MTH1008 (Algèbre linéaire appliquée) - TD6

Nombres complexes: exercices

Exercice 1 : quelques démonstrations. La formule de De Moivre est facile à démontrer lorsque l'on connaît l'écriture exponentielle des nombres complexes. Essayons de la démontrer en n'utilisant que les écritures algébrique et polaire.

Soient $x_1, x_2, y_1, y_2 \in \mathbb{R}$ et $z_1 = x_1 + iy_1, z_2 = x_2 + iy_2 \in \mathbb{C}$.

- 1. On cherche à montrer que $|z_1z_2| = |z_1||z_2|$ sans passer par la forme exponentielle.
 - (a) Donner l'écriture algébrique de z_1z_2 .
 - (b) En déduire la forme développée de $|z_1z_2|$.
 - (c) Calculer la forme développée de $|z_1||z_2|$.
 - (d) Identifier les formes obtenues en (b) et (c) puis conclure que l'égalité est valide.
- 2. De la même manière, on cherche à montrer que $\arg(z_1z_2) = \arg(z_1) + \arg(z_2)$, en utilisant cette fois l'écriture polaire. Supposons donc que $\arg(z_1) = \theta_1 \in]-\pi,\pi]$ et $\arg(z_2) = \theta_2 \in]-\pi,\pi]$.
 - (a) Développer le produit des formes polaires :

$$z_1 z_2 = |z_1| (\cos(\theta_1) + i\sin(\theta_1)) |z_2| (\cos(\theta_2) + i\sin(\theta_2)).$$

(b) Rappelons deux formules issues du cours de trigonométrie : pour tous réels a et b,

$$cos(a + b) = cos(a)cos(b) - sin(a)sin(b)$$

$$sin(a + b) = cos(a)sin(b) + sin(a)cos(b).$$

En utilisant ces formules, développer l'expression

$$cos(\theta_1 + \theta_2) + i sin(\theta_1 + \theta_2).$$

- (c) Identifier les expressions obtenues en (a) et (b) puis conclure que l'égalité est valide : l'argument du produit est la somme des arguments.
- 3. Une dernière étape nous sépare de la formule de De Moivre. À partir des résultats obtenus en 1. et 2., démontrer par récurrence sur $n \in \mathbb{N}$ les propriétés suivantes :
 - (a) pour tous $z \in \mathbb{C}$ et $n \in \mathbb{N}$, $|z^n| = |z|^n$ [*Indication*: pour la base de la récurrence, remarquer que $z^0 = 1 \in \mathbb{R}$, pour tout $z \in \mathbb{C}$.];
 - (b) pour tous $z \in \mathbb{C}$ et $n \in \mathbb{N}$, $\arg(z^n) = n \arg(z)$ [*Indication*: pour la base de la récurrence, remarquer que $\arg(z^0) = \arg(1) = \arg(1+0\mathfrak{i})$, pour tout $z \in \mathbb{C}$.].
- 4. Déduire de tout ce qui précède la formule de De Moivre : pour tous $z \in \mathbb{C}$ et $\mathfrak{n} \in \mathbb{N}$, si $|z| = \mathfrak{r}$ et $arg(z) = \theta$, alors

$$z^{n} = r^{n}(\cos(n\theta) + i\sin(n\theta)).$$

Remarquer qu'on aurait pu s'épargner la question 3. : avec les conclusions des questions 1. et 2., on peut directement démontrer par récurrence la formule de De Moivre.

Exercice 2 ([Ste16] : 2.5. - 4, 5, 7) Donner les expressions algébriques (a + bi) des nombres complexes suivants :

- 1. (1+2i)(8-3i);
- 2. $\overline{12 + 7i}$;
- 3. $\frac{1+4i}{3+2i}$.

Exercice 3 ([Ste16]: 2.5. - 37, 39) Donner les formes polaires de $z, w, zw, \frac{z}{w}$ et $\frac{1}{z}$ pour :

1.
$$z = \sqrt{3} + i, w = 1 + \sqrt{3}i;$$

2.
$$z = 2\sqrt{3} - 2i$$
, $w = 1 + i$

Exercice 4 Donner l'ensemble des nombres complexes $z=\mathfrak{a}+\mathfrak{bi}\in\mathbb{C}$ tels que :

1.
$$Re(z\bar{z}) \leq Im(z(1+4i));$$

2.
$$z^2 + 2z - 3 \in \mathbb{R}$$
.

Exercice 5 ([Ste16] : 2.5. - 41, 43) Trouver la puissance indiquée à l'aide de la formule de De Moivre (le résultat peut être donné sous n'importe laquelle des trois formes connues pour les nombres complexes) :

1.
$$(1+i)^{20}$$
;

2.
$$(2\sqrt{3}+2i)^5$$
.

Exercice 6 ([Ste16]: 2.5. - 20, 27) Trouver toutes les solutions des équations suivantes :

1.
$$x^4 = 1$$
;

2.
$$x^2 + 2ix + 1 = 0$$
.

Exercice 7. Utiliser la formule de De Moivre pour exprimer $\cos(3\theta)$ et $\sin(3\theta)$ en fonction de $\cos(\theta)$ et $\sin(\theta)$.

Exercice 8. Trouver l'ensemble :

- 1. des racines quatrièmes de i, i.e. l'ensemble des $z \in \mathbb{C}$ tels que $z^4 = i$;
- 2. des racines cubiques de 1-i, i.e. l'ensemble des $z \in \mathbb{C}$ tels que $z^3 = 1-i$.

Exercice 9.

1. Soit $z \in \mathbb{C}$. Exprimer, en fonction de \bar{z} , le conjugué du nombre complexe :

$$\frac{7iz - i}{z + i}$$

- 2. Donner les formes algébriques (a + bi) des nombres complexes suivants :
 - (a) $\sqrt{-3}\sqrt{-12}$;
 - (b) $\frac{2+3i}{1-5i}$;
 - (c) $\frac{1}{i^{45}}$;
 - (d) $e^{2+i\pi}$.

Références

[Ste16] James Stewart. *Calcul à plusieurs variables*. 2^{ème} édition, traduite de l'anglais par Jean Guérin. Modulo, 2016. ISBN: 9782897320515.

2