

introducing

MATLAB® File Exchange

Efficient global sensitivity analysis using mechanistic or machine learning models

- + Highly increased computational efficiency
- + Reliably rank important parameters
- + Quickly identify key design parameters in a design space
- + Tap into the power of machine learning libraries

LUND UNIVERSITY

Outline

introducing

easyGSA

Global sensitivity analysis framework using mechanistic or machine learning algorithms

available on

Introducing syntax and features

Benchmark problems

- 1. Ishigami function
- 2. gSobol function
- 3. Cantilever Beam functions

Engineering applications

1. Wastewater treatment plant design space exploration

What it can do for you

easyGSA at a glance

introducing

easyGSA

Global sensitivity analysis framework using mechanistic or machine learning algorithms

available on

- > Easy-to-work syntax to perform GSA using Sobol method and SRC method.
- > Sampling schemes: Sobol sequences, Latin hypercube sampling (LHS).
- > Automatic hyperparameter optimization for Gaussian process models
- > Gridsearch optimization algorithm for finding best neural networks configuration
- > Allowing user provided data to fit surrogates and perform Sobol GSA.
- > Automatic data cleaning.
- > Efficient use of available parallelization architecture.

Uncertainty and sensitivity analysis for complex system models

How to use

easyGSA: basic syntax

introducing

easyGSA

Global sensitivity analysis framework using mechanistic or machine learning algorithms

How to use

easyGSA: detailed syntax

introducing

easyGSA

Global sensitivity analysis framework using mechanistic or machine learning algorithms

How to use

easyGSA: Input arguments overview

introducing

easyGSA

Global sensitivity analysis framework using mechanistic or machine learning algorithms

available on

WATER RESEARCH SCHOOL 'Model'

@ishigami
@mymodel.m

'SamplingMethod'

'Sobol'
'LHS'

'UserData'

Data.X
Data.Y

ίΝ،

2e3

• •

'Estimator'

'Jansen'
'Saltelli'

'UseParallel'

true **false** 'InputSpace'

'LowerBounds'
'UpperBounds'

'UseSurrogate'

'GPR'

'ANN'

'Verbose'

true false

Required argument

Optional argument

Available options

Default setting in bold

'Method'

Sobol

SRC

Ishigami function

introducing

easyGSA

Global sensitivity analysis framework using mechanistic or machine learning algorithms

available on

Easy syntax to perform GSA using Sobol method

```
%% Test on Ishigami function: Analytical sensitivities are known
f = Q(x) \sin(x(:,1)) + 7.*\sin(x(:,2)).^2 + 0.1.*x(:,3).^4.*\sin(x(:,1));
N = 1e3; % Number of MC samples
% define input parameter space
pars = strseq('x',1:3); % input parameter names
lbs = -pi.*ones(1,3); % lower bounds of input parameters
ubs = pi.*ones(1,3); % upper bounds of input parameters
InputSpace = {'ParNames',pars,'LowerBounds',lbs,'UpperBounds',ubs};
% call easyGSA to perform Sobol sensitivity analysis with MC approach
[Si,STi] = easyGSA(f,N,InputSpace{:})
```

$$f(x) = \sin(x_1) + a\sin^2(x_2) + bx_3^4 \sin(x_1)$$
$$x_i \sim U(-\pi, \pi), \text{ for all } i = 1, 2, 3$$

Model implementation from https://www.sfu.ca/~ssurjano/ishigami.html

Ishigami function

easyGSA

Global sensitivity analysis framework using mechanistic or machine learning algorithms

available on

Easy syntax to perform GSA using Sobol method

```
%% Test on Ishigami function: Analytical sensitivities are known
f = @(x) sin(x(:,1)) + 7.*sin(x(:,2)).^2 + 0.1.*x(:,3).^4.*sin(x(:,1));
N = 1e3; % Number of MC samples

% define input parameter space
pars = strseq('x',1:3); % input parameter names
lbs = -pi.*ones(1,3); % lower bounds of input parameters
ubs = pi.*ones(1,3); % upper bounds of input parameters
InputSpace = {'ParNames',pars,'LowerBounds',lbs,'UpperBounds',ubs};

% call easyGSA to perform Sobol sensitivity analysis with MC approach
[Si,STi] = easyGSA(f,N,InputSpace{:})
```

Change sampling method and MC estimator

Ishigami function

introducing

easyGSA

Global sensitivity analysis framework using mechanistic or machine learning algorithms

available on

WATER RESEARCH SCHOOL Use a Gaussian Process regression model to do the GSA

Ishigami function

introducing

easyGSA

Global sensitivity analysis framework using mechanistic or machine learning algorithms

available on

WATER RESEARCH SCHOOL

Use a Gaussian Process regression model to do the GSA

Use an artificial neural network model to do the GSA

```
% use an ANN model instead
[annSi, annSTi] = easyGSA(f,N,parameters{:}, ...
'UseSurrogate','ANN')
```


introducing

easyGSA

Global sensitivity analysis framework using mechanistic or machine learning algorithms

available on

Benchmark problems

Ishigami function

Use a Gaussian Process regression model to do the GSA

```
% use a GPR model instead
[gprSi, gprSTi] = easyGSA(f,N,parameters{:}, ...
'UseSurrogate','GPR')
```

Use an artificial neural network model to do the GSA

Use parallel computing to speed up

g-function of Sobol

introducing

easyGSA

Global sensitivity analysis framework using mechanistic or machine learning algorithms

available on

The model

$$f(x) = \prod_{i=1}^{d} \frac{|4x_i - 2| + a_i}{1 + a_i}$$
, where

$$a_i = \frac{i-2}{2}$$
, for all $i = 1, ..., d$

$$x_i \sim U(0,1)$$
, for all $i = 1,...,d$

Model implementation from https://www.sfu.ca/~ssurjano/gfunc.html

Analytical Si indices can be found below.

Marrel, A., looss, B., Laurent, B., Roustant, O., 2009.
Calculations of Sobol indices for the Gaussian process metamodel. Reliab. Eng. Syst. Saf. 94, 742–751. https://doi.org/10.1016/j.ress.2008.07.008

g-function of Sobol

introducing

easyGSA

Global sensitivity analysis framework using mechanistic or machine learning algorithms


```
f = Q(x) \text{ gSobol}(x);
N = 1e6; % Number of MC samples
pars = strseq('x',1:5); % input parameter names
parameters = {'ParNames',pars,'LowerBounds',lbs,'UpperBounds',ubs};
% Monte Carlo indices from the original model
[mcSi,mcSTi] = easyGSA(f,N,parameters{:});
% GPR indices
[gprSi, gprSTi] = easyGSA(f,N,parameters{:},'UseSurrogate','GPR')
% ANN indices
[annSi, annSTi] = easyGSA(f,N,parameters{:},'UseSurrogate','ANN')
```


g-function of Sobol

introducing

easyGSA

Global sensitivity analysis framework using mechanistic or machine learning algorithms

available on


```
f = @(x) gSobol(x);
N = 1e6; % Number of MC samples
pars = strseq('x',1:5); % input parameter names
lbs = zeros(1,5);
                   % lower bounds of input parameters
ubs = ones(1,5);
                       % upper bounds of input parameters
parameters = {'ParNames',pars,'LowerBounds',lbs,'UpperBounds',ubs};
% Monte Carlo indices from the original model
[mcSi,mcSTi] = easyGSA(f,N,parameters{:});
% GPR indices
[gprSi, gprSTi] = easyGSA(f,N,parameters{:},'UseSurrogate','GPR')
% ANN indices
[annSi, annSTi] = easyGSA(f,N,parameters{:},'UseSurrogate','ANN')
```


Uncertainty and sensitivity analysis for complex system models

LUND

15

Benchmark problems

The Cantilever Beam functions

introducing

easyGSA

Global sensitivity analysis framework using mechanistic or machine learning algorithms

available on

26 November 2019

Multiple outputs

$$D(x) = \frac{4L^3}{E\omega t} \sqrt{\left(\frac{Y}{t^2}\right)^2 + \left(\frac{X}{\omega^2}\right)^2}$$

$$S(x) = \frac{600Y}{\omega t^2} + \frac{600X}{\omega t^2}$$

Normally distributed input space

yield stress
Young's modulus of beam material
horizontal load
vertical load

The Cantilever Beam functions, used for uncertainty quantification, model a simple uniform cantilever beam with horizontal and vertical loads. The beam length L and displacement tolerance D0 at the free end of the beam are problem constants, with values L = 100 inches, and D0 = 2.2535 inches. The parameters w and t are width and thickness of the cross-section.

The responses are displacement (D) and stress (S).

Related tutorial demo canti.m

Model implementation from

https://www.sfu.ca/~ssurjano/canti.html

The Cantilever Beam functions

introducing

easyGSA

Global sensitivity analysis framework using mechanistic or machine learning algorithms

available on

Normally distributed input space with defined μ and σ

```
f = @cantibeam; % handle to the cantibeam.m model file
N = 2e3; % Number of Monte Carlo samples
% Input Space definiton
      = {'R','E','X','Y'};
                             % input parameter names
      = [4e4 2.9e7 5e2 1e3]; % mean values of input parameters
     = [2e3 1.45e6 1e2 1e2]; % std deviations of input parameters
InputSpace = {'ParNames',pars,'Means',means,'Sigmas',stds};
% call easyGSA tool to perform Sobol GSA with MC approach
[Si,STi,results] = easyGSA(f,N,InputSpace{:},'UseParallel',true)
```


The Cantilever Beam functions

introducing

easyGSA

Global sensitivity analysis framework using mechanistic or machine learning algorithms

available on

WATER RESEARCH SCHOOL

Normally distributed input space with defined μ and σ

```
f = @cantibeam; % handle to the cantibeam.m model file
N = 2e3; % Number of Monte Carlo samples

% Input Space definiton
pars = {'R','E','X','Y'}; % input parameter names
means = [4e4 2.9e7 5e2 1e3]; % mean values of input parameters
stds = [2e3 1.45e6 1e2 1e2]; % std deviations of input parameters
InputSpace = {'ParNames',pars,'Means',means,'Sigmas',stds};

% call easyGSA tool to perform Sobol GSA with MC approach
[Si,STi,results] = easyGSA(f,N,InputSpace{:},'UseParallel',true)
```

Plot input sampling matrices

```
% visualize input sampling matrices
figure; [~,ax]=plotmatrix(results.A); np=numel(pars);
for i=1:np
    ylabel(ax(i,1),pars(i)); xlabel(ax(np,i),pars(i));
end
```


The Cantilever Beam functions

introducing

easyGSA

Global sensitivity analysis framework using mechanistic or machine learning algorithms

Using your own data

User data support

introducing

easyGSA

Global sensitivity analysis framework using mechanistic or machine learning algorithms

available on

WATER RESEARCH SCHOOL

Use your own Monte Carlo Simulation data to quickly fit GPR and ANN models and perform the GSA

```
% Inputting your own dataset to perform GPR and ANN-based GSA
% Step 1: Load your own data, eg. simulation results, etc.
[X,Y] = chemical dataset; X=X'; Y=Y'; % a standard MATLAB dataset
% Step 2: Put your data into a struct. Only X and Y fields are expected.
Data.X = X; % inputs
Data.Y = Y; % outputs
% Step 3: pass your data into easyGSA
[Si,STi,results] = easyGSA('UserData',Data) % uses GPR models by default.
% Step 4: Fit ANN models and perform a Sobol GSA
[Si,STi,results] = easyGSA('UserData',Data,...
                           'UseSurrogate', 'ANN')
```

Related tutorial

demo UserData.m

Simulation model integration

introducing

easyGSA

Global sensitivity analysis framework using mechanistic or machine learning algorithms

available on


```
function y= mySimModel(x)
   %% How to plug your Simulink model to easyGSA
   % load your system and itinial conditions.
   sys = 'bsm2_ol';
   load_system(sys);
   init_bsm2;
   % pass your input variables x to corresponding values
   Qinf = x(1);
   Qw = x(2);
   % simulate your system inside a function
    myOptions = simset('SrcWorkspace','current','DstWorkspace','current');
   sim(sys,[], myOptions);
   % process your simulation results and return an output y (for ex:KPI)
    perf_plant_bsm2;
   y = [];
end
```

Uncertainty and sensitivity analysis for complex system models

Standardized Regression Coefficients (SRC)

introducing

easyGSA

Global sensitivity analysis framework using mechanistic or machine learning algorithms


```
% Standardized regression coefficients using easyGSA
% By Resul Al @DTU, October 27, 2019
% Load a built-in dataset for the analysis
[X,Y] = chemical dataset;
Data.X = X'; % rows are observations.
Data.Y = Y'; % columns are outputs.
% call the easyGSA tool with the following arguments.
[SRCs,results] = easyGSA('UserData',Data,...
                         'Method', 'SRC')
% Visualize the outputs in a barplot
H = [SRCs]; c = categorical(strseq('x',1:8));
bar(c,H);
ylabel('Standardized regression coefficients');
xlabel('Input Parameters');
print('ChemData-SRC','-dpng','-r600');
```


Engineering Application

Wastewater treatment plant application

introducing

easyGSA

Global sensitivity analysis framework using mechanistic or machine learning algorithms

available on

WATER RESEARCH SCHOOL Find the design decisions that are most influencing the key plant performance indicators (KPIs).

Benefits of surrogate-based methodology becomes the most evident when you have expensiveto-evaluate simulation models.

e.g. Benchmark Simulation Model 2

Engineering Application

Wastewater treatment plant application

introducing

easyGSA

Global sensitivity analysis framework using mechanistic or machine learning algorithms

available on

WATER RESEARCH SCHOOL

Al et al., 2019. Comput Chem Eng 127

Computers and Chemical Engineering 127 (2019) 233-246

Meta-modeling based efficient global sensitivity analysis for wastewater treatment plants – An application to the BSM2 model

Resul Al, Chitta Ranjan Behera, Alexandr Zubov, Krist V. Gernaey, Gürkan Sin*

Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229,

Computational gain

Wastewater treatment plant application

introducing

easyGSA

Global sensitivity analysis framework using mechanistic or machine learning algorithms

available on

WATER RESEARCH SCHOOL

How much is the computational gain?

Comparison of computational costs of different approaches for global sensitivity analysis.

Approach	# of plant-wide simulations used				Total computational cost
	Scenario 1 (<i>d</i> = 7)	Scenario 2 $(d = 20)$	Scenario 3 $(d = 10)$	Scenario 4 $(d = 37)$	-
SRC with MCS	1000	1000	1000	1000	$4000 \times t_{BSM2}$
Sobol indices with MCS using BSM2	18,000	44,000	24,000	78,000	$164000 \times t_{BSM2}$
Sobol indices with MCS using GPR	150	100	100	250	$600 \times t_{BSM2}$
Sobol indices with MCS using ANN	150	100	100	450	$800 \times t_{BSM2}$
Sobol indices with PCE	250	150	100	250	$750 \times t_{BSM2}$

Al et al., 2019. Comput Chem Eng 127

On average, surrogates provide 200 times faster results.

For questions

Resul Al

PhD student
PROSYS Research Centre
Technical University of Denmark

Gürkan Sin*

Associate professor

PROSYS Research Centre

Technical University of Denmark

Acknowledgements

