Analise de Algoritmos

Análise de Algoritmos

 Consiste em estudar o comportamento de um algoritmo frente a diferentes tamanhos e valores de entrada.

 Na realidade, o que se busca é estimar o tempo que um certo algoritmo consome para resolver um problema.

Definições

- Melhor caso: entrada de dados que possibilita o melhor desempenho do algoritmo para resolver o problema.
- Pior caso: entrada de dados que implica no pior desempenho do algoritmo para resolver o problema.
- Caso médio: demais entradas de dados que normalmente equidistantes do melhor e do pior caso (estimativa).

Notação O

- Dizemos que uma função f(n) é O(g(n)), se para valores suficientemente grandes de n, a função f(n) não será maior que g(n) a menos de um fator c.
- Exemplos:

$$2n^2 - 5 = O(n^2) ==> pois 2n^2 - 5 <= 2n^2 (para n qualquer)$$

 $3n^2 + n = O(n^2) ==> pois 3n^2 + n <= 4n^2 (para n>=1)$
 $2n^3 + n + 10 = O(n^3) ==> pois 2n^3 + n + 10 <= 3n^3 (para n>= 3)$

Notação O

- Na análise de algoritmos são as seguintes as complexidades mais comuns (em ordem crescente):
 - O(1) ou constante;
 - O(log n) ou logaritímica;
 - O(n) ou linear;
 - O(n log n) ou n log de n;
 - O(n²) ou quadrática;
 - O(n³) ou cúbica;
 - O(kⁿ) ou exponencial; (k uma constante qualquer)

m

Notação O

Regras:

- I. Regra da complexidade *polinomial*: se P(n) é um polinômio de grau k, então $P(n) = O(n^k)$;
- II. f(n) = O(f(n));
- III.Regra da constante: $O(c^*f(n)) = c^* O(f(n)) = O(f(n))$;
- IV.Regra da soma de tempos: se T1(n) = O(f(n)) e T2(n) = O(g(n))

```
então T1(n) + T2(n) = O(max(f(n),g(n)));
```

Isto significa que a complexidade de um algoritmo com dois trechos em sequência com tempos de execução diferentes é dada como a complexidade do trecho de maior complexidade.

0

Notação O

Regras:

V.Regra do *produto* de tempos:

Se
$$T_1(n) = O(f(n))$$
 e $T_2(n) = O(g(n))$
então $T_1(n) * T_2(n) = O(f(n) * g(n))$

Isto significa que a complexidade de um algoritmo com dois trechos aninhados, em que o segundo é repetidamente executado pelo primeiro, é dada como o produto da complexidade do trecho mais interno pela complexidade do trecho mais externo.

2

Importância do estudo de complexidade

 Considere 5 algoritmos com as complexidades de tempo. Suponhamos que uma operação leve 1 ms.

n	$f_1(n) = n$	$f_2(n) = n \log n$	$f_3(n)=n^2$	$f_4(n)=n^3$	$f_5(n)=2^n$
16	0.016s	0.064s	0.256s	4s	1m 4s
32	0.032s	0.16s	1s	33s	46 dias
512	0.512s	9s	4m 22s	1 dia 13h	10 ¹³⁷ séculos

- Se utilizássemos uma máquina mais rápida onde uma operação leve 1 ps (pico segundo) ao invés de 1 ms teríamos que, ao invés de 10^{137} séculos, seriam 10^{128} séculos.
- Podemos muitas vezes melhorar o tempo de execução de um programa otimizando o código (por exemplo: usar x + x ao invés de 2x, evitar re-cálculo de expressões já calculadas, etc.).
- Entretanto, melhorias muito mais substanciais podem ser obtidas se usarmos um algoritmo diferente, com outra complexidade de tempo, por exemplo um algoritmo de O(n log n) ao invés de O(n²).

Importância do estudo de complexidade

FUNÇÃO DE	n (tamanho do problema)				
COMPLEXIDADE	20	40	60		
n	0.0002 s	0.0004 s	0.0006 s		
n log ₂ n	0.0009 s	0.0021 s	0.0035 s		
n ²	0.0040 s	0.0160 s	0.0360 s		
n³	0.0800 s	0.6400 s	2.1600 s		
2 ⁿ	10.0000 s	27 dias	3660 séculos		
3 ⁿ	580 minutos	38550 séculos	1.3*10 ¹⁴ séculos		

É digna de nota a taxa de crescimento dos algoritmos de ordem exponencial. Em geral, seu desempenho torna-se de custo proibitivo, devendo ser usados apenas quando não se conheça solução de menor complexidade.

Importância do estudo de complexidade

FUNÇÃO DE	Tamanho da maior instância solucionável em 1 hora				
COMPLEXIDADE	máquina original	máquina 100 vezes mais rápida	máquina 1.000 vezes mais rápidas		
n	N	100 N	1.000 N		
n log ₂ n	N1	22.5 N1	140.2 N1		
n²	N2	10 N2	31.6 N2		
n³	N3	4.6 N3	10 N3		
2 ⁿ	N4	N4 + 6	N4 +10		
3 ⁿ	N5	N5 + 4	N5 + 6		

- Regras rígidas sobre o cálculo da complexidade de qualquer algoritmo não existem, cada caso deve ser estudado em suas condições.
- No entanto, as estruturas de controle clássicas da programação estruturada permitem uma estimativa típica de cada uma.
- A partir disso, algoritmos construídos com combinações delas podem ter sua complexidade mais facilmente estabelecida.

- A) Comando Simples: tem um tempo de execução constante, O(c) = O(1).
- B) Sequência: tem um tempo igual à soma dos tempos de cada comando da seqüência; se cada comando é O(1), assim, também será a seqüência; senão, pela regra da soma, a seqüência terá a complexidade do comando de maior complexidade.
- C) Alternativa: qualquer um dos ramos pode ter complexidade arbitrária; a complexidade resultante é a maior delas; isto vale para alternativa dupla (if-else) ou múltipla (switch).

D) Repetição contada: é aquela em que cada iteração (ou "volta") atualiza o controle mediante uma adição (geralmente, quando se usa uma estrutura do tipo for, que especifica incremento/decremento automático de uma variável inteira). Se o número de iterações é independente do tamanho do problema, a complexidade de toda a repetição é a complexidade do corpo da mesma, pela regra da constante (ou pela regra da soma de tempos).

```
for (i=0; i<k; i++)
                                 for (i=0; i<10; i++)
                                                      // isto é O(1), logo toda
  trecho com O(g(n))
                                   X = X + V:
                                                      // a repetição é O(1)
                                   printf ("%d", x);
// se k não é f(n) então
// o trecho é O(g(n))
```

 Se o número de iterações é função de n, pela regra do produto teremos a complexidade da repetição como a complexidade do corpo multiplicada pela função que descreve o número de iterações. Isto é:

```
for (i=0; i<n; i++) // como o número de iterações é f(n)=n // então o trecho é O(n*g(n))

Exemplo:

for (i=0; i<k*n; i++) // o trecho é O(f(n)*g(n)), no caso trecho com O(log n) // O(k*n*log n), ou seja: O(n log n)
```

 Uma aplicação comum da regra do produto é a determinação da complexidade de repetições aninhadas.

Exemplo:

```
Exemplo:
                      // o laço interno é executado n+n-1
for (i=1; i<=n ; i++)
                      // +n-2+...+2+1=n*(n+1)/2 vezes, ou
                      // seja: O(n²) como no caso anterior
 for (j=n; i<=j ; j--)
  trecho com O(1)
```

 Os dois últimos exemplos podem ser generalizados para quaisquer aninhamentos de repetições contadas em k níveis, desde que todos os índices dependam do tamanho do problema. Nesse caso, a complexidade da estrutura aninhada será da ordem de n^k.

E) Repetição Multiplicativa: é aquela em que cada iteração atualiza o controle mediante uma multiplicação ou divisão.

Exemplo:

int limite;

for (limite=n; limite!=0; limite /=2) trecho com O(1) /* o número de iterações depende de n; limite vai-se subdividindo a cada iteração; depois de k=log₂n iterações, encerra; então o trecho é O(log n)*/

Os dois exemplos anteriores também podem ser generalizados, adotando-se um fator genérico de multiplicação fator. Nesse caso, o número de iterações será dado por k = log_{fator} limite = O(log f(n)), se o limite é função de n.

```
Exemplo:
 int limite=n;
 while (limite!=0)
                           /* o número de iterações depende
                            de n; limite vai-se subdividindo
  for (i=1; i<=n; i++)
                            a cada iteração; o laço interno
                            é O(n), o externo O (log n);
   trecho com O(1)
                            logo, o trecho é O (n log n)*/
  limite = limite/2;
```

F) Chamada de Procedimento

Pode ser resolvida considerando-se que o procedimento também tem um algoritmo com sua própria complexidade. Esta é usada como base para cálculo da complexidade do algoritmo invocador. Por exemplo: se a invocação estiver num ramo de uma alternativa, sua complexidade será usada na determinação da máxima complexidade entre os dois ramos; se estiver no interior de um laço, será considerada no cálculo da complexidade da seqüência repetida, etc.

- A questão se complica ao se tratar de uma chamada recursiva.
- Embora não haja um método único para esta avaliação, em geral a complexidade de um algoritmo recursivo será função de componentes como: a complexidade da base e do núcleo da solução e a profundidade da recursão. Por este termo entende-se o número de vezes que o procedimento é invocado recursivamente. Este numero, usualmente, depende do tamanho do problema e da taxa de redução do tamanho do problema a cada invocação. E é na sua determinação que reside a dificuldade da análise de algoritmos recursivos.

Como exemplo, considere o algoritmo do cálculo fatorial.

```
int fatorial (int n)
{
  if (n==0)
   return 1; // Base
  else
```

A redução do problema se faz de uma em uma unidade, a cada reinvocação do procedimento, a partir de n, até alcançar n = 0. Logo, a profundidade da recursão é igual a n. O núcleo da solução (que é repetido a cada reinvocação) tem complexidade $\mathbf{O}(1)$, pois se resume a uma multiplicação. A base tem complexidade $\mathbf{O}(1)$, pois envolve apenas uma atribuição simples. Nesse caso, conclui-se que o algoritmo tem um tempo $T(n) = n*1+1 = \mathbf{O}(n)$.

return n*fatorial(n-1); //Núcleo

Bibliografia

- SANTOS, Henrique José. Curso de Linguagem C da UFMG, apostila.
- FORBELLONE, André Luiz. Lógica de Programação – A Construção de Algoritmos e Estruturas de Dados. São Paulo: MAKRON, 1993.