

Predicting the Severity of Support Tickets from Machine Event Data

Shriya Mittapalli

Agenda

- 1 Introduction
- 2 Methodology
- 3 Data
- 4 Model
- 5 Result Analysis
- 6 Conclusion

Motivation

- > Difficult to determine the severity of issues
- > Delayed ticket resolution and unnecessary on-site visits
- > Sub-optimal resource utilization
- Customer dissatisfaction

Problem Statement

- Determine whether a problem can be resolved remotely or requires on-site intervention
- Address the challenge of unreliable severity predictions
- Research and implement uncertainty estimations in deep neural networks

Goal

- Research solutions for uncertainty estimations in deep neural networks
- > Model provides understandable insights into predictions

Related Work

Evaluating pointwise reliability of machine learning prediction.

[Giovanna Nicora et al., 2022, Journal of Biomedical Informatics]

Can You Trust This Prediction? Auditing Pointwise Reliability After Learning.

[Peter Schulam et al., 2019, arXiv:1901.00403]

A Survey of Uncertainty in Deep Neural Networks

[Jakob Gawlikowski et al., 2022, arXiv:2107.03342]

Methodology

Dataset

CT Scan machine - Siemens Healthineers

The dataset includes:

□Case ID (Ticket ID)

☐ Machine ID

□Onsite(Class Label)

□Start and End time of the ticket

☐ Sequence of Events

Case_Id	${\sf Machine_Id}$	Onsite	Start_Time	End_Time
0	Machine_0	1	2014-12-21 10:54:31+00:00	2014-12-23 23:14:34+00:00
1	Machine_1	1	2016-05-05 07:21:48+00:00	2016-09-23 04:47:57+00:00
2	Machine_2	0	2016-07-17 12:38:41+00:00	2016-07-19 04:13:16+00:00
3	Machine_1	0	2016-07-19 13:23:57+00:00	2016-08-05 03:13:37+00:00

Event	Timestamp	Case_Id
126	2016-07-17 12:30:20+00:00	2
328	2016-07-17 12:26:30+00:00	2
206	2016-07-17 12:24:42+00:00	2

Data Preprocessing

Data Preprocessing

	Event	Case_ld_Count
0	382	5709
1	303	580
2	220	4288
3	201	4099
4	206	5763

❖ 285 events removed

Data Preprocessing

	Case_ld	Unique_Count
0	11	91
1	205	90
2	246	91
3	261	99
4	315	74

Final Data

С	ase_ld	Last_8000_Events	Unique_Count	Machine_ld	Onsite	Start_Time	End_Time
0	0	66,304,66,304,66,304,572,597,328,206,434,206,3	82	Machine_0	1.0	2014-12-21 10:54:31+00:00	2014-12-23 23:14:34+00:00
1	1	328,206,206,328,328,328,562,572,572,572,572,26	75	Machine_1	1.0	2016-05-05 07:21:48+00:00	2016-09-23 04:47:57+00:00
2	2	328,206,434,206,414,328,492,528,516,206,55,64,	81	Machine_2	1.0	2016-07-17 12:38:41+00:00	2016-07-19 04:13:16+00:00
3	4	64,166,527,119,317,317,240,298,599,129,280,260	100	Machine_4	1.0	2015-11-07 08:25:12+00:00	2015-11-14 02:24:16+00:00
5	6	64,166,122,25,381,560,35,122,25,381,560,35,230	96	Machine_6	1.0	2016-01-24 03:00:55+00:00	2016-01-31 23:23:50+00:00

Uncertainty Models

- 1. Monte Carlo Dropout Model
- 2. Ensemble Model
 - a. 4 Dense Model with different initial weights
 - b. Gated Recurrent Unit (GRU)

Weights:

- □ Glorot Normal
- ☐ He Normal
- □ Orthogonal
- □ Variance Scaling

Monte Carlo Dropout Model

Model: "sequential"

Layer (type)	Output Shape	Param #	dense_5 (Dense)	(None, 256)	131328
flatten (Flatten)	(None, 8000)	0	dropout_5 (Dropout)	(None, 256)	0
dense (Dense)	(None, 8192)	65544192	dense_6 (Dense)	(None, 128)	32896
dropout (Dropout)	(None, 8192)	0	dropout_6 (Dropout)	(None, 128)	0
dense_1 (Dense)	(None, 4096)	33558528	dense_7 (Dense)	(None, 64)	8256
dropout_1 (Dropout)	(None, 4096)	0	dropout_7 (Dropout)	(None, 64)	0
dense_2 (Dense)	(None, 2048)	8390656	dense_8 (Dense)	(None, 32)	2080
dropout_2 (Dropout)	(None, 2048)	0	dropout_8 (Dropout)	(None, 32)	0
dense_3 (Dense)	(None, 1024)	2098176	dense_9 (Dense)	(None, 1)	33
dropout_3 (Dropout)	(None, 1024)	0	T-t-1 440200045	(420, 72 MP)	
dense_4 (Dense)	(None, 512)	524800	Total params: 110290945 (Trainable params: 1102909	945 (420.73 MB)	
dropout_4 (Dropout)	(None, 512)	0	Non-trainable params: 0 ((0.00 Byte)	

Ensemble Model

Model: "sequential"

Layer (type)	Output Shape	Param #
flatten (Flatten)	(None, 8000)	0
dense (Dense)	(None, 8192)	65544192
dense_1 (Dense)	(None, 4096)	33558528
dense_2 (Dense)	(None, 2048)	8390656
dense_3 (Dense)	(None, 1024)	2098176
dense_4 (Dense)	(None, 512)	524800
dense_5 (Dense)	(None, 256)	131328
dense_6 (Dense)	(None, 126)	32382
dense_7 (Dense)	(None, 64)	8128
dense_8 (Dense)	(None, 32)	2080
dropout (Dropout)	(None, 32)	0
dense_9 (Dense)	(None, 1)	33

Total params: 110290303 (420.72 MB)
Trainable params: 110290303 (420.72 MB)
Non-trainable params: 0 (0.00 Byte)

Dense Model

Ensemble Model

Model: "sequential"

Layer (type)	Output Shape	Param #
flatten (Flatten)	(None, 8000)	0
dense (Dense)	(None, 8192)	65544192
dense_1 (Dense)	(None, 4096)	33558528
dense_2 (Dense)	(None, 2048)	8390656
dense_3 (Dense)	(None, 1024)	2098176
dense_4 (Dense)	(None, 512)	524800
dense_5 (Dense)	(None, 256)	131328
dense_6 (Dense)	(None, 126)	32382
dense_7 (Dense)	(None, 64)	8128
dense_8 (Dense)	(None, 32)	2080
dropout (Dropout)	(None, 32)	0
dense_9 (Dense)	(None, 1)	33

Total params: 110290303 (420.72 MB)
Trainable params: 110290303 (420.72 MB)
Non-trainable params: 0 (0.00 Byte)

Model: "sequential"

Layer (type)	Output Shape	Param #
gru (GRU)	(None, 8000, 128)	50304
dropout (Dropout)	(None, 8000, 128)	0
gru_1 (GRU)	(None, 64)	37248
dropout_1 (Dropout)	(None, 64)	0
dense (Dense)	(None, 1)	65
=======================================	=======================================	========

Total params: 87617 (342.25 KB)
Trainable params: 87617 (342.25 KB)
Non-trainable params: 0 (0.00 Byte)

GRU Model

Dense Model

Model Training

Data split: train, validation, and test (60%,20%,20%)

Optimizer: Adam

Metrics: Uncertainty, Accuracy

Loss: Binary Cross Entropy

EarlyStopping: monitor - validation loss, min delta - 0.001, patience - 5

Model Evaluation

Approach 1: Probability Range

- Average prediction probabilities
- Identify Threshold range
- Calculate uncertainty

Model Evaluation

Approach 1: Probability Range

- Average prediction probabilities
- Identify Threshold range
- ➤ Calculate uncertainty

Approach 2: Standard Deviation

- Average prediction probabilities
- Standard Deviation of model
- ➤ Average probability ± Standard Deviation
- > Calculate uncertainty

Model Evaluation

$$Uncertainity = \frac{Uncertain\ Predictions}{Total\ Samples}$$

$$Accuracy = \frac{Correct\ Predictions}{Total\ Predictions}$$

Correct Predictions – number of samples model predicted accurately

Uncertain Predictions - number of samples not classified by model

Total Samples – Total number of samples

Total Predictions – Total Samples - Uncertain Predictions

Model	Measure	Validation	Test
Monte Carlo Dropout Model	Uncertainty	74.53	74.45
Diopout Model	Accuracy	50.45	55.66
Ensemble Model	Uncertainty	90.04	89.31
	Accuracy	59.14	56.44

Probability Range

Model	Measure	Validation	Test	SD
Monte Carlo	Uncertainty	93.05	92.02	0.13
Dropout Model	Accuracy	50.00	50.72	
Ensemble	Uncertainty	57.67	57.67	0.0104
Model	Accuracy	50.00	52.50	

Standard Deviation

Validation Data

Test Data

Validation Data

Test Data

Conclusion

- Classify Tickets
- Provide reliability measure

Considerations:

- Standard Deviation different models
- Threshold boundaries model uncertainty
- Data limitation constraints
- > Transformer Models and LSTM with Gaussian Mixture Models (LSTM-GMMS)

Appendix

Weights

- Glorot Normal Also known as Xavier normal. Draws samples from a truncated normal distribution centered on 0 with stddev = sqrt(2 / (fan_in + fan_out)) where fan_in is the number of input units in the weight tensor and fan_out is the number of output units in the weight tensor.
- **He Normal** Draws samples from a truncated normal distribution centered on 0 with stddev = sqrt(2 / fan_in) where fan_in is the number of input units in the weight tensor.
- Orthogonal Generates an orthogonal matrix. If the shape of the tensor to initialize is two-dimensional, it is initialized with an orthogonal matrix obtained from the QR decomposition of a matrix of random numbers drawn from a normal distribution.
- **Variance Scaling** Initializer adapts its scale to the shape of its input tensors. Samples are drawn from a uniform distribution within [-limit, limit], where limit = sqrt(3 * scale / n).

Dense model

with dropout

Gated Recurrent Unit (GRU)

