FTML Exercices 6

Pour le 24 avril 2025

TABLE DES MATIÈRES

1	Matrices symétriques réelles (utile pour comprendre la PCA)	
	1.1 Résultat	
	1.2 Contexte	-
1	MATRICES SYMÉTRIQUES RÉELLES (UTILE POUR COMPRENDRE	
	LA PCA)	

1.1 Résultat

Soit X une matrice de $\mathbb{R}^{n,d}$. On remarque que la matrice $X^TX \in \mathbb{R}^{d,d}$ est symétrique et réelle. Elle est donc diagonalisable en base orthonormée.

https://fr.wikipedia.org/wiki/Matrice_sym%C3%A9trique

On note λ_{min} et λ_{max} la plus petite et la plus grande valeur propre de X^TX , respectivement.

Montrer que pour tout vecteur $w \in \mathbb{R}^d$,

$$\lambda_{\min} \|x\|^2 \leqslant \|Xw\|^2 \leqslant \lambda_{\max} \|x\|^2 \tag{1}$$

Indications:

- On rappelle que $||Xw||^2 = \langle Xw, Xw \rangle = \langle X^TXw, w \rangle$ (cf propriété utilisée dans les exercices 4 sur les produits scalaires et les transposées)
- On peut décomposer n'importe quel vecteur $w \in \mathbb{R}^d$ dans n'importe quelle base de \mathbb{R}^d .

1.2 Contexte

La matrice X représentera par la suite les données sur lesquelles on peut appliquer une PCA (ou une autre méthode de réduction de dimension). Comme d'habitude, n samples en dimension d. Ce résultat servira à interpréter la PCA et à trouver les composantes principales.

https://fr.wikipedia.org/wiki/Analyse_en_composantes_principales

Nous verrons que la PCA peut être formulée comme un problème d'optimisation : en l'occurrence, la maximisation de ||Xw||, pour w de norme 1.