Week 1 Tuesday Lecture Notes

Prep for Class: read DPV Chapter 0. You can find the prep as well as Lecture notes on Canvas under Pages.

Pictures: at the end of these notes are pictures of key proofs and concepts covered in class.

Lecture 1: Introduction, Asymptotic run time, Big-Oh Notations:

Information about Instructor:

Prof. Xiaoli Fern (Office: Kelley 3073)

Email: xfern@eecs.oregonstate.edu

Office Hours: Tuesday/Thursday after class (3:20-4:00pm)

4 TA's for the class: Juneki, Hamed, Souti, Juan.

Grade Breakdown:

5 Quizzes – 25%

3 group (up to three people per group) implementation Assignments -25%

1 Midterm (Thursday of 6^{th} week) -25%

1 Final – 25%

Information about the course:

- Very large class size: 150+ people. Stay focused and ask questions if you need help.
- In Class Quizzes will be at the end of classes on Thursday. From 3:05-3:20.
- You can switch to different group members between assignments.
- Communication is key with group members.
- Problem sets practice questions: Will be provided as written homework.
 However, they will NOT be graded. Exam questions are based on problem sets practice questions. These practice questions will be handed out a week in advance before the quiz.
- There will be recitations with TA's the Wednesday before the quiz. (times not yet
- (See *Lecture 1: Page 4 for complete overview list):

Algorithm: a term coined to Honor Al Khwarizmi

- He Introduced a general way of solving problems.

Why Study Algorithms?

- They are important for all branches of CS. For example:
- Bioinformatics: comparing two gene sequences and how similar/different they are.
- Algorithms are very satisfying to accomplish.
- Knowledge of Algorithm Design are great for job interviews.

Two Fundamental questions of algorithm:

1: Is it Correct

2: Is it Efficient

Run time of algorithm depends allot on external factors: Processor

speed, language, implementation... ect.

- We will abstract away from these fine details.

- Analytical, the run time at the Asymptotic Level.

In Class Example: Largest Power of n Example:

- n is a Number

- c is a Constant

Example: c + nc + n(n+1)/2 * 2c.

Conclusion: We don't care about constants, summation and multiplication of n.

All that matters is the largest power of n. The largest power will dominate for large

numbers of N and thus creates an estimate for computation time.

Insertion Sort Example: (**See Insertion Sort Picture**)

- Give array a with n numbers. The insertion sort builds the assorted array one

element at a time. The runtime of **Insertion Sort** is **not deterministic** (every

run can have different runtime speeds)

- **The best case scenario**: the array is already sorted: takes 1 run through. Big-Oh run time: cn. It only runs n times
- **The Worst Case Scenario:** The list is completely out of order. Takes n * n times through. Big-Oh time: n².

Insertion Sort Example: Sort this array in order from lowest to highest:

- Fastest: Best case example: [1, 2, 3, 4, 5]

- Slowest: Worst case example: [5, 4, 3, 2, 1]

Runtime Depends on input: Use Worst-Case to determine runtime.

We focus on the "Worst-Case Scenario".

- Why not the "Average-case"? It is much harder to compute, requires probabilistic analysis, out of the scope of this class.
- Why not the "Best-case"? Rarely encountered and so is not relevant to runtime speed for real life simulations.
- Constants and lower order terms don't matter.
- Constant factors: 2n vs 3n. **n** is what matters.
- In contrast \mathbf{n} vs \mathbf{n}^2 is a big difference.
- You can simplify constant and lower order terms:

For example:

$$2n^2 + 2n \text{ vs } 3n^2$$
. Becomes n^2 .

$$2n + 5n + 4$$
. Becomes **n**.

Why don't we care? Because we focus on very large n values. (Big-Oh Notation)

Asymptotic Growth Example: (**See Significant n Picture**)

Shows that on small numbers the constants have an effect, but the larger the number gets the less important the constants become. This is a main reason we care about Big-Oh Notation.

Big-Oh Notation:

Intuitive meaning: Even though f(n) starts above g(n) (** See Significant n Picture**) if the two functions cross that point n(0). The upper bound is what is important, since g(n) grows faster than f(n).

Simplified: Even though one function may start at a higher value than another it is what happens at very high values and how functions grow that determines significance.

Proof by Substitution Example: (**See Proof 1 Picture**)

Claim: $T(n) = O(n^k)$

Solution: Explains why the lower terms can be ignored; the upper bounded power is all that matters when determining Big-Oh Complexity.

Proof by contradiction example. (**See Proof 2 Picture**)

If this is true than $n^k \le C * n^{k-1}$ for $n \ge n0$.

 $n \le c$. which is a contradiction to $n \ge n0$.

(covered pages 1-16 of Lecture 1 Powerpoint)

Pictures from Lecture 1:

- Significant n.jpg

- Insertion Sort.jpg

Proof 1.jpg

Example #1

$$T(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_0$$
• Claim: $T(n) = O(n^k)$
• Proof:

$$C = C_k + 1$$

$$C = C_$$

Proof 2.jpg

End of Week 1 Tuesday Lecture

~Information composed by Notetaker Scott Russell for CS 325 DAS students