

Università di Pisa

Ingegneria Robotica e Dell'Automazione

Progetto di Identificazione Sistemi Incerti

Sviluppo di un Particle Filter e confronto con EKF per la stima della posizione

Professori: Candidati:

Andrea Caiti Marco Borraccino

Riccardo Costanzi

SCOPO E STRUTTURA DEL PROGETTO

Struttura del progetto:

- Simulazione Wall Following, Team C
- EXTENDED KALMAN FILTER
- PARTICLE FILTER
- Implementazione Matlab

INTRODUZIONE ALLA SIMULAZIONE GENERALE

Progetto Deep PU.R.P.L.E – Wall Following Sistemi Subacquei

Progetto di Sistemi Subacquei - Team C

Missione: pattugliamento delle pareti di un bacino rettangolare con parametri di missione regolabili.

Modello fisico del **DEEP PU.R.P.L.E** (PUffer Robotic Pool Levee Evaluation)

Simulazione 3D del pattugliamento del bacino

Rivisitazione del blocco di Navigation System

Rivisitazione del blocco di Navigation System

Rivisitazione del blocco di Navigation System

Controller

Segnali di interfaccia provenienti da Environment and Sensor System e in uscita verso Controller e Mission Supervisor

DINAMICA DEL FILTRO

da tempo continuo a tempo discreto

TC
$$\begin{cases} \dot{\overrightarrow{\eta}_{1}} = J_{\left(\overrightarrow{\eta_{2}} + \overrightarrow{\omega_{\eta_{2}}}\right)} \left(\overrightarrow{v_{1}} + \overrightarrow{\omega_{\overrightarrow{v}_{1}}}\right) \\ \vec{z} = \overrightarrow{\eta_{1}} + \overrightarrow{\omega_{z}} \end{cases}$$

$$\overrightarrow{\eta_1} = \frac{\overrightarrow{\eta_1^k} - \overrightarrow{\eta_1^{k-1}}}{\Delta T}$$

Errore di modello

$$\mathsf{TD} \ \begin{cases} \overrightarrow{\eta_1^k} = \overrightarrow{\eta_1^{k-1}} + \Delta T \, J_{\left(\overrightarrow{\eta_2^{k-1}} + \overrightarrow{\omega_{\eta_2}^{k-1}}\right)} \left(\overrightarrow{v_1^{k-1}} + \overrightarrow{\omega_{v_1}^{k-1}} \right) + \overrightarrow{\omega_m^{k-1}} \\ \overrightarrow{z^{k-1}} = \overrightarrow{\eta_1^{k-1}} + \overrightarrow{\omega_z^{k-1}} \end{cases}$$

STATO Posizione Stimata (NED frame)

$$\overrightarrow{\eta_1} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Orientazione (XYZ)

$$\overrightarrow{\eta_2} = \begin{bmatrix} \varphi \\ \theta \\ \psi \end{bmatrix}$$

Velocità lineare

Tempo di campionamento

$$\overrightarrow{\eta_2} = \begin{bmatrix} \varphi \\ \theta \\ \psi \end{bmatrix}$$

$$\overrightarrow{v_1}$$

$$\Delta T = 0.1 \text{ s}$$

Misure
$$\overrightarrow{Z}$$
Errore velocità lineare $\overrightarrow{\omega_{\upsilon_1}}$
Errore orientazione $\overrightarrow{\omega_{\eta_2}}$
Errore vettore delle misure $\overrightarrow{\omega_z}$
Matrice di rotazione $J(\overrightarrow{\eta_2})$

EXTENDED KALMAN FILTER

EXTENDED KALMAN FILTER

Linearizzazione del sistema non lineare in un intorno dello stato stimato e applicazione del Filtro di Kalman (*ottimo* nel senso del senso dell'errore quadratico medio) in quell'intorno.

Assumiamo tutti i rumori di misura bianchi, gaussiani, a media nulla e indipendenti tra loro.

- 1. Inizializzazione
- 2. Predizione
- 3. Correzione

Sono usate le prime misure disponibili di GPS e profondimetro e le rispettive varianze.

$$\eta_0 = \begin{bmatrix} GPS_{(xNorth)} \\ GPS_{(yEast)} \\ depth_{profondimetro} \end{bmatrix}_{|k=1}$$

$$P_0 = \begin{bmatrix} \sigma_{GPS}^2 & 0 & 0 \\ 0 & \sigma_{GPS}^2 & 0 \\ 0 & 0 & \sigma_{depth}^2 \end{bmatrix}$$

$$P_0 = egin{bmatrix} \sigma_{GPS}^2 & 0 & 0 \ 0 & \sigma_{GPS}^2 & 0 \ 0 & 0 & \sigma_{depth}^2 \end{bmatrix}$$

EXTENDED KALMAN FILTER

Predizione

$$\overrightarrow{\widehat{\eta}_{1}^{k|k-1}} = f\left(\overrightarrow{\widehat{\eta}_{1}^{k-1|k-1}}, \overrightarrow{v_{1}^{k-1}}, \overrightarrow{\eta_{2}^{k-1}}, 0\right) = \overrightarrow{\widehat{\eta}_{1}^{k-1|k-1}} + \Delta T J_{\left(\overrightarrow{\eta_{2}^{k-1}}\right)} \overrightarrow{v_{1}^{k-1}}$$

$$P_{k|k-1} = F_{k-1} P_{k-1|k-1} F_{k-1}^{T} + L_{k-1} Q_{k} L_{k-1}^{T}$$

$$Q = diag(\sigma_{AHRS_{roll}}^2 \quad \sigma_{AHRS_{pitch}}^2 \quad \sigma_{AHRS_{yaw}}^2 \quad \sigma_{DVL}^2 \quad \sigma_{DVL}^2 \quad \sigma_{DVL}^2)$$

$$F_{k-1} = \left(\frac{df}{d\eta_1}\right) \underbrace{\frac{\overline{v_1^{k-1}}}{\widehat{\eta}_1^{k|k-1}}}_{\underline{\omega_{k-1}} = 0}$$

$$L_{k-1} = \left(\frac{df}{d\omega}\right) \underbrace{\frac{\overline{v_1}^{k-1}}{\widehat{\eta}_1^{k|k-1}}}_{\overrightarrow{\omega}_{k-1} = 0}$$

EXTENDED KALMAN FILTER

Correzione

$$\overrightarrow{e^k} = \overrightarrow{z^k} - \overrightarrow{h} \left(\overrightarrow{\eta}_1^{k|k-1}, J \right)$$

$$S_k = H_k P_{k|k-1} H_k^T + M_k R_k M_k^T$$

$$K_k = P_{k|k-1} H_k^T S_k^{-1}$$

$$\overline{\widehat{\eta}_{1}^{k|k}} = \overline{\widehat{\eta}_{1}^{k|k-1}} + K_{k}e_{k}$$

$$P_{k|k} = (I - K_{k}H_{k})P_{k|k-1}$$

$$R = diag(\sigma_{GPS}^2 \quad \sigma_{GPS}^2 \quad \sigma_{profondimetro}^2 \quad \sigma_{sonar}^2 \quad \sigma_{sonar}^2 \quad \sigma_{sonar}^2)$$

$$M_k = \frac{dh(\eta_1, J)}{d\omega_z} \bigg|_{\overrightarrow{\widehat{\eta}_1^{k|k-1}}} = I_{6x6}$$

$$H_k = \frac{d\vec{h}(\eta_1, J)}{d\eta} \bigg|_{\widehat{\eta}_{k|k-1}}$$

PARTICLE FILTER

PARTICLE FILTER[1][2]

Sequential Importance Sampling (SIS) algorithm: si rappresenta la d.d.p. a posteriori della stima come un set di **particelle** (campioni) con dei pesi d'importanza associati (Metodo Monte Carlo). Sulla base di questi si calcola la stima e la covarianza dello stato.

Assumiamo tutti i rumori di misura bianchi, gaussiani, a media nulla e indipendenti tra loro.

- 1. Inizializzazione
- 2. Predizione
- 3. Correzione
- 4. Ricampionamento

^[1] M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Trans. Signal Process. 50 (2) (2002) 174–188. [2] F. Gustafsson, Particle filter theory and practice with positioning applications, IEEE Aerospace Electron. Syst. Mag. 25 (7) (2010) 53–82.

Il primo set di particelle è creato sulla base delle prime misure di GPS e profondimetro.

$$\vec{s}_{i}^{0} = \begin{bmatrix} GPS_{(xNorth)} + \omega_{GPSx} \\ GPS_{(yEast)} + \omega_{GPSy} \\ depth_{prof} + \omega_{prof} \end{bmatrix}_{|k=1}$$

$$\omega_{GPSx} \sim N(0, \sigma_{GPS}^{2})$$

$$\omega_{GPSy} \sim N(0, \sigma_{GPS}^{2})$$

$$\omega_{prof} \sim N(0, \sigma_{prof}^{2})$$

Ogni particella ha la stessa probabilità delle altre, per cui il loro peso è uguale.

$$w_i^0 = \frac{1}{N} \qquad \sum_{i=1}^N w_i^0 = 1$$

N = numero di particelle

Propagazione delle particelle:

$$\omega_{AHRS} \sim N(0, \sigma_{AHRS}^2)$$

 $\omega_{DVL} \sim N(0, \sigma_{DVL}^2)$

$$\vec{s}_i^{k|k-1} = f\left(\vec{s}_i^{k-1|k-1}, \overrightarrow{v_1}^{k-1}, \overrightarrow{\eta_2}^{k-1}, \omega_{AHRS}, \omega_{DVL}\right) =$$

$$= \vec{s}_i^{k-1|k-1} + \Delta T J_{\left(\overrightarrow{\eta_2}^{k-1} + \omega_{AHRS}\right)} \left(\overrightarrow{v_1}^{k-1} + \omega_{DVL}\right)$$

Calcolo stima e covarianza dello stato:

$$\widehat{\overline{\eta_{1}}}^{k|k-1} = \sum_{i=1}^{N} w_{i}^{k-1} \cdot \vec{s}_{i}^{k|k-1} \qquad P_{k|k-1} = \sum_{i=1}^{N} w_{i}^{k-1} \left(\vec{s}_{i}^{k|k-1} - \widehat{\overline{\eta_{1}}}^{k|k-1} \right) \left(\vec{s}_{i}^{k|k-1} - \widehat{\overline{\eta_{1}}}^{k|k-1} \right)^{T}$$

PARTICLE FILTER

Correzione

$$\overrightarrow{e_i^k} = \overrightarrow{z^k} - \overrightarrow{h} \left(\overrightarrow{s}_i^{k|k-1}, J \right)$$

Verosimiglianza basata su d.d.p. congiunta gaussiana ($\overrightarrow{e_i^k}$ vettore di dimensione variabile)

$$l_i = \frac{1}{\sqrt{(2\pi)^m + \det(R)}} e^{\left(-\frac{1}{2}\overrightarrow{e_i^k}^T_R \overrightarrow{e_i^k}\right)}$$

m = numero di sensoriusati per la correzione

Aggiorno i pesi:

$$w_i^k = w_i^{k-1} \cdot l_i$$

$$w_i^k = w_i^k \frac{1}{\sum w_i^k}$$

Ricalcolo stima e covarianza dello stato:

$$\widehat{\overline{\eta_1^k}}^{k|k} = \sum_{i=1}^N w_i^k \cdot \vec{s}_i^{k|k-1}$$

$$\widehat{\overline{\eta_1}}^{k|k} = \sum_{i=1}^{N} w_i^k \cdot \vec{s}_i^{k|k-1}$$

$$P_{k|k} = \sum_{i=1}^{N} w_i^k \left(\vec{s}_i^{k|k-1} - \widehat{\overline{\eta_1}}^{k|k} \right) \left(\vec{s}_i^{k|k-1} - \widehat{\overline{\eta_1}}^{k|k} \right)^T$$

Fenomeno della *sample depletion*: dopo qualche iterazione tutte le particelle, tranne qualcuna, hanno un peso trascurabile. La stima si basa solo su poche particelle.

Varietà di soluzioni in letteratura.

Si ordina lo spazio delle particelle in base al loro peso.

Si divide casualmente tale spazio in parti uguali e si selezionano quelle con peso maggiore.

Si crea il nuovo set di *N* particelle sulla base si quelle più significative.

Distribuzione dei pesi

^[1] M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Trans. Signal Process. 50 (2) (2002) 174–188.

^[2] F. Gustafsson, Particle filter theory and practice with positioning applications, IEEE Aerospace Electron. Syst. Mag. 25 (7) (2010) 53-82.

^[3] Tiancheng Li, Miodrag Bolic', and Petar M. Djuric', Resampling Methods for Particle Filtering, IEEE Signal Processing Magazine [70-86] May 2015

Quando è necessario ricampionare?

Frequenza del ricampionamento **fissa**: ricampionamento ad ogni iterazione oppure ad ogni n iterazioni.

Frequenza del ricampionamento variabile: basata sul numero effettivo di particelle.

$$N_{eff}^{k} = \frac{1}{\sum_{i=1}^{N} (w_i^k)^2}$$
 $N_{eff}^{k} < \frac{2}{3}N$

^[1] M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Trans. Signal Process. 50 (2) (2002) 174–188.

^[2] F. Gustafsson, Particle filter theory and practice with positioning applications, IEEE Aerospace Electron. Syst. Mag. 25 (7) (2010) 53–82.

^[3] Tiancheng Li, Miodrag Bolic', and Petar M. Djuric', Resampling Methods for Particle Filtering, IEEE Signal Processing Magazine [70-86] May 2015

Quante particelle sono necessarie?

Calo delle prestazioni con N < 100 particelle

Buone prestazioni con $N=100 \div 1000$ particelle

Nessun miglioramento nelle prestazioni con $N = 10.000 \ particelle$

Scelto un valore di N = 1000

CENNO ALLA IMPLEMENTAZIONE SU MATLAB

Blocco Navigation System

Blocco Navigation System: EKF

Blocco Navigation System: EKF

Implementazione su Simulink del filtro PF per la stima della posizione

Simulazioni con EKF e PF in parallelo con diversi parametri di missione.

Metriche usate per il confronto:

• Norma dell'errore errore assoluto

$$\varepsilon^k = \left\| \overrightarrow{\eta_1^k} - \widehat{\overrightarrow{\eta_1^k}} \right\|$$

• RMSE (Root Mean Square Error)

$$RMSE = \sqrt{\frac{1}{N} \sum_{k=1}^{N} \left(\overrightarrow{\eta_1^k} - \widehat{\overrightarrow{\eta_1^k}} \right)^2}$$

Parete	Profondità	Distanza dalla	Verso di	Orientazione	Velocità		RMSE _x	RMSE _y	RMSEz	RMSE _{tot}
iniziale	[m]	parete [m]	ispezione	relativa	[m/s]		[m]	[m]	[m]	[m]
ВС	5	8	Orario	10°	0,4	EKF	0.12087	0.13486	0.017051	0.1819
						PF	0.14062	0.13849	0.017923	0.19818
ВС	5	8	Orario	20°	0,4	EKF	0.18143	0.17986	0.017027	0.25603
						PF	0.18211	0.20509	0.018106	0.27487
ВС	5	8	Orario	30°	0,4	EKF	0.15964	0.18261	0.016895	0.24314
						PF	0.17924	0.18466	0.018862	0.25803
ВС	5	8	Orario	40°	0,4	EKF	0.13809	0.15712	0.01677	0.20986
						PF	0.1653	0.15645	0.017587	0.22827
ВС	5	8	Orario	50°	0,4	EKF	0.13805	0.15298	0.017031	0.20676
						PF	0.17633	0.17269	0.018303	0.24748
ВС	5	8	Orario	60°	0,4	EKF	0.15798	0.16614	0.016856	0.22988
						PF	0.16435	0.16801	0.019395	0.23583
ВС	5	8	Orario	70°	0,4	EKF	0.21021	0.23616	0.017142	0.31663
						PF	0.20359	0.25391	0.019388	0.32602
ВС	5	8	Orario	80°	0,4	EKF	0.11133	0.13913	0.016819	0.17898
						PF	0.16572	0.16877	0.017275	0.23716
ВС	5	8	Orario	90°	0,4	EKF	0.1118	0.13962	0.016908	0.17966
						PF	0.14055	0.13832	0.017531	0.19798

Parete iniziale	Profondità [m]	Distanza dalla parete [m]	Verso di ispezione	Orientazione relativa	Velocità [m/s]		RMSE _x [m]	RMSE _y [m]	RMSE _z [m]	RMSE _{tot}
ВС	5	8	Orario	0°	0,4	EKF	0.11475	0.13636	0.017229	0.17905
						PF	0.14011	0.13351	0.017912	0.19436
ВС	5	8	Orario	0°	0,5	EKF	0.11709	0.15193	0.019213	0.19278
						PF	0.14712	0.14573	0.020966	0.20814
ВС	5	8	Orario	0°	0,6	EKF	0.12838	0.1554	0.02069	0.20263
						PF	0.15855	0.15108	0.022418	0.22015
ВС	5	8	Orario	0°	0,7	EKF	0.12298	0.16103	0.022473	0.20387
						PF	0.14904	0.15503	0.025017	0.2165
ВС	5	8	Orario	0°	0,8	EKF	0.12557	0.17776	0.024139	0.21897
						PF	0.13523	0.16624	0.027239	0.21602
ВС	5	8	Orario	0°	0,9	EKF	0.12529	0.17532	0.024641	0.21689
						PF	0.15459	0.17039	0.027631	0.23172
ВС	5	8	Orario	0°	1,0	EKF	0.13288	0.16541	0.02597	0.21375
						PF	0.12436	0.14599	0.02781	0.19379

Prestazioni "quasi" identiche

$$v = 0.4 \, m/s$$

 $RMSE_{EKF} = 0.17905 \text{ m}$ $RMSE_{PF} = 0.19436 \text{ m}$

 $v = 0.8 \, m/s$

 $RMSE_{EKF} = 0.21375 \text{ m}$ $RMSE_{PF} = 0.19379 \text{ m}$

Esempio caso generale

Parete	Profondità	Distanza	Verso di	Orientazione	Velocità
iniziale		dalla parete	ispezione	relativa	
AB	5 m	8 m	Orario	30°	0,4 m/s

I due filtri risultano essere entrambi adatti alla missione

Il filtro EKF è più preciso in media di **1,5 cm** sul RMSE.

I valori medi di RMSE sui dati collezionati sono:

$$RMSE_{EKF} = 0,2144 m$$

 $RMSE_{PF} = 0,2303 m$

Tutti i rumori sono stati generati come rumori gaussiani a media nulla.

Il sistema <u>non</u> è fortemente non lineare.

- [1] M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Trans. Signal Process. 50 (2) (2002) 174–188. [2] F. Gustafsson, Particle filter theory and practice with positioning applications, IEEE Aerospace Electron. Syst. Mag. 25 (7) (2010) 53–82.
- [3] Tiancheng Li, Miodrag Bolic', and Petar M. Djuric', Resampling Methods for Particle Filtering, IEEE Signal Processing Magazine [70-86] May 2015,

Appunti del Corso Identificazione Sistemi Incerti, A.Caiti, R.Costanzi, Università di Pisa 2019, Slides del Corso Identificazione Sistemi Incerti, A.Caiti, R.Costanzi, Università di Pisa 2019, Appunti del Corso Sistemi Subacquei, A.Caiti, R.Costanzi, Università di Pisa 2019, Slides del Corso Sistemi Subacquei, A.Caiti, R.Costanzi, Università di Pisa 2019,

Contatti: <u>m.borraccino@studenti.unipi.it</u>

Grazie per l'attenzione