Mathematical Logic Part Two

Problem Set
Three due in the box up front.

First-Order Logic

The Universe of First-Order Logic

First-Order Logic

- In first-order logic, each variable refers to some object in a set called the domain of discourse.
- Some objects may have multiple names.
- Some objects may have no name at all.

Propositional vs. First-Order Logic

 Because propositional variables are either true or false, we can directly apply connectives to them.

$$p \rightarrow q$$
 $\neg p \leftrightarrow q \land r$

 Because first-order variables refer to arbitrary objects, it does not make sense to apply connectives to them.

$$Venus → Sun$$
 137 $\leftrightarrow \neg 42$

This is not C!

Reasoning about Objects

- To reason about objects, first-order logic uses predicates.
- Examples:
 - NowOpen(USGovernment)
 - FinallyTalking(House, Senate)
- Predicates can take any number of arguments, but each predicate has a fixed number of arguments (called its arity)
- Applying a predicate to arguments produces a proposition, which is either true or false.

First-Order Sentences

• Sentences in first-order logic can be constructed from predicates applied to objects:

 $LikesToEat(V, M) \land Near(V, M) \rightarrow WillEat(V, M)$

 $Cute(t) \rightarrow Dikdik(t) \lor Kitty(t) \lor Puppy(t)$

$$x < 8 \rightarrow x < 137$$

The notation x < 8 is just a shorthand for something like LessThan(x, 8).

Binary predicates in math are often written like this, but symbols like < are not a part of first-order logic.

Equality

- First-order logic is equipped with a special predicate = that says whether two objects are equal to one another.
- Equality is a part of first-order logic, just as → and ¬ are.
- Examples:

MorningStar = EveningStar Voldemort = TomMarvoloRiddle

 Equality can only be applied to objects; to see if propositions are equal, use ↔. For notational simplicity, define **#** as

$$x \neq y \equiv \neg (x = y)$$

Expanding First-Order Logic

$$x < 8 \land y < 8 \rightarrow x + y < 16$$

Expanding First-Order Logic

$$x < 8 \land y < 8 \rightarrow x + y < 16$$

Why is this allowed?

Functions

- First-order logic allows **functions** that return objects associated with other objects.
- Examples:

x + y LengthOf(path)MedianOf(x, y, z)

- As with predicates, functions can take in any number of arguments, but each function has a fixed arity.
- Functions evaluate to objects, not propositions.
- There is no syntactic way to distinguish functions and predicates; you'll have to look at how they're used.

How would we translate the statement

"For any natural number n, n is even iff n^2 is even"

into first-order logic?

Quantifiers

- The biggest change from propositional logic to first-order logic is the use of quantifiers.
- A quantifier is a statement that expresses that some property is true for some or all choices that could be made.
- Useful for statements like "for every action, there is an equal and opposite reaction."

"For any natural number n, n is even iff n^2 is even"

"For any natural number n, n is even iff n^2 is even"

 $\forall n. (n \in \mathbb{N} \to (Even(n) \leftrightarrow Even(n^2)))$

"For any natural number n, n is even iff n^2 is even"

 $\forall n$. $(n \in \mathbb{N} \to (Even(n) \leftrightarrow Even(n^2)))$

 \forall is the universal quantifier and says "for any choice of n, the following is true."

The Universal Quantifier

- A statement of the form $\forall x$. ψ asserts that for **every** choice of x in our domain, ψ is true.
- Examples:

```
\forall v. (Puppy(v) \rightarrow Cute(v))

\forall n. (n \in \mathbb{N} \rightarrow (Even(n) \leftrightarrow \neg Odd(n)))

Tallest(x) \rightarrow \forall y. (x \neq y \rightarrow IsShorterThan(y, x))
```

Some muggles are intelligent.

Some muggles are intelligent.

 $\exists m. (Muggle(m) \land Intelligent(m))$

Some muggles are intelligent.

 $\exists m. (Muggle(m) \land Intelligent(m))$

I is the existential quantifier and says "for some choice of m, the following is true."

The Existential Quantifier

- A statement of the form $\exists x. \psi$ asserts that for **some** choice of x in our domain, ψ is true.
- Examples:

```
\exists x. (Even(x) \land Prime(x))
\exists x. (TallerThan(x, me) \land LighterThan(x, me))
(\exists x. Appreciates(x, me)) \rightarrow Happy(me)
```

Operator Precedence (Again)

- When writing out a formula in first-order logic, the quantifiers ∀ and ∃ have precedence just below ¬.
- Thus

$$\forall x. \ P(x) \ \lor \ R(x) \rightarrow Q(x)$$

is interpreted as

$$((\forall x. P(x)) \lor R(x)) \rightarrow Q(x)$$

rather than

$$\forall x. ((P(x) \lor R(x)) \rightarrow Q(x))$$

Translating into First-Order Logic

All puppies are cute!

 $\forall x. (Puppy(x) \land Cute(x))$

All puppies are cute!

 $\forall x. (Puppy(x) \land Cute(x))$

All puppies are cute!

 $\forall x. (Puppy(x) \land Cute(x))$

All puppies are cute!

 $\forall x. \ (Puppy(x) \land Cute(x))$

All puppies are cute!

 $\forall x. (Puppy(x) \land Cute(x))$

All puppies are cute!

 $\forall x. (Puppy(x) \rightarrow Cute(x))$

All puppies are cute!

 $\forall x. (Puppy(x) \rightarrow Cute(x))$

All puppies are cute!

 $\forall x. \ (Puppy(x) \rightarrow Cute(x))$

All puppies are cute!

 $\forall x. (Puppy(x) \rightarrow Cute(x))$

"Whenever P(x), then Q(x)"

translates as

$$\forall x. (P(x) \rightarrow Q(x))$$

Another Bad Translation

Some blobfish is cute.

 $\exists x. (Blobfish(x) \rightarrow Cute(x))$

Another Bad Translation

Some blobfish is cute.

 $\exists x. (Blobfish(x) \rightarrow Cute(x))$

Some blobfish is cute.

 $\exists x. (Blobfish(x) \rightarrow Cute(x))$

Some blobfish is cute.

 $\exists x. (Blobfish(x) \rightarrow Cute(x))$

- The above statement is false, but
 x refers to a cute puppy?

Some blobfish is cute.

 $\exists x. (Blobfish(x) \rightarrow Cute(x))$

- 1. The above statement is false, but 2. x refers to a cute puppy?

Some blobfish is cute.

 $\exists x. (Blobfish(x) \rightarrow Cute(x))$

- The above statement is false, but
 x refers to a cute puppy?

Some blobfish is cute.

 $\exists x. (Blobfish(x) \rightarrow Cute(x))$

- The above statement is false, but
 x refers to a cute puppy?

Some blobfish is cute.

 $\exists x. (Blobfish(x) \land Cute(x))$

Some blobfish is cute.

 $\exists x. (Blobfish(x) \land Cute(x))$

- 1. The above statement is false, but 2. x refers to a cute puppy?

Some blobfish is cute.

 $\exists x. (Blobfish(x) \land Cute(x))$

- 1. The above statement is false, but 2. x refers to a cute puppy?

Some blobfish is cute.

 $\exists x. (Blobfish(x) \land Cute(x))$

- 1. The above statement is false, but 2. x refers to a cute puppy?

"There is some P(x) where Q(x)"

translates as

 $\exists x. (P(x) \land Q(x))$

The Takeaway Point

- Be careful when translating statements into first-order logic!
- \forall is usually paired with \rightarrow .
 - Sometimes paired with \leftrightarrow .
- ∃ is usually paired with ∧.

Time-Out For Announcements

Friday Four Square!

Today at 4:15PM at Gates

Problem Set Four

- Problem Set Four released today.
 - Checkpoint due on Monday.
 - Rest of the assignment due Friday.
 - Explore functions, cardinality, diagonalization, and logic!

Your Questions

What material is covered on the midterm? Is it open-notes?

Hey Keith, how did you first get interested in math/computer science? Your enthusiasm is infectious but also somewhat curious.

Back to Logic!

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "Everyone loves someone else."

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "Everyone loves someone else."

 $\forall p. (Person(p) \rightarrow \exists q. (Person(q) \land p \neq q \land Loves(p, q)))$

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "Everyone loves someone else."

```
\forall p. (Person(p) \rightarrow \exists q. (Person(q) \land p \neq q \land Loves(p, q)))
```

For every person,

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "Everyone loves someone else."

```
\forall p. \ (Person(p) \rightarrow \exists q. \ (Person(q) \land p \neq q \land Loves(p, q)))
For every person,
there is some person
```

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "Everyone loves someone else."

```
\forall p. \ (Person(p) \rightarrow \exists q. \ (Person(q) \land p \neq q \land Loves(p, q)))
For every person,
there is some person
who isn't them
```

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "Everyone loves someone else."

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "There is someone everyone else loves."

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "There is someone everyone else loves."

 $\exists p. (Person(p) \land \forall q. (Person(q) \land p \neq q \rightarrow Loves(q, p)))$

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "There is someone everyone else loves."

 $\exists p. (Person(p) \land \forall q. (Person(q) \land p \neq q \rightarrow Loves(q, p)))$

There is some person

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "There is someone everyone else loves."

 $\exists p. \ (Person(p) \land \forall q. \ (Person(q) \land p \neq q \rightarrow Loves(q, p)))$ There is some person

who everyone

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "There is someone everyone else loves."

 $\exists p. \ (Person(p) \land \forall q. \ (Person(q) \land p \neq q \rightarrow Loves(q, p)))$ There is some person

who everyone

who isn't them

- Most interesting statements in first-order logic require a combination of quantifiers.
- Example: "There is someone everyone else loves."

For Comparison

Everyone Loves Someone Else

There is Someone Everyone Else Loves

There is Someone Everyone Else Loves

Everyone Loves Someone Else

Everyone Loves Someone Else

Everyone Loves Someone Else **and** There is Someone Everyone Else Loves

The statement

 $\forall x. \exists y. P(x, y)$

means "For any choice of x, there is **some** choice of y (possibly dependent on x) where P(x, y) holds."

The statement

 $\exists y. \ \forall x. \ P(x, y)$

means "There is some choice of y where for any choice of x, P(x, y) holds."

Order matters when mixing existential and universal quantifiers!

Quantifying Over Sets

The notation

$$\forall x \in S. P(x)$$

means "for any element x of set S, P(x) holds."

 This is not technically a part of first-order logic; it is a shorthand for

$$\forall x. (x \in S \rightarrow P(x))$$

How might we encode this concept?

Answer:
$$\exists x \in S \land P(x)$$

Answer: $\exists x . (x \in S \land P(x)).$

Note the use of \land instead of \rightarrow here.

Quantifying Over Sets

The syntax

$$\forall x \in S. \phi$$

 $\exists x \in S. \phi$

is allowed for quantifying over sets.

- In CS103, please do not use variants of this syntax.
- Please don't do things like this:

$$\forall x \text{ with } P(x). \ Q(x)$$

 $\forall y \text{ such that } P(y) \land Q(y). R(y).$

Translating into First-Order Logic

- First-order logic has great expressive power and is often used to formally encode mathematical definitions.
- Let's go provide rigorous definitions for the terms we've been using so far.

"Two sets are equal iff they contain the same elements."

$$S = T \leftrightarrow \forall x. (x \in S \leftrightarrow x \in T)$$

Is something missing?

"Two sets are equal iff they contain the same elements."

$$\forall S. (Set(S) \rightarrow \\ \forall T. (Set(T) \rightarrow \\ (S = T \leftrightarrow \forall x. (x \in S \leftrightarrow x \in T))$$

Many statements asserting a general claim is true are implicitly universally quantified.

"The union of two sets is the set containing all elements of both sets."

```
\forall S. (Set(S) \rightarrow \forall T. (Set(T) \rightarrow \forall x. (x \in S \cup T \leftrightarrow x \in S \lor x \in T))
)
```

```
"The union of two sets is the set
containing all elements of both sets."
  \forall S. (Set(S) \rightarrow
     \forall T. (Set(T) \rightarrow
        \forall x. (x \in S \cup T \leftrightarrow x \in S \lor x \in T)
```

"R is a reflexive relation over A."

"R is a reflexive relation over A."

 $\forall a \in A. \ aRa$

"R is a symmetric relation over A."

 $\forall a \in A. \ \forall b \in A. \ (aRb \rightarrow bRa)$

"R is an antisymmetric relation over A."

 $\forall a \in A. \ \forall b \in A. \ (aRb \land bRa \rightarrow a = b)$

"R is a transitive relation over A."

 $\forall a \in A. \ \forall b \in A. \ \forall c \in A. \ (aRb \land bRc \rightarrow aRc)$

Negating Quantifiers

- We spent much of Wednesday's lecture discussing how to negate propositional constructs.
- How do we negate quantifiers?

V _v	D	
$\forall x$.		(X)

$$\exists x. P(x)$$

$$\forall x. \ \neg P(x)$$

$$\exists x. \neg P(x)$$

When is	this	true?	When	is	this	false?
		U - U - U U				

For any choice of x , $P(x)$	For some choice of x , $\neg P(x)$
For some choice of x , $P(x)$	For any choice of x , $\neg P(x)$
For any choice of x , $\neg P(x)$	For some choice of x , $P(x)$
For some choice of x , $\neg P(x)$	For any choice of x , $P(x)$

	_	
H_{V}	D	
$\forall x$.	1	(X)

$$\exists x. P(x)$$

$$\forall x. \ \neg P(x)$$

$$\exists x. \neg P(x)$$

When is this true? When is this false?

For any choice of x , $P(x)$	For some choice of x , $\neg P(x)$
For some choice of x , $P(x)$	For any choice of x , $\neg P(x)$
For any choice of x , $\neg P(x)$	For some choice of x , $P(x)$
For some choice of x , $\neg P(x)$	For any choice of x , $P(x)$

	_	
$\mathbf{V}_{\mathbf{V}}$	D	
$\forall x$.		XI

$$\exists x. P(x)$$

$$\forall x. \ \neg P(x)$$

$$\exists x. \neg P(x)$$

When	is	this	true?	When	is	this	fals	se?
			0- 0- 0 1			<u> </u>		

For any choice of x , $P(x)$	$\exists x. \neg P(x)$
For some choice of x , $P(x)$	For any choice of x , $\neg P(x)$
For any choice of x , $\neg P(x)$	For some choice of x , $P(x)$
For some choice of x , $\neg P(x)$	For any choice of x , $P(x)$

$\forall x$.	D	
VA.	<i>_</i>	

 $\exists x. P(x)$

 $\forall x. \ \neg P(x)$

 $\exists x. \neg P(x)$

When	is	this	true?	When	is	this	fals	se?
			0- 0- 0 1			<u> </u>		

For any choice of x , $P(x)$	$\exists x. \neg P(x)$
For some choice of x , $P(x)$	For any choice of x , $\neg P(x)$
For any choice of x , $\neg P(x)$	For some choice of x , $P(x)$
For some choice of x , $\neg P(x)$	For any choice of x , $P(x)$

$\forall x$.	P((χ)		For
		(- <i>-</i>)	,	

 $\exists x. P(x)$

 $\forall x. \ \neg P(x)$

$$\exists x. \neg P(x)$$

For any choice of x , $P(x)$	$\exists x. \neg P(x)$
For some choice of x , $P(x)$	For any choice of x , $\neg P(x)$
For any choice of x , $\neg P(x)$	For some choice of x , $P(x)$
For some choice of x , $\neg P(x)$	For any choice of x , $P(x)$

	_	
$\forall x$.	D	(x)
VX		X

$$\exists x. P(x)$$

$$\forall x. \ \neg P(x)$$

$$\exists x. \neg P(x)$$

For any choice of x , $P(x)$	$\exists x. \neg P(x)$
For some choice of x , $P(x)$	$\forall x. \neg P(x)$
For any choice of x , $\neg P(x)$	For some choice of x ,
$\neg P(x)$	P(x)

$\forall x. P(x)$		
VX PIX	$\mathbf{V}_{\mathbf{A}}$	
	VX	X

$$\exists x. P(x)$$

$$\forall x. \ \neg P(x)$$

$$\exists x. \neg P(x)$$

When	is	this	true?	When	is	this	fals	se?
			0- 0- 0 1			<u> </u>		

For any choice of x , $P(x)$	$\exists x. \neg P(x)$
For some choice of x , $P(x)$	$\forall x. \neg P(x)$
For any choice of x , $\neg P(x)$	For some choice of x , $P(x)$
For some choice of x , $\neg P(x)$	For any choice of x , $P(x)$

	_	
$\forall x$.	D	(x)
VX		X

$$\exists x. P(x)$$

$$\forall x. \ \neg P(x)$$

$$\exists x. \neg P(x)$$

When	is	this	true?	When	is	this	fa]	lse?
			01 01 0 1					

For any choice of x , $P(x)$	$\exists x. \neg P(x)$
For some choice of x , $P(x)$	$\forall x. \ \neg P(x)$
For any choice of x , $\neg P(x)$	For some choice of x , $P(x)$
For some choice of x , $\neg P(x)$	For any choice of x , $P(x)$

$\forall x$.	(χ)
$\nabla \mathbf{Y}$	V
V A	

 $\exists x. P(x)$

 $\forall x. \ \neg P(x)$

 $\exists x. \neg P(x)$

When	is	this	true?	When	is	this	fals	se?
			0- 0- 0 1			<u> </u>		

For any choice of x , $P(x)$	$\exists x. \neg P(x)$
For some choice of x , $P(x)$	$\forall x. \neg P(x)$
For any choice of x , $\neg P(x)$	$\exists x. P(x)$
For some choice of x , $\neg P(x)$	For any choice of x , $P(x)$

$\mathbf{W}_{\mathbf{M}}$	
$\forall x$.	XI

 $\exists x. P(x)$

 $\forall x. \ \neg P(x)$

 $\exists x. \neg P(x)$

When	is	this	true?	When	is	this	fals	se?
			0- 0- 0 1			<u> </u>		

For any choice of x , $P(x)$	$\exists x. \neg P(x)$
For some choice of x , $P(x)$	$\forall x. \neg P(x)$
For any choice of x , $\neg P(x)$	$\exists x. P(x)$
For some choice of x , $\neg P(x)$	For any choice of x , $P(x)$

When is this true? When is this false?

$\forall x$.	P	(\mathbf{v})
VA.	1	(Λ)

$$\exists x. P(x)$$

$$\forall x. \ \neg P(x)$$

$$\exists x. \neg P(x)$$

For any choice of x , $P(x)$	$\exists x. \neg P(x)$
For some choice of x , $P(x)$	$\forall x. \ \neg P(x)$
For any choice of x , $\neg P(x)$	$\exists x. P(x)$
For some choice of x , $\neg P(x)$	For any choice of x , $P(x)$

When is this true? When is this false?

\ /		
$\forall x$.	U	1
VX		
		(^ - /

$$\exists x. P(x)$$

$$\forall x. \ \neg P(x)$$

$$\exists x. \neg P(x)$$

For any choice of x , $P(x)$	$\exists x. \neg P(x)$
For some choice of x , $P(x)$	$\forall x. \neg P(x)$
For any choice of x , $\neg P(x)$	$\exists x. P(x)$
For some choice of x , $\neg P(x)$	$\forall x. P(x)$

$\forall x$.	(χ)
$\nabla \mathbf{Y}$	V
V A	

 $\exists x. P(x)$

 $\forall x. \ \neg P(x)$

 $\exists x. \neg P(x)$

	When	is	this	true?	When	is	this	fal	se'
--	------	----	------	-------	------	----	------	-----	-----

For any choice of x , $P(x)$	$\exists x. \neg P(x)$
For some choice of x , $P(x)$	$\forall x. \ \neg P(x)$
For any choice of x , $\neg P(x)$	$\exists x. P(x)$
For some choice of x , $\neg P(x)$	$\forall x. P(x)$

Negating First-Order Statements

Use the equivalences

$$\neg \forall x. \ \boldsymbol{\varphi} \equiv \exists x. \ \neg \boldsymbol{\varphi}$$
$$\neg \exists x. \ \boldsymbol{\varphi} \equiv \forall x. \ \neg \boldsymbol{\varphi}$$

to negate quantifiers.

- Mechanically:
 - Push the negation across the quantifier.
 - Change the quantifier from \forall to \exists or vice-versa.
- Use techniques from propositional logic to negate connectives.

Analyzing Relations

"R is a binary relation over set A that is not reflexive"

 $\neg \forall a \in A$. aRa $\exists a \in A$. $\neg aRa$

"Some $a \in A$ is not related to itself by R."

Analyzing Relations

"R is a binary relation over A that is not antisymmetric"

$$\neg \forall x \in A. \ \forall y \in A. \ (xRy \land yRx \rightarrow x = y)$$
$$\exists x \in A. \ \neg \forall y \in A. \ (xRy \land yRx \rightarrow x = y)$$
$$\exists x \in A. \ \exists y \in A. \ \neg (xRy \land yRx \rightarrow x = y)$$
$$\exists x \in A. \ \exists y \in A. \ (xRy \land yRx \land \neg (x = y))$$
$$\exists x \in A. \ \exists y \in A. \ (xRy \land yRx \land x \neq y)$$

"Some $x \in A$ and $y \in A$ are related to one another by R, but are not equal"

Next Time

Formal Languages

What is the mathematical definition of a problem?

Finite Automata

 What does a mathematical model of a computer look like?