MATH H104: Homework Explorations

William Guss 26793499 wguss@berkeley.edu

November 28, 2015

2 Some Interesting Problems

Professor Pugh, as per your suggestion. Here are some of the difficult problems I've done (attempted).

Theorem 1. Let $S, R \subset \mathbb{R}$ be closed intervals and $\Sigma_l : C(R) \to C(S)$ be a linear operator such that

$$\xi \mapsto \int_R \xi(i) w(i,j) \ di$$

then for every $\epsilon > 0$ and every $\xi : R \to Q \subset S$, there exists a weight function w(i,j) such that the supremum norm over S

$$||K\xi - \Sigma_{l+1}\xi||_{\infty} < \epsilon \tag{1}$$

Proof. Let $\zeta_t: C(R) \to S$ be a linear form which evaluates its arguments at $t \in R$; that is, $\zeta_t(f) = f(t)$. Then because ζ_t is bounded on its domain, $\zeta_t \circ K = K^*\zeta_t$ is a bounded linear functional. Then from the Riesz Representation Theorem we have that there is a unique regular Borel measure μ_t on R such that

$$(K\xi)(t) = K^*\zeta_t(\xi) = \int_R \xi(s) d\mu_t(s),$$

$$\|\mu_t\| = \|K^*\zeta_t\|$$
(2)

Then if there exists a regular Borel measure μ such that μ_t is significantly smaller that μ for all t, then we have that, by the Radon-Nikodim derivative, $d\mu_t(s) = K_t(s)d\mu(s)$ under the assumption that K_t is L^1 integrable over R with the measure μ . Thus it follows that

$$K[\xi](t) = \int_{R} \xi(s) K_{t}(s) \ d\mu(s) = \int_{R} \xi(s) K(t,s) \ d\mu(s). \tag{3}$$

Therefore, for any bounded linear operator $K:C(X)\to C(X)$ there exists a unique K(t,s) such that $K[f]=\int_X f(s)K(t,s)d\mu(s)$. Now we show that the operation of Σ_l can approximate any such operator. Because K is of the form of Σ_l where the only difference is the weighting function, so the proof follows.