## COSSA of TOW

## 2000 Trial HSC 4 Unit Mathematics

1. (a) The diagram shows the graphs of y = f(x), and its inverse  $y = f^{-1}(x)$ . The graphs intersect in (0,0) and in the point P with x coordinate  $\beta$ .



Use the substitution  $u = f^{-1}(x)$  to show that  $\int_0^\beta f^{-1}(x) dx = \int_0^\beta f'(u) du$  and hence show that the area bounded by y = f(x) and  $y = f^{-1}(x)$  is given by  $A = \int_0^\beta \{xf'(x) - f(x)\} dx$ .

- **(b)**  $y = x \sin^{-1} x$
- (i) Show that  $\frac{dy}{dx} = \sin^{-1} x + \tan(\sin^{-1} x)$ .
- (ii) By considering the graph of  $y = \tan \theta$ , deduce that the graph of  $y = x \sin^{-1} x$  has exactly one stationary point. Show this stationary point is a minimum turning point at (0,0).
- (iii) Sketch the graph of  $y = \sin^{-1} x$ . Show the nature of the curve near the endpoints of its domain.
- (iv) If  $f(x) = x \sin^{-1} x, x \ge 0$ , show on a new diagram the graph of y = f(x), its inverse  $y = f^{-1}(x)$ , and the line y = x. Give the coordinates of any points of intersection and of the endpoints of the curves.
- (v) Use the result in (a) to show that the area bounded by the curves y = f(x) and  $y = f^{-1}(x)$  between their point of intersection in given by  $\int_0^{\sin 1} \frac{x^2}{\sqrt{1-x^2}} dx$ . Use the substitution  $x = \sin \theta$  to evaluate this area.
- 2. (a) (i) Find the two square roots of 2i.
- (ii) Solve  $x^2 + 2x + (1 \frac{1}{2}i) = 0$ .
- **(b)** Find:
- (i)  $\int (1 + \tan^2 x) e^{\tan x} dx$ .
- (ii)  $\int te^{-t} dt$ .
- (iii)  $\int \cos^3 x \ dx$ .
- (c) Evaluate in simplest exact form  $\int_{e}^{e^2} \frac{1}{x \ln x} dx$ .

(d) Use the substitution  $t = \tan \frac{x}{2}$  to evaluate  $\int_0^{\frac{\pi}{3}} \frac{1}{1-\sin x} dx$ , giving your answer in simplest exact form.

(e) If  $I = \int_e^{\ln 2} \frac{e^x}{e^x + e^{-x}} dx$  and  $J = \int_e^{\ln 2} \frac{e^{-x}}{e^x + e^{-x}} dx$ , find the exact values of I + J and I - J and hence find the exact values of I and J.

**3.** (a)  $z_1 = 1 + 2i$  and  $z_2 = 3 - i$ . Find the value of  $z_1^2 \div \overline{z}_2$ .

**(b)** 
$$z = \sqrt{3} + i$$

(i) Write z in modulus/argument form.

(ii) What can you say about integers n such that  $z^n + (\overline{z})^n$  is rational?

(iii) Find the smallest positive integer n such that  $z^n + (\overline{z})^n$  is a negative rational number, and for this value of n, state the value of  $z^n + (\overline{z})^n$ .

(c)  $\alpha = p + iq$  where p and q are real.

(i) If z satisfies  $\Re(\alpha z) = 1$ , show that the locus of the point P representing z in the Argand diagram is the line px - qy = 1.

(ii)



The vector  $\overrightarrow{OQ}$  represents  $\alpha$  in the Argand diagram. If  $z \neq 0$  is represented by the vector  $\overrightarrow{OP}$  where P lies on the circle with diameter OQ, copy the diagram and show the vector representing  $z - \alpha$ . Show that for such a complex number  $z, \frac{z-\alpha}{z}$  is imaginary and hence  $\Re(\alpha \frac{1}{z}) = 1$ .

(iii) Deduce that if z is a non-zero complex number such that the point P repesenting z in the Argand diagram lies on the circle with diameter OQ, where Q has coordinates (p,q), then the point representing  $\frac{1}{z}$  in the same Argand diagram lies on the line px - qy = 1.

(iv)  $z \neq 0$  satisfies the condition  $|z - (1+i)| = \sqrt{2}$ . Sketch the locus of the points representing z and  $\frac{1}{z}$  in the same Argand diagram, and label each locus with its equation. Considering only values between  $-\pi$  and  $\pi$ , what are the possible values of  $\arg(z)$ ?

**4.** Hyperbola H has equation  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$  and eccentricity e, while ellipse E has equation  $\frac{x^2}{a^2+b^2} + \frac{y^2}{b^2} = 1$ .

(i) Show that E has eccentricity  $\frac{1}{e}$ .

(ii) Show that E passes through one focus of H, and H passes through one focus of E.

(iii) Sketch H and E on the same diagram, showing the foci S, S', of H and T, T' of E, and the directrices of H and E. Give the coordinates of the foci and the equations of the directrices in terms of a and e.

(iv) If H and E intersect at P in the first quadrant, show that the acute angle  $\alpha$  between the tangents to the curves at P satisfies  $\tan \alpha = \sqrt{2}(e + \frac{1}{e})$ .

(v) What is the smallest possible acute angle between the tangents to the curves H and E at their point of intersection P?

(vi) Find the acute angle between the tangents to the hyperbola  $\frac{x^2}{16} - \frac{y^2}{9} = 1$  and the ellipse  $\frac{x^2}{25} + \frac{y^2}{9} = 1$  at their points of intersection. Give your answer to the nearest degree.

**5.** (a) Show that the stationary point of  $y = \{f(x)\}^2$  are exactly those point on the curve that have x coordinates which are zeros of either f(x) or f'(x).



Use the graph of y = x(4-x) to justify the features shown on the graph above. Copy the graph of  $y = x^2(4-x)^2$  and mark on the coordinate axes the values of x and y at the stationary points.

(c)



The shaded region is rotated through one revolution about the y axis. The volume of the solid formed is found by taking slicing perpendicular to the y axis. The typical slice shown in the diagram is at a height y above the x axis.

(i) Deduce that  $\alpha, x_1, x_2$  and  $\beta$ , as shown in the diagram, are roots of  $x^4 - 8x^3 + 16x^2 - y = 0$ .

(ii) Use the symmetry in the graph to explain why  $\frac{x_1+x_2}{2}=2$  and  $\frac{\alpha+\beta}{2}=2$ . Hence, by considering the coefficients of the equation in (i), show that  $\alpha\beta=-x_1x_2$  and

deduce that  $x_1x_2 = \sqrt{y}$  and  $x_2 - x_1 = 2\sqrt{4 - \sqrt{y}}$ .

- (iii) Show that the volume of the solid of revolution is given by  $V = 8\pi \int_0^{16} \sqrt{4 \sqrt{y}} \, dy$ . Use the substitution  $y = (4-u)^2$  to evaluate this integral and find the exact volume.
- **6.** A toy of mass m kg has a parachute device attached. It is released from rest at the top of a vertical cliff 40 m high. During its fall, the forces acting are gravity and, owing to the parachute, a resistance force of magnitude  $\frac{1}{10}mv^2$  when the speed of the toy is  $v \text{ ms}^{-1}$ . After  $2 \ln 2$  seconds, the parachute disintegrates, and then the only force acting on the toy is gravity. The acceleration due to gravity is taking as  $g = 10 \text{ ms}^{-2}$ . At time t seconds, the toy has fallen a distance x metres from the top of the cliff, and its speed is  $v \text{ ms}^{-1}$ .
- (i) Show that while the parachute is operating,  $10\ddot{x} = 100 v^2$ . Hence show that  $v = \left(\frac{e^{2t}-1}{e^{2t}+1}\right)$  and  $x = -5\ln\left[1-\left(\frac{v}{10}\right)^2\right]$ . (ii) Find the exact speed of the toy and the exact distance fallen just before the
- parachute disintegrates.
- (iii) After the parachute disintegrates, find an expression for  $\ddot{x}$  and use integration to find the speed of the toy just before it reaches the base of the cliff. Give your answer correct to 2 significant figures.
- 7. (a) The equation  $x^3 + px 1 = 0$  has three real, non-zero roots  $\alpha, \beta, \gamma$ .
- (i) Find the value of  $\alpha^2 + \beta^2 + \gamma^2$  and  $\alpha^4 + \beta^4 + \gamma^4$  in terms of p, and hence show that p must be strictly negative.
- (ii) Find the monic equation, with coefficients in terms of p, whose roots are  $\frac{\alpha}{\beta \gamma}$  +
- (b) (i) If  $I_n = \int_0^1 (x^2 1)^n dx$ , n = 0, 1, 2, 3, ..., show that  $I_n = \frac{-2n}{2n+1} I_{n-1}$ ,  $n = \frac{-2$
- (ii) Hence use the method of Mathematical Induction to show that  $I_n = \frac{(-1)^n 2^{2n} (n!)^2}{(2n+1)!}$ for all positive integers n.

## 8. (a)



In the diagram, AB and AC are tangents from A to the circle with centre O, meeting the circle at B and C. ADE is a secant of the circle. G is the midpoint of DE. CGproduced meets the cicle at F.

- (i) Copy the diagram.
- (ii) Show that ABOC and AOGC are cyclic quadrilaterals.
- (iii) Show that BF||ADE.
- (b) (i) If  $y = x^k + (c x)^k$ , where  $c > 0, k > 0, k \neq 1$ , show that y has a single stationary value between x = 0 and x = c, and show that this stationary value is a maximum if k < 1 and a minimum if k > 1.
- (ii) Hence show that if  $a > 0, b > 0, a \neq b$ , then  $\frac{a^k + b^k}{2} < \left(\frac{a + b}{2}\right)^k$ , if 0 < k < 1, and  $\frac{a^k + b^k}{2} > \left(\frac{a + b}{2}\right)^k$  if k > 1.