Tutorial 5: Regression II: Model Selection

ECO3080: Machine Learning in Business

Instructor: Prof. Qihui Chen Teaching Assistant: Long Ma

October 10, 2022

Road Map Today

- 1 Resampling methods:
 - Leave-one-out cross validation (LOOCV)
 - k-fold cross validation (k-fold CV)
 - Bootstrap
- 2 Model Selection:
 - Best subset, Forward selection, Backward selection
 - Ridge/Lasso/Elastic net regression
 - Principal component regression (PCR), Partial least square (PLS)

Road Map Today

- Although we talk about these methods in a regression context, we can use them in classification problems or in more general cases.
- Keep in mind that machine learning methods are not isolated from each other, and please use them flexibly.

Resampling Methods: LOOCV

- What we are trying to do is:
 - 1 Use data set Auto.
 - 2 Run the regression "mpg \sim horsepower" on each training set.
 - 3 Make prediction on each validation set.
 - 4 What are the training sets and validation sets?
- We need to install the package "boot" and run the following code.

```
# LOOCV
install.packages("boot")
library(boot)

glm.fit <- glm(mpg ~ horsepower, data = Auto) # define the model
cv.err <- cv.glm(Auto, glm.fit) # do LOOCV
cv.err$delta # MSE on test set

cv.error <- rep(0, 5) # you can run the above code for different polys
for (i in 1:5) {
    glm.fit <- glm(mpg ~ poly(horsepower, i), data = Auto)
    cv.error [i] <- cv.glm(Auto, glm.fit)$delta[1]
}
cv.error # see the change when the model is growing nonlinear</pre>
```

Resampling Methods: LOOCV

- You will get two numbers: 24.23151, 24.23114
- Output "delta" is a vector of length two. The first component is the raw cross-validation estimate of prediction error. The second component is the adjusted cross-validation estimate. The adjustment is designed to compensate for the bias introduced by not using leave-one-out cross-validation.
- We compare 5 models using for loop and take the first component out of "delta". We get: 24.23151, 19.24821, 19.33498, 19.42443, 19.03321, which means that including the quadratic term into our regression model can drastically reduce the prediction error, but the marginal effect of including higher order terms is quite small.

Resampling Methods: k-fold CV

School of Management and Economics, Chinese University of Hong Kong, Shenzhen

■ The logic behind k-fold CV is the same as that behind LOOCV.

 You can draw a graph to show the relationship between test errors and the number of higher order terms you want to include into you model. (Show in class)

Resampling Methods: Bootstrap

School of Management and Economics, Chinese University of Hong Kong, Shenzhen

Advantage of Bootstrap: generate a "distribution" (and hence "variance") of estimators without any assumptions.

```
boot.fn <- function(data, index){
     return(coef(lm(mpg ~ horsepower, data = data, subset = index)))
 library(boot)
> set.seed(911)
> boot(Auto, boot.fn. 1000)
ORDINARY NONPARAMETRIC BOOTSTRAP
Call:
boot(data = Auto. statistic = boot.fn. R = 1000)
Bootstrap Statistics:
     original
                   bias std. error
t1* 39.9358610 0.06029772 0.86456731
t2* -0.1578447 -0.00054708 0.00748468
> summary(lm(mpg ~ horsepower, data = Auto))$coef
              Estimate Std. Error
                                    t value
                                                 Pr(>|t|)
(Intercept) 39.9358610 0.717498656
                                   55.65984 1.220362e-187
horsepower -0.1578447 0.006445501 -24.48914 7.031989e-81
```


School of Management and Economics, Chinese University of Hong Kong, Shenzhen

■ You need to install the package "leaps".

```
library(ISLR)
Hitters <- na.omit(Hitters) # drop those observations with n.a.
install.packages("leaps")
library(leaps)
regfit.full <- regsubsets(Salary ~ ., Hitters, nvmax = 5)
summary(regfit.full)
regfit.fwd <- regsubsets(Salary ~ ., Hitters, nvmax = 5, method = "forward")
summary(regfit.fwd)
regfit.bwd <- regsubsets(Salary ~ ., Hitters, nvmax = 5, method = "backward")
summary(regfit.bwd)|</pre>
```

- "nvmax" means the maximum number of variables you want to include into your model.
- "method" can be "forward" and "backward". If you do not announce it, then it will use the best subset method.

School of Management and Economics, Chinese University of Hong Kong, Shenzhen

■ How to read the outcome?

■ Each line tells you that which variable should be included into your model when you only need 1 regressor, 2 regressors, and so on.

School of Management and Economics, Chinese University of Hong Kong, Shenzhen

Use k-fold CV to find the best model.

```
# define a function of prediction under regsubsets
predict.regsubsets <- function(object, newdata, id) {</pre>
  form <- as.formula(object$call[[2]])</pre>
 mat <- model.matrix(form, newdata)</pre>
 coefi = coef(object, id = id)
  xvars <- names(coefi)</pre>
 mat[, xvars] %*% coefi
k = 10
set.seed(911)
folds <- sample(1:k, nrow(Hitters), replace = TRUE)
cv.error <- matrix(NA, k, 19, dimnames = list(NULL, paste(1:19)))
for (j in 1:k) {
 best.fit <- regsubsets(Salary ~ .. data = Hitters[folds != i, ], nymax = 19)
 for (i in 1:19){
    pred <- predict.regsubsets(best.fit. Hitters[folds == i. ]. id = i)</pre>
    cv.error[i, i] <- mean((Hitters$Salary[folds == i] - pred)^2)
mean.cv.errors <- apply(cv.error, 2, mean)</pre>
par(mfrow = c(1, 1))
plot(mean.cv.errors, type = "b")
```


School of Management and Economics, Chinese University of Hong Kong, Shenzhen

Use k-fold CV to find the best model.

School of Management and Economics, Chinese University of Hong Kong, Shenzhen

General form:

$$\min_{\beta} \sum_{i=1}^{N} \left(y_i - \sum_{j=1}^{K} x_{i,j} \beta_j \right)^2 + \lambda \left[\alpha \|\beta\| + (1 - \alpha) \|\beta\|^2 \right]$$
 (1)

- When $\alpha = 0$, ridge regression;
- When $\alpha = 1$, lasso regression;
- When $\alpha \in (0,1)$, elastic net regression.
- What about the objective function in logistic regression with penalty?

- You need to install the package "glmnet".
- Variables should be in matrix or vector form.
- Variables should be standardized.

```
# ridge regression
ridge.mod <- glmnet(X, Y, alpha = 0, lambda = 5)
summary(ridge.mod)
ridge.mod$beta
ridge.mod$a0

# lasso regression
lasso.mod <- glmnet(X, Y, alpha = 1, lambda = 5)
summary(lasso.mod)
lasso.mod$beta
lasso.mod$beta
lassic.mod <- glmnet(X, Y, alpha = 0.5, lambda = 5)
summary(lassic.mod <- glmnet(X, Y, alpha = 0.5, lambda = 5)
summary(elassic.net.mod <- glmnet(X, Y, alpha = 0.5, lambda = 5)
summary(elassic.net.mod)
elastic.net.mod$beta
elastic.mod$beta</pre>
```


School of Management and Economics, Chinese University of Hong Kong, Shenzhen

■ Coefficients shrinkage in ridge regression:

School of Management and Economics, Chinese University of Hong Kong, Shenzhen

■ Coefficients shrinkage in lasso regression:

School of Management and Economics, Chinese University of Hong Kong, Shenzhen

■ Coefficients shrinkage in elastic net regression:

- How to find the best λ and α ? k-fold CV.
- We have something called "cv.glmnet".
- Take ridge regression as an example.

```
set.seed(1997)
train <- sample(1:nrow(X), nrow(X)/2)
test <- (-train)
Y.test <- Y[test]

cv.out <- cv.glmnet(X[train,], Y[train], alpha = 0)
plot(cv.out)
bestlambda <- cv.out$lambda.min
bestlambda
ridge.pred <- predict(ridge.mod, s = bestlambda, newx = X[test,])
mean((ridge.pred - Y.test)^2)

out <- glmnet(X, Y, alpha = 0)
predict(out, type = "coefficients", s = bestlambda)[1:20,]</pre>
```


- How to choose the best α in elastic net regression?
- Usually, you can use a for loop on a grid of α (e.g. $\alpha \in \{0, 0.1, 0.2, 0.3, \cdots, 0.9, 1\}$)
- The trade-off here is between the prediction power and the computational power.

Model Selection: PCR/PLS

- Variables should be standardized (R will do it automatically).
- You need to install the package "pls".

Model Selection: PCR/PLS

School of Management and Economics, Chinese University of Hong Kong, Shenzhen

■ PCR:

PLS:

