

Heuristics

MAY FIRST TICONDEROGA SE

Sensitivity Analysis

Measure local change in estimate

$$s_f(x) = \partial_x f(x)$$

- Can be computed via back propagation
 - Easy support by DL frameworks
 - Often not so useful due to ReLU and other clipping operations (misses out on relevant changes)
 - Leads to weird results ...
- Hack (Bach et al., 2015) use grad * inp: $\Delta x \cdot \partial_x f(x)$

Toy Problem (Example)

Toy Problem (Example)

Fixing It (DeepLIFT)

Key heuristic - replace derivatives with finite differences

$$\partial_i f(x) \cdot \Delta x_i \Longrightarrow \frac{f(x' + \Delta x_i) - f(x')}{\Delta x_i} \cdot \Delta x_i$$

- Sundarajan & Najmi, 2019 design a lot of special rules for
 - ReLU (decompose into positive and negative changes)
 - Activation functions in general (use finite differences)
 - Linear operations (use as is)
 - Can use backprop to compute score

Difference Decomposition

$$\sum_{i} C_{\Delta x_{i}, \Delta f} = \Delta f$$

Gradient Approximation

$$m_{\Delta x_i, \Delta f} = \frac{C_{\Delta x_i, \Delta f}}{\Delta f}$$

Chain Rule across Layers

Use backprop

$$m_{\Delta x_i, \Delta f} = \sum_{j} m_{\Delta x_i, \Delta y_j} m_{\Delta y_j, \Delta f}$$

Lots more

- Guided backprop
- KernelSHAP
- Applications to text & images
 - Need to identify larger components
 - No longer possible to combine parts at random. What is the reference text x_0 ?
- Causality
 What we really want is to explain why.

References

- Sundararajan & Najmi, 2020
 The Many Shapley Values for Model Explanation https://arxiv.org/pdf/1908.08474.pdf
- Ribeiro, Singh & Guestrin, 2016
 "Why Should I Trust You?": Explaining the Predictions of Any Classifier https://arxiv.org/abs/1602.04938 (LIME)
- Lundberg & Lee, 2017
 A Unified Approach to Interpreting Model Predictions https://arxiv.org/abs/1705.07874 (SHAP)
- Janzing, Minorics, Bloebaum, 2020
 Feature relevance quantification in explainable AI: A causal problem https://arxiv.org/abs/1910.13413
- Shrikumar, Greenside, Kundaje, 2019
 Learning Important Features Through Propagating Activation Differences https://arxiv.org/pdf/1704.02685.pdf
- Kevin Leyton Brown's Shapley Lecture (caution typos!)
 https://www.cs.ubc.ca/~kevinlb/teaching/cs532l%20-%202007-8/lectures/lect23.pdf

Summary

- Explainability
- Options
 - Simplicity
 - Approximate Simplicity
 - Local Simplicity
- Conditioning and Backdoors
- Axiomatic Approaches
 - SHAP
 - Integrated Gradient
- Heuristics