INF05516 - Semântica Formal - Prova II - 2009/1

Nome:				
Número:				

Instruções:

- Todas as questões são relativas a linguagem L3 sem subtipos, exceto quando explicitamente mencionado.
- A duração da prova é de 100 minutos.
- As respostas devem ser dadas a caneta e somente nos espaços designados
- O que for escrito fora dos espaços para as soluções **não** será levado em conta na correção
- As questões regulares totalizam 10 pontos.
- As duas questões extras conferem pontos adicionais.

	Pontos
1	
2	
3	
4	
5	
6	
Extra 1	
Extra 2	
Total	

	expressões	e ::	= 🗆	$\nabla \mid e_1$	$\approx e_2$			
	valores	v ::	= 🗆	∇				
	tipos	T ::	= Qua	drado	Tria	angulo		
A semântica operacio	onal small step	o dessa l	inguage	m é dada	a pelas	s seguintes	s regras:	
		$\Box \times \nabla$	$7 \rightarrow \nabla$				(AX1)	
			$\rightarrow \Box$				(AX2)	
	$\overline{e_1}$	e_1 \rightarrow e_2 \rightarrow	$\begin{array}{ccc} & e'_1 \\ & \rightarrow e'_1 & \simeq \\ \end{array}$	$\overline{e_2}$			(RGR1)	
		$\begin{array}{c} e_2 - \\ \times e_2 - \end{array}$	$\rightarrow e_2'$ $\rightarrow \square \simeq$	$\overline{e_2'}$			(RGR2)	
(a) (0,5pt) Diga o qu	ie acontece c	om a av	aliaçao d	da expres	ssão ([$\square \asymp \square) \asymp 0$	$(\square \asymp \nabla)$	
(X) Termina co () Termina co () A avaliação	om o valor _ n a expressã da expressã	o o nunca	∇ termina			_ , que não	o é valor	
(b) (0,5pt) Idem par	a a expressão	$7 \simeq \square) c$	$\nabla T \simeq (\nabla T) \simeq (\nabla T)$	$\asymp \Box$)				
() Termina cor (X) Termina co () A avaliação	n o valor m a expressã da expressã	ío o nunca	$\square \asymp ($ termina	$ abla symp egin{array}{c} & abla $		_, que não	o é valor	
(c) (1pt) Considere								
]	$\exists: Quadrado$)	$\nabla : Tr$	iangulo				
	$\frac{e_1}{\epsilon}$	$\frac{T_1}{e_1 \times e_2} \approx \frac{1}{2}$	$\frac{e_2:T_2}{:T_2}$					
Esse sistema de sposta.	tipos é segu	ro em re	elação a	semântic	са оре	eracional ?	Justifique a sua	re-

1. Considere a linguagem cuja sintaxe abstrata é dada pela gramática abaixo:

na semântica operacinal que a permita progredir na sua avaliação.

O sistema de tipos não é seguro pois a propriedade do progresso de expressões bem tipadas não é verdadeira. Considere por exemplo a expressão $\square \asymp (\nabla \asymp \square)$. Pelo sistema de tipos ela é considerada como sendo do tipo Quadrado, porém ela não é um valor da linguagem e não há regra

2. Diga se a expressões abaixo são bem tipadas ou não. Em caso positivo, escreva o tipo da expressão. Considere o sistema da tipos de L3 **sem subtipos**:

3. (0,5pt) Diga se a expressão $\{p = \{p = \{p = \{p = 3\}\}\}\}\$ pode ser do tipo $\{\}\}$ em L3 **com subtipos**:

() Não (X) Sim

4. (0,5pt) Diga se a expressões abaixo é bem tipada ou não. Em caso positivo, escreva o tipo da expressão. Considere o sistema da tipos de L3 **com subtipos**:

```
\emptyset \vdash \text{fn } f : \{p : \text{int}, q : \text{int}\} \rightarrow \text{int} => (f \{q = 3, p = 2\}) + (f \{p = 4\}) : ?
(X) Não
( ) Sim Tipo:
```

5. Considere as seguintes expressões:

```
A \equiv \operatorname{fn} x : \operatorname{bool} => \\ \operatorname{try} \\ \operatorname{if} x \operatorname{then} \\ \operatorname{raise} \\ \operatorname{else} \\ \operatorname{fn} y : \operatorname{bool} => \operatorname{true} \\ \operatorname{with} \\ (\operatorname{fn} z : \_\_ => z) \operatorname{raise} \\ B \equiv A \operatorname{false} \\ C \equiv B \operatorname{true}
```

(a) (0,5pt) Que tipo deve ter a variável z para que o termo A seja bem tipado? $\underline{bool \rightarrow bool}$

(c) (0,5pt) Qual o resultado da avaliação da expressão *B*? ______ *fn y:bool => true*

 6. Defina as **regras de tipo** e as regras da **semântica operacional** *small step* para uma extensão da linguagem L3 com listas e operações sobre listas dada pela gramática abaixo:

Listas são coleções ordenadas de dados do mesmo tipo. A expressão nil é a lista vazia. A expressão e_1 :: e_2 é uma lista onde e_1 é o primeiro elemento da lista e e_2 é o restante da lista. Uma lista cujos elementos são todos valores é um valor. A expressão hd e retorna o primeiro elemento da lista e, ou retorna raise caso a lista e seja vazia. A expressão tl e retorna a lista resultante da eliminação do primeiro elemento da lista e, ou raise caso e seja uma lista vazia.

Exemplos de listas não vazias (já completamente avaliadas) são: 1 :: (3 :: (7 :: (0 :: nil))) e true :: (true :: (false :: nil)). A a expressão $hd \ 1 :: (3 :: (7 :: (0 :: nil)))$ retorna o elemento 1 e a expressão $tl \ 1 :: (3 :: (7 :: (0 :: nil)))$ retorna a lista 3 :: (7 :: (0 :: nil)). A lista 1 :: (3 :: (7 :: (0 :: nil))) é do tipo $int \ list$ e a lista true :: (true :: (false :: nil)) é do tipo $bool \ list$. A lista vazia nil pode ser de qualquer tipo lista.

Regras de tipo: (2pts)

$$\begin{split} \Gamma \vdash nil : T \ list \\ \frac{\Gamma \vdash e_1 : T \qquad \Gamma \vdash e_1 : T}{\Gamma \vdash e_1 :: e_2 : T \ list} \\ \frac{\Gamma \vdash e : T \ list}{\Gamma \vdash hd \ e : T} \\ \frac{\Gamma \vdash e : T \ list}{\Gamma \vdash tl \ e : T \ list} \end{split}$$

Regras da semântica operacional: (2pts)

$$\begin{array}{c} e_{1},\sigma \longrightarrow e'_{1},\sigma' \\ \hline e_{1} :: e_{2},\sigma \rightarrow e'_{1} :: e_{2},\sigma' \\ \hline \\ e_{2},\sigma \longrightarrow e'_{2},\sigma' \\ \hline \\ v :: e_{2},\sigma \longrightarrow v :: e'_{2},\sigma' \\ \hline \\ raise :: e_{2},\sigma \longrightarrow raise,\sigma \qquad v :: raise,\sigma \longrightarrow raise,\sigma \\ \hline \\ e,\sigma \longrightarrow e',\sigma' \\ \hline \\ hd \ e,\sigma \longrightarrow hd \ e,\sigma' \\ \hline \\ hd \ v_{1} :: v_{2},\sigma \longrightarrow v_{1},\sigma \qquad hd \ nil,\sigma \longrightarrow raise,\sigma \qquad hd \ raise,\sigma \longrightarrow raise,\sigma \\ \hline \\ e,\sigma \longrightarrow e',\sigma' \\ \hline \\ tl \ e,\sigma \longrightarrow tl \ e,\sigma' \\ \hline \\ tl \ e,\sigma \longrightarrow tl \ e,\sigma' \\ \hline \end{array}$$

Questão extra 1: (1pt) Os métodos de uma classe podem ser **reusados** para definir novas classes chamadas subclasses. Por exemplo, supondo que ja tenhamos definido uma classe *counterClass*, podemos definir uma classe it resetCounterClass de contadores com *reset* da seguinte forma:

```
1. resetCounterClass =
2. fn r : CounterRep \Rightarrow
3. let super = counterClass r in
4. \{get = super.get
5. inc = super.inc
6. reset = fn : unit \Rightarrow r.x := 1\}
```

A cópia explícita da maioria dos campos da superclasse no registro da subclasse ainda é inconveniente (linhas 4 e 5). Como está evita-se repetir todo o código dos métodos da superclasse na subclasse, mas mesmo assim requer muita digitação. Para programas OO maiores será útil dispormos de uma construção como

```
super with {reset = fn_: unit \Rightarrow r.x := 1}
```

(no lugar das linhas 4,5 e 6) representando um registro como super mas com o campo reset redefinido. Defina a sintaxe, semântica operacional e regra de tipo para essa nova construção.

- 1. Defina a sintaxe abstrata dessa nova expressão
- 2. Defina a semântica operacional dessa expressão

3. Defina uma regra de tipo para a expressão

Questão extra 2: (1pt) Prove que o sistema de tipos definido na questão 1(c) é seguro em relação a semântica operacional da linguagem.