Home Assignment 3

Yu Wang (ndp689)

December 14, 2021

Contents

1	Kernels
	1.1 Distance in feature space
	1.2 Sum of kernels
	1.3 Rank of Gram matrix
2	Early stopping
3	Learning by discretization

1 Kernels

1.1 Distance in feature space

$$\begin{split} \|\Phi(x) - \Phi(z)\| &= \sqrt{\|\Phi(x) - \Phi(z)\|^2} \\ &= \sqrt{<\Phi(x), \Phi(x) > -2 < \Phi(x), \Phi(z) > + < \Phi(z), \Phi(z) >} \\ &= \sqrt{< k(x, \cdot), k(x, \cdot) > -2 < k(x, \cdot), k(z, \cdot) > + < k(x, \cdot), k(z, \cdot) >} \\ &= \sqrt{k(x, x) - 2k(x, z) + k(z, z)} \end{split}$$

1.2 Sum of kernels

Let $m \in \mathbb{N}$, $x_1, ..., x_m \in \mathcal{X}$, the kernel matrix of k_1 with respect to $x_1, ..., x_m$ is the $m \times m$ matrix **K1** with elements $K1_{ij} = k_1(x_i, x_j)$, and the kernel matrix of k_2 with respect to $x_1, ..., x_m$ is the $m \times m$ matrix **K2** with elements $K2_{ij} = k_2(x_i, x_j)$.

Since k_1, k_2 are positive-definite kernels, then we have:

$$\forall c_1, ..., c_m \in \mathbb{R} : \sum_{i,j=1}^m c_i c_j K 1_{ij}$$

$$= \sum_{i,j=1}^m c_i c_j k_1(x_i, x_j) \ge 0$$
(1)

and

$$\forall c_1, ..., c_m \in \mathbb{R} : \sum_{i,j=1}^m c_i c_j K 2_{ij}$$

$$= \sum_{i,j=1}^m c_i c_j k_2(x_i, x_j) \ge 0$$
(2)

Then, for $k(x, z) = a \cdot k_1(x, z) + b \cdot k_2(x, z)$ $(a, b \in \mathbb{R}^+)$, we define the kernel matrix of k with respect to $x_1, ..., x_m$ is the $m \times m$ matrix **K** with elements

 $K_{ij} = k(x_i, x_j)$. Combined with equations (1) and (2), we have:

$$\forall c_1, ..., c_m \in \mathbb{R} : \sum_{i,j=1}^m c_i c_j K_{ij}$$

$$= \sum_{i,j=1}^m c_i c_j k(x_i, x_j)$$

$$= \sum_{i,j=1}^m c_i c_j \left(a \cdot k_1(x_i, x_j) + b \cdot k_2(x_i, x_j) \right)$$

$$= a \cdot \sum_{i,j=1}^m c_i c_j k_1(x_i, x_j) + b \cdot \sum_{i,j=1}^m c_i c_j k_2(x_i, x_j) \ge 0$$

Thus, the kernel matrix satisfies $\forall c_1, ..., c_m \in \mathbb{R} : \sum_{i,j=1}^m c_i c_j K_{ij} \geq 0$. So, k is the positive-definite kernel.

1.3 Rank of Gram matrix

Let **A** be a $d \times m$ matrix with respect to $x_1, ..., x_m \in \mathbb{R}^d$. Since $k(x, z) = x^T z$ for $x, z \in \mathbb{R}^d$ and m input patterns $x_1, ..., x_m \in \mathbb{R}^d$, then, we let the its Gram matrix $\mathbf{K} = \mathbf{A}^T \mathbf{A}$.

Assuming for a m columns matrix **Z** the $Null(\mathbf{Z}) = \{x \mid \mathbf{Z}x = \mathbf{0}, x \in \mathbb{R}^m\}.$

Let $x \in Null(\mathbf{A})$, so, $\mathbf{A}x = \mathbf{0}$, and $\mathbf{A}^T \mathbf{A}x = \mathbf{0}$. Then, $x \in Null(\mathbf{A}^T \mathbf{A})$, and we can get $Null(\mathbf{A}) \subseteq Null(\mathbf{A}^T \mathbf{A})$. Similarly, let $x \in Null(\mathbf{A}^T \mathbf{A})$, so, $\mathbf{A}^T \mathbf{A}x = \mathbf{0}$, and $x^T \mathbf{A}^T \mathbf{A}x = (\mathbf{A}x)^T (\mathbf{A}x) = \mathbf{0}$, thus $\mathbf{A}x = \mathbf{0}$. Then, $x \in Null(\mathbf{A})$, and we can get $Null(\mathbf{A}) \subseteq Null(\mathbf{A}^T \mathbf{A})$.

Combined with the above two assumptions, we can get $Null(\mathbf{A}) = Null(\mathbf{A}^T\mathbf{A})$, then,

$$Nullity(\mathbf{A}) = Nullity(\mathbf{A}^T \mathbf{A}) \tag{3}$$

According to the Rank–nullity theorem, for $\mathbf{A}^T \mathbf{A}$, we have:

$$m = Rank(\mathbf{A}^T \mathbf{A}) + Nullity(\mathbf{A}^T \mathbf{A})$$
 (4)

And for \mathbf{A} , we have:

$$m = Rank(\mathbf{A}) + Nullity(\mathbf{A}) \tag{5}$$

So, according to the equations (3), (4) and (5), we have:

$$Rank(\mathbf{A}) = Rank(\mathbf{A}^T \mathbf{A}) = Rank(\mathbf{K})$$

Then, $Rank(\mathbf{K}) = Rank(\mathbf{A}) \le min\{m, d\}$

2 Early stopping

- 1. In which of the following cases is $\hat{L}(h_{t^*}, S_{val})$ an unbiased estimate of $L(h_{t^*})$ and in which cases is it not.
 - (a) In this case $\hat{L}(h_{t^*}, S_{val})$ is an unbiased estimate of $L(h_{t^*})$. Because we have $h_{t^*} = h_{100}$. Then, the choosing of t^* does not depend on S_{val} .
 - (b) In this case $\hat{L}(h_{t^*}, S_{val})$ is not an unbiased estimate of $L(h_{t^*})$. Because we have $t^* = arg \min_{t \in \{1,...,T\}} \hat{L}(h_t, S_{val})$. Then, the choosing of t^* depends on S_{val} .
 - (c) In this case $\hat{L}(h_{t^*}, S_{val})$ is not an unbiased estimate of $L(h_{t^*})$. Because the training procedure of this case stops when no improvement in $\hat{L}(h_t, S_{val})$ is observed for a significant number of epochs. Then, the choosing of t^* depends on S_{val} .
- 2. Derive a high-probability bound (a bound that holds with probability at least 1δ) on $L(h_{t^*})$.
 - (a) Predefined stopping

Since $\hat{L}(h_{t^*}, S_{val})$ is an unbiased estimate of $L(h_{t^*})$, then, we need to prove that $E\left[\hat{L}(h_{t^*}, S_{val})\right] = L(h_{t^*})$:

$$E\left[\hat{L}(h_{t^*}, S_{val})\right] = E\left[\frac{1}{n} \sum_{i=1}^{n} \ell(h_{t^*}(X_i), Y_i)\right]$$
$$= \frac{1}{n} \sum_{i=1}^{n} E\left[\ell(h_{t^*}(X_i), Y_i)\right]$$
$$= L(h_{t^*})$$

Where n is the size of S_{val} .

Then, according to the Hoeffding's inequality, we have:

$$P\left(L(h_{t^*}) - \hat{L}(h_{t^*}, S_{val}) \ge \epsilon\right) \le e^{-2n\epsilon^2}$$

And then, let $\delta = e^{-2n\epsilon^2}$, so, $\epsilon = \sqrt{\frac{\ln \frac{1}{\delta}}{2n}}$. We have:

$$P\left(L(h_{t^*}) - \hat{L}(h_{t^*}, S_{val}) \ge \sqrt{\frac{\ln \frac{1}{\delta}}{2n}}\right) \le \delta \iff$$

$$P\left(L(h_{t^*}) - \hat{L}(h_{t^*}, S_{val}) \le \sqrt{\frac{\ln \frac{1}{\delta}}{2n}}\right) \ge 1 - \delta \iff$$

$$P\left(L(h_{t^*}) \le \hat{L}(h_{t^*}, S_{val}) + \sqrt{\frac{\ln \frac{1}{\delta}}{2n}}\right) \ge 1 - \delta$$

Then, we have a bound on $L(h_{t^*})$ in terms of $\hat{L}(h_{t^*}, S_{val})$, δ , and n that holds with probability at least $1 - \delta$.

(b) Non-adaptive stopping

Let $\mathcal{H} = \{h_1, h_2, ..., h_T\}, |\mathcal{H}| = T$, and $t^* = arg \min_{t \in \{1, ..., T\}} \hat{L}(h_t, S_{val})$. Then, according to the corollary, we have

$$P\left(L(h_{t^*}) \ge \hat{L}(h_{t^*}, S_{val}) + \sqrt{\frac{\ln \frac{T}{\delta}}{2n}}\right) \le \delta \iff$$

$$P\left(L(h_{t^*}) \le \hat{L}(h_{t^*}, S_{val}) + \sqrt{\frac{\ln \frac{T}{\delta}}{2n}}\right) \ge 1 - \delta$$

Then, we have a bound on $L(h_{t^*})$ in terms of $\hat{L}(h_{t^*}, S_{val})$, δ , T, and n that holds with probability at least $1 - \delta$.

(c) Adaptive stopping

We define $\pi(\mathcal{H}_t) = \frac{1}{t(t+1)}$ and $|\mathcal{H}_t| = t$, then $\pi(h) = \pi(\mathcal{H}_t) \frac{1}{|\mathcal{H}_t|}$. So, we have

$$\sum_{h \in \mathcal{H}} \pi(h) = \sum_{t=1}^{\infty} \frac{1}{t(t+1)} \sum_{h \in \mathcal{H}_t} \frac{1}{t} = \sum_{t=1}^{\infty} \frac{1}{t(t+1)} = 1$$

Then, according to the Occam's razor theorem, we have,

$$P\left(\exists h \in \mathcal{H} : L(h_t) \ge \hat{L}(h_t, S_{val}) + \sqrt{\frac{\ln \frac{1}{\pi(h)\delta}}{2n}}\right) \le \delta \iff$$

$$P\left(\exists h \in \mathcal{H} : L(h_t) \ge \hat{L}(h_t, S_{val}) + \sqrt{\frac{\ln \frac{t^2(t+1)}{\delta}}{2n}}\right) \le \delta \iff$$

$$P\left(\forall h \in \mathcal{H} : L(h_t) \le \hat{L}(h_t, S_{val}) + \sqrt{\frac{\ln \frac{t^2(t+1)}{\delta}}{2n}}\right) \ge 1 - \delta$$

So, for the best model h_{t^*} , we have,

$$P\left(L(h_{t^*}) \le \hat{L}(h_{t^*}, S_{val}) + \sqrt{\frac{\ln\frac{(t^*)^2(t^*+1)}{\delta}}{2n}}\right) \ge 1 - \delta$$

Then, we have a bound on $L(h_{t^*})$ in terms of $\hat{L}(h_{t^*}, S_{val})$, δ , t^* , and n that holds with probability at least $1 - \delta$.

3. Since ℓ be bounded in [0,1], then $L(h_t) - \hat{L}(h_t, S_{val})$ is bounded in 1. So, we have,

$$\sqrt{\frac{\ln \frac{1}{\pi(h)\delta}}{2n}} \le 1 \iff \pi(h) \ge \frac{e^{-2n}}{\delta}$$

Since $\pi(h) = \pi(\mathcal{H}_t) \frac{1}{|\mathcal{H}_t|} = \frac{1}{t(t+1)} \frac{1}{t}$, then, we have

$$\frac{1}{t(t+1)} \frac{1}{t} \ge \frac{e^{-2n}}{\delta} \iff t^2(t+1) < \delta e^{2n}$$

So,
$$T_{max}^2(T_{max} + 1) = \delta e^{2n}$$

4. If use the series $\sum_{i=1}^{\infty} \frac{1}{2^i} = 1$, $\pi(h) = \frac{1}{2^t} \frac{1}{t}$. From Point 3, we have,

$$\frac{1}{2^t} \frac{1}{t} \ge \frac{e^{-2n}}{\delta} \iff t \cdot 2^t \le \delta e^{2n}$$

So, $T_{max}2^{T_{max}} = \delta e^{2n}$. For the $T_{max}(T_{max}+1)$ and the $2^{T_{max}}$ when they have the same upper bound, we can know that the maximum value T_{max} of the latter is smaller, which means that with the series $\sum_{i=1}^{\infty} \frac{1}{2^i} = 1$ we can run significantly less epochs.

- 5. In this question we compare the adaptive procedure with non-adaptive.
 - (a) For t^* :

$$P\left(L(h_{t^*}) \le \hat{L}(h_{t^*}, S_{val}) + \sqrt{\frac{\ln\frac{(t^*)^2(t^*+1)}{\delta}}{2n}}\right) \ge 1 - \delta$$

For T^* :

$$P\left(L(h_{T^*}) \le \hat{L}(h_{T^*}, S_{val}) + \sqrt{\frac{\ln \frac{T}{\delta}}{2n}}\right) \ge 1 - \delta$$

Since we know that the adaptive bound for epoch t^* is lower than the adaptive bound for epoch T^* , and $T^* \leq T$. Then, we have

$$L(h_{t^*}) \leq \hat{L}(h_{t^*}, S_{val}) + \sqrt{\frac{\ln \frac{(t^*)^2(t^*+1)}{\delta}}{2n}}$$

$$\leq \hat{L}(h_{T^*}, S_{val}) + \sqrt{\frac{\ln \frac{(T^*)^2(T^*+1)}{\delta}}{2n}}$$

$$\leq \hat{L}(h_{T^*}, S_{val}) + \sqrt{\frac{\ln \frac{T^2(T+1)}{\delta}}{2n}}$$

Since $\delta \leq \frac{T}{T+1}$. Then $T \leq \frac{1}{\delta(T+1)}$ and $T+1 \leq \frac{T}{\delta}$, we have

$$L(h_{t^*}) \leq \hat{L}(h_{T^*}, S_{val}) + \sqrt{\frac{\ln(\frac{T(T+1)}{\delta} \times \frac{1}{\delta(T+1)})}{2n}}$$

$$\leq \hat{L}(h_{T^*}, S_{val}) + \sqrt{\frac{\ln(\frac{T}{\delta})^2}{2n}}$$

$$= \hat{L}(h_{T^*}, S_{val}) + \sqrt{2} \times \sqrt{\frac{\ln\frac{T}{\delta}}{2n}}$$

$$\leq \sqrt{2} \left(\hat{L}(h_{T^*}, S_{val}) + \sqrt{\frac{\ln\frac{T}{\delta}}{2n}}\right)$$

$$= \sqrt{2}L(h_{T^*})$$

So, the adaptive bound can be at most a multiplicative factor of $\sqrt{2}$ larger than the non-adaptive bound.

(b)

(c)

3 Learning by discretization

1. We define $\pi(\mathcal{H}_{d(h)}) = \frac{1}{2^{d(h)}}$ and $|\mathcal{H}_{d(h)}| = 2^{f(n)}$, then $\pi(h) = \pi(\mathcal{H}_{d(h)}) \frac{1}{|\mathcal{H}_{d(h)}|}$, and $\sum_{h \in \mathcal{H}} \pi(h) = \sum_{d(h)=1}^{\infty} \frac{1}{2^{d(h)}} \sum_{h \in \mathcal{H}_{d(h)}} \frac{1}{2^{f(n)}} = \sum_{d(h)=1}^{\infty} \frac{1}{2^{d(h)}} = 1$

Then, for the L(h) and its unbiased estimate $\hat{L}(h, S)$, according to the Occam's razor theorem, we have,

$$P\left(\exists h \in \mathcal{H} : L(h) \ge \hat{L}(h, S) + \sqrt{\frac{\ln \frac{1}{\pi(h)\delta}}{2n}}\right) \le \delta \iff$$

$$P\left(\exists h \in \mathcal{H} : L(h) \ge \hat{L}(h, S) + \sqrt{\frac{(d^2(h) + d(h))\ln(2) + \ln \frac{1}{\delta}}{2n}}\right) \le \delta \iff$$

$$P\left(\forall h \in \mathcal{H} : L(h) \le \hat{L}(h, S) + \sqrt{\frac{(d^2(h) + d(h))\ln(2) + \ln \frac{1}{\delta}}{2n}}\right) \ge 1 - \delta$$

- 2. we can choose h^* by $h^* = arg \min_{h} \left(\hat{L}(h,S) + \sqrt{\frac{(d^2(h) + d(h))\ln(2) + \ln\frac{1}{\delta}}{2n}} \right)$
- 3. Since ℓ be bounded in [0,1], then $L(h_t) \hat{L}(h_t,S)$ is bounded in 1. So, we have,

$$\sqrt{\frac{\ln \frac{1}{\pi(h)\delta}}{2n}} \le 1 \iff \pi(h) \ge \frac{e^{-2n}}{\delta}$$

Since $\pi(h) = \frac{1}{2^{d(h)}} \frac{1}{2^{d^2(h)}}$, then, we have

$$\frac{1}{2^d} \frac{1}{2^{d^2}} \ge \frac{e^{-2n}}{\delta} \iff d + d^2 \le \log_2(\delta e^{2n})$$

Then the max number of cells is d_{max}^2 , where $d_{max} + d_{max}^2 = \log_2(\delta e^{2n})$

4. From Point 1, we know that: d(h) in the bound increase as the density of the grid increases, while n in the bound decrease as the density of the grid increases.