Managing Data Analysis in RStudio using project-oriented workflow

Andriy Koval, Ph.D.

Health System Impact Fellowship

3rd Annual Training Retreat

2019-11-26-Tuesday

Toronto, Ontario

https://github.com/andkov/hsif-2019-data-analysis

About me

- Ph.D. in Quantitative Methods, Psychology (2014)
- Reproducible research enthusiast since 2012
- Graph maker
- See work at https://github.com/andkov
- These slides and more at http://andriy.rbind.io

Andreas Vesalius

John Tukey

Glenn Gould

Hadley Wickham

Edward Tufte

Dialects of data expression

Tabular

id	time	attend	model
1	0	1	2.788
1	1	6	2.732
1	2	2	2.675
1	3	1	2.618
1	4	1	2.562
1	5	1	2.505
1	6	1	2.449
1	7	1	2.392
1	8	1	2.335
1	9	1	2.279
1	10	1	2.222
1	11	1	2.166
4	Θ	2	2.788
4	1	1	2.732

Algebraic

$$y_{ii} = \beta_0 + \beta_1 time_i + \varepsilon_{ii}$$
$$\beta_0 = \gamma_{00}$$
$$\beta_1 = \gamma_{10}$$

Semantic

In 2000 respondents attended church less than once a month (2.79) and gradually declined in their attendance since (.06 per year).

Graphical

Syntactic

nlme::gls(attend ~ 1 + time, data=dsM)

Numeric

Coefficients:

Value Std.Error t-value p-value (Intercept) 2.7882 0.07774 35.86 0 time -0.0566 0.01197 -4.73 0

Schematic

About you

Q1.1 - How many undergraduate or graduate courses in statistics (or related field) have you taken so far?

Q1.2 - What statistical software have you used AT LEAST ONCE in the last 3 years? (check all that apply)

Q1.3 - You are asked to RUN A REGRESSION on an analysis-ready data set. With what software would you be most comfortable performing this task?

Q1.4 - You are asked to MAKE A GRAPH of a frequency distribution using an analysis-ready data set. With what software would you be most comfortable performing this task?

Q1.5 - Please complete the following sentence "I _____ use R for data analysis in my HSI Fellowship"

Q1.6 - With respect to learning more about data science with R, please rank your interests in the following learning objectives of this

Field

Mean

2.33

3.25

4.33

2.25

workshop.

Q2.1 - I have created a graph using ggplot2 package before

Q2.2 - I have worked with a Rmarkdown notebook before

Q2.3 - I have written a custom function in R before

Q2.4 - When working with R language, I use `setdw()` command to establish a home directory

Q2.5 - When working in RStudio, I use Projects (i.e. create an .Rproj file)

About today

Today we will learn to use R + RStudio for

- Wrangling
- Tabulating
- Modeling
- Graphing

We will re-create the analytic report posted on

https://github.com/andkov/hsif-2019-data-analysis

Things to keep in mind

- What makes "data science" a science? Reproducibility
- Principles to keep in mind
 - Scripts are better than GUIs
 - Notebooks are better than scripts
 - Projects are better than Notebooks
- "There are only two hard things in programming: cache validation and naming things" Unknown
 - Success in Data Science = Craft + Imagination

Approaches to managing data analysis

Traditional

Reproducible

language

Integrated Development Environment (IDE)

language

Integrated Development Environment (IDE)

Let us begin!

Setting up RStudio: Suggested Pane Layout

In conclusion

Verbs we have learned today

- head()
- dplyr::glimpse()
- explore::describe_all()
- names()
- dplyr::group_by()
- dplyr::summarize()
- tolower()
- dplyr::rename()
- dplyr::mutate()
- factor()

- stats::glm()
- summary()
- predict()
- plogis()
- ggplot()
- geom_bar()
- geom_point(

https://github.com/andkov/hsif-2019-data-analysis

Download repository to view all materials

Folder Architecture

Learning Resources

- Rmarkdown guide (https://rmarkdown.rstudio.com/)
- Logistic regression (Youtube: StatQuest + Logistic Regression)
- R4DS (https://r4ds.had.co.nz/) + swirl (https://swirlstats.com/)
- Introduction to ggplot2 (http://www.cookbook-r.com/Graphs/)

Handle your data! (Vesalius)

Look at your data! (Tukey)

Lessons & Metaphors

• Graph is art (Tufte)

Graph is language (Wickham)

Coding is music (Gould)

Handle your data! (Vesalius)

Look at your data! (Tukey)

Lessons & Metaphors

• Graph is art (Tufte)

Graph is language (Wickham)

Coding is music (Gould)

Questions? Comments?

Andriy Koval

https://github.com/andkov

http://andriy.rbind.io