

Οπλισμένο Σκυροδέμα ΙΙ

Ενότητα 3: Παραδείγματα φορτίσεων δομικών στοιχείων

Γεώργιος Παναγόπουλος Τμήμα Πολιτικών Μηχανικών

Παραδείγματα φορτίσεων δομικών στοιχείων

Μεταφορά φορτίων μεταξύ των δομικών στοιχείων

Περιεχόμενα ενότητας

- 1. Φορτίσεις στοιχείων από το ίδιο βάρος τους
- 2. Μεταφορά φορτίων από τις πλάκες στις δοκούς

Σκοποί ενότητας

- Εξοικείωση των φοιτητών με τις φορτίσεις των δομικών στοιχείων
- Διαδικασίες απλοποίησης σύνθετων φορτίσεων

Φορτίσεις των κατασκευών

⁽¹⁾ Κωνσταντινίδης Απ. (2008) "Αντισεισμικά κτίρια από οπλισμένο σκυρόδεμα, Τόμος Α - Η Τέχνη της Κατασκευής και η Μελέτη Εφαρμογής", π-SYSTEMS INTERNATIONAL Α.Ε., Αθήνα

Φορτία τοιχοπληρώσεων και άλλων στοιχείων πλήρωσης

- Συνήθως δίνεται το κατανεμημένο φορτίο στην επιφάνεια των στοιχείων πλήρωσης
- Για παράδειγμα στις τοιχοπληρώσεις οι συνήθεις τιμές είναι:
 - Δρομική τοιχοποιία (εσωτερικοί τοίχοι): $g_{τοιχ} = 2.1 \text{kN/m}^2$
 - Μπατική τοιχοποιία (εξωτερικοί τοίχοι): $g_{τοιχ} = 3.6 \text{kN/m}^2$

Μόνιμα φορτία πλακών (kN/m²)

• Φορτίο από το **ίδιο βάρος** της πλάκας

$$g_{\pi\lambda,IB} = \gamma_{\sigma\kappa\nu\rho} \cdot h_f$$

Πρόσθετα μόνιμα φορτία πλακών (δάπεδα, επιστρώσεις κτλ)

 $g_{\pi\lambda,\pi\rho}$ (συναντώνται και ως $g_{\pi\lambda,1}$, $g_{\pi\lambda,\epsilon\pi\iota\kappa}$, $g_{\pi\lambda,\delta\alpha\pi}$ κτλ). Δίνεται τιμή ανά υλικό.

- Φορτία **τοιχοπληρώσεων** ή άλλων μόνιμων γραμμικών φορτίσεων
 - Στη (συνήθη) περίπτωση μη ακριβέστερου υπολογισμού θεωρείται ότι το σύνολο των φορτίων κατανέμεται ομοιόμορφα στην επιφάνεια της πλάκας
 - Παράδειγμα: Δρομικές τοιχοπληρώσεις ύψους $h_{\text{τοιχ}}$ =2.5m για μήκος $I_{\text{τοιχ}}$ =4.0m σε μία πλάκα διαστάσεων (I_{x} I_{y}) 3.5x5.0m

$$g_{\pi\lambda,\tau\circ\iota\chi} = \frac{g_{\pi\lambda,\tau\circ\iota\chi} \cdot h_{\tau\circ\iota\chi} \cdot I_{\tau\circ\iota\chi}}{I_{\chi} \cdot I_{\chi}} = \frac{2.1 \text{kN/m}^2 \cdot 2.5 \text{m} \cdot 4.0 \text{m}}{3.5 \text{m} \cdot 5.0 \text{m}} = 1.2 \text{kN/m}^2$$

Μόνιμα φορτία δοκών (kN/m)

• **Μόνιμο φορτίο πλακών** που μεταφέρεται στις δοκούς (αναλυτικά στη συνέχεια): $g_{\delta o \kappa, \pi \lambda}$

• Φορτίο από το **ίδιο βάρος** των δοκών: g_{δοκ,IB}

Ορθογωνικές διατομές: $g_{\delta o \kappa, IB} = \gamma_{\sigma \kappa u \rho} \cdot b_w \cdot h_f$

Πλακοδοκοί: $g_{\delta o \kappa, IB} = \gamma_{\sigma \kappa \nu \rho} \cdot b_{w} \cdot (h - h_{f})$

στις πλακοδοκούς αφαιρείται το κομμάτι της πλάκας που έχει ήδη υπολογιστεί στο $g_{\delta o \kappa. \pi \lambda}$

• Φορτία **τοιχοπληρώσεων** ή άλλων μόνιμων γραμμικών φορτίσεων Στη (συνήθη) περίπτωση μη ακριβέστερου υπολογισμού θεωρείται ότι το σύνολο των φορτίων κατανέμεται ομοιόμορφα κατά μήκος των δοκών

$$g_{\delta \circ \kappa, \tau \circ \iota \chi} = g_{\tau \circ \iota \chi} \cdot h_{\tau \circ \iota \chi}$$

Μόνιμα φορτία υποστυλωμάτων (kN/m)

- Μόνιμο φορτίο δοκών που μεταφέρεται στις δοκούς. Από τη στατική επίλυση του φορέα, οι τέμνουσες δυνάμεις στα άκρα των δοκών που στηρίζονται στο υποστύλωμα μεταφέρονται σε αυτό ως (θλιπτικές) αξονικές δυνάμεις
- Φορτίο από το **ίδιο βάρος** των υποστυλωμάτων

$$g_{u\pi,IB} = \gamma_{\sigma\kappa u\rho} \cdot A_c$$

Ορθογωνικές διατομές:
$$g_{\nu \pi, IB} = \gamma_{\sigma \kappa \nu \rho} \cdot b \cdot h$$

Μεταβλητές δράσεις

- Τα **ωφέλιμα φορτία** δίνονται από τον Ευρωκώδικα 1, ανάλογα με τη χρήση του κτιρίου (συνήθης τιμή q_{πλ}=2.0kN/m²)
- Συνήθως το σύνολο των ωφέλιμων φορτίων ασκείται στις πλάκες και μέσω αυτών μεταφέρεται στις δοκούς και στη συνέχεια στα υποστυλώματα
- Για τις υπόλοιπες μεταβλητές δράσεις (άνεμος, χιόνι κτλ) η διαδικασία υπολογισμού περιγράφεται στα αντίστοιχα μέρη του Ευρωκώδικα 1.

Μεταφορά φορτίων από τις πλάκες στις δοκούς (1/4)

Γενική περίπτωση: Γεωμετρικός κανόνας (45°-45° ή 30°-60°)

- Εφόσον σε μία γωνία συντρέχουν πλευρές ομοειδούς στήριξης (πάκτωση-πάκτωση ή έδραση-έδραση) η γωνία μερισμού είναι 45°.
- Εφόσον συντρέχουν μία πλήρως πακτωμένη με μία απλά εδραζόμενη οι γωνίες μερισμού είναι 60° και 30° αντίστοιχα.
- Για μερική πάκτωση συνιστάται να λαμβάνονται ενδιάμεσες τιμές των γωνιών (κάτι που εφαρμόζεται εξαιρετικά σπάνια)

Μεταφορά φορτίων από τις πλάκες στις δοκούς (2/4)

Γενική περίπτωση Γεωμετρικός κανόνας (45°-45° ή 30°-60°)

- 6 τύποι πλακών, αντίστοιχοι με τους πίνακες Czerny
- Πίνακες για τη μετατροπή των τριγωνικών-τραπεζοειδών φορτίσεων σε ισοδύναμες ορθογωνικές
- Μετατροπή βάσει τεμνουσών ή ροπών

ΤΥΠΟΣ 2β

ΤΥΠΟΣ 2α

ΤΥΠΟΣ 3β

ΤΥΠΟΣ 3α

ΤΥΠΟΣ 4

ΤΥΠΟΣ 5β

ΤΥΠΟΣ 5α

ΤΥΠΟΣ 6

Μεταφορά φορτίων από τις πλάκες στις δοκούς (3/4)

Χρήση πινάκων υπολογισμού

$\varepsilon = 1 max/$	lmin	1.00	1.05	1.10	1.15	1.20	1.25	1.30	1.35	1.40	1.45	1.50	1.60	1.70	1.80	2.00	2.25	2.50	3.00	3.50	4.00	5.00
Π	λ	à K	ε	ς	ŀ	3 1		σ 1	η	ρ	i	ξε	: 1	ς	1	Ú	п	0	U	1 ή	6	- Augusty Co.
$\bar{\lambda}^{\circ}_{V} = \bar{\lambda}$	ζu _ν	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500
$\bar{\lambda}_{v}^{1} = \bar{\lambda}$	ر <mark>ر</mark>	500	524	545	565	583	600	615	630	643	655	667	688	706	722	750	778	800	833	857	875	900
λ° _H = 7	, H	667	667	667	667	667	667	667	667	667	667	667	667	667	667	667	667	667	667	667	667	667
$\bar{\lambda}_{N}^{1} = \bar{\lambda}_{N}^{2}$	r _H	667	698	725	748	769	787	803	817	830	841	852	870	885	897	917	934	947	962	973	979	987
П	λ	à K	ε)	ς	ŀ	3 L		σ 1	гη	ρ	i	ξε	: 1	ς	1	υ	п	0	U	. 4		
λ° _ν		366	366	366	366	366	366	366	366	366	366	366	366	366	366	366	366	366	366	366	366	366
$\bar{\lambda}^{u}_{v}$		634	634	634	634	634	634	634	634	634	634	634	634	634	634	634	634	634	634	634	634	634
$\bar{\lambda}^{1}_{V}$		634	664	692	717	739	761	780	798	815	831	845	872	895	916	951	986	1014	1057	1087	1110	1141
ν̄τν		366	383	399	414	427	439	450	460	471	480	488	503	517	529	549	569	586	610	627	641	659
λ°μ		478	478	478	478	478	478	478	478	478	478	478	478	478	478	478	478	478	478	478	478	478
λuμ		827	827	827	827	827	827	827	827	827	827	827	827	827	827	827	827	827	827	827	827	827
λ¹μ		827	865	898	928	954	977	998	1017	1034	1049	1063	1086	1105	1122	1147	1169	1186	1207	1220	1230	1240
λrμ		478	501	520	538	554	567	578	589	600	608	616	630	640	650	665	678	688	700	708	713	719

Μεταφορά φορτίων από τις πλάκες στις δοκούς (4/4)

- Στις διέρειστες πλάκες με στηρίξεις στις απέναντι πλευρές το φορτίο ισομοιράζεται σε αυτές
- Αντίστοιχα, στις απλά οπλισμένες τετραέρειστες πλάκες θεωρείται ότι το σύνολο των φορτίων μεταφέρεται στις δύο μεγάλες δοκούς
- Στους προβόλους όλο το φορτίο της πλάκας μεταφέρεται στη δοκό στήριξης

•
$$p_{\Delta 1,\pi\rho} = p_{\pi\rho} \cdot L_{\pi\rho}$$

•
$$p_{\Delta 1, \pi \lambda} = p_{\pi \lambda} \cdot L_2/2$$

•
$$p_{\Delta 2,\pi\lambda} = p_{\pi\lambda} \cdot L_2/2$$

•
$$p_{\Delta 3,\pi\lambda} = p_{\Delta 4,\pi\lambda} = 0$$

