What is claimed as new and desired to be protected by Letters Patent of the United States is:

- 1. A capacitor for a semiconductor device, said capacitor comprising:
 - a bottom conducting layer;
 - a dielectric layer deposited on said bottom conducting layer; and

an oxygen permeable top conducting layer deposited and annealed on said dielectric layer.

- 2. The capacitor of claim 1, wherein said bottom conducting layer is formed of a material selected from the noble metal group.
- 3. The capacitor of claim 1, wherein said bottom conducting layer is formed of a metal.
- 4. The capacitor of claim 1, wherein said bottom conducting layer is formed of a metal alloy.
- 5. The capacitor of claim 1, wherein said bottom conducting layer is formed of a conducting metal oxide.
- 6. The capacitor of claim 1, wherein said bottom conducting layer is formed of a metal nitride.
- 7. The capacitor of claim 1, wherein said bottom conducting layer is formed of a material selected from the group consisting of: Platinum (Pt), Platinum Rhodium (PtRh), Platinum Iridium (PtIr), Ruthenium, Ruthenium Oxide (RuQ₂), Rhodium Oxide (RhO₂), Chromium Oxide (CrO₂), Molybdenum Oxide (MoO₂), Rhemium Oxide (ReO₃), Iridium Oxide (IrO₂), Titanium Oxides (TiO₁ or TiO₂), Vanadium Oxides

20

5

(VO₁ or VO₂), Niobium Oxides (NbO₁ or NbO₂), and Tungsten Nitride (WNx, WN, or W₂N).

- 8. The capacitor of claim 7, wherein said bottom conducting layer is formed of a material selected from the group consisting of: Platinum (Pt), Platinum Rhodium (PtRh), Platinum Iridium (PtIr), and Tungsten Nitride (WNx, WN, or W₂N).
- 9. The capacitor of claim 1, wherein said bottom conducting layer is placed on top of an oxygen barrier.
- 10. The capacitor of claim 1, wherein said dielectric layer is a dielectric metal oxide layer.
- 11. The capacitor of claim 1, wherein said dielectric layer has a dielectric constant between 7 and 300.
- 12. The capacitor of claim 1, wherein said dielectric layer is formed of a material selected from the group consisting of: Tantalum Oxide, Tantalum Pentoxide (Ta₂O₅), Barium Strontium Titanate (BST), Aluminum Oxide (Al₂O₃), Zirconium Oxide (ZrO₂), Praseodymium Oxide (PrO₂), Tungsten Oxide (WO₃), Niobium Pentoxide (Nb₂O₅), Strontium Bismuth Tantalate (BST), Hafnium Oxide (HfO₂), Hafnium Silicate, Lanthanum Oxide (La₂O₃), Yttrium Oxide (Y₂O₃) and Zirconium Silicate.
- 13. The capacitor of claim 12, wherein said dielectric layer is formed of a material selected from the group consisting of: Tantalum Oxide, Tantalum Pentoxide (Ta₂O₅), Barium Strontium Titanate (BST), Strontium Bismuth Tantalate (SBT), Aluminum Oxide (Al₂O₃), Zirconium Oxide (ZrO₂) and Hafnium Oxide (HfO₂).

on Docket No. Micron 99-0597 Docket No. M4065.0210

and the second is a second to the contract of the contract of the second contract of the second that the second

20

10

- 14. The capacitor of claim 13, wherein said dielectric layer is Tantalum Oxide and is amorphous or crystalline.
- 15. The capacitor of claim 1, wherein said top conducting layer is formed of a material selected from the noble metal group.
- 16. The capacitor of claim 1, wherein said top conducting layer is formed of a non-oxidizing metal permeable to oxygen.
 - 17. The capacitor of claim 1, wherein said top conducting layer is formed of a conducting metal oxide.
 - 18. The capacitor of claim 1, wherein said top conducting layer is formed of a material selected from the group consisting of: Platinum (Pt), Platinum Rhodium (PtRh), Platinum Iridium (PtIr), Ruthenium, Ruthenium Oxide (RuO₂), Rhodium Oxide (RhO₂), Chromium Oxide (CrO₂), Molybdenum Oxide (MoO₂), Rhemium Oxide (ReO₃), Iridium Oxide (IrO₂), Titanium Oxides (TiO₁ or TiO₂), Vanadium Oxides (VO₁ or VO₂), and Niobium Oxides (NbO₁ or NbO₂).
- 19. The capacitor of claim 18, wherein said top conducting layer is formed of a material selected from the group consisting of: Platinum (Pt), Platinum Rhodium (PtRh), and Platinum Iridium (PtIr).
 - 20. The capacitor of claim 1, wherein said bottom and top conducting layers are formed of a material selected from the group consisting of: Platinum, Platinum Rhodium (PtRh), or Platinum Iridium (PtIr) and said dielectric layer is a layer of Tantalum Oxide.

- 21. The capacitor of claim 1, wherein said bottom and top conducting layers are formed of a material selected from the group consisting of: Platinum, Platinum Rhodium (PtRh), or Platinum Iridium (PtIr) and said dielectric layer is a layer of Barium Strontium Titanate (BST).
- 5 22. The capacitor of claim 1, wherein said top conducting layer is formed of a material selected from the group consisting of: Platinum, Platinum Rhodium (PtRh), or Platinum Iridium (PtIr) and said bottom conducting layer is a layer of Tungsten Nitride (WNx, WN, or W₂N) layer and said dielectric layer is a layer of Aluminum Oxide (Al₂O₃).
 - 23. The capacitor of claim 1, wherein said top conducting layer is annealed with an oxygen compound.
 - 24. The capacitor of claim 23, wherein said oxygen annealed layer is one annealed in the presence of a material selected from the group consisting of: Oxygen (O₂), Ozone (O₃), Nitrous Oxide (N₂O), Nitric Oxide (NO), and water vapor (H₂O).
- 25. The capacitor of claim 23, wherein said oxygen annealed layer is one annealed in the presence of a gas mixture containing at least one element selected from the group consisting: Oxygen (O₂), Ozone (O₃), Nitrous Oxide (N₂O), Nitric Oxide (NO), and water vapor (H₂O).
- 26. The capacitor of claim 23, wherein oxygen annealed layer is a plasma enhanced annealed layer.

- 27. The capacitor of claim 26, wherein said oxygen containing anneal is a remote plasma enhanced anneal.
- 28. The capacitor of claim 23, wherein said oxygen containing anneal is an ultraviolet light enhanced anneal.
- 5 29. The capacitor of claim 1, wherein said capacitor is a stacked capacitor.
 - 30. The capacitor of claim 1, wherein further comprising an access transistor connected to said capacitor.
 - 31. The capacitor of claim 1, wherein said capacitor forms part of a dynamic random access memory cell.
 - 32. A method of forming a capacitor in a semiconductor device, said method comprising:

forming a bottom conducting layer;

forming a dielectric layer over the bottom conducting layer;

forming a top conducting layer over the dielectric layer; and

annealing the top conducting layer after it is formed.

- 33.A method of forming a capacitor of claim 32, wherein said capacitor is formed over a conductive plug, said method further comprising depositing an oxygen barrier over said conductive plug prior to forming the bottom conducting layer.
 - 34. A method of forming a capacitor of claim 32, said method further comprising:

on Docket No. Micron 99-0597 Docket No. M4065.0210

-20-

annealing the dielectric layer after it is formed.

35. A method of forming a capacitor of claim 32, wherein said bottom conducting layer is formed of a material selected from the noble metal group.

36. A method of forming a capacitor of claim 32, wherein said bottom conducting layer is formed of a metal.

37. A method of forming a capacitor of claim 32, wherein said bottom conducting layer is formed of a metal alloy.

38. A method of forming a capacitor of claim 32, wherein said bottom conducting layer is formed of a conducting metal oxide.

39. A method of forming a capacitor of claim 32, wherein said bottom conducting layer is formed of a metal nitride.

40. A method of forming a capacitor of claim 32, wherein said bottom conducting layer is formed of a material selected from the group consisting of: Platinum (Pt), Platinum Rhodium (PtRh), Platinum Iridium (PtIr), Ruthenium, Ruthenium Oxide (RuO₂), Rhodium Oxide (RhO₂), Chromium Oxide (CrO₂), Molybdenum Oxide (MoO₂), Rhemium Oxide (ReO₃), Iridium Oxide (IrO₂), Titanium Oxides (TiO₁ or TiO₂), Vanadium Oxides (VO₁ or VO₂), Niobium Oxides (NbO₁ or NbO₂), and Tungsten Nitride (WNx, WN or W₂N).

15

- 41. A method of forming a capacitor of claim 40, wherein said bottom conducting layer is formed of a material selected from the group consisting of: Platinum (Pt), Platinum Rhodium (PtRh), Platinum Iridium (PtIr), and Tungsten Nitride (WNx, WN or W₂N).
- 42. A method of forming a capacitor of claim 32, wherein said dielectric layer is a dielectric metal oxide layer.
- 43. A method of forming a capacitor of claim 32, wherein said dielectric layer has a dielectric constant between 7 and 300.
- 44. A method of forming a capacitor of claim 32, wherein said dielectric layer is formed of a material selected from the group consisting of: Tantalum Oxide, Tantalum Pentoxide (Ta₂O₅), Barium Strontium Titanate (BST), Aluminum Oxide (Al₂O₃), Zirconium Oxide (ZrO₂), Praseodymium Oxide (PrO₂), Tungsten Oxide (WO₃), Niobium Pentoxide (Nb₂O₅), Strontium Bismuth Tantalate (SBT), Hafnium Oxide (HfO₂), Hafnium Silicate, Lanthanum Oxide (La₂O₃), Yttrium Oxide (Y₂O₃), and Zirconium Silicate.
- 45. A method of forming a capacitor of claim 44, wherein said dielectric layer is formed of a material selected from the group consisting of: Tantalum Oxide, Tantalum Pentoxide (Ta₂O₅), Barium Strontium Titanate (BST), Strontium Bismuth Tantalate (BST), Aluminum Oxide (Al₂O₃), Zirconium Oxide (ZrO₂) and Hafnium Oxide (HfO₂).
- 46. A method of forming a capacitor of claim 45, wherein said dielectric layer is Tantalum Oxide and is crystalline or amorphous material.

- 47. A method of forming a capacitor of claim 46, wherein said amorphous dielectric layer is heated to a temperature above 200 degrees Celsius to change said dielectric layer from an amorphous material to a crystalline material.
- 48. A method of forming a capacitor of claim 32, wherein said top conducting layer is formed of a material selected from the noble metal group.
 - 49. A method of forming a capacitor of claim 32, wherein said top conducting layer is formed of a non-oxidizing metal permeable to oxygen.
 - 50.A method of forming a capacitor of claim 32, wherein said top conducting layer is formed of a conducting metal oxide.
 - 51.A method of forming a capacitor of claim 32, wherein said top conducting layer is formed of a material selected from the group consisting of: Platinum (Pt), Platinum Rhodium (PtRh), Platinum Iridium (PtIr), Ruthenium, Ruthenium Oxide (RuO₂), Rhodium Oxide (RhO₂), Chromium Oxide (CrO₂), Molybdenum Oxide (MoO₂), Rhemium Oxide (ReO₃), Iridium Oxide (IrO₂), Titanium Oxides (TiO₁ or TiO₂), Vanadium Oxides (VO₁ or VO₂), and Niobium Oxides (NbO₁ or NbO₂).
 - 52.A method of forming a capacitor of claim 51, wherein said top conducting layer is formed of a material selected from the group consisting of: Platinum (Pt), Platinum Rhodium (PtRh), and Platinum Iridium (PtIr).
- 53. A method of forming a capacitor of claim 32, wherein said bottom and top conducting
 layers are formed of a material selected from the group consisting of: Platinum,

15

20

5

Platinum Rhodium (PtRh), or Platinum Iridium (PtIr) and said dielectric layer is a layer of Tantalum Oxide.

- 54. A method of forming a capacitor of claim 32, wherein said bottom and top conducting layers are formed of a material selected from the group consisting of: Platinum, Platinum Rhodium (PtRh), or Platinum Iridium (PtIr) and said dielectric layer is a layer of Barium Strontium Titanate (BST) or Strontium Bismuth Tantalate (SBT).
- 55. A method of forming a capacitor of claim 32, wherein said top conducting layers are formed of a material selected from the group consisting of: Platinum, Platinum Rhodium (PtRh), or Platinum Iridium (PtIr) and said bottom conducting layer is a layer of Tungsten Nitride (WNx, WN or W₂N) layer and said dielectric layer is a layer of Aluminum Oxide (Al₂O₃).
- 56. A method of forming a capacitor of claim 32, wherein said annealing is performed with an oxidizing gas.
- 57. A method of forming a capacitor of claim 56, wherein said annealing is performed with a material selected from the group consisting of: Oxygen (O₂), Ozone (O₃), Nitrous Oxide (N₂O), Nitric Oxide (NO), and water vapor (H₂O).
 - 58. A method of forming a capacitor of claim 57, wherein said annealing is performed with a gas mixture containing at least one element selected from the group consisting: Oxygen (O₂), Ozone (O₃), Nitrous Oxide (N₂O), Nitric Oxide (NO), and water vapor (H₂O).

and the second of the second second

- 59.A method of forming a capacitor of claim 56, wherein said annealing is a plasma enhanced annealing.
- 60. A method of forming a capacitor of claim 59, wherein said annealing is a remote plasma enhanced annealing.
- 5 61.A method of forming a capacitor of claim 56, wherein said annealing is an ultraviolet light enhanced annealing.
 - 62. A method of forming a capacitor of claim 32, wherein said annealing is performed at a temperature between 300 and 800 degrees Celsius.
 - 63.A method of forming a capacitor of claim 62, wherein said annealing is performed at a temperature between 400 and 750 degrees Celsius.
 - 64.A method of forming a capacitor of claim 32, wherein said annealing is performed at a pressure between 1 and 760 torr.
 - 65. A method of forming a capacitor of claim 64, wherein said annealing is performed at a pressure between 2 and 660 torr.
- 15 66.A method of forming a capacitor of claim 32, wherein said annealing is performed for between 10 seconds and 60 minutes.
 - 67.A method of forming a capacitor of claim 66, wherein said annealing is performed for between 10 seconds and 30 minutes.

- 68.A method of forming a capacitor of claim 32, wherein said annealing is performed in the presence of an oxygen as with a gas flow rate between 0.01 and 10 liters per second.
- 69. A processor system comprising:
 - a processor;
- and a memory device coupled to said processor further comprising a capacitor structure, wherein said capacitor structure comprises:
 - a bottom conducting layer;
 - a dielectric layer deposited on said bottom conducing layer; and
 - an oxygen permeable top conducting layer deposited and annealed on said dielectric layer.
 - 70. A processor system of claim 69, wherein said capacitor further comprises:
 - an annealed dielectric layer after it is formed.
 - 71. The system of claim 69, wherein said bottom conducting layer is formed of a material selected from the noble metal group.
- 15 72. The system of claim 69, wherein said bottom conducting layer is formed of a metal.
 - 73. The system of claim 69, wherein said bottom conducting layer is formed of a metal alloy.

- 74. The system of claim 69, wherein said bottom conducting layer is formed of a conducting metal oxide.
- 75. The system of claim 69, wherein said bottom conducting layer is formed of a metal nitride.
- 76. The system of claim 69, wherein said bottom conducting layer is formed of a material selected from the group consisting of: Platinum (Pt), Platinum Rhodium (PtRh), Platinum Iridium (PtIr), Ruthenium, Ruthenium Oxide (RuO₂), Rhodium Oxide (RhO₂), Chromium Oxide (CrO₂), Molybdenum Oxide (MoO₂), Rhemium Oxide (ReO₃), Iridium Oxide (IrO₂), Titanium Oxides (TiO₁ or TiO₂), Vanadium Oxides (VO₁ or VO₂), Niobium Oxides (NbO₁ or NbO₂), and Tungsten Nitride (WN, WNX, or W₂N).
 - 77. The system of claim 76, wherein said bottom conducting layer is formed of a material selected from the group consisting of: Platinum (Pt), Platinum Rhodium (PtRh), and Platinum Iridium (PtIr), and Tungsten Nitride (WN, WNX, or W₂N).
- 15 78. The system of claim 69, wherein said bottom conducting layer is placed on top of an oxygen barrier.
 - 79. The system of claim 69, wherein said dielectric layer is a dielectric metal oxide layer.
 - 80. The system of claim 69, wherein said dielectric layer has a dielectric constant between 7 and 300.

The state of the s

20

5

81. The system of claim 69, wherein said dielectric layer is formed of a material selected from the group consisting of: Tantalum Oxide, Tantalum Pentoxide (Ta₂O₅), Barium Strontium Titanate (BST), Aluminum Oxide (Al₂O₃), Zirconium Oxide (ZrO₂), Praseodymium Oxide (PrO₂), Tungsten Oxide (WO₃), Niobium Pentoxide (Nb₂O₅), Strontium Bismuth Tantalate (SBT), Hafnium Oxide (HfO₂), Hafnium Silicate, Lanthanum Oxide (La₂O₃), Yttrium Oxide (Y₂O₃) and Zirconium Silicate.

- 82. The system of claim 81, wherein said dielectric layer is formed of a material selected from the group consisting of: Tantalum Pentoxide (Ta₂O₅), Barium Strontium Titanate (BST), Strontium Bismuth Tantalate (SBT), Aluminum Oxide (Al₂O₃), Zirconium Oxide (ZrO₂) and Hafnium Oxide (HfO₂).
- 83. The system of claim 69, wherein said top conducting layer is formed of a material selected from the noble metal group.
- 84. The system of claim 69, wherein said top conducting layer is formed of a non-oxidizing metal permeable to oxygen.
- 15 85. The system of claim 69, wherein said top conducting layer is formed of a conducting metal oxide.
 - 86. The system of claim 69, wherein said top conducting layer is formed of a material selected from the group consisting of: Platinum (Pt), Platinum Rhodium (PtRh), Platinum Iridium (PtIr), Ruthenium, Ruthenium Oxide (RuO₂), Rhodium Oxide (RhO₂), Chromium Oxide (CrO₂), Molybdenum Oxide (MoO₂), Rhemium Oxide

5

(ReO₃), Iridium Oxide (IrO₂), Titanium Oxides (TiO₁ or TiO₂), Vanadium Oxides (VO₁ or VO₂), and Niobium Oxides (NbO₁ or NbO₂).

- 87. The system of claim 86, wherein said top conducting layer is formed of a material selected from the group consisting of: Platinum (Pt), Platinum Rhodium (PtRh), and Platinum Iridium (PtIr).
- 88. The system of claim 69, wherein said bottom and top conducting layers are formed of a material selected from the group consisting of: Platinum, Platinum Rhodium (PtRh), or Platinum Iridium (PtIr) and said dielectric layer is a layer of Tantalum Oxide.
- 89. The system of claim 69, wherein said bottom and top conducting layers are formed of a material selected from the group consisting of: Platinum, Platinum Rhodium (PtRh), or Platinum Iridium (PtIr) and said dielectric layer is a layer of Barium Strontium Titanate (BST).
- 90. The system of claim 69, wherein said top conducting layer is formed of a material selected from the group consisting of: Platinum, Platinum Rhodium (PtRh), or Platinum Iridium (PtIr) and said bottom conducting layer is a layer of Tungsten Nitride (WNx, WN, or W₂N) layer and said dielectric layer is a layer of Aluminum Oxide (Al₂O₃).
- 91. The system of claim 69, wherein said post deposition annealed top conducting layer is annealed with an oxygen compound.
- 92. The system of claim 91, wherein said oxygen annealed layer is annealed in the presence of a material selected from the group consisting of: Oxygen (O₂), Ozone (O₃), Nitrous

on Docket No. Micron 99-0597 Docket No. M4065.0210

-29-

O Start and the start was an end of the start of the star

5

Oxide (N_2O) , Nitric Oxide (NO), and a gas mixture containing Oxygen (O_2) , Ozone (O_3) , Nitrous Oxide (N_2O) , Nitric Oxide (NO), and water vapor (H_2O) .

- 93. The system of claim 91, wherein said oxygen annealed layer is annealed in the presence of a gas mixture containing at least one element selected from the group consisting of: Oxygen (O₂), Ozone (O₃), Nitrous Oxide (N₂O), Nitric Oxide (NO), and water vapor (H₂O).
- 94. The system of claim 91, wherein said oxygen annealed layer is a plasma enhanced anneal layer.
- 95. The system of claim 94, wherein said oxygen containing anneal is a remote plasma enhanced anneal.
- 96. The system of claim 91, wherein said oxygen containing anneal is an ultraviolet light enhanced anneal.