The Cycle Polynomial of Permutation Groups

Arjit Seth and M. Vinay

Manipal Institute of Technology, Manipal University

Context

These are notes created to develop an understanding of the cycle polynomial, conceptualised by Peter J. Cameron and Jason Semeraro.

Contents

1 Introduction 1

1 Introduction

The cycle polynomial of a finite permutation group is an interesting construction.

Definition 1 (Cycle polynomial). The *cycle polynomial* of a permutation group G acting on a set Ω of size n is defined as:

$$F_G(x) = \sum_{g \in G} x^{c(g)}$$

where c(g) is the number of cycles of g on Ω , including fixed points.

Example. Consider the permutation group $\{e,(1\,2),(3\,4),(1\,2)(3\,4)\}\cong V_4$ acting on the set $\{1,2,3,4\}$. Its cycle polynomial is:

$$F_{V_4}(x) = x^4 + 2x^3 + x^2 (1)$$

Remark. The cycle polynomial will never have a constant term, since the minimum number of cycles of a permutation group can have is 1. It is obviously a polynomial of n^{th} order because of the identity permutation.

Proposition 1.	If a is an integer, then $F_G(a)$ is a multiple of $ G $.	
Proof.		