WO 2004/056125 PCT/GB2003/005526

19

1 Claims 2 1. A method of encoding video pictures comprising 3 4 the steps of: 5 dividing the picture into regions; 6 predicting whether each region requires processing through further steps, said predicting 7 step comprising comparing one or more statistical 8 measures with one or more threshold values for 9 10 each region. 11 2. A method as claimed in claim 1, wherein the 12 13 further steps include motion estimation. 14 15 3. A method as claimed in claim 1 or claim 2, wherein the further steps include transform 16 17 processing. 18 4. A method as claimed in claim 3, wherein the 19 transform processing step is a discrete cosine 20 21 transform processing step. 22 5. A method as claimed in any preceding claim, 23 wherein a region is a non-overlapping macroblock. 24 25 6. A method as claimed in claim 5, wherein a 26 27 macroblock is a sixteen by sixteen matrix of 28 pixels. 29. 7. A method as claimed in any preceding claim, 30 wherein one of the statistical measures is 31

whether an estimate of the energy of some or all

32

	 -
1	pixel values of the macroblock is less than a
2	first predetermined threshold value.
3	
4	8. A method as claimed in claim 7, wherein the
5	estimate of energy is divided by a quantizer step
6	size before being compared to the first threshold
7	value.
8	
9	9. A method as claimed in any preceding claim,
10	wherein one of the statistical measures is
11	whether an estimate of the values of certain
12	discrete cosine transform coefficients for one or
13	more sub-blocks of the macroblock, is less than a
14	second predetermined threshold value.
15	
16	10. A method as claimed in claim 9, wherein the
17	estimate of the values of certain discrete cosine
18	transform coefficients comprises:
19	dividing the sub-blocks into four equal sub-
20	regions;
21	calculating a sum of absolute differences of
22	residual pixel values for each sub-region of the
23	sub-block, where the residual pixel value is a
24	corresponding previously coded pixel luminance
25	value subtracted from a corresponding pixel
26	luminance value of the macroblock;
27	estimating the low frequency discrete cosine
28	transform coefficients for each region of the
29, .	

30
$$Y_{01} = abs(A + C - B - D)$$
$$Y_{10} = abs(A + B - C - D)$$
$$Y_{11} = abs(A + D - B - C)$$

WO 2004/056125 PCT/GB2003/005526

21

1	where Y_{01} , Y_{10} and Y_{11} represent the estimations
2	of three low frequency discrete cosine transform
3	coefficients and A, B, C and D represent the sum
4	of absolute differences of each of the regions of
5	the sub-block where A is the top left hand
6	corner, B is the top right hand corner, C is the
7	bottom left hand corner and D is the bottom right
8	hand corner; and
9	selecting the maximum value of the estimate of
10	the discrete cosine transform coefficients from
11	all the estimates calculated.
12	
13	11. A method as claimed in claims 1 to 6, wherein
14	one of the statistical measures is whether an
15	estimate of the distortion due to skipping the
16	macroblock is less than a third predetermined
17	threshold value.
18	
19	12. A method as claimed in claim 11, wherein the
20	estimate of distortion is calculated by deriving
21	one or more statistical measures from some or all
22	pixel values of one or more previously coded
23	macroblocks with respect to the macroblock.
24	
25	13. A method as claimed in claim 11 or claim 12,
26	wherein, the estimate of distortion is calculated
27	by subtracting an estimate of the sum of absolute
28	differences of luminance values of a coded
29	macroblock with respect to a previously coded
30	macroblock (SAE $_{ m noskip}$) from the sum of absolute
31	differences of luminance values of a skipped

WO 2004/056125

19

macroblock with respect to a previously coded 1 2 macroblock (SAE_{skip}). 3 4 A method as claimed in claim 13, wherein $\mathtt{SAE}_{\mathtt{noskip}}$ is estimated by a constant value K. 5 6 15. A method as claimed in claim 13, wherein 7 8 $\mathtt{SAE}_{\mathtt{noskip}}$ is estimated by the sum of absolute differences of luminance values of a previously 9 coded macroblock or if there is no previously 10 11 coded macroblock by a constant value K. 12 16. A method of encoding pictures, as claimed in 13 claim 1, performed by a computer program embodied 14 on a computer usable medium. 15 16 17. A method of encoding pictures, as claimed in 17 18 claim 1, performed by electronic circuitry.