Journées de Géométrie Algorithmique

Combinatoire de la théorie des noeuds et des tresses

Christian Blanchet

Noeuds polygonaux

Noeud polygonal (PL) dans R³: réunion de segments formant une ligne fermée

Noeuds polygonaux

- Noeud polygonal (PL) dans R³: réunion de segments formant une ligne fermée
- plus mathématique: plongement PL du cercle

Noeuds polygonaux

- Noeud polygonal (PL) dans R³: réunion de segments formant une ligne fermée
- plus mathématique: plongement PL du cercle
- plusieurs composantes: entrelacs

Equivalence combinatoire

▶ Remplacer un segment par les deux autres côtés d'un triangle L'intersection de l'entrelacs avec le triangle est le segment [AB]

Diagrammes

► La projection de l'entrelacs sur un plan générique: les segments se projettent en des segments qui s'intersectent en leur intérieur, pas de point triple.

Diagrammes

- ► La projection de l'entrelacs sur un plan générique: les segments se projettent en des segments qui s'intersectent en leur intérieur, pas de point triple.
- Le diagramme plan, avec l'information dessus-dessous à chaque croisement détermine l'entrelacs à équivalence combinatoire près.

Le théorème de Reidemeister

► Mouvements sur les diagrammes engendrant l'équivalence des entrelacs: R1

Le théorème de Reidemeister

► Mouvement R2 ←>

Le théorème de Reidemeister

► Mouvement R3

←>

Variantes

► Entrelacs orientés: chaque noeud a un sens de parcours Mouvements de Reidemeister: envisager toutes les orientations

Variantes

- ► Entrelacs orientés: chaque noeud a un sens de parcours Mouvements de Reidemeister: envisager toutes les orientations
- Entrelacs en rubans: le 1er mouvement de Reidemeister devient

Invariants

On peut construire des invariants avec des fonctions sur les diagrammes compatibles avec les mouvements de Reidemeister.

L'enlacement de deux composantes:

$$Lk(K, K') = \frac{1}{2} \sum s(c)$$

Invariants

On peut construire des invariants avec des fonctions sur les diagrammes compatibles avec les mouvements de Reidemeister.

L'enlacement de deux composantes:

$$Lk(K, K') = \frac{1}{2} \sum s(c)$$

► Remarque: l'enlacement modulo 2, ne dépend pas de l'orientation.

Le graphe K6

Invariants

On peut construire des invariants avec des fonctions sur les diagrammes compatibles avec les mouvements de Reidemeister.

Le crochet de Kauffman (variante du polynôme de Jones): Il existe un unique invariant ⟨L⟩ ∈ Z[A, A⁻¹] des entrelacs en ruban, qui vaut 1 pour l'entrelacs vide, et tel que:

$$\langle \ \ \ \ \ \ \rangle = A \langle \ \ \rangle \langle \ \rangle + A^{-1} \langle \ \ \ \ \ \rangle$$

$$\langle L \square \rangle \equiv \langle L \rangle (-A^2 - A^{-2})$$

▶ Deux tresses à trois brins:

▶ Deux tresses à trois brins:

▶ Le produit de ces deux tresses:

Une définition du groupe de tresses B_n :

▶ Une tresse à n brins est un plongement PL de n intervalles orientés dans $[0,1] \times \mathbb{C}$, avec temps croissant: chaque intervalle est le graphe d'une application de [0,1] dans \mathbb{C} , avec extrémités dans $\{0,1\} \times \{1,\ldots,n\}$, à équivalence combinatoire près (le mouvement triangle).

Une définition du groupe de tresses B_n :

- ▶ Une tresse à n brins est un plongement PL de n intervalles orientés dans $[0,1] \times \mathbb{C}$, avec temps croissant: chaque intervalle est le graphe d'une application de [0,1] dans \mathbb{C} , avec extrémités dans $\{0,1\} \times \{1,\ldots,n\}$, à équivalence combinatoire près (le mouvement triangle).
- Le produit est donné par l'empilement.

Une définition du groupe de tresses B_n :

- ▶ Une tresse à n brins est un plongement PL de n intervalles orientés dans $[0,1] \times \mathbb{C}$, avec temps croissant: chaque intervalle est le graphe d'une application de [0,1] dans \mathbb{C} , avec extrémités dans $\{0,1\} \times \{1,\ldots,n\}$, à équivalence combinatoire près (le mouvement triangle).
- Le produit est donné par l'empilement.
- ▶ On a un homomorphisme sur le groupe symétrique S_n , le noyau est le groupe P_n des tresses pures.

Présentation des tresses

Le groupe de tresses B_n admet une présentation avec générateurs σ_i (croisement positif des brins i et i+1), $1 \le i < n$, et relations: $\sigma_i \sigma_j = \sigma_j \sigma_i$ si $|i-j| \ge 2$, $\sigma_i \sigma_{i-1} \sigma_i = \sigma_{i-1} \sigma_i \sigma_{i-1}$, pour 1 < i < n.

Fermeture des tresses

► Chaque tresse définit un entrelacs par fermeture.

Fermeture des tresses

- Chaque tresse définit un entrelacs par fermeture.
- ► Théorème (Alexander): Chaque entrelacs est fermeture d'une tresse.

Théorème de Markov

La relation sur les tresses correspondant à l'équivalence des fermetures est engendrée par

► la conjugaison

Théorème de Markov

La relation sur les tresses correspondant à l'équivalence des fermetures est engendrée par

- ▶ la conjugaison
- la stabilisation

Surface de Seifert

 Chaque entrelacs orienté borde une surface orientée (non unique)

Surface de Seifert

- Chaque entrelacs orienté borde une surface orientée (non unique)
- Algorithme de Seifert (entrée: diagramme)
 - 1. On résout chaque croisement.
 - 2. Chaque cercle borde un disque; on relève ces disques à \mathbb{R}^3 à des niveaux différents.
 - 3. On relie ces disques par des bandes correspondant aux croisements.

Surface de Seifert

- Chaque entrelacs orienté borde une surface orientée (non unique)
- Algorithme de Seifert (entrée: diagramme)
 - 1. On résout chaque croisement.
 - 2. Chaque cercle borde un disque; on relève ces disques à \mathbb{R}^3 à des niveaux différents.
 - 3. On relie ces disques par des bandes correspondant aux croisements.
- Problème: trouver le genre minimal.

Surface de Seifert: le trèfle

Surface de Seifert: le huit

Algorithme de Vogel: définitions

Deux cercles de Seifert ont des orientations cohérentes si et seulement s'ils engendrent la même classe d'homologie dans la bande délimitée par ces deux cercles (on ajoute ∞ si non bornée).

Algorithme de Vogel: définitions

- Deux cercles de Seifert ont des orientations cohérentes si et seulement s'ils engendrent la même classe d'homologie dans la bande délimitée par ces deux cercles (on ajoute ∞ si non bornée).
- ► La *hauteur* d'un diagramme est le nombre de paires de cercles de Seifert avec des orientations incohérentes.

Algorithme de Vogel: définitions

- Deux cercles de Seifert ont des orientations cohérentes si et seulement s'ils engendrent la même classe d'homologie dans la bande délimitée par ces deux cercles (on ajoute ∞ si non bornée).
- ► La *hauteur* d'un diagramme est le nombre de paires de cercles de Seifert avec des orientations incohérentes.
- ▶ Un arc réducteur est un arc d'intérieur plongé dans le complémentaire des cercles de Seifert, avec ses extrémités sur des cercles d'orientations incohérentes.

Algorithme de Vogel: mouvement élémentaire

Si on a un arc réducteur, effectuer au voisinage de cet arc un mouvement de Reidemeister R2.

▶ a) Si le diagramme est de hauteur nulle, alors c'est une tresse fermée.

- ▶ a) Si le diagramme est de hauteur nulle, alors c'est une tresse fermée.
- b) Le mouvement élémentaire associé à un arc réducteur, réduit la hauteur de 1.

- ▶ a) Si le diagramme est de hauteur nulle, alors c'est une tresse fermée.
- ▶ b) Le mouvement élémentaire associé à un arc réducteur, réduit la hauteur de 1.
- c) Si la hauteur est non nulle, alors il existe un arc réducteur.

- a) Si le diagramme est de hauteur nulle, alors c'est une tresse fermée.
- ▶ b) Le mouvement élémentaire associé à un arc réducteur, réduit la hauteur de 1.
- c) Si la hauteur est non nulle, alors il existe un arc réducteur.
- Le théorème fournit un algorithme quadratique dans le nombre de croisements qui transforme un entrelacs donné par un diagramme en une tresse fermée.

- a) Si le diagramme est de hauteur nulle, alors c'est une tresse fermée.
- ▶ b) Le mouvement élémentaire associé à un arc réducteur, réduit la hauteur de 1.
- c) Si la hauteur est non nulle, alors il existe un arc réducteur.
- Le théorème fournit un algorithme quadratique dans le nombre de croisements qui transforme un entrelacs donné par un diagramme en une tresse fermée.
- Il démontre que le nombre minimal de cercles de Seifert est égal au nombre minimal de brins: braid index.
 Problème: déterminer ce nombre.

Noeud de huit

