Sure Explained Variability and Independence Screening

Zhengjun Zhang

Department of Statistics University of Wisconsin Madison, WI 53706, USA

Co-authors: Min Chen, Yimin Lian, Zhao Chen

- What've been done in independence screening
- Sure Explained Variability: Definitions and Properties
- Sure explained variability and independence screening (SEVIS)
- Illustrative exmaples
- Integrated genomic explained variability analyses of ovarian carcinon
- 6 A nonparametric estimator for SEV

Sparsity tuning I

Variable selection

- the least absolute shrinkage and selection operator (LASSO) in Tibshirani (1996), group LASSO in Yuan and Lin (2006), and the adaptive LASSO in Zou (2006);
- the smoothly clipped absolute deviation (SCAD) in Fan (1997), Fan and Li (2001);
- the elastic net in Zou and Hasties (2005);
- the Dantzig selector in Candes and Tao (2007);
-

Sparsity tuning II

Independence screening

- Sure independence screening (SIS) based on Pearson's correlation: Fan and Lv (2008), Liu et al. (2013);
- Model based screening: Fan and Song (2010), Fan et al. (2011),
 Zhu et al. (2011), Song et al. (2012), Zhang et al. (2016);
- Model free screening: DC-SIS by Li et al. (2012), QaSIS by He et al. (2013), Q-SIS by Wu and Yin (2015);
- Our approach: based on explained variability and model free.

- What've been done in independence screening
- Sure Explained Variability: Definitions and Properties
- Sure explained variability and independence screening (SEVIS)
- Illustrative exmaples
- Integrated genomic explained variability analyses of ovarian carcinon
- 6 A nonparametric estimator for SEV

A new look of a twice-told tale:

$$var(Y) = var(E(Y|X)) + E(var(Y|X)).$$
 (2.1)

- Var(E(Y|X)) measures the spread of the conditional mean (center) of Y given X
- Var(E(Y|X))/Var(Y) can certainly be interpreted as the explained variance of Y by X.

$$SEV(Y|X) = \frac{var(E(Y|X))}{var(Y)} = 1 - \frac{E(var(Y|X))}{var(Y)} = 1 - \frac{E[\{Y - E(Y|X)\}^2]}{var(Y)}$$

Correlation ratios: Kendall and Stuart (1979), Doksum and Samarov (1995), Wang (2001), Zheng, Shi, and Zhang (2012)

Properties of SEV

Suppose both $E(X^2) < \infty$ and $E(Y^2) < \infty$. Then

- (P.1) If Y = g(X), almost surely (a.s.), then SEV(Y|X) = 1.
- (P.2) If $Y = g(X) + \varepsilon$, then $SEV(Y|X) = var(g(X))/(var(g(X)) + var(\varepsilon))$.
- (P.3) If $Y = ag(X) + b + \varepsilon$, where g(x) = x, $a \neq 0$, then SEV(Y|X) = ρ_{xy}^2 . Here ρ_{xy} is Pearson's correlation coefficient.
- (P.4) If $\rho_{XY} \neq 0$, SEV(Y|X) $\neq 0$.
- (P.5) If $\rho_{XY} = -1$ or 1, SEV(Y|X) = 1.
- (P.6) SEV(Y|X) $\geq \rho_{XY}^2$.
- (P.7) If SEV(Y|X) = $0, \rho_{xy} = 0$.

Example 1

Suppose X is a standard normal random variable. Let $Y = X^2$. Then SEV(Y|X)=1, while $\rho_{XY}=0$, and the distance correlation between Y and X is approximately 0.54 by a numerical calculation.

- 1 What've been done in independence screening
- 2 Sure Explained Variability: Definitions and Properties
- 3 Sure explained variability and independence screening (SEVIS)
- Illustrative exmaples
- Integrated genomic explained variability analyses of ovarian carcinon
- 6 A nonparametric estimator for SEV

Notations

- $\mathbf{Y} = (Y_1, ..., Y_n)^T$, $\mathbf{X} = (\mathbf{X}_1, ..., \mathbf{X}_p)$, $\mathbf{X}_k = (X_{1k}, ... X_{nk})^T$
- n is the sample size, the dimension p is much larger than the sample size n, i.e. $n \ll p$.
- $\sum_{i=1}^{n} X_{ik} = 0$ and $\frac{1}{n-1} \sum_{i=1}^{n} X_{ik}^{2} = 1$ for k = 1, ..., p.

SEVIS procedure

• The index set of active predictors:

$$\mathcal{M} = \{1 \le k \le p : \text{ the predictor } X_k \text{ has contributed to the response Y}$$
 (3.1)

• Denoted by $\omega_k = \text{SEV}(Y|X_k), k = 1,...,p$. We define a new index set by

$$\mathscr{M}^* = \{ 1 \le k \le p : \ \omega_k > 0 \}. \tag{3.2}$$

• Denoting $\widehat{\omega}_k$ as the estimator of ω_k , we define a truncated active index set by

$$\widehat{\mathscr{M}}^* = \{ 1 \le k \le p : \ \widehat{\omega}_k \ge c n^{-\tau} \}. \tag{3.3}$$

A practically workable active index set:

$$\widehat{\mathcal{M}}_d^* = \{1 \le k \le p : \widehat{\omega}_k \text{ is among the first } d \text{ largest estimates in } \widehat{\mathcal{M}}^* \}.$$
(3.4)

SEVIS algorithm

- 1. Normalize X_k , k = 1,...,p, such that $\sum_{i=1}^{n} X_{ik} = 0$ and $(n-1)^{-1} \sum_{i=1}^{n} X_{ik}^2 = 1$;
- 2. Calculate $\widehat{\omega}_k = \text{SEV}(Y|X_k)$ between Y and candidate predictors X_k , k = 1, ..., p;
- 3. Rank $\widehat{\omega}_k$ in a decreasing order, that is $\widehat{\omega}_{k_1} > \widehat{\omega}_{k_2} > \cdots > \widehat{\omega}_{k_p}$;
- 4. Choose the first $d[n/\log(n)]$, $X_{k_1}, \ldots, X_{k_{d[n/\log(n)]}}$, as the active predictors. d is a given integer.

Assumptions

- **(A1)** f(x,y) has a bounded support on $(x,y) \in [s_x,S^x] \times [s_y,S^y]$. $f^X(x)$ is strictly positive, and is uniformly continuous on $x \in [s_x,S^x]$. The second derivative $(f^X(x))''$ and $(\phi^{Y|X}(x))''$ exist and are uniformly bounded on $x \in [s_x,S^x]$.
- (A2) The symmetric kernel function K(z) has a bounded support, and satisfies

$$\sup_{-\infty < z < \infty} |K(z)| < \infty, \quad \lim_{z \to \infty} |zK(z)| = 0, \quad \int z^2 \, |K(z)| \; dz < \infty.$$

The bandwidth *h* satisfies $nh^3 \to \infty$ and $nh^4 \to 0$, as $n \to \infty$.

- (A3) $\min_{k \in \mathscr{M}^*} \omega_k \ge 2cn^{-\tau}$, where constant c > 0 and $0 \le \tau < \frac{1}{6}$.
- **(A4)** For given constants c > 0, $0 \le \tau < \frac{1}{6}$, and $\log(p) = o(n^{1/3-2\tau})$, $\liminf_{p \to \infty} (\min_{k \in \mathscr{M}^*} \omega_k \max_{k \notin \mathscr{M}^*} \omega_k) > 2cn^{-\tau}$.

4 D > 4 B > 4 B > 4 B > 9 Q P

Sure Screening Property

Under Assumptions (A1),(A2), it follows that

$$\mathsf{P}\left(\max_{1\leq k\leq p}|\widehat{\omega}_k-\omega_k|\geq cn^{-\tau}\right)\leq \mathsf{O}(p\exp\{-c_1n^{1-2\tau}h^2\}). \tag{3.5}$$

Furthermore, if Assumption (A3) holds, we have that

$$P\left(\mathscr{M}^* \subseteq \widehat{\mathscr{M}^*}\right) \ge 1 - O(s_n \exp\{-c_1 n^{1-2\tau} h^2\}), \tag{3.6}$$

where s_n is the cardinality of \mathcal{M}^* .

Ranking Consistency property

Under Assumptions (A1), (A2), and (A4), we have that

$$\liminf_{n\to\infty} \{ \min_{k\in\mathscr{M}^*} \widehat{\omega}_k - \max_{k\notin\mathscr{M}^*} \widehat{\omega}_k \} \ge 0, \quad \text{a.s.}$$
(3.7)

- What've been done in independence screening
- Sure Explained Variability: Definitions and Properties
- Sure explained variability and independence screening (SEVIS)
- 4 Illustrative exmaples
- Integrated genomic explained variability analyses of ovarian carcinon
- 6 A nonparametric estimator for SEV

Settings and Example 1

- Existing methods to be compared: SIRS by Zhu et al. (2011), DC-SIS by Li et al. (2012) and Q-SIS with $\alpha=0.75$ by Wu and Yin (2015), i.e. Model free
- $d_1 = [n/\log(n)], d_2 = 2[n/\log(n)], \text{ and } d_3 = 3[n/\log(n)]$

(1.a)
$$Y = c_1 X_1 + c_1 X_2 + c_1 X_{12} + c_1 X_{22} + \varepsilon$$
,

(1.b)
$$Y = c_1 X_1 + c_2 X_2 + c_3 I(X_{12} < 0) + c_4 X_{22} + \varepsilon$$
,

(1.c)
$$Y = c_1 X_1 X_2 + c_3 I(X_{12} < 0) + c_4 X_{22} + \varepsilon$$
,

(1.d)
$$Y = c_1 X_1 + c_2 X_2 + c_3 I(X_{12} < 0) + c_5 \exp(|X_{22}|) \varepsilon$$
.

The predictors $X=(X_1,...,X_p)$ are generated from a normal distribution with mean zero and covariance matrix $\Sigma=(\sigma_{ij})_{p\times p}$, where $\sigma_{ij}=\sigma^{|i-j|}$. The random error ε follows a standard normal distribution. We set the vector $(c_1,c_2,c_3,c_4,c_5)=(5,2,7,5,2)$. The sample size n=200, the dimension p=2000,5000, and $\sigma=0.5,0.8$.

Table 1: The Proportions of \mathcal{P}_s and \mathcal{P}_a , p = 2000 $\sigma = 0.5$

		SIRS	DC-SIS	Q-SIS			SEVIS		
		\mathscr{P}_{a}	\mathscr{P}_{a}	\mathscr{P}_{a}			s		\mathscr{P}_{a}
Model	Size	ALL	ALL	ALL	<i>X</i> ₁	X_2	X ₁₂	X ₂₂	ALL
(1.a)	d_1	1.00	1.00	0.98	1.00	1.00	1.00	1.00	1.00
	d_2	1.00	1.00	0.99	1.00	1.00	1.00	1.00	1.00
	d_3	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
(1.b)	d_1	0.96	0.99	0.94	1.00	1.00	0.98	1.00	0.98
	d_2	0.98	1.00	0.96	1.00	1.00	0.99	1.00	0.99
	d_3	0.99	1.00	0.97	1.00	1.00	0.99	1.00	0.99
(1.c)	d_1	0.01	0.76	0.25	0.98	0.99	0.99	1.00	0.97
	d_2	0.01	0.90	0.47	0.99	0.99	1.00	1.00	0.98
	d_3	0.03	0.94	0.60	0.99	0.99	1.00	1.00	0.99
(1.d)	d_1	0.03	0.14	0.03	1.00	1.00	0.82	0.56	0.41
	d_2	0.06	0.30	0.06	1.00	1.00	0.92	0.64	0.57
	d_3	80.0	0.43	0.08	1.00	1.00	0.94	0.68	0.62

Table 2: The Proportions of \mathcal{P}_s and \mathcal{P}_a , p = 2000 $\sigma = 0.8$

		SIRS	DC-SIS	Q-SIS			SEVIS		
		\mathcal{P}_a	\mathcal{P}_a	\mathscr{P}_a		9	or s		\mathscr{P}_{a}
Model	Size	ALL	ALL	ALL	- X ₁	X ₂	X ₁₂	X ₂₂	ALL
(1.a)	d_1	1.00	1.00	0.97	1.00	1.00	1.00	1.00	1.00
	d_2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	d_3	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
(1.b)	d_1	0.45	0.74	0.46	1.00	1.00	0.64	1.00	0.64
	d_2	0.60	0.85	0.61	1.00	1.00	0.76	1.00	0.76
	d_3	0.67	0.89	0.67	1.00	1.00	0.83	1.00	0.83
(1.c)	d_1	0.02	0.99	0.65	1.00	1.00	0.88	1.00	0.88
	d_2	0.04	1.00	0.80	1.00	1.00	0.95	1.00	0.95
	d_3	0.08	1.00	0.88	1.00	1.00	0.97	1.00	0.97
(1.d)	d_1	0.05	0.13	0.02	1.00	0.99	0.62	0.53	0.28
	d_2	0.10	0.27	0.07	1.00	1.00	0.75	0.61	0.42
	d_3	0.15	0.40	0.12	1.00	1.00	0.82	0.68	0.53

Table 3: The Proportions of \mathcal{P}_s and \mathcal{P}_a , p = 5000 $\sigma = 0.5$

		SIRS	DC-SIS	Q-SIS			SEVIS		
		\mathscr{P}_{a}	\mathscr{P}_{a}	\mathscr{P}_{a}	"	9	s		\mathscr{P}_{a}
Model	Size	ALL	ALL	ALL	<i>X</i> ₁	X_2	X ₁₂	X ₂₂	ALL
(1.a)	d_1	1.00	1.00	0.93	1.00	1.00	1.00	1.00	1.00
	d_2	1.00	1.00	0.96	1.00	1.00	1.00	1.00	1.00
	d_3	1.00	1.00	0.98	1.00	1.00	1.00	1.00	1.00
(1.b)	d_1	0.98	0.99	0.92	1.00	1.00	0.97	1.00	0.97
	d_2	0.99	1.00	0.95	1.00	1.00	0.99	1.00	0.99
	d_3	1.00	1.00	0.96	1.00	1.00	0.99	1.00	0.99
(1.c)	d_1	0.00	0.50	0.08	0.98	0.98	0.96	1.00	0.92
	d_2	0.01	0.68	0.19	0.98	0.99	0.99	1.00	0.97
	d_3	0.01	0.77	0.28	0.99	0.99	0.99	1.00	0.98
(1.d)	d_1	0.01	0.08	0.01	0.98	0.95	0.71	0.48	0.29
	d_2	0.02	0.18	0.02	1.00	0.98	0.83	0.56	0.43
	d_3	0.04	0.24	0.03	1.00	0.98	0.88	0.60	0.50

Table 4: The Proportions of \mathcal{P}_s and \mathcal{P}_a , p = 5000 $\sigma = 0.8$

		OIDO	50.010	0.010			05) (10		
		SIRS	DC-SIS	Q-SIS			SEVIS		
		\mathscr{P}_{a}	\mathscr{P}_{a}	\mathscr{P}_{a}		9	s		\mathscr{P}_a
Model	Size	ALL	ALL	ALL	<i>X</i> ₁	X_2	X ₁₂	X_{22}	ALL
(1.a)	d_1	1.00	1.00	0.96	1.00	1.00	1.00	1.00	1.00
	d_2	1.00	1.00	0.98	1.00	1.00	1.00	1.00	1.00
	d_3	1.00	1.00	0.99	1.00	1.00	1.00	1.00	1.00
(1.b)	d_1	0.39	0.66	0.37	1.00	1.00	0.57	1.00	0.57
	d_2	0.53	0.76	0.47	1.00	1.00	0.69	1.00	0.69
	d_3	0.59	0.82	0.54	1.00	1.00	0.76	1.00	0.76
(1.c)	d_1	0.01	0.98	0.50	1.00	1.00	0.73	1.00	0.73
	d_2	0.02	0.99	0.67	1.00	1.00	0.83	1.00	0.83
	d_3	0.03	0.99	0.76	1.00	1.00	0.90	1.00	0.90
(1.d)	d_1	0.03	0.08	0.00	0.98	0.97	0.46	0.44	0.14
	d_2	0.06	0.15	0.02	0.99	0.99	0.62	0.55	0.30
	d_3	0.08	0.19	0.04	1.00	1.00	0.69	0.60	0.37

Example 2

(2.a)
$$Y = 5X_1 + 3X_2^2 + X_3^3 + \varepsilon$$
,

(2.b)
$$Y = 3\sin(X_1) + 7\cos(X_2) + \tan(X_3) + \varepsilon$$
.

 $X=(X_1,...,X_p)$ from a normal distribution with mean zero and covariance matrix $\Sigma=(\sigma_{ij})_{p\times p}$, where $\sigma_{ii}=1,i=1,...,p$ and $\sigma_{ij}=\sigma,i\neq j$. Model (2.b) is a summation of trigonometric functions of predictors. Considering the property of tangent function, we generate $X=(X_1,...,X_p)$ from a uniform distribution [-1,1] and keep the covariance matrix unchanged. The random error ε follows a standard normal.

				SIRS	DC-SIS	Q-SIS		S	EVIS		_
				\mathscr{P}_{a}	\mathscr{P}_a	\mathscr{P}_a		\mathscr{P}_{s}		<i>𝒫_a</i> (2.a)	_
n	р	σ	d	ALL	ALL	ALL	<i>X</i> ₁	X_2	<i>X</i> ₃	ALL	
200	1000	0	d_1	0.07	1.00	0.70	1.00	1.00	1.00	1.00	_
200	1000	0	d_2	0.13	1.00	0.83	1.00	1.00	1.00	1.00	
200	1000	0	d_3	0.18	1.00	0.87	1.00	1.00	1.00	1.00	
100	1000	0	d_1	0.04	0.63	0.15	1.00	0.96	0.90	0.86	
100	1000	0	d_2	80.0	0.80	0.28	1.00	0.98	0.93	0.90	
100	1000	0	d_3	0.11	0.85	0.39	1.00	0.99	0.95	0.93	
200	5000	0	d_1	0.02	0.98	0.38	1.00	1.00	0.99	0.99	
200	5000	0	d_2	0.03	0.99	0.54	1.00	1.00	1.00	1.00	
200	5000	0	d_3	0.04	1.00	0.65	1.00	1.00	1.00	1.00	
100	5000	0	d_1	0.01	0.32	0.02	0.97	0.89	0.77	0.65	
100	5000	0	d_2	0.02	0.48	0.04	0.99	0.93	0.83	0.75	
100	5000	0	d_3	0.02	0.59	0.08	1.00	0.95	0.86	0.81	
200	1000	0.5	d_1	0.01	0.32	0.22	1.00	0.91	0.98	0.89	
200	1000	0.5	d_2	0.01	0.47	0.34	1.00	0.95	0.98	0.93	
200	1000	0.5	d_3	0.01	0.55	0.40	1.00	0.96	0.99	0.95	
100	5000	0.5	d_1	0.00	0.11	0.03	0.96	0.65	0.78	0.44	
100	5000	0.5	d_2	0.01	0.19	0.07	0.97	0.72	0.86	0.57	
100	5000	0.5	d_3	0.02	0.26	0.12	0.97	0.76	0.89	0.64	
200	5000	0.5	d_1	0.00	0.13	0.05	0.99	0.79	0.94	0.73	
200	5000	0.5	d_2	0.00	0.21	0.09	0.99	0.85	0.97	0.81	
200	5000	0.5	d_3	0.01	0.24	0.13	1.00	0.89	0.98	0.86	
100	5000	0.5	d_1	0.00	0.01	0.01	0.90	0.44	0.58	0.19	
100	5000	0.5	d_2	0.00	0.04	0.01	0.92	0.52	0.65	0.26	
100	5000	0.5	d_3	0.00	0.05	0.03	0.93	0.57	0.70	0.32	<u> </u>
	7 7hana (11)\\ Madisan\				CEV					tox 2010	

				SIRS	DC-SIS	Q-SIS		S	EVIS		_
				\mathscr{P}_{a}	\mathscr{P}_a	\mathscr{P}_a		\mathscr{P}_{S}		𝒫 _a (2.b)	_
n	р	σ	d	ALL	ALL	ALL	<i>X</i> ₁	X_2	<i>X</i> ₃	ALL	
200	1000	0	d_1	0.03	0.97	0.52	1.00	1.00	1.00	1.00	
200	1000	0	d_2	0.07	0.99	0.73	1.00	1.00	1.00	1.00	
200	1000	0	d_3	0.10	1.00	0.84	1.00	1.00	1.00	1.00	
100	1000	0	d_1	0.01	0.27	0.03	1.00	0.94	0.82	0.77	
100	1000	0	d_2	0.02	0.50	0.10	1.00	0.97	0.89	0.86	
100	1000	0	d_3	0.04	0.64	0.20	1.00	0.98	0.92	0.90	
200	5000	0	d_1	0.00	0.67	0.08	1.00	1.00	0.95	0.95	
200	5000	0	d_2	0.00	0.82	0.20	1.00	1.00	0.98	0.98	
200	5000	0	d_3	0.01	0.88	0.35	1.00	1.00	0.99	0.99	
100	5000	0	d_1	0.00	0.05	0.00	1.00	0.84	0.63	0.51	
100	5000	0	d_2	0.00	0.12	0.00	1.00	0.91	0.72	0.64	
100	5000	0	d_3	0.00	0.19	0.02	1.00	0.93	0.77	0.71	
200	1000	0.5	d_1	0.00	0.27	0.00	0.98	0.93	0.98	0.92	
200	1000	0.5	d_2	0.02	0.39	0.00	0.98	0.95	0.99	0.95	
200	1000	0.5	d_3	0.05	0.52	0.00	0.98	0.96	0.99	0.96	
100	1000	0.5	d_1	0.00	0.06	0.00	0.97	0.53	0.77	0.41	
100	1000	0.5	d_2	0.02	0.11	0.00	0.98	0.64	0.85	0.53	
100	1000	0.5	d_3	0.03	0.16	0.00	0.98	0.72	0.90	0.64	
200	5000	0.5	d_1	0.00	0.09	0.00	0.98	0.81	0.94	0.77	
200	5000	0.5	d_2	0.00	0.14	0.00	0.98	0.87	0.96	0.85	
200	5000	0.5	d_3	0.00	0.17	0.00	0.98	0.90	0.97	0.88	
100	5000	0.5	d_1	0.00	0.01	0.00	0.97	0.36	0.59	0.20	
100	5000	0.5	d_2	0.00	0.02	0.00	0.98	0.44	0.68	0.29	
100	5000	0.5	d_3	0.00	0.03	0.00	0.98	0.50	0.72	0.35	990
	7 7hann (11)() Madiaan)				CEV					ton 2010	

Example 3

The underlying model is adapted from Ravikumar *et al.* (2008). We generate the data from the additive model

(3)
$$Y = f_1(X_1) + f_2(X_2) + f_3(X_3) + f_4(X_4) + \varepsilon$$
,

where

$$f_1(x) = -2\sin(2x), \ f_2(x) = x^2 - 1/3, \ f_3(x) = x - 1/2, \ f_4(x) = e^{-x} + e^{-1} - 1$$

 $X_1,...,X_p$ are drawn from an independent and identically distributed uniform distribution on [-2,2]. The random error ε follows the standard normal distribution. Let n=150 and p=2000 which is ten times of that in *et al.* (2008). The censored observations $Y_i^* = \min(Y_i, C_i), 1 \le i \le n$, where C_i follows a uniform distribution on [0,8.5] to control the censoring rate to be approximately 25%. The replications are 500.

Table 5: The Proportions of \mathcal{P}_s and \mathcal{P}_a in Example 3

	SIRS	DC-SIS	Q-SIS	SEVIS						
	\mathscr{P}_{a}	\mathscr{P}_{a}	\mathscr{P}_{a}	\mathscr{P}_{S} \mathscr{P}_{g}						
d	ALL	ALL	ALL	<i>X</i> ₁	X_2	X_3	X_4	ALL		
d_1	0.00	0.16	0.01	0.93	0.90	0.97	1.00	0.81		
d_2	0.00	0.33	0.02	0.97	0.94	0.98	1.00	0.89		
d_3	0.00	0.46	0.05	0.98	0.96	0.99	1.00	0.92		

- What've been done in independence screening
- 2 Sure Explained Variability: Definitions and Properties
- Sure explained variability and independence screening (SEVIS)
- Illustrative exmaples
- Integrated genomic explained variability analyses of ovarian carcinom.
- A nonparametric estimator for SEV

Data

- 593 patients and their 12042 gene expression levels
- Divide all patients into 17 groups by tissue source site (TSS)
- 8 groups: TCGA-04, TCGA-09, TCGA-13, TCGA-23, TCGA-24, TCGA-25, TCGA-29, TCGA-61
- At least 30 patients ($n \ge 30$), total 487 samples
- Response variable 1: TP53, a well known tumor suppressor gene and mutates in 303 among 316 ovarian carcinoma patients
- Response variable 2: survival time of patients

Evaluate the performance of those top ranked genes

consider the following nonparametric additive model,

$$Y = f_1(X_{first}) + f_2(X_{second}) + f_3(X_{third}) + \varepsilon,$$
 (5.1)

- compare the adjusted R² and deviance explained by each method
- use SEV(Y| \widehat{Y}) to measure nonlinearly explained variability, where $\widehat{Y} = \widehat{f_1}(X_{first}) + \widehat{f_2}(X_{second}) + \widehat{f_3}(X_{third})$

Table 6: The results of data fitting for Y = TP53

			SIRS			DC-SIS			
Group	n	adj <i>R</i> ²	deviance explained	SEV(Y Y)	adj <i>R</i> ²	deviance explained	SEV(Y Y)		
TCGA-04	43	0.405	0.467	0.410	0.578	0.641	0.562		
TCGA-09	30	0.451	0.529	0.435	0.629	0.697	0.577		
TCGA-13	113	0.294	0.342	0.311	0.319	0.373	0.335		
TCGA-23	38	0.450	0.495	0.419	0.534	0.635	0.556		
TCGA-24	100	0.296	0.361	0.326	0.311	0.373	0.337		
TCGA-25	45	0.310	0.359	0.315	0.704	0.773	0.652		
TCGA-29	52	0.556	0.583	0.525	0.539	0.566	0.484		
TCGA-61	66	0.494	0.558	0.489	0.440	0.505	0.455		

Table 7: The results of data fitting for Y = TP53

			Q-SIS			SEVIS	
Group	n	adj R ²	deviance	SEV(Y Y)	adj R ²	deviance	SEV(Y Y)
			explained			explained	
TCGA-04	43	0.303	0.447	0.404	0.861	0.912	0.788
TCGA-09	30	0.200	0.400	0.341	0.677	0.774	0.654
TCGA-13	113	0.188	0.249	0.243	0.348	0.421	0.382
TCGA-23	38	0.538	0.681	0.591	0.625	0.717	0.684
TCGA-24	100	0.181	0.250	0.237	0.230	0.294	0.278
TCGA-25	45	0.562	0.716	0.613	0.906	0.956	0.815
TCGA-29	52	0.530	0.585	0.505	0.620	0.643	0.545
TCGA-61	66	0.151	0.246	0.272	0.267	0.365	0.380

Table 8: The results of data fitting for Y being days to last followup

			SIRS			DC-SIS			
Group	n	adj <i>R</i> ²	deviance explained	$SEV(Y \hat{Y})$	adj <i>R</i> ²	deviance explained	SEV(Y Y)		
TCGA-04	38	0.822	0.894	0.777	0.884	0.940	0.799		
TCGA-09	30	0.527	0.577	0.507	0.720	0.778	0.646		
TCGA-13	109	0.274	0.294	0.265	0.287	0.361	0.334		
TCGA-23	38	0.660	0.725	0.639	0.662	0.720	0.657		
TCGA-24	98	0.321	0.364	0.371	0.258	0.293	0.273		
TCGA-25	45	0.456	0.493	0.456	0.573	0.660	0.589		
TCGA-29	49	0.401	0.439	0.389	0.503	0.554	0.483		
TCGA-61	64	0.224	0.261	0.241	0.302	0.336	0.311		

Table 9: The results of data fitting for Y being days to last followup

			Q-SIS			SEVIS	
Group	n	adj R ²	deviance	SEV(Y Y)	adj R ²	deviance	SEV(Y Y)
			explained			explained	
TCGA-04	38	0.655	0.792	0.666	0.710	0.794	0.740
TCGA-09	30	0.533	0.641	0.597	0.725	0.800	0.728
TCGA-13	109	0.257	0.301	0.278	0.355	0.403	0.431
TCGA-23	38	0.476	0.531	0.523	0.691	0.752	0.690
TCGA-24	98	0.289	0.361	0.382	0.330	0.400	0.423
TCGA-25	45	0.317	0.364	0.329	0.528	0.622	0.547
TCGA-29	49	0.320	0.414	0.364	0.398	0.495	0.514
TCGA-61	64	0.253	0.345	0.342	0.332	0.416	0.429

the mutual pairwise explained variabilities

- the explained variabilities of more than 72.5% of genes selected using SIRS, DC-SIS and Q-SIS by the genes selected using SEVIS are larger than the explained variabilities in the opposite directions with the response variable being TP53.
- The proportion increases to 81.4% with the response variable being changed to days to last followup.

- What've been done in independence screening
- 2 Sure Explained Variability: Definitions and Properties
- Sure explained variability and independence screening (SEVIS)
- Illustrative exmaples
- Integrated genomic explained variability analyses of ovarian carcinom
- 6 A nonparametric estimator for SEV

- Suppose f(x,y) is the joint density function of random variables (X, Y),
- and $f^X(x)$ is the marginal density function of predictor X.

SEV(Y|X) =
$$\frac{E[E(Y|X)]^{2} - (E(Y))^{2}}{var(Y)}$$
$$= \frac{\int (r^{Y|X}(x))^{2} f^{X}(x) dx - (E(Y))^{2}}{var(Y)}, \quad (6.1)$$

where

$$r^{Y|X}(x) := E(Y|X = x) := \frac{\phi^{Y|X}(x)}{f^{X}(x)} := \frac{\int yf(x,y)dy}{f^{X}(x)}.$$
 (6.2)

Nadaraya-Watson estimators

$$\phi_n^{Y|X}(x) = \frac{1}{nh} \sum_{i=1}^n K(\frac{x - X_i}{h}) Y_i,$$

$$f_n^X(x) = \frac{1}{nh} \sum_{i=1}^n K(\frac{x - X_i}{h}),$$
(6.3)

$$r_n^{Y|X}(x) = \begin{cases} \frac{\sum\limits_{i=1}^n K(\frac{x-X_i}{h})Y_i}{\sum\limits_{j=1}^n K(\frac{x-X_j}{h})} & \text{if } \sum\limits_{j=1}^n K(\frac{x-X_j}{h}) \neq 0, \\ 0 & \text{if } \sum\limits_{j=1}^n K(\frac{x-X_j}{h}) = 0. \end{cases}$$
(6.4)

The estimator

$$\widehat{\omega} = \widehat{\text{SEV}}(Y|X) = S_Y^{-2} \left(\int (r_n^{Y|X}(x))^2 f_n^X(x) \, dx - (\bar{Y})^2 \right), \tag{6.5}$$

10 + 4 A + 4 B + 4 B + B + 900

Nadaraya-Watson estimators

$$\phi_n^{Y|X}(x) = \frac{1}{nh} \sum_{i=1}^n K(\frac{x - X_i}{h}) Y_i,$$

$$f_n^X(x) = \frac{1}{nh} \sum_{i=1}^n K(\frac{x - X_i}{h}),$$
(6.3)

$$r_n^{Y|X}(x) = \begin{cases} \frac{\sum\limits_{i=1}^n K(\frac{x-X_i}{h}) Y_i}{\sum\limits_{j=1}^n K(\frac{x-X_j}{h})} & \text{if } \sum\limits_{j=1}^n K(\frac{x-X_j}{h}) \neq 0, \\ 0 & \text{if } \sum\limits_{j=1}^n K(\frac{x-X_j}{h}) = 0. \end{cases}$$
(6.4)

The estimator

$$\widehat{\omega} = \widehat{\mathsf{SEV}}(\mathsf{Y}|X) = \mathcal{S}_{\mathsf{Y}}^{-2} \left(\int (r_n^{\mathsf{Y}|X}(\mathsf{X}))^2 f_n^X(\mathsf{X}) \, d\mathsf{X} - (\bar{\mathsf{Y}})^2 \right), \tag{6.5}$$

4 D > 4 B > 4 B > 4 B > 9 Q P

Asymptotics

Under Assumptions (A1) and (A2), we have

$$\sqrt{n}(\mathbf{A}^T \Sigma \mathbf{A})^{-\frac{1}{2}} (\widehat{\mathsf{SEV}}(Y|X) - \mathsf{SEV}(Y|X)) \Rightarrow N(0,1),$$
 (6.6)

where

$$\Sigma = \operatorname{Cov}\left(\sigma_{\mathsf{Y}}^{-2} \int (2\,\mathsf{Y}_i - \frac{\phi^{\,\mathsf{Y}|X}(x)}{f^X(x)}) \frac{\phi^{\,\mathsf{Y}|X}(x)}{f^X(x)} \frac{1}{h} K(\frac{x - X_i}{h}) dx, \ \frac{\mathsf{Y}_i}{\sigma_{\mathsf{Y}}}, \ \mathsf{Y}_i^2\right),$$

and

$$\mathbf{A} = (1, -\frac{2\mu_{Y}}{\sigma_{Y}} + 2\mu_{Y}\sigma_{Y}^{-3}(\int \frac{(\phi^{Y|X}(x))^{2}}{f^{X}(x)}dx - \mu_{Y}^{2}), -\sigma_{Y}^{-4}(\int \frac{(\phi^{Y|X}(x))^{2}}{f^{X}(x)}dx$$

 μ_Y and σ_Y are the population mean and standard deviation of Y, respectively.