# Microscopic behavior for $\beta$ -ensembles: an "energy approach"

Thomas Leblé (joint with/under the supervision of) Sylvia Serfaty

Université Paris 6

BIRS workshop, 14 April 2016

Physical system: N particles  $\vec{X}_N = (x_1, \dots, x_N)$  in  $\mathbb{R}^d$  (d = 1, 2). Logarithmic pair interaction  $-\log|x - y| + \text{confining potential } NV(x)$ .

Energy in the state  $\vec{X}_N$ :

$$\mathcal{H}_N(\vec{X}_N) = \sum_{1 \leq i \neq j \leq N} -\log|x_i - x_j| + \sum_{i=1}^N NV(x_i)$$

V "strongly confining" ex.  $V(x) \ge (2+s) \log |x|$  for |x| large.

+ Mild regularity assumptions (see later).

 $\beta$  = "inverse temperature"

#### Canonical Gibbs measure

$$d\mathbb{P}_{N,eta}(\vec{X}_N) = rac{1}{Z_{N,eta}} \mathrm{exp}\left(-rac{eta}{2}\mathcal{H}_N(\vec{X}_N)
ight) d\vec{X}_N$$

 $Z_{N,\beta}$  = normalization constant = "partition function".

#### Physical motivation

- d = 2: Coulomb systems, fluid mechanics, Ginzburg-Landau.
- d = 1: Ground states of some quantum systems.
- Singular and long-range interaction.

### Random eigenvalues

#### Hermitian models.

- Gaussian ensembles: d = 1,  $\beta = 1, 2, 4$ , V quadratic.
- $\beta$ -ensembles: d = 1,  $\beta > 0$ , V quadratic (Dumitriu-Edelman)
- General  $\beta$ -ensemble: V arbitrary.

#### Non-Hermitian models

- Ginibre ensemble: d = 2,  $\beta = 2$ , V quadratic (Ginibre).
- Random normal matrix model: V arbitrary (Ameur-Hedenmalm-Makarov)

Wigner, Dyson '60 "Statistical Theory of the Energy Levels of Complex Systems"

Boutet de Monvel - Pastur - Shcherbina '95 "On the Statistical Mechanics Approach in the Random Matrix Theory"

# Macroscopic scale

#### Empirical measure

$$\mu_{N}(\vec{X}_{N}) := \frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i}}$$

Re-write the energy as  $(\triangle : diagonal)$ 

$$\mathcal{H}_N(\vec{X}_N) = N^2 \left( \iint_{\triangle^c} -\log|x-y| d\mu_N(x) d\mu_N(y) + \int V(x) d\mu_N(x) \right)$$

Minimizing  $\mathcal{H}_N$ ?

$$I_V(\mu) := \iint_{\mathbb{R}^d \times \mathbb{R}^d} -\log|x - y| d\mu(x) d\mu(y) + \int_{\mathbb{R}^d} V(x) d\mu(x)$$

(weighted logarithmic energy / "free entropy").



# Empirical measure behavior

#### Classical potential theory

Frostman, Choquet..

 $I_V$  is strictly convex on  $\mathcal{P}(\mathbb{R}^d)$ , unique minimizer  $\mu_{\mathrm{eq}}$  with compact support  $\Sigma$ .

Examples: semi-circle law (d = 1), circle law (d = 2). (V quadratic).

Theorem:  $\mu_{N}$  converges to  $\mu_{\mathrm{eq}}$  almost surely

#### Theorem (Large deviation principle)

The law of  $\{\mu_N\}$  obeys a Large Deviation Principle at speed  $N^2$  with rate function  $\frac{\beta}{2}(I_V - I_V(\mu_{\rm eq}))$ .

Ben Arous-Guionnet ('97), Ben Arous-Zeitouni ('98), Hiai-Petz ('98), Chafai-Gozlan-Zitt ('13)

### Comments on the macroscopic LDP

ullet For any test function  $\varphi$ 

$$\int arphi d\mu_{ extsf{N}} = \int arphi d\mu + o(1)$$
 with proba  $1 - \exp(- extsf{N}^2)$ 

• The equilibrium measure depends on V, not on  $\beta$ .



Figure:  $\beta = 400$ 



Figure:  $\beta = 5$ 

### Microscopic observable I

#### Non-averaged point process

Let  $z \in \mathring{\Sigma}$  be fixed.

$$C_{N,z}: \vec{X}_N \mapsto \sum_{i=1}^N \delta_{N^{1/d}(x_i-z)}.$$

Values in  $\mathcal{X}$ , the space of point configurations.

# Microscopic observable II

#### Empirical field

Let  $\Omega \subset \Sigma$  be fixed.

$$\overline{\mathcal{C}}_{N,\Omega} := rac{1}{|\Omega|} \int_{\Omega} \delta_{\mathcal{C}_{N,z}} dz$$

Values in  $\mathcal{P}(\mathcal{X})$ .

- $\Omega$  of size independent of N: macroscopic average.
- $\Omega$  of size  $N^{-\frac{1}{d}+\delta}$  mesoscopic average.

#### Rate function

#### Rate function

For m > 0, define a free energy functional on  $\mathcal{P}(\mathcal{X})$  by

$$\mathcal{F}^m_{eta}(P) := eta \mathbb{W}^{ ext{elec}}_m(P) + \mathbf{ent}[P|\Pi^m]$$

 $\mathbb{W}_m^{\text{elec}}(P)$  is an energy functional  $\mathbf{ent}[P|\Pi^m]$  is a relative entropy functional.

 $\Pi^m$  = Poisson point process.

Good rate function, affine.

# Large deviations for the empirical field

Assumptions:  $\Sigma$  is a  $C^1$  compact set, and  $\mu_{\rm eq}$  has Hölder density. To simplify, let us assume that  $\mu_{\rm eq}(x)=m$  over  $\Sigma$ .

#### Theorem

Let  $\Omega = ball$  of radius  $\varepsilon$  in d = 1, 2.

The law of the empirical field  $\overline{\mathcal{C}}_{N,\Omega}$  obeys a LDP at speed  $|\Omega|N$  with rate function  $\mathcal{F}^m_\beta$  — min  $\mathcal{F}^m_\beta$ .

Microscopic behavior after macroscopic average.

#### **Theorem**

True for mesoscopic average (i.e.  $\varepsilon = N^{-1/2+\delta}$ ), in dimension 2.

# Comments on the microscopic LDP

#### Corollary (Fluctuation bounds)

$$\int_{\Sigma} arphi d\mu_{N} = \int_{\Sigma} arphi d\mu_{ ext{eq}} + rac{O}{O} \left( \sqrt{rac{1}{N}} 
ight) \ ext{with proba} \ 1 - \exp(-N).$$

+ local laws (cf . Bauerschmidt-Bourgade-Nikula-Yau (d = 2))

- Empirical field concentrates on minimizers of  $\mathcal{F}_{\beta}$  with probability  $1 \exp(-N|\Omega|)$ .
- Minimizers of  $\mathcal{F}_{\beta}$  depend on m only through a scaling. The microscopic behavior is thus largely independent of V.
- "Explicit" order N term in log  $Z_{N,\beta}$  (cf. Shcherbina, Borot-Guionnet).

$$\left(1 - rac{eta}{2d}
ight) \int \mu_{
m eq}(x) \log \mu_{
m eq}(x) dx + \min \mathcal{F}_{eta}^1$$

Competition between energy and entropy terms.

### Non-averaged point processes

#### Corollary

The  $\mathrm{Sine}_{\beta}$  point processes of Valko-Virag are minimizers of  $\mathcal{F}_{\beta}$  for  $\beta > 0$ .

(Remark: so is Ginibre for  $\beta = 2$ )

#### Theorem (High-temperature)

Minimizers of  $\mathcal{F}_{\beta}$  tend (in entropy sense) to a Poisson point process as  $\beta \to 0$ .

Allez-Dumaz '14 : convergence of  $\mathrm{Sine}_{\beta}$  to  $\Pi^1$  (in law) as  $\beta \to 0$ .

#### Theorem (Low-temperature, d=1)

As  $\beta \to \infty$ , minimizers of  $\mathcal{F}_{\beta}$  converge in law to  $P_{\mathbb{Z}}$  (the stationary point process associated to  $\mathbb{Z}$ ).

Killip-Stoicu '09.

# Fluctuations (work in progress)

$$\operatorname{fluct}_{N} = N(\mu_{N} - \mu_{\operatorname{eq}}) = \sum_{i=1}^{N} \delta_{x_{i}} - N\mu_{\operatorname{eq}}, \ \operatorname{Fluct}_{N}[\varphi] := \int_{\mathbb{R}^{d}} \varphi \ d\operatorname{fluct}_{N}$$

d=2 Rider-Virag (Ginibre case), Ameur-Hedenmalm-Makarov (Random normal matrix model)

d=1 Johansson, Shcherbina, Borot-Guionnet.

### Theorem (CLT, d = 2, $\beta$ arbitrary)

For  $\varphi$  smooth enough (e.g.  $C_c^2$ ) and V smooth enough (e.g.  $C_c^4$ ), Fluct<sub>N</sub>[ $\varphi$ ] converges to a Gaussian random variable (mean and variance depend on  $\beta$ ). The random distribution fluct<sub>N</sub> converges to a Gaussian Free Field.

- + Moderate deviations bounds (à la BBNY).
- + Asymptotic independance of the fluctuations if  $\int \nabla \varphi_1 \cdot \nabla \varphi_2 = 0$
- + Berry-Esseen?

# Energy approach I - Splitting

 $V, \beta$  arbitrary, multi-cut welcome, "elementary" techniques.

#### First step: "Splitting"

$$\mathcal{H}_N(\vec{X}_N) = N^2 I_V(\mu_{\mathrm{eq}}) - \frac{N \log N}{d} + w_N(\vec{X}_N) + \zeta_N(\vec{X}_N)$$

- $I_V(\mu_{eq})$ : first-order energy.
- $\zeta_N$ : confining term
- $w_N$ : interaction energy of the new system

$$w_{N}(\vec{X}_{N}) = \iint_{(\mathbb{R}^{d} \times \mathbb{R}^{d}) \setminus \triangle} -\log|x - y| (d\nu'_{N} - d\mu'_{\text{eq}})^{\otimes 2}(x, y)$$

$$u_{\mathsf{N}}' = \sum_{i=1}^{\mathsf{N}} \delta_{\mathsf{N}^{1/d} \mathsf{x}_i} \text{ and } \mu_{\mathrm{eq}}^{'}(\mathsf{N}^{1/d} \mathsf{x}) = \mu_{\mathrm{eq}}(\mathsf{x}).$$



### Energy approach II - Electric fields

#### Second step: Electric fields

$$\mathsf{E}^{\mathrm{loc}}(x) := \int - \nabla (\log)(x-y) (d \nu_{\mathsf{N}}' - d \mu_{\mathrm{eq}}')(y)$$

with d=2 or d=1+1 (Cf. Stieltjes transform)

$$-{
m div}\left({\it E}^{
m loc}
ight)=2\pi\left(
u_{N}^{\prime}-d\mu_{
m eq}^{\prime}
ight)$$
 (Poisson equation)

$$w_N(\vec{X}_N) pprox rac{1}{2\pi} \int |E^{
m loc}|^2.$$

In fact (Sandier-Serfaty '12, Rougerie-Serfaty '13)

$$w_N(\vec{X}_N) = \frac{1}{2\pi} \lim_{\eta \to 0} \left( |E_\eta^{\mathrm{loc}}|^2 + 2\pi N \log \eta \right).$$

# Energy approach III - Is it the right thing?

#### Third step: controlling the energy

- "Abstract" lower bound  $w_N \ge -CN$ .
- "By hand" construction  $w_N \leq CN$  for a non-tiny volume of configurations.

It implies that

$$\int_{\mathbb{R}^2} |E^{ ext{loc}}|^2 = O( extit{N})$$
 with proba  $1 - \exp(- extit{N})$ 

### Using it!

$$H^{ ext{loc}} := \int -\log|x-y| (d
u'_{N} - d\mu'_{ ext{eq}})(y)$$
 (electric potential)

#### **Fluctuations**

$$\operatorname{Fluct}_{\mathsf{N}}[\varphi] = \int_{\mathbb{R}^2} \varphi \Delta H^{\operatorname{loc}} = \int_{\mathbb{R}^2} \nabla \varphi \cdot E^{\operatorname{loc}} \leq \|\nabla \varphi\|_{L^2} \sqrt{\mathsf{N}}$$

#### Discrepancy

$$D_R:=\int_{B(0,R)}1(d
u_N'-d\mu_{\mathrm{eq}}^{'})=\int_{B(0,R)}\Delta H^{\mathrm{loc}}=\int_{\partial B(0,R)}E^{\mathrm{loc}}\cdot ec{n}.$$

Mean value theorem + a priori bounds  $\Longrightarrow$  control on the discrepancy.

$$\min\left(\frac{D_R^3}{R^d}, D_R^2\right) \le \int_{B(0,2R)} |E^{\mathrm{loc}}|^2$$

# Infinite-volume objects: Energy I

#### Energy of a field

d = 2

$$\mathcal{W}(E) := \limsup_{R \to \infty} \frac{1}{|C_R|} \int_{C_R} |E|^2$$

d = 1 (dimension extension)

$$\mathcal{W}(E) := \limsup_{R \to \infty} \frac{1}{R} \int_{[-R/2, R/2] \times \mathbb{R}} |E|^2$$

#### Energy of a point configuration

$$\mathbb{W}(\mathcal{C}) = \inf \mathcal{W}(E),$$

among "compatible" E satisfying the associated Poisson equation

$$\operatorname{div} E = 2\pi \left( \mathcal{C} - \mathsf{background} \right)$$



### Infinite-volume objects: Energy II

"Electric" energy of a random point process P

$$\mathbb{W}^{\mathrm{elec}}(P) := \mathbf{E}_P[\mathbb{W}(\mathcal{C})]$$

Using it? Discrepancy estimates:

$$\mathbf{E}_P[D_R^2] \le C(C + \mathbb{W}^{\text{elec}}(P))R^d$$

+ Markov's  $\longrightarrow P(D_R \approx R^d) \le \frac{1}{R^d}$ .

*Versus* exponential tails for  $Sine_{\beta}$  (Holcomb-Valko), predictions of physicists (Jancovici-Lebowitz-Manificat)...

# Infinite-volume objects: Energy III

A more explicit formulation? Inspired by Borodin-Serfaty. For stationary random point processes P, define

$$\mathbb{W}^{\text{int}}(P) := \liminf_{R \to \infty} \frac{1}{R^d} \int_{[-R,R]^d} -\log |v| (\rho_{2,P}(v) - 1) \prod_{i=1}^d (R - |v_i|) dv,$$

$$\mathcal{D}^{\log}(P) := C \limsup_{R o \infty} \left( rac{1}{R^d} \iint_{C_R^2} (
ho_{2,P}(x,y) - 1) dx dy + 1 
ight) \log R,$$

#### **Theorem**

- $oldsymbol{0}$  (d=1)  $\mathbb{W}^{\mathrm{elec}}$  is the l.s.c. regularization of  $\mathbb{W}^{\mathrm{int}}+\mathcal{D}^{\mathrm{log}}$
- 2 (d=2) Welec  $\leq$  Wint  $+ \mathcal{D}^{\log}$ .

### Infinite-volume objects: Entropy I

P stationary random point process, we define

$$\mathbf{ent}[P|\Pi] = \lim_{R \to \infty} \frac{1}{R^d} \mathrm{Ent}[P_R|\Pi_R]$$

 $P_R$ ,  $\Pi_R$  = restrictions to  $[-R/2, R/2]^d$ .

"Specific relative entropy". **ent** $[\cdot|\Pi]$  is lower semi-continuous, non-negative, and has its only zero at  $\Pi$ . It is **affine**.

Computable in some cases: renewal processes in 1d, periodic processes...

# Infinite-volume objects: Entropy II

Occurs in "Sanov-like" large deviation principle for empirical fields **without interaction**.

$$\lim_{\varepsilon \to 0} \lim_{R \to \infty} \frac{1}{|C_R|} \log \Pi_{C_R} (\text{Empirical field } \in B(P, \varepsilon)) = -\mathbf{ent}[P|\Pi]$$

Föllmer, Föllmer-Orey, Georgii-Zessin

Analogous to Sanov's theorem for empirical measure of i.i.d samples.

"Process-level/type III LDP"

# Scheme of the proof I : Setting of a LDP

d=2, V quadratic.  $\mu_{\mathrm{eq}}=\frac{1}{\pi}dx$  on unit disk D(0,1). Empirical field  $\bar{\mathcal{C}}_N$  averaged on D(0,1). Let  $P\in\mathcal{P}(\mathcal{X})$ .

$$\mathbb{P}_{N,\beta}(\bar{\mathcal{C}}_N \in B(P,\varepsilon)) = \frac{1}{Z_{N,\beta}} \int_{\bar{\mathcal{C}}_N \in B(P,\varepsilon)} \exp(-\beta \mathcal{H}_N(\vec{X}_N)) d\vec{X}_N$$

$$\approx \frac{1}{K_{N,\beta}} \int_{\bar{\mathcal{C}}_N \in B(P,\varepsilon)} \exp(-\beta w_N(\vec{X}_N)) \mathbf{1}_{D(0,1)^N}(\vec{X}_N) d\vec{X}_N$$

We used the splitting  $\mathcal{H}_N(\vec{X}_N) = N^2 I(\mu_{\mathrm{eq}}) - \frac{N \log N}{2} + w_N(\vec{X}_N) + \zeta_N(\vec{X}_N)$ 

### Scheme of the proof II: Ideal case

If 
$$\bar{\mathcal{C}}_N \approx P \Longrightarrow w_N(\vec{X}_N) \approx N \mathbb{W}^{\mathrm{elec}}(P)$$

$$\frac{1}{K_{N,\beta}} \int_{\bar{\mathcal{C}}_N \in \mathcal{B}(P,\varepsilon)} \exp(-\beta w_N(\vec{X}_N)) \mathbf{1}_{D(0,1)^N}(\vec{X}_N) d\vec{X}_N$$

$$\approx \frac{1}{K_{N,\beta}} \exp(-\beta N \mathbb{W}^{\mathrm{elec}}(P)) \int_{\bar{\mathcal{C}}_N \in \mathcal{B}(P,\varepsilon)} \mathbf{1}_{D(0,1)^N}(\vec{X}_N) d\vec{X}_N.$$

+ plug in the LDP for empirical fields without interaction.

### Scheme of the proof - III: Tools

Lower bound on the energy

$$\bar{\mathcal{C}}_{N} pprox P \Longrightarrow w_{N}(\vec{X}_{N}) \geq N \mathbb{W}^{\mathrm{elec}}(P)$$

"Two-scale Γ-convergence approach" (Sandier-Serfaty) Elementary abstract functional analysis.

- LDP for empirical fields without interaction
- Upper bound constructions?

# Scheme of the proof - IV : construction

Want a volume  $\exp(-N\mathbf{ent}[P|\Pi^1])$  of configurations  $\vec{X}_N$  s.t.

- Empirical field  $\bar{\mathcal{C}}_N \approx P$
- **②** Energy upper bound  $w_N(\vec{X}_N) \leq N \mathbb{W}^{\text{elec}}(P) + o(N)$

What is the strategy?

- Generating microstates: Lower bound of Sanov-like result yields a volume  $\exp\left(-N\mathbf{ent}[P|\Pi^1]\right)$  of microstates  $\{\vec{X}_N\}$  s.t.  $\bar{\mathcal{C}}_N\approx P$ .
- Screening
- Regularization

# Other settings

- Different pair interaction  $g(x y) = \frac{1}{|x y|^s}$  (Riesz gases)
- Two-component plasma (L.-Serfaty-Zeitouni)

#### Could be applied to:

- Laguerre, Jacobi, Circular Unitary ensemble?
- Zeroes of random polynomials?

### Open problems

- Edge case?
- Low-temperature behavior for  $d \ge 2$ ? Crystallization conjecture.
- Limiting point processes for d=2,  $\beta \neq 2$  ("Ginibre- $\beta$ ")?
- Uniqueness of minimizers for  $\mathcal{F}_{\beta}$  vs. phase transition?
- Description of minimizers (DLR theory)? Rigidity of minimizers?
- Phase diagram? Liquid/solid transition at finite  $\beta$  for two-dimensional  $\beta$ -ensemble? (Brush-Sahlin-Teller '66, Hansen-Pollock '73, Caillol-Levesque-Weis-Hansen '82 . . . ).

Thank you for your attention!