

Measures potential under very low currents.

The cell is 2 half cells. Consist of a reference electrode, indicator electrode, and potential measuring device.

reference electrode salt bridge analyte solution indicator electrode

 $E_{\rm ref}$

 E_{i}

 $E_{\rm ind}$

© 2007 Thomson Higher Education

Chem 4631

Reference electrodes

An electrode with a known constant half-potential and insensitive to composition of the solution.

Ideal reference

- Reversible and obeys Nernst Law
- Exhibits stable potential over time
- Returns to original potential in presence of small currents
- Not sensitive to temperature changes

TABLE 23-1 Potentials of Reference Electrodes in Aqueous Solutions

Temperature, °C					
	0.1 M° Calomel ^a	3.5 M ^c Calomel ^b	Saturate <mark>d ^c</mark> Calomel ^a	3.5 M ^{b,c} Ag-AgCl	Saturated ^{b,c} Ag-AgCl
10	_	0.256		0.215	0.214
12	0.3362		0.2528	_	_
15	0.3362	0.254	0.2511	0.212	0.209
20	0.3359	0.252	0.2479	0.208	0.204
25	0.3356	0.250	0.2444	0.205	0.199
30	0.3351	0.248	0.2411	0.201	0.194
35	0.3344	0.246	0.2376	0.197	0.189
38	0.3338	_	0.2355	_	0.184
40	_	0.244	-	0.193	

^{© 2007} Thomson Higher Education

Reference Electrodes

Calomel Electrodes (SCE)

Consist of Hg in contact with solution of calomel and KCl.

Hg | Hg₂Cl₂ (saturated), KCl (xM) ||

KCl usually 0.1, 1 M, and $4.6 \leftarrow$ saturated SCE

SCE most commonly used reference electrode

Advantage -- easy to prepare

Disadvantage -- sensitive to temperature changes

$$E_{SCE}^{0} = 0.244V$$
 at $25^{0}C$

$$Hg_2Cl_2(s) + 2e^- <--> 2Hg(l) + 2Cl^-(aq)$$

Reference Electrodes

Ag/AgCl Electrodes

Ag wire in solution of KCl and AgCl

Ag | AgCl (saturated), KCl (saturated) ||

$$AgCl(s) + e^{-} \rightarrow Ag(s) + 2Cl(aq)$$

$$E_{Ag/AgCl}^{0} = 0.199V \text{ at } 25^{0}C$$

Indicator Electrodes

An electrode system having a potential that varies in a known way with variations in the concentration of an analyte.

PUACP

$$E_{cell} = E_{ind} - E_{ref} + E_{j}$$

Ideal Indicator Electrode

- Responds quickly to concentration change of an analyte.
- Gives reproducible results.

Indicator Electrodes

Three type of indicator electrodes

- Metallic
- Membrane
- Ion-selective

Indicator Electrodes

Metallic Indicator Electrodes

Electrode of the first kind

Pure metal electrode in direct equilibrium with its cation in solution.

i.e. Cu/Cu^{2+} or Ag/Ag^{+}

$$X^{n+}(aq) + ne^{-} ---> X(s)$$

Indicator Electrodes

Metallic Indicator Electrodes

Electrode of the first kind

Pure metal electrode in direct equilibrium with its cation in solution.

$$E_{ind} = E^{o}_{X^{n+}} - \frac{0.0592}{n} \log \frac{1}{a_{X^{n+}}} = E^{o}_{X^{n+}} + \frac{0.0592}{n} \log a_{X^{n+}}$$

$$E_{ind} = E^{o}_{X^{n+}} - \frac{0.0592}{n} pX$$

Indicator Electrodes Metallic Indicator Electrodes

Electrode of the first kind

Disadvantages

- not very selective, may respond to several cations
- metal may dissolve in acids
- metal may oxidized

Ag/Ag⁺, Hg/Hg⁺ -- used in neutral solutions
Cu/Cu²⁺, Zn/Zn²⁺, Cd/Cd²⁺, Bi/Bi³⁺, Tl/Tl²⁺, Pb/Pb²⁺ -must be used in deaerated solutions

Indicator Electrodes

Metallic Indicator Electrodes

Electrode of the second kind

Metal in contact with an anion that form precipitates or complexes with cations.

i.e. Ag/AgCl

$$AgCl(s) + e^{-} < ---> Ag(s) + Cl^{-}(aq) \quad E^{0} = 0.222V$$

Indicator Electrodes

Metallic Indicator Electrodes

Electrode of the second kind

Metal in contact with an anion that form precipitates or complexes with cations.

$$AgCl(s) + e^{-} < ---> Ag(s) + Cl^{-}(aq) \quad E^{0} = 0.222V$$

$$E_{ind} = E^{o}_{AgCl} - 0.0592 \log a_{Cl^{-}} = E^{o}_{AgCl} + 0.0592 \log pCl$$

Indicator Electrodes

Metallic Indicator Electrodes

Electrode of the third kind

Metal in contact with solution that responds to a different cation.

i.e. Hg electrode to measure pCa

Indicator Electrodes

Metallic Indicator Electrodes

Redox system

Pt, Pd, Au or C in contact with redox system.

i.e. Pt in Ce^{III}/Ce^{IV}

$$E_{ind} = E^{o}_{Ce(IV)} - 0.0592 \log \frac{a_{Ce^{+3}}}{a_{Ce^{+4}}}$$

Membrane Indicator Electrodes

Membrane Electrodes also called ion selective electrodes (ISEs) or plon electrodes

TABLE 23-2 Types of Ion-Selective Membrane Electrodes

- A. Crystalline Membrane Electrodes
 - 1. Single crystal

Example: LaF₃ for F⁻

2. Polycrystalline or mixed crystal

Example: Ag₂S for S²⁻ and Ag⁺

- B. Noncrystalline Membrane Electrodes
 - 1. Glass

Examples: silicate glasses for Na⁺ and H⁺

2. Liquid

Examples: liquid ion exchangers for Ca²⁺ and neutral carriers for K⁺

3. Immobilized liquid in a rigid polymer

Examples: PVC matrix for Ca²⁺ and NO₃⁻

© 2007 Thomson Higher Education

Indicator Electrodes

Membrane Electrodes

Properties

- Minimal Solubility solubility in analyte solutions approaches zero
- Electrical Conductivity must be small usually in the form of migration of singly charged ions within the membrane
- Selective Reactivity must selectively bind with analyte ion by ion-exchange, crystallization, or complexation

Indicator Electrodes

Membrane Electrodes

pION electrodes

i.e. pH Electrode -- glass electrode

No electrons transported across membrane

Membrane allows certain ion to cross while excluding others.

Indicator Electrodes

Membrane Electrodes

pH Electrode -- glass electrode

Responds to changes in pH

Consist of

- a sensing electrode
- reference electrode (half-cell system)

Nowdays use a combination electrode

• a sensing electrode with a built in reference.

pH Electrode

A - pH sensor

B - reference half cell

C - combination pH electrode (A+B)

D- seal

E- internal filling solution

F- internal reference

electrode

G- external filling

solution

H- pH sensitive glass

membrane

I- internal liquid junction

J- external liquid junction

K- fill hole

Indicator Electrodes

Membrane Electrodes

pH Electrode -- glass electrode
The sensing electrode measures pH
across the thin glass membrane

- 0.03 to 1.00 mm thick
- consist of 22% Na₂O, 6% CaO, 72% SiO₂
- or $10\% \text{Li}_2\text{O}, 10\%$ CaO, and 80% SiO $_2$ (for Na+ error)

Indicator Electrodes

Membrane Electrodes

pH Electrode -- glass electrode

Reference electrode 1

PUACP

Glass electrode

External analyte solution

Glass membrane $|[H_3O^+] = a_2, [Cl^-] = 0.1M, AgCl (sat'd) | Ag$

Internal reference solution

SCE \parallel [H₃O⁺] = a_1 \parallel membra

 E_2

 $E_{\rm b} = E_1 - E_2$

Reference electrode 2

 E_{ref2}

© 2007 Thomson Higher Education

 $E_{\rm ref1}$ $E_{\rm i}$

Indicator Electrodes

Membrane Electrodes

pH Electrode -- glass electrode

PUACP

pH measurement occurs by an ion-exchange reaction:

$$H^+$$
 + Na^+Gl^- <---> Na^+ + H^+Gl^- soln glass

pH Electrode -- glass electrode

Membrane electrodes

H₃O* partially populates both the inner and outer SiO₂ surfaces.

The concentration difference results in a potential across the glass membrane.

A special glass is used: 22% Na₂O, 6% CaO, 72% SiO₂

Indicator Electrodes

Membrane Electrodes

Membrane electrodes can also be used to measure other ions.

1st type that were used: Na+, Ca²⁺, and Cl⁻

(Na⁺ selective glass electrode made up of 11%Na₂O, 18% Al₂O₃, 71% SiO₂)

Indicator Electrodes

Membrane Electrodes

Instead of glass the membrane may be a polymer saturated with a liquid ion exchanger (with ion-exchange capabilities).

Ion selective electrodes - ISE's

Indicator Electrodes Membrane Electrodes

Many ISE's (and pH electrodes) are membrane-based devices which separate the sample from the inside of the electrode. On the inside is a filling solution containing the ion of interest at a constant activity.

Ca ion selective electrode example

Liquid membrane electrodes

Ca ion selective electrode example

Liquid membrane electrodes

The reservoir forces exchanger into the membrane.

The exchanger forms complexes with the species of interest.

The results in a concentration difference and a resulting ΔV that we can measure.

Indicator Electrodes

Membrane Electrodes

A gradient is established across the membrane when the electrode is immersed in a solution.

PUACP

$$\Delta G = -RT \ln(a_{\text{sample}}/a_{\text{int.soln.}})$$
 $R = 8.134 \text{ J/K mol}$

Potential produced:

$$E = -\Delta G/nF = (RT/nF) ln(a_{sample}/a_{int.soln.})$$

Indicator Electrodes

Membrane Electrodes

Potential produced:

$$E = -\Delta G/nF = (RT/nF) ln(a_{sample}/a_{int.soln})$$

This potential is monitored relative to a reference electrode.

Eref - constant (fixed)

a_{int. soln.} - constant

Indicator Electrodes Membrane Electrodes

 $E = K + (2.303RT/Z_iF)log a_i$

Z_i - ionic charge

a_i - ionic activity

K - constant

where,

Indicator Electrodes Membrane Electrodes

E is proportional to log ai

- so a 59.1 mV change corresponds to a 10 fold change in a (for monoatomic ions)
- a_i unity for dilute solutions
- to relate E to [] need to use standardization curves.

TABLE 23-4 Characteristics of Liquid-Membrane Electrodes

Analyte Ion	Concentration Range, M [†]	Major Interferences [‡]
NH ₄ ⁺	10^{0} to 5×10^{-7}	<1 H ⁺ , 5×10^{-1} Li ⁺ , 8×10^{-2} Na ⁺ , 6×10^{-4} K ⁺ , 5×10^{-2} Cs ⁺ , >1 Mg ²⁺ , >1 Ca ²⁺ , >1 Sr ²⁺ , >0.5 Sr ²⁺ , 1×10^{-2} Zn ²⁺
Cd ²⁺	10^{0} to 5×10^{-7}	Hg^{2+} and Ag^{+} (poisons electrode at $> 10^{-7}$ M), Fe^{3+} (at > 0.1 [Cd ²⁺], Pb^{2+} (at $> [Cd^{2+}]$, Cu^{2+} (possible)
Ca ²⁺	$10^0 \text{ to } 5 \times 10^{-7}$	$10^{-5} \text{Pb}^{2+}; 4 \times 10^{-3} \text{Hg}^{2+}, \text{H}^+, 6 \times 10^{-3} \text{Sr}^{2+}; 2 \times 10^{-2} \text{Fe}^{2+}; 4 \times 10^{-2} \text{Cu}^{2+}; 5 \times 10^{-2} \text{Ni}^{2+}; 0.2 \text{NH}_3; 0.2 \text{Na}^+; \frac{0.3 \text{Tris}^+; 0.3 \text{Li}^+; 0.4 \text{K}^+; 0.7 \text{Ba}^{2+}; 1.0 \text{Zn}^{2+}; 1.0 \text{Mg}^{2+}$
Cl ⁻	10^{0} to 5×10^{-6}	Maximum allowable ratio of interferent to [Cl ⁻]: OH ⁻ 80, Br ⁻ 3×10^{-3} , I ⁻ 5×10^{-7} , S ²⁻ 10^{-6} , CN ⁻ 2×10^{-7} , NH ₃ 0.12, S ₂ O ₃ ²⁻ 0.01
BF ₄	10^{0} to 7×10^{-6}	$5 \times 10^{-7} \text{CIO}_4^-$; $5 \times 10^{-6} \text{ I}^-$; $5 \times 10^{-5} \text{ CIO}_3^-$; $5 \times 10^{-4} \text{ CN}^-$; 10^{-3} Br^- ; 10^{-3} NO_2^- ; $5 \times 10^{-3} \text{ NO}_3^-$; $3 \times 10^{-3} \text{ HCO}_3^-$, $5 \times 10^{-2} \text{ CI}^-$; $8 \times 10^{-2} \text{ H}_2 \text{PO}_4^-$, HPO_4^{2-} , PO_4^{3-} ; 0.2 OAc^- ; 0.6 F^- ; 1.0 SO_4^{2-}
NO ₃ ⁻	10^{0} to 7×10^{-6}	$\frac{10^{-7} \text{ CIO}_4^-; 5 \times 10^{-6} \text{ I}^-; 5 \times 10^{-5} \text{ CIO}_3^-; 10^{-4} \text{ CN}^-; 7 \times 10^{-4} \text{ Br}^-; 10^{-3} \text{ HS}^-;}{10^{-2} \text{ HCO}_3^-, 2 \times 10^{-2} \text{ CO}_3^{2-}; 3 \times 10^{-2} \text{ CI}^-; 5 \times 10^{-2} \text{ H}_2 \text{PO}_4^-, \text{HPO}_4^{2-}; \text{PO}_4^{3-};}{0.2 \text{ OAc}^-; 0.6 \text{ F}^-; 1.0 \text{ SO}_4^{2-}}$
NO ₂ ⁻	1.4×10^{-6} to 3.6×10^{-6}	7×10^{-1} salicylate, 2×10^{-3} I ⁻ , 10^{-1} Br ⁻ , 3×10^{-1} ClO ₃ ⁻ , 2×10^{-1} acetate, 2×10^{-1} HCO ₃ ⁻ , 2×10^{-1} NO ₃ ⁻ , 2×10^{-1} SO ₄ ²⁻ , 1×10^{-1} Cl ⁻ , 1×10^{-1} ClO ₄ ⁻ , 1×10^{-1} F ⁻
ClO ₄ ⁻	10^0 to 7×10^{-6}	$2 \times 10^{-3} \mathrm{I}^-; 2 \times 10^{-2} \mathrm{ClO_3}^-; 4 \times 10^{-2} \mathrm{CN}^-, \mathrm{Br}^-; 5 \times 10^{-2} \mathrm{NO_2}^-, \mathrm{NO_3}^-; 2 \mathrm{HCO_3}^-, \mathrm{CO_3}^{2-}; \mathrm{Cl}^-, \mathrm{H_2PO_4}^-, \mathrm{HPO_4}^{2-}, \mathrm{PO_4}^{3-}, \mathrm{OAc}^-, \mathrm{F}^-, \mathrm{SO_4}^{2-}$
K ⁺	10^{0} to 1×10^{-6}	$3 \times 10^{-4} \text{ Cs}^+$; $6 \times 10^{-3} \text{ NH}_4^+$, 71^+ ; 10^{-2} H^+ ; 1.0 Ag^+ , 71^+ ; 1.0 Ag^+ , $1.0 $
Water hardness $(Ca^{2+} + Mg^{2+})$	10^{-3} to 6×10^{-6}	$3 \times 10^{-5} \text{ Cu}^{2+}, \text{Zn}^{2+}; 10^{-4} \text{ Ni}^{2+}; 4 \times 10^{-4} \text{ Sr}^{2+}; 6 \times 10^{-5} \text{ Fe}^{2+}; 6 \times 10^{-4} \text{ Ba}^{2+}; 3 \times 10^{-2} \text{ Na}^+; 0.1 \text{ K}^+$

All electrodes are the plastic-membrane type.

Indicator Electrodes

Solid State Electrodes

Eventually membrane electrodes (ISE's) lead to solid-state electrodes

TABLE 23-3 Characteristics of Solid-State Crystalline Electrodes

Analyte Ion	Concentration Range, M	Major Interferences
Br ⁻	10^{0} to 5×10^{-6}	CN ⁻ , I ⁻ , S ²⁻
Cd ²⁺	10^{-1} to 1×10^{-7}	Fe ²⁺ , Pb ²⁺ , Hg ²⁺ , Ag ⁺ , Cu ²⁺
Cl ⁻	10^{0} to 5×10^{-5}	CN ⁻ , I ⁻ , Br ⁻ , S ²⁻ , OH ⁻ , NH ₃
Cu ²⁺	10^{-1} to 1×10^{-8}	Hg^{2+}, Ag^+, Cd^{2+}
CN-	10^{-2} to 1×10^{-6}	S ²⁻ , I ⁻
F-	Sat'd to 1×10^{-6}	OH-
I-	10^{0} to 5×10^{-8}	CN-
Pb ²⁺	10^{-1} to 1×10^{-6}	Hg ²⁺ , Ag ⁺ , Cu ²⁺
Ag +/S 2-	Ag ⁺ : 10^{0} to 1×10^{-7} S ²⁻ : 10^{0} to 1×10^{-7}	Hg ²⁺
SCN-	10^{0} to 5×10^{-6}	I-, Br-, CN-, S ²⁻

© 2007 Thomson Higher Education

Indicator Electrodes

Solid State Electrodes

Crystal electrodes

Example - fluoride ion-selective electrode

PUACP

Consist of:

- LaF₃ crystal
- Internal electrolyte solution (0.1 M NaF and 0.1 M KCl)
- Ag/AgCl wire

$$LaF_3 \leftarrow \rightarrow LaF_2^+ + F^-$$

Indicator Electrodes

Solid State Electrodes

Crystal electrodes

Example - fluoride ion-selective electrode

LaF₃ crystal is doped with EuF₂ to provide vacancies (holes) of a fluoride ion site.

Nerstian response is obtained down to $10^{-6}M$ $E = K - 0.0591 \log a_{F}$

Interference (OH⁻) - has a similar size and charge, so the pH range for the electrode is only 0 to 8.5

Indicator Electrodes

Solid State Electrodes

ISFET - ion selective field effect transistor

- Coat a transistor with a chemically sensitive material
- Analyte in contact with material and reference electrode
- Change in analyte concentration give a change in electrochemical potential

Advantages - rugged, small, inert, rapid response

Disadvantage – must have a reference electrode

Chem 4631

Assignment

- Read Chapter 22
- HW12 Chapter 22: 1, 5, 7, 9, and 11
- HW12 Due 3/10/21

- Read Chapter 23
- HW13 Chapter 23: 2, 4, 7, 8, and 11
- HW13 Chapter 23 Due 3/17/21

