Herbst 11 Themennummer 3 Aufgabe 2 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Sei $\Omega \subset \mathbb{C}$ ein Gebiet mit $0 \in \Omega$. Untersuchen Sie, ob es holomorphe Funktionen $f, g, h : \Omega \to \mathbb{C}$ mit den folgenden Eigenschaften gibt:

- i) $f(\frac{1}{n^{2011}}) = 0$ für alle $n \in \mathbb{N}$ mit $\frac{1}{n^{2011}} \in \Omega$, aber $f \not\equiv 0$.
- ii) $g^{(k)}(0) = (k!)^2$ für alle $k \in \mathbb{N}_0 := \{0,1,2,\ldots\}.$
- iii) $h(\frac{1}{2n}) = h(\frac{1}{2n-1}) = \frac{1}{n}$ für alle $n \in \mathbb{N}$ mit $\frac{1}{2n}, \frac{1}{2n-1} \in \Omega$.

Lösungsvorschlag:

- i) Nein, eine solche holomorphe Funktion f existiert nicht. Ist $f:\Omega\to\mathbb{C}$ holomorph, so auch stetig. Aus $f(\frac{1}{n^{2011}})=0$ folgt im Limes also f(0)=0, da $0\in\Omega$ ist. Weil Ω als Gebiet offen ist und die 0 enthält, liegt $\frac{1}{n^{2011}}\in\Omega$ für unendlich viele $n\in\mathbb{N}$. Die Menge $\{z\in\Omega:f(z)=0\}$ häuft sich also in $0\in\Omega$. Nach dem Identitätssatz muss dann schon $f\equiv 0$ sein. Es wurde aber $f\not\equiv 0$ gefordert, was nicht alles erfüllt sein kann.
- ii) Nein, auch so eine holomorphe Funktion $g:\Omega\to\mathbb{C}$ gibt es nicht. Nach dem Satz von Taylor würde g in einer Umgebung von 0 mit der Potenzreihe $\sum\limits_{k=0}^{\infty}\frac{g^{(k)}(0)}{k!}z^k=\sum\limits_{k=0}^{\infty}k!z^k$ übereinstimmen. Diese besitzt aber einen Konvergenzradius von 0, da $\lim\limits_{k\to\infty}\frac{k!}{(k+1)!}=\lim\limits_{k\to\infty}\frac{1}{k+1}=0$ ist.
- iii) Auch hier existiert kein solches h. Wie in a) gibt es unendlich viele $n \in \mathbb{N}$ mit $\frac{1}{2n}, \frac{1}{2n-1} \in \Omega$. Außerdem kann man wie in a) beweisen, dass h(0) = 0 wäre. Die Funktion j(z) := 2z ist ganz und die Menge $\{z \in \Omega : h(z) = j(z)\}$ häuft sich in $0 \in \Omega$ und nach dem Identitätssatz folgt h = j auf Ω , weil dieses ein Gebiet ist. Dies steht aber im Widerspruch zu $j(\frac{1}{2n-1}) = \frac{2}{2n-1} \neq \frac{1}{n} = h(\frac{1}{2n-1})$ und $\frac{1}{2n-1} \in \Omega$ für unendlich viele $n \in \mathbb{N}$.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$