射影加群は自由加群の直和因子

1

1.1

注意 1.1. 本文中の加群は環R上のものとする.

定義 1.2. (短完全系列の分裂). 加群の短完全系列

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0$$

は, Im f = Ker g が B の直和因子であるときに分裂するという.

命題 1.3. 加群の短完全系列

$$0 \longrightarrow A \stackrel{i}{\longrightarrow} B \longrightarrow C \longrightarrow 0$$

は、準同型 $j: B \to A$ で $j \circ i = id$ を満たすものが存在するならば、分裂する.

証明. 実際, $B=\operatorname{Im} i \oplus \operatorname{Ker} j$ であることを確かめる. 任意の $b \in B$ に対して $i \circ j(b) \in \operatorname{Im} i, b-i \circ j(b) \in \operatorname{Ker} j$ ととれば, $b=i \circ j(b)+b-i \circ j(b)$ であるので, B は $\operatorname{Im} i, \operatorname{Ker} j$ の和空間である. また, $i(a) \in \operatorname{Im} i, b \in \operatorname{Ker} j$ に対して

$$i(a) + b = 0$$

であるならば, $0 = j \circ i(a) + j(b) = a + 0 = a$ より, i(a) = 0 であることがわかり, それによって b = 0 であることもわかる. 従って, 直和である.

注意 **1.4.** 前述の証明をなぞると、 $B \xrightarrow{i} A \xrightarrow{j} B$ は $j \circ i = \mathrm{id}_B$ であれば、 $B = \mathrm{Im}i \oplus \mathrm{Ker}j$

定義 1.5. (射影加群). 加群 P は、任意の加群 B,A と全射準同型 $g:B\to A$ と準同型 $f:P\to A$ に対して 準同型 $h:P\to B$ で $g\circ h=f$ をみたすものが存在する時に、射影 (的) 加群という.

命題 1.6. 射影加群 P は自由加群の直和因子である.

証明. P を集合と見做したときの形式的有限和 $\sum_{\text{fill}} r_i a_i \quad (r_i \in R, a_i \in P)$ 全体により自然に定まる自由加群を F(P) とする. 明らかに F(P) から P への全射準同型が存在するのでそれを g で表すことにする. P は射影的加群なので, $g \circ h = \mathrm{id}_P$ を満たす準同型 $h: P \to F(P)$ が存在する. 従って, 図式

$$P \stackrel{h}{\longrightarrow} F(P) \stackrel{g}{\longrightarrow} P$$

は $g \circ h = \mathrm{id}_P$ を満たすので, $F(P) = \mathrm{Im}h \oplus \mathrm{Ker}g \simeq P \oplus \mathrm{Ker}g$