Motif Aware Graph Embedding

Hoang Nguyen, Tsuyoshi Murata

Department of Computer Science, Tokyo Institute of Technology

Node representations

Objective higher-order latent re lex network:

To learn a higher-order latent representation of a complex network:

The learned representation will be used in various machine learning tasks.

Network

Key Ideas

Inject a targeted motif structure into the representation learning process.

Motif structure injection can be realized by:

- Biased random walk.
- Wavelet basis defined by a motif matrix.

Which motif?

Measure the motif's significant by z-score:

z-score =
$$\frac{N_m(G) - N_m(G_{random})}{\sigma_m(G_{random})}$$

Datasets

DATASET

#EDGES TRAINING RATIO

G 39	10,312	333,983	0.5						
6	3,327	4,732	0.5						
Table 1: Datasets for unsupervised embeddings									
	1		8						
#CLASSES	#Nodes	#EDGES	#FEATURES						
39	10,312	333,983	3,703						
6	2,708	4,732	1,433						
3	19,717	44,338	76,584						
210	65,755	266,144	5,414						
	1: Datasets f #CLASSES 39 6 3	6 3,327 1: Datasets for unsuper #CLASSES #NODES 39 10,312 6 2,708 3 19,717	6 3,327 4,732 1: Datasets for unsupervised embed #CLASSES #Nodes #Edges 39 10,312 333,983 6 2,708 4,732 3 19,717 44,338						

Table 2: Datasets for semi-supervised embeddings

Motif z-score (configuration model) 300 200 100 -100 -200 -300 -300 Motif z-score (configuration model) Cora Citeseer PubMed NELL Blogcatalog3 V- PPI

Motif Adj. Matrix

GCN & m-GCN

$$g_{\theta} \star x = Ug_{\theta}U^{T}x$$

$$Z = \widetilde{D}^{-\frac{1}{2}}\widetilde{A}\widetilde{D}^{-\frac{1}{2}}XW$$

Results

Motifwalk + OVR - Linear Regression.

m-GCN

	Метнор	CITESEER	CORA	PUBMED	NELL
_	- II	12.2	(7.0		~ 0.4
	Deepwalk	43.2	67.2	65.3	58.1
	motifwalk	45.7	68.0	64.9	58.8
	Planetoid	64.7	75.7	77.2	61.9
	GCN	70.3	81.5	79.0	66.0
_	m-GCN	71.2	82.1	79.5	66.1
_					
	m-GCN (rand. splits)	70.2 ± 0.5	81.1 ± 0.5	79.3 ± 0.7	62.0 ± 1.4

References

(Perezzi, 2014) Deepwalk: Online learning of social representations.

(Benson, 2016) Higher-order organization of complex networks

(Kipf, 2017) Semi-supervised classification with graph convolutional networks.