Questão 2: Resolução

Calcula as primitivas das seguintes funções:

(a)
$$\frac{\ln x}{x^3}$$

Primitivando por partes, tem-se que, em qualquer intervalo contido no domínio $D = \mathbb{R}^+$ da função,

$$\int \frac{\ln x}{x^3} dx = \int \frac{1}{x^3} \cdot \ln x dx = \int \left(-\frac{1}{2x^2}\right)' \ln x dx = -\frac{\ln x}{2x^2} - \int -\frac{1}{2x^2} \cdot \frac{1}{x} dx = -\frac{\ln x}{2x^2} - \frac{1}{4x^2} + C = -\frac{1+2\ln x}{4x^2} + C, \ C \in \mathbb{R}.$$

Repare-se que a (possível!) substituição $x=e^t\in\mathbb{R}^+$, com $t\in\mathbb{R}$, não iria simplificar a resolução, pois também a primitiva $\int te^{-2t}\,dt$, obtida desta forma, se calcula por partes.

(b)
$$\frac{5}{(x-1)(2x^2+2x+1)}$$

Esta alínea é parecida (com uma diferença importante: ver o ponto iii.) com a questão 3 do primeiro teste de 2021/22, cuja resolução contém mais alguns detalhes e observações.

- i. O fator $2x^2 + 2x + 1$ do denominador é irredutível, pois não tem raízes reais: $2x^2 + 2x + 1 = 0 \iff x = \frac{-1 \pm i}{2}$.
- ii. A função racional é própria, com denominador de grau 3, logo existem 3 constantes $A,B,C\in\mathbb{R}$ tais que

$$\frac{5}{(x-1)(2x^2+2x+1)} = \frac{A}{x-1} + \frac{Bx+C}{2x^2+2x+1} = \frac{(2A+B)x^2 + (2A-B+C)x + A-C}{(x-1)(2x^2+2x+1)}, \forall x \neq 1 \Leftrightarrow \begin{cases} 2A+B=0 \\ 2A-B+C=0 \Leftrightarrow \\ A-C=5 \end{cases} \Leftrightarrow \begin{cases} A=1 \\ B=-2 \\ C=-4 \end{cases}$$
 sendo, então,
$$\frac{5}{(x-1)(2x^2+2x+1)} = \frac{1}{x-1} + \frac{-2x-4}{2x^2+2x+1} = \frac{1}{x-1} - \frac{2x+4}{2x^2+2x+1}.$$

iii. Sabe-se que uma primitiva da fração $\frac{2x+4}{2x^2+2x+1}$ (própria, com denominador de segundo grau irredutível) é a combinação linear de $G(x) = \ln(2x^2+2x+1)$, com derivada $G'(x) = \frac{4x+2}{2x^2+2x+1}$, e de H (composição da arco tangente com um polinómio de grau 1 a determinar), que tem derivada $H'(x) = \frac{\beta}{2x^2+2x+1}$, $\beta \in \mathbb{R}$ constante. Portanto,

$$\frac{2x+4}{2x^2+2x+1} = \alpha \frac{4x+2}{2x^2+2x+1} + \frac{\beta}{2x^2+2x+1} = \frac{4\alpha x + 2\alpha + \beta}{2x^2+2x+1} \Leftrightarrow \begin{cases} \alpha = \frac{1}{2} \\ \beta = 3 \end{cases} \log \alpha \frac{2x+4}{2x^2+2x+1} = \frac{1}{2} \cdot \frac{4x+2}{2x^2+2x+1} + \frac{3}{2x^2+2x+1} = \frac{1}{2} \cdot \frac{4x+2}{2x^2+2x+1} + \frac{3}{2} \cdot \frac{3}{2x^2+2x+1} = \frac{3}{2} \cdot \frac{3}{2x^2+2x+1} = \frac{3}{2} \cdot \frac{3}{2x^2+2x+1} = \frac{3}{2} \cdot \frac{3}{2x^2+2x+1} = \frac{3}{2} \cdot \frac{3}{2x^2+2x+1} + \frac{3}{2x^2+2x+1} = \frac{3}{2} \cdot \frac{3}{2} \cdot \frac{3}{2} \cdot \frac{3}{2} = \frac{3}{2} \cdot \frac{3}{2} \cdot \frac{3}{2} = \frac{3} \cdot \frac{3}{2} = \frac{3}{2} \cdot \frac{3}{2} = \frac{3}{2} \cdot \frac{3}{2} = \frac{3}{2} =$$

iv. Para efetuar a primitivação quase imediata, é melhor reescrever $\frac{3}{2x^2+2x+1}$ de uma forma mais adequada:

$$\frac{3}{2x^2+2x+1} = \frac{3}{2(x^2+x+\frac{1}{2})} = \frac{3}{2\left((x+\frac{1}{2})^2+\frac{1}{4}\right)} = \frac{3}{\frac{2}{4}\left((2x+1)^2+1\right)} = 3 \cdot \frac{2}{(2x+1)^2+1} = 3 \cdot \frac{(2x+1)'}{(2x+1)^2+1}.$$

v. Pela propriedade da linearidade, as primitivas da função dada são, em intervalos contidos em $\mathbb{R} \setminus \{1\}$,

$$\int \frac{5}{(x-1)(2x^2+2x+1)} dx = \int \frac{1}{x-1} - \frac{1}{2} \cdot \frac{4x+2}{2x^2+2x+1} - \frac{3}{2x^2+2x+1} dx$$

$$= \int \frac{(x-1)'}{x-1} dx - \frac{1}{2} \int \frac{(2x^2+2x+1)'}{2x^2+2x+1} dx - 3 \int \frac{(2x+1)'}{(2x+1)^2+1} dx$$

$$= \ln|x-1| - \frac{1}{2} \ln(2x^2+2x+1) - 3 \arctan(2x+1) + C, \ C \in \mathbb{R}.$$

(c)
$$\frac{x^{\frac{1}{6}}}{x^{\frac{1}{2}} + 2x^{\frac{1}{3}}}$$

Para transformar a função dada numa função racional, cujo algoritmo de primitivação é conhecido, considere-se a mudança de variável $x = t^6 \in \mathbb{R}^+$, com $t \in \mathbb{R}^+$. Repare-se que a invertibilidade da função $x = \phi(t)$ é garantida para qualquer $t \ge 0$, mas o valor t = 0 corresponde a $x = \phi(0) = 0$, que não pertence ao domínio da função dada.

Assim, sendo $x^{\frac{1}{6}} = t$, $x^{\frac{1}{3}} = t^2$, $x^{\frac{1}{2}} = t^3$ e $dx = 6t^5 dt$, em qualquer subintervalo de \mathbb{R}^+ obtém-se:

$$\int \frac{x^{\frac{1}{6}}}{x^{\frac{1}{2}} + 2x^{\frac{1}{3}}} dx = \int \frac{t}{t^3 + 2t^2} 6t^5 dt = 6 \int \frac{t^4}{t + 2} dt = 6 \int t^3 - 2t^2 + 4t - 8 + \frac{16}{t + 2} dt$$

$$= \frac{3}{2}t^4 - 4t^3 + 12t^2 - 48t + 96 \ln|t + 2| + C = \frac{3}{2}x^{\frac{2}{3}} - 4x^{\frac{1}{2}} + 12x^{\frac{1}{3}} - 48x^{\frac{1}{6}} + 96 \ln(x^{\frac{1}{6}} + 2) + C, C \in \mathbb{R},$$

onde a identidade $t^4 = (t+2)(t^3-2t^2+4t-8)+16$, utilizada na terceira passagem, resulta, por exemplo, da divisão dos polinómios t^4 e t+2.