SISTEMI LINEARI

Dof: Un sistema lineare mxm e un sistema di m equatroni di primo siddin minagaite:

E.) (anx1+anx2+6 + anxn=b1

 $(f_n) \int dn x_1 + Qn x_2 + \dots + Qn x_n = b_2$

(Em) amixitamixz+ --- + amixn = bm

obre XI,..., XII sous le incognité, i Termini ais sous i coefficient del sisteme e 51,-, but sous i Termini noti.

und solverone del sistema e una m-upla (x1,--, xm) che, sostituita nel sistema soddisfa tutte le equationi. OSS: Se m=m=1 ellora (*) divents ax=5 e si haluto Tre casi:

i) & a to => x = \frac{5}{a} (Solutione ouica)

ii) se a=0 e b to => 0:x=5 => 0=5 (impossible)

iii) se a=0 e b=0 => 0.x=0 (infinite solutioni)

Def: 18 sisteme lineare (*) si dice

i) déterminate se sumette ou vaix solutione

ii) impossibile se won he ha

iii) indéterminato se he infinite solvetoui

Forma maticishe di un sistema lineare

Il sisteme lineare (x) può essere scritto nella forma matriciale

due A=/aij) & Met (m, m) et 12 matrice dei coefficienti

Esempro:

Esempro:
$$\begin{cases}
2x + y - 3z = \sqrt{2} \\
-x - y + 5z = 0
\end{cases}$$

$$\begin{pmatrix}
2 & 1 & -3 \\
-1 & -1 & 5
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} = \begin{pmatrix}
\sqrt{2} \\
0
\end{pmatrix}$$

Gus. derious di sejuito Tre casi:

· A E Mat(m,m) . A = Wat(m,m) e 5 = 0 . Caso generate

Sistemi di magnazioni in m incognite

Gus de l'emo il sistema

Ax = 5

Que A E Wet (m, m) e quiud: XERM, 5 ERM

& det A to ollor 208istre 12 metrice inversa A' Quint' se

Ax=5 => A'Ax=A'5 => Inx=A'5 => X=A'5

Pertolito dotA+

 $dot A \neq 0 \implies \left(X = A^{-1} \underline{5} \right)$

(**)

11 : Luip ausidda Teorema di Cramer: Se det A +0, allora il sistema di minagaite in m equationi AX=5 è determinato. Le sua soluzione è dotte de (**) OSS: Vedreus che vak auche l'implication inversa: seil sissems mxm e determinato. allora detA +0. detA=0 sixtour impossibile in detorminato. Quiu L

Esempio:
$$A$$
 $\begin{cases} 2x + y + 37 = 12 \\ 4y - 2 = -7 \\ 5x + 87 = 34 \end{cases}$
 $\begin{cases} 7 & 1 & 3 \\ 0 & 4 & -1 \\ 5 & 0 & 8 \end{cases} \begin{pmatrix} 7 & 1 & 3 \\ 4y & 2y & 34 \\ 7 & 1 & 34 \end{pmatrix}$

detA = -1 +0 [verificaro], per il teoreuro di Cromer il sistema o determinato.

DIBCXX), 12 roboxobe à data de

$$\begin{pmatrix} X \\ Y \\ t \end{pmatrix} = A^{-1} \begin{pmatrix} 17 \\ -1 \\ 34 \end{pmatrix}$$

[completere]

Attenzrore: [l'anotob (**) richied parcochi conti Vedemo in Sejuito un metod più efficiente [metod di gouss]

Sissemi amagensi di mequationi in minagaite

Un sistema di ma equationi in mincognite si dice amojeves se tettr i svoi Tormini noti sono nulli, ossid se il sistema e

(a)
$$A \times = 0$$
 Ou $A \in \text{Met}(m, n) \in \times = \begin{pmatrix} x_i \\ x_n \end{pmatrix} \in \mathbb{R}^n$.

· Tale sistema une pro ossère impossibile, perché ha sempre la soluzione bande x=9

· le solvaioui sous gli élementi di Kerla dire

e l'applica trove lineare associate ad A.

```
lu fatti:

x è soluti di (0) ==> Ax=0 ==> LA(X)=0 ==> x e KerLA

Per la farunda delle dimensioni:

dim (kerla) = m - dim (Im LA) = m-m, dove re= carA
```

Terema: le solutioni del sistema (0) dipendro de M-re parametri;

dore m r=carA (Si dice in Tel cess che il sistema ha som-re solutioni).

In particolare, il sistema e determinato de e Sob se r=m

(cioè se rango = # colonne di A)

- # in a gni te

Esempis: M=7, M=3

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 3 \times -9 & 42 = 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & -1 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & -1 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & -1 & 2 \end{pmatrix}$$

Sistems indeterminate con Sistems indeterminate con comprousing the solutions

Esercitio: Risolvere il Ristema.

OSS: Si woti de la (#) è l'aquazione di une rotta di R3 (intersetione di de pieni).

Sisteur generali. Tooreur di Rouché-Capelli

Cousiderieurs ou sistema limère di mequatroni in minognite

$$A \times = 5$$

 $Gu = A = (aij) \in Wet(m,m)$, $Y = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} \in \mathbb{R}^m$, $b = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \in \mathbb{R}^m$

lutrodicions la metrice completa

Teorema di Rouché-Capelli: il sistema AX = 5 ha almens una soluzione se e sob se le matrici A e (A15) hanno la stessa caratterierica:

$$cer A = cav(A15)$$
 (0)

Dimostistione: $A \times = 5$ ha solverious c = 3 $\exists \times = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix}$ t.c. $A \times = 5$ c = 3(=>] X1,..., Xm t.c. (Q1/... |Qn) (X1/xm) = b => => J X1, --, Xm t.c. X1Q1+X2Q2+...+ XmQm= 5 (=> => 5 è une cousinatione lineare di ai.-, an => il massima numero di vettori lin. indip. tra an-, an aici Gincide 0 0 0 0 0 Q1--- Qu, b => cdr A = cdr (A1b)

NOT caso omojenes $A \times = Q$, abbidus visto che il sistema ha so ∞^{m-re} solvatoni, due re=carA. Le solvationi sono date da KorLa.

Teorem 2: Supposizeurs de il sistema Ax=5 abbie une soluzione X1.

Allors ojai Solvarohe del sistema è della foranz

X1+X0

done Ko E Ker La (cioè Xo è soluzione del sistema omogener associato Ar=0)

Quid il sistema ha com-m solutioni, dore ne = carA.

lu particolère, il sisseme c'atternimento se e sob se m=4.

Din [Esercitio]

Dimostistione: $A \times = 5$ ha solverious c = 3 $\exists \times = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix}$ t.c. $A \times = 5$ c = 3(=>] X1,..., Xm t.c. (Q1/... |Qn) (X1/xm) = b => => J X1, --, Xm t.c. X1Q1+X2Q2+...+ XmQm= 5 (=> => 5 è une cousinatione lineare di ai.-, an => il massima numero di vettori lin. indip. tra an-, an aici Gincide 0 0 0 0 0 Q1--- Qu, b => cdr A = cdr (A1b)

NOT caso omojenes $A \times = Q$, abbidus visto che il sistema ha so ∞^{m-re} solvatoni, due re=carA. Le solvationi sono date da KorLa.

Teorem 2: Supposizeurs de il sistema Ax=5 abbie une soluzione X1.

Allors ojai Solvarohe del sistema è della foranz

X1+X0

done Ko E Ker La (cioè Xo è soluzione del sistema omogener associato Ar=0)

Quid il sistema ha com-m solutioni, dore ne = carA.

lu particolère, il sisseme c'atternimento se e sob se m=4.

Din [Esercitio]