大學入學考試中心 108 學年度指定科目考試試題 數學乙

—作答注意事項—

考試時間:80分鐘

作答方式: •選擇(填)題用 2B 鉛筆在「答案卡」上作答;更正時,應以橡皮擦擦拭, 切勿使用修正液(帶)。

- 非選擇題用筆尖較粗之黑色墨水的筆在「答案卷」上作答;更正時,可以 使用修正液(帶)。
- 未依規定畫記答案卡,致機器掃描無法辨識答案;或未使用黑色墨水的筆書寫答案卷,致評閱人員無法辨認機器掃描後之答案者,其後果由考生自行承擔。
- 答案卷每人一張,不得要求增補。

選填題作答說明:選填題的題號是 A, B, C, ……, 而答案的格式每題可能不同, 考生 必須依各題的格式填答, 且每一個列號只能在一個格子畫記。請仔細 閱讀下面的例子。

例:若第C 題的答案格式是 $\frac{20(21)}{50}$,而答案是 $\frac{-7}{50}$ 時,則考生必須分別在答

案卡的第20列的 □ 與第21列的 □ 畫記,如:

第壹部分:選擇題(單選題、多選題及選填題共占74分)

一、單選題(占18分)

說明:第1題至第3題,每題有5個選項,其中只有一個是正確或最適當的選項, 請畫記在答案卡之「選擇(填)題答案區」。各題答對者,得6分;答錯、 未作答或畫記多於一個選項者,該題以零分計算。

- 1. 設 $a \cdot b$ 為循環小數, $a = 0.\overline{12} \cdot b = 0.\overline{01}$ 。則a b的值是下列哪一個選項?
 - (1) 0.11
 - (2) 0.1111
 - $(3) \frac{1}{9}$
 - $(4) \frac{10}{99}$
 - $(5) \frac{100}{999}$

- 2. 坐標平面上,直線 y = 2x與直線 y = -3x + 5將坐標平面分割成四個區域。試問下列哪一個選項中的點會和點 (1,1)在同一個區域?
 - (1) (20, -56)
 - (2) (13, -33)
 - (3) (-1,1)
 - (4) (-15, -29)
 - (5) (-20, -29)

- 3. 若向量 $\overrightarrow{A} = (a_1, a_2)$,向量 $\overrightarrow{B} = (b_1, b_2)$,且內積 $\overrightarrow{A} \cdot \overrightarrow{B} = 1$,則矩陣乘積 $\begin{bmatrix} a_1 & a_2 \\ a_1 & a_2 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ 等於下列哪一個選項?
 - (1) [1 1]
 - (2) [2 2]
 - $(3) \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
 - $(4) \begin{bmatrix} 2 \\ 2 \end{bmatrix}$
 - $(5) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

二、多選題(占32分)

說明:第4題至第7題,每題有5個選項,其中至少有一個是正確的選項,請將正確選項畫記在答案卡之「選擇(填)題答案區」。各題之選項獨立判定,所有選項均答對者,得8分;答錯1個選項者,得4.8分;答錯2個選項者,得1.6分;答錯多於2個選項或所有選項均未作答者,該題以零分計算。

- 4. 已知正整數 a 與正整數 b 的乘積是 11 位數,而 a 除以 b 的商之整數部分是 2 位數,則 a **可能** 為幾位數?
 - (1) 5 位數
 - (2)6位數
 - (3) 7位數
 - (4) 8 位數
 - (5)9位數

5. 考慮如下的九宮格:

1	2	3	
4	5	6	
7	8	9	

編號 1、3、7、9 的四格稱為「角」,編號 2、4、6、8 的四格稱為「邊」,而編號 5 的格子稱為「中心」。在此九格中放入 5 個〇及 4 個×的記號,每一格只能放入一個〇或一個×,且任一行(例如位置 1、4、7)、任一列(例如位置 4、5、6)、以及任一對角線(對角線是指位置 1、5、9 或位置 3、5、7)的三個記號不能完全相同(例如位置 1、5、9 不能全為〇或全為×)。試選出正確的選項。

- (1) 若在中心放〇,則可能有三個〇放在邊上
- (2) 若在中心放〇,則一定恰有兩個〇放在角上
- (3) 若在中心放×,則一定恰有兩個×放在角上
- (4) 中心放○的方法共有 8 種
- (5) 中心放×的方法共有 4 種

- 6. 某商店出售 10 種不同款式的公仔。今甲、乙、丙三人都各自收集公仔。試選出 正確的選項。
 - (1) 若甲、乙兩人各自收集 6 款公仔,則他們兩人合起來一定會收集到這 10 款不同的公仔
 - (2) 若甲、乙兩人各自收集7款公仔,則至少有4款公仔是兩人都擁有
 - (3) 若甲、乙、丙三人各自收集 6 款公仔,則至少有 1 款公仔是三人都擁有
 - (4) 若甲、乙、丙三人各自收集7款公仔,則至少有2款公仔是三人都擁有
 - (5) 若甲、乙、丙三人各自收集 8 款公仔,則至少有 4 款公仔是三人都擁有

7. 某甲上班可採全程步行或全程騎腳踏車兩種方式通勤,其中步行的通勤時間為60分鐘,騎腳踏車的通勤時間以整數計時為T分鐘。其中30≤T≤40,且T分為五個區間,其出現在各區間的機率如下表:

通勤時間	$30 \le T < 32$	$32 \le T < 34$	34 ≤ <i>T</i> < 36	$36 \le T < 38$	$38 \le T \le 40$
機率	0.1	0.2	0.4	0.2	0.1

例如: 騎腳踏車通勤時間T滿足區間 $32 \le T < 34$ 的機率為0.2。假設甲每天通勤時間互相獨立。根據上述資料,試選出正確選項。

- (1) 若甲某一天騎腳踏車上班,則其通勤時間少於35分鐘的機率是0.5
- (2) 若甲某五天皆騎腳踏車上班,則這五天上班的通勤總時間一定會少於四天騎腳踏車另一天步行的通勤總時間
- (3) 若甲某五天上班的通勤總時間為 250分鐘,則這五天中甲一定是三天步行,兩 天騎腳踏車
- (4) 若甲每天投擲一公正銅板來決定步行或騎腳踏車上班,正面則步行,反面則 騎腳踏車,則甲兩天的通勤總時間至少90分鐘的機率是0.75
- (5) 若甲有兩天皆騎腳踏車上班,則甲這兩天的通勤總時間至少為 76 分鐘的機率 是 0.01

三、選填題(占24分)

說明:1.第A至C題,將答案畫記在答案卡之「選擇(填)題答案區」所標示的列號(8-15)。

- 2.每題完全答對給8分,答錯不倒扣,未完全答對不給分。
- A. 從三位數中任選一數,寫成 $a \times 10^2 + b \times 10 + c$,其中 a 是 1到 9的整數, b 和 c 都是 0到 9的整數,則 a+b+c=9的機率為 $\frac{8}{90}$ 。 (請化成最簡分數)

B. 已知實係數多項式 f(x) 除以 x^2+2 的餘式為 x+1。若 xf(x) 除以 x^2+2 的餘式為 ax+b, 則數對 $(a,b)=(_ ① ① , _ ② ①)$ 。

C. 某遊戲的規則為同時擲兩顆公正骰子一次,若兩顆點數和為 6 或者至少有一顆點數為 6,即可獲得獎金36元,否則沒有獎金,則這個遊戲獎金的期望值為 (4) (15)元。

一 一 一以下是第貳部分的非選擇題,必須在答案卷面作答 一 一

第貳部分:非選擇題(占26分)

說明:本部分共有二大題,答案必須寫在「答案卷」上,並於題號欄標明大題號(一、二)與子題號((1)、(2)、……),同時必須寫出演算過程或理由,否則將予扣分甚至零分。作答使用筆尖較粗之黑色墨水的筆書寫,且不得使用鉛筆。若因字跡潦草、未標示題號、標錯題號等原因,致評閱人員無法清楚辨識,其後果由考生自行承擔。每一子題配分標於題末。

- 一. 考慮坐標平面上相異五點 $O \times A \times B \times C \times D$ 。已知向量 $\overrightarrow{OC}=3\overrightarrow{OA}$, $\overrightarrow{OD}=3\overrightarrow{OB}$,且向量 \overrightarrow{AB} 的坐標表示為 $\overrightarrow{AB}=(3,-4)$,試回答下列問題。
 - (1) 試以坐標表示向量 \overrightarrow{DC} 。(5分)
 - (2) 若 \overrightarrow{OA} = (1,2) , 試利用二階行列式與面積的關係, 求 ΔOCD 的面積。(8分)

- 二. 某運輸公司欲向一汽機車製造商訂購一批重型機車(簡稱重機)和汽車。其訂購費用為重機一部 25 萬元及汽車一部 60 萬元,訂購經費上限是 5400 萬元。另此運輸公司共有 100 格停車位,每格停車位恰可停放兩部重機或是停放一部汽車。而此運輸公司每銷售 1 部重機可得淨利潤 2.3 萬元(即 2 萬 3 千元),銷售 1 部汽車則可得淨利潤 5 萬元,並假設此運輸公司可將其所訂購之重機及汽車全數銷售完畢。此運輸公司希望能在訂購經費的上限和停車位之限制下獲得最大的淨利潤。試回答下列問題。
 - (1) 試寫出此問題之線性規劃不等式及目標函數。(4分)
 - (2) 在坐標平面上畫出可行解區域,並以斜線標示該區域。(3分)
 - (3) 此運輸公司應訂購重機、汽車各多少部才能獲得最大的淨利潤?此最大淨利潤為何?(6分)