Epiphany term 2025

Homework 1: Convex learning problems

Lecturer: Georgios P. Karagiannis

georgios.karagiannis@durham.ac.uk

Exercise 1. (\star) Let $f: \mathbb{R}^d \to \mathbb{R}$ be a convex and β -smooth function.

1. Show that for $v, w \in \mathbb{R}^d$

$$f(v) - f(w) \in \left(\left\langle \nabla f(w), v - w \right\rangle, \left\langle \nabla f(w), v - w \right\rangle + \frac{\beta}{2} \|v - w\|^2 \right)$$

2. Show that for $v, w \in \mathbb{R}^d$ such that $v = w - \frac{1}{\beta} \nabla f(w)$, it is

$$\frac{1}{2\beta} \left\| \nabla f\left(w\right) \right\|^{2} \leq f\left(w\right) - f\left(v\right)$$

3. Additionally assume that f(x) > 0 for all $x \in \mathbb{R}^d$. Show that for $w \in \mathbb{R}^d$,

$$\|\nabla f(w)\| \le \sqrt{2\beta f(w)}$$

Exercise 2. $(\star\star)$ Let $f:\mathbb{R}^d\to\mathbb{R}$ be a λ -strongly convex function. Assume that w^* is a minimizer of f i.e.

$$w^* = \operatorname*{arg\,min}_{w} \left\{ f\left(w\right) \right\}$$

Show that for any $w \in \mathbb{R}^d$ it holds

$$f(w) - f(w^*) \ge \frac{\lambda}{2} \|w - w^*\|^2$$

Hint Use the definition of λ -strongly convex function, properly rearrange it, and ...