1、实验名称及目的

无人机通过 UDP_Simple 通信实验: 通过使用平台提供的接口函数, 通过 UDP_Simple 通信给飞机发送指令。

2、实验原理

无人机通过 UDP_Simple 通信模式将数据包大小与发送频率比 UDP_Full 模式小的数据 给 CopterSim 收到数据后,再转换为 Mavlink 后传输给 PX4 飞控,数据包大小与发送频率 比 UDP_Full 模式小,对应于 mav.InitMavLoop(1) 初始化接口,打开 MAVLink 以监控 Copt erSim 数据并实时更新。然后发送指令让飞控中初始化为 Offboard 模式,并在 Python 中开始发送数据循环。然后首先要一直发送控制指令给飞控,然后才能让飞控解锁进行下面的相应控制,最后,发送指令让飞控退出 Offboard 模式,并且停止监听 MAVLink 数据。

3、实验效果

运行 python 之后, python 通过 UDP 的 UDP_Simple 通信方式对飞机进行控制。

4、文件目录

文件夹/文件名称	说明
UDPMode1Test.bat	启动仿真配置文件
UDPMode1Test.py	实现功能主文件
PX4MavCtrlV4.py	程序运行接口文件

5、运行环境

序号	软件要求	硬件要求	
1, 4	人们安 本	名称	数量(个)
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1
2	RflySim 平台免费版及以上		
3	Visual Studio Code		

① : 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html

6、实验步骤

Step 1:

以管理员身份运行 UDPModelTest.bat 脚本,会打开一个 CopterSim,一个 QGroundControl,一个 RflySim3D,等待 CopterSim 信息栏出现 'GPS 3D fixed & EKF initialization finished.'字样代表初始化完成,并且 1 个 RflySim3D 软件内有 1 架无人机。打开后效果如下图所示。

Step 2:

用 VScode 打开到本实验路径文件夹,运行 UDPModelTest.py 文件,查看 RflySim3D 可以看到飞机起飞.

7、参考文献

[1]. 无

8、常见问题

Q1: 无

A1: 无