RELATÓRIO - EP1

Renan Fichberg - $\mathbf{NUSP:}$ 7991131

Laboratório de Métodos Numéricos - MAC
0210 - 2016/1

Professor: Ernesto G. Birgin

Monitor: Lucas Magno

1 Arquivos

Neste primeiro exercício programa, estão sendo entregues os seguintes arquivos e diretórios:

- /docs Diretório que contém este relatório.
- /docs/relatorio Este documento.
- /src Diretório com os códigos fonte, em GNU Octave (.m), das partes 1 e 2 especificadas no enunciado do Exercício Programa 1.
- /docs/ieee_single.m Código fonte da parte 1 especificada no enunciado do Exercício Programa 1.

2 Parte 1: Representação IEEE Single

Esta seção é dedicada para falar da implementação da parte 1 descrita no enunciado do Exercício Programa 1, ressaltando os aspectos mais relevantes ou interessantes da implementação.

2.1 Prompt: entradas

O programa possui seu próprio terminal, por onde recebe valores numéricos do usuário e um sinal de operação. Ambos serão abordados nas próximas subseções.

2.1.1 Números

Os valores numéricos que o programa podem receber devem respeitar os formatos, em expressões regulares:

- [0-9] + Números inteiros na base 10.
- $[0-9]+\$. [0-9]+ Números com ponto flutuante na base 10.
- [0-1]+b Números inteiros na base 2.
- $[0-1]+\$. [0-1]+b Números com ponto flutuante na base 2.

Assim, exemplos de entradas válidas para cada um dos items podem ser, respectivamente, 11, 5.5, 1011b e 101.1b.

Para permitir uma maior diversidade de números, o programa em nenhum instante converte as entradas para o número. Ao invés disso, ele recebe as *strings* do usuário e opera com elas mesmas. As limitações dos números são, portanto, as impostas pela própria representação IEEE

Single e não pelos tipos, uma vez que as operações são realizadas em cima de cada byte (caracter) da string passada pelo prompt. A título de curiosidade, para inteiros, por exemplo, o programa não aceitará um número superior a 340282366920938463463374607431768211455 (pois qualquer número acima disso já exige um expoente E superior a 127, portanto, não encaixando nos 8 Bits reservados para o expoente na forma IEEE Single, que tentará guardar 127 + E no espaço de memória destinado).

Ao receber um novo número válido, o programa irá convertê-lo para o formato e imprimir seus *Bits* na tela no seguinte formato:

$$X = \left[b_1|b_2b_3b_4b_5b_6b_7b_8b_9|b_{10}b_{11}b_{12}b_{13}b_{14}b_{15}b_{16}b_{17}b_{18}b_{19}b_{20}b_{21}b_{22}b_{23}b_{24}b_{25}b_{26}b_{27}b_{28}b_{29}b_{30}b_{31}b_{32}\right]$$

Onde:

- X A variável que representa o número passado pela linha de comando. Isso não é
 controlável pelo usuário e aparece junto da saída por razões meramente didáticas e ilustrativas.
- \bullet b_1 1 Bit de sinal. 0 para números positivos e 1 para números negativos.
- $b_2...b_9$ 8 Bits do expoente. Conforme já mencionado, é escrita neste espaço de memória a bit string que representa o número 127 + E, onde E é o expoente do número na forma binária já normalizado (i.e, com seu bit oculto (= hidden bit) valendo 1. O bit oculto nada mais é que o bit que viria antes de b_1 0, imediatamente na frente do ponto flutuante).
- $b_{10}...b_{32}$ 23 Bits do significando. O significando nada mais é que os primeiros números imediatamente após o ponto flutuante.

2.1.2 Operações

As operações que podem ser realizadas no programa são apenas a soma e a subtração. Para isso, basta passar ou o caracter + ou o caracter - quando solicitado (após passar as duas entradas numéricas). As operações foram implementadas considerando 2 bits de guarda e 1 sticky bit. Os bits de guarda nada mais são que 2 bits adicionais que guardam os próximos valores do significando, depois do bit b₃₂. Já o sticky bit é um bit que vem logo depois dos bits de guarda, que serve para avisar que ao menos um bit diferente de zero foi descartado ao realizar a operação de shift para a direita, na hora de alinhas os expoentes e os arranjar os significandos para poder realizar a operação solicitada. O sticky bit assumirá o valor 1 caso houve tal descarte e 0 caso contrário.

As operações são feitas do modo usual, bit-a-bit, da direita para a esquerda e utilizando carries.

2.2 Prompt: saídas

As saídas relativas às entradas numéricas inevitavelmente já foram cobertas na seção 2.1.1. Com relação ás operações, após passar um comando de operação válido, a saída que o usuário final recebe é o resultado da conta, com a variável "RR". RR nada mais é que uma abreviação para *Raw Result*. Tal nome foi dado pois este é o resultado sem que uma operação de arredondamento tome lugar.

2.2.1 Arredondamento

Logo após a saída RR, o programa também solicitará outras 4 saídas:

- 1. RD Round Down Arredondamento para $-\infty$.
- 2. RU Round Up Arredondamento para $+\infty$.
- 3. RN Round to Nearest Arredondamento para o mais próximo.
- 4. RZ Round to Zero Arredondamento para zero.

O modo que tais arredondamentos acontecem são descritos a seguir:

- RD Apenas trunca o valor RR. Para todos os efeitos, RD é considerado como o menor valor mais próximo (ou igual) o valor esperado.
- RU Soma 1 em RR, no bit b_{32} . Para todos os efeitos, RU é considerado como o maior valor mais próximo (ou igual) o valor esperado.
- RN Uma vez com RU e RD, escolhe aquele que que tem o menor valor do módulo da diferente com RR.
- RZ Considerando o sinal de RR, vai optar entre RD (se o sinal de RR for positivo) ou RU (se o sinal de RU for negativo).

Nota: os arredondamentos foram implementados desta maneira pois não foi encontrada nenhuma bibliografia que mostrasse qual é o método correto de selecionar o rounding mode. Assim, julguei pertinente imprimir de uma vez os quatro modos para todos os resultados.

3 Resultados da parte 1

A seguir serão mostrados os resultados e uma explicação de como o resultado foi alcançado em cada um dos exemplos do enunciado:

1) 2 + 3

Aqui são passados os números 2, 3 e +, nesta ordem, para o programa, que imprime de saída:

Para chegar nestes valores os seguintes passos foram realizados:

- 1. O programa converteu o número 2 para binário.
 - $2 = (10.0)_2$
- 2. O programa converteu o número (10.0)₂ para IEEE Single.
 - Checa a posição do primeiro bit 1 em relação ao ponto flutuante para torná-lo o bit oculto.
 - É necessário fazer operações de *shift*. O expoente E assume o valor 1, pois é necessário deslocar o ponto flutuante uma posição para à esquerda para deixar o primeiro bit 1 na posição de bit oculto. Este número E então é somado a 127, e a soma (127 + 1, no caso) é convertida em uma *bit string* e armazenada nos bits $b_2...b_9$. É necessário que a *bit string* tenha tamanho 8, então são concatenados digitos "0" à sua esquerda até que esta tenha o tamanho esperado para ser guardada.
 - A string do significando precisa ter tamanho 23, então são concatenados digitos "0" à direita da bit string até que esta tenha o tamanho necessário.
 - O número é positivo. Guardamos o sinal com o bit 0 na posição 1 do formato IEEE Single.

- 5. Comparamos os expoentes e notamos que o 2 e o 3 já estão com seus expoentes alinhados. Podemos fazer a soma bit-a-bit usual (da direita para a esquerda). Ao terminá-la, obtemos 5 = [0|10000001|01000000000000000000000]. Note que os bits de guarda valem zero, bem como o sticky bit, uma vez que não houveram shift para a direita e portanto nenhum bit 1 foi descartado.
- 6. Agora fazemos os arredondamentos seguindo o que foi já foi explicado na seção anterior e obtemos os valores impressos acima.

2)
$$1 + 2^{-24}$$

O programa não recebe números neste formato, portanto, precisamos reescrevê-lo para a entrada: $2^{-24}=5.9605\times 10^{-8}=0.0000000059605$

Agora são passados os números 1, 0.0000000059605 e +, nesta ordem, para o programa, que imprime de saída:

Para chegar nestes valores os seguintes passos foram realizados:

- 1. O programa converteu o número 1 para binário.
 - $1 = (1.0)_2$
- 2. O programa converteu o número $(1.0)_2$ para IEEE Single.
 - Checa a posição do primeiro bit 1. Como o primeiro 1 já aparece na 1^a posição da bit string imediatamente à esquerda do ponto flutuante, este será o bit oculto.
 - Como não houve necessidade de fazer operações de shift, o expoente E assume o valor 0. Este número então é somado a 127, e a soma (127 + 0, no caso) é convertida em uma bit string e armazenada nos bits b₂...b₉. É necessário que a bit string tenha tamanho 8, então são concatenados digitos "0"à sua esquerda até que esta tenha o tamanho esperado para ser guardada.

- A string do significando precisa ter tamanho 23, então são concatenados digitos "0" à direita da bit string até que esta tenha o tamanho necessário.
- O número é positivo. Guardamos o sinal com o bit 0 na posição 1 do formato IEEE Single.
- 4. Repetimos os passos para $0.0000000059605 = (0.00...000110011001100110100011100...)_2$, com 28 zeros entre o primeiro bit 1 e o ponto flutuante. O que significa que após sucessivas vinte e oito operações de shift, obtemos $(1.10011001100110100011100...)_2 \times 2^{-28}$. Com isso, temos nosso significando e o expoente E = -28, que será registrado na bit string com o valor de $127 28 = 99 = (01100011)_2$. Temos, portanto, 0.00000000059605 = [0]01100011]10011001100110100111010011100]
- 5. Comparamos os expoentes e notamos que são diferentes. Alinhamos o menor (99) com o maior (127), realizando 127 99 = 28 operações de shift para a direita, a qual inevitavelmente perdemos bits 1, ligando portanto o sticky bit. Após todos os shifts, temos os bits de guarda "00". Deste modo, logo após o último bit do nosso significando, temos os bits "001".
- 6. Agora fazemos a soma bit-a-bit usual, da direita para a esquerda, começando na posição do sticky bit. Nota: concatenamos "000" à direita bit string do outro número para realizar a operação bit-a-bit.
- 7. Agora fazemos os arredondamentos seguindo o que foi já foi explicado na seção anterior e obtemos os valores impressos acima.

Agora são passados os números 1b, 0.11111111111111111111111 e a operação -, nesta ordem, para o programa, que imprime de saída:

Para chegar nestes valores os seguintes passos foram realizados:

- O programa aproveita as strings binárias que lhe foram passadas. Não há necessidade de realizar conversões.
- 2. O programa converteu o número $(1.0)_2$ para IEEE Single. O resultado é o mesmo que 1 na base 10 do exemplo anterior. Os mesmos passos foram realizados.
- 4. Comparamos os expoentes e notamos que são diferentes. Alinhamos o menor (126) com o maior (127), realizando 127 126 = 1 operação de shift para a direita. Conforme mencionado no item anterior, não há perda de bits e o significando cabe exatamente no espaço de memória a ele destinado.
- 5. Agora fazemos a subtração bit-a-bit usual, da direita para a esquerda.
- 6. Em seguida fazemos os arredondamentos seguindo o que foi já foi explicado na seção anterior e obtemos os valores impressos acima.

Para chegar nestes valores os seguintes passos foram realizados:

- O programa aproveita as strings binárias que lhe foram passadas. Não há necessidade de realizar conversões.
- 2. O número 1 é feito do mesmo modo que foi explicado nos exemplos anteriores.
- 4. Comparamos os expoentes e notamos que são diferentes. Alinhamos o menor (102) com o maior (127), realizando 127 102 = 25 operação de shift para a direita. Conforme mencionado no item anterior, não há perda de bits e o significando cabe exatamente no espaço de memória a ele destinado.
- 5. Agora fazemos a subtração bit-a-bit usual, da direita para a esquerda.
- 6. Em seguida fazemos os arredondamentos seguindo o que foi já foi explicado na seção anterior e obtemos os valores impressos acima.

4 Observações Finais da parte 1

São considerados **apenas** números *normalizados* na entrada e nos resultados, portanto, números como o zero estão fora do escopo da implementação. Tentar forçar operações a resultar em números que seriam representados como subnormais pode (e deve) resultar

5 Parte 2: Bacias de Newton

Esta seção e todas as sucessivas abordarão sobre o assunto relativo à segunda parte do Exercício Programa 1, referente às Bácias de Newton.

5.1 Entradas

Diferentemente da primeira parte do Exercício Programa 1, esta parte pode receber vários parâmetros pela interface de linha de comando (CLI), sendo apenas um mandatório. A seguir é apresentada a invocação e uma lista com as possíveis opções:

- \$./newton_basins.m -p A1 [-d A2 -m A3 -o A4 -w A5 -h A6]
- -p: parâmetro mandatório. O parâmetro -p serve para alimentar o programa com um polinomio A1. A1 deve ser uma lista de números inteiros, começando com a_n, coeficiente do termo de maior grau, e terminando com a₀, coeficiente do termo independente. A razão de aceitar apenas funções que sejam polinômios de coeficientes inteiros é meramente por questões de simplicidade na hora de filtrar os argumentos, uma vez que o enunciado não faz qualquer menção acerca da natureza das funções e portanto não deve ser encarado como um problema limitar o enunciado para polinômios específicos. É conhecido que o método de Newton-Raphson é aplicável para outros tipos de funções, não necessariamente polinomiais, mas aqui nos limitaremos a polinômios de coeficientes inteiros.
- -d: parâmetro opcional. O parâmetro -d serve para alimentar o programa com um valor de precisão. Este valor será usado em duas instâncias: como forma de dar-se por satisfeito com um valor encontrado ao aplicar o método de Newton-Raphson sucessivas vezes e posteriormente como forma de associar valores encontrados pelo método de Newton-Raphson suficientemente próximos a um mesmo número inteiro para a computação gráfica das bacias de convergência. A2 deve ser um número inteiro positivo Z. O programa considerará o valor de precisão δ, mantido pela variável 'delta', como δ = 10^{-Z}. Se nenhum valor for passado, será usado δ_{default} = 10⁻⁸.
- -m: parâmetro opcional. O parâmetro -m serve para indicar o número máximo M de iterações que o método de Newton-Raphson deve realizar. Se ao realizar M iterações o método falhar em conseguir uma aproximação que satisfaça o valor de δ (isto é, o módulo da diferença entre o valor encontrado e o último valor encontrado ser menor ou igual o valor de δ), o ponto em questão será associado ao inteiro 0, cujo a única função é justamente apontar os pontos (x, y) que falharam (coordenadas de um ponto P imaginário, P = x + yi). A3 deve ser um número inteiro positivo. Se nenhum valor for passado, será usado M_{de fault} = 25.
- -o: parâmetro opcional. O parâmetro -o serve para mudar o nome do arquivo de escrita da saída. Três considerações devem ser feitas ao usar este parâmetro:

- 1. O arquivo deverá estar contido em algum lugar a partir do diretório 'src'.
- 2. Todos os diretórios devem ter sido criados antes de rodar o programa. O programa não criará eventuais diretórios que compoem o nome da entrada (que é um caminho relativo ao diretório src).
- 3. Não comece escrevendo o nome do arquivo com o caracter "/". Uma entrada "output.txt" ira considerar o arquivo src/output.txt, enquanto uma entrada "/output.txt" deverá causar um erro (pois tentaria achar o arquivo "src/output.txt").

A4 deve ser o caminho relativo do arquivo de saída a ser escrito em .txt ao diretório /src. Se nenhum parâmetro for passado, o arquivo de saída se chamará output.txt, conforme exigência do enunciado, e poderá ser encontrado em /src/outputs.

- -w: parâmetro opcional. O parâmetro -w serve para indicar o intervalo das abcissas dos pontos P = x + yi do plano complexo. A5 deve ser um número inteiro e positivo.
 Quanto maior for este parâmetro, mais demorará para escrever a saída. Se nenhum valor for passado, será usado W_{default} = 3.
- -h: parâmetro opcional. O parâmetro -h serve para indicar o intervalo das ordenadas dos pontos P = x + yi do plano complexo. A6 deve ser um número inteiro e positivo.
 Quanto maior for este parâmetro, mais demorará para escrever a saída. Se nenhum valor for passado, será usado H_{default} = 3.

Obs: Os steps estão definidos internamente no programa como 0.01. Ao calcular os pontos, o programa vai varrer uma área de tamanho $2(A5) \times 2(A6)$, caminhando de 0.01 em 0.01 em cada uma das duas dimensões, e é por isso que valores de w e h afetam diretamente o quanto vai demorar para escrever a saída. A razão de A5 e A6 terem um fator 2 de multiplicação é que os intervalos serão [-A5, A5] e [-A6, A6], e portanto a área retangular da imagem é $[-A5, A5] \times [-A6, A6] = (A5 - (-A5)) \times (A6 - (-A6)) = 2(A5) \times 2(A6)$.

5.2 Aplicação do Método de Newton-Raphson

O método de Newton-Raphson foi aplicado no programa da seguinte maneira: são considerados os valores δ de precisão e M de máximo de iterações como condições de parada de loop, de tal forma que:

1. Se o número máximo de iterações M for atingido, o método é tido como falho e a raíz retornada é $X = \infty + \infty i$ (que posteriormente será associada ao inteiro 0 na função $newton_basins$)

- 2. Se o módulo da diferença entre o valor encontrado e o valor atual for inferior ou igual ao valor de δ , a aproximação será considerada suficientemente precisa e o método retornará as componentes real e imaginária de X encontradas, terminando o método antes que o valor M de iterações fosse alcançado (e evitando, portanto, associar o ponto passado no parâmetro da função do método ao inteiro 0 posteriormente na função $newton_basins$).
- 3. Ainda, se a derivada no ponto passado tiver valor zero, o método também é encerrado e tido como falho, retornando o mesmo valor descrito no item 1.

Foi implementada uma versão *iterativa* (ao invés de uma recursiva) do método. Finalmente, sempre que uma nova iteração começa, o X encontrado na última iteração se torna o X atual, e um novo X é encontrado usando o X atual, conforme esperado do método.

5.3 Imagens de algumas Bacias de Newton

A seguir algumas imagens, obtidas com o uso do GNU Plot, versão 4.6 patchlevel 6 para Linux de 64bits (Debian 8). O script /src/outputs/plot_debian8.gp é uma modificação do script fornecido pelo professor quando o mesmo ministrou MAC0210 - Laboratório de Métodos Numéricos em 2016/2 e serve para gerar as imagens a partir das saídas (no Debian 8. O original dava erro). Ao rodar o script, ele deverá gerar a imagem relativa ao arquivo nomeado "output.txt". Se o arquivo estiver com outro nome, basta fazer a modificação no script.

Figura 1: Bacia de Convergência do polinômio $P(x)=x^8+15x^4$ -16

Figura 2: Bacia de Convergência do polinômio $P(x)\,=\,x^4$ -1

Figura 3: Bacia de Convergência do polinômio $P(x)=x^8$ - $17x^4\!+\!16$

Figura 4: Bacia de Convergência do polinômio $P(x)=x^3$ -1

Figura 5: Bacia de Convergência do polinômio $P(x)=4x^{10}$ -16 x^5 +18

Figura 6: Bacia de Convergência do polinômio $P(x)=6x^{16}\,+\,36x^8$ -1

Figura 7: Bacia de Convergência do polinômio $P(x)=x^{13}$ -2 $x^{12}+3x^{11}$ -4 $x^{10}+5x^9$ -6 x^8+7x^7 -8 x^6+9x^5 -10 x^4+11x^3 -12 x^2+13x -14