Thermal Engineering Laboratory-1									
Hours/Week L-T-P:	0-0-3	Credits:	1.5						
Course Type:	Laboratory Course	Course Code:	MS2503						

Course Objectives:

- To identify the behavior of analytical models introduced in lecture to the actual behavior of real fluid flows.
- To explain the standard measurement techniques of fluid mechanics and their applications.
- To illustrate the students with the components and working principles of the Hydraulic machinesdifferent types of Turbines, Pumps, and other miscellaneous hydraulics machines.
- To analyze the laboratory measurements and to document the results in an appropriate format.

Course Outcomes:

Students who successfully complete this course will have demonstrated ability to:

- **CO1:** Describe the measurement techniques of fluid mechanics and its appropriate application.
- **CO2:** Interpret the results obtained in the laboratory for various experiments.
- **CO3:** Compare the results of analytical models introduced in lecture to the actual behavior of real fluid flows and draw correct and sustainable conclusions

CO4: Perform test on centrifugal pump, reciprocating pump, turbines.

List of Experiments:

Any 10 experiments from the following

- 1. Experiments on flow through pipes and application of Bernoulli's principle
- 2. Determination of metacentric height and application to stability of floating bodies.
- 3. Determination of C_v and C_d of orifices.
- 4. Experiments on impact of jets
- 5. Experiments on performance of centrifugal pump
- 6. Experiments on performance of reciprocating pump
- 7. Experiments on Reynold's Apparatus
- 8. Experiments on performance of gear oil pump
- 9. Verifications of momentum equation
- 10. Study on Pelton / Francis / Kaplan Turbine
- 11.Study of steam power plant.
- 12. Study of refrigeration system.
- 13. Study of gas turbine power plant.
- 14. Measurement of steam quality using calorimeter
- 15. Verification of Joule-Thomson coefficient.

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	-	-	-	1	-	-	1	-	2	3	2	2
CO2	3	2	1	-	-	-	1	-	-	1	-	2	3	2	2
CO3	3	2	1	-	-	-	1	-	-	1	-	2	3	2	2
CO4	2	2	1	2	-	1	-	1	3	2	1	2	2	1	1