14-Bit Binary Counter and Oscillator

The MC14060B is a 14–stage binary ripple counter with an on–chip oscillator buffer. The oscillator configuration allows design of either RC or crystal oscillator circuits. Also included on the chip is a reset function which places all outputs into the zero state and disables the oscillator. A negative transition on Clock will advance the counter to the next state. Schmitt trigger action on the input line permits very slow input rise and fall times. Applications include time delay circuits, counter controls, and frequency dividing circuits.

- Fully static operation
- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 V to 18 V
- Capable of Driving Two Low–power TTL Loads or One Low–power Schottky TTL Load Over the Rated Temperature Range
- Buffered Outputs Available from Stages 4 Through 10 and 12 Through 14
- Common Reset Line
- Pin-for-Pin Replacement for CD4060B

MAXIMUM RATINGS (Voltages Referenced to V_{SS}) (Note 2.)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	-0.5 to V _{DD} + 0.5	V
I _{in} , I _{out}	Input or Output Current (DC or Transient) per Pin	±10	mA
P _D	Power Dissipation, per Package (Note 3.)	500	mW
T _A	Ambient Temperature Range	-55 to +125	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature (8–Second Soldering)	260	°C

- Maximum Ratings are those values beyond which damage to the device may occur.
- Temperature Derating: Plastic "P and D/DW" Packages: – 7.0 mW/°C From 65°C To 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

ON Semiconductor

http://onsemi.com

MARKING DIAGRAMS

PDIP-16 P SUFFIX CASE 648

SOIC-16 D SUFFIX CASE 751B

TSSOP-16 DT SUFFIX CASE 948F

SOEIAJ-16 F SUFFIX CASE 966

A = Assembly Location

WL or L = Wafer Lot YY or Y = Year WW or W = Work Week

ORDERING INFORMATION

Device	Package	Shipping
MC14060BCP	PDIP-16	2000/Box
MC14060BD	SOIC-16	2400/Box
MC14060BDR2	SOIC-16	2500/Tape & Reel
MC14060BDT	TSSOP-16	96/Rail
MC14060BDTR2	TSSOP-16	2500/Tape & Reel
MC14060BF	SOEIAJ-16	See Note 1.
MC14060BFEL	SOEIAJ-16	See Note 1.

 For ordering information on the EIAJ version of the SOIC packages, please contact your local ON Semiconductor representative.

PIN ASSIGNMENT

Q12 [1 ●	16] V _{DD}
Q13 [2	15	Q10
Q14 [3	14] Q8
Q6 [4	13	Q 9
Q5 [5	12	RESET
Q7 [6	11	СГОСК
Q4 [7	10] OUT 1
V _{SS} [8	9	OUT 2

TRUTH TABLE

Clock	Reset	Output State
	L	No Change
~	L	Advance to next state
Х	Н	All Outputs are low

X = Don't Care

LOGIC DIAGRAM

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

		V _{DD}	- 5	5°C		25°C		125°C		
Characteristic	Symbol	Vdc	Min	Max	Min	Typ ^(4.)	Max	Min	Max	Unit
Output Voltage "0" Level V _{in} = V _{DD} or 0	V _{OL}	5.0 10 15	_ _ _	0.05 0.05 0.05	_ _ _	0 0 0	0.05 0.05 0.05	_ _ _	0.05 0.05 0.05	V
$V_{in} = 0 \text{ or } V_{DD}$ "1" Level	V _{OH}	5.0 10 15	4.95 9.95 14.95	_ _ _	4.95 9.95 14.95	5.0 10 15	_ _ _	4.95 9.95 14.95	_ _ _	V
Input Voltage "0" Level $(V_O = 4.5 \text{ or } 0.5 \text{ V})$ $(V_O = 9.0 \text{ or } 1.0 \text{ V})$ $(V_O = 13.5 \text{ or } 1.5 \text{ V})$	V _{IL}	5.0 10 15		1.5 3.0 4.0		2.25 4.50 6.75	1.5 3.0 4.0		1.5 3.0 4.0	V
$(V_O = 0.5 \text{ or } 4.5 \text{ V})$ "1" Level $(V_O = 1.0 \text{ or } 9.0 \text{ V})$ $(V_O = 1.5 \text{ or } 13.5 \text{ V})$	V _{IH}	5.0 10 15	3.5 7.0 11.0	_ _ _	3.5 7.0 11.0	2.75 5.50 8.25	_ _ _	3.5 7.0 11.0	_ _ _	V
	V _{IL}	5.0 10 15	_ _ _	1.0 2.0 2.5	_ _ _	2.25 4.50 6.75	1.0 2.0 2.5	_ _ _	1.0 2.0 2.5	Vdc
$(V_O = 0.5 \text{ Vdc})$ "1" Level $(V_O = 1.0 \text{ Vdc})$ $(V_O = 1.5 \text{ Vdc})$	V _{IH}	5.0 10 15	4.0 8.0 12.5	_ _ _	4.0 8.0 12.5	2.75 5.50 8.25	_ _ _	4.0 8.0 12.5	_ _ _	Vdc
Output Drive Current (V _{OH} = 2.5 V) (Except Source (V _{OH} = 4.6 V) Pins 9 and 10) (V _{OH} = 9.5 V) (V _{OH} = 13.5 V)	ІОН	5.0 5.0 10 15	- 3.0 - 0.64 - 1.6 - 4.2	_ _ _ _	- 2.4 - 0.51 - 1.3 - 3.4	- 4.2 - 0.88 - 2.25 - 8.8	_ _ _ _	- 1.7 - 0.36 - 0.9 - 2.4	_ _ _ _	mA
$(V_{OL} = 0.4 \text{ V})$ Sink $(V_{OL} = 0.5 \text{ V})$ $(V_{OL} = 1.5 \text{ V})$	I _{OL}	5.0 10 15	0.64 1.6 4.2	_ _ _	0.51 1.3 3.4	0.88 2.25 8.8	_ _ _	0.36 0.9 2.4	_ _ _	mA
Input Current	I _{in}	15	_	± 0.1	_	±0.00001	± 0.1	<u> </u>	± 1.0	μА
Input Capacitance (V _{in} = 0)	C _{in}	_	_	_	_	5.0	7.5	_		pF
Quiescent Current (Per Package)	I _{DD}	5.0 10 15	_ _	5.0 10 20		0.005 0.010 0.015	5.0 10 20		150 300 600	μА
Total Supply Current ^(5.) ^(6.) (Dynamic plus Quiescent, Per Package) (C _L = 50 pF on all outputs, all buffers switching)	I _T	5.0 10 15			$I_{T} = (0$.25 μA/kHz) .54 μA/kHz) .85 μA/kHz)	f + I _{DD}	•		μА

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
 The formulas given are for the typical characteristics only at 25°C.
 To calculate total supply current at loads other than 50 pF:

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$

where: I_T is in μA (per package), C_L in pF, $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency, and k = 0.002.

SWITCHING CHARACTERISTICS (C_L = 50 pF, T_A = 25 $^{\circ}C$)

Characteristic	Symbol	V _{DD} Vdc	Min	Typ ^(7.)	Max	Unit
Output Rise Time (Counter Outputs)	tтLH	5.0 10 15	_ _ _	40 25 20	200 100 80	ns
Output Fall Time (Counter Outputs)	t _{THL}	5.0 10 15	_ _ _	50 30 20	200 100 80	ns
Propagation Delay Time Clock to Q4	t _{PLH} t _{PHL}	5.0 10 15	_ _ _	415 175 125	740 300 200	ns
Clock to Q14		5.0 10 15	_ _ _	1.5 0.7 0.4	2.7 1.3 1.0	μѕ
Clock Pulse Width	t _{wH}	5.0 10 15	100 40 30	65 30 20	 _ _	ns
Clock Pulse Frequency	f_{φ}	5.0 10 15	_ _ _	5 14 17	3.5 8 12	MHz
Clock Rise and Fall Time	t _{TLH} t _{THL}	5.0 10 15	No Limit			ns
Reset Pulse Width	t _W	5.0 10 15	120 60 40	40 15 10	_ _ _	ns
Propagation Delay Time Reset to On	t _{PHL}	5.0 10 15	_ _ _	170 80 60	350 160 100	ns

^{7.} Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

Figure 1. Power Dissipation Test Circuit and Waveform

Figure 2. Switching Time Test Circuit and Waveforms

$$\begin{split} f &\approx \frac{1}{2.3R_{tc}C_{tc}} \\ \text{if 1 kHz} &\leq f \leq 100 \text{ kHz} \\ \text{and } 2R_{tc} &< R_S < 10R_{tc} \\ \text{(f in Hz, R in ohms, C in farads)} \end{split}$$

The formula may vary for other frequencies. Recommended maximum value for the resistors in 1 $M\Omega.$

Figure 3. Oscillator Circuit Using RC Configuration

TYPICAL RC OSCILLATOR CHARACTERISTICS

100 V_{DD} = 10 V 50 f, OSCILLATOR FREQUENCY (kHz) f AS A FUNCTION 20 OF R_{TC} 10 (C = 1000 pF) $(R_S \approx 2R_{TC})$ f AS A FUNCTION 2 OF C $(R_{TC} = 56 \text{ k}\Omega)$ $(R_S = 120 \text{ k})^{-1}$ 0.5 1.0 k 10 k 100 k 1.0 M R_{TC}, RESISTANCE (OHMS) 0.0001 0.001 0.1 0.01 C, CAPACITANCE (uF)

Figure 4. RC Oscillator Stability

Figure 5. RC Oscillator Frequency as a Function of R_{TC} and C

Figure 6. Typical Crystal Oscillator Circuit

Characteristic	500 kHz Circuit	32 kHz Circuit	Unit
Crystal Characteristics Resonant Frequency Equivalent Resistance, R _S	500	32	kHz
	1.0	6.2	kΩ
External Resistor/Capacitor Values RO CT CS	47	750	kΩ
	82	82	pF
	20	20	pF
Frequency Stability Frequency Changes as a Function of V _{DD} (T _A = 25°C) V _{DD} Change from 5.0 V to 10 V V _{DD} Change from 10 V to 15 V Frequency Change as a Function of Temperature (V _{DD} = 10 V) T _A Change from - 55°C to +25°C Complete Oscillator ^(8.) T _A Change from + 25°C to +125°C Complete Oscillator ^(8.)	+ 6.0 + 2.0 + 100 - 160	+ 2.0 + 2.0 + 120 - 560	ppm ppm ppm

8. Complete oscillator includes crystal, capacitors, and resistors.

Figure 7. Typical Data for Crystal Oscillator Circuit

PACKAGE DIMENSIONS

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: INCH.

 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.

 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

 5. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.740	0.770	18.80	19.55
В	0.250	0.270	6.35	6.85
С	0.145	0.175	3.69	4.44
D	0.015	0.021	0.39	0.53
F	0.040	0.70	1.02	1.77
G	0.100	BSC	2.54	BSC
Н	0.050	BSC	1.27	BSC
J	0.008	0.015	0.21	0.38
K	0.110	0.130	2.80	3.30
L	0.295	0.305	7.50	7.74
M	0°	10 °	0°	10 °
S	0.020	0.040	0.51	1.01

PLASTIC SOIC PACKAGE CASE 751B-05

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.

 MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050) BSC
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
Р	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

PACKAGE DIMENSIONS

TSSOP-16 **DT SUFFIX**

PLASTIC TSSOP PACKAGE CASE 948F-01 **ISSUE O**

D

NOTES:

- 11. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15
- FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- REFERENCE ONLY.

 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W-.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026 BSC	
Н	0.18	0.28	0.007	0.011
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40		0.252	BSC
M	0°	8°	0°	8°

PACKAGE DIMENSIONS

SOEIAJ-16 **F SUFFIX** PLASTIC EIAJ SOIC PACKAGE

CASE 966-01 **ISSUE O**

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI Y14 5M 1982
- CONTROLLING DIMENSION: MILLIMETER. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

 I. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.

 THE LEAD WIDTH DIMENSION (b) DOES NOT
- INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION DAMBAR CANNOT BE LOCATED ON THE LOWER

RADIUS OR THE FOOT. MINIMUM SPACE
BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILLIN	METERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α		2.05		0.081
A ₁	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
С	0.18	0.27	0.007	0.011
D	9.90	10.50	0.390	0.413
Ε	5.10	5.45	0.201	0.215
е	1.27	BSC	0.050 BSC	
HE	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
LE	1.10	1.50	0.043	0.059
M	0 °	10 °	0 °	10 °
Q ₁	0.70	0.90	0.028	0.035
Z		0.78		0.031

are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular withoutfurtner notice to any products nerein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303-308-7140 (M-F 1:00pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com

Phone: (+1) 303-308-7141 (M-F 1:00pm to 5:00pm Toulouse Time)

Email: ONlit-french@hibbertco.com

Phone: (+1) 303-308-7142 (M-F 12:00pm to 5:00pm UK Time) **English**

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, England, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support

Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-8549

Phone: 81-3-5740-2745 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.