Experimental Mathematics at Queens College

Christopher R. H. Hanusa Queens College, CUNY

http://qcpages.qc.edu/~chanusa/research

What is Experimental Mathematics?

I study discrete structures.

Q. How many binary trees?

With n nodes?

1, 2, 5, 14, 42, ...

Experiments generate exact, true results.

▶ Of height *h*?

1, 3, 21, 651, ...

Experiment!

Use a computer and mathematical software.

Generate all objects.

Count.

Filter. Match.

Learn something new. Prove it!

Experiments in core partitions

A partition breaks an integer into parts: 11 = 6 + 3 + 1 + 1.

A *t*-core partition has no *t*-hooks

Show up in many areas of math.

Simultaneous (s, t)-core partitions **biject** with other discrete objects

Stats in Cores $\stackrel{??}{\longleftrightarrow}$ Stats in Others

Conjecture: (Armstrong '11)

The average size of an (s, t)-core

$$(s+t+1)(s-1)(t-1)/24$$

Generate, collect data → Pattern. Nice formula, hard to prove.

Experiments in chess piece configurations

Q. Can you place n nonattacking queens on an $n \times n$ chessboard?

Q. In how many ways can you place *n* nonattacking queens?

Computer generated. n = 100?

Classic mathematical technique: Solve a more general problem.

- ► Fixed # of pieces q
- ightharpoonup Arbitrary polygonal board \mathcal{B}
- ► Arbitrary piece P

Computers help:

- Calculations / simplifications
- Check formulas against data

Three- $\@$ -config on $n \times n$ board:

$$f(n) = \frac{n^6}{6} - \frac{5n^5}{3} + \frac{79n^4}{12} - \frac{25n^3}{2} + 11n^2 - \frac{43n}{12} + \frac{1}{8} + (-1)^n \left\{ \frac{n}{4} - \frac{1}{8} \right\}$$