Scientific Computing - Exercise Sheet 2

Jonathan Hellwig, Jule Schütt, Mika Tode, Giuliano Taccogna 22.04.2021

1 Exercise

(a) Computation for t^{ν}_{total} , where $\nu = 0.01$ and $p = 10^k$ for $k \in \{1, \dots, 5\}$:

$$t_{total}^{\nu} = \nu t_1^N + (1 - \nu) t_p^N$$

= $10^{-2} \cdot 10^5 h + (1 - 10^{-2}) \cdot 10^5 h \cdot 10^{-k}$
= $1000h + 0.99 \cdot 10^{5-k} h$

Values for different k:

k	$t^{ u}_{total}$
1	10900h
2	1990h
3	1099h
4	1009.9h
5	1000.99h

(b) The theoretical speedup and the theoretical efficiency are the following values:

$$S_p^T = \frac{t_1^N}{t_p^N} = 10^k, \quad \text{for } k \in \{1, \dots, 5\}$$

$$E_p^T = \frac{t_1^N}{pt_p^N} = 1,$$

where we still use $p = 10^k$ for $k \in \{1, ..., 5\}$.

We have to exchange the theoretical computing time t_p^N where we assumed that every part of the algorithm can be parallelized with the real computing time t_{total}^N which include that we can't parallelize just 99% of the algorithm. Therefore we have a look at the effective speedup S_p^E and efficiency E_p^E . It holds

$$S_p^E = \frac{t_1^N}{t_{total}^V} = \frac{10^5}{t_{total}^V} = \frac{10^5}{1000h + 0.99 \cdot 10^{5-k}h}$$

$$E_p^E = \frac{t_1^N}{pt_{total}^V} = \frac{10^5}{pt_{total}^V} = \frac{10^5}{p(1000h + 0.99 \cdot 10^{5-k}h)}$$

Values for different k:

k	S_p	E_p
1	9,17	0.917
2	50.25	0.5025
3	90.99	0.09099
4	99.02	0.009902
5	99.9	0.000999

(c) It holds:

$$t_{total}^{\nu} = \nu t_1^N + (1 - \nu)t_p^N = t_s^N + (1 - \nu)\underbrace{\frac{t_1^N}{p}}_{p \to \infty} \xrightarrow{p \to \infty} t_s^N = 1000.$$

Using that we compute the limit of the speedup and the efficiency:

$$\begin{split} S_p^E &= \frac{t_1^N}{t_{total}^\nu} \xrightarrow[p \to \infty]{} \frac{t_1^N}{t_s^N} = \frac{1}{\nu} = 100 \\ E_p^E &= \frac{t_1^N}{pt_{total}^\nu} \xrightarrow[p \to \infty]{} 0, \end{split}$$

where the last limit results from the convergence of t^{ν}_{total} to a positive number such that $pt^{\nu}_{total} \to \infty$ when $p \to \infty$.

(d) Now the communication time overhead t_c is increasing by 1 when p increases by 10. Since we look on $p = 10^k$, we can identify $t_c = \frac{p}{10}$. It follows

$$S_p^c = \frac{t_1^N}{t_p^N + t_c} = \frac{10^5}{\frac{10^5}{p} + \frac{p}{10}} \xrightarrow[k \to \infty]{} 0,$$

where $t_1^N = 10^5$.

Now we look at the speedup while insert values $p = 10^k$, $k \in \{1, ..., 5\}$:

k	S_p^c
1	9.99
2	99.01
3	500
4	99.01
5	9.99

We can see that for p=1000 we have a maximum and then the speedup decays (See figure 1.).

Figure 1: Effective speedup depending on the number of rings