TEMA 2. Sucesiones de Números Reales Análisis Matemático

Profesor: José Ángel Cid

Grao en Enxeñaría Informática Departamento de Matemáticas Universidad de Vigo.

Llamamos sucesión de números reales a una función $f: \mathbb{N} \longrightarrow \mathbb{R}$,

$$n \to f(n) = x_n$$
.

Llamamos sucesión de números reales a una función $f: \mathbb{N} \longrightarrow \mathbb{R}$,

$$n \to f(n) = x_n$$
.

Llamamos sucesión de números reales a una función $f: \mathbb{N} \longrightarrow \mathbb{R}$,

$$n \to f(n) = x_n$$
.

Habitualmente denotaremos la sucesión como $\{x_1, x_2, \dots, x_n, \dots\}$ o simplemente por $\{x_n\}$.

Llamamos sucesión de números reales a una función $f: \mathbb{N} \longrightarrow \mathbb{R}$,

$$n \to f(n) = x_n$$
.

Habitualmente denotaremos la sucesión como $\{x_1, x_2, ..., x_n, ...\}$ o simplemente por $\{x_n\}$.

A los valores $x_1, x_2, \dots, x_n, \dots$, se les llama términos de la sucesión, siendo x_n el término enésimo o término general de la sucesión.

A continuación presentamos varios ejemplos de sucesiones

$$\left\{ \frac{1}{n} \right\} = \left\{ 1, \frac{1}{2}, \frac{1}{3}, \dots \right\}$$

A continuación presentamos varios ejemplos de sucesiones

•
$$\{(-1)^n\} = \{-1, 1, -1, 1, \ldots\}$$

4□▶ 4□▶ 4□▶ 4□▶ 4□ 900

A continuación presentamos varios ejemplos de sucesiones

•
$$\{n^2\} = \{1, 4, 9, 16, \ldots\}$$

No es necesario expresar $\{x_n\}$ en función de n mediante una fórmula. Por ejemplo el conjunto de los números primos forma una sucesión

$$\{p_n\} = \{2, 3, 5, 7, 11, \ldots\},\$$

a pesar de que no se conoce ninguna fórmula explícita que genere $\{p_n\}$.

No es necesario expresar $\{x_n\}$ en función de n mediante una fórmula. Por ejemplo el conjunto de los números primos forma una sucesión

$$\{p_n\} = \{2, 3, 5, 7, 11, \ldots\},\$$

a pesar de que no se conoce ninguna fórmula explícita que genere $\{p_n\}$.

OBSERVACIÓN

La mejor fuente de información existente sobre sucesiones de números enteros es "The On-Line Encyclopedia of Integer Sequences", disponible en http://oeis.org/.

Una sucesión $\{x_n\}$ converge a $x \in \mathbb{R}$ (escribimos $\lim_{n \to \infty} x_n = x$ o $\{x_n\} \to x$) si para cada $\varepsilon > 0$ existe un número natural $n_0 = n_0(\varepsilon) \in \mathbb{N}$ tal que si $n \in \mathbb{N}$, $n \ge n_0$ entonces

$$|x_n-x|<\varepsilon.$$

Una sucesión $\{x_n\}$ converge a $x \in \mathbb{R}$ (escribimos $\lim_{n \to \infty} x_n = x$ o $\{x_n\} \to x$) si para cada $\varepsilon > 0$ existe un número natural $n_0 = n_0(\varepsilon) \in \mathbb{N}$ tal que si $n \in \mathbb{N}$, $n \ge n_0$ entonces

$$|x_n-x|<\varepsilon.$$

Una sucesión $\{x_n\}$ converge a $x \in \mathbb{R}$ (escribimos $\lim_{n \to \infty} x_n = x$ o $\{x_n\} \to x$) si para cada $\varepsilon > 0$ existe un número natural $n_0 = n_0(\varepsilon) \in \mathbb{N}$ tal que si $n \in \mathbb{N}$, $n \ge n_0$ entonces

$$|x_n-x|<\varepsilon.$$

En tal caso decimos que x es el límite de la sucesión $\{x_n\}$. Si una sucesión $\{x_n\}$ tiene límite se llama convergente.

Intuitivamente, " $\{x_n\}$ converge a $x \in \mathbb{R}$ " significa que el término x_n está tan próximo "como queramos" del número real x siempre que n sea "suficientemente grande".

Intuitivamente, " $\{x_n\}$ converge a $x \in \mathbb{R}$ " significa que el término x_n está tan próximo "como queramos" del número real x siempre que n sea "suficientemente grande".

Como $|x_n-x|<\varepsilon$ es equivalente a $x-\varepsilon< x_n< x+\varepsilon$, podemos afirmar que una sucesión de números reales $\{x_n\}$ converge a x si en cualquier entorno de x se encuentran todos los términos de la sucesión $\{x_n\}$, salvo quizás un número finito.

Sea $\{x_n\}$ una sucesión de números reales.

Si
$$\lim_{n\to\infty} x_n = \pm \infty$$
 decimos que la sucesión es divergente.

Sea $\{x_n\}$ una sucesión de números reales.

• Decimos que
$$\{x_n\} \to +\infty$$
 (o $\lim_{n \to \infty} x_n = +\infty$), si

$$\forall M > 0 \,\exists n_0 = n_0(M) \in \mathbb{N} : \forall n \in \mathbb{N}, \ n \geq n_0 \Rightarrow x_n > M.$$

Si
$$\lim_{n\to\infty} x_n = \pm \infty$$
 decimos que la sucesión es divergente.

Sea $\{x_n\}$ una sucesión de números reales.

- ① Decimos que $\{x_n\} \to +\infty$ (o $\lim_{n \to \infty} x_n = +\infty$), si
 - $\forall M>0\,\exists n_0=n_0(M)\in\mathbb{N}:\forall n\in\mathbb{N},\;n\geq n_0\Rightarrow x_n>M.$
- 2 Decimos que $\{x_n\} \to -\infty$ (o $\lim_{n \to \infty} x_n = -\infty$), si

$$\forall M > 0 \,\exists n_0 = n_0(M) \in \mathbb{N} : \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow \mathsf{x}_n < -M.$$

Si $\lim_{n\to\infty} x_n = \pm \infty$ decimos que la sucesión es divergente.

Proposición

- $2 \{x_n\} \to 0 \Leftrightarrow \{|x_n|\} \to 0.$

- **3** La sucesión $\{y_n\} = \{x_{n+p}\}$, $p \in \mathbb{N}$ fijado, es convergente si y sólo si $\{x_n\}$ es convergente, en cuyo caso el límite de ambas coincide.

Una propiedad importante del límite de una sucesión es que si existe es único.

TEOREMA (Unicidad del límite)

Sea $\{x_n\}$ una sucesión de números reales y supongamos que existen dos números reales, x e y, tales que $\{x_n\} \to x$ y también $\{x_n\} \to y$. Entonces x = y.

Sea $\{x_n\}$ una sucesión de números reales y

 $n_1 < n_2 < \ldots < n_k < n_{k+1} < \ldots$ una sucesión estrictamente creciente de números naturales.

Llamamos subsucesión o sucesión parcial de la sucesión $\{x_n\}$ a la sucesión $\{x_{n_k}\}$.

Si $\{x_n\}$ es una sucesión convergente, entonces cualquier subsucesión de $\{x_{n_k}\}$ también es convergente y tiene el mismo límite.

Si $\{x_n\}$ es una sucesión convergente, entonces cualquier subsucesión de $\{x_{n_k}\}$ también es convergente y tiene el mismo límite.

Si $\{x_n\}$ es una sucesión convergente, entonces cualquier subsucesión de $\{x_{n_k}\}$ también es convergente y tiene el mismo límite.

La proposición anterior resulta muy útil para demostrar que una sucesión no es convergente usándola de la siguiente forma: si una sucesión admite dos subsucesiones con límites distintos o una subsucesión no convergente entonces la sucesión de partida no es convergente.

1 Usar la definición de límite para probar que $\lim_{n\to\infty}\frac{1}{n}=0$.

- Usar la definición de límite para probar que $\lim_{n\to\infty}\frac{1}{n}=0$.
- ② ¿La sucesión $\{(-1)^n\} = \{-1, 1, -1, 1, ...\}$ es convergente?

- Usar la definición de límite para probar que $\lim_{n\to\infty}\frac{1}{n}=0$.
- **2** ¿La sucesión $\{(-1)^n\} = \{-1, 1, -1, 1, ...\}$ es convergente?
- **3** Probar que la sucesión constante $\{c, c, c, \ldots\}$ converge a c.

El límite de la sucesión $\{r^n\}$, con $r \in \mathbb{R}$, se comporta de la siguiente manera

El límite de la sucesión $\{r^n\}$, con $r \in \mathbb{R}$, se comporta de la siguiente manera

El límite de la sucesión $\{r^n\}$, con $r \in \mathbb{R}$, se comporta de la siguiente manera

$$\lim_{n \to \infty} r^n = \left\{ \begin{array}{ll} \textit{No existe el límite}, & \textit{si } r \leq -1, \\ 0, & \textit{si } -1 < r < 1 \Longleftrightarrow |r| < 1, \\ 1, & \textit{si } r = 1, \\ +\infty, & \textit{si } r > 1. \end{array} \right.$$

Sea $\{x_n\}$ una sucesión de números reales.

Sea $\{x_n\}$ una sucesión de números reales.

1 Se dice que $\{x_n\}$ está acotada superiormente si existe $K \in \mathbb{R}$ tal que

$$x_n \leq K, \quad \forall n \in \mathbb{N}.$$
 (2.1)

Los números reales K que verifican (2.1) se llaman cotas superiores de la sucesión $\{x_n\}$.

Sea $\{x_n\}$ una sucesión de números reales.

1 Se dice que $\{x_n\}$ está acotada superiormente si existe $K \in \mathbb{R}$ tal que

$$x_n \le K, \quad \forall n \in \mathbb{N}.$$
 (2.1)

Los números reales K que verifican (2.1) se llaman cotas superiores de la sucesión $\{x_n\}$.

2 Se dice que $\{x_n\}$ está acotada inferiormente si existe $k \in \mathbb{R}$ tal que

$$x_n \ge k, \qquad \forall n \in \mathbb{N}.$$
 (2.2)

Los números reales k que verifican (2.2) se llaman cotas inferiores de la sucesión $\{x_n\}$.

Sea $\{x_n\}$ una sucesión de números reales.

1 Se dice que $\{x_n\}$ está acotada superiormente si existe $K \in \mathbb{R}$ tal que

$$x_n \le K, \qquad \forall n \in \mathbb{N}.$$
 (2.1)

Los números reales K que verifican (2.1) se llaman cotas superiores de la sucesión $\{x_n\}$.

2 Se dice que $\{x_n\}$ está acotada inferiormente si existe $k \in \mathbb{R}$ tal que

$$x_n \ge k, \qquad \forall n \in \mathbb{N}.$$
 (2.2)

Los números reales k que verifican (2.2) se llaman cotas inferiores de la sucesión $\{x_n\}$.

3 Se dice que la sucesión $\{x_n\}$ está acotada si existen valores $k, K \in \mathbb{R}$ tales que

$$k \le x_n \le K, \quad \forall n \in \mathbb{N}.$$
 (2.3)

De la definición de límite se sigue sin demasiada dificultad el siguiente resultado.

TEOREMA

Toda sucesión de números reales convergente está acotada.

El recíproco del teorema anterior no es cierto (por ejemplo $\{(-1)^n\}$ es una sucesión acotada no convergente). Un recíproco parcial lo proporciona el siguiente resultado.

PROPOSICIÓN

Sean $\{x_n\}$ e $\{y_n\}$ dos sucesiones de números reales.

- ② $Si\{x_n\} \rightarrow 0$ e $\{y_n\}$ está acotada, entonces $\{x_n y_n\} \rightarrow 0$.

- ② $Si \{x_n\} \rightarrow 0$ e $\{y_n\}$ está acotada, entonces $\{x_n y_n\} \rightarrow 0$.

- 2 $Si \{x_n\} \rightarrow 0$ e $\{y_n\}$ está acotada, entonces $\{x_n y_n\} \rightarrow 0$.
- **3** Si $\{x_n\} \to x$ e $\{y_n\} \to y \neq 0$, con $y_n \neq 0$, $\forall n \in N$, entonces $\{x_n/y_n\} \to x/y$.

Sean $\{x_n\}$ e $\{y_n\}$ dos sucesiones de números reales.

- ② $Si \{x_n\} \rightarrow 0$ $e \{y_n\}$ está acotada, entonces $\{x_n y_n\} \rightarrow 0$.
- **3** Si $\{x_n\} \to x$ e $\{y_n\} \to y \neq 0$, con $y_n \neq 0$, $\forall n \in N$, entonces $\{x_n/y_n\} \to x/y$.
- **1** (Regla del encaje o del sandwich). Si $\{x_n\}$ e $\{y_n\}$ tienen por límite l y

$$x_n \leq z_n \leq y_n, \quad \forall n \in \mathbb{N}, \ n \geq n_0,$$

entonces la sucesión $\{z_n\}$ también es convergente a I.

Sean $\{x_n\}$ e $\{y_n\}$ dos sucesiones de números reales.

- ② $Si \{x_n\} \rightarrow 0$ $e \{y_n\}$ está acotada, entonces $\{x_n y_n\} \rightarrow 0$.
- **3** Si $\{x_n\} \to x$ e $\{y_n\} \to y \neq 0$, con $y_n \neq 0$, $\forall n \in N$, entonces $\{x_n/y_n\} \to x/y$.
- **(**Regla del encaje o del sandwich). Si $\{x_n\}$ e $\{y_n\}$ tienen por límite l y

$$x_n \le z_n \le y_n, \quad \forall n \in \mathbb{N}, \ n \ge n_0,$$

entonces la sucesión $\{z_n\}$ también es convergente a I.

6 Si $\{x_n\} \to +\infty$ e $\{y_n\} \to +\infty$, entonces $\{x_n y_n\} \to +\infty$.

Sean $\{x_n\}$ e $\{y_n\}$ dos sucesiones de números reales.

- ② $Si \{x_n\} \rightarrow 0$ $e \{y_n\}$ está acotada, entonces $\{x_n y_n\} \rightarrow 0$.
- **3** Si $\{x_n\} \to x$ e $\{y_n\} \to y \neq 0$, con $y_n \neq 0$, $\forall n \in N$, entonces $\{x_n/y_n\} \to x/y$.
- **1** (Regla del encaje o del sandwich). Si $\{x_n\}$ e $\{y_n\}$ tienen por límite l y

$$x_n \le z_n \le y_n, \quad \forall n \in \mathbb{N}, \ n \ge n_0,$$

entonces la sucesión $\{z_n\}$ también es convergente a I.

- **3** Si $\{x_n\} \to +\infty$ e $\{y_n\} \to +\infty$, entonces $\{x_n y_n\} \to +\infty$.

Sean $\{x_n\}$ e $\{y_n\}$ dos sucesiones de números reales.

- ② $Si \{x_n\} \rightarrow 0$ $e \{y_n\}$ está acotada, entonces $\{x_n y_n\} \rightarrow 0$.
- **4** Si $\{x_n\} \to x$ e $\{y_n\} \to y \neq 0$, con $y_n \neq 0$, $\forall n \in N$, entonces $\{x_n/y_n\} \to x/y$.
- **1** (Regla del encaje o del sandwich). Si $\{x_n\}$ e $\{y_n\}$ tienen por límite l y

$$x_n \le z_n \le y_n, \quad \forall n \in \mathbb{N}, \ n \ge n_0,$$

entonces la sucesión $\{z_n\}$ también es convergente a l.

- **5** Si $\{x_n\} \to +\infty$ e $\{y_n\} \to +\infty$, entonces $\{x_n y_n\} \to +\infty$.
- **③** Si $\{x_n\}$ → +∞ $\{y_n\}$ → $y \neq 0$, entonces $\{x_n y_n\}$ → +∞ si y > 0 ó $\{x_n y_n\}$ → -∞ si y < 0.

Sean $\{x_n\}$ e $\{y_n\}$ dos sucesiones de números reales.

- ② $Si \{x_n\} \rightarrow 0$ e $\{y_n\}$ está acotada, entonces $\{x_n y_n\} \rightarrow 0$.
- **3** Si $\{x_n\} \to x$ e $\{y_n\} \to y \neq 0$, con $y_n \neq 0$, $\forall n \in N$, entonces $\{x_n/y_n\} \to x/y$.
- **1** (Regla del encaje o del sandwich). Si $\{x_n\}$ e $\{y_n\}$ tienen por límite l y

$$x_n \le z_n \le y_n, \quad \forall n \in \mathbb{N}, \ n \ge n_0,$$

entonces la sucesión $\{z_n\}$ también es convergente a l.

- **o** Si $\{x_n\} \to +\infty$ e $\{y_n\} \to +\infty$, entonces $\{x_n y_n\} \to +\infty$.
- $lackbox{0}$ Si $\{x_n\} \to +\infty$ e $\{y_n\} \to -\infty$, entonces $\{x_n y_n\} \to -\infty$.
- ③ $Si\{x_n\}$ → $+\infty$ $\{y_n\}$ → $y \neq 0$, entonces $\{x_n y_n\}$ → $+\infty$ si y > 0 ó $\{x_n y_n\}$ → $-\infty$ si y < 0.
- **9** Si $x_n \neq 0$, $\forall n \in \mathbb{N}$, entonces $\{x_n\} \to 0 \Leftrightarrow \{1/|x_n|\} \to +\infty$.

Hay otras operaciones que no tienen un valor definido, dependen del ejemplo concreto y se llaman "indeterminaciones". Por ejemplo: " $+\infty-\infty$ ", " $0\cdot\infty$

La sucesión de números reales dada por

$$\{x_n\} = \left\{ \left(1 + \frac{1}{n}\right)^n \right\},\,$$

es monótona creciente y acotada, por lo que $\{x_n\}$ es una sucesión convergente. Se define el número e, en honor de Euler, como el límite de la sucesión $\{x_n\}$, es decir,

$$e:=\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=2,718281\cdots$$

TEOREMA (Criterio para la indeterminación " 1^{∞} ")

Si
$$\lim_{n\to\infty} x_n = 1$$
, $\lim_{n\to\infty} y_n = +\infty$ y $\lim_{n\to\infty} (x_n - 1) \cdot y_n = h$ entonces

$$\lim_{n\to\infty} x_n^{y_n} = e^h.$$

TEOREMA (Criterio para la indeterminación " 1^{∞} ")

Si
$$\lim_{n\to\infty} x_n = 1$$
, $\lim_{n\to\infty} y_n = +\infty$ y $\lim_{n\to\infty} (x_n - 1) \cdot y_n = h$ entonces

$$\lim_{n\to\infty} x_n^{y_n} = e^h.$$

TEOREMA (Criterio para la indeterminación " 1^{∞} ")

Si
$$\lim_{n\to\infty} x_n = 1$$
, $\lim_{n\to\infty} y_n = +\infty$ y $\lim_{n\to\infty} (x_n - 1) \cdot y_n = h$ entonces

$$\lim_{n\to\infty} x_n^{y_n} = e^h.$$

Figura: Doodle conmemorando el 306 aniversario del nacimiento de Euler

4 D F 4 D F 4 D F 9 0 0

Una sucesión $\{x_n\}$ se dice que es una sucesión recurrente de orden p si cada término viene dado en función de los p términos anteriores, es decir

$$x_{n+p} = g(x_n, x_{n+1}, \dots, x_{n+p-1}), \qquad n \ge 1,$$
 (4.1)

siendo p un valor fijo.

Una sucesión $\{x_n\}$ se dice que es una sucesión recurrente de orden p si cada término viene dado en función de los p términos anteriores, es decir

$$x_{n+p} = g(x_n, x_{n+1}, \dots, x_{n+p-1}), \qquad n \ge 1,$$
 (4.1)

siendo p un valor fijo.

Una sucesión $\{x_n\}$ se dice que es una sucesión recurrente de orden p si cada término viene dado en función de los p términos anteriores, es decir

$$x_{n+p} = g(x_n, x_{n+1}, \dots, x_{n+p-1}), \qquad n \ge 1,$$
 (4.1)

siendo p un valor fijo.

La igualdad (4.1) se denomina ley de recurrencia. Para generar los términos de una sucesión recurrente de orden p es preciso conocer los p-primeros términos de la sucesión. Los valores, x_1, x_2, \ldots, x_p , se denominan valores iniciales de la sucesión. Si partimos de una misma ley de recurrencia (4.1) pero con distintos valores iniciales, se generan sucesiones distintas.

OBSERVACIÓN

 i) La mayoría de los métodos numéricos que estudiaremos generan una sucesión recurrente con el objetivo de aproximar la solución del problema estudiado.

OBSERVACIÓN

- La mayoría de los métodos numéricos que estudiaremos generan una sucesión recurrente con el objetivo de aproximar la solución del problema estudiado.
- ii) Para estudiar la convergencia de sucesiones recurrentes es muy útil el Principio de Inducción. En determinados casos el estudio de la convergencia se reduce a probar que la sucesión es monótona y acotada.

Sea $\{x_n\}$ una sucesión de números reales. Diremos que

Sea $\{x_n\}$ una sucesión de números reales. Diremos que

• $\{x_n\}$ es monótona creciente si $x_n \leq x_{n+1}$, $\forall n \in \mathbb{N}$.

Sea $\{x_n\}$ una sucesión de números reales. Diremos que

- **1** $\{x_n\}$ es monótona creciente si $x_n \leq x_{n+1}$, $\forall n \in \mathbb{N}$.
- ② $\{x_n\}$ es monótona decreciente si $x_n \ge x_{n+1}$, $\forall n \in \mathbb{N}$.

Sea $\{x_n\}$ una sucesión de números reales. Diremos que

- **1** $\{x_n\}$ es monótona creciente si $x_n \leq x_{n+1}$, $\forall n \in \mathbb{N}$.
- ② $\{x_n\}$ es monótona decreciente si $x_n \ge x_{n+1}$, $\forall n \in \mathbb{N}$.

Sea $\{x_n\}$ una sucesión de números reales. Diremos que

- **1** $\{x_n\}$ es monótona creciente si $x_n \leq x_{n+1}$, $\forall n \in \mathbb{N}$.
- **2** $\{x_n\}$ es monótona decreciente si $x_n \ge x_{n+1}$, $\forall n \in \mathbb{N}$.

En ambos casos se dice que $\{x_n\}$ es una sucesión monótona. Si en las definiciones anteriores se da la desigualdad estricta diremos que la sucesión es estrictamente creciente o estrictamente decreciente.

TEOREMA

Toda sucesión de números reales monótona y acotada es convergente.

EJEMPLO

Demostrar que la sucesión definida como $x_1 := 2$, $x_{n+1} = \sqrt{2 + x_n}$ para todo $n \in \mathbb{N}$, $n \ge 2$, es convergente y calcular su límite.