19/20 浙江工业大学高等数学IIB 考试试卷

	 教师 :	班:	级:		姓名	:	学	号:	
	题 号 得 分	_	_ 	Ξ	四	五	六	总 分]
一、填空选择题(每小题 3 分,共 36 分): 1. 设向量 $\vec{a} = 2\vec{i} + 2\vec{j} + 2\vec{k}$, $\vec{b} = \vec{i} + 2\vec{j} + 4\vec{k}$,则以 \vec{a} ,为邻边的平行四边形面积为。 2. 两平面 $x - 2y + 2z + 1 = 0$ 和 $-x + y + 5 = 0$ 的夹角为。									
3. 二元函数 $z = \frac{\sin xy}{x}$ 在(0, 0)点处的极限是。 4. 设 $z = x^2 \sin y^2$,则 $dz =。 5. 设 \sin y + e^x - xy^2 = 0,则 \frac{dy}{dx} =。$									
6. 设 $z = f(x^2y, \frac{y}{x})$, 其中 $f(x, y)$ 偏导数连续,则 $\frac{\partial z}{\partial x} =$ 。 7. 曲面 $z = 2x^2 - 4y^2$ 在点 $(2,1,4)$ 处的切平面方程为。 9. 二重积分的积分区域 D 是 $ x + y \le 1$,则 $\iint_D dx dy =$ 。 9. 交换积分次序 $\int_0^4 dx \int_{\frac{x}{2}}^{\sqrt{x}} f(x, y) dy =$ 。									
10.	直线 <u>x-</u> 1 (A) 垂直 (C) 相交 下列级数。	$\frac{1}{-2} = \frac{y-1}{-2}$ $\frac{1}{-2}$ $\frac{1}{2}$ 但不垂直 收敛的是	$\frac{1}{z} = \frac{z - 2z}{-3}$	9 - 与平面)	(B) 直 (D) 直	y – z – 1 〔线在平〕 〔线与平〕	面内 面平行但	位置关系为 且不在平面内 ∞ 1	()
12.	A) $\sum_{n=1}^{\infty} (-1)^n$ 幂级数 $\sum_{n=1}^{\infty}$	$\sum_{n=0}^{\infty} \left(\frac{x}{2}\right)^n$	在收敛[区域内的	和函数	为 ($D) \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$	

二、试解下列各题(每小题5分,共25分):

1. 求曲线
$$\begin{cases} x^2 + y^2 + z^2 = 9 \\ x + z = 1 \end{cases}$$
 在平面 $z = 0$ 上的投影的方程。

2. 一直线过点 $M_0(2,-1,3)$ 且与直线 $l: \frac{x-1}{2} = \frac{y}{-1} = \frac{z+2}{1}$ 相交,又平行于平面 3x-2y+z+5=0,求此直线的方程。

3. 求曲线
$$\begin{cases} x = \int_0^t e^u \cos u du \\ y = 2\sin t + \cos t \ \text{在} \ t = 0$$
处的切线方程与法平面方程。
$$z = 1 + e^{3t} \end{cases}$$

4. 求曲面: $e^z - z + xy = 2$ 在 (1, 1, 0) 处的切平面与法线方程。

5. 将函数 $f(x) = \ln(a+x)(a>0)$ 展开成 x 的幂级数,并求展开式成立的区间。

三、试解下列各题(每小题6分,共18分):

1. 求 $\iint_D xydxdy$, 其中区域 D 由曲线 $y^2 = x$, 及y = x - 2 所围成的闭区域。

2. 计算二重积分 $\iint_D \frac{\sin x}{x} dxdy$, 其中 D 由曲线 $y = x^2$, 及 y = x 所围成的闭区域

3. 求曲面 $z = 6 - 2x^2 - y^2$ 与 $z = x^2 + 2y^2$ 所围成的立体的体积。

四、(7分)在第一卦限作球面 $x^2 + y^2 + z^2 = 1$ 的切平面,使得该切平面与三个坐标面所围成的四面体的体积最小,求切点坐标。

五、 (8分) 求幂级数 $\sum_{n=1}^{\infty} nx^n$ 的收敛域(含端点)及和函数,并求级数 $\sum_{n=1}^{\infty} \frac{n}{3^n}$ 的和。

六(6分)、(1)证明若级数 $\sum_{n=1}^{\infty} |u_n|$ 收敛,则级数 $\sum_{n=1}^{\infty} u_n$ 收敛。

(2) 设正项级数
$$\sum_{n=1}^{\infty} a_n$$
, $\sum_{n=1}^{\infty} b_n$, 满足 $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$, $(n=1,2,\cdots)$, 试证: 若 $\sum_{n=1}^{\infty} b_n$ 收敛,则 $\sum_{n=1}^{\infty} a_n$ 也收敛。