WHAT IS CLAIMED IS:

1	1. A method for use in a fixed point arithmetic processing device having		
2	an input vector that contains one or more vector elements, and is an M bit integer, and a		
3	maximum permitted left shift (MLS) value for the input vector is less than or equal to the		
4	value of M - 2, the method for scaling all the vector elements based on the vector element		
5	with the largest magnitude, the method comprising:		
6	sequentially searching each vector element to find a left shift value for scaling		
7	each vector element;		
8	comparing the left shift values to determine a minimum left shift (NLS_MIN)		
9	for scaling the largest vector element;		
10	employing the NLS_MIN value to determine whether the input vector is a		
İ	non-zero input vector;		
12	if so, regardless of whether the largest element of non-zero input vector has a		
12 13 14	positive or negative magnitude, offsetting the NLS_MIN value by the MLS value to obtain		
14	an actual number of left shifts (NLS) value for scaling the input vector;		
1 5	determining whether the input vector is a zero input vector; and		
1-6	if so, offsetting the NLS_MIN value by the MLS value to obtain the NLS		
17	value.		
	2. The method of claim 1 further comprising employing a pdmsb		
12	instruction for sequentially searching, and for comparing said left shift values.		
2	mistraction for sequentially scarcining, and for comparing said for simil values.		
1	3. A method, by a processing device, for scaling an M-bit integer input		
2	vector containing one or more vector elements, said method comprising:		
3	receiving a maximum permitted left shift (MLS) value for the input vector,		
4	said MLS value being less than or equal to M - 2;		
5	determining a minimum left shift (NLS_MIN) for scaling said vector element		
6	with the largest magnitude;		
7	employing said NLS_MIN value to determine whether said input vector is a		
8	zero input vector, or a non-zero input vector irrespective of the positive or negative value of		
9	said non-zero input vector;		
10	if a non-zero input vector is determined, offsetting said NLS_MIN value by		
11	said MLS value to obtain an actual number of left shifts (NLS) value for scaling said input		
12	vector; and		

13	if a zero input vector is determined, offsetting said NLS_MIN value by said			
14	MLS value to obtain the NLS value.			
1	4.	The method of claim 3 wherein offsetting said NLS_MIN value for		
2	said zero input vec	tor further comprises said NLS value being given by: MLS + 1.		
1	5.	The method of claim 3 wherein offsetting said NLS_MIN value for		
2	said non-zero input	said non-zero input vector further comprises said NLS value given by:NLS = NLS_MIN +		
3	(MLS-(M-2)).			
1	6.	The method of claim 3 further comprising employing a pdmsb		
2	instruction for sequentially searching, and for comparing said left shift values.			
11	7	The method of claim 3 wherein employing said NLS_MIN value		
	further comprises determining whether NLS_MIN = 31, if NLS_MIN \neq 31, then the input			
	vector is a non-zero input vector.			
1	8.	A processor operable from an M-bit instruction set where M is an		
2	integer, the process	integer, the processor comprising:		
3	a m	emory unit for storing at least first instruction stream comprising M-bit		
4	instructions;			
15	an e	execution unit operable to receive execution signals to execute the M-bit		
-6	instructions;			
7	a de	ecode unit coupled to the memory unit and to the execution unit to receive		
8	and decode the first instruction stream from the memory unit to produce therefrom the			
9	execution signals, the execution signals for:			
10	det	ermining a minimum left shift (NLS_MIN) for scaling said vector element		
11	with the largest magnitude;			
12	emp	ploying said NLS_MIN value to determine whether said input vector is a		
13	zero input vector, or a non-zero input vector by evaluating if NLS_MIN = 31;			
14	ifl	NLS_MIN \neq 31, then the input vector is a non-zero input vector; and		
15	det	termining an actual number of left shifts (NLS) for scaling the non-zero		
16	input vector.			

- 9. The method of claim 8 wherein the execution signals is for receiving a maximum permitted shift (MLS) value for said input vector, said MLS value being less than or equal to M 2.
- 1 10. The method of claim 9 wherein determining an actual number of left 2 shifts (NLS) further comprises offsetting said NLS_MIN with the MLS value to obtain said 3 NLS value.