General Relativity HW2 Problems

1. Inspired by our example of the group of 2D rotations that carry the corners of a square into corners, consider the set of 2D rotations that carry the corners of an equilateral triangle into themselves. Develop a three-dimensional faithful representation of this group and list both the "vectors" that correspond to the states, as well as the matrix transformations between them.

Consider: $A = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $A = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ Actually we could just +broke of: = (%) = (%) Either was we need to find the elements of G= { I, R(1200), R(2400)} T = (1) and of course T(0) = (0), T(0) = (0), T(0) = (0)To find R(120°) we need: R(120°)(8)=(8), R(120°)(8)=(8), R(120°)(8)=(8) After some inspection we find: R(40°) = (00) works! Lastly we know R(270°) = R(120°) R(120°) = (00) and just cheeleing: R(2400)(%)=(%), R(2400)(%)=(%), R(2400)(%)=(%) To visualize this representation we can consider the triangle with each Vertex on a coordinate axis in 3D. The dD rotations we are doing .Axis correspond to spinning this triangle about the axis shown (which comes out "evenly" between >> x all of the coordinate axes). Note that we could have started with this picture, but then

getting the notrices would have been more challensing.

2. Show explicitly that the transformation matrix
$$\Lambda = \begin{pmatrix} \gamma & -\gamma \frac{v}{c} cos\phi & -\gamma \frac{v}{c} sin\phi & 0 \\ -\gamma \frac{v}{c} & \gamma cos\phi & \gamma sin\phi & 0 \\ 0 & -sin\phi & cos\phi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 where $\gamma = \frac{1}{\sqrt{1-\frac{v^2}{c^2}}}$ satisfies $\Lambda^T \eta \Lambda = \eta$. Describe what this transformation does in words.

$$\int \left(-8\frac{cy}{ny} + 2in^{2}\phi\right) \left(-8\frac{cy}{ny} + 8\frac{cy}{ny}\right) \cos^{2}\phi + 2in^{2}\phi$$

$$\int \left(-8\frac{cy}{ny} + 8\frac{cy}{ny} + 8$$

To figure out what transformations we are dealing with let's singlify:

$$\Lambda(\phi=0) = \begin{pmatrix} \chi - \chi^{2} & 0 & 0 \\ -\chi^{2} & \chi & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 which we recognize as a boost close x b, v (call +Lis Λ)

$$\Lambda(v=0) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\phi & \sin\phi & 0 \\ 0 & -\sin\phi & \cos\phi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 which is a rotation in X-y by ϕ (call this Λ_{Xy})

But order is importent, since $\Lambda_{tx}\Lambda_{xy} \neq \Lambda_{xy}\Lambda_{tx}$. Doing the multiplication we find the given Λ is obtained from $\Lambda = \Lambda_{tx}\Lambda_{xy}$, but when we act on a ul-vector of this, i.e. Λ V, we are actually acting w/ Λ_{xy} first, then Λ_{tx} . So this is a rotation by x in x-y followed by a boost of v along x.

Now that you have some familiarity with the Lorentz transformations you can use these to derive some classic results in special relativity. The following results can be derived using a simple boost transformation along the x axis. I know these are derived in many different texts, but try to do the following problems using what I give you in the problem itself and the explicit form of the boost transformation. My aim is to have you realize that from the perspective of 4D Lorentz transformations most of Special Relativity is quite straightforward even if counter-intuitive from the 3D perspective.

- 3. "Time-Dilation" A frame S' is moving with respect to frame S with a speed v along +x. Consider two events which in S have zero spatial separation, i.e. $\Delta x = \Delta y = \Delta z = 0$, but some nonzero Δt . These could be two ticks of a clock which is at rest in S, so we can call this Δt_{rest} . Note that in S' the clock will be moving along -x with speed v.
 - Determine the time interval between the two events as measured in S', i.e. $\Delta t'$.

It is important to note that all measurements can be made locally. In 5 we can stand right next to the clock and listen to its ticks. In 5' we can hear the first tick as the clock passes our position and then arrange for the clock to send a light pulse to us when it experiences its second tick. Using the fine that we receive the second pulse, combined with the known velocity of the clock and combined with C, we can calculate the time between pulses in 5' using only local information.

4. (Bonus Problem not to be covered on quiz) "Length-Contraction" A frame S' is moving with respect to frame S with a speed v along +x. Consider an object along x' which is at rest with respect to S', e.g. $|\Delta x'| = L_{rest}$. From the perspective of frame S, the object is moving along the x axis with a speed v and we an observer in S can make a measurement of its length by recording the time that the one end passes the origin and then the time when the other end passes the origin. This will yield a value Δt , i.e. a time interval in S. Using Δt and v an observer in S would calculate that $L = v\Delta t$. Thus the two events in S would have the coordinate separations $\Delta t = L/v$, $\Delta x = \Delta y = \Delta z = 0$. Use this to determine the corresponding length in the frame S', i.e. $L = \Delta x'$.

This one is a bit trickier because the quantity we are after (the spatial separation between the ends of an instant) is not something that us poor sub-luninal humans have easy access to.

Consider how we would measure the length in the rest frame of the stick. We would lay it down next to a ruler and then stand of one end and read it and then have to the other by disense

end and read it with the Note that nowing to the other end takes time (at \$0) but that is a key since expressioner

The stick is at rest so nothing is a changing.

Everything gets much trickies if the stick is nowing. If we tried to use a ruler, we would still have to move from one end to the other (to make local observations) but in this $\Delta t \neq 0$ the stick has moved! A better method is to look at one position $\Delta t = 0$ and time how long between when the first and of the stick passes and when the tail and passes to get a at. Knowing the velocity of the stick we can then compute $L = U\Delta t \Rightarrow \Delta t = U$

So, if the stick is at rest in 5' where

and in 5 we have data at, $\Delta x = 0 \Rightarrow \begin{pmatrix} cat \\ 0 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} cat \\ \Delta y' \\ \Delta y' \end{pmatrix} = \begin{pmatrix} x - 6x \\ 6x \\ 0 \end{pmatrix} = \begin{pmatrix} cyat \\ -6xcat \\ 0 \end{pmatrix}$

Then Dx'=-BYCOt = - 28c = - YL

Why this (-) sign?

- Liest 4=2

When I described neasuring List I noved from right to left, so ax' < 0. But length L is positive so Liest = -ax'.

So: L= Lrest and since 87/ this is length-contraction of moving objects.

I noved from right to left because when we do the observation in 5, we nearure when the right end passes first and when the left end passes second, i.e. right to left!

5. Three events **A,B,C** are seen by an observe O to occur in the order **ABC**. Another Observer O' sees the same three events occur in the order **CBA**. Is it possible that a third observer O' could see the events in the order **ACB**? Support your conclusions by drawing a spacetime diagram.

6. On a *ct-x* spacetime diagram, draw four events **A,B**, **C** and **D** such that **A** can cause **B** and **C**, **B** can cause **D** but not **C**, and **C** cannot cause **D**. Is such a situation possible in Galilean Relativity?

7. Prove that in special relativity
$$(\Lambda_0^0)^2 \ge 1$$
.

We know that
$$\Lambda^{7} n \Lambda = n$$
. If I write $\Lambda = \begin{pmatrix} \Lambda^{0'} & \Lambda^{0'} & \Lambda^{0'} & \Lambda^{0'} \\ \Lambda^{1'} & \Lambda^{1'} & \Lambda^{1'} & \Lambda^{1'} \\ \Lambda^{1'} & \Lambda^{2'} & \Lambda^{2'} & \Lambda^{2'} \\ \Lambda^{2'} & \Lambda^{2'} & \Lambda^{2'} & \Lambda^{2'} \\ \Lambda^{1'} & \Lambda^{2'} & \Lambda^{2'} & \Lambda^{2'} \\ \Lambda^{1'} & \Lambda^{2'} & \Lambda^{2'} & \Lambda^{2'} \\ \Lambda^{1'} & \Lambda^{2'} & \Lambda^{2'} & \Lambda^{2'} \\ \Lambda^{2'} & \Lambda^{2'}$

8. Consider objects N_{ij} and M^{ij} in 2D with components:

$$N_{11}=a, N_{12}=b, N_{21}=c, N_{22}=d$$

$$M^{11}=e, M^{12}=f, M^{21}=g, M^{22}=h$$
Evaluate the following using index notation:

- a) $N_{ij}M^{ki}$
- b) $N_{ij}M^{kj}$
- c) $N_{ii}M^{ji}$
- d) $N_{ij}M^{ij}$

For each of the above, rewrite and evaluate using matrix operations when possible.

a)
$$N_{11}M'' + N_{21}M'^{2} = ae + cf$$
 $N_{11}M'' + N_{21}M'^{2} = ae + cf$
 $N_{12}M^{2} + N_{21}M^{2} = ag + ch$

or $N^{T}M^{T} = \binom{ac}{ba}\binom{e}{f} = \binom{ae+cf}{ag+ch}$

labelled by $i^{K} = \binom{e+1}{gh}\binom{ab}{cd}$
 i^{C}
 $i^$

b)
$$N_{11}H^{11} + N_{12}H^{12} = ae + bf$$
 $N_{11}H^{21} + N_{12}H^{22} = ag + bh$ $N_{21}H^{11} + N_{22}H^{22} = cg + dh$

c)
$$N_1 h'' + N_{12} h^{2l} + N_{21} h''^2 + N_{22} h''^2 = ae + bg + cf + Jh$$

or $T_r(Nh) = T_r((ab X_{gh})) = T_r(ae + bg af + bh) = ae + bg + cf + Jh$

(ce + dg cf + Jh)