Probability-3 Lecture-15

27 September 2024 11:23

Lemma:

Let F_n , n7, I and F be edf on RAssume, on a dense set $D \subset R$ $F_n(x) \longrightarrow F(x) \quad \forall \ x \in D, \ \downarrow,$ $\forall \ x \in J(F) = \text{set } \not= \text{ all } \text{ discontinuities } \not= f.$ $F_n(x) - F_n(x^-) \longrightarrow F(x) - F(x^-)$

Then, $F_n \longrightarrow F$ on R uniformly, i.e., $\sup_{x \in \mathbb{R}} \left| F_n(x) - F(x) \right| \longrightarrow 0.$

Definitions: (Ω, α, p) - probability space (fixed). $g_1 \& g_2 \& sub-6 fields of a are said to be independent if <math>f$ * In practice, prince $f(G_1) = f(G_1) \cdot f(G_2) = f(G_1) \cdot f(G_2)$ independence through $f(G_1) = f(G_1) \cdot f(G_2) + f(G_2) \cdot f(G_2) + f(G_1) \cdot f(G_2) + f(G_2) + f(G_2) \cdot f(G_2) + f(G_2) \cdot f(G_2) + f(G_2) \cdot f(G_2) + f(G_2) + f(G_2) \cdot f(G_2) + f(G_2) \cdot$

Result:

It:

If $S_1 \& S_2$ are semifields s.t. $G(S_1) = G_1, \quad G(S_2) = G_2,$ and if $P(S_1) S_2 = P(S_1) \cdot P(S_2)$ $\forall S_1 \in S_1, S_2 \in S_2$ then, $G_1 \& G_2$ are independent.

Definition:

Let {Gx, xE/} be a family of Sub-6 fields of a.

Sub-6 fields of a Then, { Gx, x ∈ 1 } are said to be mutually independent if for any Choice of $x_1, \dots, x_n \in \Lambda$, $P(G_1 \cap G_2 \cap \dots \cap G_m) = \prod P(G_i) \forall$ Gif Gairer, Gif gan.

If for each $\alpha \in A$, S_{α} is a remi-field Set. $\sigma(S_{\alpha}) = G_{\alpha}$, then $P\left(\bigcap_{i=1}^{n} S_{i}\right) = \prod_{i=1}^{n} P(S_{i})$ for all choices of $\alpha_{i}, \dots, \alpha_{n} \in \Lambda$.

is sufficient for { Gx, x ∈ N}, and all chaices of SiE Ja: to be independent. ∀i=1,..,n.

 (Λ, A, P) .

Criven a family {X, xE/} of r.vs, the smallest 6-field on 12 w.r.t. which all Xx, XE/ are measurable, if called the 6-field generated by {Xx, x ∈ A}, denoted by $G \left(\left\{ X_{\alpha}, x \in A \right\} \right).$

R= Sscn. (= Nv-1/e) ~

$$S = \begin{cases} S \subset \Lambda : S = \bigcap_{i=1}^{n} X_{\alpha_{i}}^{-1}(B_{i}), & \alpha_{i,1}, \dots, \alpha_{n} \in \Lambda \end{cases}$$

$$S = \begin{cases} S \subset \Lambda : S = \bigcap_{i=1}^{n} X_{\alpha_{i}}^{-1}(B_{i}), & \alpha_{i,1}, \dots, \alpha_{n} \in \Lambda \end{cases}$$

$$S = \begin{cases} S \subset \Lambda : S = \bigcap_{i=1}^{n} X_{\alpha_{i}}^{-1}(B_{i}), & \alpha_{i,1}, \dots, \alpha_{n} \in \Lambda \end{cases}$$

$$S = \begin{cases} S \subset \Lambda : S = \bigcap_{i=1}^{n} X_{\alpha_{i}}^{-1}(B_{i}), & \alpha_{i,1}, \dots, \alpha_{n} \in \Lambda \end{cases}$$

$$S = \begin{cases} S \subset \Lambda : S = \bigcap_{i=1}^{n} X_{\alpha_{i}}^{-1}(B_{i}), & \alpha_{i,1}, \dots, \alpha_{n} \in \Lambda \end{cases}$$

KOLMOGOROV'S 0-1 LAW

Setup: Let $\{X_n, n_7, 1\}$ - sequence of <u>independent</u> r.v.s ie, $\{6(X_n), n_7, 1\}$ - is an independent sequence of 6 - fields.

for each $n \ge 1$, define $\mathcal{O}_n = 6(x_1, -..., x_n)$ these are f in n.

Any event defirmined by the first n random variables.

check: Uan is a field.

(increasing union of 6-fields)

: the 6-field generated by this,

 $\sigma\left(\begin{array}{c} v & a_n \\ v & a_n \end{array}\right) = a_{\infty}$

Check: this is the smallest

6-field with which au the Xn's are

measurable.

Now, take $J_n := 6(X_{n+1}, X_{n+2}, ...)$

any event that depends only on the tail.

Note: In decreases \ with n.

Note: In decreases & with n.

Also, note: [xn7,0 is not a tail event.

J= the "tail" 5 - field. Any set AET is called a "tail event" Any r.v X measurable w.r.t of is a

K's 0-1 law:

If {xn}-independent seq- of r.vs, then for every tail event A, P(A) is either 0 or 1.

Proof: Step 1: for every n > 1,

An - independent of Jn. [Exeruse] Step 2: An is independent of J & n.

Step 3: 6 (U An) independent of J.

Step 4: T is independent of J.

: any AEJ.

 $P(A \cap A) = P(A) \cdot P(A)$

 $\mathcal{J} = \bigcap_{n} \mathcal{J}_{n}$ $\Rightarrow P(A) = P(A) \cdot P(A)$ $\Rightarrow P(A) = 0 \text{ or } 1$ $\Rightarrow P(A) = 0 \text{ or } 1$

Jessen- Wintmer.

Suppose {Xn} is an independent seq. of r.vs, each or which is discrete. 54.

\[\times \times

Then, the limit r.v. X is of "pure" type.

ie, either • X is discrete,

or • X is continuous (ie, disting)

ie, no point mans,

but supported by
a set of measure o.

or · X is absolutely continuous (ie, has a density f".)

Proof:

Let $D_n, n > 1$ be the countable set of possible values (is, support) of X_n , L let $D = U D_n$

Let
$$D = \bigcup_{n} D_{n}$$

Let G be a Subgroup (!!!) of R, generated by D. $G = \begin{cases} g: g = \sum_{i=1}^{n} k_i x_i : x_i, \dots, x_n \in D. \end{cases}$ $G = \begin{cases} g: g = \sum_{i=1}^{n} k_i x_i : x_i, \dots, x_n \in D. \end{cases}$ $G = \begin{cases} g: g = \sum_{i=1}^{n} k_i x_i : x_i, \dots, x_n \in D. \end{cases}$ $G = \begin{cases} g: g = \sum_{i=1}^{n} k_i x_i : x_i, \dots, x_n \in D. \end{cases}$

for any Bord Set B, the Set {XEB+Cn} is a fail set. (How !?)

) Xn E B+G.

⇒ ∑Xn-b∈G for some b∈B.

 $(\Rightarrow) \sum_{i=1}^{n} X_{i} + \sum_{i=n+1}^{\infty} X_{i} - b \in G.$ $(\Rightarrow) \sum_{i=n+1}^{\infty} X_{i} - b \in G.$

 $=) \sum_{i=n+1}^{\infty} X_i \in B + C_1.$ $=\sum_{i=1}^{\infty} X_i - tail \quad \text{f.v.}.$

: 4 bord set B,

 $P(X \in B + G) = 0$ or 1 [By K's 0-1]

Case 1: 3 a countable set B,

Care 1:] a countable set B, sit P(XEB+G)=1. ::X-discrete.

Case 2: Otherwise, $P(X \in B + G) = 0$ for every. Conntable B: take $B = \{a\}$. : $P(X = a) < P(X \in \{x\} + G)$ $= 0 = P(X \in \{x\}) \rightarrow 0 \in G$. (annual)

Case 2a:] a Borel set B of leb (B)=0

Sebesque
medsure

s.t, $P(X \in B + G_{\lambda}) = 1$. $leb(B + G_{\lambda}) = leb(U(B + g_{\lambda}))$ $\leq \sum_{g \in G_{\lambda}} leb(B + g_{\lambda})$ $g \in G_{\lambda}$ each = 0.

= 0. T: G-cHM,

i. Z is a)

gen

countable

snm.

Case 2 b: for every borel set B with leb (B) = 0. $P(X \in B + G_1) = 0.$

$$P(X \in B + G) = 0.$$

?

 $\Rightarrow P(X \in B) = 0.$
?

 $\Rightarrow X - \text{absolutely continuous.}$