Recall that a **relation** R on a set X is a subset of the product set $X \times X$. If two elements are related by R, one writes xRy to mean that $(x,y) \in R$. We now give an example of some relations on a set that endow that set with the structure of a category.

Example 1.1.4 (Posets and Preorders). A **preordered set** is a set X along with a relation \leq that satisfies the following two axioms:

- **Reflexivity** $x \le x$ for all $x \in X$
- Transitivity $x \le y$ and $y \le z$ implies $x \le z$

A **partially ordered set**, or **poset** for short, is a preordered set that additionally satisfies the following third axiom:

• Anti-Symmetry — $x \le y$ and $y \le x$ implies x = y

Any preordered set (X, \leq) defines a category by letting the objects be the elements of X and by declaring each hom set $\mathsf{Hom}(x,y)$ to either have a unique morphism if $x \leq y$ or to be empty if $x \nleq y$.

We now reach an example of fundamental importance.

Example 1.1.5. The **open set category** associated to a topological space X, denoted $\mathbf{Open}(X)$, has as objects the open sets of X and a unique morphism $U \to V$ for each pair related by inclusion $U \subseteq V$.

The above examples of categories are quite small when compared to the categories that Eilenberg and Mac Lane first introduced. The categories considered there correspond to **data types** and we will usually refer to them with the letter \mathcal{D} . For this paper \mathcal{D} will usually mean one of the following:

- Set the category whose objects are sets and whose morphisms are all set maps (multi-valued maps are prohibited as are partially defined maps)
- Ab the category whose objects are abelian groups and whose morphisms are group homomorphisms
- Vect the category whose objects are vector spaces and whose morphisms are linear transformations
- vect the category whose objects are finite-dimensional vector spaces and linear transformations
- **Top** the category whose objects are topological spaces and whose morphisms are continuous maps