Résolution Propositionnelle

Deuxième Partie : Algorithmes

Benjamin Wack

Université Grenoble Alpes

Janvier 2025

Preuve par résolution de l'exemple du cours

- $\blacktriangleright (H1): p \Rightarrow \neg j \equiv \neg p \vee \neg j$
- \blacktriangleright (H2): $\neg p \Rightarrow j \equiv p \lor j$
- \blacktriangleright (H3): $j \Rightarrow m \equiv \neg j \lor m$
- \blacktriangleright $(\neg C): \neg m \land \neg p$

Clauses: $\{\neg p \lor \neg j, \ p \lor j, \ \neg j \lor m, \ \neg m, \ \neg p\}$

$$\frac{p \lor j \quad \neg j \lor m}{p \lor m} \quad \neg m \\
 \hline
 p \\
 \bot$$
OU
$$\frac{p \lor j \quad \neg p}{j} \quad \neg j \lor m \\
 \hline
 m \\
 \bot$$

OU...

Au dernier cours

- ▶ Algèbre de Boole
- ▶ Fonctions booléennes
- Résolution
- (1) *A* ⊢ *B*

B se déduit de A : il existe une preuve par résolution de B à partir de A.

(2) $A \models B$

B est conséquence de A : tout modèle de A est aussi un modèle de B.

Aujourd'hui: Cohérence

 $(1) \Rightarrow (2)$

Aujourd'hui : Complétude

 $(2) \Rightarrow (1)$

Plan

Cohérence

Complétude

Introduction aux algorithmes de résolution

Davis, Putnam, Logemann et Loveland

Stratégie complète

Conclusion

Définition

La cohérence d'un système logique, c'est le fait que les preuves obtenues dans ce système « ne prouvent que des choses vraies ».

Cohérence de la règle de résolution

Théorème 2.1.15

Si C est un résolvant de A et B alors $A, B \models C$.

Preuve.

Si C est un résolvant de A et B, alors il y a un littéral L tel que A = A' + L, $B = B' + L^c$, et C = A' + B'.

Soit v telle que $[A]_v = 1$ et $[B]_v = 1$: montrons que $[C]_v = 1$.

- Si $[L]_V = 1$. Alors $[L^c]_V = 0$. Comme $[B]_V = 1$, V est modèle de B'. Donc $[C]_V = 1$.
- Si $[L^c]_v = 1$. Alors $[L]_v = 0$. Comme $[A]_v = 1$, v est modèle de A'. Donc $[C]_v = 1$.

Dans tous les cas v est modèle de C.

Cohérence de la déduction

Théorème 2.1.16

Soit Γ un ensemble de clauses et C une clause. Si $\Gamma \vdash C$ alors $\Gamma \models C$.

Preuve.

Soit P une preuve de C à partir de Γ .

Supposons que pour toute preuve $\Gamma \vdash D$ plus courte que P, nous avons $\Gamma \models D$. Montrons que $\Gamma \models C$. Nous avons deux cas possibles :

- 1. C est une hypothèse de Γ , dans ce cas évidemment $\Gamma \models C$.
- 2. $\Gamma \vdash A$ et $\Gamma \vdash B$ (avec une preuve plus courte) et

$$\frac{A}{C}$$

Par hypothèse de récurrence : $\Gamma \models A$ et $\Gamma \models B$.

Par cohérence de la règle de résolution : $A, B \models C$. Donc $\Gamma \models C$.

Définition

Complétude pour la réfutation : Si $\Gamma \models \bot$ alors $\Gamma \vdash \bot$.

10 / 43

Janvier 2025

$$\Gamma[L:=1]$$

Définition 2.1.18

Soient Γ un ensemble de clauses et L un littéral.

 $\Gamma[L:=1]$ est obtenu en :

- supprimant les clauses contenant L
- ► enlevant L^c des autres clauses

De même $\Gamma[L:=0]$ en échangeant les rôles de L et L^c .

Remarque: on a une variable de moins.

Exemples

Exemple 2.1.19

$$\Gamma = \overline{p} + q, \overline{q} + r, p + q, p + r.$$

- ightharpoonup $\Gamma[p:=1]=$
 - $\{q,\overline{q}+r\}.$
- ightharpoonup $\Gamma[p:=0]=$

$$\{\overline{q}+r,q,r\}.$$

Observons que:

- $(\overline{1}+q)(\overline{q}+r)(1+q)(1+r) = q(\overline{q}+r)$
- $(\overline{0}+q)(\overline{q}+r)(0+q)(0+r) = (\overline{q}+r)qr$

Propriété de $\Gamma[L := ...]$

Propriété 2.1.21

 Γ a un modèle si et seulement si $\Gamma[L:=1]$ ou $\Gamma[L:=0]$ en a un.

Preuve.

- \Rightarrow Si v est un modèle de Γ alors c'est un modèle de l'un des $\Gamma[L:=\ldots]$ (à choisir selon $[L]_v$).
- \leftarrow Si v est un modèle de $\Gamma[L:=i]$ alors on peut en déduire un modèle de Γ (en posant $[L]_{v'}=i$).

Lemme 2.1.22

Lemme 2.1.22

Soit Γ un ensemble de clauses, C une clause et L un littéral. Si $\Gamma[L:=1] \vdash C$ alors $\Gamma \vdash C$ ou $\Gamma \vdash C + L^c$.

Preuve.

On rajoute le littéral L^c aux clauses où on l'avait enlevé dans Γ .

- ▶ Si $C \in \Gamma[L := 1]$:
 - ▶ soit C était dans Γ alors $\Gamma \vdash C$
 - ▶ soit *C* est obtenue en enlevant un L^c alors $\Gamma \vdash C + L^c$
- ► Si C est un résolvant de A et B :
 - ▶ soit $\Gamma \vdash A$ et $\Gamma \vdash B$ d'où $\Gamma \vdash C$
 - ightharpoonup soit il faut rajouter L^c dans A ou B, donc dans C aussi

Complétude de la résolution

Théorème 2.1.24

Soit Γ un ensemble fini de clauses. Si $\Gamma \vDash \bot$ alors $\Gamma \vdash \bot$.

Preuve

Par récurrence sur le nombre de variables de Γ.

- ► Cas de base : Γ n'a aucune variable. Donc $\Gamma = \emptyset$ (impossible car \emptyset est valide) ou $\Gamma = \{\bot\}$.
- ▶ Hérédité : on montre que $\Gamma \vdash \bot$ ou bien que $\Gamma \vdash \bar{x}$ et $\Gamma \vdash x$.

Corollaire 2.1.25

 Γ est insatisfaisable si et seulement si $\Gamma \vdash \bot$.

Présentation de deux algorithmes

Comment décider « systématiquement » si Γ est contradictoire?

- L'algorithme de Davis, Putnam, Logemann et Loveland
 Parcours « intelligent » des assignations possibles des variables propositionnelles de Γ
- La Stratégie complète
 Construction des TOUTES les clauses déductibles de Γ.

Remarque

Solutions exponentielles en temps dans le pire des cas.

Pourquoi une complexité exponentielle?

Rappels:

- dans une clause, l'ordre ou la répétition de littéraux n'a pas d'importance;
- une clause valide (contenant p et \bar{p}) est inutile;
- dans une preuve, les clauses sont réutilisables.

Combien de clauses distinctes peut-on écrire avec n variables?

Pour chaque variable p, une clause peut contenir :

- **▶** *p*
- **▶** \bar{p}
- ou aucun des deux

donc 3ⁿ clauses distinctes.

Ainsin si Γ contient n littéraux, aucune preuve par résolution ne peut être de longueur supérieure à 3^n lignes.

Réduction d'un ensemble de clauses

Pour accélérer les algorithmes, on réduit l'ensemble de clauses.

Comment réduire?

Enlever les clauses valides et les clauses contenant une autre clause de l'ensemble.

Exemple 2.1.27

La réduction de l'ensemble de clauses

$$\{p+q+\overline{p}, p+r, p+r+\overline{s}, r+q\}$$
 donne l'ensemble réduit :

$$\{p+r, r+q\}.$$

Justification

Propriété 2.1.28

Un ensemble de clauses E est équivalent à l'ensemble de clauses réduit obtenu à partir de E.

Preuve.

- ► On peut enlever une clause valide : $x.1 \equiv x$
- ► On peut enlever une clause incluant une autre clause :

$$x.(x+y) \equiv x$$

Historique

- Martin Davis (1928-2023), mathématicien américain
- Hilary Putnam (1926-2016), philosophe, mathématicien et informaticien américain

- règle de **résolution** (utilisation exhaustive dans l'algo initial)
- Algorithme de satisfaisabilité des formules booléennes (1960)
 - détermine un modèle d'un ensemble de clauses (si possible)
 - conçu initialement pour étudier les formules du premier ordre
 - raffinement par M. Davis, G. Logemann et D. Loveland en 1962
- Preuve d'indécidabilité des équations Diophantiennes (avec Y. Matiyasevich et J. Robinson)

Démo SAT solveur

Problème

- Chaque case peut contenir un jeton ou pas.
- Deux jetons ne doivent jamais être voisins.
- Au moins deux cases doivent contenir un jeton.

Modélisation booléenne

La variable *i* est vraie si la case *i* contient un jeton.

Résolution par un SAT solveur

- Construction des clauses
- ► Traduction au format DIMACS
- Exécution et interprétation du résultat

Principes de simplification (Davis & Putnam)

Deux types de transformations pour simplifier les formules :

- 1. préservant le sens :
 - réduction
- 2. préservant seulement la satisfaisabilité :
 - suppression des clauses qui ont des littéraux isolés
 - résolution unitaire

DPLL est (en général) efficace car il utilise ces deux types de transformations.

Principe de séparation (Logemann & Loveland)

« Branchement/Retour-arrière »

- ▶ Branchement : Après toutes les simplifications, affecter vrai à une variable bien choisie.
- ► Continuer récursivement l'algorithme.
- ► Retour-arrière : Si on arrive à une contradiction, on retourne au dernier choix, et on « branche » en affectant faux à la variable choisie.

L'algorithme DPLL (figure 2.1)

bool fonction Algo_DPLL(Γ : ensemble de clauses)

0 Supprimer les clauses valides de Γ.

```
Si \Gamma = \emptyset, renvoyer (vrai).
Sinon renvoyer (DPLL(\Gamma))
```

 $\textbf{bool fonction} \; \texttt{DPLL}(\; \Gamma : \texttt{ensemble de clauses non valides})$

La fonction renvoie vrai si et seulement si Γ est satisfaisable.

- 1 Si $\perp \in \Gamma$, renvoyer(faux). Si $\Gamma = \emptyset$, renvoyer (vrai).
- 2 Réduire Γ.
- 3 Enlever de Γ les clauses comportant des littéraux isolés.
 Si l'ensemble Γ a été modifié, aller en 1.
- Appliquer à Γ la résolution unitaire.
 Si l'ensemble Γ a été modifié. aller en 1.
- 5 Choisir x une variable quelconque de Γ renvoyer (DPLL($\Gamma[x := 0]$) ou alors DPLL($\Gamma[x := 1]$))

Suppression des clauses qui ont des littéraux isolés.

Définition 2.2.1

Le littéral L est **isolé** si aucune clause de Γ ne comporte L^c .

Lemme 2.2.2

Supprimer des clauses avec un littéral isolé préserve la satisfaisabilité.

La preuve est demandée dans l'exercice 49.

Intuition : il n'y a rien à perdre à prendre $[L]_{\nu} = 1$.

Exemple 2.2.3

Soit \(\Gamma\) l'ensemble de clauses

- (1) p+q+r
- (2) $\bar{q} + \bar{r}$
- (3) q + s
- (4) $\bar{s} + t$

Simplifiez Γ en supprimant des clauses qui ont des littéraux isolés.

p et t sont isolés.

- (2) $\bar{q} + \bar{r}$
- (3) q + s

 \bar{r} et s sont maintenant isolés.

On obtient l'ensemble vide Ø.

 Γ a donc un modèle (par exemple p=1, t=1, r=0, s=1).

Résolution unitaire

Définition 2.2.4

Une clause unitaire est une clause qui ne comporte qu'un littéral.

Soit L le littéral d'une clause unitaire de Γ .

On construit un ensemble Θ :

- enlever les clauses qui comportent L
- ▶ à l'intérieur des clauses restantes, enlever L^c
- ightharpoonup si Γ comporte deux clauses unitaires complémentaires, alors $\Theta = \{\bot\}$.

On applique ce procédé pour chaque clause unitaire.

Lemme 2.2.5

 Γ a un modèle si et seulement si Θ en a un.

La preuve est demandée dans l'exercice 50.

Exemple 2.2.6 Résolution unitaire

Simplifiez les ensembles de clauses suivants par résolution unitaire :

$$ightharpoonup \Gamma = p + q, \, \bar{p}, \, \bar{q}$$

 $q,\ \bar{q}$ par résolution unitaire sur \bar{p} , puis \perp par RU sur \bar{q} Donc Γ n'a pas de modèle.

$$ightharpoonup \Gamma = a + b + \overline{d}, \ \overline{a} + c + \overline{d}, \ \overline{b}, \ d, \ \overline{c}$$

- 1. a, ā
- 2. ⊥

donc Γ n'a pas de modèle.

$$ightharpoonup \Gamma = p, q, p+r, \bar{p}+r, q+\bar{r}, \bar{q}+s$$

Par RU on obtient r, s.

Donc Γ a un modèle puisque r, s en a un.

L'algorithme DPLL (figure 2.1)

```
bool fonction Algo_DPLL( \Gamma : ensemble de clauses)
```

0 Supprimer les clauses valides de Γ .

```
Si \Gamma = \emptyset, renvoyer (vrai).
Sinon renvoyer (DPLL(\Gamma))
```

 $\textbf{bool fonction} \ \mathtt{DPLL}(\ \Gamma : ensemble\ de\ clauses\ non\ valides)$

La fonction renvoie vrai si et seulement si Γ est satisfaisable.

- 1 Si $\perp \in \Gamma$, renvoyer(faux). Si $\Gamma = \emptyset$, renvoyer (vrai).
- 2 Réduire Γ.
- 3 Enlever de Γ les clauses comportant des littéraux isolés.
 Si l'ensemble Γ a été modifié, aller en 1.
- Appliquer à Γ la résolution unitaire.
 Si l'ensemble Γ a été modifié. aller en 1.
- 5 Choisir x une variable quelconque de Γ renvoyer (DPLL($\Gamma[x:=0]$) ou alors DPLL($\Gamma[x:=1]$))

Exemple 2.2.8

Soit Γ l'ensemble de clauses : $\bar{a} + \bar{b}$, a + b, $\bar{a} + \bar{c}$, a + c, $\bar{b} + \bar{c}$, b + c.

Exemple 2.2.8

Soit Γ l'ensemble de clauses : $\overline{p} + \overline{q}, \overline{p} + s, p + q, \overline{p} + \overline{s}$.

Puisqu'une feuille porte l'ensemble vide, l'ensemble Γ est satisfaisable.

Il est inutile de poursuivre la construction de la branche droite.

Théorèmes 2.2.9 et 2.2.10

L'algorithme Algo_DPLL est correct et se termine.

Preuve de terminaison

- La suppression des clauses valides n'est exécutée qu'une seule fois.
- Boucle de simplifications : le nombre de clauses diminue strictement
- Appels récursifs : le nombre de variables diminue strictement

D'où la terminaison.

Preuve de correction

Il s'agit de démontrer que la satisfaisabilité est préservée tout au long de l'algorithme.

- Dans la boucle principale : cf lemme pour chaque simplification.
- Correction des appels récursifs :
 Rappel de la propriété 2.1.21 :
 Γ a un modèle ssi Γ[x := 0] ou Γ[x := 1] est satisfaisable.
 Donc si les appels récursifs sont corrects, l'appel courant l'est aussi

Puisque l'algorithme est correct pour un ensemble Γ sans littéraux (cas d'arrêt), il est correct pour tout ensemble de clauses Γ .

Remarques 2.2.11 et 2.2.12

- Oubli de simplifications : DPLL reste correct si on oublie (une ou plusieurs fois) la réduction (2), l'élimination des littéraux isolés (3) et/ou la réduction unitaire (4).
- ► Choix de la variable :
 - ► Un bon choix pour la variable *x* de l'étape (5), consiste à choisir la variable qui apparait le plus souvent.
 - Un meilleur choix consiste à choisir la variable qui va entraîner par la suite le plus de simplifications.

Cf. section 2.2.5 pour les principales heuristiques de branchement.

36 / 43

Principe de l'algorithme : construire toutes les clauses déduites de Γ

Suivant la hauteur des arbres de preuves.

Algorithme

Pour tout entier i

Tant qu'il est possible de construire de nouvelles clauses Construire l'ensemble réduit de toutes les clauses ayant une preuve de hauteur < i.

En pratique:

Maintenir deux suites d'ensembles de clauses, $\Delta_{i(i\geq 0)}$ et $\Theta_{i(i\geq 0)}$

Deux suites d'ensembles de clauses

Δ_i = les nouvelles clauses utiles

Clauses déduites par une preuve de hauteur i, après élimination :

- des clauses valides
- ▶ des clauses incluant une clause de preuve de hauteur < i.

Θ_i = les anciennes clauses encore utiles

Clauses déduites par une preuve de hauteur < i après élimination :

- des clauses valides
- \blacktriangleright des clauses incluant une autre clause de preuve de hauteur $\leq i$.

 Θ_0 est l'ensemble vide.

Exemple ??

Soit
$$\Gamma = \{a+b+\bar{a}, a+b, a+b+c, a+\bar{b}, \bar{a}+b, \bar{a}+\bar{b}\}$$

i	Δ_i	Θ_i	$\Delta_i \cup \Theta_i$	Résolvants de Δ_i et $\Delta_i \cup \Theta_i$
0	$a+b+\bar{a},a+b$	0	$a+b,a+\bar{b},$	$a,b,b+\bar{b},$
	$a+b+c$, $a+\bar{b}$		$\bar{a}+b,\bar{a}+\bar{b}$	$a+\bar{a},\bar{b},\bar{a}$
	$\bar{a}+b,\bar{a}+\bar{b}$			
1	$a,b,ar{b},ar{a}$	0	$a,b,\overline{b},\overline{a}$	
2	Τ	0		0
3	0	1		

Rappel:

- $ightharpoonup \Delta_{i+1} =$
 - ▶ Tous les résolvants de Δ_i et de $\Delta_i \cup \Theta_i$
 - Réduire
 - ► Enlever les résolvants qui incluent une clause de $\Delta_i \cup \Theta_i$
- $ightharpoonup \Theta_{i+1} =$

Enlever de $\Delta_i \cup \Theta_i$ les clauses qui incluent une clause de Δ_{i+1}

Aujourd'hui

- La résolution est un système de déduction correct et complet : il permet de caractériser toutes les formules insatisfaisables.
- L'algorithme DPLL utilise les idées de la résolution pour :
 - trouver un modèle
 - sinon, prouver l'insatisfaisabilité par une exploration efficace des assignations.
- ► La Stratégie Complète est un algorithme qui donne toutes les clauses déductibles d'un ensemble initial

La prochaine fois

Déduction naturelle

À chercher : Hypothèses :

- $\blacktriangleright (H1): p \Rightarrow \neg j \equiv \bar{p} + \bar{j}$
- $(H2): \neg p \Rightarrow j \equiv p+j$
- \blacktriangleright (H3) : $j \Rightarrow m \equiv \bar{j} + m$
- ► $(\neg C)$: $\neg m \land \neg p$ (deux clauses \bar{m} et \bar{p})

Construire la preuve de $H1, H2, H3, \neg C \vdash \bot$ obtenue par l'algorithme DPLL (ici, peu importe le choix de la variable)