(incorrect)

Assignment 10.05.15.Sec2.1 due 10/09/2015 at 05:00pm EDT

1. (1 pt) Find the derivative of $y = x^{-9}$. $\frac{dy}{dx} = \underline{\hspace{1cm}}$
$\frac{dy}{dx} = {Answer(s) submitted:}$
•
(incorrect)
2. (1 pt) Find the derivative of $y = x^{5/6}$. $\frac{dy}{dx} = \frac{1}{Answer(s) \text{ submitted:}}$
•
(incorrect)
3. (1 pt) Find the derivative of $f(x) = \frac{1}{x^{19}}$. $f'(x) = \underline{\hspace{1cm}}$ Answer(s) submitted:
(incorrect)
4. (1 pt) Find the derivative of $y = \sqrt[3]{x}$. $\frac{dy}{dx} = \frac{1}{Answer(s) \text{ submitted:}}$
(incorrect)
5. (1 pt) Find the derivative of $f(t) = 5t^2 - 4t + 1$. $f'(t) = \underline{\hspace{1cm}}$ Answer(s) submitted:
(incorrect)
6. (1 pt) Find the derivative of $y = 5t^3 - 6\sqrt{t} + \frac{14}{t}$. $\frac{dy}{dt} = \frac{1}{4t}$ Answer(s) submitted:
•
(incorrect)
7. (1 pt) Find the derivative of $y = \sqrt{x(x+6)}$. $\frac{dy}{dx} = \frac{1}{Answer(s) \text{ submitted:}}$
•
(incorrect)
8. (1 pt) Find the derivative of $y = \frac{x^6 + 3}{x}$. $\frac{dy}{dx} = \frac{1}{x}$ Answer(s) submitted:
_

9. (1 pt) Find the derivative of $j(x) = \frac{x^{11}}{a} + \frac{a}{b}x^{10} - cx$. Assume that a, b and c are constants. $j'(x) = _{-}$ Answer(s) submitted: (incorrect)

10. (1 pt) Find the derivative of $V = \frac{5}{4}\pi r^6 b$. Assume that b is a constant. $\frac{dV}{dr} =$ ___ *Answer(s) submitted:*

(incorrect)

11. (1 pt) Find the equation of the line tangent to the graph of f at (3,57), where f is given by $f(x) = 4x^3 - 7x^2 + 12$.

$$y =$$
Answer(s) submitted:

(incorrect)

12. (1 pt) If $f(x) = x^3 + 6x^2 - 36x + 23$, find analytically all values of x for which f'(x) = 0. (Enter your answer as a comma separated list of numbers, e.g., -1,0,2)

$$x =$$
Answer(s) submitted:

(incorrect)

13. (2 pts) The height of a sand dune (in centimeters) is represented by $f(t) = 1000 - 3t^2$ cm, where t is measured in years since 1995. Find f(9) and f'(9), and determine what each means in terms of the sand dune. Give the values of f(9) and f'(9) below, including **units**.

$$f(9) = \underline{\qquad \qquad }$$

$$f'(9) = \underline{\qquad \qquad }$$
Answer(s) submitted:

Answer(s) submitted:

(incorrect)

- **14.** (2 pts) At a time *t* seconds after it is thrown up in the air, a tomato is at a height (in meters) of $f(t) = -4.9t^2 + 55t + 2$ m.

 - D. How high does the tomato go?
 - E. How long is the tomato in the air? (Include units.)

Answer(s) submitted:

A. What is the average velocity of the tomato during the first 5 seconds? Give units. _ B. Find (exactly) the instantaneous velocity of the tomato at t = 5. Give **units**. $_$ C. What is the acceleration at t = 5? (Include **units**.) (Include units.) a = 1

(incorrect) **15.** (2 pts) Given a power function of the form $f(x) = ax^n$, with f'(1) = 28 and f'(3) = 756, find *n* and *a*. Answer(s) submitted:

(incorrect)

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America