# Yet Another Gamecube Documentation

(but one that's worth printing)

December 23, 2006



this is the result of myself pasting together various freely available documents aswell as adding some of my own findings. have fun... additions and corrections welcome :)

THIS IS WORK IN PROGRESS! INFORMATION CONTAINED IN THIS DOCUMENT MAY BE MISSING, INCOMPLETE OR EVEN PLAIN WRONG! NO F\*\*\*\*N' WARRANTY IMPLIED! IF THE USE OF THE INFORMATION CONTAINED HERE RESULTS IN ULTRA REALISTIC SMOKE EFFECTS, BRAIN DAMAGE OR LOSS OF PHYSICAL AND/OR MENTAL HEALTH PLEASE DON'T COME BACK AND SAY YOU HAVEN'T BEEN WARNED! YOU SHOULDN'T BE USING THIS IN THE FIRST PLACE!

# **Contents**

| 1 | Intr | oductio  | nal Rant    |                              | 17   |
|---|------|----------|-------------|------------------------------|------|
|   | 1.1  | Things   | that are in | n this document              | . 17 |
|   | 1.2  | Things   | that are n  | not in this document         | . 17 |
|   | 1.3  | Conve    | ntions      |                              | . 18 |
|   | 1.4  | legal B  | abble       |                              | . 18 |
| 2 | Gan  | necube l | Hardware    | e Introduction               | 19   |
|   | 2.1  | enhanc   | ed Power    | PC 750 Specification         | . 19 |
|   | 2.2  | Consu    | mer Units   |                              | . 20 |
|   |      | 2.2.1    | Nintendo    | 0                            | . 20 |
|   |      |          | 2.2.1.1     | HW1                          | . 20 |
|   |      |          | 2.2.1.2     | HW2                          | . 20 |
|   |      |          | 2.2.1.3     | HW2 'second edition'         | . 20 |
|   |      |          | 2.2.1.4     | HW2 'third edition'          | . 20 |
|   |      | 2.2.2    | Panasoni    | ic Q                         | . 20 |
|   | 2.3  | Develo   | pment Un    | nits                         | . 20 |
|   | 2.4  | Hardw    | are Parts I | List                         | . 20 |
|   |      | 2.4.1    | Connecte    | ors                          | . 21 |
|   |      |          | 2.4.1.1     | Memory Card Slots (P4,P5)    | . 21 |
|   |      |          | 2.4.1.2     | High-speed Port (P8)         | . 21 |
|   |      |          | 2.4.1.3     | SDRAM/Parallel Port (P10)    | . 22 |
|   |      |          | 2.4.1.4     | BBA/Modem Connector (P6)     | . 22 |
|   |      |          | 2.4.1.5     | DVD Interface Connector (P9) | . 23 |
|   |      |          | 2.4.1.6     | Power Supply Connector (P1)  | . 24 |
|   |      | 2.4.2    | Semi-Co     | onductors                    | . 24 |
|   |      |          | 2.4.2.1     | IPL (U10)                    | . 25 |
|   | 2.5  | Details  | on the m    | otherboard buses             | . 25 |
|   | 2.6  | Details  | on the M    | facronix (MX) Chips          | . 25 |
|   | 2.7  | DVD F    | Protection  |                              | . 25 |
|   |      | 2.7.1    | Filesyste   | em                           | . 25 |
|   |      | 2.7.2    | Barcode     |                              | . 25 |
|   |      | 2.7.3    | Encrypti    | on                           | . 26 |
|   |      |          | 2.7.3.1     | Cyphertext algorithm         | . 26 |
|   | 2.8  | IPL/BI   | OS Encry    | rption                       | . 26 |
|   |      | 2.8.1    | Flipper d   | decryption logic bug         | . 26 |
|   |      | 2.8.2    | Cypherte    | ext algorithm                | . 28 |
|   |      | 2.8.3    | replacing   | g the IPL                    | . 28 |

| 3 | Gek | ko CPU  | Overview     | v                                 | <b>29</b> |
|---|-----|---------|--------------|-----------------------------------|-----------|
|   | 3.1 | Registe | ers          |                                   | 29        |
|   | 3.2 | Calling | g convention | ons                               | 29        |
|   | 3.3 | PPC In  | structions   |                                   | 30        |
|   |     | 3.3.1   | Integer Ir   | nstructions                       | 30        |
|   |     | 3.3.2   | Floating-    | Point Instructions                | 32        |
|   |     | 3.3.3   | Integer L    | oad and Store Instructions        | 33        |
|   |     | 3.3.4   | Floating-    | Point Load and Store Instructions | 34        |
|   |     | 3.3.5   | Branch In    | nstructions                       | 34        |
|   |     | 3.3.6   | Condition    | n Register Logical Instructions   | 34        |
|   |     | 3.3.7   | Misc Inst    | ructions                          | 35        |
|   | 3.4 | additio | nal Gekko    | Instructions                      | 35        |
|   |     | 3.4.1   | FPR form     | nat in paired-single mode         | 36        |
|   |     | 3.4.2   | Arithmet     | ic Instructions                   | 36        |
|   |     |         | 3.4.2.1      | PS_ABS                            | 36        |
|   |     |         | 3.4.2.2      | PS_ADD                            | 37        |
|   |     |         | 3.4.2.3      | PS_CMPO0                          | 37        |
|   |     |         | 3.4.2.4      | PS_CMPO1                          | 37        |
|   |     |         | 3.4.2.5      | PS_CMPU0                          | 37        |
|   |     |         | 3.4.2.6      | PS_CMPU1                          | 37        |
|   |     |         | 3.4.2.7      | PS_DIV                            | 38        |
|   |     |         | 3.4.2.8      | PS_MERGE00                        | 38        |
|   |     |         | 3.4.2.9      | PS_MERGE01                        | 38        |
|   |     |         | 3.4.2.10     | PS_MERGE10                        | 38        |
|   |     |         | 3.4.2.11     | PS_MERGE11                        | 38        |
|   |     |         | 3.4.2.12     | PS_MR                             | 38        |
|   |     |         | 3.4.2.13     | PS_NABS                           | 38        |
|   |     |         | 3.4.2.14     | PS_NEG                            | 38        |
|   |     |         | 3.4.2.15     | PS_RES                            | 38        |
|   |     |         | 3.4.2.16     | PS_RSQRTE                         | 38        |
|   |     |         | 3.4.2.17     | PS_SUB                            | 39        |
|   |     |         | 3.4.2.18     | PS_MADD                           | 39        |
|   |     |         | 3.4.2.19     | PS_MADDS0                         | 39        |
|   |     |         | 3.4.2.20     | PS_MADDS1                         | 39        |
|   |     |         | 3.4.2.21     | PS_MSUB                           | 39        |
|   |     |         | 3.4.2.22     | PS_MUL                            | 39        |
|   |     |         | 3.4.2.23     | PS_MULS0                          | 39        |

|     |        | 3.4.2.24  | PS_MULS1                                     | 39 |
|-----|--------|-----------|----------------------------------------------|----|
|     |        | 3.4.2.25  | PS_NMADD                                     | 39 |
|     |        | 3.4.2.26  | PS_NMSUB                                     | 39 |
|     |        | 3.4.2.27  | PS_SEL                                       | 40 |
|     |        | 3.4.2.28  | PS_SUM0                                      | 40 |
|     |        | 3.4.2.29  | PS_SUM1                                      | 40 |
|     | 3.4.3  | Load and  | Store Instructions                           | 40 |
|     |        | 3.4.3.1   | psq_lx                                       | 40 |
|     |        | 3.4.3.2   | psq_lux                                      | 40 |
|     |        | 3.4.3.3   | psq_stx                                      | 40 |
|     |        | 3.4.3.4   | psq_stux                                     | 40 |
|     |        | 3.4.3.5   | psq_1                                        | 40 |
|     |        | 3.4.3.6   | psq_lu                                       | 40 |
|     |        | 3.4.3.7   | psq_st                                       | 40 |
|     |        | 3.4.3.8   | psq_stu                                      | 40 |
|     | 3.4.4  | modified  | floating point instructions                  | 41 |
|     |        | 3.4.4.1   | fadds                                        | 41 |
|     |        | 3.4.4.2   | fsubs                                        | 41 |
|     |        | 3.4.4.3   | fmuls                                        | 41 |
|     |        | 3.4.4.4   | fdivs                                        | 41 |
|     |        | 3.4.4.5   | fmadds                                       | 41 |
|     |        | 3.4.4.6   | fmsubs                                       | 41 |
|     |        | 3.4.4.7   | fnmadds                                      | 41 |
|     |        | 3.4.4.8   | fnmsubs                                      | 41 |
|     |        | 3.4.4.9   | fres                                         | 41 |
|     |        | 3.4.4.10  | frsp                                         | 41 |
|     |        | 3.4.4.11  | fsel                                         | 41 |
|     |        | 3.4.4.12  | $fmr \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $ | 41 |
| 3.5 | Progra | mming Tip | os and additional information                | 42 |
|     | 3.5.1  | Machine   | State Register                               | 42 |
|     | 3.5.2  | Caches    |                                              | 42 |
|     | 3.5.3  | branch ui | nit                                          | 42 |

| 4 | Men | nory M  | ар                                 | <b>43</b> |
|---|-----|---------|------------------------------------|-----------|
|   | 4.1 | Overv   | iew                                | 43        |
|   | 4.2 | RAM     | usage                              | 43        |
|   |     | 4.2.1   | Dolphin-OS globals                 | 43        |
|   |     |         | 4.2.1.1 Boot Info                  | 43        |
|   |     |         | 4.2.1.1.1 DVD Disc ID              | 43        |
|   |     |         | 4.2.1.1.2 system Info              | 44        |
|   |     |         | 4.2.1.2 Debugger info              | 44        |
|   |     |         | 4.2.1.3 Debugger Hook              | 44        |
|   |     |         | 4.2.1.4 Dolphin OS Globals         | 45        |
|   |     | 4.2.2   | Exception Handlers                 | 45        |
|   |     | 4.2.3   | Dolphin-OS globals                 | 46        |
|   |     | 4.2.4   | User Memory                        | 46        |
|   |     |         | 4.2.4.1 user program area          | 46        |
|   |     |         | 4.2.4.2 stack area                 | 47        |
|   |     |         | 4.2.4.3 heap area                  | 47        |
|   |     |         | 4.2.4.4 'high memory'              | 47        |
|   |     |         |                                    |           |
| 5 |     |         | Registers                          | 48        |
|   | 5.1 |         | Command Processor                  | 48        |
|   |     | 5.1.1   | Token register                     | 49        |
|   | 5.2 |         | ixel Engine                        | 50        |
|   | 5.3 | VI - V  | ideo Interface                     | 51        |
|   |     | 5.3.1   | Video Modes                        | 61        |
|   | 5.4 | PI - Pr | ocessor Interface                  | 62        |
|   |     | 5.4.1   | Operation                          | 63        |
|   |     |         | 5.4.1.1 FIFO/Write Gather Pipe     | 63        |
|   |     |         | 5.4.1.2 Interrupts                 | 63        |
|   |     |         | 5.4.1.3 hotreset                   | 63        |
|   | 5.5 | MI - N  | Memory Interface                   | 64        |
|   | 5.6 | DSP -   | Digital Signal Processor Interface | 67        |
|   |     | 5.6.1   | internal DSP Registers             | 70        |
|   |     | 5.6.2   | Operation                          | 72        |
|   |     |         | 5.6.2.1 play raw audio sample      | 72        |
|   |     |         | 5.6.2.2 transfer from/to ARAM      | 72        |
|   |     |         | 5.6.2.3 reset DSP                  | 73        |
|   |     |         | 5.6.2.4 Boot DSP Task              | 73        |

| 5.7  | DI - D  | VD Interfa   | ce                                                | 73 |
|------|---------|--------------|---------------------------------------------------|----|
|      | 5.7.1   | Drive Co     | mmands                                            | 77 |
|      | 5.7.2   | Drive De     | bug Commands                                      | 78 |
|      | 5.7.3   | Operation    | n                                                 | 79 |
|      |         | 5.7.3.1      | Drive Info (Inquiry)                              | 79 |
|      |         | 5.           | 7.3.1.1 Structure of the Drive Info Data          | 79 |
|      |         | 5.7.3.2      | Read Disc ID / Init Disc                          | 79 |
|      |         | 5.7.3.3      | Read Sector                                       | 79 |
|      |         | 5.7.3.4      | Seek                                              | 79 |
|      |         | 5.7.3.5      | Request Error                                     | 79 |
|      |         | 5.           | 7.3.5.1 Error Codes                               | 79 |
|      |         | 5.7.3.6      | Play Audio Stream                                 | 79 |
|      |         | 5.7.3.7      | Request Audio Status                              | 80 |
|      |         | 5.7.3.8      | Stop Motor                                        | 80 |
|      |         | 5.7.3.9      | DVD Audio Disable                                 | 80 |
|      |         | 5.7.3.10     | DVD Audio Enable                                  | 80 |
|      |         | 5.7.3.11     | Write Mem debug command                           | 80 |
|      | 5.7.4   | DVD-RC       | OM Subsystem                                      | 80 |
|      |         | 5.7.4.1      | Memory Map                                        | 81 |
| 5.8  | SI - Se | rial Interfa | ice                                               | 81 |
|      | 5.8.1   | Operation    | n                                                 | 87 |
|      |         | 5.8.1.1      | Serial Send Buffer                                | 87 |
|      |         | 5.8.1.2      | Serial Get Result                                 | 87 |
| 5.9  | EXI - I | External In  | ıterface                                          | 87 |
|      | 5.9.1   | Operation    | n                                                 | 91 |
|      |         | 5.9.1.1      | Initializing the EXI Bus                          | 91 |
|      |         | 5.9.1.2      | Selecting a Specific EXI Device on an EXI Channel | 91 |
|      |         | 5.9.1.3      | Deselecting EXI Devices on an EXI Channel         | 91 |
|      |         | 5.9.1.4      | Performing an IMM Operation on a EXI Device       | 91 |
|      |         | 5.           | 9.1.4.1 IMM Read                                  | 91 |
|      |         | 5.           | 9.1.4.2 IMM Write                                 | 92 |
|      |         | 5.9.1.5      | Performing a DMA Operation on a EXI Device        | 92 |
|      |         | 5.           | 9.1.5.1 DMA Read                                  | 92 |
|      |         | 5.           | 9.1.5.2 DMA Write                                 | 92 |
|      |         | 5.9.1.6      | Wait for EXI transfer completed                   | 92 |
| 5.10 | AI - A  | udio Strea   | ming Interface                                    | 92 |
| 5 11 | GX FI   | FO (Graph    | ic dienlay lists)                                 | 94 |

|   |      | 5.11.2   | internal CP Registers                               | 128 |
|---|------|----------|-----------------------------------------------------|-----|
|   |      | 5.11.3   | internal XF Memory                                  | 135 |
|   |      | 5.11.4   | internal XF Registers                               | 136 |
|   |      | 5.11.5   | GP packet description                               | 148 |
|   |      |          | 5.11.5.1 Command Type                               | 148 |
|   |      |          | 5.11.5.1.1 opcodes                                  | 148 |
|   |      |          | 5.11.5.2 Drawing Commands                           | 149 |
|   |      |          | 5.11.5.2.1 Quads                                    | 149 |
|   |      |          | 5.11.5.2.2 Triangles                                | 149 |
|   |      |          | 5.11.5.2.3 Trianglestrip                            | 150 |
|   |      |          | 5.11.5.2.4 TriangleFan                              | 150 |
|   |      |          | 5.11.5.2.5 Lines                                    | 150 |
|   |      |          | 5.11.5.2.6 Linestrip                                | 150 |
|   |      |          | 5.11.5.2.7 Points                                   | 150 |
|   |      |          | 5.11.5.3 NOP - No Operation                         | 150 |
|   |      |          | 5.11.5.4 CALL DL - Call Display List                | 150 |
|   |      |          | 5.11.5.5 Invalidate Vertex Cache                    | 150 |
|   |      |          | 5.11.5.6 BP command (Bypass Raster State Registers) | 150 |
|   |      |          | 5.11.5.7 CP command (Command Processor Registers)   | 150 |
|   |      |          | 5.11.5.8 XF command (Transform Unit Registers)      | 151 |
|   |      |          | 5.11.5.9 Indexed XF command                         | 151 |
| 6 | Exce | eption a | nd Interrupt Processing                             | 152 |
|   | 6.1  | _        | are Exception Sources                               | 152 |
|   |      | 6.1.1    | System Reset Interrupt                              | 152 |
|   |      | 6.1.2    | Machine Check Interrupt                             |     |
|   |      | 6.1.3    | DSI Interrupt                                       | 152 |
|   |      | 6.1.4    | ISI Interrupt                                       |     |
|   |      | 6.1.5    | External Interrupt                                  |     |
|   |      |          | 6.1.5.1 Setup                                       | 152 |
|   |      |          | 6.1.5.2 Handling                                    | 153 |
|   |      | 6.1.6    | Alignment Interrupt                                 | 153 |
|   |      | 6.1.7    | Program Interrupt                                   | 153 |
|   |      | 6.1.8    | FP unavailable Interrupt                            | 153 |
|   |      | 6.1.9    | Decrementer Interrupt                               | 153 |
|   |      | 6.1.10   | System Call Interrupt                               | 153 |
|   |      |          |                                                     |     |

|     | 6.1.11              | Trace Interrupt                                                                                                                                     |
|-----|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|     | 6.1.12              | Performance Monitor Interrupt                                                                                                                       |
|     | 6.1.13              | IABR Interrupt                                                                                                                                      |
|     | 6.1.14              | Thermal Interrupt                                                                                                                                   |
| 6.2 | Externa             | al Interrupt Sources                                                                                                                                |
|     | 6.2.1               | HSP - High Speed Port                                                                                                                               |
|     |                     | 6.2.1.1 TX Mailbox Interrupt                                                                                                                        |
|     |                     | 6.2.1.2 RX Mailbox Interrupt                                                                                                                        |
|     |                     | 6.2.1.3 ID Interrupt                                                                                                                                |
|     | 6.2.2               | Debug                                                                                                                                               |
|     | 6.2.3               | CP - Command Processor                                                                                                                              |
|     |                     | 6.2.3.1 FIFO underflow                                                                                                                              |
|     |                     | 6.2.3.1.1 setup                                                                                                                                     |
|     |                     | 6.2.3.1.2 handling                                                                                                                                  |
|     |                     | 6.2.3.2 FIFO overflow                                                                                                                               |
|     |                     | 6.2.3.2.1 setup                                                                                                                                     |
|     |                     | 6.2.3.2.2 handling                                                                                                                                  |
|     | 6.2.4               | PE - Pixel Engine Finished                                                                                                                          |
|     |                     | 6.2.4.1 setup                                                                                                                                       |
|     |                     | 6.2.4.2 handling                                                                                                                                    |
|     | 6.2.5               | PE - Pixel Engine Token                                                                                                                             |
|     |                     | 6.2.5.1 setup                                                                                                                                       |
|     |                     | 6.2.5.2 handling                                                                                                                                    |
|     | 6.2.6               | VI - Video Interface                                                                                                                                |
|     |                     | 6.2.6.1 Setup                                                                                                                                       |
|     |                     | 6.2.6.2 Handling                                                                                                                                    |
|     | 6.2.7               | Memory Interface                                                                                                                                    |
|     |                     | 6.2.7.1 protection fault                                                                                                                            |
|     |                     | 6.2.7.1.1 Setup                                                                                                                                     |
|     | <i>(</i> <b>2</b> 0 | 6.2.7.1.2 Handling                                                                                                                                  |
|     | 6.2.8               | DSP Interface                                                                                                                                       |
|     |                     | 6.2.8.1 Audio DMA finished                                                                                                                          |
|     |                     | 6.2.8.1.1 Setup                                                                                                                                     |
|     |                     | 6.2.8.1.2 Handling                                                                                                                                  |
|     |                     | 6.2.8.2       ARAM transfer complete                                                                                                              < |
|     | 629                 | Audio Streaming Interface                                                                                                                           |
|     | V.4.7               | / 1999// 1995/1997 1995/1995                                                                                                                        |

|        |                                                   | 6.2.10                                                                                                   | EXI                                                                                                                                                           | 156                                                                       |
|--------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|        |                                                   |                                                                                                          | 6.2.10.1 DMA Transfer finished (TCINT channel 0, channel 1)                                                                                                   | 156                                                                       |
|        |                                                   |                                                                                                          | 6.2.10.2 Ethernet Adapter (EXIIRQ channel 2)                                                                                                                  | 156                                                                       |
|        |                                                   |                                                                                                          | 6.2.10.2.1 setup                                                                                                                                              | 156                                                                       |
|        |                                                   |                                                                                                          | 6.2.10.2.2 handling                                                                                                                                           | 157                                                                       |
|        |                                                   |                                                                                                          | 6.2.10.3 Memory Card removed (EXTINT channel 0, channel 1)                                                                                                    | 157                                                                       |
|        |                                                   |                                                                                                          | 6.2.10.3.1 setup                                                                                                                                              | 157                                                                       |
|        |                                                   |                                                                                                          | 6.2.10.3.2 handling                                                                                                                                           | 157                                                                       |
|        |                                                   | 6.2.11                                                                                                   | Serial Interface                                                                                                                                              | 157                                                                       |
|        |                                                   | 6.2.12                                                                                                   | DVD Interface                                                                                                                                                 | 157                                                                       |
|        |                                                   |                                                                                                          | 6.2.12.1 Break Complete                                                                                                                                       | 157                                                                       |
|        |                                                   |                                                                                                          | 6.2.12.2 DMA finished                                                                                                                                         | 157                                                                       |
|        |                                                   |                                                                                                          | 6.2.12.3 Device Error                                                                                                                                         | 157                                                                       |
|        |                                                   |                                                                                                          | 6.2.12.4 Cover State changed                                                                                                                                  | 157                                                                       |
|        |                                                   | 6.2.13                                                                                                   | Reset Button                                                                                                                                                  | 157                                                                       |
|        |                                                   |                                                                                                          | 6.2.13.1 setup                                                                                                                                                | 157                                                                       |
|        |                                                   |                                                                                                          | 6.2.13.2 handling                                                                                                                                             | 157                                                                       |
|        |                                                   | 6.2.14                                                                                                   | Error                                                                                                                                                         | 157                                                                       |
|        |                                                   |                                                                                                          |                                                                                                                                                               |                                                                           |
| 7      | Vide                                              | o Proces                                                                                                 | sing                                                                                                                                                          | 158                                                                       |
| 7      | <b>Vide</b> 7.1                                   | o <b>Proces</b><br>Used VI                                                                               | sing                                                                                                                                                          |                                                                           |
| 7      |                                                   | Used V                                                                                                   |                                                                                                                                                               | 158                                                                       |
| 7      | 7.1                                               | Used VI                                                                                                  | [ terms                                                                                                                                                       | 158<br>158                                                                |
| 7      | 7.1                                               | Used VI<br>init VI<br>7.2.1                                                                              | [ terms                                                                                                                                                       | 158<br>158<br>158                                                         |
| 7      | 7.1<br>7.2                                        | Used VI<br>init VI<br>7.2.1<br>render to                                                                 | Videomodes                                                                                                                                                    | 158<br>158<br>158<br>158                                                  |
| 7      | 7.1<br>7.2<br>7.3<br>7.4                          | Used VI<br>init VI<br>7.2.1<br>render to<br>vertical                                                     | Videomodes                                                                                                                                                    | 158<br>158<br>158<br>158<br>158                                           |
|        | 7.1<br>7.2<br>7.3<br>7.4<br>7.5                   | Used VI<br>init VI<br>7.2.1<br>render to<br>vertical<br>set XFB                                          | Videomodes                                                                                                                                                    | 158<br>158<br>158<br>158<br>158<br>158                                    |
| 7<br>8 | 7.1<br>7.2<br>7.3<br>7.4<br>7.5<br><b>3D</b> (    | Used VI init VI 7.2.1 render to vertical set XFB                                                         | Videomodes  O XFB  retrace  Address  Processing                                                                                                               | 158<br>158<br>158<br>158<br>158<br>158<br>158                             |
|        | 7.1<br>7.2<br>7.3<br>7.4<br>7.5                   | Used VI init VI 7.2.1 render to vertical set XFB Graphics basic op                                       | Videomodes  O XFB  retrace  Address  Processing  perations                                                                                                    | 158<br>158<br>158<br>158<br>158<br>158<br>158                             |
|        | 7.1<br>7.2<br>7.3<br>7.4<br>7.5<br><b>3D</b> (    | Used VI init VI 7.2.1 render to vertical set XFB Graphics basic op 8.1.1                                 | Videomodes  O XFB  retrace  Address  Processing  perations  load BP Register                                                                                  | 158<br>158<br>158<br>158<br>158<br>158<br>158<br>159                      |
|        | 7.1<br>7.2<br>7.3<br>7.4<br>7.5<br><b>3D</b> (    | Used VI init VI 7.2.1 render to vertical set XFB Graphics basic op 8.1.1 8.1.2                           | Videomodes                                                                                                                                                    | 158<br>158<br>158<br>158<br>158<br>158<br>159<br>159<br>160               |
|        | 7.1<br>7.2<br>7.3<br>7.4<br>7.5<br><b>3D</b> (    | Used VI init VI 7.2.1 render to vertical set XFB basic op 8.1.1 8.1.2 8.1.3                              | Videomodes  O XFB  Processing  Perations  load BP Register  load CP Register  load XF Register                                                                | 158<br>158<br>158<br>158<br>158<br>158<br>159<br>159<br>160<br>160        |
|        | 7.1<br>7.2<br>7.3<br>7.4<br>7.5<br><b>3D</b> (8.1 | Used VI init VI 7.2.1 render to vertical set XFB basic op 8.1.1 8.1.2 8.1.3 8.1.4                        | Videomodes  O XFB  retrace  Address  Processing  rerations  load BP Register  load CP Register  load XF Register  load XF Register Indexed                    | 158<br>158<br>158<br>158<br>158<br>158<br>159<br>159<br>160<br>160        |
|        | 7.1<br>7.2<br>7.3<br>7.4<br>7.5<br><b>3D</b> (    | Used VI init VI 7.2.1 render to vertical set XFB basic op 8.1.1 8.1.2 8.1.3 8.1.4 example                | Videomodes  O XFB  retrace  Address  Processing  rerations  load BP Register  load CP Register  load XF Register  load XF Register Indexed  reprocessing loop | 158<br>158<br>158<br>158<br>158<br>159<br>159<br>160<br>160<br>160        |
|        | 7.1<br>7.2<br>7.3<br>7.4<br>7.5<br><b>3D</b> (8.1 | Used VI init VI 7.2.1 render to vertical set XFB Graphics basic op 8.1.1 8.1.2 8.1.3 8.1.4 example 8.2.1 | Videomodes                                                                                                                                                    | 158<br>158<br>158<br>158<br>158<br>159<br>159<br>160<br>160<br>160<br>160 |
|        | 7.1<br>7.2<br>7.3<br>7.4<br>7.5<br><b>3D</b> (8.1 | Used VI init VI 7.2.1 render to vertical set XFB basic op 8.1.1 8.1.2 8.1.3 8.1.4 example 8.2.1          | Videomodes  O XFB  retrace  Address  Processing  rerations  load BP Register  load CP Register  load XF Register  load XF Register Indexed  reprocessing loop | 158<br>158<br>158<br>158<br>158<br>159<br>159<br>160<br>160<br>160<br>160 |

|    |       |          | 8.2.1.3 send setup frame    |   |
|----|-------|----------|-----------------------------|---|
|    |       |          | 8.2.1.3.1 Videomodes        |   |
|    |       | 8.2.2    | begin frame                 |   |
|    |       | 8.2.3    | draw frame                  |   |
|    |       | 8.2.4    | end frame                   |   |
|    |       |          | 8.2.4.1 copy EFB to XFB     |   |
|    |       |          | 8.2.4.2 copy EFB to Texture |   |
|    |       | 8.2.5    | close GX                    |   |
| 9  | Iov-l | Bus Dev  | ices 162                    | , |
|    | 9.1   |          | Device List                 |   |
|    | 9.2   |          | d Controller                |   |
|    | J.2   | 9.2.1    | Init                        |   |
|    |       | 9.2.2    | Read Controller Status      |   |
|    |       | 9.2.3    | rumble Motor On             |   |
|    |       | 9.2.4    | rumble Motor Off            |   |
|    | 9.3   |          | ırd                         |   |
|    |       | 9.3.1    | Types                       |   |
|    |       |          | 9.3.1.1 ASCII               |   |
|    |       |          | 9.3.1.2 Datel               |   |
|    |       |          | 9.3.1.3 Tototek Adapter     | j |
|    |       | 9.3.2    | Scancodes                   | j |
|    |       | 9.3.3    | Init                        | ) |
|    |       | 9.3.4    | Read Keyboard               |   |
|    | 9.4   | GBA .    |                             | ) |
|    | 9.5   | Wavebi   | rd                          | ) |
|    | 9.6   | steering | g wheel                     | ) |
|    | 9.7   | DKong    | as                          | ) |
|    |       | 9.7.1    | Read Controller Status      | i |
|    | 9.8   | Reside   | nt Evil4 Chainsaw           | , |
| 10 | EXI   | Devices  | 168                         | } |
| -  |       |          | nannel and Device List      |   |
|    |       |          | ing the ID of an EXI Device |   |
|    |       |          | OM                          |   |
|    |       |          | Memory Map (Europe/PAL)     |   |
|    |       |          | Memory Map (USA/NTSC)       |   |

|      | 10.3.3 | Memory Map (Japenese/NTSC)               |
|------|--------|------------------------------------------|
|      | 10.3.4 | Memory Map (Japenese/NTSC - Panasonic Q) |
|      | 10.3.5 | Font Encoding                            |
|      | 10.3.6 | Font Layout                              |
|      |        | 10.3.6.1 SJIS Font (ROM Font #1)         |
|      |        | 10.3.6.2 ANSI Font (ROM Font #2)         |
|      | 10.3.7 | Operation                                |
|      |        | 10.3.7.1 read                            |
| 10.4 | RTC (F | Real-Time Clock)                         |
|      | 10.4.1 | Operation                                |
|      |        | 10.4.1.1 read                            |
|      |        | 10.4.1.2 write                           |
| 10.5 | SRAM   | 170                                      |
|      | 10.5.1 | Memory Map                               |
|      | 10.5.2 | Operation                                |
|      |        | 10.5.2.1 read                            |
|      |        | 10.5.2.2 write                           |
|      | 10.5.3 | Checksums                                |
| 10.6 | AD16   |                                          |
|      | 10.6.1 | Operation                                |
|      |        | 10.6.1.1 init                            |
|      |        | 10.6.1.2 write                           |
|      |        | 10.6.1.3 read                            |
|      | 10.6.2 | Trace-Step Values                        |
|      |        | 10.6.2.1 BS                              |
|      |        | 10.6.2.2 BS2                             |
| 10.7 |        | ry Cards                                 |
|      |        | Commands                                 |
|      | 10.7.2 | Operation                                |
|      |        | 10.7.2.1 unlocking                       |
|      |        | 10.7.2.2 get ID                          |
|      |        | 10.7.2.2.1 Card IDs                      |
|      |        | 10.7.2.3 get Status                      |
|      |        | 10.7.2.3.1 Status Bits                   |
|      |        | 10.7.2.4 clear Status                    |
|      |        | 10.7.2.5 read Block                      |
|      |        | 10.7.2.6 erase Card                      |

| 10.7.2.7 erase Sector                              |     | 174 |
|----------------------------------------------------|-----|-----|
| 10.7.2.8 write Block                               |     | 175 |
| 10.8 Ethernet Adapter                              |     | 175 |
| 10.8.1 registers                                   |     | 175 |
| 10.8.2 command-registers                           |     | 181 |
| 10.8.3 Operation                                   |     | 182 |
| 10.8.3.1 selecting a register for reading          |     | 182 |
| 10.8.3.2 selecting a register for writing          |     | 182 |
| 10.8.3.3 selecting command-register for reading    |     | 182 |
| 10.8.3.4 selecting command-register for writing    |     | 182 |
| 10.8.3.5 init                                      |     | 183 |
| 10.8.3.6 challenge/response calculation            |     | 183 |
| 10.8.3.7 send packet (outside interrupt)           |     | 184 |
| 10.8.3.8 poll received packets (outside interrupt) |     | 184 |
| 10.8.3.9 received packet format                    |     | 185 |
| 10.9 UART                                          |     | 185 |
| 10.10SD Cards                                      |     | 185 |
| 10.11 Viper 'Modchip'                              |     | 185 |
| 10.12Ripper III GC 'Modchip'                       |     | 185 |
| 10.13Qoob 'Modchip'                                |     | 185 |
| 10.14NinjaMOD 'Modchip'                            |     | 185 |
| 10.15 Mario Party Microphone                       |     | 186 |
| 11 HCD Daviess                                     |     | 187 |
| 11 HSP Devices         11.1 GB Player              |     | 187 |
| 11.1 Ob Flayer                                     | • • | 107 |
| 12 Memory Card Structure                           |     | 188 |
| 12.1 Overview                                      |     | 188 |
| 12.2 Header                                        |     | 188 |
| 12.3 Directory                                     |     | 188 |
| 12.3.1 Directory Entries                           |     | 189 |
| 12.3.1.1 Image Data                                |     | 190 |
| 12.3.1.1.1 Banner Image                            |     | 190 |
| 12.3.1.1.2 Icon Image                              |     | 190 |
| 12.3.1.1.3 Palettes                                |     | 190 |
| 12.4 Block Allocation Map                          |     | 190 |
| 12.5 Checksums                                     |     | 191 |

| 13 |
|----|
|    |

| 13 | DVD   | Structure                               | 192 |
|----|-------|-----------------------------------------|-----|
|    | 13.1  | Disk header                             | 192 |
|    | 13.2  | Disk header Information                 | 192 |
|    | 13.3  | Apploader                               | 193 |
|    | 13.4  | Format of the FST                       | 193 |
|    |       | 13.4.1 Format of a File Entry           | 193 |
| 14 | gene  | ral File Formats                        | 194 |
|    | Ü     | BNR (Banner file format)                | 194 |
|    | 14.2  | DOL (Gamecube Executable)               | 194 |
|    | 14.3  | ELF (Executable and linkable Format)    | 194 |
|    |       | GCB (QOOB Flash Files)                  |     |
|    | 14.5  | GCM (Gamecube Disc Image)               | 195 |
|    | 14.6  | GCI (Gamecube Game Save)                | 195 |
|    | 14.7  | GCP (Gamecube Memorycard Image)         | 195 |
|    | 14.8  | TGC                                     | 195 |
|    |       | 14.8.1 Header                           | 196 |
|    |       | 14.8.2 embedded GCM                     | 196 |
|    | 14.9  | VGC (Viper Flash Files)                 | 196 |
| 15 | Gam   | e File Formats                          | 198 |
|    | 15.1  | AFC (audio stream)                      | 198 |
|    | 15.2  | AST (audio stream)                      | 198 |
|    | 15.3  | ARC (RARC Archive)                      | 198 |
|    |       | 15.3.1 Header                           | 198 |
|    |       | 15.3.2 Nodes                            | 198 |
|    |       | 15.3.3 File Entries                     | 199 |
|    | 15.4  | ARC (audio stuff)                       | 199 |
|    | 15.5  | ASN                                     | 199 |
|    | 15.6  | AW ("audio wave"?)                      | 199 |
|    | 15.7  | BAS ("audio script" ?)                  | 199 |
|    | 15.8  | BCA                                     | 199 |
|    | 15.9  | BCK (animation of a .bmd skeleton)      | 199 |
|    | 15.10 | BDL                                     | 199 |
|    | 15.11 | BFN (font)                              | 199 |
|    | 15.12 | BIN (binary file)                       | 199 |
|    | 15 13 | BBLO (screen layout for dialog screens) | 200 |

|    | 15.14BMD (3d model with texture and skeleton) | 200 |
|----|-----------------------------------------------|-----|
|    | 15.15BMG                                      | 200 |
|    | 15.16BMP (window bitmap (!))                  | 200 |
|    | 15.17BMT                                      | 200 |
|    | 15.18BCK ("Pack" file)                        | 200 |
|    | 15.19BRK                                      | 200 |
|    | 15.20BTI                                      | 200 |
|    | 15.20.1 Texture Header                        | 201 |
|    | 15.21BTP                                      | 201 |
|    | 15.22BTK                                      | 201 |
|    | 15.23COL (collision triangles)                | 201 |
|    | 15.24DZB                                      | 201 |
|    | 15.25H4M                                      | 202 |
|    | 15.26JPA (particle data)                      | 202 |
|    | 15.27JPC                                      | 202 |
|    | 15.28MTH ('Mute thp?')                        | 202 |
|    | 15.29PAD                                      | 202 |
|    | 15.30PRM ('Parameters?')                      | 202 |
|    | 15.31REL (relocatable module)                 | 202 |
|    | 15.32SB                                       | 202 |
|    | 15.33SZS (packed RARC Archive)                | 202 |
|    | 15.34THP (video format)                       | 202 |
|    | 15.34.1 Header data                           | 203 |
|    | 15.34.2 Components structure                  | 203 |
|    | 15.34.3 VideoInfo Structure                   | 203 |
|    | 15.34.4 AudioInfo Structure                   | 203 |
|    | 15.34.5 Frame data                            | 204 |
|    | 15.34.6 Video Frames                          | 204 |
|    | 15.34.7 Audio Frames                          | 204 |
|    | 15.35TPL (Texture Palette)                    | 205 |
|    | 15.36YMP (height map)                         | 206 |
| 16 | Compression Formats                           | 207 |
| 10 | 16.1 Yay0                                     | 207 |
|    | 16.1.1 compression                            | 207 |
|    | -                                             | 207 |
|    | 16.1.3 Font Data                              | 207 |
|    | 16.2 Yaz0                                     | 209 |
|    | 16.2.1 de-compression Code                    | 209 |
|    | 19.2.1 40 00111010001011 0040                 | ~~/ |

| 17 | Graphic Formats                                                    | 211 |
|----|--------------------------------------------------------------------|-----|
|    | 17.1 YCbYCr                                                        | 211 |
|    | 17.2 I4 (4bit indexed)                                             | 212 |
|    | 17.3 IA4 (4bit indexed with alpha)                                 | 212 |
|    | 17.4 I8 (8bit indexed)                                             | 212 |
|    | 17.5 IA8 (8bit indexed with alpha)                                 | 212 |
|    | 17.6 CI4 (compressed 4bit indexed)                                 | 212 |
|    | 17.7 CIA4 (compressed 4bit indexed with alpha)                     | 212 |
|    | 17.8 CI8 (compressed 8bit indexed)                                 | 212 |
|    | 17.9 CIA8 (compressed 8bit indexed with alpha)                     | 212 |
|    | 17.10RGB4A3                                                        | 212 |
|    | 17.10.1 RGB4A3 Pixel Format                                        | 212 |
|    | 17.11RGB5A1                                                        | 212 |
|    | 17.11.1 RGB5A1 Pixel Format                                        | 212 |
|    | 17.12RGB565                                                        | 213 |
|    | 17.12.1 RGB565 Pixel Format                                        | 213 |
|    | 17.13RGBA8                                                         | 213 |
|    | 17.13.1 RGBA8 Pixel Format                                         | 213 |
|    | 17.14S3TC                                                          | 213 |
|    | 17.14.1 CMPR                                                       | 214 |
| 10 | Amondin                                                            | 216 |
| 10 | Appendix  18.1 GCC Quick How To                                    |     |
|    | -                                                                  |     |
|    | 18.1.1 compile ASM to object:                                      |     |
|    | 18.1.2 compile C to object:                                        |     |
|    | 18.1.3 compile C++ to object:                                      |     |
|    | 18.1.4 link objects                                                |     |
|    | 18.1.5 remove unneeded sections (debug info etc) from object       |     |
|    | 18.1.6 convert object to plain binary                              |     |
|    | 18.1.7 convert absolute address into filename/line number/function |     |
|    | 18.1.8 Building a Crosscompiler                                    |     |
|    | 18.1.9 Linker Script                                               |     |
|    | 18.1.10 Startup Code                                               |     |
|    | 18.2 Boot Process Details                                          |     |
|    | 18.2.1 BS - Bootstrap 1                                            |     |
|    | 18.2.2 BS2 - Bootstrap 2                                           |     |
|    | 18 2 2 1 short description of start() routine                      | 218 |

| 20 | Cred | lits                             | 243 |
|----|------|----------------------------------|-----|
|    | 19.1 | Sources                          | 242 |
| 19 | Refe | rences                           | 241 |
|    | 18.7 | Terms and Acronyms               | 236 |
|    | 18.6 | Easter Eggs                      | 236 |
|    |      | chip simelarities                |     |
|    | 18.4 | Macronix Chip IDs                | 234 |
|    |      | 18.3.3 Makercodes                | 232 |
|    |      | 18.3.2 Game Serial ID            | 232 |
|    |      | 18.3.1 Gamecodes                 | 232 |
|    | 18.3 | Game and Maker Codes             | 232 |
|    |      | 18.2.4 Main DOL executable       | 231 |
|    |      | 18.2.3 Apploader                 | 226 |
|    |      | 18.2.2.3 Map of IPL Library code | 225 |
|    |      | 18.2.2.2 IPL main() reversing    | 218 |

17

### 1 Introductional Rant

If you don't know what programming a machine down to the metal is all about, go away! no really, this document is not for you! if you are seeking for advice on using existing solutions, such as SDKs or libraries, you will find little to none information that is of any use for you and you might only become frustrated by figuring out how little you know. If you however aren't afraid of numbers and want to dare jumping into the snake-pit of semi-accurate information based on guesswork done by a bunch of freaks - feel invited. this was made to give you what you need in the most compressed and visually pleasing form possible. *Stuff that matters*.

### 1.1 Things that are in this document

just about everything explicitly and specifically related to the gamecube hard- and software internals and its programming. everything inside the box is subject to be documented, may it be relevant for actual programming or not. its meant as a reference for everyone who wants to know in all possible detail what makes this thing tick.

one more thing: please notice that this is a technical documentation which is presented for pure educational purposes and higher learning, and not a moral lesson. i have decided against leaving out any information since i believe that information by itself should not be crippled in any way. if you choose to abuse this information for any kind of illegal activities (**PLEASE DON'T!**) so be it, but don't bother me with it.

### 1.2 Things that are *not* in this document

several things were decided to not being put into this document because they didn't fit into the 'technical documentation' type of concept. They may be documented separatly some time but not now and not here. These things are:

- □ Tips on Emulating the Gamecube on another Host system (this kind of information is only useful for a very limited number of people, and additionally might be highly confusing and/or misleading for those who are writing actual gamecube programs)
- > Explanation of the PSO (Phantasy Star Online) Exploit that lets you run code on the Gamecube
- ▷ Explanation of the Codes used with Datels Action Replay
- ▷ Instructions on using any tools that let you upload and execute code on the Gamecube, or any other development related tools except anything related to setting up and using gcc as a cross-compiler targeted to the gamecube.
- > anything related to gaming, cheat-codes and the like. (this is a tech-doc not a gaming FAQ!)
- ▷ information on using the datel action replay to patch itself in order to execute code.
- be detailed and/or complete sourcecode, except when a formal explanation would just over-complicate things. (this is a documentation, not a code library)
- ▷ building and/or using a custom interface to connect a gamecube memory card to another host and read/write data
- > anything related to playing/booting/copying pirated games (as you may have noticed, we do not support piracy!)

some of these may be arguable, so if you think they should be here - probably along the lines of the appendix - don't hesitate to write the chapter in question and send it to me. i might include it if you write it, but other than that i won't care (there is still enough other stuff to complete).

18

#### 1.3 Conventions

- ⊳ we count bits starting from 0, the most significant bit of a byte is bit 7. when visualising a byte the most significant bit comes first (left), and the least significant bit comes last (right).
- ⊳ when dealing with 16- or 32 byte values all figures are in big endian byte order. this means that the most significant byte comes first (left), and the least significant byte comes last (right).
  - Please notice that the above is different to what IBM is using in their PPC documents. They have the (to many people strange and wrong) idea of applying 'big endian' to the order of bits and showing them the other way around as we do in this document.
- ▷ absolute memory addresses are shown as if the gamecube had been initialized by the original IPL and address translation had not been changed. For this matter we dont use physical addresses to avoid confusion for the majority of our readers.

| Description                      | Symbol |
|----------------------------------|--------|
| logical or bitwise AND           | &      |
| logical or bitwise OR            |        |
| logical or bitwise exclusive OR  | ^      |
| logical or bitwise NOT (inverse) | !      |
| equality or assignment           | =      |
| addition                         | +      |
| substraction                     | -      |
| multiplication                   | *      |
| division                         | /      |

please notice that -outside code- we do not make a difference between logical and bitwise operations. if in doubt the operation is bitwise, it should however be clearly visible from the context.

### 1.4 legal Babble

Everything in this Document has been reverse-engineered from legally aquired software (Games), publicly available Patents and Documentation for the sole purpose of writing interoperable Software. This is explicitly allowed (almost encouraged:)) by Sect. 1201 (f), Reverse Engineering exception of the DMCA.

### 2 Gamecube Hardware Introduction

The GameCube is a powerful piece of hardware. The whole system is based on the IBM PowerPC Gekko processor and the custom ATI Flipper video system. The PowerPC Gekko processor is really just a PowerPC 750 with a few enhancements.

#### 2.1 enhanced PowerPC 750 Specification

- > 200 MHz 64-bit bus width to main memory (1.6 Gigabytes per second maximum)
- ⇒ 32KB associative L1 Icache
- > 32KB associative L1 Dcache with 16KB data scratchpad
- > Super-scalar microprocessor with five different execution units:
  - ▷ 2 integer units, 1 FPU, and 1 load\store unit and branch unit
- > DMA unit servicing 16KB data scratchpad.
- DMA request queue 15-entry.
- ⊳ Embedded 256KB 2-way set-associative L2 unified cache.
- ▷ 2 32-bit Integer Units (IU)
- ▷ 1 FPU, 32 and 64-bit bus width
- ▷ The FPU supports Floating Point Paired Singles (FP/PS)
- > Branch Unit provides static AND dynamic branch prediction

The enhanced PowerPC Gekko processor also contains many features for minimization of processor delays because of data accessing and for maximization of processing throughput:

- ⊳ Non-blocking caches
- ▷ Branch prediction through use of the Branch Unit (BU)
- ⊳ 8-way set-associative caches
- ≥ 256KB L2 transfer cache
- > Out-of-order execution capabilities

The instruction set of the PowerPC Gekko processor seems to be almost identical to the one of the PowerPC 750 processor. The only visible differences at the moment are that the PowerPC Gekko processor has a few AltiVec\SIMD opcodes added to its final instruction set.

#### 2.2 Consumer Units

- 2.2.1 Nintendo
- **2.2.1.1 HW1** HW1 was an initial, buggy version of the GameCube hardware that wasnt sold at retail.
- **2.2.1.2** HW2 is the first hardware that was sold in stores to the public.
- **2.2.1.3 HW2 'second edition'** The second edition models are missing the "Serial Port 2" that the first edition had. The plastic cover is still on the bottom of the cube, where the port used to be, but there's just a metal plate underneath it, and no connector.
- **2.2.1.4 HW2 'third edition'** The third edition Gamecubes are missing both the "Serial Port 2", and the Digital A/V connector.

#### 2.2.2 Panasonic Q

There is a Gamecube combined with dvd-player manufactured by Panasonic called 'Panasonic-Q'. It seems to be exactly the same as HW2 for the Gamecube part, except that the dvd drive is different.

### 2.3 Development Units

Nintendo provides development hardware units to official, licensed GameCube developers. There are namely two different versions: the GDEV and the DDH hardware development kit units. These units are the same as retail GameCube HW2 units with some changes: They have PC communications features (either through SCSI or USB) and they have DVD emulation hardware instead of a proprietary mini-DVD drive. GameCube development units also seem to have slower processor speeds than retail GameCubes, this clock speed ranges from around 150MHz to 400MHz. Development GameCubes also seem to contain more RAM than retail ones, namely around 40MB. SNSystems also provides their own development kit, authorized by Nintendo, called the TDEV. According to specifications directly from SNSystems, the TDEV development hardware contains twice as much memory as retail GameCubes for debugging and a direct PC<->TDEV USB connection for fast uploading of code and\or data. Finally, there is also another proprietary development kit called the NR-Reader. NR-Reader's contain less debugging capabilities than the other development kits and are mostly meant for developers to efficiently get their demos\games to beta testers or media. However, SNSystems reports that their ProDG development kit can be used with a special USB adapter of theirs for directly sending program (debug) code to NR-Reader GameCubes. Also, NR-Reader GameCubes contain different mini-DVD drives than retail GameCubes, but still use a proprietary writing\reading format which is currently unknown. The DVD drives of NR-Readers can only read special DVDs that can only be written correctly with NR-Writer hardware (which is really just a Panasonic\Matshita SW-9501 with modified firmware). Also, the official debug development kits possibly contain J-TAG support, which is a method for debugging hardware. If so, there is a possibility that J-TAG support still remains in retail GameCubes as well, but this is purely hypothesis. If, in fact, retail Game-Cubes contain J-TAG debugging support then it should be possible for (homebrew) code to be uploaded through a J-TAG cable) directly to a GameCube's RAM and executed.

#### 2.4 Hardware Parts List

▷ "MBU" and "MBB" will be used to refer to parts on the top and bottom sides of the GameCube's mother-board respectively.

- ▷ "DVDB" will be used to refer to parts on the DVD controller board.
- ▷ "CB" will be used to refer to parts on the controller pad board.

#### 2.4.1 Connectors

The are 10 different connectors on the GameCube's mother-board. The following table contains an ID key and a short functional description.

| ID  | Description                                          |
|-----|------------------------------------------------------|
| P1  | Motherboard Power Connector - MBB - Top Left         |
| P2  | Digital Video Output Connector - MBU - Bottom Left   |
| Р3  | Controller Pad Board Connector - MBU - Middle Right  |
| P4  | Memory Card Slot Connector A - MBU - Top Right       |
| P5  | Memory Card Slot Connector B - MBU - Bottom Right    |
| P6  | Serial Port Connector 1 - MBB - Top Right            |
| P7  | Analog Video Output Connector - MBU - Middle Left    |
| P8  | Serial Port Connector 2 - MBB - Top Right            |
| Р9  | Mini-DVD Drive Port Connector - MBU - Top Right      |
| P10 | Hi-Speed Parallel Port Connector - MBB - Bottom Left |

# 2.4.1.1 Memory Card Slots (P4,P5)

| pin | Signal          |
|-----|-----------------|
| 1   | EXTIN           |
| 2   | GND             |
| 3   | INT             |
| 4   | 3.3V            |
| 5   | DO              |
| 6   | 5V              |
| 7   | DI              |
| 8   | 3.3V            |
| 9   | CS              |
| 10  | Ground (Shield) |
| 11  | CLK             |
| 12  | EXTOUT          |

# 2.4.1.2 High-speed Port (P8)

| pın | Signal          |
|-----|-----------------|
| 1   | 3.3V            |
| 2   | GND             |
| 3   | INT             |
| 4   | CLK             |
| 5   | DO              |
| 6   | DI              |
| 7   | CS              |
| 8   | Ground (Shield) |

| pin | Signal           |
|-----|------------------|
| 1   | VCC              |
| 2   | Ground           |
| 3   | DQ0              |
| 4   | DQ7              |
| 5   | DQ1              |
| 6   | DQ6              |
| 7   | DQ2              |
| 8   | DQ5              |
| 9   | DQ3              |
| 10  | DQ4              |
| 11  | VCC              |
| 12  | Ground           |
| 13  | write enable     |
| 14  | DQM              |
| 15  | CAS              |
| 16  | Clock            |
| 17  | RAS              |
| 18  | A12              |
| 19  | CS (Chip Select) |
| 20  | A11              |
| 21  | BA0              |
| 22  | A9               |
| 23  | BA1              |
| 24  | A8               |
| 25  | A10              |
| 26  | A7               |
| 27  | A0               |
| 28  | A6               |
| 29  | A1               |
| 30  | A5               |
| 31  | A2               |
| 32  | A4               |
| 33  | A3               |
| 34  | INT              |
| 35  | VCC              |
| 36  | Ground           |

# 2.4.1.3 SDRAM/Parallel Port (P10)

# 2.4.1.4 BBA/Modem Connector (P6)

| pin | Signal          |
|-----|-----------------|
| 1   | EXTIN           |
| 2   | Ground (Shield) |
| 3   | INT             |
| 4   | CLK             |
| 5   | 12V             |
| 6   | DO              |
| 7   | 3.3V            |
| 8   | 3.3V            |
| 9   | DI              |
| 10  | CS              |
| 11  | Ground          |
| 12  | Ground          |
|     |                 |

| pin | Signal             |
|-----|--------------------|
| 1   | AISLR (audio bus)  |
| 2   | 5V                 |
| 3   | AISD (audio bus)   |
| 4   | 5V                 |
| 5   | AISCLK (audio bus) |
| 6   | 5V                 |
| 7   | DIHSTRB            |
| 8   | 5V                 |
| 9   | DIERRB             |
| 10  | Ground             |
| 11  | DIBRK              |
| 12  | DICOVER            |
| 13  | DIDSTBR            |
| 14  | DIRSTB             |
| 15  | DIDIR              |
| 16  | Ground             |
| 17  | DID7               |
| 18  | Ground             |
| 19  | DID6               |
| 20  | Ground             |
| 21  | DID5               |
| 22  | Ground             |
| 23  | DID4               |
| 24  | Ground             |
| 25  | DID3               |
| 26  | Ground             |
| 27  | DID2               |
| 28  | MONI               |
| 29  | DID1               |
| 30  | MONOUT             |
| 31  | DID0               |
| 32  | Ground             |

# 2.4.1.5 DVD Interface Connector (P9)

| pin | Signal        |
|-----|---------------|
| 1   | Ground        |
| 2   | Ground        |
| 3   | 3.3V          |
| 4   | 3.3V          |
| 5   | Ground        |
| 6   | Ground        |
| 7   | Ground        |
| 8   | Ground        |
| 9   | 1.8V          |
| 10  | 1.8V          |
| 11  | 1.8V          |
| 12  | 1.8V          |
| 13  | 1.55V         |
| 14  | 1.55V         |
| 15  | 1.55V         |
| 16  | Ground        |
| 17  | Ground        |
| 18  | Ground        |
| 19  | Thermo detect |
| 20  | 12V           |
| 21  | 5V            |
| 22  | 5V            |

# 2.4.1.6 Power Supply Connector (P1)

# 2.4.2 Semi-Conductors

| ID  | Description                                            |
|-----|--------------------------------------------------------|
| U1  | Customized NEC Flipper Chip - MBU - Middle             |
| U2  | Customized IBM PowerPC Gekko Chip - MBU - Bottom       |
| U3  | MoSys (MS3M23B-5 A) 12MB 1-T SRAM - MBU - Top Right    |
| U4  | MoSys (MS3M23B-5 A) 12MB 1-T SRAM - MBU - Top Right    |
| U5  | NEC (D4891281G5 0125XU621) 16MB ARAM - MBU - Top Left  |
| U6  | A\V Encoder (AVE N -DOL RS5C5828) - MBB - Middle Left  |
| U7  | Amplifier? (AMP - DOL 128 124) - MBB - Top Left        |
| U8  | MX Clock Generator (Part Number?) - MBU - Bottom Left  |
| U9  | MX Clock Generator (Part Number?) - MBU - Bottom Right |
| U10 | MX RTC/IPL (8013108-M RTCN-DOL 1R6022A1)               |

| Pin | Signal      |
|-----|-------------|
| 1   | Clock       |
| 2   |             |
| 3   |             |
| 4   |             |
| 5   | CS          |
| 6   | serial in   |
| 7   | Ground      |
| 8   |             |
| 9   | serial out  |
| 10  |             |
| 11  |             |
| 12  | osc - xtal2 |
| 13  | osc - xtal1 |
| 14  |             |

2.4.2.1 IPL (U10)

#### 2.5 Details on the motherboard buses

The GameCube has three main external buses on its mother-board: the North-Bridge, the South-Bridge, and the East-Bridge. The fastest bus is the South-Bridge which connects the two 12MB 1T-SRAM chips to the Flipper. The South-Bridge bus has a bus-width of 64 bits, and data is exchanged through it at rates of about 324MHz. The North-Bridge bus connects the IBM PowerPC Gekko processor to the Flipper and is another 64 bit bus-width bus, however, it is only half as fast as the South-Bridge bus and is clocked at around 162MHz. Finally, the East-Bridge bus connects the 16MB Audio RAM chip to the Flipper chip. This bus only has a bus-width of 8 bits and is by far the slowest one, clocked at only 81MHz.

### 2.6 Details on the Macronix (MX) Chips

An outer inspection of the two MX chips does not reveal anything of much interest. Both chips are TSOP packages containing 14 pins each. One of the chips has "CLK" inscripted on it, and the other "RTC". It can be easily inferred that the "CLK" chip functions as some sort of a clock controller\generator and the "RTC" chip contains the GameCube's Real-Time Clock unit. Two of the RTC chip's pins are connected to an external crystal which regulates the RTC's timing rate. Another pin is connected to a battery located on the controller board. At least two pins are used for both VCC and GND. That leaves nine unknown pins. The RTC MX chip also contains the GameCube's BIOS. While 14 pins is not nearly enough for parallel Flash ROM, EEPROM, mask ROM, etc., it is quite adequate for a serial connection.

#### 2.7 DVD Protection

The DVD Protection is based on a custom data format on an otherwhise pretty standard dvd.

#### 2.7.1 Filesystem

The custom Filesystem (which is described somewhere else in this Document) by itself is not related to the actual protection mechanism. However, since it is not standard, that alone would already make it hard to read (and create) in a regular (pc-) environment.

#### 2.7.2 Barcode

The Barcode is used to authenticate the Disc in the Drive.

#### 2.7.3 Encryption

The entire content of a Gamecube DVD is XORed with a constant cyphertext and it is transparently decrypted by the Disc-Controller when reading from the DVD.

#### 2.7.3.1 Cyphertext algorithm todo

### 2.8 IPL/BIOS Encryption

if you XOR an NTSC with a PAL bios (or any other two different ones), you will notice that because they have different sizes, there are some obviously zero encoded areas in one files, giving you plaintext in the other one which proves:

- > encryption is a simple XOR with a constant ciphertext.
- > the key used to generate the cyphertext is the same for different bios's

so we do the math:

given Ci = ciphertext, Cl = cleartext, K = key

encoding data goes like:

 $Ci1 = Cl1 ^ K$  $Ci2 = Cl2 ^ K$ 

If C11 or C12 is nothing but zero, the resultant Ci is just K

decoding it would be:

 $Cl = Ci ^ K$ 

for the areas where Cl is nothing but zeroes in one bios, we know K

#### 2.8.1 Flipper decryption logic bug

The hardware decryption logic has a really nasty bug which allows us to read almost the full Cleartext (and thus a large part of the cyphertext, by XORing it with encrypted data).

This, combined with the features of the XOR encryption makea the whole encryption useless (at least very insecure) and implementing a new bios is a straight-forward task (provided that "high speed" (30Mhz) programmable logic with enough memory attached to it is available.). The Bios chip, which also includes sram and rtc (but that won't matter here), is attached to the EXI0 bus. The Exi bus (nothing new here, just to refresh it is an SPI-like bus. SPI is nothing complicated, just four interesting lines: CS (used mainly for syncing, since you need a defined start point, and you can easily attach multiple devices (memory card, ...) to the same bus with seperate CS lines), SI (aka MOSI, master out, slave in - the CPU is always master, the IPL-chip is slave. so SI is gamecube -> device), SO (device -> gamecube, tristated when a device is not active), and CLK (generated by the master). a transfer is basically:

- lower CS (it's low active)

for every bit do:

- set SI bit
- clock
- read SO bit

then:

- put CS high again.

(the exact timing (WHEN to sample SO, clock polarity) is different for different SPI modes, and the one descriped here is not necessarily the one used in the GC. anyway, it doesn't matter here)

so, based on that, we can transfer n-bit messages in BOTH DIRECTIONS. technically this is implemented with a 32bit shift register, with every clock cycle one bit is shifted out (to SI), and one bit is shifted in (to SO). so after n clock cycles, you have n new bits in the shift register and shifted n bits out. the used protocol on the Bus is in most cases very simple but device dependant. In the case of the IPL chip, it's the following:

#### GC -> IPL

1 bit read/write (0 for read, 1 for write, the latter only valid for RTC/Sram of course)

1 unknown bit

1 bits selection (0 for ROM, 1 for RTC/Sram)

23 bits address

6 bits dummy

after that, the data transfer starts. the 6 dummy cycles are mainly to give the IPL time to read out the first byte.

So you send 32 bits of data (the "address"), and start receiving the ROM bytes. but hey - we said the SPI bus always transfers 2 bits per clock cycle (in marketing terms), since it's fullduplex (in technical terms). we transfer one bit TO the device, and one BACK. we HAVE to. there's no way to NOT send a bit - but it doesn't matter, since for example the bits send from the IPL to the GC in the first 32bits are just ignored - they would contain most probably only zeros, ones, or the bus might be tristate. it's simply not defined, so there's no data to be expected. the same goes for the transfer of the data. the IPL chip sets the correct data at the SO line, but the gamecube - well, sends dummy bits, too. normally you would send zeros, ones, or whatever. it's ignored by the IPL chip anyway (unless it's a write, that would turn the whole thing upside down) now since technically the SPI port is implemented by a shifting register of 32bit length. after transferring 32bits, we would have to read out the new value, store it into memory, and "start the next transfer". but what's about CLEARING the register before? yes, they didn't. in the next transfer, the last 32bit are shifted out as dummy bits. well, one might say, it's just the data just shifted in, so it's completely uninteresting. BUT: the decryption of the loader is done in hardware. it's a part between the SO line of the IPL and the DI port of the shift register. (the encryption is build into the flipper, so no way to intercept the content AFTER decryption).so because the (decrypted) data just shifted in (and stored into memory) is shifted out again - we can get the decrypted data. if you sniff the SI line to the IPL chip, you will get a log like this:

```
00 00 40 00 (address written to the IPL, in this case: 0x100) FF FF FF FF (well just dummy data) xx xx xx xx (the data from the last 4 bytes, decrypted) ... xx xx xx xx (the data from the n-1 transfer, decrypted)
```

so in the end you get every 32bit words except one. For every transfered block you miss 32bits of plaintext data, but you'll get the rest. This should be enough to decrypt huge parts of the bios, and thus recover a large part of K.

#### 2.8.2 Cyphertext algorithm

todo

#### 2.8.3 replacing the IPL

using the above gained knowledge it is possible to create a small bootrom replacement (using the, yet incomplete, cyphertext), and get more (most) of the IPL Cleartext.

The Gekko boots from 0x100, that's what you read in almost any ppc instruction manual - the reset vector. well, this isn't the complete truth - it boots from it's exception base + 0x100. And the exception base is normally zero, BUT, as the ppc manual states: there's a bit in a HID (i think) register, which turns the exception base to 0xFFF00000. and this bit is "set usually at boot time". So the processor starts to fetch instructions at 0xFFF000100. If you read a bit further, you'll notice that the CPU always reads 64bits at once for code. The memory at 0xFFF00000 is mapped inside the flipper to an automated exi transfer (with that shift register), with the decryption logic active. so the processor starts executing the decrypted instructions, reading 8 bytes at a time, of which we get 4 bytes in plain - not much, (although enough to make some funny experiments, but that's another topic). Luckily, the IPL itself (the cube menu) isn't executed this way since that wouldn't be possible thanks to the "dumb" decryption logic The first ~0x800 bytes start to read data out of the IPL chip and store it to memory (still using the hardware decryption logic), and jump there, they read 1024 bytes at once. Well - now we know 1020 bytes of each transfer, enough to have a complete block of code we can exchange (we have the ciphertext Cl^K = Ci on SO, and the plaintext (delayed by 32bits on SI), and can XOR them to get Cl^K^Ci = K. now we can encrypt our code with K). so now we can make a small code which just dumps the whole IPL - well, to the EXI bus or whereever you can receive it. Now we have all Cl, and thus we can compute all K, thus we can get the complete Plaintext of all available IPLs aswell as encode a larger custom IPL ourselves.

a small note on why you can not recover the plaintext of the original loader this way:

The decryption logic is, whatever it is, a PRNG. It generates a stream of ciphertext ("K"), which has random properties (non-repeating, at least not in the range of some MB), but is always the same. it is incremented with every EXI-transfer. the address is NOT used in the calculation. thus reading from 0xFFF00100 more than one time will give you each time another result. the first time you get  $Ci(0)^{K}(0)$  (the correct result), the second time you get  $Ci(0)^{K}(1)$  etc., i.e. wrong results. Since we never get the K(n) for odd n, i see no chance of recovering it this way, even if we can read at 0xFFF00000+x (and we can do this if we don't set a specific bit to disable the logic).

29

# 3 Gekko CPU Overview

# 3.1 Registers

- □ General purpose registers (r0-r31)
  - ⊳ r1 sp stackpointer
  - ▷ r2 rtoc global pointer to \_SDA2\_BASE\_
  - ⊳ r13 global pointer to \_SDA\_BASE\_
- ⊳ Floating point registers (fp0-fp31)
- ▷ Segment registers (sr0-sr15) unused in regular (SDK/DolphinOS) applications
- - ⊳ spr8 (lr) link register
  - ⊳ spr920 HID2
  - ⊳ spr1010 instruction breakpoint address
  - ⊳ spr1013 data breakpoint address

| spr920 | 4 | r/w | HID2 |
|--------|---|-----|------|

|   | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| ſ |    |    |    |    |    |   |   |   |

| bit(s) | description                                             |
|--------|---------------------------------------------------------|
|        |                                                         |
| 2      | PSE - Paired-Single load and store instructions enabled |
| 1      |                                                         |
| 0      | LSQE - Paired-Single mode enabled                       |

# 3.2 Calling conventions

parameters are passed in r3 (1st) r4 (2nd) and r5 (third) up to r12 (9th), further parameters are passed through the stack.

# 3.3 PPC Instructions

# 3.3.1 Integer Instructions

| Mnemonic | Opcode | Description |
|----------|--------|-------------|
| addi     |        |             |
| addis    |        |             |
| add      |        |             |
| addo     |        |             |
| subf     |        |             |
| subfo    |        |             |
| addic    |        |             |
| subfic   |        |             |
| addc     |        |             |
| addco    |        |             |
| subfc    |        |             |
| subfco   |        |             |
| adde     |        |             |
| addeo    |        |             |
| subfe    |        |             |
| subfeo   |        |             |
| addme    |        |             |
| addmeo   |        |             |
| subfme   |        |             |
| subfmeo  |        |             |
| addze    |        |             |
| addzeo   |        |             |
| subfze   |        |             |
| subfzeo  |        |             |
| neg      |        |             |
| nego     |        |             |
| mulli    |        |             |
| mullw    |        |             |
| mullwo   |        |             |
| mulhw    |        |             |
| mulhwu   |        |             |
| divw     |        |             |
| divwo    |        |             |
| divwu    |        |             |
| divwuo   |        |             |
| cmpi     |        |             |
| cmp      |        |             |
| cmpli    |        |             |
| cmpl     |        |             |

| Mnemonic | Opcode | Description |
|----------|--------|-------------|
| andi     |        |             |
| andis    |        |             |
| ori      |        |             |
| oris     |        |             |
| xori     |        |             |
| xoris    |        |             |
| and      |        |             |
| or       |        |             |
| xor      |        |             |
| nand     |        |             |
| nor      |        |             |
| eqv      |        |             |
| andc     |        |             |
| orc      |        |             |

| Mnemonic | Opcode | Description |
|----------|--------|-------------|
| extsb    |        |             |
| extsh    |        |             |
| cntlzw   |        |             |
| rlwinm   |        |             |
| rlwnm    |        |             |
| rlwimi   |        |             |
| slw      |        |             |
| srw      |        |             |
| srawi    |        |             |
| sraw     |        |             |

# **3.3.2** Floating-Point Instructions

| Mnemonic    | Opcode | Description |
|-------------|--------|-------------|
| fadd        |        |             |
| fadds (*)   |        |             |
| fsub        |        |             |
| fsubs (*)   |        |             |
| fmul        |        |             |
| fmuls (*)   |        |             |
| fdiv        |        |             |
| fdivs       |        |             |
| fres (*)    |        |             |
| frsqrte     |        |             |
| fsel (*)    |        |             |
| fmadd       |        |             |
| fmadds (*)  |        |             |
| fmsub       |        |             |
| fmsubs (*)  |        |             |
| fnmadd      |        |             |
| fnmadds (*) |        |             |
| fnmsub      |        |             |
| fnmsubs (*) |        |             |
| frsp (*)    |        |             |
| fctiw       |        |             |
| fctiwz      |        |             |
| fcmpu       |        |             |
| fcmpo       |        |             |
| mffs        |        |             |
| mcrfs       |        |             |
| mtfsfi      |        |             |
| mtfsf       |        |             |
| mtfsb0      |        |             |
| mtfsb1      |        |             |
| fmr (*)     |        |             |
| fneg        |        |             |
| fabs        |        |             |
| fnabs       |        |             |

 $(\sp{*})$  - modified for paired singles

# 3.3.3 Integer Load and Store Instructions

| Mnemonic | Opcode | Description |
|----------|--------|-------------|
| lbz      |        |             |
| lbzx     |        |             |
| lbzu     |        |             |
| lbzux    |        |             |
| lhz      |        |             |
| lhzx     |        |             |
| lhzu     |        |             |
| lhzux    |        |             |
| lha      |        |             |
| lhax     |        |             |
| lhau     |        |             |
| lhaux    |        |             |
| lwz      |        |             |
| lwzx     |        |             |
| lwzu     |        |             |
| lwzux    |        |             |
| stb      |        |             |
| stbx     |        |             |
| stbu     |        |             |
| stbux    |        |             |
| sth      |        |             |
| sthx     |        |             |
| sthu     |        |             |
| sthux    |        |             |
| stw      |        |             |
| stwx     |        |             |
| stwu     |        |             |
| stwux    |        |             |
| lhbrx    |        |             |
| lwbrx    |        |             |
| sthbrx   |        |             |
| stwbrx   |        |             |
| lmw      |        |             |
| stmw     |        |             |
| lswi     |        |             |
| lswx     |        |             |
| stswi    |        |             |
| stswx    |        |             |

# 3.3.4 Floating-Point Load and Store Instructions

| Mnemonic | Opcode | Description |
|----------|--------|-------------|
| lfs      |        |             |
| lfsx     |        |             |
| lfsu     |        |             |
| lfsux    |        |             |
| lfd      |        |             |
| lfdx     |        |             |
| lfdu     |        |             |
| lfdux    |        |             |
| stfs     |        |             |
| stfsx    |        |             |
| stfsu    |        |             |
| stfsux   |        |             |
| stfd     |        |             |
| stfdx    |        |             |
| stfdu    |        |             |
| stfdux   |        |             |
| stfiwx   |        |             |

# 3.3.5 Branch Instructions

| Mnemonic | Opcode | Description        |
|----------|--------|--------------------|
| b        |        | unconditional Jump |
| ba       |        |                    |
| bl       |        | branch and link    |
| bla      |        |                    |
| bc       |        |                    |
| bca      |        |                    |
| bcl      |        |                    |
| bcla     |        |                    |
| bclr     |        |                    |
| bclrl    |        |                    |
| bcctr    |        |                    |
| bcctrl   |        |                    |

# 3.3.6 Condition Register Logical Instructions

| Mnemonic | Opcode | Description |
|----------|--------|-------------|
| crand    |        |             |
| cror     |        |             |
| crxor    |        |             |
| crnand   |        |             |
| crnor    |        |             |
| creqv    |        |             |
| crandc   |        |             |
| crorc    |        |             |
| mcrf     |        |             |

#### 3.3.7 Misc Instructions

| Mnemonic | Opcode | Description |
|----------|--------|-------------|
| twi      |        |             |
| tw       |        |             |
| sc       |        |             |
| rfi      |        |             |
| mtcrf    |        |             |
| mcrxr    |        |             |
| mfcr     |        |             |
| mtmsr    |        |             |
| mfmsr    |        |             |
| mtspr    |        |             |
| mfspr    |        |             |
| lwarx    |        |             |
| stwcx.   |        |             |
| sync     |        |             |
| mftb     |        |             |
| eieio    |        |             |
| isync    |        |             |
| dcbt     |        |             |
| dcbtst   |        |             |
| dcbz     |        |             |
| dcbz_l   |        |             |
| dcbst    |        |             |
| dcbf     |        |             |
| dcbi     |        |             |
| icbi     |        |             |
| eciwx    |        |             |
| ecowx    |        |             |
| mtsr     |        |             |
| mtsrin   |        |             |
| mfsr     |        |             |
| mfsrin   |        |             |
| tlbie    |        |             |
| tlbsync  |        |             |

# 3.4 additional Gekko Instructions

The Gekko has some additional (and some modified respectivly) instructions in its Paired-single mode which are useful for fast vector and matrix calculations and which are analog to Intel (and other x86 series) processors "streamed instructions", known as SSE. This extension is unique for the Gekko processor and used to calculate two single-precision numbers ("floats" in C) in one clock cycle. The floating-Point Registers of the Gekko (FPRs) are modified in the following way: one half is used for the first single number, and other for the second. These parts are named as "PS0" and "PS1". PS instructionset is divided into two parts: Load and Store Quantization and Paired-Single Arithmetic instructions. Load and Store Quantization instructions are used for fast integer-float type casting and some specific memory operations, using PS0 and PS1 parts of FPR. If you try to execute any PS instruction without HID2[PSE] and HID2[LSQE] bit set, an illegal instruction exception will be generated.

36

# 3.4.1 FPR format in paired-single mode

| 63   | 56   | 55   | 48   | 57   | 40   | 39   | 32   |
|------|------|------|------|------|------|------|------|
| 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 |
| 31   | 24   | 23   | 16   | 15   | 8    | 7    | 0    |
| 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 |

| bit(s) |   | description |
|--------|---|-------------|
| 32-63  | 1 | PS1         |
| 0-31   | 0 | PS0         |

# **3.4.2** Arithmetic Instructions

| Mnemonic   | Opcode                                 | Description                     |
|------------|----------------------------------------|---------------------------------|
| ps_abs     | 000100 DDDDD 00000 BBBBB 01000 01000 R | absolute value                  |
| ps_add     | 000100 DDDDD AAAAA BBBBB 00000 10101 R | add                             |
| ps_cmpo0   | 000100 DDD00 AAAAA BBBBB 00001 00000 0 | compare ordered high            |
| ps_cmpo1   | 000100 DDD00 AAAAA BBBBB 00011 00000 0 | compare ordered low             |
| ps_cmpu0   | 000100 DDD00 AAAAA BBBBB 00000 00000 0 | compare unordered high          |
| ps_cmpu1   | 000100 DDD00 AAAAA BBBBB 00010 00000 0 | compare unordered low           |
| ps_div     | 000100 DDDDD AAAAA BBBBB 00000 10010 R | divide                          |
| ps_merge00 | 000100 DDDDD AAAAA BBBBB 10000 10000 R | merge high                      |
| ps_merge01 | 000100 DDDDD AAAAA BBBBB 10001 10000 R | merge direct                    |
| ps_merge10 | 000100 DDDDD AAAAA BBBBB 10010 10000 R | merge swapped                   |
| ps_merge11 | 000100 DDDDD AAAAA BBBBB 10011 10000 R | merge low                       |
| ps_mr      | 000100 DDDDD 00000 BBBBB 00010 01000 R | move register                   |
| ps_nabs    | 000100 DDDDD 00000 BBBBB 00100 01000 R | negate absolute value           |
| ps_neg     | 000100 DDDDD 00000 BBBBB 00001 01000 R | negate                          |
| ps_res     | 000100 DDDDD 00000 BBBBB 00000 11000 R | reciprocal estimate             |
| ps_rsqrte  | 000100 DDDDD 00000 BBBBB 00000 11010 R | reciprocal square root estimate |
| ps_sub     | 000100 DDDDD AAAAA BBBBB 00000 10100 R | substract                       |
| ps_madd    | 000100 DDDDD AAAAA BBBBB CCCCC 11101 R | multiply and add                |
| ps_madds0  | 000100 DDDDD AAAAA BBBBB CCCCC 01110 R | multiply and add scalar high    |
| ps_madds1  | 000100 DDDDD AAAAA BBBBB CCCCC 01111 R | multiply and add scalar low     |
| ps_msub    | 000100 DDDDD AAAAA BBBBB CCCCC 11100 R | multiply and substract          |
| ps_mul     | 000100 DDDDD AAAAA 00000 CCCCC 11001 R | multiply                        |
| ps_muls0   | 000100 DDDDD AAAAA 00000 CCCCC 01100 R | multiply scalar high            |
| ps_muls1   | 000100 DDDDD AAAAA 00000 CCCCC 01101 R | multiply scalar low             |
| ps_nmadd   | 000100 DDDDD AAAAA BBBBB CCCCC 11111 R | negative multiply and add       |
| ps_nmsub   | 000100 DDDDD AAAAA BBBBB CCCCC 11110 R | negative multiply and substract |
| ps_sel     | 000100 DDDDD AAAAA BBBBB CCCCC 10111 R | select                          |
| ps_sum0    | 000100 DDDDD AAAAA BBBBB CCCCC 01010 R | vector sum high                 |
| ps_sum1    | 000100 DDDDD AAAAA BBBBB CCCCC 01011 R | vector sum low                  |

Note : R opcode field (comparsion of result with zero) is unused. (=0)

# **3.4.2.1 PS\_ABS** absolute value

Clear bit 0 of PS0[B] and copy result to PS0[D] Clear bit 0 of PS1[B] and copy result to PS1[D]

#### **3.4.2.2 PS\_ADD** add

```
PS0[D] = PS0[A] + PS0[B]
PS1[D] = PS1[A] + PS1[B]
```

#### **3.4.2.3 PS\_CMPO0** compare ordered high

#### 3.4.2.4 PS\_CMPO1 compare ordered low

#### **3.4.2.5 PS\_CMPU0** compare unordered high

#### **3.4.2.6** PS\_CMPU1 compare unordered low

```
"c" holds result of comparsion If (PS1[A] is NaN or PS1[B] is NaN) then c=0001b Else if (PS1[A] < PS1[B]) then c=1000b Else if (PS1[A] > PS1[B]) then c=0100b Else c=0010b Save result in D field of condition register (CR[D] = c). These four compare instructions looks same, because I omitted some unecessary FPSCR stuff.
```

#### **3.4.2.7 PS\_DIV** divide

```
PSO[D] = PSO[A] / PSO[B]
```

$$PS1[D] = PS1[A] / PS1[B]$$

### 3.4.2.8 PS\_MERGE00 merge high

```
PSO[D] = PSO[A]
```

PS1[D] = PS0[B]

### **3.4.2.9 PS\_MERGE01** merge direct

```
PSO[D] = PSO[A]
```

PS1[D] = PS1[B]

### 3.4.2.10 PS\_MERGE10 merge swapped

```
PS0[D] = PS1[A]
```

PS1[D] = PS0[B]

### **3.4.2.11 PS\_MERGE11** merge low

```
PS0[D] = PS1[A]
```

PS1[D] = PS1[B]

#### **3.4.2.12 PS\_MR** move register

```
PSO[D] = PSO[B]
```

PS1[D] = PS1[B]

### $\textbf{3.4.2.13} \quad \textbf{PS\_NABS} \quad \text{negate absolute value}$

```
Set bit 0 of PSO[B] and copy result to PSO[D]
```

Set bit 0 of PS1[B] and copy result to PS1[D]

#### 3.4.2.14 PS\_NEG negate

Invert bit 0 of PS0[B] and copy result to PS0[D]

Invert bit 0 of PS1[B] and copy result to PS1[D]

### 3.4.2.15 PS\_RES reciprocal estimate

```
PSO[D] = 1 / PSO[B]
```

PS1[D] = 1 / PS1[B]

#### **3.4.2.16 PS\_RSQRTE** reciprocal square root estimate

```
PSO[D] = 1 / SQRT(PSO[B])
```

PS1[D] = 1 / SQRT(PS1[B])

#### 3.4.2.17 PS\_SUB subtract

```
PSO[D] = PSO[A] - PSO[B]
```

$$PS1[D] = PS1[A] - PS1[B]$$

### **3.4.2.18 PS\_MADD** multiply-add

```
PSO[D] = PSO[A] * PSO[C] + PSO[B]
```

$$PS1[D] = PS1[A] * PS1[C] + PS1[B]$$

### **3.4.2.19** PS\_MADDS0 multiply-add scalar high

```
PSO[D] = PSO[A] * PSO[C] + PSO[B]
```

$$PS1[D] = PS1[A] * PS0[C] + PS1[B]$$

### 3.4.2.20 PS\_MADDS1 multiply-add scalar low

$$PSO[D] = PSO[A] * PS1[C] + PSO[B]$$

$$PS1[D] = PS1[A] * PS1[C] + PS1[B]$$

#### 3.4.2.21 PS\_MSUB multiply-subtract

$$PSO[D] = PSO[A] * PSO[C] - PSO[B]$$

$$PS1[D] = PS1[A] * PS1[C] - PS1[B]$$

#### 3.4.2.22 PS\_MUL multiply

```
PSO[D] = PSO[A] + PSO[C]
```

$$PS1[D] = PS1[A] + PS1[C]$$

#### **3.4.2.23 PS\_MULS0** multiply scalar high

```
PSO[D] = PSO[A] + PSO[C]
```

$$PS1[D] = PS1[A] + PS0[C]$$

#### 3.4.2.24 PS\_MULS1 multiply scalar low

```
PSO[D] = PSO[A] + PSI[C]
```

$$PS1[D] = PS1[A] + PS1[C]$$

### 3.4.2.25 PS\_NMADD negative multiply-add

$$PSO[D] = - (PSO[A] * PSO[C] + PSO[B])$$

$$PS1[D] = - (PS1[A] * PS1[C] + PS1[B])$$

#### **3.4.2.26 PS\_NMSUB** negative multiply-subtract

$$PSO[D] = - (PSO[A] * PSO[C] - PSO[B])$$

$$PS1[D] = - (PS1[A] * PS1[C] - PS1[B])$$

#### 3.4.2.27 PS\_SEL select

```
If (PS0[A] >= 0) then PS0[D] = PS0[C] else PS0[D] = PS0[B]
If (PS1[A] >= 0) then PS1[D] = PS1[C] else PS1[D] = PS1[B]
```

#### **3.4.2.28 PS\_SUM0** vector sum high

```
PS0[D] = PS0[A] + PS1[B]
PS1[D] = PS1[C]
```

#### 3.4.2.29 PS\_SUM1 vector sum low

PS0[D] = PS0[C] PS1[D] = PS0[A] + PS1[B]

#### 3.4.3 Load and Store Instructions

| Mnemonic | Opcode                                 | Description                                        |
|----------|----------------------------------------|----------------------------------------------------|
| psq_lx   | 000100 DDDDD AAAAA BBBBB WIII 000110 0 | Paired Singles Quantized Load indexed              |
| psq_lux  | 000100 DDDDD AAAAA BBBBB WIII 100110 0 | Paired Singles Quantized Load with Update indexed  |
| psq_stx  | 000100 SSSSS AAAAA BBBBB WIII 000111 0 | Paired Singles Quantized Store indexed             |
| psq_stux | 000100 SSSSS AAAAA BBBBB WIII 100111 0 | Paired Singles Quantized Store with Update indexed |

| Mnemonic | Opcode                               | Description                                |
|----------|--------------------------------------|--------------------------------------------|
| psq_l    | 111000 DDDDD AAAAA WIII ddddddddddd  | Paired Singles Quantized Load              |
| psq_lu   | 111001 DDDDD AAAAA WIII ddddddddddd  | Paired Singles Quantized Load with Update  |
| psq_st   | 111100 SSSSS AAAAA WIII ddddddddddd  | Paired Singles Quantized Store             |
| psq_stu  | 111101 SSSSS AAAAA WIII dddddddddddd | Paired Singles Quantized Store with Update |

- **3.4.3.1** psq\_lx Paired Singles Quantized Load indexed
- **3.4.3.2** psq\_lux Paired Singles Quantized Load with Update indexed
- **3.4.3.3** psq\_stx Paired Singles Quantized Store indexed
- 3.4.3.4 psq\_stux Paired Singles Quantized Store with Update indexed
- **3.4.3.5** psq\_l Paired Singles Quantized Load
- 3.4.3.6 psq\_lu Paired Singles Quantized Load with Update
- **3.4.3.7** psq\_st Paired Singles Quantized Store
- **3.4.3.8** psq\_stu Paired Singles Quantized Store with Update

### 3.4.4 modified floating point instructions

In paired single mode (HID2[PSE] = 1), all the double-precision floating point instructions are still valid, and execute as in non-paired single mode. All single-precision floating-point instructions (fadds, fsubs, fmuls, fdivs, fmadds, fmsubs, fnmsubs, fres, frsp) switch their meaning and operate on the ps0 operand.

| Mnemonic | Opcode | Description |
|----------|--------|-------------|
| fadds    |        |             |
| fsubs    |        |             |
| fmuls    |        |             |
| fdivs    |        |             |
| fmadds   |        |             |
| fmsubs   |        |             |
| fnmadds  |        |             |
| fnmsubs  |        |             |
| fres     |        |             |
| frsp     |        |             |
| fsel     |        |             |
| fmr      |        |             |

| 3.4.4.1 | fadds |
|---------|-------|
| J.T.T.1 | iauus |

**3.4.4.2** fsubs

3.4.4.3 fmuls

3.4.4.4 fdivs

3.4.4.5 fmadds

**3.4.4.6** fmsubs

**3.4.4.7** fnmadds

**3.4.4.8** fnmsubs

3.4.4.9 fres

3.4.4.10 frsp

3.4.4.11 fsel

3.4.4.12 fmr

# 3.5 Programming Tips and additional information

### 3.5.1 Machine State Register

to do

#### **3.5.2** Caches

to do

#### 3.5.3 branch unit

to flush branch unit's dynamic prediction logic, you must sequentially execute 3 branches

b label1
label1: b label2
label2: b label3
label3:

# 4 Memory Map

#### 4.1 Overview

| start      | end        | size | description                                    |
|------------|------------|------|------------------------------------------------|
| 0x00000000 | 0x017fffff | 24MB | Physical address of the RAM                    |
| 0x80000000 | 0x817fffff | 24MB | Logical address of the RAM, cached             |
| 0xC0000000 | 0xC17fffff | 24MB | Logical address of the RAM, not cached         |
| 0xc8000000 |            | 2MB  | Embedded Framebuffer (EFB)                     |
| 0xCC000000 |            |      | Hardware registers                             |
| 0xCC000000 |            |      | CP - Command Processor                         |
| 0xCC001000 |            |      | PE - Pixel Engine                              |
| 0xCC002000 |            |      | VI - Video Interface                           |
| 0xCC003000 |            |      | PI - Processor Interface (Interrupt Interface) |
| 0xCC004000 |            |      | MI - Memory Interface                          |
| 0xCC005000 |            |      | AI - Audio Interface                           |
| 0xCC006000 |            |      | DI - DVD Interface                             |
| 0xCC006400 |            |      | SI - Serial Interface                          |
| 0xCC006800 |            |      | EXI - External Interface                       |
| 0xCC006C00 |            |      | Streaming Interface                            |
| 0xCC008000 |            |      | GX FIFO (Graphic display lists)                |
| 0xe0000000 | 0xe0003fff | 16k  | L2 Cache                                       |
| 0xfff00000 |            | 1MB  | IPL (mapped here at bootup)                    |

### 4.2 RAM usage

Variables that are marked as B are changed by bootrom or IPL. Variables marked as A are changed lately in apploader when a game is booting. Variables, which are marked as O are changed after an OSInit call. Remember that the IPL also has a hard-linked Dolphin OS inside, so those variables that are marked as O are also changed in the IPL.

#### 4.2.1 Dolphin-OS globals

In PowerPC architectures the lower 256 bytes of main memory are reserved for internal OS use. This map describes all known OS low memory variables. Dolphin OS accesses low memory as 0x80000000 + offset (cached).

#### **4.2.1.1** Boot Info

#### 4.2.1.1.1 DVD Disc ID

| start      | size |   | description           |
|------------|------|---|-----------------------|
| 0x80000000 | 0x04 | В | Gamecode              |
| 0x80000004 | 0x02 | В | Company               |
| 0x80000006 | 0x01 | В | Disk ID               |
| 0x80000007 | 0x01 | В | Version               |
| 0x80000008 | 0x01 | В | Streaming             |
|            |      |   | 0 audio streaming off |
|            |      |   | 1 audio streaming on  |
| 0x80000009 | 0x01 | В | StreamBufSize         |
| 0x8000000a | 0x0f |   | padding zeros         |

| start      | size |   | description                        |                             |  |  |
|------------|------|---|------------------------------------|-----------------------------|--|--|
| 0x8000001c |      | Α | DVD magic word                     |                             |  |  |
|            |      |   | 0xc2339f3d                         | Nintendo Game Disc          |  |  |
| 0x80000020 | 4    | Α | Magic word (ho                     | ow did the console boot?)   |  |  |
|            |      |   | value                              | description                 |  |  |
|            |      |   | 0x0D15EA5E                         | normal boot                 |  |  |
|            |      |   | 0xE5207C22                         | booted from jtag            |  |  |
| 0x80000024 | 4    | Α | Version (usually                   | y set to 1 by apploader)    |  |  |
| 0x80000028 | 4    | В | physical Memor                     | ry Size                     |  |  |
|            |      |   | 0x01800000                         | 24MB on retail console      |  |  |
| 0x8000002C | 4    | В | Console type                       |                             |  |  |
|            |      |   | value                              | Description                 |  |  |
|            |      |   | 0x00000001                         | Retail1                     |  |  |
|            |      |   | 0x00000002                         | HW2 production board        |  |  |
|            |      |   | 0x00000003                         | The latest production board |  |  |
|            |      |   | 0x0000004                          | Reserved                    |  |  |
|            |      |   | 0x1XXXXXXX                         | Devkits                     |  |  |
|            |      |   | 0x10000000                         | MAC emulator                |  |  |
|            |      |   | 0x10000001                         | PC Emulator                 |  |  |
|            |      |   | 0x10000002                         | 'Arthur'                    |  |  |
|            |      |   | 0x10000003                         | 'Minnow'                    |  |  |
|            |      |   | 0x10000004                         | 1st Devkit HW               |  |  |
|            |      |   | 0x10000005                         | 2nd Devkit HW               |  |  |
|            |      |   | 0x10000006                         | latest Devkit HW            |  |  |
|            |      |   | 0x10000007                         | Reserved                    |  |  |
|            |      |   | 0x2XXXXXXX                         | TDEV-kits                   |  |  |
|            |      |   | 0x20000005                         | HW2 TDEV system             |  |  |
|            |      |   | 0x20000006                         | The latest TDEV system      |  |  |
|            |      |   | 0x20000007                         | Reserved                    |  |  |
| 0x80000030 | 4    | О | ArenaLo (==0x                      |                             |  |  |
| 0x80000034 | 4    | О | ArenaHi (==0x                      |                             |  |  |
| 0x80000038 | 4    |   | FST Location in ram (==0x817fe8c0) |                             |  |  |
| 0x8000003C | 4    |   | FST Max Length (==0x00000024)      |                             |  |  |

# **4.2.1.1.2** system Info

### 4.2.1.2 Debugger info

| start      | size |   | description                                                      |
|------------|------|---|------------------------------------------------------------------|
| 0x80000040 | 4    | A | flag for "debugger present" (used byOSIsDebuggerPresent)         |
| 0x80000044 | 4    | A | Debugger Exception mask Bitmap, set to 0 at sdk lib start        |
| 0x80000048 | 4    | A | Exception hook destination (physical address)                    |
| 0x8000004c | 4    | Α | Temp for LR, Return from exception address (to return from hook) |
| 0x80000050 | 16   |   | padding zeros                                                    |

#### **4.2.1.3 Debugger Hook** .>80000060 38 a0 00 40 li r5,0x40 r5=0x40 .>80000064 7c 68 02 a6 mflr r3 r3=lr .>80000068 90 65 00 0c stw r3,0x0c(r5) .>8000006c 80 65 00 08 lwz r3,0x08(r5) .>80000070 64 63 80 00 oris r3,r3,0x8000 .>80000074 7c 68 03 a6 mtlr r3 lr=r3

.>80000078 38 60 00 30 li r3,0x30 .>8000007c 7c 60 01 24 mtmsr r3 .>80000080 4e 80 00 20 blr

msr=0x30

jump (lr)

# 4.2.1.4 Dolphin OS Globals

| start      | end        | size |   | description                                                                |  |  |
|------------|------------|------|---|----------------------------------------------------------------------------|--|--|
| 0x80000084 | 0x800000bf |      |   | padding zeros                                                              |  |  |
| 0x800000c0 |            | 4    | О | Current OS context (physical address)                                      |  |  |
| 0x800000C4 |            | 4    | О | Previous OS interrupt mask                                                 |  |  |
| 0x800000C8 |            | 4    | О | current OS interrupt mask                                                  |  |  |
| 0x800000CC |            |      |   | TV Mode                                                                    |  |  |
|            |            |      |   | value description                                                          |  |  |
|            |            |      |   | 0 ntsc                                                                     |  |  |
|            |            |      |   | 1 pal                                                                      |  |  |
|            |            |      |   | 2 debug                                                                    |  |  |
|            |            |      |   | 3 debug pal                                                                |  |  |
|            |            |      |   | 4 mpal                                                                     |  |  |
|            |            |      |   | 5 pal 60                                                                   |  |  |
| 0x800000d0 |            |      | В | ARAM size (internal+expansion) in bytes. set by ARAM driver, usually 16mb. |  |  |
| 0x800000D4 |            |      | О | current OS Context (logical address)                                       |  |  |
| 0x800000D8 |            |      | О | default OS thread (logical address)                                        |  |  |
| 0x800000Dc |            |      | О | active Thread queue, head thread (logical address)                         |  |  |
| 0x800000e0 |            |      | О | active Thread queue, tail thread (logical address)                         |  |  |
| 0x800000e4 |            |      | О | Current OS thread                                                          |  |  |
| 0x800000e8 |            |      | A | Debug monitor size (in bytes)                                              |  |  |
| 0x800000ec |            |      | A | Debug monitor location (usually at the top of main memory)                 |  |  |
| 0x800000F0 |            |      | A | Console Simulated Memory Size, 0x01800000 (usually same as physical memor  |  |  |
| 0x800000F4 |            |      | A | DVD BI2 location in main memory (size of BI2 is 0x2000 bytes)              |  |  |
| 0x800000F8 |            |      |   | Bus Clock Speed, 162 MHz (=0x09a7ec80, 162000000)                          |  |  |
| 0x800000FC |            |      |   | CPU Clock Speed, 486 MHz (=0x1cf7c580, 486000000)                          |  |  |

### **4.2.2** Exception Handlers

| start      | end        | size | description                   |
|------------|------------|------|-------------------------------|
| 0x80000100 |            |      | System Reset Interrupt        |
| 0x80000200 |            |      | Machine Check Interrupt       |
| 0x80000300 |            |      | DSI Interrupt                 |
| 0x80000400 |            |      | ISI Interrupt                 |
| 0x80000500 |            |      | External Interrupt            |
| 0x80000600 |            |      | Alignment Interrupt           |
| 0x80000700 |            |      | Program Interrupt             |
| 0x80000800 |            |      | FP unavailable Interrupt      |
| 0x80000900 |            |      | Decrementer Interrupt         |
| 0x80000C00 |            |      | System Call Interrupt         |
| 0x80000d00 |            |      | Trace Interrupt               |
| 0x80000f00 |            |      | Performance Monitor Interrupt |
| 0x80001300 |            |      | IABR Interrupt                |
| 0x80001400 |            |      | reserved                      |
| 0x80001700 |            |      | Thermal Interrupt             |
| 0x80001800 | 0x80002fff |      | unused/reserved (*)           |

(\*) note: psoload v2 uses this area to stay resident in memory, it is unused by Dolphin-OS

### 4.2.3 Dolphin-OS globals

| start      | end | size |   | Description                                      |                 |                                 |
|------------|-----|------|---|--------------------------------------------------|-----------------|---------------------------------|
| 0x80003000 |     |      |   | exception handler vectors (from sdk libs & ipl)  |                 |                                 |
|            |     |      |   |                                                  |                 |                                 |
| 0x8000303c |     | 4    |   | padding/unused                                   |                 |                                 |
| 0x80003040 |     |      |   | external inter                                   | rrupt handler v | vectors (from sdk libs & ipl)   |
|            |     |      |   |                                                  |                 |                                 |
| 0x800030a4 |     |      |   | padding/unus                                     | sed             |                                 |
| 0x800030c0 |     | 4    |   | ?                                                |                 |                                 |
| 0x800030c4 |     | 4    |   | ?                                                |                 |                                 |
| 0x800030c8 |     | 4    |   | First Module                                     | Header Point    | er in Module Queue              |
| 0x800030cc |     | 4    |   | Last Module                                      | Header Point    | er in Module Queue              |
| 0x800030d0 |     | 4    |   | Module Strin                                     | ng Table Point  | er                              |
| 0x800030d4 |     | 4    | Α |                                                  |                 | t/data sections), in bytes (*1) |
| 0x800030d8 |     | 4    | В | OS system time (set, when console is powered up) |                 |                                 |
| 0x800030dc |     | 4    |   | ?                                                |                 |                                 |
| 0x800030E0 |     | 4    |   | ? (6=production pads ?)                          |                 |                                 |
| 0x800030e4 |     | 2    |   | ?                                                |                 |                                 |
| 0x800030e6 |     | 1    |   | ?                                                |                 |                                 |
| 0x800030e7 |     | 1    |   | ?                                                |                 |                                 |
| 0x800030e8 |     | 1    | О | set by OsInit() (debugger stuff?)                |                 |                                 |
| 0x800030e9 |     | 1    | О | set by OsInit() (debugger stuff?)                |                 |                                 |
| 0x800030ea |     | 2    |   | ?                                                |                 |                                 |
| 0x800030ec |     | 4    |   | ?                                                |                 |                                 |
| 0x800030F0 |     | 2    |   | ?                                                |                 |                                 |
| 0x800030F2 |     | 1    |   | Boot status                                      |                 |                                 |
|            |     |      |   |                                                  | escription      |                                 |
|            |     |      |   |                                                  | first boot      |                                 |
|            |     |      |   |                                                  | eady booted     |                                 |
| 0x800030F3 |     | 1    |   | ?                                                |                 |                                 |
| 0x800030F4 |     | 4    |   | ?                                                |                 |                                 |
| 0x800030F8 |     | 4    |   | ?                                                |                 |                                 |
| 0x800030Fc |     | 4    |   | ?                                                |                 |                                 |

(\*1) If FST on DVD is placed after DOL, then BB2 FSTLength is added to this value.

#### 4.2.4 User Memory

#### 4.2.4.1 user program area

| start      | end | size | description                               |
|------------|-----|------|-------------------------------------------|
| 0x80003100 |     |      | Start of code (usually)                   |
| 0x80003140 |     |      | Entry point (early SDK v1.0 applications) |
| 0x81200000 |     |      | Load Address of the Apploader             |
| 0x81300000 |     |      | Load Address of Bootrom/IPL               |

note: of course the entrypoint of an application can be anything, those listed here are just some typical examples. Retail game start dol-files are usually located below the apploader.

**4.2.4.2** stack area

| start | end | size | description     |
|-------|-----|------|-----------------|
|       |     |      | Bottom of Stack |
|       |     |      | Top of Stack    |

**4.2.4.3** heap area

| start      | end | size |   | description              |
|------------|-----|------|---|--------------------------|
| ?          |     |      | О | ArenaLo - Bottom of Heap |
| 0x817fe8c0 |     |      | О | ArenaHi - Top of Heap    |

note: the address of ArenaHi is not a constant, but should be set to the bottom of the FST which is read from the DVD so its size depends on the application. the value given here is just an example.

**4.2.4.4** 'high memory'

| start      | end | size |   | description              |
|------------|-----|------|---|--------------------------|
| 0x817fe8c0 |     | 24   | О | FST (used by Dolphin-OS) |
| 0x817fffff |     |      |   | Memory Top               |

# 5 Hardware Registers

# **5.1 CP - Command Processor**

| Registerblock | Ba | se | Siz | e of Registerblock   | common access size |
|---------------|----|----|-----|----------------------|--------------------|
| 0xcc0000      | 00 |    |     | 0x80                 | 2                  |
| 0xCC000000    | 2  | R  | /W  | SR - Status Register | r                  |

| 15 | 8 | 7 | 0 |
|----|---|---|---|
|    |   |   |   |

| bit(s) | description                                           |
|--------|-------------------------------------------------------|
| 5-15   | unused/reserved                                       |
| 4      | BP (breakpoint?) interrupt                            |
| 3      | GP is idle for commands (1: idle)                     |
| 2      | GP is idle for reading (1: idle)                      |
| 1      | gx fifo underflow (ptr <lo th="" watermark)<=""></lo> |
| 0      | gx fifo overflow (ptr>hi watermark)                   |

| 0xCC000002 | 2 | R/W | CR - Control Register |
|------------|---|-----|-----------------------|
|------------|---|-----|-----------------------|

| 15 | 8 | 7  | 0    |
|----|---|----|------|
|    |   | bl | .mig |

| bit(s) |   | description                                                |
|--------|---|------------------------------------------------------------|
| 6-15   |   | unused/reserved                                            |
| 5      | b | bp enable                                                  |
| 4      | 1 | gp link enable (enable for linking of cp/pe FIFO)          |
| 3      |   | FIFO underflow irq enable (?)                              |
| 2      | m | FIFO overflow irq enable? / cp irq (clear to acknowledge)? |
| 1      | i | cp irq enable (?) (write 1 to clear bp irq?)               |
| 0      | g | gp FIFO read enable                                        |

0xCC000004 2 W Clear Register

| bit(s) | description                     |
|--------|---------------------------------|
| 2-15   | unused/reserved                 |
| 1      | write 1 to clear FIFO underflow |
| 0      | write 1 to clear FIFO overflow  |

| 0xCC00000E | 2 | R/W | token register |
|------------|---|-----|----------------|

|  | 0xCC000010 | 2 | R/W | bounding box - left |
|--|------------|---|-----|---------------------|
|--|------------|---|-----|---------------------|

| 0xCC000012 | 2 | R/W | bounding box - right |
|------------|---|-----|----------------------|

| 0xCC000014 | 2 | R/W | bounding box - top |
|------------|---|-----|--------------------|

| 0xCC000016 | 2 | R/W | bounding box - bottom |
|------------|---|-----|-----------------------|
|------------|---|-----|-----------------------|

| 2 | R/W     | cp FIFO base lo                           |
|---|---------|-------------------------------------------|
|   |         |                                           |
| 2 | R/W     | cp FIFO base hi                           |
|   |         |                                           |
| 2 | R/W     | cp FIFO end lo                            |
|   |         |                                           |
| 2 | R/W     | cp FIFO end hi                            |
|   |         |                                           |
| 2 | R/W     | cp FIFO high watermark lo                 |
|   |         |                                           |
| 2 | R/W     | cp FIFO high watermark hi                 |
|   |         |                                           |
| 2 | R/W     | cp FIFO low watermark lo                  |
|   |         |                                           |
| 2 | R/W     | cp FIFO low watermark hi                  |
|   | 2 2 2 2 | 2 R/W |

the low and high watermark control the assertion of the CP interrupt

| 0xCC000030 | 2 | R/W | cp FIFO read/write distance lo |
|------------|---|-----|--------------------------------|
|            |   |     |                                |
| 0xCC000032 | 2 | R/W | cp FIFO read/write distance hi |
|            |   |     |                                |
| 0xCC000034 | 2 | R/W | cp FIFO write pointer lo       |
|            |   |     |                                |
| 0xCC000036 | 2 | R/W | cp FIFO write pointer hi       |
|            |   |     |                                |
| 0xCC000038 | 2 | R/W | cp FIFO read pointer lo        |
|            |   |     |                                |
| 0xCC00003a | 2 | R/W | cp FIFO read pointer hi        |
|            |   |     |                                |
| 0xCC00003c | 2 | R/W | cp FIFO bp lo                  |
|            |   |     |                                |
| 0xCC00003e | 2 | R/W | cp FIFO bp hi                  |

### 5.1.1 Token register

You can insert this dirty marker, at the end of command list, by this way :

```
*(u32 *)GXFIFO = 0x4800XXXX
*(u32 *)GXFIFO = 0x4700XXXX
```

Where XXXX is the token value. When command processor reaches this stage, it writes XXXX into PE token register (see above), and then raise "PE TOKEN" interrupt. Thus you can monitor the completion of your drawing tasks.

note: its probably a good idea to send a BP 'drawing complete' command (0x45000002) before the in-

sertion of the token.

# **5.2 PE - Pixel Engine**

| Registerblock Base |         |    | Size of Registerblock |                 |  | common access size |
|--------------------|---------|----|-----------------------|-----------------|--|--------------------|
| 0xcc0010           | 2001000 |    |                       | 0x100           |  | 2                  |
| 0001000            | 2       | DΛ | 17                    | 7 configuration |  |                    |

| 0xcc001000 | 2 | R/W | Z configuration |
|------------|---|-----|-----------------|
|------------|---|-----|-----------------|

| 15 | 8 | 7 | 0 |
|----|---|---|---|
|    |   |   |   |

| bit(s) | description         |  |
|--------|---------------------|--|
| 4      | Z update enable     |  |
| 1-3    | function            |  |
| 0      | z-comperator enable |  |

| 0xcc001002 | 2 | R/W | Alpha configuration |
|------------|---|-----|---------------------|

| 15 | 8 | 7 | 0 |
|----|---|---|---|
|    |   |   |   |

| bit(s) | description                        |
|--------|------------------------------------|
| 12-15  | blend operator (?)                 |
| 11     | substractive / additive toggle (?) |
| 8-10   | source                             |
| 5-7    | destination                        |
| 4      | alpha update enable                |
| 3      | color update enable                |
| 2      | dither enable (?)                  |
| 1      | arithmetic blending enable (?)     |
| 0      | boolean blending enable (?)        |

| 0xcc001004   2   R/W   destination alpha |
|------------------------------------------|
|------------------------------------------|

| 15 | 8 | 7 | 0 |
|----|---|---|---|
|    |   |   |   |

| bit(s) | description |
|--------|-------------|
| 8      | enable      |
| 0-7    | alpha       |

| 0xcc001006 | 2. | R/W | Alpha Mode |
|------------|----|-----|------------|

| 15 | 8 | 7 | 0 |
|----|---|---|---|
|    |   |   |   |

| bit(s) | description |
|--------|-------------|
| 8-15   | mode        |
| 0-7    | threshold   |

| 0xcc001008 | 2 | R/W | Alpha Read (?) |
|------------|---|-----|----------------|
|------------|---|-----|----------------|

| 15 | 8 | 7 | 0 |
|----|---|---|---|
|    |   |   |   |

| bit(s) | description |
|--------|-------------|
|        | mode        |
| 2      | ?           |

| 0xcc00100a 2 R/W Interrupt Status Register |
|--------------------------------------------|
|--------------------------------------------|

| 15 | 8 | 7 | 0 |
|----|---|---|---|
|    |   |   |   |

| bit(s) | description                    |
|--------|--------------------------------|
| 3      | PE Finish (set to acknowledge) |
| 2      | PE Token (set to acknowledge)  |
| 1      | PE Finish enable (?)           |
| 0      | PE Token enable (?)            |

| 0xcc00100e | 2 | R/W | PE Token? |
|------------|---|-----|-----------|
|------------|---|-----|-----------|

| 15   | 8    | 7    | 0    |
|------|------|------|------|
| tttt | tttt | tttt | tttt |

| bit(s) |   | description                                      |  |
|--------|---|--------------------------------------------------|--|
| 0-15   | t | PE Token (asserted from last PE Token Interrupt) |  |

### 5.3 VI - Video Interface

| Registerblock | Bas | e S | Size of Registerblock | common access size |
|---------------|-----|-----|-----------------------|--------------------|
| 0xcc0020      | 00  |     | 0x100                 | 4                  |
| 0~~~~000      | 2   | D/V | W VTP Vertical Tim    | ing Pagister       |

| 0xCC002000 | 2 | R/W | VTR - Vertical Timing Register |
|------------|---|-----|--------------------------------|
|------------|---|-----|--------------------------------|

| l | 15   | 8    | 7    | 0    |
|---|------|------|------|------|
|   | 00aa | aaaa | aaaa | eeee |

| bit(s) |   | description                                                      |
|--------|---|------------------------------------------------------------------|
| 4-13   | a | ACV - Active Video (in full Lines) ? other source says halflines |
| 0-3    | e | EQU - Equalization pulse in half lines                           |

pal50/pal60/ntsc: 0x11F5, 0x0F06, 0x0F06

The value in ACV is double buffered

| 0xCC0 | 02002 | 2  | R/W   | DC  | R - Display Configuration Register |
|-------|-------|----|-------|-----|------------------------------------|
|       |       |    |       |     |                                    |
| 15    | 8     | 7  |       | 0   |                                    |
| 0000  | qq00  | 11 | .tt d | ire |                                    |

| bit(s) |   | description                                                                       |
|--------|---|-----------------------------------------------------------------------------------|
|        | p | FMT - Current Video Format                                                        |
|        |   |                                                                                   |
|        |   | 0 NTSC                                                                            |
|        |   | 1 PAL                                                                             |
|        |   | 2 MPAL                                                                            |
|        |   | 3 Debug                                                                           |
|        | 1 | LE1 - Enables Display Latch 1                                                     |
|        |   |                                                                                   |
|        |   | 0 Off                                                                             |
|        |   | 1 On for 1 field                                                                  |
|        |   | 2 On for 2 fields                                                                 |
|        |   | 3 Always On                                                                       |
|        | t | LE0 - Enables Display Latch 0                                                     |
|        |   |                                                                                   |
|        |   | 0 Off                                                                             |
|        |   | 1 On for 1 field                                                                  |
|        |   | 2 On for 2 fields                                                                 |
|        |   | 3   Always On                                                                     |
|        | d | DLR - Selects 3D Display Mode                                                     |
|        | i | NIN - Interlace Selector                                                          |
|        |   |                                                                                   |
|        |   | 0 Interlaced                                                                      |
|        |   | 1 Non-Interlaced, top field drawn at field rate and bottom field is not displayed |
|        | r | RST - Reset - Clears all data requests and puts VI into its idle state.           |
|        | e | ENB - Enable - Enables video timing generation and data request.                  |

pal50/pal60/ntsc: 0x0101, 0x0001, 0x0001

| l | 0xCC002004 | 4 | R/W | HTR0 - Horizontal Timing 0 |
|---|------------|---|-----|----------------------------|
|   |            |   |     |                            |

| 31   | 24   | 23   | 16   | 15   | 8    | 7    | 0    |
|------|------|------|------|------|------|------|------|
| Osss | SSSS | 0eee | eeee | 0000 | w000 | WWWW | WWWW |

| bit(s) |   | description                                      |
|--------|---|--------------------------------------------------|
|        | S | HCS - Horizontal Sync Start to Color Burst Start |
|        | e | HCE - Horizontal Sync Start to Color Burst End   |
|        | W | HLW - Halfline Width (W*16 = Width (720))        |

pal50/pal60/ntsc: 0x4B6A01B0, 0x476901AD, 0x476901AD

53

| ı | 0xCC002008 | 4 | R/W | HTR1 - Horizontal Timing 1 |
|---|------------|---|-----|----------------------------|
|   |            |   |     |                            |

| 31   | 24   | 23   | 16   | 15   | 8    | 7    | 0    |
|------|------|------|------|------|------|------|------|
| 0000 | Osss | SSSS | ssse | eeee | eeee | еммм | WWWW |

| bit(s) |   | description                                         |
|--------|---|-----------------------------------------------------|
|        | s | HBS - Half line to horizontal blanking start        |
|        | e | HBE - Horizontal Sync Start to horizontal blank end |
|        | w | HSY - Horizontal Sync Width                         |

pal50/pal60/ntsc: 0x02F85640, 0x02EA5140, 0x02EA5140

Setting bit 0 seems to blackout the screen. (Similar to ViBlack?)

| 0xCC00200C | 4 | R/W | VTO - Odd Field Vertical Timing Register |
|------------|---|-----|------------------------------------------|

| 31 | 24 | 23   | 16   | 15 | 8  | 7    | 0    |
|----|----|------|------|----|----|------|------|
|    | ss | SSSS | SSSS |    | rr | rrrr | rrrr |

| bit(s) |   | description                       |
|--------|---|-----------------------------------|
| 16-25  | S | PSB - Post blanking in half lines |
| 0-9    | r | PRB - Pre-blanking in half lines  |

pal50/pal60/ntsc: 0x00010023, 0x00030018, 0x00030018

This register sets up the pre-blanking and post-blanking interval of odd fields, PRB and PSB are double-buffered.

| 31 | 24 | 23   | 16   | 15 | 8  | 7    | 0    |
|----|----|------|------|----|----|------|------|
|    | ss | SSSS | SSSS |    | rr | rrrr | rrrr |

|   | bit(s) |   | description                      |
|---|--------|---|----------------------------------|
|   | 16-25  | S | PSB - post-blanking in halflines |
| Γ | 0-9    | r | PRB - pre-blanking in halflines  |

pal50/pal60/ntsc: 0x00000024, 0x00020019, 0x00020019

This register sets up the pre-blanking and post-blanking intervals of even fields. PRB and PSB are double-buffered.

54

|  | 0xCC002014 | 4 | R/W | BBEI - Odd Field Burst Blanking Interval Register |
|--|------------|---|-----|---------------------------------------------------|
|--|------------|---|-----|---------------------------------------------------|

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description                                              |
|--------|----------------------------------------------------------|
| 21-31  | BE3 - Field 3 start to burst blanking end in halflines   |
| 16-20  | BS3 - Field 3 start to burst blanking start in halflines |
| 5-15   | BE1 - Field 1 start to burst blanking end in halflines   |
| 0-4    | BS1 - Field 1 start to burst blanking start in halflines |

pal50/pal60/ntsc: 0x4D2B4D6D, 0x410C410C, 0x410C410C

|   | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| ĺ |    |    |    |    |    |   |   |   |

| bit(s) | description                                              |
|--------|----------------------------------------------------------|
| 21-31  | BE4 - Field 4 start to burst blanking end in halflines   |
| 16-20  | BS4 - Field 4 start to burst blanking start in halflines |
| 5-15   | BE2 - Field 2 start to burst blanking end in halflines   |
| 0-4    | BS2 - Field 2 start to burst blanking start in halflines |

pal50/pal60/ntsc: 0x4D8A4D4C, 0x40ED40ED, 0x40ED40ED

| 31   | 24   | 23   | 16   | 15   | 8    | 7    | 0    |
|------|------|------|------|------|------|------|------|
| ууу? | ZZZZ | aaaa | aaaa | aaaa | aaax | XXXX | XXXX |

| bit(s) |   | description                                                                                       |
|--------|---|---------------------------------------------------------------------------------------------------|
| 29-31  | у | always zero (maybe some write only control register stuff?, setting bit 31 clears bits 31-28 (?)) |
| 28     |   | page offset bit (*1)                                                                              |
| 24-27  | Z | XOF - Horizontal Offset of the left-most pixel within the first word of the fetched picture.      |
| 9-23   | a | FBB - bit 23 - bit 9 of XFB Address (*2)                                                          |
| 0-8    | X | unused (?)                                                                                        |

pal50/pal60/ntsc: 0x00435A4E, 0x00435A4E, 0x00435A4E

This register specifies the display origin of the top field of a picture in 2D mode or for the left picture in 3D mode (\*1) when this bit is set, the framebuffer address is calculated as (address>>5)

(\*2) if bit 28 is cleared, highest possible Address: 0x80fffe00 (set register to 0x00fffe00) (aligned to 9bit)

|   | 0xCC002020 | 4        | R/W | TFBR - Top Field Base Register (R) (Only valid in 3D Mode) |
|---|------------|----------|-----|------------------------------------------------------------|
| ľ |            | <u> </u> |     |                                                            |

| 31   | 24   | 23   | 16   | 15   | 8    | 7    | 0    |
|------|------|------|------|------|------|------|------|
| 0000 | 0000 | ffff | ffff | ffff | fff0 | 0000 | 0000 |

| bit(s) |   | description                                   |
|--------|---|-----------------------------------------------|
|        | f | FBB - External Memory Address of frame buffer |

pal50/pal60/ntsc: 0x00000000, 0x00000000, 0x00000000

This register specifies the base address of the top field for the right picture in 3D mode.

0xCC002024 | 4 | R/W | BFBL - Bottom Field Base Register (L) (External Framebuffer Half 2)

| 31   | 24   | 23   | 16   | 15   | 8    | 7    | 0    |
|------|------|------|------|------|------|------|------|
| УУУУ | УУУУ | aaaa | aaaa | aaaa | aaax | XXXX | XXXX |

| bit(s) |   | description                                                 |
|--------|---|-------------------------------------------------------------|
|        | у | always zero (maybe some write-only control register stuff?) |
| 28     |   | page offset bit (*1)                                        |
|        | a | FBB - bit 23 - bit 9 of XFB Address                         |
|        | X | unused (?)                                                  |

pal50/pal60/ntsc: 0x00435A4E, 0x00435A4E, 0x00435A4E

This register specifies the display origin of the bottom field of a picture in 2D mode or for the left picture in 3D mode

(\*1) when this bit is set, the framebuffer address is calculated as (address>5)

BFBR - Bottom Field Base Register (R) (Only valid in 3D Mode) 0xCC002028 R/W

| 31   | 24   | 23   | 16   | 15   | 8    | 7    | 0    |
|------|------|------|------|------|------|------|------|
| 0000 | 0000 | ffff | ffff | ffff | fff0 | 0000 | 0000 |

| bit(s) |   | description                                   |
|--------|---|-----------------------------------------------|
|        | f | FBB - External Memory Address of frame buffer |

pal50/pal60/ntsc: 0x00000000, 0x00000000, 0x00000000

specifies the base address of the bottom field for the right picture in 3D mode.

0xCC00202C 2 R DPV - current vertical Position

| ĺ | 15   | 8    | 7    | 0    |
|---|------|------|------|------|
|   | 0000 | 0vvv | VVVV | VVVV |

| bit(s) |   | description                                    |
|--------|---|------------------------------------------------|
|        | V | VCT - current vertical Position of Raster beam |

pal50/pal60/ntsc: 0x013C, 0x0005, 0x0000

| 0xCC00202E |      | 2  | R  | DPH - | current horizontal Position (?) |
|------------|------|----|----|-------|---------------------------------|
|            |      |    |    |       |                                 |
| 15         | 8    | 7  |    | 0     |                                 |
| 0000       | 0hhh | hh | hh | hhhh  |                                 |

| ĺ | bit(s) |   | description                                          |
|---|--------|---|------------------------------------------------------|
| ĺ |        | h | HCT - current horizontal Position of Raster beam (?) |

pal50/pal60/ntsc: 0x0144, 0x0176, 0x0000

The Horizontal Count is in pixels and runs from 1 to # pixels per line. It is reset to 1 at the beginning of every line.

The Vertical Count is in lines (on a frame basis) and runs from 1 to # lines per frame. It is 1 at the beginning of pre-equalization. This is a frame line count. So for example: for NTSC vcount=264 is the first (full) line in the second field and vcount=525 is the last line in the frame (fields being numbered 1-4). For non-interlaced modes vcount is on a field-by-field basis (for NTSC vcount ranges from 1-263).

This counting scheme applies the Display Position, Display Interrupt, and Display Latch registers.

| 0xCC002030 | 4 | R/W | DI0 - Display Interrupt 0 |
|------------|---|-----|---------------------------|
|            |   |     | _                         |

| 31   | 24   | 23   | 16   | 15   | 8    | 7    | 0    |
|------|------|------|------|------|------|------|------|
| i00e | 00vv | VVVV | VVVV | 0000 | 00hh | hhhh | hhhh |

| bit(s) |   | description                                        |
|--------|---|----------------------------------------------------|
| 31     | i | INT - Interrupt Status (1=Active) (Write to clear) |
| 28     | e | ENB - Interrupt Enable Bit                         |
| 16-25  | v | VCT - Vertical Position                            |
| 0-9    | h | HCT - Horizontal Position                          |

pal50/pal60/ntsc: 0x113901B1, 0x110701AE, 0x110701AE

There are a total of four display interrupt registers (0-3). They are used to generate interrupts to the main processor at different positions within a field. Each register has a separate enable bit. The interrupt is cleared by writing a zero to the status flag (INT).

| 0xCC002 | 2034 | 4 | R/W | DI1 - Display Interrupt 1 |
|---------|------|---|-----|---------------------------|
|---------|------|---|-----|---------------------------|

pal50/pal60/ntsc: 0x10010001, 0x10010001, 0x10010001

Refer to Display Interrupt 0

0xCC002038 R/W DI2 - Display Interrupt 2

pal50/pal60/ntsc: 0x00010001, 0x00010001, 0x00010001

Refer to Display Interrupt 0

pal50/pal60/ntsc: 0x00010001, 0x00010001, 0x00010001

Refer to Display Interrupt 0

| 0xCC002040 | 4 | R/W | DL0 - Display Latch Register 0 |
|------------|---|-----|--------------------------------|
|------------|---|-----|--------------------------------|

| bit(s) | Description            |
|--------|------------------------|
| 31     | TRG - Trigger Flag     |
| 16-26  | VCT - Vertical Count   |
| 0-10   | HCT - Horizontal Count |

pal50/pal60/ntsc: 0x0000, 0x0000, 0x0000

The Display Latch Register 0 latches the value of the Display Position Register at the rising edge of the gt0 signal. The trigger flag is set if a gun trigger is detected. Writing a zero to the register clears the trigger flag.

pal50/pal60/ntsc: 0x0000, 0x0000, 0x0000

See the description of Display Latch Register 0. This register is latched on the rising edge of the gt1 signal.

| 0xCC002048 | 2 | R/W | HSW - Scaling Width Register |
|------------|---|-----|------------------------------|

| 15 | 8 | 7 | 0 |
|----|---|---|---|
|    |   |   |   |

|   | bit(s) | description                         |
|---|--------|-------------------------------------|
| ĺ | 0-9    | SRCWIDTH - Horizontal Stepping size |

pal50/pal60/ntsc: 0x2850, 0x2850, 0x2850

This register is the number of source pixels to be scaled. This is only used when the Horizontal Scaler is enabled. For example, if the image is to be scaled from 320x240 to 640x240, 320 would be written into this register.

| 0xCC00204a | 2 | R/W | HSR - Horizontal Scaling Register |
|------------|---|-----|-----------------------------------|
|------------|---|-----|-----------------------------------|

| 15   | 8    | 7    | 0    |
|------|------|------|------|
| 000e | 000v | VVVV | VVVV |

| bit(s) |   | description                                                              |
|--------|---|--------------------------------------------------------------------------|
| 12     | e | HS_EN - Enable Horizontal Scaling                                        |
| 0-8    | v | STP - Horizontal stepping size (U1.8 Scaler Value) (0x160 Works for 320) |

pal50/pal60/ntsc: 0x0100, 0x0100, 0x0100

This register sets up the step size of the horizontal stepper.

ARDWARE REGISTERS

58

| 0xC | C0020 | )4C | 4  | R/W | FCT0 - Filt |   |   | er Coefficient Table 0 (AA stuff) |
|-----|-------|-----|----|-----|-------------|---|---|-----------------------------------|
|     |       |     |    |     |             |   |   |                                   |
| 31  | 24    | 23  | 16 | 15  | 8           | 7 | 0 |                                   |
|     |       |     |    |     |             |   |   |                                   |

| bit(s) | description |
|--------|-------------|
| 20-29  | T2 - Tap2   |
| 10-19  | T1 - Tap1   |
| 0-9    | T0 - Tap0   |

pal50/pal60/ntsc: 0x1AE771F0, 0x1AE771F0, 0x1AE771F0

sets up part of the low-pass filter. Taps 0 to 9 are in the range (0.0, 2.0)

| 0xcc002050 | 4 | R/W | FCT1 - Filter Coefficient Table 1 (AA stuff) |
|------------|---|-----|----------------------------------------------|
|            |   |     |                                              |

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description |
|--------|-------------|
| 20-29  | T5 - Tap5   |
| 10-19  | T4 - Tap4   |
| 0-9    | T3 - Tap3   |

pal50/pal60/ntsc: 0x0DB4A574, 0x0DB4A574, 0x0DB4A574

| 0xcc002054 | 4 | R/W | FCT2 - Filter Coefficient Table 2 (AA stuff) |
|------------|---|-----|----------------------------------------------|

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description |
|--------|-------------|
| 20-29  | T8 - Tap8   |
| 10-19  | T7 - Tap7   |
| 0-9    | T6 - Tap6   |

pal50/pal60/ntsc: 0x00C1188E, 0x00C1188E, 0x00C1188E

sets up part of the low-pass filter

0xcc002058 | 4 | R/W | FCT3 - Filter Coefficient Table 3 (AA stuff)

59

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description |
|--------|-------------|
| 24-31  | T12 - Tap12 |
| 16-23  | T11 - Tap11 |
| 8-15   | T10 - Tap10 |
| 0-7    | T9 - Tap9   |

 $pal50/pal60/ntsc:\ 0xC4C0CBE2,\ 0xC4C0CBE2,\ 0xC4C0CBE2$ 

sets up part of the low-pass filter. Taps 9 to tap 24 are in the Rage (-0.125, 0.125)

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description |
|--------|-------------|
| 24-31  | T16 - Tap16 |
| 16-23  | T15 - Tap15 |
| 8-15   | T14 - Tap14 |
| 0-7    | T13 - Tap13 |

pal50/pal60/ntsc: 0xFCECDECF, 0xFCECDECF, 0xFCECDECF

0xcc002060 | 4 | R/W | FCT5 - Filter Coefficient Table 5 (AA stuff)

|   | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| ſ |    |    |    |    |    |   |   |   |

| bit(s) | description |
|--------|-------------|
| 24-31  | T20 - Tap20 |
| 16-23  | T19 - Tap19 |
| 8-15   | T18 - Tap18 |
| 0-7    | T17 - Tap17 |

 $pal50/pal60/ntsc:\ 0x13130F08,\ 0x13130F08,\ 0x13130F08$ 

60

| 0xcc002064   4   R/W | FCT6 - Filter Coefficient Table 6 (AA stuff) |
|----------------------|----------------------------------------------|
|----------------------|----------------------------------------------|

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description             |
|--------|-------------------------|
| 24-31  | T24 - Hardwired to zero |
| 16-23  | T23 - Tap23             |
| 8-15   | T22 - Tap22             |
| 0-7    | T21 - Tap21             |

 $pal50/pal60/ntsc:\ 0x00080C0F,\ 0x00080C0F,\ 0x00080C0F$ 

sets up part of the low-pass filter

| 0xcc002068 | 4 | R/W | ? ( | (AA stuff) |
|------------|---|-----|-----|------------|

pal50/pal60/ntsc: 0x00FF0000, 0x00FF0000, 0x00FF0000

| 0xCC00206C | 2 | R/W | VICLK - VI Clock Select Register |
|------------|---|-----|----------------------------------|

| 15   | 8    | 7    | 0    |
|------|------|------|------|
| 0000 | 0000 | 0000 | 000s |

| bit(s) |   | desc | description                                 |  |  |
|--------|---|------|---------------------------------------------|--|--|
|        |   | 0    | 27 MHz video CLK                            |  |  |
|        | 8 | 1    | 54 MHz video CLK (used in Progressive Mode) |  |  |

pal50/pal60/ntsc: 0x0000, 0x0000, 0x0000

| ſ | 0xCC00206e | 2 | R/W | VISEL - VI I | DTV | Status Register |
|---|------------|---|-----|--------------|-----|-----------------|
|   |            |   |     |              |     |                 |

| 15 | 8 | 7 | 0 |
|----|---|---|---|
|    |   |   |   |

| bit(s) | description        |
|--------|--------------------|
| 2      | VISEL - don't care |

pal50/pal60/ntsc: 0x0000, 0x0000, 0x0000

this register allows software to read the status of two i/o pins

| 0xCC002070 | 2 | R/W | ? |
|------------|---|-----|---|

Holds 0x280, but has no effect on change (maybe for Progressive ?)

pal50/pal60/ntsc: 0x0280, 0x0280, 0x0280

| 15 | 8 | 7 | 0 |
|----|---|---|---|
|    |   |   |   |

| ĺ | bit(s) | description                          |  |
|---|--------|--------------------------------------|--|
| ĺ | 15     | BRDR_EN - Border Enable              |  |
| ĺ | 0-9    | HBE656 - Border Horizontal Blank End |  |

pal50/pal60/ntsc: 0x0000, 0x0000, 0x0000

This register (in conjunction with the border HBS) sets up a black border around the actual active pixels in debug mode. This was done in order to accommodate certain encoders that only support 720 active pixels. The border HBE and HBS can be programmed for 720 active pixels while the regular HBE and HBS can be programmed to the actual active width. This allows the frame buffer to be of any width without having to manually set up a border in memory. These registers will only take effect if enabled and in debug mode.

| 0xcc002074   2   r/w   HBS - Border HBS |
|-----------------------------------------|
|-----------------------------------------|

| 15 | 8 | 7 | 0 |
|----|---|---|---|
|    |   |   |   |

| bit( | s) | description                            |
|------|----|----------------------------------------|
| 0-9  | )  | HBS656 - Border Horizontal Blank start |

pal50/pal60/ntsc: 0x0000, 0x0000, 0x0000

0xcc002076 2 ?/? ? (unused?)

pal50/pal60/ntsc: 0x00FF, 0x00FF, 0x00FF

0xcc002078 4 ?/? ? (unused?)

pal50/pal60/ntsc: 0x00FF00FF, 0x00FF00FF, 0x00FF00FF

0xcc00207c 4 ?/? ? (unused?)

pal50/pal60/ntsc: 0x00FF00FF 0x00FF00FF, 0x00FF00FF

#### 5.3.1 Video Modes

| Mode      | TV Norm / Region  | Framerate | Columns | Lines |
|-----------|-------------------|-----------|---------|-------|
| NTSC      | ntsc (usa, japan) | 60Hz      | 640     | 480   |
| PAL       | pal (europe)      | 50Hz      | 640     | 574   |
| DEBUG     |                   |           |         |       |
| DEBUG PAL |                   |           |         |       |
| MPAL      | pal (brazil)      | 60Hz      | 640     | 480   |
| PAL60     | pal               | 60Hz      | 640     | 480   |

note: other modes may be possible using VGA output, although its unlikely.

# **5.4** PI - Processor Interface

| Regist | terblock | Ba | se | Size of                 | Registe | rblock | common access size |     |  |  |
|--------|----------|----|----|-------------------------|---------|--------|--------------------|-----|--|--|
| 0x     | cc0030   | 00 |    |                         | 0x100   | 4      |                    |     |  |  |
| 0xCC0  | 03000    | 4  | r  | INTSR - interrupt cause |         |        |                    |     |  |  |
| 2.1    | 0.4      |    |    | 1.0                     | 1.5     | 0      | 7                  | 0   |  |  |
| 31     | 24       | 23 | i  | 16                      | 15      | 8      | 1                  | - 0 |  |  |
|        |          |    |    | r                       |         |        |                    |     |  |  |

| bit   |   |           | Description                         |
|-------|---|-----------|-------------------------------------|
| 17-31 |   |           | unused/reserved                     |
| 16    | r | RSWST     | Reset Switch State (1 when pressed) |
| 14-15 |   |           | unused/reserved                     |
| 13    |   | HSP       | High Speed Port                     |
| 12    |   | DEBUG     | External Debugger                   |
| 11    |   | CP        | Command FIFO                        |
| 10    |   | PE FINISH | Frame is Ready                      |
| 9     |   | PE TOKEN  | Token Assertion in Command List     |
| 8     |   | VI        | Video Interface                     |
| 7     |   | MEM       | Memory Interface                    |
| 6     |   | DSP       | DSP                                 |
| 5     |   | AI        | Streaming                           |
| 4     |   | EXI       | EXI                                 |
| 3     |   | SI        | Serial                              |
| 2     |   | DI        | DVD                                 |
| 1     |   | RSW       | Reset Switch                        |
| 0     |   | ERROR     | GP runtime error                    |

| 0xCC0 | 03004 | 4  | r/w | INT | nask |   |   |   |
|-------|-------|----|-----|-----|------|---|---|---|
|       |       |    |     |     |      |   |   |   |
| 31    | 24    | 23 |     | 16  | 15   | 8 | 7 | 0 |
|       |       |    | • • |     |      |   |   |   |

| bit |           | Description                     |
|-----|-----------|---------------------------------|
| 13  | HSP       | High Speed Port                 |
| 12  | DEBUG     | External Debugger               |
| 11  | CP        | Command FIFO                    |
| 10  | PE FINISH | Frame is Ready                  |
| 9   | PE TOKEN  | Token Assertion in Command List |
| 8   | VI        | Video Interface                 |
| 7   | MEM       | Memory Interface                |
| 6   | DSP       | DSP                             |
| 5   | AI        | Streaming                       |
| 4   | EXI       | EXI                             |
| 3   | SI        | Serial                          |
| 2   | DI        | DVD                             |
| 1   | RSW       | Reset Switch                    |
| 0   | ERROR     | GP runtime error                |

| 0xCC00300c | 4 | r/w | FIFO Base Start |
|------------|---|-----|-----------------|
|------------|---|-----|-----------------|

| 0xCC003010 | 4 | ?/? | FIFO Base End?                       |
|------------|---|-----|--------------------------------------|
|            |   |     |                                      |
| 0xCC003014 | 4 | ?/? | PI (cpu) FIFO current Write Pointer? |
|            |   |     |                                      |
| 0xCC003018 | 4 | ?/? | ?                                    |
|            | • |     |                                      |
| 0xCC00301c | 4 | ?/? | ?                                    |
|            |   |     |                                      |
| 0xCC003020 | 4 | ?/? | ?                                    |
|            |   |     |                                      |
| 0xCC003024 | 4 | ?/? | Reset?                               |

Writing anything here seems to cause a complete reset.

console type (2: hw2)

| 0xCC0  | 0302c | 4     | ?/?   | ?  |   |    |   |   |   |
|--------|-------|-------|-------|----|---|----|---|---|---|
|        |       |       |       |    |   |    |   |   |   |
| 31     | 24    | 23    | 3     | 16 | ) | 15 | 8 | 7 | 0 |
|        |       |       |       |    |   |    |   |   |   |
|        |       |       |       |    |   |    |   |   |   |
| hit(s) | De    | escri | ntion |    |   |    |   |   |   |

### 5.4.1 Operation

28-31

**5.4.1.1 FIFO/Write Gather Pipe** when CPU writes a byte to 0xcc008000, it is written to mem[writeptr], and writeptr is increased automatically.

0xcc008000 is the write gather pipe, a way for the CPU to blast sequences of things of various sizes to memory without having to keep track of the write pointer and wrapping manually. the gp then reads what the CPU has written to memory. It is used for Display Lists. it will disconnect the GP from the writegatherpipe (cc000002 & 0x10 = 0), and change the write ptr to where it wants to write a display list.. then use ordinary GX commands to build it. there's a Call Displaylist GX command. so it will store render commands for rendering a certain object (for example) in a display list in memory, then send the CallDL with the address to the list instead of sending all the vertices over the FIFO.

**5.4.1.2 Interrupts** Each interrupt has one or more "source" devices. It means that some kind of device may generate a couple of different interrupts, represented by a single bit in interrupt registers. To "enable" interrupt, set bit in mask register. To ignore all interrupts write 0 to interrupt mask register. Raising of any interrupt will set corresponding bit in interrupt cause register. Interrupt cause register resets to 0, when read (i.e. you must read it to clear pending interrupts).

Interrupt mask register isn't controlled by hardware logic. Note that masking of interrupt in INTMR doesn't disable it at all. It is only causing masked interrupt to be ignored in the software interrupt handler. You must clear corresponding "source" device registers, to completely disable interrupt.

```
lis r3,0
lis r9,0xCC00
sth r3, 0x2000(r9)
li r4, 3
stw r4, 0x3024(r9)
stw r3, 0x3024(r9)
nop
loop__:
b loop__
```

# 5.5 MI - Memory Interface

Protection can be enabled only for pages (page size is 1024 bytes), and you can specify only 4 protected regions of memory. External interrupt will be raised, if CPU try to wrong access in protected region. Because it's allowed to enable protection for 4 regions only, there are a total of 4 possible interrupts which are called MEM\_0, MEM\_1, MEM\_2 and MEM\_3.

| 0xcc004000         0x80         4           0xCC004000         4         r/w         Protected Region No1 | Registerblock Base | Size of Registerblock | common access size |
|-----------------------------------------------------------------------------------------------------------|--------------------|-----------------------|--------------------|
| 0xCC004000 4 r/w Protected Region No1                                                                     | 0xcc004000         | 0x80                  | 4                  |
|                                                                                                           | 0xCC004000 4       | Protected Region No   | 1                  |
| 0xCC004004 4 r/w Protected Region No2                                                                     | 0xCC004004 4       | Protected Region No   | 2                  |
| 0xCC004008   4   r/w   Protected Region No3                                                               | 0xCC004008 4       | Protected Region No   | 3                  |
| 0xCC00400c 4 r/w Protected Region No4                                                                     | 0xCC00400c 4       | Protected Region No   | 4                  |

| 31   | 24   | 23   | 16   | 15   | 8    | 7    | 0    |
|------|------|------|------|------|------|------|------|
| 1111 | 1111 | 1111 | 1111 | hhhh | hhhh | hhhh | hhhh |

| bit(s) |   | Description     |  |  |
|--------|---|-----------------|--|--|
| 16-31  | 1 | Page Address Lo |  |  |
| 0-15   | h | Page Address Hi |  |  |

note: the page address can be calculated as (physical\_address>>10)

| 0xCC004010 | 2 | r/w | type of the protection, 4*2 bits |
|------------|---|-----|----------------------------------|
|------------|---|-----|----------------------------------|

| 15 | 8 | 7    | 0    |
|----|---|------|------|
|    |   | 3322 | 1100 |

| bit(s) |   | Des  | Description                               |  |  |  |
|--------|---|------|-------------------------------------------|--|--|--|
|        |   | unus | unused/reserved                           |  |  |  |
| 6      | 3 | Cha  | Channel 3                                 |  |  |  |
|        |   | 0    | 0 access denied                           |  |  |  |
|        |   | 1    | 1 read only (break on write)              |  |  |  |
|        |   | 2    | 2 write only (break on read)              |  |  |  |
|        |   | 3    | read / write (no protection, full access) |  |  |  |
| 4      | 2 | Cha  | Channel 2 (see Channel 3)                 |  |  |  |
| 2      | 1 | Cha  | Channel 1 (see Channel 3)                 |  |  |  |
| 0      | 0 | Cha  | nnel 0 (see Channel 3)                    |  |  |  |

| 0xCC00401c   2   ?/w   MI interrupt mask |
|------------------------------------------|
|------------------------------------------|

| 15 | 8 | 7 | 0    |
|----|---|---|------|
|    |   | m | 3210 |

| bit(s) |   | Description                         |
|--------|---|-------------------------------------|
| 4      | m | mask all MI interrupts (1 - enable) |
| 3      | 3 | mask MEM3 interrupt (1 - enable)    |
| 2      | 2 | mask MEM2 interrupt (1 - enable)    |
| 1      | 1 | mask MEM1 interrupt (1 - enable)    |
| 0      | 0 | mask MEM0 interrupt (1 - enable)    |

| 0xCC00401e 2 r/w inte |
|-----------------------|
|-----------------------|

| 15 | 8 | 7 | 0    |
|----|---|---|------|
|    |   | m | 3210 |

| bit(s) |   | Description                       |                                   |                             |
|--------|---|-----------------------------------|-----------------------------------|-----------------------------|
| 4      | m | all MI interrupts                 |                                   |                             |
| 3      | 3 | MEM3 interrupt                    |                                   |                             |
|        |   | read 0 irq has not been requested |                                   | irq has not been requested  |
|        |   |                                   | 1 irq has been requested          |                             |
|        |   | write                             | write 0 no effect                 |                             |
|        |   |                                   | 1                                 | clear pending irq assertion |
| 2      | 2 | MEM2                              | inter                             | rupt                        |
|        |   | read                              | 0                                 | irq has not been requested  |
|        |   |                                   | 1 irq has been requested          |                             |
|        |   | write                             | write 0 no effect                 |                             |
|        |   |                                   | 1 clear pending irq assertion     |                             |
| 1      | 1 | MEM1 interrupt                    |                                   |                             |
|        |   | read 0 irq has not been requested |                                   |                             |
|        |   | 1 irq has been requested          |                                   |                             |
|        |   | write                             | rite 0 no effect                  |                             |
|        |   |                                   | 1 clear pending irq assertion     |                             |
| 0      | 0 | MEM0 interrupt                    |                                   |                             |
|        |   | read                              | read 0 irq has not been requested |                             |
|        |   |                                   | 1                                 | irq has been requested      |
|        |   | write                             | 0                                 | no effect                   |
|        |   |                                   | 1                                 | clear pending irq assertion |

| 0xCC004020 | 2 | ?/? | ? |
|------------|---|-----|---|
|------------|---|-----|---|

| 15 | 8 | 7 | 0  |
|----|---|---|----|
|    |   |   | m. |

| bit(s) |   | Description                                 |
|--------|---|---------------------------------------------|
| 1      | 1 | ? (set when MI interrupt has been asserted) |
| 0      | 0 | ?                                           |

note: assume to be zero, after init, and should be cleared by interrupt handler.

| 0xCC004022 | 2 | r/? | ADDRLO - address which failed protection rules |
|------------|---|-----|------------------------------------------------|
|------------|---|-----|------------------------------------------------|

|   | 15 | 8 | 7 | 0 |
|---|----|---|---|---|
| ſ |    |   |   |   |

| bit(s) | Description             |
|--------|-------------------------|
| 5-15   | bit 5-bit 15 of address |
| 0-4    | zero                    |

|  | 0xCC004024 | 2 | r/? | ADDRHI - address, which failed protection rules |
|--|------------|---|-----|-------------------------------------------------|
|--|------------|---|-----|-------------------------------------------------|

| 15 | 8 | 7 | 0 |
|----|---|---|---|
|    |   |   |   |

| bit(s) | Description              |  |
|--------|--------------------------|--|
| 14-15  | zero                     |  |
| 0-13   | bit 16-bit 29 of address |  |

| RHI |
|-----|
| RIO |
| ILC |
| RHI |
| RLO |
|     |

note: writing anything to the timer register resets it to zero

| 0xCC00405a   2 | 2   r/? | ? |
|----------------|---------|---|
|----------------|---------|---|

|    | . XXX | xxxx | XXXX |
|----|-------|------|------|
| 15 | 8     | 7    | 0    |

| bit(s) | Description |
|--------|-------------|
| 11-15  | unused?     |
|        |             |

### 5.6 DSP - Digital Signal Processor Interface

At the heart of the GCN audio hardware is a custom digital signal processor (DSP) which is largely dedicated to pitch modulation and the mixing of voices and effects data. The DSP is augmented by a large quantity of auxiliary RAM (ARAM) which may be used to store audio samples. The GCN audio hardware features a custom digital signal processor (DSP) which has the following characteristics:

- ⊳ 81MHz instruction clock.
- ▶ 16-bit data words and addressing.
- ▷ 8KB (4Kword) Data RAM.
- ▷ 4KB (2Kword) Data ROM.
- > 8KB (4Kword) Instruction RAM.
- ⊳ 8KB (4Kword) Instruction ROM.

- ▷ Cached memory interface to ARAM.
- > DMA interface to main memory.
- ▷ "Mailbox" registers for communicating with the CPU.

| Register block Base |   |     | Size of Register block | common access size |
|---------------------|---|-----|------------------------|--------------------|
| 0xCC005000          |   |     | 0x200 bytes            | 16bit words        |
| 0xCC005000 2 r/v    |   | r/w | DSP Mailbox High (to   | DSP)               |
| 0xCC005002          | 2 | r/w | DSP Mailbox Low (to    | DSP)               |

bit31 of DSP Mailbox shows mail delivery status. (it will be cleared when the transfer is done) to send mail just write data, high word first, with bit31 set.

|   | 0xCC005004 | 2 | r | CPU Mailbox High (from DSP) |
|---|------------|---|---|-----------------------------|
| ĺ | 0xCC005006 | 2 | r | CPU Mailbox Low (from DSP)  |

bit31 of CPU Mailbox shows mail delivery status.

| 15 | 8 | 7 | 0 |
|----|---|---|---|
|    |   |   |   |

| bit(s) | Description                         |  |  |  |  |  |  |  |
|--------|-------------------------------------|--|--|--|--|--|--|--|
| 11     | Reset DSP (?)                       |  |  |  |  |  |  |  |
| 10     | Reset DSF (!)                       |  |  |  |  |  |  |  |
| 9      | DSP DMA Int Status                  |  |  |  |  |  |  |  |
| 8      | DSPINTMSK - DSP interrupt mask (*1) |  |  |  |  |  |  |  |
| 7      | DSPINT DSP Interrupt mask (*1)      |  |  |  |  |  |  |  |
| /      |                                     |  |  |  |  |  |  |  |
|        | T T                                 |  |  |  |  |  |  |  |
|        | 1 morrape is active                 |  |  |  |  |  |  |  |
|        |                                     |  |  |  |  |  |  |  |
|        | T Clear Interrupt                   |  |  |  |  |  |  |  |
| 5      | ARINTMSK - ARAM interupt mask (*2)  |  |  |  |  |  |  |  |
| 5      | ARINT -                             |  |  |  |  |  |  |  |
|        | read 0 no interrupts                |  |  |  |  |  |  |  |
|        | 1 interrupt is active               |  |  |  |  |  |  |  |
|        | write 0 no effect                   |  |  |  |  |  |  |  |
|        | 1 clear interupt                    |  |  |  |  |  |  |  |
| 4      | AIDINTMASK - AI interrupt mask (*3) |  |  |  |  |  |  |  |
| 3      | AIDINT                              |  |  |  |  |  |  |  |
|        | read 0 no interrupts                |  |  |  |  |  |  |  |
|        | 1 interrupt is active               |  |  |  |  |  |  |  |
|        | write 0 no effect                   |  |  |  |  |  |  |  |
|        | 1 clear interrupt                   |  |  |  |  |  |  |  |
| 2      | HALT - Halt DSP (?)                 |  |  |  |  |  |  |  |
|        | read 0                              |  |  |  |  |  |  |  |
|        | 1                                   |  |  |  |  |  |  |  |
|        | write 0 unhalt DSP                  |  |  |  |  |  |  |  |
|        | 1 halt DSP (stop task execution)    |  |  |  |  |  |  |  |
| 1      | PIINT - DSP Interrupt Assertion (?) |  |  |  |  |  |  |  |
|        | read 0                              |  |  |  |  |  |  |  |
|        | 1                                   |  |  |  |  |  |  |  |
|        | write 0                             |  |  |  |  |  |  |  |
|        | 1 assert PI DSP interrupt           |  |  |  |  |  |  |  |
| 0      | RES - Reset DSP (?)                 |  |  |  |  |  |  |  |
|        | read 0                              |  |  |  |  |  |  |  |
|        | 1                                   |  |  |  |  |  |  |  |
|        | write 0                             |  |  |  |  |  |  |  |
|        | 1 reset DSP                         |  |  |  |  |  |  |  |

- (\*1) disables only PI interrupt, doesnt effect assertion of DSPINT.
- (\*2) disables only PI interrupt, doesnt effect assertion of ARINT. (\*3) disables only PI interrupt, doesnt effect assertion of AIDINT.

| l | 0xCC005012 | 2 | ?/? | AR_SIZE |
|---|------------|---|-----|---------|
|---|------------|---|-----|---------|

| 0xCC005016 | 2 | ?/? | AR_MODE |
|------------|---|-----|---------|
|------------|---|-----|---------|

| 0xCC00501a | 2 | ?/? | AR REFRESH |
|------------|---|-----|------------|

| 0xCC005020   2   ?/?   AR DMA MMADDR | 0xCC005020 | 2 | ?/? | AR DMA MMADDR | Н |
|--------------------------------------|------------|---|-----|---------------|---|
|--------------------------------------|------------|---|-----|---------------|---|

| I | 0xCC005022 | 2 | ?/? | AR DMA MMADDR L |
|---|------------|---|-----|-----------------|
|   |            |   |     |                 |

| 0xCC005024 | 2 | ?/? | AR_DMA_ARADDR_H |
|------------|---|-----|-----------------|
|------------|---|-----|-----------------|

| 0xCC005026 | 2 | ?/? | AR_DMA_ARADDR_L | _ |
|------------|---|-----|-----------------|---|

| 0xCC005028 | 2 | 7/7 | AR | DMA | CNT | Н |
|------------|---|-----|----|-----|-----|---|

|   | bit(s) | description                                           |
|---|--------|-------------------------------------------------------|
| Ì | 15     | type of transfer (0: write to aram 1: read from aram) |
| Ì | 0-14   | high bits of transfer length                          |

| 0xCC00502a | 2 | ?/? | AR_DMA_CNT_L |
|------------|---|-----|--------------|

| 0xCC005030 | 2 | 2/w | DMA Start address (High) |
|------------|---|-----|--------------------------|
|            |   |     |                          |

### Start of Audio Data

| 0xCC005032 | 2 | ?/w | DMA Start address (Low) |
|------------|---|-----|-------------------------|

#### Start of Audio Data

| 0xCC005036 | 2 | ?/w | DMA Control/DMA length (Length of Audio Data) |
|------------|---|-----|-----------------------------------------------|
|            |   |     |                                               |

| 15   | 8    | 7    | 0    |
|------|------|------|------|
| axxx | XXXX | XXXX | XXXX |

| ı | bit(s) |   | Description                       |
|---|--------|---|-----------------------------------|
|   |        | a | 0=stop sample 1=play sample       |
| ĺ |        | X | length/32 (max len is 0x000fffe0) |

| 0xCC00503a   2   r/?   1 | DMA Bytes left |
|--------------------------|----------------|
|--------------------------|----------------|

Counts down to zero showing how any bytes are left

# 5.6.1 internal DSP Registers

| Registerblock Base |  | ock Base   Size of Registerblock |                       | common access size |  |
|--------------------|--|----------------------------------|-----------------------|--------------------|--|
| 0xffc9             |  | 9                                |                       | 2                  |  |
| 0xFFC9 2 r/w       |  |                                  | DSCR - DSP dma Contro | l Register         |  |

| 15 | 8 | 7 | 0 |
|----|---|---|---|
|    |   |   |   |

| bit(s) | description                                            |  |  |  |  |  |  |
|--------|--------------------------------------------------------|--|--|--|--|--|--|
| 3-15   | unused/reserved                                        |  |  |  |  |  |  |
| 2      | DSP DMA busy                                           |  |  |  |  |  |  |
|        | read 0                                                 |  |  |  |  |  |  |
|        | 1 Block length counter not yet zero, DMA is still busy |  |  |  |  |  |  |
|        | write 0 no effect?                                     |  |  |  |  |  |  |
|        | 1 no effect ?                                          |  |  |  |  |  |  |
| 1      | DSP source/destination (DMA involved DSP memory)       |  |  |  |  |  |  |
|        | 0 DSP data memory                                      |  |  |  |  |  |  |
|        | 1 DSP instruction memory                               |  |  |  |  |  |  |
| 0      | transfer direction                                     |  |  |  |  |  |  |
|        | 0 from main memory to DSP memory                       |  |  |  |  |  |  |
|        | 1 from DSP memory to main memory                       |  |  |  |  |  |  |

| 0xFFCB | 2 | r/w | DSBL - DSp dma Block Length |
|--------|---|-----|-----------------------------|
|--------|---|-----|-----------------------------|

| 15 | 8 | 7 | 0 |
|----|---|---|---|
|    |   |   |   |

| bit(s) | description                                                                                  |
|--------|----------------------------------------------------------------------------------------------|
| 2-15   | block length - This register is used to specify DSP DMA transfer length from bit 15 to bit 2 |
| 0-1    | r: 2 bit of its LSBs - The transfer length is a multiple of 4 bytes                          |

| 0xFFCD | 2 | r/w | DSPA - DSp dma dsP memory Address High |
|--------|---|-----|----------------------------------------|
|--------|---|-----|----------------------------------------|

| 15 | 8 | 7 | 0 |
|----|---|---|---|
|    |   |   |   |

| <br> | description                                                                                                    |
|------|----------------------------------------------------------------------------------------------------------------|
| 1-15 | DSP memory address - This register is used to specify DSP memory starting/current address from bit 15 to bit 1 |
| 0    | r: 1 bit of its LSBs - The DSP memory address should be located at 2 word boundary                             |

| 0xFFCE | 2 | r/w | DSMAH - DSp dma Main memory Address High |
|--------|---|-----|------------------------------------------|
|        |   |     |                                          |
| 15 8   | 7 | 0   |                                          |

| bit(s) | description                                                                                                    |
|--------|----------------------------------------------------------------------------------------------------------------|
| 10-15  | r: 6 bits of its MSBs - This register is used to specify DSP DMA main memory starting/current address from bit |
| 0-9    | main memory address high word - This register is used to specify DSP DMA main memory starting/current add      |

| 0xFFCF | 2 | r/w | DSMAL - DSp dma Main memory Address Low |
|--------|---|-----|-----------------------------------------|
|        |   |     |                                         |

| 15 | 8 | 7 | 0 |
|----|---|---|---|
|    |   |   |   |

| bit(s) | description                                                                                                |
|--------|------------------------------------------------------------------------------------------------------------|
| 2-15   | main memory address - This register is used to specify DSP DMA main memory starting/current address from b |
| 0-1    | r: 2 bits of its LSBs - The main memory address of this DMA should be located at 4 byte boundary           |

| 0xFFD4 | 2 | r/w | ACSAH - Accelerator aram Starting Address High |
|--------|---|-----|------------------------------------------------|

| 15 | 8 | 7 | 0 |
|----|---|---|---|
|    |   |   |   |

| bit(s) | description                                                            |
|--------|------------------------------------------------------------------------|
| 11-15  | unused/reserved                                                        |
| 0-10   | wtarting address high-word - Bit 26 to bit 16 of ARAM starting address |

| 0xFFD5 | 2 r/w | 0xFFD5 | ACSAL - Accelerator aram Starting Address Low |
|--------|-------|--------|-----------------------------------------------|
|--------|-------|--------|-----------------------------------------------|

| 15 | 8 | 7 | 0 |
|----|---|---|---|
|    |   |   |   |

| bit(s) | description                                                          |
|--------|----------------------------------------------------------------------|
| 0-15   | Starting address low-word - Bit 15 to bit 0 of ARAM starting address |

| 1 | OxFFD6 | 2. | w | ACEAH - Accelerator aram Ending Address High |
|---|--------|----|---|----------------------------------------------|
|   |        |    |   |                                              |

| 15 | 8 | 7 | 0 |
|----|---|---|---|
|    |   |   |   |

| bit(s) | description                                                        |
|--------|--------------------------------------------------------------------|
| 15-11  | unused/reserved                                                    |
| 0-10   | ending address high-word - Bit 26 to bit 16 of ARAM ending address |

| 0 x | FFD7 | 2 | W | ACEAL - Accelerator aram Ending Address Low |
|-----|------|---|---|---------------------------------------------|
|     |      | • | • |                                             |
| 15  | 8    | 7 | 0 |                                             |

| 15 | 8 | 7 | 0 |
|----|---|---|---|
|    |   |   |   |

| ĺ | bit(s) | description                                                      | ] |
|---|--------|------------------------------------------------------------------|---|
|   | 0-15   | ending address low-word - Bit 15 to bit 0 of ARAM ending address | ] |

| 0xFFD8 | 2 | r/w | ACCAH - Accelerator aram Current Address High |
|--------|---|-----|-----------------------------------------------|
|--------|---|-----|-----------------------------------------------|

| 15 | 8 | 7 | 0 |
|----|---|---|---|
|    |   |   |   |

| bit(s) | description                                                          |                        |  |  |  |
|--------|----------------------------------------------------------------------|------------------------|--|--|--|
| 15     | dire                                                                 | direction              |  |  |  |
|        | 0                                                                    | accelerator read ARAM  |  |  |  |
|        | 1                                                                    | accelerator write ARAM |  |  |  |
| 11-14  | unused/reserved                                                      |                        |  |  |  |
| 0-10   | current address high-word - Bit 26 to bit 16 of ARAM current address |                        |  |  |  |

| 0xFFD9 | 2 | r/w | ACCAL - Accelerator aram Current Address Low |
|--------|---|-----|----------------------------------------------|

| 15 | 8 | 7 | 0 |
|----|---|---|---|
|    |   |   |   |

| bit(s) | description                             |
|--------|-----------------------------------------|
| 0-15   | Bit 15 to Bit 0 of ARAM current address |

|  | 0xFFEF | 2 | r/w | AMDM - ARAM-Dma request Mask |
|--|--------|---|-----|------------------------------|
|--|--------|---|-----|------------------------------|

| 15 | 8 | 7 | 0 |
|----|---|---|---|
|    |   |   |   |

| bit(s) | description                  |    |
|--------|------------------------------|----|
| 1-15   | unused/reserved              |    |
| 0      | 0 DMA request ARAM is unmask | ed |
| U      | 1 DMA request ARAM is masked |    |

### 5.6.2 Operation

### 5.6.2.1 play raw audio sample

- ⊳ load DMA Start Address
- > setup DMA Control/DMA length

### 5.6.2.2 transfer from/to ARAM

 $\,\rhd\,$  set main memory address in AR\_DMA\_MMADDR\_H and AR\_DMA\_MMADDR\_L

- ▷ set length and transfer type in AR\_DMA\_CNT\_H and AR\_DMA\_CNT\_L

#### 5.6.2.3 reset DSP

⊳ set bit0 and bit11 of AI DSP Control Register

### 5.6.2.4 Boot DSP Task

⊳ send mail to DSP: 0x80F3A001, ram\_mmem\_addr

⊳ send mail to DSP: 0x80F3C002, ram\_addr

⊳ send mail to DSP: 0x80F3A002, ram\_length

⊳ send mail to DSP: 0x80F3B002, aram\_mmem\_addr (==0 ?)

⊳ send mail to DSP: 0x80F3D001, dsp\_init\_vector

## 5.7 DI - DVD Interface

| Register block Base | Size of Register block | common access size |
|---------------------|------------------------|--------------------|
| 0xCC006000          | 0x40                   | 4                  |

| 0xCC006000 4 r/v | v DISR - DI Status Register |
|------------------|-----------------------------|
|------------------|-----------------------------|

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description                                                            |  |  |  |  |  |  |  |
|--------|------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 7-31   | reserved                                                               |  |  |  |  |  |  |  |
| 6      | BRKINT - Break Complete Interrupt Status (*1)                          |  |  |  |  |  |  |  |
|        | read 0 Interrupt has not been requested                                |  |  |  |  |  |  |  |
|        | 1 Interrupt has been requested                                         |  |  |  |  |  |  |  |
|        | write 0 no effect                                                      |  |  |  |  |  |  |  |
|        | 1 clear Interrupt                                                      |  |  |  |  |  |  |  |
| 5      | BRKINTMASK - Break Complete Interrupt Mask. 0:masked, 1:enabled (*2)   |  |  |  |  |  |  |  |
| 4      | TCINT - Transfer Complete Interrupt Status (*3)                        |  |  |  |  |  |  |  |
|        | read 0 Interrupt has not been requested                                |  |  |  |  |  |  |  |
|        | 1 Interrupt has been requested                                         |  |  |  |  |  |  |  |
|        | write 0 no effect                                                      |  |  |  |  |  |  |  |
|        | 1 clear Interrupt                                                      |  |  |  |  |  |  |  |
| 3      | TCINTMASK - Transfer Complete Interrupt Mask. 0:masked, 1:enabled (*4) |  |  |  |  |  |  |  |
| 2      | DEINT - Device Error Interrupt Status (*5)                             |  |  |  |  |  |  |  |
|        | read 0 Interrupt has not been requested                                |  |  |  |  |  |  |  |
|        | 1 Interrupt has been requested                                         |  |  |  |  |  |  |  |
|        | write 0 no effect                                                      |  |  |  |  |  |  |  |
|        | 1 clear Interrupt                                                      |  |  |  |  |  |  |  |
| 1      | DEINTMASK - Device Error Interrupt Mask. 0:masked, 1:enabled (*6)      |  |  |  |  |  |  |  |
| 0      | BRK - DI Break (*7)                                                    |  |  |  |  |  |  |  |
|        | read 0 break not requested or break complete                           |  |  |  |  |  |  |  |
|        | 1 break requested and pending                                          |  |  |  |  |  |  |  |
|        | write 0 no effect                                                      |  |  |  |  |  |  |  |
|        | 1 request break                                                        |  |  |  |  |  |  |  |

- (\*1) On read this bit indicates the current status of the break complete interrupt. This interrupt is asserted when a Break cycle has completed (break acknowledge received from mass storage access device). When a '1' is written to this register, the interrupt is cleared.
- (\*2) Interrupt masking prevents the interrupt from being sent to the main processor, but does not affect the assertion of DISR[BRKINT]
- (\*3) On read this bit indicates the current status of the transfer complete interrupt. The Transfer Complete interrupt is asserted under the following conditions: a DMA mode transfer has completed (DMA finished) or an Immediate mode transfer has completed (transfer to/from DIIMMBUF has completed). When a '1' is written to this register, the interrupt is cleared. The assertion of TCIT is delayed until the DIDSTRBb (low) in order to guarantee the error interrupt occurs before transfer complete interrupt. If DIERRb is asserted during the current transaction, the transaction will be halted and TCINT will not be asserted.
- (\*4) Interrupt masking prevents the interrupt from being sent to the main processor, but does not affect the assertion of DISR[TCINT]
- (\*5) On read this bit indicates the current status of the mass storage access device error interrupt. To clear this interrupt, two actions must occur. When a '1' is written to this register, the internal interrupt is cleared. To reset the DIERRb signal, a command must be issued to the external DI device. If error occurs during the command packet, the drive has to delay the error assertion until the completion of the 12 bytes command transfer. In immediate mode, if error occurs during the data packet, the error assertion has to be delayed until the completion of the 4 bytes data transfer. In DMA mode, it has to be delayed until the completion of any 32 bytes data transfer.
- (\*6) Interrupt masking prevents the interrupt from being sent to the main processor, but does not affect the

### assertion of DISR[DEINT]

(\*7) When a '1' is written to this bit, the DI controller interrupts the current command and sends a break signal to the mass storage access device. The break signal interrupts the current command on the mass storage access device. After the break sequence is complete (see TCINT), a new command may be sent to the mass storage access device. This bit is cleared after the break command is complete. Note that DI controller will delay the break signal assertion if it is in the middle of the command transfer. Hence break can only occur during the data transfer or when it is idle.

| 0xCC0 | 06004 | 4  | r/w | DIC | VR - DI | Cover F | Register | (status2) |
|-------|-------|----|-----|-----|---------|---------|----------|-----------|
|       |       |    |     |     |         |         |          |           |
| 31    | 24    | 23 |     | 16  | 15      | 8       | 7        | 0         |
|       |       | ٠. |     |     |         |         |          | .smc      |

| bit(s) |   | Descrip | tion            |                                        |                   |
|--------|---|---------|-----------------|----------------------------------------|-------------------|
| 2      | s | CVRIN   | T - C           |                                        |                   |
|        |   | read    | 0               | cover interrupt has not been requested |                   |
|        |   |         | 1               | cover interrupt has been requested     |                   |
|        |   | write   | 0               | no effect                              |                   |
|        |   |         | 1               | clear cover interrupt                  |                   |
| 1      | m | CVRIN   | 1: enabled (*2) |                                        |                   |
| 0      | С | CVR - S | State           | of the DICOVER signal. 0: cover closed | , 1: cover opened |

(\*1) On read this bit indicates the current status of the Mass Storage Device Cover interrupt. When a '1' is written to this register, the internal interrupt is cleared. The Mass Storage Device Cover Interrupt is asserted when the status of the DICOVER signal changes (e.g., when the cover is opened or closed). (\*2) Interrupt masking prevents the interrupt from being sent to the main processor, but does not affect the assertion of DISR[CVRINT].

|   | 0xCC0 | 06008 | 4  | r/w  | DIC  | MDBUF | F0 - DI C | Comman | d Buffer | . 0 |
|---|-------|-------|----|------|------|-------|-----------|--------|----------|-----|
|   |       |       |    |      |      |       |           |        |          |     |
|   | 31    | 24    | 23 |      | 16   | 15    | 8         | 7      | 0        |     |
| Ì | cccc  | cccc  | 11 | 11 : | 1111 | 2222  | 2222      | 2222   | 2222     |     |

| bit(s) |   | Description  |
|--------|---|--------------|
| 24-31  | С | command      |
| 16-23  | 1 | subcommand 1 |
| 0-15   | 2 | subcommand 2 |

| 0xCC00600c | 4 | r/w | DICMDBUF1 - DI Command Buffer 1 (offset in 32 bit words) |
|------------|---|-----|----------------------------------------------------------|
|------------|---|-----|----------------------------------------------------------|

| 0xCC006010 | 4 | r/w | DICMDBUF2 - DI Command Buffer 2 (source length) |
|------------|---|-----|-------------------------------------------------|

| 0xCC006014   4   r/w   DIMAR - DMA Memory Address Register |
|------------------------------------------------------------|
|------------------------------------------------------------|

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description                                                 |
|--------|-------------------------------------------------------------|
| 26-31  | reserved/unused                                             |
| 5-25   | DIMAR - Address of source/destination buffer in main Memory |
| 0-4    | always zero (Address must be 32 byte aligned)               |

| 0xCC006018 | 4 | r/w | DILENGTH - DI DMA Transfer Length Register |
|------------|---|-----|--------------------------------------------|
|------------|---|-----|--------------------------------------------|

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description                                           |
|--------|-------------------------------------------------------|
| 26-31  | reserved/unused                                       |
| 5-25   | DILENGTH - length of DMA data transfer in bytes (*1)  |
| 0-4    | always zero (transfer length must be 32 byte aligned) |

(\*1) If a DMA command is interrupted by a break cycle, this register indicates the amount of data that was left to transfer before the DMA command was interrupted. If the length equals zero, it is a special case with command transfer only.

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0    |
|----|----|----|----|----|---|---|------|
|    |    |    |    |    |   |   | .mbe |

| bit(s) |   | Description                                                                     |
|--------|---|---------------------------------------------------------------------------------|
| 2      | m | RW - access mode, 0:read, 1:write                                               |
| 1      | b | DMA - 0: immediate mode, 1: DMA mode (*1)                                       |
| 0      | e | TSTART - transfer start. write 1: start transfer, read 1: transfer pending (*2) |

- (\*1) The only mass storage device packet command which can use immediate mode is the 'Register Access' command. When in immediate mode, the DIMAR and DILENGTH registers are ignored.
- (\*2) When read this bit represents the current command status. This bit is also cleared after the break completion and after DIERRb is asserted.

| 0xCC006020 | 4 | r/w | DIIMMBUF - DI immediate data buffer (error code ?) |
|------------|---|-----|----------------------------------------------------|
|            |   |     |                                                    |

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description                          |
|--------|--------------------------------------|
| 24-31  | REGVAL0 - data of register address+0 |
| 16-23  | REGVAL1 - data of register address+1 |
| 8-15   | REGVAL2 - data of register address+2 |
| 0-7    | REGVAL3 - data of register address+3 |

| 0xCC006024 | 4 | r | DICFG - DI Configuration Register |
|------------|---|---|-----------------------------------|

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description                                                            |
|--------|------------------------------------------------------------------------|
| 8-31   | reserved/unused                                                        |
| 0-7    | CONFIG - during reset this register latches DIDD bus (only bit 0 used) |

# **5.7.1 Drive Commands**

| DICMDBUF0   | DICMDBUF0 DICMDBUF1 | DICMDBUF2 DIMAR | DIMAR                        | DILENGTH    | DILENGTH DIIMMBUF | DICR                  | Description                        |
|-------------|---------------------|-----------------|------------------------------|-------------|-------------------|-----------------------|------------------------------------|
| 0x12000000  | 0x0000000x0         | 0x00000020      | ret: Drive-Info              | 0x00000020  | 1                 | DMA read              | Inquiry                            |
| 0xa80000000 | Data-Position>>2    | Data-Length     | ret: Sector-Data Data-Length | Data-Length | 1                 | DMA read read Sector  | read Sector                        |
| 0xa8000040  | 0x0000000x0         | 0x00000020      | ret: Disc-ID                 | 0x00000020  | 1                 | DMA read              | DMA read   read Disc ID/Init Drive |
| 0xa8000080  | i                   | i               | i                            | ż           | i                 | ¿                     | i                                  |
| 0xa80000C0  | i                   | i               | i                            | ż           | i                 | ¿                     | i                                  |
| 0xab000000  | Position>>2         | ı               | ı                            | ı           | ı                 | imm (read)            | seek                               |
| 0xe00000000 | 1                   | 1               | ı                            | ı           | ret: Error-Code   | imm read              | request error Status               |
| 0xe1??0000  | Stream-Position>>2  | Stream-Length   | ı                            | ı           | 1                 | imm read              | play Audio Stream (?)              |
| 0xe2??0000  | 1                   |                 | ı                            | ı           | ret: Status (?)   | imm read              | request Audio Status               |
| 0xe3000000  | 1                   |                 | ı                            | ı           | ı                 | imm (read) stop Motor | stop Motor                         |
| 0xe4000000  | 1                   |                 | ı                            | ı           | 1                 | imm (read)            | imm (read) DVD Audio disable       |
| 0xe4010000  | -                   | _               | -                            | ı           | -                 | imm (read)            | imm (read) DVD Audio enable        |
|             |                     |                 |                              |             |                   |                       |                                    |

# **5.7.2** Drive Debug Commands

|                | DICMDBUFI     | BUF1   DICMDBUF2   DIMAR   DILENGTH   DIIMMBUF | DIMAR | DILENGTH |                               | DICR        | Description                      |
|----------------|---------------|------------------------------------------------|-------|----------|-------------------------------|-------------|----------------------------------|
| 0xfe00????     | i             | i                                              | į     | i        | 3                             | i           | i                                |
| 0xfe010000     | offset        | 0x00010000                                     |       | ı        | ret: 32bit value   imm (read) | imm (read)  | read memory                      |
| 0xfe010100     | offset        | 0x00010000                                     |       | ı        | 32bit value                   | imm (write) | write memory                     |
| 0xfe018000     | offset        | 0xff0000000                                    |       | ı        | ret: 32bit value   imm (read) | imm (read)  | read cache                       |
| 0xfe018100     | offset        | 0xff0000000                                    |       | ı        | 32bit value                   | imm (write) | write cache                      |
| 0xfe100000     | <u>ئ</u>      | i                                              |       | ı        | ı                             | imm (read)  | i                                |
| 0xfe110000 (*) | ı             | 1                                              |       | ı        | ı                             | imm (read)  | stop drive                       |
| 0xfe110100 (*) | ı             | ı                                              |       | ı        | ı                             | imm (read)  | start drive                      |
| 0xfe114000 (*) |               | 1                                              | 1     | -        | -                             | imm (read)  | accept copy                      |
| 0xfe118000 (*) | -             | 1                                              | ,     | 1        | 1                             | imm (read)  | do disc-check                    |
| 0xfe120000     | 24bit address | 0x66756e63                                     | 1     | ı        | ı                             | imm (read)  | jsr to address 'func'            |
| 0xff004456     | 0x442d4741    | 0x4d450300                                     | 1     | ı        | ı                             | imm (read)  | unlock 2 'DVD-GAME'              |
| 0xff014d41     | 0x54534849    | 0x5441024f                                     | 1     | 1        | 1                             | imm (read)  | imm (read)   unlock 1 'MATSHITA' |

<sup>(\*)</sup> commands can be ORed to perform several actions at once

# 5.7.3 Operation

## **5.7.3.1 Drive Info (Inquiry)**

## 5.7.3.1.1 Structure of the Drive Info Data

| Description    | size | end    | start  |
|----------------|------|--------|--------|
| revision level | 0x02 | 0x0001 | 0x0000 |
| device code    | 0x02 | 0x0003 | 0x0002 |
| release date   | 0x04 | 0x0007 | 0x0004 |
| padding zeros  | 0x18 | 0x001F | 0x0008 |

## 5.7.3.2 Read Disc ID / Init Disc

# 5.7.3.3 Read Sector

# 5.7.3.4 Seek

# 5.7.3.5 Request Error

| 31   | 24   | 23   | 16   | 15   | 8    | 7    | 0    |
|------|------|------|------|------|------|------|------|
| aaaa | aaaa | nnnn | nnnn | nnnn | nnnn | nnnn | nnnn |

| bit(s) |   | descrip | tion |                                            |
|--------|---|---------|------|--------------------------------------------|
|        |   | 0x00    | ok   |                                            |
|        |   | 0x01    | lid  | open                                       |
|        | a | 0x02    | no o | disc/disc changed                          |
|        | a | 0x03    | no o | disc                                       |
|        |   | 0x04    |      | tor off                                    |
|        |   | 0x05    | disc | e not initialized/disc id not read         |
|        |   | 0x000   | 000  | ok                                         |
|        |   | 0x020   | 400  | Motor stopped                              |
|        |   | 0x020   | 401  | Disk ID not read                           |
|        |   | 0x023   | A00  | Medium not present / Cover opened          |
|        |   | 0x030   | 200  | No Seek complete                           |
|        |   | 0x031   | 100  | UnRecoverd read error                      |
|        |   | 0x040   | 800  | Transfer protocol error                    |
|        | n | 0x052   | 000  | Invalid command operation code             |
|        | " | 0x052   | 001  | Audio Buffer not set                       |
|        |   | 0x052   | 100  | Logical block address out of range         |
|        |   | 0x052   | 400  | Invalid Field in command packet            |
|        |   | 0x052   | 401  | Invalid audio command                      |
|        |   | 0x052   | 402  | Configuration out of permitted period      |
|        |   | 0x056   | 300  | End of user area encountered on this track |
|        |   | 0x062   | 800  | Medium may have changed                    |
|        |   | 0x0B5   | A01  | Operator medium removal request            |

## **5.7.3.5.1** Error Codes

#### 5.7.3.7 Request Audio Status

#### **5.7.3.8 Stop Motor**

#### 5.7.3.9 DVD Audio Disable

#### 5.7.3.10 DVD Audio Enable

- Command/Subcommand/Padding <- E4010000
  </p>
- ⊳ Action <- 1
- ▷ ACK (???)
- Status2 <- Status2
  </p>
- ▷ INIT (???)
- ⊳ Status1 <- 2Ah
- Status 2 <- 0
  </p>

# **5.7.3.11 Write Mem debug command** Note: This command is not really a single command but two commands in sequence.

This command writes 'length' bytes to the specified address 'address' in the DVD drive addressable memory. 'length' is specified in bytes and must be in the range 1 to 12. If more data needs to be written, several commands need to be issued. 'address' is a 24 bit value, but a 32 bit value can be safely used. 'length' is a 16 bit value.

- write the constant 0xfe010100 to DICMDBUF0 (0xCC006008)
- ⊳ write 'length' to the upper 16 bits of DICMDBUF2 (0xcc006010) and clear the lower 16 bits.
- ⊳ start immediate read transfer: write 1 (TSTART) to DICR (0xcc00601c)
- wait until transfer is complete, poll bit 0 (lowest order bit) of DICR (0xcc00601c), it will be cleared on end of transfer
- write the data (up to 'length' bytes) to 0xcc00600c (write the first byte at 0xcc00600c, the second
   at 0xcc00600d, and so on)
- ⊳ start immediate read transfer: write 1 (TSTART) to DICR (0xcc00601c)
- wait until transfer is complete, poll bit 0 (lowest order bit) of DICR (0xcc00601C), it will be cleared
   on end of transfer

#### 5.7.4 DVD-ROM Subsystem

- → Matsushita MN103S13BGA Optical Disk Controller
- → Matsushita MN102H60GFA MicroComputer

# **5.7.4.1** Memory Map

| start      | end | size  | description               |
|------------|-----|-------|---------------------------|
| 0x00008000 |     | 4kb   | internal (cpu) ram        |
| 0x00080000 |     | 128kb | firmware rom (*)          |
| 0x00400000 |     |       | internal (controller) ram |

(\*) note: reading the firmware at its real location is prevented by the debug commands (imm buffer will not be changed at all). however you can read its contents from the memory mirrors, ie 0x000a0000-.

## 5.8 SI - Serial Interface

| Register bloc | k Ba | ıse | Size of Register block | common access size     |                         |
|---------------|------|-----|------------------------|------------------------|-------------------------|
| 0xCC0064      | 00   |     | 0x100                  | 4                      |                         |
| 0xCC006400    | 4    | r/w | SICOOUTBUF - SI C      | hannel 0 Output Buffer | (Joy-channel 1 Command) |
| 0xCC00640c    | 4    | r/w | SIC1OUTBUF - SI C      | hannel 1 Output Buffer | (Joy-channel 2 Command) |
| 0xCC006418    | 4    | r/w | SIC2OUTBUF - SI C      | hannel 2 Output Buffer | (Joy-channel 3 Command) |
| 0xCC006424    | 4    | r/w | SIC3OUTBUF - SI C      | hannel 3 Output Buffer | (Joy-channel 4 Command) |

|   | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| ſ |    |    |    |    |    |   |   |   |

| bit(s) | description     |
|--------|-----------------|
| 24-31  | unused/reserved |
| 16-23  | CMD - (*1)      |
| 8-15   | OUTPUT0 - (*2)  |
| 0-7    | OUTPUT1 - (*3)  |

This register is double buffered, so main processor writes to the SIC0OUTBUF will not interfere with the serial interface output transfer. Internally, a second buffer is used to hold the output data to be transferred across the serial interface. To check if SIC0OUTBUF has been transferred to the second buffer, main processor polls the SISR[WRST0] register. When SICOOUTBUF is transferred, SISR[WRST0] is cleared.

- (\*1) This byte is the opcode for the command sent to the controller during each command/response packet. This is the first data byte sent from the SI I/F to the game controller in the command/response packet.
- (\*2) This is the first data byte of the command packet. It is the second data byte sent from the SI I/F to the game controller in the command/response packet.
- (\*3) This is the second data byte of the command packet. It is the third data byte sent from the SI I/F to the game controller in the command/response packet.

| 0xCC006404 | 4 | r | Joy-channel 1 Buttons 1                                               |
|------------|---|---|-----------------------------------------------------------------------|
| 0xCC006410 | 4 | r | SIC1INBUFH - SI Channel 1 Input Buffer High (Joy-channel 2 Buttons 1) |
| 0xCC00641c | 4 | r | Joy-channel 3 Buttons 1                                               |
| 0xCC006428 | 4 | r | Joy-channel 4 Buttons 1                                               |

| ĺ | 31 | 24   | 23 | 16   | 15   | 8    | 7    | 0    |
|---|----|------|----|------|------|------|------|------|
|   | s  | yxba | LR | udrl | XXXX | XXXX | уууу | УУУУ |

| bit(s) | Description                                               |  |  |  |  |  |
|--------|-----------------------------------------------------------|--|--|--|--|--|
| 31     | ERRSTAT - Error Status (*1)                               |  |  |  |  |  |
|        | 0 no error on last transfer                               |  |  |  |  |  |
|        | 1 error on last transfer                                  |  |  |  |  |  |
| 30     | ERRLATCH - Error Latch (*2)                               |  |  |  |  |  |
|        | 0 no error latched                                        |  |  |  |  |  |
|        | 1 error latched (check SISR)                              |  |  |  |  |  |
| 24-29  | bit 0-5 of input byte 0 (bit 6 and 7 are assumed to be 0) |  |  |  |  |  |
| 16-23  | input byte 1                                              |  |  |  |  |  |
| 8-15   | input byte 2                                              |  |  |  |  |  |
| 0-7    | input byte 3                                              |  |  |  |  |  |

- (\*1) This bit represents the current error status for the last SI polling transfer on this channel. This register is updated after each polling transfer on this channel.
- (\*2) This bit is an error status summary of the SISR error bits for this channel. If an error has occurred on a past SI transfer (polling or Com transfer), this bit will be set. To determine the exact error, read the SISR register. This bit is actually an 'or' of the latched error status bits for this channel in the SISR. The bit is cleared by clearing the appropriate error status bits latched in the SISR. The no response error indicates that a controller is not present on this channel.

|   | 0xCC006408 | 4 | r/w | Joy-channel 1 Buttons 2 |                                              |
|---|------------|---|-----|-------------------------|----------------------------------------------|
|   | 0xCC006414 | 4 | r/w | Joy-channel 2 Buttons 2 |                                              |
|   | 0xCC006420 | 4 | r/w | Joy-channel 3 Buttons 2 |                                              |
| Ì | 0xCC00642c | 4 | r S | SIC3INBUFL - SI Channel | 3 Input Buffer Low (Joy-channel 4 Buttons 2) |

| 31   | 24   | 23   | 16   | 15   | 8    | 7    | 0    |
|------|------|------|------|------|------|------|------|
| XXXX | XXXX | уууу | УУУУ | 1111 | 1111 | rrrr | rrrr |

| bit(s) |   | Description  |
|--------|---|--------------|
| 24-31  | X | input byte 4 |
| 16-23  | у | input byte 5 |
| 8-15   | 1 | input byte 6 |
| 0-7    | r | input byte 7 |

SIC0INBUFH and SIC0INBUFL are double buffered to prevent inconsistent data reads due to main processor conflicting with incoming serial interface data. To insure data read from SIC0INBUFH and SIC0INFUBL are consistent, a locking mechanism prevents the double buffer from copying new data to these registers. Once SIC0INBUFH is read, both SIC0INBUFH and SIC0INBUFL are 'locked' until SIC0INBUFL is read. While the buffers are 'locked', new data is not copied into the buffers. When SIC0INBUFL is read, the buffers become unlocked again.

| 31 | 24 | 23   | 16   | 15 | 8  | 7    | 0 |
|----|----|------|------|----|----|------|---|
|    |    | ???? | .??? |    | ?. | eeee |   |

| bit(s) |   | description                                                   |  |  |  |  |  |  |
|--------|---|---------------------------------------------------------------|--|--|--|--|--|--|
| 26-31  |   | unused/reserved                                               |  |  |  |  |  |  |
| 16-25  |   | X - 7 X lines register (*1)                                   |  |  |  |  |  |  |
| 8-15   |   | Y - y times register (*2)                                     |  |  |  |  |  |  |
| 4-7    | e | EN - controller port enable (1 bit per port, 1: enabled) (*3) |  |  |  |  |  |  |
| 0-3    |   | VBCPY - Vblank copy output channel (1 bit per port) (*4)      |  |  |  |  |  |  |
|        |   | 0 copy SICOUTBUF to output buffer after writing               |  |  |  |  |  |  |
|        |   | 1 copy SICOUTBUF to output buffer only on vblank              |  |  |  |  |  |  |

- (\*1) 7 X lines register: determines the number of horizontal video lines between polling (the polling interval). The polling begins at vsync. 7 is the minimum setting (determined by the time required to complete a single polling of the controller). The maximum setting depends on the current video mode (number of lines per vsync) and the SIPOLL[Y] register. This register takes affect after vsync.
- (\*2) This register determines the number of times the SI controllers are polled in a single frame. This register takes affect after vsync.
- (\*3) Enable polling of channel. When the channel is enabled, polling begins at the next vblank. When the channel is disabled, polling is stopped immediately after the current transaction. The status of this bit does not affect communication RAM transfers on this channel.
- (\*4) Normally main processor writes to the SICOOUTBUF register are copied immediately to the channel 0 output buffer if a transfer is not currently in progress. When this bit is asserted, main processor writes to channel 0's SICOOUTBUF will only be copied to the outbuffer on vblank. This is used to control the timing of commands to 3D LCD shutter glasses connected to the VI.

|  | 0xCC006434 | 4 | r/w | SICOMCSR - SI Communication Control Status Register (command) |
|--|------------|---|-----|---------------------------------------------------------------|
|--|------------|---|-----|---------------------------------------------------------------|

| 31 | 24   | 23    | 16   | 15   | 8    | 7  | 0 |
|----|------|-------|------|------|------|----|---|
| r? | ?ccs | . mmm | mmmm | .nnn | nnnn | eb | ? |

| bit(s) |   | description                                         |  |  |  |  |  |  |  |
|--------|---|-----------------------------------------------------|--|--|--|--|--|--|--|
| 31     | r | TCINT - Transfer Complete Interrupt Status          |  |  |  |  |  |  |  |
|        |   | read 0 transfer complete interrupt not requested    |  |  |  |  |  |  |  |
|        |   | 1 transfer complete interrupt has been requested    |  |  |  |  |  |  |  |
|        |   | write 0 no effect                                   |  |  |  |  |  |  |  |
|        |   | 1 clear transfer complete interrupt                 |  |  |  |  |  |  |  |
| 30     |   | TCINTMSK - Transfer Complete Interrupt Mask (*1)    |  |  |  |  |  |  |  |
|        |   | 0 interrupt masked                                  |  |  |  |  |  |  |  |
|        |   | 1 interrupt enabled                                 |  |  |  |  |  |  |  |
| 29     |   | COMERR - Communication Error                        |  |  |  |  |  |  |  |
|        |   | 0 ok                                                |  |  |  |  |  |  |  |
|        |   | 1 error (see SiSr for the cause)                    |  |  |  |  |  |  |  |
| 28     |   | RDSTINT - Read Status Interrupt Status (*2)         |  |  |  |  |  |  |  |
|        |   | read 0 Transfer Complete Interrupt not requested    |  |  |  |  |  |  |  |
|        |   | 1 Transfer Complete Interrupt has been requested    |  |  |  |  |  |  |  |
|        |   | write 0                                             |  |  |  |  |  |  |  |
|        |   | 1                                                   |  |  |  |  |  |  |  |
| 27     |   | RDSTINTMSK - Read Status interrupt Mask (*3)        |  |  |  |  |  |  |  |
|        |   | 0 masked                                            |  |  |  |  |  |  |  |
|        |   | 1 enabled                                           |  |  |  |  |  |  |  |
| 25-26  | с | Channel Number (?)                                  |  |  |  |  |  |  |  |
| 24     | S | Channel Enable (?)                                  |  |  |  |  |  |  |  |
| 23     |   | unused/reserved                                     |  |  |  |  |  |  |  |
| 16-22  | m | OUTLNGTH - Communication Channel Output Length (*4) |  |  |  |  |  |  |  |
| 15     |   | unused/reserved                                     |  |  |  |  |  |  |  |
| 8-14   | n | INLNGTH - Communication Channel Input Length (*4)   |  |  |  |  |  |  |  |
| 7      | e | Command Enable (?)                                  |  |  |  |  |  |  |  |
| 6      | b | callback enable                                     |  |  |  |  |  |  |  |
|        |   | bit Description                                     |  |  |  |  |  |  |  |
|        |   | 0 no callback                                       |  |  |  |  |  |  |  |
|        |   | 1 callback enabled                                  |  |  |  |  |  |  |  |
| 1-2    |   | CHANNEL - (*5)                                      |  |  |  |  |  |  |  |
|        |   | 00 Channel 1                                        |  |  |  |  |  |  |  |
|        |   | 01 Channel 2                                        |  |  |  |  |  |  |  |
|        |   | 10 Channel 3                                        |  |  |  |  |  |  |  |
|        |   | 11 Channel 4                                        |  |  |  |  |  |  |  |
| 0      |   | TSTART - Transfer Start (*6)                        |  |  |  |  |  |  |  |
|        |   | read 0 Command Complete                             |  |  |  |  |  |  |  |
|        |   | 1 Command Pending                                   |  |  |  |  |  |  |  |
|        |   | write 0 Do not start command                        |  |  |  |  |  |  |  |
|        |   | 1 Start command                                     |  |  |  |  |  |  |  |

<sup>(\*1)</sup> Interrupt masking prevents the interrupt from being sent to the main processor, but does not affect the assertion of SICOMCSR[TCINT]

<sup>(\*2)</sup> On read this bit indicates the current status of the Read Status interrupt. The interrupt is set whenever SISR[RDSTn] bits are set. The interrupt is cleared when all of the RdSt bits in the SISR are cleared by

reading from the Si Channel Input Buffers. This interrupt can be used to indicate that a polling transfer has completed and new data is captured in the input registers

- (\*3) Interrupt masking prevents the interrupt from being sent to the main processor, but does not affect the assertion of SICOMCSR[RDSTINT]
- (\*4) Minimum transfer is 1 byte. A value of 0 will transfer 128 bytes. These bits should not be modified while SICOM transfer is in progress.
- (\*5) These bits should not be modified while SICOM transfer is in progress.
- (\*6) When a '1' is written to this register, the current communication transfer is executed. The transfer begins immediately after the current transaction on this channel has completed. When read this bit represents the current transfer status. Once a communication transfer has been executed, polling will resume at the next vblank if the channel's SIPOLL[ENn] bit is set.

When programming the SICOMCSR after a SICOM transfers has already started (e.g., SICOMCSR[TSTART] is set), the software should read the current value first, then and/or in the proper data and then write the new data back. The software should not modify any of the transfer parameters (OUTLNGTH, INLNGTH, CHANNEL) until the current transfer is complete. This is done to prevent a SICOM transfer already in progress from being disturbed. When writing the data back, the software should not set the TSTART bit again unless the current transfer is complete and another transfer is required.

| 0xCC006438 | 4 | r/w | SISR - SI Status Register (channel select & status2) |
|------------|---|-----|------------------------------------------------------|
|------------|---|-----|------------------------------------------------------|

| 31   | 24   | 23   | 16   | 15   | 8    | 7    | 0    |
|------|------|------|------|------|------|------|------|
| r??? | aaaa | ???? | bbbb | ???? | cccc | ???? | dddd |

| bit(s) |   | description                                  |                                               |                                                  |  |  |  |  |  |
|--------|---|----------------------------------------------|-----------------------------------------------|--------------------------------------------------|--|--|--|--|--|
| 31     | r | WR - W                                       | rite                                          | SICnOUTBUF Register (*1)                         |  |  |  |  |  |
|        |   | read                                         | 0                                             | buffer copied                                    |  |  |  |  |  |
|        |   |                                              | 1                                             | buffer not copied                                |  |  |  |  |  |
|        |   | write                                        | 0                                             | no effect                                        |  |  |  |  |  |
|        |   |                                              | 1                                             | copy all buffers                                 |  |  |  |  |  |
| 30     |   | reserved                                     |                                               |                                                  |  |  |  |  |  |
| 29     |   | RDST0 - Read Status SIC0OINBUF Register (*2) |                                               |                                                  |  |  |  |  |  |
|        |   | 0 Ne                                         | ew d                                          | ata available, not read by main processor        |  |  |  |  |  |
|        |   | 1 No                                         | o nev                                         | w data available, already read by main processor |  |  |  |  |  |
| 28     |   | WRST0                                        | WRST0 - Write Status SICOOUTBUF Register (*3) |                                                  |  |  |  |  |  |
|        |   | 0 Bu                                         | 0 Buffer copied                               |                                                  |  |  |  |  |  |
|        |   | 1 Bu                                         | ıffer                                         | not copied                                       |  |  |  |  |  |
| 27     |   | NOREP                                        | 1 - 0                                         | No Response Error Channel 0 (*4)                 |  |  |  |  |  |
|        |   | read                                         | 0                                             | No Response Error not asserted                   |  |  |  |  |  |
|        |   |                                              | 1                                             | No Response Error asserted                       |  |  |  |  |  |
|        |   | write                                        | 0                                             | No effect                                        |  |  |  |  |  |
|        |   |                                              | 1                                             | Clear No Response Error                          |  |  |  |  |  |
| 26     |   | COLL0                                        | - Co                                          | ollision Error Channel 0 (*5)                    |  |  |  |  |  |
|        |   | read                                         | 0                                             | Collision Error not asserted                     |  |  |  |  |  |
|        |   |                                              | 1                                             | Collision Error asserted                         |  |  |  |  |  |
|        |   | write                                        | 0                                             | No effect                                        |  |  |  |  |  |
|        |   |                                              | 1                                             | Clear Collision Error                            |  |  |  |  |  |
| 25     |   | OVRUN                                        | 10 - 0                                        | Over Run Error Channel 0 (*6)                    |  |  |  |  |  |
|        |   | read                                         | 0                                             | Over Run Error not asserted                      |  |  |  |  |  |
|        |   |                                              | 1                                             | Over Run Error asserted                          |  |  |  |  |  |
|        |   | write                                        | 0                                             | No effect                                        |  |  |  |  |  |
|        |   |                                              | 1                                             | Clear Over Run Error                             |  |  |  |  |  |
| 24     |   | UNRUN - Under Run Error Channel 0 (*7)       |                                               |                                                  |  |  |  |  |  |
|        |   | read                                         | 0                                             | Under Run not asserted                           |  |  |  |  |  |
|        |   |                                              | 1                                             | Under Run asserted                               |  |  |  |  |  |
|        |   | write                                        | 0                                             | No effect                                        |  |  |  |  |  |
|        |   |                                              | 1                                             | Clear Under Run Error                            |  |  |  |  |  |
| 22-23  |   | reserved                                     |                                               |                                                  |  |  |  |  |  |
| 16-21  | b | Joy-char                                     |                                               |                                                  |  |  |  |  |  |
| 14-15  |   | reserved                                     |                                               |                                                  |  |  |  |  |  |
| 8-13   | c | Joy-cha                                      |                                               |                                                  |  |  |  |  |  |
| 6-7    |   | reserved                                     |                                               |                                                  |  |  |  |  |  |
| 0-5    | d | Joy-cha                                      | nnel                                          | 3 bits                                           |  |  |  |  |  |

- (\*1) Write SICnOUTBUF Register: This register controls and indicates whether the SICnOUTBUFs have been copied to the double buffered output buffers. This bit is cleared after the buffers have been copied. (\*2) This register indicates whether the SIC0INBUFs have been captured new data and whether the data has
- (\*2) This register indicates whether the SIC0INBUFs have been captured new data and whether the data has already been read by the main processor (read indicated by main processor read of SIC01NBUF[ERRSTAT, ERRLATCH, INPUT0, INPUT1)]
- (\*3) This register indicates whether the SIC0OUTBUFs have been copied to the double buffered output

buffers. This bit is cleared after the buffers have been copied.

- (\*4) This register indicates that a previous transfer resulted in no response from the controller. This can also be used to detect whether a controller is connected. If no controller is connected, this bit will be set. Once set this bit remains set until it is cleared by the main processor. To clear this bit write '1' to this register.
- (\*5) This register indicates data collision between controller and main unit. Once set this bit remains set until it is cleared by the main processor. To clear this bit write '1' to this register.
- (\*6) This register indicates that the main unit has received more data than expected. Once set this bit remains set until it is cleared by the main processor. To clear this bit write '1' to this register.
- (\*7) This register indicates that the main unit has received less data than expected. Once set this bit remain set until it is cleared by the main processor. To clear this bit write '1' to this register.

| 0xcc00643c |    |    | 4  | F | R/W | SII | EXII | LK - | SI EXI Clock Lock |
|------------|----|----|----|---|-----|-----|------|------|-------------------|
| 31         | 24 | 23 | 16 | 5 | 15  | 8   | 7    | 0    |                   |
|            |    |    |    |   |     |     |      |      |                   |

| bit(s) | description                                         |  |  |  |  |  |  |
|--------|-----------------------------------------------------|--|--|--|--|--|--|
| 31     | LOCK - prevents CPU from setting EXI clock to 32MHz |  |  |  |  |  |  |
|        | 0 32MHz EXI clock setting permitted                 |  |  |  |  |  |  |
|        | 1 32MHz EXI clock setting not permitted             |  |  |  |  |  |  |
| 0-30   | unused/reserved (always zero)                       |  |  |  |  |  |  |

| Г | 0xCC006480 | 0x80 | r/w | SI i/o buffer (access by word) |
|---|------------|------|-----|--------------------------------|

#### 5.8.1 Operation

#### 5.8.1.1 Serial Send Buffer

- ▷ select channel: unset all bits in 0xcc006438 that are not corresponding to your channel and leave the others untouched.
- ▷ Put output data into SI buffer (128 bytes maximum), word by word.
- ⊳ Send command: fill in 'c','m','n' and 'b' bits of 0xcc006434 accordingly, and set bits 's' and 'e'. leave other bits untouched.

### 5.8.1.2 Serial Get Result

## 5.9 EXI - External Interface

Upper memory (0xCC000000 and above) can't keep enough data for extra-large arrays, it's limited up to 0xFFFF bytes (suppose to be). EXI was designed to remove this limitation. EXI is used for access to big, unmapped areas of HW memory (such as bootrom or SRAM). This is the main task of EXI. Put another way, EXI can be used for providing access to slow, serial devices, such as memory cards. EXI is a complex of different devices, mapped to a single bus. The EXI bus is divided on 3 channels. Each channel has 3 unique devices. Each device is defined by its ID, and has its own address space.

EXI can be accessed in immediate mode, or via DMA channel. Each EXI device can generate up to 3 interrupts. They are called EXI, TC and EXT:

| EXI | Device EXI Interrupt              |
|-----|-----------------------------------|
| TC  | Transfer Completed (any mode)     |
| EXT | Device Attached / Device Detached |

Each EXI channel have its own register set, 5 32bit Registers each.

| Register block Base | Size of Register block | common access size |
|---------------------|------------------------|--------------------|
| 0xCC006800          | 0x40                   | 4                  |

|   | 0xCC006800 | 4 | EXIOCSR - EXI Channel 0 Parameter Register (Status?) |
|---|------------|---|------------------------------------------------------|
|   | 0xCC006814 | 4 | EXI1CSR - EXI Channel 1 Parameter Register           |
| ĺ | 0xCC006828 | 4 | EXI2CSR - EXI Channel 2 Parameter Register           |

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) |     | Description                                                                                                |  |  |  |  |  |  |  |
|--------|-----|------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 14-31  |     | unused                                                                                                     |  |  |  |  |  |  |  |
| 13     |     | ROMDIS - (EXIO only) 1: rom de-scramble logic disabled (*1)                                                |  |  |  |  |  |  |  |
| 12     | d   | EXT - Device Connected Bit (R) 1 if a device is connected on the specific channel                          |  |  |  |  |  |  |  |
| 11     | Х   | EXTINT - External Insertion Interrupt Status (R): check to poll EXT interrupt (or to detect device detach) |  |  |  |  |  |  |  |
|        |     | read 0 External Insertion Interrupt has not been requested                                                 |  |  |  |  |  |  |  |
|        |     | 1 External Insertion Interrupt has been requested                                                          |  |  |  |  |  |  |  |
|        |     | write 0 No effect                                                                                          |  |  |  |  |  |  |  |
|        |     | 1 Clear External Insertion Interrupt                                                                       |  |  |  |  |  |  |  |
| 10     | m   | EXTINTMASK - EXT Interrupt Mask (1 - enable, 0 - disable) (*5)                                             |  |  |  |  |  |  |  |
| 7-9    | 210 | CS - devices selected on this channel, each bit selecting one device. (*)                                  |  |  |  |  |  |  |  |
| 4-6    | f   | CLK - used frequency (0-5)                                                                                 |  |  |  |  |  |  |  |
|        |     | 000 <b>1MHz</b>                                                                                            |  |  |  |  |  |  |  |
|        |     | 001 <b>2MHz</b>                                                                                            |  |  |  |  |  |  |  |
|        |     | 010 <b>4MHz</b>                                                                                            |  |  |  |  |  |  |  |
|        |     | 011 8MHz                                                                                                   |  |  |  |  |  |  |  |
|        |     | 100 16MHz                                                                                                  |  |  |  |  |  |  |  |
|        |     | 101 <b>32MHz</b>                                                                                           |  |  |  |  |  |  |  |
|        |     | 110 reserved                                                                                               |  |  |  |  |  |  |  |
|        |     | 111 reserved                                                                                               |  |  |  |  |  |  |  |
| 3      | t   | TCINT - Transfer Complete Interrupt Status                                                                 |  |  |  |  |  |  |  |
|        |     | read 0 Transfer Complete Interrupt has not been requested                                                  |  |  |  |  |  |  |  |
|        |     | 1 Transfer Complete Interrupt has been requested                                                           |  |  |  |  |  |  |  |
|        |     | write 0 No effect                                                                                          |  |  |  |  |  |  |  |
|        |     | 1 Clear Transfer Complete Interrupt                                                                        |  |  |  |  |  |  |  |
| 2      | m   | TCINTMASK - Transfer complete interrupt mask (1 - enable, 0 - disable) (*2)                                |  |  |  |  |  |  |  |
| 1      | e   | EXTINT - Interrupt Status (*6)                                                                             |  |  |  |  |  |  |  |
|        |     | read 0 EXI Interrupt has not been requested                                                                |  |  |  |  |  |  |  |
|        |     | 1 EXI Interrupt has been requested                                                                         |  |  |  |  |  |  |  |
|        |     | write 0 No effect                                                                                          |  |  |  |  |  |  |  |
|        |     | 1   Clear EXI Interrupt                                                                                    |  |  |  |  |  |  |  |
| 0      | m   | EXTINTMASK - EXI interrupt mask (1 - enable, 0 - disable)                                                  |  |  |  |  |  |  |  |

(\*)Only one of these three bits can be set to signify which device number has been selected on a specific channel.

- (\*6) This bit indicates the current status of the EXI0 interrupt. The interrupt is cleared by accessing the expansion device and clearing the interrupt on the device itself and cleared locally when a '1' is written to this register. This interrupt input is edge triggered.
- (\*1) This bit disables access to the IPL Mask ROM attached to CS1. Once this bit is enabled, it can only be disabled again by global reset. The ROM de-scramble logic will become disabled and any reads to the memory mapped ROM area will return all 0.When de-scrambler is enabled all EXIO data will be de-scrambled, so only the IPL ROM may be accessed through EXIO until ROMDIS is set to '1'. (this is usually done by the Bootstrap, see Boot process details)
- (\*2) Interrupt masking prevents the interrupt from being sent to the main processor, but does not affect the assertion of TCINT

- (\*3) Interrupt masking prevents the interrupt from being sent to the main processor, but does not affect the assertion of EXIINT
- (\*5) Interrupt masking prevents the interrupt from being sent to the main processor, but does not affect the assertion of EXICPR[EXTINT]
- (\*4) This interrupt indicates than an external EXI device has been removed from channel 1. To check whether the device has been inserted or removed, check the EXICPR[EXT] bit. When this bit is set, the channel's expansion EXI interface outputs go to high.

| 0xCC006804 | 4 | r/w | EXIOMAR - EXI Channel 0 DMA Start Address |
|------------|---|-----|-------------------------------------------|
| 0xCC006818 | 4 | r/w | EXI1MAR - EXI Channel 1 DMA Start Address |
| 0xCC00682c | 4 | r/w | EXI2MAR - EXI Channel 2 DMA Start Address |

| 31 | 24 | 23   | 16   | 15   | 8    | 7    | 0 |
|----|----|------|------|------|------|------|---|
|    | dd | dddd | dddd | dddd | dddd | ddd. |   |

Physical Startaddress for DMA transfer. Must be aligned to 32 byte boundary .

(\*) The memory address is the destination address when EXICR[RW] is set to 'read' and is the source address when set to 'write'.

| 0xCC006808 | 4 | r/w | EXIOLENGTH - EXI Channel 0 DMA Transfer Length |  |  |  |  |
|------------|---|-----|------------------------------------------------|--|--|--|--|
| 0xCC00681c | 4 | E   | XI Channel 1 DMA Transfer Length               |  |  |  |  |
| 0xCC006830 | 4 | E   | XI Channel 2 DMA Transfer Length               |  |  |  |  |

| 31 | 24 | 23   | 16   | 15   | 8    | 7    | 0 |
|----|----|------|------|------|------|------|---|
|    | dd | dddd | dddd | dddd | dddd | ddd. |   |

Size of DMA transfer data in bytes. bits 0-4 are always zero (which means the size is 32 byte aligned)

|            |   |     | EXIOCR - EXI Channel 0 Control Register |
|------------|---|-----|-----------------------------------------|
|            |   |     | EXI1CR - EXI Channel 1 Control Register |
| 0xCC006834 | 4 | r/w | EXI2CR - EXI Channel 2 Control Register |

|   | 31 | 24 | 23 | 16 | 15 | 8 | 7  | 0    |
|---|----|----|----|----|----|---|----|------|
| ſ |    |    |    |    |    |   | 11 | ttme |

| bit(s) |   | Description                                                                |  |  |  |  |  |  |
|--------|---|----------------------------------------------------------------------------|--|--|--|--|--|--|
| 6-31   |   | unused                                                                     |  |  |  |  |  |  |
| 4-5    | 1 | TLEN - (data length-1) for immediate mode                                  |  |  |  |  |  |  |
|        |   | 00 1 byte                                                                  |  |  |  |  |  |  |
|        |   | 01 2 bytes                                                                 |  |  |  |  |  |  |
|        |   | 10 3 bytes                                                                 |  |  |  |  |  |  |
|        |   | 11 4 bytes                                                                 |  |  |  |  |  |  |
| 2-3    | t | RW - transfer type                                                         |  |  |  |  |  |  |
|        |   | 00 read                                                                    |  |  |  |  |  |  |
|        |   | 01 write                                                                   |  |  |  |  |  |  |
|        |   | 10 read and write, invalid for DMA                                         |  |  |  |  |  |  |
|        |   | 11 undefined                                                               |  |  |  |  |  |  |
| 1      | m | DMA - transfer mode (0 - immediate, 1 - DMA)                               |  |  |  |  |  |  |
| 0      | e | TSTART - set, to start transfer. will be cleared after transfer completed. |  |  |  |  |  |  |

| 0xCC006810 | 4 | r/w | EXIODATA - EXI Channel 0 Immediate Data |
|------------|---|-----|-----------------------------------------|
| 0xCC006824 | 4 | r/w | EXI1DATA - EXI Channel 1 Immediate Data |
| 0xCC006838 | 4 | r/w | EXI2DATA - EXI Channel 2 Immediate Data |

| 31   | 24   | 23   | 16   | 15   | 8    | 7    | 0    |
|------|------|------|------|------|------|------|------|
| dddd |

Data for read / write immediate operations (up to 4 bytes long).

The EXICPR must be configured to assert one of the devices CS, before the read or write operation can be performed. The actual read/write operation is triggered by the EXI0CR[TSTART] register and EXI0CR[DMA] set to '0'. Data is sent with MSB (bit 31) first.

## 5.9.1 Operation

### 5.9.1.1 Initializing the EXI Bus

- ▷ clear all EXIs status registers (set to 0)
- > eventually initialize interrupt callbacks.

If you want to use DMA with EXI, you need your own properly installed EXI interrupt handlers. There is no need in callbacks and interrupts, if you are using EXI in immediate mode (just mask all TCs, to prevent unhandled interrupts).

#### 5.9.1.2 Selecting a Specific EXI Device on an EXI Channel

- > set selected device number and frequency ('210' and f fields in status register)

#### 5.9.1.3 Deselecting EXI Devices on an EXI Channel

#### 5.9.1.4 Performing an IMM Operation on a EXI Device

## 5.9.1.4.1 IMM Read

- ⊳ setup EXI Control Register (bit4-5:data length-1, bit2: 0 for read, bit1: 0 for immediate, bit1: 1 to start transfer)
- > wait until transfer has been completed (until bit 0 in EXI Control Register has been cleared)
- ▷ get data from EXI IMM Data Register (up to 4 bytes)

#### 5.9.1.4.2 IMM Write

- > write data to EXI IMM Data Register (up to 4 bytes)
- ⊳ wait until transfer has been completed (until bit 0 in EXI Control Register has been cleared)

## 5.9.1.5 Performing a DMA Operation on a EXI Device

#### 5.9.1.5.1 DMA Read

- ⊳ setup EXI Control Register (bit4-5:data length-1, bit2: 0 for read, bit1: 1 for DMA, bit1: 1 to start transfer)
- > wait until transfer has been completed (until bit 0 in EXI Control Register has been cleared)

## 5.9.1.5.2 DMA Write

- ⊳ wait until transfer has been completed (until bit 0 in EXI Control Register has been cleared)
- **5.9.1.6** Wait for EXI transfer completed To detect the end of a transfer on a specific channel either setup a 'transfer completed' callback (only works with DMA transfer) or periodically check bit 0 of the EXI Control Register (until cleared).

## 5.10 AI - Audio Streaming Interface

| Registerblock Base | Size of Registerblock | common access size |  |
|--------------------|-----------------------|--------------------|--|
| 0xcc006c00         | 0x20                  | 4                  |  |

| 0xCC006C00   r/w |    |    | 4 | AIC | R - Au | dio Interfa | ace C | ontrol Regi | ster |
|------------------|----|----|---|-----|--------|-------------|-------|-------------|------|
|                  |    |    |   |     |        |             |       |             |      |
| 31               | 24 | 23 |   | 16  | 15     | 8           | 7     | 0           |      |

| bit(s) | Description                                                                                                 |  |  |  |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 7-31   | reserved/unused                                                                                             |  |  |  |  |  |  |  |
| 6      | DSP Sample Rate                                                                                             |  |  |  |  |  |  |  |
|        | 0 48 kHz sample rate                                                                                        |  |  |  |  |  |  |  |
|        | 1 32 kHz sample rate                                                                                        |  |  |  |  |  |  |  |
| 5      | SCRESET Sample Counter Reset: When a '1' is written to this bit the AISLRCNT register is reset to 0         |  |  |  |  |  |  |  |
| 4      | AIINTVLD Audio Interface Interrupt Valid.                                                                   |  |  |  |  |  |  |  |
|        | This bit controls whether AIINT is affected by the AIIT register matching AISLRCNT. Once set, AIINT will ho |  |  |  |  |  |  |  |
|        | 0 Match affects AIINT                                                                                       |  |  |  |  |  |  |  |
|        | 1 AIINT hold last value.                                                                                    |  |  |  |  |  |  |  |
| 3      | AIINT Audio Interface Interrupt Status and clear. (*3)                                                      |  |  |  |  |  |  |  |
|        | r 0 Audio Interface Interrupt has not been requested                                                        |  |  |  |  |  |  |  |
|        | 1 Audio Interface Interrupt has been requested.                                                             |  |  |  |  |  |  |  |
|        | w 0 No effect                                                                                               |  |  |  |  |  |  |  |
|        | 1 Clear Audio Interface interrupt                                                                           |  |  |  |  |  |  |  |
| 2      | AIINTMSK Audio interface Interrupt Mask                                                                     |  |  |  |  |  |  |  |
|        | 0 interrupt masked                                                                                          |  |  |  |  |  |  |  |
|        | 1 Interrupt enabled                                                                                         |  |  |  |  |  |  |  |
| 1      | AFR: Auxiliary Frequency Register (*1)                                                                      |  |  |  |  |  |  |  |
|        | 0 48 kHz sample rate                                                                                        |  |  |  |  |  |  |  |
|        | 1 32 kHz sample rate                                                                                        |  |  |  |  |  |  |  |
| 0      | PSTAT: Playing Status                                                                                       |  |  |  |  |  |  |  |
|        | 0 Stop or Pause streaming audio (AISLR clock disabled)                                                      |  |  |  |  |  |  |  |
|        | 1 Play streaming audio (AISLR clock enabled)                                                                |  |  |  |  |  |  |  |

(\*3)

On read this bit indicates the current status of the audio interface interrupt. When a '1' is written to this register, the interrupt is cleared. This interrupt indicates that the AIIT register matches the AISLRCNT. This bit asserts regardless of the setting of AICR[AIMSK]. (\*1)

Controls the sample rate of the streaming audio data. When set to 32 kHz sample rate, the SRC will convert the streaming audio data to 48 kHz. This bit should only be changed when Streaming Audio is stopped (AICR[PSTAT] set to 0). (\*0)

This bit enables the AISLR clock which controls the playing/stopping of audio streaming. When this bit is 1 AISLRCNT register will increment for every stereo pair of samples output.

| 0xCC006C04 | r/w | 4 | AIVR - Audio Interface Volume Register |
|------------|-----|---|----------------------------------------|

| 31 | 24 | 23 | 16 | 15   | 8    | 7    | 0    |
|----|----|----|----|------|------|------|------|
|    |    |    |    | rrrr | rrrr | 1111 | 1111 |

| bit(s) |   | description                                             |
|--------|---|---------------------------------------------------------|
| 16-31  |   | unused/reserved                                         |
| 8-15   | r | AVRR - Volume Right Channel (0x00 is muted,0xff is max) |
| 0-7    | 1 | AVRL - Volume Right Channel (0x00 is muted,0xff is max) |

0xCC006C08 r 4 AISCNT - Audio Interface Sample Counter

Audio interface Sample Counter: This register counts the number of AIS stereo samples that have been output. It is enabled by AICR[PSTAT]. It can be cleared by the AICR[SCRESET] register.

| ſ | 0xCC006C0C | r/w | 4 | AIIT - Audio Interface Interrupt Timing |
|---|------------|-----|---|-----------------------------------------|
|---|------------|-----|---|-----------------------------------------|

This register indicates the stereo sample count to issue an audio interface interrupt to the main processor. The interrupt is issued when the value of the AISLRCNT register matches the content of this register.

## 5.11 GX FIFO (Graphic display lists)

GP have mapped 32-byte FIFO buffer, at 0xCC008000, which is controlled by write gather pipe (WPAR). when FIFO is filled (or overloaded by 32-bytes), WPAR performs burst transaction of primitive data to GP command FIFO. WPAR API also keeps watching for wrapping it on 32-buffer. You can think, that data is always looped and flows like in circle.

| Registerblock Base | Size of Registerblock | common access size |  |
|--------------------|-----------------------|--------------------|--|
| 0xcc008000         | 4                     | any                |  |

To access FIFO, you should just write data of any size to 0xCC008000, WPAR will control circularity and gathering automatically. By "data of any size" are assumed command types, vertices, vertex attributes etc stuff. All commands and primitive data are sending through mapped GP FIFO. GP task is only to draw primitives in embedded frame buffer, and then send it to XFB, for VI rendering. All render rules are stored in VI. GP can only change some copy rules, using pixel engine setup.

GP primitives also can be drawn, using Display List. In that case, GP FIFO takes only "CALL\_DL" command with pointer to list data, and then GP command FIFO sequentially parsing primitive data from the main memory. Primitives can contains both direct and indexed vertexes as well. In first case, vertex attributes are sent directly using GP FIFO, in the other case the CPU sends only the pointer to vertex attribute data which is located in main memory.

## 5.11.1 internal BP registers

| Registerblock Base | Size of Registerblock | common access size |
|--------------------|-----------------------|--------------------|
| 0x00               | 0x100                 | 4 (1+3)            |

| Register | Description                                     |
|----------|-------------------------------------------------|
| 0x00     | GEN_MODE                                        |
| 0x01     | display copy filter                             |
| 0x02     | display copy filter                             |
| 0x03     | display copy filter                             |
| 0x04     | display copy filter                             |
| 0x05     | ?                                               |
| 0x06     | IND_MTXA0                                       |
| 0x07     | IND_MTXB0                                       |
| 0x08     | IND_MTXC0                                       |
| 0x09     | IND_MTXA1                                       |
| 0x0a     | IND_MTXB1                                       |
| 0x0b     | IND MTXC1                                       |
| 0x0c     | IND_MTXA2                                       |
| 0x0d     | IND MTXB2                                       |
| 0x0e     | IND MTXC2                                       |
| 0x0f     | IND IMASK                                       |
| 0x10     | IND_CMD0 - tev indirect 0                       |
| 0x11     | IND CMD1 - tev indirect 1                       |
| 0x12     | IND_CMD2 - tev indirect 2                       |
| 0x13     | IND_CMD3 - tev indirect 3                       |
| 0x14     | IND CMD4 - tev indirect 4                       |
| 0x15     | IND_CMD5 - tev indirect 5                       |
| 0x16     | IND_CMD6 - tev indirect 6                       |
| 0x17     | IND CMD7 - tev indirect 7                       |
| 0x18     | IND_CMD8 - tev indirect 8                       |
| 0x19     | IND_CMD9 - tev indirect 9                       |
| 0x1a     | IND CMDA - tev indirect 10                      |
| 0x1b     | IND_CMDB - tev indirect 11                      |
| 0x1c     | IND_CMDC - tev indirect 12                      |
| 0x1d     | IND_CMDD - tev indirect 13                      |
| 0x1e     | IND_CMDE - tev indirect 14                      |
| 0x1f     | IND_CMDF - tev indirect 15                      |
| 0x20     | scissor x0,y0 (0x20156156)                      |
| 0x21     | scissor x1,y1 (0x213d5335)                      |
| 0x22     | SU_LPSIZE - field mode line width - point width |
| 0x23     | SU Counter (?) (0x23000000)                     |
| 0x24     | RAS Counter (?) (0x24000000)                    |
| 0x25     | RAS1_SS0 - ind tex coord scale 0                |
| 0x26     | RAS1_SS1 - ind tex coord scale 1                |
| 0x27     | RAS1_IREF                                       |
| 0x28     | RAS1_TREF0 - tev order 0                        |
| 0x29     | RAS1_TREF1 - tev order 1                        |
| 0x2a     | RAS1_TREF2 - tev order 2                        |
| 0x2b     | RAS1_TREF3 - tev order 3                        |
| 0x2c     | RAS1_TREF4 - tev order 4                        |
| 0x2d     | RAS1_TREF5 - tev order 5                        |
| 0x2e     | RAS1_TREF6 - tev order 6                        |
| 0x2f     | RAS1 TREF7 - tev order 7                        |

| Register     | Description                                                            |
|--------------|------------------------------------------------------------------------|
| 0x30         | SU_SSIZE0 - texture offset 0 (Texture Size X, Y ?)                     |
| 0x31         | SU_TSIZE0 -                                                            |
| 0x32         | SU_SSIZE1 - texture offset 1                                           |
| 0x33         | SU_TSIZE1 -                                                            |
| 0x34         | SU SSIZE2 - texture offset 2                                           |
| 0x35         | SU TSIZE2 -                                                            |
| 0x36         | SU SSIZE3 - texture offset 3                                           |
| 0x37         | SU TSIZE3 -                                                            |
| 0x38         | SU SSIZE4 - texture offset 4                                           |
| 0x39         | SU TSIZE4 -                                                            |
| 0x3a         | SU SSIZE5 - texture offset 5                                           |
| 0x3b         | SU TSIZE5 -                                                            |
| 0x3c         | SU SSIZE6 - texture offset 6                                           |
| 0x3d         | SU TSIZE6 -                                                            |
| 0x3e         | SU SSIZE7 - texture offset 7                                           |
| 0x3f         | SU TSIZE7 -                                                            |
| 0x40         | PE ZMODE set z mode                                                    |
| 0x40         | PE_CMODE0 dithering / blend mode/color_update/alpha_update/set_dither  |
| 0x42         | PE CMODE1 destination alpha                                            |
| 0x42         | PE_CONTROL comp z location z_comp_loc(0x43000040)pixel_fmt(0x43000041) |
| 0x13         | field mask (0x44000003)                                                |
| 0x45         | PE_DONE - draw done (end of list marker) ?                             |
| 0x46         | some clock ? (0x46000000 (((162000000/500)/4224) 0x0200))              |
| 0x47         | PE_TOKEN token B (16 bit)                                              |
| 0x47         | PE_TOKEN_INT token A (16 bit)                                          |
| 0x49         | EFB source rectangle top left                                          |
| 0x4a         | EFB source rectangle width, height-1                                   |
| 0x4b         | XFB target address                                                     |
| 0x4c         | ?                                                                      |
| 0x4d         | stride ?                                                               |
| 0x4e         | DispCopyYScale                                                         |
| 0x4e         | PE copy clear AR - set clear alpha and red components                  |
| 0x41<br>0x50 | PE copy clear GB - green and blue                                      |
| 0x50         | PE copy clear Z - 24-bit Z value                                       |
| 0x51         | pe copy execute?                                                       |
| 0x52         | copy filter                                                            |
| 0x53         | copy filter                                                            |
| 0x54<br>0x55 | bounding box (0x550003ff)                                              |
| 0x55         | bounding box (0x550003ff) bounding box (0x560003ff)                    |
| 0x50         | ?                                                                      |
| 0x57         | ? (0x5800000f)                                                         |
| 0x56         | scissor-box offset (0x5902acab)                                        |
| 0x59<br>0x5a | ?                                                                      |
| 0x5a<br>0x5b | ?                                                                      |
|              | ?                                                                      |
| 0x5c         | ?                                                                      |
| 0x5d         | ?                                                                      |
| 0x5e         | ?                                                                      |

| Register | Description                                                           |
|----------|-----------------------------------------------------------------------|
| 0x60     | ?                                                                     |
| 0x61     | ?                                                                     |
| 0x62     | ?                                                                     |
| 0x63     | ?                                                                     |
| 0x64     | TX_LOADTLUT0                                                          |
| 0x65     | TX_LOADTLUT1                                                          |
| 0x66     | ?                                                                     |
| 0x67     | metric ? (0x67000000)                                                 |
| 0x68     | field mode                                                            |
| 0x69     | some clock ? (0x69000000 ((((162000000/500)>>11)&0x00ffffff)) 0x0400) |
| 0x6a     | ?                                                                     |
| 0x6b     | ?                                                                     |
| 0x6c     | ?                                                                     |
| 0x6d     | ?                                                                     |
| 0x6e     | ?                                                                     |
| 0x6f     | ?                                                                     |
| 0x70     | ?                                                                     |
| 0x71     | ?                                                                     |
| 0x72     | ?                                                                     |
| 0x73     | ?                                                                     |
| 0x74     | ?                                                                     |
| 0x75     | ?                                                                     |
| 0x76     | ?                                                                     |
| 0x77     | ?                                                                     |
| 0x78     | ?                                                                     |
| 0x79     | ?                                                                     |
| 0x7a     | ?                                                                     |
| 0x7b     | ?                                                                     |
| 0x7c     | ?                                                                     |
| 0x7d     | ?                                                                     |
| 0x7e     | ?                                                                     |
| 0x7f     | ?                                                                     |
| 0x80     | TX_SETMODE0_I0 - 0x90 for linear                                      |
| 0x81     | TX_SETMODE0_I1                                                        |
| 0x82     | TX_SETMODE0_I2                                                        |
| 0x83     | TX_SETMODE0_I3                                                        |
| 0x84     | TX_SETMODE1_I0                                                        |
| 0x85     | TX_SETMODE1_I1                                                        |
| 0x86     | TX_SETMODE1_I2                                                        |
| 0x87     | TX_SETMODE1_I3                                                        |
| 0x88     | TX_SETIMAGE0_I0 - texture size ?                                      |
| 0x89     | TX_SETIMAGE0_I1                                                       |
| 0x8a     | TX_SETIMAGE0_I2                                                       |
| 0x8b     | TX_SETIMAGE0_I3                                                       |
| 0x8c     | TX_SETIMAGE1_I0                                                       |
| 0x8d     | TX_SETIMAGE1_I1                                                       |
| 0x8e     | TX_SETIMAGE1_I2                                                       |
| 0x8f     | TX_SETIMAGE1_I3                                                       |

| Register | Description                       |
|----------|-----------------------------------|
| 0x90     | TX_SETIMAGE2_I0                   |
| 0x91     | TX_SETIMAGE2_I1                   |
| 0x92     | TX_SETIMAGE2_I2                   |
| 0x93     | TX_SETIMAGE2_I3                   |
| 0x94     | TX_SETIMAGE3_I0 - Texture Pointer |
| 0x95     | TX_SETIMAGE3_I1                   |
| 0x96     | TX_SETIMAGE3_I2                   |
| 0x97     | TX_SETIMAGE3_I3                   |
| 0x98     | TX_LOADTLUT0                      |
| 0x99     | TX_LOADTLUT1                      |
| 0x9a     | TX_LOADTLUT2                      |
| 0x9b     | TX_LOADTLUT3                      |
| 0x9c     | ?                                 |
| 0x9d     | ?                                 |
| 0x9e     | ?                                 |
| 0x9f     | ?                                 |
| 0xa0     | TX_SETMODE0_I4                    |
| 0xa1     | TX_SETMODE0_I5                    |
| 0xa2     | TX_SETMODE0_I6                    |
| 0xa3     | TX_SETMODE0_I7                    |
| 0xa4     | TX_SETMODE1_I4                    |
| 0xa5     | TX_SETMODE1_I5                    |
| 0xa6     | TX_SETMODE1_I6                    |
| 0xa7     | TX_SETMODE1_I7                    |
| 0xa8     | TX_SETIMAGE0_I4                   |
| 0xa9     | TX_SETIMAGE0_I5                   |
| 0xaa     | TX_SETIMAGE0_I6                   |
| 0xab     | TX_SETIMAGE0_I7                   |
| 0xac     | TX_SETIMAGE1_I4                   |
| 0xad     | TX_SETIMAGE1_I5                   |
| 0xae     | TX_SETIMAGE1_I6                   |
| 0xaf     | TX_SETIMAGE1_I7                   |
| 0xb0     | TX_SETIMAGE2_I4                   |
| 0xb1     | TX_SETIMAGE2_I5                   |
| 0xb2     | TX_SETIMAGE2_I6                   |
| 0xb3     | TX_SETIMAGE2_I7                   |
| 0xb4     | TX_SETIMAGE3_I4                   |
| 0xb5     | TX_SETIMAGE3_I5                   |
| 0xb6     | TX_SETIMAGE3_I6                   |
| 0xb7     | TX_SETIMAGE3_I7                   |
| 0xb8     | TX_SETTLUT_I4                     |
| 0xb9     | TX_SETTLUT_I5                     |
| 0xba     | TX_SETTLUT_I6                     |
| 0xbb     | TX_SETTLUT_I7                     |
| 0xbc     | ?                                 |
| 0xbd     | ?                                 |
| 0xbe     | ?                                 |
| 0xbf     | 4                                 |

| Register | Description                  |
|----------|------------------------------|
| 0xc0     | TEV_COLOR_ENV_0 - tev op 0   |
| 0xc1     | TEV_ALPHA_ENV_0 - tev op 1   |
| 0xc2     | TEV_COLOR_ENV_1 -            |
| 0xc3     | TEV_ALPHA_ENV_1              |
| 0xc4     | TEV_COLOR_ENV_2 -            |
| 0xc5     | TEV_ALPHA_ENV_2              |
| 0xc6     | TEV_COLOR_ENV_3 -            |
| 0xc7     | TEV_ALPHA_ENV_3              |
| 0xc8     | TEV_COLOR_ENV_4 -            |
| 0xc9     | TEV_ALPHA_ENV_4              |
| 0xca     | TEV_COLOR_ENV_5 -            |
| 0xcb     | TEV_ALPHA_ENV_5              |
| 0xcc     | TEV_COLOR_ENV_6 -            |
| 0xcd     | TEV_ALPHA_ENV_6              |
| 0xce     | TEV_COLOR_ENV_7 -            |
| 0xcf     | TEV_ALPHA_ENV_7              |
| 0xd0     | TEV_COLOR_ENV_8 -            |
| 0xd1     | TEV_ALPHA_ENV_8              |
| 0xd2     | TEV_COLOR_ENV_9 -            |
| 0xd3     | TEV_ALPHA_ENV_9              |
| 0xd4     | TEV_COLOR_ENV_A -            |
| 0xd5     | TEV_ALPHA_ENV_A              |
| 0xd6     | TEV_COLOR_ENV_B -            |
| 0xd7     | TEV_ALPHA_ENV_B              |
| 0xd8     | TEV_COLOR_ENV_C -            |
| 0xd9     | TEV_ALPHA_ENV_C              |
| 0xda     | TEV_COLOR_ENV_D -            |
| 0xdb     | TEV_ALPHA_ENV_D              |
| 0xdc     | TEV_COLOR_ENV_E -            |
| 0xdd     | TEV_ALPHA_ENV_E              |
| 0xde     | TEV_COLOR_ENV_F -            |
| 0xdf     | TEV_ALPHA_ENV_F              |
| 0xe0     | TEV_REGISTERL_0              |
| 0xe1     | TEV_REGISTERH_0              |
| 0xe2     | TEV_REGISTERL_1              |
| 0xe3     | TEV_REGISTERH_1              |
| 0xe4     | TEV_REGISTERL_2              |
| 0xe5     | TEV_REGISTERH_2              |
| 0xe6     | TEV_REGISTERL_3              |
| 0xe7     | TEV_REGISTERH_3              |
| 0xe8     | Fog Range (0xe8000156)       |
| 0xe9     | ?                            |
| 0xea     | ?                            |
| 0xeb     | ?                            |
| 0xec     | ? (guessed: tev_range_adj_c) |
| 0xed     | ? (guessed: tev_range_adj_k) |
| 0xee     | TEV_FOG_PARAM_0 (0xee03ce38) |
| 0xef     | TEV_FOG_PARAM_1 (0xef471c82) |

| Register      | Description                                     |  |  |  |
|---------------|-------------------------------------------------|--|--|--|
| 0xf0          | TEV_FOG_PARAM_2 (0xf0000002)                    |  |  |  |
| 0xf1          | TEV_FOG_PARAM_3 (0xf1000000)                    |  |  |  |
| 0xf2          | TEV_FOG_COLOR (0xf2000000)                      |  |  |  |
| 0xf3          | TEV_ALPHAFUNC - alpha compare (0xf33f0000)      |  |  |  |
| 0xf4          | TEV_Z_ENV_0 - z texture 0                       |  |  |  |
| 0xf5          | TEV_Z_ENV_1 - z texture 1                       |  |  |  |
| 0xf6          | TEV_KSEL_0 - Tev Swap Mode Table 0 (0xf6018064) |  |  |  |
| 0xf7          | TEV_KSEL_1 - Tev Swap Mode Table 1 (0xf701806e) |  |  |  |
| 0xf8          | TEV_KSEL_2 - Tev Swap Mode Table 2 (0xf8018060) |  |  |  |
| 0xf9          | TEV_KSEL_3 - Tev Swap Mode Table 3 (0xf901806c) |  |  |  |
| 0xfa          | TEV_KSEL_4 - Tev Swap Mode Table 4 (0xfa018065) |  |  |  |
| 0xfb          | TEV_KSEL_5 - Tev Swap Mode Table 5 (0xfb01806d) |  |  |  |
| 0xfc          | TEV_KSEL_6 - Tev Swap Mode Table 6 (0xfc01806a) |  |  |  |
| 0xfd          | TEV_KSEL_7 - Tev Swap Mode Table 7 (0xfd01806e) |  |  |  |
| 0xfe          | SS_MASK - BP Mask Register                      |  |  |  |
| 0xff          | ?                                               |  |  |  |
| 0x00 <b>4</b> | w GEN_MODE                                      |  |  |  |

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description                        |  |  |  |
|--------|------------------------------------|--|--|--|
| 24     | RID                                |  |  |  |
| 19     | ZFREEZE                            |  |  |  |
| 16     | NBMP - Number of Bumpmaps          |  |  |  |
| 14-15  | REJECT_EN - Culling Mode           |  |  |  |
|        | 0 none 1 negative 2 positive 3 all |  |  |  |
| 10     | NTEV                               |  |  |  |
| 9      | MS_EN                              |  |  |  |
| 4      | NCOL - Number of Colors            |  |  |  |
| 0      | NTEX - Number of Texture Coords    |  |  |  |

| 0x01 | 4 | W | display copy filter |
|------|---|---|---------------------|
|      |   |   |                     |
| 0x02 | 4 | W | display copy filter |
|      |   |   |                     |
| 0x03 | 4 | W | display copy filter |
|      |   |   |                     |
| 0x04 | 4 | W | display copy filter |
|      |   |   |                     |
| 0x05 | 4 | W | ?                   |

| 0x06 | 4 | W | IND_MTXA0 |
|------|---|---|-----------|
| 0x09 | 4 | W | IND_MTXA1 |
| 0x0c | 4 | W | IND_MTXA2 |

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description |
|--------|-------------|
| 24     | RID         |
| 22     | S           |
| 11     | MB          |
| 0      | MA          |

|   | 0x07 | 4 | W | IND_MTXB0 |
|---|------|---|---|-----------|
|   | 0x0a | 4 | W | IND_MTXB1 |
| ĺ | 0x0d | 4 | W | IND_MTXB2 |

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description |
|--------|-------------|
| 24     | RID         |
| 22     | S           |
| 11     | MD          |
| 0      | MC          |

| ı  | 000  | 1 | T | IND MTVCO |
|----|------|---|---|-----------|
|    | 0x08 | 4 | W | IND_MTXC0 |
|    | 0x0b | 4 | w | IND MTXC1 |
| IJ |      |   |   |           |
|    | 0x0e | 4 | W | IND MTXC2 |

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description |
|--------|-------------|
| 24     | RID         |
| 22     | S           |
| 11     | MF          |
| 0      | ME          |

| 0x0f | 4 | W | IND IMASK |
|------|---|---|-----------|

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description |
|--------|-------------|
| 24     | RID         |
| 0      | IMASK       |

| 0x10 | 4 | W | IND_CMD0 |
|------|---|---|----------|
|------|---|---|----------|

| 0x11 | 4 | W | IND_CMD1 |  |  |
|------|---|---|----------|--|--|
| 0x12 | 4 | W | IND_CMD2 |  |  |
| 0x13 | 4 | W | IND_CMD3 |  |  |
| 0x14 | 4 | W | IND_CMD4 |  |  |
| 0x15 | 4 | W | IND_CMD5 |  |  |
| 0x16 | 4 | W | IND_CMD6 |  |  |
| 0x17 | 4 | W | IND_CMD7 |  |  |
| 0x18 | 4 | W | IND_CMD8 |  |  |
| 0x19 | 4 | W | IND_CMD9 |  |  |
| 0x1a | 4 | W | IND_CMDA |  |  |
| 0x1b | 4 | W | IND_CMDB |  |  |
| 0x1c | 4 | W | IND_CMDC |  |  |
| 0x1d | 4 | w | IND_CMDD |  |  |
| 0x1e | 4 | W | IND_CMDE |  |  |
| 0x1f | 4 | W | IND_CMDF |  |  |

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description                      |
|--------|----------------------------------|
| 24     | RID                              |
| 21-23  | PAD0 - padding zeros             |
| 20     | FB - addprev                     |
| 19     | LB - utclod                      |
| 16-18  | TW - Wrap T                      |
|        | 0 ITW_OFF                        |
|        | 1 ITW_256                        |
|        | 2 ITW_128                        |
|        | 3 ITW_64                         |
|        | 4 ITW_32                         |
|        | 5   ITW_16                       |
|        | 6 ITW_0                          |
|        | 7                                |
| 13-15  | SW - Wrap S                      |
|        | 0 ITW_OFF                        |
|        | 1 ITW_256                        |
|        | 2 ITW_128                        |
|        | 3 ITW_64                         |
|        | 4 ITW_32                         |
|        | 5 ITW_16                         |
|        | 6 ITW_0                          |
|        | 7                                |
| 9-12   | M - Matrix ID                    |
|        | 0 ITM_OFF                        |
|        | 1 ITM_0                          |
|        | 2 ITM_1                          |
|        | 3 ITM_2                          |
|        | 5 ITM_S0                         |
|        | 6 ITM_S1                         |
|        | 7 ITM_S2                         |
|        | 9 ITM_T0                         |
|        | 10 ITM_T1                        |
|        | 11 ITM_T2                        |
| 7-8    | BS - Alpha Selection             |
|        | 0 ITBA_OFF                       |
|        | 1 ITBA_S                         |
|        | 2 ITBA_T                         |
|        | 3 ITBA_U                         |
| 4-6    | BIAS                             |
|        | 0 ITB_NONE                       |
|        | 1 ITB_S                          |
|        | 2 ITB_T                          |
|        | 3 ITB_ST                         |
|        | 4 ITB_U                          |
|        | 5 ITB_SU                         |
|        | 6 ITB_TU                         |
|        | 7 ITB_STU                        |
| 2-3    | FMT - Format                     |
|        | 0 ITF_8                          |
|        | 1 ITF_5                          |
|        | 2 ITF_4                          |
|        | 3   ITF_3                        |
| 0-1    | BT - Indirect Tex Stage ID (0-3) |
|        |                                  |

| 0x20 | 4 | w | SU_SCIS0 - Scissorbox Top Left Corner |
|------|---|---|---------------------------------------|
|------|---|---|---------------------------------------|

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description                     |
|--------|---------------------------------|
| 24     | RID                             |
| 12     | X0 - Scissorbox X0 offset + 342 |
| 0      | Y0 - Scissorbox Y0 offset + 342 |

| 0x21 | 4 | W | SU_SCIS1 - Scissorbox Bottom Right Corner |
|------|---|---|-------------------------------------------|

|   | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| ſ |    |    |    |    |    |   |   |   |

| bit(s) | description                     |
|--------|---------------------------------|
| 24     | RID                             |
| 12     | X1 - Scissorbox X1 offset + 342 |
| 0      | Y1 - Scissorbox Y1 offset + 342 |

| 0x22 | 4 | W | SU_LPSIZE |
|------|---|---|-----------|
|------|---|---|-----------|

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description |
|--------|-------------|
| 24     | RID         |
| 23     | PAD0        |
| 22     | LINEASPECT  |
| 19     | PTOFF       |
|        | 0 to 0      |
|        | 1 to 16th   |
|        | 2 to 8th    |
|        | 3 to 4th    |
|        | 4 to half   |
|        | 5 to 1      |
| 16     | LTOFF       |
|        | 0 to 0      |
|        | 1 to 16th   |
|        | 2 to 8th    |
|        | 3 to 4th    |
|        | 4 to half   |
|        | 5 to 1      |
| 8      | PSIZE       |
| 0      | LSIZE       |

|  | 0x23 | 4 | W | SU Counter? |  |
|--|------|---|---|-------------|--|
|--|------|---|---|-------------|--|

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description            |
|--------|------------------------|
| 24     | RID                    |
| 12     | TS1 - Ind. Tex Stage 1 |
| 8      | SS1 - Ind. Tex Stage 1 |
| 4      | TS0 - Ind. Tex Stage 0 |
| 0      | SS0 - Ind. Tex Stage 0 |

| ſ | 0x26 | 4 | W | RAS1_SS - ind tex coord scale 1 |
|---|------|---|---|---------------------------------|
|---|------|---|---|---------------------------------|

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description            |
|--------|------------------------|
| 24     | RID                    |
| 12     | TS1 - Ind. Tex Stage 3 |
| 8      | SS1 - Ind. Tex Stage 3 |
| 4      | TS0 - Ind. Tex Stage 2 |
| 0      | SS0 - Ind. Tex Stage 2 |

|--|

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description                      |
|--------|----------------------------------|
| 24     | RID                              |
| 21     | BC3 - Ind. Tex Stage 3 NTexCoord |
| 18     | BI3 - Ind. Tex Stage 3 NTexMap   |
| 15     | BC2 - Ind. Tex Stage 2 NTexCoord |
| 12     | BI2 - Ind. Tex Stage 2 NTexMap   |
| 9      | BC1 - Ind. Tex Stage 1 NTexCoord |
| 6      | BI1 - Ind. Tex Stage 1 NTexMap   |
| 3      | BC0 - Ind. Tex Stage 0 NTexCoord |
| 0      | BIO - Ind. Tex Stage 0 NTexMap   |

| 0x28 | 4 | W | RAS1_TREF0 |
|------|---|---|------------|
| 0x29 | 4 | W | RAS1_TREF1 |
| 0x2a | 4 | W | RAS1_TREF2 |
| 0x2b | 4 | W | RAS1_TREF3 |
| 0x2c | 4 | W | RAS1_TREF4 |
| 0x2d | 4 | W | RAS1_TREF5 |
| 0x2e | 4 | W | RAS1_TREF6 |
| 0x2f | 4 | W | RAS1_TREF7 |

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description                          |  |  |  |  |
|--------|--------------------------------------|--|--|--|--|
| 24     | RID                                  |  |  |  |  |
| 22     | PAD1                                 |  |  |  |  |
| 19-21  | CC1 - Ind. Tex Stage 1 Channel ID    |  |  |  |  |
|        | 0 Color0                             |  |  |  |  |
|        | 1 Color1                             |  |  |  |  |
|        | 2 Alpha0                             |  |  |  |  |
|        | 3 Alpha1                             |  |  |  |  |
|        | 4 Color0A0                           |  |  |  |  |
|        | 5 Color1A1                           |  |  |  |  |
|        | 6 ColorZero                          |  |  |  |  |
|        | 7 Bump                               |  |  |  |  |
| 18     | TE1 - Ind. Tex Stage 1 TexMap enable |  |  |  |  |
| 15     | TC1 - Ind. Tex Stage 1 TexCoord      |  |  |  |  |
| 12     | TI1 - Ind. Tex Stage 1 TexMap        |  |  |  |  |
| 10     | PAD0                                 |  |  |  |  |
| 7      | CC0 - Ind. Tex Stage 0 Color ID      |  |  |  |  |
| 6      | TE0 - Ind. Tex Stage 0 TexMap enable |  |  |  |  |
| 3      | TC0 - Ind. Tex Stage 0 TexCoord      |  |  |  |  |
| 0      | TI0 - Ind. Tex Stage 0 TexMap        |  |  |  |  |

| 0x30 | 4 | W | SU_SSIZE0 |
|------|---|---|-----------|
| 0x32 | 4 | W | SU_SSIZE1 |
| 0x34 | 4 | W | SU_SSIZE2 |
| 0x36 | 4 | W | SU_SSIZE3 |
| 0x38 | 4 | W | SU_SSIZE4 |
| 0x3a | 4 | W | SU_SSIZE5 |
| 0x3c | 4 | W | SU_SSIZE6 |
| 0x3e | 4 | W | SU_SSIZE7 |

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description                                 |
|--------|---------------------------------------------|
| 24     | RID                                         |
| 19     | PF - texcoord offset for points enable      |
| 18     | LF - texcoord offset for lines enable       |
| 17     | WS - s-cylindrical texcoord wrapping enable |
| 16     | BS - s-range bias enable                    |
| 0      | SSIZE - s-scale value -1 (U16)              |

| 0x31 | 4 | W | SU_TSIZE0 |
|------|---|---|-----------|
| 0x33 | 4 | W | SU_TSIZE1 |
| 0x35 | 4 | W | SU_TSIZE2 |
| 0x37 | 4 | W | SU_TSIZE3 |
| 0x39 | 4 | W | SU_TSIZE4 |
| 0x3b | 4 | W | SU_TSIZE5 |
| 0x3d | 4 | W | SU_TSIZE6 |
| 0x3f | 4 | W | SU_TSIZE7 |

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description                                 |
|--------|---------------------------------------------|
| 24     | RID                                         |
| 17     | WT - t-cylindrical texcoord wrapping enable |
| 16     | BT - t-range bias enable                    |
| 0      | TSIZE - t-scale value -1 (U16)              |

| 0x40 | 4 | W | PE_ZMODE |
|------|---|---|----------|

|   | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| ĺ |    |    |    |    |    |   |   |   |

| bit(s) | description |               |                  |  |  |  |
|--------|-------------|---------------|------------------|--|--|--|
| 24     | RID         |               |                  |  |  |  |
| 4      | MA          | SK - Update e | nable            |  |  |  |
| 1      | FUN         | NC - Z-Buffer | Compare Function |  |  |  |
|        | 0           | NEVER         |                  |  |  |  |
|        | 1 LESS      |               |                  |  |  |  |
|        | 2 EQUAL     |               |                  |  |  |  |
|        | 3 LEQUAL    |               |                  |  |  |  |
|        | 4 GREATER   |               |                  |  |  |  |
|        | 5 NEQUAL    |               |                  |  |  |  |
|        | 6 GEQUAL    |               |                  |  |  |  |
|        | 7 ALWAYS    |               |                  |  |  |  |
| 0      | ENA         | ABLE - Z-Buff | er enable        |  |  |  |

| 0x41 | 4 | W | PE_CMODE0 |
|------|---|---|-----------|
|------|---|---|-----------|

| ſ | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| ſ |    |    |    |    |    |   |   |   |

| bit(s) | description    |  |  |  |
|--------|----------------|--|--|--|
| 24     | RID            |  |  |  |
| 12     | LOGICOP        |  |  |  |
|        | 0 CLEAR        |  |  |  |
|        | 1 AND          |  |  |  |
|        | 2 REVAND       |  |  |  |
|        | 3 COPY         |  |  |  |
|        | 4   INVAND     |  |  |  |
|        | 5 NOOP         |  |  |  |
|        | 6 XOR          |  |  |  |
|        | 7 OR           |  |  |  |
|        | 8 NOR          |  |  |  |
|        | 9 EQUIV        |  |  |  |
|        | 10 INV         |  |  |  |
|        | 11 REVOR       |  |  |  |
|        | 12 INVCOPY     |  |  |  |
|        | 13 INVOR       |  |  |  |
|        | 14 NAND        |  |  |  |
|        | 15 SET         |  |  |  |
| 11     | BLENDOP        |  |  |  |
| 8      | SFACTOR        |  |  |  |
| 5      | DFACTOR        |  |  |  |
| 4      | ALPHA_MASK     |  |  |  |
| 3      | COLOR_MASK     |  |  |  |
| 2      | DITHER_ENABLE  |  |  |  |
| 1      | LOGICOP_ENABLE |  |  |  |
| 0      | BLEND_ENABLE   |  |  |  |

| 0x42 | 4 | W | PE_CMODE1 |
|------|---|---|-----------|
|------|---|---|-----------|

|   | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| ſ |    |    |    |    |    |   |   |   |

| bit(s) | description           |
|--------|-----------------------|
| 24     | RID                   |
| 8      | CONSTANT_ALPHA_ENABLE |
| 0      | CONSTANT_ALPHA        |

| 0x43   <b>4</b>   <b>w</b> | PE_CONTROL |
|----------------------------|------------|
|----------------------------|------------|

|   | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| ĺ |    |    |    |    |    |   |   |   |

| bit(s) | description                |  |  |  |
|--------|----------------------------|--|--|--|
| 24     | RID                        |  |  |  |
| 7-23   | unused?                    |  |  |  |
| 6      | Z Comp Loc (1: before tex) |  |  |  |
| 3-5    | Z Format                   |  |  |  |
|        | 0 linear                   |  |  |  |
|        | 1 near                     |  |  |  |
|        | 2 mid                      |  |  |  |
|        | 3 far                      |  |  |  |
| 0-2    | Pixel Format               |  |  |  |
|        | 0 RGB8_Z24                 |  |  |  |
|        | 1 RGBA6_Z24                |  |  |  |
|        | 2 RGB565_Z16               |  |  |  |
|        | 3 Z24                      |  |  |  |
|        | 4 Y8                       |  |  |  |
|        | 5 U8                       |  |  |  |
|        | 6 V8                       |  |  |  |
|        | 7 YUV420                   |  |  |  |

| 0x44   <b>4</b>   <b>w</b> | field mask? |
|----------------------------|-------------|
|----------------------------|-------------|

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description |
|--------|-------------|
| 24     | RID         |
|        |             |

| 0x45 4 w PE_DONE - draw do | ne |
|----------------------------|----|
|----------------------------|----|

|   | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| ĺ |    |    |    |    |    |   |   |   |

| bit(s) | description   |
|--------|---------------|
| 24     | RID           |
| 1      | 1=end of list |
| 0      | ?             |

| 0x46 | 4 | W | ? (some clock?) |
|------|---|---|-----------------|
|------|---|---|-----------------|

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description            |
|--------|------------------------|
| 24     | RID                    |
| 9      | ? (must be 1)          |
| 0      | ((162000000/500)/4224) |

| 0x47 | 4 | W | PE_TOKEN |
|------|---|---|----------|

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description |
|--------|-------------|
| 24     | RID         |
| 0      | Token       |

| 0x48 4 | W | PE | TOKEN | INT |
|--------|---|----|-------|-----|
|--------|---|----|-------|-----|

|   | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| ſ |    |    |    |    |    |   |   |   |

| bit(s) | description |
|--------|-------------|
| 24     | RID         |
| 0      |             |

| $0 \times 49$ | 4 | w | EFB Address Top Left |
|---------------|---|---|----------------------|

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description  |
|--------|--------------|
| 10     | Y coordinate |
| 0      | X coordinate |

| 0x4a   4   w   EFB Address Width, Height-1 |  |
|--------------------------------------------|--|
|--------------------------------------------|--|

|   | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| ſ |    |    |    |    |    |   |   |   |

| bit(s) | description |
|--------|-------------|
| 10     | Height-1    |
| 0      | Width       |

| ſ | 0x4b | 4 | W | XFB Address |
|---|------|---|---|-------------|
|---|------|---|---|-------------|

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description               |
|--------|---------------------------|
| 24     | RID                       |
| 0      | physical XFB Address >> 5 |

0x4c | 4 | w | ?

0x4d 4 w stride?

0x4e | 4 | w | DispCopyYScale

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | Description                            |
|--------|----------------------------------------|
| 24     | RID                                    |
| 0      | YSCALE - ((u32)(256.0/YSCALEIN))&0x1ff |

0x4f | 4 | w | PE copy clear AR - set clear alpha and red components

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | Description |
|--------|-------------|
| 24     | RID         |
| 8      | A           |
| 0      | R           |

0x50 | 4 | w | PE copy clear GB - green and blue

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | Description |
|--------|-------------|
| 24     | RID         |
| 8      | G           |
| 0      | В           |

| 0x51 | 4 | w | PE copy clear Z - 24-bit Z value |
|------|---|---|----------------------------------|
|------|---|---|----------------------------------|

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | Description       |
|--------|-------------------|
| 24     | RID               |
| 0-23   | Z - 24bit Z-Value |

| 0x52 <b>4 w</b> | pe copy execute? |
|-----------------|------------------|
|-----------------|------------------|

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | Description                            |
|--------|----------------------------------------|
| 24     | RID                                    |
| 14     | execute ? (1: to XFB 0: to texture ?!) |
| 12-13  | Frame 2 Field Mode                     |
| 11     | clear (1: clear EFB)                   |
| 10     | 1: (256-(u32)(256.0/YSCALEIN)) > 0     |
| 9      | ?                                      |
| 7-8    | disp copy gamma                        |
| 4      | target (XFB) pixel format              |
| 1      | clamp                                  |
| 0      | clamp                                  |

|  | 0x53 | 4 | W | copy filter |
|--|------|---|---|-------------|
|--|------|---|---|-------------|

0x54 4 w copy filter

0x55 4 w bounding box

0x56 4 w bounding box

0x57 | 4 | w | ?

0x58 4 w ?

| 0×59 | 4 | W/ | Scissorbox Offset |
|------|---|----|-------------------|
|      |   |    |                   |

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description                             |
|--------|-----------------------------------------|
| 24     | RID                                     |
| 10     | YO - ((Scissorbox Y offset + 342)>>1)   |
| 0      | XO - ((Scissorbox X offset + 342) >> 1) |

note: regs 0x5a-0x63 are left out (all unknown)

| 0x64   4   w   TX_LOADTLUT0 |
|-----------------------------|
|-----------------------------|

|   | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| ſ |    |    |    |    |    |   |   |   |

| bit(s) | description |
|--------|-------------|
| 24-    | rid         |
| 21-    | pad0        |
| 0-     | tlut base   |

| 0x65 4 w | TX_LOADTLUT1 |
|----------|--------------|
|----------|--------------|

|   | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| ſ |    |    |    |    |    |   |   |   |

| bit(s) | description |
|--------|-------------|
| 24-    | rid         |
| 21-    | pad0        |
| 10-    | count       |
| 0      | tmem offset |

| 0x66 | 4 | W |  |
|------|---|---|--|
|------|---|---|--|

| 0x67 | 4 | W | metric ? |
|------|---|---|----------|

| 0x68 | 4 | W | field mode |
|------|---|---|------------|
|------|---|---|------------|

| 0x69 | 4 | W | ? |
|------|---|---|---|
|------|---|---|---|

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description           |
|--------|-----------------------|
| 24     | RID                   |
| 10     | ? (must be 1)         |
| 0      | ((162000000/500)>>11) |

note: regs 0x6a-0x7f are left out (all unknown)

| 0x80 | 4 | W | TX_SETMODE0_I0 - Texture lookup and filtering mode |
|------|---|---|----------------------------------------------------|
| 0x81 | 4 | W | TX_SETMODE0_I1 - Texture lookup and filtering mode |
| 0x82 | 4 | W | TX_SETMODE0_I2 - Texture lookup and filtering mode |
| 0x83 | 4 | W | TX_SETMODE0_I3 - Texture lookup and filtering mode |
| 0xa0 | 4 | W | TX_SETMODE0_I4 - Texture lookup and filtering mode |
| 0xa1 | 4 | W | TX_SETMODE0_I5 - Texture lookup and filtering mode |
| 0xa2 | 4 | W | TX_SETMODE0_I6 - Texture lookup and filtering mode |
| 0xa3 | 4 | W | TX_SETMODE0_I7 - Texture lookup and filtering mode |

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description             |  |  |  |  |  |  |
|--------|-------------------------|--|--|--|--|--|--|
| 24     | RID                     |  |  |  |  |  |  |
| 21     | LODCLAMP / BIASCLAMP    |  |  |  |  |  |  |
|        | 0 off                   |  |  |  |  |  |  |
|        | 1 on                    |  |  |  |  |  |  |
| 19     | MAXANISO                |  |  |  |  |  |  |
|        | 0 1                     |  |  |  |  |  |  |
|        | 1 2 (requires edge LOD) |  |  |  |  |  |  |
|        | 2 4 (requires edge LOD) |  |  |  |  |  |  |
|        | 3 unused/reserved       |  |  |  |  |  |  |
| 9      | LODBIAS (s2.5)          |  |  |  |  |  |  |
| 8      | DIAGLOAD                |  |  |  |  |  |  |
|        | 0 edge LOD              |  |  |  |  |  |  |
|        | 1 diagonal LOD          |  |  |  |  |  |  |
| 5      | MIN FILTER              |  |  |  |  |  |  |
|        | 0 near                  |  |  |  |  |  |  |
|        | 1 near mip near         |  |  |  |  |  |  |
|        | 2 near mip lin          |  |  |  |  |  |  |
|        | 3 unused/reserved       |  |  |  |  |  |  |
|        | 4 linear                |  |  |  |  |  |  |
|        | 5 lin mip near          |  |  |  |  |  |  |
|        | 6 lin mip lin           |  |  |  |  |  |  |
|        | 7 unused/reserved       |  |  |  |  |  |  |
| 4      | MAG FILTER              |  |  |  |  |  |  |
|        | 0 near                  |  |  |  |  |  |  |
|        | 1 linear                |  |  |  |  |  |  |
| 2      | WRAP T                  |  |  |  |  |  |  |
|        | 0 clamp                 |  |  |  |  |  |  |
|        | 1 repeat (*)            |  |  |  |  |  |  |
|        | 2 mirror (*)            |  |  |  |  |  |  |
|        | 3 unused/reserved       |  |  |  |  |  |  |
| 0      | WRAP S (same as WRAP T) |  |  |  |  |  |  |

<sup>(\*)</sup> requires the texture size to be a power of two. (wrapping is implemented by a logical AND (SIZE-1))

| 0x84 | 4 | W | TX_SETMODE1_I0 - LOD Info |
|------|---|---|---------------------------|
| 0x85 | 4 | W | TX_SETMODE1_I1 - LOD Info |
| 0x86 | 4 | W | TX_SETMODE1_I2 - LOD Info |
| 0x87 | 4 | W | TX_SETMODE1_I3 - LOD Info |
| 0xa4 | 4 | W | TX_SETMODE1_I4 - LOD Info |
| 0xa5 | 4 | W | TX_SETMODE1_I5 - LOD Info |
| 0xa6 | 4 | W | TX_SETMODE1_I6 - LOD Info |
| 0xa7 | 4 | W | TX_SETMODE1_I7 - LOD Info |

|   | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| ĺ |    |    |    |    |    |   |   |   |

| bit(s) | description    |
|--------|----------------|
| 24     | RID            |
| 8      | MAX LOD (U4.4) |
| 0      | MIN LOD (U4.4) |

| 0x88 | 4 | W | SETIMAGE0_I0 - Texture width, height, format |
|------|---|---|----------------------------------------------|
| 0x89 | 4 | W | SETIMAGE0_I1 - Texture width, height, format |
| 0x8a | 4 | W | SETIMAGE0_I2 - Texture width, height, format |
| 0x8b | 4 | W | SETIMAGE0_I3 - Texture width, height, format |
| 0xa8 | 4 | W | SETIMAGE0_I4 - Texture width, height, format |
| 0xa9 | 4 | W | SETIMAGE0_I5 - Texture width, height, format |
| 0xaa | 4 | W | SETIMAGE0_I6 - Texture width, height, format |
| 0xab | 4 | W | SETIMAGE0_I7 - Texture width, height, format |

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | desci | ription         |  |  |  |  |  |
|--------|-------|-----------------|--|--|--|--|--|
| 24-    | rid   |                 |  |  |  |  |  |
| 20-    | forma | at              |  |  |  |  |  |
|        | 0     | I4              |  |  |  |  |  |
|        | 1     | I8              |  |  |  |  |  |
|        | 2     | IA4             |  |  |  |  |  |
|        | 3     | IA8             |  |  |  |  |  |
|        | 4     | RGB565          |  |  |  |  |  |
|        | 5     | 5 RGB5A3        |  |  |  |  |  |
|        | 6     | 6 RGBA8         |  |  |  |  |  |
|        | 7     | unused/reserved |  |  |  |  |  |
|        | 8     | C4              |  |  |  |  |  |
|        | 9     | C8              |  |  |  |  |  |
|        | 10    | C14X2           |  |  |  |  |  |
|        | 11    | unused/reserved |  |  |  |  |  |
|        | 12    | unused/reserved |  |  |  |  |  |
|        | 13    | unused/reserved |  |  |  |  |  |
|        | 14    | CMP             |  |  |  |  |  |
|        | 15    | unused/reserved |  |  |  |  |  |
| 10-    | heigh | it - 1          |  |  |  |  |  |
| 0-     | width | n - 1           |  |  |  |  |  |

| 0x8c | 4 | W | TX_SETIMAGE1_I0 - even LOD address in TMEM |
|------|---|---|--------------------------------------------|
| 0x8d | 4 | W | TX_SETIMAGE1_I1 - even LOD address in TMEM |
| 0x8e | 4 | W | TX_SETIMAGE1_I2 - even LOD address in TMEM |
| 0x8f | 4 | W | TX_SETIMAGE1_I3 - even LOD address in TMEM |
| 0xac | 4 | W | TX_SETIMAGE1_I4 - even LOD address in TMEM |
| 0xad | 4 | W | TX_SETIMAGE1_I5 - even LOD address in TMEM |
| 0xae | 4 | W | TX_SETIMAGE1_I6 - even LOD address in TMEM |
| 0xaf | 4 | W | TX_SETIMAGE1_I7 - even LOD address in TMEM |

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description                                 |  |  |  |  |  |  |  |
|--------|---------------------------------------------|--|--|--|--|--|--|--|
| 24     | RID                                         |  |  |  |  |  |  |  |
| 21     | IMAGE_TYPE                                  |  |  |  |  |  |  |  |
|        | 0 cached                                    |  |  |  |  |  |  |  |
|        | 1 preloaded                                 |  |  |  |  |  |  |  |
| 18     | CACHE_HEIGHT                                |  |  |  |  |  |  |  |
|        | 0 unused/reserved                           |  |  |  |  |  |  |  |
|        | 1 unused/reserved                           |  |  |  |  |  |  |  |
|        | 2 unused/reserved                           |  |  |  |  |  |  |  |
|        | 3 32kb                                      |  |  |  |  |  |  |  |
|        | 4 128kb                                     |  |  |  |  |  |  |  |
|        | 5 512kb                                     |  |  |  |  |  |  |  |
|        | 6 unused/reserved                           |  |  |  |  |  |  |  |
|        | 7 unused/reserved                           |  |  |  |  |  |  |  |
| 15     | CACHE_WIDTH (must be equal to CACHE_HEIGHT) |  |  |  |  |  |  |  |
| 0      | TMEM_OFFSET (address in TMEM >> 5)          |  |  |  |  |  |  |  |

| 0x90 | 4 | W | TX_SETIMAGE2_I0 - odd LOD address in TMEM |
|------|---|---|-------------------------------------------|
| 0x91 | 4 | W | TX_SETIMAGE2_I1 - odd LOD address in TMEM |
| 0x92 | 4 | W | TX_SETIMAGE2_I2 - odd LOD address in TMEM |
| 0x93 | 4 | W | TX_SETIMAGE2_I3 - odd LOD address in TMEM |
| 0xb0 | 4 | W | TX_SETIMAGE2_I4 - odd LOD address in TMEM |
| 0xb1 | 4 | W | TX_SETIMAGE2_I5 - odd LOD address in TMEM |
| 0xb2 | 4 | W | TX_SETIMAGE2_I6 - odd LOD address in TMEM |
| 0xb3 | 4 | W | TX_SETIMAGE2_I7 - odd LOD address in TMEM |

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description                                 |  |  |  |  |  |
|--------|---------------------------------------------|--|--|--|--|--|
| 24     | RID                                         |  |  |  |  |  |
| 18     | CACHE_HEIGHT                                |  |  |  |  |  |
|        | 0 none (if odd LOD is unused)               |  |  |  |  |  |
|        | 1 unused/reserved                           |  |  |  |  |  |
|        | 2 unused/reserved                           |  |  |  |  |  |
|        | 3 32kb                                      |  |  |  |  |  |
|        | 4 128kb                                     |  |  |  |  |  |
|        | 5 512kb                                     |  |  |  |  |  |
|        | 6 unused/reserved                           |  |  |  |  |  |
|        | 7 unused/reserved                           |  |  |  |  |  |
| 15     | CACHE_WIDTH (must be equal to CACHE_HEIGTH) |  |  |  |  |  |
| 0      | TMEM_OFFSET - (address in TMEM >> 5)        |  |  |  |  |  |

| 0x94 | 4 | W | TX_SETIMAGE3_I0 - Address of Texture in main memory |
|------|---|---|-----------------------------------------------------|
| 0x95 | 4 | W | TX_SETIMAGE3_I1 - Address of Texture in main memory |
| 0x96 | 4 | W | TX_SETIMAGE3_I2 - Address of Texture in main memory |
| 0x97 | 4 | W | TX_SETIMAGE3_I3 - Address of Texture in main memory |
| 0xb4 | 4 | W | TX_SETIMAGE3_I4 - Address of Texture in main memory |
| 0xb5 | 4 | W | TX_SETIMAGE3_I5 - Address of Texture in main memory |
| 0xb6 | 4 | W | TX_SETIMAGE3_I6 - Address of Texture in main memory |
| 0xb7 | 4 | W | TX_SETIMAGE3_I7 - Address of Texture in main memory |

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

|   | bit(s) | description                        |
|---|--------|------------------------------------|
|   | 24     | RID                                |
| ĺ | 0      | IMAGE_BASE (physical address >> 5) |

| 0x98 | 4 | W | TX_SETTLUT_0 |
|------|---|---|--------------|
| 0x99 | 4 | W | TX_SETTLUT_1 |
| 0x9a | 4 | W | TX_SETTLUT_2 |
| 0x9b | 4 | W | TX_SETTLUT_3 |
| 0xb8 | 4 | W | TX_SETTLUT_4 |
| 0xb9 | 4 | W | TX_SETTLUT_5 |
| 0xba | 4 | W | TX_SETTLUT_6 |
| 0xbb | 4 | W | TX_SETTLUT_7 |

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description                                                    |  |  |  |  |  |  |
|--------|----------------------------------------------------------------|--|--|--|--|--|--|
| 24     | RID                                                            |  |  |  |  |  |  |
| 10     | FORMAT                                                         |  |  |  |  |  |  |
|        | 0 IA8                                                          |  |  |  |  |  |  |
|        | 1 RGB565                                                       |  |  |  |  |  |  |
|        | 2 RGB5A3                                                       |  |  |  |  |  |  |
|        | 3 reserved/unused                                              |  |  |  |  |  |  |
| 0      | TMEM_OFFSET (offset of TLUT from start of TMEM high bank >> 5) |  |  |  |  |  |  |

|--|

| 0x9d | 4 | w | ? |
|------|---|---|---|

| 4 | W                                                                            | TEV_COLOR_ENV_0                         |
|---|------------------------------------------------------------------------------|-----------------------------------------|
| 4 | W                                                                            | TEV_COLOR_ENV_1                         |
| 4 | W                                                                            | TEV_COLOR_ENV_2                         |
| 4 | W                                                                            | TEV_COLOR_ENV_3                         |
| 4 | W                                                                            | TEV_COLOR_ENV_4                         |
| 4 | W                                                                            | TEV_COLOR_ENV_5                         |
| 4 | W                                                                            | TEV_COLOR_ENV_6                         |
| 4 | W                                                                            | TEV_COLOR_ENV_7                         |
| 4 | W                                                                            | TEV_COLOR_ENV_8                         |
| 4 | W                                                                            | TEV_COLOR_ENV_9                         |
| 4 | W                                                                            | TEV_COLOR_ENV_A                         |
| 4 | W                                                                            | TEV_COLOR_ENV_B                         |
| 4 | W                                                                            | TEV_COLOR_ENV_C                         |
| 4 | W                                                                            | TEV_COLOR_ENV_D                         |
| 4 | W                                                                            | TEV_COLOR_ENV_E                         |
| 4 | W                                                                            | TEV_COLOR_ENV_F                         |
|   | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | 4 w 4 w 4 w 4 w 4 w 4 w 4 w 4 w 4 w 4 w |

| ſ | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| ſ |    |    |    |    |    |   |   |   |

| bit(s) | description |
|--------|-------------|
| 24     | RID         |
| 22     | DEST        |
| 20     | SHIFT       |
| 19     | CLAMP       |
| 18     | SUB         |
| 16     | BIAS        |
| 12     | SELA        |
| 8      | SELB        |
| 4      | SELC        |
| 0      | SELD        |

# SELA - SELD Format:

| 0x0 | CC_CPREV |
|-----|----------|
| 0x1 | CC_APREV |
| 0x2 | CC_C0    |
| 0x3 | CC_A0    |
| 0x4 | CC_C1    |
| 0x5 | CC_A1    |
| 0x6 | CC_C2    |
| 0x7 | CC_A2    |
| 0x8 | CC_TEXC  |
| 0x9 | CC_TEXA  |
| 0xA | CC_RASC  |
| 0xB | CC_RASA  |
| 0xC | CC_ONE   |
| 0xD | CC_HALF  |
| 0xE | CC_KONST |
| 0xF | CC_ZERO  |

| 7 0        |
|------------|
|            |
| _1         |
| _2         |
| ′_3        |
| _4         |
| ′_5        |
| ′_6        |
| <b>7_7</b> |
| <b>7_8</b> |
| <b>7_9</b> |
| _A         |
| _B         |
| _C         |
| _D         |
| _E         |
| _F         |
|            |

|   | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| ſ |    |    |    |    |    |   |   |   |

| bit(s) | description |
|--------|-------------|
| 24     | RID         |
| 22     | DEST        |
| 20     | SHIFT       |
| 19     | CLAMP       |
| 18     | SUB         |
| 16     | BIAS        |
| 13     | SELA        |
| 10     | SELB        |
| 7      | SELC        |
| 4      | SELD        |
| 2      | TSWAP       |
| 0      | RSWAP       |

### SELA - SELD Format:

| 0 | CA_APREV |
|---|----------|
| 1 | CA_A0    |
| 2 | CA_A1    |
| 3 | CA_A2    |
| 4 | CA_TEXA  |
| 5 | CA_RASA  |
| 6 | CA_KONST |
| 7 | CA ZERO  |

| 0xe0 | 4 | w | TEV_REGISTERL_0 |
|------|---|---|-----------------|
| 0xe2 | 4 | W | TEV_REGISTERL_1 |
| 0xe4 | 4 | W | TEV_REGISTERL_2 |
| 0xe6 | 4 | W | TEV_REGISTERL_3 |

|   | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| ĺ |    |    |    |    |    |   |   |   |

| bit(s) | description    |  |  |  |  |
|--------|----------------|--|--|--|--|
| 24     | RID            |  |  |  |  |
| 23     | TYPE           |  |  |  |  |
|        | 0 Color (?)    |  |  |  |  |
|        | 1 Constant (?) |  |  |  |  |
| 12     | A              |  |  |  |  |
| 0      | R              |  |  |  |  |

| 0xe1 | 4 | W | TEV_REGISTERH_0 |
|------|---|---|-----------------|
| 0xe3 | 4 | W | TEV_REGISTERH_1 |
| 0xe5 | 4 | W | TEV_REGISTERH_2 |
| 0xe7 | 4 | W | TEV_REGISTERH_3 |

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description    |  |  |  |
|--------|----------------|--|--|--|
| 24     | RID            |  |  |  |
| 23     | TYPE           |  |  |  |
|        | 0 Color (?)    |  |  |  |
|        | 1 Constant (?) |  |  |  |
| 12     | G              |  |  |  |
| 0      | В              |  |  |  |

| 0x88 | 4 | W | Fog Range |
|------|---|---|-----------|

| 0x89 | 4 | W |  |
|------|---|---|--|

5 HARDWARE REGISTERS 122

| 0xec (guessed) |    |    |    |   | w | t | ev_r | ange | e_adj_ | c |
|----------------|----|----|----|---|---|---|------|------|--------|---|
|                |    |    |    |   |   |   |      |      |        |   |
| 31             | 24 | 23 | 16 | 1 | 5 | 3 | 7    | 0    |        |   |
|                |    |    |    |   |   |   |      |      |        |   |

| bit(s) | description                                   |  |  |  |  |  |  |  |  |
|--------|-----------------------------------------------|--|--|--|--|--|--|--|--|
| 24     | RID                                           |  |  |  |  |  |  |  |  |
| 10     | CENTER - Screen X Center for range Adjustment |  |  |  |  |  |  |  |  |
| 0      | ENB - Range-Adjustment enable                 |  |  |  |  |  |  |  |  |
|        | 0 TEV_ENB_DISABLE                             |  |  |  |  |  |  |  |  |
|        | 1 TEV_ENB_ENABLE                              |  |  |  |  |  |  |  |  |

|   | 0xed | (gı     | ıesse | d)  | 4   | w   | t | ev_r | ange | e_adj | _k |
|---|------|---------|-------|-----|-----|-----|---|------|------|-------|----|
|   |      |         |       |     |     |     |   |      |      |       |    |
| П | 2.1  | $\circ$ | 1 00  | 1 0 | 1 - | - / | ^ |      | ^    |       |    |

|   | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| Ì |    |    |    |    |    |   |   |   |

| bit(s) | description                                          |
|--------|------------------------------------------------------|
| 24     | RID                                                  |
| 0-11   | r2k (u4.8) - specifies the range adjustment function |

range adjustment = sqr((x\*x)+(k\*k))/k

0xee | 4 | w | TEV\_FOG\_PARAM\_0 - "a" parameter of the screen to eye space conversion function

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description          |
|--------|----------------------|
| 24     | RID                  |
| 19     | A_SIGN_SHIFT         |
| 11     | A_EXPN               |
| 0      | A_MANT (signed 11e8) |

0xef | 4 | w | TEV\_FOG\_PARAM\_1 - the "b" parameter of the z screen to eye space conversion function

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description           |
|--------|-----------------------|
| 24     | RID                   |
| 0      | B_MAG (unsigned 0.24) |

| 0xf0 | 4  | W  | TEV_FOG_PA |    |   | PAR | AM_ | 2 - amount to pre-shift screen z |
|------|----|----|------------|----|---|-----|-----|----------------------------------|
|      |    |    |            |    |   |     |     |                                  |
| 31   | 24 | 23 | 16         | 15 | 8 | 7   | 0   |                                  |
|      |    |    |            |    |   |     |     |                                  |

| bit(s) | description                                                     | i |
|--------|-----------------------------------------------------------------|---|
| 24     | RID                                                             | ì |
| 0-4    | B_SHF - equivalent to the value of "b" parameter's exponent + 1 | 1 |

The Z-Screen to Eyespace conversion is defined as:

$$Ze = A / (B\_MAG - (Zs >> B\_SHF))$$

| 0xf1 | 4 | W | TEV_FOG_PARAM_3 - fog type |
|------|---|---|----------------------------|
|      |   |   |                            |

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description                         |
|--------|-------------------------------------|
| 24     | RID                                 |
| 21-23  | FSEL                                |
|        | 0 FSEL_OFF; No fog                  |
|        | 1 reserved                          |
|        | 2 FSEL_LIN; linear Fog              |
|        | 3 reserved                          |
|        | 4 FSEL_EXP; Exponential Fog         |
|        | 5 FSEL_EX2; Exponential Squared Fog |
|        | 6 FSEL_BXP; Backward Exp Fog        |
|        | 7 FSEL_BX2 Backward Exp Squared Fog |
| 20     | PROJ                                |
|        | 0 PERSP; Perspective projection     |
|        | 1 ORTHO; Orthographic projection    |
| 19     | C_SIGN (*)                          |
| 11     | C_EXPN (*)                          |
| 0-10   | C_MANT (*)                          |

(\*) Specifies the amount to subtract from eye-space Z after range adjustment.

| 0xf2 | 4 | W | TEV_FOG_COLOR - Value of Fog Color |
|------|---|---|------------------------------------|

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description |
|--------|-------------|
| 24     | RID         |
| 16     | R           |
| 8      | G           |
| 0      | В           |

| ( | )xf3 | 4 | W | TEV_ | _ALPHAFUNC |
|---|------|---|---|------|------------|
|---|------|---|---|------|------------|

|   | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| ſ |    |    |    |    |    |   |   |   |

| bit(s) | description |      |  |  |  |
|--------|-------------|------|--|--|--|
| 24     | RID         |      |  |  |  |
| 22     | LOGIC       |      |  |  |  |
|        | 0           | AND  |  |  |  |
|        | 1           | OR   |  |  |  |
|        | 2           | XOR  |  |  |  |
|        | 3           | XNOR |  |  |  |
| 19     | OP1         |      |  |  |  |
| 16     | OP0         |      |  |  |  |
| 8      | A1          |      |  |  |  |
| 0      | A0          |      |  |  |  |

| Γ | 0xf4 | 4 | W | TEV | $\mathbb{Z}$ | ENV | 0 |
|---|------|---|---|-----|--------------|-----|---|
|---|------|---|---|-----|--------------|-----|---|

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description |
|--------|-------------|
| 24     | RID -       |
| 0-23   | ZOFF/BIAS - |

| 0xf5 | 4 | w | TEV | $\mathbf{Z}$ | ENV | 1 |
|------|---|---|-----|--------------|-----|---|

|   | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| ĺ |    |    |    |    |    |   |   |   |

| bit(s) | desc | cription        |  |
|--------|------|-----------------|--|
| 24     | RID  |                 |  |
| 2-3    | OP   |                 |  |
|        | 0    | disable         |  |
|        | 1    | add             |  |
|        | 2    | replace         |  |
|        | 3    | unused/reserved |  |
| 0-1    | TYF  | PE/FORMAT       |  |
|        | 0    | u8              |  |
|        | 1    | u16             |  |
|        | 2    | u24             |  |
|        | 3    | unused/reserved |  |

| 0xf6 | 4 | W | TEV_KSEL_0 |
|------|---|---|------------|
| 0xf7 | 4 | W | TEV_KSEL_1 |
| 0xf8 | 4 | W | TEV_KSEL_2 |
| 0xf9 | 4 | W | TEV_KSEL_3 |
| 0xfa | 4 | W | TEV_KSEL_4 |
| 0xfb | 4 | W | TEV_KSEL_5 |
| 0xfc | 4 | W | TEV_KSEL_6 |
| 0xfd | 4 | W | TEV_KSEL_7 |

|   | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| Ī |    |    |    |    |    |   |   |   |

| bit(s) | description |
|--------|-------------|
| 24     | RID         |
| 19     | KASEL1      |
| 14     | KCSEL1      |
| 9      | KASEL0      |
| 4      | KCSEL0      |
| 2      | XGA         |
| 0      | XRB         |

KCSEL - tev const color sel

| 0  | 1          |
|----|------------|
| 1  | 7_8        |
| 2  | 3_4        |
| 3  | 5_8        |
| 4  | 1_2        |
| 5  | 3_8        |
| 6  | 1_4        |
| 7  | 1_8        |
| 8  |            |
| 9  |            |
| 10 |            |
| 11 |            |
| 12 | <b>K</b> 0 |
| 13 | K1         |
| 14 | K2         |
| 15 | K3         |
| 16 | K0_R       |
| 17 | K1_R       |
| 18 | K2_R       |
| 19 | K3_R       |
| 20 | K0_G       |
| 21 | K1_G       |
| 22 | K2_G       |
| 23 | K3_G       |
| 24 | K0_B       |
| 25 | K1_B       |
| 26 | K2_B       |
| 27 | K3_B       |
| 28 | $K0_A$     |
| 29 | K1_A       |
| 30 | K2_A       |
| 31 | K3_A       |
|    |            |

KASEL - tev const alpha sel

| 0                | 1                    |
|------------------|----------------------|
| 1                | 7_8                  |
| 2                | 7_8<br>3_4           |
| 2<br>3<br>4<br>5 | 5_8                  |
| 4                | 1_2                  |
|                  | 3_8                  |
| 6                | 1_4                  |
| 7                | 1_8                  |
| 8                |                      |
| 9                |                      |
| 10               |                      |
| 11               |                      |
| 12               |                      |
| 13               |                      |
| 14               |                      |
| 15               |                      |
| 16               | K0_R                 |
| 17               | K1_R                 |
| 18               | K2_R                 |
| 19               | K3_R                 |
| 20               | K0_G                 |
| 21               | K1_G                 |
| 22               | K2_G                 |
| 23               | K3_G                 |
| 24               | K0_B                 |
| 25               | K1_B                 |
| 26               | K2_B                 |
| 27               | K3_B                 |
| 28               | K0_A                 |
| 29               | K1_A                 |
| 30               | K1_A<br>K2_A<br>K3_A |
| 31               |                      |
|                  |                      |

| 0xfe | 4 | W | SS_MASK - BP Mask Register |
|------|---|---|----------------------------|

| 31   | 24   | 23 | 16 | 15 | 8 | 7 | 0 |
|------|------|----|----|----|---|---|---|
| **** | **** |    |    |    |   |   |   |

| bit(s) |   | description |
|--------|---|-------------|
| 24     | * | RID         |
| 0-23   |   | MASK (*)    |

(\*) This Register can be used to limit to which bits of BP registers is actually written to. the mask is only valid for the next BP command, and will reset itself.

| 0xff | 4 | W | ? |
|------|---|---|---|
|------|---|---|---|

# **5.11.2** internal CP Registers

| Registerblock Base | Size of Registerblock | common access size |  |
|--------------------|-----------------------|--------------------|--|
| 0x20               | 0xa0                  | 4                  |  |

| 0770     | 0000 4                                                 |
|----------|--------------------------------------------------------|
| Register | description                                            |
| 0x20     | ?                                                      |
| 0x30     | MATINDEX_A - Texture Matrix Index 0-3                  |
| 0x40     | MATINDEX_B - Texture Matrix Index 4-7                  |
| 0x50     | VCD_LO - Vertex Descriptor (VCD) low, format 0         |
| 0x51     | VCD_LO - Vertex Descriptor (VCD) low, format 1         |
| 0x52     | VCD_LO - Vertex Descriptor (VCD) low, format 2         |
| 0x53     | VCD_LO - Vertex Descriptor (VCD) low, format 3         |
| 0x54     | VCD_LO - Vertex Descriptor (VCD) low, format 4         |
| 0x55     | VCD_LO - Vertex Descriptor (VCD) low, format 5         |
| 0x56     | VCD_LO - Vertex Descriptor (VCD) low, format 6         |
| 0x57     | VCD_LO - Vertex Descriptor (VCD) low, format 7         |
| 0x60     | VCD_HI - Vertex Descriptor (VCD) high, format 0        |
| 0x61     | VCD_HI - Vertex Descriptor (VCD) high, format 1        |
| 0x62     | VCD_HI - Vertex Descriptor (VCD) high, format 2        |
| 0x63     | VCD_HI - Vertex Descriptor (VCD) high, format 3        |
| 0x64     | VCD_HI - Vertex Descriptor (VCD) high, format 4        |
| 0x65     | VCD_HI - Vertex Descriptor (VCD) high, format 5        |
| 0x66     | VCD_HI - Vertex Descriptor (VCD) high, format 6        |
| 0x67     | VCD_HI - Vertex Descriptor (VCD) high, format 7        |
| 0x70     | VAT_A - Vertex Attribute Table (VAT) group 0, format 0 |
| 0x71     | VAT_A - Vertex Attribute Table (VAT) group 0, format 1 |
| 0x72     | VAT_A - Vertex Attribute Table (VAT) group 0, format 2 |
| 0x73     | VAT_A - Vertex Attribute Table (VAT) group 0, format 3 |
| 0x74     | VAT_A - Vertex Attribute Table (VAT) group 0, format 4 |
| 0x75     | VAT_A - Vertex Attribute Table (VAT) group 0, format 5 |
| 0x76     | VAT_A - Vertex Attribute Table (VAT) group 0, format 6 |
| 0x77     | VAT_A - Vertex Attribute Table (VAT) group 0, format 7 |
| 08x0     | VAT_B - Vertex Attribute Table (VAT) group 1, format 0 |
| 0x81     | VAT_B - Vertex Attribute Table (VAT) group 1, format 1 |
| 0x82     | VAT_B - Vertex Attribute Table (VAT) group 1, format 2 |
| 0x83     | VAT_B - Vertex Attribute Table (VAT) group 1, format 3 |
| 0x84     | VAT_B - Vertex Attribute Table (VAT) group 1, format 4 |
| 0x85     | VAT_B - Vertex Attribute Table (VAT) group 1, format 5 |
| 0x86     | VAT_B - Vertex Attribute Table (VAT) group 1, format 6 |
| 0x87     | VAT_B - Vertex Attribute Table (VAT) group 1, format 7 |
| 0x90     | VAT_C - Vertex Attribute Table (VAT) group 2, format 0 |
| 0x91     | VAT_C - Vertex Attribute Table (VAT) group 2, format 1 |
| 0x92     | VAT_C - Vertex Attribute Table (VAT) group 2, format 2 |
| 0x93     | VAT_C - Vertex Attribute Table (VAT) group 2, format 3 |
| 0x94     | VAT_C - Vertex Attribute Table (VAT) group 2, format 4 |
| 0x95     | VAT_C - Vertex Attribute Table (VAT) group 2, format 5 |
| 0x96     | VAT_C - Vertex Attribute Table (VAT) group 2, format 6 |
| 0x97     | VAT_C - Vertex Attribute Table (VAT) group 2, format 7 |

| Register | description                                               |
|----------|-----------------------------------------------------------|
| 0xA0     | ARRAY_BASE - vertices ptr                                 |
| 0xa1     | ARRAY_BASE - normals ptr                                  |
| 0xa2     | ARRAY_BASE - color 0 ptr                                  |
| 0xa3     | ARRAY_BASE - color 1 ptr                                  |
| 0xa4     | ARRAY_BASE - texture 0 coordinate ptr                     |
| 0xa5     | ARRAY_BASE - texture 1 coordinate ptr                     |
| 0xa6     | ARRAY_BASE - texture 2 coordinate ptr                     |
| 0xa7     | ARRAY_BASE - texture 3 coordinate ptr                     |
| 0xa8     | ARRAY_BASE - texture 4 coordinate ptr                     |
| 0xa9     | ARRAY_BASE - texture 5 coordinate ptr                     |
| 0xaa     | ARRAY_BASE - texture 6 coordinate ptr                     |
| 0xab     | ARRAY_BASE - texture 7 coordinate ptr                     |
| 0xac     | ARRAY_BASE - IndexRegA - general purpose array 0 ptr      |
| 0xad     | ARRAY_BASE - IndexRegB - general purpose array 1 ptr      |
| 0xae     | ARRAY_BASE - IndexRegC - general purpose array 2 ptr      |
| 0xaf     | ARRAY_BASE - IndexRegD - general purpose array 3 ptr      |
| 0xB0     | ARRAY_STRIDE - size of vertices                           |
| 0xb1     | ARRAY_STRIDE - size of normals                            |
| 0xb2     | ARRAY_STRIDE - size of colors 0                           |
| 0xb3     | ARRAY_STRIDE - size of colors 1                           |
| 0xb4     | ARRAY_STRIDE - size of texture 0 coordinates              |
| 0xb5     | ARRAY_STRIDE - size of texture 1 coordinates              |
| 0xb6     | ARRAY_STRIDE - size of texture 2 coordinates              |
| 0xb7     | ARRAY_STRIDE - size of texture 3 coordinates              |
| 0xb8     | ARRAY_STRIDE - size of texture 4 coordinates              |
| 0xb9     | ARRAY_STRIDE - size of texture 5 coordinates              |
| 0xba     | ARRAY_STRIDE - size of texture 6 coordinates              |
| 0xbb     | ARRAY_STRIDE - size of texture 7 coordinates              |
| 0xbc     | ARRAY_STRIDE - IndexRegA - general purpose array 0 stride |
| 0xbd     | ARRAY_STRIDE - IndexRegB - general purpose array 1 stride |
| 0xbe     | ARRAY_STRIDE - IndexRegC - general purpose array 2 stride |
| 0xbf     | ARRAY_STRIDE - IndexRegD - general purpose array 3 stride |
| 0x20 4   | w ?                                                       |

| UX3U   4   W   MATIDX_REG_A |
|-----------------------------|
|-----------------------------|

|   | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| ſ |    |    |    |    |    |   |   |   |

| bit(s) | description                               |
|--------|-------------------------------------------|
| 24     | TEX3IDX - Index for Texture 3 matrix      |
| 18     | TEX2IDX - Index for Texture 2 matrix      |
| 12     | TEX1IDX - Index for Texture 1 matrix      |
| 6      | TEXOIDX - Index for Texture 0 matrix      |
| 0      | POSIDX - Index for Position/Normal matrix |

| 0x40 4 w | MATIDX_REG_B |
|----------|--------------|
|----------|--------------|

|   | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| ĺ |    |    |    |    |    |   |   |   |

| bit(s) | description                          |
|--------|--------------------------------------|
| 18     | TEX7IDX - Index for Texture 7 matrix |
| 12     | TEX6IDX - Index for Texture 6 matrix |
| 6      | TEX5IDX - Index for Texture 5 matrix |
| 0      | TEX4IDX - Index for Texture 4 matrix |

| 0x50 | 4 | R/W | VCD_LO - Vertex Descriptor low Format 0 |
|------|---|-----|-----------------------------------------|
| 0x51 | 4 | R/W | VCD_LO - Vertex Descriptor low Format 1 |
| 0x52 | 4 | R/W | VCD_LO - Vertex Descriptor low Format 2 |
| 0x53 | 4 | R/W | VCD_LO - Vertex Descriptor low Format 3 |
| 0x54 | 4 | R/W | VCD_LO - Vertex Descriptor low Format 4 |
| 0x55 | 4 | R/W | VCD_LO - Vertex Descriptor low Format 5 |
| 0x56 | 4 | R/W | VCD_LO - Vertex Descriptor low Format 6 |
| 0x57 | 4 | R/W | VCD_LO - Vertex Descriptor low Format 7 |

|   | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| Ì |    |    |    |    |    |   |   |   |

| bit(s) | description                                |
|--------|--------------------------------------------|
| 17-31  | unused                                     |
| 15-16  | COL1 - Color1 (Specular)                   |
| 13-14  | COLO - ColorO (Diffused)                   |
| 11-12  | NRM - Normal or Normal/Binormal/Tangent    |
| 9-10   | POS - Position                             |
| 8      | T7MIDX                                     |
| 7      | T6MIDX                                     |
| 6      | T5MIDX                                     |
| 5      | T4MIDX                                     |
| 4      | T3MIDX                                     |
| 3      | T2MIDX                                     |
| 2      | T1MIDX                                     |
| 1      | TOMIDX - Texture Coordinate O Matrix Index |
| 0      | PMIDX - Position/Normal Matrix Index (*1)  |

<sup>(\*1)</sup> position and normal matrices are stored in 2 seperate areas of internal XF memory, but there is a one to one correspondence between normal and position index. If index 'A' is used for the position, then index 'A' needs to be used for the normal as well.

| 0x60 | 4 | R/W | VCD_HI - Vertex Descriptor high Format 0 |
|------|---|-----|------------------------------------------|
| 0x61 | 4 | R/W | VCD_HI - Vertex Descriptor high Format 1 |
| 0x62 | 4 | R/W | VCD_HI - Vertex Descriptor high Format 2 |
| 0x63 | 4 | R/W | VCD_HI - Vertex Descriptor high Format 3 |
| 0x64 | 4 | R/W | VCD_HI - Vertex Descriptor high Format 4 |
| 0x65 | 4 | R/W | VCD_HI - Vertex Descriptor high Format 5 |
| 0x66 | 4 | R/W | VCD_HI - Vertex Descriptor high Format 6 |
| 0x67 | 4 | R/W | VCD_HI - Vertex Descriptor high Format 7 |

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0  |
|----|----|----|----|----|---|---|----|
|    |    |    |    |    |   |   | tt |

| bit(s) |   | description                 |
|--------|---|-----------------------------|
| 16-    |   | unused                      |
| 14-15  |   | TEX7 - texture coordinate 7 |
| 12-13  |   | TEX6 - texture coordinate 6 |
| 10-11  |   | TEX5 - texture coordinate 5 |
| 8-9    |   | TEX4 - texture coordinate 4 |
| 6-7    |   | TEX3 - texture coordinate 3 |
| 4-5    |   | TEX2 - texture coordinate 2 |
| 2-3    |   | TEX1 - texture coordinate 1 |
| 0-1    | t | TEX0 - texture coordinate 0 |

# vertex descriptor data

| value | Vertex/Color                | Pos/Tex Matrix Index |
|-------|-----------------------------|----------------------|
| 0     | no data present             | no data present      |
| 1     | direct                      | direct               |
| 2     | i8 - indirect/8 bit index   | n/a                  |
| 3     | i16 - indirect/16 bit index | n/a                  |

| 0x70 | 4 | W | CP_VAT_REG_A - Format | 0 |
|------|---|---|-----------------------|---|
| 0x71 | 4 | W | CP_VAT_REG_A - Format | 1 |
| 0x72 | 4 | W | CP_VAT_REG_A - Format | 2 |
| 0x73 | 4 | W | CP_VAT_REG_A - Format | 3 |
| 0x74 | 4 | W | CP_VAT_REG_A - Format | 4 |
| 0x75 | 4 | W | CP_VAT_REG_A - Format | 5 |
| 0x76 | 4 | W | CP_VAT_REG_A - Format | 6 |
| 0x77 | 4 | W | CP_VAT_REG_A - Format | 7 |

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description                                |  |  |  |  |  |
|--------|--------------------------------------------|--|--|--|--|--|
| 31     | NORMALINDEX3 (*1)                          |  |  |  |  |  |
|        | 0 single index per normal                  |  |  |  |  |  |
|        | 1 triple-index per nine-normal             |  |  |  |  |  |
| 30     | BYTEDEQUANT (should always be 1)           |  |  |  |  |  |
|        | 0 shift does not apply to u8/s8 components |  |  |  |  |  |
|        | 1 shift applies to u8/s8 components        |  |  |  |  |  |
| 25     | TEXOSHFT                                   |  |  |  |  |  |
| 22     | TEX0FMT                                    |  |  |  |  |  |
| 21     | TEXOCNT                                    |  |  |  |  |  |
| 18     | COL1FMT (Specular)                         |  |  |  |  |  |
| 17     | COL1CNT (Specular)                         |  |  |  |  |  |
| 14     | COLOFMT (Diffused)                         |  |  |  |  |  |
| 13     | COLOCNT (Diffused)                         |  |  |  |  |  |
| 10     | NRMFMT                                     |  |  |  |  |  |
| 9      | NRMCNT                                     |  |  |  |  |  |
| 4      | POSSHFT                                    |  |  |  |  |  |
| 1      | POSFMT                                     |  |  |  |  |  |
| 0      | POSCNT                                     |  |  |  |  |  |

<sup>(\*1)</sup> when nine-normals are selected in indirect mode, input will be treated as three staggered indices (one per triple biased by components size), into normal table (note: first index internally biased by 0, second by 1, third by 2)

| 0x80 | 4 | W | CP_VAT_REG_B - Format | 0 |
|------|---|---|-----------------------|---|
| 0x81 | 4 | W | CP_VAT_REG_B - Format | 1 |
| 0x82 | 4 | W | CP_VAT_REG_B - Format | 2 |
| 0x83 | 4 | W | CP_VAT_REG_B - Format | 3 |
| 0x84 | 4 | W | CP_VAT_REG_B - Format | 4 |
| 0x85 | 4 | W | CP_VAT_REG_B - Format | 5 |
| 0x86 | 4 | W | CP_VAT_REG_B - Format | 6 |
| 0x87 | 4 | W | CP_VAT_REG_B - Format | 7 |

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description                       |
|--------|-----------------------------------|
| 31     | VCACHE_ENHANCE (must always be 1) |
| 28     | TEX4FMT                           |
| 27     | TEX4CNT                           |
| 22     | TEX3SHFT                          |
| 19     | TEX3FMT                           |
| 18     | TEX3CNT                           |
| 13     | TEX2SHFT                          |
| 10     | TEX2FMT                           |
| 9      | TEX2CNT                           |
| 4      | TEX1SHFT                          |
| 1      | TEX1FMT                           |
| 0      | TEX1CNT                           |

| 0x90 | 4 | W | CP_VAT_REG_C - Format | 0 |
|------|---|---|-----------------------|---|
| 0x91 | 4 | W | CP_VAT_REG_C - Format | 1 |
| 0x92 | 4 | W | CP_VAT_REG_C - Format | 2 |
| 0x93 | 4 | W | CP_VAT_REG_C - Format | 3 |
| 0x94 | 4 | W | CP_VAT_REG_C - Format | 4 |
| 0x95 | 4 | w | CP_VAT_REG_C - Format | 5 |
| 0x96 | 4 | W | CP_VAT_REG_C - Format | 6 |
| 0x97 | 4 | w | CP_VAT_REG_C - Format | 7 |

|   | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| 1 |    |    |    |    |    |   |   |   |

| bit(s) | description |
|--------|-------------|
| 27     | TEX7SHFT    |
| 24     | TEX7FMT     |
| 23     | TEX7CNT     |
| 18     | TEX6SHFT    |
| 15     | TEX6FMT     |
| 14     | TEX6CNT     |
| 9      | TEX5SHFT    |
| 6      | TEX5FMT     |
| 5      | TEX5CNT     |
| 0      | TEX4SHFT    |

### **Vertex Attribute Data Formats**

# CompCount

| value | coords        | normals | tex coords | colors         |
|-------|---------------|---------|------------|----------------|
| 0     | two (x,y)     | three   | one (s)    | three (r,g,b)  |
| 1     | three (x,y,z) | nine    | two (s,t)  | four (r,g,b,a) |

# CompSize

| value | coords | normals | colors          |
|-------|--------|---------|-----------------|
| 0     | u8     | n/a     | 16 bit rgb565   |
| 1     | s8     | s8      | 24 bit rgb888   |
| 2     | u16    | n/a     | 32 bit rgb888x  |
| 3     | s16    | s16     | 16 bit rgba4444 |
| 4     | f32    | f32     | 24 bit rgba6666 |
| 5     | n/a    | n/a     | 32 bit rgba8888 |
| 6     | unused | unused  | unused          |
| 7     | unused | unused  | unused          |

#### Shift

| coords                    | normals                  | colors |
|---------------------------|--------------------------|--------|
| location of decimal point | n/a (byte: 6, short: 14) | n/a    |

This shift applies to all \$s16/u16\$ components, and all \$s8/s8\$ components when ByteDequant is asserted.

| 0xA0 | 4 | w | ARRAY_BASE |
|------|---|---|------------|
| 0xA1 | 4 | w | ARRAY_BASE |
| 0xA2 | 4 | w | ARRAY_BASE |
| 0xA3 | 4 | w | ARRAY_BASE |
| 0xA4 | 4 | w | ARRAY_BASE |
| 0xA5 | 4 | W | ARRAY_BASE |
| 0xA6 | 4 | W | ARRAY_BASE |
| 0xA7 | 4 | w | ARRAY_BASE |
| 0xA8 | 4 | w | ARRAY_BASE |
| 0xA9 | 4 | w | ARRAY_BASE |
| 0xAA | 4 | w | ARRAY_BASE |
| 0xAB | 4 | w | ARRAY_BASE |
| 0xAC | 4 | w | ARRAY_BASE |
| 0xAD | 4 | w | ARRAY_BASE |
| 0xAE | 4 | w | ARRAY_BASE |
| 0xAF | 4 | w | ARRAY_BASE |

| ſ | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| ſ |    |    |    |    |    |   |   |   |

| bit(s) | description                      |
|--------|----------------------------------|
| 26-    | unused                           |
| 0-25   | array base addres in main memory |

| 0xB0 | 4 | W | ARRAY_STRIDE |
|------|---|---|--------------|
| 0xB1 | 4 | W | ARRAY_STRIDE |
| 0xB2 | 4 | W | ARRAY_STRIDE |
| 0xB3 | 4 | W | ARRAY_STRIDE |
| 0xB4 | 4 | W | ARRAY_STRIDE |
| 0xB5 | 4 | W | ARRAY_STRIDE |
| 0xB6 | 4 | W | ARRAY_STRIDE |
| 0xB7 | 4 | W | ARRAY_STRIDE |
| 0xB8 | 4 | W | ARRAY_STRIDE |
| 0xB9 | 4 | W | ARRAY_STRIDE |
| 0xBa | 4 | W | ARRAY_STRIDE |
| 0xBb | 4 | W | ARRAY_STRIDE |
| 0xBc | 4 | W | ARRAY_STRIDE |
| 0xBd | 4 | W | ARRAY_STRIDE |
| 0xBe | 4 | W | ARRAY_STRIDE |
| 0xBf | 4 | W | ARRAY_STRIDE |
|      |   |   |              |

| ſ | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| ſ |    |    |    |    |    |   |   |   |

| bit(s) | description  |
|--------|--------------|
| 8-     | unused       |
| 0-7    | array stride |

#### 5.11.3 internal XF Memory

Every register in the transform unit is mapped to a unique 32b address. All addresses are available to the xform register load command (command 0x30).

The first block is formed by the matrix memory. Its address range is 0 to 1 k, but only 256 entries are used. This memory is organized in a 64 entry by four 32b words. Each word has a unique address and is a single precision floating point number. For block writes, the addresses auto increment. The memory is implemented in less than 4-32b rams, then it is possible that the memory writes to this block will require a minimum write size larger than 1 word.

| start  | end    | size  | description         |
|--------|--------|-------|---------------------|
| 0x0000 |        | 32    | Matrix Ram word 0   |
| 0x0001 | 0x00ff |       | Matrix Ram word (n) |
| 0x0100 | 0x03ff | 0x300 | not used            |

```
0 - position matrix (4*3)
0xF0 - (texture?) transform matrix (4*3)
```

The second block of memory is the normal matrix memory. It is organized as 32 rows of 3 words. Each word has a unique address and is a single precision floating point number. Also, each word written is 32b, but only the 20 most significant bits are kept. For simplicity, the minimum granularity of writes will be 3 words:

|   | start  | end    | size | description            |
|---|--------|--------|------|------------------------|
|   | 0x0400 | 0x0402 | 20   | Normal Ram words 0,1,2 |
|   | 0x0403 | 0x045f |      | Normal Ram word (n)    |
| ĺ | 0x0460 | 0x05ff |      | not used               |

0x400 - normal transform matrix (3\*3)

The third block of memory holds the dual texture transform matrices. The format is identical to the first block of matrix memory. There are also 64 rows of 4 words for these matrices. These matrices can only be used for the dual transform of regular textures:

|   | start  | end    | size | description         |
|---|--------|--------|------|---------------------|
|   | 0x0500 |        | 32   | Matrix Ram word 0   |
| ĺ | 0x0501 | 0x05ff |      | Matrix Ram word (n) |

0x5F4 - dual texture transform matrix (4\*3)

The fourth block of memory is the light memory. This holds all the lighting information (light vectors, light parameters, etc.). Both global state and ambient state are stored in this memory. Each word written is 32b, but only the 20 most significant bits are kept. Each row is 3 words wide. Minimum word write size is 3 words.

| start  | end    | size   | description                               |
|--------|--------|--------|-------------------------------------------|
| 0x0600 |        |        | reserved                                  |
| 0x0601 |        |        | reserved                                  |
| 0x0602 |        |        | reserved                                  |
| 0x0603 |        | 32 bit | Light0 - RGBA                             |
| 0x0604 |        | 20 bit | Light0A0 - cos atten. A-0                 |
| 0x0605 |        | 20 bit | Light0A1 - cos atten. A-1                 |
| 0x0606 |        | 20 bit | Light0A2 - cos atten. A-2                 |
| 0x0607 |        | 20 bit | Light0K0 - dist atten. A-0                |
| 0x0608 |        | 20 bit | Light0K1 - dist atten. A-1                |
| 0x0609 |        | 20 bit | Light0K2 - dist atten. A-2                |
| 0x060a |        | 20 bit | Light0Lpx - x light pos, or inf ldir x    |
| 0x060b |        | 20 bit | Light0Lpy - y light pos, or inf ldir y    |
| 0x060c |        | 20 bit | Light0Lpz - z light pos, or inf ldir z    |
| 0x060d |        | 20 bit | Light0Dx/Hx - light dir x, or 1/2 angle x |
| 0x060e |        | 20 bit | Light0Dy/Hy - light dir y, or 1/2 angle y |
| 0x060f |        | 20 bit | Light0Dz/Hz - light dir z, or 1/2 angle z |
| 0x0610 | 0x067f |        | Light(n)data - see Light0 data            |
| 0x0680 | 0x07ff |        | not used                                  |

#### 5.11.4 internal XF Registers

| Registerblock Base | Size of Registerblock | common access size |
|--------------------|-----------------------|--------------------|
| 0x1000             | 0x54                  | 4                  |

| Register | description                                       |
|----------|---------------------------------------------------|
| 0x1000   | Error (=0x3f)                                     |
| 0x1001   | Diagnostics                                       |
| 0x1002   | State0 - Internal State Register 0                |
| 0x1003   | State1 - Internal State Register 1                |
| 0x1004   | Xf_clock - Enables Power Saving Mode              |
| 0x1005   | ClipDisable - clip mode (=0)                      |
| 0x1006   | Perf0 - Performance monitor selects (=0)          |
| 0x1007   | Perf1 - Xform target performance register         |
| 0x1008   | InVertexSpec - INVTXSPEC - (=0x01)                |
| 0x1009   | NumColors - NUMCOLORS - (=0x00)                   |
| 0x100a   | Ambient0 - chan Ambient color 0 (=0x00)           |
| 0x100b   | Ambient1- chan Ambient color 1 (=0x00)            |
| 0x100c   | Material0 - chan Material ID 0 (=0xffffffff)      |
| 0x100d   | Material1 - chan Material ID 1 (=0xffffffff)      |
| 0x100e   | COLOROCNTRL (=0x0401)                             |
| 0x100f   | COLOR1CNTRL (=0x0401)                             |
| 0x1010   | ALPHA0CNTRL (=0x0401)                             |
| 0x1011   | ALPHA1CNTRL (=0x0401)                             |
| 0x1012   | DualTexTrans - (=0x01)                            |
| 0x1013   | ?                                                 |
| 0x1014   | ?                                                 |
| 0x1015   | ?                                                 |
| 0x1016   | ?                                                 |
| 0x1017   | ?                                                 |
| 0x1018   | MatrixIndex0 - MATINDEX A                         |
| 0x1019   | MatrixIndex1 - MATINDEX B                         |
| 0x101a   | ScaleX - Viewport Scale X                         |
| 0x101b   | ScaleY - Viewport Scale Y                         |
| 0x101c   | Scale Z - Viewport Scale Z                        |
| 0x101d   | OffsetX - Viewport Offset X                       |
| 0x101e   | OffsetY - Viewport Offset Y                       |
| 0x101f   | OffsetZ - Viewport Offset Z                       |
| 0x1020   | ProjectionA - A parameter in projection equations |
| 0x1021   | ProjectionB - B parameter in projection equations |
| 0x1022   | ProjectionC - C parameter in projection equations |
| 0x1023   | ProjectionD - D parameter in projection equations |
| 0x1024   | ProjectionE - E parameter in projection equations |
| 0x1025   | ProjectionF - F parameter in projection equations |
| 0x1026   | ProjectOrtho                                      |
| Register | description                                       |

| Register | description                        |
|----------|------------------------------------|
| 0x103f   | NUMTEX - Number of active Textures |
| 0x1040   | TEX0                               |
| 0x1041   | TEX1                               |
| 0x1042   | TEX2                               |
| 0x1043   | TEX3                               |
| 0x1044   | TEX4                               |
| 0x1045   | TEX5                               |
| 0x1046   | TEX6                               |
| 0x1047   | TEX7                               |

| Register |   | des | cription | l |
|----------|---|-----|----------|---|
| 0x1050   |   | DU  | ALTEX    | 0 |
| 0x1051   |   | DU  | ALTEX    | 1 |
| 0x1052   |   | DU  | ALTEX    | 2 |
| 0x1053   |   | DU  | ALTEX    | 3 |
| 0x1054   |   | DU  | ALTEX    | 4 |
| 0x1055   |   | DU  | ALTEX    | 5 |
| 0x1056   |   | DU  | ALTEX    | 6 |
| 0x1057   |   | DU  | ALTEX    | 7 |
| 0x1000   | 4 | W   | Error    |   |

| 0x1001 | 4 | W | Diagnostics |
|--------|---|---|-------------|
|--------|---|---|-------------|

|  | 0x1002 | 4 | W | State 0 - Internal State Register 0 |
|--|--------|---|---|-------------------------------------|
|--|--------|---|---|-------------------------------------|

| 0x1003 4 v | N | State 1 - Internal State Register 1 |
|------------|---|-------------------------------------|
|------------|---|-------------------------------------|

| 0×1004 | 4 | w  | Xf    | clock |
|--------|---|----|-------|-------|
| UVIUUI |   | vv | 2 X I | CIOCK |

|   | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| ĺ |    |    |    |    |    |   |   |   |

|   | bit(s) |                   | desc                          | cription                  |  |
|---|--------|-------------------|-------------------------------|---------------------------|--|
| ĺ | 0      |                   | 0                             | no power saving when idle |  |
| ı | 0      | $0 \mid 1 \mid 1$ | enable Power saving when idle |                           |  |

| 0x1005 | 4 | W | ClipDisable |
|--------|---|---|-------------|

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description                                                |
|--------|------------------------------------------------------------|
| 2      | when set, disable cpoly clipping acceleration (default==0) |
| 1      | when set, disable trivial rejection (default==0)           |
| 0      | when set, disable clipping detection (default==0)          |

| 0x1006 | 4 | W | Perf0 - Performance monitor selects |
|--------|---|---|-------------------------------------|
|--------|---|---|-------------------------------------|

| 0x1007   4   w   Perf1 - Xform target performance Registe |
|-----------------------------------------------------------|
|-----------------------------------------------------------|

| ſ | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| ſ |    |    |    |    |    |   |   |   |

| bit(s) | description                                           |
|--------|-------------------------------------------------------|
| 0-6    | Xform internal target performance (Cycles per Vertex) |

| 0x1008 | 4 | W | INVTXSPEC |
|--------|---|---|-----------|
|--------|---|---|-----------|

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description                              |     |                                       |                     |  |  |
|--------|------------------------------------------|-----|---------------------------------------|---------------------|--|--|
| 4-7    | HOST                                     | Г_Т | EXTURES - number of host supplied     | texture coordinates |  |  |
|        | 0                                        |     | no host supplied textures             |                     |  |  |
|        | 1                                        |     | 1 host supplied texture pair (S0, T0) | )                   |  |  |
|        | 2-                                       | 8   | 2-8 host supplied texturepairs        |                     |  |  |
|        | 9-1                                      | 5   | reserved/unused                       |                     |  |  |
| 2-3    | HOST                                     | Γ_N | ORMAL - host supplied normal          |                     |  |  |
|        | 0                                        | no  | host supplied normal                  |                     |  |  |
|        | 1                                        | ho  | ost supplied normal                   |                     |  |  |
|        | 2                                        | ho  | ost supplied normal and binormals     |                     |  |  |
| 0-1    | HOST_COLORS - host supplied color0 usage |     |                                       |                     |  |  |
|        | 0                                        | no  | host supplied color information       |                     |  |  |
|        | 1                                        | ho  | ost supplied color 0                  |                     |  |  |
|        | 2                                        | ho  | ost supplied color 0 and color 1      |                     |  |  |

|   | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| ĺ |    |    |    |    |    |   |   |   |

| value | description                                                      |
|-------|------------------------------------------------------------------|
| 0     | No colors                                                        |
| 1     | One color - Xform supplies 1 color (host supplied or computed)   |
| 2     | Two colors - Xform supplies 2 colors (host supplied or computed) |

Selects the number of output colors

0x100a | 4 | w | XF\_AMBIENTO - Ambient color O specifications

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description |
|--------|-------------|
| 24     | RED         |
| 16     | GREEN       |
| 8      | BLUE        |
| 0      | ALPHA       |

### 5 HARDWARE REGISTERS

0x100b | 4 | w | XF\_AMBIENT1 - Ambient color 1 specifications

140

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description |
|--------|-------------|
| 24     | RED         |
| 16     | GREEN       |
| 8      | BLUE        |
| 0      | ALPHA       |

0x100c | 4 | w | XF\_MATERIALO - global color0 material specification

|   | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| ĺ |    |    |    |    |    |   |   |   |

| bit(s) | description |
|--------|-------------|
| 24     | RED         |
| 16     | GREEN       |
| 8      | BLUE        |
| 0      | ALPHA       |

0x100d | 4 | w | XF\_MATERIAL1 - global color1 material specification

| ı | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| ĺ |    |    |    |    |    |   |   |   |

| bit(s) | description |
|--------|-------------|
| 24     | RED         |
| 16     | GREEN       |
| 8      | BLUE        |
| 0      | ALPHA       |

| 0x100e   4   w | COLOR0CNTRL |
|----------------|-------------|
|----------------|-------------|

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description                                     |  |  |  |  |
|--------|-------------------------------------------------|--|--|--|--|
| 14     | LIGHT7 - Light 7 is source                      |  |  |  |  |
|        | 0 Do not use Light                              |  |  |  |  |
|        | 1 Use light                                     |  |  |  |  |
| 13     | LIGHT6 - Light6 is source                       |  |  |  |  |
|        | 0 Do not use Light                              |  |  |  |  |
|        | 1 Use light                                     |  |  |  |  |
| 12     | LIGHT5 - Light5 is source                       |  |  |  |  |
|        | 0 Do not use Light                              |  |  |  |  |
|        | 1 Use light                                     |  |  |  |  |
| 11     | LIGHT4 - Light4 is source                       |  |  |  |  |
|        | 0 Do not use Light                              |  |  |  |  |
|        | 1 Use light                                     |  |  |  |  |
| 10     | ATTENSELECT - Attenuation Select function       |  |  |  |  |
|        | 0 Select specular (N.H) attenuation             |  |  |  |  |
|        | 1 Select diffuse spotlight (L.Ldir) attenuation |  |  |  |  |
| 9      | ATTENENABLE - Attenuation Enable function       |  |  |  |  |
|        | 0 Select 1.0                                    |  |  |  |  |
|        | 1 Select Attenuation fraction                   |  |  |  |  |
| 7-8    | DIFFUSEATTEN - Diffuse Attenuation function     |  |  |  |  |
|        | 00   Select 1.0                                 |  |  |  |  |
|        | 01 Select N.L, signed                           |  |  |  |  |
|        | 10 Select N.L clamped to [0,1.0]                |  |  |  |  |
|        | 11                                              |  |  |  |  |
| 6      | AMBIENT_SRC - Ambient source                    |  |  |  |  |
|        | 0 Use register Ambient0 register                |  |  |  |  |
|        | 1 Use CP supplied vertex color 0                |  |  |  |  |
| 5      | LIGHT3 - Light3 is source                       |  |  |  |  |
|        | 0 Do not use light                              |  |  |  |  |
|        | 1 Use light                                     |  |  |  |  |
| 4      | LIGHT2 - Light2 is source                       |  |  |  |  |
|        | 0 Do not use light                              |  |  |  |  |
|        | 1 Use light                                     |  |  |  |  |
| 3      | LIGHT1 - Light1 is source                       |  |  |  |  |
|        | 0 Do not use light                              |  |  |  |  |
|        | 1 Use light                                     |  |  |  |  |
| 2      | LIGHTO - LightO is source                       |  |  |  |  |
|        | 0 Do not use light                              |  |  |  |  |
|        | 1 Use light                                     |  |  |  |  |
| 1      | LIGHTFUNC - Color0 Light Function               |  |  |  |  |
|        | 0 Use 1.0                                       |  |  |  |  |
|        | 1 Use Illum0                                    |  |  |  |  |
| 0      | MATERIAL_SRC - Color0 Material source           |  |  |  |  |
|        | 0 Use register (Material 0)                     |  |  |  |  |
|        | 1 Use CP supplied Vertex color 0                |  |  |  |  |

| 0x100f | 4 | W | COLOR1CNTRL |
|--------|---|---|-------------|
|--------|---|---|-------------|

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s)                                           | description                                     |  |  |  |  |  |  |
|--------------------------------------------------|-------------------------------------------------|--|--|--|--|--|--|
| 14                                               | LIGHT7 - Light 7 is source                      |  |  |  |  |  |  |
|                                                  | 0 Do not use Light                              |  |  |  |  |  |  |
|                                                  | 1 Use light                                     |  |  |  |  |  |  |
| 13                                               | LIGHT6 - Light6 is source                       |  |  |  |  |  |  |
|                                                  | 0 Do not use Light                              |  |  |  |  |  |  |
|                                                  | 1 Use light                                     |  |  |  |  |  |  |
| 12                                               | LIGHT5 - Light5 is source                       |  |  |  |  |  |  |
|                                                  | 0 Do not use Light                              |  |  |  |  |  |  |
|                                                  | 1 Use light                                     |  |  |  |  |  |  |
| 11                                               | LIGHT4 - Light4 is source                       |  |  |  |  |  |  |
|                                                  | 0 Do not use Light                              |  |  |  |  |  |  |
|                                                  | 1 Use light                                     |  |  |  |  |  |  |
| 10                                               | ATTENSELECT - Attenuation Select function       |  |  |  |  |  |  |
|                                                  | 0   Select specular (N.H) attenuation           |  |  |  |  |  |  |
|                                                  | 1 Select diffuse spotlight (L.Ldir) attenuation |  |  |  |  |  |  |
| 9                                                | ATTENENABLE - Attenuation Enable function       |  |  |  |  |  |  |
|                                                  | 0 Select 1.0                                    |  |  |  |  |  |  |
|                                                  | 1 Select Attenuation fraction                   |  |  |  |  |  |  |
| 7-8                                              | DIFFUSEATTEN - Diffuse Attenuation function     |  |  |  |  |  |  |
|                                                  | 00   Select 1.0                                 |  |  |  |  |  |  |
|                                                  | 01 Select N.L, signed                           |  |  |  |  |  |  |
|                                                  | 10 Select N.L clamped to [0,1.0]                |  |  |  |  |  |  |
|                                                  | 11                                              |  |  |  |  |  |  |
| 6                                                | AMBIENT_SRC - Ambient source                    |  |  |  |  |  |  |
|                                                  | 0 Use register Ambient1 register                |  |  |  |  |  |  |
| _                                                | 1 Use CP supplied vertex color 1                |  |  |  |  |  |  |
| 5                                                | LIGHT3 - Light3 is source                       |  |  |  |  |  |  |
|                                                  | 0 Do not use light                              |  |  |  |  |  |  |
| 4                                                | 1 Use light                                     |  |  |  |  |  |  |
| 4                                                | LIGHT2 - Light2 is source  0 Do not use light   |  |  |  |  |  |  |
|                                                  |                                                 |  |  |  |  |  |  |
| 3                                                | 1 Use light LIGHT1 - Light1 is source           |  |  |  |  |  |  |
| 3                                                | 0 Do not use light                              |  |  |  |  |  |  |
|                                                  |                                                 |  |  |  |  |  |  |
| 2                                                | 1 Use light LIGHTO - LightO is source           |  |  |  |  |  |  |
| 2                                                | 0 Do not use light                              |  |  |  |  |  |  |
|                                                  | 1 Use light                                     |  |  |  |  |  |  |
| 1                                                | LIGHTFUNC - Color1 Light Function               |  |  |  |  |  |  |
| 1                                                | 0 Use 1.0                                       |  |  |  |  |  |  |
|                                                  | 1 Use Illum1                                    |  |  |  |  |  |  |
| 0                                                | MATERIAL_SRC - Color1 Material source           |  |  |  |  |  |  |
| <del>-                                    </del> | 0 Use register (Material 1)                     |  |  |  |  |  |  |
|                                                  | 1 Use CP supplied Vertex color 1                |  |  |  |  |  |  |
|                                                  | 1 Ose Cr supplied vertex color 1                |  |  |  |  |  |  |

| 0x1010   4   w | ALPHA0CNTRL |
|----------------|-------------|
|----------------|-------------|

|   | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| Γ |    |    |    |    |    |   |   |   |

| bit(s) | description                                         |  |  |  |  |  |  |
|--------|-----------------------------------------------------|--|--|--|--|--|--|
| 14     | LIGHT7 - Light 7 alpha is source                    |  |  |  |  |  |  |
|        | 0 Do not use Light                                  |  |  |  |  |  |  |
|        | 1 Use light                                         |  |  |  |  |  |  |
| 13     | LIGHT6 - Light6 alpha is source                     |  |  |  |  |  |  |
|        | 0 Do not use Light                                  |  |  |  |  |  |  |
|        | 1 Use light                                         |  |  |  |  |  |  |
| 12     | LIGHT5 - Light5 alpha is source                     |  |  |  |  |  |  |
|        | 0 Do not use Light                                  |  |  |  |  |  |  |
|        | 1 Use light                                         |  |  |  |  |  |  |
| 11     | LIGHT4 - Light4 alpha is source                     |  |  |  |  |  |  |
|        | 0 Do not use Light                                  |  |  |  |  |  |  |
|        | 1 Use light                                         |  |  |  |  |  |  |
| 10     | ATTENSELECT - Attenuation Select function           |  |  |  |  |  |  |
|        | 0   Select specular (N.H) attenuation               |  |  |  |  |  |  |
|        | 1 Select diffuse spotlight (L.Ldir) attenuation     |  |  |  |  |  |  |
| 9      | ATTENENABLE - Attenuation Enable function           |  |  |  |  |  |  |
|        | 0 Select 1.0                                        |  |  |  |  |  |  |
|        | 1 Select Attenuation fraction                       |  |  |  |  |  |  |
| 7-8    | DIFFUSEATTEN - Diffuse Attenuation function         |  |  |  |  |  |  |
|        | 00   Select 1.0                                     |  |  |  |  |  |  |
|        | 01 Select N.L, signed                               |  |  |  |  |  |  |
|        | 10 Select N.L clamped to [0,1.0]                    |  |  |  |  |  |  |
|        | 11                                                  |  |  |  |  |  |  |
| 6      | AMBIENT_SRC - Ambient source                        |  |  |  |  |  |  |
|        | 0 Use register Ambient0 alpha register              |  |  |  |  |  |  |
| _      | 1 Use CP supplied vertex color 0 alpha              |  |  |  |  |  |  |
| 5      | LIGHT3 - Light3 alpha is source                     |  |  |  |  |  |  |
|        | 0 Do not use light                                  |  |  |  |  |  |  |
| 4      | 1 Use light                                         |  |  |  |  |  |  |
| 4      | LIGHT2 - Light2 alpha is source  0 Do not use light |  |  |  |  |  |  |
|        | 1 Use light                                         |  |  |  |  |  |  |
| 3      | LIGHT1 - Light1 alpha is source                     |  |  |  |  |  |  |
| 3      | 0 Do not use light                                  |  |  |  |  |  |  |
|        | 1 Use light                                         |  |  |  |  |  |  |
| 2      | LIGHT0 - Light0 alpha is source                     |  |  |  |  |  |  |
| 2      | 0 Do not use light                                  |  |  |  |  |  |  |
|        | 1 Use light                                         |  |  |  |  |  |  |
| 1      | LIGHTFUNC - ColorO alpha Light Function             |  |  |  |  |  |  |
| -      | 0 Use 1.0                                           |  |  |  |  |  |  |
|        | 1 Use Illum0                                        |  |  |  |  |  |  |
| 0      | MATERIAL_SRC - Color0 alpha Material source         |  |  |  |  |  |  |
| -      | 0 Use register (Material 0 alpha)                   |  |  |  |  |  |  |
|        | 1 Use CP supplied Vertex color 0 alpha              |  |  |  |  |  |  |
|        | 1 Ose Ci supplied vertex color o alpha              |  |  |  |  |  |  |

| 0x1011 | 4 | W | ALPHA1CNTRL |
|--------|---|---|-------------|
|--------|---|---|-------------|

|   | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| Γ |    |    |    |    |    |   |   |   |

| bit(s) | description                                         |  |  |  |  |  |  |
|--------|-----------------------------------------------------|--|--|--|--|--|--|
| 14     | LIGHT7 - Light 7 alpha is source                    |  |  |  |  |  |  |
|        | 0 Do not use Light                                  |  |  |  |  |  |  |
|        | 1 Use light                                         |  |  |  |  |  |  |
| 13     | LIGHT6 - Light6 alpha is source                     |  |  |  |  |  |  |
|        | 0 Do not use Light                                  |  |  |  |  |  |  |
|        | 1 Use light                                         |  |  |  |  |  |  |
| 12     | LIGHT5 - Light5 alpha is source                     |  |  |  |  |  |  |
|        | 0 Do not use Light                                  |  |  |  |  |  |  |
|        | 1 Use light                                         |  |  |  |  |  |  |
| 11     | LIGHT4 - Light4 alpha is source                     |  |  |  |  |  |  |
|        | 0 Do not use Light                                  |  |  |  |  |  |  |
|        | 1 Use light                                         |  |  |  |  |  |  |
| 10     | ATTENSELECT - Attenuation Select function           |  |  |  |  |  |  |
|        | 0   Select specular (N.H) attenuation               |  |  |  |  |  |  |
|        | 1 Select diffuse spotlight (L.Ldir) attenuation     |  |  |  |  |  |  |
| 9      | ATTENENABLE - Attenuation Enable function           |  |  |  |  |  |  |
|        | 0 Select 1.0                                        |  |  |  |  |  |  |
|        | 1 Select Attenuation fraction                       |  |  |  |  |  |  |
| 7-8    | DIFFUSEATTEN - Diffuse Attenuation function         |  |  |  |  |  |  |
|        | 00   Select 1.0                                     |  |  |  |  |  |  |
|        | 01 Select N.L, signed                               |  |  |  |  |  |  |
|        | 10 Select N.L clamped to [0,2.0]                    |  |  |  |  |  |  |
|        | 11                                                  |  |  |  |  |  |  |
| 6      | AMBIENT_SRC - Ambient source                        |  |  |  |  |  |  |
|        | 0 Use register Ambient1 alpha register              |  |  |  |  |  |  |
| _      | 1 Use CP supplied vertex color 1 alpha              |  |  |  |  |  |  |
| 5      | LIGHT3 - Light3 alpha is source                     |  |  |  |  |  |  |
|        | 0 Do not use light                                  |  |  |  |  |  |  |
| 4      | 1 Use light                                         |  |  |  |  |  |  |
| 4      | LIGHT2 - Light2 alpha is source  0 Do not use light |  |  |  |  |  |  |
|        | 1 Use light                                         |  |  |  |  |  |  |
| 3      | LIGHT1 - Light1 alpha is source                     |  |  |  |  |  |  |
| 3      | 0 Do not use light                                  |  |  |  |  |  |  |
|        |                                                     |  |  |  |  |  |  |
| 2      | 1 Use light  IGHT0 - Light0 alpha is source         |  |  |  |  |  |  |
| 2      | 0 Do not use light                                  |  |  |  |  |  |  |
|        | 1 Use light                                         |  |  |  |  |  |  |
| 1      | LIGHTFUNC - ColorO alpha Light Function             |  |  |  |  |  |  |
| -      | 0 Use 1.0                                           |  |  |  |  |  |  |
|        | 1 Use Illum0                                        |  |  |  |  |  |  |
| 0      | MATERIAL_SRC - Color0 alpha Material source         |  |  |  |  |  |  |
|        | 0 Use register (Material 0 alpha)                   |  |  |  |  |  |  |
|        | 1 Use CP supplied Vertex color 0 alpha              |  |  |  |  |  |  |
|        | 1 Osc C1 supplied vertex color o alpha              |  |  |  |  |  |  |

| 0x1012 4 w DualTexTrans | ıs |
|-------------------------|----|
|-------------------------|----|

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | desc | cription                                          |
|--------|------|---------------------------------------------------|
|        |      |                                                   |
| 0      | 0    | disable dual texture transform feature            |
|        | 1    | enable dual transform for all texture coordinates |

0x1013 | 4 | w | ?

0x1014 | 4 | w | ?

0x1015 | 4 | w | ?

0x1016 | 4 | w | ?

0x1017 | 4 | w | ?

0x1018 4 w MatrixIndex0

|   | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| ſ |    |    |    |    |    |   |   |   |

| bit(s) | description           |
|--------|-----------------------|
| 24-29  | Tex3 matrix index     |
| 23-18  | Tex2 matrix index     |
| 12-17  | Tex1 matrix index     |
| 6-11   | Tex0 matrix index     |
| 0-5    | Geometry matrix index |

0x1019 4 w MatrixIndex1

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description       |
|--------|-------------------|
| 18-23  | Tex7 matrix index |
| 12-17  | Tex6 matrix index |
| 6-11   | Tex5 matrix index |
| 0-5    | Tex4 matrix index |

| 0x101A | 4 | W | Viewport |
|--------|---|---|----------|
| 0x101B | 4 | W | Viewport |
| 0x101C | 4 | W | Viewport |
| 0x101D | 4 | W | Viewport |
| 0x101E | 4 | W | Viewport |
| 0x101F | 4 | W | Viewport |

# Viewport Matrix

|        |     | description           |
|--------|-----|-----------------------|
| 0x101A | f32 | wd / 2                |
| 0x101B | f32 | -ht / 2               |
| 0x101C | f32 | ZMAX * (farZ - nearZ) |
| 0x101D | f32 | xOrig + wd / 2 + 342  |
| 0x101E | f32 | yOrig + ht / 2 + 342  |
| 0x101F | f32 | ZMAX * farZ           |

# ZMAX is 16777215.0 (maximum 24-bit Z buffer value, or 'infinite')

| 0 1000 | 1 |   | Desired Medi      |
|--------|---|---|-------------------|
| 0x1020 | 4 | W | Projection Matrix |
| 0x1021 | 4 | W | Projection Matrix |
| 0x1022 | 4 | W | Projection Matrix |
| 0x1023 | 4 | W | Projection Matrix |
| 0x1024 | 4 | W | Projection Matrix |
| 0x1025 | 4 | W | Projection Matrix |

# Projection Matrix

|        |     | orthogonal     | perspective                         |
|--------|-----|----------------|-------------------------------------|
| 0x1020 | f32 | 2.0 / (r - 1)  | (1.0f / tanf(fovy * 0.5F)) / aspect |
| 0x1021 | f32 | -(r+l) / (r-l) | 0                                   |
| 0x1022 | f32 | 2.0 / (t-b)    | (1.0f / tanf(fovy * 0.5F))          |
| 0x1023 | f32 | -(t+b)/(t-b)   | 0                                   |
| 0x1024 | f32 | -1.0/(f-n)     | -n * 1.0f / (f-n)                   |
| 0x1025 | f32 | -(f)/(f-n)     | -(f*n) * 1.0f / (f-n)               |

| 0x1026   4   w   ProjectOrtho |
|-------------------------------|
|-------------------------------|

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description |
|--------|-------------|
|        |             |
|        |             |

If set selects orthographic otherwise non-orthographic (Zh or 1.0 select)

note: regs 0x1027-0x103e skipped (all unknown)

| 0.2 | k103f | 4 | W | NUMTEX - Number of active Textures |
|-----|-------|---|---|------------------------------------|
|-----|-------|---|---|------------------------------------|

| 0x1040 | 4 | W | TEX0 |
|--------|---|---|------|
| 0x1041 | 4 | W | TEX1 |
| 0x1042 | 4 | W | TEX2 |
| 0x1043 | 4 | W | TEX3 |
| 0x1044 | 4 | W | TEX4 |
| 0x1045 | 4 | W | TEX5 |
| 0x1046 | 4 | W | TEX6 |
| 0x1047 | 4 | W | TEX7 |

| 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|----|----|----|----|----|---|---|---|
|    |    |    |    |    |   |   |   |

| bit(s) | description                                                                                                              |  |  |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 15-17  | EMBOSS_LIGHT - Bump mapping source light (*1)                                                                            |  |  |  |  |  |
| 12-14  | EMBOSS_SOURCE - bump mapping source texture (*2)                                                                         |  |  |  |  |  |
| 7-11   | SOURCE_ROW - regular texture source row (*3)                                                                             |  |  |  |  |  |
|        | 0 GEOM_INROW -                                                                                                           |  |  |  |  |  |
|        | 1 NORMAL_INROW -                                                                                                         |  |  |  |  |  |
|        | 2 COLORS_INROW -                                                                                                         |  |  |  |  |  |
|        | 3 BINORMAL_T_INROW -                                                                                                     |  |  |  |  |  |
|        | 4 BINORMAL_B_INROW -                                                                                                     |  |  |  |  |  |
|        | 5 TEX0_INROW -                                                                                                           |  |  |  |  |  |
|        | 6 TEX1_INROW -                                                                                                           |  |  |  |  |  |
|        | 7 TEX2_INROW -                                                                                                           |  |  |  |  |  |
|        | 8 TEX3_INROW -                                                                                                           |  |  |  |  |  |
|        | 9 TEX4_INROW -                                                                                                           |  |  |  |  |  |
|        | a TEX5_INROW -                                                                                                           |  |  |  |  |  |
|        | b TEX6_INROW -                                                                                                           |  |  |  |  |  |
|        | c TEX7_INROW -                                                                                                           |  |  |  |  |  |
|        | d                                                                                                                        |  |  |  |  |  |
|        | e                                                                                                                        |  |  |  |  |  |
|        | f                                                                                                                        |  |  |  |  |  |
| 4-6    | TEXGEN_TYPE                                                                                                              |  |  |  |  |  |
|        | 0 REGULAR - Regular transformation (transform incoming data)                                                             |  |  |  |  |  |
|        | 1 EMBOSS_MAP - texgen bump mapping                                                                                       |  |  |  |  |  |
|        | 2 COLOR_STRGBC0 - Color texgen: (s,t)=(r,g:b) (g and b are concatenated), color 0                                        |  |  |  |  |  |
| 2      | 3 COLOR_STRGBC1 - Color texgen: (s,t)=(r,g:b) (g and b are concatenated), color 1                                        |  |  |  |  |  |
| 3 2    | reserved/unused                                                                                                          |  |  |  |  |  |
| 2      | INPUT_FORM - format of source input data for regular textures                                                            |  |  |  |  |  |
|        | 0 AB11 - (A, B, 1.0, 1.0) (used for regular texture source) 1 ABC1 - (A, B, C, 1.0) (used for geometry or normal source) |  |  |  |  |  |
| 1      |                                                                                                                          |  |  |  |  |  |
| 1      | PROJECTION                                                                                                               |  |  |  |  |  |
|        | 0 ST - (s,t): texmul is 2x4                                                                                              |  |  |  |  |  |
|        | 1 STQ - (s,t,q): texmul is 3x4                                                                                           |  |  |  |  |  |
| 0      | reseved/unused                                                                                                           |  |  |  |  |  |

<sup>(\*1)</sup> n: use light #n for bump map direction source (10 to 17)

<sup>(\*2)</sup> n: use regular transformed tex(n) for bump mapping source

<sup>(\*3)</sup> Specifies location of incoming textures in vertex (row specific) (i.e.: geometry is row0, normal is row1, etc...) for regular transformations

note: regs 0x1048-104f skipped (all unknown)

| 0x1050 | 4 | W | DUALTEX0 |
|--------|---|---|----------|
| 0x1051 | 4 | W | DUALTEX1 |
| 0x1052 | 4 | W | DUALTEX2 |
| 0x1053 | 4 | W | DUALTEX3 |

|   | 31 | 24 | 23 | 16 | 15 | 8 | 7 | 0 |
|---|----|----|----|----|----|---|---|---|
| ĺ |    |    |    |    |    |   |   |   |

| bit(s) | description                                                                                                    |
|--------|----------------------------------------------------------------------------------------------------------------|
| 8      | NORMAL_ENABLE - specifies if texture coordinate should be normalized before send transform.                    |
| 6-7    | unused                                                                                                         |
| 0-5    | DUALMTX - base row of the dual transform matrix for regular texture coordinate0 (63 max, simelar to 0x1018/0x1 |

# 5.11.5 GP packet description

The first thing in a GP Packet is the command type (8 bit). Next follows actual primitive data. It may vary on each opcode type.

0

# **5.11.5.1** Command Type

| 0000   | OVV | VV |                                   |
|--------|-----|----|-----------------------------------|
| bit(s) |     | de | escription                        |
|        | О   | О  | pcode                             |
|        | 37  | V  | ertev Attribute Table Index (VAT) |

| opcode | Description                             |
|--------|-----------------------------------------|
| 0x00   | NOP - No Operation                      |
| 0x08   | Load CP REG                             |
| 0x10   | Load XF REG                             |
| 0x20   | Load INDX A                             |
| 0x28   | Load INDX B                             |
| 0x30   | Load INDX C                             |
| 0x38   | Load INDX D                             |
| 0x40   | CALL DL - Call Displaylist              |
| 0x48   | Invalidate Vertex Cache                 |
| 0x61   | Load BP REG (SU_ByPassCmd)              |
| 0x80   | QUADS - Draw Quads (*)                  |
| 0x90   | TRIANGLES - Draw Triangles (*)          |
| 0x98   | TRIANGLESTRIP - Draw Triangle Strip (*) |
| 0xA0   | TRIANGLEFAN - Draw Triangle Fan (*)     |
| 0xA8   | LINES - Draw Lines (*)                  |
| 0xB0   | LINESTRIP - Draw Line Strip (*)         |
| 0xB8   | POINTS - Draw Points (*)                |

# 5.11.5.1.1 opcodes

(\*) all draw opcodes must be Or-ed with used VAT index (0...7)

# 5.11.5.2 Drawing Commands

| 8 bits | 16 bits            | n           |
|--------|--------------------|-------------|
| opcode | number of vertices | vertex data |

Vertex data may be in one of many formats. The VCD tells wether data for a component exists (and if yes, if it is direct or indexed) and the VAT tells the actual format of the respective component. Each individual component may or may not exist, but the order is fixed as follows:

- 1. PNMTXIDX Position/Normal Matrix Index
- 2. TEX0MTXIDX Texture 0 Matrix Index
- 3. TEX1MTXIDX Texture 1 Matrix Index
- 4. TEX2MTXIDX Texture 2 Matrix Index
- 5. TEX3MTXIDX Texture 3 Matrix Index
- 6. TEX4MTXIDX Texture 4 Matrix Index
- 7. TEX5MTXIDX Texture 5 Matrix Index
- 8. TEX6MTXIDX Texture 6 Matrix Index
- 9. TEX7MTXIDX Texture 7 Matrix Index
- 10. POS Position Vector
- 11. NRM Normal or NBT Binormal vector (T, B)
- 12. CLR0 Color0 (Diffused)
- 13. CLR1 Color1 (Specular)
- 14. TEX0 Texture 0 data
- 15. TEX1 Texture 1 data
- 16. TEX2 Texture 2 data
- 17. TEX3 Texture 3 data
- 18. TEX4 Texture 4 data
- 19. TEX5 Texture 5 data
- 20. TEX6 Texture 6 data
- 21. TEX7 Texture 7 data

Notice that the Position/Normal and Texture Matrix Indices are different from the other data in that they are 8 bit and must always be sent as direct data.

- **5.11.5.2.1 Quads** draws a series of non planar quads, using v0,v1,v2,v3 then v4,v5,v6,v7 and so on. (the quad is actually drawn using 2 triangles so the 4 vertices do not have to be coplanar). The minimum number of vertices is 4.
- **5.11.5.2.2 Triangles** draws a series of triangles, from v0,v1,v2 then v3,v4,v5 and so on. The number of vertices should be a multiple of 3

**5.11.5.2.3** Trianglestrip draws a series of triangles, from v0,v1,v2 then v1,v3,v2, then v2,v3,v4 amd so on. The number of vertices must be at least 3.

**5.11.5.2.4** TriangleFan draws a series of triangles, from v0,v1,v2 then v0,v2,v3 and so on. The number of vertices must be at least 3.

**5.11.5.2.5** Lines draws a series of unconnected lines, from v0 to v1, then from v2 to v3 and so on. The number of vertices should be a multiple of 2

**5.11.5.2.6 Linestrip** draws a series of connected lines, from v0 to v1, then from v1 to v2 and so on. If n vertices are drawn, n-1 lines are drawn

**5.11.5.2.7 Points** draws a Point at each of the n vertices

**5.11.5.3 NOP - No Operation** Use it to pad primitive data to 32-byte boundaries and to terminate a display list.

**5.11.5.4 CALL DL - Call Display List** used to call one display list from another.

| L | 8 bits                             |         |    |    |      |   |   |   |
|---|------------------------------------|---------|----|----|------|---|---|---|
|   | 7                                  | 0       |    |    |      |   |   |   |
|   | 0100                               | 0000    |    |    |      |   |   |   |
|   | opcode:                            | == 0x40 |    |    |      |   |   |   |
|   |                                    |         |    | 32 | bits |   |   |   |
|   | 31                                 | 24      | 23 | 16 | 15   | 8 | 7 | 0 |
|   | 0000                               | 000.    |    |    |      |   |   |   |
|   | list address                       |         |    |    |      |   |   |   |
|   |                                    |         |    | 32 | bits |   |   |   |
|   | 31                                 | 24      | 23 | 16 | 15   | 8 | 7 | 0 |
|   | 0000                               | 000.    |    |    |      |   |   |   |
|   | list size in bytes (32 bit words?) |         |    |    |      |   |   |   |

5.11.5.5 Invalidate Vertex Cache

| 8 bits         |
|----------------|
| opcode == 0x48 |

**5.11.5.6 BP** command (Bypass Raster State Registers)

| ſ | 8 bits         | 8 bits     | 24 bits    |  |
|---|----------------|------------|------------|--|
|   | opcode == 0x61 | reg. addr. | reg. value |  |

**5.11.5.7 CP command (Command Processor Registers)** 

| 8 bits         | 8 bits     | 32 bits    |  |
|----------------|------------|------------|--|
| opcode == 0x08 | reg. addr. | reg. value |  |

# 5 HARDWARE REGISTERS

151

# **5.11.5.8** XF command (Transform Unit Registers)

| 8 bits         | 16 bits    | 16 bits   | 32 bits * length |
|----------------|------------|-----------|------------------|
| opcode == 0x10 | length - 1 | 1st addr. | reg. value(s)    |

note: "length" is limited to 16.

# 5.11.5.9 Indexed XF command

| 8 bits | 16 bits     | 4 bits   | 12 bits     |
|--------|-------------|----------|-------------|
| opcode | index value | length-1 | 1st address |

note: "length" is limited to 16.

There are 4 different XF index units, which are typically used as follows: A: pos. mtx's B: nrm. mtx's C: tex. mtx's D: light obj's.

# 6 Exception and Interrupt Processing

# **6.1 Hardware Exception Sources**

| Handler Start | Exception                     |
|---------------|-------------------------------|
| 0x80000100    | System Reset Interrupt        |
| 0x80000200    | Machine Check Interrupt       |
| 0x80000300    | DSI Interrupt                 |
| 0x80000400    | ISI Interrupt                 |
| 0x80000500    | External Interrupt            |
| 0x80000600    | Alignment Interrupt           |
| 0x80000700    | Program Interrupt             |
| 0x80000800    | FP unavailable Interrupt      |
| 0x80000900    | Decrementer Interrupt         |
| 0x80000C00    | System Call Interrupt         |
| 0x80000d00    | Trace Interrupt               |
| 0x80000f00    | Performance Monitor Interrupt |
| 0x80001300    | IABR Interrupt                |
| 0x80001700    | Thermal Interrupt             |

# **6.1.1** System Reset Interrupt

Triggered at a system reset

# 6.1.2 Machine Check Interrupt

# 6.1.3 DSI Interrupt

Triggered if an attempt to store or read data from/to an illegal address was made

# 6.1.4 ISI Interrupt

Triggered if an attempt to fetch an instruction from an illegal address was made.

# **6.1.5** External Interrupt

14 sources, triggered by external chips (you may look at it as the traditional IRQ).

# 6.1.5.1 Setup

- ⊳ set corresponding bit(s) in PI Interrupt Mask Register (0xcc003004)
- > enable external Interrupts in the Machine State Register

# **6.1.5.2** Handling

- □ acknowledge by setting corresponding bits in PI Interrupt Cause Register (0xcc003000)
- > handle different interrupt sources

| bit |           | Description                     |
|-----|-----------|---------------------------------|
| 13  | HSP       | High Speed Port                 |
| 12  | DEBUG     | External Debugger               |
| 11  | CP        | Command FIFO                    |
| 10  | PE FINISH | Frame is Ready                  |
| 9   | PE TOKEN  | Token Assertion in Command List |
| 8   | VI        | Video Interface                 |
| 7   | MEM       | Memory Interface                |
| 6   | DSP       | DSP                             |
| 5   | AI        | Audio Streaming                 |
| 4   | EXI       | EXI                             |
| 3   | SI        | Serial                          |
| 2   | DI        | DVD                             |
| 1   | RSW       | Reset Switch                    |
| 0   | ERROR     | GP runtime error                |

# 6.1.6 Alignment Interrupt

#### **6.1.7** Program Interrupt

Triggered if the instruction that was about to execute is invalid.

# **6.1.8** FP unavailable Interrupt

# **6.1.9** Decrementer Interrupt

Triggered by an underflow of the decrementer register.

# 6.1.10 System Call Interrupt

Triggered when the PowerPC instruction 'sc' is executed.

### **6.1.11** Trace Interrupt

# **6.1.12** Performance Monitor Interrupt

# **6.1.13** IABR Interrupt

# **6.1.14** Thermal Interrupt

# **6.2** External Interrupt Sources

# 6.2.1 HSP - High Speed Port

3 Sources

# 6.2.1.1 TX Mailbox Interrupt

#### 6.2.1.2 RX Mailbox Interrupt

# 6.2.1.3 ID Interrupt

#### **6.2.2** Debug

1 Source

#### 6.2.3 CP - Command Processor

2 Sources (read/write pointer watermark over- and underflow) check bit 0 and bit 1 of 0xcc000000

#### 6.2.3.1 FIFO underflow

# 6.2.3.1.1 setup

- ⊳ setup CP FIFO low watermark
- ⊳ set bit 1 of CP interrupt status register (0xcc000002) to enable

# **6.2.3.1.2** handling

▷ clear bit 3 of CP interrupt status register (0xcc000002) to acknowledge

# 6.2.3.2 FIFO overflow

# 6.2.3.2.1 setup

- ⊳ set bit 0 of CP interrupt status register (0xcc000002) to enable

#### **6.2.3.2.2** handling

▷ clear bit 2 of CP interrupt status register (0xcc000002) to acknowledge

### 6.2.4 PE - Pixel Engine Finished

1 Source (Frame finished)

#### 6.2.4.1 setup

#### **6.2.4.2** handling

⊳ set bit 3 in PE Interrupt status register (0xcc001000a) to acknowledge the interrupt

#### 6.2.5 PE - Pixel Engine Token

1 Source (Token in GP Command List)

# 6.2.5.1 setup

#### **6.2.5.2** handling

- ⊳ check PE Token Register (0xCC00000E) for the token that triggered the interrupt.
- ⊳ set bit 2 in PE Interrupt status register (0xcc001000a) to acknowledge the interrupt

#### 6.2.6 VI - Video Interface

4 Sources, check (0xcc002030) (0xcc002034) (0xcc002038) (0xcc00203c) for flags

### 6.2.6.1 Setup

- > setup desired position of the interrupt
- ⊳ set enable bit in Display Interrupt Register (0xcc002030) (0xcc002034) (0xcc002038) (0xcc00203c)

# **6.2.6.2** Handling

▷ clear Status bit in Display Interrupt Register (0xcc002030) (0xcc002034) (0xcc002038) (0xcc00203c) to acknowledge the interrupt.

# **6.2.7** Memory Interface

4 sources (4 regions of memory can be protected independently)

#### **6.2.7.1** protection fault

#### 6.2.7.1.1 Setup

#### **6.2.7.1.2** Handling

- > read status bits from (0xcc00401e) to check what region triggered the protection fault
- ⊳ set status bits in (0xCC00401e) to acknowledge the interrupt
- ⊳ read the address that triggered the protection fault from (0xcc004022) and (0xcc004024)

#### 6.2.8 DSP Interface

3 Sources, check (0xcc00500a) for flags

**6.2.8.1** Audio DMA finished asserted when audio DMA transfer has been completed.

#### 6.2.8.1.1 Setup

# **6.2.8.1.2** Handling

⊳ set bit 3 of DSP Control Register (0xcc00500a) to acknowledge the interrupt.

**6.2.8.2 ARAM transfer complete** asserted when a transfer from/to auxiliary ram has been completed.

#### 6.2.8.3 DSP

#### 6.2.9 Audio Streaming Interface

1 Source, check (0xcc006c00) for flag. asserted based on the disk streaming sample counter.

### 6.2.10 EXI

3 Sources each EXI Channel (TCINT, EXTINT, EXIIRQ), making 9 total, check (0xcc006800) (0xcc006814) (0xcc006828) for flags.

# **6.2.10.1** DMA Transfer finished (TCINT channel 0, channel 1)

# **6.2.10.2** Ethernet Adapter (EXIIRQ channel 2)

### 6.2.10.2.1 setup

#### 6.2.10.2.2 handling

- be check command register 3 (irq status) for the exact source (MX chip, killing irq,cmd error, challenge/response request, challange/response status)
- ⊳ if from MX chip, check register 8 and 9 for the exact cause

#### 6.2.10.3 Memory Card removed (EXTINT channel 0, channel 1)

# 6.2.10.3.1 setup

# 6.2.10.3.2 handling

> To check whether the device has been inserted or removed, check the EXICPR[EXT] bit.

#### 6.2.11 Serial Interface

#### 6.2.12 DVD Interface

4 Sources (Break Complete, DMA finished, Device Error, Cover state changed), check (0xcc006000)(0xcc006004) for flags.

#### 6.2.12.1 Break Complete

#### **6.2.12.2 DMA** finished

#### 6.2.12.3 Device Error

#### 6.2.12.4 Cover State changed

### 6.2.13 Reset Button

1 Source (Reset Button pressed)

# 6.2.13.1 setup

> no further setup required

#### **6.2.13.2** handling

> nothing special required, its however recommended to clear the PI Interrupt Mask to avoid multiple interrupts.

### 6.2.14 Error

1 Source (GP runtime error)

7 VIDEO PROCESSING 158

# 7 Video Processing

# 7.1 Used VI terms

ightharpoonup XFB - external Framebuffer

The external framebuffer resides in main memory and can be directly displayed by the video processor.

- 7.2 init VI
- 7.2.1 Videomodes
- 7.3 render to XFB
- 7.4 vertical retrace
- 7.5 set XFB Address

# **8 3D Graphics Processing**



# 8.1 basic operations

# 8.1.1 load BP Register

⊳ write byte 0x61 to GXFIFO

#### 8.1.2 load CP Register

- ⊳ write byte 0x08 to GXFIFO

#### 8.1.3 load XF Register

- ⊳ write byte 0x10 to GXFIFO
- ⊳ write 0x0000 (16 bit) to GXFIFO
- ⊳ write addr (16 bit) to GXFIFO

# 8.1.4 load XF Register Indexed

- ⊳ write byte 0x10 to GXFIFO
- ⊳ write n-1 (16 bit) to GXFIFO
- ⊳ write addr (16 bit) to GXFIFO

# 8.2 example processing loop

```
gx_init();
while(running)
{
gx_begin();
drawframe();
gx_end();
waitvsync();
}
gx_close();
```

#### 8.2.1 init GX

# 8.2.1.1 setup the fifos

- ⊳ fifo start/end must be 32 byte aligned
- by typical size for the hi watermark is fifo size 16kb

### **8.2.1.2 enable gx command processing** while (mfwpar () & 1);

PI[3] = 0x100000;

PI[4] = 0x110000;

PI[5] = 0x100000;

mtwpar(0xC008000); // GXFIFO physical address

mtspr(920, mfspr(920) | 0x40000000);

- **8.2.1.3 send setup frame** after setting up and enabling gx command processing it is recommended to send a first initial 'frame' to setup the various internal registers to useful values.
- **8.2.1.3.1 Videomodes** remember that depending on the videomode some things must be setup differently (such as the scissor, viewport, ...)
- 8.2.2 begin frame
- 8.2.3 draw frame
- 8.2.4 end frame

  - □ copy EFB to XFB
  - be terminate the list by writing 32 zeroes
     be terminate the list by writing 32 zeroes
     considerable the list by writing 32 zeroes.
     The second terminate the list by writing 32 zeroes.
     The second terminate the list by writing 32 zeroes.
     The second terminate the list by writing 32 zeroes.
     The second terminate the list by writing 32 zeroes.
     The second terminate the list by writing 32 zeroes.
     The second terminate the list by writing 32 zeroes.
     The second terminate the list by writing 32 zeroes.
     The second terminate the list by writing 32 zeroes.
     The second terminate the list by writing 32 zeroes.
     The second terminate the list by writing 32 zeroes.
     The second terminate the list by writing term

#### **8.2.4.1** copy EFB to XFB #define XY(x, y) (((y) << 10) | (x))

GX\_LOAD\_BP\_REG(0x4000001f); // set z mode

GX\_LOAD\_BP\_REG(0x410004bc); // set color mode 0

GX\_LOAD\_BP\_REG(0x49000000 | XY(0, 0)); // set source top left

GX\_LOAD\_BP\_REG(0x4a000000 | XY(639, 479)); // set source bottom right

GX\_LOAD\_BP\_REG(0x4d000028); // stride? (0x1280>>5) ... 640\*2; 320\*YuYv

 $GX_LOAD_BP_REG(0x4b000000 | (0xC00000 >> 5)); // xfb target address$ 

GX\_LOAD\_BP\_REG(PE\_COPY\_CLEAR\_AR | 0x0000);

 $GX\_LOAD\_BP\_REG(PE\_COPY\_CLEAR\_GB \mid 0x0000);$ 

GX\_LOAD\_BP\_REG(PE\_COPY\_CLEAR\_Z | 0xFFFFFF);

GX\_LOAD\_BP\_REG(0x52004803); // do it (efb copy execution command?)

**8.2.4.2 copy EFB to Texture** simelar to copying EFB to XFB, setup BP registers 0x4a,0x4d,0x4b and then (0x52000003| (format < < 4))

#### 8.2.5 close GX

# 9 Joy-Bus Devices

# 9.1 ID and Device List

The device ID can be read by sending the SI Command 0x00, and then reading 3 bytes from the respective device. The response-data looks like this:

first comes a 16bit device id:

| ID     | Device                           |
|--------|----------------------------------|
| 0x0500 | ? N64 Controller                 |
| 0x0001 | ? N64 Microphone                 |
| 0x0002 | ? N64 Keyboard                   |
| 0x0200 | ? N64 Mouse                      |
| 0x0004 | GBA                              |
| 0x0800 | GBA (n/a)                        |
| 0x0900 | GC Standard Controller           |
| 0xe960 | ? GC Wavebird Receiver           |
| 0xe9a0 | ? GC Wavebird                    |
| 0xa800 | ? GC Wavebird                    |
| 0xebb0 | ? GC Wavebird                    |
| 0x0820 | GC Keyboard                      |
| 0x0800 | ? GC Steering Wheel              |
| 0x0900 | DKongas (same as std Controller) |
| ?      | Resident Evil4 Chainsaw          |

| bit(s) | description                                               |
|--------|-----------------------------------------------------------|
| 15     | wireless (1: wireless Controller)                         |
| 14     | wireless receive (0: not wireless 1: wireless)            |
| 13     | Rumble Motor (0: available 1: not available)              |
| 12     | Type of Controller (always 0 ?)                           |
| 11     | Type of Controller (0: N64 1: Dolphin)                    |
| 10     | wireless type (0:IF 1:RF)                                 |
| 9      | wireless state (0: variable 1: fixed)                     |
| 8      | 0: non standard Controller 1: Dolphin Standard Controller |
| 7      |                                                           |
| 6      |                                                           |
| 5      | wireless origin (0:invalid 1:valid)                       |
| 4      | wireless fix id (0:not fixed 1:fixed)                     |
| 3      | wireless type - 0:normal 1: non-controller (?)            |
| 2      | wireless type - 0:normal 1: lite controller               |
| 1      | wireless type -                                           |
| 0      | wireless type -                                           |

the device id is followed by 8 status bits:

| bit(s) | description            |
|--------|------------------------|
| 7      | ?                      |
| 6      | ?                      |
| 5      | ?                      |
| 4      | ?                      |
| 3      | ? rumble motor running |
| 2      | ?                      |
| 1      | ?                      |
| 0      | ?                      |

# 9.2 standard Controller

#### 9.2.1 Init

⊳ enable all controllers in 0xcc006430

⊳ set Joy-channel 1-4 Command Register to 0x00400300

 $\triangleright$  wait until bit 31 of 0xCC006434 is 0, then set it to 1

### Command Word

0x00400000 - enable polling

0x00000300 - ?

0x00000100 - ?

0x00000001 - enable rumble motor

# Commands:

0x00 - get id+status

0x40 - ?

0x41 - get origins

0x42 - calibrate?

# 9.2.2 Read Controller Status

 $\, \rhd \,$  simply read all Joy-channel registers and extract the info you want

# first input word

| bit(s) |   | Description                                |
|--------|---|--------------------------------------------|
| 31     |   | ERRSTAT - (assumed 0)                      |
| 30     |   | ERRLATCH - (assumed 0)                     |
| 29     |   | unused (?)                                 |
| 28     | s | Start Button                               |
| 27     | У | Y Button                                   |
| 26     | X | X Button                                   |
| 25     | b | B Button                                   |
| 24     | a | A Button                                   |
| 23     |   | unused (?)                                 |
| 22     | L | L Trigger                                  |
| 21     | R | R Trigger                                  |
| 20     |   | Z Trigger                                  |
| 19     | u | D-Pad Up                                   |
| 18     | d | D-Pad Down                                 |
| 17     | r | D-Pad Right                                |
| 16     | 1 | D-Pad Left                                 |
| 8-15   | х | Analog Stick X (8bit unsigned, ~32128~224) |
| 0-7    | у | Analog Stick Y (8bit unsigned, ~32128~224) |

#### second input word

| bit(s) |   | Description                                  |
|--------|---|----------------------------------------------|
| 24-31  | X | Analog C Stick X (8bit unsigned, ~32128~224) |
| 16-23  | у | Analog C Stick Y (8bit unsigned, ~32128~224) |
| 8-15   | 1 | L Trigger Analog (8bit unsigned, ~32~224)    |
| 0-7    | r | R Trigger Analog (8bit unsigned, ~32~224)    |

#### 9.2.3 rumble Motor On

\*(volatile unsigned long\*)0xCC006400 = 0x00400001;

#### 9.2.4 rumble Motor Off

\*(volatile unsigned long\*)0xCC006400 = 0x00400000;

# 9.3 Keyboard

# **9.3.1** Types

**9.3.1.1 ASCII** Official Nintendo/SEGA keyboard for the GameCube. It has 80 keys plus an Fn key, some of the keys have Japanese labelings. It has an LShift and an RShift key, but only a single Ctrl and Alt key. The Fn key is internal to the keyboard. It makes the keyboard send different scancodes if it is pressed, and an Fn keypress alone cannot be detected.

<sup>\*(</sup>volatile unsigned long\*)0xCC006438 = 0x80000000;

<sup>\*(</sup>volatile unsigned long\*)0xCC006438 = 0x80000000;

#### **9.3.1.2 Datel** A British IBM PS/2 keyboard that ships with an adapter.

**9.3.1.3 Tototek Adapter** Converts the IBM PS/2 protocol to the GameCube SI protocol and also converts the PS/2 scancodes into GameCube scancodes. The keys that have Japanese labelings on the ASCII keyboard get mapped to keys like PrintScreen and Pause.

- ▷ 0-9 and Enter send the scancodes of their counterparts on the alphanumeric part of the keyboard, regardless of the status of NumLock, so the Numpad cannot be used as cursor keys.
- ▶ The key right of LShift on non-US keyboards sends no scancode.
- ▷ The Pause/SysReq key only sends the keycode of 0x37 once, even if it's pressed down continuously.
- ▷ Numpad-\* sends 0x37, the same as Pause/SysReq, but this one continues sending it.
- ▷ All combinations of Pause/SysReq with other keys are possible, except for these: LStrg or LStrg together with Pause/SysReq doesn't send anything. This would have been SysReq.
- ➤ The adapter easily gets confused by two keys for which it produces the same GameCube scancodes:
   If you hold down LStrg and press RStrg, the LStrg scancode will disappear even though LStrg is srill pressed down. The same is true for Ctrl and Alt.

#### 9.3.2 Scancodes

|    | . 0       | .1         | . 2           | .3       | . 4          | . 5  | . 6         | . 7          |
|----|-----------|------------|---------------|----------|--------------|------|-------------|--------------|
| 0. |           |            |               |          |              |      | Home        | End          |
| 1. | A         | В          | С             | D        | Е            | F    | G           | Н            |
| 2. | Q         | R          | S             | Т        | U            | V    | W           | X            |
|    |           |            |               |          |              |      |             |              |
| 3. | 7         | 8          | 9             | 0        | ()           | =+   | PrntScrn    | Pause/SysReq |
|    | NP 7      | NP 8       | NP 9          | NP 0     | NP -         |      | NP/         | NP *         |
| 4. | F1        | F2         | F3            | F4       | F5           | F6   | F7          | F8           |
| 5. | Backspace | Tab        |               | CapsLock | LShift (*54) |      | LCtrl (*56) | LAlt (*57)   |
| 6. |           | Enter      |               |          |              |      |             |              |
|    |           | NP Enter   |               |          |              |      |             |              |
|    | . 8       | . 9        | . A           | .B       | .C           | .D   | .E          | . F          |
| 0. | PgUp      | PgDn       | ScrollLock    |          |              |      |             |              |
| 1. | I         | J          | K             | L        | M            | N    | O           | P            |
| 2. | Y         | Z          | 1             | 2        | 3            | 4    | 5           | 6            |
|    |           |            | NP 1          | NP 2     | NP 3         | NP 4 | NP 5        | NP 6         |
| 3. | [{        | ;:         | "             | ]}       | ,<           | .>   | /?          | \1           |
|    |           | NP + (*39) |               |          |              | NP.  |             |              |
| 4. | F9        | F10        | F11           | F!2      | ESC          | Ins  | Del         | <b>'~</b>    |
| 5. | LWin      | space      | RWin          | Menu     | Left         | Down | Up          | Right        |
| 6. |           |            |               |          |              |      |             |              |
|    |           |            | NumLock (*6a) |          |              |      |             |              |

- (\*39) Tototek adapter: makes only sence for japenese ASCII labeling
- (\*54) Tototek adapter sends this code for LShift and RShift
- (\*56) Tototek adapter sends this code for LCtrl and RCtrl
- (\*57) Tototek adapter sends this code for LAlt and RAlt
- (\*6a) Tototek adapter: undefined for GameCube

# 9.3.3 Init

⊳ enable controller in 0xcc006430

ightharpoonup set Joy-channel Command Register to 0x00540000

⊳ clear SI i/o buffer

⊳ wait until bit 31 of 0xCC006434 is 0, then set it to 1

Command Word

0x00540000 - enable polling

# 9.3.4 Read Keyboard

# first input word

| bit(s) | Description            |
|--------|------------------------|
| 31     | ERRSTAT - (assumed 0)  |
| 30     | ERRLATCH - (assumed 0) |
| 24-29  | ?                      |
| 16-23  | ?                      |
| 8-15   | ?                      |
| 0-7    | ?                      |

### second input word

| bit(s) | Description |
|--------|-------------|
| 24-31  | key1        |
| 16-23  | key2        |
| 8-15   | key3        |
| 0-7    | ?           |

# 9.4 **GBA**

to do

# 9.5 Wavebird

to do

# 9.6 steering wheel

to do

# 9.7 DKongas

These work exactly like the standard controllers from the programmers point of view, and they even have the same ID.

# 9.7.1 Read Controller Status

# first input word

| bit(s) |   | Description                          |
|--------|---|--------------------------------------|
| 31     |   | ERRSTAT - (assumed 0)                |
| 30     |   | ERRLATCH - (assumed 0)               |
| 29     |   | unused (?)                           |
| 28     | s | Start Button                         |
| 27     | У | left Konga, top/left (Y Button)      |
| 26     | х | right Konga, top/left (X Button)     |
| 25     | b | left Konga, bottom/right (B Button)  |
| 24     | a | right Konga, bottom/right (A Button) |
| 23     |   | unused (?)                           |
| 22     | L | unused (L Trigger)                   |
| 21     | R | unused ? (R Trigger)                 |
| 20     |   | unused (Z Trigger)                   |
| 19     | u | unused (D-Pad Up)                    |
| 18     | d | unused (D-Pad Down)                  |
| 17     | r | unused (D-Pad Right)                 |
| 16     | 1 | unused (D-Pad Left)                  |
| 8-15   | Х | unused (Analog Stick X)              |
| 0-7    | у | unused (Analog Stick Y)              |

# second input word

| bit(s) |   | Description                                         |
|--------|---|-----------------------------------------------------|
| 24-31  | X | unused (Analog C Stick X)                           |
| 16-23  | у | unused (Analog C Stick Y)                           |
| 8-15   | 1 | unused (L Trigger Analog)                           |
| 0-7    | r | Microphone (R Trigger Analog) (8bit unsigned, ~16?) |

# 9.8 Resident Evil4 Chainsaw

to do

# 10 EXI Devices

#### 10.1 EXI Channel and Device List

The following table shows the GameCube devices which use the EXI bus and their channel and device numbers, the EXI frequency commonly used with them and their virtual offset in EXI mapping.

| channel | device | freq | offset     | Description            |
|---------|--------|------|------------|------------------------|
| 0       | 0      | 4    |            | Memory Card (Slot A)   |
| 0       | 1      | 3    | 0x00000000 | Mask ROM               |
| 0       | 1      | 3    | 0x20000000 | Real-Time Clock (RTC)  |
| 0       | 1      | 3    | 0x20000100 | SRAM                   |
| 0       | 1      |      | 0x20010000 | UART                   |
| 1       | 0      | 4    |            | Memory Card (Slot B)   |
| 2       | 0      |      |            | AD16 (trace step)      |
| 0       | 2      |      |            | Serial Port 1          |
| 0       | 2      | 5    |            | Ethernet Adapter (SP1) |

Note: The Real-Time Clock (RTC), SRAM, and Mask ROM are actually one device mapped to different address offsets. The SRAM should only be accessed by the IPL and contains non-volatile system data. The Mask ROM contains the IPL itself (encrypted) and the system font data.

# 10.2 Retrieving the ID of an EXI Device

To retrieve the ID of an EXI Device, an EXI IMM write operation must be used to send the ID command (0x0000) and an EXI IMM read operation should follow it to read the actual 4 byte ID.

| ID         | Device           |
|------------|------------------|
| 0x00000004 | Memory Card 59   |
| 0x00000008 | Memory Card 123  |
| 0x00000010 | Memory Card 251  |
| 0x00000020 | Memory Card 507  |
| 0x00000040 | Memory Card 1019 |
| 0x00000080 | Memory Card 2043 |
| 0x01010000 | USB Adapter      |
| 0x01020000 | NPDP GDEV        |
| 0x05070000 | IS Viewer        |
| 0x04120000 | AD16             |
| 0x03010000 | Marlin (?)       |
| 0x02020000 | Modem            |
| 0x04020200 | Ethernet Adapter |

#### 10.3 Mask ROM

Mask ROM also referred as bootrom or IPL. Total size of bootrom is 2 MB.

#### 10.3.1 Memory Map (Europe/PAL)

| Start      | End        | Size       | Description                                                |
|------------|------------|------------|------------------------------------------------------------|
| 0x00000000 | 0x000000ff | 0x00000100 | Copyright message (*1)                                     |
| 0x00000100 | 0x001aeee8 | 0x001aede8 | BIOS data (*2)                                             |
| 0x001AFF00 | 0x001FA0E0 | 0x0004D000 | 'Yay0' - ROM Fonts #1 (SJIS)                               |
|            |            |            | 0x61 bytes of 0xFF, 0x62, followed by zeros until 0x1FCF00 |
| 0x001FCF00 | 0x001FF474 | 0x00003000 | 'Yay0' - ROM Fonts #2 (ANSI)                               |
| 0x001FF474 | 0x001FFEF0 |            | filled with 0x00                                           |
| 0x001FFF00 |            | 0x001FFFFF | filled with 0xff                                           |

<sup>(\*1) &</sup>quot;(C) 1999-2001 Nintendo. All rights reserved.(C) 1999 ArtX Inc. All rights reserved.PAL Revision 1.0 " and zeros up to 0x100.

# 10.3.2 Memory Map (USA/NTSC)

| Start      | End        | Size       | Description         |
|------------|------------|------------|---------------------|
| 0x00000000 | 0x0015ee40 | 0x0015ee40 | BIOS data (*1)      |
| 0x001AFF00 |            | 0x0004D000 | ROM Fonts #1 (SJIS) |
| 0x001FCF00 |            | 0x00003000 | ROM Fonts #2 (ANSI) |
| 0x001FFF00 |            | 0x001FFFFF | filled with 0x00    |

<sup>(\*1)</sup> encrypted by an XOR cyphertext which is generated by a yet unknown algorithm (probably not a single LFSR)

note: all unused space is filled with 0x00, no pieces with 0xFF.

# 10.3.3 Memory Map (Japenese/NTSC)

#### 10.3.4 Memory Map (Japenese/NTSC - Panasonic Q)

# 10.3.5 Font Encoding

The 'Yay0' data is compressed similar to the Zelda 64 'Yaz0' compression. Besides the Raw Font data it also contains some information about the Font.

# 10.3.6 Font Layout

### 10.3.6.1 SJIS Font (ROM Font #1)

**10.3.6.2 ANSI Font (ROM Font #2)** The ANSI Font is a 512x512 Pixel Texture in I4 Format. It consists of 21 colums and 11 rows of characters which are in a 24x24 pixel grid.

<sup>(\*2)</sup> encrypted by an XOR cyphertext which is generated by a yet unknown algorithm (probably not a single LFSR)

|   | ! | , | # | \$ | % | & | ť | ( | ) | * | + | , | - |   | / | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 5 | 6 | 7 | 8 | 9  | : | ; | < | = | > | ? | @ | A | В | С | D | Е | F | G | Н | I |
| J | K | L | M | N  | О | P | Q | R | S | Т | U | V | W | X | Y | Z | [ | \ | ] | ٨ |
|   | , | a | b | С  | d | e | f | g | h | i | j | k | 1 | m | n | О | p | q | r | S |
| t | u | V | W | X  | y | Z |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

# 10.3.7 Operation

#### 10.3.7.1 read

⊳ IMM write 32 bit: (offset<<6)
</p>

▷ DMA read X bytes

max offset is 2\*1024\*1024, max block len is?

# 10.4 RTC (Real-Time Clock)

Real-Time Clock (RTC) is 32-bit value, counting time intervals in seconds. To get the real time (seconds since January 1st, 2000 12am) add the counter bias saved in SRAM.

# 10.4.1 Operation

#### 10.4.1.1 read

 $\triangleright$  IMM write 32 : 0x20000000 | (0<<6) (RTC offset)

▷ IMM read 32-bit RTC value

Since it is uncertain if the hardware prevents fragmented reads of the time interval (eg byte 1 from tick n and byte 2-4 from tick n+1) it is recommended to repeatedly retrieve the value until there is no difference between two consecutive reads.

#### 10.4.1.2 write

- ▷ IMM write 32 : 0xA0000000 (== 0x20000000 | 0x80000000 (write flag) | (0<<6) (RTC offset))

#### **10.5** SRAM

SRAM is battery backed memory, used for saving some non volatile settings. Size of SRAM is 64 bytes.

# 10.5.1 Memory Map

| offset | end | size | Description             |                    |          |                     |  |  |  |  |
|--------|-----|------|-------------------------|--------------------|----------|---------------------|--|--|--|--|
| 0x00   |     | 2    | Checksu                 | Checksum 1         |          |                     |  |  |  |  |
| 0x02   |     | 2    | Checksu                 | Checksum 2         |          |                     |  |  |  |  |
| 0x04   |     | 4    | ead 0                   |                    |          |                     |  |  |  |  |
| 0x08   |     | 4    | ead 1                   | ead 1              |          |                     |  |  |  |  |
| 0x0c   |     | 4    |                         |                    |          | to get actual time) |  |  |  |  |
| 0x10   |     | 1    | display o               | offset H (signed   | value, - | 3232)               |  |  |  |  |
| 0x11   |     | 1    | ntd                     |                    |          |                     |  |  |  |  |
| 0x12   |     | 1    | language                |                    |          |                     |  |  |  |  |
|        |     |      | value Description       |                    |          |                     |  |  |  |  |
|        |     |      | 0                       | english            |          |                     |  |  |  |  |
|        |     |      | 1                       | german             |          |                     |  |  |  |  |
|        |     |      | 2                       | french             |          |                     |  |  |  |  |
|        |     |      | 3                       | spanish<br>italian |          |                     |  |  |  |  |
|        |     |      | 4                       |                    |          |                     |  |  |  |  |
|        |     |      | 5 dutch                 |                    |          |                     |  |  |  |  |
| 0x13   |     | 1    | flags                   |                    |          |                     |  |  |  |  |
|        |     |      | bit(s)                  | Descriptio         | n        |                     |  |  |  |  |
|        |     |      | 7                       | ? (=0)             |          |                     |  |  |  |  |
|        |     |      | 6                       | ? (=0)             |          |                     |  |  |  |  |
|        |     |      | 5                       | ? (=1)             |          |                     |  |  |  |  |
|        |     |      | 4                       | ? (=0)             |          |                     |  |  |  |  |
|        |     |      | 3                       | ? (=1)             |          |                     |  |  |  |  |
|        |     |      | 2                       | 0: mono 1:         | stereo   |                     |  |  |  |  |
|        |     |      | 1                       | ? (=0)             |          |                     |  |  |  |  |
|        |     |      | 0                       | ? (=0)             |          |                     |  |  |  |  |
| 0x14   |     | 2*12 | Flash ID                |                    |          |                     |  |  |  |  |
| 0x2c   |     | 4    |                         | Keyboard ID        |          |                     |  |  |  |  |
| 0x30   |     | 4*2  | wireless                |                    |          |                     |  |  |  |  |
| 0x38   |     | 1    |                         | last DVD Errorcode |          |                     |  |  |  |  |
| 0x39   |     | 1    | padding/unused/reserved |                    |          |                     |  |  |  |  |
| 0x3a   |     | 2*2  |                         | Flash ID checksum  |          |                     |  |  |  |  |
| 0x3e   |     | 2    | padding/                | unused/reserve     | d        |                     |  |  |  |  |

# 10.5.2 Operation

# 10.5.2.1 read

- ightharpoonup IMM write 32 : 0x20000100 (== 0x20000000 | (8 << 6) (SRAM offset))
- ⊳ DMA read 64 bytes.

# 10.5.2.2 write

- $> IMM \ write \ 32:0xa0000100 \ (==0x200000000 \ | \ 0x800000000 \ (write \ flag) \ | \ (8 << 6) \ (SRAM \ offset))$
- $\, \rhd \,$  use sequential IMM writes

#### 10.5.3 Checksums

the SRAM data is protected against corruption by a simple additive checksum which is calculated like this:

```
void checksums (unsigned short *buf, unsigned short *c1, unsigned short *c2)
{
  int i;
  *c1 = 0; *c2 = 0;
  for (i = 0;i<4;++i)
{
  *c1 += buf[0x06 + i];
  *c2 += (buf[0x06 + i] ^ 0xFFFF);
}
}</pre>
```

# 10.6 AD16

AD16 is on channel 2, as device 0. Probably its used for debugging purposes. AD16 is the 32-bit register, keeping bootrom "trace-step".

# 10.6.1 Operation

#### 10.6.1.1 init

► IMM write: 0x0000

▷ IMM read 32 bit ID and check it for error (it should be 0x04120000)

#### 10.6.1.2 write

► IMM write: 0xa0

▷ IMM write 32-bit value (trace-step)

### 10.6.1.3 read

▶ IMM write : 0xa2

⊳ IMM read 32-bit AD16 register value

# 10.6.2 Trace-Step Values

#### 10.6.2.1 BS

| 0x01000000 | AD16 Inited, cache lines 320, 340,360, 380, 3a0 prefetched |  |
|------------|------------------------------------------------------------|--|
| 0x02000000 | cache line 0x3e0 prefetched                                |  |
| 0x03000000 | rest of cachelines prefetched                              |  |
| 0x04000000 | ramtest passed                                             |  |
| 0x05000000 | ramtest error                                              |  |
| 0x06000000 | ramtest error                                              |  |

10.6.2.2 BS2

| 0x00000800 | System Init       |
|------------|-------------------|
| 0x00000900 | DVD Init          |
| 0x00000a00 | Card Init         |
| 0x00000b00 | video init        |
| 0x00000c00 | final before menu |

# **10.7** Memory Cards

| Product                              | Blocks | Mega bits | Mega bytes | Vendor       |                   |
|--------------------------------------|--------|-----------|------------|--------------|-------------------|
| Memory Card 59                       | 64     | 4         | 0.5        | Nintendo     |                   |
| Action Replay memory card            | 64     | 4         | 0.5        | Datel        |                   |
| Memory Card '4 Mega'                 | 64     | 4         | 0.5        | 3rd Party    | WINBOND 512K*8 CN |
| Memory Card 123                      | 128    | 8         | 1          | Nintendo (*) |                   |
| Memory Card '8 Mega'                 | 128    | 8         | 1          | 3rd Party    |                   |
| Memory Card 251                      | 256    | 16        | 2          | Nintendo     |                   |
| Memory Card 507                      | 512    | 32        | 4          | Nintendo (*) |                   |
| Memory Card 1019                     | 1024   | 64        | 8          | Nintendo     |                   |
| Memory Card '64 Mega'                | 1024   | 64        | 8          | 3rd Party    |                   |
| USB Memory Adaptor 64M / 1019 blocks | 1024   | 64        | 8          | EMS          |                   |
| Memory Card 2043                     | 2048   | 128       | 16         | Nintendo (*) |                   |

<sup>(\*)</sup> never seen those, appearently supported but never manufactured.

as you can see the products are named in reference to their *useable* capacity in blocks or total size in mega bits. The theoretical maximum size for a memory card is 128 mega bits (16 mega bytes, 2048 blocks).

# 10.7.1 Commands

| Command  | len | indata             | len | outdata    | len     | Description       |
|----------|-----|--------------------|-----|------------|---------|-------------------|
| 0x8500   | 2   | -                  | _   | ID         | 2       | get ID            |
| 0x8300   | 2   | -                  | _   | Status     | 1       | get Card Status   |
| 0x89     | 1   | -                  | _   | -          | -       | clear Card Status |
| 0x52     | 1   | offset, 0x00000000 | 8   | Block Data | <=0x200 | read Block        |
| 0xf40000 | 3   | -                  | _   | -          | -       | erase Card        |
| 0xf1     | 1   | Sector             | 2   | -          | -       | erase Sector      |
| 0xf2     | 1   | Block offset       | 4   | Block Data | <=0x80  | write Block       |

# 10.7.2 Operation

**10.7.2.1 unlocking** original memory cards (those manufactured by nintendo) need to be 'unlocked' before they can be accessed. this is appearently done by a small dsp program.

to do

# 10.7.2.2 get ID

- ⊳ IMM write 0x85,00
- ⊳ IMM read 2 bytes ID

# 10.7.2.2.1 Card IDs

# 10.7.2.3 get Status

- ⊳ IMM write 0x83,00
- ⊳ IMM read 1 byte Status

# 10.7.2.3.1 Status Bits

| х      |   | r                        |
|--------|---|--------------------------|
| bit(s) |   | description              |
| 7      | X | 1: erase in Progress (?) |
| 0      | r | 1: Card ready (?)        |

0

#### 10.7.2.4 clear Status

⊳ IMM write 0x89

#### 10.7.2.5 read Block

⊳ select

⊳ IMM write: 0x52

 $\triangleright$  IMM write: (offset >> 17), (offset >> 9), (offset >> 7) & 3, offset & 0x7F

max offset is 16\*1024\*1024, max block len is 512 bytes.

# 10.7.2.6 erase Card

- ⊳ select

# 10.7.2.7 erase Sector

- $\triangleright$  select
- ▷ IMM write 0xf1
- $\triangleright$  IMM write (sector >> 17) & 0x7F, (sector >> 9) & 0xFF
- > wait until bit 7 of card status is cleared

#### **10.7.2.8** write Block

- ▷ select
- ▷ IMM write 0xf2
- $\triangleright$  IMM write (offset >> 17) & 0x3F, (offset >> 9) & 0xFF, (offset >> 7) & 3, offset & 0x7F
- ⊳ write 0x80 bytes

# 10.8 Ethernet Adapter

The Macronix chip found in the ethernet adapter (mx98730ec) seems to be a reenginered version of the mx98726 or mx98728 (or the ec type respectively).

# 10.8.1 registers

| Registerblock Base | Size of Registerblock | common access size |
|--------------------|-----------------------|--------------------|
| 0x00               | 0x1000                | 1                  |

These are the actual Chip Registers which match with the descriptions in MXs documents.

|  | 0x00 | 1 | r/w | NCRA - Network Control Register A (0x08 ?) |
|--|------|---|-----|--------------------------------------------|
|--|------|---|-----|--------------------------------------------|

| 7    | 0    |
|------|------|
| ???? | ?ep? |

| bit(s) |                                   | descrip                             | description                                                                                           |                                |  |  |  |  |
|--------|-----------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------|--|--|--|--|
| 7      |                                   | INTCL                               | INTCLK - must be 0 for normal operation.                                                              |                                |  |  |  |  |
| 6      |                                   | INTMO                               | INTMODE - Interrupt Mode: Set for the active high interrupt, reset for the active low interrupt case. |                                |  |  |  |  |
| 5      |                                   | LB1 - I                             | LB1 - Loopback mode                                                                                   |                                |  |  |  |  |
| 4      |                                   | LB0                                 | LB0                                                                                                   |                                |  |  |  |  |
|        |                                   | LB1                                 | LB1 LB0 description                                                                                   |                                |  |  |  |  |
|        |                                   | 0 0 Mode0 - Normal mode             |                                                                                                       |                                |  |  |  |  |
|        |                                   | 0                                   | 1                                                                                                     | Mode1 - internal FIFO Loopback |  |  |  |  |
|        |                                   | 1                                   | 0                                                                                                     | Mode2 - internal NWAY Loopback |  |  |  |  |
|        | 1 1 Mode3 - internal PMD Loopback |                                     |                                                                                                       |                                |  |  |  |  |
| 3      |                                   | SR - St                             | SR - Start Receive : Enable the MAC to receive packets. Default is disabled.                          |                                |  |  |  |  |
| 2      | e                                 | ST1 - Start Transmit Command/Status |                                                                                                       |                                |  |  |  |  |
| 1      | p                                 | ST0                                 | STO                                                                                                   |                                |  |  |  |  |
| 0      |                                   | RESET                               | ` - Softv                                                                                             | vare reset.                    |  |  |  |  |

bit 1 and bit 2 will get cleared after a packet has been sent

| 0x01 | 1 | r/w | NCRB - Network Control Register (0x11, 0x12?) |
|------|---|-----|-----------------------------------------------|
|------|---|-----|-----------------------------------------------|

7 0

| bit(s) | description                        |
|--------|------------------------------------|
| 6-7    | RXINTC - Recieve Interrupt Counter |
| 5      | HBD - Heart Beat Check Disable     |
| 4      | AB - "pass all broadcast frames"   |
| 3      | PB - "pass bad frames"             |
| 2      | PM - "pass all multicast"          |
| 1      | CA - capture effect mode           |
| 0      | PR - promiscuous mode              |

|  | 0x02 | 1 | r/w | GMAC Test Register A: TRA |
|--|------|---|-----|---------------------------|
|--|------|---|-----|---------------------------|

| bit(s) | Description                      |
|--------|----------------------------------|
| 7      | SB - Start/Stop Back-off counter |
| 6      | FC - Forced Collision            |
| 5      | RWD - Receive Watchdog Disable   |
| 4      | RWR - Recieve Watchdog Release   |
| 1-3    | TMODE - Test Moder Select bits   |
| 0      | TEST - Test mode enable          |

| 0x03 | 1 | r/w | GMAC Test Register B : TRB |
|------|---|-----|----------------------------|
|      |   |     |                            |

| bit(s) | Description                    |
|--------|--------------------------------|
| 7      | BFSTATUS                       |
| 6      | BFS1                           |
| 5      | BKCNTLB                        |
| 4      | BFS0                           |
| 3      | COLCNTCB                       |
| 2      | RDNCNTSB                       |
| 1      | RDNCNTCB                       |
| 0      | FKD - Flaky Oscillator Disable |

| 0x04 | 1   r/w | LTPS - Last | Transmitted Packet S | tatus (transm | it error code ?) |
|------|---------|-------------|----------------------|---------------|------------------|
|------|---------|-------------|----------------------|---------------|------------------|

| bit(s) | Description                   |  |
|--------|-------------------------------|--|
| 7      | TERR - Transmit Error         |  |
| 6      | OWC - Out of Window Collision |  |
| 5      | UF - TX FIFO Underflow        |  |
| 4      | CRSLOST - Carrier Sense Lost  |  |
| 3      | CC3 - Collision Count Bit 3   |  |
| 2      | CC2                           |  |
| 1      | CC1                           |  |
| 0      | CC0                           |  |

| 0x05 | 1 | r/w | LRPS - Last Recieved Packet Status |
|------|---|-----|------------------------------------|
|------|---|-----|------------------------------------|

| bit(s) | Description                      |
|--------|----------------------------------|
| 7      | RERR - Recieve Error             |
| 6      | RF - Runt Frame                  |
| 5      | MF - Multicast Frame address     |
| 4      | RW - Recieve Watchdog            |
| 3      | FO - FIFO Overrun                |
| 2      | FAE - Frame Alignment Error      |
| 1      | CRC - CRC error                  |
| 0      | BF - RX Packet Buffer Full Error |

| 0x06 | 1 | r/w | MPCL - Missed Packet Counter |
|------|---|-----|------------------------------|
|------|---|-----|------------------------------|

| bit(s) | Description                       |
|--------|-----------------------------------|
| 0-7    | MISSCNT - Miss Packet Counter LSB |

| ĺ | 0x07 | 1 | r/w | MPCL - Missed Packet Counter |
|---|------|---|-----|------------------------------|
|---|------|---|-----|------------------------------|

| bit(s) | Description                       |
|--------|-----------------------------------|
| 0-7    | MISSCNT - Miss Packet Counter MSB |

| 0x08 | 1 | r/w | IMR - Interrupt Mask Register (IRQ Mask) |
|------|---|-----|------------------------------------------|
|      |   |     |                                          |

| bit(s) | Description                              |  |
|--------|------------------------------------------|--|
| 7      | RBFIM - RX Buffer Full Interrupt Mask    |  |
| 6      | BUSEIM - Bus Error Interrupt Mask        |  |
| 5      | FIFOEIM - FIFO Error Interrupt Mask      |  |
| 4      | TEIM - Transmit Error Interrupt Mask     |  |
| 3      | REIM - Receive Error Interrupt Mask      |  |
| 2      | TIM - Transmit Interrupt Mask            |  |
| 1      | 1 RIM - Recieved Interrupt Mask          |  |
| 0      | FRAGIM - Fragment Counter Interrupt Mask |  |

|  | 0x09 | 1 | r/w | IR - Interrupt Register (irq status) |  |
|--|------|---|-----|--------------------------------------|--|
|--|------|---|-----|--------------------------------------|--|

| 7    | 0    |
|------|------|
| ???t | esr? |

| bit(s) |   | description                                        |  |
|--------|---|----------------------------------------------------|--|
| 7      |   | RBFI - RX Buffer Full Interrupt                    |  |
| 6      |   | BUSEI - Bus Error Interrupt                        |  |
| 5      |   | FIFOEI - FIFO Error Interrupt                      |  |
| 4      | t | TEI - Transmit Error Interrupt (1: transmit error) |  |
| 3      | e | REI - Recieve Error Interrupt (1: receive error ?) |  |
| 2      | s | TI - Transmit OK Interrupt (1: packet sent ?)      |  |
| 1      | r | RI - Receive OK Interrupt (1: packet received ?)   |  |
| 0      |   | FRAGI - Fragment Counter Interrupt                 |  |

| 0x0a | 2 | r/w | BP - Boundary Page Pointer Register (0x0100 ?) |  |
|------|---|-----|------------------------------------------------|--|
|------|---|-----|------------------------------------------------|--|

| 0x0c | 2 | r/w | TLBP - TX Low Boundary Page Pointer Register             |
|------|---|-----|----------------------------------------------------------|
|      |   |     |                                                          |
| 0x0e | 2 | r/w | TWP - Transmit Buffer Write Page Pointer Register        |
|      |   |     |                                                          |
| 0x10 | 2 | ?/? | unused/reserved                                          |
|      |   |     |                                                          |
| 0x12 | 2 | r/w | TRP - Transmit Buffer Read Page Pointer Register         |
|      |   |     |                                                          |
| 0x14 | 2 | r/w | RXINTT - Receive Interrupt Timer                         |
|      |   |     |                                                          |
| 0x16 | 2 | r/w | RWP - Receive Buffer Write Page Pointer Register         |
|      |   |     |                                                          |
| 0x18 | 2 | r/w | RRP - Receive Buffer Read Page Pointer Register          |
|      |   |     |                                                          |
| 0x1a | 2 | r/w | RHBP - RX High Boundary Page Pointer Register (0x0f00 ?) |
|      |   |     |                                                          |
| 0x1c | 1 | r/w | EEPROM Interface Register:                               |
|      |   |     |                                                          |

| bit(s) | Description                                                          |
|--------|----------------------------------------------------------------------|
| 6-7    | unused/reserved                                                      |
| 5      | EELD -                                                               |
| 4      | EESEL -                                                              |
| 3      | EEDO - Serial Data Output from external EEPROM clock device          |
| 2      | EEDI - Serial Data Input to external EEPROM clock device             |
| 1      | EECK - Serial Clock output to external EEPROM clock device (< 1 MHz) |
| 0      | EECS - Chip Select output to external EEPROM clock device            |

| 0x1d | 1 | r/w | BICT - Bus Integrity Check Timer |
|------|---|-----|----------------------------------|
|------|---|-----|----------------------------------|

| 0x1e | 2 | r/? | IORDP - IO Data Port Page Pointer Register |  |
|------|---|-----|--------------------------------------------|--|
|------|---|-----|--------------------------------------------|--|

| 0x20 | 6 | r/w | PAR0-PAR5 Network Address Filtering Registers - Physical (MAC) Address |
|------|---|-----|------------------------------------------------------------------------|
|      |   |     |                                                                        |

0x26 | 8 | r/w | MAR0-PAR7 Network Address Filtering Registers - Hash Table Register

| 0x2e | 1 | r/w | ANALOG - ' | Transceiver | Control Register |
|------|---|-----|------------|-------------|------------------|
|------|---|-----|------------|-------------|------------------|

| bit(s) | Description                                              |  |
|--------|----------------------------------------------------------|--|
| 6-7    | unused/reserved (must be 0)                              |  |
| 5      | 5 RST100 - Reset for NORMAL mode                         |  |
| 4      | RSQ - Reduced SQuelch Enable                             |  |
| 3      | PWD100 - Reset for NORMAL mode                           |  |
| 2      | PWD10B - Set for NORMAL mode                             |  |
| 1      | DS130 - Must be 1 for NORMAL mode with auto-compensation |  |
| 0      | DS120 - Must be 1 for NORMAL mode with auto-compensation |  |

| 0x2f | 1 | r/w | DINTVAL - DMA Interval Timer |
|------|---|-----|------------------------------|
|------|---|-----|------------------------------|

179

| 0x30   1   r/w   NWAYC - NWAY Configuration Register | 0x30 |
|------------------------------------------------------|------|
|------------------------------------------------------|------|

| bit(s) | Description                        |
|--------|------------------------------------|
| 7      | LTE - Link Test Enable             |
| 6      | NTTEST - reserved                  |
| 3-5    | ANS - Autonegotiation Status       |
| 2      | ANE - Autonegotiation Enable       |
| 1      | PS100/10 - Port Select 100/10 Mbit |
| 0      | FD - Full Duplex Mode              |

| ı | 0x31 | 1 | r/- | NWAYS - NWAY Status Register |
|---|------|---|-----|------------------------------|
|---|------|---|-----|------------------------------|

| bit(s) | description                                |
|--------|--------------------------------------------|
| 7      | 10TXH - NWAY 10 TX Half duplex Mode        |
| 6      | 10TXF - NWAY 10 TX Full duplex Mode        |
| 5      | 100TXH - NWAY 100 Half duplex Mode         |
| 4      | 100TXF - NWAY 100 TX Full duplex Mode      |
| 3      | ANCLPT - Auto-negotiation Completion       |
| 2      | LPNWAY - Link Partner NWAY Status          |
| 1      | LS100 - Physical Link Status of 100Mbps TP |
| 0      | LS10 - Physical Link Status of 10 Mbps TP  |

# 0x32 | 1 | r/w | GCA - GMAC Configuration A Register (0x08 ?)

| bit(s) | description                           |
|--------|---------------------------------------|
| 7      | unused/reserved (must be 0)           |
| 6      | TXFIFOCNTEN                           |
| 5      | AUTOPUB - Auto Page Update option     |
| 4      | unused/reserved                       |
| 3      | ARXERRB - Accept RX packet with error |
| 2      | SLOWSRAM                              |
| 1      | PBW - Packet Buffer Data Width        |
| 0      | BPSCRM - Bypass Scrambler             |

# 0x33 | 1 | r/w | GCB - GMAC Configuration B Register

| bit(s) | description                    |
|--------|--------------------------------|
| 4-7    | unused/reserved                |
| 2-3    | RTHD - Recieve FIFO Threshold  |
| 0-1    | TTHD - Transmit FIFO Threshold |

| 0x34 | 4 | -/w | TWD - IO Mapped Data Port |
|------|---|-----|---------------------------|
|      |   |     |                           |

| 0x38 2 -/- | unused/reserved |
|------------|-----------------|
|------------|-----------------|

| 0x3a | 1 | r/w | Host Interface Protocol Register (0x08 ?) |
|------|---|-----|-------------------------------------------|
|      |   | •   |                                           |
| 7 0  | ] |     |                                           |

| bit(s) | description                                             |
|--------|---------------------------------------------------------|
| 2      | DREQB - DREQB-pin status bit                            |
| 1      | STIORD/RRDYB - (no data available ?)                    |
| 0      | WRDYB - Write Packet Memory Ready Bar Status Indication |

| 0x3b 1 r/- | LPC - Link Partner Link Code Register |
|------------|---------------------------------------|
|------------|---------------------------------------|

| 0x3d | 1 | r/w | MISC1 - MISC Control Register 1 |
|------|---|-----|---------------------------------|
|      |   |     |                                 |

0x40 | 4 | r/- | RRD - RX Burst Read Data Port

0x44 2 r/- ID1 - 'MX'

0x46 2 r/- ID2 - '0001'

0x48 | 4 | w | WRTXFIFOD - Write TX FIFO Data Port Register (output queue)

0x4c | 4 | r/- | IORD - IO Read Data Port Register

0x50 1 r/w MISC2 - MISC Control Register 2 (0x80 ?)

0x51 | 1 | ? | (?)

note: register 0x51 is not documented in mx98728 datasheet

0x52 2 r/- HRPKTCNT - Host Recieve Packet Counter

0x54 | 3 | r/w | FRAGCNT - Host DMA Fragment Counter

note: 0x56 is the last reg of a mx98726 and mx98728

0x5b ? ?/? (?)

0x5c ? ?/? (?)

0x36 = disconnect network

0x5e ? ?/? (0x01?)

|  |  | 0x60 | ? | ?/? | (0x00?) |
|--|--|------|---|-----|---------|
|--|--|------|---|-----|---------|

| 0x100 | 0xf00 | ?/w | input queue (?) |
|-------|-------|-----|-----------------|
|-------|-------|-----|-----------------|

- select for reading
- IMM read block

## 10.8.2 command-registers

| Registerblock Base | Size of Registerblock | common access size |
|--------------------|-----------------------|--------------------|
| 0x00               | 0x10                  | 1                  |

These Registers are related to the EXI Interface on the Ethernet-Adapter, not to the actual Ethernet Chip.

| 0x00 | ? | ?/? | EXI id |
|------|---|-----|--------|

- select register for reading
- IMM read 4 bytes (0x04,0x02,0x02,0x00)

| bit(s) |   | description                             |
|--------|---|-----------------------------------------|
| 7      | r | irq from MX chip                        |
| 6      | ? | 'killing' irq (should not get this one) |
| 5      | ? | command error                           |
| 4      | p | challange/response request              |
| 3      | h | challange/response status               |

- select register for writing
- IMM write 0xd1,0x07 (16bit)

| 0x05 ? ?/? | ? (0x4e ?) |
|------------|------------|
|------------|------------|

| 0x08 | ? | ?/? | Challenge |
|------|---|-----|-----------|
|------|---|-----|-----------|

- select for reading
- IMM read 4 bytes

| 0x09 | ? | ?/? | Response |
|------|---|-----|----------|
|------|---|-----|----------|

- select for writing
- IMM write 4 bytes

| 0x0a : | ?   ?/? | ? ? |
|--------|---------|-----|
|--------|---------|-----|

- 1: challenge/response ok
- 2: challenge/response failed

## 10.8.3 Operation

## 10.8.3.1 selecting a register for reading

# 10.8.3.2 selecting a register for writing

## 10.8.3.3 selecting command-register for reading

> IMM write (register<<8) (16 bits)

# 10.8.3.4 selecting command-register for writing

ightharpoonup IMM write 0x4000 | (register<<8) (16 bits)

#### 10.8.3.5 init

```
\triangleright write reg - 1 byte to 0x60, 0x00
\triangleright read reg - 1 byte from 0x0f(?)
\triangleright write reg - 1 byte to 0x00, 0x01
\triangleright write reg - 1 byte to 0x00, 0x00 (not necessary?)
\triangleright read reg - 1 byte from 0x01, 0x00
\triangleright read reg - 1 byte from 0x5b
\triangleright write reg - 1 byte to 0x5b, write back previously read value AND ~(1<<7)
\triangleright write reg - 1 byte to 0x5e, 0x01 (or same as 0x5b ?!)
⊳ write reg - 1 byte to 0x5c, write back previously read value OR 4
\triangleright write reg - 1 byte to 0x01, 0x11
\triangleright write reg - 1 byte to 0x50, 0x80 (?)
\triangleright write reg - 1 byte to 0x08, 0xff
\triangleright write reg - 1 byte to 0x09, 0xff
\triangleright write reg - 1 byte to 0x02, 0x00 (?)
\triangleright write reg - 1 byte to 0x00, 0x08
⊳ write reg - 2 bytes to 0x16, 0x0100 (recv buffer write ptr)
⊳ write reg - 2 bytes to 0x18, 0x0100 (recv buffer read ptr)
```

#### 10.8.3.6 challenge/response calculation

```
u32 ETHChallResp(u32 val,u32 revid_0,u32 revid_eth_0,u32 revid_eth_1)
{
    u32 c0,c1,c2,c3;

    c0=(
        ((val&0xff000000)>>24) +
            ((val&0x00ff0000)>>16) * 0xc1 + 0x18 + revid_0)
        ^ ((val&0x000000ff) * ((val&0x0000ff00)>>8)) + 0x90)
        ) & 0xff;
```

#### 10.8.3.7 send packet (outside interrupt)

```
\triangleright write reg - X bytes to 0x48, <senddata> (X must be >=0x3c!)
```

- $\triangleright$  read reg 1 byte from 0x00, status?
- $\triangleright$  write reg 1 byte to 0x00, 0x00
- $\triangleright$  write reg 1 byte to 0x00, previously read status OR 0x04 (set bit3, ACK error?)
- ⊳ read reg 1 byte from 0x00, status ;do while (status AND 0x06)!=0 (wait until packet sent)

## 10.8.3.8 poll received packets (outside interrupt)

```
> read reg - 2 bytes from 0x16, write_ptr
```

- if write\_ptr==read\_ptr, no more packets are available
- $\triangleright$  write reg 1 byte to 0x3a, 0x02
- ⊳ read reg 1 byte from 0x3a, if (value&2)!=0, no more data is available
- > read reg- 4 bytes from read\_ptr, packet descriptor
- $\triangleright$  read reg X bytes from 0x100+read\_ptr, <data> (X must be >=0x3c!; wrap around to 0x100 if read\_ptr=0xf00)
- $\triangleright$  write reg 2 bytes to 0x18, first byte of packet descriptor, 0x00 (advance read pointer)
- $\triangleright$  write reg 1 byte to 0x09, 0x02
- ⊳ write cmd 1 byte to 0x02, 0xf8 (ACK?)

**10.8.3.9** received packet format first 4 bytes of a received packet contains a descriptor about the packet that has been received

|   |    |     | VVVV |    | XXXX | XXXX |   |   |
|---|----|-----|------|----|------|------|---|---|
| 1 | 31 | 2.4 | 2.3  | 16 | 15   | 8    | 7 | 0 |

| bit(s) |   | Description                                                        |
|--------|---|--------------------------------------------------------------------|
| 20-23  | у | length of received packet lo bits (shift 4 down)                   |
| 8-15   | X | length of received packet hi bits (shift 4 up and OR with lo bits) |

length is inclusive the 4 byte descriptor!

#### **10.9 UART**

(note: the existance of an UART is highly speculative and was never proved for a fact) to do

#### **10.10** SD Cards

SD cards support an SPI mode, which is essentially the same hardware protocol that official memory cards use. Notice the use of the word hardware, not software. SD cards uses the MMC command set for communication and data transfer, while Nintendo memory cards use a custom Macronix command set. This means that you should not waste your time trying to get standard GC programs to recognize the SD card as a normal memory card, because it will not work without specific code to access the SD card. Even if you make the raw sector data on the SD card the same as the Nintendo memory card, the low-level commands to access the sectors differ between the two. However, since the hardware bus and protocol are the same, an SD adapter can essentially be made with straight-through connections from the EXI bus to the SD card signals.

to do

# 10.11 Viper 'Modchip'

this is a 3rd-Party 'modchip' used to override the IPL with a custom program. todo

## 10.12 Ripper III GC 'Modchip'

todo

#### 10.13 Qoob 'Modchip'

todo

# 10.14 NinjaMOD 'Modchip'

# 10.15 Mario Party Microphone

todo

11 HSP DEVICES 187

# 11 HSP Devices

HSP devices seem to be accessable through the ARAM interface with offsets beyond 16MB.

# 11.1 GB Player

to do

# 12 Memory Card Structure

## 12.1 Overview

one "block" on memcard equals 0x2000 bytes, the first 5 blocks are used for the filesystem (0xa000 bytes).

| Offset | Size   | Description                     |
|--------|--------|---------------------------------|
| 0x0000 | 0x2000 | Header                          |
| 0x2000 | 0x2000 | Directory                       |
| 0x4000 | 0x2000 | Directory backup (*)            |
| 0x6000 | 0x2000 | Block Allocation Map            |
| 0x8000 | 0x2000 | Block Allocation Map backup (*) |
| 0xa000 |        | file(s) data                    |

(\*) If a change is to be made that will alter the Master File Table, such as moving or deleting a file, copying a file from another memory card, or creating a new save game file, the GameCube will first backup the Master File Table to this location. Presumably, if the operation fails for certain reasons, the GameCube will restore the Backup File Table to the Master File Table.

## 12.2 Header

| Offset | Size   | Description                         |
|--------|--------|-------------------------------------|
| 0x0000 |        | ?                                   |
| 0x000c | 8      | time of format (OSTime value)       |
| 0x0014 |        | unique card id (?)                  |
| 0x0020 | 2      | padding zeroes                      |
| 0x0022 | 2      | size of memcard in Mbits            |
| 0x0024 | 2      | encoding (ASCII or japanese)        |
| 0x0026 |        | unused (0xff)                       |
| 0x01fa | 2      | update Counter (?, probably unused) |
| 0x01fc | 2      | Checksum 1 (?)                      |
| 0x01fe | 2      | Checksum 2 (?)                      |
| 0x0200 | 0x1e00 | unused (0xff)                       |

# 12.3 Directory

| Offset | Size | Description                 |
|--------|------|-----------------------------|
| 0x0000 |      | Directory Entries (max 127) |
| 0x0ffa | 2    | update Counter              |
| 0x0ffc | 2    | Checksum 1                  |
| 0x0ffe | 2    | Checksum 2                  |

## 12.3.1 Directory Entries

| offset | length | descript                                          | tion                                             |                 |                          |                     |  |
|--------|--------|---------------------------------------------------|--------------------------------------------------|-----------------|--------------------------|---------------------|--|
| 0x00   | 0x04   | Gameco                                            | Gamecode                                         |                 |                          |                     |  |
| 0x04   | 0x02   | Makerco                                           | Makercode                                        |                 |                          |                     |  |
| 0x06   | 0x01   | reserved                                          | /unused (alv                                     | vays 0xff, has  | no effect)               |                     |  |
| 0x07   | 0x01   | banner g                                          | banner gfx format and icon animation (Image Key) |                 |                          |                     |  |
|        |        | bit(s)                                            | bit(s) description                               |                 |                          |                     |  |
|        |        | 2                                                 | 2 Icon Animation 0: forward 1: ping-pong         |                 |                          |                     |  |
|        |        | 1                                                 |                                                  | ner 1: Banner   |                          |                     |  |
|        |        | 0                                                 | Banner Co                                        | olor 0: RGB5    | A3 1: CI8                |                     |  |
| 0x08   | 0x20   | filename                                          | <b>)</b>                                         |                 |                          |                     |  |
| 0x28   | 0x04   |                                                   |                                                  | odification in  | seconds since 12am       | , January 1st, 2000 |  |
| 0x2c   | 0x04   |                                                   | ata offset                                       |                 |                          |                     |  |
| 0x30   | 0x02   |                                                   | format (2bi                                      |                 |                          |                     |  |
|        |        | bits                                              | Description                                      | 1               |                          |                     |  |
|        |        |                                                   | no icon                                          |                 |                          |                     |  |
|        |        |                                                   |                                                  | hared color p   | alette after the last fi | rame                |  |
|        |        |                                                   | RGB5A3                                           |                 |                          |                     |  |
|        |        | 11 CI8 with a unique color palette after itself   |                                                  |                 |                          |                     |  |
| 0x32   | 0x02   | animation speed (2bits per icon) (*1)             |                                                  |                 |                          |                     |  |
|        |        |                                                   | Description                                      | l               |                          |                     |  |
|        |        |                                                   | no icon                                          |                 |                          |                     |  |
|        |        |                                                   | Icon lasts fo                                    |                 |                          |                     |  |
|        |        |                                                   | Icon lasts fo                                    |                 |                          |                     |  |
|        |        |                                                   | Icon lasts fo                                    | r 12 frames     |                          |                     |  |
| 0x34   | 0x01   | file-pern                                         |                                                  |                 |                          |                     |  |
|        |        |                                                   | permission                                       | Description     |                          |                     |  |
|        |        |                                                   | no move                                          |                 | be moved by the IPI      |                     |  |
|        |        |                                                   | ю сору                                           |                 | be copied by the IPI     |                     |  |
|        |        | 1                                                 | oublic                                           | Can be read     | l by any game            |                     |  |
| 0x35   | 0x01   | 1.0                                               | unter (*2)                                       |                 |                          |                     |  |
| 0x36   | 0x02   | block no of first block of file $(0 == offset 0)$ |                                                  |                 |                          |                     |  |
| 0x38   | 0x02   | file-length (number of blocks in file)            |                                                  |                 |                          |                     |  |
| 0x3a   | 0x02   |                                                   |                                                  | vays 0xffff, ha |                          |                     |  |
| 0x3c   | 0x04   | Address                                           | of the two c                                     | comments wit    | hin the file data (*3)   |                     |  |

- (\*1) Clearly, the animation rate is unimportant when there is only one frame of icon data; nevertheless, a value for that one frame must still be set, or that one frame will not be shown. It is illegal to specify that a frame does not exist if it does; a value of 00 indicates that no frame exists, and should not be mistaken for meaning that this frame should not be shown. If you specify blank frames to slow the frame rate, these also cannot be 00.
- (\*2) This byte contains an 8-bit integer that indicates how many times the file has been copied from one memory card to another.
- (\*3) Each file has two 32 character strings which the IPL displays at the bottom of the memory card screen, next to the banner. The two strings (64 bytes) must fit within one block (8192 bytes), they are not allowed to cross sector boundaries.

- **12.3.1.1 Image Data** Image data consists of a banner image and an icon. The banner image is not required, dependant on the value of the Image Key. If the banner image is not present, the icon image is displayed where the banner image would be displayed (centered horizontally). The icon image is required, and immediately follows the banner if present. Otherwise, it is located at the start of the image data.
- **12.3.1.1.1 Banner Image** The banner size is 96\*32 pixels, making 3072 pixels in total (= 0x0c00 bytes in 8bit, 0x1800 bytes in 16bit mode). If the Banner is in CI8 mode, the palette follows immediately after the banners pixel data.
- **12.3.1.1.2 Icon Image** Immediately following the banner (if present) is the Icon Image. This can have a variable number of frames (up to eight), each 32\*32 pixels, making 1024 pixels per frame in total. (= 0x0400 bytes in 8bit, 0x0800 byte in 16bit mode). If the Icon is in CI8 mode, its palette either follows immediately after its pixel data or after the pixel data of all 8 icons, depending on the icon gfx format field.
- **12.3.1.1.3 Palettes** Palettes in the image data are in RGB5A3 pixel format, and are 0x100 entries large. (= 0x200 bytes)

#### 12.4 Block Allocation Map

| Offset | Size   | Description             |
|--------|--------|-------------------------|
| 0x0000 | 2      | Checksum 1              |
| 0x0002 | 2      | Checksum 2              |
| 0x0004 | 2      | update Counter          |
| 0x0006 | 2      | free Blocks             |
| 0x0008 | 2      | last allocated Block    |
| 0x000a | 0x1ff8 | Map of allocated Blocks |

This is an array of 0x0ffc 16 bit values, each holding info about one allocated block on the memory card. (thus the maximum memcard size is limited to 2048 blocks (16 Megabytes, 128Mbit))

each 16 bit value at position X in the array has the following meaning:

| value     | Description                                                  |
|-----------|--------------------------------------------------------------|
| 0x0000    | block is not allocated (ie, free)                            |
| 0xffff    | last allocated block of a file                               |
| any other | allocated block, usually equals (x+1) (==next block of file) |

scan through a file like this:

```
thisblock=firstblock;
do
{
    // process block
    // next block
    thisblock=((unsigned short*)0x6000)[thisblock];
}
```

```
while (thisblock!=0xffff);
note:
```

although this scheme could do it, i have never stumbled about a file yet that is NOT linear on the memcard anyway. from this point of view using this allocation map seems to be a bit stupid...more testing needed:)

# 12.5 Checksums

The Checksums for the Directory and Block Allocation Map are simple 16bit additive checksums (ie nothing fancy or particular safe) which can be easily calculated like this:

```
void checksums(unsigned short *buf, int num, unsigned short *c1, unsigned short *c2)
{
   int i;
   *c1 = 0;*c2 = 0;
   for (i = 0; i < num; ++i)
   {
      *c1 += buf[i];
      *c2 += (buf[i] ^ 0xffff);
   }
   if (*c1 == 0xffff)
   {
      *c1 = 0;
   }
   if (*c2 == 0xffff)
   {
      *c2 = 0;
   }
}</pre>
```

13 DVD STRUCTURE 192

# 13 DVD Structure

total capacity of disc data is 1,459,978,240 bytes (1.5 GB approx.). that's exactly 712880 DVD raw sectors (each 2048 bytes).

| start      | end | size       | Description                         |
|------------|-----|------------|-------------------------------------|
| 0x00000000 |     | 0x0440     | Disk header ("boot.bin")            |
| 0x00000440 |     | 0x2000     | Disk header Information ("bi2.bin") |
| 0x00002440 |     | (0x2000 ?) | Apploader ("appldr.bin")            |
|            |     |            | FST ('fst.bin')                     |

# 13.1 Disk header

| start  | end    | size   | Description                                            |
|--------|--------|--------|--------------------------------------------------------|
| 0x0000 | 0x0003 | 0x0004 | Game Code                                              |
|        |        |        | 1 Console ID                                           |
|        |        |        | 2 Gamecode                                             |
|        |        |        | 1 Country Code                                         |
| 0x0004 | 0x0005 | 0x0002 | Maker Code                                             |
| 0x0006 |        | 0x0001 | Disk ID                                                |
| 0x0007 |        | 0x0001 | Version                                                |
| 0x0008 |        | 0x0001 | Audio Streaming                                        |
| 0x0009 |        | 0x0001 | Stream Buffer Size                                     |
| 0x000a | 0x001b | 0x0012 | unused (zeros)                                         |
| 0x001c | 0x001f | 0x0004 | DVD Magic Word (0xc2339f3d)                            |
| 0x0020 | 0x03ff | 0x03e0 | Game Name                                              |
| 0x0400 | 0x0403 | 0x0004 | offset of debug monitor (dh.bin) ?                     |
| 0x0404 | 0x0407 | 0x0004 | addr (?) to load debug monitor ?                       |
| 0x0408 | 0x041f | 0x0018 | unused (zeros)                                         |
| 0x0420 | 0x0423 | 0x0004 | offset of main executable DOL (bootfile)               |
| 0x0424 | 0x0427 | 0x0004 | offset of the FST ("fst.bin")                          |
| 0x0428 | 0x042B | 0x0004 | size of FST                                            |
| 0x042C | 0x042F | 0x0004 | maximum size of FST (usually its same as FST size) (*) |
| 0x0430 | 0x0433 | 0x0004 | user position (?)                                      |
| 0x0434 | 0x0437 | 0x0004 | user length (?)                                        |
| 0x0438 | 0x043b | 0x0004 | (?)                                                    |
| 0x043c | 0x043f | 0x0004 | unused (zeros)                                         |

<sup>(\*)</sup> multiple DVDs must use it, to properly reside all FSTs.

# 13.2 Disk header Information

this is loaded to the Address in 0x800000f4 when a disc is initialized by the IPL

193

| offset | end | size | Description           |
|--------|-----|------|-----------------------|
| 0x0000 |     | 4    | Debug-monitor Size    |
| 0x0004 |     | 4    | Simulated Memory Size |
| 0x0008 |     | 4    | Argument offset       |
| 0x000c |     | 4    | Debug flag            |
| 0x0010 |     | 4    | Track Location        |
| 0x0014 |     | 4    | Track size            |
| 0x0018 |     | 4    | Countrycode           |
| 0x001c |     | 4    | ?                     |

# 13.3 Apploader

| offset | end    | size | Description                                     |
|--------|--------|------|-------------------------------------------------|
| 0x0000 | 0x0009 |      | Date (version) of the apploader in ASCII        |
| 0x000A | 0x000F |      | padding (0)                                     |
| 0x0010 | 0x0013 | 4    | Apploader entrypoint                            |
| 0x0014 | 0x0017 | 4    | size of the apploader (32 bit) (usually 0x2000) |
| 0x0018 | 0x001b | 4    | trailer size                                    |
| 0x0020 |        |      | Apploader code (loaded to 0x81200000 in RAM)    |

# 13.4 Format of the FST

| start | end  | size | Description                     |
|-------|------|------|---------------------------------|
| 0x00  | 0x0c | 0x0c | Root Directory Entry            |
| 0x0c  |      | 0x0c | more File- or Directory Entries |
|       |      |      | String table                    |

# 13.4.1 Format of a File Entry

| start | end | size | Description                                            |  |
|-------|-----|------|--------------------------------------------------------|--|
| 0x00  |     | 1    | flags; 0: file 1: directory                            |  |
| 0x01  |     | 3    | filename, offset into string table                     |  |
| 0x04  |     | 4    | file_offset or parent_offset (dir)                     |  |
| 0x08  |     | 4    | file_length or num_entries (root) or next_offset (dir) |  |

# 14 general File Formats

#### 14.1 BNR (Banner file format)

this is the format of the file 'opening.bnr' (file size: always 6.496 bytes) found in the root directory of every Gamecube disc. This file is the little image that is displayed in the cube menu when inserting a disc into the gamecube, when in menu mode.

| start  | end    | size   | Description                                     |
|--------|--------|--------|-------------------------------------------------|
| 0x0000 | 0x0003 | 0x0004 | Magic Word "BNR1" (US/JP) or 'BNR2' (EU)        |
| 0x0004 | 0x001f |        | padding zeroes                                  |
| 0x0020 | 0x181f | 0x1800 | Graphical Data (Pixel-format is RGB5A1)         |
| 0x1820 | 0x183f | 0x0020 | Gamename (*)                                    |
| 0x1840 | 0x185f | 0x0020 | Company/Developer (*)                           |
| 0x1860 | 0x189f | 0x0040 | Full Game Title (*)                             |
| 0x18a0 | 0x18df | 0x0040 | Company/Developer Full name, or description (*) |
| 0x18e0 | 0x195f | 0x0080 | Game Description (*)                            |

(\*) All Text is all stored in either SHIFT-JIS or ASCII, depending on the region of the Game.

note: In the filesystem of european Games with multi-lingual text there may be several .bnr files (opening.bnr, openingUS.bnr, openingEU.bnr, openingJP.bnr). The opening.bnr is a BNR2 file, it is just like a regular BNR file, except that the metadata at the end repeats several times in different languages. 0x1820 through 0x1960 are the first, and it continues in blocks of 0x0140.

#### **14.2 DOL** (Gamecube Executable)

This is a custom GameCube program file format, which is directly booted by GameCubes' BIOS (to be exact, by the apploader on retail discs. a different apploader could well load a binary in whatever different format.).

| start  | end    | size | description                       |
|--------|--------|------|-----------------------------------|
| 0x0000 | 0x001B |      | Text[06] sections File Positions  |
| 0x001C | 0x0047 |      | Data[010] sections File Positions |
| 0x0048 | 0x0063 |      | Text[06] sections Mem Address     |
| 0x0064 | 0x008F |      | Data[010] sections Mem Address    |
| 0x0090 | 0x00AB |      | Text[06] sections Sizes           |
| 0x00AC | 0x00D7 |      | Data[010] sections Sizes          |
| 0x00D8 |        | 0x04 | BSS Mem address                   |
| 0x00DC |        | 0x04 | BSS Size                          |
| 0x00E0 |        | 0x04 | Entry Point                       |
| 0x00e4 |        | 0x1c | unused                            |
| 0x0100 |        |      | Start of sections data (body)     |

# 14.3 ELF (Executable and linkable Format)

The ELF format is a standard, known format for debugging target specific code, etc. GCC targeted for the PPC 750 processor or even for the specialized Gekko processor has a final output of ELF format files. The exact GameCube ELF file format details are currently unknown, but they should be similar to the standard specification.

# 14.4 GCB (QOOB Flash Files)

| start | end  | size | description                      |                         |                    |  |
|-------|------|------|----------------------------------|-------------------------|--------------------|--|
| 0x00  | 0x03 | 4    | ID, indicates whats in the block |                         |                    |  |
|       |      |      | 0x28432920                       | '(C) ' - qoob bios file |                    |  |
|       |      |      | 0x454c4600                       | 'ELF\0' - ELF File      |                    |  |
|       |      |      | 0x42494e00                       | (not yet) 'BIN\0'       |                    |  |
|       |      |      | 0x444f4c00                       | (not yet) 'DOL\0'       |                    |  |
| 0x04  | 0xf7 |      | description, will                | l be shown in boot menu | (by the qoob bios) |  |
| 0xf8  | 0xfb | 4    | reserved                         |                         |                    |  |
| 0xfc  | 0xff | 4    | size of block                    |                         |                    |  |
| 0x100 |      |      | data                             |                         |                    |  |

# 14.5 GCM (Gamecube Disc Image)

These files are always 1.4GB's exactly and each contains a complete binary image of a proprietary format GameCube DVD. This file format is used for the NR-Writer DVD writing software which writes special DVDs that can only be read by NR-Reader GameCubes. The GCM file format can probably be closely compared to the ISO file format for CDs in its purpose.

## 14.6 GCI (Gamecube Game Save)

Used by the EMS Memory Adapter.

64 byte header (equal to FST entry on memcard), followed by the file data (as on memory card)

# **14.7** GCP (Gamecube Memorycard Image)

Used by the EMS Memory Adapter.

this is a raw image of all blocks of a memory card.

#### 14.8 TGC

a proprietary image format found on demo discs and eg the zelda n64 emu

note: there seem to be tgc files on european discs that follow a different layout (no header).

#### 14.8.1 Header

| start  | end    | size   | description                            |
|--------|--------|--------|----------------------------------------|
| 0x0000 | 0x0003 | 0x0004 | TGC-Magic (0xae0f38a2)                 |
| 0x0004 | 0x0007 | 0x0004 | ? (=0x00000000)                        |
| 0x0008 | 0x000b | 0x0004 | TGC-Header Size (=0x00008000)          |
| 0x000c | 0x000f | 0x0004 | ? (=0x00100000)                        |
| 0x0010 | 0x0013 | 0x0004 | Offset to FST inside embedded GCM      |
| 0x0014 | 0x0017 | 0x0004 | FST Size                               |
| 0x0018 | 0x001b | 0x0004 | max FST Size                           |
| 0x001c | 0x001f | 0x0004 | Offset to Boot-DOL inside embedded GCM |
| 0x0020 | 0x0023 | 0x0004 | Boot-DOL Size                          |
| 0x0024 | 0x0027 | 0x0004 | ?                                      |
| 0x0028 | 0x002b | 0x0004 | ?                                      |
| 0x002c | 0x002f | 0x0004 | Offset to Banner inside embedded GCM?  |
| 0x0030 | 0x0033 | 0x0004 | Banner Size ?                          |
| 0x0034 | 0x0037 | 0x0004 | ?                                      |

#### 14.8.2 embedded GCM

usually starts at offset  $0 \times 00008000$  (after the TGC Header) and follows exactly the same layout as a GCM file, with the following exceptions:

- ▷ Boot-DOL offset, FST offset contain bogus data and must be substituted by the data found in the TGC header
- > offsets within the embedded GCM file must be calculated relative to the start of the embedded GCM (obviously)

# 14.9 VGC (Viper Flash Files)

| start | end  | size | description                                                            |  |  |  |
|-------|------|------|------------------------------------------------------------------------|--|--|--|
| 0x00  | 0x03 | 4    | Viper Magic ('VIPR')                                                   |  |  |  |
| 0x04  |      | 1    | Configuration Flags                                                    |  |  |  |
|       |      |      | bit(s) description                                                     |  |  |  |
|       |      |      | 7 GC_FLASH_ACCESS - allows access to the flashrom                      |  |  |  |
|       |      |      | 6 ?                                                                    |  |  |  |
|       |      |      | 5 ?                                                                    |  |  |  |
|       |      |      |                                                                        |  |  |  |
|       |      |      | 3 COMMAND_MODE - enables modchip command mode (requires extended mode) |  |  |  |
|       |      |      | 2 EXTENDED_MODE - allows reading of original IPL                       |  |  |  |
|       |      |      | 1 COBRA_ENCRYPTION - enables additional encryption mode                |  |  |  |
|       |      |      | 0 DISABLE_CHIP - disables the modchip                                  |  |  |  |
| 0x05  |      | 1    | Lid Sensor Status at Boot Time (*2)                                    |  |  |  |
|       |      |      | 0 LID_OPEN                                                             |  |  |  |
|       |      |      | 1 LID_CLOSED                                                           |  |  |  |
|       |      |      | 2 LID_PASSTHROUGH                                                      |  |  |  |
| 0x06  | 0x0f | 10   | padding (zeros)                                                        |  |  |  |
| 0x10  | 0x1f | 16   | BIOS Name in Ascii                                                     |  |  |  |
| 0x20  |      |      | Encrypted (*1) BIOS, loaded to 0x81300000                              |  |  |  |

<sup>(\*1)</sup> encrypted with the IPL XOR-Stream

197

(\*2) original docs state that the default value is 0xff, however actually using this value seems to cause problems.

198

# 15 Game File Formats

This Section contains information about files used in, or produced by the official SDK, and thus is primarily useful for those who are hacking retail games.

# 15.1 AFC (audio stream)

# 15.2 AST (audio stream)

like afc but with tags?

# 15.3 ARC (RARC Archive)

This file is an archive file and contains several other files.

#### 15.3.1 Header

The file starts with an Rarc-Header:

| start | end | size | description                                                                              |
|-------|-----|------|------------------------------------------------------------------------------------------|
|       |     | 4    | type - 'RARC'                                                                            |
|       |     | 4    | size, size of the file                                                                   |
|       |     | 4    | unknown                                                                                  |
|       |     | 4    | dataStartOffset, where does the actual data start? You have to add 0x20 to this value.   |
|       |     | 16   | unknown                                                                                  |
|       |     | 4    | numNodes                                                                                 |
|       |     | 8    | unknown                                                                                  |
|       |     | 4    | fileEntriesOffset                                                                        |
|       |     | 4    | unknown                                                                                  |
|       |     | 4    | stringTableOffset, where is the string table stored? You have to add 0x20 to this value. |
|       |     | 8    | unknown                                                                                  |

#### 15.3.2 Nodes

Next are RarcHeader.numNodes Node structures:

| start | end | size | description                                              |
|-------|-----|------|----------------------------------------------------------|
|       |     | 4    | type                                                     |
|       |     | 4    | filenameOffset, directory name, offset into string table |
|       |     | 2    | unknown                                                  |
|       |     | 2    | numFileEntries, how many files belong to this node?      |
|       |     | 4    | firstFileEntryOffset                                     |

Each RARC file contains at least one Node, the 'ROOT' node. For each subdirectory in the archive, there's another Node (so each Node represents a directory). Each Node contains files and directories, represented by FileEntry structures:

#### 15.3.3 File Entries

| start | end | size | description                                                                          |  |
|-------|-----|------|--------------------------------------------------------------------------------------|--|
|       |     | 2    | id, file id. If this is 0xFFFF, then this entry is a subdirectory link               |  |
|       |     | 2    | unknown                                                                              |  |
|       |     | 2    | unknown                                                                              |  |
|       |     | 2    | filenameOffset, file/subdir name, offset into string table                           |  |
|       |     | 4    | dataOffset, offset to file data (for subdirs: index of Node representing the subdir) |  |
|       |     | 4    | dataSize, size of data                                                               |  |
|       |     | 4    | zero, seems to be always '0'                                                         |  |

To read the archive, you read the root node and its file entries. For each subdir in the root node's fileentries, you read the corresponding node and its file entries. For each file in the fileentries, you dump its data.

# 15.4 ARC (audio stuff)

if a .arc file doesnt start with 'RARC' it may contain audio data

#### 15.5 ASN

audio related, contains strings

# 15.6 AW ("audio wave"?)

# 15.7 BAS ("audio script"?)

seems to have to do with audio (check mkdd file names...)

#### 15.8 BCA

looks very similar to a .col file, only with some tags in it

# 15.9 BCK (animation of a .bmd skeleton)

#### 15.10 BDL

same as .bmd

## 15.11 BFN (font)

images of characters + mapping from character code to corresponding image part

# 15.12 BIN (binary file)

scene.bin in sms contains scene layout

200

- 15.13 BLO (screen layout for dialog screens)
- 15.14 BMD (3d model with texture and skeleton)

#### 15.15 BMG

messages, subtitles, ... (text)

# **15.16 BMP** (window bitmap (!))

## 15.17 BMT

seems to contain a MAT3 block of a .bmd file

# 15.18 BCK ("Pack" file)

## 15.19 BRK

animation stuff? rotation keys?

## 15.20 BTI

Note: some .bti files are Yaz0-compressed (if the first 4 bytes are 'Yaz0'), if this is the case you have to uncompress them first.

A .bti file stores a single image, but can store several mipmaps. The file starts with a texture-header (which is used in the TEX! section of bmd/bdl and jpa files to store textures aswell):

## 15.20.1 Texture Header

| start | end  | size | description                                                           |  |  |  |
|-------|------|------|-----------------------------------------------------------------------|--|--|--|
| 0x00  |      | 1    | format                                                                |  |  |  |
|       |      |      | 0 I4 (4 bit intensity, 8x8 tiles)                                     |  |  |  |
|       |      |      | 1 I8 (8 bit intensity, 8x4 tiles)                                     |  |  |  |
|       |      |      | 2 IA4 (4 bit intensity with 4 bit alpha, 8x4 tiles)                   |  |  |  |
|       |      |      | 3 IA8 (8 bit intensity with 8 bit alpha, 4x4 tiles)                   |  |  |  |
|       |      |      | 4 RGB565 (4x4 tiles)                                                  |  |  |  |
|       |      |      | 5 RGB5A3 (*) (4x4 tiles)                                              |  |  |  |
|       |      |      | 6 RGBA8 (4x4 tiles in two cache lines - first is AR and second is GB) |  |  |  |
|       |      |      | 8 CI4 (4 bit color index, 8x8 tiles)                                  |  |  |  |
|       |      |      | 9 CI8 (8 bit color index, 8x4 tiles)                                  |  |  |  |
|       |      |      | 10 CI14X2 (14 bit color index, 4x4 tiles)                             |  |  |  |
|       |      |      | 14 CMP (S3TC compressed, 2x2 blocks of 4x4 tiles)                     |  |  |  |
| 0x01  |      | 1    | unknown                                                               |  |  |  |
| 0x02  | 0x03 | 2    | width                                                                 |  |  |  |
| 0x04  | 0x05 | 2    | height                                                                |  |  |  |
| 0x06  | 0x07 | 2    | unknown                                                               |  |  |  |
| 0x08  |      | 1    | unknown                                                               |  |  |  |
| 0x09  |      | 1    | Palette Format                                                        |  |  |  |
|       |      |      | 0 IA8                                                                 |  |  |  |
|       |      |      | 1 RGB565                                                              |  |  |  |
|       |      |      | 2 RGB5A3 (*)                                                          |  |  |  |
| 0x0a  | 0x0b | 2    | Palette Entries - number of entries in the Palette                    |  |  |  |
| 0x0c  | 0x0f | 4    | Palette Offset - offset to Palette Data                               |  |  |  |
| 0x10  | 0x13 | 4    | unknown                                                               |  |  |  |
| 0x14  | 0x15 | 2    | unknown                                                               |  |  |  |
| 0x16  | 0x17 | 2    | unknown                                                               |  |  |  |
| 0x18  |      | 1    | mipmap count                                                          |  |  |  |
| 0x19  |      | 1    | unknown                                                               |  |  |  |
| 0x1a  | 0x1b | 2    | unknown                                                               |  |  |  |
| 0x1c  | 0x1f | 4    | Data Offset - offset to image Data                                    |  |  |  |

<sup>(\*)</sup> RGB5A3 is RGB5 if color value is negative and RGB4A3 otherwise.

Offsets are relative to the Texture Header (this is important in bmd/bdl files).

## 15.21 BTP

99% sure that this contains texture animation (NOT texture coordinate animation)

# 15.22 BTK

(curves??? kinematics??) translation keys? probably some material animation as well (texture coord anim?)

# 15.23 COL (collision triangles)

## 15.24 DZB

collision data?

202

#### 15.25 H4M

a proprietary Movie Format found on some Gamecube Game DVDs. Probably related to the HVQ (Hirarchical Vector Quantization) format developed by Hudson.

## 15.26 JPA (particle data)

(TEX1 section contains .bti images)

#### 15.27 JPC

collection of .jpa files ("Particle paCk"?)

# 15.28 MTH ('Mute thp?')

video format, has the same video frame format as thp, but headers are a bit different

#### 15.29 PAD

recorded controller data?

## 15.30 PRM ('Parameters?')

# 15.31 REL (relocatable module)

some kind of .dll or similar, contains text and data sections and relocation info

#### 15.32 SB

?, contains a stringtable

## 15.33 SZS (packed RARC Archive)

This is a Yaz0-compressed RARC archive

## 15.34 THP (video format)

.thp is a video format on the gamecube. The video frames are independent "quasi-jpegs", and if audio frames are present, they are in an adpcm format (described below).

## 15.34.1 Header data

The file starts with a thp header:

| start | end  | size | description                                                                                |  |  |  |
|-------|------|------|--------------------------------------------------------------------------------------------|--|--|--|
| 0x00  | 0x03 | 4    | Magic Bytes, 0x54485000 ('THP\0')                                                          |  |  |  |
| 0x04  | 0x07 | 4    | Version                                                                                    |  |  |  |
|       |      |      | 0x00010000 v1.0                                                                            |  |  |  |
|       |      |      | 0x00011000 v1.1                                                                            |  |  |  |
| 0x08  | 0x0b | 4    | maxBufferSize - maximal buffer size needed for one complete frame (header + video + audio) |  |  |  |
| 0x0c  | 0x0f | 4    | maxAudioSamples - != 0 if sound is stored in file, maximal number of samples in one frame. |  |  |  |
| 0x10  | 0x13 | 4    | FPS (float value)                                                                          |  |  |  |
|       |      |      | 0x41efc28f <b>~29; NTSC</b>                                                                |  |  |  |
|       |      |      |                                                                                            |  |  |  |
| 0x14  | 0x17 | 4    | numFrames - number of frames in the thp file                                               |  |  |  |
| 0x18  | 0x1b | 4    | firstFrameSize - size of first frame (header + video + audio)                              |  |  |  |
| 0x1c  | 0x1f | 4    | dataSize - size of all frames (not counting the thp header structures)                     |  |  |  |
| 0x20  | 0x23 | 4    | componentDataOffset - ThpComponents stored here (see below)                                |  |  |  |
| 0x24  | 0x27 | 4    | offsetsDataOffset - if != 0, offset to table with offsets of all frames?                   |  |  |  |
| 0x28  | 0x2b | 4    | firstFrameOffset - offset to first frame's data                                            |  |  |  |
| 0x2c  | 0x2f | 4    | lastFrameOffset - offset to last frame's data                                              |  |  |  |

#### 15.34.2 Components structure

At ThpHeader.componentDataOffset, a ThpComponents structure is stored:

| start | end  | size | descrip                                                                    | description  |  |  |  |  |
|-------|------|------|----------------------------------------------------------------------------|--------------|--|--|--|--|
| 0x00  | 0x03 | 4    | numComponents - usually 1 or 2 (video or video + audio)                    |              |  |  |  |  |
| 0x04  | 0x13 | 16   | componentTypes - each byte specifies the type of one component as follows: |              |  |  |  |  |
|       |      |      | 0x00                                                                       | video        |  |  |  |  |
|       |      |      | 0x01                                                                       | audio        |  |  |  |  |
|       |      |      | 0xff                                                                       | no component |  |  |  |  |

The first ThpComponents.numComponents entries of ThpComponents.componentTypes are valid. For each component, an information structure is stored after the ThpComponents struct.

#### 15.34.3 VideoInfo Structure

Component type 0 is video, a ThpVideoInfo struct looks like this:

| ĺ | start | end  | size | description               |
|---|-------|------|------|---------------------------|
|   | 0x00  | 0x03 | 4    | width                     |
| Ì | 0x04  | 0x07 | 4    | height                    |
| Ì | 0x08  | 0x0b | 4    | unknown (only v1.1 files) |

#### 15.34.4 AudioInfo Structure

Component type 1 is audio (not always included), a ThpAudioInfo struct looks like this:

| start | end  | size | description                                                                          |
|-------|------|------|--------------------------------------------------------------------------------------|
| 0x00  | 0x03 | 4    | numChannels                                                                          |
| 0x04  | 0x07 | 4    | frequency                                                                            |
| 0x08  | 0x0b | 4    | numSamples                                                                           |
| 0x0c  | 0x0f | 4    | numData (only for v1.1 files) - amount of audio blocks stored after each video block |

#### 15.34.5 Frame data

A frame is made up of a frame header followed by a video frame followed by ThpAudioInfo.numData audio frames (only if the video contains sound).

The frame header consists of 3 (or 4, if the video contains sound) 32bit values:

| start | end  | size | description                                                                         |  |  |  |
|-------|------|------|-------------------------------------------------------------------------------------|--|--|--|
| 0x00  | 0x03 | 4    | tTotalSize - total size of NEXT frame (frame header, video and audio)               |  |  |  |
| 0x04  | 0x07 | 4    | prevTotalSize - total size of PREVIOUS frame                                        |  |  |  |
| 0x08  | 0x0b | 4    | imageSize - size of image frame of THIS frame                                       |  |  |  |
| 0x0c  | 0x0f | 4    | audioSize - size of one audio frame of THIS frame (only if the file contains audio) |  |  |  |

Directly after the frame header FrameHeader.imageSize bytes video information follow. Directly after the video information, ThpAudioInfo.numData audio frames follow, each Frameheader.audioSize bytes large (only if the file contains audio).

#### 15.34.6 Video Frames

A video frame is more or less a jpeg image. A jpeg file is structured by several markers. A marker is a two-byte code, the first of the two bytes is 0xff. The jpeg standard states that if you want to store the value 0xff, you have to store it as 0xff 0x00 (else it would be confused with a marker). This is NOT the case in .thp files, the value 0xff is stored simply as 0xff in the image data. So if you want to use jpeglib to read the frame, you have to convert the thp "quasi-jpeg" to a real jpeg by converting 0xff values to 0xff 0x00 in the image data. You have to be careful that you don't convert the terminating End-Of-Image marker, though.

- search for Start-Of-Image marker (0xff 0xda)
- search for End-Of-Image marker (0xff 0xd9) (start search at end of buffer and search backwards!)
- convert each 0xff between image data start and image data end to 0xff 0x00
- the resulting buffer can be passed to jpeglib to let it decode the image for you

#### 15.34.7 Audio Frames

An audio frame starts with a ThpAudioFrameHeader (total size is 80 bytes)

| start | end  | size | description                                                           |  |  |
|-------|------|------|-----------------------------------------------------------------------|--|--|
| 0x00  | 0x03 | 4    | channelSize - size of one channel in bytes (*1)                       |  |  |
| 0x04  | 0x07 | 4    | numSamples - number of samples/channel                                |  |  |
| 0x08  | 0x27 | 32   | able for first channel (*2)                                           |  |  |
| 0x28  | 0x47 | 32   | table for second channel (stored for one channel videos as well) (*2) |  |  |
| 0x48  | 0x49 | 2    | signed value, channel1Prev1                                           |  |  |
| 0x4a  | 0x4b | 2    | signed value, channel1Prev2                                           |  |  |
| 0x4c  | 0x4d | 2    | signed value, channel2Prev1                                           |  |  |
| 0x4e  | 0x4f | 2    | signed value, channel2Prev2                                           |  |  |

(\*1) audio frame size = sizeof(ThpAudioFrameHeader) + ThpAudioInfo.numChannels \* ThpAudioFrameHeader.

(\*2) tables stored as 16bit signed 5.11 fixed point numbers

Directly after the ThpAudioFrameHeader ThpAudioFrameHeader.channelSize bytes follow for the first channel, and if the video is stereo (ThpAudioInfo.numChannels = 2), that many bytes follow for the second channel.

The audio data is made up of small packets of 8 byte, each packet contains 14 samples. Some kind of adpcm coding is used. A sample is calculated like this:

newSample = previousSample\*factor1 + sampleBeforePreviousSample\*factor2 + (sampleData
\* 2^exponent);

For each packet, the first byte stores factor1, factor2 and exponent:

```
u8 index = (firstByte >> 4) & 0x7; //highest bit of byte is ignored
u8 exponent = firstByte & 0xf;
float factor1 = ThpAudioFrameHeader.table[2*index]/pow(2.f, 11);
float factor2 = ThpAudioFrameHeader.table[2*index + 1]/pow(2.f, 11);
```

The following 7 bytes store 14 sampleData (each 4 bit, interpreted as a signed two's complement number).

# 15.35 TPL (Texture Palette)

Another custom GameCube file format that holds texture and texture palette data. Many textures can be stored in one TPL file format, and it is commonly used by the SDK to hold texture data for GameCube games.

note: appearently there are different formats of .TPL files, the following applies only to those with the magic 0x00,0x20,0xaf,0x30.

TPL Header

| start  | end    | size | description                                               |  |  |
|--------|--------|------|-----------------------------------------------------------|--|--|
| 0x0000 | 0x0003 | 4    | Magic (0x00, 0x20, 0xAF, 0x30)                            |  |  |
| 0x0004 | 0x0007 | 4    | ntextures - Number of Textures in File                    |  |  |
| 0x0008 | 0x000b | 4    | size of Header (always 0x0c in files with this structure) |  |  |

TPL Texture

After the header goes 'ntextures' times the TPLTexture structure:

|   | start | end | size | description                              |  |  |
|---|-------|-----|------|------------------------------------------|--|--|
| ĺ |       |     | 4    | Texture Header Offset                    |  |  |
| ĺ |       |     | 4    | Texture Palette Offset (0 if no palette) |  |  |

TPL Texture Header

For every texture at position 'Texture Header Offset' there is the TPL Texture Header:

| start | end | size | description                                                           |  |  |  |  |
|-------|-----|------|-----------------------------------------------------------------------|--|--|--|--|
|       |     | 2    | height                                                                |  |  |  |  |
|       |     | 2    | vidth                                                                 |  |  |  |  |
|       |     | 4    | format                                                                |  |  |  |  |
|       |     |      | 0 I4 (4 bit intensity, 8x8 tiles)                                     |  |  |  |  |
|       |     |      | 1 I8 (8 bit intensity, 8x4 tiles)                                     |  |  |  |  |
|       |     |      | 2 IA4 (4 bit intensity with 4 bit alpha, 8x4 tiles)                   |  |  |  |  |
|       |     |      | 3 IA8 (8 bit intensity with 8 bit alpha, 4x4 tiles)                   |  |  |  |  |
|       |     |      | 4 RGB565 (4x4 tiles)                                                  |  |  |  |  |
|       |     |      | 5 RGB5A3 (*) (4x4 tiles)                                              |  |  |  |  |
|       |     |      | 6 RGBA8 (4x4 tiles in two cache lines - first is AR and second is GB) |  |  |  |  |
|       |     |      | 8 CI4 (4 bit color index, 8x8 tiles)                                  |  |  |  |  |
|       |     |      | 9 CI8 (8 bit color index, 8x4 tiles)                                  |  |  |  |  |
|       |     |      | 10 CI14X2 (14 bit color index, 4x4 tiles)                             |  |  |  |  |
|       |     |      | 14 CMP (S3TC compressed, 2x2 blocks of 4x4 tiles)                     |  |  |  |  |
|       |     | 4    | offset to Texture Data                                                |  |  |  |  |
|       |     | 4    | wrap s                                                                |  |  |  |  |
|       |     | 4    | wrap t                                                                |  |  |  |  |
|       |     | 4    | min filter                                                            |  |  |  |  |
|       |     | 4    | mag filter                                                            |  |  |  |  |
|       |     | 4    | lod bias (float value)                                                |  |  |  |  |
|       |     | 1    | edge lod                                                              |  |  |  |  |
|       |     | 1    | min lod                                                               |  |  |  |  |
|       |     | 1    | max lod                                                               |  |  |  |  |
|       |     | 1    | unpacked                                                              |  |  |  |  |

TPL Palette Header

For every palette (not every texture has one) there is the TPL Palette Header:

| start | end | size | description            |  |  |  |
|-------|-----|------|------------------------|--|--|--|
|       |     | 2    | nitems                 |  |  |  |
|       |     | 1    | unpacked               |  |  |  |
|       |     | 1    | pad                    |  |  |  |
|       |     | 4    | format                 |  |  |  |
|       |     |      | 0 IA8                  |  |  |  |
|       |     |      | 1 RGB565               |  |  |  |
|       |     |      | 2 RGB5A3 (*)           |  |  |  |
|       |     | 4    | offset to Palette Data |  |  |  |

 $(\mbox{*})$  RGB5A3 is RGB5 if color value is negative and RGB4A3 otherwise.

# 15.36 YMP (height map)

# **16 Compression Formats**

#### 16.1 Yay0

This format is used to store the fonts in the BIOS/IPL. It is compressed similar to the Zelda 64 'Yaz0' compression.

#### 16.1.1 compression

| start  | end | size | description                                           |
|--------|-----|------|-------------------------------------------------------|
| 0x0000 |     | 4    | 'Yay0' signature                                      |
| 0x0004 |     | 4    | size of decoded data in bytes                         |
| 0x0008 |     | 4    | offset to link table                                  |
| 0x000c |     | 4    | offset to non-linked chunks and count modifiers table |
| 0x0010 |     |      | packed data (32 bit words)                            |

The packed data is a bitstream (padded to a multiple of 32bits), with each bit having the following meaning:

| 0 | linked chunk, copy block from the link table (offset 0x0008)                                         |
|---|------------------------------------------------------------------------------------------------------|
| 1 | non linked chunk, copy next byte from non-linked chunks and count modifiers table (offset at 0x000c) |

todo

## 16.1.2 de-compression Code

```
void Decode(void *s, void *d)
u32 i, j, k;
u32 p, q;
u32 cnt;
i = r21 = *(u32 *)(s + 4); // size of decoded data
j = r29 = *(u32 *)(s + 8); // link table
k = r23 = *(u32 *)(s + 12); // byte chunks and count modifiers
q = r31 = 0; // current offset in dest buffer
cnt = r28 = 0; // mask bit counter
p = r24 = 16; // current offset in mask table
// if all bits are done, get next mask
if(cnt == 0)
// read word from mask data block
r22 = *(u32 *)(s + p);
p += 4;
cnt = 32; // bit counter
// if next bit is set, chunk is non-linked
if(r22 & 0x80000000)
// get next byte
*(u8 *)(d + q) = *(u8 *)(s + k);
k++; q++;
```

```
// do copy, otherwise
else
// read 16-bit from link table
r26 = *(u16 *)(s + j);
j += 2;
// 'offset'
r25 = q - (r26 \& 0xfff);
// 'count'
r30 = r26 >> 12;
if(r30 == 0)
// get 'count' modifier
r5 = *(u8 *)(s + k);
k++;
r30 = r5 + 18;
else r30 += 2;
// do block copy
r5 = d + r25;
for(i=0; i<r30; i++)
*(u8 *)(d + q) = *(u8 *)(r5 - 1);
q++; r5++;
// next bit in mask
r22 <<= 1;
cnt--;
} while (q < i);
}
```

| 10.1. | 3 | Font | Data |
|-------|---|------|------|
|       |   |      |      |

| start  | end | size | description                                          |
|--------|-----|------|------------------------------------------------------|
| 0x0000 |     | 2    | Font Type                                            |
| 0x0002 |     | 2    | first Character in Font                              |
| 0x0004 |     | 2    | last Character in Font                               |
| 0x0006 |     | 2    | Character to use for substituting invalid Characters |
| 0x0008 |     | 2    | ascent Units                                         |
| 0x000a |     | 2    | descent Units                                        |
| 0x000c |     | 2    | width of widest Character                            |
| 0x000e |     | 2    | leading Space                                        |
| 0x0010 |     | 2    | Cell width                                           |
| 0x0012 |     | 2    | Cell Height                                          |
| 0x0014 |     | 4    | Texture Size                                         |
| 0x0018 |     | 2    | Texture Format                                       |
| 0x001a |     | 2    | Texture Columns                                      |
| 0x001c |     | 2    | Texture Rows                                         |
| 0x001e |     | 2    | Texture Width                                        |
| 0x0020 |     | 2    | Texture Height                                       |
| 0x0022 |     | 2    | offset to Character-width Table                      |
| 0x0024 |     | 4    | offset to Tile-Data                                  |
| 0x0028 |     | 4    | Tile-Data Size                                       |

#### 16.2 Yaz0

Yaz0 compression is reportedly used in quite a few Nintendo datafiles. I have seen it in SuperMario Sunshine's .szs files for example, and I heard that it is used in Windwaker and Majoras Mask as well.

The first 16 bytes of a Yaz0-compressed data block are the data header. The first 4 bytes of the header are 'Y', 'a', 'z', '0', so you can easily see in your hex editor that there's a Yaz0 block waiting for you :-) The second 4 bytes are a single uint32 (big-endian of course) that tells you the size of the decompressed data, so you know how large your working buffer has to be. The next 8 bytes are always zero.

Next comes the actual compressed data. Yaz0 is some kind of RLE compression. You decode it as follows: First you read a "code" byte that tells you for the next 8 "read operations" what you have to do. Each bit of the "code" byte represents one "read operation" (from left to right, that is, 0x80 first, 0x01 last). If the bit is 1, copy one byte from the input buffer to the output buffer. Easy. If the bit is 0, things are a little bit more complicated, RLE compressed data is ahead. You have to read the next two bytes to decide how long your run is and what you should write to your output buffer.

| 15 | 8 | 7 | 0 |
|----|---|---|---|
| a  | b |   |   |

The upper nibble of the first byte (a) contains the information you need to determine how many bytes you're going to write to your output buffer for this "read operation". if a == 0, then you have to read a third byte from your input buffer, and add 0x12 to it. Otherwise, you simply add 2 to a. This is the number of bytes to write ("count") in this "read operation". byte2 and the lower nibble of byte1 (b) tell you from where to copy data to your output buffer: you move (dist = (b << 8)lbyte2 + 1) bytes back in your outputBuffer and copy "count" bytes from there to the end of the buffer. Note that count could be greater than dist which means that the copy source and copy destination might overlap.

#### 16.2.1 de-compression Code

//src points to the yaz0 source data (to the "real" source data, not at the header!)
//dst points to a buffer uncompressedSize bytes large (you get uncompressedSize from

```
//the second 4 bytes in the Yaz0 header).
void decode(u8* src, u8* dst, int uncompressedSize)
int srcPlace = 0, dstPlace = 0; //current read/write positions
u32 validBitCount = 0; //number of valid bits left in "code" byte
u8 currCodeByte;
while(dstPlace < uncompressedSize)</pre>
//read new "code" byte if the current one is used up
if(validBitCount == 0)
currCodeByte = src[srcPlace];
++srcPlace;
validBitCount = 8;
if((currCodeByte & 0x80) != 0)
//straight copy
dst[dstPlace] = src[srcPlace];
dstPlace++;
srcPlace++;
else
//RLE part
u8 byte1 = src[srcPlace];
u8 byte2 = src[srcPlace + 1];
srcPlace += 2;
u32 dist = ((byte1 \& 0xF) << 8) | byte2;
u32 copySource = dstPlace - (dist + 1);
u32 numBytes = byte1 >> 4;
if(numBytes == 0)
numBytes = src[srcPlace] + 0x12;
srcPlace++;
else
numBytes += 2;
//copy run
for(int i = 0; i < numBytes; ++i)</pre>
dst[dstPlace] = dst[copySource];
copySource++;
dstPlace++;
}
//use next bit from "code" byte
currCodeByte <<= 1;</pre>
validBitCount-=1;
}
}
```

# 17 Graphic Formats

#### 17.1 YCbYCr

This is the Format used for image data in the external framebuffer (XFB). It exploits the fact that the resolution of color on a PAL/NTSC screen is lower than the resolution of luminance (brightness), and thus stores only separate luminance info for each pixel and combines the color information of two pixels each, saving 2 bytes versus traditional RGB-per-pixel framebuffers. This means that in XFB you cant modify the color of a single pixel without affecting its neighbour. (you can however, seperatly modify its luminance/brightness). It also means that you can not accurately convert one single pixel into XFB framebuffer format, you will always have to convert two pixels at once.

To convert two pixels to YCbYCr, first average their RGB values

```
R = (R1+R2)/2

G = (G1+G2)/2

B = (B1+B2)/2
```

now calculate the luminance portion of each pixel

```
Y1 = (77/256)R1 + (150/256)G1 + (29/256)B1

Y2 = (77/256)R2 + (150/256)G2 + (29/256)B2
```

then calculate the combined color portion

```
Cb = -(44/256)R - (87/256)G + (131/256)B + 128

Cr = (131/256)R - (110/256)G - (21/256)B + 128
```

now a 32 bit value to be written to XFB (to a 32 bit aligned address of course) can be made up like this

| 31   | 24   | 23   | 16   | 15   | 8    | 7    | 0    |
|------|------|------|------|------|------|------|------|
| 1111 | 1111 | bbbb | bbbb | 2222 | 2222 | rrrr | rrrr |

| bit(s) |   | description                           |
|--------|---|---------------------------------------|
| 24-31  | 1 | Y1 - luminance Portion of first Pixel |
| 16-23  | b | Cb - combined color                   |
| 8-15   | 2 | Y2 - luminance Portion of first Pixel |
| 0-7    | r | Cr - combined color                   |

converting a single pixel back to RGB looks like this

```
R = Y + 1.371 (Cr - 128)

G = Y - 0.698 (Cr - 128) - 0.336 (Cb - 128)

B = Y + 1.732 (Cb - 128)
```

- **17.2 I4** (4bit indexed)
- 17.3 IA4 (4bit indexed with alpha)
- **17.4 I8** (8bit indexed)
- 17.5 IA8 (8bit indexed with alpha)
- 17.6 CI4 (compressed 4bit indexed)
- 17.7 CIA4 (compressed 4bit indexed with alpha)
- 17.8 CI8 (compressed 8bit indexed)

Used for Icons and Banners on Memory Card. This Format uses a palette in RGB5A1 Format, the Pixel data is stored in 8x4 pixel tiles.

# 17.9 CIA8 (compressed 8bit indexed with alpha)

#### 17.10 RGB4A3

Used for Icons and Banners on Memory Card. This Format uses no palette and is stored in 4x4 pixel tiles.

#### 17.10.1 RGB4A3 Pixel Format

| 15   | 8    | 7    | 0    |
|------|------|------|------|
| .ttt | rrrr | gggg | bbbb |

| bit(s) |   | description   |
|--------|---|---------------|
| 15     |   | unused (?)    |
| 12-14  | t | transparency  |
| 8-11   | r | red channel   |
| 4-7    | g | green channel |
| 0-3    | b | blue channel  |

#### 17.11 RGB5A1

Used for Icons and Banners on Memory Card. This Format uses no palette and is stored in 4x4 pixel tiles.

# 17.11.1 RGB5A1 Pixel Format

| 15   | 8    | 7    | 0    |
|------|------|------|------|
| trrr | rrgg | gggb | bbbb |

| bit(s) |   | description   |
|--------|---|---------------|
| 15     | t | transparency  |
| 10-14  | r | red channel   |
| 5-9    | g | green channel |
| 0-4    | b | blue channel  |

#### 17.12 RGB565

#### 17.12.1 RGB565 Pixel Format

| 15   | 8    | 7    | 0    |
|------|------|------|------|
| rrrr | rggg | gggb | bbbb |

| bit(s) |   | description   |
|--------|---|---------------|
| 11-15  | r | red channel   |
| 5-10   | g | green channel |
| 0-4    | b | blue channel  |

#### 17.13 RGBA8

#### 17.13.1 RGBA8 Pixel Format

| 31   | 24   | 23   | 16   | 15   | 8    | 7    | 0    |
|------|------|------|------|------|------|------|------|
| rrrr | rrrr | aaaa | aaaa | bbbb | bbbb | aaaa | aaaa |

| bit(s) |   | description   |
|--------|---|---------------|
| 24-31  | r | red channel   |
| 16-23  | g | green channel |
| 8-15   | b | blue channel  |
| 0-7    | a | alpha channel |

## 17.14 S3TC

WARNING: this section is screwed! any advice/corrections/help/etcblabla welcomed! (thanx to **Aaron Kaluszka** for pointing this out)

S3TC is a compression method for textures, developed by S3 and licenced by Nintendo for the Gamecube (and also by Microsoft for DirectX 6.0). It basically gives you one more MIP level for free, with relatively small quality loss and a simple implementation in hardware. You basically store 2 colour values and then you have a few bits per pixel to interpolate between them. It works in blocks of 4x4 pixel.

There are 5 variants:

DXT1 allows one bit of alpha

DXT2/3 allows 4 bits of alpha

DXT4/5 stores 2 alpha values and has 3 bits to interpolate between them

The difference between DXT2/3 and 4/5 is, if colour values are pre-multiplied with alpha. The blending equation is normally  $(c^*(1-a))+(t^*a)$ , so with pre-multiplied alpha the texture contains  $(t^*a)$  in each colour channel and the blending becomes  $(c^*(1-a)+t)$ .

Each image is made up of tiles placed linearly from left to right then top to bottom.

Each tile is made up of 4 blocks

0.1

23

Each block is made up of 8 words. ăThese 8 words represent 16 pixels using S3TC compression.

RRRRGGG - GGGBBBBB - rrrrggg - gggbbbb - 00112233 - 44556677 - 8899UUVV- WWXXYYZZ

```
R = Color 0 Red
G = Color 0 Green
B = Color 0 Blue
r = Color 3 Red
g = Color 3 Green
b = Color 3 Blue
0 - 9, U - Z = Pixel color (2-bits each)
Colors 1 and 2 are interpolated from colors 0 and 3
```

The tiles are 32 bytes each. Depending on the image format the width and height of the tiles will differ. A 16bit format (ie RGB5 or RGB4A3) will have a 4x4 pixel tile since 4 \* 4 \* 2 bytes = 32. An 8bit format (ie Color Indexed) will have a 8x4 pixel tile since 8 \* 4 \* 1 byte = 32.

So a 32x32 image (like a memory card icon) that is in RGB5 format would be 8 tiles across and 8 tiles down.

#### 17.14.1 CMPR

Like a usual texture, a CMPR-texture is divided on tiles, each 32-bytes to fit a texture cache line. Every tile is sub-tiled into four parts, in zigzag order :

| 0 | 1 |
|---|---|
| 2 | 3 |

The format of the sub-tiles is pretty simple, and looks like DXT1. First two base colors in RGB565, followed by 16 sub-tile texels. Every texel is 2-bit wide, to lookup from four colors: 00, 01, 10 and 11. First two are given already, and last two are interpolated from first ones, by the following rule:

```
    COLOR0 and COLOR1 are base colors.
```

```
▷ RGB0 <- unpack RGB565 COLOR0
```

- A0 = 255
- ⊳ RGB1 <- unpack RGB565 COLOR1
  </p>
- $\triangleright$  A1 = 255

if COLOR0 > COLOR1

```
\triangleright RGB2 = (2 * RGB0 + RGB1) / 3
```

 $\triangleright$  A2 = 255

A3 = 0

18 APPENDIX 216

# 18 Appendix

## 18.1 GCC Quick How To

## 18.1.1 compile ASM to object:

```
<DEVKITCUBE>/bin/powerpc-eabi-elf-as -c \
-I <DEVKITCUBE>/powerpc-eabi-elf/include -I <additional includes> \
testasm.s -o testasm.o
```

#### 18.1.2 compile C to object:

```
<DEVKITCUBE>/bin/powerpc-eabi-elf-gcc -c \
-I <DEVKITCUBE>/powerpc-eabi-elf/include -I <additional includes> \
-nostdlib testc.c -o testc.o
```

#### 18.1.3 compile C++ to object:

```
<DEVKITCUBE>/bin/powerpc-eabi-elf-g++ -c \
-I <DEVKITCUBE>/powerpc-eabi-elf/include -I <additional includes> \
-nostdlib -fno-exceptions testcpp.cpp -o testcpp.o
```

#### 18.1.4 link objects

```
<DEVKITCUBE>/bin/powerpc-eabi-elf-ld -T ppc-ngcbin.x -o test.elf crt0.o \
<DEVKITCUBE>/lib/gcc-lib/powerpc-eabi-elf/3.3/crtbegin.o \
<DEVKITCUBE>/lib/gcc-lib/powerpc-eabi-elf/3.3/crtend.o \
testasm.o testc.o testcpp.o -lg -lstdc++ -lm -lc -lnosys
```

you only need to link against crtbegin.o/crtend.o if you are using c++, and you only need -lg,-lstdc++,-lc,-lm if you are actually using these libraries (of course:)). however if you do so, linking against -lnosys as well is essential.

#### 18.1.5 remove unneeded sections (debug info etc) from object

```
<DEVKITCUBE>/bin/powerpc-eabi-elf-strip -s test.elf
```

#### 18.1.6 convert object to plain binary

```
<DEVKITCUBE>/bin/powerpc-eabi-elf-objcopy -O binary test.elf test.bin
```

#### 18.1.7 convert absolute address into filename/line number/function

```
compile with "-g" flag, then use
```

```
<DEVKITCUBE>/bin/powerpc-eabi-elf-addr2line -f -e test.elf 0x80003100
```

### 18.1.8 Building a Crosscompiler

### configure options:

- --target=powerpc-eabi-elf
- --with-cpu=750
- --disable-threads
- --enable-languages=c
- --disable-shared
- --disable-nls
- --with-newlib

### 18.1.9 Linker Script

to do

### 18.1.10 Startup Code

to do

# **18.2** Boot Process Details

The IPL (Initial Program Loader), or Bootrom, is located inside one Macronix chip (near Flipper, U10) and connected to the EXI bus. When the Gamecube is powered on, bit 25 (IP) in the Machine State Register is set, which means the system exception vector offset is 0xfff00000. Then a small (about 0x0700 bytes) program called 'BS' will be mapped to 0xfff00100 (the hardware reset vector) and control will be returned to the Gamecube like after a normal reset, which means 'BS' will be started.

### 18.2.1 BS - Bootstrap 1

- ⊳ copies the Bootstrap 2 code (BS2) from Bootrom to 0x81300000
- ▷ disables the IPL decryption logic by clearing bit 17 of 0xcc006800
- > sets IP of Machine State Register so exception vectors are pointing to lower memory
- ⊳ jumps to BS2 code

### 18.2.2 BS2 - Bootstrap 2

BS2 is the Program that loads the game or shows the menus when the gamecube has been powered on without a game inserted. It was written in C, using official SDK libraries, probably earlier than 1.0. \_\_start.c seems to be same as usual, except that there is no OSInit() call (old versions must call OSInit() in main, instead of \_\_start).

note: this has been reversed from a PAL gamecube and looks different on a NTSC one.

### 18.2.2.1 short description of start() routine.

// 81300000

```
start:
    __init_registers() // set stack pointer and static bases (r2, r13)
    __init_hardware() // paired-singles and cache init
    __init_data() // clear bss ?
    . // here goes Debug Monitor stuff
    DBInit() // debug monitor init :)
    __init_user() // cpp init
    main() // that's actually, IPL (BS2) code
    jmp exit() // halt CPU
18.2.2.2 IPL main() reversing
// 813006D4
main()
    BS2Init();
    OSInit();
    AD16Init();
    AD16WriteReg(0x800);
    DVDInit();
    AD16WriteReg(0x900);
    CARDInit();
    AD16WriteReg(0xa00);
    0x81302104(); // SRAM, real-time clock (check ?)
    ___VIInit(0);
    VIInit();
    AD16WriteReg(0xb00);
    0x813004e4(); // setup performance. monitor
    0x8130222c(); // update time-base by SRAM clock
    0x813022c0(); // perform initial DVD actions and fall back into menu
    PADSetSpec(5); // sed PAD type ('spec') to 'production'
    PADInit();
    AD16WriteReg(0xc00);
```

BS2Menu(); // here goes intro and main menu... (BIG one!)

```
OSPanic(__FILE__, __LINE__, "BS2 ERROR >>> SHOULD NEVER REACH HERE");
}
float NaN;
// 8130045C
void BS2Init()
    // clear LoMem and OSMem
    memset(0x80000000, 0, 256);
    memset(0x80003000, 0, 256);
    BATInit();
    // set memory size to 24MB
    *0x80000028 = 0x01800000;
    // set console type to default retail 1
    *0x8000002c = 1;
    // upgrade retail
    *0x8000002c += *0xcc00302c >> 28;
    (u32) NaN = -1;
    FPUInit();
}
// 813003A0
void BATInit()
    __asm
    {
       isync
       li r4, 0
       mtspr DBAT2L, r4
        mtspr DBAT2U, r4
        mtspr DBAT3L, r4
       mtspr DBAT3U, r4
       mtspr IBAT1L, r4
        mtspr IBAT1U, r4
        mtspr IBAT2L, r4
        mtspr IBAT2U, r4
        mtspr IBAT3L, r4
        mtspr IBAT3U, r4
        isync
```

```
}
}
// 813003D8
void FPUInit()
    // FPU already initialized in __start(),
    // so just invalidate all FPRs.
    __asm
   {
   lfs f0, NaN
   fmr f1, f0
    fmr f2, f0
    fmr f3, f0
    . е
    . t
    . C
    fmr f31, f0
    }
}
// maybe later
0x81302104()
    __OSLockSram();
    __OSCheckSram();
    __OSGetRTC();
    OSTickToCalendarTime();
   memset();
   __OSUnlockSram();
    __OSSyncSram();
}
// maybe later
0x813004e4()
    OSDisableInterrupts();
    OSGetTick();
    OSGetTick();
    OSGetTick();
```

```
__div2i();
    __div2i();
    PPCMtpmc1();
    PPCMtmmcr0();
   OSGetTick();
    OSGetTick();
   PPCMtmmcr0();
   PPCMfpmc1();
    __div2i();
    __div2i();
    __div2i();
    OSRestoreInterrupts();
// maybe later
0x8130222c()
   __OSLockSram();
   __OSGetRTC();
    __OSSetTime();
   __OSUnlockSram();
static int BS2State = 0;
// just layer..
0x813022c0()
   BS2State = BS2Mach();
// 81300A70
// located in __FILE__ = "BS2Mach.c"
int BS2Mach()
    static int state = 0;
    BOOL level = OSDisableInterrupts();
    switch(state)
        case 0:
           [r13 - 0x7dc8] = 0x800030d4;
```

```
state = 1;
       case 1:
           __OSGetSystemTime();
... some checks
          if(fail) break;
           state = 2;
       // Install DVD cover callback
       case 2:
           if([r13 - 0x7da8] == 0)
                   r3 = [r13 - 0x7dc8]
                   [r3] = 0
                   [r13 - 0x7dc4] = 0
                   [r13 - 0x7dac] = 1
                   DVDLowSetResetCoverCallback(0);
                   DVDReset();
                   [r13 - 0x7da8] = 1
                   (s64)[r13 - 0x7d9c] = \_OSGetSystemTime();
               break;
           __OSGetSystemTime();
           if(fail) break;
           DVDLowSetResetCoverCallback(0x813007d8);
           DVDReset();
           state = 3;
       // Read Disk information (ID)
       case 3:
           DVDReadDiskID(0x8145e620 + 64, 0x80000000, 0x813007e4);
           state = 4;
       break;
       // Leave immediately ?
```

```
case 16:
           break;
        default:
            OSPanic(__FILE__, __LINE__, "BS2 ERROR >> UNKNOWN STATE");
    }
    OSRestoreInterrupts(level);
    return (DVDLowGetCoverStatus() == 1) ? 19 : step;
// 81301154
void BS2Menu()
   BS2InitAlloc();
static OSHeapHandler BS2Heap;
// 81307EA8
void BS2InitAlloc()
   u8 *arenaLo;
   u8 *arenaHi;
   u8 *arenaNew;
    arenaLo = OSGetArenaLo();
    arenaLo = (void *)OSRoundUp32B(arenaLo);
    arenaHi = OSGetArenaHi();
    arenaHi = (void *)OSRoundDown32B(arenaHi);
    arenaNew = OSInitAlloc(0x80800000, arenaHi, 2);
    OSSetArenaLo(arenaHi);
    BS2Heap = OSCreateHeap(arenaLo, arenaHi);
    OSSetCurrentHeap(BS2Heap);
    OSAddToHeap(BS2Heap, arenaNew, 0x81100000);
   BS2CheckAlloc();
}
// 81307F34
void BS2CheckAlloc()
   OSCheckHeap(BS2Heap);
// 81307F58
```

```
void *OSAlloc(long size)
{
    void *ptr;
    if((ptr = OSAlloc(size)) == 0)
    {
        OSPanic(?);
    }
    return ptr;
}
```

18.2.2.3 Map of IPL Library code

| 8.2.2.3 Map of IPL Library code |                             |        |  |  |
|---------------------------------|-----------------------------|--------|--|--|
| Address                         | Name                        | Libray |  |  |
| 0x813014C8                      | DEMOInit (*)                | DEMO   |  |  |
| 0x81307F58                      | OSAlloc (*)                 | OS     |  |  |
| 0x813327BC                      | PPCMtmmcr0                  |        |  |  |
| 0x813327C4                      | PPCMfpmc1                   |        |  |  |
| 0x813327CC                      | PPCMtpmc1                   |        |  |  |
| 0x81332814                      | OSInit                      | OS     |  |  |
| 0x81332EF0                      | OSInitAlarm                 | OS     |  |  |
| 0x81332F3C                      | OSCreateAlarm               |        |  |  |
| 0x81333688                      | OSAllocFromHeap             |        |  |  |
| 0x81333784                      | OSSetCurrentHeap            |        |  |  |
| 0x81333794                      | OSInitAlloc                 |        |  |  |
| 0x81333804                      | OSCreateHeap                |        |  |  |
| 0x81333870                      | OSAddToHeap                 |        |  |  |
| 0x813338D0                      | OSCheckHeap                 |        |  |  |
| 0x813344C0                      | OSGetStackPointer           |        |  |  |
| 0x8133491C                      | OSReport                    |        |  |  |
| 0x8133499C                      | OSPanic                     |        |  |  |
| 0x81334AA4                      | PPCHalt                     |        |  |  |
| 0x81334D4C                      | EXIImm                      | EXI    |  |  |
| 0x81335134                      | EXISync                     |        |  |  |
| 0x813353C8                      | EXIProbeReset               |        |  |  |
| 0x8133570C                      | EXISelect                   |        |  |  |
| 0x81335838                      | EXIDeselect                 |        |  |  |
| 0x81335D6C                      | EXILock                     |        |  |  |
| 0x81335E60                      | EXIUnlock                   |        |  |  |
| 0x81335F54                      | AD16Init                    |        |  |  |
| 0x81336090                      | AD16WriteReg                |        |  |  |
| 0x813361B0                      | OSDisableInterrupts         |        |  |  |
| 0x813361C4                      | OSEnableInterrupts          |        |  |  |
| 0x813361D8                      | OSRestoreInterrupts         |        |  |  |
| 0x81336DD8                      | OSGetRTC                    |        |  |  |
| 0x813372B0                      | OSLockSram                  |        |  |  |
| 0x81337658                      | OSUnlockSram                |        |  |  |
| 0x813376A0                      | OSSyncSram                  |        |  |  |
| 0x813376B0                      | _OSCheckSram                |        |  |  |
| 0x81338504                      | OSInitThreadQueue           |        |  |  |
| 0x8133939C                      | OSGetTick                   |        |  |  |
| 0x813393B8                      | OSSetTime                   |        |  |  |
| 0x8133943C                      | OSGetSystemTime             |        |  |  |
| 0x8133963C                      | OSTicksToCalendarTime       |        |  |  |
| 0x8133AC50                      | DVDLowGetCoverStatus        | DVD    |  |  |
| 0x8133AB18                      | DVDLowReset                 |        |  |  |
| 0x8133ABD4                      | DVDLowSetResetCoverCallback |        |  |  |
| 0x8133B5F0                      | DVDInit                     |        |  |  |
| 0x8133CD18                      | DVDReadDiskID               |        |  |  |
| 0x8133D0EC                      | DVDReset                    |        |  |  |
| 0x8133DBE0                      | VIInit                      | VI     |  |  |
| 0x8133DDC8                      | VIInit                      |        |  |  |
| 0x8133E6C0                      | VIConfigure                 |        |  |  |
| 0x8133F0B4                      | VIGetTvFormat               |        |  |  |
| 07013310D4                      | , 13cti vi oimat            | 1      |  |  |

| Address    | Name           | Libray |
|------------|----------------|--------|
| 0x8134052c | PADInit        | PAD    |
| 0x8134092c | PADSetSpec     |        |
| 0x81343114 | CARDInit       |        |
| 0x813480D4 | GXInit         |        |
| 0x81349148 | GXInitFifoBase |        |
| 0x81349230 | GXSetCPUFifo   |        |
| 0x81349340 | GXSetGPFifo    |        |
| 0x813494B8 | GXFifoInit     |        |
| 0x8134B0AC | GXPEInit       |        |
| 0x8135A178 | div2i          | gcc    |
| 0x8135A394 | mod2i          | gcc    |
| 0x8135B494 | vprintf        | stdlib |

(\*) these functions were slightly modified for the IPL.

### 18.2.3 Apploader

The Apploader provides functions to the bootrom that load the game (using bootrom read DVD functions). The bootrom calls the Init function, then the Main function in a loop, then the Closing function. At first, the BIOS calls the Apploader entrypoint with r3, r4, and r5 pointing to a free space for a 32 bit value.

```
// info based on Luigi Mansion appldr.bin file
// (built date is 17 Dec 2001).
// Apploader Entrypoint
// Input values :
// r3 = Address where to put the address of the Init function
// r4 = Address where to put the address of the Main Loading function
// r5 = Address where to put the address of the Closing function
// Return values :
// none
// file:[0010-0013] = 0x81200288 (apploader entrypoint)
void Entrypoint(r3, r4, r5)
{
    [r3] = 0x81200290 // Init
    [r4] = 0x81200580 // Main
    [r5] = 0x81200D50 // Close
}
// Init function
// Input values :
// ?
```

```
// Return values :
// none
void Init(void (*OSReport)(char *fmt, ...))
    // clear some important memory areas
    memset(OSAppLdr + 32, 0, 32);
    memset(&OSAppLdr.DolImage, 0, sizeof(DolImage));
    [+0x140] = 0
    OSAppLdr.pass = 0
    [+0x148] = 0
    OSAppLdr.OSReport = OSReport // save report callback
    OSAppLdr.OSReport("Apploader Initialized. $ Revision: 28 $\n");
    OSAppLdr.OSReport("This Apploader built %s %s\n", __DATE__, __TIME__);
// Main Loader function
//
// Input values :
// r3 = Address where to put the Memory destination of the disk read
// r4 = Address where to put the Size of the disk read
// r5 = Address where to put the Starting position of the disk read
//
// Return value:
// r3 = 0 if everything is already loaded
// = 1 (or !=0) if main function should be called again
//
// at 0x81200580
// helper functions (below)
u32 DOLSize(void);
// 0x812013E0 seems to be a big structure, like that :
struct OSAppLdr
    // untouched
    u32 SecondTimeForThePart;
    u8 [28]
    u8 [32] // "BB2" structure ?
    DolImage DolImage; // main DOL executable header
    // flags or something
```

```
u32 +0x140
    u32 pass; // 0...12
    u32 + 0x148
    // report routine itself is placed somewhere in bootrom
    void (*OSReport)(char *fmt, ...);
    // flags or something
    u32 +0x150
    u32 +0x154
    u32 +0x158
    u32 +0x15C
    u8 [32]
} OSAppLdr; // 0x174 total
int Main(r3, r4, r5)
    int pass = OSAppLdr.pass;
    if(pass <= 12)
        switch(pass)
            // read "BB2" structure (DVD offset at 0x0420)
            case 0:
            case 1:
                // "BB2" structure ?
                // 0420-0424 offset of main executable DOL
                // 0424-0427 offset of the FST
                // 0428-042B size of FST
                // 042C-042F maximum size of FST
                [r3] = OSAppLdr + 32
                [r4] = 32
                [r5] = 0x420
                OSAppLdr.pass = 2
                DCInvalidateRange([r3], [r4])
            break;
            // check "BB2" structure FST sizes
            case 2:
                FSTLength = [OSAppLdr + 32 + 8]
                FSTMaxLength = [OSAppLdr + 32 + 12]
```

```
if(FSTLength > FSTMaxLength)
        OSAppLdr.OSReport(
        "APPLOADER ERROR >>> FSTLength(%d) in BB2 is greater \
        than FSTMaxLength(%d)\n", FSTLength, FSTMaxLength);
        PPCHalt();
    [r3] = OSAppLdr + 0x160
    [r4] = 32
    [r5] = 0x440
    OSAppLdr.pass = 3
    DCInvalidateRange([r3], [r4])
break;
case 3:
    [0x800000E8] = [OSAppLdr + 0x160] // word
break;
case 4:
// load main DOL header (256 bytes)
case 5:
    [r3] = &OSAppLdr.DolImage
    [r4] = 256
    [r5] = [OSAppLdr + 32] // from BB2
    OSAppLdr.pass = 6
    DCInvalidateRange([r3], [r4])
break;
case 6:
    totalSize = DOLSize();
    maxSize = [[800000F4] + 0x28]; // PadSpec ?
    if((totalSize > maxSize) && maxSize)
    {
        OSAppLdr.OSReport(
        "APPLOADER ERROR >>> Total size of text/data sections \
        of the dol file are too big (%d(0x%08x) bytes). Currently \
        the limit is set as %d(0x\%08x) bytes\n", totalSize, maxSize);
        PPCHalt();
```

.

```
case 7:
            case 8:
            case 9:
            case 10:
            case 11:
            case 12:
                if(SecondTimeForThePart == TRUE)
                    OSAppLdr.OSReport(
                    "Failed assertion SecondTimeForThePart == TRUE");
                    PPCHalt();
            break;
            }
        return 1;
    }
   else
        return 0;
    }
// helper functions
// at 0x81200338
u32 DOLSize(void)
{
    DolImage *dol = &OSAppLdr.DolImage;
    u32 totalBytes = 0;
    int i;
    for(i=0; i<DOL_MAX_TEXT; i++)</pre>
        if(dol->textData[i])
        {
```

```
// aligned to 32 byte boundary
        totalBytes += (dol->textLen[i] + 31) & ~31;
        }
    }
    for(i=0; i<DOL_MAX_DATA; i++)</pre>
    {
       if(dol->dataData[i])
            // aligned to 32 byte boundary
            totalBytes += (dol->dataLen[i] + 31) & ~31;
        }
    }
    return totalBytes;
// Closing function
// Return value: r3 = entry point
// at 0x81200D50
u32 Close (void)
{
    \ensuremath{//} provide entrypoint of main DOL executable to IPL
    return OSAppLdr.DolImage.entry;
}
```

# 18.2.4 Main DOL executable

### 18.3 Game and Maker Codes

#### 18.3.1 Gamecodes

| offset | size | Descript              | tion |                                                                                     |
|--------|------|-----------------------|------|-------------------------------------------------------------------------------------|
| 1      | 1    | System I              | D    |                                                                                     |
|        |      | value                 | id   | Description                                                                         |
|        |      | 0x47                  | G    | Gamecube (standard value)                                                           |
|        |      | 0×44                  | _    | used by Legend Of Zelda: Ocarina Of Time (Master Quest)                             |
|        |      | UX44                  | D    | Might be a indicator for emulated/ported/promotional titles.                        |
|        |      | 0x55                  | U    | used by GBA-Player Boot CD                                                          |
| 2-3    | 2    | Game ID/serial Number |      |                                                                                     |
| 4      | 1    | Country/Region Code   |      |                                                                                     |
|        |      | value                 | id   | Country                                                                             |
|        |      | 0x45                  | E    | USA/NTSC                                                                            |
|        |      | 0x50                  | Р    | Europe/PAL                                                                          |
|        |      | 0x4a                  | J    | Japan/NTSC                                                                          |
|        |      | 0x55                  | U    | used by the European version of The Legend Of Zelda: Ocarina Of Time (Master Quest) |

### 18.3.2 Game Serial ID

| Characters | Description |                     |  |
|------------|-------------|---------------------|--|
| 3          | System      | ı ID 'DOL'          |  |
| 4          | Gamecode    |                     |  |
| 3          | Country ID  |                     |  |
|            | ID          | Country             |  |
|            | USA         | guess what :)       |  |
|            | NOE         | Nintendo of Europe  |  |
|            | NOA         | Nintendo of America |  |
|            | JPN         | Japan               |  |

### for example

- ▷ DOL-GZLE-USA (Zelda)
- ightharpoonup DOL-GNHE-USA (NHL Hitz 20-20)
- DOL-GTEP-NOE (1080ř Avalanche)
- $\triangleright$  DL-DOL-GFZJ-JPN (F-Zero GX)

### 18.3.3 Makercodes

The ID (2 Bytes ASCII) belongs to the publisher, not the developer. Hence, even though Rare developed Star Fox Adventures, and Retro Studios developed Metroid Prime, they both have the Vendor ID of Nintendo (01).

It is unknown how vendor IDs are allocated; However, all IDs thus far seem to be alphanumeric. If this is accurate, then as a result the maximum number of unique vendors is 1,296. Vendor IDs seem to be region-independent.

| ID | Vendor          |
|----|-----------------|
| 01 | Nintendo        |
| 08 | Capcom          |
| 41 | Ubisoft         |
| 4F | Eidos           |
| 51 | Acclaim         |
| 52 | Activision      |
| 5D | Midway          |
| 5G | Hudson          |
| 64 | Lucas Arts      |
| 69 | Electronic Arts |
| 6S | TDK Mediactive  |
| 8P | Sega            |
| A4 | Mirage Studios  |
| AF | Namco           |
| В2 | Bandai          |
| DA | Tomy            |
| EM | Konami          |

# 18.4 Macronix Chip IDs

|        | MV ff  | f + mm h n r e                                            |  |  |  |
|--------|--------|-----------------------------------------------------------|--|--|--|
| MX     |        | ff t mm b p r s  X', vendor id                            |  |  |  |
| ff     |        | ts, device family                                         |  |  |  |
|        | 17     | auto focus controller                                     |  |  |  |
|        |        | mask rom                                                  |  |  |  |
|        |        | spi serial flash memory                                   |  |  |  |
|        |        | mtp eeprom                                                |  |  |  |
|        | 27     | eeprom                                                    |  |  |  |
|        | 28     | flash memory                                              |  |  |  |
|        | 29     | flash memory (single voltage)                             |  |  |  |
|        | 53     | memory card (smc)                                         |  |  |  |
|        | 67     | flash memory                                              |  |  |  |
|        | 69     | flash memory + sram (stacked chip)                        |  |  |  |
|        | 88     | digital camera/flat panel display controller              |  |  |  |
|        | 89     | flat panel display controller                             |  |  |  |
|        | 92     | sound generator                                           |  |  |  |
|        | 93     | single chip answering machine/digital recorder controller |  |  |  |
|        |        | isdn controller                                           |  |  |  |
|        |        | network                                                   |  |  |  |
|        |        | bluetooth                                                 |  |  |  |
| t      |        | racter, device type                                       |  |  |  |
|        | C      | cmos                                                      |  |  |  |
|        | f      | flash                                                     |  |  |  |
|        | 1      | low-voltage                                               |  |  |  |
|        | W      | 2.2v                                                      |  |  |  |
|        | V      | 1.8v                                                      |  |  |  |
|        | u<br>x | 1.5v                                                      |  |  |  |
|        | VW     | 2.25v+srw                                                 |  |  |  |
| mm     |        | digits, mode/density                                      |  |  |  |
| 111111 | 004    |                                                           |  |  |  |
|        | 040    | · · · · · · · · · · · · · · · · · · ·                     |  |  |  |
|        | 400    | -                                                         |  |  |  |
|        |        | 100,000,000                                               |  |  |  |
|        |        |                                                           |  |  |  |
|        |        |                                                           |  |  |  |
|        |        |                                                           |  |  |  |
|        |        |                                                           |  |  |  |
|        |        |                                                           |  |  |  |
|        |        |                                                           |  |  |  |
|        |        |                                                           |  |  |  |
|        |        |                                                           |  |  |  |
| b      | 1 char | racter, bootblock type (rom only)                         |  |  |  |
|        |        | top                                                       |  |  |  |
|        | b   1  | bottom                                                    |  |  |  |

|   | MX f  | f t mm }             | bprs                 |  |
|---|-------|----------------------|----------------------|--|
| p | 1 cha | racter, package type |                      |  |
|   | p     | plastic dip          |                      |  |
|   | m     |                      | plastic sop          |  |
|   | q     |                      | plastic plcc         |  |
|   | t     |                      | tsop normal          |  |
|   | d     |                      | qeramic dip          |  |
|   | x8    | 0.8mm                | ball pitch, bga, csp |  |
|   | X     | csp                  |                      |  |
| r | 1 cha |                      | mperature range      |  |
|   | c     | commer               |                      |  |
|   | i     | industr              | rial                 |  |
|   | m     | milita               | nry                  |  |
| S | 1 cha | racter, sp           | peed                 |  |
|   | 45    | 45ns                 |                      |  |
|   | 55    | 55ns                 |                      |  |
|   | 70    | 70ns                 |                      |  |
|   | 85    | 85ns                 |                      |  |
|   | 90    | 90ns                 | ]                    |  |
|   | 10    | 100ns                | ]                    |  |
|   | 12    | 120ns                | ]                    |  |
|   | 15    | 150ns                | ]                    |  |
|   | 20    | 200ns                | ]                    |  |
|   | 25    | 250ns                |                      |  |

# 18.5 chip simelarities

- > mx25L4001 (serial flash rom in nintendo memory card 59)
  - b datasheet was never available at Macronixă but take a look at their 3-volt SPI Flash ROMs (the MX25LXX02 series) for a general pinout withoutăthe Unknown pin 24.
- > mx25L4004 (serial flash rom in datel memory card)
  - ⊳ mx25L4004 4Mbit, 4Mx1 serial flash rom (datasheet was, but is no longer available at Macronix:/)
- > mx98730ec (eth controller in bba)
  - ⊳ mx98728ec single chip 10/100 base generic MAC interface
  - ⊳ (mx98726, mx98728)
- ⊳ Gekko
  - b ibm PowerPc750CXe

     b ibm PowerPc750CXe

     c ibm P
  - ▷ (PowerPc740, PowerPc750, PowerPc750CX)
- - ⊳ (big ???) mx92L832 32 poly phony sound generator
  - $\triangleright$  (big ???) mx96037 16bit DSP Controller
  - ⊳ (mx93011a,...)

- > mx 8013108-M rtnc-dol 1r6022a1 (rtc/ipl)
- ▷ MoSys (MS3M23B-5 A) 12MB 1-T SRAM (main memory)
- ▷ NEC (D4891281G5 0125XU621) 16MB ARAM (auxiliary/dsp memory)

### 18.6 Easter Eggs

- ➤ To hear a different sound when the console boots hold the Z button down once you turn the console on and as the square bounces down you will hear the noises of kids.
- ⊳ Hold Z then about one second later hold A to hear another sound.
- ⊳ If you have 4 controllers (and 5 hands) this one will work: Before you turn the Gamecube on hold down Z on each controller, then turn the system on (with your 5th hand of course). You will be greeted by a ninja yell.
- ⊳ holding B on first controller, then powering on will let you switch a pal gamecube into 60Hz mode

# 18.7 Terms and Acronyms

⊳ AA

Antialiasing. Rendering method, that makes polygon edges seem less sharpen, combining colors of nearby pixels.

⊳ AD16

Mysterious EXI device.

> AI

Audio Interface. Hardware responsible for DMA playback of PCM buffer and DVD ADPCM streaming sound. AI hardware cannot mix sound channels or set channel volume for PCM DMA playback. These operations and more advanced sound effects are produced by DSP.

Small program on DVD to load main DOL executable.

> AR, ARAM

Auxiliary (Audio) Memory. 16 MB of slow (comapred to RAM) DRAM. Used for raw DSP sound data and as temporary space for textures. ARAM has DMA communication channel with main memory (RAM). Development boards has "ARAM Expansion" (additional 4, 16 or 32 MBs).

⊳ BAT

Block Address Translation, PPC MMU translation mechanism. There are DBAT and IBAT special-purpose registers for data and instruction address translation respectively.

⊳ BBA

Broad-Band Adapter, GC's 10BaseT Ethernet Adapter.

 $\triangleright$  BS

Bootstrap Stage (from analogy with UNIX). Very first code, executed after GC hard reset.

⊳ BS2

Bootstrap Stage 2. Same as IPL.

#### ⊳ CR

PPC Condition Register, stores result of integer comare operation, for conditional branch decision.

#### > CRT

C Run Time. C/C++ program environment (libraries and startup calls).

#### ⊳ DOL

Gamecube application (custom executable file format).

#### ▷ Dolphin

Early development work name of Gamecube.

### ▷ Dolphin OS

Gamecube OS. Single user, single process, multithreaded. Linked together with any GC application ("hard-linked"), as library.

### ▷ DSP

Digital Signal Processor. Used to produce advanced sound on GC. DSP is integrated with GP in Flipper chip and has its own ROM. Developed by Macronix.

#### ⊳ DI, DVD

DVD hardware interface. GC DVD is actually microcontroller, based on MN-102 CPU with proprietary firmware ROM. DVD is protected by non-standard barcodes and data encryption, which is decrypted on-the-fly by DVD controller. GC DVD cannot be read on usual PC hardware. Whole GC DVD stuff is developed by Matsushita.

#### ⊳ EFB

Embedded Framebuffer. 2MB of fast 1T-SRAM memory located inside Flipper. Used by GP's pixel engine to draw pixels. Later copied into XFB, for final TV-output.

### ⊳ EXI

Expansion Interface. Gamecube peripherial devices bus, sort of USB architecture. Developed by Macronix. Devices drived by EXI: memory cards, broad-band adapter, real-time clock, bootrom, SRAM.

### ▷ FIFO

First-In-First-Out buffer to send GP commands and create GP command lists.

### ⊳ Flipper

Gamecube Northbridge+Peripheral Hardware+Graphics Processor+Audio DSP.

### ⊳ FPR

Floating Point Register. Gekko has 32 64-bit FPRs, named f0-f31.

### ▷ FPSCR

Floating Point Status and Control Register.

### $\triangleright$ JTAG

Hardware debug interface to CPU. You can connect some wires to CPU pins, to overwhelm it. Gekko has full support of IEEE 1149-1a-1993 JTAG standard.

### ▷ GC, GCN, NGC

Nintendo Gamecube.

#### ⊳ GCM

Gamecube Master Data (official term). GC DVD Image files.

#### Sekko

Gamecube CPU, PowerPC 750-derivative processor with FPU extensions, called "Paired Single".

### ⊳ GP, GX

Graphics Processor, the major part of Flipper chip. GP is fixed point state-machine. Developed by ArtX team.

#### ⊳ GPR

General Purpose Register. Gekko has 32 32-bit GPRs, named r0-r31. r1 often used as stack pointer (sp).

### $\triangleright$ GX

Software library, developed by Nintendo and ArtX, to drive GP hardware. Has many crossways with OpenGL (but more advanced).

### ⊳ HW2

Common name of GC hardware. Number state for revision ("2" is production board).

#### ▷ IPL

Initial Program Loader. Graphics shell, used to load game from DVD.

### ⊳ MC

Memory Card, EXI device.

### $\triangleright$ MI

Flipper memory interface, plays role of "Nothbridge".

### ⊳ MMU

PPC Memory Management Unit. Translates virtual address to physical. MMU has two translation mechanisms: block address translation and page table translation. Address translation for data access and instruction fetch is processed separately in DMMU and IMMU.

#### ⊳ MSR

Machine State Register. CPU status and control register.

#### $\triangleright$ MX

Macronix Ltd. chips index. GC has many hardware parts, developed by Macronix, like DSP, EXI and bootrom chip.

#### > PC

Program Counter. PowerPC architecture does not define such term, but everyone is using it anyway, instead "CIA" (Current Instruction Address).

### ⊳ PCM

Pulse Code Modulation, method commonly used in digital sound hardware. PCM sound parameters are: playback rate, bits per sample, sample format. GC AI can playback 32000/48000 Hz, 16-bit big-endian stereo samples via DMA.

### $\triangleright$ PI

Peripheral Interface. Set of hardware registers to control interrupts and hardware reset. There also "PI FIFO": hardware-driven FIFO buffer in RAM.

#### ⊳ PM

PowerPC Performance Monitor. Set of PPC special purpose registers used for speed profiling of applications.

#### ▷ PPC

IBM PowerPC Architecture.

#### ▷ PTE

Page Table Entry. Page table record, used to translate virtual address to physical.

#### $\sim R \Delta M$

Main memory. GC has 24 MB of fast 1T-SRAM. Development boards has RAM extended up to 48 MB. Developed by MoSys.

#### ⊳ ROM

Read-only memory. GC has following ROMs: 2 MB encrypted bootrom, 128 KB DVD firmware, 4 KB DSP DROM, 8 KB DSP IROM.

#### > RSW

"Reset Switch", same as reset button. Seems early development GC models were equipped by switch, insted programmable reset button.

### $\triangleright$ RTC

Real-time clock. EXI device, counting seconds since 00:00 AM 2000.

### ⊳ SDK

Software Development Kit. Full set of compilers, libraries and documentation for development on specified platform. Gamecube SDK contain development tools, like sound and texture convertors, and set of libraries for OS and hardware. Compiler is provided by Metrowerk's CodeWarrior. There also huge development board and paper documentation.

#### $\triangleright$ SI

Serial Interface. Hardware responsible for communication with serial devices, such as GC controller and keyboard via serial I/O buffer.

#### ▷ SPR

Special-purpose register. Set of registers, dedicated to operating system. Gekko has about 60 SPRs.

#### > SR

Segment Registers, used by MMU for virtual address translation.

### $\triangleright$ SRAM

Small amount of battery backuped memory for OS misc settings.

### $\triangleright$ TLB

PPC MMU Translation Lookaside Buffer, used to keep recently used page address translations. Gekko has 128 two-way set associative TLB for each MMU (DMMU and IMMU).

### $\triangleright$ VI

Video Interface. Hardware responsible for TV-out of framebuffer (XFB), and generating VBlank interrupt (actually can be configured to interrupt CPU at any beam location). Has support for lightgun, antialiasing of XFB by tap-filters and progressive video mode (480p).

# $\triangleright$ WBUF

Gekko Write Gather Buffer. Small cache for burst memory transactions. Used together with graphics FIFO to send GP commands.

### $\triangleright$ XFB

External Framebuffer, located in main memory. Used for final TV-out by VI.

19 REFERENCES 241

# 19 References

Description > U.S. Pat. 5,680,534 (Video game/video graphics program fabricating system and method with superimpose control)

- ▷ U.S. Pat. 6,411,301; 6,452,600; 6,466,218; 6,697,074 (Graphics system interface) GX Info
- □ U.S. Pat. 6,424,348; 6,456,290; 6,489,963 (Application program interface for a graphics system) GX Info
- ∪.S. Pat. 6,457,128 (Optical disk. An optical disk barcode forming method, an optical disk reproduction apparatus, a marking forming apparatus, a method of forming a laser marking on an optical disk, and a method of manufacturing an optical disk.)
- ▷ U.S. Pat. 6,591,019 (3D transformation matrix compression and decompression)
- ▷ U.S. Pat. 6,606,689 (Method and apparatus for pre-caching data in audio memory) ARAM Info
- ▷ U.S. Pat. 6,609,977 (External interfaces for a 3D graphics system) Lots of Register Info
- □ U.S. Pat. 6,636,214 (Method and apparatus for dynamically reconfiguring the order of hidden surface processing based on rendering mode) Some GX Stuff
- ▷ U.S. Pat. 6,639,595 (Achromatic lighting in a graphics system and method) Some GX Info
- U.S. Pat. 6,580,430 (Method and apparatus for providing improved fog effects in a graphics system)
   some GX Info
- ▷ U.S. Pat. 6,643,744 (Method and apparatus for pre-fetching audio data) Some ARAM Info
- ▷ U.S. Pat. 6,664,962 (Shadow mapping in a low cost graphics system) GX Info
- ▷ U.S. Pat. 6,707,458 (Method and apparatus for texture tiling in a graphics system) GX Info
- ▷ U.S. Pat. 6,681,296; 6,859,862 (Method and apparatus for software management of on-chip cache)
- ▷ U.S. Pat. 6,701,424 (Method and apparatus for efficient loading and storing of vectors)
- ▷ U.S. Pat. 6,717,577 (Vertex cache for 3D computer graphics)

19 REFERENCES 242

- ⊳ mx25L4004 Datasheet
- ▷ PowerPC 740/PowerPC 750 RISC Microprocessor User's Manual
- ▷ PowerPC 750CX/ 750CXe RISC Microprocessor User's Manual
- Standard ECMA-268 (80 mm DVD Read-Only Disk)
- > MN102H60G/60K/F60G/F60K LSI User Manual

### 19.1 Sources

- ▷ http://www.uspto.gov
- ▷ http://www.macronix.com
- ▷ http://www.ibm.com
- ▷ http://www.s3.com/s3tc (no more available)
- ▷ https://www.semicon.panasonic.co.jp

20 CREDITS 243

# 20 Credits

besides freely available datasheets and patents, this document was created based on information provided by the following people. if you think you are missing in this list, please keep me informed so i can add you

| titanik/crazy nation      | 'Gamaguha Law laval Info' in C'7N 'Gamaguha Sauraa naak #1'                    |
|---------------------------|--------------------------------------------------------------------------------|
| duke/napalm               | 'Gamecube Low-level Info' in CZN 'Gamecube Source pack #1'  duke@napalm-x.com  |
| uuke/napann               | initial "gcinfo.txt"                                                           |
|                           | some invaluable information (you know who you are)                             |
| costis                    | costis@gbaemu.com, gcdev.com http://www.gcdev.com                              |
| Costis                    | hardware introduction text (posted on some websiteuhm:))                       |
|                           | gcspec.html                                                                    |
|                           | additional info in sram checksum, video regs                                   |
| org                       | kvzorganic@mail.ru                                                             |
| 5                         | additional apploader info / apploader RE                                       |
|                           | IPL RE, boot process details                                                   |
|                           | info on Gekko specific opcodes                                                 |
|                           | tons of other info (cheers mate)                                               |
| torlus                    |                                                                                |
|                           | gcc config                                                                     |
| ???                       | www.gc-nfo.com                                                                 |
|                           | some file-format info                                                          |
| Crowtrobo                 |                                                                                |
|                           | ctr-snd.txt                                                                    |
|                           | memory card info                                                               |
| Azimer                    | http://www.apollo64.com                                                        |
|                           | some additional VI info                                                        |
| tmbinc                    | debugmo.de http://debugmo.de                                                   |
|                           | released some sources that helped to close the one or other gap                |
|                           | driving force behind GX reversing                                              |
| -1                        | IPL encryption reversing/IPL replacement info                                  |
| shagkur                   | shagkur@gmx.net                                                                |
| Timothy Wilson            | GX reversing, additional sources/infos theimp@iinet.net.au                     |
| Timothy Wilson            | compiled some valuable info concerning memory cards                            |
| Authors of GClib          | gclib.sf.net                                                                   |
| Authors of Genb           | cross-checking against the Source helped to make sure no bad errors sneaked in |
| GC-Linux Team             | gc-linux.sf.net                                                                |
| GO Emux Teum              | another valueable source for code that has been cross-checked against          |
| Aaron Kaluszka            | megabyte@kontek.net                                                            |
| - 242 922 2242            | some image format info                                                         |
| Monk                      | monk@mad.scientist.com                                                         |
|                           | TPL Fileformat details                                                         |
| Steven Looman             | steven@krx.nl                                                                  |
|                           | keyboard scancodes, comments on adapters                                       |
| thakis                    | http://www.amnoid.de/gc/                                                       |
|                           | lots of additional fileformat info, proofreading&spellchecking                 |
| Alexander Wold (micropal) | http://cube.iu.hio.no/~s104086/                                                |
|                           | additional rtc/ipl pinout info                                                 |

moreover, many thanks must go to everyone who helped making this document more consistant and error free by proofreading and pointing out mistakes, in particular tmbinc, org, hubb, Aaron Kaluszka,

20 CREDITS 244

Skywalker, Jihad, xor37h, costis, CrowTrobo, mist, ionic, Briii, Desktopman, Spike Grobstein, Steven Looman, Anders Montonen, Monk, Josiah "afnom" Burroughs, ScreamlCT, thakis ... (please check the changelog for details)