Laboratorio di Ottica Quantistica

A. Bordin, G. Cappelli

 $alberto.bordin@sns.it\\cappelligiulio06@gmail.com$

Indice

1	Inte	erferometro di Michelson: 06-07 Novembre 2017	3
	1.1	Lunedì	3
		1.1.1 Cose che dice Tonelli	3
		1.1.2 Misure HeNe	3
	1.2	Martedì	3
		1.2.1 λ	3
		1.2.2 Piezo	4
		1.2.3 Indice di rifrazione	4
		1.2.4 Osservazioni	4
2	Las	er a diodo: 09-10 Novembre 2017	5
	2.1	Giovedì	5
		2.1.1 Datasheet	5
		2.1.2 Cose che dice Tonelli	5
		2.1.3 Caratteristica P-I al variare di T	5
	2.2	Venerdì	5
		2.2.1 Intensità vs angolo	5
		$2.2.2 \lambda \text{ vs T} \dots$	6
3	Olo	ografia: 13-17 Novembre 2017	7
	3.1	Cose importanti	7
	3.2	Olografia statica	7
		3.2.1 soldatino con lancia	7
		3.2.2 caccia	8
	3.3	Olografia dinamica	9
		3.3.1 Cubo con martelletto	9
		3.3.2 Altoparlante	9
4	Fib	re Ottiche: 20-24 Novembre 2017	11
	4.1	Procedimento da seguire	11
		4.1.1 Attenuazione	11
		4.1.2 Attenuazione 2	12
		4.1.3 Propagazione di un modo LP_{01}	12
		4.1.4 Propagazione modi superiori	12
		4.1.5 Fibra a conservazione di polarizzazione	13
		4.1.6 Lente di GRIN	13
		4.1.7 suono	13

5	Analizzatore di spettro: 27-28 Novembre2017		
	5.1	Venerdì	14
		5.1.1 presa dati	14

Interferometro di Michelson: 06-07 Novembre 2017

1.1 Lunedì

Tolta la lente divergente si allineano i due raggi che non fanno interferenza al finito date le dimensioni dell'apparato. La vite micrometrica ha un errore del millesimo di millimetro. Gli errori su distanza e numero di picchi sono comparabili (prova a caso 1/35 e 1/55)

1.1.1 Cose che dice Tonelli

• camera a vuoto: 5 cm $\pm 50 \mu m$

• valvole: antiorario per aprire

1.1.2 Misure HeNe

picchi 1084 d 0.346 mm

Abbiamo impostato il motion controller a 125 step/sec per un totale di 99999 step per un intervallo di 13:21 min

1.2 Martedì

1.2.1 λ

Abbiamo impostato il motion controller a 125 step/sec per un totale di 12500 step per un intervallo di 1:40 min Si notano dei transienti iniziali: 129 picchi e 41 μ m

Su 100 s ne abbiamo perso 1, quindi 1%

Ora impostiamo 125 step/sec per un totale di 99999 step per un intervallo di 13:33 min

L'errore sulla distanza è pari alla risoluzione della vite, cio
è 1 μ m; mentre sul numero di picchi abbiamo considerato $\Delta m{=}2$

	m	m^*	d μm	t mm:ss	$\lambda \ \mathrm{nm}$	$\Delta \lambda$	direzione
HeNe borcapMM02	129		41	1:43	636	18	
HeNe borcapMM06	1088	1087.5	345	13:33	634	2	A
$HeNe\ borcapMM07$	1094	1091.5	345	13:43	631	2	В
HeNe borcapMM08	1092	1091.5	345	13:36	632	2	A
650 nm borcapMM09	1065		345	13.36	648	2.2	A
650 nm borcapMM 10	1054	1052.5	346	13.32	657	2	В
532nm borcapMM11	1306	1305.5	347	13.32	531	2	A
532nm borcapMM12	1293	1293.5	347	13.32	537	2	В

1.2.2 Piezo

Abbiamo fatto una misura della salita da 0 a 100 V e una della discesa da 100 a 0 V contando le frange visivamente e segnando il valore della tensione ogni 10 frange; poi abbiamo ripetuto queste due misure salvando gli andamenti temporali delle frange e della tensione (in ogni acquisizione abbiamo acceso prima il VI Michelson e poi quello del multimetro)

1.2.3 Indice di rifrazione

Per fare il vuoto abbiamo aperto la valvola di collegamento fra camera e tubo e chiuso quella fra tubo ed esterno, quindi abbiamo acceso la pompa per circa 5 min (frange ferme) poi abbiamo azionato il VI e fatto entrare aria prima nel tubo e poi nella camera. A fine acquisizione abbiamo contato i picchi presenti sul grafico.

• borcapMMn01: 43 picchi (HeNe)

• borcapMMn02: 43 picchi (HeNe)

• borcapMMn03: 41 picchi (650 nm)

• borcapMMn04: 41 picchi (650 nm)

• borcapMMn05: 51 picchi (532 nm)

• borcapMMn06: 51 picchi (532 nm)

1.2.4 Osservazioni

- HeNe borcapMM06: si è fermata prima la presa dati rispetto al motorino, probabilmente mancano un paio di picchi quindi aumentiamo la durata dell'acquisizione a 13:43
- HeNe borcapMM07: si è fermato prima il motorino di circa 10 s, probabilmente sono stati contati dei picchi in più quindi diminuiamo la durata dell'acquisizione a 13:36

Laser a diodo: 09-10 Novembre 2017

2.1 Giovedì

2.1.1 Datasheet

Scarica e scrivi tutte le cose importanti dei datasheet

2.1.2 Cose che dice Tonelli

 $10~\mathrm{cm}$ goniometro non superare $1.5~\mathrm{A}$ peltier

2.1.3 Caratteristica P-I al variare di T

Misuriamo la potenza emessa dal diodo al variare della corrente a tre diverse temperature: 12°C , 25°C , 45°C

In ognuna delle tre prove scegliamo la lunghezza d'onda letta dal power meter in base a quella riportata sul datasheet del diodo laser: 784 n μ , 786 n μ , 790 n μ

I valori della potenza nei file .txt sono i μW

I [mA]	P [mW]	I [mA]	P []	I [mA]	P []	I [mA]	P []
82.0	6.23	71.0	3.80				
81.0	6.03	69.1	3.38				
79.9	5.80	67.3	2.99				
78.8	5.48	64.8	2.468				
77.8	5.29	63.0	2.077				
76.6	5.05	60.5	1.544				
75.3	4.74	58.5	1.100				
73.9	4.43						

Tabella 2.1: T = 12 °C

Abbiamo fatto le altre temperature

2.2 Venerdì

2.2.1 Intensità vs angolo

Misuriamo l'intensità relativa ai due piani della giunzione montando il diodo laser su un goniometro

Leggiamo l'intesità attraverso un rilevatore collegato ad un multimetro che leggiamo dal pc con DIGITAL MULTIMETER.

Abbiamo allineato il diodo con il polarizzatore e il power meter però non eravamo soddisfatti quindi lo abbiamo fatto ad occhio usando la cartina e abbiamo controllato col filtro di essere almeno all'interno della sua precisione

Le misure sono fatte a 23°C e con una corrente di controllo di 82.1 μA

2.2.2 λ vs T

Col peltier controlliamo la temperatura del laser. Passiamo lentamente da 12°C a 45°C, intanto controlliamo la lunghezza d'onda del picco letta dallo spettrometro. Abbiamo risoluzione di 1°C e 1nm. Alimentiamo il laser poco sopra soglia $\sim 65mA$

Olografia: 13-17 Novembre 2017

3.1 Cose importanti

- Cammini ottici uguali
- Intensità costante sulla lastra
- 50% annerimento lastra per $\lambda{=}633$ nm quindi 50 $\mu\mathrm{J/cm^2}$
- Taratura sensore

$$P[\mu W] = -0.16925 + 2.6592V[V] \tag{3.1}$$

$$t[s] = \frac{50[\frac{\mu J}{cm^2}]}{P[\mu W]}S[cm^2]$$
 (3.2)

3.2 Olografia statica

3.2.1 soldatino con lancia

13.12 secondi

- A = 60 cm
- B = 92.5 cm
- C = 78.5 cm
- D = 38 cm
- \bullet E = 36 cm

Abbiamo misurato con il rilevatore al silicio i valori dell'intensità dei fasci I_o e I_r :

1.14		1.12
	1.48	
1.12		1.13

Tabella 3.1: Valori di ${\cal I}_r$ espressi in V con un errore di 0.01 V

56		59
	59	
54		59

Tabella 3.2: Valori di I_o espressi in mV con un errore di 1 mV

1.09	1.13	1.11
1.43	1.50	1.45
1.21	1.26	1.24

Tabella 3.3: Valori di I_{tot} espressi in V con un errore di 0.01 V

Tabella 3.4: Valori di P_{tot} espressi in $\mu {\rm W}$

3.2.2 caccia

- A = 62.5 cm
- B = 89.5 cm
- \bullet C = 77.5 cm
- • $\mathrm{D}_S=34.5~\mathrm{cm},\,\mathrm{D}_C=38.5~\mathrm{cm},\,\mathrm{D}_P=50~\mathrm{cm}$
- $\bullet~{\rm E}_S=39~{\rm cm},\,{\rm E}_C=35.5~{\rm cm},\,{\rm E}_P=46~{\rm cm}$

1.19	1.24	1.19
1.50	1.54	1.49
1.20	1.22	1.19

Tabella 3.5: Valori di ${\cal I}_r$ espressi in V con un errore di 0.01 V

67	69	70
68	70	71
69	68	71

Tabella 3.6: Valori di I_o espressi in m
V con un errore di 1 m V

1.25	1.30	1.25
1.56	1.59	1.52
1.25	1.27	1.24

Tabella 3.7: Valori di I_{tot} espressi in V con un errore di 0.01 V

Tabella 3.8: Valori di P_{tot} espressi in $\mu {\rm W}$

3.3 Olografia dinamica

3.3.1 Cubo con martelletto

Tempo stimato di 12.31 s di cui 6 con martelletto premuto e 6 senza. Abbiamo preparato la lastra, premuto il martelletto, acceso il laser, lasciato il martelletto, spento il laser.

- A = 62.5 cm
- B = 89.5 cm
- C = 78 cm
- D = 39 cm
- E = 35 cm

1.24	1.29	1.25
1.53	1.55	1.51
1.19	1.24	1.15

Tabella 3.9: Valori di I_r espressi in V con un errore di 0.01 V

51	51	51
53	52	53
50	50	50

Tabella 3.10: Valori di I_o espressi in mV con un errore di 1 mV

1.23	1.30	1.25
1.55	1.58	1.54
1.25	1.30	1.22

Tabella 3.11: Valori di I_{tot} espressi in V con un errore di 0.01 V

Tabella 3.12: Valori di P_{tot} espressi in $\mu {\rm W}$

3.3.2 Altoparlante

Abbiamo tenuto acceso l'altoparlante alla frequenza di 783 Hz (un Sol5) segnata 1.03 sul generatore di funzioni.

Analogamente a quanto fatto per il martelletto abbiamo tenuto acceso l'altoparlante per le metà del tempo totale di 11.7 s stimato e 11.43 s effettivo.

- A = 63 cm
- B = 87.5 cm
- \bullet C = 69 cm
- D = 36.5 cm

1.24	1.31	1.28
1.58	1.61	1.57
1.26	1.33	1.25

Tabella 3.13: Valori di ${\cal I}_r$ espressi in V con un errore di 0.01 V

98	95	96
94	97	100
93	97	99

Tabella 3.14: Valori di I_o espressi in m
V con un errore di 1 m V

1.34	1.38	1.36
1.62	1.67	1.65
1.29	1.38	1.30

Tabella 3.15: Valori di I_{tot} espressi in V con un errore di 0.01 V

Tabella 3.16: Valori di P_{tot} espressi in $\mu {\rm W}$

Fibre Ottiche: 20-24 Novembre 2017

4.1 Procedimento da seguire

Abbiamo allineato il laser all'interno di un foro cilindrico in un cubo metallico.

- 1. Inserire coso nero
- 2. Spellare la fibra meccanicamente o chimicamente
- 3. Pulire la fibra con l'alcool
- 4. Tagliare la fibra col taglierino
- 5. Inserire il portafibra
- 6. Controllare il taglio
- 7. Mettere la fibra al sicuro

Le dimensioni del sensore del power meter sono 7 mm

Abbiamo un fondo del sensore di 2 nW con un errore del 5% confrontabile con quello dovuto alla distanza fra il sensore e l'apertura che è $23.8~{\rm cm}$

$$-6 = 40 \text{ nW}$$

Lo zero del goniometro è a 13°, luce ambientale 2 nW

Massimo fra 13 e 14° a 2.65 mu W

$$d_2 = 11.1 \text{ cm}$$

 $P_{out}(max) = 9.81 \text{ a } 13^{\circ}$

Fondo scala 4 nW a -16°

 $P_{out}(max) = 12 \text{ muW}$ fra 8 e 9 ad una distanza di 8.9 cm

Abbiamo degli spot scuri e chiari sullo schermo di dimensioni tipiche di 1 $\rm cm^2$ ad una distanza di 105 $\rm cm$ dalla fibra

4.1.1 Attenuazione

HeNe

Abbiamo srotolato dalla bobina di fibra multimodo F-MLD 2 m di fibra ed utilizzando un lanciatore con una lente col fuoco a 2 mm abbiamo allineato il laser ad HeNe nella fibra e abbiamo letto col power meter la potenza uscente:

$$P_{out} = 598 \ \mu W$$

Adesso tagliamo i 2 m iniziali da cui (lasciando tutto invariato) leggiamo la potenza entrante:

 $P_{in} = 1.63 \text{ mW}$

Abbiamo utilizzato uno scramble per eliminare i modi spuri dalla fibra ad una distanza di 41 cm.

Lunghezza finale fibra = 205.3 cm

Abbiamo tolto circa 210 cm

Ci dimentichiamo sempre di infilare il cosino nero!

verde

 $P_{out} = 156 \ \mu W$

Adesso tagliamo i 2 m iniziali da cui (lasciando tutto invariato) leggiamo la potenza entrante:

 $P_{in} = 1.47 \text{ mW}$

4.1.2 Attenuazione 2

Misuriamo la potenza uscente dai 2 m di fibra tagliati la volta scorsa P=3.41 mW e poi stringiamo lo scramble per vedere quando si rompe la fibra. Si è rotta intorno a qualche centinaio di μ W e la potenza è scesa a qualche nW (si è sentito il rumore di quando si rompe).

Abbiamo inserito la fibra nel lanciatore e ottenuto una potenza uscente dai ~ 300 m di fibra di 1.66 mW per l'He-Ne e di 830 μ W per il laser verde prima dello scramble (posto a circa 30 cm dal lanciatore). Stringiamo adesso le scramble per eliminare i modi spuri e misuriamo la potenza uscente, poi tagliamo la fibra e misuriamo la potenza entrante e da questi valori otteniamo l'attenuazione della fibra definita da:

$$\Gamma = \frac{10}{L} \log \left| \frac{P_{in}}{P_{out}} \right| \tag{4.1}$$

	$P_{out} [\mu W]$	P_{in} [mW]	$\Gamma[dB]$
He-Ne	832	2.44	
532 nm	320(2)	2.80(3)	

La cosa importante è che fra le due misure non varino le condizioni sperimentali!!!

4.1.3 Propagazione di un modo LP₀₁

Abbiamo spellato chimicamente due metri di fibra a singolo modo F-SV (4,3/125/245) e le iniettiamo il laser HeNe. Poi attraverso il power meter con attaccato uno schermo con una fessura prendiamo le misure della potenza in funzione dell'angolo per verificare che si sia propagato il modo TEM_{00} (fit ad una gaussiana).

Affinché si propaghi solo il modo LP₀₁ si deve avere

$$V = \frac{2\pi}{\lambda_0} \cdot N.A. \cdot a \le 2.405 \tag{4.2}$$

Abbiamo una potenza massima di 550 μW senza fenditura.

Luce ambientale 2 nW

I dati sono salvati in μ W.

errori per la gaussiana: ultimo digit di errore di digitalizzazione e almeno 50 nW di sballonzoli

4.1.4 Propagazione modi superiori

Adesso vogliamo osservare la propagazione dei modi superiori e per farlo utilizziamo una fibra a singolo modo con λ_0 =1300 nm così che si abbia x

$$V = \frac{2\pi}{\lambda_0} \cdot N.A. \cdot a \ge 2.405 \tag{4.3}$$

e quindi variando l'allineamento si propagano i diversi modi a seconda dell'angolo di ingresso nella fibra.

Abbiamo spellato la fibra F-SMF-28 (9,3/125/245) chimicamente e una volta tagliata abbiamo allineato un capo al laser e l'altro ad un obiettivo x20 in modo da poter proiettare l'immagine dei modi su uno schermo e fotografarli.

Dato che la frequenza normalizzata per il laser verde a 532 nm ha un valore molto alto e quindi un elevato numero di modi indipendenti abbiamo provato ad usare anche l'HeNe.

4.1.5 Fibra a conservazione di polarizzazione

Abbiamo spellato chimicamente alle estremità e al centro una fibra F-SPV SM (3,2/125/245) al fine di misurarne in battimenti. Questo tipo di fibra ha un core stressato meccanicamente che presenta una forma ellittica e a ciascun asse è associato un diverso indice di rifrazione.

Inseriamo la fibra nel lanciatore e osserviamo l'ellisse sullo schermo bianco all'uscita, in questo modo, attraverso un goniometro fissato sul portafibra fissiamo le posizione degli assi (90°-30°) e quindi scambiamo le estremità e facciamo in modo che la fibra sia a 45° così da vedere zone scure e chiare al centro della fibra.

4.1.6 Lente di GRIN

Con una lente di GRIN misuriamo l'accoppiamento della fibra multimodo con un laser a diodo e un LED entrambi a 830 nm. Per farlo misuriamo la potenza in uscita dal diodo laser e dal LED P_{in} e quella in uscita dalla fibra P_{out} , una volta allineato il fascio al suo interno con l'utilizzo della lente di GRIN.

Il coefficiente di accoppiamento è quindi definito da:

$$\Gamma = 10\log \left| \frac{P_{in}}{P_{out}} \right| \tag{4.4}$$

	$I_{in} [\mathrm{mA}]$	$P_{in} [mW]$	P_{out} [mW]	$\Gamma[dB]$
Laser	78.0(1)	2.10(1)	6.12(10)	4.65
Laser	78.3(2)	2.67(1)		
Laser	78.4(2)	3.41(1)		
Laser	78.3(2)	3.52(1)		
Laser	78.0(2)	3.48(1)		
Laser	78.0(1)	3.50(1)	6.19(6)	
LED	81.0(2)	$3.90(1) [\mu W]$	8.21(10)	
$_{ m LED}$	81.1(2)	$3.96(1) [\mu W]$	8.21(10)	
$_{ m LED}$	81.1(2)	$4.45(1) [\mu W]$	8.21(10)	
$_{ m LED}$	81.1(2)	$4.78(1) [\mu W]$	8.21(10)	
LED	81.1(2)	$4.91(2) [\mu W]$	8.21(10)	

accorgimento: notiamo che l'alimentatore di laser e led ha delle fluttuazioni 1/f non trascurabili. Quindi prestiamo attenzione, regolando la manopola, ad alimentare sempre con la stessa corrente.

4.1.7 suono

sentiamo i 98 Hz della luce ambientale (2*50 Hz perchè abbiamo lampade al neon) misurati con l'accordatore del telefono

Analizzatore di spettro: 27-28 Novembre 2017

5.1 Venerdì

generatore di funzioni: frequenza $= 4.50~\mathrm{Hz}$ ampiezza $4~\mathrm{V}$ picco picco

impostiamo ampiezza e offset del piezoelettrico circa a metà del fondoscala nella speranza di essere nella zona lineare del piezoelettrico del Fabri-Perot

5.1.1 presa dati

impostiamo l'ampiezza del piezoelettrico in modo da avere 3 ordini di interferenza del Fabri-Perot. In principio stiamo nel fronte di salita dell'onda triangolare del generatore di funzioni

le misure seguono il seguente algoritmo:

stepA) prendiamo la misura dei tre ordini per misurare la FSM

stepB) zoommiamo il fondoscala dell'oscilloscopio (senza modificare nient'altro) per ingrandire il picco centrale dell'ordine centrale e misurare la finezza

iteriamo gli step A e B 5 volte impostiamo il livello del trigger sulla rampa in modo da non dover spostare l'asse del tempo passando da step A a step B

poi ci spostiamo sulla discesa della rampa e riapplichiamo l'algoritmo