Ηλεκτρολογικό Σχέδιο

Εξαμηνιαία Εργασία

Ιωάννης Τσαντήλας, 03120883

Θέμα 20: Ηλεκτρολογικό Σχέδιο

Εργαζόμαστε στη κάτοψη του διαμερίσματος Α΄ ορόφου με δύο ενοικιαζόμενα δωμάτια για φοιτητές και κοινόχρηστη κουζίνα, το οποίο χρησιμοποιήθηκε στην 1η Εργαστηριακή Άσκηση. Η μελέτη και η σχεδίαση της ηλεκτρικής εγκατάστασης χαμηλής τάσης θα γίνει σύμφωνα με το πρότυπο ΕΛΟΤ 60364:2020. Κάθε δωμάτιο, έχει δικό του μπάνιο με ηλεκτρικό θερμοσίφωνα. Στο κοινόχρηστο μπάνιο υπάρχει το πλυντήριο ρούχων. Θα τοποθετηθούν τρεις ηλεκτρικοί πίνακες, έναν για τον κοινόχρηστο χώρο, που θα είναι ο γενικός πίνακας της κατοικίας και ένας σε κάθε ενοικιαζόμενο δωμάτιο.

Ανάλυση Δωματίου 1

<u> Υποπίνακας</u>

- Θερμοσίφωνας,
- Κλιματιστικό,
- 5 Φωτιστικά,
- 5 Ρευματοδότες.

Γραμμή 10: Μονοφασικός Θερμοσίφωνας

Αφού δεν δίνεται η τιμή της ισχύος, θεωρούμε $cos \varphi=1$ και τυπική τιμή $I_B=20$ A. Άρα, επιλέγουμε προστασία με MCB τύπου (καμπύλης) B με $I_n=20$ A, διπολικό αποζεύκτη (2ρ) με $I_n=25$ A και διατομή αγωγών S=2 mm^2 .

Γραμμή 11: Κλιματιστικό

Η τυπική τιμή απορροφούμενης έντασης ρεύματος είναι $I_B=16~A~(\theta$ εωρούμε $9.000\frac{\rm btu}{\rm h})$. Επιλέγουμε προστασία με MCB τύπου (καμπύλης) C με $I_n=16~A$ και διατομή αγωγών $S=2.5~mm^2~(\leq 15.000\frac{\rm btu}{\rm h})$.

Γραμμή 12: Φωτιστικά

Βάζουμε 5 φωτιστικά σε μία γραμμή, θεωρώντας πως το κάθε ένα φωτιστικό απορροφά 0,5 A, δηλαδή $I_B=0.5\cdot 5=2.5$ A. Επιλέγουμε προστασία με MCB τύπου (καμπύλης) B με $I_n=10$ A και διατομή αγωγών S=1.5 mm^2 .

Γραμμή 13: Ρευματοδότες

Βάζουμε 5 ρευματοδότες σε μία γραμμή, θεωρώντας πως υπάρχει ετεροχρονισμός. Επειδή οι ρευματοδότες μπορούν να φορτίσουν μεγαλύτερα φορτία, και αφού $I_B=3\cdot 2$ $A+2\cdot 0$,5 A=7 A, επιλέγουμε να βάλουμε προστασία με MCB τύπου (καμπύλης) C με $I_n=16$ A και διατομή αγωγών S=2,5 mm^2 .

Σύνοψη

Γραμμή	$I{B}(A)$	I_n MCB (A)	I _n Αποζ. (Α)	S (mm ²)	Σωλήνας (mm)	$L_1(A)$	L ₂ (A)	L ₃ (A)
10	20	20	(2ρ) 25	3x4	20		20	
11	16	16		3x2,5	16	16		
12	2,5	10		2x1,5	16			2,5
13	7	16		3x2,5	16			7
Τελικό						16	20	9,5

Πτώση Τάσης

Για να υπολογίσουμε την πτώση τάσης, χρησιμοποιούμε τον τύπο:

$$\Delta u = b \cdot \left(\rho_{\chi\alpha\lambda\kappa} \cdot \frac{L}{S} \cdot \cos\varphi + \lambda \cdot L \cdot \sin\varphi \right) \cdot I_B$$

Στην περίπτωση μας, ισχύουν τα κάτωθι:

- Η ποσότητα λ · L · sinφ είναι 0 για μικρές διατομές,
- Το b, για τριφασικό ισούται με 1, ενώ για μονοφασικό ισούται με 2,
- Η ειδική αντίσταση για χάλκινο καλώδιο είναι: $\rho_{\chi\alpha\lambda\kappa} = 0.0225 \frac{\alpha \cdot mm^2}{m}$

Τέλος, συνοπτικά, οι τιμές είναι:

Γραμμή	Μή κος Γραμμής L (m)	Διατομή S (mm²)	$I_B(A)$	∆u (V)
10	3,377	4	20	0,2704
11	2,724	2,5	16	0,2803
12	19,235	1,5	2,5	0,5033
13	13,381	2,5	7	0,5893

Παρατηρούμε ότι για τον φωτισμό ισχύει $\Delta u \leq 3\%$ και για τα υπόλοιπα $\Delta u \leq 5\%$, άρα είμαστε εντός προδιαγραφών.

Ανάλυση Δωματίου 2

Υποπίνακας

- Θερμοσίφωνας,
- Κλιματιστικό,
- 5 Φωτιστικά,
- 5 Ρευματοδότες.

Γραμμή 14: Ρευματοδότες

Βάζουμε 5 ρευματοδότες σε μία γραμμή, θεωρώντας πως υπάρχει ετεροχρονισμός. Επειδή οι ρευματοδότες μπορούν να φορτίσουν μεγαλύτερα φορτία, και αφού $I_B=3\cdot 2$ $A+2\cdot 0$,5 A=7 A, επιλέγουμε να βάλουμε προστασία με MCB τύπου (καμπύλης) C με $I_n=16$ A και διατομή αγωγών S=2,5 mm^2 .

Γραμμή 15: Φωτιστικά

Βάζουμε 5 φωτιστικά σε μία γραμμή, θεωρώντας πως το κάθε ένα φωτιστικό απορροφά 0,5 A, δηλαδή $I_B=0,5\cdot 5=2,5$ A. Επιλέγουμε προστασία με MCB τύπου (καμπύλης) B με $I_n=10$ A και διατομή αγωγών S=1,5 mm^2 .

Γραμμή 16: Μονοφασικός Θερμοσίφωνας

Αφού δεν δίνεται η τιμή της ισχύος, θεωρούμε $cos \varphi=1$ και τυπική τιμή $I_B=20$ Α. Άρα, επιλέγουμε προστασία με MCB τύπου (καμπύλης) B με $I_n=20$ Α, διπολικό αποζεύκτη (2ρ) με $I_n=25$ Α και διατομή αγωγών S=2 mm^2 .

Γραμμή 17: Κλιματιστικό

Η τυπική τιμή απορροφούμενης έντασης ρεύματος είναι $I_B=16~A~(\theta$ εωρούμε $9.000\frac{\rm btu}{\rm h})$. Επιλέγουμε προστασία με MCB τύπου (καμπύλης) C με $I_n=16~A$ και διατομή αγωγών $S=2.5~mm^2~(\leq 15.000\frac{\rm btu}{\rm h})$.

<u>Σύνοψη</u>

Γραμμή	$I{B}(A)$	I _n MCB (A)	I _n Αποζ. (Α)	S (mm ²)	Σωλήνας (mm)	L ₁ (A)	L ₂ (A)	L ₃ (A)
14	7	16		3x2,5	16			7
<i>15</i>	2,5	10		3x1,5	16			2,5
16	20	20	(2ρ) 25	2x4	20		20	
17	16	16		3x2,5	16	16		
Τελικό						16	20	9,5

Πτώση Τάσης

Γραμμή	Μή κος Γραμμής L (m)	Διατομή S (mm²)	$I_{B}(A)$	Δu (V)
14	16,727	2,5	7	0,7351
<i>15</i>	18,624	1,5	2,5	0,4876
16	5,121	4	20	0,4058
17	3,699	2,5	16	0,3811

Παρατηρούμε ότι για τον φωτισμό ισχύει $\Delta u \leq 3\%$ και για τα υπόλοιπα $\Delta u \leq 5\%$, άρα είμαστε εντός προδιαγραφών.

Ανάλυση Γενικού Πίνακα

Ο κύριος πίνακας τροφοδοτεί τους δύο υποπίνακες των Δωματίων 1 και 2, οπότε οι γενικές αναχωρήσεις των δύο υποπινάκων θα αποτελούνται από τριπολικό MCB με ονομαστικό ρεύμα 25 A και ικανότητα διακοπής 4,5 kA, αποζεύκτη φορτίου 25 A και ΔΔΡ τύπου A με ονομαστικό ρεύμα 25 A η κάθε μία. Ο κάθε ένας από τους 5 αγωγούς της κάθε παροχής θα έχει διατομή καλωδίου 5x6 mm² και σωλήνας με διάμετρο 20 mm.

Γενικός Πίνακας Χολ

- Υποπίνακας Δωματίου 1
- 5 Ρευματοδότες Κουζίνας
- Υποπίνακας Δωματίου 2
- Ηλεκτρική 1Φ Κουζίνα
- Ψυγείο
- Πλυντήριο Πιάτων
- 4 Ρευματοδότες Χολ
- 5 Φωτιστικά
- Πλυντήριο Ρούχων

Γραμμή 1: Υποπίνακας Δωματίου 1

Η απορροφούμενη ένταση είναι $I_B = 20 A$.

Γραμμή 2: Ρευματοδότες Κουζίνας

Βάζουμε 5 ρευματοδότες σε μία γραμμή, θεωρώντας πως υπάρχει ετεροχρονισμός. Επειδή οι ρευματοδότες μπορούν να φορτίσουν μεγαλύτερα φορτία, και αφού $I_B=3\cdot 2$ $A+2\cdot 0$,5 A=7 A, επιλέγουμε να βάλουμε προστασία με MCB τύπου (καμπύλης) C με $I_n=16$ A και διατομή αγωγών S=2,5 mm^2 .

Γραμμή 3: Υποπίνακας Δωματίου 2

Η απορροφούμενη ένταση είναι $I_B = 20$ A.

Γραμμή 4: Ηλεκτρική Μονοφασική Κουζίνα

Αφού δεν γνωρίζουμε την τιμή της ισχύος, υποθέτουμε τυπική τιμή απορροφούμενης έντασης $I_B=25~A$. Επιλέγουμε προστασία MCB τύπου (καμπύλης) B με $I_n=25~A$, διπολικό αποζεύκτη (2ρ) με $I_n=32~A$ και διατομή αγωγών $S=6~mm^2$. Η γραμμή της κουζίνας είναι *αποκλειστική*.

Γραμμή 5: Ψυγείο

Από τον Πίνακα 11.1-1 του βιβλίου παίρνουμε μία ενδεικτική τιμή ισχύος, έστω 200 W ($cos \varphi = 0.8$), επομένως:

$$I_B = \frac{P}{u_{\varphi} \cdot \cos\varphi} = \frac{200 \, W}{230 \, V \cdot 0.8} = 1,09 \, A$$

Η γραμμή του ψυγείου είναι αποκλειστική. Παρόλο που η απορροφούμενη ένταση είναι πολύ μικρή, επιλέγουμε διατομή αγωγού $S=2,5\ mm^2$ και προστασία MCB τύπου (καμπύλης) C με ονομαστικό ρεύμα $I_n=6\ A$.

Γραμμή 6: Πλυντήριο Πιάτων

Από τον Πίνακα 11.1-1 του βιβλίου παίρνουμε μία ενδεικτική τιμή ισχύος, έστω 2 kW ($cos \varphi = 0.8$), επομένως:

$$I_B = \frac{P}{u_{\varphi} \cdot \cos\varphi} = \frac{2 \ kW}{230 \ V \cdot 0.8} = 10.9 \ A$$

Η γραμμή του πλυντηρίου πιάτων είναι *αποκλειστική*. Επιλέγουμε διατομή αγωγού $S=2.5~mm^2$ και προστασία MCB τύπου (καμπύλης) C με ονομαστικό ρεύμα $I_n=16~A$.

Γραμμή 7: Ρευματοδότες Χολ

Βάζουμε 4 ρευματοδότες σε μία γραμμή, θεωρώντας πως υπάρχει ετεροχρονισμός. Επειδή οι ρευματοδότες μπορούν να φορτίσουν μεγαλύτερα φορτία, και αφού $I_B=3\cdot 2$ $A+1\cdot 0$,5 A=6,5 A, επιλέγουμε να βάλουμε προστασία με MCB τύπου (καμπύλης) C με $I_n=16$ A και διατομή αγωγών S=2,5 mm^2 .

Γραμμή 8: Φωτιστικά

Βάζουμε 5 φωτιστικά σε μία γραμμή, θεωρώντας πως το κάθε ένα φωτιστικό απορροφά 0,5 A, δηλαδή $I_B=0.5\cdot 5=2.5$ A. Επιλέγουμε προστασία με MCB τύπου (καμπύλης) B με $I_n=10$ A και διατομή αγωγών S=1.5 mm^2 .

Γραμμή 9: Πλυντήριο Ρούχων

Από τον Πίνακα 11.1-1 του βιβλίου παίρνουμε μία ενδεικτική τιμή ισχύος, έστω 2,5 kW ($cos \varphi = 0.8$), επομένως:

$$I_B = \frac{P}{u_{\varphi} \cdot \cos\varphi} = \frac{2.5 \text{ kW}}{230 \text{ V} \cdot 0.8} = 13.6 \text{ A}$$

Η γραμμή του πλυντηρίου ρούχων είναι αποκλειστική. Επιλέγουμε διατομή αγωγού $S=2.5~mm^2$ και προστασία MCB τύπου (καμπύλης) C με ονομαστικό ρεύμα $I_n=16~A$.

Σύνοψη

Γραμμή	$I_{B}(A)$	In MCB (A)	I _n Αποζ. (Α)	S (mm ²)	Σωλήνας (mm)	L ₁ (A)	L ₂ (A)	L ₃ (A)
1	20	25	25	5x6	20	16	20	9,5
2	7	16		3x2,5	16		7	
3	20	25		5x6	20	16	20	9,5
4	25	25	25	3x6	20			25
5	1,09	6	(2ρ) 32	3x2,5	16		1,09	
6	10,9	16		3x2,5	16			10,9
7	6,5	16		3x2,5	16	6,5		
8	2,5	10		3x2,5	13,5		2,5	
9	13,6	16		3x2,5	16	13,6		
Τελικό				3x2,5		52,1	50,59	54,9

Για την γενική αναχώρηση, λαμβάνουμε υπόψιν τη γραμμή με το μεγαλύτερο ρεύμα, δηλαδή την $L_3 = 54,9$ Α. Επιλέγουμε συντελεστή ετεροχρονισμού 0,7 και με βάση αυτόν, η απορροφούμενη ένταση ανά φάση είναι:

$$L_1: 52,1 \cdot 0,7 = 36,47 A$$

 $L_2: 50,59 \cdot 0,7 = 35,413 A$
 $L_3: (54,9-6,5) \cdot 0,7 + 6,5 = 40,38 A$

Συνεπώς, η γενική αναχώρηση θα περιλαμβάνει τρεις ασφάλειες τήξεων των 50 A, σύμφωνα με την τυποποιημένη τριφασική παροχή N^2 3 του ΔΕΔΔΗΕ (πίνακας 9.2-2 του βιβλίου), τετραπολικό αποζεύκτη φορτίου 63 A και ΔΔΡ τύπου A, με διαφορικό ονομαστικό ρεύμα 30 mA και ονομαστικό ρεύμα 63 A. Οι 5 αγωγοί θα έχουν διατομή 5x16 mm² και ο σωλήνας θα έχει διάμετρο 20 mm. Τέλος, δεν θα χρησιμοποιήσουμε SPDs.

Πτώση Τάσης

Γραμμή	Μή κος Γραμμής L (m)	Διατομή S (m m²)	I _B (A)	Δu (V)
1	2,678	6	20	0,0735
2	16,529	2,5	7	0,4692
3	6,719	6	20	0,1784
4	13,846	6	25	0,9076
5	6,038	2,5	1,09	0,6121
6	8,094	2,5	10,9	0,5311
7	19,541	2,5	6,5	0,6584

8	22,274	2,5	2,5	0,3999
9	5,254	2,5	13,6	0,8112

Παρατηρούμε ότι για τον φωτισμό ισχύει $\Delta u \leq 3\%$ και για τα υπόλοιπα $\Delta u \leq 5\%$, άρα είμαστε εντός προδιαγραφών.