Latent-space Physics: Towards Learning the Temporal Evolution of Fluid Flow

Steffen Wiewel, Moritz Becher, Nils Thuerey
Technical University of Munich

Motivation

- The field of computational methods has been highly successful at developing powerful numerical algorithms to predict how the natural phenomena under consideration will behave.
- Take a different view:
 - instead of relying on analytic expressions
 - use a deep learning approach to infer physical functions based on data
 - focus on temporal evolution of complex functions in the context of fluid flows

Challenge: high dimensionality of Eulerian space-time data sets

Contributions

- a first LSTM architecture to predict temporal evolutions of dense, 3D functions of physics system in latent spaces
- a neural-network(an encoder and decoder architecture) based simulation algorithm with significant practical speed-ups. (a strong compression)
 - more than two orders of magnitudes faster than a traditional pressure solver
- a detailed evaluation of training modalities
- Give NNs predictive capabilities for complex inverse problems

Background: flow physics

Navier-Stokes (NS) model

```
u: flow velocity \partial \mathbf{u}/\partial t + \mathbf{u} \cdot \nabla \mathbf{u} = -1/\rho \nabla p + \nu \nabla^2 \mathbf{u} + \mathbf{g}, \nabla \cdot \mathbf{u} = 0, (1) p: pressure
```

ρ, v, **g**: density, kinematic viscosity and external forces

Method

- **Goal**: predict future states of a physical function \mathbf{x} (R³ ×R⁺ \rightarrow R^d):
 - d = 1 for scalar functions such as pressure
 - d = 3 for vectorial functions such velocity fields
 - Can represent a spatio-temporal pressure function, or a velocity field
- Key: reducing the dimensionality of the problem using convolutional neural networks (CNNs) with respect to both time and space

Process:

- Map the original 3D problem into a smaller spatial *latent space;* Learn the inverse mapping at the same time
- Maps a collection of reduced representations into an encoding of the temporal evolution
- Reduced temporal state is used to output a sequence of spatial latent space representations
- Decode latent space representations to yield the full spatial data set

Method (cont'd)

- Goal: Given a functional representation f_t , a current state and n previous states, predict future states from $\mathbf{x}(t+h)$ to $\mathbf{x}(t+oh)$: $f_t(\mathbf{x}(t-nh),...,\mathbf{x}(t-h),\mathbf{x}(t)) \approx [\mathbf{x}(t+h),...,\mathbf{x}(t+oh)]$. (2)
- Employ f_d (CNN / decoder) and f_e (CNN / encoder) to compute low dimensional encodings Rephrase Eq. (2):

$$\tilde{f}_t \left(f_e(\mathbf{x}(t-nh)), \dots, f_e(\mathbf{x}(t)) \right) \approx \left[\mathbf{c}^{t+h}, \dots, \mathbf{c}^{t+oh} \right]
f_d \left(\left[\mathbf{c}^{t+h}, \dots, \mathbf{c}^{t+oh} \right] \right) \approx \left[\mathbf{x}(t+h), \dots, \mathbf{x}(t+oh) \right]$$

$$f_d \left(\tilde{f}_t \left(f_e(\mathbf{x}(t-nh)), \dots, f_e(\mathbf{x}(t)) \right) \right) \approx f_t(\mathbf{x}(t-nh), \dots, \mathbf{x}(t))$$
(3)

- \circ **c**: latent space, $\mathbf{c} \in \mathbb{R}^{m_s}$
- \circ \tilde{f}_t : the prediction network, also an encoder-decoder structure
 - turns the temporal stack of encoded data points $f_e(\mathbf{x})$ into a reduced representation \mathbf{d} , refer to as temporal context.

Architecture (spatial network)

Goal: Reducing Dimensionality

a fully convolutional autoencoder

$$\min_{\boldsymbol{\theta}_d, \boldsymbol{\theta}_e} |f_d(f_e(\mathbf{x}(t))) - \mathbf{x}(t)|_2,$$

 θ_d , θ_e : parameters of the decoder and encoder

• Note that: paths from f_{e_k} over c_k to f_{e_5} are only active in pretraining stage k. After pretraining only the path f_{d_k} over c_5 to f_{d_5} remains active.

Fig 1: Overview of the autoencoder network

Architecture (temporal network)

Goal: Prediction of Future States

- LSTM layers for predicting the evolution over time.
 - Minimize the mean absolute error between the o predicted and ground truth states:

$$\min_{\boldsymbol{\theta}_t} \left| \tilde{f}_t \left(\mathbf{c}^{t-nh}, \dots, \mathbf{c}^{t-h}, \mathbf{c}^t \right) - \left[\mathbf{c}^{t+h}, \dots, \mathbf{c}^{t+oh} \right] \right|_1. \tag{6}$$

- a recurrent encoder module (LSTM)
 - transform n + 1 latent space points into a temporal context d
- a recurrent decoder module with similar structure (layers of LSTM units)
 - o takes a context d as input, outputs a series of future, spatial latent space representations
- During encoding, only keep the very last context, pass it to the decoder part.
- ✓ During decoding, context is repeated o times for the decoder LSTM to infer the desired future states.

Architecture (temporal network)

Goal: Prediction of Future States

To prevent overfitting: a hybrid structure of LSTM units and convolutions

dashed boxes indicate an iterative evaluation

Navier-Stokes (NS) model:

$$\partial \mathbf{u}/\partial t + \mathbf{u} \cdot \nabla \mathbf{u} = -1/\rho \nabla p + \mathbf{v} \nabla^2 \mathbf{u} + \mathbf{g}, \quad \nabla \cdot \mathbf{u} = 0,$$

Datasets: Fluid Flow Data

- Rely on a NS solver with operator splitting to calculate the training data at discrete points in space and time
 - Computing motion of the fluid with the help of transport, i.e. advection steps, for the velocity u,
 evaluating external forces g, then computing the harmonic pressure function p.
 - A visible, passive quantity such as smoke density ρ, or a level-set representation φ for free surface flows is advected in parallel to the velocity itself.
 - o Consider a *split* pressure. a hydrostatic pressure p_s for cell at height z
 - o a hydrostatic pressure p_s for cell at height z:

$$p_s(z) = p(z_0) + \frac{1}{A} \int_z^{z_0} \iint_A \mathbf{g} \rho(h) \, dx dy \, dh$$

with z_0 , p_0 , A denote surface height, surface pressure, and cell area.

- o Density and gravity can be treated as constant in this setting, simplifies to: $p_s = \rho \mathbf{g}(z-z_0)$
 - Can be evaluated efficiently
 - Drawback: only valid for fluids in hydrostatic equilibrium, typically cannot be used for dynamic simulations in 3D

Datasets: Fluid Flow Data (cont'd)

- Given a data-driven method to predict pressure fields, we can incorporate the hydrostatic pressure into a 3D liquid simulation:
 - \circ decomposing the regular pressure field p_t into: p_t = p_s + p_d
 - p_s: hydrostatic component
 - p_d: dynamic component
 - our autoencoder separately receives and encodes the two fields p_s and p_d.
- With split pressure, the autoencoder could potentially put more emphasis on the small-scale fluctuations p_d from the hydrostatic pressure gradient.

Datasets:

Three 3D data sets:

	liquid64	liquid128	smoke128
Scenes n _s	4000	800	800
Time steps n_t	100	100	100
Size	419.43GB	671.09GB	671.09GB
Size, encoded	1.64GB	2.62GB	2.62GB

- use randomized simulation setups, target scenes with high complexity:
 - strong visible splashes and vortices,
 - large CFL (Courant- Friedrichs-Lewy) numbers (how fast information travels from cell to cell in a complex simulation domain)
- For each data sets:
 - 1. generate n_s scenes of different initial conditions
 - 2. discard the first n_w time steps (typically contain small, regular, and less representative dynamics)
 - 3. store a fixed number of n_t time steps: a final size of $n_s n_t$ spatial data sets.
 - 4. Normalize each dataset to [-1,1].

Figure 17: *Examples of initial scene states in the* liquid64 *data set.*

Figure 18: Examples of initial scene states in the liquid 128 data set. The more complex initial shapes are visible in several of these configurations.

	liquid64	liquid128	smoke128
Scenes n _s	4000	800	800
Time steps n_t	100	100	100
Size	419.43GB	671.09GB	671.09GB
Size, encoded	1.64GB	2.62GB	2.62GB

Figure 19: *Examples states of the* smoke 128 *training data set at* t = 65.

Interval Prediction

- Use network prediction for a time interval of i_p time steps
- Then perform a single full simulation step without any network calculations
 - numerical time integration + network prediction
 - Our prediction intervals i_p on the order of 4 to 14 steps
 - i_p = 0: the LSTM prediction is not used at all
 - ip = ∞: the fully recurrent LSTM

Evaluation and Training

- PSNR (peak signal-to-noise ratio) as a baseline metric
- a surface-based Hausdorff distance
- surface error:

$$e_h = \max(1/|S_p|\sum_{\mathbf{p}_1 \in S_p} \phi_r(\mathbf{p}_1), 1/|S_r|\sum_{\mathbf{p}_2 \in S_r} \phi_p(\mathbf{p}_2))/\Delta x.$$

where ϕ_r, ϕ_p are two signed distance functions

- Spatial Encoding
 - the autoencoder network in conjunction with a numerical time integration scheme
 - encoder: $\mathbf{c} = f_e(\mathbf{x})$; decoder: $\mathbf{x'} = f_d(\mathbf{c})$
- Temporal Prediction
 - a quantity x' is inferred based on a series of previous latent space points

the network successfully learned an abstraction of the temporal evolution of the flow.

Results

- Compare ground truth, autoencoder baseline and outputs of our prediction network:
 - The temporal predictions closely match the autoencoder baseline.
 - Network can reproduce complex behavior of the underlying simulations.

- Liquid surfaces predicted by different models for 40 steps with $i_p = \infty$.
 - The velocity version (green) leads to large errors in surface position, all three pressure versions closely capture the large-scale motions.
 - On smaller scales, both split pressure variants (p_s and p_d) introduce artifacts

large speed-ups and robust simulations for a significant variety of fluid scenes

Interval i_p	Solve	Mean surf. dist	Speedup		Solve		Speedup
Reference	2.629s	0.0	1.0	Reference	169ms		1.0
4	0.600s	0.0187	4.4				
9	0.335s	0.0300	7.8		Enc/Dec	Prediction	
14	0.244s	0.0365	10.1	Core exec., $o = 1$	3.8ms + 3.2ms	9.6ms	10.2
∞	0.047s	0.0479	55.9	,	3.9 ms + 3 * 3.3 ms	12.5ms	19.3

Speedup

Core exec. time 4.1 ms + 3.3 ms9.5ms 155.6 Performance of ten liquid128 scenes, averaged over 150 simulation steps each. The mean surface distance is a measure of deviation from the reference per solve.

Prediction

Enc/Dec

9.3 Performance of ten liquid64 scenes, averaged over 150 simulation steps each.

How well the model can predict future states based on a single set of inputs.
 For multiple output steps (o > 1), our model predicts several latent space points from a single time context d. Accuracy for 1, 3 and 5 steps of output:

- Accuracy barely degrades when multiple steps are predicted at once;
- But more efficient. o = 3 prediction only requires 30% more time to evaluate, despite generating three times as many predictions

A trained model for the smoke128 data set.

- Despite the significantly different physics, our approach successfully predicts the evolution and motion of the vortex structures
 - However, we noticed a tendency to underestimate pressure values, and to reduce small-scale motions.

Conclusions

Limitations

- LSTM strongly relies on AE (which primarily encodes large scale scale dynamics)
 while small scale dynamics are integrated by the alignment of free surface
 boundary conditions
- Current simple AE can introduce a certain amount of noise; can be alleviated by different network architectures

Conclusions

- Neural network architectures can predict the temporal evolution of dense physical functions
- learned latent spaces with LSTM-CNN hybrids are suitable for this task
- Significant increases in simulation performance
 - more than 150x faster than a regular pressure solve
 - represents an important first step towards deep-learning powered simulation algorithms