COMP3670: Introduction to Machine Learning

Question 1

Properties of Eigenvalues

(3+5+4=12 credits)

Let **A** be an invertible matrix.

- 1. Prove that all the eigenvalues of **A** are non-zero.
- 2. Prove that for any eigenvalue λ of \mathbf{A} , λ^{-1} is an eigenvalue of \mathbf{A}^{-1} .
- 3. Hence, or otherwise, prove that

$$\det(\mathbf{A}^{-1}) = \frac{1}{\det \mathbf{A}}$$

You may not use the property $\det(\mathbf{AB}) = \det(\mathbf{A}) \det(\mathbf{B})$ for this question without proving it. You may use the following stronger version of Q1.2 without proof:

"If λ is an eigenvalue of **A** with algebraic multiplicity m, then $1/\lambda$ is an eigenvalue of **A** with algebraic multiplicity m".

Question 2

Properties of Eigenvalues II

(5+10=15 credits)

- 1. Let **B** be a square matrix. Let λ be an eigenvalue of **B**. Prove that for all integers $n \geq 1$, λ^n is an eigenvalue of \mathbf{B}^n .
- 2. Let **B** be a square matrix. Prove that **B** and \mathbf{B}^T have the same set of eigenvalues.

Question 3

Properties of Determinants

(15+5=20 credits)

- 1. Let **U** be an square $n \times n$ **upper** triangular matrix. Prove that the determinant of **U** is equal to the product of the diagonal elements of **U**.
- 2. Let **U** be an square $n \times n$ lower triangular matrix. Prove that the determinant of **U** is equal to the product of the diagonal elements of **U**.

(Hint: Use the previous exercise to help you.)

Question 4

Eigenvalues of symmetric matrices

(15 credits)

1. Let **A** be a symmetric matrix. Let \mathbf{v}_1 be an eigenvector of **A** with eigenvalue λ_1 , and let \mathbf{v}_2 be an eigenvector of **A** with eigenvalue λ_2 . Assume that $\lambda_1 \neq \lambda_2$. Prove that \mathbf{v}_1 and \mathbf{v}_2 are orthogonal. (Hint: Try proving $\lambda_1 \mathbf{v}_1^T \mathbf{v}_2 = \lambda_2 \mathbf{v}_1^T \mathbf{v}_2$. Recall the identity $\mathbf{a}^T \mathbf{b} = \mathbf{b}^T \mathbf{a}$.)

Question 5

Similar Matrices

(3+15=18 credits)

Let **A** and **B** be square matrices. Assume that **A** is similar to **B**.

¹The question is trivial with this property, and can be proven without this property.

²See https://piazza.com/class/kcodj1w3jcd6hb?cid=689

- 1. Prove that \mathbf{B} is similar to \mathbf{A} .
- 2. Prove that **A** and **B** share the same characteristic polynomial. (Hint: Note that $I = PP^{-1}$). You may use that property that $\det(\mathbf{AB}) = \det(\mathbf{A}) \det(\mathbf{B})$.

Question 6 Computations with Eigenvalues (3+5+4+4+4=20 credits)Let $\mathbf{A} = \begin{bmatrix} 2 & 5 \\ 3 & 4 \end{bmatrix}$.

- 1. Compute the eigenvalues of **A**.
- 2. Find the eigenspace E_{λ} for each eigenvalue λ .
- 3. Verify the set of all eigenvectors³ of **A** spans \mathbb{R}^2 .
- 4. Hence, find an invertable matrix **P** and a diagonal matrix **D** such that $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$.
- 5. Hence, or otherwise, find a closed form formula for \mathbf{A}^n for any integer $n \geq 0$.

³This used to say "eigenspectra". This was a typo.