

Course > Week 5... > Compr... > Quiz 5

Quiz 5

Problem 1

1/1 point (graded)

When gradient descent is used to solve a minimization problem, it is guaranteed to find a local minimum (that may or may not be the global minimum).

True			
False			
✓			
Submit			

Problem 2

1/1 point (graded)

You are trying to find the global minimum for a convex function of one variable, F(w). At the current point $w = w_0$, you find that the derivative dF/dw is equal to 2.3. Based on this information, how should you update w?

\bigcirc Choose $w > w_0$
• Choose $w < w_0$
Choose $w > -w_0$

		_				
	N /	inform	4:	: _		
- 1	NACTO	Intorm	าวบาก	10	ngan	മവ
	IVIOIC	11110111	iauon	ıs	HICCU	Сu

Problem 3

1/1 point (graded)

What is the derivative, $\nabla F(\mathbf{w})$, of the function $F(\mathbf{w}) = (3\mathbf{w} \cdot \mathbf{x})$?

- $\bigcirc \nabla F(\mathbf{w}) = \mathbf{x}$
- $\bigcirc \nabla F(\mathbf{w}) = \mathbf{w}$
- $\bigcirc \nabla F(\mathbf{w}) = 3\mathbf{w}$

Submit

Problem 4

1/1 point (graded)

In the equation $\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \nabla L(\mathbf{w}_t)$, what does η_t represent?

- \bigcirc The direction in which to adjust \mathbf{w} to find a minimum
- The dimension of the vector w

2019	Quiz 5 Comprehension Quiz 5 DSE220x Courseware edX
	The approximate number of iterations the optimization algorithm has run
C	The size of the adjustment made to $f w$
~	
2	Submit
Pro	oblem 5
Tru	point (graded) e or false: An adjustment to \mathbf{w} in the direction of the gradient is guaranteed to result in ector of lower cost.
) True
C	False
•	•
	Submit
Pro	oblem 6
	point (graded) en a function $L(\mathbf{x}) = 3x_2x_3 + 2x_1x_3 + 2x_1x_2$, compute the gradient $\nabla L(\mathbf{x})$.
	$\nabla L(\mathbf{x}) = (4x_1, 5x_2, 5x_3)$
	$\nabla L(\mathbf{x}) = (2x_3 + 2x_2, 3x_3 + 2x_1, 3x_2 + 2x_1)$

2019	Quiz 5 Comprehension Quiz 5 DSE220x Courseware edX
$\bigcirc \nabla L(\mathbf{x}) =$	$(4x_2x_3, 6x_3x_1, 6x_1x_2)$
✓	
Submit	
Problem 7	7
1/1 point (grade	
Stochastic gra following case	adient descent is a better alternative to gradient descent in which of the es?
☐ There ar	re multiple local minima in a function
	·
There ar	re a large number of data points
☐ The fund	ction contains more than 3 variables
☐ The fund	ction is discontinuous in at least one location
✓	
Submit	
Drobless)
Problem 8	
1/1 point (grade A key differer	ed) nce between gradient descent and stochastic gradient descent is:

 Stochastic gradient descent takes longer to perform than gradient descent, but can be used on very large data sets

■ Each move made by gradient descent is based on the entire data set, while each move made by stochastic gradient descent is based on a single data point. Gradient descent only makes one pass through the training set, while stochastic gradient descent makes numerous passes before convergence Submit Problem 9 1/1 point (graded) Using mini-batch stochastic gradient descent, a group of data points are used to make adjustments to w. Why might this be preferable to stochastic gradient descent based on a single point? It takes less time to compute adjustments to w It results in a larger adjustment The batch-based gradient calculation is a closer approximation to the actual gradient Fewer passes over the training set are required to find a minimum Submit	contains a large number of variables	1
gradient descent makes numerous passes before convergence Submit Problem 9 1/1 point (graded) Using mini-batch stochastic gradient descent, a group of data points are used to make adjustments to w. Why might this be preferable to stochastic gradient descent based on a single point? It takes less time to compute adjustments to w It results in a larger adjustment The batch-based gradient calculation is a closer approximation to the actual gradient Fewer passes over the training set are required to find a minimum	•	ach
Problem 9 1/1 point (graded) Using mini-batch stochastic gradient descent, a group of data points are used to make adjustments to w. Why might this be preferable to stochastic gradient descent based on a single point? It takes less time to compute adjustments to w It results in a larger adjustment The batch-based gradient calculation is a closer approximation to the actual gradient Fewer passes over the training set are required to find a minimum		stic
Problem 9 1/1 point (graded) Using mini-batch stochastic gradient descent, a group of data points are used to make adjustments to w. Why might this be preferable to stochastic gradient descent based on a single point? It takes less time to compute adjustments to w It results in a larger adjustment The batch-based gradient calculation is a closer approximation to the actual gradient Fewer passes over the training set are required to find a minimum		
1/1 point (graded) Using mini-batch stochastic gradient descent, a group of data points are used to make adjustments to w. Why might this be preferable to stochastic gradient descent based on a single point? It takes less time to compute adjustments to w It results in a larger adjustment The batch-based gradient calculation is a closer approximation to the actual gradient Fewer passes over the training set are required to find a minimum	Submit	
Using mini-batch stochastic gradient descent, a group of data points are used to make adjustments to w. Why might this be preferable to stochastic gradient descent based on a single point? It takes less time to compute adjustments to w It results in a larger adjustment The batch-based gradient calculation is a closer approximation to the actual gradient Fewer passes over the training set are required to find a minimum	Problem 9	
 It results in a larger adjustment The batch-based gradient calculation is a closer approximation to the actual gradient Fewer passes over the training set are required to find a minimum 	Using mini-batch stochastic gradient descent, a group of data points are used to madjustments to $f w$. Why might this be preferable to stochastic gradient descent bas	
 The batch-based gradient calculation is a closer approximation to the actual gradient Fewer passes over the training set are required to find a minimum 	\bigcirc It takes less time to compute adjustments to \mathbf{w}	
gradient Fewer passes over the training set are required to find a minimum	It results in a larger adjustment	
✓		
Submit	Fewer passes over the training set are required to find a minimum	
Submit	✓	
	Submit	

Problem 10

1/1 point (graded)

True or false: The negation of any convex function is a concave function.

True			
False			
~			
Submit			

Problem 11

1/1 point (graded)

Given a convex function f(x) and two points in the domain, a and b, which of the following must be true? Select all that apply.

- ✓ The line segment connecting (a, f(a)) and (b, f(b)) must lie above the function at every point on the line connecting a and b
- f(a) > f(b) when a < b, and f(b) > f(a) when b < a

Submit

Problem 12

1/1 point (graded)

Which of the following functions are convex? Select all that apply.

	1,	=	0	-x
~	V	_	е	

$$y = x^2$$

$$y = 2x$$

$$y = \sin(x), x \in [0, \pi]$$

Problem 13

1/1 point (graded)

True or false: A function whose 2nd derivative is always negative is a convex function.

True

Submit

Problem 14

1/1 point (graded)

The matrix $M = \begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix}$ has a positive determinant.

Yes

O No

Problem 15

1/1 point (graded)

Given matrix $M = \begin{pmatrix} 4 & 1 \\ k & 1 \end{pmatrix}$, what value of k results in a singular matrix?

- $\bigcirc k = -4$
- $\bigcirc k = -1$
- $\bigcirc k = 1$

Submit

Problem 16

1/1 point (graded)

All matrices of the form $M = UU^T$ are always positive semidefinite

False

Problem 17

1/1 point (graded)

The matrix $\begin{pmatrix} 14 & 7 \\ 7 & 6 \end{pmatrix}$ is positive semidefinite and follows the form $M = UU^T$. Which of the following matrices U satisfies this equation?

$$U = \begin{pmatrix} 1 & 4 \\ 1 & 6 \end{pmatrix}$$

$$U = \begin{pmatrix} 2 & 7 \\ 3 & 1 \end{pmatrix}$$

$$U = \begin{pmatrix} 3 & 2 & 2 \\ 1 & 4 & 1 \end{pmatrix}$$

$$U = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \end{pmatrix}$$

Submit

Problem 18

1/1 point (graded)

A function, $F(\mathbf{z})$, is convex if which of the following statements hold true?

$ ightharpoonup$ The Hessian, $H(\mathbf{z})$, is positive semidefinite at all \mathbf{z}	
$\Box F(\mathbf{z}) \geq 0, \forall \mathbf{z}$	
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
Submit Drablem 10	
Problem 19 1/1 point (graded) s the identity matrix positive semidefinite?	
• Yes	
○ No	
✓	
Submit	

© All Rights Reserved