QMWS - Survival Analysis Non-parametric survival methods

Instructor: Kevin McGregor

York University
Department of Mathematics and Statistics

Non-parametric statistics

There are several common techniques in survival analysis that fall under the category of **non-parametric statistics**. What does this mean?

Parametric statistics: This means that we assume some parametric form (i.e. a probability distribution) for our data:

• E.g.
$$X_1, \ldots, X_n \sim \mathsf{Exp}(\lambda)$$

Non-parametric statistics: We do **not** assume any particular probability distribution for our data.

Non-parametric survival analysis

There are two main non-parametric methods for survival analysis that we will cover:

Kaplan-Meier estimator: This gives an estimate of the **survival** function S(t).

- By far the most common method used in survival analysis.
- The Kaplan-Meier estimate is the default method in R for plotting the survival curve.

Nelson-Aalen estimator: This gives an estimate of the **cumulative hazard** function $\Lambda(t)$.

• This can then be transformed to S(t).

Both of these estimators handle right-censored data.

Kevin McGregor QMWS - Survival Analysis 3 / 22

Notation

There is a particular notation used in both the Kaplan-Meier estimator and the Nelson-Aalen estimator.

In both cases, we will index our observations by the **observed event times**. That is, assume that, among n individuals in the study, we observe k events (and have n-k right-censored events). The **observed** event times are:

$$t_1 < t_2 < \cdots < t_k$$

Note that we assume **discrete time**, so that **multiple** events can happen at each of these times. The number of events occurring at each time (respectively) is:

$$d_1, d_2, \ldots, d_k$$

Kevin McGregor QMWS - Survival Analysis

Notation

Finally, at each time t_j , for j = 1, ..., k, we have the number of individuals at **risk**:

$$n_1, n_2, \ldots, n_k$$

Each n_j is the number of individuals still in the study at time t_j . The two ways an individual is no longer "at risk" is if (a) they have an event, or (b) they are right censored.

- n_1 is the sample size
- $n_j = n_{j-1} d_{j-1} \#$ censored in $[t_{j-1}, t_j)$

Example

Example: Time to relapse (weeks) for 21 children with acute leukemia who are on a drug called 6-MP (Freireich et al. 1963): 10, 7, 32+, 23, 22, 6, 16, 34+, 32+, 25+, 11+, 20+, 19+, 6, 17+, 35+, 6, 13, 9+, 6+, 10+

tj	dj	nj	
6	3	21	
7	1		
10	1		
13	1		
16	1		
22	1		
23	1		

Kaplan-Meier estimator

The Kaplan-Meier estimator (also known as the "Product-Limit" estimator) is the most common way of estimating a survival curve S(t).

$$\widehat{S}(t) = \prod_{j:t_j \leq t} \left(1 - \frac{d_j}{n_j}\right)$$

Kaplan-Meier estimator

The Kaplan-Meier curve is a step function, with drops at each t_j . Here's the KM curve for the 6-MP example (solid line):

Klein, John P., and Melvin L. Moeschberger. Survival analysis: techniques for censored and truncated data. Vol. 1230. New York: Springer, 2003.

Variance of Kaplan-Meier estimator

An important formula called **Greenwood's formula** approximates the variance of the Kaplan-Meier curve:

$$\widehat{var}\left[\widehat{S}(t)\right] = \widehat{S}(t)^2 \sum_{j:t_i \leq t} \frac{d_j}{n_j(n_j - d_j)}$$

This formula is derived using the **delta method**. Thus, it is only an **approximation** of the variance.

Kevin McGregor QMWS - Survival Analysis

Confidence interval: Kaplan-Meier estimator

Using Greenwood's formula, we can get a pointwise confidence interval for the Kaplan-Meier estimator. That is, we have a $(1-\alpha) \times 100\%$ confidence interval at each value of t:

$$\widehat{S}(t)\pm z_{lpha/2}\sqrt{\widehat{var}\left[\widehat{S}(t)
ight]}$$

where $z_{\alpha/2}$ is the upper $\alpha/2$ quantile of the standard normal distribution.

Cumulative hazard

Recall the hazard function:

$$\lambda(t) = P(t < T_i < t + \delta | T_i > t)$$

for arbitrarily small δ .

Cumulative hazard

An important related function is called the **cumulative hazard** function:

$$\Lambda(t) = \int_0^t \lambda(s) \, ds$$

There is a relationship between the survival function and the cumulative hazard:

$$S(t) = \exp\left\{-\Lambda(t)\right\}$$

Nelson-Aalen estimator

Another popular non-parametric estimator in survival analysis is the **Nelson-Aalen** estimator.

The Nelson-Aalen estimator estimates the **cumulative hazard** function $\Lambda(t)$.

We use the same notation as we did for the Kaplan-Meier estimate:

- Discrete event times $t_1 < t_2 < \cdots < t_k$, multiple events at each time are possible.
- n_j is the number at risk at time t_j
- d_j is the number of events at time t_j

Nelson-Aalen estimator

The Nelson-Aalen estimator for cumulative hazard is given by:

$$\widehat{\Lambda}(t) = \sum_{j: t_i \leq t} \frac{d_j}{n_j}$$

Thus, the survival function can be estimated as:

$$\widehat{S}(t) = \exp\left\{-\widehat{\Lambda}(t)\right\}$$

$$= \exp\left\{-\sum_{j: t_j \le t} \frac{d_j}{n_j}\right\}$$

Variance

The variance of the Nelson-Aalen estimator can be estimated as:

$$\widehat{\text{var}}\left[\widehat{\Lambda}(t)\right] = \sum_{j:t_i \leq t} \frac{(n_j - d_j)d_j}{(n_j - 1)n_j^2}$$

A $100 \times (1 - \alpha)\%$ confidence interval for $\Lambda(t)$ is given by:

$$\widehat{\Lambda}(t) \pm z_{lpha/2} \sqrt{\widehat{var}\left[\widehat{\Lambda}(t)
ight]}$$

where $z_{\alpha/2}$ is the upper $\alpha/2$ tail of the standard normal distribution.

Comparing curves

Comparing survival curves for males/females in the Melanoma dataset.

Kevin McGregor QMWS - Survival Analysis 15 / 22

Creating multiple curves

When creating multiple Kaplan-Meier curves, we split the usual n_j (number at risk) and d_j (number of events) vectors into multiple groups.

Let's consider the simplest case of 2 groups.

• Among the 2 groups we have **observed** event times:

$$t_1 < t_2 < \cdots < t_k$$

- d_j is the total number of events at time t_j (across **both** groups)
- n_j is the total number at risk at time t_j (across **both** groups)

Kevin McGregor QMWS - Survival Analysis 16 / 22

Creating multiple curves

• we have d_{1j} and d_{2j} , which are the numbers of events in groups 1 and 2 at time t_j

$$\bullet \ d_{1j}+d_{2j}=d_j$$

• We have n_{1j} and n_{2j} , which are the number of at risk individuals in groups 1 and 2 at time t_j

$$\bullet \ n_{1j} + n_{2j} = n_j$$

	Events			At risk		
Time	Grp 1	Grp 2	Total	Grp 1	Grp 2	Total
t_1	d ₁₁	d ₂₁	d_1	n ₁₁	n ₂₁	n_1
t ₂	d ₁₂	d ₂₂	d ₂	n ₁₂	n ₂₂	n ₂
:	:	:	:	:	:	:
t_k	d_{1k}	d_{2k}	d_k	n_{1k}	n _{2k}	n_k

Creating multiple curves

We can simply create two separate Kaplan-Meier curves using the within-group event and at risk counts:

Survival curve for group 1:

$$\widehat{\mathcal{S}}_1(t) = \prod_{t_j: t_j \leq t} \left(1 - rac{d_{1j}}{n_{1j}}
ight)$$

Survival curve for group 2:

$$\widehat{S}_2(t) = \prod_{t_j: t_j \leq t} \left(1 - rac{d_{2j}}{n_{2j}}
ight)$$

Log-rank test

How do we compare the curves? We can test for differences between the two survival curves using the **log-rank test**, also known as the **Mantel-Cox** test.

We have the following hypotheses in the log-rank test:

$$H_0$$
: $S_1(t) = S_2(t)$ for all $t > 0$

$$H_1$$
: $S_1(t) \neq S_2(t)$ for some $t > 0$

Log-rank test: distribution

What are the **expected** values of the d_{ij} , for i = 1, ..., p under the null hypothesis?

$$e_{ij} = \mathbb{E}[d_{ij}] = \frac{n_{ij}}{n_i}d_j$$

Let V_j be the variance-covariance matrix for the d_{ij} $i=1,\ldots,p$ under the null hypothesis at time t_i . Diagonal terms:

$$(V_j)_{ii} = \text{var}[d_{ij}] = d_j \frac{n_{ij}}{n_j} \frac{n_j - n_{ij}}{n_j} \frac{n_j - d_j}{n_j - 1}$$

Off-diagonal terms for elements i and r (e.g. covariances):

$$(V_j)_{ir} = -d_j \frac{n_{ij}}{n_j} \frac{n_{rj}}{n_j} \frac{n_j - d_j}{n_j - 1}$$

Log-rank test: test statistics

Our test statistic in the log-rank test is then:

$$X^{2} = \frac{\left(\sum_{j=1}^{k} d_{1j} - \sum_{j=1}^{k} e_{1j}\right)^{2}}{\sum_{j=1}^{k} v_{1j}}$$

It can be shown that this is approximately distributed as chi-squared with one degree of freedom under the null hypothesis:

$$X^2 \sim \chi_1^2$$
 (approximately under H_0)

Thus, we reject H_0 at level α if $X^2 > \chi_1^2(\alpha)$, where $\chi_1^2(\alpha)$ is the upper- α quantile of the χ_1^2 distribution.

Kevin McGregor QMWS - Survival Analysis 21 / 22

Advantages/disadvantages

Log-rank test advantages:

- Simple calculation.
- Easy to interpret.
- Easily extends to *p* survival curve comparisons.

Log-rank test disadvantages:

- Will often not detect difference in two survival curves if they cross.
- Assumes censoring is not related to survival time.
- Assumes probability censoring is not significantly different between groups.

Kevin McGregor QMWS - Survival Analysis 22 / 22