

# □ 复习全在线



## 超星学习通APP 微课、课堂录课、题库、答疑

| <b>—</b> 、 | 登录  | :学习平台  |           | <br>2 |
|------------|-----|--------|-----------|-------|
|            |     |        |           |       |
|            |     |        |           |       |
|            | (二) | 线下辅导班录 | 课视频       | <br>_ |
|            | (三) | 复习题库(各 | 模块个性随机组卷) | <br>5 |
|            | (四) | 自学答疑   |           | 8     |

# □ 复习全在线

## 通识教学部





# □ 寒假辅导班的教学内容

# ✓ 如何备考?

围绕考试大 纲,区分重难 点,开展扫雷 式复习

#### 2025年广西专升本考试复习地图——数学

| 知识模块 | 考试大纲                                           | 知识难度  | 考试热度    | 讲授       | 校本讲义<br>考点编号 | 辅导指导书<br>考点编号 |
|------|------------------------------------------------|-------|---------|----------|--------------|---------------|
| 符号说明 | ※了解, ※※理解, ※※※掌握                               | ☆越多越难 | ●代表出题概率 |          | 模块. 序号       | 页码-序号         |
|      | (1) ※※函数的概念,<br>※※※简单函数的定义域、值域的求法和函数的表示法;      | ☆     | •••     | <b>√</b> | 1.1, 1.2     | 6-1, 10-3     |
|      | (2) ※※※函数的有界性、单调性、奇偶性、周期性;                     | ☆     | • •     | <b>√</b> | 1. 5         | 9-2           |
|      | (3) ※函数与其反函数之间的关系(定义域、值域和图形),<br>※※计算简单函数的反函数; | ☆☆    | •       |          | 1. 5         | 12-4          |
|      | (4) ※※※函数的四则运算与复合运算,<br>※※※复合函数的分解过程;          | **    | •••     |          | 1. 5         | 13-5          |
|      | (5) ※※基本初等函数的简单性质及其图像,<br>※※初等函数的概念;           | ☆     | •       |          | 熟记           | 熟记            |
|      | Carlo Community Inc. A                         |       | 12 12   | 7        | 100 100/2011 | BUIGHT BY     |

|          | (8) ※※广义积分的概念,<br>※※※广义积分的计算方法;  | <del>ተ</del> | •   |          | 4. 15        | 120-1, 122-2 |
|----------|----------------------------------|--------------|-----|----------|--------------|--------------|
|          | (9) ※※※定积分的简单应用。                 | ***          | ••• | <b>√</b> | 4. 16, 4. 17 | 128-1, 132-2 |
|          | (1) ※微分方程的阶及其解、通解、初始条件和特解的概念;    | ☆            | •   |          | 5. 1, 5. 2   | 139-1, 140-2 |
|          | (2) ※※※可分离变量的微分方程、一阶线性微分方程的求解方法; | 公公           | ••  | 1        | 5. 3, 5. 4   | 144-1        |
| 5. 常微分方程 | (3) ※※※用降阶法求解高阶徵分方程;             | <sub>ተ</sub> | ••  | 8        | 5. 7, 5. 8   | 152-1        |
|          | (4) ※二阶线性微分方程解的结构;               | ☆            | •   |          | 5. 5         | 158-1        |
|          | (5) ※※※二阶常系数齐次线性微分方程的解法          | ***          | ••• | 1        | 5. 6         | 159-2        |

势力点亮希望,坚持定够成功!

- □ 寒假辅导班的教学内容
  - ✓ 如何备考?
    - > 集体学习

课前小练 考点练习 课后强化

▶ 个人坚持

考点突破 组卷自测 做模拟卷

#### 典型例题

# 题型一: 求函数的定义域

## 1.求下列函数的定义域

- 1)  $f(x) = \arccos(x 4)$
- 2)  $f(x) = \ln(1-x) + \sqrt{x+1}$
- 3) 已知函数f(x)的定义域为 [1,e],求 $f(e^x)$ 的定义域。

### 知识储备

## 常见结构

1. 
$$\sqrt{\Delta} \Rightarrow \Delta \geq 0$$

2. 
$$\frac{1}{\Delta} \Rightarrow \Delta \neq 0$$

3. 
$$\log_a \Delta \Rightarrow \Delta > 0$$

另外

 $\arcsin \Delta$ ,  $\arccos \Delta \Rightarrow -1 \le \Delta \le 1$ 

#### 典型例题

题型一: 求函数的定义域

# 练习

- (1) 函数 $y = \frac{\ln(x-1)}{\sqrt{5-x}}$ 的定义域为:
- (2) 函数 $y = arcsin \frac{2x-1}{7} + \sqrt{2x-x^2}$ 的定义

域为: \_\_\_\_\_;

(3) 已知函数f(3-2x)的定义域为(-3,4],

则f(x)的定义域为: \_\_\_\_\_\_\_。

#### 知识储备

## 常见结构

1. 
$$\sqrt{\Delta} \Rightarrow \Delta \geq 0$$

2. 
$$\frac{1}{\Delta} \Rightarrow \Delta \neq 0$$

3. 
$$\log_a \Delta \Rightarrow \Delta > 0$$

另外

 $\arcsin \Delta$ ,  $\arccos \Delta \Rightarrow -1 \le \Delta \le 1$ 



# ……五分钟后



典型例题

题型一: 求函数的定义域

# 练习

(1) 函数 $y = \frac{\ln(x-1)}{\sqrt{5-x}}$ 的定义域为: (1,5)

(2) 函数 $y = \arcsin \frac{2x-1}{7} + \sqrt{2x - x^2}$ 的定义

域为: [0,2] ;

(3) 已知函数f(3-2x)的定义域为(-3,4],

则f(x)的定义域为: $\frac{[-5,9)}{}$ 。

#### 知识储备

## 常见结构

1. 
$$\sqrt{\Delta} \Rightarrow \Delta \geq 0$$

2. 
$$\frac{1}{\Delta} \Rightarrow \Delta \neq 0$$

3. 
$$\log_a \Delta \Rightarrow \Delta > 0$$

另外

 $\arcsin \Delta$ ,  $\arccos \Delta \Rightarrow -1 \le \Delta \le 1$ 

典型例题

# 题型二: 判断函数的性质

1.选出下列函数中的有界函数:

A.
$$y = e^x$$
 B. $y = \ln x$  C. $y = x^2$   
D. $y = \cos x$  E. $y = 1 + \sin x$  F. $y = \tan x$ 

2.下列函数中,偶函数是\_\_\_\_\_\_,奇 函数是 。

A.
$$y = \frac{1}{x}$$
 B. $y = -|x|$  C. $y = \ln x$   
D. $y = \tan x$  E.  $y = e^x$  F. $y = x^2 + 1$   
G. $y = \cos x$  H. $y = \sin x$   
I.  $y = \sin x \cdot e^{\cos x}$ 

#### 知识储备

## 主要考察两个性质

- 1. 有界性 熟悉基本初等函数的图像
- 2. 奇偶性

奇: f(-x) = -f(x), 图像 关于原点对称 偶: f(-x) = f(x), 图像关 于y轴对称

### 典型例题

题型二: 判断函数的性质

# 练习

(4) 下列函数中,偶函数是 \_\_\_\_\_, 奇

函数是\_\_\_\_\_。

$$1. f(x) = x^3 \sin(x)$$

2. 
$$f(x) = \frac{x^2+1}{x}$$

3. 
$$f(x) = x^5 - x^3$$

4. 
$$f(x) = e^{x^2}$$

$$5. f(x) = \sin(x^2)$$

$$6. f(x) = x \cos(x)$$

#### 知识储备

## 主要考察两个性质

1. **有界性** 熟悉基本初等函数的图像

## 2. 奇偶性

奇: f(-x) = -f(x), 图像 关于原点对称

偶: f(-x) = f(x), 图像关于y轴对称



# ……2分钟后



典型例题

题型二: 判断函数的性质

# 练习

(4) 下列函数中,偶函数是 1,4,5 ,奇 函数是 2,3,6 。

1. 
$$f(x) = x^3 \sin(x)$$

2. 
$$f(x) = \frac{x^2+1}{x}$$

3. 
$$f(x) = x^5 - x^3$$

4. 
$$f(x) = e^{x^2}$$

5. 
$$f(x) = \sin(x^2)$$

$$6. f(x) = x \cos(x)$$

#### 知识储备

## 主要考察两个性质

1. 有界性 熟悉基本初等函数的图像

## 2. 奇偶性

奇: f(-x) = -f(x), 图像 关于原点对称 偶: f(-x) = f(x), 图像关 于y轴对称

#### 典型例题

## 题型三: 判断两个函数是否相同

1. 下列函数中,f(x)和g(x)是同一函数的是:

A. 
$$f(x) = \tan x$$
,  $g(x) = \frac{1}{\cot x}$ 

B. 
$$f(x) = \ln x^3$$
,  $g(x) = 3 \ln x$ 

C. 
$$f(x) = \sqrt{x^4 - x^2}$$
,  $g(x) = x\sqrt{x^2 - 1}$ 

D. 
$$f(x) = \ln(x^2 - 1)$$
,  $g(x) = \ln(x - 1) + \ln(x + 1)$ 

$$E \cdot f(x) = 1, g(x) = \sin^2 x + \cos^2 x$$

F. 
$$f(x) = x, g(x) = \frac{x^2}{x}$$

$$G \cdot f(x) = \sqrt{x^2}, g(x) = x$$

$$H \cdot f(x) = 2 \ln x , g(x) = \ln x^2$$

#### 知识储备

## 考察两个角度:

- 1. 函数表达式能否恒等变形
- 2. 两者的定义域是否一致

#### 典型例题

## 题型三: 判断两个函数是否相同

# 练习

(5) 下列函数中,f(x)和g(x)是同一函数的

## 是:

A. 
$$f(x) = \ln(x^2 - 4)$$
,  
 $g(x) = \ln(x - 2) + \ln(x + 2)$   
B.  $f(x) = \sqrt{x^2}$ ,  $g(x) = x$   
C.  $f(x) = \sqrt{x^2}$ ,  $g(x) = (\sqrt{x})^2$ 

D. 
$$f(x) = \frac{(\sqrt{x})^2}{x}$$
,  $g(x) = \frac{x}{(\sqrt{x})^2}$ 

#### 知识储备

## 考察两个角度:

- 1. 函数表达式能否恒等变形
- 2. 两者的定义域是否一致



# ……2分钟后



### 典型例题

# 基础题型:已知表达式,求函数值

5. 设函数 
$$f(x) = \begin{cases} \sqrt{3x^2 - 27}, & x \ge 3 \\ \frac{x^2 - 8}{4}, & x < 3 \end{cases}$$
, 那么  $f(-6) = ()$ .

- A. 0
- B. 1
- C. 7
- D. 9

6. 设函数 
$$f(x) = \begin{cases} \cos(1+x), & x \ge 10 \\ \sin \frac{x}{3}, & x < 10 \end{cases}$$
 ,那么  $f(\frac{\pi}{2}) = ($  ).

- A. 0
- B. 1
- C.  $\frac{1}{2}$
- D.  $\frac{\sqrt{3}}{2}$

### 知识储备

## 熟记特殊角三角函数值

| 角度 (度)       | 弧度 (rad)        | $\sin(\theta)$       | $\cos(\theta)$       | $\tan(\theta)$       | $\cot(\theta)$       |
|--------------|-----------------|----------------------|----------------------|----------------------|----------------------|
| $0^{\circ}$  | 0               | 0                    | 1                    | 0                    | 不存在 (∞)              |
| 30°          | $\frac{\pi}{6}$ | $\frac{1}{2}$        | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{3}}$ | $\sqrt{3}$           |
| $45^{\circ}$ | $rac{\pi}{4}$  | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{2}}{2}$ | 1                    | 1                    |
| $60^{\circ}$ | $\frac{\pi}{3}$ | $\frac{\sqrt{3}}{2}$ | $\frac{1}{2}$        | $\sqrt{3}$           | $\frac{1}{\sqrt{3}}$ |
| 90°          | $\frac{\pi}{2}$ | 1                    | 0                    | 不存在 (∞)              | 0                    |
| 180°         | $\pi$           | 0                    | -1                   | 0                    | 不存在 (∞)              |

# 模块一 函数与极限

#### 典型例题

基础题型:已知表达式,求函数值

# 练习

(6) 设函数 
$$f(x) = \begin{cases} |\sin x| &, |x| < \frac{\pi}{3} \\ 0, & |x| \geqslant \frac{\pi}{3} \end{cases}$$
则  $f\left(\frac{\pi}{6}\right) =$  ( )

A . 
$$\frac{\sqrt{3}}{2}$$
 B .  $\frac{\sqrt{2}}{2}$  C .  $\frac{1}{2}$  D. 0

**B** . 
$$\frac{\sqrt{2}}{2}$$

$$C \cdot \frac{1}{2}$$

#### 知识储备

## 熟记特殊角三角函数值

| 角度 (度)       | 弧度 (rad)        | $\sin(\theta)$       | $\cos(\theta)$       | $\tan(\theta)$       | $\cot(\theta)$       |
|--------------|-----------------|----------------------|----------------------|----------------------|----------------------|
| 0°           | 0               | 0                    | 1                    | 0                    | 不存在 (∞)              |
| 30°          | $\frac{\pi}{6}$ | $\frac{1}{2}$        | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{3}}$ | $\sqrt{3}$           |
| $45^{\circ}$ | $\frac{\pi}{4}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{2}}{2}$ | 1                    | 1                    |
| 60°          | $\frac{\pi}{3}$ | $\frac{\sqrt{3}}{2}$ | $\frac{1}{2}$        | $\sqrt{3}$           | $\frac{1}{\sqrt{3}}$ |
| 90°          | $\frac{\pi}{2}$ | 1                    | 0                    | 不存在 (∞)              | 0                    |
| 180°         | $\pi$           | 0                    | -1                   | 0                    | 不存在 (∞)              |



# ……1分钟后



#### 典型例题

基础题型:已知表达式,求函数值

# 练习

(6) 设函数 
$$f(x) = \begin{cases} |\sin x| &, |x| < \frac{\pi}{3} \\ 0, & |x| \geqslant \frac{\pi}{3} \end{cases}$$
则  $f\left(\frac{\pi}{6}\right) =$  ( )

A . 
$$\frac{\sqrt{3}}{2}$$

$$\mathbf{B} \cdot \frac{\sqrt{2}}{2}$$

D. 0

#### 知识储备

## 熟记特殊角三角函数值

| 角度 (度)       | 弧度 (rad)        | $\sin(\theta)$       | $\cos(\theta)$       | $\tan(\theta)$       | $\cot(\theta)$       |
|--------------|-----------------|----------------------|----------------------|----------------------|----------------------|
| 0°           | 0               | 0                    | 1                    | 0                    | 不存在 (∞)              |
| 30°          | $\frac{\pi}{6}$ | $\frac{1}{2}$        | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{3}}$ | $\sqrt{3}$           |
| $45^{\circ}$ | $\frac{\pi}{4}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{2}}{2}$ | 1                    | 1                    |
| 60°          | $\frac{\pi}{3}$ | $\frac{\sqrt{3}}{2}$ | $\frac{1}{2}$        | $\sqrt{3}$           | $\frac{1}{\sqrt{3}}$ |
| 90°          | $\frac{\pi}{2}$ | 1                    | 0                    | 不存在 (∞)              | 0                    |
| 180°         | $\pi$           | 0                    | -1                   | 0                    | 不存在 (∞)              |

