Geometría Básica Capítulo III: Isometrías del plano

Jackie Harjani y Belén López.

UNED, C.A. Las Palmas

Marzo 2011

ENUNCIADO

Ejercicio 3.7

Sea $\tau \in \mathrm{Isom}(\mathbf{P})$ una traslación y $\rho \in \mathcal{R}_C(\mathbf{P}) \backslash \{\mathrm{id}_{\mathbf{P}}\}$ una rotación de centro C.

- A. Probar que $\tau \rho = \rho_1$ y $\rho \tau = \rho_2$ son rotaciones.
- B. Sea C, el punto fijo de ρ , y $P \in \mathbf{P} \setminus C$. Suponemos conocidos $\tau(C)$ y $\tau \rho(P)$. Construir C' el punto fijo de $\tau \rho$.

Solución

A. Sea c una recta invariante por τ . Tomemos la recta r paralela a c que pasa por C, que también es invariante por τ . Sea a la recta ortogonal a r que pasa por C. Sabemos por el Teorema 3.9 y el ejercicio 3.1 que la rotación ρ y la traslación τ se pueden poner como $\rho = \sigma_b \sigma_a$ y $\tau = \sigma_a \sigma_d$, de donde obtenemos:

$$\rho\tau = \sigma_b\sigma_a\sigma_a\sigma_d = \sigma_b\sigma_d$$

Para demostrar que es una rotación, sólo nos queda por ver que las rectas b y d se cortan. Si así fuese, la intersección de ambas rectas sería un punto fijo de $\rho \tau$; su centro de rotación.

Razonaremos por reducción al absurdo. Supongamos que $b \cap d = \emptyset$, entonces las rectas b y d serían paralelas, y como a es paralela a d, deduciríamos que a y b son paralelas. Pero ambas rectas pasan por C con lo que a=b y de aquí:

$$\rho = \sigma_b \sigma_a = \sigma_b \sigma_b = \mathrm{id}_{\mathbf{P}},$$

llegando a una contradicción, pues una rotación únicamente tiene un punto fijo.

Análogamente se probaría para $\rho = \sigma_a \sigma_{b'}, \tau = \sigma_{d'} \sigma_a$ y $\tau \rho = \sigma_{b'} \sigma_{d'}$.

Solución apartado B.

Sea C, el punto fijo de ρ , y $P \in \mathbf{P} \backslash C$. Suponemos conocidos $\tau(C)$ y $\tau \rho(P)$. Construir C' el punto fijo de $\tau \rho$.

En la figura aparecen los datos de este apartado. Hemos elegido una rotación ρ de 45°.

La idea fundamental para resolverlo es darse cuenta de que en toda rotación la distancia de cualquier punto al centro se mantiene tras rotarlo. Es decir, si X es un punto del plano y $g \in \mathcal{R}_C(\mathbf{P})$ se cumple d(X,C)=d(g(X),C).

Aplicándolo a nuestro ejercicio

$$d(P,C') = d(\tau \rho(P),C')$$

$$d(C,C') = d(\tau \rho(C),C') = d(\tau(C),C')$$

Por este motivo, C' estará en la mediatriz del segmento $[P,\tau\rho(P)]$ y en la mediatriz de $[C,\tau\rho(C)]=[C,\tau(C)]$. Luego el punto de corte de estas mediatrices C' será el centro de la rotación $\tau\rho$.

