Exercice 1

 $EB-Suite-Arithmético-G\'{e}om\'{e}trique-Fonction-R\'{e}currence-Limite.tex\ Chapitre\ 5: Suites.$

Soit (u_n) la suite définie par :

$$u_0 = 1$$
 et pour tout entier naturel $n, u_{n+1} = \frac{u_n + 8}{2u_n + 1}$.

On appelle f la fonction définie sur $]-\frac{1}{2};+\infty[$ par :

$$f(x) = \frac{x+8}{2x+1}.$$

- 1) Etudier les variations de f(x) sur $]-\frac{1}{2};+\infty[$.
- 2) a) Tracer, dans un repère orthonormé, la courbe \mathscr{C}_f représentant la fonction f et la droite Δ d'équation y=x.
- b) Sur l'axe des abscisses, placer u_0 , puis construire les termes u_1, u_2 et u_3 en utilisant la courbe \mathscr{C}_f et la droite Δ .
- c) Que peut-on conjecturer sur le sens de variation de la suite (u_n) et sur sa limite?
- 3) soit (v_n) la suite définie par :

pour tout entier naturel
$$n$$
, $v_n = \frac{u_n - 2}{u_n + 2}$.

- a) Démontrer que (v_n) est une suite géométrique. Calculer le premier terme v_0 et la raison r.
- b) En déduire l'expression de v_n puis celle de u_n en fonction de n.
- 4) Démontrer les conjectures émises en 2) c).