Sistemas de Computação

Sistemas de numeração

Sistemas de numeração

 Permitem a escrita de números utilizando dígitos ou símbolos de forma consistente

- Define o contexto que permite interpretar o valor de uma dada combinação de símbolos
 - O número 11 pode ser interpretado como '3' em binário, 'onze' em decimal, '9' em octal, etc.

Base

- Número de dígitos (únicos) utilizados por um sistema de numeração para representar números
 - Base 10 utiliza 10 dígitos (0 ... 9) (decimal)
 - Base 2 utiliza 2 dígitos (0, 1) (binário)
 - Base 8 utiliza 8 dígitos (0 ... 7) (octal)
- Um número, numa dada base, só pode ser representado pelos dígitos/símbolos dessa base
 - 3₂ ou 9₈ não existem porque 3 e 9 não pertencem às respectivas bases

Base (cont.)

 O valor de um número é sempre calculado da mesma forma

$$-d_1 \times b^{n-1} + d_2 \times b^{n-2} + ... + d_n \times b^0$$

- **d**₁ ... **d**_n são a sequência de símbolos do número
- **b** a base em que o número está expresso
- Ex: 237_8 tem o valor de $2 \times 8^2 + 3 \times 8^1 + 7 \times 8^0$
- Um mesmo valor pode ter representações diferentes conforme a base utilizada
 - Mas o seu valor é sempre o mesmo

Mudança de base

•
$$98_{10} = ????_8 \rightarrow 98_{10} = d_1x8^2 + d_2x8^1 + d_3x8^0$$

•
$$98_{10} = 142_{8}$$

- Divisão do número, em base decimal, pela nova base
 98 8
- Divisão sucessiva dos quocientes pela nova base, enquanto este for divisível

 O número na nova base é a concatenação do último quociente com os restos anteriores

Mais exemplos:

```
-98_{10} \rightarrow ???????_{2}
         98|2
           0 49 2
                 1 24 2
0 12 2
-98_{10} \rightarrow 1100010_{2}
-1100010_2 = 1x2^6 + 1x2^5 + 1x2^{1} = 98_{10}
```

- Alternativamente podemos utilizar potências
 - Tal como em decimal

•
$$1280_{10} = 1 \times 10^3 + 2 \times 10^2 + 8 \times 10^1 + 0 \times 10^0$$

• Ex: $620_{10} \rightarrow ????_{16}$

$$4096$$
 256 16 1 $2x16^3 + 2x16^2 + 2x16^1 + 2x16^0$

• Ex: $620_{10} \rightarrow ????_{16}$ $\frac{4096}{200}$ $\frac{256}{200}$ $\frac{16}{200}$ $\frac{1}{200}$ $\frac{1}{200}$ $620 < 1 \times 16^3 \rightarrow 0 \times 16^3 + \dots$ $620 < 3 \times 16^2 \rightarrow 0 \times 16^3 + 2 \times 16^2 + \dots$ $620-(2x256)=108 < 7x16^{1} \rightarrow 0x16^{3}+2x16^{2}+6x16^{1}+...$ $108-(6x16)=12 < 13 \times 16^{0} \rightarrow 0x16^{3}+2x16^{2}+6x16^{1}+12x16^{0}$

•
$$620_{10} = 26C_{16}$$

Aritmética

- As operações aritméticas são sempre iguais independentemente da base usada
 - Algoritmo e resultado
- Apenas a representação do número varia com a base
- Ex:

$$-2_{10} + 2_{10} = 4_{10}$$
$$-10_2 + 10_2 = 100_2 \rightarrow 4_{10}$$

Aritmética

•
$$100_2 + 110_2 = ?????_2$$
 (vai um) $100_2 + 110_2$
• $110_2 \times 111_2 = ??????_2$ $111_2 \times 111_2 \times 110_2$
 $\times 110_2 \times 111_2 \times 110_2$ (vai um) $110_2 \times 110_2$
 $\times 110_2 \times 110_2$ $\times 110_2 \times 110_2$ $\times 110_2$

Números fraccionários

- Compostos por
 - parte inteira . parte fraccionária
- $0.75 = 0 \times 10^{0} + 7 \times 10^{-1} + 5 \times 10^{-2}$

Em decimal

...
$$10^4 \ 10^3 \ 10^2 \ 10^1 \ 10^0$$
 . $10^{-1} \ 10^{-2} \ 10^{-3}$...

Números fraccionários (Cont.)

• Em binário

$$\dots 2^4 2^3 2^2 2^1 2^0 \cdot 2^{-1} 2^{-2} 2^{-3} 2^{-4} \dots$$

• Ex:

$$0.5_{10} = 1/2 = 2^{-1}$$

$$0.5_{10} \rightarrow 0.1_{2}$$

•
$$0.1_2 \rightarrow 1 \times 2^{-1} = 1/2 = 0.5_{10}$$

Conversão números fraccionários

 $0.5 \times 2 = 1.0$

•
$$0.625_{10} = ?????_2$$
 $\frac{x}{1.25}$
• $0.625_{10} = 101_2$ $\frac{x}{0.5}$
• $0.8125_{10} = ????_2$ $0.8125 \times 2 = 1.625$
• $0.8125_{10} = 1101_2$ $0.8125 \times 2 = 1.25$
• $0.8125_{10} = 1101_2$ $0.5 \times 2 = 1.0$

Conversão números fraccionários

Atenção, em binário também podem existir dizimas infinitas

•
$$0.35_{10} = ????_2$$

$$0.35 \times 2 = 0.7$$
 $0.7 \times 2 = 1.4$
 $0.4 \times 2 = 0.8$
 $0.8 \times 2 = 1.6$
 $0.6 \times 2 = 1.2$
 $0.2 \times 2 = 0.4$
 $0.4 \times 2 = 0.8$
 \leftarrow Repetição

• $0.35_{10} = 0.01(0110)_2$

Números negativos em Binário

- Na base decimal os números negativos são representados com um '-' antes
 - Em binário o '-' não existe

- Mas podemos adicionar um bit extra para o sinal
 - Bit mais significativo (à esquerda) → bit do sinal
 - $'0' \rightarrow '+'; '1' \rightarrow '-'$

Números negativos em Binário

- Binário com sinal
 - Bit mais significativo reservado para o sinal
 - Restantes bits codificam o valor (como positivo)

Decimal	Binário	Binário c/ sinal	
3	11	011	
2	10	010	
1	01	001	
0	000	000	
-1	-	101	
-2	-	110	
-3	-	111	
-4	-	-	

Números negativos em Binário

Decimal	Binário	Binário c/ sinal	
3	11	011	
2	10	010	
1	01	001	
0	000	000 / 100	
-1	-	101	
-2	-	110	
-3	-	111	
-4	-	-	

- Utilizando esta codificação, se virem com atenção o número 100₂ também é '0'
 - Neste caso é (-0)

Resolver o problema do (-0)

- Utiliza-se uma codificação em 'Complemento para 2'
 - Complemento para $2 \Rightarrow$ Complemento para $1 + 1_2$

- Codificação binária com sinal
 - Bit mais significativo representa o sinal
 - '0' → '+'; '1' → '-'
- Números positivos codificados em binário
- Números negativos codificados como a negação do positivo
 - Inversão dos bits
 - Os 1's passam a 0's e vice-versa

Decimal	Binário	Binário c/ sinal	Complemento para 1	
3	11	011	011	
2	10	010	010	
1	01	001	001 2 2	\ z \
0	000	000 / 100	000 / 111 ega) ega 2	Negação
-1	-	101	110	/ ão /
-2	-	110	101	
-3	-	111	100	
-4	-	-	-	

Como dá para ver não resolve o problema dos "2 zeros"

- Codificação binária com sinal
 - Bit mais significativo representa o sinal
 - '0' → '+'; '1' → '-'
- Números positivos codificados em binário
- Números negativos codificados como a negação do positivo + 1₂

Decimal	Binário	Binário c/ sinal	Comp. para 1	Comp. para 2
3	11	011	011	011
2	10	010	010	010
1	01	001	001	001
0	000	000 / 100	000 / 111	000
-1	-	101	110	111
-2	-	110	101	110
-3	-	111	100	101
-4	-	-	-	100

- Como dá para ver resolve o problema dos "2 zeros" e ganhamos um número
 - Porquê?

Binary Coded Decimal (BCD)

 Sistema de codificação binário em que cada dígito decimal é codificado por 4 bits

- Ex: $324_{10} \rightarrow 0011\ 0010\ 0100_{BCD}$
 - Atenção: $324_{10} \rightarrow 10100100_{2}$