2021 年计算机统考 408 真题与解析 -灰灰考研【精校版】

1. 已知头指针指向-	一个带头结点的非空鸟	单循环链表,结点结构	data next,其中 next
是指向直接后继结点	京的指针,p 是尾指针	,q 为临时指针。现要	删除该链表的第一个元
素,正确的语句序列	是 ()		
A. h→next=h→next	→next; q=h→next;	free (q);	
B. q=h→next; h→n	ext=h→next→next;	free (q);	
C. q=h→next: h→n	ext=q→next; if (p	! =q) p=h; free (q));
D. q=h→next: h→n	ext=q→next; if (p	==q) p=h; free (q);	
2. 已知初始为空的队	人列 Q 的一端仅能进	行入队操作,另外一端	既能进行入队操作又能
进行出队操作, 若 a	的入队序列是 1, 2, 3,	4,5,则不能得到的出	队序列是()
A. 5, 4, 3, 1, 2			
B. 5, 3, 1, 2, 4			
C. 4, 2, 1, 3, 5			
D. 4, 1, 3, 2, 5			
3. 已知二维数组 A	按行优先方法存储, 征	每个元素占用 1 个存	储单元, 若元素 A[0][0]
的存储地址是100, A	1[3][3]的存储地址是	₹ 220, 则元素 A[5][5]	的存储地址是()
A. 295	В. 300	C. 301	0. 306
4. 某森林 F 对应的二	二叉树为 T, 若 T 的先	上序遍历序列是 a, b, d,	c, e, g, f, 中序遍历序列
是 b, d, a, e, g, c, f, 5	则 F 中树的棵数是()	
A. 1	В. 2	C. 3	D. 4
5. 若某二叉树有5个	叶子结点,其权值分	别为 10, 12, 16, 21, 30.	则其最小的带权路径长
度(WPL)是()			
A. 89	В. 200	C. 208	D. 289
6. 给定平衡二叉树如	口下图所示,插入关键	字 23 后,根中的关键等	字是 ()
A. 16	В. 20	C. 23	D. 25
	(20		
	(16)	(30)	

7. 给定如下有向图, 该图的拓朴有序序列的个数是()

A. 1

B. 2

C. 3

D4

8. 使用 Di jkstra 算法求下图中从顶点 1 到其余各顶点的最短路径,将当前找到的从顶点 1 到顶点 2,3,4,5 的最短路径长度保存在数组 dist 中,求出第二条最短路径后, dist 中的内容更新为 ()

A. 26, 3, 14, 6

B. 25, 3, 14, 6

C. 21, 3, 14, 6

D. 15, 3, 14, 6

9. 在一棵高度为3的B树中,根为第1层,若第2层有4个关键字,则该树的结点个数最多是()

A. 11

B. 10

C. 9

D. 8

10. 设数组 S[] (93, 946, 372, 9, 146, 151, 301, 485, 236, 327, 43, 892) 采用最低位优先 (LSD) 基数排序将 S 排列成升序序列, 第 1 趟分配、收集后, 元素 372 之前, 之后紧邻的元素是()

A. 43, 892

B. 236, 301

C. 301, 892

D. 485, 301

11. 将关键字 6, 9, 1, 5, 8, 4, 7 依次插入到初	始为空的大根堆	計中,得到的Ⅱ是()
A. 9, 8, 7, 6, 5, 4, 1		
B. 9, 8, 7, 5, 6, 1, 4		
C. 9, 8, 7, 5, 6, 4, 1		
D. 9, 6, 7, 5, 8, 4, 1		
12. 2017 年公布的全球超级计算机 TOP500 打	非名中,我国"神	申威-太湖之光"超级计算机
蝉联第一, 其浮点运算速度为 93.0146 PF	LOPS, 说明该计算	算器每秒钟内完成的浮点捞
作次数为 ()		
A. 9. 3x10 ¹³ 次		
B. 9. 3x 10¹⁵次		
C. 9.3 千万亿次		
D. 9.3 亿亿次		
13. 已知带符号整数用补码表示。变量 X, Y	,Z 的机器数分	引为 FFFDH, FFDFH,
7FFCH, 下列结论中, 正确的是()		
A. 若 X, Y, Z 为无符号整数, 则 Z <x<y< td=""><td></td><td></td></x<y<>		
B. 若 X, Y, Z 为无符号整数, 则 X <y<z< td=""><td></td><td></td></y<z<>		
C. 若 X, Y, Z 为带符号整数, 则 X <y<z< td=""><td></td><td></td></y<z<>		
D. 若 X, Y, Z 为带符号整数, 则 Y <x<z< td=""><td></td><td></td></x<z<>		
14. 下列数值中,不能用 IEEE754 浮点格式料	青确表示的是()
A. 1. 2 B. 1. 25 C.	2.0 I	0. 2. 5
15. 某计算机的存储总线中有 24 位地址线积	印 32 位数据线,	安字编制,字长为32
位,若00 0000H~3F FFFFH为RAM区,则需要	要 512*8 位的 RA	M 芯片数为 ()
A. 8 B. 16 C.	32 I	0. 64
16. 若计算机主存地址为 32 位, 按字节编址	止,Cache 数据区	大小为 32KB, 主存块大小为
32B,采用直接映射方法和回写(Write Bac	k)策略,则 Cac	he 行的位数至少是()
A. 275 B. 274 C.	258 I). 257

17. 下列寄存器中, 汇编语言程序员可见的是()	
(1)指令寄存器	
(2) 微指令寄存器	
(3)基址寄存器	
(4)标志/状态寄存器	
A. (1) (2) B. (1) (4) C. (2) (4) D. (3) (4)	
18. 下列关于数据通路的叙述中, 错误的是()	
A. 数据通路包含 ALU 等组合逻辑(操作)元件	
B. 数据通路包含寄存器等时序逻辑(状态)元件	
C. 数据通路不包含用于异常事件检测及响应的电路	
D. 数据通路中的数据流动路径由控制信号进行控制	
19. 下列关于总线的叙述中, 错误的是 ()	
A. 总线是在两个或多个部件之间进行数据交换的传输介质	
B. 同步总线由时钟信号定时, 时钟频率不一定等于工作频率	
C. 异步总线由握手信号定时, 一次握手过程完成一位数据交换	
D. 突发(Burst)传送总线事务可以在总线上连续传送多个数据	
20. 下列选项中, 不属于 I/0 接口的是 ()	
A. 磁盘驱动器	
B. 打印机适配器	
C. 网络控制器	
D. 可编程中断控制器	
21. 异常事件在当前指令执行过程中进行检测,中断请求则在当前指令执行后进行	亍检
测。下列事件中,相应处理程序执行后,必须回到当前指令重新执行的是()	
A. 系统调用 B. 页缺失 C. DMA 传送结束 D. 打印机缺纸	
22. 下列是关于多重中断系统中CPU响应中断的叙述, 其中错误的是()	
A. 仅在用户态(执行用户程序)下, CPU才能检测和响应中断	
B. CPU只有在检测到中断请求信号后,才会进入中断响应周期	
C. 进入中断响应周期时, CPU一定处于中断允许(开中断)状态	
D. 若CPU检测到中断请求信号,则一定存在未被屏蔽的中断源请求信号	

23. 下列指令中, 只能在内	核态执行的是()
A. trap 指令	B. I/O 指令
C. 数据传送指令	D. 设置断点指令
24. 下列操作中,操作系统	充在创建新进程时,必须完成的是()
(1)申请空白的进程控制均	央
(2)初始化进程控制块	
(3)设置进程状态为执行和	
A. 仅(1)	
C. 仅(1)、(2)	
B. 仅(1)、(3)	
D. 仅(2)、(3)	
25. 下列内核的数据结构或	或程序中,分时系统实现时间片轮转调度需要使用的是()
(1)进程控制块	
(2)时钟中断处理程序	
(3)进程就绪队列	
(4)进程阻塞队列	
A. 仅(2)、(3)	
B. 仅(1)、(4)	
C. 仅(1)、(2)、(3)	
D. 仅(1)、(2)、(4)	
26. 某系统中磁盘的磁道	6数为 200 (0-199),磁头当前在 184 号磁道上。用户进程提
出的磁盘访问请求对应的]磁道号依改为 184, 187, 176, 182, 199, 若采用最短寻道时间
优先调度算法(SSTF)完	成磁盘访问,则磁头移动的距离(磁道数)是()
A. 37 B. 38	C. 41 D. 42
27. 下列事件中, 可能引走	己进程调度程序执行的是()
(1)中断处理结束	
(2)进程阻塞	
(3)进程执行结束	
(4)进程的时间片用完	
A. 仅(1)、(3)	

- B. 仅(2)、(4)
- C. 仅(3)、(4)
- D. (1)、(2)、(3)和(4)
- 28. 某请求分页存储系统的页大小为 4KB, 按字节编址。系统给进程 P 分配 2 个固定的 页框, 并采用改进型 Clock 置换算法, 进程 P 页表的部分内容如下表所示。

页号	页框号	存在位	访问位	修改位
皮皮灰画的	皮皮灰	1 存在, 0 不存在	1 访问, 0 未访问	1 修改,0 未修改
	•••	•••	•••	•••
2	20Н	0	0	0
3	60H	1	1	0
4	80H	1	1	1
•••	•••	•••	•••	•••

若 P 访问虚拟地址为 02A01H 的存储单元,则经地址变换后得到的物理地址是()
A. 00A01H	

- B. 20A01H
- C. 60A01H
- D. 80A01H
- 29. 在采用二级页表的分页系统中, CPU 页表基址寄存器中的内容是()
- A. 当前进程的一级页表的起始虚拟地址
- B. 当前进程的一级页表的起始物理地址
- C. 当前进程的二级页表的起始虚拟地址
- D. 当前进程的二级页表的起始物理地址
- 30. 若目录 dir 下有文件 filel, 则为删除该文件内核不必完成的工作是()
- A. 删除 filel 的快捷方式
- B. 释放 filel 的文件控制块
- C. 释放 filel 占用的磁盘空间
- D. 删除目录 dir 中与 filel 对应的目录项
- 31. 若系统中 n (n>=2) 个过程,每个进程均需使用某类临界资源 2 个,则系统不会发生死锁所需的该类资源总数至少是 ()

- 32. 下列选项中, 通过系统调用完成的操作是()
- A. 页置换
- B. 进程调度
- C. 创建新进程
- D. 生成随机整数
- 33. 在 TCP/IP 参考模型中, 由传输层相邻的下一层实现的主要功能()
- A. 对话管理
- B. 路由选择
- C. 端到端报文段传输
- D. 结点到结点流量控制
- 34. 若下图为一段差分曼彻斯特编码信号波形,则其编码的二进制位串是()

35. 现将一个 IP 网络划分为 3 个子网, 若其中一个子网是 192. 168. 9. 128/26, 则下列网络中,不可能是另外两个子网之一的是 ()

- A. 192. 168. 9. 0/25
- B. 192. 168. 9. 0/26
- C. 192, 168, 9, 192/26
- D. 192, 168, 9, 192/27
- 36. 若路由器向 MTU =800 B 的链路转发一个总长度为 1580B 的 IP 数据报(首部长度为 20B)时,进行了分片,且每个分片尽可能大,则第 2 个分片的总长度字段和 MF 标志位的值分别是()
- A. 796, 0
- B. 796, 1
- C. 800, 0
- D. 800, 1

37. 某网络中的所有路由器均采用距离向量路由算法计算路由。若路由器 E 与邻居路由器 A, B, C 和 D 之间的直接链路距离分别是 8, 10, 12 和 6, 且 E 收到邻居路由器的距离向量如下表所示,则路由器 E 更新后的到达目的网络 Net1-Net4 的距离分别是()

目的网络	A 的距离向量	B 的距离向量	C的距离向量	D 的距离向量
Net1皮	1	23	20	22
Net2皮	12	35	30	28
Net3 灰	24	18	16	36
Net4 灰	36	30	8	24

A. 9, 10, 12, 6

B. 9, 10, 28, 20 C. 9, 20, 12, 20

D. 9, 20, 28, 20

38. 若客户首先向服务器发送 FIN 段请求断开 TCP 连接, 则当客户收到的服务器发送的 FIN 段并向服务器发送 ACK 段后, TCP 状态转换为(

A. CLOSE_WAIT

B. TIME_WAIT

C.FIN WAIT 1

D. FIN_WAIT_2

39. 若大小为 12B 的应用层数据通过 1 个 UDP 和 1 个 TCP 段传输,则该 UDP 数据报和 TCP 段实现的有效载荷(应用层数据)最大传输效率()

A. 37. 5% 16. 7%

B. 37. 5% 37. 5%

C. 60. 0% 16. 7%

D. 60. 0% 37. 5%

40. 假设主机甲通过 TCP 向主机乙发送数据, 部分过程如下图所示。甲在 t0 时刻发送 了一个序号 seq=501, 封装 200 B 数据的段,在 t1 时刻收到乙发送的序号 seq=601、 确认序号 ack seq=501、接收窗口 revwnd=500 B 的段,则甲在未收到新的确认段之前 可以继续向乙发送的数据序号范围是()

A. 501-1000

B. 601-1100

C. 701-1000

D. 801-1100

2021 年 408 计算机统考真题-数据结构部分参考答案 B 站关注灰灰考研可查看视频解析

			—	
1. D	2. D	3. B	4. C	5. B
6. D	7. A	8. C	9. A	10. C
11. B				
	2021年408	计算机统考真	题-组成原理部	部分参考答

2021 年 408 计算机统考真题-组成原理部分参考答案 B 站关注灰灰考研可查看视频解析

 1. D
 2. D
 3. A
 4. C
 5. A

 6. D
 7. C
 8. C
 9. A
 10. B

 11. A

2021 年 408 计算机统考真题-操作系统部分参考答案 B 站关注灰灰考研可查看视频解析

1. B 2. B 3. C 4. C 5. D 6. C 7. B 8. A 9. C 10. C

2021 年 408 计算机统考真题-计算机网络部分参考答案 B 站关注灰灰考研可查看视频解析

 1. B
 2. A
 3. B
 4. B

 5. D
 6. B
 7. D
 8. C

41.【15分】已知无向连通图 G 由顶点集 V 和边集 E 组成, |E|>0, 当 G 中度为奇数的顶点个数为不大于 2 的偶数时, G 存在包含所有边且长度为|E|的路径(称为 EL 路径), 设圈 G 采用邻接矩阵存储, 类型定义如下:

Typedef struct { //图的定义

int numVertices, numEdges; //图中实际的顶点权和边数

char VerticesList[MAXV]: //顶点表, MAXV 为已定义常量

int Eege[MAXV][MAXV]: //邻接矩阵

): MGraph 请设计算法: int IsExistEL (MGraph G)

判断 G 否存在 EL 路径, 若存在, 则返回 1, 否则, 返回 0, 要求:

- (1) 给出算法的基本设计思想
- (2) 根据设计思想采用 C 或者 C++语言描述算法, 关键之处给出注择
- (3) 说明你所设计算法的时间复杂度和空间复杂度

解析【灰灰考研】:

题干已将存在 EL 路径的条件写明:

- -无向图为连通图
- -图中度为奇数的顶点个数为不大于 2 的偶数 (0 或者 2) 所以本题需要判断以上两点是否同时符合

作答【灰灰考研】:

DFS 判断图是否连通【非必须】:

- 1. 从顶点 v 出发, 访问顶点 v, 并令 visited[v]= 1。
- 2. 依次查找 v 的所有邻接点 w, 若 visited[w]为 0, 则从 w 出发, 深度优先遍历图。
- 3. 进行判断, 遍历 visited 数组, 若 visited 数组中有一个值不为 1, 则说明该点未被访问, 图不连通。 判断图中度为奇数的顶点个数是否为不大于 2 的偶数:
- 4. 遍历邻接矩阵的右上角, 计算每一个行有中 1 的个数, 为每个顶点的度存储到 Dnumber 数组中。
- 5. 遍历 Dnumber 数组, 判断有多少个奇数。

复杂度计算【灰灰考研】: 时间复杂度 0 (n²) 空间复杂度 0 (n)

这题为什么很多人包括材料哥都不会做呢 主要原因还是大家忽视了图的相关算法大意了,我没有学

```
void DFS(MGraph G,int[] visited, int v) {//DFS 適历图
    visited[v] = 1;
        judgeDFSCount ++;
        for(int i=0; i<G.numvertex; i++) {
            if(G.Eege[v][i] != 0 && visited[i] == 0){//寻找下一个有边的未访问结点
                        DFS(visited, i);
                                                                ② 灰灰霉研
 bool DFSGraph(MGraph G,int[] visited) {//判断图是否连通
          judgeDFSCount = 0: //记录遍历的点个数, 为全局变量
          bool flag = false;
          visited = new int[G.numvertex]://初始数组就是全 0
          DFS(visited, 0)://从 0 号结点开始
          if(judgeDFSCount == G.numvertex)(//如果遍历的点个数等于图的结点个数
                  flag = true://说明一次 DPS 遍历就搜索了所有的点。图为连通图
          return flag;
 bool JudgeGraphD(MGraph G)(//判断图中度为奇数的顶点个数是否为不大于 2 的偶数
      for(int i=0;i<G.numvertex;i++)(//遍历邻接矩阵
          for(int j=i;j<G.numvertex;j++){
              if(G.Eege[v][i]!=0){
                   Dnumber[i]++;
          1
      int tot:
      tot=0:
      for(int i=0;i<n;i++){
          if(Dnumber[i]%2!=0){
              tot++:
      bool flag = false;
      if(tot==0lltot==2){
          flag=true;
      return flag;
 }
 int IsExisEL(MGraph G){
          int flag:
          flag=false:
 //两种情况同时满足, 存在 EL 路径
          if(DFSGraph(MGraph G)==true&&JudgeGraphD(MGraph G)==true){
                  flag=true:
          return flag:
                                                                   之 灰灰岩研
```

42. 【8分】已知某排序算法如下

- (1) 若有 int a[]={25,-10,25,10,11,19}, b[6],则调用 cmpCountSort(a,b,6) 后数 组 b 中的内容是什么?
- (2) 若 a 中含有 n 个元素,则算法执行过程中,元素之间的比较次数是多少?
- (3) 该算法是否稳定?若是,则说明理由,否则,修改为稳定排序算法。

作答【灰灰考研】:

- (1) b[]={-10,10,11,19,25,25}
- (2)比较次数 n* (n-1)/2
- (3)不稳定, ai 小于 aj 时 aj 计数增加, 所以取等时是 ai 增加, i 小于 j 所以相等时较小的 i 的计数值更大, 在数组的更后面, 题目里面的那个 25 你跑一下就知道了, 排序后原本在前面的 25 在后面的 25 后面。修改就是加个等于号就行。

需要将程序中的 if 语句修改如下:

```
if (a[i] <= a[j]) count[j] ++;
else count[i] ++;</pre>
```

43. 【15 分】假定计算机 M 字长为 16 位,按字节编址,连接 CPU 和主存的系统总线中地址线为 20 位、数据线为 8 位,采用 16 位定长指令字,指令格式及其说明如下:

格式	6 位	2位	2位	2位	4位	指令功能或指令类型说明
R 型	000000 皮	rs	rt	rd	op1	R[rd]<-R[rs]op1 R [rt]
I 型	op2皮	rs	rt	ir	nm	含 ALU 运算,条件转移和访存操作
J型	0p3 灰	target			PC 的低 10 位<- target	

其中, opl-op3 为操作码, rs, rt 和 rd 为通用寄存器编号, R[r]表示寄存器 r 的内容, imm 为立即数, target 为转移目标的形式地址。请回答下列问题。

(1) ALU 的宽度是多少位?可寻址主存空间大小为多少字节?

指令寄存器、主存地址寄存器 (MAR) 和主存数据寄存器 (MDR) 分别应有多少位?

- (2) R型格式最多可定义多少种操作? I型和J型格式总共最多可定义多少种操作? 通用寄存器最多有多少个?
- (3) 假定 op1 为 0010 和 0011 时,分别表示带符号整数减法和带符号整数乘法指令,则指令 01B2H 的功能是什么(参考上述指令功能说明的格式进行描述)?若 1、2、3 号通用寄存器当前内容分别为 B052H, 0008H, 0020H, 则分别执行指令 01B2H 和 01B3H 后, 3 号通用寄存器内容各是什么?各自结果是否溢出?
- (4) 若采用 I 型格式的访存指令中, imm(偏移量)为带符号整数,则地址计算时应对 imm 进行零扩展还是符号扩展?
- (5) 无条件转移指令可以采用上述哪种指令格式?

作答【灰灰考研】:

- (1) ALU 的宽度为 16 位。可寻址主存空间大小为 2²0 字节(或 1MB),指令寄存器、MAR 和 MDR 各有 16 位、20 位和 8 位。
- (2) R型最多有 16 种操作。I型和J型总共最多有 63 种操作。通用寄存器最多有 4个。
- (3) 指令 01B2H= 000000 01 10 11 0010B,

其功能为R[3]<-R[1]-R[2]。

执行指令 01B2H 后, R[3]=B052H-0008H=B04AH; 结果不溢出;

执行指令 01B3H 后, R[3]= R[1]xR[2]= BOS2Hx0008H=8290H, 结果溢出。

- (4) 应对 imm 进行符号扩展。
- (5) 无条件转移指令可以采用 J 型格式。

- 44. 【8分】假设计算机 M 的主存地址为 24 位, 按字节编址, 采用分页存储管理方式, 虚拟地址为 30 位, 页大小为 4KB, TLB 采用 2 路组相联方式, 一共 8 组; 采用 LRU 替换策略
 - (1) 虚拟地址中有哪几位表示虚页号?哪几位表示内存地址?
- (2) 已知访问 TLB 时虚页号高位部分用作 TLB 标记, 低位部分用做 TLB 组号, M 的虚拟地址中哪几位是 TLB 标记?哪几位是 TLB 组号?
- (3) 假设 TLB 为空, 访问虚页号为 10、12、16、7、26、4、12、20, 在此过程中, 哪一个虚页号对应的 TLB 表项被替换, 说明理由。
- (4) 若 M 中虚拟地址位数增加 32 位,则 TLB 表项位数增加几位?

作答【灰灰考研】:

- (1) 页大小是 4KB, 因此页内地址是 12 位; 虚拟地址为 30 位, 所以页号是 18 位; 页大小是 4KB, 因此块内地址是 12 位; M 的主存地址为 24 位, 所以块号是 12 位;
- (2) TLB 标记 15 位 TLB 组号 3 位
- (3) 4 换 20。虚页号 4 对应的 TLB 表项被替换。因为虚页号与 TLB 组号的映射关系 为 TLB 组号=虚页号 mod TLB 组数=虚页号 mod 8,因此,虚页号 10,12,16,7,26,4,12,20 映射到的 TLB 组号依次为 2,4,0,7,2,4,4,4,TLB 采用 2 路组相联方式,从上述映射到的 TLB 组号序列可以看出,只有映射到 4 号组的虚页号数量大于 2,相应虚页号依次是 12,4,12 和 20,根据 LRU 替换策略,当访问第 20 页时,虚页号 4 对应的 TLB 表项被替换出来。
- (4) 地址改为 32 位, 虚页号增加了 32-20=2 位, 使得 TLB 表项加 2 位

45.【7分】下表给出了整型信号量 S 的 wait()和 signal()操作的功能描述,以及采用开/关中断指令实现信号量操作互斥的两种方法。

功能描述	方法 1	方法 2
Semaphore S;	Semaphore S;	Semaphore S;
wait (S) {	wait (S) {	wait (S) {
while $(S \le 0)$;	关中断;	
S =S-1;	while $(S \le 0)$;	关中断;
}	S= S-1;	while $(S \le 0)$ {
	开中断;	开中断;
灰灰考研	}	关中断;
3000 3 91	灰灰考研	S = S-1;
		于中断;
		}
signal (S) {	signal (S) {	signal (S) {
S = S+1;	关中断;	关中断;
}	S = S+1;	S=S+1;
	开中断;	开中断:
	}	}

请回答下列问题。

- (1) 为什么在 wait () 和 signal () 操作中对信号量 s 的访问必须互斥执行?
- (2) 分别说明方法1和方法2是否正确。若不正确,请说明理由。
- (3) 用户程序能否使用开/关中断指令实现临界区互斥? 为什么?

作答【灰灰考研】:

- (1) 因为信号量 S 是能够被多个进程共享的变量,多个进程都可以通过 wait ()和 signal ()对 S 进行读、写操作。所以,在 wait ()和 signal ()操作中对 S 的访问必须是互斥的。
- (2) 方法 1 是错误的。在 wait () 中, 当 S <=0 时, 关中断后, 其他进程无法修改 S 的值, while 语句陷入死循环。方法 2 是正确的。
- (3) 用户程序不能使用开/关中断指令实现临界区互斥。因为开中断和关中断指令都是特权指令。

- 46.【8 分】某计算机用硬盘作为启动盘,硬盘第一个扇区存放主引导记录,其中包含磁盘引导程序和分区表。磁盘引导程序用于选择要引导哪个分区的操作系统,分区表记录硬盘上各外区的位置等描述信息。硬盘被划分成若干个分区,每个分区的第一个扇区存放分区引导程序,用于引导该分区中的操作系统。系统采用多阶段引导方式,除了执行磁盘引导程序和分区引导程序外,还需要执行 ROM 中的引导程序。请回答下列问题。
- (1) 系统启动过程中操作系统的初始化程序、分区引导程序、ROM 中的引导程序、磁盘引导程序的执行顺序是什么?
- (2) 把硬盘制作为启动盘时,需要完成操作系统的安装、磁盘的物理格式化、逻辑格式化、对磁盘进行分区,执行这4个操作的正确顺序是什么?
- (3) 磁盘扇区的划分和文件系统根目录的建立分别是在第(2)问的哪个操作中完成的?

作答【灰灰考研】:

- (1) 执行顺序依次是 ROM 中的引导程序、磁盘引导程序、分区引导程序、操作系统的初始化程序。
- (2)4 个操作的执行顺序依次是磁盘的物理格式化、对磁盘进行分区、逻辑格式化、操作系统的安装。
- (3) 磁盘扇区的划分是在磁盘的物理格式化操作中完成的。文件系统根目录的建立 是在逻辑格式化操作中完成的。

47.【9分】某网络拓扑如题 47 图所示,以太网交换机 S 通过路由器 R 与 Internet 互联。路由器部分接口、本地域名服务器、H1,H2 的 IP 地址和 MAC 地址如图中所示。在 t0 时刻 H1 的 ARP 表和 S 的交换表均为空,H1 在此刻利用浏览器通过域名www.fury.com 请求访问 Web 服务器,在 t1 时刻(t1>t0)S 第一次收到了封装 HTTP请求报文的以太网帧,假设从 t0 到 t1 期间网络未发生任何与此次 Web 访问无关的网络通信。

- (1) 从 t0 到 t1 期间, H1 除了 HTTP 之外还运行了哪个应用层协议? 从应用层到数据链路层,该应用层协议报文是通过哪些协议进行逐层封装的?
- (2) 若S的交换表结构为〈MAC地址,端口〉,则t1时刻S交换表的内容是什么?
- (3) 从 t0 到 t1 期间, H2 至少会接收到几个与此次 Web 访问相关的帧?接收到的是什么帧?帧的目的 MAC 地址是什么?

【皮皮灰解答】

- (1)从t0到t1期间,H1除了HTTP之外还运行了DNS应用层协议:DNS报文从应用层到数据链路层,逐层封装关系是:DNS报文->UDP数据报->IP数据报->CSMA/CD帧。
- (2) S在t1时刻的交换表为

MAC 地址	端口
00-11-22-33-44-cc	4
00-11-22-33-44-bb	1
00-11-22-33-44-aa	2

(3) 2个,都是ARP广播帧,目的地址是FF-FF-FF-FF-FF