Prepisovalni sistemi

Imejmo operacije f_i mestnosti d_i nad množico objektov A. Konkretna predstavitev te množice uporablja neko končno abecedo Σ in odločljivo množico $T \subseteq \Sigma^*$ ter izračunljive operacije g_i enakih mestnosti d_i . Poleg tega imamo vrednostno funkcijo $v: T \to A$, tako da je v surjektivna in da $v(g_i(t_1, \ldots, t_{d_r})) = f_i(v(t_1), \ldots, v(t_r))$, oz. da komutira diagram

$$\begin{array}{c|c}
T^{d_i} & \xrightarrow{g_i} & T \\
\downarrow v & \downarrow v \\
A^{d_i} & \xrightarrow{f_i} & A .
\end{array}$$

Ekvivalenca termov: Za dva terma $t_1, t_2 \in T$ definiramo $t_1 \sim t_2 \iff v(t_1) = v(t_2)$. Struktura (A, f_i) je izračunljiva, če obstaja poleg pogojev zgoraj tudi tak izračunljiv epimorfizem v.

Kanonska funkcija: izbere po enega predstavnika iz vsakega ekvivalenčnega razreda. Funkcija f je kanonska za (T, \sim) , če $f(t) \sim t$, $t_1 \sim t_2 \implies f(t_1) = f(t_2)$, f izračunljiva.

Redukcijska relacija: Relacija $R \subseteq T \times T$.

oznaka	pomen	razlaga
\rightarrow	R	redukcijska relacija
\xrightarrow{n}	\mathbb{R}^n	v n korakih
\leftarrow	R^{-1}	inverz redukcijske relacije
\leftrightarrow	$R \cup R^{-1}$	simetrična ovojnica
$\overset{+}{\rightarrow}$	R^+	tranzitivna ovojnica
$\overset{*}{\rightarrow}$	R^*	relf. in tranzitivna ovojnica
$\overset{*}{\leftrightarrow}$	$(R \cup R^{-1})^*$	ekvivalenčna ovojnica

Za dva elementa definiramo imata skupnega naslednika: $a \downarrow b \iff a \stackrel{*}{\to} c \stackrel{*}{\leftarrow} b$.

Za element definiramo, da je **reduciran**: $a \downarrow \iff \neg \exists b \in T : a \to b$.

Prepisovalni sistem: je par (T, \rightarrow) , v katerem za \sim vzamemo $\stackrel{*}{\leftrightarrow}$.

Relacija \rightarrow je **Noetherska**, če ne vsebuje neskončnih redukcijskih verig.

Trd: \rightarrow Noetherska $\iff \exists f : T \rightarrow \mathbb{N} \ \forall t_1, t_2 \in T : t_1 \rightarrow t_2 \implies f(t_1) > f(t_2)$

Trd: \rightarrow Noetherska $\iff \forall t \in T \; \exists r \in T : t \stackrel{*}{\rightarrow} r \downarrow$.

Def: Relacija \rightarrow ima **enolične reducirane oblike** (ERO), če $\forall a,b,c \in T : (\downarrow b \stackrel{*}{\leftarrow} a \stackrel{*}{\rightarrow} c \downarrow) \implies b = c$

Relacija \rightarrow je konfluentna (KON), če $\forall a,b,c \in T : (b \stackrel{*}{\leftarrow} a \stackrel{*}{\rightarrow} c) \implies b \downarrow c$.

Relacija \rightarrow je lokalno konfluentna (LKON), če $\forall a,b,c \in T \colon (b \leftarrow a \rightarrow c) \implies b \downarrow c$.

Relacija \rightarrow ima **Church-Rosserjevo** lastnost (CR), če $\forall a, b \in T : (a \stackrel{*}{\leftrightarrow} b) \implies a \downarrow b$.

Velja: $CR \implies KON \implies LKON \text{ in } KON \implies ERO.$

Newmanova lema: Če je \rightarrow Noetherska, so KON, LKON, ERO in CR ekvivalentne.

Def: \rightarrow je **polna**, če je Noetherska in konfluentna. Problem napolnitve relacije: radi bi razširili \rightarrow tako, da bo polna, relacija $\stackrel{*}{\leftrightarrow}$ pa se bo ohranila.

Izrek: Za vsako Noethersko \rightarrow v T obstaja napolnitev. Poiščemo jo tako, da najdemo izraz, ki ima dve ereducirani obliki in dodamo v relacijo pravilo, ki eno prevede na drugo.

To naprej (kritični pari) je nagravžno in upamo da ne bo na izpitu.

Hint: Kadar dokazujemo, da je zaporedje Noethersko, si lahko pogosto pomagamo s kakšno funkcijo (glej trditev pod defincijo Noetherskosti). Ker pogosto delamo na nizih števk, lahko pogosto uporabimo kar samo vrednost števila, ki nam ga zapis predstavlja (recimo za nize 0 in 1 uporabimo funkcijo, ki vrednoti dvojiški zapis). Pogosto moramo na začetek niza postaviti še 1 (0 in 000 oba kodirata 0, z dodajanjem pa dobimo 1 0 in 1 000, ki kodirata različni števili).

Ko testiramo enolične reducirane oblike si lahko pogosto pomagamo z ugotovitvami narave 'vsa pravila ohranjajo sodost oz. lihost števila ničel'. V nekaterih primerih, moramo gledati po kakšnem modulu.

Če imajo pravila med sabo 'prazen presek' (torej delujejo na disjunktnih podintervalih, recimo 00

in 11), iz tega sledi LKON. Če primerjamo za P_1 in P_2 , nam redukcija P_1 in nato P_2 reducira v isti element kot P_2 in nato P_1 , torej imata redukciji z P_1 oz. P_2 skupnega naslednika.

Polinomska aritmetika

Vedno naj bo K komutativen kolobar z $1 \neq 0$.

Rezultanta: Naj bosta $p(x) = \sum_{i=0}^{n} a_i x^i$ in $q(x) = \sum_{i=0}^{m} b_i x^i$ polinoma iz K[x], $a_n \neq 0$, $b_m \neq 0$, st p + st q > 0 (to velja skos). Potem je rezultanta determinanta te $(n+m) \times (n+m)$ matrike

$$\operatorname{Rez}(p,q) = \det \begin{bmatrix} a_n & a_{n-1} & a_{n-2} & \cdots & 0 & 0 & 0 \\ 0 & a_n & a_{n-1} & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_1 & a_0 & 0 \\ 0 & 0 & 0 & \cdots & a_2 & a_1 & a_0 \\ b_m & b_{m-1} & b_{m-2} & \cdots & 0 & 0 & 0 \\ 0 & b_m & b_{m-1} & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & b_1 & b_0 & 0 \\ 0 & 0 & 0 & \cdots & b_2 & b_1 & b_0 \end{bmatrix}.$$

```
 \begin{array}{l} \mathbf{Trd:} \ \operatorname{Rez}(q,p) = (-1)^{mn} \operatorname{Rez}(p,q) \\ \mathbf{Trd:} \ n = 0 \implies \operatorname{Rez}(p,q) = a_0^m \\ \mathbf{Trd:} \ \exists r,s \in K[x], r \neq 0, s \neq 0, \text{ tako da st } r < \text{st } q, \text{st } s < \text{st } p \text{ in } \operatorname{Rez}(p,q) = pr + qs \\ \mathbf{Izr:} \ \check{\operatorname{Ce}} \ K \ \operatorname{Gaussov} \ \operatorname{ali \ cel:} \ p \ \operatorname{in} \ q \ \operatorname{imata} \ \operatorname{nekonstanten} \ \operatorname{skupni} \ \operatorname{faktor} \iff \operatorname{Rez}(p,q) = 0. \\ \mathbf{Trd:} \ K \ \operatorname{cel}, p, q, r \in K[x], \operatorname{st} p + \operatorname{st} r > 0, \operatorname{st} q + \operatorname{st} r > 0, \operatorname{potem} \ \operatorname{velja} \ \operatorname{Rez}(pq,r) = \operatorname{Rez}(p,r) \operatorname{Rez}(q,r) \\ \operatorname{in} \ \operatorname{Rez}(r,pq) = \operatorname{Rez}(r,p) \operatorname{Rez}(r,q). \\ \mathbf{Trd:} \ K \ \operatorname{cel}, \ p(x) = a \prod_i (x - \alpha_i), q(x) = b \prod_i (x - \beta_j). \\ \operatorname{Potem} \ \operatorname{je} \ \operatorname{Rez}(p,q) = a^m \prod_i q(\alpha_i) = b^n \prod_j p(\beta_j) = a^m b^n \prod_i \prod_j (\alpha_i - \beta_j). \\ \mathbf{Lema \ o \ homomorfizmu:} \ K, K_1 \ \operatorname{cela}, \ \varphi \colon K \to K_1 \ \operatorname{homomorfizem}, \ \varphi(\operatorname{vk}(p)) \neq 0. \  \  \, \text{Potem} \\ \varphi(\operatorname{Rez}(p,q)) = \varphi(\operatorname{vk}(p))^{\operatorname{st} q - \operatorname{st} \varphi(q)} \operatorname{Rez}(\varphi(p), \varphi(q)) \ \operatorname{in} \ \varphi(\operatorname{Rez}(p,q)) = 0 \iff \operatorname{Rez}(\varphi(p), \varphi(q)) = 0. \\ \end{array}
```

Uporaba: eliminacija spremenljivk

Izr: K Gaussov, $p, q \in K[x_1, ..., x_d], R = \text{Rez}_{x_d}(p, q) \in K[x_1, ..., x_{d-1}], F$ alg. zaprtje ulomkov K. Potem lahko spremenljivko eliminiramo

```
\forall c \in F^d \colon p(c_1, \dots, c_d) = q(c_1, \dots, c_d) \Longrightarrow R(c_1, \dots, c_{d-1}) = 0 \text{ in} in resitev prenesemo nazaj: \forall c \in F^{d-1} \colon R(c_1, \dots, c_{d-1}) = 0 \neq \mathrm{vk}_{x_d}(p)(c_1, \dots, c_{d-1}) \Longrightarrow \exists c_d \in F \colon p(c_1, \dots, c_d) = q(c_1, \dots, c_d) = 0
```

Tako lahko namesto enačb $p(x_1,\ldots,x_d)=0$ in $q(x_1,\ldots,x_d)=0$ pišemo enačbo $\operatorname{Rez}_{x_d}(p,q)=0$. Pri tem se lahko pojavijo parazitske rešitve, če $\operatorname{vk}_{x_d}(p)(c_1,\ldots,c_{d-1})=0$.

Uporaba: če imamo algebraični števili a in b, potem s pomočjo rezultante dobimo polinome, ki uničijo a+b, ab, 1/a, a^r , $r \in \mathbb{Q}^+$. Za vsako elgebraično število a obstaja polinom z racionalnimi koeficienti (in z celimi), ki ga uniči. Takemu z minimalno stopnjo in vodilnim koeficientom 1, se reče **minimalni** polinom. Vsak drug polinom, ki uniči a, je deljiv z minimalnim.

```
Algoritem 1 Evklidov algoritem (tudi za polinome)
Vhod: a, b \in K.
Izhod: Največji skupni delitelj gcd(a, b) \in K
 1: procedure GCD(a, b)
        while b \neq 0 do
 2:
 3:
           r \leftarrow a \mod b
           a \leftarrow b
 4:
           b \leftarrow r
 5:
 6:
        end while
        return a
 7:
 8: end procedure
```

Razstavljanje polinomov

K ima karakteristiko 0. Polinom $f \in K[x]$ želimo razstaviti na $f = g \circ h, g, h \in K[x]$ in 1 < st g, st h < st f.

Trd: Če je st f praštevilo, razstavitev ne obstaja.

Algoritem 2 Razstavljanje polinomov (Kozen, Landau).

Poljubno si lahko izberemo prosti člen (sicer: $g_1(x) = g(x-c), h_1(x) = h(x)+c$) in vodilni koeficient h (sicer: $g_2(x) = g(x/c), h_2(x) = ch(x)$), izberemo h(0) = 0 in h moničen. Glej algoritem 2.

```
Vhod: f \in K[x], f = x^{rs} + a_{rs-1}x^{rs-1} + \dots + a_0, r, s \ge 2.
Izhod: h, g \in K[x], tako da f = g \circ h, g = x^r + b_{r-1}x^{r-1} + \dots + b_0, h = x^s + c_{s-1}x^{s-1} + \dots + c_0,
ali "Ni mogoče.".
 1: procedure RAZSTAVI(f, r, s)
         h_0 \leftarrow x^s
                                                                                                                      \triangleright Izračun h.
 2:
         for k \leftarrow 1 to s-1 do
 3:
              h_k \leftarrow h_{k-1} + \frac{1}{r}(a_{rs-k} - [x^{rs-k}]h_{k-1}^r)x^{s-k}
 4:
         end for
 5:
         h \leftarrow h_{s-1}
 6:
 7:
         b_r \leftarrow 1
                                                                                                                      \triangleright Izračun g.
 8:
         for i \leftarrow r - 1 to 1 do
                                                                                       \triangleright Gaussova eliminacija za Ub = a.
              b_i \leftarrow a_{is} - \sum_{j=i+1}^r ([x^{is}]h^j(x))b_j
 9:
         end for
10:
         b_0 \leftarrow a_0
11:
         g(x) \leftarrow \sum_{i=0}^{r} b_i x^i
12:
13:
         if f(x) = g(h(x)) then
              return (g,h)
                                                                                                     ▷ Preverimo, če se izide.
14:
15:
              return "Ni mogoče."
16:
17:
         end if
18: end procedure
```

Razcep polinomov v \mathbb{Z}_p , p praštevilo

```
Lastnosti \mathbb{Z}_p: a^{p-1} = 1, (a+b)^p = a^p + b^p, v(x^p) = v(x)^p, u' = 0 \iff \exists v \in \mathbb{Z}[x] : v(x^p) = u(x).
```

Želimo razcepiti u. Izračunamo $d = \gcd(u, u')$. Če je $0 < \operatorname{st} d < \operatorname{st} u$, potem je $u = d \cdot u/d$ netrivialen razcep, ki ga lahko razcepimo naprej. Če je $\operatorname{st} d = \operatorname{st} u > \operatorname{st} u'$, potem d|u' torej u'(x) = 0 in $u(x) = v(x^p) = v(x)^p$ in razcepimo v naprej. Če je $\operatorname{st} d = 0$, potem je u brez kvadratov in uporabimo algoritem 3.

```
Algoritem 3 Razcep polinomov (Berlekamp).
Vhod: u \in \mathbb{Z}_p[x] brez kvadratov, n = \operatorname{st} u \geq 2.
Izhod: Netrivialen razcep polinoma u, če obstaja.
 1: procedure RAZCEPI(u, p)
         Izračunaj Q \in \mathbb{Z}_p^{n \times n} s koeficienti danimi z x^{kp} = \sum_{i=0}^{n-1} q_{ik} x^k \pmod{u(x)}. Poišči bazo \{v^{(1)} = [1,0,\ldots,0] \cong 1 + 0x + \cdots, v^{(2)},\ldots,v^{(r)}\} jedra Q - I nad \mathbb{Z}_p.
 2:
 3:
         if r = 1 then
 4:
 5:
              return u nerazcepen.
         else
 6:
              for a \leftarrow 0 to p-1 do
 7:
                   d_a(x) = \gcd(u(x), v^{(2)}(x) - a)
 8:
                   if st d_a > 0 then
 9:
                       return (d_a(x), u(x)/d_a(x)) je razcep.
                                                                              \triangleright Če želimo vseh r faktorjev, potem ne
10:
                                                                                   ⊳ vrnemo takoj, ampak nadaljujemo
                   end if
11:
                                                                                    \triangleright do p-1 in nato naprej z v^{(3)} itd.,
              end for
12:
                                                                                                     \triangleright dokler jih nimamo r.
         end if
13:
14: end procedure
```

Razcep polinomov nad \mathbb{Z}

Def: Polinom $p = \sum_i a_i x^i$ je primitiven, če je $\gcd(a_0, \dots, a_n) = 1$. Lema: Produkt primitivnih je primitiven.

Ideja 1: razcepimo polinom po modulu p, kjer je p pračtevilo večje od 2M in M je tak, da so vsi koeficienti v razcepu po abs. manjši od M (obstajajo ocene).

Ideja 2: Razcep po nekem manjšem modulu p lahko dvignemo do razcepa nad $p^k < M$. Tukaj uporabimo Henslov dvig. Ko imamo faktorje nad Z_{p^k} . Potem gremo čez vse podmnožice faktorjev in poskusimo, če kakšen produkt deli p.

Rešetke

Celoštevilska ogrinjača vektorjev $v_1, \dots v_k \in \mathbb{R}^m$ je množica $L(v_1, \dots, v_k) = \{\sum \lambda_i v_i; \lambda_i \in \mathbb{Z}\}.$ Množica $\Lambda \subseteq \mathbb{R}^m$ je *n*-razsežna **rešetka**, če obstajajo $b_1, \ldots, b_n \in \mathbb{R}^m$, tako da $\Lambda = L(b_1, \ldots, b_n)$. Množica $\{b_i\}$ je baza Λ , $m \times n$ matrika B s stolpci b_i pa bazna matrika. Dve rešetki Λ_1, Λ_2 dim. n sta **enaki** \iff obstaja $U \in \mathbb{Z}^{n \times n}$, da $B_2 = B_1 U$ in det $U = \pm 1$. **Determinanta rešetke** Λ z bazo B je $d(\Lambda) = \sqrt{\det(B^{\mathsf{T}}B)}$. **Pravokotnost** baze meri $\delta(b_1,\ldots,b_n) = \prod \|b_i\|/d(\Lambda)$. Vedno je $\delta(\Lambda) \geq 1$. Lema: Vsaka omejena podmnožica rešetke je končna.

SVP je problem iskanja najkrajšega vektorja v rešetki. SVP v 2D je iskanje najbližjega vektorja pravokotni projekciji: $(u, v) \to (u, v - ku)$, optimalni k je $\left\lceil \frac{\langle u, v \rangle}{\langle v, v \rangle} \right\rceil$, kjer je [x] najbližje celo število x. Od tod sledi algoritem 4. Posplošitev je algoritem 5.

Algoritem 4 Algoritem 60° za iskanje najkrajšega vektorja v rešetki dimenzije 2.

Vhod: Baza $(u, v) \in \mathbb{R}^m$.

Izhod: Nova baza (u, v), da je $\cos \angle (u, v) \le \frac{1}{2}$. Krajši izmed obeh je najkrajši vektor v rešetki.

```
1: procedure 60DEG(u, v)
          repeat
2:
3:
                \mathbf{swap}(u,v)
                k \leftarrow \left[\frac{\langle u, v \rangle}{\langle v, v \rangle}\right]u \leftarrow u - kv.
4:
5:
           until ||v||^2 < ||u||^2
6:
           return (u, v).
7:
8: end procedure
```

```
Algoritem 5 Algoritem \vartheta^{\circ}.
```

Vhod: Baza $(u, v) \in \mathbb{R}^m$ in $t \in [1, 2)$.

Izhod: Nova baza (u, v), da je $\cos \angle (u, v) \le \frac{t}{2}$.

```
1: procedure THETADEG(u, v, t)
      repeat
2:
3:
           \mathbf{swap}(u,v)
4:
5:
       until ||v||^2 \le t^2 ||u||^2
6:
7:
      return (u, v).
8: end procedure
```

Def: (b_1,\ldots,b_n) baza rešetke Λ . Za **Gram-Schmidtovo bazo** (b_1^*,\ldots,b_n^*) velja $b_i^*\perp b_i^*$ (za $i \neq j$) in $\mathcal{L}(b_1, \ldots, b_i) = \mathcal{L}(b_1^*, \ldots, b_i^*)$ za $i = 1, \ldots, n$.

Trd: (b_1, \ldots, b_n) baza rešetke Λ potem je $\forall v \in \Lambda$: $\min_{1 \leq i \leq n} \|b_i^*\| \leq \|v\|$.

Def: (b_1,\ldots,b_n) baza rešetke Λ potem je $b_i(i)$ pravokotna projekcija vektorja b_i vzoldž $\mathcal{L}(b_1^*,\ldots,b_i^*)$ na $\mathcal{L}(b_i,\ldots,b_n)$.

Def: Baza rešetke je **t-reducirana**, če velja $|\mu_{ij}| \leq \frac{1}{2}$ in $||b_i^*||^2 \leq t||b_{i+1}(i)||^2$ za $1 \leq i \leq n$.

Trd: Baza, ki jo vrne algoritem 5 je t-reducirana. Za splošno dimenzionalno rešetko uporabljamo algoritem 6.

```
Algoritem 6 Algoritem Lenstra-Lenstra-Lovász.
Vhod: Baza b_1, \ldots, b_n \in \mathbb{R}^m rešetke \Lambda in t \in [1, 2).
Izhod: t-reducirana baza (b_1, \ldots, b_n) rešetke \Lambda
 1: procedure LLL(\{b_i\}, t)
         \mu_{i,k} := \frac{\langle b_i, b_k^* \rangle}{\|b_k^*\|^2}
 2:
 3:
          while k < n do
 4:
 5:
              b_{k+1} \leftarrow b_{k+1} - [\mu_{k+1,k}]b_k
              if ||b_k^*||^2 > t^2 ||b_{k+1}(k)||^2 then
 6:
 7:
                   zamenjaj b_{k+1} in b_k
                   k \leftarrow \max(k-1,1)
 8:
              else
 9:
10:
                   for j \leftarrow k-1 to 1 do
                        b_{k+1} \leftarrow b_{k+1} - [\mu_{k+1,j}]b_k
11:
                        k \leftarrow k + 1
12:
                   end for
13:
              end if
14:
          end while
15:
          return (b_1,\ldots,b_n).
16:
17: end procedure
```

Vsote in rekurzivne enačbe

Def: Zaporedje $a \in K^{\mathbb{N}}$ je **hipergeometrično**, če obstajata $n_0 \in \mathbb{N}$ in $r \in K(n)$ tako da $\forall n \geq n_0 \colon a_n \neq 0 \land \frac{a_{n+1}}{a_n} = r(n)$. Množico vseh hipergeometričnih zaporedij označimo s $\mathcal{H}(K)$.

```
Izr: \forall r \in K(k) \exists a, b, c \in K[k]: r(k) = \frac{a(k)}{b(k)} \frac{c(k+1)}{c(k)} \wedge (\forall i \in \mathbb{N}_0 \colon a(k) \perp b(k+i)) \wedge a(k) \perp c(k) \wedge b(k) \perp c(k+1)
```

Za dano hipergeometrično zaporedje $t \in K^{\mathbb{N}}$ želimo njegovo vsoto $\sum_{k=k_0}^{n} t_k$ izraziti v zaključeni obliki.

```
Algoritem 7 Gosperjev algoritem.
```

```
Vhod: Hipergeometrično zaporedje t_k, tako da \frac{t_{k+1}}{t_k} = r(k) \in K(k).
```

Izhod: Hipergeometrično zaporedje s_k , tako da $s_{k+1} - s_k = t_k$ s.p., če obstaja.

```
1: procedure GA(t)
          izračunaj r(k) \leftarrow \frac{t_{k+1}}{t_k}
 2:
          najdi a,b,c\in K[k]: r(k)=\frac{a(k)}{b(k)}\frac{c(k+1)}{c(k)}, tako da a(k)\perp b(k+i), i=0,1,2,\ldots najdi x(k)\in K[k], ki reši a(k)x(k+1)-b(k-1)x(k)=c(k). 
ightharpoonup Lahko uporabimo poli.
 3:
 4:
          if x(k) ne obstaja then
 5:
                return rešitev ne obstaja
 6:
           else
 7:
                return s_k = \frac{b(k-1)x(k)}{c(k)}t_k
 8:
           end if
 9:
10: end procedure
```

Z Gosperjevim algoritmom lahko zapišemo vsoto hipergeometričnega zaporedja v zaključeni obliki $\sum_{k=k_0}^n t_k = s_{n+1} - s_{k_0}$. Gosperjev algoritem nam odpre nov problem, ki je reševanje linearne rekurzivne enačbe s polinomskimi koeficienti. Tega se bomo lotili z algoritmom Poli (alg. 8).

Hint: Včasih s_{n+1} (ali kateri drugi člen) ni definiran, takrat uporabimo $\sum_{k=k_0}^n t_k = s_n - s_{k_0} + t_n$. V splošnem velja $\sum_{k=k_0}^{k_1} t_k = s_{k_1} - s_{k_0} + t_{k_1}$.

Def: Operator $E: K^{\mathbb{N}} \to K^{\mathbb{N}}$ se imenuje **operator pomika** in premakne člene zaporedja za eno mesto $(Ea)_n = a_{n+1}$.

Def: Operator $\Delta = E - 1$ je diferenčni operator, $(\Delta a)_n = a_{n+1} - a_n$.

Def: Množica $L[n; E] = \left\{ \sum_{i=0}^{r} p_i E^i \mid r \in \mathbb{N}, p_i \in K[n] \right\}$ je kolobar linearnih rekurzivnih operatorjev (LRO) s polinomskimi koeficienti.

Algoritem 8 Algoritem poli. **Vhod:** LRO $L = \sum_{j=0}^{r} q_j(n) \Delta^j \in K[n; \Delta]$ in polinom $f \in K[n]$. **Izhod:** Baza B afinega prostora $\{x \in K[n] \mid Lx = f\}$. 1: **procedure** Poli(t) $b \leftarrow \max_{0 \le j \le r} (\operatorname{st} q_j - j)$ 2: $p(z) \leftarrow \sum_{0 \le j \le r} \operatorname{vk}(q_j) z_{-}^{\underline{j}}$ 3: $\alpha \leftarrow \max(\{k \in \mathbb{N}|\ p(k) = 0\} \cup \{-1\})$ 4: $d \leftarrow \max(\operatorname{st} f - b, \alpha)$ 5: if d < 0 then 6: if f = 0 then 7: return $\{0\}$ 8: else 9: 10: return {} 11: end if

Def: $F: \mathbb{N} \times \mathbb{N} \to K$ je dvorazsežno hipergeomertijsko zaporedje, če obstajajo $p_1, p_2, q_1, q_2 \in K[n,k] \setminus \{0\}$, tako da $p_1(n,k)F(n+1,k) = q_1(n,k)F(n,k)$ in $p_2(n,k)F(n,k+1) = q_2(n,k)F(n,k)$. **Def:** $F: \mathbb{N} \times \mathbb{N} \to K$ je pravo dvorazsežno hipergeometrijsko zaporedje, če je oblike $F(n,k) = P(n,k)y^nz^k\prod_{i=0}^p (a_in+b_ik+\alpha_i)!/\prod_{j=0}^q (c_jn+d_jk+\beta_j)!$ kjer $P \in \mathbb{C}[n,k], y,z \in \mathbb{C}^*, a_i,b_i,c_j,d_j \in \mathbb{Z}, p,q \in \mathbb{N}, \alpha_i,\beta_j \in \mathbb{C}$, tako da $a_in+b_ik+\alpha_i$ niso negativna cela števila.

⊳ z metodo nedoločenih koeficientov

 \triangleright za c_i in nastavkom $x(n) = \sum_{i=0}^d c_i n^i$

return $B = \{x \in K[n] \mid \operatorname{st} x \le d, Lx = f\}$

```
Algoritem 9 Zeilbergerjev algoritem (ni nujno, da se konča, razen za pravo).
Vhod: Dvorazsežno hipergeometrijsko zaporedje F(n,k).
Izhod: L \in K(n)[E_n] in G(n,k), take da (LF)(n,k) = G(n,k+1) - G(n,k).
 1: procedure ZA(F)
        for d \leftarrow 0 to \infty do
 2:
           Uporabi GA nad K(n) na produktu t_k = F(n+d,k) - \sum_{i=0}^{d-1} r_i(n)F(n+i,k), kjer so
 3:
    r_0, \ldots, r_{d-1} \in K(n) nedoločene.
           if GA uspe then
 4:
               Naj GA vrne s_k in r_0, \ldots, r_{d-1}, potem vrni L = E_n^d - \sum_{i=0}^{d-1} r_i(n) F(n+i,k), G(n,k) = \sum_{i=0}^{d-1} r_i(n) F(n+i,k)
 5:
    s_k.
 6:
            end if
        end for
 7:
 8: end procedure
```

Na koncu ZA moramo rešiti hipergeometrijsko LRE. Za to imamo algoritem Hiper (alg. 10). **Hint:** Pogosto se splača čez celotno enačbo narediti $\sum_{k=0}^{\infty}$, saj tako dobimo hipergeometrijsko LRE za S(n) (vsota F), pri tem, ko (npr. v primeru binomskih simbolov v G(n,k)) na eni strani dobimo 0. Velja tudi $\binom{0}{0} = 1$ (koristno pri S(0)) in če m > n potem $\binom{n}{m} = 0$ (zato je $G(n,\infty)$ pogosto 0).

Znižanje reda enačbe

else

end if

15: end procedure

12:

13:

14:

Če imamo neko hipergeometrično rešitev La=0, potem lahko znižamo red enačbe, tako da gremo noter z nastavkom $y_n=a_nz_n$. To nam da enačbo za z_n : $L'z_n=0$. Linearni operator L' zapišemo po potencah Δ , prosti člen se mora pokrajšat in dobimo enačbo za $(\Delta z)_n$, ki je enega reda manjša. Potem to rešimo in dobimo rešitev $(\Delta z)_n=b_n$, od tod pa dobimo $z_n=c_1\sum_{k=k_0}^{n-1}b_k+c_2$, $c\in K$ in od tod končno $y_n=a_n(c_1\sum_{k=k_0}^{n-1}b_k+c_2)$.

```
Vhod: p, q, r \in K[n], pr \neq 0.
Izhod: Vse hipergeometrične rešitve LRE p(n)y_{n+2} + q(n)y_{n+1} + r(n)y_n.
 1: procedure HIPER(p,q,r)
         for all monične a(n) \mid r(n) in b(n) \mid p(n-1) do
              P(n) \leftarrow a(n+1)p(n)/b(n+1)
 3:
 4:
              Q(n) \leftarrow q(n)
              R(n) \leftarrow b(n)r(n)/a(n)
 5:
              \rho \leftarrow \max\{\operatorname{st} P, \operatorname{st} Q, \operatorname{st} R\}
 6:
              \alpha \leftarrow [n^{\rho}]P(n)
 7:
              \beta \leftarrow [n^{\rho}]Q(n)
 8:
              \gamma \leftarrow [n^{\rho}]R(n)
 9:
              for all rešitve z \neq 0 enačbe \alpha z^2 + \beta z + \gamma = 0 do
10:
                   for all poli. rešitve c(n) enačbe z^2P(n)c(n+2)+zQ(n)c(n+1)+R(n)c(n) do
11:
                       f(n) \leftarrow z \frac{a(n)}{b(n)} \frac{c(n+1)}{c(n)}
12:
                       med vse rešitve dodaj rešitve LRE y_{n+1} = f(n)y_n.
13:
                   end for
14:
              end for
15:
         end for
16:
17: end procedure
```

Računanje v polinomskih idealih

Algoritem 10 Algoritem Hiper (Petkovškov algoritem).

```
Oznake: x := (x_1, ..., x_n), \ \alpha := (\alpha_1, ..., \alpha_n), \ |\alpha| := \alpha_1 + ... + \alpha_n, \ x^{\alpha} = x_1^{\alpha_1} ... x_n^{\alpha_n}.
```

Def: Za $\alpha, \beta \in \mathbb{N}^n$ definiramo relacijo \subseteq kot $\alpha \subseteq \beta \iff \forall i \ \alpha_i \leq \beta_i$. Velja $\alpha \subseteq \beta \implies x^{\alpha} | x^{\beta}$.

Def: Relacija \leq v \mathbb{N}^n je **monomska urejenost**, če linearno ureja elemente, so vsi elementi večji od 0 in je tranzitivna. Primeri: $\leq_{LEX}, \leq_{TLEX}, \leq_{TRLEX}$.

Def: Množica monomov Mon = $\{x^{\alpha} \mid \alpha \in \mathbb{N}^n\}$. Z dano monomsko urejenostjo $\leq za \mathbb{N}^n$, na Mon definiramo relacijo \leq s predpisom $x^{\alpha} \leq x^{\beta} \iff \alpha \leq \beta$.

Lema (DL): $\forall M \subseteq \text{Mon } \exists B \subseteq M : |B| < \infty \land (\forall m \in M \exists b \in B : b|m).$

Def: Naj bo \leq monomska urejenost na \mathbb{N}^n , $f \in K[x] \setminus \{0\}$ in pripadajoča $A \subseteq \mathbb{N}^n$ končna, tako da $f = \sum_{\alpha \in A} c_{\alpha} x^{\alpha}$ in $\forall \alpha \in A \colon c_{\alpha} \neq 0$. Potem definiramo naslednje oznake:

```
(i) skupna stopnja f: st f := \max_{\alpha \in A} |\alpha|
```

- (ii) multistopnja f: mst f := max < A
- (iii) vodilni koeficient f: $\operatorname{vk}_{\leq} f := \overline{c}_{\operatorname{mst}_{\leq} f}$ (iv) vodilni monom f: $\operatorname{vm}_{\leq} f := x^{\operatorname{mst}_{\leq} f}$
- (v) vodilni člen $f: v\check{c} \leq f := vk \leq f vm \leq f$

Izr: Naj bo \leq monomska urejenost in $f_1, \dots f_k \in K[x] \setminus \{0\}, g \in K[x]$. Potem obstajajo $h_1,\ldots,h_k,r\in K[x]$, tako da $g=\sum h_if_i+r$, noben člen r_i ni deljiv z nodebim izmed členov f_1, \ldots, f_k in, če $h_i \neq 0$, je $\operatorname{mst}(h_i f_i) \leq \operatorname{mst}(g)$. Za algoritem za deljenje glej algoritem 11.

Naj bo $I \subseteq K[x]$ ideal $G \subseteq I$ končna. Če za vsak $f \in I \setminus \{0\}$ obstaja $g \in G$, tako da $vm(g) \mid vm(f)$, potem je G Gröbnerjeva baza za I.

Trd: Naj bo $\{g_1,\ldots,g_m\}$ Gröbnerjeva baza za I. Potem je $f\in I\iff f\mod(g_1,\ldots,g_m)=0$ in $I = \langle g_1, \dots, g_m \rangle$.

Trd: Vsak ideal ima Gröbnerjevo bazo.

Izr: Vsak polinomski ideal je končno generiran.

Def: Za dva neničelna polinoma $f,g \in K[x]$ in monomsko urejenost \leq naj bo S-polinom polinomov f in g polinom $S(f,g)=\frac{m}{\mathrm{v}\check{\mathrm{c}}(f)}f-\frac{m}{\mathrm{v}\check{\mathrm{c}}(g)}g,$ kjer je $m=\mathrm{lcm}(\mathrm{vm}\,f,\mathrm{vm}\,g).$

Izrek: I ideal v K[x] z bazo $G = \{g_1, \ldots, g_k\}$. Potem je G Gröbnerjeva $\iff \forall g_i, g_i \in G$ velja $S(g_i,g_i) \mod G = 0$. To je temeljni izrek za algoritem 12, ki poišče Gröbnerjevo bazo.

Def: Gröbnerjeva baza je reducirana, če za vse $g \in G$ velja, da za vsak $h \in G \setminus \{g\}$ noben členhni deljiv z vč(q) in vk(q) = 1. Vsak ideal ima enolično reducirano Gröbnerjevo bazo.

Avtorji: Jure Slak, Maks Kolman, Ziga Lukšič

```
Algoritem 11 Algoritem za deljenje v K[x_1, \ldots, x_n].
Vhod: \leq monomska urejenost, f_1, \ldots, f_k, g kot zgoraj.
Izhod: h_1, \ldots, h_k, r kot zgoraj.
 1: procedure DELI(g, f_1, \ldots, f_k)
          for i \leftarrow 1 to k do
 3:
               h_i \leftarrow 0
          end for
 4:
          r \leftarrow 0
 5:
 6:
          p \leftarrow g
 7:
          while p \neq 0 do
               i \leftarrow 1
 8:
               uspeh \leftarrow 0
 9:
               while i \leq k and uspeh \neq 1 do
10:
                    if vč f_i \mid vč p then
11:
                          p \leftarrow p - g \operatorname{v\check{c}}(p) / \operatorname{v\check{c}}(f_i)
12:
                          h_i \leftarrow h_i + \text{v}\check{c}(p) / \text{v}\check{c}(f_i)
13:
                          uspeh \leftarrow 1
14:
                     else
15:
                          i \leftarrow i+1
16:
17:
                     end if
               end while
18:
               if uspeh = 0 then
19:
                    p \leftarrow p - v\check{c}(p)
20:
                    r \leftarrow r + v\check{c}(p)
21:
```

22:

23:

end if end while

24: end procedure

```
Algoritem 12 Buchbergerjev algoritem iskanje Gröbnerjeve baze.
Vhod: \leq monomska urejenost, f_1, \ldots, f_k \in K[x].
Izhod: Gröbnerjeva baza ideala \langle f_1, \ldots, f_k \rangle glede na \leq.
 1: procedure Groebner(f_1, \ldots, f_k)
        G' \leftarrow \{f_1, \ldots, f_k\}
 2:
 3:
        repeat
            G \leftarrow G'
 4:
            for all pairs (f,g) \in G^2 do
 5:
                r \leftarrow S(f, g) \mod G
 6:
                if r \neq 0 then
 7:
                     G' \leftarrow G' \cup \{r\}
 8:
                 end if
 9:
            end for
10:
        until G' = G
11:
12: end procedure
```