Discrete Math-2022 Fall-Quiz-1

Name:

Problem 1. (10 Points) Determine if each of the following propositional formulas is tautology, contradiction or satisfiable.

1.
$$\neg (P \leftrightarrow Q) \rightarrow ((P \land \neg Q) \lor (\neg P \land Q))$$
 (tautology / contradiction / satisfiable)
2. $(\neg P \rightarrow \neg Q) \rightarrow ((\neg P \rightarrow Q) \rightarrow P)$ (tautology / contradiction / satisfiable)
3. $\neg (P \rightarrow (Q \rightarrow P))$ (tautology / contradiction / satisfiable)
4. $(P \rightarrow (Q \rightarrow R)) \rightarrow ((P \rightarrow Q) \rightarrow (P \rightarrow R))$ (tautology / contradiction / satisfiable)
5. $\neg (Q \rightarrow R) \land R$ (tautology / contradiction / satisfiable)

Answer: 1. tautology, 2. tautology, 3. contradiction, 4. tautology, 5. contradiction.

Problem 2. (10 Points) Write down formula α in both CNF and DNF based on the following truth table.

P	Q	R	α
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Answer:

CNF

$$(P \vee \neg Q \vee R) \wedge (\neg P \vee Q \vee R) \wedge (\neg P \vee Q \vee \neg R) \wedge (\neg P \vee \neg Q \vee R)$$

CNF

$$(P \vee \neg Q \vee R) \wedge (\neg P \vee \neg Q \vee R) \wedge (\neg P \vee Q)$$

CNF

$$(P \lor \neg Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (\neg P \lor R)$$

CNF

$$(\neg Q \lor R) \land (\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R)$$

DNE

$$(\neg P \land \neg Q \land \neg R) \lor (\neg P \land \neg Q \land R) \lor (\neg P \land Q \land R) \lor (P \land Q \land R)$$

DNF

$$(\neg P \land \neg Q) \lor (Q \land R)$$

Problem 3. (10 Points) Write the following formula in CNF

$$P \to ((Q \to R) \land (P \lor \neg R))$$

Answer: $\neg P \lor \neg Q \lor R$

Problem 4. (10 Points) Prove the following inference by resolution

$$(\exists x)(P(x) \to Q(x)) \Rightarrow (\forall x)P(x) \to (\exists x)Q(x)$$

Answer: Write the Skolem normal form of $\alpha \land \neg \beta$

$$(\exists x)(P(x) \to Q(x)) \land \neg((\forall x)P(x) \to (\exists x)Q(x))$$

$$= (\exists x)(\neg P(x) \lor Q(x)) \land \neg(\neg(\forall x)P(x) \lor (\exists x)Q(x))$$

$$= (\exists x)(\neg P(x) \lor Q(x)) \land ((\forall x)P(x) \land \neg(\exists x)Q(x))$$

$$= (\exists x)(\forall y)(\forall z)((\neg P(x) \lor Q(x)) \land P(y) \land \neg Q(z))$$

The clause set is $S = {\neg P(a) \lor Q(a), P(y), \neg Q(z)}$

$$\begin{array}{c} \neg P(a) \lor Q(a) \\ P(y) \end{array} \right\} \stackrel{\sigma = \{y/a\}}{\longrightarrow} Q(a), \qquad \neg Q(z) \end{array} \right\} \stackrel{\sigma = \{z/a\}}{\longrightarrow} \neg Q(a)$$

This gives us a contradiction $Q(a) \wedge \neg Q(a)$

Note: You will lose half of score if you answer this question by inference rules.

Problem 5. (15 Points)

Let S(x) be "x is a student", G(x) be "x is a game", L(x,y) be "x likes y" and E(x,y) be "x = y". Formalize each of the following sentences by predicate formula.

1. 有些学生喜欢所有游戏.

right:
$$(\exists x)(S(x) \land (\forall y)(G(y) \rightarrow L(x,y)))$$

wrong: $(\exists x)(\forall y)((S(x) \land G(y)) \rightarrow L(x,y))$

2. 每个学生都有不喜欢的游戏.

right:
$$(\forall x)(S(x) \to (\exists y)(G(y) \land \neg L(x,y)))$$

wrong: $(\forall x)(\exists y)((S(x) \land G(y)) \to \neg L(x,y))$

3. 有些游戏只有一个学生喜欢.

right:
$$(\exists x)(G(x) \land (\exists y)(S(y) \land L(y,x) \land (\forall z)((S(z) \land L(z,x)) \rightarrow E(y,z))))$$

wrong: $(\exists x)(\exists y)((S(x) \land G(y)) \rightarrow L(y,x)) \land (\forall z)((S(z) \land L(z,x)) \rightarrow E(y,z))))$

4. 每个学生最多喜欢一种游戏。

right:
$$(\forall x)(S(x) \to (\forall y)(\forall z)(G(y) \land L(x,y) \land G(z) \land L(x,z) \to E(y,z)))$$

5. 有些学生恰好喜欢两种游戏.

right:
$$(\exists x)(\exists y)(\exists z)(S(x) \land G(y) \land G(z) \land L(x,y) \land L(x,z) \land \neg E(y,z) \land (\forall w)((G(w) \land L(x,w)) \rightarrow (E(y,w) \lor E(z,w))))$$

Note: If you make mistake like wrong answers above, you will lose all score. These mistake is like examples 1,2 in page 4 of handout of Predicate Logic. For example, for first question, the wrong answer is wrong because if there exist a in domain D which is not student, i.e., $S(a) = \mathbf{F}$, we have $(\exists x)(\forall y)((S(x) \land G(y)) \to L(x,y)) = \mathbf{T}$.

If you make other types of mistakes, you may lose part of score.