

1 CLAIMS

2

3 We claim:

4 A polyisocyanate composition comprising:

5

6 (1) a polyisocyanate; and

7

8 (2) a monomeric carbodiimide in amount effective in improving the humidity
9 resistance of the polyisocyanate.

10

11 2. The polyisocyanate composition of claim 1 wherein the polyisocyanate is
12 polymeric diphenylmethylen diisocyanate.

13

14 3. The polyisocyanate composition of claim 2 wherein the monomeric carbodiimide is
15 selected from the group consisting of N, N'-dicyclohexyl carbodiimide, N,N'-
16 diisopropyl carbodiimide, N,N'-ditert-butyl carbodiimide, N,N'-di-p-tolyl
17 carbodiimide, and mixtures thereof.

18

19 4. The foundry binder system of claim 3 wherein the amount of monomeric
20 carbodiimide is from 0.1 weight percent to 5.0 weight percent, based upon the
21 weight percent of the isocyanate component.

22

23 5. A foundry binder system comprising:

24

25 A. a phenolic resin component; and

26

27 B. a polyisocyanate component comprising:

28

29 (1) an organic polyisocyanate;

- 1
- 2 (2) a non reactive organic solvent; and
- 3
- 4 (3) a monomeric carbodiimide in amount effective in improving the
- 5 humidity resistance of the polyisocyanate.
- 6
- 7 6. The foundry binder system claim 5 wherein the phenolic resin component comprises a
- 8 (a) a polybenzylic ether phenolic resin prepared by reacting an aldehyde with a phenol
- 9 such that the molar ratio of aldehyde to phenol is from 1.1:1 to 3:1 in the presence of a
- 10 divalent metal catalyst, and (b) a solvent in which the resole resin is soluble.
- 11
- 12 7. The foundry binder system of claim 6 wherein the phenol is selected from the group
- 13 consisting of phenol, o-cresol, p-cresol, substituted phenols, and mixtures thereof.
- 14
- 15 8. The foundry binder system of claim 7 wherein the aldehyde is formaldehyde.
- 16
- 17 9. The foundry binder system of claim 8 wherein the ratio of hydroxyl groups of the
- 18 polybenzylic ether phenolic resin to the polyisocyanate groups of the polyisocyanate
- 19 hardener is from 0.80:1.2 to 1.2:0.80.
- 20
- 21 10. The foundry binder system of claim 5 where the monomeric carbodiimide is
- 22 selected from the group consisting of N, N'-dicyclohexyl carbodiimide, N,N'-
- 23 diisopropyl carbodiimide, N,N'-ditert-butyl carbodiimide, N,N'-di-p-tolyl
- 24 carbodiimide, and mixtures thereof.
- 25

1 11. The foundry binder system of claim 10 wherein the amount of monomeric
2 carbodiimide is from 0.1 weight percent to 5.0 weight percent, based upon the
3 weight of the isocyanate component.

4

5 12. A foundry mix comprising:

6

7 A. a major amount of an aggregate; and

8

9 B. an effective bonding amount of the binder system of claims 5, 6, 7, 8, 9, 10, or
10 11.

11

12 13. A process for preparing a foundry shape which comprises:

13

14 (a) forming a foundry mix as set forth in claim 12;

15

16 (b) forming a foundry shape by introducing the foundry mix obtained from step
17 (a) into a pattern;

18

19 (c) contacting the shaped foundry binder system with a tertiary amine catalyst;
20 and

21 (d) removing the foundry shape of step (c) from the pattern.

22

23 14. The process of claim 13 wherein the tertiary amine catalyst is a gaseous tertiary
24 amine catalyst.

25

1 15. The process of claim 14 wherein the amount of said binder composition is about
2 0.6 percent to about 5.0 percent based upon the weight of the aggregate.

3

4 16. The process of claim 15 wherein the tertiary amine catalyst is a liquid tertiary
5 amine catalyst.

6

7 17. The process of casting a metal which comprises:

8

9 (a) preparing a foundry shape in accordance with claim 16;

10

11 (b) pouring said metal while in the liquid state into and a round said
12 shape;

13

14 (c) allowing said metal to cool and solidify; and

15

16 (d) then separating the molded article.

17