Modeling ProcessDATA 202 21FA

Is there a case where false positive can cause more harm than false negative?

Machine Bias

There's software used across the country to predict future criminals. And it's biased against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica
May 23, 2016

N A SPRING AFTERNOON IN 2014, Brisha Borden was running late to pick up her god-sister from school when she spotted an unlocked kid's blue Huffy bicycle and a silver Razor scooter. Borden and a friend grabbed the bike and scooter and tried to ride them down the street in the Fort Lauderdale suburb of Coral Springs.

https://www.propublica.org/article/machine-bias-risk-assessments-in-

which belonged to a 6-year-old boy — a woman came running after them saying, "That my kid's stuff." Borden and her friend immediately dropped the bike and scooter and

criminal-sentencing way.

Is regression or classification more common?

Depends on the application. But classification seems more fundamental.

Think about how you'd do regression if all you had was a classification model. (Hint: histograms.)

Confusion matrices are confusing. Can we practice?

In lab Friday!

Objectives

- What are the basic steps in training and validating any predictive model?
- Why is each step important?
- How can we use the tidymodels ecosystem to train and validate a linear model?

Source: Feature Engineering and Selection ch1

Predictive Modeling Workflow

Preliminaries:

- 1. **Define the problem**: predict *what*, based on *what*? What *metrics* will indicate success? (Measure success in multiple ways!)
- 2. **Explore your data** (EDA): understand its structure, make lots of plots

Predictive Modeling Workflow

Preliminaries:

- 1. **Define the problem**: predict *what*, based on *what*? What *metrics* will indicate success? (Measure success in multiple ways!)
- 2. **Explore your data** (EDA): understand its structure, make lots of plots
- 1. **Pick a model**: Which type(s) of models are appropriate for task and data?
- 2. **Transform the data** as needed by the model ("feature engineering", preprocessing", "recipe")
- 3. **Split the data** to allow for validation.
- 4. Fit and evaluate the model
- 5. **Tune**: adjust model hyperparameters
- 6. Analyze model errors and refine all earlier steps

library(tidymodels)

Packages:

- parsnip: Specify and train the model you want
- recipes: Prepare the data
- rsample: Split data into training and validation
- yardstick: Compute metrics for performance
- tune: Helps you set the dials.

Where to find documentation Theory

- An Introduction to Statistical Learning
- Feature Engineering and Selection

Practice

- TidyModels website: Getting Started, vignettes
- Tidy Modeling with R book (work in progress)

Some others:

- https://rviews.rstudio.com/2019/06/19/a-gentle-intro-to-tidymodels/
- https://juliasilge.com/blog/intro-tidymodels/

Example data: Ames home sales

Like before, but we subset the data as De Cock suggests. Again, see Data dictionary

```
data(ames, package = "modeldata")
ames <- AmesHousing::make_ames() %>%
  mutate(Sale_Price = Sale_Price / 1000) %>%
  filter(Gr_Liv_Area < 4000, Sale_Condition == "Normal")
nrow(ames)</pre>
```

[1] 2412

ames %>% head(5)

```
# A tibble: 5 \times 81
 MS_SubClass MS_Zoning
                              Lot_Frontage Lot_Area Street Alley
                                     <dbl> <int> <fct>
                                                           <fct>
  <fct>
        <fct>
1 One_Story_1946... Residentia...
                                                           No_Al...
                                       141 31770 Pave
2 One_Story_1946... Residentia...
                                                           No_Al...
                                        80 11622 Pave
3 One_Story_1946... Residentia...
                                        81
                                              14267 Pave
                                                           No Al...
4 One_Story_1946... Residentia...
                                        93
                                                           No Al...
                                              11160 Pave
```

Defining the problem

- Predict what? Sale_Price
- How to measure success?

```
metrics <- yardstick::metric_set(mae, mape, rsq_trad)</pre>
```

Exploratory Analysis (EDA)

skimr::skim(ames)

Table: Data summary

Variable type: factor

skim_variable	n_missing	complete_rate	ordered	n_unique	top_counts
MS_SubClass	0	1	FALSE	16	One: 866, Two: 464, One: 247, One: 155
MS_Zoning	0	1	FALSE	7	Res: 1890, Res: 394, Flo: 92, Res: 20
Street	0	1	FALSE	2	Pav: 2403, Grv: 9
Alley	0	1	FALSE	3	No_: 2258, Gra: 100, Pav: 54
Lot_Shape	0	1	FALSE	4	Reg: 1533, Sli: 802, Mod: 65, Irr: 12
Land_Contour	0	1	FALSE	4	Lvl: 2184, Bnk: 91, HLS: 86, Low: 51

Condition_1	0	1	FALSE	9	Nor: 2083, Fee: 130, Art: 77, Pos: 35
Condition_2	0	1	FALSE	8	Nor: 2390, Fee: 12, Art: 2, Pos: 2
Bldg_Type	0	1	FALSE	5	One: 2001, Twn: 188, Twn: 93, Dup: 78
House_Style	0	1	FALSE	8	One: 1189, Two: 725, One: 270, SLv: 115
Overall_Qual	0	1	FALSE	10	Ave: 715, Abo: 640, Goo: 493, Ver: 256
Overall_Cond	0	1	FALSE	9	Ave: 1282, Abo: 473, Goo: 352, Ver: 139
Roof_Style	0	1	FALSE	6	Gab: 1936, Hip: 432, Gam: 18, Fla: 13
Roof_Matl	0	1	FALSE	7	Com: 2381, Tar: 15, WdS: 7, WdS: 6
Exterior_1st	0	1	FALSE	15	Vin: 781, HdB: 396, Met: 390, Wd : 371
Exterior_2nd	0	1	FALSE	16	Vin: 770, Met: 388, HdB: 363, Wd : 357
Mas_Vnr_Type	0	1	FALSE	4	Non: 1492, Brk: 749, Sto: 153, Brk: 18
Exter_Qual	0	1	FALSE	4	Typ: 1562, Goo: 770, Exc: 53, Fai: 27
Exter_Cond	0	1	FALSE	5	Typ: 2080, Goo: 266, Fai: 53, Exc: 11
Foundation	0	1	FALSE	6	CBI: 1090, PCo: 1002, Brk: 264, Sla: 41
Bsmt_Qual	0	1	FALSE	6	Typ: 1117, Goo: 1002, Exc: 152, Fai: 72
Bsmt_Cond	0	1	FALSE	6	Typ: 2169, Goo: 86, Fai: 84, No_: 67
Bsmt_Exposure	0	1	FALSE	5	No: 1611, Av: 315, Gd: 218, Mn: 199
BsmtFin_Type_1	0	1	FALSE	7	GLQ: 694, Unf: 644, ALQ: 378, Rec: 250
BsmtFin_Type_2	0	1	FALSE	7	Unf: 2026, Rec: 96, LwQ: 78, No_: 68
Heating	0	1	FALSE	6	Gas: 2374, Gas: 24, Gra: 6, Wal: 5
Heating_QC	0	1	FALSE	5	Exc: 1183, Typ: 726, Goo: 422, Fai: 80
Central_Air	0	1	FALSE	2	Y: 2259, N: 153
Electrical	0	1	FALSE	5	SBr: 2207, Fus: 158, Fus: 39, Fus: 7
Kitchen_Qual	0	1	FALSE	5	Typ: 1294, Goo: 941, Exc: 115, Fai: 61
Functional	0	1	FALSE	6	Typ: 2239, Min: 63, Min: 55, Mod: 30
Fireplace_Qu	0	1	FALSE	6	No_: 1164, Goo: 555, Typ: 554, Fai: 68
Garage_Type	0	1	FALSE	7	Att: 1420, Det: 684, Bui: 140, No_: 116
Garage_Finish	0	1	FALSE	4	Unf: 1066, RFn: 671, Fin: 558, No_: 117
Garage_Qual	0	1	FALSE	6	Typ: 2163, No_: 117, Fai: 105, Goo: 20
Garage_Cond	0	1	FALSE	6	Typ: 2204, No_: 117, Fai: 65, Goo: 13

Exploratory Analysis (EDA): Make lots of plots.

```
ames %>%
  ggplot(aes(x = Gr_Liv_Area, y = Sale_Price, color = Fireplaces
  geom_point(alpha = .2) +
  facet_wrap(vars(Bldg_Type))
```



```
ames %>% select(Sale_Price, Gr_Liv_Area, Lot_Area, Full_Bath, Ha
pivot_longer(-c(Sale_Price, Fireplaces)) %>%
ggplot(aes(x = value, y = Sale_Price, color = Fireplaces > 0))
facet_wrap(vars(name), scales = "free") + theme_bw()
```


Specifying a Model

Example (without validation)

Specify the model:

```
my_model_spec <- parsnip::decision_tree(mode = "regression")</pre>
```

Train it ("fit") on data:

```
my_trained_model <- my_model_spec %>%
  fit(Sale_Price ~ Gr_Liv_Area, data = ames)
```

Example (without validation)

Predict on new data:

Evaluate on all data:

```
predictions <- my_trained_model %>%
  predict(ames) %>%
  bind_cols(ames)
predictions %>%
  metrics(truth = Sale_Price, estimate = .pred)
```


Example, with validation

1. Hold out some data to use for validation:

```
set.seed(10)
ames_split <- initial_split(ames, prop = 3/4)
ames_train <- training(ames_split)
ames_test <- testing(ames_split)
glue("Using {nrow(ames_train)} sales to train, {nrow(ames_test)}</pre>
```

Using 1809 sales to train, 603 to test

- 1. Hold out some data to use for validation.
- 2. Specify the model to use.
- 3. Train the model on the training set:

- 1. Hold out some data to use for validation.
- 2. Specify the model to use.
- 3. Train the model on the training set
- 4. Evaluate on training set (optional):

```
train_predictions <-
   my_trained_model %>%
    predict(ames_train) %>%
    bind_cols(ames_train) # Pu
train_predictions
```

118. One_Story_1... Resident...
297. Two_Story_1... Resident...
118. One_Story_1... Resident...
with 1 803 more rows and 7

- 1. Hold out some data to use for validation
- 2. Specify the model to use.
- 3. Train the model on the training set
- 4. Evaluate on training set (optional)
- 5. Evaluate on **test set**:

```
my_trained_model %>%
  predict(ames_test) %>%
  bind_cols(ames_test) %>%
  metrics(truth = Sale_Price, estimate = .pred)
```

What's the optimal ratio of train to test?

What's the trade-off? What happens if train is too small? If test is too small?

Many models, same interface

```
# A tibble: 3 × 3
.metric .estimator .estimate
<chr> <chr> <chr> < chr> < astandard 31.0
2 mape standard 18.0
3 rsq_trad standard 0.586
```

Types of models

- Linear models
 - ordinary least-squares (OLS)
 - Lasso, Ridge, etc.: penalize large coefficients
 - Generalized Linear Models: outputs get transformed
 - Logistic Regression (also Support Vector Machine): transform output to score for each class
- Decision Lists and Trees
 - extension: Random Forests
- Neural Networks: layered combinations of the above
- many, many more

Which variables mean what?

The formula interface:

- y ~ x
 - predict y using x. Sale_Price ~ Gr_Liv_Area
- y ~ x1 + x2 + x3
 - predict y using x1 and x2 and x3
 - Sale_Price ~ Gr_Liv_Area + Lot_Area +
 Full_Bath

Don't get confused: they "forgot" the coefficients! A fitted linear model will actually look like:

Sale_Price = c1 * Gr_Liv_Area + c2 * Lot_Area + c3 * Full_Bath + intercept