Seminar zur Vorlesung Physik II für Naturwissenschaftler

Sommersemester 2024

Blatt 5

13.05.2024

Aufgabe 12 Momentan-Strom

In einem Leiter messen Sie den Strom

$$I(t) = I_0 e^{-t/\tau}$$

mit $\tau = 2 \,\mathrm{s}$.

- a) Skizzieren Sie I = I(t) als Funktion der Zeit t. (1 Punkt)
- b) Nach welcher charakteristischen Zeit ist der Strom auf die Hälfte abgesunken? (1 Punkt)
- c) Wie groß muss der anfängliche Strom I_0 sein, damit nach einer Sekunde ein Coulomb durch den Querschnitt des Leiters geflossen ist? (1 Punkt)

Aufgabe 13 Wie ruiniere ich meine Autobatterie?

Wir betrachten den Stromkreis aus Abb. 1. In diesem Stromkreis befinden sich die beiden Spannungsquellen $U_1=10\,\mathrm{V}$ (Autobatterie) und $U_2=12\,\mathrm{V}$ (Starthilfe) und drei Widerstände mit den Werten $R_1=0,1\,\Omega,\,R_2=0,02\,\Omega$ und $R_\mathrm{A}=0,2\,\Omega.$ Warum beschreibt dieser Stromkreis eine falsch gepolte Starthilfe (siehe Stromkreis Vorlesung)? Berechnen Sie die Ströme und die Spannungen an den Widerständen.

Abb. 1: Verpolter Starthilfe-Stromkreis

Aufgabe 14 Kirchhoffsche Regeln

Wir analysieren zunächst das in Abb. 2 dargestellte Netzwerk aus zwei Spannungsquellen U_i (i = 1, 2) und drei ohmschen Widerständen, wovon zwei den gleichen Widerstandswert R besitzen.

Abb. 2: Ohmsches Netzwerk

- a) Formulieren Sie Knoten- und Maschenregeln für die in Abb.2 angegebenen Richtungen.
 (1 Punkt)
- b) Für die Spannungen $U_1 = 6$ V und $U_2 = 3$ V sowie den Widerstand $R = 2\Omega$ verschwindet der Strom I_3 . Berechnen Sie den unbekannten Widerstand R_x . (1 Punkt)
- c) Jetzt ersetzen wir zur Zeit t=0 die Spannungsquelle U_1 durch einen ungeladenen Kondensator mit der Kapazität $C=5\,\mu\text{F}$. Skizzieren Sie dessen Ladestrom $I_1=I_1(t)$ als Funktion der Zeit t. Welchen Wert hat folglich der Strom I_3 zur Zeit $t\to\infty$? Welche Ladung besitzt dann der Kondensator? (1 Punkt)

Aufgabe 12: Momentan-Strom $I(l) = I_0 e^{-\frac{t}{\tau}}, \quad \tau = 2s$

$$2 = \frac{1}{2} \ln(1) - \ln(2)$$

 $2 = \frac{1}{2} \ln(2)$
 $-\ln(2)$

b)
$$I(t) = \frac{I_0}{2}$$
 $\angle = > I_0 e^{-\frac{t}{\tau}} = \frac{I_0}{2}$
 $\angle = > -\frac{t}{\tau} = l_0(\frac{1}{2})$
 $\angle = > -\frac{t}{\tau} = -l_0(2)$
 $\angle = > \frac{t}{\tau} = l_0(2)\tau$

wif $z = 2s = > \frac{1}{\tau} \approx 1.39s$

$$(z)$$
 $Q = \int_{0}^{1} I(t) dt = \int_{0}^{1} I_{0} e^{-\frac{1}{\tau}} dt$, $\tau = 2$ $\sim 0 I_{0} \int_{0}^{1} e^{-\frac{1}{2}} dt$

Substitution:
$$v = -\frac{1}{2}$$
 -0 $t = -2v$ ~0 $dt = -2dv$

Lo Grenzen O und $-\frac{1}{2}$

$$Q = -2I_{o} \int_{e}^{-\frac{1}{2}} e dv = -2I_{o} \left[e^{-\frac{1}{2}}\right]_{o}^{-\frac{1}{2}} = -2I_{o} \left[e^{-\frac{1}{2}} - e^{-\frac{1}{2}}\right] = -2I_{o} \left[e^{-\frac{1}{2}} - e^{-\frac{1}{$$

nif
$$Q = \Lambda$$

 $\Lambda = -2 I_o \left(\frac{\Lambda}{\sqrt{e}} - \Lambda \right) \sim_o I_o = \frac{\Lambda}{\frac{-2}{\sqrt{e}} + 2} \approx \Lambda, 27 A$

Aufgabe 13: Vie vinière ich meine Autobatteine?

$$U_1 = 10V$$
, $U_2 = 12V$
 $R_1 = 0,1\Omega$, $R_2 = 0,02\Omega$, $R_A = 0,2\Omega$

$$[KR: I_{2} = I_{2} + I_{3}]$$

$$MR: U_1 + U_2 - (R_2 - \overline{I}_2) - (R_1 - \overline{I}_1) = 0$$
 (2)

$$U_{\lambda} - (R_{\lambda} \cdot \overline{L}_{3}) - (R_{\lambda} \cdot \overline{L}_{\lambda}) = 0$$
 (3)

$$I \mid I_{\lambda} - I_{2} - I_{3} = 0$$

$$I - \frac{I}{R_{\lambda}} = \overline{V}$$

$$\begin{array}{c|cccc}
\hline
V & -\overline{L}_2 - \frac{R_2}{R_A} \overline{L}_2 - \overline{L}_3 & = -\frac{U_A + U_2}{R_A} \\
\hline
V & R_1 - R_A \overline{L}_3 & = U_2
\end{array}$$

$$R_{2}I_{2} - R_{A}I_{3} = U_{2} \qquad R_{A}\overline{W} - \overline{V} = \overline{W}$$

$$\mathbb{I} | R_{\lambda} I_{\lambda} = U_{\lambda}$$

$$\nabla \mathbf{I}: \quad -\mathbf{I}_{2}R_{A} - \frac{R_{2}R_{J}}{R_{A}}\mathbf{I}_{2} - R_{2}\mathbf{I}_{2} = -\frac{(U_{A} + U_{2})R_{J}}{R_{A}} - U_{2}$$

$$\angle = > I_2 \left(-R_A - \frac{R_2 R_A}{R_A} - R_2 \right)^{B=-0.26} = u$$

$$\langle - \rangle$$
 $I_2 = \frac{A}{B} = \frac{-56}{-0.26}A = \frac{2800}{13}A \approx 215.28 A$

$$I_{3} = -176, SA$$
 $V_{4} = 7,7V$
 $V_{R2} = 4,3V$
 $V_{R1} = -19,6V$

Autgabe 14: Kirchhoffsche Regeln

$$R_{x} = I_{1} + I_{3}$$

$$R_{x} = I_{2} + I_{3}$$

$$R_{x} = I_{3} + I_{3}$$

$$R_{x$$

$$\times \mathbb{KR} : I_1 = I_1 + I_3 \tag{A}$$

$$MR: U_1 + U_2 - (R \cdot I_2) - (R \times \underline{T}_1) = 0$$
 (2)

$$U_{\lambda} - (R I_{2}) + (R I_{3}) = 0 (3)$$

$$b)$$
 $V_1 = 6V$, $V_2 = 3V$, $R = 2D$

$$I I_{\lambda} - I_{2} - I_{3} = 0$$

$$I R_{\lambda}I_{\lambda} + RI_{2} = U_{\lambda} + U_{2}$$

$$I RI_{2} - RI_{3} = U_{2}$$

$$| \sim_0 I_2 = I_2$$

$$| \sim_0 I_2 = \frac{U_2}{R} = \frac{3}{2} A$$

$$II: R_{\times} = \frac{U_{1} + U_{2} - RI_{2}}{I_{1}} = \frac{9 - 2 \cdot \frac{3}{2}}{\frac{3}{2}} \Omega = 4 \Omega$$

$$I(t) = \frac{U_o}{R} e^{-\frac{t}{RC}} \frac{1-000}{0}$$

$$= 0 \quad 0 = I_2 + I_3$$

$$I_3 = -I_2$$

$$\sim_0 I_3(\infty) = -\frac{U_2}{2R} = -\frac{3}{4}A$$

$$Q(t) = U_0 \cdot C \cdot (1 - e^{\frac{t}{RC}}) = 3V \cdot 5\mu F = 15\mu C$$

$$= U_2 \qquad \sim 0 \text{ Shizze now } 4 \text{ now recluent}$$