

CIS 522: Lecture I

History of Deep Learning

This course has a nonstandard format

We believe in learning in groups

Hence we insist that you participate in group (pod)

We believe in learning by doing

Hence most is in short embedded videos of 5 min

Followed by doing it

We believe in you being creative

Hence a heavy focus on the projects

Deep Learning and Society

Machine learning matters:

- Decides which movies you see and books you read
- Which scientific articles you read
- Who are your friends
- If you get credit
- If you get out of prison
- If the police searches you
- We need to understand what data does!

Key questions in this course

- 1. How do we decide which problems to tackle with deep learning?
- 2. Given a problem setting, how do we determine what model to use?
- 3. What's the best way to implement said model?
- 4. How can we best visualize, explain, and justify our findings?
- 5. How can neuroscience inspire deep learning?

What we're covering

- 1. Fundamentals of Deep Learning (Weeks 1-5)
- 2. Computer Vision (Weeks 6-8)
- 3. NLP (Weeks 9-10)
- 4. Reinforcement Learning (Week 11-12)
- 5. Future DL (Weeks 13)
- 6. Project work (Remainder)

Key questions covered by other courses

- 1. CIS 580, 581: What are the foundations relating vision and computation?
- 2. <u>CIS 680:</u> What is the SOTA* architecture for _ problem domain in computer vision?
- 3. <u>CIS 530:</u> What are the foundations relating natural language and computation?
- 4. **ESE 546:** How and why does the mathematics behind different architecture work?
- 5. CIS 700-001: What is the SOTA* architecture for _ problem domain in NLP?
- 6. **STAT 991:** What is the cutting-edge of formal deep learning research?

^{*} SOTA = State of the Art

History of Neural Networks

The Neuron Doctrine - Santiago Ramon y Cajal (1888)

Idea: The nervous system is **not** just one continuous thread-like cell, but rather composed of **multiple individual cells**, later called *neurons* by anatomist H.Waldeyer-Hartz.

Picture taken from *Revista Trimestral de Histología Normal y Patológica by Santiago Ramon y Cajal* from which the Neuron Doctrine originated.

Law of Dynamic Polarization (also Cajal)

Law of Dynamic Polarization (also Cajal)

<u>Law:</u> Information travels in **one direction**, from the dendrites to the cell body through the axon and to the terminal.

An axon

McCullochs - Pitts Linear Threshold Unit (LTU), 1943

Inputs:

Outputs:

- $x \in \{0, 1\}$ $y \in \{0, 1\}$
- $\theta \in \mathbb{Z}^*$

Function: $\sum x_i \geq \theta$

McCullochs - Pitts Linear Threshold Unit (LTU), 1943

Inputs:

Outputs:

- $x \in \{0, 1\}$ $y \in \{0, 1\}$

• $\theta \in \mathbb{Z}^*$

Function: $\sum x_i \geq \theta$

A sum is a linear transformation and this sum is then **thresholded** by theta.

Hence, Linear Threshold Unit!

McCullochs - Pitts Linear Threshold Unit (LTU), 1943

Inputs:

Outputs:

- $x \in \{0, 1\}$ $y \in \{0, 1\}$

• $\theta \in \mathbb{Z}^*$

Function:
$$\sum_{i=0}^{n} x_i \ge \theta$$

Note: We do not learn the threshold parameter, it must be specified beforehand.

Inputs:

- $x \in \mathbb{R}^n$
- $w \in \mathbb{R}^n$

Function:

$$y = x \cdot w \ge 0$$

Outputs:

• $y \in \{0, 1\}$

Inputs:

Outputs:

- $x \in \mathbb{R}^n$
- $w \in \mathbb{R}^n$

• $y \in \{0, 1\}$

Function:

$$y = x \cdot w \ge 0$$

What happened to θ ?

Inputs:

Outputs:

- $x \in \mathbb{R}^n$
- $w \in \mathbb{R}^n$

• $y \in \{0, 1\}$

Function:

$$y = x \cdot w \ge 0$$

What happened to θ ?

One of x's features is I and the corresponding weight is $-\theta$.

Seem familiar?

Rosenblatt's Perceptron - Algorithm

- I. Initialize w_0 to a random vector
- 2. Given training example (x, y)
- 3. Input training example x in to perceptron, denote the output as \hat{y} .
- 4. At iteration t denote $w_{t+1} = w_t + a(y \hat{y})x$ (a is the learning rate)
- 5. Repeat sets 2-4 for desired number of iterations.

Provably converges to optimal solution

Problem: Consider the truth table below for the XOR function. Pretty simple right?

X ₁	X ₂	у
0	0	0
1	0	1
0	1	1
1	1	0

x ₁	X ₂	у
0	0	0
1	0	1
0	1	1
1	1	0

Can you draw a line that separates the positive from negative examples?

Can you draw a line that separates the positive from negative examples?

Impossible with the XOR function.

As of 1970, there was one huge problem with neural networks

1. Neural networks could not solve any problem that wasn't linearly separable

Winter #1

Multi-layer perceptrons

Solution: Differentiation/ Backpropagation

- Using chain rule to calculate partial derivative of cost with respect to every parameter.
- Every float operation performed by a computer at some level involves:
 - Elementary binary operators (+, , x, /)
 - \circ Elementary functions (sin x, cos x, e^x, etc.)

Universal Function Approximator

Universal Function Approximator

$$n_1(x) = Relu(-5x - 7.7)$$

 $n_2(x) = Relu(-1.2x - 1.3)$
 $n_3(x) = Relu(1.2x + 1)$
 $n_4(x) = Relu(1.2x - .2)$
 $n_5(x) = Relu(2x - 1.1)$
 $n_6(x) = Relu(5x - 5)$
 $Z(x) = -n_1(x) - n_2(x) - n_3(x)$
 $+ n_4(x) + n_5(x) + n_6(x)$

Resurgence of Interest in Neural Nets

As of 1986, there were 2 huge problems with neural nets.

- 1. Neural networks could not solve any problem that wasn't linearly separable
 - a. Solved by backpropagation and depth.
- 2. Backpropagation takes forever to converge!
 - a. Not enough compute power to run the model
 - b. Not enough labeled data to train the neural net

As of 1986, there were 2 huge problems with neural nets.

- 1. They couldn't solve any problem that wasn't linearly separable.
 - a. Solved by backpropagation and depth.
- 2. Backpropagation takes forever to converge!
 - a. Not enough compute power to run the model
 - b. Not enough labeled data to train the neural net

Outclassed by SVM

Winter #2

Part of the solution: the GPU

Why are GPUs so good at matrix multiplication?

- 1. Much higher bandwidth than CPUs.
- 2. Better parallelization.
- 3. More register memory.

As of 2007, there was one huge problem with neural nets.

- 1. They couldn't solve any problem that wasn't linearly separable.
 - a. Solved by backpropagation and depth.
- 2. Backpropagation takes forever to converge!
 - a. Not enough compute power to run the model
 - i. Solved by GPU
 - b. Not enough labeled data to train the neural net

Lots of Data!

- 2005-2012: Pascal Visual Object Classes
 - 20 classes, 27.5k annotations (in most recent)
- 2010: ImageNet
 - 27 categories, 21.3k subcategories, ~IM images with annotations!
- 2014-2017 COCO
 - 80 classes, ~250k images with bounding boxes and segmentations
- 2017-2019 OpenImages
 - 9M images, I6M bounding boxes, 600 classes, 2.8M segmentation masks

And lots of data augmentation (e.g. rotation, crop, add noise, etc)

Who cares if we can't download it?

Who cares if we can't download it?

SOURCE: TRADINGECONOMICS.COM | AKAMAI

The 2010s: the decade of domain applications

- 1. They couldn't solve any problem that wasn't linearly separable.
- 2. Backpropagation takes forever to converge!
- 3. Variable-length problems cause gradient problems!
- 4. Data is rarely labeled!
- 5. Neural nets are uninterpretable!

using domain-specific architectures

The 2010s: the decade of domain applications

- 1. They couldn't solve any problem that wasn't linearly separable.
- 2. Backpropagation takes forever to converge!
- 3. Variable-length problems cause gradient problems!
 - a. Solved by the forget-gate.
- 4. Data is rarely labeled!
 - a. Addressed by DQN, SOMs.
- 5. Neural nets don't use information well
 - a. Attention allows the focus on a small number of informative items.
 - b. Encoders create a more compact, semantic representation

Computer Vision, Style Transfer GANs (2019)

Natural Language Processing/CV - Image Captioning

"man in black shirt is playing guitar."

"construction worker in orange safety vest is working on road."

"two young girls are playing with lego toy."

Transformers/ GPT-3

Deep Reinforcement Learning - Hide and Seek

New decade, old problems

- 1. Extrapolates poorly when the dataset is too specialized
- 2. Poor transfer across domains
- 3. Hard to explain and audit
- 4. Still too data-hungry
- 5. Is about the past, not the future
- 6. And many, many more.

"There is almost as much BS being written about a purported impending Al winter as there is around a purported impending AGI explosion." -- Yann Lecun, **FAIR**

Societal Implications of DL

Deep Learning in Society

- Credit card applications
- Informs bail, patrol, and criminal sentencing
- Resume screening
- Health risk assessment
- Google search
- Facebook's news feed
- ...

The Ethics of Pothole Detection

Implications of DL - Why should we care?

- You understand the pipeline and the models, others might not
- You have the power to change things and voice potential issues
- You might actually be held accountable for it
- It's the morally right thing to do (in my opinion)

Where can things go wrong?

Most real-world

datasets are bad

Choose project Get data **Build system** Test Deploy **Statistical:** Bias **Shrinkage:** Smaller group \rightarrow **Normative** towards group **Attention:** More bias towards force of factual: average default data does detailed analysis **Empathy:** People describe how of in-group Indifference: choose projects Variance: problems world is, not how Lack of empathy it should be attractive to Smaller group, with given group **Exclusion:** Test more variance in-group **Human errors:** subjects from Malice: Accept Data problems: Arbitrary biases, in-group negative

outcomes to

out-group

bugs

DL Ethics in CIS 522

We don't have all the answers - but we have lots of interesting (and difficult) questions! \rightarrow About balancing fairness and accuracy, implications on society, trade offs, data, ...

Discussions in pods, homework assignments, hopefully guest lecturers

This course has a nonstandard format

Trust us.

The format seems weird.

You will learn more. And be able to solve real problems at end of course

Looking forward

- Do your two worksheets by Monday Ipm each week*
- Prepare questions
 - For your pod
 - Or the next live session
- Give feedback!

^{*}this week will only have one worksheet (WIDI)