Math 247 Notes

velo.x

Instructor: Alexandru Nica

Contents

1	Rec	etangles in n-dimen space (Lec 1-6)	2
	1.1	volumn on half-open rectangles	2
	1.2	More abstract definitions	3
	1.3	Divisions and their refinement	3
	1.4	Integrable Functions on Rectangles	5
	1.5	Inequalities and Properties of Integrals	5
	1.6	Lecture 6: Continuity and Integrability	6
2	Top	pology of \mathbb{R}^n	7
	2.1	Lecture 7: Interior, Closure and Boundry	7
	2.2	Lecture 8: Open and closed subsets of R $\hat{\mathbf{n}}$	8
	2.3	Lecture 9: Compact Sets	10
	2.4	Extremum and EVT	11
	2.5	P	11
	2.6	Integrability of a bounded continuous function	12
	2.7	Null Set	12
	2.8	Lecture 13: Jordan Measurable Sets	13
3	Derivatives		
	3.1	Directional Derivatives	14
	3.2	partial derivatives	14
	3.3	Iterated Partial Derivatives	15
	3.4	The Hessian Matrix and Quadratic Approximation for C2-functions	15
	3.5	Local Extremum and Second Derivative Test	16
	3.6	Chain Rule	17
	3.7	0	18
	9 0		10

1 Rectangles in n-dimen space (Lec 1-6)

1.1 volumn on half-open rectangles

Definition 1.1.1. Let $n > 0, n \in \mathbb{Z}$.

• Half-open rectangle in \mathbb{R}^n to refer to sets of the form:

$$(a_1, b_1] \times \cdots \times (a_n, b_n] := \{(x_1, \dots, x_n) \mid a_1 < x_1 \le b_1, \dots, a_n < x_n \le b_n\} \subseteq \mathbb{R}^n$$

with $a_i < b_i$ in \mathbb{R} .

Denote

$$\mathcal{P}_n := \{(a_1, b_1) \times \cdots \times (a_n, b_n) \mid a_1 < b_1, \dots, a_n < b_n \text{ in } \mathbb{R}\} \cup \{\emptyset\}$$

• Volumn Function: define the function $\operatorname{vol}_n: P_n \to [0, \infty)$ that $\operatorname{vol}_n(\varnothing) = 0$ and

$$\operatorname{vol}_n((a_1,b_1]\times\cdots\times(a_n,b_n])=(b_1-a_1)\cdots(b_n-a_n).$$

For $P \in \mathcal{P}_n$, the number $\operatorname{vol}_n(P)$ is called the **n-dimensional volume** of P.

Remark: In the above Equation, \mathcal{P}_n is a collection of subsets of \mathbb{R}^n , it is a set of sets (rectangles). And vol_n is a function defined on this \mathcal{P}_n .

Remark 1.1.1 (Set operations with half-open rectangles).

- 1. For Intersection: P_n is a π -system. For $k \geq 2$, $A_1, \ldots, A_k \in \mathcal{P}_n$, $A_1 \cap \cdots \cap A_k \in \mathcal{P}_n$. i.e., the intersection of rectangles is still a rectangle.
- 2. For Union: $A, B \in \mathcal{P}_n$, the set $A \cup B$ may or may not be in \mathcal{P}_n . i.e., the union of rectangle may not be a rectangle.
- 3. For Set Difference: for any $P, Q \in \mathcal{P}_n$ one can find some $k \in \mathbb{N}$ and $R_1, \ldots, R_k \in \mathcal{P}_n$ such that $R_i \cap R_j = \emptyset$ for $i \neq j$ and such that $R_1 \cup \cdots \cup R_k = P \setminus Q$.

We will elaborate on item 3.

Fact 1.1.1. Let P be a half-open rectangle in \mathcal{P}_n and let $\varepsilon > 0$ be given, one can find a decomposition $P = P_1 \cup \cdots \cup P_k$ with $P_1, \ldots, P_k \in \mathcal{P}_n$ pairwise disjoint such that

$$\max\{\operatorname{diam}(P_1),\ldots,\operatorname{diam}(P_k)\}<\varepsilon.$$

idea. Decompose every $(a_1, b_i]$ into as a disjoint union of half-open intervals of length smaller than ε , then take Cartesian products of such intervals of small length.

Remark 1.1.2 (vol_n is decomposition-additive).

Let P be a half-open re ctanlge in \mathcal{P}_n and consider a decomposition $P = P_1 \cup \cdots \cup P_n, P_1, \ldots, P_n \in \mathcal{P}_n$ pairwise disjoint, then it follows that

$$\sum_{i=1}^{k} \operatorname{vol}_n(P_i) = \operatorname{vol}_n(P).$$

1.2 More abstract definitions

Definition 1.2.1. Let X be a non-empty set and let C be a collection of subsets of X. If C has the property that

$$(A, B \in \mathcal{C}) \Rightarrow A \cap B \in \mathcal{C}$$

then C is π -system, then induction on k shows that

$$A_1 \cap \cdots \cap A_k \in \mathcal{C} \text{ for all } k > 2$$

Definition 1.2.2. Let X be a non-empty set and let C be a collection of subsets of X. We say that C is a semi-ring of subseteg of X to mean that it fullfills the following conditions:

- $SemiRing1: \varnothing \in \mathcal{C}$.
- SemiRing2: If $A, B \in \mathcal{C}$ then $A \cup B \in \mathcal{C}$.
- SemiRing3: for all $A, B \in \mathbb{R}^n$, exists $k \in \mathbb{N}$ and $C_1, \ldots, C_k \in \mathcal{C}$ that $C_i \cup C_j = \emptyset$ for $i \neq j$ and $C_1 \cup \cdots \cup C_k = A \setminus B$.

1.3 Divisions and their refinement

In this part, we fix a non-empty set X and a collection \mathcal{C} of subsets of X.

Definition 1.3.1 (Divisions and Their Refinement). Let A be a non-empty set in C.

- 1. A division of A is a set $\Delta = \{A_1, \ldots, A_p\}$ where A_i are non-empty sets in C such that $A_1 \cup \cdots \cup A_p = A$ and such that $A_i \cup A_j = \emptyset$ for $i \neq j$.
- 2. Let $\Delta = \{A_1, \ldots, A_p\}$ and $\Gamma = \{B_1, \ldots, B_q\}$ be two divisions of A.

Say that Γ refines Δ , denoted $\Gamma \prec \Delta$ to mean that for every $1 \leq j \leq q$ there exists $1 \leq i \leq p$ such that $B_j \subseteq A_i$.

Exercise: Let A be a set in C and let $\Delta = \{A_1, \ldots, A_p\}$ and $\Gamma = \{B_1, \ldots, B_q\}$ be divisions of A such that $\Gamma \prec \Delta$. Prove that one can re-denote the sets of Γ in the form

$$\Gamma = \{B_{1,1}, \dots, B_{1,q_1}, \dots, B_{p,1}, \dots, B_{p,q_p}\}$$

such that $\{B_{1,1},\ldots,B_{1,q_i}\}$ is a division of A_i .

Proof. Let $A'_i = \bigcup_{\{B_i | B_j \subseteq A_i\}} B_j$, then $A'_i \subseteq A_i$. Then, since $\Gamma \prec \Delta$,

$$\bigcup_{i=1}^{p} A_i = A = \bigcup_{i=1}^{q} B_i = \bigcup_{i=1}^{p} \bigcup_{B_i \subset A_i} B_j = \bigcup_{i=1}^{p} A'_i.$$

Since each $A'_i \subseteq A_i$ and each A_i disjoint, then, each A'_i disjoint.

For any A_i , if $x \in A_i$, then $x \notin A_m$, $i \neq m$, then $x \notin A'_m$, then, $x \in A'_i$. Hence, $A'_i = A_i$. Then, each A_i is a union of some $\{B_{1,1}, \ldots, B_{1,q_i}\}$.

Definition 1.3.2. Let A be a non-empty set from C and let $\Delta' = \{A'_1, \ldots, A'_p\}$, $\Delta'' = \{A''_1, \ldots, A''_q\}$ be two divisions of A. Then the set of sets

$$\Delta' \wedge \Delta'' = \{A_i' \cap A_j'' \mid 1 \le i \le p, 1 \le j \le q, A_i' \cap A_j'' \ne \varnothing\}$$

is a division of A as well, called the **meet** of Δ' and Δ'' .

Notice that

- the sets in $\Delta' \wedge \Delta''$ are pairwise disjoint
- the union of these sets is A
- $\Delta' \wedge \Delta'' \prec \Delta'$ and $\Delta' \wedge \Delta'' \prec \Delta''$

Corollary 1.3.1 (Any two divisions have common refinements). Let A be a non-empty set from C and let $\Delta' = \{A'_1, \ldots, A'_p\}$, $\Delta'' = \{A''_1, \ldots, A''_q\}$ be two divisions of A. There exists a division Γ of A such that $\Gamma \prec \Delta'$ and $\Gamma \prec \Delta''$.

1.4 Integrable Functions on Rectangles

Basic Idea: extended the integrability in MATH 148 to integrability on \mathcal{P}_n , and $\mathcal{C}(\pi\text{-system})$.

Lecture 2 & 3 & 4

1.5 Inequalities and Properties of Integrals

Proposition 1.5.1 (Non-negative Property). Let $f \in \text{Int}_b(A, \mathbb{R})$ be such that $f(x) \geq 0$ for all $x \in A$, then $\int_A f \geq 0$.

Proposition 1.5.2. • Let $f_1, f_2 \in \text{Int}_b(A, \mathbb{R})$ be such that $f_1 \leq f_2$, then $\int f_1 \leq \int f_2$.

• For all $f, g \in Int_b(A, \mathbb{R})$ we have

$$\int_A f \vee g \ge \max\left(\int_A f, \int_A g\right), \qquad \int_A f \wedge g \le \min\left(\int_A f, \int_A g\right)$$

• For any $f \in Int_b(A, \mathbb{R})$ we have

$$\left| \int_A f \right| \le \int_A |f|$$

1.6 Lecture 6: Continuity and Integrability

In MATH 148, $f: \mathbb{R} \to \mathbb{R}$. Here, $f: A \to \mathbb{R}$ which $A \subseteq \mathbb{R}^n$.

Definition 1.6.1. Let $A \subseteq \mathbb{R}^n$, $A \neq \emptyset$, let $\vec{a} \in A$, and let $f : A \to \mathbb{R}$,

- 1. f is CONT-at- \vec{a} , if for all $\varepsilon > 0$, exists $\delta > 0$ that for all $\vec{x} \in A$, $||\vec{x} \vec{a}|| < \delta$, $||f(\vec{x}) f(\vec{a})|| < \varepsilon$.
- 2. f is SEQ-CONT-at- \vec{a} if whenever $(\vec{x}_k)_{k=1}^{\infty}$ is a sequence in A with $\lim_{k\to\infty} \vec{x}_k = \vec{a}$, then $\lim_{k\to\infty} f(\vec{x}_k) = f(\vec{a})$.

Two definitions are equivalent. We say f is continuous on A to mean that f is continuous at every point $\vec{a} \in A$.

Definition 1.6.2. Let $A \subseteq \mathbb{R}^n$, $A \neq \emptyset$, and let $f: A \to \mathbb{R}$,

- 1. f is UNIF-CONT on A to mean that for every $\varepsilon > 0$ there is $\delta > 0$ such that whenever $\vec{x}, \vec{y} \in A$ have $||\vec{x} \vec{y}|| < \delta$, it follows that $|f(\vec{x}) f(\vec{y})| < \varepsilon$.
- 2. Let $c \in [0, \infty)$. f is c-LIPSCHITZ on A if $|f(\vec{x}_1) f(\vec{x}_2)| \le c||\vec{x}_1 \vec{x}_2||$, $\forall \vec{x}_1, \vec{x}_2 \in A$. f is Lipschitz on A to mean that there exists $c \in [0, \infty)$ such that f is c-Lipschitz on A.

Theorem 1.6.1. Let P be a half-open rectangle from \mathcal{P}_n , and let $f: P \to \mathbb{R}$ be a bounded function, then if f is UNIF-CONT on P, then it is integrable on P.

Proof. Let $V = \operatorname{vol}_n(P)$. Then, there is some $\delta > 0$ such that for all $\vec{x}, \vec{y} \in P$,

$$||\vec{x} - \vec{y}|| < \delta \qquad \Rightarrow \qquad |f(\vec{x}) - f(\vec{y})| < \frac{\varepsilon}{2V} \; .$$

then,

$$U(f, \Delta) - L(f, \Delta) = \sum_{i=1}^{n}$$

Definition 1.6.3. Let $P \in \mathcal{P}_n$, and let $f: P \to \mathbb{R}$ be a bounded function. We say that f is **Unif-Cont-mod-SmallVol** when for all $\varepsilon > 0$, there is some $E_1, \ldots, E_k \in \mathcal{P}_n$ such that $E_1, \ldots, E_k \subseteq P$ and $E_i \cup E_j = \emptyset$ for all $i \neq j$, such that $\sum_{i=1}^k \operatorname{vol}_n(E_i) < \varepsilon$, and such that f is uniformly continuous on $P \setminus \bigcup_{i=1}^k E_i$.

Theorem 1.6.2. Let $P \in \mathcal{P}_n$, and let $f: P \to \mathbb{R}$ be a bounded function. If f has the UnifCont-mod-SmallVol property, then f is integrable on P.

Proof. Left to fill in for review. \Box

2 Topology of \mathbb{R}^n

2.1 Lecture 7: Interior, Closure and Boundry

Definition 2.1.1 (Interior and Closure for a subset of \mathbb{R}^n). Let A be a subset of \mathbb{R}^n .

1. An interior point is a point $\vec{a} \in A$ which there exists r > 0 such that $B(\vec{a}; r) \subseteq A$.

(definition of Ball in <u>section 1.1</u>)

The set of all interior points of A is called the **interior** of denoted by int(A).

2. An adherent point is a point $\vec{b} \in \mathbb{R}^n$ which $B(\vec{b}; r) \cap A \neq \emptyset$ for every r > 0.

The set of all points that are adherent to A is called the **closure** of A, denoted by cl(A).

Remark 1: A \vec{p} that is adherent to A is not necessarily in A, that is $\vec{p} \in cl(A) \not\Rightarrow \vec{p} \in A$.

Remark 2: For every subset $A \subseteq \mathbb{R}^n$ we have $\operatorname{int}(A) \subseteq A \subseteq \operatorname{cl}(A)$.

Definition 2.1.2 (boundry). The **boundry** of A is denoted $bd(A) := cl(A) \setminus int(A)$.

Proposition 2.1.1 (operation of closure and interior with respect to inclusion of sets).

For two subsets of \mathbb{R}^n M, N and suppose $M \subseteq N$ then

$$int(M) \subseteq int(N)$$
 and $cl(M) \subseteq cl(N)$

For any two subsets of \mathbb{R}^n A, B,

- (1) $int(A \cup B) \supseteq int(A) \cup int(B)$,
- (2) $int(A \cap B) = int(A) \cap int(B)$,
- (3) $\operatorname{cl}(A \cup B) = \operatorname{cl}(A) \cup \operatorname{cl}(B)$,
- $(4) \operatorname{cl}(A \cap B) \subseteq \operatorname{cl}(A) \cap \operatorname{cl}(B),$

 $HW\ Oct\ 05\ Q1$

Example 1: For a half-open rectangle $A = (0, 2] \times (0, 1]$,

- $int(A) = (0,2) \times (0,1)$
- $cl(A) = [0, 2] \times [0, 1]$

Proposition 2.1.2 (duality between interior and closure).

For every $A \subseteq \mathbb{R}^n$ we have

- $int(\mathbb{R}^n \setminus A) = \mathbb{R}^n \setminus cl(A)$ The interior of the complement is the complement of the closure
- $\operatorname{cl}(\mathbb{R}^n \setminus A) = \mathbb{R}^n \setminus \operatorname{int}(A)$ The closure of the complement is the complement of the interior

Remark: DeMorgan's Law: $(\mathbb{R}^n \setminus A) \cup (\mathbb{R}^n \setminus B) = \mathbb{R}^n \setminus (A \cap B)$

Proposition 2.1.3 (Description of cl(A) by using sequences). Let $A \subseteq \mathbb{R}^n$ and let \vec{b} be a point in \mathbb{R}^n , we have that

$$(\vec{b} \in cl(A)) \iff (\exists \ a \ sequence \ (\vec{x}_k)_{k=1}^{\infty} \ in \ A \ that \ \lim_{k \to \infty} \vec{x}_k = \vec{b})$$

Note this must be "iff".

Corollary 2.1.1 (Descriptions of bd(A)).

Let A be a subset of \mathbb{R}^n then

1. $\operatorname{bd}(A) = \operatorname{cl}(A) \cap \operatorname{cl}(\mathbb{R}^n \setminus A)$

that is, each $\vec{b} \in \mathrm{bd}(A)$ if and only if there is a sequence $(\vec{x}_k)_{k=1}^{\infty}$ in A that $\lim_{k \to \infty} \vec{x}_k = \vec{b}$ and \exists a sequence $(\vec{y}_k)_{k=1}^{\infty}$ in $\mathbb{R}^n \setminus A$ that $\lim_{k \to \infty} \vec{y}_k = \vec{b}$

2. $\operatorname{bd}(A) = \operatorname{bd}(\mathbb{R}^n \setminus A)$

2.2 Lecture 8: Open and closed subsets of Rî

Definition 2.2.1 (open and closed sets).

1. A set $A \subseteq \mathbb{R}^n$ is **open** if A = int(A).

$$(A open) \iff (\forall \vec{a} \in A, \exists r > 0, B(\vec{a}; r) \subseteq A)$$

2. A set $A \subseteq \mathbb{R}^n$ is **closed** if $A = \operatorname{cl}(A)$.

$$(A \ closed) \iff (\not\exists \ \vec{b} \in (\mathbb{R}^n \setminus A) \ such \ that \ \vec{b} \ is \ adherent \ to \ A)$$

Proposition 2.2.1. Let A be a subset of \mathbb{R}^n then

$$(A \text{ is closed}) \iff (\mathbb{R}^n \setminus A \text{ is open})$$

Proof. \Rightarrow : clA = A, then $int(\mathbb{R}^n \setminus A) = \mathbb{R}^n \setminus clA = \mathbb{R}^n \setminus A$.

 \Leftarrow : int($\mathbb{R}^n \setminus A$) = $\mathbb{R}^n \setminus A$, then,

$$cl(A) = cl(\mathbb{R}^n \setminus (\mathbb{R}^n \setminus A)) = \mathbb{R}^n \setminus int(\mathbb{R}^n \setminus A)$$

$$= \mathbb{R}^n \setminus (\mathbb{R}^n \setminus A) = A$$
(Proposition 2.1.2)

Definition 2.2.2 (NO-ESC). A set $A \subseteq \mathbb{R}^n$ is NO-ESC (no escape) if for all sequence $(\vec{x}_k)_{k=1}^{\infty}$ in A such that $\lim_{k\to\infty} \vec{x}_k = \vec{b} \in \mathbb{R}^n$, then $\vec{b} \in A$.

Proposition 2.2.2. Let $A \subseteq \mathbb{R}^n$,

$$A \text{ is closed} \iff A \text{ has NO-ESC property}.$$

Proof. \Rightarrow : If A is closed, then $A = \operatorname{cl}(A)$. Then for all sequence $(\vec{x}_k)_{k=1}^{\infty}$ in A that $\lim_{k\to\infty} \vec{x}_k = \vec{b} \in \mathbb{R}^n$, by Proposition 3.1.3, $\vec{b} \in \operatorname{cl}(A) = A$. Hence A is NO-ESC.

$$\Leftarrow$$
: have $A \subseteq \operatorname{cl}(A)$, left to prove $\operatorname{cl}(A) \subseteq A$. Again use Proposition 3.1.3.

Proposition 2.2.3 (open and closed ball).

- 1. Any open ball is an open subset of \mathbb{R}^n .
- 2. Any closed ball is an closed subset of \mathbb{R}^n .

Proposition 2.2.4. For a set $A \subseteq \mathbb{R}^n$, int(A) is open and cl(A) is closed.

Definition 2.2.3 (topology). *Topology* of \mathbb{R}^n is:

$$\mathcal{T}_n := \{ G \subseteq \mathbb{R}^n \mid G \text{ is open} \}$$

- $TOP 1: \mathbb{R}^n \in \mathcal{T}_n$
- $TOP \ 2: \varnothing \in \mathcal{T}_n$
- TOP 3: If $(G_i)_{i\in I}$ is a family of sets from \mathcal{T}_n , then $\bigcup_{i\in I} G_i$ is in \mathcal{T}_n .
- TOP 4: If G_1, \ldots, G_p in \mathcal{T}_n , then $\bigcap_{i=1}^p G_i$ is in \mathcal{T}_n . (proof see HW Oct05)

Lemma 2.2.1. Let $A \subseteq \mathbb{R}^n$, Suppose that $G \subseteq A$, and G is open, then $G \subseteq \text{int}(A)$.

Lemma 2.2.2. $\forall A \subseteq \mathbb{R}^n$, int(A) is open, cl(A) is closed.

Lemma 2.2.3.

- $\operatorname{cl}(A)$ is the smallest closed set in \mathbb{R}^n which contains A.
- int(A) is the largest open set which is inside A.

Example 1: A linear space is a closed set.

2.3 Lecture 9: Compact Sets

Definition 2.3.1. A set $A \subseteq \mathbb{R}^n$ is **compact** when it is closed and bounded.

Definition 2.3.2. A set $A \subseteq \mathbb{R}^n$ is **sequentially compact (SEQ-CP)** when for all sequence $(\vec{x}_k)_{k=1}^{\infty}$ in A, there is a convergent subsequence $(\vec{x}_{k(p)})_{p=1}^{\infty}$, where $\lim_{p\to\infty}(\vec{x}_{(p)})$ still belongs to A.

Proposition 2.3.1. Definition 1 and 2 are the equivalent.

Definition 2.3.3 (OPEN-COVER). A subseteq $A \subseteq \mathbb{R}^n$ is an open-cover whenever $(G_i)_{i \in I}$ is a family of open sets such that $A \subseteq \bigcup_{i \in I} G_i$, it is possible to find finitely many indices $i_1, \ldots, i_p \in I$ such that $A \subseteq G_{i_1} \cup \cdots \cup G_{i_p}$.

Remark: OPEN-COVER is often taken to be the definition for **compact**.

Proposition 2.3.2 (Automatic upgrade to uniform continuity on a compact domain). Let a set $A \subseteq \mathbb{R}^n$ and let $f: A \to \mathbb{R}$ be a function. If f is continuous on A, then f is uniformly continuous on A.

Moving to an image space of \mathbb{R}^m , $m \in \mathbb{N}$.

Definition 2.3.4 (Continuous and Uniformly Continuous). Let $n, m \in \mathbb{N}$, let A be a subset of \mathbb{R}^n and let $f: A \to \mathbb{R}$ be a function. Denote $f_1, \ldots, f_m: A \to \mathbb{R}$ the m component functions of f. That is f_1, \ldots, f_m are defined via the requirement that one has

$$f(\vec{x}) = (f_1(\vec{x}), \dots, f_m(\vec{x})) \in \mathbb{R}^m , \quad \forall \vec{x} \in A .$$

then, we define

- f is **continuous** on A if all of f_1, \ldots, f_m are continuous on A.
- f is uniformly continuous on A if all of f_1, \ldots, f_m are uniformly continuous on A.

Proposition 2.3.3 (updated from last proposition). [Automatic upgrade to uniform continuity on a compact domain] Let a set $A \subseteq \mathbb{R}^n$ and let $f: A \to \mathbb{R}^m$ be a function. If f is continuous on A, then f is uniformly continuous on A.

Proposition 2.3.4. Let $m, n \in \mathbb{N}$, let A be a compact subset of \mathbb{R}^n and let $f : A \to \mathbb{R}^m$ be a continuous function. Consider the image-set

$$M:=f(A)=\{\vec{y}\in\mathbb{R}^m\mid \exists \vec{x}\in A \ such \ that \ f(\vec{x})=\vec{y}\}\ .$$

Then M is a compact subset of \mathbb{R}^m .

Proof. Let $(\vec{y}_k)_{k=1}^{\infty}$ be an arbitrary sequence in M, then $y_k = f(\vec{x}_k)$ for some $\vec{x}_k \in A$, then we have a sequence $(x_k)_{k=1}^{\infty}$ which since A is compact, there is a subsequence of it that converges, let this subsequence be $(x_{k(p)})_{p=1}^{\infty}$, so $\lim_{p\to\infty} x_{k(p)} = \vec{a} \in A$. Since f is continuous, $\lim_{p\to\infty} f(x_{k(p)}) = f(\vec{a}) \in M$, hence, we have found a subsequence of $(\vec{y}_k)_{k=1}^{\infty}$ which converges. Therefore, M is sequentially compact and also compact.

2.4 Extremum and EVT

Definition 2.4.1. Let A be a subset of \mathbb{R}^n and let $f: A \to \mathbb{R}$ be a function,

- A point $\vec{a} \in A$ is a global minimum of f on A if $f(\vec{a}) \leq f(\vec{x})$ for all $\vec{x} \in A$.
- A point $\vec{b} \in A$ is a global maximum of f on A if $f(\vec{b}) \geq f(\vec{x})$ for all $\vec{x} \in A$.

Theorem 2.4.1 (EVT). Let A be a subset of \mathbb{R}^n and let $f: A \to \mathbb{R}$ be a function. If A is compact and if f is continuous, then f must have at least one point of global minimum and one point of global maximum on A.

2.5 *P*

2.6 Integrability of a bounded continuous function

Lemma 2.6.1. Let $P = (a_1, b_1] \times \cdots \times (a_n, b_n]$ be a half-open rectangle in \mathcal{P}_n , for every $\varepsilon > 0$,

- there is an $S \in \mathcal{P}_n$ such that $\operatorname{cl}(S) \subseteq P$ and $\operatorname{vol}_n(S) > \operatorname{vol}_n(P) \varepsilon$.
- there is a $Q \in \mathcal{P}_n$ such that $\operatorname{cl}(P) \subseteq Q$ and $\operatorname{vol}_n(Q) < \operatorname{vol}_n(P) + \varepsilon$.

Lec 11.

2.7 Null Set

2.8 Lecture 13: Jordan Measurable Sets

Definition 2.8.1. Let A be s subset of \mathbb{R}^n . We say that A is Jordan measurable to mean that

- 1. A is bounded
- 2. bd(A) is a null-set

we use the notation

$$\mathcal{J}_n := \{ A \subseteq \mathbb{R}^n \, | \, A \text{ is Jordan measurable} \}$$

Example 1: (relating to balls)

Any set A such that $B(\vec{0};1) \subseteq A \subseteq \bar{B}(\vec{0};1)$ is sure to be Jordan measurable.

Example 2: (relating to rectangles)

Any set A such that $(a_1, b_1] \times \cdots \times (a_n, b_n] \subseteq A \subseteq [a_1, b_1] \times \cdots \times [a_n, b_n]$ is sure to be Jordan measurable.

Example 3:

Every null-set is Jordan measurable.

Non-Example 1:

$$S = \{(s, t) \in \mathbb{R}^2 \mid 0 < s, t < 1 \text{ and } s, t \in \mathbb{Q}\}$$

Lemma 2.8.1. 1. For every $A, B \subseteq \mathbb{R}^n$ we have $\operatorname{bd}(A \cup B) \subseteq \operatorname{bd}(A) \cup \operatorname{bd}(B)$.

- 2. For every $A, B \subseteq \mathbb{R}^n$, $\operatorname{bd}(A \cap B) \subseteq \operatorname{bd}(A) \cup \operatorname{bd}(B)$.
- 3. For every $A, B \subseteq \mathbb{R}^n$, $\operatorname{bd}(A \setminus B) \subseteq \operatorname{bd}(A) \cup \operatorname{bd}(B)$.

Theorem 2.8.1. Let A be a jordan measurable subset of \mathbb{R}^n and let $f: A \to \mathbb{R}$ be a function. If f is bound and has the **cont-mod-Null** property, then f is integrable on A.

Corollary 2.8.1. Let A be a Jordan measurable subset of \mathbb{R}^n and let $f: A \to \mathbb{R}$ be a bounded continuous function. Then f is integrable on A.

3 Derivatives

3.1 Directional Derivatives

Definition 3.1.1. Let A be a subset of \mathbb{R}^n , and let \vec{a} be an interior point of A, and let $f: A \to \mathbb{R}$ be a function. Consider a "direction" vector $\vec{v} \in \mathbb{R}^n$,

• 1-dimensional reduction: $\varphi:(-c,c)\to\mathbb{R}$,

$$\varphi(t) := f(\vec{a} + t\vec{v}), \quad -c < t < c,$$

where c > 0 is small enough to ensure that $\vec{a} + t\vec{v} \in A$ for all $t \in (-c, c)$.

• If φ is differentiable at 0, then the number $\varphi'(0)$ is called the **directional derivative** of f at \vec{a} , in direction \vec{v} , and is denoted by $\partial_{\vec{v}} f(\vec{a})$,

$$\partial_{\vec{v}} f(\vec{a}) = \lim_{t \to 0} \frac{f(\vec{a} + t\vec{v}) - f(\vec{a})}{t}$$
 (when the limit exists).

Proposition 3.1.1. Let A, f, \vec{a} be defined in the above definition, then

- 1. The directional derivative $\partial_{\vec{0}} f(\vec{a})$ exists and is equal to 0.
- 2. Let \vec{v} be a non-zero vector in \mathbb{R}^n , let $\alpha \in \mathbb{R}$ and put $\vec{w} = \alpha \vec{v}$ then if directional derivative $\partial_{\vec{v}} f(\vec{a})$ exists. then $\partial_{\vec{w}} f(\vec{a})$ exists and

$$\partial_{\vec{0}} f(\vec{a}) = \alpha \cdot \partial_{\vec{v}} f(\vec{a}) .$$

Proof. Left for review.

Hence, we can focus on direction vector \vec{v} that $||\vec{v}|| = 1$.

A multivariate version of MVT in MATH 147.

Notation 3.1.1. For $\vec{x}, \vec{y} \in \mathbb{R}^n$,

$$Co(\vec{x}, \vec{y}) := \{(1-t)\vec{x} + t\vec{y} \mid 0 \le t \le 1\} \subseteq \mathbb{R}^n.$$

Theorem 3.1.1 (Mean value THeorem).

3.2 partial derivatives

3.3 Iterated Partial Derivatives

Goal: to prove that

$$\partial_1 \partial_2 f = \partial_2 \partial_1 f, \quad \forall f \in C^2(A, \mathbb{R}) .$$

Lemma 3.3.1. Let $u, v : A \to \mathbb{R}$ be two continuous functions, suppose we are given that $\int_S u(\vec{x})d\vec{x} = \int_S v(\vec{x})d\vec{x}$ for every half-open rectangle $S = (a_1, b_1] \times (a_2, b_2]$ such that $\operatorname{cl}(S) \subseteq A$. Then it follows that $u(\vec{a}) = v(\vec{a})$ for all $\vec{a} \in A$.

Proof. Assume for some $\vec{a} \in A$, $u(\vec{a}) \neq v(\vec{a})$, then for this \vec{a} we denote $u(\vec{a}) = \alpha$ and $v(\vec{a}) = \beta$. The continuity of u and of v at \vec{a} give us some values $\delta_1, \delta_2 > 0$ such that

3.4 The Hessian Matrix and Quadratic Approximation for C2-functions

Definition 3.4.1. Let A be an <u>open subset</u> of \mathbb{R}^n , let $f: A \to \mathbb{R}$ be a C^2 -function, and let \vec{a} be a point of A. The **Hessian matrix** is the $n \times n$ matrix which, for every $1 \le i, j < n$, its (i, j) entry is equal to $\partial_i \partial_j f(\vec{a})$. We denote it as $[Hf](\vec{a})$.

Remark: from the above definition, we know that $H:[Hf](\vec{a})$ is a symmetry matrix $(H=H^T)$ as $\partial_i \partial_j f(\vec{a}) = \partial_j \partial_i f(\vec{a})$.

Definition 3.4.2 (quadratic function associated with H). The quadratic function associated to H is defined by

3.5 Local Extremum and Second Derivative Test

Definition 3.5.1 (Points of Local Extremum). Let $A \subseteq \mathbb{R}^n$ and let $f: A \to \mathbb{R}$ be a function.

- local minimum: $\vec{p} \in A$, which there exists r > 0 such that $f(\vec{x}) \ge f(\vec{p})$, $\forall x \in B(\vec{p}; r) \cap A$.
- local maximum: $\vec{p} \in A$, which there exists r > 0 such that $f(\vec{x}) \leq f(\vec{p})$, $\forall x \in B(\vec{p}; r) \cap A$.
- local extremum: local minimum or local maximum

Definition 3.5.2. Let $A \subseteq \mathbb{R}^n$ be an open set, let $A \to \mathbb{R}$ be a C^1 -function, and let \vec{a} be a point in A. Consider the gradient vector of f at \vec{a} , $\nabla f(\vec{a}) := (\partial_1 f(\vec{a}), \dots, \partial_n f(\vec{a})) \in \mathbb{R}^n$.

- If $\nabla f(\vec{a}) = \vec{0}$, then it is a critical point for f;
- otherwise, \vec{a} is a **regular point** for f.

Proposition 3.5.1. Let $A \subseteq \mathbb{R}^n$ be open and let $f: A \to \mathbb{R}$ be a C^1 -function. Let $\vec{a} \in A$ be a point of local extremum for f. Then \vec{a} is a critical point for f.

3.6 Chain Rule

Key idea: the CR formula will remain the same, only that instead of multiplying numbers, we will now multiply matrices.

Definition 3.6.1. Let $m, n \in \mathbb{N}$, let A be an open subset of \mathbb{R}^n , and let $f : A \to \mathbb{R}^m$ be a function. For every $\vec{x} \in A$ write

$$f(\vec{x}) = (f_1(\vec{x}), f_2(\vec{x}), \dots, f_m(\vec{x})) \in \mathbb{R}^m$$

and if each $f_1, \ldots, f_m : A \to \mathbb{R}$ are in $C_1(A, \mathbb{R})$, then $f \in C^1(A, \mathbb{R}^m)$.

Definition 3.6.2 (Jacobian Matrix). Let A be an open subset of \mathbb{R}^n and let f be a function in $C^1(A,\mathbb{R}^m)$ with components $f_1,\ldots,f_m\in C^1(A,\mathbb{R})$. For every $\vec{a}\in A$, the matrix

$$[Jf](\vec{a}) := \begin{bmatrix} \partial_1 f_1(\vec{a}) & \cdots & \partial_n f_1(\vec{a}) \\ \vdots & & \vdots \\ \partial_1 f_m(\vec{a}) & \cdots & \partial_n f_m(\vec{a}) \end{bmatrix} \in \mathcal{M}_{m \times n}(\mathbb{R}) .$$

is the **Jacobian Matrix** of f at \vec{a} .

Note for m = 1,

$$[Jf](\vec{a}) := [\partial_1 f(\vec{a}), \dots, \partial_m f(\vec{a})],$$

and for n=1,

$$[Jf](a) := [f'_1(a), \dots, f'_m(a)].$$

Proposition 3.6.1 (Linear Approximation for $f \in C^1(A, \mathbb{R}^m)$). Let A be an open subset of \mathbb{R}^n , and let f be a function in $C^1(A, \mathbb{R}^m)$. Then for every $\vec{a} \in A$ we have

$$\lim_{\vec{x} \to \vec{a}, \vec{x} \neq \vec{a}} \frac{||f(\vec{x}) - f(\vec{a}) - [Jf](\vec{a}) \cdot (\vec{x} - \vec{a})||}{||\vec{x} - \vec{a}||} = 0.$$

Proposition 3.6.2. Let A be an open subset of \mathbb{R}^n and let $f: A \to \mathbb{R}^m$ be a function, with components $f_1, \ldots, f_m: A \to \mathbb{R}$. Let \vec{a} be a point in A and suppose a matrix $M \in \mathcal{M}_{m \times n}(\mathbb{R})$ has that

$$\lim_{\vec{x} \to \vec{a}, \vec{x} \neq \vec{a}} \frac{||f(\vec{x}) - f(\vec{a}) - M(\vec{a}) \cdot (\vec{x} - \vec{a})||}{||\vec{x} - \vec{a}||} = 0 \ .$$

then, every component function f_i has partial derivatives at \vec{a} and we have the equality

$$\partial_j f_i(\vec{a}) = [(i, j) - entry \ of \ M], \forall 1 \le i \le m \ and \ 1 \le j \le n \ .$$

3.7 o

Definition 3.7.1. Let A be a subset of \mathbb{R}^n , let $\varphi: A \to \mathbb{R}$ be a function, and let $c \in \mathbb{R}$ be one of the values attained by the function φ . The level of φ corresponding to the value c is defined as $L := \{\vec{x} \in A \mid \varphi(\vec{x}) = c\}.$

Definition 3.7.2. Let A be an open subset of \mathbb{R}^n and let φ be a function in $C^1(A, \mathbb{R})$. Let $c \in \mathbb{R}$ be one of the values attained by φ and consider the level set of φ corresponding to the value c. We fix a point $\vec{a} \in L$ which is regular for φ (so we have $\varphi(\vec{a}) = c$ and $\nabla \varphi(\vec{a}) \neq \vec{0}$). Then,

- 1. A vector $\vec{w} \in \mathbb{R}^n$ is said to be a normal vector to L at the point \vec{a} when it is a scalar multiple of $\nabla \varphi(\vec{a})$.
- 2. Let \vec{v} be a vector \mathbb{R}^n . We say that \vec{v} is a tangent vector to L at the point \vec{a} to mean that it is possible to find an open interval $I \subseteq \mathbb{R}$ and that a C^1 -path $\gamma: I \to \mathbb{R}^n$ such that the following conditions hold
 - (a) $\gamma(t) \in L$ for all $t \in I$;
 - (b) $0 \in I$ and we have $\gamma(0) = \vec{a}$ nad $\gamma'(0) = \vec{v}$.

3.8

Objective: extend the substitution formula to multi-variables.

Remark: Let $n \in \mathbb{N}$, we will be concerned with integrals

$$\int_A f(\vec{x}) \, d\vec{x} \; .$$

where $A \subseteq \mathbb{R}^n$ is open and Jordan measurable, and $f: A \to \mathbb{R}$ is a bounded continuous function.