fortiss

Parking Team

Sensor Data Fusion

July 4, 19

Content

- Introduction to Sensor Data Fusion
- Data Fusion Architecture
- Sensor Fusion Functions
- Relation to our Project

Introduction to Sensor Data Fusion

Definitions:

Sensor fusion is combining of sensory data or data derived from sensor sources such that the resulting information has less uncertainty.

Introduction to Sensor Data Fusion

Advantages:

- Improves accuracy
- Improves precision
- Improves availability
- Reduces uncertainty
- Supports effective decision making

Challenges:

- There is no guarantee for the raw data quality
- The fused answer may be worse than the sensor
- There are no magic algorithms
- There will never be enough training data
- It is difficult to quantify the value of data fusion

Level 0—Sub-Object Data

Association and Estimation

- Level 1—Object Refinement
- Level 2—Situation Refinement
- Level 3—Significance Estimation
- Level 4—Process Refinement

By splitting Sensor Data Fusion into these subtasks, they can

be studied individually

Data Fusion functions include:

Data Alignment, Data Association, State estimation

- Data Alignment
- Detect temporal differences
- Adjust the collected data
- Synchronize using shared time.
- Synchronize via communication protocol.

Logical mappings		Scenario example
precedes:	$A \rightarrow B$	X - B - B - T
simultaneous:	C D	X
ends:	$A \rightarrow (C D)$	Y - D - D - C - C - C - C - C - C - C - C
starts:	$(C D) \rightarrow B$	$X \xrightarrow{C} X \xrightarrow{D} B$
overlaps;	$A \to (C D) \to B$	X - A C D B

- Data Association
- Clustering: Nearest Neighbors and K-Means, Probabilistic Data Association

State Estimation Methods

State Estimation Methods

A standard Kalman Filter can only handle linear models

- Non-linear process and sensor models:
 Extended Kalman Filter (EKF) Unscented Kalman Filter (UKF)
- Extended Kalman Filter uses the Jacobian matrix to linearize nonlinear functions
- Unscented Kalman Filter takes representative points from a Gaussian distribution

RMSE

X: 0.1067 Y: 0.165928

VX: 0.276554 VY: 0.634738

Run

State Estimation Methods

Particle Filter:

Particle filters is a set of Monte Carlo algorithms used to solve filtering problems

- To handle non linear processes
- To handle non Gaussian Noise

Relation to our Project

AF3 – Sensor Data Fusion

Relation to our Project

◆ AF3 – Sensor Data Fusion

```
if (FrontObstacleCommand != NoVal && FrontObstacleCommand) {
    DistanceFront = DistanceToFrontObstacle;
}
else {
    if (DistanceToFrontLaser == NoVal && DistanceToFrontUS == NoVal) {
        DistanceFront = NoVal;
    }
    else {
        if (DistanceToFrontUS != NoVal && (DistanceToFrontLaser == NoVal || DistanceToFrontUS <= DistanceToFrontLaser)) {
            DistanceFront = DistanceToFrontUS;
        }
        else {
            DistanceFront = DistanceToFrontLaser;
        }
    }
}</pre>
```

Relation to our Project

Resources

- Gereon Hinz, lecture Autonomous Fahren
- Darius Burschka. lecture Robot Motion Planning
- https://en.wikipedia.org/wiki/Extended_Kalman_filter
- https://www.youtube.com/watch?v=XswKMtQBTCo
- https://en.wikipedia.org/wiki/Expectation_maximization_algorithm
- https://en.wikipedia.org/wiki/Monte_Carlo_method