样题(一)

说明:

1. 样题仅用于学生熟悉考试形式。因教学进度等方面的差异,样题对实际考试内容、考试 难度等无任何指导。

题1. (5分) 把矩阵A 的第一行的2倍加到第二行,之后互换第一列和第二列,得到的矩阵 是 $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ 。那么,矩阵A 是什么?

题2. (5分) 试给出一个2阶上三角矩阵U, 使得U 不是对角阵, 且 $U^{-1}=U$ 。

题3. (5分) 假设 A_1, A_2, A_3, A_4 是同阶可逆方阵, $C = A_1A_2A_3A_4$ 是它们的乘积,试用 C^{-1} 和 A_1, A_2, A_4 表示 A_3^{-1} .

题4. (8β) 试写下两个非零的2阶方阵A,B 使得 $A^2=B^2=0$. 所有满足 $A^2=0$ 的2阶方阵的全体是否是 $M_2(\mathbb{R})$ 的线性子空间?若是请证明,若不是请说明原因。

题5. (8 %) 设 $A \in M_2(\mathbb{R})$, $\mathbf{b} \in \mathbb{R}^2$, 且线性方程组 $A\mathbf{x} = \mathbf{b}$ 有三组解 $\mathbf{x_1} = \begin{bmatrix} 2 \\ 7 \end{bmatrix}$, $\mathbf{x_2} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$, $\mathbf{x_3} = \begin{bmatrix} 4 \\ 8 \end{bmatrix}$, 试证明 $\mathbf{x_4} = \begin{bmatrix} 5 \\ 26 \end{bmatrix}$ 也是该方程组的解。

题6.
$$(8分)$$
 设 A 是 3×4 阶矩阵, A 的零空间 $N(A)$ 是 $\left\{c_1\begin{bmatrix}3\\1\\0\\0\end{bmatrix}+c_2\begin{bmatrix}1\\0\\4\\1\end{bmatrix}:c_1,c_2\in\mathbb{R}\right\}$.

求rref(A), 这里rref(A) 指A 的 $reduced\ row\ echelon\ form.$

题7. (10分) 求下面线性方程组的通解

$$\begin{cases} x_1 + x_2 + x_3 + x_4 &= 1\\ 3x_1 + 2x_2 + x_3 + x_4 - 3x_5 &= 0\\ 5x_1 + 4x_2 + 3x_3 + 3x_4 - x_5 &= 2 \end{cases}$$

题8.
$$(20分)$$
 设 $A = \begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{bmatrix}$.

- 1.(6分) 证明: A 可逆的充分必要条件是a,b,c 两两不同。
- 2. (6分) 当A 可逆时, 求A 的LU 分解。
- 3. (8分) 当a=1, b=2, c=3 时, 求 A^{-1} .

题**9.**
$$(69)$$
 设 $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 4 & 8 \\ 3 & 6 & 12 \end{bmatrix}$.

- 1. (2分) 把A 写成 $\alpha\beta^T$ 的形式, 其中 α,β 均是列向量。
- 2. (4分) 计算A²⁰¹⁹.

题
$$\mathbf{10.}$$
 $(8分)$ 设 $A=\begin{bmatrix}1&1\\&1\\&1\end{bmatrix}$. 求所有与 A 可交换的矩阵,即所有满足 $AB=BA$ 的矩阵 B .

题**11.** (12分) 设 $A \in M_{m \times n}(\mathbb{R})$. 证明:

- 1. (3分) A^TA是对称矩阵;
- 2. (6分) 设 $\mathbf{x} \in \mathbb{R}^n$ 是非零向量, 且 $c \in \mathbb{R}$ 满足 $A^T A \mathbf{x} = c \mathbf{x}$. 证明c > 0;
- 3. (3分)证明 $A^{T}A$ 的对角线元素都不小于零.
- 题12. (5分) 设 $A, B \in M_n(\mathbb{R})$, 且 $A^k = 0$, 其中k是一个正整数。
 - 1. (2分) 证明 $I_n A$ 可逆,
 - 2. (3分) 若AB + BA = B, 证明B = 0.