

https://colab.research.google.com/notebooks/intro.ipynb#scrollTo=5fCEDCU_qrC0

Google Colab?

Colaboratory(또는 줄여서 'Colab')를 사용하면 브라우저에서 Python을 작성하고 실행할 수 있습니다.

- 구성 필요 없음
- GPU 무료 액세스
- 간편한 공유

학생이든, 데이터 과학자든, AI 연구원이든 Colab으로 업무를 더욱 간편하게 처리할 수 있습니다. <u>Colab 소개 영상</u>에서 자세한 내용을 확인하거나 아래에서 시작해 보세요.

Google Colab Pro?

Colab 최대한 활용하기

지금 업그레이드

\$9.99/월

반복 결제 • 언제든지 취소 가능

제한사항이 적용됩니다. 여기에서 자세히 알아보세요.

더 빠른 GPU

더 빠른 GPU 및 TPU에 우선적으로 액세스하면 코드를 실행하는 중에 기 다리는 시간이 적어집니다. 자세히 알아보기

더 긴 런타임

노트북 런타임이 길고 비활성 시간 초 과가 적으면 연결이 끊기는 빈도가 낮 아집니다. 자세히 알아보기

추가 메모리

RAM 용량이 클수록 성능이 향상되고 메모리 부족 현상이 생길 확률이 낮아 집니다. 자세히 알아보기

https://colab.research.google.com/signup

Colab Pro에서는 어떤 종류의 GPU가 제공되나요?

Colab Pro를 사용하여 가장 빠른 GPU에 우선적으로 액세스하세요. 예를 들어, 비구독자에게는 **K80이 제공될 때 T4 및 P100 GPU를 이용할 수도 있습니다.** 또한 TPU가 우선적으로 할당됩니다. 하지만 Colab Pro에도 사용량 한도가 있으며 Colab Pro에서 이용할 수 있는 GPU 및 TPU 유형은 시간이 지남에 따라 달라질 수 있습니다.

Colab 무료 버전은 빠른 GPU 액세스가 매우 제한적이고 Colab Pro에 비해 사용량 한도도 훨씬 낮습니다.

Colab Pro에서 얼마나 오랫동안 노트북을 실행할 수 있나요?

Colab Pro를 사용하면 메모장 연결을 **최대 24시간 동안 유지**할 수 있으며 유휴 시간 제한이 상대적으로 느슨합니다. 그러나 연결 지속 시간은 보장되지 않으며 유휴 시간 제한이 변경될 수도 있습니다.

Colab **무료 버전에서는 메모장을 최대 12시간 동안 실행**할 수 있으며 유휴 시간 제한이 Colab Pro에 비해 훨씬 엄격합니다.

Colab Pro에서 사용 가능한 메모리 용량은 얼마나 되나요?

Colab Pro를 사용하면 고성능 메모리 VM을 우선적으로 이용할 수 있습니다. 이러한 VM은 보통 표준 Colab VM 대비 2배의 메모리와 CPU를 갖추고 있습니다. Colab Pro를 구독하면 메모장 설정에서 고성능 메모리 VM을 사용 설정할 수 있습니다. 또한 Colab에서 필요하다고 판단하면 고성능 메모리 VM이 자동으로 할당되는 경우도 있습니다. 그러나 리소스가 보장되지는 않으며 고성능 메모리 VM에는 사용량 한도가 있습니다.

Colab 무료 버전에서는 고성능 메모리 환경설정을 사용할 수 없으며 사용자에게 고성능 메모리 VM이 자동으로 할당되는 경우가 거의 없습니다.

Colab GPU vs CPU

https://www.microway.com/hpc-tech-tips/deep-learning-benchmarks-nvidia-tesla-p100-16gb-pcie-tesla-k80-tesla-m40-gpus/

CPU-only Benchmark Results

	AlexNet	Overfeat	GoogLeNet	VGG (ver.a)
Caffe	4,529	10,350	18,545	14,010
TensorFlow	1,823	5,275	4,018	7,341
Theano	5,275	13,579	26,829	38,687
cuDNN-fp32 (Torch)	1,838	3,604	8,234	9,166
geometric average over frameworks	2,991	7,190	11,326	13,819

Table 4: Benchmarks were run on dual Xeon E5-2690v4 processors in a system with 256GB RAM. Times reported are in msec per batch.

Tesla K80 Benchmark Results

	AlexNet	Overfeat	GoogLeNet	VGG (ver.a)	Speedup Over CPU
Caffe	365	1,187	1,236	1,747	(9x ~ 15x speedups)
TensorFlow	181	622	979	1,104	(4x ~ 10x speedups)
Theano	515	1,716	1,793	_	(8x ~ 16x speedups)
cuDNN-fp32 (Torch)	171	379	914	743	(9x ~ 12x speedups)
geometric average over frameworks	276	832	1,187	1,127	(9x ~ 11x speedups)

Table 2: Benchmarks were run on a single Tesla K80 GPU chip. Times reported are in msec per batch.

Google Colab

Google Colab

Google Colab

Colab 둘러보기

- 1. 파일제목 (.ipynb)
- 2. 메뉴
 - a. Google Drive로 사본 저장
 - b. 런타임 유형 변경
 - c. 소스 코드 다운로드
 - d. 이 외 기타 기능들
- 3. 목차/코드 스니펫/파일
 - a. 목차: 본문에 설정된 목차 요약
 - b. 코드 스니펫: 기능에 따른 코드 단편 예시들
 - c. 파일: 임시 파일 & 구글 드라이브 파일 목록
- 4. jupyter notebook 본문

Colab에서 GPU 사용하기 (런타임 유형 변경)

할당된 GPU 확인하기

1 !nvidia-smi Tue Jul 28 08:18:38 2020 NVIDIA-SMI 450.51.05 Driver Version: 418.67 CUDA Version: 10.1 Persistence-M Bus-Id Disp.A | Volatile Uncorr. ECC GPU Name Temp Perf Pwr:Usage/Cap Memory-Usage GPU-Util Compute M. Tesla P100-PCIE... Off 00000000:00:04.0 Off OMiB / 16280MiB 26W / 250W Default ERR! Processes: PID GPU Memory Type Process name ID ID Usage No running processes found

Tesla P100 GPU가 할당된 것을 확인할 수 있다 (요금제에 따라 GPU가 다르게 할당됨)

Colab에서 데이터 다루기 (File Upload & Google

- 1. 파일 업로드 파일을 업로드하여 colab에서 사용할 수 있지만 **런타임이 초기화 되면 파일이 지워지는 단점**이
- 있음
- 2. 새로고침
- 3. 구글 드라이브 연결 google drive를 mount하여 활용가능함
- 4. 샘플 데이터 (처음부터 연결되어 있음)

Colab - Code Snippets 살펴보기

Colab - Custom Snippets 추가하기

자신이 미리 작성해둔 코드를 다른 colab file에서 호출할 수 있다

Colab - Custom Snippets 추가하기

호출하려는 colab notebook 에서

Tools > Settings > Site > Custom snippet notebook URL에 notebook 링크를 붙여 넣은 후 Code Snippets 목록에서 추가된 것을 확인할 수 있음

Colab - Google Drive Mount하기

Colab - Google Drive Mount하기

자신의 Google Drive를 mount한 뒤 파일 시스템에 접근하는 것처럼 사용