1 n 维向量空间 K^n 1

1 n 维向量空间 K^n

1.1 向量空间及其子空间

定义 1.1 n 维向量空间 设 K 为数域,则所有 n 维向量组成的集合

$$K^{n} = \{ (a_{1} \ a_{2} \ \dots \ a_{n}) \mid a_{i} \in K, i = 1, 2, \dots, n \}$$

称为 n 维向量空间.

定义 1.2 子空间 如果 $U \subseteq K^n$ 满足

- 1. $\forall \alpha, \beta \in U, \quad \alpha + \beta \in U.$
- **2**. $\forall \alpha \in U, k \in K, k\alpha \in U$.

则称 U 为 K^n 的一个子空间.

定义 1.3 张成空间 K^n 中的向量组 $\alpha_1, \dots, \alpha_m$ 的所有线性组合构成的集合 W 是 K^n 的一个子空间, 称为由 $\alpha_1, \dots, \alpha_m$ 张成的空间, 记为

$$W = \langle \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_m \rangle$$

上述证明均略.

1.2 线性相关与线性无关

定义 1.4 线性相关 称 K^n 中的向量组 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 线性相关, 如果存在不全为零的数 $k_1, k_2, \cdots, k_m \in K$,使得

$$k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2 + \dots + k_m\boldsymbol{\alpha}_m = \mathbf{0}$$

定义 1.5 线性无关 称 K^n 中的向量组 $\alpha_1, \alpha_2, \dots, \alpha_m$ 线性无关, 如果

$$k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2 + \dots + k_m\boldsymbol{\alpha}_m = \mathbf{0}$$

当且仅当 $k_1 = k_2 = \cdots = k_m = 0$.

显然, K^n 中的向量组要么线性相关, 要么线性无关.

1.3 极大线性无关组与向量组的秩

1 n 维向量空间 K^n 2

定义 1.6 极大线性无关组 设 K^n 中的向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性相关,则其中的一个线性无关子组,且任一向量加入该子组后都变成线性相关,称为该向量组的一个极大线性无关组.

定义 1.7 等价的向量组 设向量组 $A = \{\alpha_1, \dots, \alpha_s\}, \mathcal{B} = \{\beta_1, \dots, \beta_r\}$. 如果 A 中的每个向量都能由 \mathcal{B} 线性表出,且 \mathcal{B} 中的每个向量也都能由 \mathcal{A} 线性表出,则称向量组 \mathcal{A}, \mathcal{B} 等价,记为 $\mathcal{A} \simeq \mathcal{B}$.

定理 1.8 向量组和它的极大线性无关组等价.

证明. 考虑向量组 $\mathcal{A} = \boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_s$, 假定它的一个极大线性无关组为 $\mathcal{B} = \boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_r (r \leq s)$. 对于任意 $1 \leq i \leq s$ 有

$$\alpha_i = 0\alpha_1 + \dots + 1\alpha_i + \dots + 0\alpha_s$$

于是向量组 $\mathcal B$ 的每个向量都能由 $\mathcal A$ 线性表出. 同样, 对于任意 $1 \leqslant i \leqslant r$, $\mathcal A$ 中的 α_i 也能由 $\mathcal B$ 线性表出. 现在考虑 $r < j \leqslant s$. 根据极大线性无关组的定义, α_j 总是能由 $\mathcal B$ 线性表出. 因此 $\mathcal A$ 中的每个向量都能由 $\mathcal B$ 线性表出. 综上, $\mathcal A \simeq \mathcal B$.

从上面的定理可以很容易地得出下面的推论.

推论 1.9 向量组的任意两个极大线性无关组等价.

定理 1.10 设向量组 β_1, \dots, β_r 可以由向量组 $\alpha_1, \dots, \alpha_s$ 线性表出. 如果 r > s, 那么向量组 β_1, \dots, β_r 线性相关.

证明. 考虑 β_i 由 $\alpha_1, \dots, \alpha_s$ 线性表出的表达式:

$$\boldsymbol{\beta}_i = a_{i1}\boldsymbol{\alpha}_1 + \dots + a_{is}\boldsymbol{\alpha}_s$$

其中 $1 \le i \le r$. 考虑 k_1, \dots, k_r 使得

$$k_1 \boldsymbol{\beta}_1 + \dots + k_r \boldsymbol{\beta}_r = \mathbf{0}$$

即

$$(k_1a_{11} + \cdots + k_ra_{r1}) \alpha_1 + \cdots + (k_1a_{1s} + \cdots + k_ra_{rs}) \alpha_s = \mathbf{0}$$

为使得上式成立, 考虑齐次线性方程组

$$\begin{cases} k_1 a_{11} + k_2 a_{21} + \dots + k_r a_{r1} = 0 \\ k_1 a_{12} + k_2 a_{22} + \dots + k_r a_{r2} = 0 \\ \vdots \\ k_1 a_{1s} + k_2 a_{2s} + \dots + k_r a_{rs} = 0 \end{cases}$$

这是一个有r个未知数和s个方程的齐次线性方程组,由于r>s,所以它有非零解.取一组非零解,即可证得 $\boldsymbol{\beta}_1,\cdots,\boldsymbol{\beta}_r$ 线性相关.

1 n 维向量空间 K^n 3

上述命题的逆否命题如下.

推论 1.11 设向量组 β_1, \cdots, β_r 可以由向量组 $\alpha_1, \cdots, \alpha_s$ 线性表出. 如果向量组 β_1, \cdots, β_r 线性无关, 那么 $r \leq s$.

从上面的推论容易得到下面的定理.

定理 1.12 向量组的两个极大线性无关组含有向量的数目相等.

这就引出了秩的概念.

定义 1.13 秩 设 K^n 中的向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 的一个极大线性无关组含 r 个向量,则称 r 为该向量组的 秩,记为 $r(\alpha_1, \alpha_2, \cdots, \alpha_s)$.

此外, 规定由零向量构成的向量组的秩为 0.

有关向量组的秩有一些重要的性质和定理.

定理 1.14 向量组 $\alpha_1, \dots, \alpha_s$ 线性无关, 当且仅当 rank $\{\alpha_1, \dots, \alpha_s\} = s$.

证明. 易得.

定理 1.15 设向量组 $oldsymbol{eta}_1,\cdots,oldsymbol{eta}_r$ 可以由向量组 $oldsymbol{lpha}_1,\cdots,oldsymbol{lpha}_s$ 线性表出, 则

$$\operatorname{rank}\left\{\boldsymbol{\beta}_{1},\cdots,\boldsymbol{\beta}_{r}\right\}\leqslant\operatorname{rank}\left\{\boldsymbol{\alpha}_{1},\cdots,\boldsymbol{\alpha}_{s}\right\}$$

证明. 取它们的极大线性无关组 β_1, \dots, β_t 和 $\alpha_1, \dots, \alpha_m$. 由前面的推论知 $t \leq m$. 所以

$$\operatorname{rank} \{\beta_1, \cdots, \beta_r\} = t \leqslant m = \operatorname{rank} \{\alpha_1, \cdots, \alpha_s\}$$

定理 1.16 设向量组 A, B 满足 rank A = rank B, 且 A 可以由 B 线性表出, 则 $A \simeq B$.

证明. 设 $\alpha_1, \cdots, \alpha_r$ 和 β_1, \cdots, β_r 分别为 \mathcal{A} 和 \mathcal{B} 的极大线性无关组. 由线性表出的传递性可得 $\alpha_1, \cdots, \alpha_r$ 可以由 β_1, \cdots, β_r 线性表出. 任取 $1 \leq i \leq r$, 则向量组 $\alpha_1, \cdots, \alpha_r, \beta_i$ 可以由向量组 β_1, \cdots, β_r 线性表出. 根据前面的引理可知向量组 $\alpha_1, \cdots, \alpha_r, \beta_i$ 线性相关, 并且由于 $\alpha_1, \cdots, \alpha_r$ 线性无关, 所以 β_i 可以由 $\alpha_1, \cdots, \alpha_r$ 线性表出. 因此 \mathcal{B} 中的每个向量都能由 \mathcal{A} 线性表出. 综上, $\mathcal{A} \simeq \mathcal{B}$.