

Liver tumour detection and segmentation

Mounir
Si-belkacem KETIR
Mahmoud
Fodé

Introduction

Problem Statement:

"How can we automate the classification and segmentation of liver tumors from CT images while ensuring precision and clinical reliability?"

Challenges :

- CT image Variability
- Tumor Complexity
- Clinical Accuracy

Approach and Methodology

Approach

- Classification: Using VGG16 to identify healthy vs pathological livers.
- Segmentation: Using U-Net to precisely localize tumors

Expected Impact

- Reducing analysis time for radiologists
- Improving diagnostic accuracy and reproducibility

Architecture VGG16

Architecture U-Net

Work and implementation

datasete.py

- Load data
- Data preprocessing
- Awakening the data
- Prepare for the training
- Sending the data

lit_model.py

- Import the models (classification or segmentation)
- Set the Adam optimization
- Dice score for segmentation
- Accuracy for classification

Train.py

- Set the epochs, batch size
- Inherit the model from lit_model
- Stock the weights in ModelCheckpoint file
- Start the training

lit_model.py

predict_classification.py

- Load ModelCheckpoint
- Load test dataset
- Preprocessing data
- Classification
- Getting the class predicted.

predict_segmentation.py

- Load ModelCheckpoint
- Load the test dataset
- Preprocessing data
- Segmentation
- Predicts the mask

U-Net Segmentation Model Performance

U-Net Segmentation Model Performance

Trouble: Our first attempt was a failure

Experimental Results of Our Segmentation Model

Small tumor

Tumor with a complex shape

Two tumors

Large tumor

VGG16 CLASSIFICATION MODEL PERFORMANCES

VGG16 CLASSIFICATION MODEL PERFORMANCES

VGG16 CLASSIFICATION MODEL PERFORMANCES

VGG16 CLASSIFICATION MODEL PREDICTION

Tumor

No tumor

VGG16 CLASSIFICATION MODEL PREDICTION

0.10030963

 \leftarrow tumor

←no tumor

Image 20: Classe prédite = 1, Probabilités = [2.2259520e-08 8.9969039e-01 1.0030963e-01]

Conclusion

What We Learned:

- The importance of AI in medical imaging and computer vision applications.
- How CNNs like VGG16 and U-Net are applied in real-world medical challenges.
- The complexity of handling medical datasets (preprocessing, annotation, and Al training).

Difficulties Encountered:

- Managing dataset quality: CT scans come with varying resolutions and annotations.
- Tuning deep learning models:
 Balancing accuracy, training time, and overfitting.

Thank you for your attention!

