Matrices

I. Définition

Définition: On appelle matrice A l'ensemble des coefficients (a)_{ij} situés sur la i^{ième} ligne et la j^{ième} colonne.

On note:
$$A = \begin{pmatrix} a_{11} & \cdots & a_{1p} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{np} \end{pmatrix}$$
 la matrice à n lignes et p colonnes.

Définition : Si n= p alors A est une matrice carrée

Propriété : Deux matrices A et B sont égales si et seulement elles sont de même taille et leurs coefficients de mêmes indices sont égaux deux à deux.

Définition : On appelle matrice identité d'ordre n (notée I_n), la matrice carrée de taille n n'ayant que des 1 sur sa diagonale et des 0 ailleurs.

On appelle matrice nulle la matrice dont tous les coefficients sont nuls.

II. Opérations sur les matrices

1. Addition

Définition : A et B sont deux matrices de même taille (n lignes et p colonnes) alors la matrice C définie par C = A + B admet pour coefficients : $c_{ij} = a_{ij} + b_{ij}$. (On additionne entre eux les termes de même indice).

Propriétés :
$$A + B = B + A$$

 $A + (B + C) = A + B + C$
 $A + 0 = A$ (0 est la matrice nulle de même taille que A)

2. Multiplication par un réel

Définition: A est une matrice de taille $n \times p$ et $\lambda \in \mathbb{R}$, alors $B = \lambda.A$ est une matrice de taille $n \times p$ ayant pour coefficients: $b_{ij} = \lambda.a_{ij}$.

(On multiplie tous les coefficients de A par λ)

Propriétés :
$$A + (-B) = A - B$$

 $-A$ est la matrice opposée à $A : A + (-A) = 0$
 $\lambda \cdot (A + B) = \lambda \cdot A + \lambda \cdot B$
 $(\lambda_1 + \lambda_2) \cdot A = \lambda_1 \cdot A + \lambda_2 \cdot A$
 $\lambda_1 \cdot (\lambda_2 \cdot A) = (\lambda_1 \cdot \lambda_2) \cdot A$

3. Multiplication

Définition: Soit A une matrice à n lignes et p colonnes et B une matrice à p lignes et q colonnes. Alors $A \times B = C$ a pour coefficients: $c_{ij} = a_{i1} \times b_{1j} + a_{i2} \times b_{2j} + ... + a_{ip}b_{pj}$. (On multiplie terme à terme la ligne i par la colonne j).

Propriétés :
$$A \times B \neq B \times A$$
 dans le cas général $A \times (B + C) = A \times B + A \times C$ $(A + B) \times C = A \times C + B \times C$ $A \times (B \times C) = (A \times B) \times C$

Définition :
$$A^n = A \times A \times ... \times A$$
 (n matrices A)

III. <u>Inverse</u> d'une matrice

Définition: Soit A une matrice carrée d'ordre n, alors s'il existe une matrice B de même taille telle que : $A \times B = B \times A = I_n$, A est inversible et $A^{-1} = B$. Dans ce cas B est la matrice inverse de A.

Remarque : toutes les matrices carrées ne sont pas inversibles.

Application : La résolution de systèmes

Tout système peut s'écrire de façon matricielle sous la forme $A \times X = B$, où X et Bsont des matrices colonnes. Alors $X = A^{-1} \times B$ est l'ensemble des solutions si A est inversible.