Mines - PSL, Campus Pierre Laffitte, Chaire SciDoSol / PERSEE / OIE

The lab: OIE (Observation, Impacts, Energie)
Sponsors: TotalEnergies, RTE, Somfy, TSE, SOLAÏ

Prévision Énergétique Multi-Sources avec Réconciliation Optimale via une Approche MIMO-MH et Extreme Learning Machine (ELM)

Yoan Jheelan, Master 1 Energie - Matériaux, Université Paris-Saclay yoan.jheelan@etu-upsaclay.fr <u>Prof. Elena Magliaro</u>, Chercheur à Mines Paris - PSL (OIE)

Prof. Cyril Voyant,
Directeur de recherche MINES Paris - PSL (OIE)

<u>Prof. Andrea Michiorri</u>, Chercheur à Mines Paris – PSL (PERSEE)

Sommaire

Introduction

Données utilisées

Méthodes

Résultats et discussion

() S Conclusion

Introduction

Objectifs

- Développer un modèle de prévision énergétique intégrant :
 - Extreme Learning Machine (ELM)
 - Multi-Input, Multi-Output, Multi-Horizon
 - Réconciliation optimale des prévisions.
- Optimiser la précision et la rapidité des prévisions sur un horizon de 24 heures, avec un pas horaire.
- Proposer un modèle rapide adaptée aux contraintes des gestionnaires de réseau.

Données utilisées

Présentation des données

- Une série temporelle est une suite d'observations indexée par le temps.
- Les séries temporelles utilisées représentent la production horaire d' électricité en MWh par différents moyens de production.
 - Ces séries sont gérées par EDF sur la région Corse, garantissant leur fiabilité.
 - Les données vont du 01/01/2016 au 31/12/2022 par pas horaire
 - Le split entre données d'entraînement et de test se fait à la date du 01/01/2021

TOTAL_PRODUCTION,
THERMAL,
HYDRAULIC,
MICRO HYDRAULIC,
SOLAR PHOTOVOLTAIC,
WIND,
BIOENERGY,
IMPORTS

Saisonnalités et Tendances

Méthodes

Approche MIMO-MH et Réconciliation

- Basé sur l'Extreme learning machine (ELM)
 - Réseau de neurones à une seule couche cachée
 - Apprentissage très rapide, faible charge de calcul, adapté au temps quasi réel
- Modèle Single Input Single Output (SISO)
 - Prédit une seule source pour un horizon donné
 - o Bonne précision, mais limité et lent
- Modèle Multi Input Multi Output (MIMO)
 - Prédit toutes les sources pour un horizon donné
 - Exploite les corrélations entre sources et leur variabilité partagée pour améliorer la robustesse des prévisions
- Modèle Multi-Input Multi-Output Multi-Horizon (MIMO-MH)
 - Prédit toutes les sources sur plusieurs horizons en même temps
 - Généralise le MIMO en intégrant simultanément plusieurs horizons de prévision
- Suivi d'une étape de réconciliation optimale des prévisions
 - o Pour que la somme des prévisions de chaque source corresponde toujours au total attendu à chaque horizon.

Données et encodage

Un encodage sinusoïdal est utilisé pour représenter les caractéristiques cycliques :

$$\sin_T(t) = \sin\left(2\pi \frac{t}{T}\right), \quad \cos_T(t) = \cos\left(2\pi \frac{t}{T}\right)$$

Paramétrisation des modèles MIMO :

- Entrées: 8 sources énergétiques observées sur 48 heures et 2 composantes temporelles, soit 386 entrées:
- Couche cachée: 1000 neurones;
- Sorties : $8 \times 24 = 192$;
- Horizon de prévision : 24 heure par pas horaire (par run).

- Nombre de paramètres : o Entre l'entrée et la couche cachée : 386 × 1000 = 386 000
 - Entre la couche cachée et la sortie : 1000 × 8 = 8 000
 - Le modèle comporte un total de 394 000 paramètres

$$X_t \in \mathbb{R}^{48 \times 1}$$
 \longrightarrow SISO $Y_{t+h} \in \mathbb{R}^1$ $X_t \in \mathbb{R}^{48 \times \text{energy sources}}$ \longrightarrow MIMO $Y_{t+h} \in \mathbb{R}^{\text{energy sources}}$ \longrightarrow MIMO-MH \longrightarrow $Y_{t+1:t+24} \in \mathbb{R}^{24 \times \text{energy sources}}$

Corrélation de Spearman MIMO-MH-REC

Partial correlation function (PACF)

- La production solaire a une forte continuité d'une heure à l'autre et suit un rythme quotidien
- MIMO-MH capture ces liens pour avoir des prévisions plus précises

Réconciliation

Résultats et discussion

Comparaison Python / Matlab à l'horizon 1h :

Benchmarks nRMSE Multi-Horizon

Benchmarks nMAE Multi-Horizon

Benchmarks nMBE Multi-Horizon

Résultats moyen par horizon (nRMSE)

Résultats moyen par horizon (nMAE)

Temps de calculs

Conclusion

Conclusion

- Le Modèle MIMO-MH est un outil de prévision rapide à entraîner et possède un bon compromis entre performance,
 temps de calcul et complexité.
- Modèle développé en réponse aux besoins opérationnels exprimés par des acteurs comme EDF et RTE.
- Enjeux de transition énergétique, prévision fiable et open science (<u>dépôt Git</u>), reproductibilité et robustesse méthodologique.

Merci de votre attention

