Contrastive Learning

- is used to compare samples (e.g. images) with each other in representation space, typically by some distance metric, of which cosine similarity is the usual choice
- used in self-supervised learning to learn representations without classical labels such as class targets
- goal is to learn (abstract) representation of the input modality, e.g. images
- originally used in computer vision
 - idea is, that a representation of one image should be similar, or very close, to augmented versions of the same image
 - after all, content of the image stays the same after augmentation (provided the augmentation is not too drastic, e.g. crop size too big)
- goal of the (image) model is to maximize the cosine similary between the original image and its augmented versions
- this alone not sufficient, as model will collapse to a trivial solution, by simply return the same representation for all inputs
 - will maximize the cosine similarity between between the original image and its augmented versions, as representation produced for an image will always be the same
- to prevent this, negative samples are introduced
 - negative samples are other images, so not the original image
 - (usually) does not contain the same content as the original image, so cosine similarity between the original image should be minimized
- that way, model can't collapse to a constant representation, as this would not minimize the cosine similarity, and thus not minimize the loss
- this can be extended from unimodal to multimodal applications, in our case: images and text
- here we would like to maximize the cosine similarity between an image and its corresponding text, i.e. caption, and vice versa
- we do not need any augmentation, as we always have pairs: one image and one text
- negative samples for images are captions of other images, and vice versa
- model learns to produce similar representations for an image and its caption, describing the same real-world concept

Implementation:

- staying at our multimodal case, contrastive learning/loss is usually done on the batch-level
- means the multimodal model creates representations for all images and captions in the batch
- then, the cosine similarity between, the representations, of all images and captions in the batch is computed
 - can be done efficiently by normalizing each embedding and then perform matrix multiplication
- for a batch size of e.g. 256, each image has 255 negative samples, i.e. captions of other images, and one positive sample, i.e. its own caption, and vice versa
- can be interpreted as a classification problem with 256 classes, where the model has to predict the correct class, i.e. the positive sample, out of 256 classes/representations
- cross-entropy can then be used as the loss function, metric is accuracy

Problem:

- result highly dependend on the amount of negative samples that are available
 - as an example, if batch size would be two, then the model would have to differentiate between one caption that belongs to the image and one that does not (negative sample), and vice versa
 - ▶ a lot simpler than with 255 negative samples, or even more
- result will be better with more negative examples, as task more challenging

more negative samples can be achieved by using larger batch sizes, but this usually require, depending on the model architecture, higher VRAM GPUs or even multiple GPUs
costly

Retrieval