

Développez une Preuve de Concept (PoC)

Openclassrooms - IML P7 - Justine JARLETON

Sommaire

MISSION

PLAN PRÉVISIONNEL

DÉMARCHE

DASHBOARD INTERACTIF

CONCLUSION

La mission

OC - IML P7 - Justine JARLETON

Plan prévisionnel

Le dataset

120 races

20 580 images

Choix du modèle

Veille

• Preprint ArXiv en 2022

• CNN vs ViT?

Démarche

Les architectures

Modélisation

- Préprocessing identique
- Réalisation des jeux de données
- Transfer training (ImageNet)
- Fine tuning
- Entrainement sur les dernières couches seulement

Puis ...

Augmentation progressive du nombre de classes

Fine tuning

• Epoch, taille batch, early stop ...

```
# Ensure you have imported the necessary libraries
from tensorflow.keras.optimizers import RMSprop
from tensorflow.keras.losses import CategoricalCrossentropy

epochs_nb = 30
batch_size = 32
loss=CategoricalCrossentropy(), # Use a callable loss function, not a float
optimizer=RMSprop(learning_rate=0.001)
```

layer_normalization (LayerNormalization)	(None, 7, 7, 768)	1,536	add_17[0][0]
global_average_pooling2d_1 (GlobalAveragePooling2D)	(None, 768)	0	layer_normalization[0][0]
dense_1 (Dense)	(None, 128)	98,432	global_average_pooling2d
dense_2 (Dense)	(None, 5)	645	dense_1[0][0]

Feature importance

Résultats

Résultats

Toutefois (sans GPU) ...

Construction

Conclusion & perspectives

- Maintien relatif des performances
- Nécessité d'un GPU
- ConvNeXt V2?

Merci!

IML P7
Openclassrooms

