Aluno(a)):

Primeira Avaliação (Valor: 10,0)

- 1. [Valor: 2,0] Considere o grafo G = (V, E), onde $V = \{1, 2, 3, 4, 5, 6\}$ e E é o conjunto de arestas dado pela relação divide definida como: $\forall u, v \in V, u | v \iff v = u.k$, para algum inteiro k.
 - (a) [Valor: 0.5] Desenhe o grafo G.
 - (b) [Valor: 0,5] Represente o grafo por matriz de adjacência.
 - (c) [Valor: 0,5] Represente o grafo por lista de adjacência.
 - (d) [Valor: 0,5] O grafo possui um único componente fortemente conexo? Justifique.
- 2. [Valor: 2,0] Despejando água. [Dasgupta-Papadimitriou-Vazirani] Temos três recipientes {A, B, C} com capacidades para 10, 7 e 4 litros, respectivamente. Os recipientes B e C começam cheios d'água e o recipiente A inicialmente está vazio. Apenas um tipo de operação é permitida: despejar o conteúdo de um recipiente para outro, parando apenas quando o recipiente fonte está vazio ou o recipiente de destino está cheio. Queremos saber se existe uma sequência de operações que deixa exatamente 2 litros no recipiente B ou C.
 - (a) [Valor: 1,0] Modele isso como um problema de grafos. Dê uma definição precisa do grafo envolvido e indique a pergunta específica sobre este grafo que precisa ser respondida.
 - (b) [Valor: 1,0] Que algoritmo deve ser aplicado para resolver o problema?
- 3. [Valor: 1,0] Considere um grafo direcionado em que as únicas arestas negativas são aquelas que saem de s, todas as demais são positivas. O algoritmo de Dijkstra, começando em s, pode falhar neste grafo? Prove sua resposta.
- 4. [Valor: 1,0] Seja G um grafo direcionado com pesos nas arestas (negativos ou não), no qual o caminho mínimo entre dois vértices quaisquer é garantido ter no máximo k arestas, dê um algoritmo que encontra o caminho mínimo entre dois vértices u e v em tempo O(k.|E|). Argumente que seu algoritmo está correto.
- 5. [Valor: 1,0] O algoritmo de Floyd-Warshall visto em aula consiste em preencher uma tabela tridimensional através da expressão $d_{ij}^{(k)} = \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$, para k, i, j variando de 1 até n, e considerando que $D^{(0)}$ corresponde à matriz de adjacências do grafo. Este custo $O(V^3)$ de espaço de memória é desnecessário. Mostre como gastar apenas $O(V^2)$ de espaço.
- 6. [Valor: 3,0] Assinale (V)erdadeiro ou (F)also.
 - (a) \square V \square F Podemos afirmar que uma busca em profundidade no grafo da Figura 1a, começando pelo vértice A e considerando a ordem alfabética nas listas de adjacência, encontra três arestas de árvores, uma de retorno, uma de avanço e uma de cruzamento.
 - (b) \Box V \Box F Para dois vértices u e v quaisquer num grafo orientado, seus componentes fortemente conexos ou são idênticos ou são disjuntos.
 - (c) 🗆 V 🗇 F Uma ordenação topológica para o grafo da Figura 1b é {PROG, MD, PAA, AG, DCAT}.
 - (d) \square V \square F Um grafo conexo e acíclico possui |V|-1 pontes.
 - (e) \Box V \Box F Seja G um grafo conexo e não direcionado, e $G_{\pi} = (V, E_{\pi})$ a árvore de busca em profundidade de G. É possível afirmar que as folhas e a raiz de G_{π} podem ser pontos de articulação em G.
 - (f) \square V \square F Se o grafo possui um ciclo, então nenhum vértice deste ciclo é um ponto de articulação.

Figura 1: Grafos do Exercício 6.