Discrete Mathematics Lecture 8

Liangfeng Zhang
School of Information Science and Technology
ShanghaiTech University

Field

DEFINITION: A **field** is a set \mathbb{F} together with two binary operations + and \cdot such that:

- F is an abelian group with respect to the operation +;
- $\mathbb{F} \setminus \{0\}$ is an abelian group with respect to the operation \cdot ;
- **Distributivity**: For all $a, b, c \in \mathbb{F}$, $a \cdot (b + c) = ab + ac$.

REMARK: additive identity 0; multiplicative identity: 1

EXAMPLE: $(\mathbb{R}, +, \cdot)$ is a field.

EXAMPLE: Let p be a prime. Then $(\mathbb{Z}_p, +, \cdot)$ is a field.

- + is the addition of residue classes modulo p
- • is the multiplication of residue classes modulo p

Finite field: a field that contains finitely many elements.

Polynomials over \mathbb{Z}_p

DEFINITION: A **polynomial** of degree *t* over the finite field

 \mathbb{Z}_p is a function of the form $f(X) = f_t X^t + \dots + f_1 X + f_0$, where $f_0, f_1, \dots, f_t \in \mathbb{Z}_p$ and $f_t \neq 0$.

- deg(f(X)): the **degree** of the polynomial f(X)
- $\mathbb{Z}_p[X] = \{f_t X^t + \dots + f_1 X + f_0 : t \ge 0, f_0, \dots, f_t \in \mathbb{Z}_p\}$: the set of all polynomials over the finite field \mathbb{Z}_p

THEOREM: Let $f(X) = f_t X^t + \dots + f_1 X + f_0 \in \mathbb{Z}_p[X]$ and $\alpha \in \mathbb{Z}_p$.

Then there exists $q(X) = q_{t-1}X^{t-1} + q_{t-2}X^{t-2} + \dots + q_0 \in \mathbb{Z}_p[X]$ such that $f(X) = (X - \alpha)q(X) + f(\alpha)$.

- $\bullet \quad q_{t-1} = f_t$
- $\bullet \quad q_{t-2} = f_{t-1} + f_t \alpha$
- •
- $q_0 = f_1 + f_2 \alpha + \dots + f_t \cdot \alpha^{t-2}$

Polynomials over \mathbb{Z}_p

- **EXAMPLE:** If $f(X) = f_3 X^3 + f_2 X^2 + f_1 X + f_0 \in \mathbb{Z}_p[X]$ and $\alpha \in \mathbb{Z}_p$, then $f(X) = (X \alpha)Q(X) + f(\alpha)$ for $Q(X) = f_3 X^2 + (f_2 + f_3 \alpha)X + (f_1 + f_2 \alpha + f_3 \alpha^2)$.
- **DEFINITION:** A field element $\alpha \in \mathbb{Z}_p$ is said to be a **root** of a polynomial $f(X) \in \mathbb{Z}_p[X]$ if $f(\alpha) = 0$.
- **EXAMPLE:** p = 11, $f(X) = X^3 + 4X^2 + 3X + 3$.
 - $\alpha = 1$ is a root of f(X) as $f(1) = 1^3 + 4 \cdot 1^2 + 3 \cdot 1 + 3 = 0$
 - $\alpha = 2$ is a root of f(X) as f(2) = 0
 - $\alpha = 4$ is a root of f(X) as f(4) = 0
 - A polynomial of degree 3 has at most 3 roots.

Polynomials over \mathbb{Z}_p

THEOREM: A polynomial $f(X) \in \mathbb{Z}_p[X]$ has $\leq \deg(f)$ roots in \mathbb{Z}_p .

- Mathematical induction on $t = \deg(f(X))$
- t = 0: $f(X) = f_0 (f_0 \ne 0)$ has 0 root
- t = 1: $f(X) = f_0 + f_1 X$ $(f_1 \neq 0)$ has exactly 1 root in \mathbb{Z}_p
 - The root is $\alpha_1 = -f_1^{-1} \cdot f_0$
- Assume that the statement is true for t < i
- For t = i
 - f(X) has 0 root: done
 - f(X) has ≥ 1 roots in \mathbb{Z}_p
 - $\exists \alpha \in \mathbb{Z}_p$ such that $f(\alpha) = 0$
 - $f(X) = (X \alpha)q(X) + f(\alpha) = (X \alpha)q(X)$
 - $\deg(q(X)) = i 1 < i : q(X) \text{ has } \le i 1 \text{ roots in } \mathbb{Z}_p$
 - $(f(\beta) = 0) \land (\beta \neq \alpha) \Rightarrow q(\beta) = 0$
 - Except α , every root of f(X) must be a root of q(X)
 - f(X) has $\leq 1 + (i-1) = i$ roots in \mathbb{Z}_p .

Order

DEFINITION: The **order** of a group G is the cardinality of G.

- $|\mathbb{Z}_n| = n, |\mathbb{Z}_p^*| = p 1, |\mathbb{Z}| = \infty$
- **DEFINITION:** when $|G| < \infty$, $\forall a \in G$, the **order** of a is the least integer l > 0 such that $a^l = 1$ (la = 0 for additive group)

EXAMPLE: Determine the orders of all elements of \mathbb{Z}_7^* and \mathbb{Z}_6

- $\mathbb{Z}_7^* = \{1,2,3,4,5,6\}; o(1) = 1; o(2) = o(4) = 3; o(3) = o(5) = 6; o(6) = 2$
- $\mathbb{Z}_6 = \{0,1,2,3,4,5\}; \ o(0) = 1, o(1) = o(5) = 6, o(2) = o(4) = 3, o(3) = 2$

THEOREM: Let G be a multiplicative Abelian group of order m. Then for any $a \in G$, $a^m = 1$.

- $G = \{a_1, ..., a_m\}$
- If $i \neq j$, then $aa_i \neq aa_i$.
- $aa_1 \cdot aa_2 \cdots aa_m = a_1 a_2 \cdots a_m$
- $a^m = 1$

Subgroup

- **DEFINITION:** Let (G,\star) be an Abelian group. A subset $H \subseteq G$ is called a **subgroup** of G if (H,\star) is also a group. $(H \leq G)$
 - Multiplicative: $G = \mathbb{Z}_6^* = \{1,5\}, H = \{1\}$
 - Additive: $G = \mathbb{Z}_6 = \{0,1,2,3,4,5\}; H = \{0,2,4\}$
- **THEOREM:** Let (G,\cdot) be an Abelian group. Let $\langle g \rangle = \{g^k : k \in \mathbb{Z}\}$ be a subset of G, where $g \in G$. Then $\langle g \rangle \leq G$.
 - Closure: $g^a \cdot g^b = g^{a+b} \in \langle g \rangle$
 - Associative: $g^a \cdot (g^b \cdot g^c) = g^{a+b+c} = (g^a \cdot g^b) \cdot g^c$
 - Identity element: $g^0 \cdot g^a = g^a \cdot g^0 = g^a$
 - Inverse: $g^a \cdot g^{-a} = g^{-a} \cdot g^a = g^0$
 - Communicative: $g^a \cdot g^b = g^{a+b} = g^{b+a} = g^b \cdot g^a$

Cyclic Group

- **DEFINITION**: Let (G,\cdot) be an Abelian group. G is said to be **cyclic** if there exists $g \in G$ such that $G = \langle g \rangle$.
 - g is called a **generator** of G.

EXAMPLE:
$$\mathbb{Z}_{10}^* = \{[1]_{10}, [3]_{10}, [7]_{10}, [9]_{10}\} = \langle [3]_{10} \rangle$$

- $g = [3]_{10}$
- $g^0 = [1]_{10}, g^1 = [3]_{10}, g^2 = [9]_{10}, g^3 = [27]_{10} = [7]_{10}$
- **REMARK:** Let *G* be a finite group and let $g \in G$. Then $\langle g \rangle$ can be computed as $\{g^1, g^2, ...\}$
 - If $G = \langle g \rangle$ is a cyclic group of order m, then $G = \{g^0, g^1, ..., g^{m-1}\} = \{g^1, ..., g^{m-1}, g^m\}.$
- **THEOREM:** For any prime p, the group \mathbb{Z}_p^* is a cyclic group.
 - proof omitted (beyond the scope of the course)

Cyclic Group

EXAMPLE: \mathbb{Z}_p^* is a cyclic group and $G = \langle g \rangle$ is a cyclic subgroup.

- p = 17976931348623159077293051907890247336179769789423065727343008115773 26758055009631327084773224075360211201138798713933576587897688144166224 92847430639474124377767893424865485276302219601246094119453082952085005 76883815068234246288147391311054082723716335051068458629823994724593847 9716304835356329624227998859
 - p is a prime; $\alpha = 2$
 - $\mathbb{Z}_p^* = \langle \alpha \rangle = \{\alpha^0, \alpha^1, \dots, \alpha^{p-2}\} = \{\alpha^1, \dots, \alpha^{p-2}, \alpha^{p-1}\}$ is a cyclic group of order p-1
- q=89884656743115795386465259539451236680898848947115328636715040578866 33790275048156635423866120376801056005693993569667882939488440720831124 64237153197370621888839467124327426381511098006230470597265414760425028 84419075341171231440736956555270413618581675255342293149119973622969239 858152417678164812113999429
 - q = (p-1)/2 is a prime; $g = \alpha^2 = 4$
 - $G = \langle g \rangle = \{g^0, g^1, \dots, g^{q-1}\} = \{\alpha^0, \alpha^2, \dots, \alpha^{2q-2}\} = \{\alpha^2, \dots, \alpha^{2q-2}, \alpha^{2q}\}$ is a subgroup of \mathbb{Z}_p^* of order q