RNASeq analysis tutorial

Andrea Tangherloni
Department of Computing Sciences, Bocconi University
andrea.tangherloni@unibocconi.it

Normalization

Normalization is the process of scaling raw count values to account for the "uninteresting" factors

RNA expression ("interesting")

Other factors ("uninteresting")

Normalization

- Normalization is essential for differential expression analysis
- O It can also be fundamental for exploratory analyses
 - Data analysis
 - Data visualization
 - Whenever you are exploring or comparing counts between or within samples

Sequencing depth

Necessary for comparing gene expression between different samples

Gene length

Necessary for comparing expression between different genes within the same sample

RNA composition

- Necessary for accurate comparison of expression between samples
- Particularly important
 when performing
 differential expression
 analyses

Sample A Reads

Sample B Reads

Common normalization methods

- There are different normalization methods that can be used to account for the previous issues
 - Counts per million (CMP)
 - Transcripts per kilobase million (TMP)
 - Reads/fragments per kilobase of exon per million reads/fragments mapped (RPKM/FPKM)
 - DESeq2's median of ratios
 - EdgeR's trimmed mean of M values (TMM)

Common normalization methods

Method	Description	Accounted factors	Recommendations for use
СРМ	Counts scaled by total number of reads	Sequencing depth	Gene count comparisons between replicates of the same sample group; NOT for within sample comparisons or DE analysis
ТРМ	Counts per length of transcript (kb) per million reads mapped	Sequencing depth and gene length	Gene count comparisons within a sample or between samples of the same sample group; NOT for DE analysis
RPKM/FPKM	Similar to TPM	Sequencing depth and gene length	Gene count comparisons between genes within a sample; NOT for between sample comparisons or DE analysis
DESeq2	Counts divided by sample-specific size factors determined by median ratio of gene counts relative to geometric mean per gene	Sequencing depth and RNA composition	Gene count comparisons between samples and for DE analysis; NOT for within sample comparisons
EdgeR	Uses a weighted trimmed mean of the log expression ratios between samples	Sequencing depth, RNA composition, and gene length	Gene count comparisons between and within samples and for DE analysis

DESeq2-normalized counts

- For differential expression analysis, we compare the counts between sample groups for the same gene
 - Gene length does not need to be accounted
 - Sequencing depth and RNA composition must be considered
- DESeq2 uses the median of ratios method
 - Create a pseudo-reference sample
 - Calculate the ratio of each sample to the reference
 - Calculate the normalization factor for each sample
 - Calculate the normalized count values

© For each gene, a **pseudo-reference sample** is created that is equal to the **geometric mean** across all samples

Gene	Sample A	Sample B	pseudo-reference sample (PRS)
gene_1	1489	906	sqrt(1489 * 906) = 1161.5
gene_2	22	13	sqrt(22 * 13) = 17.7
	•••	•••	•••

For every gene in a sample, the ratios (sample/ref) are calculated

Gene	Sample A	Sample B	PRS	ratio of sample A/ref	ratio of sample B/ref
gene_1	1489	906	1161.5	1489/1161.5 = 1.28	906/1161.5 = 0.78
gene_2	22	13	16.9	22/16.9 = 1.30	13/16.9 = 0.77

- The **median value** (column-wise) of **all ratios** for a given sample is used as the **normalization factor** (size factor) for that sample sample 1/pseudo-reference sample
- The median ratio
 - Sample A = 1.29
 - Sample B = 0.775

- The median of ratios method assumes that not ALL genes are differentially expressed
 - The normalization factors should account for sequencing depth and RNA composition of the sample
 - Large outlier genes will not represent the median ratio values
- This method is robust to the imbalance in up-/down-regulation and large numbers of differentially expressed genes

This step is performed by dividing each raw count value in a given sample by that sample's normalization factor

Gene	Sample A	Sample B	Normalized Sample A	Normalized Sample B
gene_1	1489	906	1489 / 1.29 = 1154.26	906 / 0.775 = 1169.03
gene_2	22	13	22 / 1.29 = 17.05	13 / 0.775 = 16.77
	···	•••	•••	•••

Variance stabilization

- PCA is used to visualize the differences (i.e., distances) between samples and how it relates to the experimental design
 - Samples from the same experimental condition should group together if the observed variability in the data relates to the experimental design
- Genes from biological replicates (i.e., samples of the same experimental condition) should behave similarly and result in similar sample scores

Variance stabilization

- O In RNA-Seq data, the gene variance is proportional to the gene mean
 - The higher the gene mean is, the more variance it has
 - Genes with a low abundance (low counts) also suffer from a somehow inflated variance

Variance stabilization

- A variance-stabilizing transformation (VST) is a monotonous mapping such that for the transformed values
 - The variance is (approximately) independent of the mean

