Amendments to the Claims

41. (Currently Amended) A method for use by a device operating on a network over which multiple devices belonging to a defined set communicate with each other by transmitting and receiving messages, the method comprising:

transmitting the messages at a frequency that hops from one frequency to another over time in accordance with a predictable <u>pseudo-random</u> hopping sequence that determines each frequency in the hopping sequence from a particular identifier associated with one of the devices and a universal time parameter;

characterized in that:

each frequency in the hopping sequence is determined from a known function of the particular identifier, the universal time parameter, and a seed that is changed over time and that further randomizes changes the hopping sequence from the predictable pseudo-random hopping sequence that which would otherwise be determined from the particular identifier and the universal time parameter alone, whereby a pattern of changing transmit frequencies that is detected in messages received by a device outside the defined set is impeded from being associated with the particular identifier associated with one of the devices within the set.

Claim 42 (Cancelled)

- 43. (Currently Amended) The method of claim <u>41</u> 42-wherein the seed is changed periodically.
- 44. (Currently Amended) The method of claim <u>41</u> 42 wherein the seed is changed aperiodically.

- 45. (Currently Amended) The method of claim <u>41</u> 42 wherein the seed is changed when a new session begins on one of the devices in the set.
- 46. **(Previously Presented)** The method of claim 41 wherein the known function is a one-way function.
- 47. (Previously Presented) The method of claim 41 wherein the seed is at least a first random or pseudo-random number.
- 48. (Previously Presented) The method of claim 45 wherein the seed is at least a first random or pseudo-random number that determines in part the sequence of frequencies in the hopping sequence used for transmitting messages within a current session.
- 49. (Previously Presented) The method of claim 47 wherein the seed is a combination of the first random or pseudo-random number and at least a second random or pseudo-random number that determined in part the sequence of frequencies in the hopping sequence used for transmitting messages within at least one previous session.
- 50. (Previously Presented) The method of claim 47 wherein the random or pseudo-random number is received in an encrypted form by the device from one of the other devices in the set, and the encrypted random or pseudo-random number is decrypted before being used as the seed.
- 51. (Currently Amended) A method for use in a Bluetooth-enabled device operating on a wireless network over which multiple Bluetooth-enabled devices within a defined set communicate with each other by transmitting and receiving messages to and from a master device within the set, the method comprising:

transmitting the messages at a frequency that hops from one frequency to another over time in accordance with a predictable <u>pseudo-random</u> hopping sequence that determines each frequency within the hopping sequence from a

Bluetooth address (BD_ADDR) associated with the master device and a universal time parameter;

characterized in that:

each frequency in the hopping sequence is determined from a known function of the master device's BD_ADDR, the universal time parameter, and a seed that is changed over time and that further randomizes changes the hopping sequence from the predictable pseudo-random hopping sequence that which would otherwise be determined from the master device's BD_ADDR and the universal time parameter alone, whereby a pattern of changing transmit frequencies that is detected in messages received by a device outside the defined set is impeded from being associated with the master device's BD_ADDR.

Claim 52 (Cancelled)

- 53. (Currently Amended) The method of claim <u>51</u> 52 wherein the seed is changed periodically.
- 54. (Currently Amended) The method of claim <u>51</u> 52 wherein the seed is changed aperiodically.
- 55. (Currently Amended) The method of claim <u>51</u> 52 wherein the seed is changed when a new session begins on one of the devices in the set.
- 56. (**Previously Presented**) The method of claim 51 wherein the known function is a one-way function.
- 57. (Previously Presented) The method of claim 51 wherein the seed is at least a first random or pseudo-random number.
- 58. (Previously Presented) The method of claim 55 wherein the seed is at least a first random or pseudo-random number that determines in part the sequence of frequencies in the hopping sequence used for transmitting messages within a current session.

- 59. (Previously Presented) The method of claim 57 wherein the seed is a combination of the first random or pseudo-random number and at least a second random or pseudo-random number that determined in part the sequence of frequencies in the hopping sequence used for transmitting messages within at least one previous session.
- 60. (**Previously Presented**) The method of claim 57 wherein the random or pseudo-random number is received in an encrypted form by the device from one of the other devices in the set, and the encrypted random or pseudo-random number is decrypted before being used as the seed.
- 61. (Currently Amended) Apparatus for use in a device operating on a network over which multiple devices belonging to a defined set communicate with each other by transmitting and receiving messages, the apparatus comprising:

means for transmitting the messages at a frequency that hops from one frequency to another over time in accordance with a predictable <u>pseudo-random</u> hopping sequence; and

means for determining each frequency in the hopping sequence from a known function of a particular identifier associated with one of the devices in the set, a universal time parameter, and a seed that is changed over time and that further randomizes the hopping sequence from the predictable pseudo-random hopping sequence that would otherwise be determined from the particular identifier and the universal time parameter alone, whereby a pattern of changing transmit frequencies that is detected in messages received by a device outside the defined set is impeded from being associated with the particular identifier associated with one of the devices within the set.

Claim 62 (Cancelled)

63. (Currently Amended) The apparatus of claim 61 62 wherein the seed is changed periodically.

- 64. (Currently Amended) The apparatus of claim <u>61</u> 62 wherein the seed is changed aperiodically.
- 65. (Currently Amended) The apparatus of claim 61 62 wherein the seed is changed when a new session begins on one of the devices in the set.
- 66. (**Previously Presented**) The apparatus of claim 61 wherein the known function is a one-way function.
- 67. (Previously Presented) The apparatus of claim 61 wherein the seed is at least a first random or pseudo-random number.
- 68. (Previously Presented) The apparatus of claim 65 wherein the seed is at least a first random or pseudo-random number that determines in part the sequence of frequencies in the hopping sequence used for transmitting messages within a current session.
- 69. (Previously Presented) The apparatus of claim 67 wherein the seed is a combination of the first random or pseudo-random number and at least a second random or pseudo-random number that determined in part the sequence of frequencies in the hopping sequence used for transmitting messages within at least one previous session.
- 70. (Previously Presented) The apparatus of claim 67 wherein the random or pseudo-random number is received in an encrypted form by the device from one of the other devices in the set, and the processor decrypts the encrypted random or pseudo-random number.
- 71. (Currently Amended) Apparatus for use in a Bluetooth-enabled device operating on a wireless network over which multiple Bluetooth-enabled devices within a defined set communicate with each other by transmitting and receiving messages to and from a master device within the set, the apparatus comprising:

means for transmitting the messages at a frequency that is hops from one frequency to another over time in accordance with a predicable <u>pseudo-random</u> hopping sequence; and

means for determining each frequency in the hopping sequence from a known function of a Bluetooth address (BD_ADDR) associated with the master device, a universal time parameter, and a seed that is changed over time and that further randomizes the hopping sequence from the predictable pseudorandom sequence that would otherwise be determined from the master device's BD_ADDR and the universal time parameter alone, whereby a pattern of changing transmit frequencies that is detected in messages received by device outside the defined set is impeded from being associated with the master device's BD_ADDR.

Claim 72 (Cancelled)

- 73. (Currently Amended) The apparatus of claim <u>71</u> 72 wherein the seed is changed periodically.
- 74. (Currently Amended) The apparatus of claim <u>71</u> 72 wherein the seed is changed aperiodically.
- 75. (Currently Amended) The apparatus of claim <u>71</u> 72 wherein the seed is changed when a new session begins on one of the devices in the set.
- 76. (**Previously Presented**) The apparatus of claim 71 wherein the known function is a one-way function.
- 77. (Previously Presented) The apparatus of claim 71 wherein the seed is at least a first random or pseudo-random number.
- 78. (Previously Presented) The apparatus of claim 75 wherein the seed is at least a first random or pseudo-random number that determines in part the sequence of frequencies in the hopping sequence used for transmitting messages within in a current session.

- 79. (Previously Presented) The apparatus of claim 77 wherein the seed is a combination of the first random or pseudo-random number and at least a second random or pseudo-random number that determined in part the sequence of frequencies in the hopping sequence used for transmitting messages within at least one previous session.
- 80. (Previously Presented) The apparatus of claim 77 wherein the random or pseudo-random number is received in an encrypted from by the device from one of the other devices in the set, and the processor decrypts the encrypted random or pseudo-random number.