

两样本比较

主讲人: 刘宏志

liuhz@ss.pku.edu.cn

z检验和t检验

z 检验的应用条件:

- (1) 样本来自正态总体
- (2a)样本含量n 较大,或
- (2b) n 虽小但总体标准差 σ 已知

- t 检验的应用条件:
- (1) 总体标准差 σ 未知;
- (2) 样本含量n 较小;
- (3) 样本来自正态总体;
- (4) 两样本均数比较时方差齐,即 $\sigma_1^2 = \sigma_2^2$

在 Ho成立的前提条件下,检验统计量计算公式:

① σ已知或σ未知但n足够大:

$$z = \frac{\overline{x} - \mu_0}{\sigma \sqrt{n}} \qquad (v = \infty)$$

② σ未知且n较小:

$$t = \frac{\bar{x} - \mu_0}{S_{\bar{x}}} = \frac{\bar{x} - \mu_0}{\sqrt{n}} \qquad (v = n - 1)$$

 H_0 :样本均值与已知总体均值 μ_0 无差别

配对 t 检验(paired t-test)

- 配对设计:
 - ▶两组观察对象除了研究因素不同外,其它的可能影响研究结果的因素相同或相似
- 四种情况:
 - ▶两个同质受试对象分别接受两种不同的处理
 - ▶同一受试对象分别接受两种不同的处理
 - ▶同一受试对象接受某种处理的前后数据
 - ▶同一受试对象的两个不同部位的数据

配对 t 检验(paired t-test)

基本原理:

假设两种处理的效应相同,

即 $\mu_1 = \mu_2$,则 $\mu_1 - \mu_2 = 0$

(即已知总体均数 $\mu_d = 0$)

检验: 差数的样本均数 d 与所代表的未知

总体均数 μ 」 与 0 的比较

目的: 推断两种处理的效果有无差别或

推断某种处理有无作用

应用条件: <u>差值d</u>服从正态分布

公式:
$$t = \frac{\overline{d}}{S_d / \sqrt{n}}$$

上式中d 表示差值,v=n-1 (n 为对子数)

例:某医生用A、B两种血红蛋白测定 仪器检测了16名健康男子的血红蛋白含量(g/L)检验结果见下表,问两种血红蛋白测量仪器检测结果是否有差别?

两种仪器检测16名男青年血红蛋白含量(g/L)结果

被检测者号	仪器A	仪器B	$\frac{1}{d} = \frac{1}{4} \cdot \frac{1}$	d^2
(1)	(2)	(3)	(4) = (3) - (2)	(5)
1	113	140	27	729
2	125	150	25	625
3	126	138	12	144
4	130	120	- 10	100
5	150	140	-10	100
6	145	145	0	0
7	135	135	0	0
8	105	115	10	100
9	128	135	7	49
10	135	130	-5	25
11	100	120	20	400
12	130	133	3	9
13	110	147	37	1369
14	115	125	10	100
15	120	114	-6	36
16	155	165	10	100
合计			$\Sigma d=130$	$\Sigma d^2=3882$

[分析]

- 每人均用两种方法检测血红蛋白,即采用配对方式试验
- 假设两检测方法无差别,则两方法检测值的差应为0
- 由于抽样误差的影响,可导致两方法检测值差值不为0
- 以差值为观察对象,检验差值样本是否来自零总体(μ_d=0)
- 如来自零总体,则两方法检测值相同
- 如不是来自零总体,则表明两方法检测值的不一致不是由 抽样误差引起,而是来自不同的总体

(1) 建立检验假设,确定检验水准

 $H_0: \mu_d=0$,即两方法检测结果相同

 $H_1: \mu_d \neq 0$,即两方法检测结果不同

 $\alpha = 0.05$,双侧检验

(2) 选定检验方法, 计算检验统计量

差值构成样本与总体之间的比较,可用样本-总体的*t*检验。依公式计算检验统计量:

$$s_d = \sqrt{\frac{\sum d^2 - \frac{(\sum d)^2}{n}}{n-1}} = \sqrt{\frac{3882 - \frac{(130)^2}{16}}{16-1}} = 13.73(g/L)$$

$$t = \frac{\overline{d} - \mu_{\overline{d}}}{s_{\overline{d}}} = \frac{\overline{d} - 0}{s_{d} / \sqrt{n}} = \frac{8.125}{13.73 / \sqrt{16}} = 2.367$$

$$v = n - 1 = 16 - 1 = 15$$

(3) 确定P值,作出推断结论

以 v=15, t=2.367,查 t值表 $t_{0.05/2(15)}=2.131$ 。 $t>t_{0.05/2(15)}$,则 P<0.05。拒绝 H_0 ,接受 H_1 ,差异有统计学意义。可认为两种方法检查结果不同。

建北京大学

两独立样本均数的比较

(two-sample test)

两样本均为随机抽样得到的样本或 采用随机分组得到的样本

目的: 推断两样本均数分别代表的总体

均数 μ1与 μ2 有无差别

适用条件:

- 随机抽样的小样本 (σ 未知)
- 两样本来自正态总体
- 两样本的总体方差齐同($\sigma_1^2 = \sigma_2^2$)

注:方差齐性的经验判断方法

两样本t检验的统计量在 H_0 : $\mu_1 = \mu_2$ 的条件下为:

$$t = \frac{\overline{x_1} - \overline{x_2}}{S_{\overline{x_1} - \overline{x_2}}}$$

$$\nu = n_1 + n_2 - 2$$

合并标准误差的计算为: $S_{\overline{x_1}-\overline{x_2}} = \sqrt{S_c^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$

两组的共同方差—合并方差 s_c^2 计算为:

$$s_{c}^{2} = \frac{\left[\sum x_{1}^{2} - \frac{\left(\sum x_{1}\right)^{2}}{n_{1}}\right] + \left[\sum x_{2}^{2} - \frac{\left(\sum x_{2}\right)^{2}}{n_{2}}\right]}{n_{1} + n_{2} - 2}$$

$$= \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}$$

例: 男女大学生的血清谷胱甘肽过氧化酶(GSH-PX)

性别	例 数	均数	标准差
男	48	96. 53	7. 66
女	46	93. 73	8. 23

(1) 建立检验假设,确定检验水准

 $H_0: \mu_1 = \mu_2$,即男女的GSH-PX含量两总体均数相同 $H_1: \mu_1 \neq \mu_2$,即男女的GSH-PX含量两总体均数不同 $\alpha = 0.05$,双侧检验

(2) 选定检验方法, 计算检验统计量

由于两组样本量<100,且方差齐,故选用t检验。

已知:
$$n_1 = 48, \overline{x_1} = 96.53, s_1 = 7.66$$

 $n_2 = 46, \overline{x_2} = 9373, s_2 = 8.23$

$$t = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}(\frac{1}{n_1} + \frac{1}{n_2})}} = \frac{96.53 - 93.73}{\sqrt{\frac{7.66^2(48 - 1) + 8.23^2(46 - 1)}{48 + 46 - 2}(\frac{1}{48} + \frac{1}{46})}} = 1.708$$

$$v = n_1 + n_2 - 2 = 48 + 46 - 2 = 92$$

(3) 确定P值,作出推断结论

以 v = 48 + 46 - 2 = 92 查 t 界值表, $t = 1.708 < t_{0.05/2(92)} = 2.000$, P > 0.05, 接 $\alpha = 0.05$ 水准,不拒绝 H_0 ,即差异无统计 学意义。可认为男女的GSH-PX含量相同。

z检验

- z 检验是 t 检验的特例, 其检验方法与 t 检验方法比较, 有以下区别:
- ① 由于 z 检验是大样本资料的检验,故其样本量可以看作无穷大,这时,其样本均数的分布已由 t 分布转为正态分布。依此,确定 P 值时,理论上 t_{0.05/2,v}(或t_{0.01/2,v})可以用1.96(或 2.58)来代替。

②在大样本的情况下,两样本均数比较的合并

标准误差,可以简化为 $s_{x_1-x_2}^2 = s_{x_1}^2 + s_{x_2}^2$ 即为:

$$S_{\overline{x_1}-\overline{x_2}} = \sqrt{S_{\overline{x_1}}^2 + S_{\overline{x_2}}^2} = \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$$

例: 某地抽查了25~29岁正常人群的红细胞数,测得其结果如下表,问该人群男、女红细胞数是否不同?

某地240名正常人群红细胞数(×10¹²/L)

组别	n	X	S
男	156	4.65	0.55
女	74	4.22	0.44

- ① 建立检验假设,确定检验水准
 - $H_0: \mu_1 = \mu_2$,即该地男、女红细胞数相同 $H_1: \mu_1 \neq \mu_2$,即该地男、女红细胞数不同 $\alpha = 0.05$,双侧检验
- ② 选定检验方法,计算检验统计量 由于两样本样本量均>100,故符合z 检验的 条件,计算z 值

$$z = \frac{\overline{x_1} - \overline{x_2}}{S_{\overline{x_1} - \overline{x_2}}} = \frac{4.65 - 4.22}{\sqrt{\frac{0.55^2}{156} + \frac{0.44^2}{74}}} = 6.37$$

③ 确定P值,作出推断结论

z = 6.37 > 1.96,故P < 0.05,拒绝 H_0 ,接受 H_1 ,差异有统计学意义。即可认为该人群男、女红细胞数不同。

方差齐性检验

方差齐性检验的计算公式为:

$$F = \frac{s_1^2 (较大)}{s_2^2 (较小)}$$

$$v_1 = n_1 - 1$$

$$v_2 = n_2 - 1$$

若两样本是来自同一个正态总体,则它们的方差不应相差过大,其 $F > \rightarrow 1$ 。

由于抽样误差的存在,其F可能偏离于1,当其偏离过大,超出抽样误差所能引起的范围,则表明方差不齐

例: 两组大鼠血糖含量测定结果(mmo1/L)

组别	例 数	均数	标准差
硫酸氧钒	12	6. 5	1. 34
空白对照	8	13. 7	4. 21

(1) 建立检验假设,确定检验水准

 $H_0: \sigma_1^2 = \sigma_2^2$,即两组大鼠血糖含量总体方差相等

 $H_1: \sigma_1^2 \neq \sigma_2^2$, 即两组大鼠血糖含量总体方差不等

 α = 0.05, 双侧检验

(2) 选定检验方法, 计算检验统计量

$$F = \frac{s_1^2}{s_2^2} = \frac{4.21^2}{1.34^2} = 9.87$$

$$v_1 = n_1 - 1 = 8 - 1 = 7$$

$$v_2 = n_2 - 1 = 12 - 1 = 11$$

(3) 确定P值,作出推断结论

以 v_1 =7, v_2 =11,F =9.87 查附表6, F 界值表,有9.87 >3.01= $F_{0.05,(7,11)}$,故 P <0.05。按 a= 0.05水准,拒绝 H_0 ,接受 H_1 差异有统计学意义。故可认为两组大鼠血糖含量总体方差不齐。(故该资料不可直接用方差相等的两样本的 t 检验)

t' 检验 — 近似t检验

- 基本思想:
 - ▶在方差不齐的情况下进行比较
 - ▶样本均数的分布曲线由 t分布转化为 t′分布
 - $\triangleright t'$ 分布较复杂,故用t分布的临界值估计t' 分布的临界值,即对临界值校正后依t 检验进行分析
- Cochran & cox 法: 对临界值校正
- Satterthwaite 法)
- welch 法

对自由度校正

Cochran & cox 法

计算公式:
$$t' = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

$$t'_{a} = \frac{S\frac{2}{x_{1}}t_{a,v_{1}} + S\frac{2}{x_{2}}t_{a,v_{2}}}{S\frac{2}{x_{1}} + S\frac{2}{x_{2}}} \qquad v_{1} = n_{1} - 1$$

$$v_{2} = n_{2} - 1$$

例: 请检验两组大鼠血糖含量是否相同?

硫酸氧钒组: $n_1 = 12, x_1 = 6.5, s_1 = 1.34$

空白对照组: $n_2 = 8, \overline{x_2} = 13.7, s_2 = 4.21$

(1) 建立检验假设,确定检验水准

 $H_0: \mu_1 = \mu_2$,即两总体的血糖值相同

 $H_1: \mu_1 \neq \mu_2$,即两总体的血糖值不同

 $\alpha = 0.05$,双侧检验

(2) 选定检验方法, 计算检验统计量

$$t' = \frac{\overline{x_1 - x_2}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{13.7 - 6.5}{\sqrt{\frac{4.21^2}{8} + \frac{1.34^2}{12}}} = 4.6817$$

$$\upsilon_1 = n_1 - 1 = 8 - 1 = 7$$
 $\upsilon_2 = n_2 - 1 = 12 - 1 = 11$

$$t'_{0.05/2} = \frac{s_{x_1}^2 t_{\alpha, \nu_1} + s_{x_2}^2 t_{a, \nu_2}}{s_{x_1}^2 + s_{x_2}^2} = \frac{\frac{4.21^2}{8} \times 2.365 + \frac{1.34^2}{12} \times 2.201}{\frac{4.21^2}{8} + \frac{1.34^2}{12}} = 2.355$$

(3) 确定P值,作出推断结论

以 $t' = 4.6817 > t'_{0.05/2} = 2.355$,得P < 0.05。

按 $\alpha = 0.05$ 水平,拒绝 H_0 ,接受 H_1 ,有统计学

意义。即可认为两组大鼠血糖含量不同。

Satterthwaite 法

自由度校正的计算公式为:

$$\upsilon = \frac{\left(s_{\frac{1}{x_1}}^2 + s_{\frac{2}{x_2}}^2\right)^2}{\frac{s_{\frac{4}{x_1}}^4}{n_1 - 1} + \frac{s_{\frac{1}{x_2}}^2}{n_2 - 1}} = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{s_1^2}{n_1 - 1} + \frac{s_2^2}{n_2 - 1}} = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{n_1}{n_1 - 1} + \frac{n_2}{n_2 - 1}}$$

例:请检验两组大鼠血糖含量是否相同?

硫酸氧钒组 : $n_1 = 12, \overline{x_1} = 6.5, s_1 = 1.34$

空白对照组: $n_2 = 8, x_2 = 13.7, s_2 = 4.21$

(1) 建立检验假设,确定检验水准

 $H_0: \mu_1 = \mu_2$,即两总体的血糖值相同

 $H_1: \mu_1 \neq \mu_2$,即两总体的血糖值不同

 $\alpha = 0.05$,双侧检验

(2) 选定检验方法, 计算检验统计量

$$t' = \frac{x_1 - x_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{13.7 - 6.5}{\sqrt{\frac{4.21^2}{8} + \frac{1.34^2}{12}}} = 4.6817$$

$$\upsilon' = \frac{\left(\frac{s_{1}^{2} + s_{2}^{2}}{s_{1}^{4} + s_{2}^{2}}\right)^{2}}{\frac{s_{1}^{4}}{n_{1} - 1} + \frac{s_{2}^{2}}{n_{2} - 1}} = \frac{\left(\frac{s_{1}^{2} + s_{2}^{2}}{n_{1} + n_{2}}\right)^{2}}{\frac{s_{1}^{2}}{n_{1} - 1} + \frac{s_{2}^{2}}{n_{2}}} = 7.9542 \approx 8$$

$$\frac{\left(\frac{s_{1}^{2} + s_{2}^{2}}{n_{1} - 1}\right)^{2}}{\frac{n_{1}}{n_{1} - 1} + \frac{n_{2}}{n_{2} - 1}}$$

(3) 确定P值,作出推断结论

以 $t' = 4.6817 > t_{0.05/2,8} = 2.306$,得P < 0.05。接 $\alpha = 0.05$ 水平,拒绝 H_0 ,接受 H_1 ,差异有统计学意义。即可认为两组大鼠血糖含量不同。

两独立样本差别的秩和检验

Wilcoxon rank sum test

两独立样本秩和检验计算表

A样	A样本		B样本	
观察值	秩次	观察值	秩次	
7	4	3	1	
14	6	5	2	
22	10	6	3	
36	11	10	5	
40	13	17	7	
48	14	18	8	
63	15	20	9	
98	16	39	12	
<i>n</i> ₁ =8	秩和 R ₁ =89	n ₂ =8	秩和 R ₂ =47	

假定: 两组样本的总体分布形状相同

基本思想

如果两 总体分 → 两样本来自同一总体 布相同 ← 任一组秩和不应太大或太小

T 与平均秩和 $n_0(1+N)/2$ 应相差不大

$$T = \begin{cases}
\hline{
\hline{x} 小 例 数 组 的 秩 n_1 \neq n_2} \\
\hline{
\hline{min}(R_1, R_2), n_1 = n_2}
\end{cases}$$

$$N = n_1 + n_2$$
$$n_0 = \min(n_1, n_2)$$

- (1) 提出假设H₀: 两样本来自相同总体;
 H₄: 两样本来自不同总体(双侧)或H₄: 样本A高于样本B(单侧)
- (2) $\frac{4}{1}$ 两样本混合编秩次,求得 R_1 、 R_2 、T。相同观察值(即相同秩,ties),不同组----平均秩次。
- (3) 确定P值作结论:
- ①小样本: 查表法 (威尔科克森和曼恩-惠特尼检验临界值表)

如果T位于检验界值区间内, $P > \alpha$,不拒绝 H_0 ;否则,拒绝 H_0 本例T = 47,取 $\alpha = 0.05$,查表得双侧检验界值区间(49,87),T位于区间外,P < 0.05,因此在 $\alpha = 0.05$ 的水平上,拒绝 H_0 ,接受 H_1 。

②大样本:正态近似法

$$u = \frac{|T - n_0(N+1)/2|}{\sqrt{n_1 n_2(N+1)/12}}$$
 $\Leftrightarrow \emptyset | u = 2.205 > \mu_{0.05/2} = 1.96$

配对设计资料的秩检验

(Wilcoxon signed rank test)

家兔号	A照射	B照射	B–A	秩次
1	39	55	16	10
2	42	54	12	9
3	51	55	4	3
4	43	47	4	3
5	55	53	-2	-1
6	45	63	18	11
7	22	52	30	12
8	48	44	-4	-3
9	40	48	8	6
10	45	55	10	8
11	40	32	-8	-6
12	49	57	8	6
合计				<i>T</i> =10 (68)

- 1. H_0 : 差值的总体中位数=0, H_1 : 差值的总体中位数≠0; α =0.05
- 2. 求差值;绝对值从小到大编秩次
 - (i) 绝对值相等者取平均秩次;
 - (ii) 将差值的正负标在秩次之前;
 - (iii) 零差值时不参与编秩
- 3. 分别求正负秩次之和,以绝对值 较小者为**R**值
- 4. 根据统计量R确定对应的P值
 - (i) 小样本时, 查表
 - (ii) 大样本时,正态近似

小样本(5≤n≤50)时,查表(威尔科克森符号秩检验表)

若统计量T值在上、下界值范围内,其P值大于相应的概率水平

本例: T=10, n=12, 查表,双侧检验的界值区间(13,65),T位于区间外,得P<0.05,拒绝 H_0 ,接受 H_1 ,故认为A,B两种照射方式造成的急性皮肤损伤程度不同,B照射的损伤程度比A照射严重。

t检验 vs. 秩和检验

适用条件

t检验:

- a.样本所在总体呈正态分布
- b.各总体方差要齐

秩和检验:

- a. 不满足正态和方差齐性条件的小样本资料
- b. 总体分布类型不明的小样本资料
- c. 单向有序列联表资料
- d. 各种资料的初步分析

