Phys 2112, Spring 2011 Problem Set #5

- 1. a) The moon Ganymede of Jupiter orbits at a mean distance of 1.070×10^6 km (from Jupiter's center); its period of motion is 7.15 days. From this, find the mass of Jupiter.
- **b)** From the fact that Jupiter has a radius of 7.15×10^4 km, find the mean density of Jupiter. Density of a spherical body is given by

$$\rho = \frac{M}{V}$$
 where $V = \frac{4}{3}\pi R^3$

Express the answer in units of $\frac{g}{cm^3}$ so that one compare with the density of water.

- 2. a) The moon Titan of Saturn orbits at a mean distance of 1.222×10^6 km (from Saturn's center); its period of orbit is 15.95 days. From this, find the mass of Saturn.
- b) From the fact that Saturn has a radius of 6.0×10^4 km, find the mean density of Saturn.
- 3. a) The moon Triton of Neptune orbits at a mean distance of 3.55×10^5 km (from Neptune's center); its period of orbit is 5.88 days. From this, find the mass of Neptune.
- **b)** From the fact that Neptune has a radius of 2.48×10^4 km, find the mean density of Neptune.
- **4.** Find the value of g on the surfaces of the following celestial objects:

Celestial Body	Mass, kg	Radius, km
Earth's Moon	7.35×10^{22}	1738
Mercury	3.30×10^{23}	2439
Mars	6.42×10^{23}	3397
Venus	4.87×10^{24}	6052
Ganymede	1.49×10^{23}	2631
Titan	1.34×10^{23}	2575
White Dwarf	2.00×10^{30}	5740

5. Find the escape speeds for objects shot from the surfaces of the celestial bodies in the above table.

$$F = G \frac{m_1 m_2}{r^2}$$
 where $G = 6.67 \times 10^{-11} \frac{\text{N} \cdot \text{m}^2}{\text{kg}^2}$ $F_c = \frac{mv^2}{r}$ $a^3 = \frac{GM}{4\pi^2} T^2$