Predicting Mycotoxin Levels in Corn Using Hyperspectral Imaging Data

1. Introduction

This assignment focuses on processing hyperspectral imaging data to predict mycotoxin (DON) concentration in corn samples. Given spectral reflectance data across multiple wavelengths, the goal is to:

- Preprocess the data (handling missing values, normalization).
- Visualize spectral bands to explore patterns.
- Apply dimensionality reduction using PCA to extract relevant features.
- Train regression models (Random Forest, XGBoost, CNN) to predict mycotoxin levels.
- Evaluate models and draw actionable insights for future improvements.

2. Dataset Overview

- The dataset contains hyperspectral reflectance values across 448 wavelength bands for various corn samples.
- The target variable is **DON concentration** (a mycotoxin harmful to food safety).
- Challenge: The dataset has high dimensionality (448 features), requiring dimensionality reduction for better model performance.

3. Preprocessing Steps and Rationale

3.1 Handling Missing Values

• Checked for missing data \rightarrow No Missing Values found.

3.2 Outlier Detection & Handling

- Used IQR (Interquartile Range) to detect outliers.
- Observation: Removing outliers significantly reduced model performance, so they were retained.

(Outlier Detection: IQR Plot & Box Plot)

Spectral Bands Box Plot

3.3 Feature Scaling

• Applied Robust Scaling to make the data resilient to outliers.

3.4 Dimensionality Reduction (PCA)

- Applied PCA to reduce 448 features → 3 principal components, retaining 95% variance.
- PCA helped reduce overfitting, speed up training, and improve model interpretability.

Visualization:

(PCA 3D Plot to Show Feature Reduction)

PCA: 3D Projection

4. Model Selection, Training & Evaluation

4.1 Machine Learning Models Evaluated

Three models were trained for regression:

- Random Forest
- XGBoost
- 1D CNN (Convolutional Neural Network)

4.2 Model Architectures & Hyperparameters

Random Forest

- n_estimators=500, max_depth=20, min_samples_split=5, max_features=0.7
- Strengths: Performs well on structured data, less sensitive to noise.

XGBoost

- n estimators=500, learning rate=0.03, max depth=9, colsample bytree=0.8
- Strengths: Handles non-linearity well and optimizes computational efficiency.

CNN (Deep Learning Approach)

Layers:

- Conv1D layers (256, 128, 64 filters) + ReLU Activation
- Batch Normalization + Dropout for regularization
- Fully Connected Dense Layers (256, 128, 64)
- Adam Optimizer (learning_rate=0.0005), MSE Loss

Issue with CNN:

- Overfitting observed when adding extra layers.
- Can be improved with hyperparameter tuning and regularization techniques.

Visualization:

(CNN Training: Epoch vs Loss Plot)

5. Model Performance & Evaluation

Model	MSE (↓ Better)	MAE (↓ Better)	R ² Score († Better)
Random Forest	14,406,387.25	2012.74	0.9485
XGBoost	42,026,314.11	2279.86	0.8497
CNN	48,054,924.62	2555.20	0.8281

Key Findings:

- Random Forest performed the best (lowest MSE, highest $R^2 = 0.9485$).
- XGBoost performed decently, but not as well as Random Forest.
- CNN had the lowest performance, likely due to the small number of input features after PCA

Visualization:

(Residual Plot to Check Model Fit)

6. Key Insights & Recommendations

Key Findings:

- o Random Forest is the best-performing model for this dataset.
- o PCA effectively reduced features from $448 \rightarrow 3$, improving efficiency.
- o CNN was overfitting, but could be improved with better tuning.
- Outliers were present, but removing them worsened performance, so they were retained.

Suggestions for Improvement:

- > Hyperparameter tuning for CNN could improve accuracy.
- > Testing LSTMs or hybrid models (CNN + XGBoost) may improve deep learning performance.
- Feature engineering (instead of PCA) could yield better results.
- > Stacking models (RF + XGBoost) may further improve accuracy.

7. Deployment: Streamlit App for Frontend

A Streamlit app was developed to visualize model predictions interactively.

- Users can upload spectral reflectance data and get DON concentration predictions.
- Plots for Training Losses and Different Models Comaprisons are included.

Next Steps:

- Deploy the **Streamlit app** for real-time model evaluation.
- Allow interactive hyperparameter tuning to further refine CNN performance.

Final Recommendation: Use Random Forest for Mycotoxin Prediction

- ✓ Best accuracy ($R^2 = 0.9485$)
- ✓ Handles high-dimensional data well
- ✓ Resilient to noise and outliers

Future work: Tune CNN parameters, try feature engineering, and deploy the Streamlit app for real-time use!