PROJECT OVERVIEW AND KEY LEARNING OUTCOMES

PROJECT OVERVIEW

- We will analyze cryptocurrency prices and daily returns such Bitcoin (BTC), Ethereum (ETH), Litecoin (LTC), Cardano (ADA) and Ripple (XRP) using Matplotlib and Seaborn libraries in AWS SageMaker Studio.
- Cryptocurrency is a decentralized digital currency that uses cryptography to secure transactions and do not have a centralized issuing authority (Government or banks).
- We will also analyze cancer datasets in AWS SageMaker Studio.
- We will learn how to:
 - 1. Perform data visualization using Seaborn and Matplotlib libraries
 - 2. Plot single line plot
 - 3. Plot pie charts
 - 4. Plot multiple subplots
 - 5. Plot pairplot and countplot using Seaborn
 - 6. Plot correlations and heatmaps
 - 7. Plot distribution plot (distplot)
 - 8. Plot Histograms
 - 9. Plot Scatterplots

PROJECT OVERVIEW: DATASET #1

CRYPTOCURRENCY PRICES

	Date	BTC-USD Price	ETH-USD Price	LTC-USD Price
0	9/17/2014	457.334015	NaN	5.058550
1	9/18/2014	424.440002	NaN	4.685230
2	9/19/2014	394.795990	NaN	4.327770
3	9/20/2014	408.903992	NaN	4.286440
4	9/21/2014	398.821014	NaN	4.245920
2380	3/28/2021	55950.746090	1691.355957	185.028488
2381	3/29/2021	57750.199220	1819.684937	194.474777
2382	3/30/2021	58917.691410	1846.033691	196.682098
2383	3/31/2021	58918.832030	1918.362061	197.499100
2384	4/1/2021	59095.808590	1977.276855	204.112518

PROJECT OVERVIEW: DATASET #2

CRYPTOCURRENCY RETURNS

	Date	втс	ETH	LTC
0	9/17/2014	0.000000	0.000000	0.000000
1	9/18/2014	-7.192558	NaN	-7.379983
2	9/19/2014	-6.984264	NaN	-7.629499
3	9/20/2014	3.573492	NaN	-0.955003
4	9/21/2014	-2.465854	NaN	-0.945300
2380	3/28/2021	-0.040672	-1.464535	0.107149
2381	3/29/2021	3.216138	7.587343	5.105316
2382	3/30/2021	2.021625	1.447984	1.135017
2383	3/31/2021	0.001936	3.918042	0.415392
2384	4/1/2021	0.300374	3.071099	3.348582

PROJECT OVERVIEW: DATASET #3

BREAST CANCER DATASETS

mean concavity	mean concave points	mean symmetry	mean fractal dimension	 worst texture	worst perimeter	worst area	worst smoothness	worst compactness	worst concavity	worst concave points	worst symmetry	worst fractal dimension	target
0.30010	0.14710	0.2419	0.07871	 17.33	184.60	2019.0	0.1622	0.6656	0.71190	0.26540	0.4601	0.11890	0
0.08690	0.07017	0.1812	0.05667	 23.41	158.80	1956.0	0.1238	0.1866	0.24160	0.18600	0.2750	0.08902	0
0.19740	0.12790	0.2069	0.05999	 25.53	152.50	1709.0	0.1444	0.4245	0.45040	0.24300	0.3613	0.08758	0
0.24140	0.10520	0.2597	0.09744	 26.50	98.87	567.7	0.2098	0.8663	0.68690	0.25750	0.6638	0.17300	0
0.19800	0.10430	0.1809	0.05883	 16.67	152.20	1575.0	0.1374	0.2050	0.40000	0.16250	0.2364	0.07678	0
0.15780	0.08089	0.2087	0.07613	 23.75	103.40	741.6	0.1791	0.5249	0.53550	0.17410	0.3985	0.12440	0
0.11270	0.07400	0.1794	0.05742	 27.66	153.20	1606.0	0.1442	0.2576	0.37840	0.19320	0.3063	0.08368	0
0.09366	0.05985	0.2196	0.07451	 28.14	110.60	897.0	0.1654	0.3682	0.26780	0.15560	0.3196	0.11510	0
0.18590	0.09353	0.2350	0.07389	 30.73	106.20	739.3	0.1703	0.5401	0.53900	0.20600	0.4378	0.10720	0
0.22730	0.08543	0.2030	0.08243	 40.68	97.65	711.4	0.1853	1.0580	1.10500	0.22100	0.4366	0.20750	0
0.03299	0.03323	0.1528	0.05697	 33.88	123.80	1150.0	0.1181	0.1551	0.14590	0.09975	0.2948	0.08452	0
0.09954	0.06606	0.1842	0.06082	 27.28	136.50	1299.0	0.1396	0.5609	0.39650	0.18100	0.3792	0.10480	0
0.20650	0.11180	0.2397	0.07800	 29.94	151.70	1332.0	0.1037	0.3903	0.36390	0.17670	0.3176	0.10230	0
0.09938	0.05364	0.1847	0.05338	 27.66	112.00	876.5	0.1131	0.1924	0.23220	0.11190	0.2809	0.06287	0
0.21280	0.08025	0.2069	0.07682	 32.01	108.80	697.7	0.1651	0.7725	0.69430	0.22080	0.3596	0.14310	0
0.16390	0.07364	0.2303	0.07077	 37.13	124.10	943.2	0.1678	0.6577	0.70260	0.17120	0.4218	0.13410	0
0.07395	0.05259	0.1586	0.05922	 30.88	123.40	1138.0	0.1464	0.1871	0.29140	0.16090	0.3029	0.08216	0
0.17220	0.10280	0.2164	0.07356	 31.48	136.80	1315.0	0.1789	0.4233	0.47840	0.20730	0.3706	0.11420	0
0.14790	0.09498	0.1582	0.05395	 30.88	186.80	2398.0	0.1512	0.3150	0.53720	0.23880	0.2768	0.07615	0
0.06664	0.04781	0.1885	0.05766	 19.26	99.70	711.2	0.1440	0.1773	0.23900	0.12880	0.2977	0.07259	1
0.04568	0.03110	0.1967	0.06811	 20.49	96.09	630.5	0.1312	0.2776	0.18900	0.07283	0.3184	0.08183	1
0.02956	0.02076	0.1815	0.06905	 15.66	65.13	314.9	0.1324	0.1148	0.08867	0.06227	0.2450	0.07773	1
0.20770	0.09756	0.2521	0.07032	 19.08	125.10	980.9	0.1390	0.5954	0.63050	0.23930	0.4667	0.09946	0

TARGET CLASS
MALIGNANT OR
BENIGN

Data Source: https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

DATA VISUALIZATION 101

RELATIONSHIPS SCATTERPLOT

"Scatterplot demonstrates the relationship between two variables (X, Y)"

BUBBLE CHART

"Bubble chart demonstrates the relationship between three variables (X, Y, Bubble Size)

Photo Credit: https://commons.wikimedia.org/wiki/File:Example_of_Scatter_Plot.jpg Photo Credit: https://commons.wikimedia.org/wiki/File:Bubble_chart.jpg

COMPARISONS

BAR CHART

https://www.needpix.com/photo/89660/productivity-statistics-bar-chart-graph-diagram-results
https://commons.wikimedia.org/wiki/File:Median and Average
Sales Prices of New Homes Sold in the US 19632010 Monthly.png

LINE CHART

"Comparing median and average House prices over the years"

DISTRIBUTIONS

HISTOGRAMS

BOX PLOT

MAJORITY OF THE DATA

COMPOSITIONS

PIE CHART

STACKED BAR CHART

STACKED AREA CHART

MATPLOTLIB 101

MATPLOTLIB

- Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python.
- Matplotlib is the godfather of data visualization libraries!
- Matplotlib was originally written by John D. Hunter. After John's death, Michael Droettboom was nominated as matplotlib's lead developer in 2012.
- Matplotlib can be used to create (1) publication quality plots, (2) Customize figure style, (3)
 Embed in JupyterLabs and Graphical User Interfaces.
- Matplotlib works great with Pandas dataFrames. The plot method on Pandas Series and DataFrames is just a simple wrapper around plt.plot():

Link to Library: https://matplotlib.org/

MATPLOTLIB GALLERY

Check this out: https://matplotlib.org/stable/gallery/index

MATPLOTLIB SAMPLE CODE

LINE PLOT

```
2 x = np.arange(0, 10, 0.2) # evenly sampled time at 0.2 s intervals
Out[3]: array([0. , 0.2, 0.4, 0.6, 0.8, 1. , 1.2, 1.4, 1.6, 1.8, 2. , 2.2, 2.4,
               2.6, 2.8, 3. , 3.2, 3.4, 3.6, 3.8, 4. , 4.2, 4.4, 4.6, 4.8, 5. ,
               5.2, 5.4, 5.6, 5.8, 6., 6.2, 6.4, 6.6, 6.8, 7., 7.2, 7.4, 7.6,
               7.8, 8., 8.2, 8.4, 8.6, 8.8, 9., 9.2, 9.4, 9.6, 9.8])
In [4]: 1 y = np.sin(x)
          1 plt.plot(x, y)
          plt.xlabel('Time')
          plt.ylabel('Sine Wave')
          4 plt.title('My first plotting exercise!')
Out[6]: Text(0.5,1,'My first plotting exercise!')
                            My first plotting exercise!
            0.75
            0.50
            0.25
            0.00
          in -0.25
           ~0.50
           -0.75
           -1.00
```

SCATTER PLOT

```
1 import random
In [6]:
          3 fig = plt.figure(figsize=(5,5))
          5 X = np.random.randn(600)
            Y = np.random.randn(600)
            plt.scatter(X,Y)
Out[6]: <matplotlib.collections.PathCollection at 0x1a4214bb400>
         -1
         -2
         -3
```

MATPLOTLIB SAMPLE CODE

SUBPLOT

```
In [8]:
          2 plt.subplot(1, 3, 1)
             plt.plot(t, t, 'r--');
             plt.subplot(1, 3, 2)
            plt.plot(t, t**2, 'bs')
            plt.subplot(1, 3, 3)
            plt.plot(t, t**3, 'g^-');
         3
```

HISTOGRAMS

```
In [18]:
           1 mu = 20 # mean of distribution
           2 | sigma = 3 # standard deviation of distribution
           3 x = mu + sigma * np.random.randn(10000)
           5 num_bins = 30
           7 n, bins, patches = plt.hist(x, num bins, facecolor='blue', alpha=0.5)
           9 plt.ylabel('Probability')
          10 plt.title(r'Histogram: $\mu=20$, $\sigma=3$')
          11
Out[18]: Text(0.5,1,'Histogram: $\\mu=20$, $\\sigma=3$')
                             Histogram: \mu = 20, \sigma = 3
            1000
             800
             600
             400
             200
                                       20
                                                25
                              15
```

SEABORN 101

SEABORN

- Seaborn is a data visualization library that sits on top of matplotlib
- Seaborn offers enhanced features compared to matplotlib, it's Matplotlib on steroids!
- Link to Seaborn: https://seaborn.pydata.org/examples/index.html

SEABORN EXAMPLES

PAIRPLOT

COUNTPLOT AND SCATTERPLOT

SEABORN EXAMPLES

Heatmaps are used to represents values as colours.

CORRELATIONS AND HEATMAPS

SEABORN EXAMPLES

BOXPLOT

SCATTERPLOT

PROJECT DEMO

PROJECT DEMO

FINAL END-OF-DAY CAPSTONE PROJECT

CAPSTONE PROJECT TASKS

- In this project, we will visualize stock prices using Seaborn and Matplotlib. 3 Stocks are considered including Facebook (FB), Twitter (TWTR) and Netflix (NFLX).
- Using the stock_daily_prices.csv and stocks_daily_returns.csv dataset included in the course/workshop package, please do the following:
 - 1. Import both datasets using Pandas.
 - 2. Using Matplotlib, plot lineplots that display all 3 stocks daily prices on one single figure.
 - 3. Using Matplotlib, plot 3 stocks daily prices on multiple subplots.
 - 4. Using Matplotlib, plot the 3 plots on subplots next to each other (all figures in one row).
 - 5. Using Matplotlib, plot the scatterplot between Facebook and Twitter daily returns.
 - 6. Using Seaborn, plot similar scatterplot between Facebook and Twitter daily returns.
 - 7. Assume that you now expanded your portfolio to include additional stocks such as Amazon (AMZN) and Google (GOOG). You decided to become bullish on Twitter and you allocated 60% of your assets in it. You also decided to equally divide the rest of your assets in other stocks (AMZN, FB, GOOG, NFLX). Using Matplotlib, plot a pie chart that shows these allocations. Use 'explode' attribute to increase the separation between TWTR and the rest of the portfolio.
 - 8. Using Matplotlib, plot the histogram for FB returns using 40 bins with red color. Display the mean and Standard deviation on top of the figure.
 - 9. Using Seaborn, plot a heatmap that shows the correlations between stocks daily returns.
 - 10. Plot a 3D plot showing all daily returns from FB, TWTR and NFLX [External Research is required].