Complexity Classes

Non-deterministic polynomial time: NP

- $\operatorname{coNP} = \{ L \mid \overline{L} \in \operatorname{NP} \}$
- $L \in \mathbf{NP} \cap \mathbf{coNP}$ is equivalent to $L \in \mathbf{NP}$ and $L \in \mathbf{coNP}$

Polynomial time hierarchy: $PH = \bigcup_{k>0} \sum_{k}^{p}$

- $\begin{array}{l} \bullet \quad \Delta_0^p = \Sigma_0^p = \Pi_0^p = \mathbf{P} \\ \bullet \quad \Delta_{k+1}^p = \mathbf{P}^{\Sigma_k^p}, \quad k \geq 0 \\ \bullet \quad \Sigma_{k+1}^p = \mathbf{N}\mathbf{P}^{\Sigma_k^p}, \quad k \geq 0 \end{array}$
- $\Pi_{k+1}^p = \mathbf{coNP}^{\Sigma_k^p}, \quad k \ge 0$

Alternating Turing machine: AL, AP

Parallel computation:

- $NC = PT/WK(\log^k n, n^k)$
- $NC_j = PT/WK(\log^j n, n^k)$
- Efficient: NC_1 , NC_2

Randomised computation:

- Monte Carlo: RP
- Las Vegas: $\mathbf{ZPP} = \mathbf{RP} \cap \mathbf{coRP}$
- Majority: **PP** • Efficient: BPP

Interactive proofs: IP

Counting complexity: #P

Parameterised complexity:

- Fixed-parameter tractable: **FTP**
- Problems in **XP** have polynomial-time solutions for every constant value of paramter k

Class inclusions:

- $L \subseteq NL \subseteq P \subseteq NP \subseteq PH \subseteq PSPACE \subseteq EPX$
- $NC_1 \subseteq L \subseteq NL \subseteq NC_2 \subseteq NC \subseteq P$
- AL = P, AP = PSPACE, APSPACE = EXP
- $P \subseteq ZPP \subseteq RP \subseteq NP \subseteq PP$
- $\mathbf{RP} \subset \mathbf{BPP} \subset \mathbf{PP}$
- NP $\subseteq \#P \subseteq PSPACE$
- $\mathbf{PH} = \mathbf{P}^{\mathbf{PP}} = \mathbf{P^{PP}}$ (Toda's theorem)
- IP = PSPACE
- $FTP \subseteq XP$

Logspace

For input of length n, the total number of possible configurations for **logspace** decider is $c^{O(\log n)} = n^{O(1)}$ where c is constant. Therefore, $\mathbf{L} \subseteq \mathbf{NL} \subseteq \mathbf{P}$.

NL-completeness

Is there a path from s to t in G?

Reachability is NL-complete.

- 1) Reachability is in NL: Start from vertex s and nondeterministically walk to every other reachable vertex. Return yes/no whether vertex t is reached.
- 2) Reachability is NL-hard: Consider the computation state graph of any other NL algorithm. Such algorith will accept only if there is nondeterministic path from start to accepting state.

2SAT is NL-complete

Polynomial Time

Ciruit value and hornsat are P-complete. They are least likely to be in **NC**, that is, efficiently solvable by parallel algorithms.

Oracle Turing Machines

An oracle Turing machine M?

- Query string y, query state q^2 , answer states q_{yes}, q_{no} .
- From the query state $q^{?}$ the machine moves to q_{yes} or to q_{no} , depending on whether $y \in A$ holds or not, where A is the oracle set.
- A query is performed in one step.
- Computation of M? with oracle A on input x is $M^A(x)$.

Relativised complexity class: C^A where C is complexity class and A is an oracle.

Example: There exists oracle A for which $\mathbf{P}^A = \mathbf{N}\mathbf{P}^A$.

Proof: Let A be a **PSPACE**-complete. Then **PSPACE** \subseteq $\mathbf{P}^A \subseteq \mathbf{NP}^A \subseteq \mathbf{NPSPACE} \subseteq \mathbf{PSPACE}$.

Padding

Padding x; 1^d of string x.

Padding argument: If P = NP the EXP = NEXP.

Let $N = c^{n^{O(1)}}$ and c be a constant. Then

$$\begin{split} NEXP(n) &= NTIME(c^{n^{O(1)}}) = NTIME(N) \subseteq NP(N) \\ &\subseteq P(N) = TIME(N^{O(1)}) = TIME(c^{n^{O(1)}}) = EXP(n). \end{split}$$

NP

A relation $R \subseteq \Sigma^* \times \Sigma^*$ is **polynomially decidable** if there is a deterministic TM deciding the language $\{x; y \mid (x, y) \in R\}$ in polynomial time.

Reachability: Given graph G = (V, E) and vertices $s, t \in V$. A relation R is polynomially balanced if $(x, y) \in R$ implies $|y| \le |x|^k$ for some $k \ge 1$.

Succint certificate: Language L is in NP iff there is a polynomially balanced and polynomially decidable relation R such

$$L = \{x \mid (x, y) \in R, \exists y \in \Sigma^*\}.$$

Language L is **NP**-complete if:

- 1) $L \in \mathbf{NP} : L \text{ is in } \mathbf{NP}.$
- 2) $L' \leq_L L$: Known **NP**-complete language L' has logspace reduction to L.

Polynomial-time Hierarchy

A relation $R \subseteq (\Sigma^*)^{k+1}$ is said to be **polynomially balanced** if whenever $(x, y_1, ..., y_k) \in R$, it holds that $|y_1|, ..., |y_k| \leq |x|^t$ for some t.

Language L is in Σ_k^p for $k \geq 1$ iff there is a polynomially balanced relation R such that the language $\{x; y \mid (x, y) \in R\}$ is in Π_{k-1}^p and

$$L = \{x \mid \exists y, (x, y) \in R\}.$$

Language L is in Π_k^p for $k \geq 1$ iff there is a polynomially balanced relation R such that the language $\{x; y \mid (x, y) \in R\}$ is in Σ_{k-1}^p and

$$L = \{x \mid \forall y, (x, y) \in R\}.$$

Language L is in Σ_k^p for $k \geq 1$ iff there is a **polynomially** balanced, polynomial-time decidable (k+1)-ary relation R such that

$$L = \{x \mid \exists y_1 \forall y_2 \exists y_3 \cdots Q y_k, (x,y_1,...,y_k) \in R\}$$

where Q is \forall if k is even and \exists if k is odd.

Language $L \in \mathbf{PH}$ iff $L \in \Sigma_k^p$ for some k.

Example: $PH \subseteq PSPACE$

Proof:

- Base case: $\Sigma_0^p = \mathbf{P} \subseteq \mathbf{PSPACE}$
- Recursive case: $k \ge 0$
 - Assume: $\Sigma_k^p \subseteq \mathbf{PSPACE}$
 - Then: $\Sigma_{k+1}^{p^{-n}} = \mathbf{NP}^{\Sigma_k^p} \subseteq \mathbf{NPSPACE} \subseteq \mathbf{PSPACE}$. Last step from Savitch's theorem. Oracle doesn't use additional space, NP takes at most polynomial space.

Quantified satisfiability: $QSAT_k$: Given a boolean expression ϕ with its variables partitioned into sets $X_1,...,X_k$. Is the following true?

$$\exists X_1 \forall X_2 \cdots Q X_k \phi$$

where Q is \forall if k is even and \exists if k is odd.

 $QSAT_k$ is Σ_k^p -complete for all $k \geq 1$.

Example: $QSAT_2 \in \Sigma_2^p$ but not in $\Sigma_1^p = \mathbf{NP}$.

In order to verify a certificate for $QSAT_2$, we need to check $2^{|X_2|}$ times boolean formulas of length |X|, which means it is not polynomial time verifiable and thus $QSAT_2 \notin \Sigma_1^p = \mathbf{NP}$ assuming $P \neq NP$.

- $L \in \Sigma_2^p = \mathbf{NP^{NP}}$: Covering radius $L \in \Pi_2^p = \mathbf{coNP^{NP}}$: Integer expression equivalence

NP-complete problems

NP-complete problems

Boolean problems: circuit sat, sat, 3SAT, MAX2SAT, NAE-SAT

Graph cover and packing problems: Independent Set, Clique, Vertex Cover, Max Cut, Max Bisection, Bisection Width

Graph path and coloring problems: Hamilton Path, Travelling Salesperson (TSP), k-coloring

Set problems: Exact Cover by 3-Sets, Set Cover, Set Packing

Number problems: Integer programming, Knapsack

Example reductions:

- circuit sat → sat
- sat \rightarrow 3-sat
- circuit sat \rightarrow naesat
- 3-sat \rightarrow independent set
- independent set \rightarrow clique
- independent set \rightarrow vertex cover
- $naesat \rightarrow max cut$
- max cut → max bisection
- naesat \rightarrow 3-coloring