Building a Better Sentiment Detector using Yelp dataset

Goal

ANALYSIS

- To create a sentiment analysis tool based on Yelp Reviews
- Create a website that outputs sentiment based on journal entry that the user types

Background

- Yelp is a crowdsourced review website about local businesses. Each review contains a text and a star rating (1-5).
- Yelp reviews consist of natural language
- 1.8 GB file consisting of 2.2M reviews and stars

Sentiment can be built via analyzing Yelp review texts and their stars

Text Cleaning

Original:

I was **pleasantly surprised** by the **kalbi** and purple rice...it reminded me of my favorite Korean place when I lived in Hawaii. This place used to have wraps and sandwiches, but have since **changed menu** and **maybe ownership**. The **waitress** who **serves** me here is always **super nice** and makes me **feel welcome**. When I'm done here I **like** to **cap** it off with **Yogurt Park**...**super convenience**.

After Lemmetization and N-gram:

pleasantly_surprise kalbi purple rice
remind_me my_favorite korean place live
hawaii this_place use wrap sandwich
change menu maybe ownership waitress
serve super nice feel welcome like cap
yogurt_park super convenience

Modeling

1% model: Bigram over Trigram

Yelp trigram may contain trigrams that are too speific to Yelp (ex. burger was delicious)

1% model: CountVectorizer over TF-IDF

CV outperformed TF-IDF on all three models tested: Naive Bayes, NB Boosting, SVM, and Random Forest

1% model: Gridsearch

Performed Gridsearch to optimize parameters

100% model: Model Recreation

After text cleaning, recreated CountVectorizer, Naive-Bayes model using 100% of data

100% model: Joblib Pickle

Saved the model as a joblib pickle file for production

1% model: CountVectorizer Parameter Tuning

Tuned min_df and max_features

Result

Algorithm	Accuracy	F1
Naive Bayse on CV	0.66 (+/- 0.04)	0.66 (+/- 0.04)
Naive Bayse on TF-IDF	0.60 (+/- 0.00)	0.60 (+/- 0.00)
SVM on CV	0.68 (+/- 0.02)	0.68 (+/- 0.02)
RF on CV	0.66 (+/- 0.01)	0.66 (+/- 0.02)
NB Boosting on CV	0.61 (+/- 0.11)	0.61 (+/- 0.11)
NB Boosting on TF-IDF	0.60 (+/- 0.00)	0.60 (+/- 0.00)
NBCV min_df=.1	0.63 (+/- 0.01)	0.63 (+/- 0.01)
NBCV max_features=10000	0.63 (+/- 0.05)	0.63 (+/- 0.05)

NB: Good result with much, much faster computation

Gridsearch best parameters:
NB: {'alpha': 1, 'fit_prior': True}
SVM: {'C': 0.1, 'class_weight': None}

RF: {'min_samples_split': 2, 'n_estimators': 100, 'bootstrap': False, 'criterion': 'gini', 'max_depth': None}

Model Fit

Accuracy: 0.76 (+/- 0.04)

F1: 0.76 (+/- 0.04)

pred	ision	recall f1-score		support	
1	0.70	0.68	0.69	112635	
2	0.37	0.48	0.42	70529	
3	0.90	0.86	0.88	373140	
avg / total	0.70	0.77	0.79	8 5563N	

baseline

3 0.670748

2 0.126781

1 0.202471

Yelp vs TextBlob Sentiment

Correlation

Webapp

Ryan Chae	Home	Yelp Metrics	Word Cloud			
Wr	ite you	r journal e	entry here!			

Conclusion

Correlation

The correlation between Yelp sentiment analysis and Textblob sentiment analysis was 0.55

Model

On 1% data, Naive-Bayes on CountVectorizer had F1-score of 0.66. While slightly lower than F1-scores for SVM or Random Forest, it performed much faster

1% vs 100% Data

100% Data had F1-score of 076 compared to 0.66 in 1% data. This may be due to extra words in CountVectorizer (26,659 vs .

To Do

Track journal results to see whether Yelp sentiment analyzer is a good indicator of sentiment