% produzem os resultados pela decomposicao LU \mathbb{A} =

-3.0000 0 -1.0000 0.2500 0.2500 0.7500	
-4.0000 0 0 -1.0000	
-4.0000 0 1.0000 -1.0000	5 H
2.0000 0 1.0000 -0.5000 0	
4.0000 2.0000 0.5000 0.5000	4 6 2 termos independentes
4.0000 0 0.2500 0.2500 Det = 6	Pivot = 3 % vetor de 1 b =

% As substituicoes sucessivas pivotal resultam em

% As substituicoes sucessivas produzem a solucao 2.0000 -0.25001.6667 0.3333 0.6667 0.7500 0.6667 1.0000

Os coeficientes estequiométricos são obtidos pela solução do sistema acrescido de $x_7=1$ $\longrightarrow x=[0,6667\ 1,0000\ 1,6667\ 0,3333\ 0,6667\ 1,6667\ 1]^T.$

1.6667

Análise dos resultados 🛕

Usualmente, os coeficientes estequiométricos são expressos como números inteiros. Pela regra de Cramer, para obter x com valores inteiros basta mutiplicá-lo pelo determinante de A, no caso, $\det(A)=6$. Para mais uma simplificação, divide-se o valor obtido por 2, resultando em

$$x = [2\ 3\ 5\ 1\ 2\ 5\ 3]^T$$
.

Portanto, a equação química balanceada torna-se

$$2KMnO_4 + 3H_2SO_4 + 5NaNO_2 \longrightarrow K_2SO_4 + 2MnSO_4 + 5NaNO_3 + 3H_2O.$$

2,11 Exercícios

$$A = \begin{bmatrix} 2 & -3 & 0 \\ 1 & 4 & 6 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 9 \\ 4 & 2 & -1 \\ 5 & -2 & 8 \end{bmatrix}$$

alcular A+B.

2.2. Verificar que $(A+B)^T=A^T+B^T$ usando as matrizes $A\in B$ do Exercício 2.1.

2.3. Calcular os autovalores das matrizes dadas abaixo, verificar que

$$\operatorname{trago}(A) = \sum_{i=1}^{n} \lambda_i \ \ \text{e} \ \ \det(A) = \prod_{i=1}^{n} \lambda_i.$$

e observar que os autovalores $\lambda(A) = \lambda(A^T)$.

(a)
$$A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$$

(b) $A = \begin{bmatrix} 5 & 1 \\ 2 & 4 \end{bmatrix}$
(c) $A = \begin{bmatrix} -1 & 5 \\ -2 & 5 \end{bmatrix}$

2.4. Dado o vetor $x = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}^T$, calcular as normas

2.5. Calcular as normas da matriz

c) $||A||_F$.

Seção 2.2

2.6. Resolver o sistema triangular inferior por meio das substituições sucessivas

$$\begin{bmatrix} 4 & 0 & 0 \\ -2 & 5 & 0 \\ 1 & 7 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -2 \\ 5 \\ 6 \end{bmatrix}$$

2.7. Calcular a solução do sistema triangular superior utilizando as substituições retroativas

$$\begin{bmatrix} 6 & -2 & 5 \\ 0 & 4 & -3 \\ 0 & 0 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 19 \\ 3 \\ -7 \end{bmatrix}$$

2.8. Achar a solução do sistema triangular su-

$$\begin{bmatrix} 7 & 0 & -3 & 5 \\ 0 & -1 & 6 & 2 \\ 0 & 0 & 4 & -3 \\ 0 & 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -9 \\ 12 \\ -3 \\ 5 \end{bmatrix}.$$

2.9. Implementar, em qualquer linguagem de programação, o algoritmo de substituições sucessivas mostrado na Figura 2.3.

2.10. Implementar, em uma linguagem de programação, o algoritmo de substituições retroativas apresentado na Figura 2.4.

Seção 2.3

e usando 3 casas decimais; verificar também a minação de Gauss, com a estratégia indicada Resolver os sistemas abaixo pelo método de eliunicidade e exatidão da solução

2.11. Sem pivotação parcial
$$\begin{bmatrix}
1 & 1 & 4 & x_1 \\
-3 & -1 & 4 & x_2 \\
0 & 14 & x_2
\end{bmatrix} = \begin{bmatrix}
8 & 8 & x_1 \\
8 & x_2 & x_2
\end{bmatrix} = \begin{bmatrix}
8 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0$$

2.12. Com pivotação parcial
$$\begin{bmatrix} -2 & 3 & 1 \\ 2 & 1 & -4 \\ 4 & 10 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -5 \\ -9 \\ 2 \end{bmatrix}.$$

2.13. Sem e com pivotação parcial, comparando os resultados
$$\begin{bmatrix} 1 & 1 & 3 & 5 & 6 \\ 1 & 1 & 3 & 5 & 6 \end{bmatrix} \begin{bmatrix} x_1 & 1 & 1 \\ 1 & 2 & 3 & 5 \end{bmatrix}$$

So resultados
$$\begin{bmatrix} -2 & 3 & 1 & 5 \\ -2 & 3 & 1 & 0 \\ 5 & 1 & -1 & 0 \\ 1 & 6 & 3 & -1 \\ 4 & 5 & 2 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_4 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 6 \end{bmatrix}.$$

2.15. Com pivotação parcial
$$\begin{bmatrix} 1 & 3 & 2 & 4 \end{bmatrix}$$

2.15. Com pivotação parcial

0 1 3 2 4 |
$$x_1$$

8 -2 9 -1 2 | x_2

5 1 1 7 2 | x_3

-2 4 5 1 0 | x_4

7 -3 2 -4 1 | x_5

Seção 2.4

decomposição LU, com a estratégia indicada, e Resolver os sistemas a seguir pelo método da verificar a unicidade e exatidão da solução. 2.16. Efetuar os cálculos utilizando apenas 4

decimals
$$\begin{bmatrix} 2 & 6 & -3 \\ 1 & 3,001 & 2 \\ 4 & -1 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 9 \\ 29 \end{bmatrix}$$
.

2.17. Com pivotação parcial
$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \end{bmatrix} \begin{bmatrix} 17 \end{bmatrix}$$

b) Com pivotação parcial.

$$\begin{bmatrix} 4 & -1 & 3 & 8 & x_1 \\ 1 & 6 & 2 & -3 & x_2 \\ 5 & 5 & 1 & 0 & x_3 \\ 2 & 4 & -2 & 1 & x_4 \end{bmatrix} = \begin{bmatrix} 43 \\ 7 \\ 8 \\ 8 \end{bmatrix}$$

2.19. Com pivotação parcial
$$\begin{bmatrix} 1 & -4 & -1 \end{bmatrix} \begin{bmatrix} x_1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$$

gramação, os algoritmos de decomposição $L\!U$ e de substituições sucessivas pivotal apresentados 2.20. Implementar, em uma linguagem de pronas Figuras 2.5 e 2.6.

Seção 2.5

zando a decomposição de Cholesky e verificar a Calcular a solução dos sistemas a seguir utiliexatidão e unicidade da solução

2.21.
$$\begin{bmatrix} 9 & -6 & 3 \\ -6 & 29 & -7 \\ 3 & -7 & 18 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3 \\ -8 \\ 33 \end{bmatrix}.$$

2.22.
$$\begin{bmatrix} 4 - 2 & 4 & 10 \\ -2 & 2 & -1 & -7 \\ 4 & -1 & 14 & 11 \\ 10 & -7 & 11 & 31 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$$

1 2.23.
$$\begin{bmatrix} 1 & 2 & -3 & 0 & 3 \\ 2 & 5 & -1 & 1 & 4 \\ -3 & -1 & 50 & 1 & -19 \\ 0 & 1 & 1 & 6 & 0 \\ 3 & 4 & -19 & 0 & 39 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 17 \\ 41 \\ 41 \\ 30 \\ 51 \end{bmatrix}$$

sição de Cholesky, mostrado na Figura 2.7, em 2.24. Implementar o algoritmo de decompoqualquer linguagem de programação.

sição LDLT, apresentado na Figura 2.8, utili-2.25. Implementar o algoritmo de decompozando qualquer linguagem de programação.

Seção 2.7

2.26. Formular um esquema para refinar a so-

coeficientes for simétrica usando a decomposição ilução de um sistema linear quando a matriz dos de Cholesky.

2.27. Mostrar como calcular a inversa de uma mátriz não simétrica utilizando a decomposição LU com pivotação parcial

2:28. Seja o sistema

$$\begin{bmatrix} 5 & -2 & 3 \\ -2 & 10 & 4 \\ 3 & 4 & 20 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 31 \\ -10 \end{bmatrix}.$$

Considerando que o fator L de Cholesky seja

$$\begin{bmatrix} 2,24 & 0 & 0 \\ -0,89 & 3,03 & 0 \\ 1,34 & 1,71 & 3,91 \end{bmatrix},$$

ĉalcular e refinar o vetor solução até que a condição $\|c\|_\infty < 10^{-3}$ seja satisfeita.

2.29. Calcular a inversa da matriz A pela decomposição LU com pivotação parcial, sendo

$$A = \begin{bmatrix} 1 & 6 & 4 \\ 2 & -3 & 1 \\ 5 & 5 & 8 \end{bmatrix}.$$

Versa quando a matriz for simétrica e quando 2.30. Mostrar como fazer o refinamento da inela for não simétrica.

Seção 2.8

métodos iterativos de Jacobi e de Gauss-Seidel com $\frac{\|x^k-x^{k-1}\|_\infty}{\|x^k\|_\infty}<10^{-3}$ ou $k_{\max}=10$ 2.31. Resolver o sistema dado a seguir pelos

$$\begin{bmatrix} 10 & 2 - 3 & 5 \\ 1 & 8 - 1 & 2 \\ 2 - 1 - 5 & 1 \\ -1 & 2 & 3 & 20 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 48 \\ 4 \\ -11 \\ 150 \end{bmatrix}.$$

2.32. Seja o sistema linear com a matriz dos

$$\begin{bmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 6 \\ 9 \\ 9 \end{bmatrix}$$

Verificar a convergência dos métodos de Jacobi e Gauss-Seidel e justificar os resultados.

2.33. Seja o sistema linear com a matriz dos coeficientes também proposta por Collatz

$$\begin{bmatrix} 1 - 0.5 & 0.5 \\ 1 & 1 & 1 \\ -0.5 & -0.5 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

Verificar a convergência dos métodos de Jacobi e Gauss-Seidel e justificar os resultados. 2.34. Implementar o algoritmo do método de Jacobi mostrado na Figura 2.9 em qualquer linguagem de programação. 2.35. Implementar, em qualquer linguagem de programação, o algoritmo do método de Gauss-Seidel apresentado na Figura 2.10.

Seção 2.9

2.36. Calcular $\kappa_1(H_2)$, $\kappa_2(H_2)$ e $\kappa_{\infty}(H_2)$ utili-

2.37. Implementar o algoritmo da Figura 2.13 em qualquer linguagem de programação.

2.38. Calcular H_4 e H_4^{-1} usando o algoritmo implementado no Exercício 2.37.

2.39. Mostrar que
$$H_4H_4^{-1} = I_4$$
.

2.40. Calcular $\|H_4\|_{\infty}$, $\|H_4^{-1}\|_{\infty}$ e $\kappa_{\infty}(H_4)$ e comparar os resultados com aqueles apresentados na Tabela 2.10.

Gerais

2.41. Calcular o determinante da matriz de Vandermonde de ordem 3

$$M = \left[egin{array}{cccc} 1 & x_0 & x_0^2 \ 1 & x_1 & x_1^2 \ 1 & x_2 & x_2^2 \end{array}
ight].$$

2.42. Mostrar que $||A||_2 = \max\left(\sqrt{\lambda(A^TA)}\right)$ para a matriz do Exemplo 2.18.

124

2.43. Sejam uma matriz A de ordem n, um $y^k = Ay^{k-1}, k = 1, 2, 3, ..., n$. O método de $d_i,\ i=n-1,n-2,\ldots,0$ do polinômio caraca matriz K for singular, deve-se trocar o vetor racterístico das matrizes abaixo pelo método de vetor arbitrário y^0 de tamanho n e os vetores teristico $D(\lambda) = \lambda^n + d_{n-1}\lambda^{n-1} + d_{n-2}\lambda^{n-2} +$ $\cdots + d_1 \lambda + d_0$ pela solução do sistema linear Krylov [10] consiste em calcular os coeficientes $Kd = -y^n$, sendo $K = [y^{n-1} \ y^{n-2} \dots y^0]$. Se arbitrário inicial y^0 . Determinar o polinômio ca-

a)
$$A = \begin{bmatrix} 7 & 14 & -2 \\ -3 & -10 & 2 \\ -12 & -28 & 5 \end{bmatrix}$$
 (ver Exemplo 2.42),
b) $B = \begin{bmatrix} 5 & -1 & 3 \\ -1 & 4 & 2 \\ 3 & 2 & 1 \end{bmatrix}$.

ficentes do polinômio característico de uma ma-2.44. Fazer um algoritmo para calcular os coetriz pelo método de Krylov.

os elementos fora da faixa compreendendo as 2.45. Seja a matriz esparsa tridiagonal (todos três diagonais são nulos)

$$\begin{bmatrix} 4 & -2 & 0 & 0 & 0 \\ -2 & 10 & 6 & 0 & 0 \\ 0 & 6 & 20 & 12 & 0 \\ 0 & 0 & 12 & 34 & -5 \\ 0 & 0 & 0 & -5 & 2 \end{bmatrix}$$

Fazer a decomposição de Cholesky e verificar que o fator L mantém o padrão de esparsidade

do o algoritmo da decomposição de Cholesky im-2.46. Resolver os Exercícios 2.21–2.23 utilizanplementado no Exercício 2.24. 2.47. Resolver os Exercícios 2.21-2.23 utilizando o algoritmo da fatoração LDL^T implementado no Exercício 2.25. 2.48. Implementar em qualquer linguagem de programação o algoritmo do método SOR mostrado na Figura 2.11.

2.49. Resolver o sistema do Exercício 2.31 usando a implementação do algoritmo SOR, com diversos valores do parâmetro ω .

2.50. Equilibrar as reações químicas

b) $K_2Cr_2O_7 + FeSO_4 + HCl \longrightarrow KCl + CrCl_3 +$ a) $Au + HCl + HNO_3 \longrightarrow HAuCl_4 + H_2O + NO$ $FeCl_3 + Fe_2(SO_4)_3 + H_2O.$

Capítulo 3

Interpolação polinomial

leste capítulo, serão apresentados alguns métodos numéricos para resolver este problema de gados experimentais, tabelas estatísticas e de funções complexas são exemplos desta situação. A necessidade de obter um valor intermediário que não consta de uma tabela ocorre comumente. rande utilidade prática.

xemplo, integração numérica (Capítulo 5), cálculo de raízes de equações (Capítulo 6) e solução conceito de interpolação não é importante somente na obtenção de valores intermediários em íbelas. Ele é fundamental em outros tópicos abordados em **Algoritmos Numéricos**, como, por equações diferenciais ordinárias (Capítulo 7).

3:1 Polinômios interpoladores

Seja a Tabela 3.1 a seguir

Tabela 3.1 Dados para interpolação.

y 1,221 3,320 4,953	 x	0,1	9,0	8'0
	y	1,221	3,320	4,953

problema consiste em encontrar o valor correspondente de y para um dado x não pertenente à tabela. Um modo de resolver este problema é obter uma função que relaciona as ariáveis x e y. Considerando que os polinômios são as funções mais simples e estudadas, itão eles são os mais utilizados para determinar esta relação. Um polinômio construído ôm o intuito de aproximar uma função é denominado polinômio interpolador. Deste modo, ara resolver o problema basta avaliar o polinômio obtido no ponto desejado. Existem vários métodos para construir um polinômio interpolador a partir de um conjunto \mathbb{R}^{p} pares (x,y). O esquema mais simples, em termos conceituais, envolve a solução de um stema de equações lineares.