

Packet Tracer. Настройка операций Syslog, NTP и SSH на маршрутизаторах Cisco

Топология

Таблица адресации

Устройство	Интерфейс	IP-адрес	Маска подсети	Шлюз по умолчанию	Порт коммутатора
R1	G0/1	192.168.1.1	255.255.255.0	Н/П	S1 F0/5
	S0/0/0 (DCE)	10.1.1.1	255.255.255.252	Н/П	Н/П
R2	S0/0/0	10.1.1.2	255.255.255.252	Н/П	Н/П
	S0/0/1 (DCE)	10.2.2.2	255.255.255.252	Н/П	Н/П
R3	G0/1	192.168.3.1	255.255.255.0	Н/П	S3 F0/5
	S0/0/1	10.2.2.1	255.255.255.252	Н/П	Н/П
PC-A	NIC	192.168.1.5	255.255.255.0	192.168.1.1	S1 F0/6
РС-В	NIC	192.168.1.6	255.255.255.0	192.168.1.1	S2 F0/18
PC-C	NIC	192.168.3.5	255.255.255.0	192.168.3.1	S3 F0/18

Задачи

- Настройте аутентификацию OSPF MD5.
- Настройте NTP.
- Настройте маршрутизаторы для записи сообщений в журнал на сервере Syslog.
- Настройте маршрутизатор R3 для поддержки подключений SSH.

Исходные данные/сценарий

В этом задании вы настроите аутентификацию OSPF MD5 для защиты обновлений маршрутизации.

NTP Server является главным NTP-сервером в этом задании. Вы настроите аутентификацию на NTP-сервере и маршрутизаторах. Вы настроите маршрутизаторы так, чтобы разрешить NTP-серверу синхронизировать программные часы с сервером времени. Вы также настроите маршрутизаторы для периодического обновления аппаратных часов с учетом времени, полученного с NTP-сервера.

Сервер Syslog будет обеспечивать ведение журнала сообщений в данном задании. Вы настроите маршрутизаторы для определения удаленного хоста (сервера Syslog), который будет получать регистрируемые сообщения.

Вам потребуется настроить сервис временных меток для ведения журналов на маршрутизаторах. Очень важно, чтобы в сообщениях Syslog отображались правильные дата и время, когда Syslog используется для мониторинга сети.

Вы настроите маршрутизатор R3 для защищенного управления с помощью протокола SSH вместо Telnet. Серверы были предварительно настроены на использование сервисов NTP и Syslog соответственно. NTP не будет требовать аутентификацию. На маршрутизаторах были предварительно настроены следующие пароли.

- Пароль привилегированного доступа: ciscoenpa55
- Пароль для линий VTY: ciscovtypa55

Примечание. Примечание. MD5 – самый стойкий алгоритм шифрования, поддерживаемый в версии Packet Tracer, которая использовалась для разработки этого задания (6.2). Хотя MD5 имеет известные уязвимости, следует использовать алгоритм шифрования, отвечающий требованиям вашей организации по безопасности. В этом задании требования по безопасности предписывают использовать MD5.

Часть 1: Настройте аутентификацию OSPF MD5

Шаг 1: Проверьте связь. Все устройства должны успешно отправлять эхо-запросы по всем прочим IP-адресам.

Шаг 2: Настройте аутентификацию OSPF MD5 для всех маршрутизаторов в зоне 0.

Настройте аутентификацию OSPF MD5 для всех маршрутизаторов в зоне 0.

```
R1(config) # router ospf 1
R1(config-router) # area 0 authentication message-digest
```

Шаг 3: Настройте ключ MD5 для всех маршрутизаторов в зоне 0.

Настройте ключ MD5 на последовательных интерфейсах маршрутизаторов R1, R2 и R3. Используйте пароль MD5pa55 для ключа 1.

```
R1(config) # interface s0/0/0
R1(config-if) # ip ospf message-digest-key 1 md5 MD5pa55
```

Шаг 4: Проверьте конфигурации.

- а. Проверьте конфигурации аутентификации MD5 с помощью команд show ip ospf interface.
- b. Проверьте сквозную связь.

Часть 2: Настройте NTP

Шаг 1: Включите аутентификацию NTP на компьютере PC-A.

- а. На компьютере **PC-A** выберите **NTP** на вкладке Services, чтобы проверить, включена ли служба NTP.
- b. Чтобы настроить аутентификацию NTP, нажмите **Enable** (Включить) в разделе Authentication. Используйте ключ **1** и пароль **NTPpa55** для аутентификации.

Шаг 2: Настройте маршрутизаторы R1, R2 и R3 как клиентов NTP.

Проверьте конфигурацию клиентов с помощью команды show ntp status.

Шаг 3: Настройте маршрутизаторы на обновление аппаратных часов.

Настройте маршрутизаторы R1, R2 и R3 на периодическое обновление аппаратных часов с учетом времени, полученного с NTP-сервера.

Выйдите из режима глобальной настройки и убедитесь, что аппаратные часы были обновлены, с помощью команды **show clock**.

Шаг 4: Настройте аутентификацию NTP на маршрутизаторах.

Настройте аутентификацию NTP на маршрутизаторах R1, R2 и R3, используя ключ 1 и пароль NTPpa55.

```
R1(config)# ntp authenticate
R1(config)# ntp trusted-key 1
R1(config)# ntp authentication-key 1 md5 NTPpa55
```

Шаг 5: Настройте маршрутизаторы на создание временных меток для сообщений журналов.

Настройте сервис временных меток для ведения журналов на маршрутизаторах.

Часть 3: Настройте маршрутизаторы на регистрацию сообщений на сервере Syslog

Шаг 1: Настройте маршрутизаторы для определения удаленного хоста (сервера Syslog), который будет получать регистрируемые сообщения.

Консоль маршрутизатора отобразит сообщение о том, что ведение журнала началось.

Шаг 2: Проверьте конфигурацию ведения журналов.

С помощью команды **show logging** убедитесь, что ведение журналов активировано.

Шаг 3: Изучите журналы сервера Syslog Server.

На вкладке Services диалогового окна Syslog Server необходимо нажать кнопку служб Syslog. Следите за регистрацией сообщений, получаемых от маршрутизаторов.

Примечание. Сообщения журналов могут генерироваться на сервере путем выполнения команд на маршрутизаторах. Например, при входе в режим глобальной настройки и при выходе из него генерируется информационное сообщение о конфигурации. Возможно, вам потребуется выбрать другой сервис и снова нажать кнопку **Syslog**, чтобы обновить отображаемое сообщение.

Часть 4: Настройте маршрутизатор R3 для поддержки подключений SSH

Шаг 1: Настройте доменное имя.

Настройте доменное имя ccnasecurity.com на маршрутизаторе R3.

Шаг 2: Настройте пользователей для входа на SSH-сервер на маршрутизаторе R3.

Создайте идентификатор пользователя **SSHadmin** с наивысшим уровнем привилегий и секретным паролем **ciscosshpa55**.

```
R3(config) # username SSHadmin privilege 15 secret ciscosshpa55
```

Шаг 3: Настройте входящие линии vty на маршрутизаторе R3.

Используйте локальные учетные записи пользователей на обязательный вход в систему и проверку достоверности. Настройте разрешение только подключений SSH.

Шаг 4: Удалите существующие пары ключей на маршрутизаторе R3.

На маршрутизаторе следует удалить любые имеющиеся пары ключей RSA.

Примечание. Если ключи отсутствуют, вы можете получить следующее сообщение: % No Signature RSA Keys found in configuration.

Шаг 5: Сгенерируйте пару ключей RSA-шифрования для маршрутизатора R3.

Маршрутизатор использует пару ключей RSA для аутентификации и шифрования передаваемых SSH-данных. Настройте ключи RSA с модулем **1024**. Значение по умолчанию – 512, диапазон – от 360 до 2048.

```
R3(config)# crypto key generate rsa

The name for the keys will be: R3.ccnasecurity.com.

Choose the size of the key modulus in the range of 360 to 2048 for your

General Purpose Keys. Choosing a key modulus greater than 512 may take
a few minutes.

How many bits in the modulus [512]: 1024

% Generating 1024 bit RSA keys, keys will be non-exportable...[OK]
```

Примечание. Команда для генерирования ключа шифрования RSA для маршрутизатора R3 в Packet Tracer отличается от команд, используемых в лабораторной работе.

Шаг 6: Проверьте конфигурацию SSH.

Используйте команду **show ip ssh** для просмотра текущих настроек. Убедитесь, что для времени ожидания аутентификации и количества повторных попыток установлены значения по умолчанию – 120 и 3.

Шаг 7: Настройте время ожидания SSH и параметры аутентификации.

Значения времени ожидания и параметров аутентификации SSH по умолчанию можно изменить на более ограничительные. Задайте время ожидания 90 секунд, количество попыток аутентификации 2 и версию 2.

Используйте команду show ip ssh для подтверждения изменения значений.

Шаг 8: Попытайтесь подключиться к маршрутизатору R3 по Telnet с компьютера PC-C.

Откройте рабочий стол (Desktop) на компьютере **PC-C**. Выберите значок Command Prompt. На компьютере **PC-C** введите команду для подключения к маршрутизатору **R3** по протоколу Telnet.

```
PC> telnet 192.168.3.1
```

Эта попытка подключения должна закончиться неудачно, так как на маршрутизаторе R3 настроено разрешение только подключений SSH по линиям виртуального терминала.

Шаг 9: Подключитесь к маршрутизатору R3 с помощью SSH на компьютере PC-C.

Откройте рабочий стол (Desktop) на компьютере **PC-C**. Выберите значок Command Prompt. На компьютере **PC-C** введите команду для подключения к маршрутизатору R3 по протоколу SSH. При появлении запроса пароля введите пароль, настроенный для администратора (ciscosshpa55).

```
PC> ssh -1 SSHadmin 192.168.3.1
```

Шаг 10: Подключитесь к маршрутизатору R3 с помощью SSH на маршрутизаторе R2.

Чтобы выявлять и устранять неполадки маршрутизатора **R3** и обслуживать его, администратор на стороне ISP должен использовать SSH для доступа к интерфейсу командной строки маршрутизатора. Через интерфейс командной строки маршрутизатора **R2** введите команду для подключения к маршрутизатору **R3** по протоколу SSH версии **2** с учетной записью пользователя **SSHadmin**. При появлении запроса пароля введите пароль, настроенный для администратора (**ciscosshpa55**).

```
R2# ssh -v 2 -1 SSHadmin 10.2.2.1
```

Шаг 11: Проверьте результаты.

Вы полностью выполнили задание. Нажмите **Check Results** (Проверить результаты) для просмотра обратной связи и проверки завершенных обязательных компонентов.