# Неразрешенные двойные звезды в рассеянных звездных скоплениях (Выпускная квалификационная работа)

Исполнитель Бородина О. И. <sup>1, 2</sup> Руководитель Ковалева Д. А. <sup>2</sup>

<sup>1</sup>Московский физико-технический институт (НИУ)

 $^2$ Институт астрономии РАН

29 июня 2020

# Проблема

- В РЗС велика доля двойных
- Неразрешенные двойные располагаются над ГП одиночных звезд
- Важно знать характеристики популяции двойных



# Проблема

- В РЗС велика доля двойных
- Неразрешенные двойные располагаются над ГП одиночных звезд
- Важно знать характеристики популяции двойных

$$\quad \bullet \ \ \alpha = \frac{\textit{N}_{\textit{binaries}}}{(\textit{N}_{\textit{singles}} + \textit{N}_{\textit{binaries}})}$$

• 
$$f(q), q = \frac{M_2}{M_1}$$

• Нет методики, которая позволяла бы однородным образом оценивать  $\alpha, f(q)$ 



## Постановка задачи

#### Задачи:

- ullet Разработать методы определения lpha, f(q)
  - Применить к данным модели РЗС
  - Применить к данным реальных РЗС

#### Данные:

- Каталог Gaia DR2
- Таблицы изохрон <sup>1</sup>

<sup>1</sup> http://stev.oapd.inaf.it/cmd

## Построение модели скопления

- Построили модель РЗС в картинной плоскости
- Построили модель РЗС на диаграмме звездная величина-показатель цвета
- Одиночные звезды
  - $H\Phi M \rightarrow M \rightarrow G, BP, RP$
- Двойные звезды
  - H $\Phi$ M,  $f(q) \rightarrow M_1, M_2 \rightarrow G, BP, RP$



## Построение модели скопления

- Построили модель РЗС в картинной плоскости
- Построили модель РЗС на диаграмме звездная величина-показатель цвета
- Одиночные звезды
  - $H\Phi M \rightarrow M \rightarrow G, BP, RP$
- Двойные звезды
  - H $\Phi$ M,  $f(q) \rightarrow M_1, M_2 \rightarrow G, BP, RP$
- Переходим к видимым звездным величинам



## Построение моделей скопления

- Построили модель РЗС в картинной плоскости
- Построили модель РЗС на диаграмме звездная величина-показатель цвета
- Одиночные звезды
  - $H\Phi M \rightarrow M \rightarrow G, BP, RP$
- Двойные звезды
  - H $\Phi$ M,  $f(q) \rightarrow M_1, M_2 \rightarrow G, BP, RP$
  - Располагаются над ГП одиночных звезд
- Переходим к видимым звездным величинам



Метод координатных сеток

#### Идея метода:

- ullet  $q, M_1$  однозначно задают G, BP, RP
- Можно по G, BP, RP определить  $q, M_1$

## Ограничения метода:



Метод координатных сеток

#### Идея метода:

- ullet  $q, M_1$  однозначно задают G, BP, RP
- ullet Можно по G,BP,RP определить  $q,M_1$

#### Ограничения метода:

- ullet Работает на интервале [0.13; 0.33] по показателю цвета или  $M_1 \in [1.6; 2.2] M_{\odot}$
- На этом интервале верно отождествляется q>0.3



Метод профилей



Метод профилей



Метод профилей

## Идея метода:

- Строим эмпирическую изохрону
- Приводим к горизонтальной ГП
- $\bullet$  Строим распределение плотности  $f_{stars}(G)$
- ullet Определяем профиль одиночных  $f_{Gauss}$
- ullet Вычисляем профиль двойных как  $f_{stars}-f_{Gauss}$

## Ограничения метода:





Метод профилей

## Идея метода:

- Строим эмпирическую изохрону
- Приводим к горизонтальной ГП
- Строим распределение плотности  $f_{stars}(G)$
- Определяем профиль одиночных  $f_{Gauss}$
- Вычисляем профиль двойных как  $f_{stars} f_{Gauss}$

## Ограничения метода:

• Двойные детектируются с q > 0.37





- Метод координатных сеток
  - Зависит от соответствия теоретической изохроны наблюдательным данным
- Метод профилей
  - Требует достаточно большого числа звезд для построения эмпирической изохроны
- По диаграмме звездная величина показатель цвета мы не можем определить двойные с  $q \leq 0.3$

# Применение методов к РЗС

- Выбрали 20 РЗС, определили возраст, расстояние до них и поглощение.
- Среди 20 РЗС выбрали два: NGC2447 и NGC2516
- Сделали выборку вероятных членов скопления по  $\pi$ ,  $\mu_{\alpha},\mu_{\delta}$  и фотометрическим данным



# Применение методов к NGC2447

Метод координатных сеток

- В промежутке от 0.13 до 0.33 53 звезд
- 49 звезд находятся над изохроной
- Полученная доля двойных 92%



# Применение методов к NGC2447

Метод профилей

- 21% на всем интервале
- 17% на промежутке от 0.13 до 0.33





## Результаты

- Разработали два метода выделения двойных звезд РЗС при помощи диаграммы звездная величина-показатель цвета
- Определили ограничения метода координатных сеток:
  - По массе главного компонента  $M_1 \in [1.6; 2.2] M_{\odot};$
  - ullet Детектирует двойные с q>0.3;
  - Требует точного положения изохроны;
- Определили ограничения метода профилей:
  - ullet Детектирует двойные с q>0.37 ;
  - Требует большого числа звезд;
- Наши задачи на будущее
  - Разработать методы оценки численной ошибки методов;
  - Научиться решать проблемы с неточным расположением изохроны и малонаселенностью ГП;
  - ullet Определить lpha и f(q) для представительной выборки P3C

