CP2: Nível Físico (refs.)

•Princípios de comunicação digital

```
(Peterson 2021, 1.5; Tanenbaum 2011, 2.1.(Intro), 2.1.2; Stallings 2.2)
```

- Efeitos do meio de transmissão
- •Meios de transmissão e modulações (Tanenbaum 2011, 2.2-2.3, 2.5.1, 2.5.2; Stallings 2.1, 2.5)
 - Meios de transmissão guiados
 - Meios de transmissão sem fios
 - Modulações
- •Partilha do meio de transmissão: Multiplexagem e comutação (Peterson 2021, 1.2.2, 1.2.3; Tanenbaum 2011, 2.5.3, 2.5.4; Stallings 2.5)
- •Teoria das filas de espera aplicada aos canais de comunicação

CP2: Nível Físico (Questões)

·Ligação direta.

- Como se transportam bits?(Que tecnologias e recursos se usam?)
- •O que limita o ritmo (rapidez) a que se podem transmitir bits?
- •O que afecta a sua transmissão?

Partilha de recursos.

- Como se partilha cada ligação? (Multiplexagem.)
- Como se partilham os recursos ao longo da rede? (Comutação.)

Nível Físico (Physical Layer)

- •O nível físico lida com o transporte dos bits
 - •Geração de sinais adequados ao meio de transmissão
- Lida com os efeitos na transmissão dos sinais
 - Capacidade de um canal (na ausência e presença de ruído)
 - Presença de erros
- Definição do meio de transmissão
 - •Exemplos: suporte magnético, par entrançado, cabo coaxial, fibra óptica, sem fios (rádio, micro-ondas, infra-vermelhos)
- Partilha do meio de transmissão
 - •Multiplexagem: na frequência e no tempo
 - •Comutação: de circuito, de mensagens e de pacotes

Nível Físico (Physical Layer)

•Como se transportam bits?

Transporte de bits: transmissão de sinais

•As entidades de nível físico implementam a funcionalidade de transporte de bits entre elas através da transmissão de sinais (símbolos) sobre meios de transmissão.

Transmissão de 1 entre M símbolos possíveis para o envio de $log_7(M)$ bits.

- Características/grandezas dos símbolos
 - T_s Tempo (duração) de símbolo
 - R_s Ritmo de símbolo, R_s = 1/ T_s [baud]
 - R_b Ritmo binário, $R_b = R_s \times log_2(M)$ [bps]

Largura de banda

• Tipicamente existe uma relação de proporcionalidade entre a largura de banda ocupada por um sinal, B, e o seu ritmo de símbolo (R_s).

Banda de Base vs. Banda Passante

- Os sinais a serem transmitidos têm de ser adequados ao meio de transmissão.
- Em alguns casos essa adequação implica a utilização de uma frequência portadora (modulação).

Nível Físico (Physical Layer)

•Que efeitos e limitações há na transmissão de bits?

Efeitos durante a transmissão Tempo de Propagação / Tempo de Transmissão

Tempo de propagação (propagation delay):

$$T_p = d / v_p$$

d - distância [m]

 v_n - velocidade de propagação [m/s]

Tempo de transmissão (transmission delay):

$$T_{tx} = L / R_b$$

L - comprimento (tamanho) da mensagem [bit]

 R_b - ritmo binário [bit/s]

•Tempo de transferência (transfer delay):

$$T_{xfer} = T_p + T_{tx}$$

 $T_{xfer} = T_p + T_{tx}$ Tempo que toda a mensagem demora a chegar ao destino (*)

(* falta considerar outros efeitos, e.g., processamento e filas)

Exercícios 2.1 e 2.2

•Exercício 2.1:

Qual o ritmo de símbolos, R_s ? Qual a sua taxa de codificação, m? Qual o ritmo binário, R_b ? Qual a duração de bit, T_b ?

•Exercício 2.2:

$$R_b = 100 \text{ Mbit/s}$$

 $v_p = 2 \times 10^8 \text{ m/s}$
 $d = 1000 \text{ km}$
 $L = 125 \text{ bytes}$

Qual o tempo de transmissão, T_{tx} ? Qual o tempo de propagação, T_p ? Qual o tempo de transferência, T_{xfer} ? Qual o tempo de ida e volta, T_{rtt} ?

Efeitos que um sinal sofre durante a sua transmissão

Atenuação: um sinal perde energia ao propagar-se (dB/km). A forma do sinal não se altera.
O canal de transmissão é não distorcivo.

 Distorção: nem todas as frequências sofrem a mesma atenuação nem viajam à mesma velocidade.
 A forma do sinal altera-se.
 O canal de transmissão é distorcivo.

•Ruído: interferência de outras fontes de energia no sinal

• Diafonia (crosstalk): interferência de outros condutores próximos

Efeito "final": Erro de bit

• Modelo de um sistema de comunicação Shannon-Weaver

O sinal recebido é resultado do sinal transmitido e das perturbações (ruído) sofridas durante a sua transmissão.

• Padrão de erros, E, representação de erros usando "0" e "1"

"Transmitido"	0	1	1	0	1	0	"Transmitido": T	0	1	1	0	1	0
Erros	✓	✓	×	×	✓	×	Padrão Erros: E	0	0	1	1	0	1
"Recebido"	0	1	0	1	1	1	"Recebido": R	0	1	0	1	1	1

Facilita a representação matemática do fenómeno: R = T ⊕ E (XOR bit a bit)

Probabilidade de Erro de bit

Modelo simplificado para a descrição do processo caracterizando-o estatisticamente.

•Erros independentes: a probabilidade de um bit, \underline{i} , sofrer erros não depende do estado (erro/não erro) dos bits anteriores, $\underline{i-j}$.

$$P(e_i = 1 | e_{i-j} = 0) = P(e_i = 1 | e_{i-j} = 1) = P_{eb}$$

 $P(e_i = 0 | e_{i-j} = 0) = P(e_i = 0 | e_{i-j} = 1) = 1 - P_{eb}$

Exemplo de padrão de erros ($P_{eb}=1/6$):

1-Pab

• Erros em rajada: erros não independentes.

Modelo de Gilbert-Elliot, canal pode encontrar-se em dois estados: Good/Bad.

Exercício 2.3

Admita que uma trama enviada para o meio de transmissão é constituída, respetivamente, pelos bits de dados e pela informação para controlo de erros:

Considere o seguinte padrão erros E = '0011 0010 0000'.

- a) Indique o conjunto de bits recebido R.
- b) Considerando que os erros na trama ocorrem de forma independente e que a probabilidade de erro de bit, $P_b = 0,1$, indique qual a probabilidade de ocorrência deste padrão de erros.
- c) Quantos padrões de erros diferentes, com o mesmo número de erros, podem ocorrer?
- d) Nas condições da alínea b), qual a probabilidade de a trama recebida sofrer 3 erros?

Nível Físico (Physical Layer)

•Que recursos usados para a transferência de bits?

Meios de transmissão

Equipamentos de transmissão

Meios de Transmissão (1)

Meios de Transmissão (2)

	Gama de frequências	Atenuação	Atraso	BER
Par Entrançado (Cat.6)	0 (1) - 250 MHz	0,2 dB/Km (a 1kHz)	0.55 μs /100m	10 ⁻¹² (802.3an)
Multi-par	0 - 1 MHz	3 dB/Km (a 1 kHz)	5 μs/km	10 ⁻⁹ (HDSL)
Cabo Coaxial	0 - 500 MHz	7 dB/Km (a 10 MHz)	4 μs/km	10 ⁻⁸
Fibra Óptica	180 - 370 THz	0,2 - 0,5 dB/Km	5 μs/km	10 -12

Outras Características

- •Imunidade ao ruído
- •Imunidade à diafonia
- •Robustez física
- Preço

Glossário

- BER Bit Error Ratio
 Taxa de erro de bit, número de bits errados por número
 - de bits transmitidos.

 Modelizado por P_{ab} Probabilidade de erro de bit.
 - Modelizado por P_{eb} Probabilidade de erro de bit. (Diferente de *Bit Error Rate*: número de bits errados por unidade de tempo).
- dB deciBel
 Unidade logarítmica usada para comparar duas grandezas (ex., potência sinal emitido vs. recebido)

O Espectro Electromagnético

Equipamentos de transmissão

Codificador de linha:

Equipamento que transforma bits (ou grupos de bits) em sinais em banda de base, ex. codificador diferencial Manchester. (Diferente de *codificador de sinal*, ex. codificador MPEG para áudio ou vídeo).

Moduladores:

Equipamento que transforma bits (ou grupos de bits) em sinais em banda passante, ex. OFDM ou QAM. (Modem - modulador/demodulador)

Placas de rede:

Codificadores/descodificadores ou moduladores/demoduladores são elementos componentes das placas de rede, ex. Ethernet ou WiFi (que possuem outros componentes - ver capítulo seguinte).

Um dos parâmetros de maior interesse prático na descrição dos equipamentos de transmissão é o seu *Ritmo binário*, R_b .

Nível Físico (Physical Layer)

•Como se partilham os recursos de transmissão(ligação)?

Multiplexagem na Frequência - FDM (Partilha do Meio de Tx por vários utilizadores)

• A largura de banda disponível no meio de transmissão é dividida em sub-bandas (canais) não sobrepostas.

A cada fonte de tráfego é atribuído estaticamente um canal.

Multiplexagem no Tempo - TDM (Partilha do Meio de Tx por vários utilizadores)

- •No canal é ciclicamente transmitida (ex. a cada 125 µs) uma <u>trama TDM</u> composta por um número fixo de <u>time slots</u> (ex., 32).
- •A cada fonte de tráfego é atribuído <u>estaticamente</u> um (ou mais) *time slots*, os quais não podem ser usados por nenhuma outra fonte.

Multiplexagem no Tempo - TDM (Partilha do Meio de Tx por vários utilizadores)

Sistema TDM particularmente adequado a fontes de informação contínua e que produzem um ritmo constante de bits, ex. voz:

Canal (fonte) de voz = 8 bits x 8000 amostra/s = 64 kbit/s

- •Europa (sistema E1): 32 canais de voz => r_b = 32 x 64 kbit/s = 2048 kbit/s
- •Europa (sistema E2): 152 canais de voz => r_b = 152 x 64 kbit/s = 8192 kbit/s

Fully populated VMX20 Chassis (152 Phone Lines) Exemplo: multiplexer para 152 linhas telefónicas (entradas RJ-11) partilhando uma fibra óptica.

Multiplexagem estatística

Vantagens:

- maior taxa de utilização dos recursos para tráfego de dados;
- atrasos baixos para tráfego baixo;
- flexibilidade em termos da largura de banda usada.

Desvantagens:

- entrega fora de ordem;
- atrasos elevados para tráfego elevado.

Nível Físico (Physical Layer)

•Como se partilham os recursos de transmissão(rede)?

Tipos de Comutação (1)

Comutação de circuitos

Utilização do FDM ou TDM para reservar o circuito

Tipos de Comutação (2)

Comutação de Mensagens

Tipos de Comutação (3)

Comutação de Pacotes

Store and forward

Utilização da multiplexagem estatística

Informação de controlo

Dados

Tipos de Comutação (4)

Nível Físico (Physical Layer)

•Que consequências do processo de comutação?

store & forward

Filas de espera associadas aos canais (1)

- Funções e aplicações:
 - Parte do processo de comutação de pacotes: <u>Store</u> & Forward.

- Adaptação entre canais.
 - Os nós intermédios podem interligar meios de transmissão onde são usados ritmos binários diferentes.

• A estrutura temporal de chegada (ex. Poisson) pode não ser a mesma da transmissão (ex. fixa, TDM).

Filas de espera associadas aos canais (2)

- A Processo de chegadas (arrival)
- S Processo de partidas (service)
- *m* Número de servidores em paralelo
- n Tamanho máximo para a fila
 (∞ fila não limitada)
- Processo de chegadas: associado ao tráfego que chega à fila de espera (e.g., nó da rede)
- Processo de partidas: associado ao tempo de serviço nos servidores (tipicamente o tempo de transmissão, i.e., L/R_b)
- Ex. Tempo de serviço de um transmissor é o tempo transmissão, $T_S = T_{tx} = L/R_b$ Tem a capacidade de servir (transmitir) um máximo de, $\lambda_S = 1/T_S = R_b/T_D$ blocos por seg.

Processos de chegada/partida

A (ou S)	Significado						
G	<u>G</u> enérico: o processo pode ter uma qualquer distribuição estatística.						
D	<u>D</u> eterminístico: o tempo entre acontecimentos desse processo é sempre o mesmo. Exemplo: o tempo de serviço (transmissão) de blocos de bits com o mesmo tamanho.						
·	<u>Markov:</u> o processo é sem memória. Exemplo de um processo markoviano é o de Poisson em que os tempos entre acontecimentos consecutivos desse processo seguem uma distribuição exponencial negativa. $\Delta t, \ k $ # de chegadas - Poisson $P(k, \Delta t) = \frac{(\lambda \cdot \Delta t)^k e^{-\lambda \cdot \Delta t}}{k!}$ Poisson, $P(k, \Delta t) = \frac{(\lambda \cdot \Delta t)^k e^{-\lambda \cdot \Delta t}}{k!}$ Poisson, $P(k, \Delta t) = \frac{(\lambda \cdot \Delta t)^k e^{-\lambda \cdot \Delta t}}{k!}$						

• Todos os processos são caracterizados pela sua *taxa*. Ex. a taxa de chegada à fila, λ_A ou taxa de serviço, $\lambda_S = 1/T_{Serviço}$

Processos de chegada/partida

A (ou S)	Significado
_	<u>Determinístico</u> : o tempo entre acontecimentos desse processo é sempre o mesmo.

Ex.: o tempo de serviço (transmissão) de blocos de bits com o mesmo tamanho, L

Processos de chegada/partida

A (ou S)	Significado
М	<u>Markov</u> : o processo é sem memória. Exemplo de um processo markoviano é o de Poisson em que os tempos entre acontecimentos consecutivos desse processo seguem uma distribuição exponencial negativa.

Ex.: o tempo de serviço (transmissão) de blocos de bits com tamanho descrito por uma distribuição exponencial negativa com média, \overline{L}

Resultados gerais filas de espera G/G/1

Equilíbrio.

O sistema encontra-se em equilíbrio quando ho < 1

Taxa de utilização do sistema.

Quando o sistema se encontra em equilíbrio a taxa de utilização do sistema, ρ , é dada por:

$$\rho = \frac{\lambda_A}{\lambda_S}$$

• Lei de Little.

Quando o sistema se encontra em equilíbrio, o número médio de clientes (e.g., blocos de bits) no sistema (ou partes do mesmo, e.g., na fila de espera), N, é expressa por:

$$N = \lambda_A T$$

Em que T é o tempo dispendido nessa parte do sistema.

Resultados filas de espera em equilíbrio (ρ <1)

Sistema D/D/1:

Os blocos de bits chegam a um ritmo constante [D] e têm todos o mesmo tamanho (tempo de serviço constante [D])

Quando chega um novo bloco de bits o anterior já foi despachado.

Tempo passado pelo cliente na fila de espera do sistema, $T_Q = 0 seg$.

Sistema M/D/1:

Os blocos de bits chegam segundo uma distribuição de Poisson [M] e têm todos o mesmo tamanho (tempo de serviço constante [D])

Quando chega um novo bloco de bits o anterior pode ainda não ter sido despachado.

Tempo passado pelo cliente na fila de espera do sistema, $T_Q = \frac{1}{2\lambda_S} \cdot \left(\frac{\rho}{1-\rho}\right) seg$

Sistema M/M/1:

Os blocos de bits chegam segundo uma distribuição de Poisson [M] e têm tamanho definido por uma exponencial negativa (tempo de serviço exponencial [M]) Quando chega um novo bloco de bits o anterior pode ainda não ter sido despachado.

Tempo passado pelo cliente na fila de espera do sistema, $T_Q = \frac{1}{\lambda_S} \cdot \left(\frac{\rho}{1-\rho}\right) seg$

Exercício 2.4

1. Considere um sistema em que um nó de uma rede interliga dois meios de transmissão, sendo o tráfego que alimenta o nó de transmissão acomodado numa fila de espera de tamanho infinito, tal como representado na figura.

Para os diferentes cenários indicados na tabela indique se o sistema se encontra ou não em equilíbrio e em caso positivo, calcule as seguintes grandezas:

- a. Taxa de utilização do sistema.
- b. Tempo médio que os pacotes passam na fila de espera.
- c. O número médio de pacotes na fila de espera.
- d. O número médio de bits na fila de espera.
- e. O número médio de bits na fila de espera e a ser transmitidos

Cenário I	 Taxa de chegada de pacotes: ritmo constante, 2000 pacotes por segundo. Tamanho dos pacotes: fixo 256 bytes. 					
Cenário II	Taxa de chegada de pacotes: segundo distribuição de Poisson, média de 2000 pacotes po segundo.					
	Tamanho dos pacotes: com distribuição exponencial e tamanho médio 256 bytes.					
Cenário III	Taxa de chegada de pacotes: ritmo binário constante de 5 Mbps.					
	Tamanho dos pacotes: fixo 256 bytes.					
Cenário IV	 Taxa de chegada de pacotes: segundo distribuição de Poisson, média de 5000 pacotes por segundo. 					
	Tamanho dos pacotes: com distribuição exponencial e tamanho médio 256 bytes.					

Taxa de chegada de pacotes: ritmo constante, 2000 pacotes por segundo.

Tamanho dos pacotes: fixo 256 bytes.

Cenário I: D/D/1

a. Taxa de utilização

$$\lambda_A = 2000 \text{ pacotes/seg.}$$

$$\lambda_S = \frac{1}{T_{tx}} = \frac{1}{0.2048 \times 10^{-3}} = 4.883 \times 10^3 \text{ pacotes/seg}; T_{tx} = \frac{L}{R_{b2}} = \frac{(256 \times 8)}{10 \times 10^6} = 0.2048 \times 10^{-3} \text{ seg.}$$

$$\rho = \frac{\lambda_A}{\lambda_S} = \frac{2000}{4883} = 0.4096 \text{ (sistema em equilibrio)}.$$

b. Tempo médio que os pacotes passam na fila de despera.

$$T_Q = 0$$
 seg.

(Os pacotes são completamente despachados antes da chegada de um novo.)

O número médio de pacotes na fila de espera.

$$N_0 = 0$$

d. O número médio de bits na fila de espera.

$$N_{b_Q} = 0$$

e. O número médio de bits na fila de espera e a ser transmitidos.

$$N_{Q+tx} = \lambda_A \cdot (T_Q + T_{tx}) = 2000 \times (0 + 0.2048 \times 10^{-3}) = 0.4096$$
 pacotes $N_{b_Q+tx} = L \cdot N_{Q+tx} = (256 \times 8) \times 0.4096 = 838.86$ bits

-	•		-
Cen	191	rıa	
-c			,

- Taxa de chegada de pacotes: segundo distribuição de Poisson, média de 2000 pacotes por segundo.
- Tamanho dos pacotes: com distribuição exponencial e tamanho médio 256 bytes.

Cenário II: M/M/1

Taxa de utilização

$$\lambda_A = 2000 \text{ pacotes/seg.}$$

$$\lambda_S = \frac{1}{T_{tx}} = \frac{1}{0.2048 \times 10^{-3}} = 4,883 \times 10^3 \text{ pacotes/seg.}$$
; $T_{tx} = \frac{L}{R_{b2}} = \frac{(256 \times 8)}{10 \times 10^6} = 0,2048 \times 10^{-3} \text{ seg.}$ $\rho = \frac{\lambda_A}{\lambda_S} = \frac{2000}{4883} = 0,4096 \text{ (sistema em equilibrio)}.$

Tempo médio que os pacotes passam na fila de despera.

$$T_Q = \frac{1}{\lambda_S} \cdot \left(\frac{\rho}{1-\rho}\right) = \frac{1}{4.883 \times 10^3} \times \left(\frac{0.4096}{1-0.4096}\right) = 0.142 \times 10^{-3} \text{ seg.}$$

c. O número médio de pacotes na fila de espera.

$$N_Q = \lambda_A \cdot T_Q = 2000 \times 0.142 \times 10^{-3} = 0.248 \text{ pacotes}$$

d. O número médio de bits na fila de espera.

$$N_{b_Q} = 256 \times 8 \times 0,248 = 581,95 \text{ bits}$$

e. O número médio de bits na fila de espera e a ser transmitidos.

$$N_{Q+tx} = \lambda_A \cdot (T_Q + T_{tx}) = 2000 \times (0.142 \times 10^{-3} + 0.2048 \times 10^{-3}) = 0.6963$$
 pacotes $N_{b_Q+tx} = L \cdot N_{Q+tx} = (256 \times 8) \times 0.6963 = 1420.49$ bits

Cenário III

- Taxa de chegada de pacotes: ritmo binário constante de 5 Mbps.
- Tamanho dos pacotes: fixo 256 bytes.

Cenário III: D/D/1

Taxa de utilização

$$\lambda_A = \frac{R_{bA}}{L} = \frac{5 \times 10^6}{256 \times 8}$$
 pacotes/seg.

$$\lambda_{\rm S} = \frac{R_{b2}}{L} = \frac{10 \times 10^6}{256 \times 8}$$
 pacotes/seg.;

$$\rho = \frac{\lambda_A}{\lambda_S} = \frac{5 \times 10^6}{10 \times 10^6} = 0.5$$
 (sistema em equilibrio).

Tempo médio que os pacotes passam na fila de despera.

$$T_Q = 0$$
 seg.

(Os pacotes são completamente despachados antes da chegada de um novo.)

O número médio de pacotes na fila de espera.

$$N_Q = 0$$

d. O número médio de bits na fila de espera.

$$N_{b_Q} = 0$$

e. O número médio de bits na fila de espera e a ser transmitidos.

$$N_{b_Q+Tx} = L \cdot \lambda_A \cdot (T_Q + T_{tx}) = 5 \times 10^6 \times (0 + 0.2048 \times 10^{-3}) = 1023 \text{ bits}$$

Cenário IV

- Taxa de chegada de pacotes: segundo distribuição de Poisson, média de 5000 pacotes por segundo.
- Tamanho dos pacotes: com distribuição exponencial e tamanho médio 256 bytes.

Cenário IV: M/M/1

a. Taxa de utilização

 R_{bA} $R_{b1} = 20Mbps$ $R_{b2} = 10Mbps$

$$\lambda_A = 5000 \text{ pacotes/seg.}$$

$$\lambda_S = \frac{1}{T_{tx}} = \frac{1}{0,2048 \times 10^{-3}} = 4,883 \times 10^3 \text{ pacotes/seg}; T_{tx} = \frac{L}{R_{b2}} = \frac{(256 \times 8)}{10 \times 10^6} = 0,2048 \times 10^{-3} \text{ seg.}$$

$$\rho = \frac{\lambda_A}{\lambda_S} = \frac{5000}{4883} = 1,024$$
 (sistema não está em equilibrio).

Exercício 2.4 (cont.)

2. Usando o Cenário I, desenhe um diagrama temporal onde se representa a recepção e transmissão das tramas no nó e verifique os resultados anteriores bem com o facto da fila de espera permitir "adaptar" os ritmos binários do meio 1 e 2. Que diferenças se verificariam para o caso do Cenário II ?

No caso de sistemas de tipo M/D/1 ou M/M/1 é possível que quando da chegada de uma nova trama ainda existam bits de trama(s) anterior(es) a ser transmitidos.

No entanto, se em equilibrio, o ritmo binário no sistema de transmissão T2 será suficiente para escoar o tráfego que chega via o sistema T1, funcionando mais uma vez como adaptação dos dois ritmos binários.

CP2: Nível Físico (Exercícios)

- Sebenta de Exercícios e Aplicações
 - Capítulo 2
- •Questões de provas escritas
 - Ver plataforma *moodle* com provas de anos anteriores.
- Mini-teste
 - •Mini-teste para avaliação na plataforma moodle.