

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет»

РТУ МИРЭА

Институт искусственного интеллекта Кафедра общей информатики

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ № 5 построение комбинационных схем, реализующих СДНФ и СКНФ заданной логической функции от 4-х переменных по дисциплине «ИНФОРМАТИКА»

Выполнил студент группы ИМБО-01-22			Жерздев Егор Олегович	
Принял Должность, звание, ученая степень			Павлова Екатерина Сергеевна	
Практическая работа выполнена	« <u> </u> »	2022 г.	Подпись студента	
«Зачтено»	«»	2022 г.	Подпись преподавателя	

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	3
1.1 Персональный вариант	3
2 ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ	4
2.1 Предварительная подготовка данных	4
2.2 Вывод формулы для СДНФ	4
2.3 Вывод формулы для СКНФ	5
2.4 Построение схем в лабораторном комплексе	6
3 ВЫВОДЫ	8
4 ИНФОРМАЦИОННЫЕ ИСТОЧНИКИ	9

1 ПОСТАНОВКА ЗАДАЧИ

Логическая функция от четырех переменных задана в 16-теричной векторной форме. Восстановить таблицу истинности. Записать формулы СДНФ и СКНФ. Построить комбинационные схемы СДНФ и СКНФ в лабораторном комплексе, используя общий логический базис. Протестировать работу схем и убедиться в их правильности. Подготовить отчет о проделанной работе и защитить ее.

1.1 Персональный вариант

Логическая функция от четырех переменных, заданная в 16-теричной форме: 3767_{16}

2 ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ

2.1 Предварительная подготовка данных

Преобразуем заданную логическую функцию в двоичную запись: 0011 0110 0111₂ - получили столбец значений логической функции, который необходим для восстановления полной таблицы истинности (смотри табл.1). Таблица 1 – Таблица истинности заданной функции

a	b	c	d	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

2.2 Вывод формулы для СДНФ

Запишем формулу СДНФ, для чего рассмотрим наборы значений переменных, на которых функция равна единице (смотри табл.2). Для каждого набора переменные, равные нулю, берем с отрицанием, а переменные, равные единице, без отрицания. В результате получим множество совершенных конъюнкций, объединив которые через дизъюнкцию, образуем формулу СДНФ (1).

Таблица 2 – Таблица СДНФ

a	b	c	d	F
0	0	1	0	1
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	1	1
1	0	1	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

$$F_{\text{СДНФ}} = \overline{a} \cdot \overline{b} \cdot \overline{c} \cdot \overline{d} + \overline{a} \cdot \overline{b} \cdot \overline{c} \cdot d + \overline{a} \cdot \overline{b} \cdot c \cdot \overline{d} + \overline{a} \cdot \overline{b} \cdot c \cdot d + \overline{a} \cdot b \cdot \overline{c} \cdot \overline{d} + \overline{a} \cdot b \cdot \overline{c} \cdot \overline{d} + \overline{a} \cdot \overline{b} \cdot \overline{c} \cdot \overline{d} + \overline{a$$

2.3 Вывод формулы для СКНФ

Запишем формулу СКНФ, для чего рассмотрим наборы значений переменных, на которых функция равна нулю (смотри табл.3). Для каждого набора переменные, равные единице, надо взять с отрицанием, а переменные, равные нулю, без отрицания. В результате мы получим множество совершенных дизъюнкций, объединив которые через конъюнкцию образуем формулу СКНФ (2).

Таблица 3 – Таблица истинности заданной функции

a	b	c	d	F
0	0	0	0	0
0	0	0	1	0
0	1	0	0	0
1	0	0	0	0
1	0	1	1	0
1	1	0	0	0

$$\mathcal{F}_{\text{CKH}\Phi} = (a + \overline{b} + c + \overline{d}) \cdot (a + \overline{b} + \overline{c} + d) \cdot (\overline{a} + b + c + \overline{d}) \cdot (\overline{a} + b + \overline{c} + \overline{d}) \cdot (\overline{a} + \overline{b} + \overline{c} + \overline{d}) \cdot (\overline{a} + \overline{b} + \overline{c} + \overline{d})$$
(2)

2.4 Построение схем в лабораторном комплексе

Построим в лабораторном комплексе комбинационные схемы, реализующие СДНФ и СКНФ рассматриваемой функции в общем логическом базисе, протестируем их работу и убедимся в их правильности (рис. 1, 2).

Рисунок 1 – Тестирование схемы СДНФ

Рисунок 2 – Тестирование схемы СКНФ

3 выводы

Тестирование показало, что схемы работают правильно.

4 ИНФОРМАЦИОННЫЕ ИСТОЧНИКИ