Formal Languages and Abstract Machines Take Home Exam 2

Beyazıt Yalçınkaya 2172138

1 Context-Free Grammars

(10 pts)

a) Give the rules of the Context-Free Grammars to recognize strings in the given languages where $\Sigma = \{a, b\}$ and S is the start symbol.

$$L(G) = \{ w \mid w \in \Sigma^*; \ |w| \ge 3;$$
 the first and the second from the last symbols of w are the same \} (2/10 \text{ pts})

$$S \rightarrow aTaa \mid aTab \mid bTbb \mid bTba$$

$$T \rightarrow aT \mid bT \mid \varepsilon$$

$$L(G) = \{ w \mid w \in \Sigma^*; \text{ the length of w is odd} \}$$
 (2/10 pts)

$$S \rightarrow aSa \mid aSb \mid bSa \mid bSb \mid a \mid b$$

 $L(G) = \{ w \mid \ w \in \Sigma^*; \ n(w,a) = 2 \cdot n(w,b) \} \text{ where } n(w,x) \text{ is the number of } x \text{ symbols in } w \text{ (3/10 pts)} \}$

$$\begin{split} S &\to TaTaTbT \mid TaTbTaT \mid TbTaTaT \\ T &\to TaTaTbT \mid TaTbTaT \mid TbTaTaT \mid \varepsilon \end{split}$$

b) Find the set of strings recognized by the CFG rules given below: (3/10 pts)

$$S \to X \mid Y \\ X \to aXb \mid A \mid B$$

$$\begin{split} A &\rightarrow aA \mid a \\ B &\rightarrow Bb \mid b \\ Y &\rightarrow CbaC \\ C &\rightarrow CC \mid a \mid b \mid \varepsilon \end{split}$$

$$L=\{a^nb^m\mid n\neq m,\ n,m\geq 1,\ n,m\in \mathbb{N}^+\}\cup \{w\in \{a,b\}^*\mid w \text{ contains } ba\}$$

2 Parse Trees and Derivations

(20 pts)

Given the CFG below, provide parse trees for given sentences in **a** and **b**.

```
S \rightarrow NP VP 

VP \rightarrow V NP | V NP PP 

PP \rightarrow P NP 

NP \rightarrow N | D N | NP PP 

V \rightarrow wrote | built | constructed 

D \rightarrow a | an | the | my 

N \rightarrow John | Mary | Jane | man | book | automata | pen | class 

P \rightarrow in | on | by | with
```

a) Jane constructed automata with a pen

(4/20 pts)

b) my book in the man built a Jane by a pen

(4/20 pts)

Given the CFG below, answer \mathbf{c} , \mathbf{d} and \mathbf{e}

c) Provide the left-most derivation of 7 - 4 * 3 step-by-step and plot the final parse (4/20 pts) tree matching that derivation

$$D_{L} = S \Rightarrow E \Rightarrow E - T \Rightarrow T - T \Rightarrow I - T \Rightarrow 7 - T \Rightarrow 7 - T * I \Rightarrow 7 - I * I \Rightarrow 7 - 4 * I \Rightarrow 7 - 4 * 3$$

$$\begin{array}{c} S \\ | \\ E \\ \hline T \\ T \\ T \\ 1 \\ | \\ I \\ I \\ I \\ 3 \\ | \\ T \\ 4 \end{array}$$

d) Provide the right-most derivation of 7 - 4 * 3 step-by-step and plot the final parse (4/20 pts) tree matching that derivation

$$D_R = S \Rightarrow E \Rightarrow E - T \Rightarrow E - T * I \Rightarrow E - T * 3 \Rightarrow E - I * 3 \Rightarrow E - 4 * 3 \Rightarrow T - 4 * 3 \Rightarrow I - 4 * 3 \Rightarrow T - 4 * 3 \Rightarrow I - 4$$

e) Are the derivations in c and d in the same similarity class?

(4/20 pts)

Yes, since (D_L, D_R) belongs in the reflexive, symmetric, transitive closure of \prec .

3 Pushdown Automata

(30 pts)

a) Find the language recognized by the PDA given below

(5/30 pts)

where the transition $((q_i, \alpha, \beta), (q_j, \gamma))$ is represented as:

$$L=\{x^ny^nz^m\mid n,m\geq 0,\ n,m\in\mathbb{N}\}\cup\{x^ny^mz^n\mid n,m\geq 0,\ n,m\in\mathbb{N}\}$$

b) Design a PDA to recognize language $L = \{x^n y^{m+n} x^m \mid n, m \ge 0; n, m \in \mathbb{N}\}$ (5/30 pts)

c) Design a PDA to recognize language $L = \{x^n y^m \mid n < m \le 2n; n, m \in \mathbb{N}^+\}$ (10/30 pts) Do not use multi-symbol push/pop operations in your transitions. Simulate the PDA on strings xxy (with only one rejecting derivation) and xxyyyyy (accepting derivation) with transition tables.

Table for xxy,

State	Unread Input	Stack	Transition Used
$\overline{q_0}$	xxy	ε	_
q_1	xxy	#	$((q_0, \varepsilon, \varepsilon), (q_1, \#))$
q_2	xy	<i>x</i> #	$((q_1,x,\varepsilon),(q_2,x))$
q_1	xy	xx#	$((q_2,\varepsilon,\varepsilon),(q_1,x))$
q_3	xy	xx#	$((q_1,\varepsilon,x),(q_3,x))$
q_3	y	xxx#	$((q_3, x, \varepsilon), (q_3, x))$
q_5	y	xxx#	$((q_3,\varepsilon,\varepsilon),(q_5,\varepsilon))$
q_5	ε	xx#	$((q_5, y, x), (q_5, \varepsilon))$

Table for xxyyyy,

State	Unread Input	Stack	Transition Used
q_0	xxyyyy	ε	_
q_1	xxyyyy	#	$((q_0,\varepsilon,\varepsilon),(q_1,\#))$
q_2	xyyyy	x#	$((q_1,x,\varepsilon),(q_2,x))$
q_1	xyyyy	<i>xx</i> #	$((q_2,\varepsilon,\varepsilon),(q_1,x))$
q_3	xyyyy	<i>xx</i> #	$((q_1,\varepsilon,x),(q_3,x))$
q_4	yyyy	xxx#	$((q_3,x,\varepsilon),(q_4,x))$
q_3	yyyy	xxxx#	$((q_4,\varepsilon,\varepsilon),(q_3,x))$
q_5	yyyy	xxxx#	$((q_3,\varepsilon,\varepsilon),(q_5,\varepsilon))$
q_5	yyy	<i>xxx</i> #	$((q_5,y,x),(q_5,\varepsilon))$
q_5	yy	<i>xx</i> #	$((q_5,y,x),(q_5,\varepsilon))$
q_5	y	x#	$((q_5,y,x),(q_5,\varepsilon))$
q_5	ε	#	$((q_5,y,x),(q_5,\varepsilon))$
q_6	arepsilon	ε	$((q_5,\varepsilon,\#),(q_6,\varepsilon))$

d) Given two languages L' and L as $L' = \{w \mid w \in L; |w| = 4n + 2 \text{ for } n \in \mathbb{N}\}$ (10/30 pts) If L is a CFL, show that L' is also a CFL by constructing an automaton for L' in terms of another automaton that recognizes L.

Say alphabet of the language L is Σ and $L'' = \{w \in \Sigma^* \mid |w| = 4n + 2 \text{ for } n \in \mathbb{N}\}$. Then the language L' can be interpreted as $L' = L \cap L''$. Note that L'' is a regular language so by the Theorem 3.5.2 (Elements of Theory of Computation, p.144), we know that L' is a CFL. Now, we will formally construct an automaton for L' to prove that it is, indeed, a CFL. Name the PDA that recognizes L as $M_1 = (K_1, \Sigma, \Gamma_1, \Delta_1, s_1, F_1)$ and the DFA that recognizes L'' as $M_2 = (K_2, \Sigma, \delta, s_2, F_2)$. The PDA that recognizes L' is defined $M = (K, \Sigma, \Gamma, \Delta, s, F)$ where,

- $K = K_1 \times K_2$,
- $\Gamma = \Gamma_1$,
- $s = (s_1, s_2),$
- $F = F_1 \times F_2$, and
- Δ is defined as follows, for each $((q_1, a, \beta), (q'_1, \gamma)) \in \Delta_1$ and for each $q_2 \in K_2$, add $(((q_1, q_2), a, \beta), ((q'_1, \delta(q_2, a)), \gamma))$ to Δ and for each $((q_1, e, \beta), (q'_1, \gamma)) \in \Delta_1$ and for each $q_2 \in K_2$, add $(((q_1, q_2), e, \beta), ((q'_1, q_2), \gamma))$ to Δ .

4 Closure Properties

(20 pts)

Let L_1 and L_2 be context-free languages which are not regular, and let L_3 be a regular language. Determine whether the following languages are necessarily CFLs or not. If they need to be context-free, explain your reasoning. If not, give one example where the language is a CFL and a counter example where the language is not a CFL.

a)
$$L_4 = L_1 \cap (L_2 \setminus L_3)$$
 (10/20 pts)

```
Example for L_4 is not a CFL,

L_1 = \{a^n b^n c^m \mid n, m \ge 0, n, m \in \mathbb{N}\}

L_2 = \{a^n b^m c^m \mid n, m \ge 0, n, m \in \mathbb{N}\}

L_3 = \{\}

L_4 = L_1 \cap (L_2 \setminus L_3) = \{a^n b^n c^n \mid n \ge 0, n \in \mathbb{N}\}

Example for L_4 is a CFL,

L_1 = \{a^n b^n c^m \mid n, m \ge 0, n, m \in \mathbb{N}\}

L_2 = \{a^n b^n \mid n \ge 0, n \in \mathbb{N}\}

L_3 = \{\}

L_4 = L_1 \cap (L_2 \setminus L_3) = \{a^n b^n \mid n \ge 0, n \in \mathbb{N}\}
```

b)
$$L_5 = (L_1 \cap L_3)^*$$
 (10/20 pts)

By the Theorem 3.5.2 (Elements of Theory of Computation, p.144), the intersection of a CFL and a regular language is a CFL. Thus, $L_1 \cap L_3$ is a CFL. By the Theorem 3.5.1 (Elements of Theory of Computation, p.143), the CFLs are closed under union, concatenation, and Kleene star. Hence, L_5 is a CFL.

5 Pumping Theorem

(20 pts)

a) Show that $L = \{a^n m^n t^i \mid n \le i \le 2n\}$ is not a Context Free Language using Pumping Theorem for CFLs. (10/20 pts)

Assume that L is a CFL and let K be the pumping length. Then, by the Pumping Theorem, for the string $w = a^K m^K t^K \in L$ there must be a split uvxyz such that $|vy| \ge 1$, $|vxy| \le K$, and $uv^i xy^i z \in L$ for every $i \ge 0$. There are five cases to consider, listed as follows,

- 1. $vxy = a^j$ for some $1 \le j \le K$. vy consists of a symbols, pumping i any value other than i = 1 would result into a string that is not in L, since number of a symbols will be different than K whereas number of m symbols will stay as K.
- 2. $vxy = m^j$ for some $1 \le j \le K$. vy consists of m symbols, pumping i any value other than i = 1 would result into a string that is not in L, since number of m symbols will be different than K whereas number of a symbols will stay as K.
- 3. $vxy = t^j$ for some $1 \le j \le K$. vy consists of t symbols, pumping i to i = 3K would result into a string that is not in L. Since vy contains at least 1 and at most K t symbols, after pumping w with i = 3K, number of t symbols would be at least 3K > 2K and at most 4K 1 > 2K which results into a string that is not in L.
- 4. $vxy = a^j m^p$ for some $1 \le j + p \le K$. vy consists of a and m symbols. Firstly, consider the case that v contains a symbols and y contains m symbols. In this case if |v| = |y|, then after pumping i to i = 2K, the string will become at least $a^{2K}m^{2K}t^K$ and at most $a^{3K-1}m^{3K-1}t^K$ which is not in L. If $|v| \ne |y|$, then after pumping i any value other than i = 1 would result into a string that has unequal number of a and m symbols which is not in L. Secondly, consider either v contains both a and m symbols or y contains both a and m symbols, then in this case pumping i any value other than i = 1 would break the order of symbols in the string and result into a string that is not in L.
- 5. $vxy = m^j t^p$ for some $1 \le j + p \le K$. vy consists of m and t symbols. Firstly, consider the case that v contains m symbols and y contains t symbols. In this case pumping i any value other than i = 1 would result into a string that has unequal number of a and m symbols which is not in L. Secondly, consider either v contains both m and t symbols or y contains both m and t symbols, then in this case pumping i any value other than i = 1 would break the order of symbols in the string and result into a string that is not in L.

Hence, in all cases it has been shown that pumping i results into a string that is not in the language, this contradicts with the assumption. Assumption is discharged, L is not a CFL.

b) Show that $L = \{a^n b^{2n} a^n \mid n \in \mathbb{N}+\}$ is not a Context Free Language (10/20 pts) using Pumping Theorem for CFLs.

Assume that L is a CFL and let K be the pumping length. Then, by the Pumping Theorem, for the string $w = a^K b^{2K} a^K \in L$ there must be a split uvxyz such that $|vy| \ge 1$, $|vxy| \le K$ and $uv^ixy^iz \in L$ for every $i \ge 0$. There are four cases to consider, listed as follows,

- 1. $vxy = a^j$ for some $1 \le j \le K$. vy consists of a symbols coming from the first part of the string, pumping i any value other than i = 1 would result into a string that is not in L, since number of a symbols in the first part will be different than K whereas number of b symbols will stay as 2K and number of a symbols at the end of the string will stay as K. The same argument goes for picking vxy from the end of the string.
- 2. $vxy = b^j$ for some $1 \le j \le K$. vy consists of b symbols, pumping i any value other than i = 1 would result into a string that is not in L, since number of b symbols will be different than 2K whereas number of a symbols at the beginning will stay as K and number of a symbols at the end will also stay as K.
- 3. $vxy = a^j b^p$ for some $1 \le j + p \le K$. vy consists of a and b symbols respectively, pumping i any value other than i = 1 would result into a string that is not in L, since either number of a and b symbols will be different than K and 2K, respectively, whereas number of a symbols at the end will stay as K or the order of symbols in the string will be broken.
- 4. $vxy = b^j a^p$ for some $1 \le j + p \le K$. vy consists of b and a symbols respectively, pumping i any value other than i = 1 would result into a string that is not in L, since either number of b and a symbols will be different than 2K and K, respectively, whereas number of a symbols at the beginning will stay as K or the order of symbols in the string will be broken.

Hence, in all cases it has been shown that pumping i results into a string that is not in the language, this contradicts with the assumption. Assumption is discharged, L is not a CFL.

6 CNF and CYK

(not graded)

a) Convert the given context-free grammar to Chomsky Normal Form.

$$\begin{split} S &\to XSX \mid xY \\ X &\to Y \mid S \\ Y &\to z \mid \varepsilon \end{split}$$

answer here		

b) Use the grammar below to parse the given sentence using Cocke–Younger–Kasami algorithm. Plot the parse trees.

 $S \to NP\ VP$ $VP \rightarrow book \mid include \mid prefer$ $S \rightarrow X1 VP$ $VP \rightarrow Verb NP$ $VP \rightarrow X2 PP$ $X1 \rightarrow Aux NP$ $S \rightarrow book \mid include \mid prefer$ $X2 \rightarrow Verb NP$ $S \to Verb\ NP$ $VP \rightarrow Verb PP$ $VP \rightarrow VP PP$ $S \rightarrow X2 PP$ $S \to Verb PP$ $PP \rightarrow Prep NP$ $S \to VP PP$ $Det \rightarrow that \mid this \mid the \mid a$ $NP \rightarrow I \mid she \mid me \mid Houston$ Noun \rightarrow book | flight | meal | money $\mathrm{NP} \to \mathrm{Det}\ \mathrm{Nom}$ $Verb \rightarrow book \mid include \mid prefer$ $Nom \rightarrow book \mid flight \mid meal \mid money$ $Aux \rightarrow does$ $Nom \rightarrow Nom Noun$ $\operatorname{Prep} \to \operatorname{from} \mid \operatorname{to} \mid \operatorname{on} \mid \operatorname{near} \mid \operatorname{through}$ $Nom \rightarrow Nom PP$

book the flight through Houston

7 Deterministic Pushdown Automata

(not graded)

Provide a DPDA to recognize the given languages, the DPDA must read its entire input and finish with an empty stack.

\mathbf{a}	$a^*bc \cup$	a^nb^nc
<u>u</u>	$u \circ c \circ$	$u \circ c$

answer here		
answer here		

answer here			