LISTA EXERCÍCIOS 5 LFA

- 1) Usando o método apresentado na seção 7.3 do material, proponha uma gramática regular que gere cada uma das linguagens no alfabeto {a, b} dos itens abaixo (obviamente, isso deve ser feito a partir da construção dos respectivos autômatos correspondentes às expressões regulares apresentadas) e mostre um exemplo de derivação de uma dada palavra aceita por cada uma delas.
- a) a(ba)*
- b) $(a \cup b)^*(aa \cup bb)$
- 2) Usando o método apresentado na seção 7.3 do material, prove que a gramática G abaixo gera uma linguagem regular (obviamente, isso deve ser feito por meio da construção do autômato correspondente à gramática G):

Gramática G:

```
V = {S, A, B, a, b };
Σ = {a, b};
R = {S → A, S → B, B → bB, A → aA, A → ε, B → ε };
S é o símbolo de partida.
```

- 3) Considerando o alfabeto $\Sigma = \{a, b\}$ e a expressão regular E1 igual a $(a \cup b)^*a$, prove, utilizando o método apresentado na seção 7.4.1, que a linguagem complemento da linguagem denotada por E1 também é uma linguagem regular.
- 4) O Objetivo deste exercício é demonstrar por meio de um exemplo que, se L1 e L2 são linguagens regulares, então a linguagem $L_1 \cap L_2$ também o é. Para tanto, efetue o indicado nos itens abaixo:
- a) Proponha duas linguagens L_1 e L_2 em um alfabeto Σ que sejam regulares , tal que $L_1 \cap L_2 \neq \emptyset$;
- b) Construa os autômatos finitos determinísticos M_1 e M_2 correspondentes a L_1 e L_2 , respectivamente, de modo que Q_1 e Q_2 sejam disjuntos.
- c) Usando o método apresentado na seção 7.4.1, calcule a quíntupla $(Q, \Sigma, \delta, s_i, F)$ que corresponde ao autômato finito determinístico M que aceita $L_1 \cap L_2$.

d)	Desenhe o autômato M (note que tal autômato se encaixa nos moldes dos autômatos finitos determinísticos a múltiplos estados apresentados na seção 6.3.2).