### Analyse des correspondances binaires

Mathématique

Véronique Tremblay

### **Objectif**

• Expliquer la mathématique de l'ACB

### Rappel de l'exemple

Tableau de fréquence de la couleur des yeux et des cheveux

|          | Chatains | Roux | Blonds |
|----------|----------|------|--------|
| Marrons  | 119      | 26   | 7      |
| Noisette | 54       | 14   | 10     |
| Verts    | 29       | 14   | 16     |
| Bleus    | 84       | 17   | 94     |

### Si on faisait une ACP sur les profils lignes et colonnes



#### Mesure de distance

On peut mesurer la distance entre deux profils lignes par

$$d^2(i,i') = \sum_{j=1}^{p} \left( L_{ij} - L_{i'j} \right)^2$$

### Profils lignes (L)

|          | Chatains | Roux | Blonds |
|----------|----------|------|--------|
| Marrons  | 0.78     | 0.17 | 0.05   |
| Noisette | 0.69     | 0.18 | 0.13   |
| Verts    | 0.49     | 0.24 | 0.27   |
| Bleus    | 0.43     | 0.09 | 0.48   |
|          |          |      |        |

# Distance du $\chi^2$

$$d_{\chi^2}^2(i,i') = \sum_{j=1}^p \frac{1}{f_{\bullet j}} \left( L_{ij} - L_{i'j} \right)^2$$

Profils lignes (L) et profil ligne moyen

|               | Chatains | Roux | Blonds |
|---------------|----------|------|--------|
| Marrons       | 0.78     | 0.17 | 0.05   |
| Noisette      | 0.69     | 0.18 | 0.13   |
| Vert          | 0.49     | 0.24 | 0.27   |
| Bleus         | 0.43     | 0.09 | 0.48   |
| $f_{ullet j}$ | 0.59     | 0.15 | 0.26   |

©Véronique Tremblay 2021

### Lien avec l'ACP

|             | ACP                           | AFC (analyse directe)                                                                                                                        |
|-------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Données     | X                             | L                                                                                                                                            |
| Distances   | I                             | $D_p^{-1}$                                                                                                                                   |
| Projections | $X\alpha$                     | $LD_p^{-1}u$                                                                                                                                 |
| À maximiser | $\alpha^\top X^\top X \alpha$ | $(\boldsymbol{u}^{\top}\boldsymbol{D}_{p}^{-1}\boldsymbol{L}^{\top})\boldsymbol{D}_{n}(\boldsymbol{L}\boldsymbol{D}_{p}^{-1}\boldsymbol{u})$ |
| Contrainte  | $\alpha^\top \alpha = 1$      | $u^\top D_p^{-1} u = 1$                                                                                                                      |

### Lien avec l'ACP

|             | ACP                           | AFC (analyse duale)                                                                                                                          |
|-------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Données     | X                             | C                                                                                                                                            |
| Distances   | I                             | $D_n^{-1}$                                                                                                                                   |
| Projections | $X\alpha$                     | $CD_n^{-1}v$                                                                                                                                 |
| À maximiser | $\alpha^\top X^\top X \alpha$ | $(\boldsymbol{v}^{\top}\boldsymbol{D}_{n}^{-1}\boldsymbol{C}^{\top})\boldsymbol{D}_{p}(\boldsymbol{C}\boldsymbol{D}_{n}^{-1}\boldsymbol{v})$ |
| Contrainte  | $\alpha^\top \alpha = 1$      | $v^\top D_n^{-1} v = 1$                                                                                                                      |

# Solution (analyse directe)

On cherche le vecteur  $u \in \mathbb{R}^p$  qui maximise

$$(u^\top D_p^{-1} L^\top) D_n (L D_p^{-1} u)$$

Avec la contrainte que  $u^{\top}D_p^{-1}u=1$ .

La solution est donnée par le vecteur propre principal de

$$D_p(D_p^{-1}F^{\top}D_n^{-1}FD_p^{-1}) = F^{\top}D_n^{-1}FD_p^{-1} \equiv S.$$

## Solution (analyse duale)

On cherche le vecteur  $v \in \mathbb{R}^n$  qui maximise

$$(\boldsymbol{v}^{\top}\boldsymbol{D}_{n}^{-1}\boldsymbol{C}^{\top})\boldsymbol{D}_{p}(\boldsymbol{C}\boldsymbol{D}_{n}^{-1}\boldsymbol{v})$$

Avec la contrainte que  $v^{\top}D_n^{-1}v=1$ .

La solution est donnée par le vecteur propre principal de

$$D_n(D_n^{-1}FD_p^{-1}F^\top D_n^{-1}) = FD_p^{-1}F^\top D_n^{-1} \equiv T.$$

#### Et alors?

- S et T on les même p premières valeurs propres.
- Les coordonnées des points d'un espace sont proportionnelles aux composantes du facteur de l'autre espace correspondant à la même valeur propre.
- En «centralisant» les profils lignes et colonnes, on peut illustrer le résultat des deux graphiques sur les mêmes axes.

©Véronique Tremblay 2021

## Analyse des correspondances binaires



### Résumé

- Similitude avec l'ACP
- Mêmes outils d'aide à l'interprétation (contribution et qualité)
- Différence dans l'interprétation des valeurs propres/singulières.

©Véronique Tremblay 2021