> Sum-of-Squares Error Function:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

> Root-Mean-Square (RMS) Error:

$$E_{\rm RMS} = \sqrt{2E(\mathbf{w}^{\star})/N}$$

> Regularization: Penalize large coefficient values

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

> Bayes' Theorem:

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$$

$$p(X) = \sum_{Y} p(X|Y)p(Y)$$

> Expectations:

$$\mathbb{E}[f] = \sum_{x} p(x)f(x)$$

Conditional Expectation (discrete)

$$\mathbb{E}_x[f|y] = \sum_x p(x|y)f(x)$$

> Approximate Expectation (discrete and continuous)

$$\mathbb{E}[f] \simeq \frac{1}{N} \sum_{n=1}^{N} f(x_n)$$

Variance:

$$\operatorname{var}[f] = \mathbb{E}\left[\left(f(x) - \mathbb{E}[f(x)]\right)^{2}\right] = \mathbb{E}[f(x)^{2}] - \mathbb{E}[f(x)]^{2}$$

Covariances:

$$\begin{aligned}
cov[x, y] &= \mathbb{E}_{x,y} \left[\left\{ x - \mathbb{E}[x] \right\} \left\{ y - \mathbb{E}[y] \right\} \right] \\
&= \mathbb{E}_{x,y} [xy] - \mathbb{E}[x] \mathbb{E}[y] \\
cov[\mathbf{x}, \mathbf{y}] &= \mathbb{E}_{\mathbf{x}, \mathbf{y}} \left[\left\{ \mathbf{x} - \mathbb{E}[\mathbf{x}] \right\} \left\{ \mathbf{y}^{\mathrm{T}} - \mathbb{E}[\mathbf{y}^{\mathrm{T}}] \right\} \right] \\
&= \mathbb{E}_{\mathbf{x}, \mathbf{y}} [\mathbf{x} \mathbf{y}^{\mathrm{T}}] - \mathbb{E}[\mathbf{x}] \mathbb{E}[\mathbf{y}^{\mathrm{T}}]
\end{aligned}$$

> The Gaussian Distribution:

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

Gaussian Mean and Variance:

$$\mathbb{E}[x] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^2) x \, dx = \mu$$

$$\mathbb{E}[x^2] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^2) x^2 \, dx = \mu^2 + \sigma^2$$

$$\operatorname{var}[x] = \mathbb{E}[x^2] - \mathbb{E}[x]^2 = \sigma^2$$

> The Multivariate Gaussian:

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x}-\boldsymbol{\mu})\right\}$$

> Maximum (Log) Likelihood:

$$\ln p\left(\mathbf{x}|\mu,\sigma^{2}\right) = -\frac{1}{2\sigma^{2}} \sum_{n=1}^{N} (x_{n} - \mu)^{2} - \frac{N}{2} \ln \sigma^{2} - \frac{N}{2} \ln(2\pi)$$

$$\mu_{\text{ML}} = \frac{1}{N} \sum_{n=1}^{N} x_n$$
 $\sigma_{\text{ML}}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{\text{ML}})^2$

> Entropy:

$$H[x] = -\sum_{x} p(x) \log_2 p(x)$$

Conditional Entropy:

$$H[\mathbf{y}|\mathbf{x}] = -\iint p(\mathbf{y}, \mathbf{x}) \ln p(\mathbf{y}|\mathbf{x}) \, d\mathbf{y} \, d\mathbf{x}$$

> Joint Entropy:

$$H[\mathbf{x}, \mathbf{y}] = H[\mathbf{y}|\mathbf{x}] + H[\mathbf{x}]$$

> Mutual information:

$$[I[\mathbf{x}, \mathbf{y}] = H[\mathbf{x}] - H[\mathbf{x}|\mathbf{y}] = H[\mathbf{y}] - H[\mathbf{y}|\mathbf{x}]$$

> Binomial Distribution:

$$\operatorname{Bin}(m|N,\mu) = \binom{N}{m} \mu^m (1-\mu)^{N-m}$$

$$\mathbb{E}[m] \equiv \sum_{m=0}^{N} m \operatorname{Bin}(m|N,\mu) = N\mu$$

$$\operatorname{var}[m] \equiv \sum_{m=0}^{N} (m - \mathbb{E}[m])^2 \operatorname{Bin}(m|N,\mu) = N\mu (1-\mu)$$

Beta Distribution:

Beta
$$(\mu|a,b)$$
 = $\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\mu^{a-1}(1-\mu)^{b-1}$
 $\mathbb{E}[\mu]$ = $\frac{a}{a+b}$
 $\operatorname{var}[\mu]$ = $\frac{ab}{(a+b)^2(a+b+1)}$

> The Multinomial Distribution:

$$\operatorname{Mult}(m_1, m_2, \dots, m_K | \boldsymbol{\mu}, N) = \begin{pmatrix} N \\ m_1 m_2 \dots m_K \end{pmatrix} \prod_{k=1}^K \mu_k^{m_k} \\
\mathbb{E}[m_k] = N \mu_k \\
\operatorname{var}[m_k] = N \mu_k (1 - \mu_k) \\
\operatorname{cov}[m_j m_k] = -N \mu_j \mu_k$$

> The Dirichlet Distribution:

$$\operatorname{Dir}(\boldsymbol{\mu}|\boldsymbol{\alpha}) = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_1)\cdots\Gamma(\alpha_K)} \prod_{k=1}^K \mu_k^{\alpha_k - 1}$$
$$\alpha_0 = \sum_{k=1}^K \alpha_k$$

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$$