SIEMENS

SFH610A/611A/615A/617A

5.3 kV TRIOS® OPTOCOUPLER HIGH RELIABILITY

FEATURES

- High Current Transfer Ratios at 10 mA: 40–320% at 1 mA: 60% typical (>13)
- Low CTR Degradation
- Good CTR Linearity Depending on Forward Current
- Withstand Test Voltage, 5300 VACRMS
- High Collector-Emitter Voltage, VCEO=70 V
- · Low Saturation Voltage
- · Fast Switching Times
- Field-Effect Stable by TRIOS (TRansparent IOn Shield)
- Temperature Stable
- Low Coupling Capacitance
- End-Stackable, .100"(2.54 mm) Spacing
- High Common-Mode Interference Immunity (Unconnected Base)
- Underwriters Lab File #52744
- VDE 0884 Available with Option 1
- SMD Option See SFH6106/16/56 Data Sheet

DESCRIPTION

The SFH61XA features a high current transfer ratio, low coupling capacitance and high isolation voltage. These couplers have a GaAs infrared emitting diode emitter, which is optically coupled to a silicon planar phototransistor detector, and is incorporated in a plastic DIP-4 package.

The coupling devices are designed for signal transmission between two electrically separated circuits.

The couplers are end-stackable with 2.54 mm spacing.

Creepage and clearance distances of >8 mm are achieved with option 6. This version complies with IEC 950 (DIN VDE 0805) for reinforced insulation up to an operation voltage of 400 V_{RMS} or DC.

Specifications subject to change.

Maximum Ratings

Emitter

ntto:	
verse Voltage	
Forward Current	
ge Forward Current (tP≤10 μs)	2.5 A
al Power Dissipation	100 mW
tector	
llector-Emitter Voltage	70 V
itter-Collector Voltage	7 V
llector Current	50 mA
llector Current (tP≤1 ms)	100 mA
al Power Dissipation	150 mW
ckage	
lation Test Voltage between Emitter and	
Detector, refer to Climate DIN 40046,	
oart 2, Nov. 74 53	300 VAC _{RMS}
epage	≥7 mm
earance	≥7 mm
ulation Thickness between Emitter and Detector	≥0.4 mm
mparative Tracking Index	
oer DIN IEC 112/VDE0 303, part 1	≥175
lation Resistance	
/ _{IO} =500 V, T _A =25°C	≥10 ¹² Ω
/ _{IO} =500 V, T _A =100°C	≥10 ¹¹ Ω
rage Temperature Range5	5 to +150°C
bient Temperature Range5	5 to +100°C
nction Temperature	100°C
dering Temperature (max. 10 s. Dip Soldering	
Distance to Seating Plane ≥1.5 mm)	260°C

Characteristics (T_A=25°C)

Description	Symbol		Unit	Condition	
Emitter (IR GaAs)					
Forward Voltage	V _F	1.25 (≤1.65)	V	I _F =60 mA	
Reverse Current	I _R	0.01 (≤10)	μА	V _R =6 V	
Capacitance	C ₀	13	pF	V _R =0 V, f=1 MHz	
Thermal Resistance	R _{thJA}	750	K/W		
Detector (Si Phototransistor)					
Capacitance	C _{CE}	5.2	pF	V _{CE} =5 V, f=1 MHz	
Thermal Resistance	R _{thJA}	500	K/W		
Package					
Collector-Emitter Saturation Voltage	V _{CESAT}	0.25 (≤0.4)	V	I _F =10 mA, I _C =2.5 mA	
Coupling Capacitance	C _C	0.4	pF		

Current Transfer Ratio (I $_{C}$ /I $_{F}$ at V $_{CE}$ =5 $\,$ V) and Collector-Emitter Leakage Current by Dash Number

Description	-1	-2	-3	-4	
I _C / I _F (I _F =10 mA)	40–80	63–125	100–200	160–320	%
I _C / I _F (I _F =1 mA)	30 (>13)	45 (>22)	70 (>34)	90 (>56)	%
Collector-Emitter Leakage Current, I _{CEO} V _{CE} =10 V	2 (≤50)	2 (≤50)	5 (≤100)	5 (≤100)	nA

Switching Times (Typical) Linear Operation (without saturation)

Switching Operation (with saturation)

$I_{\textrm{F}}\text{=}10$ mA, $V_{\textrm{CC}}\text{=}5$ V, $T_{\textrm{A}}\text{=}25^{\circ}\textrm{C}$

Load Resistance	R _L	75	Ω
Turn-on Time	t _{ON}	3.0	μs
Rise Time	t _R	2.0	μs
Turn-off Time	t _{OFF}	2.3	μs
Fall Time	t _F	2.0	μs
Cut-off Frequency	F _{CO}	250	kHz

		-1 I _F =20 mA	-2 and -3 I _F =10 mA	-4 I _F =5 mA	
Turn-on Time	t _{ON}	3.0	4.2	6.0	μs
Rise Time	t _R	2.0	3.0	4.6	μs
Turn-off Time	t _{OFF}	18	23	25	μs
Fall Time	t _F	11	14	15	μs

Figure 1. Current transfer ratio (typ.)

Figure 4. Transistor capacitance (typ.) vs.

Figure 2. Output characteristics (typ.) Collector current vs. collector-emitter

Figure 5. Permissible pulse handling capability. Forward current vs. pulse

i iguie J. Dioue ioi waiu voitage (typ.) vs. forward current

