Almost Beatty Partitions and Optimal Scheduling Problems

Xiaomin Li, A.J. Hildebrand (Faculty Advisor)

University of Illinois Undergraduate Research Symposium, April 18, 2019

Beatty Sequences

Definition: Beatty Sequence

Given $\alpha > 0$, define the **Beatty sequence** B_{α} as

$$B_{\alpha} := \left\{ \lfloor \frac{n}{\alpha} \rfloor, n = 1, 2, \dots \right\},$$

where $\lfloor x \rfloor$ denotes the floor function.

Remark: When $\alpha \leq 1$, then the elements of B_{α} are distinct and have density α in \mathbb{N} . When $\alpha > 1$, B_{α} has repeated elements.

Definition: Non-homogeneous Beatty Sequence

Given $\alpha > 0$ and $\delta \in \mathbb{R}$, define the **non-homogeneous Beatty** sequence $B^*_{\alpha \delta}$ as:

$$B_{\alpha,\delta}^* := \{ \lfloor \frac{n}{\alpha} + \delta \rfloor, n = 1, 2, \dots \}.$$

Beatty Partitions

Beatty's Theorem

Let α and β be two positive irrational numbers such that $\alpha + \beta = 1$. Then B_{α} and B_{β} form a partition of the positive integers.

Example: Beatty Partition

Let ϕ be the golden ratio defined by $\phi = (\sqrt{5} + 1)/2$. Let $\alpha = 1/\phi, \beta = 1/\phi^2$. Note that $\alpha + \beta = 1$.

Rearranging the two sequences shows that the Beatty sequences $B_{1/\phi}$ and B_{1/ϕ^2} partition N:

Beatty Partitions into more than two parts?

Question

Does Beatty's Theorem generalize to partitions into 3 parts? That is, given three positive irrational numbers α , β and γ which

sum up to 1, do B_{α} , B_{β} and B_{γ} partition the positive integers?

Answer: No!

Uspensky's Theorem

Beatty's Theorem does not hold for three (or more) sequences. That is, if α , β and γ are arbitrary positive numbers, then B_{α} , B_{β} and B_{γ} **never** partition the positive integers.

How close can a 3-part partition be to three Beatty Sequences?

Denote

Definition: Almost Beatty Sequence

Consider a Beatty sequence with density $\alpha \in (0, 1)$:

$$B_{\alpha}=(a(n))_{n\in\mathbb{N}}$$
, where $a(n)=\lfloor \frac{n}{\alpha} \rfloor$.

We call a sequence

$$\widetilde{B_{\alpha}} = (\widetilde{a}(n))_{n \in \mathbb{N}}$$

an almost Beatty sequence with density α if $\|\widetilde{a} - a\| < \infty$, where $\|\widetilde{a} - a\| = \sup_n |\widetilde{a}(n) - a(n)|$.

Theorem (Partition into 2 Exact and 1 Almost Beatty Sequence)

Let α , β , and γ be positive irrational numbers such that $\alpha+\beta+\gamma=1.$ Let $B_{\alpha}=(a(n))_{n\in\mathbb{N}}$, $B_{\beta}=(b(n))_{n\in\mathbb{N}}$ and $B_{\gamma} = (c(n))_{n \in \mathbb{N}}$ be the corresponding Beaty sequences. Define

$$\widetilde{B_{\gamma}} = \mathbb{N} \setminus (B_{\alpha} \cup B_{\beta}) = (\widetilde{c}(n))_{n \in \mathbb{N}}.$$

- (i) B_{α} , B_{β} , B_{γ} form a partition of N if and only if $r\alpha + s\beta = 1$ for some $r, s \in \mathbb{N}$.
- (ii) If this condition is satisfied, then B_{γ} is an almost Beatty sequence with perturbation errors satisfying $|c(n) - \widetilde{c}(n)| \le \max(\lfloor \frac{2-\alpha}{1-\alpha} \rfloor, \lfloor \frac{2-\beta}{1-\beta} \rfloor).$

Theorem (Partition into 1 Exact and 2 Almost Beatty Sequences)

Let α , β , and γ be positive irrational numbers such that $\alpha + \beta + \gamma = 1$ and $\max(\alpha, \beta) < \gamma$. Define $B_{\beta} = (b(n))_{n \in \mathbb{N}}$ as

$$\widetilde{b}(n) = \begin{cases} b(n), & \text{if } b(n) \notin B_{\alpha} \\ b(n) - 1, & \text{if } b(n) \in B_{\alpha} \end{cases}$$

$$\widetilde{B_{\gamma}} = \mathbb{N} \backslash (B_{\alpha} \cup \widetilde{B_{\beta}}).$$

Then B_{α} , B_{β} , and B_{γ} partition all positive integers and $b(n) - b(n) \in \{0, 1\}, c(n) - \widetilde{c}(n) \in \{0, 1, 2\}$

Almost Beatty Partition with B_{1/ϕ^3} , \widetilde{B}_{1/ϕ^4} , and $\widetilde{B}_{1/\phi}$.

The Chairman Assignment Problem

Chairman Assignment Problem (Robert Tijdeman, 1980)

Suppose a set of $k (\geq 2)$ states $S = \{S_1, S_2, ..., S_k\}$ form a union and a union chair has to be selected every year. Each state S_i has a positive weight λ_i with $\sum_{i=1}^k \lambda_i = 1$.

Denote the state designating the chairman in the *n*th year by ω_n . Hence $\omega = \{\omega_n\}_{n \in \mathbb{N}}^{\infty}$ is a sequence in S. Let $A_{\omega}(i, N)$ denote the number of chairmen representing S_i in the first N years.

The problem asks for the assignment ω which minimizes the perturbation error

$$D(\omega) = \sup_{i=1} \sup_{k} \sup_{N \in \mathbb{N}} |\lambda_i N - A_{\omega}(i, N)|.$$

Example: Chairman Assignment for 2 States

Year	1	2	3	4	5	6	7	8	9	10	11	12	13	14
State 1	1		3	4		6		8	9		11	12		14
State 2		2			5		7			10			13	
Assignment ω_n	1	2	1	1	2	1	2	1	1	2	1	1	2	1

This example illustrates the connection between chairman assignments with k states and partitions of \mathbb{N} into k sequences.

Question:

Is the assignment given by a Beatty partition an optimal assignment (i.e. minimizes the error $D(\omega)$ defined by Tijdeman)?

Theorem

Let α , β be positive irrational numbers such that $\alpha + \beta = 1$. Let $\delta = 1 - \frac{1}{2\alpha}$, $\epsilon = 1 - \frac{1}{2\beta}$.

ullet The chairman assignment ω corresponding to the Beatty partition $\mathbb{N} = B_{\alpha} \cup B_{\beta}$ satisfies

$$D(\omega) = \max\{\alpha, 1 - \alpha\}.$$

• The chairman assignment ω corresponding to the non-homogeneous Beatty partition $\mathbb{N} = B^*_{\alpha,\delta} \cup B^*_{\beta,\epsilon}$ satisfies

$$D(\omega) = \frac{1}{2}$$

Tijdeman proved that $D(\omega) = 1/2$ corresponds to an optimal chairman assignment. Thus, the above non-homogeneous Beatty partition solves the Chairman Assignment Problem when there are two states.

Other Applications

- Frequency Hopping
- Carpool Problem
- Weighted Fair Queueing
- Computer Networks

Future Work

- Investigate almost Beatty partitions into more than 3
- Investigate almost Beatty partitions using non-homogeneous Beatty sequences. Can such sequences give an optimal chairman assignment?
- Consider other perturbation measures in the Chairman Assigment Problem.
- Look for applications of Beatty partitions to other optimal scheduling problems (e.g. frequency hopping).
- Investigate connections between non-homonegeous Beatty sequences and sequences given by Tijdeman's recursive algorithm.

References

- Beatty, S. (1926). *Problem 3173*. American Mathematical Monthly. 33 (3): 159. doi:10.2307/2300153
- Hildebrand, A. J., Li, J., Li, X., Xie, Y. (2018). Almost Beatty Partitions. arXiv preprint arXiv:1809.08690.
- Lord Rayleigh (1894). The Theory of Sound. 1 (Second ed.). Macmillan. p. 123. 10.1016/0012-365X(80)90269-1.
- Skolem, T. (1957). On certain distributions of integers in pairs with given differences, Math. Scand. 5 (1957), 57–68. Tijdeman, R. (1980). The chairman assignment problem.
- Discrete Mathematics. 32. 323-330.
- Uspensky, J. V. (1927). On a problem arising out of the theory of a certain game. Amer. Math. Monthly 34 (1927), pp. 516-521. Canadian Journal of Mathematics, 21, 6-27.

Acknowledgements

This is a joint work with:

- Junxian Li (University of Göttigen)
- Yun Xie (University of Washington)
- A. J. Hildebrand (University of Illinois)

It originated with a project in Spring 2018 at the Illinois Geometry Lab at the University of Illinois at Urbana-Champaign.

- Faculty mentors: A. J. Hildebrand and Ken Stolarsky
- Graduate student: Junxian Li
- Undergraduate students: Weiru Chen, Matthew Cho, Jared Krandel, Xiaomin Li and Yun Xie