Incorporating Temporal Commonsense in a Conversational Chatbot

Project Mentor: Dr Koninika Pal

Pranav Guruprasad Rao - 112101038 Rachit Sandeep Jain - 112101019

Temporal Common Sense

What is it?

Temporal common sense refers to the ability to understand and reason about time-related aspects of events, actions, or information in a contextually meaningful way.

Example- "I am going on a vacation" and "I am going on a walk"

- Never Explicitly mentioned that vacation is for several days and walk is for few hours
- 1. Duration
- Temporal Ordering
- 3. Typical Time
- 4. Frequency
- 5. Stationarity

Never mentioned explicitly

Challenges in Understanding Temporal Common Sense

Patient - I would like to book an appointment with the doctor. Receptionist - The doctor has currently gone on a vacation.

What can the patient infer from this?

The Doctor is not available for couple of days.

- 1. Never explicitly mentioned in text (hence known as 'common sense')
- 2. Thus difficult to extract it
- 3. Thus Language models are unable to capture it
- 4. Thus they are unable to respond in that direction
- 5. Even if they do, they do so infrequently

Challenges in Understanding Temporal Common Sense

What about "How long is your vacation?"

Problem Statement

- Enhancing the context understanding for temporal common sense
- 2. Construct a temporal chatbot incorporating it
 - Develop a logical schema to leverage or approximate temporal common sense

Where can this become critical? Temporal Inferencing Planning

Dataset

TIMEDIAL

Training Dialogues	1395
Testing Dialogues	50
Training Data Size	27132
Testing Data Size	1268
Avg Rows per Dialogue	19

 Table 3.1
 Dataset Information

BIGBench Temporal Ordering

Total Dialogues	7532
Training Dialogues	5649
Validation Dialogues	753
Testing Dialogues	1130

Proposed Architecture

Binary classifier

 Given a context, identifies whether the next sentence requires temporal reasoning or not.

Dataset Preparation:

1. Each next sentence was converted into binary labels (0 or 1).

Temporal Label Generation:

- 1. spaCy
- 2. Custom rules
 - a. Temporal adverbs
 - b. Prepositions related to time
 - c. Common time markers
 - d. Auxiliary verbs

Temporal Pipeline

Event Extraction

1. Used spaCy in identifying key events or actions described in a sentence.

Example:

She has submitted the report on Monday.

Verb Phrase: has submitted report Monday

Time Extraction

- 1. spaCy
- 2. HeidelTime
- Custom rules
 - a. Temporal adverbs like when, how often
 - b. Preposition of time like during, after
 - c. Common markers like yesterday and tomorrow

Encoder based Prediction

We used a BERT-based Encoder in order to associate events with their temporal values.

Training method - MLM - Masked Language Modeling on graph nodes

Difficult to scale as the graph increases in size Increases noise in fetching data from the graph - opted for accuracy over speed

Clustering

We create clusters based on the verbs extracted.

Example of a Cluster

```
written
reading read
published
writing
write
blogging
bookblogs
wrote facebook
reads
```

Temporal Graph

Aim - Event Linking

Edge exists between two events occur consecutively or are semantically linked

Node Attributes

- 1. Event: Event name
- Temporal Range: A List of various time points and time intervals in which this event was observed in the conversations
- 3. Phrase: Different Verb Phrases related to the Event
- 4. Embeddings: Embeddings of the phrases
- 5. Average Embedding: Average embeddings of the Embeddings
- 6. Metadata: to store any additional metadata

Insertion of a new Node

When a new event arrives, 4 points to see:

- 1. If the event does not exist → Create a new GraphNode.
- 2. Update the node by adding **temporal points**, **phrases**, and **metadata**.
- 3. If the new **phrase** is **similar** to an existing node \rightarrow **merge** it.
- 4. If the phrase is **too different** \rightarrow **create a sibling node** for the same event.

Pipeline in a Nutshell

- Classify as Temporal or Non-temporal
- 2. If Temporal:
 - a. Get the verbs and phrases in the sentence
 - b. Find the clusters for the verbs
 - c. Get the nodes for each clustered verbs
 - d. Find the node most similar to the given phrase
 - e. Get at most 5 of its popular neighbors (based on their number of phrases) to cue the model
 - f. Temporal Model responds
 - 3. Else:
 - a. Non temporal responds

Training Process

- Model: Flan-T5-Base
- Data: Custom dialogue pairs (Input → Output)
- Optimizer: AdamW (Learning rate=3e-4, Weight Decay=0.01)
- Batch Size: 4 (train) / 2 (eval)
- Epochs: 10
- Dropout: 0.5
- Trainer: Huggingface Seq2SeqTrainer
- Metrics: ROUGE (train), BERTScore (eval)
- Checkpoints: Auto every epoch + manual every 5 epochs

Results

Thank You