在管的 非惯性系下. 等势而与水十而失角 θ , $tam \theta = \frac{a}{g}$ 数 由几何关系 h = 0 $tan \theta = \frac{a}{g}$

7-10 取包含A.B的流管. 忽略 A.B扁产差 $\frac{1}{2} (v_A^2 + P_A = \frac{1}{2} (v_B^2 + P_B)$ 其中 $P_B = P_A$

由连续性,流量 Q = SA·VA = Sa·Ve

A处吸起h水柱 Po-PA= pgh

由述名式得 $h = \frac{Q^2}{2q} \left(\frac{1}{S^2} - \frac{1}{S^2} \right)$

侍保流量。 Q = 4πd²·V = 4πd²√2gH

(2) 取喷嘴流管 12 (V)+ P = 12 (V)+ (gh + fo

连续化 Q = $\frac{1}{4}\pi D^2 \cdot v_o \rightarrow v_o = \frac{d^2}{D^2} \sqrt{2gH}$

由上述名式得 ha= he

 $\Theta = \frac{dV}{dt} = -\frac{\pi R^2}{h^2} \chi^2 \frac{dx}{dt}$

 $\dot{\mathbf{w}} \quad \dot{\mathbf{t}} = -\frac{\pi R^2}{S h^2} \frac{1}{\sqrt{2g}} \int_{1}^{\frac{h}{2}} \chi^{\frac{3}{2}} dx = \frac{\pi R^2}{20 S} \sqrt{\frac{h}{g}} (4/2-1)$

7-19 ω 取小段.由海肃叶公代 $Q = \frac{\pi R^4 dP}{8n dl}$ 其中 dP = eg dl

故
$$\eta = \frac{\pi \rho g R^4}{8Q}$$

い 管軸外: $\nu_o = \frac{R^2 dP}{4\eta dt} = \frac{2Q}{\pi R^2}$

7-20 斯代克斯公式 f = 6πη r Vr

線点
$$f = \rho g \frac{4}{3} \pi r^3$$

故
$$V_r = \frac{2 \ell q \, r^2}{9 \eta} = 1.425 \times 10^{-2} \, m/s$$

考虑等温状态下压强的被尔兹曼合布
$$\frac{P}{P}$$
 = Const = $\frac{P}{P}$

終分
$$P = P_1 e^{\frac{\rho_0 \omega^2 \pi^2}{2P_0}}$$
 其中 P_1 为 $\pi = 0$ 執 紛 压 強
$$P = P_1 e^{\frac{\rho_0 \omega^2 \pi^2}{2P_0}}$$
 P_1 为 $\pi = 0$ 執 紛 覧 度

$$b = b' \delta \frac{5b^0}{\delta m_i a_i}$$

1/3-14, EFF
$$m = \rho_0 SL = \int_{-L}^{L} \rho S dx = \rho_1 S \int_{-L}^{L} e^{\frac{\rho_0 w^2 \pi^2}{2\rho_0}} dx$$

$$\Rightarrow \qquad \rho_1 = \rho_0 \cdot \frac{L}{\int_{\Gamma}^{L} \frac{\rho_0 w_x^2}{\rho_0 w_x^2} dx} \qquad , \qquad \rho_1 = \rho_0 \cdot \frac{L}{\int_{\Gamma}^{L} \frac{\rho_0 w_x^2}{\rho_0 w_x^2} dx}$$

$$\omega \, 4R \, \text{tr} \, , \, \, \frac{\rho_0 \, \omega^2 \pi^2}{2 \rho_0} \ll 1 \, \, , \, \, \, \frac{\text{things}}{\sigma} \, \omega \, \frac{\rho_0 \, \omega^2 \pi^2}{2 \rho_0} \, \, \, \text{d} \, \pi \, \stackrel{.}{=} \, \, \int\limits_0^L \left(1 + \frac{\rho_0 \, \omega^2 \, \pi^2}{2 \rho_0} \, \right) \, \, \text{d} \, \pi \, = \, L \, \left(1 + \frac{\rho_0 \, \omega^2 \, L^2}{6 \, \rho_0} \, \right)$$

$$P_{1} \stackrel{\checkmark}{=} P_{0} \stackrel{\checkmark}{=} \frac{1}{1 + \frac{\rho_{0} \omega^{2} L^{2}}{6 \rho_{0}}} \stackrel{\grave{=}}{=} \rho_{0} - \frac{1}{6} \rho_{0} \omega^{2} L^{2}$$

$$h = \frac{\rho_0 \omega^2 L^2}{6\rho g}$$