Homework I

Q1. Minimum Norm. Find least square estimator θ_{ls} for m<n (i.e. there are more variables than equations since m is the number of data pairs recorded and n is the number of parameters) under the minimum norm consideration by stating a minimization problem as follows:

minimize $|\theta|$ subject to: $A\theta = y$ (with variable $\theta \in \mathbb{R}^n$)

Q2. RLS Study. a) Find the least square estimator $\theta = [\theta_0 \ \theta_1 \ \theta_2]$ for the model $y(t) = \theta_0 + \theta_1 X_1 + \theta_2 X_2 + e'(t)$ proposed for the data set given in the Table.1 below,

b) Use LMS algorithm to find $\theta = [\theta_0 \ \theta_1 \ \theta_2]$ for the same model. Choose the learning rate carefully for the convergent iteration. Plot each variable θ_i during the adaptation. Compare your results with the Wiener's Optimal Solution ($\theta^* = \mathbf{R}^{-1} \mathbf{p}$).

x1	1	2	2	2	3	3	4	5	5	5	6	7	8	8	9
x2	2	5	3	2	4	5	6	5	6	7	8	6	4	9	8
у	2	1	2	2	1	3	2	3	4	3	4	2	4	3	4

Table.1

Q3. Derivative Based Optimization. Consider minimization problem for the objective function,

$$E_1(\theta) = E(x,y) = \theta_1^2 + 4\theta_2^2 + 2\theta_1\theta_2 + \theta_1 - 11\theta_2$$
 $\theta = [\theta_1, \theta_2]$

- a) Apply the following four descent methods to minimize these quadratic functions, using optimal step size η^* (line minimization) when necessary and initiate those algorithms for the initial condition as $\theta(0) = [1,1]$
 - The steepest descent method
 - Newton's method
 - DFP quasi-Newton method
 - Fletcher-Reeves's conjugate gradient method

Comment on the results. (Approximate $E(\theta)$ by using Taylor's theorem: $E(\theta) = 0.5 \theta^T H \theta + g^T \theta + c$)

b) Use fixed η values (η =0.1, η =0.3, η =0.5) for the steepest descent method. Give your comments on the results.

Note: Plot each step of iterations on the contour surface in the range of $\theta_1 \in [-2,10]$, $\theta_2 \in [-4,2]$.