35.G2561

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

Examiner: Unknown

KEIICHI IWAMURA

Group Art Unit: Unknown

Appln. No.: 09/537,877

Filed: March 29, 2000

For: INFORMATION PROCESSING
SYSTEM, INFORMATION
PROCESSING APPARATUS, AND
COMPUTER-READABLE
RECORDING MEDIUM

Examiner: Unknown

July 31, 2000

SYSTEM, INFORMATION
PROCESSING APPARATUS, AND

Commissioner For Patents Washington, D.C. 20231

CLAIM TO PRIORITY

Sir:

Applicant hereby claims priority under the International Convention and all rights to which he is entitled under 35 U.S.C. § 119 based upon the following Japanese Priority Application:

11-093000, filed March 31, 1999.

A certified copy of the priority document is enclosed.

Applicant's undersigned attorney may be reached in our Washington, D.C. office by telephone at (202) 530-1010. All correspondence should be directed to our below-listed address.

Respectfully submitted,

Attorney for Applicant

Registration No. 36,570

FITZPATRICK, CELLA, HARPER & SCINTO 30 Rockefeller Plaza
New York, New York 10112-3801
Facsimile: (212) 218-2200

BLK\fdb:cmv

日本国特許庁 PATENT OFFICE JAPANESE GOVERNMENT カースターの

CFG 2561 US

JUL 3 1 2001

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

1999年 3月31日

出 願 番 号 Application Number:

平成11年特許願第093000号

キヤノン株式会社

2000年 4月21日

特許庁長官 Commissioner, Patent Office

特平11-093000

【書類名】

特許願

【整理番号】

3927111

【提出日】

平成11年 3月31日

【あて先】

特許庁長官殿

【国際特許分類】

H04K 1/00

【発明の名称】

情報処理システム、情報処理装置及びコンピュータ読み

取り可能な記憶媒体

【請求項の数】

30

【発明者】

【住所又は居所】

東京都大田区下丸子3丁目30番2号 キヤノン株式会

社内

【氏名】

岩村 恵市

【特許出願人】

【識別番号】

000001007

【氏名又は名称】 キヤノン株式会社

【代理人】

【識別番号】

100090273

【弁理士】

【氏名又は名称】

國分 孝悦

【電話番号】

03-3590-8901

【手数料の表示】

【予納台帳番号】

035493

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】

9705348

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 情報処理システム、情報処理装置及びコンピュータ読み取り可能な記憶媒体

【特許請求の範囲】

【請求項1】 複数の情報処理装置がネットワーク上に接続された情報処理 システムにおいて、

上記複数の情報処理装置のうちの少なくとも一つの情報処理装置に、

入力情報に対して第1の付加情報を第1の付加方法により耐性強く付加する第 1の付加手段と、

上記入力情報に対して第2の付加情報を第2の付加方法により付加する第2の 付加手段とを設けたことを特徴とする情報処理システム。

【請求項2】 上記第1の付加手段を有する情報処理装置と第2の付加手段を有する情報処理装置とが異なる場合に、上記各情報処理装置間で通信を行う通信手段を設けたことを特徴とする請求項1記載の情報処理システム。

【請求項3】 上記第1の付加情報は、上記第2の付加方法を特定することのできる情報であることを特徴とする請求項1記載の情報処理システム。

【請求項4】 上記第1の付加情報は、上記ネットワーク上の各情報処理装置を特定することのできる情報であることを特徴とする請求項1記載の情報処理システム。

【請求項5】 上記第2の付加方法は、第1の付加方法と異なることを特徴とする請求項1記載の情報処理システム。

【請求項6】 上記第2の付加情報は、上記入力情報の品質を劣化させることが少ない又は人間が知覚しにくい情報であることを特徴とする請求項1記載の情報処理システム。

【請求項7】 上記第2の付加情報は、上記第1の付加情報より多いことを 特徴とする請求項1記載の情報処理システム。

【請求項8】 上記第2の付加方法は、第1の付加方法と同じことを特徴とする請求項1記載の情報処理システム。

【請求項9】 上記第1の付加方法は、各情報処理装置に共通の秘密情報を

用いることを特徴とする請求項1記載の情報処理システム。

【請求項10】 上記秘密情報は、上記第1の付加情報の位置又は第1の付加情報に対する変化量であることを特徴とする請求項9記載の情報処理システム

【請求項11】 上記情報処理装置は、上記第1、第2の付加情報が付加された入力情報からその付加情報を抽出する第1、第2の抽出手段を有することを特徴とする請求項1記載の情報処理システム。

【請求項12】 上記第1又は第2の付加手段を用いて上記入力情報に付加 情報を付加する前にそれに対応する上記第1又は第2の抽出手段を用いて上記入 力情報に付加されたそれ以前の付加情報の検査を行うことを特徴とする請求項1 記載の情報処理システム。

【請求項13】 複数の情報処理装置がネットワーク上に接続された情報処理システムにおいて、

上記複数の情報処理装置のうちの少なくとも一つの情報処理装置に、入力情報から第1の付加情報を第1の抽出方法により抽出する第1の抽出手段と、

上記抽出された第1の付加情報から第2の抽出方法を特定し、この第2の抽出方法により上記入力情報から第2の付加情報を抽出する第2の抽出手段とを設けたことを特徴とする情報処理システム。

【請求項14】 上記第1の抽出手段を有する上記情報処理装置と上記第2の抽出手段を有する情報処理装置とが異なる場合に、上記各情報処理装置間で通信を行う通信手段を設けたことを特徴とする請求項13記載の情報処理システム

【請求項15】 上記第1又は第2の付加情報のみ抽出されたときは、上記入力情報に対して攻撃があったものと判定し、第1、第2の付加情報ともに抽出されないときは、上記入力情報には付加情報がないものと判定する判定手段を上記情報処理装置に設けたことを特徴とする請求項13記載の情報処理システム。

【請求項16】 入力情報に対して第1の付加情報を第1の付加方法により 耐性強く付加する第1の付加手段と、

上記入力情報に対して第2の付加情報を第2の付加方法により付加する第2の

付加手段とを設けたことを特徴とする情報処理装置。

【請求項17】 上記第1の付加情報は、上記第2の付加方法を特定することのできる情報であることを特徴とする請求項16記載の情報処理装置。

【請求項18】 上記第1の付加情報は、ネットワーク上の各情報処理装置を特定することのできる情報であることを特徴とする請求項16記載の情報処理装置。

【請求項19】 上記第2の付加方法は、第1の付加方法と異なることを特徴とする請求項16記載の情報処理装置。

【請求項20】 上記第2の付加情報は、上記入力情報の品質を劣化させる ことの少ない又は人間が知覚しにくい情報であることを特徴とする請求項16記 載の情報処理装置。

【請求項21】 上記第2の付加情報は、上記第1の付加情報より多いことを特徴とする請求項16記載の情報処理装置。

【請求項22】 上記第2の付加方法は、第1の付加方法と同じことを特徴とする請求項16記載の情報処理装置。

【請求項23】 上記第1の付加方法は、ネットワーク上の各情報処理装置 に共通の秘密情報を用いることを特徴とする請求項16記載の情報処理装置。

【請求項24】 上記秘密情報は、上記第1の付加情報の位置又は第1の付加情報に対する変化量であることを特徴とする請求項23記載の情報処理装置。

【請求項25】 上記第1、第2の付加情報が付加された入力情報からその付加情報を抽出する第1、第2の抽出手段を有することを特徴とする請求項16 記載の情報処理装置。

【請求項26】 上記第1又は第2の付加手段を用いて上記入力情報に付加 情報を付加する前にそれに対応する上記第1又は第2の抽出手段を用いて上記入 力情報に付加されたそれ以前の付加情報の検査を行うことを特徴とする請求項2 5記載の情報処理装置。

【請求項27】 入力情報に対して第1の付加情報を第1の抽出方法により抽出する第1の抽出手段と、

第2の付加情報を第2の抽出方法により抽出する第2の抽出手段とを設けたこ

とを特徴とする情報処理装置。

【請求項28】 上記第1又は第2の付加情報のみ抽出されたときは、上記入力情報に対して攻撃があったものと判定し、第1、第2の付加情報ともに抽出されないときは、上記入力情報には付加情報がないものと判定する判定手段を設けたことを特徴とする請求項27記載の情報処理装置。

【請求項29】 入力情報に対して第1の付加情報を耐性強く付加する第1の付加処理と、

上記入力情報に対して第2の付加情報を付加する第2の付加処理とを実行する ためのプログラムを記憶したコンピュータ読み取り可能な記憶媒体。

【請求項30】 入力情報から第1の付加情報を抽出する第1の抽出処理と

上記抽出された第1の付加情報から抽出方法を特定する特定処理と、

上記特定された抽出方法により上記入力情報から第2の付加情報を抽出する第2の抽出処理とを実行するためのプログラムを記憶したコンピュータ読み取り可能な記憶媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、デジタル画像データやディジタル音声データ等の入力情報に電子透かしを情報埋め込むことにより著作権の保護、偽造防止、各種情報記録等を行う場合に用いて好適な情報処理システム、情報処理装置及びそれらに用いられるコンピュータ読み取り可能な記憶媒体に関するものである。

[0002]

【従来の技術】

近年のコンピュータ及びネットワークの発達は著しく、文字データ、画像データ、音声データ等、多種の情報がコンピュータ内、ネットワーク内で扱われるようになってきている。このようなデータはディジタルデータであるために、同質のデータの複製を容易に作成できる環境にある。このため、こうしたデータの著作権を保護するために、画像データや音声データの中に著作権情報や利用者情報

を電子透かし情報 (以下、単に電子透かしという) として埋め込む処理がなされる場合が多い。

[0003]

ここで、電子透かしとは、画像データや音声データに所定の処理を施すことによって、これらのデータの中に、人間の視覚や聴覚では認識できないような別の情報を密かに埋め込む技術である。この電子透かしを画像データや音声データから抽出することにより、著作権情報や利用者情報、及び識別情報などを得ることができ、不正コピーを追跡することが可能となる。

[0004]

このような電子透かしに求められる第1の条件は、埋め込まれた情報が知覚できない、即ち、元のディジタル情報の品質を劣化させることが少ないように埋め込めることである(品質)。

第2の条件は、ディジタル情報の中に埋め込まれた情報が残り続ける、即ち、 データ圧縮やフィルタ処理のような編集や攻撃を受けても、埋め込まれた情報が 失われないことである(耐性)。

第3の条件は、用途に応じて埋め込める情報の情報量が選択できることである (情報量)。

[0005]

電子透かしに求められるこれらの条件は、一般的に互いにトレードオフの関係にある。例えば、耐性の強い電子透かしを実現しようとした場合、比較的大きな 品質劣化が生じ、また埋め込む情報量が少なくなることが多い。

[0006]

また、多値の静止画像を例にとると、電子透かしを埋め込む方法として、空間 領域に埋め込む方式と周波数領域に埋め込む方法との二つに大きく分類でき、下 記のような種々の方法が知られている。

空間領域に埋め込む方式の例としては、パッチワークによるものとしてIBM の方式 (W. Bender, D. Gruhl, N. Morimoto, Tech niques for Data Hiding, "proceedings of the SPIE, San Jose CA, USA, February

1995) やG. B. Rhoads, W. Linn: "Steganogra phy method employing embedded", USP P atent Number 5, 636, 292などが挙げられる。

[0007]

また、周波数領域に埋め込む方式の例としては、離散コサイン変換を利用するものとして、NTTの方式(中村、小川、高嶋、"ディジタル画像の著作権保護のための周波数領域における電子透かし方式"、SCIS'97-26A,1997年1月)の他に、離散フーリエ変換を利用するものとして、防衛大の方式(大西、岡、松井、"PN系列による画像への透かし署名法"、SCIS'9726B,1997年1月)や、離散ウェーブレット変換を利用するものとして、三菱、九大の方式(石塚、坂井、櫻井、"ウェーブレット変換を用いた電子透かし技術の安全性と信頼性に関する実験的考察"、SCIS'97-26D,1997年1月)及び松下の方式("ウェーブレット変換に基づくディジタル・ウォーターマークー画像圧縮、変換処理に対するロバスト性について一"、井上、宮崎、山本、桂、SCIS'98-3.2.A,1998年1月)などが挙げられる

[0008]

以上のような方式は、電子透かしの埋め込み処理と抽出処理とは一対一に対応 しており、基本的に互換性はない。また、一般に空間領域に埋め込む手法は、品 質劣化は少ないが耐性が弱く、周波数変換を用いる手法は、品質劣化は比較的大 きいが耐性が強いと言われており、耐性は強いが埋め込める情報量が少ない手法 や、品質は良いが耐性の弱い手法など方式毎にその特徴は異なる。

[0009]

さらに、これらの電子透かしは埋め込まれている情報を守るために、そのアルゴリズムや埋め込み位置や変化量などを示す情報(以後、鍵という)は秘密にされる場合が多い。これは、アルゴリズムや埋め込み位置等を解析することによって電子透かしを除去しようとする故意の攻撃に対する耐性を強くするためである

[0010]

一方、効率的に著作権を保護するために、電子透かしの抽出等を行い不正コピーが行われていないかどうかを検査する監視機関を設けることが考えられる。このような監視機関において上記故意の攻撃を避けるために、電子透かし方式や鍵の守秘性を保持することは重要である。

[0011]

【発明が解決しようとする課題】

以上のように電子透かし方式にはその特徴に応じて種々の方式がある。また、電子透かしを用いてディジタルデータの不正コピー、及び不正出力を防止しようという企業、機関も多い。しかし、それらの企業、機関が独立に電子透かし方式を選択してデータに電子透かしを埋め込んだ場合、電子透かし方式の埋め込み処理と抽出処理は一対一に対応しており互換性がないために、以下のような問題が生じる。

[0012]

- ①電子透かしの抽出処理を方式毎に行わなければならないので、1つの監視機関による統一的な検査が困難である。
- ②1つの監視機関によって統一的に検査を行う場合、その監視機関は全ての電子透かし抽出手法を準備しておく必要があり負荷が大きい。
- ③監視機関は、全ての抽出手法に対応する鍵を秘密かつ厳重に管理する必要が ある。
- ④方式毎に監視機関をもつとした場合、埋め込まれた透かしが抽出できなかったとき、他の方式による透かしが入っているのか、透かしが攻撃によって壊されたのか判定できない。

尚、ここで1つの監視機関とは、物理的に1つという意味ではなく、標準化や 国等によって定められた組織的又は方式的に1つの体制を指す。

[0013]

本発明は上記の問題点に鑑みてなされたものであり、種々の電子透かし方式に 対して効率的に著作物の保護等を実現することを目的としている。

[0014]

【課題を解決するための手段】

上記の目的を達成するために、本発明による情報処理システムにおいては、複数の情報処理装置がネットワーク上に接続された情報処理システムにおいて、上記複数の情報処理装置のうちの少なくとも一つの情報処理装置に、入力情報に対して第1の付加情報を第1の付加方法により耐性強く付加する第1の付加手段と、上記入力情報に対して第2の付加情報を第2の付加方法により付加する第2の付加手段とを設けている。

[0015]

また、本発明による他の情報処理システムにおいては、複数の情報処理装置がネットワーク上に接続された情報処理システムにおいて、上記複数の情報処理装置のうちの少なくとも一つの情報処理装置に、入力情報から第1の付加情報を第1の抽出方法により抽出する第1の抽出手段と、上記抽出された第1の付加情報から第2の抽出方法を特定し、この第2の抽出方法により上記入力情報から第2の付加情報を抽出する第2の抽出手段とを設けている。

[0016]

また、本発明による情報処理装置においては、入力情報に対して第1の付加情報を第1の付加方法により耐性強く付加する第1の付加手段と、上記入力情報に対して第2の付加情報を第2の付加方法により付加する第2の付加手段とを設けている。

[0017]

また、本発明による他の情報処理装置においては、入力情報に対して第1の付加情報を第1の抽出方法により抽出する第1の抽出手段と、第2の付加情報を第2の抽出方法により抽出する第2の抽出手段とを設けている。

[0018]

また、本発明による記憶媒体においては、入力情報に対して第1の付加情報を 耐性強く付加する第1の付加処理と、上記入力情報に対して第2の付加情報を付 加する第2の付加処理とを実行するためのプログラムを記憶している。

[0019]

また、本発明による他の記憶媒体においては、入力情報から第1の付加情報を 抽出する第1の抽出処理と、上記抽出された第1の付加情報から抽出方法を特定 する特定処理と、上記特定された抽出方法により上記入力情報から第2の付加情報を抽出する第2の抽出処理とを実行するためのプログラムを記憶している。

[0020]

【発明の実施の形態】

(第1の実施の形態)

図1は、本発明の第1の実施の形態による情報処理システムにおける電子透かしの埋め込みに関する部分を示したものである。特に、各監視機関独自の電子透かし方式と共通の電子透かし方式とをもつシステムを示したものである。ここで、共通の電子透かし方式とは、標準化又は関係する機関間で定められた電子透かし方式であり、その特徴は後述する。

[0021]

図1において、101~104は異なる独自の電子透かし方式を用いて埋め込み処理を行う機関を示す。また、各機関101~104における各105は、定められた共通の電子透かし方式による埋め込み処理を行う共通透かし埋込装置であり、106~109は、各機関101~104毎に定めた独自の電子透かし方式による埋め込み処理を行うA~D透かし埋込装置である。110は各機関をつなぐネットワークであり、図示はしないが各機関101~104はこのネットワーク110に接続する通信手段を有している。

[0022]

共通透かし埋込装置105で行われる共通の電子透かし方式は、以下の特徴を もつものとする。

- (1) 共通の電子透かしは、比較的少ない情報量で耐性の強い電子透かしを実現する。
- (2) 共通の電子透かしは、鍵なし又は共通の鍵によって電子透かしを抽出できる。
- (3) 共通の電子透かしは、少なくとも各電子透かし方式又はそれを用いて埋め込みを行った機関を特定する情報を埋め込む。
 - (4) 共通の電子透かしは、各機関の電子透かし埋め込みに対する耐性をもつ

[0023]

上記の特徴をもつ電子透かしとしては種々の方式が考えられるが、耐性の強さ をもつ一例として以下の方式を示す。

著作物である入力データを静止画像とした場合、その静止画の画像データを8×8画素のブロックに分割し、そのブロック毎にDCT (Discreate Cosine Transform:離散的コサイン変換)を行う。以下、そのDCTしたブロックをDCT係数ブロック、DCT係数ブロックの1係数をDCT係数、1枚の画像のDCT係数ブロックの集合をDCT係数ブロック群と呼ぶものとする。

[0024]

図7(a)は上記透かし埋込装置を示し、図7(b)は上記透かし抽出装置を示す。

(a)の透かし埋込装置において、入力画像×を画像変換器701によりDCT変換し、その出力であるDCT係数ブロック群を電子透かし埋め込み器702の入力として用いる。電子透かし埋め込み器702では、入力されたDCT係数ブロック群の中で、埋め込むDCT係数ブロックを1つ選択し、そのDCT係数ブロック中の1つのDCT係数を量子化することによって、1ビットの埋め込みビットを埋め込む。

この時の、量子化ステップの大きさが埋め込みの強度を決定し、その量子化ステップの大きさと選択したDCT係数の位置が鍵情報に対応する。

[0025]

例として、座標u, vの位置にあるDCT係数の値をs {u, v}、量子化ステップをhと表わし、以下に示すような規則により、電子透かしビットのO又は1を埋め込む。

a·h<s {u, v} ≦ (a+1)·h── (1) となるaを求める。

[0026]

埋め込みビット=0の時 $c \{u, v\} = b \cdot h + h / 2 (b は a 又 t a + 1 の 偶数の方) ---- (2)$

埋め込みピット=1の時 $c \{u, v\} = b \cdot h + h / 2 (b は a 又 t a + 1 の 奇数の方) — (3)$

となる操作を行い、c {u, v} を埋め込み後の係数とする。

[0027]

最後に、そのブロック群を逆変換器703を用いてIDCT(InverseDCT:逆DCT)を行って、8×8画素のブロックに戻し、それを再構成する。これによって、電子透かしが埋め込まれた画像yが得られる。

[0028]

電子透かしの抽出を行う場合は、図7(b)の透かし抽出装置において、上記画像yを上記画像変換器701に入力して、同様のDCTをしたDCT係数プロック群から電子透かし抽出器705により、鍵情報を用いて埋め込んだDCT係数を選択し、

 $b \cdot h < c \{u, v\} \le (b+1) \cdot h - (4)$

となる b を求め、 b が偶数ならば埋め込みビットは 0 と判断し、奇数ならば 1 と 判断する。

[0029]

この埋め込み方式において耐性を強化するには以下の手法が考えられる。

DCT係数ブロックの中から埋め込みを行う1つのDCT係数を選択するときに、低周波成分を表わすDCT係数を選べば耐性を強くすることができる。これは、高周波成分が画像圧縮や種々のフィルタリング処理によって失われやすいのに対して、低周波成分は失われにくいためである。

[0030]

また、上記の埋め込み方式では選択するDCT係数ブロック、及び埋め込むDCT係数を1つとして説明したが、その数を増すことによっても耐性を強くすることができる。これは、1ビットに対して1つのDCT係数に埋め込んだのみであると、画像圧縮や種々のフィルタリング処理によってその値が失われる可能性が大きいが、複数のDCT係数に同じビットを埋め込んでおけば、その大半が失われる可能性が少なくなるためである。

[0031]

また、埋め込むビット自体を誤り訂正符号化することによっても耐性を強くすることができる。これは、埋め込みビットのいくつかが失われても誤り訂正符号によって復元されるためである。ここで、用いる誤り訂正符号の訂正能力が高ければ高いほど耐性が強くなるのは明らかである。ただし、これらの手法は耐性を強くするが、画像の低周波成分を変化させたり、多くのビットを埋め込むために画像の品質が劣化する。また、多くのDCT係数を用いて同じビットを埋め込むために、埋め込めるビットは少なくなることが多い。また、逆の操作を行えば、耐性は弱くなるが、画質が良く、埋め込める情報量も多い電子透かし手法が実現できる。

[0032]

以上のような耐性を強化する手法は、DCTを用いる手法に限らず、ウェーブ レット変換やフーリエ変換を用いる手法や、直接画素の輝度値などを操作する手 法に対しても同じ傾向をもつと言える。

[0033]

次に、図1を参照して埋め込み手順を説明する。ここでは、共通の電子透かし方式によって埋め込む情報を、簡単のために00、01、10、11とし、各機関101~104を特定する2ビットの情報とするが、他の情報を設定することもできることは明らかである。

[0034]

各機関101~104は、配布されるデータに対して上記(1)~(4)の特徴をもつ耐性の強い共通透かし埋込装置105を用いて自機関に対応するビットを埋め込む。その後に各機関独自のA~D透かし埋込装置106~109を用いて他の情報を埋め込む。また、ある機関の電子透かし方式と共通の電子透かし方式とが干渉し合わない、即ち、電子透かし埋め込み処理によって共通の電子透かし情報に影響を与えない手法であれば、埋め込み順序は逆にすることもできる。また、各機関毎に埋め込む情報は異なっていても良いし、同じ情報でも良い。各機関毎に埋め込む情報としては、著作権情報や利用者情報及び識別情報など種々の情報であることが考えられる。

[0035]

図2は第1の実施の形態のうちの電子透かしの抽出に関する部分を示す。

図2において、200は統一的な1つの監視機関であり、201~204は図1の各機関101~104に対応する各機関毎の電子透かし監視機関である。統一監視機関200は、図1の共通透かし埋込装置105に対応する共通透かし抽出装置205を有し、各機関201~204は図1のA~D透かし埋込装置106~109に対応する各電子透かし方式によるA~D透かし抽出装置206~209を有している。210は各機関201~204をつなぐネットワークであり、図示はしないが各機関201~204は、このネットワーク210に接続する通信手段を有している。このネットワーク210は図1のネットワーク110と同じものでもよい。

[0036]

以下、図2における電子透かしの抽出手順を説明する。

統一的な機関200は、ネットワーク210で流通又は利用されているデータの監視を行う。ネットワーク上で不正コピーと思われるデータが発見又は通報された場合は、共通透かし抽出器205を用いて共通の電子透かしによる埋め込み情報を抽出する。これによって、埋め込みを行った機関又は方式を特定し、そのデータを特定された機関に送る。

[0037]

データを送られた機関は、各機関独自の電子透かし方式のA~D透かし抽出装置206~209を用いて埋め込んだ種々の情報を抽出する。

[0038]

本実施の形態によれば、異なる電子方式が混在して用いられるシステムにおいても、各監視機関は多くの方式による電子透かしの埋込部や抽出部を準備することなく、自分の電子透かし方式による埋込部や抽出部のみを管理すればよく、効率的に不正コピーの監視を実現することができる。

[0039]

また、透かしが発見できなかった場合の安全性も以下の理由により向上できる。即ち、埋め込んだ透かし情報が発見できなかった場合、そのデータには始めから透かし情報がなかったのか、他の方式によって透かしが埋め込まれているのか

、透かし情報が攻撃によって破壊されたのかを区別することは困難である。しか し、共通の電子透かし方式は耐性が強いので、透かし情報を攻撃によって破壊す ることは困難である。

[0040]

従って、最初の手順によって共通の電子透かしによる透かし情報が抽出された場合、始めから透かし情報が入っていなかった可能性は排除される。次に、各機関独自の電子透かし方式は任意であるが、詳細情報を埋め込む場合、埋め込む情報量が多くなり品質劣化の抑制を重視した比較的耐性の弱い電子透かし方式となる場合が多い。従って、共通の電子透かし方式による透かし情報の抽出後に各機関独自の電子透かし方式による透かし情報の抽出後に各機関独自の電子透かし方式による透かし情報が抽出できない場合は、攻撃による電子透かし情報の破壊であると言える。

[0041]

よって、このシステムによって各機関が単独に独白電子透かし方式を用いるよりも全体的な安全性が向上していることが言える。

尚、本実施の形態では4つの機関からなる例について説明したが、任意の数の 機関に対しても同様に実施できることは明らかである。

[0042]

(第2の実施の形態)

図3は、本発明の第2の実施の形態による情報処理システムにおける電子透かしの埋め込みに関する部分を示す。本実施の形態は、共通透かし埋込装置105 による埋め込みを、共通埋め込み機関300のみが行う場合である。

301~304は、図1の各機関101~104からそれぞれ共通透かし埋込装置105を除いた独自の電子透かし方式によるA~D透かし埋込装置106~109のみをもつ各機関であり、110はネットワークである。

[0043]

尚、共通埋め込み機関300としては、音楽著作物に対するJASRACのような統一的な著作権管理機関が考えられ、各機関301~304としては、共通埋め込み機関300によって管理されている著作物をユーザに販売する販売店のような形態が考えられるが、本実施の形態で特定するものではなく、共通で耐性

の強い電子透かし方式と各機関独自の電子透かし方式とを用途に応じて使い分ける手法は全て本発明に含まれる。

[0044]

この場合は各機関301~304(個々の著作者を含む)は、著作物を機関300に登録し、共通透かし埋込装置105による埋め込みを依頼する。機関300は共通の電子透かし方式によって所定の情報を埋め込み、各機関301~304に返信する。各機関301~304は、それぞれ独自の電子透かし方式によるA~D埋込装置106~109を用いて種々の情報を埋め込む。

[0045]

本実施の形態の第1の実施の形態に対する利点は次の通りである。

第1の実施の形態では、各機関が共通の電子透かし方式による埋め込みを行う ために、共通の電子透かし方式、及びその鍵は各機関に公開されている必要があ る。安全性のためには共通の電子透かし方式及び鍵は秘密にした方が良いが、各 機関の内の1つでもその秘密を守れなければ全体の安全性が保持できない。しか し、本実施の形態では、共通の電子透かし方式を各機関301~304に公開す る必要がないので安全性が向上する。

[0046]

また、第1の実施の形態と融合した形態も考えられる。例えば、図3において機関301と302は第1の実施の形態と同様に共通透かし埋込装置105をもつものとする。この場合、共通透かし埋込装置105を持たない機関303と304は本実施の形態と同様の処理を行うが、共通透かし埋込装置105をもつ機関101と102は共通の電子透かし方式による所定情報の埋め込みを第1の実施の形態のように自機関内で行うことができる。

[0047]

図4は第2の実施形態による情報処理システムにおける電子透かしの抽出に関する部分を示す。

図4において、400は統一的な1つの監視機関であり、共通透かし埋込装置105に対応する共通埋込装置205と、各機関独自の電子透かし方式によるA~D埋込装置106~109に対応するA~D抽出装置206~209を有する

。210はネットワークである。尚、図示していないが図1又は図3の各機関1 01~104又は301~304等がネットワーク210に接続されているもの とする。

[0048]

以下、図4における電子透かしの抽出手順を説明する。

機関400はネットワーク210で流通又は利用されているデータの監視を行う。ネットワーク上で不正コピーと思われるデータが発見又は通報された場合は、共通透かし埋込装置205を用いて共通の電子透かしによる埋め込み情報を抽出する。これによって、埋め込みを行った機関又は方式を特定する。次に、特定された機関独自の電子透かし方式の抽出装置を用いて埋め込んだ種々の情報を抽出する。

[0049]

本実施の形態によるシステムでは、1つの統一的な監視機関だけで不正コピーの監視が可能である。このような統一的な監視機関は、各機関独自の電子透かし方式が有限であれば実現可能である。また、共通の電子透かし方式によって各機関独自の電子透かし方式が特定されるので、試行錯誤的に各機関独自の電子透かし方式を試す必要がなく効率的である。

[0050]

ただし、統一監視機関は始めから全ての各機関独自の電子透かし方式を準備している必要はなく、共通の電子透かし方式による透かし情報によって埋め込み機関が特定されたときに、その機関に連絡して各機関独自の電子透かし方式の抽出手段及び鍵などを提供してもらうこともできる。

[0051]

(第3の実施の形態)

図5は図1及び図3に対応する電子透かしの抽出に関する部分を示す。

図5において、501~504は共通透かし埋込装置105に対応する共通透かし抽出装置205と、各機関独自の電子透かし方式によるA~D埋込装置106~109に対応するA~D抽出装置206~209を各々有する。

[0052]

以下、図5における電子透かしの抽出手順を説明する。

各機関501~504はネットワーク210で流通又は利用されているデータの監視を行う。ネットワーク上で不正コピーと思われるデータが発見又は通報された場合は、共通透かし抽出装置205を用いて共通の電子透かしによる埋め込み情報を抽出する。これによって、埋め込みを行った機関又は方式を特定し、自機関の方式と特定された場合は、自機関独自の透かし抽出装置により抽出を行う。他機関である場合は、状況に応じて通報又は破棄等の処理を行う。

[0053]

本実施の形態によるシステムでは、統一的な監視機関をもたずに不正コピーの 監視が可能である。このシステムは図1及び図3のどちらの埋め込みシステムに も対応可能である。また、図2、図4も図1及び図3のどちらの埋め込みシステムに ムにも対応可能であることは明らかである。

[0054]

また、図2、図4、図5を融合した形態も考えられる。例えば、第1の実施の形態の図2において、機関200は第2の実施の形態の機関300のように全てのA~D透かし抽出装置をもち、機関201と202は第3の実施の形態と同様に共通透かし抽出装置205をもつものとする。この場合、共通透かし抽出装置205をもたない機関203と204は第1の実施の形態と同様の処理を行うが、共通透かし抽出装置205を持つ機関300及び201と202は共通透かし抽出装置による透かし情報の抽出を第2、3の実施の形態のように自機関内で行うことができる。

以上を含めて、共通で耐性の強い電子透かし方式と各機関独自の電子透かし方式を用途に応じて使い分ける手法は全て本発明に含まれる。

[0055]

(第4の実施の形態)

図1、図3の埋め込みシステムにおいて、各機関はその埋込装置に対応する抽出装置を有し、埋め込み前に透かし情報の抽出検査を行う形態も可能である。

本実施の形態としては、上述の各実施の形態及びその組み合わせが考えられるが、ここでは図3に示した形態を例に図6を参照して説明を行う。

図6において、600は共通の埋め込み機関であり、共通透かし埋込装置105と、それに対応する共通透かし抽出装置205を有する。601~604は各機関独自の電子透かし方式によるA~D透かし埋込装置106~109と、それに対応するA~D透かし抽出装置206~209を有する機関である。

[0056]

• 193 4

各機関601~604(個々の著作者を含む)は著作物を機関600に登録し、共通透かし埋込装置105による埋め込みを依頼する。機関600は、共通透かし埋込装置105を用いる前に、共通透かし抽出装置205を用いてその著作物が不正コピーでないことを確認する。例えば、共通透かし抽出装置205によってその著作物に既に共通の電子透かしが埋め込まれていることが分かった場合は、依頼元又は透かし情報によって特定された機関に確認を行う。問題がなければ共通透かし埋込装置105によって所定の情報を埋め込み依頼元に返信する。依頼元は各機関独自の埋込装置106~109を用いて種々の情報を埋め込む。

[0057]

本実施の形態によるシステムによれば、依頼者の不正申告による電子透かしの 上書きなどを防ぐことができる。また、埋め込み機関と抽出機関を同じにして効 率的なシステムを実現することもできる。

[0058]

次に、本発明の他の実施の形態としての記憶媒体について説明する。

本発明は上記各実施の形態で説明したシステムや装置を組み合わせて行う場合のみに限定されるものではなく、上記システム又は装置内のコンピュータ(CP UあるいはMPU)に、上記各実施の形態を実現するためのソフトウエアのプログラムコードを供給し、このプログラムコードに従って上記システムあるいは装置のコンピュータが上記各種デバイスを動作させることにより、上記各実施の形態を実現する場合も本発明の範疇に含まれる。

[0059]

またこの場合、上記ソフトウエアのプログラムコード自体が上記各実施の形態の機能を実現することになり、そのプログラムコード自体、及びそのプログラムコードをコンピュータに供給するための手段、具体的には上記プログラムコード

を格納した記憶媒体は本発明の範疇に含まれる。

[0060]

このようなプログラムコードを格納する記憶媒体としては、例えばROM、RAM等の半導体メモリ、フロッピーディスク、ハードディスク、光ディスク、光 磁気ディスク、CD-ROM、磁気テープ、不揮発性メモリカード、を用いることができる。

[0061]

また、上記コンピュータが、供給されたプログラムコードのみに従って各種デバイスを制御することにより、上記各実施の形態の機能が実現される場合だけではなく、上記プログラムコードがコンピュータ上で稼働しているOS(オペレーティングシステム)、あるいは他のアプリケーションソフト等と共同して上記各実施の形態が実現される場合にも、かかるプログラムコードは本発明の範疇に含まれる。

[0062]

さらに、プログラムがコンピュータに接続された機能拡張ユニットに備わるメモリに格納された後、そのプログラムコードの指示に基づいてその機能拡張ボードや機能格納ユニットに備わるCPU等が実際の処理の一部又は全部を行い、その処理によって上記各実施の形態が実現される場合も本発明の範疇に含まれる。

[0063]

【発明の効果】

以上説明した通り、本発明によれば、異なる電子方式が混在して用いられるシステムにおいても、監視機関は多くの電子透かしの埋込装置や抽出装置を準備することなく、効率的に不正コピーを監視することができる。また、電子透かしが発見できなかった場合の安全性も各電子透かし方式単独に用いるよりも向上させることができる。

【図面の簡単な説明】

【図1】

本発明の第1の実施の形態による情報処理システムにおける電子透かしの埋め 込みに関する部分を示すブロック図である。

【図2】

本発明の第1の実施の形態による情報処理システムにおける電子透かしの抽出 に関する部分を示すブロック図である。

【図3】

本発明の第2の実施の形態による情報処理システムにおける電子透かしの埋め 込みに関する部分を示すブロック図である。

【図4】

本発明の第2の実施の形態による情報処理システムにおける電子透かしの抽出 に関する部分を示すブロック図である。

【図5】

本発明の第3の実施の形態による情報処理システムにおける電子透かしの抽出 に関する部分を示すブロック図である。

【図6】

本発明の第4の実施の形態による情報処理システムにおける電子透かしの埋め 込みと抽出に関する部分を示すブロック図である。

【図7】

電子透かしの埋込装置及び抽出装置を示すブロック図である。

【符号の説明】

- 101~104 監視機関
- 106~109 A~D透かし埋込装置
- 110 ネットワーク
- 200 統一的な監視機関
- 204~204 監視機関
- 205 共通透かし抽出装置
- 206~209 A~D透かし抽出装置
- 210 ネットワーク
- 300 共通埋め込み機関
- 301~304 監視機関
- 400 統一的な監視機関

特平11-093000

- 501~504 監視機関
- 600 共通埋め込み機関
- 601~604 監視機関
- 701 画像変換器
- 702 電子透かし埋め込み器
- 703 画像逆変換器
- 705 電子透かし抽出器

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【書類名】 要約書

【要約】

【課題】 種々の電子透かし方式に対して効率的に著作権の保護等を行えるようにする。

【解決手段】 各監視機関101~104は、配布される入力情報に対して共通透かし埋込装置105を用いて自機関に対応する耐性の強い情報を電子透かしとして埋め込む。その後、各機関独自の電子透かし方式にるA~D透かし埋込装置106~109を用いて他の情報を埋め込む。また、所定の監視機関がネットワーク上で不正コピーデータを発見したとき、共通透かし抽出装置を用いて上記共通透かし埋込装置による埋め込み情報を抽出する。これにより埋め込みを行った機関が特定され、そのデータを特定された機関に送る。その機関は、各機関独自の抽出装置を用いて埋め込んだ種々の情報を抽出する。従って、各機関は多くの方式による埋込装置や抽出装置を設けることなく、自分の方式による埋込装置や抽出装置のみを管理すればよい。

【選択図】 図1

出願人履歷情報

識別番号

[000001007]

1. 変更年月日 1990年 8月30日

[変更理由] 新規登録

住 所 東京都大田区下丸子3丁目30番2号

氏 名 キヤノン株式会社