Групповой проект. Этап 4

Защита проекта. Коллективное обсуждение результата проекта, самооценка деятельности

Королёв Иван Андреевич
Кудряшов Александр Николаевич
Оганнисян Давит Багратович
Шуплецов Андрей Алексеевич
Мугари Абдеррахим

Содержание

1	Вве	дение	7
	1.1	Актуальность	7
	1.2	Объект и предмет исследования	7
	1.3	Цель	8
	1.4	Задачи	8
2	Teo	ретическое описание задачи	9
	2.1	Определения	9
	2.2	Основные понятия и уравнения	9
		2.2.1 Образование стримеров	9
		2.2.2 Механизмы пробоя	10
		2.2.3 Уравнение Пуассона	10
		2.2.4 Уравнения движения заряженных частиц	11
		2.2.5 Уравнение непрерывности	11
		2.2.6 Модель ионизации (модель Тауна)	11
		2.2.7 Определение критического напряжения	12
3	Опи	ісание алгоритма	13
	3.1	Шаг 1: Инициализация параметров среды	13
		3.1.1 Физические параметры:	13
		3.1.2 Расчетная область:	13
		3.1.3 Пример:	14
	3.2	Шаг 2: Решение уравнения Пуассона	14
			14
			14
		3.2.3 Граничные условия:	15
	3.3		15
		=	15
			16
	3.4		16
			16
		•	17
		• • • • • • • • • • • • • • • • • • • •	17
	3.5	v	17
			17
			17

	3.6	Шаг 6: Обработка условий пробоя
		3.6.1 Критерий:
		3.6.2 Действия:
		3.6.3 Варианты:
	3.7	Шаг 7: Анализ устойчивости и точности
		3.7.1 Погрешности:
		3.7.2 Устойчивость:
		3.7.3 Тестирование:
4	-	граммная реализация 2
		Язык и инструменты
	4.2	Модуль инициализации
	4.3	Модуль решения уравнения Пуассона
	4.4	Модуль расчета электрического поля
	4.5	Модуль уравнения непрерывности
	4.6	Модуль проверки пробоя
	4.7	Основной цикл моделирования
	4.8	Модуль визуализации
5	Заш	ита проекта. Коллективное обсуждение результатов проекта 2
		Презентация результатов
	5.2	Обсуждение результатов
		5.2.1 Достижения проекта
		5.2.2 Оценка выполнения задач
		5.2.3 Выявленные проблемы и ограничения
		5.2.4 Направления дальнейшего развития
6		ооценка деятельности 3.
	6.1	Личный вклад участников
		6.1.1 Разработка теоретической модели:
		6.1.2 Создание алгоритма:
		6.1.3 Программная реализация:
		6.1.4 Анализ результатов:
		6.1.5 Подготовка документации:
	6.2	Приобретенные знания и навыки
		6.2.1 Теоретические знания:
		6.2.2 Практические навыки:
		6.2.3 Командные навыки:
		6.2.4 Презентационные навыки:
	6.3	Эффективность командной работы
		6.3.1 Организация работы
		6.3.2 Коммуникация
		633 Сроки выполнения

Сг	исок	литер	атуры																			38
7	Выв	оды																				37
			Положительные аспекты: . Области для улучшения:																			
	6.4	Удовл	етворенность результатами	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	36

Список иллюстраций

3.1	Схема расчётной области	14
	Векторное поле электрического потенциала	
	Блок-схема алгоритма моделирования электрического пробоя	
5.1	Схема расчётной области	25
5.2	Векторное поле электрического потенциала	26
5.3	Блок-схема алгоритма моделирования электрического пробоя	27
5.4	Электрический пробой	28

Список таблиц

5 1	Оценка выполнения поставленных залач	30	١
J. L	Опсика выполнения поставленных задач	 ા	J

1 Введение

1.1 Актуальность

Электрический пробой — это явление резкого увеличения проводимости диэлектрика при достижении критического напряжения. При этом происходит
лавинное размножение носителей заряда, что приводит к быстрому снижению
сопротивления материала и переходу его из изолятора в проводник.

Изучение электрического пробоя важно для различных областей, таких как: - Электроэнергетика и линии передачи энергии - Высоковольтное оборудование - Электронные и силовые установки

Понимание процессов пробоя позволяет: - Разрабатывать материалы с повышенной устойчивостью - Оптимизировать конструктивные решения - Предотвращать аварийные ситуации за счёт контроля над критическими режимами работы

1.2 Объект и предмет исследования

Объектом нашего исследования является электрический пробой в диэлектриках и формирование стримерных структур.

1.3 Цель

Целью проекта является: - Разработка алгоритма для численного моделирования электрического пробоя - Реализация модели в виде рабочего программного комплекса - Проведение вычислительных экспериментов по моделированию процесса пробоя

1.4 Задачи

В ходе работы над проектом были поставлены следующие задачи: - Преобразовать физические уравнения в численные формы - Выбрать оптимальные численные методы - Описать пошаговый алгоритм моделирования - Учесть условия возникновения пробоя - Разработать программную реализацию алгоритма - Провести анализ полученных результатов

2 Теоретическое описание задачи

2.1 Определения

Электрический пробой — физическое явление, при котором диэлектрик теряет изолирующие свойства под воздействием сильного электрического поля, что приводит к резкому увеличению проводимости.

Стример — слабосветящийся проводящий канал, образующийся при электрическом разряде в газах или диэлектриках.

2.2 Основные понятия и уравнения

2.2.1 Образование стримеров

Развитие электрического разряда проходит через несколько этапов:

- 1. **Коронный разряд** при относительно низком напряжении возникает синевато-фиолетовое свечение на участках электродов с сильным полем.
- 2. **Стримерная структура** при дальнейшем увеличении напряжения образуются слабосветящиеся проводящие каналы (стримеры), которые могут разветвляться.

Согласно модели НПВ, рост стримеров определяется локальным электрическим полем, а вероятность роста ветви может аппроксимироваться зависимостью:

$$p(E) \sim E^{\eta}$$

где η — показатель роста.

3. **Лидерное образование** — при определённых условиях стримеры превращаются в лидерные каналы с очень высокой проводимостью.

2.2.2 Механизмы пробоя

Под воздействием сильного электрического поля в диэлектрике происходят:

- Ионизация электроны, ускоряясь полем, ионизируют молекулы среды.
- **Лавинное размножение** экспоненциальный рост числа заряженных частиц.
- **Формирование стримеров** локальное усиление поля за счёт накопления заряда.

2.2.3 Уравнение Пуассона

Электрическое поле в среде определяется через потенциал ϕ , который удовлетворяет уравнению Пуассона:

$$abla^2 \phi = -rac{
ho}{arepsilon}$$

где: - ρ — плотность заряда - ε — диэлектрическая проницаемость среды Связь напряжённости электрического поля и потенциала выражается через градиент:

$$E = -\nabla \phi$$

2.2.4 Уравнения движения заряженных частиц

Движение носителей заряда в электрическом поле описывается вторым законом Ньютона:

$$m\frac{dv}{dt} = qE - \mu v$$

где: - m — масса частицы - q — заряд - E — вектор напряжённости электрического поля - μ — коэффициент сопротивления среды - v — скорость частицы

2.2.5 Уравнение непрерывности

Сохранение заряда описывается уравнением непрерывности:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot j = 0$$

где: - ρ — плотность заряда - j — вектор плотности тока Для связи с электрическим полем используется закон Ома:

$$j = \sigma E$$

где σ — проводимость среды.

2.2.6 Модель ионизации (модель Тауна)

Вероятность ионизации при прохождении электронами через среду описывается экспоненциальным законом:

$$\alpha = A \exp\left(-\frac{B}{E}\right)$$

где: - α — коэффициент ионизации - A и B — эмпирические константы, зависящие от свойств среды - E — напряжённость электрического поля

2.2.7 Определение критического напряжения

Критическое напряжение пробоя U определяется соотношением:

$$U = E \cdot d$$

где: - E — критическая напряжённость поля - d — расстояние между электродами или характерный размер области, в которой происходит пробой

3 Описание алгоритма

3.1 Шаг 1: Инициализация параметров среды

На первом этапе задаются начальные условия и параметры системы:

3.1.1 Физические параметры:

- Диэлектрическая проницаемость ε
- Начальная плотность заряда ho_0
- Граничные условия (например, условия Дирихле для потенциала)
- Начальное распределение потенциала ϕ_0 и поля E_0

3.1.2 Расчетная область:

- Геометрия (двумерная сетка размера $N \times N$)
- Пространственная сетка с шагами dx, dy

Рис. 3.1: Схема расчётной области

3.1.3 Пример:

- Потенциал на катоде: $\phi=0$ В
- Потенциал на аноде: $\phi = V_0$ В

3.2 Шаг 2: Решение уравнения Пуассона

3.2.1 Уравнение:

$$\nabla^2 \phi = -\frac{\rho}{\varepsilon}$$

3.2.2 Численный метод:

Метод конечных разностей:

$$\frac{\phi_{i+1,j} + \phi_{i-1,j} + \phi_{i,j+1} + \phi_{i,j-1} - 4\phi_{i,j}}{h^2} = -\frac{\rho_{i,j}}{\varepsilon_{i,i}}$$

Отсюда выражается новая итерационная формула для $\phi_{i,j}$:

$$\phi_{i,j}^{(k+1)} = \frac{1}{4} \left(\phi_{i+1,j}^{(k)} + \phi_{i-1,j}^{(k)} + \phi_{i,j+1}^{(k)} + \phi_{i,j-1}^{(k)} + \frac{\Delta x^2 \cdot \rho_{i,j}}{\varepsilon_{i,j}} \right)$$

3.2.3 Граничные условия:

- $\phi = V_0$ на электродах
- $\partial \phi / \partial n = 0$ на изолированных границах

3.3 Шаг 3: Вычисление электрического поля

3.3.1 Формула:

$$E = -\nabla \phi$$

Дискретизация (для 2D): -
$$E_\chi=-rac{\phi_{i+1,j}-\phi_{i-1,j}}{2\Delta x}$$
 - $E_y=-rac{\phi_{i,j+1}-\phi_{i,j-1}}{2\Delta y}$

Рис. 3.2: Векторное поле электрического потенциала

3.3.2 Шаги:

- 1. Решить уравнение Пуассона для получения $\phi(t)$
- 2. Вычислить компоненты поля E_x, E_y
- 3. Обновить массив значений поля

3.4 Шаг 4: Моделирование движения носителей заряда

3.4.1 Уравнение движения:

$$m\frac{dv}{dt} = qE - \mu v$$

3.4.2 Численный метод:

Метод Эйлера (для обновления скорости и положения частиц)

3.4.3 Результат:

- Траектории носителей заряда
- Зоны ионизации

3.5 Шаг 5: Решение уравнения непрерывности

3.5.1 Уравнение:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot j = 0$$

где $j = \sigma E -$ плотность тока.

3.5.2 Численная реализация:

Дискретизация уравнения с использованием конечных разностей.

3.6 Шаг 6: Обработка условий пробоя

3.6.1 Критерий:

 $E>E_{crit}$ (например, $E_{crit}=3$ МВ/м для воздуха) [1]

3.6.2 Действия:

- 1. Проверка значения E в каждой точке сетки
- 2. Фиксация координат точки пробоя, времени и параметров среды

3.6.3 Варианты:

- Остановка расчета при достижении пробоя
- Продолжение моделирования для анализа стримерного режима

3.7 Шаг 7: Анализ устойчивости и точности

3.7.1 Погрешности:

- Ошибки дискретизации (зависят от $\Delta x, \Delta t$)
- Накопление ошибок в итерациях

3.7.2 Устойчивость:

- Условие сходимости численных методов
- Оптимизация шага по времени (условие Куранта)

3.7.3 Тестирование:

- Сравнение с аналитическими решениями
- Валидация на тестовых задачах

Рис. 3.3: Блок-схема алгоритма моделирования электрического пробоя

4 Программная реализация

4.1 Язык и инструменты

Для реализации проекта был выбран язык программирования Python с использованием следующих библиотек: - NumPy — для работы с массивами и векторными вычислениями - Matplotlib — для визуализации распределения потенциала и полей

4.2 Модуль инициализации

```
# Параметры среды и расчётной области

Lx, Ly = 1.0, 1.0

Nx, Ny = 100, 100

dx, dy = Lx / Nx, Ly / Ny

x = np.linspace(0, Lx, Nx)

y = np.linspace(0, Ly, Ny)

# Диэлектрическая проницаемость, плотность заряда, проводимость

epsilon = np.ones((Nx, Ny)) * 8.85e-12

rho = np.zeros((Nx, Ny))

sigma = np.ones((Nx, Ny)) * 1e-10
```

```
phi = np.zeros((Nx, Ny))
E_x = np.zeros((Nx, Ny))
E_y = np.zeros((Nx, Ny))
tol = 1e-4

# Граничные условия
phi[:, 0] = 0 # нижняя граница
phi[:, -1] = 1000 # верхняя граница
```

4.3 Модуль решения уравнения Пуассона

```
def solve_poisson(phi, rho, epsilon):
    for _ in range(5000):
        phi_old = phi.copy()

        phi[1:-1, 1:-1] = 0.25 * (
            phi[:-2, 1:-1] + phi[2:, 1:-1] +
            phi[1:-1, :-2] + phi[1:-1, 2:] +
            dx**2 * rho[1:-1, 1:-1] / epsilon[1:-1, 1:-1]
        )

        if np.max(np.abs(phi - phi_old)) < tol:
            break

        return phi</pre>
```

4.4 Модуль расчета электрического поля

```
def compute_electric_field(phi):
    E_x = -(np.roll(phi, -1, axis=0) - np.roll(phi, 1, axis=0)) / (2 * dx)
    E_y = -(np.roll(phi, -1, axis=1) - np.roll(phi, 1, axis=1)) / (2 * dy)
    return E_x, E_y
```

4.5 Модуль уравнения непрерывности

4.6 Модуль проверки пробоя

```
def check_breakdown(E_x, E_y, threshold=3e6):
    E_mag = np.sqrt(E_x**2 + E_y**2)
    mask = E_mag >= threshold
    if np.any(mask):
        indices = np.argwhere(mask)
        print("Пробой зафиксирован в точках:", indices)
        return True
    return False
```

4.7 Основной цикл моделирования

```
for step in range(100):
    phi = solve_poisson(phi, rho, epsilon)
    E_x, E_y = compute_electric_field(phi)
    rho = update_rho(rho, E_x, E_y, sigma)
    if check_breakdown(E_x, E_y):
        break
```

4.8 Модуль визуализации

```
plt.figure(figsize=(6, 5))
plt.title("Электрический потенциал □")
plt.imshow(phi.T, origin='lower', extent=[0, Lx, 0, Ly], cmap='plasma')
plt.colorbar(label='□ (B)')
plt.xlabel('x')
plt.ylabel('y')
plt.show()
```

5 Защита проекта. Коллективное обсуждение результатов проекта

5.1 Презентация результатов

На защите проекта нами были представлены основные результаты работы:

- 1. Теоретическая физико-математическая модель электрического пробоя
- 2. Алгоритм численного моделирования
- 3. Программная реализация модели
- 4. Результаты моделирования электрического пробоя

Рис. 5.1: Схема расчётной области

Рис. 5.2: Векторное поле электрического потенциала

Рис. 5.3: Блок-схема алгоритма моделирования электрического пробоя

Рис. 5.4: Электрический пробой

5.2 Обсуждение результатов

В ходе коллективного обсуждения результатов проекта были рассмотрены следующие аспекты:

5.2.1 Достижения проекта

1. Разработана комплексная модель электрического пробоя:

- Учитывает основные физические законы и явления
- Позволяет моделировать различные конфигурации электродов и свойства диэлектрической среды
- Включает механизмы ионизации и формирования стримерных структур

2. Создан эффективный алгоритм численного моделирования:

- Использует метод конечных разностей для решения уравнения Пуассона
- Реализует метод Якоби для итерационного расчета потенциала
- Включает модули расчета электрического поля и определения точек пробоя

3. Реализована программная модель:

- Использованы современные средства программирования (Python, NumPy, Matplotlib)
- Модульная структура программы обеспечивает гибкость и расширяемость
- Возможность визуализации результатов моделирования

5.2.2 Оценка выполнения задач

В результате коллективного обсуждения была проведена оценка выполнения поставленных задач:

Таблица 5.1: Оценка выполнения поставленных задач

Задача	Результат	Оценка вы-
		полнения
Преобразование физиче-	Реализована дискретизация	Выполнено
ских уравнений в числен-	основных уравнений элек-	полностью
ные формы	тродинамики и механики	
	заряженных частиц	
Выбор оптимальных чис-	Использованы метод конеч-	Выполнено
ленных методов	ных разностей для уравнения	полностью
	Пуассона и итерационный ме-	
	тод Якоби для решения систе-	
	мы уравнений	
Описание пошагового ал-	Создан детальный алгоритм с	Выполнено
горитма моделирования	7 основными шагами, включая	полностью
	инициализацию, расчет полей	
	и проверку условий пробоя	
Учет условий возникнове-	Реализована проверка превы-	Выполнено
ния пробоя	шения порогового значения	полностью
	напряженности электрическо-	
	го поля в каждой точке расчет-	
	ной области	
Программная реализа-	Создан работающий программ-	Выполнено
ция	ный комплекс на языке Python	полностью
	с использованием библиотек	
	NumPy и Matplotlib	
Анализ результатов	Проведена визуализация рас-	Выполнено
	пределения потенциала, элек-	полностью
	трического поля и точек про-	
	боя с детальным анализом по-	
	лученных данных	

5.2.3 Выявленные проблемы и ограничения

В ходе обсуждения были выявлены следующие проблемы и ограничения:

1. Вычислительная эффективность:

- Метод Якоби требует большого числа итераций для достижения сходимости
- При увеличении размерности задачи время вычислений растет существенно

2. Физическая полнота модели:

- Не учитываются температурные эффекты
- Упрощенный механизм ионизации
- Двумерная модель вместо более реалистичной трехмерной

3. Численная устойчивость:

- При определенных начальных условиях могут возникать численные неустойчивости
- Необходим более тщательный выбор шага по времени

5.2.4 Направления дальнейшего развития

На основе проведенного обсуждения были определены следующие направления дальнейшего развития проекта:

1. Улучшение эффективности вычислений:

- Переход к методу Гаусса-Зейделя или методу сопряженных градиентов
- Оптимизация кода
- Возможность параллельных вычислений

2. Расширение физической модели:

- Учет температурных эффектов
- Более детальная модель ионизации
- Расширение до трехмерной модели

3. Улучшение визуализации:

- Интерактивная визуализация процесса развития пробоя
- Трехмерная визуализация стримерных структур
- Создание анимаций процесса

4. Валидация модели:

- Сравнение с экспериментальными данными
- Проверка на тестовых задачах с известными аналитическими решениями

6 Самооценка деятельности

В ходе финального этапа проекта каждый участник провел самооценку своей деятельности, анализируя личный вклад, полученные знания и навыки, а также эффективность работы в команде.

6.1 Личный вклад участников

6.1.1 Разработка теоретической модели:

- Изучение физических механизмов электрического пробоя
- Формулировка математической модели
- Определение граничных условий и критериев пробоя

6.1.2 Создание алгоритма:

- Разработка общей структуры алгоритма
- Выбор и обоснование численных методов
- Отладка и тестирование алгоритма

6.1.3 Программная реализация:

- Написание программного кода
- Оптимизация и отладка
- Тестирование программы

6.1.4 Анализ результатов:

- Визуализация результатов моделирования
- Интерпретация полученных данных
- Сравнение с теоретическими предсказаниями

6.1.5 Подготовка документации:

- Оформление отчетов по этапам проекта
- Подготовка презентации для защиты
- Ведение технической документации

6.2 Приобретенные знания и навыки

В ходе работы над проектом участники отметили следующие приобретенные знания и навыки:

6.2.1 Теоретические знания:

- Углубленное понимание физики электрического пробоя
- Изучение математических моделей электромагнитных процессов
- Освоение методов численного моделирования

6.2.2 Практические навыки:

- Опыт программирования на Python
- Использование научных библиотек (NumPy, Matplotlib)
- Навыки отладки и оптимизации кода

6.2.3 Командные навыки:

• Опыт совместной работы над сложным проектом

- Навыки коммуникации и координации действий
- Умение распределять задачи и оценивать сроки выполнения

6.2.4 Презентационные навыки:

- Подготовка технической документации
- Представление результатов научной работы
- Ведение научной дискуссии

6.3 Эффективность командной работы

6.3.1 Организация работы

- Равномерное распределение задач между участниками
- Регулярные встречи и обсуждения
- Совместное принятие решений

6.3.2 Коммуникация

- Эффективный обмен информацией и идеями
- Конструктивное обсуждение проблем
- Взаимопомощь при решении сложных задач

6.3.3 Сроки выполнения

- В целом работа выполнялась в соответствии с запланированными сроками
- Некоторые этапы потребовали больше времени, чем планировалось изначально

6.4 Удовлетворенность результатами

6.4.1 Положительные аспекты:

- Успешная реализация всех этапов проекта
- Достижение поставленных целей
- Приобретение ценного опыта и знаний

6.4.2 Области для улучшения:

- Более детальное планирование этапов работы
- Улучшение документирования кода
- Расширение функциональности модели

7 Выводы

В ходе выполнения группового проекта нами был разработан и реализован алгоритм моделирования электрического пробоя в диэлектриках. Созданный программный комплекс позволяет исследовать динамику развития пробоя и формирования стримерных структур при различных условиях.

Основные результаты проекта:

- 1. Разработана математическая модель электрического пробоя, учитывающая основные физические процессы.
- 2. Создан алгоритм численного моделирования, основанный на методе конечных разностей.
- 3. Реализован программный комплекс на языке Python, позволяющий проводить вычислительные эксперименты.
- 4. Проведена визуализация и анализ результатов моделирования.

Коллективное обсуждение результатов проекта показало, что все поставленные задачи были успешно выполнены. В ходе самооценки деятельности участники отметили приобретение ценных знаний и навыков, а также эффективность командной работы.

Разработанный алгоритм и программный комплекс могут быть использованы для дальнейших исследований в области электрического пробоя, а также в образовательных целях для демонстрации физических процессов.

В дальнейшем планируется расширение физической модели, улучшение вычислительной эффективности алгоритма и разработка более детальной визуализации процесса развития пробоя.

Список литературы

1. Медведев Д.А. и др. Моделирование физических процессов и явлений на ПК: Учебное пособие. Новосибирск: Новосибирский государственный университет, 2010. 101 с.