Priority Policies in Scheduling

Daniel Russo

March 18, 2020

Columbia University

Setup

- Suppose there are *m* queues and a single server.
- There are no new arrivals.
- A cost g(i) is incurred per unit time per customer in queue i
- Service time dist. for a customer in queue i is exponential(μ_i)
- After service is completed a customer in queue i
 - 1. Leaves the system with probability p_{i0}
 - 2. Joins queue j > 0 with probability p_{ij} .
- Costs are discounted exponentially at rate $\beta > 0$.

Main result:

A priority rule is optimal. Such a policy orders the m queues and, at each decision period, services the highest priority non-empty queue.

This result follows by using a few clever ideas to reduce the problem to a bandit and then applying the Gittins index theorem.

First idea: track the state of the customers not the queues

- There are initially n customers in the system, and we index them by $\ell \in \{1, \dots n\}$.
- Let $i^{\ell}(t) \in \{0, \dots, m\}$ be the state of customer ℓ at time $t \in \mathbb{R}_+$. The absorbing state 0 represents departure.
- $u(t) \in \{0, \dots, n\}$ indicates which customer is being served.
 - Serving a customer in state 0 is feasible, but not optimal.
- The objective is to minimize

$$\mathbb{E}\left[\int_{t=0}^{\infty}\sum_{\ell=1}^{n}g\left(i^{\ell}(t)\right)dt\right]$$

where we set g(0) = 0.

Second idea: uniformization

As we have seen before, a trick called uniformization allows us to reduce discounted continuous time problems to discounted discrete time problems.

- Set $\mu = \max_i \mu_i$.
- Introduce random event times (potentially fictitious. . .):
 - $t_0 = 0, t_1, t_2, \cdots$
 - $\tau_1 = t_1 t_0$, $\tau_2 = t_2 t_1 \stackrel{\text{i.i.d}}{\sim} \text{exponential}(\mu)$
 - Set $i_k^{\ell} \equiv i^{\ell}(t_k)$.
- Modify costs and transition probabilities:
 - $\tilde{p}_{ii} = \frac{\mu_i}{\mu} p_{ii} + \frac{\mu \mu_i}{\mu}$ and $\tilde{p}_{ij} = \frac{\mu_i}{\mu} p_{ij}$ for $j \neq i$.
 - $\tilde{g}(i) = \frac{1}{\beta + \mu} g(i)$.
 - Set $\alpha = \frac{\mu}{\beta + \mu}$ to be the effective discount factor.
- Our original continuous time problem is equivalent to:

$$\operatorname{Minimize}_{\pi} \quad \mathbb{E}^{\pi} \left[\sum_{k=0}^{\infty} \alpha^{k} \left(\sum_{\ell=0}^{n} \tilde{g}(i_{k}^{\ell}) \right) \right]$$

Third idea: move expected future costs to the present period

Right now, our problem does not look like a bandit because we incur costs for customers that are not served. An accounting trick moves all costs to the period in which service is provided.

- Define $R(i,j) = \frac{\alpha}{1-\alpha} \tilde{g}(i) \frac{\alpha}{1-\alpha} \tilde{g}(j)$
- Set $R(i) = \sum_{i=0}^{n} \tilde{p}_{ij} R(i,j)$.
 - Interpret R(i) as the reduction in expected cost due to servicing a customer in queue i if we were to assume this is the final service they receive.
- One can show our objective is equivalent to that in a bandit problem:

$$\mathbb{E}^{\pi} \left[\sum_{k=0}^{\infty} \alpha^{k} \left(\sum_{\ell=0}^{n} \tilde{g}(i_{k}^{\ell}) \right) \right] = \sum_{\ell=1}^{n} \frac{1}{1-\alpha} \tilde{g}(x_{0}^{\ell}) - \mathbb{E}^{\pi} \left[\sum_{k=0}^{\infty} \alpha^{k} R(i_{k}^{u_{k}}) \right]$$

Justifying the accounting trick

Consider customer ℓ .

Let T_1, T_2, \cdots denote the times at which it is played/serviced.

Let i_1, i_2, \cdots denote its states at those times.

The total cost contribution from customer ℓ is:

$$\mathbb{E}\left[\sum_{k=0}^{T_{1}} \alpha^{k} \tilde{\mathbf{g}}(i_{1}) + \sum_{k=T_{1}+1}^{T_{2}} \alpha^{k} \tilde{\mathbf{g}}(i_{2}) + \cdots\right]$$

$$= \mathbb{E}\left[\left(\sum_{k=0}^{\infty} \alpha^{k} \tilde{\mathbf{g}}(i_{1}) - \sum_{k=T_{1}+1}^{\infty} \alpha^{k} \tilde{\mathbf{g}}(i_{1})\right) + \left(\sum_{k=T_{1}+1}^{\infty} \alpha^{k} \tilde{\mathbf{g}}(i_{2}) - \sum_{k=T_{2}+1}^{\infty} \alpha^{k} \tilde{\mathbf{g}}(i_{2})\right) + \cdots\right]$$

$$= \mathbb{E}\left[\left(\sum_{k=0}^{\infty} \alpha^{k} \tilde{\mathbf{g}}(i_{1})\right) + \left(\sum_{k=T_{1}+1}^{\infty} \alpha^{k} \left(\tilde{\mathbf{g}}(i_{2}) - \tilde{\mathbf{g}}(i_{1})\right)\right) + \left(\sum_{k=T_{2}+1}^{\infty} \alpha^{k} \left(\tilde{\mathbf{g}}(i_{3}) - \tilde{\mathbf{g}}(i_{2})\right)\right) + \cdots\right]$$

$$= \mathbb{E}\left[\frac{1}{1-\alpha} \tilde{\mathbf{g}}(i_{1}) + \alpha^{T_{1}} \cdot \frac{\alpha}{1-\alpha} \cdot \left(\tilde{\mathbf{g}}(i_{2}) - \tilde{\mathbf{g}}(i_{1})\right) + \alpha^{T_{2}} \cdot \frac{\alpha}{1-\alpha} \cdot \left(\tilde{\mathbf{g}}(i_{3}) - \tilde{\mathbf{g}}(i_{2})\right) + \cdots\right]$$

$$= \frac{\tilde{\mathbf{g}}(i_{1})}{1-\alpha} - \mathbb{E}\left[\alpha^{T_{1}} R(i_{1}) + \alpha^{T_{2}} R(i_{2}) + \cdots\right]$$

6

Final step: applying the Gittins index theorem

We have the problem of maximizing $\mathbb{E}\left[\sum_{k=0}^{\infty}\alpha^kR(i_k^{u_k})\right]$, where when played in state i bandit ℓ 's next state is j with probability \tilde{p}_{ij} .

- By symmetry, the Gittins index $G^{\ell}: \{0, \cdots, m\} \to \mathbb{R}$ does not depend on the bandit process (i.e. the identity of the customer). We have $G^{\ell}(\cdot) = G(\cdot)$ for all $\ell \in \{1, \cdots, n\}$
- The Gittins index theorem says the optimal policy selects at time k:

$$u_k^* \in \underset{\ell \in \{1, \dots, n\}}{\operatorname{argmax}} G(i_k^{\ell}).$$

This is a priority rule, where the priority is determined by the values of $G(\cdot)$.