Day 13

Zorn's Lemma

Definition: A partial order on a set A is a relation \leq on A such that is reflexive (so $a \leq a$ for all $a \in A$), antisymmetric (so $a \leq b$ and $b \leq a$ implies a = b) and transitive (so $a \leq b$ and $b \leq c$ implies $a \leq c$).

Definition: A *total order* on A is a partial order with the additional property that, given $a, b \in A$, either $a \leq b$ or $b \leq a$.

Definition: A chain in A is a subset of A which is totally ordered by \leq .

Definition: An upper bound for a subset B of a partially ordered set A is an element $a \in A$ such that, for all $b \in B$, $b \le a$.

Definition: A maximal element of a partially ordered set A is an element $m \in A$ such that $m \le x \implies m = x$ for all $x \in A$.

Examples:

- integers under divisiblity are partially ordered; powers of a prime p are chains.
- subsets of a set X under inclusion are partially ordered; a chain is a nested sequence of sets. The union of elements in a chain is an upper bound for the chain. The whole set X is a maximal element.
- Let A be the set of pairs (X, f) where $X \subset \mathbb{R}$ is open and $f: X \to \mathbb{R}$ is continuous (or differentiable, ...). The relation $(X, f) \leq (Y, g)$ if $X \subset Y$ and g restricted to X is f.

Zorn's Lemma: If A is a nonempty partially ordered set in which every chain has an upper bound then A has a maximal element.

Not a lemma – really an axiom.

If R is a ring with unity, let J be a proper ideal of R and let A be the set of proper ideals of R containing J. Then A satisfies the conditions of Zorn's lemma – a chain is an increasing system of proper ideals; the union of proper ideals is a proper ideal (if the union weren't proper, it would contain 1, so 1 would belong to one of the elements in the sequence, which can't happen); that union is the upper bound for that chain. So A has a maximal element which is a proper ideal containing J.

Decomposition of rings

Suppose R is a commutative ring with unity.

Definition: Two ideals I and J of a ring R are called coprime or comaximal if I + J = R.

Lemma: If I + J = R then $IJ = I \cap J$.

Proof: We know $IJ \subset I \cap J$. Choose $x \in I \cap J$ and also write 1 = u + v with $u \in I$ and $v \in J$. Then x = xu + xv. But both xu and xv are in IJ, so $x \in IJ$.

This is a (pretty big) generalization of the statement that if a and b are relatively prime integers then their least common multiple is their product.

Proposition: Let I_1, \ldots, I_k are ideals of R, then there is a ring homomorphism

$$R \to R/I_1 \times \cdots \times R/I_k$$
.

Its kernel is the intersection $\bigcap_{i=1}^{k} I_i$. If, for every pair, $I_j + I_k = R$, the map is surjective and its kernel is $I_1 \cdots I_k$.

Key examples: Polynomials and integers.

Ideals and divisibility

Euclidean Domains

Three notable examples:

- ullet $\mathbb Z$
- F[x] where F is a field
- $\mathbb{Z}[i]$

Proposition: Every ideal in a Euclidean domain is principal.

Proposition: (Fermat) A prime number is the sum of two squares if and only if it is 2 or is congruent to 1 mod 4.

Lemma: The congruence $x^2 \equiv -1 \pmod{p}$ has a solution modulo a prime p if and only if p = 2 or $p \equiv 1 \pmod{4}$.

Proof: If p = 2, 1 is a solution. If p is odd, and $x^2 = -1$ has a solution, then $(\mathbb{Z}/p\mathbb{Z})^*$ has an element of order 4, so 4|(p-1). Notice that $(\mathbb{Z}/p\mathbb{Z})^*$ has only two elements of order dividing 2, because of $x^2 \equiv 1 \pmod{p}$ then $p|(x^2-1)$, so p|(x+1)(x-1), so either $x \equiv 1 \pmod{p}$ or $x \equiv -1 \pmod{p}$. If 4|(p-1) then let H be the Sylow 2-subgroup of $(\mathbb{Z}/p\mathbb{Z})^*$. If H were not cyclic, then there would be too many elements of order 2 in H. So H must be cyclic and therefore there is an element of order 4.