Dual operational amplifier BA728 / BA728F / BA728N

The BA728, BA728F, and BA728N are ICs with two independently functioning operational amplifiers featuring internal phase compensation. These products offer a wide range of operating voltages, from 3 to 18V (\pm 1.5 to 9V) and are high-performance operational amplifiers which can be driven from a single power supply within the in-phase mode input range, including a negative power supply.

Applications

Ground sensing small-signal amplifiers

Control amplifiers requiring high phase margin, such as motor drivers

Amplifiers operated on low voltages

Capacitive loaded amplifiers

Features

- 1) Can be driven from a single power supply.
- 2) Low power.
- 3) Pin layout is the same as that of the generalpurpose 4558 operational amplifier.
- 4) When driven from a single power supply, the power supply voltage ranges from 3 to 18V.
- 5) When driven from a dual power supply, the power

supply voltage ranges from \pm 1.5 to \pm 9V.

- 6) Output is protected against short-circuits.
- Output block is operated as a class AB to minimize crossover distortion.
- 8) Low input bias current of 10nA (typ.).
- 9) Each package contains two operational amplifiers.
- 10) Internal phase compensation provided.

Block diagram

Internal circuit configuration

● Absolute maximum ratings (Ta = 25°C)

Dorometer	Symbol		l l=:t				
Parameter		BA728	BA728F	BA728N	Unit		
Power supply voltage	Vcc	18 (± 9)	18 (± 9)	18 (± 9)	V		
Power dissipation	Pd	800*	550*	550*	mW		
Differential input voltage	VID	Vcc	Vcc	Vcc	V		
Common-mode input voltage	Vı	- 0.3 ~ + Vcc	- 0.3 ~ + Vcc	- 0.3 ~ + Vcc	V		
Operating temperature	Topr	- 20 ~ + 75	- 20 ~ + 75	- 20 ~ + 75	°C		
Storage temperature	Tstg	- 55 ~ + 125	– 55 ~ + 125	- 55 ~ + 125	°C		

^{*} Refer to Pd characteristics diagram.

●Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = + 6V, VEE = - 6V)

Parameter		Symbol	Min.	Тур.	Max.	Unit	Conditions
Input offset voltage		Vio	_	2	10	mV	
Input offset current		lio	_	1	50	nA	
Input bias current		Ів	_	10	250	nA	
High-amplitude voltage gain		Av	86	100	_	dB	$R_L \ge 2k\Omega$
Common-mode input voltage		Vicм	4 ~ - 6	4.5 ~ - 6	_	V	
Maximum output voltage		Vом	± 3.0	± 4.5	_	V	$R_L \ge 2k\Omega$
Common mode rejection ratio		CMRR	70	90	_	dB	
Power supply voltage rejection ratio		PSRR	_	30	150	μV/V	
Slew rate		S. R.	_	0.7	_	V / μs	$A_V = 1$, $R_L = 2k\Omega$
Maximum frequency		f⊤	_	0.7	_	MHz	
Channel separation		cs	_	120	_	dB	
Maximum output current	source	Isource	_	20	_	mA	V _{IN} ⁺ = 1V, V _{IN} ⁻ = 0V
	sink	Isink	_	10	_	mA	$V_{IN}^{-} = 1V, V_{IN}^{+} = 0V$

^{*} The values for the BA728Fare those when it is mounted on a glass epoxy PCB (50mm \times 50mm \times 1.6mm).

Measurement circuits

Fig. 1 Channel separation measurement circuit

Electrical characteristic curves

Fig.2 Power dissipation vs. ambient temperature

Fig.3 Quiescent current vs. power supply voltage

Fig.4 Input bias current vs. power supply voltage

Fig.5 Open loop voltage gain vs. power supply voltage

Fig.6 Current control characteristics

Fig.7 Open loop voltage gain vs. frequency

Electrical characteristic curve

Fig.8 Maximum output voltage vs. frequency

Fig.9 Output response characteristics

Fig.10 Maximum output voltage vs. power supply voltage

Operation notes

(1)Unused circuit connections

If there are any circuits which are not being used, we recommend making connections as shown in Figure 11, with the non-inverted input pin connected to the potential within the in-phase input voltage range (VICM).

Fig.11 Unused circuit connections

External dimensions (Units: mm)

