Réseau de collaborations des étudiants du cours BIO500 donné à l'Université de Sherbrooke à l'hiver 2022

Alexandre Martineau^a, Clara Prévosto^a, Élisabeth Roy^a, Laura Béland^a, and Laurence Boum^a

^aUniversité de Sherbrooke, Départment de biologie, 2500 Boulevard de l'Université, Sherbrooke, Québec, J1K 2R1

This manuscript was compiled on April 29, 2022

Dans cet article, le réseau de collaboration des étudiants du cours BIO500 à l'hiver 2022 de l'Université de Sherbrooke fut comparé au réseau de type petit monde pour voir si les caractéristique d'un réseau de collaboration peut être considéré comme un réseau de petit monde. L'utilisation de données recueilli sur 193 étudiants concernant leur lien les uns par rapport aux autres ont servis à faire un réseaux de collaborations. Les analyses effectuées sur ce réseau furent l'analyse de la corrélation entre la centralité et le nombre de lien des étudiant et le calcul du 'Bacon number'd'un des étudiants pris au hazard. Ces analyses ont montré une corrélation non significative de la centralité et du nombre de liens et un 'Bacon number' se situant entre 2 et 4. Cependant, les réseaux de type petit monde devrait avoir une corrélation entre leur centralité et leur nombre de liens et un 'Bacon number' de 6 et moins. Donc ce réseau de collaboration n'a pas toutes les caractéristiques étudiées dans cette article correspondant aux carractéristiques des réseaux de type petit monde.

Bacon number | Centralité | Collaboration | Liens | Petits mondes

1. Introduction

Dans plusieurs études écologiques, les différents organismes d'un environnement donné sont tous liés entre eux par différents lien qui les unis. Ces liens correspondent à leur réseau de connection et permettent de voir l'impact qu'une espèce aurait sur le reste de la population présente. Dans ce rapport, nous nous penchons sur un type de réseau nommé le réseau de petit monde pour savoir si les caractéristiques de ce réseau concordent avec celles du réseau de collaborations que nous avons obtenu. Ce dernier a été produit à partir d'une base de données des collaborations des étudiants du cours BIO500 donné à l'Université de Sherbrooke à l'hiver 2022. Afin de répondre à notre objectif, nous cherchons plus précisement à savoir s'il existe une corrélation entre le nombre de liens des étudiants entre eux et leur centralité dans leur réseau de liens. Nous effectuons également le calcul du Bacon number d'une des étudiante pour calculer la distance entre cette étudiante et ses collègues du cours BIO500.

2. Méthode

Nous avons tout d'abord récolté les données des 193 étudiant(e)s relié(e)s au cours BIO500, soit des étudiant(e)s inscrit(e)s au cours et ayant collaboré avec des étudiant(e)s inscrit(e)s au cours. Nous avons classé ces données en trois tables, l'une concernant les étudiant(e)s avec des informations telles que l'année de début de leurs études et le nom de leur programme d'études, la deuxième concernant les cours avec des informations telles que le sigle du cours et le nombre de crédits du cours et la dernière concernant les collaborations entre les étudiant(e)s avec les informations telles que le nom

Reseau de collaborations de la cohorte 2019-2022

Fig. 1. Réseau de collaboration

des deux étudiant(e)s et le sigle du cours dans lequel ils/elles ont collaboré. Nous avons utilisé le logiciel R version 4.1.3 pour faire la lecture, le nettoyage, l'injection des données et l'analyse des différentes données. À l'aide de ces données, nous avons généré trois figures nous permettant de répondre à notre objectif, à savoir si notre réseau se compare à un réseau de petit monde. Pour faciliter le lien entre les données, l'analyse et les figures, nous avons créé un script target. Nous avons également utilisé GitHub pour faciliter le partage et le stockage des données.

3. Résultats

La figure 1 montre le réseau de collaborations, soit la position des étudiants en fonction du nombre de liens les un par rapport aux autres. On observe les points, représentant les étudiants, relié par leurs collaborations avec les autre points entre eux. Dans cette figure, on retrouve des points plus gros plus au centre de la figure représentant les étudants ayant le plus de

Relation entre la centralite et le nombre de liens

Fig. 2. Relation entre la centralité et le nombre de lien

collaborations et des points plus petits vers l'extérieur de la figure représentant les étudiant ayant moins de collaboration.

La figure 2 représente la corrélation entre la centralité et le nombre de lien entre les étudiants. La corrélation effectuée pour voir le lien entre ces deux facteurs n'est pas significative, car la corrélation linéaire obtient une valeur de P de 0,2493 (P>0.05).

La figure 3 représente le degré de séparation des étudiants par rapport à l'étudiante Élisabeth Roy. On peut voir que la majorité des étudiants ont une distance collaborative entre 2 et 4 degrés de séparation avec Élisabeth Roy.

4. Discussion

Le réseau que nous avons obtenu à la Figure 1 peut être considéré comme un réseau de petit monde pour plusieurs raisons. Ce type de réseau, dont l'exemple parfait est les réseaux sociaux, repose principalement sur deux caractéristiques. D'abord, la distance moyenne entre toutes les paires de nœuds d'un réseau de petit monde est faible (1). Cela est un aspect présent chez les réseaux aléatoires, réseaux générés par un processus aléatoire. Plus précisément, le degré de séparation movens entre les individus doit être aux alentours de six (1). Cette constatation, démontrée par le sociologue Stanley Milgram, semble concorder avec notre réseau, dans lequel on peut voir que les étudiants sont tous à quelques liens seulement des autres étudiants. Pour un peu de perspective, Facebook a, en 2011, rectifié le nombre de liens entre ses 2 milliards d'utilisateurs : cette distance médiane est passé de six à seulement quatre @10.1145/2380718.2380723. Ensuite, pour qu'un réseau soit considéré comme un petit monde, il faut qu'il contienne un niveau de regroupement (clustering) local élevé, ce qui signifie que les nœuds sont généralement très connectés à leurs voisins immédiats (1). Cette caractéristique

Degres de separation d'Elisabeth Roy

Fig. 3. Degré de séparation d'Élisabeth Roy

n'est pas du tout présente chez les réseaux aléatoires. On peut également observer cette caractéristique sur notre réseau, principalement au centre, où l'on trouve des points plus larges, signifiant qu'ils sont davantage connectés à leurs voisins. Ces deux propriétés caractérisant les réseaux de petits mondes sont davantage détaillées dans les prochaines sections.

La Figure 2 indique le nombre de lien par des étudiants rapport à leur centralité dans un réseau de type petit monde. Comme les réseaux de petits monde sont des réseaux où chacun des noeuds sont reliés les un avec les autres avec, dans certains cas, des noeuds intermédiaires pour permettre cette connection (2). Le degrée de centralité est le nombre de liens relier à un noeud qui peut être traduit comme étant une mesure d'influence direct d'un noeud (3). Ainsi, les noeuds intermédiaires ayant plus de liens sont les plus influants. Cependant, dans notre réseau, cette corrélation n'est pas significative. Il y a une centralité plus forte chez les étudiant ayant une faible quantité de lien. Ainsi, la corrélation entre la centralité et le nombre de lien n'est pas la même que celle retrouvé dans un réseau de type petit monde. Par contre, plusieurs relations existe par rapport à la mesure de centralité. Faire l'étude de ses différent rapports pourrait aider à comprendre la centralité obtenu dans notre figure.

La Figure 3 nous indique le nombre de nœuds séparant Élisabeth Roy des autres étudiant(e)s. Ce nombre varie entre 1 et 4, la majorité des étudiants ayant un degré de séparation entre 2 et 4 avec Élisabeth Roy. Cette mesure se réfère directement au Bacon number ou au Erdös number, basés tout deux sur le phénomène de petit monde. Ces deux valeurs correspondent à la distance collaborative, d'un côté entre Kevin Bacon et d'autres acteurs/actrices ayant collaboré dans des films, et de l'autre entre le mathématicien Paul Erdos et d'autres auteurs/autrices ayant participé à l'écriture d'articles

académiques (4). Selon le phénomène de petit monde, chaque personne aurait un degré de séparation avec une autre personne de six maximum, c'est-à-dire que deux personnes seraient liées par l'entremise de six personnes maximum. Cela concorde donc avec le résultat que nous avons obtenu à la Figure 3, soit qu'il y a 4 personnes au maximum séparant Élisabeth Roy des autres étudiant(e)s. Toutefois, cette valeur ne prend en compte qu'une seule étudiante. Il serait donc intéressant de faire la moyenne de ce même calcul pour tous les étudiants afin de voir le degré de séparation moyen entre les individus de notre réseau.

5. Conclusion

Le but de ce travail était d'établir si le réseau de collaboration des étudiants du cours de BIO500 de l'Université de Sherbrooke à l'hiver 2022 concordait avec les caractéristiques d'un réseau de petit monde. Pour ce faire, une figure représentant le réseau de collaboration des étudiant entre eux fut produite. Cette figure démontrait une certaine centralité au niveau des étudiants avant un nombre de lien plus fort par rapport à ceux ayant un nombre de lien plus faible. La corrélation entre le nombre de liens par étudiant et leur centralité dans une figure n'étant, cependant, pas significative. Par contre, le degré de séparation, calculé sur un étudiant pris au hazard, correspond au nombre de degré normalement retrouvé dans un réseau de petit monde. Il n'est donc pas possible de dire que le réseau de collaboration des étudiants du cours de BIO500 concorde avec toutes les caractéristiques d'un réseau de petit monde. Cepandant, des analyses plus poussés pourraient permettre de mieux comparer ces types de réseau.

Bibliographie

- Watts DJ, Strogatz SH (1998) Collective dynamics of "small-world" networks. Nature 393(6684):440–442.
- 2. Uzzi B, Amaral LA, Reed-Tsochas F (2007) Small-world networks and management science research: A review. European Management Review 4(2):77–91.
- Borgatti SP (2005) Centrality and network flow. Social networks 27(1):55-71.
- 4. Collins JJ, Chow CC (1998) It's a small world. Nature 393(6684):409-410.