МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ БИОТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Международный технологический колледж

Лабораторная работа № 7

Написание программ для эмулятора ЭВМ «ЛамПанель»

Выполнил
студент группы 23-090207о3
Гросул И.В
Проверил
преподаватель СПО
Д.В. Кожинов

Москва, 2025

Цель:

- для изучения принципов работы компьютера (процессор, ОЗУ, ПЗУ);
- для начального изучения программирования на языке ассемблера;
- для изучения операций с целыми числами, в том числа поразрядных логических операций и сдвигов
 - 4. Напишите программу, которая делает "бегущую строку" из рисункадомика. Подсказка: используйте команды циклического сдвига.

```
while True:

# Циклический сдвиг

for i in range(len(full_house) + 1):

# Создаем строку с сдвигом

shifted_house = full_house[i:] + full_house[:i]

# Очищаем экран (для Windows используйте 'cls')

os.system('clear') # Ubuntu/Linux

# os.system('cls') # Windows

print(shifted_house)

time.sleep(0.2) # Задержка для эффекта бегущей строки
```

5. Напишите программу, которая организует "обратный отсчет" от 100 до 0, а затем выводит рисунок с домиком и останавливается. Подсказка: для вывода чисел используйте системную подпрограмму с номером 12 16.

```
mov 100, R0
                  ; Начальное
значение
count:
system 12
                    Вывод числа в
десятичной системе
sub 1, R0
                    Уменьшаем счетчик
inz count
                  ; Повторяем, пока
не достигнем ∅
; Вывод домика
mov 0x0FF0, R0
out R0, P0
out R0, P1
out R0, P2
mov 0xFFFF, R0
out R0, P3
mov 0x0FF0, R0
out R0, P4
stop
```

6. Используя команду MOV, напишите программу, которая заполнит регистры так, как на рисунке. Не забудьте закончить программу командой STOP

Регистр	Десятичные значения		
	без учета знака	с учетом знака	
R0	53248	-12288	
R1	56797	-8739	
R2	3328	3328	
R3	221	221	

7. Выполните программу

SUB 1, R0

NOT R0

STOP

при различных начальных значениях регистра R0 и запишите десятичные значения, полученные в

R0 после выполнения программы:

До	После		
	Без учёта знака С учётом знака		
5	65531	-5	
10	65520	-16	
25	65499	-37	

Операция: Программа вычисляет -(x + 1)

8. Используя программу ЛамПанель, вычислите арифметические выражения и запишите результаты в таблицу. Объясните полученные

В первом случае у нас получилось число 3, так как произошло переполнение.

Во втором случае переполнения не произошло и числа просто сложились.

В третьем случае произошел перенос (carry). Правильный ответ можно наблюдать в знаковом виде.

Выражение	Результат(без знака)	Результат(с учетом
		знака)
65530+9	3	-6+9=3
32760+9	32769	-32760+9=-32751
8-10	65534	-2

9. Вычислите приведенные выражения с помощью программы. Запишите в таблицу результаты, значения знакового (старшего) бита полученного числа и битов состояния:

Выражение	Результат(без	Результат(Знаковый	Бит	Бит	Бит
	знака)	с учетом	бит	С	z	N
		знака)				
32760+32752	65512	-24	1	0	0	1
-32760-	24	24	0	0	0	0
32752						
256-256	0	0	1	0	1	0

10.С помощью программы, приведенной в теоретической части, вычислите сумму натуральных чисел от 1 до 100.

MOV 0, R0

MOV 64, R1

m:

ADD R1, R0

SUB 1, R1

JNZ m

STOP

Я заменила число 5 в приведенной программе, на 16-ричное число 64 (100 в десятичной) и так получился правильный ответ

11. Напишите программу, которая вычисляет значение факториала — произведения всех натуральных чисел от 1 до заданного числа. Например, факториал числа 5 равен 5! = 1x2x3x4x5.

С помощью программы заполните таблицу:

N	N!		
	Без учёта знака	С учётом знака	
5	120	120	
6	720	720	
7	5040	5040	
8	40320	-25216	
9	35200	-30336	

Объяснение: При получении факториала 8, число стало настолько большим, что стало использовать знаковый бит.

12. Напишите программу, которая решает следующую задачу, используя логические операции:

В регистрах R1, R2 и R3 записаны коды трех десятичных цифр, составляющих трехзначное число (соответственно сотни, десятки и единицы). Построить в регистре R0 это число.

Например, если R1=3116, R2=3216 и R3=3316, в регистре R0 должно получиться десятичное число 123.

MOV 0, R0

MOV 31, R1

MOV 32, R2

MOV 33, R3

SUB 30, R1

SUB 30, R2

SUB 30, R3

MUL 64, R1

MUL a, R2

ADD R1, R0

ADD R2, R0

ADD R3, R0

STOP

В этом коде мы вычитаем 30 из каждого регистра (для получения десятичного числа из аscii кода), а затем умножаем первый и второй регистры на 10 и 100 соответственно. Далее мы просто складываем все регистры в нулевом регистре.

13. Используя программу ЛамПанель, определите и запишите в таблицу значения регистра R0 после выполнения каждой из следующих команд, которые выполняются последовательно

	Команда	R0
1	MOV 1234, R0	1234
2	XOR ABCD, R0	B9F9
3	XOR ABCD, R0	1234

14. Запишите в таблицу десятичные числа, которые будут получены в регистре R0 после выполнения каждой команды этой программы при разных начальных значениях R0 (две команды выполняются последовательно одна за другой): В каком случае последовательное выполнение этих двух команд не изменяет данные?

Начальное значение	255	254	252	-255	-254	-252
SHR 2, R0	63	63	63	16320	16320	16321
SHL 2, R0	252	252	252	-256	-256	-252

Ответ: Когда последние 2 бита (в двоичном коде) равны нулям.

15. Напишите программу, которая решает следующую задачу, используя логические операции и сдвиги:

При кодировании цвета используются 4-битные значения составляющих R (красная), G (зеленая) и B (синяя). Коды этих составляющих записаны в регистрах R1, R2 и R3. Построить в регистре R0 полный код цвета. Например, если R1 = A16, R2 = B16 и R3 = C16, в регистре R0 должно получиться число ABC16.

Код:

MOV A, R1

MOV B, R2

MOV C, R3

MOV R1, R0

SHL 4, R0

ADD R2, R0

SHL 4, R0

ADD R3, R0

STOP

Используем сдвиги для того, чтобы сдвинуть число влево, и уместить в появившемся месте новый символ.

16. Напишите программу, которая умножает число в регистре R0 на 10, не применяя команду умножения. Используйте арифметические операции и сдвиги.

Код:

MOV 1, R0

MOV R0, R1

SHL 1, R0

SHL 1, R0

ADD R1, R0

SHL 1, R0

STOP

Здесь, мы сначала записываем число в первый регистр, затем сдвигаем число в нулевом регистре влево на 2 бита. Потом мы просто прибавляем число из первого регистра в нулевой, и снова сдвигаю его влево, но уже на 1 бит. Таким образом получается умножение на 10.

Элемент	Назначение	Принадлежность
R0, R1, R2, R3	Регистры общего назначения	Процессор
PC	Указатель на следующую инструкцию	Процессор
PS	Регистры состояния (Status Register)	Процессор
SP	Указатель стека (Stack Pointer)	Процессор
Команда	Назначение	Принадлежность
NOP	Нет операции (no operation)	Процессор
STOP	Остановка выполнения программы	Процессор
MOV	Перемещение данных	Процессор
ADD	Сложение	Процессор
SUB	Вычитание	Процессор
CMP	Сравнение	Процессор
MUL	Умножение	Процессор
DIV	Деление	Процессор
NOT	Логическое отрицание	Процессор
AND	Логическое "И"	Процессор
OR	Логическое "ИЛИ"	Процессор
XOR	Исключающее "ИЛИ"	Процессор
SHL	Левый сдвиг	Процессор
SHR	Правый сдвиг	Процессор
SAR	Арифметический правый сдвиг	Процессор
ROL	Циклический левый сдвиг	Процессор
ROR	Циклический правый сдвиг	Процессор
RCL	Циклический сдвиг влево с переносом	Процессор
RCR	Циклический сдвиг вправо с переносом	Процессор
JMP	Безусловный переход	Процессор
JGE	Переход, если больше или равно	Процессор

SYSTEM	Вызов системной функции	Операционная система
CALL	Вызов подпрограммы	Процессор
RET	Возврат из подпрограммы	Процессор