1 Some Useful Theorems

Lemma 1 (Splitting Lemma (Hatcher p. 147)). For a short exact sequence

$$0 \to A \xrightarrow{i} B \xrightarrow{j} C \to 0$$

of abelian groups the following statements are equivalent

- 1. There is a homomorphism $p: B \to A$ such that $p \circ i = \mathbf{Id}_A$.
- 2. There is a homomorphism $s: C \to B$ such that $j \circ s = \mathbf{Id}_C$.
- 3. There is an isomorphism $B \cong A \oplus C$ making the commutative diagram below, where the maps in the lower row are the obvious ones $a \mapsto (a,0)$ and $(a,c) \mapsto c$.

Lemma 2 (The Five-Lemma (Hatcher p. 129)). In a commutative diagram of abelian groups as below, if the two rows are exact and α, β, δ , and ε are isomorphisms then γ is an isomorphism.

$$A \xrightarrow{i} B \xrightarrow{j} C \xrightarrow{k} D \xrightarrow{\ell} E$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma} \qquad \downarrow^{\delta} \qquad \downarrow^{\varepsilon}$$

$$A' \xrightarrow{i'} B' \xrightarrow{j'} C' \xrightarrow{k'} D' \xrightarrow{\ell'} E'$$

Theorem 1 (Alexander Duality). If D is a compact, locally contractible, nonempty, proper subspace of S^d then for all k there is an isomorphism

$$\Gamma_D^k: \tilde{\mathrm{H}}_k(D) \to \tilde{\mathrm{H}}^{d-k-1}(S^d \setminus D).$$

If (D,B) is a pair of such subspaces of S^d then for all k there is an isomorphism

$$\Gamma_{(D,B)}^k : \tilde{\mathrm{H}}_k(D,B) \to \tilde{\mathrm{H}}^{d-k}(S^d \setminus B, S^d \setminus D).$$

Lemma 3 (Lemma 3.2 from [?]). Given a sequence $A \to B \to C \to D \to E \to F$ of homomorphisms between finite-dimensional vector spaces, if $\mathbf{rk}(A \to F) = \mathbf{rk}(C \to D)$ then this quantity also equals the rank of $B \to E$. Similarly, if $A \to B \to C \to E \to F$ is a sequence of homomorphisms such that $\mathbf{rk}(A \to F) = \dim C$ then $\mathbf{rk}(B \to E) = \dim C$.

TODO

Excision

2 Separation

Definition 1 (Separation). We say that a subset B **separates** a topological space X with the pair (U, V) if B, U, V partitions X and U, V are not path connected.

Lemma 4. If B separates X with the pair (U, V) then for all k the short exact sequence

$$0 \to \mathrm{H}_k(V) \xrightarrow{i_*} \mathrm{H}_k(X \setminus B) \xrightarrow{j_*} \mathrm{H}_k(U) \to 0$$

splits.

Proof. Because $X \setminus B$ is the disjoint union of U and V we know that $i_* : H_k(V) \to H_k(X \setminus B)$ is the map induced by inclusion and $p_* : H_k(X \setminus B) \to H_k(V)$ is induced by the restriction of the identity on $X \setminus B$ to V. Thus $p_* \circ i_* = \mathbf{Id}_{H_k(V)}$ and therefore, by Lemma 1 the sequence splits. \square

Corollary 1. If B separates X with the pair (U, V) then for all k

$$H_k(X \setminus B) \cong H_k(U) \oplus H_k(V).$$

Lemma 5. If B separates X with the pair (U, V) then for all k

$$H_k(U) \cong H_k(X \setminus B, V).$$

Proof. First note that the short exact sequence

$$0 \to \mathrm{H}_k(V) \to \mathrm{H}_k(U) \oplus \mathrm{H}_k(V) \to \mathrm{H}_k(U) \to 0$$

extends to a long exact sequence with the zero map $\partial_*^k: \mathrm{H}_k(U) \to \mathrm{H}_k(V)$ as $\mathrm{im}\ j_*^k = \mathrm{H}_k(U) = \ker\ \partial_*^k$ and $\mathrm{im}\ \partial_*^k = \ker\ i_*^{k-1} = \mathbf{0}_{\mathrm{H}_{k-1}(V)}$. Consider the following commutative diagram where the bottom row is the long exact sequence of the pair $(X \setminus B, V)$

$$\dots \longrightarrow \mathrm{H}_{k}(V) \xrightarrow{i_{*}^{k}} \mathrm{H}_{k}(U) \oplus \mathrm{H}_{k}(V) \xrightarrow{j_{*}^{k}} \mathrm{H}_{k}(U) \xrightarrow{\partial_{*}^{k}} \mathrm{H}_{k-1}(V) \xrightarrow{i_{*}^{k-1}} \mathrm{H}_{k-1}(U) \oplus \mathrm{H}_{k-1}(V) \longrightarrow \dots$$

$$\downarrow f_{*}^{k} \qquad \qquad \downarrow g_{*}^{k} \qquad \qquad \downarrow h_{*}^{k} \qquad \qquad \downarrow f_{*}^{k-1} \qquad \qquad \downarrow g_{*}^{k-1}$$

$$\dots \longrightarrow \mathrm{H}_{k}(V) \xrightarrow{\widehat{i_{*}^{k}}} \mathrm{H}_{k}(X \setminus B) \xrightarrow{\widehat{j_{*}^{k}}} \mathrm{H}_{k}(U) \xrightarrow{\widehat{\partial_{*}^{k}}} \mathrm{H}_{k-1}(V) \xrightarrow{\widehat{i_{*}^{k-1}}} \mathrm{H}_{k-1}(X \setminus B) \longrightarrow \dots$$

As f_*^k is the identity map and, by Corollary 1, g_*^k is an isomorphism for all k it follows that h_*^k is an isomorphism for all k by Lemma 2.

Definition 2 (Surrounding). We say that $B \subset D$ surrounds $D \subset X$ in X if B separates X with the pair $(D \setminus B, X \setminus D)$. We will refer to such a pair (D, B) as a surrounding pair in X.

The following is a corollary of Theorem 1 (Alexander Duality).

Corollary 2. If (D, B) is a surrounding pair of locally contractible, nonempty, proper subspaces in S^d then for all k

$$\tilde{H}_k(D,B) \cong \tilde{H}^{d-k}(D \setminus B).$$

In the following we will assume that (D, B) is a surrounding pair of locally contractible, nonempty, proper subspaces in S^d . Let $(\overline{B}, \overline{D}) = (S^d \setminus B, S^d \setminus D)$ denote the complement of the pair (D, B) in S^d .

Lemma 6. If (D, B) is a surrounding pair of locally contractible, nonempty, proper subspaces of S^d then

$$i_*^k : \tilde{\mathrm{H}}_{k+1}(D,B) \to \tilde{\mathrm{H}}_k(B)$$

is injective and

$$j_*^k : \tilde{\mathrm{H}}_k(B) \to \tilde{\mathrm{H}}_k(D)$$

is surjective for all k.

Proof. We have the following commutative diagram of long exact sequences of the pairs (D, B) and $(\overline{B}, \overline{D})$.

$$\tilde{\mathbf{H}}_{k+1}(D,B) \xrightarrow{\partial_{*}^{k+1}} \tilde{\mathbf{H}}_{k}(B) \xrightarrow{i_{*}^{k}} \tilde{\mathbf{H}}_{k}(D)
\downarrow^{\Gamma_{(D,B)}^{k+1}} \qquad \downarrow^{\Gamma_{B}^{k}} \qquad \downarrow^{\Gamma_{D}^{k}}
\tilde{\mathbf{H}}^{d-k-1}(\overline{B},\overline{D}) \xrightarrow{\overline{j_{*}^{d-k-1}}} \tilde{\mathbf{H}}^{d-k-1}(\overline{B}) \xrightarrow{\overline{i_{*}^{d-k-1}}} \tilde{\mathbf{H}}^{d-k-1}(\overline{D})$$
(1)

Because B surrounds D we have that

$$\tilde{\mathrm{H}}_{d-k-1}(\overline{B}) \cong \tilde{\mathrm{H}}_{d-k-1}(D \setminus B) \oplus \mathrm{H}_{k}(\overline{D})$$

by Lemma ??, where $\tilde{\mathrm{H}}_{d-k-1}(D \setminus B) \cong \tilde{\mathrm{H}}_{d-k-1}(\overline{B}, \overline{D})$ by Lemma 5. It follows that $\overline{j_*^{d-k-1}}$ is injective and $\overline{i_*^{d-k-1}}$ is surjective.

By commutativity of Diagram 1 and because $\Gamma_{(D,B)}^{k+1}$, Γ_B^k and Γ_D^k are isomorphisms we have that

$$\partial_*^{k+1} = (\Gamma_B^k)^{-1} \circ \overline{j_*^{d-k-1}} \circ \Gamma_{(D,B)}^{k+1}$$

is injective and

$$i_*^k = (\Gamma_D^k)^{-1} \circ \overline{i_*^{d-k-1}} \circ \Gamma_B^{k+1}$$

is surjective.

We note that this implies the following for non-reduced homology 1 for subsets of $\mathbb{R}^{d,2}$

¹TODO reasoning:

- consider $H_1(D,B) \to H_0(B)$.
- $\tilde{\mathrm{H}}_{0}(B) \to \tilde{\mathrm{H}}_{0}(D)$ surjective implies $\mathrm{H}_{0}(B) \to \mathrm{H}_{0}(D)$ surjective (right?).

²TODO reasoning:

- $S^d \cong \mathbb{R}^d \cup \{\infty\}$.
- Only requires spaces and complements remain compact?

Corollary 3. If (D, B) is a surrounding pair of locally contractible, nonempty, proper subspaces of \mathbb{R}^d then

$$i_*^k: \mathcal{H}_{k+1}(D,B) \to \mathcal{H}_k(B)$$

is injective and

$$j_*^k: \mathrm{H}_k(B) \to \mathrm{H}_k(D)$$

is surjective for all k.

3 Separating Covers

In the following let $\mathbf{d}(x,y) = ||x-y||$ denote the euclidean distance between points $x,y \in \mathbb{R}^d$. For $A \subset \mathbb{R}^d$ and $x \in \mathbb{R}^d$ let

$$\mathbf{d}_A(x) = \min_{a \in A} \mathbf{d}(x, a)$$

denote the distance from x to the set A. In the following, we will use open metric balls

$$\mathrm{ball}_{\varepsilon}(x) = \{ y \in \mathbb{R}^d \mid \mathbf{d}(x, y) < \varepsilon \}$$

and offsets

$$A^{\varepsilon} = \mathbf{d}_A^{-1}[0, \varepsilon) = \{x \in \mathbb{R}^d \mid \mathbf{d}_A(x) < \varepsilon\}.$$

Let (D, B) be a surrounding pair in \mathbb{R}^d . For subsets $Y \subset X$ of D suppose $D \setminus B \subseteq X$ and Y separates D with a pair (U, V) such that $D \setminus B \subseteq U$. Let $(\hat{X}, \hat{Y}) = (X \cup V, Y \cup V)$ denote the *extension* of the pair (X, Y) in (D, B).

Definition 3 (Separating Cover). For $\delta > 0$, $\gamma > \delta$, and finite subsets $P \subset D$, $Q \subset P \cap B$ we say that (P,Q) is an **(open) separating** (δ,γ) -cover of (D,B) if

- (a) $D \setminus B \subseteq P^{\delta}$,
- (b) Q^{δ} separates D with the pair (U,V) such that $D \setminus B \subseteq U$, and
- (c) $(\hat{P}^{\delta}, \hat{Q}^{\delta}) \subseteq (D, B) \subseteq (\hat{P}^{\gamma}, \hat{Q}^{\gamma}).$

Lemma 7. If (P,Q) is an (open) separating (δ,γ) -cover of a surrounding pair (D,B) then

$$H_k(P^{\delta}, Q^{\delta}) \cong H_k(\hat{P}^{\delta}, \hat{Q}^{\delta}).$$

Proof. Clearly $\hat{P}^{\delta} \setminus V = P^{\delta}$ and $\hat{Q}^{\delta} \setminus V = Q^{\delta}$. Because Q^{δ} is an open set V is closed³, so $\operatorname{cl}(V) = V \subset \operatorname{int}(\hat{Q}^{\delta})$. The isomorphism follows by excision.

For any separating (δ, γ) -cover (P, Q) of a surrounding pair (D, B) clearly Q^{γ} separates D and $D \setminus B \subseteq P^{\gamma}$. Therefore, let $(\hat{P}^{\gamma}, \hat{Q}^{\gamma})$ denote the extension of (P^{γ}, Q^{γ}) in D and note that $H_k(P^{\gamma}, Q^{\gamma}) \cong H_k(\hat{P}^{\gamma}, \hat{Q}^{\gamma})$.

Lemma 8. If (D, B) is an open surrounding pair in \mathbb{R}^d and (P, Q) is an (open) separating (δ, γ) -cover of (D, B) then there is an isomorphism

$$H_k(P^\delta, P^\delta \cap B) \to H_k(D, B)$$

induced by inclusion for all k.

- Define separating pair as separating \mathbb{R}^d with $D \setminus B \subset U$ and $\overline{D} \subset V$
- tricky bzns where D is taken as a metric subspace (side effects?)

³TODO $V = D \setminus (Q^{\delta} \cup U)$ for open D. clopen? D must be open for next excision. options:

Proof. Because (D,B) is an open pair of subsets and (P,Q) is a separating (δ,γ) -cover of (D,B) we know that $B\subset D$, $P^\delta\subseteq D$, and $D\setminus B\subseteq P^\delta$. Moreover, because B and P^δ are open sets $\operatorname{int}(P^\delta)=P^\delta$ and $\operatorname{int}(B)=B$. So $P^\delta\cup B=\operatorname{int}(P^\delta)\cup\operatorname{int}(B)\subseteq D$ and

$$D = (D \setminus B) \cup B \subseteq P^{\delta} \cup B$$

thus $\operatorname{int}(P^{\delta}) \cup \operatorname{int}(B) = D$ which implies the inclusion $(P^{\delta}, P^{\delta} \cap B) \hookrightarrow (D, B)$ induces an isomorphism in homology by excision.

Because (D,B) is a surrounding pair in \mathbb{R}^d we know that B separates \mathbb{R}^d with the pair $(D\setminus B,\overline{D})$. So there is no path from $D\setminus B$ to \overline{D} that does not cross B. As $D\setminus B\subseteq V$, $Q^\delta\subseteq B$, and U,V and Q^δ partition D it follows that $U\subset B$ and therefore that $(\hat{P}^\delta,\hat{Q}^\delta)\subseteq (D,B)\subseteq (\hat{P}^\gamma,\hat{Q}^\gamma)$. Similarly, $H_k(\hat{P}^\delta,\hat{P}^\delta\cap B)\cong H_k(D,B)$.

⁴TODO rigor.

4 Chasing

Theorem 2. Let $(\mathcal{D}, \mathcal{B})$ be a surrounding pair of open subsets of \mathbb{R}^d and let $P \subset \mathcal{D}$ be a finite subset of \mathcal{D} . Let (P,Q) be an (open) separating (δ, γ) -cover of $(\mathcal{D}, \mathcal{B})$ for $\gamma > \delta > 0$. Let (D_0, B_0) and (D_1, B_1) be surrounding pairs of nonempty, compact subsets of \mathbb{R}^d such that $B_0 \subseteq \hat{Q}^{\delta}$, $\hat{Q}^{\gamma} \subseteq B_1$, and

$$(D_0, B_0) \subset (\mathcal{D}, \mathcal{B}) \subset (D_1, B_1).$$

If

im
$$H_k((D_0, B_0) \hookrightarrow (D_1, B_1)) \cong H_k(\mathcal{D}, \mathcal{B})$$

then

im
$$H_k((P^{\delta}, Q^{\delta}) \hookrightarrow (P^{\gamma}, Q^{\gamma})) \cong H_k(\mathcal{D}, \mathcal{B}).$$

Proof. As $H_k(P^{\delta}, Q^{\delta}) \cong H_k(\hat{P}^{\delta}, \hat{Q}^{\delta})$ and $H_k(P^{\gamma}, Q^{\gamma}) \cong H_k(\hat{P}^{\gamma}, \hat{Q}^{\gamma})$ we know that $\operatorname{im} H_k((P^{\delta}, Q^{\delta}) \hookrightarrow (P^{\gamma}, Q^{\gamma})) \cong \operatorname{im} H_k((\hat{P}^{\delta}, \hat{Q}^{\delta}) \hookrightarrow (\hat{P}^{\gamma}, \hat{Q}^{\gamma}))$. So we will refer to $(\hat{P}^{\delta}, \hat{Q}^{\delta})$ and $(\hat{P}^{\gamma}, \hat{Q}^{\gamma})$ as (P^{δ}, Q^{δ}) and (P^{γ}, Q^{γ}) w.l.o.g. throughout.

In the following let

$$\eta_B^k : \mathcal{H}_k(B_0) \to \mathcal{H}_k(B_1),
\eta_D^k : \mathcal{H}_k(D_0) \to \mathcal{H}_k(D_1), \text{ and}
\eta^k : \mathcal{H}_k(D_0, B_0) \to \mathcal{H}_k(D_1, B_1).$$

Consider the commutative diagram of long exact sequences of the pairs $(D_0, B_0), (\mathcal{D}, \mathcal{B})$ and (D_1, B_1) .

$$H_{k}(B_{0}) \xrightarrow{i_{0}^{k}} H_{k}(D_{0}) \xrightarrow{j_{0}^{k}} H_{k}(D_{0}, B_{0}) \xrightarrow{\partial_{0}^{k}} H_{k-1}(B_{0}) \xrightarrow{i_{0}^{k-1}} H_{k-1}(D_{0})
\downarrow_{a^{k}} \qquad \downarrow_{b^{k}} \qquad \downarrow_{d^{k}} \qquad \downarrow_{a^{k-1}} \qquad \downarrow_{b^{k-1}}
H_{k}(\mathcal{B}) \xrightarrow{i_{*}^{k}} H_{k}(\mathcal{D}) \xrightarrow{j_{*}^{k}} H_{k}(\mathcal{D}, \mathcal{B}) \xrightarrow{\partial_{*}^{k}} H_{k-1}(\mathcal{B}) \xrightarrow{i_{*}^{k-1}} H_{k-1}(\mathcal{D})
\downarrow_{f^{k}} \qquad \downarrow_{g^{k}} \qquad \downarrow_{h^{k}} \qquad \downarrow_{f^{k-1}} \qquad \downarrow_{g^{k-1}}
H_{k}(B_{1}) \xrightarrow{i_{1}^{k}} H_{k}(D_{1}) \xrightarrow{j_{1}^{k}} H_{k}(D_{1}, B_{1}) \xrightarrow{\partial_{1}^{k}} H_{k-1}(B_{1}) \xrightarrow{i_{1}^{k-1}} H_{k-1}(D_{1})$$

$$(2)$$

Because (D_0, B_0) and (D_1, B_1) are nonempty, compact surrounding pairs of \mathbb{R}^d we can embed them in $S^d \cong \mathbb{R}^d \cup \{\infty\}$ in order to show that i_0^k and i_1^k are surjective by Lemma 6. So, by exactness, $\operatorname{im} i_0^k = \ker j_0^k = \operatorname{H}_k(D_0)$ and $\operatorname{im} i_1^k = \ker j_1^k = \operatorname{H}_k(D_1)$. It follows that for any $[y''] \in \operatorname{im} \eta^k$ with preimage $[y] \in \operatorname{H}_k(D_0, B_0)$ we must have that $[y''] \in \operatorname{cok} j_1^k$ and $[y] \in \operatorname{cok} j_0^k$. That is, there must exist nonzero $[z] = \partial_0^k[y]$ in $\operatorname{H}_{k-1}(B_0)$ and $[z''] = \partial_1^k[y'']$ in $\operatorname{H}_{k-1}(B_1)$ such that $\eta_B^{k-1}[z] = [z'']$. Moreover, because η^k factors through $\operatorname{H}_k(\mathcal{D}, \mathcal{B})$ and η_B^{k-1} factors through $\operatorname{H}_{k-1}(\mathcal{B})$ there must exist nonzero $[y'] = d^k[y]$ in $\operatorname{H}_k(\mathcal{D}, \mathcal{B})$ and $[z'] = \partial_*^k[y'] = a^{k-1}[z]$ in $\operatorname{H}_{k-1}(\mathcal{B})$ such that $h^k[y'] = [y'']$ and $f^{k-1}[z'] = [z'']$.

Consider the long exact sequences of the pairs $(P^{\delta}, P^{\delta} \cap \mathcal{B}), (P^{\delta}, Q^{\delta})$.

$$\ldots \to \mathrm{H}_k(P^{\delta}, P^{\delta} \cap \mathcal{B}) \xrightarrow{\widehat{\partial_*^k}} \mathrm{H}_{k-1}(P^{\delta} \cap \mathcal{B}) \xrightarrow{i_*^{\widehat{k-1}}} \mathrm{H}_{k-1}(P^{\delta}) \to \ldots,$$

$$\dots \to \mathrm{H}_k(P^\delta, Q^\delta) \xrightarrow{\partial_\delta^k} \mathrm{H}_{k-1}(Q^\delta) \xrightarrow{p_\delta^{k-1}} \mathrm{H}_{k-1}(P^\delta) \to \dots,$$

and the following commutative diagrams taken from the long exact sequences of the pairs $(D_0, B_0), (P^{\delta}, P^{\delta} \cap \mathcal{B})$ and $(P^{\delta}, Q^{\delta}), (P^{\delta}, P^{\delta} \cap \mathcal{B})$, respectively.

where $\xi^k: H_k(\mathcal{D}, \mathcal{B}) \to H_k(P^\delta, P^\delta \cap \mathcal{B})$ is the isomorphism given by excision in Lemma 8 and $\widehat{a^{k-1}}, \widehat{\psi_{\delta}^{k-1}}$ are homomorphisms induced by inclusion.

Because ξ^k is an isomorphism there exists a nonzero $[\widehat{y'}] = \xi^k[y']$ in $H_k(P^\delta, P^\delta \cap \mathcal{B})$ and, because $P^\delta \cap \mathcal{B} \subset \mathcal{B}$ the map a^{k-1} factors through $H_{k-1}(P^\delta \cap \mathcal{B})$, so there must exist some nonzero $\widehat{|z'|} = \widehat{a^{k-1}}[z]$ in $H_{k-1}(P^{\delta} \cap \mathcal{B})$ such that $\widehat{\partial_*^k}[\widehat{y'}] = \widehat{[z']}$ by commutativity of diagram ??.

Now, letting $\phi_0^{k-1}: \mathcal{H}_{k-1}(B_0) \to \mathcal{H}_{k-1}(Q^{\delta})$ be induced by inclusion we have that $\widehat{a^{k-1}} =$ $\widehat{\psi_{\delta}^{k-1}} \circ \phi_0^{k-1}$ so $\phi_0^{k-1}[z]$ is nonzero in $H_{k-1}(Q^{\delta})$. Because $\widehat{[z']} \in \mathbf{im} \ \widehat{\partial_*^k}$ we have that $\widehat{[z']} \in \mathbf{im}$ $\widehat{\mathbf{ker}} \ \widehat{i_*^{k-1}}. \ \text{By commutativity of diagram ??} \ p_{\delta}^{k-1} = \widehat{i_*^{k-1}} \circ \widehat{\psi_{\delta}^{k-1}} \ \text{thus} \ \phi_0^{k-1}[z] \in \widehat{\mathbf{ker}} \ p_{\delta}^{k-1} \ \text{which implies} \ \phi_0^{k-1}[z] \in \widehat{\mathbf{im}} \ \partial_{\delta}^k \ \text{by exactness.}$

We can therefore construct a homomorphism $\mu^k: H_k(D_0, B_0) \to H_k(P^\delta, Q^\delta)$ for $[y] \in H_k(D_0, B_0)$ as the preimage of $\partial_0^k \circ \phi_0^{k-1}[y]$ in $H_k(P^\delta, Q^\delta)$ for $[y] \in \mathbf{im} \ \eta^k$, 0 otherwise, Now, consider the long exact sequence of the pair (P^{γ}, Q^{γ})

$$\dots \to \mathrm{H}_k(P^{\gamma}, Q^{\gamma}) \xrightarrow{\partial_{\gamma}^k} \mathrm{H}_{k-1}(P^{\delta} \cap \mathcal{B}) \xrightarrow{p_{\gamma}^{k-1}} \mathrm{H}_{k-1}(P^{\gamma}) \to \dots$$

We have the following commutative diagrams

$$\begin{array}{cccc}
H_{k-1}(\mathcal{B}) & \xrightarrow{i_*^{k-1}} & H_{k-1}(\mathcal{D}) & & H_k(P^{\gamma}, Q^{\gamma}) & \xrightarrow{\partial_{\gamma}^k} & H_{k-1}(Q^{\gamma}) \\
\downarrow^{\psi_{\gamma}^{k-1}} & \downarrow^{\sigma_{\gamma}^{k-1}} & & \downarrow^{\phi_{\gamma}^{k-1}} & \downarrow^{\phi_{\gamma}$$

where ψ_{γ}^{k-1} , σ_{γ}^{k-1} , ϕ_{1}^{k-1} and ν^{k} are induced by inclusion. Because $[z'] \in \mathbf{im} \ \partial_{*}^{k}$ we have $[z'] \in \mathbf{ker} \ i_{*}^{k-1}$ by exactness and, by commutativity of diagram ??, $p_{\gamma}^{k-1} \circ \psi_{\gamma}^{k-1} = \sigma_{\gamma}^{k-1} \circ i_{*}^{k-1}$. Noting that f^{k-1} factors through $H_{k-1}(Q^{\gamma})$ as $f^{k-1} = \phi_{1}^{k-1} \circ \psi_{\gamma}^{k-1}$ we have that $\psi_{\gamma}^{k-1}[z']$ is nonzero in $H_{k-1}(Q^{\gamma})$. So $\psi_{\gamma}^{k-1}[z'] \in \mathbf{ker} \ p_{\gamma}^{k-1}$ thus $\psi_{\gamma}^{k-1}[z'] \in \mathbf{im} \ H_{k}(P^{\gamma}, Q^{\gamma})$ by exactness.

So we may conclude that η^k factors through $\tau^k: H_k(P^\delta,Q^\delta) \to H_k(P^\gamma,Q^\gamma)$ with the maps $\mu^k = (\partial_\delta^k)^{-1} \circ \phi_0^{k-1} \circ \partial_0^k$ and $\nu^k: H_k(P^\gamma,Q^\gamma) \to H_k(D_1,B_1)$ induced by inclusion. We therefore have the following sequence of homomorphisms

$$H_k(D_0, B_0) \xrightarrow{\mu^k} H_k(P^\delta, Q^\delta) \to H_k(\mathcal{D}, \mathcal{B}) \to H_k(P^\gamma, Q^\gamma) \xrightarrow{\nu^k} H_k(D_1, B_1).$$

The result follows from Lemma 3.

5 Connection with the TCC

5.1 Assumptions

Let $P \subset \mathcal{D}$ be a finite collection of sensors p with the following capabilities.

Sensor Capabilities

- a. (Communication Radii) detect the presence, but not location or distance, of sensors within distances $\delta > 0$ and $\gamma \geq 3\delta$, and discriminate between sensors within each scale,
- b. (Coverage Radius) cover a radially symmetric subset of the domain with radius δ ,

We will refer to the following preliminary assumptions about pairs (D_0, B_0) and (D_1, B_1) for $\delta > 0$ and $\gamma \geq 3\delta$.

Geometric Assumptions

- 1. **(Domain)** (D_0, B_0) and (D_1, B_1) are surrounding pairs of nonempty, compact subsets of \mathbb{R}^d with $(D_0^{\delta+\gamma}, B_0^{\delta+\gamma}) \subset (D_1, B_1)$.
- 2. **(Boundary)** $H_0(D_1 \setminus B_1 \hookrightarrow D_0 \setminus B_0^{2\delta})$ is surjective.

In the following let $Q = P \cap B_0^{\delta}$ and $(\mathcal{D}, \mathcal{B}) = (D_0^{2\delta}, B_0^{2\delta})$.

5.2 Proof of the TCC

We have the following commutative diagrams of inclusions between the pairs (P,Q) and $(\mathcal{D},\mathcal{B})$ and their complements with increasing scale.

$$(P^{\delta}, Q^{\delta}) \longleftrightarrow (P^{\gamma}, Q^{\gamma}) \quad (\overline{B_1}, \overline{D_1}) \longleftrightarrow^{j} (\overline{\mathcal{B}}, \overline{\mathcal{D}})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(\mathcal{D}, \mathcal{B}) \longleftrightarrow^{j} (D_1, B_1), \quad (\overline{Q^{\gamma}}, \overline{P^{\gamma}}) \longleftrightarrow^{j} (\overline{Q^{\delta}}, \overline{P^{\delta}}).$$

The following diagram is formed by applying the homology functor.

$$\begin{array}{ccc}
H_{0}(\overline{B_{1}}, \overline{D_{1}}) & \stackrel{j_{*}}{\longrightarrow} & H_{0}(\overline{\mathcal{B}}, \overline{\mathcal{D}}) \\
\downarrow & & \downarrow \\
H_{0}(\overline{Q^{\gamma}}, \overline{P^{\gamma}}) & \stackrel{i_{*}}{\longrightarrow} & H_{0}(\overline{Q^{\delta}}, \overline{P^{\delta}}).
\end{array} (5)$$

Let $p_* : \mathbf{im} \ j_* \to \mathbf{im} \ i_*$.

Lemma 9. Given assumptions 1 & 2, the map p_* is surjective.

Proof. Choose a basis for **im** i_* such that each basis element is represented by a point in $P^{\delta} \setminus Q^{\gamma}$. Let $x \in P^{\delta} \setminus Q^{\gamma}$ be such that [x] is non-trivial in **im** i_* . Suppose $x \in \mathcal{B}$ and let $y \in B_0$ so that $\mathbf{d}(x,y) < 2\delta$.

Now, because $x \in \overline{Q^{\gamma}}$ by hypothesis $\mathbf{d}(x,q) \geq \gamma$ for all $q \in Q$. For any z in the shortest path between x and y we have $\mathbf{d}(x,z) \leq \mathbf{d}(x,y) < 2\delta$, so the following inequality holds for all $q \in Q$

$$\mathbf{d}(x,q) \ge \mathbf{d}(x,q) - \mathbf{d}(x,z)$$

$$> \gamma - 2\delta$$

$$> \delta.$$

So $z \in \overline{Q^{\delta}}$ for all z in the shortest path from x to y. In particular, $x, y \in \overline{Q^{\delta}}$.

Now, suppose $y \in P^{\delta}$. So there exists some $p \in P$ such that $\mathbf{d}(p,y) < \delta$. So $\mathbf{d}(p,y) < \delta$ which implies $p \in Q$ thus $y \in Q^{\delta}$. But we have shown that $y \in \overline{Q^{\delta}}$, a contradiction, so we may assume that $y \in \overline{P^{\delta}}$.

Because $x,y\in \overline{Q^\delta}$ we have corresponding chains $x,y\in C_0(\overline{Q^\delta})$ as well as $y\in \overline{P^\delta}$ generating a chain $y\in C_0(\underline{P^\delta})$. As we have shown that $x\in \mathcal{B}$ implies that the shortest path from x to y is contained in $\overline{Q^\delta}$ there exists a path $h:[0,1]\to \overline{Q^\delta}$ with h(0)=x and h(1)=y that generates a chain $h\in C_1(\overline{Q^\delta})$. So for $h\in C_1(\overline{Q^\delta},\overline{P^\delta})$ with $\partial h=x+y$ we have that $x=\partial h+y$. Thus [x] is a relative boundary and is therefore trivial in $H_0(\overline{P^\delta},\overline{Q^\delta})$, a contradiction, as we have assumed [x] is non-trivial in $\mathbf{im}\ i_*$. So we may conclude that $x\notin \mathcal{B}$.

So $x \in \overline{\mathcal{B}}$ and $x \in \mathcal{D} \setminus \mathcal{B}$. So [x] is non-trivial in $H_0(\overline{\mathcal{B}}, \overline{\mathcal{D}})$ and, because j_* is surjective, $\operatorname{im} j_* = H_0(\overline{\mathcal{B}}, \overline{\mathcal{D}})$. So p_* is surjective as $p_*[x] = [x] \in \operatorname{im} p_*$ for all non-trivial $[x] \in \operatorname{im} i_*$. \square

Lemma 10. Given assumptions 1 & 2, if p_* is injective then $\mathcal{D} \setminus \mathcal{B} \subseteq P^{\delta}$.

Proof. Suppose, for the sake of contradiction, that p_* is injective and there exists a point $x \in (\mathcal{D} \setminus \mathcal{B}) \setminus P^{\delta}$. So [x] is non-trivial in $H_0(\overline{\mathcal{B}}, \overline{\mathcal{D}}) = \operatorname{im} j_*$ as x is in some connected component of $\mathcal{D} \setminus \mathcal{B}$ and j_* is surjective. So we have the following sequence of maps induced by inclusions

$$H_0(\overline{\mathcal{B}}, \overline{\mathcal{D}}) \xrightarrow{f_*} H_0(\overline{\mathcal{B}}, \overline{\mathcal{D}} \cup \{x\}) \xrightarrow{g_*} H_0(\overline{Q^\delta}, \overline{P^\delta}).$$

As $f_*[x]$ is trivial in $H_0(\overline{\mathcal{B}}, \overline{\mathcal{D}} \cup \{x\})$ we have that $p_*[x] = (g_* \circ f_*)[x]$ is trivial, contradicting our hypothesis that p_* is injective.

Lemma 11. Given assumptions 1 & 2, if the map p_* is injective then Q^{δ} separates \mathcal{D} .

Proof. Suppose, for the sake of contradiction, that Q^{δ} does not separate \mathcal{D} . Then for all (U,V) such that $U \cup V = \mathcal{D} \setminus Q^{\delta}$ there must exist some path from U to V that does not cross Q^{δ} . Formally, there exists a path $\pi: [0,1] \to \overline{Q^{\delta}}$ with $\pi(0) \in U$ and $\pi(1) \in V$. Noting that $\overline{\mathcal{B}} \subseteq \overline{Q^{\delta}}$ and, because \mathcal{B} surrounds \mathcal{D} , $\overline{\mathcal{B}} = \overline{\mathcal{D}} \cup (\mathcal{D} \setminus \mathcal{B})$, so we can choose (U,V) such that $\mathcal{D} \setminus \mathcal{B} \subset U$ and $\overline{\mathcal{D}} \subset V$.

Choose $x \in \mathcal{D} \setminus \mathcal{B}$ and $y \in \overline{\mathcal{D}}$ such that there exist paths $\pi_x : [0,1] \to U$ with $\pi_x(0) = x$, $\pi_x(1) = \pi(0)$ and $\pi_y : [0,1] \to V$ with $\pi_y(0) = y$, $\pi_y(1) = \pi(1)$. π_x, π_y and π all generate chains in $C_1(\overline{Q^\delta}, \overline{P^\delta})$ and $\pi_x + \pi + \pi_y = \pi^* \in C_1(\overline{Q^\delta}, \overline{P^\delta})$ with $\partial \pi^* = x + y$. Moreover, y generates a chain in $C_0(\overline{P^\delta})$ as $\overline{\mathcal{D}^{2\delta}} \subseteq \overline{P^\delta}$. So $x = \partial \pi^* + y$ is a relative boundary in $C_0(\overline{Q^\delta}, \overline{P^\delta})$ thus [x] = 0 = [y] in $H_0(\overline{Q^\delta}, \overline{P^\delta})$ and therefore [x] = [y] in \mathbf{im} i_* . However, because \mathcal{B} surrounds \mathcal{D} we know that $[x] \neq [y]$ in $H_0(\overline{\mathcal{B}}, \overline{\mathcal{D}}) \cong \mathbf{im}$ j_* , contradicting our assumption that p_* is injective.

Lemma 12. Given assumptions 1 & 2, if p_* is injective then $\mathcal{B} \subseteq \hat{Q}^{\gamma}$.

Proof. Suppose p_* is injective and there exists some $x \in \mathcal{B}$ such that $x \notin \hat{Q}^{\gamma}$. Because $\mathcal{B} = B_0^{2\delta}$ there must exist some $y \in B_0$ such that $\mathbf{d}(x,y) < 2\delta$. By Lemma 11 Q^{δ} separates \mathcal{D} with a pair (U,V) therefore x and y are each either in Q^{δ} , V or U. So $x \in \mathcal{B} \setminus \hat{Q}^{\gamma} = \mathcal{B} \cap (U \setminus Q^{\gamma})$ and $y \in B_0 \subseteq \hat{Q}^{\delta}$.

If $y \in Q^{\delta}$ then there exists some $q \in Q$ such that $\mathbf{d}(q, y) < \delta$ so

$$\mathbf{d}(q, x) \le \mathbf{d}(q, y) + \mathbf{d}(x, y) < 3\delta \le \gamma$$

which implies $x \in Q^{\gamma}$.

As $x \in \mathcal{B} \cap (U \setminus Q^{\gamma})$ we may assume that $y \in B_0 \cap \overline{Q^{\delta}} = B_0 \cap (U \cup V) = B_0 \cap V$. Because Q^{δ} separates \mathcal{D} with (U, V) there is no path from $x \in U$ to $y \in V$ that does not cross Q^{δ} , so there must be some point $z \in Q^{\delta}$ in the shortest path from x to y. That is, there exists some $q \in Q$ such that $\mathbf{d}(q, z) < \delta$ and $\mathbf{d}(z, x) < \mathbf{d}(x, y) < 2\delta$ so

$$\mathbf{d}(q, x) \le \mathbf{d}(q, z) + \mathbf{d}(z, x) < \delta + 2\delta \le \gamma.$$

So $y \in V$ implies $x \in \hat{Q}^{\gamma}$.

Theorem 3 (Geometric TCC). Let (D_0, B_0) and (D_1, B_1) be surrounding pairs of nonempty, compact subsets of \mathbb{R}^d satisfying assumptions 1 & 2 for $\delta > 0$, and $\gamma > 3\delta$. Let $P \subset D_0$ be a finite collection of sensors and $Q = P \cap B_0^{\delta}$. Let $(\mathcal{D}, \mathcal{B}) = (D_0^{2\delta}, B_0^{2\delta})$ and $p_* : \operatorname{im} j_* \to \operatorname{im} i_*$ for j_* , i_* as defined in Diagram 5.

If $\mathbf{rk} \ i_* \geq \mathbf{rk} \ j_* \ then \ (P,Q) \ is \ an \ (open) \ separating \ (\delta,\gamma)$ -cover of $(\mathcal{D},\mathcal{B})$.

Proof. Because P is a finite point set we know that $\mathbf{im}\ i_*$ is finite-dimensional. Because $\mathbf{rk}\ i_* \geq \mathbf{rk}\ j_*\ j_*$ is finite dimensional as well so p_* is injective. Therefore $\mathcal{D} \setminus \mathcal{B} \subseteq P^{\delta}$ by Lemma 10 and Q^{δ} separates \mathcal{D} by Lemma 11. Because Q^{δ} separates \mathcal{D} with a pair (U, V) and $\mathcal{D} \setminus \mathcal{B} \subset P^{\delta}$ we can extend (P^{δ}, Q^{δ}) and (P^{γ}, Q^{γ}) to the pairs $(\hat{P}^{\delta}, \hat{Q}^{\delta})$ and $(\hat{P}^{\gamma}, \hat{Q}^{\gamma})$.

As $P \subset B_0$ and $Q = P \cap B_0^{\delta}$ we have that $(P^{\delta}, Q^{\delta}) \subset (D_0^{2\delta}, B_0^{2\delta}) = (\mathcal{D}, \mathcal{B})$. Because \mathcal{B} surrounds \mathcal{D} in \mathbb{R}^d we know that \mathcal{B} separates \mathbb{R}^d with the pair $(\mathcal{D} \setminus \mathcal{B}, \mathbb{R}^d \setminus \mathcal{D})$. So $\hat{P}^{\delta} = P^{\delta} \cup V$ with $U \cup V \cup Q^{\delta} = \mathcal{D}$ implies $\hat{P}^{\delta} \subset \mathcal{D}$ and $\hat{Q}^{\delta} = Q^{\delta} \cup V$ implies $\hat{Q}^{\delta} \subset \mathcal{B}$. Moreover, because p_* is injective $\mathcal{B} \subseteq \hat{Q}^{\gamma}$ by Lemma 12. Finally, $\mathcal{D} \setminus \mathcal{B} \subset P^{\delta}$ and $\mathcal{B} = B_0^{2\delta}$ implies that $\mathcal{D} = D_0 \subset P^{\gamma}$ so $\mathcal{D} = D_0^{2\delta} \subset \hat{P}^{\gamma}$.

As $\mathcal{D} \setminus \mathcal{B} \subseteq P^{\delta}$, Q^{δ} separates \mathcal{D} , and $(\hat{P}^{\delta}, \hat{Q}^{\delta}) \subseteq (\mathcal{D}, \mathcal{B}) \subseteq (\hat{P}^{\gamma}, \hat{Q}^{\gamma})$ we may conclude that (P, Q) is an (open) separating (δ, γ) -cover of $(\mathcal{D}, \mathcal{B})$.

⁵**TODO** need $\mathcal{D} \setminus \mathcal{B} \subset U$.