Методы классификации

Зинина Анастасия

Линейный классификатор в задаче бинарной классификации

- $Y = \{+1, -1\}$
- Модель алгоритмов $a(x,\alpha)=sign(\alpha_0+\sum_{j=1}^n\alpha_jf_j(x))=sign<\alpha,x>$, где α вектор параметров.
- ullet Уравнение a(x, lpha) = 0 описывает разделяющую поверхность.
- Величина $M_i=y_i<\alpha, x_i>$ называется отступом (margin) і-го объекта относительно алгоритма классификации
- ullet Если $M_i < 0$, то алгоритм a(x, lpha) допускает ошибку на i-ом объекте .
- ullet Чем больше отступ M_i , тем правильнее и надёжнее классификация объекта.

Аппроксимация эмпирического риска

• Естественный функционал качества - доля неправильных ответов

$$Q(a, l) = \frac{1}{l} \sum_{i=1}^{l} [a(x_i) \neq y_i] = \frac{1}{l} \sum_{i=1}^{l} I_{M_i < 0}$$

- Рассмотрим $L(M_i)$ монотонно невозрастающую функция отступа, мажорирующая пороговую функцию потерь: $I_{M_i < 0} < L(M_i)$.
- Тогда минимизацию суммы таких функций отступа можно рассматривать как приближённый метод минимизации числа ошибок на обучающей выборке:

$$Q(a,x) = \sum_{i=1}^{l} I_{M_i < 0} \le \tilde{Q}(a,x^l) = \sum_{i=1}^{l} L(M_i)$$

Часто используемые функции потерь $\mathsf{L}(\mathsf{M})$

Линейный дискриминант Фишера

• Находим веса, минимизируя квадратичную функцию потерь:

$$Q(\alpha, X) = \frac{1}{l} \sum_{i=1}^{l} (y_i - \langle \alpha, x_i \rangle)^2 \to \min_{\alpha}$$

 А что, если хотим вычислить не просто метки, а вероятности принадлежности объекта классу?

Логистическая регрессия

- $Y = \{0, 1\}$
- Хотим предсказать $P(y=1\mid x)\equiv\pi(x)$
- $\bullet \ \pi(x) = 1 \cdot P(y = 1 \mid x) + 0 \cdot P(y = 0 \mid x) = E(y \mid x)$
- Однако находить $\pi(x) \approx < w, x >$ нельзя, т.к. может не выполняться $<\alpha, x> \in [0, 1]$
- Тогда нужна функция $g:(0,1) \to [0,1]$, для восстановления которой мы можем использовать линейную регрессию:

$$g(E(y \mid x)) \approx <\alpha, x>$$

- После нахождения оценки $q(E(y \mid x))$ можем получить оценку для $E(y \mid x)$
- Используем $\pi(x) \approx g^{-1}(<\alpha, x>) = \frac{1}{1+e^{-<\alpha, x>}}$
- ullet Тогда $\ln \frac{\pi(x)}{1-\pi(x)} pprox < lpha, x >$

Настройка параметров

- $L(\alpha,X)=\prod p(x_i,y_i)=\prod P(y_i\mid x_i)p(x_i)\to \max_{\alpha}$ эквивалентно $\prod P(y_i\mid x_i)\to \max_{\alpha}$
- $P(y_i \mid x_i) = P(y_i = 1 \mid x_i)^{y_i} P(y_i = 0 \mid x_i)^{1-y_i} = \pi(x_i)^{y_i} (1 \pi(x_i))^{1-y_i}$
- ullet L(w,X) o max эквивалентно $-\ln L(lpha,X) o min$:

$$-\ln L(\alpha, X) = -\sum_{i=1}^{l} (y_i \ln \pi(x_i) + (1 - y_i) \ln(1 - \pi(x_i))) \to min$$

• Этот функционал назван log-loss

Настройка параметров

ullet Если перейти к обозначениям $Y = \{-1,1\}$, то получим

$$\frac{P(+1\mid x)}{P(-1\mid x)}=e^{<\alpha,x>}$$

$$P(y=+1\mid x)=\frac{1}{1+e^{-<\alpha,x>}}=\sigma(<\alpha,x>)$$

$$P(y=-1\mid x)=\frac{1}{1+e^{<\alpha,x>}}=\sigma(-<\alpha,x>),$$
 где $\sigma(z)=\frac{1}{1+e^{-z}}$

• Тогда можем записать

$$P(y_i \mid x_i) = \sigma(y_i < \alpha, x_i >)$$

• И настраиваем параметры с помощью ОМП приходим к логарифмической функции потерь:

$$-\ln L(\alpha, X) = -\sum_{i=1}^{l} \ln \frac{1}{1 + e^{-y_i < \alpha, x_i > 1}} = \sum_{i=1}^{l} \ln(1 + e^{-y_i < \alpha, x_i > 1})$$

KASPERSKY8

One vs. all classification

- Y принимает N значений
- ullet Для отделения каждого класса і(обозначим его 1) от остальных (обозначим как 0) обучаем классификатор $a^{(i)}(x) = P(y=1 \mid x)$
- ullet Для нового объекта выбираем $i=argmax\ a^{(i)}(x)$

Обобщенные линейные модели

Перейдём к конструированию обобщённых линейных моделей, частными случаями которых были линейная и логистическая регрессии.

Экспоненциальное семейство

Распределение является экспоненциальным, если его можно представить в виде

$$p(y; \gamma) = b(y)exp(\eta^T T(y) - a(\eta)),$$

где функции $T(y), a(y), \ b(y)$ задают параметрическое семейство,а η является параметром.

Структура обобщенных линейныех моделей

Обобщённые линейные модели (Generalized Linear Models, GLM) состоят из трёх частей:

- Случайная компонента, определяющая условное распределение y при данном x. И это распределение принадлежит экспоненциальному семейству с параметром η
- Линейная функция признаков

$$\eta = \alpha_0 + \alpha_1 f_1(x) + \dots + \alpha_n f_n(x)$$

• Гладкая функция связи, которая переводит условное ожидание $\mu = E(y \mid x)$ в линейную функцию:

$$g(\mu) = \eta = \alpha_0 + \alpha_1 f_1(x) + \dots + \alpha_n f_n(x)$$

Примеры GML

Линейная регрессия с МНК:

- $y \mid x \sim N(\mu, \sigma^2)$ нормальное распределение принадлежит экспонентному семейству и имеет параметр $\eta = \mu$
- $\bullet \ \eta = \alpha^T x$
- В качестве функции связи возьмём тождественную

$$g(\mu) = \mu = \eta = \alpha^T x$$

Логистическая регрессия:

- $y \mid x \sim Bernoulli(p)$ нормальное распределение принадлежит экспонентному семейству и имеет параметр $\eta = \ln \frac{p}{1-p}$
- $\bullet \ \eta = \alpha^T x$
- В качестве функции связи возьмём логит (помним, что $p = P(y = 1 \mid x) = E(y \mid x))$

$$g(\mu) = \ln \frac{\mu}{1 - \mu} = \eta = \alpha^T x$$

Теперь аналогично сконструируем алгоритм softmax-регрессии

Softmax-регрессия

- $Y = \{1, 2, ..., k\}$
- $p(y=i;\varphi) = \varphi_i$, $p(y=k;\varphi) = 1 \sum_{i=1}^{k-1} \varphi_i$
- $y \mid x \sim multinomial(\varphi)$
- Определим вектор T(y) размерности k-1 так, что у вектора T(k) k-ая координата равна 1, остальные 0: $(T(y))_k = I_{y=k}$
- Покажем, что мультиномиальное распределение принадлежит экспоненциальному семейству:

$$p(y;\varphi) = \varphi_1^{I_{y=1}} \varphi_2^{I_{y=2}} ... \varphi_k^{I_{y=k}}$$

$$= \varphi_1^{(T(y))_1} \varphi_2^{(T(y))_2} ... \varphi_k^{1-\sum (T(y))_k}$$

$$= exp((T(y))_1 \log(\varphi_1/\varphi_k) + (T(y))_2 \log(\varphi_2/\varphi_k) +$$

$$... + (T(y))_{k-1} \log(\varphi_{k-1}/\varphi_k) + \log(\varphi_k))$$

$$= b(y) exp(\gamma^T T(y) - a(\gamma))$$

Softmax-регрессия

- ullet Здесь параметр определяется как $\eta_i = \log rac{arphi_i}{arphi_k}$
- ullet Определим $\eta_k = \log rac{arphi_k}{arphi_k} = 0$
- ullet Получим выражение для вероятности принадлежности у классу і ϕ_i :

$$e^{\eta_i}=rac{arphi_i}{arphi_k}$$
 $arphi_k e^{\eta_i}=arphi_i$ $arphi_k \sum_{i=1}^k e^{\eta_i}=\sum_{i=1}^k arphi_i=1$ $arphi_i=rac{e^{\eta_i}}{\sum\limits_{j=1}^k e^{\eta_j}}$ - функция softmax

Softmax-регрессия

- ullet $\eta_i=lpha_i^Tx$ для i=1,...,k-1, $\eta_k=lpha_k^Tx=0$, где $lpha_i\in R^{n+1}$ наши параметры
- Выразим вероятности ϕ_i :

$$p(y = i \mid x) = \varphi_i = \frac{e^{\eta_i}}{\sum_{j=1}^k e^{\eta_j}} = \frac{e^{\alpha_i^j x}}{\sum_{j=1}^k e^{\alpha_j^T x}}$$

• Настройка параметров - ОМП:

$$L(\alpha) = \sum_{i=1}^{l} \log \prod_{k=1}^{n} \left(\frac{e^{\alpha_i^T x_i}}{\sum_{i=1}^{n} e^{\alpha_j^T x_i}} \right)^{I_{\{y^{(i)} = k\}}} \to max$$

Метрики качества в задачах классификации

• Очевидной мерой качества в задаче классификации является доля правильных ответов (accuracy):

$$accuracy = \frac{\sum\limits_{i=1}^{l} I_{a(x_i) = y_i}}{l}$$

• Этого может быть недостаточно: в случае несбалансированных классов может быть выгоднее причислять все объекты к мажорантному классу. Т.е. один из классов не распознается, а доля правильных ответов высока.

NB Базовая доля — доля правильных ответов алгоритма, всегда выдающего наиболее мощный класс.

ullet Для сравнения алгоритмов a_1 и a_2 с долями правильных ответов r_1 и r_2 соответственно, причем $r_2 > r_1$, используем относительное уменьшением ошибки алгоритма a_2 называется величина $\frac{(1-r_1)-(1-r_2)}{1-r_1}$

Матрица ошибок

	y=1	y=0
a(x)=1	TP	FP
a(x)=0	FN	TN

$$precision = \frac{TP}{TP+FP}, recall = \frac{TP}{TP+FN}$$

- Можно регулировать точность и полноту, изменяя порог t в классификаторе $a(x) = I_{b(x)>t}.$
- Объединим точность и полноту в одну метрику: F-мера, гармоническое среднее точности и полноты:

$$F = \frac{2 \times precision \times recall}{precision + recall}$$

 Можно использовать R-точность (breakeven point).
 Она вычисляется как точность при таком t, при котором полнота равна точности:

$$R - precision = precision(I_{b(x)>t^*}),$$

$$t^* = \underset{t}{argmin} \mid precision(I_{b(x)>t}) - recall(I_{b(x)>t}) \mid$$

AUC-ROC

- Как мы видели на примере логистической регрессии, алгоритмы бинарной классификации могут быть устроены так: $a(x) = I_{b(x)>t}$, где t пороговое значение.
- Если алгоритм работает плохо, может быть непонятно: плох сам алгоритм или неправильно выбран порог.
- Если мы хотим оценить алгоритм до установления порога, то рассмотрим новую метрику.

AUC-ROC

 Рассмотрим двумерное пространство, одна из координат которого FPR, а другая — TPR. Откладываем точки на графике, соответствующие разным значениям порога.

$$FPR = \frac{FP}{FP + TN}; \ TPR = \frac{TP}{TP + FN}$$

- Всего различных значений порога I+1
- ullet Отсортируем выборку по значению $b(x_i)$
- ullet Если в качестве порога выберем $\max_i \ b(x_i)$, то получим точку (0,0).
- ullet Если в качестве порога выберем $\min_i \, b(x_i) arepsilon$, то получим точку (1,1).

AUC-ROC

- Если текущий объект относится к классу «1», то у алгоритма увеличивается ТРR. Тогда ROC-кривая сдвигается вверх на $\frac{1}{l_1}$ (где l_1 число объектов класса "1").
- Если у текущего объекта класс «0», то ROC-кривая сдвигается вправо на $\frac{1}{l_0}$ (l_0 число объектов класса "0").
- В качестве метрики рассмотрим площадь под ROC-кривой (Area Under ROC Curve, AUC-ROC).
- Чем больше значение AUC-ROC, тем лучше: если можно выбрать порог так, чтобы классификатор не делал ошибок, то значение AUC-ROC будет равно 1.

AUC-PR

- По осям откладываются полнота (по оси абсцисс) и точность (по оси ординат).
- Идём по ранжированной выборке.
- Если объект относится к классу «0», то полнота не меняется, точность падает, кривая опускается вниз.
- Если же объект относится к классу $\ll 1$ », то полнота увеличивается на $\frac{1}{l_1}$, точность растет, и кривая поднимается вправо и вверх.

Несбалансированные классы

- Рассмотрим случай несбалансированных классов.
- Пусть у нас есть выборка размером 1 000 100, из которых 100 относятся к классу "1".
- Рассмотрим 2 алгоритма:
 - алгоритм 1: относит к классу "1" 100 документов, 90 из них правильно;
 - алгоритм 2: относит к классу "1" 2000 документов, 90 из них правильно;
- Алгоритмы находят одинаковое число объектов класса "1", но второй возвращает много False positive. Однако в случае с AUC-ROC разница между алгоритмами будет небольшая из-за преобладания в выборке класса "0".
 - алгоритм 1: 0,9 TPR, 0,00001 FPR;
 - алгоритм 2: 0,9 TPR, 0,00191 FPR.
- Если рассмотреть AUC-PR, то разница между алгоритмами будет более заметна.
 - алгоритм 1: 0,9 recall, 0,9 precision;
 - алгоритм 2: 0,9 recall, 0,045 precision.

Использование метрик

• Посмотрим на формулы для precision/recall и FPR/TPR:

$$TPR = \frac{TP}{TP + FN}, FPR = \frac{FP}{FP + TN}$$

$$precision = \frac{TP}{TP + FP}, recall = \frac{TP}{TP + FN}$$

- AUC-PR концентрируется на классе "1", в то время как AUC-ROC учитывет и то, как классифицируется класс "0".
- Тогда можно рекомендовать следующее: если важно классифицировать хорошо оба класса, то использовать стоит AUC-ROC (например, при классификации картинок "кошки vs собаки"). Если же важен только класс "1"(например, медицинская диагностика), то можно использовать AUC-PR.

Список литературы

- Andrew Ng CS229 Lecture notes http://cs229.stanford.edu/notes/cs229-notes1.pdf
- McCullagh and Nelder Generalized Linear Models CHAPMAN AND HALL,1989