Reductions and Rice's theorems

Meenakshi D'Souza

International Institute of Information Technology Bangalore.

T2 2022-23

Reductions

Let $L \subseteq A^*$ and $M \subseteq B^*$ be two languages. We say L reduces to M and write $L \le M$ iff there exists a computable map $\sigma: A^* \to B^*$ such that

$$w \in L \text{ iff } \sigma(w) \in M.$$

Reductions

- The function σ need not be one-to-one or onto.
- It must, however, be total and effectively computable. i.e. σ must be computable by a total TM that, on any input x halts with $\sigma(x)$ written on its tape.
- The relation \leq of reducibility between languages is transitive: if $A \leq B$ and $B \leq C$, then $A \leq C$.
 - If σ reduces A to B and τ reduces B to C, then $\tau \circ \sigma$, the composition of σ and τ , is computable and reduces A to C.

Reductions and recursive/re-ness

Theorem

If A < B then:

- If B is r.e. then so is A.
- 2 If B is recursive then so is A.

Or to put it differently:

Theorem

If A < B then:

- If A is not r.e. then neither is B.
- 2) If A is not recursive then neither is B.

Proof of (1)

• Suppose $A \leq B$ via σ and B is r.e. Let M be a TM such that B = L(M). Build a machine N for A as follows: on input x, first compute $\sigma(x)$, then run M on input $\sigma(x)$, accepting if M halts.

```
Then N accepts x \Leftrightarrow M accepts \sigma(x) (definition of N) \Leftrightarrow \sigma(x) \in B (definition of M) \Leftrightarrow x \in A (definition of \sigma)
```

Proof of (2)

- Recall: A set is A is recursive iff both A and complement of A are r.e.
- ② Suppose $A \leq B$ via σ and B is recursive. Note that $A^C \leq B^C$ via the same σ . If B is recursive, then both B and B^C are r.e. Then, by part (1) of the theorem, we know that both A and A^C are r.e., thus A is recursive.

Examples of reductions

Let
$$L$$
 be the language $\{M \mid M \text{ accepts } \epsilon\}$. Then
$$\mathsf{HP} < L.$$

ullet Describe a computable map σ which witnesses the reduction. Hence, since HP is undecidable (i.e. not recursive) so is L.

Examples of reductions

Let L be the language $\{M \mid L(M) \text{ is finite}\}$. Then $\mathsf{HP} < L.$

ullet We describe a computable map σ such that

$$M#x \in \mathsf{HP} \Leftrightarrow \sigma(M#x) \in L$$

which witnesses the reduction.

• In other words, from M and x, we want to construct a TM M'' such that

M halts on $x \Leftrightarrow L(M'')$ is finite.

Example of reductions

Given M#x, construct a machine M'' that on input y,

- saves y on a separate track
- writes x on the tape
- simulates M on x for |y| steps (it erases one symbol of y for each step of M on x that it simulates)
- accepts if M has not halted within that time, otherwise rejects.

$$M$$
 halts on $x \Rightarrow L(M'') = \{y \mid |y| < \text{running time of } M \text{ on } x\}$
 $\Rightarrow L(M'') \text{ is finite.}$

$$M$$
 does not halt on $x \Rightarrow L(M'') = \Sigma^*$
 $\Rightarrow L(M'')$ is infinite.

Hence, since HP is undecidable (i.e. not recursive) so is L.

Examples of reductions

Similarly we can show that:

- HP $\leq \{M \mid M \text{ accepts a CFL}\}.$
- HP \leq { $M \mid M$ accepts a recursive language }.

Rice's theorem

Theorem (Rice)

Any non-trivial property of r.e. languages is undecidable.

Rice's theorem

Theorem (Rice)

Any non-trivial property of r.e. languages is undecidable.

Theorem (Rice)

Any non-monotone property of r.e. languages is not even recursively enumerable.

Properties of r.e. languages

Property P of r.e. languages over an alphabet A is a subset of r.e. languages over A. In other words, a property of the r.e. sets is a map $P: \{ \text{ r.e. subsets of } \Sigma^* \} \to \{ \top, \bot \}$, where $\top \ (\bot)$ represents truth (falsity).

For example, the property of emptiness is represented by the map

$$P(A) = \begin{cases} \top & \text{if } A = \emptyset \\ \bot & \text{if } A \neq \emptyset \end{cases}$$

A property P defines a langauge

$$L_P = \{M \mid L(M) \in P\}.$$

Properties of r.e sets: Examples

- Properties of r.e. sets:
 - L(M) is finite.
 - L(M) is regular/CFL.
 - M accepts 10011, i.e. 10011 ∈ L(M).
 - $L(M) = \Sigma^*$.
- Properties of TMs that are *not* properties of r.e. sets:
 - M has atleast 481 states.
 - M halts on all inputs.
 - M rejects 110011.

Non-trivial properties of r.e. sets

- Non-trivial properties are those that are neither universally true nor universally false.
- For a property to be non-trivial, there must be at least one r.e. set that satisfies the property and at least one that does not.

Proof of part(1) of Rice's theorem

Let P be a non-trivial property of the r.e. sets. Assume without loss of generality that $P(\emptyset) = \bot$. Since P is non-trivial, there must exist an r.e set A such that $P(A) = \top$. Let K be the TM accepting A.

We reduce HP to the set $\{M \mid P(L(M)) = \top\}$, thereby showing that the latter is undecidable.

Proof of part (1) of Rice's theorem

Given M#x, construct a machine $M'=\sigma(M\#x)$ that on input y

- saves y on a separate track
- writes x on its tape
- runs M on input x
- if M halts on x, M' runs K on y and accepts if K accepts.

Now,

```
M halts on x \Rightarrow L(M') = A \Rightarrow P(L(M')) = P(A) = \top M does not halt on x \Rightarrow L(M') = \emptyset \Rightarrow P(L(M')) = P(\emptyset) = \bot This constitutes a reduction from HP to the set \{M \mid P(L(M)) = \top\}. Since HP is r.e., the latter set is r.e. too.
```

Part (2) of Rice's theorem

- A property P: { r.e. sets } → {⊤, ⊥} of the r.e. sets is called monotone if for all r.e. sets A and B, if A ⊆ B, then P(A) ≤ P(B).
- Note: Here \leq means less than or equal to in the order $\perp \leq \top$.
- P is monotone if whenever a set has the property, then all supersets of that set have it as well.
- For example, the properties "L(M) is infinite" and " $L(M) = \Sigma^*$ " are monotone but "L(M) is finite" and " $L(M) = \emptyset$ " are not.

Rice's theorem

Theorem (Rice)

Any non-trivial property of r.e. languages is undecidable.

Rice's theorem

Theorem (Rice)

Any non-trivial property of r.e. languages is undecidable.

Theorem (Rice)

Any non-monotone property of r.e. languages is not even recursively enumerable.