

4. ARM

Historisches

- 1978 Acorn Computers Ltd., Cambridge UK
 - Hermann Hauser, Chris Curry
- 1979, Acorn System 1, CPU 6502
- 1980, Acorn Atom, CPU 6502
- 1982, BBC Micro, CPU 6502
 - Fernsehserie "The Computer Programme"

Seitenblick: 6502

- 1975, 8-Bit Prozessor von MOS Technology, \$25
 - Intel 8080, ~\$200 (1974)
 - Z-80 (1976)
- Angelehnt an Motorola 6800, ~\$200 (1974)
- Sehr verbreitet
 - Acorn
 - Apple II
 - Comodore 64 und PET
 - Atari 8-Bit
 - Bender aus Futurama 😊

6502 als FPGA

Code:						
	flops	slices	LUTs	RAM16	HDL	Notes
A2601	138	467	840	0	vhdl	by retromaster
Syntiac	144	564	1063	0	vhdl	by Peter Wendrich
RB6502	146	1005	1942	0	vhdl	by Ruud Baltissen (work in progress)
cpu.v	155	276	474	8	verilog	by Arlet Ottens
sprow	160	667	1224	0	vhdl	by Robert Sprowson (enhanced Free6502)
T65	162	547	985	0	vhdl	by Daniel Wallner et al
bc6502	179	544	951	0	verilog	by Rob Finch
6502_tc	293	1076	1995	0	vhdl	by Jens Gutschmidt
65c02_to	317	1318	2460	0	vhdl	by Jens Gutschmidt
MyCPU	325	1612	2980	0	vhdl	by Dennis Kuschel, inspired by 6502

6502.org: (http://forum.6502.org/viewtopic.php?t=1673)

12

Historisches (2)

- 1982, 6502 wird langsam alt
- Suche nach Ersatz
 - Motorola 68000 war attraktiv, aber langsam bei Interrupts
 - Acorn ist mit keinem zufrieden
- 1983 eigener Befehlssatz entworfen
- 1985 ARM1, Acorn RISC Machine
- 1987 Acorn Archimedes, CPU ARM1

ARM Heute

... wenn es auch anders geht!

- Herausstellungsmerkmal: Geringer Stromverbrauch
- ARM verkauft Lizenzen
 - CPUs
 - GPUs (Mali)
- ARM Core License
 - AMD, Boradcom, Samsung, Huawei, IBM, Intel, TI, ...
- ARM Architectural License
 - Applied Micro, Broadcom, Huawei, Nvidia, AMD, Samsung, Apple, ...

L7

Naming

- Architekturen
 - ARMv{x}
 - Architecture Reference Manual
- Prozessoren
 - Klassisch
 - ARM{x}{labels}
 - ARM{x}{y}{z}{labels}
 - Seit 2004
 - ARM Cortex-{x}{y}
 - Technical Reference Manual

2:

Architekturen & CPU-Familien

ARCHITECTURE	FAMILY
ARMv1	ARM1
ARMv2	ARM2, ARM3
ARMv3	ARM6, ARM7
ARMv4	StrongARM, ARM7TDMI, ARM8, ARM9TDMI
ARMv5	ARM7EJ, ARM9E, ARM10E, XScale
ARMv6	ARM11
ARMv6-M	Cortex-M0, Cortex-M0+, Cortex-M1
ARMv7-A	Cortex-A5, Cortex-A7, Cortex-A8, Cortex-A9, Cortex-A12, Cortex-A15
ARMv7-R	Cortex-R4, Cortex-R5, Cortex-R7
ARMv7-M	Cortex-M3
ARMv7E-M	Cortex-M4
ARMv8-A	Cortex-A53, Cortex-A57

{x}	{y}	{z}

Х	γ	Z	DESCRIPTION	EXAMPLE
7			ARM7 core version	ARM7
9			ARM9 core version	ARM9
10			ARM10 core version	ARM10
11			ARM11 core version	ARM11
	1		Cache, write buffer and MMU	ARM710
	2		Cache, write buffer and MMU, Process ID support	ARM920
	3		Physically mapped cache and MMU	ARM1136
	4		Cache, write buffer and MPU	ARM940
	5		Cache, write buffer and MPU, error correcting memory	ARM1156
	6		No cache, write buffer	ARM966
	7		AXI bus, physically mapped cache and MMU	ARM1176
		0	Standard cache size	ARM920
		2	Reduced cache	ARM1022
		6	Tightly Coupled Memory	ARM1156
		8	As for ARM966	ARM968

23

ARM Labels

ATTRIBUTE	DESCRIPTION
D	Supports debugging via the JTAG interface. Automatic for ARMv5 and above.
E	Supports Enhanced DSP instructions. Automatic for ARMv6 and above.
F	Supports hardware floating point via the VFP coprocessor.
1	Supports hardware breakpoints and watchpoints. Automatic for ARMv5 and above.
J	Supports the Jazelle Java acceleration technology.
М	Supports long multiply instructions. Automatic for ARMv5 and above.
Т	Supports Thumb instruction set. Automatic for ARMv5 and above.
-S	This processor uses a synthesizable hardware design.

ARM Cortex

- Cortex-A (Application processor)
 - General purpose CPU
 - Support für "richtige" OS
 - Aktuelle Architektur: ARMv8-A / ARMv8.4-A
- Cortex-R (Real-time processor)
 - Minimal Interrupt-Latenz
 - Obere Schranken -> Echtzeitsysteme
 - · Meist weniger leistungsfähig als Cortex-A
 - Aktuelle Architektur: ARMv7-R
- Cortex-M (Micro-controller)
 - Ultra-low-power, small form-factor
 - Aktuelle Architektur: ARMv7E-M

21

Varianten

- Hard Macro
 - PPA (Performance, Power, Area) optimiert
- Soft Macro
 - "Synthesizable" (Sourcecode)
 - Mehr Freiheitsgrade
 - Höhere Flexibilität
 - PPA-Optimierung gegenüber Hard Macros meist schlechter

ARM Assembler

Register

- 16 General Purpose Register (r0 ... r15)
- Banking
 - r0 ... r7 immer sichtbar
 - FIQ (Fast IQ): r8 ... R14 überlagert
 - Supervisor, IRQ: r13 und r14
- r13 Stack Pointer
- r14 Link Register
 - Rücksprungadresse
- r15 PC

31

AAPCS

- ARM Architecture: Procedure Call Standard
- Argumente
 - r0 ... r3, danach Stack
- Inhalte von r4 ... r11 "bleiben" unverändert
 - Unterprogramm muß ggf. auf Stack sichern
- r12 Scratch Register (darf jeder ändern)
- Rückgabe
 - r0 (ggf. r1)

CPSR

- Current Program Status Register
- Current processor mode
- Interrupt disable flags
- Current processor state (ARM, Thumb, ...)
- Data memory endianness (for ARMv6 and later)
- Condition flags
 - N, Z, C, V (Overflow)

33

Thumb / Thumb-2

- ARM ISA
 - Volle RISC Befehlssatz
- Thumb
 - 16 Bit Format für eine Teilmenge der ARM ISA
 - Einschränkungen
 - Conditional nur bei Branches
- Thumb-2
 - Erweitert Thumb um 32 Bit Instruktionen
 - Deckt kompletten Befehlssatz ab

"Nun ja"

• Cortex-M versteht nur Thumb/Thumb-2

MO	M0+	M1	МЗ	M4	SIZE	INSTRUCTIONS
Yes	Yes	Yes	Yes	Yes	16	ADC, ADD, ADR, AND, ASR, B, BIC, BKPT, BLX, BX, CMN, CMP, CPS, EOR, LDM, LDR, LDRH, LDRBH, LDRSH, LSR, MOV, MUL, MVN, NOP, ORR, POP, PUSH, REV, REVISH, REVSH, ROP, RSB, SBC, SEV, STM, STR, STRB, STRH, SUB, SVC, SXTB, SXTH, TST, UXTB, UXTH, WFE, WR, YIELD
Yes	Yes	Yes	Yes	Yes	32	BL, DMB, DSB, ISB, MRS, MSR
No	No	No	Yes	Yes	16	CBNZ, CBZ, IT
No	No	No	Yes	Yes	32	ADC, ADD, ADR, AND, ASR, B, BFC, BFI, BIC, CDP, CLREX, CLZ, CMN, CMP, DBG, EOR, LDC, LDMA, LDMDB, LDR, LDRBT, LDRBT, LDRBD, LDREXB, LDREXH, LDRCH, LDRHT, LDRSH, LDRSHT, LDRSH, LDRT, MCR, LSI, LSR, MLS, MCRR, MLA, MOV, MOVT, MRC, MRRC, MUL, MWN, NOP, ORN, ORR, PLD, PLDW, PLI, POP, PUSH, BRIT, REV, REV16, REVSH, ROR, RRX, RSB, SBC, SBFX, SDIV, SEV, SMLAL, SMULL, SSAT, STC, STIMIA, STIMDB, STR, STRBC, STRBT, STREX, STREXB, STREXH, STRH, STRHT, STRT, SUB, SXTB, SXTH, TBB, TBH, TEQ, TST, UBFX, UDIV, UMLAL, UMULL, USAT, UXTB, UXTH, WFE WFI, VIELD
No	No	No	No	Yes	32	PKH, QADD, QADD16, QADD8, QASX, QDADD, QDSUR, QSAX, QSUB, QSUB16, QSUB8 SADD16, SADD8, SASY, SEL, SHADD16, SHADD8, SHASX, SHAX, SHSUB16, SHSUB8, SMLABE, SMLABET, SMLATT, SMLAD, SMLABE, SMLABET, SMLATT, SMLALT, SMLAD, SMLABE, SMLABET, SMLATT, SMLALT, SMLAD, SMLSHB, SMLAWT, SMLSD, SMLST, SMLATT, SMLALT, SMLUMB, SMLSHB, SMLSHAT, SMLATT, SMLUMT, SMULWB, SMUSD, SSATTA, SSAX, SMLB16, SSASH, SKTAB, SKTAB16, SKTAH, SKTB16, LADD16, LADD8, LASX LHADD16, LHADD8, LHASX, LHSUB16, USUB8, UMAAL, LQADD16, LQADD8, LOASX, LHADC16, LADD18, LQADD8, LYADS8,

2

Thumb-2 / IF ... THEN

```
CMP r0, r1; r0 == r1?

ITEET EQ; was the result EQ? Then / Else / Else / Then

MOVEQ r0, r4; If r0 == r1, execute this instruction

MOVNE r0, r5; Else execute this instruction

SUBNE r0, #1; Else execute this instruction too

BEQ label; If r0 == r1, branch
```

Big.LITTLE Big ARM Core • Minimaler Energieverbrauch • Zwei unterschiedliche schnelle aber identische Prozessoren • Kontext entscheidet, welche CPU rechnet

Instruktionsformat

<op>{cond}{flags} Rd, Rn, Operand2

- op = 3 Zeichen Mnemonic
- cond = Bedingte Ausführung
- flags
 - S: Update CPSR-Flags
- Rd = Zielregister
- Rn = Erstes Register
- Operand2 = Zweites Register oder zweiter Operand

39

Conditions

- AL Always (default)
- NV Never
- EQ Equal
- NE Not Equal
- VS Overflow Set
- VC Overflow Clear
- MI Minus
- PL Plus
- CS Carry Set
- CC Carry Clear
- HI Higher
- LS Lower or Same
- GE Greater Than or Equal
- LT Less Than
- GT Greater Than
- LE Less Than or Equal

Adressierungsarten

• Immediate: #2a

• Register: r7

• Register Indirekt: [r3] (nicht für Rd)

• mit immediate Displacement: [r3 #2]

• mit Offset in Register: [r3 r4]

• Default post-index (pre-index: !)

41

Beispielprogramm

```
MOV r1,#0

sum_loop

ADD r1,r1,r0

SUBS r0,r0,#1

BNE sum_loop

sum_rtn

MOV r0,r1

MOV pc,lr
```


