CORRECTIONS TDS TESTS NON PARAMÉTRIQUES

Juin 2020

Exercice 1

• **Énoncé**: On observe les 10 valeurs suivantes pour $X_1, ..., X_{10}$

Proposez un test au niveau 5% pour tester l'adéquation à la loi uniforme $\mathcal{U}([0,1])$.

• Correction : le test de Kolmogorov est bien adapté à ce problème d'adéquation. La fonction de répartition de la loi uniforme $\mathcal{U}([0,1])$ est $F(x)=\mathbbm{1}_{[0,1]}(x)$. Donc la statistique du test s'écrit

x_i	0.15	0.18	0.22	0.26	0.39	0.53	0.62	0.7	0.96	0.99
E_i^-	0.15	0.08	0.02	0.04	0.01	0.03	0.02	0	0.16	0.09
E_i^+	0.05	0.02	0.08	0.14	0.11	0.07	0.08	0.10	0.06	0.01
$Max(E_i^+, E_i^-)$	0.15	0.08	0.08	0.14	0.11	0.07	0.08	0.10	0.16	0.09

Donc $D_n=0.16$. Les tables donnent un seuil $S_{10,0.05}=0.4093$, ce qui signifie qu'on accepte l'hypothèse H_0 avec un risque $\alpha=0.05$.

La syntaxe Matlab est pour une loi normale [H,P,KSSTAT,CV] = kstest(x,Alpha',0.05), et pour une loi uniforme [H,P,KSSTAT,CV] = kstest(x,'cdf',[x',unicdf(x,0,1)]','Alpha',0.05) où x est une ligne contenant toutes les données.

n\ ^a	0.001	0.01	0.02	0.05	0.1	0.15	0.2
1		0.99500	0.99000	0.97500	0.95000	0.92500	0.90000
2	0.97764	0.92930	0.90000	0.84189	0.77639	0.72614	0.68377
3	0.92063	0.82900	0.78456	0.70760	0.63604	0.59582	0.56481
4	0.85046	0.73421	0.68887	0.62394	0.56522	0.52476	0.49265
5	0.78137	0.66855	0.62718	0.56327	0.50945	0.47439	0.44697
6	0.72479	0.61660	0.57741	0.51926	0.46799	0.43526	0.41035
7	0.67930	0.57580	0.53844	0.48343	0.43607	0.40497	0.38145
8	0.64098	0.54180	0.50654	0.45427	0.40962	0.38062	0.35828
9	0.60846	0.51330	0.47960	0.43001	0.38746	0.36006	0.33907
10	0.58042	0.48895	0.45662	0.40925	0.36866	0.34250	0.32257
11	0.55588	0.46770	0.43670	0.39122	0.35242	0.32734	0.30826
12	0.53422	0.44905	0.41918	0.37543	0.33815	0.31408	0.29573
13	0.51490	0.43246	0.40362	0.36143	0.32548	0.30233	0.28466
14	0.49753	0.41760	0.38970	0.34890	0.31417	0.29181	0.27477
15	0.48182	0.40420	0.37713	0.33760	0.30397	0.28233	0.26585
16	0.46750	0.39200	0.36571	0.32733	0.29471	0.27372	0.25774
17	0.45440	0.38085	0.35528	0.31796	0.28627	0.26587	0.25035
18	0.44234	0.37063	0.34569	0.30936	0.27851	0.25867	0.24356
19	0.43119	0.36116	0.33685	0.30142	0.27135	0.25202	0.23731
20	0.42085	0.35240	0.32866	0.29407	0.26473	0.24587	0.23152
25	0.37843	0.31656	0.30349	0.26404	0.23767	0.22074	0.20786
30	0.34672	0.28988	0.27704	0.24170	0.21756	0.20207	0.19029
35	0.32187	0.26898	0.25649	0.22424	0.20184	0.18748	0.17655
40	0.30169	0.25188	0.23993	0.21017	0.18939	0.17610	0.16601
45	0.28482	0.23780	0.22621	0.19842	0.17881	0.16626	0.15673
50	0.27051	0.22585	0.21460	0.18845	0.16982	0.15790	0.14886
	1.94947	1.62762	1.51743	1.35810	1.22385	1.13795	1.07275
OVER 50	√ n	√ n	√ n	√ n	√ n	√ n	√ n

Valeurs du seuil pour le test de Kolmogorov (un échantillon).

• Énoncé : Huit individus sont traités avec le soporifique S et huit autres individus avec un produit inactif I. Pour chacun des 16 sujets, le temps de sommeil moyen après traitement a été enregistré : X_i représente le temps de sommeil moyen pour l'individu i traité avec le soporifique (S) et Y_i représente le temps de sommeil moyen pour l'individu j traité avec le produit (I). On a observé (en minutes)

individus	1	2	3	4	5	6	7	8
$x_i(S)$	578	568	548	478	458	538	618	548
$y_j(I)$	430	360	430	570	490	480	380	400

- 1. Peut-on considérer que les deux échantillons sont indépendants ?
- 2. Peut-on conclure à l'efficacité du soporifique ? Proposez deux tests pour répondre à cette question. Vous préciserez bien le modèle utilisé, les hypothèses testées, les statistiques de test utilisées, la zone de rejet ainsi que les conclusions des deux tests proposés pour un niveau $\alpha = 5\%$.

Correction

- 1. Les deux échantillons concernent des individus différents donc on peut supposer qu'ils sont indépendants.
- 2. Une première approche pour tester l'efficacité du soporifique est de tester si les lois de $x_i(S)$ et de $y_i(I)$ sont différentes ou pas. On peut alors utiliser le test de Kolmogorov-Smirnov qui rejette H_0 si

$$D_{n,n} = \frac{1}{n} \max_{i \in \{1, \dots, 2n\}} \left| 2 \sum_{k=1}^{j} \alpha_k - j \right| > S_{n,\alpha}$$

avec $\alpha_k = 1$ si la kème plus petite observation appartient à la suite y et $\alpha_k = 0$ dans le cas contraire. Les deux échantillons ordonnés sont

$$y_2 = 360 < y_7 = 380 < y_8 = 400 < y_1 = 430 = y_3 < x_5 = 458 < x_4 = 478 < y_6 = 480$$

 $< y_5 = 490 < x_6 = 538 < x_3 = x_8 = 548 < x_2 = 568 < y_4 = 570 < x_1 = 578 < x_7 = 618$

donc

- Variables α_k

$$\begin{aligned} \alpha_1 &= 1, \alpha_2 = 1, \alpha_3 = 1, \alpha_4 = 1, \alpha_5 = 1, \alpha_6 = 0, \alpha_7 = 0, \alpha_8 = 1 \\ \alpha_9 &= 1, \alpha_{10} = 0, \alpha_{11} = 0, \alpha_{12} = 0, \alpha_{13} = 0, \alpha_{14} = 1, \alpha_{15} = 0, \alpha_{16} = 0 \end{aligned}$$

- $\begin{array}{lll} \textbf{- Valeurs de} \sum_{k=1}^{j} \alpha_k &: & 1,2,3,4,5,5,5,6,7,7,7,7,8,8,8 \\ \textbf{- Valeurs de} \left| 2 \sum_{k=1}^{j} \alpha_k j \right| &: & 1,2,3,4,5,4,3,4,5,4,3,2,1,2,1,0 \end{array}$
- Statistique de test : $D_{n,n} = 5/8 = 0.625$
- p-value : p = 0.0248

Donc on rejette H_0 avec $\alpha = 0.05$, ce qui signifie que le soporifique semble efficace.

- Si on se fixe un risque de première espèce $\alpha = 0.05$, on trouve un seuil $S_{0.05} = \frac{4}{8} < D_{n,n} = 5/8$ donc on rejette l'hypothèse H_0 avec un risque $\alpha=0.05$.

Remarques

- La commande Matlab est [h,p,ks2stat] = kstest2(y,x,'tail','larger') (fonction de répartition de l'échantillon y supérieure à celle de l'échantillon x) avec

x = [578, 568, 548, 478, 458, 538, 618, 548] et y = [430, 360, 430, 570, 490, 480, 380, 400]car le test est unilatéral. Pour un test bilatéral, on utiliserait [h,p,ks2stat] = kstest2(x,y).

3

 Table A.15
 Quantiles of the Kolmogorov-Smirnov Test Statistic $D_{n,m}$ When n=m

The table gives the upper $100(1-\alpha)$ % quantile $\hat{d}_{n,m}$ of the sampling distribution of $\hat{D}_{n,m}$ such that $P(\hat{D}_{n,m} \leq \hat{d}_{n,m,1-\alpha}) = 1-\alpha$ or $P(\hat{D}_{n,m} \geq \hat{d}_{n,m,1-\alpha}) = \alpha$ (e.g., for n=m=15 and $\alpha=0.05$, the one-tail critical region is $\Re = \{\hat{d}_{15,15}|\hat{d}_{15,15} \geq \hat{d}_{15,15,0.95} = 0.40\}$; the two-tail critical region is $\Re = \{\hat{d}_{15,15}|\hat{d}_{15,15} \geq \hat{d}_{15,15,0.95} = 0.467\}$).

One-Sided Test											
$1-\alpha=$	0.90	0.95	0.975	0.99	0.995	$1-\alpha =$	0.90	0.95	0.975	0.99	0.995
Two-Sided Test											
$1-\alpha=$	0.80	0.90	0.95	0.98	0.99	$1-\alpha =$	0.80	0.90	0.95	0.98	0.99
n = 3	2/3	2/3				n = 20	6/20	7/20	8/20	9/20	10/20
4	3/4	3/4	3/4			21	6/21	7/21	8/21	9/21	10/21
5	3/5	3/5	4/5	4/5	4/5	22	7/22	8/22	8/22	10/22	10/22
6	3/6	4/6	4/6	5/6	5/6	23	7/23	8/23	9/23	10/23	10/23
7	4/7	4/7	5/7	5/7	5/7	24	7/24	8/24	9/24	10/24	11/24
8	4/8	4/8	5/8	5/8	6/8	25	7/25	8/25	9/25	10/25	11/25
9	4/9	5/9	5/9	6/9	6/9	26	7/26	8/26	9/26	10/26	11/26
10	4/10	5/10	6/10	6/10	7/10	27	7/27	8/27	9/27	11/27	11/27
11	5/11	5/11	6/11	7/11	7/11	28	8/28	9/28	10/28	11/28	12/28
12	5/12	5/12	6/12	7/12	7/12	29	8/29	9/29	10/29	11/29	12/29
13	5/13	6/13	6/13	7/13	8/13	30	8/30	9/30	10/30	11/30	12/30
14	5/14	6/14	7/14	7/14	8/14	31	8/31	9/31	10/31	11/31	12/31
15	5/15	6/15	7/15	8/15	8/15	32	8/32	9/32	10/32	12/32	12/32
16	6/16	6/16	6/25	8/16	12/15	34	8/34	10/34	11/34	12/34	13/34
17	9/29	7/17	7/17	8/22	9/17	36	9/36	10/36	11/36	12/36	13/36
18	6/18	7/18	8/18	9/18	9/19	38	9/38	10/38	11/38	13/38	14/38
19	6/19	7/19	8/19	9/19	9/19	40	9/40	10/40	12/40	13/40	14/40
						Approximation	1.52	1.73	1.92	2.15	2.30
						Approximation	\sqrt{n}	\sqrt{n}	\sqrt{n}	\sqrt{n}	\sqrt{n}
						for $n > 40$:				-	

Valeurs du seuil pour le test de Kolmogorov-Smirnov (deux échantillons de mêmes tailles n=m).

- 3. Une deuxième approche consiste à effectuer un test de Mann-Whitney qui permet de tester si la loi des x_i de fonction de répartition G vérifie G > F, où F est la fonction de répartition des y_j (ce qui correspond à tester si les valeurs de x_i sont supérieures aux valeurs de y_j).
 - Suite ordonnée z(.) = (360, 380, 400, 430, 430, 458, 478, 480, 490, 538, 548, 548, 568, 570, 578, 618)
 - Médicaments associés

$$(y_2, y_7, y_8, y_1 = y_3, x_5, x_4, y_6, y_5, x_6, x_3 = x_8, x_2, y_4, x_1, x_7)$$

- rangs des y_j

$$r_1 = 4.5, r_2 = 1, r_3 = 4.5, r_4 = 14, r_5 = 9, r_6 = 8, r_7 = 2, r_8 = 3$$
 et $W = \sum_{i=1}^{8} r_i = 46$

- Statistique de Mann-Whitney : $U_{\rm obs} = W \frac{8 \times 9}{2} = 10$
- p-value : en utilisant l'approximation normale de la loi de Mann-Whitney avec correction continuité, on obtient

$$p$$
-value = $F\left(\frac{U_{\text{obs}} - E[U]}{\sigma}\right)$

avec $E[U] = \frac{nm}{2} - 0.5$ et $\sigma^2 = \frac{nm(n+m+1)}{12}$ et F est la fonction de répartition de la loi normale $\mathcal{N}(0,1)$. Après application numérique, on obtient p-value ≈ 0.012 . Donc on rejette H_0 (définie par F=G) avec $\alpha=0.05$, i.e., on décide que le soporifique S a plus d'effet sur le sommeil que le produit I, avec ce risque $\alpha=0.05$.

- Pour $\alpha = 0.05$, les tables du test unilatéral de Mann-Whitney donnent un seuil $S_{0.05} = 15 > U = 10$, donc on rejette H_0 avec ce risque α .
- Pour $\alpha=0.05$, les tables du test unilatéral de Wilcoxon (test unilatéral à gauche WS) donnent un seuil $S_{0.05}=51>W=46$, ce qui confirme le rejet de H_0 avec ce risque α .

Remarque:

- Sous Matlab, la commande est [p,h,stats] = ranksum(y,x,'tail','left') (car on calcule les rangs du premier échantillon, ici y, et "left" indique qu'on cherche si les valeurs de y_i sont inférieures aux valeurs de x_i).
- sous R, la somme des rangs est la statistique de Mann-Whitney, donc il faut retrancher m(m+1)/2 pour avoir U.

										n	lı								
n_2	α	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	.05	0	0	1	2	2	3	4	4	5	5	6	7	7	8	9	9	10	11
3	.01		0	0	0	0	0	1	1	1	2	2	2	3	3	4	4	4	5
	.05	0	1	2	3	4	5	6	7	8	9	10	11	12	14	15	16	17	18
4	.01			0	1	1	2	3	3	4	5	5	6	7	7	8	9	9	10
-	.05	1	2	4	5	6	8	9	11	12	13	15	16	18	19	20	22	23	25
5	.01		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
6	.05	2	3	5	7	8	10	12	14	16	17	19	21	23	25	26	28	30	32
0	.01		1	2	3	4	6	7	8	9	11	12	13	15	16	18	19	20	22
7	.05	2	4	6	8	11	13	15	17	19	21	24	26	28	30	33	35	37	39
	.01	0	1	3	4	6	7	9	11	12	14	16	17	19	21	23	24	26	28
8	.05	3	5	8	10	13	15	18	20	23	26	28	31	33	36	39	41	44	47
	.01	0	2	4	6	7	9	11	13	15	17	20	22	24	26	28	30	32	34
9	.05	4	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48	51	54
	.01	1	3	5	7	9	11	14	16	18	21	23	26	28	31	33	36	38	40
10	.05	4	7	11	14	17	20	24	27	31	34	37	41	44	48	51	55	58	62
10	.01	1	3	6	8	11	13	16	19	22	24	27	30	33	36	38	41	44	47
11	.05	5	8	12	16	19	23	27	31	34	38	42	46	50	54	57	61	65	69
11	.01	1	4	7	9	12	15	18	22	25	28	31	34	37	41	44	47	50	53
12	.05	5	9	13	17	21	26	30	34	38	42	47	51	55	60	64	68	72	77
12	.01	2	5	8	11	14	17	21	24	28	31	35	38	42	46	49	53	56	60
13	.05	6	10	15	19	24	28	33	37	42	47	51	56	61	65	70	75	80	84
13	.01	2	5	9	12	16	20	23	27	31	35	39	43	47	51	55	59	63	67
14	.05	7	11	16	21	26	31	36	41	46	51	56	61	66	71	77	82	87	92
1.4	.01	2	6	10	13	17	22	26	30	34	38	43	47	51	56	60	65	69	73
15	.05	7	12	18	23	28	33	39	44	50	55	61	66	72	77	83	88	94	100
10	.01	3	7	11	15	19	24	28	33	37	42	47	51	56	61	66	70	75	80
16	.05	8	14	19	25	30	36	42	48	54	60	65	71	77	83	89	95	101	107
	.01	3	7	12	16	21	26	31	36	41	46	51	56	61	66	71	76	82	87
17	.05	9	15	20	26	33	39	45	51	57	64	70	77	83	89	96	102	109	115
- '	.01	4	8	13	18	23	28	33	38	44	49	55	60	66	71	77	82	88	93
18	.05	9	16	22	28	35	41	48	55	61	68	75	82	88	95	102	109	116	123
	.01	4	9	14	19	24	30	36	41	47	53	59	65	70	76	82	88	94	100
19	.05	10	17	23	30	37	44	51	58	65	72	80	87	94	101	109	116	123	130
	.01	4	9	15	20	26	32	38	44	50	56	63	69	75	82	88	94	101	107
20	.05	11	18	25	32	39	47	54	62	69	77	84	92	100	107	115	123	130	138
	.01	5	10	16	22	28	34	40	47	53	60	67	73	80	87	93	100	107	114

Tables pour le test unilatéral de Mann-Whitney.

Tables pour le test unilatéral de Wilcoxon.

• Énoncé: Dans une usine, on a du mal à fixer le taux d'acidité des yaourts. En comparant ce taux pour 10 pots après 5 heures de fabrication au taux pour ces mêmes 10 pots juste au moment de la fabrication, on obtient:

$0h:x_i$	12.51	12.48	12.91	12.56	12.58	12.82	12.53	12.50	12.51	12.42
$5h:y_i$	12.82	12.79	12.74	12.88	12.82	12.40	12.84	12.81	12.91	12.39

- 1. Peut-on considérer que les échantillons $(X_1,...,X_n)$ et $(Y_1,...,Y_n)$ sont indépendants ?
- 2. On considère les variables $Z_i = Y_i X_i$ pour i = 1, ..., n. On supposera dans un premier temps que les variables Z_i sont i.i.d. de loi normale. Proposez un test, basé sur $(Z_1, ..., Z_n)$ pour tester s'il y a eu une variation significative du taux d'acidité.
- 3. On ne suppose plus que les Z_i sont de loi normale et on introduit la variable

$$N = \sum_{i=1}^{n} \mathbb{1}_{Z_i \ge 0}$$

Quelle est la loi de N sous l'hypothèse que la médiane des variables Z_i est nulle ?

4. En utilisant la variable N, testez s'il y a eu une variation significative du taux d'acidité.

Correction

- Comme les deux échantillons correspondent aux mêmes pots à différents instants, on ne peut supposer qu'ils sont indépendants. On parle d'échantillons appariés.
- 2. Si on peut supposer que les variables $Z_i = Y_i X_i$ sont i.i.d. normales, on peut faire un test de Student avec les hypothèses $H_0: m = 0$ et $H_1: m \neq 0$, où m est la moyenne de Z_i . Ce test est défini par

Rejet de
$$H_0$$
 si $T_n = \left| \sqrt{n} rac{ar{Z}}{S_n}
ight| > S_{n,lpha}$

avec $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n \left(Z_i - \bar{Z} \right)^2$ et $\bar{Z} = \frac{1}{n} \sum_{i=1}^n Z_i$, avec un seuil $S_{n,\alpha} = F_{n-1}^{-1} (1-\alpha)$, F_{n-1} étant la fonction de répartition d'une loi de Student à n-1 degrés de liberté. Quelques calculs numériques permettent d'obtenir $T_n \approx 1.84$ et $S_{10,0.05} \approx 2.26$. On accepte donc l'hypothèse H_0 avec $\alpha = 0.05$, ce qui signifie qu'il n'y a pas de variation significative du taux d'acidité après 5 heures.

- 3. Comme la médiane des Z_i est nulle, on a $P[Z_i \ge 0] = 1/2$ et comme les variables Z_i sont indépendantes, N suit une loi binomiale $\mathcal{B}(n, 1/2)$.
- 4. On peut rejeter H_0 si $N > S_{n,\alpha}$.

• Énoncé : On pèse 20 plaquettes de beurre pris au hasard dans une production normande. Les résultats, en grammes, sont :

247.0	247.8	250.2	251.3	251.9	249.4	248.8	247.1	255.0	247.0
254.8	244.8	250.7	250.7	252.6	251.1	254.1	249.2	252.0	254.0

On suppose que le poids en grammes d'une plaquette de beurre de cette production peut être modélisé par une v.a.r X. Peut-on affirmer que X suit une loi normale ?

• Correction : avec un nombre de données aussi faible, la superposition de l'histogramme et de la densité de probabilité de la loi normale de moyenne $\hat{m} = \bar{x}$ et de variance $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n \left(x_i - \bar{x}\right)^2$ est peu informative, comme le montre la figure ci-dessous

Il est donc plus judicieux d'appliquer un des tests de normalité du cours.

- Test de Lilliefors : la valeur de la statistique de test est $D_n = 0.0912$ et le seuil associé est $S_{20,0.05} = 0.1920$ donc on accepte l'hypothèse de normalité avec le risque $\alpha = 0.05$ (la p-valeur vérifie p > 0.50).

La commande Matlab est x = [247.0, 247.8, 250.2, 251.3, 251.9, 249.4, 248.8, 247.1, 255.0, 247.0, 254.8, ...] et [H,P,KSTAT,critval] = lillietest(x).

- Test de Shapiro-Wilk : la statistique du test de Shapiro-Wilk est $SW_n = 0.9698$ tandis que le seuil associé est $S_{20,0.05} = 0.905$ donc on accepte également l'hypothèse de normalité avec le risque $\alpha = 0.05$ (la p-valeur est p = 0.7516).

8

La commande Matlab est [H, pValue, SWstatistic] = swtest(x, 0.05).

n\ ^a	0.01	0.05	0.10	0.15	0.20
16	0.2477	0.2128	0.1956	0.1843	0.1758
17	0.2408	0.2071	0.1902	0.1794	0.1711
18	0.2345	0.2018	0.1852	0.1747	0.1666
19	0.2285	0.1965	0.1803	0.1700	0.1624
20	0.2226	0.1920	0.1764	0.1666	0.1589
21	0.2190	0.1881	0.1726	0.1629	0.1553
22	0.2141	0.1840	0.1690	0.1592	0.1517
23	0.2090	0.1798	0.1650	0.1555	0.1484
24	0.2053	0.1766	0.1619	0.1527	0.1458
25	0.2010	0.1726	0.1589	0.1498	0.1429
26	0.1985	0.1699	0.1562	0.1472	0.1406
27	0.1941	0.1665	0.1533	0.1448	0.1381
28	0.1911	0.1641	0.1509	0.1423	0.1358
29	0.1886	0.1614	0.1483	0.1398	0.1334
30	0.1848	0.1590	0.1460	0.1378	0.1315
31	0.1820	0.1559	0.1432	0.1353	0.1291
32	0.1798	0.1542	0.1415	0.1336	0.1274
33	0.1770	0.1518	0.1392	0.1314	0.1254
34	0.1747	0.1497	0.1373	0.1295	0.1236
35	0.1720	0.1478	0.1356	0.1278	0.1220
36	0.1695	0.1454	0.1336	0.1260	0.1203
37	0.1677	0.1436	0.1320	0.1245	0.1188
38	0.1653	0.1421	0.1303	0.1230	0.1174
39	0.1634	0.1402	0.1288	0.1214	0.1159
40	0.1616	0.1386	0.1275	0.1204	0.1147
41	0.1599	0.1373	0.1258	0.1186	0.1131
42	0.1573	0.1353	0.1244	0.1172	0.1119
43	0.1556	0.1339	0.1228	0.1159	0.1106
44	0.1542	0.1322	0.1216	0.1148	0.1095
45	0.1525	0.1309	0.1204	0.1134	0.1083
46	0.1512	0.1293	0.1189	0.1123	0.1071
47	0.1499	0.1282	0.1180	0.1113	0.1062
48	0.1476	0.1269	0.1165	0.1098	0.1047
49	0.1463	0.1256	0.1153	0.1089	0.1040
50	0.1457	0.1246	0.1142	0.1079	0.1030
O) ED ES	1.035	0.895	0.819	0.775	0.741
OVER 50	f(n)	f(n)	f(n)	f(n)	f(n)

where

$$f(n) = \frac{.83 + n}{\sqrt{n}} - .01$$

Valeurs du seuil pour le test de Lilliefors.

Table 4b : table des valeurs limites W_{α} de $W=\frac{b^2}{Z^2}$ pour les risques $\alpha=5$ % et 1 %
(Biometrika 1965)

_	Risque 5 %	Risque 1 %
n	W _{0,05}	W _{0,01}
5	0,762	0,686
6	0,788	0,713
7	0,803	0,730
8	0,818	0,749
9	0,829	0,764
10	0,842	0,781
11	0,850	0,792
12	0,859	0,805
13	0,866	0,814
14	0,874	0,825
15	0,881	0,835
16	0,887	0,844
17	0,892	0,851
18	0,897	0,858
19	0,901	0,863
20	0,905	0,868
21	0,908	0,873
22	0,911	0,878
23	0,914	0,881
24		0,884
25	0,916	0,888
26	0,918 0,920	0,891
27		
28	0,923 0,924	0,894
29		0,896 0,898
	0,926	
30	0,927	0,900
31	0,929	0,902
32	0,930	0,904
33	0,931	0,906
34	0,933	0,908
35	0,934	0,910
36	0,935	0,912
37	0,936	0,914
38	0,938	0,916
39	0,939	0,917
40	0,940	0,919
41	0,941	0,920
42	0,942	0,922
43	0,943	0,923
44	0,944	0,924
45	0,945	0,926
46	0,945	0,927
47	0,946	0,928
48	0,947	0,929
49	0,947	0,929
50	0,947	0,930

Valeurs du seuil pour le test de Shapiro-Wilk.

- Énoncé : Pour comparer la proportion de personnes atteintes par la grippe en ville et à la campagne, deux échantillons ont été étudiés :
 - sur 100 personnes habitant une grande agglomération, on a observé une proportion $p_0 = 0.24$ de sujets ayant eu la grippe.
 - sur 100 personnes habitant à la campagne, on a observé une proportion $p_1 = 0.20$ de sujets ayant eu la grippe.

Selon vous, la proportion de sujets atteints par la grippe est-elle différente en ville et à la campagne ?

• Correction : il suffit d'effectuer un test du χ^2 d'homogénéité pour déterminer si les deux lois définies sur l'ensemble {Grippe, Non-grippe} sont identiques ou pas.

	Ville	Campagne	N_k .
Grippe	24	20	44
Non-Grippe	76	80	156
$N_{.l}$	100	100	n = 200

Les effectifs théoriques sous l'hypothèse H_0 sont

	Ville	Campagne
Grippe	$\frac{44 \times 100}{200} = 22$	$\frac{44 \times 100}{200} = 22$
Non-Grippe	$\frac{156 \times 100}{200} = 78$	$\frac{156 \times 100}{200} = 78$

La statistique du test du χ^2 d'homogénéité est donc

$$\phi = \frac{(24-22)^2}{22} + \frac{(76-78)^2}{78} + \frac{(20-22)^2}{22} + \frac{(80-78)^2}{78} = \frac{4}{11} + \frac{4}{39} \approx 0.47.$$

Puisque $(K-1)\times (L-1)=1$, le seuil du test s'écrit $S_\alpha=F_1^{-1}(0.95)=3.84$ (où F_1 est la fonction de répartition d'une loi du χ_1^2). Donc on accepte l'hypothèse H_0 avec le risque $\alpha=0.05$ (la p-valeur est $p=1-F_1(0.47)=0.4947$), i.e., on peut accepter que les proportions de sujets atteints par la grippe en ville et à la campagne sont similaires. *Remarque*: la table indique que la p-valeur est dans l'intervalle]0.2,0.8[, ce qui est suffisant pour prendre une décision avec les risques habituels $\alpha=0.01$ et $\alpha=0.05$.

р	0,999	0,995	0,99	0,98	0,95	0,9	0,8	0,2	0,1	0,05	0,02	0,01	0,005	0,001
ddl														
1	0,0000	0,0000	0,0002	0,0006	0,0039	0,0158	0,0642	1,6424	2,7055	3,8415	5,4119	6,6349	7,8794	10,8276
2	0,0020	0,0100	0,0201	0,0404	0,1026	0,2107	0,4463	3,2189	4,6052	5,9915	7,8240	9,2103	10,5966	13,8155
3	0,0243	0,0717	0,1148	0,1848	0,3518	0,5844	1,0052	4,6416	6,2514	7,8147	9,8374	11,3449	12,8382	16,2662
4	0,0908	0,2070	0,2971	0,4294	0,7107	1,0636	1,6488	5,9886	7,7794	9,4877	11,6678	13,2767	14,8603	18,4668
5	0,2102	0,4117	0,5543	0,7519	1,1455	1,6103	2,3425	7,2893	9,2364	11,0705	13,3882	15,0863	16,7496	20,5150
6	0,3811	0,6757	0,8721	1,1344	1,6354	2,2041	3,0701	8,5581	10,6446	12,5916	15,0332	16,8119	18,5476	22,4577
7	0,5985	0,9893	1,2390	1,5643	2,1673	2,8331	3,8223	9,8032	12,0170	14,0671	16,6224	18,4753	20,2777	24,3219
8	0,8571	1,3444	1,6465	2,0325	2,7326	3,4895	4,5936	11,0301	13,3616	15,5073	18,1682	20,0902	21,9550	26,1245
9	1,1519	1,7349	2,0879	2,5324	3,3251	4,1682	5,3801	12,2421	14,6837	16,9190	19,6790	21,6660	23,5894	27,8772
10	1,4787	2,1559	2,5582	3,0591	3,9403	4,8652	6,1791	13,4420	15,9872	18,3070	21,1608	23,2093	25,1882	29,5883
11	1,8339	2,6032	3,0535	3,6087	4,5748	5,5778	6,9887	14,6314	17,2750	19,6751	22,6179	24,7250	26,7568	31,2641
12	2,2142	3,0738	3,5706	4,1783	5,2260	6,3038	7,8073	15,8120		21,0261	24,0540	26,2170	28,2995	32,9095
13	2,6172	3,5650	4,1069	4,7654	5,8919	7,0415	8,6339	16,9848	19,8119	22,3620	25,4715	27,6882	29,8195	34,5282
14	3,0407	4,0747	4,6604	5,3682	6,5706	7,7895	9,4673	18,1508	21,0641	23,6848	26,8728	29,1412	31,3193	36,1233
15	3,4827	4,6009	5,2293	5,9849	7,2609	8,5468	10,3070	19,3107	22,3071	24,9958	28,2595	30,5779	32,8013	37,6973
16	3,9416	5,1422	5,8122	6,6142	7,9616	9,3122	11,1521	20,4651	23,5418	26,2962	29,6332	31,9999	34,2672	39,2524
17	4,4161	5,6972	6,4078	7,2550	8,6718		12,0023	21,6146		27,5871	30,9950	33,4087	35,7185	40,7902
18	4,9048	6,2648	7,0149	7,9062	9,3905	10,8649	12,8570	22,7595	25,9894	28,8693	32,3462	34,8053	37,1565	42,3124
19	5,4068	6,8440	7,6327	8,5670	10.1170		13,7158		27,2036	30,1435	33,6874	36,1909	38,5823	43,8202
20	5,9210	7,4338	8,2604	9,2367	10,8508		14,5784	25,0375	28,4120	31,4104	35,0196	37,5662	39,9968	45,3147
21	6,4467	8,0337	8,8972	9,9146	11.5913	13,2396	15,4446	26,1711	29,6151	32,6706	36,3434	38,9322	41,4011	46,7970
22	6,9830	8,6427	9,5425	10,6000	12,3380		16,3140	27,3015	30,8133	33,9244	37,6595	40,2894	42,7957	48,2679
23	7,5292	9,2604	10,1957	11,2926	13,0905	14,8480	17,1865	28,4288	32,0069	35,1725	38,9683	41,6384	44,1813	49,7282
24	8,0849	9,8862	10,8564	11,9918	13,8484	15,6587	18,0618	29,5533	33,1962	36,4150	40,2704	42,9798	45,5585	51,1786
25	8,6493	10,5197	11,5240	12,6973	14,6114	16,4734	18,9398	30,6752	34,3816	37,6525	41,5661	44,3141	46,9279	52,6197
26	9,2221	11,1602	12,1981	13,4086	15,3792	17,2919	19,8202	31,7946	35,5632	38,8851	42,8558	45,6417	48,2899	54,0520
27	9,8028	11,8076	12,8785	14,1254	16,1514	18,1139	20,7030	32,9117	36,7412	40,1133	44,1400	46,9629	49,6449	55,4760
28	10,3909	12,4613	13,5647	14,8475	16,9279	18,9392	21,5880	34,0266	37,9159	41,3371	45,4188	48,2782	50,9934	56,8923
29	10,9861	13,1211	14,2565	15,5745	17,7084	19,7677	22,4751	35,1394	39,0875	42,5570	46,6927	49,5879	52,3356	58,3012
30	11,5880	13,7867	14,9535	16,3062	18,4927	20,5992	23,3641	36,2502	40,2560	43,7730	47,9618	50,8922	53,6720	59,7031
40	17,9164	20,7065	22,1643	23,8376	26,5093	29,0505	32,3450	47,2685	51,8051	55,7585	60,4361	63,6907	66,7660	73,4020
50	24,6739	27,9907	29,7067	31,6639	34,7643	37,6886	41,4492	58,1638	63,1671	67,5048	72,6133	76,1539	79,4900	86,6608
60	31,7383	35,5345	37,4849	39,6994	43,1880	46,4589	50,6406	68,9721	74,3970	79,0819	84,5799	88,3794	91,9517	99,6072
70	39,0364	43,2752	45,4417	47,8934	51,7393	55,3289	59,8978	79,7146	85,5270	90,5312	96,3875	100,4252	104,2149	112,3169
80	46,5199	51,1719	53,5401	56,2128	60,3915	64,2778	69,2069	90,4053	96,5782	101,8795	108,0693	112,3288	116,3211	124,8392
90	54,1552	59,1963	61,7541	64,6347	69,1260	73,2911		101,0537				124,1163	128,2989	137,2084
100	61,9179	67,3276	70,0649	73,1422	77,9295		87,9453	111,6667	118,4980	124,3421	131,1417	135,8067	140,1695	149,4493
120	77,7551	83,8516	86,9233	90,3667		100,6236						158,9502	163,6482	173,6174
140	93,9256					119,0293						181,8403	186,8468	197,4508
160	110,3603	117,6793	121,3456	125,4400	131,7561	137,5457	144,7834	174,8283	183,3106	190,5165	198,8464	204,5301	209,8239	221,0190
180		134,8844										227,0561	232,6198	244,3705
200		152,2410										249,4451	255,2642	267,5405
250	186,5541					221,8059						304,9396	311,3462	324,8324
300		240,6634										359,9064	366,8444	381,4252
400		330,9028										468,7245	476,6064	493,1318
500		422,3034										576,4928	585,2066	603,4460
600		514,5289										683,5156	692,9816	712,7712
700		607,3795										789,9735	800,1314	821,3468
800		700,7250											906,7862	929,3289
900	774,5698	794,4750	804,2517	815,0267	831,3702	846,0746	864,1125	935,4987	954,7819	970,9036	989,2631	1001,6296	1013,0364	1036,8260

Table du χ^2 .

• Énoncé : Une urne contient des boules de quatre couleurs différentes avec des proportions inconnues. On tire au hasard 160 boules avec remise et l'on obtient les proportions suivantes sur l'échantillon observé :

Couleur	Noir	Rouge	Jaune	Vert	Total
Effectifs observés	100	18	24	18	160

- 1. Accepteriez-vous, au seuil $\alpha=0.05$, l'hypothèse que les proportions de boules noires, rouges, jaunes et vertes soient respectivement 9/16, 3/16, 3/16 et 1/16 ? Soyez précis dans votre réponse : vous donnerez la statistique de test ainsi que sa loi asymptotique sous l'hypothèse nulle et la zone de rejet. En utilisant les tables de la loi du χ^2 , donnez un encadrement de la p-valeur du test réalisé.
- 2. On note N_1, N_2, N_3, N_4 le nombre de boules noires, rouges, jaunes et vertes. On souhaite préciser l'inhomogénéité de la répartition, et tester s'il y a autant de boules rouges et jaunes que de vertes, i.e., le taux de boules de chaque couleur est de la forme $(p_1, p_2, p_3, p_4) = (1 3\theta, \theta, \theta, \theta)$. En supposant que (N_1, N_2, N_3, N_4) suit une loi multinomiale de paramètres $(n, (p_1, p_2, p_3, p_4))$ où n est le nombre total de boules dans l'urne, déterminez l'estimateur du maximum de vraisemblance de θ .
- 3. Effectuez un test d'adéquation à la forme postulée pour la loi. Qu'en concluez-vous ?

• Correction

1. On peut effectuer un test du χ^2 défini par

Rejet de
$$H_0$$
 si $\phi_n = \sum_{k=1}^K \frac{(Z_k - np_k)^2}{np_k} > S_{K,\alpha}$

La statistique de test est donc

$$\phi_n = \frac{\left(100 - 160 \times \frac{9}{16}\right)^2}{90} + \frac{\left(18 - 160 \times \frac{3}{16}\right)^2}{30} + \frac{\left(24 - 160 \times \frac{3}{16}\right)^2}{30} + \frac{\left(18 - 160 \times \frac{1}{16}\right)^2}{10} = \frac{608}{45} \approx 13.51.$$

Sous l'hypothèse H_0 , ϕ_n suit asymptotiquement une loi du χ^2_3 , donc

$$S_{K,\alpha} = F_3^{-1}(1-\alpha)$$

où F_3^{-1} est l'inverse de la fonction de répartition d'une loi du χ_3^2 . Pour $\alpha=0.05$, on obtient

$$S_{K,\alpha} = F_3^{-1}(0.95) \approx 7.81.$$

On rejette donc l'hypothèse que les proportions de boules noires, rouges, jaunes et vertes sont respectivement 9/16, 3/16, 3/16 et 1/16. La p-valeur du test est la valeur de α telle que $\phi_n=13.81=S_{K,\alpha}=F_3^{-1}(1-\alpha)$ donc cette p-valeur est égale à $1-F_3(\phi_n)=1-F_3(13.51)$. En utilisant les tables, on en déduit

$$p$$
-valeur $\in]10^{-3}, 5.10^{-3}[.$

2. La loi multinomiale de paramètres $(n,(p_1,p_2,p_3,p_4))$ est définie par

$$P[N_1 = n_1, ..., N_K = n_k] = \frac{n!}{n_1! ... n_k!} p_1^{n_1} ... p_K^{n_K} \propto p_1^{n_1} ... p_K^{n_K}$$

avec $n = \sum_{k=1}^{K} n_i$. Avec $(p_1, p_2, p_3, p_4) = (1 - 3\theta, \theta, \theta, \theta)$, on a

$$P[N_1 = n_1, ..., N_K = n_k] \propto (1 - 3\theta)^{n_1} \theta^{n_2 + n_3 + n_4} = (1 - 3\theta)^{n_1} \theta^{n - n_1}$$

qui est maximum pour θ solution de

$$\frac{-3n_1}{1-3\theta} + \frac{n-n_1}{\theta} = 0 \Leftrightarrow \theta = \frac{1}{3} \left(1 - \frac{n_1}{n} \right).$$

L'estimateur du maximum de vraisemblance de θ est donc

$$\hat{\theta} = \frac{1}{3} \left(1 - \frac{N_1}{n} \right)$$

où N_1 est le nombre de boules noires. L'application numérique donne

$$\hat{\theta} = \frac{1}{8}.$$

3. Dans le cas où on estime un paramètre, la loi asymptotique de ϕ_n sous H_0 est une loi du χ^2_{K-2} . Pour $\alpha=0.05$, le seuil est donc

$$S_{K,0.05} = F_2^{-1}(0.95) \approx 5.99.$$

La statistique de test est donc

$$\phi_n = \frac{\left(100 - 160 \times \frac{5}{8}\right)^2}{100} + \frac{\left(18 - 160 \times \frac{1}{8}\right)^2}{20} + \frac{\left(24 - 160 \times \frac{1}{8}\right)^2}{20} + \frac{\left(18 - 160 \times \frac{1}{8}\right)^2}{20} = \frac{6}{5} = 1.2.$$

Donc on accepte l'hypothèse que le taux de boules de chaque couleur est de la forme $(p_1, p_2, p_3, p_4) = (1 - 3\theta, \theta, \theta, \theta)$ avec $\theta = \frac{1}{8}$.

13

• Énoncé : À une élection, deux candidats se présentent : N. S. et S. R. On demande aux 500 électeurs sondés leur opinion politique (i.e., leur choix à la future élection) mais aussi leur appartenance sociale (Rentiers/Actifs/Retraités). On obtient les résultats suivants :

	N.S.	S. R.	Somme
Rentiers	40	100	140
Actifs	140	210	350
Retraités	77	23	100
Somme	257	333	590

L'opinion politique dépend-elle de l'appartenance sociale ?

• Correction : on demande de tester l'indépendance entre l'opinion politique et l'appartenance sociale des votants. On peut faire ce test à l'aide d'un test du χ^2 d'indépendance. Le test du χ^2 d'indépendance rejette H_0 si

$$I_n = \sum_{k=1}^{K} \sum_{l=1}^{L} \frac{\left(N_{k,l} - \frac{N_{k,.}N_{.,l}}{n}\right)^2}{\frac{N_{k,.}N_{.,l}}{n}} > S_{K,L,\alpha}$$

Pour cet exemple, la statistique de test vaut

$$I_n = \frac{\left(40 - \frac{140 \times 257}{590}\right)^2}{\frac{140 \times 257}{590}} + \dots + \frac{\left(23 - \frac{100 \times 333}{590}\right)^2}{\frac{100 \times 333}{590}} \approx 60.82.$$

Le seuil de décision vaut $S_{\alpha}=F_2^{-1}(0.95)=5.99$ où F_2 est la fonction de répartition d'une loi du χ^2_2 car $(K-1)\times (L-1)=2$. On rejette donc H_0 avec le risque $\alpha=0.05$ et donc on décide que l'opinion politique dépend de l'appartenance sociale avec un risque $\alpha=0.05$ (la p-valeur vaut $p=6.22\times 10^{-14}$).

Exercice 8

• Énoncé: Dans une université, les élèves sont répartis en deux groupes de cours appelés CM1 et CM2. Tous les élèves sont invités à se prononcer pour ou contre la suppression des cours en amphi. Les résultats sont les suivants

	Pour	Contre
CM1	20	80
CM2	40	60

On note $X_i \in \{0,1\}$ l'avis du ième élève (avec $X_i = 1$ si le ième élève est pour et $X_i = 0$ s'il est contre). De même, on note $Y_j \in \{0,1\}$ le cours du jème élève avec $Y_i = 1$ si le ième élève est dans le CM1 et $Y_j = 0$ s'il est dans le CM2.

- 1. Existe-t-il un lien entre l'appartenance d'un élève à l'un des deux groupes de cours et sa décision concernant la suppression des cours en amphi ?
- 2. Les variables $(X_1,...,X_n)$ et $(Y_1,...,Y_n)$ ont-elle la même loi ?
- Correction : Pour déterminer le lien entre les les variables X_i et Y_j , on peut faire un test du χ^2 d'indépendance. Le tableau de contingences pour ce problème est

		Pour	Contre	N_k
(CM1	20	80	100
(CM2	40	60	100
	$N_{.l}$	60	140	200

Le test du χ^2 d'indépendance rejette H_0 si

$$I_n = \sum_{k=1}^{K} \sum_{l=1}^{L} \frac{\left(N_{k,l} - \frac{N_{k,.}N_{.,l}}{n}\right)^2}{\frac{N_{k,.}N_{.,l}}{n}} > S_{K,L,\alpha}$$

14

Pour cet exemple, la statistique de test vaut

$$I_n = \frac{\left(20 - \frac{100 \times 60}{200}\right)^2}{\frac{100 \times 60}{200}} + \frac{\left(80 - \frac{100 \times 140}{200}\right)^2}{\frac{100 \times 140}{200}} + \frac{\left(40 - \frac{100 \times 60}{200}\right)^2}{\frac{100 \times 60}{200}} + \frac{\left(60 - \frac{100 \times 140}{200}\right)^2}{\frac{100 \times 140}{200}}$$

soit

$$I_n = \frac{100}{30} + \frac{100}{70} + \frac{100}{30} + \frac{100}{70} \approx 9.52.$$

Le seuil de décision vaut $S_{\alpha}=F_1^{-1}(0.95)\approx 3.84$ où F_1 est la fonction de répartition d'une loi du χ_1^2 car $(K-1)\times (L-1)=2$. On rejette donc H_0 avec le risque $\alpha=0.05$ ce qui signifie qu'il y a un lien entre l'appartenance d'un élève à l'un des deux cours CM1 et CM2 et sa décision.

• Pour répondre à cette question, on peut utiliser un test du χ^2 d'homogénéité. Le tableau de contingences pour ce problème est

	X_i	Y_j	N_{k}
0	60	100	160
1	140	100	240
$N_{.l}$	200	200	400

La statistique du test d'homogénéité associé est

$$I_n = \frac{\left(60 - \frac{160 \times 200}{400}\right)^2}{\frac{160 \times 200}{400}} + \frac{\left(100 - \frac{160 \times 200}{400}\right)^2}{\frac{160 \times 200}{400}} + \frac{\left(140 - \frac{240 \times 200}{400}\right)^2}{\frac{240 \times 200}{400}} + \frac{\left(100 - \frac{240 \times 200}{400}\right)^2}{\frac{240 \times 200}{400}},$$

soit

$$I_n = \frac{400}{80} + \frac{400}{80} + \frac{400}{120} + \frac{400}{120} \approx 12.67.$$

Le seuil de décision vaut $S_{\alpha}=F_1^{-1}(0.95)\approx 3.84$ où F_1 est la fonction de répartition d'une loi du χ_1^2 car $(K-1)\times (L-1)=2$. On rejette donc H_0 avec le risque $\alpha=0.05$ ce qui signifie que les variables $(X_1,...,X_n)$ et $(Y_1,...,Y_n)$ n'ont pas la même loi.

ANNEXE 4 : Tables de la loi normale

Loi Normale
$$\mathcal{N}(0,1)$$

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du$$

$$\Phi(-x) = 1 - \Phi(x)$$

x	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	0.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	0.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	0.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	0.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	0.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	0.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	0.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7703	.7734	.7764	0.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	0.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	0.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	0.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	0.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	0.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	0.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	0.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	394 .9406 0.9418		.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	0.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	0.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	0.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	0.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	0.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	0.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	0.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	0.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	0.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	0.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	0.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	0.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	0.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	0.9985	.9986	.9986

Fonction de répartition de la loi normale $\mathcal{N}(0,1)$.

n\ ^a	0.01	0.05	0.10	0.15	0.20	
16	0.2477	0.2128	0.1956	0.1843	0.1758	
17	0.2408	0.2071	0.1902	0.1794	0.1711	
18	0.2345	0.2018	0.1852	0.1747	0.1666	
19	0.2285	0.1965	0.1803	0.1700	0.1624	
20	0.2226	0.1920	0.1764	0.1666	0.1589	
21	0.2190	0.1881	0.1726	0.1629	0.1553	
22	0.2141	0.1840	0.1690	0.1592	0.1517	
23	0.2090	0.1798	0.1650	0.1555	0.1484	
24	0.2053	0.1766	0.1619	0.1527	0.1458	
25	0.2010	0.1726	0.1589	0.1498	0.1429	
26	0.1985	0.1699	0.1562	0.1472	0.1406	
27	0.1941	0.1665	0.1533	0.1448	0.1381	
28	0.1911	0.1641	0.1509	0.1423	0.1358	
29	0.1886	0.1614	0.1483	0.1398	0.1334	
30	0.1848	0.1590	0.1460	0.1378	0.1315	
31	0.1820	0.1559	0.1432	0.1353	0.1291	
32	0.1798	0.1542	0.1415	0.1336	0.1274	
33	0.1770	0.1518	0.1392	0.1314	0.1254	
34	0.1747	0.1497	0.1373	0.1295	0.1236	
35	0.1720	0.1478	0.1356	0.1278	0.1220	
36	0.1695	0.1454	0.1336 0.1260		0.1203	
37	0.1677	0.1436	0.1320	0.1245	0.1188	
38	0.1653	0.1421	0.1303	0.1230	0.1174	
39	0.1634	0.1402	0.1288	0.1214	0.1159	
40	0.1616	0.1386	0.1275	0.1204	0.1147	
41	0.1599	0.1373	0.1258	0.1186	0.1131	
42	0.1573	0.1353	0.1244	0.1172	0.1119	
43	0.1556	0.1339	0.1228	0.1159	0.1106	
44	0.1542	0.1322	0.1216	0.1148	0.1095	
45	0.1525	0.1309	0.1204	0.1134	0.1083	
46	0.1512	0.1293	0.1189	0.1123	0.1071	
47	0.1499	0.1282	0.1180	0.1113	0.1062	
48	0.1476	0.1269	0.1165	0.1098	0.1047	
49	0.1463	0.1256	0.1153	0.1089	0.1040	
50	0.1457	0.1246	0.1142	0.1079	0.1030	
OMED EC	1.035	0.895	0.819	0.775	0.741	
OVER 50	f(n)	f(n)	f(n)	f(n)	f(n)	

where

$$f(n) = \frac{.83 + n}{\sqrt{n}} - .01$$

Valeurs du seuil pour le test de Lilliefors.

Table 7 : Coefficients de Shapiro-Wilk :

n= taille de l'échantillon, i= numéro de la différence $\mathbf{d_i}$

	i 1		2	3	4	5	6	7	8	9	10	11	12	13	14	15
l n																
2	0,707	1														
3	0,707	1	0													
4	0,687	2	0,1677													
5	0,664	6	0,2413	0												
6	0,643	1	0,2806	0,0875												
7	0,623	3	0,3031	0,1401	0											
8	0,605	2	0,3164	0,1743	0,0561											
9	0,588	8	0,3244	0,1976	0,0947	0										
10	0,573	9	0,3291	0,2141	0,1224	0,0399										
11	0,560	1	0,3315	0,226	0,1429	0,0695	0									
12	0,547		0,3325	0,2347	0,1586	0,0922	0,0303									
13	0,535	9	0,3325	0,2412	0,1707	0,1099	0,0539	0								
14	0,525	1	0,3318	0,246	0,1802	0,124	0,0727	0,024								
15	0,51	_	0,3306	0,2495	0,1878	0,1353	0,088	0,0433	0							
16	0,505	6	0,329	0,2521	0,1939	0,1447	0,1005	0,0593	0,0196							
17	0,496	3	0,3273	0,254	0,1988	0,1524	0,1109	0,0725	0,0359	0						
18	0,488		0,3253		0,2027	0,1587	0,1197	0,0837		0,0163						
19	0,480		0,3232	0,2561	0,2059	0,1641	0,1271	0,0932	0,0612		0					
20	0,473	_	0,3211	,	0,2085		0,1334									
21	0,464	_	0,3185		0,2119	,	0,1399			,	0,0263	0				
22	0,45	_	0,3156	0,2571	0,2131	0,1764		0,115		0,0618		0,0122				
23	0,454	_	0,3126		0,2139		0,148	0,1201		0,0696		0,0228	0			
24		_	0,3098	0,2554	0,2145	0,1807	0,1512	0,1245		0,0764		0,0321	0,0107			
25	0,44	_	0,3069	0,2543	0,2148		0,1539			0,0823	,	0,0403	0,02	0		
26			0,3043				0,1563			0,0876		0,0476				
27	0,436	_	0,3018	0,2522	0,2152	0,1848	0,1584			0,0923	,	0,054	0,0358	0,0178	0	
28	0,432	_	0,2992	0,251	0,2151	0,1857	0,1601				0,0778	0,0598		0,0253		
29	0,429	_	0,2968	0,2499	0,215	0,1064		0,1395		0,1002		0,065	0,0483	0,032	0,0159	0
30	0,425	4	0,2944	0,2487	0,2148	0,187	0,163	0,1415	0,1219	0,1036	0,0862	0,0697	0,0537	0,0381	0,0227	0,0076

Table des valeurs limites de W

n 5% 1% 3 0.767 0.75 4 0.748 0.68 5 0.762 0.68 6 0.788 0.71	
4 0.748 0.68 5 0.762 0.68	53
5 0.762 0.68	
	37
6 0 700 0 71	36
6 0.788 0.71	13
7 0.803 0.73	30
8 0.818 0.74	19
9 0.829 0.76	64
10 0.842 0.78	31
11 0.850 0.79	92
12 0.859 0.80)5
13 0.856 0.81	14
14 0.874 0.82	25
15 0.881 0.83	35
16 0.837 0.84	14
17 0.892 0.85	51
18 0.897 0.85	58
19 0.901 0.86	53
20 0.905 0.86	68
21 0.908 0.87	73
22 0.911 0.87	78
23 0.914 0.88	31
24 0.916 0.88	34
25 0.918 0.88	38
26 0.920 0.89	1
27 0.923 0.89)4
28 0.924 0.89	96
	_
29 0.926 0.89	9 8

Coefficients et seuil du test de Shapiro-Wilk.

 $\label{eq:Loi de Khi-deux}$ Le tableau donne x tel que P(K > x) = p

р	0.999	0,995	0,99	0,98	0,95	0,9	0,8	0,2	0.1	0,05	0,02	0,01	0,005	0,001
ddl														
1	0,0000	0,0000	0,0002	0,0006	0,0039	0,0158	0,0642	1,6424	2,7055	3,8415	5,4119	6,6349	7,8794	10,8276
2	0,0020	0,0100	0,0201	0,0404	0,1026	0,2107	0,4463	3,2189	4,6052	5,9915	7,8240	9,2103	10,5966	13,8155
3	0,0243	0,0717	0,1148	0,1848	0,3518	0,5844	1,0052	4,6416	6,2514	7,8147	9,8374	11,3449	12,8382	16,2662
4	0,0908	0,2070	0,2971	0,4294	0,7107	1,0636	1,6488	5,9886	7,7794	9,4877	11,6678	13,2767	14,8603	18,4668
5	0,2102	0,4117	0,5543	0,7519	1,1455	1,6103	2,3425	7,2893	9,2364	11,0705	13,3882	15,0863	16,7496	20,5150
6	0,3811	0,6757	0,8721	1,1344	1,6354	2,2041	3,0701	8,5581	10,6446	12,5916	15,0332	16,8119	18,5476	22,4577
7	0,5985	0,9893	1,2390	1,5643	2,1673	2,8331	3,8223	9,8032	12,0170	14,0671	16,6224		20,2777	24,3219
8	0,8571	1,3444	1,6465	2,0325	2,7326	3,4895	4,5936	11,0301	13,3616	15,5073	18,1682	20,0902	21,9550	26,1245
9	1,1519	1,7349	2,0879	2,5324	3,3251	4,1682	5,3801	12,2421	14,6837	16,9190	19,6790	21,6660	23,5894	27,8772
10	1,4787	2,1559	2,5582	3,0591	3,9403	4,8652	6,1791	13,4420	15,9872	18,3070	21,1608	23,2093	25,1882	29,5883
11	1,8339	2,6032	3,0535	3,6087	4,5748	5,5778	6,9887	14,6314	17,2750	19,6751	22,6179	24,7250	26,7568	31,2641
12	2,2142	3,0738	3,5706	4,1783	5,2260	6,3038	7,8073	15,8120	18,5493	21,0261	24,0540	26,2170	28,2995	32,9095
13	2,6172	3,5650	4,1069	4,7654	5,8919	7,0415	8,6339	16,9848	19,8119	22,3620	25,4715	27,6882	29,8195	34,5282
14	3,0407	4,0747	4,6604	5,3682	6,5706	7,7895	9,4673	18,1508	21,0641	23,6848	26,8728	29,1412	31,3193	36,1233
15	3,4827	4,6009	5,2293	5,9849	7,2609	8,5468	10,3070	19,3107	22,3071	24,9958	28,2595	30,5779	32,8013	37,6973
16	3,9416	5,1422	5,8122	6,6142	7,9616	9,3122	11,1521	20,4651	23,5418	26,2962	29,6332	31,9999	34,2672	39,2524
17	4,4161	5,6972	6,4078	7,2550	8,6718	10,0852	12,0023	21,6146	24,7690	27,5871	30,9950	33,4087	35,7185	40,7902
18	4,9048	6,2648	7,0149	7,9062	9,3905	10,8649	12,8570	22,7595	25,9894	28,8693	32,3462	34,8053	37,1565	42,3124
19	5,4068	6,8440	7,6327	8,5670	10,1170	11,6509	13,7158	23,9004	27,2036	30,1435	33,6874	36,1909	38,5823	43,8202
20	5,9210	7,4338	8,2604	9,2367	10,8508	12,4426	14,5784	25,0375	28,4120	31,4104	35,0196	37,5662	39,9968	45,3147
21	6,4467	8,0337	8,8972	9,9146	11,5913	13,2396	15,4446	26,1711	29,6151	32,6706	36,3434	38,9322	41,4011	46,7970
22	6,9830	8,6427	9,5425	10,6000	12,3380	14,0415	16,3140	27,3015	30,8133	33,9244	37,6595	40,2894	42,7957	48,2679
23	7,5292	9,2604	10,1957	11,2926	13,0905	14,8480	17,1865	28,4288	32,0069	35,1725	38,9683	41,6384	44,1813	49,7282
24	8,0849	9,8862	10,8564	11,9918	13,8484	15,6587	18,0618	29,5533	33,1962	36,4150	40,2704	42,9798	45,5585	51,1786
25	8,6493	10,5197	11,5240	12,6973	14,6114	16,4734	18,9398	30,6752	34,3816	37,6525	41,5661	44,3141	46,9279	52,6197
26	9,2221	11,1602	12,1981	13,4086	15,3792	17,2919	19,8202	31,7946	35,5632	38,8851	42,8558	45,6417	48,2899	54,0520
27	9,8028	11,8076	12,8785	14,1254	16,1514	18,1139	20,7030	32,9117	36,7412		44,1400	46,9629	49,6449	55,4760
28	10,3909	12,4613	13,5647	14,8475	16,9279	18,9392	21,5880	34,0266			45,4188		50,9934	56,8923
29	10,9861	13,1211	14,2565	15,5745	17,7084	19,7677	22,4751	35,1394	39,0875	42,5570	46,6927	49,5879	52,3356	58,3012
30	11,5880	13,7867	14,9535		18,4927	20,5992	23,3641	36,2502	40,2560		47,9618		53,6720	59,7031
40	17,9164	20,7065	22,1643	23,8376	26,5093	29,0505	32,3450	47,2685	51,8051		60,4361	63,6907	66,7660	73,4020
50	24,6739	27,9907	29,7067	31,6639	34,7643	37,6886	41,4492	58,1638			72,6133	76,1539	79,4900	86,6608
60	31,7383	35,5345	37,4849		43,1880	46,4589	50,6406	68,9721	74,3970		84,5799		91,9517	99,6072
70	39,0364	43,2752	45,4417	47,8934	51,7393	55,3289	59,8978	79,7146			96,3875	100,4252	104,2149	112,3169
80	46,5199	51,1719	53,5401	56,2128	60,3915	64,2778	69,2069	90,4053		101,8795		112,3288	116,3211	124,8392
90	54,1552	59,1963	61,7541	64,6347	69,1260	73,2911	78,5584			113,1453		124,1163	128,2989	137,2084
100	61,9179	67,3276	70,0649	73,1422	77,9295	82,3581	87,9453	111,6667		124,3421		135,8067	140,1695	149,4493
120	77,7551	83,8516	86,9233	90,3667			106,8056			146,5674		158,9502	163,6482	173,6174
140				107,8149						168,6130			186,8468	197,4508
160				125,4400						190,5165		204,5301	209,8239	221,0190
180				143,2096						212,3039		227,0561	232,6198	244,3705
200				161,1003								249,4451	255,2642	267,5405
250				206,2490						287,8815		304,9396	311,3462	324,8324
300				251,8637						341,3951			366,8444	381,4252
400		330,9028				364,2074				447,6325		468,7245	476,6064	493,1318
500				437,2194									585,2066	603,4460
600				531,0191								683,5156	692,9816	712,7712
700				625,3175								789,9735	800,1314	821,3468
800				720,0107									906,7862	929,3289
900	774,5698	794,4750	804,2517	815,0267	831,3702	846,0746	864,1125	935,4987	954,7819	970,9036	989,2631	1001,6296	1013,0364	1036,8260

Table du χ^2 .