2023-Apr-11 Shift-2

AI24BTECH11002 - K. Akshay Teja

1) The angle of elevation of the top P of a tower from the feet of one person standing due South of the tower is 45° and from the feet of another person standing due West of the tower is 30° . If the height of the tower is 5 meters, then the distance (in meters) between the two persons is equal to

2) Let a, b, c and d be positive real numbers such that a + b + c + d = 11. If the maximum value of

c) $\frac{5}{2}\sqrt{5}$

c) 90

d) 5

d) 110

b) $5\sqrt{5}$

b) 108

 $a^5b^3c^2d$ is 3750 β , then the value of β is

a) 10

a) 55

3) Let $f: R \to R$ be a continuous function satisfying $\int_0^{\frac{\pi}{2}} f(\sin 2x) \sin x dx + \alpha \int_0^{\frac{\pi}{4}} f(\cos 2x) \cos x dx = 0$, then the value of α is						
a) $-\sqrt{3}$	b) $\sqrt{3}$	c) $-\sqrt{2}$	d) $\sqrt{2}$			
4) Let f and g be two functions defined by $f(x) = \begin{cases} x+1, & x<0 \\ x-1 , & x \ge 0 \end{cases}$ and $g(x) = \begin{cases} x+1, & x<0 \\ 1, & x \ge 0 \end{cases}$ Then $(g \circ f)(x)$ is a) continuous everywhere but not differentiable at $x=1$ b) continuous everywhere but not differentiable exactly at one point c) differentiable everywhere d) not continuous at $x=-1$						
5) If the radius of the largest circle with center $(2,0)$ inscribed in the ellipse $x^2 + 4y^2 = 36$ is r , then $12r^2$ is equal to						
a) 69	b) 72	c) 115	d) 92			
6) Let the mean of 6 observations 1, 2, 4, 5, x, and y be 5 and their variance be 10. Then their mean deviation about the mean is equal to						
a) $\frac{7}{3}$	b) $\frac{10}{3}$	c) $\frac{8}{3}$	d) 3			
7) Let $A = \{1, 3, 4, 6, 9\}$ and $B = \{2, 4, 5, 8, 10\}$. Let R be a relation defined on $A \times B$ such that $R = \{((a_1, b_1), (a_2, b_2)) : a_1 \le b_2 \text{ and } b_1 \le a_2\}$. Then the number of elements in the set R is						
a) 52	b) 160	c) 26	d) 180			
8) Let P be the plane passing through the points $(5,3,0)$, $(13,3,-2)$, and $(1,6,2)$. For $\alpha \in \mathbb{N}$, if the distances of the points $A(3,4,\alpha)$ and $B(2,\alpha,a)$ from the plane P are 2 and 3 respectively, then the positive value of a is						

	a) 5	<i>b)</i> 0	C) -	d) 3			
9) If the letters of the word MATHS are permuted and all possible words so formed are arranged as in a dictionary with serial number, then the serial number of the word THAMS is							
	a) 102	b) 103	c) 101	d) 104			
10)) f four distinct points w to	ith position vectors \vec{d} , \vec{b}	\overrightarrow{c} , \overrightarrow{c} and \overrightarrow{d} are coplanar,	then $\left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}\right]$ is equal			

c) 1

c)
$$\begin{bmatrix} \overrightarrow{d} \ \overrightarrow{d} \ \overrightarrow{b} \end{bmatrix} + \begin{bmatrix} \overrightarrow{d} \ \overrightarrow{c} \ \overrightarrow{d} \end{bmatrix} + \begin{bmatrix} \overrightarrow{d} \ \overrightarrow{b} \ \overrightarrow{c} \end{bmatrix}$$

d) $\begin{bmatrix} \overrightarrow{b} \ \overrightarrow{c} \ \overrightarrow{d} \end{bmatrix} + \begin{bmatrix} \overrightarrow{d} \ \overrightarrow{d} \ \overrightarrow{d} \ \overrightarrow{c} \end{bmatrix} + \begin{bmatrix} \overrightarrow{d} \ \overrightarrow{b} \ \overrightarrow{d} \end{bmatrix}$

- 11) The sum of the coefficients of three consecutive terms in the binomial expansion of $(1 + x)^{n+2}$, which are in the ratio 1:3:5, is equal to
 - a) 63

2) 5

b) 92

b) 6

c) 25

d) 41

d) 3

- 12) Let y = y(x) be the solution of the differential equation $\frac{dy}{dx} + \frac{5}{x(x^5+1)}y = \frac{(x^5+1)^2}{x^2}$, x > 0. If y(1) = 2, then y(2) is equal to
 - a) $\frac{693}{128}$

b) $\frac{637}{128}$

c) $\frac{697}{128}$

d) $\frac{679}{128}$

- 13) The converse of $\sim (p \land q) \implies r$ is
 - a) $(p \lor (\sim q)) \implies (\sim r)$

c) $(\sim r) \implies ((\sim p) \land q)$

b) $((\sim p) \lor q) \implies r$

- d) $(\sim r) \implies p \wedge q$
- 14) If the 1011th term from the end in the binomial expansion of $\left(\frac{4x}{5} \frac{5}{2x}\right)^{2022}$ is 1024 times the 1011th term from the beginning, then |x| is equal to
 - a) 8

b) 12

c) 10

d) 15

15) If the system of linear equations

$$7x + 11y + \alpha z = 13$$

$$5x + 4y + 7z = \beta$$

175x + 194y + 57z = 361 has infinitely many solutions, then $\alpha + \beta + 2$ is equal to:

a) 3

b) 6

c) 5

d) 4