Lecture 5

Survival analysis

Let T be a non-negative random variable that represents the time to event (for example, T might be unemployment time, or time from a treatment to death of a patient, or time from production to failure of a device, etc.). Denote $F(t) = P(T \le t)$ the c.d.f. of T and assume that F has a p.d.f. f. A central concept of the survival analysis is the hazard function

$$h(t) = \lim_{td\to 0} \frac{P(t \le T \le t + td | T \ge t)}{td}$$
$$= \lim_{td\to 0} \frac{1}{td} \frac{P(t \le T \le t + td)}{P(T \ge t)}$$
$$= \frac{f(t)}{1 - F(t)},$$

That is, h(t) is the instantaneous rate of failure at a time T=t under the condition of survival to the time t (loosely speaking, h(t) is the probability density of failure at time t, given survival to then). If T is a discrete random variable, $h(t) = P(T=t|T>t) = P(T=t)/\{1-F(t)\}$. Function

$$S(t) = P(T > t) = 1 - F(t)$$

is called survivor function of T. Next, define the cumulative hazard function by

$$H(t) = \int_0^t h(s)ds = \int_0^t \frac{f(s)}{1 - F(s)}ds = \int_0^t \frac{F'(s)}{1 - F(s)}ds = -\log\{S(t)\}.$$

Thus the survivor function may be written as $S(t) = \exp\{-H(t)\}$ and $f(t) = h(t)S(t) = h(t)\exp\{-H(t)\}$.

Examples

- 1. Exponential distribution: $h(t) = \lambda$ and $S(t) = \exp(-\lambda t)$
- 2. Weibull distribution: $h(t) = \alpha \lambda^{\alpha} t^{\alpha-1}$ and $S(t) = \exp\{-(\lambda t)^{\alpha}\}$
- 3. Log-logistic distribution: $h(t) = \alpha \lambda^{\alpha} t^{\alpha-1} \{1 + (\lambda t)^{\alpha}\}^{-1}$ and $S(t) = \{1 + (\lambda t)^{\alpha}\}^{-1}$

Ideally, we would have independent realisations of $T: t_1, \ldots, t_n$. However, in practice the failure time can not always be observed due to various reasons. This phenomenon is called *censoring*. The simplest form of censoring occurs when T is observed until

some pre-determined time c. If T < c, we observe the value t_i of T, if T > c, we only know that T survived beyond c. This is called $Type\ I$ censoring. $Type\ II$ censoring arises when n independent variables are observed until there have been r failures, so only $0 < T_{(1)} < \ldots < T_{(r)}$ are observed. This type of censoring has an open-ended random trial time and is therefore impractical and is rarely used. Under random censoring the jth subject in the study has a random censoring time C_j drawn from some distribution G, independent of T_j . These are all examples of right-censoring. Left-censoring (the time of origin is not known) is less common.

Hence, under censoring one rather deals with $Y_j = \min\{T_j, C_j\}$, while it is known if $Y_j = T_j$. That is, a pair (y_j, δ_j) is observed, where $\delta_j = 1$ if y_j is the survival time and $\delta_j = 0$, if y_j is the censoring time. Note that the assumption of independence of T and C is crucial.

Now assume that T has a continuous distribution F and there are n data points available $(y_1, \delta_1), \ldots, (y_n, \delta_n)$, where $y_i = \min\{t_i, c_i\}$. Assume that $F(x) = F(x; \theta)$ is a some parametric distribution and that censoring variables C_i (independent on T_i) have c.d.f. G and p.d.f. g, which are independent on θ . Hence, the likelihood contribution from y_i is

$$\begin{cases} f(y_i; \theta) \{1 - G(y_i)\}, & \text{if } \delta_i = 1\\ S(y_i; \theta) g(y_i), & \text{if } \delta_i = 0. \end{cases}$$

Since G and q are independent on θ , the likelihood becomes

$$\mathcal{L}(\theta) = \prod_{i=1}^{n} f(y_i; \theta)^{\delta_i} S(y_i; \theta)^{1-\delta_i},$$

while log-likelihood is

$$\ell(\theta) = \sum_{i=1}^{n} [\delta_i \log\{f(y_i; \theta)\} + (1 - \delta_i) \log\{S(y_i; \theta)\}].$$

This includes Type I censoring, for which G puts all its probability at c. Note that we can represent the log-likelihood as

$$\ell(\theta) = \sum_{i=1}^{n} [\delta_i \log\{h(y_i; \theta)\} - H(y_i; \theta)].$$

For exponential distribution $h(t; \lambda) = \lambda$ and $H(t; \lambda) = \lambda t$, so that the log-likelihood becomes

$$\ell(\lambda) = \sum_{i=1}^{n} \{\delta_i \log(\lambda) - \lambda y_i\} = \log(\lambda) \sum_{i=1}^{n} \delta_i - \lambda \sum_{i=1}^{n} y_i,$$

implying

$$\hat{\lambda}_{ML} = \frac{\sum_{i=1}^{n} \delta_i}{\sum_{i=1}^{n} y_i}.$$

In particular, if all observations are censored (=no failures), the estimator is zero. To calculate the (asymptotic) variance of a maximum likelihood estimator, we would need to calculate the Fisher Information $E\{J(\lambda)\}$, where $J(\lambda) = -\partial^2 \ell(\lambda)/\partial \lambda^2$ is the observed information. However, this is not possible without some assumption on G. In practice one approximates $\widehat{\text{var}}(\hat{\lambda}) = J(\hat{\lambda})^{-1} = \hat{\lambda}^2/\sum_{i=1}^n \delta_i$. In particular, this can be used to build an approximate confidence interval for λ (using asymptotic normality of maximum likelihood estimators) as

$$\left[\hat{\lambda}(1-z_{\alpha/2}/\sqrt{r}), \hat{\lambda}(1+z_{\alpha/2}/\sqrt{r})\right], \quad r=\sum_{i=1}^n \delta_i.$$

The assumption of a constant hazard function is often unrealistic (for example, the instantaneous failure rate (hazard) of a technical device usually grows with the time from being put into service). A commonly used parametric distribution for modelling lifetimes with monotone hazard is the Weibull distribution. Values for λ and α can be estimated by the maximum likelihood similarly to the exponential distribution, however, this has to be done numerically.

Kaplan-Meier and Fleming-Harrington estimator

Often it is unclear which parametric model would be appropriate for the data (if any). A standard tool for initial data inspection, for suggesting plausible models and for checking their fit is a nonparametric estimator of the survivor function. If there were no censored observations, then we could estimate $\hat{S}(t) = n^{-1} \sum_{i=1}^{n} \mathbb{I}(T_i > t)$. For censored observations we have the likelihood

$$\mathcal{L}(S) = \prod_{i=1}^{n} f(y_i)^{\delta_i} S(y_i)^{1-\delta_i}.$$

Let $0 \le \tau_1 < \tau_2 < \dots$ be the ordered uncensored failure times. Let r_i denote the number of units that are still in risk at τ_i (=not failed yet or censored) and d_i the number of units that fail at τ_i . It can be shown that the function \mathcal{L} is maximized by the piecewise constant function \hat{S}_{KM} defined by

$$\hat{S}_{KM}(t) = \prod_{\{j: \tau_j < t\}} \left(1 - \frac{d_j}{r_j} \right).$$

This is the Kaplan-Meier estimator for the survivor function S.

A further estimator for S is the *Fleming-Harrington* estimator \hat{S}_{FH} . It is a plug in estimator defined by $\hat{S}_{FH} = \exp\{-\hat{H}(t)\}$, where \hat{H} is the *Nelson-Aalen* estimator for H.

It is defined by

$$\hat{H}(t) = \sum_{\{j: \tau_j < t\}} \frac{d_j}{r_j}.$$

Observe that

$$\hat{S}_{\text{FH}} = \exp\{-\hat{H}(t)\} = \prod_{\{j: \tau_i < t\}} \exp\left(-\frac{d_j}{r_j}\right).$$

Since $1 - x \approx \exp(-x)$ for small x, the estimators \hat{S}_{FH} and \hat{S}_{KM} are quite similar, if many items are still at risk.

We next aim for computing **confidence bands** for the true survivor function S. To this end, assume that \hat{S} is an estimator for S (e.g. the Kaplan-Meier or the Fleming-Harrington estimator) and let $\widehat{\text{var}}(\log \hat{S})$ be some estimate for the variance of $\log \hat{S}$. Then, by the delta-method, it follows that $\operatorname{var}\{\hat{S}(t)\}\approx \hat{S}^2\widehat{\text{var}}(\log \hat{S})$ and hence an approximate confidence band can be constructed by

$$\left[\hat{S}(t) - z_{\alpha/2}\hat{S}(t)\sqrt{\widehat{\operatorname{var}}\{\log \hat{S}(t)\}}, \hat{S}(t) + z_{\alpha/2}\hat{S}(t)\sqrt{\widehat{\operatorname{var}}\{\log \hat{S}(t)\}}\right].$$

The main problem with this is the fact that the upper and lower bounds may be larger than 1 and smaller than 0, respectively. As a way out, one considers confidence bands for the statistic $\log\{-\log(\hat{S})\}$ (that has the range \mathbb{R}) and obtains again by the delta-method that

$$\operatorname{var}[\log\{-\log \hat{S}(t)\}] \approx \frac{1}{\log^2 \hat{S}(t)} \widehat{\operatorname{var}}(\log \hat{S}).$$

Setting $B^{\pm} = \log(-\log \hat{S}(t)) \pm z_{\alpha/2} \log^{-1} \hat{S}(t) \sqrt{\widehat{\text{var}}(\log \hat{S})}$ an approximate confidence band (contained in [0, 1]) is given by

$$\left[\exp(-\exp(B^-), \exp(-\exp(B^+))\right].$$

As an example we obtain for the Kaplan-Meier estimator by Greenwood's formula

$$\widehat{\text{var}}\{\log \widehat{S}_{\text{KM}}(t)\} \approx \sum_{\{j: \tau_j < t\}} \frac{d_j}{r_j(r_j - d_j)}.$$

Often we wish to decide whether or not two (or more) samples stem from the same survivor function or not. The **log-rank test** is such a simple test procedure. We will now assume that the failure times $\tau_1 < \tau_2 < \cdots < \tau_k$ are realizations of two random variables T_1 and T_2 corresponding to two groups of items (patients). For each observed failure time τ_j we consider the contingency table

Groups	failure at time τ_j	items at risk at time τ_j
1	d_{1j}	r_{1j}
2	d_{2j}	r_{2j}
1+2	d_j	r_j

Under the null-hypothesis that $T_1 = T_2$ the expected number of failures at time τ_j in group 1 and 2 are hypergeometrically distributed with parameters r_j, r_{1j}, d_j and r_j, r_{2j}, d_j , respectively. Thus, mean and variance of the number of failures in group 1 and 2 can be computed as

$$e_{1j} = \frac{d_j}{r_j} r_{1j}$$
 and $e_{2j} = \frac{d_j}{r_j} r_{2j}$,

and

$$v_{1j} = v_{2j} = \frac{d_j r_{1j} r_{2j} (r_j - d_j)}{r_j^2 (r_j - 1)}.$$

Under the null-hypothesis, the statistic

$$\chi^2 = \frac{\left[\sum_{j=1}^k (d_{1j} - e_{1j})\right]^2}{\sum_{j=1}^k v_{1j}}$$

is χ^2 -distributed with 1 degree of freedom.

An important question in practice is: Is the assumption of a Weibull distributed survivor time justified? An indication to the answer of this question can be obtained as follows: Observe that under the assumption that T is Weibull distributed one has

$$\log\{-\log S(t)\} = \alpha(\log t + \log \lambda), \quad t > 0.$$

Now let $\hat{S}(t)$ be a nonparametric estimate for S (e.g. the Kaplan-Meier estimator \hat{S}_{KM}). Then the plot $\log\{-\log \hat{S}(t)\}$ against $\log t$ should approximately be a straight line with slope α and intercept $-\log \lambda$.