NOM: PRÉNOM:

Soit f une fonction de classe C^n au voisinage de 0, avec n entier naturel. Donner la formule de Taylor-Young à l'ordre n en 0.

1)
$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k + o(x^n) = f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \dots + \frac{f^{(n)}(0)}{n!} x^n + o(x^n)$$

Donner un DL de:

2)	$\sin(x)$	en $x = 0$	à l'ordre n	$x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1})$
3)	e^{2x}	en $x = 0$	à l'ordre 4	$1 + 2x + 2x^{2} + \frac{4x^{3}}{3} + \frac{2x^{4}}{3} + O(x^{5})$
4)	$\cos(3x)$	en $x = 0$	à l'ordre 4	$1 - \frac{9x^2}{2} + \frac{27x^4}{8} + O\left(x^5\right)$
5)	$e^{2x}\cos(3x)$	en $x = 0$	à l'ordre 2	$1 + 2x - \frac{5x^2}{2} + O\left(x^3\right)$
6)	$e^{2x} - \cos(3x)$	en $x = 0$	à l'ordre 3	$2x + \frac{13x^2}{2} + \frac{4x^3}{3} + O\left(x^4\right)$
7)	$\frac{1}{1-x^2}$	en x = 0	à l'ordre 4	$1 + x^2 + x^4 + O(x^5)$
8)	$\log\left(3x+1\right)$	en $x = 1$	à l'ordre 2	$\ln(4) + \frac{3}{4}(x-1) - \frac{9}{32}(x-1)^2 + \frac{9}{64}(x-1)^3 + o((x-1)^2)$
9)	$x^5 - 2x^2 + 5$	en $x = 0$	à l'ordre 3	$5 - 2x^2 + O\left(x^4\right)$
10)	$4x^3 - 5x^2 + 3x$	en $x = 1$	à l'ordre 2	$2 + 5(x - 1) + 7(x - 1)^{2} + o((x - 1)^{2})$