Relational Database Design Theory Part II

CPS 196.3 Introduction to Database Systems

Announcement

- Project proposal/progress report due today
- * Midterm next Thursday in class
 - Everything up to today's lecture, with a focus on the materials covered by the first two homework assignments
 - Open book, open notes
- Will assign an optional problem set tonight as a study guide for midterm
 - Entirely optional
 - If you turn it in on Tuesday in class, you can use its grade to replace your lowest homework grade so far
 - Solution will be posted on Tuesday midnight
- ❖ Graded Homework #2 will be available on Tuesday

Review

- * Functional dependencies
 - $X \rightarrow Y$: If two rows agree on X, they must agree on Y
 - TA generalization of the key concept
- * Non-key functional dependencies: a source of redundancy
 - No trivial $X \to Y$ where X is not a superkey
 - Called a BCNF violation
- * BCNF decomposition: a method for removing redundancies
 - Given R(X, Y, Z) and a BCNF violation $X \to Y$, decompose R into $R_1(X, Y)$ and $R_2(X, Z)$
- Schema in BCNF has no redundancy due to FD's

-	
•	
<u> </u>	
-	

Next ❖ 3NF (BCNF is too much) * Multivalued dependencies: another source of redundancy ❖ 4NF (BCNF is not enough) Motivation for 3NF * Address (street_address, city, state, zip) street_address, city, state → zip \blacksquare $zip \rightarrow city$, stateKeys ❖ BCNF? To decompose or not to decompose Address₁ Address₂ ❖ FD's in Address₁ ❖ FD's in Address₂ ❖ Hey, where is street_address, city, state → zip? Cannot check without joining Address₁ and Address₂ back together * Problem: Some lossless join decomposition is not dependency-preserving * Dilemma: Should we get rid of redundancy at the expense of making constraints harder to enforce?

3NF

- * R is in Third Normal Form (3NF) if for every non-trivial FD $X \to A$ (where A is single attribute), either
 - X is a superkey of R, or
 - A is a member of at least one key of R
 - FIntuitively, BCNF decomposition on $X \to A$ would "break" the key containing A
- So Address is already in 3NF
- * Tradeoff:
 - Can enforce all original FD's on individual decomposed relations
 - Might have some redundancy due to FD's

BNCF = no redundancy?

- * Student (SID, CID, club)
 - Suppose your classes have nothing to do with the clubs you join
 - FD's?
 - BNCF?
 - Redundancies?

SID	CID	club	
142	CPS196	ballet	l
142	CPS196	sumo	l
142	CPS114	ballet	
142	CPS114	sumo	ĺ
123	CPS196	chess	ĺ
123	CPS196	golf	ĺ
			ſ

Multivalued dependencies

- ❖ A multivalued dependency (MVD) has the form X → Y, where X and Y are sets of attributes in a relation R
- $\bigstar X \twoheadrightarrow Y$ means that whenever two rows in R agree on all the attributes of X, then we can swap their Y components and get two new rows that are also in R

	Z	Y	X
	c1	b1	а
	с2	b2	а
l., ,	с2	b1	а
Must l	c1	b2	а

Must be in R too

MVD examples Student (SID, CID, club) ❖ SID → CID

Complete MVD + FD rules

- * FD reflexivity, augmentation, and transitivity
- ❖ MVD complementation: If $X \rightarrow Y$, then $X \rightarrow attrs(R) - X - Y$
- ❖ MVD augmentation: If $X \twoheadrightarrow Y$ and $V \subseteq W$, then $XW \twoheadrightarrow YV$
- ❖ MVD transitivity: If $X woheadsymbol{ width}{ width} Y$ and $Y woheadsymbol{ width}{ width} Z$, then $X woheadsymbol{ width}{ width} Z - Y$
- Replication (FD is MVD): If $X \to Y$, then $X \twoheadrightarrow Y$

Try proving things using these!

* Coalescence:

If $X \twoheadrightarrow Y$ and $Z \subseteq Y$ and there is some W disjoint from Y such that $W \to Z$, then $X \to Z$

An elegant solution: chase

- ❖ Given a set of FD's and MVD's \mathcal{D} , does another dependency d (FD or MVD) follow from \mathcal{D} ?
- * Procedure
 - Start with the hypotheses of *d*, and treat them as "seed" tuples in a relation
 - lacksquare Apply the given dependencies in ${\cal D}$ repeatedly
 - If we apply an FD, we infer equality of two symbols
 - If we apply an MVD, we infer more tuples
 - If we infer the conclusion of *d*, we have a proof
 - Otherwise, if nothing more can be inferred, we have a counterexample

_						
-						
_						
_						
_						
	_				_	
-						

Proof by chase	
❖ In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?	
Have Need	
A B C D A B C D a b1 c1 d1 a b1 c2 d1 a b2 c2 d2 d2 d2 d2 d2	
Another proof by chase	
❖ In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply	
that $A o C$?	
$ \begin{array}{c ccccc} A & B & C & D \\ a & b1 & c1 & d1 \\ a & b2 & c2 & d2 \end{array} $	
In general, both new tuples and new equalities may be generated	
, 2- 2,	
C	
Counterexample by chase	
❖ In $R(A, B, C, D)$, does $A \rightarrow \!$	
Have Need	
$ \begin{array}{c ccccc} A & B & C & D \\ \hline a & b1 & c1 & d1 \\ a & b2 & c2 & d2 \end{array} $ $b1 = b2$	

4NF \diamond A relation R is in Fourth Normal Form (4NF) if ■ For every non-trivial MVD $X \Rightarrow Y$ in R, X is a superkey lacktriangle That is, all FD's and MVD's follow from "key ightarrow other attributes" (i.e., no MVD's and no FD's besides key functional dependencies) ❖ 4NF is stronger than BCNF ■ Because every FD is also a MVD 4NF decomposition algorithm * Find a 4NF violation • Decompose R into R_1 and R_2 , where • R_1 has attributes $X \cup Y$ • R_2 has attributes $X \cup Z$ (Z contains attributes not in X or Y) * Repeat until all relations are in 4NF * Almost identical to BCNF decomposition algorithm * Any decomposition on a 4NF violation is lossless 4NF decomposition example 142 CPS196 ballet 142 CPS196 sumo 142 CPS114 ballet 142 CPS114 sumo Student (SID, CID, club) 123 CPS196 chess

3NF, BCNF, 4NF, and beyond

Anomaly/normal form	3NF	BCNF	4NF
Lose FD's?	No	Possible	Possible
Redundancy due to FD's	Possible	No	No
Redundancy due to MVD's	Possible	Possible	No

❖ Of historical interests

- 1NF: All column values must be atomic
- 2NF: There is no partial functional dependency (a nontrivial FD X → A where X is a proper subset of some key)

Summary

- Philosophy behind BCNF, 4NF: Data should depend on the key, the whole key, and nothing but the key!
- ❖ Philosophy behind 3NF:
 - ... But not at the expense of more expensive constraint enforcement!

.