

Emotion Recognition Tool for Tweets

Capstone Project Presentation

Harshit Bhavnani

Methodology

Data

ID	Tweet	Affect Dimension	Intensity Score		
2017-En-30692	Positive research show salesperson score top g	joy	0.274		
2017-En-11102	passed away early morning fast furious styled	anger	0.354		
2017-En-41401	If Troyler die Im gonna die	sadness	0.798		
2017-En-21664	terrorism booming industry Pak govt oblivious	fear	0.625		

Methodology

ETL Pro	ocess
Cleaning	Preparation
Tagged Accounts & Links	Feature Extraction
Empty/Duplicate Tweets and NA Values	(Textblob Conll Extractor)
Punctuation Marks & Special Characters	Embedding (Word?woo.with
Stopwords (Standard English from NLTK)	(Word2vec with Google News Collection)

Experimental Study

A linear approach for modelling the relationship between a scalar response and one or more explanatory variables

Random Forest

An ensemble learning method that operates by constructing a multitude of decision trees at training time.

Decision Tree

Breaks down a dataset into smaller subsets while incrementally developing the associated tree.

K-Nearest Neighbors

A simple algorithm that stores all available cases and predict the numerical target based on a similarity measure.

Support Vector Regressor

A supervised learning algorithm that is used to predict discrete values

Gradient Boosting

An ML technique which produces a prediction model in the form of an ensemble of weak prediction models, typically decision trees.

Experimental Study

Coefficient of Determination

A statistical measure that represents the proportion of the variance for a dependent variable that's explained by an independent variable or variables in a regression model.

Mean Absolute Error

A statistical measure of errors between paired observations expressing the same phenomenon.

Mean Squared Error

A statistical measure of the average squared difference between the estimated values and the actual value.

Root Mean Squared Error

The root of the average squared difference between the estimated values and the actual value.

Results & Analysis

Anger					Joy								
	Linear Regression	Random Forest	Decision Tree	KNN	SVR	Gradient Boost		Linear Regression	Random Forest	Decision Tree	KNN	SVR	Gradient Boost
R2	-7.3828e+21	-0.0788643	-0.182579	-0.140585	-0.0153836	-0.0223897	R2	-1.96711e+22	-0.0910428	-0.159834	-0.384159	-0.0149771	-0.0109779
MAE	3.48474e+09	0.170682	0.177707	0.17367	0.165721	0.16674	MAE	3.18182e+09	0.162775	0.167744	0.182052	0.161567	0.159749
MSE	2.92349e+20	0.0427216	0.0468286	0.0451657	0.0402079	0.0404853	MSE	7.22398e+20	0.0400672	0.0425935	0.0508316	0.0372738	0.0371269
RMSE	1.70982e+10	0.206692	0.216399	0.212522	0.200519	0.20121	RMSE	2.68775e+10	0.200168	0.206382	0.225459	0.193064	0.192684
	Sadness						Fear						
	Linear Regression	Random Forest	Decision Tree	KNN	SVR	Gradient		Linear	Random	Decision	KNN	SVR	Gradient
$\overline{}$	•	101636	liee			Boost		Regression	Forest	Tree			Boost
R2	-6.71138e+21	-0.106157	-0.207057	-0.236501	-0.00589185	-0.0225636	R2	Regression -5.0432e+21	-0.161456	-0.227915	-0.209392	-0.0226743	-0.0947355
R2 MAE	-			-0.236501 0.161546	-0.00589185 0.146084		R2 MAE	•				-0.0226743 0.144375	
	-6.71138e+21	-0.106157	-0.207057			-0.0225636		-5.0432e+21	-0.161456	-0.227915	-0.209392		-0.0947355

Exploratory Data Analysis: Word Clouds

01

Joy

Smile do Ve de de la company d

going day playthink are syanay happy discourage go doesnt of my playthink are syanay happy discourage go doesnt of my playthink are syanay happy discourage go doesnt of my play happy doesnt not my play happy doesn't not my play happy doe

03

Sadness

02 Anger going makenew Deop Leeven today think plack with the plack being many thinks well have been today thinks being been today thing pouts the plack being pouts the plack being pouts the plack been today thing pouts the plack being pouts the plack

The control of the co

04

Fear

Exploratory Data Analysis: Bar Plots

Application

Input

Output