

planetmath.org

Math for the people, by the people.

estimator

Canonical name Estimator

Date of creation 2013-03-22 14:52:22 Last modified on 2013-03-22 14:52:22

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 6

Author CWoo (3771)
Entry type Definition
Classification msc 62A01
Defines estimate

Let X_1, X_2, \ldots, X_n be samples (with observations $X_i = x_i$) from a distribution with probability density function $f(X \mid \theta)$, where θ is a real-valued unknown http://planetmath.org/StatisticalModelparameter in f. Consider θ as a random variable and let $\tau(\theta)$ be its realization.

An estimator for θ is a statistic $\eta_{\theta} = \eta_{\theta}(X_1, X_2, \dots, X_n)$ that is used to, loosely speaking, estimate $\tau(\theta)$. Any value $\eta_{\theta}(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$ of η_{θ} is called an estimate of $\tau(\theta)$.

Example. Let X_1, X_2, \ldots, X_n be iid from a normal distribution $N(\mu, \sigma^2)$. Here the two parameters are the mean μ and the variance σ^2 . The sample mean \overline{X} is an estimator of μ , while the sample variance s^2 is an estimator of σ^2 . In addition, sample median, sample mode, sample trimmed mean are all estimators of μ . The statistic defined by

$$\frac{1}{n-1} \sum_{i=1}^{n} (X_i - m)^2,$$

where m is a sample median, is another estimator of σ^2 .