Operad Theory

Labix

September 20, 2024

Abstract

Contents

1	The	Theory of Operads	3
	1.1	General Operads	3
	1.2	Operads as a Monoid in a Monoidal Category	4
	1.3	The Endomorphism Operad and Algebra Operads	4
		Coloured Operads	

1 The Theory of Operads

1.1 General Operads

Definition 1.1.1: (Planar) Operads

Let $(\mathcal{C}, \otimes, I)$ be a symmetric monoidal category. An operad in \mathcal{C} consists of the following data

- A sequence $P = \{P(n) \mid n \in \mathbb{N}\}$ of objects in \mathcal{C}
- A composition function

$$\gamma: P(n) \otimes P(k_1) \otimes \cdots \otimes P(k_n) \to P(k_1 + \cdots + k_n)$$

• An unit $\mu: I \to P(1)$

such that the following compatibility conditions are satisfied.

• Associativity in the first symmetric product:

$$P(n) \otimes \left(\bigotimes_{k=1}^{n} \left(P(i_{k}) \otimes \bigotimes_{t=1}^{i_{k}} P(j_{k,t}) \right) \right) \xrightarrow{\operatorname{id}_{P(n)} \otimes \gamma} P(n) \otimes \left(\bigotimes_{k=1}^{n} P\left(\sum_{t=1}^{i_{k}} j_{k,t} \right) \right) \xrightarrow{\gamma} P\left(\sum_{k=1}^{n} \sum_{t=1}^{i_{k}} j_{k,t} \right) P(n) \otimes \left(\bigotimes_{k=1}^{n} P(j_{k}) \right) \otimes \left(\bigotimes_{k=1}^{n} \bigotimes_{t=1}^{i_{k}} P(j_{k,t}) \right) \xrightarrow{\gamma \otimes \operatorname{id}_{\bigotimes}} P\left(\sum_{u=1}^{k} i_{u} \right) \otimes \left(\bigotimes_{k=1}^{n} \bigotimes_{t=1}^{i_{k}} P(j_{k,t}) \right)$$

• Unitality:

TBA: An operad is a monoid in the monoidal category (Func(\mathbf{S} , \mathcal{C}), \circ , I)

Definition 1.1.2: Symmetric Operads

Let (C, \otimes) be a symmetric monoidal category. A symmetric operad is an operad (P, γ, μ) on C such that the following are true.

- Each P(n) is an S_n -module for each $n \in \mathbb{N}$.
- $\gamma: P(n) \otimes P(k_1) \otimes \cdots \otimes P(k_n) \to P(k_1 + \cdots + k_n)$ is equivariant in the following sense:

$$\gamma(c \cdot \sigma, d_1, \dots, d_n) = \gamma(c, d_{\sigma^{-1}(1)}, \dots, d_{\sigma^{-1}(n)}) \cdot \sigma(k_1, \dots, k_n)$$
$$\gamma(c, d_1 \cdot \tau_1, \dots, d_n \cdot \tau_n) = \gamma(c, d_1, \dots, d_n) \cdot (\tau_1 \oplus \dots \oplus \tau_n)$$

The symmetric monoidal category one usually considers are algebraic. For instance, $_R$ Mod, Ch $(R)_{\geq 0}$

Definition 1.1.3: Morphisms of Operads

Let $(\mathcal{C}, \otimes, I)$ be a symmetric monoidal category. Let (P, γ, μ) and (P, γ', μ') be operads in \mathcal{C} . A morphism $\varphi : P \to P'$ of operads consists of the following data.

- For each $n \in \mathbb{N}$, a map $\varphi_n : P(n) \to P'(n)$ in \mathcal{C}
- Compatible with composition. This means that for any $n, k_1, \dots, k_n \in \mathbb{N}$, the following diagram commutes:

$$P(n) \otimes P(k_1) \otimes \cdots \otimes P(k_n) \xrightarrow{\varphi_n \otimes \varphi_{k_1} \otimes \cdots \otimes \varphi_{k_n}} P'(n) \otimes P'(k_1) \otimes \cdots \otimes P'(k_n)$$

$$\downarrow^{\gamma'}$$

$$P(k_1 + \cdots + k_n) \xrightarrow{\varphi_{k_1 + \cdots + k_n}} P'(k_1 + \cdots + k_n)$$

• Compatible with the identity. This means that the following diagram holds:

1.2 Operads as a Monoid in a Monoidal Category

1.3 The Endomorphism Operad and Algebra Operads

Definition 1.3.1: The Endomorphism Operad

Let (C, \otimes, I) be a symmetric monoidal category. Let $X \in C$ be an object. Define the endomorphism operad End(X) on X to consist of the following data.

- For each $n \in \mathbb{N}$, $\mathcal{E}nd(X)(n) = Hom_{\mathcal{C}}(X^{\otimes n}, X)$
- Composition is given by the following:

$$\operatorname{Hom}_{\mathcal{C}}(X^{\otimes n},X) \otimes \bigotimes_{i=1}^{n} \operatorname{Hom}_{\mathcal{C}}(X^{\otimes k_{i}},X) \xrightarrow{\operatorname{id} \otimes \bigotimes} \operatorname{Hom}_{\mathcal{C}}(X^{\otimes n},X) \otimes \operatorname{Hom}_{\mathcal{C}}(X^{\otimes k_{1}+\dots+k_{n}},X^{\otimes n}) \xrightarrow{\operatorname{Composition}} \operatorname{Hom}_{\mathcal{C}}(X^{\otimes k_{1}+\dots+k_{n}},X)$$

• The unit map $\mu:I \to \operatorname{Hom}_{\mathcal C}(X,X)$ is the image of identity map id_X under the adjunction

$$\operatorname{Hom}_{\mathcal{C}}(X,X) \cong \operatorname{Hom}_{\mathcal{C}}(I,\operatorname{Hom}_{\mathcal{C}}(X,X))$$

Definition 1.3.2: The (Non-Unital) Planar Associative Operad

Let $(\mathcal{C}, \otimes, I)$ be a symmetric monoidal category with initial object \emptyset . Define the planar associative operad \mathcal{A} ss of \mathcal{C} to consist of the following data.

- For each $n \in \mathbb{N} \setminus \{0\}$, $Ass(n) = \{I\}$ and $Ass(0) = \emptyset$
- ullet The composition function is uniquely determined by the unique map of the terminal object (in other words the identity id_I)
- The unit $\{*\} \to Ass(1) = \{*\}$ is also uniquely determined by the unique object

Definition 1.3.3: The Symmetric Associative Operad

Define the planar associative operad Ass to consist of the following data.

- For each $n \in \mathbb{N}$, $Ass(n) = S_n$ where S_n is the symmetric group
- •

Definition 1.3.4: The Commutative Operad

2 Coloured Operads

2.1 Coloured Operads

Definition 2.1.1: Coloured Operads

Let (C, \otimes, I) be a symmetric monoidal category. A coloured operad in C consists of the following data.

- A set S of objects in C called colours
- For each $n \in \mathbb{N}$, and each $C_1, \ldots, C_n, C \in S$, an object $P(C_1, \ldots, C_n, C) \in \mathcal{C}$
- For each (n+1)-tuple C_1, \ldots, C_n, C and n other tuples $(D_{1,1}, \ldots, D_{1,k_1}), \ldots, (D_{n,1}, \ldots, D_{n,k_n})$, there is a morphism

$$P(C_1, ..., C_n, C) \otimes \bigotimes_{i=1}^n P(D_{i,1}, ..., D_{i,k_i}, C_i) \to P(D_{1,1}, ..., D_{n,k_n}, C)$$

called the composition operation

• For each $C \in S$, a morphism

$$1_C: I \to P(C,C)$$

called the identity

such that composition is associativity and unital.

2.2 The Category of Operators

Every coloured operad defines and is defined by a category called the category of operators. Recall the category of finite sets to consist of objects of the form $[n] = \{0, \dots, n\}$.

Definition 2.2.1: The Category of Pointed Finite Sets

Define the category of pointed finite sets

 \mathbf{Fin}_*

to consist of the following data.

- The objects consists of $\langle n \rangle = \{*, 1, \dots, n\}$ together with the chosen point *
- For $\langle n \rangle$ and $\langle m \rangle$ in Fin*, a morphism is a function $f: \langle n \rangle \to \langle m \rangle$ such that f(*) = *.
- Composition is given by the composition of functions.

Definition 2.2.2: The Category of Operators

Let A be a symmetric coloured operad in Set. Define the category of operators C_A as follows.

- The objects are finite sequences C_1, \ldots, C_n of colours in A
- For two tuples (C_1,\ldots,C_n) and (D_1,\ldots,D_m) , a morphism $F:(C_1,\ldots,C_n)\to (D_1,\ldots,D_m)$ is given as a tuple (ϕ,f_1,\ldots,f_m) where $\phi:\langle n\rangle\to\langle m\rangle$ is a morphism in \mathbf{Fin}_* and each f_i for $1\leq i\leq m$ an operation

$$f_i \in \operatorname{Hom}_A((C_k)_{k \in \phi^{-1}(i)}, D_i)$$

 $\hbox{in } A$

• Composition is given component wise in Fin* and in A.

This is often paired with the canonical forgetful functor $p: C_A \to \mathbf{Fin}_*$.

We can reconstruct the operad *A* from the category of operators in the following way.

3 Infinity Operads