Introduction to Machine Learning

Class

Tree Based Models

Topic

Introduction to Classification Trees

Agenda

Decision Tree: Overview

Solve both regression and classification problems

Decision Tree works is based on a branch of computer science known as **Information Theory**

The classic use case of decision trees is analysis of segments in business data

Existing Data of a Bank

Customer	Age	Gender	Marital Status	# cr. Cards	Profitability
1	36	М	М	1	Р
2	32	M	S	3	U
3	38	М	М	2	Р
4	40	М	S	1	U
5	44	М	М	0	Р
6	56	F	М	0	Р
7	58	F	S	1	U
8	30	F	S	2	Р
9	28	F	М	1	U
10	26	F	М	0	U

Profitable

Unprofitable

To build a predictive model classifying customers logistic, Regression

Classifier can be used

Existing Data of a Bank

Customer	Age	Gender	Marital Status	# cr. Cards	Profitability
1	36	М	М	1	Р
2	32	М	S	3	U
3	38	М	М	2	Р
4	40	М	S	1	U
5	44	М	М	0	Р
6	56	F	М	0	Р
7	58	F	S	1	U
8	30	F	S	2	Р
9	28	F	М	1	U
10	26	F	М	0	U

Total Population = 10
Profitable = 5
Unprofitable = 5
Profitability rate = 50%

Total Population = 6
Profitable = 4
Unprofitable = 2
Profitability rate = 66%

Total Population = 4
Profitable = 1
Unprofitable = 3
Profitability rate = 25%

The segment of data which is >35 has a higher chance of seeing a profitable customer

Decision tree classifier - Recursively subsetting data can reveal interesting patterns

Data needs to be split in such a way so that the subsets of data end up being dominated by one class of the target variable

Decision Tree splits into 2 parts at each node

Most implementations of a decision trees produce binary splits

Binary Tree

How to decide which variable should be used to create splits?

Understand the intuition behind creating splits

The intuition will be formalized by introducing purity metrics

Previous Example

Total Population = 10Profitable = 5Unprofitable = 5 **Profitability rate = 50%**

Profitable = 4 Unprofitable = 2 Unprofitable = 3

Total Population = 6

Total Population = 4 Profitable = 1**Profitability rate = 66% Profitability rate = 25%**

Total Population = 5 Profitable = 3Unprofitable = 2 **Profitability rate = 60%**

Total Population = 5Profitable = 2Unprofitable = 3 **Profitability rate = 40%**

Both splits can be compared to understand which split is better

Total Population = 10
Profitable = 5
Unprofitable = 5
Profitability rate = 50%

> 35
Age

<= 35

Total Population = 6
Profitable = 4
Unprofitable = 2
Unprofitable = 3

Profitability rate = 66% Profitability rate = 25%

Which variable produces better splits?

Total Population = 10
Profitable = 5
Unprofitable = 5
Profitability rate = 50%

Male
Gender

Female

Gender

Total Population = 5
Profitable = 3
Unprofitable = 2
Unprofitable = 2
Unprofitable = 3
Profitability rate = 60%

Profitability rate = 40%

Age or Gender?

Good split in context of classification problem

Split produced by variable age are better than the splits produced by variable gender

Greater the **class imbalance**, better the split

Class imbalance can be measured by computing Gini or Entropy

$$Gini = 1 - \sum p_i^2$$

$$Entropy = -\sum p_i log_2 p_i$$

$$Gini = 1 - \sum p_i^2$$

Total Population = 10Profitable = 5Unprofitable = 5 **Profitability rate = 50%**

Profitable = 4Unprofitable = 2 **Profitability rate = 66%**

Total Population = 6

$$1 - \left[\left(\frac{1}{4} \right)^2 + \left(\frac{3}{4} \right)^2 \right]$$

 $1 - \left[\left(\frac{3}{5} \right)^2 + \left(\frac{2}{5} \right)^2 \right]$

0.48

Total Population = 5

Profitable = 3

Unprofitable = 2

 $1 - \left[\left(\frac{2}{5} \right)^2 + \left(\frac{3}{5} \right)^2 \right]$

0.48

Total Population = 5

Profitable = 2

Unprofitable = 3

0.44

 $1 - \left[\left(\frac{4}{6} \right)^2 + \left(\frac{2}{6} \right)^2 \right]$

0.375

Profitability rate = 60% Profitability rate = 40%

$$Gini = 1 - \sum p_i^2$$

Total Population = 10Profitable = 5Unprofitable = 5 **Profitability rate = 50%**

Total Population = 6Profitable = 4Unprofitable = 2 **Profitability rate = 66% Profitability rate = 25%**

Total Population = 4Profitable = 1Unprofitable = 3

$$(\frac{6}{10}) * 0.44$$

$$(\frac{4}{10}) * 0.375$$

Total Population = 5 Profitable = 3 Unprofitable = 2

Total Population = 5Profitable = 2Unprofitable = 3**Profitability rate = 60% Profitability rate = 40%**

$$(\frac{6}{10}) * 0.44 + (\frac{4}{10}) * 0.375$$

$$(\frac{5}{10}) * 0.48$$
 + $(\frac{5}{10}) * 0.48$

$$Entropy = -\sum p_i log_2 p_i$$

Total Population = 10Profitable = 5Unprofitable = 5 **Profitability rate = 50%**

Total Population = 6Profitable = 4Unprofitable = 2 **Profitability rate = 66%**

Total Population = 4Profitable = 1Unprofitable = 3 **Profitability rate = 25%**

$$-\left[\left(\frac{1}{4}\right) * \log_2\left(\frac{1}{4}\right) + \left(\frac{3}{4}\right) * \log_2\left(\frac{3}{4}\right)\right]$$

Total Population = 5Profitable = 3Unprofitable = 2

$$-\left[\left(\frac{4}{6}\right) * \log_2\left(\frac{4}{6}\right) + \left(\frac{2}{6}\right) * \log_2\left(\frac{2}{6}\right)\right] \qquad -\left[\left(\frac{1}{4}\right) * \log_2\left(\frac{1}{4}\right) + \left(\frac{3}{4}\right) * \log_2\left(\frac{3}{4}\right)\right]$$

$$-\left[\left(\frac{3}{5}\right) * \log_2\left(\frac{3}{5}\right) + \left(\frac{2}{5}\right) * \log_2\left(\frac{2}{5}\right)\right] \qquad -\left[\left(\frac{2}{5}\right) * \log_2\left(\frac{2}{5}\right) + \left(\frac{3}{5}\right) * \log_2\left(\frac{3}{5}\right)\right]$$

0.91

0.81

0.97

0.97

$$Entropy = -\sum p_i log_2 p_i$$

Total Population = 10Profitable = 5Unprofitable = 5 **Profitability rate = 50%**

Total Population = 6Profitable = 4Unprofitable = 2 **Profitability rate = 66% Profitability rate = 25%**

Total Population = 4Profitable = 1Unprofitable = 3

Total Population = 5Profitable = 3Unprofitable = 2

Total Population = 5Profitable = 2Unprofitable = 3 **Profitability rate = 60% Profitability rate = 40%**

$$\left(\frac{6}{10}\right) * 0.91$$

$$\left(\frac{4}{10}\right) * 0.81$$

$$\left(\frac{5}{10}\right) * 0.97$$
 + $\left(\frac{5}{10}\right) * 0.97$

0.87

Decision Tree: Algorithm Overview

For each split the purity metric is computed

Choose the lowest variable which results in lowest value of purity metric

Continue doing these till some **stopping criteria** is met

Decision Tree: Algorithm Overview

Stopping Criteria

Depth of tree

Specifying the levels of the tree

Improvement in purity metric

Specifying the minimum change in purity metric from one split to another

Value in terminal node

Specifying the number of value in the terminal node

Decision Tree: Prediction

Use decision tree classifier as prediction

Available data – 20 year old person

Prediction – 25% Chance of him being profitable

Decision Tree: Performance Metrics

Decision tree classifier output probabilities

ROC curves

Confusion metrics

Performance of the decision tree classifier

Area under ROC curves

For multiclass problems, accuracy is used as a performance measure

Decision Tree: Parameters and Hyperparameters

These parameters are estimated using cross validation

At the model level of decision tree rules are decided for predicting probabilities or classes

Recap

- Decision Tree Overview
- Decision Tree Algorithms Gini and Entropy
- Decision Tree Performance Metrics
- Decision Tree Parameter and Hyperparameter