ASML: terzo laboratorio

Regressione polinomiale e locale

Leonardo Egidi

Ottobre 2022

Universita di Trieste

Laboratorio 3

L'obiettivo è costruire modelli di regressione polinomiale, shrinkage e locale per esaminare la correlazione tra il livello di antigene prostatico specifico e una serie di misure cliniche negli uomini che stavano per ricevere una prostatectomia radicale. Ecco una descrizione delle variabili che troverete nel file:

VARIABILE	DESCRIZIONE
lpsa	livello di antigene prostatico specifico
lcavol	log(volume cancerogeno)
lweight	log(peso prostatico)
age	età
lbph	log(quantità di iperplasia prostatica benigna)
svi	invasione delle vescicole seminali
lcp	log(penetrazione capsulare)
gleason	punteggio di Gleason
pgg45	percentuale Gleason con punteggio 4 o 5

Laboratorio 3 (cont.)

- Caricare i dati prostate.csv. Valutare la correlazione tra le variabili per saggiare possibili effetti non lineari.
- Stimare una regressione polinomiale con 1psa come variabile risposta. Si ottiene qualche miglioramento rispetto a un modello lineare? Suggerimento: usare la funzione anova.
- Produrre una stima del modello polinomiale con solo y = 1psa in funzione di x = 1cavol, e disegnare la curva stimata.
- Usare uno dei modelli selezionati e produrre un grafico forest plot per i coefficienti, usando la funzione coefplot del pacchetto arm.
- Stimare una regressione a gradini usando la funzione cut e interpretare. Potete specificare i cutpoints tramite l'opzione breaks.
- Stimare una regressione di tipo lasso, usare la funzione coefplot per visualizzare i coefficienti stimati e interpretare (non serve calcolare gli s.e.). Confrontare i risultati con le altre stime.
- Stimare una regressione locale con solo y = 1psa in funzione di x = 1cavol usando la funzione loess. Suggerimento: usare diversi valori per l'argomento span.