

FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Abschlussarbeit in Informatik

Effiziente statistische Methoden für Datenbanksysteme

Thomas Heyenbrock

FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Abschlussarbeit in Informatik

Effiziente statistische Methoden für Datenbanksysteme

Efficient statistical methods for database systems

Autor: Thomas Heyenbrock Supervisor: Prof. Alfons Kemper

Advisor: Maximilian E. Schüle, M.Sc.

Datum: 15.01.2017

Ich versichere, dass ich diese Diplomarbeit s Quellen und Hilfsmittel verwendet habe.	selbständig verfasst und nur die angegebenen
München, den 1. November 2017	Thomas Heyenbrock

Abstract

An abstracts abstracts the thesis!

Contents

Al	bstract	vii
Oı	utline of the Thesis	xi
1.	Einführung und typische statistische Problemstellungen 1.1. Latex Introduction	1 1
2.	Grundlagen statistischer Methoden 2.1. Lineare Regression	3 3
3.	Anwendung statistischer Methoden 3.1. Latex Introduction	5 5
4.	Statistische Methoden in Datenbanken 4.1. Latex Introduction	7 7
5.	Erweiterungspotenzial in Datenbanksystemen 5.1. Latex Introduction	9 9
6.	Fazit 6.1. Latex Introduction	11 11
$\mathbf{A}_{\mathbf{j}}$	ppendix	15
Α.	Detailed Descriptions	15
Bi	bliography	17

Outline of the Thesis

Teil I: Introduction and Theory

CHAPTER 1: INTRODUCTION

This chapter presents an overview of the thesis and it purpose. Furthermore, it will discuss the sense of life in a very general approach.

CHAPTER 2: THEORY No thesis without theory.

Teil II: The Real Work

CHAPTER 3: OVERVIEW

This chapter presents the requirements for the process.

1. Einführung und typische statistische Problemstellungen

Here starts the thesis with an introduction. Please use nice latex and bibtex entries [1]. Do not spend time on formating your thesis, but on its content.

1.1. Latex Introduction

1. Einführung und typische statistische Problemstellungen			

2. Grundlagen statistischer Methoden

Bei der Regressionsanalyse geht es allgemein darum, das Verhalten einer Größe Y in Abhängigkeit einer oder mehrerer anderer Größen X_1, X_2, \ldots, X_n zu prognostizieren. Die Größe Y wird abhängig genannt, die Größen X_i nennt man unabhängig. Die Prognose entspricht einem funktionalen Zusammenhang der folgenden Art:

$$Y = f(X_1, \dots, X_n)$$

Als Grundlage für den Findungsprozess dieser Funktion f besitzt man eine Menge von N Datenpunkten:

$$(x_{1,j}, x_{2,j}, \dots, x_{n,j}, y_j)$$
 für $j = 1, \dots, N$

Im Allgemeinen ist es nicht möglich eine einfache Funktion f zu finden, die alle Datenpunkte exakt prognostiziert. Stattdessen über- und unterschätzt die Funktion f die realen Datenpunkte. Die konkrete Abweichung für den j-ten Datenpunkt wird in der Satistik als Fehler bezeichnet:

$$e_j = y_j - f(x_{1,j}, \dots, x_{n,j})$$

2.1. Lineare Regression

Bei der linearen Regression geht man von einem linearen Zusammenhang zwischen der abhängigen und den unabhängigen Variablen aus. Die Funktion f ist also von folgender Form:

$$f(x_1, \dots, x_n) = \beta_0 + \sum_{i=1}^n \beta_i \cdot x_i \text{ mit } \beta_i \in \mathbb{R}$$

Man möchte diejenigen Parameter β_i bestimmen, so dass die entstehende Funktion die vorgegebenen Datenpunkte möglichst gut annähert. Das Maß für die Qualität einer Funktion f definiert durch die Parameter β_0, \ldots, β_n ist die Summe der quadrierten Fehlerterme:

$$E(\beta_0, \dots, \beta_n) = \sum_{j=1}^{N} e_j^2 = \sum_{j=1}^{N} \left(y_j - \beta_0 - \sum_{i=1}^{n} \beta_i \cdot x_{i,j} \right)^2$$

Ziel ist es nun die Parameter so zu wählen, dass die Funktion E miminiert wird. Dieses Vorgehen ist als Methode der kleinsten Quadrate bekannt.

2.	Grundlagen	statistischer	Methoden
	OI MIIMING CIT	Dear the the tree t	TITC CITC CIT

3. Anwendung statistischer Methoden

Here starts the thesis with an introduction. Please use nice latex and bibtex entries [1]. Do not spend time on formating your thesis, but on its content.

3.1. Latex Introduction

3.	Anwendung	statistischer	Methoden
\sim .	I III IV CII CI CI CI CI	Diamberies	MICHICACI

4. Statistische Methoden in Datenbanken

Here starts the thesis with an introduction. Please use nice latex and bibtex entries [1]. Do not spend time on formating your thesis, but on its content.

4.1. Latex Introduction

1	Statistische	1 1 - 11 - 1	:- D-1-	. 1 1
4.	Statistische	wietnoaen	ın ı jarei	ınanken

5. Erweiterungspotenzial in Datenbanksystemen

Here starts the thesis with an introduction. Please use nice latex and bibtex entries [1]. Do not spend time on formating your thesis, but on its content.

5.1. Latex Introduction

5.	Erweiterungs	ootenzial in	Datenbanks	vstemen
\sim .	LI W CICCI GIIGO	occiiziai iii	Duttibuille	ybtchitch

6. Fazit

Here starts the thesis with an introduction. Please use nice latex and bibtex entries [1]. Do not spend time on formating your thesis, but on its content.

6.1. Latex Introduction

Appendix

A. Detailed Descriptions

Here come the details that are not supposed to be in the regular text.

Bibliography

[1] Leslie Lamport. *LaTeX*: A Documentation Preparation System User's Guide and Reference Manual. Addison-Wesley Professional, 1994.