Advanced statistical methods

Frédéric Pascal

CentraleSupélec, Laboratory of Signals and Systems (L2S), France frederic.pascal@centralesupelec.fr http://fredericpascal.blogspot.fr

MSc in Data Sciences & Business Analytics
CentraleSupélec / ESSEC
Oct. 2nd - Dec. 20th, 2017

Part C

Hypothesis testing - Detection theory

Part C: Contents

I. Generalities

- Principles
- Errors, power and level of a test
- Neyman approach

II. UMP tests

- Simple hypothesis testing
- Composite tests One-sided hypotheses

III. Student-t test

IV. Asymptotic Tests

- Generalities
- Wald test
- Rao (score) test and LRT
- \mathbf{x}^2 tests

Key references of Part C

From an EE / SP point of view...

- Kay, Steven M. Fundamentals of Statistical Signal Processing -Detection Theory, Vol. 2, Prentice Hall, 1998.
- Poor, Vincent, H. An Introduction to Signal Detection and Estimation, 2nd ed, Springer, 1998.

From a statistical point of view...

- Lehmann, Erich L., and Romano, Joseph P. Testing Statistical Hypotheses, Springer, 2006.
- Casella, George, and Roger L. Berger. Statistical inference, Vol. 2. Pacific Grove, CA: Duxbury, 2002.
- + many many references...

I. Generalities

- Principles
- Errors, power and level of a test
- Neyman approach

II. UMP tests

III. Student-t tes

IV. Asymptotic Tests

Let a *n*-sample $(\mathbf{x}_1, \dots, \mathbf{x}_n)$ i.i.d. $\sim P_\theta$, $\theta \in \Theta$. Let H_0 and H_1 , 2 non-empty disjoint subsets of Θ s.t. $H_0 \cup H_1 = \Theta$.

 H_0 is the null hypothesis while H_1 is called the alternative hypothesis. Remember: no symmetry!

Goal: To find a procedure that allows to decide whether θ belongs to H_0 or not, regarding the datasets $x = (x_1, ..., x_n) \in \mathcal{X}^n$.

Definition

An hypothesis is said **simple** if it is reduced to a single element. Else, it is called **composite**.

Definition

A (pure) test is a mapping δ from \mathcal{X}^n onto $\{0,1\}$ s.t.: If $\delta(x) = 0$, one decides H_0 , while if $\delta(x) = 1$, one rejects H_0 .

The region $W = \{x \in \mathcal{X}^n \mid \delta(x) = 1\}$ is called the **rejection region** or the **critical region**. Its complement is called the **acceptance region**.

Remark

A test is characterized (and will be identified) by its rejection region W.

Definition (Different errors)

For a test, there are two possible errors:

- rejecting H_0 when it is true: **type-I** error or error of 1^{st} kind.
- accepting H_0 when it is false: type-II error or error of 2^{nd} kind.

Definition (Type-I and Type-II errors)

For a test δ with critical region W, one has

• Type-I error:
$$\alpha_W$$
: $\begin{cases} H_0 \to [0,1] \\ \theta \mapsto P_{\theta}(W); \end{cases}$

• Type-II error:
$$\beta_W: \left\{ \begin{array}{l} H_1 \to [0,1] \\ \theta \mapsto P_{\theta}(W^c) = 1 - P_{\theta}(W). \end{array} \right.$$

Definition (Power of the test)

The **power** of a test W is defined as:

$$\rho_W: \left\{ \begin{array}{l} H_1 \to [0,1] \\ \theta \mapsto P_{\theta}(W) = 1 - \beta_W(\theta). \end{array} \right.$$

Definition (Randomized test (more general))

A random test is a mapping φ from \mathcal{X}^n into [0,1] where $\varphi(x)$ is the probability of rejecting H_0 for the dataset $x = (x_1, \dots, x_n) \in \mathcal{X}^n$.

Remark

For $\varphi = 1_W$, one retrieves the simple test!

Definition (Type-I and Type-II errors, power for a test φ)

- Type-I error: $\alpha_{\varphi}: \left\{ \begin{array}{l} H_0 \to [0,1] \\ \theta \mapsto E_{\theta} \left[\varphi(\mathbf{x}) \right]; \end{array} \right.$
- Type-II error: $\beta_{\varphi}: \left\{ \begin{array}{l} H_1 \rightarrow [0,1] \\ \theta \mapsto 1 E_{\theta} \left[\varphi(\mathbf{x}) \right]; \end{array} \right.$
- Power of the test: $\rho_{\varphi} = 1 \beta_{\varphi} = E_{H_1} [\varphi(\mathbf{x})]$.

Definition (Level of significance (Is))

The **level of significance** α (typically 0.01 or 0.05 as for the IC) for a test φ is:

$$\alpha = \sup_{\theta \in H_0} \alpha_{\varphi}(\theta) = \sup_{\theta \in H_0} E_{\theta} \left[\varphi(\mathbf{x}) \right].$$

Neyman Principle

Goal: one wants to control (or fix) the type-I error, i.e. the probability of rejecting H_0 when it is true.

The Neyman principle consists in considering all tests with a ls \leq to a fixed α , and then, in finding (among these tests) the one with the smallest Type-II error.

Since $\rho_{\omega} = 1 - \beta_{\omega}$, such test will said to be UMP.

Definition (Uniformly Most Powerful (UMP))

 φ is UMP at the threshold α if its $ls \leq \alpha$ and if $\forall \varphi'$ with a $ls \leq \alpha$, one has: $\forall \theta \in H_1, E_{\theta} \left[\varphi(\mathbf{x}) \right] \geq E_{\theta} \left[\varphi'(\mathbf{x}) \right].$

II. UMP tests

- Simple hypothesis testing
- Composite tests One-sided hypotheses

III. Student-t test

IV. Asymptotic Tests

Simple hypothesis testing

In this part, for the *n*-sample $(\mathbf{x}_1,...,\mathbf{x}_n)$, one considers,

$$H_0: \{\theta = \theta_0\} \text{ versus } H_1: \{\theta = \theta_1\},$$

which means that $\Theta = \{\theta_0, \theta_1\}.$

So, 2 probabilities P_{θ_0} (or P_0) and P_{θ_1} (or P_1), that implies 2 LF $L_0(x) = L(x;\theta_0)$ and $L_1(x) = L(x;\theta_1)$, for $x = (x_1, \dots, x_n) \in \mathcal{X}^n$.

Definition (Neyman test or Likelihood Ratio Test (LRT))

A Neyman test is a test φ s.t. $\exists k \in \mathbb{R}_+^*$, and

$$\varphi(x) = \begin{cases} 1 & \text{if} \quad L(x;\theta_1) > kL(x;\theta_0) \\ 0 & \text{if} \quad L(x;\theta_1) < kL(x;\theta_0) \end{cases}$$

The value of φ is not specified for $\{x \in \mathcal{X}^n | L_1(x) = kL_0(x)\}$.

Neyman-Pearson Lemma

Remark

 $L_1(x)/L_0(x)$ is called the **Likelihood Ratio** (LR). The Neyman test consists in accepting the most likely hypothesis for a given observation x.

Proposition (Neyman-Pearson Lemma)

- **1 Existence** $\forall \alpha \in (0,1)$, it exists a Neyman test s.t. $E_{\theta_0}(\varphi) = \alpha$. Moreover, k is the quantile of order $(1-\alpha)$ of the LR distribution $\frac{L_1(x)}{L_0(x)}$ under P_0 and one can impose that φ is constant for $x \in \mathcal{X}^n$ s.t. $\overline{L_1(x)} = kL_0(x)$. If the LR CDF under P_0 evaluated in k is $(1-\alpha)$ (continuous CDF), thus one can choose this constant = 0 (pure test).
- **2** S. cond. $\forall \alpha \in (0,1)$, a Neyman test s.t. $E_{\theta_0}(\varphi) = \alpha$ is **UMP** at level α .
- **3** *N. cond.* $\forall \alpha \in (0,1)$, a *UMP* test at level α is necessarily a Neyman test.

Proof

Essential to built the Neyman test..

Neyman-Pearson Lemma

Remark

- **I** Conclusion: the only UMP tests at level α are the Neyman tests of level of significance α .
- 2 If the LR CDF under H_0 is continuous, one obtains the test of critical region $W = \{x \in \mathcal{X}^n \mid L_1(x) > kL_0(x)\}$ where k is defined by $P_0(L_1(X) > kL_0(X)) = \alpha$.
- 3 The power $E_1(\varphi)$ of a UMP test at level α is necessarily $\geq \alpha$. Indeed, φ is preferable to the constant test $\psi = \alpha$ (which is of $ls \alpha$), thus $E_1(\varphi) \geq E_1(\psi) = \alpha$.

Neyman-Pearson Lemma

Example 1: Let us consider the exponential model (1)

$$L(x,\theta) = C(\theta)h(x)\exp\left[\sum_{j=1}^{d}Q_{j}(\theta)S_{j}(x)\right]$$

where $\theta \in \{\theta_0, \theta_1\}$, with $\theta_1 > \theta_0$. Assume an identifiable model:

 $Q(\theta_0) \neq Q(\theta_1)$ (e.g., $Q(\theta_1) > Q(\theta_0)$).

Goal: test $H_0: \{\theta = \theta_0\}$ versus $H_1: \{\theta = \theta_1\}$.

Example 2: Let us consider $(X_1, \dots, X_n) \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ with σ^2 known.

<u>Goal</u>: test $H_0: \{\mu = \mu_0\}$ versus $H_1: \{\mu = \mu_1\}$, with $\mu_0 < \mu_1$.

Example 3: Let us consider $(X_1, \dots, X_n) \stackrel{iid}{\sim} Poisson(\theta)$.

Goal: test $H_0: \{\theta = \theta_0\}$ versus $H_1: \{\theta = \theta_1\}$, with $\theta_0 < \theta_1$.

Composite tests - One-sided hypotheses

Now, let us consider a model with only 1 parameter and where Θ is an interval of \mathbb{R} . One assume $L(x,\theta) > 0, \forall x \in \mathcal{X}^n, \forall \theta \in \Theta$.

Goal: test $H_0: \{\theta \le \theta_0\}$ versus $H_1: \{\theta > \theta_0\}$. More general problem!

Let us consider the family having monotone likelihood ratio:

Definition (Monotone LR)

The family $\{P_{\theta}^{\otimes n}, \theta \in \Theta\}$ is said to have **monotone likelihood ratio** if it exists a real-valued statistic U(x) s.t. $\forall \theta' < \theta'', \frac{L(x,\theta'')}{L(x,\theta')}$ is a strictly increasing (or decreasing) function of U.

Remark

By changing U into -U, one can always assume strictly increasing in previous definition.

Lehman Theorem

Theorem (Lehman theorem)

Let $\alpha \in (0,1)$. If the family $(P_{\theta}, \theta \in \Theta)$ has monotone (increasing) likelihood ratio, there exists a UMP test at level α for testing $H_0 : \{\theta \leq \theta_0\}$ versus $H_1 = \{\theta > \theta_0\}$. This test is defined by:

$$\left\{ \begin{array}{lll} \varphi(x) = 1 & if & U(x) > c \\ \varphi(x) = \gamma & if & U(x) = c \\ \varphi(x) = 0 & if & U(x) < c \end{array} \right.$$

where c and γ are obtained with $E_{\theta_0}[\varphi] = \alpha$. The same test is UMP at level α for testing:

- **1** $H_0: \{\theta = \theta_0\}$ versus $H_1: \{\theta > \theta_0\}$
- **2** $H_0: \{\theta = \theta_0\}$ *versus* $H_1: \{\theta = \theta_1\}$

where $\theta_1 > \theta_0$.

Lehman Theorem

Remark

If the inequalities are reversed in the test, i.e. $H_0: \{\theta \ge \theta_0\}$ and $H_1: \{\theta < \theta_0\}$, then the UMP test is obtained by reversing the inequalities (in the test).

Example: The exponential model with LF $L(x,\theta) = C(\theta)h(x)\exp\left(Q(\theta)S(x)\right)$ where $Q(\theta)$ is strictly increasing, has increasing LR with U(X) = S(X).

Remark (Important)

In general, it does NOT exist UMP test for testing $H_0: \{\theta = \theta_0\}$ versus $H_1: \{\theta \neq \theta_0\}$ (even for monotone LR).

For instance, let's consider the Gaussian model, σ^2 known. The UMP test

for
$$H_0: \{\mu = \mu_0\}$$
 versus $H_1: \{\mu > \mu_0\}$ is
$$\left\{ \begin{array}{ll} \rho(x) = 1 & \text{if } \sum x_i > c \\ \rho(x) = 0 & \text{if } \sum x_i \leq c \end{array} \right.$$
 while the

UMP test for
$$H_0: \{\mu = \mu_0\}$$
 versus $H_1: \{\mu < \mu_0\}$ is
$$\begin{cases} \rho(x) = 1 & \text{if } \sum x_i < c \\ \rho(x) = 0 & \text{if } \sum x_i \ge c \end{cases}$$

 \Rightarrow no UMP test for testing $\mu = \mu_0$ versus $\mu \neq \mu_0$.

I. Generalities

II. UMP tests

III. Student-t test

IV. Asymptotic Tests

Student test

Let $(X_1, \dots, X_n) \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ with μ and σ^2 unknown.

<u>Goal</u>: test $H_0: \{\mu = \mu_0\}$ versus $H_1: \{\mu \neq \mu_0\}$ at level $\alpha \in (0,1)$.

General methodology

1 From the Student theorem, one has

$$T_n = \frac{\sqrt{n}(\bar{X}_n - \mu)}{S_n} \sim t(n-1)$$

where $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ and $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$.

2 Under H_0 :

$$\xi_n = \frac{\sqrt{n}(\bar{X}_n - \mu_0)}{S_n} \sim t(n-1)$$

- 3 Under H_1 : From the SLLN, $\bar{X}_n \mu_0 \xrightarrow[n \to \infty]{a.s} \mu \mu_0$ and $S_n \xrightarrow[n \to \infty]{a.s} \sigma$. Thus $\xi \xrightarrow[n \to \infty]{a.s} + \infty$ if $\mu > \mu_0$ and $\xi \xrightarrow[n \to \infty]{a.s} - \infty$ if $\mu < \mu_0$
- 4 Critical region:

$$W_n = \{ |\xi_n| > a \}$$

Student test

■ Let $t_{n-1,r}$ the quantile of order r of the t-distribution t_{n-1} :

Thus, under $H_0, P(|\xi_n| > t_{n-1,1-\frac{\alpha}{2}}) = \alpha$.

Previously, one have seen that $I_n=\left[\bar{X}_n-\frac{t_{n-1,1-\alpha/2}S_n}{\sqrt{n}},\bar{X}_n+\frac{t_{n-1,1-\alpha/2}S_n}{\sqrt{n}}\right]$ is a $(1-\alpha)$ -CI for μ_0 . Here is the link between CI and Student (bilateral) test $\mu_0\in I_n$ iff $|\xi_n|\leq t_{n-1,1-\frac{\alpha}{2}}$. Finally, the associated p-value is $p=P(|T|>|\xi_n^{obs}|)$ where $T\sim t(n-1)$ and ξ_n^{obs} is the observed value of ξ_n .

Student-1 test F. Pascal

18 / 33

I. Generalities

II. UMP tests

III. Student-t test

IV. Asymptotic Tests

- Generalities
- Wald test
- Rao (score) test and LRT

As for estimators, in many situations, one CANNOT find the distribution of the LR (or the statistic of the monotone LR). As a consequence, one cannot set the parameters k and γ for the test.

A solution (like in point estimation theory) is to rely on asymptotic properties!

Now, instead of considering a test W, we will consider a sequence of tests $(W_n)_{n\in\mathbb{N}^*}$.

Definition (Asymptotic level)

An asymptotic test W_n is at asymptotic level α if

$$\lim_{n\to\infty}\sup_{\theta\in H_0}P_{\theta}(W_n)=\alpha.$$

Definition (Uniform asymptotic level)

An asymptotic test W_n is at uniform asymptotic level α if

$$\sup_{\theta \in H_0} \lim_{n \to \infty} P_{\theta}(W_n) = \alpha.$$

Definition (Consistant (or convergent) test)

An asymptotic test W_n is said to be **consistant** (or convergent) if its power tends towards 1, i.e.,

$$\forall \theta \in H_1$$
, $\lim_{n \to \infty} P_{\theta}(W_n) = 1$.

This means that the Type-II error tends to 0!

Example: the *t*-test is consistant...

Asymptotic tests

Implicit constraint: $H_0: \{\theta | g(\theta) = 0\}$

where g a mapping from \mathbb{R}^d into \mathbb{R}^r , of class C^1 s.t. the $r \times d$ matrix

$$\frac{\partial g}{\partial \theta^t} = \left(\frac{\partial g_i}{\partial \theta_j}\right)_{1 \le i \le r, 1 \le j \le d} \text{ is of rank } r \text{ (so } r \le d).$$

Goal: test $H_0: \{\theta \in \Theta, g(\theta) = 0\}$ versus the alternative hypothesis $H_1: \{\theta \in \Theta, g(\theta) \neq 0\}$

More general than $H_0: \{\theta = \theta_0\}$ versus $H_1: \{\theta \neq \theta_0\}$

To answer such problems, there exist (at least) 3 asymptotic tests:

- Wald test
- Rao (score) test
- Likelihood Ratio Test (LRT)

Wald test

Proposition (Wald test)

Let $\hat{\theta}_n^{ML}$ the MLE of θ . Under H_0 , the sequence of r.V., one has: $\left(\sqrt{n}g(\hat{\theta}_n^{ML})\right) \xrightarrow[n \to \infty]{dist.} \mathcal{N}\left(\mathbf{0}, \Sigma(\theta_0)\right)$, where $\theta_0 \in H_0$ is the true value of the

parameter
$$\theta$$
 and where $\Sigma(\theta_0) = \frac{\partial g}{\partial \theta^t}(\theta_0)I_1(\theta_0)^{-1}\frac{\partial g^t}{\partial \theta}(\theta_0)$.

Furthermore, the test statistic $\xi_n^W = ng(\hat{\theta}_n^{ML})^t \Sigma(\hat{\theta}_n^{ML})^{-1}g(\hat{\theta}_n^{ML})$ converges in distribution under H_0 towards a χ^2 -distribution with r d.o.f.:

$$\xi_n^W \xrightarrow[n \to \infty]{dist.} \chi^2(r)$$

The Wald tests are defined by the following critical region:

$$W_n = \left\{ \xi_n^W > q_r (1 - \alpha) \right\}$$

where $q_r(1-\alpha)$ is the quantile of order $(1-\alpha)$ of the χ^2 -distribution with r d.o.f. This test is strongly convergent at asymptotic level $\alpha = P(\chi^2(r) > q_r(1-\alpha))$.

Wald test

Definition (*p*-value)

The asymptotic p-value of the Wald test is defined by

$$p = P(\chi^2(r) > \xi_n^W(x_1, \dots, x_n))$$

where $\chi^2(r)$ is a r.v. following a χ^2 -dist. with r d.o.f. and $\xi_n^W(x_1,...,x_n)$ is the observed test statistic. One rejects H_0 if $p < \alpha$...

Remark

If one cannot compute $I_1(\theta)$. One can estimate $I_1(\theta)$ by the MM and replace it in the Wald test WITHOUT changing the results!:

$$\hat{I}_1(\cdot) = \frac{1}{n} \sum_{i=1}^n \frac{\partial \ln L(x_i, \cdot)}{\partial \theta^t} \frac{\partial \ln L(x_i, \cdot)^t}{\partial \theta} \quad ou \quad \hat{I}_1(\cdot) = -\frac{1}{n} \sum_{i=1}^n \frac{\partial^2 \ln L(x_i, \cdot)}{\partial \theta \partial \theta^t}.$$

Proof (Wald test)

Allows to understand the methodology..

Wald test

Example: Let a Gaussian *n*-sample $\begin{pmatrix} X_i \\ Y_i \end{pmatrix}_{i \in \{1, \dots, n\}} \sim \mathcal{N} \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{pmatrix}$ with σ_1 and σ_2 known. Let $\theta = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$.

Goal: test
$$\mu_1 = \mu_2$$
, i.e., $H_0: \{\mu_1 - \mu_2 = 0\}$ versus $H_1: \{\mu_1 - \mu_2 \neq 0\}$.

Let us set $g(\theta) = \mu_2 - \mu_1$ and show that the Wald test statistic is

$$\xi_n^W = \frac{n(\hat{\mu}_1 - \hat{\mu}_2)^2}{\sigma_1^2 + \sigma_2^2}$$

where $\hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^{n} X_i$ and $\hat{\mu}_2 = \frac{1}{n} \sum_{i=1}^{n} Y_i$. One has

$$\xi_n^W \xrightarrow[n \to \infty]{dist.} \chi^2(1)$$

Rao-score test and Likelihood Ratio test (LRT)

Let $\hat{\theta}_n^c$ the MLE of θ under the constraint $g(\theta) = 0$, i.e. under H_0 .

Theorem (Rao test and LRT)

The test statistics are defined by:

$$\xi_n^R = \frac{1}{n} \frac{\partial \ln L(x_i, \dots, x_n; \hat{\theta}_n^c)}{\partial \theta^t} I_1(\hat{\theta}_n^c)^{-1} \frac{\partial \ln L(x_i, \dots, x_n; \hat{\theta}_n^c)^t}{\partial \theta}$$
$$\xi_n^{LR} = 2(\ln L(x_i, \dots, x_n; \hat{\theta}_n) - \ln L(x_i, \dots, x_n; \hat{\theta}_n^c))$$

Rao test and the LRT are defined by the following critical region

$$W_n = \{\xi_n^i > q_r(1-\alpha)\}$$

where $q_r(1-\alpha)$ is the quantile of order $(1-\alpha)$ of the χ^2 -distribution with r d.o.f. These tests are strongly convergent at asymptotic level $\alpha = P(\chi^2(r) > q_r(1-\alpha))$. Furthermore, under H_0 , one has:

$$\xi_n^W - \xi_n^R \xrightarrow[n \to \infty]{P} 0$$
 and $\xi_n^W - \xi_n^{LR} \xrightarrow[n \to \infty]{P} 0$

Rao-score test and Likelihood Ratio test (LRT)

Example Testing $H_0: \{\lambda = \lambda_0\}$ versus $H_1: \{\lambda \neq \lambda_0\}$ in case of a Poisson distribution with parameter λ ...

...

<u>Goal:</u> test the goodness of fit of r.V. to a discrete and finite distribution (e.g., binomial, ...)

Quite restrictive but it CAN be extended to all distributions!

Let the n-sample (X_1,\ldots,X_n) i.i.d. with values in $\{a_1,\cdots,a_m\}$ and distribution P, where P is characterized by its weights $P=(p_1,\cdots p_m)$ (it is a PMF) with $\sum\limits_{i=1}^m p_i=1$ and $\forall j=1,\ldots,n, \forall i=1,\ldots,m, p_i=P(X_j=a_i)$.

One wants to test $H_0: \{P=P_{p_0}\}$, where $p_0=(p_1^0,\cdots,p_m^0)$ is given (no unknown parameter) with $\sum_{i=1}^m p_i^0=1, p_i^0>0, \forall i=1,\ldots,m$.

Let N_i the counting statistic and p_i is the empirical frequency of $\{X_k = a_i\}$:

$$N_i = \sum_{k=1}^n 1 \mathbb{I}_{\{X_k = a_i\}}$$
 and $\hat{p}_i = \frac{N_i}{n}$

Theorem (χ^2 - test)

Under H₀

$$\xi_n = \sum_{i=1}^m \frac{(N_i - np_i^0)^2}{np_i^0} = n\sum_{i=1}^m \frac{(\hat{p}_i - p_i^0)^2}{p_i^0}$$

And ξ_n converges in distribution towards a χ^2 -distribution with (m-1) d.o.f. when $n \to +\infty$.

The test is defined by the critical region:

$$W_n = \{\xi_n > q_{m-1}(1-\alpha)\}$$

where $q_{m-1}(1-\alpha)$ is the quantile of order $(1-\alpha)$ of the χ^2 -distribution with (m-1) d.o.f. This test is strongly convergent at asymptotic level $\alpha = P(\chi^2(m-1) > q_{m-1}(1-\alpha))$.

Example: Toss a coin...

Now, let us test $H_0: \{p = p(\theta)\}$ versus $H_1: \{p \neq p(\theta)\}$ where $\theta \in \Theta \subset \mathbb{R}^d$, Θ open-set and θ is unknown!

Theorem (General χ^2 - test)

Under Ho

$$\xi_n = \sum_{i=1}^m \frac{(N_i - np_i(\hat{\theta}_n))^2}{np_i(\hat{\theta}_n)} = n\sum_{i=1}^m \frac{(\hat{p}_i - p_i(\hat{\theta}_n))^2}{p_i(\hat{\theta}_n)}$$

where $\hat{\theta}_n$ is the MLE of θ .

And ξ_n converges in distribution towards a χ^2 -distribution with (m-1-d) d.o.f. when $n \to +\infty$.

The test is defined by the critical region:

$$W_n = \{ \xi_n > q_{m-1-d}(1-\alpha) \}$$

where $q_{m-1-d}(1-\alpha)$ is the quantile of order $(1-\alpha)$ of the χ^2 -distribution with (m-1-d) d.o.f. This test is strongly convergent at asymptotic level $\alpha = P(\chi^2(m-1-d) > q_{m-1-d}(1-\alpha))$.

How to generalized those χ^2 tests to continuous distribution or infinite discrete distribution?

Remark (On the use of χ^2 tests!)

- It is an asymptotic test. In practice, it works if $np_i(\hat{\theta}_n) > 5$, $\forall i$ and if $N_i \ge 5$, $\forall i$. Else, one regroups classes (cf exercise in the problems).
- In case of continuous r.v. with unknown distribution, one wants to test if it belongs to the family $\{P_{\theta}, \theta \in \Theta\}$. The idea is to partition \mathbb{R} into m intervals $(A_i)_{i=1,\dots,m}$. The choice of m is a tradeoff:
 - m should be sufficiently large so that the discrete dist. $\{\pi_i = \pi(A_i)\}$ and $\{p_{\theta,i} = P_{\theta}(A_i)\}$ be sufficiently close to π and P_{θ} (if m is small, the test will be less powerful).
 - One the other hand, m should not be too large so that the $p_{\theta,i}$ be sufficiently large to satisfy $np_i(\hat{\theta}_n) > 5$.

χ^2 test for independence

Let (X_k, Y_k) , k = 1, ..., n i.i.d. with values in $\{a_1, \cdots, a_l\} \times \{b_1, \cdots, b_r\}$. Let us denote $p_{i,j} = P(X_1 = a_i, Y_1 = b_j)$ and

$$p_{i,\cdot} = P(X_1 = a_i) = \sum_{j=1}^r p_{i,j} \text{ and } p_{\cdot,j} = P(Y_1 = b_j) = \sum_{i=1}^l p_{i,j}$$

One wants to know if X_1 and Y_1 are independent, i.e. if

$$H_0: \{p_{i,j} = p_{i,\cdot} p_{\cdot,j}, \forall i, j\}$$

Let $N_{i,j} = \sum_{k=1}^{n} 1_{\{X_k = a_i, Y_k = b_j\}}$ the counting statistic and

$$N_{i,.} = \sum_{k=1}^{n} 1 \mathbb{1}_{\{X_k = a_i\}}$$
 and $N_{.,j} = \sum_{k=1}^{n} 1 \mathbb{1}_{\{Y_k = b_j\}}$

χ^2 test for independence

Theorem (χ^2 - test for independence)

Under H₀

$$\xi_n = \sum_{i=1}^{l} \sum_{j=1}^{r} \frac{\left(N_{i,j} - \frac{N_{i,r}N_{i,j}}{n}\right)^2}{\frac{N_{i,r}N_{i,j}}{n}}$$

And ξ_n converges in distribution towards a χ^2 -distribution with (r-1)(l-1) d.o.f.

The test is defined by the critical region:

$$W_n = \{ \xi_n > q_{(r-1)(l-1)}(1-\alpha) \}$$

where $q_{(r-1)(l-1)}(1-\alpha)$ is the quantile of order $(1-\alpha)$ of the χ^2 -distribution with (r-1)(l-1) d.o.f. This test is strongly convergent at asymptotic level $\alpha = P(\chi^2((r-1)(l-1)) > q_{(r-1)(l-1)}(1-\alpha))$.

χ^2 test for independence

Example A study on 592 women: is there a correlation between eyes color and hairs color?

Hairs Eyes	Dark	Light-brown	Red	Blond
Black	68	119	26	7
Brown	15	54	14	10
Green	5	29	14	16
Blue	20	84	17	94

One obtains $\xi_n = 138,29$, dof = 9, $P(\chi_q^2 \le 16,91) = 0,95$. Since $138,29 \gg 16,91$, one rejects H_0 .