Определение

Булевой функцией называется функция вида

$$f: \{0,1\}^n \to \{0,1\}.$$

(Иначе говоря, булева функция сопоставляет каждому кортежу длины *n* из 0 и 1 одно из двух значений, 0 или 1.) Интерпретация в логике: 0 — ложь, 1 — истина.

Основные функции:

- ightharpoonup Конъюнкция (логическое "и") $x \wedge y$ (также обозн. x@y, xy): $x \wedge y = 1 \Leftrightarrow$ оба x = 1 и y = 1
- lacktriangle Дизъюнкция (логическое "или") $x \lor y$: $x \lor y = 1 \Leftrightarrow$ хотя бы один из аргументов $= 1 \; (x = 1 \;$ или y = 1)
- lackbox Импликация (логическое "следует") x o y: $x o y = 1 \Leftrightarrow$ верно хотя бы одно из x = 0 или y = 1
- ightharpoonup Симметрическая разность (сумма по модулю 2) $x\oplus y$: $x\oplus y=1\Leftrightarrow x
 eq y$
- lackвox Отрицание $\neg x$ (также обозн. \overline{x}): $\neg x = 1 \Leftrightarrow x = 0$

Представление булевых функций

Сколько всего булевых функций от n переменных? 2^{2^n}

Булеву функцию можно задать таблицей истинности:

		Χ	у	$x \wedge y$	$x \vee y$	$x \rightarrow y$	$x \oplus y$
Х	$\neg x$	0	0	0	0	1	0
0	1	0	1	0	1	1	1
1	1 0	1	0	0	1	0	1
	'	1	1	1	1	1	0

Или же вектором истинности:

- упорядочим все 2ⁿ кортежей в лексикографическом порядке
- ▶ *i*-я компонента вектора истинности равна значению функции на *i*-м кортеже
- **>** какой номер у кортежа $(\sigma_1, ..., \sigma_n)$?

$$\sum_{i=1}^{n} \sigma_i 2^{n-i}$$

Формулы

Базис \mathcal{F} — некоторое подмножество булевых функций

Определение

 Φ ормула над базисом ${\mathcal F}$ определяется по индукции.

- lacktriangle База: всякая функция $f\in\mathcal{F}$ является формулой над \mathcal{F} ;
- ▶ Индуктивный переход: Если $f(x_1, ..., x_n)$ формула над базисом \mathcal{F} , а $\Phi_1, ..., \Phi_n$ либо формулы над \mathcal{F} , либо переменные, то тогда $f(\Phi_1, ..., \Phi_n)$ формула над базисом \mathcal{F} .

Пример

$$(x \lor y) \land (z \lor x)$$
 — формула над базисом $\{\lor, \land\}$

ДНФ

Обозначение для переменной x или ее отрицания $\neg x$:

$$x^{\sigma} = egin{cases} x, & ext{ если } \sigma = 1, \
eta x, & ext{ если } \sigma = 0. \end{cases}$$

Простой конъюнкцией называется конъюнкция одной или нескольких переменных или их отрицаний, причем каждая переменная встречается не более одного раза.

Дизъюнктивная нормальная форма (ДНФ) — представление БФ в виде дизъюнкции простых конъюнкций.

Пример:
$$(x \land \neg y) \lor z$$

Если в каждой конъюнкции участвуют все переменные, это совершенная ДНФ (СДНФ).

Построение СДНФ по таблице истинности

- ▶ В таблице истинности отмечаем все наборы переменных, на которых функция равна 1.
- ightharpoonup Для каждого такого набора $(\sigma_1,\ldots,\sigma_n)$ берем конъюнкцию $(x_1^{\sigma_1}\wedge\cdots\wedge x_n^{\sigma_n})$
- Включаем в СДНФ все полученные конъюнкции:

$$f(x_1,\ldots,x_n)=\bigvee_{f(\sigma_1,\ldots,\sigma_n)=1}(x_1^{\sigma_1}\wedge\cdots\wedge x_n^{\sigma_n})$$

По построению: выражение справа принимает значение $1 \Leftrightarrow f=1$. Мы доказали:

Теорема

Для любой булевой функции, не равной тождественно нулю, существует СДНФ, ее задающая.

КНФ и СКНФ

Аналогично определяется и строится СКНФ:

Простой дизъюнкцией называется дизъюнкция одной или нескольких переменных или их отрицаний, причем каждая переменная встречается не более одного раза.

Конъюнктивная нормальная форма (КНФ) — представление БФ в виде конъюнкции простых дизъюнкций.

Пример:
$$(x \lor \neg y) \land z$$

Если в каждой дизъюнкции участвуют все переменные, это совершенная $KH\Phi$ ($CKH\Phi$).

Строится аналогично по таблице истинности:

$$f(x_1,\ldots,x_n)=\bigwedge_{f(\sigma_1,\ldots,\sigma_n)=0}(x_1^{\neg\sigma_1}\vee\cdots\vee x_n^{\neg\sigma_n})$$

Многочлен Жегалкина

Многочлен Жегалкина: сумма по модулю 2 конъюнкций переменных (также допускается слагаемое-единица) без повторений слагаемых, а также константа 0.

Например, $f(x, y, z) = 1 \oplus x \oplus x \wedge y \wedge z$.

Общий вид:

$$f(x_1,\ldots,x_n) = a \oplus \bigoplus_{\substack{1 \leq i_1 < \cdots < i_k \leq n \\ k \in \{1,\ldots,n\}}} a_{i_1\ldots i_k} \wedge x_{i_1} \wedge \cdots \wedge x_{i_k},$$

где $a, a_{i_1...i_k} \in \{0,1\}.$

Или, что то же самое: $f(x_1,\ldots,x_n)=$

$$a \oplus a_1 x_1 \oplus \dots a_n \wedge x_n \oplus a_{12} \wedge x_1 \wedge x_2 \oplus \dots a_{1\dots n} \wedge x_1 \wedge \dots \wedge x_n$$

Примечание: Зачастую константу 0 не считают полиномом Жегалкина, то есть в выражении допускаются только конъюнкции, сложения и константа $1_{\text{востант}}$

Многочлен Жегалкина

Теорема

Для каждой функции существует единственное представление многочленом Жегалкина.

Доказательство. Существование. Преобразуем ДНФ:

- ightharpoonup замена дизъюнкции: $x \lor y = x \oplus y \oplus x \land y \ (\square/3)$
- ightharpoonup замена отрицаний: $\neg x = x \oplus 1$
- ▶ раскрываем скобки по тождеству: $(x \oplus y) \land z = (x \land z) \oplus (y \land z) (\frac{1}{2})$
- lacktriangle сокращаются одинаковые слагаемые: $x\oplus x=0$.

Единственность: всего многочленов Жегалкина 2^{2^n} ; функций столько же — следовательно, представление единственно.