Dynamic Programming: Infinite State 4.1.4 Firm Exit

Thomas J. Sargent and John Stachurski

Introduction

Firm exit models firms' decision to exit a market.

This model features:

- firm's profit depends on aggregate shock, firm-specific shock, and a cross-sectional distribution of firms,
- state-dependent interest rate,
- outside option, also dependent on aggregate variable and cross-sectional distribution of firms.

Model Components

State Space: $X = S \times D \times Z$:

- firm-specific state $s \in S$,
- cross-sectional distribution of firms taking values in $\mu \in D$,
- aggregate shock taking values in $z \in Z$.

Action Space: $A = \{0, 1\}$:

- a = 0: continue,
- a = 1: exit and receive outside option at the start of next period.

Borel measurable policy $\sigma: X \to \{0,1\}$ Let Σ be the set of all policies.

Model Components

Let

- $\pi(s, \mu, z)$ be current profit for the firm,
- $q(\mu, z)$ be the outside option,
- $r(\mu, z)$ be the interest rate,
- $\beta(\mu, z) := 1/(1 + r(\mu, z))$ be the discount factor,
- $P(x, \cdot)$ be the transition kernel.

Let ${\mathcal B}$ be the Borel σ -algebra on X that makes π, q, r, β, P measurable.

Assumption 1

The Markov operator P has unique stationary distribution φ on (X, \mathcal{B}) . The functions π , q and β are nonnegative, measurable, and φ -integrable.

That is to say, $\pi, q, \beta \in L_1^+(\varphi)$.

We endow $L_1(\varphi)$ with the φ -a.e. pointwise order \leqslant , so that $f \leqslant g$ means $\varphi\{f>g\}=0$.

σ -value Function:

$$v_{\sigma}(x) = \pi(x) + \beta(x) \int \left[\sigma(x') q(x') + (1 - \sigma(x')) v_{\sigma}(x') \right] P(x, dx') \quad (x \in X).$$

Policy Operator: for $v_{\sigma} \in L_1(\varphi)$,

$$T_{\sigma} v = \pi + K(\sigma q + (1 - \sigma)v) \tag{1}$$

where the operator

$$(Kv)(x) := \beta(x) \int v(x')P(x, dx') \qquad (v \in L_1(\varphi), x \in X).$$

in operator form we have $Kv = \beta Pv$.

Assumption 2

K maps $L_1(\varphi)$ to itself and the spectral radius obeys $\rho(K) < 1$.

Can we shift the assumption to primitives?

- φ is the stationary for $P \implies P \in \mathcal{B}(L_1(\varphi))$ (Lemma A.5.29)
- To determine $\rho(K)$, we can simply bound $\sup_{x \in \mathsf{X}} \beta(x) < 1$, which means $\inf_{x \in \mathsf{X}} r(x) > 0$, or we can use conditions in Stachurski and Zhang (2021).

Under Assumptions 1 and 2, each T_{σ} is a self-map on $L_1(\varphi)$.

Since K is a positive operator, each T_{σ} is order preserving.

Hence we have ADP the pair $(L_1(\varphi), \mathbb{T})$ is an ADP

The ADP is regular. To see that, recall

$$T_\sigma \, v = \pi + K(\sigma \, q + (1-\sigma) v)$$

Let $\sigma = \mathbb{1}q \geqslant v$ (outside option is preferred over continuing interests).

For this σ , we have

$$\tau q + (1 - \tau)v \le \sigma q + (1 - \sigma)v = q \lor v$$
 for all $\tau \in \Sigma$.

Since K is a positive operator, we have $T_{\tau} \leqslant T_{\sigma}$ for all $\tau \in \Sigma$.

Hence σ is v-greedy, and the ADP is regular.

From that, we can also find the Bellman operator:

$$Tv = \pi + K(q \vee v). \tag{2}$$

Proposition 1

If Assumptions 1–2 hold, then the fundamental optimality properties hold, and VFI, HPI, and OPI all converge.

To prove it, we use the optimality results for affine ADPs:

Theorem 1

Let E be a Banach lattice and let (E,\mathbb{T}) be an affine ADP, where each $T_\sigma\in\mathbb{T}$ has the form

$$T_{\sigma} v = r_{\sigma} + K_{\sigma} v$$
 for some $r_{\sigma} \in E$ and $K_{\sigma} \in \mathcal{B}_{+}(E)$,

Suppose that (E,\mathbb{T}) is regular. If either

- (a) there exists a $K \in \mathcal{B}(E)$ such that $K_{\sigma} \leqslant K$ for all $\sigma \in \Sigma$ and $\rho(K) < 1$, or
- (b) E is σ -Dedekind complete, (E, \mathbb{T}) is bounded above and $\rho(K_{\sigma}) < 1$ for all $\sigma \in \Sigma$,

then

- 1. the fundamental optimality properties hold, and
- 2. VFI, OPI and HPI all converge.

 $\mathcal{B}_{+}(E)$ is the positive linear selfmaps on E.

Proving this is simple, we only need to map the components in

$$T_{\sigma} v = \pi + K(\sigma q + (1 - \sigma)v)$$

to r_{σ} and K_{σ} .

Let $r_{\sigma} \coloneqq \pi + K \sigma q$ and $K_{\sigma} \coloneqq K(1 - \sigma)$. For condition (a), we have $K_{\sigma} \leqslant K$ since $\sigma \in \{0,1\}$. Since r_{σ} lies in $L_1(\varphi)$, and since, by assumption, $\rho(K) < 1$, the conditions of Theorem 1 all hold.

Note: K here plays multiple roles: It is continuation value operator, and it is also the K in the Theorem 1.

We might consider using eventual contraction to prove Proposition 1.

We call (V, \mathbb{T}) eventually Blackwell contracting if V is a subset of E obeying $v + h \in V$ whenever $v \in V$ and $h \in E_+$, and, in addition, there exists a positive linear operator K on E such that

- (C1) $\rho(K) < 1$ and
- (C2) $T_{\sigma}(v+h) \leqslant T_{\sigma}v + Kh$ for all $T_{\sigma} \in \mathbb{T}$, $v \in V$ and $h \in E_{+}$.

Theorem 2

If V is a closed subset of a Banach lattice and (V,\mathbb{T}) is regular and eventually Blackwell contracting, then

- 1. the fundamental optimality properties hold, and
- 2. VFI, OPI and HPI all converge.

For fixed $v, h \in V$ we have

$$T_\sigma\left(v+h\right) = \pi + K[\sigma q + (1-\sigma)(v+h)] \leqslant T_\sigma \, v + Kh$$

Since K is a positive linear operator and $\rho(K) < 1$, the ADP (V, \mathbb{T}) is eventually Blackwell contracting and all the conclusions of Theorem 2 hold.

References

```
John Stachurski and Junnan Zhang. Dynamic programming with state-dependent discounting. Journal of Economic Theory, 192:105190, 2021. ISSN 0022-0531. doi: https://doi.org/10.1016/j.jet.2021.105190. URL https://www.sciencedirect.com/science/article/pii/S0022053121000077.
```