Тема: Тотожні перетворення раціональних виразів.

<u>Тотожні перетворення виразів, що</u> <u>містять квадратні корені</u>

<u>(повторення)</u>

Опорний конспект

Тотожні перетворення раціональних виразів

- 1. Перетворення будь-якого раціонального виразу можна звести до додавання, віднімання, множення та ділення раціональних дробів.
- 2. Суму, різницю, добуток і частку раціональних дробів завжди можна подати у вигляді раціонального дробу.

Спростіть вираз $\left(1-\frac{m+n}{n-m}\right)$: $\frac{1}{m-n}$, визначивши його ОДЗ.

Розв'язання

Крок	Зміст дії	Результат дії
крок 1	Знайдемо ОДЗ виразу; зауважимо, що чисельник дробу, на який ми ділимо вираз у дужках, не дорівнює нулю.	ОДЗ: <i>m≠n</i>
КРОК 2	Виконаємо дію в дужках, пам'ятаючи, що: 1) $\frac{-a}{b} = \frac{a}{-b}$; 2) $-(a-b) = b-a$.	$1 - \frac{m+n}{n-m} = 1^{\sqrt{n-m}} - \frac{m+n}{n-m} =$ $= \frac{n-m-m-n}{n-m} = \frac{-2m}{n-m} = \frac{2m}{m-n}$
крок з	Виконаємо дію ділення дробів.	$\frac{2m}{m-n}:\frac{1}{m-n}=\frac{2m(m-n)}{m-n}=2m$

Bi∂nовi∂ь: 2m при m ≠ n

2)
$$\left(\frac{m}{n} - \frac{n}{m}\right) \cdot \frac{mn}{(m+n)^2} = \frac{m^2 - n^2}{mn} \cdot \frac{mn}{(m+n)^2} = \frac{(m^2 - n^2) \cdot mn}{mn(m+n)^2} = \frac{(m-n)(m+n) \cdot mn}{mn(m+n)^2} = \frac{m-n}{m+n};$$

3)
$$\left(\frac{1}{y^2} - \frac{1}{x^2}\right) \cdot \frac{xy}{x+y} = \frac{x^2 - y^2}{x^2y^2} \cdot \frac{xy}{x+y} = \frac{(x-y)(x+y) \cdot xy}{x^2y^2(x+y)} = \frac{x-y}{xy}$$
;

4)
$$\left(\frac{m}{n^2} - \frac{1}{m}\right) \cdot \frac{mn}{m-n} = \frac{m^2 - n^2}{mn^2} \cdot \frac{mn}{m-n} = \frac{(m-n)(m+n) \cdot mn}{mn^2(m-n)} = \frac{m+n}{n}$$
.

$$\left(\frac{2x}{4x^2 - y^2} + \frac{1}{y - 2x}\right) : \left(\frac{2x}{2x + y} - \frac{4x^2}{4x^2 + 4xy + y^2}\right) = \\
= \left(\frac{2x}{(2x - y)(2x + y)} - \frac{1}{2x - y}\right) : \left(\frac{2x + y}{2x + y} - \frac{4x^2}{(2x + y)^2}\right) = \\
= \frac{2x - (2x + y)}{(2x - y)(2x + y)} : \frac{2x(2x + y) - 4x^2}{(2x + y)^2} = \frac{(2x - 2x - y)(2x + y)^2}{(2x - y)(2x + y)(4x^2 + 2xy - 4x^2)} = \\
= \frac{-y(2x + y)}{(2x - y) \cdot 2xy} = -\frac{2x + y}{2x(2x - y)} = \frac{2x + y}{2x(y - 2x)}.$$

Винесіть множник з - під знака кореня:

Приклад 2 :

а)
$$\sqrt{72} \frac{a^8}{a}$$
; б) $\sqrt{e^{35}}$; в) $\sqrt{-e^{39}}$; г) $\sqrt{a^2 c^3}$, якщо < 0 .

Розв'язання: a) $\sqrt{72a^8} = \sqrt{36a^82} = 6a^4\sqrt{2}$

Розв'язання: а)
$$\sqrt{72}a^{\circ} = \sqrt{36}a^{\circ}2 = 6a^{\circ}\sqrt{2}$$

б) 3 умови випливає, що $e \ge 0$. Тоді $\sqrt{e^{35}} = \sqrt{e^{34}e} = |e^{17}|\sqrt{e} = e^{17}\sqrt{e}$.

в) 3 умови випливає, що $6 \le 0$. Тоді

$$\sqrt{-\boldsymbol{\beta}^{39}} = \sqrt{\boldsymbol{\beta}^{38} \cdot (-\boldsymbol{\beta})} = \left| \boldsymbol{\beta}^{19} \right| \cdot \sqrt{(-\boldsymbol{\beta})} = -\boldsymbol{\beta}^{19} \cdot \sqrt{(-\boldsymbol{\beta})}$$

г) 3 умови випливає, що $c \ge 0$.Тоді

$$\sqrt{a^2c^3} = \sqrt{a^2c^2c} = |a| \cdot |c| \cdot \sqrt{c} = -ac\sqrt{c}$$

Винесення множника з – під знака кореня:

Приклад 1: $\sqrt{48} = \sqrt{16 \cdot 3} = \sqrt{16} \cdot \sqrt{3} = 4\sqrt{3}$

Самостійно:

- a) $\sqrt{27}$
- **6)** $\sqrt{20}$
- **B)** $\sqrt{98}$
- Γ) $\sqrt{125}$

Перевірь себе:

- a) $3\sqrt{3}$; 6) $2\sqrt{5}$;
- в) $7\sqrt{2}$; г) $5\sqrt{5}$.

Внесення множника під знак кореня

$$5\sqrt{5} = \sqrt{5^2} \cdot \sqrt{5} = \sqrt{25 \cdot 5} = \sqrt{125}$$

$$4-2\sqrt{5} = -1 \cdot 2 \cdot \sqrt{5} = -1 \cdot \sqrt{2^2 \cdot 5} = -1 \cdot \sqrt{4 \cdot 5} = -\sqrt{20}$$

$$x\sqrt{3} - \partial в a$$
 випадки

Якщо
$$x \ge 0$$
, то $x\sqrt{3} = |x|\sqrt{3} = \sqrt{x^2} \cdot \sqrt{3} = \sqrt{3x^2}$. 3

Якщо
$$x < 0$$
, то $x\sqrt{3} = -|x|\sqrt{3} = -\sqrt{x^2} \cdot \sqrt{3} = -\sqrt{3x^2}$,

Внесіть множник під знак кореня:

Приклад 4 :

a)
$$a\sqrt{7}$$

$$36\sqrt{-\frac{6}{3}} \qquad \text{B)} \qquad c\sqrt{C^7}$$

Розв'язання: a) якщо $a \ge 0$, то $a\sqrt{7} = \sqrt{a^2} \cdot \sqrt{7} = \sqrt{7a^2}$; Якщо $a \le 0$, то $a\sqrt{7} = -\sqrt{a^2} \cdot \sqrt{7} = -\sqrt{7a^2}$

б) 3 умови випливає, що $e \le 0$. Тоді

$$3e\sqrt{-\frac{6}{3}} = -\sqrt{96^2} \cdot \sqrt{-\frac{6}{3}} = -\sqrt{96^2 \cdot \left(-\frac{6}{3}\right)} = -\sqrt{-36^3}$$

в) 3 умови випливає, що $c \ge 0$. Тоді

$$c\sqrt{c^7} = \sqrt{c^2} \cdot \sqrt{c^7} = \sqrt{c^9}.$$

522. Для скорочення дробу розкладемо чисельник і знаменник дробу на множники:

1)
$$\frac{x-25}{\sqrt{x-5}} = \frac{(\sqrt{x-5})(\sqrt{x+5})}{(\sqrt{x-5})} = \sqrt{x+5}$$
; 2) $\frac{\sqrt{a+2}}{a-4} = \frac{(\sqrt{a+2})}{(\sqrt{a-2})(\sqrt{a+2})} = \frac{1}{\sqrt{a-2}}$;

3)
$$\frac{a-3}{\sqrt{a}+\sqrt{3}} = \frac{(\sqrt{a}-\sqrt{3})(\sqrt{a}+\sqrt{3})}{(\sqrt{a}+\sqrt{3})} = \sqrt{a}-\sqrt{3};$$
 4) $\frac{\sqrt{10}+\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}(\sqrt{2}+1)}{\sqrt{5}} = \sqrt{2}+1;$

5)
$$\frac{23-\sqrt{23}}{\sqrt{23}} = \frac{\sqrt{23}(\sqrt{23}-1)}{\sqrt{23}} = \sqrt{23}-1$$
; 6) $\frac{\sqrt{24}-\sqrt{28}}{\sqrt{54}-\sqrt{63}} = \frac{2\sqrt{6}-2\sqrt{7}}{3\sqrt{6}-3\sqrt{7}} = \frac{2(\sqrt{6}-\sqrt{7})}{3(\sqrt{6}-\sqrt{7})} = \frac{2}{3}$;

7)
$$\frac{\sqrt{a}-\sqrt{b}}{a-2\sqrt{ab}+b} = \frac{(\sqrt{a}-\sqrt{b})}{(\sqrt{a}-\sqrt{b})^2} = \frac{1}{\sqrt{a}-\sqrt{b}}$$
; 8) $\frac{b-8\sqrt{b}+16}{\sqrt{b}-4} = \frac{(\sqrt{b}-4)^2}{(\sqrt{b}-4)} = \sqrt{b}-4$.

494. 1)
$$(2-\sqrt{3})(\sqrt{3}+1)=2\sqrt{3}+2-3-\sqrt{3}=\sqrt{3}-1$$
;

$$2)\left(\sqrt{2}+\sqrt{5}\right)\left(2\sqrt{2}-\sqrt{5}\right)=2\cdot 2-\sqrt{5}\sqrt{2}+2\sqrt{10}-\sqrt{5}\sqrt{5}=4-\sqrt{10}+2\sqrt{10}-5=\sqrt{10}-1;$$

3)
$$(a + \sqrt{b})(a - \sqrt{b}) = a^2 - (\sqrt{b})^2 = a^2 - b;$$

4)
$$(\sqrt{b} - \sqrt{c})(\sqrt{b} + \sqrt{c}) = (\sqrt{b})^2 - (\sqrt{c})^2 = b - c;$$

5)
$$(4+\sqrt{3})(4-\sqrt{3})=4^2-(\sqrt{3})^2=16-3=13;$$

6)
$$(y-\sqrt{7})(y+\sqrt{7})=y^2-7;$$

7)
$$(4\sqrt{2} - 2\sqrt{3})(2\sqrt{3} + 4\sqrt{2}) = (4\sqrt{2} - 2\sqrt{3})(4\sqrt{2} + 2\sqrt{3}) = (4\sqrt{2})^2 - (2\sqrt{3})^2 = 16 \cdot 2 - 4 \cdot 3 = 32 - 12 = 20;$$

8)
$$\left(m + \sqrt{n}\right)^2 = m^2 + 2m\sqrt{n} + n$$
;

9)
$$(\sqrt{a} - \sqrt{b})^2 = (\sqrt{a})^2 - 2\sqrt{a}\sqrt{b} + (\sqrt{b})^2 = a - 2\sqrt{ab} + b;$$

10)
$$(2-3\sqrt{3})^2 = 4-12\sqrt{3}+9(\sqrt{3})^2 = 4-12\sqrt{3}+27=31-12\sqrt{3}$$
.

514. 1)
$$\frac{\sqrt{5}}{\sqrt{5}-2} = \frac{\sqrt{5}(\sqrt{5}+2)}{(\sqrt{5}-2)(\sqrt{5}+2)} = \frac{\sqrt{5}(\sqrt{5}+2)}{5-4} = \sqrt{5}(\sqrt{5}+2);$$

2)
$$\frac{8}{\sqrt{10} - \sqrt{2}} = \frac{8(\sqrt{10} + \sqrt{2})}{(\sqrt{10} - \sqrt{2})(\sqrt{10} + \sqrt{2})} = \frac{8(\sqrt{10} + \sqrt{2})}{10 - 2} = \frac{8(\sqrt{10} + \sqrt{2})}{8} = \sqrt{10} + \sqrt{2};$$

3)
$$\frac{9}{\sqrt{x} + \sqrt{y}} = \frac{9(\sqrt{x} - \sqrt{y})}{(\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y})} = \frac{9(\sqrt{x} - \sqrt{y})}{x - y};$$

4)
$$\frac{2-\sqrt{2}}{2+\sqrt{2}} = \frac{\left(2-\sqrt{2}\right)\left(2-\sqrt{2}\right)}{\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)} = \frac{\left(2-\sqrt{2}\right)^2}{4-2} = \frac{\left(2-\sqrt{2}\right)^2}{2} = \frac{4-4\sqrt{2}+2}{2} =$$
$$= \frac{\cancel{2}\left(3-\sqrt{2}\right)}{\cancel{2}} = 3-\sqrt{2}.$$

Робота з інтернет ресурсами

https://youtu.be/3FuGspM4TkI

https://youtu.be/MJuVUbIX-2w

https://youtu.be/h0Xm2aQDBJI

Робота з інтернет ресурсами

https://youtu.be/6vyLICL3x-c

<u>Домашнє завдання</u>

Виконання письмових вправ

- 1. Пряме застосування складеного на уроці алгоритму перетворення раціональних виразів на раціональний дріб.
- 1) Спростіть вираз:

a)
$$\left(1+\frac{1}{a}\right):\frac{a^2-1}{3};$$
 6) $\left(\frac{1}{a+5}-\frac{1}{a-5}\right):\frac{5}{a+5};$

B)
$$\frac{a^2-49}{a^2} \cdot \frac{1}{a+7} - \frac{1}{a}$$
; r) $\left(\frac{2}{b-2} - \frac{1}{2b-1}\right) : \frac{6b}{b-2}$;

д)
$$\frac{a^4}{a^2 - 8a + 16}$$
: $\frac{a}{2a - 8} - \frac{a^3}{a - 4}$; e) $\left(\frac{x}{x - y} - \frac{x}{x + y}\right)$. $\frac{x + y}{\text{Shaped}}$.