

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02023 - INFERÊNCIA A - 2019/1

Plano Aulas 29 e 30

Markus Stein 18 June 2019

... continuação... Eficiência Assintótica

Exemplo 1: Seja X_1, \ldots, X_n uma amostra aleatória de $X \sim Normal(\mu, \sigma^2)$. Encontre a variância limite para $W_n(\mathbf{X}) = \overline{X}$.

Variância Assintótica

Relembrando expansão em série de Taylor - (Teorema 5.5.21, Casella e Berger): Para uma variável aleatória X tal que $E(X) = \mu \neq 0$, uma aproximação para estimar $g(\mu)$ é dada por $g(X) \approx g(\mu) + g'(\mu)(X - \mu)$, onde $g'(\mu) = \frac{\partial}{\partial \mu} g(\mu)$.

- Obs. 1: Usando a expansão acima temos as aproximações para a esperança e a variância de $g(\mu)$ dadas por $E[g(X)] \approx g(\mu)$ e $Var[g(X)] \approx g'(\mu)Var(X)$ respectivamente.
- Definição de **Variância Assintótica** (ou variância da distribuição limite): (Definição 10.1.9, Casella e Berger)

Exemplo 2: Suponha que desejamos estimar $g(\mu) = 1/\mu$ para os dados do exemplo 1. Encontre a variância limite e a variância assintótica para $W_n(\mathbf{X}) = 1/\overline{X}$.

Estimadores Assintoticamente Eficientes (Definição 10.1.11, Casella e Berger)

"São estimadores cujas variâncias assintóticas atingem a desigualdade de Cramér-Rao."

• Obs. 2: Note que a definição de eficiência assintótica está estreitamente relacionada com a convergência em distribuição do estimador $W_n(\mathbf{X})$ para uma variável aleatória com distribuição normal.

Propriedades dos EMVs

- Consistência Fraca dos EMVs Teorema 10.1.6, Casella e Berger: Prova?
- Eficiência Assintótica dos EMVs Teorema 10.1.12 Casella e Berger: Prova?

Exemplo 3: Mostrar consistência e normalidade assintótica de $W_n(X) = \overline{X}$ para os dados do exemplo 1 acima.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02023 - INFERÊNCIA A - 2019/1

Método Delta (Teorema 5.5.24, Casella e Berger)

(
Generalização do Teorema Central do Limite para estimar uma função do parâmetro de interesse $g(\theta)$.	
Exemplo 4 : Encontre a distribuição assintótica de $g(\overline{X})$ para os dados do exemplo 1 acima.	
Tarefa 1: Fazer a lista de exercícios 7 para entregar.	