Série 8

Tous les exercices seront corriges. La correction sera postee sur le moodle apres 2 semaines.

Vous etes fortement encourages a essayer de resoudre (eventuellement a plusieurs) l'exercice (\star) et a rendre votre solution (eventuellement a plusieurs) avant le dimanche de la semaine suivante celle ou la serie a ete postee. Il faudra transmettre votre solution sur moodle, sous forme de fichier pdf (eventuellement tape en LaTeX) en suivant le lien a cet effet dans la semaine de la serie.

Soit K un corps; dans la suite si n est un entier on ecrira "n" pour $n_K = n.1_K$. De meme si n n'est pas divisible par $\operatorname{car}(K)$ (de sorte que n_K est inversible), on ecrira n^{-1} ou 1/n pour l'inverse multiplicatif de n_K : par exemple si $\operatorname{car}K \neq 3$, on ecrira $2/3 = 2.3^{-1}$ pour $2_K.3_K^{-1}$.

Exercice 1. Effectuer tous le produit possibles des matrices suivantes

$$A = \begin{pmatrix} 2 & -1 & 7 \\ 3 & 5 & -3 \end{pmatrix}, B = \begin{pmatrix} 1 & 8 & 5 \end{pmatrix}, C = \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix}, D = \begin{pmatrix} 2 & 7 \\ 1 & -1 \\ 3 & 0 \end{pmatrix},$$

Exercice 2. Determiner le rang de la matrice

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1 \\
3 & 4 & 1 & 2
\end{pmatrix}$$

en fonction de la caracteristique du corps K.

Exercice 3. Soit $M = (m_{ij}) \in M_{d'' \times d'}(K)$ et $N = (n_{kl}) \in M_{d' \times d}(K)$. Montrer par un calcul literal que

$$^{t}(M.N) = {}^{t}N^{t}M.$$

Exercice 4. Dans $M_d(K)$ on considere les sous-ensembles

$$S_d(K) := \{ M \in M_d(K), {}^tM = M \}, A_d(K) := \{ M \in M_d(K), {}^tM = -M \}.$$

1. Montrer que $S_d(K)$, $A_d(K)$ sont des SEV de $M_d(K)$.

2. Monrter que si $car(K) \neq 2$,

$$M_d(K) = S_d(K) \oplus A_d(K)$$

3. Que ce passe-t-il si car(K) = 2?

Exercice 5. Soit K un corps et $V = K^3$ et

$$\mathscr{B}' = \{ \mathbf{f}_1 = (1, 2, 3), \mathbf{f}_2 = (-1, 2, 4), \mathbf{f}_3 = (2, 1, 5) \}.$$

- 1. Pour quelle caracteristiques de $K \mathcal{B}$ est elle une base?
- 2. Quand c'est une base, calculer $M = \operatorname{Mat}_{\mathscr{B}^0, \mathscr{B}'}(Id_{K^3})$ ou \mathscr{B}^0 est la base canonique.
- 3. Quand c'est une base, calculer $M' = \operatorname{Mat}_{\mathscr{B}',\mathscr{B}^0}(Id_{K^3})$. Que valent

Exercice 6. On considere la matrice

$$M = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{pmatrix} \in M_4(K)$$

1. Calculer M^2, M^3, M^4 et trouver $a_0, a_1, a_2, a_3 \in K$ tels que

$$\mathbf{0}_4 = M^4 + a_3 M^3 + a_2 M^2 + a_1 M + a_0 \text{Id}_4.$$

- 2. Montrer que pour tout $k \ge 1, M^k$ est combinaison lineaire de $\{M^3, M^2, M, Id_4\}$.
- 3. Quelle est la dimension de $V = \langle M^3, M^2, M, \operatorname{Id}_4 \rangle \subset M_4(K)$?
- 4. Plus generalement on considere pour $d \geqslant 1$ et $\mathbf{b} = (b_0, \dots, b_{d-1}) \in K^d$ la matrice $d \times d$

$$M_{\mathbf{b}} = \begin{pmatrix} 0 & 0 & 0 & 0 & -b_0 \\ 1 & 0 & 0 & 0 & -b_1 \\ 0 & 1 & 0 & 0 & -b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 1 & -b_{d-1} \end{pmatrix} \in M_d(K).$$

Montrer qu'il existe $a_0, a_1, a_2, a_{d-1} \in K$ tels que

$$\mathbf{0}_d = M^d + a_{d-1}M^{d-1} + \dots + a_1.M + a_0.\mathrm{Id}_d.$$

5. Montrer que $M_{\mathbf{b}}$ est de rang d ssi $b_0 \neq 0$.

Exercice 7. Soit les applications lineaires suivante sur les polynomes :

$$\alpha: \begin{matrix} \mathbb{R}[t]_{\leqslant 3} & \mapsto & \mathbb{R}[t]_{\leqslant 3} \\ P(t) & \mapsto & 2P'(t) - P(t) \end{matrix} , \quad \beta: \begin{matrix} \mathbb{R}[t]_{\leqslant 3} & \mapsto & \mathbb{R}[t]_{\leqslant 2} \\ P(t) & \mapsto & P'(t) \end{matrix}.$$

- 1. Determiner la matrice de α par rapport a la base canonique $\{1, t, t^2, t^3\}$ ainsi que son rang. Donner une base du noyau et de l'image.
- 2. Meme questions pour β par rapport aux bases canoniques $\{1, t, t^2, t^3\}$ et $\{1, t, t^2\}$.
- 3. Meme questions pour $\beta \circ \alpha$ par rapport aux bases canoniques $\{1,t,t^2,t^3\}$ et $\{1,t,t^2\}$.

Exercice 8. (\star) Un endomorphisme $\pi: V \mapsto V$ est appele projecteur si π verifie $(\operatorname{dans} \operatorname{End}(V))$

$$\pi^2 = \pi \circ \pi = \pi.$$

- 1. Montrer que $\ker \pi$ et $\operatorname{Im} \pi$ sont en somme directe.
- 2. Montrer (sans calcul) que $V = \ker \pi \oplus \operatorname{Im} \pi$.
- 3. Donner une decomposition explicite d'un vecteur $v \in V$ sous la forme

$$v = v_0 + v_1$$
 avec $v_0 \in \ker \pi$, $v_1 \in \operatorname{Im} \pi$.

4. Soit $\mathscr{B}_0 = \{\mathbf{e}_1, \dots, \mathbf{e}_{d_0}\} \subset \ker \pi \text{ et } \mathscr{B}_1 = \{\mathbf{e}'_1, \dots, \mathbf{e}'_{d_1}\} \subset \operatorname{Im} \pi \text{ des bases du noyau et de l'image. Alors } \mathscr{B} = \mathscr{B}_0 \cup \mathscr{B}_1 \text{ est une base de } V.$ Calculer la matrice $\operatorname{Mat}_{\mathscr{B}\mathscr{B}}(\pi)$.