Контрольная работа № 1 Функция нескольких переменных

Демонстрационный вариант

Ниже представлены задания КР. В некоторых из них есть подпункты а), б) ..., они отражают вариации этих заданий. При написании КР вам попадётся одна из них.

Задание 1. Предел

Вычислите предел функции z(x; y) в точке $(x_0; y_0)$ или докажите, что он не существует.

a)
$$z = \frac{x - y}{x + y}$$
, $(x_0; y_0) = (0; 0)$

6)
$$z = \frac{x^2 + y^2}{\sqrt{x^2 + y^2 + 1} - 1}$$
, $(x_0; y_0) = (0; 0)$

Задание 2. Дифференцирование

а) Найдите дифференциал функции z(x;y), заданной неявно, в точке $M_0(x_0;y_0;z_0)$.

$$e^{z-1} = \cos x \cos y + 1$$
, $M_0\left(0; \frac{\pi}{2}; 1\right)$

б) Дана функция $z = \ln(x + e^{-y})$. Покажите, что

$$\frac{\partial z}{\partial x} \cdot \frac{\partial^2 z}{\partial x \partial y} - \frac{\partial z}{\partial y} \cdot \frac{\partial^2 z}{\partial x^2} = 0$$

в) Дана функция u(M) = u(x, y, z) и точки M_1 , M_2 . Вычислите производную этой функции по направлению $\overrightarrow{M_1 M_2}$ и градиент $\operatorname{\mathbf{grad}} u(M_1)$.

$$u(M) = x^2y + y^2z + z^2x$$
, $M_1(1, -1, 2)$, $M_2(3, 4, -1)$

Задание 3. Экстремум

Исследуйте на экстремум функцию z(x;y) – найдите точки экстремума и экстремумы или докажите, что их не существует.

$$z = 2x^3 + 2y^3 - 6xy + 5$$

Задание 4. Уравнения касательных и нормальных прямых и плоскостей

а) Составьте уравнения касательной прямой l и нормальной плоскости α в точке M для линии L, заданной параметрическими уравнениями.

L:
$$x = 2\cos\varphi$$
, $y = 2\sin\varphi$, $z = \varphi$, $M = (\sqrt{2}; \sqrt{2}; \frac{\pi}{4})$

б) Составьте уравнения касательной плоскости α и нормальной прямой l в точке M для поверхности S.

S:
$$2^{x/z} + 2^{y/z} = 8$$
. $M = (2:2:1)$

Задание 5. Криволинейные системы координат

а) Тело T задано системой неравенств в декартовых координатах. Получите систему неравенств, описывающую его в **цилиндрических** координатах. Изобразите тело T.

$$T: y^2 + z^2 \le 1, z \le y, -1 \le x \le 2$$

б) Тело T задано системой неравенств в декартовых координатах. Получите систему неравенств, описывающую его в **сферических** координатах. Изобразите тело T.

$$T: \ x^2 + y^2 + z^2 \le 1 \,, \ -\sqrt{x^2 + z^2} \le y \le 0$$

в) Плоская область D ограничена линиями в декартовых координатах. Получите систему неравенств, описывающую её в **полярных** координатах. Изобразите область D.

D:
$$y = \sqrt{3}x$$
, $y = -\frac{x}{\sqrt{3}}$, $y = 1$