

Application of Neural Networks for the preditcion of cancerous SNPs

But first an example of data from the DataBase

RS_ID	c h r	pos	r e f	a I t	scoreA	scoreB	Functional element	Number experim ent	file_type	cell_linec	Cancer type	Cell Line cancer
rs10201930	2	1898744 60	G	Α	0.0719	0.0659404	H3K36me3-human	1	narrow	prostate		normal
rs10178969	2	1903157 23	Α	С	0.0657	0.0683136	EZH2-human	1	narrow	PC-3	prostate	cancer
rs10178969	2	1903157 23	Α	С	0.0657	0.0683136	H3K36me3-human	1	narrow	PC-3	prostate	cancer
rs1037532	1 8	5003860 2	Т	С	0.028	0.0344594	H3K27me3-human	1	narrow	PC-3	prostate	cancer
rs10039204	5	1011800 77	Т	С			EZH2-human	1	narrow	PC-3	prostate	cancer
rs1002223	7	2117207 3	Α	С	0.3313	0.272092	EZH2-human	1	narrow	PC-3	prostate	cancer
rs1002223	7	2117207 3	Α	С	0.3313	0.272092	POLR2A-human	1	narrow	prostate gland		normal

Data - Type

RS_ID

Chr

Pos

Ref

Alt

ScoreA

ScoreB

functional_element

n_experiment

file_type

cell_line

cancer_type

cell_line_cancer

character

class

number integer

character

character

number float

number float

character

number integer

character

character

character

character

First Mission

Convert each features in integer number for the nominal data

I need to convert all of it in numbers!

- Build ScoreC = (scoreA + scoreB)/2
 - Or use just one of the two if both are not there
 - Example. If not scoreB: ScoreC = scoreA
 - Drop score A and score B

- Set up data structures as dictionaries for the store of association
 - Theoretical example.
 - Label_1 = Number
 - Pratical example.
 - Functional Element | H3K36me3-human = 5
 - Cell Lines | prostate gland = 3

- Select the features for the prediction (X)
- Select the feature to be predicted (Y)
- Drop all useless feature for the prediction

- Select the features for the prediction (X)
- Select the feature to be predicted (Y)
- Drop all useless feature for the prediction

Features for prediction

Y Target to predict = cancer_type

X Using:

- Ref, alt
- functional_element
- cell_line_cancer
- scoreC

Building the model

 Build F(x) using X and Ywith Neural Network Algorithms including Gradient Discendent

$$Y = F(X)$$

- I have X and Y
- I need F()

SPLIT X & Y in Train & Test

Build the Neural Network model

Deep Neural Network

Figure 12.2 Deep network architecture with multiple layers.

Build the Neural Network model

Neural Structure

- 8 features for input
- 16 hidden neurons
- 32 hidden neurons
- 16 hidden neurons
- 1 output label

Train & Test Data

Use of Train data for build the model

 Use of Test data for extract accuracy and predictions from the model

KERAS for simple NN

Using Keras built in models

model = Sequential()

 model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

Conclusion

Prediction of cancer_type label

Test loss: 0.17

Test accuracy: 0.87

 Huge changes of these values for each running time

Conclusion

- The script was build for serve different SNPs datasets.
- The script is very flexible for the same dataset. For change the entire model just select different label_target and different features used for the prediction.