LAST CHANCES - FINDING LOVE IN A HOPELESS PLACE

SABIN HART, RYAN REBNE, ELLIE BOYD, ALEX CRAIG, DAVY APPLETON, GARY JIANG. LOGOUT.

Your picks are kept private until you match. Matches are done by a computer program - no one else will see your crushes or matches. Concerns? Questions? **QSS 30.04 Evolutionary Game Theory**

Professor Feng Fu, TA Caroline Hammond

This year, Last Chances will end on May 25th.

Next year, Last Chances will be hosted on this URL: https://lastchances24s.herokuapp.com/

HOW TO USE:

- 1. Enter names (not email addresses) as they appear on blitz, confirm you're not a robot, and press submit!
- 2. Suggestions for full names will appear underneath each box.
- 3. If no suggestion is found, remember to click the reCaptcha box and to use legal names as they appear on blitz.
- 4. For each crush, click their full name, click the reCaptcha box again, then the **submit** button once more!

Crush entries cannot be deleted. Choose carefully!

You've crushed on 69 people. Show

Contemporary Context

- 2020: 44% of millennials ages (23 to 38) were unmarried
 - 81% of members of the silent generation

In the past 20 years, average age at first marriage has increased by nearly 4 years

- 1st marriage: **37%** divorce rate (2019); 2nd marriage: 60-67%.

Methods: Theory

- Motivation (optimal stopping problem)
 - Life as chance encounters
- Agent-based simulation
 - Agent-pairing rounds
 - Thresholds for attraction \rightarrow Match
- Iterative process
 - Cycling through different thresholds
- Output
 - Proportion of coupled agents

Model and Simulation

Pair population \rightarrow if both pass threshold, married

 \rightarrow otherwise back to single pool

Repeat until all members are married or exceed number of rounds

Types of attraction thresholds (and reason for dismissal):

- Uniform (equal chance 0-1)
- Normal (Bell curve centered at 0)
- Exponential (accelerating and decreasing)

Simulation Aggregation

Run simulation 100 times at all threshold values 0.01-1.

Plot the proportion married at the end

 \rightarrow decreasing function as threshold \uparrow

The decrease seems to be exponential

Total Error

$$TE = w_t(1-t) + w_m(1-m)$$

Results & Interpretation

100 People, 100 Rounds

- Optimal threshold converges to 0.75 (marry 25% of eligible population)
- Population size effect

Limitations !

- Rounds
 - Continuous not discrete
- No control over external factors
- Attraction's many layers
- Quantifying attraction
- Polygamy

Next Steps & Conclusion

Areas for improvement/increased realism:

- Decrease threshold error weight each round
- Increase marriage error weight each round
- Realistic temporal element
- Dating periods before marriage and potential breakups
- Stochastic matching processes
- Thresholds adjusted for rejection by round

