EX 3 SubQueries, Views and Joins@

Aim:

To view implement SubQueries, Views and Joins.

Create employee Table∂

CREATE TABLE EMP (EMPNO NUMBER(4) PRIMARY KEY, ENAME VARCHAR2(10), JOB VARCHAR2(9), MGR N

ſĊ

Insert the values *₽*

```
INSERT INTO EMP (EMPNO, ENAME, JOB, MGR, HIREDATE, SAL, COMM, DEPTNO)
VALUES (7369, 'SMITH', 'CLERK', 7902, '17-DEC-80', 800, NULL, 20);
INSERT INTO EMP (EMPNO, ENAME, JOB, MGR, HIREDATE, SAL, COMM, DEPTNO)
VALUES (7499, 'ALLEN', 'SALESMAN', 7698, '20-FEB-81', 1600, 300, 30);
INSERT INTO EMP (EMPNO, ENAME, JOB, MGR, HIREDATE, SAL, COMM, DEPTNO)
VALUES (7521, 'WARD', 'SALESMAN', 7698, '22-FEB-81', 1250, 500, 30);
INSERT INTO EMP (EMPNO, ENAME, JOB, MGR, HIREDATE, SAL, COMM, DEPTNO)
VALUES (7566, 'JONES', 'MANAGER', 7839, '02-APR-81', 2975, NULL, 20);
INSERT INTO EMP (EMPNO, ENAME, JOB, MGR, HIREDATE, SAL, COMM, DEPTNO)
VALUES (7654, 'MARTIN', 'SALESMAN', 7698, '28-SEP-81', 1250, 1400, 30);
INSERT INTO EMP (EMPNO, ENAME, JOB, MGR, HIREDATE, SAL, COMM, DEPTNO)
VALUES (7698, 'BLAKE', 'MANAGER', 7839, '01-MAY-81', 2850, NULL, 30);
INSERT INTO EMP (EMPNO, ENAME, JOB, MGR, HIREDATE, SAL, COMM, DEPTNO)
VALUES (7782, 'CLARK', 'MANAGER', 7839, '09-JUN-81', 2450, NULL, 10);
INSERT INTO EMP (EMPNO, ENAME, JOB, MGR, HIREDATE, SAL, COMM, DEPTNO)
VALUES (7788, 'SCOTT', 'ANALYST', 7566, '19-APR-87', 3000, NULL, 20);
INSERT INTO EMP (EMPNO, ENAME, JOB, MGR, HIREDATE, SAL, COMM, DEPTNO)
VALUES (7839, 'KING', 'PRESIDENT', NULL, '17-NOV-81', 5000, NULL, 10);
INSERT INTO EMP (EMPNO, ENAME, JOB, MGR, HIREDATE, SAL, COMM, DEPTNO)
VALUES (7844, 'TURNER', 'SALESMAN', 7698, '08-SEP-81', 1500, 0, 30);
INSERT INTO EMP (EMPNO, ENAME, JOB, MGR, HIREDATE, SAL, COMM, DEPTNO)
VALUES (7876, 'ADAMS', 'CLERK', 7788, '23-MAY-87', 1100, NULL, 20);
```

```
INSERT INTO EMP (EMPNO, ENAME, JOB, MGR, HIREDATE, SAL, COMM, DEPTNO)

VALUES (7900, 'JAMES', 'CLERK', 7698, '03-DEC-81', 950, NULL, 30);

INSERT INTO EMP (EMPNO, ENAME, JOB, MGR, HIREDATE, SAL, COMM, DEPTNO)

VALUES (7902, 'FORD', 'ANALYST', 7566, TO_DATE('03-DEC-81', 'DD-MON-RR'), 3000, 20, 20

INSERT INTO EMP (EMPNO, ENAME, JOB, MGR, HIREDATE, SAL, COMM, DEPTNO)

VALUES (7934, 'MILLER', 'CLERK', 7782, TO_DATE('23-JAN-82', 'DD-MON-RR'), 1300, 10, 10
```

Create department table ∂

CREATE TABLE DEPT (DEPTNO NUMBER(2) PRIMARY KEY, DNAME VARCHAR2(14), LOC VARCHAR2(13));

Insert the values in the department table ∂

```
INSERT INTO DEPT (DEPTNO, DNAME, LOC) VALUES (10, 'ACCOUNTING', 'NEW YORK');

INSERT INTO DEPT (DEPTNO, DNAME, LOC) VALUES (20, 'RESEARCH', 'DALLAS');

INSERT INTO DEPT (DEPTNO, DNAME, LOC) VALUES (30, 'SALES', 'CHICAGO');

INSERT INTO DEPT (DEPTNO, DNAME, LOC) VALUES (40, 'OPERATIONS', 'BOSTON');
```

Q1) List the name of the employees whose salary is greater than that of employee with empno 7566. *∂*

QUERY:∂

SELECT ename FROM EMP WHERE sal > (SELECT sal FROM EMP WHERE empno = 7566);

OUTPUT: ℰ

Q2) List the ename, job, sal of the employee who get minimum salary in the company.

QUERY:∂

```
SELECT ename,job,sal FROM EMP WHERE sal = (SELECT MIN(sal) FROM EMP);
```

Q

OUTPUT:ℰ

Q3) List ename, job of the employees who work in deptno 10 and his/her job is any one of the job in the department 'SALES'.

QUERY:∂

```
SELECT ename, job FROM EMP WHERE deptno = 10 AND job IN (SELECT job FROM EMP WHERE job = 'sales');
```

OUTPUT:∂

```
no rows selected
```

Q4) Create a view empv5 (for the table emp) that contains empno, ename, job of the employees who work in dept 10.6

QUERY:ℰ

```
create view empv5 as select EMPNO,ENAME,JOB from EMP where DEPTNO=10; SELECT * FROM empv5;
```

OUTPUT:ℰ

Q5) Create a view with column aliases empv30 that contains empno, ename, sal of the employees who work in dept 30. Also display the contents of the view.

QUERY:∂

OUTPUT:ℰ

EMPNO	ENAME	SAL
7499	ALLEN	1600
7521	WARD	1250
7654	MARTIN	1250
7698	BLAKE	2850
7844	TURNER	1500
7900	JAMES	950

Q6) Update the view empv5 by increasing 10% salary of the employees who work as 'CLERK'. Also confirm the modifications in emp table \mathcal{O}

QUERY:∂

```
update EMP set SAL=SAL*1.1 WHERE JOB='clerk';
create view emplov5 as select EMPNO, ENAME, SAL, JOB from EMP;
```

0

OUTPUT:ℰ

EMPNO	ENAME	SAL	JOB
7369	SMITH	800	CLERK
7499	ALLEN	1600	SALESMAN
7521	WARD	1250	SALESMAN
7566	JONES	2975	MANAGER
7654	MARTIN	1250	SALESMAN
7698	BLAKE	2850	MANAGER
7782	CLARK	2450	MANAGER
7788	SCOTT	3000	ANALYST
7839	KING	5000	PRESIDENT
7844	TURNER	1500	SALESMAN
7876	ADAMS	1100	CLERK

Create a Customer1 Table ∂

CREATE TABLE Customer1 (customer_id INT,cust_name VARCHAR(20),city VARCHAR(20),grade I

Inserting Values to the Table∂

```
INSERT INTO Customer1 (customer_id, cust_name, city, grade, salesman_id) VALUES(3002, INSERT INTO Customer1 (customer_id, cust_name, city, grade, salesman_id) VALUES(3007, INSERT INTO Customer1 (customer_id, cust_name, city, grade, salesman_id) VALUES(3005, INSERT INTO Customer1 (customer_id, cust_name, city, grade, salesman_id) VALUES(3008, INSERT INTO Customer1 (customer_id, cust_name, city, grade, salesman_id) VALUES(3004, INSERT INTO Customer1 (customer_id, cust_name, city, grade, salesman_id) VALUES(3009, INSERT INTO Customer1 (customer_id, cust_name, city, grade, salesman_id) VALUES(3003, INSERT INTO Customer1 (customer_id, cust_name, city, grade, salesman_id) VALUES(3001,
```

Create a Salesperson1 table∂

```
CREATE TABLE Salesman1 (salesman_id INT,name VARCHAR(20),city VARCHAR(20),commission D
```

Inserting Values to the Table∂

```
INSERT INTO Salesman1 (salesman_id, name, city, commission) VALUES(5001, 'James Hoog', INSERT INTO Salesman1 (salesman_id, name, city, commission) VALUES(5002, 'Nail Knite', INSERT INTO Salesman1 (salesman_id, name, city, commission) VALUES(5005, 'Pit Alex', 'INSERT INTO Salesman1 (salesman_id, name, city, commission) VALUES(5006, 'Mc Lyon', 'PINSERT INTO Salesman1 (salesman_id, name, city, commission) VALUES(5007, 'Paul Adam', INSERT INTO Salesman1 (salesman_id, name, city, commission) VALUES(5003, 'Lauson Hen',
```

Q7) Write a SQL query to find the salesperson and customer who reside in the same city. Return Salesman, cust_name and city. *⊘*

QUERY:♂

```
select s.name,c.cust name,s.city from salesman1 s ,customer1 c where s.city=c.city;
```

OUTPUT:∂

NAME	CUST_NAME	CITY
James Hoog	Nick Rimando	New York
James Hoog	Brad Davis	New York
Pit Alex	Julian Green	London
Nail Knite	Fabian Johnson	Paris
Mc Lyon	Fabian Johnson	Paris
Pit Alex	Brad Guzan	London

Q8) Write a SQL query to find salespeople who received commissions of more than 13 percent from the company. Return Customer Name, customer city, Salesman, commission.

QUERY:∂

select s.name,c.cust_name,c.city,s.commission from salesman1 s inner join customer1
c on s.city=c.city where s.commission>0.13;

O

OUTPUT:∂

NAME	CUST_NAME	CITY	COMMISSION
James Hoog	Nick Rimando	New York	.15
James Hoog	Brad Davis	New York	.15
Mc Lyon	Fabian Johnson	Paris	.14

Q9) Perform Natural join on both tables ∂

QUERY:ℰ

select * from salesman1 s natural join customer1 c;

СŌ

OUTPUT: ℰ

SALESMAN_ID CITY		NAME	COMMISSION	CUSTOMER_ID
CUST_NAME	GRADE			
5001 New York Nick Rimando	100	James Hoog	.15	3002
5001 New York Brad Davis	200	James Hoog	.15	3007
5006 Paris Fabian Johnson	300	Mc Lyon	.14	3004
SALESMAN_ID CITY		NAME	COMMISSION	CUSTOMER_ID
CUST_NAME	GRADE			
5005 London Brad Guzan		Pit Alex	.11	3001

Q10) Perform Left and right join on both tables \mathscr{O}

QUERY:∂

```
select s.name,c.cust_name,c.city,s.commission from salesman1 s left join customer1 c on s.salesman_id=c.salesman_id;

select s.name,c.cust_name,c.city,s.commission from salesman1 s right join customer1 c on s.salesman_id=c.salesman_id;
```

OUTPUT:ℰ

Left Join:∂

NAME	CUST_NAME	CITY	COMMISSION
James Hoog	Nick Rimando	New York	.15
James Hoog	Brad Davis	New York	.15
Nail Knite	Graham Zusi	California	.13
Nail Knite	Julian Green	London	.13
Mc Lyon	Fabian Johnson	Paris	.14
Lauson Hen	Geoff Cameron	Berlin	.12
Paul Adam	Jozy Altidor	Moscow	.13
Pit Alex	Brad Guzan	London	.11

Right Join:∂

NAME	CUST_NAME	CITY	COMMISSION
James Hoog	Nick Rimando	New York	.15
James Hoog	Brad Davis	New York	.15
Nail Knite	Graham Zusi	California	.13
Nail Knite	Julian Green	London	.13
Pit Alex	Brad Guzan	London	.11
Mc Lyon	Fabian Johnson	Paris	.14
Paul Adam	Jozy Altidor	Moscow	.13
Lauson Hen	Geoff Cameron	Berlin	.12

Result:∂

Thus, a database is created and implementation of views, subqueries and joins is executed successfully.