$x \to a$ тот же порядок роста, что и функция f(x), где f(x) > 0.

Показать, что

a)
$$o(o(f(x))) = o(f(x));$$
 6) $O(o(f(x))) = o(f(x));$

B)
$$o(O(f(x))) = o(f(x));$$
 r) $O(O(f(x))) = O(f(x)),$

д)
$$O(f(x)) + o(f(x)) = O(f(x)).$$

647. Пусть $x \to 0$ и n > 0. Показать, что

а)
$$CO(x^n) = O(x^n)$$
 ($C \neq 0$ — постоянная);

6)
$$O(x^n) + O(x^m) = O(x^n) (n < m);$$

B)
$$O(x^n) O(x^m) = O(x^{n+m}).$$

648. Пусть $x \to +\infty$ и n>0. Показать, что

a)
$$CO(x^n) = O(x^n)$$
;

6)
$$O(x^n) + O(x^m) = O(x^n) (n > m);$$

B)
$$O(x^n) O(x^m) = O(x^{n+m}).$$

649. Показать, что символ ~ обладает свойствами:

1) рефлексивности: $\phi(x) \sim \phi(x)$; 2) симметрии: если $\phi(x) \sim \psi(x)$, то $\psi(x) \sim \phi(x)$; 3) транзитивности: если $\phi(x) \sim \psi(x)$ и $\psi(x) \sim \chi(x)$, то $\phi(x) \sim \chi(x)$.

650. Пусть $x \to 0$. Доказать следующие равенства:

a)
$$2x-x^2 = O(x)$$
; 6) $x \sin \sqrt{x} = O(x^{3/2})$;

B)
$$x \sin \frac{1}{x} = O(|x|)$$
; r) $\ln x = o(\frac{1}{x^{\epsilon}})$ ($\epsilon > 0$);

$$\mathbf{g}) \sqrt{x + \sqrt{x + \sqrt{x}}} \sim \sqrt[8]{x};$$

e)
$$arctg \frac{1}{x} = O(1);$$

$$\mathfrak{K}) \ (1+x)^n = 1 + nx + o(x).$$

651. Пусть $x \to +\infty$. Доказать следующие равенства:

a)
$$2x^3-3x^2+1=O(x^3)$$
;

6)
$$\frac{x+1}{x^2+1} = O\left(\frac{1}{x}\right);$$