Logică pentru Informatică - Săptămâna 11 Deducția naturală Exerciții pentru Seminar

1 Regulile deducției naturale

În exercițiile de mai jos vom lucra cu o signatură $\Sigma = (\{P,Q\},\{a,b,f,g\})$, unde predicatele P și Q au aritate 1, simbolurile funcționale f și g au aritate 1, iar simbolurile a și b sunt constante (aritate 0).

2 Exerciții rezolvate

1. Arătați că secvența $\{P(a), \neg P(a)\} \vdash P(b)$ este validă.

Rezolvare:

1.
$$\{P(a), \neg P(a)\} \vdash P(a);$$
 (IPOTEZĂ)

2.
$$\{P(a), \neg P(a)\} \vdash \neg P(a);$$
 (IPOTEZĂ)

3.
$$\{P(a), \neg P(a)\} \vdash \bot;$$
 $(\neg e, 1, 2)$

4.
$$\{P(a), \neg P(a)\} \vdash P(b)$$
. $(\bot e, 3)$

2. Arătați că secvența $\{(P(a) \lor Q(a))\} \vdash (q \lor p)$ este validă.

Rezolvare:

1.
$$\{(P(a) \lor Q(a)), P(a)\} \vdash P(a);$$
 (IPOTEZĂ)

2.
$$\{(P(a) \lor Q(a)), P(a)\} \vdash (Q(a) \lor P(a));$$
 $(\lor i_2, 1)$

3.
$$\{(P(a) \lor Q(a)), Q(a)\} \vdash Q(a);$$
 (IPOTEZĂ)

4.
$$\{(P(a) \lor Q(a)), Q(a)\} \vdash (Q(a) \lor P(a));$$
 $(\lor i_1, 1)$

5.
$$\{(P(a) \lor Q(a))\} \vdash (P(a) \lor Q(a));$$
 (IPOTEZĂ)

6.
$$\{(P(a) \lor Q(a))\} \vdash (Q(a) \lor P(a)).$$
 $(\lor e, 5, 2, 4)$

3. Arătați că secvența $\{\forall x.(P(x) \rightarrow Q(x)), P(a)\} \vdash \exists x.Q(x)$ este validă.

Rezolvare:

1.
$$\{\forall x.(P(x) \to Q(x)), P(a)\} \vdash \forall x.(P(x) \to Q(x))$$
 (IPOTEZĂ)

$$2. \ \{\forall x. (P(x) \rightarrow Q(x)), P(a)\} \vdash P(a) \tag{IPoteză}$$

3.
$$\{\forall x.(P(x) \rightarrow Q(x)), P(a)\} \vdash (P(a) \rightarrow Q(a))$$
 $(\forall e, 1, a)$

4.
$$\{\forall \mathbf{x}.(\mathbf{P}(\mathbf{x}) \to \mathbf{Q}(\mathbf{x})), \mathbf{P}(\mathbf{a})\} \vdash \mathbf{Q}(\mathbf{a})$$
 $(\to e, 3, 2)$

5.
$$\{\forall \mathbf{x}.(\mathbf{P}(\mathbf{x}) \to \mathbf{Q}(\mathbf{x})), \mathbf{P}(\mathbf{a})\} \vdash \exists \mathbf{x}.\mathbf{Q}(\mathbf{x})$$
 $(\exists i, 4)$

4. Arătați că secvența $\{\forall x.(P(x) \to Q(x)), \exists x.P(x)\} \vdash \exists x.Q(x)$ este validă.

Rezolvare:

1.
$$\{\forall x.(P(x) \to Q(x)), \exists x.P(x)\} \vdash \exists x.P(x)$$
 (IPOTEZĂ)

2.
$$\{\forall x.(P(x) \rightarrow Q(x)), \exists x.P(x), P(x_0)\} \vdash P(x_0)$$
 (IPOTEZĂ)

3.
$$\{\forall x.(P(x) \to Q(x)), \exists x.P(x), P(x_0)\} \vdash \forall x.(P(x) \to Q(x))$$
 (IPOTEZĂ)

4.
$$\{\forall \mathbf{x}.(\mathbf{P}(\mathbf{x}) \to \mathbf{Q}(\mathbf{x})), \exists \mathbf{x}.\mathbf{P}(\mathbf{x}), \mathbf{P}(\mathbf{x}_0)\} \vdash (\mathbf{P}(\mathbf{x}_0) \to \mathbf{Q}(\mathbf{x}_0))$$
 $(\forall e, 3, \mathbf{x}_0)$

5.
$$\{\forall \mathbf{x}.(\mathbf{P}(\mathbf{x}) \to \mathbf{Q}(\mathbf{x})), \exists \mathbf{x}.\mathbf{P}(\mathbf{x}), \mathbf{P}(\mathbf{x}_0)\} \vdash \mathbf{Q}(\mathbf{x}_0)$$
 $(\to e, 4, 2)$

6.
$$\{\forall x.(P(x) \rightarrow Q(x)), \exists x.P(x), P(x_0)\} \vdash \exists x.Q(x)$$
 $(\exists i, 5)$

7.
$$\{\forall \mathbf{x}.(\mathbf{P}(\mathbf{x}) \to \mathbf{Q}(\mathbf{x})), \exists \mathbf{x}.\mathbf{P}(\mathbf{x})\} \vdash \exists \mathbf{x}.\mathbf{Q}(\mathbf{x})$$
 $(\exists e, 1, 6)$

5. Arătați că secvența $\{\forall x.(P(x) \to Q(x)), P(x)\} \vdash \forall x.Q(x)$ este validă

Rezolvare:

1.
$$\{\forall x.(P(x) \to Q(x)), \forall x.P(x)\} \vdash \forall x.(P(x) \to Q(x))$$
 (IPOTEZĂ)

2. $\{\forall x.(P(x) \to Q(x)), \forall x.P(x)\} \vdash \forall x.P(x)$ (IPOTEZĂ)

3. $\{\forall x.(P(x) \to Q(x)), \forall x.P(x)\} \vdash (P(x_0) \to Q(x_0))$ ($\forall e, 1, x_0$)

4. $\{\forall x.(P(x) \to Q(x)), \forall x.P(x)\} \vdash P(x_0)$ ($\forall e, 2, x_0$)

5. $\{\forall x.(P(x) \to Q(x)), \forall x.P(x)\} \vdash Q(x_0)$ ($(\forall e, 3, 4)$)

6. $\{\forall x.(P(x) \to Q(x)), \forall x.P(x)\} \vdash \forall x.Q(x)$ ($(\forall i, 5)$)

3 Exerciții propuse

Secvențele de mai jos sunt valide?

- 1. $\{((P(a) \land Q(a)) \land \forall x.P(x))\} \vdash (Q(a) \land \forall x.P(x));$
- $2. \ \{((\mathtt{P}(\mathtt{a}) \land \mathtt{Q}(\mathtt{a})) \land \forall \mathtt{x}.\mathtt{P}(\mathtt{x})), \forall \mathtt{x}.\mathtt{Q}(\mathtt{x})\} \vdash (\forall \mathtt{x}.\mathtt{Q}(\mathtt{x}) \land \mathtt{Q}(\mathtt{a}));$
- 3. $\{((P(a) \land Q(a)) \land \forall x.P(x))\} \vdash (\forall x.P(x) \land (Q(a) \land P(a)));$
- 4. $\{((P(a) \land Q(a)) \rightarrow \forall x.P(x)), P(a), Q(a)\} \vdash \forall x.P(x);$
- 5. $\{(P(a) \rightarrow \forall x.P(x)), P(a), Q(a)\} \vdash (Q(a) \land \forall x.P(x));$
- 6. $\{(P(a) \rightarrow P(b)), (Q(a) \rightarrow P(b))\} \vdash ((P(a) \lor Q(a)) \rightarrow P(b));$
- 7. $\{\neg(P(a) \land Q(a))\} \vdash (\neg P(a) \lor \neg Q(a));$
- 8. $\{\neg(\neg P(a) \lor \neg Q(a))\} \vdash (P(a) \land Q(a));$
- 9. $\{\neg(\neg P(a) \land \neg Q(a))\} \vdash (P(a) \lor Q(a));$
- 10. $\{\forall x.(P(x) \land Q(x))\} \vdash \forall x.P(x);$
- 11. $\{\forall x.Q(x), P(a)\} \vdash P(a) \land Q(a);$
- 12. $\{\forall x.P(x), \forall x.Q(x)\}\} \vdash \forall x.(P(x) \land Q(x));$
- 13. $\{\exists x.\exists y.P(x,y)\} \vdash \exists y.\exists x.P(x,y);$
- 14. $\{\exists x. \forall y. P(x, y)\} \vdash \forall y. \exists x. P(x, y); Dar invers: \{\forall y. \exists x. P(x, y)\} \vdash \exists x. \forall y. P(x, y)?$
- 15. $\{\neg(\exists x.P(x))\} \vdash \forall x.\neg P(x);$
- 16. $\{\forall x. \neg P(x)\} \vdash \neg (\exists x. P(x));$