Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	18 October 2022
Team ID	PNT2022TMID48179
Project Name	Real Time River Water Quality Monitoring System
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint1	Simulation creation	USN-1	Connect Sensors and Arduino with python code	2	High	Ragavi Manisha sasika
Sprint2	Software	USN-2	Creating device in the IBM Watson IoT platform, workflow for IoT scenarios using Node-Red	2	High	Priyanga Sasika Ananthi
Sprint3	MIT App Inventor	USN-3	Develop an application for the real time river water quality management project using MIT App Inventor	2	High	Manisha Ragavi

Sprint4	Dashboard	USN-4	Design the Modules and test the app	2	High	Ananthi priyanga
Sprint5	Web UI	USN-5	To make the user to interact with software.	2	High	Sasika Ragavi

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint 1	20	6Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint 2	20	6Days	31 Oct 2022	05 Nov 2022		05 Oct 2022
Sprint 3	20	6Days	07 Nov 2022	12 Nov 2022		12 Oct 2022
Sprint 4	20	6Days	14 Nov 2022	19 Nov 2022		15 Oct 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

AV = Sprint duration =
$$20\10 = 2$$

Velocity