Random Matrix Theory

April 1, 2025

Preliminaries

Let ξ_{ij}, η_{ij} be normal random variables (i.e. Gaussian, mean 0, variance 1).

e.g.
$$\mathbb{P}(\xi_{11} < s) = \int_{-\infty}^{s} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$
.

$$\int_{-\infty}^{\infty} x^2 \cdot \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$
 is the variance.

 $\frac{1}{\sqrt{2\pi}}e^{-x^2/2}$ is the Probability Density Function (PDF).

 $\frac{1}{\sqrt{2\pi}}e^{-x^2/2}\,dx$ is the probability measure on our probability space (i.e. totally finite measure space). We build matrices

$$\begin{bmatrix} \xi_{11} & \frac{\xi_{12} + i\eta_{12}}{\sqrt{2}} & \frac{\xi_{13} + i\eta_{13}}{\sqrt{2}} & \cdots \\ \frac{\xi_{21} + i\eta_{21}}{\sqrt{2}} & \xi_{22} & \frac{\xi_{22} + i\eta_{22}}{\sqrt{2}} \\ \frac{\xi_{31} + i\eta_{31}}{\sqrt{2}} & \frac{\xi_{32} + i\eta_{32}}{\sqrt{2}} & \xi_{33} \\ \vdots & & \ddots \end{bmatrix}$$

Computing Random Matrices in Matlab

Gassuain, real valued 1x1 matrix.

1.472038790162054

Gaussian, real valued 2x2 matrix.

-0.7151347737777703 2.554608872047015 1.061153666892094 -0.4894993627612058

Gaussian, complex valued 2x2 matrix.

0.9289825830129438-0.4813485333930206i 0.9662134522578358-0.4294592473872408i 0.5408810406545974+0.03634893478821161i -1.712789776568709-0.6297486061153271i

Gaussian, complex valued, self-adjoint 2x2 matrix.

Note that appending 'to a matrix takes the conjugate transpose, and matlab reserves i for the imaginary unit.

-0.01880611454872252+0i -0.2653045793341844+2.032048899446623i

-0.2653045793341844-2.032048899446623i 0.4961821165653084+0i

Producing eigenvalues.

ans =

-1.8312

0.2405

Running tests to see how many hits we get within the interval [0,2]. Note that matlab uses histcounts rather than histc.

1

Homework

Is the PDF of $\frac{a+b}{2}$ the same as $\frac{\xi_{12}}{\sqrt{2}}$ for normal RVs a,b,ξ_{12} ? i.e. $\mathbb{P}\left(\frac{a+b}{2} < s\right) \stackrel{?}{=} \left(\mathbb{P}\frac{\xi_{12}}{\sqrt{2}}\right)$

2x2 Random Matrix

Our matrix L corresponds to eigvenvalues λ_1, λ_2 which are random variables determined by $\{\xi_{ij}, \eta_{ij}\}$. Then the number of evaulations in the interval B is given by $\sum_{j=1}^{2} \chi_B(\lambda_j)$. We may take the average by

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \sum_{i=1}^{2} \chi_{B}(\lambda_{j}) \frac{1}{\sqrt{2\pi}} e^{-\xi_{11}^{2}} \cdot \frac{1}{\sqrt{2\pi}} e^{-\xi_{22}^{2}} \cdot \frac{1}{\sqrt{2\pi}} e^{-\xi_{12}^{2}} \cdot \frac{1}{\sqrt{2\pi}} e^{-\eta_{12}^{2}} d\xi_{11} d\xi_{22} d\xi_{12} d\eta_{12}.$$

Expected Evaluations

We have that the expecation of the number of evaluations in the interval (a,b) is given by $\int_a^b G(s) \ ds$ where

$$G(s) = e^{-\frac{s^2}{2}} \sum_{\ell=0}^{2} P_{\ell}(s)^2$$

and $P_{\ell}(s)$ is the Hermite polynomial of degree d.