In this subsection we consider the total differentiability, a stronger requirement than partial differentiability.

Moreover, we consider expansions of functions of several variables.

Applications:

- Linear approximation of functions, tangent planes
- Taylor series for several variables

Here we consider:

$$f:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$$

$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \begin{pmatrix} f_1(\mathbf{x}) \\ \dots \\ f_m(\mathbf{x}) \end{pmatrix} = \begin{pmatrix} f_1(x_1, \dots, x_n) \\ \dots \\ f_m(x_1, \dots, x_n) \end{pmatrix}$$

Introduction

Power series

Differentiation in Higher Dimensions

Limits and Continuity in \mathbb{R}^n

Differentiability in \mathbb{R}^n

Optimization in \mathbb{R}^n

Integration in Higher Dimensions

Further Topics in Calculus

Definition (Total differentiability)

 $f: \mathbb{R}^n \supseteq D \to \mathbb{R}^m$ is called **totally differentiable** (or linearly approximable) in $\mathbf{x} \in D$, D open (i.e. an open set)

if there exists a matrix $A \in \mathbb{R}^{m \times n}$, such that for all \mathbf{x} in a neighbourhood $U(\mathbf{x}_0)$, $\mathbf{x}_0 \in D$,

$$\mathcal{R}$$
 $\Rightarrow f(\mathbf{x}) = f(\mathbf{x}_0) + A \cdot (\mathbf{x} - \mathbf{x}_0) + R(\mathbf{x} - \mathbf{x}_0),$ where

$$R: \mathbb{R}^n \supseteq U(\mathbf{x}_0) \to \mathbb{R}^m \text{ with } \lim_{\|\mathbf{x}-\mathbf{x}_0\|\to 0} \frac{R(\mathbf{x}-\mathbf{x}_0)}{\|\mathbf{x}-\mathbf{x}_0\|} = 0.$$

f is called totally differentiable in *E*, if this holds for all $\mathbf{x} \in E \subseteq D$.

Introduction

Power series

Differentiation in Higher Dimensions

Limits and Continuity in \mathbb{R}^n

Differentiability in \mathbb{R}^n

Optimization in \mathbb{R}^n

Integration in

Higher Dimensions

Further Topics in Calculus

Jacobi Matrix

S.-J. Kimmerle

If f is totally differentiable, then

- f is continuous
- all f_i , i = 1, ..., m, are continuously partially differentiable (this is even equivalent, but and desive important)

• the matrix A is uniquely determined by the so-called **Jacobi matrix** ()

on the flassian $J_f(\mathbf{x}) := \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{x}) & \dots & \frac{\partial f_1}{\partial x_n}(\mathbf{x}) \\ \vdots & \ddots & \frac{\partial f_i}{\partial x_j}(\mathbf{x}) \end{bmatrix} = \nabla f_1(\mathbf{x})$ in agreal

not $J_f(\mathbf{x}) := \begin{bmatrix} \frac{\partial f_m}{\partial x_1}(\mathbf{x}) & \dots & \frac{\partial f_m}{\partial x_n}(\mathbf{x}) \\ \vdots & \ddots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(\mathbf{x}) & \dots & \frac{\partial f_m}{\partial x_n}(\mathbf{x}) \end{bmatrix}$

Special case m = 1: transposed gradient

We also write $D_f(\mathbf{x}) = J_f(\mathbf{x})$, indicating this is the general form of the derivative (as a matrix).

Introduction

Power series

Differentiation in Higher Dimensions

Limits and Continuity in \mathbb{R}^n

Differentiability in \mathbb{R}^n

Optimization in \mathbb{R}^n

Derivatives

Integration in Higher Dimensions

Further Topics in Calculus

2) = \$(x,y) - {(x,y)}

Theorem (Tangent plane)

Let $D \subseteq \mathbb{R}^2$, $f: D \to \mathbb{R}$ totally differentiable and $(x_0, y_0) \in D$. D open.

Then the points (x, y, z) of the tangent plane in (x_0, y_0) are described by the equation

$$f(x,y)$$

$$z = f(x_0, y_0) + \nabla f(x_0, y_0)^{\top} \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix}$$

$$= f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0) \cdot (x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0) \cdot (y - y_0)$$

The tangent plane is locally the optimal (affine-)linear approximation for f. The plane consists out of all tangents.

In the general case the linear approximation reads

$$f(\mathbf{x}) \approx f(\hat{\mathbf{x}}) + D_f(\hat{\mathbf{x}})(\mathbf{x} - \hat{\mathbf{x}}).$$

Introduction

Power series

Differentiation in Higher Dimensions

Limits and Continuity in \mathbb{R}^n

Differentiability in \mathbb{R}^n

Optimization in \mathbb{R}^n

Integration in Higher Dimensions

Further Topics in Calculus

S.-J. Kimmerle

Introduction

Power series

Differentiation in Higher Dimensions

Limits and Continuity in \mathbb{R}^n

Differentiability in \mathbb{R}^n

Optimization in \mathbb{R}^n

Derivatives

Integration in Higher Dimensions

Further Topics in Calculus

Introduction

Power series

Differentiation in Higher Dimensions

Limits and Continuity in \mathbb{R}^n

Differentiability in \mathbb{R}^n

Optimization in \mathbb{R}^n

Derivatives

Integration in Higher Dimensions

Further Topics in Calculus

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2, \quad f(x,y) := \begin{pmatrix} x y^2 \\ 2x^2 y^2 \end{pmatrix}$$

$$\mathcal{D}_{f}(x,y) = \begin{pmatrix} y^{2}, 2xy \\ 4xy^{3}, 4x^{3}y \end{pmatrix} = \begin{pmatrix} y & 2xy \\ 4 & 3y \end{pmatrix}$$

$$f(x,y) \approx f(1,1) + \begin{pmatrix} 1 & 2 \\ 4 & 4 \end{pmatrix} \cdot \begin{pmatrix} x-1 \\ y-1 \end{pmatrix}$$

$$= {\binom{1}{2}} + {\binom{x-1+2y-2}{4x-y+4y-4}} = {\binom{x+2y-2}{4x+4y-6}}$$

S.-J. Kimmerle

Let $\mathbf{x} : \mathbb{R} \supseteq (a, b) \to D$ differentiable in $t \in (a, b)$, $f : \mathbb{R}^n \supseteq D \to \mathbb{R}$ (totally) diff.able in $\mathbf{s} := \mathbf{x}(t) \in D$, D open,

then

$$f \circ \mathbf{x} : (a, b) \to \mathbb{R}, \ t \mapsto f(\mathbf{s}) = f(\mathbf{x}(t))$$

is totally differentiable in t and

Introduction

Power series

Differentiation in Higher Dimensions

Limits and Continuity in \mathbb{R}^n

Differentiability in \mathbb{R}^n

Optimization in \mathbb{R}^n

Derivatives

Integration in Higher Dimensions

Further Topics in Calculus

Chain Rule (General Case)

Let $g: \mathbb{R}^p \supseteq E \to D$ (totally) diff.able in $\mathbf{t} \in E$, E open, $f: \mathbb{R}^n \supseteq D \to \mathbb{R}^m$ (totally) diff.able in $\mathbf{s} := g(\mathbf{t}) \in D$, D open,

then

$$f \circ g : E \to \mathbb{R}^m, \mathbf{t} \mapsto f(\mathbf{s}) = f(g(\mathbf{t}))$$

is totally differentiable in t and

Introduction

Power series

Differentiation in Higher Dimensions

Limits and Continuity in \mathbb{R}^n

Differentiability in \mathbb{R}^n

Optimization in \mathbb{R}^n

Integration in Higher Dimensions

Further Topics in Calculus

S.-J. Kimmerle

Example (Polar Coordinates in \mathbb{R}^2)

Cartesian coordinates $(x, y) \in \mathbb{R}^2$ Polar coordinates $(r, \phi) \in [0, \infty) \times (-\pi, \pi]$

Consider $f: \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto f(x, y)$ and $F: [0, \infty) \times (-\pi, \pi], (r, \phi) \mapsto F(r, \phi) := f(r\cos(\phi), r\sin(\phi)).$

How do I transform the derivative when changing coordinates?

Application: Coordinate Transformation I

Let the change of coordinates be described by

$$g: \mathbb{R}^2 \to [0, \infty) \times (-\pi, \pi], \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} r \cos(\phi) \\ r \sin(\phi) \end{pmatrix}.$$

By the chain rule, we compute $D_F = D_f \cdot D_a = \dots$

Introduction

Power series

Differentiation in **Higher Dimensions**

Limits and Continuity in \mathbb{R}^n

Differentiability in \mathbb{R}^n

Integration in **Higher Dimensions**

Further Topics in Calculus

Introduction

Power series

Differentiation in **Higher Dimensions**

Limits and Continuity in \mathbb{R}^n

Differentiability in \mathbb{R}^n

Integration in **Higher Dimensions**

Further Topics in Calculus

Summary -Outlook and

$$D_F = D_f \cdot D_g =$$

$$= \left(\frac{\partial f}{\partial x}(\tau\cos\varphi, \tau\sin\varphi), \frac{\partial f}{\partial y}(\tau\cos\varphi, \tau\sin\varphi)\right).$$

$$\cos \varphi$$
, $-x \sin \varphi$
 $\sin \varphi$, $x \cos \varphi$

$$= \left(\frac{\partial f}{\partial x}(r\cos\rho, r\sin\varphi) \cdot \cos\varphi + \frac{\partial f}{\partial g}(r\cos\rho, r\sin\varphi) \right) \sin\varphi,$$
Review