MATH 257: Homework #9

Jesse Farmer

01 December 2004

- 1. Prove that A_n contains a subgroup isomorphic to S_{n-2} for $n \geq 3$.
- 2. Prove that there are no simple groups of order 132.
 - Let G be a group such that $|G| = 132 = 2^2 \cdot 3 \cdot 11$. Consider n_3 and n_11 . $n_3 = 1$, 4, 22 and $n_{11} = 112$. If $n_3 = 4$, G acts on $\text{Syl}_3(G)$ by conjugation, so there is a homomorphism to S_4 . Since 24 does not divide 132, the kernel must be nontrivial which is necessarily normal. If $n_3 = 22$ and $n_{11} = 12$ then there are too many elements, so either $n_3 = 1$ or $n_{11} = 1$, but not both, and G has a nontrivial normal subgroup.
- 3. Show that if $n_p \not\equiv 1 \mod p^2$ then there exist distinct Sylow p-subgroups P and Q such that $[P:P\cap Q]=[Q:Q\cap P]=p$.
- 4. Let $P \in Syl_n(G)$ and $N_G(P) \leq M \leq G$. Prove that $[G:M] \equiv 1 \mod p$.
- 5. Prove that A_n does not have a proper subgroup of index < n for all $n \ge 5$.
- 6. Prove that if p is a prime and P is a non-abelian group of order p^3 then |Z(P)| = p and $P/Z(P) \cong \mathbb{Z}_p \times \mathbb{Z}_p$.
 - From the class equation it follows immediately that Z(P) is nontrivial. If $|Z(P)| = p^2$ then G/Z(P) is cyclic and hence G is abelian. Therefore |Z(P)| = p. P/Z(P) has order p^2 and cannot be cyclic, so $P/Z(P) \cong \mathbb{Z}_p \times \mathbb{Z}_p$.
- 7. Prove that every minimal normal subgroup of a finite solvable group is an elementary abelian p-group for some prime p.
- 8. Prove that every maximal subgroup of a finite solvable group has a prime power index.