ОГЛАВЛЕНИЕ

1	Гидрат метана							
	1.1	Историческая справка	2					
	1.2	Кристаллическая структура	4					
	1.3	Образование гидратов	6					
2	Молекулярно-динамический подход к исследованию гидрата							
	метана							
	2.1	Метод классической молекулярной динамики	9					
	2.2	Скоростной алгоритм Верле интегрирования уравнений дви-						
		жения	11					
	2.3	Ячейка моделирования. Периодические граничные условия	12					
	2.4	Статистические ансамбли. Термостаты и баростаты	13					
	2.5	Радиус обрезания. Список Верле	14					
	2.6	Модельные потенциалы взаимодействия для описания гидрата						
		метана	14					
	2.7	Модель TIP4P/Ice	15					
	2.8	Модель OPLS-UA	17					
	2.9	Правила Лоренца-Бертло	18					
	2.10	Крупнозернистая модель гидрата метана	19					
	2.11	Идентификация структуры гидратов. Алгоритм CHILL+	20					
3	Молекулярно-динамическое моделирование процессов роста							
	и диссоциации гидрата метана 23							
	3 1	Затверлевание переохлажденной двухфазной системы метан-вода	23					

ГЛАВА 1. ГИДРАТ МЕТАНА

1.1. Историческая справка

Гидрат метана относится к классу веществ, называемых газовыми гидратами. Структура газовых гидратов представляет кристаллическую решетку, образованную молекулами воды, в полостях которой помещены молекулы газов. Молекулы воды в этом случае принято называть «хозяевами», а молекулы газа-включения — «гостями». Соединения включения, имеющие подобную структуру, также принято называть клатратами. Таким образом, газовые гидраты в литературе нередко именуются клатратными гидратами. Газовые гидраты являются твердыми растворами и по структуре схожи с обычным водным льдом за тем исключением, что молекулы-гости газа обеспечивают стабильность характерной именно для газовых гидратов кристаллической решетки, составленной из пяти- и шестиугольников, объединенных в множество многогранников, соприкасающихся гранями. Такая конфигурация из молекул воды, лежащих в вершинах упомянутых многогранников распадается в отсутствии молекул-«гостей».

Газовые гидраты впервые были открыты в 1811 году британским химиком Дэвидом Гемфри, который обнаружил[ссылка], что водный раствор хлора кристаллизуется более охотно, чем обычная вода и чистый хлор, который не претерпевает никаких изменений при охлаждении до температуры -40°. В течение 125 лет с момента данного открытия исследователи в основном занимались поиском как можно большего числа соединений, способных образовывать гидраты, а также описанием их состава и физических свойств. Так, в 1823 году Фарадей предположил химический состав гидрата: $\text{Cl} \cdot 10 \, \text{H}_2\text{O}$, что было экспериментально подтверждено Розебомом в 1884 г. В 1888 году Виллард получил гидраты метана, этана и пропана, а также выдвинул гипотезу, что гидраты являются кристаллами. В 1902 году Форкран определил равновесные температуры при атмосферном давлении для 15 различных гидратов.

В 1934 году Хаммершмидт обнаружил, что природные газы и вода, в небольшом количестве содержащаяся в объеме газопроводов, образуют гидраты, впоследствии закупоривая их. В связи с этим обстоятельством тематика изучения газовых гидратов стала заметно интереснее и с практической точки зрения, были начаты исследования их термодинамических и кинетических свойств. Так, вскоре был введен строгий контроль за содержанием H_2O в трубопроводах, а в 1930-1950 годах ученые вели поиск различных ингибиторов, подавляющих рост гидратов, таких как соли хлора, метанол и моноэтиленгликоль.

Штакельберг, Мюллер и Клауссен в экспериментах по ренгтеновской дифракции идентифицировали кристаллическую структуру различных газовых гидратов и выделили два её типа: *sI* и *sII*. В 1987 г. группой Рипмистра была обнаружена гексагональная структура гидрата *sH*. Данные типы структур являются наиболее распространенными кристаллическими модификациями газовых гидратов. Сообщалось так же о существовании гораздо реже встречающихся фазах, возникающих сверхвысоких давлениях порядка 1 ГПа, например, Дядиным [ссылка].

В 1959 году Ван-дер-Ваальс и Платье разработали феноменологическую статистическую модель для оценки термодинамических свойств газовых гидратов, которая является наиболее популярной и в настоящее время. Данная модель позволяет предсказывать макроскопические характеристики, такие как температура и давление на основе межмолекулярных потенциалов взаимодействия. Достоинством теории Ван-дер-Ваальса-Платье помимо точности предсказаний является возможность расчета свойств гидратов смесей газов, основываясь на характеристиках чистых газов гидратообразователей.

В 1965 году были найдены природные залежи гидратов природных газов на мессояхском газовом месторождении, после чего было обнаружено множество других залежей гидратов на дне океана и в зонах вечной мерзлоты. Возникло понимание, что газовые гидраты могут быть потенциальным источником углеводородной энергии в будущем.

В 1997 году было обнаружено, что полости гидратов могут содержать не обязательно одну, а целых две молекулы-гостя, что было продемонстрировано примере sII гидрата, который в своей большей полости содержал 2 молекулы азота.

1.2. Кристаллическая структура

Кристаллическая структура клатратных гидратов природных газов в основном представлена в трех наиболее распространенных формах: *sI*, *sII* и *sH*. Перед тем как обсудить конкретное строение указанных структур, необходимо отметить присущие им общие черты.

Молекулы воды, связанные водородными связами, образуют так называемые «полости» — пространственные области в форме многранников, грани которых представляют собой четырехугольники, пятиугольники и шестиугольники. Молекулы воды при этом находятся в вершинах указанных многугольников, а водородные связи направлены вдоль их рёбер. Различные полости соединяются друг с другом, разделяя грани между собой. Получившийся «ажурный» каркас носит название решетки-«хозяина» Молекулы газов-включений располагаются внутри полостей и называются «гостями». Упомянутые многогранники могут содержать различное число многоугольников в зависимости от типа кристаллической решетки. Обознать их принято используя запись типа n^m , где m – количество многоугольников, составленных из n вершин. В этом случае, например, запись n будет соответстовать многограннику, построенному из n пятиугольников и 4 шестиугольников.

Кристаллическая структура sI представлена полостями 5^{12} и $5^{12}6^2$, структура sII полостями 5^{12} и $5^{12}6^4$, а sH – полостями 5^{12} , $5^{12}6^8$ и $4^35^66^3$. Элементарные ячейки данных кристаллических структур приведены на рис. 1.1. На каждую элементарную ячейку приходится соответственно 46, 136 и 34 молекулы воды.

Существование нескольких структур объясняется тем фактом, что газовые гидраты образуются молекулами-гостями с различными размерами. Так, sI-гидраты образованы молекулами с диаметром от 4,2 до 6 Å. Примерами являются газы CH_4 , C_2H_6 , CO_2 , H_2S . Молекулы размером меньше 4,2 Å, такие как водород, азот, криптон, кислород, аргон, а так же молекулы, например, изобутана или пропана диаметром 6-7 Å, формируют sII-гидраты. Наконец, наиболее крупные молекулы размером 7-9 Å, в совокупности с молекулами меньшего размера, образуют sH-гидраты.

Рис. 1.1: Кристаллическая структура трех наиболее распространенных типов гидратов, а также 5 различных полостей, образующих их. Источник[Gas hydrates in sustainable chemistry / A. Hassanpouryouzband [et al.] // Chem. Soc. Rev. – 2020. – Vol. 49. – P. 5225]

Газовые гидраты состоят из воды на 85% и по этой причине их часто сравнивают с обычным льдом. Однако в отличие от кристаллической решетки льда, характерная для гидратов структура не может существовать в отсутствие молекул-гостей. Кроме того, гидраты отличаются большей механической прочностью по сравнению со льдом[http://refhub.elsevier.com/S1875-5100(18)30492-X/sref46], обладают меньшей теплопроводностью[https://pubs.acs.org/doi/abs/10.102 и большей теплоемкостью по сравнению с гексагональным льдом.

Важно отметить, что газовые гидраты являются нестехиометричными соединениями и идеальных кристаллов газовых гидратов не существует, поскольку молекулы воды всегда присутствуют в большем количестве чем молекулы газов. Поэтому еще одной характеристикой гидратов является число заполнения полостей. Идеальное стехиометрическое отношение для структуры sI составляет $1:5^{3/4}$, sII и $sH-1:5^{2/3}$ [1-s2.0-S187551001830492X-main (2)].

1.3. Образование гидратов

Процесс формирования гидратов принято разделять на стадию нуклеации и стадию устойчивого роста кристаллической фазы. Образование газовых гидратов из растворенных в воде газов возможно только в условиях низких температур и высоких давлений. В случае неполярных молекул-гостей, например, метана причина этого заключается в том, что $\mathrm{CH_4}$ является гидрофобной молекулой и имеет низкую величину растворимости в воде порядка $10^{-3}-10^{-5}$ мольных долей при обычных условиях. Однако при понижении температуры до отрицательных величин и увеличения давления до десятков МПа, растворимость $\mathrm{CH_4}$ увеличивается на два порядка.

При исследовании клатратных гидратов под нуклеацией обычно подразумевают явление гомогенной нуклеации, которое представляет собой возникновение в исходной фазе чистого, то есть без наличия примесных молекул или атомов, вещества зародыша новой кристаллической или аморфной фазы, который может состоять из десятков или тысяч частиц. В объеме переохлажденной жидкости вследствие флуктуаций периодически образуются и распадаются кластеры (зародыши) из молекул воды, выстраивающихся вокруг растворенного метана.

Зародышеообразование является стохастическим явлением: с некоторой вероятностью зародыш может достичь некоторого критического размера r, после чего происходит устойчивый рост новой твердой фазы. Существование критического размера можно объяснить если обратить внимание на величину избытка свободной энергии Гиббса ΔG , который равен сумме поверхностной и объемной частей свободных энергий зародыша:

$$\Delta G = \Delta G_{surf} + \Delta G_{vol} = 4\pi r^2 \sigma + \frac{3}{4}\pi r^3 \Delta g_{vol}. \tag{1.1}$$

Здесь σ – поверхностное натяжение на границе раздела зародыша новой фазы и раствора, Δg_{vol} изменение свободной энергии в пересчете на единицу объема. Как видно из рисунка $1.2~\Delta G$ имеет максимум, соответствующий критическому значению радиуса, который равен

$$r_{crit} = -2\sigma/\Delta g_{vol}. {1.2}$$

Соотношение 1.2 можно получить, взяв производную 1.1 по радиусу зародыша и приравняв её нулю. Соответствующий максимум избытка свободной

$$\Delta G_{crit} = 4\pi \sigma r_{crit}^2 / 3. \tag{1.3}$$

Рис. 1.2: Диаграмма, иллюстрирующая рост гидрата метана. Источник[https://doi.org/10.1038/s42004-021-00539-]

Частота с которой возникают зародыши критического размера в значительной степени зависит от высоты энергетического барьера. При уменьшении величины r_{crit} величина ΔG так же падает. Критический радиус зародыша может уменьшаться в зависимости от величины пересыщения и переохлаждения ΔT раствора по зависимости $r_{crit} \propto 1/\Delta T$ [http://refhub.elsevier.com/S1875-5100(18)30492-X/sref125]. Соответственно увеличивается и вероятность зародышеообразования.

В настоящее время считается, что образованию зародыша критического размера предшествует возникновение так называемого *сгустка* (с англ. *blob*) – аморфного кластера, состоящего из нескольких молекул газа, разделенных между собой молекулами воды, возникающего вследствие локальных флуктуаций концентрации гостей. Концентрация молекул газов в сгустке выше чем, во всем остальном растворе, с которым он находится в динамическом равновесии. В пределах сгустка периодически возникают и исчезают гидратные полости и их фрагменты, адсорбируя окружающий газ и вновь концентрируя его. Впо-

следствии может возникнуть кластер критического размера. Критический зародыш может быть как аморфным, так и кристаллическим, в зависимости от того, какие типы полостей образуются первоначально. Соответственно возникает либо аморфная фаза гидрата, которая потом преобразуется в кристаллическую сама по себе со временем или путем отжига, либо же кристалл образуется напрямую.

ГЛАВА 2. МОЛЕКУЛЯРНО-ДИНАМИЧЕСКИЙ ПОДХОД К ИССЛЕДОВАНИЮ ГИДРАТА МЕТАНА

2.1. Метод классической молекулярной динамики

Согласно представлениям классической физики, полностью описать движение произвольной механической системы, состоящей из N частиц можно, если знать координаты $\mathbf{r}_i(t)$ и скорости $\dot{\mathbf{r}}_i(t)$ всех частиц системы i=1...N в любой момент времени t. В таком случае движение каждой частицы i, находящейся в силовом поле остальных, описывается классическими уравнениями Ньютона:

$$m_i \ddot{\mathbf{r}}_i(t) = \mathbf{F}_i(t) = \sum_{j=1}^N \mathbf{F}_{ij}(t), \quad i = 1 \dots N,$$
 (2.1)

где m_i – масса частицы, $\ddot{\mathbf{r}}_i(t)$ – её ускорение, $\mathbf{F}_i(t)$ – результирующая сила, действующая на неё, \mathbf{F}_{ij} – сила действующая на i-ю частицу со стороны j-й частицы. Если известна потенциальная энергия парного взаимодействия от расстояния r_{ij} между ними $U(|\mathbf{r}_i-\mathbf{r}_j|)=U(r_{ij})$, то сила выражается следующим образом:

$$\mathbf{F}_{ij} = -\frac{\partial U(r_{ij})}{\partial r_{ij}} \cdot \frac{\mathbf{r}_{ij}}{r_{ij}}.$$
 (2.2)

Подставляя (2.2) в (2.1) получим систему дифференциальных уравнений

$$\begin{cases} \ddot{\mathbf{r}} = -\frac{1}{m_i} \sum_{j \neq i}^{N} \frac{\partial U(r_{ij})}{\partial r_{ij}} \cdot \frac{\mathbf{r}_{ij}}{r_{ij}}, \\ i = 1 \dots N. \end{cases}$$
(2.3)

Данное векторное уравнение распадается на 3 скалярных. Учитывая, что для полного описания системы нужно решить его для всех N частиц, получаем систему из 3N дифференциальных уравнений второго порядка. Также необхо-

димо задать положения частиц и их скорости в начальный момент времени t_0 :

$$\begin{cases} \mathbf{r}_{i}(t_{0}) = \mathbf{r}_{0}, \\ \dot{\mathbf{r}}_{i}(t_{0}) = \dot{\mathbf{r}}_{0}, \\ i = 1 \dots N. \end{cases}$$

$$(2.4)$$

Молекулярная физика исходит из представления о том, что любой материал состоит из очень большого числа атомов или молекул, взаимодействующих между собой и находящихся в непрерывном движении. Предполагая, что взаимодействие между ними является классическим, что, как можно показать, справедливо для достаточного широкого класса веществ среди которых встречаются газы, жидкости, кристаллы, аморфные тела, можно применить приведенные выше уравнения для описания поведения этих систем.

При этом как известно, состояние макроскопической системы в термодинамически равновесном состоянии определяется сравнительно небольшим набором параметров, такими как температура, давление, плотность, концентрация, химический потенциал, энтропия, внутренняя энергия и другие. В то же время, если учитывать что макроскопические объемы вещества содержат порядка 10^{23} атомов или молекул и описываются соответствующим числом степеней свободы, отсюда следует существование огромного числа микросостояний. Поэтому одному макроскопическому термодинамическому состоянию может соответствовать целая совокупность микросостояний, реализующих его, называемая *статистическим ансамблем*. Оперируя методами статистической механики, можно установить связь между макроскопическими и микроскопическими величинами, характеризующими исследуемую систему, к примеру температурой и среднеквадратичной скоростью движения атомов.

Аналитическое решение уравнений Ньютона для системы, состоящей из столь большого числа атомов невозможно, однако с развитием вычислительных методов и ростом мощностей ЭВМ появилась возможность численного решения рассматриваемых уравнений и как следствие моделирования поведения физической системы. В этом и заключается сущность метода классической молекулярной динамики: зная начальную конфигурацию системы, потенциальную энергию межмолекулярного взаимодействия (т.н. потенциал взаимодействия) и численно интегрируя уравнения Ньютона, можно полу-

чить всю необходимую информацию о ней.

Метод молекулярной динамики широко применяется для решения самого широкого круга задач физики, материаловедения, химии и биологии. С помощью него можно исследовать как равновесные, так и неравновесные системы, изучать фазовые переходы, процессы образования дефектов в кристаллах, пор и трещин в материалах, рассчитывать термодинамические и кинетические свойства вещества. Молекулярная динамика применяется для создания лекарственных препаратов и моделирования различных явлений в биомолекулах, например сворачивания белка.

Распространенные вычислительные системы на данный момент позволяют рассматривать физические системы размеров порядка десятков нанометров на временных масштабах порядка наносекунд и микросекунд. Такие системы содержат от нескольких тысяч до нескольких десятков тысяч атомов. Хотя эти числа пренебрежимо малы по сравнению с числом атомов в макроскопических системах, все же такого числа частиц достаточно для описания поведения реальных систем.

2.2. Скоростной алгоритм Верле интегрирования уравнений движения

Для интегрирования уравнений (2.3) временной интервал t, на котором рассматривается эволюция системы, разделяют на множество мелких интервалов шириной τ , называемых временными шагами. В пределах данного промежутка времени движение частиц в системе полагается прямолинейным и равномерным, между ними не действуют силы, поэтому частицы могут перекрыться между собой. Это накладывает ограничение на величину τ , которая должна быть не слишком большой, чтобы не допустить перекрывания. С другой стороны, слишком маленькое значение τ повлечет за собой увеличение числа временных шагов в пересчете на то же время моделирования t, что потребует больших вычислительных ресурсов. Для расчета положения частиц в момент времени $t+\tau$ наиболее часто используется скоростной алгоритм

Верле[ссылка]:

$$\begin{cases} \mathbf{r}(t+\tau) &= \mathbf{r}(t) + \dot{\mathbf{r}}(t)\tau + \frac{1}{2}\ddot{\mathbf{r}}(t)\tau^{2}, \\ \dot{\mathbf{r}}(t+\tau/2) &= \dot{\mathbf{r}}(t+\tau/2) + \ddot{\mathbf{r}}(t+\tau)\frac{\tau}{2}, \\ \ddot{\mathbf{r}}(t+\tau) &= \frac{\mathbf{F}(t)}{m}, \\ \dot{\mathbf{r}}(t+\tau) &= \dot{\mathbf{r}}(t+\tau/2) + \ddot{\mathbf{r}}(t+\tau)\frac{\tau}{2}. \end{cases}$$
(2.5)

2.3. Ячейка моделирования. Периодические граничные условия

Частицы исследуемой системы помещаются в ограниченный объем, имеющий как правило форму параллелепипеда со сторонами L_x , L_y и L_z , называющийся *ячейкой моделирования*. Начальные положения частиц в пределах данного объема могут задаваться несколькими способами: случайным образом с использованием генератора случайных чисел или в форме некоторой кристалической решетки, например, ГЦК-решетки. Скорости и направления частиц задаются случайным образом, но так чтобы полученная конфигурация соответствовала некоторой заданной температуре.

Для того, чтобы рассматриваемую ячейку моделирования можно было считать частью большой системы, используют периодические граничные условия. Частица, которая покидает ячейку моделирования с некоторой скоростью с одной грани параллелепипеда, не навсегда исчезает из нее, а возвращается с противоположной грани системы с той же скоростью в виде «образа». Это достигается путем создания реплик исходной ячейки моделирования по всем направлениям. То есть получается множество ячеек, частицы в которых движутся точно так же как и в исходной системе.

Любая из координат частицы, например $x_i(t)$, в случае если выполняется условие $x_i(t) \ge L_x$ на следующем временном шаге преобразуется таким образом:

$$x_i(t+\tau) = x_i(t) - L_x. \tag{2.6}$$

Если же $x_i(t) \le 0$, то получим

$$x_i(t+\tau) = x_i(t) + L_x. \tag{2.7}$$

Похожим образом преобразуются проекции расстояни между частицами на координатные оси.

2.4. Статистические ансамбли. Термостаты и баростаты

Молекулярное моделирование может осуществляться с использованием различных статистических ансамблей. Так, в случае если рассматриваемая система является изолированной, реализуется *микроканонический* или NVE-ансамбль. Аббревиатура NVE означает что число молекул N, объем V и полная энергия E в системе сохраняются.

Kанонический или NVT-ансамбль соответствует условиям, когда сохраняются число частиц, объем и температура T в системе. Система находится в тепловом равновесии с термостатом и может обмениваться с ним тепловой энергией.

В *изобарически-изотермическом* или *NPT*-ансамбле остаются постоянными число частиц, температура и давление *P*. Для сохранения величины давления используется баростат. Данный ансамбль моделирует условия наиболее приближенные к реальным.

При термостатировании и баростатировании необходимо на каждом временном шаге рассчитывать мгновенные значения температуры и давления в системе. Как известно, мгновенная температура системы точечных частиц определяется по следующей формуле

$$T = \frac{2}{3Nk_B} \sum_{i=1}^{N} m_i \dot{r}_i^2 \,, \tag{2.8}$$

где k_B – постоянная Больцмана. Давление определяется через вириальное уравнение

$$P = \frac{1}{3V} \sum_{i=1}^{N} \left(\frac{p_i^2(t)}{m} + \sum_{j \neq i}^{N} \mathbf{F}_i(t) \cdot \mathbf{r}_{ij} \right), \tag{2.9}$$

где $p_i(t) = m_i v_i(t)$ – импульс частицы.

Самый простой метод термостатирования называется методом масштабирования скоростей и заключается в умножении скоростей частиц $v_i(t)$ в каждый момент времени на коэффициент $\lambda = \sqrt{T_0/T(t)}$, где T_0 – температура термостата. Такой подход, однако, порождает нереалистичную динамику системы.

Существуют более продвинутые алгоритмы позволяющие удерживать необходимые температуры и давления в моделируемой системе, например, термостаты и баростаты Берендсена[ссылка] или Нозе-Гувера[ссылка].

2.5. Радиус обрезания. Список Верле

Наибольшую часть вычислительных ресурсов при моделировании молекулярной динамики отнимает расчет межчастичных взаимодействий. Так, в пределах одного временного шага, необходимо вычислить N(N-1)/2 сил для каждой пары частиц. Такой подход не годится, если рассматриваемое число частиц в системе велико (N порядка 1000 частиц и выше), расчеты будут занимать слишком большое количество времени.

Для разрешения данного вопроса стоит обратить внимание на то обстоятельство, что большинство потенциалов межчастичного взаимодействия $U(r_{ij})$ достаточно быстро убывают с увеличением расстояния. Поэтому для них можно считать, что за пределами некоторого расстояния r_{cut} взаимодействие отсутствует, то есть $U(r_{cut}) = 0$ при $r_{ij} \ge r_{cut}$.

Получается, что взаимодействие каждой частицы с остальными осуществляется в пределах сферы радиусом r_{cut} , где она находится в центре. Л. Верле[ссылка на список верле] предложил алгоритм, который при расчете сил, учитывает только данные частицы. Для каждой частицы строится список соседей в пределах упомянутой сферы. Далее сразу за пределами этой сферы строится небольшой сферический слой толщины δr толщиной около $0,3\sigma$, где σ – эффективный размер частицы, и определяются частицы находящиеся в этом слое. Список Верле обновляется через некоторое количество временных шагов, в пределах которых частицы из слоя δr могут переходить в объем сферы и наоборот.

2.6. Модельные потенциалы взаимодействия для описания гидрата метана

Гидрат метана представляет собой систему, в которой представлены 2 типа молекул: $\rm H_2O$ и $\rm CH_4$. Поэтому построение физической модели, позволяющей изучать его свойства методом молекулярной динамики, в сущности сводится к выбору модели межчастичного взаимодействия между молекулами воды, молекулами метана, а так же потенциала их перекрестного межчастичного взаимодействия. Для воды существует множество различных моделей различной степени сложности, такие как, крупнозернистая модель $\rm MW[ccылка]$, трехточечная модель $\rm SPC[ccылка]$, семейство четырехточечных моделей $\rm TIP4P[ccылчечная модель SPC[ccылка]$, семейство четырехточечных моделей $\rm TIP4P[ccылчеты]$

ка], пятиточечная модель TIP5P[ссылка] и другие. Рассмотрим подробно две модели гидрата метана, использовавшиеся в данной работе.

Рис. 2.1: Схематическое изображение строения молекул воды в различных моделях[википедия]. В трехточечной модели заряды располагаются в положениях точечных масс атомов кислорода и водорода. В четыреточечной модели электрический заряд кислорода смещен относительно массы в позицию М. Аналогичным образом построены пятиточечная и шеститочечная модели.

2.7. Модель ТІР4Р/Ісе

Модель из семейства потенциалов ТІР4Р[ссылка]. Является широко используемой моделью воды для моделировании гидратов Представляет репараметризацию оригинальной модели ТІР4Р и хорошо воспроизводит экспериментальную фазовую диаграмму воды, как видно из рис. 2.2. ТІР4Р/Ісе также наилучшим образом воспроизводит плотности нескольких кристаллических модификаций льда и температуру плавления льда I_h при атмосферном давления. Модель хорошо воспроизводит температуру плавления sI гидрата метана[https://www.science.org/doi/10.1126/science.1174010].

Рис. 2.2: Сравнение фазовой диаграммы модели TIP4P/Ice с экспериментом и моделью TIP4P[ссылка].

В модели TIP4P/Ice на каждую молекулу воды приходится 3 точечных массы: одна в позиции кислорода, две в позициях водорода (рис. 2.3). Позиции зарядов атомов водорода q_H совпадают с позициями их масс, а в случае кислорода заряд q_O смещен относительно положения атома в точку М на расстояние r_{OM} вдоль биссектрисы угла $\angle HOH$. Этот угол жестко зафиксирован, как и расстояния r_{OH} между атомами водорода и кислородом.

Рис. 2.3: Молекула воды в модели TIP4P.

Потенциал межчастичного взаимодействия представляет собой сумму леннард-джонсовского потенциала и кулоновской энергии взаимодействия точечных зарядов:

$$\begin{cases}
E_{LJ} = 4\varepsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right], & r < r_{cut}, \\
E_{e} = \frac{e^{2}}{4\pi\varepsilon_{0}} \sum_{i,j} \frac{q_{i}q_{j}}{r_{ij}}.
\end{cases} (2.10)$$

Леннард-джонсовское взаимодействие осуществляется только между атомами кислорода, а электростатическое взаимодействие происходит только между зарядами разных молекул воды. Численные значения параметров модели приведены в таблице ниже:

Таблица 2.1: Параметры модели TIP4P/Ice

$arepsilon_{OO}$	σ_{OO}	r_{OH}	r_{OM}	∠НОН	q_O	q_H
$0,2109 \frac{\text{ккал}}{\text{моль}}$	3,1668 Å	0,9572 Å	0,1577 Å	104.52°	-1.1794e	0.5897 <i>e</i>

2.8. Модель OPLS-UA

В качестве модели взаимодействия между молекулами метана вместе с моделью TIP4P часто применяется модель объединенного атома *OPLS-United Atom*[ссылка]. В ней не учитывается внутренняя структура неполярной молекулы СН₄, метан рассматривается точечная незаряженная частица, межмолекулярное взаимодействие осуществляется через леннард-джонсовский потенциал такого же вида как и в уравнении (2.10). Приведем параметры взаимодействия данной модели:

Таблица 2.2: Параметры модели OPLS-UA

$arepsilon_{MM}$	$\sigma_{\!MM}$
0.294 ккал/моль	3.73 Å

2.9. Правила Лоренца-Бертло

Перекрестное заимодействие между молекулами воды и метана осуществляется также через потенциал Леннард-Джонса, соответствующие параметры ε_{OM} и σ_{OM} рассчитываются по правилам смешивания Лоренца-Бертло[ссыл-ка]:

$$\varepsilon_{OM} = \sqrt{\varepsilon_{OO}\varepsilon_{MM}}, \qquad (2.11)$$

$$\sigma_{OM} = \frac{\sigma_{OO} + \sigma_{MM}}{2} \,. \tag{2.12}$$

Схематично леннард-джонсовское взаимодействие в построенной модели проиллюстрировано на рис 2.4.

Рис. 2.4: Леннард-джонсовское взаимодействие в модели гидрата метана TIP4P/Ice + OPLS-UA. Иллюстрация [ссылка].

2.10. Крупнозернистая модель гидрата метана

Здесь молекулы воды рассматриваются в рамках модели mW[] как точечные частицы, взаимодействующие через короткодействующий потенциал Стиллинджера-Вебера[], состоящий из двухчастичного и трехчастичного вкладов:

$$E = \sum_{i} \sum_{i < j} \phi_2(r_{ij}) + \sum_{i} \sum_{j \neq i} \sum_{k > j} \phi_3(r_{ij}, r_{ik}, \theta_{ijk}), \qquad (2.13)$$

$$\phi_2(r_{ij}) = A\varepsilon \left[B\left(\frac{\sigma}{r_{ij}}\right)^4 - 1 \right] \exp\left(\frac{\sigma}{r_{ij} - a\sigma}\right),$$
 (2.14)

$$\phi_3(r_{ij}, r_{ik}, \theta_{ijk}) = \lambda \varepsilon \left[\cos \theta_{ijk} - \cos \theta_0\right]^2 \exp\left(\frac{\gamma \sigma}{r_{ij} - a\sigma}\right) \exp\left(\frac{\gamma \sigma}{r_{ik} - a\sigma}\right)$$
(2.15)

 θ_{ijk} определяет угол между частицами i,j,k. Постоянные A,B,γ,a,θ_0 имеют такие же значения, как и в оригинальной модели для атома кремния, на основе которой получена модель mW. Трехчастичная часть (2.15) потенциала взаимодействия (2.13) построена таким образом, чтобы образование тетраэдрических структур молекулами воды было энергетически выгодно. Значения параметров λ,σ,ϵ для воды отличается от таковых для кремния. модель mW воспроизводит экспериментальные значения энтальпии испарения, плотности воды при при температуре 298 К и атмосферном давлении и температуру плавления гексагонального льда. Приведем значения упомянутых модельных параметров в отдельной таблице:

Таблица 2.3: Параметры модели mW

A	7,049556277
В	0,6022245584
γ	1,2
а	1,8
θ_0	109,5°
$\overline{\lambda_w}$	23,15
ϵ_w	6,189 ккал/моль
σ_w	2,3925 Å

Молекулы СН₄, как и в модели OPLS-UA представляются точечными бесструктурными частицами, однако энергия их парного взаимодействия описывается иной формулой (2.13), где значение λ берется равным нулю, то есть трехчастичное взаимодействие отсутствует. Параметры $\sigma_m = 4.08 \text{Å}$ и $\varepsilon_m = 0.340$ ккал/моль подобраны таким образом, чтобы эта модель воспроизводила величину энтальпии испарения метана при температуре его кипения $T_m = 111.66$ К и давлении p = 1 атм.

Взаимодействие вода-метан описывается аналогично, вода не образует водородные связи с метаном, поэтому $\lambda=0$. Значения постоянных составляют $\varepsilon_{wm}=0.180$ ккал/моль и $\sigma_{wm}=4 \text{Å}$. Они выбраны так, чтобы получить наилучшее приближение к экспериментальным значениям температуры плавления sI и sII гидратов метана, растворимости метана, энтропии и энтальпии диссоциации sI гидрата. Модель также дает хорошую оценку величины поверхностного натяжения на границе раздела метан-вода, отличающуюся от экспериментальной на 7%.

Недостатками крупнозернистой модели гидрата метана можно отнести переоценку подвижностей метана и воды. Отсутствие вращательных степеней свободы в модели приводит к меньшим на 25% значениям энтропии и энтальпии диссоциации гидрата.

Достоинствами являются скорость модели на 2-3 порядка выше скорости атомистических моделей с суммированием по Эвальду, достигающаяся за счет уменьшения числа частиц, короткодействующего потенциала взаимодействия, и возможности использования большого временного шага вплоть до 10 фс.

2.11. Идентификация структуры гидратов. Алгоритм CHILL+

Существуют различные подходы, позволяющие определить в системе наличие фазы гидратов. Например применяются алгоритмы, позволяющие идентифицировать различные полости клатратов 5^{12} , $5^{12}6^2$, $5^{12}6^3$, $5^{12}6^4$ [ссылка] путем нахождения по координатам частиц пятиугольников и шестиугольников, являющихся составными частями полостей гидратов. Еще один подход основан на вычислении параметров ориентационного порядка порядка, зависящих от

величины двугранного угла между соседними частицами[ссылка]. В данной работе для идентификации кристаллической и аморфных фаз гидрата метана применяется алгоритм CHILL+[ссылка]. В основе алгоритма лежит расчет корреляций параметров ориентацинного порядка[ссылка] молекулы воды с её четырьмя ближайшими соседями. Корреляция c(i,j) локальных параметров ориентационного порядка l-й степени $q_l(i)$ рассчитываются по следующей формуле[ссылка]:

$$c(i,j) = \frac{q_l(i) \cdot q_l(j)}{|q_l(i)||q_l(j)|}.$$
 (2.16)

Выражение для вычисления $q_l(i)$ имеет вид

$$q_{l}(i) = \sqrt{\frac{4\pi}{2l+1} \sum_{m=-l}^{l} |q_{lm}(i)|^{2}},$$
(2.17)

где $q_{lm}(i)$ выражается через сферические гармоники $Y_{lm}(\mathbf{r}_{ij})$:

$$q_{lm}(i) = \frac{1}{4} \sum_{j=1}^{4} Y_{lm}(\mathbf{r}_{ij}).$$
 (2.18)

СНІLL+ может идентифицировать структуру кубического льда I_c , гексагонального льда I_h и гидратов. Авторы алгоритма отмечают то обстоятельство, что в этих трех структурах геометрия водородных связей различается. Выделяют два типа: шахматную (с англ. staggered conformation) и заслонённую (с англ. eclipsed conformation). На рис. 2.5 приведено их графическое представление, а на рис. 2.6 они изображены в sI-гидрате и льде I_h .

Рис. 2.5: Шахматная конформация (а) и заслоненная конформация (б)

Рис. 2.6: Заслоненная конформация и соответствующая заслонённая связь $(E\ bond)$, выделенная синим цветом в sI-гидрате и льде I_h , шахматная конформация и шахматная связь $(S\ bond)$, выделенная зеленым цветом, в льде I_h

Вода в составе гидрата образует 4 заслонённые связи, в фазе I_h она имеет 1 заслонённую и 3 шахматные связи, в кубическом льде существуют 4 шахматные связи. Таким образом, по числу связей того или иного вида, можно определить соответствующую структуру. СНІLL+ рассчитывает корреляции параметра q_3 для каждого ближайшего соседа выбранной молекулы воды, которые для заслоненной конформации принимают значения в диапазоне $-0.05 \ge c(i,j) \ge -0.2$, а для шахматной $-c(i,j) \le -0.8$.

ГЛАВА 3. МОЛЕКУЛЯРНО-ДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССОВ РОСТА И ДИССОЦИАЦИИ ГИДРАТА МЕТАНА

3.1. Затвердевание переохлажденной двухфазной системы метан-вода

Нами было произведено моделирование процесса зародышеобразования и роста гидрата метана при температуре T = 210К и давлении p = 500 атмосфер, выполненное с различными скоростями охлаждения. Начальная конфигурация системы представляла собой $64(4 \times 4 \times 4)$ элементарные ячейки sI-гидрата метана, состоящая из 2944 молекул воды и 512 молекул метана. Длина ребра кубической ячейки моделирования составляла ≈ 50 нм. В качестве используемой модели межчастичного взаимодействия была выбрана крупнозернистая модель гидрата метана, упомянутая ранее в данной работе. Информация о положениях частиц была получена из работы[ссылка], причем молекулы воды помещались в позициях атомов кислорода, а молекулы метана располагались в центрах полостей кристаллической решетки. Моделирование производилось в *NPT*-ансамбле с использованием термостата и баростата Нозе-Гувера. Интегрирование уравнений движения производилось в программном пакете моделирования классической молекулярной динамики LAMMPS[ссылка]. Временной шаг интегрирования au был взят равным 10 фс. Применялись периодические граничные условия для всех стенок ячейки моделирования.

Причина выбора крупнозернистой модели обоснована её большей вычислительной эффективностью по сравнению со всеатомными моделями, поскольку для получения фазы гидрата из жидкой системы требуется симулировать её на протяжении длительного (вплоть до нескольких микросекунд) промежутка времени, что при использовании более сложных моделей и ограниченности имеющихся в распоряжении вычислительных ресурсов заняло

бы достаточно большой (около 100 дней) срок.

На первом этапе моделирования производилось плавление кристаллической решетки гидрата метана при температуре $T=425~\rm K$ и давлении p=100 атмосфер в течение 20 наносекунд. За это время гидрат метана полностью расплавился, образовалась двухфазная жидкая система метан-вода, не содержащая никаких следов исходной кристаллической структуры. Затем данная конфигурация была сжата в течение 1 нс до давления p=500 атмосфер. После, данная конфигурация была переохлаждена в нескольких различных симуляциях до температуры $T=210~\rm K$ с высокими скоростями охлаждения $\gamma_1=10^{10}~\rm K/c$ и $\gamma_2=10^{11}~\rm K/c$, затем наблюдался процесс затвердевания данной системы и образования гидрата метана в течение 50 нс.

Выбор именно этой температуры, соответствующей глубокому переохлаждению гидрата метана, был мотивирован тем, что при данной температуре в более ранних работах[] авторами используемой модели был достигнут быстрый, практически мгновенный рост фазы гидрата метана в системе. Кроме того, значения используемых параметров взаимодействия метан-вода $\sigma_{wm}=4,05\text{Å}$ и $\varepsilon_{wm}=0,240$ ккал/моль, несколько отличаются от приведенных нами ранее при обзоре крупнозернистой модели взаимодействия, по примеру тех же авторов. Хотя такие значения σ_{wm} и ε_{wm} дают большие значения величины растворимости метана в воде (0,0038 против 0,0022) и температуры плавления гидрата метана (301 К против 286 К) , структурные характеристики, в частности, радиальная функция распределения метан-вода, практически одинаковы в обоих случаях[ссылка].

Для каждой из скоростей охлаждения было проведено 10 независимых моделированиий, для каждого из которого была построена зависимость процентного содержания гидратов от времени моделирования.