코딩기초 및 실습

https://insights.stackoverflow.com/survey/2021#overview

https://www.edaily.co.kr/news/read?newsId=05280806628954128&mediaCodeNo=257

https://www.donga.com/news/Economy/article/all/20210301/105656293/1

담당교수 : 이 명 호 (李明豪)

Mobile: 010-5046-3086

e-Mail: mhlee1486@gmail.com

mhlee@semyung.ac.kr

"취업이 강한 대학!"

世明大學校

대면 수업시 주의사항

- [코딩기초 및 실습] 교육과정은 실습 자리가 지정 좌석 입니다.
- 수업시 핸드폰이나 웹 서핑을 하지 않도록 합니다.
- 핸드폰은 진동으로 설정하기 바랍니다.
- 수업 중 이동하지 않도록 교재 및 필기 도구를 미리 준비하고 화장실도 미리 다녀오기 바랍니다.
- 정중한 자세로 교수님과 친구들을 대하며, 수업과 관련없는 행동이나 불쾌할 수 있는 행동은 하지 않도록 합니다.
- 컴퓨터 폴더를 만들어 받은 수업자료를 잘 정리해 둡니다.
- 초상권을 지키는 일은 나와 타인 모두를 지키는 일입니다. 교수님, 친구들의 사진과 동영상을 캡처하지 않도록 합니다.

우리의 마음 가짐

- ❖ 포기하지 말고 친숙해지면 역량(Competency)이 보이기 시작합니다.
- ❖ 역량이란 Detail(디테일)에 있습니다!!
- ❖ 이제부터 멋진 스마트IT학부 학생으로 다시 태어나도록 합시다!
- **❖** 강의 자료를 수업전 미리 예습하면 더욱 역량이 보이기 시작합니다.
- ❖ 자~~ 준비되었나요?
- ❖ 시작합시다.~~~

세명 포탈시스템

세명대 강의지원시스템 (LMS)

세명대 강의지원시스템 (LMS)

강의 교재

주 교 재

부 교 재

평 가

□ 중간고사 시험 : 30% ± a

□ 기말고사 시험: 40% ± α [서술형 100%(?)]

□ 출 석 : 20% ± a ↑

□ 수업 참여도 : 10% ± a ↑

Lightweight Container Architecture(HTML5/CSS3)

수학, 물리학, 통계학, 정보통신, 컴퓨터의 관계

Modeling

Projection = Transform = Mapping

❖ Laplace Transform : 미분방정식을 다른 '공간' 으로 변환시켜 더 단순하게 만든 후, 이를 풀어내는 기법

Coding에서 사용하는 용어 정의

- ❖ 코딩에서 사용되는 많은 용어들은 일상에서도 자주 쓰인다. 하지만 정확한 기술적 정의는 일상적 의미와 매우 다를 수 있어 오해를 일으키기도 한다. 코딩에서는 컴퓨터에서 사용되는 용어 정의를 정확하게 이해되어야 많은 다른 컴퓨터 언어들의 의미를 정확하게 파악할 수 있다.
- ❖ 이제부터 자주 혼용하여 사용되는 element, property, parameter, argument 등의 의미를 정확히 구분하여 사용할 필요가 있다.
- ❖ 기본적으로 컴퓨터에서 사용되는 Modeling 활동(algorithm, logic, optimization, ...등) 들은 대부분 수학의 선형대수(Linear Algibra) 로이루어져 있다.
- ❖ 이제부터 수학적인 관점에 친숙할 필요가 있다.

이번 코딩기초및실습 교육과정의 특징

- [코딩기초및실습]에서 학습하는 영역 중에서 스마트IT학부에 필요한 역량 부분은 어떠한 것이 있는가?
- 스마트IT학부는 컴퓨터 코딩기초에서는 Front-end에 필요한 역량기초 교육과정을 구성하도록 한다.
- 이번 과정에서는 이 영역 부분만 선별하여 교육과정을 구성하도록 한다.
- 따라서 [컴퓨터 언어] 전반적인 영역을 다루지 않고, 스마트IT학부 학생들이 취업과 연계될 수 있는 Front-end 영역을 기반으로 교육과정을 구성하도록 한다.
- 많은 코딩기초및실습 주차 과정이 취업 중심의 소프트웨어 프로그래밍 중심으로 교육과정을 구성하도록 한다.

하루 동안 정보 검색 사용 빈도

[1] Console 멸 % ?

[2] WinForm: HWP, PPT, Excel 멸 % ?

100 %

[3] WebForm: Web Browser(IE, Chrome, Safari, Firefox) 멸%?

[4] MobileForm: Mobile First Strategy 몇 %?

SmartIT학부에서 다루는 영역

4년 동안 강의할 영역

4년 동안 강의할 영역

- ❖ Front-end 영역
- ❖ Middleware(WAS) 영역
- ❖ Back-end 영역

SSAFY(Samsung SW Academy For Youth)

https://www.mk.co.kr/news/special-edition/view/2019/03/172501/

[청년이 미래다] 삼성전자, SW인재 양성 '청년 아카데미'

- ➤ 삼성전자는 고용노동부 후원으로 소프트웨어 전문가를 육성하고 청년 실업 문제 해결에 이바지하고자, '삼성 청년 소프트웨어 아카데미 (SSAFY·Samsung SW Academy For Youth)'를 마련한 상태다.
- ▶ 삼성전자는 작년 서울 캠퍼스 250명을 포함해 총 500명을 1기생으로 선발했으며, 앞으로 5년간 총 1만명을 상대로 소프트웨어 교육을 실시할 방침이다.
- 총 1년간 소프트웨어 기초는 물론 개별 프로젝트 교육을 무료로 받는 데다월 100만원에 달하는 교육 지원비 혜택이 있어서다. 또 우수 졸업생은 삼성의 해외 연구소에서 연수 특전이 주어진다.
- ▶ 이를 위해 삼성전자가 책정한 비용만 4,996억원에 달한다.

삼성 청년 SW 아카데미(SSAFY)는 삼성의 SW 교육 경험과 고용노동부의 취업지원 노하우를 바탕으로 취업 준비생에게 SW 역량 향상 교육 및 다양한 취업지원 서비스를 제공하여 취업에 성공하도록 돕는 프로그램입니다.

SSAFY

최고 수준의 교육을 제공합니다.

전문분야별 자문교수단과 삼성의 SW 전문가가 함께 참여한 명품 커리큘럼을 제공하여 경쟁력 있는 차세대 SW 인력을 양성합니다.

SSAFY

맞춤형 교육을 제공합니다.

SW 전공자와 非전공자의 수준에 따라 맞춤형 교육을 제공하여 최적의 학습 효과를 지향합니다.

SSAFY

자기주도적 학습을 지향합니다.

단순히지식을 전달하기 보다 스스로문제를해결할수있는역량을 강화시키고,기업에서 실제로수행하는 형태의 프로젝트를 통해 실무적응력을 향상 시킵니다.

SSAFY

취업 경쟁력을 높일 수 있는 효율적인 취업지원 서비스를 제공합니다.

고용노동부의 취업지원 노하우를 기반으로 교육생에게 최적의 일자리 정보를 제공하고 취업 실전 교육과 컨설팅 서비스를 통해 취업에 성공하도록 지원합니다.

기타 관심 아카데미 교육과정

42SEOUL

42 Seoul | 이노베이션 아카데미 교육 프로그램

배민아카데미

배민아카데미 (baemin.com)

01 주차: 웹 프로그래밍의 이해

- ☞ 웹 프로그래밍의 구조
- ☞ 웹 프로그래밍 환경 구축
- ☞ HTML5 + CSS3 + JavaScript의 관계
- History of ECMAScript version

02 주차 : HTML5+CSS3+JavaScript 이해와 활용

- ☞ HTML5 문서 구조 및 속성
- ☞ CSS3 문서 구조 및 속성
- ☞ JavaScript 문서 구조 및 속성

03 주차 : HTML5 기본 tag 와 multi-media tag

- \$\square\$ \left\partial \text{, \left\partial}\$ tag
- ⟨⟨⟨⟨¬⟩⟩⟩ ⟨⟨⟨¬⟩⟩ ⟨⟨¬⟩⟩ tag
- <a> tag
- <hr>> tag

04 주차 : HTML5 입력 양식 tag와 공간 분할 tag

- ☞ 〈form〉tag → 데이터 전송 방식 method(), submit
- <input> tag
- tag
- <button> tag
- <hidden> tag
- <label> tag

05 주차 : CSS 기본 사용법과 selector

- ☞ CSS 기본 구조
- ☞ Selector의 종류
- ☞ Selector의 사용법
- CSS parent, child, nth-child selector

06 주차 : Box Model(CSS 속성) => 아주 중요함

- Box Model
- ☞ Flex Box 사용법
- ☞ Flex container 속성

07 주차 : CSS 효과 및 Animation

- CSS animation
- CSS overflow
- CSS media query (Rsponsive Web Design)
- ☞ 08 주차 : 중간 고사

09 주차 : JavaScript 기본 문법

- Data Type, variable
- Operator (spread operator)
- © Control Statement (if, if-else, switch, for, wile, do-while, break, continue)
- ☞ function (forEach, some, filter, map, reduce, for in, for of) ⇒ 아주 중요

10 주차 : JavaScript Array와 Object

- Array
- Object
- Date, String, Math Object

11 주차 : HTML DOM과 Document => 아주 중요

- ☞ DOM 구조
- ☞ DOM과 Document 다루기
- guerySelect()와 querySelectAll()

12 주차 : event 기초와 활용 => 아주 중요

- ☞ event 종류와 개념
- JavaScript Event Handling
- ☞ JavaScript에서 Event Handler 등록하는 방법 ⇒ 아주 중요

13 주차 : Window와 Browser 관련 Object

- ☞ Window Object 및 활용
- ☞ HTML5 + CSS3 + JavaScript Project I 실습

14 주차 : HTTP와 Cookie, Web Storage

- ☞ Chrome Browser 개발 도구 사용
- Web Storage
- Cookie
- Storage Event
- ☞ HTML5 + CSS3 + JavaScript Project II 실습

15 주차 : 보강 기간

☞ HTML5 + CSS3 + JavaScript Project III 실습

16 주차 : 기말 고사

History of Information Culture

- ▶ 1979년 : Oracle 2발표(최초의 상용 RDBMS)
- ▶ 2008년 : Oracle 11g, 2013년 : Oracle 12c
- ❖ 1980년 : Data Tier 표준화 완성
- ❖ 2010년 : Middle Tier 표준 완성
- ❖ 2015년 : Frontend HTML5/CSS3/ JavaScript로 완성됨

- 2002년 : Spring Framework 발표
- 2009년 : JavaEE 6 발표
- > 2010년 : Oracle 사 -> Sun Microsystems 인수
- ➤ 2009년 : Ryan Dahl이 개발
- 2011년 : npm(node package manager) 발표
- 2018년 6월 : MS사 GitHub 인수(\$78억)

2010년 **2015년** 2018년

- 1995년 12월: Netscape Comm. Co., JavaScript 공개 채택
- ▶ 2015년 6월: ECMAScript 6 발표
- 2016년 4월: MS Visual Studio Code 정식 버전 발표

- ➤ 2012년 : GraphQL 개발
- 2015년 9월 : 공객적으로 발표된 Query Language
- 2011년 : Facebook에 React 처음 적용
- ➤ 2012년 : Instagram 적용
- 2013년 5월: JSConf US에서 Open Source화 됨
- 2018년 9월 : React 16.5.0 발표

Virtualization vs Container

SpaceX Crew Dragon

JavaScript + TypeScript (2020. 01. 19)

History of C / UNIX / Internet

C 언어	년도	UNIX	년도	Internet
ENIAC	1946			
	1969	Bell Lab, PDP-11	1969	ARPANET
C 언어 (Ritchie)	1972		1972	23개 Host 연결, 40개 컴퓨터 연결
	1973	C-Porting		
			1974	Telnet (Stanford 대학교)
	1978	Version 7, BSD UNIX	1979	Usenet (BBS)
	1980	UNIX 32V, 3BSD		
C++ (Stroustrup), Bell Lab	1983	UNIX SYSTEM V, 4.2 BSD	1983	연구용(ARPANET), 군사용(MILNET)
C++ 1차 개정	1985	4,2 BSD -> Mach		
	1986	4.3 BSD		
C++ 2차 개정 (1989)	1988	Mach 2.0 -> NeXTSTEP 0.8	1989	WWW(Tim Berners Lee)
SunOS 4 (1990) –Solaris 1	1991	Linux 0.0.1(토팔즈)	1991	Gopher
C++ ANSI 표준 (1994)	1993	386 BSD0.1(4,3BSD Reno에서 파생), FreeBSD1.0	1993	Mark Adreesen -> MosaicX
JAVA 탄생 (1995. 5)	1996	NeXTSTEP 3.3-> OPENSTEP 4.0		(WAIS, FTP, Archie, Veronica, Finger)
	1997	OPENSTEP 4.2 -> Rhapsody DR1		
J2SE / J2EE / J2ME	1998	SunOS 5.7 – Solaris 7	1998	Semantic Web(Tim Berners Lee),
J2EE 1,2	1999	Rhapsody DR2 -> Darwin 0.1	1998	Small World Network
Spring F/W (2002)	2003	Darwin 6.2 -> OpenDarwin-2003	2004	Web 2.0 (Tim O'reilly)
			2005	W3C 소장(Tim Berners Lee)

History of WAS / HCA / LCA / HTML5

WAS	년도	HCA / LCA	년도	HTML5
SunOS 4 (1990) -Solaris 1	1990		1989	WWW, HTML 1.0(1991)
JAVA 탄생 (1995. 5)	1995	BEA Systems 설립	1996	CSS Level 1,
J2SE / J2EE / J2ME	1998	BEA WebLogic 발표, Small World Network	1998	XHTML 1.0, XML 채택, CSS Level 2
J2EE 1.2	1999		1999	HTML 4.01 발표,
WebLogic Server 6.0	2001	Rod Johnson, Lightweight Container Architecture (2002), iBatis -> Clinton Begin(2001), Hibernate	2002	XHTML 2.0
WebLogic Server 8.x	2003	Spring Framework 발표, The first milestone release, 1.0(2004), Gavin- King -> Hibernate R2		
WebLogic Server 10.x	2007	Spring 2.0(2006), Spring 2.5(2007)	2004	Web 2.0 (Tim O' reilly)
BEA Systems -> Oracle에 인수	2008		2005	W3C 소장(Tim Berners Lee)
WebLogic Server 11g (10.3.1)	2009	Spring 3.0	2007	HTML5 디자인 원칙 작업 초안
WebLogic Server 11gR1 PS1(10.3.2)	2009			
WebLogic Server 11gR1 PS2(10.3.3)	2010	Google Code(MyBatis)	2010	HTML5 Last call 초안, Editors Draft
WebLogic Server 11gR1 PS3(10.3.4)	2011	Spring 3.1		
WebLogic Server 11gR1 PS4(10.3.5)	2011		2012. 1	HTML5 제안 권고안
WebLogic Server 11gR1 PS5(10.3.6)	2012		2012. 3	HTML5/CSS3 정식 권고안
WebLogic Server 12c R1(12.1.1)	2012			
WebLogic Server 12c R2(12.1.2)	2013	Spring 3.2.5, Spring Framework 4.0		
WebLogic Server 12c R1(12.1.3)	2014		2014. 10	HTML5.0 표준안을 확정
WebLogic Server 12c R2(12.2.1)	2015	Spring Framework 4.2.0, Spring Framework 4.2.1	2015. 1분기	HTML 5.1 후보주천(CR)

Native App / Mobile Web/WebApp / Hybrid App

	Native App	Mobile Web	Mobile WebApp	Hybrid App
	■ 구동 속도가 가장 빠름	▶쉽고 간단하게 적용할 수 있음	✔Native App에 비해 개발 기간이 짧음	❖구동속도가 Mobile Web보다 빠름
	■가장 동적으로 표현할 수 있음	▶HTML 표준 방식으로 개발하면 OS에 상관없이 구현됨	✓업데이트 및 수정변경이 용이함	❖필수적인 요소만 포함해서 개발 가 능
	■ 인터넷이 연결되어 있지 않아 도 사용가능		✔os에 상관없이 웹브라우저로 접 근 가능(아이패드, PC에서도 가능 함)	❖동적인 데이터는 실시간으로 통신
단점 『	■ 다른 방식과 비교할 때 개발 기간과 비용이 많이 들어감 ■ 앱스토어를 통해 등록, 심사	▶인터넷을 접속하므로 상대적으 로 느림	✔인터넷을 통해 접속하므로 구동이 느림	❖자체 사이트만 지원하므로 타 사이 트 브라우징 불가능
	하는 과정으로 업데이트 및 수정이 어려움	▶이미지나 영상이 많이 포함된 경우 더 느림	✓스마트폰의 특정기능(GPS, 카메라 등) 사용불가	❖네비게이션이 설계 잘못시 사용자 불편함 증가
	■ 각기 다른 OS, 버전 별로 개발 해야 함	▶웹브라우저 만으로 이용이 가 능함	✓ 브라우저를 통한 2차 접근방식이 라 접근성이 낮음	
비고	■빠른 구동속도 및 스마트폰 개발 특징을 이용한 앱 개발 이 강점	▶PC환경의 웹을 모바일 환경에 서 최적화 시켜서 보여주는 형 태	√기종을 가리지 않아 접근성이 좋 음	❖Native App과 WebApp 개발방식의 장점을 수용한 방식으로 껍데기는 각각 의 장점을 수용한 방식
			√웹을 통한 접속으로 따로 설치가 필요하지 않아 접근이 가능함	작업데기는 각각의 OS에서 구동되도 록 만들어 놓고, ❖내부의 동적인 데이터는 HTML5, CSS 으로 만들어 둔것임.