Error Mitigation with Mitiq

Part 1: Zero-Noise Extrapolation & Calibration

Jordan Sullivan, Nate Stemen & Misty Wahl Aug 17, 2024

Mitiq Workshop Agenda

Sat Aug 17

Schedule		
9:00 - 9:45	Quantum Error Mitigation	Jordan Sullivan
9:45 - 10:00	Zero Noise Extrapolation in Mitiq	Jordan Sullivan
10:00 - 11:00	Contributing to Mitiq	Nate Stemen
11:15 - 12:00	Break	
14:00 - 15:00	Digital Dynamical Decoupling	Misty Wahl
15:00 - 15:15	Challenge on noise mitigation with benchmarking circuits on simulated noisy backends	Nate Stemen
15:15 - 16:15	Challenge on calibrating noise mitigation with benchmarking circuits on simulated noisy backends	Nate Stemen
	Break	
20:00 - 23:00	Mitiq hackathon and social (pizza party)	

Mitiq the tooklit

Mitiq the tooklit

Mitig the tooklit

2002 20052

Mitiq the tooklit

Mitiq the tooklit

+ import mitig README.md qubit = cirq.LineQubit(1) mitio Error mitigation technic circuit = cirq.Circuit(cirq.X(qubit) for in range(190 You can check out currently available - expval = execute(circuit) mitig.gem methods() + expval = mitiq.zne.execute_with_zne(circuit, execute) Duild passing docs passing Codecov 98% pypi Technique Supported By Unitary Fund Discord 212 online. print(f"Error: {1 - expval:.3}") Zero-noise extrapolation Mitig is a Python toolkit for implementing error - # Error: 0.244 Current quantum computers are noisy due to ir + # Error: 0.058 state preparation and measurement errors, etc. Probabilistic error cancellation level by compiling quantum programs in clever 1712.09271 Want to know more? Check out our documenta 1905.10135 (Variable-noise) Clifford data regression CDR mitig.cdr 2005.10189 2011.01157 Digital dynamical decoupling 9803057 mitiq.ddd 1807.08768 Readout-error mitigation REM mitiq.rem 1907.08518 2006.14044 Quantum Subspace Expansion QSE 1903.05786 mitiq.qse

RSE

mitiq.qse

2011.09636

Robust Shadow Estimation ##

import cira

1. Who has written a quantum program before?

- 1. Who has written a quantum program before?
- 2. Who has run a quantum program on hardware before?

- 1. Who has written a quantum program before?
- 2. Who has run a quantum program on hardware before?
- 3. Who has used error mitigation?

- 1. Who has written a quantum program before?
- 2. Who has run a quantum program on hardware before?
- 3. Who has used error mitigation?
- 4. Who has used Mitiq?

Tutorial goals

- 1. Understand context, and general ideas of quantum error mitigation (QEM).
- 2. Understand main ideas of ZNE, PEC, and DDD along with pros and cons of each technique.
- 3. Ability to use Mitiq to apply these techniques in a quantum pipeline.

Quantum Error Mitigation (QEM)

Quantum Error Mitigation (QEM)

- (In)coherent noise
- SPAM errors

Quantum Error Mitigation (QEM)

- (In)coherent noise
- SPAM errors
- Crosstalk

Quantum Error Mitigation (QEM)

- (In)coherent noise
- SPAM errors
- Crosstalk
- Calibration errors

Quantum Error Mitigation (QEM)

- (In)coherent noise
- SPAM errors
- Crosstalk
- Calibration errors
- ...

Quantum Error Mitigation (QEM)

- (In)coherent noise
- SPAM errors
- Crosstalk
- Calibration errors
- ...

Quantum Error Mitigation (QEM)

- (In)coherent noise
- SPAM errors
- Crosstalk
- Calibration errors
- ...

Quantum Error Mitigation (QEM)

- (In)coherent noise
- SPAM errors
- Crosstalk
- Calibration errors
- ...

QEM Methods - share what you know!

Who is familiar with any existing quantum error mitigation techniques?

QEM Methods

Zero-Noise Extrapolation

$$\partial_t \rho = -i[H, \rho] + \frac{\lambda}{\lambda} \mathcal{L}(\rho)$$

Symmetry-based techniques

$$\rho = \frac{M\rho M}{\operatorname{tr}(M\rho)}$$

Probabilistic Error Cancellation

Dynamical Decoupling

Error Correction

- Encode logical qubits into many physical qubits
- Intermediate measurements produce syndromes
- Use syndromes to correct errors

Error Correction

- Encode logical qubits into many physical qubits
- Intermediate measurements produce syndromes
- Use syndromes to correct errors

Error Mitigation

- Perform multiple and different noisy computations
- Collect results
- Infer ideal expectation values

Error Correction

- Encode logical qubits interphysical qubits
 Interphysical qubits physical qubits
 Interphysical qubits physical qubits
 Interphysical qubits
 Interph
 - Use syndromes to correct errors

Error Mitigation

- Perform multiple and different noisy computations
- Collect results
- Infer ideal expectation values

Error Correction

- Encode logical qubits interphysical qubits physical qubits high-fidelity qubits
 Interphysical physical qubits physical qubits physical qubits physical qubits physical qubits physical qubits
 Interphysical qubit
 - Use syndromes to correct errors

Error Mitigation

- Perform multiple and diff noisy • Coll Needs few noisy qubits
- ar expectation values

Key Idea

Key Idea

$$\partial_t \rho = -i[H, \rho] + \lambda \mathcal{L}(\rho)$$

Key Idea

$$\partial_t \rho = -i[H, \rho] + \lambda \mathcal{L}(\rho)$$

Key Idea

$$\partial_t \rho = -i[H, \rho] + \lambda \mathcal{L}(\rho)$$

Key Idea

$$\partial_t \rho = -i[H, \rho] + \lambda \mathcal{L}(\rho)$$

Key Idea

$$\partial_t \rho = -i[H, \rho] + \lambda \mathcal{L}(\rho)$$

Key Idea

$$\partial_t \rho = -i[H, \rho] + \lambda \mathcal{L}(\rho)$$

Key Idea

$$\partial_t \rho = -i[H, \rho] + \lambda \mathcal{L}(\rho)$$

Key Idea

Scale noise up, extrapolate back to zero-noise value.

How do we scale the noise up?

$$\partial_t \rho = -i[H, \rho] + \lambda \mathcal{L}(\rho)$$

Key Idea

Scale noise up, extrapolate back to zero-noise value.

 $\partial_t \rho = -i[H, \rho] + \lambda \mathcal{L}(\rho)$

How do we scale the noise up?

Key Idea

Scale noise up, extrapolate back to zero-noise value.

How do we scale the noise **up**?

Running quantum programs in practice

Running quantum programs in practice with Mitiq

A peak into the future...

QEC + QEM

Mitigate errors on encoded logical qubits.

When should we use which techniques?

How do we balance classical and quantum resources?

Open questions! For instance...

A peak into the future...

QEC + QEM

Mitigate errors on encoded logical qubits.

When should we use which techniques?

How do we balance classical and quantum resources?

Open questions! For instance...

Let's try Mitiq!

https://github.com/unitaryfund/

 ${\tt Mitiq-Workshop-QNumerics-Summer-School/blob/main/part1_zne.ipynb}$

Sneak Preview of Part II

Probabilistic Error Cancellation

Key Idea: Use noisy operations to build up noiseless ones by selective cancellation and sampling.

Sneak Preview of Part II

Digital Dynamical Decoupling

Key Idea: The devil finds work for idle [qubits].

Interested in this work? Apply for a microgrant!

MENU -

Grants

We've awarded more than **100 microgrants** to 31+ countries, resulting in 420+ papers citing microgrant research, 40+ new libraries, 400+ contributors & maintainers, and helping to form 3 new startups and 1 new non-profit.

COULD YOU BE NEXT?

→ APPLY HERE

https://unitary.fund/grants/