

Elias M. Stein Rami Shakarchi Notes taken by Dendy Li

November 7, 2024

Contents

1	Lebesgue Dominated Convergence Theorem	1
	1.1 Almost everywhere	1
	1.2 Integration	2
2	Littlewood's Three Principle	2
3	Egorov Theorem	2
	3.1 Measurable Functions	2

1 Lebesgue Dominated Convergence Theorem

Definition 1.1 (Dominated Convergence Theorem). If we have a sequence of measurable functions $\{f_n\}$ converges to f a.e., if $|f_n| \leq g$ this implies the absolute value of the difference of $f_n - f$ tends to 0. As a consequence the integral of f_n tends to the integral of f.

1.1 Almost everywhere

Definition 1.2 (Almost everywhere equal). f, g defined on a set E are equal almost everywhere, we write

$$f(x) = g(x)$$
 a.e. $x \in E$,

If the measure of the set which consists of the point p where $f(p) \neq g(p)$ has measure zero.

Definition 1.3 (Almost everywhere convergence). We say a sequence of functions $\{f_n\}$ converges almost everywhere to f on set E if:

$$\{x \in E | \{f_n(x)\} \not\rightarrow f(x)\}$$

has measure 0.

Remark:

- a.e. = a.s. = p.a.e(Pointwise almost everywhere)
- Pointwise converges doesn't implies the measure, it just says that on every point of the domain we care, the corresponding sequence converges.

Definition 1.4 (Measurable Function). A function f on \mathbb{R}^d is measurable if for every $a \in \mathbb{R}$:

$$\{x \in \mathbb{R}^d | f(x) < a\}$$

is measurable.

To find some intuitive examples to this definition of measurable functions, characteristic functions and step functions (simple functions) will be our choices.

1.2 Integration

2 Littlewood's Three Principle

Theorem 2.1 (Littlewood's principle).

- Every measurable function is almost continuous(Lusin);
- Every measurable set is almost a finite union of intervals;
- Every converges sequence is almost uniformly converges (Egorov Theorem).

3 Egorov Theorem

Definition 3.1 (Egorov Theorem). Suppose we have a sequence of measurable functions defined on set E with m(E) is finite. Assume the sequence of measurable functions converges to some function f a.e. on E. Given a ϵ , we can find a closed subset A_{ϵ} of E s.t. A_{ϵ} is differ from E with a set which has measure ϵ and converges becomes uniform converges on this closed set.

3.1 Measurable Functions

The definition of measurable functions is a progressive definition, we first look at the simple function.

Definition 3.2 (Finite-value function is measurable). A finite-value function is measurable iff preimage of any openset O is measurable iff preimage of any closed set F is measurable.

Remark: We use *F* to declare the closed sets since fermé.