

VDS 55V RDS(ON) $20m\Omega$ ID 49A

Features

- Dynamic dv/dt Rating
- Repetitive Avalanche Rated
- 175°C Operating Temperature
- Ease of Paralleling
- · Fast Switching for High Efficiency
- Simple Drive Requirements

Mechanical Data

Case: JEDEC TO-220AB molded plastic body Terminals: Leads solderable per MIL-STD-750,

Method 2026

High temperature soldering guaranteed: 250°C/10 seconds, 0.17" (4.3mm) from case Mounting Torque: 10 in-lbs maximum

Weight: 2.0g

Maximum Ratings and Thermal Characteristics (Tc = 25°C unless otherwise noted)

Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		VDS	55	V	
Gate-Source Voltage		Vgs	±20	V	
Continuous Drain Current VGS =10V	T _C = 25°C T _C = 100°C	ID	49 35	A	
Pulsed Drain Current ⁽¹⁾		I _{DM}	160		
Maximum Power Dissipation	Tc = 25°C	PD	94	W	
Single Pulse Avalanche Energy ⁽²⁾		Eas	210	mJ	
Avalanche Current ⁽¹⁾		I _{AR}	25	А	
Repetitive Avalanche Energy ⁽¹⁾		Ear	11	mJ	
Operating Junction and Storage Temperature Range		TJ, Tstg	-55 to 175	°C	
Junction-to-Case Thermal Resistance		Rejc	1.6	°C/W	
Junction-to-Ambient Thermal Resistance		RθJA	62		

Notes: (1) Repetitive rating; pulse width limited by max. junction temperature (2) V_{DD} = 25V, starting T_J = 25°C, L = 470 μ H, R_G = 25 Ω , I_{AS} = 25A

Electrical Characteristics (TJ = 25°C unless otherwise noted)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Static						
Drain-Source Breakdown Voltage	V(BR)DSS	Vgs = 0V, ID = 250μA	55	_	_	V
	RDS(on)	V _G S = 10V, I _D = 25A	_	16	20	mΩ
Drain-Source On-State Resistance ⁽¹⁾		Vgs = 6V, ID = 23A	_	18	22	
Gate Threshold Voltage	VGS(th)	V _D S = V _G S, I _D = 250μA	2.0	_	4.0	V
Forward Transconductance ⁽¹⁾	g fs	V _{DS} = 25V, I _D = 25A	17	78	_	S
Drain-Source Leakage Current	IDSS	VDS = 55V, VGS = 0V	_	_	25	μΑ
Gate-Source Leakage	Igss	Vgs = ±20V, Vps = 0V	_	_	±100	nA
Dynamic						•
T 1 1 0 1 0 1 (1)		VDS = 44V, ID = 25A, VGS = 5V	_	29	40	nC
Total Gate Charge ⁽¹⁾	Qg	V _{DS} = 44V, V _{GS} = 10V I _D = 25A	_	60	65	
Gate-Source Charge ⁽¹⁾	Qgs		_	11	_	
Gate-Drain ("Miller") Charge ⁽¹⁾	Qgd		_	13	_	
Turn-On Delay Time ⁽¹⁾	td(on)	.,	_	19	34	ns
Rise Time ⁽¹⁾	l t _r	VDD = 28V	_	185	240	
Turn-Off Delay Time ⁽¹⁾	td(off)	$I_D = 25A, R_G = 12\Omega$	_	85	119	
Fall Time ⁽¹⁾	tf	$R_D = 1.1\Omega$, $V_{GEN} = 10V$	_	165	210	
Input Capacitance	Ciss	V _G S = 0V	_	3223	_	
Output Capacitance	Coss	Vps = 25V	_	308	_	pF
Reverse Transfer Capacitance	Crss	f = 1.0MHz	_	135	_	
Source-Drain Diode				•		
Continuous Source Current	Is		_	_	49	А
Pulsed Source Current ⁽²⁾	Ism		_	_	160	
Diode Forward Voltage ⁽¹⁾	VsD	Is = 25A, VGS = 0V	_	0.93	1.3	V
Source-Drain Reverse Recovery Time ⁽¹⁾	trr	1 054 11/1/ 4051/	_	53	_	ns
Source-Drain Reverse Recovery Charge ⁽¹⁾	Qrr	I _F = 25A, di/dt = 100A/μs	_	93	_	nC

Notes: (1) Pulse width $\leq 300 \mu s;$ duty cycle $\leq 2\%$

(2) Repetitive rating; pulse width limited by max. junction temperature

Ratings and Characteristic Curves

Fig. 3 - On Resistance vs. **Drain Current** 0.04 $V_{GS} = 4.5V$ R_{DS(ON)} — On-Resistance (Ω) 5V 0.03 0.02 10V 0.01 Pulse width = $100\mu s$ 0 0 20 140 160 40 60 80 100 120

I_D — Drain Current (A)

Ratings and Characteristic Curves

Fig. 6 - Source-Drain Diode

Fig. 8 – Breakdown Voltage vs. Junction Temperature

Fig. 7 – On-Resistance vs. Gate-to-Source Voltage

Fig. 9 - Threshold Voltage

Ratings and Characteristic Curves

Fig. 10 – On-Resistance vs. Junction

