Ex. 17.15 (Cor.) Trouver tous les réels a strictement positifs tels que $\forall x > 0, a^x \geqslant x^a$. En déduire lequel des deux nombres e^{π} et π^e est le plus grand.

Proposition 17.35 (Condition nécessaire et suffisante de stricte monotonie)

Soit une fonction $f: I \to \mathbb{R}$ continue sur I, dérivable sur \mathring{I} avec f' de signe constant sur \mathring{I} . Alors f est strictement monotone si et seulement si f' ne s'annule sur aucun intervalle ouvert non vide.

Démonstration

Supposons f croissante la démonstration étant similaire dans le cas décroissant.

Si f est strictement croissante, alors f n'est constante sur aucun intervalle ouvert non vide, donc sa dérivée n'est pas nulle sur un tel intervalle. On établit la réciproque par contraposée. Si f n'est pas strictement croissante, il existe deux points x et y dans I tels que x < y et $f(y) \leq f(x)$. La restriction de f à [x, y] est donc constante puisque f est croissante. La dérivée de f est alors nulle sur l'intervalle ouvert non vide [x, y].

Ex. 17.16 (Cor.) Montrer que $f: x \in \mathbb{R} \mapsto x + \cos(x)$ est strictement croissante sur \mathbb{R} .

Ex. 17.17 (Cor.) Étudier les variations sur \mathbb{R} de $f: x \mapsto \operatorname{ch} x + \cos x$.

IV.5. Limite de la dérivée

Proposition 17.36 (Limite de la dérivée)

Soient $f: I \to \mathbb{R}$ et $a \in I$.

Si f est une fonction continue sur I, dérivable sur $I \setminus \{a\}$ et si $f'(x) \xrightarrow[x \to a]{} l \in \overline{\mathbb{R}}$ alors

$$\frac{f(x) - f(a)}{x - a} \xrightarrow[x \to a]{} l$$

En particulier, si $l \in \mathbb{R}$, f est alors dérivable en a et f'(a) = l.

Démonstration

Soit x un point de $I \setminus \{a\}$. On peut appliquer le théorème des accroissements finis entre a et x puisque f est continue sur [a, x] et dérivable sur [a, x[. Il existe donc $c_x \in]a, x[$ tel que $\frac{f(x)-f(a)}{x-a} = f'(c_x)$. Par encadrement $(a < c_x < x)$, $\lim_{x \to a} c_x = a$.

D'après le théorème de composition des limites, $\lim_{x\to a} \frac{f(x)-f(a)}{x-a} = l$. Ainsi, f est dérivable en a et f'(a) = l.

Remarque

Le théorème précédent permet d'éviter de vérifier « à la main » qu'une fonction est dérivable en un point où elle a été prolongée par continuité *lorsque sa dérivée possède une limite* en ce point. L'exemple suivant permettra de mieux comprendre sa portée.