Supplement: Correctness of Addition and Multiplication¹

1 Correctness of the Addition Algorithm

We start with the subroutine for adding one-bit numbers. We denote this the BIT-ADD routine which takes input three bits b_1, b_2, b_3 and returns two bits (c, s). Note that the binary number with 'first' digit c and 'second' digit s is precisely 2c + s. For instance, the number 10 is $2 \cdot 1 + 0 = 2$ and the number 11 is $2 \cdot 1 + 1 = 3$. The property of BIT-ADD is that it returns (c, s) with the property $b_1 + b_2 + b_3 = 2c + s$. This subroutine is "hard-coded" using the following truth table.

b_1	b_2	b_3	(c,s)
0	0	0	(0,0)
0	0	1	(0,1)
0	1	0	(0,1)
1	0	0	(0,1)
0	1	1	(1,0)
1	0	1	(1,0)
1	1	0	(1,0)
1	1	1	(1,1)

You should check the above table satisfies $b_1 + b_2 + b_3 = 2c + s$.

Armed with this, we can define our grade-school addition. This is slightly (more wastefully) defined below than in the lecture notes in that we are defining a "carry array". This is purely for the convenience of the proof that is about to follow.

```
1: procedure ADD(a[0:n-1],b[0:n-1]):
2:
        \triangleright The two numbers are a and b
        Initialize carry[0:n] \leftarrow 0 to all zeros.
3:
4:
        Initialize c[0:n] to all zeros \triangleright c[0:n] will finally contain the sum
        for i = 0 to n - 1 do:
5:
             (\mathsf{carry}[i+1], c[i]) \leftarrow \mathsf{BIT-ADD}(a[i], b[i], \mathsf{carry}[i])
6:
             \triangleright Invariant: a[i] + b[i] + \mathsf{carry}[i] = 2\mathsf{carry}[i+1] + c[i]
7:
        c[n] \leftarrow \mathsf{carry}[n]
8:
9:
        return c
```

Remark: The above algorithm returns an (n+1)-bit number whose (n+1)th bit is 0 if the final carry is 0, otherwise it is 1. Before going into the proof of correctness, do you see why two n bit numbers cannot give a number with > n+1 bits?

¹Lecture notes by Deeparnab Chakrabarty. Last modified: 19th Mar, 2022

These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at deeparnab@dartmouth.edu. Highly appreciated!

Theorem 1. The algorithm ADD is correct.

Proof. To prove ADD is correct, we need to show no matter what a, b is, the number represented by the bit-array c[0:n] is precisely a+b. There is really no two ways to prove this – we look at the algorithm and see what the c[i]'s are and try to show that

$$\sum_{i=0}^{n} c[i] \cdot 2^{i} = \sum_{i=0}^{n-1} a[i] \cdot 2^{i} + \sum_{i=0}^{n-1} b[i] \cdot 2^{i}$$

To do so, we use the property of BIT-ADD stated in Line 7 of ADD:

For all
$$0 \le i \le n-1$$
, $c[i] = a[i] + b[i] + (\mathsf{carry}[i] - 2\mathsf{carry}[i+1])$ (1)

Multiplying both sides by 2^i and adding, we get

$$\sum_{i=0}^{n-1} c[i] \cdot 2^i = \left(\sum_{i=0}^{n-1} a[i] \cdot 2^i\right) + \left(\sum_{i=0}^{n-1} b[i] \cdot 2^i\right) + \left(\sum_{i=0}^{n-1} \mathsf{carry}[i] \cdot 2^i - \sum_{i=0}^{n-1} \mathsf{carry}[i+1] \cdot 2^{i+1}\right)$$

We are done proving c=a+b. To see this, observe LHS is precisely $c-c[n]\cdot 2^n=c-{\sf carry}[n]\cdot 2^n$. The first parenthesized item of the RHS is a. The second parenthesized item of the RHS is b. The third is interesting; if you open up the summation you see that many terms cancel out and evaluates to ${\sf carry}[0]\cdot 2^0-{\sf carry}[n]\cdot 2^n$ (make sure you see this.). This canceling behavior is often seen in summations and is given a name in math: it is said that this summation telescopes to only two terms, much like a long elongated telescope folds into one compact tube.

2 Subtraction

There are actually two ways to subtract binary numbers. One is just the grade-school algorithm using a "borrow" instead of a "carry". However, there is another pretty nifty way to subtract using the *method of complements*.

The algorithm is as follows. It assumes the subroutine COMPLEMENT which takes a bit-array and flips it. That is, wherever there is a 0 it makes it a 1 and vice-versa.

```
1: procedure SUBTRACT(a[0:n-1],b[0:n-1]):
2: 
ightharpoonup The two numbers are a and b; assumption <math>a \ge b
3: a' \leftarrow \text{COMPLEMENT}(a).
4: c \leftarrow \text{ADD}(a',b).
5: return c' \leftarrow \text{COMPLEMENT}(c).
```

Theorem 2. The algorithm SUBTRACT behaves correctly.

Proof. First, given any number n-bit number x given as a bit-array x[0:n-1], we observe that x' = COMPLEMENT(x) is simply the number $(2^{n+1}-1)-x$. Indeed,

$$x = \sum_{i=0}^{n} x[i]2^{i}$$
 and $x' = \sum_{i=0}^{n} (1 - x[i])2^{i} = \sum_{i=0}^{n} 2^{i} - x = (2^{n+1} - 1) - x$

where we use the formula for a sum of geometric series.

Next, we argue that if a and b are both n-bits and $a \ge b$, then c = a' + b is also at most n-bits long. Indeed, $c = (2^{n+1} - 1) - (a - b)$. If $a \ge b$, then $c \le 2^{n+1} - 1$ implying it is at most n-bits long.

Thus, COMPLEMENT(c), the number we return, is $(2^{n+1}-1)-c=(a-b)$. Done.

3 Correctness of the Multiplication Algorithm

In this section, we prove the correctness of the MULT algorithm by induction. This is the method many of you may have seen in CS30.

```
1: procedure MULT(x, y):
2:  > The two numbers are input as bit-arrays; x has n bits, y has m bits. <math>n \ge m.
3: if y = 0 then: > Base Case
4: return 0 > An all zero bit-array
5: x' \leftarrow (2x); y' \leftarrow \lfloor y/2 \rfloor
6: z \leftarrow \text{MULT}(x', y')
7: if y is even then:
8: return z
9: else:
10: return ADD(z, x)
```

For a pair of natural numbers (x, y) with $x \ge y$, we say MULT(x, y) works properly if it returns $x \cdot y$.

```
Theorem 3. MULT(x, y) works properly on all pairs of numbers x, y.
```

Proof. Let P(n) be the predicate which is true if $\mathrm{MULT}(x,n)$ works properly on pairs (x,n) with $x \geq n$. Observe that if $\forall n \in \mathbb{N} : P(n)$ is true, then the theorem holds. Therefore, we proceed to prove $\forall n \in \mathbb{N} : P(n)$ is true by inducton.

Base Case: n=1. We need to show that $\mathrm{MULT}(x,1)$ behaves properly for all $x\geq 1$. That is, we need to show $\mathrm{MULT}(x,1)$ returns $x\cdot 1=x$. Indeed, the algorithm runs Line 4 in this case and returns x. So P(1) is true.

Inductive Case: Fix a natural number $k \geq 1$. Assume $P(1), P(2), \dots, P(k)$ is true. We need to show P(k+1) is true. That is, we need to show for any number $x \geq k+1$, MULT(x,k+1) returns $x \cdot (k+1)$. To that end, fix a number $x \geq k+1$.

Let us consider the behavior of the algorithm. In Line 5, we set $y' = \lfloor (k+1)/2 \rfloor$. Since $k \geq 1$, $(k+1) \geq 2$, we have $y' \geq 1$. Furthermore, $y' \leq k$. This is because $k \geq 1$ implies $2k \geq k+1$ which in turn implies $k \geq (k+1)/2 \geq y'$. In sum, $1 \leq y' \leq k$.

Since P(y') is true by the Induction Hypothesis, MULT(x', y') returns $x' \cdot y'$. Thus, the z set in Line 6 is indeed $z = x' \cdot y' = 2x \cdot y'$.

Now we have a simple case analysis: if (k+1) is even, then y'=(k+1)/2, and thus $z=2x\cdot(k+1)/2=x\cdot(k+1)$. Note that in the case (k+1) is even, the algorithm runs Line 8 and returns z=x(k+1). Thus, in this case, P(k+1) is true.

If (k+1) is odd, then $y' = \lfloor (k+1)/2 \rfloor = k/2$. Thus, $z = 2x \cdot y' = xk$. Note that in the case (k+1) is odd, the algorithm runs Line 10, and returns z + x = kx + x = x(k+1). Thus, even in this case, P(k+1) is true.

Thus, in all cases P(k+1) is true. Therefore, by induction, $\forall n: P(n)$ is true.