

h2oloo at TREC 2020: Deep Learning Track

Ronak Pradeep, Hang Cui, Ruizhou Xu, Rodrigo Nogueira, and Jimmy Lin

Slides adapted from Xinyu Zhang

h2oloo at TREC 2019

h2oloo at TREC 2020

Welcome T5

Pretraining Dataset C4 (Colossal Clean Cra

C4 (Colossal Clean Crawled Corpus)
Multitask Pretraining Mixture

How did we rank: Multi-Stage Ranking Expando-Mono-Duo-T5

Passages

How did we rank: (H₋₁) docT5query

Generated Queries (N = 2):

what is the weather in washington dc?
when is the hottest month in washington dc?

top-k sampling (k=10)

Transformer Decoder

Passage:

July is the hottest month in Washington DC with an average temperature of 27C (80F) and the coldest is January at 4C (38F) with the most daily sunshine hours at 9 in July. The wettest month is May with an average of 100mm of rain.

Expanded Passage:

July is the hottest month in Washington DC with an average temperature of 27C (80F) and the coldest is January at 4C (38F) with the most daily sunshine hours at 9 in July. The wettest month is May with an average of 100mm of rain.

what is the weather in washington dc? when is the hottest month in washington dc?

For the MS MARCO Passage Corpus, we generate N = 40 queries

Nogueira, Rodrigo, et al. "Document Expansion by Query Prediction." *arXiv:1904.08375* (2019).

Nogueira, Rodrigo, et al. "From doc2query to docTTTTTquery." (2019).

How did we rank: (H₀) Anserini Retriever

How did we rank: (H₀) Anserini Retriever

How did we rank: (H₁) monoT5

Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and Jimmy Lin. "Document Ranking with a Pretrained Sequence-to-Sequence Model." Findings of EMNLP 2020.

How did we rank: (H₂) duoT5

Results

Run	AP	NDCG@10	NDCG@1k	RR	R@1k	
(0) median	0.4413	0.6810	0.6631	0.8443	-	
(1) p_bm25	0.2856	0.4796	0.5830	0.6585	0.7863	
(2) p_bm25rm3	0.3019	0.4821	0.6046	0.6360	0.8217	
(3) p_d2q_bm25	0.4074	0.6187	0.6840	0.7326	0.8452	
(4) p_d2q_bm25rm3	0.4295	0.6172	0.7041	0.7424	0.8699	
(5) p_bm25rm3_duo	0.5355	0.7583	0.7387	0.8759	-	
(6) p_d2q_bm25_duo	0.5609	0.7837	0.7539	0.8798		
(7) p_d2q_rm3_duo	0.5643	0.7821	0.7732	0.8798		

Table 1: Results on TREC's Deep Learning 2020 Passage Ranking track.

NDCG@10 AP subtask neural RR (MS) RR NCG@1000 run group **PASH** 0.9147 0.8031 0.5445 pash_r3 rerank nnlm 0.3678 0.7056 **PASH** 0.3677 0.9023 0.5420 pash_r2 rerank nnlm 0.8011 0.7056 **PASH** pash_f3 fullrank nnlm 0.3506 0.8885 0.8005 0.7255 0.5504 **PASH** 0.3598 0.8699 0.7956 0.7209 0.5455 pash_f1 fullrank nnlm **PASH** pash_f2 fullrank nnlm 0.3603 0.8931 0.7941 0.7132 0.5389 0.3838 0.7837 p_d2q_bm25_duo h2oloo fullrank nnlm 0.8798 0.8035 0.5609 h2oloo 0.3795 0.8798 0.7821 0.8446 0.5643 p_d2q_rm3_duo fullrank nnlm p bm25rm3 duo h2oloo fullrank nnlm 0.3814 0.8759 0.7583 0.7939 0.5355 CoRT-electra **HSRM-LAVIS** 0.4039 0.8703 0.7566 0.8072 0.5399 fullrank nnlm **RMIT-Bart RMIT** 0.8447 0.5121 fullrank nnlm 0.3990 0.7536 0.7682 pash_r1 **PASH** rerank nnlm 0.3622 0.8675 0.7463 0.7056 0.4969 **NLE** NLE_pr3 fullrank nnlm 0.3691 0.8440 0.7458 0.8211 0.5245 pinganNLP2 pinganNLP rerank nnlm 0.3579 0.8602 0.7368 0.7056 0.4881 pinganNLP3 pinganNLP nnlm 0.3653 0.8586 0.7352 0.7056 0.4918 rerank 0.8593 0.4896 pinganNLP1 pinganNLP rerank nnlm 0.3553 0.7343 0.7056 **NLE** 0.3658 0.8454 0.7341 0.6938 0.5117 NLE_pr2 fullrank nnlm NLE_pr1 **NLE** fullrank nnlm 0.3634 0.8551 0.7325 0.6938 0.5050 0.7271 nvidia_ai_apps 0.3709 0.8691 0.7056 0.4899 rerank nnlm bigIR-BERT-R QU rerank nnlm 0.4040 0.8562 0.7201 0.7056 0.4845 fr_pass_roberta **BITEM** fullrank nnlm 0.3580 0.8769 0.7192 0.7982 0.4990 bigIR-DCT-T5-F QU 0.3540 0.8638 0.7173 0.8093 0.5004 fullrank nnlm **BITEM** 0.3701 0.8635 0.7169 0.7056 0.4823 rr-pass-roberta rerank nnlm bcai fullrank nnlm 0.3715 0.8453 0.7151 0.7990 0.4641 bcai_bertl_pass bigIR-T5-R QU 0.3574 0.7138 0.7056 0.4784 rerank nnlm 0.8668 nvidia_ai_apps 0.3560 0.8507 0.7113 0.7447 0.4866 fullrank nnlm bigIR-T5-BERT-F QU nnlm 0.3916 0.8478 0.7073 0.8393 0.5101 fullrank QU 0.3420 0.8579 0.5001 bigIR-T5xp-T5-F fullrank nnlm 0.7034 0.8393 nlm-ens-bst-2 **NLM** fullrank nnlm 0.3542 0.8203 0.6934 0.7190 0.4598 nlm-ens-bst-3 NLM fullrank nnlm 0.3195 0.8491 0.6803 0.7594 0.4526 **NLM** 0.7785 0.6721 0.7056 0.4341 nlm-bert-rr rerank 0.3699 nnlm 0.6662 relemb mlm 0 2 **UAmsterdam** rerank nnlm 0.2856 0.7677 0.7056 0.4350 NLM 0.3445 0.8603 0.6648 0.6927 0.4265 nlm-prfun-bert fullrank nnlm TUW-TK-Sparse TU_Vienna 0.3188 0.7970 0.6610 0.7056 0.4164 rerank nn TUW-TK-2Layer TU_Vienna rerank nn 0.3075 0.7654 0.6539 0.7056 0.4179 p_d2q_bm25 anserini fullrank nnlm 0.2757 0.7326 0.6187 0.8035 0.4074 p_d2q_bm25rm3 anserini fullrank nnlm 0.2848 0.7424 0.6172 0.8391 0.4295 0.3240 0.7386 0.6149 0.3760 bert 6 **UAmsterdam** rerank nnlm 0.7056 CoRT-bm25 0.8372 0.3611 **HSRM-LAVIS** fullrank nnlm 0.2201 0.5992 0.8072 nnlm 0.2412 0.8112 0.5926 0.6002 0.3308 CoRT-standalone **HSRM-LAVIS** fullrank

Documents

Documents: too long for these poor Transformers!

- 1. T5 can handle > 512 input tokens but pretrain/finetune step still use a maximum of 512 input tokens.
- 2. Running with arbitrarily long input sequences can be very computationally inefficient.

Our Solution: Sliding Window Segmentation! Use a window of size n_{length} sentences and a stride of n_{stride}

How did we rank: (H₋₁) docT5query

Segments: $\mathbf{e_1}$: $s_1 s_2 s_3 s_4$; $\mathbf{e_2}$: $s_3 s_4 s_5 s_6$; $\mathbf{e_3}$: $s_5 s_6 s_7$ Sliding Window Segmentation $n_{\text{length}} = 4 \text{ with } n_{\text{stride}} = 2$ Document: $s_1 s_2 s_3 s_4 s_5 s_6 s_7 s_8$ where s_1 is sentence j.

Expanded Document:

$$S_1 S_2 S_3 S_4 S_5 S_6 S_7 S_8 q_{1,1} q_{1,2} q_{2,1} q_{2,2} q_{3,1} q_{3,2}$$

For the MS MARCO Document Corpus, we generate N = 10 queries per segment.

Sliding Window Segmentation is performed with maximum length of n_{length} = 10 and strides of n_{stride} = 5.

How did we rank: (H₀) Anserini Retriever

How did we rank: (H₀) Anserini Retriever

How did we rank: (H₁) monoT5

How did we rank: (H₂) duoT5

Highest mono scoring segments of top- k_1 docs

Results

Run	AP	NDCG@10	NDCG@1k	RR	R@1k	
(0) median	0.3902	0.5733	0.5859	0.9444	-	
(1) d_bm25	0.3791	0.5271	0.5647	0.8521	0.6110	
(2) d_bm25rm3	0.4006	0.5248	0.5726	0.8541	0.6392	
(3) d_d2q_bm25	0.4230	0.5885	0.6115	0.9369	0.6412	
(4) d_d2q_bm25rm3	0.4228	0.5407	0.5902	0.8147	0.6555	
(5) d_bm25rm3_duo	0.5270	0.6794	0.6929	0.9476	-	
(6) d_d2q_bm25_duo	0.5422	0.6934	0.7089	0.9476		
(7) d_d2q_rm3_duo	0.5427	0.6900	0.7122	0.9476		

Table 2: Results on TREC's Deep Learning 2020 Document Ranking track.

run	group	subtask	neural	RR (MS)	RR	NDCG@10	NCG@100	AP
d_d2q_duo	h2oloo	fullrank	nnlm	0.4451	0.9476	0.6934	0.7718	0.5422
d_d2q_rm3_duo	h2oloo	fullrank	nnlm	0.4541	0.9476	0.6900	0.7769	0.5427
d_rm3_duo	h2oloo	fullrank	nnlm	0.4547	0.9476	0.6794	0.7498	0.5270
ICIP_run1	ICIP	rerank	nnlm	0.3898	0.9630	0.6623	0.6283	0.4333
ICIP_run3	ICIP	rerank	nnlm	0.4479	0.9667	0.6528	0.6283	0.4360
fr_doc_roberta	BITEM	fullrank	nnlm	0.3943	0.9365	0.6404	0.6806	0.4423
ICIP_run2	ICIP	rerank	nnlm	0.4081	0.9407	0.6322	0.6283	0.4206
roberta-large	BITEM	rerank	nnlm	0.3782	0.9185	0.6295	0.6283	0.4199
bcai_bertb_docv	bcai	fullrank	nnlm	0.4102	0.9259	0.6278	0.6604	0.4308
ndrm3-orc-full	MSAI	fullrank	nn	0.4369	0.9444	0.6249	0.6764	0.4280
ndrm3-orc-re	MSAI	rerank	nn	0.4451	0.9241	0.6217	0.6283	0.4194
ndrm3-full	MSAI	fullrank	nn	0.4213	0.9333	0.6162	0.6626	0.4069
ndrm3-re	MSAI	rerank	nn	0.4258	0.9333	0.6162	0.6283	0.4122
ndrm1-re	MSAI	rerank	nn	0.4427	0.9333	0.6161	0.6283	0.4150
mpii_run2	mpii	rerank	nnlm	0.3228	0.8833	0.6135	0.6283	0.4205
bigIR-DTH-T5-R	QU	rerank	nnlm	0.3235	0.9119	0.6031	0.6283	0.3936
mpii_run1	mpii	rerank	nnlm	0.3503	0.9000	0.6017	0.6283	0.4030
ndrm1-full	MSAI	fullrank	nn	0.4350	0.9333	0.5991	0.6280	0.3858
uob_runid3	UoB	rerank	nnlm	0.3294	0.9259	0.5949	0.6283	0.3948
bigIR-DTH-T5-F	QU	fullrank	nnlm	0.3184	0.8916	0.5907	0.6669	0.4259
d_d2q_bm25	anserini	fullrank	nnlm	0.3338	0.9369	0.5885	0.6752	0.4230
TUW-TKL-2k	TU_Vienna	rerank	nn	0.3683	0.9296	0.5852	0.6283	0.3810
bigIR-DH-T5-R	QU	rerank	nnlm	0.2877	0.8889	0.5846	0.6283	0.3842
uob_runid2	UoB	rerank	nnlm	0.3534	0.9100	0.5830	0.6283	0.3976
uogTrQCBMP	UoGTr	fullrank	nnlm	0.3521	0.8722	0.5791	0.6034	0.3752
uob_runid1	UoB	rerank	nnlm	0.3124	0.8852	0.5781	0.6283	0.3786
TUW-TKL-4k	TU_Vienna	rerank	nn	0.4097	0.9185	0.5749	0.6283	0.3749
bigIR-DH-T5-F	QU	fullrank	nnlm	0.2704	0.8902	0.5734	0.6669	0.4177

PyGaggle

- You too can replicate our results!
- Gaggle of Deep Neural Architectures for Text Ranking and Question Answering.
- Support for MS MARCO Passage/Document Retrieval as well as TREC-COVID.
- Find us at <u>pygaggle.ai</u>!

Thank you!