CHEM E 330 Transport Processes I

-★- TRANSPORT PHENOMENA

Rate Laws for Diffusive Transport

Description	Equations
General form	flux = -(coefficient)(driving force)
Fourier's law Heat conduction	$q=-krac{dT}{dy}$
Fick's law Species diffusion	$J_A^* = -D_{AB}rac{dc_a}{dy}$
Newton's law of viscosity Momentum transfer	$ au_{yx} = -\mu rac{dv_x}{dy}$

| Rate laws as concentration gradients

Description	Equations
Fourier's law	$q_y = -lpha rac{dc_H}{dy}$
Fick's law	$J_A^* = -D_{AB} rac{dc_a}{dy}$
Newton's law of viscosity	$ au_{yx} = - u rac{dc_{p_x}}{dy}$
Kinematic viscosity	$ u = \frac{\mu}{\rho} $
Thermal diffusivity	$lpha = rac{k}{ ho \hat{c_P}}$
Diffusivity of A in B	D_{AB}
Prandtl number	$ ext{Pr} = rac{ u}{lpha} = rac{\hat{C}_p \mu}{k}$
Schmidt number	$\mathrm{Sc} = rac{ u}{D_{AB}} = rac{\mu}{ ho D_{AB}}$

| Heat transfer

Description	Equations
Heat flow	$\dot{Q}=rac{Q}{t}$
Heat flux	$q=rac{\dot{Q}}{A}$

| Mass transfer

Description E	-4
Mass (species) transport I	$N_A = x_A(\sum N_i) + J_A^*$

Description	Equations
Diffusion of A through a stagnant layer of B	$N_A = -rac{cD_{AB}}{1-x_A}rac{dx_A}{dy} \ N_A = -rac{cD_{AB}}{L}\ln(1-x_A^s)$
Equimolar counter diffusion	$N_A = -c D_{AB} rac{dx_A}{dy}$
Reaction at catalytic surface ${ m A}=2{ m B} \implies N_B=2N_A$	$N_A = -x_A N_A - c D_{AB} rac{dx_A}{dy}$

| Momentum transfer

Description	Equations
Interpretation of $ au_{yx}$	1. viscous shear stress exerted on a y -plane in the $+x$ -direction by the fluid of lesser y on that of greater y 2. flux of x -momentum across a y -plane in the $+y$ -direction
Shear strain rate	$\dot{\gamma}=rac{dv_x}{dy}$
Hooke's law ★ Hookean solid	$ au_{yx} = -Grac{dx}{dy} = -G\gamma$
Newton's law of viscosity ★ Newtonian fluid	$ au_{yx} = -\mu rac{dv_x}{dy} = -\mu \dot{\gamma}$
General Newton's law of viscosity	$ au_{yx} = -\eta(\dot{\gamma})\dot{\gamma}$
Viscosity function of power law fluid	$\eta=m\dot{\gamma}^{n-1}$
Newton's law of viscosity ★ Power law fluid	$ au_{yx} = -m\dot{\gamma}^n$
Carreau equation ★ Slurry	$rac{\eta-\eta_{\infty}}{\eta_o-\eta_{\infty}}=[1+(\lambda\dot{\gamma})^2]^{(n-1)/2}$

Transport Coefficients of Fluids

| Ideal gas: Simple kinetic theory

Description	Equations
Average velocity	$ar{u} = \sqrt{rac{8k_BT}{\pi m}}$
Mean free path	$\lambda = rac{1}{\sqrt{2}\pi d^2 n}$
Number density	$n=rac{N}{V}$
Molecular flux in the y-direction	$z=rac{1}{4}nar{u}$
Average distance of molecules from ref plane when they initiate their jump	$ar{a}=rac{2}{3}\lambda$
Viscosity of ideal gas	$\mu=rac{1}{3} hoar{u}\lambda=rac{2}{3\pi^{3/2}}rac{\sqrt{mk_BT}}{d^2}$
Thermal conductivity of ideal gas	$k=rac{1}{3} ho\hat{c_v}ar{u}\lambda=rac{2\hat{c_v}}{3\pi^{3/2}}rac{\sqrt{mk_BT}}{d^2}$

Description	Equations
Diffusivity of ideal gas A in B	$D_{AB} = rac{1}{3}ar{u}_{AB}\lambda_{AB} = rac{2}{\pi^{3/2}}rac{\sqrt{k_B T^3/m_{AB}}}{d_{AB}^2P}$
Mean mass for diffusivity	$m_{AB}=rac{2m_Am_B}{m_A+m_B}$
Mean distance for diffusivity	$d_{AB}=rac{1}{2}(d_A+d_B)$
Prandtl number of monoatomic ideal gas	$\mathrm{Pr}_{\mathrm{mono}} = 1$
Schmidt number of general ideal gas	Sc = 1

| Real gas: Chapman-Enskog equations

\star Moderate pressure

Description	Equations
Lenard-Jones potential	$arphi(r) = 4arepsilon \left[\left(rac{\sigma}{r} ight)^{12} - \left(rac{\sigma}{r} ight)^{6} ight]$
Attractive force	$F_{ m attr} = rac{24arepsilon}{r} \left[\left(rac{\sigma}{r} ight)^6 - 2\left(rac{\sigma}{r} ight)^{12} ight]$
Viscosity of real gas (analytic)	$\mu = rac{5}{16\pi} rac{\sqrt{\pi m k_B T}}{\sigma^2 \Omega_\mu}$
Thermal conductivity of real gas (analytic)	$k=rac{25}{32\pi}rac{\sqrt{\pi mk_BT}}{\sigma^2\Omega_k}\hat{c_v}=rac{5}{2}\hat{c_v}\mu$
Viscosity of real gas	$\mu\left(rac{ ext{g}}{ ext{cm}\cdot ext{s}} ight)=2.6692 imes10^{-5}rac{\sqrt{\mathcal{M}T}}{\sigma^2\Omega_{\mu}}$
Thermal conductivity of monoatomic real gas	$k_{ m mono}\left(rac{ m cal}{ m cm\cdot s\cdot K} ight)=1.989 imes 10^{-4}rac{\sqrt{T/\mathcal{M}}}{\sigma^2\Omega_k}$
Thermal conductivity of polyatomic real gas Euken factor	$k_{ m poly}\left(rac{ m cal}{ m cm\cdot s\cdot K} ight) = \left[\hat{c_p} + rac{5}{4}rac{R}{\mathcal{M}} ight]\mu$
Diffusivity of real gas	
$T[=] ext{K} \ P[=] ext{atm} \ \sigma_{AB}[=] ext{ Å}$	$D_{AB}\left(rac{\mathrm{cm}^2}{\mathrm{s}} ight) = 2.63 imes 10^{-3} rac{\sqrt{T^3/\mathcal{M}_{AB}}}{P\sigma_{AB}^2\Omega_D}$
Mean molar mass for diffusivity	$\mathcal{M}_{AB} = rac{2\mathcal{M}_A\mathcal{M}_B}{\mathcal{M}_A + \mathcal{M}_B}$
Mean distance for diffusivity	$\omega_{AB}=rac{1}{2}(\omega_A+\omega_B)$
Viscosity at different temperatures	$\mu(T_2)=\mu(T_1)\sqrt{rac{T_2}{T_1}}rac{\Omega_{\mu_1}}{\Omega_{\mu_2}}$
Diffusivity at different temperatures	$D_{AB}(T_2) = D_{AB}(T_1) \left(rac{T_2}{T_1} ight)^{3/2} rac{\Omega_{D_1}}{\Omega_{D_2}}$
${\cal T}$ and ${\cal P}$ dependence of transport coefficients of gases at moderate pressure	$egin{aligned} \mu \propto \sqrt{T} \ k_{ ext{mono}} & \propto \sqrt{T} \ k_{ ext{poly}} & = f(T, \hat{c_p}(T)) \ D_{AB} & \propto T^{3/2} P^{-1} \ D_{AB} & = D_{BA} \end{aligned}$

Wilke equation Viscosity of gas mixture	$\mu_{ ext{mix}} = \sum_{i=1}^N rac{x_i \mu_i}{\sum_{j=1}^N x_j \Phi_{ij}}$
Wilke equation Thermal conductivity of gas mixture	$k_{ ext{mix}} = \sum_{i=1}^N rac{x_i k_i}{\sum_{j=1}^N x_j \Phi_{ij}}$
Wilke equation parameter	$\Phi_{ij} = rac{1}{\sqrt{8}} \left[1 + rac{\mathcal{M}_i}{\mathcal{M}_j} ight]^{-1/2} \left[1 + \left[rac{\mu i}{\mu j} ight]^{1/2} + \left[rac{\mathcal{M}_i}{\mathcal{M}_j} ight]^{-1/4} ight]^2$
Blanc's equation Diffusivity of gas mixture	$D_{i, ext{mix}} = \left[\sum_{j eq 1}^N rac{x_j}{D_{ij}} ight]^{-1}$

| Liquids

Description	Equations
Eyring model Viscosity of liquid	$\mu = rac{N_A h}{ ilde{V}} \exp \left[0.408 rac{\Delta U_{ m vap}}{RT} ight]$
Bridgeman equation Thermal conductivity of liquid	$k=2.8\left(rac{N_A}{ ilde{V}}^{2/3}k_Bv_s ight)$
Einstein equation	$D_{AB}pproxrac{k_BT}{f}$
Hydrodynamic friction factor	$f = egin{cases} 6\pi \mu_B R_A & ext{no slip} \ 4\pi \mu_B R_A & ext{free slip} \end{cases}$
Stoke-Einstein Equation Diffusivity of dilute liquid A	$D_{AB}=rac{k_BT}{4\pi\mu_BR_A}$
Wilke-Chang correlation Diffusivity of dilute liquid A $ ilde{V}[=] ext{cm}^3/ ext{mol} \ \mu_B[=] ext{cP} \ T[=] ext{K}$	$D_{AB}\left(rac{\mathrm{cm}^2}{\mathrm{s}} ight) = 7.4 imes 10^{-8} rac{(\psi_B \mathcal{M}_B)^{1/2} T}{\mu ilde{V}_A^{0.6}}$
Vigne's equation Diffusivity of liquid mixture	$D_{AB} = (D^0_{AB})^{x_B} (D^0_{BA})^{x_A}$
${\cal T}$ dependence of transport coefficients of liquids (no ${\cal P}$ dependence)	$\mu = A e^{B/T} \ D_{AB} \mu_B \propto T \ D_{AB} eq D_{BA}$

Shell Balance (Bottom-Up)

| Boundary conditions and shell volume

Description	Equations
Rectilinear shell volume	$\Delta V = LW\Delta y$
Cylindrical shell volume	$\Delta V = 2\pi r L \Delta r$
Spherical shell volume	$\Delta V = 4\pi r^2 \Delta r$
Newton's law of cooling	$q = h(T_{ m solid} - T_{ m fluid})$

Description	Equations
Relationship between N_A and c_A at boundary	$N_A = k_m (c_{A,\mathrm{solid}} - c_{A,\mathrm{fluid}})$
Reynolds number	$\mathrm{Re} = rac{L_{\mathrm{char}} v_{\mathrm{char}} ho}{\mu}$
No slip condition	$v_1=v_2$
Free slip condition	$-\mu_1 \left(rac{dv_x}{dy} ight)_1 = 0$
Continuity of stress	$ au_{y,1} = au_{y,2} \ -\mu_1 \left(rac{dv_x}{dy} ight)_1 = -\mu_2 \left(rac{dv_x}{dy} ight)_2$

| Shell balance method

- 1. Sketch the system with coordinate system
- 2. Sketch the shell that is thin in the direction of transport (change)
- 3. Write shell volume ΔV
- 4. Write shell balance OIGA of transported quantity
 - out -in = generation accumulation
- 5. Take limit as shell thickness approach 0
 - · Differential equation of flux distribution
- 6. Separate variable and integrate
 - Flux distribution, c_1
- 7. Substitute rate law
- 8. Separate variable and integrate
 - Profile, c_1, c_2
- 9. Evaluate c_1, c_2 using boundary conditions

| Axial transport in rectilinear systems

- · Rectilinear coordinates
- No generation
- · No driving force
- · Steady state

Description	Equations
Differential equation of flux distribution	$rac{dq}{dy}=0$
Temperature profile (linear)	$T(y) = T_1 - \frac{q}{k}y$
Flux distribution (inverse)	$q(y) = \frac{k(T_1 - T)}{y}$
Flux across the whole layer	$q=rac{k(T_1-T_2)}{H}$

| Radial transport in cylindrical systems

- · Cylindrical coordinates
- No generation
- · No driving force

Description	Equations
Differential equation of flux distribution	$rac{d(rq)}{dr}=0$
Flux distribution (inverse)	$q(r) = rac{k(T_i - T_0)}{r \ln(rac{R_0}{R_i})}$
Temperature profile (logarithmic)	$T(r) = T_i - rac{T_i - T_0}{\ln(rac{R_0}{R_i})} \ln\left(rac{r}{R_i} ight)$

| Radial transport in spherical systems

- Spherical coordinates
- No generation
- · No driving force
- · Steady state

Description	Equations
Differential equation of flux distribution	$rac{d(r^2q)}{dr}=0$
Flux distribution (inverse squared)	$q(r)=rac{k(T_i-T_0)}{r^2(rac{1}{R_i}-rac{1}{R_0})}$
Temperature profile (inverse)	$T(r)=T_i-rac{T_i-T_0}{(rac{1}{R_i}-rac{1}{R_0})}\left(rac{1}{r}-rac{1}{R_i} ight)$

| Axial transport in rectilinear systems (with generation)

- Rectilinear coordinates
- · With generation
- · No driving force
- · Steady state

Description	Equations
Differential equation of flux distribution	$rac{dq}{dy} = S$
Flux distribution (linear)	$q(y) = Sy + \frac{k}{H}(T_2-T_1) - \frac{SH}{2}$
Temperature profile (quadratic)	$T(y)=T_1-rac{S}{2k}y^2+\left[rac{SH}{2k}-rac{T_2-T_1}{H} ight]y$

| Flow down inclined plane (falling film)

- · Rectilinear coordinates
- Gravity driving force, but no pressure gradient
- Steady state

Description	Equations
Differential equation of flux distribution	$rac{d au_{yx}}{dy}= ho g\coseta$
Flux distribution (linear)	$ au_{yx}(y) = - ho g\coseta(\delta-y)$

Description	Equations
Velocity profile (quadratic)	$v_x(y) = rac{g\coseta}{2 u}(2\delta y - y^2)$
★ No entry length effect	$L\gg\delta$
★ No edge effect	$W\gg\delta$
★ Incompressible Newtonian fluid	$\Delta \mu = 0, \Delta ho = 0$
★ No end effect, no ripple	$ m Re_{rippling} \lesssim 20$
Reynolds number for falling film	$\mathrm{Re} = rac{4\delta \langle v_x angle ho}{\mu}$

| Flow descriptors

Description	Equations
Skin friction	$ au^0 = ho g \cos(eta) \delta$
Free surface velocity	$v_x^{ m surf} = rac{g\coseta}{2 u}\delta^2$
Volumetric flow rate	$Q=\int v_{\perp}~dA$
Volumetric flow rate per unit area	$rac{Q}{W} = rac{g\cos(eta)\delta^3}{3 u}$
Average velocity	$\langle v_x angle = rac{g\cos(eta)\delta^2}{3 u}$
Mass flow rate	$\dot{m}= ho Q$
Mass flow rate per unit width	$\Gamma = rac{ ho Q}{W} = rac{ ho g \cos(eta) \delta^3}{3 u}$
Film thickness given Γ	$\delta = \sqrt[3]{rac{3 u\Gamma}{ ho g\coseta}}$

| Flow in round tube (Hagen-Poiseuille flow)

- · Cylindrical coordinates
- Pressure-gravity driving force
- Steady state
- No tube bents, constant cross section
- Negligible P dependence with r

Description	Equations
Modified pressure	$\mathcal{P}=P+ ho g h$
Pressure-gravity driving force	$-rac{dP}{dz}+ ho g\coseta=rac{{\cal P}_1-{\cal P}_2}{L}$
Differential equation of flux distribution	$rac{d(r au_{rz})}{dr} = \left(rac{{\cal P}_1-{\cal P}_2}{L} ight)r$
Flux distribution (linear)	$ au_{rz}(r) = rac{1}{2} \left(rac{{\cal P}_1 - {\cal P}_2}{L} ight) r$
Velocity profile (quadratic)	$v_z(r) = rac{R^2}{4\mu} \left(rac{{\cal P}_1 - {\cal P}_2}{L} ight) \left[1 - \left(rac{r}{R} ight)^2 ight]$
★ Incompressible Newtonian fluid	$\Delta \mu = 0, \Delta ho = 0$
★ Laminar flow	$\mathrm{Re_{laminar}} \leq 2100$

Description	Equations
★ Fully developed flow (no entry length effect)	$L_e \approxeq 0.035 D \mathrm{Re}$
Reynolds number for pipe flow	$\mathrm{Re}_{\mathrm{pipe}} = rac{D\langle v_z angle ho}{\mu}$

| Flow descriptors

Description	Equations
Skin friction	$ au_{rz}^0 = rac{1}{2} \left(rac{{\cal P}_1 - {\cal P}_2}{L} ight) R$
Volumetric flow	$Q=rac{R^4\pi}{8\mu}\left(rac{{\cal P}_1-{\cal P}_2}{L} ight)$
Average velocity	$\langle v_z angle = rac{R^2}{8\mu} \left(rac{{\cal P}_1 - {\cal P}_2}{L} ight)$
Mass flow rate	$\dot{m}=rac{R^4\pi ho}{8\mu}\left(rac{{\cal P}_1-{\cal P}_2}{L} ight)$

| Laminar flow through porous media

Description	Equations
Darcy's law - average velocity κ - bed permeability	$\langle v angle = rac{\kappa}{\mu L} ({\cal P}_1 - {\cal P}_2)$
Darcy's law - volumetric flow rate A - empty bed cross section $arepsilon$ - porosity, void fraction	$Q=rac{\kappa Aarepsilon}{\mu L}({\cal P}_1-{\cal P}_2)$
Blake-Kozeny model Bed permeability	$\kappa = rac{D_p^2}{150} \left(rac{arepsilon}{1-arepsilon} ight)^2$
Effective packing particle diameter	$egin{aligned} D_p &= rac{6}{a_v} = rac{6V}{A} \ D_{p, ext{spheres}} &= D \end{aligned}$
Bed Reynolds number	$\mathrm{Re}_\mathrm{bed} = rac{D_p Q ho}{\mu A (1-arepsilon)}$
★ Laminar flow	$ m Re_{laminar} < 10$

| Fluid pressure, hydrostatic, manometer

Description	Equations
Equation of hydrostatic	$P_1-P_2=\rho g(h_2-h_1)$
Manometer equation	$P_1-P_2=(\rho_m-\rho)gH+\rho g(h_2-h_1)$
Manometer equation	${\cal P}_1-{\cal P}_2=(ho_m- ho)gH$

| Unsteady state transport

Description	Equations
Unsteady state conduction in rectilinear system	$\left(rac{\partial T}{\partial t} ight)_y = lpha rac{\partial^2 T}{\partial y^2} + rac{S}{ ho \hat{c_p}}$
Unsteady state diffusion in rectilinear system	$\left(rac{\partial c_A}{\partial t} ight)_y = D_{AB}rac{\partial^2 c_A}{\partial y^2} + R_A$
Unsteady state Couette flow (1D rectilinear shear flow)	$\left(rac{\partial v_x}{\partial t} ight)_y = u \left(rac{\partial^2 v_x}{\partial y^2} ight)_t$
Unsteady state flow in cylindrical system	$\left(rac{\partial v_z}{\partial t} ight)_r = u \left[rac{\partial^2 v_z}{\partial r^2} + rac{1}{r}rac{\partial v_z}{\partial r} ight] + rac{1}{ ho}\left[rac{{\cal P}_1 - {\cal P}_2}{L} ight]$

Rate Laws in 3D

Description	Equations
Fourier's law in 3D	$\overset{q}{\widetilde{\sim}} = -k abla T$
Fick's law in 3D	$ \widetilde{\mathcal{L}}_{A}^{*} = -D_{AB} \nabla c_{A} $
Newton's law of viscosity in 3D	$ au = -\mu(\mathop{\Delta}\limits_pprox + \mathop{\Delta}\limits_pprox^\dagger)$
Viscous stress tensor	$egin{aligned} au &= egin{bmatrix} au_{xx} & au_{xy} & au_{xz} \ au_{yx} & au_{yy} & au_{yz} \ au_{zx} & au_{zy} & au_{zz} \end{bmatrix} \end{aligned}$
Rate of strain tensor	$\Delta_{pprox} = egin{bmatrix} rac{\partial v_x}{\partial x} & rac{\partial v_x}{\partial y} & rac{\partial v_x}{\partial z} \ & & & & & & & & & & & & & & & & & & $

Conservation Laws in 3D

Description	Equations
Conservation of thermal energy	$ abla \cdot \overset{q}{ec{g}} = S - ho \hat{c_p} rac{\partial T}{\partial t}$
Conduction equation ★ No convection	$rac{\partial T}{\partial t} = lpha abla^2 T + rac{S}{ ho \hat{c_p}}$
Molecular diffusion equation ★ No convection	$rac{\partial c_A}{\partial t} = D_{AB} abla^2 c_A + R_A$

#-★- FLUID MECHANICS

Navier-Stokes Equation

Description	Equations
Continuity equation	$rac{\partial ho}{\partial t} + abla \cdot (ho ec{v}) = 0$
Continuity equation of incompressible liquid \bigstar Constant ρ	$ abla \cdot ec{v} = 0$

Description	Equations
Equation of motion $(v ext{-form})$	$ horac{D ec{v}}{D t} = - abla p + \mu abla^2 ec{v} + ho g$
Equation of motion $(au ext{-form})$	$ ho rac{D v}{D t} = - abla p - abla \cdot rac{ au}{lpha} + ho g$
Equation of motion (x -component)	$egin{aligned} ho \left[rac{\partial v_x}{\partial t} + ec{v} \cdot abla v_x ight] \ = & -rac{\partial p}{\partial x} - \left[rac{\partial au_{xx}}{\partial x} + rac{\partial au_{yx}}{\partial y} + rac{\partial au_{zx}}{\partial z} ight] + ho g_x \end{aligned}$

| Operators

Description	Equations
Gradient operator $ abla$	Operates on scalar to give a vector, whose magnitude is the maximum rate of change of the scalar with position, and whose direction points in the direction of that change
Divergence operator $(abla \cdot)$	Operates on a vector to give a scalar
Divergence of a flux vector $(abla \cdot \widetilde{\underline{f}})$	Rate of efflux (outflow) of the transported quantity per unit volume
Laplacian operator	$ abla^2 = abla \cdot abla$
Substantial derivative operator	$rac{D}{Dt} = rac{\partial}{\partial t} + ec{v} \cdot abla$

| Generalization to convection

Description	Equations
	$rac{DT}{Dt} = lpha abla^2 T + rac{S}{ ho \hat{c_p}}$
Convective diffusion equation	$rac{Dc_A}{Dt} = D_{AB} abla^2 c_A + R_A$

| Flow in conduit

Description	Equations
Mach number	$\mathrm{Ma} = rac{v_{\mathrm{char}}}{v_{\mathrm{sound}}}$
Conduit flow	$egin{aligned} \dot{m}_1 &= \dot{m}_2 \ ho_1 Q_1 &= ho_2 Q_2 \end{aligned}$
Incompressible conduit flow $igstar$ Constant $ ho$	$egin{aligned} Q_1 &= Q_2 \ A_1 \langle v angle_1 &= A_2 \langle v angle_2 \end{aligned}$

Apply N-S Equations (Top-Down)

| Flow between parallel plates

Assumptions	Equations
-------------	-----------

Assumptions	Equations
Rectilinear coordinates	f(x,y,z)
Constant $ ho,\mu$	$rac{\partial ho}{\partial t}=0, rac{\partial \mu}{\partial t}=0$
Laminar flow	$ m Re < Re_{cr}$
Steady state	$rac{\partial}{\partial t}=0$
v_x component only	$v_y=v_z=0$
No edge effect	$rac{\partial}{\partial z}=0$
No end effect	$rac{\partial v_x}{\partial x}=0$
No hydrostatic pressure diff between plates	$b \ll W, L \implies -rac{\partial p}{\partial y} + ho g_y = 0$
December	Empations

Description	Equations
x-momentum equation	$rac{{\cal P}_0-{\cal P}_L}{L} + \mu rac{\partial^2 v_x}{\partial y^2} = 0$
Velocity profile (quadratic)	$v_x(y) = rac{1}{2\mu} \left(rac{{\cal P}_0 - {\cal P}_L}{L} ight) (-y^2 + by)$
Average velocity	$\langle v_x angle = rac{b^2}{12 \mu} \left(rac{{\cal P}_0 - {\cal P}_L}{L} ight)$
Skin friction at bottom plate	$ au^0 = rac{b}{2} \left(rac{{\cal P}_0 - {\cal P}_L}{L} ight)$

| Couette flow between concentric rotating cylinders

Equations
f(r, heta,z)
$rac{\partial ho}{\partial t}=0, rac{\partial \mu}{\partial t}=0$
$\mathrm{Re} < \mathrm{Re}_{\mathrm{cr}}$
$rac{\partial}{\partial t}=0$
$v_r=v_z=0$
$rac{\partial}{\partial heta} = 0$
$rac{\partial v_{m{ heta}}}{\partial z}=0$
$g_z=-g, g_ heta=g_r=0$

Description	Equations
r-momentum equation	$- horac{v_{ heta}^2}{r}=-rac{\partial p}{\partial r}$
heta-momentum equation	$\murac{\partial}{\partial r}\left(rac{1}{r}rac{\partial}{\partial r}(rv_{ heta}) ight)=0$
z-momentum equation	$-rac{\partial p}{\partial z}- ho g=0$
Velocity profile (general form)	$v_{ heta}(r) = c_1 rac{r}{2} + rac{c_2}{r}$
Velocity profile	$v_{ heta}(r) = rac{\Omega_0}{1-\kappa^2} \left[r - rac{(\kappa R)^2}{r} ight]$

Description	Equations
Pressure profile	$P-P_{\kappa R} = rac{1}{2} ho\left(rac{\Omega_0\kappa R}{1-\kappa^2} ight)^2\left[\left(rac{r}{\kappa R} ight)^2-\left(rac{\kappa R}{r} ight)^2-4\ln\left(rac{r}{\kappa R} ight) ight]$
Shear stress distribution	$ au_{r heta} = -2\mu\kappa^2\left(rac{\Omega_0}{1-\kappa^2} ight)\left(rac{R}{r} ight)^2$
Torque	$\mathcal{T}=4\pi\mu L\Omega_0R^2rac{\kappa^2}{1-\kappa^2}$
Couette viscometer	$\mu = rac{\mathcal{T}}{4\pi L \Omega_0 R^2} rac{1-\kappa^2}{\kappa^2}$

| Stoke's law: Flow around a sphere

Assumptions	Equations
Spherical coordinates	$f(r, heta,\phi)$
Constant $ ho,\mu$	$rac{\partial ho}{\partial t}=0, rac{\partial \mu}{\partial t}=0$
Laminar flow	$ m Re < Re_{cr}$
Steady state	$rac{\partial}{\partial t}=0$
Axial symmetry	$rac{\partial}{\partial \phi}=0$
No spinning	$v_\phi=0$
Vertical orientation	$g_r = -g\cos heta, g_ heta = g\sin heta, g_\phi = 0$
$v_{ heta}$ component only	$v_r=v_z=0$
Description	Equations
r velocity profile	$v_r = v_\infty \left[1 - rac{3}{2} \left(rac{R}{r} ight) + rac{1}{2} \left(rac{R}{r} ight)^2 ight]\cos heta$
heta velocity profile	$v_{ heta} = -v_{\infty} \left[1 - rac{3}{4} \left(rac{R}{r} ight) - rac{1}{4} \left(rac{R}{r} ight)^3 ight] \sin heta$
Pressure profile	$p=p_0- ho gz-rac{3}{2}rac{\mu v_\infty}{R}\left(rac{R}{r} ight)^2\cos heta$
Viscous drag	$4\pi\mu v_{\infty}R$
Pressure force (buoyancy + form frag)	$rac{4}{3}\pi R^3 ho g + 2\pi R\mu v_\infty$
Stoke's law	$v_{\infty}=rac{2R^{2}(ho_{s}- ho)g}{9\mu}$
Falling ball viscometer	$\mu=rac{2R^2(ho_s- ho)g}{9v_\infty}$

| Centrifuge viscometer

•	Equations
Terminal velocity	$v_{\infty}=rac{2R^2(ho_s- ho)\omega^2r}{9\mu}$

Turbulence

| Transition to turbulence

Geometry	Reynolds Number	Critical Reynolds Number
Circular tube flow	$\mathrm{Re} = rac{D\langle v angle ho}{\mu}$	$\mathrm{Re_c} pprox 2100$
Falling film	$\mathrm{Re} = rac{4\delta \langle v angle ho}{\mu}$	$\mathrm{Re_c} pprox 1500$
Flow between parallel plates	$\mathrm{Re} = rac{2b\langle v angle ho}{\mu}$	$\mathrm{Re_c}\approx1780$
Tangential flow in an annulus (Couette flow between rotating cylinders)	$\mathrm{Re} = rac{\Omega_0 R^2 \langle v angle ho}{\mu}$	$\mathrm{Re_c} pprox 50000$

| Laminar vs. turbulent

Property	Laminar Flow $({ m Re} < 2100)$	Turbulent Flow $(\mathrm{Re} \in [10^4, 10^5])$
Velocity profile	$rac{v_z}{v_{z, ext{max}}} = 1 - \left(rac{r}{R} ight)^2$	$rac{v_z}{v_{z, ext{max}}}pprox \left(1-rac{r}{R} ight)^{1/7}$
Average velocity	$\langle v_z angle = rac{1}{2} v_{z, ext{max}}$	$\langle v_z anglepprox rac{4}{5}ar{v}_{z, ext{max}}$
Volumetric flow rate	$Q=rac{\pi R^4}{8\mu}\left(rac{{\cal P}_0-{\cal P}_1}{L} ight)$	$Q \propto \left(rac{{\cal P}_0 - {\cal P}_1}{L} ight)^{4/7}$
Entry length	$L_e=0.035D{ m Re}$	$L_e pprox 40D$
Derivation	From theory	From experiment

Description	Equations
Velocity decomposition	$v_z=ar{v}_z+v_z'$
Velocity profile in turbulent flow	$egin{aligned} ar{v}_z &= ar{v}_{z, ext{max}} \left(1 - rac{r}{R} ight)^{1/n} \ n &= egin{cases} 6 & ext{Re} \in [2 imes 10^3, 10^4] \ 7 & ext{Re} \in [10^4, 10^5] \ 8 & ext{Re} \in [10^5, 10^6] \end{cases} \end{aligned}$

| Time-smoothed N-S equation

Description	Equations
Time-smoothed continuity equation	$egin{aligned} abla \cdot ar{v} &= 0 \ abla \cdot ar{v}' &= 0 \end{aligned}$
Time-smoothed equation of motion ($ au$ -form)	$ horac{Dar{ar{v}}}{Dt} = - ablaar{p} - abla \cdot ar{ar{ au}}^{ ext{total}} + ho g$

$\begin{array}{ll} \text{Description} & \text{Equations} \\ & \rho \left[\frac{\partial \bar{v}_x}{\partial t} + \bar{z} \cdot \nabla \bar{v}_x \right] \\ & = -\frac{\partial \bar{p}}{\partial x} - \left[\frac{\partial \bar{\tau}_{txx}^{total}}{\partial x} + \frac{\partial \bar{\tau}_{yx}^{total}}{\partial y} + \frac{\partial \bar{\tau}_{zx}^{total}}{\partial z} \right] + \rho g_x \\ & \text{Total shear stress (viscous + turbulent)} & \bar{\tau}_{yx}^{total} = \bar{\tau}_{yx}^{(v)} + \bar{\tau}_{yx}^{(t)} \\ & = \bar{\tau}_{yx} + \rho v_y^{\prime} v_x^{\prime} \end{array}$

| Shear stress distribution

Description	Equations
Shear stress distribution in round tube	$ au_{r heta} = rac{1}{2} \left[rac{{\cal P}_0 - {\cal P}_1}{L} ight] r$
Shear stress distribution in general conduit	$ au_{r heta} = \left[rac{{\cal P}_0 - {\cal P}_1}{L} ight] R_H$
Hydraulic radius	$R_H = rac{ ext{cross sectional area}}{ ext{wetted perimeter}}$
Characteristic length	$l_{ m char}=4R_H$
Characteristic velocity	$v_{ m char} = \langle v_z angle$

| Universal velocity profile

Layer	Normalized velocity	Normalized length range
Laminar sublayer	$v^+=y^+$	$y^+\in(0,5)$
Buffer layer	$v^+ = 5 \ln(y^+ + 0.205) - 3.27$	$y^+ \in (5,30)$
Turbulent core	$v^+ = 2.5 \ln(y^+) + 5.5$	$y^+ \in (30,\infty)$

Description	Equations
Characteristic length	$y_* = rac{\mu}{v_* ho}$
Characteristic velocity	$v_* = \sqrt{rac{ au^0}{ ho}}$
Normalized length	$y^+=rac{y}{y_*}$
Normalized velocity	$v^+=rac{v}{v_*}$
Eddie viscosity	$\mu^{(t)} = -rac{ar{ au}_{yz}^{ ext{total}}}{\left(rac{dv_z}{dy} ight)} - \mu = -rac{\left[rac{\mathcal{P}0-\mathcal{P}1}{L} ight]rac{r}{2}}{\left(rac{dv_z}{dy} ight)} - \mu$

Dynamic Similarity and Dimensional Analysis

| Flow around a sphere outside of Stoke's law

Description	Equations
★ Non-Stoke's law condition	$\mathrm{Re} \geq 0.1$

Description	Equations
Nondimensionalized continuity equation	$reve{ abla}\cdot reve{v}=0$
x-component of momentum equation	$rac{Dreve{v}_x}{Dreve{t}} = -rac{\partialreve{p}}{\partialreve{x}} + rac{1}{\mathrm{Re}}reve{ abla}^2reve{v}_x + rac{1}{\mathrm{Fr}}reve{g}_x$
Drag coefficient Friction factor	$c_D = f = rac{F_D}{rac{1}{2} ho v_\infty^2 A_{ m approach}}$
Drag coefficient in Stoke's law region	$c_D = rac{24}{ ext{Re}}$
Drag coefficient in non-Stoke's law region	$c_D = \left(\sqrt{rac{24}{\mathrm{Re}}} + 0.5407 ight)^2$

| Dimensionless groups

Description	Equations
Reynolds number	$ ext{Re} = rac{l_0 v_0 ho}{\mu} = rac{ ext{inertial forces}}{ ext{viscous forces}}$
Froude number	$\mathrm{Fr} = rac{v_0^2}{g l_0} = rac{\mathrm{inertial\ forces}}{\mathrm{gravitational\ forces}}$
Capillary number	$ ext{Ca} = rac{\mu v_0}{\sigma} = rac{ ext{viscous forces}}{ ext{surface tension forces}}$
Weber number	$ ext{Fr} = rac{l_0 ho v_0^2}{\sigma} = rac{ ext{inertial forces}}{ ext{surface tension forces}}$
Euler's number	$\mathrm{Eu} = rac{(\Delta p) D^4}{ ho Q^2}$

| Dimensional analysis

- Buckingham π theorem A function $f(X_1, X_2, \ldots, X_k)$ with dimensional variables X_i can be rewritten in a function $\Phi(\Pi_1, \Pi_2, \ldots, \Pi_{k-n})$ with dimensionless variables Π_j by enforcing dimensional consistency using n fundamental dimensions.
 - Define fundamental dimensions
 - Choose stand-in variables for fundamental dimensions
 - Rewrite other variables in terms of stand-in variables to get dimensionless groups

Bernoulli Analysis and Applications

| N-S equation for steady flow in stream tubes

Assumptions	Equations
Constant density fluid	$\Delta ho=0$
1D flow in z direction	$v_r=v_ heta=0$
Plug flow - uniform velocity across cross section	$\langle v angle = v = { m constant} \ v_z = v_z(z)$
Inviscid flow	$\mupprox 0, \mathrm{Re}\geq 10000$
No sharp bends	Straight stream lines
Description	Equations

Description	Equations
Continuity equation	$egin{aligned} Q_1 &= Q_2 \ A_1 \langle v angle_1 &= A_2 \langle v angle_2 \end{aligned}$
Equation of motion	$ ho v rac{dv}{dz} = -rac{dp}{dz} - ho g rac{dh}{dz}$

| Bernoulli equation

Description	Equations
Bernoulli equation (energy form)	$p_1 + rac{1}{2} ho v_1^2 + ho g h_1 = p_2 + rac{1}{2} ho v_2^2 + ho g h_2$
Bernoulli equation (head form)	$rac{v_1^2}{2g} + rac{p_1}{ ho g} + h_1 = rac{v_2^2}{2g} + rac{p_2}{ ho g} + h_2$
Bernoulli head	$\mathcal{B} = rac{v^2}{2g} + rac{p}{ ho g} + h = ext{constant}$
Drag coefficient	$c_D = rac{F_D}{rac{1}{2} ho v_\infty^2 A_{ m approach}}$
Lift coefficient	$c_L = rac{F_L}{rac{1}{2} ho v_\infty^2 A_{ m planform}}$
Pressure change in contracting conduit $\Delta p \equiv p_1 - p_2$	$\Delta p = rac{8 ho Q^2}{\pi^2 D_1^4} \left[\left(rac{D_1}{D_2} ight)^4 - 1 ight] + ho g(h_2 - h_1)$
Torricelli's law	$\langle v angle = \sqrt{2g\Delta h}$
Pressure at stagnation point	$p = p_{ m static} + p_{ m dynamic} \ = p_{ m static} + rac{1}{2} ho v_{\infty}^2$

| Flow-metering devices

Description	Equations
Manometer equation	$\Delta p = (ho_{ m m} - ho)gH$
Local velocity Pitot tube	$v=\sqrt{rac{2\Delta p}{ ho}}$
Volumetric flow rate Venturi meter $c_0 \in [0.96, 0.98]$ Orfice meter $c_0 \in [0.40, 0.80]$ Nozzle meter $c_0 \in [0.96, 0.98]$	$Q = c_0 \pi D_0^2 \sqrt{rac{\Delta p}{8 ho [1-(rac{D0}{D})^4]}}$
Rotameter	Calibrated specifically to the fluid with falling sphere

| Full Bernoulli analysis

Description	Equations
Full Bernoulli equation	$rac{v_1^2}{2g} + rac{p_1}{ ho g} + h_1 = rac{v_2^2}{2g} + rac{p_2}{ ho g} + h_2 + H_{L12}$
Head loss	$H_{L12} = H_{L12f} + H_{L12c}$
Skin friction loss H_{L12f}	Viscous work done per unit weight by fluid on walls of conduit in moving from 1 to 2

Description	Equations
Skin friction loss (general)	$H_{L12f}=rac{ au^0L}{ ho gR_H}$
Skin friction loss for circular tube	$H_{L12f}=rac{4 au^0L}{ ho gD}$
Fanning friction factor	$f=rac{ au^0}{rac{1}{2} ho\langle v angle^2}$
Skin friction loss for circular tube	$H_{L12f}=rac{2\langle v angle^2 L}{gD}f=rac{32Q^2L}{\pi^2D^5g}f$
Skin friction loss for non-circular tube	$H_{L12f}=rac{\langle v angle^2 L}{2gR_H}f=rac{Q^2 L}{2gA_c^2R_H}f$
Reynolds number for noncircular pipes	$ ext{Re} = rac{4R_H \langle v angle ho}{\mu}$
Configurational loss of one fitting in circular tube	$H_{Lc} = e_v rac{\langle v angle_{ m downstream}^2}{2g}$
Configurational loss of all fittings in circular tube	$H_{L12c} = rac{\langle v angle_{ ext{down}}^2}{2g} (\sum_i e_{v,i}) = rac{8Q^2}{\pi^2 D^4 g} (\sum_i e_{v,i})$
Total head loss for circular tube	$H_{L12} = egin{cases} rac{2 \langle v angle^2}{Dg} [(\sum_i L_i) f + rac{D}{4} (\sum_i e_{v,i})] \ rac{32 Q^2}{\pi^2 D^5 g} [(\sum_i L_i) f + rac{D}{4} (\sum_i e_{v,i})] \end{cases}$
Kinetic head correction factor	$lpha = rac{\langle v^3 angle}{\langle v angle^3}$
Brake horse power	$\mathrm{bhp} = rac{P}{\eta} = rac{H_p ho g Q}{\eta}$

| Fanning friction factor correlations

Description	Equations	Conditions
Hydraulically smooth pipes (Blasius)	$f=\frac{0.0791}{\mathrm{Re}^1/4}$	${ m Re} \in [2100, 10^5]$
Hydraulically smooth pipes (Koo)	$f = 0.0014 + rac{0.125}{\mathrm{Re}^{0.32}}$	${ m Re} \in [10^4, 10^7]$
Pipes of general roughness (Haaland)	$rac{1}{\sqrt{f}} = -3.6 \log_{10} \left[rac{6.9}{ ext{Re}} + \left(rac{k/D}{3.7} ight)^{10/9} ight]$	${ m Re} \in [4 imes 10^4, 10^7] \ k/D < 0.05$
Commercial standard piping (Drew)	$f = 0.0014 + rac{0.090}{\mathrm{Re}^{0.27}}$	$\mathrm{Re} \in [10^4, 10^7] \ k/D pprox 0.00015$
Full rough conduit	$rac{1}{\sqrt{f}} = 2.28 - 4.0 \log_{10}\left(rac{k}{D} ight)$	$\mathrm{Re} > 10^4 \ k/D > 0.01$

| Kinetic head correction factor

Re	n	α	
$2 imes 10^3 \sim 10^4$	6	1.08	
$10^4\sim 10^5$	7	1.06	
$10^5\sim 10^7$	8	1.05	

| Flow through packed bed

Description	Equations
Specific area of packing element	$a_v = rac{ ext{area of packing element}}{ ext{volume of packing element}}$
Effective diameter of packing element (particle)	$D_p = rac{6}{a_v}$
Darcy's law $\star \mathrm{Re}_\mathrm{bed} \lesssim 10$	$\langle v angle = rac{\kappa}{\mu} \left[rac{{\cal P}_0 - {\cal P}_L}{L} ight]$
Volumetric flow rate	$Q=\langle v angle arepsilon A=v_0 A$
Superficial velocity	$v_0 = \langle v angle arepsilon$
Bed Reynolds number	$egin{aligned} ext{Re}_{ ext{bed}} &= rac{D_p v_0 ho}{\mu} rac{1}{1 - arepsilon} \ &= rac{D_p \langle v angle ho}{\mu} rac{arepsilon}{1 - arepsilon} \ &= rac{D_p Q ho}{\mu A} rac{1}{1 - arepsilon} \end{aligned}$
Tube Reynolds number	$\mathrm{Re_{tube}} = rac{2}{3}\mathrm{Re_{bed}}$
Hydrolic radius	$R_H = rac{D_p arepsilon}{6(1-arepsilon)}$
Friction factor of tube $ \bigstar \ \mathrm{Re}_{\mathrm{bed}} \leq 10 $	$f_{ m tube} = rac{24(1-arepsilon)\mu}{D_p v_0 ho}$
Friction factor of tube $ \bigstar \mathrm{Re}_{\mathrm{bed}} > 1000 $	$f_{ m tube} = rac{7}{12}$
Bed permeability	$\kappa = rac{D_p^2}{150} \left(rac{arepsilon}{1-arepsilon} ight)^2$
Blake-Kozeny equation $\star \mathrm{Re}_{\mathrm{bed}} \leq 10$	$\left[rac{{\cal P}_0-{\cal P}_L}{L} ight]=150rac{\mu v_0}{D_p^2}rac{(1-arepsilon)^2}{arepsilon^3}$
Burke-Plummer equation $ \bigstar \ \mathrm{Re}_{\mathrm{bed}} > 1000 $	$\left[rac{{\cal P}_0-{\cal P}_L}{L} ight] = rac{7}{4}rac{ ho v_0^2}{D_p}rac{1-arepsilon}{arepsilon^2}$
Superficial mass flux	$G_0 = ho v_0 = rac{\dot{m}}{A}$
$\begin{array}{l} \textbf{Ergun equation} \\ \bigstar \ \mathrm{Re_{bed}} \in [10, 1000] \end{array}$	$egin{aligned} \left[rac{(\mathcal{P}_0-\mathcal{P}_L) ho}{G_0^2} ight]rac{D_p}{L}rac{arepsilon^3}{1-arepsilon} &= 150\left[rac{1-arepsilon}{rac{D_pG_0}{\mu}} ight] + rac{7}{4} \ \left[rac{(\mathcal{P}_0-\mathcal{P}_L) ho}{G_0^2} ight]rac{D_p}{L}rac{arepsilon^3}{1-arepsilon} &= 150rac{1}{ ext{Re}_{ ext{bed}}} + rac{7}{4} \end{aligned}$

| Cavitation and vortex motion

Description	Equations
Cavitation number	$\sigma = rac{p_A - p_C}{rac{1}{2} ho v_\infty^2}$

| Forced vortex flow in rotating cylinder

Description Equations

Description	Equations
Velocity profile	$v_{ heta}=r\Omega$
Pressure difference ★ 1 defined arbitrarily, 2 defined at center	$p_2-p_1=rac{1}{2} ho\Omega^2(r_2^2-r_1^2)+ ho g(z_1-z_2)$
Height	$h=rac{\Omega^2}{2g}r^2$

| Free vortex flow during drainage

Description	Equations
Pressure difference $igstar$ 1 defined arbitrarily, 2 defined at $r o \infty$	$p_2 - p_1 = rac{1}{2} ho C^2 \left(rac{1}{r_1^2} - rac{1}{r_2^2} ight) + ho g(z_1 - z_2)$
Depth	$h=rac{C^2}{2g}rac{1}{r^2}$

Microfluidics*

| Validity of continuum description

Description	Equations
Mean free path	$\lambda = rac{1}{\sqrt{2}\pi d^2 n} \ \lambda(\mu\mathrm{m}) pprox 3.1 imes 10^{-3} rac{T(\mathrm{K})}{\sigma^2(\mathring{\mathrm{A}}^2)p(\mathrm{atm})}$
Knudsen number	$\mathrm{Kn}=rac{\lambda}{L_c}$
Characteristics	Range
Molecular flow	$\mathrm{Kn} \in (10,\infty)$
Transition flow	$\mathrm{Kn} \in (0.1, 10)$
N-S equations hold, but no-slip condition fails	${ m Kn} \in (0.001, 0.1)$

| Forces in microfluidic flows

- Viscous force dominate over inertial forces and gravity forces
 - · Driving force
 - Pressure
 - Capillary (surface tension) forces
 - Electro-kinetic forces
 - · Magnetic forces
 - Resisting forces: viscous force, dominated by wall effects

Description	Equations
Reynolds number ★ Creeping flow	$ ext{Re} = rac{ ext{inertial forces}}{ ext{viscous forces}} = rac{Lv ho}{\mu} o 0$

Description	Equations
Froude number	${ m Fr} = {{ m inertial~forces}\over { m gravity~forces}} = {v^2\over gL}$
Viscous force dominates gravity force	$rac{ ext{Re}}{ ext{Fr}} = rac{ ext{gravity forces}}{ ext{viscous forces}} = rac{gL^2}{\mu v} ightarrow 0$

| Generalized Hagen-Poiseuille flow

Description	Equations
Differential equation of generalized H-P flow	$0 = rac{\Delta p}{L} + \mu \left(rac{\partial^2 v_z}{\partial x^2} + rac{\partial^2 v_z}{\partial y^2} ight)$
No-slip condition $F(x,y)$ is equation of conduit perimeter	$v_z(x,y)=0 for F(x,y)=0$
Velocity profile	$v_z(x,y) = rac{\Delta p}{\mu L} F(x,y)$
Volumetric flow rate	$Q = rac{\Delta p}{\mu L} \iint F(x,y) \ dy \ dx$

| Hydraulic resistance in micro-channels

Description	Equations
Flow equation	$\Delta p = \mathcal{R}_{ ext{hyd}} Q$
Volumetric flow rate	$Q=rac{\Delta p}{\mathcal{R}_{ ext{hyd}}}$

| Capillary driving force and wicking phenomena

Description	Equations
Pressure difference	16
Wicking velocity	$v=rac{r^2}{8\mu}rac{\Delta P}{x}=rac{r\sigma\cos heta}{4\mu x}$
Washburn equation	$x = \sqrt{rac{r\sigma\cos heta}{2\mu}t} \propto \sqrt{t}$
Wicking into porous media	$h=\sqrt{rac{r_e\sigma\cos heta}{2\mu}t}\propto\sqrt{t}$