VE320 Homework 5

Due Oct. 30, 11:40am

1.

Consider a silicon n⁺p junction diode. The critical electric field for breakdown in silicon is approximately $E_{crit} = 4 \times 10^5$ V/cm. Determine the maximum p-type doping concentration such that the breakdown voltage is (a) 40 V and (b) 20 V.

2.

A silicon p⁺n junction has doping concentrations of N_a = 2 x 10¹⁷ cm⁻³ and N_d = 2 x 10¹⁵ cm⁻³. The cross-sectional area is 10⁻⁵ cm². Calculate (a) V_{bi} and (b) the junction capacitance at reverse bias V_R (i) V_R = 1V, (ii) V_R = 3V, and (iii) V_R =5 V. (c) plot 1/C² versus V_R and identify how the slope and intercept at the voltage axis are related to N_d and V_{bi} , repectively.

3.

A one-sided p⁺n silicon diode has doping concentrations of $N_a = 5 \times 10^{17}$ cm⁻³ and $N_d = 8 \times 10^{15}$ cm⁻³. The minority carrier lifetimes are $\tau_{n0} = 10^{-7}$ s and $\tau_{p0} = 8 \times 10^{-8}$ s. The cross-sectional area is $A = 2 \times 10^{-4}$ cm². Calculate the (a) reverse-biased saturation current, and (b) the forward-bias current at (i) $V_a = 0.45$ V, (ii) $V_a = 0.55$ V, and (iii) $V_a = 0.65$ V.

In the following problems, if not stated,

For silicon pn junctions: $Dn=25cm^2/s$, $Dp=10 \ cm^2/s$, $\tau n0=5\times 10^{-7} \ s$, $\tau p0=10^{-7} \ s$. For GaAs pn junctions: $Dn=205 \ cm^2/s$, $Dp=9.8 \ cm^2/s$, $\tau n0=5\times 10^{-8} \ s$, $\tau p0=10^{-8} \ s$.

4

Consider an ideal silicon pn junction diode.

- (a) What must be the ratio of N_d/N_a so that 90% of the current in the depletion region is due to the flow of electrons?
- (b) Repeat part (a) if 80% of the current in the depletion region is due to the flow of holes?

5.

An ideal silicon pn junction at T=300K is under zero bias. The minority carrier lifetimes are $\tau_{n0}=10^{-6}s$, and $\tau_{p0}=10^{-7}s$. The doping concentration in the n region is $N_d=10^{16}cm^{-3}$.

Plot the ratio of hole current to the total current crossing the space charge region as the p region doping concentration varies over the range $10^{15} \le N_a \le 10^{18} cm^{-3}$. (Use a log scale for the doping concentrations.)

6.

Consider a silicon pn junction diode with an applied reverse-biased voltage of $V_R = 5V$. The doping concentrations are $N_d = N_a = 4 \times 10^{16} cm^{-3}$ and the cross-sectional area is $A = 10^{-4} cm^2$. Assume minority carrier lifetimes of $\tau_0 = \tau_{n0} = \tau_{p0} = 10^{-7} s$. Calculate

- (a) the ideal reverse-saturation current,
- (b) the reverse-biased generation current,
- (c) the ratio of the generation current to ideal saturation current.

7.

Consider a GaAs pn junction diode with a cross-sectional area of $A=2\times 10^{-4}cm^2$ and doping concentrations of $N_d=N_a=7\times 10^{16}cm^{-3}$. The electron and hole mobility values are $\mu_n=5500cm^2/V-s$ and $\mu_p=220cm^2/V-s$, respectively, and the lifetime values are $\tau_0=\tau_{n0}=\tau_{p0}=2\times 10^{-8}s$.

Calculate the ideal diode current at a

- (a) reverse-biased voltage of $V_R = 3V$
- (b) forward-bias voltage of $V_a = 0.6V$
- (c) forward-bias voltage of $V_a = 0.8V$
- (d) forward-bias voltage of $V_a = 1V$

8.

Consider a GaAs pn diode at T=300K with $N_d=N_a=10^{17}cm^{-3}$ and with a cross-sectional area of $A=5\times 10^{-3}cm^2$. The minority carrier mobilities are $\mu_n=3500cm^2/V-s$ and $\mu_p=220cm^2/V-s$. The electron-hole lifetimes are $\tau_0=\tau_{n0}=\tau_{p0}=10^{-8}s$.

Plot the diode forward-bias current include including recombination current between diode voltages of $0.1 \le V_D \le 1V$. Compare this plot to that for an ideal diode.