[Feature Engineering] (CheatSheet)

1. Basic Feature Creation

- Combining Feαtures: df['new_feature'] = df['feature1'] + df['feature2']
- Differences Between Feαtures: df['new_feature'] = df['feature1'] df['feature2']
- Ratios of Features: df['new_feature'] = df['feature1'] / df['feature2']
- **Product of Features**: df['new_feature'] = df['feature1'] * df['feature2']
- Log Transformation: df['log_feature'] = np.log(df['feature'] + 1)

2. Handling Categorical Features

- One-Hot Encoding: pd.get_dummies(df['categorical_feature'])
- Label Encoding:

```
sklearn.preprocessing.LabelEncoder().fit_transform(df['categorical_featur
e'])
```

• Binary Encoding:

```
category_encoders.BinaryEncoder().fit_transform(df['categorical_feature']
```

- Frequency Encoding: df.groupby('category').size() / len(df)
- Mean Encoding: df.groupby('category')['target'].mean()

3. Temporal Features

- Extracting Day, Month, Year: df['day'] = df['datetime'].dt.day
- Extracting Weekday: df['weekday'] = df['datetime'].dt.weekday
- Extracting Hour, Minute, Second: df['hour'] = df['datetime'].dt.hour
- Time Since α Reference Point: df['time_since'] = df['datetime'] reference_date
- Is Weekend Feature: df['is_weekend'] = df['weekday'].isin([5,6]).astype(int)

4. Text Features

- **Tokenization**: nltk.word_tokenize(df['text'])
- TF-IDF Vectorization:

```
sklearn.feature_extraction.text.TfidfVectorizer().fit_transform(df['text'
])
```

• Count Vectorization:

sklearn.feature_extraction.text.CountVectorizer().fit_transform(df['text'])

• N-grams:

 $sklearn.feature_extraction.text.CountVectorizer(ngram_range=(1,2)).fit_transform(df['text'])$

• Sentiment Analysis: TextBlob(df['text']).sentiment.polarity

5. Numerical Features

- Standardization: (df['num_feature'] df['num_feature'].mean()) / df['num_feature'].std()
- Min-Max Normalization: (df['num_feature'] df['num_feature'].min()) / (df['num_feature'].max() - df['num_feature'].min())
- Robust Scaling (handling outliers):
 sklearn.preprocessing.RobustScaler().fit_transform(df[['num_feature']])
- **Binning**: pd.cut(df['num_feature'], bins=5, labels=False)
- Rank Transformation: df['num_feature'].rank()

6. Feature Interaction

• Polynomial Features:

sklearn.preprocessing.PolynomialFeatures().fit_transform(df[['feature1',
'feature2']])

• Interaction Between Categorical and Numerical Features:

```
df['new_feature'] = df['cat_feature'].astype(str) + '_' +
df['num_feature'].astype(str)
```

- Feature Crosses for Categorical Features: pd.get_dummies(df['feature1'] + '_' + df['feature2'])
- Pairwise Products of Numerical Features: df['feature1'] * df['feature2']
- Creating Ratios of All Pairwise Features: df['feature1'] / df['feature2']

7. Dimensionality Reduction

• PCA (Principal Component Analysis):

sklearn.decomposition.PCA(n_components=3).fit_transform(df)

• t-SNE (t-Distributed Stochastic Neighbor Embedding):

sklearn.manifold.TSNE(n_components=2).fit_transform(df)

• LDA (Linear Discriminant Analysis):

sklearn.discriminant_analysis.LinearDiscriminantAnalysis().fit_transform(
X, y)

- Feature Agglomeration (Clustering of Features): sklearn.cluster.FeatureAgglomeration().fit_transform(df)
- UMAP (Uniform Manifold Approximation and Projection): umap.UMAP().fit_transform(df)

8. Handling Missing Values

- Imputation with Mean/Median/Mode:
 - sklearn.impute.SimpleImputer(strategy='mean').fit_transform(df[['feature']])
- KNN Imputation:
 - sklearn.impute.KNNImputer(n_neighbors=5).fit_transform(df)
- Iterative Imputer (Multivariate Imputation):
 - sklearn.experimental.enable_iterative_imputer.IterativeImputer().fit_tran sform(df)
- Imputation Using (Group) Median: df['feature'] = df.groupby('group')['feature'].transform(lambda x: x.fillna(x.median()))
- Creating Missing Value Indicator: df['feature_is_missing'] = df['feature'].isnull().astype(int)

9. Feature Extraction from Unstructured Data

- Image Feature Extraction (e.g., Color Histograms): cv2.calcHist([image], channels, mask, histSize, ranges)
- Text Embeddings (Word2Vec, GloVe): gensim.models.Word2Vec(sentences).wv
- Audio Feature Extraction (MFCC): librosa.feature.mfcc(y=audio_waveform, sr=sampling_rate)
- Extracting Features from Time Series Data:
 - tsfresh.extract_features(time_series, column_id='id')
- Image Resizing and Flattening for ML: cv2.resize(image, (width, height)).flatten()
- Bag of Words for Text Data:
 - sklearn.feature_extraction.text.CountVectorizer().fit_transform(corpus)

10. Geospatial Feature Engineering

- Latitude and Longitude to Cartesian Coordinates:
 - np.radians(df['latitude']), np.radians(df['longitude'])
- Haversine Distance Between Two Points: haversine(lon1, lat1, lon2, lat2)
- Geospatial Clustering (e.g., DBSCAN): sklearn.cluster.DBSCAN(eps=0.01, min_samples=10).fit(geo_coordinates)

• Extracting ZIP Codes from Addresses: uszipcode.SearchEngine().by_address(address, returns=1)

11. Time-based Features

- Elapsed Time Since α Reference Event: df['time_since_event'] = pd.to_datetime(df['timestamp']) reference_timestamp
- Cyclical Time Features (e.g., Hour of Day, Day of Week): np.sin(2 * np.pi * df['hour']/23.0), np.cos(2 * np.pi * df['hour']/23.0)
- Time to Next/Previous Event: df['time_to_next_event'] = df['timestamp'].shift(-1) df['timestamp']
- Window Functions for Time Series (e.g., Rolling Mean): df['rolling_mean'] = df['value'].rolling(window=5).mean()
- Exponential Weighted Moving Average: df['ewma'] = df['value'].ewm(span=50).mean()

12. Textual Feature Engineering

- Named Entity Recognition (NER): spacy.load('en_core_web_sm').ents(text)
- Part-of-Speech Tagging: nltk.pos_tag(tokens)
- Term Frequency-Inverse Document Frequency (TF-IDF):
 TfidfVectorizer().fit_transform(corpus)
- Extracting Readability Features: textstat.flesch_reading_ease(text)
- Word Embedding (Pre-trained Models like GloVe, BERT):
 transformers.BertModel.from_pretrained('bert-base-uncased').encode(text)

13. Feature Selection Techniques

• SelectKBest with Custom Score Function:

SelectKBest(score_func=f_regression, k=10).fit_transform(X, y)

- Recursive Feature Elimination: RFE(estimator, n_features_to_select=10).fit(X, y)
- Feature Importance From Tree-based Models: model.feature_importances_
- L1 Regularization for Feature Selection (Lαsso): Lasso(alpha=0.1).fit(X, y)
- Variance Thresholding for Feature Selection: VarianceThreshold(threshold=(.8 * (1 - .8))).fit_transform(X)

14. Handling Imbalanced Data

- Random Over-sampling: RandomOverSampler().fit_resample(X, y)
- Random Under-sampling: RandomUnderSampler().fit_resample(X, y)

- **SMOTE for Over-sampling**: SMOTE().fit_resample(X, y)
- ADASYN for Adaptive Synthetic Sampling: ADASYN().fit_resample(X, y)

15. Advanced Numerical Techniques

- Discretization (Binning): KBinsDiscretizer(n_bins=5, encode='ordinal').fit_transform(X)
- Log Transform Plus One: np.log1p(df['num_feature'])
- Square Root Transform: np.sqrt(df['num_feature'])
- Inverse Transform: np.reciprocal(df['num_feature'])

16. Scaling and Normalization

- MaxAbsScaler for Scaling: MaxAbsScaler().fit_transform(X)
- Normalizer for Row-wise Normalization: Normalizer().fit_transform(X)
- Quantile Transformer for Robust Scaling: QuantileTransformer().fit_transform(X)

17. Encoding High Cardinality Features

- Target Encoding: category_encoders.TargetEncoder().fit_transform(X, y)
- Binary Encoding for High Cardinality: category_encoders.BinaryEncoder().fit_transform(df['high_card_feature'])
- Hashing Trick: category_encoders.HashingEncoder().fit_transform(df['high_card_feature'])

18. Feature Engineering for Time Series

- Fourier Transform for Periodic Patterns: np.fft.fft(time_series)
- Lag Features for Autocorrelation: df['lag_1'] = df['value'].shift(1)
- Rolling Window Features (e.g., Rolling Variance): df['rolling_var'] = df['value'].rolling(window=5).var()
- Decomposing Time Series (Seasonal-Trend Decomposition): seasonal_decompose(time_series, model='additive')

19. Custom Feature Engineering

- Custom Transformer in Pipeline: Pipeline(steps=[('custom_transformer', CustomTransformer()), ...])
- Conditional Feature Creation: df['new_feature'] = np.where(df['condition'], value_if_true, value_if_false)

20. Data Reduction for Efficiency

• Random Projection for Dimensionality Reduction:

GaussianRandomProjection().fit_transform(X)

• Feature Agglomeration for Clustering Features:

FeatureAgglomeration().fit_transform(X)

21. Handling Multi-dimensional Data

- Flattening Image Data for ML Models: np.reshape(image_data, (num_samples, -1))
- PCA for Image Data Dimensionality Reduction:

PCA(n_components=0.95).fit_transform(image_data)

22. Feature Engineering for Specific Models

- Word Tokenization for NLP Models: nltk.word_tokenize(text)
- Creating Polynomial Features for Regression Models:

PolynomialFeatures(degree=2).fit_transform(X)

23. Integration with External Data

- Merging External Data Sources: pd.merge(df, external_data, on='key')
- Feature Engineering from APIs (e.g., Weather Data for Sales

Predictions): fetch_weather_data(api_key, location)

24. Feature Engineering Automation

• Automated Feature Engineering (Featuretools):

featuretools.dfs(entityset=es, target_entity='target')

25. Features from Aggregations

• GroupBy Aggregations for Categorical Features:

```
df.groupby('category').agg({'num_feature': ['mean', 'sum']})
```

• Window Functions in Pandas: df['rolling_mean'] =
 df.sort_values('time').groupby('group').rolling(window=3)['value'].mean()

26. Encoding Techniques for Tree-based Models

• Ordinal Encoding for Tree-Based Models: OrdinalEncoder().fit_transform(X)

Frequency Encoding for Tree-Based Models: df['freq_encode'] = df.groupby('feature')['feature'].transform('count') / len(df)

27. Multi-level Feature Engineering

- Hierarchical Interactions (e.g., City within Country): df['city_country'] = df['city'] + '_' + df['country']
- Creating Features from Hierarchical Clustering: AgglomerativeClustering(n_clusters=10).fit_predict(X)

28. Signal Processing Features

- Fast Fourier Transform for Signal Data: np.fft.fft(signal)
- Signal Filtering (e.g., Low/High/Band-Pass Filters): scipy.signal.butter(N, Wn, btype, output='sos')
- Signal Envelope Extraction: scipy.signal.hilbert(signal)

29. Handling Sparse Data

- Sparse Matrix Representation: scipy.sparse.csr_matrix(data)
- Dimensionality Reduction for Sparse Data: sklearn.decomposition.TruncatedSVD(n_components).fit_transform(sparse_dat a)

30. Feature Hashing

- Feature Hashing for Vectorizing Text: sklearn.feature_extraction.FeatureHasher(n_features).transform(raw_featur es)
- Hashing Trick for Categorical Features: sklearn.feature_extraction.text.HashingVectorizer(n_features)

31. Features from Probabilistic Distributions

- Extracting Parameters from Distributions: scipy.stats.norm.fit(data)
- Generating Features from Distribution Samples: np.random.normal(loc, scale, size)

32. Text Specific Features

Character Length of Text: df['text_length'] = df['text'].apply(len)

- Count of Specific Words or Characters: df['word_count'] = df['text'].str.count('specific_word')
- 33. Image Specific Features
 - Edge Detection (e.g., Sobel, Canny): cv2.Canny(image, threshold1, threshold2)
 - Feature Descriptors (e.g., SIFT, SURF):
 cv2.xfeatures2d.SIFT_create().detectAndCompute(image, None)

34. Multi-Label Feature Engineering

 Binary Relevance Transformation: sklearn.preprocessing.MultiLabelBinarizer().fit_transform(multi_label)

35. Survival Analysis Features

• Cox Proportional Hazards Features: lifelines.CoxPHFitter().fit(df, duration_col, event_col).predict_partial_hazard(df)

36. Features from Graphs/Networks

- Node Centrality Measures (e.g., Degree, Eigenvector):
 networkx.degree_centrality(G)
- Graph Embeddings (e.g., Node2Vec): node2vec = Node2Vec(G); model = node2vec.fit()

37. Cross-validation in Feature Engineering

• K-Fold Cross-Validated Features: sklearn.model_selection.cross_val_predict(model, X, y, cv=5)

38. Handling Unstructured Data

• Converting Unstructured Data to Structured Form: extract_features_from_unstructured_data(unstructured_data)

39. Features from Audio Data

• Mel-Frequency Cepstral Coefficients (MFCCs): librosa.feature.mfcc(y=audio, sr=sampling_rate) • Spectral Centroid: librosa.feature.spectral_centroid(y=audio, sr=sampling_rate)

40. Custom Feature Engineering Functions

• User-Defined Transformation Functions: df['custom_feature'] = df['feature'].apply(custom_transformation_function)

41. Feature Engineering in Time Series

- Lagged Features for Autocorrelation: df['lag_feature'] = df['feature'].shift(periods)
- Rolling Window Features (e.g., Rolling Std): df['rolling_std'] = df['feature'].rolling(window=5).std()

42. Natural Language Specific Features

- Part-of-Speech Tag Counts: nltk.pos_tag(text).count('NN') # count of
- Text Complexity Features (e.g., Flesch Reading Ease): textstat.flesch_reading_ease(text)

43. Social Media Specific Features

- Sentiment Score from Social Media Text: TextBlob(text).sentiment.polarity
- Social Media Engagement Features (e.g., Likes, Shares): calculate_engagement_metrics(df['likes'], df['shares'])

44. Geographic Features

- Distance to Points of Interest: calculate_distance_to_poi(lat, long, poi_lat, poi_long)
- Geographic Clustering Features: DBSCAN(eps=0.01, min_samples=10).fit(geo_data)

45. Time-based Aggregation Features

- Cumulative Count or Sum Over Time: df.groupby('time').cumcount()
- Time-based Aggregation (e.g., Sum of Sales per Month): df.groupby(pd.Grouper(key='date', freq='M'))['sales'].sum()

46. Online Behavior Features

- Session Duration in Web Analytics:
 - calculate_session_duration(df['session_start'], df['session_end'])
- Click Through Rate (CTR) for Online Ads: df['CTR'] = df['clicks'] / df['impressions']

47. Biomedical Signal Features

- Heart Rate Variability Metrics: calculate_hrv(ecg_signal)
- Biomedical Image Texture Features: skimage.feature.greycomatrix(image, [distance], [angle])

48. Feature Pipelines

• Creating a Feature Pipeline: Pipeline(steps=[('feature_creation', CustomFeatureTransformer()), ...])