

Syntax and Semantics of First-Order Logic, Using First Order Logic

Module 5 Lecture 1 The CSC415 Team 2018/2019

LESSON OUTLINE

- More on Representation
- Syntax and Semantics of First-Order Logic
- Using First Order Logic
- Knowledge Engineering in First-Order Logic

First-Order Logic

- Propositional logic assumes that the world contains facts.
- First-order logic (like natural language) assumes the world contains
 - Objects: people, houses, numbers, colors, baseball games, wars, ...
 - Relations: red, round, prime, brother of, bigger than, part of, comes between, ...
 - Functions: father of, best friend, one more than, plus, ...

Logics in General

<u>Language</u>	Ontological Commitment	<u>Epistemological</u> <u>Commitment</u>
Propositional Logic	Facts	True / False / Unknown
First-Order Logic	Fact, objects, relations	True / False / Unknown
Temporal Logic	Facts, objects, relations, times	True / False / Unknown
Probability Theory	Facts	Degree of belief ∈ [0,1]
Fuzzy Logic	Degree of truth ∈ [0,1]	Known interval value

Syntax of FOL: Basic elements

- Constant Symbols:
 - Stand for objects
 - e.g., KingJohn, 2, UCI,...
- Predicate Symbols
 - Stand for relations
 - E.g., Brother(Richard, John), greater_than(3,2)...
- Function Symbols
 - Stand for functions
 - E.g., Sqrt(3), LeftLegOf(John),...

Syntax of FOL: Basic elements

- Constants KingJohn, 2, UCI,...
- Predicates Brother, >,...
- Functions Sqrt, LeftLegOf,...
- Variables x, y, a, b,...
- Connectives \neg , \Rightarrow , \land , \lor , \Leftrightarrow
- Equality =
- Quantifiers ∀,∃

Relations

- Some relations are properties:
 - they state some fact about a single object: Round(ball), Prime(7).

- n-ary relations state facts about two or more objects:
 - Married(John, Mary), LargerThan(3,2).

- Some relations are functions:
 - their value is another object:
 - Plus(2,3), Father(Dan).

Models for FOL: Graphical Example

Tabular Representation

- A FOL model is basically equivalent to a relational database instance.
- Historically, the relational data model comes from FOL.

Student			
<u>s-id</u>	Intellig	ence	Ranking
Jack	3		1
Kim	2		1
Paul	1	4	2

Course		
<u>c-id</u>	Rating	Difficulty
101	3	1
102	2	2

Professor		
p-id	Popularity	Teaching-a
Oliver	3	1
Jim	2	1

PA			
s-id	<u>p-la</u>	Salary	Capability
Jack	Oliver	High	3
Kim	Oliver	Low	1
Paul	Jim	Med	2

Registration			
2 id	id.id	Grade	Satisfaction
Jack	101	Α	1
Jack	102	В	2
Kim	102	Α	1
Paul	101	В	1

Terms

Term = logical expression that refers to an object.

- There are 2 kinds of terms:
 - constant symbols: Table, Computer
 - function symbols: LeftLeg(Pete), Sqrt(3), Plus(2,3) etc
- Functions can be nested:
 - Pat_Grandfather(x) = father(father(x))
- Terms can contain variables.
- No variables = ground term.

Atomic Sentences

- Atomic sentences state facts using terms and predicate symbols
 - P(x,y) interpreted as "x is P of y"
- Examples:
 - LargerThan(2,3) is false.
 - Brother_of(Mary,Pete) is false.
 - Married(Father(Richard), Mother(John)) could be true or false
- Note: Functions do not state facts and form no sentence:
 - Brother(Pete) refers to John (his brother) and is neither true nor false.
- Brother_of(Pete,Brother(Pete)) is True.

Binary relation

Function

Complex Sentences

 We make complex sentences with connectives (just like in propositional logic).

More Examples

- Brother(Richard, John) ∧ Brother(John, Richard)
- King(Richard) v King(John)
- King(John) => ¬ King(Richard)
- LessThan(Plus(1,2),4) ∧ GreaterThan(1,2)

(Semantics are the same as in propositional logic)

Variables

 Person(John) is true or false because we give it a single argument 'John'

- We can be much more flexible if we allow variables which can take on values in a domain. e.g., all persons x, all integers i, etc.
 - E.g., can state rules like Person(x) => HasHead(x)

- or Integer(i) => Integer(plus(i, l)

Universal Quantification ∀

- ∀ means "for all"
- Allows us to make statements about all objects that have certain properties
- Can now state general rules:
 - \forall x King(x) => Person(x)
 - \forall x Person(x) => HasHead(x)
 - \forall i Integer(i) => Integer(plus(i,1))
- Note that
 - \forall x King(x) ∧ Person(x) is not correct!
 - This would imply that all objects x are Kings and are People
 - \forall x King(x) => Person(x) is the correct way to say

Existential Quantification 3

- \exists x means "there exists an x such that...." (at least one object x)
- Allows us to make statements about some object without naming it
- Examples:
 - $\exists x \text{ King}(x)$
 - ∃ x Lives_in(John, Castle(x))
 - $\exists i \quad Integer(i) \land GreaterThan(i,0)$
- Note that \wedge is the natural connective to use with \exists
- (And => is the natural connective to use with \forall)

Combining Quantifiers

- $\forall x \exists y Loves(x,y)$
 - For everyone ("all x") there is someone ("y") that they love.
- $y \forall x Loves(x,y)$
 - there is someone ("y") who is loved by everyone
- Clearer with parentheses:
 - $-\exists y (\forall x Loves(x,y))$

Exercise

- Represent the following sentences in first-order logic using a consistent vocabulary you must define.
 - a) Not all student take both History and Biology
 - b) Only one student failed History
 - c) Only one student failed both History and Biology
 - d) The best score in History was better than the best score in Biology
 - e) Every person who dislikes all vegetarian is smart