Definition: A linear space (or vector space) over a field F is a set V with two operations, addition and scalar multiplication such that the following axioms hold:

Vector Addition $(+): V \times V \rightarrow V$ such that $x + y \in V$ for all $x, y \in V$.

- (A1) $x + y = y + x \ \forall x, y \in V$ (commutativity)
- (A2) $x + (y + z) = (x + y) + z \ \forall x, y, z \in V$ (associativity)
- (A3) There exists an element $0 \in V$ such that $x + 0 = x \ \forall x \in V$ (existence of additive identity)
- (A4) For every $x \in V$ there exist an element $-x \in V$ such that $x + (-x) = 0 \ \forall x \in V$ (existence of additive inverse)

Scalar Multiplication $(\cdot): F \times V \to V$ such that $\alpha x \in V$ for all $\alpha \in F$ and $x \in V$.

- (M1) $\alpha(bx) = (\alpha b)x \ \forall \alpha, \beta \in F \ \text{and} \ \forall x \in V \ \text{(associativity)}$
- (M2) $\alpha(x+y) = \alpha x + \alpha y \ \forall \alpha \in F \ \text{and} \ \forall x,y \in V \ (\text{distributivity})$
- (M3) $(\alpha + \beta)x = \alpha x + \beta x \ \forall \alpha, \beta \in F \ \text{and} \ \forall x \in V \ \text{(distributivity)}$
- (M4) $1_F x = x \ \forall x \in V$ (existence of multiplicative identity)

Elements of the vector space are called vectors, or points.

Scalar multiplication in a vector space depends on the field F. Thus when we say $x \in V$, we mean that x is a vector in the vector space V over the field F or (V, F).

For example, \mathbb{R}^n is a vector space over the field \mathbb{R} , and \mathbb{C}^n is a vector space over the field \mathbb{C} .

Sharing the same field is a necessary condition for two vector spaces to be comparable. For example, \mathbb{R}^n and \mathbb{C}^n are not comparable.

The simplest vector space contains only one point. In other words, $\{0\}$ is a vector space.

Example: Show that $x0_F=0_V$ for all $x\in V$

Proof:

```
1. y = x0_F = 0_V is assumed to be true.
```

2.
$$x + y = x + x0_F = x1_F + x0_F$$
 (M4)

3.
$$x + y = x(1_F + 0_F) = x1_F$$
 (M3)

4.
$$x + y + (-x) = x1_F + (-x1_F)$$
 (A4)

5.
$$y = x(1_F + (-1_F)) = x0_V = 0_V$$
 (A2)

Example: Show that $x0_F = 0_v$

Proof:

1. Assume $y = x0_F$ and show $y = 0_V$.

2.
$$x + y = x + x0_F = x1_F + x0_F$$
 (M4)

3.
$$x + y = x1_F + x0_F = x(1_F + 0_F)$$
 (M3)

4.
$$x + y = x(1_F + 0_F) = x1_F$$
 (A3)

5.
$$x + y = x1_F = x$$
 (M4)

6.
$$x + y + (-x) = x + (-x)$$
 (A4)

7.
$$y = x + (-x) = 0_V$$
 (A4)

Remark: A vector space has a unique additive identity.

Function Space

Definition: Let S be a set and F be a field. The set of all functions from S to F is denoted by F^S .

For $f,g\in F^S$, the sum $f+g\in F^S$ is the function defined by

$$(f+g)(x)=f(x)+g(x),\ orall x\in S$$

For $f \in F^S$ and $\alpha \in F$, the product $\alpha f \in F^S$ is the function defined by

$$(lpha f)(x)=lpha f(x),\ orall x\in S$$

Example: Set of all polynomials with degree n with coefficients in F is denoted by $F[x]_n$.

What essentially function spaces are, is that they are the set of all functions from a set to a field. For example, the set of all polynomials with degree n with coefficients in F is denoted by $F[x]_n$.

#EE501 - Linear Systems Theory at METU