| NP and P problems: CHAPTER 34                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
| 34.1-4 Is the dynamic-programming algorithm for the 0-1 knapsack problem that is asked for in Exercise 15.2-2 a polynomial-time algorithm? Explain your answer.                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Give a dynamic-programming solution to the 0-1 knapsack problem that runs in $O(n \ W)$ time, where $n$ is the number of items and $W$ is the maximum weight of items that the thief can put in the knapsack.                    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| - The O(NW) algorithm runs in time that is linear w itself, not                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| in logw. If Wis large, the value of w could be exponentially                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| greater that the length of its binary representation.                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| For example, if wis on the order 2m, its binary representation                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| has length m. The running time O(nw) = O(n.2m):6 exponential                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| in m. Because of this it is considered a pseudo-polynomial time                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| algorithm. It is polynomial in the numerical value of the input                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| but not polynomial in the size of the input's encoding.                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| This isn't a polynomial-time algorithm. Recall that the algorithm from Exercise 16.2-2 had running                                                                                                                               |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| time $\Theta(nW)$ where $W$ was the maximum weight supported by the knapsack. Consider an                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| encoding of the problem. There is a polynomial encoding of each item by giving the binary representation of its index, worth, and weight, represented as some binary string of length $a=$                                       |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\Omega(n)$ . We then encode $W$ , in polynomial time. This will have length $\Theta(\lg W)=b$ . The solution to this problem of length $a+b$ is found in time $\Theta(nW)=\Theta(a\cdot 2^b)$ . Thus, the algorithm is actually |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| exponential.                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 34.2-2                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Prove that if G is an undirected bipartite graph with an odd number of vertices, then G is nonhamiltonian.                                                                                                                       |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| -> Let G= (V, E) be an undirected bipastite graph. By definition                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| we know that for the disjoint subsets U and W, there                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| UNW 2 V and UnW 2 P                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| - Consider any cycle Cin G. Because the graph is bipartite, edges                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| must alternate between vulices in U and vutices in W. This atternation                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| enforces that any cycle must have the same number of vertices from                                                                                                                                                               |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Dag from W.                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |



| ( | CHA | APT | ER | 35 |    |     |     |       |    |     |     |     |    |  |  |  |  |
|---|-----|-----|----|----|----|-----|-----|-------|----|-----|-----|-----|----|--|--|--|--|
|   |     |     |    |    | Ap | 000 | xim | af: e | 20 | Alo | 00: | Jhn | 15 |  |  |  |  |
|   |     |     |    |    |    |     |     |       |    |     |     |     |    |  |  |  |  |
|   |     |     |    |    |    |     |     |       |    |     |     |     |    |  |  |  |  |
|   |     |     |    |    |    |     |     |       |    |     |     |     |    |  |  |  |  |
|   |     |     |    |    |    |     |     |       |    |     |     |     |    |  |  |  |  |
|   |     |     |    |    |    |     |     |       |    |     |     |     |    |  |  |  |  |
|   |     |     |    |    |    |     |     |       |    |     |     |     |    |  |  |  |  |
|   |     |     |    |    |    |     |     |       |    |     |     |     |    |  |  |  |  |
|   |     |     |    |    |    |     |     |       |    |     |     |     |    |  |  |  |  |
|   |     |     |    |    |    |     |     |       |    |     |     |     |    |  |  |  |  |
|   |     |     |    |    |    |     |     |       |    |     |     |     |    |  |  |  |  |
|   |     |     |    |    |    |     |     |       |    |     |     |     |    |  |  |  |  |
|   |     |     |    |    |    |     |     |       |    |     |     |     |    |  |  |  |  |
|   |     |     |    |    |    |     |     |       |    |     |     |     |    |  |  |  |  |
|   |     |     |    |    |    |     |     |       |    |     |     |     |    |  |  |  |  |
|   |     |     |    |    |    |     |     |       |    |     |     |     |    |  |  |  |  |
|   |     |     |    |    |    |     |     |       |    |     |     |     |    |  |  |  |  |
|   |     |     |    |    |    |     |     |       |    |     |     |     |    |  |  |  |  |
|   |     |     |    |    |    |     |     |       |    |     |     |     |    |  |  |  |  |
|   |     |     |    |    |    |     |     |       |    |     |     |     |    |  |  |  |  |
|   |     |     |    |    |    |     |     |       |    |     |     |     |    |  |  |  |  |
|   |     |     |    |    |    |     |     |       |    |     |     |     |    |  |  |  |  |
|   |     |     |    |    |    |     |     |       |    |     |     |     |    |  |  |  |  |
|   |     |     |    |    |    |     |     |       |    |     |     |     |    |  |  |  |  |
|   |     |     |    |    |    |     |     |       |    |     |     |     |    |  |  |  |  |
|   |     |     |    |    |    |     |     |       |    |     |     |     |    |  |  |  |  |
|   |     |     |    |    |    |     |     |       |    |     |     |     |    |  |  |  |  |
|   |     |     |    |    |    |     |     |       |    |     |     |     |    |  |  |  |  |
|   |     |     |    |    |    |     |     |       |    |     |     |     |    |  |  |  |  |
|   |     |     |    |    |    |     |     |       |    |     |     |     |    |  |  |  |  |