Разработка алгоритма функционирования обобщенных раскрашенных сетей Петри

В.А. Мустафаев, Ш.С. Гусейнзаде

Сумгаитский Государственный Университет, Сумгаит, Азербайджан e-mail: valex-sdu@mail.ru, shahla.huseynzade@gmail.com

Аннотация. В работе предлагается формализм, который базируется на математическом аппарате модифицированных сетей Петри (СП), представляющих собой обобщенные раскрашенные СП специального вида, совмещающего в себе перерождающего и селективного характера. Разработан алгоритм функционирования обобщенных раскрашенных СП.

Ключевые слова: раскрашенные сети Петри, начальная маркировка, функция распределения цветов, раскрашенные позиции, матрица инциденций.

Сложность реальных систем, параллелизм процессов, взаимные синхронизации и блокировки вызывают необходимость расширения выразительных средств моделирования, что делает необходимым разработку новых расширенных модификаций СП и усовершенствованию существующих.

Вводя ряд правил и условий в алгоритмы моделирования, можно получать ту или иную разновидность СП [1]. Одним из таких подходов является применение обобщенных раскрашенных СП.

Ообобщенные раскрашенные СП совмещают в себе возможности перерождающих и селективных сетей [2]. Разработан алгоритм функционирования обобщенных раскрашенных СП.

Начало алгоритма.

Шаг 1. Создание матрицы входных инциденций $F = [f_{ij}]$, где $i = \overline{1,n}$, $j = \overline{1,m}$ (n-число позиций, m-число переходов). Элемент f_{ij} равен числу дуг от i-ой позиции к j-му переходу:

$$f_{ij} = \left\{ egin{aligned} 1, ext{если } p_i \in {}^{ullet}_j; \ 0, ext{в противном случае.} \end{aligned}
ight.$$

Шаг 2. Создание матрицы выходных инциденций $H=[h_{ji}]$, где $i=\overline{1,n}$, $j=\overline{1,m}$. Элемент h_{ji} равен числу дуг от j-го перехода к i-ой позиции:

$$h_{ji} \ = \left\{egin{aligned} 1, ext{если } p_i \in t_j^{ullet}; \ 0, ext{в противном случае}. \end{aligned}
ight.$$

Шаг 3. Создание матрицы начальной маркировки $\mu=[\mu_{il}]$, где $i=\overline{1,n}$, $l=\overline{1,k}$ (k- число цветов). Элемент μ_{il} равен числу маркеров цвета ω_l в позиции p_i .

Шаг 4. Создание матрицы распределения цветов по позициям $\lambda = [\lambda_{il}]$, где $i = \overline{1.n}$, $l = \overline{1.k}$:

$$\lambda_{il} \ = \left\{ egin{aligned} 1 \text{, если } p_i imes \omega_l \in \Omega; \\ 0 \text{, в противном случае.} \end{aligned}
ight.$$

Шаг 5. Создание матрицы распределения цветов маркеров по входным позициям переходов $\varphi = [\varphi_{jl}]$, где $j = \overline{1,m}$, $l = \overline{1,k}$:

$$\varphi_{jl} =
\begin{cases}
1, если \left(\stackrel{\bullet}{t}_{j}, \omega_{l} \right) \in {}^{\bullet}C_{t}; \\
0, в противном случае.
\end{cases}$$

Шаг 6. Создание матрицы распределения цветов маркеров по выходным позициям переходов $\psi = [\psi_{il}], j = \overline{1,m}, l = \overline{1,k}$:

$$\psi_{jl} \ = \left\{ egin{aligned} 1, \mathrm{если}\left(\overrightarrow{t_j^{ullet}}, \omega_l
ight) \in C_t^{ullet} \ 0, \mathrm{в} \ \mathrm{противном} \ \mathrm{случаe}. \end{aligned}
ight.$$

Шаг 7. Поиск разрешенного перехода. Для каждого перехода t_j , $j=\overline{1,m}$ проверяется условие срабатывания:

- 7.1. из матрицы $F = [f_{ij}]$ определяются все выходные позиции перехода t_j : $p_{i_1}, p_{i_2}, ..., p_{i_z}$, где $z = {t_j \mid j}$;
- 7.2. из матрицы φ определяются все доступные распределения цветов по выходным позициям t_i : ω_{l_1} , ω_{l_2} , ..., ω_{l_r} , $r \in [1, k]$;
- 7.3. из матрицы μ выбираются числа определенного цвета маркеров во всех определенных выходных позициях перехода t_i :

$$\mu_{i_z l_r} = (p_{i_z}, \omega_{l_r}), z = \overline{1, | {}^{\bullet}t_j|}, r = \overline{1, k};$$

7.4. если для $\forall i_z$ существует $\exists l_r$ что, $\mu_{i_z l_r} \geq f_{i_z j}$, тогда переход t_j разрешен и выполняется переход к шагу 9.

Шаг 8. Если для перехода t_j условие срабатывания не выполняется, то индекс j увеличивается на единицу: j=j+1. Если $j\leq m$ то осуществляется переход к пункту 7.1., в противном случае сообщается о тупиковом состоянии и осуществляют переход к концу алгоритма.

UIa2 9. Вычисление элементов матрицы μ' :

$$\mu'_{il} = \mu_{il} + \varphi_{jl} * f_{ij} - \psi_{jl} * h_{ji}; i = \overline{1,n}; j = \overline{1,m}; l = \overline{1,k};$$

Шаг 10. По выбору пользователя процесс завершают (осуществляют переход к концу алгоритма) или продолжают до получения искомой маркировки (переход к шагу 7).

Конец алгоритма.

Литература

- 1. Beaudouin-Lafon M., Mackay Ü.E., Jensen M. et al. CPN Tools: A Tool for Editing and Simulating Coloured Petri Net // LNCS 2031I, Tools and Alqotithms for the Construction and Analysis of Systems, pp. 574-580.
- 2. Мустафаев В.А., Гусейнзаде Ш.С. Разработка модели управления обрабатывающего центра с применением раскрашенных сетей Петри. Вестник компьютерных и информационных технологий, Москва, 2018, № 3, стр. 36-44.

УДК: 519.95

Модель принятия решений для функционирования нечетких временных сетей Петри типа $V_{\rm f}$

В. А.Мустафаев, М.Н. Салманова

Сумгаитский государственный университет, Сумгаит, Азербайджан e-mail: valex-sdu@mail.ru, malaxat_70@mail.ru