线性感知机

赵海涛

haitaozhao@ecust.edu.cn

大纲

- 感知机模型
- 感知机学习策略
- 感知机学习算法
- 感知机算法的对偶形式

感知机(Perceptron)

- 输入为实例的特征向量,输出为实例的类别,取+1和-1;
- 感知机对应于输入空间中将实例划分为正负两类的分离超平面,属于判别模型;
- 导入基于误分类的损失函数;
- 利用梯度下降法对损失函数进行极小化;
- 感知机学习算法具有简单而易于实现的优点,分为原始形式和对偶形式;
- 1957年由Rosenblatt提出,是神经网络与支持向量机的基础。

感知机模型

- 定义(感知机):
- 假设输入空间(特征空间)是 $x \in \mathbb{R}^n$, 输出空间是 $y = \{+1, -1\}$
- 点,输出 $y \in Y$ 表示实例的类别,由输入空间到输出空间的函数:

$$f(x) = sign(w \cdot x + b)$$

- 称为感知机。
- 模型参数: w, x, 内积, 权值向量, 偏置,
- 符号函数:

$$sign(x) = \begin{cases} +1, x \ge 0 \\ -1, x < 0 \end{cases}$$

感知机模型

- 感知机几何解释:
- 线性方程: $w \cdot x + b = 0$
- 对应于超平面S, w为法向量, b截距, 分离正、负类:
- 分离超平面:

感知机学习策略

- 如何定义损失函数?
- 自然选择:误分类点的数目,但损失函数不是w,b 连续可导,不宜优化。
- 另一选择: 误分类点到超平面的总距离:
- 距离: $\frac{1}{\|w\|}|w \cdot x_0 + b|$

误分类点:
$$-y_i(\omega \cdot x_i + b) > 0$$

误分类点距离:
$$-\frac{1}{\|w\|}y_i|w\cdot x_i+b|$$

总距离:
$$-\frac{1}{\|w\|} \sum_{x_i \in M} y_i(\omega \cdot x_i + b)$$

感知机学习策略

• 损失函数:

$$L(w,b) = -\sum_{x_i \in M} y_i(w \cdot x + b)$$

• M为误分类点的数目

• 求解最优化问题:

$$\min_{w,b} L(w,b) = -\sum_{\chi_i \in M} y_i(w \cdot x_i + b)$$

- 随机梯度下降法,
- 首先任意选择一个超平面, w, b, 然后不断极小化目标函数,损失函数L的梯度: $\nabla_{w}L(w,b) = -\sum_{i} y_{i}x_{i}$ $\nabla_{b}L(w,b) = -\sum_{i} y_{i}$

• 选取误分类点更新: $w \leftarrow w + \eta y_i x_i$ $b \leftarrow b + \eta y_i$

感知机学习算法的原始形式:

输入: 训练数据集 $T = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_n)\}$, 其中 $x_i \in X = R^n$, $y_i \in Y = \{-1, +1\}$, $i = 1, 2, \dots, N$ 学习率 $\eta(0 < \eta \le 1)$;

输出: w, b; 感知机模型 $f(x) = sign(w \cdot x + b)$

- (1) 选取初值 w_0 , b_0
- (2) 在训练集中选取数据 (x_i, y_i)
- (3) 如果 $y_i(w \cdot x_i + b) \le 0$ $w \leftarrow w + \eta y_i x_i \quad b \leftarrow b + \eta y_i$
- (4) 转至(2), 直至训练集中没有误分类点

• 例: 正例: $x_1 = (3,3)^T$, $x_2 = (4,3)^T$ 负例: $x_3 = (1,1)^T$

• 解:构建优化问题: $\min_{w,b} L(w,b) = -\sum_{\chi_i \in M} y_i(w \cdot x_i + b)$

求解: w, b, $\eta = 1$

- (1) 取初值 $w_0 = 0$, $b_0 = 0$
- (2) 对 $x_1 = (3,3)^T$, $y_1(w_0 \cdot x_1 + b_0) = 0$, 未能被正确分类,更新w, b $w_1 = m = y_1 x_1 = (3,3)^T$, $b_1 = b_0 + y_1 = 1$

得线性模型: $w_1 \cdot x + b_1 = 3x^{(1)} + 3x^{(2)} + 1$

(3) 对 x_2 ,显然, $y_i(w_1 \cdot x_i + b_1) > 0$,被正确分类, 对 $x_3 = (1,1)^T$, $y_3(w_1 \cdot x_3 + b_1) < 0$,被误分类 $w_2 = w_1 + y_3 x_3 = (2,2)^T$, $b_2 = b_1 + y_3 = 0$

- 得到线性模型: $w_2 \cdot x + b_2 = 2x^{(1)} + 2x^{(2)}$
- 如此继续下去: $w_7 = (1,1)^T, b_7 = -3$ $w_7 \cdot x + b_7 = x^{(1)} + x^{(2)} - 3$
- 分离超平面: $x^{(1)} + x^{(2)} 3 = 0$
- 感知机模型: $f(x) = sign(x^{(1)} + x^{(2)} 3)$

迭代次数	误分类点	w	ь	$w \cdot x + b$
0		0	0	0
1	\boldsymbol{x}_1	$(3,3)^{T}$	1	$3x^{(1)} + 3x^{(2)} + 1$
2	x ₃	$(2,2)^{T}$	0	$2x^{(1)} + 2x^{(2)}$
3	x_3	(1,1) ^T	-1	$x^{(1)} + x^{(2)} - 1$
4	<i>x</i> ₃	$(0,0)^{T}$	-2	-2
5	x ₂	(3,3) ^T	-1	$3x^{(1)} + 3x^{(2)} - 1$
6	x ₃	$(2,2)^{T}$	-2	$2x^{(1)} + 2x^{(2)} - 2$
7	<i>x</i> ₃	$(1,1)^{T}$	-3	$x^{(1)} + x^{(2)} - 3$
8	0	(1,1) ^T	-3	$x^{(1)} + x^{(2)} - 3$

- 算法的收敛性:证明经过有限次迭代可以得到一个将训练数据集完全 正确划分的分离超平面及感知机模型。
- 将b并入权重向量w,记作: $\hat{w} = (w^T, b)^T$ $\hat{w} \cdot \hat{x} = w \cdot x + b$ $\hat{x} = (x^T, 1)^T$ $\hat{x} \in R^{n+1}, \hat{w} \in R^{n+1}$
- 定理: 设训练数据集是可分的

其中
$$x_i \in X = R^n$$
, $y_i \in Y = \{-1, +1\}$, $i = 1, 2, \dots, N$

(1) 存在满足条件 $\|\widehat{w}_{opt}\| = 1$ 的超平面 $\widehat{w}_{opt} \cdot \widehat{x} = w_{opt} \cdot x + b_{opt} = 0$,

且存在 $\gamma > 0$,对所有 $i = 1,2,\dots,N$

$$y_i(\widehat{w}_{opt} \cdot \widehat{x}_i) = y_i(w_{opt} \cdot x_i + b_{opt}) \ge \gamma$$

- 证明: (1)
- 由线性可分, 存在超平面:
- 使 $\|\hat{w}_{opt}\| = 1$,由有限的点,均有: $\hat{w}_{opt} \cdot \hat{x} = w_{opt} \cdot x + b_{opt} = 0$

$$y_i(\widehat{w}_{opt} \cdot \widehat{x}_i) = y_i(w_{opt} \cdot x_i + b_{opt}) > 0$$

• 存在
$$\gamma = \min_{i} \{ y_i (w_{opt} \cdot x_i + b_{opt}) \}$$

• 使: $y_i(\widehat{w}_{opt} \cdot \widehat{x}_i) = y_i(w_{opt} \cdot x_i + b_{opt}) \ge \gamma$

- (2) 令 $R = \max_{1 \le i \le N} \|\hat{x}_i\|$,算法在训练集的误分类次数k满足不等式 $k \le \left(\frac{R}{\gamma}\right)^2$

$$\widehat{w}_{k-1} = (w_{k-1}^T, b_{k-1})^T$$

• 第k个误分类实例的条件是: $y_i(\hat{w}_{k-1} \cdot \hat{x}_i) = y_i(w_{k-1} \cdot x_i + b_{k-1}) \le 0$

- (2) 令 $\mathbf{R} = \max_{1 \le i \le N} \|\hat{x}_i\|$,算法在训练集的误分类次数k满足不等式 $k \le \left(\frac{R}{\nu}\right)^2$
 - 推导两个不等式:
 - (1)
 - $\pm : \widehat{w}_k \cdot \widehat{w}_{opt} \ge k\eta\gamma$

$$\widehat{w}_{k} \cdot \widehat{w}_{opt} = \widehat{w}_{k-1} \cdot \widehat{w}_{opt} + \eta y_{i} \widehat{w}_{opt} \cdot \widehat{x}_{i}$$

$$\geq \widehat{w}_{k-1} \cdot \widehat{w}_{opt} + \eta \gamma$$

• 得:
$$\widehat{w}_k \cdot \widehat{w}_{opt} \ge \widehat{w}_{k-1} \cdot \widehat{w}_{opt} + \eta \gamma \ge \widehat{\omega}_{k-2} \cdot \widehat{w}_{opt} + 2\eta \gamma \ge \dots \ge k\eta \gamma$$

- (2) 令 $\mathbf{R} = \max_{1 \le i \le N} \|\hat{x}_i\|$,算法在训练集的误分类次数k满足不等式 $k \le \left(\frac{R}{\gamma}\right)^2$
- $(2) \quad \|\widehat{w}_k\| \le k\eta^2 R^2$

則:
$$\|\widehat{w}_k\|^2 = \|\widehat{w}_{k-1}\|^2 + 2\eta y_i \widehat{w}_{k-1} \cdot \widehat{x}_i + \eta^2 \|\widehat{x}_i\|^2$$

 $\leq \|\widehat{w}_{k-1}\|^2 + \eta^2 \|\widehat{x}_i\|^2$
 $\leq \|\widehat{w}_{k-1}\|^2 + \eta^2 R^2$
 $\leq \|\widehat{w}_{k-2}\|^2 + 2\eta^2 R^2 \leq \cdots$
 $\leq k\eta^2 R^2$

(2) 令 $\mathbf{R} = \max_{1 \le i \le N} \|\hat{x}_i\|$,算法在训练集的误分类次数k满足不等式 $k \le \left(\frac{R}{\gamma}\right)^2$

结合两个不等式: $k\eta\gamma \le \hat{w}_k \cdot \hat{w}_{opt} \le ||\hat{w}_k|| ||\hat{w}_{opt}|| \le \sqrt{k\eta}R$ $k^2\gamma^2 \le kR^2$

得: $k \leq \left(\frac{R}{\gamma}\right)^2$

- •定理表明:
- 误分类的次数k是有上界的,当训练数据集线性可分时,感知机 学习算法原始形式迭代是收敛的。
- 感知机算法存在许多解,既依赖于初值,也依赖迭代过程中误分 类点的选择顺序。
- •为得到唯一分离超平面,需要增加约束,如SVM。
- 线性不可分数据集, 迭代震荡。

- 感知机算法的对偶形式:
- 回顾 SVM 对偶形式:
- 基本想法:
- 将w和b表示为实例 x_i 和标记 y_i 的线性组会的形式,通过求解其系数而求得w和b,对误分类点: x_i

$$w \leftarrow w + \eta y_i x_i$$

 $b \leftarrow b + \eta y_i$ 最后学习到的w, b
 $b = \sum_{i=1}^{N} \alpha_i y_i x_i$

- 感知机学习算法的对偶形式:
- 输入: 训练数据集 $T = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\},$
- 其中 $x_i \in X = R^n$, $y_i \in Y = \{-1, +1\}$, $i = 1, 2, \dots, N$
- 学习率 η (0 < η ≤ 1);
- 输出: α , b; 感知机模型 f(x) sign $\left(\sum_{i=1}^{N} \alpha_i y_i x_i \cdot x + b\right)$
- 其中 $\alpha = (\alpha_1, \alpha_2, \cdots \alpha_N)^T$

- (1) $\alpha \leftarrow 0$, $b \leftarrow 0$
- (2) 在训练集中选取数据 (x_i, y_i)

(3) 如果
$$y_i \left(\sum_{i=1}^{N} \alpha_j y_j x_j \cdot x_i + b \right) \le 0$$
$$\alpha_i \leftarrow \alpha_i + \eta$$
$$b \leftarrow b + \eta y_i$$

(4) 转至(2)直到没有误分类数据。 Gram 矩阵 $G=[x_i \cdot x_j]_{N \times N}$

例:正样本点是 $x_1 = (3,3)^T$, $x_2 = (4,3)^T$, 负样本点是 $x_3 = (1,1)^T$ 解 按照算法2.2,

- (1) $\Re \alpha_i = 0$, i = 1,2,3, b = 0, $\eta = 1$
- (2) 计算Gram矩阵

$$G = \begin{bmatrix} 18 & 21 & 6 \\ 21 & 25 & 7 \\ 6 & 7 & 2 \end{bmatrix}$$

(3) 误分条件
$$y_i \left(\sum_{i=1}^N \alpha_j y_j x_j \cdot x_i + b \right) \le 0$$
 参数更新 $\alpha_i \leftarrow \alpha_i + 1, b \leftarrow b + y_i$

例: 正样本点是 $x_1 = (3,3)^T$, $x_2 = (4,3)^T$, 负样本点是 $x_3 = (1,1)^T$

(4) 迭代。过程从略, 结果列于表2.2

0	1	2	3	4	5	6	7
	<i>x</i> ₁	x ₃	<i>x</i> ₃	<i>x</i> ₃	\boldsymbol{x}_1	<i>x</i> ₃	х,
0	1	1	1	2	2	2	2
0	0	0	0	0	0	0	0
0	0	1	2	2	3	4	5
0	1	0	-1	0	-1	-2	-3
	0 0 0	0 1 0 0 0 0	x1 x3 0 1 1 0 0 0 0 0 1	x1 x3 x3 0 1 1 1 0 0 0 0 0 0 1 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{c ccccccccccccccccccccccccccccccccccc$

(5)
$$w = 2x_1 + 0x_2 - 5x_3 = (1,1)^T$$
 分离超平面 $x^{(1)} + x^{(2)} - 3 = 0$
b = -3

感知机模型 $f(x) = sign(x^{(1)} + x^{(2)} - 3)$

统计学习方法总结

- 感知机
- K近邻法
- 朴素贝叶斯
- 决策树
- 逻辑斯蒂回归与最大熵模型
- 支持向量机
- 提升方法
- EM算法
- 隐马尔科夫模型
- 条件随机场

表 12.1 10 种统计学习方法特点的概括总结

方法	适用问题	模型特点	模型类型	学习策略	学习的损 失函数	学习算法
感知机	二类分类	分离超平面	判别模型	极小化误分点 到超平面距离	误分点到 超平面距 离	随机梯度下降
k 近邻法	多类分类, 回归	特征空间,样 本点	判别模型			
朴素贝叶斯法	多类分类	特征与类别的联合概率 分布,条件独 立假设		极 大 似 然 估 计,极大后验 概率估计		概率计算公式, EM 算法
决策树	多类分类, 回归	分类树, 回归 树	判别模型	正则化的极大 似然估计	对 数 似 然 损失	特征选择,生成,剪枝
逻辑斯谛回 归与最大熵 模型	多类分类	特征条件下 类别的条件 概率分布,对 数线形模型		极 大 似 然 估 计,正则化的 极大似然估计	逻辑斯谛损失	改进的迭代尺 度算法,梯度 下降,拟牛顿 法
支持向量机	二类分类	分离超平面, 核技巧	判别模型	极小化正则化 合页损失, 软 间隔最大化	合页损失	序列最小最优 化算法(SMO)
提升方法	二类分类	弱分类器的 线性组合	判别模型	极小化加法模 型的指数损失	指数损失	前向分步加法 算法
EM 算法®	概率模型参 数估计	含隐变量概 率模型		极 大 似 然 估 计,极大后验 概率估计		迭代算法
隐马尔可夫 模型	标注	观测序列与 状态序列的 联合概率分 布模型		极大似然估计, 极大后验概率 估计		概率计算公式, EM 算法
条件随机场	标注	状态序列条件下观测序列条件下观测序系件系件系数 率分布,对数 线性模型		极 大 似 然 估 计,正则化极 大似然估计		改进的迭代尺 度算法,梯度 下降,拟牛顿 法

谢谢各位同学!