

UNIVERSITY OF COLOMBO, SRI LANKA

UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

DEGREE OF BACHELOR OF INFORMATION TECHNOLOGY (EXTERNAL)

Academic Year 2010/2011 – 3rd Year Examination – Semester 5

IT5203: Security of Information Systems Structured Question Paper

ructurea Question Paper 12th March, 2011 (TWO HOURS)

To be completed by th	e candid	late	
BIT Examination	Index	No:	

Important Instructions:

- •The duration of the paper is 2 (Two) hours.
- •The medium of instruction and questions is English.
- •This paper has 4 questions and 12 pages.
- •Answer all 4 questions. (all questions do not carry equal marks)
- •Question 1 (40% marks) and other questions (20% marks).
- •Write your answers in English using the space provided in this question paper.
- •Do not tear off any part of this answer book.
- •Under no circumstances may this book, used or unused, be removed from the Examination Hall by a candidate.
- •Note that questions appear on both sides of the paper.

 If a page is not printed, please inform the supervisor immediately.
- •Non-programmable Calculators may be used

Questions A	Answered
-------------	----------

Indicate by a cross (x), (e.g. X)) the numbers of the questions answered.

	Ç	Question	number	'S	
To be completed by the candidate by marking a cross (x).	1	2	3	4	
To be completed by the examiners:					

Vernam cipher is immune to most cryptanalytic attacks. (02 mark
ANSWER IN THIS BOX
According to Shannon, the implementation of the encryption process should be as complex a possible.
(02 mark
The columnar transposition and other transposition ciphers are examples of block ciphers. (02 mark)
ANSWER IN THIS BOX
The triple DES procedure is defined as $C = E(k1, E(k2, D(k1,m)))$. That is, you encrypt with one key, decrypt with the second and encrypt again with the first key.
ANSWER IN THIS BOX

1)

	(02 ma
INSWER IN THIS BOX	
symmetric key system with six (6) users requires 15 ke	
emember a key for each other user with which he or she	wants to communicate.
	(02 m
NSWER IN THIS BOX	
A public key and a user's identity are bound together wit	h a private key which is issued b
A public key and a user's identity are bound together wit ntity called a certificate authority.	h a private key which is issued b
ntity called a certificate authority.	
NSWER IN THIS BOX	(02 m
ntity called a certificate authority.	e Hash value of a message.
NSWER IN THIS BOX	(02 m
NSWER IN THIS BOX The Euclidean algorithm is a procedure for computing th	e Hash value of a message.
NSWER IN THIS BOX The Euclidean algorithm is a procedure for computing th	e Hash value of a message.
NSWER IN THIS BOX The Euclidean algorithm is a procedure for computing th	e Hash value of a message.

		(02 marks)
	ANSWER IN THIS BOX	
)	A virus spreads copies of itself as a stand-alone program, whereas a worm spreads itself as a program that attaches to or embeds in other programs.	
	ANSWER IN THIS BOX	(02 marks)
	ANOWER IN THIS BOX	
c)	An access control matrix is a table in which each row represents a subject and each represents an object.	
	ANSWER IN THIS BOX	(02 marks)
.)	A "security model" is a statement of the security we expect the system to enforce.	
		(02 marks)
	ANSWER IN THIS BOX	

ANSWER IN THIS BOX	
'Integrity" refers to a way to infer or derive sensitive data from non-sensitive data.	
ANEWED IN THIS DOV	(02 m
ANSWER IN THIS BUX	
ampson constructed a sequenty model for proventing inapprendicts modification of	doto
Lampson constructed a security model for preventing mappropriate modification of	(02 ma
ANSWER IN THIS BOX	
RSA algorithm can be used for signing and encryption.	
	(02 m
ANSWER IN THIS BOX	
	ANSWER IN THIS BOX Lampson constructed a security model for preventing inappropriate modification of ANSWER IN THIS BOX

	(02	2 r
ANSWER IN THIS BOX		
An Intrusion Detection System (IDS) can be	e network based or host based	
7 in initiasion Detection System (IDS) can be	(02	2 1
ANSWER IN THIS BOX		
The principal difference between Secure Mand Pretty Good Privacy(PGP) is the metho		M
The principal difference between Secure Me and Pretty Good Privacy(PGP) is the metho		
and Pretty Good Privacy(PGP) is the metho	d of key exchange.	
and Pretty Good Privacy(PGP) is the metho	d of key exchange.	
and Pretty Good Privacy(PGP) is the metho	d of key exchange.	
and Pretty Good Privacy(PGP) is the metho	d of key exchange.	
and Pretty Good Privacy(PGP) is the metho	d of key exchange.	
and Pretty Good Privacy(PGP) is the metho	d of key exchange.	
and Pretty Good Privacy(PGP) is the metho ANSWER IN THIS BOX	d of key exchange. (02	
and Pretty Good Privacy(PGP) is the metho ANSWER IN THIS BOX The fundamental data structures of IPSec ar	d of key exchange. (02	
and Pretty Good Privacy(PGP) is the metho ANSWER IN THIS BOX	d of key exchange. (02	ne
and Pretty Good Privacy(PGP) is the metho ANSWER IN THIS BOX The fundamental data structures of IPSec ar	e the virtual private network header and the	ne
ANSWER IN THIS BOX The fundamental data structures of IPSec ar virtual private network payload.	e the virtual private network header and the	ne
ANSWER IN THIS BOX The fundamental data structures of IPSec ar virtual private network payload.	e the virtual private network header and the	ne
ANSWER IN THIS BOX The fundamental data structures of IPSec ar virtual private network payload.	e the virtual private network header and the	ne

	(05 ma
	ANSWER IN THIS BOX
(b)	Identify pairs of relatively prime numbers from among the following list. (18,17), (27, 81), (13,39), (8,3), (16, 21) (05 ms
(b)	(18,17), (27, 81), (13,39), (8,3), (16, 21) (05 ma
(b) (c)	(18,17), (27, 81), (13,39), (8,3), (16, 21) ANSWER IN THIS BOX Suppose we want to use the Diffie-Hellman Key Agreement protocol between two end point A and B and have chosen the integer 3 as g and the integer 10 as the n. where g and n are defined in the protocol. For the private key x and public key X, we have the relation $X = g^x \mod n$.
	(18,17), (27, 81), (13,39), (8,3), (16, 21) ANSWER IN THIS BOX Suppose we want to use the Diffie-Hellman Key Agreement protocol between two end point A and B and have chosen the integer 3 as g and the integer 10 as the n. where g and n are defined in the protocol. For the private key x and public key X, we have the relation
	(18,17), (27, 81), (13,39), (8,3), (16, 21) ANSWER IN THIS BOX Suppose we want to use the Diffie-Hellman Key Agreement protocol between two end point A and B and have chosen the integer 3 as g and the integer 10 as the n. where g and n are defined in the protocol. For the private key x and public key X, we have the relation $X = g^x \mod n$. If A generates the private key x=5 and B generates the private key y=6, what is the sess key k between A and B?
	(18,17), (27, 81), (13,39), (8,3), (16, 21) ANSWER IN THIS BOX Suppose we want to use the Diffie-Hellman Key Agreement protocol between two end point A and B and have chosen the integer 3 as g and the integer 10 as the n. where g and n are defined in the protocol. For the private key x and public key X, we have the relation $X = g^x \mod n$. If A generates the private key x=5 and B generates the private key y=6, what is the sess key k between A and B?
	(18,17), (27, 81), (13,39), (8,3), (16, 21) ANSWER IN THIS BOX Suppose we want to use the Diffie-Hellman Key Agreement protocol between two end point A and B and have chosen the integer 3 as g and the integer 10 as the n. where g and n are defined in the protocol. For the private key x and public key X, we have the relation $X = g^x \mod n$. If A generates the private key x=5 and B generates the private key y=6, what is the sess key k between A and B?
	(18,17), (27, 81), (13,39), (8,3), (16, 21) ANSWER IN THIS BOX Suppose we want to use the Diffie-Hellman Key Agreement protocol between two end point A and B and have chosen the integer 3 as g and the integer 10 as the n. where g and n are defined in the protocol. For the private key x and public key X, we have the relation $X = g^x \mod n$. If A generates the private key x=5 and B generates the private key y=6, what is the sess key k between A and B? (05 ms) ANSWER IN THIS BOX
	(18,17), (27, 81), (13,39), (8,3), (16, 21) ANSWER IN THIS BOX Suppose we want to use the Diffie-Hellman Key Agreement protocol between two end point A and B and have chosen the integer 3 as g and the integer 10 as the n. where g and n are defined in the protocol. For the private key x and public key X, we have the relation $X = g^x \mod n$. If A generates the private key x=5 and B generates the private key y=6, what is the sess key k between A and B?
	(18,17), (27, 81), (13,39), (8,3), (16, 21) ANSWER IN THIS BOX Suppose we want to use the Diffie-Hellman Key Agreement protocol between two end point A and B and have chosen the integer 3 as g and the integer 10 as the n. where g and n are defined in the protocol. For the private key x and public key X, we have the relation $X = g^x \mod n$. If A generates the private key x=5 and B generates the private key y=6, what is the sess key k between A and B? (05 ms) ANSWER IN THIS BOX
	(18,17), (27, 81), (13,39), (8,3), (16, 21) ANSWER IN THIS BOX Suppose we want to use the Diffie-Hellman Key Agreement protocol between two end point A and B and have chosen the integer 3 as g and the integer 10 as the n. where g and n are defined in the protocol. For the private key x and public key X, we have the relation $X = g^x \mod n$. If A generates the private key x=5 and B generates the private key y=6, what is the sess key k between A and B? (05 ms) ANSWER IN THIS BOX
	(18,17), (27, 81), (13,39), (8,3), (16, 21) ANSWER IN THIS BOX Suppose we want to use the Diffie-Hellman Key Agreement protocol between two end point A and B and have chosen the integer 3 as g and the integer 10 as the n. where g and n are defined in the protocol. For the private key x and public key X, we have the relation $X = g^x \mod n$. If A generates the private key x=5 and B generates the private key y=6, what is the sess key k between A and B? (05 ms) ANSWER IN THIS BOX
	(18,17), (27, 81), (13,39), (8,3), (16, 21) ANSWER IN THIS BOX Suppose we want to use the Diffie-Hellman Key Agreement protocol between two end point A and B and have chosen the integer 3 as g and the integer 10 as the n. where g and n are defined in the protocol. For the private key x and public key X, we have the relation $X = g^x \mod n$. If A generates the private key x=5 and B generates the private key y=6, what is the sess key k between A and B? (05 ms) ANSWER IN THIS BOX

(d)	Nimal and Kamal use the RSA algorithm to communicate. Nimal's public key = $(n, e) = (33, 3)$ and private key = $(n, d) = (33, 7)$. Nimal received an encrypted message C=26. What is the corresponding plain text M?
	(05 mark)
	ANSWER IN THIS BOX
(a)	Using a schematic diagram, describe a symmetric key block cipher encryption mode that can produce a stream cipher. (06 mark)
	ANSWER IN THIS BOX

			(04
ANSWER IN THIS I	<u>BOX</u>		
	nisms use three(3) basic princ	iples to confirm a user's ide	ntity. Bri
Authentication mechar describe these three(3)		iples to confirm a user's ide	
describe these three(3)	basic principles.	iples to confirm a user's ide	
	basic principles.	iples to confirm a user's ide	
describe these three(3)	basic principles.	iples to confirm a user's ide	
describe these three(3)	basic principles.	iples to confirm a user's ide	
describe these three(3)	basic principles.	iples to confirm a user's ide	ntity. Bri (06
describe these three(3)	basic principles.	iples to confirm a user's ide	
describe these three(3)	basic principles.	iples to confirm a user's ide	
describe these three(3)	basic principles.	iples to confirm a user's ide	
describe these three(3)	basic principles.	iples to confirm a user's ide	
describe these three(3)	basic principles.	iples to confirm a user's ide	
describe these three(3)	basic principles.	iples to confirm a user's ide	
describe these three(3)	basic principles.	iples to confirm a user's ide	
describe these three(3)	basic principles.	iples to confirm a user's ide	

				(04
ANSWER I	N THIS BOX			
	fundamental user requirer	ments for database	security.	(0:
	fundamental user requirer	ments for database	security.	(05
		ments for database	security.	(05
		ments for database	security.	(05)
		ments for database	security.	(05
		ments for database	security.	(05
		ments for database	security.	(05
		ments for database	security.	(05)
		ments for database	security.	(05)
		ments for database	security.	(05
		ments for database	security.	(05)
		ments for database	security.	(05)
		ments for database	security.	(05)
		ments for database	security.	(05
		ments for database	security.	(05
		ments for database	security.	(05
		ments for database	security.	(05
		ments for database	security.	(05
		ments for database	security.	(05
		ments for database	security.	(05
		ments for database	security.	(05)
		ments for database	security.	(05)
		ments for database	security.	(05)
		ments for database	security.	(05
		ments for database	security.	(05
		ments for database	security.	(05)

an example.					(05 r
ANSWER IN	THIS BOX				
provide protect	contrast the issues			e secrets which	
provide protect	tion by law, to dat			e secrets which	
provide protect	tion by law, to dat			e secrets whic	
	tion by law, to dat			e secrets whic	
provide protect	tion by law, to dat			e secrets whic	
provide protect	tion by law, to dat		S.	e secrets whic	
provide protect	tion by law, to dat	ta and program	S.	e secrets whic	
provide protect	tion by law, to dat	ta and program	S.	e secrets whic	
provide protect	tion by law, to dat	ta and program	S.	e secrets which	
provide protect	tion by law, to dat	ta and program	S.	e secrets which	
provide protect	tion by law, to dat	ta and program	S.	e secrets which	th are intende
provide protect	tion by law, to dat	ta and program	S.	e secrets which	
provide protect	tion by law, to dat	ta and program	S.	e secrets which	
provide protect	tion by law, to dat	ta and program	S.	e secrets which	
provide protect	tion by law, to dat	ta and program	S.	e secrets which	
provide protect	tion by law, to dat	ta and program	S.	e secrets which	
provide protect	tion by law, to dat	ta and program	S.	e secrets which	
provide protect	tion by law, to dat	ta and program	S.	e secrets which	
provide protect	tion by law, to dat	ta and program	S.	e secrets whice	

	Index No:
Wr	ite down the steps that are necessary in order to create and execute a signed Java applet? (05 marks
AN	ISWER IN THIS BOX
