E明理工大学 2015 级 试卷 (A 卷) 考读科目: 高等数学A(1) 考读目典: 2016-01-05 今題教师: 命獎小组 題号	ըի	協		
かい か	座位		昆明理工大学 2015 级 试卷 (A卷	:)
かい か	卷浜	***************************************		
関 を				
一、 填空題(每題 4 分,共 40 分): 1. 极限 $\lim_{x\to 0} (\sqrt[3]x \sin\frac{1}{x} + \frac{1}{x} \sin x) =$	nio.	<i>\text{Li_17}</i>		
一、 填空題(每題 4 分,共 40 分): 1. 极限 $\lim_{x\to 0} (\sqrt[3]x \sin\frac{1}{x} + \frac{1}{x} \sin x) =$	手手	ξέζετ	阅卷人	
要要 2. 极限 $\lim_{n\to\infty} (\frac{n-1}{n})^{2n} = $; ; ; ; $3.$ 设 $f(x) = \begin{cases} e^x, & x < 0, \\ a+x, & x \geq 0 \end{cases}$ 在 $x = 0$ 处连续,则 $a = $; ; 4. 设 $y = \sin x^2 + 2^{x^2}$,则 $dy = ($				
要要 2. 极限 $\lim_{n\to\infty} (\frac{n-1}{n})^{2n} = $; ; ; ; $3.$ 设 $f(x) = \begin{cases} e^x, & x < 0, \\ a+x, & x \geq 0 \end{cases}$ 在 $x = 0$ 处连续,则 $a = $; ; 4. 设 $y = \sin x^2 + 2^{x^2}$,则 $dy = ($			1 极限 $\lim_{s \to \infty} (\sqrt[3]{r} \sin \frac{1}{r} + \frac{1}{r} \sin r) =$	
2. 极限 $\lim_{n\to\infty} (\frac{n-1}{n})^{2n} = $; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;			$\underset{x\to 0}{\text{min}}(x\sin x) = \frac{1}{x}$;
4. 设 $y = \sin x^2 + 2^{x^2}$, 则 $dy = ($	MI 	映	n-1 .	
4. 设 $y = \sin x^2 + 2^{x^2}$, 则 $dy = ($	币姓:		$2.$ 极限 $\lim_{n\to\infty} \left(\frac{n-1}{n}\right)^{2n} = $;
4. 设 $y = \sin x^2 + 2^{x^2}$, 则 $dy = ($	果教则		$\int e^x$, $x < 0$.	
4. 设 $y = \sin x^2 + 2^x$,则 $dy = ($	一位		3.设 $f(x) =$;
4. 设 $y = \sin x^2 + 2^x$,则 $dy = ($		K		
日本 日			4. $\&y = \sin x^2 + 2^{x^2}$, $\&y = ($;
日本 日		1		
か	nle		5. 设 $xe^{\sin x}$ 为 $f(x)$ 的一个原函数,则 $f(x) = $;
6. 函数 $y = x - \ln(1+x)$ 的极小值为		i		
7. 曲线 $y = \frac{2x^2 + 3x + 2}{x^2 + 2}$ 的水平渐进线为		ح	6. 函数 $v = x - \ln(1 + x)$ 的极小值为	
8. 微分方程 y "+ $y = x^2 + 1$ 的特解可设为 $y^* =$		Ì		'
8. 微分方程 y "+ $y = x^2 + 1$ 的特解可设为 $y^* =$				
8. 微分方程 y "+ $y = x^2 + 1$ 的特解可设为 $y^* =$	和		7. 曲线 $y = \frac{2x^2 + 3x + 2}{x^2 + 2}$ 的水平渐进线为	;
祭 り.微分方程 y " $-2y$ ' $+y=0$ 的通解 $y=$;		涨	x + 2	
10.若级数 $\sum_{n=1}^{\infty} (u_n + \frac{1}{4})$ 收敛,则 $\lim_{n \to \infty} u_n = $			8. 微分方程 y "+ $y = x^2 + 1$ 的特解可设为 $y^* =$;
10.若级数 $\sum_{n=1}^{\infty} (u_n + \frac{1}{4})$ 收敛,则 $\lim_{n \to \infty} u_n = $		f		
10.若级数 $\sum_{n=1}^{\infty} (u_n + \frac{1}{4})$ 收敛,则 $\lim_{n \to \infty} u_n = $	班级		9.微分方程 ν"-2ν'+ ν=0 的通解 ν=	:
10.若级数 $\sum_{n=1}^{\infty} (u_n + \frac{1}{4})$ 收敛,则 $\lim_{n \to \infty} u_n = $	专业	+		
[6]		-HI H	m 1	
[6]			10.若级数 $\sum_{n=0}^{\infty} (u_n + \frac{1}{4})$ 收敛,则 $\lim_{n \to \infty} u_n = $	_ .
と			n=l T	
<u>迟</u> 2015 级 <u>高等数学 A(1)</u> 试卷 A卷 第 1 页 共 4 页 孙		122		
यम ।	流	(= 1 - 1	2015 级 <u>高等数学 A(1)</u> 试卷 A卷 第 1 页 共 4 页	
	<u>य।</u>	l		

二、 计算题 (每题 6 分, 共 18 分):

11.
$$\lim_{x \to 3} \frac{x^2 - 2x + k}{x - 3} = 4$$
, $\bar{x} k$ 的值;

12.计算
$$\lim_{x\to 0} \frac{\int_{0}^{\cos x} e^{t^2} dt}{x^2}$$
;

13.设
$$\begin{cases} x = \frac{t^2}{2}, & t \neq 0, 求二阶导数 \frac{d^2y}{dx^2}; \\ y = 1 - t, & \end{cases}$$

三、 计算题 (每题 6 分, 共 24 分):

14 计算
$$\int_{\frac{1}{2}}^{\frac{1}{2}} \frac{2 + \sin x}{\sqrt{1 - x^2}} dx$$
;

15. 计算
$$\int_{1}^{4} \frac{x+2}{\sqrt{2x+1}} dx$$
;

16.求微分方程
$$y' - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$
 的通解;

17. 求微分方程
$$y''-y'-2y=e^x$$
 的通解;

四、计算与综合应用题(每题6分,共18分):

18. 求幂级数
$$\sum_{n=1}^{\infty} (n+1)x^n$$
 的和函数;

19. 求曲线 $y = e^{-x}$ 与坐标轴的正半轴所围的无界区域绕 x 轴旋转一周后所成立体的体积;

20. 设
$$f(x) = \begin{cases} g(x)\cos\frac{1}{x}, x \neq 0, \\ 0, & x = 0, \end{cases}$$
 且 $g(0) = g'(0) = 0$,求 $f'(0)$.

翩

域

৽

K

 \mathbb{K}

414

扣