Лабораторная работа № 6

Численное интегрирование

Тема: Приближенное вычисление определенного интеграла с помощью квадратурных формул.

$$J = \int_{a}^{b} f(x) dx = J_{n} + R_{n}$$
, где $J_{n} = \sum_{i=0}^{n} A_{i} f(x_{i})$, R_{n} - остаточный член (погрешность).

Задание

Для заданной функции f(x) на промежутке [a,b]:

- 1. Вычислить значение интеграла J с помощью встроенной функции MathCAD
- 2. Вычислить значения J_n для различных значений $n=2^k$, k=1,...,10 по заданной квадратурной формуле.
- 3. Вычислить абсолютные величины разностей значений интеграла, полученных в пунктах 1 и 2.
- 4. Оценить по методу Рун е погрешности R_n значений интеграла, полученных в пункте 2.

 R_{n-1}

- 5. На основании отношений этих величин R_n оценить скорость сходимости квадратурной формулы и сравнить с теоретической.
- 6. Вычислить приближенное значение J по квадратурной формуле Гаусса при заданном количестве узлов
- 7. Вычислить абсолютную величину разности значений интеграла, полученных в пунктах 1 и 6
- 8. Сравнивая результаты пунктов 3 и 7, определить примерное число узлов n, необходимое для вычисления J_n по квадратурной формуле из пункта 2 с той же точностью, что и в пункте 6.
- 9. Проанализировать полученные результаты и сделать выводы

Для пункта 2 варианты квадратурных формул

- 1) обобщенная формула левых прямоугольников
- 2) обобщенная формула правых прямоугольников
- 3) обобщенная формула средних прямоугольников
- 4) обобщенная формула трапеций
- 5) обобщенная формула парабол

Для пункта 6 варианты количества узлов

- 1) 2
- 2) 4
- 3) 6
- 4) 5
- 5) 3

Узлы и коэффициенты квадратурной формулы Гаусса,

имеющей для промежутка [a,b] вид

 $C_2 = 1/2$

$$(b-a)\cdot\sum_{i=1}^{n}C_{i}\cdot f(z_{i})$$
 , где $z_{i}=a+(b-a)\cdot x_{i}$ $n=1$ $x_{1}=0.5$ $C_{1}=1$ $n=2$ $x_{1}=0.21132487$ $C_{1}=1/2$

$$n = 3$$
 $x_1 = 0.11270167$ $C_1 = 5/18$ $x_2 = 0.5$ $C_2 = 5/9$

 $x_2 = 0.78867513$

$$x_2 = 0.3 C_2 = 3/9$$

$$x_3 = 0.88729833 C_3 = 5/18$$

$$n = 4$$
 $x_1 = 0.06943184$ $C_1 = C_4 = 0.17392742$

$$x_2 = 0.33000948$$

$$x_3 = 0.66999052$$
 $C_2 = C_3 = 0.32607258$

$$x_4 = 0.93056815$$

$$n = 5$$
 $x_1 = 0.04691008$ $C_1 = C_5 = 0.11846344$

$$x_2 = 0.23076534$$

$$x_3 = 0.5$$
 $C_2 = C_4 = 0.23931433$

$$x_4 = 0.76923466$$

$$x_5 = 0.95308992$$
 $C_3 = 0.28444444$

$$n = 6 x_1 = 0.03376524$$

$$x_2 = 0.16939531$$

 $x_3 = 0.38069041$ $C_2 = C_5 = 0.18038079$

 $C_1 = C_6 = 0.08566225$

$$x_4 = 0.61930959$$

$$x_5 = 0.83060469$$

$$x_6 = 0.96623475$$
 $C_3 = C_4 = 0.23395697$

Варианты функций и промежутков

Но- мер ва- ри- анта	f(x)	a	b	Но- мер вари- анта	f(x)	a	b
1	$\ln x - \frac{1}{x^2}$	1	6	2	$ \ln x - \frac{7}{2 \cdot x + 6} $	1	7
3	$2 \cdot \ln x - \frac{x}{2} + 1$	1	7	4	$e^{-x}-(x-1)^2$	-3	3
5	$\frac{1-x}{x} - \pi \cdot \cos(\pi \cdot x)$	1	5	6	$e^x + x^2 - 10$	0	3
7	$ctgx - x^2$	0.5	1.4	8	$e^x - 2 \cdot (x-2)^2$	0	3
9	$tg\frac{\pi}{4} \cdot x - x - 2$	0.5	1.5	10	$e^x + 2 \cdot x^2 - 3$	-2	2
11	$\sqrt{x} - 2 \cdot \sin \frac{\pi}{2} \cdot x$	0	6	12	$e^{-x} - \sqrt{x-1}$	1	6
13	$\sqrt{x} - \cos \frac{x}{2}$	0	8	14	$2 \cdot \sin(3 \cdot x) - 1, 5 \cdot x$	-1	2
15	$2 \cdot \ln x - \frac{1}{x}$	1	6	16	$2 \cdot e^{-x} - \frac{x}{2}$	-3	3
17	$x-3\cdot\cos^2 x$	-2	3	18	$\ln(2x) - 0.5 \cdot x + 2$	1	10
19	$x^4 - \sqrt{x+1} - 3$	-1	2	20	$x \cdot \ln x - \frac{3}{x}$	1	5
21	$tg\frac{3}{4}\cdot x - x^2 - 4$	0.2	2	22	$e^{-x} + 5(x-1)^2$	-2	3
23	$e^{1-x} + x^2 - 5$	-2	3	24	$\sqrt{x+1} - 2\cos\frac{x}{2}$	0	5
25	$2 \cdot \sin(2 \cdot x) - x^2$	0	3	26	$\sqrt{2x} - \cos\frac{x}{3}$	0	6
27	$e^{x-1} + 2x^2 - 7$	-3	2	28	$2e^{-x} - (x+1)^2$	-3	3
29	$tg(x)-2\cdot(x+1)$	-1	1	30	$tg(2,5\cdot x)-5\cdot x$	-0.2	0.5

В приложении приведена копия MathCAD-документа, в котором для заданной функции приводятся результаты вычисления определенного интеграла функцией MathCAD и по квадратурной формуле трапеций для различного числа узлов. Вычисляется оценка погрешности по методу Рунге и определяется скорость сходимости, характеризуемая уменьшением погрешности при уменьшении шага квадратурной формулы в два раза. Полученные результаты соответствуют теоретической оценке.

Приложение содержит пример вычисления интеграла по квадратурной формуле Гаусса.