Таблица основных неопределенных интегралов

1.
$$\int 0 \cdot dx = C$$
.

$$2. \int 1 \cdot dx = x + C.$$

3.
$$\int x^a dx = \frac{x^{a+1}}{a+1} + C \quad (a \neq -1).$$

4.
$$\int \frac{dx}{x} = \ln|x| + C \quad (x \neq 0).$$

5.
$$\int a^x dx = \frac{a^x}{\ln a} + C \quad (a > 0, a \ne 1), \quad \int e^x dx = e^x + C.$$

$$6. \int \sin x dx = -\cos x + C.$$

7.
$$\int \cos x dx = \sin x + C$$
.

8.
$$\int \frac{dx}{\cos^2 x} = \int (1 + tg^2 x) dx = tg x + C \quad \left(x \neq \frac{\pi}{2} + \pi k, k \in \mathbb{Z} \right).$$

9.
$$\int \frac{dx}{\sin^2 x} = \int (1 + \operatorname{ctg}^2 x) dx = -\operatorname{ctg} x + C \quad (x \neq \pi k, k \in \mathbb{Z}).$$

10.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \operatorname{arctg} \frac{x}{a} + C \quad (a \neq 0).$$

11.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C \quad (a \neq 0, |x| < |a|).$$

12.
$$\int \frac{dx}{\sqrt{x^2 + d}} = \ln \left| x + \sqrt{x^2 + d} \right| + C \quad \left(d \neq 0, x^2 + d > 0 \right).$$

13.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C \quad (a \neq 0, |x| < |a|).$$

$$14. \int \sin x \, dx = \cot x + C.$$

$$15. \int \operatorname{ch} x dx = \operatorname{sh} x + C.$$

$$16. \int \frac{dx}{\cosh^2 x} = \tanh x + C.$$

17.
$$\int \frac{dx}{\sinh^2 x} = -\coth x + C \ (x \neq 0).$$

1	$f(x) \in C([a,b]), x = g(t) \in C^{1}([\alpha,\beta]),$ $[a,b] = g([\alpha,\beta]), g(\alpha) = a, g(\beta) = b$	Замена перем	иенной $\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(g(t))g'(t) dt$
2	$\int p(x)g(x)dx, \ \text{где}$ 1) $p(x)$ – многочлен, а $f(x)$ – одна из $e^{\alpha x}$, $\cos\alpha x$, $\sin\alpha x$, $\ln x$, $\arctan g x$, $\rightarrow g x$,	$\sin x$, $\arccos x$;	Интегрирование по частям Если $u(x), v(x) \in C^1([a,b])$, то $\int_a^b u(x) dv(x) = u(x)v(x)\Big _a^b - \int_a^b v(x) du(x)$

3	$\int \frac{Mx + N}{x^2 + px + q} dx , \ p^2 - 4q < 0$	Подстановка $t=x+rac{p}{2}$ приводит к интегралу $\int rac{M_1 t + N_1}{t^2 + d} dt$	
	$\int \frac{P(x)}{O(x)} dx$, $\frac{P(x)}{O(x)}$ — правиль-	$\frac{P(x)}{Q(x)} = \frac{A_1}{(x - x_1)} + \frac{A_2}{(x - x_1)^2} + \dots + \frac{A_n}{(x - x_1)^n} + \dots$	
4	ная рациональная дробь, $Q(x) = (x - x_1)^n (x - x_2)^m \cdots$	$+\frac{B_1}{(x-x_2)} + \frac{B_2}{(x-x_2)^2} + \dots + \frac{B_m}{(x-x_2)^m} + \dots$	
	$\cdots (x^2 + px + q)^k \cdots$	$\dots + \frac{M_1 x + N_1}{x^2 + px + q} + \frac{M_2 x + N_2}{(x^2 + px + q)^2} + \frac{M_k x + N_k}{(x^2 + px + q)^k} + \dots$	
	$\int \frac{P(x)}{(x-b_i)^n r(x)} dx ,$	$\frac{P(x)}{(x-b_i)^n r(x)} = \frac{B_n}{(x-b_i)^n} + \frac{B_{n-1}}{(x-b_i)^{n-1}} + \dots + \frac{B_1}{x-b_i} + \frac{R(x)}{r(x)}$	
5	$\frac{P(x)}{(x-b_i)^n r(x)} - \text{правильная}$ рациональная дробь	$B_{n-k} = \frac{1}{k!} \left(\frac{P(x)}{r(x)} \right)^{(k)} \bigg _{x=b_i}, \ k = \overline{0, n-1}.$	
	$\int \frac{P(x)}{Q(x)} dx$, где $\frac{P(x)}{Q(x)}$ – правильная рациональная дробь, $Q(x)$ имеет кратные корни (включая и комплексные)	Метод Остроградского $\int \frac{P(x)}{Q(x)} dx = \int \frac{P_1(x)}{Q_1(x)} dx + \frac{P_2(x)}{Q_2(x)}$,	
		$Q(x) = Q_1(x)Q_2(x)$, $Q(x)$ и $Q_1(x)$ имеют одни и те же корни, но все	
		корни $Q_1(x)$ – простые; $P_1(x)$ и $P_2(x)$ – многочлены с неопределенными коэффициентами, степени которых на единицу меньше степеней многочленов $Q_1(x)$ и $Q_2(x)$.	
		Неопределенные коэффициенты многочленов $P_1(x)$ и $P_2(x)$ вычис-	
		ляются при помощи дифференцирования равенства. После дифференцирования общий знаменатель всех дробей – $Q(x)$.	
		$Q_1(x) = HO\mathcal{I}(Q(x), Q'(x))$, поэтому для разложения знаменателя	
		$Q(x)$ на сомножители $Q_1(x)$ и $Q_2(x)$ можно использовать алгоритм	
6		Евклида.	
U		Алгоритм Евклида нахождения $HO\mathcal{J}\left(f(x),\phi(x)\right)$	
		Разделить $f(x)$ на $\phi(x)$ с остатком: $f(x) = \phi(x)q(x) + r_1(x)$.	
		Степень $r_1(x)$ меньше степени делителя $\varphi(x)$.	
		Разделить $\varphi(x)$ на $r_1(x)$ с остатком: $\varphi(x) = r_1(x)q_1(x) + r_2(x)$.	
		Степень $r_2(x)$ меньше степени делителя $r_1(x)$.	
		$r_1(x) = r_2(x)q_2(x) + r_3(x)$	
		$r_{k-2}(x) = r_{k-1}(x)q_{k-1}(x) + r_k(x)$	
		При каждом делении степень остатка будет снижаться, по крайней мере, на единицу, поэтому на определенном шаге получим нулевой остаток, т.е. $r_{k-1}(x) = r_k(x) q_k(x)$. Последний отличный от нуля остаток $r_k(x)$	
		является наибольшим общим делителем многочленов $f(x)$ и $\varphi(x)$.	

7	$\int R(e^{ax})$)dx	$t = e^{ax}$	$\int \mathbf{R}(t) dt$	
8	$\int \mathbf{R}(\sin x, \cos x) dx$		Если $R(-\sin x, \cos x) = -R(\sin x, \cos x)$, то $t = \cos x$. Если $R(\sin x, -\cos x) = -R(\sin x, \cos x)$, то $t = \sin x$. Если $R(-\sin x, -\cos x) = R(\sin x, \cos x)$, то $t = \tan x$. Универсальная подстановка $t = \tan x$. $\sin x = \frac{2\tan x}{1+\tan^2 x}$, $\cos x = \frac{1-\tan^2 x}{1+\tan^2 x}$.	$\int \mathbf{R}(t)dt$	
		$s,r \in \mathbb{Q}$	$t = \cos x$ или $t = \sin x$	$\int x^m \left(a + bx^n\right)^p dx$	
9	$\int \sin^s x \cos^r x dx \qquad s, r \in \mathbb{N} \cup \{0\}$		«Понижение степени»: $\sin^2 x = \left[1 - \cos(2x)\right]/2, \cos^2 x = \left[1 + \cos(2x)\right]/2;$		
		$s = r \in \mathbb{Z}$	$\int \sin^s x \cos^r x dx = \frac{1}{2^{s+1}} \int \sin^s t \ dt$	` , , , ,	
10	$\int \sin \alpha x \cos \alpha x \sin \alpha x \sin \alpha x \sin \alpha x$	$\beta x dx$,	$\sin \alpha x \cos \beta x = \left[\sin(\alpha + \beta)x + \sin(\alpha - \beta)x\right]/2,$ $\sin \alpha x \sin \beta x = \left[\cos(\alpha - \beta)x - \cos(\alpha + \beta)x\right]/2,$ $\cos \alpha x \cos \beta x = \left[\cos(\alpha - \beta)x + \cos(\alpha + \beta)x\right]/2.$		
11	$\int \mathbf{R}(\sinh x, \cosh x) dx$				
12	$\int R\left(x,\sqrt{a^2-x^2}\right)dx$		$x = a \sin t, x \in [-a, a], t \in [-\pi/2; \pi/2]$ $x = a \cos t, x \in [-a, a], t \in [0; \pi]$ $x = a \operatorname{th}t, x \in [-a, a], t \in [-\infty; +\infty]$	$\int \mathbf{R} (\sin x, \cos x) dx$	
13	$\int \mathbf{R} \left(x, \sqrt{a^2 + x^2} \right) dx$		$x = a \operatorname{th} t, x \in [-a, a], t \in [-\infty; +\infty]$ $x = a \operatorname{tg} t, x \in (-\infty, \infty), t \in (-\pi/2; \pi/2)$ $x = a \operatorname{ctg} t, x \in (-\infty, \infty), t \in (0, \pi)$ $x = a \operatorname{sh} t, x \in (-\infty, \infty), t \in (-\infty, \infty)$	$\int \mathbf{R} (\sin x, \cos x) dx$	
14	$\int \mathbf{R} \left(x, \sqrt{x^2 - a^2} \right) dx$	$dx = \frac{a}{\sin t},$	$x \in [a, +\infty), t \in [0; \pi/2)$ или $x \in (-\infty, -a], t \in (\pi/2; \pi]$ $x \in [a, +\infty), t \in [-\pi/2; 0)$ или $x \in (-\infty, -a], t \in (0; \pi/2]$ $x \in [1, +\infty), t \in [0, +\infty)$	$\int \mathbf{R}(\sin x, \cos x) dx$	

15	Интеграл от биномиального дифференциала : $\int x^m \left(a + bx^n \right)^p dx ,$ $m, n, p \in \mathbb{Q}$	выражается через элементарные функции в 3-х случаях: 1) если $p \in \mathbb{Z}$, то замена $t = \sqrt[k]{x}$, k – общий знаменатель дробей m и n ; 2) если $\frac{m+1}{n} \in \mathbb{Z}$, то замена $t = \sqrt[k]{a+bx^n}$, k – знаменатель дроби p ; 3) если $\frac{m+1}{n} + p \in \mathbb{Z}$, то замена $t = \sqrt[k]{ax^{-n} + b}$, где k – знаменатель дроби p .	$\int \mathbf{R}(t)dt$
16	$\int \mathbf{R}(x, x^{r_1},, x^{r_k}) dx,$ $r_1,, r_k \in \mathbb{Q}$	$t=\sqrt[m]{x}$, m -общий знаменатель дробей $r_1,,r_k$	$\int \mathbf{R}(t) dt$
17	$\int \mathbf{R} \left[x, \left(\frac{ax+b}{cx+d} \right)^{1/n} \right] dx$	$t = \sqrt[p]{\frac{ax+b}{cx+d}}$	$\int \mathbf{R}(t)dt$
18	$\int \frac{Mx + N}{\sqrt{ax^2 + bx + c}} dx$	$t = x + \frac{b}{2a}$	$\int \frac{M_1 t + N_1}{\sqrt{at^2 + m}} dt$
19	$\int \frac{P_n(x)}{\sqrt{ax^2 + bx + c}} dx,$ $P_n(x)$ — многочлен степени n	$\int \frac{P_n(x)dx}{\sqrt{ax^2+bx+c}} = Q_{n-1}(x)\sqrt{ax^2+bx+c} + \lambda \int \frac{dx}{\sqrt{ax^2+bx+c}},$ $Q_{n-1}(x) - \text{многочлен степени } n-1. \text{ Дифференцируя обе части этого равенства получим:}$ $P_n(x) = Q'_{n-1}(x)(ax^2+bx+c) + \frac{1}{2}Q_{n-1}(x)(2ax+b) + \lambda,$ которое дает СЛАУ размерности $n+1$ для определения коэффициентов многочлена $Q_{n-1}(x)$ и множителя λ	$\int \frac{Mx+N}{\sqrt{ax^2+bx+c}} dx$
20	$\int \frac{dx}{\left(ax^2 + bx + c\right)^{m/2}}, \ m \in \mathbb{N}$	Подстановка Абеля $t = \left(\sqrt{ax^2 + bx + c}\right)'$	$\int \mathbf{R}(t)dt$
21	$\int \frac{dx}{\left(x-x_1\right)^m \sqrt{ax^2+bx+c}}, m \in \mathbb{N}$	$t = \frac{1}{x - x_1}$	$\int \frac{P_n(x)}{\sqrt{ax^2 + bx + c}} dx$
22	$\int \frac{Ax+B}{\left(x^2+px+q\right)\sqrt{ax^2+bx+c}} dx,$ x^2+px+q не имеет действительных корней	1) если $p \neq \frac{b}{a}$, то $x = \frac{\alpha t + \beta}{t + 1}$; 2) если $p = \frac{b}{a}$, то $t = x + \frac{b}{2a}$.	$\int \frac{(Mt+N)dt}{\left(t^2+d\right)^m \sqrt{et^2+t^2}}$
23	$\int \frac{x dx}{\left(x^2 + a\right)^m \sqrt{b x^2 + c}}$	$t = \sqrt{b x^2 + c}$	$\int \boldsymbol{R}(t) dt$
24	$\int \frac{dx}{\left(x^2 + a\right)^m \sqrt{b x^2 + c}}$ $\int \frac{dx}{\left(x^2 + a\right)^m \sqrt{b x^2 + c}}$	Подстановка Абеля $t = \left(\sqrt{b x^2 + c}\right)'$	$\int \mathbf{R}(t)dt$
		Подстановки Эйлера:	
		1) если $a > 0$, то $\sqrt{ax^2 + bx + c} = \pm t \pm x\sqrt{a}$;	

2) если c > 0 , то $\sqrt{ax^2 + bx + c} = \pm tx \pm \sqrt{c}$; 3) если $ax^2 + bx + c = a(x - x_1)(x - x_2)$, то

 $\sqrt{ax^2 + bx + c} = \pm t(x - x_1).$

 $\int \mathbf{R}(t)dt$

 $\int \mathbf{R} \left(x, \sqrt{ax^2 + bx + c} \right) dx$

Выражается через элементарные функции в 3-х