ParkinsonDisease_SpiralDrawing

Nina Caparros 2019-11-12

Contents

1	\mathbf{Intr}	oduction	3											
	I Nota bene													
	II	Parkinson's disease												
	III	Project overview	5											
	IV	Dataset overview	8											
2	Method and analysis 8													
	I	Initial Data												
	II	Data cleaning												
		A Format	9											
		B Cleaning TimeStamp	10											
		C Calibrating the samples	13											
	III	Data analysis												
		A Global analysis	13											
			13											
		C Static Spiral Test analysis	13											
		D Dynamic Spiral Test analysis	13											
			13											
	IV		13											
	V	Prediction algorithms												
		ů .	13											
			13											
3	Res	ılts 1	.3											
4	Conclusion													
5	Glossary													
6	Sources and references													

1 Introduction

This report presents the analysis and results of the "Choose Your Own Project" from the HarvardX's ninth course of the Data Science Professional Certificate Program available on edx.org. The chosen thematic is the prediction of the Parkinson's disease diagnosis depending on the results of three tests, measuring the motor performance, the tremor and the hand stability.

I Nota bene

The terms anotated with an asterisk are explained or more detailled in the glossary at the end of the report.

The following section is a quick presentation of the Parkinson's disease but is not mandatory to understand this report.

When not relevant, the code used to create this report is run but not displayed. The complete source code can be found on GitHub (https://github.com/ncaparros/ParkinsonDisease_SpiralDrawing).

II Parkinson's disease

Parkinson's disease, sometimes abreviated to PD, is a long-term neurodegenerative disorder. Its cause is unknown, though it is believed to involve genetic (as relatives tend to contract the disease), and/or environmental factors (as pesticides).

The disease affects mostly the motor system, as tremor, akinesia*, shaking, rigidity, slowness of movement, difficulty with walking,... and as it worsen it can cause depression, anxiety (more than a third of people with Parkinson's disease), emotional and sleep troubles, and in the advanced stages the disease can lead to dementia.

The motor symptoms of the Parkinson's disease (parkinsonian syndrome) are caused by the death of cells, more precisely dopaminergic* neurons, in the *substantia nigra** (a region of the midbrain, see Figure 2). The *substantia nigra* is a basal ganglia* divided into to parts: the *pars reticula** and the *pars compacta** (see Figure 1). It is the part of the brain that plays an important role in reward-seeking, learning and movement.

Dopamine is an organic chemical functioning as both an hormone and a neurotransmitter. Basically, neurotransmitters are chemical messengers which transmit signals by being released from one neuron to a receptor on the target cells. Neurotransmitters are critical to execute everyday functions as, in our case, movement (contact between a motor neuron and a muscle fiber).

Brain Regions Affected by Parkinson's Disease

Parkinson's disease

Figure 1: Lateral cross-section of the brain (source : http://www.neuroconvention.com/)

The lack of dopamine (due to the death of those cells, and therefore induces a smaller substancia nigra than on a healthy subject, see Figure 2) provokes emotional troubles as said previously, and since the downsized *substancia nigra* is connected to the motor cortex (via the *pars reticula*, see Figure 1), it causes the parkisonian syndromes.

The Figure 1 shows a lateral cross-section of a brain. The red arrows represent the dopamine's exchanges between the *pars reticula*. The Figure 2 shows the lack of dopaminergic neurons in a brain of a person affected by Parkinson's disease compared to a healthy brain.

Parkinson's disease affected 6.2 million people in 2015 and resulted in more than 117,000 deaths. This condition mostly occurs in people over the age of 60 (about one percent are affected). The average life expectancy following diagnosis is between 7 and 15 years.

Figure 2: Substancia nigra differences between a healthy brain and a Parkinson's brain (source : https://scienceofparkinsons.com/)

III Project overview

In 2011, the Department of Neurology in Cerrahpasa Faculty of Medicine in Istanbul University (Turkey) provided a data set of test results from 62 patients with the Parkinson's disease and 15 from healthy people for a study (Muhammed Erdem Isenkul, Betul Erdogdu Sakar and Olcay Kursun) which purpose was to monitor Parkinson's disease with digitized graphics tablet. The goal of this study was to provide easy access to Parkinson's disease progress monitoring to the elderly patients, or patients with an advanced stage of the disease, instead of the inconvenient and time-consuming process at the clinic. The tests aim to be non-invasive, would not require brain scans, would ease the work of the medical doctors, and would not require trained medical staff assigned to this task.

It was decided to perform three handwriting tests on a graphic tablet (Wacom Cintiq 12WX graphics, see Figure 3). The tablet would measure several parameters as: the coordinates (x-y-z) of the pen on the table, the pressure over the screen, the grip angle on the pen at regular time intervals. A software was developed in order to test the coordination of the patient.

The three tests performed were :

• Static Spiral Test (SST) is a traditionnal test usually performed with paper and pencil. An Archimedean spiral (see following plot) is printed on it, and the patient needs to retrace it. The more the patient suffer from an advanced stage of the Parkinson's disease, the more differences between

Figure 3: Wacom Cintiq 12WX graphics, source : https://www.bhphotovideo.com/

Figure 4: Archimedean spiral

the archimedean spiral and his drawing.

- Dynamic Spiral Test (DST) is a new test introduced in the study, where the archimedean spiral *blinks*. It is only seen at certain times. It becomes more difficult to follow the spiral.
- Stability Test on Certain Point is a test where there is a red point in the middle of the tablet's screen, and the patients are asked to hold the pen on the point without touching the screen. This test determine the patient's hand stability and hand tremor level.

In this report I will try to build an algorithm able to predict if the patient has or has not Parkinson's disease based on this dataset. I do not have access to the software used in the study, so I will have to recreate and approximate the Archimedean spiral. I do not have access to the *scores* of the patients, given by

neurologists, representing the stage of Parkinson's disease. Therefore, my output will only be a boolean, has, or has not, with a percentage of probability. Not a scale.

IV Dataset overview

The dataset provided was an archive .zip containing three folders. One of them was composed by only .png images of the tests results, which were already saved in the text dataset. In the two remaining folders, there were datasets related to healthy (called controls) and people with Parkinson's disease (called PWP, People With Parkinson). Since the datasets in both folders were following the same pattern, they were merged in a single one.

Each text file of the dataset was the test results of a single patient. Each line of the file represented one measure, at a certain time, of the X-Y-Z coordinates of the digital pen, the pressure of the pen on the screen, the grip angle, the timestamp (at which the measure had been taken) and the test identifier (Static Spiral Test: 0, Dynamic Spiral Test: 1, Stability Test on Certain Point: 2).

The data was presented as X; Y; Z; Pressure; GripAngle; Timestamp; TestID:

```
191;205;0;39;1350;17535179;0
191;205;0;54;1360;17535186;0
191;205;0;60;1350;17535193;0
191;205;0;61;1360;17535200;0
```

2 Method and analysis

In this section I described the process, from analysing the original dataset, to building the prediction algorithms, through data cleaning and analysis.

I Initial Data

Once the data downloaded and the data frame built (see previous section), the first step was to add a random identifier to each patient and to note if he has Parkinson's disease or not. The random identifier had been chosen because: * since the text files were from different folders, and as some files had the same numbers, no pattern could be used for identifiers. * it allowed to not get focused on the patient id.

```
## V1 patientID isPwp
## 1 200;204;0;73;910;1732647300;0 188102780 FALSE
## 2 200;204;0;218;900;1732647307;0 188102780 FALSE
```

```
## 3 200;204;0;253;900;1732647314;0 188102780 FALSE
## 4 200;204;0;304;900;1732647321;0 188102780 FALSE
## 5 200;204;0;351;900;1732647328;0 188102780 FALSE
## 6 200;204;0;386;900;1732647335;0 188102780 FALSE
```

Then, each value had to be extracted into a new column of the data frame.

##		Х	Y	Z	Pressure	${\tt GripAngle}$	Timestamp	${\tt TestID}$	patientID	isPwp
##	1	200	204	0	73	910	1732647300	0	188102780	FALSE
##	2	200	204	0	218	900	1732647307	0	188102780	FALSE
##	3	200	204	0	253	900	1732647314	0	188102780	FALSE
##	4	200	204	0	304	900	1732647321	0	188102780	FALSE
##	5	200	204	0	351	900	1732647328	0	188102780	FALSE
##	6	200	204	0	386	900	1732647335	0	188102780	FALSE

X and Y represents the place of the pen on the tablet, we can assume horizontally and vertically, and Z is the height between the pen and the screen. A Z equal to 0 means the pen is on the screen.

A new data frame containing one line by patient was then created and filled as:

```
## patientID isPwp
## 1 188102780 FALSE
## 2 4272978830 FALSE
## 3 2484831166 FALSE
## 4 709969697 FALSE
## 5 4286764085 FALSE
## 6 782311828 FALSE
```

It will be used for summaries and additionnal informations on the patient or the test later.

II Data cleaning

In this subsection I explained the process of formating the values, cleaning the Timestamp column and calibrating the test samples.

A Format

Since the datas were extracted from a text file, they were all, but the two we added, of class character.

```
lapply(df,class)

## $X
## [1] "character"
##
## $Y
```

```
## [1] "character"
##
## $Z
## [1] "character"
## $Pressure
## [1] "character"
##
## $GripAngle
## [1] "character"
##
## $Timestamp
## [1] "character"
##
## $TestID
## [1] "character"
##
## $patientID
## [1] "numeric"
##
## $isPwp
## [1] "logical"
```

It was impossible then to perform any action on those values, so they were all converted as numeric.

B Cleaning TimeStamp

The timestamp columns seemed pretty obscur, and trying to parse it into a readable date would do produce either an impossible date (make_date or make_datetime) or NA values (dym, mdy_hms, as.Date,...).

```
make_date(as.character(df[1,]$Timestamp))

## [1] "-5877641-06-23"

make_datetime(df[1,]$Timestamp)

## [1] "1732647300-01-01 UTC"
```

```
dym(as.character(df[1,]$Timestamp))

## Warning: All formats failed to parse. No formats found.

## [1] NA
as.Date(as.character(df[1,]$Timestamp), "%Y%M%D")

## [1] NA
```

To be able to use the timestamp more easily, and mostly because we do not know its unit (probably milliseconds but we cannot know for sure), I substracted the first timestamp of every couple test/patient to all the timestamp values, making the first value 0. To do this I had to create a new empty data frame, and two for loops: one for the test (0 to 2) and one for the patients (0 to nrow(patients)). Inside the loops, I would get the values of the current patient for the current test, arranged by ascending timestamp, and the first value would be the initial timestamp value. Then, every timestamp would be mutated as $timestamp_i = timestamp_i - timestamp_0$. The mutated data frame would then be merge (rbind) into the final data frame.

```
head(df)
```

```
##
       X
           Y Z Pressure GripAngle Timestamp TestID patientID isPwp
## 1 200 204 0
                              910 1732647300
                                                   0 188102780 FALSE
                     73
## 2 200 204 0
                    218
                              900 1732647307
                                                   0 188102780 FALSE
## 3 200 204 0
                                                   0 188102780 FALSE
                    253
                              900 1732647314
## 4 200 204 0
                    304
                              900 1732647321
                                                   0 188102780 FALSE
## 5 200 204 0
                    351
                              900 1732647328
                                                   0 188102780 FALSE
## 6 200 204 0
                    386
                              900 1732647335
                                                   0 188102780 FALSE
completeDf <- data.frame()</pre>
#For each of the tests "test"
for(test in seq(0, by=1, length=3)){
  #For each of the patients "indPatient"
  for(indPatient in seq(1, by=1, length=nrow(patients))){
    #Create a temporary data frame for patient "indPatient" and test "test"
    temp_df <- df %>%
      filter(TestID == test &
               patientID == patients[indPatient,]$patientID) %>%
      arrange(Timestamp)
    #Get first value of timestamp
    initialTimestamp = temp_df[1,]$Timestamp
```

```
#Mutate Timestamp so that the very first value of Timestamp for patient "indPatient" an
    temp_df <- temp_df %>%
      mutate(Timestamp = Timestamp - initialTimestamp)
    \#Bind\ temporary\ data\ frame\ to\ complete\ data\ frame
    completeDf <- rbind(completeDf, temp_df)</pre>
  }
}
head(completeDf)
           Y Z Pressure GripAngle Timestamp TestID patientID isPwp
## 1 200 204 0
                     73
                               910
                                            0
                                                   0 188102780 FALSE
## 2 200 204 0
                               900
                                           7
                     218
                                                   0 188102780 FALSE
```

14

21

28

35

0 188102780 FALSE

0 188102780 FALSE

0 188102780 FALSE

0 188102780 FALSE

3 200 204 0

4 200 204 0

5 200 204 0

6 200 204 0

253

304

351

386

900

900

900

900

- C Calibrating the samples
- III Data analysis
- A Global analysis
- B Archimedean Spiral
- C Static Spiral Test analysis
- D Dynamic Spiral Test analysis
- E Stability Test on Certain Point analysis
- IV Issues
- V Prediction algorithms
- A Creating training and testing sets
- **B** Parameters
- 3 Results
- 4 Conclusion
- 5 Glossary

Akinesia:

Basal ganglia:

 ${\bf Dopaminergic}:$

 ${\bf Pars\ compacta}:$

Pars reticula:

Substancia nigra : # Table of figures

6 Sources and references

 $\label{eq:brain_brain} Brain \ anatomy: \ https://en.wikipedia.org/wiki/Midbrain \ Dopamine: \ https://en.wikipedia.org/wiki/Dopamine \ Neurotransmitter: \ https://en.wikipedia.org/wiki/Neurotransmitter \ Parkinson's disease: \ https://en.wikipedia.org/wiki/Parkinson%27s_disease \ Substantia \ nigra: \ https://en.wikipedia.org/wiki/Substantia_nigra$