General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

Using Automatic Classification of LANDSAT Data in Defining Areas of Primary Ilmenite in Floresta, Pernambuco

"Made available under NASA sponsorship in the interest of early and wide dissemination of Earth Resources Survey Program information and without liability for any use made thereof."

(E79-10249) USE OF THE AUTOMATIC N79-31709 CLASSIFICATION OF LANDSAT DATA ON THE DEFINITION OF AREAS OF PRIMARY ILMENITE IN PLORESTA, PERNAMBUCO (Instituto de Pesquisas Unclas Espaciais, Sao Jose) 25 p HC A02/MF A01 G3/43 00249

	T EROS	st photography may be gurchased from; Data Center Falls, SD 5719 8	PATE: DEAF NO: 10 12 7 DEAF NO: 10 12 17 DESA SDS		
	FOLDOUT FRAME	1. Classificação INPE-COL C.D.U.: 621.38SR:553.		4. Distribuição	
		3. Palavras Chaves (selection of the selection of the sel	interna		
	i	5. Relatõrio no	6. Data	7. Revisado por	
		INPE-1415-RPE/003	Janeiro, 1979		
		8. Título e Sub-Título USO DA CLASSIFICAÇÃO AUTOM LANDSAT NA DEFINIÇÃO PRIMÁRIA EM FLOS	9. Autorizado por acula Nelson de Jesus Parada Diretor		
		10. Setor DSR	Cōdigo	11. Nº de copias 17	
A Section of the Control of the Cont			ueiros Mattos * to Paradella ** to Menezes **	14. Nº de páginas 25	
(•		,	15 Preco	

14. No de paginas 25

15. Preço

13. Assinatura Responsavel Church

16. Sumário/Notas

Foi conduzido um programa de classificação automática de iados do LANDSAT no analisador I-100 do INPE, visando a definição de áreas de ocorrência de ilmenita primária na região de floresta, Per nambuco. Os dados do LANDSAT foram analisados e definidos os padrões de classificações automáticas para ilmenita primária, a partir de uma jazida na fazenda Exu, município de Floresta, Pernambuco. Os parâme tros obtidos permitiram através de classificações automáticas com o uso do Programa "Max Ver", individualizar várias áreas como potencialmente favoráveis à ocorrência de ilmenita. Os resultados preliminares de campo, comprovaram a confiabilidade das classificações realizadas, apresentando elevada eficiência na definição de áreas com concentra ções de ilmenita primária. O estudo fez parte de um contrato de pres tação de serviço estabelecido entre o INPE - Instituto de Pesquisas Espaciais - e a Construtora Norberto Odebrecht S.A.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

17. Observações * Construtora Norberto Odebrecht - Salvador, BA
** Conselho Nacional de Desenvolvimento Científico e Tecno
lógico - CNPq, Instituto de Pesquisas Espaciais - INPE, São José dos
Campos, SP. Este trabalho será apresentado no II Congresso de técni
cas Exploratórias em Geologia, Gravatal, SC.

FOLDOUT FRAME

F POOR QUALITY

1.1

INTRODUÇÃO E HISTÓRICO

Em dezembro de 1976, amostras de ilmenita primaria, procedente do Serrote das Pedras Pretas em Floresta, Pernambuco, foram encaminhadas à INORCAL, uma empresa da Organização Odebrecht, que logo manifestou seu interesse pelo assunto. O País importa ilmenita a fim de satisfazer à mais de 80 porcento de suas necessidades. Embora o volume dessa importação tenha pouca expressão, considerado o volume global das importações brasileiras, a produção local viria atender ao programa nacional de substituição das importações.

As informações geológicas disponíveis no início eram insuficientes para avaliar o potencial da área. Dispunha-se de um mapa geológico na escala 1:250.000, resultado de reconhecimento fotográfico, que sugeria uma provincia granitica ao norte da cidade de Floresta, na área de ocorrência da ilmenita.

A Organização Odebrecht, acostumada a operar com prazos curtos para retorno dos seus investimentos, iria lançar-se na prospecção mineral, que tem como riscos os imponderáveis da Geologia e cujos resultados costumam aparecer em prazos dilatados, pouco usuais nos meios impresariais brasileiros.

Os primeiros trabalhos na área da ocorrência apontavam para uma jazida de il menita maciça, de alto teor. Se essa primeira impressão se confirmasse, o mi nério após pouco ou nenhum beneficiamento, poderia ser usado com êxito pela indústria (pigmentos).

Era necessário esclarecer se a ilmenita maciça seria produto de enriquecimen to secundário (concentração como resultado da lixiviação dos silicatos duran te o intemperismo) ou se representaria um produto de segregação magmática.

O DNPM, por seu Centro de Geofísica Aplicada - CGA, realizou um levantamento magnetométrico, na area sub-aflorante da jazida que sugeria faixas paralelas de intensidade magnética fraca e forte, se alternando. Poderia tratar-se de faixas de ilmenita intercaladas com faixas de silicatos sem minerais magnéticos; ou faixas de ilmenita alternando com faixas de magnetita; ou faixas de ilmenita mais ricas em magnetita intercaladas com faixas de ilmenita empobre cidas em magnetita.

Foi realizado um programa de abertura de poços e trincheiras que mostravam a existência de lentes de ilmenita maciça, ocupando cerca de 7 porcento da á-rea, imersas em uma matriz anfibolítica com ilmenita disseminada. As trincheiras revelaram uma distribuição de ilmenita muito semelhante a cromita bandada. As bandas de ilmenita aparentavam mergulhos entre 30° e 45° para o norte.

As primeiras sondagens, com recuperação de testemunho, revelaram um corpo com cerca de 30º de mergulho para o norte e as expectativas de continuidade em profundidade eram fortes.

Um reconhecimento regional revelou a existência de numerosas áreas com fragmentos de ilmenita e de vários afloramentos de orto-anfibolitos, meta-perido litos e anortositos, todos favoráveis à ideia de uma provincia titanífera, e, quiçã, portadora de outros metais.

Com esses dados, firmou-se a intenção de acrescer as reservas da jazida desco berta, com jazidas adicionais. Sua execução dependeria de uma metodologia que permitisse resultados rápidos.

Durante o I Seminário Brasileiro sobre Técnicas Exploratórias em Geologia, em 1976, foi apresentado, pelo INPE, um trabalho que mostrou o potencial relacionado com o uso das imagens do LANDSAT.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

No campo, a jazida do Serrote das Pedras Pretas (Fazenda Exu) se caracterizava por um relevo topográfico positivo, que se eleva a quase 20m sobre a super
fície geral. Além disso, a jazida tem a caracteriza-la um conjunto de vegetação que se destaca da vegetação das áreas adjacentes e por um solo de cor ver
melha e consistência argilosa, bem distinto dos solos que se desenvolvem sobre os mica-xistos, anfibolitos, migmatitos e granitos da região. O solo da
região da jazida de Pedras Pretas é coberto, em boa parte, por uma cascalheira quase continua formada por seixos de quartzo tingidos de preto e de vermelho (óxidos de ferro e manganês) e fragmentos de ilmenita, até a dimensão de
matação.

Nas fotografias aereas, escala 1:25.000, a jazida de ilmenita da fazenda Exu mostra uma tonalidade de cinzento e uma textura bem propria, que a distingue da textura fotografica produzida por outros tipos de rocha na região. Mas como a textura fotografica e de difícil correlação entre frixas diversas de fotografias, pois a iluminação varia durante o período de voo, o uso isolado das fotografias aereas, embora promissor, apresentava suas dificuldades. Além disso não reduzia a area de trabalho, ou alvo, a dimensões onde se pudesse obter resultados num prazo bastante curto.

Ora, se o uso das fotos aéreas surgia como promissor, isto é, se a comparação visual podia apresentar resultados positivos, imaginou-se que uma análise instrumental, como a classificação automática de dados do LANDSAT no analisador I-100 do INPE melhoraria a definição de alvos, e permitiria a obtenção de resultados com maior rapidez.

A região da jazida de Exu está encravada na fatia cortada ao norte pela falha transcorrente de Patos, ao sul pela falha transcorrente de Pernambuco, que passa exatamente pela cidade de Floresta, 15 km ao sul da jazida da fazenda Exu.

Esse binário de forças deu origem a um S com numerosas fissuras de descompressão. Essas aberturas (fissuras) foram ocupadas por granitos que frequentemente mostram estrutura gnáissica e por pegmatitos formados quase exclusivamente de feldspato, um deles com 200m de comprimento e 50m de largura. Esses peg matitos quase monominerálicos tanto podem ter sido injetados a partir dos granitos como, o que parece mais provável, podem ser o resultado da refusão do mus covita-xisto regional. (Pierre Sabaté, UFBA, comunicação oral).

As relações de campo ainda estão pouco claras, mas parece que um granito pórfiro e o muscovita-xisto, juntamente com rochas gabrõicas, anortositos e peridotitos de um complexo ultramáfico extenso na região, são as rochas mais antigas. A sequência dos muscovita-xistos parece incluir sequências calcárias, como se pode inferir da presença de anfibolitos e cornubianitos na área.

Numa das fases do metamorfismo regional (suspeita-se de varias fases) os gabros e os peridotitos passaram a orto-anfibolitos e rochas cloritóides, que se distinguem dos para-anfibolitos, em primeira aproximação, pela presença de mag netita, ilmenita e esfeno (nas rochas derivadas do complexo máfico-ultramáfico)

Exames petrográficos por M. T. Rocha, do IGUFBA, mostram que os orto-anfibolitos são formados por hornblenda, oligoandesina, quartzo anedrico amebóide (5%) e cerca de 10 porcento de opacos. Algumas vêzes, acrescem-se aos opacos cerca de 5 a 10 porcento de esfeno. Os para-anfibolitos são formados por epidoto, diopsídio, hornblenda, granada; ou diopsídio, quartzo, escapolita, calcita, la bradorita. Ocorrem também rochas de composição pouco usual como um exemplo com 50 porcento de epidoto, 40 porcento de quartzo e 10 porcento de esfeno. O granito (gnaisse) de grão fino é formado por microclina, albita, quartzo.

A area entre a cidade de Floresta e a serra do Arapua, cerca de 20 a 25km ao norte, mostra três conjuntos estruturais distintos:

- a) ao sul, próximo de Floresta, faixas paralelas de granito, anfibolitos (orto e para) de direção geral próxima de E-W.
- b) ao centro, um domo elíptico alongado segundo E-W, onde se encontra o serrote das Pedras Pretas em que predominam rochas silico-aluminosas;
- c) ao norte, uma estrutura arqueada aberta para leste, com rochas silico-alumi nosas no nucleo.

Outros traços estruturais gerais são mostrados no mapa calcado sobre a imagem de satélite. (Fig.I)

A foliação com frequência inclina-se para o norte, com valores de mergulho na faixa 25° a 45°. O bandamento e a foliação praticamente se confundem, onde pos sível observar. Os muscovita-xistos são as rochas que exibem mais nitidamente a foliação. Os granitos porfiros muitas vezes não mostram orientação com clare za.

ON POOR PAGE

Os resultados de análises geoquímicas da fazenda Exu, são apresentados na Tab.I **O minério é composto de uma parte de minerais silicatados e uma parte de mine**rais oxidados. Estudos petrográficos por I. A. Viana mostraram que podem distinguidos quatro tipos de minério, segundo suas composições mineralógicas:

- a) iddingsita, magneto-ilmenita, carbonato, tremolita, clorita;
- b) hornblenda, plagioclásio, biotita;
- c) hornblenda, plagioclásio, magneto-ilmenita;
- d) clino-piroxenio, magneto-ilmenita, hornblenda, clorita.

Zonas de tremolita bem formada são frequentes tanto na jazida da fazenda Exu, como em outras jazidas existentes na área estudada.

Os grãos de ilmenita e de magnetita têm diametro inferior a meio milimetro, e intercrescimento desses dois minerais aparece com pouca frequência. Em moagem, quando o produto passa em malha 60 (perto de um quarto de milímetro) conseguese uma liberação entre 75 e 85 por cento dos grãos de ilmenita e de magnetita e, por concentração, é possível obter um concentrado de ilmenita com 46-48% de TiO2.

O concentrado de magnetita costuma apresentar entre 0,9 e 1,8% de vanadio (V2O5)

O concentrado de ilmenita apresenta como impureza principais o manganês e o cro mo .

É notável, no minério, a quase ausência de fósforo, tântalo, columbio e lantanideos. Por esse motivo fica bem reduzida a probabilidade de filiação carbonatitica.

A presença de anortositos, orto-anfibolitos, metaperidotitos e diopsiditos sugere uma filiação ignea máfica à ultra-máfica.

FATORES DE DECISÃO DA APLICAÇÃO DA CLASSIFICAÇÃO AUTOMÁTICA DE DADOS DO SATÉLI TE LANDSAT:

Apos os estudos de superfície (poços, trincheiras) da jazida da fazenda Exu (Serrote das Pedras Pretas), foi executado um programa de sondagem rotativa com tres objetivos:

- a) conhecer o comportamento do minério em profundidade;
- b) verificar a continuidade em profundidade; REPRODUCIBILITY OF THE
- ORIGINAL PAGE IS POOR c) estimar a reserva.

Furos ao norte do contacto, no sentido de mergulho, não atravessaram o **de minerio e** mostraram que a jazida estava trumcada ao norte por deslocamentos (falhas) o que limitava a reserva ao minerio esperado. Como essa reserva estava muito próxima do limite considerado econômico, decidiu-se, por questão de se gurança, iniciar um programa de prospecção para, em prazo curto, descobrir novas jazidas de ilmenita primária. Dessa maneira se elevaria a reserva a um 👊 🕺 vel mais compativel com os parametros econômicos desejaveis num empreendimento de longa duração.

Regionalmente, existem zonas de para-anfibolitos, que favorecem um solo verme lho vivo, argiloso, bem semelhante ao solo da jazida da fazenda Exu. Todavia, nas zonas de para-anfibolitos têm sido notados:

- a) de um lado, a ausência de magnetita;
- b) de outro lado, a presença de seixos de quartzo branco tingidos de cor ro sa, vermelho claro e ocre, sugerindo escassez de ferro e manganês (e tal vez cromo?) em comparação com as zonas mineralizadas com Ti-V.

À observação visual, torna-se quase impossível distinguir entre os solos forma dos sobre os orto-anfibolitos e os solos derivados dos para-anfibolitos. Porem, o analisador I-100 do INPE capta bem as diferenças de reflectância, como se discutirá no capítulo apropriado.

Do ponto de vista da morfologia, as jazidas de ilmenita não parecem obedecer a qualquer modelo. No serrote das Pedras Pretas, a jazida, como se mencionou an teriormente, tem decidida expressão topográfica. A jazida de Lagoa do Angico ocorre em meia encosta e recebe, na sua metade oriental, uma fraca cobertura de areia de quartzo que mascara a jazida. Em riacho da Posse, mais a oeste, a area da jazida é absolutamente plana. E, finalmente, a jazida de Lagoa da Caatinga ocupa uma pequena depressão. Portanto, inexistem aspectos fisiográficos capazes de distinguir jazidas, de areas estéreis, pelo uso desse parametro na analise de fotos aéreas.

Essas e outras considerações do mesmo tipo, levaram-nos a decidir, entre junho e julho de 1978, pela aplicação da classificação automática de dados do LANDSAT no analisador I-100 do INPE.

Peito um teste inicial, com o resultado favoravel, contratou-se o serviço com o INPE. Técnicas de refinamento foram usadas e os resultados foram muito bons, de alta eficiência, como se descrevera adiante. Devido a se ter encontrado re sultado positivo, em prazo curto, resolvemos divulgar o assunto nesse II Semi nario Brasileiro Sobre Técnicas Exploratórias em Geologia.

O SISTEMA I-100 E O PROGRAMA "MAX VER"

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

CONSIDERAÇÕES CERAIS:

As classificações automáticas do trabalho foram realizadas a partir de fitas CCT (compatíveis com computadores) dos 4 canais da imagem LANDSAT nº 175306-114207 de 02/Nov/75, no Analisador I-100, do INPE-INSTITUTO DE PESQUISAS ES - PACIAIS- em São José dos Campos, SP.

A seguir, são apresentadas algumas características e funções básicas do siste ma I-100, como também discutido resumidamente o Programa de Classificação utilizado.

O ANALISADOR IMAGE-100 (I-100) -O Image-100 da General Electric, corresponde ao mais moderno sistema de analise de dados naturais, atualmente existente no país. Sua função principal é a extração de informações, a partir de dados - multiespectrais, baseada no princípio de que os diferentes objetos ou materiais na natureza possuem assinatura espectral propria.

O sistema, utilizando esta propriedade básica, identifica feições ou objetos similares em tonalidade, através da análise simultânea das assinaturas espectrais (reflectância) dos alvos, em diferentes bandas do espectro eletromagnetico, estabelecendo assim a correspondência entre as diferentes respostas.

Para que isto ocorra, é necessário a interação do usuário com o aparelbo, - permitindo-lhe informar quais os objetos (água, rocha, vegetação, solo, etc) de interesse no estudo. Isto é possível através de um cursor, que, assumindo diferentes formas e dimensões, é posicionado sobre o tema a considerar (no caso do trabalho, por exemplo, a região da jazida de ilmenita conhecida), - permitindo assim a extração pelo sistema das assinaturas espectrais do alvo, nas diferentes bandas do espectro (canais 4, 5, 6 e 7 do LANDSAT).

Denomina-se "treinamento" à este processo de informaçãodo tema a analisar e a consequente extração dos seus padrões ou propriedades espectrais.

Ao final desta fase, o sistema analisa toda a imagem ou determinaja area de interesse, nas diferentes bandas, em escala adequada, pixel a pixel,* e estabelece se as propriedades espectrais de cada pixel corresponde aquelas — ja definidas a partir do alvo de interesse amostrado. A este procedimento e dado o nome de "classificação".

O sistema I-100 possui programas que realizam esta classificação, sendo utilizado no estudo, aquele baseado no critério de máxima verossimilhança ou - "Programa Max Ver".

O produto final da classificação é um mapa temático, com a distribuição das áreas que exibem características espectrais similares às estabelecidas para o alvo de interesse. Tais temas, são mostrados em um video de TV colorida, - podendo ser documentados por filmes, impressões gráficas, etc.

Um aspecto importante a mencionarrefere-se à característica da classificação no I-100 ser supervisionada, pois cabe ao usuario definir as areas de amos - tragens, bem como, através de conhecimentos previos, decidir se a classifica ção obtida exibe confiabilidade.

O PROGRAMA "MAX VER" -O programa "Max Ver" (VELASCO et al, 1978), destinase à classificação ponto a ponto de imagens multiespectrais obtidas, em ge ral, de satélites. O critério usado na classificação é o de máxima veros ÷ similhança (maximum likelihood) segundo classes escolhidas interativamente pelo usuário.

O uso do programa é dividido em duas fases distintas: treinamento e classificação.

Na primeira, o usuario escolhe varias classes (no trabalho foram considera das: ilmenita, esteril 1, esteril 2, açude e rio, respectivamente) e são determinados os parametros media e covariancia para cada classe.

Tais parametros possibilitam o calculo das probabilidades de um ponto qual quer na imagem (pixel) pertencer a cada uma das classes consideradas.

A classificação pelo critério da máxima verossimilhança, procura, dado um ponto x, achar a classe y tal, que a probabilidade de x pertencer a y seja a máxima, sendo-lhe então atribuído tal classe.

A participação do usuário no treinamento está não só no conhecimento dos dados de campo, para a melhor definição das classes, como também na esco-lha das amostras mais adequadas que as representem. Nesta escolha reside a interação do sistema com o usuário, pois este tem meios para adquirir e subtrair amostras, até que seja obtida a certeza de uma boa classificação.

Ao se iniciar o treinamento, o sistema lê quantos canais serão envolvidos na análise. Embora as imagens do LANDSAT sejam obtidas em quatro canais, - nem sempre é conveniente usa-los em sua totalidade. As vêzes, um dos canais não fornece informação em bom nível, ou exibe ruído. A classificação será mais rápida, quanto menor for o número de canais utilizados.

O passo seguinte sera a determinação dos parametros das classes. Para isso escolhem-se amostras que a componham. Não ha limite no número de amostras - por classe, e, sim, na quantidade total de amostras que possam ser adquiridas simultaneamente. As amostras são adquiridas posicionando-se o cursor na re gião desejada e especificando-se a qual das classes a amostra deva pertencer.

A classificação será tanto melhor quanto mais "separadas" uma das outras - estiverem as classes.

O usuario deve também utilizar uma constante real positiva, "o limiar", -com a qual será feita a classificação. Na essência o limiar da ao usuario a possibilidade de variar o rigor com que e feita a classificação. Quanto menor o limiar, mais rigorosa será a classificação.

Ainda na fase de treinamento, são fornecidos ao usuário, meios de se avaliar se as classes estão ou não separadas. Um deles é a "matriz de classificação", em que é apresentada uma previsão dos resultados da classificação. Nesta matriz, cada linha corresponde a uma classe. A primeira coluna apresenta a percentagem dos pontos da classe que não serão classificados. As outras colunas correspondem as percentagens estimadas dos pontos da classe i que serão classificados como pertencentes a classe j. Para i j teremos pontos corretamente classificados.

A matriz permite deste modo avaliar quais classes estão sobrepostas e quais estão separadas. No caso de classes cujas distribuições se sobrepõem duas possibilidades são aventadas: imprecisão na aquisição das amostras ou as classes exibem realmente grande similaridade.

Neste último caso, nada pode ser feito pelo sistema. No primeiro, porem podese aumentar a separabilidade das classes através da mudança das amostras que as constituem, subtraindo ou adicionando novas amostras.

Uma vez satisfeito com as classes obtidas, o usuario requisita a classificação de toda a area de interesse, sendo esta realizada independentemente.

REPRODUCIBILITY OF THE ORIGETAL PAGE IS POOR

METODOLOGIA: ETAPAS DE DESENVOLVIMENTO DO TRABALHO

Na Fig. II, estão sumariadas em um fluxograma básico as etapas de desenvolvimento do trabalho.

De maneira geral, tais etapas podem ser reunidas em duas fases distintas: a de analise de dados no I-100 e a de verificação de campo.

a) ANALISE DE DADOS NO I-100

Inicialmente, os dados relativos aos 4 canais da imagem MSS do LANDSAT, de interesse, formatados em fitas magnéticas adequadas a analise por computadores, são armazenados na unidade de memoria do Sistema I-100.

O passo seguinte consiste na obtenção de uma ampliação, na escala 1: 100.000, no video de TV colorida do sistema, abrangendo a área de interesse de estudo (no - trabalho, a região da jazida de ilmenita conhecida da fazenda Exu, área de interesse da INORCAL para a pesquisa). As composições coloridas nesta escala, mos - trando os aspectos regionais da área, são obtidas, atribuindo-se aos canais do LANDSAT, combinações de filtros coloridos (azul, verde e vermelho), passíveis - de manipulação e regulagem, em brilho e contraste de cena, através de teclas e botões, presentes no painel de video.

Com base em dados conhecidos do terreno, são estabelecidas na ampliação coloride no video, áreas de amostragem mais adequadas para as classes definidas para a fase de treinamento.

No estudo foram consideradas áreas de amostragens para cinco classes: Ilmenita -considerada como área de amostragem a região da jazida de fazenda Exu; Esteril I e II- consideradas áreas de amostragens algumas regiões onde a ausência de il menita era comprovada; Drenagem- área de amostragem escolhida num trecho do rio Pajeu; Acude- considerada como área de amostragem dois açudes próximos à jazida de Exu.

A partir destes dados são determinados pelo I-100 os parâmetros media e covariância para cada classe considerada, sendo fornecidos através de terminal graf?co do sittama, os valores obtidos.

Toda a área é então classificada, utilizando-se um limiarespecífico e analisandose o resultado, que é apresentado automaticamente no vídeo através de um tema característico.

Se a classificação obtida não for satisfatoria, duas alternativas são possíveis: alteração dos dados da fase de treinamento (ou por redefinição de classes e/ou por novas amostragens), ou nova classificação, com variação do limiar.

No trabalho, foi inicialmente utilizado o limiar 5,0, sendo então analisada a disposição das áreas classificadas (alarmadas) para ilmenita.

A grande extensão em area alarmada, bem como a presença de algumas regiões clas sificadas situando-se sobre rochas graníticas, previamente conhecidas como de baixa potencialidade em termos da mineralização, fizeram com que se optasse por no-vas classificações, utilizando-se indices de "rigor" mais elevado, ou em outras palavras, com limiares mais baixos (limiares 4,5 4,0 3,5 e 3,0 respectivamente)

A classificação com o limiar 3,5, com seus resultados analisados comparativamen te com os de limiares superiores, exibiu melhor confiabilidade, sendo deste modo a escolhida.

A utilização de um limiar inferior a 3,5 forneceu areas alarmadas em pequena - quantidade e de características esparsas e pontuais, sendo deste modo desconsiderada.

Definida a classificação mais satisfatoria, o resultado final, compondo um tema em cor específica, é superposto na tela à composição colorida da área anali sada. Tal superposição visa unicamente auxiliar a localização das áreas alarma das na verificação posterior de campo.

O produto final é então documentado, ou através de slides do vídeo da Tv, ou por gravação em filmes branco e preto ou colorido convencionais, através do con junto Dicomed, ou ainda por impressão gráfica do tema "printout", fornecido pe lo terminal gráfico do I-100

- b) Parte de campo
- Os produtos do I-100 foram representados por dois tipos de mapas temáticos:
- 19 "slides" obtido por fotografia da imagem projetada na tela do I-100
- 29 "print out" do computador, fornecido na escala 1:40.000
- O "print out" foi usado apenas como referência dos alarmes registrados no "slide".
- O "slide" amplia bem, tem resolução aceitável até a escala 1:30.000, mas o limite de escala considerado adequado neste trabalho foi de 1:50.000. O positivo ampliado do "slide" na escala 1:50.000 foi usado em conjugação com as cartas da região publicadas pela SUDENE (escala 1:100.000 que fornece excelente ampliação em 1:50.000) e imagem de satélite, a cores, na escala 1:500.000.

Cada área alarmada era examinada em função dos acidentes geográficos cuja iden tificação correta se fazia com o auxílio da carta ampliada até 1:50.000 e do exame da imagem a cores da região, adquirida do INPE. A localização correta da área alarmada em função de drenagem, relevo e construções em geral no terreno é crítica nesse trabalho, nessa região.

Em seguida, a fim de atingir a area alarmada no terreno, fazia-se sua identificação nas fotografias aéreas escala 1:25.000 obtidas do Serviços Aerofotograme tricos Cruzeiro do Sul, com a licença da SUVALE (Superintendência do Vale do São Francisco). A transferência das áreas alarmadas para as fotos aéreas ficou facilitada por se ter conjugado positivo do "Slide" em 1:50.000, carta 1:50.000 e 1:100.000 e imagem a cores, obtida pelo LANDSAT, na escala 1:500.000.

Na foto aerea foram registrados pelos meios apropriados: contactos geológicos, drenagem, estradas e outros acessos, cercas, de modo a facilitar o uso da foto grafia aerea no terreno.

Porem, quando havia uma densidade muito grande de áreas alarmadas, abriram-se picadas para facilitar o acesso e acelerar a verificação no campo. Ao mesmo tempo procurou-se detalhar a geologia com os dados coletados ao longo das pica das. As informações, nesso estágio, foram registradas na escala 1:10.000. O ma pa geológico obtido era confrontado com a distribuição das áreas alarmadas e passava-se a um estudo de detalhe de cada área alarmada.

O estudo de detalhe compreendeu abertura de picadas de direção N-S a intervalos de 50m e amostragem ao longo dessas nicadas a intervalos
REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

A razão de se abrir picadas para estudo das zonas de grande densidade de áreas alarmadas, encontra-se nos obstáculos naturais do terreno na região e na escas-sez ou ausência de pontos de referência. A atividade agrícola restringe-se às áreas de aluviões mais largos, o que deixa grandes vazios cobertos pela vegetação natural, com raras trilhas e caminhos.

A distribuição da vegetação na região de Floresta está diretamente relacionada com o tipo de rocha. A topografia é essencialmente plana, e muitos interflúvios têm o relevo achatado de um taboleiro. Os solos são normalmente delgados sobre as rochas de composição silico-aluminosa, entre 20 e 40cm de espessura. As rochas máficas produzem solos mais profundos, 60 a 80cm e as vêzes mais, com um manto de alteração que pode atingir 15 a 20m de profundidade. Resulta uma vegetação rala sobre as áreas de rochas félsicas, onde os afloramentos são frequentes, e uma vegetação mais densa sobre as áreas de rochas máficas.

A vegetação é arbustiva, a maioria das plantas tem galhos de pequeno diâmetro e forte elasticidade. São numerosas as plantas com espinhos e plantas urticantes, bastante desconfortáveis quando são tocadas. Além delas, há certas plantas como o gravatá e a macambira, tipos de bromélia, que crescem em tufos contínuos de 10 até 100m de diâmetro, e funcionam como obstáculo natural à penetração no ter reno. Esses obstáculos terminam por desorientar a pessoa no terreno. Por esse motivo se optou por penetração através de uma rede de picadas que, neste trabalho, atingiu um comprimento global de 600km.

Atingida e identificada a area alarmada no terreno, procedeu-se a coleta normal de dados relevantes para o trabalho em execução. Anotavam-se cor e textura do solo, litologia, alguns aspectos da vegetação, presença e tipo de tingimento de seixos de quartzo, presença de fragmentos de rocha máfica e de ilmenita, concreções ferruginosas e chert ou calcedonia. A rocha máfica e a ilmenita eram amostradas para petrografia e análise química respectivamente.

Muitas areas alarmadas não apresentavam à superficie fragmentos de ilmenita, co mo no Serrote das Pedras Pretas. A ilmenita ocorria em grãos finos e disseminada na rocha. Esse fato, no início do programa, deu a impressão (falsa) de ausên cia de ilmenita.

Em seguida preparou-se um esboço geológico da área alarmada complementado com dados de poços e trincheiras. Os poços e trincheiras forneceram amostras para a nálise química.

Com apoio em estudos petrográficos e em análises químicas fazia-se uma avalia-ção da área alarmada ou alvo.

Onde os resultados foram favoráveis, partiu-se para um programa de sondagem rotativa e avaliação econômica do jazimento.

Como a espessura de alteração (por intemperismo) pode atingir até 15-20m, mesmo jazidas com 5% TiO2 poderão se revelar econômicas, pois poderão ser tratadas co mo aluvião ilmenítico (o comportamento físico é o mesmo). Considerada a existên cia simultânea de magnetita vanadífera, o rejeito da concentração de ilmenita tem expressivo significado econômico e tende a viabilizar a implantação de uma unidade de titânio-vanádio.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

OF POOR CLALID

RESULTADOS E DISCUSSÕES

Na Fig. III, são apresentadas a região de desenvolvimento da pesquisa e a localização das áreas de amostragens para as cinco classes consideradas na clas sificação "Max Ver".

FIGURA III

Na Fig. IV, é exibido o mapa temático final mostrando as regiões alarmadas para ilmenita, utilizando o limiar 3,5.

OF POOR QUALITY

FIGURA IV

Na Fig. V, o mesmo mapa temático da foto anterior está superposto à imagem realçada por "Contrast Stretch" do canal 7 (0,8 - 1,1\(\mu\)) do LANDSAT. Tal procedimento visou facilitar a localização e planejamento de acesso às áreas potencialmente favoráveis à presença de ilmenita, na fase de verificação de campo.

FIGURA V

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

Os parâmetros da classificação fornecidos pelo I-100 (media, matriz de covariância e matriz de classificação) estão apresentados na Tabela II.

Calculos matemáticos utilizando os valores de media e variancia por canal, para a classificação com limiar 3,5, permitiram estabelecer que os canais 7 e 6 foram os que apresentaram melhor separabilidade entre as classes ilmenita e esteril.

A classificação abrangeu uma área de 400 Km², que se estende do norte da cidade de Floresta, PE, à oeste (margem direita) do rio Pajeu, afluente do rio São Francisco. Rochas com mais de 6% de ilmenita foram encontradas distribuídas por toda a região, o que favorece em se considerar a área como uma provincia geoquímica de titânio.

A aplicação de técnicas automáticas de classificação utilizando dados do LAND-SAT no analisador I-100 do INPE, na definição de áreas com ilmenita primária, revelou, nesses 400 Km², mais de 600 áreas alarmadas. Entre outubro de 1978 e janeiro de 1979, uma parte dessa região, com quase uma centena de áreas alarma das, foi verificada. Resultaram quatro jazidas de teor medio a pobre (18% a 5% TiO2). Duas outras jazidas não alarmadas foram encontradas.

As areas alarmadas verificadas, sempre corresponderam a areas de clorita-xisto com magnetita e ilmenita, meta-peridotitos, meta-anortositos e orto-anfiboli - tos. Em todas elas, o solo ou tinha cor vermelha ou era coberto por seixo e - fragmentos de quartzo tingidos de vermelho a preto, e, fragmentos de rocha, - tingidos de cor quase preta na superfície.

As areas de para-anfibolitos e mica-xistos que estão sob solo vermelho, não - produzem alarme pela classificação, o que evidencia que o metodo tem sensibili dade suficiente, nas condições da região de Floresta, para produzir resultados.

Os alarmes registrados parecem devidos sobretudo a cor do solo e dos fragmentos de rocha e de quartzo. A vegetação e o relevo teriam ou desempenhado papel secundário ou não tiveram qualquer influência na resposta.

Jazidas muito pequenas, como Lagoa do Angico e Lagoa da Caatinga, não alarma - das, terão seus pixels reanalisados, visando uma comparação de suas reflectâncias com aquelas encontradas na área de amostragem.

E possível que, com redefinições de classes e areas de amostragens, incluindose agora as novas areas detectadas, na fase de treinamento e utilizando-se um limiar mais elevado na classificação, tais jazidas sejam detectadas.

Incidentalmente, jazidas situadas proximas de fundo de vale, recobertas em sua maior parte por sedimentos arenosos, derivados de granitos topograficamente — mais altos (mesmo em encosta de fraca declividade) não exibem muitas condições para a produção de alarmes, visto que os sedimentos arenosos com cor cinzenta e branca mascaram a reflectância original da região mineralizada. Talvez a utilização de fotografias aereas infravermelho, com a análise das respostas de solo e vegetação nesta banda do espectro, possa se revelar mais adequada para a distinção de jazidas de titânio-vanádio sob depositos de areia na região. A jazida de Lagoa do Angico estará provavelmente neste caso: com 30 a 60 m de largura e 300 m de comprimento, so ao longo de 170 m de sua extensão ocorre so lo vermelho. O restante estã sob uma cobertura de areia e quartzo.

O fato de todos os alarmes turem correspondido à rochas com 6 a 15% de ilmenita (3 a 8% TiO₂), sugere a necessidade de se estudar um refinamento da tecnica para distinguir-se entre areas pobres em ilmenita e areas com teores mais elevados de ilmenita. A flexibilidade da classificação "Max Ver", permitindo uma nova definição de classes na fase de treinamento (por ex, Ilmenita 1, Ilmenita 2, etc...) baseada nos novos dados de campo, abre a perspectiva do desenvol vimento de estudos visando este objetivo.

Convem ainda salientar, que o papel desempenhado pelo solo e rocha, como sendo os parâmetros que mais influiram nos resultados, pode ser evidenciado por duas razões:

a) as imagens do LANDSAT utilizadas, correspondem a passagem de novembro, no - auge da estação seca na região, quando as plantas estão desprovidas de fo - lhas e a vegetação rasteira (e as gramíneas) são raras ou inexistem, o que - deixa exposta uma proporção substancial da superfície do terreno. Em areas de cobertura vegetal densa, talvez os resultados sejam diferentes, necessitando - se de um estudo semelhante a este, apos a estação chuvosa.

b) o solo em sua maior parte deriva da rocha subjacente e reflete sua composição química, sobretudo em termos de elementos corantes como ferro, manganês, cromo, níquel e vanadio, presentes nas mineralizações de ilmeno-magnetita da região.

Dentre estes elementos, o Ferro e o Manganês parecem ser os que mais influem - na caracterização da assinatura espectral, principalmente o Ferro, por estar -

presente em maior proporção e por apresentar uma alta absorção na região do infravermelho próximo, constrastando assim, com a alta reflectância das áreas estérieis, para este mesmo intervalo do espectro.

ORIGINAL PAGE IS

CONCLUSÕES E RECOMENDAÇÕES

- Os resultados indicam que jazidas de ilmenita em areas de clima e ambiente geológico-geoquímico, como o de Floresta, podem ser descobertas pela metodologia usada.
- 2) O solo e rocha parecem ter sido os parametros mais importantes na definição das áreas alarmadas. A imagem é do período seco, isto é, a vegetação teve influência mínima. Como as zonas mineralizadas exibem em relação às á
 reas estéreis, níveis de reflectância menos elevados, acredita-se que se
 imagem tivesse sido obtida em período úmido, a cobertura vegetal poderia a
 tenuar os contrastes existentes, principalmente na banda do infravermelho
 próximo, pelo considerável acrescimo em reflectância que ocasionaria. Estu
 dos adicionais são necessários para se definir a importância da vegetação e
 ventual reprogramação e/ou abordagem.
- 3) O Ferro e o Manganês usualmente associados à ilmenita, parecem ter sido os fatores mais importantes na caracterização da assinatura espectral, princi palmente o primeiro, que apresenta uma grande absorção na região do infravermelho correspondente ao canal 7.
- 4) A expressão topográfica não parece ter qualquer influência, considerando-se as dimensões e a forma dos jazimentos na caracterização da assinatura es pectral.
- 5) A metodologia permitiu reduzir o número de alvos para verificação e, por tanto, acelerar os trabalhos de campo, com reflexos saudaveis sobre o custo da prospecção.
- 6) De um total de 70 areas alarmadas verificadas até 15/01/79, 46 resultaram positivas, o que significa uma eficiência de quase 70%.
- 7) O trabalho poderá ser refinado a fim de se distinguir áreas de orto-anfibolitos e máficas das de para-anfibolitos, e talvez áreas de teor alto e teor baixo, ou disseminado fino a maciço, pois nos casos de para-anfibolitos e de minerio disseminado fino, reduz-se a proporção de fragmentos escuros à superfície (compostos de seixos de quartzo, de rocha e de ilmenita, colori dos de vermelho a preto pelos óxidos de ferro e manganês). A etapa seguinte ao trabalho, com o analisador I-100, será verificar se as áreas de baixo conteúdo em ilmenita, reveladas por amostragem em superfície, contem-corpos com alto conteúdo de ilmenita em profundidade. Caso a geofísica se revele um método utilizável na área, só após os levantamentos geofísicos—se recomendaria passar à fase de sondagem. A presença de vanádio acredita se que só será revelada após a sondagem, uma vez que os métodos geofísicos de prospecção não informam os elementos presentes. Recomenda-se também um levantamento geoquímico a fim de se investigar:
 - a) o conjunto de elementos que carcteriza a mineração de alto teor b)a possibilidade de se distinguir, pela análise de amostras de rocha e de solo próximos da superfície, areas com vanadio e areas sem vanadio
- 8) O nível de sucesso da técnica depende fundamentalmente dos dados forneci dos pelo usuário.
- 9) A proporção de Fe⁺⁺⁺ / Fe⁺⁺ é maior nas áreas alarmadas. Existem elementos traços que podem ser inibidores da oxidação do Ferro e a presença e influência de tais elementos devem ser investigadas, dentro do enfoque da caracte rização da assinatura espectral de áreas com ilmenita-vanádio.

10) A metodologia depende essencialmente de uma fase intensa e bem planejada de trabalhos de campo.

BIBLIOGRAFIA

- ALMEIDA FILHO, R; PARADELLA, W.R; PEQUENO, V.S.- Identificação de Áreas de Argila na Região das Cabeceiras do rio Claro (MG), Através de Análises Automáticas de Dados do LANDSAT 1976 Rel. INPE-964-NTE/073
- ALMEIDA FILHO, R; PARADELLA, W.R.- Estudo do Maciço Alcalino de Poços de Caldas Através de Imagens LANDSAT com Enfase em Mineralizações Ra dioativas 1977 Rel. INPE-1112-TPT/065
- GENERAL ELECTRIC COMPANY- Image 100 Interactive Multispectral Image Analysis System (User Manual) 1975, Florida, USA
- VELASCO, F.R.D; PRADO, L.O.C; SOUZA, R.C.M.- Sistema Maxver: Manual do Usuário 1978 - Rel. INPE-1315-NTI/110

PRISCEDING PAGE BLANK NOT PRAISE

ANÁLISE ŒOQUÍMICA DA ILMENITA MACIÇA DE SERROTE DAS PEDRAS PRETAS (FAZENDA EXU - FLORESTA - PERNAMBUCO)

(Analise por Barbara I. Kronberg Dept. Geologia Univ. Western Ontario, London, Canada, Oct. 1977

	DADOS DE FLUORE	SCÊNCIA	DADO	S DE ESPECTROMETRO	DE CHAMA (S	PARK SOURCE MAS	S SPECTEDMETRO)		
DE RAIOS-X(Z)				(em ppm)				5	
	conc. ilmenita	canga	elemento	conc. ilmenita	canga	elemento	conc. ilmenita	canga	
SiO2	1,27	39,36	В	0,5	15	Ag	-0,01	-0,3	
TiO2	43,06	13,23	E	≥500	≥ 500	CI.	-01 :	0,1	
A120		0,73	s	-40	~130	Sn	1	0,3	
Fe ₂ 0	50,59	22,90	C1	15	≥ 150	· Sb '	0,3	1	
Cr203		0,07	Sc	30	100	I	-1	-1	
Mn O	0,56	0,26	<u>v</u>	. 400	400حد.	Cs	≥0,1	-0,1	
Mg O	2,22	18,05	Cr .	2	20	Ba	20	7	
Ca O	0,10	0,68	Co	10	400	La	-0,1	0,2	
Na,0	0,00	0,17	Ni.	15	.150	Ce	0.5	2	
K20	0,03	0,00	Cu	20 .	500	Pr	-0,2	0,2	
Ba O	0,43	0,14	Zn	120	. 360	Nd	≥0,1	1	
P205	9,58*	0,18*	Ga	. 1	60	Sm	≥0,3	<u>-i</u> 1	
			As	-0,1	2	Eu	-0,1	-1	
		9	Ge	1 .	1	Gd	₩,5	-1	
Mineralogia: ilmenita, talco e actinolita			Se	-0,1	0,3	ть	~01	-1	
	confere com outras a		Br	~0,1	-0,1	Dy	29,5	-1	10.0
	oniveis	inalises	Rb	-0,1	-0,1	Но	≥03 ·	-1	20
			Sr	0,3	1	Er	-1	-1	
			Y	0,1	0,3	Tm	×0,3	-1	
			Zr	20	20	Yo .	-1	1	
			Nb	5	1	H£	4	-1	-
			Mo	0,3	0,3	Pb	Q5	2	
						1h	~0,5	-1	
						U	≥0,5	-1	24
			Maria Carlo						

TABELA II

PARÂMETROS DA CLASSE ILMENITA

NO DE PONTOS:	12			•	,
MĒDIA: 61,50	58,75	50,92	59,58		
MATRIZ DE COVA	RIÂNCIA				
		7,58	6,79	3,46	1,21
		6,79	18,02	7,40	9,73
		3,46	7,40	9,24	6,88
		1,21	9,73	6,88	11,08

MATRIZ DE CLASSIFICAÇÃO - LIMIAR 3,5

	N	1	2	3	4	5
1. RIO	100,0	0,0	0,0	0,0	0,0	0,0
2.AÇUDE	100,0	0,0	0,0	0,0	0,0	0,0
3.ESTERIL1	81,1	0,0	0,0	18,9	0,0	0,0
4.ESTERIL2	76,5	0,0	0,0	0,0	23,5	0,0
5. ILMENITA	25,0	0,0	0,0	0,0	0,0	75,0

CLASSE ILMENITA: AREA 4621 PIXELS (1,76% da cena total)