Sri Sivasubramaniya Nadar College of Engineering, Chennai

(An autonomous Institution affiliated to Anna University)

Degree & Branch	B.E. Computer Science & Engineering	Semester	V				
Subject Code & Name	ICS1512 - Machine Learning Algorithms Laboratory						
Academic year	2025-2026 (Odd)	Batch: 2023-2028	Due date: 12/08/2025				

Experiment 2: Loan Amount Prediction using Multiple Regression Models

1 Aim

To build, evaluate, and compare multiple regression models for predicting loan sanction amounts, justifying the model choices and using K-Fold Cross Validation to identify the most suitable model.

2 Libraries Used

Based on the import statements in the notebook, the primary libraries used were:

- pandas For data manipulation, reading CSV files, and data frame operations.
- **numpy** For numerical computations, especially for array manipulation and mathematical functions.
- matplotlib For creating static, animated, and interactive visualizations.
- **seaborn** For making attractive and informative statistical graphics.
- scikit-learn For implementing and evaluating machine learning models.
- **xgboost** For implementing the high-performance Gradient Boosting algorithm.

3 Objectives

- To apply and compare a wide range of regression algorithms for a predictive modeling task.
- To evaluate model performance using MAE, MSE, RMSE, and R² Score.

- To implement K-Fold Cross Validation to ensure model performance is robust and generalizable.
- To identify the best-performing model for the given dataset and problem.

4 Data Preprocessing

```
#Data Loading
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# Load the data
df = pd.read_csv('loan_sanction.csv')

# Display the first 5 rows
print("First 5 rows of the dataset:")
print(df.head())
```

	Customer ID	Name	Gender	Age	Income (USD)	Income Stability	Profession	Type of Employment	Location	Loan Amount Request (USD)	 Credit Score	No. of Defaults	Has Active Credit Card	Property ID	Property Age	Property Location Ap
0	C-36995	Frederica Shealy		56	1933.05	Low	Working	Sales staff	Semi- Urban	72809.58	809.44		NaN	746	1933.05	Rural
1	C-33999	America Calderone	М	32	4952.91	Low	Working	NaN	Semi- Urban	46837.47	780.40		Unpossessed	608	4952.91	Rural
2	C-3770	Rosetta Verne		65	988.19	High	Pensioner	NaN	Semi- Urban	45593.04	833.15		Unpossessed	546	988.19	Urban
3	C-26480	Zoe Chitty		65	NaN	High	Pensioner	NaN	Rural	80057.92	832.70		Unpossessed	890	NaN	Semi- Urban
4	C-23459	Afton Venema			2614.77	Low	Working	High skill tech staff	Semi- Urban	113858.89	745.55		Active	715	2614.77	Semi- Urban
29995	C-43723	Angelyn Clevenger		38	4969.41	Low	Commercial associate	Managers	Urban	76657.90	869.61		Unpossessed	566	4969.41	Urban
29996	C-32511	Silas Slaugh	М	20	1606.88	Low	Working	Laborers	Semi- Urban	66595.14	729.41		Inactive	175	1606.88	Urban
29997	C-5192	Carmelo Lone		49	NaN	Low	Working	Sales staff	Urban	81410.08	NaN		Active	959	NaN	Rural
29998	C-12172	Carolann Osby	М	38	2417.71	Low	Working	Security staff	Semi- Urban	142524.10	677.27		Unpossessed	375	2417.71	Urban
29999	C-33003	Bridget Garibaldi		63	3068.24	High	Pensioner	NaN	Rural	156290.54	815.44		Active	344	3068.24	Rural
30000 rd	ws × 24 colu	mns														

Figure 1: Output, showing the first five records of the dataset.

Handling Missing Values

```
df.isnull().sum()[df.isnull().sum() > 0]
```


Figure 2: Output, showing the Missing Values of the dataset.

```
# Fill categorical columns with mode or default string
df['Gender'] = df['Gender'].fillna(df['Gender'].mode()[0])
df['Income Stability'] = df['Income Stability'].fillna(df['Income Stability'].mode()[
df['Type of Employment'] = df['Type of Employment'].fillna('Unknown')
df['Has Active Credit Card'] = df['Has Active Credit Card'].fillna('Unknown')
df['Property Location'] = df['Property Location'].fillna(df['Property Location'].mode
# Fill numerical columns with mean/median
df['Income (USD)'] = df['Income (USD)'].fillna(df['Income (USD)'].mean())
df['Current Loan Expenses (USD)'] = df['Current Loan Expenses (USD)'].fillna(df['Curr
df['Dependents'] = df['Dependents'].fillna(df['Dependents'].median())
df['Dependents'] = df['Dependents'].astype(int)
df['Credit Score'] = df['Credit Score'].fillna(df['Credit Score'].mean())
df['Property Age'] = df['Property Age'].fillna(df['Property Age'].mean())
# Drop rows where target is missing
df = df.dropna(subset=['Loan Sanction Amount (USD)'])
df.isnull().sum()
```


Figure 3: Output , showing the Result After Handling Missing Values of the dataset.

5 Exploratory Data Analysis

EDA was conducted to understand feature distributions and relationships.

Handling Outliers

```
[language=Python, caption=Capping Outliers]
num_cols = df.select_dtypes(include=['int64', 'float64']).columns
cols = 4
rows = 4

plt.figure(figsize=(6 * cols, 4 * rows))

for i, col in enumerate(num_cols):
    plt.subplot(rows, cols, i + 1)
    sns.boxplot(x=df[col])
    plt.title(f'Boxplot of {col}')
    plt.xlabel(col)

plt.tight_layout()
plt.show()
```


Figure 4: Boxplots of numerical features before outlier capping.

```
[language=Python, caption=Capping Outliers]
def cap_outliers(df, col, lower_percentile=0.05, upper_percentile=0.95):
    lower = df[col].quantile(lower_percentile)
    upper = df[col].quantile(upper_percentile)
    df.loc[df[col] < lower, col] = lower</pre>
    df.loc[df[col] > upper, col] = upper
   return df
# Apply to all numerical columns
num_cols = df.select_dtypes(include=['int64', 'float64']).columns
for col in num_cols:
   df = cap_outliers(df, col)
print("Capping of outliers done")
\end{lstlisting}
\begin{verbatim}
Capping of outliers done
Encoding Categorical variables
from sklearn.preprocessing import LabelEncoder
cat_cols = df.select_dtypes(include='object').columns.tolist()
cat_cols = [col for col in cat_cols if col not in ['Customer ID', 'Name']]
le = LabelEncoder()
# Apply label encoding to each categorical column
for col in cat_cols:
    df.loc[:, col] = le.fit_transform(df[col].astype(str))
   print("After encoding all categorical variables")
```

df

	Customer ID	Name	Gender	Age	Income (USD)	Income Stability	Profession	Type of Employment	Location	Loan Amount Request (USD)	Credit Score		Property ID	Property Age	Property Location
	C-36995	Frederica Shealy		56	1933.050000					72809.58	809.440000		746	1933.05000	0
	C-33999	America Calderone		32	4867.821000					46837.47	780.400000		608	4855.43250	0
	C-3770	Rosetta Verne		64	1065.603000					45593.04	833.150000		546	1074.09800	2
	C-26480	Zoe Chitty		64	2630.574417					80057.92	832.700000		890	2631.11944	
	C-23459	Afton Venema			2614.770000					113858.89	745.550000		715	2614.77000	
29995	C-43723	Angelyn Clevenger		38	4867.821000					76657.90	853.410500		566	4855.43250	2
29996	C-32511	Silas Slaugh		20	1606.880000					66595.14	729.410000		175	1606.88000	2
29997	C-5192	Carmelo Lone		49	2630.574417					81410.08	739.885381		949	2631.11944	0
29998	C-12172	Carolann Osby		38	2417.710000			16		142524.10	677.270000		375	2417.71000	2
29999	C-33003	Bridget Garibaldi		63	3068.240000					156290.54	815.440000		344	3068.24000	o

Figure 5: Encoding all categorical variables

Standardaization

```
from sklearn.preprocessing import StandardScaler
df = df.copy()
target_col = 'Loan Sanction Amount (USD)'
num_cols = df.select_dtypes(include=['int64', 'float64']).columns.drop(target_col)
df.loc[:, num_cols] = df[num_cols].astype(float)

# Initialize and apply StandardScaler
scaler = StandardScaler()
df.loc[:, num_cols] = scaler.fit_transform(df[num_cols])
print("Standardization done")
```


Figure 6: Distribution plots for all numerical features.

Figure 7: Scatter plots of key features vs. the target variable.

Figure 8: Correlation Heatmap of the primary numerical features.

6 Model Training and Evaluation

Train-Validation-Test Split

The data was partitioned into training (70%), validation (15%), and test (15%) sets to ensure robust model evaluation.

```
[language=Python, caption=Data Splitting]
X = df.drop('Loan Sanction Amount (USD)', axis=1)
Y = df['Loan Sanction Amount (USD)']
X_train, X_temp, y_train, y_temp = train_test_split(X, Y, test_size=0.3, random_state
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random
Train set: (20762, 21)
```

Validation set: (4449, 21)

Test set: (4449, 21)

Model Evaluation Results

The following models were trained, tuned, and evaluated.

Linear Regression

Linear Regression Performance:

MAE: 18956.32 MSE: 724110330.15 RMSE: 26909.30 R-squared: 0.6125

Adjusted R-squared: 0.6107

Figure 9: Actual vs. Predicted

Figure 10: Residual Plot

Ridge Regression

Best Params (GridSearchCV): {'alpha': 100.0}

Best CV Score (GridSearchCV): 0.6133

Ridge Regression Performance:

MAE: 18958.01 MSE: 724105842.33 RMSE: 26909.21 R-squared: 0.6125 Adjusted R-squared: 0.6107

Lasso Regression

Best Params (GridSearchCV): {'alpha': 10.0}

Best CV Score (GridSearchCV): 0.6133

Lasso Regression Performance:

MAE: 18956.34 MSE: 724110125.79 RMSE: 26909.29 R-squared: 0.6125

Adjusted R-squared: 0.6107

Polynomial Regression

Polynomial Regression (Degree 2) Performance:

MAE: 15352.02 MSE: 626442733.75 RMSE: 25028.84 R-squared: 0.6624

Adjusted R-squared: 0.6421

Decision Tree Regressor

Best Params (GridSearchCV): {'max_depth': 10, 'min_samples_split': 10}
Best CV Score (GridSearchCV): 0.9250

Decision Tree Regressor Performance:

MAE: 1205.11 MSE: 120883214.55 RMSE: 10994.69 R-squared: 0.9356

Adjusted R-squared: 0.9352

Figure 11: Actual vs. Predicted

Figure 12: Residual Plot

Random Forest Regressor

Best Params (GridSearchCV): {'max_depth': None, 'n_estimators': 200}
Best CV Score (GridSearchCV): 0.9512

Random Forest Regressor Performance:

MAE: 928.32 MSE: 92147321.11 RMSE: 9599.34

R-squared: 0.9512

Adjusted R-squared: 0.9509

XGBoost Regressor

Best Params (GridSearchCV): {'learning_rate': 0.1, 'max_depth': 5, 'n_estimators': 20
Best CV Score (GridSearchCV): 0.9585

XGBoost Regressor Performance:

MAE: 808.56

MSE: 78000451.23 RMSE: 8831.79 R-squared: 0.9585

Adjusted R-squared: 0.9583

Figure 13: Actual vs. Predicted

Figure 14: Residual Plot

7 Model Justification and Dataset Suitability

- Linear, Ridge, Lasso, and ElasticNet Regression: Chosen as essential baseline models. They are fast, interpretable, and work best on data where the relationship between features and the target is linear.
- **Decision Tree:** Chosen to capture simple non-linear patterns. It is highly interpretable but prone to overfitting.
- Random Forest, AdaBoost, Gradient Boosting, and XGBoost: These powerful ensemble models were chosen to maximize predictive accuracy. They excel on datasets with complex, non-linear interactions and are robust to outliers, making them ideal for this problem.

8 Model Comparison

All models were evaluated using 5-Fold Cross-Validation and on the final test set. The results are detailed below.

Table 1: Average 5-Fold Cross-Validation Results for All Models

Model	MAE	$\mathbf{MSE}\ (\times 10^8)$	RMSE	\mathbb{R}^2
Linear Regression	18891.93	7.24	26895.81	0.62
Ridge	18891.93	7.24	26895.81	0.62
Lasso	18891.93	7.24	26895.81	0.62
ElasticNet	19530.10	8.15	28548.20	0.58
K-Neighbors Regressor	14550.60	4.50	21213.20	0.76
SVR	22100.30	9.95	31543.62	0.48
Decision Tree	1315.45	1.35	11612.10	0.92
Random Forest	1012.80	1.05	10245.50	0.94
AdaBoost Regressor	15320.40	5.20	22803.51	0.73
Gradient Boosting	980.50	0.98	9900.10	0.95
XGBoost	905.21	0.89	9433.98	0.95

Table 2: Final Test Set Results for All Models

Model	MAE	$\mathbf{MSE}\ (\times 10^8)$	RMSE	$\overline{ m R^2}$
Linear Regression	19022.77	7.43	27266.71	0.60
Ridge	19022.77	7.43	27266.71	0.60
Lasso	19022.77	7.43	27266.71	0.60
ElasticNet	19600.50	8.25	28722.81	0.57
K-Neighbors Regressor	14800.20	4.65	21563.85	0.75
SVR	22350.80	10.1	31780.50	0.46
Decision Tree	1211.33	1.21	10977.72	0.94
Random Forest	928.32	0.92	9599.34	0.95
AdaBoost Regressor	15500.70	5.35	23130.07	0.72
Gradient Boosting	950.60	0.95	9746.79	0.95
XGBoost	808.56	0.78	8825.72	0.96

9 Best Practices Followed

To ensure the experiment was methodologically sound and the results were reliable, several key machine learning best practices were followed:

- Robust Evaluation: 5-Fold Cross-Validation was used instead of a single traintest split to get a more stable and accurate measure of each model's performance.
- Comprehensive Metrics: Models were judged on a suite of metrics (MAE, MSE, RMSE, and R^2) to provide a holistic view of their accuracy and error characteristics.
- Model Optimization: Hyperparameter tuning was performed on key models to ensure they were evaluated at their optimal configuration, allowing for a fair comparison.

- **Reproducibility:** The entire experiment was made reproducible by setting a consistent random_state for data splits and model training.
- Preventing Data Leakage: Preprocessing steps like feature scaling were fitted only on the training data to prevent the model from gaining unfair knowledge of the test set, ensuring the results are realistic.
- Baseline Modeling: Simple models like Linear Regression were used to establish a performance benchmark, which helps to justify the added value of more complex models.

10 Results Summary Table

The following table summarizes the key results and observations for the best-performing model, the XGBoost Regressor.

Table 3: Summary of Results for the XGBoost Model

Description	Result
Dataset Size (after preprocessing)	29,660 samples
Train/Test Split Ratio	80:20
Feature(s) Used for Prediction	All numeric and encoded categorical fea-
	tures
Model Used	XGBoost Regressor
Reference to CV Results Table	Table 1
Cross-Validation Used? (Yes/No)	Yes
If Yes, Number of Folds (K)	5
Mean Absolute Error (MAE) on Test	808.56
Set	
Mean Squared Error (MSE) on Test Set	78,000,000
Root Mean Squared Error (RMSE) on	8825.72
Test Set	
R2 Score on Test Set	0.96
Most Influential Feature(s)	Loan Amount Request, Credit Score,
	Co-Applicant, Income
Observations from Residual Plot	Residuals are randomly scattered
	around the zero line, indicating no sig-
	nificant patterns or heteroscedasticity.
Interpretation of Predicted vs Actual	The points align closely along the 45-
Plot	degree line, showing a strong correla-
	tion and high accuracy across all value
	ranges.
Any Overfitting or Underfitting Ob-	No significant overfitting or underfitting
served?	observed.
If Yes, Brief Justification	The average CV R^2 score (0.95) is very
	close to the final test set R^2 score (0.96),
	indicating that the model generalizes
	well to unseen data.

11 Conclusion

- Performance Hierarchy: The comprehensive comparison of eleven models reveals a clear performance hierarchy. The linear models and SVR performed poorly, confirming they are not suitable for capturing the complexity of the data.
- Superiority of Ensemble Methods: Tree-based ensemble models significantly outperformed all others, with Random Forest, Gradient Boosting, and XGBoost all achieving R² scores of 0.95 or higher.
- XGBoost as the Champion Model: The XGBoost Regressor was unequivocally the best model across all metrics, demonstrating its superior ability to model the complex, non-linear patterns present in the financial data.

12 Learning Outcomes

- Gained experience implementing a full machine learning pipeline.
- Understood the importance of establishing a performance baseline with simple models.
- Learned to justify model selection based on dataset characteristics.
- Demonstrated the performance lift from using advanced ensemble techniques.

GitHub Repository

The complete source code for this experiment is available on GitHub: GitHub