AiSD

Rafał Włodarczyk

INA 4, 2025

Contents

1	Lec	ture I - Sortowanie	3									
	1.1	Worst-case analysis	3									
	1.2	Average-case analysis	3									
	1.3	Analiza losowego sortowania	3									
	1.4	Insertion Sort (A, n)	3									
		1.4.1 Worst-case analysis - Insertion Sort (A, n)	4									
		1.4.2 Average-case analysis - Insertion Sort (A, n)	4									
	1.5		4									
2	Lec	Lecture II - Merge Sort										
	2.1	Merge sort $(A, 1, n)$	5									
3	Lecture III - Narzędzia do analizy algorytmów											
	3.1	Notacja asymptotyczna	7									
	3.2	Notacja Big-O	7									
	3.3		8									
	3.4	Notacja Big- Θ	9									
	3.5	Notacja small-o	9									
	3.6	Notacja small- ω	9									
	3.7	Metody rozwiązywania rekurencji	0									
	3.8	Rozwiązywanie rekurencji	0									
	3.9	Metoda podstawiania - Metoda dowodu indukcyjnego	0									
4	Lecture IV - Metoda drzewa rekursji											
	4.1	Metoda drzewa rekursji	1									
	4.2	Metoda iteracyjna	3									
	4.3	Master Theorem	4									
	4.4	Divide and Conquer	6									
	4.5	Wyszukiwanie elementów w portowanej tablicy	6									
	4.6	Binary search 1	6									

5	Lect	±	L6
	5.1	v v	16
	5.2	y y v	17
	5.3		17
	5.4	v	19
	5.5	Quick Sort	19
6	Lect	ture VI - Quicksort	20
	6.1	Lomuto Partition	20
	6.2	Hoare Partition	21
	6.3	Worst Case Analysis for QS	22
	6.4	Best case Analysis for QS	23
	6.5	Specific case analysis for QS	23
	6.6	Best/Worst case analysis for QS - Intuition	24
	6.7	Average case analysis for QS	24
7	Lect	ture VII - Quicksort - further analysis	26
•	7.1		27
	7.2	Counting Sort	
	7.3	Radix Sort	
8	Lect	ture VIII	28
•	8.1	Poprawność Radix Sort	
	8.2	Złożoność obliczeniowa Radix Sort	
	8.3		- 29
	8.4		29
	8.5		30
	8.6		30
	8.7		30
	8.8		31
9	Lect	ture IX - Select	32
	9.1	Struktury Danych	
	9.2	Binary Search Tree	
	9.3		35
10	Lect	ture X	36
		Wysokość Drzewa BST	
		BST_Sort	
11	Lect	ture XI	1 0
		Red Black Trees	
		Red Black Tree Example	
			41

 $I\ welcome\ you\ on\ the\ path\ to\ insanity.$

Good luck:)

1 Lecture I - Sortowanie

Definiujemy problem:

- 1. Input: $A = (a_1, \ldots, a_n), |A| = n$
- 2. Output: Permutacja tablicy wyjściowej $(a'_1, a'_2, \dots, a'_n)$, takie że: $a'_1 \leqslant a'_2 \leqslant \dots \leqslant a'_n$.

1.1 Worst-case analysis

$$T(n) = \max_{\text{wszystkie wejścia}} \{ \text{#operacji po wszystkich |n|-wejściach} \}$$
 (1.1.1)

1.2 Average-case analysis

Zakładamy pewien rozkład prawdopodobieństwa na danych wejściowych. Z reguły myślimy o rozkładzie jednostajnym. Niech T - zmienna losowa liczby operacji wykonanych przez badany algorytm.

$$\mathbf{E}(T)$$
 – wartość oczekiwana T (1.2.1)

Później możemy badać wariancję, oraz koncentrację.

1.3 Analiza losowego sortowania

Dla poprzedniego algorytmu zobaczmy, że: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left[\text{czyli } f(n) \sim g(n) \equiv \lim_{n \to \infty} \frac{f(n)}{g(n)} = 1\right]$. To jest tragiczna złożoność.

1.4 Insertion Sort (A, n)

Przykład: A = (8, 2, 4, 9, 3, 6), n = 6

- $8_i, 2_i, 4, 9, 3, 6$ j = 2, i = 1, key = 2 while
- $2, 8_i, 4, 9, 3, 6$
- $2, 8_i, 4_i, 9, 3, 6$ j = 3, i = 2, key = 4 while

- 2, 4, 8, 9, 3, 6
- $2, 4, 8_i, 9_i, 3, 6$ j = 4, i = 3, key = 9 no while
- $2, 4, 8, 9_i, 3_j, 6$ j = 5, i = 4, key = 3 while
- 2, 3, 4, 8, 9, 6
- $2, 3, 4, 8, 9_i, 6_j$ j = 6, i = 5, key = 6 while
- 2, 3, 4, 6, 8, 9

Porównujemy element ze wszystkim co jest przed nim - wszystko przed j-tym elementem będzie posortowane. Insertion sort nie swapuje par elementów w tablicy, a przenosi tam gdzie jest jego miejsce.

1.4.1 Worst-case analysis - Insertion Sort (A, n)

Odwrotnie posortowana tablica powoduje najwięcej przesunięć. Ponieważ ustaliśmy że liczba operacji w while zależy od j, wtedy:

$$T(n) = \sum_{j=2}^{n} O(j-1) = \sum_{j=1}^{n-1} O(j) = O\left(\sum_{j=1}^{n-1} j\right) =$$
(1.4.1)

$$= O\left(\frac{1+n-1}{2} \cdot (n-1)\right) = O\left(\frac{(n-1) \cdot (n)}{2}\right) = O\left(\frac{n^2}{2}\right) = O(n^2) \tag{1.4.2}$$

1.4.2 Average-case analysis - Insertion Sort (A, n)

Policzmy dla uproszczenia, że na wejściu mamy n-elementowe permutacje, z których każda jest jednakowo prawdopodobna $p=\frac{1}{n!}$. Spróbujmy wyznaczyć \mathbf{E} , korzystając z inwersji permutacji. Wartość oczekiwana liczby inwersji w losowej permutacji wynosi:

$$\mathbf{E} \sim \frac{n^2}{4} \tag{1.4.3}$$

Pominęliśmy stałe wynikające z innych operacji niż porównywanie. W average-case będziemy około połowę szybiciej niż w worst-case.

Pseudokod bez przykładu jest słaby.

1.5 Przykład złożoności

Patrzymy na wiodący czynnik.

$$13n^2 + 91n\log n + 4n + 13^{10} = O(n^2)$$
(1.5.1)

$$= 13n^2 + O(n\log n) \tag{1.5.2}$$

Chcielibyśmy gdzie to konieczne, zapisać lower order terms.

Pytanie o dzielenie liczb - istnieją algorytmy, które ze względu na arytmetyczne właściwości liczb sprawiają, że mniejsze liczby mogą dzielić się dłużej niż większe. Podczas tego kursu nie omawiamy złożoności dla takich algorytmów.

2 Lecture II - Merge Sort

2.1 Merge sort (A, 1, n)

Niech złożoność T(n) - złożność algorytmu. Funkcja Merge Sort stanowi o strukturze algorytmu:

Funkcja Merge pozwala łączyć poszczególne wywołania rekurencyjne:

```
MERGE(X[1...k], Y[1...1])
if k = 0 return Y[1...1]
if l = 0 return X[1...k]
if X[1] <= Y[1]
    return X[1] o MERGE(X[2...k], Y[1...1])
else
    return Y[1] o MERGE(X[1...k], Y[2...1])
MERGE(A,B)
2 1 ---> [1] + MERGE(A,B (bez 1))
7 9
13 10
19 11
20 14
29 \longrightarrow [1,2] + MERGE(A (bez 2),B)
7 10
13 11
19 14
20 .
\dots \longrightarrow [1,2,7,9,10,11,13,14]
19 .
20 .
\dots \longrightarrow [1,2,7,9,10,11,13,14,19,20]
```

[10], [2], [5], [3], [7], [13], [1], [6] [2, 10], [3,5], [7,13], [1,6] [2,3,5,10], [1,6,7,13] [1,2,3,5,6,7,10,13]

Złożoność obliczeniowa merge-a wynosi O(k+l) - w najgorszym przypadku bierzemy najpierw z jednej strony, potem z drugiej i na zmianę.

$$T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + O(n) \tag{2.1.1}$$

$$T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + O(n)$$

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + O(n)$$
(2.1.1)

Rozpiszmy tzw drzewo rekursji:

Musimy dodać wszystkie koszty, które pojawiły się w drzewie. Dodajmy piętra, a następnie zsumumjmy. Żeby znać wysokość drzewa interesuje nas dla jakiego h zajdzie $\frac{n}{2^h}=1$

$$\frac{n}{2^h} = 1 \implies 2^h = n \implies h = \log_2 n \tag{2.1.3}$$

Zatem złożność:

$$\sum_{i=1}^{\log n} cn = cn \log n \sim O(n \log n)$$
(2.1.4)

3 Lecture III - Narzędzia do analizy algorytmów

Dzisiejszy wykład prowadzi GODfryd

3.1 Notacja asymptotyczna

- Big-O (O-duże) $f: \mathbb{N} \to \mathbb{R}$
- Big- Ω (Ω -duże) $f: \mathbb{N} \to \mathbb{R}$
- Big- Θ (Θ -duże) $f: \mathbb{N} \to \mathbb{R}$
- Small-o (o-małe) $f: \mathbb{N} \to \mathbb{R}$

3.2 Notacja Big-O

Definition. Notacja Big-O**.** Funkcja $f(n) \in O(g(n))$, gdy:

$$f(n) = O(g(n)) \equiv (\exists c > 0) (\exists n_0 \in \mathbb{N}) (\forall n \geqslant n_0) (|f(n)| \leqslant c \cdot |g(n)|)$$

Przykład: $2n^2 = O(n^3)$, dla $n_0 = 2, c = 1$ definicja jest spełniona.

Pomijamy tutaj stałe - interesuje nas rząd wielkości

$$O(g(n)) = \{ f \in \mathbb{N}^{\mathbb{R}} : \text{f spełnia definicję} \}$$

O(g(n)) jest klasą funkcji, ale jako informatycy możemy zapisywać f=O(g), zamiast $f\in O(g)$. Notacja nie ma symetrii, to znaczy $f=O(g)\nrightarrow g=O(f)$

Fact. Definicja Big-O za pomocą granicy. Możemy zapisać alternatywnie:

$$f(n) = O(g(n)) \equiv \limsup_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| \le \infty$$

Uwaga. Jeśli $\lim_{n\to\infty}\left|\frac{f(n)}{g(n)}\right|<\infty$ (istnieje), to:

$$\limsup_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| = \lim_{n \to \infty} \left| \frac{f(n)}{g(n)} \right|$$

Przykłady:

$$\begin{cases} f(n) = n^2 \\ g(n) = (-1)^n n^2 \end{cases}$$
 (3.2.1)

Granica nie istnieje, ale $\limsup = 1$

$$\frac{f(n)}{g(n)} = \begin{cases} 1, & 2 & | & n \\ \frac{1}{n}, & 2 & | & n \end{cases}$$
 (3.2.2)

Granica nie istnieje.

Fact. Dokładność zapisu Big-O. Pomijamy składniki niższego rzędu jako mniej istotne, ale podkreślamy że istnieją:

$$f(n) = n^3 + O(n^2) \equiv (\exists h(n) = O(n^2)) (f(n) = n^3 + h(n))$$
(3.2.3)

Rozważmy następnie stwierdzenie:

$$n^{2} + O(n) = O(n^{2}) \equiv (\forall f(n) = O(n)) \left(\exists h(n) = O(n^{2}) \right) \left(n^{2} + f(n) = h(n) \right)$$
(3.2.4)

Rozumiemy to następująco - dodając dowolną funkcję z klasy funkcji liniowych do n^2 otrzymamy funkcję z klasy funkcji kwadratowych.

3.3 Notacja Big- Ω

Definition. Notacja Big- Ω . Funkcja $f(n) \in \Omega(g(n))$, gdy:

$$f(n) = \Omega(g(n)) \equiv (\exists c > 0) (\exists n_0 \in \mathbb{N}) (\forall n \geqslant n_0) (|f(n)| \geqslant c \cdot |g(n)|)$$
(3.3.1)

biorąc $c'=\frac{1}{c}>0$ mamy: (|g(n)| $\leqslant c'\cdot |f(n)|),$ czylig(n)=O(f(n)). Przykład:

$$2n^2 = O(n^3) (3.3.2)$$

$$n^3 = \Omega(2n^2) \tag{3.3.3}$$

$$n = \Omega(\log n) \tag{3.3.4}$$

Każda funkcja jest Omega od siebie samej.

3.4 Notacja Big- Θ

Definition. Notacja Big- Θ . Funkcja $f(n) \in \Theta(g(n))$, gdy:

$$f(n) = \Theta(g(n)) \equiv (\exists c_1, c_2 > 0) (\exists n_0 \in \mathbb{N}) (\forall n \geqslant n_0) (c_1 \cdot |g(n)| \leqslant |f(n)| \leqslant c_2 \cdot |g(n)|)$$
(3.4.1)

Przykład:

$$n^2 = \Theta(2n^2) \tag{3.4.2}$$

$$n^3 = \Theta(n^3) \tag{3.4.3}$$

$$n^4 + 3n^2 + \log n = \Theta(n^4) \tag{3.4.4}$$

Fact. Dokładność zapisu Theta.

$$f(n) = \Theta(g(n)) \equiv f(n) = O(g(n)) \land f(n) = \Omega(g(n))$$
(3.4.5)

$$\Theta(f(n)) = O(f(n)) \cap \Omega(f(n)) \tag{3.4.6}$$

Rozważmy przypadek patologiczny

$$f(n) = n^{1+\sin\frac{\pi \cdot n}{2}} \quad g(n) = n$$
 (3.4.7)

$$f \neq O(g), g \neq O(f) \tag{3.4.8}$$

3.5 Notacja small-o

Definition. Notacja small-o. Funkcja $f(n) \in o(g(n))$, gdy:

$$f(n) = o(g(n)) \equiv (\forall c > 0) \left(\exists n_0 \in \mathbb{N} \right) \left(\forall n \geqslant n_0 \right) \left(|f(n)| < c \cdot |g(n)| \right) \tag{3.5.1}$$

Równoważnie:

$$f(n) = o(g(n)) \equiv \lim_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| = 0$$
 (3.5.2)

Przykład:

$$n = o(n^2) \tag{3.5.3}$$

$$n^2 = o(n^3) (3.5.4)$$

$$n^3 = o(2^n) (3.5.5)$$

3.6 Notacja small- ω

Definition. Notacja small- ω **.** Funkcja $f(n) \in \omega(g(n))$, gdy:

$$f(n) = \omega(g(n)) \equiv (\forall c > 0) (\exists n_0 \in \mathbb{N}) (\forall n \geqslant n_0) (|f(n)| > c \cdot |g(n)|)$$
(3.6.1)

Równoważnie:

$$f(n) = \omega(g(n)) \equiv \lim_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| = \infty$$
 (3.6.2)

Przykład:

$$3.14n^2 + n = O(n^3) = \omega(n) \tag{3.6.3}$$

3.7 Metody rozwiązywania rekurencji

- Metoda podstawienia (indukcji) Cormen
- Metoda drzewa rekursji
- Metoda master theorem

3.8 Rozwiązywanie rekurencji

- 1. Zgadnij odpowiedź (wiodący składnik)
- 2. Sprawdź przez indukcję, czy dobrze zgadliśmy
- 3. Wylicz stałe

Information. Historyjka. Dwóch przyjaciół zgubiło się podczas podróży balonem.

- "Gdzie jesteśmy?"
- "W balonie."

Osoba, którą spotkali, była matematykiem.

Odpowiedź była precyzyjna, dokładna i całkowicie bezużyteczna.

3.9 Metoda podstawiania - Metoda dowodu indukcyjnego

Przykład 1. Rozwiążmy równanie rekurencyjne:

$$T(n) = 4T\left(\frac{n}{2}\right) + n \quad T(1) = \Theta(1)$$
 (3.9.1)

Załóżmy, że $T(n) = O(n^3)$ - pokazać, że $T(n) \leqslant c \cdot n^3.$ dla dużych n.

- 1. Krok początkowy $T(1) = \Theta(1) \leqslant c \cdot 1^3 = c$ ok.
- 2. Założmy, że $\forall_{k < n} T(k) \leqslant c \cdot k^3$ (zał. indukcyjne, nie $\Theta(k^3)$ chcemy konkretną stałą c)
- 3. $T(n) = 4T\left(\frac{n}{2}\right) + n \le 4c\left(\frac{n}{2}\right)^3 + n = \frac{1}{2}cn^3 + n = cn^3 \frac{1}{2}cn^3 + n \le cn^3$.
- 4. Wystarczy wskazać c,takie że $\frac{1}{2}cn^3-n\geqslant 0,$ np $c\geqslant 2$
- 5. Pokazaliśmy, że $T(n) = O(n^3)$

Załóżmy, że $T(n) = O(n^2)$ - pokazać, że $T(n) \leqslant c \cdot n^2.$ dla dużych n.

- 1. Krok początkowy $T(1) = \Theta(1) \leqslant c \cdot 1^2 = c$ ok.
- 2. Założmy, że $\forall_{k < n} T(k) \leqslant c \cdot k^2$ (zał. indukcyjne)
- 3. $T(n) = 4T(\frac{n}{2}) + n \le 4c(\frac{n}{2})^2 + n = cn^2 + n = cn^2 cn^2 + n \le cn^2$.
- 4. Tego się nie da pokazać nie jest prawdą, że $T(n) = O(n^2)$

Wzmocnijmy zatem założenie indukcyjne:

1. $T(n) \leq c_1 n^2 - c_2 n$ (zał. indukcyjne)

2.
$$T(n) = 4T\left(\frac{n}{2}\right) + n \le 4\left(c_1\frac{n}{2}^2 - c_2\frac{n}{2}\right) + n$$

3.
$$= c_1 n^2 - 2c_2 n + n = c_1 n^2 - (2c_2 - 1)n \le$$

$$4. \leq c_1 n^2 - c_2 n$$

5. Weźmy
$$c_1 = 1, c_2 = 2$$
, wtedy $T(n) \le n^2 - 2n = O(n^2)$

Przykład 2. Weźmy paskudną rekursję $T(n)=2T(\sqrt{n})+\log n$. Załóżmy, że n jest potęgą 2 oraz oznaczny $n=2^m, m=\log_2 n$.

$$T(2^m) = 2T((2^m)^{\frac{1}{2}}) + m \tag{3.9.2}$$

Oznaczmy $T(2^m) = S(m)$. Wtedy:

$$S(m) = 2S\left(\frac{m}{2}\right) + m\tag{3.9.3}$$

(dobrze znana rekurencja - $S(n) = O(m \log m)$) - patrz Lecture 2. Przejdźmy z powrotem na T, n:

$$T(2^m) = S(m) \tag{3.9.4}$$

$$T(2^m) = O(m\log m) \tag{3.9.5}$$

$$T(n) = O(\log n \log \log n) \tag{3.9.6}$$

Formalnie pokazaliśmy to tylko dla potęg 2 - musielibyśmy jeszcze indukcyjnie to udowodnić.

Kiedy podłogi i sufity mają znaczenie?

4 Lecture IV - Metoda drzewa rekursji

4.1 Metoda drzewa rekursji

W danym węźle wstawiamy koszt operacji. Sumujemy koszty węzłów na danym poziomie.

$$T(n) = T\left(\frac{n}{2}\right) + T\left(\frac{n}{4}\right) + n^2, \quad T(1) = \Theta(1)$$
 (4.1.1)

Chcemy sumować koszty na danym poziomie, a potem napisać pełną sumę.

. . .

$$T^*(n) = \sum_{k=0}^{\infty} \left(\frac{5}{16}\right)^k n^2 = \tag{4.1.2}$$

$$= n^2 \sum_{k=0}^{\infty} \left(\frac{5}{16}\right)^k = \tag{4.1.3}$$

$$= n^2 \cdot \left(\frac{1}{1 - \frac{5}{16}}\right) = \tag{4.1.4}$$

$$=\frac{16}{11}n^2\tag{4.1.5}$$

Nie mogłoby być mniej niż n^2 , bo już w pierwszym rzędzie jest n^2 . Nie jest to dokładne, ale dostaliśmy górne ograniczenie.

$$T(n) = O(n^2) \tag{4.1.6}$$

Wysokości różnią się o stałą:

$$\frac{n}{2^H} = 1 \implies H = \log_2 n \tag{4.1.7}$$

$$\frac{n}{4^h} = 1 \implies h = \log_4 n \tag{4.1.8}$$

Za chwilę będę dodawał rzeczy, które nie istnieją

Pamiętajmy, że:

$$a^{\log_b n} = n^{\log_b a}$$

$$\hat{T}(n) = \sum_{k=0}^{H = \log_2(n)} \left(\frac{5}{16}\right)^k n^2 = \tag{4.1.9}$$

$$=n^2 \sum_{k=0}^{H} \left(\frac{5}{16}\right)^k = \tag{4.1.10}$$

$$= n^2 \cdot \frac{1}{11} \left(16 - 5 \left(\frac{5}{16} \right)^{\log_2 n} \right) = \tag{4.1.11}$$

$$=\frac{16}{11}n^2 - \frac{5}{11}n^{2-1.67} \tag{4.1.12}$$

Rozważmy ograniczenie dolne:

$$\check{T}(n) = \sum_{k=0}^{h=\log_4(n)} \left(\frac{5}{16}\right)^k n^2 = n^2 \frac{1}{11} \left(16 - C \cdot \left(\frac{5}{16}\right)^{\log_4 n}\right) \tag{4.1.13}$$

Zatem wiemy, że:

$$T(n) = O(\hat{T}(n)) = O(T^*(n)) \tag{4.1.14}$$

$$T(n) = \Omega(\check{T}(n)) \tag{4.1.15}$$

$$T(n) = \Theta(n^2) = \frac{16}{11}n^2 + o(n^2)$$
(4.1.16)

4.2 Metoda iteracyjna

$$T(n) = 3T\left(\left(\frac{n}{4}\right)\right) + n = \tag{4.2.1}$$

$$T(n) = 3\left(3T\left(\left(\frac{n}{16}\right)\right) + \left(\frac{n}{4}\right)\right) + n = 9T\left(\frac{n}{16}\right) + \frac{3}{4}n + n =$$
(4.2.2)

$$T(n) = n + \frac{3}{4}n + 9\left(3T\left(\frac{n}{64}\right) + \frac{n}{16}\right) = \tag{4.2.3}$$

$$T(n) = n + \frac{3}{4}n + \frac{9}{16}n + 27T\left(\frac{n}{64}\right) = \tag{4.2.4}$$

$$T(n) = n + \frac{3}{4}n + \left(\frac{3}{4}\right)^2 n + \left(\frac{3}{4}\right)^3 n + \dots + 3^j T\left(\frac{n}{4^j}\right) =$$
(4.2.5)

(4.2.6)

Wyznaczmy koniec iteracji:

$$\frac{n}{4j} = 1 \implies j = \log_4 n \tag{4.2.7}$$

To jest nic innego jak:

$$\sum_{j=0}^{\log_4 n} \left(\frac{3}{4}\right)^j = O(n) \tag{4.2.8}$$

4.3 Master Theorem

Theorem. Master Theorem. Jeśli $T(n) = a \cdot T(\lceil \frac{n}{b} \rceil) + \Theta(n^d)$ dla pewnych stałych a > 0, b > 1, d > 0, oraz $T(1) = \Theta(1)$ to:

$$T(n) = \begin{cases} \Theta\left(n^{d}\right) & \text{jeśli} \quad d > \log_{b} a \\ \Theta\left(n^{d} \log n\right) & \text{jeśli} \quad d = \log_{b} a \\ \Theta\left(n^{\log_{b} a}\right) & \text{jeśli} \quad d < \log_{b} a \end{cases}$$

$$\hat{T}(n) = a \cdot \hat{T}\left(\frac{n}{h} + 1\right) + \Theta(n^d) \tag{4.3.1}$$

$$\check{T}(n) = a \cdot \check{T}\left(\frac{n}{b}\right) \tag{4.3.2}$$

Dowód

wielkość . liczba podproblemów

. . .

koszt na poziomie 'k' = c (n/b^k)^d
liczba podproblemów na poziomie 'k' = a^k

suma kosztów 'k'-tym wierszu = c $(a/b^d)^k * n^d$

Wysokość drzewa rekursji

$$\frac{n}{h^h} = 1 \implies h = \log_b n \tag{4.3.3}$$

Zatem:

$$T(n) = \Theta\left(\sum_{k=0}^{\log_b n} \cdot \left(\frac{a}{b^d}\right)^k n^d\right)$$
(4.3.4)

Mogę wziąć thetę zamiast o, bo dość dokładnie robię - ale trochę nie

$$\sum_{k=0}^{h} q^k = \frac{1 - q^{h+1}}{1 - q} \quad \sum_{k=0}^{h} 1^k = (h+1)$$

$$T(n) = \Theta\left(n^d \sum_{k=0}^{\log_b n} \cdot \left(\frac{a}{b^d}\right)^k\right)$$
(4.3.5)

(1) Jeśli $\frac{a}{b^d} < 1$, to:

$$a < b^d (4.3.6)$$

$$\log_b(a) < d \quad \text{zatem} \tag{4.3.7}$$

$$T(n) = \Theta(n^d) \tag{4.3.8}$$

(większość pracy dzieje się z korzenia - okolic korzenia)

(2) Jeśli $\frac{a}{b^d} = 1$, to:

$$a = b^d (4.3.9)$$

$$\log_b(a) = d \tag{4.3.10}$$

$$T(n) = \Theta(n^d \log n) \tag{4.3.11}$$

(suma kosztów w k-tym wierszu - każdy wiersz kontrybuuje równie mocno)

(3) Jeśli $\frac{a}{b^d} > 1$, to:

$$a > b^d \tag{4.3.12}$$

$$\log_b(a) > d \tag{4.3.13}$$

$$T(n) = \Theta(n^{\log_b a}) \tag{4.3.14}$$

(z każdym kolejnym poziomem koszt rośnie - większość złożoności kryje się na dole drzewa rekursji)

Z tego co dzieje się na początku... albo na końcu, bo to może być scalanie Stworzyliście za dużo podproblemów.

Co jeśli rekurencja nie ma $n^d,$ a ma $n\log(n)?$ - możemy przybliżać

Przykład

$$T(n) = 4T\left(\frac{n}{2}\right) + 11n \quad a = 4, b = 2, d = 1$$
 (4.3.15)

$$\log_b a = \log_2 4 = 2 > 1 = d \quad \text{to jest przypadek (3)} \tag{4.3.16}$$

$$T(n) = \Theta\left(n^{\log_a b}\right) = \Theta\left(n^{\log_2 4}\right) = \Theta\left(n^2\right) \tag{4.3.17}$$

Przykład

$$T(n) = 4T\left(\frac{n}{3}\right) + 3n^2 \quad a = 4, b = 3, d = 2$$
 (4.3.18)

$$\log_b a = \log_3 4 < 2 = d \quad \text{to jest przypadek (1)} \tag{4.3.19}$$

$$T(n) = \Theta(n^d) = \Theta(n^2) \tag{4.3.20}$$

Przykład

$$T(n) = 27T\left(\frac{n}{3}\right) + 0.(3)n^3$$
 $a = 27, b = 3, d = 3$ (4.3.21)

$$\log_b a = \log_3 27 = 3 = d$$
 to jest przypadek (2) (4.3.22)

$$T(n) = \Theta\left(n^d \log n\right) = \Theta\left(n^3 \log n\right) \tag{4.3.23}$$

4.4 Divide and Conquer

- 1. Podział problemu na mniejsze podproblemy.
- 2. Rozwiąż rekurencyjnie mniejsze (rozłączne) podproblemy.
- 3. Połącz rozwiązania problemów w celu rozwiązania problemu wejściowego.

4.5 Wyszukiwanie elementów w portowanej tablicy

- Input posortowana tablica A[1..n], element x
- $\bullet\,$ Output indeks itaki, że A[i]=xlub błąd, gdy xnie występuje w A

4.6 Binary search

- 1. if n = 1, A[n] = x return n, else A does not contain x
- 2. porównujemy x z $A[\frac{n}{2}]$
- 3. jeśli $x = A[\frac{n}{2}]$ return $\frac{n}{2}$
- 4. jeśli $x < A[\frac{n}{2}],$ Binary
Search $(A[1..\frac{n}{2}-1],x)$
- 5. jeśli $x > A[\frac{n}{2}]$, BinarySearch $\left(A[\frac{n}{2}+1..n], x\right)$

Wy nie patrzcie na pseudokody na tablicy, tylko w książce

$$T(n) = 1 \cdot T\left(\frac{n}{2}\right) + \Theta(1) \tag{4.6.1}$$

$$T(n) = \Theta(\log n) \tag{4.6.2}$$

5 Lecture V - Divide and Conquer

5.1 Potęgowanie liczby

 $\bullet\,$ Input - liczba x,liczba całkowita n

• Output - x^n

Bazowo zachodzi n-1 mnożeń x przez siebie. (czyli $\Theta(n)$ operacji)

$$x \cdot x \cdot \dots \cdot x = x^n \tag{5.1.1}$$

Zróbmy to sprytniej:

$$x^{n} = \begin{cases} x^{\frac{n}{2}} \cdot x^{\frac{n}{2}} & \text{dla parzystego} \quad n \\ x^{\frac{n-1}{2}} \cdot x^{\frac{n-1}{2}} \cdot x & \text{dla nieparzystego} \quad n \end{cases}$$
 (5.1.2)

Z liniowej liczby mnożeń zeszliśmy do logarytmicznej liczby mnożeń.

$$T(n) = 1 \cdot T\left(\frac{n}{2}\right) + \Theta(1) \tag{5.1.3}$$

$$T(n) = \Theta(\log n) \tag{5.1.4}$$

5.2 Wyliczenie n-tej liczby Fibonacciego

$$F_n = \begin{cases} 0 & n = 0 \\ 1 & n = 1 \\ F(n-1) + F(n-2), & n > 1 \end{cases}$$
 (5.2.1)

Normalne wywołanie funkcji to $\Theta(\varphi^n)$

Wykorzystajmy podejście bottom-up, liczymy i zapamiętujmy każdorazowo F_2, F_3, \ldots, F_n Osiągnęliśmy złożoność liniową $\Theta(n)$

Istnieje jednak zwarty wzór na $F(n)=\frac{1}{\sqrt{5}}\left(\frac{\varphi^n+\varphi^n}{2}\right)$ a to możemy policzyć logarytmicznie.

Tu pojawiają się liczby - jak one się nazywały - (z sali) niewymierne.

Istnieje macierz, która mnożona pozwala na policzenie n-tej liczby Fibonacciego.

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n = \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix}$$
 (5.2.2)

Algorytm używający tego wzoru - połączony z szybkim potęgowaniem, ma złożoność $\Theta(\log n)$.

5.3 Mnożenie Liczb

• Input: x, y (liczby n-bitowe)

• Output: $x \cdot y$

Standardowe mnożenie w słupku to $\Theta(n^2)$ mnożeń i $\Theta(n)$ dodawań. Załóżmy, że n jest parzyste:

$$x = x_L \cdot 2^{\frac{n}{2}} + x_R \tag{5.3.1}$$

$$y = y_L \cdot 2^{\frac{n}{2}} + y_R \tag{5.3.2}$$

$$x \cdot y = (x_L \cdot 2^{\frac{n}{2}} + x_R) \cdot (y_L \cdot 2^{\frac{n}{2}} + y_R) = \tag{5.3.3}$$

$$= x_L \cdot y_L \cdot 2^n + (x_L y_R + x_R y_L) \cdot 2^{\frac{n}{2}} + x_R y_R$$
 (5.3.4)

$$T(n) = 4T\left(\frac{n}{2}\right) + \Theta(n) \tag{5.3.5}$$

$$a = 4, b = 2, d = 1$$
 (5.3.6)

$$\log_b a = \log_2 4 = 2 > 1 = d \tag{5.3.7}$$

$$T(n) = \Theta(n^2) \tag{5.3.8}$$

Asymptotycznie nie zyskaliśmy nic.

Ten przypadek pokazuje, że czasami nie wystarczy bezmyślnie podzielić a potem scalić.

A co o tym myślał Gauss - tu jest dużo mnożeń - cztery.

$$(a+ib)(c+id) = ac - bd + i(bc + ad)$$
(5.3.9)

$$bc + ad = (a+b)(c+d) - ac - bd$$
 (5.3.10)

Zobaczmy, że ac, bd sa już policzone wyżej - zamiast 4 mnożeń, mamy 3 mnożenia.

$$x \cdot y = x_L y_L 2^n + ((x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R) + x_R y_R$$
(5.3.11)

Wykonujemy i zapamiętujemy mnożenia $x_L y_L, x_R y_R, (x_L + x_R)(y_L + y_R)$ - zamiast 4 mnożeń, mamy 3 mnożenia.

 $\Theta(n)$ - wynika z przeunięć bitowych oraz dodawań.

$$T(n) = 3T\left(\frac{n}{2}\right) + \Theta(n) \tag{5.3.12}$$

$$a = 3, b = 2, d = 1$$
 (5.3.13)

$$\log_b a = \log_2 3 > 1 = d \tag{5.3.14}$$

$$T(n) = \Theta(n^{\log_2 3}) = \Theta(n^{1.59}) \tag{5.3.15}$$

Najszybszy znany algorytm - na podstawie szybkiej transformaty fouriera $\sim O(n \cdot \log n \cdot \log \log n)$

```
mutiply(x, y)
    n = max {|x|, |y|}
    if n == 1 return x * y
    x_L, x_R = leftmost(ceil(n/2),x), rightmost(floor(n/2),x)
    y_L, y_R = leftmost(ceil(n/2),y), rightmost(floor(n/2),y)

p1 = multiply(x_L, y_L)
```

Podobnie możemy mnożyć macierze.

5.4 Mnożenie macierzy

- \bullet Input: A, B n-wymiarowe macierze
- Output: $A \cdot B$

Naiwne mnożenie macierzy wykonuje $\Theta(n^3)$ mnożeń.

Podzielmy macierz na 4 równe częsci:

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \times \begin{pmatrix} E & F \\ G & H \end{pmatrix} = \begin{pmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{pmatrix}$$
 (5.4.1)

$$T(n) = 8T\left(\frac{n}{2}\right) + O(n^2)$$
 (5.4.2)

$$T(n) = O(n^3) \tag{5.4.3}$$

Znowu nic nie zyskaliśmy. Jesteśmy w stanie wyeliminować jedno mnożenie - osiągając ostatecznie $\Theta(n^{\log_2 7}) \sim \Theta(n^{2.81})$.

Algorytmy state of the art - $\Theta(n^2 \text{polylog}(n))$.

5.5 Quick Sort

Algorytm na podział - scalanie już posortowanych. Pozwala na sortowanie w miejscu.

1. Podziel A[p..q] na dwie tablice: A[p..k-1], pivot, A[k+1..q] takie, że:

$$\forall_{i \in [p..k-1]} A[i] \leqslant pivot, \forall_{j \in [k+1..q]} A[j] > pivot$$

2. Quicksort(A, p, k - 1)Quicksort(A, l - 1, q)

Przykład - weźmy nieposortowaną tablicę:

```
Quicksort(A,1,n)
[6, 1, 4, 3, 5, 7, 2, 8] # pivot = 6
->
[1, 4, 3, 5, 2, 6, 7, 8]
Quicksort(A,1,5)
Quicksort(A,7,8) ->
[1, 4, 3, 2, 5, 6, 7, 8] # pivot = 1
.
Quicksort(A,2,5) ->
[1, 3, 2, 4, 5, 6, 7, 8] # pivot = 4
.
Quicksort(A,2,3) ->
[1, 2, 3, 4, 5, 6, 7, 8] # pivot = 3
. . . . . . . .
```

6 Lecture VI - Quicksort

Rozważmy algorytmy służące do dzielenia tablicy w Quicksorcie

6.1 Lomuto Partition

```
Lomuto Partition(A, p, q) # A[p..q]
   pivot = A[p]
    i = p
    for j = p + 1 to q
        if A[j] \le pivot # expensive |A[p..q]| = n, then (n-1) comparisons ~ Theta(n)
           i = i + 1
            swap (A[i], [j]) \# expensive, but if dependent
    swap (A[i], A[p]) # pivot in between A[p..i] and A[i+1..q]
    return i
|*| <= pivot |i| pivot < |j| ? |
р
We either put the ? element in the '<= pivot' part, or '> pivot' part
Α
| <= pivot | * | pivot < |
Example
6, 10, 13, 5, 8, 3, 2, 11
* i j
```

Biorąc pod uwagę, że dokonujemy n-1 porównań, złożoność Lomuto Partition wynosi $\Theta(n).$

6.2 Hoare Partition

W Hoare Partition tracimy pivot który może ulec przesunięciu. Porównań robimy więcej o stałą $n\pm c, c=1$. Złożoność $\Theta(n)$ - zdecydowanie mniej swapów, 2-3 razy mniej niż Lomuto partition.

```
QS(A,p,q)
    if p < q
        r = Partition(A,p,q)
        QS(A,p,r-1)
        QS(A,r+1,q)</pre>
```

6.3 Worst Case Analysis for QS

Najgorzej będzie jak każdorazowo będziemy nierówno dzielić po 1-szym elemencie (odwrotnie posortowana tablica).

```
cn
/
Theta(1) c(n-1)
/
Theta(1) c(n-2)
...
/
Theta(1) Theta(1)
```

$$T(n) = T(n-1) + T(0) + \Theta(n)$$
(6.3.1)

$$T(n) = T(n-1) + \Theta(n) \le \sum_{i=0}^{n} c(n-i) + \Theta(1) =$$
(6.3.2)

$$= c \sum_{i=0}^{n} (n-i) + \Theta(n) =$$
 (6.3.3)

$$= c\frac{(n)(n+1)}{2} + \Theta(n) = \tag{6.3.4}$$

$$=O(n^2) \tag{6.3.5}$$

6.4 Best case Analysis for QS

Najlepiej będzie jak dzielimy na pół.

$$T(n) = T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right) + \Theta(n) \tag{6.4.1}$$

$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n) \tag{6.4.2}$$

$$T(n) = \Theta(n \log n) \tag{6.4.3}$$

6.5 Specific case analysis for QS

$$T(n) = T\left(\frac{n}{10}\right) + T\left(\frac{9n}{10}\right) + \Theta(n) \tag{6.5.1}$$

Po zsumowaniu każde piętro będzie miało koszt cn. Zchodzimy końca wysokości drzewa.

$$\left(\frac{9}{10}\right)^h n = 1\tag{6.5.2}$$

$$n = \left(\frac{10}{9}\right)^h \tag{6.5.3}$$

$$h = \log_{\frac{10}{2}} n \tag{6.5.4}$$

6.6 Best/Worst case analysis for QS - Intuition

$$L(n) = 2U\left(\frac{n}{2}\right) + \Theta(n) \tag{6.6.1}$$

$$U(n) = L(n-1) + L(0) + \Theta(n)$$
(6.6.2)

(6.6.3)

Zatem rozwiążmy układ równań:

$$L(n) = 2\left(L(\frac{n}{2} - 1) + \Theta(n)\right) + \Theta(n) \tag{6.6.4}$$

$$L(n) = 2L\left(\frac{n}{2} - 1\right) + \Theta(n) \tag{6.6.5}$$

$$L(n) = \Theta(n \log n) \tag{6.6.6}$$

6.7 Average case analysis for QS

Rozkład T_n nie jest znany do dziś.

Zapiszmy dla $0 \le k \le n-1$:

$$T_n = \#$$
 porównań elementów sortowanej tablicy, $|A| = n$ (6.7.1)

$$X_k(n) = \begin{cases} 1 & \text{jeśli partition podzieli tablicę n-elementową na (k, n-k-1)} \\ 0 & \text{w p.p.} \end{cases}$$

$$(6.7.2)$$

Możemy wyznaczyć wartość oczekiwaną zmiennej losowej X_k :

$$E(X_k) = 1 \cdot P(X_k = 1) + 0 \cdot P(X_k = 0) = 1 \cdot P(X_k = 1) = \frac{(n-1)!}{n!} = \frac{1}{n}$$
 (6.7.3)

Zapiszmy wobec tego równanie na T_n , uwzględniające wszystkie przypadki:

$$T_{n} = ^{distr.} \begin{cases} T_{0} + T_{n-1} + n - 1 & \text{if } (0,\text{n-1}) - \text{split} \\ T_{1} + T_{n-2} + n - 1 & \text{if } (1,\text{n-2}) - \text{split} \end{cases}$$

$$\vdots$$

$$T_{k} + T_{n-1-k} + n - 1 & \text{if } (\text{k,n-k-1}) - \text{split}$$

$$T_{n-1} + T_{0} + n - 1 & \text{if } (\text{n-1,0}) - \text{split}$$

$$(6.7.4)$$

$$T_n = {}^{distr.} \sum_{k=0}^{n-1} X_k (T_k + T_{n-k-1} + n - 1)$$
(6.7.5)

$$E(T_n) = E\left(\sum_{k=0}^{n-1} X_k (T_k + T_{n-k-1} + n - 1)\right) =$$
(6.7.6)

$$E(T_n) = \sum_{k=0}^{n-1} E(X_k(T_k + T_{n-k-1} + n - 1)) =$$
(6.7.7)

$$E(T_n) = \sum_{k=0}^{n-1} E(X_k) \cdot E(T_k + T_{n-k-1} + n - 1) =$$
(6.7.8)

$$E(T_n) = \frac{1}{n} \sum_{k=0}^{n-1} E(T_k) + E(T_{n-k-1}) + n - 1 =$$
(6.7.9)

$$E(T_n) = \frac{1}{n} \left(\sum_{k=0}^{n-1} E(T_k) + \sum_{k=0}^{n-1} E(T_{n-k-1}) + \sum_{k=0}^{n-1} n - 1 \right) =$$
 (6.7.10)

$$E(T_n) = \frac{1}{n} \sum_{k=0}^{n-1} E(T_k) + \frac{1}{n} \sum_{k=0}^{n-1} E(T_{n-k-1}) + \frac{1}{n} \sum_{k=0}^{n-1} n - 1 =$$
 (6.7.11)

$$E(T_n) = \frac{1}{n} \sum_{k=0}^{n-1} E(T_k) + \frac{1}{n} \sum_{k=0}^{n-1} E(T_{n-k-1}) + n - 1$$
(6.7.12)

$$E(T_n) = \frac{2}{n} \sum_{k=0}^{n-1} E(T_k) + n - 1$$
(6.7.13)

Podstawmy dla wygody $t_n = E(T_n)$:

$$t_n = \frac{2}{n} \sum_{k=0}^{n-1} t_k + n - 1 \quad \text{rekurencja z pełną historią}$$
 (6.7.14)

Możemy usunąć historię odejmując od siebie kolejne wyrazy rekurencji.

$$nt_n = 2\sum_{k=0}^{n-1} t_k + (n-1)n$$
(6.7.15)

$$(n-1)t_{n-1} = 2\sum_{k=0}^{n-2} t_k + (n-2)(n-1)$$
(6.7.16)

Zachodzi odejmowanie stronami

$$nt_n - (n-1)t_{n-1} = 2\sum_{k=0}^{n-1} t_k + (n-1)n - 2\sum_{k=0}^{n-2} t_k - (n-2)(n-1)$$
(6.7.17)

$$nt_n - (n-1)t_{n-1} = 2t_{n-1} + 2(n-1)$$
 (6.7.18)

$$nt_n = (n+1)t_{n-1} + 2(n-1) (6.7.19)$$

$$\frac{t_n}{n+1} = \frac{t_{n-1}}{n} + 2\frac{n-1}{n(n+1)} \tag{6.7.20}$$

Dokonajmy podstawienia $f_n = \frac{t_n}{n+1}$, $f_0 = 0$, $f_1 = 0$:

$$f_n = f_{n-1} + 2\frac{n-1}{n(n+1)}, f_0, f_1 = 0 (6.7.21)$$

$$f_n = 2\sum_{k=1}^n \frac{k-1}{k(k+1)} = \tag{6.7.22}$$

$$f_n = 2\sum_{k=1}^n \frac{2}{k+1} - \frac{1}{k} = \tag{6.7.23}$$

$$f_n = 4\sum_{k=1}^n \frac{1}{k+1} - 2\sum_{k=1}^n \frac{1}{k} =$$
 (6.7.24)

$$f_n = 4(H_{n+1} - 1) - 2H_n (6.7.25)$$

$$f_n = 4\left(H_n + \frac{1}{n+1} - 1\right) - 2H_n \tag{6.7.26}$$

$$f_n = 2H_n - 4 + \frac{4}{n+1} \tag{6.7.27}$$

Wróćmy z podstawienia $t_n = (n+1)f_n$:

$$E(T_n) = t_n = (n+1)f_n = 2nH_n + 2H_n - 4(n+1) + 4$$
(6.7.28)

$$H_n = \ln n + \gamma + \frac{1}{2n} + \Theta\left(\frac{1}{n^2}\right) \tag{6.7.29}$$

Widzimy, że wiodący czynnik $T_n=2n\ln n+\Theta(n)$. Wiemy dlaczego QS jest dobry - średnio wykona $2n\ln n$ porównań asymptotycznie.

7 Lecture VII - Quicksort - further analysis

Możemy wyróznić dwa pivoty, w obrębie których prowadzimy sortowanie. To wymaga stworzenia nowego alogrytmu partition.

1. 1975 Sedgewick (liczba porównań w dual-pivot partition)

$$E(\# \text{ dual pivot partition}) \sim \frac{16}{9}n \implies E(\# \text{ QS}) \sim \frac{32}{15}n \log n$$

- 2. 2009 Yaroslavsky, Bentley, Block Dual pivot quick sort
- 3. 2012 Sebastian Wild, Nebel

$$E(\# \text{ dual pivot partition}) \sim \frac{19}{12}n \implies E(\# \text{ QS}) \sim 1.9n \log n$$

4. 2015 Aumuller Dietzfelbinger - zaprezentowali strategię count oraz pokazali jej optymalność:

$$E(\# \text{ count partition}) \sim \frac{3}{2}n \implies E(\# \text{ QS}) \sim 1.8n \log n$$

7.1 Strategia Count

Zakładamy p < q - rozpatrujemy wartość oczekiwaną, ponieważ jedynie pierwsze sprawdzenie z pivotem jest wymagane.

Rozpatrzmy *i*-ty element w podziale (pamiętając, że p < q):

- jeśli $s_{i-1} \ge l_{i-1}$ to porównujemy kolejny A[i] najpierw z p, a potem ewentualnie z q (jeśli A[i] < p to nie musimy porównywać z q)
- jeśli $s_{i-1} < l_{i-1}$ to A[i] porównujemy najpierw z q, a potem ewentualnie z p

$$E(T_n) = E(P_n) = \frac{1}{\binom{n}{2}} \sum_{1 \le p \le q \le n} E(T_{p-1}) + E(T_{q-p-1}) + E(T_q)$$
 (7.1.1)

Tim Peters - Tim-sort - modyfikacja merge-sorta, wyznaczmy posortowane podciągi przed merge-m, mergeujmy podobnej wielkości tablice - specjalna polityka merge-owania. ... ograniczenie dolne, counting sort w czasie liniowym zbioru wielkości O(n)

7.2 Counting Sort

Counting sort ¹ zakłada, że każdy z wejściowych elementów mieści się w przedziale [0, k], dla pewnego $k \in \mathbb{Z}$. Gdy k = O(n), to złożoność algorytmu wynosi $\Theta(n + k) = \Theta(n)$. Do jego wykonania potrzebujemy tablicy pomocniczej.

```
COUNTING-SORT(A, B, k)
let C[0..k] be a new array
for i = 0..k
    C[i] = 0
for j = 1..length[A]
    C[A[j]] = C[A[j]] + 1
for i = 1..k
    C[i] = C[i] + C[i - 1]
for j = length[A]..1
    B[C[A[j]]] = A[j]
    C[A[j]] = C[A[j]] - 1
```

Counting sort ma własność stabliności - zachowuje elementy tej samej wartości w kolejności, w jakiej występują w tablicy wejściowej.

 $^{^{1}\}mathrm{Cormen}$ (194-196) - Chapter 8 - Sorting in Linear Time - 8.2 Counting Sort

7.3 Radix Sort

Radix Sort polega na sortowaniu liczb w systemie pozycyjnym, przy pomocy innego stabilnego sortowania.

```
RADIX-SORT(A, d)
for i = 1..d
    COUNTING-SORT(A, i)
```

8 Lecture VIII

8.1 Poprawność Radix Sort

Indukcja po t-numer cyfry.

- 1. Jeśli liczby 1-cyfrowe to z poprawności Counting Sorta ok.
- 2. Założmy indukcyjnie Radix Sort jest poprawny do t-1 cyfry.
- 3. Krok indukcyjny t-ta dwóch liczb jest taka sama. To z załóżenia indukcyjnego dalej oraz stable property Counting Sorta liczby do t-tej cyfry dalej pozostaną posortowane. t-ta cyfra różna: z poprawności counting sorta OK.

8.2 Złożoność obliczeniowa Radix Sort

|r-bitowy kawalek| r'b... | r'b... | r'b... | b-bitów dzielmy na kawałki (cyfry w podstawie r)

Mamy n, b-bitowych liczb, które dzielę na (r-bitowe cyfry $\frac{b}{r}$ takich cyfr). Cyfry są z $|\{0,\ldots,2^n-1\}|=2^n$. Zatem pojedyńczy counting sort n-liczb względem jednej cyfry to:

$$O(n+2^r) (8.2.1)$$

Zatem Radix Sort będzie miał złożoność obliczeniową

$$O\left(\frac{b}{r}(n+2^r)\right) \tag{8.2.2}$$

W celu ustalenia nalepszego r - minimalnego f - wykorzystamy funkcję W-Lamberta

$$f(r) = -\frac{b}{r} (n+2^r)$$
 (8.2.3)

Zapropojujmy funkcję $r = \log n$, wtedy:

$$O\left(\frac{b}{\log n}\left(n + 2^{\log n}\right)\right) = O\left(\frac{b \cdot n}{\log n}\right) =$$
 (8.2.4)

(8.2.5)

Założmy, że zbiór sortowanych elementów to:

$$\{0,\dots,n^d-1\}$$
 – do tego zbioru należą b-bitowe sortowane liczby (8.2.6)

Wtedy maksymalne $b = \log n^d = d \log n$:

$$(\dots) = O\left(\frac{dn\log n}{\log n}\right) = O(d \cdot n) \tag{8.2.7}$$

8.3 Statystyki pozycyjne

Definition. Statystyka pozycyjna. k-tą statystykę pozycyjną nazywamy k-tą najmniejszą wartość z zadanego zbioru.

- Co się dzieje, jeśli $k = 1 \rightarrow \Theta(n)$.
- Co się dzieje, jeśli $k = n \to \Theta(n)$.
- Co się dzieje, jeśli $k = \lfloor \frac{n-1}{2} \rfloor \vee \lfloor \frac{n+1}{2} \rfloor \to \text{sortowanie}$

8.4 RandomSelect(A,p,q,i)

Nazwa Random Select bierze się z tego, że wybieramy losowy element jako pivot. p to indeks początkowy, q to indeks końcowy, i to numer zadanej statystyki pozycyjnej.

```
RandomSelect(A, p, q, i)
    IF p == q return A[p]
    r = Rand_Partition(A,p,q) # jako pivota przyjmieny losowy element
    k = r - p + 1
    IF i == k return A[r]
    IF i < k return RandomSelect(A, p, r-1, i)
    ELSE return RandomSelect(A, r+1, q, i-k)</pre>
```

Przykład. Szukajmy 4-tej statystyki pozycyjnej (Pivot oznaczamy '*'):

Po podziale względem pivota:

Bierzemy lewą część:

6, 5, 8 RandomSelect(A, 3, 5, 2)
*

Pivot index: r = 4, k = 4 - 3 + 1 = 2

Zwracamy czwarty element posortowanej tablicy 6 (dla sprawdzenia: posortowana tablica):

8.5 Best Case dla RandomSelect

Każdorazowo dzielimy tablicę na pół.

$$T(n) = 1 \cdot T\left(\frac{n}{2}\right) + \Theta(n)$$
 n to partition (8.5.1)

$$a = 1, b = 2, d = 1, log_2 1 = 0 < 1 \implies (8.5.2)$$

$$T(n) = \Theta(n) \tag{8.5.3}$$

8.6 Worst Case dla RandomSelect

Każdorazowo wybieramy pivot tak, że dzielimy tablicę na n-1 i 0-elementową część.

$$T(n) = 1T(n-1) + \Theta(n)$$
 partition is unfortunate (8.6.1)

$$T(n) = O(n^2) \tag{8.6.2}$$

8.7 Average Case dla RandomSelect

$$E(T_n) = (n-1) + \frac{2}{n} \sum_{k=\lceil \frac{n}{2} \rceil}^{n-1} E(T_k)$$
(8.7.1)

Możemy zapisać (rozbicia na k i n-k-1, z których bierzemy tylko jedno z nich). Wiemy, że n-1 to koszt Partition, zatem:

$$T_{n} = \begin{cases} T_{n-1} + n - 1 : (0, n - 1) \\ T_{n-2} + n - 1 : (1, n - 2) \\ \vdots \\ T_{\lceil \frac{n}{2} \rceil} + n - 1 : (\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil) \end{cases}$$
(8.7.2)

Można to rozwiązać indukcyjnie, aby wykazać, że $E(T_n) = \Theta(n)$. Uwaga. Te przekształcenia wykonałem po wykładzie

Wiemy, że ograniczenie dolne na T_n wynosi $\Omega(n)$, ponieważ n-1=O(n) to sam koszt dla Partition. Ustalmy ograniczenie górne metodą, którą wykorzystaliśmy przy analizie Quick Sorta. Mamy:

$$X_k = \begin{cases} 1 & \text{jeśli partition podzieli tablicę n-elementową na (k, n-k-1)} \\ 0 & \text{w p.p.} \end{cases}$$
 (8.7.3)

Zauważmy, że $k \in \{0,\dots,\frac{n}{2}\}$, zatem $E(X_k) = \frac{2}{n}$. Zapiszmy następnie:

$$T_n = \sum_{k=0}^{\frac{n}{2}} X_k \left(T_{n-k-1} + n - 1 \right)$$
 (8.7.4)

$$T_n = \frac{2}{n} \cdot \left(\sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} T_{n-k-1} + \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} (n-1) \right)$$
 (8.7.5)

Widzimy, że druga suma jest O(n), zatem rozważmy dalej pierwszą część:

$$T_n = \frac{2}{n} \sum_{k=\frac{n}{2}-1}^{n-1} T_k + O(n)$$
(8.7.6)

(8.7.7)

Wystarczy pokazać, że pierwszy człon równiez jest O(n). Zróbmy to indukcyjnie.

$$S_n = \frac{2}{n} \sum_{k=\frac{n}{2}}^{n-1} T_k \tag{8.7.8}$$

(8.7.9)

Przypadek bazowy $S_1 = T_1 = O(1)$

Założenie indukcyjne $\forall_{k < n} S_k \leq ck$. Przeprowadźmy krok indukcyjny:

$$S_n = \frac{2}{n} \sum_{k=\frac{n}{2}}^{n-1} T_k \leqslant \frac{2}{n} \sum_{k=\frac{n}{2}}^{n-1} ck =$$
 (8.7.10)

$$= \frac{2c}{n} \left(\sum_{k=0}^{n-1} k - \sum_{k=0}^{\frac{n}{2}} k \right) = \tag{8.7.11}$$

$$=\frac{2c}{n}\left(\frac{n(n-1)}{2}-\frac{n(n+2)}{8}\right)\leqslant \tag{8.7.12}$$

$$\leq \frac{2c}{n} \left(\frac{1}{8} n(3n-2) \right) =$$
 (8.7.13)

$$=\frac{3}{4}cn\leqslant cn\tag{8.7.14}$$

Zatem $S_n \leq cn$ i ostatecznie $T_n = \Theta(n)$.

8.8 Select(A,p,q,i)

Algorytm ma duże podobieństwo z Random Select. Nie wybieramy losowego pivota - tylko inteligentnie. Nie
ch |A[p..q]| = n.

- 1. Dzielimy A[p..q] na $\lfloor \frac{n}{5} \rfloor$ pięcio elementowych części oraz ostatnią część rozmiaru ≤ 5 .
- 2. Sortujemy te grupy i wybieramy z każdej z nich medianę. $M=\{m_1,m_2,\dots,m_{\lfloor \frac{n}{5}\rfloor}\}$
- 3. Znajdujemy medianę $M: Select(M,1,\lceil \frac{n}{5}\rceil,\lfloor \frac{\lceil \frac{n}{5}\rceil}{2}\rfloor) \implies x. M$ wygląda jak osobna tablica da się to zrobić in place.
- 4. Ustaw x (medianę median) jako pivot Partition(A, p, q) Dalej tak samo jak Random-Select, oczywiście odpaląc rekurencyjnie Select.

Zapuszczam selecta na M, |M|=5

Pierwsze dwa kroki algorytmu zajmą O(n) - podzielenie tablicy i posortowanie piątek. Późniejsze kroki są dane jako rekurencja:

$$T(n) = T\left(\left\lceil \frac{n}{5}\right\rceil\right) + T(?) + O(n)(? \text{ na następnym wykładzie})$$
 (8.8.1)

9 Lecture IX - Select

- 1. Dziel wejściową tablicę na 5-elementowe podtablice i znajdź ich mediany $\Theta(n)$
- 2. Select (...) znajdź medianę median. $T\left(\lceil \frac{n}{5} \rceil\right)$
- 3. Użyj mediany median jako pivot w Partition $\Theta(n)$
- 4. Idź do lewej albo prawej podtablicy w zależności od indeksu pivot i uszkanej statystyki pozycyjnej. T(?)

$$T(n) = T\left(\left\lceil \frac{n}{5}\right\rceil\right) + T(?) + \Theta(n) \tag{9.0.1}$$

```
Dzielimy na 5 części
|.....|.....|....|
sort 5-el części, wyzn medianę

max
| .w| .w| .w| .| .|
| .w| .w| .w| .| .|
| .w> w> .M> .s> .s|
| . | . | .s| .s| .s|
| . | . | .s| .s| .s|
min

M - mediana median (zakładamy porządek)
w - większe od mediany median (forall i : M < w_i)
s - mniejsze od mediany median (forall i : M < s_i)
". " - części o których nic nie powiemy

Wszystkich piątek jest ceil(n/5)
```

Wartości mniejszych od M jest 3*(1/2 ceil(n/5) - 1 - 1) (minus skrajna oraz mediana median)

Każda piątka kontrubuuję, ale nie liczymy skrajnych piątek - ponieważ wyznaczamy ograniczenie

| . | . | .s| .1| .1 | .s|

1 - zliczamy

s - ignorujemy (można lepiej, ale nie trzeba)

-||- większych jest 1/2 ceil(n/5)

Wartości mniejszych od M
$$\geqslant \left(\frac{1}{2}\lceil\frac{n}{5}\rceil-1-1\right)\cdot 3\geqslant \qquad \qquad (9.0.2)$$

$$\geqslant \frac{3}{10}n - 6\tag{9.0.3}$$

Prezentowana tablica

$$| 3/10 n - 6 | M | n - (3/10 m - 6) - 1 = 7/10n + 5 |$$

Zatem

$$T(n) \geqslant T\left(\lceil \frac{n}{5} \rceil\right) + T\left(\frac{7}{10}n + 5\right) + \Theta(n)$$
 (9.0.4)

$$\frac{3}{4}n \geqslant \frac{7}{10}n + 5$$
 dla $n > 100$ (9.0.5)

$$T(n) \leqslant T\left(\frac{n}{5}\right) + T\left(\frac{3}{4}n\right) + \Theta(n)$$
 (9.0.6)

Niech $T(1) = \Theta(1)$. Chcemy pokazać, że $T(n) = \Theta(n)$.

Założenie indukcyjne:

$$(\forall k < n) T(k) \leqslant ck \tag{9.0.7}$$

Krok indukcyjny

$$T(n) \leqslant T\left(\frac{n}{5}\right) + T\left(\frac{3}{4}n\right) + \Theta(n) \leqslant c \cdot \frac{n}{5} + c \cdot \frac{3}{4}n + \Theta(n) < \tag{9.0.8}$$

$$c \cdot \frac{19}{20}n + \Theta(n) < \tag{9.0.9}$$

$$cn - \frac{1}{20}cn + \Theta(n) < \tag{9.0.10}$$

$$cn - \frac{1}{20}cn + dn < \tag{9.0.11}$$

$$\text{wyznaczmy} \quad \left(-\frac{1}{20}cn + dn\right) \leqslant 0 \tag{9.0.12}$$

$$\left(-\frac{1}{20}c+d\right) \leqslant 0\tag{9.0.13}$$

$$c \geqslant 20d \tag{9.0.14}$$

Zatem istnieje takie c, że nierówność jest prawdziwa, więc:

$$T(n) = O(n) \tag{9.0.15}$$

Cel analizy algorytmu - pokazać że rekurencje tego typu mogą się zdarzyć

9.1 Struktury Danych

Interesują nas struktury danych, które implementują Set interface. Ma to być zbiór dynamiczny - możemy dodawać oraz usuwać elementy. Zakładamy **comparison model**.

Podstawowe metody Set interface:

- 1. build(A) buduje "set" z danych zawartych w A. Mamy $a \in A, a.key$ klucz identyfikujący element.
- 2. length(A) zwraca moc zbioru A
- 3. find(k) zwraca element $a \in A$ taki że a.key = k lub null
- 4. insert(a) dodaj element a do zbioru A
- 5. delete(k) usuń (czasem zwróć) element zbioruAo kluczu k
- 6. $find_min()$, $find_max()$, $find_prev(k)$, $find_next(k)$ (find n), $list_ordered()$ zwróć element o najmniejszym lub największym kluczu k.

Struktura	Build	Find	Insert/Delete	Find mM	Find pn	${f List_ordered}$
Unsorted Array	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n \log n)$
Sorted Array	$\Theta(n \log n)$	$\Theta(\log(n))$	$\Theta(n)$	$\Theta(1)$	$\Theta(\log n)$	$\Theta(n)$
Linked List	$\Theta(n)$	$\Theta(n)$	insert $\Theta(1)$, delete $\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n \log n)$
BST	$\Theta()$	$\Theta()$	$\Theta()$	$\Theta()$	$\Theta()$	$\Theta(n)$

Table 1: Porównanie różnych struktur danych

9.2 Binary Search Tree

Drzewo przeszukiwań binarnych

InorderTreeWalk(p)

Zakładamy interfejs zbioru (klucze się nie powtarzają). W przeciwnym przypadku zakładamy multizbiór.

BST Property. Niech $x \in T$, x jest węzłem drzewa T (BST), wtedy:

- każdy $y \in x.left$ may.key < x.key
- każdy $y \in x.right$ ma y.key > x.key

9.3 Operacje na BST

$$T(n) = T(k) + \Theta(1) + T(n - 1 - k)$$
(9.3.1)

Pokażmy, że $T(n) = \Theta(n)$

Założenie indukcyjne: $\forall k < n \quad T(k) \leq ck$ Krok indukcyjny:

$$T(n) = T(j) + \Theta(1) + T(n-1-j) \le$$
 (9.3.2)

$$cj + \Theta(1) + c(n - 1 - j) = \tag{9.3.3}$$

$$= cn - c - \Theta(1) \leqslant cn \tag{9.3.4}$$

Zatem T(n) = O(n), musimy przejść n elementów, zatem ograniczenie dolne również wynosi n, więc $T(n) = \Theta(n)$.

```
TreeSearch(x, k)
    if x == null OR k == x.key
        return x
    if k < x.key
        return TreeSearch(x.left, k)
    else
        return TreeSearch(x.right, k)

TreeMinimum(x) -> T(n) = O(h)
TreeMaximum(x) -> T(n) = O(h)
```

```
if x.right != null
        return TreeMinimum(x.right)
    y = x.p
    while y != null AND x == y.right
        x = y
        y = y.p
    return y
TreeSuccessor(x) \rightarrow T(n) = O(h)
      Lecture X
10
TreeInsert(x, el) ~ O(h) - nie było kodu na wykładzie :/
TreeInsert(x, el)
    if x == null
        return el
    if el.key < x.key
        x.left = TreeInsert(x.left, el)
        x.left.p = x
    else
        x.right = TreeInsert(x.right, el)
        x.right.p = x
    return x
TreeDelete(x)
1. x jest liściem
    - zwolnij pamięć zajmowaną przez x
    - ustaw wskaźnik jego ojca (na niego na null)
2. x ma jedno poddrzewo
    - x ma syna v to
        - zwalniamy pamięć x
        - ojciec x wskazuje na v
        - v.p wskazuje na x.p
3. x ma dwa poddrzewa
    - znajdź następnik x->y
    - zastąp dane x danymi y
    - skasuj y
```

10.1 Wysokość Drzewa BST

Wysokość drzewa to liczba krawędzi wzdłuż najdłuższej ścieżki od korzenia do liścia.

$$h = (n-1) = O(n) \tag{10.1.1}$$

Worst Case O 1

TreeSuccessor(x)

Definition. Drzewo zbalansowane. Mówimy, że drzewo jest zbalansowane jeśli jego wysokość to $O(\log n)$.

10.2 BST Sort

Dodaj wszystkie elementy tablicy A do drzewa BST. InorderTreeWalk(T)

Widzimy znaczące podobieństwo w porównaniach.

$$E(\text{Time}(\text{BST_SORT})) = E(\text{Time}(\text{QuickSort})) = \Theta(n \log n)$$
(10.2.1)

$$\mathrm{Time}(\mathrm{BST_SORT}) = \sum_{x \in T} \mathrm{depth}(\mathbf{x}) \tag{10.2.2}$$

$$E\left(\sum_{x \in T} \operatorname{depth}(x)\right) = \Theta(n \log n) \tag{10.2.3}$$

$$E\left(\frac{1}{n}\sum_{x\in T}\operatorname{depth}(x)\right) = \Theta(\log n) \tag{10.2.4}$$

$$h = \max_{x \in T} \{ \operatorname{depth}(x) \}$$
 (10.2.6)

$$\frac{1}{n} \sum_{x \in T} \operatorname{depth}(x) \leqslant \frac{1}{n} ((n - \sqrt(n))(\log n) + \sqrt{n} \cdot \sqrt{n}) \leqslant \log n + 1 = O(\log n), \text{ ale } h = O(\sqrt{n})$$
(10.2.7)

Theorem. Wysokość BST. Niech T będzie losowym drzewem BST o n-węzłach, wtedy:

$$E(h(T)) \leqslant 3\log_2 n + o(\log n) \tag{10.2.8}$$

Proof. Nierówność Jensena jeśli f-wypukła, to:

$$f(E(X)) \leqslant E(f(X)) \tag{10.2.9}$$

- 1. Nierówność Jensena
- 2. Zamiast analizować zmienną losową ${\cal H}_n,$ będziemy się zajmować $Y_n=2^{{\cal H}_n}$
- 3. Pokażemy, że $E(Y_n) = O(n^3)$

4.
$$2^{E(H_n)} \leq E(2^{H_n}) = E(Y_n) = O(n^3)$$

5.
$$E(H_n) = 3\log_2 n + o(\log n)$$

Pokażmy, że $E(Y_n) = O(n^3)$.

Zakładając że korzeń tworzy (k-1, n-k)-split:

$$H_n = {}^{d} = 1 + \max\{H_{k-1}, H_{n-k}\}$$
(10.2.10)

$$Y_n = {}^{d} = 2\max\{Y_{k-1}, Y_{n-k}\}$$
(10.2.11)

$$Z_{n,k} = {}^{d} = \begin{cases} 1 & \text{jesli korzeń n-el drzewa wykonuje } (k-1, n-k)\text{-split} \\ 0 & \text{w p.p.} \end{cases}$$
 (10.2.12)

$$E(Z_{n,k}) = 1 \cdot P((k-1,n-k)-\text{split}) = \frac{(n-1)!}{n!} = \frac{1}{n!}$$
 (10.2.13)

$$Y_n = {}^{d} = \sum_{k=1}^{n} Z_{n,k} \cdot 2 \max\{Y_{k-1}, Y_{n-k}\}$$
 (10.2.14)

$$E(Y_n) = E\left(\sum_{k=1}^n Z_{n,k} \cdot 2\max\{Y_{k-1}, Y_{n-k}\}\right)$$
 (10.2.15)

$$E(Y_n) = 2\sum_{k=1}^n E(Z_{n,k} \cdot \max\{Y_{k-1}, Y_{n-k}\})$$
 (10.2.16)

$$E(Y_n) = 2\sum_{k=1}^n E(Z_{n,k}) \cdot E\left(\max\{Y_{k-1}, Y_{n-k}\}\right)$$
(10.2.17)

$$E(Y_n) = \frac{2}{n} \sum_{k=1}^{n} E(\max\{Y_{k-1}, Y_{n-k}\})$$
 (10.2.18)

$$\leq_{(\max xy \leq x+y)} \frac{2}{n} \sum_{k=1}^{n} E(Y_{k-1}) + E(Y_{n-k})$$
 (10.2.19)

$$E(H_n) = O(\log n), H_n = \log_2 Y_n$$
(10.2.20)

$$Y_{k-1} = 2^{1}0, Yn - k = 2^{1}1 (10.2.21)$$

$$\max 2^{10}, 2^{11} = 2^{11} \tag{10.2.22}$$

$$2^{10} + 2^{11} = 3 \cdot 2^{10} \tag{10.2.23}$$

$$= \frac{2}{n} \sum_{k=1}^{n} E(Y_{k-1}) + \sum_{k=1}^{n} E(Y_{n-k})$$
 (10.2.24)

$$= \frac{4}{n} \sum_{k=0}^{n-1} E(Y_k) \tag{10.2.25}$$

$$Y_n = E(Y_n) \tag{10.2.26}$$

$$y_n \leqslant \frac{4}{n} \sum_{k=0}^{n-1} y_k \tag{10.2.27}$$

$$ny_n \leqslant 4\sum_{k=1}^{n-1} y_k \tag{10.2.28}$$

$$y_n = O(n^3) (10.2.29)$$

Dowód indukcyjny. Założenie indukcyjne $y_0 = y_1 = 0, \forall k < ny_k \leqslant cn^3$

krok indukcyjny
$$y_n \leqslant \frac{4}{n} \sum_{k=0}^{n-1} y_k$$
 (10.2.30)

$$\leq_{\text{ind}} \frac{4}{n} \sum_{k=0}^{n-1} ck^3 =$$
(10.2.31)

$$= \frac{4c}{n} \sum_{k=0}^{n-1} k^3 = \tag{10.2.32}$$

$$= \frac{4c}{n} \cdot \frac{n^2(n-1)^2}{4} =$$

$$= cn(n-1)^2 \le cn^3$$
(10.2.33)

$$= cn(n-1)^2 \leqslant cn^3 \tag{10.2.34}$$

Zatem:

$$E(Y_n) = O(n^3) (10.2.35)$$

Dokładny wynik pokazany przez Devroye 1986r.

$$E(H_n) \sim 2.9882 \log_2 n \tag{10.2.36}$$

11 Lecture XI

11.1 Red Black Trees

'78 Guibas, Sedgewick - Red Black (RB) Trees

- Własność 0 Drzewa RB są drzewami BST mają BST Property po lewej stronie węzła występują wartości mniejsze, a po prawej większe
- Własność 1 Każdy węzeł ma kolor czerwony albo czarny (to może być bit)
- \bullet Własność 2 Korzeń oraz $\mathit{liście}$ są czarne
- Własność 3 Jeśli węzeł jest czerwony, to jego bezpośrednie dzieci są czarne
- Własność 4 $\forall X$ Każda prosta ścieżka od węzła X do liści ma tyle samo czarnych węzłów. (black_height(x), inaczej bh(x)). Prosta ścieżka oznacza, że nie zawracamy, zawsze idziemy w dół.

11.2 Red Black Tree Example

Programując - ostatni liść - *nil* nie ma klucza, kolor jest czarny, a wskaźnik na ojca - to każdy węzeł. Liście drzewa RB to wszystkie *nil*-węzły.

Przykład Czarna wysokość bh(18) = 2

Lemat Niech T będzie drzewem czerwono-czarnym o n-węzłach. Wtedy:

$$wysokość(T) \le 2\log_2(n+1) \tag{11.2.1}$$

Dowód Czarni rodzice wchłaniają czerwone dzieci.

W drzewie binarnym liczba liści wynosi n+1(zawsze dokładamy 2 liście do każdego węzła - można to pokazać indukcyjnie)

2-3-4-Tree. Liczba liści nie zmienia się.

Mamy n+1 liści w drzewie czerwono-czarnym oraz w 2-3-4-drzewie (dowód - indukcyjnie)

- \bullet Niech h wysokość drzewa czerwono-czarnego.
- Niech h' wysokość odpowiadającego mu 2-3-4-drzewa.

Zauważmy, że h' = bh(korzenia RB drzewa). Ograniczmy liczbę liści za pomocą funkcji od tej wysokości

$$2^{h'} \leqslant \# \text{liści} \leqslant 4^{h'} \tag{11.2.2}$$

Węzły binarne o wysokości h' dają $2^{h'}$ węzłów. Węzły 2-3-4 o wysokości h' dają $4^{h'}$ węzłów.

Naszych liści jest n+1, zatem:

$$2^{h'} \leqslant n+1 \tag{11.2.3}$$

$$h' \leqslant \log_2(n+1) \tag{11.2.4}$$

Z konstrukcji wchłaniania wiemy, że $h \leq 2h'$ (ponieważ każdy czarny węzeł może wchłaniać czerwone dzieci - z 2 razy wyższego drzewa). Zatem:

$$h \leqslant 2\log_2(n+1) \tag{11.2.5}$$

W Javie 8 HashMapy były implementowane jako drzewa czerwono-czarne.

Modyfikacja drzewa czerwono-czarnego obejmuje operacje różne od BST. Drzewo będzie wtedy zmieniać swoją strukturę aby zachować czarną wysokość - stąd również nazwa self-balancing trees. Operacje niemodifikujące drzewa czerwono-czarnego są tożsame z operacjami na drzewach BST.

Insert w Red Black Trees 11.3

RB Insert(T,z)

- 1. Wstawiamy węzeł z do drzewa T tak jak w przypadku BST
- 2. Ustawiamy kolor węzła z na czerwony
- 3. Naprawiamy drzewo T wywołujemy funkcję RB Fixup(T,z)

Chcemy umieścić nowy węzeł (15) w drzewie czerwono-czarnym.

Operacje używane w procedurze Fixup

1. recolor - O(1) - zmiana koloru węzła - z czerwonego na czarny, z czarnego na czerwony

2. rotate - O(1) - rotacja węzła x w lewo lub w prawo.

Before Right Rotation

After Right Rotation

$$(\forall a \in \alpha b \in \beta c \in \gamma) (a \leqslant B \leqslant bleq A \leqslant c)$$
(11.3.1)

 $RB \quad Fixup(T,z)$

Case $\overline{1}$ - z jest czerwony, ojciec x, wujek $w=z.p.p \leadsto$ inne dziecko, x=z.p jest czerwony oraz w-czerwony.

Case 2 - z - czerwony, x - czarny, w - czarny, zachodzi zig-zag

 $Poddałem\ się\ z\ rysowaniem\ tego\ w\ tikz$

Ostatecznie

Wnioski

- Fixup $O(\log n)$
- Insert $O(\log n)$
- RB_Insert $O(\log n)$

Inne drzewa od Red Black Trees to drzewa AVL (różnica stałych przy logarytmach), selfleaning left trees, skip list.

 $Następny\ wykład\ -\ kolejna\ struktura\ implementująca\ interfejs\ set$