Pronósticos de inflación en Guatemala: ¿Modelos de series de tiempo o algoritmos de *machine learning*?*

Gabriel A. Fuentes[†]

21 de abril, 2022

Resumen

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Quisque nibh ex, mollis nec turpis ac, ultrices mollis quam. Aliquam sed tortor eget dolor dignissim ornare quis in nibh. Duis non nisl convallis, ornare erat et, sagittis mauris. Mauris sit amet sapien vehicula, volutpat mi laoreet, viverra tellus. Aliquam id placerat risus, sed convallis urna. Phasellus varius iaculis tellus ac venenatis. Pellentesque molestie libero orci, in hendrerit dolor semper quis. Nunc sed dolor facilisis, faucibus odio semper, accumsan tellus. Proin pretium felis et urna commodo, in tempor sapien iaculis. Quisque feugiat tincidunt porta. Nulla vestibulum vel nibh non rhoncus. Nunc eu urna velit. In imperdiet magna eget ex auctor, porta aliquam lorem cursus. Nullam et commodo mauris. In ullamcorper egestas erat, quis faucibus lectus. Nullam pellentesque quam eget nibh condimentum, in vestibulum neque posuere. Sed sed lorem vitae lacus laoreet aliquet. Curabitur egestas enim a odio lacinia sodales. Vestibulum fermentum, dui.

Palabras clave: Machine learning, deep learning, series de tiempo, pronósticos, inflación

Clasificación JEL: E31, C22, C45, C53

^{*}Con el propósito de maximizar la reproducibilidad del presente estudio, las bases de datos utilizadas y el código en R se encuentran disponibles en: https://github.com/gafnts/Inflation-forecasting

[†]Séptimo semestre, Teoría y Política Monetaria. Correo electrónico: gafnts@gmail.com

1 Introducción

El artículo número 3 de la ley orgánica del Banco de Guatemala establece que su objetivo fundamental consiste en propiciar las condiciones monetarias, cambiarias y crediticias que promuevan la estabilidad en el nivel general de precios. En el 2005, como parte de su esfuerzo por lograr este fin, dicha entidad optó por conducir sus acciones a través de un esquema de metas inflacionarias.

Debido a que naturalmente existe un periodo de tiempo entre el ajuste de las condiciones monetarias y el efecto que este cambio genera en las variables reales del sistema macroeconómico, la autoridad monetaria—bajo un régimen de metas explícitas de inflación—actúa en el presente considerando sus pronósticos sobre el comportamiento de los precios en el futuro.

Concretamente, un cambio en la tasa de interés de política monetaria puede demorar entre 12 y 24 meses en ejercer una influencia en la demanda agregada y, por tanto, en tener un impacto en la evolución del ritmo inflacionario interno. En consecuencia, el banco central deberá pronosticar esta variable durante dicho horizonte temporal y efectuar sus decisiones de política monetaria de modo que pueda estar seguro de que los pronósticos y expectativas de inflación se mantendrán anclados a la meta establecida durante el mediano plazo (Moenjak, 2014).

En este sentido, los pronósticos de variables macroeconómicas pueden llevarse a cabo a través de dos enfoques distintos: Métodos estructurales y métodos no estructurales (Diebold, 1998). Los primeros informan a la especificación de sus modelos a través de una teoría económica específica, mientras que los últimos se valen de las correlaciones en forma reducida que subyacen en las series de tiempo, sin depender explícitamente de una teoría económica (Pratap & Sengupta, 2019).

Este estudio en particular se ocupará del segundo enfoque, que al mismo tiempo puede ser subdividido en dos metodologías diferentes. Por un lado se encuentran los métodos econométricos de series de tiempo (que pueden considerarse como modelos relativamente tradicionales) entre los que sobresalen los modelos univariados autorregresivos integrados de medias móviles (ARIMA) y los modelos multivariados de vectores autorregresivos (VAR).

Por el otro, algoritmos de aprendizaje estadístico¹ (machine learning) comienzan a ser cada vez más populares, principalmente por la creciente disponibilidad de grandes bases de datos y poder de cómputo, así como un mayor acceso a software especializado (Rodríguez-Vargas, 2020), aunque—tal y como mencionan Coulombe et al. (2020)—los métodos de aprendizaje de máquina en realidad tienen una historia dentro de la literatura macroeconométrica que se remonta hacia inicios de la década de los noventas.

En general, los modelos de series de tiempo asumen que las variables empleadas durante la estimación de los parámetros se vinculan entre sí a través de una dinámica intrínseca regida por relaciones lineales que únicamente conducen a soluciones que oscilan periódicamente o que exhiben un comportamiento exponencial, de modo que la totalidad en la conducta irregular del sistema es atribuida únicamente a una entrada que es tanto exógena como estocástica (Kantz & Schreiber, 2004).

Sin embargo, esta entrada aleatoria puede no ser la fuente exclusiva de irregularidad. Evidencia apunta que tanto series macroeconómicas como datos financieros exhiben interesantes estructuras no-lineales que se originan debido al impacto de perturbaciones durante las fases del ciclo económico (Granger et al., 1993; LeBaron, 1994).

¹A lo largo de la presente investigación los términos "aprendizaje estadístico," "aprendizaje de máquina" y "aprendizaje automático" serán empleados indistintamente.

Dada la naturaleza no-lineal entre la relación de las variables macroeconómicas, existe cada vez un mayor énfasis en la aplicación de modelos de aprendizaje automático, los cuales (a diferencia de sus contrapartes) son particularmente buenos para explotar este tipo de relaciones, así como interacciones de alto orden, durante el proceso de predicción de nuevos valores basados en los valores de sus regresores (Athey & Imbens, 2019). Precisamente, tal es el propósito del presente estudio.

Por medio de una competencia de pronósticos fuera de muestra (pseudo out-of-sample) del ritmo inflacionario en Guatemala entre una amplia gama de modelos que difieren respecto de ciertas características esenciales, esta investigación buscará evaluar si modelos de aprendizaje estadístico tales como bosques aleatorios (random forest), k vecinos más cercanos (k-NN), máquinas de vectores de soporte (SVM), redes neuronales multicapa (MLP) y redes neuronales recurrentes de larga memoria de corto plazo (LSTM) son capaces de generar pronósticos más eficientes en distintos horizontes temporales—comparados a través de tres criterios de evaluación (RMSE, sMAPE y MASE)—al contrastarlos con las predicciones de un repertorio de modelos estimados a partir de métodos econométricos tradicionales.

El resto del documento será organizado de la siguiente manera. La siguiente sección hace un repaso de la literatura correspondiente al uso y evaluación de modelos paramétricos y no paramétricos en tareas de predicción para series de tiempo. La sección 3 se ocupa de presentar un resumen estadístico de la base de datos, la configuración computacional de los modelos empleados y la metodología de evaluación para las predicciones de los mismos. Por último, la sección 4 y 5 se enfocan en discutir los resultados y conclusiones del estudio, respectivamente.

2 Revisión de la literatura

Algunos autores afirman que la literatura dedicada a la comparación de pronósticos entre modelos econométricos y de aprendizaje de máquina es relativamente reciente. Por ejemplo, Rodríguez-Vargas (2020) observa que, si bien desde inicios de los años noventas ha habido diferentes estudios en los que variables como tasas de inflación y tipos de cambio son pronosticadas utilizando k-NN y redes neuronales artificiales (ANN), en ningún momento estos autores se enfocaron en producir evaluaciones de las propiedades de sus pronósticos de manera sistemática.

No obstante, un análisis más detenido permite apreciar que ya desde esa década diversos estudios evalúan los resultados de predicciones generadas a través de redes neuronales al contrastarlos con aquellas obtenidas por modelos autorregresivos integrados de medias móviles y modelos de suavizamiento exponencial para series de tiempo en ámbitos micro y macroeconómicos.

Kang (1991) encuentra que las predicciones de modelos ARIMA son iguales o superiores a las de 18 redes neuronales con arquitecturas diferentes. Foster et al. (1992) obtienen resultados similares; modelos de suavizamiento exponencial y mínimos cuadrados ordinarios producen pronósticos más eficientes que redes neuronales en series de tiempo anuales y mensuales, aunque semejantes en series trimestrales. Mientras tanto, Hill et al. (1996) concluyen que los pronósticos generados por redes neuronales son comparables con las predicciones de modelos econométricos tradicionales para series anuales e incluso superiores en series mensuales y trimestrales. En general, resultados contradictorios entre investigaciones son una constante en esta clase de literatura.

Recientemente, Ülke et al. (2018) evalúan la eficiencia de dos modelos de series de tiempo univariados (RW y AR), dos multivariados (VAR y ARDL) y tres modelos de aprendizaje estadístico (k-NN, ANN y SVR) durante la predicción de tasas de inflación en Estados Unidos para el periodo de 1984

a 2014. Los autores pronostican esta variable en cuatro horizontes temporales (3, 6, 9 y 12 meses) y posteriormente comparan los resultados a través de la raíz del error cuadrático medio (RSME) y el coeficiente de determinación (R^2) de cada uno de los modelos. Los resultados les permiten concluir que la regresión de vectores de soporte (SVR) supera al resto de modelos al pronosticar el ritmo de inflación subyacente medido por medio del índice de precios de gastos de consumo personal (PCE), mientras que el modelo autorregresivo distribuido rezagado (ARDL) proporciona la mayor precisión en la predicción de inflación subyacente medida a través del índice de precios al consumidor (CPI).

Makridakis et al. (2018) también contrastan la eficiencia de pronóstico entre 8 modelos de aprendizaje automático y 8 modelos estadísticos—utilizando un modelo de caminata aleatoria (RW) como punto de referencia—al generar predicciones para 3003 series que proceden de dominios micro y macroeconómicos. Los autores concluyen que los métodos econométricos tradicionales son más precisos que los de machine learning. Sin embargo, Cerqueira et al. (2019) consideran que este estudio se encuentra sesgado en lo que respecta al tamaño de muestra, debido a que la duración promedio de las series es de 116 observaciones. A través de curvas de aprendizaje generadas por medio de procedimientos precuenciales, los autores determinan que a medida que el tamaño de muestra se amplía, los pronósticos generados por modelos de aprendizaje de máquina superan en términos de eficiencia a los modelos tradicionales.

Por otro lado, Parmezan et al. (2019) realizan un meta-análisis de la literatura y concluyen que los 2 modelos más utilizados en 29 estudios que involucran métodos de aprendizaje automático y modelos econométricos a lo largo de la última década son ANN y ARIMA. Posteriormente, comparan 7 modelos estadísticos con 4 modelos de aprendizaje de máquina durante la predicción de 40 series temporales sintéticas y 55 series reales. Los resultados les permiten concluir que SARIMA, SVM y k-NN son los métodos más efectivos para el modelado y predicción de series de tiempo.

Katris (2020) evalúa el desempeño de 3 modelos estadísticos (ARIMA, ARFIMA y ARFIMA/GARCH) respecto a 3 modelos de aprendizaje de máquina (ANN, SVM y MARS) al pronosticar las tasas de desempleo mensual para 22 economías desarrolladas durante 3 horizontes temporales distintos. El autor concluye que los modelos autorregresivos fraccionalmente integrados de medias móviles (ARFIMA) resultan ser los procedimientos más adecuados durante pronósticos de un paso hacia adelante (one-step ahead), mientras que para el horizonte más largo (12 meses) los modelos de redes neuronales logran resultados comparables con modelos ARFIMA. Puesto que ningún modelo es aceptado globamente (en términos de RMSE y MAE), el autor recomienda tener en cuenta tanto el horizonte de pronóstico como la ubicación geográfica durante la selección de un enfoque.

A nivel latinoamericano, Rodríguez-Vargas (2020) pronostica la tasa de variación interanual del índice de precios al consumidor en Costa Rica con cuatro modelos de aprendizaje estadístico (k-NN, RF, XGB y LSTM) y encuentra que los 2 modelos capaces de generar los pronósticos más eficientes son LSTM y k-NN. Además, el autor concluye que la combinación de pronósticos (a través de la obtención de un promedio de las predicciones de sus métodos univariantes) mejora el desempeño en todos los horizontes temporales.

Araujo & Gaglianone (2020), por otra parte, compara los pronósticos de la tasa de inflación en Brasil para 16 modelos distintos—de los que sobresalen ARMA y VAR en la categoría de modelos econométricos tradicionales y bosques aleatorios (RF) y modelos lineales generalizados (GLM) en la categoría de aprendizaje de máquina. Los autores encuentran que algunos algoritmos de aprendizaje automático superan consistentemente a los modelos econométricos tradicionales en términos de MSE.

Por último, Peirano et al. (2021) contrastan los resultados de modelos SARIMA y LSTM durante la

predicción del ritmo inflacionario mensual en Brasil, México, Chile, Colombia y Perú. Los autores concluyen que es posible alcanzar una mayor eficiencia en el pronóstico ensamblando ambos modelos (a diferencia de simplemente promediar sus predicciones), por lo que proponen un modelo híbrido SARIMA-LSTM con el propósito de conservar los beneficios de SARIMA como un modelo lineal, capturando los fenómenos no-lineales a través de una red neuronal recurrente con arquitectura LSTM. Sin embargo, observan los autores, el modelo propuesto únicamente mejora el desempeño en las predicciones para algunos casos.

3 Metodología y datos

4 Resultados

5 Conclusiones

6 Referencias

- Araujo, G. S., & Gaglianone, W. P. (2020). Machine learning methods for inflation forecasting in brazil: New contenders versus classical models. Mimeo.
- Athey, S., & Imbens, G. W. (2019). Machine learning methods that economists should know about. Annual Review of Economics, 11(1), 685–725. https://doi.org/10.1146/annurev-economics-080217-053433
- Cerqueira, V., Torgo, L., & Soares, C. (2019). Machine learning vs statistical methods for time series forecasting: Size matters. arXiv:1909.13316 [Cs, Stat]. http://arxiv.org/abs/1909.13316
- Coulombe, P. G., Leroux, M., Stevanovic, D., & Surprenant, S. (2020). How is machine learning useful for macroeconomic forecasting? arXiv:2008.12477 [Econ, Stat]. http://arxiv.org/abs/2008.12477
- Diebold, F. X. (1998). The Past, Present, and Future of Macroeconomic Forecasting. *Journal of Economic Perspectives*, 12(2), 175–192. https://doi.org/10.1257/jep.12.2.175
- Foster, W. R., Collopy, F., & Ungar, L. H. (1992). Neural network forecasting of short, noisy time series. Computers & Chemical Engineering, 16(4), 293–297. https://doi.org/10.1016/0098-1354(92)80049-F
- Granger, C. W., Teräsvirta, T., & Anderson, H. M. (1993). Modeling nonlinearity over the business cycle. Business Cycles, Indicators and Forecasting, NBER Chapters, 311–326.
- Hill, T., O'Connor, M., & Remus, W. (1996). Neural Network Models for Time Series Forecasts. Management Science. https://doi.org/10.1287/mnsc.42.7.1082
- Kang, S. Y. (1991). An investigation of the use of feedforward neural networks for forecasting [PhD thesis]. Kent State University.
- Kantz, H., & Schreiber, T. (2004). *Nonlinear time series analysis* (Vol. 7). Cambridge university press.
- Katris, C. (2020). Prediction of Unemployment Rates with Time Series and Machine Learning Techniques. *Computational Economics*, 55(2), 673–706. https://doi.org/10.1007/s10614-019-09908-9
- LeBaron, B. (1994). Chaos and nonlinear forecastability in economics and finance. *Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences*. https://doi.org/10.1098/rsta.1994.0099
- Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). Statistical and Machine Learning forecasting methods: Concerns and ways forward. *PLOS ONE*, 13(3), e0194889. https://doi.org/10.1371/journal.pone.0194889
- Moenjak, T. (2014). Central banking: Theory and practice in sustaining monetary and financial stability. John Wiley.
- Parmezan, A. R. S., Souza, V. M. A., & Batista, G. E. A. P. A. (2019). Evaluation of statistical and machine learning models for time series prediction: Identifying the state-of-the-art and the best conditions for the use of each model. *Information Sciences*, 484, 302–337. https://doi.org/10.1016/j.ins.2019.01.076
- Peirano, R., Kristjanpoller, W., & Minutolo, M. C. (2021). Forecasting inflation in Latin American countries using a SARIMA–LSTM combination. *Soft Computing*, 25(16), 10851–10862. https://doi.org/10.1007/s00500-021-06016-5
- Pratap, B., & Sengupta, S. (2019). Macroeconomic Forecasting in India: Does Machine Learning Hold the Key to Better Forecasts? https://doi.org/10.2139/ssrn.3852945
- Rodríguez-Vargas, A. (2020). Forecasting Costa Rican inflation with machine learning methods. Latin American Journal of Central Banking, 1(1), 100012. https://doi.org/10.1016/j.latcb.2020. 100012

Ülke, V., Sahin, A., & Subasi, A. (2018). A comparison of time series and machine learning models for inflation forecasting: empirical evidence from the USA. Neural Computing and Applications, 30(5), 1519-1527. https://doi.org/10.1007/s00521-016-2766-x