

Directed acyclic graph (DAG) models

Causality
Christina Heinze-Deml
Spring 2019

1

Announcements

- Exchange students who will be away in August need to request a "Distance Examination"
 - Contact me if you need further details
- Series 1 will be uploaded later today

Last week

- Controlled experiments vs. observational studies
- Simpson's paradox

- Design 2
 - Grade 2: vaccine if parents consent (treatment)
 - Grade 2: no vaccine if no parental consent (control)
 - Grades 1 + 3: no vaccine (control)

Lesson: Treatment and control groups should be as similar as possible

- Design 3
 - Need a control and a treatment group from the same population
 - Only consider children of consenting parents
 - Randomize: 50% chance of being put in the control or the treatment group
 - Double-blinding.
 - Give placebo to control group and don't tell anyone whether they are in control or treatment group
 - Ensure that effect is due to vaccine and not due to the "idea of getting treatment"
 - Doctors (who decide whether child contracted polio during the experiment) were not told whether a child got real vaccine or placebo
 - Randomized controlled double-blind experiment

Internal vs external validity

Internal validity: Validity of conclusions drawn within context of particular study

 External validity: Generalizability of empirical findings to new environments, settings or populations

Internal vs external validity

- Internal validity: Validity of conclusions drawn within context of particular study
 - Conclusions from experiment are applicable to experimental units used in the experiment
 - If units are a representative sample from some population of units, conclusions also valid
 - Best design: double-blind randomized controlled trial (RCT)
 - External validity limited by internal validity: If a causal conclusion drawn within a study is invalid, then generalizations of that inference to other contexts will also be invalid

Internal vs external validity

- External validity: Generalizability of empirical findings to new environments, settings or populations
 - Threats:
 - Only particular subpopulation (e.g. college students, volunteers, ...)
 - Situation (e.g. lighting, noise, treatment administration, investigator, timing, ...)
 - ...
- Transportability: "license" to transfer causal effects learned in experimental studies to a new population
 - Sometimes possible under causal assumptions (Pearl and Bareinboim (2014))
 - Recalibration, transport formulas
 - Need to characterize commonalities and differences between populations

Design 2:

	Size	Rate*
Grade 2 (consent)	225'000	25 —
Grades 1 & 3	725'000	54
Grade 2 (no consent)	125'000	44

^{*(=} per 100'000)

Design 2 biased against the vaccine

Design 3 shows effectiveness of vaccine

Design 3: RCT

	Size	Rate*
Treatment (consent)	200'000	28—
Control (consent)	200'000	71
No consent	350'000	46

*(= per 100'000)

7 vaccine is effective but effect is underestimated

Simpson's paradox: Kidney stones

	Treatment A	Treatment B
Patients with small stones	93% (81/87)	87% (234/270)
Patients with large stones	73% (192/263)	69% (55/80)
Overall	78% (273/350)	83% (289/350)

- Treatment A: Open surgery
- Treatment B: Percutaneous nephrolithotomy (less invasive treatment)

Simpson's paradox and causal diagrams

- Same numbers, different conclusions....
 - Must use additional information: "story behind the data", causal assumptions
- Consider total causal effect of treatment on recovery
 - Possible scenarios:

Today

- Internal vs. external validity
- Graph terminology
- Directed acyclic graph (DAG) models
- Markov properties
- d-separation
- Probabilistic reasoning using DAG models

Graph terminology

- A graph G = (V, E) consists of vertices (nodes) V and edges E
- There is at most one edge between every pair of vertices

- Two vertices are adjacent if there is an edge between them
- If all edges are directed $(i \rightarrow j)$, the graph is called directed
- A path between i and j is a sequence of distinct vertices (i, ..., j) such that successive vertices are adjacent
- A directed path from i to j is a path between i and j where all edges are pointing towards j, i.e., $i \rightarrow \cdots \rightarrow j$

Graph terminology

- A cycle is a path (i, j, ..., k) plus an edge between k and i
- A directed cycle is a directed path (i, j, ..., k) from i to k, plus an edge $k \rightarrow i$
- A directed acyclic graph (DAG) is a directed graph without directed cycles

Example

- Which of the following are (directed) paths?
 - (4,2,1,3) Not a partle! (1 and 8 not adjacent)
 (3,4,2,1,4,5) Not a partle! (vertices are not distinct)
 (3,4,2,1)

 A partle but not directed
 (3,4,5)

 A directed partle

Example

- (1,2,4,1) is a cycle, but not a directed cycle
- This graph is a DAG
- Adding the edge $5 \rightarrow 2$ yields a directed cycle (2,4,5,2)
 - Then no longer a DAG

Graph terminology

- If $i \rightarrow j$, then i is a parent of j, and j is a child of i
- If there is a directed path from i to j, then i is an ancestor of j and j is a descendant of i

- Each vertex is also an ancestor and descendant of itself
- The sets of parents, children, descendants and ancestors of i in G are denoted by pa(i, G), ch(i, G), desc(i, G), an(i, G)
- We omit *G* if the graph is clear from the context

Graph terminology

- We write sets of vertices in bold face
- The previous definitions are applied disjunctively to sets
 - Example: $pa(S) = \bigcup_{k \in S} pa(k)$

• The non-descendants of S are the complement of desc(S):

$$nondesc(S) := V \setminus desc(S)$$

Example

- 1 is a parent of 4, and 4 is a child of 1
- 1 is an ancestor of 5, and 5 is a descendant of 1
- Determine children, parents, descendants and ancestors of 4:

•
$$ch(4) = \sqrt{5}$$

•
$$pa(4) = 41, 2, 33$$

•
$$desc(4) = 44.5$$

$$\bullet an(4) = \left\{ 1, 2, 3, 4 \right\}$$

Example

- $pa({2,4}) = {113041,2,33} = {11,2,33}$
- $desc({2,3}) = {2,4,5} \cup {3,4,5} = {2,3,4,5}$
- nondesc($\{2,3\}$) = $\{1,2,3,4,5\} \setminus \{2,3,4,5\} = \{1,2,3,4,5\}$

Graph terminology

- We call G fully connected if all pairs of methods are adjacent.
- How many possibilities?

Clicker question - Number of DAGs

$$\binom{p}{z} = \frac{p(p-1)}{2}$$
 distinct pairs of nodes $p=3$ $\binom{p}{z}=3$

$$3^{p(p-1)/2} = 3^3 = 27$$
Subtract 2 graphs with cycles $1 \frac{2^2}{3^3}$ $1^{\frac{2}{5}}$ 3
$$3 = 27$$
Subtract 2 graphs with 3 rades

Number of DAGs with p nodes

p	number of DAGs with p nodes
1	1
2	3
3	25
4	543
5	29281
6	3781503
7	1138779265
8	783702329343
9	1213442454842881
10	4175098976430598143
11	31603459396418917607425
12	521939651343829405020504063
13	18676600744432035186664816926721
14	1439428141044398334941790719839535103
15	237725265553410354992180218286376719253505
16	83756670773733320287699303047996412235223138303
17	62707921196923889899446452602494921906963551482675201
18	99421195322159515895228914592354524516555026878588305014783
19	332771901227107591736177573311261125883583076258421902583546773505
20	2344880451051088988152559855229099188899081192234291298795803236068491263

Table 1.2: The number of DAGs depending on the number p of nodes, taken from http://oeis.org/A003024 (Feb 2015).

DAGs and random variables

- Each vertex represents a random variable: vertex i represents random variable X_i
- If $A \subseteq V$, then $X_A := \{X_i : i \in A\}$

 Edges denote relationships between pairs of variables (we will make this more precise)

Factorization of the joint density

- We can connect a distribution to a DAG in the following way:
- We always have:

re:
$$f(x_1, ..., x_p) = f(x_1) f(x_2 | x_1) ... f(x_p | x_1, ... x_{p-1})$$
 when rule of probability "

- A set of variables $X_{pa(j)}$ is said to be Markovian parents of X_j if it is a minimal subset of $\{X_1, ..., X_{j-1}\}$ such that $f(x_j|x_1, ..., x_{j-1}) = f(x_j|x_{pa(j)})$
 - Note: Markovian parents depend on the chosen ordering of the variables.
- Then $f(x_1, \dots, x_p) = \prod_{j=1}^p f(x_j | x_{pa(j)})$ "factorization property"
- We can draw a DAG accordingly; the distribution is said to factorize according to this DAG.

Example

• Consider (X_1, X_2, X_3) and suppose that $X_1 \perp \!\!\! \perp X_3 \mid X_2$ is the only (conditional) independence:

$$f(x_1|x_2,x_3) = f(x_1|x_2)$$
 and $f(x_3|x_1,x_2) = f(x_3|x_2)$

- Then $f(x_1, x_2, x_3) = f(x_1)f(x_2|x_1)f(x_3|x_1, x_2) = f(x_1)f(x_2|x_1)f(x_3|x_2)$
- DAG: $1 \rightarrow 2 \rightarrow 3$
- Or
 - $f(x_3, x_2, x_1) = f(x_3)f(x_2|x_3)f(x_1|x_2, x_3) = f(x_3)f(x_2|x_3)f(x_1|x_2)$
 - DAG: $3 \rightarrow 2 \rightarrow 1$
- Or
 - $f(x_1, x_3, x_2) = f(x_1)f(x_3|x_1)f(x_2|x_1, x_3)$
 - DAG: $1 \to 3 \to 2$

Factorization of the joint density

- A distribution can factorize according to several DAGs
- Every distribution factorizes according to a full DAG
 - Note: there are p! possibilities
- Sometimes a distribution factorizes according to a sparse DAG, i.e., a DAG with few edges.
 - E.g. first-order Markov chain:
 - $f(x_1, ..., x_p) = f(x_1)f(x_2|x_1) ... f(x_p|x_1, ..., x_{p-1}) = f(x_1)f(x_2|x_1) ... f(x_p|x_{p-1})$
 - DAG: $1 \rightarrow 2 \rightarrow \cdots \rightarrow p$

DAG models

- A DAG model or Bayesian network is a combination (G, f), where G is a DAG and f is a distribution that factorizes according to G
- DAG models can be used for various purposes:
 - Estimating the joint density from low order conditional densities
 - Reading off conditional independencies from the DAG
 - Probabilistic reasoning (expert systems)
 - Causal inference

Estimating the joint density

- Estimating the joint density of many variables is generally difficult.
 - Example: The joint distribution of p binary variables requires $2^p 1$ parameters.

1 parameter 1 binary variable 3 parameters 2 binary variables 3 binary variables X1 -> X2-> X3 p(x₁) p(x₂(x₁) p(x₃|x₁,x₂) 1 par 2 par 4 par 7 parameters

Estimating the joint density

- Estimating the joint density of many variables is generally difficult.
 - Example: The joint distribution of p binary variables requires $2^p 1$ parameters.
- But if you know that the distribution factorizes according to a DAG, then you only need to estimate $f(x_i|x_{pa(i)})$ for i=1,...,p.
- If the parent sets are small, this means we only need to estimate low order conditional densities.

Clicker question – Estimating the joint density

p(x1) p(x2|x1) p(x3|x2) -- p(xp|xp-1)

1 par 2 par 2 par -- 2 par

perameters

DAG models

- A DAG model or Bayesian network is a combination (G, f), where G is a DAG and f is a distribution that factorizes according to G
- DAG models can be used for various purposes:
 - Estimating the joint density from low order conditional densities
 - Reading off conditional independencies from the DAG
 - Probabilistic reasoning (expert systems)
 - Causal inference

Reading off conditional independencies: Markov property

First-order Markov models: the future is independent of the past given the present

$$1 \to 2 \to \cdots \to (t-1) \to t \to (t+1)$$

$$X_{t+1} \perp \{X_{t-1}, X_{t-2}, \dots, X_1\} \mid X_t$$

• In DAG models, we have a similar (local) Markov property. Let S be any collection of nodes. Then:

$$X_{\mathbf{S}} \perp X_{\text{nondesc}(\mathbf{S}) \setminus \text{pa}(\mathbf{S})} \mid X_{\text{pa}(\mathbf{S})}$$

Example

- Take S = {yellow teeth} and apply the local Markov property
- Then:
 - pa(yellow teeth) = {smoking}
 - nondesc(yellow teeth) = {smoking, tar, cancer, asbestos}
- Hence, yellow teeth
 \(\psi \) {tar, cancer, asbestos} | smoking in any distribution that factorizes according to this DAG

- Is tar ⊥ asbestos | cancer ?
- The local Markov property cannot be used to read off arbitrary conditional (in)dependencies. For this we have d-separation.

Graph terminology

- Need new terminology:
 - A non-endpoint node i is a collider on a path if the path contains $\rightarrow i \leftarrow$ (arrows collide at i).
 - Otherwise, it is a non-collider on the path.
- Is 4 a collider in the given graph? bad question

4 is a collider on the path (3,4,1)

4 is a non-collider on the path

(3,4,5)

-> collider states is always relative to a path

d-separation

- A path between i to j is blocked by a set S (not containing i or j) if at least one of the following holds:
 - There is a non-collider on the path that is in S; or
 - There is a collider on the path such that neither this collider nor any descendants are in S.
- A path that is not blocked is active.
- If all paths between $i \in A$ and $j \in B$ are blocked by S, then A and B are d-separated by S. Otherwise they are d-connected given S.
- Denote d-separation by ⊥

Global Markov property

Definition

A distribution *P* with density *p* satisfies the global Markov property with respect to a DAG *G* if:

A and **B** are d-separated by **S** in $G \Rightarrow X_A \perp \!\!\! \perp X_B \mid X_S$ in P

• Theorem (Pearl, 1988):

A distribution P with density p satisfies the global Markov property with respect to G if and only if p factorizes according to G.

Example

Example

Example

- Which of the following hold?
 - yellow teeth ⊥ cancer | smoking
 - tar ⊥ asbestos
 - tar ⊥ asbestos | cancer
 - yellow teeth ⊥ asbestos | cancer

Clicker question – d-separation – Question 2

Consider the following graph.

Is the path between i and j blocked by ...

DAG models

- A DAG model or Bayesian network is a combination (G, f), where G is a DAG and f is a distribution that factorizes according to G
- DAG models can be used for various purposes:
 - Estimating the joint density from low order conditional densities
 - Reading off conditional independencies from the DAG
 - Probabilistic reasoning (expert systems)
 - Causal inference

Probabilistic reasoning

- Conditional probabilities are rather counterintuitive for many people
- DAGs allow us to obtain conditional probabilities efficiently, using a "message passing" algorithm.
- We will apply this in R (without discussing the details behind the algorithms).

DAG models

- A DAG model or Bayesian network is a combination (G, f), where G is a DAG and f is a distribution that factorizes according to G
- DAG models can be used for various purposes:
 - Estimating the joint density from low order conditional densities
 - Reading off conditional independencies from the DAG
 - Probabilistic reasoning (expert systems)
 - Causal inference

Recap

- Concepts to know:
 - Internal vs. external validity
 - Graph terminology
 - Use cases of directed acyclic graph (DAG) models
 - Markov properties (local, global, factorization)
 - d-separation

References and acknowledgments

- Slides adapted from M. Maathuis
- Some examples from script by J. Peters & N. Meinshausen