Heimadæmi02 Greining og Hönnun stýrikerfa TÖV201G

Donn Eunice Bartido deb5@hi.is

Janúar 2023

2.1 Demonstrate the Validity of the following identities by means of truth tables

a) DeMorgan's theorem for three variables: (x + y + z) = x'y'z' and (xyz)' = x' + y' + z'

X	У	Z	x + y + z	(x + y + z)'	χ¹	y'	z'	x'y'z'
0	0	0	0	1	1	1	1	1
0	0	1	1	0	1	1	0	0
0	1	0	1	0	1	0	1	0
0	1	1	1	0	1	0	0	0
1	0	0	1	0	0	1	1	0
1	0	1	1	0	0	1	0	0
1	0	0	1	0	0	1	1	0
1	0	1	1	0	0	1	0	0

X	У	z	(xyz)	(xyz)'	χ¹	y'	z'	x'+ y' + z'
0	0	0	0	1	1	1	1	1
0	0	1	0	1	1	1	0	1
0	1	0	0	1	1	0	1	1
0	1	1	0	1	1	0	0	1
1	0	0	0	1	0	1	1	1
1	0	1	0	1	0	1	0	1
1	1	0	0	1	0	0	1	1
1	1	1	1	0	0	0	0	0

b) The distributive law : x + yz = (x + y)(x + z)

Х	У	Z	x + yz	(x + y)	(x + z)	(x + y)(x + z)
0	0	0	0	0	0	0
0	0	1	0	0	1	0
0	1	0	0	1	0	0
0	1	1	1	1	1	1

X	У	Z	x + yz	(x + y)	(x + z)	(x + y)(x + z)
1	0	0	1	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

c) The distributive law : x(y + z) = xy + xz

X	у	z	x(y + z)	ху	ΧZ	xy + xz
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	0	0	0	0
1	0	1	1	0	1	1
1	1	0	1	1	0	1
1	1	1	1	1	1	1

d) The associative law: x + (y + z) = (x + y) + z

X	у	z	X	y + z	x + (y + z)	(x + y)	(x + y) + z
0	0	0	0	0	0	0	0
0	0	1	0	1	1	0	1
0	1	0	0	1	1	1	1
0	1	1	0	1	1	1	1
1	0	0	1	0	1	1	1
1	0	1	1	1	1	1	1
1	1	0	1	1	1	1	1
1	1	1	1	1	1	1	1

d) The associative law: x(yz) = (xy)z

х	У	z	yz	x(yz)	ху	(xy)z
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	1	0	0	0
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	0	0	1	0
1	1	1	1	1	1	1

2.4 Reduce the following Boolean expression to the indicated number of literals:

(e) ABC'D + A'BD + ABCD -> to two literals

ABCD+A'BD+ABC'D

=ABD+A'BD

=BD

2.12 We can preform logical operations on strings of bits by considering each pair of corresponding bits separately (called bitwise operation) Given two eight-bit strings string A = 10110001, B = 10101100 Evaluate the eight-eight but result

- a) A AND B = 1010_0000
- b) A OR B = 1011_1101
- c) A XOR B = 0001_1101
- d) Not $A = 0100_{1110}$
- e) Not B = 0101_0011

2.17 Obtain the truth table of the following functions, and express each function in sum of min terms and product of maxterms form

a)
$$(b + cd)(c + bd)$$

2.27 Write the Boolean equations and draw the logic diagram of the circuit whose outputs are defined by the following truth table:

а	b	С	f1	f2
0	0	0	1	0
0	0	1	0	0
0	1	0	0	1
0	1	1	1	1
1	0	0	0	1
1	0	1	0	1
1	1	0	1	1
1	1	1	1	0

f1 = a'b'c + a'bc + abc' + abc

f2 = a'bc' + a'bc + ab'c' + ab'c + abc'

$2.27\ \text{Draw}$ logic diagrams of the circuits that implement the original and simplified expressions in Problem 2.4

b)

C)

ABIC + CD) + BIA + ACD)

ACD

ACD

ACD

BIA + ACD)

BIA + ACD)

In []: