

厦门大学《概率统计 A》期中试卷

主考教师:	试卷类型:	(A 卷)
— J V		\ /U /

一、(15 分)甲乙丙三人在同一办公室工作,房间里有三部电话。根据以往经验,打给甲乙丙电话的概率分别为 $\frac{2}{5}$, $\frac{2}{5}$, $\frac{1}{5}$,他们三人外出的概率分别为 $\frac{1}{2}$, $\frac{1}{4}$,假设三人行动各自独立。计算下列事件的概率:(1)无人接听电话;(2)被呼叫人在办公室;(3)若某时段打入3个电话,这 3 个电话打给不相同的人的概率。

二、(10 分)炮战中, 若在距目标 250 米, 200 米, 150 米处射击的概率分别为 0.1, 0.7, 0.2, 而在各该处射击时命中目标的概率分别为 0.05, 0.1, 0.2, 现在已知目标被击毁, 求击毁目标的炮弹是由距离目标 250 米处射出的概率。

三、(10 分)甲乙两人各出赌注 a,约定谁先胜三局则赢得全部赌注,现已赌三局,甲两胜 一 负,这时因故中止赌博,若两人赌技相同,且每局相互独立,问应如何分配赌注才算公平?

四、 $(10 \, f)$ 假设随机变量 X 服从参数为 (μ, σ^2) 的正态分布,计算 $Y = X^{-1}$ 的密度函数。

五、(15分) 甲每天收到的电子邮件数服从泊松分布,参数为λ,每封电子邮件被过滤的概率为 0.2,计算

- (1) 当有 n 封电子邮件发给甲的时候,甲见到其中 k 封的概率 p_k ;
- (2) 甲每天见到的电子邮件数的分布;
- (3) 甲每天见到的电子邮件数和被过滤掉的电子邮件数是否独立。

六、 $(10 \, f)$ 设随机变量 X 在区间(0,1) 上服从均匀分布,在X = $\mathbf{x}(\mathbf{0} < x < 1)$ 的条件下,随机变量 Y 在区间 $(0,\mathbf{x})$ 上服从均匀分布,求 (1) Y 的边缘密度; (2) 概率 $\mathbf{P}(\mathbf{X} + \mathbf{Y} > 1)$ 。

七、(10分)假设 X, Y 的联合概率分布为

у х	-1	0	1
-1	a	0	0. 2
0	0. 1	b	0. 1
1	0	0.2	c

且 $P(XY \neq 0) = 0.4$, $P(Y \leq 0 | X \leq 0) = \frac{2}{3}$,求X + Y的概率分布。

八、(10分)设随机变量 X、Y的联合密度函数为

f(x, y) =
$$\begin{cases} \frac{3}{2x^3y^2}, & x > 1, 1 < xy < x^2, \\ 0, & \text{ 其他} \end{cases}$$

求 EY, $E(XY)^{-1}$ 。

九、 $(10 \, \beta)$ 假设随机变量 X、Y 均服从参数为 $(\mu$, σ^2)的正态分布,并且 X、Y 相互独立,计 算 $Z_1 = \alpha \, X + \beta \, Y$, $Z_2 = \alpha \, X - \beta \, Y$ 的相关系数。