Chapitre 23 : Séries

1 Généralités

Définition

Définition 1.1. Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}$

On dit que <u>la série $\sum u_n$ converge</u> si la suite $\left(\sum_{k=0}^n u_k\right)_{n\in\mathbb{N}}$ converge, et qu'elle <u>diverge</u> sinon.

- * Le nombre $\sum_{k=0}^{n} u_k$ est la <u>n-ième somme partielle</u> de la serie.
- * Le nombre u_n est le <u>terme général</u> de la série.
- * Si la série converge, la <u>somme</u> de la série est $\sum_{n=0}^{+\infty} u_n = \lim_{n \to +\infty} \sum_{k=0}^{n} u_k$

Proposition 1.2 (Linéarité de la somme). Soit $\sum_{n} u_n$ est $\sum_{n} v_n$ deux séries convergentes.

Alors $\sum_{n} (u_n + \lambda v_n)$ converge pour tout $\lambda \in \mathbb{C}$ et

$$\sum_{n=0}^{+\infty} (u_n + \lambda v_n) = \sum_{n=0}^{+\infty} +\lambda \sum_{n=0}^{+\infty} v_n$$

Définition 1.3. Soit $\sum_{n} u_n$ est une série convergente.

Le <u>*n*-ième reste</u> de la série est la somme $\sum_{k=n+1}^{+\infty} u_k$

Proposition 1.4. La suite des restes d'une série convergente converge vers 0.

Divergence grossière 1.2

Proposition 1.5. Soit $\sum_{n} u_n$ une série convergente.

Alors
$$u_n \xrightarrow[n \to +\infty]{} 0$$

Critère spécial des séries alternées

Théorème 1.6. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle :

- * décroissante

* telle que $u_n \xrightarrow[n \to +\infty]{} 0$ Alors la série $\sum_n (-1)^n u_n$ converge.

Séries à termes positifs 2

Définition 2.1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs réelles positives.

On dit alors que $\sum u_n$ est <u>une série à termes positifs</u> (SÀTP)

Théorèmes de comparaison

Théorème 2.2. Soit $\sum\limits_n u_n$ est $\sum\limits_n v_n$ deux SÀTP telles que $u_n \leq v_n$ àpcr. Alors $\sum\limits_n v_n$ converge $\Longrightarrow \sum\limits_n u_n$ converge.

Corollaire 2.3.

- * Soit $\sum_{n} u_n$ et $\sum_{n} v_n$ deux SÀTP telles que $u_n = \bigcup_{n \to +\infty} (v_n)$ Alors $\sum_{n} v_n$ converge $\implies \sum_{n} u_n$ converge.
- * C'est en particulier le cas si $u_n \underset{n \to +\infty}{\sim} v_n$ ou si $u_n = \underset{n \to +\infty}{\mathsf{o}} (v_n)$

2.2 Comparaison série-intégrale

Théorème 2.4 (Comparaison série/intégrale, cas décroissant). Soit $f: \mathbb{R}_+^* \to \mathbb{R}$ décroissante et continue par morceaux.

Alors pour tout $n \in \mathbb{N}^*$

$$\int_{1}^{n+1} f \le \sum_{k=1}^{n} f(k) \le \int_{1}^{n+1} f + f(1) - f(n+1)$$

Théorème 2.5. Soit $f: \mathbb{R}_+ \to \mathbb{R}$ continue par morceaux et croissante.

Alors pour tout $n \in \mathbb{N}$

$$\int_{0}^{n+1} f - (f(n+1) - f(0)) \le \sum_{k=0}^{n} f(k) \le \int_{0}^{n+1} f$$

Théorème 2.6 (Série de Riemann). Soit $\alpha \in \mathbb{R}$

Alors la série $\sum_{n} \frac{1}{n^{\alpha}}$ converge ssi $\alpha > 1$

Remarque: On définit le fonction zêta de Riemann

$$\zeta: \begin{cases}]1, +\infty[\to \mathbb{R} \\ s \mapsto \sum_{n=1}^{+\infty} \frac{1}{n^s} \end{cases}$$

Par exemple, $\zeta(s) = \frac{\pi^2}{6}$, $\zeta(4) = \frac{\pi^4}{90}$

Remarque : On définit le *n*-ième nombre harmonique $H_n = \sum_{k=1}^n \frac{1}{k}$

La démonstration du théorème précédent donne

$$H_n = \ln(n) + o(1)$$

Plus précisément

$$H_n = \ln(n) + \gamma + o(1)$$

avec
$$\gamma = \lim_{n \to +\infty} H_n - \ln(n)$$

3 Séries absolument convergentes

3.1 Convergence

Définition 3.1. Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}$

On dit que $\sum_{n} u_n$ converge absolument si $\sum_{n} |u_n|$ converge.

Théorème 3.2. Soit $\sum_{n} u_n$ une série (de terme général complexe) absolument convergente.

Alors $\sum_{n} u_n$ converge.

Théorème 3.3. Soit $\sum_{n} u_n$ et $\sum_{n} v_n$ deux séries à valeurs complexes.

Si $u_n = O(v_n)$ et que $\sum_n v_n$ converge absolument, alors $\sum u_n$ converge absolument.