

Improving clinical decisions in cancer

Graph NN LAB

Marta Lovino, PhD 2023/2024

marta.lovino@unimore.it October 12th, 2023

Useful material

Start practicing with Graph NN implementation with these notebooks:

Introduction

https://colab.research.google.com/drive/1h3-vJGRVIoF5zStxL5I0rSy4ZUPNsjy8#scrollTo=NgcpV4rjAWy-

Node classification

https://colab.research.google.com/drive/14OvFnAXggxB8vM4e8vSURUp1TaKnovzX#scrollTo=9r_VmGMukf5R

Graph classification

https://colab.research.google.com/drive/118a0DfQ3fl7Njc62_mVXUlcAleUclnb#scrollTo=qeORu4Zrs8Zy

Lab assignment

Implement a GNN to classify breast cancer patients in LUMINAL A / Luminal B

- 1. Each network node corresponds to a patient
- 2. Node feature vector is the entire gene expression profile of the patient
- 3. Node label is the patient class (Luminal A/ Luminal B)
- 4. Edges are not provided; you must compute them using the Pearson correlation coefficient.

E.g., x_{ij} = corr (feat_vector_node_i, feat_vector_node_j)

- 5. Aim: predict patient node labels using a GNN
- 6. Are the performances better or worse compared to an MLP classifier?

Course Folder

You are encouraged to share your scripts on the course folder, to receive comments and feedback from colleagues and instructors.

https://drive.google.com/drive/folders/1ynFYoc3xicaYhSi1X62w9k_JAj2fUrox?usp=sharing

Please upload your solutions with the proper naming:

e.g., LAB3_SURNAMEName

Questions?

Better a stupid question in class than a stupid answer in the exam

