绝密★启用前

2019年普通高等学校招生全国统一考试

文科数学

本试卷共5页。考试结束后,将本试卷和答题卡一并交回。

注意事项:

1. 答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条

- 2. 选择题必须使用 2B 铅笔填涂, 非选择题必须使用 0.5 毫米黑色字迹的签字笔书写, 字体工整、笔迹清楚。
- 3. 请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
- 4. 作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
- 5. 保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
- 一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.
- 1. 已知集合 $A = \{x \mid x > -1\}$, $B = \{x \mid x < 2\}$, 则 $A \cap B =$

A. $(-1, +\infty)$

B. $(-\infty, 2)$

C. (-1, 2)

D. \emptyset

2. 设 z=i(2+i),则 $\overline{z}=$

A. 1+2i

B. -1+2i

C. 1–2i

D. -1-2i

3. 己知向量 *a*=(2, 3), *b*=(3, 2), 则|*a* - *b*|=

A. $\sqrt{2}$

B. 2

	_	_
\boldsymbol{C}	5 /	٦
\mathbf{c} .	J N A	Ζ

D. 50

4. 生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为

A. $\frac{2}{3}$

B. $\frac{3}{5}$

C. $\frac{2}{5}$

D. $\frac{1}{5}$

5. 在"一带一路"知识测验后,甲、乙、丙三人对成绩进行预测.

甲: 我的成绩比乙高.

乙: 丙的成绩比我和甲的都高.

丙:我的成绩比乙高.

成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为

A. 甲、乙、丙

B. 乙、甲、丙

C. 丙、乙、甲

D. 甲、丙、乙

6. 设 f(x)为奇函数,且当 $x \ge 0$ 时, $f(x) = e^x - 1$,则当 x < 0 时,f(x) =

A. $e^{-x} - 1$

B. $e^{-x} + 1$

C. $-e^{-x}-1$

D. $-e^{-x} + 1$

7. 设 α , β 为两个平面,则 α // β 的充要条件是

- A. α 内有无数条直线与 β 平行
- B. α 内有两条相交直线与 β 平行
- $C. \alpha, \beta$ 平行于同一条直线
- D. α , β 垂直于同一平面

8. 若 $x_1 = \frac{\pi}{4}$, $x_2 = \frac{3\pi}{4}$ 是函数 $f(x) = \sin \omega x$ ($\omega > 0$)两个相邻的极值点,则 $\omega =$

A. 2

B. $\frac{3}{2}$

C. 1

D. $\frac{1}{2}$

9. 若抛物线 $y^2=2px$ (p>0) 的焦点是椭圆 $\frac{x^2}{3p} + \frac{y^2}{p} = 1$ 的一个焦点,则 p=

A. 2

B. 3

C. 4

D. 8

10. 曲线 y=2sinx+cosx 在点(π, -1)处的切线方程为

A. $x - y - \pi - 1 = 0$

B. $2x - y - 2\pi - 1 = 0$

C. $2x + y - 2\pi + 1 = 0$

D. $x + y - \pi + 1 = 0$

11. 己知 $a \in (0, \frac{\pi}{2})$, $2\sin 2\alpha = \cos 2\alpha + 1$, 则 $\sin \alpha = \cos 2\alpha + 1$, $\sin \alpha = \cos 2\alpha$

A. $\frac{1}{5}$

B. $\frac{\sqrt{5}}{5}$

 $C. \quad \frac{\sqrt{3}}{3}$

D. $\frac{2\sqrt{5}}{5}$

12. 设F 为双曲线C: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的右焦点,O 为坐标原点,以OF 为直径的圆与圆 $x^2 + y^2 = a^2$ 交于P、Q 两点.若|PQ| = |OF|,则C 的离心率为

A. $\sqrt{2}$

B. $\sqrt{3}$

C. 2

D. $\sqrt{5}$

二、填空题: 本题共 4 小题, 每小题 5 分, 共 20 分.

13. 若变量
$$x$$
, y 满足约束条件
$$\begin{cases} 2x + 3y - 6 \ge 0, \\ x + y - 3 \le 0, \\ y - 2 \le 0, \end{cases}$$
则 $z=3x-y$ 的最大值是______.

- 14. 我国高铁发展迅速,技术先进. 经统计,在经停某站的高铁列车中,有 10 个车次的正点率为 0.97,有 20 个车次的正点率为 0.98,有 10 个车次的正点率为 0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______.
- 15. $\triangle ABC$ 的内角 A, B, C 的对边分别为 a, b, c.已知 $b\sin A + a\cos B = 0$, 则 B = .

图 1

- 三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。
- (一) 必考题: 共60分。
- 17. (12分)

如图,长方体 $ABCD-A_1B_1C_1D_1$ 的底面 ABCD 是正方形,点 E 在棱 AA_1 上, $BE\perp EC_1$.

(1) 证明: *BE* 上平面 *EB*₁*C*₁;

(2) 若 $AE=A_1E$, AB=3, 求四棱锥 $E-BB_1C_1C$ 的体积.

18. (12分)

已知 $\{a_n\}$ 是各项均为正数的等比数列, $a_1 = 2, a_3 = 2a_2 + 16$.

- (1) 求 $\{a_n\}$ 的通项公式;
- (2) 设 $b_n = \log_2 a_n$, 求数列 $\{b_n\}$ 的前n项和.

19. (12分)

某行业主管部门为了解本行业中小企业的生产情况,随机调查了 100 个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.

y的分组	[-0.20,0)	[0,0.20)	[0.20,0.40)	[0.40,0.60)	[0.60,0.80)
企业数	2	24	53	14	7

- (1) 分别估计这类企业中产值增长率不低于 40%的企业比例、产值负增长的企业比例;
- (2) 求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表). (精确到 0.01)

附:
$$\sqrt{74} \approx 8.602$$
.

20. (12分)

已知 F_1, F_2 是椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的两个焦点,P 为 C 上一点,O 为坐标原点.

- (1) 若 $\triangle POF_2$ 为等边三角形,求C的离心率;
- (2)如果存在点P,使得 $PF_1 \perp PF_2$,且 $\triangle F_1PF_2$ 的面积等于 16,求b的值和a的取值范围.
- 21. (12分)

已知函数 $f(x) = (x-1) \ln x - x - 1$.证明:

- (1) f(x) 存在唯一的极值点;
- (2) f(x)=0有且仅有两个实根,且两个实根互为倒数.
- (二)选考题:共10分.请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分.
- 22. [选修 4-4: 坐标系与参数方程](10分)

在极坐标系中,O 为极点,点 $M(\rho_0,\theta_0)(\rho_0>0)$ 在曲线 $C:\rho=4\sin\theta$ 上,直线 l 过点 A(4,0) 且与OM 垂直,垂足为P.

- (1) 当 $\theta_0 = \frac{\pi}{3}$ 时,求 ρ_0 及l的极坐标方程;
- (2) 当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.
- 23. [选修 4-5: 不等式选讲] (10 分)

∃知 f(x) = |x-a|x+|x-2|(x-a).

- (1) 当a = 1时,求不等式f(x) < 0的解集;
- (2) 若 $x \in (-\infty,1)$ 时, f(x) < 0, 求a的取值范围.

1. C

2. D

3. A 4. B 5. A

6. D

7. B

8. A

9. D 10. C

11. B

12. A

13. 9

14. 0.98

15. $\frac{3\pi}{4}$ 16. $\sqrt{2}-1$

17. 解: (1) 由己知得 B_1C_1 上平面 ABB_1A_1 , BE 二平面 ABB_1A_1 ,

故 $B_1C_1 \perp BE$.

又 $BE \perp EC_1$,所以 $BE \perp$ 平面 EB_1C_1 .

(2)由(1)知 $\angle BEB_1=90^\circ$.由题设知 Rt $\triangle ABE$ \cong Rt $\triangle A_1B_1E$,所以 $\angle AEB=\angle A_1EB_1=45^\circ$,故 AE = AB = 3, $AA_1 = 2AE = 6$.

作 $EF \perp BB_1$, 垂足为 F, 则 $EF \perp$ 平面 BB_1C_1C , 且 EF = AB = 3.

所以,四棱锥 $E - BB_1C_1C$ 的体积 $V = \frac{1}{3} \times 3 \times 6 \times 3 = 18$.

18. 解: (1) 设 $\{a_n\}$ 的公比为q,由题设得

 $2q^2 = 4q + 16$, $\mathbb{P} q^2 - 2q - 8 = 0$.

解得q = -2 (舍去)或q=4.

因此 $\{a_n\}$ 的通项公式为 $a_n = 2 \times 4^{n-1} = 2^{2n-1}$.

(2) 由 (1) 得 $b_n = (2n-1)\log_2 2 = 2n-1$,因此数列 $\{b_n\}$ 的前n项和为 $1+3+\cdots+2n-1=n$.

19.解: (1) 根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为 $\frac{14+7}{100} = 0.21.$

产值负增长的企业频率为 $\frac{2}{100}$ =0.02.

用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.

(2)
$$\overline{y} = \frac{1}{100} (-0.10 \times 2 + 0.10 \times 24 + 0.30 \times 53 + 0.50 \times 14 + 0.70 \times 7) = 0.30$$
,

$$s^{2} = \frac{1}{100} \sum_{i=1}^{5} n_{i} \left(y_{i} - \overline{y} \right)^{2}$$

$$= \frac{1}{100} \left[(-0.40)^2 \times 2 + (-0.20)^2 \times 24 + 0^2 \times 53 + 0.20^2 \times 14 + 0.40^2 \times 7 \right]$$

=0.0296,

$$s = \sqrt{0.0296} = 0.02 \times \sqrt{74} \approx 0.17 \; ,$$

所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.

20.解: (1) 连结 PF_1 ,由 $\triangle POF_2$ 为等边三角形可知在 $\triangle F_1PF_2$ 中, $\angle F_1PF_2 = 90^\circ$, $\left| PF_2 \right| = c$, $\left| PF_1 \right| = \sqrt{3}c$,于是 $2a = \left| PF_1 \right| + \left| PF_2 \right| = (\sqrt{3} + 1)c$,故 C 的离心率是 $e = \frac{c}{a} = \sqrt{3} - 1$.

(2) 由题意可知,满足条件的点 P(x,y) 存在当且仅当 $\frac{1}{2}|y|\cdot 2c = 16$, $\frac{y}{x+c}\cdot \frac{y}{x-c} = -1$,

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, $||z|| = 16$, ①

$$x^2 + y^2 = c^2$$
, ②

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, ③

曲②③及
$$a^2 = b^2 + c^2$$
 得 $y^2 = \frac{b^4}{c^2}$, 又由①知 $y^2 = \frac{16^2}{c^2}$, 故 $b = 4$.

由②③得
$$x^2 = \frac{a^2}{c^2}(c^2 - b^2)$$
,所以 $c^2 \ge b^2$,从而 $a^2 = b^2 + c^2 \ge 2b^2 = 32$,故 $a \ge 4\sqrt{2}$.

当b=4, $a \ge 4\sqrt{2}$ 时, 存在满足条件的点P.

所以b=4, a的取值范围为 $[4\sqrt{2},+\infty)$.

21.解: (1) f(x) 的定义域为(0, + ∞).

$$f'(x) = \frac{x-1}{x} + \ln x - 1 = \ln x - \frac{1}{x}$$

因为 $y = \ln x$ 单调递增, $y = \frac{1}{x}$ 单调递减,所以 f'(x) 单调递增,又 f'(1) = -1 < 0,

$$f'(2) = \ln 2 - \frac{1}{2} = \frac{\ln 4 - 1}{2} > 0$$
, 故存在唯一 $x_0 \in (1, 2)$, 使得 $f'(x_0) = 0$.

又当 $x < x_0$ 时,f'(x) < 0,f(x)单调递减;当 $x > x_0$ 时,f'(x) > 0,f(x)单调递增.

因此, f(x) 存在唯一的极值点.

(2) 由 (1) 知 $f(x_0) < f(1) = -2$,又 $f(e^2) = e^2 - 3 > 0$,所以 f(x) = 0 在 $(x_0, +\infty)$ 内存在唯一根 $x = \alpha$.

由
$$\alpha > x_0 > 1$$
得 $\frac{1}{\alpha} < 1 < x_0$.

又
$$f\left(\frac{1}{\alpha}\right) = \left(\frac{1}{\alpha} - 1\right) \ln \frac{1}{\alpha} - \frac{1}{\alpha} - 1 = \frac{f(\alpha)}{\alpha} = 0$$
, 故 $\frac{1}{\alpha}$ 是 $f(x) = 0$ 在 $\left(0, x_0\right)$ 的唯一根.

综上, f(x) = 0 有且仅有两个实根,且两个实根互为倒数.

22. 解: (1) 因为 $M(\rho_0, \theta_0)$ 在C上,当 $\theta_0 = \frac{\pi}{3}$ 时, $\rho_0 = 4\sin\frac{\pi}{3} = 2\sqrt{3}$.

由已知得 $|OP| = |OA| \cos \frac{\pi}{3} = 2$.

设 $Q(\rho,\theta)$ 为l上除P的任意一点.在 $Rt\triangle OPQ$ 中 $\rho\cos\left(\theta-\frac{\pi}{3}\right)$ =|OP|=2,

经检验, 点 $P(2,\frac{\pi}{3})$ 在曲线 $\rho\cos\left(\theta-\frac{\pi}{3}\right)=2$ 上.

所以,l的极坐标方程为 $\rho\cos\left(\theta-\frac{\pi}{3}\right)=2$.

(2) 设 $P(\rho,\theta)$,在Rt $\triangle OAP$ 中, $|OP|=|OA|\cos\theta=4\cos\theta$,即 $\rho=4\cos\theta$..

因为P在线段OM上,且 $AP \perp OM$,故 θ 的取值范围是 $\left\lceil \frac{\pi}{4}, \frac{\pi}{2} \right\rceil$.

所以,P点轨迹的极坐标方程为 $\rho = 4\cos\theta$, $\theta \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right]$.

23. M: (1) $\leq a=1$ \forall , f(x)=|x-1||x+|x-2|(x-1)|.

当x < 1时, $f(x) = -2(x-1)^2 < 0$; 当 $x \ge 1$ 时, $f(x) \ge 0$.

所以,不等式f(x) < 0的解集为 $(-\infty,1)$.

(2) 因为f(a)=0,所以 $a \ge 1$.

所以,a的取值范围是 $[1,+\infty)$.