Algebraic Geometry PS8

Mathieu Wydra & Jon Im

December 7, 2023

- 4 (a) Let U_1, U_2 be open affine subschemes of X, say $U_1 \cong \operatorname{Spec} A$ and $U_2 \cong \operatorname{Spec} B$. Take $x \in U_1 \cap U_2$. We can assume wlog that we have $f \in \operatorname{Spec} A$, $g \in \operatorname{Spec} B$ such that $x \in D_{U_1}(f) \subset D_{U_2}(g) \subset U_1 \cap U_2$. Consider $F = f|_{D_{U_2}(g)} \in \Gamma(D_{U_2}(g), \mathcal{O}_X) = B_g$. So $F = h/g^n$ for some $b \in B$ and $n \geq 0$. As $\operatorname{Spec} A_f = \operatorname{Spec} B_g \setminus V(F) = \operatorname{Spec} (B_g)_F$, then $\operatorname{Spec} (B_g)_F = \operatorname{Spec} (B_g h)$ so $D_{U_2}(gh) = D_{U_1}(f)$.
 - (b) Let $f: X \to S$ be a morphism of schemes such that for an open cover $\{\operatorname{Spec} A_i\}_i \text{ of } X \text{ and } \{\operatorname{Spec} B_i\}_i \text{ of } S \text{ with } f(\operatorname{Spec} B_i) \subset \operatorname{Spec} A_i$ with $A_i \to B_i$ being of finite presentation. Let affine opens be such that $f(\operatorname{Spec} B) \subset \operatorname{Spec} A$. Pick $p \in \operatorname{Spec} B$, and p is contained in some Spec B_i . By (a) we can choose an affine open neighbourhood of $U = \operatorname{Spec} C \subset \operatorname{Spec} B \cap \operatorname{Spec} B_i$ of p such that it is principal open in both subschemes. Then $\Gamma(\operatorname{Spec} A_i, \mathcal{O}_S) \to \Gamma(\operatorname{Spec} C, \mathcal{O}_X)$ is of finite presentation as Spec C is principal open. Pick a neighbourhood $V = \operatorname{Spec} D \subset \operatorname{Spec} A_i \operatorname{Spec} A$ of f(p) again such that $\operatorname{Spec} D$ is principal open in both subschemes. Then $f^{-1}(V) \cap U$ is a principal open in Spec B_i so then also in Spec B therefore $\Gamma(\operatorname{Spec} A, \mathcal{O}_S) \to$ $\Gamma(\operatorname{Spec} B_i, \mathcal{O}_X)$ is of finite presentation. This can be done for all $p \in \operatorname{Spec} B$, and $\{\operatorname{Spec} B_i\}$ covers $\operatorname{Spec} B$. Since $\operatorname{Spec} B$ is quasicompact, we can pick finitely many such affines to cover Spec B. By gluing argument since $A_i \to B_i$ is of finite presentation, then so is $A_i \to B$ then via similar argument on Spec A we have that $A \to B$ is of finite presentation.