SESSION 2 OF STATISTICS FOR BUSNESS

DR. SURESH KUMAR GADI UNIVERSIDAD DE LAS AMÉRICAS PUEBLA

WHAT ARE WE LEARNING TODAY?

Grouped data

- Relative frequency
- Mean
- Median, Quartiles, Deciles, and Percentile
- Mode
- Standard deviation and Variance

Multiple variables

HOW TO PREPARE GROUPED DATA

EXCEL EXAMPLE

TERMINOLOGY

Class boundaries	Lower boundary (L_i)	$\begin{array}{c} Upper \\ boundary \\ (U_i) \end{array}$		Limits	Frequency (f_i)	Cumulative frequency (c_i)
0 – 10	0	10	5	≥ 0 and < 10	3	3
10 – 20	10	20	15	≥ 10 and < 20	21	24
20 – 30	20	30	25	≥ 20 and < 30	26	50
30 – 40	30	40	35	≥ 30 and < 40	9	59
				Total (n)	59	

Class interval = class width = class height (h) = 10

RELATIVE FREQUENCY (RF)

The relative frequency (f_R) is given by

$$f_R = \frac{f_i}{\sum f_i} = \frac{f_i}{n}$$

where,

 f_i is frequency of the ith class and

n is total number of data elements

RELATIVE FREQUENCY

L	U	f	f_R
0	10	62	62/714=0.087
10	20	102	102/714=0.143
20	30	220	220/714=0.308
30	40	167	167/714=0.234
40	50	89	89/714=0.125
50	60	48	48/714=0.067
60	70	19	19/714=0.027
70	80	6	6/714=0.008
80	90	1	1/714=0.001
90	100	0	0/714=0.000
Su	m	714	1

MEAN

Mean $(\mu = \bar{x})$ of grouped data is

$$\mu = \bar{x} = \frac{\sum x_i f_i}{\sum f_i} = \frac{\sum x_i f_i}{n},$$

where,

 m_i is midpoint of the class-interval, f_i is the frequency.

EXAMPLE

01

Generate Random data 02

Group them

03

Obtain mean from the ungrouped data

04

Obtain mean from the grouped data

MEDIAN

Median (\tilde{x}) of the grouped data is

$$\tilde{x} = L_m + \left[\frac{\frac{n}{2} - c_{m-1}}{f_m}\right] h,$$

where,

 L_m is the lower boundary of the median class

Populate Calculate some grouped data median

EXAMPLE

QUARTILES, DECILES, AND PERCENTILE

Calculations are like Median.

Replace the L_m and $\frac{n}{2}$ with the correct proportion.

$$L_{\left(\frac{i}{*}\right)} + \left[\frac{\left(\frac{i}{*}\right)n - c_{m-1}}{f_m}\right]$$

EXAMPLE

- I. Generate random grouped data
- 2. Find 3nd quartile
- 3. Find 84th percentile
- 4. Find 7th decile

MODE

Mode =
$$L_M + \left[\frac{f_M - f_{M-1}}{(f_M - f_{M+1}) + (f_M - f_{M-1})} \right] h$$
,

where

 L_M is the lower boundary of the class with maximum frequency

 f_M is the maximum frequency

 f_{M-1} is the frequency of the class before the maximum frequency

 f_{M+1} is the frequency of the class after the maximum frequency

EXAMPLE

FIND MODE FOR A GROUPED DATA

VARIANCE (UNGROUPED DATA)

• Population variance (σ^2) formula is

$$\sigma^2 = \frac{\sum [(\bar{x} - x_i)^2]}{n}$$

• Sample variance (σ^2) formula is

$$\sigma^2 = \frac{\sum [(\bar{x} - x_i)^2]}{n - 1}$$

VARIANCE (GROUPED DATA)

• Population variance (σ^2) formula is

$$\sigma^2 = \frac{\sum [f_i(\bar{x} - x_i)^2]}{n}$$

• Sample variance (σ^2) formula is

$$\sigma^2 = \frac{\sum [f_i(\bar{x} - x_i)^2]}{n - 1}$$

STANDARD DEVIATION

• Population standard deviation(σ) formula is

$$\sigma = \sqrt{\sigma^2}$$

• Sample standard deviation (σ) formula is

$$\sigma = \sqrt{\sigma^2}$$

EXAMPLE

CALCULATE STANDARD DEVIATION AND VARIANCE

MULTIPLE VARIABLES

COVARIANCE (UNGROUPED DATA)

• Population covariance formula is

$$cov(X,Y) = \frac{\sum [(\bar{x} - x_i)(\bar{y} - y_i)]}{n}$$

• Sample covariance formula is

$$cov(X, Y) = \frac{\sum [(\bar{x} - x_i)(\bar{y} - y_i)]}{n - 1}$$

COVARIANCE (GROUPED DATA)

• Population covariance formula is

$$cov(X,Y) = \frac{\sum [f_i(\bar{x} - x_i)(\bar{y} - y_i)]}{n}$$

• Sample covariance formula is

$$cov(X,Y) = \frac{\sum [f_i(\bar{x} - x_i)(\bar{y} - y_i)]}{n-1}$$

EXAMPLE

GENERATE GROUPED
DATA FOR TWO VARIABLES

CALCULATE COVARIANCE

CORRELATION

PEARSON CORRELATION COEFFICIENT

Pearson correlation coefficient (ρ) is

$$\rho = \frac{\operatorname{cov}(X, Y)}{\sigma_{x}\sigma_{y}}$$

where,

 σ_x is standard deviation of variable X

 σ_{v} is standard deviation of variable Y

PROPERTIES OF FACTOR OF CORRELATION

Value between I and -I

Significance of positive and negative signs

THANK YOU

