Name: Ting Jun Rui Student ID: A0179506W

Exercise 1.2. Show that the acceleration of a particle moving along a trajectory $\mathbf{r}(t)$ is given by

$$\mathbf{a}(t) = \frac{dv(t)}{dt}\hat{\mathbf{e}}_T + \frac{v^2(t)}{\rho}\hat{\mathbf{e}}_N,\tag{1}$$

where $\rho \equiv \frac{1}{\kappa}$ is its radius of curvature.

Solution:

Exercise 1.3. Find the tangent, normal and binormal vectors, as well as, curvature and torsion for the circular helix.

Solution:

Exercise 1.4. Establish the relationship between unit basis vectors $(\hat{\mathbf{e}}_{\rho}, \hat{\mathbf{e}}_{\phi})$ of the polar coordinate system and the unit basis vectors $(\hat{\mathbf{e}}_x, \hat{\mathbf{e}}_y)$ of the Cartesian coordinate system.

Solution:

Exercise 1.5. Express the velocity and acceleration vectors in 2D polar coordinates.

Solution:

Exercise 1.6. Express the spherical unit basis vectors $(\hat{\mathbf{e}}_r, \hat{\mathbf{e}}_\rho, \hat{\mathbf{e}}_\phi)$ in terms of Cartesian unit basis vectors $(\hat{\mathbf{e}}_x, \hat{\mathbf{e}}_y, \hat{\mathbf{e}}_z)$.

Solution: