

Programación dinámica: Seam carving

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Seam Carving (revisado y revisitado)

Dada una imagen

De h*w pixels

Cada pixel

Tiene un valor de energía asociado e(i,j)

Encontrar la veta

(Horizontal o vertical)

De menor "energía"

Solución greedy

Vimos como resolverlo mediante camino mínimo s-t

Transformamos en un grafo y resolvimos con Dijkstra

Complejidad O([n+m]logn)

con n=h*W (cantidad de pixels y m≈3*n

 $O(h^*w^*log(h^*w))$

¿Podemos hacerlo mejor?

Análisis

Vemos la imagen

Como una grilla de pixels inter comunicados

Desde un pixel

solo se puede acceder a otros 3 (o 2 en los extremos)

Se puede ser accedido desde otros 3 (o 2 en los extremos)

En la primera columna, por cada pixel

La energía acumulada de pixel solo depende de si mismo

Si fuese una imagen de 1 columna es trivial elegir la veta a remover

Análisis (cont.)

En la segunda columna, por cada pixel

La energía acumulada es la del pixel + como se llego a él Se puede llegar desde 3 (o 2) pixel de la columna 1.

2da columna

En la columna "n", por cada pixel

La energía acumulada es la propia + la energía de como se llegó a ella.

Como quiero minimizar: llego por la menor de las 3 (o 2) de la columna n-1

Subproblemas

Podemos partir el problema

Calcular para cada pixel "j" de la columna "i" la energía mínima para llegar a este

Depende unicamente de la columna i-1

Problema base (columna 1)

la energía es del propio del pixel "j"

Reccurrencia

Podemos expresar el problema como:

$$OPT(i,j)=e(i,j) \quad ,sii=1$$

$$OPT(i,j)=e(i,j)+min \begin{cases} OPT(i-1,j-1),\\ OPT(i-1,j),\\ OPT(i-1,j+1) \end{cases} ,sii>1$$

El resultado con la mínimo energía será:

$$min_{j=1}^{h}\{OPT(w,j)\}$$

Solución iterativa

Complejidad

Temporal: O(w*h)

Espacial: O(w*h)

```
Desde j=1 a h
    OPT[1,j]=e(1,j)
Desde i=2 a w
    Desde j=1 a h
         OPT[i,j] = e(i,j) +
              min {
                   OPT(i-1, j-1),
                   OPT(i-1,j) ,
                   OPT(i-1,j+1),
menor=+∞
Desde j=1 a h
    if OPT[w,j]<menor</pre>
         menor = OPT[w,j]
Retornar menor
```


Reconstrucción de la veta

Almacenar por cada pixel

Desde que pixel se llega con mínima energía

Solo 3 posibles valores j-1, j. J+1

Siempre sera de la columna anterior

Desde el pixel de menor energía en la ultima columna

Reconstruir para atrás el camino de energía menor

Presentación realizada en Abril de 2020