NL search for semantic web

First Progress Presentation

Lukas Kleine Büning Pichaya Kanjanapisith Yuchun Chen Venkat

Contents

- Look Back
- Architecture
- Identifying parts of speech
- Prototype Demo
- Roadmap

Look Back

• Problem:

- Searching in semantic sources requires special knowledge (SPARQL, ...)
- General users cannot gain any benefit from such data sources

Solution:

 Creation of an interface which translates natural language searches into semantic web queries to run against data pools like dbpedia.org

Milestones

- Identifies parts of speech in the given input.
- Converts given query into semantic web searchable queries.
- Gets information from semantic data sources.
- Converts the information from machine readable to human readable form.

Architecture

Stanford Part-Of-Speech Tagger

Assigns parts of speech to each word

```
What is the capital of Germany?
```

- Advantage:
 - Already well trained
- Disadvantage:
 - No determination of subject, predicate and object

Rasa NLU

NLU by own definition

What is the capital of Germany?

- Advantage:
 - Own defined determination
- Disadvantage:
 - o Requires training data

Rasa NLU & Core

- Define own catalog of questions for a specific topic
- Create training data for that catalog

Rasa Core as central component

Architecture

Prototype Demo

Roadmap

- Extending the catalog of questions.
- Implementing fallback Part of speech

- Identifies parts of speech in the given input.
- Converts given query into semantic web searchable queries.
- Gets information from semantic data sources.
- Converts the information from machine readable to human readable form.

Responsibilities

- Lukas Kleine Büning
 - o NLU
- Pichaya Kanjanapisith
 - Lookup, Indexing
- Yuchun Chen
 - Webinterface, Indexing
- Venkat
 - Indexing

Thank you for your attention!