CAP 5610: Machine Learning

Lecture 1: Introduction

Instructor: Dr. Gita Sukthankar Email: gitars@eecs.ucf.edu

Reference Materials From: GuoJun Qi, Fei Liu, Tom Mitchell

Agenda

- Course information
- Homework (financial aid): Machine Learning Research Interests
- Introduction to ML

Contact Info

- Office Hours: T 1:30-3:00pm, Th 10:00-11:30am in HEC 232 (but please send email as needed)
- TA: Neda Hajiakhoond Bidoki (hajiakhoond@knights.ucf.edu)

Prerequisites

- Undergraduate Al course (UCF: CAP 4630) OR
- Commensurate background in computer vision, pattern recognition, machine learning, statistics OR
- Online machine courses

You need to know the following:

- A programming language, preferably python
- Basic knowledge of probability/statistics, linear algebra, and calculus.

You can supplement your knowledge with online tutorials.

Textbook

- Recommended (Optional):
 - Machine Learning: An Algorithmic Perspective (2nd edition), Stephen Marsland, 2014
 - We will cover everything except Chap 5, 10,17, and 18
- Online References (Webcourses):
 - <u>Pattern Recognition and Machine Learning</u>, Chris Bishop, 2006
 - Machine Learning: A Probabilistic Perspective, Kevin Murphy, 2012
 - <u>Introduction to Deep Learning</u>, Goodfellow, Bengio, and Courville, 2016

Webcourses

- All lectures will be posted as pdfs and will form the major component of what appears on the exam.
- Make sure your email settings are correct so we can use webcourses to contact you as needed.

Evaluation

- Homework (45%): Machine Learning Implementation/Evaluation
 - Three homeworks (15%) each
 - Code plus written summary of results
- Midterm Exam (25%)
 - In class exam based on lecture slides with math problems and short answer questions
- Final Project (30%)
 - Literature survey on a machine learning topic OR
 - Technical report (CS conference paper):
 - Introduction, Problem Description, Method, Results, Conclusion
 - Presentations will take place during the final exam period (Dec 5, 10-1pm)
 - Most popular topic choices: variational auto encoders, GANs, deep RL

Grading Policy

- +/- grades are awarded
- Assignments should be submitted in a timely fashion via webcourses by midnight on the due date.
- Late assignments will be penalized by 25% per day.
 - Unpopular but necessary to help TA.
- You are expected to abide by UCF's plagiarism and cheating policies.
- Any code obtained from other sources must be documented appropriately.

Tips

- Pick a machine learning book that you like and start reading it.
 - If you prefer online blogs, those are great too!
- Start the homework assignments immediately; submit them in a timely fashion.
- Remember to study for the exam
- Pick a final project that interests you and plays to your strengths.
- Remember to allocate time to write your final paper and create your presentation.

Topics

- Machine learning training protocols and data preparation
- Simple supervised classifiers: k nearest neighbor and decision trees
- Naive Bayesian classifier
- Linear and logistic regression
- Support vector machine and kernel methods
- Neural networks and deep learning
- Unsupervised learning: clustering and PCA
- Reinforcement learning
- Model fitting and EM
- Ensemble learning

Topic list is standard to what you'll find in any statistical machine learning textbook:

- Plus the following:
- Reinforcement learning
- Probabilistic models
- Deep learning
- Applications

Research Interests

- Undergrad/masters/Ph.D.?
- CS vs. non CS?
- Completed online classes?
- Conducting research in machine learning?
- Research interests:
 - Computer vision/robotics
 - Natural language processing
 - · Social media data mining
 - Evolutionary algorithms
 - Medicine
 - Recommender systems/marketing/business
 - Other science/engineering

Machine Learning Research Interests

- Ungraded assignment used to document student engagement for financial aid
- Due Aug 27
- Submit 1-2 sentences describing your interest in machine learning (or why you decided to take the class)

What is machine learning?

What is machine learning?

<u>Herbert Simon</u>: "Learning is any process by which a system improves performance from experience."

<u>Arthur Samuel</u>: "Field of study that gives computers the ability to learn without being explicitly programmed."

<u>Tom Mitchell</u>: "Well-posed Learning Problem: A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E."

What can machine learning do?

A supervised learning task

Age: 23
FirstPregnancy: no
Anemia: no
Diabetes: no
PreviousPrematureBirth: no
Ultrasound: ?
Elective C-Section: ?
Emergency C-Section: ?

T. Mitchell's notes

Past experiences

• You already know some emergent (non-emergent) C-section cases

Machine learning aims to:

- Extract knowledge from the past experiences and predict information about the future cases
- Training set of examples: Past experience (labeled examples)
- **Test** set of examples: future cases to predict on (unlabeled examples)
- A **model** is trained from the training set, which summarizes the knowledge from the past experience

An example of the **model**

Rule-based model for predicting emergent C-section

```
If No previous vaginal delivery, and
Abnormal 2nd Trimester Ultrasound, and
Malpresentation at admission
Then Probability of Emergency C-Section is 0.6
```

Applying the model to predict information about the future case

Input and output

- Input: training set
 - Training set = $\{(x_i, y_i) | x_i \text{ is the data, } y_i \text{ is the label}\}$
- Output:
 - Model can be viewed as a function, which maps data x to label y
 y=h(x): X→Y
 - The set of all possible functions constitute hypotheses H={h|h:X->Y}
- test set = $\{(x_j, ?) | x_j \text{ the data whose label will be predicted by the trained model} \}$

Oracle function

- \bullet Assume we have an oracle function h_o which always outputs a correct prediction on an input data x
- Machine learning algorithms aim to find a function h from a set of hypotheses H to approximate this oracle function as well as possible

$$h^* = \min_{h \in H} E_{x \sim D} err(h(x), h_0(x))$$

where E denotes the expectation, D is the distribution of all possible examples in the real world, and err is a function measuring the discrepancy between the outputs from h and oracle function h_0 .

What's the challenge?

Ideal objective of machine learning algorithm

$$h^* = \min_{h \in H} E_{x \sim D} err(h(x), h_o(x))$$

• Solution: using training set to approximate the objective

$$E_{x \sim D} err(h(x), h_o(x)) \approx \frac{1}{n} \sum_{i=1}^{n} err(h(x_i), y_i)$$

How good is the approximation?

Using the sample mean to approximate the distribution mean

$$E_{x \sim D} err(h(x), h_o(x)) \approx \frac{1}{n} \sum_{i=1}^{n} err(h(x_i), y_i)$$

- The law of large number: the sample mean will approach to the distribution mean as n goes to infinity (asymptotically).
- Learning theory: quantifying the discrepancy between sample mean and distribution mean of error under a given number of training examples

Some notes

- We do not require that the oracle function must belong to hypothesis set H $y \neq h_o(x)$
- The training set may have noise
 - the output y of an input x may not be correct

Choose error/loss function

- Depending on the nature of output variable
 - Discrete value {0,1,...,C}: err(h(x),y) is 0 if h(x) and y is the same, or 1
 otherwise
 - Continuous value, squared difference $err(h(x),y)=(h(x)-y)^2$
 - Vector of continuous numbers, squared Euclidean distance err(h(x),y)

More examples

- Handwritten digit recognition (zip code)
 - MNIST (Mixed National Institute of Standards and Technology) dataset
 - 60,000 training examples: written by American census Bureau employees
 - 10,000 test examples: written by American high school students
 - recognizing the digits from 0 to 9.
- How good is machine learning algorithm on this task?
 - Best performance: 0.27% test error (better than human performance)

How to represent the data in computer?

• Data representation that can be processed by computer.

Age: 23

FirstPregnancy: no

Anemia: no Diabetes: YES

PreviousPrematureBirth: no Ultrasound: abnormal Elective C-Section: no

Emergency C-Section: ?

...

A table of attributes

Integer: 23

Boolean: No

Boolean: No

Boolean: YES

Boolean: No

Enumeration: Abnormal

Boolean: No

Feature extraction

• Data representation for hand-written digits

Pixel value: 0
Pixel value: 255
Pixel value: 255
Pixel value: 255
Pixel value: 255
Pixel value: 0
Pixel value: 0
Pixel value: 0

Feature vectors

Feature vector space

• Each point in the space represents a **feature vector** whose entry is an attribute of the data.

Principle of feature extraction

- Extracting features that are relevant to the defined task
 - MNIST pixel values in the image
 - Emergent C-section age, first pregnant, anemia,
- Domain knowledge
 - Image processing
 - Medicine

What machine learning cannot do

- Garbage in, garbage out
 - All features are completely irrelevant to the task, machine learning can do nothing for you.
- Good features play the key role in machine learning
 - Domain knowledge can be helpful in identifying features.
- Open source software makes it easy to implement machine learning algorithms but testing the algorithms requires more skill than implementing them.

- Face detection & recognition
- Object detection & recognition
- Speech recognition
- Webpage classification
- Spam email detection

•

Input: image

Output: face location

Where is the face?

From CMU face detection project

- Face detection & recognition
- Object detection & recognition
- Speech recognition
- Webpage classification
- Spam email detection

•

Input: face
Output: identity

Who is this?

From Yale face dateset

- Face detection & recognition
- Object detection & recognition
- Speech recognition
- Webpage classification
- Spam email detection

•

Localize and classify objects in image

From PASCAL VOC 2012 dataset

- Face detection & recognition
- Object detection & recognition
- Speech recognition
- Webpage classification
- Spam email detection

•

From speech to text

Input: cepstral coefficients
Output: words/sentences

- Face detection & recognition
- Object detection & recognition
- Speech recognition
- Webpage classification
- Email spam detection

•

Input: webpage caption, URL, keywords, incoming/outgoing links

Output: webpage category (company, personal, university)

- Face detection & recognition
- Object detection & recognition
- Speech recognition
- Webpage classification
- Email spam detection

•

Input: sender, length, keywords ...

Output: spam/nonspam

A simple machine learning algorithm

• K nearest neighbor (KNN)

A simple machine learning algorithm

• K nearest neighbor (KNN)

Given a test example x, its label is predicted as the most frequent label among K training examples nearest to x.

Test protocol (1)

- Typical setting: Split the data into training/test set
 - Apply the knowledge from training set to predict on the test set
 - Computing the prediction accuracy or error on the test set

Test protocol (2)

- When you have parameters to tune: split into training/validation/test sets
 - Tune the parameters of the algorithm on validation set (e.g., K in KNN)
 - Choose the parameters which give the best performance on validation set

Why not tune on training set?

- Overfitting problem
 - The goal of a machine learning model is to generalize to unseen data (test examples) to predict their performance
 - Tuning on training set runs risk of fitting the model too much to training examples, trapping the model to overemphasize past experience

Overfitting

Example extracted from T. Mitchell's slides

k-Fold Cross-Validation

Special case: Leave one out (LOO) cross-validation

Curse of Dimensionality

- Consider a variant nearest neighbor algorithm ε-nearest neighbor
 - Search for all training examples within a sphere of radius ϵ centered at test example x in D-dimensional feature vector space
 - Test example is predicted by majority voting among the training examples in this sphere

Curse of Dimensionality

• Assume all training examples are uniformly distributed in a hypercube of size r (we should have $2\epsilon < r$), how likely does a training example fall into the ϵ -sphere in D-dimensional space?

Volume of sphere
$$V_{\rm sphere} = \frac{2\varepsilon^D \pi^{D/2}}{D\Gamma(D/2)}$$

Volume of hypercube $V_{hypercube} = r^D$

The chance that an example falls into the sphere

$$\frac{V_{sphere}}{V_{hypercube}} \rightarrow 0$$
, as D goes to infinity.

(think about how the formula changes moving from 2D to 3D)

Curse of Dimensionality

- Exponential volume increase means that data sample becomes inadequate
- No training example will fall into the sphere neighborhood as dimensionality goes to infinity.
- Other explanations:
 - Euclidean distances become indiscernible as dimensionality goes big.
 - K. Beyer, J. Goldstein, R. Ramakrishnan, U. Shaft. (1999). "When is "Nearest Neighbor" Meaningful?". Proc. 7th International Conference on Database Theory ICDT'99.

Next Time

Review of probability theory and distributions

References to Read

All these references cover the same thing

- Chap 1-2: Marsland's Machine Learning
- Chap 1: Bishop's Pattern Recognition and Machine Learning
- Chap 1: Murphy's ML: Probabilistic Approach