Programa de Pós-Graduação em Informática - UFES

Indexação Multidimensional para Problemas da Mochila Multiobjetivo com Paretos de Alta Cardinalidade

Marcos Daniel Valadão Baroni

Sumário

Introdução

O MOKP

A Verificaçã

Dominância

O Algorit

O SCE

Experimento

Conclusões Trabalhos Futuros

- 1 O problema da mochila multiobjetivo (MOKP)
- 2 Indexação multidimensional para verificação de dominância
- 3 O Algoritmo de Bazgan
- 4 O SCE para o MOKP
- **6** Experimentos computacionais
- 6 Conclusões e trabalhos futuros

Problemas de Otimização Multiobjetivo

• Otimização simultânea de múltiplos objetivos:

$$\max f(x) = (f_1(x), f_2(x), \dots, f_m(x))$$
sujeito a $x \in X$

• Tipicamente mais de uma solução.

de Bazg

O SCE

Experimento

Conclusões Trabalhos Futuros

Problemas de Otimização Multiobjetivo

Definição (Dominância)

Diz-se que uma solução $x \in X$ domina uma solução $y \in X$, denotado por $x\Delta y$ se, e somente se, x é ao menos tão boa quanto y em todos os objetivos e melhor que y em ao menos um dos objetivos.

Problemas de Otimização Multiobjetivo

Definição (Dominância)

Diz-se que uma solução $x \in X$ domina uma solução $y \in X$, denotado por $x\Delta y$ se, e somente se, x é ao menos tão boa quanto y em todos os objetivos e melhor que y em ao menos um dos objetivos. Formalmente:

$$x\Delta y \iff \begin{cases} \forall i \in \{1, 2, \dots, m\} : f_i(x) \geqslant f_i(y) \ e \\ \exists j \in \{1, 2, \dots, m\} : f_j(x) > f_j(y) \end{cases}$$

Problemas de Otimização Multiobjetivo

Definição (Dominância)

Diz-se que uma solução $x \in X$ domina uma solução $y \in X$, denotado por $x\Delta y$ se, e somente se, x é ao menos tão boa quanto y em todos os objetivos e melhor que y em ao menos um dos objetivos. Formalmente:

$$x\Delta y \iff \begin{cases} \forall i \in \{1, 2, \dots, m\} : f_i(x) \geqslant f_i(y) \ e \\ \exists j \in \{1, 2, \dots, m\} : f_j(x) > f_j(y) \end{cases}$$

Experimento

Conclusões Trabalhos Futuros

Problemas de Otimização Multiobjetivo

Definição (Eficiência)

Uma solução $x \in X$ é dita **eficiente**, denotado por eff(x), se, e somente se, x não é dominada por nenhuma outra solução pertencente a X.

Experimento

Conclusões Trabalhos Futuros

Problemas de Otimização Multiobjetivo

Definição (Eficiência)

Uma solução $x \in X$ é dita **eficiente**, denotado por eff(x), se, e somente se, x não é dominada por nenhuma outra solução pertencente a X.

Formalmente:

$$eff(x) \iff \nexists (y \in X \land y\Delta x)$$

Problemas de Otimização Multiobjetivo

Definição (Eficiência)

Uma solução $x \in X$ é dita **eficiente**, denotado por eff(x), se, e somente se, x não é dominada por nenhuma outra solução pertencente a X.

Formal mente:

$$eff(x) \iff \nexists (y \in X \land y\Delta x)$$

Definição (conjunto Pareto)

O conjunto de todas as soluções eficientes de um problema multiobjetivo, denotado por Par(X), é chamado de **conjunto Pareto** ou **conjunto Pareto**-ótimo.

Problemas de Otimização Multiobjetivo

Definição (Eficiência)

Uma solução $x \in X$ é dita **eficiente**, denotado por eff(x), se, e somente se, x não é dominada por nenhuma outra solução pertencente a X.

Formalmente:

$$eff(x) \iff \nexists (y \in X \land y\Delta x)$$

Definição (conjunto Pareto)

O conjunto de todas as soluções eficientes de um problema multiobjetivo, denotado por Par(X), é chamado de **conjunto Pareto** ou **conjunto Pareto-ótimo**.

Formalmente:

$$Par(X) = \{x \in X \mid eff(x)\}$$

Introducão

O MOKP

A Verificaçã

Dominância

de Bazga

O SCE

Experimento

Trabalhos Futuros

Problemas de Otimização Multiobjetivo

Resolver um problema multiobjetivo consiste em determinar seu conjunto Pareto.

O Algoritm de Bazgan

Experimento

Conclusões Trabalhos Futuros

Problemas de Otimização Multiobjetivo

Resolver um problema multiobjetivo consiste em determinar seu conjunto Pareto.

Experimento

Conclusões e Trabalhos Futuros

O Problema da Mochila Multiobjetivo

Problema da mochila multiobjetivo (MOKP):

- Generalização do problema da mochila 0-1 (\mathcal{NP} -Hard);
- Bastante estudado pela literatura;
- Modela diversos problemas reais:
 - Seleção de projetos;
 - Orçamento de capital;
 - Planejamento de estoque, etc.
- De difícil resolução;
 - Especialmente para mais de 2 objetivos.

O Problema da Mochila Multiobjetivo

Definição formal:

$$\max f(x) = (f_1(x), f_2(x), \dots, f_m(x))$$
 sujeito a $w(x) \leq W$
$$x \in \{0, 1\}^n$$

onde

$$f_j(x) = \sum_{i=1}^n p_i^j x_i \quad j = 1, \dots, m$$
$$w(x) = \sum_{i=1}^n w_i x_i$$

Experimento

Conclusões Trabalhos Futuros

O Problema da Mochila Multiobjetivo

Exemplo de instância:

	Itens										
	1	2	3	4	5	6	7	8	9	10	
p^1	4	9	3	1	8	7	2	5	6	7	
p^2	8	4	2	2	3	0	6	8	9	6	
w	7	8	5	8	3	5	6	2	4	9	

Experimentos

Conclusões o Trabalhos Futuros

O Problema da Mochila Multiobjetivo

Exemplo de instância:

	Itens										
	1	2	3	4	5	6	7	8	9	10	
p^1	4	9	3	1	8	7	2	5	6	7	
p^2	8	4	2	2	3	0	6	8	9	6	
w	7	8	5	8	3	5	6	2	4	9	

W	28

Conjunto Pareto:

	1	2	3	4	5	6	7	8	9	10	f_1	f_2	\boldsymbol{w}
x_1	X						X	X	X	X	24	37	28
x_2	X		X		X		X	X	X		28	36	27
x_3	X				X	X	X	X	X		32	34	27
x_4		X	X		X		X	X	X		33	32	28
x_5		X			X	X	X	X	X		37	30	28
x_6		X	X		X	x		X	X		38	26	27

O Algoritmo de Bazgan

Introducão

O MOKP

A vermcaça de

Dominancia

de Bazg

O SCE

Experimento

Conclusões (Trabalhos

Algoritmo Exato:

Algoritmo 1: O algoritmo de Nemhauser e Ullmann para o MOKP.

O Problema da Mochila Multiobjetivo

Tamanho do conjunto Pareto para instâncias do MOKP com 3 objetivos.

Dominância

de Bazg

O SCE

Experimento

Conclusões Trabalhos Futuros

Tese

 $\acute{\rm E}$ possível otimizar a resolução do problema da mochila multiobjetivo através da indexação multidimensional das soluções.

Introdução

O MOKP

A Verificação

Dominância

Dominancia

de Bazgan

O SCE

Experimento

Conclusões Trabalhos Futuros

A operação de verificação de dominância

A operação de verificação de dominância

A operação de verificação de dominância

de Bazg

. .. .

Experimento

Trabalhos
Futuros

A operação de verificação de dominância

A operação de verificação de dominância

de Bazgan

Experimento

Conclusões Trabalhos Futuros

A operação de verificação de dominância

- 1. Exite alguma solução em Y que **é dominada** por x?
- 2. Exite alguma solução em Y que **domina** x?

de Bazg

O SCE

Experimento

Conclusões Trabalhos Futuros

A operação de verificação de dominância

- 1. Exite alguma solução em Y que **é** dominada por x?
- 2. Exite alguma solução em Y que **domina** x?

Introdução

A Verificação

de Dominância

O Algoritm de Bazgan

O SCE

Experimento

Trabalhos

A operação de verificação de dominância

A partir de x pode-se definir duas regiões de interesse:

A operação de verificação de dominância

A partir de x pode-se definir duas regiões de interesse:

Região **dominada** por x.

$$R_d(x) = \{ y \in \mathbb{R}^m \mid y_i \leqslant f_i(x), i \in \{1, \dots, m\} \}$$

Conclusões Trabalhos Futuros

A operação de verificação de dominância

A partir de x pode-se definir duas regiões de interesse:

Região **dominada** por x.

Região que **domina** x.

$$R_d(x) = \{ y \in \mathbb{R}^m \mid y_i \leqslant f_i(x), i \in \{1, \dots, m\} \}$$

$$R_{d-}(x) = \{ y \in \mathbb{R}^m \mid y_i \geqslant f_i(x), i \in \{1, \dots, m\} \}$$

Busca de faixa

Introdução

O MOKE

A Verificação de

Dominância

de Bazg

O SCE

Experimento

Conclusões Trabalhos Futuros Estruturas de dados que podem ser utilizadas:

- Lista encadeada (sem indexação)
- Árvore AVL (unidimensional)
- Árvore KD (multidimensional)

O MOKP

A Verificação

Dominância

de Bazg

O SCE

Experimento

Conclusões Trabalhos Futuros

Lista Encadeada:

- \bullet Implementação simples \blacktriangle
- Pouca utilização de memória A
- Sem indexação acesso em tempo linear ▼

O MOKE

A Verificação

Dominância

O Algoritm de Bazgan

O SCE

Experimento

Conclusões e Trabalhos Enturos

O MOKP

A Verificação de

Dominância

O Algoritmo de Bazgan O SCE

Experimento

Conclusões Trabalhos

O MOKP

A Verificação de

Dominância

O Algoritmo de Bazgan O SCE

Experimento

Conclusões Trabalhos

Árvore AVL

Introdução

A Verificação de

de Dominância

de Bazg

Experimento

Conclusões Trabalhos Futuros

Árvore AVL:

- Implementação complexa ▼
- \bullet Pouca utilização de memória \blacktriangle
- \bullet Indexação unidimensional \bullet

Introdução

A Verificação de Dominância

O Algoritmo

de Bazgan

Experimento

Conclusões Trabalhos Futuros

Árvore AVL:

- Implementação complexa ▼
- Pouca utilização de memória 🛦
- Indexação unidimensional •

Árvore AVL

Introdução

O MOKE

A Verificação

Dominância

O Algoritm de Bazgan

O SCE

Experimento

Conclusões e Trabalhos

T.............................

о мокр

A Verificação

Dominância

O Algoritm de Bazgan

Experiment

Conclusões Trabalhos Futuros

Árvore AVL

Árvore AVL

Introduça

A Verificação

de Dominância

O Algoritm de Bazgan

Experimento

Conclusões Trabalhos

Introdução

A Verificação de

de Dominância

de Bazg

Experimento

Conclusoes Trabalhos Futuros

Árvore KD:

- \bullet Implementação complexa \blacktriangledown
- Pouca utilização de memória 🛦
- Indexação multidimensional ▲

Introdução

A Verificação de

Dominância

O SCE

Experimento

Conclusões o Trabalhos Futuros

Árvore KD

Árvore KD:

- Implementação complexa ▼
- Pouca utilização de memória ▲
- Indexação multidimensional ▲

(a) Pontos dispostos num plano bi-dimensional.

(b) Pontos indexados por uma 2-d tree.

Introdução

O MOKE

A Verificação

Dominância

O Algoritm de Bazgan

O SCE

Experimento

Conclusões e Trabalhos Futuros

Introdução

O MOKP

A Verificaçã

Dominância

O Algoritm de Bazgan

O SCE

Experiment

Conclusões e Trabalhos Futuros

Introduçã

A Verificação

Dominância

O Algoritmo de Bazgan O SCE

Experiment

Conclusões Trabalhos Futuros

Introduça

A Verificação

de Dominância

O Algoritme de Bazgan

O SCE

Experiment

Conclusões Trabalhos Futuros

Introdução

O MOKE

/erificação

Dominânci

O Algoritmo de Bazgan

O SCF

Experimento

Conclusões e Trabalhos Futuros

Algoritmos para o MOKP

Algoritmo Exato

• Algoritmo de Bazgan – estado da arte;

Algoritmo Heurístico

• SCE para o MOKP – proposta do trabalho;

Experimento

Conclusões Trabalhos Futuros

O Algoritmo de Bazgan

O Algoritmo de Bazgan:

- Algoritmo exato estado da arte
- Algoritmo de programação dinâmica variação do Nemhauser-Ullmann
- Utiliza 3 dominâncias para redução do conjunto de estados

```
Introdução
```

О МОКР

de Dominância

O Algoritmo de Bazgan

2

3

Experimentos

Conclusões e Trabalhos Futuros

```
Algoritmo 2: O algoritmo de Nemhauser e Ullmann para o MOKP.
```

```
 \begin{split} & \text{input: } p, w, W \\ & \text{begin} \\ & & S_0 = \{(0, \dots, 0)\}; \\ & \text{for } k \leftarrow 1, n \text{ do} \\ & & S_k \leftarrow S_{k-1} \cup \left\{(s^1 + p_k^1, \dots, s^m + p_k^m, s^{m+1} + w_k) \right. \\ & & \left. \mid s^{m+1} + w_k \leqslant W, \ s \in S_{k-1}\right\}; \\ & \text{end} \\ & & P = \{s \in S_n \mid \nexists (a \in S_n \mid a\Delta s)\}; \\ & & \text{return } P; \end{split}
```

```
Introdução
```

A Verificaçã de Dominância

O Algoritmo de Bazgan

Experimentos

3

Conclusões e Trabalhos Futuros

```
Algoritmo 3: O algoritmo de Nemhauser e Ullmann para o MOKP.
```

```
 \begin{aligned} & \text{input: } p, w, W \\ & \text{begin} \\ & & S_0 = \{(0, \dots, 0)\}; \\ & & \text{for } k \leftarrow 1, n \text{ do} \\ & & S_k \leftarrow S_{k-1} \cup \left\{(s^1 + p_k^1, \dots, s^m + p_k^m, s^{m+1} + w_k) \\ & & | s^{m+1} + w_k \leqslant W, \ s \in S_{k-1}\}; \\ & & \text{end} \\ & & P = \{s \in S_n \mid \nexists (a \in S_n \mid a\Delta s)\}; \\ & & \text{return } P; \end{aligned}
```

Relações de dominância utilizadas por Bazgan:

- $\mathbf{0}$ D^r : Soluções deficientes;
- $\mathbf{2} D^{\Delta}$: Soluções "pesadas";
- $\mathbf{3}$ D^b : Soluções não promissoras.

Introdução

о мокр

de Dominância

O Algoritmo de Bazgan

O SCE

Experimento

Conclusões e Trabalhos Futuros

1. A relação D^r :

Caso a capacidade residual de uma solução associada a um estado s_k da iteração k seja maior ou igual à soma dos pesos dos itens restantes, o único complemento de s_k que pode resultar em uma solução eficiente é o complemento máximo $I = \{k+1, \ldots, n\}$.

Introdução

о мокр

de
Dominância

O Algoritmo de Bazgan

O SCE

Experimento

Conclusões o Trabalhos Futuros

1. A relação D^r :

Caso a capacidade residual de uma solução associada a um estado s_k da iteração k seja maior ou igual à soma dos pesos dos itens restantes, o único complemento de s_k que pode resultar em uma solução eficiente é o complemento máximo $I = \{k+1, \ldots, n\}$.

$$s_k D_k^r s_{k'} \Leftrightarrow \begin{cases} s_{k'} \in S_{k-1}, \\ s_k = (s_{k'}^1 + p_k^1, \dots, s_{k'}^m + p_k^m, s_{k'}^{m+1} + w_k), \\ s_{k'}^{m+1} \leqslant W - \sum_{i=k}^n w_i \end{cases}$$

Introdução

о мокр

de Dominânci

O Algoritmo de Bazgan

O SCE

Experimento

Conclusões e Trabalhos Futuros

2. A relação D^{Δ} :

Generalização para o caso multiobjetivo da relação de dominância utilizada no Algoritmo de Nemhauser Ullmann.

A Verificaçã

O Algoritmo de Bazgan

O SCE

Experimento

Conclusões e Trabalhos Futuros

2. A relação D^{Δ} :

Generalização para o caso multiobjetivo da relação de dominância utilizada no Algoritmo de Nemhauser Ullmann.

$$s_k D_k^{\Delta} s_{k'} \Leftrightarrow \begin{cases} s_k \Delta s_{k'} & \text{e} \\ s_k^{m+1} \leqslant s_{k'}^{m+1} & \text{se } k < n \end{cases}$$

Introdução

о мокр

A Verificaçã de

Dominância
O Algoritmo

de Bazgan

Experimento

Conclusões (Trabalhos Futuros

3. A relação D^b :

Limite inferior

Vetor objetivo $lb(s) = (lb^1, \dots, lb^m)$ onde

$$lb^j = s^j + \sum_{i \in J} p_i^j$$

para um complemento J qualquer.

Introdução

о мокр

de Dominância

O Algoritmo de Bazgan

O SCE

Experimento

Conclusões of Trabalhos Futuros

3. A relação D^b :

Limite inferior

Vetor objetivo $lb(s) = (lb^1, \dots, lb^m)$ onde

$$lb^j = s^j + \sum_{i \in J} p_i^j$$

para um complemento J qualquer.

Limite superior

Vetor objetivo $u=(u^1,\ldots,u^m)$ tal que $\forall s_n\in Ext(s_k)$ tem-se que $u^j\geqslant s_n^j,\quad j=1,\ldots,m.$

de

Dominânci

O Algoritmo de Bazgan

O SCE

Experimento

Conclusõe Trabalhos Futuros

3. A relação D^b :

$$s_k D_k^b s_{k'} \Leftrightarrow lb(u) \Delta ub(s)$$

Dominância
O Algoritmo

de Bazgan

OBOL

Experimento

Conclusões Trabalhos Futuros

3. A relação D^b :

$$s_k D_k^b s_{k'} \Leftrightarrow lb(u) \Delta ub(s)$$

O limite superior utilizado:

$$ub^{j}(s) = s^{j} + \sum_{i=k+1}^{c_{j}-1} p_{i}^{j} + max \left\{ \left[\overline{W}(s) \frac{p_{c_{j}+1}^{j}}{w_{c_{j}+1}} \right], \left[p_{c_{j}}^{j} - \left(w_{c_{j}} - \overline{W}(s) \right) \cdot \frac{p_{c_{j-1}}^{j}}{w_{c_{j}-1}} \right] \right\}$$

3. A relação D^b :

$$s_k D_k^b s_{k'} \Leftrightarrow lb(u) \Delta ub(s)$$

O limite superior utilizado:

$$ub^{j}(s) = s^{j} + \sum_{i=k+1}^{c_{j}-1} p_{i}^{j} + max \left\{ \left[\overline{W}(s) \frac{p_{c_{j}+1}^{j}}{w_{c_{j}+1}} \right], \left[p_{c_{j}}^{j} - \left(w_{c_{j}} - \overline{W}(s) \right) \cdot \frac{p_{c_{j-1}}^{j}}{w_{c_{j}-1}} \right] \right\}$$

O limite inferior utilizado (complemento J):

$$lb^{j}(s) = s^{j} + \sum_{i \in J} p_{i}^{j}, \quad \sum_{i \in J} w_{i} \leqslant \overline{W}(s)$$

2 3

Experimentos

Conclusões Trabalhos Futuros Algoritmo 4: Algoritmo Bazgan.

```
\begin{aligned} & \textbf{input: } & \boldsymbol{p}, \boldsymbol{w}, \boldsymbol{W} \\ & \textbf{begin} \\ & & S_0 \leftarrow \big\{ (0, \dots, 0) \big\}; \\ & o_1, \dots, o_n = \mathcal{O}^{max}; \end{aligned}
```

de Dominância

O Algoritmo de Bazgan

Experimentos

2

3

5

Conclusões e Trabalhos Futuros

Algoritmo 5: Algoritmo Bazgan.

```
 \begin{aligned} & \textbf{input: } p, w, W \\ & \textbf{begin} \\ & & \left\{ S_0 \leftarrow \left\{ (0, \dots, 0) \right\}; \\ & o_1, \dots, o_n = \mathcal{O}^{max}; \\ & \textbf{for } k \leftarrow 1, n \textbf{ do} \\ & & \left\{ S_k^* \leftarrow \left\{ (s^1 + p_{o_k}^1, \dots, s^m + p_{o_k}^m, s^{m+1} + w_{o_k}) \; \middle| \; s \in \right. \\ & & \left. S_{k-1}, s^{m+1} + w_{o_k} \leqslant W \right\} \end{aligned}
```

Experimentos

2

3

5

6

Conclusões e Trabalhos Futuros Algoritmo 6: Algoritmo Bazgan.

```
\begin{split} & \text{input: } p, w, W \\ & \text{begin} \\ & & S_0 \leftarrow \big\{(0, \dots, 0)\big\}; \\ & o_1, \dots, o_n = \mathcal{O}^{max}; \\ & \text{for } k \leftarrow 1, n \text{ do} \\ & & S_k^* \leftarrow \big\{(s^1 + p_{o_k}^1, \dots, s^m + p_{o_k}^m, s^{m+1} + w_{o_k}) \; \big| \; s \in \\ & & S_{k-1}, s^{m+1} + w_{o_k} \leqslant W \big\} \\ & & & \cup \big\{s \in S_{k-1} \; \big| \; s^{m+1} + w_{o_k} + \dots + w_{o_n} > W \big\}; \end{split}
```

Experimentos

2

3

5

Conclusões e Trabalhos Futuros

Algoritmo 7: Algoritmo Bazgan.

```
\begin{split} & \text{input: } p, w, W \\ & \text{begin} \\ & & S_0 \leftarrow \big\{(0, \dots, 0)\big\}; \\ & o_1, \dots, o_n = \mathcal{O}^{max}; \\ & \text{for } k \leftarrow 1, n \text{ do} \\ & & S_k^* \leftarrow \big\{(s^1 + p_{o_k}^1, \dots, s^m + p_{o_k}^m, s^{m+1} + w_{o_k}) \bigm| s \in \\ & S_{k-1}, s^{m+1} + w_{o_k} \leqslant W \big\} \\ & & \cup \big\{s \in S_{k-1} \bigm| s^{m+1} + w_{o_k} + \dots + w_{o_n} > W \big\}; \\ & S_k^{**} \leftarrow \big\{s \in S_k^* \bigm| \big( \nexists u \in S_k^* \big) \big[ u \Delta s \big] \big\} \;; \end{split}
```

2

5

7

Conclusões e Trabalhos Futuros Algoritmo 8: Algoritmo Bazgan.

2

5

6

7

```
Algoritmo 9: Algoritmo Bazgan.
```

```
input: \boldsymbol{p}, \boldsymbol{w}, W
begin
          S_0 \leftarrow \{(0,\ldots,0)\};
         o_1,\ldots,o_n=\mathcal{O}^{max};
          for k \leftarrow 1, n do
                     S_k^* \leftarrow \{(s^1 + p_{o_k}^1, \dots, s^m + p_{o_k}^m, s^{m+1} + w_{o_k}) \mid s \in \}
                        S_{k-1}, s^{m+1} + w_{o_k} \leq W
                                \cup \{s \in S_{k-1} \mid s^{m+1} + w_{o_k} + \ldots + w_{o_n} > W\};
                    S_k^{**} \leftarrow \{s \in S_k^* \mid (\nexists u \in S_k^*) \lceil u \Delta s \rceil \};
                    S_k \leftarrow \{s \in S_k^{**} \mid (\nexists u \in S_k^{**}) \lceil lb(u) \Delta ub(s) \rceil \};
```

return S_n ;

Experimentos

2

5

6

7

Conclusões e Trabalhos Futuros

```
Algoritmo 10: Algoritmo Bazgan.
```

• verificação da condição $u\Delta s$ (linha 7);

Experimentos

2

5

6

7

8

9

Conclusões e Trabalhos Futuros

```
Algoritmo 11: Algoritmo Bazgan.
```

- verificação da condição $u\Delta s$ (linha 7);
- verificação da condição $lb(u)\Delta ub(s)$ (linha 8).

Introdução

O MOKE

A Verificação

Dominância

ошпанста

de Bazgan

O SCE

 $_{
m Experimento}$

Trabalhos
Futuros

O SCE para o MOKP

de

Dominância

de Bas

O SCE

Experimento

Conclusões Trabalhos Futuros

O SCE:

- Algoritmo populacional evolutivo;
- Evolução simultânea de comunicades independentes;
- Utilizado originalmente para resolver problemas hídricos complexos;
- Embaralha a população em N comunidades (complexos);

O SCE

Introdução

О МОКР

A Verificação

de

Dominancia

de Bazgan

O SCE

 $\operatorname{Experimentos}$

Conclusões e Trabalhos

O SCE

Introduçã

O MOKP

A Verificaçã

Dominânci

O Algoritm

O SCE

Experimento

Conclusões e Trabalhos

Introdução

э мокр

de

O Algoritm

O SCE

Experimento

Conclusões Trabalhos Futuros

Adaptação para contexto multiobjetivo:

- Aptidão do indivíduo:
- Construção de conjunto Pareto aproximado:

O MOKP

de Dominância

O Algoritm

O SCE

Experimento

Conclusões Trabalhos Futuros

Adaptação para contexto multiobjetivo:

- Aptidão do indivíduo:
 - Ordenação em frontes não dominados
- Construção de conjunto Pareto aproximado:
 - Arquivo externo

A Verificaçã de

de Dominância

O SCE

Experimento:

Conclusões Trabalhos Futuros

Adaptação para contexto multiobjetivo:

- Aptidão do indivíduo:
 - Ordenação em frontes não dominados
- Construção de conjunto Pareto aproximado:
 - Arquivo externo

Aplicação para o MOKP:

- Construção de solução aleatória;
- Procedimento de cruzamento.

Conclusões Trabalhos Futuros Aptidão do indivíduo: ordenação em frontes não dominados.

Figure: População sem ordenação.

Figure: População ordenada em frontes não dominados.

Construção de conjunto Pareto aproximado: utilização de arquivo externo.

Algoritmo 12: Procedimento de atualização de arquivo, dada uma nova solução.

```
\begin{array}{c|c} \textbf{input:} \ A: \text{arquivo}, \ x: \text{indivíduo} \\ \textbf{1} \quad \textbf{begin} \\ \textbf{2} \quad & \textbf{if} \ \#(y \in A, y\Delta x) \ \textbf{then} \\ \textbf{3} \quad & A \leftarrow A \cup \{x\}; \qquad \rhd \ \textbf{Inclusão} \ \textbf{de} \ x \ \textbf{no} \ \textbf{arquivo} \\ \textbf{4} \quad & A \leftarrow A \setminus \{z \in A \mid x\Delta z\}; \ \rhd \ \textbf{Remoção} \ \textbf{das} \ \textbf{soluções} \ \textbf{dominadas} \\ \textbf{por} \ x \\ \textbf{5} \quad & \textbf{return} \ A; \end{array}
```

O SCE

Algoritmo 13: Algoritmo SCE adaptado para o MOKP. begin Inicializar população de N * M indivíduos gerados aleatoriamente; 2 Classificar população em frontes não dominados ; 3 Selecionar o 1º fronte para compor arquivo externo; 4 for $k \leftarrow 1 : K$ do 5 Ordenar população por aptidão (desempate por hipervolume); O SCE Distribuir população em M complexos; for $i \leftarrow 1 : N$ do for $k' \leftarrow 1 \cdot K'$ do 9 Selecionar subcomplexo com P indivíduos retirados 10 do i-ésimo complexo: 11 Evoluir pior indivíduo do subcomplexo gerando um novo indivíduo ; Classificar toda a população (nova e antiga) em frontes não 12 dominados: Propor atualização do arquivo utilizando as soluções do 1º fronte 13 F_1 : Selecionar população: 14

return Arquivo externo;

15

O SCE

Algoritmo 14: Algoritmo SCE adaptado para o MOKP.

```
begin
                       Inicializar população de N * M indivíduos gerados aleatoriamente;
                       Classificar população em frontes não dominados ◀;
              3
                       Selecionar o 1º fronte para compor arquivo externo;
              4
                       for k \leftarrow 1 : K do
              5
                             Ordenar população por aptidão (desempate por hipervolume);
O SCE
                              Distribuir população em M complexos;
                             for i \leftarrow 1 : N do
                                    for k' \leftarrow 1 \cdot K' do
              9
                                          Selecionar subcomplexo com P indivíduos retirados
             10
                                            do i-ésimo complexo;
                                          Evoluir pior indivíduo do subcomplexo gerando um
             11
                                            novo indivíduo ∢;
                             Classificar toda a população (nova e antiga) em frontes não
            12
                                dominados ◄:
                              Propor atualização do arquivo utilizando as soluções do 1º fronte
             13
                                F_1 \blacktriangleleft:
                             Selecionar população:
            14
                       return Arquivo externo;
            15
```

- Classificar a população em frontes não dominados (linhas 3 e 12);
- Verificar se o indivíduo teve aptidão melhorada (linha 11);
- Atualização do arquivo, dada uma nova solução (linha 13).

O MOKE

Verificação

. Dominância

de Bazgan

) SCE

Experimento

Conclusões Trabalhos Futuros

Experimentos Computacionais

Introdução O MOKP A Verificaçã de

de Bazga O SCE

Experimentos

Conclusões Trabalhos Futuros

Instâncias - Contexto Exato:

- Quatro classes de instâncias (A, B, C e D)
- Diversos número de itens
- bi-objetivo e 3-objetivo
- 10 instâncias para cada caso
- 10 execuções para cada instância

Abordagem Exata

Instâncias bi-objetivo divididas em 4 tipos:

- A) Aleatórias: $p_i^j \in [1, 1000], w_i \in [1, 1000].$
- B) Não-conflitantes: $p_i^1 \in [111, 1000], p_i^2 \in [p_i^1 100, p_i^1 + 100], w_i \in [1, 1000].$
- C) Conflitantes: $p_i^1 \in [1, 1000], p_i^2 \in [max\{900 p_i^1; 1\}, min\{1100 p_i^1, 1000\}], w_i \in [1, 1000].$
- D) Conflitantes com pesos correlacionados: $p_i^1 \in [1, 1000], p_i^2 \in [max\{900 p_i^1; 1\}, min\{1100 p_i^1, 1000\}], w_i \in [p_i^1 + p_i^2 200, p_i^1 + p_i^2 + 200].$

Abordagem Exata

Instâncias 3-objetivo divididas em 4 tipos:

- A) Aleatórias: $p_i^j \in [1, 1000] w_i \in [1, 1000]$
- B) Não-conflitantes: $p_i^1 \in [111, 1000], p_i^2 \in$ $[p_i^1 - 100, p_i^1 + 100], p_i^3 \in [p_i^1 - 100, p_i^1 + 100], w_i \in [1, 1000].$
- C) Conflitantes: $p_i^1 \in [1, 1000], p_i^2 \in [1, 1001 - p_i^1] p_i^3 \in [max\{900 - p_i^1 - p_i^1\}] p_i^3 \in [max\{900 - p_i^1 - p_i^1]] p_i^3 \in [max\{900 - p_i^1 - p_i^1]]$ p_i^2 ; 1}, $min\{1100 - p_i^1 - p_i^2, 1001 - p_i^1\}\}w_i \in [1, 1000].$
- D) Conflitantes com pesos correlacionados: $p_i^1 \in [1, 1000] p_i^2 \in [1, 1001 - p_i^1] p_i^3 \in$ $[max\{900 - p_i^1 - p_i^2; 1\}, min\{1100 - p_i^1 - p_i^2, 1001 - p_i^1\}]w_i \in$ $[p_i^1 + p_i^2 + p_i^3 - 200, p_i^1 + p_i^2 + p_i^3 + 200].$

Abordagem Exata

Tempo computacional médio do algoritmo Bazgan para instâncias bi-objetivo:

Tı	nstânc	ia.	AVL tree	árvore 2-d		
Tipo	n	Par	tempo (s)	tempo (s)	speedup	
	40	38.1	0.06	0.06	1.0	
Α	60	73.1	1.12	0.88	1.3	
	80	125.6	19.81	11.89	1.7	
	100	180.4	165.24	76.50	2.2	
	120	233.9	708.53	361.87	2.0	
В	100	3.1	0.02	0.08	0.3	
D	200	10.0	0.80	5.09	0.2	
	300	24.9	9.45	88.30	0.1	
	400	36.2	95.39	730.04	0.1	
	500	53.7	255.57	2824.65	0.1	
C	20	36.6	0.00	0.00	1.0	
C	40	102.8	0.65	0.42	1.5	
	60	231.9	28.98	14.09	2.1	
	80	358.0	564.10	241.54	2.3	
	100	513.8	3756.57	1605.19	2.3	
D	20	174.9	0.15	0.12	1.3	
D	30	269.3	16.82	7.60	2.2	
	40	478.0	395.76	186.67	2.1	
	50	553.4	2459.48	1417.94	1.7	

A Verificação

A verificação de Dominância

O Algoritmo de Bazgan O SCE

Experimentos

Conclusões e Trabalhos Futuros

Experimentos Computacionais

Abordagem Exata

Número de avaliações médio do algoritmo Bazgan para instâncias bi-objetivo:

Abordagem Exata

Tempo computacional médio do algoritmo Bazgan para instâncias 3-objetivo:

Instância			AVL tree	árvore 2-d		árvore 3-d	
Tipo	n	Par	tempo (s)	tempo (s)	$_{\mathrm{speedup}}$	tempo (s)	$_{\mathrm{speedup}}$
A	50	557.5	41.2	21.3	1.9	18.5	2.2
А	60	1240.0	485.9	247.8	1.9	79.9	6.0
	70	1879.3	3179.5	1038.0	3.0	614.5	5.1
	80	2540.5	6667.9	3796.0	1.7	2943.9	2.2
	90	3528.5	24476.5	12916.7	1.8	3683.7	6.6
В	100	18.0	0.1	0.3	0.3	0.3	0.3
ь	200	65.4	11.4	34.4	0.3	29.1	0.4
	300	214.2	307.7	631.5	0.5	583.2	0.5
	400	317.0	4492.9	8464.9	0.5	5402.2	0.8
	20	254.4	0.06	0.05	1.2	0.03	2.17
C	30	1066.6	9.69	4.18	2.3	1.30	7.46
	40	2965.5	471.68	153.21	3.1	30.50	15.5
	20	4087.7	23.6	10.9	2.2	1.9	12.5
D	30	8834.5	8914.2	3625.3	2.5	1019.5	8.7

O MOKP A Verificação de Dominância O Algoritmo

Experimentos

Conclusões Trabalhos Futuros

A Verificação

de Dominância

O Algoritmo de Bazgan O SCE

Experimentos

Conclusões e Trabalhos Futuros

Experimentos Computacionais

Abordagem Exata

Número de avaliações médio do algoritmo Bazgan para instâncias 3-objetivo:

Introduçã

A Verificaçã

de Dominância

O Algorit

O SCE

Experimentos

Conclusões Trabalhos Futuros

Instâncias – Contexto Heurístico:

- Propostas por Zitzler
- 250, 500 e 750 itens
- bi-objetivo e 3-objetivo
- 1 instância para cada caso
- 30 execuções para cada instância

Abordagem Heurística

э мокр

de

O Algoritm

de Bazga O SCE

Experimento

Conclusões Trabalhos Futuros

Valores de parâmetros utilizados no algoritmo SCE:

Parâmetro	Valor	Descrição		
N	30	Número de complexos		
M	30	Número de indivíduos em cada complexo		
Р	5	Número de indivíduos em cada subcomplexo		
K 400		Número de iterações		
K' 30		Número de iterações aplicados a cada evolução		
		de complexo		
c $n/20$		Número de genes carregados no procedimento		
		de cruzamento		

Abordagem Heurística

Experimentos

Métrica para avaliação de qualidade de Pareto: hiper-volume.

Exemplo de conjunto Pareto bi-objetivo possuindo 18 unidades hiper-volume (área):

Abordagem Heurística

O MOKP A Verificaç de Dominância

O Algoritn de Bazgan O SCE

Experimento

Conclusões e Trabalhos Futuros

Hiper-volume médio alcançado por cada heurística:

r	n	n	SPEA2	NSGA-II	MOEA/D	MOFPA	SCE
)	250	90.4	86.3	96.9	97.8	93.6
2	_	500	87.6	81.7	96.9	97.8	92.7
		750	85.9	79.2	98.4	99.2	92.3
3	?	250	83.3	77.4	99.0	99.7	89.4
٠	, –	500	72.8	65.9	92.9	93.6	79.4
	_	750	77.5	73.3	94.7	$\boldsymbol{95.2}$	79.8

Abordagem Heurística

Tempo computacional médio do algoritmo SCE para instâncias Zouache:

-	Instância			Lista	árvore	e 2-d	árvore 3-d	
	m	n	Par	tempo (s)	tempo (s)	speedup	tempo (s)	speedup
_	2	250	88.4	9.3	13.1	0.71	_	_
	4	500	106.0	14.3	18.3	0.78	_	_
		750	120.4	18.7	22.3	0.84	_	_
	3	250	705.5	9.8	10.1	0.97	9.1	1.08
	0	500	672.8	15.6	16.0	0.98	15.2	1.03
		750	646.0	22.0	24.2	0.91	21.8	1.01

O MOKP

A Verificação
de
Dominância
O Algoritmo

O SCE

Experimentos

Conclusões e Trabalhos Futuros

Abordagem Heurística

Experimentos

Número de avaliações médio do algoritmo SCE para instâncias Zouache:

(b) Instâncias 3-objetivo.

O MOKE

A Verificação

n · · ·

Dominância

de Bazgan

O SCE

Experimento

Conclusões e Trabalhos Futuros

Conclusões e Trabalhos Futuros

A Verificaç de

Dominância

de Bazgar O SCE

Experimento

Conclusões e Trabalhos Futuros

Principais contribuições:

- Interpretação do problema de verificação de dominância como problema de busca de faixa
- Proposta da utilização da Árvore KD como estrutura de indexação multidimencional
- Análise da proposta em contextos exatos e heurísticos utilizando as principais instâncias da literatura

Conclusões

ınıroduça

O MOKP

de

Dominância

O Algoritm de Bazgan

O SCE

Experimento

Conclusões e Trabalhos Futuros • Indexação multidimensional foi eficiente no contexto exato:

Dominância

O Algoritmo de Bazgan

) SCE

Experimento

Conclusões e Trabalhos Futuros

Conclusões

- Indexação multidimensional foi eficiente no contexto exato:
 - Conjuntos solução de alta cardinalidade

de Bazga

O SCE

Experimentos

Conclusões e Trabalhos Futuros

Conclusões

- Indexação multidimensional foi eficiente no contexto exato:
 - Conjuntos solução de alta cardinalidade
 - Speedup de até 2.3 para bi-objetivo

A Verificaçã de

Dominância

O Algorit de Bazga

) SCE

Experimento

Conclusões e Trabalhos Futuros

- Indexação multidimensional foi eficiente no contexto exato:
 - Conjuntos solução de alta cardinalidade
 - Speedup de até 2.3 para bi-objetivo
 - Speedup de até 15.5 para 3-objetivo

- Indexação multidimensional foi eficiente no contexto exato:
 - Conjuntos solução de alta cardinalidade
 - Speedup de até 2.3 para bi-objetivo
 - Speedup de até 15.5 para 3-objetivo
 - Drástica redução no número de avaliações de solução

Dominância

de Baz

. . .

Conclusões e Trabalhos Futuros

- Indexação multidimensional foi eficiente no contexto exato:
 - Conjuntos solução de alta cardinalidade
 - Speedup de até 2.3 para bi-objetivo
 - Speedup de até 15.5 para 3-objetivo
 - Drástica redução no número de avaliações de solução
- Indexação multidimensional não foi eficiente no contexto heurístico:

- Indexação multidimensional foi eficiente no contexto exato:
 - Conjuntos solução de alta cardinalidade
 - Speedup de até 2.3 para bi-objetivo
 - Speedup de até 15.5 para 3-objetivo
 - Drástica redução no número de avaliações de solução
- Indexação multidimensional não foi eficiente no contexto heurístico:
 - Pouco impacto no tempo computacional

Conclusões

- Indexação multidimensional foi eficiente no contexto exato:
 - Conjuntos solução de alta cardinalidade
 - Speedup de até 2.3 para bi-objetivo
 - Speedup de até 15.5 para 3-objetivo
 - Drástica redução no número de avaliações de solução
- Indexação multidimensional não foi eficiente no contexto heurístico:
 - Pouco impacto no tempo computacional
 - Conjuntos solução de baixa cardinalidade overhead

Conclusões

- Indexação multidimensional foi eficiente no contexto exato:
 - Conjuntos solução de alta cardinalidade
 - Speedup de até 2.3 para bi-objetivo
 - Speedup de até 15.5 para 3-objetivo
 - Drástica redução no número de avaliações de solução
- Indexação multidimensional não foi eficiente no contexto heurístico:
 - Pouco impacto no tempo computacional
 - Conjuntos solução de baixa cardinalidade overhead
 - Considerável redução no número de avaliações de solução

Tabalhos Futuros

- Verificar a performance da árvore KD em outros problemas multiobjetivos;
- Considerar outras estruturas de dados para auxílio à operação de verificação de dominância;
- Aprimorar a implementação do SCE para o MOKP;
- Investigar a causa da ineficiência da atual implementação do algoritmo Bazgan.

о мокр

A Verificação

de

Jominancia

de Bazgan

O SCE

Experimentos

Conclusões e Trabalhos Futuros Obrigado.

OMOKE

A Verificação

Dominância

de Bazgan

O SCE

 $\operatorname{Experimentos}$

Conclusões e Trabalhos Futuros