Gli insiemi

Per il concetto di insiemi è importante ricordare queste tre parole :

- <u>Insieme</u>
- Elementi
- Appartenenza

Un insieme è una collezione di elementi, per i quali è sempre possibile determinare se un elemento appartiene o no all'insieme.

$$A = \{a, b, c\}$$
 è un insieme

 $A = \{gli \ studenti \ della \ sapienza \ presenti \ il \ 03 - 10 - 2022\} \ e \ un \ insieme$

 $A = \{i \text{ bei } ragazzi\} \text{ NON } \text{è un insieme}$

Quest'ultimo non è un insieme perché "i bei ragazzi" non è un dato preciso, in quanto soggettivo.

Operazioni tra insiemi

 $x \in A$: Per dire che un elemento di x appartiene ad A si usa questo simbolo: \in

 $A = \emptyset$: Vuol dire che A è un insieme vuoto, il simbolo di un insieme vuoto è \emptyset

 $A \cap B$: Quest'operazione definisce tutti gli elementi in comune tra gli insiemi A e B

 $A \cup B$: Questa è l'intersezione degli insiemi A e B. L'insieme contiene gli elementi di entrambi gli insiemi

A cB: Ogni elemento di A appartiene a B

A = B: I 2 insiemi hanno gli stessi elementi, quindi A c B & B c A.

Il concetto di applicazione

Consideriamo 2 insiemi: A e B.

Esempio di un'applicazione : $R = A \rightarrow B$ quindi $\forall a \in B \rightarrow b = R(a)$

Tradotto vuol dire: per ogni elemento di A associo un elemento di B.

Le applicazioni possono essere *iniettive* e/o *suriettive*.

Iniettive:

$$R = A \rightarrow B$$

 $a' \neq a'' \rightarrow R(a') \neq R(a'')$

Si dice iniettiva se ogni elemento di A ha al massimo una contro immagine in B. In pratica un'applicazione è iniettiva se manda elementi distinti in elementi distinti.

Suriettive:

$$R = A \rightarrow B$$

 $\forall b \in B \exists a \in A \text{ tale che } R(a) = B$

Si dice suriettiva se ogni elemento di B ha almeno una contro immagine in B

Se un'applicazione è sia iniettiva che suriettiva si dice BIETTIVA.

Consideriamo la classe degli insiemi che sono in biezione tra loro, la cardinalità di tale classe mi permette di definire i numeri interi \mathbb{N} .