(a) Hub Selection Constraint:

$$\sum_{i=1}^8 x_i = 2$$

This constraint ensures that exactly two hubs are selected (x_i is a binary variable representing whether area i is selected as a hub).

(b) If area i is not selected as a hub, it cannot serve any other areas:

$$\sum_{j=1}^8 y_{ij} \leq 8\,x_i, \quad i=1,\ldots,8$$

This constraint ensures that if area i is not selected as a hub ($x_i=0$), then it cannot serve any other area.

(c) Each area j must be served by exactly one hub, and area i can serve only if it is selected as a hub:

$$egin{aligned} \sum_{i=1}^8 y_{ij} &= 1, & j &= 1, \ldots, 8, \ y_{ij} &\leq x_i, & i,j &= 1, \ldots, 8. \end{aligned}$$

This set of constraints ensures that each area j is served by exactly one hub and that area i can only serve if it is selected as a hub.

(d) The demand d_j at area j is the total traffic flux arriving at area j:

$$d_j=\sum_{i=1}^8 f_{ij}, \quad j=1,\ldots,8.$$

The demand d_j is the total traffic flux arriving at area j from all other areas.

(e) The total demand ${\cal D}$ is the sum of demands from all areas:

$$D = \sum_{j=1}^8 d_j$$

For each hub i, the total demand it serves must not exceed 60% of the total demand D:

$$\sum_{j=1}^8 d_j \, y_{ij} \leq 0.6 \, D, \quad i=1,\dots,8.$$

This constraint ensures load balancing for each hub, limiting the proportion of total demand that each hub can serve.

(f) The transportation cost is measured by the journey time multiplied by the demand:

$$Z_1 = \sum_{i=1}^8 \sum_{j=1}^8 t_{ij} \, d_j \, y_{ij}.$$

The objective function Z_1 calculates the total transportation cost based on the journey times and the demands.

(g) Introduce a new variable \boldsymbol{U} as the upper bound of all selected delivery times:

$$\min Z_2 = U$$

Subject to:

$$t_{ij} y_{ij} \leq U, \quad i, j = 1, \dots, 8.$$

The objective function Z_2 minimizes the maximum delivery time for all selected paths, ensuring that the delivery time for each path does not exceed U.

```
In [1]: import pandas as pd
        import numpy as np
        from pulp import LpProblem, LpMinimize, LpVariable, lpSum, LpBinary, PULP
        # Journey times (in minutes)
        journey_data = {
            'From': ['Neihu', 'Yuanshan', 'Taipei', 'Sanzhong', 'Wugu', 'Freeway
            'Neihu': [None, 7.39, 9.52, 12.69, 17.31, 169.33, 25.80, 45.43],
            'Yuanshan': [3.19, None, 1.85, 4.93, 9.87, None, 18.61, 31.94],
            'Taipei': [11.93, 8.26, None, 3.13, 7.46, 177.62, 16.25, 26.90],
            'Sanzhong': [13.98, 10.18, 1.33, None, 4.11, None, 12.97, 22.29],
            'Wugu': [15.11, 11.91, 3.30, 2.21, None, None, 8.30, 12.64],
            'Freeway Bureau': [21.35, 18.08, 8.04, 8.02, 5.10, None, None, None],
            'Linkou North': [22.24, 19.12, 9.97, 9.24, 6.82, 3.01, None, 6.07],
            'Linkou South': [30.01, 25.02, 13.83, 14.12, 11.63, 8.38, 8.62, None]
        }
        # Load data into a DataFrame and set index
        journey_df = pd.DataFrame(journey_data)
        journey_df.set_index('From', inplace=True)
        regions = list(journey_df.index)
        # Traffic flow data (vehicles per hour), converted to vehicles per minute
```

```
traffic data = {
    'From': ['Neihu', 'Yuanshan', 'Taipei', 'Sanzhong', 'Wugu', 'Freeway
    'Neihu': [None, 132.016, 129.421, 65.829, 57.799, 0.005, 37.845, 0.00
    'Yuanshan': [131.652, None, 287.611, 170.747, 122.848, None, 86.932,
    'Taipei': [193.693, 310.595, None, 531.410, 467.136, 0.003, 556.076,
    'Sanzhong': [73.508, 141.726, 359.530, None, 190.253, None, 223.984,
    'Wugu': [99.106, 147.136, 419.402, 256.016, None, None, 151.079, 0.07
    'Freeway Bureau': [0.644, 2.198, 6.899, 2.516, 2.299, None, None, None
    'Linkou North': [59.435, 84.535, 532.334, 218.264, 160.957, 899.149,
    'Linkou South': [0.016, 0.021, 0.128, 0.052, 0.054, 0.277, 0.209, Non
# Load traffic data into a DataFrame and set index, then convert traffic
traffic_df = pd.DataFrame(traffic_data)
traffic_df.set_index('From', inplace=True)
traffic_df = traffic_df / 60 # Convert to vehicles per minute
# Fill NaN values in journey times and traffic flows
for i in range(len(journey df)):
    for j in range(len(journey_df.columns)):
        if i == j: # Diagonal elements set to 0
            if pd.isna(journey_df.iloc[i, j]):
                journey_df.iloc[i, j] = 0
        else: # Non-diagonal elements set to 100000
            if pd.isna(journey_df.iloc[i, j]):
                journey_df.iloc[i, j] = 1000
for i in range(len(traffic_df)):
    for j in range(len(traffic_df.columns)):
        if pd.isna(traffic df.iloc[i, j]):
            traffic_df.iloc[i, j] = 0
# Calculate demand for each destination (sum of traffic flows to that are
demand = traffic df.sum(axis=0)
total_demand = demand.sum()
# Display results
print("\n=== Journey-time matrix after NaN→0 or 100000 ===")
print(journey_df)
print("\n=== Traffic-flow matrix after NaN→0 ===")
print(traffic_df)
print("\n=== Demand per destination (veh/min) ===")
print(demand)
print(f"\nTotal demand (veh/min): {total_demand:.4f}")
# Optimization model using PuLP
def solve_hub_selection(journey_df, demand_series, hubs_required=2, minim
    regions = list(journey_df.index)
    problem = LpProblem("HubSelectionOptimization", LpMinimize)
    # Define binary decision variables
    hub_decision = {i: LpVariable(f"hub_{i}", 0, 1, LpBinary) for i in re
    service_decision = {(i, j): LpVariable(f"service_{i}_{j}", 0, 1, LpBi
    # (a) Hub selection constraint: We need exactly 'hubs_required' hubs
    problem += lpSum(hub_decision[i] for i in regions) == hubs_required
    # (b) Link service to hub decision: If area is not a hub, it can't se
```

```
for i in regions:
    problem += lpSum(service_decision[i, j] for j in regions) <= len(</pre>
# (c) Each area must be served by exactly one hub
for j in regions:
    problem += lpSum(service decision[i, j] for i in regions) == 1
    for i in regions:
        problem += service_decision[i, j] <= hub_decision[i]</pre>
# (e) Load balance constraint: no hub serves more than 60% of the tot
total_demand = demand_series.sum()
for i in regions:
    problem += lpSum(demand_series[j] * service_decision[i, j] for j
# Define objective function: minimize either total cost or maximum ti
if minimize_max_time: # (i) Minimax problem
    max_time = LpVariable("max_time", 0)
    for i in regions:
        for j in regions:
            problem += journey_df.loc[i, j] * service_decision[i, j]
    problem += max_time
else: # (h) Minimize total transportation cost
    problem += lpSum(journey_df.loc[i, j] * demand_series[j] * servic
problem.solve(PULP_CBC_CMD(msg=False))
selected_hubs = [i for i in regions if hub_decision[i].value() > 0.5]
assignment = {j: next(i for i in regions if service_decision[i, j].va
delivery time = {j: journey df.loc[assignment[j], j] for j in regions
total_cost = sum(delivery_time[j] * demand_series[j] for j in regions
average_time = total_cost / total_demand
max_delivery_time = max(delivery_time.values())
return selected_hubs, assignment, total_cost, average_time, max_deliv
```

=== Journey-tir		after NaN uanshan		000 === Sanzhong	Wugu	Freeway Burea		
u \								
From Neihu	0.00	3.19	11.93	13.98	15.11	21.3		
5	0.00	3.13	11.33	13.30	13.11	2113		
Yuanshan	7.39	0.00	8.26	10.18	11.91	18.0		
8								
Taipei	9.52	1.85	0.00	1.33	3.30	8.0		
4	12.60	4 00	2 12	0.00	2 24	0.0		
Sanzhong 2	12.69	4.93	3.13	0.00	2.21	8.0		
Z Wugu	17.31	9.87	7.46	4.11	0.00	5.1		
0	17.51	3107	7140	7111	0100	311		
Freeway Bureau 0	169.33	1000.00	177.62	1000.00	1000.00	0.0		
Linkou North	25.80	18.61	16.25	12.97	8.30	1000.0		
0								
Linkou South	45.43	31.94	26.90	22.29	12.64	1000.0		
0								
Linkou North Linkou South								
From Neihu	22	2.24	30.01					
Yuanshan		1.24	25.02					
Taipei).12).97	13.83					
Sanzhong).24	14.12					
Wugu	6.82 11.63							
Freeway Bureau		8.38						
Linkou North		3.01 0.00	8.62					
Linkou South		5.07	0.00					
=== Traffic-flow matrix after NaN→0 ===								
_	Neihu	Yuansha	n Taipe	ei Sanzh	iong	Wugu \		
From		2 40422			400 4 65	4707		
Neihu	0.000000	2.19420				1767		
Yuanshan	2.200267	0.00000				2267		
Taipei		4.79351				0033		
Sanzhong	1.097150	2.84578				6933		
Wugu	0.963317	2.04746				0000		
Freeway Bureau Linkou North	0.000083 0.630750	0.00000				7000		
Linkou North	0.000133	1.44886 0.00063				.7983 1183		
LIIKOU SOULII	0.000133	0.00003	3 0.00240	22 0.001	.307 0.00	1103		
Freeway Bureau Linkou North Linkou South								
Neihu	0 0	10733	0.99058	33 0	.000267			
Yuanshan		36633	1.40893		.000350			
Taipei	0.030033 0.114983		8.87223					
Sanzhong	0.041933		3.63773					
Wugu	0.038317		2.68263		.000900			
Freeway Bureau	0.000000		14.98583					
Linkou North	0.000000		0.0000		.003483			
Linkou South		00000	0.00390		.000000			
=== Demand per destination (veh/min) ===								
Neihu	7.0487							
Yuanshan	13.3304	167						
Taipei	34.3177	700						
Sanzhong	16.4847	17						

Wuau

Freeway Bureau

17.880167

0.242600

```
Linkou North
                        32.581800
       Linkou South
                          0.012617
       dtype: float64
       Total demand (veh/min): 121.8988
In [2]: # (h) Logistics - Minimize Total Cost
        selected_hubs_logistics, assignment_logistics, cost_logistics, avg_time_l
        print("===== (h) Logistics Plan - Minimize Total Cost =====")
        print("Selected hubs:", selected_hubs_logistics)
                                  : {cost logistics:.3f}")
        print(f"Total cost
        print(f"Average time (min) : {avg_time_logistics:.3f}")
        print(f"Max time (min)
                               : {max time logistics:.3f}")
       ===== (h) Logistics Plan - Minimize Total Cost =====
       Selected hubs: ['Taipei', 'Linkou North']
                         : 264.154
       Total cost
       Average time (min): 2.167
       Max time (min): 9.520
In [3]: # (i) Publicity - Minimize Max Time
        selected_hubs_publicity, assignment_publicity, cost_publicity, avg_time_p
        print("===== (i) Publicity Plan - Minimize Max Time =====")
        print("Selected hubs:", selected_hubs_publicity)
                              : {cost_publicity:.3f}")
        print(f"Total cost
        print(f"Average time (min) : {avg_time_publicity:.3f}")
        print(f"Max time (min)
                                 : {max_time_publicity:.3f}")
       ===== (i) Publicity Plan - Minimize Max Time =====
       Selected hubs: ['Taipei', 'Linkou North']
                          : 264.154
       Total cost
       Average time (min): 2.167
       Max time (min): 9.520
In [4]: # (j) Current scenario with only one hub in Taipei
        current_hub = "Taipei"
        cost_current = sum(journey_df.loc[current_hub, j] * demand[j] for j in re
        avg_time_current = cost_current / total_demand
        max_time_current = max(journey_df.loc[current_hub, j] for j in regions)
        # Improvement percentages
        cost_improvement_pct = (cost_current - cost_logistics) / cost_current * 1
        max_time_improvement_pct = (max_time_current - max_time_publicity) / max_
        print("===== (j) Current Scenario - Taipei as Sole Hub =====")
        print(f"Total cost
                            : {cost_current:.3f}")
        print(f"Average time (min) : {avg_time_current:.3f}")
        print(f"Max time (min) : {max_time_current:.3f}")
        print("\n--- Improvement over Current Scenario ---")
        print(f"Cost ↓ by Logistics plan : {cost_improvement_pct:.2f} %")
        print(f"Max time ↓ by Publicity plan : {max_time_improvement_pct:.2f} %")
```

Total cost

```
Average time (min): 4.099
Max time (min): 13.830

--- Improvement over Current Scenario ---
Cost i by Logistics plan: 47.13 %
Max time i by Publicity plan: 31.16 %

In [5]: # (k) Summary Table
summary_df = pd.DataFrame({
    "Scenario": ["Current", "Logistics (min cost)", "Publicity (min max-t
    "Hubs": [current_hub, selected_hubs_logistics, selected_hubs_publicit
    "Total cost": [cost_current, cost_logistics, cost_publicity],
    "Avg time (min)": [avg_time_current, avg_time_logistics, avg_time_pub
    "Max time (min)": [max_time_current, max_time_logistics, max_time_pub
})

print("\nSummary of the results:")
```

==== (j) Current Scenario - Taipei as Sole Hub =====

: 499.660

Summary of the results:

print(summary_df)

```
Hubs Total cost \
                  Scenario
                   Current
                                           Taipei 499.659908
      Logistics (min cost) [Taipei, Linkou North] 264.154462
1
2 Publicity (min max-time) [Taipei, Linkou North] 264.154462
  Avg time (min) Max time (min)
0
        4.098974
                           13.83
                           9.52
1
        2.166998
2
        2.166998
                            9.52
```

(k) Discussion Based on the Results

Summary Table

Scenario	Hubs	Total cost	Avg time (min)	Max time (min)
Current	Taipei	499.66	4.10	13.83
Logistics (min cost)	Taipei, Linkou North	264.15	2.17	9.52
Publicity (min max- time)	Taipei, Linkou North	264.15	2.17	9.52

Improvement over the Current Scenario

- Total transportation cost decreased by 47.13% under the new plan.
- Maximum delivery time decreased by 31.16% under the new plan.

Discussion

Both the Logistics plan (minimizing total cost) and the Publicity plan (minimizing maximum delivery time) yield the same solution:

• Selected hubs: Taipei and Linkou North

Total transportation cost: 264.15
Average delivery time: 2.17 minutes
Maximum delivery time: 9.52 minutes

Compared to the current single-hub setup (only Taipei as the hub), the two-hub solution offers significant improvements:

- Total cost reduction by 47.13%.
- Maximum delivery time reduction by 31.16%.
- Average delivery time reduction from 4.10 minutes to 2.17 minutes.

Conclusion

Since both optimization objectives lead to the same hub selection and performance metrics, there is no conflict between the two plans.

The company can simultaneously achieve both goals: **minimizing overall transportation cost** and **shortening the longest delivery time**.

Thus, implementing the new two-hub strategy with Taipei and Linkou North is strongly recommended, as it clearly improves both operational efficiency and service level compared to the current setup.