## **COMP9313: Big Data Management**



**Lecturer: Xin Cao** 

Course web site: http://www.cse.unsw.edu.au/~cs9313/

# **Chapter 7.2: Finding Similar Items**

## **Motivation for Minhash/LSH**

- **Suppose we need to find near-duplicate documents among** N = 1 million documents
- Naïvely, we would have to compute pairwise Jaccard similarities for every pair of docs
  - $N(N-1)/2 \approx 5*10^{11}$  comparisons
  - > At 10<sup>5</sup> secs/day and 10<sup>6</sup> comparisons/sec, it would take **5 days**
- $\bullet$  For N = 10 million, it takes more than a year...



# Step 2: Minhashing: Convert large sets to short signatures, while preserving similarity

## **Encoding Sets as Bit Vectors**

Many similarity problems can be formalized as finding subsets that have significant intersection



- Encode sets using 0/1 (bit, boolean) vectors
  - One dimension per element in the universal set
- Interpret set intersection as bitwise AND, and set union as bitwise OR
- **Example:**  $C_1 = 101111$ ;  $C_2 = 10011$ 
  - Size of intersection = 3; size of union = 4,
  - Jaccard similarity (not distance) = 3/4
  - ▶ Distance:  $d(C_1,C_2) = 1 (Jaccard similarity) = 1/4$

## From Sets to Boolean Matrices

- Rows = elements (shingles)
- Columns = sets (documents)
  - 1 in row e and column s if and only if e is a member of s
  - Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
  - > Typical matrix is sparse!
- Each document is a column:

#### **Documents**

|              | 1 | 1 | 1 | 0 |
|--------------|---|---|---|---|
|              | 1 | 1 | 0 | 1 |
|              | 0 | 1 | 0 | 1 |
| OI III ISICS | 0 | 0 | 0 | 1 |
| 5            | 1 | 0 | 0 | 1 |
|              | 1 | 1 | 1 | 0 |
|              | 1 | 0 | 1 | 0 |

## From Sets to Boolean Matrices

**Example:**  $S_1 = \{a, d\}, S_2 = \{c\}, S_3 = \{b, d, e\}, \text{ and } S_4 = \{a, c, d\}$ 

| Element        | $S_1$ | $S_2$ | $S_3$ | $S_4$ |
|----------------|-------|-------|-------|-------|
| $\overline{a}$ | 1     | 0     | 0     | 1     |
| b              | 0     | 0     | 1     | 0     |
| c              | 0     | 1     | 0     | 1     |
| d              | 1     | 0     | 1     | 1     |
| e              | 0     | 0     | 1     | 0     |

- > sim(S<sub>1</sub>, S<sub>3</sub>) = ?
  - Size of intersection = 1; size of union = 4,
     Jaccard similarity (not distance) = 1/4
  - $\rightarrow$  d(S<sub>1</sub>, S<sub>3</sub>) = 1 (Jaccard similarity) = 3/4

# **Outline: Finding Similar Columns**

- ❖ So far:
  - ➤ Documents → Sets of shingles
  - Represent sets as boolean vectors in a matrix
- Next goal: Find similar columns while computing small signatures
  - Similarity of columns == similarity of signatures

## **Outline: Finding Similar Columns**

- Next Goal: Find similar columns, Small signatures
- Naïve approach:
  - > 1) Signatures of columns: small summaries of columns
  - > 2) Examine pairs of signatures to find similar columns
    - Essential: Similarities of signatures and columns are related
  - > 3) Optional: Check that columns with similar signatures are really similar

#### Warnings:

- Comparing all pairs may take too much time: Job for LSH
  - These methods can produce false negatives, and even false positives (if the optional check is not made)

# **Hashing Columns (Signatures)**

- Key idea: "hash" each column C to a small signature h(C), such that:
  - (1) h(C) is small enough that the signature fits in RAM
  - $\triangleright$  (2)  $sim(C_1, C_2)$  is the same as the "similarity" of signatures  $h(C_1)$  and  $h(C_2)$
- ❖ Goal: Find a hash function h(·) such that:
  - If  $sim(C_1, C_2)$  is high, then with high prob.  $h(C_1) = h(C_2)$
  - ▶ If  $sim(C_1, C_2)$  is low, then with high prob.  $h(C_1) \neq h(C_2)$
- Hash docs into buckets. Expect that "most" pairs of near duplicate docs hash into the same bucket!

## Min-Hashing

- **Goal:** Find a hash function  $h(\cdot)$  such that:
  - $\rightarrow$  if  $sim(C_1, C_2)$  is high, then with high prob.  $h(C_1) = h(C_2)$
  - $\rightarrow$  if  $sim(C_1, C_2)$  is low, then with high prob.  $h(C_1) \neq h(C_2)$
- Clearly, the hash function depends on the similarity metric:
  - Not all similarity metrics have a suitable hash function
- There is a suitable hash function for the Jaccard similarity: Min-Hashing

## Min-Hashing

- Imagine the rows of the boolean matrix permuted under random permutation π
- Define a "hash" function  $h_{\pi}(C)$  = the index of the first (in the permuted order  $\pi$ ) row in which column C has value 1:

$$h_{\pi}(\mathbf{C}) = \min_{\pi} \pi(\mathbf{C})$$

Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column

## Min-Hashing Example



3 | 1 | 1 | 2

Signature Matrix

**Input Matrix** 

**7.13** 13

## Min-Hashing Example

| 7 | 1 | 0  | 1 | 1 | 0   |
|---|---|----|---|---|-----|
| 6 | 2 | 0  | 0 | 1 | 1   |
| 5 | 3 | 1  | 0 | 0 | 0   |
| 4 | 4 | 0  | 1 | 0 | 1   |
| 3 | 5 | 0  | 0 | 0 | (1) |
| 2 | 6 | (1 |   | 0 | 0   |
| 1 | 7 | 0  | 0 | 1 | 0   |

Signature Matrix

**Input Matrix** 

7.14

## Min-Hashing Example



**Input Matrix** 

7.15

15

# Min-Hashing Exar

**Note:** Another (equivalent) way is to store row indexes: 1 5 1 5

2 3 1 3

6 4 6

4

2<sup>nd</sup> element of the permutation is the first to map to a 1

#### Permutation $\pi$ Input matrix (Shingles x Documents)

#### Signature matrix *M*

| 2 | [4] | 3 | 1 | 0 | 1 " | 0 |
|---|-----|---|---|---|-----|---|
| 3 | 2   | 4 |   | 0 | 0   | 7 |
| 7 | 1   | 7 | 0 | 7 | 0   | 1 |
| 6 | 3   | 2 | 0 | 1 | 0   | 7 |
| 1 | 6   | 6 | 0 | 1 | 0   | 1 |
| 5 | 7   | 1 | 1 | 0 | 1   | 0 |
| 4 | 5   | 5 | 1 | 0 | 1   | 0 |

| 2 | 1   | 2 | 1 |
|---|-----|---|---|
| 2 | 1   | 4 | 1 |
| 1 | 2 / | 1 | 2 |

4<sup>th</sup> element of the permutation is the first to map to a 1

# **The Min-Hash Property**

- Choose a random permutation π
- Why?
  - ▶ Let X be a doc (set of shingles), y ∈ X is a shingle
  - > Then:  $Pr[\pi(y) = min(\pi(X))] = 1/|X|$ 
    - It is equally likely that any  $y \in X$  is mapped to the min element
  - ► Let y be s.t.  $\pi(y) = \min(\pi(C_1 \cup C_2))$
  - Then either:  $\pi(y) = \min(\pi(C_1))$  if  $y \in C_1$ , or  $\pi(y) = \min(\pi(C_2))$  if  $y \in C_2$
  - ▶ So the prob. that **both** are true is the prob.  $y \in C_1 \cap C_2$
  - Pr[min(π(C<sub>1</sub>))=min(π(C<sub>2</sub>))]=|C<sub>1</sub>∩C<sub>2</sub>|/|C<sub>1</sub>∪C<sub>2</sub>|= sim(C<sub>1</sub>, C<sub>2</sub>)

One of the two cols had to have 1 at position **y** 

## **Four Types of Rows**

**❖** Given cols C₁ and C₂, rows may be classified as:

|   | <u>C<sub>1</sub></u> | <u> </u> |
|---|----------------------|----------|
| Α | 1                    | 1        |
| В | 1                    | 0        |
| С | 0                    | 1        |
| D | 0                    | 0        |

- > **a** = # rows of type A, etc.
- Note:  $sim(C_1, C_2) = a/(a + b + c)$
- **\*** Then:  $Pr[h(C_1) = h(C_2)] = Sim(C_1, C_2)$ 
  - Look down the cols C<sub>1</sub> and C<sub>2</sub> until we see a 1
  - If it's a type-A row, then  $h(C_1) = h(C_2)$ If a type-B or type-C row, then not

# **Similarity for Signatures**

#### Permutation $\pi$

#### **Input matrix (Shingles x Documents)**

| Signature matrix M |  |
|--------------------|--|
|--------------------|--|

| 2 | 4 | 3 |
|---|---|---|
| 3 | 2 | 4 |
| 7 | 1 | 7 |
| 6 | 3 | 2 |
| 1 | 6 | 6 |
| 5 | 7 | 1 |
| 4 | 5 | 5 |

| 1 | 0 | 1 | 0 |
|---|---|---|---|
| 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 |

| 2 | 1 | 2 | 1 |
|---|---|---|---|
| 2 | 1 | 4 | 1 |
| 1 | 2 | 1 | 2 |



#### **Similarities:**

Col/Col Sig/Sig

| 1-3  | 2-4  | 1-2 | 3-4 |
|------|------|-----|-----|
| 0.75 | 0.75 | 0   | 0   |
| 0.67 | 1.00 | 0   | 0   |

## Similarity for Signatures

- Arr We know:  $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions
- The similarity of two signatures is the fraction of the hash functions in which they agree
- Note: Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures

## **Min-Hash Signatures**

- **❖** Pick K=100 random permutations of the rows
- Think of sig(C) as a column vector
- sig(C)[i] = according to the i-th permutation, the index of the first row that has a 1 in column C

$$sig(C)[i] = min(\pi_i(C))$$

- ❖ Note: The sketch (signature) of document C is small ~100 bytes!
- We achieved our goal! We "compressed" long bit vectors into short signatures

## **Implementation Trick**

- Permuting rows even once is prohibitive
- Row hashing!
  - Pick K = 100 hash functions k<sub>i</sub>
  - ▶ Ordering under  $k_i$  gives a random row permutation!
- One-pass implementation
  - For each column C and hash-func. k<sub>i</sub> keep a "slot" for the min-hash value
  - Initialize all sig(C)[i] = ∞
  - Scan rows looking for 1s
    - Suppose row j has 1 in column C
    - Then for each  $k_i$ :
      - If  $k_i(j) < sig(C)[i]$ , then  $sig(C)[i] \leftarrow k_i(j)$

How to pick a random hash function h(x)?
Universal hashing:

 $h_{a,b}(x)=((a\cdot x+b) \mod p) \mod N$  where:

a,b ... random integers p ... prime number (p > N)

## Implementation Example

| Row | $S_1$                                       | $S_2$ | $S_3$ | $S_4$ | $x+1 \mod 5$ | $3x + 1 \mod 5$ |
|-----|---------------------------------------------|-------|-------|-------|--------------|-----------------|
| 0   | 1                                           | 0     | 0     | 1     | 1            | 1               |
| 1   | 0                                           | 0     | 1     | 0     | 2            | 4               |
| 2   | 0                                           | 1     | 0     | 1     | 3            | 2               |
| 3   | 1                                           | 0     | 1     | 1     | 4            | 0               |
| 4   | $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ | 0     | 1     | 0     | 0            | 3               |

| * | Row 0: we see that the values of $h_1(0)$ and               |
|---|-------------------------------------------------------------|
|   | $h_2(0)$ are both 1, thus $sig(S_1)[0] = 1$ ,               |
|   | $sig(S_1)[1] = 1$ , $sig(S_4)[0] = 1$ , $sig(S_4)[1] = 1$ , |

| * | Row 1, we see $h_1(1) = 2$ and $h_2(1) = 4$ , |
|---|-----------------------------------------------|
|   | thus $sig(S_3)[0] = 2$ , $sig(S_3)[1] = 4$    |

|       | $S_1$    | $S_2$    | $S_3$    | $S_4$    |
|-------|----------|----------|----------|----------|
| $h_1$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| $h_2$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |

|       | $S_1$ | $S_2$    | $S_3$ | $S_4$ |
|-------|-------|----------|-------|-------|
| $h_1$ | 1     | $\infty$ | 2     | 1     |
| $h_2$ | 1     | $\infty$ | 4     | 1     |

## Implementation Example

| Ro | w | $S_1$ | $S_2$ | $S_3$ | $S_4$ | $x+1 \mod 5$ | $3x + 1 \mod 5$ |
|----|---|-------|-------|-------|-------|--------------|-----------------|
| 0  |   | 1     | 0     | 0     | 1     | 1            | 1               |
| 1  |   | 0     | 0     | 1     | 0     | 2            | 4               |
| 2  |   | 0     | 1     | 0     | 1     | 3            | 2               |
| 3  |   | 1     | 0     | 1     | 1     | 4            | 0               |
| 4  |   | 0     | 0     | 1     | 0     | 0            | 3               |

\* Row 2:  $h_1(2) = 3$  and  $h_2(2) = 2$ , thus  $sig(S_2)[0] = 3$ ,  $sig(S_2)[1] = 2$ , no update for  $S_4$ 

|       | $S_1$ | $S_2$ | $S_3$ | $S_4$ |
|-------|-------|-------|-------|-------|
| $h_1$ | 1     | 3     | 2     | 1     |
| $h_2$ | 1     | $^2$  | 4     | 1     |

Row 3:  $h_1(3) = 4$  and  $h_2(3) = 0$ , update  $sig(S_1)[1] = 0$ ,  $sig(S_3)[1] = 0$ ,  $sig(S_4)[1] = 0$ ,

Row 4:  $h_1(4) = 0$  and  $h_2(4) = 3$ , update  $sig(S_3)[0] = 0$ ,

## Implementation Example

| Row | $S_1$  | $S_2$ | $S_3$ | $S_4$ | $x+1 \mod 5$ | $3x + 1 \mod 5$ |
|-----|--------|-------|-------|-------|--------------|-----------------|
| 0   | 1      | 0     | 0     | 1     | 1            | 1               |
| 1   | 0      | 0     | 1     | 0     | 2            | 4               |
| 2   | 0      | 1     | 0     | 1     | 3            | 2               |
| 3   | 1      | 0     | 1     | 1     | 4            | 0               |
| 4   | 1<br>0 | 0     | 1     | 0     | 0            | 3               |



- We can estimate the Jaccard similarities of the underlying sets from this signature matrix.
  - > Signature matrix:  $SIM(S_1, S_4) = 1.0$
  - > Jaccard Similarity:  $SIM(S_1, S_4) = 2/3$



# Step 3: Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents

## **LSH: First Cut**

| 2 | 1 | 4 | 1 |
|---|---|---|---|
| 1 | 2 | 1 | 2 |
| 2 | 1 | 2 | 1 |

- ❖ Goal: Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., s=0.8)
- ❖ LSH General idea: Use a function f(x,y) that tells whether x and y is a candidate pair: a pair of elements whose similarity must be evaluated
- For Min-Hash matrices:
  - ➤ Hash columns of signature matrix *M* to many buckets
  - Each pair of documents that hashes into the same bucket is a candidate pair

## **Candidates from Min-Hash**

• Pick a similarity threshold s (0 < s < 1)

| 2 | 1 | 4 | 1 |
|---|---|---|---|
| 1 | 2 | 1 | 2 |
| 2 | 1 | 2 | 1 |

- Columns x and y of M are a candidate pair if their signatures agree on at least fraction s of their rows:
  - M(i, x) = M(i, y) for at least frac. s values of i
    - We expect documents x and y to have the same (Jaccard) similarity as their signatures

## **LSH for Min-Hash**

Big idea: Hash columns of signature matrix M several times

| 2 | 1 | 4 | 1 |
|---|---|---|---|
| 1 | 2 | 1 | 2 |
| 2 | 1 | 2 | 1 |

- Arrange that (only) similar columns are likely to hash to the same bucket, with high probability
- Candidate pairs are those that hash to the same bucket

## Partition M into b Bands



Signature matrix *M* 

### **Partition M into Bands**

- Divide matrix M into b bands of r rows
- For each band, hash its portion of each column to a hash table with k buckets
  - Make k as large as possible
- ❖ Candidate column pairs are those that hash to the same bucket for ≥ 1 band
- ❖ Tune b and r to catch most similar pairs, but few non-similar pairs

# **Hashing Bands**



## **Hashing Bands**



- Regardless of what those columns look like in the other three bands, this pair of columns will be a candidate pair
- Two columns that do not agree in band 1 have three other chances to become a candidate pair; they might be identical in any one of these other bands.

## **Simplifying Assumption**

- There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band
- Hereafter, we assume that "same bucket" means "identical in that band"
- Assumption needed only to simplify analysis, not for correctness of algorithm

## **Example of Bands**

#### **Assume the following case:**

- ❖ Suppose 100,000 columns of *M* (100k docs)
- Signatures of 100 integers (rows)
- Therefore, signatures take 40Mb
- $\diamond$  Choose **b** = 20 bands of **r** = 5 integers/band
- ❖ Goal: Find pairs of documents that are at least s = 0.8 similar

# C<sub>1</sub>, C<sub>2</sub> are 80% Similar

- ❖ Find pairs of  $\geq$  s=0.8 similarity, set b=20, r=5
- **Assume:**  $sim(C_1, C_2) = 0.8$ 
  - Since  $sim(C_1, C_2) \ge s$ , we want  $C_1, C_2$  to be a **candidate pair**: We want them to hash to at **least 1 common bucket** (at least one band is identical)
- Probability  $C_1$ ,  $C_2$  identical in one particular band:  $(0.8)^5 = 0.328$
- Probability  $C_1$ ,  $C_2$  are **not** similar in all of the 20 bands:  $(1-0.328)^{20} = 0.00035$ 
  - i.e., about 1/3000th of the 80%-similar column pairs are false negatives (we miss them)
  - We would find 99.965% pairs of truly similar documents

### C<sub>1</sub>, C<sub>2</sub> are 30% Similar

- ❖ Find pairs of  $\geq$  s=0.8 similarity, set b=20, r=5
- **Assume:**  $sim(C_1, C_2) = 0.3$ 
  - Since  $sim(C_1, C_2) < s$  we want  $C_1, C_2$  to hash to **NO** common buckets (all bands should be different)
- Probability  $C_1$ ,  $C_2$  identical in one particular band:  $(0.3)^5 = 0.00243$
- Probability C<sub>1</sub>, C<sub>2</sub> identical in at least 1 of 20 bands: 1 (1 0.00243)<sup>20</sup> = 0.0474
  - In other words, approximately 4.74% pairs of docs with similarity 0.3% end up becoming candidate pairs
    - They are **false positives** since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold **s**

#### **LSH Involves a Tradeoff**

#### Pick:

- > The number of Min-Hashes (rows of **M**)
- The number of bands b, and
- The number of rows r per band to balance false positives/negatives
- Example: If we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up

## **Analysis of LSH – What We Want**



### What 1 Band of 1 Row Gives You



### b bands, r rows/band

- The probability that the minhash signatures for the documents agree in any one particular row of the signature matrix is t ( $sim(C_1, C_2)$ )
- Pick any band (r rows)
  - Prob. that all rows in band equal = t
  - Prob. that some row in band unequal = 1 t\*
- Prob. that no band identical =  $(1 t^r)^b$
- ❖ Prob. that at least 1 band identical = 1 (1 t<sup>r</sup>)<sup>b</sup>

#### What b Bands of r Rows Gives You



## Example: b = 20, r = 5

- Similarity threshold s
- **❖** Prob. that at least 1 band is identical:

| S  | 1-(1-s <sup>r</sup> ) <sup>b</sup> |
|----|------------------------------------|
| .2 | .006                               |
| .3 | .047                               |
| .4 | .186                               |
| .5 | .470                               |
| .6 | .802                               |
| .7 | .975                               |
| .8 | .9996                              |

### Picking r and b: The S-curve

- **❖** Picking *r* and *b* to get the best S-curve
  - > 50 hash-functions (r=5, b=10)



Blue area: False Negative rate Black area: False Positive rate

### **LSH Summary**

- ❖ Tune M, b, r to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures
- Check in main memory that candidate pairs really do have similar signatures
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar documents

### **Summary: 3 Steps**

- Shingling: Convert documents to sets
  - We used hashing to assign each shingle an ID
- Min-Hashing: Convert large sets to short signatures, while preserving similarity
  - We used **similarity preserving hashing** to generate signatures with property  $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
  - We used hashing to get around generating random permutations
- Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
  - We used hashing to find candidate pairs of similarity ≥ s

#### **Distance Measures**

- Generalized LSH is based on some kind of "distance" between points.
  - Similar points are "close."
- Example: Jaccard similarity is not a distance; 1 minus Jaccard similarity is.
- d is a distance measure if it is a function from pairs of points to real numbers such that:
  - 1.  $d(x,y) \ge 0$ .
  - 2. d(x,y) = 0 iff x = y.
  - 3. d(x,y) = d(y,x).
  - 4.  $d(x,y) \le d(x,z) + d(z,y)$  (triangle inequality).

#### **Some Euclidean Distances**

- \*  $L_2$  norm: d(x,y) = square root of the sum of the squares of the differences between x and y in each dimension.
  - The most common notion of "distance."
- ❖ L₁ norm: sum of the differences in each dimension.
  - Manhattan distance = distance if you had to travel along coordinates only.



#### **Some Non-Euclidean Distances**

- Jaccard distance for sets = 1 minus Jaccard similarity.
- Cosine distance for vectors = angle between the vectors.
- Edit distance for strings = number of inserts and deletes to change one string into another.

#### **Cosine Distance**

- Think of a point as a vector from the origin [0,0,...,0] to its location.
- ❖ Two points' vectors make an angle, whose cosine is the normalized dot-product of the vectors: p₁.p₂/|p₂||p₁|.
  - ightharpoonup Example:  $p_1 = [1,0,2,-2,0]$ ;  $p_2 = [0,0,3,0,0]$ .
  - $p_1.p_2 = 6$ ;  $|p_1| = |p_2| = \sqrt{9} = 3$ .
  - ightharpoonup cos( $\theta$ ) = 6/9;  $\theta$  is about 48 degrees.

#### **Edit Distance**

- The edit distance of two strings is the number of inserts and deletes of characters needed to turn one into the other.
- ❖ An equivalent definition: d(x,y) = |x| + |y| 2|LCS(x,y)|.
  - LCS = longest common subsequence = any longest string obtained both by deleting from x and deleting from y.
- Example:
  - $\rightarrow$  x = abcde; y = bcduve.
  - Turn x into y by deleting a, then inserting u and v after d.
    - Edit distance = 3.
  - Or, computing edit distance through the LCS, note that LCS(x,y) = bcde.
  - $\rightarrow$  Then:|x| + |y| 2|LCS(x,y)| = 5 + 6 -2\*4 = 3 = edit distance.

### **Hash Functions Decide Equality**

- There is a subtlety about what a "hash function" is, in the context of LSH families.
- A hash function h really takes two elements x and y, and returns a decision whether x and y are candidates for comparison.
- Example: the family of minhash functions computes minhash values and says "yes" iff they are the same.
- Shorthand: "h(x) = h(y)" means h says "yes" for pair of elements x and y.

#### **LSH Families Defined**

- Suppose we have a space S of points with a distance measure d.
- A family **H** of hash functions is said to be  $(d_1, d_2, p_1, p_2)$ -sensitive if for any x and y in S:
  - 1. If  $d(x,y) \le d_1$ , then the probability over all h in H, that h(x) = h(y) is at least  $p_1$ .
  - If  $d(x,y) \ge d_2$ , then the probability over all h in H, that h(x) = h(y) is at most  $p_2$ .

### LSH Families: Illustration



### Example: LSH Family – (2)



For Jaccard similarity, minhashing gives us a  $(d_1,d_2,(1-d_1),(1-d_2))$ -sensitive family for any  $d_1 < d_2$ .

#### **LSH for Euclidean Distance**

- Idea: Hash functions correspond to lines
- Partition the line into buckets of size a
- Hash each point to the bucket containing its projection onto the line
  - An element of the "Signature" is a bucket id for that given projection line
- Nearby points are always close; distant points are rarely in same bucket

### **Projection of Points**



Distant points end up in different buckets

hash in the same bucket

- quantization
- > Bottom: unlucky projection

## **Multiple Projections**



### **Projection of Points**



If **d** << **a**, then the chance the points are in the same bucket is at least **1** – **d/a**.



### **Projection of Points**



### **An LS-Family for Euclidean Distance**

- ❖ If points are distance  $d \le a/2$ , prob, they are in same bucket ≥ 1- d/a =  $\frac{1}{2}$
- ❖ If points are distance  $d \ge 2a$  apart, then they can be in the same bucket only if  $d \cos \theta \le a$ 
  - $\rightarrow \cos \theta \leq \frac{1}{2}$
  - $\rightarrow$  60 <  $\theta$  < 90, i.e., at most 1/3 probability
- ❖ Yields a (a/2, 2a, 1/2, 1/3)-sensitive family of hash functions for any a

### References

Chapter 3 of Mining of Massive Datasets.

# **End of Chapter 7.2**