Departamento de Matemática, Universidade de A	Aveiro Matemática Discreta
Exame final, 14 de Junho de 2023, Duração: 2h30m	D Classificação:
Nome:	N^{o} Mec.:
Declaro que desisto:	Folhas supl.:

7. (4 val) Seja G o seguinte grafo simples não orientado com custos nas arestas representado na figura 1.

Figura 1: O grafo G

Figura 2: O grafo J

- a) Considere o subgrafo H de G induzido pelo conjunto de vértices $\{a,b,c,d,f\}$. Determine o número $\tau(H)$ de árvores abrangentes de H, aplicando a fórmula recursiva $\tau(H) = \tau(H e) + \tau(H//e)$, sendo e uma aresta de H que não é lacete. Justifique.
- b) Determine um caminho de custo mínimo entre os vértices \mathbf{a} e \mathbf{e} em G, aplicando o algoritmo de Dijkstra. Apresente todos os passos do algoritmo usando uma tabela adequada e indique o custo total do caminho determinado.
- c) Seja J o grafo simples indicado na figura 2. Os grafos G e J são isomorfos? Justifique devidamente e, no caso afirmativo, indique o respetivo isomorfismo.

 $8.~(1~{\rm val})$ Numa festa onde estão $31~{\rm pessoas}$ é possível que cada uma destas pessoas conheça exatamente $5~{\rm das}$ restantes pessoas? Justifique.

 $=9+6\left(0\right)+2\times3+4=9+2+6+4=21$ =22 arestas paralelas =3+2+6+4=21 =3+2+6+4=21

	_	L- Z	aresias	700		Fill		
4.	la) I	ntão				1	٨	
i)	a	la) C	d	le	8	Mene	
0	(0,-)	(∞1-)	(201-)	(00,-)	(201-)	$(\infty_{1}-)$	a	b, c, d, ef
1	//	(7,a)	(9,a)	$(\infty,-)$	(00,-)	(14,a)	le	c,d,e,f
			(a,a)	(22,6)	(80,-)	(14,a)	C	dieis
2			C1 /		$(\infty, -)$	(11,C)	9	die
3			1//	(20,4)	(90,-)		0	
4	1//		/) (20,0)	(20, 8)		2	Q
	1/	-					1	
			/	, 1			_	

custo do caminho: Harca (e) = 20

ant(e)=f, ant(f)=c, ant(c)=ant(c)=ant(c)=ant(a

4.c) 6 agrafo 6 tem um único vertice de agray

1 (vertice e) e um unico vertice de agray y

(noéthice c). 6 grafo J também tem um

único vertice de apau e (vertice 4) e um

único vertice de apau e (vertice 3). 60

verticers e e c mão não adjacentes em 6

mas os vertices 3 e y são adjacentes

em J. Sago, 6 e J mão são isomorfos

troque não existe uma sunção bijetila

livo (6) > VI) que presenve as adjacençãos, ou são,

tal que, tara u, vervi6), u é adjacente a no se e

5) Convideremon Mon grafo 6 tal que o eonjunto den verticen e o conjunto dan 31 persoan. Sabemon que $\sum d_G(n) = 2 |E(G)|$. Se $d_G(n) = 5$ para todo o vertice $n \in E(G)$ sobtinhamon $31 \times 5 = 2 |E(G)|$ $<=> |E(G)| = 155 \nn |N|$. Soogo, a ven posta é : "não $=> |E(G)| = 155 \nn |N|$.