# Package 'MultiHazard'

June 21, 2022

Title Tools for modeling compound events

Version 1.1

Description The `MultiHazard` package provides tools for stationary multivariate statistical modeling, for example, to estimate the joint distribution of MULTIple co-occurring HAZ-ARDs. The package contains functions for pre-processing data including imputing missing values, detrending and declustering time series as well as analyzing pairwise correlations over a range of lags. Functionality is also built in to impliment the conditional sampling copula theory approach in Jane et al. (2020) including the automated threshold selection approach in Solari et al. (2017). Tools are provided for selecting the best fitting amongst an array of (non-extreme, truncated and non-truncated) parametric marginal distributions, and, copulas to model the dependence structure. The package contains a function that calculates joint probability contours using the method of overlaying (conditional) contours given in Bender et al. (2016), and extracting design events such as the 'most likely' event or an ensemble of possible design events. The package also provides the capability of fitting and simulating synthetic records from three higher dimensional approaches - standard (elliptic/Archimedean) copulas, Pair Copula Constructions (PCCs) and the conditional threshold exceedance approach of Heffernan and Tawn (2004). Finally, a function that calculates the time for a userspecified height of sea level rise to occur under various scenarios is supplied.

```
License GPL (>= 3)
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.1.2
Author Robert Jane < r. jane@ucf.edu>
URL https://rdrr.io/github/rjaneUCF/MultiHazard-R-Package/
Imports copula,
     dplyr,
     fitdistrplus,
     gamlss,
     gamlss.mx,
     GeneralizedHyperbolic,
     ks.
     lubridate,
     MASS,
     RColorBrewer,
     rmatio,
     statmod,
     texmex,
```

2 R topics documented:

| truncnorm,                                |
|-------------------------------------------|
| tweedie,                                  |
| VGAM,                                     |
| VineCopula                                |
| Suggests rmarkdown,<br>knitr              |
| <b>VignetteBuilder</b> knitr              |
| <b>Depends</b> R (>= 2.10)                |
| LazyData true                             |
| Maintainer Robert Jane < r. jane@ucf.edu> |

# R topics documented:

Index

| Conditional_RP_2D       3         Conditional_RP_2D_Equal       6         Con_Sampling_2D       9         Cooley19       11         Cooley19       13         Copula_Threshold_2D       13         Copula_Threshold_2D_Lag       14         Dataframe_Combine       16         Decluster       17         Decluster_SW       18         Decluster_SW       19         Design_Event_2D       20         Design_Event_2D_NEW       23         Detrend       26         Diag_Non_Con       27         Diag_Non_Con_Sel       28         Diag_Non_Con_Trunc       29         Diag_Non_Con_Trunc_Sel       30         GPD_Fit       31         GPD_Parameter_Stability_Plot       32         GPD_Threshold_Solari       33         GPD_Threshold_Solari_Sel       35         HT04       37         HT04_Lag       39         Imputation       40         Kendall_Lag       42         Mean_Excess_Plot       42         Migpd_Fit       43         SLR_Scenarios       44         Standard_Copula_Sel       46 <t< th=""><th>Annual_Max</th></t<> | Annual_Max                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Con_Sampling_2D       9         Con_Sampling_2D_Lag       10         Cooley19       11         Copula_Threshold_2D       13         Copula_Threshold_2D_Lag       14         Dataframe_Combine       16         Decluster       17         Decluster_SW       18         Decluster_SSW       19         Design_Event_2D       20         Design_Event_2D_NEW       23         Design_Event_2D_NEW       23         Detrend       26         Diag_Non_Con       27         Diag_Non_Con_Sel       28         Diag_Non_Con_Trunc       29         Diag_Non_Con_Trunc_Sel       30         GPD_Fit       31         GPD_Parameter_Stability_Plot       32         GPD_Threshold_Solari       33         GPD_Threshold_Solari_Sel       35         HT04       37         HT04_Lag       39         Imputation       40         Kendall_Lag       42         Mean_Excess_Plot       42         Migpd_Fit       43         SLR_Scenarios       44         Standard_Copula_Fit       46         Standard_Copula_Sin       47                        | Conditional_RP_2D            |
| Con_Sampling_2D_Lag       10         Cooley19       11         Copula_Threshold_2D       13         Copula_Threshold_2D_Lag       14         Dataframe_Combine       16         Decluster       17         Decluster_SW       18         Decluster_S_SW       19         Design_Event_2D       20         Design_Event_2D_NEW       23         Detrend       26         Diag_Non_Con       27         Diag_Non_Con_Trunc       29         Diag_Non_Con_Trunc       29         Diag_Non_Con_Trunc_Sel       30         GPD_Fit       31         GPD_Parameter_Stability_Plot       32         GPD_Threshold_Solari       33         GPD_Threshold_Solari       33         GPD_Threshold_Solari_Sel       35         HT04       37         HT04_Lag       39         Imputation       40         Kendall_Lag       42         Mean_Excess_Plot       42         Migpd_Fit       43         SLR_Scenarios       44         Standard_Copula_Fit       46         Standard_Copula_Sin       47         Vine_Copula_Fit       48                   | Conditional_RP_2D_Equal      |
| Cooley19       11         Copula_Threshold_2D       13         Copula_Threshold_2D_Lag       14         Dataframe_Combine       16         Decluster       17         Decluster_SW       18         Decluster_S_SW       19         Design_Event_2D       20         Design_Event_2D_NEW       23         Detrend       26         Diag_Non_Con       27         Diag_Non_Con_Sel       28         Diag_Non_Con_Trunc       29         Diag_Non_Con_Trunc_Sel       30         GPD_Fit       31         GPD_Parameter_Stability_Plot       32         GPD_Threshold_Solari       33         GPD_Threshold_Solari       33         GPD_Threshold_Solari_Sel       35         HT04       37         HT04_Lag       39         Imputation       40         Kendall_Lag       42         Mean_Excess_Plot       42         Migpd_Fit       43         SLR_Scenarios       44         Standard_Copula_Fit       46         Standard_Copula_Sel       46         Standard_Copula_Fit       48         Vine_Copula_Fit       48                     | Con_Sampling_2D              |
| Cooley19       11         Copula_Threshold_2D       13         Copula_Threshold_2D_Lag       14         Dataframe_Combine       16         Decluster       17         Decluster_SW       18         Decluster_SSW       19         Design_Event_2D       20         Design_Event_2D_NEW       23         Detrend       26         Diag_Non_Con       27         Diag_Non_Con_Trunc       29         Diag_Non_Con_Trunc       29         Diag_Non_Con_Trunc_Sel       30         GPD_Fit       31         GPD_Parameter_Stability_Plot       32         GPD_Threshold_Solari       33         GPD_Threshold_Solari_Sel       35         HT04       37         HT04_Lag       39         Imputation       40         Kendall_Lag       42         Mean_Excess_Plot       42         Migpd_Fit       43         SLR_Scenarios       44         Standard_Copula_Fit       46         Standard_Copula_Sin       47         Vine_Copula_Fit       48                                                                                               | Con_Sampling_2D_Lag          |
| Copula_Threshold_2D_Lag       14         Dataframe_Combine       16         Decluster       17         Decluster_SW       18         Decluster_S_SW       19         Design_Event_2D       20         Design_Event_2D_NEW       23         Detrend       26         Diag_Non_Con       27         Diag_Non_Con_Sel       28         Diag_Non_Con_Trunc       29         Diag_Non_Con_Trunc_Sel       30         GPD_Fit       31         GPD_Parameter_Stability_Plot       32         GPD_Threshold_Solari       33         GPD_Threshold_Solari_Sel       33         HT04       37         HT04_Lag       39         Imputation       40         Kendall_Lag       42         Mean_Excess_Plot       42         Migpd_Fit       43         SLR_Scenarios       44         Standard_Copula_Fit       46         Standard_Copula_Sel       46         Standard_Copula_Sim       47         Vine_Copula_Fit       48                                                                                                                          | Cooley19                     |
| Dataframe_Combine       16         Decluster       17         Decluster_SW       18         Decluster_S_SW       19         Design_Event_2D       20         Design_Event_2D_NEW       23         Detrend       26         Diag_Non_Con       27         Diag_Non_Con_Sel       28         Diag_Non_Con_Trunc       29         Diag_Non_Con_Trunc_Sel       30         GPD_Fit       31         GPD_Parameter_Stability_Plot       32         GPD_Threshold_Solari       33         GPD_Threshold_Solari_Sel       35         HT04       37         HT04_Lag       39         Imputation       40         Kendall_Lag       42         Mean_Excess_Plot       42         Migpd_Fit       42         SLR_Scenarios       44         Standard_Copula_Fit       46         Standard_Copula_Sel       46         Standard_Copula_Sim       47         Vine_Copula_Fit       48                                                                                                                                                                   | Copula_Threshold_2D          |
| Decluster       17         Decluster_SW       18         Decluster_S_SW       19         Design_Event_2D       20         Design_Event_2D_NEW       23         Detrend       26         Diag_Non_Con       27         Diag_Non_Con_Sel       28         Diag_Non_Con_Trunc       29         Diag_Non_Con_Trunc_Sel       30         GPD_Fit       31         GPD_Parameter_Stability_Plot       32         GPD_Threshold_Solari       33         GPD_Threshold_SolariSel       35         HT04       37         HT04_Lag       39         Imputation       40         Kendall_Lag       42         Mean_Excess_Plot       42         Migpd_Fit       42         SLR_Scenarios       44         Standard_Copula_Fit       46         Standard_Copula_Sel       46         Standard_Copula_Sim       47         Vine_Copula_Fit       48                                                                                                                                                                                                       | Copula_Threshold_2D_Lag      |
| Decluster_SW       18         Decluster_S_SW       19         Design_Event_2D       20         Design_Event_2D_NEW       23         Detrend       26         Diag_Non_Con       27         Diag_Non_Con_Sel       28         Diag_Non_Con_Trunc       29         Diag_Non_Con_Trunc_Sel       30         GPD_Fit       31         GPD_Parameter_Stability_Plot       32         GPD_Threshold_Solari       33         GPD_Threshold_Solari-Sel       35         HT04       37         HT04_Lag       39         Imputation       40         Kendall_Lag       42         Mean_Excess_Plot       42         Meingd_Fit       43         SLR_Scenarios       44         Standard_Copula_Fit       46         Standard_Copula_Sel       46         Standard_Copula_Sim       47         Vine_Copula_Fit       48                                                                                                                                                                                                                                | Dataframe_Combine            |
| Decluster_S_SW       19         Design_Event_2D       20         Design_Event_2D_NEW       23         Detrend       26         Diag_Non_Con       27         Diag_Non_Con_Sel       28         Diag_Non_Con_Trunc       29         Diag_Non_Con_Trunc_Sel       30         GPD_Fit       31         GPD_Parameter_Stability_Plot       32         GPD_Threshold_Solari       33         GPD_Threshold_Solari_Sel       35         HT04       37         HT04_Lag       39         Imputation       40         Kendall_Lag       42         Mean_Excess_Plot       42         Migpd_Fit       43         SLR_Scenarios       44         Standard_Copula_Fit       46         Standard_Copula_Sel       46         Standard_Copula_Sim       47         Vine_Copula_Fit       48                                                                                                                                                                                                                                                               | Decluster                    |
| Design_Event_2D       20         Design_Event_2D_NEW       23         Detrend       26         Diag_Non_Con       27         Diag_Non_Con_Sel       28         Diag_Non_Con_Trunc       29         Diag_Non_Con_Trunc_Sel       30         GPD_Fit       31         GPD_Parameter_Stability_Plot       32         GPD_Threshold_Solari       33         GPD_Threshold_Solari_Sel       35         HT04       37         HT04_Lag       39         Imputation       40         Kendall_Lag       42         Mean_Excess_Plot       42         Migpd_Fit       43         SLR_Scenarios       44         Standard_Copula_Fit       46         Standard_Copula_Sel       46         Standard_Copula_Sim       47         Vine_Copula_Fit       48                                                                                                                                                                                                                                                                                               | Decluster_SW                 |
| Design_Event_2D_NEW       23         Detrend       26         Diag_Non_Con       27         Diag_Non_Con_Sel       28         Diag_Non_Con_Trunc       29         Diag_Non_Con_Trunc_Sel       30         GPD_Fit       31         GPD_Parameter_Stability_Plot       32         GPD_Threshold_Solari       33         GPD_Threshold_Solari_Sel       35         HT04       37         HT04_Lag       39         Imputation       40         Kendall_Lag       42         Mean_Excess_Plot       42         Migpd_Fit       43         SLR_Scenarios       44         Standard_Copula_Fit       46         Standard_Copula_Sel       46         Standard_Copula_Sim       47         Vine_Copula_Fit       48                                                                                                                                                                                                                                                                                                                                | Decluster_S_SW               |
| Detrend       26         Diag_Non_Con       27         Diag_Non_Con_Sel       28         Diag_Non_Con_Trunc       29         Diag_Non_Con_Trunc_Sel       30         GPD_Fit       31         GPD_Parameter_Stability_Plot       32         GPD_Threshold_Solari       33         GPD_Threshold_Solari_Sel       35         HT04       37         HT04_Lag       39         Imputation       40         Kendall_Lag       42         Mean_Excess_Plot       42         Migpd_Fit       43         SLR_Scenarios       44         Standard_Copula_Fit       46         Standard_Copula_Sel       46         Standard_Copula_Sim       47         Vine_Copula_Fit       48                                                                                                                                                                                                                                                                                                                                                                     |                              |
| Diag_Non_Con       27         Diag_Non_Con_Sel       28         Diag_Non_Con_Trunc       29         Diag_Non_Con_Trunc_Sel       30         GPD_Fit       31         GPD_Parameter_Stability_Plot       32         GPD_Threshold_Solari       33         GPD_Threshold_Solari_Sel       35         HT04       37         HT04_Lag       39         Imputation       40         Kendall_Lag       42         Mean_Excess_Plot       42         Migpd_Fit       43         SLR_Scenarios       44         Standard_Copula_Fit       46         Standard_Copula_Sel       46         Standard_Copula_Sim       47         Vine_Copula_Fit       48                                                                                                                                                                                                                                                                                                                                                                                              | Design_Event_2D_NEW          |
| Diag_Non_Con_Sel       28         Diag_Non_Con_Trunc       29         Diag_Non_Con_Trunc_Sel       30         GPD_Fit       31         GPD_Parameter_Stability_Plot       32         GPD_Threshold_Solari       33         GPD_Threshold_Solari_Sel       35         HT04       37         HT04_Lag       39         Imputation       40         Kendall_Lag       42         Mean_Excess_Plot       42         Migpd_Fit       43         SLR_Scenarios       44         Standard_Copula_Fit       46         Standard_Copula_Sel       46         Standard_Copula_Sim       47         Vine_Copula_Fit       48                                                                                                                                                                                                                                                                                                                                                                                                                            | Detrend                      |
| Diag_Non_Con_Trunc       29         Diag_Non_Con_Trunc_Sel       30         GPD_Fit       31         GPD_Parameter_Stability_Plot       32         GPD_Threshold_Solari       33         GPD_Threshold_Solari_Sel       35         HT04       37         HT04_Lag       39         Imputation       40         Kendall_Lag       42         Mean_Excess_Plot       42         Migpd_Fit       43         SLR_Scenarios       44         Standard_Copula_Fit       46         Standard_Copula_Sel       46         Standard_Copula_Sim       47         Vine_Copula_Fit       48                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Diag_Non_Con                 |
| Diag_Non_Con_Trunc_Sel       30         GPD_Fit       31         GPD_Parameter_Stability_Plot       32         GPD_Threshold_Solari       33         GPD_Threshold_Solari_Sel       35         HT04       37         HT04_Lag       39         Imputation       40         Kendall_Lag       42         Mean_Excess_Plot       42         Migpd_Fit       43         SLR_Scenarios       44         Standard_Copula_Fit       46         Standard_Copula_Sel       46         Standard_Copula_Sim       47         Vine_Copula_Fit       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |
| GPD_Fit       31         GPD_Parameter_Stability_Plot       32         GPD_Threshold_Solari       33         GPD_Threshold_Solari_Sel       35         HT04       37         HT04_Lag       39         Imputation       40         Kendall_Lag       42         Mean_Excess_Plot       42         Migpd_Fit       43         SLR_Scenarios       44         Standard_Copula_Fit       46         Standard_Copula_Sel       46         Standard_Copula_Sim       47         Vine_Copula_Fit       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |
| GPD_Parameter_Stability_Plot       32         GPD_Threshold_Solari       33         GPD_Threshold_Solari_Sel       35         HT04       37         HT04_Lag       39         Imputation       40         Kendall_Lag       42         Mean_Excess_Plot       42         Migpd_Fit       43         SLR_Scenarios       44         Standard_Copula_Fit       46         Standard_Copula_Sel       46         Standard_Copula_Sim       47         Vine_Copula_Fit       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\mathbf{c}$                 |
| GPD_Threshold_Solari       33         GPD_Threshold_Solari_Sel       35         HT04       37         HT04_Lag       39         Imputation       40         Kendall_Lag       42         Mean_Excess_Plot       42         Migpd_Fit       43         SLR_Scenarios       44         Standard_Copula_Fit       46         Standard_Copula_Sel       46         Standard_Copula_Sim       47         Vine_Copula_Fit       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              |
| GPD_Threshold_Solari_Sel       35         HT04       37         HT04_Lag       39         Imputation       40         Kendall_Lag       42         Mean_Excess_Plot       42         Migpd_Fit       43         SLR_Scenarios       44         Standard_Copula_Fit       46         Standard_Copula_Sel       46         Standard_Copula_Sim       47         Vine_Copula_Fit       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GPD_Parameter_Stability_Plot |
| HT04       37         HT04_Lag       39         Imputation       40         Kendall_Lag       42         Mean_Excess_Plot       42         Migpd_Fit       43         SLR_Scenarios       44         Standard_Copula_Fit       46         Standard_Copula_Sel       46         Standard_Copula_Sim       47         Vine_Copula_Fit       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              |
| HT04_Lag       39         Imputation       40         Kendall_Lag       42         Mean_Excess_Plot       42         Migpd_Fit       43         SLR_Scenarios       44         Standard_Copula_Fit       46         Standard_Copula_Sel       46         Standard_Copula_Sim       47         Vine_Copula_Fit       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GPD_Threshold_Solari_Sel     |
| Imputation       40         Kendall_Lag       42         Mean_Excess_Plot       42         Migpd_Fit       43         SLR_Scenarios       44         Standard_Copula_Fit       46         Standard_Copula_Sel       46         Standard_Copula_Sim       47         Vine_Copula_Fit       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HT04 37                      |
| Kendall_Lag       42         Mean_Excess_Plot       42         Migpd_Fit       43         SLR_Scenarios       44         Standard_Copula_Fit       46         Standard_Copula_Sel       46         Standard_Copula_Sim       47         Vine_Copula_Fit       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HT04_Lag                     |
| Mean_Excess_Plot       42         Migpd_Fit       43         SLR_Scenarios       44         Standard_Copula_Fit       46         Standard_Copula_Sel       46         Standard_Copula_Sim       47         Vine_Copula_Fit       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Imputation                   |
| Migpd_Fit       43         SLR_Scenarios       44         Standard_Copula_Fit       46         Standard_Copula_Sel       46         Standard_Copula_Sim       47         Vine_Copula_Fit       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kendall_Lag         42       |
| SLR_Scenarios       44         Standard_Copula_Fit       46         Standard_Copula_Sel       46         Standard_Copula_Sim       47         Vine_Copula_Fit       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |
| Standard_Copula_Fit46Standard_Copula_Sel46Standard_Copula_Sim47Vine_Copula_Fit48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Migpd_Fit                    |
| Standard_Copula_Sel46Standard_Copula_Sim47Vine_Copula_Fit48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <del>-</del>                 |
| Standard_Copula_Sim47Vine_Copula_Fit48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                            |
| Vine_Copula_Fit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _ <b>i</b> _                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |
| Vine_Copula_Sim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vine_Copula_Sim              |

**50** 

Annual\_Max 3

| ۸nn | u a l | Max |
|-----|-------|-----|
| Anr | ıuaı  | Max |

Generate annual maximum series

## **Description**

Extract annual maximum in years with over a user-defined proportion of non-missing values.

#### Usage

```
Annual_Max(Data_Detrend, Complete_Prop = 0.8)
```

#### **Arguments**

maximum to be extracted. Default is 0.8.

Data frame containing two columns. In column:

• 1 A "Date" object of equally spaced discrete time steps.

• 2 Numeric vector containing corresponding time series values.

#### Value

List comprising the index of the annual maximum Event and the annual maximum values AM.

#### **Examples**

Conditional\_RP\_2D

Calculates joint and conditional return periods

## Description

Univariate return period events are obtained from the GPDs to be consistent with the isolines produced by the Design\_Event\_2D function. To find the conditional probabilities a large number of realizations are simulated from the copulas fit to the conditioned samples, in proportion with the sizes of the conditional samples. The realizations are transformed to the original scale and the relevant probabilities estimated empirically.

#### Usage

```
Conditional_RP_2D(
Data,
Data_Con1,
Data_Con2,
Thres1,
Thres2,
Copula_Family1,
Copula_Family2,
Marginal_Dist1,
```

4 Conditional\_RP\_2D

```
Marginal_Dist2,
 Con1 = "Rainfall",
 Con2 = "OsWL",
 mu = 365.25,
 Con_Var,
 RP\_Con,
 RP_Non_Con,
 Var1,
 Var2,
 x_lab = "Rainfall (mm)",
 y_lab = "O-sWL (mNGVD 29)",
 x_{\min} = NA,
 x_{lim_max} = NA,
 y_{\min} = NA,
 y_{lim_max} = NA,
)
```

column of Data.

variable.

events in Data. Default is 365.25, daily data.

# Arguments

mu

Con\_Var

| guments        |                                                                                                                                                                                                                            |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data           | Data frame of dimension nx2 containing two co-occurring time series of length n.                                                                                                                                           |
| Data_Con1      | Data frame containing the conditional sample (declustered excesses paired with concurrent values of other variable), conditioned on the variable in the first column.                                                      |
| Data_Con2      | Data frame containing the conditional sample (declustered excesses paired with concurrent values of other variable), conditioned on the variable in the second column. Can be obtained using the Con_Sampling_2D function. |
| Thres1         | Numeric vector of length one specifying the threshold above which the variable in the first column was sampled in Data_Con1.                                                                                               |
| Thres2         | Numeric vector of length one specifying the threshold above which the variable in the second column was sampled in Data_Con2.                                                                                              |
| Copula_Family1 | Numeric vector of length one specifying the copula family used to model the Data_Con1 dataset.                                                                                                                             |
| Copula_Family2 | Numeric vector of length one specifying the copula family used to model the Data_Con2 dataset. Best fitting of 40 copulas can be found using the Copula_Threshold_2D function.                                             |
| Marginal_Dist1 | Character vector of length one specifying (non-extreme) distribution used to model the marginal distribution of the non-conditioned variable in Data_Con1.                                                                 |
| Marginal_Dist2 | Character vector of length one specifying (non-extreme) distribution used to model the marginal distribution of the non-conditioned variable in Data_Con2.                                                                 |
| Con1           | Character vector of length one specifying the name of variable in the first column of Data.                                                                                                                                |
| Con2           | Character vector of length one specifying the name of variable in the second                                                                                                                                               |

Numeric vector of length one specifying the (average) occurrence frequency of

Character vector of length one specifying the (column) name of the conditioning

Conditional\_RP\_2D 5

| RP_Con     | Numeric vector of length one specifying the return period of the conditioning variable Con_Var.                                                                                                                                                                                                                                      |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RP_Non_Con | Numeric vector of length one specifying the return period of the non-conditioning variable.                                                                                                                                                                                                                                          |
| x_lab      | Character vector specifying the x-axis label.                                                                                                                                                                                                                                                                                        |
| y_lab      | Character vector specifying the y-axis label.                                                                                                                                                                                                                                                                                        |
| x_lim_min  | Numeric vector of length one specifying x-axis minimum. Default is NA.                                                                                                                                                                                                                                                               |
| x_lim_max  | Numeric vector of length one specifying x-axis maximum. Default is NA.                                                                                                                                                                                                                                                               |
| y_lim_min  | Numeric vector of length one specifying y-axis minimum. Default is NA.                                                                                                                                                                                                                                                               |
| y_lim_max  | Numeric vector of length one specifying y-axis maximum. Default is NA.                                                                                                                                                                                                                                                               |
| N          | Numeric vector of length one specifying the size of the sample from the fitted joint distributions used to estimate the density along an isoline. Samples are collected from the two joint distribution with proportions consistent with the total number of extreme events conditioned on each variable. Default is 10 <sup>6</sup> |

#### Value

## Console output:

- Con\_Var Name of the conditioning variable
- RP\_Var1 Return period of variable Con1 i.e., variable in second column of Data
- RP\_Var2 Return period of variable Con2 i.e., variable in third column of Data
- Var1 Value of Con1 at the return period of interest i.e. RP\_Var1
- Var2 Value of Con2 at the return period of interest i.e. RP\_Var2
- RP\_Full\_Dependence Joint return period of the (Var1, Var2) event under full dependence
- RP\_Independence Joint return period of the (Var1, Var2) event under independence
- RP\_Copula Joint return period of the (Var1, Var2) event according to the two sided conditional sampling copula theory approach
- Prob Probability associated with RP\_Copula
- N\_Excess Number of realizations of the Con\_Var above RP\_Con-year return period value
- Non\_Con\_Var\_X Values of the non-conditioned variable of the (conditional) Cummulative Distribution Function (CDF) i.e. x-axis of bottom left plot
- Con\_Prob Con\_Prob CDF of the non-conditioned variable given the return period of Con\_Var exceeds RP\_Con
- Con\_Prob\_Est Probability the non-conditioned variable is less than or equal to RP\_Non\_Con given the return period of Con\_Var exceeds RP\_Con

# Graphical output:

- Top left: Sample conditioned on Con1 (red crosses) and Con2 (blue circles). Black dot is the event with a marginal return period of the conditioned variable Var\_Con and non-conditioned variable equal to RP\_Con and RP\_Non\_Con, respectively. The joint return period of the event using the conditional sampling copula theory approach and under the assumptions of full dependence and independence between the variables are printed.
- Top right: Sample conditioned on Con1 (red crosses) and Con2 (blue circles). Only the region where Con\_Var exceeds RP\_Con is visible. This is the region for which the conditional distribution (of the non-conditioned variable given Con\_Var exceeds RP\_Con) and in turn conditional return periods are calculated.

- Bottom left: Conditional Cumulative Distribution Function (CDF) of the non-conditioned variable given the marginal return period of the conditioned variable Var\_Con exceeds RP\_Con years i.e. the points visible in the top right plot.
- Bottom right: Conditional return period of the non-conditioned variable given the conditioned variable Var\_Con has a return period longer than RP\_Con.

#### See Also

```
Design_Event_2D
```

#### **Examples**

Conditional\_RP\_2D\_Equal

Calculates joint and conditional return periods

# Description

A large number of realizations are simulated from the copulas fit to the conditioned samples, in proportion with the sizes of the conditional samples. The realization are transformed to the original scale and the relevant probabilities estimated empirically. The conditional probabilities return period of the conditioning variable equals

# Usage

```
Conditional_RP_2D_Equal(
   Data,
   Data_Con1,
   Data_Con2,
   Thres1,
   Thres2,
   Copula_Family1,
   Copula_Family2,
   Marginal_Dist1,
   Marginal_Dist2,
   Con1 = "Rainfall",
```

```
Con2 = "OsWL",
mu = 365.25,
Con_Var,
RP_Con,
RP_Non_Con,
Width = 0.1,
x_lab = "Rainfall (mm)",
y_lab = "O-sWL (mNGVD 29)",
x_lim_min = NA,
x_lim_max = NA,
y_lim_min = NA,
y_lim_max = NA,
N
```

## **Arguments**

| Į | guments        |                                                                                                                                                                                                                            |
|---|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Data           | Data frame of dimension nx2 containing two co-occurring time series of length n.                                                                                                                                           |
|   | Data_Con1      | Data frame containing the conditional sample (declustered excesses paired with concurrent values of other variable), conditioned on the variable in the first column.                                                      |
|   | Data_Con2      | Data frame containing the conditional sample (declustered excesses paired with concurrent values of other variable), conditioned on the variable in the second column. Can be obtained using the Con_Sampling_2D function. |
|   | Thres1         | Numeric vector of length one specifying the threshold above which the variable in the first column was sampled in Data_Con1.                                                                                               |
|   | Thres2         | Numeric vector of length one specifying the threshold above which the variable in the second column was sampled in Data_Con2.                                                                                              |
|   | Copula_Family1 | Numeric vector of length one specifying the copula family used to model the Data_Con1 dataset.                                                                                                                             |
|   | Copula_Family2 | Numeric vector of length one specifying the copula family used to model the Data_Con2 dataset. Best fitting of 40 copulas can be found using the Copula_Threshold_2D function.                                             |
|   | Marginal_Dist1 | Character vector of length one specifying (non-extreme) distribution used to model the marginal distribution of the non-conditioned variable in Data_Con1.                                                                 |
|   | Marginal_Dist2 | Character vector of length one specifying (non-extreme) distribution used to model the marginal distribution of the non-conditioned variable in Data_Con2.                                                                 |
|   | Con1           | Character vector of length one specifying the name of variable in the first column of Data.                                                                                                                                |
|   | Con2           | Character vector of length one specifying the name of variable in the second column of Data.                                                                                                                               |
|   | mu             | Numeric vector of length one specifying the (average) occurrence frequency of events in Data. Default is 365.25, daily data.                                                                                               |
|   | Con_Var        | Character vector of length one specifying the (column) name of the conditioning variable.                                                                                                                                  |
|   | RP_Con         | Numeric vector of length one specifying the return period of the conditioning                                                                                                                                              |

variable Con\_Var.

| RP_Non_Con | Numeric vector of length one specifying the return period of the non-conditioning variable.                                                                                                                                                                                                                                          |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Width      | Numeric vector of length one specifying the distance above and below the RP_Con event of Con_Var the simulated events are used to estimate the conditional probability.                                                                                                                                                              |
| x_lab      | Character vector specifying the x-axis label.                                                                                                                                                                                                                                                                                        |
| y_lab      | Character vector specifying the y-axis label.                                                                                                                                                                                                                                                                                        |
| x_lim_min  | Numeric vector of length one specifying x-axis minimum. Default is NA.                                                                                                                                                                                                                                                               |
| x_lim_max  | Numeric vector of length one specifying x-axis maximum. Default is NA.                                                                                                                                                                                                                                                               |
| y_lim_min  | Numeric vector of length one specifying y-axis minimum. Default is NA.                                                                                                                                                                                                                                                               |
| y_lim_max  | Numeric vector of length one specifying y-axis maximum. Default is NA.                                                                                                                                                                                                                                                               |
| N          | Numeric vector of length one specifying the size of the sample from the fitted joint distributions used to estimate the density along an isoline. Samples are collected from the two joint distribution with proportions consistent with the total number of extreme events conditioned on each variable. Default is 10 <sup>6</sup> |

#### Value

## Console output:

- Con\_Var Name of the conditioning variable
- RP\_Var1 Return period of variable Con1 i.e., variable in second column of Data
- RP\_Var2 Return period of variable Con2 i.e., variable in third column of Data
- Var1 Value of Con1 at the return period of interest
- Var2 Value of Con2 at the return period of interest
- RP\_Full\_Dependence Joint return period of the (Var1,Var2) event under full dependence
- RP Independence Joint return period of the (Var1, Var2) event under independence
- RP\_Copula Joint return period of the (Var1, Var2) event according to the two sided conditional sampling copula theory approach
- Prob Probability associated with RP\_Copula
- N\_Sub\_Sample Number of realizations of the Con\_Var within +/- width of the value of Con\_Var with return period .
- Non\_Con\_Var\_X Values of the non-conditioned variable of the (conditional) Cummulative Distribution Function (CDF) i.e. x-axis of bottom left plot
- Con\_Prob Con\_Prob CDF of the non-conditioned variable given the return period of Con\_Var equals RP\_Con
- Con\_Prob\_Est Probability the non-conditioned variable is less than or equal to RP\_Non\_Con given the return period of Con\_Var equals RP\_Con

## Graphical output:

• Top Left: Sample conditioned on rainfall (red crosses) and O-sWL (blue circles). Black dot is the event with a marginal return period of the conditioned variable Var\_Con and non-conditioned variable equal to RP\_Con and RP\_Non\_Con, respectively. The joint return period of the event using the conditional sampling - copula theory approach and under the assumptions of full dependence and independence between the variables are printed.

Con\_Sampling\_2D 9

• Top Right: Sample used to estimate the joint return period of the event of interest. Black dots denote the N\_Excess sized subset of the sample where the marginal return period of the conditioned variable Var\_Con exceeds RP\_Con (years). The subset is used to estimate the conditional probabilities in part two of the question.

- Bottom Left: Conditional Cumulative Distribution Function (CDF) of the non-conditioned variable given the marginal return period of the conditioned variable Var\_Con exceeds RP\_Con years i.e. the black dots in the top right plot.
- Bottom Right: Conditional return period of the non-conditioned variable given the conditioned variable Var\_Con has a return period longer than RP\_Con.

#### See Also

```
Design_Event_2D Conditional_RP_2D
```

## **Examples**

Con\_Sampling\_2D

Conditionally sampling a two-dimensional dataset

#### **Description**

Creates a data frame where the declustered excesses of a (conditioning) variable are paired with co-occurences of another variable.

# Usage

```
Con_Sampling_2D(Data_Detrend, Data_Declust, Con_Variable, u = 0.97, Thres = NA)
```

# Arguments

Data\_Detrend Data frame containing two at least partially concurrent time series, detrended if necessary. Time steps must be equally spaced, with missing values assigned NA. First column may be a "Date" object. Can be Dataframe\_Combine output.

Data\_Declust

Data frame containing two (independently) declustered at least partially concurrent time series. Time steps must be equally spaced, with missing values assigned NA. Columns must be in the same order as in Data\_Detrend. First column may be a "Date" object. Can be Dataframe\_Combine output.

Con\_Variable Column number (1 or 2) or the column name of the conditioning variable. De-

fault is 1.

u Threshold, as a quantile of the observations of the conditioning variable. Default

is 0.97.

Thres Threshold expressed on the original scale of the observations. Only one of u and

Thres should be supplied. Default is NA.

#### Value

List comprising the specified Threshold as the quantile of the conditioning variable above which declustered excesses are paired with co-occurences of the other variable, the resulting two-dimensional sample data and name of the conditioning variable. The index of the input dataset that correspond to the events in the conditional sample x.con are also provided.

#### **Examples**

```
S20.Rainfall <-Con_Sampling_2D(Data_Detrend=S20.Detrend.df[,-c(1,4)],\\ Data_Declust=S20.Detrend.Declustered.df[,-c(1,4)],\\ Con_Variable="Rainfall",u=0.97)
```

Con\_Sampling\_2D\_Lag

Conditionally sampling a two dimensional dataset

#### **Description**

Creates a data frame where the declustered excesses of a (conditioning) variable are paired with the maximum value of a second variable over a specified lag.

## Usage

```
Con_Sampling_2D_Lag(
  Data_Detrend,
  Data_Declust,
  Con_Variable,
  u = 0.97,
  Thres,
  Lag_Backward = 0,
  Lag_Forward = 0
)
```

## **Arguments**

Data\_Detrend Data frame containing two at least partially concurrent time series, detrended if

necessary. Time steps must be equally spaced, with missing values assigned NA. First object may be a "Date" object. Can be Dataframe\_Combine output.

Data\_Declust Data frame containing two (independently) declustered at least partially con-

current time series. Time steps must be equally spaced, with missing values assigned NA. Columns must be in the same order as in Data\_Detrend. First

object may be a "Date" object. Can be Dataframe\_Combine output.

Con\_Variable Column number (1 or 2) or the column name of the conditioning variable. De-

fault is 1.

Cooley 19

| u            | Threshold, as a quantile of the observations of the conditioning variable. Default is 0.97.                               |
|--------------|---------------------------------------------------------------------------------------------------------------------------|
| Thres        | Threshold expressed on the original scale of the observations. Only one of u and Thres should be supplied. Default is NA. |
| Lag_Backward | Positieve lag applied to variable not assigned as the Con_Variable. Default is 0                                          |
| Lag_Forward  | Negative lag to variable not assigned as the Con_Variable. Default is 0                                                   |

#### Value

List comprising the specified Threshold as the quantile of the conditioning variable above which declustered excesses are paired with co-occurences of the other variable, the resulting two-dimensional sample data and name of the conditioning variable. The index of the input dataset that correspond to the events of the conditioning variable x. con and the non-conditioning variable x. noncon in the conditional sample are also provided.

## **Examples**

```
S20.Rainfall <-Con_Sampling_2D(Data_Detrend=S20.Detrend.df[,-c(1,4)],\\ Data_Declust=S20.Detrend.Declustered.df[,-c(1,4)],\\ Con_Variable="Rainfall",u=0.97)
```

| Cooley19 | Derives bivariate isolines using the non-parametric approach of Coo- |
|----------|----------------------------------------------------------------------|
|          | ley et al. (2019).                                                   |

## **Description**

The Cooley et al. (2019) method exploits bivariate regular variation and kernel density estimation to generate isolines of bivariate exceedance probabilities. The function utilizes the ks and texmex packages, and works for both asymptotic dependence and independence.

## Usage

```
Cooley19(
Data,
Migpd,
p.base = 0.01,
p.proj = 0.001,
u = 0.95,
PLOT = FALSE,
x_lim_min_T = NA,
x_lim_max_T = NA,
y_lim_min_T = NA,
x_lim_max_T = NA,
x_lim_max_T = NA,
x_lim_min = NA,
x_lim_min = NA,
x_lim_max = NA,
y_lim_max = NA,
y_lim_min = NA,
```

Cooley19

#### **Arguments**

| Data frame consisting of two columns.                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------|
| An Migpd object, containing the generalized Pareto models fitted (independently) to the variables comprising the columns of Data.                 |
| Numeric vector of length one specifying the exceedance probability of the base isoline. Default is $0.01$ .                                       |
| Numeric vector of length one specifying the exceedance probability of the projected isoline. Default is $0.001$ .                                 |
| Numeric vector of length one specifying the quantile at which to estimate the asymptotic nature of the data i.e. chi and chibar. Default is 0.95. |
| Logical; indicating whether to plot the base and projected isolines on the original and transformed scale. Default is FALSE.                      |
| Numeric vector of length one specifying the lower x-axis limit of the transformed scale plot. Default is NA.                                      |
| Numeric vector of length one specifying the upper x-axis limit of the transformed scale plot. Default is NA.                                      |
| Numeric vector of length one specifying the lower y-axis limit of the transformed scale plot. Default is NA.                                      |
| Numeric vector of length one specifying the upper y-axis limit of the transformed scale plot. Default is NA.                                      |
| Numeric vector of length one specifying the lower x-axis limit of the plot on the original scale. Default is NA.                                  |
| Numeric vector of length one specifying the upper x-axis limit of the plot on the original scale. Default is NA.                                  |
| Numeric vector of length one specifying the lower y-axis limit of the plot on the original scale. Default is NA.                                  |
| Numeric vector of length one specifying the lower y-axis limit of the plot on the original scale. Default is NA.                                  |
|                                                                                                                                                   |

## Value

List comprising a description of the type of (asymptoptic) dependence Asym, the values the extremal dependence measures Chi and n.bar, exceedance probabilities of the base p.base and projected p.proj isolines, as well as the points on the base I.base and projected I.proj isolines.

## See Also

```
Dataframe_Combine Decluster GPD_Fit Migpd_Fit
```

```
\label{eq:coley19} S20.GPD<-Migpd_Fit(Data=S20.Detrend.Declustered.df[,-1], mqu =c(0.99,0.99,0.99)) \\ Cooley19(Data=na.omit(S20.Detrend.df[,3:4]),Migpd=s.Migpd, \\ p.base=0.01,p.proj=0.001,PLOT=TRUE,x_lim_max_T=500,y_lim_max_T=500) \\
```

Copula\_Threshold\_2D Copula Selection With threshold 2D - Fit

# **Description**

Declustered excesses of a (conditioning) variable are paired with co-occurences of the other variable before the best fitting bivariate copula is selected, using BiCopSelect function in the VineCopula package, for a single or range of thresholds. The procedure is automatically repeated with the variables switched.

# Usage

```
Copula_Threshold_2D(
   Data_Detrend,
   Data_Declust,
   u1 = seq(0.9, 0.99, 0.01),
   u2 = seq(0.9, 0.99, 0.01),
   PLOT = TRUE,
   x_lim_min = NA,
   x_lim_max = NA,
   y_lim_min = -1,
   y_lim_max = 1,
   Upper = NA,
   Lower = NA,
   GAP = 0.05,
   Legend = TRUE
)
```

## Arguments

| Data_Detrend | Data frame containing two at least partially concurrent time series, detrended if necessary. Time steps must be equally spaced, with missing values assigned NA.                                                                               |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data_Declust | Data frame containing two (independently) declustered at least partially concurrent time series. Time steps must be equally spaced, with missing values assigned NA.                                                                           |
| u1           | A single or sequence of thresholds, given as a quantile of the observations of the variable in the first column of Data_Detrend when it is used as the conditioning variable. Default, sequence from 0.9 to 0.99 at intervals of 0.01.         |
| u2           | A single or sequence of thresholds, given as a quantile of the observations of the variable in the second column of Data_Detrend when it is used as the conditioning variable. Default, sequence from $0.9$ to $0.99$ at intervals of $0.01$ . |
| PLOT         | Logical; whether to plot the results. Default is "TRUE".                                                                                                                                                                                       |
| x_lim_min    | Numeric vector of length one specifying x-axis minimum. Default is NA.                                                                                                                                                                         |
| x_lim_max    | Numeric vector of length one specifying x-axis maximum. Default is NA.                                                                                                                                                                         |
| y_lim_min    | Numeric vector of length one specifying y-axis minimum. Default -1.0.                                                                                                                                                                          |
| y_lim_max    | Numeric vector of length one specifying y-axis maximum. Default 1.0.                                                                                                                                                                           |

| Upper  | Numeric vector specifying the element number of the u1 argument for which the copula family name label to appear above the corresponding point on the Kendall's tau coefficient vs threshold plot, when conditioning on the variable in column 1. Default is 0.            |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lower  | Numeric vector specifying the element number of the u2 argument for which the copula family name label to appear below the corresponding point on the Kendall's tau coefficient vs threshold plot, when conditioning on the variable in column 2. Default is $\emptyset$ . |
| GAP    | Numeric vector of length one specifying the distance above or below the copula family name label appears the corresponding point on the Kendall's tau coefficient vs threshold plot. Default is 0.05.                                                                      |
| Legend | Logic vector of length one specifying whether a legend should be plotted. De-                                                                                                                                                                                              |

#### Value

List comprising:

• Kendalls\_Tau1 Kendall's tau of a sample

fault is TRUE.

- p\_value\_Var1 p-value when testing the null hypothesis H\_0: tau=0 i.e. that there is no correlation between the variables
- N\_Var1 Size of the dataset
- Copula\_Family\_Var1 Best fitting copula for the specified thresholds

when the dataset is conditioned on the variable in column 1. Analogous vectors Kendalls\_Tau2,p\_value\_Var2, N\_Var2 and Copula\_Family\_Var2 for the specified thresholds when the dataset is conditioned on the variable in column 2.

#### See Also

Dataframe\_Combine

# **Examples**

```
Copula_Threshold_2D_Lag
```

Copula Selection With threshold 2D - Fit

#### **Description**

Declustered excesses of a (conditioning) variable are paired with co-occurences of the other variable before the best fitting bivariate copula is selected, using BiCopSelect function in the VineCopula package, for a single or range of thresholds. The procedure is automatically repeated with the variables switched.

#### Usage

```
Copula_Threshold_2D_Lag(
  Data_Detrend,
  Data_Declust,
  u1 = seq(0.9, 0.99, 0.01),
  u2 = seq(0.9, 0.99, 0.01),
  PLOT = TRUE,
  Lag_Backward_Var1 = 1,
  Lag_Forward_Var1 = 1,
  Lag_Backward_Var2 = 1,
  Lag_Forward_Var2 = 1,
  x_{\min} = NA,
  x_{\min} = NA,
  y_{\min} = -1,
  y_{lim_max} = 1,
  Upper = 0,
  Lower = 0,
  GAP = 0.05,
  Legend = TRUE
)
```

#### **Arguments**

| Data_Detrend | Data frame containing two at least partially concurrent time series, detrended if necessary. Time steps must be equally spaced, with missing values assigned NA.                                                                        |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data_Declust | Data frame containing two (independently) declustered at least partially concurrent time series. Time steps must be equally spaced, with missing values assigned NA.                                                                    |
| u1           | A single or sequence of thresholds, given as a quantile of the observations of the variable in the first column of Data_Detrend when it is used as the conditioning variable. Default, sequence from 0.9 to 0.99 at intervals of 0.01.  |
| u2           | A single or sequence of thresholds, given as a quantile of the observations of the variable in the second column of Data_Detrend when it is used as the conditioning variable. Default, sequence from 0.9 to 0.99 at intervals of 0.01. |

Logical; whether to plot the results. Default is "TRUE".

Lag\_Backward\_Var1

PLOT

Numeric vector of length one specifying the negative lag applied to variable in the first column of Data\_Detrend. Default 1.

Lag\_Forward\_Var1

Numeric vector of length one specifying positive lag applied to variable in the first column of Data\_Detrend. Default 1.

Lag\_Backward\_Var2

Numeric vector of length one specifying negative lag applied to variable in the second column of Data\_Detrend. Default 1.

Lag\_Forward\_Var2

Numeric vector of length one specifying positive lag applied to variable in the second column of Data\_Detrend. Default 1.

x\_lim\_min
 Numeric vector of length one specifying x-axis minimum. Default is NA.
 x\_lim\_max
 Numeric vector of length one specifying x-axis maximum. Default is NA.
 Numeric vector of length one specifying y-axis minimum. Default -1.0.

Dataframe\_Combine

| y_lim_max | Numeric vector of length one specifying y-axis maximum. Default 1.0.                                                                                                                                                                                                   |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Upper     | Numeric vector specifying the element number of the u1 argument for which the copula family name label to appear above the corresponding point on the Kendall's tau coefficient vs uhold plot, when conditioning on the variable in column 1. Default is $\emptyset$ . |
| Lower     | Numeric vector specifying the element number of the u2 argument for which the copula family name label to appear below the corresponding point on the Kendall's tau coefficient vs uhold plot, when conditioning on the variable in column 2. Default is $\emptyset$ . |
| GAP       | Numeric vector of length one specifying the distance above or below the copula family name label appears the corresponding point on the Kendall's tau coefficient vs uhold plot. Default is $0.05$ .                                                                   |
| Legend    | Logic vector of length one specifying whether a legend should be plotted. Default is TRUE.                                                                                                                                                                             |

#### Value

List comprising:

- Kendalls\_Tau1 Kendall's tau of a sample
- p\_value\_Var1 p-value when testing the null hypothesis H\_0=0 i.e. that there is no correlation between the variables
- N\_Var1 size of the dataset
- Copula\_Family\_Var1 best fitting copula for the specified thresholds

when the dataset is conditioned on the variable in column 1. Analogous vector Kendalls\_Tau2, p\_value\_Var2, N\_Var2 and Copula\_Family\_Var2 for the specified thresholds when the dataset is conditioned on the variable in column 2.

#### See Also

Dataframe\_Combine

#### **Examples**

Dataframe\_Combine

Creates a data frame containing up to five time series

## Description

Combines up to five time series, detrended where necessary, into a single data frame.

#### Usage

```
Dataframe_Combine(data.1, data.2, data.3, data.4 = 0, data.5 = 0, n = 3, names)
```

Decluster 17

#### **Arguments**

n Integer 1–5 specifying the number of time series. Default is 3.

data.1:5 Data frames with two columns containing in column

- 1 Continuous sequence of times spanning from the first to the final recorded observations.
- 2 Corresponding values detrended where necessary.

#### Value

A data frame containing all times from the first to the most up to date reading of any of the variables.

#### See Also

Detrend

#### **Examples**

```
#Formatting data
S20.Rainfall.df<-Perrine_df
S20.Rainfall.df$Date<-as.Date(S20.Rainfall.df$Date)
S20.OsWL.df<-S20_T_MAX_Daily_Completed_Detrend_Declustered[,c(2,4)]
S20.OsWL.df$Date<-as.Date(S20.OsWL.df$Date)
#Detrending O-sWL series at Site S20
S20.OsWL.Detrend<-Detrend(Data=S20.OsWL.df,Method = "window",PLOT=FALSE,
                         x_lab="Date",y_lab="0-sWL (ft NGVD 29)")
#Creating a dataframe with the date alongside the detrended OsWL series
S20.OsWL.Detrend.df<-data.frame(as.Date(S20.OsWL.df$Date),S20.OsWL.Detrend)
colnames(S20.OsWL.Detrend.df)<-c("Date","OsWL")</pre>
#Combining the two datasets by Date argument
S20.Detrend.df<-Dataframe_Combine(data.1<-S20.Rainfall.df,
                                 data.2<-S20.0sWL.Detrend.df,
                                 data.3=0,
                                 names=c("Rainfall","OsWL"))
```

Decluster

Declusters a time series

## Description

Identify cluster maxima above a threshold, using the runs method of Smith and Weissman (1994).

# Usage

```
Decluster(Data, u = 0.95, Thres = NA, SepCrit = 3, mu = 365.25)
```

# **Arguments**

| Data  | Numeric vector of the time series.                                                                                            |
|-------|-------------------------------------------------------------------------------------------------------------------------------|
| u     | Numeric vector of length one specifying the declustering threshold; as a quantile $[0,1]$ of Data vector. Default is $0.95$ . |
| Thres | Threshold expressed on the original scale of the observations. Only one of u and Thres should be supplied. Default is NA.     |

18 Decluster\_SW

SepCrit Integer; specifying the separation criterion under which events are declustered.

Default is 3 corresponding to a storm window of three days in the case of daily

data.

mu (average) occurrence frequency of events in Data. Numeric vector of length

one. Default is 365.25, daily data.

#### Value

List comprising the Threshold above which cluster maxima are identified, rate of cluster maxima Rate, a vector containing the original time series Detrended and the Declustered series.

#### See Also

Detrend

#### **Examples**

Decluster(data=S20\_T\_MAX\_Daily\_Completed\_Detrend\$Detrend)

Decluster\_SW

Declusters a time series using a storm window approach

#### **Description**

Find peaks with a moving window. The code is based on the IDEVENT function provided by Sebastian Solari.

# Usage

```
Decluster_SW(Data, Window_Width)
```

#### **Arguments**

Data frame containing two columns. In column:

- 1 A "Date" object of equally spaced discrete time steps.
- 2 Numeric vector containing corresponding time series values.

Window\_Width

Numeric vector of length one specifying the width, in days, of the window used to ensure events are independent.

## Value

List comprising vectors containing the original time series Detrended, independent (declustered) events Declustered and the elements of the original series containing the declustered events EventID.

```
#Declustering the O-sWL at site S22 using a 3-day window.
v<-Decluster_SW(Data=S22.Detrend.df[,c(1:2)],Window_Width=7)
plot(as.Date(S22.Detrend.df$Date),S22.Detrend.df$Rainfall,pch=16)
points(as.Date(S22.Detrend.df$Date)[v$EventID],v$Event,col=2,pch=16)</pre>
```

Decluster\_S\_SW 19

| Decluster_S_SW  Declusters a Summed time series using a moving (Storm) Window approach | )- |
|----------------------------------------------------------------------------------------|----|
|----------------------------------------------------------------------------------------|----|

## Description

Finds the sum of a time series within a moving window then declusters the summed series using another moving window.

## Usage

```
Decluster_S_SW(Data, Window_Width_Sum, Window_Width)
```

#### **Arguments**

Data frame containing two columns. In column:

- 1 A "Date" object of equally spaced discrete time steps.
- 2 Numeric vector containing corresponding time series values.

Window\_Width\_Sum

Numeric vector of length one specifying the window width over which to sum the data.

Window\_Width

Numeric vector of length one specifying the width, in days, of the window used to ensure events are independent.

## Value

List comprising vectors containing the original time series Detrend, the summed series Totals, independent (declustered) events Declustered, the elements of the original series containing the start (Event\_Start), center EventID, and end (Event\_End) of the declustered events. Note for Window\_Width\_Sum\_Type="End", Event\_End and EventID are identical.

20 Design\_Event\_2D

Design\_Event\_2D

Derives a single or ensemble of bivariate design events

## Description

Calculates the isoline and relative probability of events on the isoline, given the observational data, for one or more user-specified return periods. Outputs the single "most-likely" design event or an ensemble of possible design events obtained by sampling along the isoline according to these relative probabilities. The design event under the assumption of full dependence is also computed.

#### Usage

```
Design_Event_2D(
  Data,
  Data_Con1,
  Data_Con2,
  u1,
  u2,
  Thres1 = NA,
  Thres2 = NA,
  Copula_Family1,
  Copula_Family2,
  Marginal_Dist1,
  Marginal_Dist2,
  Con1 = "Rainfall",
  Con2 = "OsWL",
  GPD1 = NA,
  GPD2 = NA
  mu = 365.25,
  GPD_Bayes = FALSE,
  Decimal_Place = 2,
  RP,
  Interval = 10000,
  End = F,
  x_lab = "Rainfall (mm)",
  y_{lab} = "O-sWL (mNGVD 29)",
  x_{lim_min} = NA,
  x_{\min} = NA,
  y_{\min} = NA,
  y_{lim_max} = NA,
  N = 10^6,
  N_{Ensemble} = 0,
  Sim_Max = 10,
  Plot_Quantile_Isoline = FALSE,
  Isoline_Type = "Combined"
)
```

#### **Arguments**

Data

Data frame of dimension nx2 containing two co-occurring time series of length n.

Design\_Event\_2D 21

| Data_Con1      | Data frame containing the conditional sample (declustered excesses paired with                                                                                                                                             |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | concurrent values of other variable), conditioned on the variable in the first col-<br>umn.                                                                                                                                |
| Data_Con2      | Data frame containing the conditional sample (declustered excesses paired with concurrent values of other variable), conditioned on the variable in the second column. Can be obtained using the Con_Sampling_2D function. |
| u1             | Numeric vector of length one specifying the threshold, expressed as a quantile, above which the variable in the first column was sampled in Data_Con1.                                                                     |
| u2             | Numeric vector of length one specifying the threshold, expressed as a quantile, above which the variable in the second column was sampled in Data_Con2.                                                                    |
| Thres1         | Numeric vector of length one specifying the threshold above which the variable in the first column was sampled in Data_Con1. Only one of u1 and Thres1 should be supplied. Default is NA.                                  |
| Thres2         | Numeric vector of length one specifying the threshold above which the variable in the second column was sampled in Data_Con2. Only one of u2 and Thres2 should be supplied. Default is NA.                                 |
| Copula_Family1 | Numeric vector of length one specifying the copula family used to model the Data_Con1 dataset.                                                                                                                             |
| Copula_Family2 | Numeric vector of length one specifying the copula family used to model the Data_Con2 dataset. Best fitting of 40 copulas can be found using the Copula_Threshold_2D function.                                             |
| Marginal_Dist1 | Character vector of length one specifying (non-extreme) distribution used to model the marginal distribution of the non-conditioned variable in Data_Con1.                                                                 |
| Marginal_Dist2 | Character vector of length one specifying (non-extreme) distribution used to model the marginal distribution of the non-conditioned variable in Data_Con2.                                                                 |
| Con1           | Character vector of length one specifying the name of variable in the first column of Data.                                                                                                                                |
| Con2           | Character vector of length one specifying the name of variable in the second column of Data.                                                                                                                               |
| GPD1           | Output of GPD_Fit applied to variable con1 i.e., GPD fit con1. Default NA. Only one of u1, Thres1 and GPD1 is required.                                                                                                    |
| GPD2           | Output of GPD_Fit applied to variable con2 i.e., GPD fit con2. Default NA. Only one of u2, Thres2 and GPD2 is required.                                                                                                    |
| mu             | Numeric vector of length one specifying the (average) occurrence frequency of events in Data. Default is 365.25, daily data.                                                                                               |
| GPD_Bayes      | Logical; indicating whether to use a Bayesian approach to estimate GPD parameters. This involves applying a penalty to the likelihood to aid in the stability of the optimization procedure. Default is FALSE.             |
| RP             | Numeric vector specifying the return periods of interest.                                                                                                                                                                  |
| Interval       | Numeric vector specifying the number of equally spaced points comprising the combined isoline.                                                                                                                             |
| x_lab          | Character vector specifying the x-axis label.                                                                                                                                                                              |
| y_lab          | Character vector specifying the y-axis label.                                                                                                                                                                              |
| x_lim_min      | Numeric vector of length one specifying x-axis minimum. Default is NA.                                                                                                                                                     |
| x_lim_max      | Numeric vector of length one specifying x-axis maximum. Default is NA.                                                                                                                                                     |
| y_lim_min      | Numeric vector of length one specifying y-axis minimum. Default is NA.                                                                                                                                                     |

22 Design\_Event\_2D

| y_lim_max             | Numeric vector of length one specifying y-axis maximum. Default is NA.                                                                                                                                                                                                                                                         |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| N                     | Numeric vector of length one specifying the size of the sample from the fitt joint distributions used to estimate the density along an isoline. Samples a collected from the two joint distribution with proportions consistent with t total number of extreme events conditioned on each variable. Default is 10 <sup>6</sup> |  |
| N_Ensemble            | Numeric vector of length one specifying the number of possible design events sampled along the isoline of interest.                                                                                                                                                                                                            |  |
| Sim_Max               | Numeric vector of length one specifying the maximum value, given as a multiple of the largest observation of each variable, permitted in the sample used to estimate the (relative) probabilities along the isoline.                                                                                                           |  |
| Plot_Quantile_Isoline |                                                                                                                                                                                                                                                                                                                                |  |
|                       | Logical; indicating whether to first plot the quantile isoline. Default is FALSE.                                                                                                                                                                                                                                              |  |
| = 1: =                |                                                                                                                                                                                                                                                                                                                                |  |

Isoline\_Type Character vector of length one specifying the type of isoline. For isolines obtained using the overlaying method in Bender et al. (2016) use "Combined"

(default). For quantile isoline from the sample conditioned variable Con1l(Con2)

on use "Con1"("Con2").

Decimal\_Palace Numeric vector specifying the number of decimal places to which to specify

the isoline. Defulat is 2.

#### Value

Plot of all the observations (grey circles) as well as the declustered excesses above Thres1 (blue circles) or Thres2 (blue circles), observations may belong to both conditional samples. Also shown is the isoline associated with RP contoured according to their relative probability of occurrence on the basis of the sample from the two joint distributions, the "most likely" design event (black diamond), and design event under the assumption of full dependence (black triangle) are also shown in the plot. The function also returns a list comprising the design events assuming full dependence "FullDependence", as well as once the dependence between the variables is accounted for the "Most likley" "MostLikelyEvent" as well as an "Ensemble" of possible design events and relative probabilities of events on the isoline Contour. The quantile isolines with Quantile\_Isoline\_1 and Quantile\_Isoline\_2, and GPD thresholds with Threshold\_1 and Threshold\_2.

# See Also

Copula\_Threshold\_2D Diag\_Non\_Con Diag\_Non\_Con\_Trunc

```
Data_Con1=S22.Rainfall$Data, Data_Con2=S22.OsWL$Data, u1=0.97, u2=0.97, Copula_Family1=S22.Copula.Rainfall, Copula_Family2=S22.Copula.OsWL, Marginal_Dist1="Logis", Marginal_Dist2="Twe", RP=c(5,100),Interval=10000,N=10^6,N_Ensemble=10, Plot_Quantile_Isoline=FALSE)
#Extracting the 100-year isoline from the output
Design.Event$`100`$Isoline
```

Design\_Event\_2D\_NEW

Derives a single or ensemble of bivariate design events

## **Description**

Calculates the isoline and relative probability of events on the isoline, given the observational data, for one or more user-specified return periods. Outputs the single "most-likely" design event or an ensemble of possible design events obtained by sampling along the isoline according to these relative probabilities. The design event under the assumption of full dependence is also computed.

## Usage

```
Design_Event_2D_NEW(
  Data,
  Data Con1.
  Data_Con2,
  u1,
  u2,
  Thres1 = NA,
  Thres2 = NA,
  Copula_Family1,
  Copula_Family2,
  Marginal_Dist1,
  Marginal_Dist2,
  GPD1,
  GPD2,
  Con1 = "Rainfall",
  Con2 = "OsWL",
  mu = 365.25,
  GPD_Bayes = TRUE,
  RP,
  Interval = 10000,
  x_lab = "Rainfall (mm)",
  y_{ab} = "O-sWL (mNGVD 29)",
  x_{\min} = NA,
  x_{lim_max} = NA,
  y_{lim_min} = NA,
  y_{lim_max} = NA,
  N = 10^6,
  N_Ensemble = 0,
  Sim_Max = 10,
  Plot_Quantile_Isoline = FALSE,
  Isoline_Type = "Combined"
)
```

# Arguments

| Data           | Data frame of dimension nx2 containing two co-occurring time series of length n.                                                                                                                                           |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data_Con1      | Data frame containing the conditional sample (declustered excesses paired with concurrent values of other variable), conditioned on the variable in the first column.                                                      |
| Data_Con2      | Data frame containing the conditional sample (declustered excesses paired with concurrent values of other variable), conditioned on the variable in the second column. Can be obtained using the Con_Sampling_2D function. |
| u1             | Numeric vector of length one specifying the threshold, expressed as a quantile, above which the variable in the first column was sampled in Data_Con1.                                                                     |
| u2             | Numeric vector of length one specifying the threshold, expressed as a quantile, above which the variable in the second column was sampled in Data_Con2.                                                                    |
| Thres1         | Numeric vector of length one specifying the threshold above which the variable in the first column was sampled in Data_Con1. Only one of u1 and Thres1 should be supplied. Default is NA.                                  |
| Thres2         | Numeric vector of length one specifying the threshold above which the variable in the second column was sampled in Data_Con2. Only one of u2 and Thres2 should be supplied. Default is NA.                                 |
| Copula_Family1 | Numeric vector of length one specifying the copula family used to model the Data_Con1 dataset.                                                                                                                             |
| Copula_Family2 | Numeric vector of length one specifying the copula family used to model the Data_Con2 dataset. Best fitting of 40 copulas can be found using the Copula_Threshold_2D function.                                             |
| Marginal_Dist1 | Character vector of length one specifying (non-extreme) distribution used to model the marginal distribution of the non-conditioned variable in Data_Con1.                                                                 |
| Marginal_Dist2 | Character vector of length one specifying (non-extreme) distribution used to model the marginal distribution of the non-conditioned variable in Data_Con2.                                                                 |
| Con1           | Character vector of length one specifying the name of variable in the first column of Data.                                                                                                                                |
| Con2           | Character vector of length one specifying the name of variable in the second column of Data.                                                                                                                               |
| mu             | Numeric vector of length one specifying the (average) occurrence frequency of events in Data. Default is 365.25, daily data.                                                                                               |
| GPD_Bayes      | Logical; indicating whether to use a Bayesian approach to estimate GPD parameters. This involves applying a penalty to the likelihood to aid in the stability of the optimization procedure. Default is TRUE.              |
| RP             | Numeric vector specifying the return periods of interest.                                                                                                                                                                  |
| Interval       | Numeric vector specifying the number of equally spaced points comprising the combined isoline.                                                                                                                             |
| x_lab          | Character vector specifying the x-axis label.                                                                                                                                                                              |
| y_lab          | Character vector specifying the y-axis label.                                                                                                                                                                              |
| x_lim_min      | Numeric vector of length one specifying x-axis minimum. Default is NA.                                                                                                                                                     |
| x_lim_max      | Numeric vector of length one specifying x-axis maximum. Default is NA.                                                                                                                                                     |
| y_lim_min      | Numeric vector of length one specifying y-axis minimum. Default is NA.                                                                                                                                                     |

| y_lim_max  | Numeric vector of length one specifying y-axis maximum. Default is NA.                                                                                                                                                                                                                                                               |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N          | Numeric vector of length one specifying the size of the sample from the fitted joint distributions used to estimate the density along an isoline. Samples are collected from the two joint distribution with proportions consistent with the total number of extreme events conditioned on each variable. Default is 10 <sup>6</sup> |
| N_Ensemble | Numeric vector of length one specifying the number of possible design events sampled along the isoline of interest.                                                                                                                                                                                                                  |
| Sim_Max    | Numeric vector of length one specifying the maximum value, given as a multi-<br>ple of the largest observation of each variable, permitted in the sample used to<br>estimate the (relative) probabilities along the isoline.                                                                                                         |
|            |                                                                                                                                                                                                                                                                                                                                      |

Plot\_Quantile\_Isoline

Logical; indicating whether to first plot the quantile isoline. Default is FALSE.

Isoline\_Type

Character vector of length one specifying the type of isoline. For isolines obtained using the overlaying method in Bender et al. (2016) use "Combined" (default). For quantile isoline from the sample conditioned variable Con1l(Con2) on use "Con1"("Con2").

#### Value

Plot of all the observations (grey circles) as well as the declustered excesses above Thres1 (blue circles) or Thres2 (blue circles), observations may belong to both conditional samples. Also shown is the isoline associated with RP contoured according to their relative probability of occurrence on the basis of the sample from the two joint distributions, the "most likely" design event (black diamond), and design event under the assumption of full dependence (black triangle) are also shown in the plot. The function also returns a list comprising the design events assuming full dependence "FullDependence", as well as once the dependence between the variables is accounted for the "Most likley" "MostLikelyEvent" as well as an "Ensemble" of possible design events.

#### See Also

Copula\_Threshold\_2D Diag\_Non\_Con Diag\_Non\_Con\_Trunc

```
S22.Rainfall<-Con_Sampling_2D(Data_Detrend=S22.Detrend.df[,-c(1,4)],
                              Data_Declust=S22.Detrend.Declustered.df[,-c(1,4)],
                              Con_Variable="Rainfall",u=0.97)
S22.OsWL<-Con_Sampling_2D(Data_Detrend=S22.Detrend.df[,-c(1,4)],
                          Data_Declust=S22.Detrend.Declustered.df[,-c(1,4)],
                          Con_Variable="OsWL",u=0.97)
S22.Copula.Rainfall<-Copula_Threshold_2D(Data_Detrend=S22.Detrend.df[,-c(1,4)],
                               Data_Declust=S22.Detrend.Declustered.df[,-c(1,4)],u =0.97,
                                         y_lim_min=-0.075,y_lim_max=0.25,
                                  Upper=c(2,9),Lower=c(2,10),GAP=0.15)$Copula_Family_Var1
S22. Copula. OsWL < -Copula\_Threshold\_2D(Data\_Detrend=S22. Detrend. df[,-c(1,4)],\\
                               Data_Declust=S22.Detrend.Declustered.df[,-c(1,4)],u =0.97,
                                     y_{\lim_{\to}} = -0.075, y_{\lim_{\to}} = 0.25,
                                  Upper=c(2,9),Lower=c(2,10),GAP=0.15)$Copula_Family_Var2
Design_Event_2D(Data=S22.Detrend.df[,-c(1,4)],
               Data_Con1=S22.Rainfall$Data, Data_Con2=S22.OsWL$Data,
               u1=0.97, u2=0.97,
               Copula_Family1=S22.Copula.Rainfall, Copula_Family2=S22.Copula.OsWL,
               Marginal_Dist1="Logis", Marginal_Dist2="Twe",
```

26 Detrend

```
RP=100,Interval=10000,N=10,N_Ensemble=10,
Plot_Quantile_Isoline=FALSE)
```

Detrends a time series.

## **Description**

Detrends a time series using either a linear fit covering the entire dataset or moving average trend correction with a user-specified window width.

## Usage

```
Detrend(
  Data,
  Method = "window",
  Window_Width = 89,
  End_Length = 1826,
  PLOT = FALSE,
  x_lab = "Data",
  y_lab = "Data"
)
```

#### **Arguments**

| Data         | <ul> <li>Data frame containing two columns. In column:</li> <li>1 A "Date" object of equally spaced discrete time steps.</li> <li>2 Numeric vector containing corresponding time series values. No NAs allowed.</li> </ul>         |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method       | Character vector of length one specifying approach used to detrend the data. Options are moving average "window" (default) and "linear".                                                                                           |
| Window_Width | Numeric vector of length one specifying length of the moving average window. Default is 89, window comprises the observation plus 44 days either side, which for daily data corresponds to an approximate 3 month window.          |
| End_Length   | Numeric vector of length one specifying number of observations at the end of the time series used to calculate the present day average. Default is 1826, which for daily data corresponds to the final five years of observations. |
| PLOT         | Logical; whether to plot original and detrended series. Default is "FALSE".                                                                                                                                                        |
| x_lab        | Character vector of length one specifying x-axis label. Default is "Date".                                                                                                                                                         |
| y_lab        | Character vector of length one specifying y-axis label. Default is "Data".                                                                                                                                                         |

#### Value

Numeric vector of the detrended time series.

Diag\_Non\_Con 27

| Diag_Non_Con | Goodness of fit of non-extreme marginal distributions |
|--------------|-------------------------------------------------------|
|              |                                                       |

## Description

Fits two (unbounded) non-extreme marginal distributions to a dataset and returns three plots demonstrating their relative goodness of fit.

# Usage

```
Diag_Non_Con(Data, x_lab, y_lim_min = 0, y_lim_max = 1)
```

## **Arguments**

| Data      | Numeric vector containing realizations of the variable of interest.                                              |
|-----------|------------------------------------------------------------------------------------------------------------------|
| x_lab     | Character vector of length one specifying the label on the x-axis of histogram and cumulative distribution plot. |
| y_lim_min | Numeric vector of length one specifying the lower y-axis limit of the histogram. Default is $\emptyset$ .        |
| y_lim_max | Numeric vector of length one specifying the upper y-axis limit of the histogram. Default is 1.                   |

#### Value

Dataframe \$AIC giving the AIC associated with each distribution and the name of the best fitting distribution \$Best\_fit. Panel consisting of three plots. Upper plot: Plot depicting the AIC of the two fitted distributions. Middle plot: Probability Density Functions (PDFs) of the fitted distributions superimposed on a histogram of the data. Lower plot: Cumulative Distribution Functions (CDFs) of the fitted distributions overlaid on a plot of the empirical CDF.

#### See Also

```
Copula_Threshold_2D
```

28 Diag\_Non\_Con\_Sel

| Diag_Non_Con_Sel | Demonstrate the goodness of fit of the selected non-extreme marginal distribution |
|------------------|-----------------------------------------------------------------------------------|
|                  |                                                                                   |

## **Description**

Plots demonstrating the goodness of fit of a selected (not truncated) non-extreme marginal distribution to a dataset.

#### Usage

```
Diag_Non_Con_Sel(Data, x_lab = "Data", y_lim_min = 0, y_lim_max = 1, Selected)
```

## **Arguments**

| Data      | Numeric vector containing realizations of the variable of interest.                                                      |
|-----------|--------------------------------------------------------------------------------------------------------------------------|
| x_lab     | Numeric vector of length one specifyingLabel on the x-axis of histogram and cummulative distribution plot.               |
| y_lim_min | Numeric vector of length one specifying the lower y-axis limit of the histogram.                                         |
| y_lim_max | Numeric vector of length one specifying the upper y-axis limit of the histogram.                                         |
| Selected  | Charactor vector of length one specifying the chosen distribution, options are the Gaussian "Gaus" and logistic "Logis". |

## Value

Panel consisting of three plots. Upper plot: Plots depicting the AIC of the two fitted distributions. Middle plot: Probabilty Density Functions (PDFs) of the selected distributions superimposed on a histgram of the data. Lower plot: Cummulative distribution function (CDFs) of the selected distribution overlaid on a plot of the empirical CDF.

#### See Also

```
Diag_Non_Con
```

Diag\_Non\_Con\_Trunc

Goodness of fit of non-extreme marginal distributions

#### **Description**

Fits ten (truncated) non-extreme marginal distributions to a dataset and returns three plots demonstrating their relative goodness of fit. The distributions are the Birnbaum-Saunders "BS", exponential "Exp", two-parameter gamma "Gam(2)", three-parameter gamma "Gam(3)", mixed two-parameter gamma "GamMix(2)", mixed three-parameter gamma "GamMix(3)", lognormal "LNorm", truncated normal "TNorm", Tweedie "Twe" and the Weibull "Weib".

## Usage

```
Diag_Non_Con_Trunc(
  Data,
  Omit = NA,
  x_lab = "Data",
  y_lim_min = 0,
  y_lim_max = 1
)
```

#### **Arguments**

| Data      | Numeric vector containing realizations of the variable of interest.                                               |
|-----------|-------------------------------------------------------------------------------------------------------------------|
| Omit      | Character vector specifying any distributions that are not to be tested. Default "NA", all distributions are fit. |
| x_lab     | Character vector of length one specifying the label on the x-axis of histogram and cumulative distribution plot.  |
| y_lim_min | Numeric vector of length one specifying the lower y-axis limit of the histogram. Default is $\emptyset$ .         |
| y_lim_max | Numeric vector of length one specifying the upper y-axis limit of the histogram. Default is 1.                    |

#### Value

Dataframe \$AIC giving the AIC associated with each distribution and the name of the best fitting distribution \$Best\_fit. Panel consisting of three plots. Upper plot: Plot depicting the AIC of the ten fitted distributions. Middle plot: Probability Density Functions (PDFs) of the fitted distributions superimposed on a histogram of the data. Lower plot: Cumulative Distribution Functions (CDFs) of the fitted distributions overlaid on a plot of the empirical CDF.

# See Also

```
Copula_Threshold_2D
```

```
\label{eq:sumu} S20.0sWL <-Con\_Sampling\_2D(Data\_Detrend=S20.Detrend.df[,-c(1,4)],\\ Data\_Declust=S20.Detrend.Declustered.df[,-c(1,4)],\\ Con\_Variable="0sWL",Thres=0.97)\\ Diag\_Non\_Con\_Trunc(Data=S20.0sWL\$Data\$Rainfall,x\_lab="Rainfall (Inches)",\\ y\_lim\_min=0,y\_lim\_max=2)\\ \end{tabular}
```

```
Diag_Non_Con_Trunc_Sel
```

 $Godness\ of\ fit\ of\ the\ selected\ non-extreme\ marginal\ distribution$ 

#### **Description**

Plots demonstrating the goodness of fit of a selected (truncated) non-extreme marginal distribution to a dataset.

#### Usage

```
Diag_Non_Con_Trunc_Sel(
  Data,
  Selected,
  Omit = NA,
  x_lab = "Data",
  y_lim_min = 0,
  y_lim_max = 1
)
```

## **Arguments**

| Data      | Numeric vector containing realizations of the variable of interest.                                                                                                                                                                                                                                                             |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Selected  | Character vector of length one specifying the chosen distribution, options are the Birnbaum-Saunders "BS", exponential "Exp", two-parameter gamma "Gam(2)", three-parameter gamma "Gam(3)", mixed two-parameter gamma "GamMix(2)", mixed three-parameter gamma "GamMix(3)", lognormal "LogN", Tweedie "Twe" and Weibull "Weib". |
| Omit      | Character vector specifying any distributions that are not to be tested. Default "NA", all distributions are fit.                                                                                                                                                                                                               |
| x_lab     | Character vector of length one specifying the label on the x-axis of histogram and cummulative distribution plot.                                                                                                                                                                                                               |
| y_lim_min | Numeric vector of length one specifying the lower y-axis limit of the histogram. Default is $\emptyset$ .                                                                                                                                                                                                                       |
| y_lim_max | Numericr vector of length one specifying the upper y-axis limit of the histogram. Default is 1.                                                                                                                                                                                                                                 |

#### Value

Panel consisting of three plots. Upper plot: Plot depicting the AIC of the eight fitted distributions. Middle plot: Probability Density Functions (PDFs) of the fitted distributions superimposed on a histogram of the data. Lower plot: Cumulative Distribution Functions (CDFs) of the fitted distributions overlaid on a plot of the empirical CDF.

## See Also

```
Diag_Non_Con_Trunc
```

GPD\_Fit 31

### **Examples**

```
\label{eq:con_Sampling_2D(Data_Detrend=S20.Detrend.df[,-c(1,4)], Data_Declust=S20.Detrend.Declustered.df[,-c(1,4)], Con_Variable="0sWL", Thres=0.97) \\ Diag_Non_Con_Trunc(Data=S20.0sWL$Data$Rainfall,x_lab="Rainfall (Inches)", y_lim_min=0,y_lim_max=2) \\ Diag_Non_Con_Sel_Trunc(Data=S20.0sWL$Data$Rainfall,x_lab="Rainfall (Inches)", y_lim_min=0,y_lim_max=2, Selected="Twe") \\
```

GPD\_Fit

Fits a single generalized Pareto distribution - Fit

#### **Description**

Fit a Generalized Pareto Distribution (GPD) to a declustered dataset.

## Usage

```
GPD_Fit(
  Data,
  Data_Full,
  u = 0.95,
  Thres = NA,
  mu = 365.25,
  GPD_Bayes = TRUE,
  Method = "Standard",
  min.RI = 1,
  PLOT = FALSE,
  xlab_hist = "Data",
  y_lab = "Data"
)
```

#### **Arguments**

| Data      | Numeric vector containing the declusted data.                                                                                                                                                                 |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data_Full | Numeric vector containing the non-declustered data.                                                                                                                                                           |
| u         | GPD threshold expressed as a quantile [0,1] of Data vector. Default is 0.95.                                                                                                                                  |
| Thres     | GPD threshold expressed on the original scale of the "Data". Only one of u and Thres should be supplied. Default is NA.                                                                                       |
| mu        | Numeric vector of length one specifying (average) occurrence frequency of events in the Data_Full input. Default is 365.25.                                                                                   |
| GPD_Bayes | Logical; indicating whether to use a Bayesian approach to estimate GPD parameters. This involves applying a penalty to the likelihood to aid in the stability of the optimization procedure. Default is TRUE. |
| Method    | Character vector of length one specifying the method of choosing the threshold. "Standard" (default) chooses the exact threshold specified aswither "u" or                                                    |

the user-specified threshold.

"th", whereas "Solari" selects the minimum exceedence of the "Data" above

| min.RI    | Numeric vector of length one specifying the minimum return period in the return level plot. Default is 1. |
|-----------|-----------------------------------------------------------------------------------------------------------|
| xlab_hist | Character vector of length one. Histogram x-axis label. Default is "Data".                                |
| y_lab     | Character vector of length one. Histogram x-axis label. Default is "Data".                                |
| Plot      | Logical; indicating whether to plot diagnostics. Default is FALSE.                                        |

#### Value

List comprising the GPD Threshold, shape parameter xi and scale parameters sigma along with their standard errors sigma. SE and xi.SE.

#### **Details**

For excesses of a variable X over a suitably high threshold u the fitted GPD model is parameterized as follows:

$$P(X > x | X > u) = \left[1 + \xi \frac{(x - u)}{\sigma}\right]_{+}^{-\frac{1}{\xi}}$$

where  $\xi$  and  $\sigma > 0$  are the shape and scale parameters of the GPD and  $[y]_+ = max(y,0)$ .

### **Examples**

Decluster(Data=S20\_T\_MAX\_Daily\_Completed\_Detrend\$Detrend)

## Description

Plots showing the stability of the GPD scale and shape parameter estimates across a specified range of thresholds.

#### Usage

```
GPD_Parameter_Stability_Plot(
  Data,
  Data_Full,
  u = 0.95,
  PLOT = FALSE,
  xlab_hist = "Data",
  y_lab = "Data"
)
```

# **Arguments**

Data Numeric vector containing the declusted data.

Data\_Full Numeric vector containing the non-declustered data.

u Numeric vector of GPD thresholds; given as a quantiles [0,1] of Data vector. Default is 0.9 to 0.999 in intervals of 0.001.

Plot Logical; indicating whether to plot diagnostics. Default is FALSE.

#### Value

Plot of the shape and modified scale parameter estimates along with their errors bars over the range of specified thresholds.

#### See Also

Decluster

#### **Examples**

```
\label{eq:continuous} $$\operatorname{GPD\_Parameter\_Stability\_Plot(Data = S20.Detrend.Declustered.df\$Rainfall, $$ \operatorname{Data\_Full= na.omit(S20.Detrend.df\$Rainfall), $$ u=seq(0.9,0.999,0.001))$}
```

GPD\_Threshold\_Solari Solari et al (2017) automatic GPD threshold selection

#### **Description**

Automatic threshold selection method in Solari et al. (2017) is implemented to find the threshold above which excesses are follow a GPD. The code is based on the ANALISIS\_POT\_LNORM function provided by Sebastian Solari.

#### Usage

```
GPD_Threshold_Solari(
    Event,
    Data,
    RPs = c(10, 50, 100, 500, 1000),
    RPs_PLOT = c(2, 3, 4),
    Min_Quantile = 0.95,
    Alpha = 0.1,
    mu = 365.25,
    N_Sim = 10
)
```

#### **Arguments**

Event Numeric vector containing the declustered events.

Data Original time series. Dataframe containing two columns. In column:

- 1 A "Date" object of equally spaced discrete time steps.
- 2 Numeric vector containing corresponding time series values.

RPs Numeric vector specifying the return levels calculated from the GPD fits over

the thresholds. Default is c(50,100,500,100) plus the return period associated

with the minimum candidate threshold.

RPs\_PLOT Numeric vector of length three specifying which elements of RPs are plotted in

the middle row of the graphical output. Default is c(1,2,3).

Min\_Quantile 
Numeric vector of length one specifying the minimum threshold, expressed as

a quantile of the original time series (2nd column of Data) to be tested. Default

0.95.

Alpha Numeric vector of length one specifying the level of confidence associated with the confidence interval i.e., the probability that the interval contains the true value of the parameter is  $1-\frac{Alpha}{2}$ . The interval is referred to as the  $100(1-\frac{Alpha}{2})\%$  confidence interval. Default is 0.1. mu (average) occurrence frequency of events in the original time series Data. Numeric vector of length one. Default is 365.25, daily data. Numeric vector of length one specifying the number of bootstrap samples. De-

Numeric vector of length one specifying the number of bootstrap samples. Default is 10.

#### Value

## List comprising

- Thres\_Candidate Thresholds tested which are the cluster maxima in Events exceeding the Min\_Quantile quantile of the original time series (given in column 2 of Data).
- GPD\_MLE GPD parameter estimates, Mean Residual Life Plot (MRLP) values and return level estimates associated with each Thres\_Candidate.
- CI\_Upper Upper limits of the confidence interval for the point estimates of the corresponding element of GPD\_MLE.
- CI\_Lower Lower limits of the confidence interval for the point estimates of the corresponding element of GPD\_MLE.
- AR2 Value of the right-tail weighted Anderson Darling statistic  $A_R^2$ , the test statistic used in the Solari et al. (2017) method for each Thres\_Candidate.
- AR2\_pValue p-value associated with  ${\cal A}_R^2.$

To interpret the graphical output. Top row: The GPD exhibits certain threshold stability properties. The guiding principle for threshold choice is to find the lowest value of the threshold such that the parameter estimates stabilize to a constant value which is sustained at all higher thresholds, once the sample uncertainty has been accounted for (typically assessed by pointwise uncertainty intervals). Mean residual life plot (left). If the GPD is a valid model for excesses above a threshold then the mean of these excesses will be a linear function of the threshold. We therefore select the lowest threshold where there is a linear trend in the mean residual life plot. Parameter stability plots for the shape (center) and scale (right) parameters. If the GPD is a suitable model for a threshold then for all higher thresholds it will also be suitable, with the shape and scale parameters being constant. The lowest threshold - to reduce the associated uncertainty - at which the parameter estimates are stable for all higher thresholds should be selected. Middle row: Return levels estimated from the GPD fitted at various thresholds. Lower row: Right-tail weighted Anderson Darling statistic  $A_R^2$ associated with the GPD fitted using various thresholds. Lower  $A_R^2$  statistic values signify less (quadratic) distance between the empirical distribution and the GPD i.e., GPD is a better fit for these thresholds (left).  $1-p_{value}$  associated with the  $A_R^2$  for each threshold. The  $A_R^2$  goodness of fit tests, tests the null hypothesis that the observations are from a GPD. At smaller  $1 - p_{value}$  figure there is less chance of rejecting the null hypothesis i.e., the GPD is more suitable at these thresholds (center). Events per year at each threshold (right).

#### **Details**

EDF-statistics are goodness-of-fit statistics based on a comparison of the Empirical Distribution Function (EDF)  $F_n$  and a candidate parametric probability distribution F Stephens et al. (1974). Quadratic EDF test measure the distance between F and  $F_n$  by:

$$n\int_{-\infty}^{\infty} = (F(x) - F_n(x))^2 w(x) dx$$

where n is the number of elements in the original sample and w(x) is a weighting function. In the Cramer Von Misses statistic w(x)=1, whereas the Anderson-Darling statistic  $A^2$ , assigns more weight to the tails of the data by setting  $w(x)=\frac{1}{F(x)(1-F(x))}$ . Under the null hypothesis that the sample  $x_1,\ldots,x_n$  is from a GPD, the transformation  $z=F_1(x)$  a sample z uniformly distribution between 0 and 1.

$$A^{2} = -\frac{1}{n} \sum_{i=1}^{n} \{ (2i-1)[log(z_{i}) + log(1-z_{n+z-i})] \} - n$$

Sinclair et al. (1990) proposed the right-tail weighted Anderson Darling statistic  $A_R^2$  which allocates more weight to the upper tail and less to the lower tail of the distribution than  $A^2$  and is given by:

$$A_R^2 = \frac{n}{2} \sum_{i=1}^n \left[ 2 - \frac{(2i-1)}{n} log(1-z_i) + 2z_i \right]$$

Solari et al. (2017) formalized EDF statistic - GOF test threshold selection procedures used to test the null hypothesis that a sample is from a GPD distribution. creating an automated approach adopting the  $A_R^2$  as the EDF statistic. The authors also proposed combining the approach with a bootstrapping technique to assess the influence of threshold on the uncertainly of higher return period quantiles. The approach in Solari et al. (2017) comprises the following steps:

- 1. Decluster the time series to produce a series of  $n_p$  independent cluster maxima  $\{x_i : i = 1, \ldots, n_p\}$  and sort such that  $\{x_1 \leq \ldots \leq x_p\}$ .
- 2. The sorted series defines a series of  $n_u$  thresholds after excluding repeated values i.e.,  $n_u \le n_p$ . For each threshold  $\{u_j, j=1,\ldots,n_u\}$  fit the GPD via L-Moments using only the excesses satisfying  $x>u_j$ . Then, calculate the R-AD statistic and its associated p-value for each threshold.
- 3. Select the threshold that minimizes one minus the p-value i.e.,

$$u_0 = argmin_{u_j}(1 - p(u_j)).$$

# **Examples**

GPD\_Threshold\_Solari\_Sel

Goodness-of-fit for the GPD

#### Description

A nonparametric bootstrapping procedure is undertaken to assess the uncertainty in the GPD parameters and associated return levels for a GPD fit to observations above a user specified threshold. The estimates are compared with those obtained at other thresholds by running the GPD\_Threshold\_Solari function beforehand, and using its output as an input of this function. The code is based on the AUTOMATICO\_MLE\_BOOT function provided by Sebastian Solari.

#### Usage

```
GPD_Threshold_Solari_Sel(
   Event,
   Data,
   Solari_Output,
   Thres,
   Alpha = 0.1,
   N_Sim = 10^4,
   RP_Min = 1,
   RP_Max = 1000,
   RP_Plot = 100,
   mu = 365.25,
   y_lab = "Data"
)
```

#### **Arguments**

| Event         | Numeric vector containing independent events declustered using a moving window approach.                                                                                                                                                                                                                             |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data          | Original time series. Dataframe containing two columns. In column:                                                                                                                                                                                                                                                   |
|               | <ul><li>1 A "Date" object of equally spaced discrete time steps.</li><li>2 Numeric vector containing corresponding time series values.</li></ul>                                                                                                                                                                     |
| Solari_Output | Output of the GPD_Threshold_Solari function.                                                                                                                                                                                                                                                                         |
| Thres         | Numeric vector of length one specifying the threshold to analyze, chosen by the user based on plots from the GPD_Threshold_Solari function.                                                                                                                                                                          |
| Alpha         | Numeric vector of length one specifying the level of confidence associated with the confidence interval i.e., the probability that the interval contains the true value of the parameter is $1-\frac{Alpha}{2}$ . The interval is referred to as the $100(1-\frac{Alpha}{2})\%$ confidence interval. Default is 0.1. |
| N_Sim         | Numeric vector of length one specifying the number of bootstrap samples. Default is 10 <sup>4</sup> .                                                                                                                                                                                                                |
| RP_Min        | Numeric vector of length one specifying the minimum return level to be calculated. Default is 1.                                                                                                                                                                                                                     |
| RP_Max        | Numeric vector of length one specifying the maximum return level to be calculated. Default is 1000.                                                                                                                                                                                                                  |
| RP_Plot       | Numeric vector of length one specifying the return level in the lower right plot. Default is 100.                                                                                                                                                                                                                    |
| mu            | (average) occurrence frequency of events in the original time series Data. Numeric vector of length one. Default is 365.25, daily data.                                                                                                                                                                              |
| y_lab         | Character vector specifying the y-axis label of the return level plot.                                                                                                                                                                                                                                               |
|               |                                                                                                                                                                                                                                                                                                                      |

# Value

 $List\ containing\ three\ objects:\ {\tt Estimate},\ {\tt CI\_Upper}\ and\ {\tt CI\_Lower}.\ The\ {\tt Estimate}\ data frame\ comprises$ 

- xi GPD shape parameter estimate for the threshold is Thres.
- sigma GPD scale parameter estimate for the threshold is Thres.
- Thres GPD location parameter estimate for the threshold is Thres.

HT04 37

 rate GPD rate parameter i.e., number of independent excesses per year for a threshold of Thres

 The remaining columns are RL Return level estimates from the GPD using a threshold of Thres.

CI\_Upper and CI\_Lower give the upper and lower bounds of the  $100(1-\frac{Alpha}{2})\%$  confidence interval for the corresponding element in Estimate. Top row: Histograms of the GPD parameter estimates based on a nonparametric bootstrapping simulation. Grey bars correspond to the estimates obtained as the threshold (Thres) is varied, found by running the function a necessary input of the function. Continuous black lines correspond to results obtained by fixing the threshold at Thres. Dashed blue lines correspond to the expected values for the fixed threshold. Lower left: Return level plot. Return levels of the observations estimated from the empirical distribution. Grey bars correspond to the maximum of the upper and lower bounds of the  $100(1-\frac{Alpha}{2})\%$  confidence intervals as the threshold is varied. Continuous black lines correspond to results obtained by fixing the threshold at Thres. Dashed blue lines correspond to the expected values for the fixed threshold. Lower right: As in the top row but for the 100 years return period quantile.

#### **Examples**

HT04

Fits and simulates from the conditional multivariate approach of Heffernan and Tawn (2004)

#### **Description**

Fits the conditional multivariate approach of Heffernan and Tawn (2004) to a dataset and simulates realizations from the fitted model. Function utilizes the mexDependence and predict.mex.conditioned functions from the texmex package.

```
HT04(
  data_Detrend_Dependence_df,
  data_Detrend_Declustered_df,
  u_Dependence,
  Migpd,
  mu = 365.25,
  N = 100,
  Margins = "gumbel",
  V = 10,
  Maxit = 10000
)
```

38 HT04

#### **Arguments**

data\_Detrend\_Dependence\_df

A data frame with (n+1) columns, containing in column

- 1 Continuous sequence of dates spanning the first to the final time of any of the variables are recorded.
- 2:(n+1) Values, detrended where necessary, of the variables to be modelled.

data\_Detrend\_Declustered\_df

A data frame with (n+1) columns, containing in column

- 1 Continuous sequence of dates spanning the first to the final time of any of the variables are recorded.
- 2:(n+1) Declustered and if necessary detrended values of the variables to be modelled.

u\_Dependence

Dependence quantile. Specifies the (sub-sample of) data to which the dependence model is fitted, that for which the conditioning variable exceeds the threshold associated with the prescribed quantile. Default is 0.7, thus the dependence parameters are estimated using the data with the highest 30% of values of the conditioning variables.

Migpd

An Migpd object, containing the generalized Pareto models fitted (independently) to each of the variables.

Margins

Character vector specifying the form of margins to which the data are transformed for carrying out dependence estimation. Default is "gumbel", alternative is "laplace". Under Gumbel margins, the estimated parameters a and b describe only positive dependence, while c and d describe negative dependence in this case. For Laplace margins, only parameters a and b are estimated as these capture both positive and negative dependence.

٧

See documentation for mexDependence.

Maxit

See documentation for mexDependence.

#### Value

List comprising the fitted HT04 models Models, proportion of the time each variable is most extreme, given at least one variable is extreme Prop, residuals z, as well as the simulated values on the transformed u.sim and original x.sim scales.

# See Also

Dataframe\_Combine Migpd\_Fit

HT04\_Lag 39

HT04\_Lag

Implements the version of the conditional multivariate approach of Heffernan and Tawn (2004) proposed in Keef et al. (2013) which incorporates lags between the variables.

#### **Description**

Implements the version of the conditional multivariate approach of Heffernan and Tawn (2004) proposed in Keef et al. (2013) which incorporates lags between the variables. Function utilizes the mexDependence and predict.mex.conditioned functions from the texmex package.

### Usage

```
HT04_Lag(
  data_Detrend_Dependence_df,
  data_Detrend_Declustered_df,
  Lags,
  u_Dependence,
  Migpd,
  mu = 365.25,
  N = 100,
  Margins = "gumbel",
  V = 10,
  Maxit = 10000
)
```

#### **Arguments**

data\_Detrend\_Dependence\_df

A data frame with (n+1) columns, containing in column

- 1 Continuous sequence of dates spanning the first to the final time of any of the variables are recorded.
- 2:(n+1) Values, detrended where necessary, of the variables to be modelled.

data\_Detrend\_Declustered\_df

A data frame with (n+1) columns, containing in column

- 1 Continuous sequence of dates spanning the first to the final time of any of the variables are recorded.
- 2:(n+1) Declustered and if necessary detrended values of the variables to be modelled.

u\_Dependence

Dependence quantile. Specifies the (sub-sample of) data to which the dependence model is fitted, that for which the conditioning variable exceeds the threshold associated with the prescribed quantile. Default is 0.7, thus the dependence parameters are estimated using the data with the highest 30% of values of the conditioning variables.

40 Imputation

Migpd An Migpd object, containing the parameterized Pareto models fitted (indepen-

dently) to each of the variables.

Margins Character vector specifying the form of margins to which the data are trans-

formed for carrying out dependence estimation. Default is "gumbel", alternative is "laplace". Under Gumbel margins, the estimated parameters a and b describe only positive dependence, while c and d describe negative dependence in this case. For Laplace margins, only parameters a and b are estimated as these

capture both positive and negative dependence.

V See documentation for mexDependence.

Maxit See documentation for mexDependence.

Lag Matrix specifying the lags. The no lag i.e. 0 lag cases need to be speci-

fied. Row n denotes the lags applied to the variable in the nth column of data\_Detrend\_Dependence\_df. Column n corresponds to the nth largest lag applied to any variable. NA. Default is matrix(c(0,1,0,NA),nrow=2,byrow=T), which corresponds to a lag of 1 being applied to variable in the first column of data\_Detrend\_Dependence\_df and no lag being applied to the variable in the

second column of data\_Detrend\_Dependence\_df.

#### Value

List comprising the fitted HT04 models Models, proportion of the time each variable is most extreme, given at least one variable is extreme Prop, residuals z, as well as the simulated values on the transformed u.sim and original x.sim scales.

#### See Also

```
Dataframe_Combine Decluster GPD_Fit Migpd_Fit
```

# **Examples**

```
HT04(data_Detrend_Dependence_df = S22.Detrend.df,
data_Detrend_Declustered_df = S22.Detrend.Declustered.df,
Migpd = S22_GPD, u_Dependence=0.7,Margins = "gumbel")
```

Imputation

Imputing missing values through linear regression

### **Description**

Fits a simple linear regression model, to impute missing values of the dependent variable.

```
Imputation(Data, Variable, x_lab, y_lab)
```

Imputation 41

# **Arguments**

| Data     | Data frame containing two at least partially concurrent time series. First column may be a "Date" object. Can be Dataframe_Combine output.                                               |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variable | Character vector of length one specifying the (column) name of the variable to be imputed i.e. dependent variable in the fitted regression.                                              |
| x_lab    | Character vector of length one specifying the name of the independent variable to appear as the x-axis label on a plot showing the data, imputed values and the linear regression model. |
| y_lab    | Character vector of length one specifying the name of the dependent variable to appear as the y-axis label on plot showing the data, imputed values and the linear regression model.     |

#### Value

List comprising a

- Data data frame containing the original data plus an additional column named Value where the NA values of the Variable of interest have been imputed where possible.
- Model linear regression model parameters including its coefficient of determination

and a scatter plot of the data (black points), linear regression model (red line) and fitted (imputed) values (blue points).

```
####Objective: Fill in missing values at groundwater well G_3356 using record at G_3355
##Viewing first few rows of G_3356
head(G_3356)
#Converting date column to a "Date" object
G_3356$Date<-seq(as.Date("1985-10-23"), as.Date("2019-05-29"), by="day")
#Converting readings to numeric object
G_3356$Value<-as.numeric(as.character(G_3356$Value))</pre>
##Viewing first few rows of G_3355
head(G_3355)
#Converting date column to a "Date" object
\label{lambda} $$G_3355$Date<-seq(as.Date("1985-08-20"), as.Date("2019-06-02"), by="day")$
#Converting readings to numeric object
G_3355$Value<-as.numeric(as.character(G_3355$Value))</pre>
##Merge the two dataframes by date
library('dplyr')
GW_S20<-merge(G_3356,G_3355,by="Date")
colnames(GW_S20)<-c("Date","G3356","G3355")</pre>
#Carrying out imputation
Imputation(Data=GW_S20, Variable="G3356",
           x_lab="Groundwater level (ft NGVD 29)",
           y_lab="Groundwater level (ft NGVD 29)")
```

42 Mean\_Excess\_Plot

| Kendall_Lag | Kendall's tau correlation coefficient between pairs of variables over a range of lags |
|-------------|---------------------------------------------------------------------------------------|
|             |                                                                                       |

# Description

Kendall's tau correlation coefficient between pairs of up to three variables over a range of lags

# Usage

```
Kendall_Lag(Data, Lags = seq(-6, 6, 1), PLOT = TRUE, GAP = 0.1)
```

# **Arguments**

| Data | A data frame with 3 columns, containing concurrent observations of three time series.                 |
|------|-------------------------------------------------------------------------------------------------------|
| Lags | Integer vector giving the lags over which to calculate coefficient. Default is a vector from -6 to 6. |
| GAP  | Numeric vector of length one. Length of y-axis above and below max and min Kendall's tau values.      |
| Plot | Logical; whether to show plot of Kendall's coefficient vs lag. Default is TRUE.                       |

# Value

List comprising Kendall's tau coefficients between the variables pairs composing columns of Data with the specified lags applied to the second named variable Values and the p-values Test when testing the null hypothesis  $H_0$ : tau=0 i.e. there is no correlation between a pair of variables. Plot of the coefficient with a filled point of hypothesis test (p-value<0.05). Lag applied to variable named second in the legend.

# See Also

Dataframe\_Combine

# **Examples**

```
Kendall_Lag(Data=S20.Detrend.df,GAP=0.1)
```

| Mean_Excess_Plot | Mean excess plot - GPD threshold selection |
|------------------|--------------------------------------------|
|------------------|--------------------------------------------|

# **Description**

The empirical mean excess function is linear in the case of a GPD.

```
Mean_Excess_Plot(Data)
```

Migpd\_Fit 43

#### **Arguments**

data

A vector comprising a declustered and if necessary detrended time series to be modelled.

#### Value

Plot of the empirical mean excess function (black line), average of all observations exceeding a threshold decreased by the threshold, for thresholds spanning the range of the observations. Also provided are 95% confidence intervals (blue dotted lines) and the observations (black dots).

# See Also

Decluster Detrend

### **Examples**

Mean\_Excess\_Plot(Data=S20\_Detrend\_Declustered\_df\$Rainfall)

Migpd\_Fit

Fits Multiple independent generalized Pareto models - Fit

# Description

Fit multiple independent generalized Pareto models to each column of a data frame. Edited version of the migpd function in texmex, to allow for NAs in a time series.

# Usage

```
Migpd_Fit(
  Data,
  Data_Full = NA,
  mth,
  mqu,
  penalty = "gaussian",
  maxit = 10000,
  trace = 0,
  verbose = FALSE,
  priorParameters = NULL
)
```

# Arguments

| Data      | A data frame with n columns, each comprising a declustered and if necessary detrended time series to be modelled.                                                  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data_Full | A data frame with n columns, each comprising the original (detrended if necessary) time series to be modelled. Only required if threshold is specified using mqu.  |
| mth       | Marginal thresholds, above which generalized Pareto models are fitted. Numeric vector of length n.                                                                 |
| mqu       | Marginal quantiles, above which generalized Pareto models are fitted. <b>Only one of</b> mth <b>and</b> mqu <b>should be supplied.</b> Numeric vector of length n. |

44 SLR\_Scenarios

```
penalty See ggplot.migpd.
maxit See ggplot.migpd.
trace See ggplot.migpd.
verbose See ggplot.migpd.
priorParameters
See ggplot.migpd.
```

#### Value

An object of class "migpd". There are coef, print, plot, ggplot and summary functions available.

#### See Also

Decluster Detrend Dataframe\_Combine

#### **Examples**

SLR\_Scenarios

Sea level rise scenarios

### **Description**

Time (in years) for a specified change in sea level according to various sea level projections. Contained within the function are: (1) the three scenarios for Key West in the Southeast Florida Regional Climate Change Compact, (2) those for Miami Beach in "Global and Regional Sea Level Rise Scenarios for the United States" NOAA et al. (2017) and (3) those in the Interagency Sea Level Rise Scenario Tool (NOAA et al. 2022) for Naples and Miami Beach. Users can also input scenarios of their choice.

```
SLR_Scenarios(
   SeaLevelRise,
   Scenario = "Compact",
   Unit = "m",
   Year = 2022,
   Location = "Key West",
   New_Scenario = NA
)
```

SLR\_Scenarios 45

#### **Arguments**

SeaLevelRise Numeric vector of length one, specifying the sea level rise required.

Scenario Character vector of length one, specifying the sea level rise scenarios to be

> adopted. Options are "Compact" for those for Key West in the Southeast Florida Regional Climate Change Compact, "NOAA2017" for those in "Global and Regional Sea Level Rise Scenarios for the United States" at Miami Beach used in Jane et al. (2020), "NOAA2022" for those for Miami Beach and Naples in the Interagency Sea Level Rise Scenario Tool, or NA if a set of scenarios are specified

by the user (see New\_Scenario).

Unit Character vector of length one, specifying units of SeaLevelRise. Options are

meters m and Inches "Inches". Default is "m".

Year Numeric vector of length one, specifying the current year. Default is 2022.

Character vector of length one, specifying the location associated with the sce-Location

> narios. Projections for "Key West" (Compact), "Miami Beach" (NOAA2017 AND NOAA2022) and "Naples" (NOAA2022) are contained within the package. If a user specified scenarios are employed, set to the name of the site.

Default is "Key West".

New\_Scenario Dataframe containing sea level rise scenarios. First column must be a year and

> the scenarios provided in the remaining columns. For the color scale to correlate with the severity of the scenarios they should be listed from most to least severe i.e., the highest SLR scenario should appear in column 2. All entries must be

numeric.

#### Value

For "Compact", "NOAA2017" and "NOAA2022" a list length of time for SeaLevelRise of sea level rise is expected to arise under the High, Intermediate and Low. For user specified scenarios, the time for SeaLevelRise to occur under each is returned as SLR\_Year. Upper panel: A plot of the scenarios. Scenarios are in bold until the time the SeaLevelRise is reached and are transparent thereafter. Lower panel: A plot showing the number of years before is expected to occur.

# **Examples**

```
#Calculate the estimated time required for 0.45m of SLR in Key West according to the scenarios
in the Southeast Florida Regional Climate Change Compact
SLRScenarios(0.45)
```

#Calculate the estimated time required for 0.8 inches of SLR in Naples according to the scenarios in the 2022 Interagency Sea Level Rise Scenario Tool

SLRScenarios(0.45,Scenario="NOAA2022", Unit = "Inches", Location="Naples")

#Read in the scenarios for Fort Myers downloaded

from https://sealevel.nasa.gov/task-force-scenario-tool/?psmsl\_id=1106

SeaLevelRise.2022<-read.csv("sl\_taskforce\_scenarios\_psmsl\_id\_1106\_Fort\_Myers.csv")

#Convert data to the appropriate format for the SLRScenarios function

#i.e. first column years, following columns the scenarios most to least extreme, converted from millimeters to meters

SeaLevelRise.2022\_input<-data.frame(Year=seq(2020,2150,10),

"High"=as.numeric(SeaLevelRise.2022[14,-(1:5)])/1000, "Medium"=as.numeric(SeaLevelRise.2022[8,-(1:5)])/1000,

"Low"=as.numeric(SeaLevelRise.2022[2,-(1:5)])/1000)

#Calculate the estimated time required for 0.8 inches of SLR at Fort Myers SLR\_Scenarios(SeaLevelRise=0.8, Scenario="Other", Unit = "m", Year=2022,

Location="Fort Myers", New\_Scenario=SeaLevelRise.2022\_input)

Standard\_Copula\_Fit Fit an Archimedean/elliptic copula model - Fit

#### **Description**

Fit a n-dimensional Archimedean or elliptic copula model. Function is simply a repackaging of the fitCopula function in the copula package.

### Usage

```
Standard_Copula_Fit(Data, Copula_Type = "Gaussian")
```

# **Arguments**

Data frame containing n at least partially concurrent time series. First column

may be a "Date" object. Can be Dataframe\_Combine output.

Copula\_Type Type of elliptical copula to be fitted, options are "Gaussian" (Default), "tcopula",

"Gumbel", "Clayton" and "Frank".

#### Value

List comprising the Copula\_Type and the fitted copula Model object.

#### See Also

Dataframe\_Combine Standard\_Copula\_Sel

# **Examples**

```
cop<-Standard_Copula_Fit(Data=S20.Detrend.df,Copula_Type="Gaussian")
cop<-Standard_Copula_Fit(Data=S20.Detrend.df,Copula_Type="tcopula")
cop<-Standard_Copula_Fit(Data=S20.Detrend.df,Copula_Type="Gumbel")
cop<-Standard_Copula_Fit(Data=S20.Detrend.df,Copula_Type="Clayton")
cop<-Standard_Copula_Fit(Data=S20.Detrend.df,Copula_Type="Frank")</pre>
```

Standard\_Copula\_Sel

Selecting best fitting standard (elliptical and Archimedean) copula

# Description

Fits five n-dimensional standard copula to a dataset and returns their corresponding AIC values.

# Usage

```
Standard_Copula_Sel(Data)
```

# Arguments

Data

Data frame containing n at least partially concurrent time series, detrended if necessary. Time steps must be equally spaced, with missing values assigned NA. First object may be a "Date" object. Can be Dataframe\_Combine output.

 $Standard\_Copula\_Sim$ 

#### Value

Data frame containing copula name in column 1 and associated AIC in column 2. Parameters are estimated using the fitCopula() function in copula package using maximum pseudo-likelihood estimator "mp1". See fitCopula for a more thorough explanation.

#### See Also

```
Dataframe_Combine Standard_Copula_Fit
```

#### **Examples**

```
Standard_Copula_Sel(Data_Detrend=S20.Detrend.df)
```

Standard\_Copula\_Sim Archimedean/elliptic copula model - Simulation

### **Description**

Simulating from a fitted Archimedean or elliptic copula model.

#### Usage

```
Standard_Copula_Sim(Data, Marginals, Copula, mu = 365.25, N = 10000)
```

### **Arguments**

| Data      | Data frame containing n at least partially concurrent time series. First column may be a "Date" object. Can be Dataframe_Combine output. |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------|
| Marginals | An migpd object containing the n-independent generalized Pareto models.                                                                  |
| Copula    | An Archimedean or elliptic copula model. Can be specified as an Standard_Copula_Fit object.                                              |
| mu        | (average) Number of events per year. Numeric vector of length one. Default is 365.25, daily data.                                        |
| N         | Number of years worth of extremes to be simulated. Numeric vector of length one. Default 10,000 (years).                                 |

# Value

Each n-dimensional realisation is given on the transformed  $[0,1]^n$  scale (first n columns) in the first data frame u. Sim and on the original scale in the second data frame x. Sim.

#### See Also

```
Standard_Copula_Sel Standard_Copula_Fit
```

48 Vine\_Copula\_Sim

Vine\_Copula\_Fit

C and D-vine Copula - Fitting

# **Description**

Fit either a C- or D-vine copula model. Function is a repackaging the RVineStructureSelect and RVineCopSelect functions from the VineCopula package into a single function.

# Usage

```
Vine_Copula_Fit(Data)
```

# **Arguments**

Data

Data frame containing n at least partially concurrent time series. First column may be a "Date" object. Can be Dataframe\_Combine output.

#### Value

List comprising the vine copula Structure, pair-copula families composing the C- or D-vine copula Family, its parameters Par and Par2.

### See Also

Dataframe\_Combine Vine\_Copula\_Sim

# **Examples**

S20.Vine<-Vine\_Copula\_Fit(Data=S20.Detrend.df)

Vine\_Copula\_Sim

C and D-vine Copula - Simulation

# **Description**

Simulating from specified C- and D-vine copula models. Function is a repackaging of the RVineMatrix and RVineMatrix functions from the VineCopula package into a single function.

```
Vine_Copula_Sim(Data, Vine_Model, Marginals, mu = 365.25, N = 10000)
```

Vine\_Copula\_Sim 49

#### **Arguments**

Data frame containing n at least partially concurrent time series. First column

may be a "Date" object. Can be Dataframe\_Combine output.

Vine\_Model An RVineMatrix object i.e., output of Vine\_Copula\_Fit specifying the struc-

ture and copula families composing the vine copula.

Marginals An migpd object containing the d-independent generalized Pareto models.

mu (average) Number of events per year. Numeric vector of length one. Default is

365.25, daily data.

N Number of years worth of extremes to be simulated. Numeric vector of length

one. Default 10,000 (years).

#### Value

List comprising an integer vector specifying the pair-copula families composing the C- or D-vine copula Vine\_family, its parameters Vine\_par and Vine\_par2 and type of regular vine Vine\_Type. In addition, data frames of the simulated observations: u.Sim on the transformed  $[0,1]^n$  and x.Sim the original scales.

#### See Also

```
Vine_Copula_Fit
```

# **Index**

```
Annual_Max, 3
Con_Sampling_2D, 9
Con_Sampling_2D_Lag, 10
Conditional_RP_2D, 3, 9
Conditional_RP_2D_Equal, 6
Cooley19, 11
Copula_Threshold_2D, 13, 22, 25, 27, 29
Copula_Threshold_2D_Lag, 14
Dataframe_Combine, 12, 14, 16, 16, 38, 40,
         42, 44, 46–48
Decluster, 12, 17, 33, 40, 43, 44
Decluster_S_SW, 19
Decluster_SW, 18
Design_Event_2D, 6, 9, 20
Design_Event_2D_NEW, 23
Detrend, 17, 18, 26, 43, 44
Diag_Non_Con, 22, 25, 27, 28
{\tt Diag\_Non\_Con\_Sel}, \textcolor{red}{28}
Diag_Non_Con_Trunc, 22, 25, 29, 30
Diag_Non_Con_Trunc_Sel, 30
fitCopula, 47
ggplot.migpd, 44
GPD_Fit, 12, 31, 40
GPD_Parameter_Stability_Plot, 32
GPD_Threshold_Solari, 33
GPD_Threshold_Solari_Sel, 35
HT04, 37
HT04_Lag, 39
Imputation, 40
Kendall_Lag, 42
Mean_Excess_Plot, 42
Migpd_Fit, 12, 38, 40, 43
SLR_Scenarios, 44
Standard_Copula_Fit, 46, 47
Standard_Copula_Sel, 46, 46, 47
Standard_Copula_Sim, 47
Vine_Copula_Fit, 48, 49
Vine_Copula_Sim, 48, 48
```