```
In [1]: #Hellow World
        print("Hellow World")
        Hellow World
In [2]: #Python uses indentation to indicate a block of code.
        if 5 > 2:
          print("Five is greater than two!")
        Five is greater than two!
        Python Variables
In [3]:
        This is a comment
        written in
        more than just one line
        y = "Hello, World!"
        print (x)
        print(y)
        Hello, World!
In [4]: a = 4
        A = "Sally"
        #A will not overwrite a
        print(a,A)
        4 Sally
In [5]: # assign the same value to multiple variables in one line
        x = y = z = "Orange"
        print(x)
        print(y)
        print(z)
        Orange
```

Orange Orange

```
In [6]: #use the + character to add a variable to another variable:
         x = "Python is "
         y = "awesome"
         z = x + y
         print(z)
         type(z)
         Python is awesome
 Out[6]: str
         Python List
 In [7]: #Lists are used to store multiple items in a single variable.
         thislist = ["apple", "banana", "cherry"]
         print(thislist)
         ['apple', 'banana', 'cherry']
 In [8]: | #List items are indexed, the first item has index [0], the second item has index
         thislist = ["apple", "banana", "cherry"]
         print(thislist[1])
         banana
 In [ ]:
 In [9]: #Return the third, fourth, and fifth item:
         thislist = ["apple", "banana", "cherry", "orange", "kiwi", "melon", "mango"]
         print(thislist[2:5])
         ['cherry', 'orange', 'kiwi']
In [10]: #Check if "apple" is present in the list:
         thislist = ["apple", "banana", "cherry"]
         if "apple" in thislist:
           print("Yes, 'apple' is in the fruits list")
         Yes, 'apple' is in the fruits list
In [11]: |# change the scond item in the list
         thislist = ["apple", "banana", "cherry"]
         thislist[1] = "blackcurrant"
         print(thislist)
         ['apple', 'blackcurrant', 'cherry']
```

Python Tuple

```
In [15]: #Tuples are used to store multiple items in a single variable.
#Tuple items are ordered, unchangeable, and allow duplicate values.
thistuple = ("apple", "banana", "cherry")
print(thistuple)

('apple', 'banana', 'cherry')
```

Python Dictionary

Dictionaries are used to store data values in key:value pairs.A dictionary is a collection which is ordered*, changeable and does not allow duplicates.

```
In [16]: thisdict = {
    "brand": "Ford",
    "model": "Mustang",
    "year": 1964,
    "year": 2020
    }
    print(thisdict)

{'brand': 'Ford', 'model': 'Mustang', 'year': 2020}
```

Python Conditions and Loops

```
In [17]: #An "if statement" is written by using the if keyword.
         a = 33
         b = 200
         if b > a:
          print("b is greater than a")
         #print("b is greater than a")
         b is greater than a
In [18]: #elseif
         a = 200
         b = 33
         if b > a:
          print("b is greater than a")
         elif a == b:
           print("a and b are equal")
         else:
           print("a is greater than b")
         a is greater than b
In [19]: #one line if statement
         if a > b: print("a is greater than b")
         a is greater than b
In [20]: #With the while loop we can execute a set of statements as long as a condition is
         i = 1
         while i < 6:
           print(i)
           i += 1
         1
         2
         3
         4
In [21]: #A for loop is used for iterating over a sequence
         fruits = ["apple", "banana", "cherry"]
         for x in fruits:
           print(x)
         apple
         banana
         cherry
```

Python Functions

```
In [22]: #In Python a function is defined using the def keyword:
    def my_function():
        print("Hello from a function")
        my_function()
```

Hello from a function

Numpy

NumPy is a Python library. NumPy is used for working with arrays. It also has functions for working in domain of linear algebra, fourier transform, and matrices. NumPy is short for "Numerical Python".

Pandas

Pandas is a Python library used for working with data sets. It has functions for analyzing, cleaning, exploring, and manipulating data. The name "Pandas" has a reference to both "Panel Data", and "Python Data Analysis" and was created by Wes McKinney in 2008.

```
In [25]: import pandas as pd
         mydataset = {
          'cars': ["BMW", "Volvo", "Ford"],
           'passings': [3, 7, 2]
         myvar = pd.DataFrame(mydataset)
         print(myvar)
         print(type(myvar))
             cars passings
         0
              BMW
                          3
         1 Volvo
                          7
                          2
            Ford
         <class 'pandas.core.frame.DataFrame'>
In [26]: import pandas as pd
         print(pd.__version__)
         1.0.5
In [27]: #Pandas DataFrames
         #A Pandas DataFrame is a 2 dimensional data structure, like a 2 dimensional array
         import pandas as pd
         data = {
           "calories": [420, 380, 390],
           "duration": [50, 40, 45]
         }
         #Load data into a DataFrame object:
         df = pd.DataFrame(data)
         print(df)
            calories duration
         0
                 420
                            50
         1
                 380
                            40
         2
                 390
                            45
```

```
In [28]: import pandas as pd

df = pd.read_csv('data.csv')

df
```

Out[28]:

	age	gender	genre
0	20	1	НірНор
1	23	1	НірНор
2	25	1	НірНор
3	26	1	Jazz
4	29	1	Jazz
5	30	1	Jazz
6	31	1	Classical
7	33	1	Classical
8	37	1	Classical
9	20	0	Dance
10	21	0	Dance
11	25	0	Dance
12	26	0	Acoustic
13	27	0	Acoustic
14	30	0	Acoustic
15	31	0	Classical
16	34	0	Classical
17	35	0	Classical
18	27	0	Acoustic
19	30	0	Acoustic
20	31	0	Classical

In [29]: print(df.duplicated())

```
0
     False
     False
1
     False
2
3
      False
4
      False
5
      False
     False
6
     False
7
      False
8
9
      False
      False
10
      False
11
     False
12
13
     False
14
      False
15
      False
16
      False
17
      False
18
      True
19
      True
       True
20
dtype: bool
```

```
In [30]: df.drop_duplicates(inplace = True)
df
```

Out[30]:

	age	gender	genre
0	20	1	HipHop
1	23	1	HipHop
2	25	1	HipHop
3	26	1	Jazz
4	29	1	Jazz
5	30	1	Jazz
6	31	1	Classical
7	33	1	Classical
8	37	1	Classical
9	20	0	Dance
10	21	0	Dance
11	25	0	Dance
12	26	0	Acoustic
13	27	0	Acoustic
14	30	0	Acoustic
15	31	0	Classical
16	34	0	Classical
17	35	0	Classical

In [31]: print(df.duplicated())

```
0
      False
1
      False
2
      False
3
      False
4
      False
5
      False
6
      False
7
      False
8
      False
9
      False
      False
10
11
      False
12
      False
13
      False
14
      False
15
      False
16
      False
17
      False
dtype: bool
```

```
In [32]: import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv('data.csv')

df.plot()

plt.show()
```



```
In [ ]:
```