Advanced data processing	
Combining data from multiple sources Gene clustering example • R has powerful functions to combine heterogeneous data into a single data set • Gene clustering example data: - five sets of differentially expressed genes from various experimental conditions - file with names of experimentally verified genes • Gene clustering exercise: 1. combine this dataset into a single table and cluster to see which conditions are similar 2. repeat the clustering but only on a subset of experimentally verified genes	
* input files have two columns: gene names and fold change * we want to combine all five tables into a single table, with 0 for missing values **Para 3.5796 **Para 3.5029 **Para	

Gene clustering

Script walkthrough 4

- In a second part of our analysis, we want to produce the same heatmap but only based on a list of experimentally verified genes
- $\mbox{\ensuremath{\bullet}}$ The problem is data is not formatted in the most convenient way:

genes	citation
oc,run,RhoBTB,CG5149,CG11153,S,Fur1	Segal et al, Development 2001
tna,Kr-h1,rux	Krejci et al, Development 2002

Gene clustering Script walkthrough 5 • We load in this table, and only extract the gene names, then we use them to select a subset of values matrix # load in the tab-delimited file with genes and citations t.exp <- read.delim("13 ExperimentalGenes.tev", as.is=1) # split all gene names by "," and then flatten it out into a single vector experim.genes <- unlist(strsplit(t.exp\$genes, ",")) unlist() flattens out a nested list into a single vector strsplit() splits a vector of strings by a custom split character (","), the results is a list of split values for each element of input vector # redo the heatmap by using just the genes in the experimentally verified set is.experimental <- rownames (values) %in% experim.genes heatmap (values[is.experimental,], scale="none", col = cm.colors(256))

Gene clustering review

- $\mbox{\ }^{\bullet}$ We load in the five tables twice first to collect gene names, then to load expression values
- \bullet Based on expression table (values) we construct a clustered heatmap first on the whole set of genes, then on a selected subset
- Go through the code, try it out it and understand it
- Try answering the following questions:
 - what is rownames(values) ?
 - why is rownames(values)[index] and t\$gene giving the same output?
 - what is a difference between rownames(values) %in% experim.genes and experim.genes %in% rownames(values)

Example code: