What does this gene do? Bioinformatics for function

DAVID L. TABB, PH.D.

MOLECULAR BIOLOGY AND HUMAN GENETICS

STELLENBOSCH UNIVERSITY

Outline

If you have transcripts, generate polypeptides, too.

- ■EMBOSS transeq can 6-frame translate polypeptide sequence from assembled mRNAs.
- ■EMBOSS checktrans can eliminate any ORF below 100 amino acids.
- Downstream tools are faster if you translate.

From putative transcript to a translation

N: indeterminate base call

X: indeterminate amino acid

*: stop codon

This reading frame produces longest ORF.

GRLLEKKDRLSPSDLINLIR **ELLISTTST*LSEKMNYTSF IFAFQLCIILCSSGYYCQSI IFREIENLRDYFNASNPDVA** DGGSLFIDILKNWREESDKT VIQSQIVXXXLKMFENLKDN OLIORSMOTIKEDMLDKLLN SSSDKRNDFLKLTQIPVNDL **QVQRKAINELFKVMNDLSPR SNLRKRKRSQNLFQGRRASK** *WSSCLQYLNFLYKSIY*YL **IFYIIYMKNIFLDSSIKVF**

InterPro can be run on each sequence or in batch (Linux).

Family matches reflect hits to consensus for orthologous IFN-Gammas. Superfamilies reflect 4-helical cytokines.

Unintegrated Gene3D reflects structure availability!

Gene3D and CATH

P01579 Q14613

- This subsequence matches sequences with known structure.
- •We can overlay those structures, and we can discern sequence motif commonalities.

BLAST can be run on each sequence or in batch.

- blastx matches mRNA to protein.
- E-values show strength of match.
- Taxonomy shown in accession suffix:

FELCA: housecat

ACIJB: cheetah

LYNPA: lynx

PANTA: tiger

Orthologs are the "same gene across species boundaries"

- ProteinOrtho uses speciation and gene duplication models to relate sequences.
- Diamond indexing accelerates all protein vs. all protein homology detection.

PFERPEAEAMCTSFKENPT

M. Lechner et al. *PLOS One* (2014) 9: e105015

Infer function by coexpression

"Gene-expression data can be used to define groups of genes that show similar patterns of expression, or covariation, across multiple conditions."

Correlation of gene expression benefits from multiple methods

Networks of hierarchical, modular relationships

mRNA and protein quant give different results

- ■Proteins in *S. cerevisiae* ranged from 50 to more than a million molecules per cell.
- Western blots quantified proteins, while microarrays quantified Individual

messenger RNA.

Jarman rank corr.

yields r=0.57. Turnover

ises separate processes

S. Ghaem

Colocalization: aspects of spatial association

- •Co-occur overlaps in space
- Correlate scales similarly across structures
- Interact requires FRET or EM resolution

Endosomes in MDCK cells: Pearson CC= 0.944

Regions of Interest and single cell analysis

- Each cell may reveal different relationship.
- •Segmenting cells from background boosts signal-to-noise.
- Specifying ROIs can separate cellular info.

Defining protein-protein interactions (PPIs)

"The physical contact considered in PPIs should be specific, not just all proteins that bump into each other by chance. It also should exclude interactions that a protein experiences when it is being made, folded, quality checked, or degraded."

Yeast two-hybrid establishes binary relationship

X: first gene

Y: second gene

■BD: DNA-binding domain

AD: Transcription activating domain

If X and Y interact, BD and AD cooperate to report.

Co-immunoprecipitation probes multiple interactions

Many possible combinations for tandem affinity purification

When will structural data enable protein-protein inference?

- "Localized regions on protein surfaces [are]
 conserved among structural neighbors that participate in protein-protein interactions."
- "As long as structural information is available for a given pair of proteins... the set of 'template complexes' available in the current structural databases can be used to generate coarse-grained models of protein-protein interactions."

Pathway and network annotation vary considerably

■ A. thaliana ■ C. elegans ■ D. melanogaster ■ H. sapiens ■ M. musculus ■ S. cerevisiae

Takeaway Messages

- Learning a transcript sequence allows you to leverage considerable sequence resources.
- Expression data may reveal co-expression partners besides responsiveness to stimuli.
- •Colocalization and protein-protein interactions require experimentation.
- ■Pathway and network data skew by organism.