http://educandoweb.com.br

Prof. Dr. Nelio Alves

Prova Prática de Lógica de Programação

Objetivo desta prova:

Esta prova serve como um instrumento para que o aluno avalie se convém ou não fazer um curso de Lógica de Programação antes de fazer um de nossos cursos de Programação Orientada a Objetos.

Conteúdo da prova:

- Estrutura sequencial (variáveis, entrada, processamento, saída)
- Estrutura condicional (if-else)
- Estruturas repetitivas (while, for)

Instruções:

- Tente fazer os exercícios desta prova na linguagem em que você já aprendeu Lógica de Programação (C, VisualG, etc.).
- Se você conseguir resolver os exercícios sem maiores problemas, então você não precisa fazer um curso de Lógica de Programação primeiro; caso contrário, recomendamos fazer.
- Sugerimos fazer um dos cursos:

Java primeiros passos: Lógica de Programação e Algoritmos

C# primeiros passos: Lógica de Programação e Algoritmos

PARTE 1: ESTRUTURA SEQUENCIAL

Exercício 1.1:

Fazer um programa para ler o código de uma peça 1, o número de peças 1, o valor unitário de cada peça 1, o código de uma peça 2, o número de peças 2 e o valor unitário de cada peça 2. Calcule e mostre o valor a ser pago.

Exemplos:

Entrada:	Saída:
12 1 5.30	VALOR A PAGAR: R\$ 15.50
16 2 5.10	

Entrada:	Saída:
13 2 15.30	VALOR A PAGAR: R\$ 51.40
161 4 5.20	

Entrada:	Saída:
1 1 15.10	VALOR A PAGAR: R\$ 30.20
2 1 15.10	

Exercício 1.2:

Faça um programa para ler o valor do raio de um círculo, e depois mostrar o valor da área deste círculo com quatro casas decimais conforme exemplos.

Fórmula: $area = \pi . raio^2$

Considere o valor de π = 3.14159

Exemplos:

Entrada:	Saída:
2.00	A=12.5664

Entrada:	Saída:
100.64	A=31819.3103

150.00 A=70685.	.7750

PARTE 2: ESTRUTURA CONDICIONAL

Exercício 2.1:

Com base na tabela de preços ao lado, faça um programa que leia o código de um item e a quantidade deste item. A seguir, calcule e mostre o valor da conta a pagar.

CODIGO	ESPECIFICAÇÃO	PREÇO
1	Cachorro Quente	R\$ 4.00
2	X-Salada	R\$ 4.50
3	X-Bacon	R\$ 5.00
4	Torrada simples	R\$ 2.00
5	Refrigerante	R\$ 1.50

Exemplos:

Entrada:	Saída:
3 2	Total: R\$ 10.00

Entrada:	Saída:
2 3	Total: R\$ 13.50

Exercício 2.2:

Ler os valores dos três coeficientes "a", "b" e "c" de uma equação do segundo grau $(ax^2 + bx + c = 0)$ Em seguida, mostrar os valores das raízes da equação, conforme exemplos, usando a fórmula de Baskara (veja abaixo). Se a equação não possuir raízes (o valor de "a" não pode ser zero, e o valor de "delta" não pode ser negativo), mostrar uma mensagem "Impossivel calcular".

Fórmula: $\chi = \frac{-b \pm \sqrt{\Delta}}{2a}$ onde: $\Delta = b^2 + 4ac$

Exemplos:

Entrada:	Saída:
10.0 20.1 5.1	X1 = -0.29788
	X2 = -1.71212

Entrada:	Saída:
0.0 20.0 5.0	Impossivel calcular

Entrada:	Saída:
10.3 203.0 5.0	X1 = -0.02466
	X2 = -19.68408

Entrada:	Saída:
10.0 3.0 5.0	Impossivel calcular

PARTE 3: ESTRUTURAS REPETITIVAS

Exercício 3.1:

Escreva um programa que repita a leitura de uma senha até que ela seja válida. Para cada leitura de senha incorreta informada, escrever a mensagem "Senha Invalida". Quando a senha for informada corretamente deve ser impressa a mensagem "Acesso Permitido" e o algoritmo encerrado. Considere que a senha correta é o valor 2002.

Exemplos:

Entrada:	Saída:
2200	Senha Invalida
1020	Senha Invalida
2022	Senha Invalida
2002	Acesso Permitido

Entrada:	Saída:
2020	Senha Invalida
1031	Senha Invalida
2002	Acesso Permitido

Exercício 3.2:

Leia um valor inteiro N. Este valor será a quantidade de valores inteiros X que serão lidos em seguida. Mostre quantos destes valores X estão dentro do intervalo [10,20] e quantos estão fora do intervalo, mostrando essas informações conforme exemplo (use a palavra "in" para dentro do intervalo, e "out" para fora do intervalo).

Exemplos:

Entrada:	Saída:
5	2 in
14	3 out
123	
10	
-25	
32	

Entrada:	Saída:
4	1 in
86	3 out
86 35	
20	
7	