CLASSIFYING LOAN APPLICATIONS AND OPTIMIZING INTEREST RATES

Valentin Pinon and Jan Philipp Girgott

December 13th, 2023 | Machine Learning Under a Modern Optimization Lens

PROBLEM STATEMENT

LOAN DEFAULTS LEAD TO CREDIT DAMAGE, LENDER LOSSES, AND ECONOMIC TURBULENCE

PROBLEMS

- Loss for the lender: lower profitability and stability, higher interest rates
- Credit damage for borrower: lower credit score affects ability to get housing/job
- Economic impact: less access to capital, slower economic growth, financial crises

DELINQUENCY RATE: US COMMERICAL BANKS

DATA

WE USED TWO DATASETS ON CURRENT AND PREVIOUS LOAN APPLICATIONS WITH > 100 FEATURES

PREPROCESSING

Two datasets (some client overlap):

- Current applications
- Previous applications

Preprocessing steps:

- Treat missing values (drop columns, treat NMAR values)
- Prepare datasets for merge (drop non-common columns, enrich data where reasonable)
- **3. Merge** datasets
- 4. Avoid **leakage** in train-test split

Personal

Gender, education, family, age, contact data

Financials

Income, employment, car ownership, realty

Housing

Location (incl. rating), data on the property

Ratings

External ratings, credit score

Loan

Amount, purpose, contract type, provided documents

METHODOLOGY: OVERVIEW

WE ARE COMBINING CLASSIFICATION, PRESCRIPTION AND OPTIMIZATION IN OUR APPROACH

MACHINE LEARNING MODEL PERFORMANCES

XGBOOST ACHIEVES THE HIGHEST AUC AND ALMOST PERFECT SPECIFICITY

Out-of-Sample Values		AUC	Sensitivity (TPR)	Specificity (TNR)
Individual Models	CART	0.918	85.1%	98.5%
	OCT	0.909	78.1%	99.8%
	Rand. Forest	0.93	82.8%	87.5%
	XGBoost	0.959	90.3%	99.9%
	Log. Reg. (l2)	0.95	90.0%	100.0%
OPT	Ensemble	0.964	91.8%	94.3%
	•			I

CLASSIFICATION AND OPTIMIZATION INSIGHTS

THE OPTIMIZATION MODEL CHOOSES AN ACCEPTANCE THRESHOLD OF 25.9%

INSIGHTS FROM CLASSIFICATION

By analyzing the trees and feature importance values, we derived these top 5 features:

1. Income type

2. Education type

3. Car and realty ownership

4. Gender

5. Family status

INSIGHTS FROM OPTIMIZATION

25.9%

84.2%

82.7%

Acceptance threshold for the default probability

Loans coherently rejected compared to dataset decisions

Loans coherently accepted compared to dataset decisions

- Higher interest rates for loan applications with higher default risk
- Ceteris paribus, higher loans receive higher interest rates from the model

POTENTIAL FURTHER NEXT STEPS

FINE-TUNING OF OPTIMIZATION PARAMETERS AND MORE DATA CAN HELP TO IMPROVE

Try more models for the ensembling

Support Vector Machines Neural Networks

Include data on money habits

Data from checking account Past granted loans

Finetune optimization parameters

Acceptance probability Different stages of defaults Interest rate ranges **Test with interest** rate dataset

Get a dataset with interest rates Run predictions and model Compare outcomes

THANK YOU!

Valentin Pinon and Jan Philipp Girgott

December 13th, 2023 | Machine Learning Under a Modern Optimization Lens

OPTIMIZATION MODEL

THE MODEL MAXIMIZES TOTAL EXPECTED NET PROFIT OF THE BANK

Decision Variables

1. Acceptance of application Binary variable

2. Assigned interest rate Continuous variable

Threshold of acceptance Binary variable

Objective Function

Maximize

Total expected interest **revenue**

Total expected **losses** due to defaults

(Total expected net profit)

Product of (1) interest rate, (2) amount, (3) acceptance decision, (4) assigned interest rate, and (5) 1–client acceptance probability

Product of (1) interest rate, (2) amount, (3) acceptance decision, and (4) 1-client acceptance probability

