STAD29: Statistics for the Life and Social Sciences

Lecture notes

Section 1

Multidimensional scaling

Multidimensional Scaling

- Have distances between individuals.
- Want to draw a picture (map) in 2 dimensions showing individuals so that distances (or order of distances) as close together as possible. (Or maybe 3 with rgl.)
- If want to preserve actual distances, called *metric multidimensional* scaling (in R, cmdscale).
- If only want to preserve order of distances, called *non-metric* multidimensional scaling (in R, isoMDS in package MASS).
- Metric scaling has solution that can be worked out exactly.
- Non-metric only has iterative solution.
- Assess quality of fit, see whether use of resulting map is reasonable.
 (Try something obviously 3-dimensional and assess its failure.)

Packages

The usual, plus some new stuff:

```
library(MASS)
library(tidyverse)
library(ggrepel)
library(ggmap)
library(shapes)
```

my_url <- "http://www.utsc.utoronto.ca/~butler/d29/europe.csv"

Metric scaling: European cities

CSV file europe.csv contains road distances (in km) between 16 European cities. Can we reproduce a map of Europe from these distances?

STAD29: Statistics for the Life and Social Sc.

Read in data:

```
## Parsed with column specification:
## cols(
##
     City = col character(),
     Amsterdam = col double().
##
##
    Athens = col double(),
     Barcelona = col double().
##
##
     Berlin = col double().
##
     Cologne = col double(),
##
     Copenhagen = col_double(),
##
     Edinburgh = col double(),
##
     Geneva = col double(),
     London = col double().
##
##
     Madrid = col double(),
     Marseille = col_double(),
##
     Munich = col double().
##
```

Lecture notes

europe <- read_csv(my_url)</pre>

The data

```
## # A tibble: 16 x 17
##
      City Amsterdam Athens Barcelona Berlin Cologne Copenhagen
##
      <chr>
                 <dbl>
                        <dbl>
                                   <dbl>
                                           <dbl>
                                                   <dbl>
                                                               <dbl>
                         3082
                                                                 904
##
    1 Amst...
                                    1639
                                             649
                                                     280
##
    2 Athe...
                  3082
                                    3312
                                            2552
                                                    2562
                                                                3414
                             0
                         3312
##
    3 Barc...
                 1639
                                       0
                                            1899
                                                    1539
                                                                2230
    4 Berl...
                   649
                         2552
                                    1899
                                               0
                                                     575
                                                                 743
##
##
    5 Colo...
                   280
                         2562
                                    1539
                                             575
                                                        0
                                                                 730
    6 Cope...
                                             743
                                                     730
##
                   904
                         3414
                                    2230
                                                                   0
##
    7 Edin...
                  1180
                         3768
                                    2181
                                            1727
                                                    1206
                                                                1864
##
    8 Gene...
                  1014
                         2692
                                     758
                                            1141
                                                     765
                                                                1531
##
    9 Lond...
                   494
                         3099
                                    1512
                                            1059
                                                     538
                                                                1196
## 10 Madr...
                  1782
                         3940
                                     628
                                            2527
                                                    1776
                                                                2597
## 11 Mars...
                  1323
                         2997
                                     515
                                            1584
                                                    1208
                                                                1914
                   875
## 12 Muni...
                         2210
                                    1349
                                             604
                                                     592
                                                                1204
## 13 Paris
                         3140
                                    1125
                                            1094
                                                     508
                                                                1329
                   515
## 14 Prag...
                                                     659
                   973
                         2198
                                    1679
                                             354
                                                                1033
## 15 Rome
                  1835
                         2551
                                    1471
                                            1573
                                                    1586
                                                                2352
## 16 Vien...
                  1196
                         1886
                                    1989
                                             666
                                                     915
                                                                1345
## # ... with 10 more variables: Edinburgh <dbl>, Geneva <dbl>,
## #
       London <dbl>, Madrid <dbl>, Marseille <dbl>, Munich <dbl>,
## #
       Paris <dbl>, Prague <dbl>, Rome <dbl>, Vienna <dbl>
```

Multidimensional scaling

- Create distance object first using all but first column of europe. europe has distances in it already, so make into dist with as.dist.
- Then run multidimensional scaling and look at result:

```
europe %>% select(-City) %>% as.dist() -> europe.d
europe.scale <- cmdscale(europe.d)</pre>
head(europe.scale)
```

```
##
                    [,1]
                             [,2]
  Amsterdam
            -348.162277 528.2657
          2528.610410 -509.5208
## Athens
## Barcelona -695.970779 -984.6093
## Berlin
              384.178025 634.5239
## Cologne
                5.153446 356.7230
## Copenhagen -187.104072 1142.5926
```

 This is a matrix of x and y coordinates. STAD29: Statistics for the Life and Social Sc.

As a data frame; make picture

We know how to plot data frames, so make one first. This gives a warning that you can ignore: xxx

```
europe.scale %>%
  as_tibble() %>%
  mutate(city = europe$City) -> europe_coord
ggplot(europe_coord, aes(x = V1, y = V2, label = city)) +
  geom_point() + geom_text_repel() -> g
```

The map xxx

g

Making a function

 Idea: given input distance matrix (as stored in a CSV file), output a map (like the one on the previous page). xxx

```
mds_map <- function(filename) {
    x <- read_csv(filename)
    dist <- x %>%
        select_if(is.numeric) %>%
        as.dist()
    x.scale <- cmdscale(dist) # this is a matrix
    x_coord <- x.scale %>%
        as_tibble() %>%
        mutate(place = row.names(x.scale))
    ggplot(x_coord, aes(x = V1, y = V2, label = place)) +
        geom_point() + geom_text_repel() +
        coord_fixed()
}
```

- Use select_if to pick out all the numerical columns (no text), whichever they are.
- x.scale is matrix with no column headers. Turn into data frame, acquires headers V1 and V2. xxx 1 more

STAD29: Statistics for the Life and Social Sc.

Does it work?

mds_map("europe.csv")

A square xxx

The data, in square.csv:

"' x,A ,B ,C ,D A,0 ,1 ,1 ,1.4 B,1 ,0 ,1.4,1 C,1 ,1.4,0 ,1 D,1.4,1 ,1 ,0 "'

The map: xxx

mds_map("square.csv")

Drawing a map of the real Europe

- Works with package ggmap.
- First find latitudes and longitudes of our cities, called geocoding:

```
latlong <- geocode(europe$City)</pre>
latlong <- bind_cols(city = europe$City, latlong)</pre>
latlong %>% slice(1:6)
```

```
##
   city lon
                   lat
##
    <chr> <dbl> <dbl>
## 1 Amsterdam 4.90 52.4
## 2 Athens 23.7 38.0
## 3 Barcelona 2.17 41.4
## 4 Berlin 13.4 52.5
## 5 Cologne 6.96 50.9
## 6 Copenhagen 12.6 55.7
```

 Just so you know, there is a limit of 2500 queries per day (it queries STAD29: Statistics for the Life and Social Sc

A tibble: 6 x 3

Making the map

 Get a map of Europe from Google Maps (specify what you want a map of any way you can in Google Maps). This one centres the map on the city shown and zooms it so all the cities appear (I had to experiment):

```
map <- get_map("Memmingen DE", zoom = 5)</pre>
```

 Plot the map with ggmap. This is ggplot, so add anything to it that you would add to a ggplot, such as cities we want to show:

```
g2 <- ggmap(map) +
  geom_point(
   data = latlong, aes(x = lon, y = lat),
   shape = 3, colour = "red"
)</pre>
```

 We don't have a default data frame or aes for our geom_point, so have to specify one.

The real Europe with our cities

g2

Compare our scaling map

Comments

- North-south not quite right: Edinburgh and Copenhagen on same latitude, also Amsterdam and Berlin; Athens should be south of Rome.
- Rotating clockwise by about 45 degrees should fix that.
- General point: MDS only uses distances, so answer can be "off" by rotation (as here) or reflection (flipping over, say exchanging west and east while leaving north and south same).

Exploring the map by plotting in 3 dimensions

- Package rgl makes 3D plots.
- We have to fake up a 3rd dimension (by setting all its values to 1).
- Try this code:

```
library(rgl)
es.2 <- cbind(europe.scale, 1)
plot3d(es.2, zlim = c(-1000, 1000))
text3d(es.2, text = europe$City)</pre>
```

- Opens a graphics window with the cities plotted and named.
- Click and hold left mouse button to rotate plot. "Rotate away" 3rd dimension to get a possible map (that preserves distances).

Ontario, the same way

```
...using our function: xxx
```

```
url <-
   "http://www.utsc.utoronto.ca/~butler/d29/ontario-road-distances.c
(g <- mds_map(url))</pre>
```


Comment

- Thunder Bay and Sault Ste Marie dominate the picture since they are so far away from everywhere else.
- Remove them and just look at everywhere else.

Removing points

- Messy: have to find which rows and columns contain those cities, then remove just those rows and columns.
- Better:
 - "tidy" the distance matrix
 - then remove rows we don't need
 - then "untidy" it again
 - save into .csv file
- Illustrate with easier data first. xxx

Square data

```
my_url <- "http://www.utsc.utoronto.ca/~butler/d29/square.csv"
square <- read_csv(my_url)
square</pre>
```

Make tidy

A tibble: 16 x 3

```
square %>% gather(point, distance, -x)
```

```
point distance
##
      <chr> <chr>
                       <dbl>
##
##
    1 A
             Α
                         0
    2 B
##
##
    3 C
                         1.4
##
    6 B
    7 C
                         1.4
##
    8 D
##
## 10 B
                         1.4
## 11 C
                         0
## 12 D
## 13 A
                         1.4
## 14 B
## 15 C
## 16 D
```

Remove all references to point C

In column x or point: xxx

```
square %>%
  gather(point, distance, -1) %>%
  filter(x != "C", point != "C")
## # A tibble: 9 \times 3
##
           point distance
##
    <chr> <chr>
                    <dbl>
## 1 A
## 2 B
## 3 D
                      1.4
## 4 A
       В
## 5 B
## 6 D
                      1.4
## 8 B
           D
## 9 D
```

Put back as distance matrix xxx

and save as .csv when we are happy:

gather(point, distance, -1) %>%
filter(x != "C", point != "C") %>%

square %>%

```
spread(point, distance) -> noc
noc

## # A tibble: 3 x 4
## x A B D
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> ## 1 A O 1 1.4
## 2 B 1 O 1
## 3 D 1.4 1 O
noc %>% write_csv("no-c.csv")
```

Make map of square-without-C

mds_map("no-c.csv")

Back to Ontario

g

Tidy, remove, untidy xxx

```
my url <-
  "http://www.utsc.utoronto.ca/~butler/d29/ontario-road-distances.csv"
ontario2 <- read_csv(my_url)</pre>
ontario2 %>%
  gather(city, distance, -1) %>%
  filter(
    city != "Thunder Bay",
    place != "Thunder Bay",
    city != "Sault Ste Marie",
    place != "Sault Ste Marie"
  ) %>%
  spread(place, distance) %>%
  write_csv("southern-ontario.csv")
```

Map of Southern Ontario xxx

(g <- mds_map("southern-ontario.csv"))</pre>

What about that cluster of points?

- Plot looks generally good, but what about that cluster of points?
- "Zoom in" on area between -150 and -100 on x axis, -50 to 0 on y axis.
- Code below overrides the coord_fixed we had before. xxx

$$g2 \leftarrow g + coord_fixed(xlim = c(-150, -100), ylim = c(-50, 0))$$

Coordinate system already present. Adding new coordinate system,

Zoomed-in plot

Ignore the arrows to points off the map:

g2

Does that make sense?

- Get a Google map of the area, with the points labelled.
- First geocode the cities of interest: xxx

```
cities <- c(
   "Kitchener ON", "Hamilton ON", "Niagara Falls ON",
   "St Catharines ON", "Brantford ON"
)
latlong <- geocode(cities)
latlong <- bind_cols(city = cities, latlong) %>% print()
```

Get Google map xxx

Get a Google map of the area (experiment with zoom):

```
map <- get_map("Hamilton ON", zoom = 8)</pre>
```

Plot map with cities marked. xxx

Making the R Google map

Plot the map, plus the cities, plus labels for the cities:

```
ggmap(map) +
  geom point (
    data = latlong,
    aes(x = lon, y = lat),
    shape = 3, colour = "red"
  ) +
  geom_text_repel(
    data = latlong,
    aes(label = city)
  ) -> gmap
```

MDS and Google map side by side xxx

St Catharines and Niagara Falls should be the other side of Hamilton!

Quality of fit

ontario2 <- read_csv(my_url)
ontario2.2 <- ontario2 %>%

 Read in "southern Ontario" data set from file. Calling cmdscale with eig=T gives more info: xxx

my_url <- "http://www.utsc.utoronto.ca/~butler/d29/southern-ontario.csv"

```
select_if(is.numeric) %>%
  cmdscale(eig = T)
names(ontario2.2)
## [1] "points" "eig"
                          11 7 11
                                    "ac"
                                             "GOF"
ontario2.28GOF
## [1] 0.8381590 0.8914059
ontario2.3 <- ontario2 %>%
  select_if(is.numeric) %>%
  cmdscale(3, eig = T)
ontario2.3$GOF
```

Comments

- Coordinates now in points.
- GOF is R-squared-like measure saying how well map distances match real ones. Higher is better.
- For Ontario road distances, GOF better for 3 dimensions than 2, presumably to accommodate St Catharines and Niagara Falls?

3-dimensional coordinates, cities attached xxx

```
mutate(city = ontario2$x)
## # A tibble: 19 x 4
        V1
                V2
                       V3 city
      <db1>
              <dbl>
                     <dbl> <chr>
     -38.7 122.
                    4 17 Barrie
      146. -82.8
                    1.53 Belleville
   3 -132. -38.9
                    14.1 Brantford
                  -7.74 Brockville
      298. -106.
     397. -104. -22.0 Cornwall
   6 -101. -18.5 30.0 Hamilton
      62.4 198. -14.0
                          Huntsville
     214. -129. 10.8 Kingston
   9 -123. -15.0
                 -6.44 Kitchener
                  -36.5 London
## 10 -208.
           -51.6
## 11 -129.
           -19.1
                 155.
                          Niagara Falls
## 12
     146.
            300. -25.4
                          North Bay
## 13
     368. -4.30 -47.2
                          Ottawa
## 14 -145. 125.
                    -16.0
                          Owen Sound
## 15
      82.5 0.551 -6.92 Peterborough
## 16 -299. -39.4 -72.5
                          Sarnia
## 17 -117, -16,8 123.
                          St Catharines
## 18 -34.3 -4.75
                   15.8 Toronto
## 19 -388. -116.
                   -99.5 Windsor
```

ontario2.3\$points %>% as tibble() %>%

RGL code for 3 dimensions

```
library(rgl)
plot3d(ontario2.3$points)
text3d(ontario2.3$points, text = ontario2$x)
```

A cube xxx

Cube has side length 1, so distance across diagonal on same face is $\sqrt{2} \simeq 1.4$ and "long" diagonal of cube is $\sqrt{3} \simeq 1.7$.

Try MDS on this obviously 3-dimensional data.

Cube data as distances xxx

```
my_url <- "http://www.utsc.utoronto.ca/~butler/d29/cube.txt"
cube <- read_table(my_url)
cube</pre>
```

```
A tibble: 8 \times 9
##
                                                                                                                                                                 b
                                                                                                                                                                                                                С
                                                                                                                                                                                                                                                             d
                                                                                                                                                                                                                                                                                                                                                                                                                                                        h
                                                                                                                   a
                                                                                                                                                                                                                                                                                                                                                                                                          g
                                      <chr> <dbl> 
##
                                                                                                   0
                                                                                                                                           NΑ
                                                                                                                                                                                        NΑ
                                                                                                                                                                                                                                      NΑ
                                                                                                                                                                                                                                                                                      NA
                                                                                                                                                                                                                                                                                                                                    NΑ
                                                                                                                                                                                                                                                                                                                                                                                                   NΑ
                                                                                                                                                                                                                                                                                                                                                                                                                                                 NΑ
                                                                                                                                                                                        NΑ
                                                                                                                                                                                                                                      NA
                                                                                                                                                                                                                                                                                     NΑ
                                                                                                                                                                                                                                                                                                                                    NA
                                                                                                                                                                                                                                                                                                                                                                                                   NA
                                                                                                                                                                                                                                                                                                                                                                                                                                                NA
                                                                                                                                                                                                0
                                                                                                                                                                                                                                       NA
                                                                                                                                                                                                                                                                                      NA
                                                                                                                                                                                                                                                                                                                                  NΑ
                                                                                                                                                                                                                                                                                                                                                                                                   NΑ
                                                                                                                                                                                                                                                                                                                                                                                                                                                NΑ
                                                                                                     1.4
                                                                                                                                                                                                                                                                                      NA
                                                                                                                                                                                                                                                                                                                                    NΑ
                                                                                                                                                                                                                                                                                                                                                                                                   NΑ
                                                                                                                                                                                                                                                                                                                                                                                                                                                NΑ
## 5 e
                                                                                                                                                  1.4 1.4
                                                                                                                                                                                                                                        1.7
                                                                                                                                                                                                                                                                                                                                  NA
                                                                                                                                                                                                                                                                                                                                                                                                                                                NA
                                                                                                                                                                                                                                                                                                                                                                                                   NA
                                                                                                   1.4 1
                                                                                                                                                                   1.7
## 6 f
                                                                                                                                                                                                                                             1.4 1
                                                                                                                                                                                                                                                                                                                                           0
                                                                                                                                                                                                                                                                                                                                                                                                   NΑ
                                                                                                                                                                                                                                                                                                                                                                                                                                                NΑ
## 7 g
                                                                                                   1.4 1.7 1
                                                                                                                                                                                                                                             1.4
                                                                                                                                                                                                                                                                                                                                           1.4
                                                                                                                                                                                                                                                                                                                                                                                                                                                NA
                                                                                                                                                  1.4
## 8 h
                                                                                                   1.7
                                                                                                                                                                                                1.4
                                                                                                                                                                                                                                                                                               1.4
                                                                                                                                                                                                                                                                                                                                            1
                                                                                                                                                                                                                                                                                                                                                                                                                                                        0
```

Making dist object

```
cube.d <- cube %>% select(-1) %>% as.dist()
cube.d

## a b c d e f g
## b 1.0
```

```
## c 1.0 1.0

## d 1.4 1.0 1.0

## e 1.0 1.4 1.4 1.7

## f 1.4 1.0 1.7 1.4 1.0

## g 1.4 1.7 1.0 1.4 1.0 1.4

## h 1.7 1.4 1.4 1.0 1.4 1.0 1.0
```

MDS and plotting commands

By default in 2 dimensions; save the extra stuff for later:

```
cube.2 <- cube.d %>% cmdscale(eig = T)
```

 Make data frame to plot, remembering the points to plot are in points now:

```
d <- cube.2$points %>%
  as_tibble() %>%
  mutate(corners = cube$x)
```

• Plot points labelled by our names for the corners:

```
g <- ggplot(d, aes(x = V1, y = V2, label = corners)) +
  geom_point() + geom_text_repel()</pre>
```

The "cube"

Lecture notes

2 and 3 dimensions

```
cube.3 <- cube.d %>% cmdscale(3, eig = T)
cube.2$GOF
```

```
## [1] 0.639293 0.664332
```

cube.3\$GOF

```
## [1] 0.9143532 0.9501654
```

Really need 3rd dimension to represent cube.

Non-metric scaling

- Sometimes distances not meaningful as distances
- Only order matters: closest should be closest, farthest farthest on map, but how much further doesn't matter.
- Non-metric scaling, aims to minimize stress, measure of lack of fit.
- Example: languages. Make map based on "similarity" of number names, without requiring that 1 is "eight times better" than 8.

The languages

number.d <- read_table(my_url)</pre>

XXX

 Recall language data (from cluster analysis): 1–10, measure dissimilarity between two languages by how many number names differ xxx in first letter:

```
number.d
      A tibble: 11 x 12
        la
                                    dk
                                            n٦
                                                    de
                    en
                            nο
                                                                    es
        <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
        en
                                                     6
                                                             6
                                                                     6
     2 no
     3 dk
     4 n1
     6 fr
                                             9
                                            10
     9 pl
                                  STAD29: Statistics for the Life and Social Sc.
          Lecture notes
```

my_url <- "http://www.utsc.utoronto.ca/~butler/d29/languages.txt"

Non-metric scaling

- Turn language dissimilarities into dist object
- Run through isoMDS from MASS package; works like cmdscale.
- Map only reproduces relative xxx closeness of languages. xxx

```
d <- number.d %>%
    select_if(is.numeric) %>%
    as.dist()
number.nm <- d %>% isoMDS()

## initial value 12.404671
## iter 5 value 5.933653
## iter 10 value 5.300747
## final value 5.265236
## converged
```

[1] "points" "stress"

names(number.nm)

Results

• Stress is very low (5%, good):

```
number.nm$stress
```

```
## [1] 5.265236
$ %$ %$
```

• Familiar process: make a data frame to plot. Use name dd for data frame this time since used d for distance object:

```
dd <- number.nm$points %>%
  as_tibble() %>%
  mutate(lang = number.d$la)
```

Make plot:

```
g <- ggplot(dd, aes(x = V1, y = V2, label = lang)) +
  geom_point() + geom_text_repel()</pre>
```

The languages map

Comments

- Tight clusters: Italian-Spanish-French, English-Danish-Norwegian.
- Dutch and German close to English group.
- Polish close to French group.
- Hungarian, Finnish distant from everything else and each other!
- Similar conclusions as from the cluster analysis.

Shepard diagram

- Stress for languages data was 5.3%, very low.
- How do observed dissimilarities and map distances correspond?
- For low stress, expect larger dissimilarity to go with larger map distance, almost all the time.
- Not necessarily a linear trend since non-metric MDS works with order of values.
- Actual dissimilarity on x-axis; map distances on y-axis.

Shepard diagram for languages

```
Shepard(d, number.nm$points) %>%
  as_tibble() %>%
  ggplot(aes(x = x, y = y)) + geom_point()
```


Cube, revisited xxx

[1] 17.97392

cube.3\$stress

```
cube.d <- cube %>% select(-x) %>% as.dist(cube)
cube.2 <- isoMDS(cube.d, trace = F)
cube.2$stress</pre>
```

```
cube.3 <- isoMDS(cube.d, k = 3, trace = F)</pre>
```

```
## [1] 0.007819523
```

Lecture notes

- Stress is 18% for 2 dimensions, basically 0% for 3.
- Three dimensions correct, two dimensions bad.
- Shepard diagrams for these: xxx

```
cube2.sh <- Shepard(cube.d, cube.2$points)
g2 <- ggplot(as.data.frame(cube2.sh), aes(x = x, y = y)) +
    geom_point()
cube3.sh <- Shepard(cube.d, cube.3$points)</pre>
```

STAD29: Statistics for the Life and Social Sc

Shepard diagram for 2-dimensional cube

g2

Lecture notes

Shepard diagram for 3-dimensional cube

g3

Guidelines for stress values, in %

Smaller is better:

Stress value	Interpretation
Less than 5	Excellent: no prospect of misinterpretation
	(rarely achieved)
5-10	Good: most distances reproduced well, small
	prospect of false inferences
10-20	Fair: usable, but some distances misleading.
More than 20	Poor: may be dangerous to interpret

- Languages: stress in "good" range.
- Cube: xxx
 - 2 dimensions "fair", almost "poor";
 - 3 dimensions, "excellent".