DSE 2023 Summer School Lausanne

Lecture 2: Advances in DP Theory

John Stachurski

2023

Loosely based on

- Chapters 8 and 9 of Dynamic Programming: Foundations by Thomas Sargent and John Stachurski
- Completely Abstract Dynamic Programming by Thomas Sargent and John Stachurski

Inspired by

Abstract Dynamic Programming by Dimitri Bertsekas

Topics

Handling a large range of dynamic programs

- state-dependent discounting
- recursive preferences
- quantile preferences
- adversarial agents, ambiguity, continuous time, etc., etc.

Generalization \implies abstraction \implies clearer proofs

- clarifies optimality conditions
- clarifies relationships between DPs

Omitted

Approximation methods

- interpolation
- orthogonal projection
- kernel averages
- neural nets

How do they interact with the algorithms described below?

Some answers in

- Neurodynamic programming (Bertsekas & Tsitsiklis, 1996)
- Subsequent literature
- DP book Vol 2...?

Prelude: a standard model

Consider a Markov decision process (MDP) with

- 1. a finite set X called the state space and
- 2. a finite set A called the action space

Actions are restricted by a **feasible correspondence** Γ

- from X to A
- $\Gamma(x) =$ actions available in state x (nonempty)

- next period state x' is drawn from $P(x,a,\cdot)$
- flow **reward** at (x, a) is r(x, a)
- constant discount factor $\beta \in (0,1)$

Lifetime rewards are

$$\mathbb{E}\sum_{t\geqslant 0}\beta^t r(X_t,A_t)$$

The Bellman equation is

$$v(x) = \max_{a \in \Gamma(x)} \left\{ r(x, a) + \beta \sum_{x'} v(x') P(x, a, x') \right\}$$

A **feasible policy** is a map $\sigma: X \to A$ with

$$\sigma(x) \in \Gamma(x)$$
 for all $x \in X$

• $\Sigma :=$ all feasible policies

Feasible policy σ is called v-greedy if

$$\sigma(x) \in \operatorname*{argmax}_{a \in \Gamma(x)} \left\{ r(x,a) + \beta \sum_{x'} v(x') P(x,a,x') \right\} \quad \forall \, x \in \mathsf{X}$$

The **Bellman operator** is

$$(Tv)(x) = \max_{a \in \Gamma(x)} \left\{ r(x, a) + \beta \sum_{x'} v(x') P(x, a, x') \right\}$$

For each $\sigma \in \Sigma$, we introduce the **policy operator**

$$(T_{\sigma} v)(x) = r(x, \sigma(x)) + \beta \sum_{x'} v(x') P(x, \sigma(x), x')$$

Note:

$$\sigma$$
 is v -greedy \iff $Tv = T_{\sigma} v$

Figure: T is the pointwise max. of $\{T_\sigma\}_{\sigma\in\Sigma}$

Let

- $r_{\sigma}(x) := r(x, \sigma(x)) = \text{rewards under } \sigma$
- $P_{\sigma}(x,x') := P(x,\sigma(x),x') = \text{transitions under } \sigma$

Note that P_{σ} is Markov dynamics for the state under σ

The **lifetime value** σ is

$$v_{\sigma}(x) := \mathbb{E}_x \sum_{t=0}^{\infty} \beta^t \, r_{\sigma}(X_t)$$

where

$$(X_t)_{t\geq 0}$$
 is P_{σ} -Markov with $X_0=x$

Passing the expectation through the sum yields

$$v_{\sigma}(x) = \sum_{t=0}^{\infty} \beta^{t} \mathbb{E}[r_{\sigma}(X_{t}) | X_{0} = x]$$
$$= \sum_{t=0}^{\infty} \beta^{t} \sum_{x'} r_{\sigma}(x') P_{\sigma}^{t}(x, x')$$

Using operator / matrix notation, this is

$$v_\sigma = \sum_{t\geqslant 0} (\beta P_\sigma)^t r_\sigma$$

$$= (I-\beta P_\sigma)^{-1} r_\sigma \quad (\because \text{ Neumann series lemma})$$

Recall that the policy operator corresponding to σ is

$$(T_{\sigma} v)(x) = r(x, \sigma(x)) + \beta \sum_{x'} v(x') P(x, \sigma(x), x')$$

Equivalent: $T_{\sigma} v = r_{\sigma} + \beta P_{\sigma} v$

Clearly

$$v \in \text{fix}(T_{\sigma}) \iff v = r_{\sigma} + \beta P_{\sigma} v$$

$$\iff (I - \beta P_{\sigma})v = r_{\sigma}$$

$$\iff v = (I - \beta P_{\sigma})^{-1} r_{\sigma} =: v_{\sigma}$$

Fact. : $T_{\sigma}^k v \to v_{\sigma}$ as $k \to \infty$ for all $v \in \mathbb{R}^X$ (: Banach)

Defining optimality

We define the value function via

$$v^*(x) := \max_{\sigma \in \Sigma} v_{\sigma}(x) \qquad (x \in \mathsf{X})$$

Equivalently,

$$v^* := \bigvee_{\sigma} v_{\sigma}$$

A policy σ is called **optimal** if $v_{\sigma} = v^*$

MDP Optimality

Theorem. For an MDP with Bellman operator T and value function v^* ,

- 1. v^* is the unique fixed point of T in \mathbb{R}^X
- 2. T is a contraction mapping on \mathbb{R}^{X}
- 3. A feasible policy is optimal if and only it is v^* -greedy
- 4. At least one optimal policy exists

 $Standard\ algorithms$

Algorithm 1: VFI

input $v_0 \in \mathbb{R}^{\mathsf{X}}$

input au, a tolerance level for error

$$\varepsilon \leftarrow +\infty$$
$$k \leftarrow 0$$

while $\varepsilon > \tau$ do

$$\begin{vmatrix} v_{k+1} \leftarrow T v_k \\ \varepsilon \leftarrow \|v_k - v_{k+1}\|_{\infty} \\ k \leftarrow k + 1 \end{vmatrix}$$

end

Compute a v_k -greedy policy σ

return σ

Algorithm 2: HPI

input $\sigma_0 \in \Sigma$, set $k \leftarrow 0$ and $\varepsilon \leftarrow 1$

while $\varepsilon > 0$ do

 $v_k \leftarrow$ the lifetime value of σ_k

 $\sigma_{k+1} \leftarrow$ a v_k -greedy policy

$$\varepsilon \leftarrow \mathbb{1}\{\sigma_k \neq \sigma_{k+1}\}$$
$$k \leftarrow k+1$$

$$k \leftarrow k + 1$$

end

return σ_k

Figure: HPI as a version of Newton's method

Algorithm 3: OPI

```
input v_0, an initial guess of v^*
input \tau, a tolerance level for error
input m \in \mathbb{N}, a step size
k \leftarrow 0
\varepsilon \leftarrow +\infty
while \varepsilon > \tau do
      \sigma_k \leftarrow \text{a } v_k\text{-greedy policy}
      v_{k+1} \leftarrow T_{\sigma_k}^m v_k
   \varepsilon \leftarrow \|v_k - v_{k+1}\|_{\infty}k \leftarrow k+1
```

end

return σ_k

Proposition. Under the stated condition, VFI, HPI and OPI all converge

Moreover, HPI converges to an exact optimal policy in finitely many steps

For details and proofs see Ch. 5 of https://dp.quantecon.org/

Modifications and extensions

Let's now look at some extensions to the basic model

We can switch to the expected value function

$$g(x,a) := \sum_{x'} v(x')P(x,a,x')$$

with "Bellman operator"

$$(Rg)(x,a) = \sum_{x'} \max_{a' \in \Gamma(x')} \left\{ r(x',a') + \beta g(x',a') \right\} P(x,a,x')$$

- Does R have the same properties as T?
- What are the equivalent algorithms and do they converge?

We can introduce **Epstein–Zin preferences**, as in

$$(Tv)(x) = \max_{a \in \Gamma(x)} \left\{ r(x, a)^{\alpha} + \beta \left(\sum_{x'} v(x')^{\gamma} P(x, a, x') \right)^{\alpha/\gamma} \right\}^{1/\alpha}$$

- Is T still a contraction?
- Are the previous optimality results still valid?
- Do VFI, OPI, HPI converge?

We can introduce risk-sensitive preferences, as in

$$(Tv)(x) = \max_{a \in \Gamma(x)} \left\{ r(x, a) + \beta \frac{1}{\theta} \ln \left(\sum_{x'} \exp(\theta v(x')) P(x, a, x') \right) \right\}$$

- Is T still a contraction?
- Are the previous optimality results still valid?
- Do VFI, OPI, HPI converge?

We can introduce **risk-sensitive preferences** with **state-dependent discounting**, as in

$$(Tv)(x) = \max_{a \in \Gamma(x)} \left\{ r(x, a) + \beta(x) \frac{1}{\theta} \ln \left(\sum_{x'} \exp(\theta v(x')) P(x, a, x') \right) \right\}$$

- Is T still a contraction?
- Are the previous optimality results still valid?
- Do VFI, OPI, HPI converge?

Many, many extensions and combinations we can consider

- ambiguity
- expected values in an Epstein–Zin framework
- expected values + ambiguity + state-dependent discounting
- integrated value functions in a risk-sensitive framework in continuous time
- Q-learning, etc., etc.

Is there any unifying theory?

Or are all these problems too diverse?

Abstraction Level 1: RDPs

- Construct a DP framework based on an abstraction of the Bellman equation
- 2. State optimality results in this framework
- 3. Connect with applications

Builds on work by

- Eric Denardo
- Dimitri Bertsekas
- Takashi Kamihigashi

Recursive Decision Problems

We begin with a generic version of the Bellman equation:

$$v(x) = \max_{a \in \Gamma(x)} B(x, a, v)$$

- $x \in a$ finite set X (the state space)
- $a \in a$ finite set A (the action space)
- B(x, a, v) = total lifetime rewards
 - contingent on current state-action pair (x,a)
 - ullet using v to evaluate future states

Formally, a recursive decision process (RDP) is a triple

$$\mathscr{R} = (\Gamma, V, B),$$
 where...

1. Γ is a nonempty correspondence from X to A

called the feasible correspondence

which generates:

the feasible state-action pairs

$$\mathsf{G} := \{(x, a) \in \mathsf{X} \times \mathsf{A} : a \in \Gamma(x)\}\$$

the set of feasible policies

$$\Sigma := \{ \sigma \in \mathsf{A}^\mathsf{X} : \sigma(x) \in \Gamma(x) \text{ for all } x \in \mathsf{X} \}$$

- **2.** V is a subset of \mathbb{R}^{X} called the value space
 - → candidates for the value function
- **3.** B maps $G \times V$ to \mathbb{R} , called the **value aggregator**, satisfies
- (a) monotonicity:

$$v \leqslant w \implies B(x, a, v) \leqslant B(x, a, w)$$

(b) consistency:

$$x \mapsto B(x, \sigma(x), v)$$
 is in V whenever $\sigma \in \Sigma$ and $v \in V$

Example. Every MDP is an RDP

Take Γ as given, set $V = \mathbb{R}^{X}$, and

$$B(x,a,v) = r(x,a) + \beta \sum_{x'} v(x')P(x,a,x')$$

- monotonicity and consistency conditions are trivial to check
- from $v(x) = \max_{a \in \Gamma(x)} B(x,a,v)$ we recover the MDP Bellman equation

$$v(x) = \max_{a \in \Gamma(x)} \left\{ r(x, a) + \beta \sum_{x'} v(x') P(x, a, x') \right\}$$

Example. Consider an optimal stopping problem with

$$v(x) = \max \left\{ e(x), c(x) + \beta \sum_{x' \in \mathsf{X}} v(x') P(x, x') \right\}$$

Let $V = \mathbb{R}^{\mathsf{X}}$

If $\Gamma(x) = \{0, 1\}$ and

$$B(x, a, v) = ae(x) + (1 - a) \left[c(x) + \beta \sum_{x' \in X} v(x') P(x, x') \right]$$

then (Γ, V, B) is an RDP with the same Bellman equation

Example. Consider an MDP with **state-dependent discounting**, so that

$$v(x) = \max_{a \in \Gamma(x)} \left\{ r(x, a) + \sum_{x'} v(x')\beta(x, a, x')P(x, a, x') \right\}$$

Let $V=\mathbb{R}^{\mathsf{X}}$ and

$$B(x, a, v) = r(x, a) + \sum_{x'} v(x')\beta(x, a, x')P(x, a, x')$$

Now (Γ, V, B) is an RDP with the same Bellman equation

Example. Consider a modified MDP with **risk-sensitive preferences**, so that

$$v(x) = \max_{a \in \Gamma(x)} \left\{ r(x, a) + \beta \frac{1}{\theta} \ln \left(\sum_{x'} \exp(\theta v(x')) P(x, a, x') \right) \right\}$$

for nonzero θ

With $V=\mathbb{R}^{\mathsf{X}}$ and

$$B(x, a, v) = r(x, a) + \beta \frac{1}{\theta} \ln \left(\sum_{x'} \exp(\theta v(x')) P(x, a, x') \right)$$

we obtain an RDP with the same Bellman equation

Example. Consider a modified MDP with **Epstein–Zin preferences**, so that

$$v(x) = \max_{a \in \Gamma(x)} \left\{ r(x, a)^{\alpha} + \beta \left(\sum_{x'} v(x')^{\gamma} P(x, a, x') \right)^{\alpha/\gamma} \right\}^{1/\alpha}$$

for nonzero α, γ

With V= the strictly positive functions in \mathbb{R}^{X} and

$$B(x, a, v) = \left\{ r(x, a)^{\alpha} + \beta \left(\sum_{x'} v(x')^{\gamma} P(x, a, x') \right)^{\alpha/\gamma} \right\}^{1/\alpha}$$

we obtain an RDP with the same Bellman equation

Example. Consider a modified MDP with quantile preferences, so that

$$v(x) = \max_{a \in \Gamma(x)} \left\{ r(x, a) + \beta(R_\tau^a v)(x) \right\}$$

where

$$(R^a_\tau v)(x) := \tau\text{-th}$$
 quantile of $v(X')$ when $X' \sim P(x,a,\cdot)$

With $V=\mathbb{R}^{\mathsf{X}}$ and

$$B(x, a, v) = r(x, a) + \beta(R_{\tau}^{a}v)(x)$$

we obtain an RDP with the same Bellman equation

Example. Consider a **shortest path problem** on graph $\mathcal{G} = (X, E)$

- $c(x, x') = \text{cost of traversing edge } (x, x') \in E$
- the direct successors of x denoted by

$$\mathscr{O}(x) := \{ x' \in \mathsf{X} : (x, x') \in E \}$$

Aim: find the minimum cost path from \boldsymbol{x} to a specified vertex \boldsymbol{d}

No discounting (so cannot use MDP theory)

The Bellman equation is

$$v(x) = \min_{x' \in \mathcal{O}(x)} \{c(x, x') + v(x')\}$$

Let $V = \mathbb{R}^{\mathsf{X}}$

Let $\Gamma(x) = \mathcal{O}(x)$ and

$$B(x, x', v) = c(x, x') + v(x')$$

This is an RDP with the same Bellman equation

Policies

Consider an arbitrary RDP (Γ, V, B)

A feasible policy is a

$$\sigma \in \mathsf{A}^\mathsf{X}$$
 such that $\sigma(x) \in \Gamma(x)$ for all $x \in \mathsf{X}$

- respond to state X_t with action $\sigma(X_t)$ at all $t \geqslant 0$
- $\Sigma :=$ the set of all feasible policies

Policy Operators

Fix $\sigma \in \Sigma$

The corresponding **policy operator** T_{σ} is defined at $v \in V$ by

$$(T_{\sigma} v)(x) = B(x, \sigma(x), v) \qquad (x \in X)$$

Lemma. T_{σ} is an order-preserving self-map on V

Proof: Immediate from monotonicity and consistency

Example. The Epstein-Zin policy operator is

$$(T_{\sigma} v)(x) = \left\{ r(x, \sigma(x))^{\alpha} + \beta \left(\sum_{x'} v(x')^{\gamma} P(x, \sigma(x), x') \right)^{\alpha/\gamma} \right\}^{1/\alpha}$$

Optimality

To define optimality for RDPs, we use the natural generalizations...

Lifetime value

Let $\mathscr{R}:=(\Gamma,V,B)$ be an RDP and let σ be any policy

Suppose T_{σ} has a unique fixed point in V

We denote this function by v_σ and call it the σ -value function

We interpret this function as the lifetime value of following σ

We call ${\mathscr R}$ well-posed if T_σ has a unique fixed point in V for all $\sigma\in\Sigma$

Example. Let \mathscr{R} be the RDP generated by an MDP

Recall that

$$T_{\sigma} v = r_{\sigma} + \beta P_{\sigma} v$$

This operator has the unique fixed point

$$v_{\sigma} = (I - \beta P_{\sigma})^{-1} r_{\sigma}$$

- Hence R is well-posed
- $v_{\sigma}(x) = \mathbb{E}_x \sum_{t \geq 0} \beta^t r(X_t, \sigma(X_t)) = \text{lifetime value}$

Example. For the Epstein-Zin RDP,

$$(T_{\sigma}v)(x) = \left\{ r(x, \sigma(x))^{\alpha} + \beta \left[\sum_{x' \in \mathsf{X}} v(x')^{\gamma} P(x, \sigma(x), x') \right]^{\alpha/\gamma} \right\}^{1/\alpha}$$

and

V:= the strictly positive functions in \mathbb{R}^{X}

Is this RDP well-posed?

Greedy Policies

Fix
$$v \in \mathbb{R}^X$$

A policy σ is called v-greedy if

$$\sigma(x) \in \operatorname*{argmax}_{a \in \Gamma(x)} B(x, a, v)$$

for all $x \in X$

Note: at least one v-greedy policy exists in Σ

The Bellman Operator

The **Bellman operator** is the self-map on \mathbb{R}^X defined by

$$(Tv)(x) = \max_{a \in \Gamma(x)} B(x, a, v)$$

Key idea:

$$Tv = v \iff v$$
 satisfies the Bellman equation

Optimality

Let ${\mathscr R}$ be a well-posed RDP

The value function is defined by $v^* = \bigvee v_{\sigma}$

More explicitly,

$$v^*(x) := \max_{\sigma \in \Sigma} v_{\sigma}(x) \qquad (x \in \mathsf{X})$$

= max lifetime value from state x

A policy $\sigma \in \Sigma$ is called **optimal** if

$$v_{\sigma} = v^*$$

Howard policy iteration for RDPs

```
input \sigma_0 \in \Sigma, an initial guess of \sigma^*
k \leftarrow 0
\varepsilon \leftarrow 1
while \varepsilon > 0 do
       v_k \leftarrow the unique fixed point of T_{\sigma_k}
       \sigma_{k+1} \leftarrow \mathsf{a} \ v_k \ \mathsf{greedy} \ \mathsf{policy}
    \varepsilon \leftarrow \mathbb{1}\{\sigma_k \neq \sigma_{k+1}\} \\ k \leftarrow k+1
end
return \sigma_k
```

Let \mathcal{R} be an RDP

Key question:

What assumptions to we need for optimality?

Obviously ${\mathscr R}$ must be well-posed

ullet each T_σ has a unique fixed point in V

This is the minimum requirement

What else?

Stability

Let \mathcal{R} be an RDP

We call \mathscr{R} globally stable if, for all $\sigma \in \Sigma$, the operator T_{σ} is globally stable on V

That is, for all $\sigma \in \Sigma$,

- 1. T_{σ} has a unique fixed point v_{σ} in V and
- 2. $\lim_{k\to\infty} T^k_{\sigma}v = v_{\sigma}$ for all $v\in V$

Let $\mathscr R$ be a well-posed RDP with value function v^*

Theorem. If \mathcal{R} is globally stable, then

- 1. v^* is the unique solution to the Bellman equation in \mathbb{R}^X
- 2. A feasible policy is optimal if and only it is v^* -greedy
- 3. At least one optimal policy exists
- 4. HPI returns an optimal policy in finitely many steps
- 5. VFI and OPI converge

Proof: See Ch 8

Types of RDPs

The optimality properties require global stability of all T_{σ}

We can check this directly

We can also

- 1. identify classes of RDPs that are globally stable
- 2. show that a given application belongs to one of these classes

Let's discuss the classification approach

Below $\mathcal{R} = (\Gamma, V, B)$ is a fixed RDP

Contracting RDPs

We call \mathscr{R} contracting if $\exists \beta < 1$ such that

$$|B(x, a, v) - B(x, a, w)| \le \beta ||v - w||_{\infty}$$

for all $(x,a) \in \mathsf{G}$ and $v,w \in V$

Thm. If $\mathscr R$ is contracting and V is closed, then $\mathscr R$ is globally stable

Proof: Easy to show that each T_{σ} is a contraction on V

(Main idea dates back to Denardo 1967)

Eventually Contracting RDPs

We call \mathscr{R} eventually contracting if there is an $L\geqslant 0$ such that $\rho(L)<1$ and

$$|B(x, a, v) - B(x, a, w)| \le \sum_{x'} |v(x') - w(x')| L(x, x')$$

for all $(x,a) \in \mathsf{G}$ and $v,w \in V$

Thm. If $\mathscr R$ is eventually contracting and V is closed, then $\mathscr R$ is globally stable

Proof: See the book

Concave RDPs

We call \mathcal{R} concave if

- 1. $V = [v_1, v_2]$
- 2. $B(x, a, v_1) > v_1(x)$ for all $(x, a) \in \mathsf{G}$ and
- 3. $v \mapsto B(x, a, v)$ is concave for all $(x, a) \in G$

Thm. If $\mathscr R$ is concave, then $\mathscr R$ is globally stable

Proof: See the book

Application: job search with quantile preferences

Set up:

- wage offer process $(W_t)_{t\geqslant 0}$ is P-Markov on finite set W
- discount factor $\beta \in (0,1)$

The Bellman equation is

$$v(w) = \max \left\{ \frac{w}{1-\beta}, c + \beta(R_{\tau}v)(w) \right\}$$

Here

$$(R_{\tau}v)(w) := \tau$$
-th quantile of $v(W')$ when $W' \sim P(w, \cdot)$

This problem studied in

- de Castro and Galvao (2019)
- de Castro, Galvao and Nunes (2022)
- de Castro and Galvao (2022)

We embed into the RDP framework by taking

- $\Gamma(w) = \{0, 1\}$
- $V = \mathbb{R}_+^{\mathsf{W}}$
- B given by

$$B(w, a, v) = a \frac{w}{1 - \beta} + (1 - a)[c + \beta(R_{\tau}v)(w)]$$

Easy to check that $\mathscr{R}:=(\Gamma,V,B)$ is an RDP with Bellman equation

$$v(w) = \max \left\{ \frac{w}{1-\beta}, c + \beta(R_{\tau}v)(w) \right\}$$

Proposition. \mathscr{R} is a contracting RDP

Proof: See DP Ch. 8

Since V is closed, \mathscr{R} is globally stable

Hence all optimality properties apply

Abstraction Level 2: ADPs

We define an abstract dynamic program (ADP) to be a pair

$$\mathscr{A} = (V, \{T_{\sigma}\}_{{\sigma} \in \Sigma}), \quad \text{where}$$

- 1. $V = (V, \preceq)$ is a partially ordered set and
- 2. $\{T_{\sigma}\}_{{\sigma}\in\Sigma}$ is a family of self-maps on V

Below,

- elements of Σ will be referred to as **policies**
- elements of $\{T_{\sigma}\}$ are called **policy operators**

If T_{σ} has a unique fixed point, then we

- denote it v_{σ}
- call it the σ -value function

Interpretation:

- ullet V is a set of candidate value functions
- ullet Σ is a set of feasible policies
- the lifetime value of $\sigma \in \Sigma$ is v_{σ}
- we seek a greatest element in $\{v_\sigma\}_{\sigma\in\Sigma}$

Example. Consider an RDP (Γ, V, B)

Let Σ be the set of feasible policies

Recall that, for each $\sigma \in \Sigma$ and $v \in V$,

$$(T_{\sigma} v)(x) = B(x, \sigma(x), v)$$

The pair $(V, \{T_{\sigma}\})$ is an ADP

Recall the expected value Bellman equation

$$\begin{split} g(y,a) &= \\ &\sum_{y'} \int \max_{a' \in \Gamma(y')} \left\{ r(y',\varepsilon',a') + \beta g(y',a') \right\} P(y,a,y') \varphi(\varepsilon') \, \mathrm{d}\varepsilon' \end{split}$$

If $V=\mathbb{R}^{\mathsf{G}}$ and R_{σ} is defined by

$$(R_{\sigma}g)(y, a) = \sum_{y'} \int \{r(y', \varepsilon', \sigma(y)) + \beta g(y', \sigma(y))\} P(y, a, y') \varphi(\varepsilon') d\varepsilon'$$

then $(V, \{R_{\sigma}\})$ is an ADP

Benefits of ADP theory

- More abstraction means easier proofs
- Removing structure makes it easier to see connections
- Can handle a more diverse range of problems

Given $v \in V$, a policy σ in Σ is called v-greedy if

$$T_{\sigma} v \succeq T_{\tau} v \quad \text{for all } \tau \in \Sigma$$
 (1)

Example. For an RDP we have

$$(T_{\sigma} v)(x) = B(x, \sigma(x), v)$$

so (1) holds iff

$$\sigma(x) \in \operatorname*{argmax}_{a \in \Gamma(x)} B(x,a,v) \quad \text{for all } x \in \mathsf{X}$$

ADP definitions generalize RDP definitions

Bellman equation

Fix an ADP
$$\mathscr{A} = (V, \{T_{\sigma}\})$$

We define the **Bellman operator** via

$$Tv := \bigvee_{\sigma} T_{\sigma} v$$

(if it exists)

We say that $v \in V$ satisfies the **Bellman equation** if Tv = v

Properties

We say that $\mathscr{A} = (V, \{T_{\sigma}\})$ is

- well-posed if T_{σ} has one fixed point in V for each $\sigma \in \Sigma$
- order stable if (V, T_{σ}) is order stable for each $\sigma \in \Sigma$
- max-stable if $\mathscr A$ is order stable, each $v\in V$ has at least one greedy policy, and T has at least one fixed point in V

Note: order stability is a regularity property — see Ch 9

Let \mathscr{A} be a well-posed ADP

A policy $\sigma \in \Sigma$ is called **optimal** for $\mathscr A$ if

$$v_{\tau} \leq v_{\sigma}$$
 for all $\tau \in \Sigma$

We set $v^* := \bigvee_{\sigma} v_{\sigma}$ and call v^* the value function

We define a self-map H on V via

$$H\,v = v_\sigma \quad \text{where} \quad \sigma \text{ is } v\text{-greedy}$$

Iterating with H is an abstract version of HPI

Max-Optimality

Theorem. If \mathscr{A} is max-stable, then

- 1. v^* exists in V
- 2. v^* is the unique solution to the Bellman equation in V
- 3. a policy is optimal if and only if it is v^* -greedy
- 4. at least one optimal policy exists

If, in addition, Σ is finite, then HPI $\to v^*$ in finitely many steps

Proof: See Ch. 9

Subordinate ADPs

Let
$$\mathscr{A}:=(V,\{T_\sigma\})$$
 and $\hat{\mathscr{A}}:=(\hat{V},\{\hat{T}_\sigma\})$ be ADPs

We say that $\hat{\mathscr{A}}$ is **subordinate** to \mathscr{A} if \exists

- 1. an order-preserving map F from V onto \hat{V} and
- 2. order-preserving maps $\{G_{\sigma}\}_{\sigma\in\Sigma}$ from \hat{V} to V

such that

$$T_{\sigma} = G_{\sigma} \circ F$$
 and $\hat{T}_{\sigma} = F \circ G_{\sigma}$ for all $\sigma \in \Sigma$

Let
$$G = \bigvee_{\sigma} G_{\sigma}$$

Theorem. If

- 1. A is max-stable and
- 2. $\hat{\mathscr{A}}$ is subordinate to \mathscr{A} ,

then $\hat{\mathscr{A}}$ is also max-stable and the Bellman operators are related by

$$T = G \circ F \quad \text{and} \quad \hat{T} = F \circ G$$

while the value functions are related by

$$v^* = G\,\hat{v}^* \quad \text{and} \quad \hat{v}^* = F\,v^*$$

Moreover,

- 1. if σ is optimal for \mathscr{A} , then σ is optimal for $\hat{\mathscr{A}}$, and
- 2. if $G_{\sigma} \hat{v}^* = G \hat{v}^*$, then σ is optimal for \mathscr{A}

Application

Consider an Epstein-Zin dynamic program with Bellman equation

$$v(w, e) = \max_{0 \le s \le w} \left\{ r(w, s, e)^{\alpha} + \beta \left(\sum_{e'} v(s, e')^{\gamma} \varphi(e') \right)^{\alpha/\gamma} \right\}^{1/\alpha}$$

Here

- w is current wealth (discretized)
- s is savings (discretized)
- ullet e is an IID endowment shock with range ${\sf E}$
- ullet eta is a constant in (0,1) and r is a reward function

The policy operator corresponding to $\sigma \in \Sigma$ is

$$(T_{\sigma} v)(w, e) = \left\{ r(w, \sigma(w), e)^{\alpha} + \beta \left(\sum_{e'} v(\sigma(w), e')^{\gamma} \varphi(e') \right)^{\alpha/\gamma} \right\}^{1/\alpha}$$

Proposition. If

- $X := W \times E$ and
- $V := (0, \infty)^{X}$,

then $\mathscr{A}=(V,\{T_\sigma\})$ is a max-stable ADP (Details in Ch 9)

Next consider the operator

$$(B_{\sigma} h)(w) = \left\{ \sum_{e} \left\{ r(w, \sigma(w), e)^{\alpha} + \beta h(\sigma(w))^{\alpha} \right\}^{\gamma/\alpha} \varphi(e) \right\}^{1/\gamma},$$

where h is an element of $(0, \infty)^{W}$

Define F at $v \in V$ by

$$(Fv)(w) = \left\{ \sum_{e} v(w, e)^{\gamma} \varphi(e) \right\}^{1/\gamma} \qquad (w \in W)$$

Then $\mathscr{B} = (F(V), \{B_{\sigma}\})$ is also an ADP

Moreover, ${\mathscr B}$ is subordinate to ${\mathscr A}$

To see, this, define G_{σ} by

$$(G_{\sigma}h)(w,e) = \{r(w,\sigma(w),e)^{\alpha} + \beta h(\sigma(w))^{\alpha}\}^{1/\alpha}$$

Then

- F and G_{σ} are order-preserving
- T_{σ} is equal to $G_{\sigma} \circ F$ and
- B_{σ} is equal to $F \circ G_{\sigma}$

Algorithm 4: Solving $\mathscr A$ via $\mathscr B$

input $\sigma_0 \in \Sigma$, set $k \leftarrow 0$ and $\varepsilon \leftarrow 1$

while $\varepsilon > 0$ do

 $h_k \leftarrow$ the fixed point of B_{σ_k} $\sigma_{k+1} \leftarrow$ an h_k -greedy policy, satisfying

$$\sigma_{k+1}(w) \in \underset{0 \leqslant s \leqslant w}{\operatorname{argmax}} \left\{ \sum_{e} \left\{ r(w, s, e)^{\alpha} + \beta h(s)^{\alpha} \right\}^{\gamma/\alpha} \varphi(e) \right\}^{1/\gamma}$$

$$\varepsilon \leftarrow \mathbb{1}\{\sigma_k \neq \sigma_{k+1}\} \text{ and } k \leftarrow k+1$$

end

Compute σ to satisfy

$$\sigma(w, e) \in \underset{0 \le s \le w}{\operatorname{argmax}} \left\{ r(w, s, e)^{\alpha} + \beta h_k(s)^{\alpha} \right\}^{1/\alpha}$$

return σ

Figure: Optimal savings policy with Epstein–Zin preference

Figure: Speed gain from replacing $\mathscr A$ with subordinate model $\mathscr B$

For details of computations see

https://github.com/jstac/adps_public