APPLICATIONS OF MATLAB IN ENGINEERING

Yan-Fu Kuo Fall 2015

Dept. of Bio-industrial Mechatronics Engineering National Taiwan University

Today:

- Advanced 2D plots
- Color space
- 3D plots

Special Plots

Function	Description
loglog	Graph with logarithmic scales for both axes
semilogx	Graph with a logarithmic scale for the x-axis and a linear scale for the y-axis
semilogy	Graph with a logarithmic scale for the y-axis and a linear scale for the x-axis
plotyy	Graph with y-tick labels on the left and right side

Function	Description
hist	Histogram plot
<u>bar</u>	Bar graph
<u>pie</u>	Pie chart
polar	Polar coordinate plot

Logarithm Plots


```
x = logspace(-1, 1, 100);
y = x.^2;
subplot(2,2,1);
plot(x, y);
title('Plot');
subplot (2,2,2);
semilogx(x,y);
title('Semilogx');
subplot(2,2,3);
semilogy(x,y);
title('Semilogy');
subplot(2,2,4);
loglog(x, y);
title('Loglog');
set(gca,'XGrid','on');
```

plotyy()


```
x = 0:0.01:20;
y1 = 200*exp(-0.05*x).*sin(x);
y2 = 0.8*exp(-0.5*x).*sin(10*x);
[AX,H1,H2] = plotyy(x,y1,x,y2);
set(get(AX(1),'Ylabel'),'String','Left Y-axis')
set(get(AX(2),'Ylabel'),'String','Right Y-axis')
title('Labeling plotyy');
set(H1,'LineStyle','--'); set(H2,'LineStyle',':');
```

3

Histogram

```
y = randn(1,1000);
subplot(2,1,1);
hist(y,10);
title('Bins = 10');
subplot(2,1,2);
hist(y,50);
title('Bins = 50');
```

20

0

-4

-3

-2

-1

0

Bar Charts

```
x = [1 2 5 4 8]; y = [x;1:5];
subplot(1,3,1); bar(x); title('A bargraph of vector x');
subplot(1,3,2); bar(y); title('A bargraph of vector y');
subplot(1,3,3); bar3(y); title('A 3D bargraph');
```


Stacked and Horizontal Bar Charts


```
x = [1 2 5 4 8];
y = [x;1:5];
subplot(1,2,1);
bar(y,'stacked');
title('Stacked');
subplot(1,2,2);
barh(y);
title('Horizontal');
```

Exercise: stack the horizontal bar chart

Pie Charts

```
a = [10 5 20 30];
subplot(1,3,1); pie(a);
subplot(1,3,2); pie(a, [0,0,0,1]);
subplot(1,3,3); pie3(a, [0,0,0,1]);
```


Exercise: separate all the pieces in the pie chart

Polar Chart

```
x = 1:100; theta = x/10; r = log10(x);

subplot(1,4,1); polar(theta,r);

theta = linspace(0, 2*pi); r = cos(4*theta);

subplot(1,4,2); polar(theta, r);

theta = linspace(0, 2*pi, 6); r = ones(1, length(theta));

subplot(1,4,3); polar(theta,r);

theta = linspace(0, 2*pi); r = 1-sin(theta);

subplot(1,4,4); polar(theta, r);
```


Exercise: plot a hexagon on a polar chart

Stairs and Stem Charts

```
x = linspace(0, 4*pi, 40); y = sin(x);

subplot(1,2,1); stairs(y);

subplot(1,2,2); stem(y);
```


Exercise

- Plot a function: $f(t) = \sin(\frac{\pi t^2}{4})$
- Add the points sampled at 5 Hz using stem()

Boxplot and Error Bar

```
load carsmall
boxplot(MPG, Origin);
```

```
x=0:pi/10:pi; y=sin(x);
e=std(y)*ones(size(x));
errorbar(x,y,e)
```


fill()

Stop sign

```
t =(1:2:15)'*pi/8; x = sin(t); y = cos(t);
fill(x,y,'r'); axis square off;
text(0,0,'STOP','Color', 'w', 'FontSize', 80, ...
'FontWeight','bold', 'HorizontalAlignment', 'center');
```


Exercise

Plot a wait sign

Color Space

- [R G B]
 - 0 is minimum
 - 1 is maximum
 - 8-bit equivalence:

FFF		999	666	333	000	FFC	FF9	FF6	FF3						
FFF	ccc	999	666	333	000	C00	900	600	300						
99C					CC9	FFC	FFC	FF9	FF6	CC3					CC0
COO	COR	000		000	900	C33	C66	966	633	300	000	aao	PPO	PPO	033
CCF F00	CCF F33	333 300	666 600	999 900	CCC	FFF F00	CC9 933	CC6 633	330 000	660 000	990 000	000	FF0 000	FF3 366	FF0 033
99F	CCF	99C	666	999	ccc	FFF	996	993	663	993	CC3	FF3	CC3	FF6	FF0
F00	F66	C33	633	933	C33	F33	600	300	333	333	333	333	366	699	066
66F	99F	66C	669	999	ccc	FFF	996	663	996	CC6	FF6	990	CC3	FF6	FF0
F00	F66	C33	900	966	C66	F66	633	300	666	666	666	033	399	6CC	099
33F	66F	339	66C	99F	ccc	FFF	CC9	CC6	CC9	FF9	FF3	CC0	990	FF3	FF0
F00	F33	900	C00	F33	C99	F99	966	600	999	999	399	066	066	3CC	0CC
00C	33C	336	669	99C	CCF	FFF	FFC	FF9	FFC	FF9	CC6	993	660		330
C00	C00	600	933	C66	F99	FCC	C99	933	ccc	9CC	699	366	033	099	033
33C C33	66C C66	00F	33F F33	66F	99F	CCF				CC9	996	993	990	663	660
	336	F00 009	339	F66 669	F99 99C	FCC			FFG	9CC FF9	699 FF6	399 FF3	099	366 CC6	066 CC3
006 600	633	900	933	966	C99				FFC CFF	9FF	6FF	3FF	FF0 OFF	6CC	3CC
003	00C	006	339	66C	99F	CCF	339	99C	ccc	CC9	996	663	330	990	CCO
300	C33	633	966	C99	FCC	FFF	9FF	CFF	CFF	9FF	6CC	399	066	0CC	0CC
00F	33F	009	00C	33F	99F	99C	006	669	999	999	993	660	660	CC3	CCO
F33	F66	933	C66	F99	FFF	CCC	6CC	9CC	9FF	9CC	3FF	0CC	099	3FF	OFF
00F	66F	33C	009	66F	66C	669	003	336	666	666	666	330	993	CC6	990
F66	F99	C66	966	FFF	ccc	999	366	699	6FF	6CC	699	099	3CC	6FF	OFF
00F	66F	33C	33F	33C	339	336	006	003	333	333	333	333	663	996	660
F99	FCC	C99	FFF	ccc	999	666	699	399	3FF	3CC	399	366	3CC	6FF	OFF
00F FCC	33F FCC	OOF FFF	OOC CCC	009 999	006 666	003 333	339 900	336 6CC	000 0FF	000 0CC	000 099	000 066	000 033	663 3FF	330 0FF
OOC	FCC	PPP	000	777	009	33C	66C	669	336	003	099	000	000	Jrr.	330
C99					9CC	CFF	CFF	9FF	6FF	3CC					0CC
						00C	009	006	003						
						CFF	9FF	6FF	3FF						

Exercise

```
G = [46 38 29 24 13]; S = [29 27 17 26 8];
B = [29 23 19 32 7]; h = bar(1:5, [G' S' B']);
title('Medal count for top 5 countries in 2012 Olympics');
ylabel('Number of medals'); xlabel('Country');
legend('Gold', 'Silver', 'Bronze')
```


Visualizing Data as An Image: imagesc()

Display values of a matrix as an "image"

```
[x, y] = meshgrid(-3:.2:3,-3:.2:3);
z = x.^2 + x.*y + y.^2; surf(x, y, z); box on;
set(gca,'FontSize', 16); zlabel('z');
xlim([-4 4]); xlabel('x'); ylim([-4 4]); ylabel('y');
imagesc(z); axis square; xlabel('x'); ylabel('y');
```


Color Bar and Scheme

colorbar;	colormap(cool);
colormap(hot);	colormap(gray);

Built-in Colormaps

Use built-in color maps:

```
colormap([Name])
```

 A color map is a matrix of 256X3

```
a = colormap(prism)
```

Use a customized color map:

```
a = ones(256,3);
colormap(a);
```


Exercise

 Create a custom green color map such that the output of the script below looks like:

```
x = [1:10; 3:12; 5:14];
imagesc(x);
colorbar;

map = zeros(256,3);
map(:,2) = (0:255)/255;
colormap(map);
```


3D Plots

Function	Description
plot3	3-D line plot
surf	3-D shaded surface plot
surfc	Contour plot under a 3-D shaded surface plot
surface	Create surface object
meshc	Plot a contour graph under mesh graph
contour	Contour plot of matrix
contourf	Filled 2-D contour plot

2D vs. 3D

```
x=0:0.1:2*pi;
plot(x,sin(x));
```


plot3()

```
x=0:0.1:3*pi; z1=sin(x); z2=sin(2.*x); z3=sin(3.*x);
y1=zeros(size(x)); y3=ones(size(x)); y2=y3./2;
plot3(x,y1,z1,'r',x,y2,z2,'b',x,y3,z3,'g'); grid on;
xlabel('x-axis'); ylabel('y-axis'); zlabel('z-axis');
```


More 3D Line Plots

```
t = 0:pi/50:10*pi;
plot3(sin(t),cos(t),t)
grid on; axis square;
```



```
turns = 40*pi;
t = linspace(0, turns, 4000);
x = cos(t).*(turns-t)./turns;
y = sin(t).*(turns-t)./turns;
z = t./turns;
plot3(x,y,z); grid on;
```


Principles for 3D Surface Plots

- Usually for plotting functions: z = f(x, y)
- Need to provide MATLAB a set of (x, y, z) points
- Use meshgrid to create matrices
 X and Y for a given range

```
x = -2:1:2;

y = -2:1:2;

[X,Y] = meshgrid(x,y)
```

x =						
	-2	-1	0	1	2	
	-2	-1	0	1	2	
	-2	-1	0	1	2	
	-2	-1	0	1	2	
	-2	-1	0	1	2	
Y =						
	-2	-2	-2	-2	-2	
-	-1	-1	-1	-1	-1	
	0	0	0	0	0	
	1	1	1	1	1	
	2	2	2	2	2	

Surface Plots: mesh() and surf()

```
x = -3.5:0.2:3.5; y = -3.5:0.2:3.5; [X,Y] = meshgrid(x,y); Z = X.*exp(-X.^2-Y.^2); subplot(1,2,1); mesh(X,Y,Z); subplot(1,2,2); surf(X,Y,Z);
```


contour()

 Projection of equal heights of 3D plot onto a 2D plane

```
x = -3.5:0.2:3.5;
y = -3.5:0.2:3.5;
[X,Y] = meshgrid(x,y);
Z = X.*exp(-X.^2-Y.^2);
subplot(2,1,1);
mesh(X,Y,Z);
axis square;
subplot(2,1,2);
contour(X,Y,Z);
axis square;
```


Various Contour Plots

```
x = -3.5:0.2:3.5; y = -3.5:0.2:3.5;
[X,Y] = meshgrid(x,y); Z = X.*exp(-X.^2-Y.^2);
subplot(1,3,1); contour(Z,[-.45:.05:.45]); axis square;
subplot(1,3,2); [C,h] = contour(Z);
clabel(C,h); axis square;
subplot(1,3,3); contourf(Z); axis square;
```


Exercise

 Combine the contour techniques to generate a figure as shown below

meshc() and surfc()

Combination of surface/mesh and contours

```
x = -3.5:0.2:3.5; y = -3.5:0.2:3.5; [X,Y] = meshgrid(x,y); Z = X.*exp(-X.^2-Y.^2); subplot(1,2,1); meshc(X,Y,Z); subplot(1,2,2); surfc(X,Y,Z);
```


View Angle: view()

Vary the view angle

```
view(-45,20);
```

in the script below

```
sphere(50); shading flat;
light('Position',[1 3 2]);
light('Position',[-3 -1 3]);
material shiny;
axis vis3d off;
set(gcf,'Color',[1 1 1]);
view(-45,20);
```


Y.-F. Kuo

Light: light()

```
[X, Y, Z] = sphere(64); h = surf(X, Y, Z);
axis square vis3d off;
reds = zeros(256, 3); reds(:, 1) = (0:256.-1)/255;
colormap(reds); shading interp; lighting phong;
set(h, 'AmbientStrength', 0.75, 'DiffuseStrength', 0.5);
L1 = light('Position', [-1, -1, -1]);
set(L1, 'Position', [-1, -1, 1]);
set(L1, 'Color', 'g');
```


patch()

A graphical object containing polygons

Exercise

 MATLAB plots can be very professional!


```
load cape
X=conv2(ones(9,9)/81,cumsum(cumsum(randn(100,100)),2));
surf(X,'EdgeColor','none','EdgeLighting','Phong',...
'FaceColor','interp');
colormap(map); caxis([-10,300]);
grid off; axis off;
```

End of Class

