COURSE PLAN

Department:	MATHEMAT	MATHEMATICS								
Course Name & code :	Elementary N	umber Theory	MAT 2137							
Semester & branch :	III SEMESTE	ER	Mathematics and Computing							
Name of the faculty:	Dr Vadiraja Bh	atta G. R.	1							
No of contact hours/week:	L	Т	P	С						
	2	1	0	3						

COURSE OUTCOMES (COS)

	At the end of this course, the student should be able to:	No. of Contact Hours	Marks	Program Outcom es (POs)	PSO	BL (Recommen ded)
CO1	Construct models for solving problems using basic concepts of number theory.	10	8			1, 2
CO2	Apply the fundamentals of number theory to solve advanced number theoretic problems.	6	10			1, 3, 4
CO3	Evaluate number theoretic functions applicable for factoring large integers.	8	12			2,3,4,5
CO4	Analyse cryptographically significant concepts using number theory.	5	10			4, 5
CO5	Apply the number theoretic concepts, methods and functions to cryptogrphy.	7	10			3, 4
	Total	36	50			

*** COURSE LEARNING OUTCOMES (CLOS)

At the end	of this course, the student should be able to:	No. of Contact Hours	Marks	Program Outcomes(POs)	Learning Outcomes (LOs)	BL (Recommended)
CLO1	Construct models for solving problems using basic concepts of number theory.	10	8			1, 2
CLO2	Apply the fundamentals of number theory to solve advanced number theoretic problems.	6	10			1, 3, 4
CLO3	Evaluate number theoretic functions applicable for factoring large integers.	8	12			2,3,4,5
CLO4	Analyse cryptographically significant concepts using number theory.	5	10			4, 5
CLO5	Apply the number theoretic concepts, methods and functions to cryptogrphy.	7	10			3, 4
	Total	36	50			

*** Applicable to programs applied for IET accreditation only.

Assessment Plan

<u>IN – SEMESTER ASSESSMENTS</u>

S. No.					Marks	Weightage	Typology of Questions (Recommended)	Schedule	**Topics Covered					
1	MISAC	1	1	1	1	1	1	Assignment 1	15 days	5	$10 \text{ MCQs} \times \frac{1}{2} = 5$	Bloom's taxonomy (BT) level of the question should be L3 and above.		L1—L10
		2	Assignment 2	15 days	5	2 STQ× 2½= 5	Bloom's taxonomy (BT) level of the question should be L3 and above.		L11—L20					
		3	Mid- semester Exam	60 Mins	30	Objective: 5M 10 MCQs × ½ = 5 marks Descriptive: 25 Marks (3 Questions of 2 marks + 5 Questions of 3 marks+ 1 question of 4 Marks)	Bloom's taxonomy (B) level of the question should be L3 and above.		L1 – L15					
		4	Assignment 3	15 days	5	$10 \text{ MCQs} \times \frac{1}{2} = 5$	Bloom's taxonomy (BT) level of the question should be L3 and above.		L21—L26					
		5	Assignment 4	15 days	5	2 STQ× 2½= 5	Bloom's taxonomy (BT) level of the question should be L3 and above.		L27—L34					

<u>END – SEMESTER ASSESSMENT</u>

1	Regular/Make-Up Exam	180 Mins	50	Answer all 5 full	Bloom's	17 th week of the	Comprehensive
				questions of 10 marks	taxonomy (BT)	semester	examination covering full
				each. Each question can	level of the		syllabus.
				have 3 parts of 2/3/4/5/6	question should be		
				marks.	L3 and above.		

^{**} Individual faculty will be entering the topics

<u>NOTE:</u> Information provided in the table is as per the In-semester assessment plan and schedule of V and VII semester B. Tech provided from Academic Section.

^{***} Individual faculty must identify the assessment method from table 3 and fill in the details.

LESSON PLAN

L No	TOPICS							
		Outcome						
1	Divisibility- properties of divisibility	Addressed						
	Division Algorithm – related problems	1						
2		1						
3	The Greatest Common Divisor	1						
4	Euclidean Algorithm- Finding GCD	1						
5	Guassian Integers – GCD of Gaussian Integers.	1						
6	Primes as a Sum of Two squares.	1						
7	The Theory of Congrences - Examples	1						
8	Basic properties of Congruencs	1						
9	Linear Congrences and Chinese Remainder Theorem	1						
10	Problems on Chinese Remainder Theorem	1						
11	The Diophantine Equation	2						
12	Solution of Diophantine equations.	2						
13	Prime numbers and their distributions	2						
14	Fundamental Theorem of Arithmetic	2						
15	Some more problems on prime numbers	2						
16	Wilson's Theorem and Problems	2						
17	Fermat's Little Theorem and problems	3						
18	Euler's Phi-function and properies	3						
19	Properties of Euler's phi-function	3						
20	Euler's Theorem and problems on Euler's theorem	3						
21	Some more problems on Euler's phi- function	3						
22	Number Theoretic functions	3						
23	Greatest Integer Function and Application	3						
24	Problems on Greatest Integer Function	3						
25	Quadratic Reciprocity – Introduction	4						
26	Euler's Criterion	4						
27	Legendre symbol and properties of Legendre symbol	4						
28	Evaluation of Legendre Symbols	4						
29	Problems on law of quadratic reciprocity	4						
30	Square root mod p	4						
31	Factoring Large Integers.	4						
32	Crypography- Introduction.	5						
33	Basic cryptosystems- problems	5						
34	Problems on Basic cryposystems	5						
35	Discrete log problem	5						
36	The Knapsack problem and Knapsack Cryptosystem	5						

Course Articulation Matrix

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	3						1				1			
CO2	3	3						1				1			
CO3	2	3						1				1			
CO4	2	2						1				1			
CO5	2	1						1				1			
Articul ation Level	2.4	2.4						1				1			

FACULTY MEMBER TEACHING THE COURSE: Dr Vadiraja Bhatta G. R.

References:

- 1. David M. Burton- Elementary Number Theory, 6th Edition, Tata Mc Graw Hill, 2007
- 2. Neal Koblitz A Course in Number Theory and Cryptography, Springer, second Edition.
- 3. Neville Robbins- Beginning Number Theory, Narosa Publishing House, 2007.
- 4. Tom M. Appostal- Introduction to Analytic Number Theory, Springer, 1976

Submitted by: Dr. Vadiraja Bhatta G R

(Signature of the faculty)

Date: 21.7.2025

Approved by: Dr Kuncham Syam Prasad.

(Signature of HOD)