2. Упорядоченные множества

Note 1

f30a03a82ab7436dbf01a4f27b730d36

Каким одним требованием можно заменить симметричность и транзитивность в определении отношения эквивалентности?

Евклидовость.

Note 2

d8936dde76084fbfaa621700f57c7cd4

Пусть $R\subseteq A\times A$ — отношение эквивалентности. (кез:Множество классов эквивалентности R_0) называется (кез:фактормножеством множества A по отношению R_0)

Note 3

212c805h47c40c48f35hdhd5130dh2

Бинарное отношение $R\subseteq \{\{c3:A\times A\}\}$ называется $\{\{c2:Ha3:baeercs othoшeнием частичного порядка,}\}$ если $\{\{c1:ohopeфлексивно, антисимметрично и транзитивно.}\}$

Note 4

2a3a6e89d50d41068b22bfd1c595b39a

Отношение ((с2. частичного порядка) обычно обозначается символом ((с1. €.))

Note 5

90faa1ffef764c7d808d6757d97dfa4b

Множество A с (са: заданным на нём отношением частичного порядка) называется (са: частично упорядоченным множеством,)

Note 6

4157aa1725c244a58f3e32a92a0937bb

Пусть (A,\leqslant) — частично упорядоченное множество, $x,y\in A$. Говорят, что $\{(c):x\in Y \text{ и } y \text{ сравнимы}, (g) \text{ если } \{(c):x\leqslant y \text{ или } y\leqslant x.\}\}$

Note 7

e75ca87d267f4673a53c15a0e7adcccl

Бинарное отношение $R\subseteq \{\{e3:A\times A\}\}$ называется $\{e2:$ отношением линейного порядка, $\{e3:A\times A\}\}$ если $\{e3:A\times A\}$ отношение частичного порядка и любые $x,y\in A$ сравнимы.

Множество A с $\{c^2\}$ заданным на нём отношением линейного порядка $\{c^2\}$ называется $\{c^2\}$ линейно упорядоченным множеством.

Note 9

e914e0e523ee44139c021af45c63a712

Пусть (A, \leqslant) — частично упорядоченное множество, $x, y \in A$. Говорят, что $\{(ax) : x < y, \}$ если $\{(ax) : x \leqslant y \text{ и } x \neq y, \}$

Note 10

c264501d4458400e8b0073eac66b95fe

Пусть (A,\leqslant) — частично упорядоченное множество. Во избежание путаницы, отношение $\{(c): <\}\}$ называют отношением $\{(c): c$ трогого $\}$ порядка.

Note 11

ec44ba694d2541deaae260221aaafdc

Пусть (A,\leqslant) — частично упорядоченное множество. Во избежание путаницы, отношение (a) называют отношением (a) нестрого(a) порядка.

Note 12

962a3744a3cc4153bd9317aab2cb46cb

Пусть (A, \leqslant) — частично упорядоченное множество. Мы читаем знак < как (A, \leqslant) — «меньше».

Note 13

850b05ff29334d869b6a9c7e96eef9a9

Пусть (A,\leqslant) — частично упорядоченное множество. Мы читаем знак \leqslant как $\{(c)\}$ «меньше или равно». $\{(c)\}$

Note 14

0e5d3d3ef97541309f99f132d7d20073

Пусть (A,\leqslant) — частично упорядоченное множество, $x,y\in A$. Тогда $\{(c^2,x\leqslant y)\}$ $\{(c^3,x)\in y\}$ $\{(c^3,x)\in y\}$ $\{(c^3,x)\in y\}$ или $\{(c^4,x)\in y\}$

Пусть (A, \leq) — частично упорядоченное множество. Является ли отношение < рефлексивным?

Нет.

Note 16

fcc7c32a4ca7455dbcd3260a478ecd97

Пусть (A, \leqslant) — частично упорядоченное множество. Является ли отношение < антирефлексивным?

Да.

Note 17

d5bf110950f42b4bc343f143b82dfc8

Пусть (A, \leqslant) — частично упорядоченное множество. Является ли отношение < транзитивным?

Да.

Note 18

378780d3b9d74367a71bdf0fb3f67e9f

Пусть (A,\leqslant) — частично упорядоченное множество. Является ли отношение < асимметричным?

Да.

Note 19

f4e2e2fe9c8140a6b8fcda896dd5da35

Пусть (A,\leqslant) — частично упорядоченное множество, $x,y\in A$. Тогда если (казах $\leqslant y\leqslant x$,)) то (казах $\leqslant y$.)

Note 20

1ca369e310d2477782f82089ab512891

Пусть (A, \leqslant) — частично упорядоченное множество, $x, y \in A$. Тогда если $x \leqslant y \leqslant x$, то x = y. В чём ключевая идея доказательства?

Антисимметричность.

Note 21

0af7ee8e9a5c4ad88dh6ea371hee9527

Пусть (A, \leqslant) — частично упорядоченное множество, $x, y \in A$. Почему не стоит читать $x \leqslant y$ как «x не больше y»?

 $\overline{x \geqslant y} \implies x \leqslant y$, если порядок не линеен.

Note 22

414d948920404634hec1fec01hd9h0h2

Бинарное отношение $R\subseteq \{\{c3:A\times A\}\}$ называется $\{\{c2:$ называется отношением предпорядка, $\{\}\}$ если $\{\{c1:$ оно рефлексивно и транзитивно. $\{\}\}$

Note 23

5a0d3dae2151442795c045fdb2e1ba7f

Пусть \leqslant — $\{\!\{\!\}\!\}$ предпорядок $\}\!\}$ на множестве A. Тогда \leqslant задаёт естественное $\{\!\{\!\}\!\}$ отношение частичного порядка $\}\!\}$ $\{\!\{\!\}\!\}$ на фактор множестве A по отношению

 $x \leqslant y$ и $y \leqslant x$.

}}

Note 24

ac3052b941bd4ae981f8d3559789c7e0

Пусть (A,\leqslant) — частично упорядоченное множество, (са: $B\subseteq A$.)) ((са: Частичный порядок $(\leqslant)\cap B^2$)) называется (са: частичным порядком на B, индуцированным из A.))

Note 25

01c0ah122f3d4940ah98f766e6h357c2

Пусть (A,\leqslant) — частично упорядоченное множество, $B\subseteq A$. «Са: Частичный порядок на B, индуцированный из A,» обозначается (СТ: \leqslant_B .)

Note 26

2a1949206b6843f8859d96feb5f3d64

Пусть (A,\leqslant) — частично упорядоченное множество, $B\subseteq A$. Если (селе линеен,)) то (селе \leqslant линеен.))

Пусть X и Y — два множества. Что есть множество X+Y?

Объединение непересекающихся копий X и Y.

Note 28

18350dfc5244bddb59d2f27a28a33a

Пусть X и Y — два множества. Если X и Y пересекаются, то как они разделяются в X+Y?

 \blacksquare Элементы из Y записываются с чертой (как вариант).

Note 29

b9a67a4ebd2542d6b6cf86b0d4505d81

Пусть X и Y — два частично упорядоченных множества. Как задаётся порядок на X+Y?

Внутри X и Y порядок обычный и $x \leqslant \overline{y}$.

Note 30

caa 0e 9e 0bd 594f 80aff 6ab 6d 1711059e

Пусть X и Y — два частично упорядоченных множества. При каком условии порядок на X+Y будет линейным?

Только если порядки на X и Y линейны.

Note 31

2f6406e74c4443c191caa1532527294f

Пусть X и Y — два частично упорядоченных множества. Как определятся покоординатное сравнение на $X \times Y$?

 \blacksquare Первая координаты \leqslant_X и вторые \leqslant_Y .

Note 32

fec1ac2eb92d496e9677d8011742333e

Пусть X и Y — два частично упорядоченных множества. В чём недостаток покоординатного сравнения на $X \times Y$?

■ Он не линеен.

Note 33

f80cf291316d430489b6ed3f5ea1f116

Пусть X и Y — два частично упорядоченных множества. Как определятся порядок на $X \times Y$?

Аналогично лексикографическому порядку.

Note 34

a3950be00a93447ba48cc93e24fc1436

Сколько различных линейных порядков на множестве из n элементов?

n!

Note 35

5dc17edbd7424921a6801b645ec9184

Всякий ли частичный порядок на конечном множестве можно продолжить до линейного?

Да.

Note 36

8ee88fb845d94611a7bad34e78b447b0

Всякий ли частичный порядок на бесконечном множестве можно продолжить до линейного?

Да.

Note 37

d5d18db2bf744c3f95cc4c390a2b63fa

Всякий частичный порядок на конечном множестве можно продолжить до линейного. В чём ключевая идея доказательства?

По индукции выбирать минимальный элемент.

Какой элемент частично упорядоченного множества называется наибольшим?

Тот, что больше любого другого элемента.

Note 39

1fbc4c3d075344fb8889b64fc11d73c

Какой элемент частично упорядоченного множества называется максимальным?

Тот, для которого не существует большего элемента.

Note 40

ba81375ada8245dc86f019d40cfc73b2

При каком условии понятия наибольшего и максимального элемента совпадают?

Если порядок линеен.

Note 41

df72779f7c5049dd82bb27f993c2a177

Сколько наибольших элементов может существовать у произвольного частично упорядоченного множества?

Не более одного.

Note 42

dd861e24b4c246bc9769d4d9d8c1684a

Сколько максимальных элементов может существовать у произвольного частично упорядоченного множества?

Сколь угодно.

Note 43

fe2b7f694c644bfbbab346e18477d765

Какой элемент частично упорядоченного множества называется наименьшим?

Тот, что меньше любого другого элемента.

Note 44

f42b3c3570904de282e2a8bfe96a337a

Какой элемент частично упорядоченного множества называется минимальным?

Тот, для которого не существует меньшего элемента.

Note 45

0d235255b51b40e2970c6f0c00ee671e

Любые два различных максимальных элемента ((c): не сравнимы.)

Note 46

e6a3453de9ae404f80ca583e6ea036c

Пусть X — частично упорядоченное множество и $\{(c), X\}$ конечно. Для любого $x \in X$ найдётся максимальный элемент $\{(c), x\}$