

DEPARTEMENT OF CHEMICAL ENGINEERING BIOCHEMCIAL ENGINEERING (CBI 310) SEMESTER TEST 1

90 MINUTES

Read this before you start:

- Make sure to sit on your allocated seat.
- Any form of communication on your computer/tablet will result in serious consequences. There are more ways to monitor this than you are aware of.
- Use the Click-up template for all answers.
- Log into your computer with: ing***.courses. (the *** refers to the 3 digit number on your computer)

Aspergillus oryzae produces glycerol ($C_3H_8O_3$), biomass ($CH_{1.75}O_{0.45}N_{0.23}$) and malic acid ($C_4H_6O_5$) under aerobic conditions. Take the (P/O) ratio for NADH as 1.6 and assume that FADH₂=NADH. The metabolism is given by the following cmol based map:

The following is known about the physiology of the microbe:

α	γ	μ	θ
$\frac{cmol\ CO_2}{cmol\ X}$	$\frac{mol\ ATP}{cmol\ X}$	$\frac{1}{h}$	$\frac{mol\ ATP}{cmol\ X\cdot h}$
0.12	2.2	0.15	0.1

- 1. What is the value of a? [1]
- 2. What is the value of β ? [3]
- 3. What is the value of c? [2]

The cmol balance around the pyruvate node is given as:

$$r_4 = \delta r_6 + \epsilon r_5$$

- 4. What is the value of δ ? [1]
- 5. What is the value of ε ? [1]
- 6. What is the value of g? [2]
- 7. What is the value of h? [1]
- 8. Determine κ : $r_6 + r_5 = \kappa r_7$ [1]

The 'adapted' flux model is given in the attached Excel and Python files (see semester test 1 files under tests). Note that it represents **seven** equations, with the last equation representing the energy balance. All equations are equal to zero except the last equation that is equal to θ .

- 9. Determine the mass based yield of malic acid on glucose in g/g if the oxygen rate is known to be 0.13 $mol O_2/(cmol X.h)$. [3]
- 10. Determine the rate of CO_2 formation for the conditions in question 9. Give answer in *mol* $CO_2/(cmol\ X.h)$. [2]
- 11. Determine the rate of water formation/depletion for the conditions in question 9. Give answer in $mol H_2O/(cmol X.h)$. [4]
- 12. Determine the oxygen rate that will result in the formation of zero glycerol. Give your answer in $mol O_2/(cmol X.h)$. [3]
- 13. What is the maximum possible yield of malic acid on glucose. Give your answer in q/q. [3]
- 14. For the condition in question 13, how many moles of oxygen (O₂) are consumed per **mole** of glucose? [2]
- 15. Determine Y_{XO} in mol/cmol that will result in an equi**molar** formation rate of glycerol and malic acid. Growth occurs at the normal rate. [4]