Credit Card Fraud Detection: A Machine Learning Approach

Presented by Riché FLEURINORD – Akademi Education (2025)

Overview

- Context: Credit card fraud costs millions of dollars and damages customer trust.
- **Objective**: Use transaction data to identify fraudulent transactions.
- Method: Exploratory analysis, data preparation, and classification models.
- Expected Impact: Reduce financial losses and improve customer safety.

Business Understanding

- **Problem**: How can we automatically detect fraud in real time?
- Stakeholders: Banks, risk management teams, customers.
- Benefits:
 - Reduced financial losses
 - Fewer false positives (legitimate customers not wrongly blocked)
 - Increased customer confidence

Data Understanding

- **Data Source**: Kaggle/Credit Card Fraud Detection/creditcard.csv (284,807 records, 492 frauds → 0.17%).
- Key Features:
- Amount = transaction amount
- **Time** = time sequence
- V1-V28 = anonymized variables (PCA components)
- Main Challenge: Highly imbalanced dataset (fraud ≈ 1 in 600 transactions).

Data Preparation

- Key Steps:
- Removed duplicates (1,081 dropped).
- Normalized variables for comparison.
- Split into training and testing sets.
- Applied SMOTE to balance fraud vs. non-fraud (synthetic frauds added).
- Impact: Models can learn fraud detection more effectively.

Modeling Approach

- Models Tested:
- Logistic Regression
- Decision Tree
- Two Scenarios:
- Baseline (imbalanced)
- Resampled (balanced with SMOTE)

Evaluation

Evaluation Metrics Explained

- Accuracy alone is misleading (~99% but misses rare frauds).
- Key Metrics:
- Precision = % of flagged frauds that are truly frauds.
- **Recall** = % of all frauds that the model successfully detected.
- **ROC-AUC** = overall performance score.

Evaluation Metrics Explained

False Positive Rate

Results Comparison

Model	Accuracy	Recall (Fraud)	Precision (Fraud)	ROC-AUC
Logistic (Baseline)	91%	81%	1.5%	0.89
Decision Tree (Baseline)	99%	65%	12%	0.82
Logistic (Resampled)	97%	87%	5%	0.96
Decision Tree (Resampled)	99.7%	64%	35%	0.82

Key Insights:

Logistic Regression (resampled) \rightarrow very strong **recall** (detects most frauds). Decision Tree (resampled) \rightarrow higher **precision** (fewer false alerts).

Recommendations

- Use a **hybrid approach**:
- Logistic Regression for **recall** (catching most frauds).
- Decision Tree for **precision** (reducing false positives).
- Deploy as a real-time fraud alert system.
- Continuously monitor and retrain with new data.

Next Steps

- Collect and analyze more recent data.
- Test advanced models: Random Forest, XGBoost.
- Integrate results into a **production banking system.**
- Work with business teams to fine-tune fraud alert thresholds.

Thank You

Together we can make financial transactions safer.

■ Project: 3rd Project_ MACHINE LEARNING FUNDAMENTALS - Phase 3

Abilinstructors: Wedter JEROME & Geovany Batista Polo LAGUERRE

GitHub Repository:

https://github.com/richefleuriord/Ds_Fraud_Detection_Project.git