Introductory steps:

- -what problem (task formulation): 8 Queens Problem (place 8 queens on a (8x8) chessboard in a non-attacking configuation)
- search space: the set of all the chessboard configurations???
- genome: (slightly) complex
- => we can limit the search space to configurations containing only one queen in one column
- genome: 8-digit sequences, as:

3 4 1 5 1 6 8 7 (genome)

_ _ _ _ _ _ _ _

- fitness function: 28 - attacks

(fitness f. Should be non-negative for the roulette wheel method)

We decided to take N=6 individuals to the population (too few for the computer implementation)

GENERATION OF THE INITIAL POPULATION

We use www.random.org to generate 6 8-digit genomes

Genome of individual 1 (Ind 1):

5	4	5	2	1	5	3	8
Genome	of	Ind_2:					
5	6	7	7	2	6	3	6
Genome	of	Ind_3:					
1	3	1	2	6	3	4	3
Genome	of	Ind_4:					
3	2	4	5	5	2	3	7
Genome	of	Ind_5:					
8	5	8	7	4	5	7	4
Genome	of	Ind 6:					
8	6	- 7	8	3	5	2	6

SELECTION

a) Evaluation (if any individual has the maximal fitness, we quit)

Ind_1:

1)5 2)3 3)1 4) 1 5) 1 6)0 7)0 **11** attacks

4

5

F_1=f (Ind_1) = **28-attacks (Ind_1)** = 28-11=**17**

Ind_2:

Ind3:

F3=f(Ind_3)=28-10=18

Ind4:

F4=f(Ind_4)=28-8=20

Ind5

F5=28-10 =18

Ind 6

8 6 7 8 3 5 2 6

F6=28-8=20

```
F1=17, F2=20 F3=18 F4=20 F5=18 F6=20
F=F1+F2+...+F6=53+60=113 (total fitness)
S=[0,F)=[0,113) \leftarrow \text{total interval}
<u>subintervals</u>
S1=[0,F1)=[0,17) |S1|=F1 (the length of S1)
S2=[F1,F1+F2)=[17,37) |S2|=F2
S3 = [F1+F2,F1+F2+F3) = [37,55) | S3|=F3
S4 = [55, 75)
S5 = [75, 93)
S6=[93,113)c) Running the roulette wheel
Draw 6 random numbers r1, r2, ..., r6 from [0,1]
\rightarrow r1=0.76, r2=0.96, r3=0.98, r4=0.29, r5=0.65, r6=1.00
Then we calculate:
R1=r1*F, R2=r2*F,..., R6=r6*F (so R1,R2,..,R6 are from \mathbf{S})
R1=85,88 belongs to S5 \rightarrow Ind 5
R2=108,48 belongs S6 \rightarrow Ind 6
R3>R2 => belongs to S6 \rightarrow Ind 6
R4=34,77 belongs to S2 \rightarrow Ind 2
R5=73,4 belongs to S4 \rightarrow Ind 4
R6=113 \rightarrow Ind 6
Hence the Mating Pool is: Ind 5 Ind 6 Ind 6 Ind 2 Ind 4 Ind 6
CROSSOVER
Pair I (Ind 5---Ind 6)
draw random r1,r2 from \{1,...,7\} \rightarrow r1=r2=4 \rightarrow
                                 7 | | 4 5 7
parent G5 8 5 8
parent G6 8 6 7 8 | | 3 5 2 6
offspring 8 5 8 7
                                       4 5
                                                        7
                         7
offspring 8 6
                                 8
                                       3 5 2 6
```

b) Creating the roulette wheel

Pair I (Ind 6---Ind 2)

draw random r3,r4 from $\{1,...,7\} \rightarrow r3=3, r4=7 \rightarrow$

parent G6 8 6 7 | 8 3 5 2 | 6

parent G2 5 6 7 | 7 2 6 3 | 6

offspring 8 6 7 7 2 6 3 6

offspring 5 6 7 8 3 5 2 6

pair III (Ind 4---Ind 6)

draw random r5,r5 from $\{1,\ldots,7\} \rightarrow$ r5=1, r6=3 ->

parent G4 3 | 2 4 | 5 5 2 3 7
parent G6 8 | 6 7 | 8 3 5 2 6

offspring 3 6 7 5 5 2 3 7 **offspring** 8 2 4 8 3 5 2 6

Hence we've obtained the following set of

Offsprings

01	8	5	8	7	4	5	7	4
02	8	6	7	8	3	5	2	6
03	8	6	7	7	2	6	3	6
04	5	6	7	8	3	5	2	6
05	3	6	7	5	5	2	3	7
06	8	2	4	8	3	5	2	6

Mutation

p_m - mutation probability (for the single gene)

here (for demonstration purposes) we assume $p_m=1/15$ (for computer implementation try p m from [0.002, 0.01])

r_1^1	r_1^2	r_1^3	r_1^4	r_1^5	r_1^6	r_1^7	r_1^8
r_2^1	r_2^2	r_2^3	r_2^4	r_2^5	r_2^6	r_2^7	r_2^8
r_3^1	r_3^2	r_3^3	r_3^4	r_3^5	r_3^6	r_3^7	r_3^8
r_4^1	r_4^2	r_4^3	r_4^4	r_4^5	r_4^6	r_4^7	r_4^8
r_5^1	r_5^2	r_5^3	r_5^4	r_5^5	r_5^6	r_5^7	r_5^8
r_6^1	r_6^2	r_6^3	r_6^4	r_6^5	r_6^6	r_6^7	r_6^8

from the set of integers: $\{1,2,3,\ldots,15\}$ (as $p_m=1/15$). We assume that if $r_i=1$ then it means that the gene number i will be mutated.

Here are my random numbers

13	5	1	7	12	14	4	7
4	4	9	12	7	7	3	2
6	8	9	7	5	3	7	2
1	1	6	_5_	11	2	9	1
8	7	1	7	6	15	2	15
14	1	1	7	5	7	14	8

r_1^3,r_4^1,r_4^2,r_4^8,r_5^3,r_5^4,r_6^2,r_6^3=1

---> the genes O1(3), O4(1), O4(2), O4(8), O5(3), O5(4), O6(2), O6(3) should be mutated.

We generate new random values for these 8 genes:

			5												
01	8		5		8		7		4		5		7		4
2															
2		4		7		2		8		5		3		6	

4 7 2

04 5	6	7	8	3	5	2	6
N4 4	7	7	8	3	5	2	2
8 5							
05 3	6	7	5	5	2	3	7
N5 3	6	8	5	5	2	3	7

3 6
06 8 2 4 8 3 5 2 6
N6 8 3 6 8 3 5 2 6

New population: N1,N2,N3,N4,N5,N6 **N1** 8 **N2 N5** 3 **N6** 8

Then we replace the old population with the new one, that is:

G1=N1, G2=N2, ..., G6=N6

... and repeat the steps (until finding a non-attacking configuration)

"Paper version": max. 4 points ; take N=6, p_m=1/15; do 5 iterations of the algorithm