Stochastik für Info SoSe 2023 Asymptotische Maximum Likelihood Theorie

Hanno Gottschalk

June 21, 2023

Fı	ragestellung Quantifizierung des Schätzfehlers Mögliche Verfahren zur Bestimmung des Schätzfehlers Vorbild Zentraler Grenzwertsatz Probleme bei der Formulierung	. 5
K	ovarianzmatrizen und Multivariate Normalverteilung Kovarianzmatrizen Eigenschaften von Kovarianzmatrizen Transformationsverhalten der Kovarianzmatrix Multivariate Normalverteilung 2D Normalverteilung Asymptotische Normalität	10 11 12 13
Fi	isher-Information Motivation Fisher-Information Eigenschaften der Fisher-Info Eigenschaften der Fisher-Info II Fisher-Information im Produktmodell	17 18 19
A	symptotische Normalität der ML-Schätzer Asymtotische Normalität für ML - der Satz:	
N	umerische Konsequenzen Schätzung der Fisher-Inormationsmatrix	

Inhaltsverzeichnis der Vorlesung

- Fragestellung
- Kovarianzmatrizen und multivariate Normalverteilung
- Fisher-Information
- Asymptotische Verteilung der ML-Schätzer
- Numerische Konsequenzen

Hanno Gottschalk

Stochastik für Info - 2 / 27

Fragestellung

3 / 27

Quantifizierung des Schätzfehlers

Bisher wissen wir nun, dass der ML-Schätzer sich 'irgendwann mal' an den wahren Wert annähert.

Da wir in der Praxis keine unendlich langen Messreihen durchführen können, brauchen wir eine Beschreibung des Schätzfehlers $\hat{\theta}_{ML} - \theta_0$.

Der Schäzfehler ist eine Zufallsvariable, d.h. wir können den Fehler über die Verteilung der Z.V. charakterisieren.

Kann man diese Verteilung bestimmen?

Hanno Gottschalk

Stochastik für Info – 4 / 27

Mögliche Verfahren zur Bestimmung des Schätzfehlers

- Lösung der ML-Gleichungen und analytische Berechnung der Dichtefunktion für die Parameter mit Transformationssätzen für W.-keitsdichten
- MC Simulation (auch parametrisches bootstrapping genannt)
- Asymptotische Theorie (wie Zentraler Grenzwertsatz)

Das erste Verfahren ist nur in Spezialfällen (etwa: Lineares Modell) tatsächlich lösbar... Das MC-Verfahren haben wir schon kennen gelernt (vg. Vorl. 13) - oft mit Implementierungsaufwand und langen Simulationszeiten verbunden − pro Simulation eine nicht lineare Optimierung → Stabilitätsprobleme! Wollen nun die asymptotische Theorie erforschen!

Hanno Gottschalk

Stochastik für Info - 5 / 27

Vorbild Zentraler Grenzwertsatz

'Vorbild aller Schätzer' – das arithmetische Mittel im Produktmodell:

$$\bar{X}_n = \frac{1}{n}(X_1 + \dots + X_n).$$

Der Zentrale Grenzwertsatz kann als Aussage über den Schätzfehler verstanden werden:

$$\sqrt{n}(\bar{X}_n - \mu) \longrightarrow N(0, \sigma^2), \ \sigma^2 = \text{Var}[X]$$

(Konvergenz nach Verteilung)

Wünschen ein ähnliches Resultat für ML-Schätzer

$$\sqrt{n}(\hat{\theta}_{ML} - \theta_0) \longrightarrow N(0, \Sigma).$$

Hanno Gottschalk

Stochastik für Info - 6 / 27

Probleme bei der Formulierung

 $\theta_0, \hat{\theta}_{ML}$ sind q-Vektoren, daher brauchen wir einen multivariaten Zentralen Grenzwertsatz.

Dazu müssen wir erstmal verstehen, was eine multivariate Normalverteilung ist $N(\mu, \Sigma)$, $\mu \in \mathbb{R}^q$, $\Sigma \in \mathrm{Mat}_{q \times q}(\mathbb{R})$.

Dazu müssen wir erstmal verstehen, was eine Kovarianzmatrix Σ ist.

Wenn das erledigt ist, wollen wir die Konvergenz der Schätzfehlerverteilung gegen $N(0,\Sigma)$ beweisen und Σ als Funktion von θ_0 berechnen!

Hanno Gottschalk

Stochastik für Info - 7 / 27

Kovarianzmatrizen und Multivariate Normalverteilung 8 / 27

Kovarianzmatrizen

Es sei $X: \Omega \to \mathbb{R}^q$ eine \mathbb{R}^q -wertige Zufallsvariable (Zufallsvektor).

Def.: Die Kovarianzmatrix von $X=(X_1,\ldots,X_q)$ ist definert als

$$\Sigma = \operatorname{Cov}[X] = \begin{pmatrix} \operatorname{Cov}(X_1, X_1) & \cdots & \operatorname{Cov}(X_1, X_q) \\ \vdots & \ddots & \vdots \\ \operatorname{Cov}(X_q, X_1) & \cdots & \operatorname{Cov}(X_q, X_q) \end{pmatrix} \in \operatorname{Mat}_{q \times q}(\mathbb{R})$$

Wh.: $Cov(X_i, X_j) = \mathbb{E}[(X_i - \mathbb{E}[X_i])(X_j - \mathbb{E}[X_j])].$

Hanno Gottschalk

Stochastik für Info - 9 / 27

Eigenschaften von Kovarianzmatrizen

Es sei Σ die Kovarianzmatrix eines Zufallsvektors X. Dann gilt:

- Σ ist eine symmetrische Matrix $\Sigma' = \Sigma \Leftrightarrow \Sigma_{i,j} = \Sigma_{j,i}$.
- Σ ist positiv semidefinit, d.h. $v'\Sigma v \geq 0 \ \forall v \in \mathbb{R}^q$.

Denn: (i) $Cov(X_i, X_i) = Cov(X_i, X_i) \checkmark$

(ii)

$$v'\Sigma v = \sum_{i,j=1}^{q} v_i \operatorname{Cov}(X_i, X_j) v_j$$
$$= \operatorname{Cov}\left(\sum_{i=1}^{q} v_i X_i, \sum_{i=1}^{q} v_j X_j\right) = \operatorname{Var}\left[\sum_{i=1}^{q} v_i X_i\right] \ge 0 \checkmark$$

Hanno Gottschalk

Stochastik für Info - 10 / 27

Transformationsverhalten der Kovarianzmatrix

Satz: Sei X ein q-dimensionaler Zufallsvektor mit Erwartungswert $\mu \in \mathbb{R}^q$ und Kovarianzmatrix $\Sigma_X \in \operatorname{Mat}_{q \times q}$.

Sei A eine $n \times q$ -Matrix und Y = AX ein n-dimensionaler Z.V. .

Dann ist der Erwartungswert von Y gegeben als $A\mu \in \mathbb{R}^n$ und für die Kovarianzmatrix Σ_Y gilt

$$\Sigma_Y = A\Sigma_X A'$$

Denn:

$$\mathbb{E}[Y_j] = \mathbb{E}[\sum_{k=1}^q A_{j,k} X_k] = \sum_{k=1}^q A_{j,k} \mathbb{E}[X_k] = \sum_{k=1}^q A_{j,k} \mu_k = (A\mu)_j$$

und

$$Cov(Y_i, Y_j) = Cov \left(\sum_{k=1}^q A_{i,k} X_k, \sum_{k=1}^q A_{j,k} X_k \right)$$
$$= \sum_{k,l=1}^q A_{i,k} A_{j,l} Cov(X_k, X_l) = (A \Sigma_X A')_{i,j}$$

Hanno Gottschalk

Stochastik für Info – 11 / 27

Multivariate Normalverteilung

Def.: Es sei Σ eine positiv definite $q \times q$ -Matrix (damit auch symmetrisch) und $\mu \in \mathbb{R}^q$.

Dann ist die multivariate Normalverteilung $N(\mu, \Sigma)$ mit Kovarianzmatrix Σ und Erwartungswert μ gegeben durch die Dichte

$$f(x|\mu, \Sigma) = \frac{1}{(2\pi)^{q/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}(x-\mu)' \Sigma^{-1}(x-\mu)\right\}, x \in \mathbb{R}^q.$$

 $|\Sigma|$ ist die Determinante von Σ .

Dass dies eine multivariate W.-keitsdichte ist, wurde in EinfStoch bewiesen (Übung). Trick: Betrachte $X \sim N(0,\mathbf{1})$ multivariat Standardnormalverteilt und $Y = \sqrt{\Sigma}X + \mu$. Dann $Y \sim N(\mu,\Sigma)$.

Hanno Gottschalk

Stochastik für Info - 12 / 27

2D Normalverteilung

In 2 Dimensionen sid die Kovarianzmatritzen parametrisiert durch $\sigma_1,\sigma_2>0$ und $\rho\in(-1,1)$

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix} |\Sigma| = \sigma_1^2 \sigma_2^2 (1 - \rho^2)$$
 (1)

Hanno Gottschalk

Stochastik für Info - 13 / 27

Asymptotische Normalität

Def.: Eine (multivariate) Schätzstatistik $\hat{\theta}$ für θ_0 in \mathbb{R}^q heißt asymptotisch normal, falls $\exists a_n \to \infty$ und Σ positiv definit so dass

$$a_n(\hat{\theta} - \theta_0) \longrightarrow N(0, \Sigma)$$
 nach Verteilung

In diesem Fall schreibe auch $a_n(\hat{\theta} - \theta_0) \sim_a N(0, \Sigma)$.

Beispiel: Im Produktmodell mit quadratintegrierbarem X gilt $\sqrt{n}(\bar{X} - \mu) \sim_a N(0, \sigma^2)$

(Zentraler Grenzwertsatz)

Hanno Gottschalk

Stochastik für Info - 14 / 27

Fisher-Information

15 / 27

Motivation

Wir sind schon guten Mutes (wegen der Simulationen) dass ML-Schätzer (und auch MM-Schätzer) asymptotisch normal sind.

Wir brauchen noch eine gute Idee für die Kovarianzmatrix.

- Die Kovarianzmatrix soll eine klar definierte Formel haben.
- Die Kovarianzmatrix soll m\u00f6glichst klein sein (geringe Fluktuation)
- Die Kovarianzmatrix soll bequem aus den Daten schätzber sein, auch wenn wir sie nicht explizit berechnen können.

Hanno Gottschalk

Stochastik für Info – 16 / 27

Fisher-Information

Def.: Gegeben sei ein statistisches Modell P_{θ} mit multivariater Dichte $f(\underline{x}|\theta)$ (diskreter Fall Analog).

$$l'(x|\theta) = \nabla_{\theta} l(x|\theta) = \nabla_{\theta} \log f(x|\theta)$$
 score-Funktion, $x \in \mathbb{R}^{nd}$.

und $X \sim f(x,\theta)$ Dann ist die Fisher-Information $I(\theta_0), \, \theta_0 \in \Theta$, die $q \times q$ -Matrix definiert durch

$$I_{i,j}(\theta_0) = \mathbb{E}_{\theta_0}[l_i'(X,\theta_0)l_j'(X,\theta_0)] = \int l_i'(X,\theta_0)l_j'(X,\theta_0)f(X|\theta_0) dX$$
 (2)

Hanno Gottschalk

Stochastik für Info - 17 / 27

Eigenschaften der Fisher-Info

Lemma: Unter Voraussetzung (*)- s.u.-:

$$I(\theta_0) = \operatorname{Cov}_{\theta_0}[l'(X|\theta_0)]$$

Beweis: Zu zeigen $\mathbb{E}_{\theta_0}[l'(X|\theta_0)] = 0$

$$\Rightarrow \mathbb{E}_{\theta_0}[l_i'(X,\theta_0)l_j'(X,\theta_0)] = \operatorname{Cov}_{\theta_0}(l_i'(X,\theta_0), l_j'(X,\theta_0)).$$

$$0 = \nabla_{\theta_0} 1 = \nabla_{\theta_0} \int f(x|\theta_0) dx$$

$$\stackrel{(*)}{=} \int \nabla_{\theta_0} f(x|\theta_0) dx = \int \frac{\nabla_{\theta} f(x|\theta_0)}{f(x|\theta_0)} f(x|\theta_0) dx$$

$$= \int l'(x|\theta_0) f(x|\theta_0) dx = \mathbb{E}_{\theta_0} [l'(X|\theta_0)].$$

Hanno Gottschalk

Stochastik für Info - 18 / 27

Eigenschaften der Fisher-Info II

Satz: Unter Voraussetzung (*) - s.o. - und (**)- s.u.-

$$I(\theta_0) = -\mathbb{E}_{\theta_0}[l''(X|\theta_0)] \ l''_{i,j}(x|\theta) = \frac{\partial^2}{\partial \theta_i \partial \theta_j} l(x|\theta).$$
 (3)

Beweis:

$$0 = \nabla_{\theta_0}^2 1 = \nabla_{\theta_0} \int l'(x|\theta_0) f(x|\theta_0) dx$$

$$\stackrel{(**)}{=} \int \nabla_{\theta_0} [l'(x|\theta_0) f(x|\theta_0)] dx$$

$$= \int l''(x|\theta_0) f(x|\theta_0) dx + \int l'(x|\theta_0) l'(x|\theta_0) f(x|\theta_0) dx$$

$$= \mathbb{E}_{\theta_0} [l''(X|\theta_0)] + I(\theta_0).$$

qed.

Hanno Gottschalk

Stochastik für Info - 19 / 27

Fisher-Information im Produktmodell

Lemma: Es sei $P_{\theta}^{(n)}$, $f(x|\theta) = \prod_{j=1}^n f(x_j|\theta)$ das Produktmodell, $I^{(n)}(\theta_0)$ die Fisher-Info des Produktmodells und $I^{(1)}(\theta_0)$ die Fischer-Info für $X_j \sim f(x_j|\theta)$. Dann gilt

$$I^{(n)}(\theta_0) = nI^{(1)}(\theta_0)$$

Beweis:

$$l'(x|\theta) = \nabla_{\theta} \log f(x|\theta) = \sum_{j=1}^{n} \nabla_{\theta} \log f(x_j|\theta) = \sum_{j=1}^{n} l'(x_j|\theta) \Rightarrow$$

$$I^{(n)}(\theta_0) = \operatorname{Cov}_{\theta_0}[l'(X|\theta_0)] = \sum_{j=1}^n \operatorname{Cov}_{\theta_0}[l'(X_j|\theta_0)] = nI^{(1)}(\theta_0)$$

qed.

Hanno Gottschalk

Stochastik für Info - 20 / 27

Asymtotische Normalität für ML - der Satz:

Satz Gegeben ein Produktmodell mit konsistenetm ML Schätzer $\hat{\theta}_{ML}$, bei dem auch die Annahmen (*) und (**) gelten.

Dann ist der Schätzfehler $\hat{\theta}-\theta_0$ asymptotisch normal, und es gilt

$$\sqrt{n}(\hat{\theta}_{ML} - \theta_0) \sim_a N(0, I^{(1)}(\theta_0)^{-1}).$$
 (4)

Bemerkung: Auch in sehr vielen nicht-Produktmodellen gilt annäherungsweise

$$(\hat{\theta}_{ML} - \theta_0) \sim N(0, I(\theta_0)^{-1}).$$

D.h. wenn die Fisher-Info gegen unendlich geht, verschwindet das Gewackel der Parameterschätzer!

Hanno Gottschalk

Stochastik für Info - 22 / 27

Asymtotische Normalität für ML - der Beweis

Hier nur die Beweisidee: Taylor-Entwicklung der ML-Gleichungen um θ_0 . Schreibe $I(\theta_0)=I^{(1)}(\theta_0)$:

$$\sum_{j=0}^{n} l'(X_j | \hat{\theta}_{ML}) = 0$$

$$0 = \frac{1}{\sqrt{n}} \sum_{j=1}^{n} l'(X_i | \theta_0) + \left(\frac{1}{n} \sum_{j=1}^{n} l''(X_i | \theta^*)\right) \sqrt{n} (\hat{\theta}_{ML} - \theta_0)$$

$$0 = \underbrace{\frac{1}{\sqrt{n}} \sum_{j=1}^{n} l'(X_i | \theta_0)}_{\longrightarrow N(0, I(\theta_0)) \text{ (ZGWS)}} + \underbrace{\left(\frac{1}{n} \sum_{j=1}^{n} l''(X_i | \theta^*)\right)}_{\longrightarrow \mathbb{E}_{\theta_0}[l''(X | \theta_0)] = -I(\theta_0)} \sqrt{n} (\hat{\theta}_{ML} - \theta_0)$$

$$\sqrt{n}(\hat{\theta}_{ML} - \theta_0) = -\left(\frac{1}{n}\sum_{j=1}^n l''(X_i|\theta^*)\right)^{-1} \frac{1}{\sqrt{n}}\sum_{j=1}^n l'(X_i|\theta_0)
\longrightarrow N(0, I(\theta_0)^{-1}I(\theta_0)I(\theta_0)^{-1}) = N(0, I(\theta_0)^{-1})$$

Hanno Gottschalk

Stochastik für Info - 23 / 27

Schätzung der Fisher-Inormationsmatrix

Problem:

- $I(\theta_0)$ hängt von dem unbekannten Parameter θ_0 ab...
- Die Formeln für die Fisher-Information sind evtl. kompliziert ... und ich bin zu faul, das auszurechnen...

Lösung:

- Wähle $I(\hat{\theta}_{ML})$ als Schätzer für $I(\theta_0)$ (ist unter geeigneten Vorr. konsistent) .
- Nütze aus, dass nach dem Gesetz der gr. Zahlen

$$I^{(n)}(\theta_0) \approx -n\mathbb{E}_{\theta_0}[l''(x|\hat{\theta}_{ML})] \approx -\sum_{j=1}^n l''(X_j|\hat{\theta}_{ML})$$

Hanno Gottschalk

Stochastik für Info - 25 / 27

Konsequenzen für die Praxis von ML

Da man ohnehin schon $-\log \mathcal{L}$ minimiert, kann man sich vom Optimierer auch gleich die Hessematrix am Optimum mit ausgeben lassen!

$$-\sum_{j=1}^{n} l''(X_j|\hat{\theta}_{ML}) = \operatorname{Hess}(-\log \mathcal{L})$$

Oft arbeitet der Optimierer ja sowieso mit der Hessematrix!

Hier bekommt man endlich mal was umsonst!

Hanno Gottschalk

Stochastik für Info – 26 / 27

Algorithmisches Vorgehen

- Minimiere die neg. log Likelihood numerisch
- Lasse die Hessematrix ausgeben
- ullet Invertiere die Hessematrix H, um die multivariate Parameter-Kovarianz zu schätzen.
- Die Standardabweichung für Parameter θ_j ergibt sich als $\sqrt{(H^{-1})_{j,j}}, j=1,\ldots,q$.

So geht man auch vor, wenn man kein Produktmodell vorliegen hat!

Hanno Gottschalk

Stochastik für Info - 27 / 27