Algoritem za izračun razdalje do nedominiranega območja

Nace Sever

Mentor: prof. dr. Sergio Cabello Justo Somentorica: doc. dr. Tea Tušar

Ljubljana, 2025

Večkriterijska optimizacija

Optimiramo funkcijo $f = (f_1, \ldots, f_D)$,

$$f: X \to Z,$$

 $f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_D(\mathbf{x})),$

kjer so

- f_i funkcije ene ali več spremenljivk
- X prostor spremenljivk
- $ightharpoonup Z \subseteq \mathbb{R}^D$ prostor kriterijev

Osredotočimo se na prostor kriterijev.

Dominiranost

Točka $\mathbf{z}=(z_1,\ldots,z_D)$ šibko dominira točko $\mathbf{y}=(y_1,\ldots,y_D)$, če velja

$$\forall i \in \{1,\ldots,D\}: z_i \geq y_i.$$

Podobno vpeljemo tudi dominiranost in strogo dominiranost.

Dominiranost

Množici točk, ki z dominirajo rečemo stožec in označimo s C(z)

Nedominirano območje

Množica točk, ki jih nobena izmed točk v $\mathcal{P} = \{\mathbf{p}^1, \dots, \mathbf{p}^5\}$ ne dominira

Razdalja do nedominiranega območja

Motivacija

Urejanje dominiranih rešitev pri algoritmu COMO-CMA-ES

Obstaja samo implementacija za dvodimenzionalni problem

Vpete točke

Vpeta točka je točka $\mathbf{v} \in N(\mathcal{P})$, za katero velja

$$\exists z \in N(\mathcal{P}) : v \succ z$$

Množico vseh vpetih točk ${\bf v}$ za množico paroma nedominiranih točk ${\cal P}$ označimo z ${\cal V}({\cal P}).$

Vpete točke

Množico $N(\mathcal{P})$ lahko zapišemo kot unijo stožcev, ki jih razpenja množica vpetih točk $\mathcal{V}(\mathcal{P})$.

Ideja algoritma

Razdalja do nedominiranega območja je enaka razdalji do najbližjega izmed stožcev z izhodiščem v vpetih točkah

$$d(\mathbf{q}, C(\mathbf{v})) = \sqrt{\max\{0, v_x - q_x\}^2 + \max\{0, v_y - q_y\}^2}$$

Algoritem ARRNO

```
\begin{aligned} & \textbf{function} \  \  \text{ARRNO}(\mathcal{P}, \mathbf{q}) \\ & \mathcal{V}(\mathcal{P}) \leftarrow \text{Vpete tocke}(\mathcal{P}) \\ & d_{\min} \leftarrow \infty \\ & \textbf{for all } \mathbf{v} \in \mathcal{V}(\mathcal{P}) \  \, \textbf{do} \\ & d \leftarrow \text{Razdalja do stožca}(\mathbf{q}, \mathbf{v}) \\ & \textbf{if } d < d_{\min} \  \, \textbf{then} \\ & d_{\min} \leftarrow d \end{aligned}
```

Algoritem za višje dimenzije

Algoritem $ARRNO(P, \mathbf{q})$ posplošimo v višje dimenzije

► RAZDALJA DO STOŽCA(q, v)

$$d(\mathbf{q}, C(\mathbf{v})) = \sqrt{\sum_{i=1}^{D} \max\{0, v_i - q_i\}^2}$$

- ▶ Kaj pa VPETE TOČKE(P)?
 - Glavni prispevek te naloge
 - Rešujemo z algoritmom pometanja

Algoritem pometanja za tridimenzionalne probleme

- Z navidezno ravnino se premikamo po koordinati z
- Obravnavamo dogodke ko se ravnina dotakne kakšne točke
- Hranimo stanje preseka med ravnino in dominiranim območjem
 - ► Projekcijo točke x na ravnino označimo z x̄

Algoritem za probleme višje dimenzije

Podoben pristop kot pri algoritmu v treh dimenzijah

- ► Z navidezno hiperravnino se premikamo po zadnji koordinati
- Obravnavamo dogodke ko se hiperravnina dotakne kakšne točke
- Hranimo stanje preseka med hiperravnino in dominiranim območjem
- Računanje novih vpetih točk
 - Rekurziven klic algoritma za problem z manjšo dimenzijo

Intuicija v štirih dimenzijah

Testiranje implementacije

$$S(\mathbf{q},r) \cap N(\mathcal{P}) \neq \varnothing \iff d(\mathbf{q},N(\mathcal{P})) \leq r$$

Diskretizacija sfere

Rezultati testiranja

- 200 poskusov za vsako izmed dimenzij 3, 4, 5 in 6
- Na naključno izbranih množicah točk
- Različna natančnost glede na dimenzijo

natančnost	št. točk diskretizacije
0.1%	$\sim 4.5 \cdot 10^6$
1%	$\sim 21.6\cdot 10^6$
5%	$\sim 25.5\cdot 10^6$
20%	$\sim 9.9 \cdot 10^6$
	0.1% 1% 5%

Teoretična analiza računske zahtevnosti

Algoritem ARRNO za računanje razdalje med nedominiranim območjem $N(\mathcal{P})$ in točko poizvedbe \mathbf{q} , ima časovno zahtevnost $O(n \log n)$ za D=3 in $O(n^{D-1})$ za $D\geq 4$, kjer je $n=|\mathcal{P}|$ in D dimenzija prostora.

Eksperimentalna analiza računske zahtevnosti

Časovno zahtevnost testiramo na linearni, sferični in algoritmično zahtevni fronti

Eksperimentalna analiza računske zahtevnosti

Eksperimentalna analiza računske zahtevnosti

Zaključek

- ARRNO omogoča razširitev algoritma COMO-CMA-ES za probleme z več kot dvema dimenzijama
- Vključen v odprtokodno knjižnico moarchiving
- Časovna zahtevnost
 - \triangleright $O(n \log n)$ za D = 3
 - $ightharpoonup O(n^{D-1})$ za $D \ge 4$
- Možne izboljšave
 - Računanje samo novih vpetih točk
 - Pristop, ki ne temelji na računanju vpetih točk