日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2003年 3月13日

出願番号

Application Number:

特願2003-068283

[ST.10/C]:

[JP2003-068283]

出 願 人
Applicant(s):

セイコーエプソン株式会社

2003年 6月 3日

特 許 庁 長 官 Commissioner, Japan Patent Office

特2003-068283

【書類名】 特許願

【整理番号】 EP-0447201

【提出日】 平成15年 3月13日

【あて先】 特許庁長官殿

【国際特許分類】 A61B 5/00

【発明者】

【住所又は居所】 長野県諏訪市大和3丁目3番5号 セイコーエプソン株

式会社内

【氏名】 天野 和彦

【発明者】

【住所又は居所】 福岡県福岡市城南区七隈八丁目19-1 福岡大学内

【氏名】 田中 宏暁

【特許出願人】

【識別番号】 000002369

【氏名又は名称】 セイコーエプソン株式会社

【代理人】

【識別番号】 100090479

【弁理士】

【氏名又は名称】 井上 一

【電話番号】 03-5397-0891

【選任した代理人】

【識別番号】 100090387

【弁理士】

【氏名又は名称】 布施 行夫

【電話番号】 03-5397-0891

【選任した代理人】

【識別番号】 100090398

【弁理士】

【氏名又は名称】 大渕 美千栄

特2003-068283

【電話番号】

03-5397-0891

【手数料の表示】

【予納台帳番号】

039491

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9402500

1) **(**

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 運動負荷強度評価装置及び運動機器

【特許請求の範囲】

【請求項1】 運動中の被験者の心臓の弛緩時間を非侵襲的に測定する弛緩時間測定部と、

時間経過毎に前記弛緩時間測定部にて測定される前記弛緩時間が入力され、各 弛緩時間の変化を検出する弛緩時間変化検出部と、

を有する運動負荷強度評価装置。

【請求項2】 請求項1において、

前記被験者の運動負荷強度を測定する運動負荷強度測定部をさらに有し、

前記弛緩時間変化検出部は、前記運動負荷強度測定部の出力に基づいて、異なる運動負荷強度に対応する弛緩時間の変化を検出する運動負荷強度評価装置。

【請求項3】 請求項1または2において、

前記弛緩時間測定部は、運動中の被験者の心電図を計測する心電図計測部を含み、心臓の弛緩時間を反映する前記心電図の特徴より前記弛緩時間を測定する運動負荷強度評価装置。

【請求項4】 請求項1または2において、

前記弛緩時間測定部は、運動中の被験者に装着され、非侵襲的に末梢における 脈波を検出する脈波検出部を含み、心臓の弛緩時間を反映する前記脈波の特徴よ り前記弛緩時間を測定する運動負荷強度評価装置。

【請求項5】 請求項1または2において、

前記駆出時間測定部は、

運動中の被験者に装着され、非侵襲的に末梢における脈波を検出する脈波検出 部と、

前記脈波検出部からの出力に基づいて、前記心臓の駆出時間に補正する駆出時間補正部と、

を有する運動負荷強度評価装置。

【請求項6】 請求項4または5において、

前記弛緩時間測定部は、

前記被験者の運動による体動に起因した、体動波形を検出する体動波形検出部 と、

前記脈波検出部からの脈波より、前記体動波形検出部からの体動波形を除去す る体動波形除去部と、

をさらに有し、

前記弛緩時間測定部は、前記体動波形が除去された脈波に基づいて弛緩時間を 測定する運動負荷強度評価装置。

【請求項7】 請求項4乃至6のいずれかにおいて、

前記弛緩時間測定部は、前記脈波の一周期から、前記脈波の立ち上がりからディクロティクノッチに至るまでの駆出時間を差し引いて測定する運動負荷強度評価装置。

【請求項8】 請求項4乃至7のいずれかにおいて、

前記弛緩時間測定部は、前記脈波を一次微分する一次微分部と、一次微分波形を二次微分する二次微分部とを有し、二次微分波形に基づいて前記弛緩時間を測定する運動負荷強度評価装置。

【請求項9】 請求項4乃至8のいずれかにおいて、

前記弛緩時間測定部は、前記脈波の波高値と基準値とを比較するコンパレータを含み、前記コンパレータからの矩形波の波幅に基づいて心臓の駆出時間を測定し、さらに、前記脈波の一周期から駆出時間を差し引いて前記弛緩時間を測定する運動負荷強度評価装置。

【請求項10】 請求項9において、

前記コンパレータは、帰還抵抗が正の入力端子に接続されたヒステリシス付コ ンパレータである運動負荷強度評価装置。

【請求項11】 請求項4または5において、

前記弛緩時間測定部は、前記脈波検出部からの脈波をフーリエ変換するフーリエ変換部をさらに有し、

前記弛緩時間測定部は、フーリエ変換された周波数スペクトルの中から、心臓 の弛緩時間を反映する前記脈波の特徴に基づく周波数スペクトルを抽出し、 前記弛緩時間変化検出部は、時間経過毎に前記弛緩時間測定部より抽出された 周波数スペクトルの周波数の変化を検出する運動負荷強度評価装置。

【請求項12】 請求項6において、

前記弛緩時間測定部は、

前記脈波検出部からの脈波をフーリエ変換する第1のフーリエ変換部と、

前記体動波形検出部からの体動波形をフーリエ変換する第2のフーリエ変換部 と、

をさらに有し、

前記体動波形除去部は、前記第1,第2のフーリエ変換部からの各周波数帯域 の周波数スペクトルのうち、同一周波数の周波数スペクトル同士を減算する運動 負荷強度評価装置。

【請求項13】 請求項12において、

前記弛緩時間測定部は、前記体動波形除去部からの周波数スペクトルの中から 、心臓の弛緩時間を反映する前記脈波の特徴に基づく周波数スペクトルを抽出し

前記弛緩時間変化検出部は、時間経過毎に前記弛緩時間測定部より抽出された 周波数スペクトルの周波数の変化を検出する運動負荷強度評価装置。

【請求項14】 請求項12において、

前記弛緩時間測定部は、前記体動波形除去部からの出力を逆フーリエ変換する 逆フーリエ変換部と、逆フーリエ変換された脈波を一次微分する一次微分部と、 一次微分波形を二次微分する二次微分部とを有し、二次微分波形に基づいて前記 弛緩時間を測定する運動負荷強度評価装置。

【請求項15】 請求項1乃至14のいずれかにおいて、

前記弛緩時間変化検出部の出力に基づいて、乳酸閾値を超えたことを告知する 告知部をさらに有する運動負荷強度評価装置。

【請求項16】 請求項1乃至14のいずれかにおいて、

前記弛緩時間変化検出部の出力に基づいて、無酸素運度に入ったことを告知する告知部をさらに有する運動負荷強度評価装置。

【請求項17】 運動中の被験者の心臓の弛緩時間を非侵襲的に測定する弛

緩時間測定部と、

前記弛緩時間と運動負荷強度との相関データを記憶する記憶部と、

前記弛緩時間測定部にて測定される前記弛緩時間に基づいて、前記記憶部より 対応する運動負荷強度を検出する運動負荷強度検出部と、

を有する運動負荷強度評価装置。

【請求項18】 請求項17において、

時間経過毎に前記弛緩時間測定部にて測定される前記弛緩時間が入力され、各 弛緩時間の変化を検出する弛緩時間変化検出部がさらに設けられ、

前記運動負荷強度検出部は、前記弛緩時間変化検出部にて前記弛緩時間が変化した時に、前記運動負荷強度を検出する運動負荷強度評価装置。

【請求項19】 請求項1乃至18のいずれかにおいて、

前記弛緩時間に代えて、心拍の一周期に対する弛緩時間の割合を指標として用いる運動負荷強度評価装置。

【請求項20】 請求項1乃至18のいずれかにおいて、

前記弛緩時間変化検出部は、前記弛緩時間が変化した時に心拍の1周期を出力 する運動負荷強度評価装置。

【請求項21】 請求項15または16において、

前記告知部は、安全な運動範囲を超える弛緩時間を記憶する記憶部を有し、策 定された弛緩時間が前記記憶部に記憶された弛緩時間よりも短くなったときに、 安全域を外れたことを告知する運動負荷強度評価装置。

【請求項22】 請求項1乃至21のいずれかに記載の運動負荷強度評価装置を含む運動機器。

【請求項23】 請求項22において、

前記弛緩時間変化検出部にて出力された心拍の1周期に基づいて運動負荷強度 の範囲を心拍数の範囲で設定する運動機器。

【請求項24】 請求項22または23において、

運動負荷強度が異なる運動メニューを出力する出力部をさらに有する運動機器

【請求項25】 請求項22または23において、

運動負荷強度が異なる運動メニューに従って、前記被験者が体得する運動負荷 を出力する負荷出力部をさらに有する運動機器。

【請求項26】 請求項24または25において、

前記運動メニューは、前記被験者について運動負荷と弛緩時間との相関より求められる乳酸閾値に基づいた所定の運動負荷強度範囲に設定されている運動機器

【請求項27】 請求項26において、

前記運動メニューを記憶する記憶媒体が着脱自在である運動機器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、被験者の運動負荷強度を評価する運動負荷強度評価装置及び運動機器に関する。特に、現在の運動強度が安全でかつ効果的な運動であるかを評価し、あるいは運動負荷強度自体を評価することができる運動負荷強度評価装置及び運動機器に関する。

[0002]

【背景技術及び発明が解決しようとする課題】

血中乳酸濃度が増加し始める閾値(有酸素運動から無酸素運動へ切り換わる閾値ともいわれている)を運動負荷強度または酸素摂取量の数値として表現した、無酸素性作業閾値(AT:anaerobic threshold)は、呼吸器系や循環器系の機能に対する運動効果の評価や、スポーツのトレーニングにおける適切な運動負荷強度の選択などを行うために有用な指標であることが知られている。この閾値の検出は、血液中の乳酸濃度が急激に増加し始める運動負荷強度または酸素摂取量の数値である乳酸閾値(LT:lactate threshold)の検出、または、運動負荷強度の増加に伴う呼気中の二酸化炭素の増加率が一段と高くなる運動負荷強度または酸素摂取量の数値である換気閾値(VT:ventilatory threshold)の検出によって行うことができる。また、この閾値は、交感神経活動が亢進する閾値(CT:Catecholamine Threshold)と近似する。

[0003]

しかしながら、血液中の乳酸値の測定は、血液の採取が必要となるため侵襲的 に行わねばならず、運動の実施とともに手軽に行うということは困難である。

[0004]

また、換気閾値を検出するために行われる、酸素摂取量や二酸化炭素発生量の 監視は、装置から伸びる管路に接続されたマウスピースを通して呼吸を行い、吸 気や呼気の量と成分を計測する必要があるため、大掛かりな装置を必要とする。

[0005]

本発明の目的は、非侵襲的に検出される弛緩時間に基づいて、安全で効果的な 運動負荷強度を評価することができる運動負荷強度評価装置及び運動機器を提供 することにある。

[0006]

本発明の他の目的は、運動負荷強度を評価することで、安全でかつ効果的な運動を体得することができる運動負荷強度評価装置及び運動機器を提供することにある。

[0007]

【課題を解決するための手段】

本発明の一態様に係る運動負荷強度評価装置は、

運動中の被験者の心臓の弛緩時間を非侵襲的に測定する弛緩時間測定部と、

時間経過毎に前記弛緩時間測定部にて測定される前記弛緩時間が入力され、各 弛緩時間の変化を検出する弛緩時間変化検出部と、

を有する。

[0008]

ここで、弛緩時間(DT: diastolic time)は、心臓の拡張期の時間であり、 非侵襲的に測定される心電波形または脈波波形の特徴より推定することができる

[0009]

心臓の弛緩時間は、運動負荷強度の増加に伴い短縮するが、乳酸閾値(LT) に対応する運動負荷強度を超えると、弛緩時間は不変またはわずかに変化する程 度であり、乳酸閾値付近で明瞭な屈曲点が認められる。よって、例えば運動負荷 強度を高めながら運動する際に、弛緩時間変化検出部にて弛緩時間の変化を検出すれば、現在の運動が乳酸閾値に達しない運動の運動負荷強度であるのか、あるいは乳酸閾値に達した運動の運動負荷強度であるかを評価できる。例えば一つの指標として、乳酸閾値の付近を安全でかつ効果的な運動と定義することができ、この運動範囲を弛緩時間変化検出部からの出力に基づいて判断できる。この時の運動強度を心拍数と仕事率(watt)で告知することができる。

[0010]

ここで、前記被験者の運動負荷強度を測定する運動負荷強度測定部をさらに有することができる。この場合、前記弛緩時間変化検出部は、前記運動負荷強度測定部の出力に基づいて、異なる運動負荷強度に対応する弛緩時間の変化を検出することができる。よって、異なる運動負荷強度に対応する弛緩時間が実質的に等しければ、乳酸閾値を超えた運動であると認識できる。

[0011]

本発明の一態様では、前記弛緩時間測定部は、前記被験者の運動による体動に起因した、体動波形を検出する体動波形検出部と、前記脈波検出部からの脈波より、前記体動波形検出部からの体動波形を除去する体動波形除去部とをさらに有することができる。運動中の体動が脈波に悪影響を及ぼすので、この悪影響を除去することが望ましいからである。この場合、弛緩時間測定部には、体動波形が除去された脈波が入力されるので、より精度高く運動負荷強度を評価できる。

[0012]

前記弛緩時間測定部は、前記脈波の一周期から、前記脈波の立ち上がりからディクロティクノッチに至るまでの駆出時間を差し引くことで測定することができる。詳細を後述するように、脈波の立ち上がりからディクロティクノッチに至るまでの時間間隔が駆出時間を反映し、その駆出時間と弛緩時間との和が脈波の一周期であるからである。

[0013]

心臓での駆出時間は、心音図によって求めることができる。そこで、予め心音図によって求めた大動脈弁解放時間S1から大動脈弁閉鎖時間S2に求めた時間間隔を測定した収縮時間と、前記脈波の立ち上がりからディクロティクノッチに

至るまでの時間間隔との関係を求めた相関式で、前記脈波の立ち上がりからディ クロティクノッチに至るまでの時間間隔を補正して駆出時間とすることができる

[0014]

前記弛緩時間測定部は、前記脈波を一次微分する一次微分部と、一次微分波形を二次微分する二次微分部とを有することができる。一次微分波形、さらに二次微分波形では、上述した脈波の特徴がより顕在化するので、それに基づいて弛緩時間を測定することができるからである。

[0015]

前記弛緩時間測定部は、脈波の波高値と基準値とを比較するコンパレータを含むことができる。このコンパレータからの矩形波の波幅に基づいて駆出時間を測定することができる。脈波の一周期から駆出時間を差し引けば弛緩時間が求められる。このとき、帰還抵抗が正の入力端子に接続されたヒステリシス付コンパレータを用いることができる。ヒステリシス付コンパレータは、例えばディクロティクノッチ付近で矩形波が立ち下がった直後に、脈波の波高値が基準値を再度上回ったとしても、矩形波の立ち上がりを遅らせることができるからである。これにより、駆出時間を反映した矩形波を確保することができる。

[0016]

前記弛緩時間測定部は、前記脈波検出部からの脈波をフーリエ変換するフーリエ変換部をさらに有することができる。この場合、前記弛緩時間測定部は、フーリエ変換された周波数スペクトルの中から、心臓の弛緩時間を反映する前記脈波の特徴に基づく周波数スペクトルを抽出する。前記弛緩時間変化検出部は、時間経過毎に前記弛緩時間測定部より抽出された周波数スペクトルの周波数の変化を検出する。こうして、周波数スペクトルに基づいて、弛緩時間の変化を検出できる。

[0017]

前記弛緩時間測定部は、前記脈波検出部からの脈波をフーリエ変換する第1のフーリエ変換部と、前記体動波形検出部からの体動波形をフーリエ変換する第2のフーリエ変換部とをさらに有することができる。この場合、前記体動波形除去

部は、前記第1,第2のフーリエ変換部からの各周波数帯域の周波数スペクトルのうち、同一周波数の周波数スペクトル同士を減算する。こうして、周波数スペクトルの段階で体動を除去することができる。これ以降の弛緩時間検出と弛緩時間変化検出も、上記と同様に周波数スペクトルに基づいて実施できる。

[0018]

あるいは、前記弛緩時間測定部は、前記体動波形除去部からの出力を逆フーリエ変換する逆フーリエ変換部と、逆フーリエ変換された脈波の立ち上がりからディクロティックノッチに至るまでの時間間隔を測定しても良い。あるいは、一次微分する一次微分部と、一次微分波形を二次微分する二次微分部とを有し、一次微分波形あるいは、二次微分波形に基づいて前記弛緩時間を測定してもよい。

[0019]

本発明では、前記弛緩時間変化検出部の出力に基づいて、乳酸閾値を越えた無 運動であることを告知する告知部をさらに有することができる。これにより、被 験者は乳酸閾値付近での運動強度で運動を継続することができ、告知があった場 合に運動負荷強度を一定に保てば良い。

[0020]

この場合、告知部では、弛緩時間変化検出部から出力される心拍の一周期の時間から心拍数を告知しても良い。

[0021]

本発明の他の態様では、上述した弛緩時間変化検出部に代えて、あるいはそれに追加して、前記弛緩時間測定部にて測定される前記弛緩時間に基づいて、記憶部より対応する運動負荷強度を検出する運動負荷強度検出部を設けることができる。記憶部には予め、被験者の心臓の弛緩時間と運動負荷強度との相関データが記憶されている。こうすると、運動中の負荷強度を認識することができる。

[0022]

この場合、前記運動負荷強度検出部は、前記弛緩時間変化検出部にて前記弛緩 時間が変化した時に、前記運動負荷強度を検出するようにしてもよい。

[0023]

本発明では、弛緩時間に代えて、心拍または脈波の一周期に対する弛緩時間の

割合(正規化された弛緩時間という)を用いることもできる。ここで、心拍または脈波の一周期は運動負荷強度が大きくなるに従い、乳酸閾値LTの前後に拘らずほぼ一定の比率で短くなる。これに対して、弛緩時間は後述する図2の通り乳酸閾値LTの前後で変化率が異なる。よって、正規化された弛緩時間は、乳酸閾値LTに達するまでは、運動負荷強度が大きくなるにしたがい短くなるが、乳酸閾値LTに達した以降は心拍または脈波の一周期の減少にかかわらずほぼ一定かや上昇する。このことを利用して、上述の各種態様にて正規化された弛緩時間から乳酸閾値LTに達したことを告知し、あるいは運動中の負荷強度と運動の安全性を告知することが可能となる。

[0024]

さらに、告知部はあらかじめ安全な運動範囲を超える弛緩時間を記憶部にセットしておき、測定された弛緩時間が記憶部に記憶された弛緩時間よりも短くなったときには、安全域を外れたことを知らせることもできる。

[0025]

また、本発明のさらに他の態様は、運動負荷評価装置を含んで運動機器を構成したものである。この運動機器は、例えば運動負荷強度の異なる運動メニューを表示部等に出力するか、あるいはその運動メニューに従って被験者が体得する運動負荷強度を負荷出力部によって変化させることができる。例えば走行マシーンのベルト速度やペダルマシンーンのペダル負荷を変化させても良い。この運動メニューとしては、各個人について運動負荷強度と心臓の弛緩時間とを予め測定しておき、各個人について安全でかつ効果的な運動メニューを運動機器について運動負荷強度と弛緩時間との相関より予め求められる乳酸閾値に基づいた所定の運動負荷強度に設定される。この運動負荷範囲は、例えば心臓疾患者あるいは一般健常者などに対しては乳酸閾値付近に設定するとよい。しかし、これに限らず、例えば競技者の場合には乳酸閾値を超える範囲に設定してもよい。また、前記弛緩時間変化検出部にて出力された心拍の1周期に基づいて運動負荷強度の範囲を心拍数の範囲で設定しても良い。さらに、被験者固有の運動メニューを記憶する記憶媒体を運動機器に対して着脱自在とすれば、被験者に合った運動メニューを

容易に設定できる。

[0026]

【発明の実施の形態】

以下、本発明の一実施形態について、図面を参照して説明する。

[0027]

(弛緩時間の説明)

図1は、心臓の周期を示したものである。図1において、波形SWは心電波形、波形MH1は心臓から流出する直後の大動脈血圧波形、波形MH2は末梢部(橈骨動脈)の一般的な脈波波形である。図1において、血液の流動に伴う時間遅れは無視してある。

[0028]

まず、駆出時間ED (Ejection Duration) について説明する。駆出時間は、 厳密な意味においては、大動脈血圧波形MH1における大動脈弁開放時刻 t 1 と 大動脈弁閉鎖時刻 t 2 の時間間隔となり、安静時において、2 8 0 m s 程度であ る。大動脈弁の解放は心室の収縮によって起こるので、この時間間隔は、心室収 縮期の時間 (Systolic Time) とほぼ一致する (図1の心電波形 S W中のQ-T 時間に相当)。心室収縮時間は、等容収縮と駆出時間があり、等容収縮は電気的 心収縮の開始と大動脈弁の解放との時間差である。

[0029]

一方、心臓の弛緩時間DTとは心室拡張期の時間であり、等容収縮+駆出時間 ED+弛緩時間DT=心拍または脈波の一周期(図1の心電波形SW中の例えば R-R時間または脈波波形MH2中のPO-PO時間)の関係となる。よって、 弛緩時間DTを心音の測定をするなどして直接求めても良いが、心拍または脈波 の一周期から駆出時間EDを差し引いて求めても良い。

[0030]

ところで、末梢部の脈波波形MH2におけるノッチN2は、大動脈弁閉鎖によって生じるものである。このため、脈波波形MH2における最小ピークP0から最大ピークP1の直後に生じるピークP4までの時間間隔は、見積の収縮時間(Estimated Systolic Time)と呼ばれ、駆出時間EDを推定できる。

ここで、脈波波形には個人差があり、また同一個人においても波形形状が体調などによって変化することが知られている。このため、末梢部の脈波波形MH2に代えて、波形MH3に示すように、ピークP2とピークP3が重なり、ノッチN1が生じない場合がある。本実施形態では、図1の脈波MH2,MH3の種類に拘らず、点P0からディクロティクノッチ(Dictrotic Notch)P4までの時間間隔を駆出時間EDとして取り扱うものとする。

[0032]

このことから、駆出時間EDは、厳密な意味のみならず、心室収縮期の時間(Systolic Time)及び推定の収縮時間(Estimated Systolic Time)を含むものとして、以下の説明を進める。本実施形態では、心拍または脈波の一周期から駆出時間EDを差し引いて求めるものについて主として説明する。

[0033]

以上の説明から、心臓の弛緩時間DTは心電波形または脈波の特徴から推定できる。なお、以下の説明では、脈波から弛緩時間を推定する実施形態について述べるが、心電図測定部を用いて、図1の心電波形SWから弛緩時間を推定してももちろん良い。図1の心電波形SWでは、Q波を基準としてQ点及びT点の各変極点を求めることができ、Q-T時間=収縮時間として推定できる。この収縮時間は、厳密には等容収縮時間+駆出時間であるが、収縮時間=駆出時間として推定しても良い。また、図1の心電波形SWのR-R時間を心拍の一周期とすることができ、これから駆出時間を差し引くことで弛緩時間を求めることができる。

[0034]

(弛緩時間と乳酸量との相関)

図2は、ある被験者の運動負荷強度に対する弛緩時間DT、駆出時間ED及び脈波または心拍の一周期(R-R時間)と、乳酸値との相関を示す特性図である。図2の横軸は運動の負荷強度(Watt)であり、左縦軸は時間(msec)、右縦軸は血液中に発生する乳酸値(mmol/l)である。

[0035]

ここで、血液中の乳酸値と運動負荷強度に応じた疲労との相関は公知であり、

図2においても、血液中の乳酸値は運動の負荷強度が大きくなると増大する。

[0036]

また、運動の負荷強度が小さければ、疲労も少なく血液中の乳酸量はさほど上 昇しないことも知られている。

[0037]

ここで、図2にはR-R時間及び弛緩時間DTと運動負荷強度との関係が示されている。R-R時間は運動負荷強度が高くなるに従いほぼ一定の比率で短くなることは公知である。図2において、弛緩時間DTは、乳酸閾値LTに達する前はR-R時間とほぼ同じ比率で短くなるが、乳酸閾値LTを越えるとほとんど変化しないことが分かる。駆出時間EDは、R-R時間と等容収縮+弛緩時間DTとの差分であり、図2に示すように、乳酸閾値LTに達する前はほとんど変化せず、乳酸閾値LTを越えるとR-R時間とほぼ同じ比率で短くなる。人体に最適な運動とは、乳酸閾値LTまたは交感神経活動が亢進する閾値CTの強度で運動を続けることであり、非侵襲的に検出される駆出時間に基づいて閾値LTまたは閾値CTに相当する運動負荷強度を知ることは極めて有用である。

[0038]

図2に示すように、運動負荷強度が100 [Watt] 付近までは、駆出時間EDはほぼ変化がなく、弛緩時間DTがR-R時間とほぼ同じ比率で短くなるが、血液中の乳酸値の変化は少ない。しかし、運動負荷強度が100 [Watt] を超えると、駆出時間EDが短くなり、弛緩時間DTはほとんど変化せず、血液中の乳酸値の増加率が高くなる。この被験者の場合、運動負荷強度が100 [Watt] 付近の点が、乳酸閾値LT (Lactate Threshold) となる。

[0039]

このように、運動負荷強度を変更した運動中に弛緩時間DTを監視し、それが変化する間は乳酸閾値LT以下の運動強度であり、弛緩時間DTがほとんど変化しなくなったら乳酸閾値LT付近の運動強度に至ったことが分かるので、この運動強度を保つなどの指導ができる。

[0040]

図3は、6名の被験者の橈骨駆出時間と心音収縮時間との関係を示す特性図で

ある。橈骨駆出時間は、橈骨動脈波の立ち上がりからディクロティックノッチに至る時間間隔であり、心音収縮時間は、心音図の1音から2音までの時間間隔で収縮時間を測定している。図3の横軸は橈骨駆出時間(msec)であり、縦軸は心音収縮時間(msec)である。図3に示すように橈骨駆出時間と心音収縮時間の相関は、相関係数をRとすると、R 2 =0.7044(決定係数)で、一次式 $_{Y}$ =1.2456 $_{X}$ -87.18で近似される。これより、末梢の脈波から求めた駆出時間を中枢に補正することができる。この補正部は、後述する駆出時間測定部90に設けることができる。上記一次式は、一般式を用いるものに限らず、個々の被験者について予め心音図等から係数を求めておくこともできる。

[0041]

(運動負荷強度評価装置の概要)

本実施形態の運動負荷強度評価装置は、上述した原理に基づいて、被験者の運動負荷強度を評価するものであり、図4のブロック図に示す構成を有する。図4において、運動負荷強度評価装置10は、脈波検出部60、体動波形検出部70、体動波形除去部80、弛緩時間算出部90、弛緩時間変化検出部100及び告知部110を有する。ここで、本実施形態では、脈波検出部60、体動波形検出部70、体動波形除去部80及び弛緩時間算出部90にて弛緩時間測定部11が構成されている。

[0042]

脈波検出部60は、被験者の末梢部の脈波を非侵襲的に検出するものである。体動波形検出部70は、運動中の被験者の体動に起因した体動波形を検出するものであり、例えば加速度センサにて構成できる。体動波形除去部80は、脈波検出部60からの脈波より、体動波形検出部70からの体動波形を除去するものである。弛緩時間算出部90は、体動波形が除去された脈波(例えば図1の脈波MH2またはMH3)より、ピークP0から次のピークP0に至る脈波の一周期(R-R時間と等しい)と、ピークP0からピークP4に至る駆出時間ED)とを求め、両者の差分から弛緩時間DTを算出するものである。弛緩時間変化検出部100は、時間経過毎に弛緩時間算出部90にて測定される脈波の一周期の時間間隔と弛緩時間DTが入力され、各弛緩時間DTの変化を検出するものであり、

弛緩時間DTが実質的に一定となったときの心拍数を出力することもできる。もし、図2の乳酸閾値LTを越える運度負荷強度にて被験者が運動していれば、弛緩時間DTが実質的に一定または微減するので、乳酸閾値LTに達したか否かを検出できる。告知部110は、弛緩時間変化検出部100にて弛緩時間DTが実質的に一定となった時に、乳酸閾値LT付近の心拍数を知ることができ、被験者に弛緩時間の変化に加えてその時の心拍数を告知することもできるものである。この告知により、被験者は乳酸閾値LT付近の運動負荷強度に入ったことを検知できる。よって、その告知後に運動負荷強度を保てば、乳酸閾値LT付近の強度で運動を継続実施することが可能となる。この場合、弛緩時間が実質一定値になったときの心拍数を告知することがすることが有用である。例えばこの心拍数を上限値とし、上限値の90%を下限値の範囲に設定して、安全で効果的な運動を継続実施することができる。

[0043]

ここで、図4に示すように、被験者の運動負荷強度を測定する運動負荷強度測定部102をさらに有することができる。この測定部102からの出力は弛緩時間変化検出部100に入力される。よって、弛緩時間変化検出部100は、異なる運動負荷強度に対応する弛緩時間の変化を検出し、運動負荷強度が変化しない場合には弛緩時間の変化を検出しないように構成できる。よって、弛緩時間変化検出部100は、異なる運動負荷強度に対応する弛緩時間の変化を検出することができる。

[0044]

(運動負荷強度評価装置の外観構成)

本実施形態の運動負荷強度評価装置は、例えば図5(A)、図5(B)および図5(C)に示すような外観的構成とすることができるが、これに限定されない。運動負荷強度評価装置10は、腕時計状の構造を有する装置本体12と、この装置本体12のコネクタ部20にコネクタピース57を介して接続されるケーブル58と、このケーブル58の先端側に設けられた脈波検出部60とを含んで構成されている。装置本体12にはリストバンド56が取り付けられ、リストバンド56によって装置本体12が被験者の手首に装着される。

[0045]

装置本体12はコネクタ部20を備えており、コネクタ部20にはケーブル5 8の端部となっているコネクタピース57が着脱自在に取り付けられている。

[0046]

図5 (C) は、このコネクタピース57を取り外したコネクタ部20を示しており、例えば、ケーブル58との接続ピン21や、データ転送を行うためのLE D22、フォトトランジスタ23を備えている。

[0047]

また、装置本体12の表面側には、告知部110の一例として例えば液晶パネルからなる表示部54が設けられている。表示部54は、セグメント表示領域や、ドット表示領域などを有し、運動負荷強度の評価結果など表示する。なお、表示部54には液晶パネルではなく他の表示装置を用いてもよい。

[0048]

装置本体12の内部には、各種演算や変換などを制御するCPU (central processing unit)、CPUを動作させるプログラムその他を記憶するメモリを備え (図示省略)、装置本体12の外周部には各種操作や入力を行うためのボタンスイッチ14がそれぞれ設けられている。

[0049]

一方、脈波検出部60は、図5(B)に示すように、センサ固定用バンド62によって遮光されながら、被験者の人差し指の根本付近に装着される。このように、脈波検出部60を指の根本付近に装着すると、ケーブル58が短くて済むので、装着しても邪魔にならない。また、指の根元付近は指先に比べると気温による血流量の変化が少ないため、検出した脈波波形に対する気温などの影響が比較的少ない。

[0050]

(脈波検出部)

脈波検出部60は、例えば図6に示すように、LED64、フォトトランジスタ65などを含み、非侵襲的すなわち皮膚を破ることなく末梢における脈波を検出できるように構成されている。この脈波検出部60は、脈波波形が血流量の変

動波形(容積脈波波形)とほぼ同様の波形となることを利用し、毛細血管網に対する光照射と、毛細血管内の血液による反射光量の変動または透過光量の変動の 検出とを行うように形成された光センサを用いて脈波(容積脈波)を検出する。

[0051]

さらに具体的には、脈波検出部60は、スイッチSWがオン状態となり、電源電圧が印加されると、LED64から光が照射される。この照射光は、被験者の血管や組織によって反射した後に、フォトトランジスタ65によって受光される。したがって、フォトトランジスタ65の光電流を電圧に変換したものが、脈波検出部60の信号MHとして出力される。この場合、LED64に変えてLDを用いても良い。

[0052]

ここで、LED64の発光波長は、血液中のヘモグロビンの吸収波長帯域内で選ばれ、本実施形態では、ヘモグロビンの吸収波長ピーク付近に選ばれる。このため、受光レベルは血流量に応じて変化する。したがって、受光レベルを検出することによって、脈波波形が検出されることとなる。例えば、LED64としては、InGaN系(インジウムーガリウムー窒素系)の青色LEDが好適である。このLEDの発光スペクトルは、450nm付近を発光ピークとし、その発光波長域は、350nmから600nmまでの範囲とすることができるが、近赤外線の波長帯域としても良い。。

[0053]

このような発光特性を有するLEDに対応するフォトトランジスタ65として、本実施形態においては、例えばGaAsP系(ガリウムー砒素ーリン系)のものを用いることができる。このフォトトランジスタ65の受光波長領域は、主要感度領域が300nmから600nmまでの範囲とし、300nm以下にも感度領域があるものとすることができる。

[0054]

このような青色LED64とフォトトランジスタ65とを組み合わせると、その重なり領域である300nmから600nmまでの波長領域において、脈波を検出することができ、以下のような利点がある。

[0055]

まず、外光に含まれる光のうち、波長領域が700nm以下の光は、指の組織を透過しにくい傾向があるため、外光がセンサ固定用バンドで覆われていない指の部分に照射されても、指の組織を介してフォトトランジスタ65まで到達せず、検出に影響を与えない波長領域の光のみがフォトトランジスタ65に達する。一方、300nmより長い波長領域の光は、皮膚表面でほとんど吸収されるので、受光波長領域を700nm以下としても、実質的な受光波長領域は、300nm~700nmとなる。したがって、指を大掛かりに覆わなくとも、外光の影響を抑圧することができる。また、血液中のヘモグロビンは、波長が300nmから700nmまでの光に対する吸光係数が大きく、波長が880nmの光に対する吸光係数に比して数倍~約100倍以上大きい。したがって、この例のように、ヘモグロビンの吸光特性に合わせて、吸光特性が大きい波長領域(300nmから700nm)の光を検出光として用いると、その検出値は、血量変化に応じて感度よく変化するので、血量変化に基づく脈波波形のSN比を高めることができる。

[0056]

このように、脈波検出部60は、血流量に対応して変化する脈波すなわち容積脈波を、皮膚付近に存在する毛細血管網における赤血球量の変動としてとらえ、皮膚に照射した光の透過量または反射量の変動として検出することができるため、センサを末梢動脈例えば橈骨動脈や側指動脈の位置に合わせることなく検出することができる。したがって、脈波検出部60は、皮膚付近に存在する毛細血管における赤血球量の変動を、末梢動脈における脈波(容積脈波)として安定して検出することが可能である。なお、脈波検出部60は、脈圧に基づいて脈波を検出するものであっても良い。また、脈波検出部60は、指先以外の箇所に装着されてもよく、例えば耳から脈波を検出しても良い。

[0057]

(弛緩時間測定部の構成例1)

本実施形態では、脈波の一周期(図1のP0-P0時間)と駆出時間EDとの 差分から弛緩時間DTを求める。駆出時間EDは、図1にて説明した通り、図1 の脈波波形MH2またはMH3において、脈波の立ち上がり点P0から、ディクロティクノッチP4までの時間間隔とする。

[0058]

ここで、点PO及び点P4は脈波波形MHから直接求めても良いが、脈波波形を二回微分した加速度波形を求めると、脈波波形における変極点PO,P4の位置がより顕在化する。そこで、図7に示すように、弛緩時間算出部90は、体動波形除去部80からの脈波PTGを一次微分する一次微分部92と、一次微分波形FDPTGを二次微分する二次微分部94とを有する。この場合、弛緩時間算出部90は、脈波PTGを一次微分する一次微分部92のみを有することもできる。

.[0059]

図8(A)は体動波形が除去された脈波の原波形PTG、図8(B)は一次微分波形FDPTG(速度波形)、図8(C)は二次微分波形SDPTG(加速度波形)をそれぞれ示している。図8(B)に示す一次微分波形FDPTGから駆出時間EDを測定することもできる。図8(C)に示すように、二次微分波形SDPTGには、図1の変極点P0~P4に相当する、より明確な変極点a~eが現われる。この二次微分波形SDPTGにおいて、変極点a~a間の時間が脈波の一周期であり、変極点a~e間の時間間隔が、脈波の立ち上がりからディクロティクノッチまでの駆出時間EDに相当している。よって、弛緩時間算出部90は、二次微分波形SDPTG中の一周期と駆出時間EDとの差分から弛緩時間DTを測定することができる。

[0060]

(弛緩時間測定部の構成例2)

弛緩時間算出部90は、図9に示すように、体動波形が除去された脈波PTGに対して、ディクロティクノッチP4の波高付近に設定され比較値COが設定されたコンパレータを含んで構成できる。このコンパレータの出力は図9に示す矩形波REPとなる。なお、図9には説明の便宜上脈波PTG中に矩形波REPを記載したが、矩形波のハイレベルはコンパレータの第1の電源電位Vddとなり、ローレベルは第2の電源電位Vssとなる。

[0061]

ここで、矩形波の波幅Wは、点POからディクロティクノッチP4までの駆出時間EDと相関がある。よって、矩形波Wのパルス幅Wに対応する時間幅を駆出時間EDとみなすことができる。他の方法により求められた脈波または心拍の一周期から、駆出時間EDを差し引くことで弛緩時間DTを求めることができる。

[0062]

特に、このコンパレータを図10に示すようなヒステリシス付コンパレータ96とすると良い。このヒステリシス付コンパレータ96は、帰還抵抗R2が+入力端子に接続されて、正帰還がかかるようになっている。

[0063]

+入力端子に入力される電圧は、($V_0 - V_+$)× R_1 / ($R_1 + R_2$) + V_+ となる。ここで、出力電圧 V_0 は、コンパレータ96を駆動する第1,第2の電源電位 V_0 d d , V_0 s V_0 s V_0 s V_0 c V_0 c

[0064]

このため、($V_0 - V_+$)は常に0より大きい値となり、+入力端子に入力される電圧は常に、脈波PTGの電圧レベル V_+ より常に大きくなる。このように正帰還の効果によって見かけ上の+入力電圧が増やされることになる。よって、出力電圧 V_0 が V_0 d dまたは V_0 s s のどちらかに飽和すると、入力が変化しても出力電圧は容易に反転しない特性を有する。出力電圧 V_0 が V_0 d d に飽和している時には、脈波PTGの電圧 V_+ が基準値 V_0 0の電圧 V_0 0を下回っても、直ちに出力が反転しない。よって、図 V_0 1において、ディクロティクノッチ V_0 1に対して矩形波REが一旦立ち下がった後には、容易に立ち上がらないので、矩形波REPを確実に生成できる。

[0065]

(運動負荷強度評価装置の変形例)

図1の脈波波形MH2またはMH3のディクロティクノッチP4は、図2に示す乳酸閾値LTに達した後の運動負荷強度の負荷中であれば、弛緩時間DTがほぼ一定であることから、ほぼ一定の周波数帯域に現われる。よって、予めディクロティックノッチP4を反映する周波数帯域に関心周波数を設定しておき、その

関心周波数帯域の周波数スペクトラムが周波数軸上で許容値を超えてずれたら、 弛緩時間DTが変化したものと判定できる。乳酸閾値LTを超える運動負荷強度 であれば、弛緩時間DTが長くなるので、ディクロティクノッチP4を反映する 周波数スペクトルは低周波側に移動するはずであるので、それを検出すれば弛緩 時間DTの変化を検出できる。

[0066]

このためには、図11に示すように、脈波検出部60からの脈波をフーリエ変 換する第1のフーリエ変換部120と、体動波形検出部70からの体動波形をフ ーリエ変換する第2のフーリエ変換部130とが設けられる。体動波形除去部8 0は、第1, 第2のフーリエ変換部120, 130の出力である周波数スペクト ルを、同一周波数同士で引き算して、体動波形を除去する。弛緩時間算出部90 は、関心周波数帯域抽出部にて構成される。この関心周波数帯域抽出部90は、 体動波形除去部80からの各種の周波数スペクトルの中から、被験者の弛緩時間 DTを反映する関心周波数帯域の周波数スペクトルを抽出する。以上の構成によ り、弛緩時間測定部11が構成される。弛緩時間変化検出部100は、周波数比 較部にて形成され、今回抽出された関心周波数帯域内の周波数スペクトルの周波 数を、例えば前回に抽出された基準周波数と比較する。もし、今回抽出の周波数 スペクトルが基準周波数と実質的に一致すれば、弛緩時間DTが変化しない乳酸 閾値LTを越えた運動負荷強度であることが分かる。逆に、今回抽出の周波数ス ペクトルが基準周波数よりも周波数軸上で低周波数高周波側に許容値を超えて移 動していれば、乳酸閾値LTを越えない運動負荷強度であることが分かる。この 場合、図1の脈波波形MH2またはMH3のディクロティックノッチP4を反映 する関心周波数帯域に周波数スペクトルを設定すると共に、脈波の一周期を反映 する関心周波数帯域の周波数スペクトルを抽出することで、心拍数を求めること ができる。

[0067]

図12は、さらに他の運動強度評価装置を示している。図11に示す体動波形除去部80までの構成は同じである。図12では、体動波形除去部80からの出力を逆フーリエ変換してアナログ波形に戻す逆フーリエ変換部140を有する。

[0068]

逆フーリエ変換部140以降の構成は、図4と同じであり、かつ図4中の弛緩時間算出部90として、図7の一次、二次微分部92,94を採用している。この弛緩時間算出部90までの構成要素にて弛緩時間測定部11が構成される。

[0069]

図12に示す構成によれば、脈波に含まれる体動波形は周波数帯域で区別されて脈波中から除去され、弛緩時間DTは脈波を一次微分あるいは二次微分した後の特徴から測定される。

[0070]

図13は、運動強度評価装置のさらに他の変形例を示している。

[0071]

例えば、被験者について、図2に示すような運動負荷強度と弛緩時間、あるいは弛緩時間に対応する心拍数の相関データを予め求めておくことができる。すなわち、被験者に歩行や走行などをさせながら運動負荷強度を変化させる運動負荷試験を実施し、各運動負荷時の弛緩時間、あるいは弛緩時間に対応する心拍数を求めておく。その相関データは、図13に示すように、例えば入力部200を介して記憶部210に記憶される。図13では、図4の弛緩時間変化検出部100に加えてさらに、運動負荷強度検出部220が設けられている。この運動負荷強度検出部220は、弛緩時間算出部90からの弛緩時間DT、あるいは弛緩時間に対応する心拍数と対応する運動負荷強度を、記憶部210から読み出して告知部110に出力するものである。これにより、被験者は現在行っている運動負荷強度を仕事率(watt)あるいは心拍数(beet/min)で認識することができる。

[0072]

ここで、図2に示すように、運動負荷強度が乳酸閾値LTと対応する強度を越えた後は、弛緩時間DTは実質的に一定または微減する。よって、弛緩時間の変化の少ない無酸素運動域では、運動負荷強度の検出が困難であるし、その運動負荷強度を知るニーズも少ない。よって、本実施形態では、弛緩時間変化検出部100にて弛緩時間が実質的に一定または微減する時、つまり乳酸閾値LTを越え

た運動域であるときに、運動負荷強度検出部220にて運動負荷強度を検出するように構成しても良い。このためには、図13に示すように、弛緩時間変化検出部100からの信号が運動負荷強度検出部220に入力されている。本実施形態では、弛緩時間変化検出部100にて弛緩時間DTが実質的に変化しなくなった時に、心拍数を算出する心拍の一周期の時間間隔を出力する。

[0073]

(運動機器)

上述した運動強度評価装置を組み込んで運動機器を構成することができる。本 実施形態では、駆出弛緩変化検出部100にて弛緩時間DTが実質的に変化しな くなった時、つまり乳酸閾値LT付近の運動強度に至ったときに、弛緩時間変化 検出部100から出力されることが可能な心拍数に基づいて、運動強度の上限と 下限の範囲を心拍数で設定することができる。図5(A)~図5(C)は運動負 荷強度評価装置として腕時計型のものを示したが、本発明を運動機器に適用する 場合には、被験者の脈波または心電図を検出する検出部のみを被験者に装着し、 その他の構成は運動機器本体に装着してもよい。

[0074]

図14は走行マシーン300を示し、被験者の耳から脈波を検出する脈波検出 部310が装置本体部320に接続されている。もちろん、耳以外の部分から脈 波を検出してもよく、上述の実施形態のように指先の他、手首などでも良い。

[0075]

図14に示す走行マシーン300では負荷出力部としての走行ベルト330の速度が本体320での制御に基づき可変である。装置本体部320には記憶媒体 挿入口322に対して記憶媒体324が挿脱可能となっている。この記憶媒体324に被験者に固有の運動メニューが記録され、その運動メニューは装置本体部320に設けた出力部例えば表示部326に表示可能となっている。この表示部326は、運動負荷強度が乳酸閾値を超えた運動領域に入ったことを告知する告知部として兼用できる。

[0076]

運動メニューとしては、上述した運動負荷強度評価装置を用いて、各個人につ

いて運動負荷強度と心臓の弛緩時間とを予め測定しておき、各個人について安全でかつ効果的な運動メニューを設定できる。安全でかつ効果的な運動メニューは、被験者について運動負荷強度と弛緩時間との相関より予め求められる乳酸閾値LTに基づいた所定の運動負荷強度範囲に設定される。この運動負荷強度範囲は、例えば心臓疾患者あるいは一般健常者などに対しては乳酸閾値LT付近に設定するとよい。しかし、駆出時間がわずかに減少しているか、さらに減少する範囲で有れば、一時的に乳酸閾値を超える範囲に設定してもよい。これに限らず、例えば競技者の場合には乳酸閾値LTを超える範囲に設定してもよい。こうすると、例えば実際の競技でのラストスパートなどの極限の運動状況を運動機器にて再現でき、効果的な訓練となる。

[0077]

図15はペダルマシーン340に本発明を適用したものである。この例では、被験者の胸部に装着される心電図検出部350が装置本体部360に接続されている。ペダルマシーン340の負荷出力部はペダル370であり、装置本体部370での制御に基づきペダル370を回転するのに要する負荷が可変である。なお、心電図検出部350は、図1に示す心電波形SWを検出する。装置本体部360内には、弛緩時間測定部が設けられる。この弛緩時間測定部は、心電波形SWの中から図1に示すR-R時間を心拍の一周期、Q-T時間を駆出時間EDとして検出し、両者の差分から弛緩時間DTを測定する。また、図15では省略してあるが、図14に示す記録媒体挿入部322、記録媒体324及び表示部326が同様にして設けられている。

[0078]

なお、本発明は上述した各種の実施形態に限定されるものではなく、本発明の 要旨の範囲内で種々の変形実施が可能である。

[0079]

なお、上述した実施形態での弛緩時間に代えて、心拍または脈波の一周期(図 1に示す心電波形SW中のR-R時間または脈波波形MH2,MH3中のPO-PO時間)に対する弛緩時間DTの割合(正規化された弛緩時間という)を指標 とし、それに基づいて乳酸閾値LTに達したか否かなどを検出しても良い。ここ で、心拍の一周期は運動負荷強度が大きくなるに従い、乳酸閾値LTの前後に拘らずほぼ一定の比率で短くなる。これに対して、弛緩時間DTは図2の通り乳酸 閾値LTの前後で変化率が異なる。

[0080]

ここで、図16は、運動負荷強度と正規化した弛緩時間の関係をプロットしたものである。運動負荷強度を横軸に、弛緩時間DTを縦軸にとり、正規化された弛緩時間を運動負荷強度毎にプロットしたものである。乳酸閾値LTに相当する運動負荷強度は100W付近であり、乳酸閾値LTを越えない範囲では、運動負荷強度が大きくなるに従い正規化された弛緩時間は小さくなり、乳酸閾値LTを越える範囲では、正規化された弛緩時間は運動負荷強度に依存せずにほぼ一定となる。

[0081]

図17は、図2に示すR-R時間を横軸に、弛緩時間DTを縦軸にとり、運動負荷強度毎にプロットしたものである。ここで、図2の乳酸閾値LTに相当する運動負荷強度は100W付近であり、それに対応するR-R時間はほぼ500m Sである。図17においては、R-R時間が500mSを越える範囲(換言すれば、乳酸閾値LTを越えない範囲)では、運動負荷強度が大きくなるに従い(横軸で左方向に向かうに従い)、弛緩時間は小さくなる。一方、R-R時間が500mSを越えない範囲(換言すれば、乳酸閾値LTを越える範囲)では、正規化された弛緩時間は運動負荷強度に依存せずにほぼ一定である。

[0082]

このように、弛緩時間は、乳酸閾値LTに達するまでは、運動負荷強度が大きくなってもほとんど変化せずに実質的に一定であるのに対し、乳酸閾値LTに達した以降の減少率は心拍の一周期の減少率とほぼ比例する。このことを利用して、上述の各種実施形態にて弛緩時間から乳酸閾値LTに達したことを告知し、あるいは運動中の負荷強度を告知することが可能となる。

【図面の簡単な説明】

【図1】 心臓から流出する直後の脈波波形と末梢部の脈波波形との関係を示す図である。

- 【図2】 運動負荷強度、血液中の乳酸量、弛緩時間及び心拍の一周期の関係を示す特性図である。
 - 【図3】 橈骨駆出時間と心音収縮時間との関係を示す特性図である。
- 【図4】 本発明の実施形態に係る運動負荷強度評価装置のブロック図である。
- 【図5】 図5(A)、図5(B)及び図5(C)は、本発明の実施形態に 係る運動負荷強度評価装置の外観図である。
- 【図6】 図5 (B) に示す脈波検出部の回路構成の一例を示す回路図である。
 - 【図7】 一次・二次微分回路を有する弛緩時間測定部のブロック図である
- 【図8】 図8(A)は体動波形が除去された脈波の原波形PTG、図8(B)は一次微分波形FDPTG(速度波形)、図8(C)は二次微分波形SDPTG(加速度波形)をそれぞれ示す波形図である。
- 【図9】 コンパレータにて脈波を比較値と比較することで生成される、駆 出時間と相関のある矩形波を示す特性図である。
- 【図10】 脈波から図9に示す矩形波を生成するヒステリシス付コンパレータの回路図である。
- 【図12】 体動除去は周波数スペクトルに基づいて除去し、弛緩時間は脈波の二次微分波形の特徴から測定する運動負荷強度評価装置の変形例を示すブロック図である。
- 【図13】 予め測定した弛緩時間と運動負荷強度との相関データに基づき、運動時に測定した弛緩時間からその運動負荷強度を検出できる変形例のブロック図である。
- 【図14】 本発明の運動機器の一例である走行マシーンの概略説明図である。
 - 【図15】 本発明の運動機器の他の一例であるペダルマシーンの概略説明

図である。

- 【図16】 運動負荷強度と正規化した弛緩時間の関係を示す特性図である
- 【図17】 心周期と正規化した弛緩時間の関係を示す特性図である。 【符号の説明】
- 10 運動負荷強度評価装置、 11 弛緩時間測定部、 60 脈波検出部、
- 70 体動波形検出部、 80 体動波形除去部、 90 弛緩時間算出部、
- 92 一次微分部、 94 二次微分部、 96 ヒステリシス付コンパレータ 、 100 弛緩時間変化検出部、 110 告知部、 120 第1のフーリ
- 工変換部、 130 第2のフーリエ変換部、 140 逆フーリエ変換部、
- 200 入力部、 210 記憶部、 220 運動負荷強度検出部、 300
- , 340 運動機器、 310 脈波検出部、 320, 360 装置本体、
- 322 記錄媒体挿入口、 324 記錄媒体、 326 出力部(表示部)、
 - 330,370 負荷出力部、 350 心電図検出部

【図2】

【図4】

【図5】

【図6】

[図7]

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

(A-A/TO) 間裁験姫式ホち小肤玉

【図17】

【書類名】 要約書

【要約】

【課題】 非侵襲的に検出される脈波または心電図の特徴から、運動中の被験者 の運動負荷強度を評価する装置を提供すること。

【解決手段】 運動負荷強度評価装置10は、運動中の被験者に装着され、非侵襲的に末梢における脈波を検出する脈波検出部60と、検出された脈波に基づいて、心臓の弛緩時間を反映する脈波の特徴より弛緩時間DTを測定する弛緩時間算出部90と、時間経過毎に弛緩時間算出部90にて測定される弛緩時間DTが入力され、各弛緩時間DTの変化を検出する弛緩時間変化検出部100とを有する。

【選択図】 図4

出願人履歴情報

識別番号

[000002369]

1. 変更年月日 1990年 8月20日

[変更理由]

新規登録

住 所

東京都新宿区西新宿2丁目4番1号

氏 名

セイコーエプソン株式会社