# Using VQE with CVaR expectation value COBYLA optimzer 9 amino Bradykinin

### April 4, 2023

```
[1]: from qiskit_research.protein_folding.interactions.random_interaction import (
         RandomInteraction,
     from qiskit_research.protein_folding.interactions.miyazawa_jernigan_interactionu
      →import (
         MiyazawaJerniganInteraction,
     from qiskit_research.protein_folding.peptide.peptide import Peptide
     from qiskit_research.protein_folding.protein_folding_problem import (
         ProteinFoldingProblem,
     )
     from qiskit_research.protein_folding.penalty_parameters import PenaltyParameters
     from qiskit.utils import algorithm_globals, QuantumInstance
     algorithm_globals.random_seed = 25
[2]: main_chain = "RPPGFSPFR" #Bradykinin Peptide
[3]: side_chains = [""] * 9
[4]: random_interaction = RandomInteraction()
     mj_interaction = MiyazawaJerniganInteraction()
[5]: penalty back = 10
     penalty_chiral = 10
     penalty_1 = 10
     penalty_terms = PenaltyParameters(penalty_chiral, penalty_back, penalty_1)
[6]: peptide = Peptide(main_chain, side_chains)
[7]: protein_folding_problem = ProteinFoldingProblem(peptide, mj_interaction,__
      →penalty_terms)
     qubit_op = protein_folding_problem.qubit_op()
```

#### [8]: print(qubit\_op)

```
5764.091 * IIIIIIIIIIIIII
+ 1240.0 * IIIIIIIIIIIIIIIIII
- 550.0 * IIIIIIIIIIIIIZZ
+ 550.0 * IIIIIIIIIIIIIZZZ
- 652.5 * IIIIIIIIIIIIIIIIII
- 652.5 * IIIIIIIIIIIIIIIIIIIII
- 652.5 * IIIIIIIIIIIIZZZZI
- 550.0 * IIIIIIIIIIIIIIII
- 550.0 * IIIIIIIIIIIIIIII
- 550.0 * IIIIIIIIIIZZZZIII
- 457.5 * IIIIIIIIIIIIII
- 457.5 * IIIIIIIIIIIIII
- 457.5 * IIIIIIIIZZZZIIIII
- 227.5 * IIIIIIZIZIIIIIII
- 227.5 * IIIIIIIIZIZIIIIIII
- 227.5 * IIIIIIZZZZIIIIIII
+ 690.0 * IIIIIIIIIIIIIIZZI
- 1250.0 * IIIIIIIIIIIIIIII
- 695.0 * IIIIIIIIIIIIZZIII
+ 460.0 * IIIIIIIIIIIIII
+ 555.0 * IIIIIIIIIIIIIII
- 555.0 * IIIIIIIIIIIIZZIIZ
- 904.5565 * IIIIIZIIIIIIIII
- 295.0 * IIIIIZIIIIIIIIZII
- 197.5 * IIIIIZIIIIIIIZZI
+ 302.5 * IIIIIZIIIIIIZIIII
+ 202.5 * IIIIIZIIIIIZZIII
+ 100.0 * IIIIIZIIIIIIZIZII
+ 100.0 * IIIIIZIIIIIIIZIZI
+ 100.0 * IIIIIZIIIIIIZZZZI
- 200.0 * IIIIIZIIIIIIIIIZ
+ 97.5 * IIIIIZIIIIIIIZZ
- 97.5 * IIIIIZIIIIIIIZZZ
- 100.0 * IIIIIZIIIIIIIZIIZ
+ 100.0 * IIIIIZIIIIIIZZIIZ
+ 230.0 * IIIIIIIIIIIIIIII
- 230.0 * IIIIIIIIIIIIIIIII
+ 2.5 * IIIIIZIIIIIIIIZI
- 2.5 * IIIIIZIIIIIIIZIII
+ 945.0 * IIIIIIIIIIIIIII
+ 490.0 * IIIIIIIIIIZZIIIII
+ 555.0 * IIIIIIIIIIIIIIIIII
+ 555.0 * IIIIIIIIIIIIIIIIIII
+ 555.0 * IIIIIIIIIIZZIIZZI
- 455.0 * IIIIIIIIIIIIIII
+ 455.0 * IIIIIIIIIIZZIIIIZ
```

- + 7.5 \* IIIIIZIIIIZIIIII
- + 5.0 \* IIIIIZIIIIZZIIIII
- + 2.5 \* IIIIIZIIIIZIII
- + 2.5 \* IIIIIZIIIIIZI
- + 2.5 \* IIIIIZIIIIZZIIZZI
- 2.5 \* IIIIIZIIIIZIZIIII
- 2.5 \* IIIIIZIIIIIZIZIII
- 2.5 \* IIIIIZIIIIZZZZIII
- 2.5 \* IIIIIZIIIIZ
- + 2.5 \* IIIIIZIIIIZZIIIIZ
- 762.5 \* IIIIIIIIIIIIII
- 400.0 \* IIIIIIIIZZIIIIIII
- 462.5 \* IIIIIIIIIIIIIIIII
- 462.5 \* IIIIIIIIIIIIIIII
- 462.5 \* IIIIIIIIZZIIIIZZI
- + 460.0 \* IIIIIIIIIIIIIII
- + 460.0 \* IIIIIIIIIIIIIII
- + 460.0 \* IIIIIIIIZZIIZZIII
- + 362.5 \* IIIIIIIIIIIIII
- 362.5 \* IIIIIIIIZZIIIIIIZ
- 1616.925999999999 \* IIIIZIIIIIIIII
- 400.0 \* IIIIZIIIIIIIIIIII
- 267.5 \* IIIIZIIIIIIIIZZI
- + 400.0 \* IIIIZIIIIIIIZIIII
- + 267.5 \* IIIIZIIIIIIIZZIII
- 400.0 \* IIIIZIIIIIZIIIIII
- 267.5 \* IIIIZIIIIIZZIIIII
- + 407.5 \* IIIIZIIIZIIIIIII
- + 272.5 \* IIIIZIIIZZIIIIIII
- + 132.5 \* IIIIZIIIIIIIZIZII
- 132.5 \* IIIIZIIIIIZIIIZII
- + 135.0 \* IIIIZIIIZIIIIIZII
- + 132.5 \* IIIIZIIIIIIIIZIZI
- 132.5 \* IIIIZIIIIIIZI + 135.0 \* IIIIZIIIIZI
- + 132.5 \* IIIIZIIIIIIIZZZZI
- 132.5 \* IIIIZIIIIIZZIIZZI
- + 135.0 \* IIIIZIIIZZIIIIZZI
- + 132.5 \* IIIIZIIIIIZIZIIII
- 135.0 \* IIIIZIIIZIIIZIIII
- + 132.5 \* IIIIZIIIIIIZIZIII
- 135.0 \* IIIIZIIIIZIII
- + 132.5 \* IIIIZIIIIIZZZZIII
- 135.0 \* IIIIZIIIZZIIZZIII + 135.0 \* IIIIZIIIZIZIIIIII
- + 135.0 \* IIIIZIIIIZIZIIIII
- + 135.0 \* IIIIZIIIZZZZIIIII
- 270.0 \* IIIIZIIIIIIIIIZ

- + 132.5 \* IIIIZIIIIIIIIZZ
- 132.5 \* IIIIZIIIIIIIIZZZ
- 132.5 \* IIIIZIIIIIIIIZIIZ
- + 132.5 \* IIIIZIIIIIIIZZIIZ
- + 132.5 \* IIIIZIIIIIZ
- 132.5 \* IIIIZIIIIIZZIIIIZ
- 135.0 \* IIIIZIIIIZIIIIIZ
- + 135.0 \* IIIIZIIIZZIIIIIIZ
- + 235.0 \* IIIIIIIIIIIIIII
- 130.0 \* IIIIIIIIIIIIII
- + 2.5 \* IIIIZIIIIIIIIIZI
- 2.5 \* IIIIZIIIIIIIIIIII
- + 2.5 \* IIIIZIIIIIIZIIIII
- 2.5 \* IIIIZIIIIZIIIIII
- + 257.5 \* IIIIIIZIIIIIIII
- + 130.0 \* IIIIIIZZIIIIIIII
- + 232.5 \* IIIIIIZIIIIIIIZII
- + 232.5 \* IIIIIIIZIIIIIIIZI
- + 232.5 \* IIIIIIZZIIIIIIZZI
- 230.0 \* IIIIIIZIIIIIZIIII
- 230.0 \* IIIIIIIZIIIIIZIII
- 230.0 \* IIIIIIZZIIIIZZIII
- + 230.0 \* IIIIIIZIIIZIIIIII
- + 230.0 \* IIIIIIIZIIIZIIII
- + 230.0 \* IIIIIIZZIIZZIIIII
- 127.5 \* IIIIIIIIIIIII
- + 127.5 \* IIIIIIZZIIIIIIIIZ
- + 7.5 \* IIIIZIZIIIIIIIII
- + 5.0 \* IIIIZIZZIIIIIIII
- + 2.5 \* IIIIZIZIIIIIIIZII
- + 2.5 \* IIIIZIIZIIIIIIIZI
- + 2.5 \* IIIIZIZZIIIIIIZZI
- 2.5 \* IIIIZIZIIIIIZIIII
- 2.5 \* IIIIZIIZIIIIIZIII
- 2.5 \* IIIIZIZZIIIIZZIII
- + 2.5 \* IIIIZIZIIIZIIIII
- + 2.5 \* IIIIZIIZIIIZIIII
- + 2.5 \* IIIIZIZZIIZZIIIII - 2.5 \* IIIIZIZIZIIIIIIII
- 2.5 \* IIIIZIIZIZIIIIIII
- 2.5 \* IIIIZIZZZZIIIIII
- 2.5 \* IIIIZIIZIIIIIIIZ
- + 2.5 \* IIIIZIZZIIIIIIIZ
- 686.949000000001 \* IIIZIIIIIIIIII
- 190.0 \* IIIZIIIIIIIIIIIII
- 100.0 \* IIIZIIIIIIIIIIII
- 95.0 \* IIIZIIIIIIIIIZZI
- + 190.0 \* IIIZIIIIIIIIIIII

- + 100.0 \* IIIZIIIIIIIIIIIII
- + 95.0 \* IIIZIIIIIIIZZIII
- 195.0 \* IIIZIIIIIIZIIIII
- 102.5 \* IIIZIIIIIIIZIIIII
- 97.5 \* IIIZIIIIIIZZIIIII
- + 95.0 \* IIIZIIIIIIIIZIZII
- 97.5 \* IIIZIIIIIIZIIIZII
- + 95.0 \* IIIZIIIIIIIIIZIZI
- 97.5 \* IIIZIIIIIIIZIIIZI
- + 95.0 \* IIIZIIIIIIIZZZZI
- 97.5 \* IIIZIIIIIIZZIIZZI
- + 97.5 \* IIIZIIIIIIZIZIIII
- + 97.5 \* IIIZIIIIIIIZIZIII
- + 97.5 \* IIIZIIIIIIZZZZIII
- + 95.0 \* IIIZIIIIIIIIIZZ
- 95.0 \* IIIZIIIIIIIIIZZZ
- 95.0 \* IIIZIIIIIIIIZIIZ
- + 95.0 \* IIIZIIIIIIIZZIIZ
- + 97.5 \* IIIZIIIIIIIZIIIIZ
- 97.5 \* IIIZIIIIIIZZIIIIZ
- + 5.0 \* IIIZIIIIIIIIIZ
- 5.0 \* IIIZIIIIZIIIIIII
- 2.5 \* IIIZIIIIIZIIIIII
- 2.5 \* IIIZIIIIZZIIIIIII
- 2.5 \* IIIZIIIIZIIIIZII
- 2.5 \* IIIZIIIIIZIIIIIZI
- 2.5 \* IIIZIIIIZZIIIIZZI
- + 2.5 \* IIIZIIIIZIIII
- + 2.5 \* IIIZIIIIIZIII
- + 2.5 \* IIIZIIIIZZIIZZIII
- 2.5 \* IIIZIIIIZIZIIIIII
- 2.5 \* IIIZIIIIIZIZIIIII
- 2.5 \* IIIZIIIIZZZZIIIII
- + 2.5 \* IIIZIIIIIZIIIIIZ
- 2.5 \* IIIZIIIIZZIIIIIIZ
- + 140.0 \* IIIIIIIIIIIII
- 1344.53999999999 \* IIZIIIIIIIIIII
- 265.0 \* IIZIIIIIIIIIIIIII
- 137.5 \* IIZIIIIIIIIIIIII
- 132.5 \* IIZIIIIIIIIIIZZI
- + 265.0 \* IIZIIIIIIIIIIIII
- + 137.5 \* IIZIIIIIIIIIIIIII
- + 132.5 \* IIZIIIIIIIIIZZIII
- 265.0 \* IIZIIIIIIIIIIII
- 137.5 \* IIZIIIIIIIIIIIII
- 132.5 \* IIZIIIIIIIZZIIIII + 265.0 \* IIZIIIIIZIIIIIIII
- + 137.5 \* IIZIIIIIIZIIIIII

- + 132.5 \* IIZIIIIIZZIIIIII
- 270.0 \* IIZIIIZIIIIIIIII
- 140.0 \* IIZIIIIZIIIIIIII
- 135.0 \* IIZIIIZZIIIIIIII
- + 132.5 \* IIZIIIIIIIIIIZIZII
- 132.5 \* IIZIIIIIIIZIIIZII
- + 132.5 \* IIZIIIIIZIIIIIZII
- 135.0 \* IIZIIIZIIIIIIIZII
- + 132.5 \* IIZIIIIIIIIIIIIIIII
- 132.5 \* IIZIIIIIIIIZIIIZI
- + 132.5 \* IIZIIIIIIZI
- 135.0 \* IIZIIIIZIIIIIIIZI
- + 132.5 \* IIZIIIIIIIIIZZZZI
- 132.5 \* IIZIIIIIIIZZIIZZI
- + 132.5 \* IIZIIIIIZZIIIIZZI
- 135.0 \* IIZIIIZZIIIIIIZZI
- + 132.5 \* IIZIIIIIIIIZIZIIII
- 132.5 \* IIZIIIIIZIIIZIIII
- + 135.0 \* IIZIIIZIIIIIZIIII
- + 132.5 \* IIZIIIIIIIIIZIZIII
- 132.5 \* IIZIIIIIIZIIIZIII
- + 135.0 \* IIZIIIIZIIIIZIII
- + 132.5 \* IIZIIIIIIIZZZZIII
- 132.5 \* IIZIIIIIZZIIZZIII
- + 135.0 \* IIZIIIZZIIIIZZIII
- + 132.5 \* IIZIIIIIZIZIIIIII
- 135.0 \* IIZIIIZIIIZIIIII
- + 132.5 \* IIZIIIIIIZIZIIIII
- 135.0 \* IIZIIIIZIIIZIIIII
- + 132.5 \* IIZIIIIIZZZZIIIII
- 135.0 \* IIZIIIZZIIZZIIIII
- + 135.0 \* IIZIIIZIZIIIIIII
- + 135.0 \* IIZIIIIZIZIIIIII
- + 135.0 \* IIZIIIZZZZIIIIII
- + 132.5 \* IIZIIIIIIIIIIZZ
- 132.5 \* IIZIIIIIIIIIIZZZ
- 132.5 \* IIZIIIIIIIIIIZIIZ
- + 132.5 \* IIZIIIIIIIIIZZIIZ + 132.5 \* IIZIIIIIIIIIIZ
- . 102.0 . 112111111111211112
- 132.5 \* IIZIIIIIIIZZIIIIZ
- 132.5 \* IIZIIIIIIZIIIIIIZ
- + 132.5 \* IIZIIIIIZZIIIIIIZ
- + 135.0 \* IIZIIIIZIIIIIIIIZ - 135.0 \* IIZIIIZZIIIIIIII
- + 5.0 \* IIZIIIIIIIIIIZ
- 591.696 \* IZIIIIIIIIIIII
- + 95.0 \* IZIIIIIIIIIIZIZII
- 95.0 \* IZIIIIIIIIZIIIZII

- + 97.5 \* IZIIIIIIZIIIIZII
- 95.0 \* IZIIIIIIIIIIIIII
- + 95.0 \* IZIIIIIIIIIIIZIZI
- 95.0 \* IZIIIIIIIIIZIIIZI
- + 97.5 \* IZIIIIIIIZI
- + 95.0 \* IZIIIIIIIIIZZZZI
- 95.0 \* IZIIIIIIIIZZIIZZI
- + 97.5 \* IZIIIIIIZZIIIIZZI
- + 95.0 \* IZIIIIIIIIZIZIIII
- 97.5 \* IZIIIIIIZIIIZIIII
- + 95.0 \* IZIIIIIIIIIIIIII
- + 95.0 \* IZIIIIIIIIIZIZIII
- 97.5 \* IZIIIIIIIZIIIZIII
- + 95.0 \* IZIIIIIIIIZZZZIII
- 97.5 \* IZIIIIIIZZIIZZIII
- + 97.5 \* IZIIIIIIZIZIIIIII
- 95.0 \* IZIIIIIIIIIIIII
- + 97.5 \* IZIIIIIIIZIZIIIII
- + 97.5 \* IZIIIIIIZZZZIIIII
- + 97.5 \* IZIIIIIIZIIIIIII
- + 97.5 \* IZIIIIIIIIIIZZ
- 97.5 \* IZIIIIIIIIIIIZZZ
- 97.5 \* IZIIIIIIIIIIZIIZ
- + 97.5 \* IZIIIIIIIIIZZIIZ
- + 97.5 \* IZIIIIIIIIIZIIIIZ
- 97.5 \* IZIIIIIIIIZZIIIIZ
- 100.0 \* IZIIIIIIIZIIIIIZ
- + 100.0 \* IZIIIIIIZZIIIIIIZ
- + 2.5 \* IZIIIIIIIIIIIII
- + 2.5 \* IZIIIIIIIIIIIZZI
- 2.5 \* IZIIIIIIIIIIIIIII
- 2.5 \* IZIIIIIIIIIIZZIII
- + 2.5 \* IZIIIIIIIIIIIII
- + 2.5 \* IZIIIIIIIIZZIIIII
- 2.5 \* IZIIIIIIIZIIIIII
- 2.5 \* IZIIIIIIZZIIIIIII
- + 2.5 \* IZIIIIZIIIIIIIII
- + 2.5 \* IZIIIIZIIIIIIIZII
- + 2.5 \* IZIIIIIZIIIIIIZI
- + 2.5 \* IZIIIIZZIIIIIIZZI
- 2.5 \* IZIIIIZIIIIIZIIII
- 2.5 \* IZIIIIIZIIIIZIII
- 2.5 \* IZIIIIZZIIIIZZIII
- + 2.5 \* IZIIIIZIIIZIIIIII
- + 2.5 \* IZIIIIIZIIIZIIII
- + 2.5 \* IZIIIIZZIIZZIIIII
- 2.5 \* IZIIIIZIZIIIIIII
- 2.5 \* IZIIIIIZIZIIIIII

- 2.5 \* IZIIIIZZZZIIIIII
- 2.5 \* IZIIIIIZIIIIIIIZ
- + 2.5 \* IZIIIIZZIIIIIIIZ
- 606.9235 \* ZIIIIIIIIIIIII
- + 100.0 \* ZIIIIIIIIIIIZIZII
- 100.0 \* ZIIIIIIIIIZIIIZII
- + 100.0 \* ZIIIIIIIZIIIIIZII
- 102.5 \* ZIIIIIZIIIIIIIZII
- + 100.0 \* ZIIIIIIIIIIIZIZI
- 100.0 \* ZIIIIIIIIIIZIIIZI
- + 100.0 \* ZIIIIIIIIZI
- 102.5 \* ZIIIIIIZIIIIIIIZI
- + 100.0 \* ZIIIIIIIIIIZZZZI
- 100.0 \* ZIIIIIIIIIZZIIZZI
- + 100.0 \* ZIIIIIIIZZIIIIZZI
- 102.5 \* ZIIIIIZZIIIIIIZZI
- + 97.5 \* ZIIIIIIIIIZIZIIII
- 97.5 \* ZIIIIIIIZIIIZIIII
- + 100.0 \* ZIIIIIZIIIIIZIIII
- + 97.5 \* ZIIIIIIIIIIZIZIII
- 97.5 \* ZIIIIIIIIZIIIZIII
- + 100.0 \* ZIIIIIIZIIII
- + 97.5 \* ZIIIIIIIIIZZZZIII
- 97.5 \* ZIIIIIIIZZIIZZIII
- + 100.0 \* ZIIIIIZZIIIIZZIII
- + 97.5 \* ZIIIIIIIZIZIIIIII
- 100.0 \* ZIIIIIZIIIZIIIII
- + 97.5 \* ZIIIIIIIIZIZIIIII
- 100.0 \* ZIIIIIIZIIIZIIIII
- + 97.5 \* ZIIIIIIIZZZZIIIII
- 100.0 \* ZIIIIIZZIIZZIIIII
- + 100.0 \* ZIIIIIZIZIIIIIII
- + 100.0 \* ZIIIIIIZIZIIIIIII
- + 100.0 \* ZIIIIIZZZZIIIIII
- + 2.5 \* ZIIIIIIIIIIIIIIIII
- 2.5 \* ZIIIIIIIIIIIIIIII
- + 2.5 \* ZIIIIIIIIIIIIIII
- 2.5 \* ZIIIIIIIZIIIIIII
- + 2.5 \* ZIIIIIZIIIIIIIII - 2.5 \* ZIIIIIIIIIIIIZZ
- + 2.5 \* ZIIIIIIIIIIIIIZZZ
- + 2.5 \* ZIIIIIIIIIIIIZIIZ
- 2.5 \* ZIIIIIIIIIIZZIIZ
- 2.5 \* ZIIIIIIIIIIIIII
- + 2.5 \* ZIIIIIIIIIZZIIIIZ
- + 2.5 \* ZIIIIIIIIZIIIIIZ
- 2.5 \* ZIIIIIIIZZIIIIIIZ
- 2.5 \* ZIIIIIIZIIIIIIIZ

#### + 2.5 \* ZIIIIIZZIIIIIIIZ

```
[9]: # Get the qubit operator and count the number of qubits
      qubit_op = protein_folding_problem.qubit_op()
      num_qubits = qubit_op.num_qubits
      print(f"The protein folding problem requires {num qubits} qubits.")
     The protein folding problem requires 17 qubits.
[10]: from qiskit.circuit.library import RealAmplitudes
      from qiskit.algorithms.optimizers import COBYLA, SPSA
      from qiskit.algorithms import NumPyMinimumEigensolver
      from qiskit.algorithms.minimum_eigensolvers import SamplingVQE
      from qiskit import execute, Aer
      from qiskit.primitives import Sampler
[11]: # set classical optimizer
      optimizer = SPSA(maxiter=150)
      # set variational ansatz
      ansatz = RealAmplitudes(reps=1)
      counts = \Pi
      values = []
[12]: def store_intermediate_result(eval_count, parameters, mean, std):
          counts.append(eval_count)
          values.append(mean)
      # initialize VQE using CVaR with alpha = 0.1
      vqe = SamplingVQE(
          Sampler(),
          ansatz=ansatz,
          optimizer=optimizer,
          aggregation=0.1,
          callback=store intermediate result,
      raw_result = vqe.compute_minimum_eigenvalue(qubit_op)
      print(raw_result)
     SamplingMinimumEigensolverResult:
             Eigenvalue: 59.883826428389135
             Best measurement
     : {'state': 69827, 'bitstring': '10001000011000011', 'value':
     (-2.301000000000446+0j), 'probability': 1.345470155e-05}
```

```
[19]: import matplotlib.pyplot as plt

fig = plt.figure()

plt.plot(counts, values)
plt.ylabel("Conformation Energy")
plt.xlabel("VQE Iterations")

fig.add_axes([0.44, 0.51, 0.44, 0.32])

plt.plot(counts[345:], values[345:])
plt.ylabel("Conformation Energy")
plt.xlabel("VQE Iterations")
plt.show()
```



```
[14]: result = protein_folding_problem.interpret(raw_result=raw_result)
print(
    "The bitstring representing the shape of the protein during optimization is:
    ",
    result.turn_sequence,
)
```

```
print("The expanded expression is:", result.get_result_binary_vector())
     The bitstring representing the shape of the protein during optimization is:
     01010000010000100
     The expanded expression is: 0_____1___0_1___0_0_
     _____0001000010_0___
[15]: print(
         f"The folded protein's main sequence of turns is: {result.
      →protein_shape_decoder.main_turns}"
     print(f"and the side turn sequences are: {result.protein_shape_decoder.

side_turns}")
     The folded protein's main sequence of turns is: [1, 0, 1, 1, 0, 0, 2, 0]
     and the side turn sequences are: [None, None, None, None, None, None, None,
     None, None]
[16]: print(result.protein_shape_file_gen.get_xyz_data())
     [['R' '0.0' '0.0' '0.0']
      ['P' '0.5773502691896258' '0.5773502691896258' '-0.5773502691896258']
      ['P' '1.1547005383792517' '0.0' '-1.1547005383792517']
      ['G' '1.7320508075688776' '0.5773502691896258' '-1.7320508075688776']
      ['F' '1.154700538379252' '0.0' '-1.154700538379252']
      ['S' '0.5773502691896261' '0.5773502691896258' '-0.5773502691896261']
      ['P' '1.154700538379252' '0.0' '-1.154700538379252']
      ['F' '0.5773502691896261' '-0.5773502691896258' '-1.7320508075688776']
      ['R' '1.154700538379252' '-1.1547005383792517' '-2.3094010767585034']]
[20]: fig = result.get_figure(title="Protein Structure of Bradykinin Peptide", u
      →ticks=True, grid=True)
     fig.get_axes()[0].view_init(20, 70)
```

## Protein Structure of Bradykinin Peptide



[]: