泛函分析作业

习题 1 考虑度量空间 ℓ^2 , 证明: $A := \{ \xi = \{ x_n \} \in \ell^2 : n | x_n | \leq 1 \}$ 是 ℓ^2 中的紧集.

证明. 设 $\{\xi_k\} \subset A, \xi_k = \{x_n^{(k)}\}$, 且有极限 $\xi = \{x_n\}$, 即 $\sum_{n=1}^{\infty} \left| x_n^{(k)} - x_n \right| \to 0, n \to \infty$, 那么 $x_n^{(k)} \to x_n, n \to \infty$, 即 $n |x_n| \le 1, \xi \in A$, 即 A 是闭集.

又对任意的 $\varepsilon > 0$, 存在 N, 使得 $\sum_{n>N} \frac{1}{n^2} < \varepsilon$. 令 $B = \{(x_1, x_2, \cdots, x_N, 0, \cdots) : \{x_n\} \in A\}$, $B^* = \{(x_1, \cdots, x_N) : \{x_n\} \in A\} \subset \mathbb{R}^N$. 又因为 $|x_k| \leq \frac{1}{k}$, 那么 B^* 有界. 存在 $\eta_1, \cdots, \eta_{n_\varepsilon} \in B$ 对任意的 $\xi \in B$, 存在 j, 使得 $\xi \in B(\eta_j, \varepsilon)$, 又因为 B 的定义可知,

$$A \subset \bigcup_{\xi \in B} B(\xi, \varepsilon),$$

即对任意的 $x \in A$, 存在 $\xi \in B, \rho(x,\xi) < \varepsilon$, 又存在 $\eta_i, \rho(\xi,\eta_i) < \varepsilon$, 则 $\rho(x,\eta_i) < 2\varepsilon$, 则

$$A \subset \bigcup_{j=1}^{n_{\varepsilon}} B(n_j, 2\varepsilon).$$

又 ℓ^2 空间完备, 在 ℓ^2 中任意一个球中的点列总存在收敛子列, 若有一个球 $B(\xi_0, r_0)$, $B(\xi_0, r_0) \cap A \subset B(\xi_0, r_0)$ 不能被有限个以 A 中的点为球心, r_0 为半径的球覆盖, 那么存在点列 $\{y_n\}$ 其中任意点的距离大于 r_0 , 则它没有收敛子列, 矛盾. 则 A 有有穷的 ε -网, 即 A 完全有界, 那么 A 列紧, 又 A 是闭集, 则 A 自列紧, 即 A 是紧集.

习题 2 用完备度量空间的充要条件证明 Banach 不动点定理.

证明. \diamondsuit $A_n = \{x \in X : \rho(x, Tx) \leq \frac{1}{n}\}$, 则 A_n 递降.

设 $\{x_k\}$ 是 A_n 中的收敛点列, 设 $x_k \to x$, 那么 $\rho(x_n, Tx_n) \to \rho(x, Tx) \leqslant \frac{1}{n}$, 即 A_n 是闭集.

若存在 $n_0, A_{n_0} = \emptyset$, 即对任意的 $x \in X, \rho(x, Tx) > \frac{1}{n_0}$. 又因为 T 是压缩映射, 存在 $0 < \alpha < 1$, 使得 $\rho(Tx, Ty) \leq \alpha \rho(x, y)$, $\rho(T^k x, T^{k+1} x) \leq \alpha^k \rho(x, Tx) \to 0, k \to \infty$, 则 $A_{n_0} \neq \emptyset$, 矛盾. 则 $\{A_n\}$ 均非空.

Fi \mathbb{E} diam $A_n \to 0, n \to \infty$.

diam
$$A_n = \sup_{x,y \in A_n} \langle \rho(x_0, y_0) + \frac{1}{n}$$

 $\leq \rho(x_0, Tx_0) + \rho(Tx_0, Ty_0) + \rho(Ty_0, y_0) + \frac{1}{n}$

$$\leq \frac{1}{n} + \alpha \rho(x_0, y_0) + \frac{1}{n} + \frac{1}{n}$$

 $\leq \frac{3}{n} + \alpha \operatorname{diam} A_n.$

 \mathbb{H} diam $A_n \leqslant \frac{3}{(1-\alpha)n} \to 0, n \to \infty$.

存在 $x \in X$, $\bigcap_{n=1}^{\infty} A_n = \{x\}$,即存在唯一的 x 使得 Tx = x.

习题 3 设 $K(\cdot,\cdot) \in L^2([a,b] \times [a,b])$, 对于 $f \in L^2[a,b]$, 证明当 λ 充分小时,

$$x(t) = f(t) + \lambda \int_{a}^{b} K(t, s) x(s) ds$$

在 $L^2[a,b]$ 中存在唯一解.

证明. 令 $Tx = f(t) + \lambda \int_a^b K(t,s)x(s)\mathrm{d}s$, 那么 T 是从 $L^2[a,b]$ 到 $L^2[a,b]$ 的映射.

$$\rho(Tx, Ty) = \left(\int_a^b \left(\lambda \int_a^b K(t, s)(x(s) - y(S)) ds\right)^2 dt\right)^{1/2}$$

$$= \lambda \left(\int_a^b \left(\int_a^b K(t, s)(x(s) - y(s)) ds\right)^2 dt\right)^{1/2}$$

$$= \rho(x, y)\lambda \left(\int_a^b \frac{\left(\int_a^b K(t, s)(x(s) - y(s)) ds\right)^2}{\int_a^b (x(s) - y(s))^2 ds} dt\right)^{1/2}$$

$$\leqslant \rho(x, y)\lambda \left(\int_a^b \left(\int_a^b K^2(t, s) ds\right) dt\right)^{1/2}.$$

令 $\lambda < \frac{1}{\sqrt{\int_{[a,b]^2} K^2(t,s) dt ds} + 1}$,则 $\lambda \left(\int_{[a,b]^2} K^2(t,s) dt ds \right)^{1/2} < 1$,即 T 是压缩映射,又 $L^2[a,b]$ 完备,那么存在唯一解.

习题 4 设 $K(\cdot,\cdot) \in C([a,b] \times [a,b]), f \in C[a,b],$ 证明: $\forall x \in \mathbb{R},$

$$x(t) = f(t) + \lambda \int_{a}^{t} K(t, s) x(s) ds$$

在 C[a,b] 中存在唯一解.

证明. 令 $Tx=f(t)+\lambda\int_a^tK(t,s)x(s)\mathrm{d}s,$ 那么 T 是从 C[a,b] 到自身的映射. 又因为

$$T^{n}x - T^{n}y = \lambda \int_{a}^{t} K(t, s_{1})(T^{n-1}x - T^{n-1}y)ds_{1}$$

$$= \cdots$$

$$= \lambda^n \int_{\substack{a \leqslant s_1 \leqslant t \\ a \leqslant s_2 \leqslant s_1 \\ \dots \\ a \leqslant s_n \leqslant s_{n-1}}} K(t, s_1) K(s_1, s_2) \cdots K(s_{n-1}, s_n) (x(s_n) - y(s_n)) ds_n \cdots ds_1.$$

那么

$$\rho(T^n x, T^n y) \leqslant \lambda^n I \rho(x, y),$$

其中

$$I = \int_{a \leqslant s_n \leqslant s_{n-1} \leqslant \dots \leqslant s_1 \leqslant t} |K(t, s_1) K(s_1, s_2) \dots K(s_{n-1}, s_n)| \, ds_n ds_{n-1} \dots ds_1$$

$$\leqslant \frac{M}{n!} \int_{[a,t]^n} |K(s_1, s_2) \dots K(s_{n-1}, s_n)| \, ds_n \dots ds_1, \quad (|K(t, s)| \leqslant M, (t, s) \in [a, b]^2)$$

$$\leqslant \frac{M^n (b-a)^n}{n!}.$$

即

$$\rho(T^n x, T^n y) \leqslant \frac{\lambda^n M^n (b-a)^n}{n!} \rho(x, y),$$

当 n 充分大时, $\frac{\lambda^n M^n (b-a)^n}{n!} < 1$, 此时 T^n 是压缩映射, 则存在唯一解.

习题 5 $(X, \|\cdot\|)$, 若 dim $X < \infty$, 则 $X \in B$ 空间.

证明. 设 $\{x_n\}$ 是 Cauchy 列, 即 $\|x_m - x_n\| \to 0, m, n \to \infty$, 设 dim $X = l < \infty, e_1, \dots, e_l$ 是它的基, 令 $x_n = \sum_{i=1}^l x_i^{(n)} e_i$. 那么存在 c > 0, 使得

$$c\left(\sum_{i=1}^{l} \left| x_i^{(m)} - x_i^{(n)} \right|^2 \right)^{1/2} \leqslant \left\| \sum_{i=1}^{l} (x_i^{(m)} - x_i^{(n)}) e_i \right\| \to 0,$$

即 $\sum_{i=1}^{l} \left| x_i^{(m)} - x_i^{(n)} \right|^2 \to 0$, 那么 $\{x_i^{(n)}\}$ 是 Cauchy 列, $\{x_i^{(n)}\}$ 收敛, 即 $\{x_n\}$ 收敛,X 是 B 空间.

习题 $6(X, \|\cdot\|), X$ 的任何有限维子空间是闭的.

证明. 设 $(X_0, \|\cdot\|)$ 是 X 的有限维子空间, 那么它也是线性赋范空间, 又因为它是有限维的, 则它是 B 空间, 若它不是闭的, 那么存在收敛列 $\{x_n\} \subset X_0$, 极限为 $x \notin X_0$, 即 $\{x_n\}$ 在 X_0 内不收敛, 又因为它是 X_0 内的 Cauchy 列, 与它是 B 空间矛盾. 则 X_0 是闭的.

习题 $7(X, \|\cdot\|).\dim X < \infty, X$ 中的有界集是列紧集.

证明. 设 dim $X=n<\infty,e_1,\cdots,e_n$ 是一组基, $A\subset X$ 有界. 对任意的 $x\in A,x=\sum_{i=1}^n x_ie_i$, 那么存在 c>0,M>0, 使得

$$c\left(\sum_{i=1}^{n} |x_i|^2\right)^{1/2} \leqslant ||x|| \leqslant M.$$

即 (x_1, \dots, x_n) 在 \mathbb{R}^n 中有界, 那么若 $\{x_n\}$ 是 A 中的点列, 它们在基 e_1, \dots, e_n 下的坐标在 \mathbb{R}^n 均位于球 B(0, M/c) 中, 即存在收敛子列, 那么对应 $\{x_n\}$ 也存在收敛子列, A 列紧.

习题 8 $X := \{ f \in C[0,1] : f(0) = 0 \}, \|f\| = \max_{t \in [0,1]} |f(t)|, X$ 是 Banach 空间. $X_0 := \{ f \in X : \int_0^1 f(t) dt = 0 \},$ 证明: $\dim X_0 = \infty$.

证明. 假设 $\dim X_0 = n < \infty$, 考虑如下函数:

$$\sin 2\pi x$$
, $\sin 4\pi x$, \cdots , $\sin 2\pi (n+1)x$.

对任意的 $k,\sin 2\pi kx \in X_0$, 且 $\{\sin 2\pi kx\}_{k=1}^{n+1}$ 线性无关, 则 $\dim X_0 \ge n+1 > n$, 矛盾, 则 $\dim X_0 = \infty$.