Московский авиационный институт (национальный исследовательский университет)

Факультет информационных технологий и прикладной математики

Кафедра вычислительной математики и программирования

Лабораторная работа №2 по курсу «Искусственый интеллект(Машинное обучение)»

Студент: А.О. Дубинин

Преподаватель:

Группа: М8О-306Б

Дата:

Оценка: Подпись:

Лабораторная работа N2

Задача: Необходимо реализовать алгоритмы машинного обучения. Применить данные алгоритмы на наборы данных, подготовленных в первой лабораторной работе. Провести анализ полученных моделей, вычислить метрики классификатора. Произвести тюнинг параметров в случае необходимости. Сравнить полученные результаты с моделями реализованными в scikit-learn. Аналогично построить метрики классификации. Показать, что полученные модели не переобучились. Также необходимо сделать выводы о применимости данных моделей к вашей задаче.

- Логистическая регрессия
- KNN
- Дерево Решений
- Случайный лес

1 Логистическая Регрессия

Теория

Гипотиза логистической регрессии

Гипотиза линейной регрессии.

$$h(x) = \theta^T x$$

Применим sigmoid function, чтобы получить гипотизу для логистической регрессии.

$$h(x) = \sigma(\theta^T x) = \frac{1}{1 + e^{\theta^T x}}$$

Функция стоимости

$$cost(h(x), y) = -ylog(h(x)) - (1 - y)log(1 - h(x))$$

$$J(\theta) = \frac{1}{5} \sum_{i=1}^{m} [y^{i} log(h(x^{i})) + (1 - y^{i}) log(1 - h(x^{i}))]$$

Градиент

$$\frac{\delta J(\theta)}{\delta \theta_j} = \frac{1}{m} sum_{i=1}^m (h(x^i) - y^i) x_j^i$$

Результат работы

Собственная реализация:

My log reg:

Train:

accuracy: 0.7221876942200124 report:

	precision	recall	f1-score	support
0 1	0.67 0.76	0.68 0.75	0.67 0.76	1359 1859
accuracy macro avg weighted avg	0.72 0.72	0.72 0.72	0.72 0.72 0.72	3218 3218 3218

accuracy: 0.7419558359621451 report:

support	f1-score	recall	precision	
657 928	0.69 0.78	0.70 0.77	0.69 0.78	0 1
1585 1585 1585	0.74 0.73 0.74	0.74 0.74	0.73 0.74	accuracy macro avg weighted avg

Sklearn:

Scikit-learn:

Train:

accuracy: 0.7688004972032318

report:

	precision	recall	f1-score	support
0 1	0.72 0.81	0.74 0.79	0.73 0.80	1349 1869
accuracy macro avg weighted avg	0.76 0.77	0.76 0.77	0.77 0.76 0.77	3218 3218 3218

accuracy: 0.7753943217665615

report:

report:	precision	recall	f1-score	support
0 1	0.73 0.81	0.73 0.80	0.73 0.81	660 925
accuracy macro avg weighted avg	0.77 0.78	0.77 0.78	0.78 0.77 0.78	1585 1585 1585

2 Knn

Теория

- 1. Загрузить данные
- 2. Инициализировать k число соседей
- 3. Для каждого примера данных
 - (а) Рассчитаем расстояние между примером запроса и текущим примером по данным.
 - (b) Добавим расстояние и индекс примера в упорядоченную коллекцию.
- 4. Отсортируем упорядоченный набор расстояний и индексов от наименьшего к наибольшему (в порядке возрастания) по расстояниям.
- 5. Выберем первые К записей из отсортированной коллекции.
- 6. Получим лэйблы К записей.
- 7. Вернем наиболее встречающейся из К записей лэйбл.

Результат работы

Собственная реализация:

My knn:

Train:

accuracy: 0.6488502175264139

report:

	precision	recall	f1-score	support
0 1	0.18 1.00	1.00 0.62	0.31 0.76	251 2967
accuracy macro avg weighted avg	0.59 0.94	0.81 0.65	0.65 0.54 0.73	3218 3218 3218

Test:

accuracy: 0.6126182965299685

report:

support	f1-score	recall	precision	
102 1483	0.20 0.74	0.75 0.60	0.12 0.97	0 1
1585 1585 1585	0.61 0.47 0.71	0.68 0.61	0.54 0.92	accuracy macro avg weighted avg

Sklearn:

Scikit-learn:

Train:

accuracy: 0.7921068986948415

report:

	precision	recall	f1-score	support
0 1	0.77 0.81	0.75 0.82	0.76 0.82	1402 1816
accuracy macro avg weighted avg	0.79 0.79	0.79 0.79	0.79 0.79 0.79	3218 3218 3218

Test:

accuracy: 0.6971608832807571 report:

report:	precision	recall	f1-score	support
0 1	0.66 0.72	0.63 0.75	0.65 0.74	692 893
accuracy macro avg weighted avg	0.69 0.70	0.69 0.70	0.70 0.69 0.70	1585 1585 1585

3 Решающее дерево(CART)

Алгоритм

1. Посчитать индекс gini

Индекс Джини – это имя функции стоимости, используемой для оценки разбиений в наборе данных.

$$G = |1 - \sum_{k=2}^{n} (X_k - X_{k-1})(Y_k + Y_{k-1})|$$

- 2. Создать Сплит
 - (а) Разделение набора данных:

Разделение набора данных означает разделение набора данных на два списка строк с учетом индекса атрибута и значения разделения для этого атрибута.

Получив две группы, мы можем использовать приведенный выше показатель Джини для оценки стоимости разделения.

(b) Оценка всех разделений:

Проверяются значения каждого атрибута как разделение кандидатов, оценивается стоимость разделения и находится наилучшее возможное разделение, которое мы могли бы сделать.

Как только будет найдено лучшее разделение, оно используется в качестве узла в дереве решений.

- 3. Выборка делится на левую и правую часть.
- 4. Процедура повторяется рекурсивно к каждой из частей, пока энтропия не окажется равной нулю или очень малой величине.

Результат работы

Собственная реализация:

My ds:

Train:

accuracy: 0.7454940957116222 report:

Теротел	precision	recall	f1-score	support
0 1	0.77 0.73	0.68 0.81	0.72 0.77	1556 1662
accuracy macro avg weighted avg	0.75 0.75	0.74 0.75	0.75 0.74 0.74	3218 3218 3218

Test:

accuracy: 0.7299684542586751 report:

support	f1-score	recall	precision	·
760 825	0.70 0.75	0.66 0.80	0.75 0.72	0 1
1585 1585 1585	0.73 0.73 0.73	0.73 0.73	0.73 0.73	accuracy macro avg weighted avg

Sklearn:

Scikit-learn:

Train:

accuracy: 0.7454940957116222

report:

	precision	recall	f1-score	support
0 1	0.77 0.73	0.68 0.81	0.72 0.77	1556 1662
accuracy macro avg weighted avg	0.75 0.75	0.74 0.75	0.75 0.74 0.74	3218 3218 3218

Test:

accuracy: 0.7305993690851735

report:

report:	precision	recall	f1-score	support
0 1	0.75 0.72	0.66 0.80	0.70 0.76	761 824
accuracy macro avg weighted avg	0.73 0.73	0.73 0.73	0.73 0.73 0.73	1585 1585 1585

4 Случайный лес

Алгоритм

- 1. Сгенерируем случайную подвыборку с повторениями размером N из обучающей выборки.
- 2. Построим решающее дерево, классифицирующее образцы данной подвыборки, причём в ходе создания очередного узла дерева будем выбирать набор признаков, на основе которых производится разбиение (не из всех М признаков, а лишь из m случайно выбранных).
- 3. Дерево строится до полного исчерпания подвыборки и не подвергается процедуре прунинга (англ. pruning отсечение ветвей).

Результат работы

Собственная реализация:

My rf: Train:

accuracy: 0.6541330018645121

report:

•	precision	recall	f1-score	support
0 1	0.33 0.90	0.71 0.64	0.45 0.75	632 2586
accuracy macro avg weighted avg	0.61 0.79	0.68 0.65	0.65 0.60 0.69	3218 3218 3218

Test:

accuracy: 0.661198738170347

report:

терогс.	precision	recall	f1-score	support
0 1	0.32 0.91	0.72 0.65	0.44 0.76	299 1286
accuracy macro avg weighted avg	0.61 0.80	0.68 0.66	0.66 0.60 0.70	1585 1585 1585

Sklearn:

Scikit-learn:

Train:

accuracy: 0.6991920447482909 report:

. орол ст	precision	recall	f1-score	support
0 1	0.53 0.83	0.70 0.70	0.60 0.76	1047 2171
accuracy macro avg weighted avg	0.68 0.73	0.70 0.70	0.70 0.68 0.71	3218 3218 3218

Test:

accuracy: 0.7041009463722397 report:

-score suppo	f1-scor	recall	precision	
0.59 4 0.77 11		0.71 0.70	0.51 0.85	0 1
0.70 15 0.68 15 0.71 15	0.6	0.70 0.70	0.68 0.74	accuracy macro avg weighted avg

5 Выводы

Из-за того, что метрики на train выборке и test выборки сильно не отличались, можно сделать вывод, что модели не переобучились. Лучше всего для моей задачи классификации подходит алгоритм Решающего дерева.