

Sea

$$Q = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

Entonces

$$Q^{\mathsf{T}} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{pmatrix}$$

Sea $B = (b_{ii}) = Q^T Q$. Entonces

$$b_{ii} = a_{1i}a_{1i} + a_{2i}a_{2i} + \dots + b_{ni}b_{ni} = \mathbf{c}_i \cdot \mathbf{c}_i$$
 (6.1.17)

donde \mathbf{c}_i denota la *i*-ésima columna de Q. Si las columnas de Q son ortonormales, entonces

$$b_{ij} = \begin{cases} 0 & \text{si } i \neq j \\ 1 & \text{si } i = j \end{cases}$$
 (6.1.18)

Es decir, B = I. Inversamente, si $Q^{\top} = Q^{-1}$, entonces B = I de manera que (6.1.18) se cumple y (6.1.17) muestra que las columnas de Q son ortonormales. Esto completa la prueba.

EJEMPLO 6.1.6 Una matriz ortogonal

Del ejemplo 6.1.4, los vectores $\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}$, $\begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix}$, $\begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{-1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix}$ forman una base ortonormal en \mathbb{R}^3 .

Así, la matriz $Q = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix}$ es una matriz ortogonal. Para verificar esto se observa que

$$Q^{\mathsf{T}}Q = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}}\\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}}\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{3}}\\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$