Understanding the Inverse Ackermann Function

Raimund Seidel

Universität des Saarlandes

I am not smart enough to understand this easily.

I am not smart enough to understand this easily.

I am not smart enough to come up with proofs (or even reproduce proofs) involving the inverse Ackermann function

based on this definition.

What do I tell my students?

What do I tell my students?

A(m,n) grows veeeeery quickly

 $\alpha(m,n)$ grows veeeeery slowly

What do I tell my students?

A(m,n) grows veeeeery quickly

 $\alpha(m,n)$ grows veeeeery slowly

Let's move on to the next subject!

Convince, that $\alpha()$ is not that complicated after all.

Convince, that $\alpha()$ is not that complicated after all.

2 examples,
where α() arises naturally out of the analysis;
the Ackermann function A() need not be mentioned;
top-down approach;

Convince, that $\alpha()$ is not that complicated after all.

2 examples,

where $\alpha()$ arises naturally out of the analysis;

the Ackermann function A() need not be mentioned;

top-down approach;

Partial sum problem in the semi-group setting

Convince, that $\alpha()$ is not that complicated after all.

2 examples,

where $\alpha()$ arises naturally out of the analysis;

the Ackermann function A() need not be mentioned:

top-down approach;

Partial sum problem in the semi-group setting

Union Find with Path Compression

Divide-and-Conquer Recurrences, Baby Version

Divide-and-Conquer Recurrences, Baby Version

Typical Divide-and-Conquer:

If problem set 5 has size n=1, then nothing to be done.

Otherwise:

- * partition S into subproblems of size < f(n)
- * solve each of the n/f(n) subproblems recursively
- * combine subsolutions.

Divide-and-Conquer Recurrences, Baby Version

Typical Divide-and-Conquer:

If problem set S has size n=1, then nothing to be done.

Otherwise:

- * partition S into subproblems of size < f(n)
- * solve each of the n/f(n) subproblems recursively
- * combine subsolutions.

(f needs to satisfy contraction condition f(n)<n for n>1.)

$$f^*(n) = \begin{cases} 0 & \text{if } n \leq 1 \\ 1 + f^*(f(n)) & \text{if } n > 1 \end{cases}$$

$$f^*(n) = \begin{cases} 0 & \text{if } n \leq 1 \\ 1 + f^*(f(n)) & \text{if } n > 1 \end{cases}$$

$$f^*(n) = min \{ k \mid f(f(\cdots f(n)\cdots) \leq 1 \}$$

k times

$$f^*(n) = \begin{cases} 0 & \text{if } n \leq 1 \\ 1 + f^*(f(n)) & \text{if } n > 1 \end{cases}$$

$$f^*(n) = min \{ k \mid \underbrace{f(f(\cdots f(n)\cdots) \leq 1} \}$$

 $k \text{ times}$

Examples for f*:

f*(n) f(n) n-1 n-1 n/2 n-2 n/c n-c n/2 log₂n n/c log_cn \sqrt{n} log log n log n log*n

<u>Data</u>: $A_1, A_2, \dots, A_n \in "Semigroup" (G,+)$

Query: i,j

Answer: $A_i+A_{i+1}+\cdots+A_j$ "partial sum"

<u>Data</u>: $A_1, A_2, \dots, A_n \in "Semigroup" (G,+)$

Query: i,j

Answer: $A_i+A_{i+1}+\cdots+A_j$ "partial sum"

Goal: Store "few" values of G so that each query can be answered with little cost

<u>Data</u>: $A_1, A_2, \dots, A_n \in "Semigroup" (G,+)$

Query: i,j

Answer: $A_i+A_{i+1}+\cdots+A_j$ "partial sum"

<u>Goal</u>: Store "few" values of G so that each query can be answered with little <u>cost</u>

of "+" operations

<u>Data</u>: $A_1, A_2, \dots, A_n \in "Semigroup" (G,+)$

Query: i,j

Answer: $A_i+A_{i+1}+\cdots+A_j$ "partial sum"

<u>Goal</u>: Store "few" values of G so that each query can be answered with little <u>cost</u>

 $S_k(n) = \#$ of values to be stored so that every query can be answered using at most k "+" operations.

<u>Data</u>: $A_1, A_2, \dots, A_n \in "Semigroup" (G,+)$

Query: i,j

Answer: $A_i+A_{i+1}+\cdots+A_j$ "partial sum"

<u>Goal</u>: Store "few" values of G so that each query can be answered with little <u>cost</u>

 $S_k(n) = \#$ of values to be stored so that every query can be answered using at most k "+" operations.

$$S_0(n) = \binom{n+1}{2}$$

```
Example semi-groups (G,+):
    (R, max)
    (R<sup>n</sup>, componentwise-max)
    (d×d matrices, mult)
```

Claim: $S_1(n) =$

Claim: $S_1(n) = n \log_2 n$

Claim: $S_1(n) = n \log_2 n$

"1-op-structure"

case n=1: trivial

case $n \ge 2$: use recursive construction

partition A-sequence into 2 subsequences A' and A'' of length n/2 each

A' A"
0000000000 000000000

partition A-sequence into 2 subsequences A' and A'' of length n/2 each

A' A"
0000000000 000000000

partition A-sequence into 2 subsequences A' and A'' of length n/2 each

store each suffix-sum of A' store each prefix-sum of A''

A' A"
0000000000 000000000

partition A-sequence into 2 subsequences A' and A'' of length n/2 each

store each suffix-sum of A' store each prefix-sum of A''

partition A-sequence into 2 subsequences A' and A'' of length n/2 each

store each suffix-sum of A' store each prefix-sum of A''

recursively store a 1-op-structure for A' and a 1-op-structure for A"

A' A"
0000000000 000000000

partition A-sequence into 2 subsequences A' and A'' of length n/2 each

store each suffix-sum of A' store each prefix-sum of A''

recursively store a 1-op-structure for A' and a 1-op-structure for A"

Query answering:

either return (suffix-sum)+(prefix-sum)
or use one of the recursive structures

partition A-sequence into 2 subsequences A' and A'' of length n/2 each

store each suffix-sum of A' store each prefix-sum of A''

recursively store a 1-op-structure for A' and a 1-op-structure for A''

$$S_1(n) \le n + \frac{n}{(n/2)} S_1(n/2)$$

partition A-sequence into 2 subsequences A' and A'' of length n/2 each

store each suffix-sum of A' store each prefix-sum of A''

recursively store a 1-op-structure for A' and a 1-op-structure for A"

$$S_1(n) \le n + \frac{n}{(n/2)} S_1(n/2)$$

 $\Rightarrow S_1(n) \le n \cdot (n/2)^* = n \log_2 n$

$$S_3(n) = ?$$

$$S_3(n) = ?$$

"3-op-structure"

case $n \le 4$: trivial

case $n \ge 5$: use recursive construction

partition A-sequence into n/log n subsequences of length $\leq log$ n each

partition A-sequence into $n/\log n$ subsequences of length $\leq \log n$ each

partition A-sequence into $n/\log n$ subsequences of length $\leq \log n$ each

store all prefix- and all suffixsums within each subsequence

partition A-sequence into n/log n subsequences of length $\leq log$ n each

store all prefix- and all suffixsums within each subsequence

partition A-sequence into $n/\log n$ subsequences of length $\leq \log n$ each

store all prefix- and all suffixsums within each subsequence

build a 1-op-structure for the n/log n subsequence-sums

partition A-sequence into $n/\log n$ subsequences of length $\leq \log n$ each

store all prefix- and all suffixsums within each subsequence

build a 1-op-structure for the n/log n subsequence-sums

partition A-sequence into $n/\log n$ subsequences of length $\leq \log n$ each

store all prefix- and all suffixsums within each subsequence

build a 1-op-structure for the n/log n subsequence-sums

partition A-sequence into $n/\log n$ subsequences of length $\leq \log n$ each

store all prefix- and all suffixsums within each subsequence

build a 1-op-structure for the n/log n subsequence-sums

build a 1-op-structure for the n/log n subsequence-sums

recursively build a 3-opstructure for each of the n/log n subsequences

Query answering:

build a 1-op-structure for the n/log n subsequence-sums

recursively build a 3-opstructure for each of the n/log n subsequences

Query answering:

build a 1-op-structure for the n/log n subsequence-sums

recursively build a 3-opstructure for each of the n/log n subsequences

Query answering:

build a 1-op-structure for the n/log n subsequence-sums

recursively build a 3-opstructure for each of the n/log n subsequences

Query answering:

build a 1-op-structure for the n/log n subsequence-sums

$$S_3(n) \leq 2n + S_1(\frac{n}{\log n}) + \frac{n}{\log n} \cdot S_3(\log n)$$

build a 1-op-structure for the n/log n subsequence-sums

$$S_3(n) \le 2n + \underbrace{S_1(\frac{n}{\log n})} + \frac{n}{\log n} \cdot S_3(\log n)$$

$$\le n$$

build a 1-op-structure for the n/log n subsequence-sums

$$S_3(n) \le 2n + \underbrace{S_1(\frac{n}{\log n})} + \frac{n}{\log n} \cdot S_3(\log n) \le 3n + \frac{n}{\log n} \cdot S_3(\log n)$$

$$\le n$$

build a 1-op-structure for the n/log n subsequence-sums

$$S_3(n) \le 2n + \underbrace{S_1(\frac{n}{\log n})} + \frac{n}{\log n} \cdot S_3(\log n) \le 3n + \frac{n}{\log n} \cdot S_3(\log n)$$

$$\le n$$

$$\Rightarrow S_3(n) \le 3n \log^* n$$

$$S_5(n) = ?$$
 $S_7(n) = ?$ $S_9(n) = ?$ $S_{2k+1}(n) = ?$

$$S_5(n) = ?$$
 $S_7(n) = ?$ $S_9(n) = ?$ $S_{2k+1}(n) = ?$

Assume:
$$S_{2k-1}(n) \le (2k-1) \cdot n \cdot f(n)$$

realized by $(2k-1) \cdot op$ -structure

$$S_5(n) = ?$$
 $S_7(n) = ?$ $S_9(n) = ?$ $S_{2k+1}(n) = ?$

Assume:
$$S_{2k-1}(n) \le (2k-1) \cdot n \cdot f(n)$$

realized by $(2k-1) \cdot op$ -structure

Show:
$$S_{2k+1}(n) \leq (2k+1) \cdot n \cdot f^*(n)$$

"(2k+1)-op-structure"

case $n \le 2k+2$: trivial

case $n \ge 2k+3$: use recursive construction

partition A-sequence into n/f(n) subsequences of length $\leq f(n)$ each

partition A-sequence into n/f(n) subsequences of length $\leq f(n)$ each

partition A-sequence into n/f(n) subsequences of length $\leq f(n)$ each

store all prefix- and all suffixsums within each subsequence

partition A-sequence into n/f(n) subsequences of length $\leq f(n)$ each

store all prefix- and all suffixsums within each subsequence

partition A-sequence into n/f(n) subsequences of length $\leq f(n)$ each

store all prefix- and all suffixsums within each subsequence

build a (2k-1)-op-structure for the n/f(n) subsequence-sums

partition A-sequence into n/f(n) subsequences of length $\leq f(n)$ each

store all prefix- and all suffixsums within each subsequence

build a (2k-1)-op-structure for the n/f(n) subsequence-sums

partition A-sequence into n/f(n) subsequences of length $\leq f(n)$ each

store all prefix- and all suffixsums within each subsequence

build a (2k-1)-op-structure for the n/f(n) subsequence-sums

A

partition A-sequence into n/f(n) subsequences of length $\leq f(n)$ each

store all prefix- and all suffixsums within each subsequence

build a (2k-1)-op-structure for the n/f(n) subsequence-sums

recursively build a (2k+1)-opstructure for each of the n/f(n) subsequences

store all prefix- and all suffixsums within each subsequence

build a (2k-1)-op-structure for the n/f(n) subsequence-sums

recursively build a (2k+1)-opstructure for each of the n/f(n) subsequences

Query answering:

either use one of the recursive (2k+1)-op-structures or return (suffix-sum)+(answer from (2k-1)-op-structure)+(prefix-sum)

Query 0000 0000 ... 0000 0000 f(n)0000 0000 0000 0000 0000 2k+1 2k+1 2k+1 2k+1

store all prefix- and all suffixsums within each subsequence

build a (2k-1)-op-structure for the n/f(n) subsequence-sums

recursively build a (2k+1)-opstructure for each of the n/f(n) subsequences

Query answering:

either use one of the recursive (2k+1)-op-structures or return (suffix-sum)+(answer from (2k-1)-op-structure)+(prefix-sum)

store all prefix- and all suffixsums within each subsequence

build a (2k-1)-op-structure for the n/f(n) subsequence-sums

recursively build a (2k+1)-opstructure for each of the n/f(n) subsequences

Query answering:

either use one of the recursive (2k+1)-op-structures or return (suffix-sum)+(answer from (2k-1)-op-structure)+(prefix-sum)

store all prefix- and all suffixsums within each subsequence

build a (2k-1)-op-structure for the n/f(n) subsequence-sums

recursively build a (2k+1)-opstructure for each of the n/f(n) subsequences

$$S_{2k+1}(n) \leq 2n + S_{2k-1}(\frac{n}{f(n)}) + \frac{n}{f(n)} \cdot S_{2k+1}(f(n))$$

$$\begin{split} S_{2k+1}(n) &\leq 2n + \underbrace{S_{2k-1}(\frac{n}{f(n)})}_{2k+1} + \frac{n}{f(n)} \cdot S_{2k+1}(f(n)) \\ &\leq (2k-1) \, \frac{n}{f(n)} \cdot f(\frac{n}{f(n)}) \end{split}$$

$$\begin{split} S_{2k+1}(n) & \leq 2n + S_{2k-1}(\frac{n}{f(n)}) + \frac{n}{f(n)} \cdot S_{2k+1}(f(n)) \\ & \leq (2k-1) \frac{n}{f(n)} \cdot f(\frac{n}{f(n)}) \end{split}$$

$$S_{2k+1}(n) \le 2n + S_{2k-1}(\frac{n}{f(n)}) + \frac{n}{f(n)} \cdot S_{2k+1}(f(n))$$

$$\le (2k-1) \frac{n}{f(n)} \cdot f(\frac{n}{f(n)})$$

$$S_{2k+1}(n) \le (2k+1) \cdot n + \frac{n}{f(n)} \cdot S_{2k+1}(f(n))$$

$$\begin{split} S_{2k+1}(n) & \leq 2n + S_{2k-1}(\frac{n}{f(n)}) + \frac{n}{f(n)} \cdot S_{2k+1}(f(n)) \\ & \leq (2k-1) \frac{n}{f(n)} \cdot f(\frac{n}{f(n)}) \end{split}$$

$$S_{2k+1}(n) \le (2k+1) \cdot n + \frac{n}{f(n)} \cdot S_{2k+1}(f(n))$$

$$\Rightarrow$$
 $S_{2k+1}(n) \leq (2k+1)n f^*(n)$

$$k=1$$
: $S_1(n) \le n \log n$

For all
$$k>1$$
: $S_{2k-1}(n) \leq (2k-1)\cdot n \cdot f(n)$

$$\Rightarrow$$
 $S_{2k+1}(n) \leq (2k+1) \cdot n \cdot f^*(n)$

$$k=1$$
: $S_1(n) \le n \log n$

For all
$$k>1$$
: $S_{2k-1}(n) \leq (2k-1)\cdot n \cdot f(n)$

$$\Rightarrow$$
 $S_{2k+1}(n) \leq (2k+1) \cdot n \cdot f^*(n)$

For all
$$k \ge 1$$
: $S_{2k+1} \le (2k+1) \cdot n \cdot \log^{\frac{k \text{ times}}{**} \cdot \dots *}(n)$

For all $k \ge 1$: $S_{2k+1} \le (2k+1) \cdot n \cdot \log^{**\dots*}(n)$

For all
$$k \ge 1$$
: $S_{2k+1} \le (2k+1) \cdot n \cdot \log^{\frac{k \text{ times}}{** \cdots *}}(n)$

Define
$$\alpha(n) = \min\{k \mid \log^{\frac{k \text{ times}}{** \cdots *}}(n) \leq 2\}$$

For all
$$k \ge 1$$
: $S_{2k+1} \le (2k+1) \cdot n \cdot \log^{**\dots*}(n)$

Define
$$\alpha(n) = \min\{k \mid \log^{\frac{k \text{ times}}{**\cdots*}}(n) \leq 2\}$$

For
$$k=\alpha(n)$$
: $S_{2\alpha(n)+1} \leq (2\alpha(n)+1)\cdot n\cdot 2$
= $O(\alpha(n)\cdot n)$

For all
$$k \ge 1$$
: $S_{2k+1} \le (2k+1) \cdot n \cdot \log^{\frac{k \text{ times}}{** \cdots *}}(n)$

Define
$$\alpha(n) = \min\{ k \mid \log^{\frac{k \text{ times}}{m}}(n) \leq 2 \}$$

For
$$k=\alpha(n)$$
: $S_{2\alpha(n)+1} \leq (2\alpha(n)+1)\cdot n\cdot 2$
= $O(\alpha(n)\cdot n)$

For $O(\alpha(n))$ query cost, space $O(\alpha(n)\cdot n)$ suffices.

Exercise:

For $O(\alpha(n))$ query cost, space O(n) suffices.

Yao; Chazelle, Rosenberg

Maintain partition of $S = \{1,2,\dots,n\}$ under operations

Maintain partition of $S = \{1,2,\dots,n\}$

under operations

Union(2,4)

Maintain partition of $S = \{1,2,\dots,n\}$

under operations

Union(2,4)

Find(3) = 6 (representative element)

Impementation

- * forest F of rooted trees with node set 5
- * one tree for each group in current partition
- * root of tree is representative of the group

Impementation

- * forest \mathcal{F} of rooted trees with node set S
- * one tree for each group in current partition
- * root of tree is representative of the group

Impementation

- * forest F of rooted trees with node set 5
- * one tree for each group in current partition
- * root of tree is representative of the group

Find(x) follow path from x to root

"path follwoing"

Heuristic 1: "linking by rank"

- each node x carries integer rk(x)
- initially rk(x) = 0
- as soon as x is NOT a root, rk(x) stays unchanged

Heuristic 2: Path compression

when performin a Find(x) operation make all nodes in the "findpath" children of the root

sequence of Union and Find operation

Explicit cost model:

cost(op) = # times some node gets a new parent

```
Time for Union(x,y) = O(1) = O(cost(Union(x,y)))

Time for Find(x) = O(\# of nodes on findpath)

= O(2 + cost(Find(x)))
```

For analysis assume all Unions are performed first, but Find-paths are only followed (and compressed) to correct node.

For analysis assume all Unions are performed first, but Find-paths are only followed (and compressed) to correct node.

General path compression in forest F

"rootpath compress"

"rootpath compress"

"rootpath compress"

General path compression in forest F

"rootpath compress"

 $cost(compress(x, \infty)) = # of nodes that get a new parent$

Problem formulation

- \mathcal{F} forest on node set X
- c sequence of compress operations on \mathcal{F}
- |C| = # of true compress operations in C (rootpath compresses excluded)

 $cost(C) = \sum(cost of individual operations)$

Problem formulation

- \mathcal{F} forest on node set X
- c sequence of compress operations on \mathcal{F}
- |C| = # of true compress operations in C (rootpath compresses excluded)

 $cost(C) = \sum(cost of individual operations)$

How large can cost(C) be at most, in terms of |X| and |C|?

```
Dissection of a forest \mathcal{F} with node set X:

partition of X into "top part" X_t
and "bottom part" X_b

so that top part X_t is "upwards closed",

i.e. x \in X_t \Rightarrow every ancestor of x is in X_t also
```

Dissection of a forest \mathcal{F} with node set X:

partition of X into "top part" X_t and "bottom part" X_b

so that top part X_t is "upwards closed",

i.e. $x \in X_+ \Rightarrow$ every ancestor of x is in X_+ also

Dissection of a forest \mathcal{F} with node set X:

partition of X into "top part" X_t and "bottom part" X_b

so that top part X_t is "upwards closed",

i.e. $x \in X_+ \Rightarrow$ every ancestor of x is in X_+ also

Note:
$$X_t$$
, X_b dissection for \mathcal{F} \mathcal{F}' obtained from \mathcal{F} by sequence of path compressions

$$X_t, X_b$$
 is dissection for \mathcal{F}'

Main Lemma:

 ${\mathcal C}$... sequence of operations on ${\mathcal F}$ with node set ${\mathcal X}$ ${\mathcal X}_{\mathsf t}$, ${\mathcal X}_{\mathsf b}$ dissection for ${\mathcal F}$ inducing subforests ${\mathcal F}_{\mathsf t}$, ${\mathcal F}_{\mathsf b}$

Main Lemma:

 ${\cal C}$... sequence of operations on ${\cal F}$ with node set ${\bf X}$ ${\bf X}_{t}$, ${\bf X}_{b}$ dissection for ${\cal F}$ inducing subforests ${\cal F}_{t}$, ${\cal F}_{b}$

 \Rightarrow \exists compression sequences C_b for \mathcal{F}_b and C_t for \mathcal{F}_t with and

$$|C_{b}| + |C_{t}| \leq |C|$$

and

$$cost(C) \leq cost(C_b) + cost(C_t) + |X_b| + |C_t|$$

compression paths from C

case 1:

compression paths from C

compression paths from C

Proof:

$$|C_{\mathsf{b}}| + |C_{\mathsf{t}}| \leq |C|$$

compression paths from C

into
$$C_{+}$$

into
$$C_b$$

into
$$C_{\dagger}$$

into
$$C_b$$

$cost(C) \leq cost(C_b) + cost(C_t) + |X_b| + |C_t|$

cost(C)

4

green node gets new green parent:

accounted by $cost(C_t)$

brown node gets new brown parent:

accounted by $cost(C_b)$

brown node gets new green parent: for the first time

accounted by $|X_b|$

brown node gets new green parent:

again

accounted by $|C_{t}|$

f(m,n) ... maximum cost of any compression sequence C with |C|=m in an arbitrary forest with n nodes.

Claim: $f(m,n) \leq (m+n) \cdot \log_2 n$

C compression sequence |C|=m

Proof:

forest ${\cal F}$

$$|X_{t}| = |X_{b}| = n/2$$

C compression sequence

Proof:

forest ${\cal F}$

$$\mathcal{F}_{b}$$
 X_{b}

$$|X_{t}| = |X_{b}| = n/2$$

C compression sequence |C|=m

Main Lemma
$$\Rightarrow \exists C_{\dagger}, C_{b} |C_{b}| + |C_{\dagger}| \leq |C|$$

$$m_{b} + m_{t} \leq m$$

$$cost(C) \leq cost(C_b) + cost(C_t) + |X_b| + |C_t|$$

Proof:

forest ${\cal F}$

|X|=n

 $|X_{t}| = |X_{b}| = n/2$

C compression sequence |C|=m

Main Lemma
$$\Rightarrow \exists C_{\dagger}, C_{b} |C_{b}| + |C_{\dagger}| \leq |C|$$

$$m_{b} + m_{t} \leq m$$

$$cost(C) \leq cost(C_b) + cost(C_t) + |X_b| + |C_t|$$

Induction: $\leq (m_b+n/2)\log n/2 + (m_t+n/2)\log n/2 + n/2 + m_t$

Proof:

forest ${\cal F}$

$$\mathcal{F}_{b}$$
 X_{b}

$$|X_{t}| = |X_{b}| = n/2$$

C compression sequence |C|=m

Main Lemma
$$\Rightarrow \exists C_t, C_b |C_b| + |C_t| \leq |C|$$

 $m_b + m_t \leq m$

$$cost(C) \leq cost(C_b) + cost(C_t) + |X_b| + |C_t|$$

Induction:
$$\leq (m_b+n/2)\log n/2 + (m_t+n/2)\log n/2 + n/2 + m_t$$

$$\leq (m+n) \cdot \log_2 n$$

Corollary:

Any sequence of m Union, Find operations in a universe of n elements that uses arbitrary linking and path compression takes time at most

 $O((m+n) \cdot \log n)$

Corollary:

Any sequence of m Union, Find operations in a universe of n elements that uses arbitrary linking and path compression takes time at most

$$O((m+n) \cdot \log n)$$

By choosing a dissection that is "unbalanced" in relation to m/n one can prove a better bound of

$$O((m+n) \cdot \log_{\lceil m/n \rceil + 1} n)$$

```
Def: \mathcal{F} forest, x node in \mathcal{F}
r(x) = height of subtree rooted at x
\left(\begin{array}{c} r(leaf) = 0 \end{array}\right)

\mathcal{F} is a rank forest, if

for every node x
for every i with 0 \le i < r(x),
there is a child y_i of x with r(y_i) = i.
```

```
Def: \mathcal{F} forest, x node in \mathcal{F}
r(x) = height of subtree rooted at x
\left(\begin{array}{c} r(leaf) = 0 \end{array}\right)

\mathcal{F} is a rank forest, if

for every node x
for every i with 0 \le i < r(x),
there is a child y_i of x with r(y_i) = i.
```

Note: Union by rank produces rank forests!

```
Def: \mathcal{F} forest, x node in \mathcal{F}
r(x) = height of subtree rooted at x
\left(\begin{array}{c} r(leaf) = 0 \end{array}\right)

\mathcal{F} is a rank forest, if

for every node x
for every i with 0 \le i < r(x),
there is a child y_i of x with r(y_i) = i.
```

Note: Union by rank produces rank forests!

Lemma: $r(x)=r \Rightarrow x$ is root of subtree with at least 2^r nodes.

Inheritance Lemma:

 \mathcal{F} rank forest with maximum rank r and node set X

$$\mathbf{S} \in \mathbb{N}: \quad \mathbf{X}_{>s} = \{ x \in \mathbf{X} \mid \mathbf{r}(\mathbf{x}) > s \} \qquad \mathcal{F}_{>s} \quad \text{induced forests} \\ \mathbf{X}_{\leq s} = \{ x \in \mathbf{X} \mid \mathbf{r}(\mathbf{x}) \leq s \} \qquad \mathcal{F}_{\leq s} \quad \text{induced forests}$$

Inheritance Lemma:

 \mathcal{F} rank forest with maximum rank r and node set X

- i) $X_{\leq s}$, $X_{>s}$ is a dissection for \mathcal{F}
- ii) $\mathcal{F}_{\leq s}$ is a rank forest with maximum rank < s
- iii) $\mathcal{F}_{>s}$ is a rank forest with maximum rank < r-s-1
- iv) $|X_{>s}| \le |X| / 2^{s+1}$

Inheritance Lemma:

 \mathcal{F} rank forest with maximum rank r and node set X

- i) $X_{\leq s}$, $X_{>s}$ is a dissection for \mathcal{F}
- ii) $\mathcal{F}_{\leq s}$ is a rank fores with maximum rank < s
- iii) $\mathcal{F}_{>s}$ is a rank fores with maximum rank $\leq r-s-1$

f(m,n,r) = maximum cost of any compression sequence C, with |C|=m, in rank forest \mathcal{F} with n nodes and maximum rank r. f(m,n,r) = maximum cost of any compression sequence C, with |C|=m, in rank forest \mathcal{F} with n nodes and maximum rank r.

Trivial bounds:

$$f(m,n,r) \leq (r-1) \cdot n$$
$$f(m,n,r) \leq (r-1) \cdot m$$

$$r \left\{ \begin{array}{|c|c|} \hline \mathcal{F}_t \\ \hline \mathcal{F}_b \\ \end{array} \right\} r\text{-s-1} < r \qquad |X_{>s}| \leq n/2^{s+1} \\ |X_{\leq s}| \leq n$$

$$f(M,N,R) \leq N \cdot R$$

$$r \left\{ \begin{array}{c} \mathcal{F}_t \\ \mathcal{F}_b \end{array} \right\} r\text{-s-1} < r \qquad |X_{\mathsf{ys}}| \leq n/2^{\mathsf{s+1}} \\ |X_{\mathsf{ys}}| \leq n \end{array}$$

$$f(M,N,R) \leq N \cdot R$$

 $cost(C) \leq cost(C_t) + cost(C_b) + |X_b| + |C_t|$

$$r \left\{ \begin{array}{c} \mathcal{F}_{+} \\ \mathcal{F}_{b} \end{array} \right\} r\text{-s-1} < r \quad |X_{>s}| \leq n/2^{s+1} \\ |X_{\leq s}| \leq n \end{array}$$

$$f(M,N,R) \leq N \cdot R$$

$$cost(C) \leq cost(C_{+}) + cost(C_{b}) + |X_{b}| + |C_{+}|$$

 $\leq n$

 \leq (n/2^{s+1})·r

$$r \left\{ \begin{array}{c} \mathcal{F}_{+} \\ \mathcal{F}_{b} \end{array} \right\} r - s - 1 < r \quad |X_{>s}| \leq n/2^{s+1} \\ |X_{\leq s}| \leq n \end{array}$$

$$f(M,N,R) \leq N \cdot R$$

$$cost(C) \leq cost(C_{+}) + cost(C_{b}) + |X_{b}| + |C_{+}| \\ \leq (n/2^{s+1}) \cdot r \qquad \leq n$$

$$s = \log r \qquad \leq n$$

$$r \left\{ \begin{array}{c} \mathcal{F}_{t} \\ \mathcal{F}_{b} \end{array} \right\} r - s - 1 < r \quad |X_{>s}| \le n/2^{s+1} \\ |X_{\leq s}| \le n \end{array}$$

$$f(M,N,R) \le N \cdot R$$

$$cost(C) \le cost(C_{t}) + cost(C_{b}) + |X_{b}| + |C_{t}| \\ \le (n/2^{s+1}) \cdot r \qquad \le n$$

$$s = log \ r \qquad \le n$$

$$cost(C) \le 2n + cost(C_{b}) + |C_{t}|$$

$$r \left\{ \begin{array}{c} \mathcal{F}_{t} \\ \mathcal{F}_{b} \end{array} \right\} r - s - 1 < r \quad |X_{>s}| \le n/2^{s+1} \\ |X_{\leq s}| \le n \end{array}$$

$$f(M,N,R) \le N \cdot R$$

$$cost(C) \le cost(C_{t}) + cost(C_{b}) + |X_{b}| + |C_{t}| \\ \le (n/2^{s+1}) \cdot r \qquad \le n$$

$$s = \log r \qquad \le n$$

$$cost(C) \le 2n + cost(C_{b}) + |C_{t}| - (|C_{b}| + |C_{t}|)$$

$$r = \left\{ \begin{array}{c} \mathcal{F}_t \\ \mathcal{F}_b \end{array} \right\} r\text{-s-1} < r \qquad |X_{>s}| \leq n/2^{s+1} \\ |X_{\leq s}| \leq n \\ \\ f(M,N,R) \leq N \cdot R \\ \\ s = log \ r \\ \end{array}$$

 $cost(C) - |C| \leq 2n + (cost(C_b) - |C_b|)$

$$r \left\{ \begin{array}{c} \mathcal{F}_{t} \\ \mathcal{F}_{b} \end{array} \right\} r - s - 1 < r \quad |X_{>s}| \le n/2^{s+1} \\ |X_{\leq s}| \le n \end{array}$$

$$f(M,N,R) \le N \cdot R$$

$$s = \log r$$

$$cost(C) - |C| \le 2n + \left(cost(C_b) - |C_b| \right)$$

$$\left(f(m,n,r) - m \right) \le 2n + \left(f(m_b,n,\log r) - m_b \right)$$

$$r \left\{ \begin{array}{|c|c|c|} \hline \mathcal{F}_t & & |X_{s}| \leq n/2^{s+1} \\ \hline \mathcal{F}_b & & |X_{\leq s}| \leq n \end{array} \right.$$

$$f(M,N,R) \leq M + 2N \cdot log^*R$$

$$r \left\{ \begin{array}{c} \mathcal{F}_{t} \\ \mathcal{F}_{b} \end{array} \right\} r\text{-}s\text{-}1 < r \quad |X_{\flat s}| \leq n/2^{s+1} \\ |X_{\leq s}| \leq n \end{array}$$

$$f(M,N,R) \leq M + 2N \cdot \log^{*}R$$

$$cost(C) \leq cost(C_{t}) + cost(C_{b}) + |X_{b}| + |C_{t}|$$

$$r \begin{cases} \mathcal{F}_{t} \\ \mathcal{F}_{b} \end{cases} r-s-1 < r \qquad |X_{>s}| \le n/2^{s+1} \\ |X_{\leq s}| \le n \end{cases}$$

$$f(M,N,R) \le M + 2N \cdot \log^{*}R$$

$$cost(C) \le cost(C_{t}) + cost(C_{b}) + |X_{b}| + |C_{t}|$$

$$\le |C_{t}| + 2(n/2^{s+1}) \cdot \log^{*}r \qquad \le n$$

$$r = \begin{cases} \mathcal{F}_{t} \\ \mathcal{F}_{b} \end{cases} r-s-1 < r \qquad |X_{ss}| \le n/2^{s+1} \\ |X_{\le s}| \le n \end{cases}$$

$$f(M,N,R) \le M + 2N \cdot \log^{*}R$$

$$cost(C) \le cost(C_{t}) + cost(C_{b}) + |X_{b}| + |C_{t}|$$

$$\le |C_{t}| + 2(n/2^{s+1}) \cdot \log^{*}r \qquad \le n$$

$$s = \log\log^{*}r \qquad \le |C_{t}| + n$$

$$r \left\{ \begin{array}{c} \mathcal{F}_{+} \\ \mathcal{F}_{b} \end{array} \right\} r - s - 1 < r \quad |X_{>s}| \leq n/2^{s+1} \\ |X_{\leq s}| \leq n \end{array}$$

$$f(M,N,R) \leq M + 2N \cdot \log^* R$$

$$cost(C) \leq cost(C_{+}) + cost(C_{b}) + |X_{b}| + |C_{+}| \\ \leq |C_{+}| + 2(n/2^{s+1}) \cdot \log^* r \qquad \leq n$$

$$s = \log\log^* r \qquad \leq |C_{+}| + n$$

$$cost(C) \leq 2n + cost(C_{b}) + 2|C_{+}|$$

$$r = \begin{cases} \mathcal{F}_{t} \\ \mathcal{F}_{b} \end{cases} r - s - 1 < r \quad |X_{ss}| \le n/2^{s+1} \\ |X_{\le s}| \le n \end{cases}$$

$$f(M, N, R) \le M + 2N \cdot \log^{*}R$$

$$cost(C) \le cost(C_{t}) + cost(C_{b}) + |X_{b}| + |C_{t}|$$

$$\le |C_{t}| + 2(n/2^{s+1}) \cdot \log^{*}r \qquad \le n$$

$$s = \log\log^{*}r \qquad \le |C_{t}| + n \qquad \qquad = |C|$$

$$cost(C) \le 2n + cost(C_{b}) + 2|C_{t}| - 2(|C_{b}| + |C_{t}|)$$

$$cost(C) - 2|C| \le 2n + (cost(C_{b}) - 2|C_{b}|)$$

$$r \left\{ \begin{array}{c} \mathcal{F}_{\dagger} \\ \mathcal{F}_{b} \end{array} \right\} r\text{-s-1} < r \quad |X_{\geq s}| \leq n/2^{s+1}$$

$$f(M,N,R) \leq M + 2N \cdot \log^* R$$

$$s = \log \log^* r$$

$$cost(C) - 2|C| \leq 2n + (cost(C_b) - 2|C_b|)$$

$$r \left\{ \begin{array}{c} \mathcal{F}_{+} \\ \mathcal{F}_{b} \end{array} \right\} r - s - 1 < r \quad |X_{>s}| \le n/2^{s+1} \\ |X_{\leq s}| \le n \end{array}$$

$$f(M,N,R) \le M + 2N \cdot \log^{*}R$$

$$s = \log \log^{*} r$$

$$cost(C) - 2|C| \le 2n + (cost(C_{b}) - 2|C_{b}|)$$

$$\left(f(m,n,r) - 2m \right) \le 2n + \left(f(m_{b},n,\log\log^{*} r) - 2m_{b} \right)$$

$$r \left\{ \begin{array}{c} \mathcal{F}_{t} \\ \mathcal{F}_{b} \end{array} \right\} r\text{-s-1} < r \quad |X_{>s}| \leq n/2^{s+1} \\ |X_{\leq s}| \leq n \end{array}$$

$$f(M,N,R) \leq M + 2N \cdot \log^{*}R$$

$$s = \log \log^{*} r \\ \cos t(C) - 2|C| \leq 2n + (\cos t(C_{b}) - 2|C_{b}|)$$

$$\left(f(m,n,r) - 2m \right) \leq 2n + \left(f(m_{b},n,\log\log^{*} r) - 2m_{b} \right)$$

$$\left(f(m,n,r) - 2m \right) \leq 2n \cdot (\log\log^{*})^{*}(r)$$

$$f(m,n,r) \leq 2m + 2n \cdot (\log\log^{*})^{*}(r)$$

$$r \left\{ \begin{array}{c|c} \mathcal{F}_{t} & |x_{s}| \leq n/2^{s+1} \\ \mathcal{F}_{b} & |x_{\leq s}| \leq n \end{array} \right.$$

$$f(M,N,R) \leq k \cdot M + 2N \cdot g(R)$$

$$s = \log g(r)$$

$$cost(C) - (k+1) \cdot |C| \leq 2n + (cost(C_b) - (k+1) \cdot |C_b|)$$

$$\left(f(m,n,r) - (k+1) \cdot m \right) \leq 2n + \left(f(m_b,n,\log g(r)) - (k+1) \cdot m_b \right)$$

$$\left(f(m,n,r) - (k+1) \cdot m \right) \leq 2n \cdot (\log \circ g)^*(r)$$

$$f(m,n,r) \leq (k+1) \cdot m + 2n \cdot (\log \circ g)^*(r)$$

Def.: $g: \mathbb{N} \to \mathbb{N}$ "nice"

$$g^{\diamond}(r) = \begin{cases} 0 & \text{if } r \leq 1 \\ 1 + g^{\diamond}(\lceil \log_2 g(r) \rceil) & \text{if } n > 1 \end{cases}$$

Note: $g^{\diamond} = (\lceil \log_2 \rceil \circ g)^*$

Shifting Lemma:

Assume $k \ge 0$, $g: \mathbb{N} \to \mathbb{N}$, "nice", non-decreasing, g(r) < r for r > 0.

Shifting Lemma:

Assume $k \ge 0$, $g: \mathbb{N} \to \mathbb{N}$, "nice", non-decreasing, g(r) < r for r > 0.

 $f(m,n,r) \le k \cdot m + 2 \cdot n \cdot g(r)$ for all m,n,r

Shifting Lemma:

Assume $k \ge 0$, $g: \mathbb{N} \to \mathbb{N}$, "nice", non-decreasing, g(r) < r for r > 0.

```
If f(m,n,r) \leq k \cdot m + 2 \cdot n \cdot g(r) \qquad \text{for all } m,n,r then also f(m,n,r) \leq (k+1) \cdot m + 2 \cdot n \cdot g^{\diamond}(r) \qquad \text{for all } m,n,r
```

Def:
$$J_0(r) = \lceil (r-1)/2 \rceil$$

 $J_k(r) = J_{k-1}^{\diamondsuit}(r)$ for k>0

Def:
$$J_0(r) = \lceil (r-1)/2 \rceil$$

 $J_k(r) = J_{k-1}^{\diamondsuit}(r)$ for k>0

Lemma: For all
$$k \in \mathbb{N}$$

$$f(m,n,r) \leq km + 2nJ_k(r)$$

Def:
$$J_0(r) = \lceil (r-1)/2 \rceil$$

 $J_k(r) = J_{k-1}^{\diamondsuit}(r)$ for k>0

Lemma: For all
$$k \in \mathbb{N}$$

$$f(m,n,r) \leq km + 2nJ_k(r)$$

Def:
$$\alpha(m,n) = \min\{k \in \mathbb{N} \mid J_k(\lfloor \log_2 n \rfloor) \leq 1 + m/n\}$$

Note: $r \leq \lfloor \log_2 n \rfloor$ always

Def:
$$J_0(r) = \lceil (r-1)/2 \rceil$$

 $J_k(r) = J_{k-1}^{\diamondsuit}(r)$ for k>0

Lemma: For all
$$k \in \mathbb{N}$$

$$f(m,n,r) \leq km + 2nJ_k(r)$$

Def:
$$\alpha(m,n) = \min\{k \in \mathbb{N} \mid J_k(\lfloor \log_2 n \rfloor) \leq 1 + m/n\}$$

$$\alpha(m,n) = \min \{ k \in \mathbb{N} \mid J_0^{\text{k times}} (\lfloor \log_2 n \rfloor) \leq 1 + m/n \}$$

Def:
$$J_0(r) = \lceil (r-1)/2 \rceil$$

 $J_k(r) = J_{k-1}^{\diamondsuit}(r)$ for k>0

Lemma: For all $k \in \mathbb{N}$ $f(m,n,r) \leq km + 2nJ_k(r)$

Def:
$$\alpha(m,n) = \min\{k \in \mathbb{N} \mid J_k(\lfloor \log_2 n \rfloor) \leq 1 + m/n\}$$

$$\alpha(m,n) = \min \{ k \in \mathbb{N} \mid J_0^{\downarrow \downarrow \downarrow \downarrow \dots \downarrow \downarrow} (\lfloor \log_2 n \rfloor) \leq 1 + m/n \}$$

Corollary: $f(m,n,r) \leq (\alpha(m,n) + 2)m + 2n$

Corollary:

Any sequence of m Union, Find operations in a universe of n elements that uses linking by rank and path compression takes time at most

$$O(m \cdot \alpha(m,n) + n)$$

Hopcroft - Ullman, Tarjan, van Leeuwen, Kozen, Harfst-Reingold; Sharir

For
$$r \le 65$$
: $J_1(r) \le 2$ $J_2(r) \le 1$

 $f(m,n,r) \le min\{m+4n, 2m+2n\}$ for $n<2^{66}$

For
$$r \le 65$$
: $J_1(r) \le 2$ $J_2(r) \le 1$

$$f(m,n,r) \leq \min \{ \; m{+}4n \; , \; 2m{+}2n \; \} \; for \; n{<}2^{66}$$

Actually:

```
\begin{split} f(m,n,r) & \leq m + 2.1 n & \text{for } n \!\! < \!\! 2^{66} \\ f(m,n,r) & \leq 2m \!\! + \!\! n & \text{for } n \!\! < \!\! 2^{2^{24615}} \end{split}
```

Similar proof for $O(m \cdot \alpha(m,n) + n)$ bound also works for

linking by weight and path compression linking by rank and generalized path compaction

