考试方式: _ 闭卷_ 考试日期: _ 2023.2.17 晚 _ 考试时长: _ 150 _ 分钟。

院(系): _____ 专业班级: _____

学 号:

生 名:_____

T										
	题号。	→		=,	四。	∄ .∘	六。	七	八。	总分。
	吃匀∘	(15)	(12) .	(10)	(12)	(12) .	(16) _e	(18) .	(5) ₀	(100) ₀
	得分。	ψ	+3	ρ	ęs .	ψ.	47	ęs	₽ ³	v

- 1. 无符号十六进制数(AF.C)₁₆的十进制表示为_____(1)____。
- 2. (0100 0101)8421BCD 表达的 6 位二进制数, 其对应的格雷码为____(2)____。
- 3. 若某逻辑函数的对偶式 $L' = \overline{AB} \cdot (\overline{BC} + \overline{D})$,则 $\overline{L \odot 0}$ 的最简与或表达式为__(3)___。

5. 一个反相器的输入和输出波形如题 5 图所示, 其传输延迟时间 T_{pd} 为___(5)__。

爲 12 页 - 第 1 页。

- 6. 已知 3.3V 供电的 CMOS 二输入与非门芯片 V_{IL(max)}=0.8V, V_{OL(max)}=0.2V, V_{IH(min)}=2.0V, V_{OH(min)}=3.1V, 当输入端 A 的电平为 1.65V,输入端 B 的电平为 0.4V 时,逻辑门的输出逻辑为_____(6)_____(不填具体电压值)。
- 7. 某小逻辑门输入A、B 和输出F的波形如题图 7 所示,则该逻辑门为 <u>(7)</u>。

题 8 图

9. 输入低电平有效的 8-3 线优先编码器, 若Q(LSB)为最高优先级, 当原码输出 $Y_2Y_1Y_0$

- 10. 数字逻辑电路中,出现冒险现象的主要原因是电路中存在____(10)___。
- 11. 将一个移位寄存器中的无符号数放大 8 倍,需要 (11) 个移位时钟脉冲。
- 12. 模 7 减法计数器从 1 开始计数,经过 2022 个计数脉冲后其计数值为__(12)__。。

变的周期性波形整形成较为理想的矩形波。

15. 某 MCU 内置单极性的线性 D/A。校准后当输出模拟量为 0.5V,对应的数字量为 0xFA; 若要输出 2.8V 的直流电压,则对应的数字量为(__(15)__)10

二、化简题(共12分)。

1. (6 分)用代数法求逻辑函数 L 的最简与或式(无推导步骤不给分)。

$$L = \overline{A\overline{C} + \overline{A}B\overline{C}} + B\overline{C} + \overline{A}BC$$

2. (6分)用卡诺图化简求逻辑函数 L 的最简与或式 (无行列编号不画圈不给分)。。

分数 评卷人

三、波形图(共10分)。

根据下图所示电路和X的输入波形, 画出对应的 Q_1 、 J_2 (K_2)、 Q_2

的功能仿真波形(假定触发器初态均为0)。。

分 级

四、组合电路分析(共12分)。

评卷人。

 $oxed{1}$. 根据 A、B 和 C、D 两组输入构成的点阵图所示电路,直接写

出F对应的逻辑函数,并设法得到该逻辑函数最小项的标准与或式。。

F=ABC+ACD+
ABC+ABD+
ABCD

= AZ + ABD ZM(4,8,9,12,13,14)

F: 0000

2. 利用 ROM 来实现该组合电路。如果将 A, B, C, D 分别接至 ROM 的地址输入端 $A_3\sim A_0$ (A_0 为 LSB),请填写下表中 ROM 中每个寻址单元所存储的数据内容。

+								
	A ₃ ~A ₀ -	F_{ε}	A3~A0+	F_{ε}	A ₃ ~A ₀ -	F_{ε}	$A_{3}\sim A_{0}$	F_{ε}
	00000	0	0100 _I	e	1000€	ę	1100e	ę.
	0001	0	0101	ø	1001	43	1101	a
	0010	0	0110-	ρ	1010	φ	1110	e
	0011	0	0111	ē	1011	4)	11112	ē

3. 根据题意简要说明该逻辑功能(2^d 字以内,不按题意不得分),并在框中补充完善相应的 Verilog HDL 代码。

功能说明: _____。

```
module test(A, B, C, D, F);
input A, B, C, D;
output F;
always@(*) begin
if (A, B) (C, O) F = 1'b1;
else F = 1'b0;
end
endmodule
```

分数。

五、组合电路应用设计(共12分)。

用 A, B, C, D 四种药物制定的治疗方案须满足以下条件:。

- 1) 要么不用 A,若使用 A,则不能使用 D;
- 2) 要么不用 B,若使用 B,则必须同时使用 D;
- 3) B和C要么同时使用,要么都不用;
- 4) A和C中有且仅有一种被使用;

假定使用该药物为1,不使用为0;方案可行为1,方案不可行为0;。

1. 请写出以上各限定条件对应的逻辑表达式 Fi: -

	$F_{I} =$									
	F2=		;	41						
F_{s}	g=		;	+1						
F_{i}	-=									

2. 请写出表示可行治疗方案的最简与或逻辑表达式 F, 并填写其真值表。.

F= ABCD + A BCD

A_{\circ}	B_{ω}	C	D_{z}	F_{\cdot}	A₽	B_{c}	C o	D_{ω}	F_{i}
0.5	0	0	0.0	aī.	1.0	0.0	0.5	0.0	ش
0.,	0	0.	1.	47	1.	0.	0	1.0	45
80	00	1,0	0.0 1.0	9 9	1.0	8.	1.0	0.0	ų.
0.0	1	0	0.0	+3	1.0	1.	0.5	0.0	÷
0.	1.	0.	1₽	ē.	1.	1	0.0	1.0	47
0.	1.0	1.	0.0	ø	1.	1.	10	0.0	4)
0.,	1.0	1.	10	ē.	1.	1.	1.5	1.0	+3

3. 若用一个 8 选 1 的多路选择器(MUX)来实现上述治疗方案可行性判别。请 在下图中分别标出各输入管脚的逻辑电平

(图中括号内,可填输入反变量)。其中 *E* 为使能端, *S2S1S0* 为通道选择端 (*S2* 为

MSB),当E有效时 $F = D_{S_2S_1S_0}$,当E无效时F = 0。

分 数。	
评卷人。	***

六、时序电路分析(共16分)

请分析由 8421BCD 码十进制同步加法计数器 CNT10 和逻辑门构成如下图所示的电路(CNT10 功能说明详见 Page10 附录),

并解答如下问题。

1. 1) PE 为 (同步/异步) 预置信号; ...

2)E的逻辑表达式为

PE = O2 Q

37 TC 的逻辑表达式为

TC -CFT. (03 O)

2. 画出状态转移图;。

CEP,CET 预置数据烷

D3. D2. D1. D0

PF =

PE=1

注:状态框中用QQQQ对应的一进制数标识不同状态(包括未用状态)。 ϕ

A Company of the Company

。 3. 简要说明该电路的功能(20 字以内),并据画出的状态图判断是否能自启动。

槌 € 计 新悉, 能随 目后 础

- 4. 请按如下要求将下面的 Verilog HDL 代码补充完整。
 - 1) 异步复位信号 CR n 为低电平时,初始状态设置为 0;。
 - 2) CR_n 信号为高电平时, CT 模块具有与本题小题 2 相同的状态转移图。

用 D 触发器及部分组合逻辑设计如图所示的"001"序列检测器 (1 为序列的最后输入位)。其中 X 为序列信号输入, Y 为检测结果输出(设检出为 1)。

1. 根据状态转移图,填写状态表。

0,000	$Q_1^{n+1}Q_0^{n+1}/Y_0$						
$Q_1^nQ_0^n$	X = 0	$X = 1_{\circ}$					
00.	010	00/0					
01.	110	00/0					
11.	110	00/					

2. 若将电路无效状态 10 作为无关项, 电路 (有/无) 自启动能力。若不允许误报, 请写出输出函数和激励函数的最简与或式:

3. 根据小题 1 中的状态图,将检测电路的 Verilog HDL 描述补充完整。

4. 依据小题 3 中的行为描述,若综合工具在 FPGA 器件上综合得到如下电路,其中 LUT 为 3 输入查找表,DFF 为 D 触发器。请填写各 LUT 内部 8bit RAM 需预加载的 控制字(其中 LSB 对应 $A_2A_1A_0$ =3'b000 时的 L 输出值)。

预加	1载控制字。	7
LUT2	8'h	-
LUT1	8'h	-
LUT0	8'h	

八、综合题(共5分)。

在进行模拟/数字信号的转换过程中,由采样定理可知:采样频率 f_s 和输入模拟信号中最高频率分量的频率 f_{imax} 必须满足 $f_s \ge 2 f_{imax}$ 关系式。某一声音信号采集系统功能框图如图所示,经麦克风声音采集、信号调理电路放大、A/D 转换模块,最后由存储控制器将数据存储到 RAM。假设采集的目标声音信号最高频率是 1kHz,ADC 输出位数为 8bit。试问答以下问题:

- 1. 若系统需要无失真采集 1 秒钟声音信号,该存储器 RAM 的最小容量是多少 KB (Kilo-Bytes)?请给出计算依据。
- 2. 若系统已按小题 1 配置了最小容量存储器。为采集更长时间的声音信号,需额外增加一片 4K×8bits 的 RAM,并通过在原存储控制器基础上增加一个寻址模块 (AddrSelect)来管理系统原配置的 RAM 和新增的 4KB RAM。要求访问新增存储器在内存空间上要求紧顺着原有 RAM 地址后面编排。寻址模块的 Verilog HDL 实现片段如下,请根据以上信息补充空白片段内容(详见后图并填入对应的小题号行中)。。

```
module AddrSelect(cs,addr,OldCs,NewCs);

parameter N= ① ;

input [N-1:0]addr;

input cs; //高电平有效。
output OldCs,NewCs; //高电平有效。
wire tmpOld,tmpNew;

//and(Y,A,B) not(Y,A) (Y:output, A B:input)。
and(NewCs,cs,tmpNew);

and(OldCs,cs,tmpOld);

not(tmpNew, ② );

assign tmpOld=(addr[ ③ ]== ④ )?1:0;

endmodule。
```


附录

CNT10 是 8421BCD 码十进制同步加法计数器,具有高电平有效的计数允许端 CEP、CET。 预置数据端为 D_5 、 D_2 、 D_1 、 D_0 (D_3 为最高位),输出数据端为 Q_5 、 Q_2 、 Q_1 、 Q_0 (Q_3 为最高位)。 器件功能如下表所示:

T.														g
		Ι	输	λ						4	â l	Н-	1	4
清零。	预置。	使	使能。 时钟。			页置数技		数据		进位。				
ŒR₽	\overline{PE}_{a}	CEP.	CET.	CP.	D 30	$D_{2^{\omega}}$	$D_{1^{c}}$	D 30	Q 30	$Q_{2^{d}}$	$Q_{1^{\pm}}$	Q ₀	TC:	4
Le	Χ÷	Χe	Χ⊬	Χe	Χ÷	Xĕ	Χ÷	Χe	Le	Le	Le	L₽	L	
H	Lo	X,2	\times _s $_{1}$	10	D 3*.3	D 2*0	D ₁ *,	D ₀ *	D_{3}	D_{2^d}	$D_{1^{d}}$	$D_{0^{67}}$	#.0	+
Н₽	H₽	L	Χø	Χø	Χė	Χē	ΧÞ	Χø	ų.	保。	持。	p	#.	
H₽	H.	×e	Lo	×e	×÷	×	×÷	×e	*	保。	持。	ю	L↔	4
H۵	Нo	H₽	H∍	10	\times_{α}	\times a	×α	Χa	ų.	计中	数。	۵	#.	*
					1									÷

注: 1) D_N*表示 CP 脉冲上升沿之前瞬间 D_N 的电平。

- 2) #表示只有当 Q_3 Q_2 Q_1 Q_0 = 1001 且 CET =1 时,TC 输出为高电平,其余均为低电平。
- 3) $Q_3^n Q_2^n Q_1^n Q_0^n = 10 \sim 15 \text{ HT}$ $Q_3^{n+1} Q_2^{n+1} Q_1^{n+1} Q_0^{n+1} = Q_3^n Q_2^n Q_1^n Q_0^n + 1$:

附录

CNT10 是 8421BCD 码十进制同步加法计数器,具有高电平有效的计数允许端 CEP、CET。 预置数据端为 D_5 、 D_2 、 D_1 、 D_0 (D_3 为最高位),输出数据端为 Q_5 、 Q_2 、 Q_1 、 Q_0 (Q_3 为最高位)。 器件功能如下表所示:

T.														g
		Ι	输	λ						4	â l	Н-	1	4
清零。	预置。	使	使能。 时钟。			页置数技		数据		进位。				
ŒR₽	\overline{PE}_{a}	CEP.	CET.	CP.	D 30	$D_{2^{\omega}}$	$D_{1^{c}}$	D 30	Q 30	$Q_{2^{d}}$	$Q_{1^{\pm}}$	Q ₀	TC:	4
Le	Χ÷	Χe	Χ⊬	Χe	Χ÷	Xĕ	Χ÷	Χe	Le	Le	Le	L₽	L	
H	Lo	×,2	\times _s $_{1}$	10	D 3*.3	D 2*0	D ₁ *,	D ₀ *	D_{3}	D_{2^d}	$D_{1^{d}}$	$D_{0^{67}}$	#.0	+
Н₽	H₽	L	Χø	Χø	Χė	Χē	ΧÞ	Χø	ų.	保。	持。	p	#.	
H₽	H.	×e	Lo	×e	×÷	×	×÷	×e	*	保。	持。	ю	L↔	4
H۵	Нo	H₽	H∍	10	\times_{α}	\times a	×α	Χa	ų.	计中	数。	۵	#.	*
					1									÷

注: 1) D_N*表示 CP 脉冲上升沿之前瞬间 D_N 的电平。

- 2) #表示只有当 Q_3 Q_2 Q_1 Q_0 = 1001 且 CET =1 时,TC 输出为高电平,其余均为低电平。
- 3) $Q_3^n Q_2^n Q_1^n Q_0^n = 10 \sim 15 \text{ HT}$ $Q_3^{n+1} Q_2^{n+1} Q_1^{n+1} Q_0^{n+1} = Q_3^n Q_2^n Q_1^n Q_0^n + 1$: