<pre>df = pd # Filte df['clas df['clas df</pre>	'pelvic tilt', 'lumbar lordosis angle', 'sacral slope', 'pelvic radius', 'grade of spondylolisthesis', 'class label'] the data read_csv(filepath, delimiter =' ', names = colnames) r/rename the data to only keep NO=0 and AB=1 ss label'].replace(['NO', 'AB'], [0, 1], inplace = True) ss label'] = df['class label'].astype("category") ric incidence pelvic tilt lumbar lordosis angle sacral slope pelvic radius grade of spondylolisthesis class label
0 1 2 3 4 305 306 307 308 309	63.03 22.55 39.61 40.48 98.67 -0.25 1 39.06 10.06 25.02 29.00 114.41 4.56 1 68.83 22.22 50.09 46.61 105.99 -3.53 1 69.30 24.65 44.31 44.64 101.87 11.21 1 49.71 9.65 28.32 40.06 108.17 7.92 1 47.90 13.62 36.00 34.29 117.45 -4.25 0 53.94 20.72 29.22 33.22 114.37 -0.42 0 61.45 22.69 46.17 38.75 125.67 -2.71 0 45.25 8.69 41.58 36.56 118.55 0.21 0 33.84 5.07 36.64 28.77 123.95 -0.20 0
(b) Pre (b)i. Ma p = sns p.fig.se	-Processing and Exploratory data analysis to scatterplots of the independent variables in the dataset. Use color to show Classes 0 and 1. patryplot(f), Note acousty, Note = class shalls(), cred, proce(dataption) ratabas) = class shalls(), cred, procee(dataption) ratabas) = class shalls(), cred, procee(dataption) ratabas) = class shalls(), cred, procee(dataption) ratabas) patryplot(), class color, blood, logicalbore(9.5, -9.1)) Color Color
features fig, axe fig.set for feat sns plt.tig plt.show 120 100 40 (b)iii. Se training testings	are df.columns.drop('class label') in = plt.aubplote(1, len(features)) in = plt.aub
classif. # Define training training testFeatestTare	seperated into training and test sets. Sets have 210 and 100 observations, respectively. ssification using KNN on Vertebral Column Data Set te code for k-nearest neighbors with Euclidean metric (or use a software package) ter = skN.KNeighborsClassifier(metric = 'euclidean') set X and Y, features and target values greatures = trainingSet.drop('class label', axis = 1) grarget = trainingSet.drop('class label') sures = testingSet.drop('class label', axis = 1) get = testingSet['class label'] sklearn will be used to perform KNN classification.')
(c)ii. Te	will be used to perform KNN classification. Stall the data in the test database with k nearest neighbors. sions by majority polling. Plot train and test errors in terms of k for k ∈ {208, 205,, 7, 4, 1, } (in reverse order). You are welcome to use smaller increments of k. Which k^ is the samong those values? Croos = [] Errors = []
# Cotes train #	rediction step Predicted = classifier.predict(testFeatures) IningPredicted = classifier.predict(trainingFeatures) Reliculate scores (The best performance is 1) Score = skM.accuracy_score(testTarget, testPredicted, sample_weight = None) IningScore = skM.accuracy_score(trainingTarget, trainingPredicted, sample_weight = None) Rep track for the best k value with maximum score (a.k.a. minimum error) RestScore > maxScore: RestScore = testScore RestScore testScore RestScore testScore RestScore = tes
Minimum plt.fig sns.line sns.line plt.gca plt.gca	remarkation of the state of the
0.25 0.20 0.15	
# Fit to	the confusion matrix, true positive rate, true negative rate, precision, and F1-score when k = k^* the model at the best k value ter = skN.KNeighborsClassifier(n_neighbors = bestK, metric = 'euclidean', weights = 'uniform') ter.fit(trainingFeatures, trainingTarget)
# Plot plt.fig sns.ling plt.gca plt.grid plt.show 0.30 (x) 0.25 0.20 0.15	### Reep track for the best k value with minimum error) predictions from = 1 = skt. accuracy score(testTarget, testPredicted) if (predictions ror < bestPrediction best ror plotting testPrediction = prediction from best ror plotting testPrediction = prediction from best ror plotting test peach (best from) test learning curve res(figsize = (12, 4)) plot(x = range(10, 211, 5), y = errorList, narker='.', label = 'learning curve') .eec_plabel('best error rate (for some value of k)") (alpha = 0.2) (1) .eec_plabel('best error rate (for some value of k)") (alpha = 0.2) .eec_plabel('best error rate (for some value of k)")
# m. clas clas test test test test test test test te	kowski Distance * range(1, 200, 5) **Exception = 1 **Exceptio
else: plt plt plt plt.gca plt.gric plt.show	<pre>pestKforMan; k in bestKforMan; plt.scatter(k, min(testingErrorsMan), marker='.', s = 400, c='r', alpha=0.3) plt.text(k-len(bestKforMan), min(testingErrorsMan)+0.008, str(k)) scatter(bestKforMan, min(testingErrorsMan), marker='.', s = 400, c='r', alpha=0.3) text(bestKforMan-2, min(testingErrorsMan)+0.03, 'best') text(bestKforMan-4, min(testingErrorsMan)+0.015, 'k = ' +str(int(bestKforMan)))).set_xlabel("value of k")).set_ylabel("test error") d(alpha = 0.2) v()</pre>
0.256 0.225 0.206 0.175 0.156 0.125	
# Predic	redPErrors = pd.DataFrame({ "p": pow(10, np.linspace(1,0,11)),
	1886
<pre>0 10.00 1 7.94 2 6.30 3 5.0 4 3.98 5 3.16 6 2.51 7 1.99 8 1.58 9 1.25 10 1.00 minErr = minErrP plt.figg sns.line plt.scarplt.tex.plt.tex</pre>	<pre>c(minErrP-0.05, minErr+0.004, 'log10(p) = ' + str(minErrP)) ().set_xlabel("log10(p)") ().set_ylabel("test error") d(alpha = 0.2)</pre>
0 10.000 1 7.94 2 6.30 3 5.07 4 3.98 5 3.16 6 2.51 7 1.99 8 1.58 9 1.25 10 1.00 minErr = minErrP plt.fign sns.line plt.scarplt.texrplt.gca plt.gca plt.gca plt.gca plt.gca plt.gca plt.show print('1) 0.11 0.10	
0 10.000 1 7.94 2 6.30 3 5.07 4 3.98 5 3.16 6 2.51 7 1.99 8 1.58 9 1.25 10 1.00 minErr = minErrP plt.figgs sns.line plt.scarplt.tex plt.gca plt.gca plt.gca plt.gca plt.gric plt.show print('1) 0.11 0.10 bestKfo: bestKfo:	lest logl0(p) value is found as', minErrP, 'when k is set to', bestKforMan[0]) —— minkowski (k = 6) —— dogl0(p) = 0.6 —— dogl0(p) = 0.6 —— minkowski (k = 6) —— minkowski
0 10.000 1 7.94 2 6.30 3 5.07 4 3.98 5 3.16 6 2.51 7 1.99 8 1.58 9 1.25 10 1.00 minErr : minErrP plt.figs sns.line plt.scar plt.tex plt.gca plt.gca plt.gca plt.grid plt.show print(') 0.11 0.10 bestKfor plt.figs sns.line if len() for else: plt	Peet logi0(p) value is found as', minzrrp,'when k is set to', bestKforMan[0]) —— minkowski (k = 6) —— minko
0 10.00 1 7.94 2 6.30 3 5.07 4 3.98 5 3.16 6 2.51 7 1.99 8 1.58 9 1.25 10 1.00 minErr : minErrP plt.figgs sns.line plt.scarplt.tex plt.gca plt.gca plt.graplt.show print(') 0.11 0.10 bestKforplt.figgs sns.line if len() for else: plt plt plt.gcaplt.graplt.show print(') 0.11	test logic(p) value is found as', mishtrip, when k is set to', beat/forMan(3);
0 10.00 1 7.94 2 6.30 3 5.07 4 3.98 5 3.16 6 2.51 7 1.99 8 1.58 9 1.25 10 1.00 minErr minErrP plt figg sns line plt scarplt graplt graplt graplt show print('1') 0.11 0.10 0.09 Best log (d)ii.C bestKforplt figg sns line if len(length graplt show 0.30 0.25 0.15 0.10	## Topic (provided in found as ', initiative', where is its ware to', heapth(provided)) ### Topic (provided in found as ', initiative', where is its ware to', heapth(provided)) #### Topic (provided in found as '), or man is to set to 6 #### Topic (provided in found as '), or man is to set to 6 ##### Topic (provided in found as '), or man is to set to 6 ###################################
0 10.00 1 7.94 2 6.30 3 5.07 4 3.98 5 3.16 6 2.51 7 1.99 8 1.58 9 1.25 10 1.00 minErr	The property of the property o
0 10.00 1 7.94 2 6.30 3 5.07 4 3.98 5 3.16 6 2.51 7 1.99 8 1.58 9 1.25 10 1.00 minerr minerr plt.figs sns.line plt.scar plt.gca plt.grapht.gr	The property of the property o

HW1. Vertebral Column Data Set