Dynamic Bipartite Networks: Detecting and visualizing structural change

Honor Thesis Defense

Yuhao(Eric) Zhao Mathematics Department, Bates College Advisor: Dr. Carrie Diaz Eaton

April 20, 2024

Outline

Today my presentation will cover...

- Introduction
- Stochastic Simulation Model
- Visualizations
- Anomaly Detection on Key Indicators
- Takeaways and Directions

Bipartite Network

- In order to capture the heterogeneity in the node's nature and complexity in relational data, more and more studies have pivoted toward networks which involve two or more parties
- Bipartite network is a good representation of interaction between two groups of individuals/agents
- But it is often hard to intuitively show the structure change on bipartite networks

	Level 1	Level 2	•
E 1	1	4	/ /
E 2	1	5	
E 3	2	5	•
E 4	3	4	•
E 5	3	5	

Figure 1: Simple Bipartite network representation

Anomaly Detection

- When analyzing large and complex datasets, knowing what stands out in the data is often at least, or even more important and interesting than learning about its general structure.
- Detection of anomalies or any critical transition points at certain timestamps serves well in finding emerging patterns in systems including network-based ones
- Anomaly detection has numerous high-impact applications in security, finance, health care, law enforcement, and many others.

Highlights

This thesis primarily focuses on analyzing evolutionary dynamics of an in-silico bipartite network.

- On visualization part, we extend dynamic visualization method on unimodal networks to the synthetic interaction networks for two parties over time
- On anomaly detection, we first-time adapt an unsupervised model-free method based on time delay embedding in finding unique-events and compare it with traditional methods based on statistical bounds and testing

Model Description

- Plant population i and pollinator population j are tracked via a connectivity matrix, A. J is the set of all plant species that interact with pollinator species j and is of size m_J . Likewise, I is the set of all pollinator species that interact with plant species i and is of size n_I .
- Each entry in A is either 0 for not connected or 1 for connected.
- Probabilistic function for updating evolving interaction matrix:

$$P(A'(i,j) = 1) = cA(i,j) + (1-c)m(i,j)$$

and

$$m(i,j) = \frac{w_j(i|j)}{\bar{w}_i}$$

is defined as a fitness probability function that describe how likely species i and j will interact in the absence of previous association for matching.

Static Representation

Figure 2: Snapshot summary of the animation

Static Representation

Figure 3: Layered snapshots of bipartite network (right) and its projection (left) in the prism form at t=250, 275, 300 for sample one run

Dynamic Representation

Figure 4: Animation of sample 1 bipartite network evolution

Network Structure Indicators

Indicator	Definition	Formula
Size	Number of species/nodes at different scales	$n(A_t) = U + V $
Average Degree	mean of degree of every node	$\overline{k(v)} = \frac{\sum k(v)}{n(A_t)}$
Web Asymme- try	balance between number of species in the two lev- els	$W(A_t) = \frac{k_h - k_l}{k_h + k_l}$
Connectance	edge density (realization of all possible edges)	$C(A_t) = \frac{L}{k_h \times k_l}$
# of Compartment	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Modularity	Barber's modularity score for bipartite graph	$\begin{array}{lll} Q_{B} &=& \frac{1}{L} \sum_{u=1}^{k_{I}} \sum_{v=1}^{k_{h}} (A_{u,v} & - \\ P_{u,v}) \delta(g_{u}, h_{v}) &=& \\ \frac{1}{L} \sum_{u=1}^{k_{I}} \sum_{v=1}^{k_{I}} (A_{u,v} & - \\ \frac{k_{u} d_{v}}{L}) \delta(g_{u}, h_{v}) & \\ CC &=& \frac{1}{n} \sum_{i=1}^{n} \frac{\gamma_{G}(v_{i})}{\tau_{C}(v_{i})} \end{array}$
Clustering Coefficient	Average proportion of closed triangles divided by total number of open and closed triangles through node v_i	$CC = \frac{1}{n} \sum_{i=1}^{n} \frac{\gamma_{G}(v_{i})}{\tau_{G}(v_{i})}$

Our Approach

- Selecting 10 key indicators that give general information about networks
- Keeping track of selected indicators over time
- Independently run 10 times of the simulated evolutions for sampling of time-series stats
- Decomposing the time-series stats and removing the seasonality and trend component
- Statistical Detection and Unsupervised-learning Detection on stationary remainders

Statistical Detection Results of Sample1

Figure 5: Statistical Detection of Connectance of Sample 1 using IQR (left) and GESD (right)

Figure 6: Statistical Detection of Modularity of Sample 1 using IQR (left) and GESD (right)

TOF Detection Results of Sample 1

Figure 7: *t*=192-199; **Figure 8:** *t*=191-192, 269-283; 299, 305, 307, 202-215; 384, 386 314

Figure 9: t=192-199, 277-287, 310-313, 346

Detection Comparison

Figure 10: Comparing detection across IQR and ToF methods on Modularity indicator.

Takeaways

- Dynamic visualization and even static representation really help people intuitively understand the structural change over time
- Visualization provide a good starting point for event detection
- Choice of detection method heavily depends on the definition of "unique" events
- TOF detection method based off reconstructed state-space perform better
- different indicators might return in different event detection results but common signals among different anomaly detection methods collectively reflecting system change

Future Direction

- Test on parameter change in network generation model and increase sampling size
- Software tool development that supporting better network visualization controls
- Beyond uni-variate detection: Extending TOF detection to Graph-based Detection or Multivariate Detection that better "summarize" network features?
- Considering different scales: community detection techniques in exploration of structural changes