1. Let V be the null space of the linear map $h: \mathcal{M}_{2\times 2} \to \mathbb{R}^2$ given by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} c - 2b \\ a - 2b \end{pmatrix}$$

What is dim(V)?

- (A) 4
- (B) 3
- (C) 2
- (D) 1

True or False?

Let $B=\langle 1,x,x^2\rangle$ be the standard basis for \mathcal{P}_2 and C the standard basis for \mathbb{R}^3 . Let $h:\mathcal{P}_2\to\mathbb{R}^3$ be the linear map defined by

$$p\mapsto egin{pmatrix} p(0)\ p(1)\ p(2) \end{pmatrix}.$$

Then

$$\mathsf{Rep}_{B,C}(h) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{pmatrix}.$$

2. True or False?

Let $B=\langle 1,x,x^2\rangle$ be the standard basis for \mathcal{P}_2 and C the standard basis for \mathbb{R}^3 . Let $h:\mathcal{P}_2\to\mathbb{R}^3$ be the linear map defined by

$$p\mapsto egin{pmatrix} p(0)\ p(1)\ p(2) \end{pmatrix}.$$

Then

$$\mathsf{Rep}_{B,C}(h) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{pmatrix}.$$

Follow-up. Is *h* an isomorphism?

True or False?

There exists a surjective (ie, onto) linear map $h : \mathbb{R}^3 \to \mathbb{R}^2$ whose null space is 2 dimensional.