Projet n° 5: Catégorisez automatiquement des questions

Céline Mendola

Introduction

Présentation du problème, présentation des données

Modélisations

Modèles non supervisés et supervisés

Analyses

Nettoyage et analyses des données textuelles

Conclusion

Choix du modèle, déploiement d'une app avec flask et heroku

01 Introduction

Présentation de la problématique

 On souhaite développer un système de suggestion de tags pour le célèbre site stackoverflow. A l'aide d'algorithmes de machine learning, il faudra assigner des tags pertinents à une question posée sur le site.

 Les données sont récupérées grâce à l'outil stackexchange explorer. On récupère tous les posts avec titres créés après 2011, avec leurs scores, leurs nombres de vues et de réponses sur le site.

o2 Analyses

Nettoyage des données

```
df.Score.describe()
count
        50000.000000
        20.709520
mean
std
       50.833301
min
       6.000000
25%
        7.000000
50%
       10.000000
75%
       17.000000
        2554.0000000
max
Name: Score, dtype: float64
```

Pour garder les posts les plus pertinents, nous filtrons sur les scores >30. Nous obtenons un dataset de 6 500 observations environ.

Nettoyage des données : Posts et titres

> Mettre le texte en minuscule

```
text = text.lower()
```

Enlever les balises, les retours à la ligne, les chiffres, les urls

```
text = re.sub(r'<[^\diamondsuit]+>|\n|\d+|\t|\s{2,}\bowtie6[gl][te]|\r|\f|http.+?(?="|<)', ',text)
```

> Enlever la ponctuation

```
text = re.sub(r'[\'\.\-!"#$%\delta\\*,:;\Leftrightarrow?0^{\circ}()|~={}\/\[\]\\\ ' ', text)
```

> Enlever les mots à une lettre sauf "r" et "c"

```
text = re.sub(r'\b[abdefghijklmnopqstuvwxyz]\b', ' ', text)
```

Nettoyage des données : Posts et titres

Enlever les mots à deux lettres

```
text = re.sub( r'\b[a-z][a-z]\b',''', text)
```

Finalement enlever les tabulations et espaces multiples.

```
text = re.sub(r'\s{2,}|\t', '', text)
```

Suppression des stopwords

Nettoyage des données : les stop words

Stopwords: mots qui n'apportent pas beaucoup d'information.

On a utilisé la liste des stopwords de la librairie nltk à laquelle nous avons ajouté au fur et à mesure certains tokens comme 'like', 'thank', 'use', 'quot', 'try', 'know', 'find', 'way' ...

Nettoyage des données : lemmatization

But : utiliser un seul token pour les différentes déclinaisons d'un même mot (pluriel/ conjugaison/participes ...)

Utilisation dans le projet de la lemmatization (méthode .lemma_ de la librairie spacy)

Analyses des mots présents dans les posts et titres

Analyses des Tags les plus présents

Preprocessing

- Utilisation des bag of words : technique permettant de vectoriser le corpus de texte.
- Une 1ère méthode : compter le nombre d'occurrences de chaque mot dans chaque document. ("Term frequency")

	about	bird	heard	is	the	word	you
About the bird, the bird, bird bird bird	1	5	0	0	2	0	0
You heard about the bird	1	1	1	0	1	0	1
The bird is the word	0	1	0	1	2	1	0

BOW on Surfin' Bird

Preprocessing

• Une 2ème méthode : multiplier les term frequency par les "inverse term frequency"

```
\begin{split} tf(t,d) &= |\text{Number of times term } t \text{ appears in document } d| \\ idf(t,D) &= \frac{|\text{Number of documents}|}{|\text{ number of documents that contain term } t|} \\ &\quad tfidf(t,d,D) = tf(t,d).\, idf(t,D) \end{split}
```

- t is the word or token.
- d is the document.
- ullet D is the set of documents in the corpus.

- Avantage : Donner plus poids aux tokens qui apparaissent dans peu de documents et moins aux mots très fréquents.
- D'autres méthodes de vectorisation existent. On utilise en input de nos algorithmes la vectorisation TFIDF.

03 Modélisations

Modélisation de sujets : Principe

La modélisation automatique de sujet permet de détecter les sujets latents abordés dans un corpus de documents.

Nous appliquerons deux modèles non supervisés: LDA et NMF.

Modélisation de sujets : LDA

Le modèle LDA (Latent Dirichlet Allocation) est un modèle probabiliste génératif dans lequel chaque document du corpus est associé à une distribution de différents sujets. Également, chaque sujet est associé à une distribution de mots présents dans le corpus.

Modélisation de sujets : LDA

Principales étapes :

- On fixe le nombre K de thèmes. On initialise chaque mot à l'un des K thèmes.
- Pour chaque document d, chaque mot w du document d et chaque sujet t, on calcule :

P(sujet t \ document d) la proportion de mots du document d associé au sujet t
P(mot w \ sujet t) la proportion d'affectation au sujet t dans l'ensemble du corpus qui
proviennent du mot w. On affecte alors un nouveau sujet T' au mot w avec la probabilité
P(sujet T' \ document d) * P(mot w \ sujet T')

On réitère les dernière étape, les affectations se stabilisent.

Modélisations de sujets : LDA

On utilise le score de cohérence pour trouver le nombre de sujets.

Ici, on le fixera à 17

Modélisations de sujets : LDA

```
out[]: [(0,
  '0.031*"job" + 0.024*"flask" + 0.024*"blank" + 0.021*"alpha" +
0.021*"unique"
 (1,
  '0.029*"dataframe" + 0.029*"panda" + 0.028*"csv" + 0.028*"column" +
0.026*"cell"
 (2,
  '0.030*"table" + 0.026*"sql" + 0.025*"query" + 0.023*"mysql" +
0.017*"column"
 (3,
  '0.026*"println" + 0.025*"modal" + 0.024*"integer" + 0.020*"decimal"
 (4,
  '0.022*"session" + 0.018*"route" + 0.017*"placeholder" +
0.015*"angular"
(5,
  '0.022*"git" + 0.012*"file" + 0.011*"install" + 0.011*"npm" +
0.011*"branch"
+ 0.010*"run" + 0.010*"command" + 0.009*"commit" + 0.009*"project" +
0.008*"master"'),
(6,
  '0.036*"docker" + 0.024*"notification" + 0.022*"listview" +
0.019*"mongodb" + 0.018*"architecture"
 (7,
  '0.016*"string" + 0.014*"value" + 0.013*"array" + 0.012*"c" +
0.012*"int" + 0.012*"list"
 (8,
  '0.028*"age" + 0.023*"regex" + 0.023*"history" + 0.019*"checkbox" +
0.017*"uuid" + 0.014*"haskell" + 0.013*"clause" + 0.013*"slash" +
0.012*"slot" + 0.012*"condition"'),
```

```
(9,
  '0.038*"laravel" + 0.038*"symbol" + 0.022*"blue" +
0.021*"employee" + 0.017*"linearlayout" '),
(10.
  '0.042*"android" + 0.029*"java" + 0.020*"eclipse" +
0.018*"gradle" + 0.015*"std" +,
(11,
  '0.009*"file" + 0.007*"user" + 0.006*"app" + 0.006*"class" +
0.006*"error" +
(12.
  '0.025*"domain" + 0.022*"iframe" + 0.021*"programmatically" +
0.017*"dict" + 0.016*"xcode",
(13.
  '0.024*"area" + 0.022*"preference" + 0.020*"svn" +
0.018*"textbox" + 0.015*"occurrence".
(14,
  '0.026*"android" + 0.015*"color" + 0.011*"background" +
0.010*"width" + 0.009*"height"
(15,
  '0.033*"byte" + 0.029*"col" + 0.028*"char" + 0.025*"random" +
0.024*"timestamp"
 (16.
  '0.021*"spring" + 0.020*"bean" + 0.020*"vim" + 0.020*"video"
+ 0.017*"svg"
```

Tests de prédiction dans test.xlsx

Modélisations de sujets : NMF

Le modèle NMF (non-negative matrix factorization) est une méthode d'algèbre linéaire qui peut être utilisée pour la prédiction de sujets.

A, W et H sont à termes positifs.

Modélisations de sujets : NMF

```
Topic 0:
                                                       Topic 8:
error user run request server test web api
                                                       date day datetime month format year time hour convert
                                                       Topic 9:
Topic 1:
android studio layout width com layout height
                                                       python line module print import package install pip lib
Topic 2:
                                                       Topic 10:
file directory folder line project path open txt
                                                       image background color css text width button html
Topic 3:
                                                       Topic 11:
string convert object json public stre format str
                                                       array numpy object arr php convert index return byte
Topic 4:
                                                       Topic 12:
git branch commit master push repository github
                                                       list item loop collection index contain convert object
Topic 5:
                                                       Topic 13:
                                                       value select option type key input property default
table sql query key select database mysql create
Topic 6:
                                                       Topic 14:
class public static method type extend object href
                                                       int std struct amp cout main char include return type
Topic 7:
                                                       Topic 15:
function return var console datum javascript log
                                                       java org lang method eclipse androidruntime exception
                                                       Topic 16:
                                                       column dataframe panda datum row frame index csv col
                                                       Topic 17:
```

app io xcode component react play device google angular

Classification multi-étiquettes

Plusieurs tags peuvent être associés à un même post, nous sommes donc face à un problème de classification <u>multi-étiquettes</u>. Plusieurs méthodes sont possibles :

- appliquer un modèle déjà adapté
- Utiliser un même classificateur binaire pour chaque étiquette, ce qu'on appelle la BinaryRelevance :

On ne prend pas en compte les tags qui n'apparaissent que dans au maximum 1% des posts.

Classification multi-étiquettes

	macro_f1	micro_f1	accuracy	
KNN	0.490787	0.557951	0.353955	
Naive Bayes	0.116853	0.294155	0.160243	
Linear SVC	0.608758	0.689837	0.451318	

Choix de la SVC linéaire.

Ajout d'une ACP dans le pre-processing : performances un peu moins bonnes mais temps de prédiction + rapide.

04 Conclusion

Conclusion

Choix d'un modèle supervisé avec le modèle SVC.

Déploiement de l'app avec flask et heroku https://tagssuggestions.herokuapp.com/