DIC L3: Introduction (3)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

1.4. CMOS logic (3)

CMOS NAND

 If either input A or B is 0, at least one of the NMOSFETs will be OFF, breaking the path from Y to GND.

A	В	Y
		= A NAND B
0	0	1
0	1	1
1	0	1
1	1	0

1.4. CMOS logic (4)

- Series and parallel
 - NMOS: 1 = ON
 - PMOS: 0 = ON
 - Series: Both must be ON.
 - Parallel: Either can be ON.

- Conduction complements
 - Pull-up ←→ pull-down

(a)

(b)

(c)

1.4. CMOS logic (5)

CMOS NOR

Sketch a 3-input CMOS NOR gate.

- Example 1.2
 - Sketch a static CMOS gate computing

$$Y = \overline{(A + B + C) \cdot D}$$

1.4. CMOS logic (6)

The answer of Example 1.2

GIST Lecture on September 19, 2019

1.5. CMOS fabrication (1)

Inverter cross-section

GIST Lecture on September 19, 2019

1.5. CMOS fabrication (2)

Well and substrate taps

1.5. CMOS fabrication (3)

- Semiconductor process steps (Example: 0.35 um)
 - Well implant
 - Gate oxide
 - Poly deposition
 - Gate patterning
 - LDD implantation
 - Nitride spacer
 - Source/drain implantation

1.5. **CMOS** layout (1)

Inverter cross-section

