ETL Project Report

Title: Toronto Neighbourhood Population Census vs Crime Data

Finding Data (Extract)

Data Sources:

- Toronto Neighbourhood 2016 Census of Population
https://ckan0.cf.opendata.inter.prod-toronto.ca/en AU/dataset/neighbourhood-profiles

Data Format - CSV file

In this csv file all the data was formatted in an unstructured manner where all the neighbourhood was aligned in columns and all the various population data was aligned in rows as below.

Α	В	С	D	E	F	G	Н	1	J
_id	Category	Topic	Data Source	Characteristic	City of Tor	Agincourt	Agincourt	Alderwood	Annex
1	Neighbour	Neighbour	City of Tor	Neighbourhood Number		129	128	20	95
2	Neighbour	Neighbour	City of Tor	TSNS2020 Designation		No Design	No Design	No Design	No Design
3	Population	Population	Census Pro	Population, 2016	2,731,571	29,113	23,757	12,054	30,526
4	Population	Population	Census Pro	Population, 2011	2,615,060	30,279	21,988	11,904	29,177
5	Population	Population	Census Pro	Population Change 2011-2016	4.50%	-3.90%	8.00%	1.30%	4.60%
6	Population	Population	Census Pro	Total private dwellings	1,179,057	9,371	8,535	4,732	18,109
7	Population	Population	Census Pro	Private dwellings occupied by usual residents	1,112,929	9,120	8,136	4,616	15,934
8	Population	Population	Census Pro	Population density per square kilometre	4,334	3,929	3,034	2,435	10,863
9	Population	Population	Census Pro	Land area in square kilometres	630.2	7.41	7.83	4.95	2.81
10	Population	Age charac	Census Pro	Children (0-14 years)	398,135	3,840	3,075	1,760	2,360
11	Population	Age charac	Census Pro	Youth (15-24 years)	340,270	3,705	3,360	1,235	3,750
12	Population	Age charac	Census Pro	Working Age (25-54 years)	1,229,555	11,305	9,965	5,220	15,040
13	Population	Age charac	Census Pro	Pre-retirement (55-64 years)	336,670	4,230	3,265	1,825	3,480
14	Population	Age charac	Census Pro	Seniors (65+ years)	426,945	6,045	4,105	2,015	5,910
15	Population	Age charac	Census Pro	Older Seniors (85+ years)	66,000	925	555	320	1,040

- Toronto Neighbourhood 2016 Crime Data

http://data.torontopolice.on.ca/datasets/neighbourhood-crime-rates-boundary-file-/geoservice?geometry=-80.421%2C43.542%2C-78.335%2C43.890&orderBy=Hood ID

<u>Data Format</u> – **GeoJSON** file

From this link, we opted for 2016 crime data for each Toronto neighbourhood in GeoJSON format. In JSON viewer, the data structure looked like below.

Data Cleanup and & Analysis (Transform)

From the 2016 Toronto population data, all the neighbourhood names and its hood id and age population spectrum data were extracted. In original data, the neighbourhood name was the column index, hood id was in row format and the population spectrum was various row format structure shown as below.

The unwanted columns were dropped, and the specific columns and rows were extracted and put in the individual dataframes by using iloc function and the dataframes were merged to create a single neighbourhood population dataframe as below

As columns transformed into rows and rows into columns, we had to name all the individual columns indexes its appropriate names.

	fin= dft_merge.set_				, Index i height	ourhood","Pre-retir	C (33 04	, ca. 5, 111c_
	Neighbourhood	Population	Children (0-14 years)	Youth (15-24 years)	Working Age (25-54 years)	Pre_retirement (55-64 years)	Seniors (65+ years)	Older Seniors (8
id								
129	Agincourt North	29,113	3,840	3,705	11,305	4,230	6,045	9
128	Agincourt South- Malvern West	23,757	3,075	3,360	9,965	3,265	4,105	5
20	Alderwood	12,054	1,760	1,235	5,220	1,825	2,015	3
95	Annex	30,526	2,360	3,750	15,040	3,480	5,910	1,0
42	Banbury-Don Mills	27,695	3,605	2,730	10,810	3,555	6,975	1,€
94	Wychwood	14,349	1,860	1,320	6,420	1,595	3,150	8
100	Yonge-Eglinton	11,817	1,800	1,225	5,860	1,325	1,600	1
97	Yonge-St.Clair	12,528	1,210	920	5,960	1,540	2,905	4
27	York University Heights	27,593	4,045	4,750	12,290	2,965	3,530	4
31	Yorkdale-Glen Park	14,804	1,960	1,870	5,860	1,810	3,295	7

Database transformation from "jupyter notebook" to "pgAdmin" in sql format requires the keys and values of the source databases to be presented in the format as pgAdmin would if the database tables are created with the program's query tools, failure to format properly would result in pgAdmin unable to load the source data.

A few steps were taken to clean the column keys (column titles);

- 1. no symbols, such as hyphen, plus sign and parentheses
- 2. no space, which we had to replace with underscore
- 3. no capital letters, all capital letters in column title has to changed into lower case (code used: df.columns=map(str.lower,df.columns))

In addition, In order for pgAdmin to process dataframe numbers as integers, during the cleaning process, we had to make sure, I.E 3,711 is expressed as 3711, removing any delimiter.

```
M ### data cleaning, removing all the symbls progres can't process and rename titles to lowercase
       cols = dft_fin.columns
      cols = cols.map(lambda x: x.replace(' ', ' ') if isinstance(x, (str, str)) else x)
cols = cols.map(lambda x: x.replace('(', '') if isinstance(x, (str, str)) else x)
cols = cols.map(lambda x: x.replace(')', '') if isinstance(x, (str, str)) else x)
cols = cols.map(lambda x: x.replace('-', '_to_') if isinstance(x, (str, str)) else x)
cols = cols.map(lambda x: x.replace('+', 'plus') if isinstance(x, (str, str)) else x)
       dft fin.columns = cols
       dft fin.columns = map(str.lower, dft fin.columns)
       cleaned census df = dft fin
       cleaned census df
)]:
               neighbourhood population children_0_to_14_years youth_15_to_24_years working_age_25_to_54_years pre_retirement_55_to_64_years seniors_65ple
          id
                Agincourt North
                                            29113
                                                                                                               3705
                                                                                                                                                       11305
                        Agincourt
        128
                 South-Malvern
West
                                            23757
                                                                               3075
                                                                                                               3360
                                                                                                                                                        9965
                                                                                                                                                                                                   3265
```

```
M dft_fin['Population'] = dft_fin['Population'].str.replace(',', '').astype(int)
dft_fin['Children_0_to_14_years'] = dft_fin['Children_0_to_14_years'].str.replace(',', '').astype(int)
dft_fin['Youth 15 to 24 years'].str.replace(',', '').astype(int)
       dft_fin['Youth_15_to_24_years'] = dft_fin['Youth_15_to_24_years'].str.replace(',', '').astype(int)
dft_fin['Working_Age_25_to_54_years'] = dft_fin['Working_Age_25_to_54_years'].str.replace(',', '').astype(int)
dft_fin['Pre_retirement_55_to_64_years'] = dft_fin['Pre_retirement_55_to_64_years'].str.replace(',', '').astype(int)
dft_fin['Seniors_65plus_years'] = dft_fin['Seniors_65plus_years'].str.replace(',', '').astype(int)
                                                                                                                                                                                                          ').astype(int)
        dft_fin['Older_Seniors_85plus_years'] = dft_fin['Older_Seniors_85plus_years'].str.replace(',', '').astype(int)
5]:
                 Neighbourhood Population Children_0_to_14_years Youth_15_to_24_years Working_Age_25_to_54_years Pre_retirement_55_to_64_years Seniors_65pl
           id
         129
                  Agincourt North
                                                                                                                           3705
                                                                                                                                                                       11305
                                                                                                                                                                                                                        4230
         128 Agincourt South-
Malvern West
                                                 23757
                                                                                        3075
                                                                                                                           3360
                                                                                                                                                                        9965
                                                                                                                                                                                                                        3265
           20
                         Alderwood
                                                  12054
                                                                                        1760
                                                                                                                           1235
                                                                                                                                                                        5220
                                                                                                                                                                                                                        1825
           95
                                                 30526
                                                                                        2360
                                                                                                                           3750
                                                                                                                                                                       15040
                                                                                                                                                                                                                        3480
```

For the downloaded data for Toronto Neighbourhood 2016 crime was in GeoJSON format. It seemed very unstructured compared to usual JSON format, shown below:

From this data, the attributes dictionary was the only data needed. Everything else was noise. Here 'features' list contains 'attributes' data and 'Neighbourhood', 'Hood_ID', etc. are properties of 'attributes' dictionary.

In order to extract the targeted data, json was imported, json.load function was used and all the required data was appended within the individual lists.

```
import requests
import json

with open('Resources/Neighbourhood_Crime_Rates_Boundary_File_.geojson') as f:
    data = json.load(f)

Neighbourhood = []
Hood_ID = []
Assault_2016 = []
AutoTheft_2016 = []
Homicide_2016 = []
Robbery_2016 = []
TheftOver_2016 = []

for feature in data['features']:
    #print(feature['geometry']['type'])
    #print(feature['geometry']['coordinates'])
    #print(feature)
    #print(feature['properties']['Neighbourhood'])
#print(feature['properties']['Hood_ID'])

Neighbourhood.append(feature['properties']['Neighbourhood'])
Hood_ID.append(feature['properties']['Assault_2016'])
AutoTheft_2016.append(feature['properties']['AutoTheft_2016'])
BreakandEnter_2016.append(feature['properties']['BreakandEnter_2016'])
Homicide_2016.append(feature['properties']['Homicide_2016'])
Robbery_2016.append(feature['properties']['Robbery_2016'])
TheftOver_2016.append(feature['properties']['Robbery_2016'])
```

Toronto_crime dataframe was created with all the data extracted within the individual lists.

	Neighbourhood	id	Assault_2016	AutoTheft_2016	BreakandEnter_2016	Homicide_2016	Robbery_2016	TheftOver_2016
0	Yonge-St.Clair	097	39	7	12	0	6	8
1	York University Heights	027	361	105	98	2	70	37
2	Lansing-Westgate	038	68	27	41	0	9	5
3	Yorkdale-Glen Park	031	174	41	66	1	24	26
4	Stonegate-Queensway	016	76	12	49	0	16	4

As mentioned before, column index names were converted to lowercase as PGAdmin was being difficult accepting this table as is.

```
crime_df.columns = map(str.lower,crime_df.columns)
cleaned_crime_df = crime_df

cleaned_crime_df
```

]:	neighbourhood	assault_2016	autotheft_2016	breakandenter_2016	homicide_2016	robbery_2016	theftover_2016
id							
097	Yonge-St.Clair	39	7	12	0	6	8
027	York University Heights	361	105	98	2	70	37
038	Lansing-Westgate	68	27	41	0	9	5
031	Yorkdale-Glen Park	174	41	66	1	24	26
016	Stonegate-Queensway	76	12	49	0	16	4
130	Milliken	88	35	67	0	40	10
046	Pleasant View	58	8	32	0	13	3
094	Wychwood	86	18	29	0	9	4
056	Leaside-Bennington	33	4	32	0	8	2
108	Briar Hill-Belgravia	64	16	31	0	21	4

Connection to the SQL postgres as below.

```
M connection_string = "***********@localhost:5432/toronto_tb"
    engine = create_engine(f'postgresql://{connection_string}')

M engine.table_names()

6]: ['crime', 'census']

M cleaned_census_df.to_sql(name='census', con=engine, if_exists='append', index=True)

M cleaned_crime_df.to_sql(name='crime', con=engine, if_exists='append', index=True)
```

Loading to Database (Load)

Among the two different data sources, there is a common key which the data sources each used to identify census area, which is the Toronto neighbourhood number (neighbourhood ID, referred simply as 'ID' in the final table).

Data base was created in pgAdmin and tables were created as below:

```
CREATE TABLE census
    ( id INT PRIMARY KEY,
            Neighbourhood VARCHAR,
4
      Population INT ,
      Children_0_to_14_years INT,
            Youth_15_to_24_years INT,
 7
            Working_Age_25_to_54_years INT,
8
            Pre_retirement_55_to_64_years INT,
9
            Seniors_65plus_years INT,
            Older_Seniors_85plus_years INT
10
    );
12
13
   CREATE TABLE crime (
   id INT PRIMARY KEY,
     Neighbourhood VARCHAR,
    Assault_2016 INT,
      AutoTheft_2016 INT,
18
      BreakandEnter_2016 INT,
19
      Homicide_2016 INT,
            robbery_2016 INT,
      TheftOver_2016 INT
    );
24 drop table census
    drop table crime
```

The databases are loaded through jupyter's notebook and then connected and transferred to pgAdmin for easier merging and browsing.

The Neighbourhood Profile database contains data of population in each neighbourhood and their respective age demographic, whilst the Toronto Crime Rates database contains data of the count of different crimes committed in different neighbourhood.

SQL queries:

```
SELECT * FROM crime;

SELECT * FROM census;

-- Join tables on id
SELECT census.id, crime.neighbourhood, census.population
FROM census
INNER JOIN crime
ON census.id = crime.id
ORDER BY id ASC;
```

Toronto Neighbourhood Profiles:

4	id [PK] integer	neighbourhood character varying	assault_2016 integer	autotheft_2016 integer	breakandenter_2016 integer	homicide_2016 integer	robbery_2016 integer	theftover_2016 integer
1	1	West Humber-Clairville	307	321	131	4	100	41
2	2	Mount Olive-Silverston	270	43	34	1	102	4
3	3	Thistletown-Beaumond	39	13	23	0	16	1
4	4	Rexdale-Kipling	77	22	16	0	17	0
5	5	Elms-Old Rexdale	61	16	10	0	18	0
6	6	Kingsview Village-The	125	42	34	2	24	5
7	7	Willowridge-Martingrov	102	49	35	0	57	4
8	8	Humber Heights-West	30	16	23	1	8	4
9	9	Edenbridge-Humber Va	30	29	46	0	7	2
10	10	Princess-Rosethorn	30	24	33	1	32	3

Toronto Neighbourhood Crime Rates:

4	id [PK] integer	neighbourhood character varying	population integer	children_0_to_14_years integer	youth_15_to_24_years integer	working_age_25_to_54_years integer
1	1	West Humber-Clairville	33312	5060	5445	13845
2	2	Mount Olive-Silverston	32954	7090	5240	13615
3	3	Thistletown-Beaumond	10360	1730	1410	4160
4	4	Rexdale-Kipling	10529	1640	1355	4300
5	5	Elms-Old Rexdale	9456	1805	1440	3700
6	6	Kingsview Village-The	22000	4240	3020	8635
7	7	Willowridge-Martingrov	22156	3555	2625	8140
8	8	Humber Heights-West	10948	1450	1140	3790
9	9	Edenbridge-Humber Va	15535	2120	1805	5940
10	10	Princess-Rosethorn	11051	1770	1580	3825

By merging the two tables together, we are hoping to discover; 1), which neighbourhood is more prominent in crime and 2) if there is a relation between crime rate and the age demographic.