Data Mining

Classification V - Simple Linear Regression

Dr. Jason T.L. Wang, Professor Department of Computer Science New Jersey Institute of Technology

Training data set:

Age in years (x)	Height in meters (y)
2.06	0.78
4.25	1.15
7.47	1.25

Notation:

m = Number of training examples

x's = "input" variable / feature values

y's = "output" variable / "target" variable values

Regression problem:

Predict real-value output given some input.

Simple linear regression

Bad approximation

Good approximation

Regression vs. Classification

 Similarities: Both algorithms learn from a training data set.

 Differences: In classification, we deal with training examples that have categorical attributes (e.g. gender) with unordered values (e.g. male, female). In regression, we deal with training examples that have continuous values.

Simple linear model $H_{a,b}(x) = ax + b$

Training data

Learning algorithm

Age in years

 $H_{a,b}$ Estimated height

Cost function Q(a, b)

• Model H(x) = ax + b

•
$$Q(a,b) = \frac{1}{2m} \sum_{i=1}^{m} (H(x_i) - y_i)^2$$

= $\frac{1}{2m} \sum_{i=1}^{m} (ax_i + b - y_i)^2$

• Goal: minimize the cost function i.e. Find $\min_{a,b} Q(a,b)$

Analytical method (Ordinary Least Squares)

$$Q(a,b) = \frac{1}{2m} \sum_{i=1}^{m} (ax_i + b - y_i)^2$$

Let
$$\frac{\partial Q(a,b)}{\partial a} = 0$$
 and $\frac{\partial Q(a,b)}{\partial b} = 0$

We have:

$$\frac{\partial Q(a,b)}{\partial a} = \frac{1}{m} \sum_{i=1}^{m} x_i (ax_i + b - y_i) = 0 \quad \text{Eq. (1)}$$

$$\frac{\partial Q(a,b)}{\partial b} = \frac{1}{m} \sum_{i=1}^{m} (ax_i + b - y_i) = 0 \quad \text{Eq. (2)}$$

Simplifying equations (1) and (2) leads to the following linear system of a and b:

$$mb + a \sum_{i=1}^{m} x_i = \sum_{i=1}^{m} y_i$$

$$b\sum_{i=1}^{m} x_i + a\sum_{i=1}^{m} x_i^2 = \sum_{i=1}^{m} y_i x_i$$

Solving the linear system, we get analytical solutions for a and b.

$$a = \frac{\sum_{i=1}^{m} y_i x_i - \frac{(\sum_{i=1}^{m} y_i)(\sum_{i=1}^{m} x_i)}{m}}{\sum_{i=1}^{m} x_i^2 - \frac{(\sum_{i=1}^{m} x_i)^2}{m}}$$

$$b = \frac{1}{m} \sum_{i=1}^{m} y_i - \frac{a}{m} \sum_{i=1}^{m} x_i$$

Example:

Training data set:

m = 6

Age in years (x):

 $X_1, X_2, X_3, X_4, X_5, X_6$

Height in meters (y):

y₁, y₂, y₃, y₄, y₅, y₆

Age in years (x)	Height in meters (y)
3.04	0.91
3.64	1.01
4.61	1.09
5.57	1.11
6.74	1.20
7.77	1.30

Compute:

$$\sum_{i=1}^{m} x_i = 31.37 \qquad \sum_{i=1}^{m} y_i = 6.62$$

$$\sum_{i=1}^{m} x_i^2 = 180.569 \qquad \sum_{i=1}^{m} y_i x_i = 35.839$$

$$a = \frac{\sum_{i=1}^{m} y_i x_i - \frac{(\sum_{i=1}^{m} y_i)(\sum_{i=1}^{m} x_i)}{m}}{\sum_{i=1}^{m} x_i^2 - \frac{(\sum_{i=1}^{m} x_i)^2}{m}}$$

$$= \frac{35.839 - (6.62 * 31.37)/6}{180.569 - 31.37 * 31.37/6} = 0.0741$$

$$b = \frac{1}{m} \sum_{i=1}^{m} y_i - \frac{a}{m} \sum_{i=1}^{m} x_i$$

$$=\frac{6.62}{6} - \frac{0.0741*31.37}{6} = 0.716$$

$$y = 0.0741x + 0.716$$

Linear model for the relationship of age and height

Predict the height of a five-year old boy

$$y = 0.0741 \times 5 + 0.716 = 1.09$$

The predicted height is 1.09 m

End of Simple Linear Regression Module