Documentación del Simulador de Sistemas Operativos

Nombre: Andy Fuentes Curso: Sistemas Operativos Docentes: Juan Luis García

Fecha de entrega: 30 de mayo de 2025

Índice

1.	Introducción	2
2.	Simulador de Calendarización 2.1. Algoritmos de planificación	2
	2.2. Visualización dinámica	
3.	Simulador de Sincronización 3.1. Modos de sincronización	
4.	Conclusiones	

1 Introducción

Este documento describe el funcionamiento de una aplicación visual desarrollada en Python utilizando las librerías Streamlit y Plotly. El simulador permite ilustrar dinámicamente dos componentes fundamentales en los sistemas operativos: la calendarización de procesos y la sincronización por acceso a recursos compartidos usando mecanismos como mutex y semáforos.

2 Simulador de Calendarización

2.1. Algoritmos de planificación

El simulador soporta los siguientes algoritmos de planificación:

- FIFO (First In First Out)
- SJF (Shortest Job First)
- SRT (Shortest Remaining Time)
- RR (Round Robin, con quantum configurable)
- Priority Scheduling

2.2. Visualización dinámica

La visualización de la planificación se realiza mediante diagramas de Gantt generados en tiempo real. Cada bloque representa un proceso ejecutándose en un determinado ciclo.

Figura 1: Planificación FIFO, SJF v SRT

Figura 2: Planificación RR (Quantum = 1)

Figura 3: Planificación Priority Scheduling

2.3. Métricas

Se calcula automáticamente el **Average Waiting Time** (tiempo de espera promedio) para cada algoritmo, permitiendo comparar su eficiencia bajo distintos escenarios.

3 Simulador de Sincronización

3.1. Modos de sincronización

Se implementan los siguientes mecanismos:

- Mutex: permite un solo acceso al recurso compartido.
- Semáforo: permite múltiples accesos simultáneos si el contador lo permite.

3.2. Visualización del acceso a recursos

El acceso a recursos se representa por estados:

- ACCESSED (verde): acceso exitoso al recurso.
- WAITING (rojo): el recurso no estaba disponible.

Figura 4: Visualización con semáforos

Figura 5: Visualización con mutex

Repositorio

GitHub: https://github.com/Andyfer004/P2-S0

4 Conclusiones

Este simulador permite observar de manera intuitiva cómo se comportan distintos algoritmos de planificación y mecanismos de sincronización. Refuerza el entendimiento práctico sobre el manejo de procesos, tiempos de ejecución y acceso a recursos críticos en sistemas operativos.