Frobenius Additive Fast Fourier Transform

Wen-Ding Li

Research Center for Information Technology Innovation, Academia Sinica, Taiwan

July 19, 2018

ISSAC 2018, New York, USA

Joint work with Ming-Shing Chen, Po-Chun Kuo, Chen-Mou Cheng, Bo-Yin Yang

Polynomial Multiplication over $\ensuremath{\mathbb{F}}_2$

Polynomial Multiplication over \mathbb{F}_2

- Schoolbook : $O(n^2)$
- Karatsuba or Toom-Cook : $O(n^{\omega})$, $1 < \omega < 2$
- Fast Fourier Transform (FFT) : $\widetilde{O}(n)$

1

Fourier transform of $f\in\mathbb{F}[x]$: Evaluation of f in some zero set $Z\subset\mathbb{F}.$

Fourier transform of $f\in \mathbb{F}[x]$: Evaluation of f in some zero set $Z\subset \mathbb{F}$.

How do we multiply $h=f\cdot g$ in $\mathbb{F}[x]$?

Fourier transform of $f\in \mathbb{F}[x]$: Evaluation of f in some zero set $Z\subset \mathbb{F}.$

How do we multiply $h = f \cdot g$ in $\mathbb{F}[x]$?

- Evaluate f and g at points of some zero set $Z \subset \mathbb{F}$
- Multiply pointwise to obtain $\{f(\alpha) \cdot g(\alpha), \alpha \in Z\}$
- Interpolate: recover h from $\{f(\alpha) \cdot g(\alpha), \alpha \in Z\}$

Fourier transform of $f \in \mathbb{F}[x]$: Evaluation of f in some zero set $Z \subset \mathbb{F}$.

How do we multiply $h = f \cdot g$ in $\mathbb{F}[x]$?

- Evaluate f and g at points of some zero set $Z \subset \mathbb{F}$
- Multiply pointwise to obtain $\{f(\alpha) \cdot g(\alpha), \alpha \in Z\}$
- $\bullet \ \ \text{Interpolate: recover h from} \ \{f(\alpha) \cdot g(\alpha), \alpha \in Z\}$

Multiplication in $\mathbb{F}_2[x]$

- Not many evaluation points in $\mathbb{F}_2 \Rightarrow$ work in an extension field
- Naive method: $\mathbb{F}_2[x] \leadsto \mathbb{F}_{2^d}[x]$

Fourier transform of $f \in \mathbb{F}[x]$: Evaluation of f in some zero set $Z \subset \mathbb{F}$.

How do we multiply $h = f \cdot g$ in $\mathbb{F}[x]$?

- Evaluate f and g at points of some zero set $Z \subset \mathbb{F}$
- Multiply pointwise to obtain $\{f(\alpha) \cdot g(\alpha), \alpha \in Z\}$
- $\bullet \ \ \text{Interpolate: recover h from} \ \{f(\alpha) \cdot g(\alpha), \alpha \in Z\}$

Multiplication in $\mathbb{F}_2[x]$

- Not many evaluation points in $\mathbb{F}_2 \Rightarrow$ work in an extension field
- Naive method: $\mathbb{F}_2[x] \leadsto \mathbb{F}_{2^d}[x] \Rightarrow$ incurs d-times penalty.

The Kronecker segmentation

- Schönhage's ternary FFT (GF2x: Brent, Gaudry, Thome, Zimmermann) $\mathbb{F}_2[x] \rightsquigarrow \mathbb{F}_2[x]_{\leq M}[y] \rightsquigarrow \mathbb{F}_2[x]/(x^{2L}+x^L+1)[y], \ y=x^M, \ L>=M$
- Mixed Radix FFT over $\mathbb{F}_{2^{60}}$ (ISSAC 2016: Harvey, van der Hoeven, Lecerf) $\mathbb{F}_2[x] \rightsquigarrow \mathbb{F}_2[x]_{<30}[y] \rightsquigarrow \mathbb{F}_{2^{60}}[y], \ y=x^{30}$
- Additive FFT over $\mathbb{F}_{2^{256}}$ (Chen, Cheng, Kuo, Li, Yang 2017) $\mathbb{F}_2[x] \leadsto \mathbb{F}_2[x]_{<128}[y] \leadsto \mathbb{F}_{2^{256}}[y], \ y = x^{128}$

Pack half as many bits in each coefficients as the extension field

The Kronecker segmentation

- Schönhage's ternary FFT (GF2x: Brent, Gaudry, Thome, Zimmermann) $\mathbb{F}_2[x] \rightsquigarrow \mathbb{F}_2[x]_{\leq M}[y] \rightsquigarrow \mathbb{F}_2[x]/(x^{2L}+x^L+1)[y], \ y=x^M, \ L>=M$
- Mixed Radix FFT over $\mathbb{F}_{2^{60}}$ (ISSAC 2016: Harvey, van der Hoeven, Lecerf) $\mathbb{F}_{2}[x] \rightsquigarrow \mathbb{F}_{2}[x]_{\leq 30}[y] \rightsquigarrow \mathbb{F}_{260}[y], \ y = x^{30}$
- Additive FFT over $\mathbb{F}_{2^{256}}$ (Chen, Cheng, Kuo, Li, Yang 2017) $\mathbb{F}_2[x] \rightsquigarrow \mathbb{F}_2[x]_{<128}[y] \rightsquigarrow \mathbb{F}_{2^{256}}[y], \ y = x^{128}$

Pack half as many bits in each coefficients as the extension field **Factor-of-two loss!**

The Frobenius Fourier transform - ISSAC 2017

Directly compute Fourier transform of a polynomial f in $\mathbb{F}_2[x]_{\leq n}$:

$$\{f(1), f(\omega), f(\omega^2), \dots, f(\omega^{n-1})\}$$

where $\omega \in \mathbb{F}_{2^d}$ primitive root of unity.

The Frobenius Fourier transform - ISSAC 2017

Directly compute Fourier transform of a polynomial f in $\mathbb{F}_2[x]_{< n}$:

$$\{f(1), f(\omega), f(\omega^2), \dots, f(\omega^{n-1})\}\$$

where $\omega \in \mathbb{F}_{2^d}$ primitive root of unity.

Save some computation by using the Frobenius automorphism:

$$f(w^2) = f(\phi(w)) = \phi(f(w)) = (f(w))^2$$

 \Rightarrow For each orbit w, $\phi(w)$, $\phi^{\circ 2}(w)$, $\phi^{\circ 3}(w)$, ..., we only need to compute at one point: f(w) and all other values $\phi^{\circ 2}(f(w))$, $\phi^{\circ 3}(f(w))$, ... are determined.

The Frobenius Fourier transform - ISSAC 2017

Directly compute Fourier transform of a polynomial f in $\mathbb{F}_2[x]_{\leq n}$:

$$\{f(1), f(\omega), f(\omega^2), \dots, f(\omega^{n-1})\}$$

where $\omega \in \mathbb{F}_{2^d}$ primitive root of unity.

Save some computation by using the Frobenius automorphism:

$$f(w^2) = f(\phi(w)) = \phi(f(w)) = (f(w))^2$$

 \Rightarrow For each orbit w, $\phi(w)$, $\phi^{\circ 2}(w)$, $\phi^{\circ 3}(w)$, ..., we only need to compute at one point: f(w) and all other values $\phi^{\circ 2}(f(w))$, $\phi^{\circ 3}(f(w))$, ... are determined.

Result: *d*-times faster than naive method.

Cantor's FFT and its derivatives

- Cantor showed how to compute f(Z) for some additive subgroup Z of \mathbb{F}_{p^q} in $O(n(\log n)^2)$ time for n=|Z| via what he called "an analogue of the fast Fourier transform"
 - Based on a tower $\mathbb{F}_p, \mathbb{F}_{p^p}, \mathbb{F}_{p^{p^2}}, \ldots$ of Artin-Schreier extensions of \mathbb{F}_p
- Gao and Mateer improved it to $O(n\log n\log\log n)$ when p=2 and $f\in \mathbb{F}_{2^{2^k}}[x]$
- We showed that van der Hoeven and Larrieu's idea of using Frobenius map to accelerate polynomial multiplication beautifully generalizes to Cantor-Gao-Mateer-FFT

Let
$$s(x) = x^2 + x$$
, $s_0(x) = x$ and

$$s_i(x) := \underbrace{s(s(\cdots s(x)\cdots))}_{i \text{ times}} = s^{\circ i}(x)$$

• Let W_i be the zero set of $s_i(x) = \prod_{\omega \in W_i} (x - \omega)$, then

$$\mathbb{F}_2 = W_1 \subset W_2 \subset \cdots \subset \widetilde{\mathbb{F}_2}$$

- Since s_i 's are linear, W_i 's are vector spaces over \mathbb{F}_2
- $$\begin{split} \bullet & \text{ Since } s_{2^k} = x^{2^{2^k}} + x, \, W_{2^k} \text{ is a field } \mathbb{F}_{2^{2^k}}. \\ & \text{e.g. } W_1 = \mathbb{F}_2, \, W_2 = \mathbb{F}_{2^2}, \, W_4 = \mathbb{F}_{2^4}, \, W_8 = \mathbb{F}_{2^8}, \ldots \end{split}$$
- Cantor showed that there is a basis $(v_0, v_1, v_2, \dots,)$ such that $W_i = \text{span}\{v_0, v_1, \dots, v_{i-1}\}$ and $s(v_i) = v_i^2 + v_i = v_{i-1}$
- We'll denote $a_0v_0 + a_1v_1 + \ldots + a_{d-1}v_d$ as $a_{d-1}a_{d-1}\ldots a_0$. e.g. 1101 is $v_3 + v_2 + v_0$.

Additive FFT - Subproduct Tree

 $s_k(x) + \alpha$ can be written as the product of

$$s_{k-1}(x) + \beta$$
 and $s_{k-1}(x) + \beta + 1$,

where $\beta^2 + \beta = \alpha$.

right child = left child +1

The roots of polynomial in subproduct tree. The "X" means it could take $0 \ \text{or} \ 1$.

Let $(f(x) \mod s_n(x) + \alpha) = P(x)s_{n-1}(x) + Q(x)$ [Gao-Mateer], then

$$f(x) \mod s_n(x) + \alpha$$

$$f(x) \mod s_{n-1}(x) + \beta$$

$$= Q(x) + \beta P(x)$$

$$f(x) \mod s_{n-1}(x) + \beta + 1$$

$$= Q(x) + \beta P(x) + P(x)$$

Let the left child be $f_0(x)$ and the right child be $f_1(x)$, then

$$f_0(x) = Q(x) + \beta P(x)$$

$$f_1(x) = P(x) + f_0(x)$$

By applying this recursively, we get

$$\{f(x) \bmod x + \omega | s_n(\omega) = \alpha\} = \{f(\omega) | \omega \in W_i + \gamma\}$$

where $s_n(\gamma) = \alpha$

Frobenius Additive FFT

Question: Given d a power of two, when computing **additive** FFT of f in $\mathbb{F}_{2^d}[x]$, can we achieve d-times speedup if f actually admits only coefficients in \mathbb{F}_2 ?

Frobenius Additive FFT

Question: Given d a power of two, when computing **additive** FFT of f in $\mathbb{F}_{2^d}[x]$, can we achieve d-times speedup if f actually admits only coefficients in \mathbb{F}_2 ?

Save some computation by using the Frobenius automorphism:

$$f(w^2) = (f(w))^2$$

Frobenius Additive FFT

Question: Given d a power of two, when computing **additive** FFT of f in $\mathbb{F}_{2^d}[x]$, can we achieve d-times speedup if f actually admits only coefficients in \mathbb{F}_2 ?

Save some computation by using the Frobenius automorphism:

$$f(w^2) = (f(w))^2$$

 \Rightarrow If we have $f(w)\text{, }f(w^2)$ can be obtained efficiently. Only need to evaluate a subset of the original points

Orbits under the action of $\phi: x \mapsto x^2$

Denote the Orbit of w under the action ϕ be

Orb_w = {
$$w, \phi(w), \phi^{\circ 2}(w), \phi^{\circ 3}(w), \phi^{\circ 4}(w), \ldots$$
}
= { $w, w^2, w^4, w^8, w^{16}, \ldots$ }

- For $w \in W_{i+1} \setminus W_i$, $|\operatorname{Orb}_w| = 2^{\lfloor \lg i \rfloor + 1}$
- How the action affect the points:

$$\phi^{\circ 2^k}(x) = s_{2^k}(x) + x$$

Change the position whose distance is 2^k from most significant bits

Main Result: the Cross section of the orbit

Let
$$\Sigma_0=\{0\}$$
, and $\forall k>0$, let
$$\Sigma_k=\left\{v_{k-1}+j_1v_{k-2}+\cdots+j_{k-1}v_0: \begin{aligned} j_i&=0 \text{ if } i \text{ is a power of 2,}\\ j_i&\in\{0,1\} \text{ otherwise.} \end{aligned}\right\}$$

$$=100\text{X}0\text{X}\text{X}\text{X}0\text{X}\text{X}\text{X}\text{X}\text{X}\text{X}\text{X}\text{X}\text{X}...}$$

Theorem

 Σ_k is a cross section of $W_k \setminus W_{k-1}$. That is, $\forall k > 0$, $\forall w \in W_k \setminus W_{k-1}$, there exists exactly one $\sigma \in \Sigma_k$ such that $\phi^{\circ j}(\sigma) = w$ for some j.

Main Result: the Cross section of the orbit

Let
$$\Sigma_0 = \{0\}$$
, and $\forall k > 0$, let

Theorem

 Σ_k is a cross section of $W_k \setminus W_{k-1}$. That is, $\forall k > 0$, $\forall w \in W_k \setminus W_{k-1}$, there exists exactly one $\sigma \in \Sigma_k$ such that $\phi^{\circ j}(\sigma) = w$ for some j.

A cross section of W_m is

$$\Sigma_0 \cup \Sigma_1 \cup \Sigma_2 \cup \ldots \cup \Sigma_m$$
 .

•

Truncated additive FFT

Truncated additive FFT

Truncated additive FFT

New speed records in terms of bit-operation count

- Use subfield to accelerate the constant multiplication Tower field representation
- Use common subexpression elimination technique

New speed records in terms of bit-operation count

Figure: Complexity for multiplication in $\mathbb{F}_2[x]$

New speed records on modern CPUs

We need to use the PCLMULQDQ instruction to multiply in $\mathbb{F}_{2^{128}}[x]$: Cross-section of size 2^{m-7} we use to enable truncated additive FFT:

$$\Sigma = \{v_k + j_{64}v_{k-64} + j_{65}v_{k-65} + \dots + j_{2^{m-7}-1}v_{k-63-2^{m-7}} : j_i\}$$

$$= \{100 \dots 0XX \dots X\}$$

Table: Timing of multiplications in $\mathbb{F}_2[x]_{< n}$ on Intel Skylake Xeon E3-1275 v5 @ 3.60GHz (10^{-3} sec.)

$\log_2(n/64)$	16	17	18	19	20	21	22	23
This work, $\mathbb{F}_{2^{128}}$	9	20	41	88	192	418	889	1865
FDFT ^c	11	24	56	127	239	574	958	2465
ADFT	16	34	74	175	382	817	1734	3666
FFT over $\mathbb{F}_{2^{60}}{}^{b}$	22	51	116	217	533	885	2286	5301
gf2x ^a	23	51	111	250	507	1182	2614	6195

a Version 1.2. Available from http://gf2x.gforge.inria.fr/

b SVN r10663. Available from svn://scm.gforge.inria.fr/svn/mmx

^c SVN r10681. Available from svn://scm.gforge.inria.fr/svn/mmx