- 5. Sea G un digrafo con dos vértices s y t.
 - a) Proponer un modelo de flujo para determinar la máxima cantidad de caminos disjuntos en aristas que van de s a t.
 - b) Dar una interpretación a cada unidad de flujo y cada restricción de capacidad.
 - c) Demostrar que el modelo es correcto.
 - d) Determinar la complejidad de resolver el modelo resultante con el algoritmo de Edmonds y Karp.

a.

Sea
$$G = (V, E)$$

Sea K el conjunto de aristas que existen en algún camino dirigido de s a t en G.

Armamos nuestra red de flujos N = (V, K)

$$\forall (u \to v) \in K :: c(u \to v) = 1$$

s es fuente, t es sumidero

b.

Cada unidad de flujo es un camino disjunto de s a t

La restricción de capacidad 1 nos limita a que cada arista pertenezca a lo sumo a un camino.

 $F_{\rm max}$ es la cantidad de caminos disjuntos en N.

c.

N es una red válida.

Probemos que no hay ciclos ni aristas bidirecciones, por el absurdo.

Supongamos que tenemos dos caminos arbitrarios P_1 y P_2

$$P_1 = s, ...v, ..., w, ..., t$$

$$P_2 = s, ...w, ..., v, ..., t$$

O sea,
$$(v...w) \in P_1 \text{ y } (w...v) \in P_2$$

Y sabemos que $K = P_1 \cup P_2 \cup ... \cup P_k$

Por lo que si existe ciclo en K v...w...v lo cual no es óptimo, entonces uno de los 2 no es mínimo. Por lo tanto, no existen aristas bidireccionales en K.

Esto en particular significa que tampoco existe ciclo $v \to w \to v$, por lo que si $(v \to w) \in K \Rightarrow (w \to v) \notin K$, por lo que no hay aristas bidireccionales.

Por lo tanto, N = (V, K) es una red válida.

El Modelo es correcto.

Máxima cantidad de caminos disjuntos ⇔ Flujo máximo

Máximo cantidad de caminos disjuntos ⇒ Flujo máximo

Si hay n caminos disjuntos, como $c(e)=1, \forall e\in E$ no podremos enviar más de n unidades de flujo, ya que si pudiese mandar n+1, entonces n no era el máximo de caminos disjuntos.

Flujo máximo \Longrightarrow Máximo cantidad de caminos disjuntos

Tenemos un flujo máximo $F_{\max} \in \mathbb{N}_0$, y como todas las aristas tienen capacidad 1 o 0:

Por conservación de flujo no podemos tener más de una arista incidente que entregue flujo, ya que siempre sale exactamente 1 unidad, por lo que cada camino es disjunto, y cada camino lleva exactamente una unidad de flujo desde s hasta t.

Por lo que tenemos exactamente $F_{\rm max}$ caminos disjuntos.

d.

Sea N=(V,K) nuestra red, como todas las aristas tienen capacidad 1, tenemos a lo sumo F_{\max} caminos de aumento, y como BFS es O(m) entonces tenemos que EK es $O(mF_{\max})$.