Feuille d'exercices 3

- Chapitre 4 : Séries numériques -

 $\mathbf{Exercice}\ \mathbf{1.}\ \mathrm{On}\ \mathrm{considère}\ \mathrm{les}\ \mathrm{séries}\ \mathrm{numériques}\ \mathrm{suivantes}:$

1°.
$$u_n = \left(\frac{\pi}{3}\right)^n, n \in \mathbb{N};$$

$$2^{\circ}$$
. $u_n = \sqrt{n+1} - \sqrt{n}, n \in \mathbb{N}$;

1°.
$$u_n = \left(\frac{\pi}{3}\right)^n, n \in \mathbb{N};$$

2°. $u_n = \sqrt{n+1} - \sqrt{n}, n \in \mathbb{N};$
3°. $u_n = \sum_{n \ge 1} \frac{1}{n(n+1)}, n \in \mathbb{N}^*;$

4°.
$$u_n = \sum_{n\geq 1}^{n\geq 1} (-1)^{n+1} \frac{2n+1}{n(n+1)}, n \in \mathbb{N}^*.$$

5°.
$$u_n = \ln\left(1 + \frac{(-1)^n}{n}\right), n \ge 2.$$

Pour chacune de ces séries, calculer les sommes partielles, étudier la convergence de la série et caculer sa somme lorsqu'elle converge.

Exercice 2 (Séries de Riemann). On appelle série de Riemann une série de la forme $\sum_{n\geq 1}\frac{1}{n^{\alpha}}$ avec $\alpha \in \mathbb{R}$.

- 1°. Cas $\alpha \leq 0$. Montrer que la série diverge grossièrement.
- 2° . Cas $0 < \alpha \le 1$.
 - a. Vérifier que pour tout $n \in \mathbb{N}^*$

$$\frac{1}{n} \ge \int_{n}^{n+1} \frac{dx}{x}.$$

b. En déduire que pour tout $k \in \mathbb{N}^*$

$$\sum_{k=1}^{k} \frac{1}{n} \ge \ln(k+1).$$

- c. Quelle est la nature de la série $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$?
- 3°. Cas $\alpha > 1$.
 - a. Montrer que pour tout entier $k \geq 2$

$$\sum_{n=1}^{k} \frac{1}{n^{\alpha}} \le \frac{\alpha}{\alpha - 1}.$$

b. Quelle est la nature de la série $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$?

Exercice 3 (Séries de Bertrand). On appelle série de Bertrand une série de terme général $\frac{1}{n^{\alpha}(\ln n)^{\beta}}$ avec α , $\beta \in \mathbb{R}$ et n > 2.

- 1°. Montrer que si $\alpha < 0$ alors la série diverge grossièrement.
- 2° . Montrer que si $0 \leq \alpha < 1$, alors la série diverge.

- 3° . Montrer que si $\alpha > 1$, alors la série converge.
- 4° . On étudie maintenant le cas $\alpha = 1$.
 - a. Montrer que si $\beta < 0$, alors la série diverge.
 - b. On suppose maintenant $\beta \geq 0$. En encadrant la série par des intégrales, montrer qu'elle converge si et seulement si $\beta > 1$.

Exercice 4. Dans chacun des cas suivants, la série $\sum_n u_n$ est-elle convergente?

1°.
$$u_n = \sqrt{n^2 + 1} - n, n \in \mathbb{N};$$

2°. $u_n = \left(\frac{2^n + n}{3^n}\right)$
3°. $u_n = \ln\left(1 + \frac{1}{\sqrt{n^2 + 1}}\right).$
4°. $u_n = \frac{n^n}{3^n}$

$$3^{\circ}. \ u_n = \ln\left(1 + \frac{1}{\sqrt{n^2 + 1}}\right).$$

$$4^{\circ}. \ u_n = \frac{n^n}{n!}.$$

$$5^{\circ}. \ u_n = \frac{n!}{2^n}, \ n \in \mathbb{N};$$

$$6^{\circ}. \ u_n = \frac{1}{n!}, \ n \in \mathbb{N};$$

7°.
$$u_n = \frac{n!}{n} \sin\left(\frac{1}{n}\right), n \ge 1.$$

8°.
$$u_n = \frac{1}{n} - \sin\left(\frac{1}{n}\right), n \ge 1.$$

Exercice 5. Etudier la nature des séries de terme général u_n dans chacun des cas suivants :

1°.
$$u_n = (-1)^n \frac{n^2}{2^n}$$
;

2°.
$$u_n = \frac{1 + \cos n}{3^n}, n \in \mathbb{N};$$

3°. $u_n = e^{-n} \cos n, n \in \mathbb{N};$

$$3^{\circ}$$
. $u_n = e^{-n} \cos n, n \in \mathbb{N}$;

4°.
$$u_n = \frac{(-1)^n}{\sqrt{n}}, n \ge 1$$
;

5°.
$$u_n = \sin\left(\left(\frac{1}{n} + n\right)\pi\right), n \in \mathbb{N}^*;$$

6°. $u_n = \sin\left(\pi\sqrt{n^2 + 1}\right), n \in \mathbb{N}^*;$
7°. $u_n = \frac{\cos n}{n}, n \in \mathbb{N}^*;$
8°. $u_n = \frac{\cos n}{n^2}, n \in \mathbb{N}^*;$

6°.
$$u_n = \sin\left(\pi\sqrt{n^2 + 1}\right), n \in \mathbb{N}^*;$$

$$7^{\circ}$$
. $u_n = \frac{\cos n}{n}, n \in \mathbb{N}^*$

8°.
$$u_n = \frac{\cos n}{n^2}, n \in \mathbb{N}^*;$$

9°.
$$u_n = \frac{\cos^2 n}{n}, n \in \mathbb{N}^*;$$

9°.
$$u_n = \frac{\cos^2 n}{n}, n \in \mathbb{N}^*;$$

10°. $u_n = \frac{(-1)^n}{n + (-1)^n}, n \ge 2.$

Exercice 6. Pour tout $n \in \mathbb{N}$ on pose

$$a_n = \int_0^{\pi/4} (\tan t)^n \, \mathrm{d}t.$$

1°. Etude de (a_n) .

a. Quel est le sens de variation de la suite $(a_n)_{n\in\mathbb{N}}$?

b. Montrer que la suite $(a_n)_{n\in\mathbb{N}}$ converge.

c. Etablir une relation entre a_n et a_{n+2} . En déduire la limite de (a_n) .

d. Montrer l'inégalité, pour n > 1,

$$\frac{1}{n+1} \le 2a_n \le \frac{1}{n-1}$$

et donner un équivalent à (a_n) .

 2° . Etude de $\sum_{n\in\mathbb{N}} (-1)^n a_n$.

a. Montrer que la série est semi-convergente.

b. Montrer que, pour tout entier n,

$$\sum_{k=0}^{n} (-1)^k a_k = \int_0^{\pi/4} \frac{1}{1 + \tan t} dt - (-1)^{n+1} \int_0^{\pi/4} \frac{(\tan t)^{n+1}}{1 + \tan t} dt.$$

c. En déduire l'égalité

$$\sum_{n=0}^{+\infty} (-1)^n a_n = \int_0^{\pi/4} \frac{1}{1 + \tan t} dt.$$

d. Calculer l'intégrale ci-dessus.

Exercice 7. 1°. Montrer que la série $\sum \frac{(-1)^n}{2n+1}$ est convergente.

2°. Pour tout $n \in \mathbb{N}$ et tout $t \in [0,1]$, on pose $S_n(t) = \sum_{k=0}^n (-1)^k t^{2k}$.

a. Montrer que $\int_0^1 S_n(t) dt = \sum_{k=0}^n \frac{(-1)^k}{2k+1}$.

b. Montrer que, pour tout $n \in \mathbb{N}$ et tout $t \in [0,1]$, on a $:S_n(t) = \frac{1 - (-1)^{n+1} t^{2(n+1)}}{1 + t^2}$.

c. Montrer que : $\forall n \in \mathbb{N}, \ 0 \le \int_0^1 \frac{t^{2(n+1)}}{1+t^2} \ \mathrm{d}t \le \frac{1}{2n+3}.$

d. Calculer $\int_0^1 \frac{1}{1+t^2} dt$.

3°. En déduire que : $\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}$.

Exercice 8.

Soit $f: [1, +\infty[\to \mathbb{R}^+ \text{ continue, positive et décroissante.}]$

1°. Montrer que pour tout $k \geq 1$, on a

$$f(k+1) \le \int_{k}^{k+1} f(t)dt \le f(k).$$

- 2°. On note $u_n = \sum_{k=1}^n f(k) \int_1^n f(t)dt$. Montrer que la série (u_n) converge et que sa limite l vérifie $l \in [0, f(1)].$
- 3°. Applications:
- a. Montrer qu'il existe une constante $\gamma \in [0,1]$ telle que $\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1)$. b. Montrer qu'il existe une constante $\alpha \in [1,2]$ telle que $\sum_{k=1}^{n} \frac{1}{\sqrt{k}} = 2\sqrt{n} \alpha + o(1)$.

Exercice 9. Soit a > 0. Pour tout $n \in \mathbb{N}$, on pose

$$u_n = \frac{n^n a^{-n} \sqrt{n}}{n!}.$$

- 1°. On suppose que $a \neq e$. Etudier la convergence de la série $\sum_n u_n$. 2°. On suppose que a = e, c'est-à-dire $u_n = \frac{n^n e^{-n} \sqrt{n}}{n!}$. On pose $w_n = \ln\left(\frac{u_{n+1}}{u_n}\right)$.
 - a. Montrer que la série $\sum_n w_n$ est convergente.

Indication : Utiliser le développement limité $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)$.

- b. En déduire la convergence de la suite $(u_n)_n$.
- c. Montrer l'existence d'une constante C > 0 telle que

$$n! \sim C\sqrt{n}n^n e^{-n}$$
.

Exercice 10.

1°. Soit $(v_n)_{n\in\mathbb{N}}$ une suite réelle et $(w_n)_{n\in\mathbb{N}}$ la suite définie par $w_n=v_{n+1}-v_n$. Montrer que la suite $(v_n)_{n\in\mathbb{N}}$ et la série $\sum_n w_n$ sont de même nature. En cas de convergence, quelle est la relation

entre
$$\lim_{n \to +\infty} v_n$$
 et $\sum_{n=0}^{+\infty} w_n$?

 2° . Soit $(x_n)_{n\in\mathbb{N}}$ une suite réelle positive et $(y_n)_{n\in\mathbb{N}}$ la suite définie par $y_n=\frac{x_n}{1+x_n}$. Montrer que les séries $\sum_n x_n$ et $\sum_n y_n$ sont de même nature.