Application No.: 10/585,955

Atty. Doc. No.: 2003P15348WOUS

Amendments to the Specification:

Please amend the paragraph beginning at page 9, line 31 of the original specification, as follows:

A guide blade 21 and a moving blade 23 are shown diagrammatically in fig. 1. A guide blade 21 has a blade tip 27 arranged along a blade axis 25, a blade leaf 29 and a platform region 31. The platform region 31 has a platform 23-33 extending transversely with respect to the blade axis 25 and a blade root 35.

Please amend the paragraph beginning at page 11, line 26 of the original specification, as follows:

To be precise, a boundary of the flow duct 5 is formed in the way outlined above between the turbine blades 21, 23 of a first 7, 11 and a second 9, 13 blade stage by resilient elastic sheet metal parts 77, 79. In this way, the use of a thin-walled non-bearing platform 71 for producing the boundary of the flow duct in the form of a first resilient elastic sheet metal part 77 and of a second resilient elastic sheet metal part 79 makes it possible at the same time for the resilient elastic sheet metal parts 77, 79 to act as a sealing element. A sealing element of this type is at the same time sufficiently flexible to allow relative movements of adjacent turbine blades, and nevertheless has a sufficient sealing action. This avoids the need for a sealing element, such as would have been necessary for the sealing off of parting planes in platforms conventional hitherto. Potentially high-risk, structurally and thermally unfavorable lines for receiving such a sealing element are consequently avoided. On the rear side 89 of the platform 71, a first cooling space 91 and a second cooling space 93 in the form of an interspace are produced, which make it possible to cool the platform 71 optimally in the region of the root of the turbine blade 63 designs in the transition from the blade leaf 67 to the platform 71. A platform edge design which otherwise normally has a complicated configuration can thereby be configured more simply and without a thermally high-risk region. To assist the cooling in the cooling spaces 91, 93, the bearing structure 95, 97, starting from the root of the blade leaf 67, of the blade 63 is continued, optimized in configuration, to the blade root not shown here (reference symbols 35, 47 in fig. 1), in order to assist the cooling measures.

Application No.: 10/585,955

Atty. Doc. No.: 2003P15348WOUS

Please amend the paragraph beginning at page 13, line 23 of the original specification, as follows:

Along this transition 65, the first platform wall 70 has an aerodynamic rounding 104. The corresponding resilient elastic sheet metal parts 77, 79, on account of their flexible design, can be optimally adapted in terms of their curvature at the transition 65 to the conditions and loads which prevail there. In particular, this aerodynamically adapted rounding 104 relates not only to the flow of working medium on the hot-gas side, but also to the flow of the cooling fluid 101 on the rear side 89 of the platform 71 and in the cooling spaces 91, 93. The wall thickness of the first platform wall 70 is substantially smaller than that of the second platform wall 69. The second bearing platform wall 69 has in its run, at the transition 65, with respect to the first platform wall 70 and in continuation of a blade leaf wall 68 of the blade leaf 67, a set-back step 103. In this case, the wall thickness of the blade leaf wall 68 is essentially maintained. Thus, the cooling spaces 91, 93 for cooling the platform 71 are formed as interspaces 69. The height 105 of the cooling spaces 91, 93 is defined essentially by the height of the step 103.

Please amend the paragraph beginning at page 14, line 32 of the original specification, as follows:

In summary, in order to ensure improved cooling of a platform region and of a transition 65 of a blade leaf 67 to a platform 71 of a turbine blade 63 and consequently the cooling of a boundary of a flow duct 5 of a gas turbine 1, in the case of a turbine blade 67-63 with a blade leaf 67 arranged along a blade axis 73 and with a platform region 61 which, arranged at the root of the blade leaf 67, has a platform 71 extending transversely with respect to the blade axis 73, the platform 71 having a first platform wall 70 not bearing the blade leaf 67 and a second platform wall 69 bearing the blade leaf 67, according to the proposed concept, at the root of the blade leaf 67, along a transition 65 from the blade leaf 67 to the platform 71, the first platform wall 70 has in its run an aerodynamic rounding 104, and the second platform wall 69 has in its run, with respect to the first platform wall 70 and in continuation of the blade leaf 67, a set-back step 103.