Homework 4

- 1. Let G be a group and $H_1, H_2 \subset G$ be two subgroups. Prove that $H_1 \cap H_2 \subset G$ is also a subgroup.
- 2. Verify explicitly the axioms of a vector space over a field for the following examples that were presented in class. Before you verify the axioms, write explicitly the operations of addition and multiplication by scalar for each example.
 - (a) $(\mathbb{R}^n, +, \alpha)$ as presented in class.
 - (b) $(F(X), +, \alpha)$ where X be a set and F a field; F(X) is the set of F valued functions on X with the operation $+:F(X)\times F(X)\to F(X)$ of addition of functions and $\alpha:F\times F(X)\to F(X)$ of multiplication by scalar.
 - (c) $(\mathbb{R}[x], +, \alpha)$ where $\mathbb{R}[x]$ is the set of polynomials in one variable with coefficients in \mathbb{R} .
 - (d) $V = \{0\}$ with 0 + 0 = 0 and $\lambda \cdot 0 = 0$ for every $\lambda \in F$ where F is an arbitrary field.
 - (e) $V = \mathbb{R}$ and $F = \mathbb{Q}$.
- 3. Let V be a vector space over a field F. Let $\mathbf{0} \in V$ be the zero vector.
 - (a) Prove that $\lambda \cdot \mathbf{0} = \mathbf{0}$ for every $\lambda \in F$.
 - (b) Prove that $0 \cdot v = \mathbf{0}$ for every $v \in V$.
 - (c) prove that $(-1) \cdot v = -v$ for every $v \in V$.
- 4. Verify for the following maps if it is a linear transformation. If yes prove it, if not explain which property is not satisfied.
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$; T(x,y) = (x+y, 2x-y).
 - (b) $T: \mathbb{R}^2 \to \mathbb{R}^2$; T(x,y) = (x+y, 2x-5).
 - (c) $T: \mathbb{R}^2 \to \mathbb{R}^2$; T(x,y) = (y,x).
 - (d) $T: \mathbb{Q}^3 \to \mathbb{Q}^3$; $T(x, y, z) = (x + y + z, z y, 2 \cdot x + 5 \cdot y z)$.
 - (e) Let F be a field. $T: F^n \to F$; $T(x_1,...,x_2) = x_1 \cdot x_2 \cdot ... \cdot x_n$.
 - (f) Let $\varphi: X \to Y$ a map of sets and F a field. Let $\varphi^*: F(Y) \to F(X)$ be the map sending a function $f \in F(Y)$ a function $\varphi^*(f) \in F(X)$ given by $\varphi^*(f)(x) = f(\varphi(x))$ for every $x \in X$.
 - (g) $D: \mathbb{R}[x] \to \mathbb{R}[x]$ defined as follows: for $p(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$, $D(p) = n a_n x^{n-1} + (n-1) a_{n-1} x^{n-2} + ... + 1 a_1$. (This map is called derivative).
 - (h) Generalize example g for polynomials in one variable with coefficients in an arbitrary (infinite) field F.