

Дискретная математика

Лекция 8

Комбинаторика

<u>Функции</u>

Пусть
$$A = \{1, 2, ..., m\},$$
 $B = \{1, 2, ..., n\}.$

Подсчитаем число функций $f:A \to B$ различных типов.

1. Все функции

Любая функция $f: A \to B$ может быть задана последовательностью ее значений:

$$(f(1), f(2), \dots, f(m))$$

Каждое f(i) может быть произвольным элементом из B. Имеется

$$n^{m}$$

таких последовательностей, это и есть число всех функций.

2. Инъекции

$$(m \leq n)$$

Если f – инъекция, то все элементы последовательности

различны. Значит, эта последовательность является m-размещением из n элементов. Следовательно, число инъекций из A в B равно

$$P(n,m) = (n)_m = \frac{n!}{(n-m)!}$$

3. Биекции

Инъекция $f:A\to B$ является биекцией в том и только том случае, если n=m. Поэтому имеется точно

$$P(n,n) = n!$$

биекций множества размера $\,n\,$ на другое множество размера $\,n\,$.

4. Сюръекции

$$(m \geq n)$$

Пусть f – сюръекция множества A на множество B. Определим для каждого $y \in B$ множество

$$P(y) = \{x \in A : f(x) = y\}.$$

Семейство $\{P(1), P(2), ..., P(n)\}$ есть упорядоченное разбиение множества A и не содержит пустых частей (так как f – сюръекция). Число сюръекций равно числу таких разбиений:

$$\sum_{k=0}^{n} (-1)^k (n-k)^m \binom{n}{k}$$

5. Строго монотонные функции

Рассмотрим возрастающие функции, т.е. $f(x_1) < f(x_2)$ при $x_1 < x_2$.

Чтобы задать такую функцию, достаточно выбрать некоторое m-подмножество множества B в качестве области значений функции. Затем располагаем элементы этого подмножества в возрастающем порядке:

$$s_1 < s_2 < \dots s_m$$

и полагаем

$$f(1) = s_1, \quad f(2) = s_2, \quad ..., f(m) = s_m.$$

Следовательно, число таких функций равно числу m-подмножеств множества B, т.е. $\binom{n}{m}$

5. Нестрого монотонные функции

Рассмотрим неубывающие функции, т.е. $f(x_1) \le f(x_2)$ при $x_1 < x_2$.

Рассуждаем как в предыдущем случае, но теперь нужно выбрать в качестве области значений функции f мультимножество размера m.

Число функций равно числу таких мультимножеств, т.е.

$$\binom{n}{m} = \binom{m+n-1}{m}$$

Рекуррентные соотношения

Пусть $(x_0, x_1, x_2, ...)$ – бесконечная последовательность чисел, в которой несколько начальных элементов $x_0, x_1, ..., x_k$ заданы, а каждый из последующих вычисляется по предыдущим в соответствии с некоторым правилом.

Если это правило задано в виде соотношения $x_n = f(x_{n-1}, x_{n-2}, ..., x_{n-k})$, то оно называется рекуррентным соотношением (рекуррентным уравнением).

Решить такое соотношение (уравнение) — значит выразить элементы последовательности x_n через n.

Пример 1:

Начальный элемент: $x_0 = 1$

Рекуррентное соотношение: $x_n = n \cdot x_{n-1}$.

Решение: $x_n = n!$

Пример 2: Числа Белла.

Начальный элемент: $B_0 = 1$

Рекуррентное соотношение: $B_n = \sum_{k=0}^{n-1} \binom{n}{k} B_k$

Решение:
$$B_n = \sum_{m=1}^n \sum_{k=0}^m \frac{(-1)^k \cdot (m-k)^n}{k! \cdot (m-k)!}$$

Пример 3:

Начальный элемент: $x_0 = 1$

Рекуррентное соотношение: $x_n = x_{n-1} + 1$.

Решение: $x_n = n$

Пример 4:

Начальный элемент: $x_0 = 2$

Рекуррентное соотношение: $x_n = 3 \cdot x_{n-1}$.

Решение: $x_n = 3^n \cdot 2$

Эти примеры относятся к линейным рекуррентным соотношениям с постоянными коэффицентами.

<u>Линейные рекуррентные соотношения</u> <u>первого порядка</u>

Общий вид: $x_n = ax_{n-1} + b$, где a и b – заданные константы, n > 0.

Если задан начальный элемент x_0 , то можно последовательно вычислять другие элементы:

$$x_1 = ax_0 + b$$

 $x_2 = ax_1 + b = a(ax_0 + b) + b = a^2x_0 + ab + b$
...

Любой элемент x_n , n>0, однозначно определен числами a,b,x_0 .

Нельзя ли найти общую формулу для x_n ?

Частные случаи

1. a = 1. Уравнение имеет вид $x_n = x_{n-1} + b$.

$$x_1 = x_0 + b$$

 $x_2 = x_1 + b = x_0 + 2b$
 $x_3 = x_2 + b = x_0 + 3b$
...

Очевидно, $x_n = x_0 + nb$ для любого n (это легко доказать индукцией по n)

Это не что иное, как арифметическая прогрессия.

2. b = 0. Уравнение имеет вид $x_n = ax_{n-1}$.

$$x_1 = ax_0$$

 $x_2 = ax_1 = a^2x_0$
 $x_3 = ax_2 = a^3x_0$

Очевидно, $x_n = a^n x_0$ для любого n

Это геометрическая прогрессия.

Общий случай

$$x_n = ax_{n-1} + b \tag{1}$$

Введём замену

$$x_n = y_n + s \tag{2}$$

где y_n – новая последовательность, s – константа, значение которой определим позже.

Подставляя (2) в (1), получаем

$$y_n + s = a(y_{n-1} + s) + b$$

ИЛИ

$$y_n = ay_{n-1} + as + b - s$$

$$y_n = ay_{n-1} + as + b - s$$

Выберем s так, чтобы выполнялось равенство

$$as + b - s = 0$$

то есть

$$s = \frac{b}{1 - a}$$

При a=1 это выражение не определено. Но случай a=1 был рассмотрен раньше.

Далее предполагаем, что $a \neq 1$.

Получаем уравнение $y_n = ay_{n-1}$

$$y_n = ay_{n-1}$$

Уравнение такого типа также было рассмотрено ранее. Его решение

$$y_n = a^n y_0$$

Так как
$$x_n = y_n + s$$
, получаем
$$x_n - s = a^n(x_0 - s)$$

$$x_n = a^n(x_0 - s) + s$$

и остается подставить $s = \frac{b}{1-a}$:

$$x_n = a^n \left(x_0 - \frac{b}{1-a} \right) + \frac{b}{1-a}$$

Итак, решение достигается в три шага:

- 1. Приведение уравнения к простейшему виду путем замены $x_n = y_n + s$ и выбора подходящего значения для s.
- 2. Решение полученного простейшего уравнения.
- 3. Возвращения к первоначальной неизвестной x_n .

Отметим, что решение имеет вид

$$x_n = c_1 a^n + c_2$$

где c_1 и c_2 – некоторые константы.

Таким образом, зависимость x_n от n выражается экспоненциальной функцией.

Ханойская башня

Французский математик Люка предложил в 1883 г. следующую задачу. Восемь дисков различного диаметра нанизаны на один из трех стержней в порядке убывания диаметра. Нужно переместить их в том же порядке на другой стержень. Разрешается перекладывать по одному диску, при этом нельзя класть больший диск на меньший. За сколько шагов это можно сделать? (Шаг – перекладывание одного диска)

Рассмотрим задачу в общем виде, когда имеется n дисков.

Пусть T_n – минимальное число шагов, необходимое для перемещения n дисков с одного стержня на другой.

Очевидно, $T_1 = 1$.

Легко видеть, что $T_2 = 3$:

Три диска можно переместить так:

1) перемещаем два верхних диска (3 шага)

2) перекладываем самый большой диск (1 шаг)

3) снова перемещаем два меньших диска (3 шага)

Таким образом, $T_3 = 3 + 1 + 3 = 7$.

В общем случае n-1 меньших дисков должны быть перемещены на другой стержень прежде, чем мы сможем переложить самый большой диск. Это требует T_{n-1} шагов.

После перекладывания наибольшего диска нужно снова переместить n-1 меньших дисков. Это опять требует T_{n-1} шагов.

Получаем рекуррентное уравнение

$$T_n = 2T_{n-1} + 1$$

Если положить

$$T_0 = 0$$
,

то это равенство верно и при n=1.

Решаем это уравнение:

1. Упрощение.

$$T_n = y_n + s$$

$$y_n + s = 2(y_{n-1} + s) + 1$$

$$y_n = 2y_{n-1} + s + 1$$

При
$$s=-1$$
 (то есть $T_n=y_n-1$) получаем: $y_n=2y_{n-1}$

- 2. Решаем простейшее уравнение: $y_n = 2^n y_0$
- 3. Возвращаемся к первоначальной неизвестной:

$$y_n = T_n + 1; y_0 = T_0 + 1 = 1$$

 $T_n + 1 = 2^n$

$$T_n = 2^n - 1$$

<u>Линейные рекуррентные соотношения</u> <u>второго порядка</u>

Общий вид: $x_n = ax_{n-1} + bx_{n-2} + c$, где a,b,c – заданные константы, n > 1.

Сначала рассмотрим однородное уравнение (при c=0): $x_n = ax_{n-1} + bx_{n-2}$ (3)

Если известны два первых элемента, x_0 и x_1 , то можно последовательно вычислять следующие элементы:

$$x_2=ax_1+bx_0,$$
 $x_3=ax_2+bx_1=a(ax_1+bx_0)+bx_1=(a^2+b)x_1+abx_0$ и т. д.

Можно получить и общую формулу для x_n .

Производящие функции

Производящая функция последовательности a_n — формальный степенной ряд

$$A(t) = \sum_{n=0}^{\infty} a_n t^n.$$

Понятие производящей функции позволяет работать с разными комбинаторными объектами аналитическими методами. Они дают гибкий способ описывать соотношения в комбинаторике, а иногда помогают вывести явные формулы для числа комбинаторных объектов определённого типа.

Общий вид: $x_n = ax_{n-1} + bx_{n-2}$, где a, b- заданные константы, n > 1.

Построим производящую функцию X(t) для x_n :

$$X(t) = \sum_{n=0}^{\infty} x_n t^n$$

Используя (3), получаем:

$$X(t) = x_0 + x_1 t + \sum_{n=2}^{\infty} (ax_{n-1} + bx_{n-2})t^n$$

$$= x_0 + x_1 t + \sum_{n=2}^{\infty} ax_{n-1} t^n + \sum_{n=2}^{\infty} bx_{n-2} t^n$$

$$= x_0 + x_1 t + at \sum_{n=1}^{\infty} x_n t^n + bt^2 \sum_{n=0}^{\infty} x_n t^n$$

$$= x_0 + x_1 t + at(X(t) - x_0) + bt^2 X(t)$$

Итак,
$$X(t) = x_0 + x_1 t + at(X(t) - x_0) + bt^2 X(t)$$

Далее получаем:

$$X(t) = x_0 + x_1 t - at x_0 + X(t)(at + bt^2)$$

$$X(t)(1 - at - bt^2) = x_0 + x_1 t - at x_0$$

$$X(t) = \frac{x_0 + x_1 t - at x_0}{1 - at - bt^2}$$

Имеем 2 случая:

1.
$$a^2+4b\neq 0$$
, тогда $1-at-bt^2=(1-\alpha_1t)(1-\alpha_2t)$, где t_1 и t_2 – корни уравнения $\alpha^2-a\alpha-b=0$

2.
$$a^2+4b=0$$
 тогда уравнение $\alpha^2-a\alpha-b=0$ имеет 1 корень, α_1 и $1-at-bt^2=(1-\alpha_1t)^2$

 $\alpha^2 - a\alpha - b = 0$ называется характеристическим уравнением соотношения (3).

В 1 случае преобразуем производящую функцию:

$$X(t) = \frac{x_0 + x_1 t - at x_0}{1 - at - bt^2} = \frac{c_1}{1 - \alpha_1 t} + \frac{c_2}{1 - \alpha_1 t}$$

По формуле бесконечной суммы убывающей геометрической прогрессии:

$$\frac{c_1}{1 - \alpha_1 t} = c_1 \sum_{n=0}^{\infty} (\alpha_1 t)^n = \sum_{n=0}^{\infty} c_1 \alpha_1^n t^n$$

Аналогично,

$$\frac{c_2}{1-\alpha_2 t} = \sum_{n=0}^{\infty} c_2 \alpha_2^n t^n$$

То есть

$$X(t) = \sum_{n=0}^{\infty} c_1 \alpha_1^n t^n + \sum_{n=0}^{\infty} c_2 \alpha_2^n t^n = \sum_{n=0}^{\infty} (c_1 \alpha_1^n + c_2 \alpha_2^n) t^n$$

Таким образом,

$$X(t) = \sum_{n=0}^{\infty} x_n t^n = \sum_{n=0}^{\infty} (c_1 \alpha_1^n + c_2 \alpha_2^n) t^n$$

Но это значит, что $x_n = c_1 \alpha_1^n + c_2 \alpha_2^n$

Отметим, что данная формула удовлетворяет уравнению (3) при любых константах c_1 и c_2 . Конкретные же константы вычисляются в зависимости от x_0 и x_1 .

Эта последовательность называется общим решением рекуррентного соотношения (3).

Для 2 случая:

$$X(t) = \frac{x_0 + x_1 t - at x_0}{1 - at - bt^2} = \frac{c_0}{1 - \alpha_1 t} + \frac{c_2}{(1 - \alpha_1 t)^2}$$

Рассмотрим вторую дробь. Заметим, что

$$\sum_{n=0}^{\infty} (1+n)y^n = \sum_{n=0}^{\infty} ny^{n-1} = \left(\sum_{n=0}^{\infty} y^n\right)_y' = \left(\frac{1}{1-y}\right)_y' = \frac{1}{(1-y)^2}$$

Поэтому

$$-\frac{c_2 t}{(1 - \alpha_1 t)^2} = c_2 \sum_{n=0}^{\infty} (1 + n) \cdot \alpha_1^n t^n$$

То есть

$$X(t) = \sum_{n=0}^{\infty} c_0 \alpha_1^n t^n + \sum_{n=0}^{\infty} (1+n) \cdot c_2 \alpha_1^n t^n = \sum_{n=0}^{\infty} (c_0 + c_2 + nc_2) \alpha_1^n t^n$$

Таким образом, если обозначить $c_1 = c_0 + c_2$, то

$$X(t) = \sum_{n=0}^{\infty} x_n t^n = \sum_{n=0}^{\infty} (c_1 + nc_2) \alpha_1^n t^n$$

и в результате $x_n = (c_1 + nc_2)\alpha_1^n$.

Эта последовательность является общим решением рекуррентного соотношения (3) в данном случае.

Итак, можно дать следующий алгоритм решения рекуррентного соотношения 2 порядка.

- 1. Найти корни характеристического уравнения $\alpha^2 a\alpha b = 0$
- 2. Если $a^2+4b\neq 0$, то корней два: α_1 и α_2 тогда ищем общее решение в виде $x_n=c_1\alpha_1^n+c_2\alpha_2^n$ Если $a^2+4b=0$, то корень один: α_1 тогда ищем общее решение в виде $x_n=(c_1+nc_2)\alpha_1^n$
- 3. Коэффициенты c_1 и c_2 в обоих случаях зависят от x_0 и x_1 . Можно найти их методом неопределённых коэффициентов.

Подберём c_1 и c_2 так, чтобы два первых элемента этой последовательности были x_0 и x_1 .

Для этого подставим n=0 и n=1 в общее решение

Для случая 1:

$$n = 0: x_0 = c_1 \alpha_1^0 + c_2 \alpha_2^0 = c_1 + c_2$$

$$n = 1: x_0 = c_1 \alpha_1^1 + c_2 \alpha_2^1 = c_1 \alpha_1 + c_2 \alpha_2$$

Для случая 2:

$$n = 0: x_0 = (c_1 + 0 \cdot c_2)\alpha_1^0 = c_1$$

$$n = 1: x_0 = (c_1 + 1 \cdot c_2)\alpha_1^1 = c_1\alpha_1 + c_2\alpha_1$$

Мы получили для каждого случая системы двух линейных уравнений с неизвестными c_1 и c_2 :

$$\begin{cases} c_1 + c_2 = x_0 \\ c_1 \alpha_1 + c_2 \alpha_2 = x_1 \end{cases} \quad \text{if} \quad \begin{cases} c_1 = x_0 \\ c_1 \alpha_1 + c_2 \alpha_1 = x_1 \end{cases}$$

Определитель каждой из этих систем: $\begin{vmatrix} 1 & 1 \\ \alpha_1 & \alpha_2 \end{vmatrix}$ и $\begin{vmatrix} 1 & 0 \\ \alpha_1 & \alpha_1 \end{vmatrix}$ не равен 0, следовательно, в обоих случаях существует единственное решение c_1 , c_2 , и мы получаем решение уравнения (3) с данными начальными значениями x_0 , x_1 .

Неоднородное уравнение

Неоднородное линейное рекуррентное уравнение второго порядка

$$x_n = ax_{n-1} + bx_{n-2} + c$$

можно свести к однородному так же, как это делалось для уравнения первого порядка.

Введем новую неизвестную y_n :

$$x_n = y_n + s$$

и подберем такое s, чтобы константное слагаемое исчезло:

$$s = \frac{c}{1 - a - b}.$$

Общий вид: $x_n = ax_{n-1} + bx_{n-2} + c$, где a,b,c – заданные константы, n > 1.

Построим производящую функцию X(t) для x_n :

$$X(t) = \sum_{n=0}^{\infty} x_n t^n = x_0 + x_1 t + \sum_{n=2}^{\infty} (ax_{n-1} + bx_{n-2} + c) t^n$$

$$= x_0 + x_1 t + \sum_{n=2}^{\infty} ax_{n-1} t^n + \sum_{n=2}^{\infty} bx_{n-2} t^n + \sum_{n=2}^{\infty} ct^n$$

$$= x_0 + x_1 t + at \sum_{n=1}^{\infty} x_n t^n + bt^2 \sum_{n=0}^{\infty} x_n t^n + c \sum_{n=2}^{\infty} t^n$$

$$= x_0 + x_1 t + at (X(t) - x_0) + bt^2 X(t) - c - ct + c \sum_{n=0}^{\infty} t^n$$

Далее:

$$X(t) = x_0 + x_1 t + at(X(t) - x_0) + bt^2 X(t) - c - ct + c \sum_{n=0}^{\infty} t^n$$

С учётом, что
$$\sum_{n=0}^{\infty} t^n = \frac{1}{1-t}$$
, получаем

$$X(t) = X(t)(at + bt^2) + x_0 + x_1t - atx_0 - c - ct + \frac{c}{1 - t}$$

$$X(t)(1-at-bt^2) = \frac{(1-t)(x_0+x_1t-atx_0-c-ct)+c}{1-t}$$

$$X(t) = \frac{(1-t)(x_0 + x_1t - atx_0 - c - ct) + c}{(1-t)(1-at - bt^2)}$$

Итак:
$$X(t) = \frac{(1-t)(x_0 + x_1t - atx_0 - c - ct) + c}{(1-t)(1-at-bt^2)}$$

По-прежнему, уравнение $\alpha^2 - a\alpha - b = 0$ (4) называем характеристическим. Здесь будет 4 случая:

- 1. $a^2+4b\neq 0$, $a+b\neq 1$, тогда $1-at-bt^2=(1-\alpha_1t)(1-\alpha_2t)$, где α_1 и α_2 корни уравнения (4), причём α_1 и α_2 различны и не равны 1.
- 2. $a^2 + 4b = 0$, $a + b \neq 1$ тогда уравнение (4) имеет 1 корень, $\alpha_1 \neq 1$ и $1 at bt^2 = (1 \alpha_1 t)^2$.
- 3. $b=1-a, \, a\neq 2$, тогда один из корней (4) равен 1, а второй $\alpha_1=\frac{1}{a-1}$, то есть $1-at-bt^2=(1-\alpha_1t)(1-t)$

4.
$$a=2, b=-1$$
, тогда $1-at-bt^2=1-2t+t^2=(1-t)^2_{_{41}}$

Рассуждая аналогично, можно вычислить вид общего решения для каждого из 4 случаев:

1.
$$x_n = c_1 \alpha_1^n + c_2 \alpha_2^n + c_3$$

2.
$$x_n = (c_1 + nc_2)\alpha_1^n + c_3$$

3.
$$x_n = c_1 \alpha_1^n + c_2 + nc_3$$

4.
$$x_n = c_1 + nc_2 + n^2c_3$$

Конкретные константы можно вычислить методом неопределённых коэффициентов в зависимости от x_0 и x_1 (а так же x_2 , вычисленного по формуле $x_2 = ax_1 + bx_0 + c$).

Числа Фибоначчи

Леонардо Фибоначчи (1170 — 1250), известный также как **Леонардо Пизанский**.

Сыграл важную роль в продвижении в Европу арабской десятичной системы записи чисел.

Открыл числа, названные его именем.

Числами Фибоначчи называются элементы последовательности

в которой каждый элемент, начиная с третьего, равен сумме двух предшествующих элементов:

$$1 = 1 + 0,$$

 $2 = 1 + 1,$
 $3 = 2 + 1,$
 $5 = 3 + 2,$

Если обозначить элемент с номером n через F_n ($n=0,\,1,\,2,\,\dots$), то получаем соотношение

$$F_n = F_{n-1} + F_{n-2}$$
.

Это линейное рекуррентное уравнение второго порядка. Имеются также начальные значения

$$F_0 = 0, \quad F_1 = 1$$

и можно найти общую формулу для чисел Фибоначчи.

Характеристическое уравнение

$$\alpha^2 - \alpha - 1 = 0$$

имеет два корня

$$\alpha_1 = \frac{1+\sqrt{5}}{2}, \qquad \alpha_2 = \frac{1-\sqrt{5}}{2}.$$

Общее решение имеет вид

$$c_1\left(\frac{1+\sqrt{5}}{2}\right)^n+c_2\left(\frac{1-\sqrt{5}}{2}\right)^n.$$

Применяя начальные значения, получаем систему для c_1 и c_2 :

$$\begin{cases} c_1 + c_2 = 0, \\ c_1 \alpha_1 + c_2 \alpha_2 = 1. \end{cases}$$

Находим

$$c_1 = \frac{1}{\alpha_1 - \alpha_2} = \frac{1}{\sqrt{5}},$$
 $c_2 = -\frac{1}{\sqrt{5}}$

и получаем формулу для чисел Фибоначчи:

$$F_{n} = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{n} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^{n}.$$

Пример Разреженные слова

Слово из букв 0, 1, в котором не встречаются две единицы подряд, называется разреженным словом.

Слово 0100101000101 разреженное, а слова 0101100011 и 0011110 – не разреженные.

Обозначим число разреженных слов длины n через U_n .

Для малых n имеем:

0	1	2	3	4	
λ	0	00	000	0000	
	1	01	001	0001	
		10	010	0010	
3			100	0100	
			101	0101	
				1000	
				1001	
				1010	
1	2	3	5	8	
		λ 0 1	λ 0 00 1 01 10 10	λ 0 00 000 1 01 001 10 010 100 101	λ 0 00 000 0000 1 01 001 0001 10 010 0010 100 0100 101 0101 1000 1001 1010

Чему равно U_5 ?

Если α – разреженное слово длины 5, начинающееся буквой 0, то

$$\alpha = 0\beta$$
,

где β – разреженное слово длины 4. Имеется 8 таких слов:

0100

0101

1000

Если же α начинается буквой 1, то вторая буква обязательно 0 и

$$\alpha = 10\gamma$$
,

где γ – разреженное слово длины 3. Имеется 5 таких слов:

В целом получаем

$$U_5 = U_4 + U_3 = 8 + 5 = 13.$$

В общем случае пусть α – разреженное слово длины n.

• Если α начинается буквой 0, то $\alpha=0\beta$, где β – разреженное слово длины n-1 .

Имеется U_{n-1} таких слов.

• Если α начинается буквой 1, то вторая буква должна быть 0 и $\alpha = 10\gamma$, где γ – разреженное слово длины n-2.

Имеется U_{n-2} таких слов.

Получаем рекуррентное уравнение:

$$U_n = U_{n-1} + U_{n-2}$$

для $n \ge 2$.

Это то же уравнение, что для чисел Фибоначчи, но начальные значения теперь другие: $U_0 = 1, \ U_1 = 2.$

Можно заметить, что U_0 и U_1 совпадают с двумя последовательными числами Фибоначчи:

$$U_0 = F_2, \quad U_1 = F_3.$$

Следовательно,

$$U_n = F_{n+2}$$
 for $n = 0, 1, 2, ...$