PBL - Implementation of MPPT

Concept

From PBL part 1 conclusion: To achieve MPPT, the buck-boost converter should be well controlled to obtain the impedance matching : $R_{EH} = R_{eq}$ $R_{eq} = V_{IN} / (\frac{0.5 * I_{PEAK} * T_{ON}}{T_{ON}})$

Question

Part1:

用理想開關實現 buck-boost converter,並觀察其不同 R_{eq} 下的 V_{IN} ,並記錄該 V_{IN} 可提供給輸出的功率,對照所學。

Schematic of Buck-Boost Converter

Step 1:

建一個ideal buck-boost的schematic

Step 2:

建立testbench,使用1V串聯100ohm電阻作為energy harvester, C_1 為輸入電容、 V_1 為 T_{ON} 訊號、 V_2 為 T_{OFF} 訊號、 C_0 為輸出電容、 R_0 為輸出負載

■ Step 2各元件參數

Step 3 – Simulation:

1.令 f = 350kHz, R₀ = 100ohm, run transient analysis,可以發現V_{IN}與V_{OUT}大致一樣,約為 0.5V,此時output power為0.5*0.5/100 = 2.5mW

Step 3 – Simulation:

2.將頻率增加(a)/減少(b),並調整R₀直到V_{IN}與V_{OUT}大致相同*,將各參數填入下表, 與頻率350kHz之數據做比較,何者的P_{OUT}最大

Frequency	R_0	R_{eq}	$V_{IN} = V_{OUT}$	P _{out}
(a) 600kHz	Ω	Ω	V	mW
350kHz	100 Ω	Ω	0.5V	mW
(b) 100kHz	Ω	Ω	V	mW

^{*}題目設定是φ1 (T_{ON}) = φ2 (T_{OFF})。φ1電感電流正比V_{IN}、φ2電感電流正比V_{OUT}, V_{IN}=V_{OUT}才能open loop實現ZCD (若power是無法完全提供輸出, 無法公平比較)

Question

Part 2:

以NMOS switch組成 buck-boost converter, 並觀察其不同R_{eq}下的V_{IN}, 並記錄該V_{IN}可提供給輸出的power, 對照Part 1

Step 1:

建一個NMOS buck-boost的schematic

Step 2:

建立testbench,使用1V串聯100ohm電阻作為energy harvester, C_1 為輸入電容、 V_1 為 T_{ON} 訊號、 V_2 為 T_{OFF} 訊號、 C_0 為輸出電容、 R_0 為輸出負載

Step 3:

以Part 1中350kHz case的設定跑模擬,(a)符不符合MPPT?(b)修改之使其正常傳輸能量且實現MPPT,並調整 R_0 直到 V_{IN} 與 V_{OUT} 相近,將參數填入下表(c)請問輸出功率有何改變?

T _{ON}	T _{ON} '	T _{OFF}	T _{OFF} '	R_0	R ₀ ′	P _{out}	P _{OUT} '
0.75us	us	0.75us	us	100 Ω	Ω	2.5mW	mW

Answer

- -電感電流非完全直線,因為實際上MOSFET會有R_{ON},因此T_{OFF}會略小於T_{ON}
- -V_{IN}和V_{OUT}跟原本ideal case不同: V_{IN}變高表示R_{eq}上升, V_{OUT}變低表示輸出的power下降
- 需先調整T_{ON}讓V_{IN}在MPP (T_{OFF}先不改)
- -接著調整負載電阻讓 $V_{OUT} = V_{IN}$ (微調 T_{OFF} 到零電流切換)
- -最後計算發現 $V_{IN} = V_{OUT}$ 時負載電阻為 R_0 , 且 R_0 , 是不提供給輸出的power減少

參考解答(Appendix Part 2)

Condition: $V_{IN} = V_{OUT} = 0.5V$, f =350kHz

Thanks for your attention!!