AWS FACE DETECTION APP USING AWS

By

HEMANTH RAMARAO BATCHU

M.Tech VLSI Design

SCHOOL OF ELECTRONICS ENGINEERING VIT UNIVERSITY VELLORE-632014, TAMIL NADU, INDIA

MARCH 2020

AWS

Face detection app involves following steps:

- 1. Solve Account Creation Issues
- 2. Architecture of the Application
- Create Your Own Server
- 4. Put Your Name on Browser
- 5. Choose the Right AWS Certification
- Get AWS certification

Architecture involved:

The virtual machine will be created using EC2 and whatever the image in telegram will be get accessed by EC2 and this will store the image in S3 and also call Amazon Rekognition to recognize the image stored in S3. Thus, Amazon Rekognition recognizes and gives back reply to EC2 and from EC2 to telegram where we uploaded the image. Thus, the operation done is explained using architecture.

Day-wise activity to be done:

Day	Topic
01	EC2
02	S3
03	Integrating EC2, S3 and Rekognition
04	Integrating Telegram BOT with EC2

Building virtual machine using AWS EC2:

To build virtual machine, we need to select the following things in EC2.

- 1. Operating System
- 2. RAM & Processor
- 3. Storage
- 4. Security

instance = server = virtual machine

Each and every step in creating virtual machine is explained as shown in screenshots below.

AWS

Step 1: select linux which is free tier eligible.

Step 2: choose micro

AWS

Step 3:

Step 4: choose 8gb (can use 30gb for free as shown)

AWS

Step 5:

Step 6: choose SSH and port range as 22

AWS

Step 7:

Thus virtual machine is launched.

IP address of the launched machine: 3.17.186.195

AWS

All this is done in browser in windows and from now on I will be using ubuntu in my VMware software.

Downloading putty in ubuntu:

Conversion of .pem file to .ppk file using puttygen command can also be observed in above figure which is done in downloads folder path.

Hence, the created files can be observed in the following screenshot.

AWS

Filling in IP address and providing Private Key to Putty for login:

AWS

Login successful:

AWS

Checking status:

During editing of index.html I wrote

"Hello...I am Hemanth Ramarao Batchu and I am enjoying these quarantine holidays"

AWS

Editing inbound rules to enable HTTP access:

Initially:

AWS

Finally:

AWS

Checking the Final page:

Hello...I am Hemanth Ramarao Batchu and i am enjoying these quarantine holidays.

