HW1

Kevin Chang

September 26, 2025

Terminology

- ullet System state Y: an unknown random variable.
- \bullet Measurement X: an observed random variable statistically related to Y.
- Estimator $\hat{Y}(X)$: a random variable defined as a function of X.
- Probability:

- Prior: P[Y]

- Posterior: $P[Y \mid X]$

- Likelihood: $P[X \mid Y]$

• Objective (Risk):

$$R[\hat{Y}] = \mathbb{E}[loss(\hat{Y}(X), Y)]$$

• Optimal Estimator (Posterior form):

$$\hat{Y}(x) = \mathbb{1} \bigg\{ P[Y = 1 \mid X = x] \ \geq \ \frac{loss(1,0) - loss(0,0)}{loss(0,1) - loss(1,1)} \, P[Y = 0 \mid X = x] \bigg\}$$

- Proof:

$$\mathbb{E}[loss(\hat{Y}(X),Y)] = \int_{-\infty}^{\infty} \mathbb{E}[loss(\hat{Y}(X),Y) \mid X=x] f_X(x) dx$$

$$= \int_{-\infty}^{\infty} \left(\mathbb{E}[loss(\hat{Y}(X),1) \mid X=x] P[Y=1 \mid X=x] + \mathbb{E}[loss(\hat{Y}(X),0) \mid X=x] P[Y=0 \mid X=x] \right) f_X(x) dx$$

- Thus, $\hat{Y}(x)$ is chosen according to the label (0 or 1) that minimizes the conditional expected loss.
- Optimal Estimator (Likelihood ratio form):

$$\hat{Y}(x) = \mathbb{I}\left\{\frac{p(x \mid Y = 1)}{p(x \mid Y = 0)} \ge \frac{p_0\left(loss(1, 0) - loss(0, 0)\right)}{p_1\left(loss(0, 1) - loss(1, 1)\right)}\right\}$$

- Proof by rearrangement of the posterior condition.
- This corresponds to a likelihood ratio test.

Types of errors and successes

• True Positive Rate: $P[\hat{Y} = 1|Y = 1]$

• False Negative Rate: $P[\hat{Y} = 0|Y = 1]$

• False Positive Rate: $P[\hat{Y} = 1|Y = 0]$

• True Negative Rate: $P[\hat{Y} = 0|Y = 0]$

• Precision: $P[Y=1|\hat{Y}=1]$

Receiver Operating Characteristic(ROC) curve

• Example

Figure 1: The ROC curve is plotted in the FPR-TPR plane.

- Lemma 2 (Neyman–Pearson Lemma) Suppose the likelihood functions $p(x \mid y)$ are continuous. Then the optimal probabilistic predictor that maximizes TPR subject to an upper bound on FPR is a deterministic likelihood ratio test.
- Properties
 - always passes through (0,0) and (1,1),
 - must lie above the main diagonal,
 - is concave.

Fairness

- Key statistical measures include:
 - Acceptance rate: $Pr[\hat{Y} = 1]$
 - Error rates: $Pr[\hat{Y} = 0 \mid Y = 1], Pr[\hat{Y} = 1 \mid Y = 0]$
 - Conditional outcome frequency: $Pr[Y = 1 \mid R = r]$
- Standard fairness criteria are:
 - Independence: $R \perp A$ (equal acceptance rates across groups)
 - **Separation:** $R \perp A \mid Y$ (equal error rates across groups)
 - Sufficiency: $Y \perp A \mid R$ (equal outcome frequencies given R)
- It is well known that any two criteria are mutually exclusive in general, except in degenerate cases; thus enforcing one typically precludes the others.

1 Supervised Learning

Let $S = \{(x_1, y_1), \dots, (x_n, y_n)\}$ denote a labeled dataset with $x_i \in \mathcal{X}$ and $y_i \in \mathcal{Y}$. For a predictor $f : \mathcal{X} \to \mathcal{Y}$, the *empirical risk* is

$$R_S[f] = \frac{1}{n} \sum_{i=1}^{n} loss(f(x_i), y_i),$$

Three fundamental questions arise:

- Representation: Which function class \mathcal{F} should we select?
- Optimization: How can the corresponding learning problem be solved efficiently?
- Generalization: How well does the predictor extend from training data to unseen samples?

Perceptron Algorithm The perceptron iteratively updates a weight vector $w \in \mathbb{R}^d$:

- Initialize $w^{(0)} = 0$.
- For t = 0, 1, 2, ...:
 - Select $i \in \{1, ..., n\}$ uniformly at random.
 - If $y_i \langle w^{(t)}, x_i \rangle < 1$, set

$$w^{(t+1)} = w^{(t)} + y_i x_i$$

else $w^{(t+1)} = w^{(t)}$.

Connection to Empirical Risk Minimization The perceptron update can be viewed as stochastic gradient descent (SGD) on Hinge loss:

$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} \ell_{\text{hinge}}(y_i, \langle w, x_i \rangle) + \|w\|_2^2.$$

• Hinge loss:

$$\ell_{\text{hinge}}(y, \hat{y}) = \max\{1 - y\hat{y}, 0\},\$$

• Squared loss:

$$\ell_{\text{sq}}(y, \hat{y}) = \frac{1}{2}(y - \hat{y})^2,$$

• Logistic loss:

$$\ell_{\log}(y, \hat{y}) = \begin{cases} -\log(\sigma(\hat{y})), & y = 1, \\ -\log(1 - \sigma(\hat{y})), & y = -1, \end{cases}$$

where $\sigma(z) = \frac{1}{1+e^{-z}}$ is the sigmoid.

Margin Analysis

• For $w \in \mathbb{R}^d$, define the margin on dataset S as

$$\gamma(S, w) = \min_{1 \le i \le n} \frac{|\langle x_i, w \rangle|}{\|w\|}, \qquad \gamma(S) = \max_{w} \gamma(S, w).$$

- Let $D(S) = \max_{1 \le i \le n} ||x_i||$.
- Theorem: If S is linearly separable, the perceptron algorithm makes at most $\frac{\left(2+D(S)^2\right)}{\gamma(S)^2}$ margin mistakes.
- Proof sketch. Expanding the update yields

$$\|w^{(t+1)}\|^2 = \|w^{(t)} + y_i x_i\|^2 = \|w^{(t)}\|^2 + 2y_i \langle w^{(t)}, x_i \rangle + \|x_i\|^2 \le \|w^{(t)}\|^2 + 2 + D(S)^2.$$

Meanwhile, progress in the margin direction ensures

$$\langle w^*, w^{(t+1)} - w^{(t)} \rangle \ge \gamma(S)$$

3

for an optimal separator w^* , leading to the stated bound.

Generalization Bound Let S_n be n i.i.d. samples from a distribution \mathcal{D} admitting a perfect linear separator. Let $w(S_n)$ denote the perceptron's output after convergence on S_n , and let $(X,Y) \sim \mathcal{D}$ be independent of S_n . Then

$$P[Yw(S_n)^T X < 1] \le \mathbb{E}\left[\frac{2 + D(S_{n+1})^2}{(n+1)\gamma(S_{n+1})^2}\right],$$

where $D(S_{n+1})$ and $\gamma(S_{n+1})$ are defined analogously on $S_{n+1} = S_n \cup \{(X,Y)\}.$

2 Representation

- Lifting functions: Transform a given set of features into a more expressive feature space.
- Common strategies:
 - **Template matching:** For example, $x_0 = \max\{v^{\top}x, 0\}$, which can be interpreted as a sliding window that activates when a feature satisfies certain conditions.
 - Polynomial features: In d dimensions with maximum degree p, the number of monomial coefficients is $\binom{d+p}{p}$.
- **Dimensionality:** How high must the lifted dimension be? To gain intuition, stack n data points $x_1, \ldots, x_n \in \mathbb{R}^d$ into a matrix $X \in \mathbb{R}^{n \times d}$, where each row corresponds to a sample. Predictions over the dataset can then be expressed as

$$\hat{y} = Xw$$
.

If the x_i are linearly independent and $d \ge n$, then any prediction vector y can be realized by an appropriate weight vector w. Thus, feature design often aims to lift data into sufficiently high-dimensional spaces so that the feature matrix X has linearly independent columns, enabling greater expressivity.