$10_{81} \ (K10a_7)$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -1.38501 \times 10^{15} u^{47} + 7.04930 \times 10^{15} u^{46} + \dots + 1.31625 \times 10^{15} b + 3.65379 \times 10^{15}, \\ &1.00335 \times 10^{16} u^{47} - 3.95579 \times 10^{16} u^{46} + \dots + 2.63249 \times 10^{15} a + 1.73053 \times 10^{16}, \ u^{48} - 5u^{47} + \dots + 10u + 10u$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 54 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -1.39 \times 10^{15} u^{47} + 7.05 \times 10^{15} u^{46} + \dots + 1.32 \times 10^{15} b + 3.65 \times 10^{15}, \ 1.00 \times 10^{16} u^{47} - 3.96 \times 10^{16} u^{46} + \dots + 2.63 \times 10^{15} a + 1.73 \times 10^{16}, \ u^{48} - 5 u^{47} + \dots + 10 u + 1 \rangle$$

(i) Arc colorings

$$a_2 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} u \\ -u^3 + u \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -u^3 \\ u^5 - u^3 + u \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -3.81140u^{47} + 15.0268u^{46} + \dots + 36.2869u - 6.57375 \\ 1.05225u^{47} - 5.35561u^{46} + \dots - 25.7273u - 2.77592 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -4.86364u^{47} + 20.3824u^{46} + \dots + 62.0142u - 3.79783 \\ 1.05225u^{47} - 5.35561u^{46} + \dots - 25.7273u - 2.77592 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0.828554u^{47} - 0.00856335u^{46} + \dots + 28.0123u - 1.38653 \\ -2.29509u^{47} + 7.50970u^{46} + \dots + 3.57759u + 0.200750 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.99681u^{47} - 12.6887u^{46} + \dots - 38.0813u + 3.39699 \\ 0.302246u^{47} - 0.355609u^{46} + \dots + 8.52273u + 0.974080 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0.0322954u^{47} + 0.330979u^{46} + \dots + 8.02219u - 3.03662 \\ -0.302246u^{47} + 0.355609u^{46} + \dots + 8.52273u - 0.974080 \end{pmatrix}$$

(ii) Obstruction class = -1

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{48} - 5u^{47} + \dots + 10u + 1$
c_2	$u^{48} + 23u^{47} + \dots + 180u + 1$
c_3, c_6	$u^{48} - 2u^{47} + \dots + 28u - 8$
c_{5}, c_{8}	$u^{48} + 2u^{47} + \dots - 28u - 8$
c_{7}, c_{9}	$u^{48} + 5u^{47} + \dots - 10u + 1$
c_{10}	$u^{48} - 23u^{47} + \dots - 180u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
$c_1,c_4,c_7\\c_9$	$y^{48} - 23y^{47} + \dots - 180y + 1$
c_2, c_{10}	$y^{48} + 9y^{47} + \dots - 29816y + 1$
c_3, c_5, c_6 c_8	$y^{48} + 24y^{47} + \dots - 464y + 64$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.351537 + 0.949778I		
a = 1.006580 + 0.754616I	2.54767 + 8.71683I	2.88659 - 5.91299I
b = 0.695127 + 1.130530I		
u = 0.351537 - 0.949778I		
a = 1.006580 - 0.754616I	2.54767 - 8.71683I	2.88659 + 5.91299I
b = 0.695127 - 1.130530I		
u = 0.935499 + 0.280058I		
a = 0.258750 + 0.692688I	-4.55335 + 1.97419I	-0.52111 + 3.87774I
b = -0.32474 - 1.42072I		
u = 0.935499 - 0.280058I		
a = 0.258750 - 0.692688I	-4.55335 - 1.97419I	-0.52111 - 3.87774I
b = -0.32474 + 1.42072I		
u = -0.958701 + 0.411863I		
a = -1.12181 + 1.17224I	2.50599I	0 3.68111I
b = -0.845547 + 0.386680I		
u = -0.958701 - 0.411863I		
a = -1.12181 - 1.17224I	-2.50599I	0. + 3.68111I
b = -0.845547 - 0.386680I		
u = 1.027890 + 0.366302I		
a = -0.558001 - 0.681766I	-5.20077 - 4.17900I	-3.36906 + 7.53383I
b = 0.02906 + 1.43386I		
u = 1.027890 - 0.366302I		
a = -0.558001 + 0.681766I	-5.20077 + 4.17900I	-3.36906 - 7.53383I
b = 0.02906 - 1.43386I		
u = -0.852801 + 0.288192I		
a = -2.58191 + 1.66058I	0.675636 + 0.515505I	-2.57655 - 6.02720I
b = -0.332500 - 0.567513I		
u = -0.852801 - 0.288192I		
a = -2.58191 - 1.66058I	0.675636 - 0.515505I	-2.57655 + 6.02720I
b = -0.332500 + 0.567513I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.516978 + 0.722434I		
a = 0.871888 - 0.224038I	4.87326 + 0.03227I	4.84666 - 0.67896I
b = 0.549420 + 0.862669I		
u = 0.516978 - 0.722434I		
a = 0.871888 + 0.224038I	4.87326 - 0.03227I	4.84666 + 0.67896I
b = 0.549420 - 0.862669I		
u = 0.425885 + 0.773654I		
a = 1.69830 + 0.13159I	4.33954 + 2.65713I	5.08315 - 1.96927I
b = 0.950582 - 0.574763I		
u = 0.425885 - 0.773654I		
a = 1.69830 - 0.13159I	4.33954 - 2.65713I	5.08315 + 1.96927I
b = 0.950582 + 0.574763I		
u = 0.295606 + 0.828875I		
a = -0.631610 - 0.587022I	3.47198I	0 2.47118I
b = -0.544625 - 1.084280I		
u = 0.295606 - 0.828875I		
a = -0.631610 + 0.587022I	-3.47198I	0. + 2.47118I
b = -0.544625 + 1.084280I		
u = -1.116730 + 0.138646I		
a = 1.10500 - 1.07815I	-0.675636 - 0.515505I	2.57655 + 6.02720I
b = 0.704022 + 0.224888I		
u = -1.116730 - 0.138646I		
a = 1.10500 + 1.07815I	-0.675636 + 0.515505I	2.57655 - 6.02720I
b = 0.704022 - 0.224888I		
u = 0.992673 + 0.539998I		
a = -0.601343 - 0.631046I	0.88639 - 2.97344I	0. + 2.64448I
b = -1.060630 - 0.166744I		
u = 0.992673 - 0.539998I		
a = -0.601343 + 0.631046I	0.88639 + 2.97344I	0 2.64448I
b = -1.060630 + 0.166744I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.628205 + 0.596659I		
a = -1.064010 - 0.397214I	2.00090 - 1.53468I	2.12390 + 3.90788I
b = -0.829653 + 0.427683I		
u = 0.628205 - 0.596659I		
a = -1.064010 + 0.397214I	2.00090 + 1.53468I	2.12390 - 3.90788I
b = -0.829653 - 0.427683I		
u = -0.547224 + 0.659382I		
a = -0.71785 + 1.52298I	-0.88639 - 2.97344I	-0.29359 + 2.64448I
b = -0.434204 + 1.035090I		
u = -0.547224 - 0.659382I		
a = -0.71785 - 1.52298I	-0.88639 + 2.97344I	-0.29359 - 2.64448I
b = -0.434204 - 1.035090I		
u = 0.747136 + 0.877281I		
a = 0.933943 - 0.476702I	5.20077 - 4.17900I	3.36906 + 7.53383I
b = 0.485002 - 0.768666I		
u = 0.747136 - 0.877281I		
a = 0.933943 + 0.476702I	5.20077 + 4.17900I	3.36906 - 7.53383I
b = 0.485002 + 0.768666I		
u = -0.833904		
a = 0.880190	-1.20368	-8.97040
b = 0.275054		
u = -1.079990 + 0.482069I		
a = 1.72018 - 0.33297I	-4.33954 + 2.65713I	-5.08315 + 0.I
b = 0.365280 + 1.116600I		
u = -1.079990 - 0.482069I		
a = 1.72018 + 0.33297I	-4.33954 - 2.65713I	-5.08315 + 0.I
b = 0.365280 - 1.116600I		
u = -1.035420 + 0.586063I		
a = -2.05065 + 0.08569I	-2.34804 + 7.85171I	0 6.74189I
b = -0.591514 - 1.148530I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.035420 - 0.586063I		
a = -2.05065 - 0.08569I	-2.34804 - 7.85171I	0. + 6.74189I
b = -0.591514 + 1.148530I		
u = 1.046730 + 0.598380I		
a = 1.36039 + 1.17731I	3.29646 - 5.08791I	0. + 5.66025I
b = 0.378423 - 1.023550I		
u = 1.046730 - 0.598380I		
a = 1.36039 - 1.17731I	3.29646 + 5.08791I	05.66025I
b = 0.378423 + 1.023550I		
u = 0.964917 + 0.798665I		
a = -0.046037 + 0.723287I	4.55335 - 1.97419I	0
b = 0.325521 + 0.665488I		
u = 0.964917 - 0.798665I		
a = -0.046037 - 0.723287I	4.55335 + 1.97419I	0
b = 0.325521 - 0.665488I		
u = 1.098250 + 0.602404I		
a = 0.575750 + 0.805276I	2.34804 - 7.85171I	0
b = 1.111730 + 0.493637I		
u = 1.098250 - 0.602404I		
a = 0.575750 - 0.805276I	2.34804 + 7.85171I	0
b = 1.111730 - 0.493637I		
u = -1.249240 + 0.262371I		
a = 0.509018 - 0.507195I	-4.87326 - 0.03227I	0
b = -0.233338 + 1.114770I		
u = -1.249240 - 0.262371I		
a = 0.509018 + 0.507195I	-4.87326 + 0.03227I	0
b = -0.233338 - 1.114770I		
u = 1.158620 + 0.585509I		
a = -1.46782 - 0.64788I	-2.54767 - 8.71683I	0
b = -0.576415 + 1.261620I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.158620 - 0.585509I		
a = -1.46782 + 0.64788I	-2.54767 + 8.71683I	0
b = -0.576415 - 1.261620I		
u = -1.332740 + 0.180321I		
a = -0.022960 + 0.366381I	-3.29646 - 5.08791I	0
b = 0.509355 - 1.133010I		
u = -1.332740 - 0.180321I		
a = -0.022960 - 0.366381I	-3.29646 + 5.08791I	0
b = 0.509355 + 1.133010I		
u = 1.187100 + 0.637571I		
a = 1.69469 + 0.56994I	-14.4927I	0
b = 0.73411 - 1.22507I		
u = 1.187100 - 0.637571I		
a = 1.69469 - 0.56994I	14.4927I	0
b = 0.73411 + 1.22507I		
u = -0.249189 + 0.602859I		
a = 0.538717 - 1.292580I	-2.00090 + 1.53468I	-2.12390 - 3.90788I
b = 0.050010 - 1.026510I		
u = -0.249189 - 0.602859I		
a = 0.538717 + 1.292580I	-2.00090 - 1.53468I	-2.12390 + 3.90788I
b = 0.050010 + 1.026510I		
u = -0.0760954		
a = -9.69862	1.20368	8.97040
b = -0.503995		

II.
$$I_2^u = \langle b, -u^2 + a + 2u - 1, u^3 - u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ -u^{2} + u + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} - 2u + 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} - 2u + 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} - u + 1 \\ -u^{2} + u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ u^{2} - u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-u^2 + 8u 4$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^3 + u^2 - 1$
c_2, c_6	$u^3 + u^2 + 2u + 1$
c_3	$u^3 - u^2 + 2u - 1$
c_4	$u^3 - u^2 + 1$
c_5, c_8	u^3
c ₇	$(u+1)^3$
c_9, c_{10}	$(u-1)^3$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^3 - y^2 + 2y - 1$
c_2, c_3, c_6	$y^3 + 3y^2 + 2y - 1$
c_5, c_8	y^3
c_7, c_9, c_{10}	$(y-1)^3$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.877439 + 0.744862I		
a = -0.539798 - 0.182582I	4.66906 - 2.82812I	2.80443 + 4.65175I
b = 0		
u = 0.877439 - 0.744862I		
a = -0.539798 + 0.182582I	4.66906 + 2.82812I	2.80443 - 4.65175I
b = 0		
u = -0.754878		
a = 3.07960	0.531480	-10.6090
b = 0		

III.
$$I_3^u = \langle a^2 + b + 2a + 1, \ a^3 + 2a^2 + a + 1, \ u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} a \\ -a^{2} - 2a - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} a^{2} + 3a + 1 \\ -a^{2} - 2a - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} a^{2} + a - 1 \\ -a^{2} - a + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2 \\ -a^{2} - a + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} a^{2} + a - 1 \\ -a^{2} - a + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $a^2 6a 3$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^3$
c_2, c_4	$(u+1)^3$
c_3, c_6	u^3
<i>C</i> ₅	$u^3 + u^2 + 2u + 1$
c_7	$u^3 - u^2 + 1$
c_8, c_{10}	$u^3 - u^2 + 2u - 1$
<i>c</i> ₉	$u^3 + u^2 - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^3$
c_3, c_6	y^3
c_5, c_8, c_{10}	$y^3 + 3y^2 + 2y - 1$
c_{7}, c_{9}	$y^3 - y^2 + 2y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = -0.122561 + 0.744862I	-4.66906 + 2.82812I	-2.80443 - 4.65175I
b = -0.215080 - 1.307140I		
u = -1.00000		
a = -0.122561 - 0.744862I	-4.66906 - 2.82812I	-2.80443 + 4.65175I
b = -0.215080 + 1.307140I		
u = -1.00000		
a = -1.75488	-0.531480	10.6090
b = -0.569840		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^3)(u^3+u^2-1)(u^{48}-5u^{47}+\cdots+10u+1)$
c_2	$((u+1)^3)(u^3+u^2+2u+1)(u^{48}+23u^{47}+\cdots+180u+1)$
c_3	$u^{3}(u^{3} - u^{2} + 2u - 1)(u^{48} - 2u^{47} + \dots + 28u - 8)$
c_4	$((u+1)^3)(u^3-u^2+1)(u^{48}-5u^{47}+\cdots+10u+1)$
<i>C</i> ₅	$u^{3}(u^{3} + u^{2} + 2u + 1)(u^{48} + 2u^{47} + \dots - 28u - 8)$
<i>c</i> ₆	$u^{3}(u^{3} + u^{2} + 2u + 1)(u^{48} - 2u^{47} + \dots + 28u - 8)$
C ₇	$((u+1)^3)(u^3-u^2+1)(u^{48}+5u^{47}+\cdots-10u+1)$
c ₈	$u^{3}(u^{3} - u^{2} + 2u - 1)(u^{48} + 2u^{47} + \dots - 28u - 8)$
<i>c</i> 9	$((u-1)^3)(u^3+u^2-1)(u^{48}+5u^{47}+\cdots-10u+1)$
c_{10}	$((u-1)^3)(u^3-u^2+2u-1)(u^{48}-23u^{47}+\cdots-180u+1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing	
c_1, c_4, c_7 c_9	$((y-1)^3)(y^3-y^2+2y-1)(y^{48}-23y^{47}+\cdots-180y+1)$	
c_2, c_{10}	$((y-1)^3)(y^3+3y^2+2y-1)(y^{48}+9y^{47}+\cdots-29816y+1)$	
c_3, c_5, c_6 c_8	$y^{3}(y^{3} + 3y^{2} + 2y - 1)(y^{48} + 24y^{47} + \dots - 464y + 64)$	