VERSUCH NUMMER

TITEL

TU Dortmund – Fakultät Physik

Maximilian Sackel
Maximilian.sackel@gmx.de

Philip Schäfers phil.schaefers@gmail.com

Abgabe: DATUM

Durchführung: DATUM

Inhaltsverzeichnis

1	Theoretische Grundlage								
	1.1	Fehler	rrechnung	. 3					
		1.1.1	Mittelwert	. 3					
		1.1.2	Gauß'sche Fehlerfortpflanzung	. 3					
		1.1.3	Lineare Regression	. 3					
2	Durchführung und Aufbau								
3 Auswertung 3.1 Messgrößen und Fehler									
4	Diskussion								
Literatur									

1 Theoretische Grundlage

1.1 Fehlerrechnung

Sämtliche Fehlerrechnungen werden mit Hilfe von Python 3.4.3 durchgeführt.

1.1.1 Mittelwert

Der Mittelwert einer Messreihe $x_1,...,x_n$ lässt sich durch die Formel

$$\overline{x} = \frac{1}{N} \sum_{k=1}^{N} x_k \tag{1}$$

berechnen. Die Standardabweichung des Mittelwertes beträgt

$$\Delta \overline{x} = \sqrt{\frac{1}{N(N-1)} \sum_{k=1}^{N} (x_k - \overline{x})^2} \tag{2}$$

1.1.2 Gauß'sche Fehlerfortpflanzung

Wenn $x_1,...,x_n$ fehlerbehaftete Messgrößen im weiteren Verlauf benutzt werden, wird der neue Fehler Δf mit Hilfe der Gaußschen Fehlerfortpflanzung angegeben.

$$\Delta f = \sqrt{\sum_{k=1}^{N} \left(\frac{\partial f}{\partial x_k}\right)^2 \cdot (\Delta x_k)^2}$$
 (3)

1.1.3 Lineare Regression

Die Steigung und y-Achsenabschnitt einer Ausgleichsgeraden werden gegebenfalls mittels Linearen Regression berechnet.

$$y = m \cdot x + b \tag{4}$$

$$m = \frac{\overline{xy} - \overline{xy}}{\overline{x^2} - \overline{x}^2} \tag{5}$$

$$b = \frac{\overline{x^2}\overline{y} - \overline{x}\,\overline{xy}}{\overline{x^2} - \overline{x}^2} \tag{6}$$

[1]

2 Durchführung und Aufbau

3 Auswertung

3.1 Messgrößen und Fehler

Die Reserviore werden jeweils mit

$$V_{\text{Reservior}} = 4Liter \tag{7}$$

Wasser befüllt. Desweiteren werden die Temperatur T1 und T2, der Druck $p_{\rm b}$ und $p_{\rm a}$ sowie die Leistung des Kompressors jede Minute von dem Messinstrumenten abgelesen. Die Messdaten werden in Tabelle 1 aufgelistet. Die Wärmekapazität der Reservoire beträgt

$$C_{\text{Reservoire}} = 750 \frac{J}{K} \tag{8}$$

Zu beachten ist das alle Messgrößen einen Messunsicherheit besitzen, einerseits eine ablesefehler bei analogen Messinstrumenten als auch einen technischen.

 Δp

<++>

t / s	T_1 / K	$p_{\rm b}$ / kPa	T_2 / K	$P_{\rm a}$ / kbar	Leistung / kW
0	294.1	466	294.3	496	0
1	294.7	608	294.3	425	1.18
2	295.9	618	293.2	446	1.2
3	296.9	638	292.5	466	1.25
4	298.2	628	291.3	466	1.25
5	299.4	709	290.2	466	1.25
6	300.7	730	289.3	466	1.25
7	302.0	760	288.5	455	1.25
8	303.2	790	287.7	445	1.25
9	304.4	812	287.0	425	1.24
10	305.5	820	286.3	425	1.24
11	306.6	840	285.6	415	1.23
12	307.6	861	284.9	405	1.23
13	308.7	891	284.1	405	1.23
14	309.7	911	283.5	395	1.23
15	310.7	922	282.8	395	1.24
16	311.6	963	282.2	385	1.25
17	312.5	993	281.5	385	1.25
18	313.5	1003	281.0	375	1.25
19	314.3	1023	280.5	365	1.25
20	315.2	1044	280.0	365	1.25
21	316.0	1064	279.5	365	1.25
22	316.8	1094	279.0	365	1.25
23	317.5	1104	278.6	355	1.25
24	318.3	1115	278.3	355	1.25
25	319.0	1135	277.9	355	1.25
26	319.8	1155	277.5	345	1.25
27	320.5	1175	277.2	345	1.25
28	321.2	1196	276.9	345	1.25
29	321.8	1216	276.6	345	1.25
30	322.5	1226	276.3	345	1.25
31	323.3	1236	276.1	354	1.25

Tabelle 1: Dem Versuchsaufbau entommene Messgrößen

4 Diskussion

Literatur

 $[1] \quad {\rm TU~Dortmund}.~\textit{Versuch~zum~Literaturverzeichnis}.~2014.$