

Algoritmos Evolucionários: Busca e Decisões de Design e Experimentação

Gisele L. Pappa

Busca e Algoritmos Evolucionários

- Algoritmos evolucionários buscam por uma solução para um problema em um espaço de busca
 - Inclui todas as soluções possíveis para um dado problema
- Para encontrar a solução ótima ou próxima da ótima (não-determinístico), são guiados pelo valor de uma função de fitness
 - Algoritmo dá prioridade às soluções com melhores valores de fitness

Busca e Algoritmos Evolucionários

- A ideia do algoritmo é encontrar os pontos no espaço de busca com maiores valores de fitness
 - O "caminho" que o algoritmo segue para encontrar esses pontos é determinado pelas operações de seleção cruzamento e mutação
- Para se ter uma ideia de como esses valores de fitness variam no espaço de busca, podemos construir uma *fitness landscape*

Fitness Landscape

• Gráfico que ilustra as *n* dimensões do seu problema, e a *qualidade da sua solução naquele ponto do espaço*.

$$F(x,y) = \sin(x) + \cos(y)$$

Características do Problema

Fitness landscape para evolução de proteínas

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0000096

Busca local versus Busca Global

Busca Local versus Global

- Busca local explora a vizinhança de uma solução
- Busca global explora qualquer solução no espaço

Papel dos operadores na Evolução

- Seleção
 - Guia o algoritmo para áreas promissoras do espaço de busca
- Crossover
 - Muda o contexto de informação útil já disponível
- Mutação
 - Introduz inovação

Seleção dos Indivíduos

- Equilíbrio entre explorar (crossover e mutação) o espaço de busca e se restringir aos indivíduos com boas fitness (seleção)
- Seleção pode determinar esse equilíbrio
 - Pressão seletiva (selective pressure)
- A fase de seleção determina a velocidade em que a evolução vai ocorrer
 - É uma consequência da competição

Seleção Proporcional a Fitness (Roleta)

Id da Solução	Genótipo	Fitness
A	00000110	2
$_{\mathrm{B}}$	11101110	6
\mathbf{C}	00100000	1
D	00110100	3

Problemas da seleção por roleta

- Alta pressão seletiva no início da evolução
 - Leva a convergência prematura do algoritmo
- Baixa pressão seletiva no fim da evolução
 - Valores de fitness similares
 - Probabilidades de seleção uniformes
 - Um solução um pouco melhor é favorecida
- Exige computação de estatísticas globais

Seleção por Torneio

- Um subconjunto de *k* indivíduos é retirado aleatoriamente da população, e o melhor indivíduo desse subconjunto é selecionado (vencedor do torneio)
 - k = tamanho do torneio
- Quanto maior o valor de k, maior a pressão seletiva
 - Pressão seletiva pode ser facilmente regulada
 - Não depende de uma estatística global
 - Acelera evolução
 - Torna paralelização mais fácil

Comportamento Típico de um EA

Otimização de uma função de fitness 1D

Fase Inicial:

• Distribuição da população quasi-random

Fase intermediária:

População presente nos/em torno dos picos

Fase final:

 População concentrada nos pico mais altos

Gisele L Pappa

Comportamento da Fitness

- Problema: o melhor indivíduo de uma geração pode morrer sem se reproduzir porque:
 - Existe um processo de seleção probabilística
 - Os operadores não garantem a geração de indivíduos melhores que seus pais
- Solução: elitismo melhor indivíduo de cada geração é copiado sem alteração para a próxima

Parâmetros

- Tamanho da população
- Número de gerações
- Probabilidades de cruzamento
 - Se uniforme, probabilidade de trocar gene
- Probabilidades de mutação
- Se seleção por torneio k
- Número de indivíduos do elitismo

Vale a pena rodar por muito tempo?

- Depende:
 - Do tamanho do progresso na segunda parte
 - Pode ser mais apropriado ter mais gerações com menos indivíduos

UF MG

UNIVERSIDADE FEDERAL
DE MINAS GERAIS

Vale a pena o esforço de uma inicialização inteligente?

- Depende: Se soluções boas já forem conhecidas, sim!
- Deve-se tomar cuidado para não enviesar a população

Pontos Importantes em EAs

- Decisões de Design
 - Representação do Indivíduo
 - Método de seleção (quanta pressão seletiva?)
 - Escolha dos operadores de mutação e crossover
 - Tamanho da população
 - Número de gerações fixas ou outro critério de parada?
 - Probabilidades de crossover e mutação

Pontos Importantes em EAs

- Uso de técnicas "menos padrão"
 - Nichos e Espécies
 - Co-evolução
 - Busca Local
 - Otimização multi-objetivo
 - •

Agradecimentos

- Alguns slides foram traduzidos/adaptados das notas de aula de Alex A. Freitas e Michael O'Neil
- Os gráficos apresentados foram retirados de um trabalho prático feito pelos alunos Thiago Salles e Cristiano Nascimento

Algoritmos Evolucionários: Busca e Decisões de Design e Experimentação

Gisele L. Pappa

