Theory of Computer Science

G. Röger S. Eriksson Spring Term 2023 University of Basel Computer Science

Exercise Sheet 6 Due: Wednesday, April 19, 2023

Due to the Easter break, this exercise sheet covers 3 lectures: April 3, April 5 and April 12. It is thus worth 15 points and you have two weeks to solve it (including Easter break).

Exercise 6.1 (PDAs; 1 point)

This exercise is a question that was asked on the lecture slides.

Assume you want to have a possible transition from state q to state q' in your PDA that processes symbol c from the input word, can only be taken if the top stack symbol is \mathbf{A} , does not pop \mathbf{A} off the stack, and pushes \mathbf{B} .

What problem do you encounter? How can you work around it?

Exercise 6.2 (Turing Machines; 2+2+2 points)

Show how the following steps used in the proof of multi-tape Turing machines can be done by a Turing machine with a single tape.

The examples in the exercises are just meant for illustration. Your solution should work for arbitrary multi-tape TMs and arbitrary inputs. Describe the functionality in natural language (the question is not about a concrete TM). The number of tapes k is known during the construction but the length of the input is not.

(a) On input of word $w = w_1 \dots w_n$, initialize the tape with $\#\dot{w}_1 w_2 \dots w_n \#\dot{\square} \#\dot{\square} \# \dots \#$. For example, in this situation

this one should be reached:

(b) Assume the read-write head is on the first position of the tape, the machine is in state q, and a_1, \ldots, a_k are the symbols under the virtual heads (i.e., a_i is the symbol with the dot on virtual tape i for all $1 \le i \le k$). Reach the situation where the head is again on the first position of the tape but the machine is in state $q_{(a_1,\ldots,a_k)}$

For example, in this situation

this one should be reached:

(c) Insert a \square at the current position by shifting the complete tape content right of the current position one step to the right.

For example, in this situation

Exercise 6.3 (Closure Properties of Type 0 Languages; 1+1 point)

Explain on a high level why the following ideas for showing closure properties do not work:

- (a) Given a DTM M that recognizes language L, we can build a DTM M' that recognizes \bar{L} by inverting the accept and reject states of M.
- (b) Given NTMs M_1 and M_2 of languages L_1 and L_2 , we can build a NTM of language $L_1 \cap L_2$ by building a "product NTM" $M_{1,2}$ such that for all transitions pairs $(q_i, x) \to (q_j, y, D)$ from M_1 and $(q_{i'}, x) \to (q_{j'}, y, D)$ from M_2 there is a transition $(q_{(i,i')}, x) \to (q_{(j,j')}, y, D)$ in $M_{1,2}$.

Exercise 6.4 (Encoding of Turing machines; 2+2 points)

(a) Encode the following Turing machine as a word over the alphabet $\Sigma = \{0, 1\}$. Provide an encoding over $\{0, 1, \#\}$ as intermediate solution.

(b) Specify the state diagram of Turing machine M_w , encoded by the following word w

Exercise 6.5 (Decidability; 1+1 points)

Which of the following statements are true? Briefly justify your answers with one or two sentences each. You can use all results from the lecture.

- (a) All type-2 languages are Turing-decidable.
- (b) If a language L is Turing-decidable, then there is a grammar that generates \bar{L} .