Дискретная математика, Коллоквиум

Балюк Игорь @lodthe, GitHub

2019 - 2020

Содержание

1	Опр	еделения
	1.1	Логические операции: конъюнкция, дизъюнкция и отрицание
	1.2	Логические операции: импликация, XOR (исключающее или) и эквивалентность
	1.3	Булевы функции. Задание таблицей истинности и вектором значений
	1.4	Существенные и фиктивные переменные булевой функции
	1.5	Множество, подмножество, равенство множеств
	1.6	Операции с множествами: объединение, пересечение, разность, симметрическая разность.
		Диаграммы Эйлера-Венна
	1.7	Законы Моргана (с обобщением на произвольное семейство множеств)
	1.8	Закон контрапозиции
	1.9	Метод математической индукции
	1.10	Графы. Основные определения: ребра, вершины, степени вершин.
	1.11	Базовые графы: граф-путь, граф-цикл, полный граф, граф-звезда
	1.12	Подграфы. Путь, цикл, клика и независимое множество
	1.13	Компонента связности. Индуцированный подграф.
	1.14	Деревья. Полные бинарные деревья (см. ДЗ 7).
	1.15	Правильные раскраски графов. Формулировка критерия 2-раскрашиваемости
	1.16	Двудольные графы. Двудольные и двураскрашиваемые графы
	1.17	Эйлеровы циклы
	1.18	Функции. Область определения и множество значений.
	1.19	Образ множества и полный прообраз
	1.20	
	1.21	Правило суммы
	1.22	Правило произведения
	1.23	Комбинаторные числа. Число перестановок, число подмножеств размера k у n-элементного
		множества
	1.24	Характеристическая функция и её использование при подсчёте числа элементов множества.
	1.25	Формула включений и исключений
	1.26	Биномиальные коэффициенты, основные свойства. Бином Ньютона
	1.27	Треугольник Паскаля. Рекуррентное соотношение
	1.28	Бинарные отношения. Транзитивность, симметричность, рефлексивность
	1.29	Теоретико-множественные операции с отношениями. Операция обращения
	1.30	Композиция бинарных отношений
	1.31	Отношения эквивалентности
	1.32	Ориентированные графы, основные определения
	1.33	Компоненты сильной связности ориентированного графа
	1.34	
	1.35	
	1.36	Изоморфизм графов и (частичных) порядков (см. листок недели 11)
2	_	мерные задачи на понимание материала курса
	2.1	TODO()

3	Воп	росы на знание доказательств	10
	3.1	Обобщённый закон Моргана	10
	3.2	Иррациональность числа $\sqrt{2}$. Существуют такие иррациональные числа a и b , что число	
		a^b рационально	10
	3.3	Нижняя оценка числа связных компонент в неориентированном графе	10
	3.4	Если G — минимально связный граф (удаление любого ребра приводит к несвязности), то	
		G не содержит циклов	11
	3.5	Если G — связный ациклический граф, то между любыми двумя вершинами G существует	
		единственный путь	12
	3.6	Если между любыми двумя вершинами G существует единственный путь, то $G-$ связный	
		граф с $ V -1$ ребром	12
	3.7	Критерия 2-раскрашиваемости неориентированного графа.	13
	3.8	Критерий существования эйлерова цикла в неориентированном графе.	13
	3.9	Явная формула для числа сочетаний $C(n,k)$: числа k -элементных подмножеств n -элементного	
		множества	14
	3.10	Бином Ньютона. Формула для биномиальных коэффициентов	15
	3.11	Основные свойства треугольника Паскаля: симметричность строк, возрастание чисел в	
		первой половине строки	15
	3.12	Основные свойства треугольника Паскаля: формула для суммы чисел в строке, нижняя	
		оценка на центральный коэффициент	15
	3.13	Число решений уравнения $x_1 + x_2 + \dots + x_k = n$ в неотрицательных целых числах. (Задача	
		Муавра.)	16
	3.14	Формула включений и исключений	16
		Число отображений, функций, инъекций, биекций из m -элементного множества в n -элементно	oe
		MHOЖество	17
	3.16	Формула для числа сюръекций	18
	3.17	Основная теорема об отношениях эквивалентности (классы эквивалентности на множестве	
		A — в точности разбиения множества A на подмножества)	18
	3.18	Равносильность свойств ориентированных графов: (1) каждая компонента сильной связ-	
		ности состоит из одной вершины; (2) вершины графа возможно занумеровать так, чтобы	
		каждое ребро вело из вершины с меньшим номером в вершину с большим номером; (3) в	
		графе нет циклов длины больше 1 (граф ацикличен)	19

1 Определения

1. Логические операции: конъюнкция, дизъюнкция и отрицание

Обозначение	Смысл	Название
$A \wedge B$	АиВ	Конъюнкция
$A \vee B$	A или B	Дизъюнкция
$\neg A$	He A	Отрицание

A	B	$A \wedge B$	$A \lor B$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

A	$\neg A$
0	1
1	0

2. Логические операции: импликация, ХОР (исключающее или) и эквивалентность

Обозначение	Смысл	Название
$A \oplus B$	либо A , либо B	XOR
$A \rightarrow B$	из A следует B	Импликация
$A \leftrightarrow B$	A равносильно B	Эквивалентность

A	B	$A \oplus B$	$A \rightarrow B$	$A \leftrightarrow B$
0	0	0	1	1
0	1	1	1	0
1	0	1	0	0
1	1	0	1	1

3. Булевы функции. Задание таблицей истинности и вектором значений

Логические связки — это функции, которые зависят от набора переменных, принимающих значения 0 или 1 (от набора высказываний). Такие переменные называют булевыми переменными, а функции — булевыми функциями.

Запись таблицей

A	B	$A \wedge B$
0	0	0
0	1	0
1	0	0
1	1	1

Первым идёт набор из одних нулей, а дальше i-ый набор является двоичной записью числа i-1. Таким образом, всего в таблице истинности 2^k строк (именно столько чисел имеют двоичную запись длины k). Благодаря стандартному порядку можно просто задать булеву функцию столбцом её значений:

$$f(x_1) = 10 = \neg x_1, \quad g(x_1, x_2) = 0001 = x_1 \land x_2$$

Говорят, что функция задана вектором значений

4. Существенные и фиктивные переменные булевой функции

Если для булевой функции $f(x_1, x_2, \dots, x_n)$ справедливо равенство

$$f(x_1,\ldots,x_{i-1},0,x_{i+1},\ldots,x_n)=f(x_1,\ldots,x_{i-1},1,x_{i+1},\ldots,x_n),$$

переменная x_i называется фиктивной; в случае, если равенство не выполняется для переменной x_i , то она называется существенной.

5. Множество, подмножество, равенство множеств

Когда говорят, что задано множество A, под этим понимают, что A представляет собой совокупность объектов, игнорируя при этом какие либо отношения между этими объектами, в частности порядок; кроме того, один объект не может входить в множество более одного раза.

Два множества равны друг другу, если их элементы совпадают.

 $\forall x \in B \implies x \in A \implies B \subseteq A$ (каждый элемент из множества B принадлежит множеству A означает, что B — подмножество множества A)

6. Операции с множествами: объединение, пересечение, разность, симметрическая разность. Диаграммы Эйлера-Венна

• Объединение

$$A \cup B = \{x \mid (x \in A) \lor (x \in B)\}$$

• Пересечение

$$A \cap B = \{x \mid (x \in A) \land (x \in B)\}$$

• Разность

$$A \setminus B = \{x \mid (x \in A) \land (x \notin B)\}$$

• Симметрическая разность

$$A\triangle B = \{x \mid ((x \in A) \land (x \notin B)) \lor ((x \notin A) \land (x \in B))\}$$

• Диаграмма Эйлера-Венна — наглядное средство для работы со множествами. На этих диаграммах изображаются все возможные варианты пересечения множеств.

7. Законы Моргана (с обобщением на произвольное семейство множеств)

С помощью диаграмм легко проверить, что $A \cap B = \overline{\overline{A} \cup \overline{B}}, A \cup B = \overline{\overline{A} \cap \overline{B}}$. Из связи с таблицами истинности получаем, что $a \wedge b = \neg(\overline{a} \vee \overline{b})$ и $a \vee b = \neg(\overline{a} \wedge \overline{b})$

Эти формулы можно обобщить:

$$A_1 \cup A_2 \cup \cdots \cup A_n \cup \cdots = \overline{A_1} \cap \overline{A_2} \cap \cdots \cap \overline{A_n} \cap \cdots$$

8. Закон контрапозиции

Логический закон контрапозиции $A \to B = \neg B \to \neg A$ при переводе на язык множеств гласит $A \subseteq B \iff \overline{B} \subseteq \overline{A}$

9. Метод математической индукции

Доказательство по индукции возможно только тогда, когда доказываемое утверждение зависит от натурального параметра. То есть доказывается утверждение

$$\forall n \in N : A(n)$$

С помощью правил вывода схему доказательства по индукции можно описать так:

$$\frac{A(0), \quad \forall n: \ A(n) \to A(n+1)}{\forall n: \ A(n)}$$

Первая посылка называется базой, а вторая — шагом индукции или переходом.

10. Графы. Основные определения: ребра, вершины, степени вершин.

Зафиксируем граф G(V,E). Вершины u и v называются **смежными** или **соседями**, если они образуют ребро: $\{u,v\}\in E$. Рёбра e и f называются **смежными**, если они имеют общую вершину: $e\cap f\neq\varnothing$. Вершина v **инцидента** ребру e, если $v\in e$. Вершины u и v, инцидентные ребру e, называются его концами; говорят, что e соединяет u и v. Рёбра часто записывают сокращённо: uv вместо $\{u,v\}$. Степенью вершины v называется число смежных с v рёбер и обозначается d(v).

$$\sum_{u \in V} d(u) = 2|E|$$

11. Базовые графы: граф-путь, граф-цикл, полный граф, граф-звезда

- Граф-путь $P_n, n \geqslant 0$ состоит из вершин $\{v_0, v_1, \dots, v_n\}$ и рёбер $\{v_i, v_{i+1}\}, i < n.$
- Граф-цикл $C_n, n \geqslant 3$ состоит из вершин $\{v_1, \ldots, v_n\}$ и рёбер $\{v_i, v_{i+1}\}, i < n$, а также $\{v_n, v_1\}$. Как и в случае пути, длина цикла количество рёбер в цикле.

- Полный граф $K_n(V, E), n \geqslant 1$ состоит из n вершин и имеет всевозможные рёбра: $E = \binom{V}{2}$
- Граф-звезда состоит из выделенной вершины, соединённой рёбрами со всеми остальными вершинами (больше рёбер в этом графе нет).

12. Подграфы. Путь, цикл, клика и независимое множество.

Граф H(W,I) называется подграфом графа G(V,E), если $W\subseteq V$ и $I\subseteq E$. Другими словами, граф H получается из графа G удалением рёбер и вершин (вместе со смежными рёбрами). Это обозначают $H\subseteq G$.

Подграф H графа G называется

- ullet путём из вершины u в вершину v, если H это граф-путь P_n с началом в u и концом в v
- циклом, если H это граф-цикл C_n
- кликой, если H это полный граф K_n

Пусть $U\subseteq V$; подграф H графа G(V,E), состоящий из вершин U и содержащий все рёбра, которые есть в G называется **индуцированным** (множеством U); формально $H=(U,E\cap \binom{U}{2})$. Множество $U\subseteq V(G)$ называется **независимым**, если в индуцированном U подграфе нет рёбер, т.е. никакие две вершины из множества U в графе G не соединены рёбрами.

13. Компонента связности. Индуцированный подграф.

Пусть $U \in V$; подграф H графа G(V, E), состоящий из вершин U и содержащий все рёбра, которые есть в G называется **индуцированным** (множеством U); формально $H = (U, E \cap \binom{U}{2})$.

Вершина u называется **достижимой** из v, если есть путь из v в u. Граф G называется **связным**, если любая его вершина достижима из любой другой.

H — компонента связности графа G, если $H \in G$, H — связный граф и не существует связного подграфа $H' \in G$, такого что $H \subsetneq H'$.

14. Деревья. Полные бинарные деревья (см. ДЗ 7).

Будем называть граф деревом, если он удовлетворяет любому из следующих свойств:

- (1) Минимально связный граф (т. е. при удалении любого ребра граф становится несвязным).
- (2) Связный граф, в котором |E| = |V| 1.
- (3) Ациклический связный граф (связный граф без циклов).
- (4) Граф, любая пара вершин которого связана единственным путём.

Вершинами полного бинарного дерева ранга n являются двоичные слова длины не больше n (включая пустое слово длины 0). Два слова соединены ребром в полном бинарном дереве, если одно получается из другого приписыванием одной цифры справа (нуля или единицы).

15. Правильные раскраски графов. Формулировка критерия 2-раскрашиваемости.

Раскраска графа — это функция f, которая ставит в соответствие каждой вершине графа некоторый цвет, т. е. $f(u) \in 1, ..., k$. Раскраска f называется **правильной**, если концы всех рёбер покрашены в разные цвета, т. е. для каждого ребра $\{u,v\}$ справедливо $f(u) \neq f(v)$

Минимальное число цветов, в который можно правильно раскрасить граф G называется **хроматическим числом** и обозначается через $\chi(G)$.

 Γ раф G является **двураскрашиваемым** тогда и только тогда, когда в нём нет циклов нечётной длины.

16. Двудольные графы. Двудольные и двураскрашиваемые графы.

Граф G(V,E) называется **двудольным**, если существует разбиение множества V на подмножества L и R ($V=L\cup R, L\cap R=\varnothing$), такие что у каждого ребра один конец лежит в L, а другой в R, т. е. между вершинами из L нет рёбер, как и между вершинами из R. Множества L и R называют **долями** графа.

Граф двудольный тогда и только тогда, когда он двураскрашиваемый.

17. Эйлеровы циклы.

Маршрутом в графе G называется последовательность вершин $v_0, v_1, ..., v_n$, такая что $n \ge 0$ и $\{v_i, v_{i+1}\} \in E(G), 0 \le i \le n-1$.

Маршрут, который содержит все рёбра графа ровно один раз назовём эйлеровым маршрутом.

Связный граф G содержит замкнутый эйлеров маршрут (эйлеров цикл) тогда и только тогда, когда степень каждой вершины чётна.

18. Функции. Область определения и множество значений.

Неформально, функция — это закон, который ставит в соответствие элементам множества X элементы множества Y; каждому элементу $x \in X$ поставлен в соответствие не более, чем один элемент из множества y.

Введём понятия степени вершин и (множества) соседей для ориентированного графа. Поскольку рёбра имеют направление, то мы разделяем исходящую степень $d_+(v)$ (число вершин достижимых из v по одному ребру) и входящую степень $d_-(v)$ (числу вершин, из которых за один шаг по ребру можно добраться до v).

Обозначим через f множество рёбер графа, задающего функцию f из X в Y; тогда $(x,y) \in f$ означает, что f(x) = y. Пусть $G(X \cup Y, f)$ — граф, для функции f.

- Областью определения $Dom(f) \in X$ называют подмножество вершин с исходящей степенью 1 (подмножество X, на котором определена функция f).
- Множеством значений $Range(f) \in Y$ называется подмножество вершин с входящей степенью больше 0 (подмножество Y всевозможных значений f).

19. Образ множества и полный прообраз.

• Образом f(A) множества $A \in X$ называют множество значений, которые принимает f на подмножестве A; на языке графов — это множество правых соседей $N_+(A)$

$$f(A) = \{y \mid \exists x \in A : f(x) = y\} = N_{+}(A)$$

• Полным прообразом $f^{-1}(B)$ множества $B \in Y$ называют множество элементов X, значение функции на которых лежит в B; на языке графов — это множество левых соседей $N_{-}(B)$:

$$f^{-1}(B) = \{x \mid \exists y \in B : f(x) = y\} = N_{-}(B)$$

Рассмотрим на примере:

$$f: 1 \mapsto a, \quad 2 \mapsto b, \quad 4 \mapsto b, \quad 5 \mapsto d, \quad 6 \mapsto d, \quad 7 \mapsto d$$

Тогда

$$Dom(f) = \{1, 2, 4, 5, 6, 7\}, Range(f) = \{a, b, d\}$$
$$f(\{1, 3, 5, 7\}) = \{a, d\}, f^{-1}(\{a, b, c\}) = \{1, 2, 4\}$$

20. Отображения (всюду определённые функции). Инъекции, сюръекции и биекции.

В случае Dom(f)=X, функция f называется всюду определённой или отображением . Запись $f:X\mapsto Y$ означает, что f всюду определена.

- Отображение $f: X \mapsto Y$ называется **инъекцией**, если $f(x) \neq f(x')$ при $x \neq x'$. В терминах графа, это означает, что входящая степень каждого $y \in Y$ не превосходит единицу.
- Отображение $f: X \mapsto Y$ называется **сюръекцией**, если у каждого элемента y существует прообраз, т. е. Range(f) = Y или что то же самое $\forall y \in Y \exists x \in X: f(x) = y$. В терминах графа, это означает, что входящая степень каждого $y \in Y$ больше нуля.
- Отображение $f: X \mapsto Y$ называется **биекцией**, если оно является инъекцией и сюръекцией.

21. Правило суммы

Правило суммы гласит, что если конечные множества A и B не пересекаются, то мощность их объединения совпадает с суммой мощностей:

$$|A \cup B| = |A| + |B|$$
, если $A \cap B = \emptyset$

В общем случае

$$|A \cup B| = |A| + |B| - |A \cap B|$$

22. Правило произведения

Правило произведения формулируется на естественном языке следующим образом. Если есть n объектов первого типа и после выбора любого объекта первого типа можно выдрать m объектов второго типа, то всего есть $n \times m$ способов последовательно выбрать первый и второй объект.

Правило произведения легко обобщается по индукции на k последовательных выборов. Если объект первого типа можно выбрать n_1 способами, после чего второй объект можно выбрать n_2 способами и т. д. (k-ый объект можно выбрать n_k способами), то выбрать последовательно k объектов можно $n_1 \times n_2 \times \cdots \times n_k$ способами

23. Комбинаторные числа. Число перестановок, число подмножеств размера k у n-элементного множества

Слово — это конечная последовательность символов, которые в свою очередь определяются как элементы конечного множества — **алфавита**. Под алфавитом из k символов часто удобно понимать множество $[k]_0 = \{0, 1, \dots, k-1\}$ или $[k]_1 = \{1, 2, \dots, k\}$.

Слова над алфавитом $[n]_1$ длины n, в которых все символы разные называются **перестановками**. Число перестановок есть n!.

Если $\binom{n}{k}$ число k-элементных подмножеств n-элементного множества, то $\binom{n}{k} \times k! = \frac{n!}{(n-k)!}$, отсюда получаем, что

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Число $\binom{n}{k}$ называют числом сочетаний

24. Характеристическая функция и её использование при подсчёте числа элементов множества

Зафиксируем юнивёрсум U. Функция $\chi_A(x)$ называется характеристической функцией множества $A\subseteq U$, если

$$\chi_A(x) = \begin{cases} 1, & \text{если } x \in A; \\ 0, & \text{если } x \notin A. \end{cases}$$

С помощью характеристической функции легко выразить мощность множества:

$$|A| = \sum_{x \in U} \chi_A(x)$$

25. Формула включений и исключений

Формула включений исключений устроена так (здесь $[n] = \{1, 2, \dots, n\}$)

$$|A_1 \cup A_2 \cup \dots \cup A_n| = \sum_{i=1}^n |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j| + \dots + (-1)^{m+1} \sum_{S \subseteq [n], |S| = m} \left| \bigcap_{A \in S} A \right|$$

или более компактно

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{S \subseteq [n], S \neq \emptyset} (-1)^{|S|+1} \left| \bigcap_{A \in S} A \right|$$

26. Биномиальные коэффициенты, основные свойства. Бином Ньютона.

Число $\binom{n}{k}$ называют числом сочетаний

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Собственно говоря, сразу ясно, что после раскрытия скобок в $(a+b)(a+b)(a+b)\dots$ (n раз) получатся произведения n букв (сколько-то a, остальные b), и вопрос тольков том, какие будут коэффициенты при этих произведениях (сколько подобных членов). Так вот, формула бинома Ньютона и говорит, какие это будут коэффициенты: это числа сочетаний, и они написаны в n-й строке треугольника Паскаля. Поэтому числа сочетаний также называют биномиальными коэффициентами. Также число сочетаний из n по k соответствует количеству k-элементных подмножеств n-элементного множества.

7

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$
$$\binom{n}{k} = \binom{n}{n-k}$$
$$(1+1)^n = \sum_{k=0}^n \binom{n}{k} = 2^n$$
$$\sum_{k=0}^n (-1)^k \binom{n}{k} = 0$$

27. Треугольник Паскаля. Рекуррентное соотношение.

k-ый элемент в n-ой строке Паскаля равен $\binom{n}{k}$ и получается суммированием двух верхний соседних элементов.

k-ый элемент в n-ой строке равен (n-k)-ому, а сумма элементов равна 2^n .

Числа сначала возрастают (до середины), а потом начинают симметрично убывать. Последовательность биномиальных коэффициентов $\binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \dots, \binom{n}{k}, \dots, \binom{n}{n}$ возрастает, если $k \leqslant \frac{n}{2}$, и убывает, если $k \geqslant \frac{n}{2}$.

Справедлива оценка

$$\binom{2n}{n} > \frac{2^{2n}}{2n+1}$$

28. Бинарные отношения. Транзитивность, симметричность, рефлексивность.

Формально **бинарное отношение** R между множествами A и B — это некоторое подмножество их декартова произведения:

$$R \subseteq A \times B$$

Если $(a,b) \in R$, говорят, что элемент a находится в отношении R с элементом b. Запись aRb. В случае, когда $R \in A \times A$, говорят, что отношение R задано на множестве A. Отношение $R \subseteq A \times A$

- рефлексивно, если $\forall a \in A : aRa$
- ullet симметрично, если $\forall a,b \in A:\ aRb \implies bRa$
- транзитивно, если $\forall a, b, c \in A : (aRb) \land (bRc) \implies aRc$

29. Теоретико-множественные операции с отношениями. Операция обращения.

Обратным отношением к отношению $R \subseteq A \times B$ называют отношение

$$R^{-1} = \{(y, x) \mid xRy\} \subseteq B \times A$$

Операция обращения отношений известна также как операция транспонирования, поскольку в случае отношений между конечными множествами, обратное отношение задаётся транспонированной матрицей исходного.

30. Композиция бинарных отношений

Пусть $P \subseteq X \times Y, Q \subseteq Y \times Z$.

$$Q \circ P = \{(x,z) \mid \exists y \in Y: \ xPy \land yQz\}$$

31. Отношения эквивалентности.

Рефлексивное, симметричное и транзитивное отношение называют **отношением эквивалентности**.

Определим **класс эквивалентности** [a] как множество всех таких элементов множества A, которые эквивалентны элементу a:

$$[a] = \{x \mid x \in A, x \sim a\}$$

Классы эквивалентности [a] и [b] (по отношению эквивалентности \sim) либо не пересекаются, либо совпадают. Множество A разбивается в объединение классов эквивалентности.

Пример отношения эквивалентности из геометрии: отношение подобия треугольников.

32. Ориентированные графы, основные определения.

Формально, ориентированный граф задан парой (V,E), где множество вершин V как и раньше произвольное, а множество $E\subseteq V\times V$ — состоит из упорядоченных пар вершин. По-умолчанию, мы считаем, что в каждой паре вершины различны:

$$E \subseteq \{(u, v) \mid u, v \in V, u \neq v\}$$

рёбра вида (u, u) называются петлями и они возникают естественным образом при описании бинарных отношений с помощью ориентированных графов.

Определения, введённые нами для неориентированных графов, с поправками переносятся на ориентированные.

Исходящей степенью вершины $d_+(v)$ называется число рёбер, исходящих из вершины v, **входящей степенью** $d_-(v)$ — число рёбер, входящих в v. Вершины входящей степени 0 называют **источниками**, к таким относится вершина s ($d_-(s) = 0$), а вершины с нулевой исходящей степенью называют стоками: $d_+(t) = 0$. Источники и стоки часто обозначают соответственно через s и t, от слов source и target, хотя стоки на английском и называются sink.

Маршрутом в ориентированном графе называется последовательность вершин $\{v_0,v_1,\ldots,v_n\}$, такая что n>0 и $(v_i,v_{i+1})\in E(G)$ для $0\leqslant i\leqslant n-1$. Длина маршрута — это число рёбер, соединяющих вершины маршрута; оно совпадает с n. Маршрут называется замкнутым, если $v_0=v_{i+1}$

33. Компоненты сильной связности ориентированного графа.

Вершина v достижима из u, если существует маршрут из u в v; отношение достижимости между вершинами обозначим $u \leadsto v$. Определим отношение двусторонней достижимости $u \leftrightsquigarrow v = (u \leadsto v) \land (v \leadsto u)$. Отношение двусторонней достижимости (u достижима из v и наоборот) — отношение эквивалентности.

Компонента сильной связности ориентированного графа — класс эквивалентности по отношению достижимости. То есть множество $U \subseteq V$ — компонента сильной связности, если любые две вершины множества U достижимы друг из друга и в U нельзя добавить ещё вершины с сохранением этого свойства (множество U — максимальное по включению).

34. Отношения (частичного) порядка (строгие и нестрогие), линейные порядки.

Отношение называется антисимметричным, если из uRv и vRu следует, что u=v:

$$\forall u, v \in V : (uRv) \land (vRu) \implies u = v$$

Отношение называется **антирефлексивным**, если не содержит ни одной пары (v, v) (не содержит петлей).

Рассмотрим отношения, которые транзитивны и антисимметричны и либо рефлексивны, либо антирефлексивны. Такие отношения называют **отношениями (частичного) порядка** или (частичными) порядками. Например, отношения \leq , < на множествах \mathbb{N}_0 , \mathbb{Z} , \mathbb{Q} , \mathbb{R} . Эти символы традиционно используют для отношений порядка.

Рефлексивные отношение порядка традиционно обозначают символом \leq , быть может с индексом, такие порядки называют **нестрогими**, антирефлексивные отношения порядка обозначают символом <, их называют **строгими**.

Отношение порядка, в котором любые два элемента сравнимы называется линейным.

35. Отношение непосредственного следования (см. листок недели 11).

Каждому отношению порядка < (\leqslant) ставят в соответствие отношение **непосредственного следования** \prec :

$$(\prec_P) = \{(x, y) \mid (x <_P y) \land (\nexists z \in V : (x <_P z) \land (z <_P y))\}$$

36. Изоморфизм графов и (частичных) порядков (см. листок недели 11).

Отношения частичного порядка $\leqslant_P \subseteq A \times A$ и $\leqslant_Q \subseteq B \times B$ называются **изоморфными**, если существует такая биекция $f: A \mapsto B$, что $x \leqslant_P y \iff f(x) \leqslant_Q f(y)$.

2 Примерные задачи на понимание материала курса

1. TODO()

3 Вопросы на знание доказательств

1. Обобщённый закон Моргана

$$A_1 \cap A_2 \cap \dots \cap A_n \cap \dots = \overline{\overline{A_1} \cup \overline{A_2} \cup \dots \cup \overline{A_n} \cup \dots}$$
 (1)

$$B_1 \cup B_2 \cup \dots \cup B_n \cup \dots = \overline{\overline{B_1} \cap \overline{B_2} \cap \dots \cap \overline{B_n} \cap \dots}$$
 (2)

Доказательство. Докажем обобщённую формулу 1, обозначим левую часть за X, а правую за Y. Если $x \in X$, то x принадлежит каждому множеству A_i , но тогда он не принадлежит ни одному дополнению $\overline{A_i}$, а значит и их объединению. Значит x принадлежит дополнению от объединения дополнений, т. е. Y. Мы доказали, что $X \subseteq Y$.

Пусть теперь $y \in Y$, тогда $y \notin \overline{Y}$ и потому для каждого i выполняется $y \notin \overline{A_i}$. Но раз $y \notin \overline{A_i}$, то $y \in A_i$ (для каждого i), а потому $y \in X$. Отсюда $Y \subseteq X$; как и в первом случае включение справедливо в силу произвольности y.

Итак, мы доказали, что X = Y, что и требовалось. Обратим внимание, что при доказательстве равенства двух множеств требуется доказывать включения в обе стороны!

Двойственный закон Моргана 2 можно доказать аналогично, но можно и вывести из первого закона. Поскольку тождество 1 справедливо для произвольных множеств, заменим в нём A_i на $\overline{B_i}$, снимем двойное дополнение и возьмём дополнения от обеих частей равенств.

2. Иррациональность числа $\sqrt{2}$. Существуют такие иррациональные числа a и b, что число a^b рационально.

Число $\sqrt{2}$ иррационально.

Доказательство. Доказательство от противного. Положим, что $\sqrt{2}=\frac{m}{n}$, где $\frac{m}{n}$ — несократимая дробь, $m\in\mathbb{Z}, n\in\mathbb{N}_1$. Тогда $m^2=2n^2$, отсюда m^2 делится на 2, и m делится на 2, а значит m^2 делится на 4, и отсюда n^2 делится на 2 и n делится на 2. Но тогда и m делится на 2, и n делится на 2, а значит дробь $\frac{m}{n}$ сократима, пришли к противоречию.

Существуют такие иррациональные числа a и b, что число a^b рационально.

Доказательство. Положим, что $a=b=\sqrt{2}$. Если число $(\sqrt{2})^{\sqrt{2}}$ рационально, то утверждение доказано. Если нет, то возьмём $a=(\sqrt{2})^{\sqrt{2}}, b=\sqrt{2}$:

$$\left((\sqrt{2})^{\sqrt{2}}\right)^{\sqrt{2}} = \left(\sqrt{2}\right)^{\sqrt{2} \times \sqrt{2}} = \left(\sqrt{2}\right)^2 = 2$$

То есть, либо подходит одна пара чисел, либо другая, а какая из — мы не знаем.

3. Нижняя оценка числа связных компонент в неориентированном графе.

Теорема. Обозначим через C число компонент связности графа G(V, E). Для него справедливо неравенство

$$C \geqslant |V| - |E| \tag{1}$$

Доказательство. Зафиксируем количество вершин в графе |V| и докажем утверждение индукцией для графов с числом рёбер |E| от 0 до |V|.

- База: При |E| = 0 число компонент связности совпадает с числом вершин: C = |V|.
- Шаг: Пусть для |E|=n утверждение доказано. Граф с (n+1)-м ребром получается из некоторого графа с n рёбрами добавлением ребра. Для графа на n рёбрах неравенство выполняется, а добавленное ребро либо соединит две вершины из одной компоненты связности, что не уменьшит C, но уменьшит |V|-|E|, либо соединит вершины из разных компонент, что уменьшит и левую и правую часть неравенства 1 на 1. В каждом из случаев, верное неравенство перейдёт в верное.

Следствие. Если граф связный, то $|E| \ge |V| - 1$.

4. Если G — минимально связный граф (удаление любого ребра приводит к несвязности), то G не содержит циклов.

Пусть

$$G$$
 — минимально связный граф (удаление любого ребра приводит к несвязности) (1)

$$G$$
 — ациклический связный граф (2)

Доказательство. Установим импликацию $1 \implies 2$, воспользовавшись контрапозицией, т. е. докажем $\neg 2 \implies \neg 1$. Отрицание условия 2 означает, что граф несвязен или имеет цикл, а условия 1, что граф или несвязен или связен, но не минимально.

Если граф несвязен, то импликация ¬ 2 \implies ¬ 1 выполняется, поэтому сосредоточимся на случае связного графа, который содержит цикл.

В следующей лемме мы установили, что при удалении ребра из цикла в связном графе, граф остаётся связным, т. е. граф до удаления ребра был не минимально связным.

Лемма. Пусть G(V, E) — связный граф и ребро e лежит на цикле; тогда граф $G_0 = (V, E \setminus \{e\})$ связный. То есть, удаление ребра цикла не нарушает связность.

Перед доказательством введём вспомогательные обозначения. Пусть P и Q — пути в графе G, $x,\,y$ — вершины, лежащие на пути P, а y и z — вершины, лежащие на пути Q. Обозначим через xPy — подпуть пути P, начинающийся с вершины x и заканчивающийся в вершине y.

Доказательство. Пусть ребро e лежит в подграфе-цикле C. Обозначим через $Q \subseteq C$ подграф-путь, получающийся из C удалением ребра e (c сохранением его концов).

Зафиксируем все пути между всеми парами вершин перед удалением e и рассмотрим путь P с началом в вершине w и концом в вершине z. Если ребро e не лежит на пути P, то после удаления в графе ребра e этот путь не пострадает. Если же e лежит на пути, то превратим этот путь в другой путь с помощью пути Q.

Упорядочим вершины P; пусть вершина x — первая общая вершина путей P и Q (ближайшая к w, возможно сама w), а y — последняя общая вершина путей P и Q (ближайшая к z, быть может сама z). Вершины x и y определены, потому что пути P и Q имеют хотя бы две общие вершины — концы ребра e.

Докажем, что wPxQyPz — путь, соединяющий вершины w и z, и не проходящий через ребро e. Действительно, пути wPx и xQy не имеют общих вершин, кроме x, поскольку иначе в пути P нашлась бы вершина ближе к w, чем x, которая была бы общая с путём Q, что противоречит выбору x; симметрично пути xQy и yPz не имеют общих вершин, кроме y (иначе нашлась бы общая вершина ближе к z, чем y); пути wPx и yPz не имеют общих вершин, поскольку это непересекающиеся подпути пути P.

Итак, мы доказали, что после удаления ребра e в графе по-прежнему останутся пути между всеми парами вершин, т. е. граф останется связным.

11

5. Если G — связный ациклический граф, то между любыми двумя вершинами G существует единственный путь.

Пусть

$$G$$
 — связный ациклический граф (1)

Между любыми двумя вершинами
$$G$$
 существует единственный путь (2)

Доказательство. Докажем $1 \implies 2$, доказав контрапозицию $\neg 2 \implies \neg 1$. Если выполнено условие $\neg 2$ и между какой-то парой вершин нет ни одного пути, то граф несвязный и справедливо условие $\neg 1$. Осталось доказать следующую лемму.

 ${\bf Лемма}.$ Если между вершинами w и zграфа есть два различных пути P и Q, то граф содержит цикл.

Доказательство. Заметим, что $w \neq z$ (из вершины в себя ведёт единственный путь — длины 0). Если w и z единственные общие вершины путей P и Q, то склеив два пути получится цикл.

Если же нет, допустим, что у путей P и Q существуют общие вершины x и y, такие что у путей xPy и xQy нет общих вершин, кроме концов, и один из путей не короче двух. В этом случае, при объединении путей xPy и xQy, получится цикл.

Чтобы найти x будем двигаться вдоль путей P и Q от w к z, пока не встретится первая несовпадающая вершина. Такое обязательно случится, иначе пути совпадают. Будем считать, что несовпадающая вершина u лежит на пути P и $u \neq z$ (иначе поменяем P и Q местами). Выберем вершину перед u в качестве x. В качестве y выберем первую после x общую вершину путей xPz и xQz. Таким образом получим, что пути xQy и xPy не имеют общих вершин кроме концов, и длина пути P хотя бы 2.

6. Если между любыми двумя вершинами G существует единственный путь, то G — связный граф с |V|-1 ребром.

Между любыми двумя вершинами
$$G$$
 существует единственный путь (1)

$$G$$
 — связный граф с $|V|$ — 1 ребром (2)

Доказательство. Осталось доказать импликацию $1 \implies 2$. Проведём доказательство индукцией по числу вершин в графе.

- $\mathit{Базa}$: при |V|=1 в графе нет рёбер и в вершину в себя есть единственный путь длины 0.
- Шаг: пусть утверждение верно для всех графов на n вершинах и пусть G произвольный граф, удовлетворяющий условию 1, в котором V(G) = n + 1. Выберем в G самый длинный путь P, конец которого обозначим через z.

Докажем от противного, что вершина z имеет степень 1. Допустим, что у вершины z есть ещё сосед x, кроме предшествующей ей вершины y на пути P. Если вершина x не лежит на пути P, то к пути P можно добавить ребро zx и сделать его длиннее — противоречие с выбором P. Если же x лежит на пути P и $x \neq y$, то в графе есть два простых пути, соединяющие вершины x и z: xPz и ребро xz, что противоречит условию 1.

Удалив вершину z из графа G получим связный граф G_0 на n вершинах, для которого справедливо предложение индукции: $|E(G_0)|=n-1$, поскольку между любой парой вершин G_0 существует единственный путь. Вернув z на место, получаем, что мы увеличили на единицу и число вершин и число рёбер графа G_0 , а потому доказали, что |E(G)|=|V(G)|-1; шаг индукции доказан.

При доказательстве импликации мы доказали следующее свойство деревьев:

Утверждение. В любом дереве, более с чем одной вершиной, есть хотя бы две вершины степени 1.

7. Критерия 2-раскрашиваемости неориентированного графа.

Теорема. Γ раф G является двураскрашиваемым тогда и только тогда, когда в нём нет циклов нечётной длины.

Доказательство. Докажем сначала, что в двураскрашиваемом графе нет циклов нечётной длины. По контрапозиции, это условие равносильно тому, что если в графе есть цикл нечётной длины, то его нельзя раскрасить в два цвета. Это утверждение легко проверить. Если правильная раскраска есть, то в силу симметрии можно считать, что первая вершина цикла покрашена в цвет 1, тогда вторая вершина покрашена в цвет 2 и так далее, то есть каждая нечётная вершина будет покрашена в цвет 1, а каждая чётная — в цвет 2. Тогда последняя вершина цикла будет покрашена в тот же цвет, что и первая, что невозможно.

Докажем теперь, что если в графе нет циклов нечётной длины, то он двураскрашиваемый. Для этого построим раскраску. Выберем в каждой компоненте связности по вершине c, которую назовём центром, и покрасим её в цвет 2; все вершины на расстоянии 1 от неё покрасим в цвет 1, все вершины на расстоянии 2 — в цвет 2 и так далее: вершины на чётном расстоянии от центра покрасим в цвет 2, а на нечётном в цвет 1.

Предположим, что в результате этой процедуры получилась неправильная раскраска. Это означает, что у некоторого ребра $\{u,v\}$ концы были покрашены в один цвет, а это произошло, если расстояния от центра с некоторой компоненты до вершин u и v имеют одинаковую чётность. Пусть P — кратчайший путь от центра до u, а Q — кратчайший путь от центра до v и w самая дальняя от центра их общая вершина (быть может сам центр, если других общих вершин нет).

Заметим, что w не совпадает ни с u, ни с v: иначе мы получили бы, что расстояния до u и v отличаются на единицу; по этой же причине ребро $\{u,v\}$ не лежит ни на одном из этих путей. Пути cPw и cQw имеют одинаковую длину; в противном случае один из этих путей можно было бы заменить на более короткий другой и сократить длину пути до u или v. Отсюда мы получаем, что пути wPu и wQv пересекаются только по вершине w и их длины имеют одинаковые чётности (от длин одинаковой чётности отнимается расстояние от c до w). Объединив эти пути и добавив к ним ребро $\{u,v\}$ получим цикл нечётной длины, что приводит нас к противоречию.

8. Критерий существования эйлерова цикла в неориентированном графе.

Теорема. Связный граф G содержит замкнутый эйлеров маршрут тогда и только тогда, когда степень каждой вершины чётна.

 $\ \ \,$ Доказательство. Докажем сначала, что если в графе есть вершина нечётной степени, то в нём нет замкнутого Эйлерова маршрута. Пусть x — вершина нечётной степени. Если в графе есть замкнутый эйлеров маршрут, то циклически сдвинув его вершины легко добиться, чтобы маршрут начинался и заканчивался в x.

Заметим, что каждый раз, когда вершина x встречается в середине маршрута, в маршруте встречаются сразу два ребра x: в x нужно сначала зайти по одному ребру, а потом выйти по другому. Поскольку x является первой и последней вершиной маршрута, то на его концах также задействуется два ребра: первое на первом выходе из x, а второе — при последнем возврате. Значит, что в во всём маршруте участвовало только какое-то чётное число рёбер, смежных x, а всего их нечётное число — получается, что хотя бы одно ребро, смежное с x, в маршрут не попало.

Перейдём теперь к доказательству основной импликации: из чётности всех степеней связного графа следует существование замкнутого эйлерова маршрута. Пусть $R=r_0,r_1,\ldots,r_m$ — маршрут максимальной длины, в который каждое ребро графа G входит не более одного раза. В случае, если таких маршрутов несколько, то выберем любой из них. Установим два свойства такого маршрута, которые и приведут к доказательству существования искомого маршрута.

• Свойство 1. $r_0 = r_m$. Предположим противное. Повторяя те же аргументы, что и в первом абзаце, получим, что между r_0 и r_{m-1} встречается чётное число рёбер (так как $r_0 \neq r_m$ и по определению маршрута $r_{m-1} \neq r_m$, каждое вхождение r_m дает 2 ребра), смежных с r_m , и ещё одно ребро, $r_{m-1}r_m$ встречается в конце маршрута. Итого на маршруте R лежит нечётное число рёбер, смежных с r_m , а поскольку степень вершины r_m чётна, то есть ещё хотя бы одно ребро $r_m x$, которое не лежит на маршруте R. Добавив вершину x в конец маршрута получим маршрут большей длины, что противоречит выбору R.

• Свойство 2. Маршрут R содержит все рёбра графа G. Допустим противное. Пусть некоторое ребро xy графа G не лежит на R. Рассмотрим путь из r_0 в x, который существует в силу связности G и найдём на нём первое ребро, которое не лежит на R, если оно есть. Обозначим его через r_iz . Если такого ребра нет, то вершина x лежит на R, а потому обозначим $r_i=x$ и z=y.

По **свойству 1**, маршрут R замкнутый, а потому сдвинем его циклически так, чтобы он начинался и заканчивался в вершине r_i . Добавив в конец получившегося маршрута вершину z получим маршрут, длиннее R, который также содержит каждое ребро не более одного раза, что приводит нас к противоречию выбора R.

9. Явная формула для числа сочетаний C(n,k): числа k-элементных подмножеств n-элементного множества.

$$\binom{n}{k} = C_n^k = \frac{n!}{k!(n-k)!}$$

Доказательство. Представим себе, что в классе из n учеников нужно сформировать спортивную команду из k учеников (внутри команды все равны, никаких ролей нет). Сколькими способами это можно сделать?

Один способ подсчёта такой. Будем выбирать игроков команды по очереди. Первого можно выбрать nспособами, второго n-1 способами (годятся все, кроме первого), третьего n-2 способами, всего $(n)_k = n \cdot (n-1) \cdot \dots \cdot (n-k+1)$ способами (см. выше).

Но так мы подсчитали не число возможных команд, а число возможных упорядоченных списков команд (известно, какой игрок первый, какой второй, и так далее). Если не обращать внимание на номера игроков, то много разных списков соответствуют одной команде — они получатся, если игроков переставлять в списке, а это можно сделать k! способами. Значит, число групп равно $\frac{(n)_k}{k!}$; поскольку $(n)_k = \frac{n!}{(n-k)!}$, то можно переписать ответ в более симметричной форме:

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

Это число (число способов выбрать k элементов из n, без учёта порядка, или число k-элементных подмножеств n-элементного множества, если говорить научно) традиционно называют числом сочетаний из n по k.

Утверждение. $\binom{n}{k}$ равно k-ому элементу в n-ой строке треугольника Паскаля.

Доказательство. Элемент в треугольнике Паскаля равен сумме двух верхний соседей, тогда требуется доказать

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Пусть нас интересовало количество способов выбрать подмножество из k элементов множества $\{a_1, a_2, \ldots, a_n\}$. Тогда рассмотрим, что происходит с последним элементом a_n .

Количество подмножеств разбивается на сумму подмножеств, где есть a_n элемент и где его нет.

- a_n есть в подмножестве: то есть из оставшихся n-1 элементов надо выбрать k-1 элемент, чтобы собрать подмножество из k элементов, то есть всего $\binom{n-1}{k-1}$ таких подмножеств .
- a_n отсутствует в подмножестве: то есть из оставшихся n-1 элементов надо выбрать k элементов, чтобы собрать подмножество из k элементов, то есть всего $\binom{n-1}{k}$ интересующих нас подмножеств.

10. Бином Ньютона. Формула для биномиальных коэффициентов.

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

После раскрытия скобок в $(a+b)(a+b)\dots(a+b)$ (n раз) получатся произведения n букв (сколькото a, остальные b), и вопрос только в том, какие будут коэффициенты при этих произведениях (сколько подобных членов).

Формула бинома Ньютона и говорит, какие это будут коэффициенты: это числа сочетаний, и они написаны в n-й строке треугольника Паскаля. Поэтому числа сочетаний также называют биномиальными коэффициентами.

Доказательство. Если мы раскроем скобки в $(a+b)^n$ и не будем приводить подобные члены, переставляя сомножители, то получится 2^n слагаемых — всевозможные слова длины n из букв a и b. (В каждой скобке можновзять a или b — на каждом месте в слове может стоять a или b.)

Если сгруппироватьчлены по степеням, то соберутся все слова, в которых данное число букв a и данное число букв b. А сколько их, мы знаем — это как раз числа сочетаний. Слова, в которых k букв a и n-k букв b (из n скобок мы выбираем k, из которых возьмём a), войдут в количестве $\binom{n}{k}$ штук в слагаемое $\binom{n}{k}a^kb^{n-k}$, как и предсказывает бином Ньютона.

Как было доказано в предыдущем пункте про треугольник Паскаля,

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Заметим, что знакочередующаяся сумма биномиальных коэффициентов в одной строке треугольника Паскаля равна 0:

$$\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^n \binom{n}{n} = \sum_{k=0}^n \binom{n}{k} \cdot (-1)^k \cdot 1^{n-k} = (1-1)^n = 0$$

11. Основные свойства треугольника Паскаля: симметричность строк, возрастание чисел в первой половине строки.

Так как $\binom{n}{k}$ в точности равен k-ому элементу в n-ой строке треугольника Паскаля, заметим, что k-ый элемент равен (n-k)-ому:

$$\binom{n}{k} = \frac{n}{k!(n-k)!} = \frac{n!}{(n-k)!k!} = \binom{n}{n-k}$$

Теорема. $\binom{n}{k+1} > \binom{n}{k}$ npu $k < \frac{n-1}{2}$

Доказательство.

$$\frac{\binom{n}{k+1}}{\binom{n}{k}} = \frac{\frac{n!}{(k+1)!(n-k-1)!}}{\frac{n!}{k!(n-k)!}} = \frac{k!(n-k)!}{(k+1)!(n-k-1)!} = \frac{n-k}{k+1} > 1$$

$$k+1 < n-k \implies 2k < n-1 \implies k < \frac{n-1}{2}$$

12. Основные свойства треугольника Паскаля: формула для суммы чисел в строке, нижняя оценка на центральный коэффициент

Теорема 1. Сумма элементов в n-ой строке треугольника Паскаля равна 2^n .

Доказательство. Так как n-ая строка представляет собой ряд биномиальных коэффициентов, сумма равна

$$\sum_{k=0}^{n} \binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k} 1^{k} 1^{n-k} = (1+1)^{n} = 2^{n}$$

Теорема. Справедлива оценка

$$\binom{2n}{n} > \frac{2^{2n}}{2n+1}$$

Доказательство. Уже известно, что максимальное число в строке треугольника Паскаля находится в середине и для 2n-ой строки равно $\binom{2n}{n}$, а значит

$$(2n+1)\cdot \binom{2n}{n} > \sum_{k=0}^{2n} \binom{2n}{k} = 2^n$$

13. Число решений уравнения $x_1 + x_2 + \dots + x_k = n$ в неотрицательных целых числах. (Задача Муавра.)

Число решений уравнения $x_1+x_2+\cdots+x_k=n$ в неотрицательных целых числах равно $\binom{n+k-1}{n}$.

 $\ \ \,$ Доказательство. Для простоты решим эквивалентную задачу. Необходимо раздать n монет k людям.

Представим себе, что наши n монет разложены в ряд. Прежде чем раздавать эти монеты, давайте разделим их на k групп перегородками, и договоримся, кому идёт самая левая группа, кому вторая слева и т. д. Заметим, что мы допускаем случай, когда две перегородки оказываются рядом — это значит просто, что человеку, которому была назначена группа между ними, не повезло и в этом раскладе ему ни одной монеты не достанется.

Каждому варианту раздачи (каждому решению уравнения в неотрицательных числах) соответствует последовательность из n монет и k-1 перегородки. (Число перегородок на единицу меньше числа группы: первая группа стоит слева от первой перегородки, а последняя — справа от последней.)

Наоборот, каждой последовательности из n монет и k-1 перегородки соответствует некоторый способ раздачи монет. Поэтому надо подсчитать число способов расставить перегородки.

А это совсем просто — каждый такой способ можно рассматривать как словов алфавите монета, перегородка, содержащее n монет и k-1 перегородку. Это количество, как мы знаем, равно $\binom{n+k-1}{n}$ (из (n-k+1)-ой позиции выбираем k-1, куда поставим перегородку.)

14. Формула включений и исключений

Теорема.

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{S \subseteq [n], S \neq \emptyset} (-1)^{|S|+1} \left| \bigcap_{A \in S} A \right| \tag{1}$$

Доказательство. Основным ингредиентом доказательства является обобщённый закон де Моргана:

$$\bigcup_{i=1}^{n} A_i = \overline{\bigcap_{i=1}^{n} \overline{A_i}}$$

который мы переведем на язык характеристических функций (для удобства опустим аргументы)

$$\chi_{\bigcup_{i=1}^{n} A_{i}} = 1 - \chi_{\bigcap_{i=1}^{n} \overline{A_{i}}} = 1 - (1 - \chi_{A_{1}}) \times (1 - \chi_{A_{2}}) \times \dots \times (1 - \chi_{A_{n}})$$

Раскроем скобки в выражении $(1-\chi_{A_1})\times (1-\chi_{A_2})\times \cdots \times (1-\chi_{A_n})$ и проанализируем получившееся выражение аналогично анализу для бинома Ньютона. Ясно, что среди слагаемых есть 1; чтобы её получить нужно взять в качестве сомножителей 1 из каждой скобки; также для каждого і в выражение войдёт слагаемое $-\chi_{A_i}$: чтобы получить его нужно взять $-\chi_{A_i}$ из i-ой скобки, а из каждой оставшейся скобки взять единицу. Продолжая рассуждения получаем, что чтобы получить слагаемое $\prod_{i\in S}\chi_{A_i}=\chi_{A_{i_1}}\times\chi_{A_{i_2}}\times\cdots\times\chi_{A_{i_{|S|}}}$ нужно взять из каждой скобки с номером из

 $i \in S$ множества S слагаемое $-\chi_{A_i}$, а из остальных скобок взять 1; при этом коэффициент перед получившимся произведением будет $(-1)^{|S|}$. Итак, мы получили формулу

$$\chi_{\bigcup_{i=1}^{n} A_i} = 1 - \left(1 + \sum_{S \subseteq [n]} (-1)^{|S|} \prod_{i \in S} \chi_{A_i}\right) = \sum_{S \subseteq [n]} (-1)^{|S|+1} \chi_{\bigcap_{i \in S} A_i}$$

(3десь $[n] = \{1, 2, \dots, n\}).$

В последнем переходе мы перешли от произведения характеристических функций к характеристической функции пересечения множеств. Просуммировав обе части по всем $x \in U$ получим требуемую формулу 1. Обратим внимание, что в результате суммирования левая часть формулы будет иметь вид

$$\sum_{x \in U} \chi_{\bigcup_{i=1}^{n} A_i}(x) = \left| \bigcup_{i=1}^{n} A_i \right|,$$

а в правой части в результате суммирования отдельного слагаемого получится следующее (для каждого $x \in U$ сумма будет равна мощности пересечения)

$$\sum_{S \subseteq [n]} \sum_{x \in U} (-1)^{|S|+1} \chi_{\bigcap_{i \in S} A_i}(x) = \sum_{S \subseteq [n]} (-1)^{|S|+1} \times \left| \bigcap_{i \in S} A_i \right|$$

15. Число отображений, функций, инъекций, биекций из m-элементного множества в nэлементное множество

Как и раньше, обозначим через [m]-m-элементное множество; для определённости $[m]=\{1,2,\ldots,m\}$. Найдём число отображений $f:[m]\mapsto [n]$ (из m-элементного множества в n-элементное множество).

Напомним, что отображения — это всюду определённые функции, этот факт обозначается с помощью стрелочки между множествами. Для значения f(1) годится любое из n чисел, равно как для f(2) и так вплоть до f(m); по правилу произведения получаем, что число отображений есть n^m . Каждое отображение можно закодировать как слово длины m над алфавитом из n символов. Эта кодировка пригодится нам дальше.

Найдём теперь число функций из [m] в [n]. В отличие от отображений функции не обязательно всюду определены, поэтому возможно, что у каких-то элементов множества [m] нет образов. Эту задачу легко свести к предыдущей, добавив к множеству [n] элемент n+1 и построить для каждой функции f из [m] в [n] эквивалентное отображение $g:[m]\mapsto [n+1]$, которое принимает значение n+1 во всех точках, в которых функция f не определена, а в остальных точках принимает то же значение, что и f. Итак, мы установили биекцию между множеством функций из [m] в [n] и множеством отображений из [m] в [n+1], таким образом число функций есть $(n+1)^m$.

Перейдём теперь к подсчёту инъекций из [m] в [n]. Вспомним, что инъекция — отображение, которое ставит в соответствие разным элементам разные значения. Мы уже обсуждали тот факт, что если существует инъекция из конечного множе ства A в конечное множество B, то $|A| \leq |B|$, поэтому при m > n инъекций нет вовсе. В случае $m \leq n$ инъекцию, как и любое отображение, можно закодировать в виде слова над n-ичным алфавитом длины m, а условие инъективности означает, что в слове все буквы разные. Таким образом, число инъекций совпадает с числом размещений и равно $\frac{n!}{(n-m)!}$

В случае конечных множеств, биекция является частным случаем инъекции, когда [m] = [n]. Таким образом число биекций равно n! (при m = n) и совпадает с числом перестановок. Совпадение

чисел размещений и перестановок с числом инъекций и сюръекций неслучайно. Инъекции кодируют размещения, а биекции перестановки.

16. Формула для числа сюръекций

Аналогично случаю с инъекциями необходимо, чтобы m>n. Чтобы подсчитать сюръекции подсчитаем сначала отображения, не являющиеся сюръекциями и вычтем их число из количества всех отображений. Напомним, что функция является сюръекцией, если прообраз каждого из элементов [n] не пуст. Таким образом, функция не является сюръекцией, если в [n] есть хотя бы один элемент y для которого нет подходящего x:f(x)=y. Обозначим через A_i — множество отображений, для которых прообраз элемента i не определён, формально

$$A_i = \{ f \mid f : [m] \mapsto [n], f^{-1}(i) = \emptyset \}$$

Ясно, что все несюръекции лежат в множестве $\bigcup_{i=1}^n A_i$.

Подсчитаем мощность $\bigcup_{i=1}^n A_i$ с помощью формулы включений-исключений. Для каждого A_i число $|A_i|$ совпадает с числом отображений из m-элементного множества в (n-1)-элементное множество (i-ый) элемент задействовать нельзя, а все остальные можно. Их число есть $(n-1)^m$. В пересечении множеств $A_i \cap A_j (i \neq j)$ содержится столько же элементов, сколько отображений $[m] \mapsto [n-2]$ (теперь нельзя задействовать ровно два элементов), а число элементов в пересечении любых k множеств из семейства A_1, A_2, \ldots, A_n совпадает с числом отображений $[m] \mapsto [n-k]$. Число способов выбрать k множеств из семейства с n-множествами есть число сочетаний $\binom{n}{k}$, отсюда получаем по формуле включений исключений

$$\left| \bigcup_{i=1}^{n} A_i \right| = |A_1| + |A_2| + \dots + |A_n| - |A_1 \cap A_2| - \dots |A_{n-1} \cap A_n| + \dots$$

$$= n \times (n-1)^m - \binom{n}{2} \times (n-2)^m + \binom{n}{3} \times (n-3)^m - \dots$$

$$= \sum_{k=1}^{n} (-1)^{k+1} \times \binom{n}{k} \times (n-k)^m$$

Таким образом число сюръекций есть

$$n^{m} - \sum_{k=1}^{n} (-1)^{k+1} \times \binom{n}{k} \times (n-k)^{m} = \sum_{k=0}^{n} (-1)^{k} \times \binom{n}{k} \times (n-k)^{m}$$

17. Основная теорема об отношениях эквивалентности (классы эквивалентности на множестве A — в точности разбиения множества A на подмножества)

Теорема. Для любого отношения эквивалентности на множестве A множество классов эквивалентности образует разбиение множества A. Обратно, любое разбиение множества A задает на нем отношение эквивалентности, для которого классы эквивалентности совпадают с элементами разбиения.

Доказательство. Покажем, что отношение эквивалентности R на множестве A определяет некоторое разбиение этого множества. Убедимся вначале, что любые два класса эквивалентности по отношению R либо не пересекаются, либо совпадают.

Пусть два класса эквивалентности $[x]_R$ и $[y]_R$ имеют общий элемент $z \in [x]_R \cap [y]_R$. Тогда zRx и zRy. В силу симметричности отношения R имеем xRz, и тогда xRz и zRy. В силу транзитивности отношения R получим xRy. Пусть $h \in [x]_R$, тогда hRx. Так как xRy, то hRy и, следовательно, $h \in [y]_R$.

Обратно, если $h \in [y]_R$, то в силу симметричности R получим hRy, yRx и в силу транзитивности -hRx, то есть $h \in [x]_R$. Таким образом, $[x]_R = [y]_R$.

Итак, любые два не совпадающих класса эквивалентности не пересекаются. Так как для любого $x \in A$ справедливо $x \in [x]_R$ (поскольку xRx), т.е. каждый элемент множества A принадлежит некоторому классу эквивалентности по отношению R, то множество всех классов эквивалентности по отношению R образует разбиение исходного множества A. Таким образом, любое отношение эквивалентности однозначно определяет некоторое разбиение.

Теперь пусть $(B_i)_{i\in I}$ — некоторое разбиение множества A. Рассмотрим отношение R, такое, что xRy имеет место тогда и только тогда, когда x и y принадлежат одному и тому же элементу B_i данного разбиения:

$$xRy \iff \exists i \in I : (x \in B_i) \land (y \in B_i).$$

Очевидно, что введенное отношение рефлексивно и симметрично. Если для любых x, y и z имеет место xRy и yRz, то x,y и z в силу определения отношения R принадлежат одному и тому же элементу B_i разбиения. Следовательно, xRz и отношение R транзитивно. Таким образом, R — эквивалентность на A.

18. Равносильность свойств ориентированных графов: (1) каждая компонента сильной связности состоит из одной вершины; (2) вершины графа возможно занумеровать так, чтобы каждое ребро вело из вершины с меньшим номером в вершину с большим номером; (3) в графе нет циклов длины больше 1 (граф ацикличен).

Доказательство. Компонента является тривиальной, если состоит из 1ой вершины.

Равносильность условий (1) и (3) вытекает из данного утверждения:

Утверждение. Вершины u и v лежат в одной компоненте сильной связности тогда и только тогда, когда они лежат на замкнутом маршруте.

Доказательство. Действительно, условие двусторонней достижимости влечёт существование маршрутов из u в v и из v в u, склеив их получим замкнутый маршрут. С другой стороны, замкнутый маршрут, содержащий вершины u и v очевидно влечёт двустороннюю достижимость.

В графе есть нетривиальная компонента сильной связности тогда и только тогда когда в нём есть замкнутый маршрут длины 2 или больше, а это равносильно существованию цикла.

Из условия (2) очевидно следует условие (3). Действительно, если такая нумерация существует, то если был бы цикл, то в нём вершина с большим номером соединялась бы ребром с меньшим номером.

Для завершения доказательства теоремы осталось доказать импликацию $(3) \implies (2)$. Докажем для этого вспомогательную лемму.

Лемма. В ориентированном ациклическом графе G есть сток

Доказательство. Возьмём самый длинный ориентированный путь $v_1 \to v_2 \to \cdots \to v_n$ в графе G. Такой существует, потому что множество путей конечно (вершины в пути повторяться не могут). Докажем от противного, что вершина v_n является стоком (из неё нет исходящих рёбер).

Если в G есть ребро $v_n \to u$ и $u \neq v_i$, то путь можно сделать длиннее, добавив к нему u; если же $u = v_i$, то в графе G есть цикл (петель в G по определению быть не может). Оба случая приводят нас к противоречию.

Докажем с помощью леммы импликацию индукцией по числу вершин.

- Basa : для |V|=1 очевидна: в графе из одной вершины нет рёбер, поэтому занумеровав единственную вершину единицей получим корректную нумерацию.
- Шаг: пусть утверждение верно для любого графа на n вершинах; согласно лемме в графе G на (n+1)-ой вершине существует сток занумеруем его числом n+1 и рассмотрим граф G_0 , получающийся из G удалением этого стока.

По предложению индукции вершины G_0 можно занумеровать корректно; перенеся эту нумерацию на G получим также корректную нумерацию: поскольку из (n+1)-ой вершины не идёт ни одного ребра, испортить нумерацию она не может, а для всех остальных рёбер нумерация корректна.