

Type of USB transfers

Pipes & endpoints 42

Pipes & endpoints 43

- Each device/host has multiple endpoints
 - Endpoint is virtual communication channel between device and host
 - Each endpoints can have different type of USB transaction
 - SETUP
 - BULK
 - Interrupt
 - Isochronous
 - Endpoint 0 is reserved for enumeration & configuration of the USB device
 - Max. 16 Endpoints (bidirectional), depends on HW
- USB pipe is connection from host to specific endpoint on specific device
 - It consists of endpoint number and device address
 - It is used from host perspective

Packets & Structure 1/2

8-LS,FS/32HS-bits

Token packets

SYNC – synchronization field

- PID Packet Field Formats first 4 bits show packet type, last 4 bits are mirrored check
- ADDR destination or source (special case) address
- ENDP destination endpoint
- CRC Cyclic Redundancy check for packet integrity, 5bits for token and SOF, 16bits for data
- EOP electrical signal for end of packet

	SYNC	PID	FRAME	CRC	EOP
8-bits		8-bits	11-bits	5-bits	

Start-of-frame packet

Frame – incremented value send during each (micro)frame

Packets & Structure 1/2 45

Data packet

SYNC EOP CRC PID DATA N-bytes 8-bits 16-bits

• Data Field – 0 to 1024 bytes, LSB

Acknowledge packet

• PID contains ACK, NAK, STALL or NYET

Packet & PID 1/2 46

Packet

PID type	PID name	PID[3:0]	Packet marking start of transaction
Token	OUT	0001B	transaction
	IN	1001B	
	SOF	0101B	Packet marking data part of
	SETUP	1101B	transaction
Data	DATA0	0011B	
	DATA1	1011B	Used for high-speed
	DATA2	0111B	communication
	MDATA	1111B	

Packet & PID 2/2

Packet

PID type	PID name	PID[3:0]	
Handshake	ACK	0010B	
	NAK	1010B	
	STALL	1110B	
	NYET	0110B	
Special	PRE	1100B	
	ERR	1100B	
	SPLIT	1000B	
	PING	0100B	
	Reserved	0000B	

Packet markig end of transaction

Specific packets for HS transactions

Address 48

Address assign 49

Start of frame 51

Send in periodical intervals

SYNC PID **FRAME** CRC **EOP** 8-bits 5-bits 11-bits

- 1ms interval for LS/FS and 125us for HS devices
- Base timing reference for USB
 - Used for synchronization (e.g. audio devices)
- Our crystal less devices can use it for synchronization
- Suspend command is detected by no SOFs during 3ms (ex. PC in hybernation)

Transaction 52

Transaction is created from packet communication

- First is send the TOKEN packet (SETUP, OUT, IN etc.)
- Then DATA packet
- Transaction ends with Handshake packet (ACK, NAK, STALL, NYET)

Direction is from host perspective

IN is from device to host, OUT is from host to device

Basic types of transactions:

- Control Setup transaction (and control sequences)
- Bulk transaction
- Isochronous transaction
- Interrupt transaction

Transaction handshake packets 53

Handshake	Description
ACK	Receiver accepts error-free data packet
NAK	Receiving device cannot accept data or transmitting device cannot send data
STALL	Endpoint is halted or a control pipe request is not supported
NYET	HS only: No response yet from receiver
Missing handshake	No handshake from receiver, error during transmission

Bulk transaction IN 54

- Transfer large non critical data
 - E.g. file transfers
- Only if USB have bandwidth
- Error handling
- Not in LS

Bulk IN

lata.

First correct oken to Here is example transaction data where the device not receive the IN Host Host Device token Second correct Device send data to host DATA0 Because previous data were incorrect firms data After complete transaction Host wait until his Igement by the data pid must be response timeout TA1 ng ACK changed expires and asks again Device no received ACK II nost rece orrupted than ha will -NAK to came data data he sel device Device sends stall when this functionality on this EP is not Now the data was even prepared or supported. not delivered to host

Bulk transaction OUT 56

Host send OUT token to notify device that next packet contain data

Bulk OUT 57

Data acknowledgement and error handling

- Packets integrity is checked with CRC and PID complementary values (invalid packets are ignored)
- When device sends ACK when it has successfully accepted data
- When device is not ready to accept data
 - It sends NAK for low-speed / full-speed
 - It can send NYET for high-speed bulk transfers
- When device sends STALL it stops the transmission
 - STALL is used for rejecting unsupported USB requests
- When device or host detects error it doesn't send ACK
- Successive data transfers toggle the data PID (DATA0, DATA1)
 - When device sends ACK, but host doesn't receive it (invalid PID), the host will send the same data twice
 - Data toggling can detect this case and discard data sent twice

Isochronous transaction 59

- For real-time applications
 - E.g. audio playback
- Provide data on timely basis
 - One packet per frame (FS) DATA0
 - Up to 3 packets per microframe (HS)
- No error handling
 - Errors just detected
- Not in LS

Isochronous IN/OUT 60

Interrupt transaction 63

- For interrupt driven devices (mouse, keyboard, ...)
- Data read periodically
- Limited packet size
- Pool interval in steps from 1ms
- Max 90% of 1ms bandwidth reserved to Isochronous and Interrupt transfers
- Available on all USB speeds (LS/FS/HS)

Error detection and correction

Interrupt transaction 64

Very similar to Bulk transactions

Interrupt IN 65

Interrupt OUT 66

Control SETUP transaction 67

- Similar to Bulk out transaction
- Used for enumeration and configuration
- Has defined data structure
- Standard request can be refused (not supported) by sending STALL
 - In data phase

Setup

Transaction is only from Host to Device with DATA0

No DATA toggle like in Bulk

Device

Host

ansaction

Fransaction 3

Device must ACK the data NAK is not allowed

If data are not acknowledged Host will repeat the Transaction

!! PC resend the SETUP 3x,
 if is not acknowledged,
communication with DEVICE
 is stopped

Control read/write sequence -

State

stage

State stage

Control Sequence Write First is send setup transation Device Host The DATA0 informs At the END is about control SETUP For write data requested a command are send over DATA0 DATA1 status from read/write) **OUT** tokens device OUT IN DATA1 **Data stage ACK** IN OUT Data toggle DATA0 lenath Stall if the Co starts with command is not s NAK if device is still DATA1 or end by e working on command

Control Sequence Read 71

Control Sequence with no data

Here is missing a data stage, similar to write sequence

Naming conventions for USB fields 73

- Each field name contains prefix specifying the size and type
 - b 1-byte field (integer)
 - bm 1-byte bit field
 - bcd 2-byte BCD encoded number
 - Usually for versions e.g. 0x0200 => version 2.0
 - w 2-byte field
 - id 2-byte ID
 - i 1-byte string index
- Little endian used for multi-byte values
 - ARM (by default) and x86 architectures are both little-endian

1 byte 1 byte 2 bytes 2 bytes 2 bytes bmRequest **bRequest** wValue wLength wIndex Type

Requests 75

bRequest	Value
GET_STATUS	0
CLEAR_FEATURE	1
Reserved for future use	2
SET_FEATURE	3
Reserved for future use	4
SET_ADDRESS	5
GET_DESCRIPTOR	6
SET_DESCRIPTOR	7
GET_DESCRIPTOR	6

bRequest	Value
GET_CONFIGURATION	8
SET_CONFIGURATION	9
GET_INTERFACE	10
SET_INTERFACE	11
SYNCH_FRAME	12

*More details in USB specification chapter: 9.4 Standard Device Requests

USB request example 76

Transfer F Control ADI SET 24	DR ENDP bRequest 0 SET_CONFIGURATIO		ndex wLength 0000 0 3.1
Transaction F SETUP 35 S 0xB4	ADDR ENDP T D TP R 24 0 0 H->D S D	bRequest wValue wInde 0x09 0x0001 0x000	
Packet 259 H F S	Sync SETUP ADD 00000001 0xB4 24	R ENDP CRC5 EOP 0 0x01 266.660	Pkt Len ns 36 Bits (5 Bytes)
Packet H 260 Packet S	Sync DATA0 00000001 0xC3 00	Data 09 01 00 00 00 00 00	CRC16 EOP 0xE4A4 266.660 ns 10
Packet D F S		OP Pkt Len 660 ns 20 Bits (3 Bytes)	Duration Time 1.600 us 15.850
Transaction F IN 0x96	ADDR ENDP T Data 24 0 1 0 bytes		Stamp 394 216
Packet 262 H F S	Sync IN ADD 00000001 0x96 24	R ENDP CRC5 EOP 0 0x01 266.660	Pkt Len ns 36 Bits (5 Bytes)
Packet 263 Packet S	Sync DATA1 Data 00000001 0xD2 0 by		Pkt Len Dur 36 Bits (5 Bytes) 2.9
Packet 264 H F S	-	OP Pkt Len 660 ns 20 Bits (3 Bytes)	Duration Time 1.600 us 9.798 s

USB request example (STALL) _____

Transfer 7	F Con		0 GE	bRequest T_DESCRIP	TOR DEVICE	wValue _QUALIFIER type		nough Data 0 bytes
	saction F 30 S	SETUP 0xB4	ADDR END 12 0	_	Tp R bRequ S D 0x06		ex wLength 00 10	ACK 0x4B
	Packet 353	H ↓ F S	Sync 00000001	SETUP 0xB4	ADDR END 12 0	P CRC5 EOF 0x1A 266.660		
	Packet 354	H ↓ F S	Sync 00000001	DATA0 0xC3		CRC16 EOP xFA2C 266.660 n	Pkt Len s 100 Bits (13 B	
	Packet 355	↑D F S	Sync 00000001	ACK 0x4B	EOP 250.000 ns	Pkt Len 19 Bits (3 Bytes)	Duration 1.583 us	Time 32.766
	saction F 32 S	IN 0x96	ADDR END	P STALL 0x78		ime Stamp 577 778 416		
	Packet 358	H↓F	Sync 00000001	IN 0x96	ADDR END 12 0		Pkt Le 0 ns 36 Bits (5 B	
	Packet 359	PD F	Sync 00000001	STALL 0x78	EOP 250.000 ns	Pkt Len 19 Bits (3 Bytes)	Duration 1.583 us	Time 1.094 i

SPLIT and PING transactions -78

Optimize high-speed bus utilization

SPLIT

- Used for communication with USB HUBs (split transactions), while low-speed/full-speed device is connected to HUB
- HUB communicates on lower speed
- Is not covered in this presentation

PING

- Used for bulk OUT
- Sending long packets that are NAK blocks the bus
- Ask device if is ready accept data

Bandwidth constraints 79

Maximum packet size (depending on transfer type and speed)

	Control	Bulk	Isochronous	Isochronous (kb/s)*	Interrupt
Low-speed	8	-	-	-	8
Full-speed	64	64	1023	1023	64
High-speed	64	512	1024	$1024 \times 3 \times 8 = 24,576$	1024

Full-speed:

- 10% reserved for control transfers
- 90% reserved for periodic transactions(isochronous and interrupt)
- Rest is used for bulk transaction.

High-speed:

- 20% reserved for control transfers
- 80% reserved for periodic transactions(isochronous and interrupt)
 - Rest is used for bulk transaction

* 1000 bytes per second for single endpoint