Fast Reactor Designing Study for Proliferation Resistance and Physical Protection Enhancement

Pedro Junior Vicente Valdez

SAGARA-Laboratory

Laboratory of Advance Nuclear Energy

Tokyo Institute of Technology Summer Program

Research Plan and Objectives

- MCNP4 particle transport code
 - Critical mass and heat content calculations
 - Neutron transport calculations
 - Nuclear material attractiveness methodology
- Research on fast spectrum reactor designing for Minor Actinides (MA) transmutation and for High Proliferation Resistance.
- Neutronics analysis of a Fast Spectrum Reactor core design:
 - Reactivity and burnup calculation by the combination of a 2-D deterministic code, SLAROM-JOINT-CITATION, for full scale fast spectrum core designing and performance evaluation
- Learning of the Plutonium (Pu) fuel cycle in Japan. This will include the research of the underlying physics of the Pu fuel cycle.

Important Definitions:

Proliferation Resistance

• is that characteristic of an NES that impedes the diversion or undeclared production of nuclear material or misuse of technology by the Host State seeking to acquire nuclear weapons or other nuclear explosive devices.

Physical Protection

 is that characteristic of an NES that impedes the theft of materials suitable for nuclear explosives or radiation dispersal devices (RDDs) and the sabotage of facilities and transportation by sub-national entities and other non-Host State adversaries.

Schematic diagram of an implosion bomb similar to the one designed by Trag-

Bare Critical Mass

Exercise 1: BCM of U-235 and Pu-239

Isotope	radius (cm)	k-eff
U-235	8.28	1.00054
Pu-239	4.96	1.00018

BCM U-235 = **45.29 kg** BCM Pu-239 = **10.12 kg**

—— Pu-239 —— U-235

Exercise 2: BCM of different U-enrichment

Mass density: U-metal 19.05 g/cc

Enrichment (wt%) BCM (kg) k-eff radius
0.70
0.72 - 0.43197
5 - 0.94089
10 4448 1.00092 38
20 815 0.99948 21
50 154 0.99907 12
100 46 1.00042 8

Exercise 3: BCM of different material forms of Uranium

Nuclide: U-235

Material form: U-Metal, UO2, (U,Zr)O2

Mass density: U-metal 19.05 g/cc, UO2 10.96gcc,

(U,Zr)O2 6.0g/cc, U:Zr=1:3 in atom

BCM U-Metal = **45.63 kg-U**, 45.63 kg-total

BCM UO2 = **92.44 kg-U**, 104.87 kg-total

BCM (U,Zr)O2 = 318.08 kg-U, 854.82 kg-total

Exercise 4: CM with reflector

Material: Pu239-Metal with reflector

Mass density: Pu-metal 19.80g/cc

Reflector: U-metal 19.05g/cc, Be-metal 1.85g/cc,

Graphite 2.10g/cc

CM Bare Pu = **10.12 kg-Pu**, 10.12 kg-total

CM Pu/U= 5.39 kg-Pu, 58.76 kg-total

CM Pu/Be= 4.92 kg-Pu, 9.92 kg-total

CM Pu/C= 5.72 kg-Pu, 11.74 kg-total

	Pu	Pu/U	Pu/Be	Pu/C
Radius	4.96	4.02/9.02	3.9/8.9	4.1/9.1
Capture CS	-	2.683	0.008603	0.0035

Exercise 5: Attractiveness

Material: bare Pu-Metal, Pu-239, Pu238

Mass density: Pu-metal 15.80g/cc

with delta-phase

Rossi-alpha:

$$\alpha = \frac{k-1}{l}$$

Isotope	Decay heat (W/kg)	SN (n/g/s)
²³⁸ Pu	567	2660
²³⁹ Pu	1.93	0.0226
²⁴⁰ Pu	7.06	1030
²⁴¹ Pu	3.4	0.0493
²⁴² Pu	0.12	1720

Isotope	radius (cm)	mass (kg)	k-inf	l (abs)	alphaN	decayN	ATTR	ATTR(N)
238	5.96	14.01	2.81324	1.27E-08	0.96	1.00000	0.9627619	0
239	6.22	15.93	2.95061	1.31E-08	1.00	0.00387	258.4596560	1
240	9.02	48.57	2.23078	4.57E-08	0.18	0.04316	4.1926093	0.012543
241	6.58	18.85	2.90547	1.23E-08	1.04	0.00807	129.1969948	0.498003
242	11.3	95.50	1.9642	7.68E-08	0.08	0.00144	58.5002960	0.223449

Exercise 6: Criticality Safety of Chemical Process in Pulse column

Material: Pu and U in solution

Mass density: Water solution, fix with 1.0g/cc

Pulse Column: Variable Diameter (cm), infinite column

Parameters: Pu density, U-Pu composition

受入れ・貯蔵	せん断・溶解	分 離	精 製 脱硝	製品貯蔵
キャスク	を を を を を を を を を を を を を を	(高レベル放射性廃棄物)	カラン 精製 ブルトニウム 精製	ウラン酸化物製品

Material Form	radius (cm)	k-eff
Pu(-0.2)	27.8	1.00095
Pu(-1.0)	13.4	0.99959
PuU (0.72/7.2)	21.44	0.99954
PuU (0.36/7.2)	28.75	1.00049
PuU (0.5/8)	25.18	1.00018

バルスカラムでは、シャフト部の上部から水杉(硝酸溶液)を、下部から有機杉(有機溶媒)を供給し、バルスレグから圧縮空気により脈動を与えながら両相を向流接触させる。脈動とシャフト部の分散板によって連続相中に分散科(液滴)を形成させ、両相間の物質移動効率をよりよくする。「抽出塔」を例にすると、上部から溶解液(硝酸溶液:水相)を供給し、下部から有機溶媒(有機相)を供給して、両相を向流接触させることによって溶解液中のウランとブルトニウムをほぼ全量有機溶媒中に抽出させることができる。

Japan Sodium-cooled Fast Reactor (JSFR)

Item	Unit	Specification
a. Plant		
Reactor thermal power	MW_{th}	3570
Coolant temperature (inlet/outlet)	$^{\circ}$ C	395/550
Fuel/colant/structure	vt.%	43.9/30.3/25.8
Subassembly pitch	mm	206.0
b. Fuel		
Fuel material		TRUO ₂ -UO ₂
Pu enrichment in HM (inner core/outer core)	wt.%	18.3/20.9
²³⁵ U enrichment	wt.%	0.2
Refueling patern		four-batch
Irradiation time per one batch	day	800
Core diameter/core height	m	5.38/1.0
c. Blanket		
Blanket fuel material		UO_2
²³⁵ U enrichment	wt.%	0.2
Pattern of fuel exchange		four-batch
Thickness of axial blanket (upper/lower)	m	0.2/0.2

(Sagara et al., 2005).

Core design approaches

Nuclide	Composition (wt%)
²³⁸ Pu	1.1
²³⁹ Pu	54.1
²⁴⁰ Pu	32.1
²⁴¹ Pu	4.3
²⁴² Pu	3.9
²³⁷ Np	0.5
²⁴¹ Am	2.0
²⁴³ Am	1.0
²⁴⁴ Cm	1.0

SLAROM-JOINT-CITATION

- SLAROM-UF
 - Cell homogenization calculation
 - Fast power reactor
 - Fast critical assembly
 - Using the Japanese Evaluated Nuclear Data Library (JENDL-3.2)
- JOINT-FR
- CITATION
 - Nuclear reactor core analysis code system
 - Neutron diffusion theory
 - Two-dimensional RZ diffusion theory
 - Depletion Chain
 - Multi-cycle analysis

Decay Chain

Pu-239 Isotopic Fraction remains high throughout cycle

Spontaneous Fission Rate Strategy (Pu-240)

Decay Heat Isotopic Barrier Strategy (Pu-238)

Initial Reactivity is mostly unchanged

Case	Initial K-eff	Change (%)
REF	1.0471084	-
No Blanket	1.0459388	0.11
Pu loading	1.0539622	-0.77
MA loading	1.0463084	0.73
PuMA loading	1.0510942	-0.46

Case	VRC	Change (%)	
REF	0.00022537	-	
No Blanket	0.00021632	-4.02	
Pu loading	0.00023405	8.20	
MA loading	0.00022602	-3.43	
PuMA loading	0.00023156	2.45	

Specifications and core characteristics

Item	Unit	HBC	Blanket Free	Pu Loading	Am/Cm Loading	Pu/MA Loading
a) Plant						
Axial Blanket Thickness (upper/lower)	cm	20/20	20/20	20/20	20/20	20/20
Breeding Ratio		1.12	1.04	1.07	1.09	1.08
Transmutation Rate	%	-	-	-	17.00	16.02
Initial Pu Fissile Inventory	[t/GWe]	9.395	9.395	10.446	9.392	10.095
Pu Reduction Ratio		-0.0874	-0.0393	-0.0565	-0.1027	-0.0720
Discharge Burnup						
Core	GWd/t	139.6	87.4	83.3	84.2	83.7
Total	GWd/t	52.0	59.2	52.0	52.0	52.0
Void Reactivity Coefficient		1.83E-04	1.67E-04	0.00E+00	1.87E-04	1.91E-04
Blanket TRU enrichment	[wt.%]	_	-	3	-	2
Blanket MA fraction	[wt.%]	-	-	-	5	2

Isotopic composition in discharged fuel

Item	HBC		Blanket Free		Pu Loading		Am/Cm Loading		Pu/MA Loading	
	Core + AB	RB	Core + AB	RB	Core + AB	RB	Core + AB	RB	Core + AB	RB
Pu isotopic composition (wt%)										
²³⁸ Pu	1.36	0.03	1.35	-	1.40	0.73	2.46	9.93	1.81	3.39
²³⁹ Pu	57.95	95.27	57.96	-	57.27	74.68	56.64	75.58	57.00	74.16
²⁴⁰ Pu	32.16	4.55	32.17	-	32.68	20.23	32.24	12.28	32.53	18.52
²⁴¹ Pu	4.67	0.00	4.67	-	4.72	0.02	4.62	0.00	4.68	0.02
²⁴² Pu	3.86	0.00	3.86	-	3.94	0.02	4.04	0.02	3.98	0.02
MA isotopic composition (wt%)										
²³⁷ Np	8.79	59.4	8.8	-	8.73	12.22	9.75	11.54	9.31	11.45
²³⁸ Np	0.01	0.0	0.0	-	0.01	0.00	0.01	0.00	0.01	0.00
²³⁹ Np	1.54	36.9	1.6	-	1.39	2.44	0.57	0.09	0.90	0.24
²⁴¹ Am	38.52	3.5	38.5	-	39.63	50.68	38.19	42.12	38.70	42.31
^{242m} Am	2.36	0.0	2.3	-	2.35	1.30	2.09	1.20	2.21	1.30
²⁴² Am	0.01	0.0	0.0	-	0.01	0.00	0.01	0.00	0.01	0.00
²⁴³ Am	22.04	0.0	22.0	-	21.83	17.54	21.20	22.04	21.42	21.58
²⁴² Cm	1.82	0.1	1.8	-	1.76	0.76	1.24	0.55	1.45	0.61
²⁴³ Cm	0.32	0.0	0.3	-	0.30	0.05	0.21	0.04	0.25	0.05
²⁴⁴ Cm	20.68	0.0	20.7	-	20.26	13.77	23.16	20.85	22.05	20.71
²⁴⁵ Cm	3.40	0.0	3.4	-	3.27	1.18	3.24	1.52	3.31	1.68
²⁴⁶ Cm	0.51	0.0	0.5	_	0.46	0.04	0.34	0.05	0.40	0.06

Research Laboratory Visit

Tsuruga, Fukui Prefecture

Fast-Spectrum Reactor Characteristics

- Sodium Cooled
- MOX-fueled
- Loop-type
- 280 MWe and 714 MWt
- Breeding ratio of 1.2
- Currently undergoing decommissioning process

Fugen Nuclear Power Station, JAEA-4

Advanced Thermal Reactor

- 165 MWe (557 MWt)
- Demonstration reactor
- Pressure Tube Type Core
- Heavy Water Moderator
- Boiling Light Water Coolant

