Physik 1 (PH1-B-REE1)

Michael Erhard

10. Impuls(*)

(*) Der Alltagsgebrauch des Wortes "Impuls" suggeriert eine Kurzzeit-Größe, vgl. impulsiv …, das ist im physikalischen Kontext teilweise irreführend! Englisch: *Momentum.*

10.1 Definition Impuls

Der **Impuls** einer Masse ist definiert durch

$$\underline{p} = m\,\underline{v}$$

Einheit
$$[p] = \frac{\text{kg m}}{\text{s}} = \text{N s}$$

Impulsänderung

Aus dem 2. Newtonschen Axiom folgt (konstante Masse)

$$\dot{p} = m\,\underline{\dot{v}} = m\,\underline{a} = \underline{F}$$

 $\dot{p}=m\,\dot{\underline{v}}=m\,\underline{a}=\underline{F}$ Kraft = Impulsänderung pro Zeit

Oder bei gegebener Kraft berechnet sich der Impuls zu

$$\underline{p}(t) = \underline{p}(0) + \int_{0}^{t} \underline{F}(\tilde{t}) \, d\tilde{t}$$

10.1 Impulsänderung

Die Impulsänderung ist das Integral unter der Kraft-Zeit-Kurve

Rechnet man mit einer Zeitspanne und konstanter (durchschnittlichen) Kraft, gilt

$$F = \underline{F}_0 \Delta t \qquad \text{(mit)} \qquad \underline{F}_0 = \frac{1}{\Delta t} \int_0^{\Delta t} \underline{F}(\tilde{t}) \, \mathrm{d}\tilde{t}$$

10.1 Beispiel Impuls(änderung)

Aufgabe 1: Ein Hammer (500g) trifft mit 5m/s auf einen Nagel.

- a) Wie groß ist der Impuls vor dem Auftreffen?
- b) Wie groß ist die durchschnittliche Kraft auf den Nagel, wenn der Hammer in 5ms abgebremst wird?

10.2 Stoßprozesse

Ein **Stoß** ist eine (i.d.R. kurze) Wechselwirkung zwischen zwei Körpern, wir interessieren uns nur für die Zustände vor und nach dem Stoß.

10.2 Impulserhaltung

Für ein abgeschlossenes System von Massen (keine externen Kräfte) gilt **Impulserhaltung**, d.h.

$$\sum_{i} \underline{p}_{i} = \sum_{i} m_{i} \, \underline{v}_{i} = \text{const}$$

- Die Impulse der einzelnen Massen können sich ändern, der Gesamtimpuls bleibt konstant.
- Dieser Erhaltungssatz folgt direkt aus dem ersten Newtonschen Axiom (actio=reactio).
- Nützlich für viele Berechnungen, wo die konkrete Wechselwirkung nicht von Interesse ist.

10.2 Beispiel Impulserhaltung

Aufgabe 2: Astronaut 1 (75kg) wirft Astronaut 2 (99kg) einen 1kg schweren Ball mit 3m/s zu. Beide befinden sich anfänglich in Ruhe.

- a) Mit welcher Geschwindigkeit bewegt sich Astronaut 1 nach dem Wurf?
- b) Welche Geschwindigkeit hat Astronaut 2 nach dem Fangen des Balls?

10.2.1 Unelastischer Stoß

Unelastischer Stoß auf einer Geraden

Impulserhaltung

$$m_1 v_1 + m_2 v_2 = (m_1 + m_2)v'$$

$$\Rightarrow v' = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$$

Stoßpartner bewegen sich nach dem Stoß gemeinsam mit gleicher Geschwindigkeit v^\prime weiter.

Die Gesamtsumme der kinetischen Energien ist nicht erhalten,

ein Teil wird durch den Stoß i.d.R in Wärme umgewandelt.

Beispiele: Fangen eines Balles, Kollisionen von Fahrzeugen (Verkehrsunfälle)

Demo inelastischer Stoß auf LKB

10.2.2 Elastischer Stoß

Elastischer Stoß auf einer Geraden

Es gilt:

- Impulserhaltung
- Die Gesamtsumme der kinetischen Energien vor und nach dem Stoß ist erhalten.

Stoßpartner bewegen sich nach dem Stoß *getrennt* weiter.

Stoßmechanismus: elastische Verformung, d.h. kurzzeitige reversible Umwandlung in potentielle Energie (vgl. Feder).

Beispiel: Billardkugeln

10.3 Berechnung des elastischen Stoßes

Demo elastischer Stoß auf LKB

An Tafel

Herleitung der Formeln

10.3 Energieübertrag bei elastischem Stoß

Bei welchem Massenverhältnis wird die maximale Energie übertragen?

Berechne Energie von Stoßpartner 2 nach Stoß

$$E_2' = \frac{m_2}{2}v_2'^2 = \frac{m_2}{2} \left(\frac{(m_2 - m_1)v_2 + 2m_1v_1}{(m_1 + m_2)}\right)^2 = \frac{4m_1^2v_1^2m_2}{2(m_1 + m_2)^2}$$

$$= \underbrace{\frac{m_1v_1^2}{2}}_{E_1} \left(\frac{4m_1m_2}{(m_1 + m_2)^2}\right)$$

Bestimme Maximum
$$\frac{\mathrm{d}E_2'}{\mathrm{d}m_2} \stackrel{!}{=} 0 \quad \Rightarrow \quad \frac{m_1v_1^2}{2} \left(\frac{4m_1}{(m_1 + m_2)^2} - \frac{8m_1m_2}{(m_1 + m_2)^3} \right) = 0$$

$$4m_1(m_1 + m_2) - 8m_1m_2 = 0 \quad \Rightarrow \quad m_2 = m_1$$

17

10.3 Beispiel: Energieübertrag

Energie nach Stoß bei anfangs ruhender Masse 2 ($E_2 = 0$)

$$E_2' = E_1 \frac{4m_1 m_2}{(m_1 + m_2)^2} = E_1 \frac{4}{\left(\frac{m_1}{m_2} + \frac{m_2}{m_1}\right)^2}$$

Energieübertrag

Anwendung: Moderator in Kernreaktoren (Wasser für Neutronen)