Currently in Texture analysis:

 We have great tools for describing orientation likelihoods

But new techniques can measure intragranular strain

Past research has extracted strain **Expectation** from HEDM

 But now we want the orientation dependent strain likelihood

 This is much harder, but also much more directly useful!

Pythonic ODFs and SODFs for EBSD and far field HEDM

Scan here to read more!

Austin Gerlt, The Ohio State University

Orientations (w/ Bunge angles): $g = g(\phi_1, \Phi, \phi_2)$

Strain tensor: $\epsilon = \epsilon(\epsilon_{xx}, \epsilon_{yy}, \epsilon_{zz}, \epsilon_{xy}, \epsilon_{yz}, \epsilon_{xz})$

Note: Orientations exist in the Lie Space SO3, and thus use non-Euclidean probability functions

Orientation Distribution Function (ODF):

Gives scalar **Likelihood** of a given orientation.

Usually a truncated series of Wigner D matrices (eg: TSL/MTEX)

$$ODF(g) = \sum_{\ell=0}^{\infty} \sum_{m=-l}^{\ell} \sum_{n=-l}^{\ell} c_{mn}^{\ell} D_{mn}^{\ell}(g) = \mathcal{P}(g)$$

For the original Bunge version, the corrected C.S. Mann representation, and details on ODFs, Scan this QR \rightarrow

High Resolution EBSD

Gregory Sparks, G. et al, 2021 *Ultramicroscopy*, 2021

 \leftarrow HR-EBSD with 0.02^o angular resolution showing slip in Ti-7Al

> Combined near and far field HEDM showing intragranular strain \rightarrow

Strain Expectation Function (SEF):

Gives the Expected strain, but NOT the probability.

$$SEF(g) = E(\epsilon) \text{ or } E(\epsilon|g)$$

- Several papers (Wang, Bernier, and Barton), yet no public code.
- Incorrectly call it an SODF, also ignore conditional probabilities.
- Still, incredible works that laid the groundwork for this study.

This is already powerful, but we can go further!

$E(\epsilon_{yy})$ $E(\epsilon_{zz})$

Strain Orientation Distribution Function (SODF):

Gives the scalar Likelihood of finding any given combination of Orientation AND Strain.

$$SODF(g,\epsilon) = \sum_{\ell=0}^{\infty} \sum_{m=-l}^{l} \sum_{n=-l}^{l} \begin{bmatrix} c_{mn}^{\ell} D_{mnxx}^{\ell}(g) & c_{mn}^{\ell} D_{mnxy}^{\ell}(g) & c_{mn}^{\ell} D_{mnxz}^{\ell}(g) \\ & c_{mn}^{\ell} D_{mnyy}^{\ell}(g) & c_{mn}^{\ell} D_{mnyz}^{\ell}(g) \\ & & c_{mn}^{\ell} D_{mnzz}^{\ell}(g) \end{bmatrix} = \mathcal{P}(g,\epsilon)$$

- Could also be reframed as the conditional probability, $\mathcal{P}(g|\epsilon)$
- This hasn't been done before, and the best method for doing so is still unclear
 - Currently trying a 4D FEM, as well as a variant on Generalized Spherical Harmonics.

Challenge 1: create open source pythonic ODFs

Need a user-friendly MTEX-like solution, but for HEDM (thus must also solve Pole figure inversion)

Challenge 2: Extrapolate to create the SODF

Crucial to building better Plasticity models. An SEF tell how far a solution differs from the mean, but an SODF states how likely a solution is.

Chakraborty et al, Met Trans A, 2022

Background Information

Citations

Repos and Results

