

סמסטר אי מועד אי 08/02/2004 : תאריך

98: 30 שעה

משך הבחינה: 3 שעות חומר עזר: **אסור**

בחינה בקורס: "ארכיטקטורת מחשבים"

מרצה: דייר כרמי מרימוביץ

בבחינה 5 עמודים כולל עמוד זה

ציון מקסימלי אפשרי הינו 100

שאלה 1 (לכל היותר 90 נקודות)

(לשאלה זו מצורפים שרטוטי מחשב Mano המיקרו מתוכנת.) מחשב זה עבר שדרוג בכל רכיביו למעט רכיבי הזכרון הראשי. הרכיבים המשודרגים פועלים במהירות גבוהה יותר מאשר הרכיבים למעט רכיבי הזכרון הראשי. הרכיבים המקוריים. כמו כן מבנה המיקרו פקודות בבקרה שונה והשדות F1, F2, F3 הם ברוחב 4 ביטים. בשאלה זו יש לבנות את מערכת הזכרון כך שתכלול זכרון מטמון כדי לאפשר עבודה בקצב מהיר. להלן תאור כללי של מערכת הזכרון:

- (א) (20 נקודות) לרשותכם רכיבי זכרון (איטיים) בגודל $8\times1024\times8$ מלים. בנו זכרון בגודל (א) (א) ארשותכם רכיבים אלו. (המיקרו פקודות READ, WRITE פועלות מול זכרון זה 1024 \times 16 מרכיבים אלו (המחשב כדי לעבוד לאט יותר.)
- (ב) (30 נקודות) לרשותכם 5 רכיבי זכרון (מהירים מאוד) בגודל 4 × 512 מלים. עליכם לבנות מקום לזכרון מטמון עבור 512 מלים בשיטת המפוי הישיר (Direct mapping). כיון שכל הקריאות הינן ל-DR זכרון זה יורכב מתתי המערכות T,C . הגדירו במדויק אלו קוי כתובת/נתונים מתחברים לרכיבים בתתי המערכות T ו-C. (לא לפחד לחבר קוי כתובת לכניסות נתונים!) שימו לב שהחיווט תלוי במיקרו-פעולות שעומדות לרשותכם. תארו במלים (ובמדויק) את שיטת המפוי הישיר ואת הליך הקריאה והכתיבה מהזכרון הראשי תוך שימוש בזכרון המטמון. (בכתיבה עובדים בשיטת Write-through.)
- ימ- $^{\circ}$ (ג) (3 נקודות) האם ניתן לקרוא במקביל מ- $^{\circ}$ ומ- $^{\circ}$! האם הגיוני לקרוא במקביל מ- $^{\circ}$
 - (ד) (5 נקודות) האם ניתן לכתוב במקביל ל-T ו-Cי האם הדבר הגיוניי
- .DR בדיוק (בקבוצה C-) מבצעות קריאה מ-C (בקבוצה T-) מבצעות להוד (בקבוצה EADT, READC (בקבוצה T-) (בקבוצה C-1 (בקבוצה C-1 (בקבוצה C-1 (בקבוצה C-1 (בקבוצה EIC) מבצעות תלוי בחיווט מסעיף (ב)). הפקודות BIC, BIS (בקבוצה E-3 (בקבוצה E-3 (בקבוצה E-3 (בקבוצה E-3 אותם mask2, mask1). $AC \leftarrow AC \land mask2$, $AC \leftarrow AC \lor mask1$ ביכולתכם לבחור בעת בניית המערכת). שנו את המיקרו תוכנה מטבלה C-1 (בעם בנית המערכת). שנו את הקטעים המבצעים ETCH, INDRCT, ישמשו זכרון מטמון. מספיק לשנות את הקטעים המבצעים הפריאה והכתיבה STORE (הצעה: כיתבו שגרות מיקרו-תכנות לביצוע אלגוריתמי הקריאה והכתיבה דרך זכרון המטמון וקיראו להן לפי הצורך).

שאלה 2 (לכל היותר 20 נקודות)

- (Vectored interrupts) אי (5 נקודות) מהי מערכת התומכת בפסיקות ווקטוריות
 - (ב) (5 נקודות) מה זה DMA!
 - CPU כדי לתמוך ב-DMA: אילו אותות צריך שיגיעו/יצאו מה-CPU כדי לתמוך ב-
 - (ד) (5 נקודות) מה הכוונה בחיבור Daisy-Chain!
 - (ה) (5 נקודות) מהי מכונת RISC!
- .(ו) (5 נקודות) מהי מכונת-מחסנית? הדגימו קוד עבור הבטוי A+B*(C+D) במכונה זו.

Figure 7-4 Computer hardware configuration.

3	3	3	2	2	7
F1	F2	F3	CD	BR	AD

F1, F2, F3: Microoperation fields

CD: Condition for branching

BR: Branch field

AD: Address field

Figure 7-6 Microinstruction code format (20 bits).

TABLE 7-1 Symbols and Binary Code for Microinstruction Fields

F1	Microoperation	Symbol	
000	None	NOP	
001	$AC \leftarrow AC + DR$	ADD	
010	$AC \leftarrow 0$	CLRAC	
011	$AC \leftarrow AC + 1$	INCAC	
100	$AC \leftarrow DR$	DRTAC	
101	$AR \leftarrow DR(0-10)$	DRTAR	
110	$AR \leftarrow PC$	PCTAR	
111	$M[AR] \leftarrow DR$	WRITE	
F2	Microoperation	Symbol	
000	None	NOP	
001	$AC \leftarrow AC - DR$	SUB	
010	$AC \leftarrow AC \lor DR$	OR	
011	$AC \leftarrow AC \land DR$	AND	
100	$DR \leftarrow M[AR]$	READ	
101	$DR \leftarrow AC$	ACTDR	
110	$DR \leftarrow DR + 1$	INCDR	
111	<i>DR</i> (0-10) ← <i>PC</i>	PCTDR	
F3	Microoperation	Symbol	
000	None	NOP	
001	$AC \leftarrow AC \oplus DR$	XOR	
010	$AC \leftarrow \overline{AC}$	COM	
011	$AC \leftarrow \text{shl } AC$	SHL	
100	$AC \leftarrow \operatorname{shr} AC$	SHR	
101	$PC \leftarrow PC + 1$	INCPC	
110	$PC \leftarrow AR$	ARTPC	
111	Reserved		

CD	Condition	Symbol	Comments
 00	Always $= 1$	U	Unconditional branch
01	DR(15)	I	Indirect address bit
10	AC(15)	S	Sign bit of AC
11	AC = 0	Z	Zero value in AC

	BR	Symbol	Function	
	00	JMP	$CAR \leftarrow AD$ if condition = 1	
			$CAR \leftarrow CAR + 1$ if condition = 0	
	01	CALL	$CAR \leftarrow AD$, $SBR \leftarrow CAR + 1$ if condition = 1	
			$CAR \leftarrow CAR + 1$ if condition = 0	
	10	RET	$CAR \leftarrow SBR$ (Return from subroutine)	
	11	MAP	$CAR(2-5) \leftarrow DR(11-14), CAR(0,1,6) \leftarrow 0$	
_				

TABLE 7-2 Symbolic Microprogram (Partial)

Label	Microoperations	CD	BR	AD
	ORG 0	-		
ADD:	NOP	I	CALL	INDRCT
	READ	U	JMP	NEXT
	ADD	Ū	JMP	FETCH
	ORG 4			
BRANCH:	NOP	S	JMP	OVER
	NOP	U	JMP	FETCH
OVER:	NOP	I	CALL	INDRCT
	ARTPC	U	JMP	FETCH
	ORG 8			
STORE:	NOP	I	CALL	INDRCT
	ACTDR	U	JMP	NEXT
	WRITE	\mathbf{U}	JMP	FETCH
	ORG 12			
EXCHANGE:	NOP	I	CALL	INDRCT
	READ	U	JMP	NEXT
	ACTDR, DRTAC	U	JMP	NEXT
	WRITE	U	JMP	FETCH
	ODC (4			
EETCII.	ORG 64	TT	TMD	NEXT
FETCH:	PCTAR	U	JMP	
	READ, INCPC	U	JMP	NEXT
N I D D COT	DRTAR	U	MAP	NUNNER
INDRCT:	READ	U	JMP	NEXT
	DRTAR	U	RET	