Family Name:	Given Names:
	Student No:

FINAL EXAM DECEMBER 2001

Department of Civil Engineering
Faculty of Applied Science and Engineering
University of Toronto

CIV 575F BUILDING SCIENCE

Examiner: K.D. Pressnail

Notes: (i) Non-programmable calculators ONLY.

(ii) Type "B" Examination. Only the aids distributed with this exam may be used.

(iii) Make and state any reasonable assumptions.

a) Calculate the quantity of heat (kWh) that would be transmitted through 1 square metre of the wall section shown during the month of January. Assume that the average indoor and outdoor conditions in January are 23°C, 35% RH, and -6°C, 80% RH respectively. Ignore the effects of the internal steel studs (not shown).

b) For the wall section shown in part a), calculate the temperature at the interface between the peel-andstick membrane and the concrete block wall. The inside and outside conditions are 23°C, 35%RH and -25°C, 90% RH, respectively.

4

4

1. c) For the conditions given in part b), and assuming that condensation does not occur, calculate the vapour pressure at the interface between the peel-and-stick membrane and the concrete block wall.

d) Based on your calculations in parts b) and c) show whether condensation will occur at the interface between concrete block wall and the peel-and-stick membrane.

e) Assume that condensation DOES occur at the interface between the concrete block wall and the peel- and-stick membrane. How can this wall section be improved in order to reduce the likelihood of condensation occurring at this membrane?

- 2. An electrically-heated guarded hot-box measures 0.75 m by 0.75 m by 1.50 m as shown. It is used to estimate the thermal resistance of a building assembly by measuring the amount of heat that is required to keep the box at a uniform, constant temperature. The "hot-box" consists of 5 sides labelled 1, 2, 3, 4, 5 and each side of the 5 sided box has a total thermal resistance (including films) of 2.0 m²K/W. The open side is placed tightly against the inside surface of a wall element and the wall is tested for a 24 hour period. During the period of the test, the air temperature inside the hot-box is maintained at 25 °C by means of an electric heater. While the test is carried out, the inside room air temperature and outside air temperature are 21 °C and -10 °C respectively and the wall surface temperature inside the hot-box is 23.6 °C. The total electricity used during the test is found to be 0.400 kWh.
 - (a) What is your estimate of the total resistance of the wall element as determined by the guarded hot-box test?

16

(b) What is your estimate of the resistance of the inside surface film?

M	A	Ð	ĸ	4
171	/ B	11		

2

2

2

2

2

- 3. Assume a standard atmosphere for all parts of Question 3.
 - (a) If the air temperature is 25 °C and the latent heat content of the air is 20 kJ/kg dry air, what is the relative humidity?

(b) Air that is initially at 27°C, 70% R.H., is cooled by means of a dehumidifier to 5°C and reheated to 22°C. Excluding the electrical energy required to run the dehumidifier, how much heat is given off by the dehumidifier if the temperature of the dehumidifier remains constant?

(c) Air in an adobe house in Arizona is cooled to 27°C, 70% R.H. by means of evaporative cooling. If the air initially had a R.H. of 30%, what was the original air temperature?

(d) What is the density of the air at 27°C, 70% R.H.?

(e) What is the humidity ratio (kg of water/kg dry air) of air at -20°C, 70% R.H.?

MA	R	KS
		4

4. CHOICE: Answer FIVE of the following SEVEN questions.

5@4

(a) Briefly discuss two reasons why "waterproof" strategies for cast-in-place basements won't work

(b) Briefly explain how the mechanism of "capillary heat transfer" may lead to increased heat losses through wet, permeable thermal insulation.

(c) Briefly state and explain the factors that you would consider when choosing a glass for a new, single-glazed greenhouse.

(d) Briefly explain why maintaining 23°C, 50% R.H. in an adobe house museum such as the Helliwell House, may lead to damage of the heritage building.

14	\mathbf{r}	1/	c

4. CHOICE: CONTINUED

5@4

(e) Briefly explain 2 ways in which the likelihood of sun-driven moisture problems can be greatly reduced.

(f) In July, briefly explain why the solar heat gain factor for a building in Bracebridge, Ontario (45°N) is greater for an east facing window at 9:00 A.M. than for the same window facing south at 12:00 P.M.

(g) "Flat roof designs using built up layers of tar and roofing felts have a vapour retarding membrane on the "cold side". Explain this statement and the possible consequences.

1.4	A	T)	Ľ	4
17.1	А	к	ĸ	×

5

5

5

5

5. (a) Estimate the wind velocity (m/s) 2.4 m above the ground when the hourly airport data shows that the winds are from the north at 28 km/h measured 10 m above the ground. The house where the wind speed is required is located in suburban Mississauga and the outside air temperature and relative humidity are -10°C and 90% respectively.

(b) Using the velocity determined in part a) as the <u>average</u> wind velocity, calculate the net resulting force due to wind on a 4.8 m x 10 m north facing wall. The average wind pressure co-efficient for the north facing wall is +0.4.

(c) Assume that there is no mechanical ventilation and the effects of stack action are negligible. Given the conditions in part a), estimate the air flow rate through a 1 cm x 10 cm opening that is located 2.4 m above the ground. The opening is located on a south facing wall and the wind pressure coefficient is -0.85. The indoor air temperature and relative humidity are 23 °C, 30% respectively. State the direction of air movement.

(d) Briefly describe why condensation often appears on the inside of the outer second-storey storm windows, while the outer storm windows on the first floor remain clear.

- 6. The crawl-space beneath the Summer Kitchen of "This Old Farmhouse" measures 4 m x 5 m in plan and contains saturated soil covered with 100 mm of 20 mmφ crushed stone. The effective permeance of the stone layer is 4000 ng/Pa·s·m². The soil and crushed stone layer are at a temperature of 16°C. The air temperature in the 1.2 m crawl-space is 8°C. Assume that the air temperature inside the crawl-space remains constant. The outside air temperature and relative humidity are 0°C and 100% respectively.
 - (a) How much outside ventilation air (Us) must be brought into the crawl-space if the relative humidity of the air space is to be maintained at 70%.

7

(b) How can the need for ventilation be greatly reduced?

3

$$T = 273 + 15 - 0.0065 h.$$
 (K)

 $\rho_* = \rho_* + \rho_*$

 $p = 1.225 (1 - 22.6 \times 10^{-6} h)^{4.256}$. (kg/m³)

$$p = 101\,300\,(1 + 22.6 \times 10^{-6}\,h)^{3.756}$$
 (Pa)

$$p_* = \frac{p_* W}{0.622 + W}$$

R. = 461.5 J/(kg + K) (for water vapour)

$$rh = \frac{p_{\pi}}{p_{\pi}} \times 100$$

 $R_* = 287.1 \text{ J/(kg + K)}$ (for air)

 $pV = wR_{\bullet}T$

Emittances and Absorptances for Some Surfaces (From ASHRAE Handbook 1981 Fundamentals, Table 3, p. 2.8) [4.1]

Out to	Fraction of radiati	Absorptivity fo	
Surface	10 to 30.C	540°C	
1. Small hole in an enclosure	0.97-0.99	0.97-0.99	0.97-0.99
2. Black, nonmetable surfaces	0.90-0.98	0.90-0.9\$	0.85-0.98
3. Red brick and tile, stone and concrete, rusted iron and dark paints	0.85-0.95	0.75-0.90	0.63-0.50
4. Yellow and buff building materials	0.85-0.95	0.70-0.85	0.50-0.70
5. White or light cream surfaces	0.\$5-0.95	0.60-0.75	0.30-0.50
6. Class	0.90-0.93	-	iranspareni (\$% reflected
7. Bright aluminum paint	0.40-0.60	-	0.30-0.50
Dull brass, copper, aluminum, polished fron	0.20-0.30	0.30-0.50	0.40-0.65
9. Polished brass, copper	0.02-0.05	0.03-0.13	0.30-0.50
Highly polished (in, aluminum, nickel, chrome	0.02-0.04	0.03-0 10	0.10-0.40

$$W = \epsilon W_b = \epsilon \sigma T^*$$
 $F_E = \frac{1}{1/\epsilon_1 + 1/\epsilon_2 - 1}$

 $q_1 = W_1 A_1 = \sigma A_1 T_1^4.$

$$h = \frac{2\gamma}{g\rho r}$$

$$W = \overline{\mu} A \theta \frac{(p_1 - p_2)}{\epsilon}$$

$$M_c = \frac{1}{R_c} = \frac{1}{R_1 + R_2}.$$
 $M = \frac{1}{R_1 + R_2}$

$$W = MA\theta (p_1 - p_2)$$

	Permeance ng/(Pa + s + m²)			
Material	dry cup	wet cup	other	
Brick masonry, 10 cm	_		46	
Concrete block, 20 cm, cored,				
limestone aggregate	-		138	
Tile masonry, glazed, 10 cm			7	
Aspesios cement board, 5 mm	31	-	_	
Plaster on wood lath	_	630	_	
Plaster on plain gypsum lath on studs	_	_	1150	
Gypsum wallhoard, 9.5 mm, plain	_	_	2870	
Hardboard, 3 nim, tempered	_	_	290	
Plywood, douglas fir, exterior glue, 6.5 m	m —	_	40	
Enamels, 2 coats on smooth plaster	_		29-86	
Primers, sealers, 2 coats on				
insulation board	_		52-12	
Various primers, 2 coats + 1 coat				
flat oil paint on plaster			92-17	
Flat paint, 2 coats on insulation board	_	_	230	
Water emulsion, 2 coats on			1720 to	
insulation board	** /	***	4900	
Exterior paint, 3 coats white lead and				
oit on wood siding	17-57	_,	_	
Styrene butadiene lates				
coating 0.62 kg/m ²	630	_		
Polysmyl agetate lates				
contine (2) ke os	150			

TABLE 5.1 Water-Vapour Pressures at Saturation at Various Temperatures over Plane Surfaces of Pure Water and Pure Ice

	Pressu	ire, Pa		Pressu	re, Pa				
Temp.,	Over	Over	Temp.,	Over	Over	Temp.			Press.,
°C	ice	water	°C	ice	water	•C	kPa	•C	kPa
- 50	3.935	6.409	- 22	85.02	105.4	5	0.8719	33	5.031
~ 49	4.449	7.124	- 21	93.70	115.0	6	0.9347	34	5.320
- 48	5.026	7.975	- 20	103.2	125.4	7	1.001	35	5.624
- 47	5.671	8.918	-19	113.5	136.6	8	1.072	36	5.942
- 46	6.393	9.961	-18	124.8	148.8	9	1.147	37	6.276
-45	7.198	11.11	- 17	137.1	16F.9	10	1.227	38	6.626
44	8.097	12.39	-16	150.6	176.0	11	1.312	39	6.993
- 43	9.098	13.79	- 15	165.2	191.2	12	1.402	40	7.378
- 42	10.21	15.34	- 14	181.1	207.6	13	1.497	41	7.780
-41	11.45	17.04	- 13	198.4	225.2	14	1.598	42	8.202
- 40	12.83	18.91	-12	217.2	244.1	15	1.704	43	8.642
- 39	14.36	20.97	Ì - II	237.6	264.4	16	1.817	1 44	9,103
- 38	16.06	23.23	-10	259.7	286.3	17	1.937	45	9,586
- 37	17.94	25.71	-9	283.7	309.7	18	2.063	46	10.09
- 36	20.02	28.42	-6	309.7	334.8	19	2.196	47	10.62
~ 35	22.33	31.39	-7	337.9	361.8	20	2.337	48	11.17
- 34	24.88	34.63	-6	368.5	390.6	21	2.486	49	11.74
- 33	27.69	38.18	-5	401.5	421.5	22	2.643	50	12.33
32	30.79	42.05	-4	437.2	454.5	23	2.809	51	12.96
31	34.21	46.28	-3	475.7	489.8	24	2.983	52	13.61
- 30	37.98	50.88	-2	517.3	527.5	25	3.167	53	14.29
- 29	42.13	55.89	1 . 1	562.3	\$67.8	26	3.361	54	15.00
- 28	46.69	61.39	0	610.8	610.8	27	3.565	55	15.74
				Triple	point	7		1	
- 27	\$1.70	67.27	+ 0.01	of w	ater	28	3.780	56	16.51
- 26	57.20	73.71	1		656.6	29	4.006	57	17.31
- 25	63.23	60.70	2	_	705.5	30	4.243	58	19.15
- 24	69.85	88.27	3	_	757.5	31	4.493	59	19.02
- 23	77.09	96.49	4	_	812.9	32	4.755	60	19.92

	Permeability ng/(Pa + s + m)			
Material (For unit thickness of 1 metre)	dry cup	wel cup	Other	
Concrete 1:2-4 min		4.7		
Wood, sugar pine			0.58	
Mineral wool, unprotected		170	1011.5	
Expanded polystyrene—bead	3-8.5	**		

	Perm	Permeance ng/(Pa + s + m²)			
Material	dry cup 50-0%	wel cup 100-50%	inverted wet cup		
Foamed polyurethane insulation 25 mm					
28 kg/m ³	75	75			
31 kg/m³	63	63	_		
Foanied polystyrene insulation 25 mm					
Extruded 29 kg/m ³	92	92			
Extraded 35 kg/m ¹	44	42	_		
Polyethylene film					
0.05 mm ?	9	8	_		
0.10 mm	5	4	-		
0.15 mm	3	2	_		
Nyion film 0.025 mm	39	40	_		
Vinyl film 0.05 mm	19	19	_		
Cellulose acetate film 0.25 mm	270	640	_		
Waxed building paper					
medium weight	5	9	_		
heavy weight	6	51	_		
Asphalt-saturated sheathing paper					
0.75 kg/m² (15 lb)	270	480	725		
1.25 kg/m ² (25 lb)	190	370			
heavy weight	47	360	500		
Asphali-saturated roofing feli 0.35 kg/m*	110	680	910		
Tar-infused slicarting paper	375	1770	4050		
Asphalt-infused sheathing paper	365	1080	2400		
Asphalt-coated building paper	47	63	115		
Perforated asphalt-coated sheathing paper	630	800	860		
Structural clay tile 6 min		n/N0	_		
Vitreous ceramic tile 9 min	0.6	2.3			
Fibreboard, untreated 12.5 mm	2470	2520	_		
Fibreboard, shearling grade 12.5 mm	1770	1780	-		
Asbesios cemeni board	281	480	_		

All values from 15 th Converted to S1 unit to ng/(fra x x x m²) = 1 × 10 ° ky S = 0.0075 grains do fo to ion Hg)

TABLE 8.1

Thermal Conductivities and Conductances of
Building and Insulating Materials

(From ASHRAE Handbook 1981 Fundamentals, Table 3A, p. 23-14-23-17) [8-1]

Marenal	kg/m' 	W/(in + K)	- C - W7(m2 + K
Building hourd			
	11120	0.58	_
Asbesios cement board	1920	0.76	16.6
Gypsum or plaster board, 9.5 mm	800		12.5
Gypsum or plaster board, 12.5 mm	800		12)
Plywood	545	0.115	~
Insulating board, regular	290	0.055	_
Hardboard, medium density	800	0.105	_
Particle board, low density	590	0.078	_
Particle board, medium density	800	0.136	_
Particle board, high density	1000	0.170	_
Building paper			
Building paper	-	-	95
Vapour barrier, plastic film	_	•	negligible
Insulating blankets and batts			
Mineral fibre 50-68 mm	5-32		0.81
(rock, slag, or glass) 75-88 mm	5-32		0.52
89-162 mm	5-32		0.30
Insulating boards and slabs			
Cellular glass	136	0.555	_
Glass fibre, organic bonded	65-145	0.036	
Expanded polystyrene			
extruded, cut cell surface	29	0.036	
extruded, smooth skin surface	35	0.029	
extruded, smooth skin surface	56	0.027	
Molded beads	16	0.040	
	••	0.017	
Expanded polyurethane	24	0.023	_
R-II expanded		0.042	
Mineral fibre, resin binder Wood fibreboard, interior finish	240 240	0.050	-
Insulating materials loose fill			
•	37-50	0.039-0.046	
Cellulose Insulation (milled paper)		0.065	
Sawdust or shavings	128-240	0.002	=-
Mineral fibre (rock, slag, or glass)			0.52
approximately 95-127 mm	10-32	_	0.30
approximately 165-222 mm	10-32	-	
approximately 190-254 mm	10-32	_	0.26
approximately 260-350 mm	10-32		0.19
Vermiculite, expanded	110-130	0.068	
Roof insulation	65-95	0.064	
Various types supplied in thicknesses			
to provide the rated conductance			
Masonry materials			
Cement mortar	1860	0 72	
Lightweight concretes	1920	0.75	
(Various aggregates)	1600	0.52	
	1280	0 36	
	960	0.25	-
	640	0 17	-
$C = k/t - (W/(m^2 + K))$			
C = 8/1 (, 17/		1 . R . R; +	•

$$|R| = \frac{1}{C} = \frac{f}{k}. \qquad (m^2 + K/W)$$

ion through one square metre of a

$$\frac{q}{A} = U(r_i - r_o) \quad (W/m^2) \quad Q = \frac{A}{R} \quad (b.b.)$$

	- · · · · - <u></u>	
f;	Å	C
kg/m)	W/(m + K)	W/(m² + K)
480	0.13	
		_
		_
		_
1800	0 /2	_
1920	0.72	-
2080	1.32	
_	-	5.0
_	_	3.0
_	_	2.3
-		5.0
_	_	2.9
_	_	5.6
_	_	2.9
_	_	2.6
_	-	1.1
1860	0.72	_
	*· -	_
		_
720	0.25	-
_	_	12.5
_	-	17
	_	6.0
_	_	25
_	_	6.7
-	_	7.0
_	_	5.4
~	_	10 0
		
_		9.0
-	-	50
720	0.16	
310	0.12	
2 740	220	••-
		_
		_
		_
		_
7 830	45	_
	-*	
2470	1.0	
1.2	0.025	_
1000	0.60	
	1920 2259 2259 2259 1860 1920 2080 	1860 0.72

Metric conversions for heat transfer

 $\begin{array}{lll} \mbox{U or C} & \mbox{$Biu/(ft^2+ht+^*F) \times 5.678 = W/(m^2+K)$} \\ \mbox{$k$ in } & \mbox{$Biu/(ft+ht+^*F) \times 1.730 = W/(m+K)$} \\ \mbox{$k$ in } & \mbox{$Biu+in/(ft^2+ht+^*F) \times 0.1442 = W/(m+K)$} \\ \mbox{$Heai flow} & \mbox{$fiuc(ft^2+ht) \times 0.155 = W/m^2$} \\ \mbox{$Spexific weight $1b/ft^2 \times 16.02 = k_K/m^2$ (mass denote)$} \end{array}$

 $Q = CA \left[\frac{2}{2} \left(\rho - \rho \right) \right] \%;$

TABLE 8.3

Effective Emissivities of Air Spaces
(From ASHRAE Handbook 1981 Fundamentals, Table 2, Section B. p. 23.13) [8.1]

			F, effective		
Surface	Reflectivity,	e average	e ₁ = 0.90 e ₂ = e	€1 = €2 = 1	
Aluminum foil, bright	92-97	0.05	0.05	0.03	
Aluminum sheet	80-95	0.12	0.12	0.06	
Polished aluminum paper	75-84	0.20	0.20	0.11	
Steel, galvanized.					
bright	70-80	0.25	0.24	0.15	
Aluminum paint	30-70	0.50	0.47	0.35	
Building materials	5-15	0.90	0.82	C.82	

TABLE 8.4

Thermal Conductances of Plane Air Spaces, W/(m³ • K)
(From ASHRAE Handbook 1981 Fundamentals, Table 2, p. 23.12, 23.13) [8.1]

		Air space		Thickness				
	Direction	Mean	Temp.	19 mm		92 mm		
Position	of flow	temp., *C	diff., K	E = 0.03	E = 0.82	E = 0.03	E = 0.82	
Horizontal	Մը	30	5	2.4	7.5	1.9	7.0	
		10	20	3.3	7.0	2.7	6.6	
		- 20	10	3.1	6.1	2.5	5.6	
45*	Up	30	5	1.9	7.0	1.8	6.9	
•	- •	10	20	2.8	6.8	2.4	6.5	
		- 20	10	2.6	5.6	2.3	5.3	
Vertical	Horizontal	30	5	1.6	6.8	1.5	6.6	
		10	20	1.9	5.9	2.0	6.1	
		- 20	10	1.8	4.8	1.9	4.9	
45*	Down	30	5	1.6	6.8	1.2	6.3	
		10	20	1.6	5.6	1.6	5.6	
		- 20	10	1.5	4.5	1.5	4.4	
Horizontal	Down	30	_	1.6	6.8	0.56	5.7	
		10	_	1.5	5.6	0.51	4.6	
		- 20	_	1.3	4.3	0.45	3.5	

Solar Heat-Gala Factors, W/m², for 45°N Latitude (From Stephenson, D.G., Tables of solar altitude, azimuth intensity and heat gain factors, NRCC 9528, 1967) [9.3]

January 21	North	East	South	West	Horizontal
08:00	8	199	137	8	17
09:00	29	422	454	29	111
10:00	42	358	646	42	222
11:00	50	177	756	50	299
12:00	53	57	792	57	326
13:00	50	50	756	177	299
14:00	42	42	646	358	222
15:00	29	29	454	422	111
16:00	8	8	137	199	17
Daily totals, W + h/m ²	312	1346	4798	1346	1628
July 21	North	East	South	West	Horizonta
05:00	32	71	5	5	9
06:00	117	472	38	38	119
07:00	83	651	68	63	286
08:00	87	679	107,	82	454
09:00	97	606	209	97	595
10:00	107	457	318	107	704
11:00	114	252	394	114	772
12:00	116	126	420	126	795
13:00	114	114	394	252	772
14:00	107	107	318	457	704
15:00	97	97	209	606	595
16:00	87	82	107	679	454
17:00	83	63	68	651	286
18:00	117	38	38	472	119
19.00	32	5	5	71	9
Daily totals, W + h/m2	1360	3785	2700	3785	6664

 $q_i = SC \times SHGF + U(t_v - t_i).$

Transmittance and U-Values for Some Glazing Units (From Stephenson, D.G., Canadian Building Digest 101, Table 1, DBR/NRCC, 1968) [9.6]

		nillance t shades	U-values W/(m² + K)		
Type of Window	Light	Solar heat	No shade	Curtain or blind	
Single glazing					
Clear sheet glass	0.90	0.80	5.7	4.5	
Regular plate glass	0.87	0.77	5.7	4.5	
Heat-absorbing plate	0.50	0.45	5.7	4.5	
Double glozing					
Regular plate					
Air space	0.77	0.60	3.4	2.8	
Regular plate					
Heat-absorbing plate					
Air space	0.45	0.35	3.4	2.8	
Regular plate					
Regular plate-reflective					
Air space	0.35	0.16	1.7	_	
Regular place	-				

Note: Clear sheet 1/4 in. (3 mm) thick. Plate glass 1/4 in. (6 mm) thick. Air space 1/2 in. (12.5 mm) thick.

Shading Coefficients for Some Glazing Units (From Stephenson, D.G., Canadian Building Digest 101, Table 1, DBR/NRCC, 1968) [9.6]

	Shading coefficient						
	No	With	With				
Type of Window	shade	Min.	Max.	blind			
Single glazing							
Clear sheet glass	1.00	0.45	0.65	0.55			
Regular plate glass	0.95	0.45	0.65	0.55			
Heat-absorbing plate	0.70	0.40	0.50	0.47			
Double glazing							
Regular plate							
Air space	0.83	0.40	0.60	0.50			
Regular plate							
Heat-absorbing plate							
Air space	0.55	0.33	0.43	0.36			
Regular plate							
Regular plate-reflective							
Air space	0.25	_	_	_			
Regular plate							

TABLE 8.2

Surface Conductances for Air - W/(m³ + K)

(From ASHRAE Handbook 1981 Fundomenials, Table 1, p. 23.12) [8.1]

							
Position of surface	Direction of flow	Surface emissivity					
		0.90	e = 0.20	c = 0.05			
Still air	· —						
Horizonial	upwa:d	9.3	5.2	4.3			
Sloping 45*	upward	9.1	5 0	4.t			
Vertical	horizonial	8.3	4.2	3.4			
Sloping 45°	downward	7.5	3.4	2.6			
Horizontal	downward	6.1	2.1	1.25			
Moving air							
(any position)							
24 km/h, for winter	any	34	_	_			
12 km/h, for summer	any	2.3		_			

$$t_e = t_o + \alpha I/h_o - \epsilon \Delta R/h_o$$

TABLE 9,7

Sol-Air Temperature Minus Air Temperature for 45°N Latitude
(or January 2) and July 23, degrees Celsius

Ort Junuary 21 and July 21, degrees Celsius									
January 21	Ν	NE	E	SE	5	SW	w	NW	Horizontal
06 00	0	2	12	15	8	0	0	0	- 1
09:00	2	2	26	38	28	2	2	2	- /
10.00	1)	22	44	39	10)	ĭ	ó
11:00	3)	11	41	46	23	,	í	14
12:00)	3	3	34	48	34	,	í	16
13:00	,)	3	23	46	41	- 11	•	14
14.00	,	3	j	10	39	44	22	, i	,-
15:00	2	2	2	2	28	38	26	5	í
16:00	0	?	0	0	8	15	12	2	- 3
July 21	N	NE	E	SE.	s	5W	w	NW	Horizonia:
03.00	2	4	4	2	0	0	0	0	- 1
05:00	7	26	20	15	2	2	2	2	-;
07:00	5	30	40	26	i	ì	ä	•	13
06:00	5	27	41	32	6	5	3	š	24
09.00	6	18	37	35	13	6	6	6	52
10:00	6	9	24	ñ	19	7	ž		39
11:00	7	7	15	27	24	ė	7	Š	43
12:00	7	7		18	26	ıí	ż	ź	44
13:00	7	7	7	9	24	27	15	ź	
14:00	6	6	6	ź	19	33	21	á	
E5:00	6	6	6	6	19	35	37	18	:
16:00	,	3	5	5	6	32	41	27	,
17:00	3	á	á	á	•	26	40	30	:
18:00	7	2	2	2	ž	13	29	26	3
19:00	2	ō	ō	ō	ò	2	-7		6

Note. These values are for dark-coloured walls for which $\pi/h_{\phi}=0.053$. For light-coloured surfaces, divide values by 2.

$$\frac{V_t}{V_t} = \left[\frac{Z}{Z_t}\right]^{\alpha}.$$

$$\frac{G_t}{G_t} = \left[\frac{Z}{Z_t}\right]^{\theta}$$

$$G_s = 1.35 V_s$$

TANKE 10.1

Values of Gradiens Height and Power Law Exponents for Wind Profiles (From Aynaley, R.M., Melbourne, W., and Vickery, B.J., Architectural aerodynamics, London: Applied Science Publishers Ltd., 1972, Table 3.1, p. 89) (10.1)

Terrain casegory and description	Gradieni height Z _i m	Mean speed exponent or	Gust- speed caponent p
I. Open sea, lee, tundra, desert	250	0.11	0.07
2. Open country with low			
scrub or scattered trees	300	0.15	0.09
3. Suburban areas, small			
rowns, well-wooded areas	400	0.25	0.14
4. Numerous tall buildings,			
city centres, well-developed			
industrial areas	500	0.36	0.20

$$C_p = \frac{p}{(1/2) \rho V^2}$$

$$Q = CA \left[(2/\rho)(\Delta p) \right]^{1/2}$$

where $Q = \text{flow rate in } \text{m}^3/\text{s}$. C_1 , the orifice coefficient, is commonly taken as 0.60.

$$p_{i} = g \frac{hp_{i}}{R_{i}} \left(\frac{1}{T_{o}} - \frac{1}{T_{i}} \right)$$

$$= 0.0342 \ hp_{i} \left(\frac{1}{T_{o}} - \frac{1}{T_{i}} \right). \quad (Pa)$$

$$\Delta p = \gamma p_s = 0.0342 \ \gamma p_s h \frac{\Delta T}{T T}$$

$$H_s = Q \rho c_\rho (t_r - t_o) \tag{W}$$

where H_s = heat required, W

Q = rate of air flow, L/s

 $\rho = \text{mass density of air, } \text{kg/m}^3$

 c_p = specific heat of air, kJ/kg • K

 I_o , I_c are outdoor and indoor temperatures, °C For $\rho = 1.20 \text{ kg/m}^3$ and c_p for air = 1.005 kJ/kg

$$H_s = 1.21 Q (t_1 - t_0)$$
 (W)

$$H_{t} = Q \rho (W_{t} - W_{o}) h_{te}$$

where H_c = heat required, W

Q = air flow rate, L/s

 W_i = humidity ratio, kg/kg of dry indoor air

 $W_{\rm o}$ = humidity ratio, kg/kg of dry outdoor air

 h_{ig} = latent heat of evaporation of water, kJ/kg

For air density $\rho = 1.20 \text{ kg/m}^3$ and $h_{fg} = 2465 \text{ kJ/kg}$

$$H_i = 3000 Q (W_i - W_o)$$

All the best!

