

第五章 网络层 ——TP数据报

isszym sysu.edu.cn 2019.3.29

本节内容

- □ 概述
- □ 网络服务模型
- □ 交换技术
- □ IP数据报格式
- □ IP数据报的服务类型
- □ IP数据报的生存期
- □ IP数据报的分段和重组
- □ IP数据报的选项

概述

- □ 每个数据链路层协议只涉及一个直连网,而网络层协议涉及整个网络。
- □ 网络层协议负责确定把收到的包从哪条路经转发(forwarding)出去,即路由选择(routing)功能。具有传送由数据链路层和物理层负责。

一般网络的服务模型

一个网络可以提供什么样的服务?

		确保?				
网络结构	服务模型	带宽	不丢包	有序	及时	拥塞反馈
ATM	恒定位速率	固定速率	是	是	是	无拥塞
ATM	可变位速率	确保速率	是	是	是	无拥塞
ATM	可用位速率	最小保证	否	是	否	是
ATM	未指定位速率	无	否	是	否	否
因特网	尽力服务	无	 否	 否	否	否

Connectionless Service: IP

Connection-oriented Service: X.25, ATM(Asynchronous Transfer Mode)

交换技术-电路交换

- □ **电路交换(**Circuit Switching)技术通过在网络中连接多条物理电路形成一条通路后传送数据。
- □ 每条物理电路可以是一条链路(link)或者一条链路通过 FDM或TDM形成的通道(Channel)。

交换技术-包交换(1)

- □ 包交换(Packet Switching)技术是采用统计多路复用的方法通过网络传送数据包,有虚电路(Virtual Circuit)和数据报 (Datagram)两种方式。
- □采用虚电路方式需要先建立连接然后才可以传送数据。
- 采用数据报方式不需要建立连接便可以传送数据包。交换机根据数据包的目的地址转发包。
- □因特网采用数据报交换技术。

交换技术-包交换(2)

- □ 虚电路有交换式虚电路(Switched Virtual Circuit)和永久虚电路 (Permanent Virtual Circuit)两种。
- □ 交换式虚电路每次传送数据前都要建立连接,传送完数据后要释放 连接,而永久虚电路由管理员建好后一直保持着,故随时可以传送 数据。

VCI(virtual circuit identifier): 虚电路标识符

VC表

ſ	输入 端口 号	输入 VCI	输出 端口 号	输出 VCI
S1	1	1	2	2
	1	2	3	2
l [
S2 .	1	2	3	3
[[
S3 -	1	2	3	1
l				

IP协议的服务模型

- □ IP (Internet Protocol)协议是因特网的网络层协议
- □ IP协议是可路由的(routable) -- 全局地址,按层分配
- □ IP协议提供尽力服务(best effort),即无连接无确认的数据报服务。
- □ IP协议可以运行在任何网络上。

http://www.faqs.org/rfcs/rfc791.html

IP数据报格式

IP数据报的字段说明

字段	位数	说明		
版本	4	共两个版本: 4 for IPv4, 6 for IPv6		
头部长度	4	头部的长度,以字(32-bit)为单位。		
服务类型 (Type of Service,TOS)	8	本IP数据报希望得到的服务		
总长度	16	整个数据报的长度,以字节为单位		
标识、标志 (DF,MF) 、 偏移量	32	用于划分片段		
生存期	8	记载经过的路由器数(跳数)。		
协议(Protocol) 8		定义数据部分的协议,例如: TCP为6, UDP为17, ICMP 为1, IGMP为2, 等等。		
头部校验	16	头部校验和。路由器会丢弃出错的数据报。		
源IP地址	32	发出本数据报的地址		
目的IP地址	32	接收本数据报的地址		
选项和填充位	可变	最多40个字节,填充位用于32位对齐。		

IP数据报的服务类型

- □ 服务类型(Type of Quality, ToS)起初用于提出数据报的四种独立的服务要求(低延迟、高吞吐量、高可靠性和花钱最少)和优先权(111为最高优先权),实际上只用了优先权。
- □ 为了更好地使用它,现在又把它重新定义,从整体上说明数据报所需的服务,即区分服务(Differeniated Services)。 http://tools.ietf.org/html/rfc2474

 3b	1b	1b	1b	1b	1b
IP Precedence	low latency	high throughput	high reliability	Minimise monetary cost	reserved (0)

Original definition of TOS

Binary Value	IP Precedence	Decimal Value	
000	Routine	Precedence O	
001	Priority	Precedence 1	
010	Immediate	Precedence 2	
011	Flash	Precedence 3	
100	Flash Override	Precedence 4	
101	Critic/Critical	Precedence 5	
110	Internetwork Control	Precedence 6	
111	Network Control	Precedence 7	

IP数据报的生存期

- □ IP数据报的生存期(Time-To-Live, TTL)用于限制其在因特网上的停留时间(RFC 791),实际限制为经过的路由器数,即跳数(hop count)。
- □ TTL的初值需要设置为网络直径的两倍,例如,Windows 8和 Linux默认为64,UNIX默认为255。
- □ 当收到IP数据报时,路由器或主机会把它的TTL减1。如果减到零时还未到达目的地,则该数据报将被丢弃,路由器会发送一个ICMP包告知源主机。

IP数据报的分段和重组

- □ 一个物理网络的**最大传输单元(maximum transmission unit, MTU)**是 该网络可以运载的最大有效载荷,即数据帧的数据部分的最大长度。例如:以太网(DIXv2)的 MTU为 1500, FDDI和令牌环的MTU分别为 4353和 4482。
- □ 如果一个数据报的大小大于要承载它的网络的MTU,路由器需要先对该数据报进行**分段(fragment)**。
- □ 源主机每次发送IP数据报时都会把标识(Identification)字段加1。分段时标识的值保持不变,并且用偏移量字段(offset)指出该片段的数据部分相对原来数据报数据部分的偏移量(以8字节为单位)。

哪些字段改变了? 头部检验,总长度,偏移量, MF

- □ 当目的主机收到该数据报的所有片段时,它会**重组(reassemble)** 为原来的数据报。
- □ 第一个片段到达目的主机时目的主机会启动一个重组定时器(默认超时值为15秒)。如果该定时器到期时没有收集到所有片段,目的主机会放弃本次重组并丢弃该数据报的所有片段。
- □ DF(Don't Fragment)为1表示不允许分段,MF(More Fragment)为1表示后面还有片段。

IP数据报的选项

1B 1B nB

一般格式: 代码 总长度 数据

代码	名称	描述
0	选项列表结束	一个字节: 0x00。用于最后选项4字节对齐。
1	无操作	一个字节: 0x01。用于中间选项4字节对齐。
131	松散源路由	指明一系列必须经过的路由器。
7	记录路由	记录下每个转发路由器的IP地址。
137	严格源路由	指明一系列必须且只能经过的路由器。
20	IP警报器	告知路由器需要特殊处理的选项。
50	记录时间戳	每个转发的路由器都记录下自己的IP地址和当时的时间。

记录路由选项:

1B	1B	1B	4B	4B		4B
代码	长度	指针	IP地址1	IP地址2	•••••	IP地址9
 =7	=39				-	

- 指针字段指向下一个IP地址的位置: 4(空), 8, ... , 40(满)。
- 该数据报经过的每个路由器记录转出接口的IP地址,直到记满9个地址。

```
C:\Documents and Settings\Administrator\ping -r 8 www.sysu.edu.cn

Pinging pisces-1.sysu.edu.cn [202.116.64.9] with 32 bytes of data:

Reply from 202.116.64.9: bytes=32 time=219ms TTL=58

Route: 172.18.240.82 ->

10.44.16.202 ->

10.10.1.17 ->

10.10.2.49 ->

202.116.64.254 ->

202.116.64.9 ->

10.10.2.50 ->

10.10.1.18

Reply from 202.116.64.9: bytes=32 time=17ms TTL=58

Route: 172.18.240.82 ->
```

以太网的帧

总结

- □ 概述
- □ 网络服务模型
- □ 交换技术
- □ IP数据报格式
- □ IP数据报的服务类型
- □ IP数据报的生存期
- □ IP数据报的分段和重组
- □ IP数据报的选项