GODDECT TERRITO						
multidisciplinary analysis; multi-fidelity geometry; aircraft design; software infrastructure						
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON						
a. REPORT	b. ABSTRACT	c. THIS PAGE	ABSTRACT	OF PAGES	Robert Haimes	
U	U	U	UU	XX	19b. TELEPHONE NUMBER (include area code)	
Ŭ					(617) 253–7518	

Figure 1: Illustration of the regularization process showing the initial mesh (left), the single element operation process (second image), further regularization by combining swap&split and the final mesh afer being optimized (right.

Figure 2: Swap&split operation: the left plot shows all the places where we could apply the technique and the right plot is a zoom of the lower swap and split step showing how we have gone from three irregular vertices (2 valence 5, 1 valence 3) to 1 irregular vertex (valence 5).

1 Combined Operations

2 Curvature Driven Element Sizing

Let K_1 and K_2 denote the principal curvatures and \vec{k}_1, \vec{k}_2 the principal directions. We will cast the optimization problem based on the surface curvature in the following way: reallocate the vertices so that they are aligned with the principal directions and the edge size reflects the underlying curvature.

- 1. Element Orientation. During the local (global) optimization process, we combine the equi-angle approach with the principal curvature directions; for irregular vertices (valence \neq 4), since we cannot align with the curvature directions (two directions = four edges) we compute the error assuming that the optimal distribution will produce equal internal angles. On the other hand, for regular vertices, we proceed as follows. At each vertex:
 - Get principal directions.
 - Construct normal plane to the surface.
 - Project each of the linking vertices (edges) onto the normal plane.
 - Find the edge that is closest to any of the curvature directions (pivot).
 - Compute the four angles using the pivot as leading direction.

Figure 3:

Figure ?? illustrates this operation. At each vertex we obtain the principal directions and construct the normal plane.

2. Element Size. We use an approach suggested in []. From any vertex, we compute a metric based on the local curvature approximating the arc-length by the chord:

$$s = \frac{\ell}{1 - \epsilon} \tag{1}$$

$$s = \frac{\ell}{1 - \epsilon}$$

$$g(\epsilon) = \sqrt{40(1 - (\sqrt{1 - 1.2\epsilon})}$$

$$(2)$$

where s denotes the arc-length, ℓ the chord and ϵ is a user defined tolerance. This equation is obtained by linearization, using that $s = c\theta$, being c the radius of curvature and θ the angle with respect the principal curvature.