

LVT

Comparison with RVT model(s)

Please use the bookmark to navigate

General information on EG DK1.2_RF_mmW models

- Maximum supply voltage is 1.8 V.
- Validity domain is defined as follows:
 - ✓ Drawn gate length varies from 150nm to 10um.
 - ✓ Drawn transistor width varies from 0.16um to 10um.
 - ✓ Device temperature varies from -40 °C to 125 °C.

Output parameters definitions

- Model(s): eglvtnfet_acc, eglvtpfet_acc
 - ✓ Gm_ana: Drain transconductance at Ids = iana*M*W/L, Vds = Vdd/4V, f = 100kHz.
 - ✓ Sv@1hz: Gate noise voltage spectral density at 1Hz, Vgs = Vgs_ana, Vds = Vdd/4V
 - ✓ Aid: delta_Id/Id * sqrt(W.L)
 - ✓ Gds_ana: Drain conductance at Ids = iana*M*W/L, Vds = Vdd/4, f = 100k
 - ✓ Vgs_ana: Vgs value for which drain current is iana*M*1*W/(1*L+0+0*p_la) at Vds=Vdd/4V.
 - ✓ Avt : delta_Vt * sqrt(W.L)
 - ✓ Id_sv: Drain current at Vgs = Vgs_ana and Vds = Vdd/4V for which noise voltage and current spectral densities Sv, Si are extracted.
 - ✓ Cbd_off: Bulk-to-Drain capacitance at Vgs = 0V, Vds = 0V, f = 100kHz.
 - ✓ Cdg_ana: Drain-to-Gate transcapacitance at Ids = iana*M*W/L, Vds = Vdd/4V, f = 100kHz.
 - ✓ Ft_ana: Transition frequency at Ids = iana*M*W/L, Vds = Vdd/4V
 - ✓ Sv@th: Gate thermal noise voltage spectral density, Vgs = Vgs_ana, Vds = Vdd/4V
 - ✓ Abeta : delta_GmMax/GmMax * sqrt(w/L)
 - ✓ Cdd_ana: Total drain capacitance at Ids = iana*M*W/L, Vds = Vdd/4V, f = 100kHz.
 - ✓ Gdc_ana: Voltage gain at Ids = iana*M*W/L, Vds = Vdd/4V, f = 100kHz
 - ✓ Cgg_ana: Total gate capacitance at Ids = iana*M*W/L, Vds = Vdd/4V, f = 100kHz
 - ✓ Cgd_0v : Gate-to-Drain capacitance at Vgs = 0V, Vds = vds_cggV, f = 100kHz.
 - ✓ Vtgmmax : Threshold voltage at Vds = 0.05 derived from Gm max method.

ST Confidential

dormieub

eglvtnfet_acc Electrical characteristics scaling

Scaling versus Length (T=25C)

dormieub

eglvtnfet_acc, VtGmmax [mV] vs l [m]

eglvtnfet_acc, Vgs_ana [mV] vs l [m]

eglvtnfet_acc, GDC_ana [] vs l [m]

eglvtnfet_acc, GBW_QS [GHz] vs l [m]

eglvtnfet_acc, Ft_ana [GHz] vs l [m]

eglvtnfet_acc, Gm_ana/Id_Sv [1/V] vs l [m]

eglvtnfet_acc, Gm_ana/w [S/um] vs l [m]

eglvtnfet_acc, Gds_ana/w [S/um] vs l [m]

eglvtnfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs l [m]

eglvtnfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs l [m]

eglvtnfet_acc, Sv@th [V.m/sqrt(Hz)] vs l [m]

eglvtnfet_acc, Cgg_ana/l [fF/um] vs l [m]

eglvtnfet_acc, Cdg_ana/w [fF/um] vs l [m]

eglvtnfet_acc, Cdd_ana/w [fF/um] vs l [m]

eglvtnfet_acc, Cgd_0V/w [fF/um] vs l [m]

eglvtnfet_acc, Cbd_off/w [fF/um] vs l [m]

Scaling versus Width (T=25C)

dormieub

eglvtnfet_acc, VtGmmax [mV] vs w [m]

eglvtnfet_acc, Vgs_ana [mV] vs w [m]

eglvtnfet_acc, GDC_ana [] vs w [m]

eglvtnfet_acc, GBW_QS [GHz] vs w [m]

eglvtnfet_acc, Ft_ana [GHz] vs w [m]

eglvtnfet_acc, Gm_ana/Id_Sv [1/V] vs w [m]

eglvtnfet_acc, Gm_ana/w [S/um] vs w [m]

eglvtnfet_acc, Gds_ana/w [S/um] vs w [m]

eglvtnfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs w [m]

eglvtnfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs w [m]

eglvtnfet_acc, Sv@th [V.m/sqrt(Hz)] vs w [m]

eglvtnfet_acc, Cgg_ana/l [fF/um] vs w [m]

eglvtnfet_acc, Cdg_ana/w [fF/um] vs w [m]

eglvtnfet_acc, Cdd_ana/w [fF/um] vs w [m]

eglvtnfet_acc, Cgd_0V/w [fF/um] vs w [m]

eglvtnfet_acc, Cbd_off/w [fF/um] vs w [m]

 $L{==}0.15e{-}6~and~nf{=}{=}2~and~Temp{=}{=}25~and~devType{=}{=}"PCELLwoWPE"$

Scaling versus Length @ W/L=10&&W/nf<5um

eglvtnfet_acc, VtGmmax [mV] vs l [m]

eglvtnfet_acc, Vgs_ana [mV] vs l [m]

eglvtnfet_acc, GDC_ana [] vs l [m]

eglvtnfet_acc, GBW_QS [GHz] vs l [m]

eglvtnfet_acc, Ft_ana [GHz] vs l [m]

eglvtnfet_acc, Gm_ana/Id_Sv [1/V] vs l [m]

eglvtnfet_acc, Gm_ana/w [S/um] vs l [m]

eglvtnfet_acc, Gds_ana/w [S/um] vs l [m]

eglvtnfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs l [m]

eglvtnfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs l [m]

eglvtnfet_acc, Sv@th [V.m/sqrt(Hz)] vs l [m]

eglvtnfet_acc, Cgg_ana/l [fF/um] vs l [m]

eglvtnfet_acc, Cdg_ana/w [fF/um] vs l [m]

eglvtnfet_acc, Cdd_ana/w [fF/um] vs l [m]

eglvtnfet_acc, Cgd_0V/w [fF/um] vs l [m]

eglvtnfet_acc, Cbd_off/w [fF/um] vs l [m]

eglvtpfet_acc Electrical characteristics scaling

Scaling versus Length (T=25C)

eglvtpfet_acc, VtGmmax [mV] vs l [m]

 $W{=}{=}2e{-}6~and~nf{=}{=}2~and~Temp{=}{=}25~and~devType{=}{=}"PCELLwoWPE"$

eglvtpfet_acc, Vgs_ana [mV] vs l [m]

 $W{=}{=}2e{-}6~and~nf{=}{=}2~and~Temp{=}{=}25~and~devType{=}{=}"PCELLwoWPE"$

eglvtpfet_acc, GDC_ana [] vs l [m]

eglvtpfet_acc, GBW_QS [GHz] vs l [m]

eglvtpfet_acc, Ft_ana [GHz] vs l [m]

 $W{=}{=}2e{-}6~and~nf{=}{=}2~and~Temp{=}{=}25~and~devType{=}{=}"PCELLwoWPE"$

eglvtpfet_acc, Gm_ana/Id_Sv [1/V] vs l [m]

eglvtpfet_acc, Gm_ana/w [S/um] vs l [m]

eglvtpfet_acc, Gds_ana/w [S/um] vs l [m]

eglvtpfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs l [m]

eglvtpfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs l [m]

eglvtpfet_acc, Sv@th [V.m/sqrt(Hz)] vs l [m]

eglvtpfet_acc, Cgg_ana/l [fF/um] vs l [m]

eglvtpfet_acc, Cdg_ana/w [fF/um] vs l [m]

eglvtpfet_acc, Cdd_ana/w [fF/um] vs l [m]

eglvtpfet_acc, Cgd_0V/w [fF/um] vs l [m]

eglvtpfet_acc, Cbd_off/w [fF/um] vs l [m]

Scaling versus Width (T=25C)

eglvtpfet_acc, VtGmmax [mV] vs w [m]

eglvtpfet_acc, Vgs_ana [mV] vs w [m]

eglvtpfet_acc, GDC_ana [] vs w [m]

eglvtpfet_acc, GBW_QS [GHz] vs w [m]

eglvtpfet_acc, Ft_ana [GHz] vs w [m]

eglvtpfet_acc, Gm_ana/Id_Sv [1/V] vs w [m]

eglvtpfet_acc, Gm_ana/w [S/um] vs w [m]

eglvtpfet_acc, Gds_ana/w [S/um] vs w [m]

eglvtpfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs w [m]

eglvtpfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs w [m]

eglvtpfet_acc, Sv@th [V.m/sqrt(Hz)] vs w [m]

eglvtpfet_acc, Cgg_ana/l [fF/um] vs w [m]

eglvtpfet_acc, Cdg_ana/w [fF/um] vs w [m]

eglvtpfet_acc, Cdd_ana/w [fF/um] vs w [m]

eglvtpfet_acc, Cgd_0V/w [fF/um] vs w [m]

eglvtpfet_acc, Cbd_off/w [fF/um] vs w [m]

Scaling versus Length @ W/L=10&&W/nf<5um

eglvtpfet_acc, VtGmmax [mV] vs l [m]

eglvtpfet_acc, Vgs_ana [mV] vs l [m]

eglvtpfet_acc, GDC_ana [] vs l [m]

eglvtpfet_acc, GBW_QS [GHz] vs l [m]

eglvtpfet_acc, Ft_ana [GHz] vs l [m]

eglvtpfet_acc, Gm_ana/Id_Sv [1/V] vs l [m]

eglvtpfet_acc, Gm_ana/w [S/um] vs l [m]

eglvtpfet_acc, Gds_ana/w [S/um] vs l [m]

eglvtpfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs l [m]

eglvtpfet_acc, Sv@1Hz*sqrt(W*L) [V.m/sqrt(Hz)] vs l [m]

eglvtpfet_acc, Sv@th [V.m/sqrt(Hz)] vs l [m]

eglvtpfet_acc, Cgg_ana/l [fF/um] vs l [m]

eglvtpfet_acc, Cdg_ana/w [fF/um] vs l [m]

eglvtpfet_acc, Cdd_ana/w [fF/um] vs l [m]

eglvtpfet_acc, Cgd_0V/w [fF/um] vs l [m]

eglvtpfet_acc, Cbd_off/w [fF/um] vs l [m]

Annex

Conditions of simulations

The simulations were done with SBenchLSF Alpha using Eldo simulator 2018.3.

- Model eglvtnfet_acc (LVT)
 - ✓ Input Parameters
 - **x** vds_off = vds_sat V
 - \mathbf{X} iana = 5e-6 A
 - \mathbf{x} shrink iana = 1
 - \times mc_sens = 0
 - \times vds_lin = 0.05 V
 - \times ivt = 300e-9 A
 - **x** model_version = 1.2.e
 - \times vds_cgd = 0 V
 - \times vds_mm = 0.05 V
 - \mathbf{x} ams_release = 2018.3
 - **✗** plashrink_iana = 0
 - \times vgs_stop = vdd V
 - **✗** dlshrink_ivt = 0
 - **✗** sbenchlsf_release = Alpha

- \times vds_sat = Vdd V
- **x** mc_nsigma = 3
- \times shrink ivt = 1
- \mathbf{X} vstep_iana = 0.01 V
- \mathbf{x} vgs_start = 0 V
- **x** plashrink_ivt = 1
- **✗** dlshrink_iana = 0
- \star ithslwi = 10e-9 A
- x vds_ana = Vdd/4 V
- \times vds_cbd = 0 V
- \mathbf{x} vddmax = vdd
- **x** mc_runs = 5000
- \mathbf{X} vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- **x** temp = $25 \, ^{\circ}$ C
- x f ext = 100k Hz
- \mathbf{x} vbs = 0 V
- \times vdd = 1.8 V
- ✓ Sweep Parameters
- ✓ Extra parameters
 - \mathbf{x} eglvt_dev = 1
- Model eglvtpfet_acc (LVT)
 - ✓ Input Parameters
 - **x** vds_off = vds_sat V
 - **x** iana = 2e-6 A

ST Confidential

- **x** shrink_iana = 1
- \mathbf{x} mc sens = 0
- \times vds lin = 0.05 V
- **X** ivt = 70e-9 A
- **✗** model_version = 1.2.e
- \times vds_cgd = 0 V
- \times vds_mm = 0.05 V
- \mathbf{X} ams release = 2018.3
- **✗** plashrink_iana = 0
- \times vgs_stop = vdd V
- X dlshrink ivt = 0
- **✗** sbenchlsf_release = Alpha
- \times vds_sat = Vdd V
- **x** mc_nsigma = 3
- \times shrink ivt = 1
- **x** vstep_iana = 0.01 V
- \mathbf{x} vgs_start = 0 V
- **✗** plashrink_ivt = 1
- **✗** dlshrink iana = 0
- \star ithslwi = 10e-9 A
- x vds_ana = Vdd/4 V
- \times vds_cbd = 0 V
- \mathbf{x} vddmax = vdd
- **x** mc_runs = 5000
- \times vstep_ivt = 0.005 V

ST Confidential

- \mathbf{x} vgs_off = 0 V
- **x** temp = $25 \, ^{\circ}$ C
- \star f_ext = 100k Hz
- **x**vbs = 1.8 V
- \times vdd = 1.8 V
- ✓ Sweep Parameters
- ✓ Extra parameters
 - **x** eglvt_dev = 1
- Model egnfet_acc (RVT)
 - ✓ Input Parameters
 - \times vds_ft = Vdd V
 - \times vds_cgd = 0 V
 - \times f_ext_rg = 1G Hz
 - \times mc_sens = 0
 - \times vds_lin = 0.05 V
 - \times ivt = 300e-9 A
 - **✗** model_version = 1.2.c
 - **x** vds_off = vds_sat V
 - \mathbf{X} iana = 5e-6 A
 - \mathbf{X} ams_release = 2018.3
 - \times vgs_stop = vdd V
 - **✗** dlshrink_ivt = 0
 - **x** sbenchlsf_release = Alpha
 - \times vds_sat = Vdd V
 - **x** mc_nsigma = 3

- **x** shrink_ivt = 1
- \times vgs_start = 0 V
- **x** plashrink_ivt = 1
- \star ithslwi = 10e-9 A
- x vds_ana = Vdd/4 V
- \times vds_cbd = 0 V
- \mathbf{x} vddmax = vdd
- **x** mc_runs = 5000
- \mathbf{X} vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- \star f_ext = 100k Hz
- \mathbf{x} vbs = 0 V
- \times vdd = 1.8 V
- ✓ Sweep Parameters
- ✓ Extra parameters
 - \mathbf{x} eg_dev = 1
 - \mathbf{x} eglvt_dev = 1
- Model egpfet_acc (RVT)
 - ✓ Input Parameters
 - \times vds_ft = Vdd V
 - \times vds_cgd = 0 V
 - \star f_ext_rg = 1G Hz
 - \times mc_sens = 0
 - \times vds_lin = 0.05 V

- **X** ivt = 70e-9 A
- **x** model_version = 1.2.c
- **x** vds_off = vds_sat V
- \mathbf{X} iana = 2e-6 A
- **x** ams_release = 2018.3
- \times vgs_stop = vdd V
- **✗** dlshrink_ivt = 0
- **x** sbenchlsf_release = Alpha
- \times vds_sat = Vdd V
- **x** mc_nsigma = 3
- \times shrink ivt = 1
- \times vgs_start = 0 V
- **✗** plashrink_ivt = 1
- \star ithslwi = 10e-9 A
- X vds_ana = Vdd/4 V
- \times vds_cbd = 0 V
- \mathbf{x} vddmax = vdd
- **x** mc_runs = 5000
- \times vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- \star f_ext = 100k Hz
- \mathbf{x} vbs = 0 V
- \times vdd = 1.8 V
- ✓ Sweep Parameters

- ✓ Extra parameters
 - **x** eg_dev = 1
 - **x** eglvt_dev = 1

