

Introduction to Deep Learning

- Recurrent Neural Network(RNN)
- Long Short-Term Memory Cells (LSTM)
- Gated Recurrent Unit (GRU)

Recurrent Neural Network(RNN)

Introduction

x1 height weight ... sugar bp ECG

x2 height weight sugar bp ECG

Sequence Learning Problems

Sequence Learning Problems

Sequence of words

1 hot encoding used to convert input to number

Awesome being an adjective has helped in identifying movie as noun Some words like bank- may be used as noun or verb. So the context matters

Sequence Learning Problems- Predict the polarity of the sentence

The no: of input and output may not be same. Here the input is a sequence of words and output is single which classifies the sentence polarity- positive or negative.

Other sequence learning problems

Classify the sequence of yoga posters as one Yoga exercise name -Input is a sequence of frames, and output is a single Yoga exercise name. challenges- Variable no of frames based on speed of action

Speech

Speech Processing- another sequence learning problem. Take audio signals as input and classify each of them as phonemes

Video

Yoga Video classification: Each frame in the video correspond to a pose and we want to classify each of the frames into one pose resulting in a sequence of poses

What can be a solution?

- Ensure that y_t is dependent on previous inputs also
- Ensure that the function can deal with variable number of inputs
- each time step is the same

$$egin{aligned} h_i &= \sigma(W_1x_i + b_1) \ y_i &= O(W_2h_i + b_2) \ i &= timestep \end{aligned}$$

$$egin{aligned} s_i &= \sigma(Ux_i+b) \ y_i &= O(Vs_i+c) \end{aligned}$$

Parameter Sharing

$$y_t = \hat{f}(x_1, x_2, ..., x_t)$$

This solution also does not satisfy all 3 criterias

$$s_i = \sigma(Ux_i + b)$$

$$y_i = O(Vs_i + c)$$

- Ensure that y_t is dependent on previous inputs also
- Ensure that the function can deal with variable number of inputs
- Ensure that the function executed at each time step is the same

$$egin{aligned} y_1 &= f(x_1) \ y_2 &= f(x_1, x_2) \end{aligned}$$

$$y_3 = f(x_1, x_2, x_3)$$

Still this solution does not satisfy all the 3 criterias

$$y_n = f(x_1, x_2, x_3, ..., x_n)$$

A solution – Recurrent Neural Networks (RNN)

RNN satisfies all the 3 criterias

$$egin{aligned} s_i &= \sigma(Ux_i + Ws_{i-1} + b) \ y_i &= O(Vs_i + c) \end{aligned} \qquad egin{aligned} y_i &= \hat{f}(x_i, s_{i-1}, W, U, V, b, c) \end{aligned}$$

RNN – Types of problems

$$y_i = \hat{f}(x_i, s_{i-1}, W, U, V, b, c)$$

- How do you represent words and characters as numbers ? (data and tasks)
- What is an appropriate loss function? (loss)
- How do you train the model? (learning algorithm)

Sequence	Classification	(sentiment	classification,	video classificati	on)
----------	----------------	------------	-----------------	--------------------	-----

Sequence Labelling	(part of speech tagging, named entity recognition)
--------------------	--

Sequence Generation	(machine translation,	transliteration)
---------------------	-----------------------	------------------

No of inputs	No of Outputs	Appln
n	1	Classification
n	n	Parts of Speech tagging
n	m	Machine translation

Data and Task

<sos> start of sequence- to indicate that sentences is starting

<eos> end of sequence- to indicate that sentences is ending. Sometimes sentence end with.,?! Or nothing. Hence we give this

<pad> artificial word to make sure all sentences of equal length

x_0	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9
<sos></sos>	The	first	half	was	very	boring	2/2	<eos></eos>	<pad></pad>
<sos></sos>	Great	performance	by	all	the	lead	actors		<eos></eos>
<sos></sos>	The	bacground	music	was	awesome		<eos></eos>	<pad></pad>	<pad></pad>
<sos></sos>	The	movie	was	a	waste	of	time		<eos></eos>

у	
0	
1	
1	
0	

- lower case all words
- compute the total number of unique words across all sentences (say, L --> 24 in the above case)
- Assign a unique id to each word (between 1 to L)
- Represent each word using a L dimensional binary vector with only the bit corresponding to the word id set to 1

word	id
<sos></sos>	1
<eos></eos>	2
<pad></pad>	3
the	4
first	5
half	6
time	24

1-hot vector representation

Sequence classification problem (eg: sentiment analysis-Polarity)

 $[0,0,0,\mathbf{1},0,0,0,0,0,0]$

Sequence Labelling problem (eg: parts of speech tagging)

Loss function for sequence classification problem

$$y = [1,0]$$

$$\hat{y} = [0.7, 0.3]$$

Only one output at the end Possible output classes [1,0] Y[i]=0 for one hence -log yc

Loss function for sequence labelling problem

Every time step has an output Sum up for each time step (T)for each data samples (m) and average

Training Algorithm – Back propagation

Initialise w, b

Iterate over data:

 $compute \ \hat{y}$

compute $\mathscr{L}(w,b)$

$$w_{11} = w_{11} - \eta \Delta w_{11}$$

$$u_{12} = u_{12} - \eta \Delta u_{12}$$

••••

$$v_{13} = v_{13} - \eta \Delta v_{13}$$

till satisfied

Earlier: w, b

 $Now: w_{11}, w_{12}, ..., u_{11}, u_{12}, ..., v_{11}, v_{12}$

Earlier: L(w,b)

Now: L(W,U,V)

Learning Algorithm (Derivative of loss function w.r.t w)

$$\begin{split} \frac{\partial \mathcal{L}_4(\theta)}{\partial W} &= \frac{\partial \mathcal{L}_4(\theta)}{\partial s_4} \frac{\partial s_4}{\partial W} \\ \frac{\partial s_4}{\partial W} &= \frac{\partial s_4}{\partial W} + \frac{\partial s_4}{\partial s_3} \frac{\partial s_3}{\partial W} + \frac{\partial s_4}{\partial s_3} \frac{\partial s_3}{\partial s_2} \frac{\partial s_2}{\partial W} + \frac{\partial s_4}{\partial s_3} \frac{\partial s_3}{\partial s_2} \frac{\partial s_2}{\partial S_1} \frac{\partial s_1}{\partial W} \\ \frac{\partial s_4}{\partial W} &= \frac{\partial s_4}{\partial s_4} \frac{\partial s_4}{\partial W} + \frac{\partial s_4}{\partial s_3} \frac{\partial s_3}{\partial W} + \frac{\partial s_4}{\partial s_2} \frac{\partial s_2}{\partial W} + \frac{\partial s_4}{\partial s_1} \frac{\partial s_1}{\partial W} \\ \frac{\partial s_4}{\partial W} &= \sum_{i=1}^4 \frac{\partial s_4}{\partial s_i} \frac{\partial s_k}{\partial W} \end{split}$$

Similarly derivative w.r.t V and U

Evaluation- Sequence classification

$$Accuracy = \frac{No:of\ correctly\ classified}{Total\ samples}$$

Predicted y cap	Ground Truth y	Correct/incorrect
1(P)	1(P)	correct
0(N)	0(N)	incorrect
1(P)	0(N)	incorrect
O(N)	0(N)	correct
1(P)	1(P)	correct
O(N)	1(P)	incorrect

Evaluation Sequence labelling

Overall accuracy /Accuracy per class

Confusion Matrix

	Pronoun	verb	article	adjective	noun
Pronoun	3	2	3	5	6
verb	2	7			
article			3		
adjective				2	
noun					1

Overall	Accuracy
0.0.0.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Accuracy Per Class

Confusion Matrix

Long Short-Term Memory Cells (LSTM)

RNN not dealing with longer sequence

(How the state record information when the sequence is very long)

RNN- Recap

RNN: Exploding and vanishing gradient problem occurs!!
Not suitable for longer sequence

- At each new timestep the old information gets morphed by the current input
- One could imagine that after t steps the information stored at time step t k (for some k < t) gets completely morphed
- Even during backpropagation the information does not flow well

$$egin{aligned} s_i &= \sigma(Ux_i + Ws_{i-1} + b) \ y_i &= O(Vs_i + c) \end{aligned}$$

White board Analogy (over time white board become so messy and u cant make out anything)

$$a = 1$$
 $b = 3$ $c = 5$ $d = 11$

Compute ac(bd+a)+ad

- **1** ac
- **2** bd
- bd + a
- ac(bd+a)
- **6** ad
- ac(bd+a)+ad

$$ac = 5$$

$$bd = 33$$

$$bd + a = 34$$

- Selectively write on the board
- Selectively read the already written content
- Selectively forget (erase) some content

$$a = 1$$
 $b = 3$ $c = 5$ $d = 11$

Compute ac(bd+a)+ad

- $\mathbf{0}$ ac
- **2** bd
- bd + a
- ac(bd+a)
- **3** ad
- ac(bd+a)+ad

$$ac = 5$$

$$bd + a = 34$$

- Selectively write on the board
- Selectively read the already written content
- Selectively forget (erase) some content

$$a = 1$$
 $b = 3$ $c = 5$ $d = 11$

Compute ac(bd+a)+ad

- **1** ac
- **2** bd
- bd + a
- ac(bd+a)
- **3** ad
- ac(bd+a)+ad

$$ac = 5$$

$$ac(bd+a) = 170$$

$$bd + a = 34$$

- Selectively write on the board
- Selectively read the already written content
- Selectively forget (erase) some content

$$a = 1$$
 $b = 3$ $c = 5$ $d = 11$

Compute ac(bd+a)+ad

- **1** ac
- **2** bd
- bd + a
- ac(bd+a)
- **3** ad
- ac(bd+a)+ad

$$ac = 5$$

$$ac(bd+a) = 170$$

$$ad = 11$$

- Selectively write on the board
- Selectively read the already written content
- Selectively forget (erase) some content

$$a = 1$$
 $b = 3$ $c = 5$ $d = 11$

Compute ac(bd+a)+ad

- **1** ac
- **2** bd
- bd + a
- ac(bd+a)
- **3** ad
- ac(bd+a)+ad

$$ac(bd + a) = 170$$

$$ad = 11$$

- Selectively write on the board
- Selectively read the already written content
- Selectively forget (erase) some content

$$a = 1$$
 $b = 3$ $c = 5$ $d = 11$

Compute ac(bd+a)+ad

- $\mathbf{0}$ ac
- **2** bd
- bd + a
- ac(bd+a)
- **3** ad
- ac(bd+a)+ad

$$ad + ac(bd + a) = 181$$

$$ac(bd + a) = 170$$

$$ad = 11$$

- Selectively write on the board
- Selectively read the already written content
- Selectively forget (erase) some content

$$a = 1$$
 $b = 3$ $c = 5$ $d = 11$

Compute ac(bd+a)+ad

- $\mathbf{0}$ ac
- **2** bd
- bd + a
- ac(bd+a)
- **3** ad
- ac(bd+a)+ad

Strategy

ad + ac(bd + a) = 181

- Selectively write on the board
- Selectively read the already written content
- Selectively forget (erase) some content

Dealing with longer sequence

(An example where RNN need to selectively read write and forget)

Ideally, we want to

- forget the information added by stop words (a, the, etc.)
- selectively read the information added by previous sentiment bearing words (awesome, amazing, etc.)
- selectively write new information from the current word to the state

Review: The first half of the movie was dry but the second half really picked up pace. The lead actor delivered an amazing performance

Long Short-Term Memory Cells – deals with longer sequences (How to implement selective read write and Forget)

LSTM

While computing s_t from s_{t-1} we want to make sure that we use selective write, selective read and selective forget so that only important information is retained in s_t

$$s_t = \sigma(Ux_t + W_{\mathbf{S_{t-1}}} + b)$$

Selective write

 o_t is called the **output** gate

-1.4

 s_t

$$egin{aligned} o_{t-1} &= \sigma(U_o x_{t-1} + W_o h_{t-2} + b_o) \ h_{t-1} &= s_{t-1} \odot o_{t-1} \end{aligned}$$

0.7 -0.21.1 -0.3

instead of passing s_{t-1} as it is to s_t we want to pass (write) only some portions of it to the next state

learn o_{t-1} from data

the only thing that we learn from data is parameters

 x_t

Solution: express o_{t-1} using parameters

 $h_{t-1} = s_{t-1} \odot o_{t-1}$

-0.4But how do we compute o_{t-1} ? How does the RNN know what fraction of the state to pass on? -2

A reasonable way of doing this would be to assign a value between 0 and 1 which determines what fraction of the current state to pass on to the next state

Selective Read

$$ilde{s}_t = \sigma(Ux_t + Wh_{t-1} + b)$$

$$egin{aligned} i_t &= \sigma(U_i x_t + W_i h_{t-1} + b_i) \ &= ilde{s}_t \odot i_t \end{aligned}$$

Previous state:

$$s_{t-1}$$

Output gate:

$$o_{t-1} = \sigma(W_o h_{t-2} + U_o x_{t-1} + b_o)$$

Selectively Write:

$$h_{t-1} = o_{t-1} \odot \sigma(s_{t-1})$$

Current (temporary) state:

$$\tilde{s}_t = \sigma(Wh_{t-1} + Ux_t + b)$$

Input gate:

$$i_t = \sigma(W_i h_{t-1} + U_i x_t + b_i)$$

Selectively Read:

$$i_t \odot \tilde{s_t}$$

 $ilde{s}_t$ thus captures all the information from the previous state h_{t-1} and the current input x_t

Want to make s_t depended on s_{t-1} but only the relevant portion of s_{t-1} (so forgetting some info of s_{t-1} and adding that to $\tilde{s}_t \odot i_t$)

 x_t

ft is called forget gate

How do we combine \tilde{s}_t and s_{t-1} to get the new state s_t

$$egin{aligned} f_t &= \sigma(U_f x_t + W_f h_{t-1} + b_f) \ s_t &= ilde{s}_t \odot i_t + s_{t-1} \odot f_t \end{aligned}$$

Summary-LSTM

Gates:

$$o_t = \sigma(W_o h_{t-1} + U_o x_t + b_o)$$

$$i_t = \sigma(W_i h_{t-1} + U_i x_t + b_i)$$

$$f_t = \sigma(W_f h_{t-1} + U_f x_t + b_f)$$

States:

 x_t

$$\tilde{s}_t = \sigma(Wh_{t-1} + Ux_t + b)$$

$$s_t = f_t \odot s_{t-1} + i_t \odot \tilde{s}_t$$

$$h_t = o_t \odot \sigma(s_t)$$

Gated Recurrent Unit (GRU)

LSTM variants

- LSTM has many variants which include different number of gates and also different arrangement of gates
- The one which we just saw is one of the most popular variants of LSTM
- Another equally popular variant of LSTM is Gated Recurrent Unit which we will see next

Gates:

$$o_t = \sigma(W_o h_{t-1} + U_o x_t + b_o) \qquad \tilde{s_t} = \sigma(W h_{t-1} + U x_t + b_o)$$

$$i_t = \sigma(W_i h_{t-1} + U_i x_t + b_i) \qquad s_t = f_t \odot s_{t-1} + i_t \odot \tilde{s_t}$$

$$f_t = \sigma(W_f h_{t-1} + U_f x_t + b_f) \qquad h_t = o_t \odot \sigma(s_t)$$

States:

$$o_t = \sigma(W_o h_{t-1} + U_o x_t + b_o) \qquad \tilde{s_t} = \sigma(W h_{t-1} + U x_t + b)$$

$$i_t = \sigma(W_i h_{t-1} + U_i x_t + b_i) \qquad s_t = f_t \odot s_{t-1} + i_t \odot \tilde{s_t}$$

$$f_t = \sigma(W_f h_{t-1} + U_f x_t + b_f) \qquad h_t = o_t \odot \sigma(s_t)$$

Gated Recurrent Units (GRU)

Recap LSTM

States:

$$\tilde{s}_t = \sigma(Wh_{t-1} + Ux_t + b)$$

$$s_t = f_t \odot s_{t-1} + i_t \odot \tilde{s}_t$$

$$h_t = o_t \odot \sigma(s_t)$$

Gates:

$$o_t = \sigma(W_o s_{t-1} + U_o x_t + b_o)$$
$$i_t = \sigma(W_i s_{t-1} + U_i x_t + b_i)$$

States:

$$\tilde{s}_t = \sigma(W(o_t \odot s_{t-1}) + Ux_t + b)$$

$$s_t = (1 - i_t) \odot s_{t-1} + i_t \odot \tilde{s}_t$$

RNN LSTM

Namah Shiyaya

Courtesy: Video lectures of Dr.Mitesh Kapra

