SVCDE by Yiding 2024.11.17

Partial Derivatives:

- 1. Level curves are the curves with equations f(x,y) = kwhere k is a constant
- 2. **METHOD Limit** of f(x, y): The limit

 $\lim_{(x,y)\to(a,b)} f(x,y) = L$ exist when all pass to (a, b) give the same result. some useful path: $x = 0, y = 0, y = x, y = x^2$

- 3. Clairaut's Theorem: Suppose f is defined on a disk Dthat contains the point (a, b). If the functions f_{xy} and f_{yx} are both continuous on D, then $f_{xy}(a,b) = f_{yx}(a,b)$
- 4. **METHOD** Tangent Plane: $z z_0 = f_x(x_0, y_0)(x x_0) +$ $f_{y}(x_{0},y_{0})(y-y_{0}).$
- 5. Chain Rule 2: Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(s,t) and y = h(s,t) are differentiable functions of s and t. Then $\frac{\partial z}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s}$ and $\frac{\partial z}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t}$ 6.Chain Rule 1: $\frac{dz}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$
- 7. The directional derivative of f at (x_0, y_0) in the direction of a unit vector $\mathbf{u} = (a, b)$ is $D_{\mathbf{u}} f(x_0, y_0) = \nabla f(x_0, y_0) \cdot \mathbf{u} =$ $f_x(x_0, y_0)a + f_y(x_0, y_0)b$ if this limit exists.
- 8. Gradient vector $\nabla f(x,y) = f_x \mathbf{i} + f_y \mathbf{j}$
- 9. METHOD Second derivative test to find the property of a critical point (\mathbb{R}_2) :

$$D_{2,2} = \begin{vmatrix} f_{xx} & f_{yx} \\ f_{xy} & f_{yy} \end{vmatrix} = f_{xx} f_{yy} - (f_{xy})^2$$

if at point (a,b), $f_x(a,b) = 0$ and $f_y(a,b) = 0$ then (a,b) is a critical point that:

- If $D_{2,2} > 0$ and $f_{xx}(a,b) > 0$, then f(a,b) is a local minimum.
- If $D_{2,2} > 0$ and $f_{xx}(a,b) < 0$, then f(a,b) is a local maximum.
- If $D_{2,2} < 0$ then f(a,b) is not a local maximum or minimum. (Saddle Point)
- 10. Critical Point(\mathbb{R}_3)
- -If $D_{1,1} > 0$, $D_{2,2} > 0$, $D_{3,3} > 0$, then f(a,b,c) is a local minimum.
- -If $D_{1,1} < 0, D_{2,2} > 0, D_{3,3} < 0$, then f(a,b,c) is a local maximum.
- -If $D_{3,3} \neq 0$ and (a,b,c) is neither a local minimum nor a local maximum, then (a, b, c) is a saddle point.
- -If $D_{3,3} = 0$, then the test is inconclusive; f(a,b,c) could be a local maximum or minimum, or (a, b, c) could be a saddle

11. METHOD: Find ABSOLUTE maximum or minimum:

- find all the value of critical point
- find extreme value on boundary
- compare them

12.METHOD: Lagrange multipliers:

$$\nabla f(x, y, z) = \lambda \nabla g(x, y, z)$$

 $g(x, y, z) = k \text{ (constraint)}$

Multiple integral:

- 1. Polar Coordinates: $\iint f(x,y) dA = \int_{\alpha}^{\beta} \int_{a}^{b} f(r\cos\theta, r\sin\theta) r dr d\theta$
- 2. Cylinder Coordinates:

$$\iiint\limits_E f(x,y,z) \, dV \qquad = \quad$$

 $\int_{\alpha}^{\beta} \int_{h_1(\theta)}^{h_2(\theta)} \int_{u_1(r\cos\theta, r\sin\theta)}^{u_2(r\cos\theta, r\sin\theta)} f(r\cos\theta, r\sin\theta, z) r \, dz \, dr \, d\theta$

3. Spherical Coordinates:

$$\iiint f(x,y,z) \, dV \qquad = \qquad$$

 $\int_{c}^{d} \int_{\alpha}^{\beta} \int_{a}^{b} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi \, d\rho \, d\theta \, d\phi$ 4. **Jacobian**:

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}$$

5. Change of variables:

$$\iint\limits_R f(x,y) \, dA = \iint\limits_S f(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \, du \, dv$$

Vector Calculus

Line Integral:

1. Line Integral with respect to Arc length:

$$\int_C f(x,y) ds = \int_a^b f(x(t),y(t)) \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$
2. Line Integral with respect to x or y :

$$\int_C f(x,y) dx = \int_a^b f(x(t), y(t)) \frac{dx}{dt} dt$$

$$\int_C f(x,y) dy = \int_a^b f(x(t),y(t)) \frac{dy}{dt} dt$$

 $\int_C f(x,y) dy = \int_a^b f(x(t),y(t)) \frac{dy}{dt} dt$ 3. Line segment start at \mathbf{r}_0 and end at \mathbf{r}_1 :

$$\mathbf{r}(t) = (1-t)\mathbf{r}_0 + t\mathbf{r}_1,$$

4. Line segment of Vector Field:

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$$

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$$
5. Green's Theorem:
$$\oint_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

surface integral:

1. Surface Integral of f over the surface S:

$$\iint_{S} f(x, y, z) dS = \iint_{D} f(\mathbf{r}(u, v)) |\mathbf{r}_{u} \times \mathbf{r}_{v}| dA$$
2. Surface Integral of Vector Field:
$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \mathbf{F}(\mathbf{r}(u, v)) \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) dA$$

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \mathbf{F}(\mathbf{r}(u, v)) \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) dA$$

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \left(-P \frac{\partial g}{\partial x} - Q \frac{\partial g}{\partial y} + R \right) dA, \ g(x,y) = z$$
3. Stoke's Theorem:
$$\oint_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$$

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$$

4. Divergence Theorem:
$$\iiint\limits_{E} \nabla \cdot \mathbf{F} \, dV = \iint\limits_{S} \mathbf{F} \cdot d\mathbf{S} = \iint\limits_{S} \mathbf{F} \cdot \mathbf{n} \, dS$$
Where $\mathbf{n} = \mathbf{r}_{u} \times \mathbf{r}_{v}$

Where
$$\mathbf{n} = \frac{\mathbf{r}_u \times \mathbf{r}_v}{|\mathbf{r}_u \times \mathbf{r}_v|}$$

Parametric Surface:

- 1. Sphere(a as a constant):
- $x = a \sin \phi \cos \theta, y = a \sin \phi \sin \theta, z = a \cos \phi$

$$\mathbf{r}_{\phi} \times \mathbf{r}_{\theta} = a^2 \sin^2 \phi \cos \theta \, \mathbf{i} + a^2 \sin^2 \phi \sin \theta \, \mathbf{j} + a^2 \sin \phi \cos \phi \, \mathbf{k}$$

$$|\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}| = a^2 \sin \phi$$

2. surface area:

$$\iint\limits_{S} dS = \iint\limits_{D} |\mathbf{r}_{x} \times \mathbf{r}_{y}| \ dA; \iint\limits_{S} dS = \iint\limits_{D} \sqrt{1 + (\frac{\partial z}{\partial x})^{2} + (\frac{\partial z}{\partial y})^{2}} \ dA,$$
 when $z = g(x, y)$

Definitions:

$$F = \mathbf{P}\,\mathbf{i} + \mathbf{Q}\,\mathbf{j} + \mathbf{R}\,\mathbf{k}$$

1. Curl of F: curl
$$\mathbf{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)\mathbf{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right)\mathbf{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\mathbf{k}$$

If F is a vector field defined on all of \mathbb{R}^3 whose component functions have continuous partial derivatives and curl F = 0, then F is a conservative vector field

- 2. Div of F: div $\mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$
- 3. F, Vector Field on \mathbb{R}^3 , has continuous second order derivative, then: div curl F = 0
- 4. Laplace operator: $\nabla^2 f = \nabla \cdot \nabla f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial u^2} + \frac{\partial^2 f}{\partial z^2}$

Figure 1: An example figure.

Classification of ODE

First Order ODE:

- Standard Form : $\frac{dy}{dx} + P(x)y = Q(x)$ 1. graphic method is plot the direction field
- 2. numerical method/Euler's Method:

 $y_1 = y_0 + f(t_0, y - 0)h$, h is the step

- 3. If Linear?
- Separable?
- integrating factor:

 $e^{\int P(x)dx} \left[\frac{dy}{dx} + P(x)y \right] = e^{\int P(x)dx} Q(x)$

- Separable?
- homogeneous

Can be express as $\frac{y}{x}$ only, let $v(x) = \frac{y}{x}$, y = v(x)x sub in y' and separate the variable

- Exact equation: $M(x,y) + N(x,y) \frac{dy}{dx} = 0$

ODE is exact on R if and only if $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ there exist $\psi(x,y)$ such that $\frac{\partial \psi}{\partial x} = M$ and $\frac{\partial \psi}{\partial y} = N$

Solve it and get $\psi(x,y) = C$ as solution

From $M = \psi(x, y)_x$, we get $\psi(x, y) = some(x, y) + h(y)$ and compare it with $\psi(x,y)_y = some(x,y)_y + h(y)'$ with N

- Integrating factor to make equation exact:

For $M(x,y) + N(x,y)\frac{dy}{dx} = 0$ if it is not exact:

Find some $\mu(x)$ that $\mu M(x,y) + \mu N(x,y) \frac{dy}{dx} = 0$ is exact:

solve the separable ODE and solve the original equation with Exact method.

Uniqueness IVP(initial value problem)

- 1. non Linear
- the range should include the initial value
- not a general solution

Second Order ODE:

CC := Constant Coefficient

NCC := Non Constant Coefficient

Standard Form:

 $P(t)\frac{d^2y}{dt^2} + Q(t)\frac{dy}{dt} + R(t)y = G(t);$ provided that $P(t) \neq 0$, it may be expressed as

 $\frac{d^2y}{dt^2} + p(t)\frac{dy}{dt} + q(t)y = g(t).$

Linear:

1. Suppose that y_1, y_2 are 2 linearly independent solutions to the homogeneous ODE y''(t) + P(t)y'(t) + Q(t)y(t) = 0, where p, q are continuous, Then every solutions to the ODE has the form (general solution) $y = C_1y_1(t) + C_2y_2(t)$, where C_1, C_2 are constants.

2. $y_1(t), y_2(t)$ are linearly independent iff

 $W(y_1(t), y_2(t)) = y_1 \cdot y_2' - y_1' \cdot y_2$

3. y_1, y_2 : fundamental set of solutions

- Caracteristic Equation (CC, Homogeneous):

$$ay''(t) + by'(t) + cy(t) = 0, ar^2 + br + c = 0$$

if $\Delta > 0$: $y(t) = C_1 exp(r_1 t) + C_2 exp(r_2 t)$

if $\Delta = 0$: - Method of Reduction of Order:

When r has two same solutions, let $y_2(t) = v(t) \cdot y_1(t)$, find y_2' and y_2'' sub in

 $y(t) = C_1 exp(r_1 t) + C_2 t \cdot exp(r_1 t)$

if $\Delta < 0$: $r = \alpha \pm i\beta$:

 $y(t) = e^{\alpha t} (C_m \cos(\beta t) + C_N \sin(\beta t))$

- Complementary Equation (CC, Non homogeneous)

ay''(t) + by'(t) + cy(t) = q(t)

- Find the general soln y_c of the corresponding homogeneous ODE

- find any particular soln y_p to the non homogeneous ODE;
- then add y_c and y_p together.
- How to find y_p particular solution
- Method of Undetermined Coefficients(CC, Special Cases):

Suppose r_1 , and r_2 are two solution to the characteristic equation

- Case1: $g(t) = Me^{kt}$

if $k \neq r_1$ and $k \neq r_2$, $y_p = Ce^{kt}$

if k equals one of them, $y_p = Cte^{kt}$

if $k = r_1 = r_2$, $y_p = Ct^2e^{kt}$

- Case2: $M\cos kt + N\sin kt$:

compare k and β : $y_p(t) = C \cos kt + D \sin kt$ or

 $y_p(t) = t(C\cos kt + D\sin kt)$

- Case3: $g(t) = a_n t^n + ... a_0$ if 0 is not, one, two of solution of characteristic equation:

 $y_p(t) = b_n t^n + ... + a_0$ or

 $y_p(t) = t(b_n t^n + ... + a_0)$ or

 $y_p(t) = t^2(b_n t^n + \dots + a_0)$

- Combination of Case 1,2,3:

P. A. B are polynomial with different coefficients

if $g(t) = P_n(t)$, try $y_p(t) = t^s A_n(t)$

if $g(t) = P_n(t)e^{mt}$, try $y_p(t) = t^s A_n(t)e^{mt}$

if $g(t) = P_n(t)e^{mt}\cos kt$, try $y_p(t) = t^s e^{mt} [A_n(t)\cos kt +$

 $B_n(t)\sin kt$

if $g(t) = P_n(t)e^{mt}\sin kt$, try $y_p(t) = t^s e^{mt} [A_n(t)\cos kt +$ $B_n(t)\sin kt$

- Method of variation of parameters (CC, General Method)

g(t): see the standard form

 $\begin{array}{l} y_p(t) = y_1(t)u_1(t) + y_2(t)u_2(t) \\ y_p(t) = -y_1(t) \int \frac{y_2(t)g(t)}{aW(y_1,y_2)} \, dt + y_2(t) \int \frac{y_1(t)g(t)}{aW(y_1,y_2)} \, dt \\ \text{- Reducible ODEs(NCC, non-linear)} \end{array}$

Normally we have F(y'', y', y, x)

F in the form of F(y'', y', x) we let $v(x) = \frac{dy}{dx}$, $\frac{dv}{dx} = y''$ F in the form of F(y'', y', y) we let $v(y) = \frac{dy}{dx}$, $\frac{dv}{dy} = y''$

- Euler's method(NCC)

In the form of $ax^2y'' + bxy' + cy = 0$, let t = lnx and change variable

Series Solution:

n = k then for all n at left n = 0 at right n = n + k

$$y = \sum_{n=0}^{\infty} a_n x^n$$

$$y' = \sum_{n=0}^{\infty} a_{n+1}(n+1)x^n$$

$$y = \sum_{n=0}^{\infty} a_n x^n$$

$$y' = \sum_{n=0}^{\infty} a_{n+1} (n+1) x^n$$

$$y'' = \sum_{n=0}^{\infty} a_{n+2} (n+2) (n+1) x^n$$

Legendre equation:

$$(1 - x^2)y'' - 2xy' + \alpha(\alpha + 1)y = 0, \alpha > -1$$

Method of Frobenius: near a regular singular point: $y = x^r \sum_{n=0}^{\infty} a_n x^n$

Other Tricks:

- 1. $\frac{d}{dx}\sinh(x) = \cosh(x)$, $\frac{d}{dx}\cosh(x) = \sinh(x)$, $\sinh(2x) = \sinh(x)$ $2\sinh(x)\cosh(x)$,
- 2. d is the shortest distance between a point q and a line l with directional vector v, p is also a point on the line: $d = \frac{|(\mathbf{p} - \mathbf{q}) \times \mathbf{v}|}{|\mathbf{v}|}$.
- 3. Use symmetry when calculating ∂f
- 4. Contour curve: $\nabla f = 0$ would be the function of some line on the graph,

Check for symmetry, Check for x = 0, y = 0

Derivative:

1.
$$\frac{d}{dx}\sinh(x) = \cosh(x)$$
, $\frac{d}{dx}\cosh(x) = \sinh(x)$,

Integral:

1.
$$\int xe^x dx = (x-1)e^x + C$$

2.
$$\int x^2 e^x dx = (x^2 - 2x + 2)e^x + C$$

Transformation:

$$\sinh(2x) = 2\sinh(x)\cosh(x)$$

Vector Calculus:

- 1. $\underline{r}(t) = f(t)\underline{i} + g(t)\underline{j}$
- 2. Arc length of Vector = $\int_{b}^{a} \sqrt{f'(t)^2 + g'(t)^2} dt$
- 3. The forms of Line

vector form : $\underline{r} = r_0 + t\underline{v}$

parametric form : $x = x_0 + at$, $y = y_0 + bt$ symmetric form : $\frac{x - x_0}{a} = \frac{y - y_0}{b} = t$

- 4. Unit Tangent vector : $\underline{T}(t) = \frac{\underline{r}'(t)}{|\underline{r}'(t)|}$ 5. Cuvature : $\kappa = |\frac{dT}{ds}| = \frac{|\underline{r}'(t) \times \underline{r}''(t)|}{|\underline{r}'(t)|^3}$ 6. Normal vector : $\underline{N}(t) = \frac{\underline{T}'(t)}{|\underline{T}'(t)|}$ 7. Binormal vector : $\underline{B}(t) = \underline{T}(t) \times \underline{N}(t)$

Important Summations:

1.
$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

Important Summations .
1.
$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

2. $\sum_{k=0}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$
3. $e^{\lambda} = \sum_{k=0}^{n} \lambda^k / k!$
4. $\sin(x) = \sum_{k=0}^{n} (-1)^k x^{2k+1} / (2k+1)!$
5. $\cos(x) = \sum_{k=0}^{n} (-1)^k x^{2k} / (2k)!$

3.
$$e^{\lambda} = \sum_{k=0}^{n} \lambda^k / k!$$

4.
$$sin(x) = \sum_{k=0}^{n} (-1)^k x^{2k+1}/(2k+1)$$

5.
$$cos(x) = \sum_{k=0}^{n} (-1)^k x^{2k} / (2k)!$$

This requires some puzzling out; no strategy 'recipes'. Use a combination of following

- check symmetries, e.g. $x \rightarrow -x$ or $y \rightarrow -y$ or $x \rightarrow y, y \rightarrow x, ...$
- observe monotonicity of functions, e.g. $\log x$, e^x , \sqrt{x} , ...
- observe boundedness of functions, e.g. $\log x$, e^x , $\sin x$, ...
- observe what happens at x=0 or y=0 or x=y or x=-y or other particular
- possibly find level curves F(x,y) = C explicitly (i.e. x = f(y), y = g(x)) for some
- examine the implict derivative $(\nabla F(x,y) = 0)$ rather than the function itself.
- by elimination.

Figure 2:

Figure 3: