Étude de série numériques

Exercice 1

Écrire les cinq premiers termes de chacune des séries suivantes :

1.
$$\sum_{n=1}^{+\infty} \frac{1-(-1)^n}{n}$$
;

2.
$$\sum_{n=1}^{+\infty} \frac{1}{n^2} \sin\left(\frac{n\pi}{2}\right) ;$$

$$3. \sum_{n=1}^{+\infty} \frac{1}{2n+1} \cos\left(\frac{2n\pi}{3}\right).$$

Exercice 2

En utilisant le théorème indiqué, déterminer si les séries numériques suivantes, dont le terme général est $(u_n)_{n\in\mathbb{N}}$ sont convergentes ou divergentes:

1.
$$u_n = \left(\frac{2}{3}\right)^n$$
 (séries géométriques) ;

2.
$$u_n = \left(\frac{3}{2}\right)^n$$
 (séries géométriques) ;

3.
$$u_n = \frac{3}{n^3}$$
 (séries de Riemann) ;

4.
$$u_n = \frac{2\sqrt{n}}{n}$$
 (séries de Riemann) ;

5.
$$u_n = \frac{1}{n^2 + 3}$$
 (équivalence);

6.
$$u_n = \frac{5n}{n^2 + 1}$$
 (équivalence);

7.
$$u_n = \frac{n}{3^n}$$
 (règle de d'Alembert) ;

8.
$$u_n = \frac{3^n}{n^3}$$
 (règle de d'Alembert) ;

9.
$$u_n = \frac{(-1)^n}{n(n+1)}$$
 (séries alternées) ;

10.
$$u_n = \frac{(-1)^n}{n+1}$$
 (séries alternées) ;

11.
$$u_n = (-1)^n (n+1)$$
 (séries alternées).

Exercice 3

Étudier si les séries suivantes convergent ou divergent :

1.
$$u_n = \frac{1}{2n^2 - 1}$$

2.
$$u_n = \frac{2^2}{n!}$$

3.
$$u_n = \frac{n^2}{(2n)!}$$

1.
$$u_n = \frac{1}{2n^2 - 1}$$
; 2. $u_n = \frac{2^2}{n!}$; 3. $u_n = \frac{n^2}{(2n)!}$; 4. $u_n = \frac{3n}{n^2 - 1}$; 5. $u_n = \frac{\sin^2 n}{3n^2}$;

$$5. \ u_n = \frac{\sin^2 n}{3n^2}$$

Exercice 4

Démontrer que le suites $(u_n)_{n\in\mathbb{N}}$ définie par $u_n = \frac{3n+1}{5n^2-4}$ et $(v_n)_{n\in\mathbb{N}}$ définie par $v_n = \frac{3}{5n}$ sont équivalentes.

Déterminer la nature de la série $\sum_{n=1}^{\infty} u_n$.

Exercice 5 La série $\sum_{n=0}^{\infty} \frac{\cos(n\pi)}{n^2}$ est-elle absolument convergente ? convergente ?

Exercice 6 La série $\sum_{n=0}^{\infty} \frac{\cos(n\pi)}{n}$ est-elle absolument convergente ? convergente ?

Exercice 7 (Série télescopique.)

- 1. Trouver une suite simple équivalente à la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=\frac{1}{n^2+3n+2}$. En déduire que la série $\sum_{n=0}^{\infty}u_n$ converge.
- 2. Prouver que pour tout n, il existe deux réels A et B que l'on déterminera, tels que :

$$u_n = \frac{A}{n+1} + \frac{B}{n+2}$$

3. En déduire la somme de la série $\sum u_n$.

2 Série de Fourier

Exercice 8

Soit k > 0.

Soit f une fonction impaire de période π définie par $f(t) = \begin{cases} k & \text{pour } t \in [0; \frac{\pi}{2}[\\ -k & \text{pour } t \in [\frac{\pi}{2}; \pi[$

Cette fonction vérifie-t-elle les conditions de Dirichlet?

Calculer ses coefficients de Fourier, et écrire sa série de Fourier.

Exercice 9 (Signal "dents de scie")

On considère la fonction f définie sur \mathbb{R} , de période 2π , telle que : f(t) = t si $t \in [-\pi; \pi[$ Soit a_n et b_n les coefficients de Fourier de cette fonction.

- 1. Représenter la fonction f sur l'intervalle $[-2\pi; 4\pi]$.
- 2. Justifier que, pour tout n, $a_n = 0$.
- 3. Prouver que pour tout entier n > 0, $b_n = \frac{2}{n}(-1)^{n+1}$.
- 4. Ecrire les cinq premiers termes de la série de Fourier associée à f.

Exercice 10 (« Redressement biphasé »)

On considère la fonction f définie sur \mathbb{R} par $f(t) = |\cos t|$.

Soit a_n et b_n les coefficients de Fourier de cette fonction.

- 1. Représenter la fonction f sur l'intervalle $[-2\pi; 4\pi]$.
- 2. Prouver que f est une fonction paire de période π .
- 3. Déterminer les valeurs des coefficients b_n .
- 4. Calculer la valeur moyenne de f sur une période.
- 5. Prouver que, pour n > 0, on a : $a_n = \frac{2}{\pi} \int_0^{\frac{\pi}{2}} \left[\cos((2n+1)t) + \cos((2n-1)t) \right]$ En déduire que $a_n = \frac{4(-1)^n}{\pi(1-4n^2)}$
- 6. Écrire les cinq premiers termes de la série de Fourier associée à f.

Exercice 11 (Quelques décompositions en séries de Fourier)

Déterminer les séries de Fourier (termes en sinus et cosinus) des fonctions suivantes :

- 1. La fonction 2π -périodique, paire, définie par $f(x) = 1 \frac{2x}{\pi}$ si $0 \le x \le \pi$.
- 2. La fonction créneau : f est 2π -périodique, définie par f(x)=1 si $x\in[0,\pi[$, et f(x)=-1 si $x\in[-\pi,0[$.
- 3. La fonction 2π -périodique, définie par $f(x) = \sin\left(\frac{x}{2}\right)$ si $x \in]-\pi,\pi]$. On rappelle que $\sin(a)\sin(b) = \frac{1}{2}\left(\cos\left(a-b\right) \cos(a+b)\right)$

Exercice 12 (Application aux calculs de séries)

Déterminer la série de Fourier de la fonction périodique de période 2π définie par $f(x)=x^2$ pour $-\pi \le x \le \pi$. En déduire la somme des séries $\sum_{n\ge 1} \frac{1}{n^2}, \sum_{n\ge 1} \frac{(-1)^{n+1}}{n^2}, \sum_{n\ge 1} \frac{1}{n^4}$.

Exercice 13 (Termes impairs)

Déterminer la série de Fourier de la fonction 2π -périodique définie sur $[-\pi, \pi]$ par f(x) = |x|. En déduire la valeur des sommes suivantes :

$$\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} \text{ et } \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^4}.$$

Exercice 14

Soit f la fonction périodique de période 2 vérifiant $f(x) = x - x^3$ pour tout $x \in]-1,1]$.

- 1. Déterminer les coefficients de Fourier de f.
- 2. En déduire la somme de la série $\sum_{p=0}^{+\infty} \frac{(-1)^p}{(2p+1)^3}$.

Exercice 15 (Dents de scie à front raide de valeur moyenne nulle.)

On considère la fonction f définie sur \mathbb{R} de période 2π , telle que : f(t) = t si $t \in [-\pi; +\pi[$. Soit a_n et b_n les coefficients de Fourier de cette fonction. On reprend les résultats de l'exercice 9.

- 1. En appliquant la formule de Parseval, montrer que $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.
- 2. Dessiner le spectre des fréquences de la fonction.

Exercice 16 (Dents de scie symétriques de valeur moyenne nulle) On considère la fonction f définie sur \mathbb{R} , impaire et de période 4, telle que : $\begin{cases} f(t) &= t \text{ si } t \in [0;1[;\\ f(t) &= -t+2 \text{ si } t \in [1;2[.\\ \end{cases}) \text{ Soit } a_n \text{ et } b_n \text{ les coefficients de Fourier de cette fonction.} \end{cases}$

- 1. Représenter la fonction f sur l'intervalle]-2;6].
- 2. Quelles sont les valeurs des coefficients a_n ?
- 3. Prouver que pour tout n > 0, $b_n = \frac{8}{n^2 \pi^2} \sin\left(\frac{n\pi}{2}\right)$.
- 4. Écrire les cinq premiers termes de la série de Fourier associée à f.
- 5. (a) La série de Fourier associée à f converge-t-elle vers f?
 - (b) En calculant f(1), prouver que : $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}$.
- 6. Dessiner le spectre des fréquences de la fonction.

Exercice 17

On considère la fonction f, paire, de période 2π définie par :

$$\begin{cases} f(t) &= -t + \frac{\pi}{2} \text{ si } t \in [0; \frac{\pi}{2}[; \\ f(t) &= 0 \text{ si } t \in [\frac{\pi}{2}; \pi[. \end{cases}]$$

- 1. Représenter la fonction f sur l'intervalle] $-2\pi; 4\pi$].
- 2. Calculer la valeur moyenne de f sur une période.
- 3. Calculer les coefficients de Fourier de f. Suivant les valeurs de n, donner les valeurs possibles de a_n (présenter les résultats dans un tableau).
- 4. Dessiner le spectre des fréquences de la fonction.
- 5. Prouver que la série de Fourier associée à f converge vers f.

On considère la série numérique

$$S = \frac{1}{1^2} + \frac{2}{2^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{2}{6^2} + \frac{1}{7^2} + \frac{1}{9^2} + \frac{2}{10^2} + \frac{1}{11^2} + \cdots$$

En étudiant f(0), donner la valeur de cette série.

- 6. On considère la fonction $g(t) = \frac{\pi}{8} + \frac{2}{\pi}\cos(t) + \frac{1}{\pi}\cos(2t)$.
 - (a) Montrer que g est paire, et de période 2π .
 - (b) Prouver que $g'(t) = \frac{-2}{\pi} \sin t (1 + 2\cos t)$.
 - (c) Dresser le tableau de variation de g sur l'intervalle $[0; \pi]$.
 - (d) Dessiner les courbes représentatives des fonctions f et g sur l'intervalle $[0; 2\pi]$

Exercice 18

1. Soit n un entier naturel non nul.

Cacluler à l'aide de deux intégrations par parties successives l'intégrale :

$$J = \int_0^{\pi} t(\pi - t) \cos(2nt) dt.$$

2. On considère la fonction u définie sur \mathbb{R} , de période π , définie par :

$$u(t) = t(\pi - t) \text{ si } t \in [0; \pi[$$

- (a) Montrer que u est paire et tracer sa représentation graphique sur $[-2\pi; 2\pi]$.
- (b) Montrer que f satisfait aux conditions de Dirichlet.
- (c) Calculer ses coefficients de Fourier et en déduire que pour tout réel t:

$$u(t) = \frac{\pi^2}{6} - \sum_{n=1}^{\infty} \frac{\cos(2nt)}{n^2}$$

3. n est un entier naturel non nul, justifier la convergence des séries numériques de terme général :

$$\frac{1}{n^2}$$
 ; $\frac{(-1)^n}{n^2}$; $\frac{1}{n^4}$

4. En utilisant le developpement de u en série de Fourier pour t=0 et $t=\frac{\pi}{2}$, déterminer :

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \qquad \text{et} \qquad \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}.$$

5. La valeur efficace u_e de la fonction u est telle que $(u_e)^2 = \frac{1}{\pi} \int_0^{\pi} u^2(t) dt$. Calculer u_e^2 .

La valeur efficace de la fonction u peut aussi s'exprimer à l'aide de la formule de Parseval :

$$u_e^2 = a_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} a_n^2.$$

Soit P le nombre défini par $P = a_0^2 + \frac{1}{2}(a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2)$.

Donner l'approximation de P à 10^{-3} par excès. Vérifier que $\frac{P}{n^2} > 0,999$.

6. En utilisant la formule de Parseval, calculer $\sum_{n=1}^{\infty} \frac{1}{n^4}$.

Exercice 19

1. Soit la fonction numérique g définie sur $[0; \pi]$ par

$$g(t) = (1 + \cos^2 t)\sin^2 t.$$

- (a) Montrer que $g'(t) = 4 \sin t \cos^3 t$.
- (b) En déduire les variations de q sur $[0; \pi]$.
- 2. Soit la fonction numérique f définie sur \mathbb{R} , paire, périodique de période 1 telle que :

$$\begin{cases} f(t) &= \frac{1}{2} - \tau & \text{si } 0 \leqslant t \leqslant \tau \\ f(t) &= -\tau & \text{si } \tau \leqslant t \leqslant \frac{1}{2} \end{cases}$$
 où τ est un nombre réel tel que $0 < \tau < \frac{1}{2}$

- (a) Uniquement dans cette question, on prendra $\tau = \frac{1}{6}$. Représenter la fonction f sur l'intervalle [-1; 1] dans un repère orthonormal.
- (b) On admet que la fonction f satisfait aux conditions de Dirichlet. Soit S le développement en série de Fourier associé à la fonction f.

Montrer que :

$$S(t) = \sum_{n=1}^{+\infty} \frac{1}{n\pi} \sin(2n\pi\tau) \cos(2n\pi t).$$

3. On décide de ne conserver que les harmoniques de rang inférieur ou égal à 2.

Soit la fonction numérique h définie sur \mathbb{R} par :

$$h(t) = \frac{1}{\pi} \sin(2\pi\tau) \cos(2\pi t) + \frac{1}{2\pi} \sin(4\pi\tau) \cos(4\pi t)$$

On désigne par E_h^2 le carré de la valeur efficace de h sur une période.

- (a) À l'aide de la formule de Parseval, déterminer E_h^2
- (b) Montrer que $E_h^2 = \frac{1}{2\pi^2} g(2\pi\tau)$.
- 4. Déterminer la valeur de τ rendant E_h^2 maximal.

Exercice 20

On désigne par α un nombre réel positif tel que $0 < \alpha < \frac{\pi}{2}$.

On considère la fonction f définie sur \mathbb{R} , paire, périodique de période 2π , telle que :

$$\begin{cases} f(t) &= 1 & \text{si } 0 \leqslant t \leqslant \alpha \\ f(t) &= 0 & \text{si } \alpha < t < \pi - \alpha \\ f(t) &= -1 & \text{si } \pi - \alpha \leqslant t \leqslant \pi \end{cases}$$

1. Dans cette question, le nombre réel α vaut $\frac{\pi}{3}$.

Dans un repère orthogonal, représenter graphiquement la fonction f sur l'intervalle $[-2\pi; 2\pi]$.

2. On appelle S la série de Fourier associée à la fonction f .

On note
$$S(t) = a_0 + \sum_{n=1}^{+\infty} (a_n \cos(nt) + b_n \sin(nt))$$

On note $S(t) = a_0 + \sum_{n=1}^{+\infty} (a_n \cos(nt) + b_n \sin(nt))$. Le but de cette question est de calculer les coefficients de la série de Fourier S pour une valeur x quelconque du nombre réel α tel que $0 < \alpha < \frac{\pi}{2}$.

- (a) Calculer a_0 , valeur moyenne de la fonction f sur une période.
- (b) Déterminer b_n , n désignant un nombre entier naturel strictement positif.
- (c) Montrer que, pour tout nombre entier naturel n strictement positif, on a :

$$a_n = \frac{2}{n\pi} [1 - (-1)^n] \sin(n\alpha).$$

- 3. Déterminer la valeur α_0 de α pour laquelle on $a_3=0$.
- 4. Pour toute la suite de l'exercice, on se place dans le cas où $\alpha = \frac{\pi}{2}$.

Rappels:

Si h désigne une fonction périodique de période T, le carré de la valeur efficace H de la fonction h sur une période est:

$$H^2 = \frac{1}{T} \int_r^{r+T} [h(t)]^2 dt.$$

r désignant un nombre réel quelconque.

- (a) Calculer F^2 , carré de la valeur efficace de la fonction f sur une période.
- (b) On définit sur \mathbb{R} la fonction g par :

$$g(t) = a_0 + a_1 \cos(t) + b_1 \sin t + a_2 \cos(2t) + b_2 \sin(2t).$$

Montrer que $g(t) = \frac{2\sqrt{3}}{\pi}\cos(t)$ pour tout nombre réel t.

- (c) Calculer G^2 , carré de la valeur efficace de la fonction g sur une période.
- (d) Donner une valeur approchée à 10^{-3} près du quotient $\frac{G^2}{F^2}$.

 $Ce\ dernier\ r\'esultat\ montre\ que\ la\ fonction\ g\ constitue\ une\ assez\ bonne\ approximation\ de\ la\ fonction\ f.$

Exercice 21

Dans ce problème, on approche un signal à l'aide d'une fonction affine par morceaux.

On désigne par E un nombre réel de l'intervalle]0; 3[.

On considère la fonction f définie sur \mathbb{R} , paire, périodique de **période 5**, telle que :

$$f(t) = \begin{cases} E \times t & \text{si} \quad 0 \le t < 1\\ (3 - E)t + 2E - 3 & \text{si} \quad 1 \le t < 2\\ 3 & \text{si} \quad 2 \le t \le \frac{5}{2} \end{cases}$$

Dans cette partie, et uniquement dans cette partie, on se place dans le cas où E=2.

- 1. Préciser l'écriture de f(t) sur chacun des intervalles $\left[0\,;\,1\right[,\,\left[1\,;\,2\right[$ et $\left[2\,;\,\frac{5}{2}\right].$
- 2. Représenter graphiquement la fonction f sur l'intervalle [-5; 10].

Dans cette partie, on se place dans le cas général, c'est-à-dire dans le cas où la valeur de E n'est pas spécifiée.

On appelle S la série de Fourier associée à la fonction f.

On note
$$S(t) = a_0 + \sum_{n=1}^{+\infty} \left(a_n \cos\left(\frac{2n\pi}{5}t\right) + b_n \sin\left(\frac{2n\pi}{5}t\right) \right).$$

- 1. Montrer que la valeur moyenne de la fonction f sur une période est $a_0 = 2\frac{E+3}{5}$.
- 2. Déterminer b_n pour tout entier naturel n supérieur ou égal à 1.
- 3. (a) Montrer que pour tout nombre entier naturel n supérieur ou égal à 1:

$$\int_0^1 t \cos\left(\frac{2n\pi}{5}t\right) dt = \frac{5}{2n\pi} \sin\left(\frac{2n\pi}{5}\right) + \frac{25}{4n^2\pi^2} \left(\cos\left(\frac{2n\pi}{5}\right) - 1\right).$$

(b) On a calculé les intégrales $\int_1^2 f(t) \cos\left(\frac{2n\pi}{5}t\right) dt$ et $\int_2^{\frac{5}{2}} f(t) \cos\left(\frac{2n\pi}{5}t\right) dt$. On a ainsi obtenu pour tout nombre entier naturel n supérieur ou égal à 1:

$$\int_0^{\frac{5}{2}} f(t) \cos \left(\frac{2n\pi}{5} t \right) dt = \frac{25}{4n^2\pi^2} \left((2E - 3) \cos \left(\frac{2n\pi}{5} \right) + (3 - E) \cos \left(\frac{4n\pi}{5} \right) - E \right).$$

En déduire que pour tout nombre entier naturel supérieur ou égal à $1\,$:

$$a_n = \frac{5}{n^2 \pi^2} \left((2E - 3) \cos \left(\frac{2n\pi}{5} \right) + (3 - E) \cos \left(\frac{4n\pi}{5} \right) - E \right).$$

- 4. Pour tout nombre entier naturel n supérieur ou égal à 1, on appelle u_n l'harmonique de rang n. On a alors $u_n(t) = a_n \cos\left(\frac{2n\pi}{5}t\right) + b_n \sin\left(\frac{2n\pi}{5}t\right)$ pour tout nombre réel t.
 - (a) Montrer qu'au rang 5, $u_5(t)$ est nul pour tout nombre réel t.
 - (b) On appelle E_0 la valeur de E pour laquelle l'harmonique de rang 3 est nulle, c'est-à-dire la valeur de E telle que $u_3(t)$ est nul pour tout nombre réel t.

Déterminer la valeur exacte, puis une valeur approchée à 10^{-2} près, de E_0 .

Dans ce problème, à l'aide d'un transformateur à diode, on approche un signal sinusoïdal redressé par une fonction affine par morceaux.

Un tel signal avec $u_3(t) = u_5(t) = 0$ permettra :

- s'il est associé à un moteur, de réduire les à-coups du couple
- s'il est associé à un transformateur, d'éviter les pertes
- s'il est associé à un filtre, d'éliminer plus facilement les harmoniques de rang impair d'ordre supérieur.