REPASO: ESPACIO EUCLÍDEO n-DIMENSIONAL

Se define a \mathbb{R}^n como el conjunto de todas las n-uplas ordenadas de números reales $(x_1, \cdots, x_n).$ Los elementos de \mathbb{R}^n que se simbolizan como: $\vec{x} = (x_1, \cdots, x_n)$ 0 como *n*-upla horizontal como matriz columna se denominan vectores o *n*-vectores. - Si n = 1, se obtiene la recta real \mathbb{R} . - Si n=2, se obtiene el plano \mathbb{R}^2 . - Si n=3, \mathbb{R}^3 es el espacio tridimensional. En este caso se adopta un sistema de coordenadas xyz denominado **dextrógiro** que sigue la regla de la mano derecha: con los dedos de esta mano Se acostumbra P(x, y, z)utilizar (x, y, z)apuntando en la dirección del eje x positivo se los en lugar de (x_1, x_2, x_3) curva en sentido anti-horario hacia el eje y positivo, entonces el dedo pulgar apunta en la dirección positiva del eje z.

Existe una correspondencia

uno a uno entre los puntos (x, y, z) en \mathbb{R}^3 y sus vectores posición $\vec{x} = (x, y, z)$.

coordenadas de Pcomponentes escalares de \vec{x} = coordenadas de P

y

Si se definen de la forma usual la suma de las n-uplas y la multiplicación por un escalar, entonces \mathbb{R}^n adquiere la estructura de **espacio vectorial**. Y una manera de

introducir una métrica (que permita medir distancia entre puntos, longitud y ángulos) en un espacio vectorial es definiendo un producto interno.

Producto interno (producto escalar)

Se define como la suma de los productos de las componentes homólogas de los vectores \vec{x} e \vec{y} :

Ángulo entre vectores

$$cos(\not\preceq\vec{x}\vec{y}) = \frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\| \|\vec{y}\|}$$

El coseno de ángulo entre \vec{x} e \vec{y} está definido ya que \vec{x} e \vec{y} están en un sub-espacio bidimensional de \mathbb{R}^n que es el plano formado por \vec{x} e \vec{y} por lo tanto el ángulo entre \vec{x} e \vec{y} está geométricamente definido.

Como consecuencia de esta definición se obtiene la

y a partir de esta desigualdad se puede demostrar la

Desigualdad triangular

$$\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$$

Por ejemplo, en \mathbb{R}^2

$$\vec{y} = (x_1, y_1)$$

$$\vec{y} = (x_2, y_2)$$

$$\vec{y} = (x_1, y_1)$$

Propiedades de la distancia

- 1) <u>Positividad</u>: $d(\vec{x}, \vec{y}) \ge 0$ y $d(\vec{x}, \vec{y}) = 0 \Leftrightarrow \vec{x} = \vec{y}$ 2) <u>Simetría</u>: $d(\vec{x}, \vec{y}) = d(\vec{y}, \vec{x})$
- 3) Designaldad triangular: $d(\vec{x}, \vec{y}) \le d(\vec{x}, \vec{z}) + d(\vec{z}, \vec{y})$ $\vec{x} \qquad \vec{z} \qquad \vec{y}$ $d(\vec{x}, \vec{y})$

Con estas definiciones, \mathbb{R}^n adquiere la estructura de **espacio vectorial** y **espacio métrico**.

Espacio Euclídeo (o Euclideano): es un espacio vectorial de dimensión finita en el cual se ha definido un producto interno.

El espacio vectorial \mathbb{R}^n tiene una base natural o canónica de vectores unitarios (versores):

$$B = \{\hat{e}_1, \cdots, \hat{e}_n\}$$
 con
$$\hat{e}_i = \{0, \cdots, 1, \cdots, 0\}$$

$$\hat{e}_i = \{\hat{e}_1, \cdots, \hat{e}_n\}$$
 Haciendo uso del producto interno resulta que:
$$\{\hat{e}_i \cdot \hat{e}_j = 0, \quad si \ i \neq j\}$$

Es decir, la base canónica en \mathbb{R}^n , es una base **ortonormal**.

Y cualquier vector $\vec{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ puede expresarse como una combinación lineal de los vectores de la base B:

puede expresarse como:

TOPOLOGÍA DE \mathbb{R}^n

DEFINICIONES

Sean

Entorno (o/bola abierta) de un punto \vec{x}_0 :

Es el conjunto de todos los puntos $\vec{x} \in \mathbb{R}^n$ cuya distancia a \vec{x}_0 es menor que un cierto r, es decir:

$$\underbrace{B_r(\vec{x}_0)}_{\text{entorno de } \vec{x}_0} = \left\{ \vec{x} \in \mathbb{R}^n \middle| \underbrace{\|\vec{x} - \vec{x}_0\|}_{d(\vec{x}, \vec{x}_0)} < r \right\}$$

Interpretación geométrica

- Para n = 1, $|x - x_0| < r \iff x_0 - r < x < x_0 + r$

 x_0

 $B_r(\vec{x}_0)$ es la bola abierta de radio r centrada en \vec{x}_0

Entorno reducido (o bola reducida) de un punto \vec{x}_0 :

$$B_r'(\vec{x}_0) = \{ \vec{x} \in \mathbb{R}^n \mid 0 < ||\vec{x} - \vec{x}_0|| < r \}$$

Interpretación geométrica

- Para
$$n = 1$$

Para n = 2

 $B_{r}^{'}(\vec{x}_{0})$ es el disco abierto de radio r perforado en su centro \vec{x}_0

Para n = 3

 $B'_r(\vec{x}_0)$ es la bola abierta de radio r perforada en su centro \vec{x}_0

PROPIEDADES DE LOS PUNTOS RESPECTO DE UN CONJUNTO

DEFINICIONES

Sean

Interpretación geométrica

Punto exterior:

 \vec{x}_0 es punto exterior de $A \iff \exists B_r(\vec{x}_0) \mid B_r(\vec{x}_0) \cap A = \emptyset$

Por ejemplo:

 $\vec{x}_1, \vec{x}_2 \in A; \ \vec{x}_0, \vec{x}_3 \notin A.$

 \vec{x}_0 es punto exterior de A.

Punto frontera:

 \vec{x}_0 es punto frontera de $A \iff \vec{x}_0$ no es punto interior ni exterior de A

Un punto frontera puede ser aislado o no aislado.

Punto frontera aislado:

 \vec{x}_0 es punto frontera **aislado** de $A \iff \exists B_r(\vec{x}_0) \mid B_r(\vec{x}_0) \cap A = \{\vec{x}_0\}$

Por ejemplo:

Si $A = B \cup \{\vec{x}_0\}$, entonces $\vec{x}_0, \vec{x}_1, \vec{x}_2 \in A$, $\vec{x}_3 \notin A$ y \vec{x}_0 es punto frontera aislado de A.

Punto frontera no aislado:

 \vec{x}_0 es punto frontera **no aislado** de $A \Leftrightarrow \vec{x}_0$ es punto frontera de A que no es aislado

Por ejemplo:

 $\vec{x}_0, \vec{x}_2 \notin A; \quad \vec{x}_1 \in A.$

 \vec{x}_0 , \vec{x}_1 y \vec{x}_2 son puntos frontera no aislados de A.

Punto de acumulación:

 \vec{x}_0 es punto de acumulación de $A \iff \forall B_r^{'}(\vec{x}_0) \mid B_r^{'}(\vec{x}_0) \cap A \neq \emptyset$

Es decir, \vec{x}_0 es punto de acumulación de A si todo entorno reducido de \vec{x}_0 tiene puntos que pertenecen a A.

- Un punto de acumulación puede pertenecer o no al conjunto.
- La idea intuitiva de punto de acumulación es la siguiente: me acerco al punto tanto como quiero usando (pasando por) puntos del conjunto pero sin llegar al punto mismo.
- Como consecuencia de la definición tenemos que sólo pueden ser puntos de acumulación de un conjunto los puntos interiores y los puntos frontera no aislados del conjunto.

Por ejemplo:

 $\vec{x}_0 \in A$ es punto interior y de acumulación de A.

 $\vec{x}_1 \notin A$ es punto exterior de A. No es punto de acumulación de A.

 $\vec{x}_2 \in A$ es punto frontera no aislado y de acumulación de A.

 $\vec{x}_3 \notin A$ es punto frontera no aislado y de acumulación de A.

 $\vec{x}_4 \notin A$ es punto frontera no aislado y de acumulación de A.

PROPIEDADES DE LOS CONJUNTOS RESPECTO DE LOS PUNTOS

DEFINICIONES

Sean

 $A \subset \mathbb{R}^n$

 $M \in \mathbb{R}$

Interior de A: Int(A)

Es el conjunto de todos los puntos interiores de A.

(pertencen al conjunto A)

Exterior de A: Ext(A)

Definiciones (continuación)

Conjunto abierto

A es un conjunto abierto si y sólo si todo punto que pertenece a A es punto interior de A. Es decir:

Conjunto ni abierto ni cerrado

A es un conjunto ni abierto ni cerrado si y sólo si le pertenecen a A algunos pero no todos sus puntos frontera.

Conjunto acotado

A es un conjunto acotado $\Leftrightarrow \exists M > 0 \mid \forall \vec{x} \in A \Rightarrow ||\vec{x}|| < M$.

Es decir, A es acotado si y sólo si existe una bola abierta de radio (finito) M centrada en el origen de \mathbb{R}^n que lo incluye.

Conjunto conexo

A es un conjunto conexo si y sólo si todo par de puntos pertenecientes a A pueden unirse por una línea poligonal de una cantidad finita de segmentos totalmente incluidos en A.

EJERCICIOS

Determine el interior, el exterior, la frontera y la clausura de cada uno de los siguientes conjuntos. Diga si son abiertos, cerrados o ni abiertos ni cerrados.

i-
$$A = \{(x,y) \in \mathbb{R}^2 \mid |x-a| < r, |y-b| < r\}$$

ii- $A = \{(x,y) \in \mathbb{R}^2 \mid 4x^2 + 9y^2 \le 36\}$
iii- $A = \{(x,y) \in \mathbb{R}^2 \mid 4x^2 - 9y^2 \le 36\}$
iv- $A = \{(x,y,z) \in \mathbb{R}^3 \mid z < x + y\}$
v- $A = \{(x,y,z) \in \mathbb{R}^3 \mid |x-a| \le r, |y-b| < r, |z-c| < r\}$
vii- $A = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1, y \ge 0\}$
viii- $A = \{(x,y) \in \mathbb{R}^2 \mid 1 < x^2 + y^2 < 4\}$
ix- $A = \{(x,y) \in \mathbb{R}^2 \mid 2 < x + 2y < 4\}$
x- $A = \{(x,y) \in \mathbb{R}^2 \mid |x| + |y-1| < 2\}$

SOLUCIONES DE ALGUNOS EJERCICIOS

La interpretación geométrica de $A = \{(x,y) \in \mathbb{R}^2 \mid |x-a| < r, |y-b| < r\}$ es:

$$\underbrace{\bar{A}}_{\text{clausura de }A} = Int(A) \cup Fr(A) = \{(x,y) \in \mathbb{R}^2 \mid |x-a| \le r, |y-b| \le r\}$$

Repaso

Repaso $x^2 + \frac{y^2}{b^2} = 1; a > 0; b > 0$

ii-
$$A = \{(x, y) \in \mathbb{R}^2 \mid 4x^2 + 9y^2 \le 36\}$$

$$4x^2 + 9y^2 = 36 \implies \frac{x^2}{9} + \frac{y^2}{4} = 1$$

$$\frac{x^2}{3^2} + \frac{y^2}{2^2} = 1$$
; $a = 3$, $b = 2$

La interpretación geométrica de $A = \{(x, y) \in \mathbb{R}^2 \mid 4x^2 + 9y^2 \le 36\}$ es:

$$Ext(A) = \{(x, y) \in \mathbb{R}^2 \mid 4x^2 + 9y^2 > 36\}$$

$$Fr(A) = \{(x, y) \in \mathbb{R}^2 \mid 4x^2 + 9y^2 = 36\}$$

$$\bar{A} = Int(A) \cup Fr(A) = A$$

A es un conjunto cerrado.

Repaso

Hipérbola

iii-
$$A = \{(x, y) \in \mathbb{R}^2 \mid 4x^2 - 9y^2 \le 36 \}$$

$$4x^2 - 9y^2 = 36 \iff \frac{x^2}{3^2} - \frac{y^2}{2^2} = 1; \ \alpha = 3, b = 2$$

$$Int(A) = \{(x, y) \in \mathbb{R}^2 \mid 4x^2 - 9y^2 < 36\}$$

$$Ext(A) = \mathbb{R}^2 - A$$

$$Fr(A) = \{(x, y) \in \mathbb{R}^2 \mid 4x^2 - 9y^2 = 36\}$$

$$\bar{A} = Int(A) \cup Fr(A) = A$$

A es un conjunto cerrado.

Repaso

Ecuación de una circunferencia con centro en (x_0, y_0) y radio r:

$$(x - x_0)^2 + (y - y_0)^2 = r^2$$

Ecuación de una esfera con centro en (x_0, y_0, z_0) y radio r:

 y_0

v-
$$A = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le 4\}$$

$$x^2 + y^2 + z^2 = 2^2$$
 Esfera centrada en el origen de radio $r = 2$

$$Int(A) = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 < 4\}$$

$$Ext(A) = \mathbb{R}^3 - A$$

$$Fr(A) = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 4\}$$

$$\bar{A} = Int(A) \cup Fr(A) = A$$

vii-
$$A = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1, y \ge 0\}$$

$$Int(A) = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1, y > 0\}$$

$$Ext(A) = \mathbb{R}^2 / \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1, y \ge 0\}$$

$$Fr(A) = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1, y \ge 0\} \cup \{(x, y) \in \mathbb{R}^2 \mid -1 < x < 1, y = 0\}$$

$$\bar{A} = Int(A) \cup Fr(A) = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1, y \ge 0\}$$

A es un conjunto ni abierto ni cerrado.

FUNCIONES DE \mathbb{R}^n EN \mathbb{R}^m

A continuación se consideran funciones

$$\vec{f}: D_{\vec{f}} \subset \mathbb{R}^n \to \mathbb{R}^m; \qquad n, m \in \mathbb{Z}^+$$

donde el **dominio** de $\vec{f}:D_{\vec{f}}$ es un sub-conjunto de \mathbb{R}^n y el **rango** de $\vec{f}:R_{\vec{f}}$ un sub-conjunto de \mathbb{R}^m .

O sea que a cada vector o punto $\vec{x} = (x_1, \dots, x_n) \in D_{\vec{f}} \subset \mathbb{R}^n$, la función \vec{f} le hace corresponder un **único** vector o punto $\vec{f}(\vec{x}) = \vec{y} = (y_1, \dots, y_m) \in \mathbb{R}^m$:

A \mathbb{R}^n se lo llama **espacio de dominio o de partida** de \vec{f} y a \mathbb{R}^m se lo llama **espacio de rango, de imagen o de llegada** de \vec{f} .

El $D_{\vec{f}}$ es el conjunto de todos los puntos $\vec{x} \in \mathbb{R}^n$ para los cuales \vec{f} está definida:

$$D_{\vec{f}} = \{ \vec{x} \in \mathbb{R}^n \mid \exists \vec{f}(\vec{x}) \}$$

El $R_{\vec{f}}$ es el conjunto de todos los puntos $\vec{y} \in \mathbb{R}^m$ que provienen a través de \vec{f} de al menos un punto $\vec{x} \in D_{\vec{f}}$:

$$R_{\vec{f}} = \left\{ \vec{y} \in \mathbb{R}^m \mid \exists \ \vec{x} \in D_{\vec{f}} : \ \vec{y} = \vec{f}(\vec{x}) \right\}$$

Toda función $\vec{f}: D_{\vec{f}} \subset \mathbb{R}^n \to \mathbb{R}^m$ define un conjunto de **funciones escalares**: f_1, \dots, f_m llamadas **funciones coordenadas** de \vec{f} .

Esto es, para cada $\vec{x} \in D_{\vec{f}}$, $f_i(\vec{x})$ es la *i*-ésima coordenada de $\vec{f}(\vec{x})$:

$$\vec{f}(\vec{x}) = (f_1(\vec{x}), \dots, f_i(\vec{x}), \dots, f_m(\vec{x}))$$
funciones coordenadas de \vec{f}

Cada función coordenada $f_i: D_{f_i} \subset \mathbb{R}^n \longrightarrow \mathbb{R}$, $i=1,\cdots,m$ depende de las n variables: x_1,\cdots,x_n que se simbolizan en forma compacta utilizando la notación vectorial, como \vec{x} .

El dominio de \vec{f} es:

$$D_{\vec{f}} = \bigcap_{i} D_{f_i}$$

- <u>Cuando n > 1 y m > 1</u>, a la función vectorial \vec{f} se la denomina **CAMPO VECTORIAL** (es una función vectorial de un vector).

Por ejemplo, para especificar la velocidad de un fluido moviéndose en el espacio en un instante determinado se requiere de una función:

donde

$$\vec{V}(\vec{x}) = \vec{V}(x, y, z)$$
: vector velocidad del fluido en el punto (x, y, z) .

Se tiene entonces que un fluido en movimiento define un campo vectorial \vec{V} que da la velocidad de las partículas del fluido en cada punto del espacio en un determinado instante de tiempo:

$$\vec{V}(\vec{x}) = (V_1(\vec{x}), V_2(\vec{x}), V_3(\vec{x})); \quad \vec{x} = (x, y, z)$$
: vector posición de la partícula P .

Resulta conveniente trazar la flecha que representa al vector $\vec{V}(\vec{x})$ de modo que comience en el punto \vec{x} correspondiente al espacio de dominio de \vec{V} , y no en el origen del espacio de rango (que es lo que debería hacerse).

- <u>Cuando n > 1 y m = 1</u>, a la función escalar f se la denomina **CAMPO ESCALAR** (es una función real de un vector).

Por ejemplo, para especificar la temperatura en cada punto (x, y, z) de una habitación en un instante determinado se requiere de una función:

$$T: D_T \subset \mathbb{R}^3 \longrightarrow \mathbb{R}$$

de modo que $T(\vec{x}) = T(x, y, z)$ es la temperatura del punto (x, y, z) en el instante de tiempo considerado.

- Cuando n=1 y m>1, a \vec{f} se la denomina función vectorial de una variable real.

Por ejemplo, para especificar la posición de una partícula que se desplaza en el espacio se requiere de una función:

$$\vec{r}:D_{\vec{r}}\subset\mathbb{R}\to\mathbb{R}^3$$

de modo que $\vec{r}(t)$ -el **vector posición** de la partícula P en el instante t- describa con la punta de su flecha, a medida que varía el parámetro t: tiempo, la curva C correspondiente a la trayectoria de la partícula.

respondiente a la trayectoria de la particula.
$$\vec{r}(t) = \left(X(t), Y(t), Z(t)\right); \quad a \leq t \leq b$$

$$\vec{r}(a)$$

$$\vec{r}(b)$$

$$z = Z(t)$$

$$x = X(t)$$

$$y = Y(t)$$

- <u>Cuando n=m=1</u>, se tiene que $f:D_f \subset \mathbb{R} \to \mathbb{R}$ representa a una función real de una variable real, es decir, corresponde al tipo de funciones que se estudian en AMI.

ÁLGEBRA DE FUNCIONES

Si

$$\vec{f}: D_{\vec{f}} \subset \mathbb{R}^n \to \mathbb{R}^m \ y \ \vec{g}: D_{\vec{g}} \subset \mathbb{R}^n \to \mathbb{R}^m$$
 son **campos vectoriales**.

 $h: D_h \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ es un campo escalar.

Entonces se definen las operaciones de

Suma/resta:

Es la función con dominio $D_{\vec{f}\pm\vec{g}}=D_{\vec{f}}\cap D_{\vec{g}}$, cuyas funciones coordenadas se obtienen sumando/restando las funciones coordenadas homólogas de \vec{f} y \vec{g} :

$$\vec{f} \pm \vec{g} = (f_1 \pm g_1, \cdots, f_m \pm g_m)$$

Producto por un campo escalar:

Producto escalar:

$$h\vec{f} = (hf_1, \cdots, hf_m); \qquad D_{h\vec{f}} = D_h \bigcap D_{\vec{f}}$$

$$\underline{dlar:}$$

$$\vec{f} \cdot \vec{g} = f_1 g_1 + \cdots + f_m g_m = \sum_{i=1}^m f_i g_i; \qquad D_{\vec{f}} \cdot \vec{g} = D_{\vec{f}} \bigcap D_{\vec{g}}$$

Producto vectorial: (sólo definido para m = 3)

$$\vec{f} \times \vec{g} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ f_1 & f_2 & f_3 \\ g_1 & g_2 & g_3 \end{vmatrix} = (f_2 g_3 - f_3 g_2, f_3 g_1 - f_1 g_3, f_1 g_2 - f_2 g_1); \quad D_{\vec{f} \times \vec{g}} = D_{\vec{f}} \bigcap D_{\vec{g}}$$

División por un campo escalar:

$$\frac{\vec{f}}{h} = \left(\frac{f_1}{h}, \dots, \frac{f_m}{h}\right); \qquad D_{\vec{f}/h} = D_{\vec{f}} \bigcap D_h - \{\vec{x} \mid h(\vec{x}) = 0\}$$

COMPOSICIÓN DE FUNCIONES

que se obtiene de aplicar la siguiente regla:

$$\left(\vec{f} \circ \vec{g}\right)(\vec{x}) = \vec{f}\left(\vec{g}(\vec{x})\right)$$

Es decir, se aplican sucesivamente 2 funciones: primero se aplica la función \vec{g} y luego la función \vec{f} tal como se muestra en el siguiente diagrama.

O sea que como \vec{g} es la función con p funciones coordenadas:

$$\vec{g}(\vec{x}) = (g_1(\vec{x}), \dots, g_p(\vec{x})), \qquad \vec{x} = (x_1, \dots, x_n)$$

que dependen de las n-variables x_1, \dots, x_n llamadas variables últimas, y \vec{f} es la función con m funciones coordenadas:

$$\vec{f}(\vec{u}) = (f_1(\vec{u}), \dots, f_m(\vec{u})), \qquad \vec{u} = (u_1, \dots, u_p)$$

que dependen de las p-variables u_1, \dots, u_p llamadas variables intermedias, se tiene que:

<u>**1**ero</u> cuando se aplica \vec{g} se pasa de \vec{x} a \vec{u} , es decir:

$$\vec{u} = \vec{g}(\vec{x}) \Leftrightarrow \begin{cases} u_1 = g_1(\vec{x}) \\ \vdots \\ u_p = g_p(\vec{x}) \end{cases}$$

Observación:

Para poder componer \vec{f} con \vec{g} se tiene que cumplir que la dimensión del espacio de rango de \vec{g} sea igual a la dimensión del espacio de dominio de \vec{f} .

donde
$$\vec{x} = (x_1, \dots, x_n)$$

Ejemplo

Sean las siguientes funciones:

 $g:D_g\subset\mathbb{R}^2\to\mathbb{R}$ es el campo escalar definido por $g(x,y)=[ln(x+y)]^2$ y

 $\vec{f}: D_{\vec{f}} \subset \mathbb{R} \to \mathbb{R}^3$ es la función vectorial definida por $\vec{f}(t) = \begin{pmatrix} t & t^2 & t^3 \\ t & t^2 & t^3 \end{pmatrix}$ con $-1 \le t \le 1$.

Obtenga $\vec{f} \circ g$.

Solución

Los dominios de las funciones son:

$$D_g = \{(x, y) \in \mathbb{R}^2 \mid x + y > 0\}$$
$$x + y > 0 \quad \Rightarrow \quad y > -x$$

$$D_{\vec{f}} = \{t \in \mathbb{R} \mid -1 \le t \le 1\}$$

Como dimensión del espacio de rango de g= 1= dimensión del espacio de dominio de \vec{f} se puede componer siempre que $R_g \cap D_{\vec{f}} \neq \emptyset$, lo cual se va a ver que sí se cumple.

Cuando se compone primero se aplica g, o sea con g se pasa de \vec{x} a t, es decir:

El rango de g es: $R_g = \{t \in \mathbb{R} \mid t \geq 0\}$. Y siendo $D_{\vec{f}} = \{t \in \mathbb{R} \mid -1 \leq t \leq 1\}$, la intersección de estos conjuntos es: $R_g \cap D_{\vec{f}} = \{t \in \mathbb{R} \mid 0 \leq t \leq 1\} \neq \emptyset$.

Luego el dominio de la función compuesta $\vec{f} \circ g$ es el conjunto de todos los puntos $\vec{x} = (x, y)$ para los cuales los valores que tome g(x, y) estén en el siguiente intervalo:

O sea que:

Después de aplicar g, se aplica \vec{f} :

$$\vec{f}(t) = \vec{f}(g(x, y))$$

Por lo tanto la función vectorial compuesta es el campo vectorial

$$\vec{f} {\circ} g {:} D_{\vec{f} {\circ} g} \subset \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$

con espacio de dominio \mathbb{R}^2 y espacio de rango \mathbb{R}^3 dado por:

$$(\vec{f} \circ g)(\vec{x}) = \vec{f}(g(x,y)) = \left(f_1(g(x,y)), f_2(g(x,y)), f_3(g(x,y))\right)$$

$$= \left((f \circ g)_1(x,y), (f \circ g)_2(x,y), (f \circ g)_3(x,y)\right)$$

$$= \left([ln(x+y)]^2, [ln(x+y)]^4, [ln(x+y)]^6\right)$$

$$(\vec{f} \circ g)(\vec{x}) = ([\ln(x+y)]^2, [\ln(x+y)]^4, [\ln(x+y)]^6); \quad D_{\vec{f} \circ g} = \{(x,y) \in \mathbb{R}^2 \mid \frac{1}{e} - x \le y \le e - x\}$$

GRÁFICA (GRAFO) DE FUNCIONES

Definición

Sea $\vec{f}: D_{\vec{f}} \subset \mathbb{R}^n \to \mathbb{R}^m$. El grafo de \vec{f} es el conjunto de todos los pares ordenados $(\vec{x}, \vec{f}(\vec{x})) \in \mathbb{R}^{n+m}$ tales que $\vec{x} \in D_{\vec{f}}$.

grafo de
$$\vec{f} = \{ (\vec{x}, \vec{f}(\vec{x})) \in \mathbb{R}^{n+m} | \vec{x} \in D_{\vec{f}} \}$$

$$= (x_1, \dots, x_n) \in \mathbb{R}^n \qquad \qquad \vec{f}(\vec{x}) = (f_1(\vec{x}), \dots, f_m(\vec{x})) \in \mathbb{R}^m$$

Si n=m=1, se tiene $f:D_f\subset\mathbb{R}\to\mathbb{R}$ una función real de una variable real (de las que se estudian en AMI).

Y el grafo de f es una **curva** en \mathbb{R}^2 .

grafo de $f = \{(x, f(x)) \in \mathbb{R}^2 \mid x \in D_f\}$

- Si n=2 y m=1, se tiene $f:D_f\subset\mathbb{R}^2\to\mathbb{R}$ un campo escalar. La gráfica (o grafo) de f es una superficie en \mathbb{R}^3 .

grafo de
$$f = \{(x, y, f(x, y)) \in \mathbb{R}^3 \mid (x, y) \in D_f\}$$

Por ejemplo, sea $f: D_f \subset \mathbb{R}^2 \to \mathbb{R}$ la función de 2 variables definida por la ecuación:

$$z = f(x, y) = x^2 + y^2$$

Su dominio y rango respectivamente son:

$$D_f = \mathbb{R}^2 \quad ; \qquad R_f = \{ z \in \mathbb{R} \mid z \ge 0 \}$$

La gráfica de f obtenida por computadora es la siguiente superficie en \mathbb{R}^3 :

Se trata de un **paraboloide de revolución**, es decir que la superficie correspondiente a su gráfica puede obtenerse por ejemplo haciendo girar la parábola (sobre el plano y=0) de ecuación $z=x^2$ alrededor del eje z:

Se puede obtener una gráfica aproximada del paraboloide del siguiente modo:

- Haciendo $y = 0 \Rightarrow z = x^2 + \underbrace{0}_{y}^2 = x^2$.

O sea que la curva de intersección del grafo de f con el plano y=0 es una parábola de ecuación $z=x^2$.

- Haciendo $x = 0 \Rightarrow z = 0^2 + y^2 = y^2$

La curva de intersección del grafo de f con el plano x = 0 es una parábola de ecuación $z = y^2$.

- Haciendo $z = c \, \, {\rm con} \, c \geq 0$ se tiene $z = c = x^2 + y^2$ o bien

$$x^2 + y^2 = (\sqrt{c})^2$$
; $z = c$

Por lo tanto las curvas de intersección del grafo de f con planos horizontales de ecuaciones z=c son circunferencias de radios \sqrt{c} crecientes a medida que el valor de c aumenta.

Si z = c = 0 se tiene la ecuación $x^2 + y^2 = (\sqrt{0})^2 = 0$, cuya única solución es (x,y) = (0,0), es decir que la intersección del grafo de f con el plano z = 0 es el punto correspondiente al origen del sistema de coordenadas.

Si z=c<0 la ecuación $x^2+y^2=c$ no tiene solución por lo que no existe gráfica de f para z<0.

Luego la gráfica aproximada de f es el siguiente paraboloide circular:

La visualización del grafo de una función $\vec{f}:D_{\vec{f}}\subset\mathbb{R}^n\to\mathbb{R}^m$ sólo es posible si $n+m\leq 3$.

Si bien el grafo de la función es el que da la información más completa de la misma, cuando n+m>3 el grafo de \vec{f} no puede visualizarse, entonces con el fin de superar esta dificultad y poder obtener información del comportamiento de una función se introduce la idea de conjuntos de nivel.

CONJUNTOS DE NIVEL

Son subconjuntos del dominio de \vec{f} que resultan de dar la contra-imagen de un punto fijo del rango de \vec{f} .

Todos estos puntos del $D_{\vec{f}}$ tienen como imagen por \vec{f} al mismo punto \vec{y}_0 del $R_{\vec{f}}$

Definición

Sean

Por ejemplo, sea el campo vectorial $\vec{f}: \mathbb{R}^3 \to \mathbb{R}^2$ definido por:

$$\vec{f}(x, y, z) = \left(\underbrace{x^2 + y^2 + z^2}_{f_1}, \underbrace{x + y + z}_{f_2} \right)$$

para el cual se quiere obtener el conjunto de nivel de valor $\vec{y}_0 = (u_0, v_0) = (1,0)$.

Entonces, el conjunto de nivel requerido es el conjunto de todas las ternas ordenadas $(x, y, z) \in \mathbb{R}^3$ que satisfacen el siguiente sistema de ecuaciones:

EJERCICIOS

1. Determine el dominio de las siguientes funciones y haga un gráfico aproximado del mismo.

xi-
$$f(x,y) = \frac{1}{\sqrt{x^2 - y^2 - 4}}$$

xii- $f(x,y) = ln(xy)$

xiii-
$$f(x,y) = \frac{1}{\sqrt{4-(x^2+y^2)}}$$

$$\mathbf{xiv} \quad f(x,y) = \frac{1}{x^2 + y^2}$$

$$\mathbf{xv} \quad f(x,y) = \ln(1 + xy)$$

xvi-
$$f(x,y) = arccos(x^2 + y^2)$$

SOLUCIONES DE ALGUNOS EJERCICIOS

Repaso

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

i-
$$f(x,y) = \frac{1}{\sqrt{x^2 - y^2 - 4}}$$

$$D_f = \{(x, y) \in \mathbb{R}^2 \mid x^2 - y^2 - 4 > 0\}$$

$$x^2 - y^2 - 4 > 0$$

$$x^2 - y^2 > 4$$

$$x^2 - y^2 - 4 > 0$$
, $x^2 - y^2 > 4$, $\frac{x^2}{2^2} - \frac{y^2}{2^2} > 1$

La gráfica del dominio de f es:

ii-
$$f(x,y) = ln(xy)$$

Repaso

Ecuación de una circunferencia con centro en (x_0, y_0) y

radio *r*:

$$(x - x_0)^2 + (y - y_0)^2 = r^2$$

iii-
$$f(x,y) = \frac{1}{\sqrt{4-(x^2+y^2)}}$$

$$D_f = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 4\}$$

$$x^2 + y^2 = 2^2$$

$$1 + xy > 0$$

$$xy > -1$$

$$xy > -1$$

$$y = -\frac{1}{x}$$
 hipérbola equilátera

2. Grafique (aproximadamente) los conjuntos de nivel de las siguientes funciones para los valores indicados.

i-
$$f(x,y) = x + y$$
 , $k \in \{-1,0,1\}$

ii-
$$f(x,y) = x^2 + y^2 - 4$$
 , $k \in \{-4,0,12\}$

iii-
$$f(x,y) = e^{xy}$$
 , $k \in \{0,1,4\}$

iv-
$$f(x,y) = y^2 - x$$
 , $k \in \{-2,0,2\}$

iii-
$$f(x,y) = e^{xy}$$
 , $k \in \{0,1,4\}$
iv- $f(x,y) = y^2 - x$, $k \in \{-2,0,2\}$
v- $f(x,y) = \frac{x^2}{4} + \frac{y^2}{9}$, $k \in \{0,1\}$

vi-
$$f(x, y, z) = x + y + z$$
 $k \in \{-1, 0, 1\}$

vii-
$$f(x, y, z) = x^2 + y^2 + z^2$$
, $k \in \{0,1\}$

viii-
$$f(x, y, z) = x^2 + y^2$$
 , $k \in \{4,9\}$

SOLUCIONES DE ALGUNOS EJERCICIOS

i-
$$f(x, y) = x + y$$
 , $k \in \{-1, 0, 1\}$

$$z = x + y$$

$$k = x + y$$

Si
$$k = -1$$
, $-1 = x + y \Rightarrow y = -1 - x$

$$k = -1, y = -1 - x$$

Si
$$k = 0$$
, $0 = x + y \Rightarrow y = -x$

$$k = 0, \quad y \neq -x$$

Si
$$k = 1$$
, $1 = x + y \Rightarrow y = 1 - x$

$$k=1, \quad y=1-x$$

ii-
$$f(x,y) = x^2 + y^2 - 4$$
 , $k \in \{-4,0,12\}$
$$z = x^2 + y^2 - 4$$

$$\hat{k} = x^2 + y^2 - 4$$

- Si
$$k = -4$$
, $-4 = x^2 + y^2 - 4 \Rightarrow x^2 + y^2 = 0$

$$k = -4$$
, $x^2 + y^2 = 0 \Rightarrow$
 $\Rightarrow (0,0)$ única solución

- Si
$$k = 0$$
, $0 = x^2 + y^2 - 4 \Rightarrow$
 $\Rightarrow x^2 + y^2 = 4$

$$k = 0, x^2 + y^2 = 2^2$$

- Si
$$k = 12$$
, $12 = x^2 + y^2 - 4$ \Rightarrow $x^2 + y^2 = 16$

$$k = 12, x^2 + y^2 = 4^2$$

y

Si
$$k = 12$$
, $12 = x^2 + y^2 - 4 \Rightarrow$
 $\Rightarrow x^2 + y^2 = 16$

$$k = 12, x^2 + y^2 = 4^2$$

Repaso

Elipse:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
; $a > 0, b > 0$

v-
$$f(x,y) = \frac{x^2}{4} + \frac{y^2}{9}$$

$$z = \frac{x^2}{4} + \frac{y^2}{9}$$

$$k = \frac{x^2}{4} + \frac{y^2}{9}$$

Si
$$k = 0$$
, $0 = \frac{x^2}{4} + \frac{y^2}{9}$

$$k = 0, (0,0)$$

- Si
$$k = 1$$
, $1 = \frac{x^2}{4} + \frac{y^2}{9}$

$$k = 1$$
, $\frac{x^2}{2^2} + \frac{y^2}{3^2} = 1$

$$k \in \{0,1\}$$

Repaso

Ecuación de una esfera con centro en (x_0, y_0, z_0) y radio r:

