3.36pt

Safe Labeling of Graphs with Minimum Span

Authors:

Md. Saidur Rahman , Umma Habiba Shah Hasnat Lamia, Tahmima Chowdhury

Presented By:

1605038 & 1605042

Department of Computer Science and Engineering Bangladesh University of Engineering and Technology

September 7, 2019

Outline

3.36pt

- 1 Introduction to Safe labeling and Minimum Span
- 2 Hardness of Safe Labeling Problem
- 3 k-safe Labeling of Bipartite Graphs
- 4 k-safe Labeling of Trees
- 6 k-safe Labeling of Cycles
- 6 k-safe Labeling of Cactus Graphs
- Conclusion

k-safe Labeling of Graph

Figure : Safe labeling of graph for k=5

k-safe Labeling of Graph

Figure : Safe labeling of graph for k=5

• Span of k-safe labeling = $I_l - I_s + 1$

k-safe Labeling of Graph

Figure : Safe labeling of graph for k=5

- Span of k-safe labeling = $I_l I_s + 1$
- For this graph , Span = 30 1 + 1 = 30

Minimum Span

k-safe Labeling Problem

Problem Statement

The *k-safe labeling problem* asks to find a *k-*safe labeling of a graph with minimum span

What is Antibandwidth problem?

Figure : An Antibandwidth labeling of a tree

What is Antibandwidth problem?

Figure : Calculating difference of adjacent nodes

What is Antibandwidth problem?

Figure : Labeling of a Tree with Antibandwidth=7

Motivation

Outline

3.36pt

- 1 Introduction to Safe labeling and Minimum Span
- 2 Hardness of Safe Labeling Problem
- 3 k-safe Labeling of Bipartite Graphs
- 4 k-safe Labeling of Trees
- 6 k-safe Labeling of Cycles
- 6 k-safe Labeling of Cactus Graphs
- Conclusion

Hardness of Safe Labeling Problem

k-safe labeling problem is NP-Hard

We can reduce the Antibandwidth problem to k-safe labeling problem and thus successfully prove that k-safe labeling problem is NP-Hard.

Hardness of Safe Labeling Problem

k-safe labeling problem is NP-Hard

We can reduce the Antibandwidth problem to k-safe labeling problem and thus successfully prove that k-safe labeling problem is NP-Hard.

Decision version of Antibandwidth problem

 \bigstar An Antibandwidth labeling with n=15 and k=7;

Decision version of Antibandwidth problem

★ An Antibandwidth labeling with n = 15 and k = 7; But how can we reduce this to k-safe labeling problem?

Reduction to k-safe Labeling Problem

- \star An Antibandwidth labeling with n=15 and k=7;
- \checkmark If we set s = n = 15 and k = 7

Outline

3.36pt

- 1 Introduction to Safe labeling and Minimum Span
- 2 Hardness of Safe Labeling Problem
- 3 k-safe Labeling of Bipartite Graphs
- 4 k-safe Labeling of Trees
- 6 k-safe Labeling of Cycles
- 6 k-safe Labeling of Cactus Graphs
- Conclusion

What is Bipartiate Graph?

Figure: A Bipartite Graph

Two coloring of a Bipartiate Graph

Figure: A Bipartite Graph is a Two-Coloring Graph

k-safe labeling of Bipartite Graphs

k-safe labeling of Bipartite Graphs

Total vertices n=p+q

k-safe labeling of Bipartite Graphs

Total vertices n=p+q

k-safe labeling of Bipartite Graphs

k-safe labeling of Bipartite Graphs

A Bipartite Graph of n vertices admits a k-safe labeling of n+k-1, and such a labeling can be computed in linear time.

• Minimum distance of labels of two adjacent vertices is at least p+k-p=k

k-safe labeling of Bipartite Graphs

- Minimum distance of labels of two adjacent vertices is at least p+k-p=k
- Span = p+k+q-1=n+k-1

Outline

3.36pt

- 1 Introduction to Safe labeling and Minimum Span
- 2 Hardness of Safe Labeling Problem
- 3 k-safe Labeling of Bipartite Graphs
- 4 k-safe Labeling of Trees
- 6 k-safe Labeling of Cycles
- 6 k-safe Labeling of Cactus Graphs
- Conclusion

Upper Bound on the Span of Trees

k-safe labeling of Trees

Every Tree with n vertices admits a k-safe labeling of n+k-1, and such a labeling can be computed in linear time.

Upper Bound on the Span of Trees

k-safe labeling of Trees

Every Tree with n vertices admits a k-safe labeling of n+k-1, and such a labeling can be computed in linear time.

Outline

3.36pt

- Introduction to Safe labeling and Minimum Span
- 2 Hardness of Safe Labeling Problem
- 3 k-safe Labeling of Bipartite Graphs
- 4 k-safe Labeling of Trees
- 5 k-safe Labeling of Cycles
- 6 k-safe Labeling of Cactus Graphs
- Conclusion

k-safe labeling of Even Cycles

k-safe labeling of Even Cycles

k-safe labeling of Odd Cycles

k-safe labeling of Odd Cycles

Every Odd Cycle with n vertices admits a k-safe labeling of n+2k-2, and such a labeling can be computed in linear time.

One end is labeled with the label of Unified Vertex (n-1)+k-1=10

k-safe labeling of Odd Cycles

Every Odd Cycle with n vertices admits a k-safe labeling of n+2k-2, and such a labeling can be computed in linear time.

Other end is labeled with (n-1)+k-1+k = 7-1+5-1+5 = 15

k-safe labeling of Odd Cycles

Span is (n-1)+k-1+k = n+2k-2

Outline

3.36pt

- 1 Introduction to Safe labeling and Minimum Span
- 2 Hardness of Safe Labeling Problem
- 3 k-safe Labeling of Bipartite Graphs
- 4 k-safe Labeling of Trees
- 5 k-safe Labeling of Cycles
- 6 k-safe Labeling of Cactus Graphs
- Conclusion

Figure : A Biconnected Graph

What is Cactus Graph?

Figure : A Cactus Graph

k-safe labeling of Cactus Graphs

k-safe labeling of Cactus Graphs

k-safe labeling of Cactus Graphs

k-safe labeling of Cactus Graphs

k-safe labeling of Cactus Graphs

Every Cactus Graph with n vertices admits a k-safe labeling of n+2k-2, and such a labeling can be computed in linear time.

n-c vertices

k-safe labeling of Cactus Graphs

Every Cactus Graph with n vertices admits a k-safe labeling of n+2k-2, and such a labeling can be computed in linear time.

can be labeled from 1 to (n-c)+k-11 to 14 (k=5)

k-safe labeling of Cactus Graphs

k-safe labeling of Cactus Graphs

k-safe labeling of Cactus Graphs

k-safe labeling of Cactus Graphs

k-safe labeling of Cactus Graphs

k-safe labeling of Cactus Graphs

k-safe labeling of Cactus Graphs

k-safe labeling of Cactus Graphs

k-safe labeling of Cactus Graphs

k-safe labeling of Cactus Graphs

k-safe labeling of Cactus Graphs

k-safe labeling of Cactus Graphs

k-safe labeling of Cactus Graphs

k-safe labeling of Cactus Graphs

★ Span is
$$n-c+k-1+k+c-1 = n+2k-2$$

Outline

3.36pt

- 1 Introduction to Safe labeling and Minimum Span
- 2 Hardness of Safe Labeling Problem
- 3 k-safe Labeling of Bipartite Graphs
- 4 k-safe Labeling of Trees
- 6 k-safe Labeling of Cycles
- 6 k-safe Labeling of Cactus Graphs
- Conclusion

Future Interests

★ Finding non-trivial bounds for general graphs and other subclasses of graphs.

Future Interests

- ★ Finding non-trivial bounds for general graphs and other subclasses of graphs.
- ★ Finding more tight upper bounds for Trees and Cactus graphs

Future Interests

- ★ Finding non-trivial bounds for general graphs and other subclasses of graphs.
- ★ Finding more tight upper bounds for Trees and Cactus graphs
- ★ Proving NP-hardness for subclasses of graphs

Thank You!!! ...