

Universidad Tecnológica de la Mixteca 00025

Clave DGP: 200089

Ingeniería en Física Aplicada

PROGRAMA DE ESTUDIOS

	NOMBRE DE LA ASIGNATURA
Mecánica vectorial para ingería	

SEMESTRE CLAVE DE LA ASIGNATURA TOTAL DE HORAS			
Segundo	172023	101	

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

La mecánica de sistemas compuestos requiere, más allá del conocimiento fundamental, las habilidades y técnicas adecuadas de análisis. Este curso cubre esta necesidad contribuyendo a la formación del alumno en su perfil de ingeniero

TEMAS Y SUBTEMAS

1. Equilibrio de cuerpos rígidos

- 1.1. Diagrama de cuerpo libre.
- 1.2. Condiciones de equilibrio mecánico.
- 1.3. Equilibrio en dos dimensiones y tres dimensiones.
- 1.4. Momento de una fuerza con respecto a un eje.
- 1.5. Descomposición de una fuerza dada en una fuerza en "0" y un par.
- 1.6. Reducción de un sistema de fuerza a una fuerza y un par.

2. Centroides y fuerzas distribuidas.

- 2.1. Centroides de áreas y líneas por integración.
- 2.2. Centroide de un volumen por integración.
- 2.3. Teoremas de Pappus-Guldinus.
- 2.4. Cargas distribuidas en vigas.
- 2.5. Fuerzas sobre superficies sumergidas.

3. Análisis de estructura y fricción.

- 3.1. Definición de armadura.
- 3.2. Análisis de estructura mediante método de: nodos, secciones.
- 3.3. Armazones y máquinas.
- 3.4. Diagramas de fuerza cortante y de momento flector en una viga.
- 3.5. Relaciones entre carga fuerza cortante y momento flector.
- 3.6. Cables con cargas distribuidas.
- 3.7. Leyes de la fricción seca. Ángulos de fricción.
- 3.8. Cuñas, tornillos de rosca cuadrada, chumaceras.
- 3.9. Fricción en: discos, ruedas, bandas.

4. Movimiento de sistemas de partículas.

- 4.1. Vector de posición, velocidad y aceleración en coordenadas rectangulares y cilíndricas.
- 4.2. Movimiento curvilíneo de una partícula.
- 4.3. Análisis del movimiento dependiente absoluto de dos partículas.
- 4.4. Principio de trabajo y energía para un sistema de partículas.
- 4.5. Ecuaciones de movimiento: coordenadas cilíndricas.
- 4.6. Aplicación de la ley de conservación de la cantidad de movimiento lineal en sistema de partículas.
- 4.7. Relación entre el momento de una fuerza y la cantidad de movimiento lineal en sistemas de partículas.
- 4.8. Principio de impulso y cantidad de movimiento.

PROGRAMA DE ESTUDIOS

5. Cinemática planar de cuerpos rígidos.

- 5.1. Análisis de movimiento relativo: velocidad.
- 5.2. Centro instantánea de velocidad cero.
- 5.3. Análisis del movimiento relativo: aceleración.
- 5.4. Análisis del movimiento relativo por medio de ejes giratorios.

6. Dinámica del movimiento planar de cuerpos rígidos.

- 6.1. El momento de inercia.
- 6.2. Ecuaciones de movimiento de rotación.
- 6.3. Ecuaciones de movimiento de traslación: rectilínea y curvilínea.
- 6.4. Ecuaciones de movimiento para rotación alrededor de un eje fijo.
- 6.5. Movimiento plano general.
- 6.6. Aplicaciones en sistemas mecánicos del movimiento de traslación y rotación combinados, para eje de rotación fijo en cuanto a dirección. Tratamiento por métodos de la energía.
- 6.7. Cantidad de movimiento angular.
- 6.8. Principio de impulso y cantidad de movimiento.
- 6.9 Impacto excéntrico en el movimiento impulsivo

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora y los proyectores. Asimismo se desarrollarán programas de cómputo sobre los temas y los problemas

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales que tendrán una equivalencia del 50% y un examen final que tendrá 50%. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso; la suma de estos dos porcentajes dará la calificación

Además, se considerará el trabajo extra-clase, la participación durante las sesiones del curso y la asistencia a las asesorías.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

- 1. Mecánica Vectorial para Ingenieros: Estática, Beer F., Johnston E. R., Mazureck D.F.; Mc Graw Hill, Décima edición, 2013.
- 2. Mecánica vectorial para ingenieros: Dinámica, Beer F., Johnston E.R. Mazureck D.F.; Mc Graw Hill, Décima edición, 2013.
- 3. Ingeniería Mecánica: Dinámica, Hibbeler R. C., Pearson Educación de México, S.A. De C.V. Décimo segunda edición México, 2010.
- 4. Ingeniería Mecánica: Estática, Hibbeler R. C., Pearson Educación de México, S.A. De C.V. Décimo segunda edición México, 2010.

Consulta:

- 1. Ingeniería Mecánica. Estática, Sandor B.I. Y Richter K.J., Prentice-Hall Hispanoamericana, S.A. Segunda Edición, México, 1989.
- 2. Mecánica para Ingenieros: Estática, Meriam J.L. y Kraige L.G., Editorial Reverté, S.A. Séptima Edición España, 2007.
- 3. Engineering Mechanics Statics & Dynamics, Bedford A. y Fowler W., Pearson Educación, Edición 5, 2007.
- 4. Ingeniería Mecánica: Estática, Riley W.F. y Sturges L.D, Editorial Reverté, S.A., Primera edición España,

Universidad Tecnológica de la Mixteca 00027 Clave DGP: 200089

Ingeniería en Física Aplicada

PROGRAMA DE ESTUDIOS

Ingeniería Mecánica: Dinámica, Riley W.F. y Sturges L.D, Editorial Reverté, S.A., Primera edición, España, 1995.

PERFIL PROFESIONAL DEL DOCENTE

JEFE DE CARRERA

Maestría en Física o Matemáticas, o Doctorado en Física o Matemáticas, con especialidad en Álgebra.

JEFATURA DE CARRERA INGENIERIA EN FÍSICA APLICADA

DR. AGUSTIN SANDIAGO ALVARADO VICE-RECTOR ACADÉMICO

VICE-RECTORIA ACADÉMICA