## Session 3

- Clustering
- Evaluation of classifiers
  - Confidence intervals
  - McNemar's test
  - ROC analysis
- Computational learning theory
- Artificial neural networks
- Support vector machines

## Clustering

- Find clusters (sets of instances) such that.
  - Instances in same cluster similar.
  - Instances in different cluster different.
- Predictability:  $P(A_i = V_{i,j} | C_k)$
- Predictiveness:  $P(C_k|A_i = V_{i,j})$
- Category utility:

$$CU(C_1 \dots C_n) = \sum_k \sum_i \sum_j P(A_i = V_{i,j}) \cdot P(C_k \mid A_i = V_{i,j}) \cdot P(A_i = V_{i,j} \mid C_k)$$

#### **Evaluation of Classifiers**

- Compute accuracy on test sample Accuracy p' = proportion of correctly classified examples
- Confidence interval for accuracy



• Confidence interval for difference of accuracy

$$p_1' - p_2' \pm z_\alpha \cdot \sqrt{\frac{p_1'(1-p_1')}{n_1} + \frac{p_2'(1-p_2')}{n_2}}$$

#### McNemar's Test

• Evaluate given classifier on test sample and compute the following table

- Assume  $h_1$  and  $h_2$  equally good (assumption  $H_0$ ):  $P[h_1 \text{ correct } \land h_2 \text{ wrong}] = P[h_1 \text{ wrong } \land h_2 \text{ correct}] = 0.5$
- Significance = probability of obtaining a result at least as extreme under the assumption  $H_0$

$$= P[b \ge b'|H_0] + P[b \le c'|H_0]$$
(assuming  $b' > c'$ )
$$= \dots$$

• Use the binomial distribution to compute this probability.

$$P(b=x) = \binom{n}{x} \cdot p_0^x \cdot (1-p_0)^{n-x} \qquad \binom{n}{x} = \frac{n!}{x! \cdot (n-x)!}$$

P(x) is the probability of having x successes in n experiments if the probability of success is  $p_0$ 

## **ROC** Analysis

• Evaluate given classifier on test sample and compute the following table

|            | Actual       |                 |                  |
|------------|--------------|-----------------|------------------|
| Predicted  | $\oplus$     | $\ominus$       |                  |
| $\bigcirc$ | a            | b               | $T_{\oplus}^{p}$ |
| $\ominus$  | c            | d               | $T_{\ominus}^p$  |
|            | $T^a_\oplus$ | $T_{\ominus}^a$ | T                |

- True positive rate TP is proportion of positive examples that is correctly classified:  $TP = a/T_{\oplus}^a$
- False positive rate FP is proportion of negative examples that is incorrectly classified as positive:  $FP = b/T_{\ominus}^a$
- Plot a point for each classifier on the ROC diagram



- Convex hull = rope around points
- Iso-cost: points on this line have equal misclassification cost  $\widehat{C}$   $\widehat{C} = C_{\text{FP}} \cdot \text{FP} \cdot P(-) + C_{\text{FN}} \cdot \text{FN} \cdot P(+)$ , where  $FN = c/T_{\oplus}^a = 1 TP$

### Computational Learning Theory

• A set of instances S is shattered by  $H \Leftrightarrow \forall$  possible concept c defined over S,  $\exists h \in H$  consistent with c



- The Vapnik-Chervonenkis dimension VC(H) given an instance space X is the size of the largest finite  $S\subseteq X$  shattered by H
- $VC(H) < d \Leftrightarrow$  there is no  $S \subseteq X$ , with |S| = d that can be shattered by H
- How many randomly drawn training examples suffice to probably (with probability  $1-\delta$ ) approximately (error  $\leq \epsilon$ ) learn any target concept in C?

$$m \ge \frac{1}{\epsilon} \cdot \left(4 \log_2 \frac{2}{\delta} + 8VC(H) \log_2 \frac{13}{\epsilon}\right)$$

#### **Artificial Neural Networks**

• Perceptron



- Multi-layer networks
- Threshold unit sign(x) or  $\sigma(x) = \frac{1}{1+e^{-x}}$

# **Support Vector Machines**

- Similar to perceptron
- Weights defined by "maximal margin"
- More expressive by using different kernel functions K(x,y)