

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

Name:			C) 3		1	1	= 39					
Louis Kerner													
UB Person Number:							Instructions:						
5 0 0 0 1 2 3 3 4 6 6 7 8 9 9		0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 6 6 7 8 9	0 1 2 3 4 6 6 7 8 9	6 ① ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨			electr You r	ronic de nay use full cre	vices are r one sheet	each problem		
1	2		3		4	5	5	6	7	TOTAL	GRADE		

20	5	7	8	5	10	0	55	nan
1	2	3	4	5	6	7	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right], \quad \mathbf{v}_2 = \left[\begin{array}{c} -1 \\ 1 \\ -3 \end{array} \right], \quad \mathbf{v}_3 = \left[\begin{array}{c} 1 \\ 2 \\ 0 \end{array} \right], \quad \mathbf{w} = \left[\begin{array}{c} -2 \\ 2 \\ b \end{array} \right]$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1, v_2, v_3\}$ linearly independent? Justify your answer.

$$(-1)(-2) = 2$$
 $2(-1)t1 = -2(1) = -2$

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

$$(-1)(-2) = 2 - 1 = 1$$

Compute A^{-1} .

$$\frac{(1+R_2)}{(1-1)^2}$$
 $\frac{(1+R_2)}{(1-1)^2}$
 $\frac{(1+R_2)}{(1-1)^2}$

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

$$(AB)^T = B^T A^T$$

$$A^T \cdot C = B$$

$$A^T \cdot C = B \cdot (A^T)^{-1}$$

$$\begin{bmatrix}
123 \\
454 \\
321
\end{bmatrix}
\begin{bmatrix}
0 \\
-101 \\
-111
\end{bmatrix}
= 0 \begin{bmatrix}
4 \\
3
\end{bmatrix}
+ [2] \\
-123 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\
-124 \\$$

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.
- b) Find all vectors u satisfying $T(\mathbf{u}) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

$$\begin{bmatrix} 1 - 2 \\ 1 & 1 \\ 1 & -3 \end{bmatrix}$$
 $(0) = 10$ $T = \begin{bmatrix} 1 & 2 \\ 1 & 1 \\ 1 & 3 \end{bmatrix}$

$$T = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$$

$$\begin{bmatrix} x_1 & x_2 \\ 1 & -2 & 1 \\ 1 & 1 & 10 \\ 1 & -3 & -2 \end{bmatrix} = \begin{bmatrix} x_2 & p_1 & p_1 \\ 1 & -3 & 1 \\ 0 & 3 & 9 \\ 1 & -3 & -2 \end{bmatrix}$$

$$\begin{bmatrix} x_1 & x_2 \\ 1 & -2 & 1 \\ 0 & 3 & 9 \\ 1 & -3 & -2 \end{bmatrix}$$

$$\begin{bmatrix} x_1 & x_2 \\ 1 & -2 & 1 \\ 0 & 3 & 9 \\ 1 & -3 & -2 \end{bmatrix}$$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(v) = Av$ is one-to one or not. If T_A is not one-to-one, find two vectors v_1 and v_2 such that $T_A(v_1) = T_A(v_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$
 b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

A= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$ b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

A= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$ b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

A= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$ b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

A= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$ b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

A= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

A= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

A= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix}$

B= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix}$

B=

- 6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in \text{Span}(u, v)$ then $w \in \text{Span}(u, v)$.

It is the No motter how much you an change it the rule only applies for multiplication

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u, v, w\}$ is linearly independent then the set $\{u, v\}$ must be linearly independent.

Folse-linearly independent means: that
there is a must be infinite

Solutions. We do not know

which vector has a free

Example Variable. So we don't

VIV. (2) Know 100 percent of the

U. and Vector has

time.

- **7. (10 points)** For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

True, Span(v,...ve)=set of all linear combination

(,V,+C2V2.

Thus it holds - every than T(u) must be in span (T(v), T(w))