6.2 Fisher判别

Fisher 判别的基本思想是投影,即将表面上不易分类的数据通过投影到某个方向上,使得投影类与类之间得以分离的一种判别方法。

仅考虑两总体的情况,设两个p维总体为 X_1,X_2 ,且都有二阶矩存在。Fisher 的判别思想是变换多元观测x到一元观测y,使得由总体 X_1,X_2 产生的y尽可能的分离开来。

1.Fisher判别基本原理

设在p维的情况下,x的线性组合 $y=a^Tx$,其中a为p维实向量。设 X_1,X_2 的均值向量分别为 μ_1,μ_2 (均为p维),且有公共的协方差矩阵 Σ ($\Sigma>0$)。那么线性组合 $y=a^Tx$ 的均值为

$$\mu_{y_1} = E(y \mid y = a^T x, x \in X_1) = a^T \mu_1,$$

$$\mu_{y_2} = E(y \mid y = a^T x, x \in X_2) = a^T \mu_2,$$

其方差为

$$\sigma_{v}^{2} = \mathbf{Var}(y) = a^{T} \Sigma a,$$

1.Fisher判别基本原理

考虑比

$$\frac{(\mu_{y_1} - \mu_{y_2})^2}{\sigma_{y}^2} = \frac{[a^T(\mu_1 - \mu_2)]^2}{a^T \Sigma a} = \frac{(a^T \delta)^2}{a^T \Sigma a},$$

其中 $\delta = \mu_1 - \mu_2$ 为两总体均值向量差,根据 Fisher 的思想,我们要选择a使得上式达到最大。

1. Fisher判别基本原理

求
$$a$$
,使得 max $\frac{(\mu_{y_1} - \mu_{y_2})^2}{\sigma_y^2} = \frac{[a^T(\mu_1 - \mu_2)]^2}{a^T \Sigma a} = \frac{(a^T \delta)^2}{a^T \Sigma a}$

达到最大,其中 $\delta = \mu_1 - \mu_2$

定理 6.1 x 为 p 维随机变量,设 $y = a^T x$,当选取 $a = c \Sigma^{-1} \delta$, $c \neq 0$ 为常数时,上式达到最大。

特别当c=1时,线性函数 $a=\Sigma^{-1}\delta$

$$y = a^T x = (\mu_1 - \mu_2)^T \Sigma^{-1} x$$

称为 Fisher 线性判别函数。令

$$K = \frac{1}{2}(\mu_{y_1} + \mu_{y_2}) = \frac{1}{2}(a^T \mu_1 + a^T \mu_2) = \frac{1}{2}(\mu_1 - \mu_2)^T \Sigma^{-1}(\mu_1 + \mu_2).$$

定理 6.2 利用上面的记号,取 $a^T = (\mu_1 - \mu_2)^T \Sigma^{-1}$,则 $K = \frac{1}{2} (\mu_{y_1} + \mu_{y_2}) = \frac{1}{2} (a^T \mu_1 + a^T \mu_2) = \frac{1}{2} (\mu_1 - \mu_2)^T \Sigma^{-1} (\mu_1 + \mu_2).$ $\mu_{y_1} = a^T \mu_1$ $\mu_{y_2} = a^T \mu_2$

$$K = \frac{1}{2}(\mu_{y_1} + \mu_{y_2}) = \frac{1}{2}(a^T \mu_1 + a^T \mu_2) = \frac{1}{2}(\mu_1 - \mu_2)^T \Sigma^{-1}(\mu_1 + \mu_2).$$

 $\mu_{y_1} - K > 0$, $\mu_{y_2} - K < 0$.

由定理 6.1 得到如下的 Fisher 判别规则

$$\begin{cases} x \in X_1, \, \text{当}x使得(\mu_1 - \mu_2)^T \, \Sigma^{-1} x \ge K, \\ x \in X_2, \, \text{当}x使得(\mu_1 - \mu_2)^T \, \Sigma^{-1} x < K. \end{cases}$$

定义判别函数

$$W(x) = (\mu_1 - \mu_2)^T \Sigma^{-1} x - K = \left[x - \frac{1}{2} (\mu_1 + \mu_2) \right]^T \Sigma^{-1} (\mu_1 - \mu_2) \quad (10.34)$$

则判别规则可改写成

$$\begin{cases} x \in X_1, \, \text{当}x使得W(x) \ge 0, \\ x \in X_2, \, \text{当}x使得W(x) < 0. \end{cases}$$

当总体的参数未知时,用样本对 μ_1 , μ_2 及 Σ 进行估计,注意到这里的 Fisher 判别与距离判别一样不需要知道总体的分布类型,但两总体的均值向量必须有显著的差异才行,否则判别无意义。

2.Fisher判别的python计算

例 6.1 1989 年国际大学生数学建模竞赛 A 题: 朦虫分类) 朦虫是一种昆虫,分为很多类型,其中有一种名为 Af,是能传播花粉的益虫;另一种名为 Apf,是会传播疾病的害虫。这两种类型的朦虫在形态上十分相似,很难区别。现测得 9 只 Af 和 6 只 Apf 朦虫的触角长度和翅膀长度数据。

Af: (1.24,1.27), (1.36,1.74), (1.38,1.64), (1.38,1.82), (1.38,1.90), (1.40,1.70), (1.48,1.82), (1.54,1.82), (1.56,2.08);

Apf: (1.14,1.78), (1.18,1.96), (1.20,1.86), (1.26,2.00), (1.28,2.00), (1.30,1.96)。

若两类朦虫协方差矩阵相等, 试判别(1.24,1.80), (1.28,1.84)与(1.40,2.04)三只朦虫属于哪一类。

#程序文件 Pex6_3.py

import numpy as np

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA

```
x0=np.array([[1.24,1.27], [1.36,1.74], [1.38,1.64], [1.38,1.82], [1.38,1.90], [1.40,1.70],[1.48,1.82], [1.54,1.82], [1.56,2.08], [1.14,1.78], [1.18,1.96], [1.20,1.86], [1.26,2.00], [1.28,2.00], [1.30,1.96]]) # 输入已知样本数据 x=np.array([[1.24,1.80], [1.28,1.84], [1.40,2.04]]) # 输入待判样本点数据 y0=np.hstack([np.ones(9),2*np.ones(6)]) #y0 为已知样本数据的类别
```

```
clf = LDA()
clf.fit(x0, y0)
print("判别结果为: ",clf.predict(x))
print("已知样本的误判率为: ",1-clf.score(x0,y0))
```

程序运行结果如下:

判别结果为: [2. 2. 2.]

已知样本的误判率为: 0.0

例 6.2 从健康人群、硬化症患者和冠心病患者中分别随机选取 10 人、6 人和 4 人,考察了他们各自心电图的 5 个不同指标(记作 x_1, x_2, x_3, x_4, x_5) 如表 11.2 所示,试对两个待判样品作出判断。

序号	x_1	x_2	$\overline{x_3}$	x_4	x_5	类型
1	8.11	261.01	13.23	5.46	7.36	1
2	9.36	185.39	9.02	5.66	5.99	1
3	9.85	249.58	15.61	6.06	6.11	1
4	2.55	137.13	9.21	6.11	4.35	1
5	6.01	231.34	14.27	5.21	8.79	1
6	9.46	231.38	13.03	4.88	8.53	1
7	4.11	260.25	14.72	5.36	10.02	1
8	8.90	259.51	14.16	4.91	9.79	1
9	7.71	273.84	16.01	5.15	8.79	1
10	7.51	303.59	19.14	5.7	8.53	1
11	6.8	308.9	15.11	5.52	8.49	2
12	8.68	258.69	14.02	4.79	7.16	2
13	5.67	355.54	15.13	4.97	9.43	2
14	8.1	476.69	7.38	5.32	11.32	2
15	3.71	316.12	17.12	6.04	8.17	2
16	5.37	274.57	16.75	4.98	9.67	2
17	5.22	330.34	18.19	4.96	9.61	3
18	4.71	331.47	21.26	4.3	13.72	3
19	4.71	352.5	20.79	5.07	11	3
20	3.36	347.31	17.9	4.65	11.19	3
21	8.06	231.03	14.41	5.72	6.15	待判
22	9.89	409.42	19.47	5.19	10.49	待判

```
#程序文件 Pex6_4.py
    import pandas as pd
    from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
as LDA
    a=pd.read_excel("Pdata11_2.xlsx",header=None)
    b=a.values
    x0=b[:-2,1:-1].astype(float) # 提取已知样本点的观测值
    y0=b[:-2,-1].astype(int)
    x=b[-2:,1:-1] # 提取待判样本点的观察值
    clf = LDA()
    clf.fit(x0, y0)
    print(''判别结果为: '',clf.predict(x))
    print("已知样本的误判率为: ",1-clf.score(x0,y0))
```

程序运行结果如下:

判别结果为: [1 2]

已知样本的误判率为: 0.0

从上面例子可以看出, Fisher 线性判别法的效果比距离判别法的效果要好。