

Applied Cryptography CPEG 472/672 Lecture 9A

Instructor: Nektarios Tsoutsos

Hard computational problems

- Simple to describe, impossible to solve
 - Very useful in cryptography
 - RSA, Diffie-Hellman, Lattice crypto
- Computational hardness
 - No algorithm will run in reasonable time
 - Intractable problems: practically impossible to solve on any computer
 - The target computer does not matter due to equivalence of computing models

Computational complexity

- Approximate # of alg operations as a function of the input size
 - Naïve search: Loop over n array elements
 - Complexity: number of loop iterations
 - Linear to number of elements n
 - Sorting: n*log(n) operations to sort a list
 - The list has n elements
 - Linearithmic complexity: grows faster than n
 - Brute force cipher key: 2ⁿ attempts
 - ⊙The key is n bits
 - Exponential complexity (impractical)

Big O notation

- Used to express complexity
 - Ignores constant factors

 - Finding the LSB is O(1) (constant time)
- Big-O: upper bound for complexity
 - ⊙ O(n): linear
 - ⊙ O(2ⁿ): exponential
 - ⊙ O(n²): quadratic
 - ⊙ O(n^k): polynomial (polytime)
 - Superpolynomial: grows faster than any poly
 - \odot O(2ⁿ), O(n^{log(n)}), O(nⁿ), O(n^{f(n-1)}) with f(x)=x^{f(x-1)}

Computational complexity

- Big-O examples
 - Multiply two n-bit integers: O(n^{1.465})
 - Multiply two n x n matrices: O(n^{2.373})
 - Identify an n-bit prime: O(n⁶)
 - Brute force n-bits: O(2ⁿ)
- Complexity classes
 - Problems solvable in O(nk) time: TIME(nk)
 - Class P for polynomial time: union of all TIME(n^k)
 - Problems solvable in O(nk) mem: SPACE(nk)
 - Class PSPACE: union of all SPACE(nk) (superset of P)

NP complexity class

- Solution can be verified in polytime
 - Still, solution hard to find
 - ⊙ E.g., check is cipher key is correct
 - Finding the key is hard, verification is easy
- Hardest problems in NP: NP-complete
 - Traveling salesman, knapsack problem
 - Tetris, Super Mario, Candy Crush
 - All NP-complete problems are equally hard
 - Not all instances are hard: easy special cases

NP complexity class

- NP-Hard: at least as hard as NP-cmpl
 - What it takes to solve NP-hard also solves NP-complete
- Some problems are not in NP
 - Verify that no solution exists to a problem
 - Need to go through all possible inputs
- P vs NP: Is there a way to solve NP problems in polytime?
 - No proof yet: we believe P is not equal to NP

Complexity classes

Factoring

Problem in NP, but probably not NP-complete

- ⊙ Find primes p,q given N=p*q
 - Widely used in RSA
 - Probably not NP-complete
- Different methods to factor integers
 - Naïve: try all numbers less than N
 - \odot For n-bit integer N, the complexity is $O(2^n)$
 - \odot Smarter Naïve: try all numbers up to \sqrt{N}
 - \odot For n-bit integer N, the complexity is $O(2^{n/2}/n)$
 - $\odot \text{GNFS: } O(e^{1.91n^{1/3}(\log n)^{2/3}})$
 - ⊙ 1024-bit int: 2⁷⁰ ops, 2048-bit int 2⁹⁰ ops

Discrete log problem

Problem in NP, but probably not NP-complete

- \odot Find y so that $g^y = x$ given base $g \in \mathbb{Z}_p^*$
- Math background (see HandoutA)
 - \odot Group: a set of elements. E.g., $\mathbb{Z}_5^* = \{1,2,3,4\}$
 - Axioms: closure, associativity, identity, inv
 Z₅ is also commutative
 - ⊙ Cyclic group: has at least 1 generator g so that $g^1, g^2, g^3, ...$ spans all elements of \mathbb{Z}_p^* $o \mathbb{Z}_5^*$ is cyclic with generators 2 and 3
- - $\circ \mathbb{Z}_p^*$ contains about 2^m elements for m-bit p

Things can go wrong

- Factoring is easy if integer N is the product of powers of small primes

 - \odot Factoring $N=p^r q^s$ and r > log(p) is easy
- Implementation errors
 - Generating 128-bit RSA keys
 - Invoking secure libraries with small prime sizes
 - \odot Using a 500-bit prime p in \mathbb{Z}_p^*

Hands-on exercises

- Pollard Rho method for factorization
- Comparison of factorization algorithms
- Computing discrete log (Pohlig-Hellman)

Reading for next lecture

- Aumasson: Chapter 10 until "Full Domain Hash Signatures"
- HandoutA on Canvas
- We will have a short quiz on the material