KHÔLLES 15 ET 16 : MATRICES - SYSTEMES LINEAIRES / ANALYSE ASYMPTOTIQUE

Remarque : Ces deux chapitres comportent assez peu de démonstrations aussi les points sur les bases reposeront essentiellement sur les exercices techniques.

Certaines démonstrations du chapitre sur l'analyse asymptotique sont toutefois exigibles :

- 1. On suppose que f et g sont définies au voisinage de a (fini ou infini), ne s'annulant pas au voisinage de a, sauf éventuellement en a (si $a \in \mathbb{R}$). On suppose que $f(x) \underset{x \to a}{\sim} g(x)$.
 - Si h est une fonction telle qu'au voisinage de a on ait $f(x) \leq h(x) \leq g(x)$ alors $h(x) \underset{x \to a}{\sim} f(x)$
 - Si $\lim_{a} f = l$ (fini ou infini), alors $\lim_{a} g = l$.
 - Au voisinage de a, f et g sont de même signe.
 - Soit h une fonction définie sur un intervalle J telle que $f \circ h$ et $g \circ h$ soient définies au voisinage de b avec $\lim_{h \to a} h = a$. Alors

$$f \circ h(x) \sim_{x \to h} g \circ h(x)$$

• Si f est une fonction positive au voisinage de a, alors pour tout $\alpha \in \mathbb{R}$:

$$f^{\alpha}(x) \underset{x \to a}{\sim} g^{\alpha}(x)$$
 et $e^{f(x)} \underset{x \to a}{\sim} e^{g(x)} \iff \lim_{a} (f - g) = 0$

• Si f est strictement positive au voisinage de a et si $\lim_a f = b \in \mathbb{R} \setminus \{1\}$ alors

$$\ln(f(x)) \underset{x \to a}{\sim} \ln(g(x))$$

2. Formule de Taylor-Young

Si f admet une dérivée n-ème en a, alors f admet un $\mathrm{DL}_n(a)$ qui s'écrit :

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + o((x-a)^n)$$

- **3.** Si f admet un $\mathrm{DL}_n(0)$ de partie régulière $\alpha_0 + \alpha_1 x + \cdots + \alpha_n x^n$ pour $n \geq 2$, en notant $p = \left\lfloor \frac{n}{2} \right\rfloor$, on a :
 - Si f est paire, alors $\forall k \in [0, p-1], \alpha_{2k+1} = 0$.
 - Si f est impaire, alors $\forall k \in [0, p], \alpha_{2k} = 0$.

4. Composition

Soient I et J des intervalles tels que $0 \in \overset{\circ}{I}$ et $0 \in \overset{\circ}{J}$, f une fonction définie sur I admettant un $\mathrm{DL}_n(0)$ de partie régulière P(x) et g une fonction définie sur J admettant un $\mathrm{DL}_n(0)$ de partie régulière Q(x). On suppose que $f(I) \subset J$. Si f(0) = 0, alors $g \circ f$ admet un $\mathrm{DL}_n(0)$ dont la partie régulière est obtenue en tronquant Q(P(x)) au degré n.