

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

⑯ Patentschrift
⑯ DE 3701089 C1

⑯ Int. Cl. 4:
G 01 R 27/14

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

⑯ Patentinhaber:

Standard Elektrik Lorenz AG, 7000 Stuttgart, DE

⑯ Erfinder:

Gummel, Manfred Ferdinand, Dipl.-Ing., 8508
Wendelstein, DE; Schneider, Atnon, Dipl.-Ing., 8500
Nürnberg, DE

⑯ Für die Beurteilung der Patentfähigkeit
in Betracht gezogene Druckschriften:

DE-Z.: Elektronik, H.23, 16.11.1984;
S.245;

⑯ Verfahren zum Abgleichen der beiden Widerstände eines Spannungsteilers in einem Hybridschaltkreis

Die Erfindung betrifft ein Verfahren zum Abgleichen der beiden Widerstände eines an eine konstante Betriebsspannung anzuschließenden Spannungsteilers eines Dickschicht-Hybridschaltkreises zur Erzeugung einer Referenzspannung, wobei der Knotenpunkt des Spannungsteilers an der Steuerelektrode eines steuerbaren Halbleiterbauelements anliegt. Durch dieses Verfahren soll ein Referenzspannungsbauelement mit sehr geringer Toleranz herstellbar sein. Dies geschieht dadurch, daß als steuerbares Halbleiterbauelement eine steuerbare Zenerdiode (ZD) verwendet wird und daß der Abgleich der beiden Widerstände (R3, R2, R3, R1) des Spannungsteilers unter Betriebsbedingungen so durchgeführt wird, daß bei konstantem Betriebsstrom (IB) am Knotenpunkt (11) die Referenzspannung (U_{RZD}) der Zenerdiode (ZD) ansteht und zugleich der Gesamtwiderstand der beiden Widerstände des Spannungsteilers (R3, R2; R3, R1) so abgeglichen wird, daß der Strom (ISP) durch den Spannungsteiler (R3, R2; R3, R1) einem vorgegebenen Wert entspricht.

DE 3701089 C1

BEST AVAILABLE COPY

DE 3701089 C1

Patentansprüche

1. Verfahren zum Abgleichen der beiden Widerstände eines an eine konstante Betriebsspannung anzuschließenden Spannungsteilers in einem Hybridschaltkreis zur Erzeugung einer Referenzspannung, wobei der Knotenpunkt des Spannungsteilers an der Steuerelektrode eines steuerbaren Halbleiterbauelementes anliegt, dadurch gekennzeichnet, daß als steuerbares Halbleiterbauelement eine steuerbare Zenerdiode (ZD) verwendet wird und daß der Abgleich der beiden Widerstände ($R_3, R_2; R_3, R_1$) des Spannungsteilers unter Betriebsbedingungen so durchgeführt wird, daß bei konstantem Betriebsstrom (IB) am Knotenpunkt (11) die Referenzspannung (U_{RZD}) des in der Schaltung befindlichen Zenerdiodenexemplars (ZD) ansteht und zugleich der Gesamtwiderstand der beiden Widerstände (R_3, R_2 bzw. R_3, R_1) so abgeglichen wird, daß der Strom (ISP) durch den Spannungsteiler (R_3, R_2 bzw. R_3, R_1) einem vorgegebenen Wert entspricht.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zunächst der am kalten Ende angeschlossene Teilwiderstand (R_3) so abgeglichen wird, daß der vorgegebene Strom (ISP) durch den Spannungsteiler (R_3, R_2 bzw. R_3, R_1) fließt und daß anschließend der andere Teilwiderstand (R_2 bzw. R_1) so abgeglichen wird, daß die gewünschte Referenzspannung (U_{Ref}) am Spannungsteiler ($R_3, R_2; R_3, R_1$) ansteht.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß am Knotenpunkt (11) wenigstens ein weiterer Teilwiderstand zum heißen Ende hin angeschlossen wird und dieser nach Abgleich des ersten Spannungsteilers auf eine weitere Referenzspannung (U_{Ref}) abgeglichen wird.

4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Strom (ISP) durch den Spannungsteiler ($R_3, R_2; R_3, R_1$) so gewählt wird, daß der Gesamtwiderstand des bzw. der Spannungsteiler ($R_3, R_2; R_3, R_1$) einem vielfachen Dezimalwert in Ohm mal dem gewünschten Wert der Referenzspannung (U_{Ref}) in Volt entspricht.

Beschreibung

Die vorliegende Erfindung bezieht sich auf ein Verfahren zum Abgleichen der beiden Widerstände eines Spannungsteilers in einem Hybridschaltkreis gemäß dem Oberbegriff des Anspruchs 1.

Bei Dickschicht-Hybridschaltungen ist es bekannt, den Abgleich von Widerständen und ganzen Schaltungen durch das sogenannte Funktionstrimmen durchzuführen (Zeitschrift Elektronik 23/16.11.1984, Seite 245.)

Der vorliegenden Erfindung liegt die Aufgabe zugrunde eine in Dickschicht-Hybridtechnik mit abgleichbar ausgeführten Widerständen ausgebildete Referenzspannungsquelle auf sehr geringe Toleranz abzugleichen, so daß ein preiswertes und genaues Regelbauelement erhalten werden kann und die Möglichkeit besteht, eine beliebige Referenzspannung nachträglich in einfacher Weise ohne großen Aufwand wählen zu können.

Gelöst wird diese Aufgabe durch die im Kennzeichen des Anspruchs 1 angegebenen Merkmale. Auf diese-

quelle, deren Referenzspannung zusätzlich durch einen vorgeschalteten Präzisionswiderstand auf eine gewünschte höhere Referenzspannung gebracht werden kann.

5. Weitere vorteilhafte Einzelheiten der Erfindung sind in den Unteransprüchen angegeben und nachfolgend anhand des in Zeichnung veranschaulichten Ausführungsbeispiels beschrieben.

Mit 10 ist ein Substrat für eine Dickschicht-Hybridschaltung bezeichnet, auf dem eine steuerbare Zenerdiode ZD , ein Spannungsteiler aus den Widerständen R_2 und R_3 und ein weiterer Widerstand R_1 , der mit dem Widerstand R_3 einen zweiten Spannungsteiler bilden kann, in üblicher Hybridtechnik aufgebracht sind. Die Kathode K der Zenerdiode ZD ist an den Anschlußkontakt 4 und die Anode A derselben an den Anschlußkontakt 5 angeschlossen.

An die Steuerelektrode der Zenerdiode ZD ist der Knotenpunkt 11 der Spannungsteiler R_3, R_2 , und R_3, R_1 geleitet. Der Widerstand R_3 liegt an der Anode A der Zenerdiode ZD und über den Anschlußkontakt 5 an Masse M . Er liegt also am kalten Ende der Spannung. Der Widerstand R_1 ist mit dem Anschlußkontakt 2 und der Widerstand R_2 ist mit dem Anschlußkontakt 3 verbunden. Der Anschlußkontakt 1 liegt direkt an der Steuerelektrode der Zenerdiode ZD .

Im Betrieb wird diese Schaltung, die zur Erzeugung wenigstens einer Referenzspannung U_{Ref} zwischen Masse M und dem heißen Ende der Spannungsteiler dient, mit einem konstanten Betriebsstrom IB betrieben. Zur Realisierung der Referenzspannung U_{Ref} wird das jeweilige heiße Ende eines Spannungsteilers, also der Anschlußkontakt 2 oder 3, mit der Kathode K der Zenerdiode ZD verbunden und am Verbindungspunkt 12 der konstanten Betriebsstrom IB eingespeist. Letzterer wird durch eine Konstantstromquelle 13 erzeugt, die an die Betriebsspannung + U angeschlossen ist.

Um eine sehr genaue Referenzspannung U_{Ref} zu erhalten, muß der Knotenpunkt 11 ein Potential aufweisen, das möglichst genau der Zenerdioden-Referenzspannung U_{RZD} der Zenerdiode ZD entspricht. Diese ist vom Hersteller nur in bestimmten Toleranzen erreichbar, so daß verschiedene Zenerdioden vom gleichen Typ bezüglich ihrer Zenerdioden-Referenzspannung trotzdem relativ weit voneinander abweichen. Der Spannungsteiler R_3, R_2 bzw. R_3, R_1 muß daher in jeder Schaltung an die eingebaute Zenerdiode ZD angepaßt werden, um eine hohe Genauigkeit bei der erzeugten Referenzspannung U_{Ref} zu gewährleisten. Diese Genauigkeit wird durch folgenden Funktionsabgleich des bzw. der Spannungsteiler erreicht:

Zunächst wird der bei Verwendung des Schaltkreises auftretende Betriebsstrom IB mittels der Konstantstromquelle 13 eingestellt. Alle Widerstände R_1, R_2 und R_3 besitzen zunächst einen niedrigeren Widerstandswert, so daß der erforderliche höhere Widerstandswert in an sich bekannter Weise durch Einschnitte in die aufgebrachte Widerstandsschicht derselben erhalten werden kann. Zweckmäßig erfolgt dies durch die bekannte Lasertrimming. Der Betriebstrom IB setzt sich zusammen aus dem durch die Zenerdiode ZD fließenden Strom I_{ZD} und dem durch den angeschlossenen Spannungsteiler R_3, R_2 bzw. R_3, R_1 fließenden Strom ISP . Für letzteren wird ein geeigneter Wert vorgegeben, der so bemessen sein muß, daß die Zenerdiode ZD und die Konstantstromquelle 13 noch im günstigen Regelbereich arbeiten können. Dieser Strom ISP wird

Stromkreis eingeschalteten Präzisionswiderstand R_4 und durch Umrechnung in den entsprechenden Stromwert ermittelt. Der Abgleich erfolgt nun in der in der Zeichnung dargestellten Schaltungsanordnung, d. h., daß der Spannungsteiler R_3, R_2 am Anschlußkontakt 3 an die Meß- und Trimmschaltung angeschlossen ist. Es kann daher jetzt die zwischen dem Anschlußkontakt 3 und dem Anschlußkontakt 5 auftretende Referenzspannung abgeglichen werden. Zum Abgleich wird nun nach Einstellung des konstanten Betriebsstromes IB der am kalten Ende angeschlossene Widerstand R_3 abgeglichen, bis der Spannungsteilerstrom ISP den vorgegebenen Wert erreicht, hier also am Widerstand R_4 der entsprechende Spannungswert ansteht.

Zugleich regelt die Konstantstromquelle 13 den Betriebsstrom IB nach. Dadurch herrscht am Knotenpunkt 11 des Spannungsteilers R_3, R_2 das Potential der Zenerdioden-Referenzspannung UR_{ZD} und die Zenerdiode und die Konstantstromquelle 13 arbeiten in einem vorbestimmten günstigen Regelbereich.

Anschließend wird der Widerstand R_2 so abgeglichen, daß am Anschlußkontakt 3 die gewünschte Referenzspannung U_{Ref} herrscht. Hierauf wird die Verbindungsleitung 14 zwischen dem Anschlußkontakt 3 und dem Widerstand R_4 entfernt und der Anschlußkontakt 2 an den Widerstand R_4 angeschlossen. Danach wird der Widerstand R_1 so abgeglichen, daß am Anschlußkontakt 2 die dort gewünschte Referenzspannung U_{Ref} herrscht.

Bei einem Ausführungsbeispiel war bei Verwendung einer steuerbaren Zenerdiode Typ TL 431 CD der Strom I_{ZD} durch die Zenerdiode konstant 10 mA, der Strom ISP durch die Spannungsteiler R_3, R_2 bzw. R_3, R_1 auf 1 mA und somit der konstant geregelte Betriebsstrom IB auf 11 mA eingestellt. Der Spannungsteiler R_3, R_2 wurde so abgeglichen, daß eine Referenzspannung von 5 V am Anschlußkontakt 3 herrschte und der Spannungsteiler R_3, R_1 wurde so abgeglichen, daß am Anschlußkontakt 2 eine Referenzspannung von 12 V herrschte. Die durch Regelung sich jeweils einstellende Referenzspannung U_{Ref} bei verändertem Betriebsstrom IB ist aus der folgenden Tabelle zu entnehmen:

IB	0,5 mA	1 mA	10 mA	20 mA	45
1	4,935 V 11,85 V	4,986 V 11,97 V	5,001 V 12,00 V	5,017 V 12,02 V	
2	4,932 V 11,86 V	4,982 V 11,97 V	4,999 V 12,00 V	5,017 V 12,04	50
3	4,937 V 11,88 V	4,979 V 11,96 V	4,995 V 11,99 V	5,010 V 12,02	
4	4,937 V 11,87 V	4,979 V 11,96 V	4,995 V 11,99 V	5,014 V 12,03 V	55
5	4,945 V 11,86 V	4,979 V 11,94 V	4,995 V 11,98 V	5,011 12,01 V	

Wie ersichtlich, kann durch diesen Abgleichvorgang bei der angegebenen Schaltung eine hohe Genauigkeit der Referenzspannung U_{Ref} erreicht werden.

Als besonders günstig hat sich erwiesen, den Strom durch den bzw. die Spannungsteiler ISP so zu wählen, daß eine Änderung der Referenzspannung U_{Ref} durch Zuschalten eines externen Präzisionswiderstandes ohne

kann. Dies ist beispielsweise bei dem angewendeten Strom von 1 mA der Fall. Die Änderung der Referenzspannung U_{Ref} erfolgt dann durch Widerstände, deren Wert dem Betrag nach den tausendfachen Wert in Ohm der Referenzspannung U_{Ref} in Volt beträgt. Insbesondere ist eine Leitung 15 direkt von der Steuerelektrode der Zenerdiode ZD zu einem Anschlußkontakt, hier dem Anschlußkontakt 1, geführt. Die gewünschte Referenzspannung U_{Ref} wird dort dadurch erhalten, daß an den Anschlußkontakt 1 ein Präzisionswiderstand angeschlossen werden kann, dessen Wert dem Betrag nach in Ohm den tausendfachen Wert der gewünschten Referenzspannung entspricht, also bei einer gewünschten Referenzspannung U_{Ref} von 10 V beispielsweise 10 kOhm. Allgemein wird also der Strom ISP durch den Spannungsteiler R_3, R_2 bzw. R_3, R_1 so gewählt, daß der Gesamtwiderstand des Spannungsteilers R_3, R_2 bzw. R_3, R_1 oder eines Spannungsteilers aus R_3 und einem Anschlußkontakt 1 angeschlossenen Widerstand einem 20 vielfachen Dezimalwert in Ohm mal den gewünschten Wert der Referenzspannung U_{Ref} in Volt entspricht. Auch können die abgeglichenen Spannungsteiler $R_3, R_2; R_3, R_1$, deren Wert bei 5 V etwa 5 kOhm bzw. bei 12 V etwa 12 kOhm entspricht, leicht für eine andere 25 Referenzspannung U_{Ref} verwendet werden, indem der entsprechende Gesamtwiderstand durch einen externen Widerstand erreicht wird. Bei Erhöhung der Referenzspannung U_{Ref} von 5 V auf beispielsweise 7 V sind daher 2 kOhm anzuschließen.

Hierzu 1 Blatt Zeichnungen

