REPUBLIQUE TUNISIENNE

Ministère de l'Enseignement Supérieur, de la Recherche Scientifique et de la Technologie

المفاظرات الوطنية للدخول إلى مراحل تكوين المهندسين دورة 2009

Concours Nationaux d'Entrée aux Cycles de Formation d'Ingénieurs Session 2009

Concours Mathématiques et Physique Epreuve de Chimie CORRIGE avec barème sur 40 points

PARTIE I : Structure électronique (3,0 pts)

- 1,5 I-1) Règle de Klechkovsky, règle de Hund et principe d'exclusion de Pauli.
- $\overline{0,5}$ I-2) Configuration électronique : $1s^2 2s^2 2p^6 3s^2 3p^6 3d^3 4s^2$ ou alors [Ar] $3d^3 4s^2$.
- I-3) Les états d'oxydation les plus probables : +2, +3, +4, +5.
 - $\overline{_{5}}$ I-4) Les états d'oxydation les plus stables : +5, +3.

PARTIE II : Empilement métallique et composés interstitiels (8,5 pts)

- 1 II-1) Type de réseau du vanadium : $Z = \frac{\rho.a^3.N}{M_{zr}}$ \Rightarrow Z=2 \Rightarrow Le réseau est centré I.
- **II-2)** $R_V = \frac{a.\sqrt{3}}{4} \implies R_V = 1,311 \text{ Å}.$
- II-3) Non, cet empilement n'est pas compact car C=0,68 < 0,74.
- 0,5 II-4) Projection cotée de la maille et de son contenu selon l'axe c. (Fig 1.)
- 0,5 II-5-a) Sites octaédriques (Fig 2.)
 - II-5-b) Sites tétraédriques (Fig 3.)

- 0,5 II-6) En se basant sur les atomicités des composés cités, seul le mode F est à retenin
- 0,5 II-7) Les atomes d'hydrogène seront logés dans les sites tétraédriques.
- 0,5 II-8) Les atomes de carbone ou d'azote seront logés dans les sites octaédriques.

[0,5] II-9)
$$R_V + R_{II} = a_{VII_2} \frac{\sqrt{3}}{4}$$
 et $a_{VII_2} = (R_V + R_H) \frac{4}{\sqrt{3}} \Rightarrow a_{VII_2} = 4,261 \text{ Å}.$

0,5 II-10) L'atome d'azote étant plus petit que l'atome de carbone, a₁=4,137Å serait le paramètre de maille du nitrure VN et $a_2=4,172$ Å celui du carbure VC.

II-11)
$$a_1=2(R_N+R_V)$$
 et $R_N=\frac{a_1}{2}-R_V$

de même $a_2 = 2(R_C + R_V)$ et $R_C = \frac{a_2}{2} - R_V$

$$R_N = 0.757 \text{ Å}$$
 et $R_C = 0.775 \text{ Å}$

II-12) Projection cotée de la maille du composé VH.

PARTIE III: Structures Ioniques (3,5 pts)

0,5 III-1)
$$R_{V^{2+}} = d_{V-0} - R_{O^{2-}} \implies R_{V^{2+}} = 0,716 \text{ Å}$$

0,5 III-2) La structure du composé de formule VO est du type

NaCl car
$$\frac{R_{v^{2+}}}{R_{o^{2-}}} = \frac{0.716}{1.320} = 0.54 \implies 0.41 \le \frac{R_{v^{2+}}}{R_{o^{2-}}} \le 0.73$$

III-3)
$$a_{VO}$$
= 2. d_{V-O} \Rightarrow a_{VO} = 4,072 Å

0,5 | III-4) Le nombre de coordinance des cations est 6 anions.

0,5 Le polyèdre de coordinence des cations est un octaèdre.

<u>PARTIE IV: Diagramme de Pourbaix (8,0 pts)</u>

-		. 1
1	4	1 *
Ţ	- 1	
1		

	Espèce	V	V^{2+}	V_2O_2	V^{3+}	V_2O_3	$(VO)^{2+}$	$(VO_2)^+$
1	N. O. du vanadium	0	+II	+II	+III	+III	+IV	+V

Voir figure ci-contre.

IV-2) Voir figure ci-contre.

IV-3) Expression des équations des courbes

frontières:

0,5

(a) Couple (V^{2+}/V)

$$V^{2+} + 2e^- \rightleftharpoons V$$

$$E_a = E_a^o + 0.03.logC_{tra}$$

(b) Couple $((VO)^{2+}/V^{3+})$

(c) Couple (V_2O_3/V^{2+})

$$V_{2}O_{3} + 2e^{2} + 6H^{+} \rightleftharpoons 2V^{2+} + 3H_{2}O$$

$$E_{c} = E_{c}^{o} - 0.18pH - 0.06.logC_{tra}$$

IV-4)
$$2V^{2+} + 2H_2O \rightleftharpoons V_2O_2 + 4H^+$$

1 IV-4)
$$2V^{2+} + 2H_2O \rightleftharpoons V_2O_2 + 4H^+$$

1 $K_a = \frac{[H^+]^4}{[V^{2+}]^2} \Rightarrow pH = \frac{1}{4} pK_a - \frac{1}{2} logC_{tra}$

PARTIE V: Diagramme d'Ellingham (7,0 pts)

$$0.5$$
 V-1) $\frac{4}{5}$ V (sd) + O₂ (g) $\rightleftharpoons \frac{2}{5}$ V₂O₅ (liq)

$$\boxed{1} \ \mathbf{V-2}) \ \Delta_{r} G^{\circ} = \Delta_{r} H^{\circ} - T \ \Delta_{r} S^{\circ} \ \Rightarrow \ \Delta_{r} G^{\circ} = \frac{2}{5} \ \Delta_{f} H^{\circ}_{V_{2}O_{5}(liq)} - T \ (\frac{2}{5} \ S^{\circ}_{V_{2}O_{5}(liq)} - S^{\circ}_{O_{2}(g)} - \frac{4}{5} \ S^{\circ}_{V(sd)})$$

1 V-3) On prendra 2 points sur la courbe V_2O_5/V de coordonnées (T, Δ_rG°) :

Par exemple les points f et F : (680; -600) et (1910, -360)

Ce qui donne en kelvin et kJ.mol⁻¹: (953, -600) et (2183, -360) $\Delta_r S^{\circ} = 0.195 \text{ kJ.K}^{-1}.\text{mol}^{-1}$ (±0,005) et $\Delta_r H^{\circ} = -785 \text{ kJ.mol}^{-1}$ (±5). $\Delta_r G^{\circ} = -785 + \text{T}$ (0,195) kJ.mol⁻¹

$$\begin{array}{c}
\boxed{0,5} \\ \hline \hline 0,5 \\ \hline \hline 0,5 \\ \hline \end{array} V-4) \ \Delta_{r} H^{\circ} = \frac{2}{5} \left(\Delta_{f} H^{\circ}_{V_{2}O_{s}(sd)} + \Delta_{fus} H^{\circ}_{V_{2}O_{s}} \right) \\ \hline \Delta_{f} H^{\circ}_{V_{2}O_{s}(sd)} = \frac{5}{2} \Delta_{r} H^{\circ} - \Delta_{fus} H^{\circ}_{V_{2}O_{s}} \\ \Delta_{f} H^{\circ}_{V_{2}O_{s}(sd)} = -2026 \text{ kJ.mol}^{-1} \quad (\pm 10)
\end{array}$$

- V-5) V₂O₃ (sd) + 3C (sd) ≠ 3CO (g) + 2V (sd)
 V-6) La température d'équilibre T_i de cette réaction est obtenue par l'intersection des diagrammes d'Ellingham des couples V₂O₃/V et CO/C.
- Pour $T \ge T_i$ $\Delta_r G^o_{CO/C} \le \Delta_r G^o_{V_2O_3/V}$. Donc, à partir de T_i le carbone réduira spontanément V_2O_3 en vanadium et donnera du CO.
- 0.5 V-7) Graphiquement : $T_i=1773$ K. (± 20)
- V-8) Oui, Il est possible, par exemple, de former des carbures de vanadium comme celui présenté dans la partie II de formule VC.

PARTIE VI: Diagramme d'équilibre de phase (10,0 pts)

- 0,5 VI-1) T₁=2183K : fusion du vanadium pur. T₂=2128K : fusion du zirconium pur.
 - T_3 =1136K : transition de phase solide-solide du zirconium pur. Soit Zr_{α} et Zr_{β} les variétés solides respectivement à basse et à haute température.

VI-2) A l'état solide :

- L'existence d'une courbe de miscibilité de coté du vanadium prouve la solubilité partielle du zirconium dans le vanadium. Soit (sln. sd. V).
 - L'absence d'une courbe de miscibilité de coté du zirconium variété α (Zrα) pour T<T₃ prouve la solubilité nulle du vanadium dans le zirconium α.
 - La présence d'une courbe de miscibilité de coté du zirconium variété β (Zr_β)
 prouve la solubilité partielle du vanadium dans le zirconium β. Soit (sln. sd. Zr).
- 0,5 VI-3) Le point C représente la solution solide (sln. sd. V) la plus riche en zirconium.
 - Le point D représente la solution solide (sln. sd. Zr) la plus riche en vanadium.
- VI-4) Le composé intermédiaire stœchiométrique C₁ est à fusion non congruente.
- Caractéristiques : de composition $X_{Zr}^{C_1}$ =33,3 %; Il se décompose à 1573 K en donnant un liquide représenté par le point P à 47 % en Zirconium et la (sln. sd. V) représentée par le point C.
- 0.5 VI-5) Formule de C_1 : $X_{Zr}^{C_1} = 33.3 \% \Rightarrow C_1$ de formule V_2Zr .

0,5 VI-6) Indexation des domaines :

1: (sln. sd. Zr).

2: (sln. sd. V).

3 : Liquide + Solide C₁.

4 : Solide C_1 + (sln. sd. Zr).

VI-7) La courbe discontinue est le liquidus.

0,5 VI-8) A 1573K équilibre péritectique : Liquide P + (sln. sd. V) (C)

Solide C₁

A.N. $m_V = 45.6$ g et $m_{Zr} = 54.4$ g

VI-10) Courbe d'analyse thermique :

- Allure de la courbe
- Commentaires

