

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : C07K 1/00, 16/00, G01N 33/53		A1	(11) International Publication Number: WO 00/61060 (43) International Publication Date: 19 October 2000 (19.10.00)
(21) International Application Number: PCT/US00/09587 (22) International Filing Date: 10 April 2000 (10.04.00)		(81) Designated States: CA, JP, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(30) Priority Data: 60/129,274 14 April 1999 (14.04.99) US		Published <i>With international search report.</i>	
(71) Applicant (<i>for all designated States except US</i>): MERCK & CO., INC. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).			
(72) Inventors; and (75) Inventors/Applicants (<i>for US only</i>): PETRUKHIN, Konstantin [RU/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). CASKEY, C., Thomas [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). LI, Wen [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). METZKER, Michael, L. [US/US]; 126 Lincoln Avenue, Rahway, NJ 07065-0907 (US).			
(74) Common Representative: MERCK & CO., INC.; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).			
(54) Title: NOVEL HUMAN VOLTAGE-GATED POTASSIUM CHANNEL			
(57) Abstract			
The present invention is directed to novel human DNA sequences encoding a voltage-gated potassium channel, KCNQ5, located in a chromosomal region that contains a gene associated with Stargardt-like macular dystrophy, cone-rod macular dystrophy, and Salla disease.			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

TITLE OF THE INVENTION**NOVEL HUMAN VOLTAGE-GATED POTASSIUM CHANNEL****CROSS-REFERENCE TO RELATED APPLICATIONS**

5 Not applicable.

STATEMENT REGARDING FEDERALLY-SPONSORED R&D

Not applicable.

10 REFERENCE TO MICROFICHE APPENDIX

Not applicable.

FIELD OF THE INVENTIONThe present invention is directed to novel human DNA sequences
15 encoding a voltage-gated potassium channel.**BACKGROUND OF THE INVENTION**Voltage-gated potassium channels form transmembrane pores that
open in response to changes in cell membrane potential and selectively allow
20 potassium ions to pass through the membrane. Many voltage-gated potassium
channels have been identified. They are distinguishable by tissue-specific patterns of
expression as well as by electrophysiological and pharmacological properties.Voltage-gated potassium channels have been shown to be involved in
maintaining cell membrane potentials and controlling the repolarization of action
25 potentials in many cells, *e.g.*, neurons, muscle cells, and pancreatic β cells. They are
important targets for drug discovery in connection with a variety of diseases.Functional voltage-gated potassium channels are believed to be
tetramers of four alpha subunits, each of which contains six transmembrane spanning
segments. The alpha subunits making up a tetramer may be the same (in the case of
30 homotetramers) or may be different (in the case of heterotetramers). The membrane-
spanning alpha subunits making up the tetramers may sometimes be associated with
additional, beta subunits, which may alter the behavior of the tetramers.

For reviews of voltage-gated potassium channels see Robertson, 1997, Trends Pharmacol. Sci. 18:474-483; Jan & Jan, 1997, J. Physiol. 505:267-282; Catterall, 1995, Ann. Rev. Biochem. 64:493-531.

Macular dystrophy is a term applied to a heterogeneous group of diseases that collectively are the cause of severe visual loss in a large number of people. A common characteristic of macular dystrophy is a progressive loss of central vision resulting from the degeneration of the pigmented epithelium underlying the retinal macula. In many forms of macular dystrophy, the end stage of the disease results in legal blindness. More than 20 types of macular dystrophy are known: e.g., age-related macular dystrophy, Stargardt's and Stargardt-like macular dystrophy, cone-rod dystrophies, atypical vitelliform macular dystrophy (VMD1), Usher Syndrome Type 1B, autosomal dominant neovascular inflammatory vitreoretinopathy, familial exudative vitreoretinopathy, and Best's macular dystrophy. For a review of the macular dystrophies, see Sullivan & Daiger, 1996, Mol. Med. Today 2:380-386.

Cone-rod dystrophies involve an initial loss of cone photoreceptors followed by the degeneration of rod photoreceptors. This loss of photoreceptors can lead to blindness. Cone-rod dystrophies appear to be a heterogeneous group of inherited disorders for which multiple chromosomal locations have been implicated (Evans et al., 1994, Nature Genet. 6:210-213; Kelsell et al., 1997, Hum. Mol. Genet. 6:597-600). In particular, Kelsell et al., 1998, Am. J. Hum. Genet. 63:274-279 found a candidate gene (CORD7) located at chromosome 6q in a four-generation British family affected with cone-rod dystrophy. A marker in 6q, D6S280, showed a high LOD score of 3.31 (at genetic distance = 0).

Stargardt-like macular dystrophy is an inherited, dominant retinal disease. Affected individuals have normal vision in early childhood but show impaired central vision either in late childhood or early adulthood. The first observable characteristics of the disease are flecks seen in the macula. This is followed by central atrophy, resulting in visual acuity decreasing to 20/200 or worse (Stone et al., Arch. Ophthalmol. 112:765-772 [Stone]). Stone mapped a gene responsible for Stargardt-like macular dystrophy to chromosome 6q. The marker D6S280 was observed by Stone to have the high LOD score of 5.5 (at genetic distance = 0).

Cone-rod dystrophy and Stargardt-like macular dystrophy appear different from a clinical perspective. For example, Stargardt-like macular dystrophy

generally begins in childhood and involves white/yellow flecks in the retina while cone-rod dystrophy is an adult-onset disorder in which no flecks are present. Despite such clinical differences, both diseases may be caused by mutations in the same gene. It is not uncommon for different mutations in a single gene to give rise to clinically 5 different disorders. For example, depending upon the particular mutation, mutations in the peripherin/RDS gene can give rise to either butterfly-shaped pigment dystrophy of the fovea, retinitis pigmentosa, pattern dystrophy, flavus maculatus, macular dystrophy, or central areolar choroidal dystrophy (Nichols et al., 1993, Nature Genet. 3:202-207; Weleber et al., 1993, Arch. Ophthalmol. 111:1531-1542; Wells et al., 10 1993, Nature Genet. 3:213-218; Reig et al., 1995, Ophthalmic. Genet. 16:39-44).

While studies of macular dystrophies such as cone-rod dystrophy or Stargardt-like macular dystrophy are valuable in themselves, such studies are also valuable in that they are expected to shed light on age-related macular degeneration (AMD). AMD is the leading cause of severe visual loss in older individuals. Genetic 15 factors apparently play a role in AMD (Hyman et al., 1983, Am. J. Epidemiol. 118:213-227; Gass, 1973, Arch. Ophthalmol. 90:206-217). It is believed likely that mild allelic variations of such earlier-onset diseases as cone-rod dystrophy and Stargardt-like macular dystrophy are responsible for some cases of AMD. Thus, understanding and developing treatments for these earlier-onset diseases should prove 20 valuable with respect to AMD as well.

Salla disease is a recessive condition characterized by early-onset psychomotor retardation and ataxia that involves defects in the lysosomal transport of sialic acid. Leppänen et al., 1996, Genomics 37:62-67 (Leppänen) located the gene for Salla disease in the immediate vicinity of the marker D6S280. Leppänen screened 25 a PAC library with the marker D6S280 and obtained three positive clones, among which were PAC 141B1 and PAC 224H23, strongly suggesting that the gene for Salla disease is present on these PACs.

SUMMARY OF THE INVENTION

The present invention is directed to novel human DNA sequences 30 encoding a voltage-gated potassium channel, KCNQ5, located in a chromosomal region that contains a gene associated with Stargardt-like macular dystrophy, cone-rod macular dystrophy, and Salla disease.

The present invention includes genomic KCNQ5 DNA as well as cDNA that encodes the KCNQ5 protein. The human genomic KCNQ5 DNA is substantially free from other nucleic acids and has the nucleotide sequence shown in SEQ.ID.NO.:1. The human cDNA encoding KCNQ5 protein is substantially free from other nucleic acids and has the nucleotide sequence shown in SEQ.ID.NO.:2. Also provided is KCNQ5 protein encoded by the novel DNA sequences. The human KCNQ5 protein is substantially free from other proteins and has the amino acid sequence shown in SEQ.ID.NO.:3. Methods of expressing KCNQ5 protein in recombinant systems are provided as well as methods of identifying activators and inhibitors of KCNQ5 protein function. Also provided are diagnostic methods that detect carriers of mutant KCNQ5 genes.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1A-AO shows the genomic DNA sequence of human KCNQ5 (SEQ.ID.NO.:1). Underlined nucleotides in capitals represent exons. The start ATG codon in exon 1 and the stop TAA codon in exon 14 are shown in bold italics. The D6D280 genetic marker and a phosphoglycerate pseudogene are underlined in bold. The exact lengths of the gaps between exons 1 and 2, 2 and 3, 10 and 11, 11 and 12, 12 and 13, and 13 and 14 are unknown. These gaps are represented as runs of ten bold ns for the sake of convenience.

Figure 2A-E shows the nucleotide sequence (SEQ.ID.NO.:2) and encoded amino acid sequence (SEQ.ID.NO.:3) of human KCNQ5 cDNA. The ATG start codon is at position 138; the TAA stop codon is at position 2,676.

Figure 3A shows the results of a Northern blot of KCNQ5 mRNA expression in various human tissues. Figure 3B shows the results of RT-PCR analysis of KCNQ5 mRNA expression in various human tissues.

Figure 4A shows a sequence alignment of human KCNQ5 protein (SEQ.ID.NO.:3) with human KCNQ4 protein (SEQ.ID.NO.:4). The consensus sequence shown is (SEQ.ID.NO.:5). Figure 4B-C shows a multiple sequence alignment between human KCNQ5 protein (SEQ.ID.NO.:3), human KCNQ1 protein (SEQ.ID.NO.:43), human KCNQ2 protein (SEQ.ID.NO.:6), human KCNQ3 protein (SEQ.ID.NO.:7), and human KCNQ4 protein (SEQ.ID.NO.:4). The consensus sequence shown is (SEQ.ID.NO.:8).

DETAILED DESCRIPTION OF THE INVENTION

For the purposes of this invention:

“Substantially free from other proteins” means at least 90%, preferably 95%, more preferably 99%, and even more preferably 99.9%, free of other proteins.

- 5 Thus, a KCNQ5 protein preparation that is substantially free from other proteins will contain, as a percent of its total protein, no more than 10%, preferably no more than 5%, more preferably no more than 1%, and even more preferably no more than 0.1%, of non- KCNQ5 proteins. Whether a given KCNQ5 protein preparation is substantially free from other proteins can be determined by such conventional techniques of assessing protein purity as, *e.g.*, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) combined with appropriate detection methods, *e.g.*, silver staining or immunoblotting.

- 10 “Substantially free from other nucleic acids” means at least 90%, preferably 95%, more preferably 99%, and even more preferably 99.9%, free of other nucleic acids. Thus, a KCNQ5 DNA preparation that is substantially free from other nucleic acids will contain, as a percent of its total nucleic acid, no more than 10%, preferably no more than 5%, more preferably no more than 1%, and even more preferably no more than 0.1%, of non- KCNQ5 nucleic acids. Whether a given KCNQ5 DNA preparation is substantially free from other nucleic acids can be determined by such conventional techniques of assessing nucleic acid purity as, *e.g.*, agarose gel electrophoresis combined with appropriate staining methods, *e.g.*, ethidium bromide staining, or by sequencing.

- 15 A “conservative amino acid substitution” refers to the replacement of one amino acid residue by another, chemically similar, amino acid residue. Examples of such conservative substitutions are: substitution of one hydrophobic residue (isoleucine, leucine, valine, or methionine) for another; substitution of one polar residue for another polar residue of the same charge (*e.g.*, arginine for lysine; glutamic acid for aspartic acid); substitution of one aromatic amino acid (tryptophan, tyrosine, or phenylalanine) for another.

- 20 30 A polypeptide has “substantially the same biological activity as KCNQ5” if that polypeptide conducts a voltage-gated potassium current when expressed in appropriate cell types and has an amino acid sequence that is at least about 50% identical to SEQ.ID.NO.:3 when measured by such standard programs as BLAST or FASTA.

The present invention relates to the identification and cloning of KCNQ5, a gene encoding a novel voltage-gated potassium channel. The human KCNQ5 gene is located on chromosome 6q14, in a chromosomal region that contains genes that have been linked with the occurrence of at least three diseases: Stargardt-like macular dystrophy, cone-rod dystrophy, and Salla disease.

The human KCNQ5 gene is present on PAC clones from chromosomal region 6q14. PAC141B1 was sequenced and KCNQ5 was found based on homology between the genomic sequences of KCNQ5 present in PAC 141B1 and the sequences of known potassium channel genes. PAC 141B1 is available from Research Genetics, Inc., Huntsville, AL, as an individual clone from the RPCI4,5,6 Library (catalog number CTLI.C). Using PCR primers derived from the KCNQ5 sequence, a cDNA sequence representing the coding region as well as a large portion of the 3'-UTR of KCNQ5 was isolated from a human fetal brain cDNA library. Comparison of this cDNA clone with the genomic sequences present in PAC141B1, as well as KCNQ5 sequences found in PAC224H23, showed that exons 3-11 and portions of flanking intronic regions are present in PAC141B1. Exon 2 and flanking intronic regions were found in PAC224H23, while the rest of the KCNQ5 gene (exons 1, 12-14, and flanking intronic regions) was recovered from total human genomic DNA by using cDNA primers and a GenomeWalker kit from Clontech, Palo Alto, CA.

PAC141B1 and PAC224H23 are located in the region of the Salla disease gene (Leppänen et al., 1996, Genomics 37:62-67). PAC141B1 contains the polymorphic genetic marker D6S280 that is located in intron 3 of the KCNQ5 gene between exons 3 and 4 (Figure 1). D6S280 is the marker that detects the maximum LOD score of 5.5 (at genetic distance = 0) in families with Stargardt-like macular dystrophy (Stone et al., Arch. Ophthalmol. 112:765-772). D6S280 also detects a LOD score of 3.31 (at genetic distance = 0) in families with cone-rod dystrophy (Kelsell et al., 1998, Am. J. Hum. Genet. 63:274-279). These LOD scores indicate that D6S280 is very closely linked to, and probably is within, the gene for Stargardt-like macular dystrophy and cone-rod dystrophy. In view of these findings, it is likely that KCNQ5 is involved in Salla disease, Stargardt-like macular dystrophy, and cone-rod dystrophy.

That KCNQ5 should be involved with these three diseases is consistent with its expression pattern (see Figure 3A-B) which shows that KCNQ5 is expressed predominately in the retina and brain, in addition to being expressed in the

skeletal muscle. Stargardt-like macular dystrophy and cone-rod dystrophy are inherited retinal diseases while Salla disease is a disorder that is characterized by early onset psychomotor retardation and ataxia.

Bioinformatic analysis revealed a striking homology of the KCNQ5 protein to a group of voltage gated potassium channels (KCNQ1, KCNQ2, KCNQ3, and KCNQ4; see Figure 4A-B). All of the typical amino acid motifs of these potassium channels are preserved in KCNQ5. A Kyte-Doolittle algorithm analysis predicts a transmembrane organization for KCNQ5 that is typical for this group of potassium channels. Mutations in members of this family of potassium channels have been shown to result in inherited disease (KCNQ2 and KCNQ3, epilepsy [Biervert et al., 1998, Science 279:403-406; Singh et al., 1998, Nature Genet. 18:25-29; Schroeder et al., Nature 1998, 396:687-690]; KCNQ4, a form of nonsyndromic dominant deafness [Kubisch et al., 1999, Cell 96:437-446], KCNQ1, congenital long QT syndrome which causes cardiac arrhythmias and sudden death [Splawski et al., 1997, N. Engl. J. Med. 336:1562-1567]).

The present invention provides DNA encoding KCNQ5 that is substantially free from other nucleic acids. The present invention also provides recombinant DNA molecules encoding KCNQ5. The present invention provides DNA molecules substantially free from other nucleic acids comprising the nucleotide sequence shown in Figure 1 as SEQ.ID.NO.:1. Analysis of SEQ.ID.NO.:1 revealed that this genomic sequence defines a gene having 14 exons. These exons collectively have an open reading frame that encodes a protein of 846 amino acids.

The present invention includes cDNA encoding KCNQ5 protein. Such a cDNA is shown in Figure 2 as SEQ.ID.NO.:2. The present invention therefore includes DNA comprising the nucleotide sequence SEQ.ID.NO.:2. The DNA can be isolated or substantially free of other DNA sequences.

The present invention includes DNA molecules substantially free from other nucleic acids comprising the coding region of SEQ.ID.NO.:2. Accordingly, the present invention includes DNA molecules substantially free from other nucleic acids having a sequence comprising positions 138-2,675 of SEQ.ID.NO.:2. Also included are recombinant DNA molecules having a nucleotide sequence comprising positions 138-2,675 of SEQ.ID.NO.:2 and isolated DNA molecules having a nucleotide sequence comprising positions 138-2,675 of SEQ.ID.NO.:2.

The novel DNA sequences of the present invention encoding KCNQ5, in whole or in part, can be linked with other DNA sequences, *i.e.*, DNA sequences to which KCNQ5 is not naturally linked, to form "recombinant DNA molecules" encoding KCNQ5. Such other sequences can include DNA sequences that control transcription or translation such as, *e.g.*, translation initiation sequences, promoters for RNA polymerase II, transcription or translation termination sequences, enhancer sequences, sequences that control replication in microorganisms, sequences that confer antibiotic resistance, or sequences that encode a polypeptide "tag" such as, *e.g.*, a polyhistidine tract or the myc epitope. The novel DNA sequences of the 5 present invention can be inserted into vectors such as plasmids, cosmids, viral 10 vectors, P1 artificial chromosomes, or yeast artificial chromosomes.

Included in the present invention are DNA sequences that hybridize to at least one of SEQ.ID.NO:1 or SEQ.ID.NO:2 under stringent conditions. By way of example, and not limitation, a procedure using conditions of high stringency is as 15 follows: Prehybridization of filters containing DNA is carried out for 2 hr. to overnight at 65°C in buffer composed of 6X SSC, 5X Denhardt's solution, and 100 µg/ml denatured salmon sperm DNA. Filters are hybridized for 12 to 48 hrs at 65°C in prehybridization mixture containing 100 µg/ml denatured salmon sperm DNA and 5-20 X 10⁶ cpm of ³²P-labeled probe. Washing of filters is done at 37°C for 1 hr in a 20 solution containing 2X SSC, 0.1% SDS. This is followed by a wash in 0.1X SSC, 0.1% SDS at 50°C for 45 min. before autoradiography.

Other procedures using conditions of high stringency would include either a hybridization carried out in 5XSSC, 5X Denhardt's solution, 50% formamide at 42°C for 12 to 48 hours or a washing step carried out in 0.2X SSPE, 0.2% SDS at 25 65°C for 30 to 60 minutes.

Reagents mentioned in the foregoing procedures for carrying out high stringency hybridization are well known in the art. Details of the composition of these reagents can be found in, *e.g.*, Sambrook, Fritsch, and Maniatis, 1989, Molecular Cloning: A Laboratory Manual, second edition, Cold Spring Harbor 30 Laboratory Press. In addition to the foregoing, other conditions of high stringency which may be used are well known in the art.

The degeneracy of the genetic code is such that, for all but two amino acids, more than a single codon encodes a particular amino acid. This allows for the construction of synthetic DNA that encodes the KCNQ5 protein where the nucleotide

sequence of the synthetic DNA differs significantly from the nucleotide sequences of SEQ.ID.NO:2, but still encodes the same KCNQ5 protein as SEQ.ID.NO:2. Such synthetic DNAs are intended to be within the scope of the present invention.

Mutated forms of SEQ.ID.NO:1 or SEQ.ID.NO:2 are intended to be
5 within the scope of the present invention. In particular, mutated forms of SEQ.ID.NO:1 or SEQ.ID.NO:2 which give rise to Stargardt-like macular dystrophy, cone-rod dystrophy, Salla disease, or age-related macular degeneration are within the scope of the present invention.

Another aspect of the present invention includes host cells that have
10 been engineered to contain and/or express DNA sequences encoding KCNQ5 protein. Such recombinant host cells can be cultured under suitable conditions to produce KCNQ5 protein. An expression vector containing DNA encoding KCNQ5 protein can be used for expression of KCNQ5 protein in a recombinant host cell.
Recombinant host cells may be prokaryotic or eukaryotic, including but not limited to,
15 bacteria such as *E. coli*, fungal cells such as yeast, mammalian cells including, but not limited to, cell lines of human, bovine, porcine, monkey and rodent origin, amphibian cells such as *Xenopus* oocytes, and insect cells including but not limited to *Drosophila* and silkworm derived cell lines. Cells and cell lines which are suitable for recombinant expression of KCNQ5 protein and which are widely available,
20 include but are not limited to, L cells L-M(TK⁻) (ATCC CCL 1.3), L cells L-M (ATCC CCL 1.2), 293 (ATCC CRL 1573), Raji (ATCC CCL 86), CV-1 (ATCC CCL 70), COS-1 (ATCC CRL 1650), COS-7 (ATCC CRL 1651), CHO-K1 (ATCC CCL 61), 3T3 (ATCC CCL 92), NIH/3T3 (ATCC CRL 1658), HeLa (ATCC CCL 2), C127I (ATCC CRL 1616), BS-C-1 (ATCC CCL 26), MRC-5 (ATCC CCL 171),
25 ARPE-19 human retinal pigment epithelium (ATCC CRL-2302), *Xenopus* melanophores, and *Xenopus* oocytes.

A variety of mammalian expression vectors can be used to express recombinant KCNQ5 in mammalian cells. Commercially available mammalian expression vectors which are suitable include, but are not limited to, pMC1neo (Stratagene), pSG5 (Stratagene), pcDNAI and pcDNAIamp, pcDNA3, pcDNA3.1, pCR3.1 (Invitrogen), EBO-pSV2-neo (ATCC 37593), pBPV-1(8-2) (ATCC 37110), pdBPV-MMTneo(342-12) (ATCC 37224), pRSVgpt (ATCC 37199), pRSVneo (ATCC 37198), and pSV2-dhfr (ATCC 37146). Another suitable vector is the PT7TS oocyte expression vector. Following expression in recombinant cells, KCNQ5 can

be purified by conventional techniques to a level that is substantially free from other proteins.

Certain voltage-gated potassium channel subunits have been found to require the expression of other voltage-gated potassium channel subunits as

- 5 "chaperones" in order to be properly expressed at high levels and inserted in membranes. For example, co-expression of KCNQ3 appears to enhance the expression of KCNQ2 in *Xenopus* oocytes (Wang et al., 1998, Science 282:1890-1893). Also, some voltage-gated potassium channel Kv α subunits require other related alpha subunits or Kv β 2 subunits (Shi et al., 1995, Neuron 16:843-852).
- 10 Accordingly, the recombinant expression of the KCNQ5 protein may under certain circumstances benefit from the co-expression of other voltage-gated potassium channel proteins and such co-expression is intended to be within the scope of the present invention.

15 The present invention includes KCNQ5 protein substantially free from other proteins. The amino acid sequence of the full-length KCNQ5 protein is shown in Figure 2 as SEQ.ID.NO.:3. Thus, the present invention includes KCNQ5 protein substantially free from other proteins having the amino acid sequence SEQ.ID.NO.:3. The present invention also includes isolated KCNQ5 protein having the amino acid sequence SEQ.ID.NO.:3.

20 Mutated forms of KCNQ5 proteins are intended to be within the scope of the present invention. In particular, mutated forms of SEQ.ID.NO:3 that give rise to Stargardt-like macular dystrophy, cone-rod dystrophy, Salla disease, or age-related macular degeneration are within the scope of the present invention.

25 As with many proteins, it is possible to modify many of the amino acids of KCNQ5 and still retain substantially the same biological activity as the original protein. Thus, the present invention includes modified KCNQ5 proteins which have amino acid deletions, additions, or substitutions but that still retain substantially the same biological activity as KCNQ5. It is generally accepted that single amino acid substitutions do not usually alter the biological activity of a protein (see, e.g., *Molecular Biology of the Gene*, Watson et al., 1987, Fourth Ed., The Benjamin/Cummings Publishing Co., Inc., page 226; and Cunningham & Wells, 1989, Science 244:1081-1085). Accordingly, the present invention includes polypeptides where one amino acid substitution has been made in SEQ.ID.NO:3 wherein the polypeptides still retain substantially the same biological activity as

KCNQ5. The present invention also includes polypeptides where two or more amino acid substitutions have been made in SEQ.ID.NO:3 wherein the polypeptides still retain substantially the same biological activity as KCNQ5. In particular, the present invention includes embodiments where the above-described substitutions are 5 conservative substitutions. In particular, the present invention includes embodiments where the above-described substitutions do not occur in positions where the amino acid present in KCNQ5 is also present in the corresponding position of any one of KCNQ1, KCNQ2, KCNQ3, or KCNQ4 (see Figure 4A-B).

10 The KCNQ5 proteins of the present invention may contain post-translational modifications, *e.g.*, covalently linked carbohydrate, phosphorylation, myristylation, *etc..*

15 The present invention also includes chimeric KCNQ5 proteins. Chimeric KCNQ5 proteins consist of a contiguous polypeptide sequence of at least a portion of KCNQ5 protein fused to a polypeptide sequence of a non-KCNQ5 protein.

20 The present invention also includes isolated forms of KCNQ5 proteins and KCNQ5 DNA. Use of the term "isolated" indicates that KCNQ5 protein or KCNQ5 DNA has been removed from its normal cellular environment. Thus, an isolated KCNQ5 protein may be in a cell-free solution or placed in a different cellular environment from that in which it occurs naturally. The term isolated does not imply 25 that an isolated KCNQ5 protein is the only protein present, but instead means that an isolated KCNQ5 protein is at least 95% free of non-amino acid material (*e.g.*, nucleic acids, lipids, carbohydrates) naturally associated with the KCNQ5 protein. Thus, a KCNQ5 protein that is expressed in bacteria or even in eukaryotic cells which do not naturally (*i.e.*, without human intervention) express it through recombinant means is an "isolated KCNQ5 protein."

30 It is known that other members of the family of potassium channels to which KCNQ5 belongs can interact to form heteromeric structures resulting in functional potassium channels. For example, KCNQ2 and KCNQ3 can assemble to form a heteromeric functional potassium channel (Wang et al., 1998, Science 282:1890-1893). Accordingly, it is believed likely that KCNQ5 will also be able to form heteromeric structures with other proteins where such heteromeric structures constitute functional potassium channels. Thus, the present invention includes such heteromers comprising KCNQ5. Preferred heteromers are those in which KCNQ5 forms heteromers with at least one of KCNQ1, KCNQ2, KCNQ3, or KCNQ4.

A cDNA fragment encoding full-length KCNQ5 can be isolated from a human retinal or brain cDNA library by using the polymerase chain reaction (PCR) employing suitable primer pairs. Such primer pairs can be selected based upon the cDNA sequence for KCNQ5 shown in Figure 2 as SEQ.ID.NO.:2. Suitable primer 5 pairs would be, *e.g.*:

5'-GGGGGCCCGGATGAGCC-3' (SEQ.ID.NO.:9) and
5'-GAAGAACTTATTCAGTTGA-3' (SEQ.ID.NO.:10)

The above primers are meant to be illustrative only; one skilled in the art would readily be able to design other suitable primers based upon SEQ.ID.NO.:2. 10 Such primers could be produced by methods of oligonucleotide synthesis that are well known in the art.

PCR reactions can be carried out with a variety of thermostable enzymes including but not limited to AmpliTaq, AmpliTaq Gold, or Vent polymerase. For AmpliTaq, reactions can be carried out in 10 mM Tris-Cl, pH 8.3, 2.0 mM 15 MgCl₂, 200 μM for each dNTP, 50 mM KCl, 0.2 μM for each primer, 10 ng of DNA template, 0.05 units/μl of AmpliTaq. The reactions are heated at 95°C for 3 minutes and then cycled 35 times using the cycling parameters of 95°C, 20 seconds, 62°C, 20 seconds, 72°C, 3 minutes. In addition to these conditions, a variety of suitable PCR protocols can be found in PCR Primer, A Laboratory Manual, edited by C.W. 20 Dieffenbach and G.S. Dveksler, 1995, Cold Spring Harbor Laboratory Press; or PCR Protocols: A Guide to Methods and Applications, Michael *et al.*, eds., 1990, Academic Press .

A suitable cDNA library from which a clone encoding KCNQ5 can be isolated would be Human Retina 5'-stretch cDNA library in lambda gt10 or lambda 25 gt11 vectors (catalog numbers HL1143a and HL1132b, Clontech, Palo Alto, CA) or human fetal brain 5-stretch plus cDNA library (catalog number HL5024t, Clontech, Palo Alto, CA). The primary clones of such a library can be subdivided into pools with each pool containing approximately 20,000 clones and each pool can be amplified separately.

30 By this method, a cDNA fragment encoding an open reading frame of 846 amino acids (SEQ.ID.NO.:3) can be obtained. This cDNA fragment can be cloned into a suitable cloning vector or expression vector. For example, the fragment can be cloned into the mammalian expression vector pcDNA3.1 (Invitrogen, San Diego, CA). KCNQ5 protein can then be produced by transferring an expression

vector encoding KCNQ5 or portions thereof into a suitable host cell and growing the host cell under appropriate conditions. KCNQ5 protein can then be isolated by methods well known in the art.

As an alternative to the above-described PCR method, a cDNA clone 5 encoding KCNQ5 can be isolated from a cDNA library using as a probe oligonucleotides specific for KCNQ5 and methods well known in the art for screening cDNA libraries with oligonucleotide probes. Such methods are described in, e.g., Sambrook *et al.*, 1989, *Molecular Cloning: A Laboratory Manual*; Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Glover, D.M. (ed.), 1985, *DNA 10 Cloning: A Practical Approach*, MRL Press, Ltd., Oxford, U.K., Vol. I, II. Oligonucleotides that are specific for KCNQ5 and that can be used to screen cDNA libraries can be readily designed based upon the cDNA sequence of KCNQ5 shown in Figure 2 as SEQ.ID.NO.:2 and can be synthesized by methods well-known in the art.

Genomic clones containing the KCNQ5 gene can be obtained from 15 commercially available human PAC or BAC libraries available from Research Genetics, Huntsville, AL. PAC clones containing the KCNQ5 gene (e.g., PAC141B1, PAC224H23) are commercially available from Research Genetics, Huntsville, AL (catalog number for individual PAC clones is RPCI.C). Alternatively, one may prepare genomic libraries, especially in P1 artificial chromosome vectors, from which 20 genomic clones containing the KCNQ5 can be isolated, using probes based upon the KCNQ5 sequences disclosed herein. Methods of preparing such libraries are known in the art (Ioannou *et al.*, 1994, *Nature Genet.* 6:84-89).

The novel DNA sequences of the present invention can be used in 25 various diagnostic methods relating to Stargardt-like macular dystrophy, cone-rod dystrophy, Salla disease, or age-related macular degeneration. The present invention provides diagnostic methods for determining whether a patient carries a mutation in the KCNQ5 gene that predisposes that patient toward the development of Stargardt-like macular dystrophy, cone-rod dystrophy, Salla disease, or age-related macular degeneration. In broad terms, such methods comprise determining the DNA sequence 30 of a region of the KCNQ5 gene from the patient and comparing that sequence to the sequence from the corresponding region of the KCNQ5 gene from a non-affected person, *i.e.*, a person who does not suffer from Stargardt-like macular dystrophy, cone-rod dystrophy, Salla disease, or age-related macular degeneration, where a difference in sequence between the DNA sequence of the KCNQ5 gene from the

patient and the DNA sequence of the KCNQ5 gene from the non-affected person indicates that the patient has Stargardt-like macular dystrophy, cone-rod dystrophy, Salla disease, or age-related macular degeneration.

Such methods of diagnosis may be carried out in a variety of ways.

5 For example, one embodiment comprises:

(a) providing PCR primers from a region of the KCNQ5 gene;

(b) performing PCR on a DNA sample from the patient to produce a PCR fragment from the patient;

10 (c) performing PCR on a control DNA sample comprising a nucleotide sequence selected from the group consisting of SEQ.ID.NO:1 and SEQ.ID.NO.:2 to produce a control PCR fragment;

(d) determining the nucleotide sequence of the PCR fragment from the patient and the nucleotide sequence of the control PCR fragment;

15 (e) comparing the nucleotide sequence of the PCR fragment from the patient to the nucleotide sequence of the control PCR fragment;

where a difference between the nucleotide sequence of the PCR fragment from the patient and the nucleotide sequence of the control PCR fragment indicates that the patient has a mutation in the KCNQ5 gene and thus is likely to have Stargardt-like macular dystrophy, cone-rod dystrophy, Salla disease, or age-related 20 macular degeneration.

In a particular embodiment, the PCR primers are from a region of the KCNQ5 gene where it is suspected that a patient harbors a mutation. In a particular embodiment, the PCR primers are from the coding region of the KCNQ5 gene, *i.e.*, from the coding region of SEQ.ID.NO:1 or SEQ.ID.NO:2. In a particular 25 embodiment, the PCR primers amplify a region that includes the marker D6S280.

In a particular embodiment, the DNA sample from the patient is cDNA that has been prepared from an RNA sample from the patient. In another embodiment, the DNA sample from the patient is genomic DNA. In a particular embodiment, the control DNA sample is DNA from a person who does not have 30 Stargardt-like macular dystrophy, cone-rod dystrophy, Salla disease, or age-related macular degeneration.

In a particular embodiment, the nucleotide sequences of the PCR fragment from the patient and the control PCR fragment are determined by DNA sequencing.

In a particular embodiment, the nucleotide sequences of the PCR fragment from the patient and the control PCR fragment are compared by direct comparison after DNA sequencing. In another embodiment, step (d) is omitted and the comparison in step (e) is made by a process that includes hybridizing the PCR fragment from the patient and the control PCR fragment and then using an endonuclease that cleaves at any mismatched positions in the hybrid but does not cleave the hybrid if the two fragments match perfectly. Such an endonuclease is, e.g., S1. In this embodiment, the conversion of the PCR fragment from the patient to smaller fragments after endonuclease treatment indicates that the patient carries a mutation in the KCNQ5 gene. In such embodiments, it may be advantageous to label (radioactively, enzymatically, immunologically, etc.) the PCR fragment from the patient or the control PCR fragment.

The present invention provides a method of diagnosing whether a patient carries a mutation in the KCNQ5 gene that comprises:

- 15 (a) obtaining an RNA sample from the patient;
- (b) performing reverse transcription-PCR (RT-PCR) on the RNA sample using primers that span a region of the coding sequence of the KCNQ5 gene to produce a PCR fragment from the patient where the PCR fragment from the patient has a defined length, the length being dependent upon the identity of the primers that were used in the RT-PCR;
- 20 (c) hybridizing the PCR fragment to DNA comprising a sequence selected from the group consisting of SEQ.ID.NO:1 and SEQ.ID.NO.:2, or to portions of SEQ.ID.NO:1 or SEQ.ID.NO.:2 that are sufficiently long to give rise to bands that can be seen on polyacrylamide gels, to form a hybrid;
- 25 (d) treating the hybrid produced in step (c) with an endonuclease that cleaves at any mismatched positions in the hybrid but does not cleave the hybrid if the two fragments match perfectly;
- (e) determining whether the endonuclease cleaved the hybrid by determining the length of the PCR fragment from the patient after endonuclease treatment where a reduction in the length of the PCR fragment from the patient after endonuclease treatment indicates that the patient carries a mutation in the KCNQ5 gene.

In a variation of the above-described method, instead of determining the length of the PCR fragment from the patient after endonuclease treatment, the

length of the DNA comprising a sequence selected from the group consisting of SEQ.ID.NO.:1 and SEQ.ID.NO.:2, or the DNA comprising portions of SEQ.ID.NO.:1 or SEQ.ID.NO.:2 that are sufficiently long to give rise to bands that can be seen on polyacrylamide gels is determined after endonuclease treatment. In such a variation, a
5 reduction in the length of the DNA comprising a sequence selected from the group consisting of SEQ.ID.NO.:1 and SEQ.ID.NO.:2, or the DNA comprising portions of SEQ.ID.NO.:1 or SEQ.ID.NO.:2 that are sufficiently long to give rise to bands that can be seen on polyacrylamide gels indicates that the patient carries a mutation in the KCNQ5 gene.

10 The present invention provides a method of diagnosing whether a patient carries a mutation in the KCNQ5 gene that comprises:

- (a) making cDNA from an RNA sample from the patient;
- (b) providing a set of PCR primers based upon SEQ.ID.NO.:1 or SEQ.ID.NO.:2;
- 15 (c) performing PCR on the cDNA to produce a PCR fragment from the patient;
- (d) determining the nucleotide sequence of the PCR fragment from the patient;
- (e) comparing the nucleotide sequence of the PCR fragment from the patient with the nucleotide sequence of SEQ.ID.NO.:1 or SEQ.ID.NO.:2;
- 20 where a difference between the nucleotide sequence of the PCR fragment from the patient with the nucleotide sequence of SEQ.ID.NO.:1 or SEQ.ID.NO.:2 indicates that the patient carries a mutation in the KCNQ5 gene.

The present invention provides a method of diagnosing whether a
25 patient carries a mutation in the KCNQ5 gene that comprises:

- (a) preparing genomic DNA from the patient;
- (b) providing a set of PCR primers based upon SEQ.ID.NO.:1 or SEQ.ID.NO.:2;
- 30 (c) performing PCR on the genomic DNA to produce a PCR fragment from the patient;
- (d) determining the nucleotide sequence of the PCR fragment from the patient;
- (e) comparing the nucleotide sequence of the PCR fragment from the patient with the nucleotide sequence of SEQ.ID.NO.:1 or SEQ.ID.NO.:2;

where a difference between the nucleotide sequence of the PCR fragment from the patient with the nucleotide sequence of SEQ.ID.NO.:1 or SEQ.ID.NO.:2 indicates that the patient carries a mutation in the KCNQ5 gene.

The present invention also provides oligonucleotide probes, based
5 upon the sequences of SEQ.ID.NO:1 or SEQ.ID.NO:2, that can be used in diagnostic methods related to Stargardt-like macular dystrophy, cone-rod dystrophy, Salla disease, or age-related macular degeneration. In particular, the present invention includes DNA oligonucleotides comprising at least about 10, 15, or 18 contiguous nucleotides of a sequence selected from the group consisting of: SEQ.ID.NO:1 and
10 SEQ.ID.:NO.2 where the oligonucleotide probe comprises no stretch of contiguous nucleotides longer than 5 of a sequence selected from the group consisting of: SEQ.ID.NO:1 and SEQ.ID.:NO.2 other than the said at least about 10, 15, or 18 contiguous nucleotides. The oligonucleotides can be substantially free from other nucleic acids. Also provided by the present invention are corresponding RNA
15 oligonucleotides. The DNA or RNA oligonucleotide probes can be packaged in kits.

In addition to the diagnostic utilities described above, the present invention makes possible the recombinant expression of the KCNQ5 protein in various cell types. Such recombinant expression makes possible the study of this protein so that its biochemical activity and its role in Stargardt-like macular
20 dystrophy, cone-rod dystrophy, Salla disease, or age-related macular degeneration can be elucidated.

The present invention also makes possible the development of assays which measure the biological activity of the KCNQ5 protein. Such assays using recombinantly expressed KCNQ5 protein are especially of interest. Assays for
25 KCNQ5 protein activity can be used to screen libraries of compounds or other sources of compounds to identify compounds that are activators or inhibitors of the activity of KCNQ5 protein. Such identified compounds can serve as "leads" for the development of pharmaceuticals that can be used to treat patients having Stargardt-like macular dystrophy, cone-rod dystrophy, Salla disease, or age-related macular
30 degeneration. In versions of the above-described assays, mutant KCNQ5 proteins are used and inhibitors or activators of the activity of the mutant KCNQ5 proteins are identified.

Preferred cell lines for recombinant expression of KCNQ5 are those which do not express endogenous potassium channels (*e.g.*, CV-1, NIH-3T3). Such

cell lines can be loaded with ^{86}Rb , an ion which can pass through potassium channels. The ^{86}Rb -loaded cells can be exposed to collections of substances (*e.g.*, combinatorial libraries, natural products) and those substances that are able to alter ^{86}Rb efflux identified. Such substances are likely to be activators or inhibitors of KCNQ5.

The present invention includes a method of identifying activators or inhibitors of KCNQ5 comprising:

- (a) recombinantly expressing KCNQ5 protein or mutant KCNQ5 protein in a host cell;
- 10 (b) measuring the biological activity of KCNQ5 protein or mutant KCNQ5 protein in the presence and in the absence of a substance suspected of being an activator or an inhibitor of KCNQ5 protein or mutant KCNQ5 protein;
where a change in the biological activity of the KCNQ5 protein or the mutant KCNQ5 protein in the presence as compared to the absence of the substance
15 indicates that the substance is an activator or an inhibitor of KCNQ5 protein or mutant KCNQ5 protein.

In particular embodiments, the biological activity is the production of a voltage-gated potassium current, or efflux of ^{86}Rb .

In particular embodiments, a vector encoding KCNQ5 is transferred into *Xenopus* oocytes in order to cause the expression of KCNQ5 protein in the oocytes. Alternatively, RNA encoding KCNQ5 protein can be prepared *in vitro* and injected into the oocytes, also resulting in the expression of KCNQ5 protein in the oocytes. Following expression of KCNQ5 in the oocytes, membrane currents are measured after the transmembrane voltage is changed in steps. A change in membrane current is observed when the KCNQ5 channels open, allowing potassium ion flow. Similar oocytes studies were reported for KCNQ2 and KCNQ3 potassium channels in Wang et al., 1998, Science 282:1890-1893.

Inhibitors of KCNQ5 can be identified by exposing the oocytes expressing KCNQ5 to collections of substances and determining whether the substances can block or diminish the membrane currents observed in the absence of the substance.

Accordingly, the present invention provides a method of identifying inhibitors of KCNQ5 comprising:

- (a) expressing KCNQ5 protein in *Xenopus* oocytes;

- (b) changing the transmembrane potential of the oocytes in the presence and the absence of a substance suspected of being an inhibitor of KCNQ5;
- (c) measuring membrane potassium currents following step (b); where if the potassium membrane currents measured in step (c) are 5 greater in the absence rather than in the presence of the substance, then the substance is an inhibitor of KCNQ5.

The present invention also includes assays for the identification of activators and inhibitors of KCNQ5 that are based upon FRET between a first and a second fluorescent dye where the first dye is bound to one side of the plasma 10 membrane of a cell expressing KCNQ5 and the second dye is free to shuttle from one face of the membrane to the other face in response to changes in membrane potential. In certain embodiments, the first dye is impenetrable to the plasma membrane of the cells and is bound predominately to the extracellular surface of the plasma membrane. The second dye is trapped within the plasma membrane but is free to diffuse within 15 the membrane. At normal (*i.e.*, negative) resting potentials of the membrane, the second dye is bound predominately to the inner surface of the extracellular face of the plasma membrane, thus placing the second dye in close proximity to the first dye. This close proximity allows for the generation of a large amount of FRET between the two dyes. Following membrane depolarization, the second dye moves from the 20 extracellular face of the membrane to the intracellular face, thus increasing the distance between the dyes. This increased distance results in a decrease in FRET, with a corresponding increase in fluorescent emission derived from the first dye and a corresponding decrease in the fluorescent emission from the second dye. See figure 1 of González & Tsien, 1997, Chemistry & Biology 4:269-277. See also González & 25 Tsien, 1995, Biophys. J. 69:1272-1280 and U.S. Patent No. 5,661,035.

In certain embodiments, the first dye is a fluorescent lectin or a fluorescent phospholipid that acts as the fluorescent donor. Examples of such a first dye are: a coumarin-labeled phosphatidylethanolamine (*e.g.*, N-(6-chloro-7-hydroxy-2-oxo-2H--1-benzopyran-3-carboxamidoacetyl)-dimyristoylphosphatidyl-ethanolamine) or N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-dipalmitoylphosphatidylethanolamine); a fluorescently-labeled lectin (*e.g.*, fluorescein-labeled wheat germ agglutinin). In certain embodiments, the second dye is an oxonol that acts as the fluorescent acceptor. Examples of such a second dye are: bis(1,3-dialkyl-2-thiobarbiturate)trimethineoxonols (*e.g.*, bis(1,3-dihexyl-2-

thiobarbiturate)trimethineoxonol) or pentamethineoxonol analogues (*e.g.*, bis(1,3-dihexyl-2-thiobarbiturate)pentamethineoxonol; or bis(1,3-dibutyl-2-thiobarbiturate)pentamethineoxonol). See González & Tsien, 1997, Chemistry & Biology 4:269-277 for methods of synthesizing various dyes suitable for use in the present invention. In certain embodiments, the assay may comprise a natural carotenoid, *e.g.*, astaxanthin, in order to reduce photodynamic damage due to singlet oxygen.

The above described assays can be utilized to discover activators and inhibitors of KCNQ5. Such assays will generally utilize cells that express KCNQ5, *e.g.*, by transfection with expression vectors encoding KCNQ5. In assays for inhibitors, such cells will generally have a resting membrane potential that is roughly equal to the threshold for activation of the KCNQ5 channel. This is because most untransfected cells will have membrane potentials that are depolarized relative to the threshold potential of KCNQ5 channels. Therefore, when KCNQ5 is expressed in these cells, the KCNQ5 channels open. This lets K⁺ out of the cells, which tends to hyperpolarize the membrane potential. This closes some of the KCNQ5 channels, leading to relative depolarization. In this way, a steady state develops around the threshold for activation of the KCNQ5 channel. Inhibitors of KCNQ5 will, therefore, disturb this steady state and depolarize the cell. In assays for activators, KCNQ5 will be transfected into a cell line that also expresses a counteracting, depolarizing current. The membrane potential in these cells will therefore be set by contributions of both the KCNQ5 channel and the endogenous depolarizing current, resulting in a more depolarized resting potential. Ideally, the endogenous current will play the major role in the absence of a KCNQ5 activator. Activators of KCNQ5 will open this channel and increase the contribution of KCNQ5 to the membrane potential relative to the other current and the potential will, therefore, hyperpolarize in response to an activator of KCNQ5. Changes in membrane potential (depolarizations and hyperpolarizations) that are caused by activators and inhibitors of KCNQ5 can be monitored by the assays using FRET described above.

Accordingly, the present invention provides a method of identifying activators of KCNQ5 comprising:

- (a) providing test cells comprising:
 - (1) an expression vector that directs the expression of KCNQ5 in the cells;

- (2) a first fluorescent dye, where the first dye is bound to one side of the plasma membrane; and
- (3) a second fluorescent dye, where the second fluorescent dye is free to shuttle from one face of the plasma membrane to the other face in response to changes in membrane potential;
- 5 (b) exposing the test cells to a substance that is suspected of being an activator of KCNQ5;
- (c) measuring the amount of fluorescence resonance energy transfer (FRET) in the test cells that have been exposed to the substance;
- 10 (d) comparing the amount of FRET exhibited by the test cells that have been exposed to the substance with the amount of FRET exhibited by control cells;
- wherein if the amount of FRET exhibited by the test cells is greater than the amount of FRET exhibited by the control cells, the substance is an activator 15 of KCNQ5;
- where the control cells are either (1) cells that are essentially the same as the test cells except that they do not comprise at least one of the items listed at (a) (1)-(3) but have been exposed to the substance; or (2) test cells that have not been exposed to the substance.
- 20 The present invention also provides a method of identifying inhibitors of KCNQ5 comprising:
- (a) providing test cells comprising:
- (1) an expression vector that directs the expression of KCNQ5 in the cells;
- 25 (2) a first fluorescent dye, where the first dye is bound to one side of the plasma membrane; and
- (3) a second fluorescent dye, where the second fluorescent dye is free to shuttle from one face of the plasma membrane to the other face in response to changes in membrane potential;
- 30 (b) exposing the test cells to a substance that is suspected of being an inhibitor of KCNQ5;
- (c) measuring the amount of fluorescence resonance energy transfer (FRET) in the test cells that have been exposed to the substance;

(d) comparing the amount of FRET exhibited by the test cells that have been exposed to the substance with the amount of FRET exhibited by control cells;

5 wherein if the amount of FRET exhibited by the test cells is less than the amount of FRET exhibited by the control cells, the substance is an inhibitor of KCNQ5;

10 where the control cells are either (1) cells that are essentially the same as the test cells except that they do not comprise at least one of the items listed at (a) (1)-(3) but have been exposed to the substance; or (2) test cells that have not been exposed to the substance.

In a variation of the assay described above, instead of the transfected cell's membrane potential being allowed to reach steady state on its own, the membrane potential is artificially set at a potential in which the KCNQ5 channel is open. This can be done, *e.g.*, by variation of the external K⁺ concentration in a known manner (*e.g.*, increased concentrations of external K⁺). If such cells, having open KCNQ5 channels, are exposed to inhibitors of KCNQ5, the KCNQ5 channels will close, and the cells' membrane potentials will be depolarized. This depolarization can be observed as a decrease in FRET.

Accordingly, the present invention provides a method of identifying 20 inhibitors of KCNQ5 comprising:

(a) providing cells comprising:

(1) an expression vector that directs the expression of KCNQ5 in the cells;

25 (2) a first fluorescent dye, where the first dye is bound to one side of the plasma membrane; and

(3) a second fluorescent dye, where the second fluorescent dye is free to shuttle from one face of the plasma membrane to the other face in response to changes in membrane potential;

30 (b) adjusting the membrane potential of the cells such that the ion channel formed by KCNQ5 is open;

(c) measuring the amount of fluorescence resonance energy transfer (FRET) in the test cells;

(d) repeating step (b) and step (c) while the cells are exposed to a substance that is suspected of being an inhibitor of KCNQ5;

where if the amount of FRET exhibited by the cells that are exposed to the substance is less than the amount of FRET exhibited by the cells that have not been exposed to the substance, then the substance is an inhibitor of KCNQ5.

5 In particular embodiments of the above-described methods, the expression vectors are transfected into the test cells.

In particular embodiments of the above-described methods, KCNQ5 has an amino acid sequence of SEQ.ID.NO.:3.

10 In particular embodiments of the above-described methods, the first fluorescent dye is selected from the group consisting of: a fluorescent lectin; a fluorescent phospholipid; a coumarin-labeled phosphatidylethanolamine; N-(6-chloro-7-hydroxy-2-oxo-2H--1-benzopyran-3-carboxamidoacetyl)-dimyristoylphosphatidyl-ethanolamine); N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-dipalmitoylphosphatidylethanolamine); and fluorescein-labeled wheat germ agglutinin.

15 In particular embodiments of the above-described methods, the second fluorescent dye is selected from the group consisting of: an oxonol that acts as the fluorescent acceptor; bis(1,3-dialkyl-2-thiobarbiturate)trimethineoxonols; bis(1,3-dihexyl-2-thiobarbiturate)trimethineoxonol; bis(1,3-dialkyl-2-thiobarbiturate)quoramethineoxonols; bis(1,3-dialkyl-2-thiobarbiturate)pentamethineoxonols; bis(1,3-dihexyl-2-thiobarbiturate)pentamethineoxonol; bis(1,3-dibutyl-2-thiobarbiturate)pentamethineoxonol); and bis(1,3-dialkyl-2-thiobarbiturate)hexamethineoxonols.

25 In a particular embodiment of the above-described methods, the cells are eukaryotic cells. In another embodiment, the cells are mammalian cells. In other embodiments, the cells are L cells L-M(TK⁻) (ATCC CCL 1.3), L cells L-M (ATCC CCL 1.2), 293 (ATCC CRL 1573), Raji (ATCC CCL 86), CV-1 (ATCC CCL 70), COS-1 (ATCC CRL 1650), COS-7 (ATCC CRL 1651), CHO-K1 (ATCC CCL 61), 3T3 (ATCC CCL 92), NIH/3T3 (ATCC CRL 1658), HeLa (ATCC CCL 2), C127I 30 (ATCC CRL 1616), BS-C-1 (ATCC CCL 26), MRC-5 (ATCC CCL 171), *Xenopus melanophores*, or *Xenopus oocytes*.

In particular embodiments of the above-described methods, the control cells do not comprise item (a)(1) but do comprise items (a)(2) and (a)(3).

In assays to identify activators or inhibitors of KCNQ5, it may be advantageous to co-express another potassium channel, *e.g.*, KCNQ1, KCNQ2, KCNQ3, or KCNQ4, together with KCNQ5, or with an accessory subunit, such as the IsK protein or one of its homologues, in order to form a functional heteromeric 5 potassium channel.

While the above-described methods are explicitly directed to testing whether "a" substance is an activator or inhibitor of KCNQ5, it will be clear to one skilled in the art that such methods can be adapted to test collections of substances, *e.g.*, combinatorial libraries, to determine whether any members of such collections 10 are activators or inhibitors of KCNQ5. Accordingly, the use of collections of substances, or individual members of such collections, as the substance in the above-described methods is within the scope of the present invention.

The present invention includes pharmaceutical compositions comprising activators or inhibitors of KCNQ5 protein that have been identified by the 15 herein-described methods. The activators or inhibitors are generally combined with pharmaceutically acceptable carriers to form pharmaceutical compositions. Examples of such carriers and methods of formulation of pharmaceutical compositions containing activators or inhibitors and carriers can be found in Remington's Pharmaceutical Sciences. To form a pharmaceutically acceptable composition 20 suitable for effective administration, such compositions will contain a therapeutically effective amount of the activators or inhibitors.

Therapeutic or prophylactic compositions are administered to an individual in amounts sufficient to treat or prevent conditions where KCNQ5 activity is abnormal. The effective amount can vary according to a variety of factors such as 25 the individual's condition, weight, gender, and age. Other factors include the mode of administration. The appropriate amount can be determined by a skilled physician.

Compositions can be used alone at appropriate dosages. Alternatively, co-administration or sequential administration of other agents can be desirable.

The compositions can be administered in a wide variety of therapeutic 30 dosage forms in conventional vehicles for administration. For example, the compositions can be administered in such oral dosage forms as tablets, capsules (each including timed release and sustained release formulations), pills, powders, granules, elixirs, tinctures, solutions, suspensions, syrups and emulsions, or by injection. Likewise, they can also be administered in intravenous (both bolus and infusion),

intraperitoneal, subcutaneous, topical with or without occlusion, or intramuscular form, all using forms well known to those of ordinary skill in the pharmaceutical arts.

Advantageously, compositions can be administered in a single daily dose, or the total daily dosage can be administered in divided doses of two, three or four times daily. Furthermore, compositions can be administered in intranasal form via topical use of suitable intranasal vehicles, or via transdermal routes, using those forms of transdermal skin patches well known to those of ordinary skill in that art. To be administered in the form of a transdermal delivery system, the dosage administration will, of course, be continuous rather than intermittent throughout the dosage regimen.

The dosage regimen utilizing the compositions is selected in accordance with a variety of factors including type, species, age, weight, sex and medical condition of the patient; the severity of the condition to be treated; the route of administration; the renal, hepatic and cardiovascular function of the patient; and the particular composition thereof employed. A physician of ordinary skill can readily determine and prescribe the effective amount of the composition required to prevent, counter or arrest the progress of the condition. Optimal precision in achieving concentrations of composition within the range that yields efficacy without toxicity requires a regimen based on the kinetics of the composition's availability to target sites. This involves a consideration of the distribution, equilibrium, and elimination of a composition.

The present invention includes a method of treating Stargardt-like macular dystrophy, cone-rod dystrophy, Salla disease, age-related macular degeneration and other forms of macular degeneration, deafness, epilepsy, and different forms of neuropsychiatric, heart, gastrointestinal, and muscle disorders by administering to a patient a therapeutically effective amount of a substance that is an activator or an inhibitor of a voltage-gated potassium channel containing the KCNQ5 protein.

When screening compounds in order to identify potential pharmaceuticals that specifically interact with a target ion channel, it is necessary to ensure that the compounds identified are as specific as possible for the target ion channel. To do this, it is necessary to screen the compounds against as wide an array as possible of ion channels that are similar to the target ion channel. Thus, in order to find compounds that are potential pharmaceuticals that interact with ion channel A, it

is not enough to ensure that the compounds interact with ion channel A (the "plus target") and produce the desired pharmacological effect through ion channel A. It is also necessary to determine that the compounds do not interact with ion channels B, C, D, etc .(the "minus targets"). In general, as part of a screening program, it is
5 important to have as many minus targets as possible (see Hodgson, 1992,
Bio/Technology 10:973-980, at 980). KCNQ5 protein, DNA encoding KCNQ5
protein, and recombinant cells that have been engineered to express KCNQ5 protein
have utility in that they can be used as "minus targets" in screens designed to identify
compounds that specifically interact with other ion channels. For example, Wang et
10 al., 1998, Science 282:1890-1893 have shown that KCNQ2 and KCNQ3 form a
heteromeric potassium ion channel know as the "M-channel." The M-channel is an
important target for drug discovery since mutations in KCNQ2 and KCNQ3 are
responsible for causing epilepsy (Biervert et al., 1998, Science 279:403-406; Singh et
al., 1998, Nature Genet. 18:25-29; Schroeder et al., Nature 1998, 396:687-690). A
15 screening program designed to identify activators or inhibitors of the M-channel
would benefit greatly by the use of KCNQ5 as a minus target.

The present invention also includes antibodies to the KCNQ5 protein.
Such antibodies may be polyclonal antibodies or monoclonal antibodies. The
antibodies of the present invention are raised against the entire KCNQ5 protein or
20 against suitable antigenic fragments of the protein that are coupled to suitable carriers,
e.g., serum albumin or keyhole limpet hemocyanin, by methods well known in the art.
Methods of identifying suitable antigenic fragments of a protein are known in the art.
See, e.g., Hopp & Woods, 1981, Proc. Natl. Acad. Sci. USA 78:3824-3828; and
Jameson & Wolf, 1988, CABIOS (Computer Applications in the Biosciences) 4:181-
25 186.

For the production of polyclonal antibodies, KCNQ5 protein or an
antigenic fragment, coupled to a suitable carrier, is injected on a periodic basis into an
appropriate non-human host animal such as, e.g., rabbits, sheep, goats, rats, mice.
The animals are bled periodically and sera obtained are tested for the presence of
30 antibodies to the injected antigen. The injections can be intramuscular,
intraperitoneal, subcutaneous, and the like, and can be accompanied with adjuvant.

For the production of monoclonal antibodies, KCNQ5 protein or an
antigenic fragment, coupled to a suitable carrier, is injected into an appropriate non-
human host animal as above for the production of polyclonal antibodies. In the case

of monoclonal antibodies, the animal is generally a mouse. The animal's spleen cells are then immortalized, often by fusion with a myeloma cell, as described in Kohler & Milstein, 1975, *Nature* 256:495-497. For a fuller description of the production of monoclonal antibodies, see Antibodies: A Laboratory Manual, Harlow & Lane, eds., 5 Cold Spring Harbor Laboratory Press, 1988.

Gene therapy may be used to introduce KCNQ5 polypeptides into the cells of target organs, e.g., the pigmented epithelium of the retina or other parts of the retina. Nucleotides encoding KCNQ5 polypeptides can be ligated into viral vectors which mediate transfer of the nucleotides by infection of recipient cells. Suitable 10 viral vectors include retrovirus, adenovirus, adeno-associated virus, herpes virus, vaccinia virus, lentivirus, and polio virus based vectors. Alternatively, nucleotides encoding KCNQ5 polypeptides can be transferred into cells for gene therapy by non-viral techniques including receptor-mediated targeted transfer using ligand-nucleotide conjugates, lipofection, membrane fusion, or direct microinjection. These procedures 15 and variations thereof are suitable for *ex vivo* as well as *in vivo* gene therapy. Gene therapy with KCNQ5 polypeptides will be particularly useful for the treatment of diseases where it is beneficial to elevate KCNQ5 activity.

The present invention includes processes for cloning orthologues of human KCNQ5 from non-human species. In general, such processes include 20 preparing a PCR primer or a hybridization probe based upon SEQ.ID.NO.:1 or SEQ.ID.NO.:2 that can be used to amplify a fragment containing the non-human KCNQ5 (in the case of PCR) from a suitable DNA preparation or to select a cDNA or genomic clone containing the non-human KCNQ5 from a suitable library. A preferred embodiment of this process is a process for cloning the KCNQ5 gene from 25 mouse.

By providing DNA encoding mouse KCNQ5, the present invention allows for the generation of an animal model of Stargardt-like macular dystrophy, cone-rod dystrophy, Salla disease, or age-related macular degeneration. Such animal models can be generated by making transgenic "knockout" or "knockin" mice 30 containing altered KCNQ5 genes. Knockout mice can be generated in which portions of the mouse KCNQ5 gene have been deleted. Knockin mice can be generated in which mutations that have been shown to lead to Stargardt-like macular dystrophy, cone-rod dystrophy, Salla disease, or age-related macular degeneration when present in the human KCNQ5 gene are introduced into the mouse gene. Such knockout and

knockin mice will be valuable tools in the study of Stargardt-like macular dystrophy, cone-rod dystrophy, Salla disease, or age-related macular degeneration and will provide important model systems in which to test potential pharmaceuticals or treatments for Stargardt-like macular dystrophy, cone-rod dystrophy, Salla disease, or
5 age-related macular degeneration.

Accordingly, the present invention includes a method of producing a mouse model of Stargardt-like macular dystrophy, cone-rod dystrophy, Salla disease, or age-related macular degeneration comprising:

- (a) designing PCR primers or an oligonucleotide probe based upon
10 SEQ.ID.NO.:1 or SEQ.ID.NO.:2 for use in cloning the mouse KCNQ5 gene;
- (b) using the PCR primers or the oligonucleotide probe to clone at least a portion of the mouse KCNQ5 gene, the portion being large enough to use in making a transgenic mouse;
- (c) producing a transgenic mouse having at least one copy of the
15 mouse KCNQ5 gene altered from its native state.

Methods of producing knockout and knockin mice are well known in the art. One method involves the use of gene-targeted ES cells in the generation of gene-targeted transgenic knockout mice and is described in, e.g., Thomas et al., 1987, Cell 51:503-512, and is reviewed elsewhere (Frohman et al., 1989, Cell 56:145-147; 20 Capecchi, 1989, Trends in Genet. 5:70-76; Baribault et al., 1989, Mol. Biol. Med. 6:481-492).

Techniques are available to inactivate or alter any genetic region to virtually any mutation desired by using targeted homologous recombination to insert specific changes into chromosomal genes. Generally, use is made of a "targeting 25 vector," i.e., a plasmid containing part of the genetic region it is desired to mutate. By virtue of the homology between this part of the genetic region on the plasmid and the corresponding genetic region on the chromosome, homologous recombination can be used to insert the plasmid into the genetic region, thus disrupting the genetic region. Usually, the targeting vector contains a selectable marker gene as well.

In comparison with homologous extrachromosomal recombination, which occurs at frequencies approaching 100%, homologous plasmid-chromosome recombination was originally reported to only be detected at frequencies between 10^{-6} and 10^{-3} (Lin et al., 1985, Proc. Natl. Acad. Sci. USA 82:1391-1395; Smithies et al., 1985, Nature 317: 230-234; Thomas et al., 1986, Cell 44:419-428).
30

Nonhomologous plasmid-chromosome interactions are more frequent, occurring at levels 10⁵-fold (Lin et al., 1985, Proc. Natl. Acad. Sci. USA 82:1391-1395) to 10²-fold (Thomas et al., 1986, Cell 44:419-428) greater than comparable homologous insertion.

- 5 To overcome this low proportion of targeted recombination in murine ES cells, various strategies have been developed to detect or select rare homologous recombinants. One approach for detecting homologous alteration events uses the polymerase chain reaction (PCR) to screen pools of transformant cells for homologous insertion, followed by screening individual clones (Kim et al., 1988, Nucleic Acids Res. 16:8887-8903; Kim et al., 1991, Gene 103:227-233).
- 10 Alternatively, a positive genetic selection approach has been developed in which a marker gene is constructed which will only be active if homologous insertion occurs, allowing these recombinants to be selected directly (Sedivy et al., 1989, Proc. Natl. Acad. Sci. USA 86:227-231). One of the most powerful approaches developed for
- 15 selecting homologous recombinants is the positive-negative selection (PNS) method developed for genes for which no direct selection of the alteration exists (Mansour et al., 1988, Nature 336:348-352; Capecchi, 1989, Science 244:1288-1292; Capecchi, 1989, Trends in Genet. 5:70-76). The PNS method is more efficient for targeting genes which are not expressed at high levels because the marker gene has its own promoter. Nonhomologous recombinants are selected against by using the Herpes Simplex virus thymidine kinase (HSV-TK) gene and selecting against its nonhomologous insertion with herpes drugs such as gancyclovir (GANC) or FIAU (1-(2-deoxy 2-fluoro-B-D-arabinofuranosyl)-5-iodouracil). By this counter-selection, the percentage of homologous recombinants in the surviving transformants can be increased.
- 20 Other methods of producing transgenic mice involve microinjecting the male pronuclei of fertilized eggs. Such methods are well known in the art.
- 25

The following non-limiting examples are presented to better illustrate
30 the invention.

EXAMPLE 1

Identification of the human KCNQ5 gene and cDNA cloningConstruction of Libraries for Shotgun Sequencing from PAC Clones

Bacterial strains containing the KCNQ5 PACs (P1 Artificial Chromosomes) were received from Research Genetics (Huntsville, AL). Cells were streaked on Luria-Bertani (LB) agar plates supplemented with the appropriate antibiotic. A single colony was used to prepare a 5-ml starter culture and then 1-L overnight culture in LB medium. The cells were pelleted by centrifugation and PAC DNA was purified by equilibrium centrifugation in cesium chloride-ethidium bromide gradient (Sambrook, Fritsch, and Maniatis, 1989, Molecular Cloning: A Laboratory Manual, second edition, Cold Spring Harbor Laboratory Press). Purified PAC DNA was brought to 50 mM Tris pH 8.0, 15 mM MgCl₂, and 25% glycerol in a volume of 2 ml and placed in a AERO-MIST nebulizer (CIS-US, Bedford, MA). The nebulizer was attached to a nitrogen gas source and the DNA was randomly sheared at 10 psi for 30 sec. The sheared DNA was ethanol precipitated and resuspended in TE (10 mM Tris, 1 mM EDTA). The ends were made blunt by treatment with Mung Bean Nuclease (Promega, Madison, WI) at 30°C for 30 min, followed by phenol/chloroform extraction, and treatment with T4 DNA polymerase (GIBCO/BRL, Gaithersburg, MD) in multicore buffer (Promega, Madison, WI) in the presence of 40 uM dNTPs at 16°C. To facilitate subcloning of the DNA fragments, BstX I adapters (Invitrogen, Carlsbad, CA) were ligated to the fragments at 14°C overnight with T4 DNA ligase (Promega, Madison, WI). Adapters and DNA fragments less than 500 bp were removed by column chromatography using a cDNA sizing column (GIBCO/BRL, Gaithersburg, MD) according to the instructions provided by the manufacturer. Fractions containing DNA greater than 1 kb were pooled and concentrated by ethanol precipitation. The DNA fragments containing BstX I adapters were ligated into the BstX I sites of pSHOT II which was constructed by subcloning the BstX I sites from pcDNA II (Invitrogen, Carlsbad, CA) into the BssH II sites of pBlueScript (Stratagene, La Jolla, CA). pSHOT II was prepared by digestion with BstX I restriction endonuclease and purified by agarose gel electrophoresis. The gel purified vector DNA was extracted from the agarose by following the Prep-A-Gene (BioRad, Richmond, CA) protocol. To reduce ligation of

the vector to itself, the digested vector was treated with calf intestinal phosphatase (GIBCO/BRL, Gaithersburg, MD. Ligation reactions of the DNA fragments with the cloning vector were transformed into ultra-competent XL-2 Blue cells (Stratagene, La Jolla, CA), and plated on LB agar plates supplemented with 100 µg/ml ampicillin.

- 5 Individual colonies were picked into a 96 well plate containing 100 µl/well of LB broth supplemented with ampicillin and grown overnight at 37°C. Approximately 25 µl of 80% sterile glycerol was added to each well and the cultures stored at -80°C.

Preparation of plasmid DNA

- 10 Glycerol stocks were used to inoculate 5 ml of LB broth supplemented with 100 µg/ml ampicillin either manually or by using a Tecan Genesis RSP 150 robot (Tecan AG, Hombrechtikon, Switzerland) programmed to inoculate 96 tubes containing 5 ml broth from the 96 wells. The cultures were grown overnight at 37°C with shaking to provide aeration. Bacterial cells were pelleted by centrifugation , the supernatant decanted, and the cell pellet stored at -20°C. Plasmid DNA was prepared with a QIAGEN Bio Robot 9600 (QIAGEN, Chatsworth, CA) according to the Qiawell Ultra protocol. To test the frequency and size of inserts, plasmid DNA was digested with the restriction endonuclease Pvu II. The size of the restriction endonuclease products was examined by agarose gel electrophoresis with the average insert size being 1 to 2 kb.
- 15
- 20

DNA Sequence Analysis of Shotgun clones

- DNA sequence analysis was performed using the ABI PRISM™ dye terminator cycle sequencing ready reaction kit with AmpliTaq DNA polymerase, FS (Perkin Elmer, Norwalk, CT). DNA sequence analysis was performed with M13 forward and reverse primers. Following amplification in a Perkin-Elmer 9600, the extension products were purified and analyzed on an ABI PRISM 377 automated sequencer (Perkin Elmer, Norwalk, CT). Approximately 4 sequencing reactions were performed per kb of DNA to be examined (384 sequencing reactions per each of nine PACs).
- 25
- 30

Assembly of DNA sequences

Phred/Phrap was used for DNA sequences assembly. This program was developed by Dr. Phil Green and licensed from the University of Washington

(Seattle, WA). Phred/Phrap consists of the following programs: Phred for base-calling, Phrap for sequence assembly, Crossmatch for sequence comparisons, Consed and Phrapview for visualization of data, Repeatmasker for screening repetitive sequences. Vector and *E. coli* DNA sequences were identified by Crossmatch and removed from the DNA sequence assembly process. DNA sequence assembly was on a SUN Enterprise 4000 server running a Solaris 2.5.1 operating system (Sun Microsystems Inc., Mountain View, CA) using default Phrap parameters. The sequence assemblies were further analyzed using Consed and Phrapview.

10 Genomic sequence of the KCNQ5 gene and its exon/intron organization

Genomic DNA sequence from PAC 141B1 was compared with GenBank database entries using the BLASTN and BLASTX algorithms of the AceDB package. This comparison originally revealed a total of 5 exons (exons 3(D), 4 (A), 5(B), 6(E), and 7(C) delineated in Figure1), based on their homology to the known potassium channel genes KCNQ1, KCNQ2, KCNQ3, and KCNQ4. Full-length cDNA was rescued from the pools of the human fetal brain cDNA library using the RCCA technique described in Example 2. Comparison of the cDNA sequence and genomic sequence of PAC141B1 revealed a total of 8 exons (exons 3-10 delineated in Figure1). Genomic regions corresponding to exons 1,2, and 11-14 were not present in PAC141B1.

In order to identify the genomic region corresponding to exon 2 and its right flanking intron, oligonucleotide KCN-2L2 (TTTTCTCCTTGTCTTGTTGCTTG; SEQ.ID.NO.:11) from the KCNQ5 cDNA in combination with the adaptor primer AP1 (CCATCCTAACATACGACTCACTATAAGGGC; SEQ.ID.NO.:12) was used to PCR-amplify the DNA from a GenomeWalker kit purchased from Clontech (Palo Alto, CA). Diluted PCR product was subjected to PCR amplification with nested primer KCN-2L1 (CCTCAAGTTGCCTCTTGATCCTG; SEQ.ID.NO.:13) in combination with the nested adaptor primer AP2 (ACTCACTATAAGGGCTCGAGCGGC; SEQ.ID.NO.:14).

In order to identify the genomic region corresponding to exon 2 and its left flanking intron, oligonucleotide KCN-2R1 (CAGGATCAAGAGGCAACTTGAGG; SEQ.ID.NO.:15) from the KCNQ5 cDNA in combination with the adaptor primer AP1

(CCATCCTAATACGACTCACTATAAGGGC; SEQ.ID.NO.:12) was used to PCR-amplify the DNA from a GenomeWalker kit purchased from Clontech (Palo Alto, CA). Diluted PCR product was subjected to PCR amplification with nested primer KCN-2R2 (CCAATTTGTGTGCTCAGGGATGGTAGA; SEQ.ID.NO.:16) in combination with the nested adaptor primer AP2 (ACTCACTATAAGGGCTCGAGCGGC; SEQ.ID.NO.:14).

- 5 In order to identify the genomic region corresponding to exon 11 and its right flanking intron, oligonucleotide KCN-11L1 (GACACAGCCCTTGGCACT; SEQ.ID.NO.:17) from the KCNQ5 cDNA in combination with the adaptor primer 10 AP1 (CCATCCTAATACGACTCACTATAAGGGC; SEQ.ID.NO.:12) was used to PCR-amplify the DNA from a GenomeWalker kit purchased from Clontech (Palo Alto, CA). Diluted PCR product was subjected to PCR amplification with nested primer KCN-11L2 (GATGATGTATATGATGAAAAAGGATG; SEQ.ID.NO.:18) in combination with the nested adaptor primer AP2 15 (ACTCACTATAAGGGCTCGAGCGGC; SEQ.ID.NO.:14).

In order to identify the genomic region corresponding to exon 11 and its left flanking intron, oligonucleotide KCN-11R1 (CTGATAGCTCGAATGACAGTTTT; SEQ.ID.NO.:19) from the KCNQ5 cDNA in combination with the adaptor primer AP1 20 (CCATCCTAATACGACTCACTATAAGGGC; SEQ.ID.NO.:12) was used to PCR-amplify the DNA from a GenomeWalker kit purchased from Clontech (Palo Alto, CA). Diluted PCR product was subjected to PCR amplification with nested primer KCN11-R2 (AAGTGGTGGGGTGAGGTCTTCCACTG; SEQ.ID.NO.:20) in combination with the nested adaptor primer AP2 25 (ACTCACTATAAGGGCTCGAGCGGC; SEQ.ID.NO.:14).

In order to identify the genomic region corresponding to exon 12 and its right flanking intron, oligonucleotide KCN-12L1 (AGA ATT ATG AAA TTT CAT GTT GCA; SEQ.ID.NO.:21) from the KCNQ5 cDNA in combination with the adaptor primer AP1 (CCATCCTAATACGACTCACTATAAGGGC; SEQ.ID.NO.:12) 30 was used to PCR-amplify the DNA from a GenomeWalker kit purchased from Clontech (Palo Alto, CA). Diluted PCR product was subjected to PCR amplification with nested primer KCN-12L2 (AAA CGG AAG TTT AAG GAA ACA TT; SEQ.ID.NO.:22) in combination with the nested adaptor primer AP2 (ACTCACTATAAGGGCTCGAGCGGC; SEQ.ID.NO.:14).

- In order to identify the genomic region corresponding to exon 12 and its left flanking intron, oligonucleotide KCN-12R1 (ACG TGT TTG TTG GCT TTT AAT TC; SEQ.ID.NO.:23) from the KCNQ5 cDNA in combination with the adaptor primer AP1 (CCATCCTAATACGACTCACTATAGGGC; SEQ.ID.NO.:12) was used to PCR-amplify the DNA from a GenomeWalker kit purchased from Clontech (Palo Alto, CA). Diluted PCR product was subjected to PCR amplification with nested primer KCN-12R2 (TAC ACA ACA TGT CCA GAT GAC; SEQ.ID.NO.:24) in combination with the nested adaptor primer AP2 (ACTCACTATAGGGCTCGAGCGGC; SEQ.ID.NO.:14).
- 10 In order to identify the genomic region corresponding to exon 13 and its right flanking intron, oligonucleotide KCN-13L1 (TGATCAAATTCTTGGAAAAGGG; SEQ.ID.NO.:25) from the KCNQ5 cDNA in combination with the adaptor primer AP1 (CCATCCTAATACGACTCACTATAGGGC; SEQ.ID.NO.:12) was used to PCR-amplify the DNA from a GenomeWalker kit purchased from Clontech (Palo Alto, CA). Diluted PCR product was subjected to PCR amplification with nested primer KCN-13L2 (TCACATCAGATAAGAAGAGCCGA; SEQ.ID.NO.:26) in combination with the nested adaptor primer AP2 (ACTCACTATAGGGCTCGAGCGGC; SEQ.ID.NO.:14).
- 15 In order to identify the genomic region corresponding to exon 13 and its left flanking intron, oligonucleotide KCN-13R1 (GTTTTCAACCTTGACCACCC; SEQ.ID.NO.:27) from the KCNQ5 cDNA in combination with the adaptor primer AP1 (CCATCCTAATACGACTCACTATAGGGC; SEQ.ID.NO.:12) was used to PCR-amplify the DNA from a GenomeWalker kit purchased from Clontech (Palo Alto, CA). Diluted PCR product was subjected to PCR amplification with nested primer KCN-13R2 (AGCATACTGAGATCGTCTGTGGT; SEQ.ID.NO.:28) in combination with the nested adaptor primer AP2 (ACTCACTATAGGGCTCGAGCGGC; SEQ.ID.NO.:14).
- 20 In order to identify the genomic region corresponding to exon 14 and its left flanking intron, oligonucleotide KCN-2543R(AATTCCAAAAGTGTCTGTCTGTGTC; SEQ.ID.NO.:29) from the KCNQ5 cDNA in combination with the adaptor primer AP1 (CCATCCTAATACGACTCACTATAGGGC; SEQ.ID.NO.:12) was used to PCR-

amplify the DNA from a GenomeWalker kit purchased from Clontech (Palo Alto, CA). Diluted PCR product was subjected to PCR amplification with nested primer KCN-2512R (GGACCCACCTCTCATCAGTTA; SEQ.ID.NO.:30) in combination with the nested adaptor primer AP2 (ACTCACTATAAGGGCTCGAGCGGC; 5 SEQ.ID.NO.:14).

Products obtained from these PCR amplifications were analyzed using ABI 377 sequencers according to standard protocols. Comparison of the full-length KCNQ5 cDNA sequence with the sequences of PAC141B1 and sequences obtained in PCR reactions with DNA from the GenomeWalker kit revealed all 14 exons of the 10 KCNQ5 gene. Exact sequence of exon/intron boundaries within the KCNQ5 gene were determined for exons 2-14. The splice signals in all introns conform to published consensus sequences.

EXAMPLE 2

15 Cloning of KCNQ5 cDNA

The DNA sequence of the cDNA fragment that matches exons 3(D), 4 (A), 5(B), 6(E), and 7(C) of the KCNQ5 was deduced from the genomic sequence of PAC 141B1. Subsequent sequencing of PCR fragments obtained in RCCA reactions confirmed the presence of this fragment in the cDNA library from human 20 fetal brain. This original cDNA fragment corresponds to the cDNA region with coordinates 368-1,004 in Figure 2.

A PCR based technique termed Reduced Complexity cDNA Analysis (RCCA) was used to extend this original cDNA fragment. RCCA is similar to procedures reported by Munroe et al., 1995, Proc. Natl. Acad. Sci. USA 92: 2209- 25 2213 and Wilfinger et al., 1997, BioTechniques 22:481-486 and relies upon a PCR template that is a pool of approximately 20,000 cDNA clones; this reduces the complexity of the template and increases the probability of obtaining longer PCR extensions.

96 wells of a human fetal brain plasmid library were scanned, 20,000 30 clones per well, by amplifying a 483 bp PCR product using primers KCN-DL (GGAAGACTGAGGTTGCTCG; SEQ.ID.NO.31) and KCN-ER (GGCAGGAAGTGCAAAGAAAG; SEQ.ID.NO.32). Eight wells were found to

contain the correct 483 bp fragment by PCR analysis. 5' and 3' RACE was subsequently performed on the positive wells containing the plasmid cDNA library using a vector specific primer and a gene specific primer. The vector specific primers , PBS 543R (GGGGATGTGCTGCAAGGCGA; SEQ.ID.NO.33) and PBS 873F (CCCAGGCTTACACTTATGCTTCC; SEQ.ID.NO.34) were both used in combination with gene specific primers KCN-DL and KCN-ER because the orientation of the insert was not known. After the initial PCR amplification, a nested PCR reaction was performed using nested vector primers PBS 578R (CCAGGGTTTCCCAGTCACGAC; SEQ.ID.NO.35) and PBS 838F (TTGTGTGGAATTGTGAGCGGATAAC; SEQ.ID.NO.36) and gene specific primers KCN-EL (CTTCCTTGCACTCCTGCC; SEQ.ID.NO.37) and KCN-DR1 (AACACAGAAGGGCTTCGAG; SEQ.ID.NO.38). The PCR products were separated from the unincorporated dNTP's and primers using Qiagen, QIAquick PCR purification spin columns using standard protocols and resuspended in 30 µl of water.

15 The products were analyzed on ABI 377 sequencers according to standard protocols. PCR fragments were assembled into a contig termed "KCN consensus 2_16_99" that corresponds to the cDNA region with coordinates 278-1,456 in Figure 2. A second round of the RCCA analysis was performed to obtain the clones extending to the 3' end of the cDNA contig termed "KCN consensus 2_16_99". 96

20 wells of a human fetal brain plasmid library were scanned, 20,000 clones per well, by amplifying a 117 bp PCR product using primers KCN-11L1 (GACACAGCCCTGGCACT; SEQ.ID.NO.17) and KCN-11R1 (CTGATAGCTCGAATGACAGTTT; SEQ.ID.NO.19) that were derived from the 3' sequence of the cDNA contig termed "KCN consensus 2_16_99". A number of

25 wells were found to contain the correct 117 bp fragment by PCR analysis. 3' RACE was subsequently performed on the positive wells containing the plasmid cDNA library using a vector specific primer and a gene specific primer. The vector specific primers, PBS 543R (GGGGATGTGCTGCAAGGCGA; SEQ.ID.NO.33) and PBS 873F (CCCAGGCTTACACTTATGCTTCC; SEQ.ID.NO.34) were both used in combination with gene specific primer KCN-11L1 (GACACAGCCCTGGCACT; SEQ.ID.NO.17) because the orientation of the insert was not known. After the initial PCR amplification, a nested PCR reaction was performed using nested vector primers PBS 578R (CCAGGGTTTCCCAGTCACGAC; SEQ.ID.NO.35) and PBS 838F (TTGTGTGGAATTGTGAGCGGATAAC; SEQ.ID.NO.36) and gene specific primer

KCN11-R2 (AAGTGGTGGGTGAGGTCTCCACTG; SEQ.ID.NO.20). The PCR products were separated from the unincorporated dNTPs and primers using Qiagen, QIAquick PCR purification spin columns using standard protocols and resuspended in 30 µl of water. The products were analyzed on ABI 377 sequencers according to
5 standard protocols.

PCR fragments were assembled into a contig termed "KCN consensus 2_26_99" that corresponds to the cDNA region with coordinates 278-2,527 in Figure 2. A third round of RCCA analysis was performed to obtain the clones extending to the 5' end of the cDNA contig termed "KCN consensus 2_26_99". 96 wells of a
10 human fetal brain plasmid library were scanned, 20,000 clones per well, by amplifying a 214 bp PCR product using primers KCN-2L2 (TTTCCTCCTTGCTTGGTTGCTTGT; SEQ.ID.NO.11) and KCN-DR1 (AACACAGAAGGGCTTCGAG; SEQ.ID.NO.38) that were derived from the 5'
15 sequence of the cDNA contig termed "KCN consensus 2_26_99". A number of wells were found to contain the correct 214 bp fragment by PCR analysis. 5' RACE was subsequently performed on the positive wells containing the plasmid cDNA library using a vector specific primer and a gene specific primer. The vector specific primers, PBS 543R (GGGGATGTGCTGCAAGGCGA; SEQ.ID.NO.33) and PBS 873F (CCCAGGCTTACACTTATGCTTCC; SEQ.ID.NO.34) were both used in
20 combination with gene specific primer KCN-DR1 (AACACAGAAGGGCTTCGAG; SEQ.ID.NO.38) because the orientation of the insert was not known. After the initial PCR amplification, a nested PCR reaction was performed using nested vector primers PBS 578R (CCAGGGTTTCCCAGTCACGAC; SEQ.ID.NO.35) and PBS 838F
25 (TTGTGTGGAATTGTGAGCGGATAAC; SEQ.ID.NO.36) and gene specific primer KCN-DR2 (CAGTCTCCTGCCATCCTC; SEQ.ID.NO.39). The PCR products were separated from the unincorporated dNTPs and primers using Qiagen, QIAquick PCR purification spin columns using standard protocols and resuspended in 30 µl of water. The products were analyzed on ABI 377 sequencers according to standard
30 protocols.

PCR fragments were assembled into a contig termed "KCN consensus 3_3_99" that corresponds to the cDNA region with coordinates 1-2,527 in Figure 2. A fourth round of RCCA analysis was performed to obtain the clones extending to the 3' end of the cDNA contig termed "KCN consensus 3_3_99". 96 wells of a human

fetal brain plasmid library were scanned, 20,000 clones per well, by amplifying a 145 bp PCR product using primers KCN-2106L (GCAGCCCCAACAACTTTACA; SEQ.ID.NO.40) and KCN-2250R (CATTTCCTGGAGGCAACA; SEQ.ID.NO.41) that were derived from the 3' sequence of the cDNA contig termed 5 "KCN consensus 3_3_99". A number of wells were found to contain the correct 214 bp fragment by PCR analysis. 5' RACE was subsequently performed on the positive wells containing the plasmid cDNA library using a vector specific primer and a gene specific primer. The vector specific primers , PBS 543R (GGGGATGTGCTGCAAGGCGA; SEQ.ID.NO.33) and PBS 873F 10 (CCCAGGCTTACACTTATGCTTCC; SEQ.ID.NO.34) were both used in combination with gene specific primer KCN-2106L (GCAGCCCCAACAACTTTACA; SEQ.ID.NO.40) because the orientation of the insert was not known. After the initial PCR amplification, a nested PCR reaction was performed using nested vector primers PBS 578R 15 (CCAGGGTTTCCCAGTCACGAC; SEQ.ID.NO.35) and PBS 838F (TTGTGTGGAATTGTGAGCGGATAAC; SEQ.ID.NO.36) and gene specific primer KCN-2165L (GCCAGAAACTCTGCACCTA; SEQ.ID.NO.42). The PCR products were separated from the unincorporated dNTP's and primers using Qiagen, QIAquick PCR purification spin columns using standard protocols and resuspended in 20 30 µl of water. The products were analyzed on ABI 377 sequencers according to standard protocols; PCR fragments were assembled into a contig termed "KCN consensus 3_15_99" that corresponds to the cDNA sequence depicted in Figure 2.

EXAMPLE 3

25 Analysis of expression of KCNQ5

RT-PCR: RT-PCR experiments were performed on "quick-clone" human cDNA samples available from Clontech, Palo Alto, CA. cDNA samples from heart, brain, placenta, lung, liver, skeletal muscle, kidney, pancreas, and retina were amplified with primers KCN-DL (GGAAGACTGAGGTTGCTCG; SEQ.ID.NO.31) 30 and KCN-ER (GGCAGGAAGTGCAAAGAAAG; SEQ.ID.NO.32) in the following PCR conditions:

1. 94°C 10 min
2. 94°C 30 sec
3. 72°C 2 min (decrease this temperature by 1.1°C per cycle)
4. 72°C 2 min
5. 5. Go to step 2 21 more times
6. 94°C 30 sec
7. 55°C 2 min
8. 72°C 2 min
9. Go to step 6 19 more times
10. 10. 72°C 7 min
11. 4°C

The KCNQ5 gene was found to be predominantly expressed in human retina and brain (Figure 3B).

15

Northern blot analysis: Northern blots containing poly(A+)-RNA from human heart, brain, placenta, lung, liver, skeletal muscle, kidney, pancreas were purchased from Clontech, Palo Alto, CA. Primers KCN-DL (GGAAGACTGAGGTTGCTCG; SEQ.ID.NO.31) and KCN-ER (GGCAGGAAGTGCAAAGAAAG; SEQ.ID.NO.32) were used to amplify a PCR product of 483 bp from a quick-clone human retina cDNA available from Clontech, Palo Alto, CA. This fragment was purified on an agarose gel, the DNA extracted and used as a probe for Northern blot hybridization.

The probe was labeled by random priming with the Amersham Rediprime kit (Arlington Heights, IL) in the presence of 50-100 µCi of 3000 Ci/mmol [alpha 32P]dCTP (Dupont/NEN, Boston, MA). Unincorporated nucleotides were removed with a ProbeQuant G-50 spin column (Pharmacia/Biotech, Piscataway, NJ). The radiolabeled probe at a concentration of greater than 1 x 10⁶ cpm/ml in rapid hybridization buffer (Clontech, Palo Alto, CA) was incubated overnight at 65°C. The blots were washed by two 15 min incubations in 2X SSC, 0.1% SDS (prepared from 20X SSC and 20 % SDS stock solutions, Fisher, Pittsburgh, PA) at room temperature, followed by two 15 min incubations in 1X SSC, 0.1% SDS at room temperature, and two 30 min incubations in 0.1X SSC, 0.1% SDS

at 60°C. Autoradiography of the blots was done to visualize the bands that specifically hybridized to the radiolabeled probe.

The probe hybridized to an mRNA transcript that is predominately expressed in brain and retina (Figure 3A).

5

The present invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are intended to fall within the 10 scope of the appended claims.

Various publications are cited herein, the disclosures of which are incorporated by reference in their entireties.

WHAT IS CLAIMED IS:

1. An isolated DNA comprising nucleotides encoding a KCNQ5 protein.
- 5 2. The DNA of claim 1 comprising nucleotides encoding a polypeptide having the amino acid sequence SEQ.ID.NO.:3.
- 10 3. The DNA of claim 1 comprising a nucleotide sequence selected from the group consisting of: SEQ.ID.NO.:1, SEQ.ID.NO.:2, and positions 138-2,675 of SEQ.ID.NO.:2.
- 15 4. An isolated DNA that hybridizes under stringent conditions to a nucleotide sequence selected from the group consisting of: SEQ.ID.NO.:1 and SEQ.ID.NO.:2.
5. An expression vector comprising the DNA of claim 1.
6. A recombinant host cell comprising the DNA of claim 1.
- 20 7. An isolated KCNQ5 protein.
8. The KCNQ5 protein of claim 7 having the amino acid sequence SEQ.ID.NO.: 3.
- 25 9. The KCNQ5 protein of claim 8 containing a single amino acid substitution.
10. The KCNQ5 protein of claim 8 containing two or more amino acid substitutions where the amino acid substitutions do not occur in a position where the amino acid substituted in KCNQ5 is also present in the corresponding position of any one of KCNQ2, KCNQ3, or KCNQ4.

11. An antibody that binds specifically to a KCNQ5 protein where the KCNQ5 protein has the amino acid sequence SEQ.ID.NO.:3.

12. A method of diagnosing whether a patient has Stargardt-like macular dystrophy, cone-rod dystrophy, Salla disease, or age-related macular degeneration that comprises determining the DNA sequence of a region of the KCNQ5 gene from the patient and comparing that sequence to the sequence from the corresponding region of the KCNQ5 gene from a non-affected person, *i.e.*, a person who does not have Stargardt-like macular dystrophy, cone-rod dystrophy, Salla disease, or age-related macular degeneration.

15

13. A method of diagnosing whether a patient carries a mutation in the KCNQ5 gene that comprises:

- (a) providing a DNA sample from the patient;
- (b) providing a set of PCR primers based upon SEQ.ID.NO.:1 or SEQ.ID.NO.:2;
- (c) performing PCR on the DNA sample to produce a PCR fragment from the patient;
- (d) determining the nucleotide sequence of the PCR fragment from the patient;
- (e) comparing the nucleotide sequence of the PCR fragment from the patient with the nucleotide sequence of SEQ.ID.NO.:1 or SEQ.ID.NO.:2; where a difference between the nucleotide sequence of the PCR fragment from the patient with the nucleotide sequence of SEQ.ID.NO.:1 or SEQ.ID.NO.:2 indicates that the patient carries a mutation in the KCNQ5 gene.

25

30

14. The method of claim 13 where the DNA sample is genomic DNA.

15. The method of claim 13 where the DNA sample is cDNA.

16. A DNA or RNA oligonucleotide probe comprising at least 18 contiguous nucleotides of at least one of a sequence selected from the group consisting of: SEQ.ID.NO.:1 and SEQ.ID.NO.:2.

5

17. A method for determining whether a substance is an activator or an inhibitor of a KCNQ5 protein or a mutant KCNQ5 protein comprising:

(a) recombinantly expressing KCNQ5 protein or mutant KCNQ5 protein in a host cell;

10 (b) measuring the biological activity of KCNQ5 protein or mutant KCNQ5 protein in the presence and in the absence of a substance suspected of being an activator or an inhibitor of KCNQ5 protein or mutant KCNQ5 protein;

15 where a change in the biological activity of the KCNQ5 protein or the mutant KCNQ5 protein in the presence as compared to the absence of the substance indicates that the substance is an activator or an inhibitor of KCNQ5 protein or mutant KCNQ5 protein.

18. A method of identifying inhibitors of KCNQ5 comprising:

(a) expressing KCNQ5 protein in *Xenopus* oocytes;

20 (b) changing the transmembrane potential of the oocytes in the presence and the absence of a substance suspected of being an inhibitor of KCNQ5;

(c) measuring membrane potassium currents following step (b);

25 where if the potassium membrane currents measured in step (c) are greater in the absence rather than in the presence of the substance, then the substance is an inhibitor of KCNQ5.

19. A method of identifying activators of KCNQ5 comprising:

(a) providing test cells comprising:

(1) an expression vector that directs the expression of

30 KCNQ5 in the cells;

(2) a first fluorescent dye, where the first dye is bound to one side of the plasma membrane; and

(3) a second fluorescent dye, where the second fluorescent dye is free to shuttle from one face of the plasma membrane to the other face in response to changes in membrane potential;

5 (b) exposing the test cells to a substance that is suspected of being an activator of KCNQ5;

(c) measuring the amount of fluorescence resonance energy transfer (FRET) in the test cells that have been exposed to the substance;

10 (d) comparing the amount of FRET exhibited by the test cells that have been exposed to the substance with the amount of FRET exhibited by control cells;

wherein if the amount of FRET exhibited by the test cells is greater than the amount of FRET exhibited by the control cells, the substance is an activator of KCNQ5;

15 where the control cells are either (1) cells that are essentially the same as the test cells except that they do not comprise at least one of the items listed at (a) (1)-(3) but have been exposed to the substance; or (2) test cells that have not been exposed to the substance.

20 20. A method of identifying inhibitors of KCNQ5 comprising:

(a) providing test cells comprising:

(1) an expression vector that directs the expression of KCNQ5 in the cells;

(2) a first fluorescent dye, where the first dye is bound to one side of the plasma membrane; and

25 (3) a second fluorescent dye, where the second fluorescent dye is free to shuttle from one face of the plasma membrane to the other face in response to changes in membrane potential;

(b) exposing the test cells to a substance that is suspected of being an inhibitor of KCNQ5;

30 (c) measuring the amount of fluorescence resonance energy transfer (FRET) in the test cells that have been exposed to the substance;

(d) comparing the amount of FRET exhibited by the test cells that have been exposed to the substance with the amount of FRET exhibited by control cells;

wherein if the amount of FRET exhibited by the test cells is less than the amount of FRET exhibited by the control cells, the substance is an inhibitor of KCNQ5;

- 5 where the control cells are either (1) cells that are essentially the same as the test cells except that they do not comprise at least one of the items listed at (a) (1)-(3) but have been exposed to the substance; or (2) test cells that have not been exposed to the substance.

21. A method of treating Stargardt-like macular dystrophy, cone-
10 rod dystrophy, Salla disease, age-related macular degeneration, other forms of macular degeneration, deafness, epilepsy, different forms of neuropsychiatric, heart, gastrointestinal, and muscle disorders by administering to a patient a therapeutically effective amount of a substance that is an activator or an inhibitor of a voltage-gated potassium channel containing the KCNQ5 protein.

15

FIGURE 1A

KCN6q gene: DNA sequence

1. Underlined nucleotides in capitals represent exons.
2. Initiating ATG codon in exon 1 and terminating TAA codon in exon 14 are shown in bold italics
3. D6D280 genetic marker and phosphoglycerate mutase pseudogene are bold underlined
4. The exact lengths of the gaps between exons 1 and 2, 2 and 3, 10 and 11, 11 and 12, 12 and 13, 13 and 14 are unknown; these gaps are presented as runs of ten **bold n** as a convenience only

1 CTGGAGTGAG GCGCGGGAAG ATGCCTGGTC CTTGCCTCGC GGACTTGGCA
 51 GCCGCGTCT CGGGGTCTGT CCACTGA**ACT GCTGAGGACT GCGGCGGTGG**
 101 CCTGAGGGAG AGCCGCCGGG GCAAGCAGGG GGCCC**GGATG AGCCTGCTGG**
 151 GGAAGCCGCT CTCTTACACG AGTAGCCAGA GCTGCCGGG CAACGT**CAAG**
 201 TACCGGCCGG TGCAAGAACTA CCTGTACAAC GTGCTGGAGA GACCCCGCGG
 251 CTGGGCCGTTC ATCTACCACG CTTTCGTnnn nnnnnnnnttc cttttctatt
 301 tttattattata atatatgatc ttattattaa taatataaaag gaatagcaaa
 351 tgagaatcca tgagcaatat cagaccatga aaatgagcca gtggctgagt
 401 aacaaccaat taggacactt gatagtttag caaagttgcc aaacaggaga
 451 cagactcgc tccttgaac gaagagtgc tgcagtgtgg attccccaga
 501 taggagagca agaacatact ttctggccct ctctcaggat cgttgttgg
 551 gaaggaagtt gtatggaaaa ttccacaaact ctttagatgtc aacatttaaa
 601 tgcagcatgc cacacacaca aaccccacaaa cacaacctt ttttcatcaa
 651 taaaattgca gaggagcccc atttgcacag tatatcacat tgtatttaa
 701 tatccaaaat ggctagtc ttccagagtt tttatgagtt aatgtgtgct
 751 aatttaatgg gcctggtgct ttattcattt gaagcaagaa attaagtctg
 801 tgataataaag gtaaggttct tatcagattt ctcttttgc tgttttacag
 851 TTTTCTCCCT GTCTTTGGTT GCTTGATTTC GTCAGTGTTC TCTACCACCC
 901 CTGAGCACAC AAAATTGGCC TCAAGTTGCC TCTTGATCCT Ggtaagtgaa
 951 acatgaacaa gaacgtacat gaatgttgta taagaactgc ctataacatt
 1001 tatactatgc atcttatecct aaaaaaaaaat cctatctaaa aaagagttac
 1051 tgagaaaat aaaaatgtca aagattactg aaacatttgc ccaccaattt
 1101 aacatgtgt caatccttag aaatataatag aaatgttcag gattgctatt
 1151 acacagcaat atcttgtt gtatgatata cataaataga aggcaatatt
 1201 agaaagcagt ttaatgtatg tttatctatg ctaataaaca aattatataa
 1251 gaagaatcag tatctatgag gcctctcatt atattgtgaa agactataga
 1301 gtagagagca ttttccaata actgttaattt ggcagtagct aaatataatt
 1351 ggccaagaac tatgaacata tggcacctca taagaaaata gaaggctcct
 1401 tcatgctctt ttcaaccaac agactgcatt atgatgttttgc tgcataatgc
 1451 agttacctgg tgataaatttgc tgcagtggc tctgtttcca ttatgtgtc
 1501 aatcctcaac cacacagaat tgctcaattt actttnnnnn nnnnnnacag
 1551 gtcaggaggt cgagaccatc ctgcctaaca cggtaaaacc cccgcctcac
 1601 taaaaataca aaaaatttgc tggcgtagc tactcaggag gctgaggcag
 1651 gagaatggcg tgaacctggg aggccggagct tgcagtggc cgagattgc
 1701 tcactgcact ccagcgacag agccagactc cgtctcaaaa aaaaaaaaaaa
 1751 aaaaaaaaaaa gagtataattt gatttatggc atgagtggc ttgaatgatt
 1801 ttgatggatg actggaaaca attagagata taaaataataa gcacagaatc
 1851 atgacagattt tcatgaagaa tacactgtga agattcacat ggttaataac
 1901 attgaaatattt taaaataaaa agagactgca tatatttagat ttttcttgc
 1951 gatctagtttgc ttcaaaagcag cagaaaactt taaaatttcc ttaatttga
 2001 aagtgtgattt aatggaaatattt ttttacaatgc ccattgattt atataacttt
 2051 agatagtttacttcttgc ttttatttgc aatttgcactg agagcttaata
 2101 tgcagtggcatttgc ttgggtggc atatgttgc ttaacaggc ctcctgtcag
 2151 tttttatttgc gagatttgc ctttcgttgc tctttgcattt gggcttaact
 2201 gactgagttt caatatcaag ttctgaaagc aagtggatcat actagtgtgc
 2251 atgcaatgttgc cacagaaaaga tttttttcc tacctctcaaa agctcacca
 2301 aggatattac tcatatttgc acaaaggataa ttttacaccaaa taacacatac
 2351 tttggatatttgc gggaaaataa ataatcttag gtaataaaat gcactttgg
 2401 gcttataaaat gaaaataatc atcacaggtt gaaaggagg aaggcaagac

Exon 1

Exon 2

FIGURE 1B

2451 taggttttga ttcaaaatgt tttctgttt gctaggaagt ctagaaggaa
2501 tttggtaaaa tgacctgagg aggcaaggag atttctcca gtggcacatg
2551 gcagtccaca agaagactag gggcagggaa acaaagcaag attgtatctg
2601 atttctacag gactccaaca ctaccctgcc aataccctt ttcctctga
2651 aagccatgat cccaaagggt tccatttctt ccgggtttt cacattctac
2701 caacaaggag aatgtttcc ccaactgacag ctcaacagtt gagttttcg
2751 gggttctacc ccttcatcaa cacagcctt gcttctgg ttactgagta
2801 aataaaacac actggccact tctgcttagc cttcaggagc cactctgct
2851 ccaccctgaa gttccatttc ctccaagaac taagacattt ggagattctg
2901 cctaaaatat gcttaataaa aagggataaa ctgtctctca ctttcttcc
2951 cccacagctt gtcttaagaa caacgggtga accattagtg aaaaatcctt
3001 tcaggctagt aaaatgtaaa aagagaagag gtatcggta acaacaatg
3051 aaaataaaat catteagtgg tagaaaccat aggagtgaaa ttaggttagtt
3101 actgtcctcc agcttacatt aatcaaaaata agccacact gtcactaaga
3151 catcttgcag taagaagcca ttcaccctct cattgcaatt agtgtcataa
3201 agctgaataag acaggtcaga aatgaaaatc ataggccaaat taagttattc
3251 tcattttcc acctccagct agctctttt gagaattttg attttaatag
3301 ataataaaaac agtatgctaa ttgggtgggt ctgagcctga agccgtgaac
3351 tgaaggaaac ttcaacaaac atttggctag ggcctgctct aagcagaggg
3401 gctacgacaa tggtaaggc atttctctag aaaccagcac tcagcagaat
3451 ttctggcacg agattttgtg agtttctag ttggtgtgtct tatcttcccc
3501 caatagatta taaacctcctc gagggtgaca gaacacattt ctgatctta
3551 tatcctgcat gtttatggta ttcggttagac atttataaaa tgaattcatg
3601 aaaagcagaa catctagaaa tgaagtcaac attgcagaga agtttagctat
3651 atgaaaactt gtaaaatacc tcaaggaaga aggaagaagc agatttctg
3701 gaaatczagg gacccccag tataagagca attcctttgg tccaaagaag
3751 ggcagctata agaacagaga cataactctt ccgtaaagaaa agataaaaat
3801 tctgaaaggct ctctaagaac atgcccagcc ctgaccctgcc tctcactctc
3851 agtagcatgg aagccgtact atctctttt ttgacacaag catccacttc
3901 aatccacagg acaaataatca ccaatatgag aagataagat ctgtttata
3951 gtcacacttgg ctgacatgta ctaatttctt aaggtaggaa tagctctta
4001 aatagaaaata cttgtttgtt ttaaggaaatt ttattttaaat ttgtgtatct
4051 taaattttaa ttttgatctc ggctcactgc aacctccacc tcccagggtc
4101 aagcaattct cctgcctcag ctccttgagt agctgggatt acaggcacct
4151 gtcaccatgc ctggccattt tttgttattt tagtagagac cggatttcac
4201 catgttaacc aggctggct caaactccctt acctcaagtg atctgcttac
4251 caaggtctcc cagagtctg agattacggg catgaaccac tgctcccagc
4301 ctcatgttagt tcttaagagg aagaaaagcc tatagattag tgagaagtag
4351 acaaatttagc aatttgaatc aaatgaaaaac ttggtttgat ttcatctt
4401 ttggagacac tttcggtgtt tccattttga tctgatttag gacactgatc
4451 ttcgattcta agttgcactg gtttattttt gattattttt caaaatcata
4501 acagaataaca tatctgggtc cagttcaagg tacagcaagc cattttcaat
4551 gtttccagct ttggttttt gattcataca tgaatcattt gggcatgcag
4601 acacacccaa atagaaaacct caaaccaatt aaggtaaaa taggtttagg
4651 atgggggagg atggacaaca aaaaaaacct cagtaaggct cctccacaaa
4701 gggcaccact tcagttggc cccatgggca gacttcaccc gtggcaggtg
4751 aaggggaaag cctaagacat cctgtgcctt gatgcagatg tgacttacag
4801 aacataaaac gtaaaggcag aagggtatcat ctgggtggct gtcataacta
4851 ggcaggcatt atagctgctg acaagagcca accccatccct aaggatctaa
4901 aatcaactaca agagaggacg gaagtccctt catcatggca tcccaactag
4951 taactggat gcataaggcc actccaggtt ggcagcgagg ggttaaccagg
5001 gaatgtccctg ctgttcccac ctcttttttcc caagcagggg gcacccactt
5051 ctcgcctcca gccccatatttgg tctcaattt tggcctcaat acctgataaa
5101 aaaccagccg tgatccttcc tttagtaacaa agtgcataatc agtcatttgg
5151 aatggggcat ttccaaacta ttgcctccctt atgtatctt gaagaacctc
5201 tgggataaat gaacattttt atttaggtt gtttaatga attactttt
5251 aggagcagat ttatataattttaa acagggtgtt aaaaacttgaa tggataaattc
5301 atttataaaag aaatttcagg aatcaactaa tcccaagggg aaagacccac
5351 taagacacta gatttgtgt gacttactca aacaaattca tctatcatat
5401 ctacctaagc ttccaaatca atgagacttag cccgactgtac actgtctgtc
5451 aaaactaccc ttcgtttttt ttccaaaggc aggaagcatc cataccctt
5501 cacaccttaa tctaatttcc cctatctcca cccactccc acttctatga
5551 ccccccttccc cccataccctt cccccgaagc atctacttagc caacttagtgc

FIGURE 1C

5601 aagttctgtc acgtctcac aaccacctct gtgcagcaat gattctgtaa
 5651 atatccatgt gtcctcaaca ccaggtaaaa tttagtccctt tggtaaaaaac
 5701 attcattccc tcaaattctc ttccaataca ctaatatacc ttcccaaaaa
 5751 gtaaggagaa gcttgaagc tagctggatt gatgatggta tgtgatgttc
 5801 tataagttat agtagtaag catgtttta ggatatttt ctgctctcca
 5851 aagagacaca attccggaag atatttactt ttgtgttcc ccacatttg
 5901 gtttaagtt ggagccatct ctagatcttta atttcattcc cctaataatgt
 5951 gttatactag tagaattttc caaattacat agaattataa ctgcaactct
 6001 tctgactgt gccttttt tgcatttat gatgcagttt acatcacaaa
 6051 ttctttccct gcagggatta tgtaaagagg catgttgacc tgctagccct
 6101 atgttacttt aagtatatgc acacacacaa aaaggaacaa aaacagctgg
 6151 gaattgatta tggatattt ctgaataaaa gcaatagttc taattatgt
 6201 tgtctaatta gccacagctc ttcaagaatt gctgcaaatt tcacagggtt
 6251 tataatgtcg gcatttcattt ttcacagaaaa tgctatttga tggcataaaaa
 6301 ccagaaaaaa ctaatggtca cagaagacag ctgttagatt agacaaaggt
 6351 cactgtgtt taatgaacag tgctgttaat taatgagaaa acaactggta
 6401 catgagctt taagcattgt gaattttgtc ccaaaaaatc aatctgccta
 6451 aaacaattt aagtagctaa aaaacaaaat aacggcaaga acataattt
 6501 aacctcaaat ggtacagcag agttatatgt atcaattttt ttgaatcaca
 6551 gttctcagggt gtgacatatg aagaggcttc ttaatgcct ggaaaagagg
 6601 gttaatatgg attgttattc tcaatacata ttgttagataa aattcaagac
 6651 tagctctacc actgcctctt ttctttttt ttttttttt ttatgtt
 6701 cagtatctcg ctctgttgc caagctggag tgctgtggca tgatctcg
 6751 tcaactgcaag ctccgcctcc cgggttcaacg ccattctcct gcctcagc
 6801 cctgagtagc tgggactaca ggcgcggcc accacaccca gctaatttt
 6851 tggatatttttta gtagagacgg gtttccaccc tattagccag gatggctcg
 6901 atctcctgac ctctgtgaccc acccgccctcg gcttccgaaa ggcctgggat
 6951 tacaggtgtg aaccaccgcg cccggccacc actgcctt aggcttctta
 7001 atttccttat catttaagaa gaataagaaa atgcttctat gttttaccaa
 7051 aattctgtga ggacaaaatga ggaaccattt taactcctac aaggtgagtg
 7101 ataaaaataaa tacacattt tttgttgc ttttgtaaag agttatccaa
 7151 gccaagcttc tagggctta aataaggaag gacaggacca ttgttaataa
 7201 catcaagttt ccactacagc ttctctccaa acaagtcaaa tattctgaat
 7251 attattcact aatctcttta gtcgcattt cagtaaatag cgagcattt
 7301 atttcaacta aaaccaagca agagaaaaatg aactcttta tcctgaggt
 7351 cagcagcaaa ggcaccagaa ctgtctcat ggcctacca gcaagggtca
 7401 gaagaaccat ccctaatttta aatcatctcg actgaatgtt acagatttt
 7451 gtatttcaa ctcatatgaa aataaaaacaa ttagacctca tccaaagggt
 7501 gatTTAGAGA gtacctctaa acaaaaacaca gtggaaatag acccagc
 7551 tggatTTGAA gaacacattt cctttacga gtctatccca ttgtctagat
 7601 tgctggcaat ggcttttttta aattttaaattt gttattgaga taattttaga
 7651 ttcacatgca gttgttaagat atagtagaca taccctgtt atactttacc
 7701 caatttccgc aaaaggttaac atttgtaaa actatagtat aatatcacaa
 7751 ccaggataat aatattgata cagctcacaa atctcattca gatttctcca
 7801 gttttacttq aatacatttq ttttttttttq ttttttttttq ttttttttttq D6S280
 7851 ttttttttttq ttttttttttq ttttttttttq ttttttttttq ttttttttttq
 7901 aaacaacaat caagatatttq gacagttccg gcccggcacc gtttttttttq
 7951 cctgtaatcc cagcactttg ggaggcccgag gcaggcagat cacgagggtca
 8001 ggagatcaag accatctgg ctaacacgggt gaaaccacgt ctctactaaa
 8051 aatgcaaaaaa attagctggg cgtgggtggg ggcgcctgtt gtcggc
 8101 ctcgggaggc tgaggcaggc gaatggcatt aaccaggggag gtggagctt
 8151 cagtggcccg agatcgccacc actgcactcc attctggca acagcgcc
 8201 actctgtctc aaaaaaaaaaaaaaaa gatatcgac agttccattt
 8251 tcacaaggat ctctcaagttt acccccttgc aaccacatcc accttctc
 8301 tcacacttgc acaccccttc cttttccag cttttccag cttttccag
 8351 atctgttctc cttttccag cttttccag cttttccag cttttccag
 8401 ggaataatac agtgtataac tttttttttt tttttttttt tttttttttt
 8451 ataattccctt ggcaattcat ttatgttact ctgtgttatca atagttcatt
 8501 catttttattt attgagtagc attccatgtt atggaggcacc cagagctt
 8551 ttaaccatcc tcatgttgc gggatctgg gttttttttt ggggtctgg
 8601 attatgaata cttctctgtt gggatctgg ggggtctgg
 8651 ataagttttc atgtctctgtt gggatctgg ggggtctgg
 8701 catatggtaa ctatatgtcc agttttataa gaaacgacca tgctcagaag

FIGURE 1D

7851 gaccatactg tttacattt ccatcagcag tggttgaaatg atccagcttc
8801 tcgcatccc cccagcatt ttgtgtgtc actatttttt gccactattt
8851 ttattttag scattctgct agctgtgtag tgataccatt gcgatctaatt
8901 ttgcattttt ctgatggcta atgatgtcaa ataactttt atgtgcttct
8951 ttgccatatg tgaacttct ttatgtatg tcctctttt tgaatacttct
9001 attataacct ttgccaattt tctaatttag tttttgggtt tttactgttg
9051 agtttaagg ttctttaca tatttttagat attagtcctt tgcagatata
9101 gtggtttaca aacattttct cccagtcata ggttgtctt ttcatttcata
9151 gtacctgggc ttcacagag taagttta ctttgatgg agtccaattt
9201 ctcatttttt cttttataa cttctgttt tgatgtcaag attaagaact
9251 ctttgettag tccaaatccc aaaaataatct ccattttttt cctaaaagtt
9301 ttatattttt atgttaattt tttaaacccg tggtccattt ttaaatgatt
9351 atcataagat aggaagtata gattaaggc cactttttt cctataagatg
9401 tccaattttt ccagcatcat ttgttgaggg cccttcttcc tccattgaaa
9451 tgctttgca cctttaaaac aaatcaattt agcatattt tgcgggtcta
9501 gttctgaatt ctctattctg ttcaactgtt tatatgtctg tatgttccat
9551 atgtctatcc ctccaccaat ccacagtctt gattactgga gctataatag
9601 taggcttaa ttcaggtaa agtgattgtat ctcgttttat tcttcttgg
9651 cagcatgtt ttagctattt caggtcctgt gcatttccat ataaatttt
9701 aaataagttt gtatctaccc cccaaaaaaa actttgtga gattttgaca
9751 ggaattttat tagacctgta gatcaattt ggaagaatgt acatcttgc
9801 tatgatcagt ctccaaattt ataaacacgg tatttctctt cacttattt
9851 ggtctttttt gattttttt atctgcattt ctaatactca atgcacataa
9901 accgtatgtg ttttcttaag tggatattt agettattttt atttggattt
9951 attataataa ataaattttt gtttcttaatt ttcatttcata catgatttt
10001 gtttagttaa agaaatataa ttaattttt tattgatcat acatctgca
10051 gccttagtga actcacttgc ttcaagagtg tttcgtttaga tttcttggga
10101 ttttctgta gaccatcatg ccattttaaa atagagacca ttttatgttt
10151 acctttccaa actgcattttt tttttttttt tattttggct tatttgcagca
10201 actattaata taacttacaa tactatgtt aataagatgt atgaaagat
10251 acatcttgg ttttcttaat gttggggaaa agcattcagt ctttcactat
10301 taagttatgtat gtaagttt tttttaatgc tattttatcga attaaactgt
10351 taaacctctt ttccattactt gccaagagtt ttttttaatc attaaatgggt
10401 gttggattttt gtcattttgtt atttcgtcat caattttatgt gattttttt
10451 tagctttattt atataatgca ttatattgtat tgatttcaac cattgagct
10501 gccttgcata ccttggataaa atcctacttg cctatataatt gactgattga
10551 ctgtttgcta atattttgtt gaggattttt ttttgcataag tttatgataa
10601 atatgggtat gtagttttt ttttgcattt ttttattgtc tttgtctgg
10651 tttgggtgtca ggataataact gacttcataa aatcatttagg aaagttttt
10701 ctcccttattt ttctgggaga aattttgtga aatgtatata ttcttattta
10751 aatgtcttgg tttttttttt gttttttttt tttttttttt tttttttttt
10801 ttggggagat tttaaactat gagttcaattt gcttttagcgg ttataggcgt
10851 acctagattt tctattttttt ctttgggttag ttttggtagc ttgttagttt
10901 aaaggattt gttttttttt tttttttttt tttttttttt tttttttttt
10951 taccatagta ctcccttattt ttttgcattt gttttttttt tttttttttt
11001 cccctattttt attcctgaca ttggggattt tttttttttt tttttttttt
11051 gattttatcaa cttttattgtat ttttgcattt gttttttttt tttttttttt
11101 gattttccat atttttttttcc tttttttttt tttttttttt tttttttttt
11151 tttatgtttt tttttttttt tttttttttt tttttttttt tttttttttt
11201 tttttccattt ttttggggat tttttttttt tttttttttt tttttttttt
11251 ttcatatcata atgtttttttt tttttttttt tttttttttt tttttttttt
11301 ctttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
11351 agttcaattt tttttttttt tttttttttt tttttttttt tttttttttt
11401 ctggggatattt tttttttttt tttttttttt tttttttttt tttttttttt
11451 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
11501 gtctgatttt attttttttt tttttttttt tttttttttt tttttttttt
11551 ataattttttt tttttttttt tttttttttt tttttttttt tttttttttt
11601 tgctgatgtt ggggtttttt tttttttttt tttttttttt tttttttttt
11651 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
11701 tatgccccata gttttttttt tttttttttt tttttttttt tttttttttt
11751 tacgacttaa cattttttttt tttttttttt tttttttttt tttttttttt
11801 tatgaattttt tttttttttt tttttttttt tttttttttt tttttttttt
11851 aaagcagcaa gcaatattttt tttttttttt tttttttttt tttttttttt

FIGURE 1E

11901	aaatgtactt	tatcctgcct	tactgcagca	gaggaatagt	gcagtgcaccc
11951	tggcataacct	aagaacaatg	ggcatatatc	tgtcattttgt	taagaacaat
12001	ggacatattg	gtgtcätctg	tttccatgaa	aaagaaaaat	tactacacag
12051	tagtgttcgg	gggctcaggc	cacatttggg	attttcttg	gatccccttat
12101	aatatgagta	ctcacaactg	gagtgc当地	ttttggccct	gatccccttat
12151	ttaggggcag	ggattaaaaa	gtggatctgc	cattcaacct	aggttggcca
12201	caggcacaac	tacatggca	tttgggctt	gagtagtgtt	tccatatttt
12251	gaaagatgtg	ctggattaac	aagaaatgt	ctggcactt	agatacctta
12301	ataaaatgaac	agactcaact	accagatat	acattcaaaa	ccaaaacaaa
12351	gccaaaatca	aacaaaacct	tcggattatt	aatgaatgt	tgttgaccct
12401	aattttggtt	atctgtcat	aaagtcatct	ttgaagggtt	atcctataag
12451	taattttgaa	taactgtgag	taagcagtga	tgatattttgg	tatttatttt
12501	ccatcatgag	aaatatttgt	ggattactta	gtgaaaata	agagaaggat
12551	agaatgatat	agctctacta	ggcattcaa	aagtgcagca	tatcatcaca
12601	tgctctaatt	aaagaaaacag	acatttgcct	gaaatttgc	acaaaaatgc
12651	cactttata	aatttggtaa	cagttttat	cctgcgagta	agaatgggag
12701	aatggggagt	aggttagaat	gttactttc	tctgctttgt	atttctgtga
12751	tgttggaaag	tttaataaaa	gacaatata	tacttttaca	attaagctat
12801	tataacaaca	atctataaaat	attgttctac	attataaata	ttgaatcaac
12851	cctcggttta	aaacaagaaa	gtgaattatt	tttaaagga	aaaacaattt
12901	tgataaaataa	agtgcctgtc	cctatagaga	cagcaagggt	actgtgctaa
12951	gcttgctcca	gaaatgtttt	cgtttacaa	attccatttg	gttttccatt
13001	ctatcatcg	ctgtttaatg	agccactcta	gctggcctt	ccccagggtt
13051	aactcacaac	tcttcctaaa	taatctcagt	cattttctg	gagcaggtgt
13101	tgtttctag	gcagctctt	ccaaaggc	gcataata	taacaagctt
13151	cagatctgga	ggattcagg	tctcatttt	ggcaaggat	atgtgtgtca
13201	cactgtatg	cttttggaaac	ttactgtttt	ataaggagat	tttgacactg
13251	taacgaaaga	attcagtata	cttcgaaata	tttgctt	tttctctaag
13301	aacaactctc	gaagatttag	agattatgtc	actccttgc	geaaaatgaa
13351	gcttattttt	ctgtaaaact	tgccattata	tttcaggatc	getattttat
13401	ttcagatatt	tcacatgtt	ctgggtagct	aaagtcaagct	acactataaa
13451	ttccagacga	gacagatcca	ttattcagcc	tgcacattt	gtattgaaac
13501	tgactccaa	atttacgaag	cattaatgac	ttgaaaagga	atagcattcc
13551	atgatagaa	atgcagacag	tatgggttc	aaatgctgtc	cagatttagt
13601	ttgatctgga	gaaagggaaat	gttcttaact	ttagatatta	acaactagat
13651	ccttagaca	aagtgcctaa	atgtccaaa	atatgcata	agcttcttac
13701	tgtgtttgc	tccataatge	ttctctctga	tatgtctt	ctgatatttt
13751	agGAGTTCGT	GATGATTGTC	GTCTTTGGTT	TGGAGTCAT	CATTGCAATC
13801	TGGTCTGCGG	GTTGCTGTTG	TCGATATAAGA	GGATGGCAAG	GAAGACTGAG
13851	GTTCGCTCGA	AAGCCCTTCT	GTGTTATAGG	tgaatatcag	agtctcagat
13901	acctggacta	tgacaccaac	attttgtct	tctatctt	gttttgcata
13951	atttGattaa	tattaaaagc	taacatccat	ggagtactta	tcatggaccc
14001	ggcactcttg	tgtctggaa	atttgtactc	atttgtatgtt	gtctccacag
14051	cattatgagg	tagatatttt	tattatcccc	attttacagt	tgaagaattt
14101	gagacaaaaga	gagacggagt	tagtgc当地	atgtcata	getactaagt
14151	ggttagagctt	gaattttagc	caggcaatct	ggctcttagaa	tacccactta
14201	tatcaattaa	cttataatgga	aatacatgtt	tctccagtg	tcccctaatt
14251	tagggaaaca	ttgatttctag	tgagtataaa	aaacccttt	tgtctaccaa
14301	tatgacacca	gtttatgtc	tggatcagct	ggaatagata	gcacatacat
14351	ggtactggta	atgcataatca	attaacattc	ttcaagaatag	attataagta
14401	tggtttgctt	aatgcattgg	taactgtaga	ctggacaaaag	tgcctcacac
14451	tctgaaatat	gaatccccca	ccctccaatc	aaaataaccc	aaatacatag
14501	cacatctctg	cacccctcta	gtgc当地	tttctgagag	acatcatcata
14551	cctgggttct	agcttggaaat	tgtacttcc	aatgaagatg	ccatagagca
14601	ttctggaaatt	aatatctagc	atttcccagt	aatattttaa	agtttataaa
14651	aatggaaaag	tctatataata	aaagctatta	ttattttat	ttagtagcta
14701	aatttggctc	tcttgc当地	ttgtctttt	cacttcctag	gcagccattc
14751	aaatccaaat	actgaaaatt	cttgc当地	tttattttt	tcaactat
14801	tcaacctgaa	aaagtaggtt	tttaatttt	aaaatagttt	aggctatctt
14851	ctacagctac	cacagggttt	ctgttttgg	ttagggatc	ggaatttgg
14901	cgtaatcttc	tcagtttct	cccttactcc	tgttccctat	ggtggggca
14951	gagttggat	aaggaagaaa	gtgtatcacc	atccatgggc	actgttaaga
15001	agaatccctt	attccatact	tctttcatag	tatgcacatc	tcaaaaqtct

Exon 3(D)

FIGURE 1F

ccacttatta aaccagaatt tatggaaatg tggctgtgt tgaggcactg
15101 gtgttacaat agtgaatcta gtgaaattct cagttaaatc tatctaaaa
15151 taccttgtt gcccctacg aatgcagtct gttgtctgt ctctccaat
15201 aataggctt actgttttt ggaagccatc atgctaaggat atggagcaaa
15251 gtcgggtta actccaagcc ttgcagggttc ataaagcccc aaggcatatt
15301 agtgaaggca ttagattttt ctccctggag atgcttttt ctctctgaat
15351 tctctactca ggcagcatta caaaggactg taacctgatg tgaaactact
15401 gcacaacaag tactttctgt cccataaggg gcccaaacaa aacaattcac
15451 aaggcagatg gttagccaag attcactcaa cttctacagg ataaggctcag
15501 ttcatggatg actggaaaaa tggatcttc cagattttaa aaccaattaa
15551 aaattggttt tggatccatt tcagaagcaa tgccaatgtat tctctggcct
15601 ccatgcggaaa aagaaagctt ttcccagat gtctgctgcc ttttgatagc
15651 tggatcttgc tacggatatac tcaacacatc tttagtcctt agtcttc
15701 ttcctgcctc agatccttgc aggtcttgc ataatatgtat gttctaaaaa
15751 tggatgtatg ttatctataa tcttacttgc cttggatgt atcaatagtg
15801 acctaaaaaa tttagtatga tgcctggcgc agtactctc gcctgtaaatc
15851 ccagccctt ggaaggctga ggaaggcaga tcacttgagc ccaggagttt
15901 aagaccagcc tgggatggaa agacctgtct ctacaaaaat taaaaaattt
15951 gctgggcatg gtggcatacata cctgttagtcc cagctactca gaaggctgag
16001 actggaggat catttgagcc caggagttt aggtgcagt gaggcatgtt
16051 cctgccacta cactccagcc tgagttttt gagaagagatc ctgttcaaa
16101 aaaatacttag ttagatcatgg tttagcata attgcgtt ttttacccct
16151 tcagacccctt tctttatata gatattttac ctcttaggaaa ttaattgtt
16201 tggaaagaaaa tttagatggat aaatatataa tgaatccccca ttggaaacaaa
16251 gtcttagttt gtacttacag tttagataat tatgaatttt tttagtctttt
16301 attaaatgtt catgttttgac ccatgttcca gctgaatgat gtttataatgt
16351 aagcatgttc aatgtggct tatcgtatg aggtcagtaa aatttaaccc
16401 acacaaagga atcaaacatc accttctga aggccagcaag ctgttaccaga
16451 tgactgttga gactattttt cggccgttc aacaggttca taaaaacgct
16501 tggatgtact ggtaaaatac taaagtgaac actgttagtgc cttgttca
16551 cctaattttac tggacaaaaa tggaaaaaaga aatagcatct cttatctgtc
16601 cctgataact gttctgaatg ggtgtttggaa aatatacgat aacactccca
16651 aaacttcatg tatttgcataa atttgattac tctgaacatt ccaagtacac
16701 acccaaataat ttttagaagt gttgagcatt cgagaaaaa acaatagaaaa
16751 gattgtggta gactggctgt gccttcaacc tggggaaatgc tttctgtaa
16801 cacaccaatg tttttcttc cagttggaaa tacactgaaatg ctgcttagat
16851 ggtcagctaa caagccccat gtactattgc accctattgtt caaaggccca
16901 attgatagag gttttatggg ctaattactg aagggtttt tagtccccct
16951 tctgaactgc ccaccccttcc taccctgtca ctctagccaa aaccaagagc
17001 atttcaaaag cccactgatc tcacaaatcc taaaatcattt acatatttgt
17051 gtttggaaaa catatttaa acaattataa cataaggggaa gaaataaaatc
17101 tattttaactt tttttatataa ggtactttgt ttcattacta ctgttacatt
17151 atgtatgtct gcttgggtt aagcatttgc tttgaaaattt agtaaaatct
17201 tatctagaac ataaaattctt tcctcatatc tatgtgttca atttttatct
17251 ctccccatg actcttctgt cataataaca ttctatagct atgagcacta
17301 attgctgtat tgctgtatgt gatgtcaag tgggttttgg gatgaccacc
17351 caagctgccc ttcatatcc cagactggct gttttatgt ttctctatgt
17401 gaaaacacaa aacactcacc caataacatc ggcataaaaga atttgtgaat
17451 aaccttcaag actgttccatc tagtatttttctc tttttctagc ttcttattact
17501 gaccttaccca aaaatttgc aatagacctaa ggctgaaact tggatcaca
17551 taatggccct gatgtgtcag gaagccaaaca aattacttctt cagactggct
17601 ttttttagat tccttggtga cgcttccaa aggcagatatt aacaggccca
17651 tatttttgcag tcttgcagggg agtctcagtg agaaaatacc agcctgttgt
17701 tagtcttggat tctgcatttgc atgctaaggat taaagttgatt tcttatttgtt
17751 attttaacag ttatatttca gtgtattat ttccacaaga ggacaaaaga
17801 ggaataaaat aaaattttat ttatccatc gtggataaaaa taaaattggaa
17851 gccttattaa aatcgcacca catgctgag actactctaa tataatctatg
17901 atttcatctt attaaaaggc aacttaaggat gctaattgtgt tcaaaaagtt
17951 gatcagactc caaaaactgc cactgtgttc taaatttgatt ttgagacatc
18001 atttttctgt ttctctgtct tctctatctt ttgttctaaag agacttactc
18051 ttcaatggca ttatatttca taccttctac tccctttcc ctttagttaga
18101 aattatatta ttctactt tttctgttag tcatacactc ttctgcaact
18151 tattacttctt aagtgttcaacttccctcag tgcattgttgc ttccttccat

FIGURE 1G

18201 gtgattaact ggaccatctg aggacaatta aaacctgtt gattggctga
 18251 tcacaaaaca ttaaaaacaat ttaatccct ctagttact atagctgata
 18301 tttattgaga actactatat attaggtact accttaagca ctttataaaat
 18351 atggtcttat ttaattctac ataagtacta taatgtcctt atttatttta
 18401 ttttatttta ctttacttta ttttattctta ttttatttta ttttatttta
 18451 ttttatttta ttttatttta ttttatttta ttttttgagg cagagttcc
 18501 ctctatcacc caggctggag tccaaatggc atagtcctag ctcactacaa
 18551 cctccgcctc ctgggttcaa gccattctca tgccctcagcc tcccggatgg
 18601 ctgggactac aggcacacgc caccacaccc agctaatttt tgcatattta
 18651 gtagagatag gatttcaccg tggggccag gctggcttg aactcctggc
 18701 ctcaagtaat ccacccgcct cagcgccca aagtgcgtt attacaagtg
 18751 tgagccacca cgccctggcct ttataatgtc ccattttata gatgagggaaag
 18801 taagacaaga ctgaagactt tatagatgag gaagcaagac aaacttaaaa
 18851 agatgataagg tgaaaagaacc tggatttatt tctcatgatt tcactctaga
 18901 aaaatataca tacccaactg gaaaattgtc tttactgttt attagcattt
 18951 taaaattaaa ttaattgaa ctttatctat tgcattcaac ttgttaaacag
 19001 aagaacatga tactattatg ottatcatta gtaattcaag atctttaaag
 19051 aaaagccagg cttttagaa cattaattgc agtacatcggc ttaatttat
 19101 caactaaatt atgttaccta tggctgtct ctaacctgaa tgggaaattta
 19151 ggacctaataa tagacttact tacctgtatc aaacctgcatt atactcttca
 19201 gttgttgtt tcatgaggtt ccctgtgtat ttccaaattt gagacctctg
 19251 gagagcaagt aacattactc gcaggactac cttccaaatgt tttttaaat
 19301 taataaaacta tcggttattt agataatttt tgacccggta cacaacttg
 19351 aaagttgaac ttacaagaca gcttgattttt ctgatattttt tggaccacat
 19401 gaagaaaaattt tattttccgaa gaggaaaaatg aataaggattt atttccact
 19451 ctttctataa acttttagtag agcactatgat tataactgtat taacattctg
 19501 tactatcaca tggtttattt gaaaatttttcat tcacagacag ggttatttt
 19551 atgtgtcaaa cataatcttta agtataaaagg atacaaaagc gactaaacaa
 19601 cggccctgc ctgttataatc agaatcttctt gtgcctttag agaatggca
 19651 aactttaagg aggtataacta taattatgtt gttacagacgc aaaggtgtat
 19701 gaaatttgaag tagtctttaga aagaaggctt tggatataca tgagtgtt
 19751 tataaaacaa agaagcaaaag gactaccccc aggtttcaaa attatgttt
 19801 agtcatccac tgaacattttt tacaattttt accatgttca agcatgttca
 19851 tggatgttgg agaggctgtt tggcacccaa tggcaaggtt cttccctt
 19901 atagagatataa tattctgtt gacaaagaaa aacaatacac aaatatgtt
 19951 ttgaaaaacaa agataatgtc atctacatgat aagcacaatg aagaaaaataa
 20001 aacagaaaaga gtagaggcta ctttagctt ggtgtctga gaaagtctt
 20051 ctaagtagttt gacacttggat ttgacctgaa tattttaaag aagccagcca
 20101 tgaggaggat tagacacaga tctttccagg ccaggaaata gtaatttgc
 20151 ggattattaa cacttggatgat gcttgggtt tacaagggtt agacataagg
 20201 tctcggtggct ggagctcaat gaggcgttgg gagaatagca gaaagggtata
 20251 ggggagacag gcagaggctt caccctgtt ggcattgttgg ctctgttacc
 20301 ctgaatcaag gttccttcta aagacaggcc accaggcaaa ggtcctacgg
 20351 gttgttggca ggcctaatat gaataactt caggttatgat acagcagcat
 20401 taatcaggca acaaaaaatg tggctgttta atgccttggg ttttttagtc
 20451 atgtatgttcc gttggaaactt catatcagca atataacaaat tattaccat
 20501 ttatgtttat aaaaacata aacataaggat tataaggaaa taatcctctg
 20551 aattttgtt tstatatttcc gcccattttt acatggaaattt ttacattt
 20601 tttttttttt atgaggaaactt ggaattttttt ggtgtatggaa
 20651 acttttttac agccccaggat gttatcaccat taagcaggatc ctaagatcc
 20701 ctttgccttgc ggacttattt ccataactttt agttatgtt atgcaggatc
 20751 agaatttttattt cattaaatgtt tttttttttt ttttggaaaa ttgtccctt
 20801 ttgccttgc ggacttattt ccataactttt agttatgtt atgcaggatc
 20851 tgtcaactatg gggtaaaattt taaaatgtt ggccttgcatt tgccaggat
 20901 agtcccattt aacttctgtt gggtaaaatgtt ggccttgcatt tgccaggat
 20951 ttgaaaatgtt ttcttacaatgtt ttgtttttt ggtgcctttt ttatttttaa
 21001 taaatatacactt agagcaactt agtgcataatgtt tgatttgcattt atttt
 21051 gtggataatgtt tacttgcattt gggggactt taaaatgtt atttttaaagc
 21101 ttcatttttca ttaagatgtt caacaacaaat taaaatatacattt atttt
 21151 tcaaagagca ctttgcattt aaggaaattt gggggactt ggccttgcatt
 21201 gtttataaaatgtt ctttgcattt aacttgcattt tttttttt atttt
 21251 tagatggaaa agtgcaggatc ctgttgcattt gggggactt ggccttgcatt
 21301 ctttgcattt aaggaaattt gggggactt ggccttgcattt ggccttgcatt

FIGURE 1H

21351 attgctctaa agcactgcct cttgttagag tcaaatttaa ttatagtata
 21401 atccgtttaa tctacatgtg gagaaataat gaaggagcag gaaaaatgaa
 21451 tttcttaaca gatcatgtga aaaccatatt acatagatta gcaactgtct
 21501 ttcaagatc cgtatttcg gcatgtacta gatgttatct gatgccatga
 21551 aagcaaataat tctaattcca ctggccagaa ctggcaaaga acttcttatt
 21601 ttccctactt tgaaacataa gtaaaagggtt tccacttgaa aattaataag
 21651 ccattgtgata tgattcgatt cctgtccccca aatctccctc cttctagggg
 21701 ccattgtcta aagtctaaaa gaaaacatac caggcacagt ggctcatgcc
 21751 tctaattcca gcactttaaa gggagagcaa ggttaggagga tcacttgagc
 21801 ctaggagttc aaaatcatca acctggccaa cataatgaga ccctatctt
 21851 aaaaaaaaaa caaacaaaaa caaaaacaaa caaaaaaaaaa tgtaataagct
 21901 gggtgtgggtt gaacacactg gtagtctcag ctactcagga ggctgataagg
 21951 agaaggtaac ttctgcccag gaattcaagg ctgcagtggaa ttatgattgc
 22001 accactgtac tgcagcctgg gcaacagagt aagacagaga gagaga>aga
 22051 caaagagaaa ggaaggaaagg aaagaaggaa ggagggaaagg aaggaa>gaa
 22101 ggaaggaaagg aaggaaggaa ggaaggaaagg aaggaaggaa gggaaagaagg
 22151 aaggaaggaa gggagggaaag gagggagggaa aagaaaggaa agggaaagaaa
 22201 ataaatgtaa ctattataaa agatgttcaa ttttttattt tggataact
 22251 tttagacttac tttagaagttt caaaaatagt acagaatttc catgttcaaa
 22301 tgtactctt acctaacttt ccccaaaaata ttttacctac gtataactgca
 22351 attatcaaaa ccaggatatg aatacatact attagctata gtctttattt
 22401 gaatttcacc agttttaca tgcgctcaat ttttataatac actcctataa
 22451 aattttctca catgtatata tgcatttaac caccaccaca atcaaaatac
 22501 aaaacttttc catcacccta aataaaacttgc gaatgtatata ctttgttatta
 22551 ttcccttaca ggtactccct ctcttcaatc ctaacccctgg ggaaccacta
 22601 tatctgttct gtttcaactgt aattttgtca tttttataat gttatataaa
 22651 tggaaattgtt aagttagtaat cttttgaaat tggctttttc ttacacagca
 22701 tgatgctttt gagatccatc caagtgcata aatagtgcatttcccttatt
 22751 tgcttaatag aatttccatga tcttagatgtt acacaatttg tatttttatt
 22801 tacctaatac aggtcatttgc ggctgttttctt agtttttggc tatttttttt
 22851 aaggcagctt tgcatttca tttttttttt tttttttttt tttttttttt
 22901 tatttcttca gggtcatata tttttttttt tttttttttt tttttttttt
 22951 aactatttcc tttttttttt tttttttttt tttttttttt tttttttttt
 23001 ggtcagcagc cccacccccc gccccacgtt gccactgctt ccagtgtgaa
 23051 catatgcattt gaggctggca gccccacgtt caccacttgc ctgccccctgc
 23101 actgacactt ctaccagcat gaggctgttgc atggaggccg gcagccccat
 23151 ggcaccacgc actctgcccc agttgtatgtt cttttttttt tttttttttt
 23201 cacttgctt tggactgtt cttttttttt tttttttttt tttttttttt
 23251 ctggccaccac cccaaacaaag tttttttttt tttttttttt tttttttttt
 23301 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 23351 taacctcaag gggccagaga ataaatgttca agatccatgtt tttttttttt
 23401 aaagttgcag catacagcccc aaaatgttca agctgagcc tttttttttt
 23451 attcttccag aaatgttca agtcaacttgc accaccattt tttttttttt
 23501 aaaccttcca gggcatcaaa gaagatagag gaaaaaaaaaaaaaaa
 23551 aaaaaaaaaacta tccaaaggac agcaatttca aagactgaag gaaaatcagc
 23601 ccacacagat gataaagaac cagtgcataa gctctggcaat tttttttttt
 23651 agagtgtttt cttaccttca aacaacttgc tttttttttt tttttttttt
 23701 cttaccagg ctgaaatgttca aaaaagagaa atcagaatgtt ggtatggaaac
 23751 agagatcaactt gagatttcagg agacactgtt aacccatcc agggatttca
 23801 aggatttacaa caaatgttca cttttttttt tttttttttt tttttttttt
 23851 agaaagaaaca gaactgttca tttttttttt tttttttttt tttttttttt
 23901 ccagaatatac atcacaataa tttttttttt tttttttttt tttttttttt
 23951 aatcttcaggat tttttttttt tttttttttt tttttttttt tttttttttt
 24001 ataaagaaaaaa aaatgttca tttttttttt tttttttttt tttttttttt
 24051 attatgttca gacccaaat tttttttttt tttttttttt tttttttttt
 24101 ggagagaaaaag caagcaactt gggaaatgtt tttttttttt tttttttttt
 24151 aatccccc aacttcactt gggaaatgtt tttttttttt tttttttttt
 24201 agagaaccctt tttttttttt tttttttttt tttttttttt tttttttttt
 24251 ttgtcagatt tttttttttt tttttttttt tttttttttt tttttttttt
 24301 aaagagaagg ggcaggccat tttttttttt tttttttttt tttttttttt
 24351 acacccatca gcaaaaaactt tttttttttt tttttttttt tttttttttt
 24401 tcagcattat tttttttttt tttttttttt tttttttttt tttttttttt
 24451 aaactaagct tcataatgtt tttttttttt tttttttttt tttttttttt

FIGURE 1I

24501 aatgctaagg gaattcatta ccacatcagacc tgccttataa gaggtccataa
 24551 agagagtgtt aaatatggaa aggaaagatt attactggca actacaaaaaa
 24601 cgtgtttaag tacacacaccc attgatgcca aaaagcaacc acacaacacag
 24651 atctgcataa taaccaatta acaacacaaa acaggatttg atccttcaaa
 24701 tccacacata caaatattaa ccttaaatgt aaatggcata aatgcccata
 24751 taaaaggcac agagtggcaa gttggacaaa gaagcaagac ccaacagtt
 24801 gctgtttaa atagacccat ttcacatgca gtgacgcaca taggatcaaa
 24851 ctaaaggat ggagaaaaat ctaccaagca aatggaaaac agaaaaaaagc
 24901 aggagttgtt attctacatt caaacaaaac agactttaaa ccaacaaaaaa
 24951 tcaaaaaaga taaagaaagg cattacataa tggtaaaggg ttccacccaa
 25001 aaggccagac ttaactatcc taaatagata tgcacccaaa acaggagcac
 25051 ccaaattcat agagcaagtt tttagacacc cacaagaga tttagataac
 25101 cacacaataa tagtgggaga ctttaacatc ccactggcag tattagacag
 25151 gtcattgagg cagaaaaacta acaaaagaaat tcaggacctg aatttgacac
 25201 ttgacttaat agacctaata gacatctaca gaaatctcca cccaaaaaca
 25251 ggagtgtata tattcttctc atctgcacat ggcacccataat ctaaaattga
 25301 ctaatcagcc ataaaacaat ctttagcaaa taaaaaaaaa tcataccaac
 25351 cacacttca gactacagtg caataaaaaat agaaattaaat gaaatttaac
 25401 ctgcttctga atgacttttggtaaacaat gaaatttaagg tagaaattca
 25451 gaaattttt gaaactaatt agaacaaga tactacatac cagaatctt
 25501 gggacacagc taaagcaata ttaagggaa agtttataga gctgaatgcc
 25551 tacatcaaaa agtttagaaag atcttaatgt aacaaccgaa catcacacct
 25601 agagggaaat jagaaaacaag agcagatcga ccccaaaagct agtagaacac
 25651 aagaaatcaa aatctgcact aaactgaagg aaatttgagac gcaaaaaaaac
 25701 atacagaaga tcaatgaattc caggacttgg ttcttcgaaa gaataaataa
 25751 gatagataaa atgctagcta gactataaag gaaaaaaaaaag gagatcaaaa
 25801 taaacacaat cagaatgac aaaggatgt taccacccat cccacaaaaaa
 25851 tttaaaaaac cctcagagac tactaaaaac acctctatgc acacaaacta
 25901 gaaaacctag aagaaatgga taaatccctt gaaacatatac accttccaag
 25951 attgaaccag gaagaaattt gatctggcag agagaccaat aatgatgtcc
 26001 aaaatttgaat cagtaataaa aagccttacca accagaaaaaa gcccaggacc
 26051 agagggattt acagctgaat attacaagaa gtataaagaa gagctggat
 26101 cattectact gaaactattt caaaaaaaaac agggaggaggg actcctccct
 26151 aactatgaaa ccagcatcat cctgatacca aaacctggca gggacacaac
 26201 aacaacaaaaa aacaaaactt caggccaaat ccttgcataa catagatgca
 26251 aaaatttctca ataaaatccctt agtgaatgaa atccagcagc acatgaaaaaa
 26301 gctaattccac cactatcaag gaggcttcgt ccctggaca caagtttgt
 26351 tcaacatata caaatgaata aatgtgattt atcacaataaa cagaataaaa
 26401 aacaaaaacc acatgatcat ctcataaaaat gcagaaaaagg cttttgataa
 26451 agttcaacat cccttcacgt taaaacccctt caacaaacta ggcactgaag
 26501 gaacataactt caaaataata agagccatct ataagaaactt cacagccaaac
 26551 atcacagtga atgagcaaaa gctggaaagca ttcttattaa acaccagaac
 26601 aaaacaagga tgccttctc caccagtctt ttcaacataa gtactggaaag
 26651 tcctggccag agcaatcagg caagagaaag atataaaagc catctgaata
 26701 gaggggaaatg caaactgtcc ctgattccag tcagttatgat tctatgccc
 26751 gaaaacccca taatctctgc tccaaagctc cttgggtttaa taaacaactt
 26801 cagcaaagttt tcaaggataca aagtcaatgt aaaaaatca gtagaatcccc
 26851 tggccaccaa caacatccaa gctggagagcc aatcaagaa tgctatcccc
 26901 caaggctgcc accatggccaa cctacaaactt qgtqcaagatc cagcacacq
 26951 agatqagtq gaaacctggaa aaccacttca qcqqgttgc qgacqccatc
 27001 ctgacqcccaq cqggccatqa qgqgcaaaag caqgcaactqc qagatqctq
 27051 ctatqagtttt caccatctoet tcacccctt qcaqaaqaa qcgatcccqa
 27101 ctttcttqac agtqctqat qccattgtat qcaqaaqaa qcgatcccqa
 27151 agqacttggc ccctcaatqa qcaccatqat qggqgtctqat ccqgtctca
 27201 taatggcaaa actgtgtcaaa aacatagtga aqcccaqgtq aqatctgca
 27251 qgtgttcttca toatgtcccc ccaccccttca tqqgaccccttca qaaaaaaatcc
 27301 tacagcaaca tcaatggcaaa tcaacaggat qcaqacccatca caaaaaatcc
 27351 cctacccttcc totqgqatqtc tcaaggacac tattggccaga qctctqccct
 27401 tctggaaatqa acaqgttattt ccccaqatca aqdaqqqqaatqgggtatq
 27451 actqcaqccc atqcaacaq cctctqggc actqacaacc atctgtggg
 27501 tctcttqaa qaggtatca tqgagctgaa cctgccaactt qgatcttca
 27551 ttgttctatqa attggacaacg aacttggaaac ccatcaagcc caqccccaccc
 27601 agttccctagg qgatcaaaqaccatgtca aqgccccatqaa aqttgtggct

**Phosphoglycerate
mutase,
processed
pseudogene**

FIGURE 1J

27651 qcccagggca aagccaagaa gtgaaggcca gcaaacaggc accctccctg
 27701 cccattgcac ccattgtcc ctccccctcg aacatgtcac actgaccaca
 27751 tctatagaca tcttgagttt cagctgcaga tggggaccgg tggctcccat
 27801 ttcatattta gccattttgtt cttctgcacc cactcccttc atacattcta
 27851 gtcagaatacg cacttcttagg gcacagggtc tcagtctaag ctgtggaaaa
 27901 gcccccgta tccaaagagag ttcaaagata gtgacttggg ttttgcag
 27951 tgctttgttt actaaggact tgtgaggagg agccatgtcg agctacgacc
 28001 aatgaggaga agcaagagag cctgtctgcc cccaggagct agtcctgtgc
 28051 ttgtctgttag tcaggccact gcctggggc tctagtcata ccagtggaaag
 28101 atgaatgtaa cctgcattgtt gatgtgacag ctgttccctc cctgacc
 28201 ttacatttac ttttatttaaaa aaaaaaaaaa gtatagtgtataaaaaataat
 28251 acaaaaacaat aacccttcta agggttctc gtgggtgttggaaatagtccc
 28301 acatgtggtc atcagaacat aagccattcc tcataccaaat atggggtaag
 28351 ctccctgacc tttgaggggc aggagtgtt catgtgtgtgttttagaat
 28401 ccctccctgc cttgtttcat ggcagtggaaa tgcctcttgg tcctctccaa
 28451 gtgtgtttttt cactgatttc tgaatcatgt tgcagtgtgt tggccctgccc
 28501 acataggtct agtggtcatt tgagcataac tggactaaat cttttttcca
 28551 gatcgtata ataaaggagt gatgtgcaat aaaaaaaaaa atgcacatccc
 28601 atgcacacca gttagaatgg tgatcattaa aaagtcaagg aacaacagg
 28651 gctggagagg atgtggagaa ataggaacat ttttacactc ttgggtgggac
 28701 tgtaaacttag ttcaaccatt gtggaaagaca gtgtgggtat tcccttaagga
 28751 tctagaacta gaaataccat ttgacccagc catccattatctggtatata
 28801 actcaaaggaa ttataatca tgctttataaaa aagcacatg cacatgtatg
 28851 ttattgcag cactattcac aataggaaatg acttggac aacccaaaag
 28901 tccatcaatg atagactggaa ttaagaaaaat gtggcactgt tacaccatgg
 28951 aatactatgc agccataaaaaa aaggatgagt tcatgtcctt tgcaggagaca
 29001 tggatggaaatcatttcac aactatcac aaggacagaa
 29051 aaccaaaacac cacatgttct cactcatagg tggaaattgt acaatgagaa
 29101 cacttggatg caggggggg aacatcacac actggggcgt tcatgggg
 29151 ggggggaaagg ggggggggat agcatttagga gatataccga atgtaatga
 29201 caagttatg ggtgcagcac accaacatgg cacatgtata catgtgtaac
 29251 aaatctgcac atttgtcaca tgtagctttag aactttaagt atagaaaaaa
 29301 aataaataaa taaataaaaaa tttaaaaaat gaataaaaata catagaaata
 29351 cagctaaccat ggttaggtgaa agatctctac aacaagcatt ataaaacact
 29401 gctcaaagta atcttagatg atataaaca aagaaaaagc attccatgct
 29451 catggatagg aagaagcaat attgttaaaa tggccatatt gcccggca
 29501 atttacagat tcagtctat tcctatcaaa ctaccagttc ttcacagaat
 29551 tagaaaaaaa aattatttaaa aatattgtat gaaaccaaaa aaaagcctga
 29601 atagccaaagg caattctaa gaaaaacaa aagccagaa gtatcacatt
 29651 gtgtgacttc aatctatatt acaaggctac agtaaccaca acagcatgg
 29701 actggtacaa aacacataga ccaatggaa acagagagata gcccggaaat
 29751 aatgccacac acaaaccatt tgatcttaaa caaacctaac aaaaacaagc
 29801 aatggggaaaaa gaaattccctt ttccataat ggtgtgggtaactgct
 29851 gccatatgca gaagattgaa attggacccc ttgtttatac catatacaaa
 29901 aatcaactca agatgggtt aaggcttaaa cataaaaccc aaaactggcc
 29951 gggcacggtg gctcacgcct gtaattccag cactttgggaa gcccggggca
 30001 ggccggatcac gaggtcagga gatcgagacc atctggcta acacgggtgaa
 30051 acggccatctg tactaaaatt aaaaaaatt agtggggcga ggtggccggc
 30101 acctgtatgc ccagctactc gggaggctga ggcaggagaa tggcgtgaac
 30151 cccggggggc ggaggctgca gtgagcccgatgctggccat tgcactccag
 30201 cctggcgcac agcggagactc cgtctcaaaa aaaaacaaac ctaaaaactat
 30251 aaaaacccctg gaagatgacc tggaaaatac cactctggac atataggacc
 30301 tggcaaaagat ttatgacaa agacaaaagc gattgcagca aaaaacaaaaa
 30351 ttgactaatt ttgtcaatta aactaaaaggg atctaaat aactaaacagc
 30401 ttctgcacag caaaaagaaac tatcaacaga gtgaacagac aacctacaga
 30451 ataggagaaaa atatttgcac actatgcac tgacaaaggcttattatccg
 30501 gaatctgtaa ggaatttaaa caaatttata agcaaaaaaaa caaacaac
 30551 cattaaaaaaa tggcaaaagt cttgtcaacag acattttaa aagaagacat
 30601 acacgtggcc aagaagcata taaaaaaatg ctaaacatca ctaatcttta
 30651 gagaaatgca aatcaaaaacc acaataagat accatctcac aaaagtcaga
 30701 atggcttattatcaaaaaatgc aaaaaataac agatgtggc aaggatgg
 30751 agaaaaagga atgcttataactgctggg ggaatgtaaa ttatgtcagc
 30801 cggtgtggaa agccgttgg caatttctca aagaactcaa aatggaaatta

FIGURE 1K

30851 ccatttgacc cagtaatctc actattgggt ttattctcaa aggaatgtaa
 30901 ctcattctac cttaaagaca tatgcactca tatattcatc acagtactat
 30951 tcacaatagc aaagacatga aatcaaccta catgcccatt gatggggat
 31001 tggataaaga aaatgtggta catatacacc ataaatacta cacagccata
 31051 aaaaagaaca agatcatgtc ttttgcaca acaatggatga ggctggaggc
 31101 cattcaccta agcgaactga cacaggaaca gaaaacccaa tacacatgtt
 31151 ctcacttaca agtgagagct aagcatttag ttatatggtc acaaacaaga
 31201 gaacaacaga cgcgtaagcc tacttgagga tggaaagtgg gaggaggag
 31251 agcataaaaa aactacctat caggtactat gcttttacc tgctgtatga
 31301 aataatctga acatcaaacc cccataatat acaattcacc tatataacaa
 31351 acctgcacat gtaccacaga acctgaaata aagttttaa aataaatcat
 31401 aaaataaaat gttgaaatgc ctagaatgtt tcatacgatt aaatttagacc
 31451 atgctgttcc aaatgacatc ttatttcat agaaatcatg tttctgttcc
 31501 ttctgtttt ctatggaaat ttttttaaca agcagaagtt aacgaaatgt
 31551 atattttacc acttgggtca agaaacaaat gaaagtattt cccattaagg
 31601 agcagtttcc catactgtga taaatgaatg taagtattt gtttacatag
 31651 atgaagtata aagagaccaa ttaatgtaaa aagccaatac tgtacaaatt
 31701 cctgaaggac cattatttaa atctaactt aatttttaga aagtccttatt
 31751 tcaagcaaac ttactgaga ccaataactaa ttatacttcc ctgctaaaag
 31801 atacagataa tgacattgt tagagccctt aagtaactt ccaatggaaat
 31851 aaaaattttt aaatggccac caagaccctt tggtgcttta tagagagttt
 31901 ggtccaaat tcatgggtt aatgtgatct aaaaagaagt cgtttggctt
 31951 ccttaatttca acacccctca gaaattggcc tattttttaa actatttttcc
 32001 aagactactt ttcccttcaag actctgcctt atgtctcccc ttggatcttcc
 32051 caccataacc aacaaaaaaca ttattttcc taaatgtttagaa acaaccctgt
 32101 gtggccaaaa tataatgttcc ccaacttccat tctcaacttcc gttgtttagaa
 32151 atgctggat aattaatttcc tcattttcc aaaaattttaa ctgtatccat
 32201 atctatcttcc ctagatttcc aagataacttcc caaataaaatc aaagattttaa
 32251 attaaataag accataaaaatc actggggcaga agaaattttggt aaactcttcc
 32301 agaaccttgg aatctggaaa gattttccat ttaatataactt aatataaaaa
 32351 gtcataggag aaaaatttttcc taaaatccat aataacttcc aatataaaaa
 32401 gataaaacttcc acagcaacgt caaaagacaa atgtggaaaa atatttacaa
 32451 ctcctacttcc aaaaatgttcc ctaatcaccc taaatataacttcc ggagctcttag
 32501 aaatcaagaa aaacccaaaca acctaacaga aaaaaatgtt gatgttccat
 32551 gactggtccac agaataagaa atacatataat acctttttcc cataccctt
 32601 ctcacttccat aaaaagaaat gcaaatggcc gcattcttcc acctatccat
 32651 ttggccaaaaa tctgcagttt gaccacacac tttatttgc gactgttccat
 32701 gaaataggca ctcacatgcc acaggaggcc aaaaatgtt gatgttccat
 32751 gaagaggatgttcc aatatcttcc aaaaatttttcc aagcattttcc tcttttgc
 32801 aggaaggatgttcc cttccatata atttccatcc ttttttttttcc atgttccat
 32851 tagctgttcc aactattgttcc aatccaaaca ataaaatataa gtggaaagacc
 32901 tttctgttcc gctacagaag aatccaaaca tataatgtttagaa aaaaagaaaa
 32951 tggaaatgttcc tactgttccat atatgttcc ttttttttttcc aagaaaggag
 33001 aaaaataaaaa gttgactttcc atattgttcc ttttttttttcc aagaaacatt
 33051 gaaatataat ttttttttttcc aagagaatcc aatgttcc ttttttttttcc ctgaggatag
 33101 cgaatggatcc cagcatgttcc gggaaacgggtt aggatgttcc ttttttttttcc
 33151 ttttttttttcc tatgttccat ttttttttttcc ttttttttttcc ttttttttttcc
 33201 tcaaaaaacttcc aataaaaatcc atttttttttcc ggcacatgttcc aagtttcc
 33251 tagatgttcc ctatttttttcc ttttttttttcc ttttttttttcc gtttccat
 33301 gggctccatcc tatgttccat ttttttttttcc ttttttttttcc ttttttttttcc
 33351 ttttttttttcc tatgttccat ttttttttttcc ttttttttttcc ttttttttttcc
 33401 ccatgttccat ttttttttttcc ttttttttttcc ttttttttttcc ttttttttttcc
 33451 taacttccat ttttttttttcc ttttttttttcc ttttttttttcc ttttttttttcc
 33501 ttgttccatcc ttttttttttcc ttttttttttcc ttttttttttcc ttttttttttcc
 33551 ttttttttttcc tatgttccat ttttttttttcc ttttttttttcc ttttttttttcc
 33601 cttagttccat ttttttttttcc ttttttttttcc ttttttttttcc ttttttttttcc
 33651 gcaaaacccat ttttttttttcc ttttttttttcc ttttttttttcc ttttttttttcc
 33701 tagaaatgttcc accttccat ttttttttttcc ttttttttttcc ttttttttttcc
 33751 gtatgttttttcc ttttttttttcc ttttttttttcc ttttttttttcc ttttttttttcc
 33801 cttagttccat ttttttttttcc ttttttttttcc ttttttttttcc ttttttttttcc
 33851 gaggttttttcc ttttttttttcc ttttttttttcc ttttttttttcc ttttttttttcc
 33901 gtccttagat ataataatgttcc atttttttttcc ttttttttttcc ttttttttttcc
 33951 ggatgttccat ttttttttttcc ttttttttttcc ttttttttttcc ttttttttttcc

FIGURE 1L

34001 ttcattatgg cttcatctat gtttctcca gaaggcttcc ctggcctt
 34051 aactaagttt attgtccctg caatgtgtc cttgtatttc ttctgtcata
 34101 atattcatca ctcatgattt tggttactcg attcagcgtc ttcttatgcaa
 34151 accatgctt cagccttgc cagacagaag gcatccatct ggtccacacc
 34201 agccatgccc tttaatatta tatgcccagg tcctagaagt ttctggccac
 34251 aatgaatgt tattgaatga ataaaaaaatt gagaaaactg caagcttaga
 34301 aacagtacaca tgagaagcgt catccccgg gcccccatca caaccctac
 34351 acacacaaag taaaaacaac acagtcaaca tgagcaaata gagaaaaaaaa
 34401 atgtggcaat tattcaagca atgcaagggtg aaaaatagcc ccttgcctc
 34451 agttatcaga ggtttcaaa aggatattttt ttgcctgcat ttttaatct
 34501 aattgttca attattttat ttggcatgg gaacatgatt atattttta
 34551 ataaagtgt taatttgcattt gcatgctt aattttaggt tcttttacag
 34601 gaggcttgc tactccata ttgcctttt ctcaattattt ttacttctgc
 34651 ctttgc当地 atgtttaaa tatttgattt tagcccctac cacagactcc
 34701 aaatctgtc ttggaaattt gagatcaaag tactgttagct aatccttagg
 34751 acatttgcca ttgtgtact taagaatcca tcttattca agtttctgtg
 34801 gtttctgaa gtatttacag gtcacaatgt caaatgtgc acatctgaaa
 34851 ctattttta attatgctt ctttataactc ttccatattt agttaatggg
 34901 aaaatatcca gctcttgaat ggtatttgaac tcgatttaggc catctccagt
 34951 ctcccttataa aagatttca aattttttt aatcattttt tcaataaaacc
 35001 ttgtttttgt tctcttttaa acagagcttgc tcttatttcaaa aaagcttcatg
 35051 acagtaggaa aggaatttattt aatggaaaaga aatggatcc gaaggaggat
 35101 ttteetctat agcttagga ttgttataa gacaatgtgtt ttcacccct
 35151 gacctgcage ttcaaggattt ggttgcattt aatttgcattt ctgttctgg
 35201 aagtaatttca tcgcatttac ttgtacaagc ttctctggga cactcttct
 35251 ttcccttttaa gcacagataa ggcgcattt acacttttgc ggcgttccataa
 35301 acagcaatac ataaaatggaa atatgaaattt agaaatgtcc aaaaactgct
 35351 ctaatctat gccaatgtt gaaaaattttt gtaaggattt tataagataaa
 35401 gatggggagttt agatgcataa ttatatgtt cctgttttgggtaataatccc
 35451 actgaaatatac agatagatgtt tagatagata gatgatagat agatagatag
 35501 atagatagat gatagatgtt tagatagata gatagataga tagatagata
 35551 gatagatagat tgatagatgtt atagatagat agatagatag atagatagat
 35601 agatataataa gatctacaca tggcaacaag caagattttcaaaattataa
 35651 tgaatgtcattt gtttttattt ttggcttataa ttacttcaaa ttcacttctt
 35701 aaagtgttattt ctttttattt ttccacaggat gaaaatgttca tttcacacc
 35751 ccaatgttta ccccttaagga ttagccaaatgc gcctaaactg tatccatttc
 35801 atatttccaa aaataggaaa ttgtgcattt gaaaatatttgg agagccaggt
 35851 gaaccaggta attctaaattt ttcccagata atacttagaa tgaattccca
 35901 tccataaaatg tcctttgtca agtgcattt catctcaatg ggcatttccca
 35951 ttgttaacatc cgagtaaacac agtctattca aagaacttcc tgaagatata
 36001 ctttcaaaaaa cttttagcattt taggtgtatgtt ttaatcataa tctgtatgtc
 36051 atctgaaaat aagtatcaag ttctttaaag aaaaatttaca tatcccaaca
 36101 ctactaaaca taactggctt ctaagtttca ggggttccat atcatttaac
 36151 tgcttagagt aagtgcaaaaa agggagttt ataaattttagg tattgttagtt
 36201 ttgtctctgtt aattttttttt cataatgcca ttgtttggct gttgtatgtt
 36251 aaatatttcaaa gctatgaccc tgaataatgtt atccaagcat ggaattttcat
 36301 cataggatgt tggatttttcc agcagatgtt tcaaaatttga ttatttattt
 36351 gtggaaatcca aatttttttt tttttatctt gcaatgttcaat actggatgtt
 36401 gggttctgtt agaaatccaa actgactgtt gctttgtcat ttgtatgtt
 36451 tggaaaatagg tactgttgc aatttttttt aatctgttgc atcaacgtgc
 36501 aaaaatttgcattt ttcccttttttgcattt ctttcttataat aaaaatgtt
 36551 aatataaaatg cactgttattt tttttttttt gcaatgttcaat aatggatgtt
 36601 aaatataatg gacttttcat ctcttcattt tattttttttt gatggatgtt
 36651 acaccttagt aattttactca agatactgtt ctttcttccat aatggatgtt
 36701 gccttccattt catttcatgtt gacttcttccat ggcacaaatgc ttcttttcc
 36751 ttttataatg acagaaacac agcttccattt ctttcttccat tctgtatgtt
 36801 acatctgtttt tttttttttt gatggatgtt gatggatgtt gatggatgtt
 36851 taggttactt gatatttgcattt ggtttttttt gatggatgtt gatggatgtt
 36901 aaaaatgttca ctgcatttgcattt gatggatgtt gatggatgtt gatggatgtt
 36951 gccccatca ccatcttacca aatgttccattt gatggatgtt gatggatgtt
 37001 ggccataaaatg gacaatgttgc tttttttttt gatggatgtt gatggatgtt
 37051 ccccaatgttgcattt tttttttttt gatggatgtt gatggatgtt gatggatgtt
 37101 gtttagatgttca aaaaatgttca gatgttccattt gatggatgtt gatggatgtt

FIGURE 1M

37151 tcccacagtc agtccttcag caagtcttgg cctctccacc ttcacaatgt
 37201 gcaccaaatac cagctccctt acagctcctc ctgactttaa cctcactctt
 37251 gtaatgtgc tctcacccctt tgtccagacc acagcagtgg cttcttaccc
 37301 ggccttccag cttccctctt gacatctggc ttcccttctg gcattccagcc
 37351 ttccctggt tggttccca aaggtAACCA aaatgatctt gtAAAATACA
 37401 catctgatcc tgcaactctgc caaaaacccct ttccctgccg ctatcatata
 37451 atacttagaa ggacatctaa agctattccc aaagctgtcg tgatctggct
 37501 ggagccttc ttcactccgc tcaagctaac ttgatctctt tgccttcct
 37551 tgaacacact gaacacactt ccaccccaag gtcttttat atttttttgc
 37601 ctggAACCAT ttcccttag atatgatcac ggtcacccct tcacttcgtt
 37651 gggcatggc tcctctgaga tgcttccca ttgagacaac cgaaaataact
 37701 aaaaacggcc gggctcagtg gtcacgcct ataatcccag cactttggaa
 37751 ggccttccag tggatcac ttgaggttcg gagttcgaga ccaggcttggc
 37801 caacatgggt aaaccccatc tctcccaaaa atacaaaatt agcctggagt
 37851 ggtggtgac acctgttaatc ccagctactt gggaaagctga ggcaggaaaa
 37901 tcgcttgaac ccgagaggcg gagggtgcag tgagctgaga tcacccatt
 37951 gcaactccagc ctgggtgata gagactgtct caaaaataaa ataaaaacta
 38001 aaatattaaa aacatgttua ttataagatg tttgtctaat ttacctgaa
 38051 tatcaaccat ttgcaagtag ttatattccc tatttttaat aatactttac
 38101 ttcttggaaac ttcacattaa gatagagcac ccgcggctct gtgactccac
 38151 ctcacccctg ctctgcattt ccccgagggtt ttgtcacta cctaacatta
 38201 tattctgtac ttgttattt cttaacatc agcctacccc agggaaacat
 38251 aagctccatc aggccagaaa actcttctct tttattctact gctctatacc
 38301 tcaccccttgg cttatagtag acatgcaaca aaaaatattt gtcgaatgaa
 38351 ctaatgaatg aataaataaa ttgccttaac acttaatttg agaaaagtc
 38401 tatccaaaac actccctctg atgcttccctt gttcaaccag tatccaaaac
 38451 aaaaaatgtt ccacttagaa ttgagaaat tcaagttttag aaaggatccc
 38501 tgagacttgc cagttcaatc caactattttt aaaggtatgg aaaccagccc
 38551 tgagagatata gttggacaa agctgtttaa tggcaacag ataattaaac
 38601 taggcatagt tcaatgttct ttatgtttcc atgttttaca tctctgttcc
 38651 ttttggaaatg tcctctgtt tacataagca aatataatgg aaccagaaca
 38701 ctcttattcc ttcttatctt gctgtctgt tggcaataaa acatctggca
 38751 catgatatac atggacact aaaaaatattt taaatttctg cagaaaagg
 38801 ctcacattga taaggcagat tgacctctt gtctcaatct gctgtcccat
 38851 tgggacaacc taaaatataa aaaacatgtt aattataata ttttcaactaa
 38901 attttacctg aatatcaact atttgcacgt agttatattt cctatttttgc
 38951 ataataacttt acttcttggaa atatcacatg taaggctttt cttgactttc
 39001 tacatccctg ttacttaggc ttcttatgac ataaaagcta caaaaagaga
 39051 aacacgggaa aaaaatataat aagtgtctg gaaacagaaa ttatggat
 39101 ttttggctcc atttaccagc taaatgactt tggataagat tcttggactt
 39151 tccttagtac aaattactaa tctagaaaaag tgaagggaaa ggtatatact
 39201 taaaacattt ttttttagat tgaggtttaa catgatacca ggcacactaa
 39251 ggcagactaa aggcttata ttttatttattt catttaatca tcccaatagc
 39301 cctgtgagaa aaaggatctt attccctatt tgcaggtgag gactccaaga
 39351 ctccagcaaga ttaataggcc caaggtcaca caactaagaa aggacagaac
 39401 tagaaatacc tgggtgttg cacatgaagt ttatactcat aacctctgt
 39451 ctccttggaa gggcttattt ggagaaacaaa tgaataaaag tctgtgtact
 39501 gageatcccc cacagccctca tatatcagag gtactcaata aatgttggcc
 39551 atttcttcc tttttccca ccactgacta aataaattac cttggccaat
 39601 gtacttaacct ttcttaggcca tagttcttt ttaataaag ttatggttct
 39651 ctttttctc attacaaaag caatacatgg ctatataaga tcattttggac
 39701 aaaagatata tatataataa taaaactaaa atttgtacgg aatcttacca
 39751 cctaaagata atcaccattt atatgcaat gtatgttattt atactattt
 39801 tttttctata tactataaga atacataatc tggccagggtg caatgactca
 39851 cacctgtat cccagccatt taggaggcca aggctgggg atcacttgag
 39901 gtcaggagtt cgataccagc tggaccaaca tggtaaaaaca tcgtctctac
 39951 tagaaataca aaaatgtt gggcatggtg gcaggtgcct gtaatcccaag
 40001 ctactggggg ggctgaggca ggagagacac ttgaatccctt gaggtggagg
 40051 ttgcagtggaa ctgagattgc gccattgccct tctagcctgg gcaaaaaagag
 40101 gggaaactccg tctaaaaaa taataataat aatacataat attttgggag
 40151 agcaaaaactg aaatccctgct atccctgtat gtaatcagtt atttaataa
 40201 tgatgttttag aaacattttt ttcacacaata ttcttctaa acataatgtt
 40251 ttgtggctgt atcgcatttg tggtaataat aatagtaata ataaattagc

40301 tcaaattgtat gtttagtattg tactgagatg tttcacagtt aacttattca
 40351 attcttgcaa ccctatgaca taggtaccc tattatctac attttacaga
 40401 taaagaaaact gaggcacaga aagattcagt cacttaacaa ggtaaccagg
 40451 ctattaagca gcagagccag gattggaact gaggcacatg agcaccacag
 40501 cccatgctct ggaaggata tagcatgtg ttttttatta atccatcctc
 40551 attagaaaatc tggattgggtt ctcattttt atactgttac taatagtgtt
 40601 aggtatgagc tgggaggaga aaaaaacaat agttaataa gtatgctgct
 40651 gcaaacttgt taacatctac aattttatca tacatcccta cagtttaat
 40701 tcctgaaata agtattcac attgttaatg gtttgc当地 ataatgtcaa
 40751 attgctcccc caaaaaatac cataccaatt tatttttaca gaaaatctc
 40801 atcaaataac ttttttctc tgccttgc当地 acattgacaa ttcatttt
 40851 taaaacttgt cagtttgata gaataaaaatg gtacccctc agtattttaa
 40901 atttcaaaac tagaaattgt aaagaacttt tctatatatt aattagtcat
 40951 tgtttctctc tcctaggata aattcgtctc tgtgc当地 gtccaaat
 41001 ctactagcat gttttcttag tggggatgtt tttatattt aagatattaa
 41051 tctttgttc atcatcatat atgttgccat tttttccag gtttgc当地
 41101 tgcatttcaa tctgtgtata gttttttt aatgtatgga attttcgtgt
 41151 gttcgtgc当地 tcacttctc actgaaaaat atgggagatt aaactatatt
 41201 gtttttaaga cttttaaat tataacattt tatttttattt ctttccata
 41251 tactacaaac aaataactt tcaggttaat atctatcaaa taagtttga
 41301 acatctcag tatgatatgt acggagctg tcaactgaggt tacaaaaaaa
 41351 aaagcaccc tgc当地 tggggatgtt taggttacta taggttacta tagaagagac
 41401 cagcaagtaa acagactact agtataatca tggggatgtt gtgttatgac
 41451 aggagcatac ctc当地 tggggatgtt tggccttgac tggggatgt
 41501 ctgtgctcg ttccagaagc aagcagaatg gagccaggta aagaaggag
 41551 aaggccctc taggc当地 gagcaggat tataagagac tttgaatgcc
 41601 aggttagcaga atttgc当地 ttttctatgtt atttgc当地 cttttttaaa
 41651 tcacagaggat agtataatca tcttaacattt ttc当地 tggggatgtt agtagaaat
 41701 aaagtgggtt agagaaaagga aaaacaggag agtggaaaacc aggccataca
 41751 ttgttagggat gaccaagaga gaagtagcgtt agcctgaaactt aaggaggaga
 41801 caggataaat ggaaaagagaa aatttagat gaaacataact atggaaagcc
 41851 aatcaacaaa agttaaccac tc当地 tggggatgtt tgagacgagg aagacaataa
 41901 agaaggagat gttatccgtt gatatttata tgaggctgtt atcagaat
 41951 tttttttttaa cttgattcat ttattctgaa atttacttgg taaaataaa
 42001 tacgtttaca ataatttata ctactttgaa aaagaataac atttgc当地
 42051 cacgaatata ggaataggca ataaaacata atagaatccc aaaataggct
 42101 tctcaataag tataatgcaaa cattttggaga atgacagagt ttttattttag
 42151 atgggtattgg gaaaatttgc当地 ttccatatgg gataaaaatg aagattat
 42201 ctctacttca ccacagagac aaacaaaaat tccgtttaaaa ctaatgatt
 42251 tataagttat agtaatgctt agtttattata taaatcttca aatttctat
 42301 actaaataaa atagaatgtt atttcttact tggtaatag tccaatgaag
 42351 gtgttcttgc当地 tttggggatgtt gggatgtt taaaggctctt gtccatgca
 42401 gtttattcagg aaccaggctt gacaaaggca gtgc当地 cagcacatgg
 42451 tttcttaaggg catttttagt accaaaactgc aactgacata gaaaaagagaa
 42501 aagtataatg cc当地 tggggatgtt tggggatgtt gc当地 atcata
 42551 ttccatccgt ttttcttataa ct当地 tggggatgtt tccatccatc tc当地
 42601 gcaagggggtc cc当地 tggggatgtt agaccccttgc atggggcaacc acttctc
 42651 gataatgctt taccttagaa gggggatgtt gggggatgtt agacagctg
 42701 ctacctttac cacaatggactt atttgc当地 gtaaaatataa atttgc当地
 42751 taaaataagga tggtaatgtt cccaaaataaa atataggaaa atatttttag
 42801 aatcttgggtt ggacaaatgc atttgc当地 actttaacttgc tggtaatgtt
 42851 aatgacatg aaatccaggc atctaaatataa ggagggggat gtggggatgtt
 42901 ttccactgtt atttgc当地 atttgc当地 ttttgc当地 caggtaataa
 42951 atgagttgtgc tt当地 gggatgtt ttttgc当地 tagtggatgtt taaatgtt
 43001 atttactatgtt acttatttttata ttatttttagt ctttgc当地 ttttgc当地
 43051 gagagagaaa taatgttgc当地 ctttgc当地 tagtggatgtt tggtaatgtt
 43101 attttgc当地 catcttgc当地 ttttgc当地 atcttgc当地 gggatgtt
 43151 cagttctcaag aaatatttgc当地 ttttgc当地 ttttgc当地 ataaatgtt
 43201 aggactatcc ttccatccgtt ctttgc当地 gggatgtt ttttgc当地
 43251 aaaaatttccatc aatgttgc当地 tttagtcttgc当地 ttttgc当地
 43301 cacaatggctg gggatgttgc当地 aagaaaatgtt gtttgc当地 ctttgc当地
 43351 tggcaggctgtt acaaaaatgtt gggatgttgc当地 atcttgc当地 gggatgtt
 43401 tc当地 ctttgc当地 ttttgc当地 gggatgtt gggatgtt aacatgtt

43451 gagatcacat gacgagagat gaagcaagac ataagtgc当地 ttttcttt
 43501 aacaaccaa tcttaaggga acttacagag ccagaactca gtcattactt
 43551 caaggacggt accaagccat tc当地 gagcga tc当地 ccccca tgaccaa
 43601 acctcccatt aggcttcacc tctaacaactg gggatcacat ttcaacatga
 43651 tatttgagg tcaaataatcc aaactatagc ataagtaatt ggttaattaa
 43701 ataaaattag gt当地 tacctt atatacatatt gtattgttt gatatttt
 43751 tt当地 aactt taaagtgtat attttattaa aattattcaa aacttagctt
 43801 atagtggc cactagaatttcaaa ct当地 acaaa aaaatgtgg
 43851 gggagagggg gatataaaca tcaagaacat tgtat当地 gtc gtacttctga
 43901 tt当地 ct当地 cagaacaaga tgaagtgagt ttaaaggaa agaggttaat
 43951 tt当地 atgttagt tatttagggaa aacttctga gactatagaa taactttaa
 44001 tt当地 aactt tttaaaaggc ct当地 agtctc cagacagttt ct当地 agtca
 44051 agatatacc tctt当地 tggc ttaacttactt cgagagggtt tatctgtcc
 44101 tataactact agt当地 gaaag tggtaacca tgctt当地 gatccagatg
 44151 atttagttct tttcattgtg attttacatt gaggcatgtt atacttctt
 44201 atacatgcat tatgc当地 tttttagt aatttgtagca acaaaa
 44251 ttc当地 agtta caatttgc当地 tgctctaa
 44301 gggaaaggctt ggatgttaat aatgaaggtt ttttggatt tc当地 gacta
 44351 acaccttta gacagggtcc atggatca attcatattt attttgc当地
 44401 ctaaataata cttgagcaaa gttccagtg catctaaaaa taagctt
 44451 cacagtc当地 atgtgtctt aatatcatta tggtagttt ttttgc当地
 44501 tctt当地 gcaatc当地 ttcaagaatt catgttaaa
 44551 tgatgc当地 aatttagt gaa ct当地 cctt aatacctt
 44601 ttc当地 atttctt tactggctg tt当地 atatgc当地
 44651 tcccaactt ttttgc当地 tctgaatgtt ttatgc当地 acaattt
 44701 tctggattt atgtttttt ttttattcat gt当地 gactt
 44751 gtttatttagc agt当地 tattt ctttctctag ccccat
 44801 gccataaaag taccatctgt ttttgc当地 cat
 44851 cttccctgc当地 ttttctt当地 tctgaatgtt ttatgc当地
 44901 cctgattt tatccacctg ctttcatagc
 44951 tccatccctt tcccacccctg gatggatgg tataccataa
 45001 cacagctt gagtcaagta agggccagct
 45051 tgacttgc当地 actatgagcc tcaatttctt
 45101 tt当地 aatatacatacata
 45151 ttagtgc当地 ggttcttag ccttggcact
 45201 cattcttgc当地 tctggaggct gtc当地
 45251 acccttagtct ct当地 ctag
 45301 acaatgc当地 atgtctcc
 45351 tggccattt cggatcatt
 45401 ggtacatagt agggactt
 45451 gaatgattga atattt
 45501 agtcaattaa ctacttata
 45551 cagtgagctt
 45601 tatttctact
 45651 ttaactaact
 45701 atactttaaa
 45751 tataacaatt
 45801 tttgattaac
 45851 atgtggtaag
 45901 atttatctt
 45951 ttcttaggtac
 46001 ggaaccacca
 46051 atagaagtaa
 46101 aaatagtct
 46151 caaccagaaa
 46201 catctatgt
 46251 tacaatgagg
 46301 acttcaaaca
 46351 tctcaaata
 46401 taacttata
 46451 gttttttaa
 46501 atctgtaaaa
 46551 gattaaataa

FIGURE 1P

Exon 4(A)

Exon 5(B)

49751 ttttttaat acaacgtaat ggtcctatg gatggttca ataaaaat
 49801 taaattgcga aagagagtta tatggaaaat aaatactact tattattgtc
 49851 taaaggctt ccacatctt ttaggccac taagttgtct tgtaaaccat
 49901 cattaatatt tcctgagtgc tagattgtt cccaaaattaa aaatatataa
 49951 aatatataaa tatatatcat tttaaaatg gtgattaaa cattgatgt
 50001 ttgttttattt gtttaactt tgtggagcac aaatttaat gatcaattgt
 50051 tgcattgatt ttccgctctt caaaagttt tctgggtt aaaaatgaat
 50101 ggaagctgt aataaaattt cagcacaaag aaatgaaaaa gaagactgg
 50151 aaccatctgt gagatcagag attatagtca cctaatttca aaactttcct
 50201 ctcaaaaacct acttttctt tatattatta aagaataatt ttccaaataa
 50251 ataaagtaaa atcatgattc ttacatagaa agaaaattaa cacatgctaa
 50301 acattcattt aactcatttt aaaagtttta gtcattatta atgaagaaac
 50351 cagaagatg taaaaccag tccaaagcac tatccaaagg acagaaacat
 50401 ttaaagatca ggaatattga aatcaatgtg caaatagagg caaaactggc
 50451 tccttccaca gtgtgggagg gaagtcagg caacccccc taggcagaat
 50501 ttatitacat gtccataggc aagaattatt ttgcattgtc accagttatc
 50551 aacaacttac agagtgtaa aatagctcaa aggctatgaa aagagcagag
 50601 cccccataaaa tcagaatcca aaaacctgga agggtgtact ctgaacaacg
 50651 catagtttc cactgaagca aaaattttcc ctgcattgt aagaatttat
 50701 gaaacagtca ttggagctat gccgtataaa gaatgacatg ggatatagg
 50751 gtgcattatg caatgtataa attacattt ttttatttt attcctttaa
 50801 ggtattccaa aggggagtt tatggaaaata atcatagcc aacatggtg
 50851 ctcacgcctg taatccaagg actttgggag gctaaggcgg gccagttgt
 50901 tgagctcagg catttggagac cagccctggc aacatggca gaccccatcc
 50951 ctacaaaaaa tacaaaaattt agccagggtt ggtggcacac tcctgttagt
 51001 ccagctaccc gggaggctga ggtggcagaa tcacttaagc ctggcaggt
 51051 gattataaaat gcttgtctaa agaatgtcata tategtttt gttcaaaaaa
 51101 cccccgtgagt tctcttttaa accaccctta gtattttt agttcttagat
 51151 tggcccaaa ataaaaatattt atcattttca taagctgtga tttaaacaat
 51201 gataggctt ttattttttt gtttagtggaa gcacagagtt accaatttt
 51251 gcattgttcc actagtcattt aaaaagctcat cagaacagacc cagaacattt
 51301 gtcagagagg gggaaaattt gtttagggctg tatttagcag aacttgggt
 51351 atttggat tgcatacgcaataaaatg aataaaaatg agaaatacat
 51401 tcacctaag attcgaattt ttttcttaag ttatctaagt aaatgtctac
 51451 aagattatgc cattggtttca aaggattcc gttggtttaa taatgtgg
 51501 tccggctgct cttcactatt cacaagcaat aatgggcatt tcgaaaaaaga
 51551 gtggaaagctt gaaagagagc agttatctga catttttaaa atactttt
 51601 tatgttagaga gcaaattttttt atctgtgact catgtggaa taaactgt
 51651 actgaaaaaa caggaggctt ttcttgcag caaggggaag acagtttac
 51701 atccccgcct tcaaagcaat ggtttgaattt caagtttaat ttttgcctt
 51751 cttggataat tctaattgtat ttgacttact gaggcacccca ggtgcctt
 51801 ttgccactga gatgcaggtt ttggtaggtt tagcctggga gctcatttac
 51851 ttcttttttta tttagtcttcc atttcttctt attacaaaaaa agaattgt
 51901 tattgtgtgt taaacagtgt gttggaaaact cttatatac ctctcagtt
 51951 gtcatcagtt tttttttt gccagaataaa cccacacggg aggttttcaa
 52001 aggtcatatc ttttttttcc aggggaagaa acattttcat tgatttgcct
 52051 ttcaatttttca ttttttttcc atttcttctt attacaaaaaa agaattgt
 52101 gaatggccta attatgttca ttttttttca aaaaatcttag ttttgcctt
 52151 gagagaaaaa attttataag agatcaaact tcgaaagatt tttaaggcc
 52201 ttattggtcc gtagcagggtt ttttttttca aacttgcattca ttaatgt
 52251 ttttttttca ttttttttcc atttcttctt attacaaaaaa agaattgt
 52301 gtttcttcc attttaagaa gacatatac tagatcttca gttggaaaata
 52351 aaataaaattt agactattt accttttattt ttttttttca aacccaccc
 52401 agtggaaaaattt atgggggggtt atttctttagt taaaatttgcgtt
 52451 ctaatggaaa ctttataac tatggaaatg tccagaaataa ataggaaaat
 52501 gatagcatcc taaatgagag ttttttttca ttttttttca ttttttttca
 52551 agggaaatccc ttttttttca ttttttttca ttttttttca ttttttttca
 52601 aatataagggtt ttgttccaca gatacgtgtt gtttttttca ttttttttca
 52651 aactctggaa ctttccat ttttttttca ttttttttca ttttttttca
 52701 cattggagg gatatcatgg tggatcgtt gtttttttca ttttttttca
 52751 ccctgaaagc agtttcatat tagtgaatag caataccttgc ttttttttca
 52801 aagtggaaaata gatataaaag acctggtacc aagaacatag gaagtggccca
 52851 atcaaataatg agagcttattt gtttttttca ttttttttca ttttttttca

FIGURE 1R

52901 aatgaaaagca ccttaatac aaaaggaaca aaaaaagagt tatgtgttt
 52951 gatgcagacc cacagttga acacagaaga ggcttggaa ttggagggtg
 53001 ttagtggaaat atgtccctggg ttctgatgtg gcaactaaag ttgcattgt
 53051 ggcagaaaaat ggaagagggg agtagctcta gttagctgagg cactgagac
 53101 tgctggaaaaat ggggatcttc tgattgttg atagagctcc atttattatc
 53151 attttctatt gttatttttc tcattttgg ttgttccaga tttattctga
 53201 aataatttaa gaatgggtt ccctggaggtt attttctgtt attaatct
 53251 tcctgttttgg tgggaggtat tttctcttt ttgatctgtt ttagatttat
 53301 tttgaaataa cttaaatca gttttccctg cactccagcc tgggtgctg
 53351 agtgagaccc tgcctcaaag actcccttg ggagaattat accgtgccac
 53401 ggaatctac caacagata ttgttcaccc gaacacatta gctataaact
 53451 aatgtacata gatttactaa aaacataatt gtatctcaa aatcagggtca
 53501 ataaatattt gttgatttgt tgccctgaaag aaagaaggat ttatatctcc
 53551 tgatttgaa ttaattctgc tattgaaaag aaaaaaaaaact ttagccta
 53601 cagtgtctta aattataatc tgaccatagc ctccagccatc tcatttaaaa
 53651 aaaaaatcaa gaaaagtctg gaccagagtt ttcatctgtt ttcagtatt
 53701 atttctgagg aagaattctt gaatgtctaa cacacaagg tgccccact
 53751 ccacctcaga tttccctaac ataattacaa ctttatgcca acatttccaa
 53801 cccacagatt ttcaaatgtt attttcttc acctgtgtga ctgtatttga
 53851 gcataggaaa cataaggccc aaaaatataatc taagctgtt ctatctgca
 53901 gacgccttca aataaaatggt ccagctgaag agatgtaca aaataccagg
 53951 gattcctgag gccagctgtg gggaggtgc agggaaaagc agaccatccc
 54001 tgcccagatc ctcatccgcc ttgttaccct gcaatgtaa aaggcagctg
 54051 ccagcttctc agttttaagaa ctgtggcaag aaatggcagc ttctcactt
 54101 aggagaatcc tactctgcct agaactttac tggaaagagat ggtggacatt
 54151 tttgtcactt gtaatttgtt ttaatttttta aaaaatgtt tcaaaacgtc
 54201 atgaccttac ctatgatattt ataaagatca tactccaaag tcacgagat
 54251 gaatcacaga agattttttta aaaaatgtt taatctatcc agtgcatttt
 54301 caccagcata tcttttacaa gctctggaaat gggggggggg aatggaaat
 54351 tgccaatattt cgtgtatgtt agatccatc ctcttctc ctgcttctca
 54401 tcttttacac acacgtatattt ataaagatca tttttttttt tttttttttt
 54451 gggaaatcaa agtcacgaa acactatttta gtttacttgc ccactttagt
 54501 aaatattgtt tttttttttt aatagatgtt aagctctc aacttatttcc
 54551 ctcttactg actggccaga ttaaccaaca ctccctcactc ccacaaaaca
 54601 tactgaggct tgcaagacac aaaaatgtt ttagtatttca cagaattctg
 54651 ttctgaacat tttttttttt tttttttttt tttttttttt tttttttttt
 54701 acctttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 54751 gttgcagtgc attgggtcaa ttatagctcg ctgcagccctc aacccccc
 54801 gttcgagcag ccctccccc tttttttttt tttttttttt tttttttttt
 54851 acatgccacc atgcccagct aattttttac taatttttt tttttttttt
 54901 gtttcacccat gttgcccagg ctggtctcaa actccttagt tcaagcaatc
 54951 tgctgcctt ggcctcccaa agtgcgtgggaaat tttttttttt tttttttttt
 55001 gcccatttccca ttccctaaacc tttttttttt tttttttttt tttttttttt
 55051 tggcatgggtt taatttttttt tttttttttt tttttttttt tttttttttt
 55101 gaaagaaaaga tggatggttt acggaaaatag aatgttttag aaaaatgtt
 55151 taaatgcata atactaaata tactaaaata ctaaaaatac ttcaaaaatca
 55201 ggggtgaaca cacaactatg tggggggaaaat tttttttttt tttttttttt
 55251 tgtttcaga tagccccac aaaaatgtt tttttttttt tttttttttt
 55301 aagtttattt taaaatccat taaaatgtt gaaaatgtt tttttttttt
 55351 gagtgaggat tatgtccaaat agataaggca gaaaaatgtt tttttttttt
 55401 atttttccatc aagaatatttta cttttatgtt tttttttttt tttttttttt
 55451 tgcaatccat aagtctttt tttttttttt tttttttttt tttttttttt
 55501 taagcaacca agtagccatc ataaaaatgtt caattaaagaa gacttctcg
 55551 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 55601 agaataacaa ggctgtctca taagaaacatt tttttttttt tttttttttt
 55651 gctttatgtt tttttttttt tttttttttt tttttttttt tttttttttt
 55701 aagtctgtat tttttttttt tttttttttt tttttttttt tttttttttt
 55751 attaaatgtt tttttttttt tttttttttt tttttttttt tttttttttt
 55801 acccattaaac cgaccacact tttttttttt tttttttttt tttttttttt
 55851 aatccctgtc atccccaccc acctagccca tttttttttt tttttttttt
 55901 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 55951 tcacccatgg gactcaaccc tttttttttt tttttttttt tttttttttt
 56001 actggcagag aattacacaa caaaggggggc gggatgtgtt ggaagttatct

56051 tcaaaggagc aactacatta tttatttaat gttggattcc cagtc当地
56101 atagtgtaaa gggattattt attaatgtt ggattccag cctaaagaca
56151 gtgtaaaggg agtgtgttat ttatgtttt ttcttataa cagtaatcca
56201 tttttccaa aatcagctt ggettttaa cttcatttg cccatattac
56251 tgtgttaact gtatactgtt aagtgataat agccacctgc cctctgcct
56301 gggagtcaact gacgtacgca gtttgaagc atctgcaata cagagatgat
56351 gagatacaat cgaataagtc atctcccat gccatgccat caggatgctg
56401 ctgggttctt gaagatctgt gagaatgtt tctagaaaaac gaactgactg
56451 cctcatcacc caattcaatt gtgaagtcta gatgtgattt cctccaagcc
56501 cctaaagatc gcatatgcag cctctccagg ttctctgaaa catgctgcta
56551 ttccagaatc tccccactta ttctgaagaa cgggtgcct tgggtcttg
56601 tgtggcctg cccttctcc gacccgtaa ctaaatgaaa ctaatcatta
56651 ctgggttcttca ccaagtaaaaa gattcataac attttggaa ggcagaaaga
56701 gtttattat ttagcacaag catggagaa taagaaccaa gagggtcct
56751 gctactcagt tcatgtacaa aggatcaact gataaacatt agcaggcct
56801 cccaaagtgtt aggaaaaagaa aagaaatata atgttagttt acagttccaa
56851 ggagactcac tggtaactca agggcagctt gacccgtaa tccagaaaaa
56901 tcaatgaata tctatgcagc gctcatctaa ggtatgtt tcaaatgcag
56951 ctgggttcttca actaaaatg tcaaagccag atcaagcaga tgggtcaggg
57001 tgaatcacctg gaaaaatttta acatctttt attgtaaagca catctttaag
57051 acttcataat ttatgtctg gtgctatctt tctgttca tcatgaagcc
57101 cagggtcctt ctttgcacc acagaaggaa aatgatgcat gcacgctcca
57151 ggcaaaaaac gaggggaaacc cacaccaact ccctctctgg catagagggg
57201 gacaaaactg ccaccctgtt gccagatctt tcccaagctt aagctccaa
57251 caaaaggccc ctttgcattt accaggaaac atccctagttt catttgaat
57301 cagagggggaa aaagtttattt aggtgggggg ttcaagtgtt ggtgtttag
57351 gtcccttgc ttcagtgaaa tgtgatcattt ccggaaagctt gaactgggt
57401 gttagggagaa agtgggcagg gtcttgcctt accccctaggg gaactccaga
57451 gtgctgttctt cagatttccat aacccctat tctccccccgc aaaccacccc
57501 ttaagagaa aggggcaacc ctaaatttca aatgaaagaa agcaggact
57551 cttttctactt caggatgaaa cactgagcac attgtcaattt ggctgtgtcc
57601 catttttcag agtttagagtc agtggtttta aacccactt gtgagcactg
57651 ggccgagcaa atgtattttt ggaatgaaaa gcaaaaggaaa ccacgaaatg
57701 taacattttt gctgtgacca aaccatgaaa gttcttcttca agtctattat
57751 tattataaaa ccgtatgaaa aggatataagc tatttttcag aaaaagtata
57801 gtagattat atctgtccca catatataaa gattaagaat aaaatttggacc
57851 tggaaattttt ttttgcattt tctcaaggaa ttctttttag aattccatatt
57901 taatactgctt gatgacattt gattaattt gctcctgtt aagttctacta
57951 catattccctt ctctctgaca ttgaatgagt tcttccaacc agcagaccc
58001 ttattaaacctt gtcccttgacc ccttctcaga cttcacagc ccaaggctt
58051 ttgccttattt ccacccctgtt actcccccaca catgatccca ctttcctt
58101 gtctataattt gaaaggacag acataaagcat tcctaaatctt tccctccact
58151 cacactgagg ccacatcata ccccccactgtt ggaagcgctg tcccttcaca
58201 ctgcctggc taacccctcc aactgtgccc ttaaccgaat tcttcttgg
58251 gtactttacc ccattcaggaa gcccacccctt cttccctctt cagtc当地
58301 ctctctacaa acatgcagaa gtacatctt gaaaggccctt cttcaagtca
58351 gagattctgtt ggagttctt cccctctat ctcacttcaat ttgttgc当地
58401 tttttcttcaaa agtattattt atttatttttcaatatttttta gtgagtttct
58451 ctcactttgtt ggcacaggattt atgcttagat ttggggaaaat aaagagcag
58501 ctgaggttcc actttcttagt taaggaaaata agaattccctt cccaaagaaa
58551 aataacaacag actatcactc acgttaatgtt tattacgaaa caaggagctg
58601 taatataagag taatcagatg ctctactgaa gataggttgg aaaggccctt
58651 ccaatgaggg agtattttgg ataagacccctg aaggatgaaa aggagccctt
58701 ggaagagtga gggaaatggc aattccagctt gggggaaacag cttgtc当地
58751 ggcctgttgg cagaaagatc ctggcttgc ttaagagccaa aaaggccact
58801 gtcattaaag tgcaatgttcc aagggttttttcaaaatgtt ttttttttgg
58851 tggagatggc ttaatttagta gctttagattt ttttttttttgaat tcaacagctt
58901 gccattgttgg gattttttagt atggaaataa gaaaatgata ccccttgc当地
58951 gtatataatgtt ggg
59001 ggg
59051 ggg
59101 ggg
59151 ggg

FIGURE 1T

ttaagacagg aaggaatata tttggtaga ataagagttc tggttttagac
59251 acattaagtt aaatgactgt gacatctaa tggaaactgtc aactgcagat
59301 atgtgaattt ggaactcaga aaagtggctc ggcctagaga tataaatttg
59351 gagtgtttag cataaaaagtq gcatttaaat ctatgagaac atttaagatc
59401 acctggaaag agagaaaaaa gaggggatag aaaagaaaagg aaagtctaag
59451 aagaatacaa tttttaaaag aagaaaaaga cttagaacaa aacctaaaaa
59501 atccagtgtc caaagggtga aaagggtaa aggagccaca gaaaaagagc
59551 caccaggaa tacaaagaga aaaccatgga agtgaagaga agagtgcctc
59601 tagaaagagg tggtcagctg agctgaatgc ttctgaaagg tctggcatca
59651 tagaatttgt ctccctctt atcaaaccctg cttctgaattt gttccccctc
59701 tttcaagcc caggtaaagg ggcatgacca gagcaaccac tttctcagtg
59751 attgccagt accacctata tccaccatat tcagtctctt tttctcaatg
59801 ctcattgtcc ttgtttctt tttctctctc tctctctttt tttttttt
59851 tttccagatg gagtttcact ctgtgccc ggctggagtg caatgggtgt
59901 atcttggtc actgcaacct ccacatccta gattcaatca attccccctgc
59951 ctcacccctc ttagtagctg ggattacagg catgcaccac cacacctggc
60001 tagtttgta ttttagtgg agatggagtt tcaccatgtt ggccaggctg
60051 gtctcaaact cctggcctca ggtgatccac ctgcctcggc ctcccaaagt
60101 gctgagatta cagggataaag ccaccgtgccc cagactcaact gtecttggtt
60151 tctatttaggc tggacatca gagattacct ggtttttgtt aaactctcca
60201 ttetctattg agttccatt tatataaccc tttcccgatt gttctacttt
60251 tgaaaaactt gaaaaacatg acatccaaag acattcttct ctgactttcc
60301 tttcccttcc atcccttaaa tgtctgttt tttttaggtt tccctggacc
60351 cttctgtgt acctttgtt atctcaggta tgcacatagc tttacatca
60401 ccctgtact gattctaaaa cccaaatctc acgccaaacc aaattctct
60451 ctcaggactc aagctctcat ttcagtttctc ctgctagaca ttctcgatt
60501 agtcatactg acatttgaaa aaccattatt tgcaaaaacta aactttcac
60551 ctttactcca aacacccctc ttttccatta taatgctttt atttatggtg
60601 caaccatctt cccacttaaa atttcaagt cactgttaac ttagtctttc
60651 ctttacctc aatcaataaa tttatttcta ttgaacttcc taaacatttc
60701 ctttactct ccaactctcat agtgcatttgc ctggctctg cacctctcat
60751 ttcttcctat tcaatctct cctgtacatt tgctgccata atttcagtt
60801 ctaaaagcac tactctgatc acattatgta ctttgcatttac aaaaacctt
60851 cgtcagttt tctgggctgc aaaacaagag agcagaatcc tatcccaccc
60901 atagggcttt cattccctta ttcaagttt atatatttag tgactactgt
60951 atgccaatca ctgtgcaagg tgcttggatt cagcgttaag ataaagtccc
61001 aacccacata caatttactt tctagttggg aaggcaaaa ataaacaatt
61051 taatcaatat acaatatcat ttcaggtatt gatacatttct atgaataaaag
61101 atgaacagaa taaggattt gggaaacagtt ggttagggaaag tagcttttt
61151 tgggtgtgtt gattttcgtt gggtttggg ttgtctttt gaaaaatgaa
61201 ctgttattat tatacagtgt ccccaagcga ttattttct gtaaattatt
61251 ggggaacagg tgggttttgg ttacataagt aagtcttc atggtgagtt
61301 gtgagattt ggtgcaccca tcacccaagc agtatacact gcaccctatt
61351 tggtagtctt tattccctctc ctccctccca tcctttcacc ttgagtcctc
61401 aaagttcatt gtgacatttct tatgccttgc catcctcaga gtttagctcc
61451 cacctatgag tgagcacata ggatgtttgg tttccatcc ctgagttact
61501 tcacttagaa caatagtctc caatctcatc taggtggctg caaatgcct
61551 taattcattt ctttttatgg ctgagtagta ttccatcatg tatataatata
61601 tataccacag tttttttatc cactcattga ttgatggca ttgggttgg
61651 ttccacattt tgcgattgt gaatttgcgt gctataaaca tgcattgtca
61701 agtgtttct tcatataatg acttttttc ctctgggttag ataaccagta
61751 gtgagattgc tggatcaaat ggttctactt ttgtctttt aaggaatctc
61801 cacactattt tctatagttgg ttgtgttagt ttatcttca accagcgttg
61851 tagatgtgtt ccctgttccac cgcatctcca ccaacatctca ctatttcc
61901 acttttttat tatggccatt tttgcaggac taaggtgtat cacattgtgg
61951 ttttcatttgc cattccctg atcattagcg atgttgagca tttttctatg
62001 tgtcttggcc attcatataat catctttga gaattgtcta ttcatgtct
62051 tagcccaattt ttgtatggga ttgtttgtt ttttcattgtt gattgtttt
62101 agttcattgtt agattctaga tattcatttctt ttgtcaatag tatagattat
62151 aacgattttc tcccactctg tgagttgtct gtttactctg ctgactgttt
62201 cttttggccgt gaaaaagctc ttttagtttaa ttaagttacca gcaatttac
62251 tttgtttta ttgcatttccac ttttgggttc ttggctttaa aatccttgcc
62301 taactcaatg tataagaagg tttctccaat ttatcttctt agagtgtttt

FIGURE 1U

62351 tagtttcagg ctctatattt ...gtccttaa tccacccca gttgattctt
 62401 gtatgtggg agaaatgagg atccagttt atttcctac atatggctag
 62451 ccaattatcc cagcaccatt tggtaaaaag ggtgccttc gcttctcaa
 62501 agaagacatt tatacagcca acaaaattat gaaaaaatgc tcatacatcac
 62551 tggtcatcaa agaaatgca acaaaaacca caatgagata ccatactcaag
 62601 ccagtttagaa tggcgatcat taaagagtca gaaacaaca gatgtggag
 62651 aggatgtgga gaaataggaa cactttaca ctgtgggtgg gaggataat
 62701 tagttcaacc attgtgcaag acagtgtggc aactctcaa ggatctagaa
 62751 ctagacatac catttgaccc agcaatccc ttactggta tatacccaa
 62801 gtattataaa tcattctact ataaagacaa atgcacttgt atgtttattt
 62851 cagcacttt cacagtagta aaggatgtga accaacccaa atgcccata
 62901 atggtagact ggataaaagaa atgtggcac atatacacca aggaatacta
 62951 tacagccata aaaaaggatg gttcatgtc ctttgcaggg acatggatga
 63001 aactggaaac catcattctc agcaaaagtaa ctcaagaaga gaaaaccaa
 63051 caccacatgt tttcaactcat aagtgggagc tgaacaatga gaacacatgg
 63101 acacagggag gggAACATCA cacaccagg cctgtcaggg gtttaggggc
 63151 tggggggggg atagcattag gagaatacc taatgtaaat gatgagctga
 63201 tgggtgcaac aaaccatat tgcacatgt tacatgtt acaaacctgc
 63251 actttgtca catgtacccc agaacttaaa gtataataaa aaagataaaa
 63301 ttcagccta aaaaaaagaa aaagaaaaag aaaagggtgt cctttccccca
 63351 ttttatgtt ttgtttgtt tgcataagat cagttgactg taatgtaccc
 63401 gttttgtttc tggatctctt attctgttttcc attgttctat gtgcataat
 63451 ttataccatg accatgtgtt ctgtgtgact atggccttgt agtttgaat
 63501 caggtaatgt gatgcctca ggtttgtt ggttttttgg tttttgtt
 63551 ttttgggtt tttttttttt gtttttttgg ttttttttgg ttttttttgg
 63601 ttttttttgc ttagtccctt tttggctatg tgggtctttt cctgggttcca
 63651 tgtgaatttt atcatgttt tttcaattt ttttttttgg ttttttttgg
 63701 ttttgggtt aattgttgg aattgttgg aattgttgg aattgttgg
 63751 atttttacaa tattgttcc tattgttcc acatccgt gacatttgg
 63801 ttttttttgc tcatctatg ttttttttgc ttttttttgg ttttttttgg
 63851 ttttttttgc ttttttttgc ttttttttgg ttttttttgg ttttttttgg
 63901 ttttttttgc ttttttttgc ttttttttgg ttttttttgg ttttttttgg
 63951 ttttttttgc ttttttttgc ttttttttgg ttttttttgg ttttttttgg
 64001 ggtcgctgtt ggtgtataga agagatactg attttgttat gtgaatttt
 64051 tatccagaaaa gtttgcgtt gtttgcgtt gtttgcgtt gtttgcgtt
 64101 ggggttttca ggggttttca ggttaaacatt catacatca gcaaacagca
 64151 acagtttgc ttccttttca attagttgg ttttttttgc ttttttttgg
 64201 ttttttttgc ttttttttgc ttttttttgg ttttttttgg ttttttttgg
 64251 ttttttttgc ttttttttgc ttttttttgg ttttttttgg ttttttttgg
 64301 acttttttttca attcgttattt atgttggctg ttttttttgc ttttttttgg
 64351 ttttttttgc ttttttttgc ttttttttgg ttttttttgg ttttttttgg
 64401 gtttttttgc ttttttttgc ttttttttgg ttttttttgg ttttttttgg
 64451 gtttttttgc ttttttttgc ttttttttgg ttttttttgg ttttttttgg
 64501 gtttttttgc ttttttttgc ttttttttgg ttttttttgg ttttttttgg
 64551 ttttttttgc ttttttttgc ttttttttgg ttttttttgg ttttttttgg
 64601 ttttttttgc ttttttttgc ttttttttgg ttttttttgg ttttttttgg
 64651 ttttttttgc ttttttttgc ttttttttgg ttttttttgg ttttttttgg
 64701 ttttttttgc ttttttttgc ttttttttgg ttttttttgg ttttttttgg
 64751 ttttttttgc ttttttttgc ttttttttgg ttttttttgg ttttttttgg
 64801 ttttttttgc ttttttttgc ttttttttgg ttttttttgg ttttttttgg
 64851 ttttttttgc ttttttttgc ttttttttgg ttttttttgg ttttttttgg
 64901 ttttttttgc ttttttttgc ttttttttgg ttttttttgg ttttttttgg
 64951 ttttttttgc ttttttttgc ttttttttgg ttttttttgg ttttttttgg
 65001 ttttttttgc ttttttttgc ttttttttgg ttttttttgg ttttttttgg
 65051 ttttttttgc ttttttttgc ttttttttgg ttttttttgg ttttttttgg
 65101 ttttttttgc ttttttttgc ttttttttgg ttttttttgg ttttttttgg
 65151 ttttttttgc ttttttttgc ttttttttgg ttttttttgg ttttttttgg
 65201 ttttttttgc ttttttttgc ttttttttgg ttttttttgg ttttttttgg
 65251 ttttttttgc ttttttttgc ttttttttgg ttttttttgg ttttttttgg
 65301 ttttttttgc ttttttttgc ttttttttgg ttttttttgg ttttttttgg
 65351 ttttttttgc ttttttttgc ttttttttgg ttttttttgg ttttttttgg
 65401 ttttttttgc ttttttttgc ttttttttgg ttttttttgg ttttttttgg
 65451 ttttttttgc ttttttttgc ttttttttgg ttttttttgg ttttttttgg

65501 agcaggttat ttaatttcca tatatttgcg tggctttgaa agttcatttt
65551 ggagtgtatt ttcaagttaa ttccactgtg gtctgagaga gtgcgttgata
65601 taatttcaat ttctttaaat ttattgaggc tcattttgtg gcctgtcgta
65651 tggctcacct tggagaaagt tccatgcact gaatagaatg tatattctat
65701 ggttggtggg tggaaatgttc tgatataatc tgttaagtct atttggtcca
65751 aggtatagtt taaatccatt gttcattgt tgacccctcag tcttgattat
65801 ctgtccagtg ctgtcagtgg agtattgaag tctccacta ttattatgtt
65851 gccacctgtc tcatttctaa ggtctgttag taattgtttt ataaatttga
65901 tagttccagt gttcagtgcata tatacggtta ggattgtat gtttccctgt
65951 tggacttaggc cttttatcat tatataatgc cctcttgc tttttaaaaat
66001 gctgttgctt taaagttgt ttgtctaaga ataggtaatc ccttttgctt
66051 ttgggtgtcca tattccaaaa atgtttttt ccacacccccc accttaaagg
66101 tggagactc cttatgtgtt aggccagtc tttgaagtca gcaggtagtt
66151 ggttggtgaa ttcttataaa ttctgcattt ctatatctt taagtggagc
66201 atttaagcca ttacattca acgttagtat tgagatgtga gttaccattc
66251 catcattat gctatttgtt gcctgtatac cttgggtttt ttttttttgt
66301 tttgtttt taaattgtat tttgtttt taggtcctgt gagatttatg
66351 ctttaaagag gttctgtttt gatgtgtttc caggatttgc ttcaagatt
66401 agagctccctt ttagcagttc ttgttagtgg ggtttggtag tggtaattc
66451 tctcagaatt tgcgtgtctg aaaaagactg tatcttcctt tcataatatga
66501 agcatagttt tggatgatac aaaattcttg gctggtaatt cttttgtctg
66551 aggaggctga agacaaggcc ccaataaccc ttagttata gggtttctgc
66601 tgagaaatct gctgttaate taatagggtt ttattttatg gttaccagg
66651 actttgtctt cactgtctt aaaaattctt cttttgtctt aacttttagat
66701 tacctgtatga caatgtgcct aggtgatgat cttttgtcaa tgaatttccc
66751 aggtgtttttt tgcgtttttt gtattttggat gttttttttt tttttttttt
66801 tggggaaagtt ttccctgtt atccctgaa atatgtttt caaactttt
66851 gattttctt ttccctcaag aacactgattt attattatgtt ttgggtcat
66901 aacataatcc cagacttctt ggaggctgtg ttctgtatattt cttattctt
66951 tttcttgc tttatggagt ggtttaactg aaagacccctt tcttagagct
67001 ctgaacttct ttcttctact tttcaattt tattgtctgag actttccaga
67051 gcattttgca tttctataag ggttccaaa gtttactgaa gttttgactg
67101 ttttttattt atgtatctt ttcccttgc tttttctccc ttcacttctt
67151 gtatcatttt ttggattttcc ttaaatcggg ttccacatat ctctgggtct
67201 ccctgattag cttataattt aaccccttca atttttttcc aggccaaatca
67251 gggattttttt ttgggtttgg gttccattgtt gggggagctag tggtttttt
67301 tggggatgtt aaagaacttt gttttgtcat attaacagaa tgggtttctg
67351 gttcccttctt atttgggttag gttctgtcag agggaaaggc tagggctgaa
67401 ggctgttggtt cagattttt ttttccctt ttttccctt ttttccctt
67451 ctctccccctt gttccctatgg atgtgacttc ctgagagctg agctgttagt
67501 attgttatctt atcttgcattt ttttcccttgc caacaagtct tccagactcc
67551 gggctggcac tggggattgtt ctacagagtc ctgtgtatgtg aaccatctgt
67601 gggtttctca gccgtggatg cttagcacagt atttaggggt tttttttttt
67651 ctttcaggag caatctgtt ctttcaggaggg gttttttttt tttttttttt
67701 ttccgttttaa aggccagactt ttttcccttgc ttttcccttgc ttttccctt
67751 agttgtatac tcataagcaa actgtttaaa ttatctgat ccaagtttcc
67801 tcataatgtatc acaagatgag gttttttttt ttttcccttgc ttttccctt
67851 agcaagggaa ccactctgat ttttcccttgc ttttcccttgc ttttccctt
67901 agtgcagttt ttttcccttgc ttttcccttgc ttttcccttgc ttttccctt
67951 aacttaggtt ttttcccttgc ttttcccttgc ttttcccttgc ttttccctt
68001 atgttaggtttt ttttcccttgc ttttcccttgc ttttcccttgc ttttccctt
68051 atctgggtttt ttttcccttgc ttttcccttgc ttttcccttgc ttttccctt
68101 aacccctggaa gttttcccttgc ttttcccttgc ttttcccttgc ttttccctt
68151 cttagggccaa aaaaaaaaaaaa aaaaaaaaaaaa ttttcccttgc ttttccctt
68201 aaggcaggag gggcaggagc agaattttttt ttttcccttgc ttttccctt
68251 atctgggtttt ttttcccttgc ttttcccttgc ttttcccttgc ttttccctt
68301 ggagctggggaa ctttcccttgc ttttcccttgc ttttcccttgc ttttccctt
68351 atccataggag aggcatgata ttttcccttgc ttttcccttgc ttttccctt
68401 atatcttagttt aaccccttgc ttttcccttgc ttttcccttgc ttttccctt
68451 aattttttttt ttttcccttgc ttttcccttgc ttttcccttgc ttttccctt
68501 gattttttttt ttttcccttgc ttttcccttgc ttttcccttgc ttttccctt
68551 accacttcaaa atacatatca ttttcccttgc ttttcccttgc ttttccctt
68601 cacttccat ttttcccttgc ttttcccttgc ttttcccttgc ttttccctt

FIGURE 1X

71801 ttaagacatt cagaaaattg aaataatatac aagtatcttc tctgaccaca
 71851 attgaatgaa actaaaaatc agtaacaaga gaaaatttgg aaactataca
 71901 aacacatgt aattaaacaa tatgccttc aatgaccaat gggtaatga
 71951 agagattaag aagcaaattt aaaaatgtct tgaaacaaat gataatggaa
 72001 acacaacca taacaaaacc aatggatgc agcaaaagga gtactaaaag
 72051 ggaagtttat aactaaaagt gcttacatca gtaaagaaga aaaacttcaa
 72101 ataaacaacc tattatgcaa cctacaagag caagagcaaa ccaaacccaa
 72151 agttggtagg agaaaggaaa taaagatcg agcagaaaata aatgaaattt
 72201 aaacaaagaa aatacaaaag attacaacgg ccaggcactg tgctcacgc
 72251 ctgtaatccc agcacttgg gaggctgagg caggcagatc atgaggtcag
 72301 gagaccata ccattcctggc taacatgatg aaaccctgtc tctactaaaa
 72351 aatacaaaaa aaaaatagct gggctgttg gcaggccct gtatcccag
 72401 ctactcgaaa agctgaggca ggagaatggc gtgaaccgg gaggcggagc
 72451 ttgcagttag cccagatcac accactgcac tccagctgg gcaacagagt
 72501 gagactctgt ctcaaaaaag aaaaaaaaaa aagataaaca aaagaaaaag
 72551 ttgttttttgg aaaagataaa caaaaatgac aaacttagcc agactaagaa
 72601 aaaaggagag aagacccaaa taaataaaaat cagagatgaa aaaggagaca
 72651 ttaaaaactga tactacagaa attcaaagga tcatttaggg ctactgttag
 72701 aaactatata ccaataaatt gaaaaaccta gaagaatgg ataaaattccct
 72751 atatacatac aacctacca cattgaacca tgaagaaaatc caaaacctga
 72801 acagaccaat aacaagtaat gagattgaag ccataaaaaa aattatccca
 72851 gcaaagaaaa acctgaaacc tgatggctt actgttgaat tctaccaa
 72901 aatgaaagaa gaactatac caatcctgtc caaactattc caaaaagtag
 72951 aggagaaaaca aatactcttta aactcatttc atgaggccag tggtatccta
 73001 atacaaaaac cagacaaaaa atgcattttaa aaaagaaaaac tacaggccac
 73051 catccctaat gaacattgtt gaaaaaatcc ttgacaaaat actagcaaac
 73101 cgaattcaac aacacattaa aaagatcatc catcatgacc aagttagatt
 73151 tatctcaggat atgcaggat gttcccttc atatttagaa cacaaaaaag
 73201 atgctcattt tcaccactgt tattcaacat agtactgaaa gtcctagcta
 73251 cagcaatcg agaagagaga aataaagagc atccaaattt ggaaggaaga
 73301 agtcaagtta tgcttgttgg cagatgatgat gatcttatat ttggaaaaac
 73351 cttaggtccc catcaaaaaa ctattagaac tgataaacaattcagtc
 73401 gttgcagaat acaaaataaa atacaaaaat cagcagcatt tctatatgcc
 73451 aactgaaac aatctgaaaa agaaatttgg aaaaataatcc catttacaat
 73501 agtacaaat aaaattaaat accttaggaat taaccagaga agtggaaagat
 73551 ctctacaaag aaaactatga aacactgtat aaagatatta aagaggatac
 73601 aaaaaaaagga aagatatttc atgttcatgg attagaataa tcattattgt
 73651 taaaatttcc atatttctca aagcaatcta caaattcaga gcaattccta
 73701 acaaaaaatac caatgacatt cttcacataa atggaaaaaa cagtgtaaa
 73751 atttatatgg aaccagaaaa tacccagaag agccaaagct atcctaagca
 73801 aaaaagagaaa aactggagaa atcacattac ctgacttcaa attatactac
 73851 agagatatag taacccaaac aaaatggatc tggcataaaa acatatactg
 73901 accaatggga cagaagagag aaaccagaaa caaatccgtt catccacagt
 73951 gaactcattt tcgacaaaag taccacaaac atgcaacggag gaaaggacag
 74001 tctcttcaat aaaaggtgtt ggaaaaactg gatatccata tgaagaagaa
 74051 tggaaatttgc cccctatccc ttgcctatgg gaaaaaaatc aaatcaaaaat
 74101 gggattaaaa agttaaatctt aagacccatca tctatgaaac tactacaaga
 74151 aaacatgagg gaaatctcc aggggcaagga tttcttgagt aatatcccac
 74201 aagcacatgc aaccaaggca aaaatgaaca aatggatca catcacgtga
 74251 aaaagcttgc gcacagcaaa gggaaaacatc aacaaaatga agagacaacc
 74301 cacagaatgg gggaaaatattt tgccaaatca tccatctgac aagagattaa
 74351 taaccagaat atataaggag ctctcatgac tgtataagaa aaaataaaaat
 74401 aatccaattt taaaacgggc aaaaaatcta aatagatatt tctcaaaaaga
 74451 tgacattaca aaccacaaac aggcatatga aaaggtgttc aatataatta
 74501 atcatcagag atatgcaat caaactgcac tgagatatca tctcactcca
 74551 gtaaatgaca ggcactaaca aatgtggca aggatttgg gacaggcaat
 74601 aacaaatgtt gacaaggatt tggagaaaaag gacaggcaat aacaaatctt
 74651 ggcaaggatt tggagaaaaa ggaaccatgg tacactgttg gtggaaatgt
 74701 aaatttagtat aatttagccca ctatggagaa gagcttggag gtttctcata
 74751 aaactaaaaa tagagctacc atgtgatcca gcaatccccac tgcttaggtat
 74801 attcccaaaa gaaaggaaat cagtatatac aagagatatac tgcactctca
 74851 tggtttattgc agcactatac acaatggcca agatttggaa gtaacccaaag
 74901 catccatcaa cagacagata aagaaaaatgt ggcataatata cacaatggag

74951 tactatttcag ccattaaaaaa gaatgagaac ctgtcatttg cagcaacatg
75001 gatgcggcg gagctcattt ttttaggtaa aataagccag gcacagaaaa
75051 acaaacttca catggctca ttatattgtg gaaaactaaga attaacagg
75101 aaggattaag aaaatgtggc acatatacac catggaatac tatgcggcca
75151 caaaacagga tgaggcatg tcctttgtg ggacatggat gaagctggaa
75201 accatcatc tcagcaact atcgcaagga cagaaaatca aacaccacat
75251 gttctcaact ataggtgggaa attgaacaat gagaacactt ggacacagga
75301 tggggacat cacatactgg ggcctgtcat ggggtggggg agaggggagg
75351 gatagcatta ggagaaatac ctaatgtaga tgatgagttt atgggtgcgg
75401 cacaccaaca tggcacatgt atacatataat aacaaacctg cacattgtgc
75451 acatgtaccc tagaacttaa agtataataa taaaaaaaaa ttaacagtta
75501 aactcacaaa gatagagagt agaatgacgg gtaccaggt atgagaaggg
75551 tagtggagag agtgagcaga gagggagc gagatggtt atggacacca
75601 aaaaaaaacca gaaagagtga ataaacgtctt gtatggaaa gtacaaaagt
75651 gtgactatag tcagtaataa tttaattgtt cattttaaa taattaagag
75701 tataatttggc ttatattgtaa cacaaggat aaatgttga ggtgatggat
75751 accttttttta ccctgatatac atcattacat atcgcgttca agtatcaaaa
75801 tatcccacat aactcataaa tataatataac tactgtgtac ccacaaaaat
75851 taaaaattat taataaaatta ttatgtttagt taaaaaaaaa caaggatgt
75901 cacttttgc acttcttattc aataatgttag tggagttca tgccagagca
75951 gttagacaag agaaagaaat aaaaggcatc caaataagaa aggaagaaaag
76001 gaaatttttg ctgtttgtt acaacataat cttatataa gaaaacccta
76051 aagattccag aaaaaactgt cttagaactaa taaatttgc acatgttac
76101 gagacacaat caacaccaca aaaatcacta gcatttttat acactaacaa
76151 caaactttcc aaaaaagaaa tcaagagac aatccccattt acatgtac
76201 caaaaattaa aataacttagg aataaaatttta accaaggagc tggaaagac
76251 gtacacagta gtctataaaa tattaaaaaa ataaatttgc gaaatgtac
76301 atccttttttta aatccaccat gccccagtcc agctgaacaa ctatactt
76351 tcagaatctt ctctatgtgt tctactgtt ctgcagctag ccacccctt
76401 ctccctccctt gatcacccctt tttatcattt ctgtttctca aatgttacc
76451 cctctttcaaa agccccaggta tgatgacate tcccttagtaa agctccctca
76501 acaccccaag cttataataa ctaatctt cttgaatttccatagcagg
76551 ttatattgtac ttccattata atacccctt cttccctgttt tgatatttt
76601 ttattcatgt gtggcatgtt tcttttattt ggcctataat atcttaggac
76651 aagaactatg cccttattt tttccacta caaatcttaa cacatacc
76701 gcacacacca gacccctcagg aaatgcctgc taaggtaacg aaggacac
76751 ctaaattaaac ataaattattt attttgttac tgatccagtc ctaaatccat
76801 ggtgtatca tttctgttactt actgtatggtt atccacttac ttaataatc
76851 tttccctaaa tacacttaga aaagacggaa aactgtgttta taagggagga
76901 acaagttatgt aggttattttcc tttccctaaa caaagagaag ttctgtcat
76951 cgtcacggaa attaaagaca cagaataaaa aagcacgaac aagatttgg
77001 gaataatgtt tagtggaaa ctttgccttgc cttctgttca taggtcctaa
77051 ctttcccttc aagttactttaa gctgcacattt tttttttt tttttctat
77101 TTACATTGAC AACTATTGGC TATGGAGACA AAACCCCCCT AACTGGCTG
77151 GGAAGATTGC TTTCTGCAGG CTTTGCACTC CTTGGCATTT CTTCTTTGC
77201 ACTTCCGTGCC gtgagttatct ttgcaccaat aaagcagttt aaattagatc
77251 ttagagactt attagagtga gctctcacaa attcgatgtc ttggaaacat
77301 atctatatca tttacaataa taattttcc gatataatgt tgacttttct
77351 aaatatatct acttggataa ttataaaat atggctttcc cttggagac
77401 cttaaatcttga gacttttattt aatgttaggtt catactttt gacccaaataa
77451 tcattcagat ggctcacttt ttaggcaaca tgctactaag acattaaaa
77501 ttttgcataa gatttaaagg tttttttttt taaaactgtt ctttccatt
77551 tggtttataa tttgtgtctac ttaagagaca gatgtgcaca atggagtatt
77601 ttctcttca gatccatttgg agtggaaaggc atatgaccc ttgggtgtt
77651 aaacatgtca gatgattttat tcattgtgtc atcatcattt atttttttaa
77701 tgagcgttt ctgttatcttca tcagaataaa gggcacattt atctgcccc
77751 aagcttttgc ttatatttctt ctttagtgaat gaagcctgccc tttctatgc
77801 ttttatttctt tttgtgtctt aaaggcagct gttcaaaaata ttacagttt
77851 cccccatttc caagtttctt cttttgttgc ctccacccctt ggttagggaa
77901 gaggagccaa taaaaaggag gtttaacccgg gtgggagcag aagtgtttaa
77951 ggaaaataga tccagtttgc ctccagacac agtcaagct gtgcacca
78001 gagaccccaag agcaccccttc caaagctt ttaggtggta gggctctcc
78051 tctgcctatt aataagtgc gagaacaccc ttgtccacc agtgcacca

Exon 6(E)

78101 ttgagatcca ccagatcggtt ctggcccccaga acactcaaaaa tcacagaaaa
78151 gagactgaaa aggcgcattgcata tatgttttttt tactagacct cagtttgaat
78201 acatcttgcata cacatactaa ctatatgact gcttttagttt actaggcgtt
78251 ccttaacaag taccacagac tgggtgactt aaacaataga aaggattttgt
78301 ctcacaggc ccaagactgg acgtccccaaa tcaaaggcatt gagaaaccac
78351 gagagccatg agagaaagaa ctgttccagg cctcttttct tggcttata
78401 atggcttcc ttctgtgtc ttcacatcat ctgtgtccaa atttctactt
78451 cctagaagaa caccagtcat atttgatttag ggtccatcct aatgacctcg
78501 ttttaacttg attacctctg taaggaeccctt atttcaaac aaggtcacat
78551 tctgaggc tggggatttag gacttcaaca tatgaattttt ggaaggacgc
78601 aattcagcctt gaacagtgcac cctgaataag ttctttttt aatagaatgg
78651 aggaagaattt attgagccca gagaatttt gtgcggacca atgtaataat
78701 gtaagtcaag tgcttgcattt gaagagaact ctcacataat gttacttccc
78751 tttgcctgta tgaatctaga aatacatgtt tcctggacca aaacgatgaa
78801 atccaggaga attaaaaaaaaaa aaaatcttac gtatccaagg caacttcatt
78851 tggcaatctc aacaattcag aacagagaag agattcactt aataatcaga
78901 tttccctacag gaaaatacct tttagaaacaa tacaacgcac tttgggaaa
78951 tttcccaaaa taatggcaca aaataattgc aacttttttg ttttatattt
79001 tcctgaggcc acatgttagag caacccctat gattcagtga aaaactatga
79051 acaaggagggt aggcaacctc tgggcttgg aaatagacaa caggctatgt
79101 tctgtcctca taggagagcc acttgagacca taattcataa cctatctt
79151 attcagagaa aattctgtata aactcaccta tatggttca caatttttt
79201 aagattataa acaataaaata tagaggaga tgatagaaca aacactgca
79251 cagaaagaaaa tggtaaaaaaa ctaacagcaa agaaggggaaa aggaaatctg
79301 tgagtagc aacagacatca attttttttt tggtatccct gtcagaaaa
79351 ataaaaattttt attaaaagggg aaaacaaaat gtatgaagat ttagggccaa
79401 tttagtggtag ggtcaacaaa cctctggaaat ttggctgcac ccagcacagc
79451 aaaaaggcag tccccataat gaaactctaa actatcacag ggaggtaaaa
79501 tatgtcacta gtttaagttt aagttttttt tggtatccctt gtcagaaaa
79551 aatgttccca ataaagtaag tatgaaattttt ttatatgcaa attaaattaa
79601 cctatgttgg aatctgaaa attttttttt cacagaaaaat tacatttt
79651 aagaacccca agaaaaagtaa cctctactaa gtatctttt ctgaaacttc
79701 acaatattttt ctgagtcctt attttttttt tgaaagactg aatgtccat
79751 atataccctt agaaaaaaac aagattgcacca gagattttat tatatctgt
79801 gtatctgcac accaaaaagag ttgtctgattt gaaatttttagg aagacacatt
79851 gacattttgc tgagaaagctt agaggtggat tggggctgc ccctatgttag
79901 gttccctccc acccaggaca cctgagaacc aagaaagaaaa agagccccc
79951 tccatcttac ctcacaaagca gaaggccat cctgcacatc acagactcat
80001 acaagccacc catccaaagc gccactgtgg gtcacttcc cctgggtcccc
80051 gtcacatctc tgggctaatg agtcacaga agaagcccca gtcacccctgt
80101 gttaccctga tatgcaggc tttctttttt ttagagtgtt cccttgcctt
80151 ctgctagata ttctgtctaa ggttttttcc attgtatggaa aatgtgat
80201 ttatagagac tgaattccctt gagacccatca gcttagtaat tcagtcac
80251 aactagtgtt gtttgcattca agatattaaac cattttccat aaaaattttgg
80301 ccactgtataat ctttaacaat attaactaaa tgtaattttt gcatataata
80351 acatgtttaa accgtttaa aaaaacaggg catcttgcgtt ggcgtgggt
80401 ttccacccctg taatcccgac actttggaa gccgaggccgg tcggatcaca
80451 aggtgaggag atcgagacca tcctgttttca catggtaaaa ccatgtatct
80501 actaaaaat aaaaaaaatc agccaggcat ggtggccggc acctgtatc
80551 ccagttactc gggaggctga ggcaggagaa tgatgtaaac ccaggaggcgc
80601 gaactgtcag tgagccgaga tcgccttact gcactccacg ctggccaa
80651 gagcaagact ccgtctcaaa aaaaataaaa aataaaaaaa ataggatgtc
80701 tttcagcattt gccttattttc tatgtgtggg ttacaaatta gtttcatttt
80751 atccagaaga taatgaaggg taaaatttttcc tacattttt ggtgtcagta
80801 tttgaaggga tgacatatat gttcaaaagct taagccatgt tttatgtgt
80851 tataatcaaaa tataatagac cttttttca cagacttctg ttttaggtgt
80901 ccaagctgtg tactaagaga gaggtggaaa aaaattggaa aggagccatg
80951 atgagacaat aagcagaccc gtttaataa ctgctgtat gtacagtctg
81001 ggcgcacaaaa tacgtgtgtg acatttacca ttcaactata tatgttaccg
81051 agcaatgcac atgtgattttt cagcacattt tagattttt ggcagatgt
81101 aaattttgtgc tatgttagggc ctgtttttt tttccaaagg ggattaaact
81151 ccgaacccatca catccacatc ataagtgcctc aaaatggtag ctgtgtctgt
81201 taattcaatg tctgcaaaaat ctaaattatg ctccatataa gtggattata

81251 cacatatacg cacataaaatg catgttatata tactacatat tataaaatata
81301 tgccagaaaat ttgggtattt catattctct tacatgtcta cactttatga
81351 aaagtagtat taaaggaaaa ataaagaaaat ctttcctaaa tgatcttaca
81401 cagcagaaaa aaattagaag ttacaaatga cttaaagtgt tctggattta
81451 gaaatggagg ggcattttt taacaccaa gagaccaggat ttttataaag cttatgttgt
81501 aatctataaa ccagatcaca gagaccaggat atggaggaa atgttgttta
81551 acaatcacaa cctgtatgag atagagatct ttttataaag cttatgttgt
81601 ctgaaaagga gagatggaaa acagaacccctc tagacaggct aagacagica
81651 tagtacagtc atttatacta attaataatg tgatgttaatt tctaatttca
81701 gtagcaaata gtattatcag accactgcat gtagtagatca ttgctcacga
81751 acttattgtc tggttattgt cactgatgt ctcsgaaatgt tggaatctca
81801 agataagaag gaaggtaaa gtttatctag agccccaaaa tatctcagcc
81851 aagttgttat tcagttgaga cttaacacct tctagaataatg aaaaacccac
81901 cacctctcca gacagcctat agcatcttg aaccatctt gagactactct
81951 aaaaataaaa agaaaagaaa agcaaccatt ccttacctgt agcaaataact
82001 gacttagtgc ttataaaatg tccatctcta acgaaagggt tagactctt
82051 gaagtttaat aaaaaactaa taatttatacg ctagcaagta aaatccacag
82101 acttgaaagc agcagagctc ccagccccat gctaataaac tcaagaggta
82151 aagacaauagc ccagagactg aatttagcaa gctccaaaag ccaacccaaag
82201 gctgagacaa agcatcttg ttttacaaat gtttagtagac cagagcaaat
82251 tgaaaagagt gggggacatc aaagaaccag aattttggca gatcaagatg
82301 ataaggcagaa gaaaagcaaa ctggccaaa actaatgtaa acctagaagg
82351 gaataactaat cttactaatac ccaaaaactg aataggtgag ccaaaaataaa
82401 aaaggcaagg aatggtaaaa gtgtgaatta aaatggaaat gtgcttgc
82451 atgatccacg ttcttgc tagtgtacaa atggcaaaaa tagaaaacct
82501 tctactctgt atcttcaaaa ctgagtatcc ctgctctcca ttttactttt
82551 cttttagtag gtgtacaggat ataacattat aaagaactac agctggaca
82601 gattttatac agtcctctt cctccatttc atgaatagag aatctaactt
82651 tcagagtctc atcaaagatgc tagaagtatt cccatgttca cagcagttag
82701 actttaactc cctcagatt aaaatccagc tctgtcccaa gttgaaattc
82751 atgttctcta cattccatca ctggatgaga ccattcaatc taacttaggc
82801 aaaaagaaaat gtcacagaga aggccacaca caaaaaaaaa aattttattt
82851 tgattttatt tataatcatg gtgcctatgc tataccaa aagataataa
82901 atgacaatgc ctaattgact tactaaagaa cagaaggtagt atctcctggc
82951 agtattgccc aacaatttgc cattggctat tggtagattt atggagataa
83001 atactgctta ttttataaag taacatgttt atggacaggt tacataccgt
83051 ttgtcttctc tcagactcat tttagtgact ttttataatt ttttattt
83101 aacagtgtt ttgaaaatttt tgagtgcatt tttttagtatt ttttccaggGG
83151 CATTCTTGGC TCAGGTTTTG CATTAAAAGT ACAAGAACAA CACCGCCAGA
83201 AACACTTGA GAAAAGAAGG AACCCAGCTG CCAACCTCAT TCAGgttaat
83251 gtcaatgtaa taggttagatg gcaacatttgc ttccatagt gcttgatggg
83301 tcattttcca atctctgtgc ttcatgtttt ggttagaacta ctgctttttt
83351 ccttttcata aatgtaaatgc agaacttaat gtacagtctt ggattttggac
83401 agtcttggat ttgttccctcc tctccaaac tgaaacacat gtatttttag
83451 caaatggtcc atgcattgtt cagactaagt aaccatgtca gcaaggccat
83501 gcaaaaggta gcagggtgtt ggctcggtt attatctaattt atgtctttag
83551 aattacttga tggaaacgtaa ttgatcatttta agtgtatggag cagaacacagg
83601 cattgttccc tgcatcattttt ttttacttctc cagccagatg tatgttgc
83651 ttttaaaagaa caacatattttt gtttagaaatg tcaagggtttt atacctgtga
83701 aattgtttt atgtccatctt agggcatttta gggcatttgc gggaaatag ctatcctatt
83751 ttgagagctg atgggactat ggaatcatc agtgttttagg aatattaaac
83801 aataagtata taatttgaag ctatgttccatc atacataggt tgtagttttag
83851 tatttcattt tttttcaactt aactcaggat tagttcaggc actaaaaggaa
83901 atgtttctcc ttttgcattt catatattttt ccatttttttgc tccagggttt
83951 gaatcacaaa atatattttt tgtagatttccatc ataatgttgc gttgacattt
84001 agttatggac aaaataatttcaacatcttca agtttctccc cttctgttag
84051 ggaagtggaa gctaccgaat ttctaaactg ggggttttgc aagtgtgtct
84101 ccaaggccctt aggaaacttgc cttaaagct gcaatgttgc gcaactgtt
84151 ttgttgcgtt tggtttttt ttttattttt tggtttttt gttttttttt
84201 ttgttagaca ggttgcgtt ttgttgcggc ggttgcgttgc cgttggcggc
84251 atctcggttcc actgtcaagctt cccgtttttttt ggttgcacgcatttcttgc
84301 ctcagecttcc cgatgttgc ggttgcgttgc cccggccac cggccggc
84351 taatttttttgc ttttttttttgc agagacagggtt ttttgcgttgc ttagccaggaa

Exon 7(C)

FIGURE 1AB

87551 taggcattgca agatctaaa aattaatcta ccatttaccc ttactcaaga
 87601 aactttgtaa atagaacttc tcttccacaa caaggggata agccaagaga
 87651 gaaagagaca tggagtcaag aaaacaagag attccgcaca ggaaagagca
 87701 aaggggattt ctatgataat agggaaaggga agtcccaga caacagctat
 87751 gcaggccttg agaacagaat gagaaggagg ctgagagctc caggagaaag
 87801 atcttcaagg aagcgaaaga atggagttct cagatttcat gatgcatttg
 87851 accagagggaa ttttatagtt ctgttggaaa gatctggaa gtaatcataa
 87901 caggtacata taggcaaatac aagaaaatcaa aatagggca ttataactcc
 87951 aaaaaaaacca aaaacttgta taagaaaagaa agagcagcca tagtacatca
 88001 cattgctgaa ctggAACAG cagttacatt gtctataataa tattaaatag
 88051 taacttagct aagaattgtg atattaaaat gttgatagga tgaaaggagg
 88101 ggaagagggc atgttaagtgg gcaatatcat tattcgttcag gataggaagt
 88151 taattgataa tgtctaaaat tgaaaaatca agaaatataa ctataagcat
 88201 aatccttaaa aataagcatt ctggctggc cgcaagtggc tcattgcctgt
 88251 aacccccgca ctggaggg ctaagggtgg aggatcaccc gaggccagga
 88301 gttcaagacc aacctgtca acatagcgag accccaccc tacaaaaaaaa
 88351 ttttaaaaaag tcaagtgc当地 tggcacacac ctgttagtct cacacaccc
 88401 tagctactca ggaggctgaa gccagagat tgggtgagcc tgggagttt
 88451 aagctgtgt gagctataat tgcattactg cactccagcc tgggtgatag
 88501 agtatgaccc tgcattcaaaa ataataataa taataataa ggattctaa
 88551 aaatagaagc aacaactata agaattgaag ggggtgcctc tgaggaacag
 88601 aaagtagtgt gaagaaagat gtggaaaggg attgctggg catagccctaa
 88651 aactttcagg acttccat tttaaactct gtacccctt gaaataagct
 88701 ctgtgttcat tattttttt gatggtcagc tgaaacgttc taaaccattt
 88751 ccagtaagga tcaaacatgc cataatggta atacttgc当地 gacaaacaaa
 88801 atactcccaa aaaaactgaa ttacttgc当地 cttgtactta ttgagcaag
 88851 tccaaatccc ttgtactgcc tagagcacca gcatcaccc taaaatggca
 88901 aagttggctc tcattttgtct tttttttt gatggtcagc tgaaacgttc aattgtat
 88951 accatgtaaa ttaaccatgc gaaatccctc taatgtttt ttttctctt
 89001 ccaactactg tgcattttt gctttttaata taggaacatc agctacttgg
 89051 tcacagggat gtgggttcaa agttcagctt ctagaaacaaa tttgcttaaga
 89101 gagacctaag aacaaaataa agtttatttta gtttacccggg catagagtt
 89151 cactttccac ctttccattttt actgttaactt aatatcagcc atgtgacaga
 89201 tgccacctgc accttccata ctttccattttt aaaaaggcatt tttggagat
 89251 gagtaatgaa gggacaaca gtttagctgt tgggttcaat ctgagggaaa
 89301 aatagcaaga catcaggctt cattgtttaa aaaaatcttta attttcttgc
 89351 agtggcctct tttttttttt gtttttttta acattcacag gcaatgcctt
 89401 ggtcccattt tttttttttt ctgttgc当地 gattttttca actggtatct
 89451 aataatgtgc agacccgttcc tatgttccat gtttccatagg agtcttgc
 89501 tcaatgttcc aaaaatccata tatgttgc当地 atcttctatg gaaattttt
 89551 aattaaggca ggcgttgc当地 tcaatccatc attagaggat ctctggccat
 89601 cactactaca gaagaagcttcc caatccatc tccatgttcc ttccatatt
 89651 atcttccatc actctataaa ttgttgc当地 ataatatttgc caaagattaa
 89701 catttcaaga tttttttttt tttttttttt tttttttttt tttttttttt
 89751 ttagcacaaa tttttttttt tttttttttt tttttttttt tttttttttt
 89801 atgaaggca ggaactttttt gttttttttt tttttttttt tttttttttt
 89851 aaaaatgtttt tttttttttt tttttttttt tttttttttt tttttttttt
 89901 ctttcttgc当地 tttttttttt tttttttttt tttttttttt tttttttttt
 89951 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 90001 caggaccccttcc tttttttttt tttttttttt tttttttttt tttttttttt
 90051 ctgtgttcc tttttttttt tttttttttt tttttttttt tttttttttt
 90101 tatggaaatgttcc tttttttttt tttttttttt tttttttttt tttttttttt
 90151 catgttttttcc tttttttttt tttttttttt tttttttttt tttttttttt
 90201 tagtatttttttcc tttttttttt tttttttttt tttttttttt tttttttttt
 90251 ttttttttttcc tttttttttt tttttttttt tttttttttt tttttttttt
 90301 tagtacatcat tttttttttt tttttttttt tttttttttt tttttttttt
 90351 ctttttttttcc tttttttttt tttttttttt tttttttttt tttttttttt
 90401 agaaaacttcc tttttttttt tttttttttt tttttttttt tttttttttt
 90451 agcatacatt tttttttttt tttttttttt tttttttttt tttttttttt
 90501 acatcttcc tttttttttt tttttttttt tttttttttt tttttttttt
 90551 agggatgtgg cccatttttttcc tttttttttt tttttttttt tttttttttt
 90601 gcctgttcc tttttttttt tttttttttt tttttttttt tttttttttt
 90651 gaggagttca agatcaggcc tttttttttt tttttttttt tttttttttt

FIGURE 1AD

90701 aaaatacataaa aatttagctgg atgtggtggt gcgtgtctgt agtcccagct
 90751 actcaggagg ctgaggcacg agcatcgctt gaaccagaa ggcagaggtg
 90801 gcagacagcc aagattgtgc cactgcaactc cagcctgggg gacagaggg
 90851 gaccctgtct caaataaata aataataaaat aaataggttt gtcacataaa
 90901 ataaaatgtt ttgattaatc tactataata aaaaagttt ctctgaggg
 90951 actggagtaa atacctggcc attagagatg tttgcagact cattaaaaaag
 91001 aaagaaaattt accaaaatct atatggaaa gtaaggcgg gcaatctc
 91051 aaatgagcag ttcatggaa agctttcca ataacagtct tcaagcagtc
 91101 agcaagtctc cgtggaggga ttctatgact gacagccagg caatctgaga
 91151 tattgtctca actccaccaa ctttgtataa acctcttcat ttatctgagc
 91201 ccttttttc tcacctacaa aaaaaaaaaa ttaattcaca ctttgatgg
 91251 gagatcaca taaaataact ttgtcttatg tatgccaggt gtaattata
 91301 gaaatggaga gagttgatgt tttagatcaa agagctataa acatattct
 91351 agatcatggc ataaaatccgt aggtttttt cagctataca cctagagagt
 91401 acatttccc catcttgcgt tagttctgct tcttgatatc actatcttca
 91451 ttttagcat tagaagtatt acatagttca aggatttcat taattcaatc
 91501 actagcatac cctgggttcc attagttaac tagttagttt actagttgca
 91551 taatggattt tcattagttcc ttgtcttcc ctttatcaaa tattgattaa
 91601 agatcaatct ctagaatgta tgctcatgct caagtcgtc acctaactac
 91651 tattttggat attagcattt aaccagtcaa tcattacttt ttgttttgg
 91701 taatatagtt tctttccctt accaattcaa aaattacatt atattgcact
 91751 ttttgggcct ttgtcttcc ttgtatgtt gttttttttt gttttttttt
 91801 aggcacagtg gttcataacct gtaatcccag cacttggga ggccaaggca
 91851 ggcggatcac ttgaggtcag gaatttgaga ccagcctggc cagcatgg
 91901 aaactccatc tctactaaaaa gtacaaaaaaa aaaaaaaaaat agccaggcat
 91951 ggtggggcgc acctgttagtc ccagctactc tagaggctga ggcacaagaa
 92001 tcacttgaac ccagaaggca gagattgca tgagctgaga tcgcaccact
 92051 gcactccagc ctggcaaca gagttagtcc ccatctcaaa ataaaataat
 92101 aataaaaataa aataaaaataa aagaagtctt gatgtgggtc aatatgtt
 92151 acagccagct gaaaatgcca aagtgcctt cttccctt tgggtattta
 92201 tcagggtctaa gtataagagg caaaagattt ttcatgtt gtaactttaat
 92251 cattttctt ttatattttt tctaaatccct gtcctttttt ttcttttca
 92301 tggccccatc tatgccacat gcaatgtgtttt TGGCGTAGTT ACGCAGCTGA
 92351 TGAGAAATCT GTTTCCATTG CAACCTGGAA GCCACACTTG AAAGGCCCTTGC
 92401 ACACCTGCAG CCCTACCAAg taggtatca tgtagcagct ggcactttag
 92451 ttgagtcttt tcaagttctgt taaacaaaacc ataccacac acacaaaaaaa
 92501 aggtgttaat gtttggcttc tcttattctc ttttttttccctt agagagatc
 92551 aaacctatctt agtagcagtt ctggcacaaa actaaatggaa atcagttatca
 92601 ttccctacaa tccacagact ggggttaaag attaaaataa tgtaaatttt
 92651 atagagattt attttacta ttcatgtt actttctaat gtcttatttc
 92701 gtaaagccca ccagcatctt aaaggttaagc accacagtcc ttgaaaaaca
 92751 aggattattt atttgcacc catgccttga ccccaagaga tgagtgttta
 92801 gagagtaatc catcttgcgtt ctttttagatc tctcaagcc atttcttcatc
 92851 tggatccctt ctggatggtc ctcaagctt tacttgcaga tcaaactcac
 92901 atcagttggca aaaaaagaga aaaaataggag tcctaataagg attatagtt
 92951 acaatgaggc aatgggaccc agcggattaa aatttggaaat ttgcattcac
 93001 aattttaaag taagactact ttcttcaca ttcatggc caaaagtaaat
 93051 cactcagcca tgcctaaatt caaagaaaat ggggaagtac aattttact
 93101 ttaccatgt gccttagaagc aggcaagaac caaggacatt atggacagtc
 93151 ctaatgatta ccacagagat ctgttaattaa aaaaaaaaaa aagggttttag
 93201 ttggagtc ttggaaaccc ggactccagt tcaactatca cagaaaatgt
 93251 taatcatat tcaccaccta attaaagaaat tccttatttga aataccgaag
 93301 cagtaagtca tgagaaaggc ttctgttgcgt tcaccatgt tgattagcgt
 93351 agtcagttcc tcaagggtttt caaaagttat taaattgttc atccgacatt
 93401 tgagggcacc agctgtttt ttcatgacc caacaaaacc ttaatcctag
 93451 tgcttcatttggatggc cacctacta ctgtgactca caaaaaacca
 93501 cctgttcgtt ctgatcttgg gagatatcag ctgagggaaac ctccatgaca
 93551 ttccctggca gtaccgtctt aatggaggtt ttttttttttcccttgcag cagaatgt
 93601 accattggga agcaccatc ccatcattaa ctacattact tccctgttct
 93651 gcccggcc tcagtttcc cacccacaaa gagaaggaca aggttgg
 93701 aagatgattt ctaagctcta atggaaatg cttcttgcgtt ggtggatct
 93751 aaaatttttgcgtt tcagcaccta ggacagagat attcatagca ctccaggat
 93801 ttcagagagg atggaaacctt agcatggata gaagcatggta tgctgttggaa

Exon 8

FIGURE 1AE

93851 tgcattttt gattaaaatc ctctttcat ttagatcttg aagtttagtt
 93901 gaactttta tggaggtaa gacccttca acatttgat atcaaaaaac
 93951 cggaaataga acctaactcc tggccattt attccttggg agtatgaacc
 94001 aaaaataaaa attatataga aattgttatt cttgtttca tgaagtttc
 94051 taggtaaatg taaaaggaa atctgatgt gaaaactgtat agagaatct
 94101 caagtgcac aggagagtgg tctattatca tatgtgatta ttggcttcc
 94151 cacttactgc agtttttgg aaaaagtca taaaaggcct ggaaaaactg
 94201 ttaataatg agtcaattc cccagtaaa tcaactatta ttttattcac
 94251 ataagttctt tctacttcc tggatatttc cctgtttaa gtgggggtgg
 94301 aggtggagga ggatttatgc aaacacactgt gttccatg tcctactgtg
 94351 ctttccctc actttctt tcctgaaac tcatgaacca tggggctcag
 94401 ctccattgaa tgaagaacag ttatgttcc agaatgacac agcagtcact
 94451 ggttaagttc atggggaaact agatgttca acatcttcc cttccagtg
 94501 atgcttcatt gcttcaaaat gcagaggttc ttaatcctt tgatgttt
 94551 ttgttaaacc attgagaatg tgatggaaat tatgggtct tccccaaagaa
 94601 agataatcaa tgcacggaaa aatcaataact tgcetacaa ttttaatgt
 94651 ttcacagat ccctgaagcc aagttcaaac tttgttttcaaagcaaaac
 94701 ttgttttaat caagtgcacaa taatttcag tgacttagag ggatctttt
 94751 acatttaatg ggcttaccga atggagagtgg ttgttagtaag aaacagacta
 94801 caattactat ttatttaca ttgtgttattt tcctttagca ttcagcctaa
 94851 gaacttctga tggggaaagat catttattca gtcatgtatg cattcaacaa
 94901 ttactcatttgc acaccatcg atgtgcagg catgttca ggcactgaga
 94951 atgaagcgt tggataaaa aaaaaaaaaa agttaaatc tctggcctt
 95001 ggaagtatgt attcaaggaa tggtggata gacaatataa ataaataat
 95051 ataggatatg ttagatggca ttaatgtcta aggagaaaag taaaataaag
 95101 aaggaattta gggagcatca gaggctataa ttcaatataa gtggccagg
 95151 ggaagatcaa ttatcaaca atatcatcat catcatcatc aatgttactg
 95201 ttatcatcaaaaacaccatcccatttttttttttttttttttttttttttt
 95251 catagtggaa tgcttttgcatttccactaaaca ggatgaaaga gaggtctaaag
 95301 aaacagctgt gcaggccaga gagaatggg aggaggaca ctcaaacctg
 95351 ccagggttac aaccacatcg tcttttactt ctctttttagt gtttttttt
 95401 tcttttacat acactttaga ggttttagca attctatttca aagttttat
 95451 ttatcaaca gaaggatgtt tagaagcaag tactttctt gattttctcc
 95501 tcaaaagagat tgaagtcga aaggccaaaa cacagtaaa tatgttattt
 95551 agggaaatgat tcaaaaattt tatgaggctt tggggattt tcaagctcca
 95601 aaaacacctt gtgttttttttttttttttttttttttttttttttttttttt
 95651 taaaggcctt gatttactca taagaaaacc aaaacactgca agcaaataag
 95701 gtgcctgccc aaaggcacac agtcgtttt ccaagagtac agaccctaca
 95751 ccatgggtgtt tagacccata ttgtctaaaa tgagtttataa caaatgccac
 95801 ccaacagttat aggttttttttttttttttttttttttttttttttttttt
 95851 tactccaagg aaatttagat ttatcatgtt aaaaaaaaaa atctgcctca
 95901 gcaagtgtact gagatacaat tcattatgtt atccagggtt agaaacccaaa
 95951 gtctgccaga tgcacagaga acagttatgt tgtaacttgc aacattctaa
 96001 gagcccttgc taattcttgtt tagatcagaa ccacttttcc tttagccatgg
 96051 atagctttgg ctaatggaaa gtctattgtt ttttattctt tggggcagt
 96101 ctggcttttgc ccaagttaaat gttgtgttat ctctggctt ttttattctt
 96151 aatatatgtt agcaaggatgtt gtacatttttataaagaac actgtttt
 96201 tggatcttgc atggaaagat ttacttaagg ttttatttttcccaatctcc
 96251 aatttggcca ttatcaatgtt ctataaataat attcaactgtt ttatcatcat
 96301 ttctttcttgc cctgcacgca cctgaagGAA AGAACAAAGGG GAAAGCATCAA
 96351 GCAGGtttgtt gatttcttgc ttgttacatg tttgtttataatctgtatc
 96401 ctaccagggtt ttt
 96451 acaagatgtt taaaatgttgc ctttcacaag attgccttgc aagattgttca
 96501 ttttattgtt atttccccc ttgttatcaa agtgccttcc ccttacttcc
 96551 tccctgtttt ttcaaaatctt gcaggccatg gaacatttgg aggtgggg
 96601 ggaggggaaac tgatcttggaa ttgttccctt ctgttttttttttttttt
 96651 agtcttgc aagtattcaat atatggtaat ttagatgttgc aagatgttca
 96701 attttttttgc tgaatgtaaa aagtccaggc agcagtttgc gataacttcc
 96751 ctttacttgc ggtcccttctt ttggatgttgc atatatataat atatatata
 96801 atatatatataat atatatatataat atacacacat atatatata
 96851 tatacatata cacatacata cattatgtt atatgtat atacatata
 96901 atataatctt ttt
 96951 cagatcttgc gcccacttgc tgcttggatgttgc tactcaatgttgc actcaaaagag

Exon 9

FIGURE 1AF

97001 cccatcccc atcttttagg aagaagacaa ccctcccaa aattcccaa
 97051 ataatttatt atcagcttcc catgacttag atggaatgcg tcgtcagatt
 97101 acagcagaga attaaaccta gagggaatac gaggtgaaag aaaaatttct
 97151 tgatctgtgt taatgagtag caggaagtgc ctgatgttga gagcaaagcc
 97201 ctgaaaaaca gagccagggtg gaaccaggta ttaatgtatgt gaagagtgc
 97251 agaggcagaa ccagcaagga gaatcccagg tgcctggaaa ggaagaagag
 97301 atacattttt ttctctatca ttgtcaactgt gttccataa agaaatgaag
 97351 gcatccaccc acccagagtt ggtccctaag tggagccag tggggccca
 97401 gggattgttc ttttagctta gtactattat aataattata ttaataataa
 97451 tatatttagt caatactgaa gcagatttt aaagttcaact tggtgtatta
 97501 aggctctgga ttatccattt ttgcattatg tttatatgtt aagataaaaca
 97551 aatgaaaaca taaatgcatt cgcttatgtat gggagatagg cacgatagga
 97601 tataacaacat caggcacatc ttctcgtagt gtaacctacc caagggatgg
 97651 cattaaagtt ctctcttta ttggtagca tagagtttga gccaaggcca
 97701 ttggatattc ttggagata ttccagaaa aaagtcattt tcccccacct
 97751 aagaaacgtt ttgcacaaa gagaggttct agtcatttga ttcggaaatag
 97801 tcttgccca gacactggaa gagacaagct gaccaattct agacttttag
 97851 tccatccatc agattccata cagagctcac catccctctg ttgtgacaat
 97901 ttacttgaa aaaagtaca caaaataaat catagccatt ttaaggttag
 97951 ttatagttgc ttgggtgata tttaaaagc ttcatgttc tcaggagctt
 98001 tccatccatc aattatctca aagggtgatc tgcctccaaa tccaaaggac
 98051 agagaccatc ttggcacaat ttcggagac tacctgagag tgcgatcacc
 98101 catcttagtt tcatcccca aaacggagct gttacaccc taaaagagaag
 98151 ttgttaatg acatggaggt gcttgaataa gtgttaactc tatggcaatc
 98201 ctgaaggagg ggacaccttgc ggtggcaca atgatattgt actgttttta
 98251 aatgttagca cagcagaaaa caaagacaaa attaaagtgt cactgtttag
 98301 ctctgtca ctgtccaa aacaagctt ctattctt atcactatcc
 98351 aaaaaacta ccaaccaat ttccacattt tatgtatgtc gcataatatct
 98401 acgacattt cctctgtca tgcagcagac tgagggttc aaagataact
 98451 caccatagg tttaatatgt tacaaccaat ctgaatgggg ttgatgactt
 98501 agagaatcac acatggaaat ttcttgcttc tctgtggtca ttgaacattt
 98551 ggcaaaaacc accttggaaat aagtccgtca ctattactt gcctagatc
 98601 attatataat atcttatatt tcatacactt aggtgttca tcttccaact
 98651 agctgtcaca tcaccctggg taaagctatt acagaatgtg ctcaataaat
 98701 aattcttggg tagagtaata aaatggccct gacctaagt agtttgggg
 98751 aagagataaa acaccaacaa aaaaatggaa gagaggagaa atataaaaag
 98801 agaaataaaa aattaaaaac attgcaataa tctaaggaaa gtaagctgaa
 98851 gctcccattt aatattatgt aagctttcac ttgtgttgc tccatacaca
 98901 gaatttataa tcctgcataa tgaatgcaga aaggctatttga taataacaat
 98951 agcaacagta ccattttaga aagtaacaaa gttgttccca cccaaagccaa
 99001 atatcacaaa gtaaaatgc tttataatgtt gaggcttcc ttacagaaga
 99051 gtagatctgg gtccagagta ttgtttaattt atgcttgacc ccatttcaaa
 99101 ggaactaatt aacaccaccc aactgcagag taatttacttgc ctttgggac
 99151 cactgagttt ttgtatggtga gtcagaaagg cagaggagac aagcttcagc
 99201 ccaaggcagga gccacacattt tcaccccttta gcccagagct tggaatctcc
 99251 taatgttcc ttcattgtt tttttgtgt tacaactgtt gaaaaaccca
 99301 agtgttagatg aactcaacac agcagccacat cccttgcctt ggggcctgg
 99351 cactctcacc aaaggacgga gccatgactt tagatgggtt catacaca
 99401 gaggctttt tttctgcac attgatgttgc atgtcgaaca catttata
 99451 acccttagt aactacattt ccggctttgg aatgttctt tttttttttt
 99501 attttgtctt tctacactgtt ggcttagggta tttttttttt aatttgcct
 99551 acatgtctt gggctttagga aaaaatgtcac attattttatgt acagatccaa
 99601 aactttctt taaaatataa atggccaagt gcagtgcctc atgcctataa
 99651 tcccagcact ttgggaggcc aaagagatgtt gatcaccttga ggtcaggagt
 99701 tcgagaccag cctggccaaat atattgttgc aacccttca tttttttttt
 99751 acaaaaaattt gttggcgtt gttgttgcattt cctgttagtcc cagctac
 99801 ggaagctgag gcaggagaat cacttgcattt tgggaagcag aggttgcagt
 99851 gagctgagat cacaccactt cactccagcc tggacgacag agcaagactc
 99901 catctcaaaa aataaaaaat aaaaaaaaaat acaagccatc aatctgaaga
 99951 agagctttt aaatataatgtt cacttgcattt atagtgaaaa tactgtttca
 100001 tcagttctt ttggtacattt caggtacaaa ttactgttag tctcaactgt
 100051 gctgtgtt tttcccttca ctccaaatcat aaaaacttcc tttagcatca
 100101 ttatcttactt catttcttgcattt cccactaaaaa cagttactt

FIGURE 1AG

100151 ctcatataatg tgggtggtaaa tgtgtttatt gattcattc tattaaaaaa
 100201 ttatgtggaa aagtcatttt taaaatggga caagttttt tctgttttg
 100251 tataaattgt catttcaga gaactgaatt tacctctgaa tccatctgtc
 100301 cagaataagc caatattctc accttgaggt ttatgtggt tctcccttcc
 100351 tccttgacca gattatcaa tagtagtcag tcacacatt gataacaagaa
 100401 ggctttccct tcatatcacc taagtttat tgctacaaaa acagattata
 100451 ttatctgagg ttttagat atctatacat ctgcgtgcct ctagttactc
 100501 tgtcttcata atcaacaatg gttggctata tgccgtctg atacttaagc
 100551 ttccttaatg gcaattttaa aagctttgtt agaaccctt cagattctg
 100601 agtagactaa agttgttta ccaggatct gtgagactgt tgtaaagatg
 100651 catgtcttaa acgttaaggc aaaaatgata ttttatattt acattacact
 100701 cttgtgctgt gagccaccga gtgtttttc tgaaccactc ctgtgtggtt
 100751 ggctttggg ggaaggggga gttctgaagc tttgtgtggc tcttggagag
 100801 aactctagaa ccctgggaa agactgtgtc ttcttatattt tttctgcatt
 100851 ttatcccgtt ttatttcaat tttctttttt ctgtgtgcaaa tgaatgatct
 100901 gcatgtgtt gtaaactaaa ctcataaaga ctagatttt gtttttttcc
 100951 aacatagtca acttgtgtcc ttattggcaa aatgttccat tttttcaaaa
 101001 acaatcttc caaaatggc ttccttcattt ttcacattt ttgatagagg
 101051 aaacggattt agtcttctaa caacacatca taggacttaa aataagaaac
 101101 gtactttctt ttcgtttttt acaaaccaggc aatctagaat cttttcttct
 101151 gttttgttga acatataattc tatctgacaa ttgggttacct atatcaacta
 101201 taaatgcaga tttttcacac aaaccaagaa cttacgtttt caaatttcaa
 101251 caattaatgt catgattttt ttgatttctg tagttattct ttgaagttct
 101301 aaagtacgtt attaatttattt tatactatgt gttattgata ttttattacag
 101351 gggtagctt attctaaatg atttattttt acatgctaac acagagacta
 101401 tcatcatttgc tatgtatgc ctatgttcaaa tccatattttt caacctagcc
 101451 gttaaagatca ctggatattt ttcaggcaggc acaattaaac aacatagttac
 101501 tctctgctta aatagtctgt gtacttctat attaaaaaca ataaagccaa
 101551 atggctttgt ttttataaaa gaatccctga gcactttcattt attcgtaaaa
 101601 tgcattttttt tttttttttt tttttttttt tttttttttt tttttttttt
 101651 taataaggcag aagctttca gaatgtacac ctcacggaaag cagaggtacc
 101701 cagcatccgg gctattgaca tgagatttga gaatgccaac taacctcagg
 101751 tgcattttttt tttttttttt tttttttttt tttttttttt tttttttttt
 101801 actttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 101851 cttgttttgc tttttttttt tttttttttt tttttttttt tttttttttt
 101901 tcggcgttccc gctttttttt tttttttttt tttttttttt tttttttttt
 101951 ttggacaaact gcttgcgttgc tgacacgcact ggattttttt ggctcagttt
 102001 ccatattttttt tttttttttt tttttttttt tttttttttt tttttttttt
 102051 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 102101 ctaaaacccct aattaatgtt aaaaatataact acagattttt tttttttttt
 102151 ggattttttt tttttttttt tttttttttt tttttttttt tttttttttt
 102201 gcccgttagt gactgcatttgc taggcatttgc tttttttttt tttttttttt
 102251 tccttagatgc tttttttttt tttttttttt tttttttttt tttttttttt
 102301 tgatgtttttt tttttttttt tttttttttt tttttttttt tttttttttt
 102351 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 102401 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 102451 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 102501 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 102551 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 102601 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 102651 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 102701 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 102751 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 102801 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 102851 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 102901 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 102951 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 103001 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 103051 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 103101 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 103151 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 103201 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 103251 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt

FIGURE 1AH

103301 tgatatctat gtcaacttga gctattcatt aatctgaata aagggtgcaga
 103351 agtgagcata tgcttcctga actagatcat tgtaaattta aattatgaa
 103401 cagatgtgtt gaaaactaaaa agagatttga aacttttaca attttaaaaaa
 103451 aaaaaagctt gagaaaaaggta gatatttttgc ggcaccatcc ctttgacaga
 103501 ttgtttaaa taatttgaagg ctttgggatg acatggaaaa ccttagcctga
 103551 gaattaaaag atgcagggtt atgatgttat tggtgcctt gtttaatgt
 103601 atctatcatt taatcacaca tgggtcaagc acagataaac tcttccactg
 103651 ttgggattgt tgtaaagaac tcttgaaccc acctgaccc tcacccaaac
 103701 tgccccgcct gttcttgca tggccttca gcgagtcatg ctggacttag
 103751 ctgtgtctgc atttcagagg ggagctgtca gttgcattgtt caacttgg
 103801 attgtttcca gaactcccgt accaccagg catgatttga ttgttttca
 103851 tgtaaacaaca cataaaacgt ggtgcctt tagaatatcg ttgttaagc
 103901 aactaggcat ggaaaaataaa atgttactgt ttcttggtagt ctacaaagca
 103951 catatccact aaacacattt gctgttggca tgctgcagtt ggggacagtg
 104001 gacattgcgg taagtggaca aaacaaggcc tccacttcgt ctcaaataag
 104051 ccttatccat gagaacgctg ctttcatacc ccacaaaaggc tgcggcttta
 104101 ctctctcaga gtagctgctc tgagagactt ccctcagact cattggccag
 104151 gatttttca gggccctgcag agtccctggc ctctcacatt gatgacagta
 104201 tcacccctca atgaatggca taatttcaact ataaaggaaa caagaaaaaa
 104251 aaacagaatg ggtacacaaa gcttcttaca gttcatttga ttcccacaag
 104301 aatcccttag ctgtttgtct atgtttatct ccaagttttaga gatgagaacc
 104351 ctggggccctg tgggtctaat cccaaacctgc ctttccctagc acatcatagc
 104401 atatctctt attaggaaag tggtaagatg cactttggat tttatgattt
 104451 ttgttaatgc ttcttttatac agccccacaac aattttgatct tagccggcat
 104501 cagagaacug aatggcttgc aaaaatataat ttaccaggtag ctgccacacg
 104551 aaatcaataa cctgtttact agcaggaaaat tgggttagt aacataaacat
 104601 ctcattctct tcattcattca tcacattcat tatctgttgg ggctgttcta
 104651 tcttgggttgg ttttcatctc acaagaatgt atgtaagcat aaaagaaatc
 104701 taatgtttaag tgggtgtgt ttaatattat gtatgttggc ctaccaactg
 104751 ctatgagatt gcatgaaattt atggataaca taatcttgc tggaaatataa
 104801 aatgcattgttcc aaatgttggt atatatgtaa ctgtcatccc ttgttacctg
 104851 tagaaatgtc tagaaattac aaagagatata gctccaaac aaaaataat
 104901 tttttaatc tcaaaatgtt aggtttaaaggc taaaattacc caactgttt
 104951 tcaagtgaat tccaaaacag ttcttagtta tctacagtgt aattgtgtac
 105001 aaaatgctgt atgacccatc tcttttctac aatgatcca agaaggatgt
 105051 atgtacctgt agaatgagat tgatctcgaa tgcaaatata gagatttagt
 105101 aaagctaaa ttttaataaa gggaaaaata attgttatgc tcctacgtgc
 105151 tgaaaacatc ttgtctattt aaatataatgtt ccacatgagc ttcatcaa
 105201 tacttacccca agcaaaatgtt aagaaattgc ttgaaatggaa ataatcatgc
 105251 ctctgttctc cacagTCAGA AGCTAAGTTT TAAGGAGCGA GTGCGCATGG
 105301 CTAGCCCCCAG GGGCCAGAGT ATTAAGAGGCC GACAAGCCTC AGTAGGTGAC
 105351 AGGAGGTCCC CAAGCACCGA CATCACAGGC GAGGGCAGTC CCACCAAAAGT
 105401 GCAGAACAGGC TGGAGCTTCA ACGAACCGAAC CCCCTCCGG CCCTCGCTGC
 105451 GCCTCAAAAG TTCTCAGCCA AAACCAAGTGA TAGATGttaa gcccctgttt
 105501 tccataacca ttttaattt gataggctat agtgaatgtt attatgaatgt
 105551 aattaattct ccatagtgcc acttgaagaaa agaagaaaaac aaccccaagag
 105601 aaagaattgt ttgtttttt tatttggaaat ttatttcatc ctttggccaa
 105651 atgtacagaa cataaggtaa cttttggaaa ccacttggc agctaaattt
 105701 acattccaaa gaagctgaca aaatgttgtt aatttttccatc ttgttatctac
 105751 aaatttattt ctcagacaaag ggccacattt agatcaatgg gactgttatt
 105801 ctgtatgttatt tggacgtct gaccagcaaa ggtccaaagac ccagggacaa
 105851 ccagggtctt gctctgtgaa tatcttggaaa cacagtaagg aggatgttca
 105901 ttcttggtca acaatgaagg tgctcttcc ctcttcacca cactccatct
 105951 accagcaaat cagagaccac tgcttatctt ctttagagag gttcttgc
 106001 aaagtttattt cgaagtcttc caatgataag taaaattcaaa gtttttctcc
 106051 caagaggaat taaccttattt tatttcatattt attagttagc agacattcac
 106101 ttggccaaacac attttatttga gtggccacata attttcatgt ttataaaaata
 106151 aaatatttttta tttttcattt aagataagct tggcttctt ttaactagg
 106201 ccccttggga tctcttatac tgggcaaggg accaaaatca aatagcattt
 106251 cccattaaatg cataaaaaact acaaaggctt tcaatccctt tggccctt
 106301 tcctaaataa cgtgttattttt cccaggccctt caaagctcgaa gaaataaaaat
 106351 taacaaccag gggtcataat cacaatgatc tgaggatccc tgcagtgaag
 106401 tccctggaaac cgccagfcccac gggccctctt cagcttactc aaaggccctc

Exon 10

FIGURE 1AI

FIGURE 1AJ

109601 ataagtaaaag gagccaccat gcacatgcag gcaattgaat ttcacggtec
 109651 tcctacaaac gtattctaag atgttctcct agatattata tcaattttccc
 109701 tttagaatac tttcattct tccccccccca caaccccccac cacccttcc
 109751 ttgccgctgc tcttccaact tcaatcggtc agatccccct tcccatataa
 109801 gccacttgac catgaccatg ccactatccc atcttctcc cagcctcagc
 109851 tgccaaacct ctcaactaca tcatctcaag gcagccagag ctagaagatt
 109901 aggcaaattg gggaaatggc ctttcaatgca cggttctctg ttttgcataa
 109951 gtatctggga agagactcg gataacagcc atactggctc gtgtctattt
 110001 tccctggagg gaggccaatg gttagggctat ctgaggcctg tttcaagatg
 110051 caaaagatag tgtcagaaga tgcacaggtt ttgccaacag acaagcaagt
 110101 ggaagggtggc agattgcaag cgagaaatgg agcaagcagc caaaatccac
 110151 aagaatgata ctaaggtaga gctaggagaa aatcttcgga tttctggtga
 110201 ctagtttgct acgaaggagt cctacactt ctgaacccca ctgcatttgg
 110251 gagtgcctt cagaattgca atcaaagagt acaataaccc ggacagtgaa
 110301 ggagaaggac gtatctttag ggagctccac cttacagtgc ttgatattag
 110351 ctaaacccaa cgttctgttag taatttagcat gttcgatcca gaagtggcaa
 110401 tagatctgaa aatctgtctc acatacatgt ataaccatgc atgttttaac
 110451 aagtctaaaca ttgttctgc ttaaggagaa attaccattc ctgctgagca
 110501 atccctcagtgc ctcatgttag ctgcctatgga aggtacatcc tcacatcggtg
 110551 tttatgggaa aaactggcac agcctgggtt caggagatgt tttagggtca
 110601 ccagggtggg atctgggtga gatgaagatg cagaatatct tccgatttgc
 110651 ggggtccctc aaggctagtg ctttgcattcc aggactgtat ggtatttgc
 110701 ctcttccat tacccttcat gttcccttct ccttcagcc agtgtaccaa
 110751 ttaggatgca tttagcagca ggtcacaaaa gaagcagatt caactaccc
 110801 aaactataat gcaatttata ataccacata gaaagaggct cagagataag
 110851 acagctcc acagagcctc agggctctgg cttcatttct ctgatttct
 110901 gaggctttt ttgactttt ccatctgtt gcgttgcctt tcctcaggt
 110951 ggaagcaaaaa tggctacagc agttgcata tcttctatag atgcaacact
 111001 ttcagaggca gaaagaggcc atcttctatgt tttatctt cttaaaatgt
 111051 aggagaactg tccattcaca tcttattttt cagaatccctc atgcctaaaa
 111101 caatcaccag catggaggat gggaccgcca tcattggctg tcaccagtc
 111151 ggaccaggca gctggatctc ggccagactc ccctaaagca catgatcaag
 111201 tgggggggaa agtagctgga taaatttaag gatttaggtt tggggattgc
 111251 atttggggaa agcaacttcc catagtataa tatttgcata agccaagaaa
 111301 cctcttccac tttgggtga gggtaaggag tcagcatgtc cttaaacatg
 111351 gtgtttctc tcaaataattc tttctatag tcatttctgt tcctctaaat
 111401 gtcgggctt taaaacat aaaagccaga ttataattt ttttcaattt
 111451 tctctcatca catcatttcc atgaaaacaac aagcatagac tagactgtct
 111501 ccttgaattt caaatgaaag gcaaaatggg taaaggaaca actagcaaaa
 111551 ataaaataat tagtatttca atcatataat ctttcttcac atacagtctg
 111601 ccataaaatg ttctatcacc accaccacta agggaaaact ggtacagttc
 111651 ctttcctctc cacctcctca gcagcttctt gacacctcgc tcctcaagct
 111701 gtttcttctt gtgacttctt cttccttctg aagttataa ctaacccagt
 111751 ctacacccaa aatagaaaaa aagtagaaaa acaccatgtg ggggtccaga
 111801 accctcaagt cttctttaaag atagttcatc cccttcctct cttctctttaa
 111851 ctcttaccta ggtttaggc ccaccaggctt accacaaccc ttgtttgaaa
 111901 atatcaagat cactgaaaac agtgacaaaaa aggccgatt ttaatgcaat
 111951 gttttgaca acttacatgtc actaacatgtc tcttgcattcc ataatggct
 112001 attttttcc aagcgtata aatcacagac ttttgcatttgc ttttgcatttgc
 112051 ctaattttatg cacacggat ttttgcatttgc actaacatgtc ttttgcatttgc
 112101 attttccat ggcatttcc ttttgcatttgc ttttgcatttgc ttttgcatttgc
 112151 gacatttttgc ttttgcatttgc ttttgcatttgc ttttgcatttgc ttttgcatttgc
 112201 ttttgcatttgc ttttgcatttgc ttttgcatttgc ttttgcatttgc ttttgcatttgc
 112251 ataattttcc acatgtatgt ttttgcatttgc ttttgcatttgc ttttgcatttgc
 112301 gactctgcat ttttgcatttgc ttttgcatttgc ttttgcatttgc ttttgcatttgc
 112351 tagggcttcc acttaacccatgt ttttgcatttgc ttttgcatttgc ttttgcatttgc
 112401 ctgagtaggg cacccttcc ttttgcatttgc ttttgcatttgc ttttgcatttgc
 112451 gttttctt aatgttataa acaaaaggat ttatttgcatttgc ttttgcatttgc
 112501 taaactcttag aatattttcc ttttgcatttgc ttttgcatttgc ttttgcatttgc
 112551 gtggagataa ttttgcatttgc ttttgcatttgc ttttgcatttgc ttttgcatttgc
 112601 aaaaacgcact ttttgcatttgc ttttgcatttgc ttttgcatttgc ttttgcatttgc
 112651 aagaaattgtt ttttgcatttgc ttttgcatttgc ttttgcatttgc ttttgcatttgc
 112701 caggttctt attcagttcc ttttgcatttgc ttttgcatttgc ttttgcatttgc

112751 ctccctctgct gtgtttcata tgtactcttg tccccctaag atctgcttct
 112801 cctattgggt ggagagtgc acctcaatct ctgggttcag accccaagtg
 112851 actacgttat ttcttggatt tctgagaaga gttgtgtctt agttgtttg
 112901 gactgtata aaaaacatac cataaaactag gcagccata aacaacaaat
 112951 atttacttct cacagttctg gaagctggaa gtccaaagatc atgggtctgg
 113001 aagattctgt gtctggagag gcccacttc cacgtgatc aaaggccgag
 113051 gttcccttgc ggtctttta tgagggcact aatcccattt attagggctc
 113101 tgccctata gcctaaaccat ctcccagagc ccccacctct taatactatc
 113151 actttgaggg ttagggattt aacatataaa ttctgggggg acacaaacat
 113201 tcagaccata acaggttgc tcttccatata ctttttgta aatgcttgg
 113251 cttagttttt agtgacgggg aatgtctttt ctatttgtat aagactgaag
 113301 ttccacctgg ctttctactc taatccaagt gctcttgc ttatagaaca
 113351 ggatttctgt cagattctc taggttctgt cccatgggtt gttgttactc
 113401 tacagtgata aggaaaatta tattctgttt ctgttggggg ataaaatagc
 113451 ttccctgttg agctctgaat ggatttcattt ccctcccttc cagcagaaac
 113501 tgagctgcc aatgacccctc gagtgctgcc ttaaccatac cttttggctt
 113551 cttagatcc aggtttcattt gagaacccca gggttataaa ctggagccct
 113601 atatttgtt tcatcagcaa agtgtgtgtg catgtccaca ttgatacttt
 113651 aaaatgaatc tgaatgctgt attagtttac tatttttaca tagcaaattt
 113701 ccctcaattt agtgggttga aataaacat acttataatc tcacagttc
 113751 tatggtcagg tatccagaag cagtttagct gaatggttat ggctaaaaat
 113801 ctcatatgag gttgcagtca agctcttggc tggagatgct gggagaggg
 113851 ccattaccaa gctcaactga gcatttgctt gcaggccctt tattttccctt
 113901 ccacattttagt cacacccctag gttgcctgaa tgcctatcg acatgcagct
 113951 ggcttcccccc agagagagct gagagagatc gcagagagaa gctgcagct
 114001 ttatgacat aagctcagaa gtgttgc tgccttgc atgccttctt tcatgtgtaa
 114051 gtggtcacaa agaccaaccc tgcacgtgtt aggcaggag tatacaggggg
 114101 ggttaataccca ggagatgagg gcccactgggg accatgttag agtcaggcta
 114151 ccacaaatgc ttccatgtatc attatgtctt taaaatttgc gatttcaacc
 114201 agtccctattt gttttccatc gaaacccaaac cacaatttcc ccatttccctt
 114251 cgacctctcc gttacccatc tgcctttaac gacatgggtt tataacttct
 114301 ggctcaacca ttttatgtcc agtacccatc gtattatatac taaaaaaaaa
 114351 aaaaaaatcc tggccttcaac ctatagctac gcaattatatac tccactctt
 114401 gtgcagactc tcaaaaggaa tattaaacaa atttgatgtt tgcattact
 114451 gcagcaacaa gttaaataaa atgaggaggc caggtgcgtt gtttcatgcc
 114501 tgtaatccca gcactttggg aggtctgggg ggttgcattca cctgagggtca
 114551 ggagttcgag accagcttgc tcaacatggt gaaacccctgt ctctactaaa
 114601 aataaaaaaa ttggccaggc gtgggtggcg gCACCTGTAACCCAGCTAC
 114651 tcaggaggct gaggcaggag aatcacttgc atccaggaaag aggagggttgc
 114701 agtgagctga gattgcaccc ttgcacttca gcctggcga caagagcaag
 114751 actccatctc gaaaataat aataaaatattt gttggggag caggacatga
 114801 actagtctgt tgccaaacca aagtgtcata acttctaacg cagctctt
 114851 tcttgtacaa tgcatttttttgc ctcttcagct tttcaagagg ttgaagatata
 114901 gttcttgggtt gtttcaagg gcagaaggcag aactaaaagg tgcgttgcata
 114951 caatatttttag ttcaatataa tggcagctt gcaacttagag actccacagc
 115001 aattgagtgg attccataat tggaaaggcatt caaatcaaaat ttggatgatc
 115051 aacagtctgg aatttctggaa agcttaaggaa gatcaacca gaaaacccct
 115101 aagaaaattttt ctccaaatc tgcatttttta taatctgttcc ttctggacca
 115151 atgcaaaatc tcttcatttgc ccattaaatc gtatccatc tagcaattt
 115201 atactaagaa atagaagagg aaagcaaggaa ttggctgagg aatggcaggaa
 115251 gtgagttttc tgccttacc ctatgttgc gtcttttgc taccgagaaa
 115301 agtcttccatc gtcgttccatc cctccactg tttcttttcc
 115351 actttctactg tcagccatag tcctttctgt cctaagaagt gtatcagggt
 115401 tgccttccatc accatttgc gttttatgtt tgccttccat agcggctcat
 115451 tcttagaact tgaataaaggc ctccacttggaa ttcaatttca tatcagaagg
 115501 tatttgggg ctgcacttca gagcttagcat gtttctggc attttagaagg
 115551 caggaggagg gctgtacaaac tgcacccca aagaacttac tggttgc
 115601 taagttttac cacccctggc cacccatgtt acagtatttgc ttggcacttgc
 115651 gggggacaaa aggcacccctc ctcatttttc agacttccat gttttcagaa
 115701 ataacatgtt ggtgacgtcc aaaatttgc caaaaataaggc aaaaaattaa
 115751 ccattacaca aatcacagaa tttagccat atttaagagaa agcactttt
 115801 agctgcattgg tgattttcc ttcatatatac tcaaatttattt tccttcaaaag
 115851 tcacacttag ttgtctgttgc cataaacaga aaccaatatac acacaatttt

FIGURE 1AL

115901 aaaattatat ttaatcgctt tcatagggttg ctctacttgg taaagaagg
115951 gggaaacaag gttaagtaaa ggcaggatc cttttctgc aatggatgac
116001 tgacatggga aagagatgag ttacccaggc tttgctttt gctaccgtca
116051 gtataaaaact ccctgacatt gtcccaaatt gcttttacag gtatTTTATT
116101 ttcaacatct aatttggtcg gctttcttc ctttgcattc ttttcttct
116151 tttgcccattgt ataatgcata acaacaattt ctgaactcca aaagcataga
116201 aacctcgaaa taacattacc tggaaaaat taatcttctt acctccagct
116251 accaagagaa tcatttgac atgaaaccct gagatttgcg tctttcatta
116301 atctaattgcg gtagcaattt ttataccaca tcgttctatt ggaattgtat
116351 actaatcatt cccaaaactc tttgaaaact attgttccc taatTTTGTG
116401 ttttgattga aaaatgtcat gaccctataat ctcttcatgt tatctgttg
116451 atagctaacc ctctccctca gatttagtgg cttaaaaacag caaccattt
116501 ttttagccccac aattctgtta ggagttctt ctggctttaa gtgaactgac
116551 tcatactctg tggcagctg ctgtgttggc tgggtgtgac tggactaagg
116601 tggctcagt tagaattact gctctttgtt catgtggctt ctcattcctcc
116651 agcaggctgg gctggttcac atgggtgggg tgggttccc agagcagtac
116701 attgatatactt gaaggcctct tgaagttcag gctcaaccta tcacagtata
116751 atgtccacta tggcctgtt gtcggaaagca atggcaagga cagccacat
116801 gcaagagaca gagaagaga ttccacacttc tcatagtgaga agctgcaagt
116851 gtcgtggcca gtattgcaat ctaccatccc agccattaa agcttattt
116901 cttttagtat ttcaacatc ctgttggttc tatgaagaca gtgtcagtgt
116951 ctaattgact tttttatcc tcctgttagt atccttcaat caaagagcct
117001 aagaaaagaaa aggaaaatag cattgttagc acctcatgtt tggaggcatt
117051 ggcgttagatcat ttctatgaa ttggcttatt taatCACAC atagccattt
117101 tgcagatzaag gaaatttggaa cttagaaaaat gtaaaaact tggccacata
117151 attcaatgttca aatgccccaa ctgggggtttt aagtttgcact taggtctaa
117201 ttcaaaagctt ttatgttctt accatgtcatc ctgttagca tgTTTCTTT
117251 catataattc atgctgttca tggaaacagta taaaccagct gtatgttaac
117301 tgcttagtggaa atgattttt gctttctttt tcagtaataa tggcaagtt
117351 gctcaattta ttccctttt cattgcatac actacaaaata ttctctcc
117401 atacccatcac atgtcaatttta aggtatgcaaa cagtaatttcc cattttttt
117451 aaacaatgct tatgttacca tctctagaca agtttagtcca gatgatttt
117501 gggtaacat gttggcattt cctggcaactt ttactgttag ctgaaataaga
117551 gttggaaagtt gggaaaaat ttaccagatc tggatttagtt ttttgcaca
117601 ctgctataaaa gaactacctg agactgggtt atttataaaag aaaagttttaa
117651 ttgactcaca gttccacaac ctgtacagga agcacccctg gatgcctca
117701 agaaaacttac agtcatgtca gaagagcgaaggaa gctgtgtt
117751 acgtggtagc agaagagaaa gagacagaga gaatgagaaa gtgagagtg
117801 agggggaaat gcccacactt taaaccataa tccacccca tgatccatc
117851 acctcccccacc cagtccttcc cccaaacattt ggaataacaa ctcaacatga
117901 gatttgggtt gggatacaga gggaaaccat atcaagatct atttagaatt
117951 ctccagcaga tttgatataac aatatacgatt tggatttgcg caatttgcg
118001 ggtcattata aaacatggct gccttggattt caatcgata tctctgaata
118051 tggttcaaaag gaaacagatc tgggtttttt ggagatagga ttacataact
118101 ccctctcgtt cttttttccca ttgatcaga atgttctcc ctaagatgaa
118151 gtactgtttt agcttagaaat ggttaacagca attcatcacc aggcacagtg
118201 gctcacacccctt gtgatccccca cactttgggg gcccaggcc tggatcac
118251 ttgagccccag gagtttagaga cttagcctagg caacatggca aaacccatc
118301 tctacaaaaaa atgtaaaaat tagctggca tgggtgcaca ggcctatacg
118351 cccagccact tggggaggctg agaaaatggga ggatctttt agcccccaggag
118401 gttgaggctg cagttagccca tgatcgatcc actgcactcc atcctggca
118451 acagaacaag tccctgtctc aaaaaaaaaa aaaaaaaaaa aaaaaaaaaagca
118501 attcattgtat ctcatctgtt ttgacttagtt caattataca tggatggaa
118551 ctatctgaga tgatgtcagg tggatggcg tggatgttccc agtgtatctga
118601 atgtgattga ccacttggct tcaccaggat tatctctactg tttggatctca
118651 ataaaggcag tcatttctgtt ctatgatgtt acctccctt tggatcaaaac
118701 acttcgttca tatacttttggaa aactataaa aatccataaa aattgggttt
118751 tggatgttca tttttttttt tggatgttcc caggctgtga gttttatgtc
118801 ttttttttttctt attggatatac taatagtgtt atgactatag ttttttttca
118851 agaaaatttctt tatgaaaattt gatataatcc gacacagtgc atgggttttgg
118901 agtaaaacag aacttggttt aatccatgtt tcccccacta gtttgggtga
118951 gatgagacaa acgacttaac ctcaactgcca cttaatttgc ttttttttctt
119001 ctcttttaggg tggtagaaaat gatacctacc taatagggtt acgtgagtaa

FIGURE 1AM

119051 taataagata taatgtgtgt aaaattcttg tacaatgccc agcacagaat
 119101 aggtgctcaa tatattaaat atattgttat tatttattaa ttaattaatg
 119151 ctgatttctg cattaatttt gactaattga aatccctggac ttgcttaatt
 119201 tgcattgtatt tgtctccct tcttccagta cttgatggca atttctacct
 119251 gtggtaaatg gaacgttaaa agttatatgc ttatacaaac tttagtccct
 119301 tattccttgg agtgaggaaa aagagtcctc atggtgaata attcatgtaa
 119351 tcacagaaat aatactatgt atcagggacc gcttcctta taaaagataa
 119401 aggcaagtgg aataactgcct ttgtcagaaa tacttcagtt actctgagag
 119451 agagagacat ttgttacta tatgacagca cagtgcattt caaataata
 119501 aagtttggaa aatattattt ttaaatgaaat gaataatgaa cacattgtga
 119551 acaaataaaat gtttactat ttaattattc aggaatcaat taagctttat
 119601 taataaaaat tggttgggg tttaaaaag cccacacaca aatgagaggg
 119651 atcacaggaa caaacgttat gacattatta aaatcgttat tgctgaatca
 119701 caggcagca ataagcaagt gtttggggca ttcaataaag tgagtattt
 119751 agtgactcta agaagataat gaaactcctc cactgtttt cagttgcaat
 119801 aatttttaag gaacatataa aaacatattc tagtgtttcc atttgaataa
 119851 agatagtata tataacatata gcaattaaaa agaagaaaaga aaacaaattt
 119901 taatgtgttt ttctttcac ctatggggca gttacttagat gtatnnnnnn
 119951 nnnnagcttc atcttggccc tagaaaacag ttcagaaaag tattcatatt
 120001 taaaactggg gaggctgttag aaaaagaaga aagaataata ttggcaagac
 120051 aatggctga ctttacat atcttggttt atcagcttac tctgtgagta
 120101 tcccgccatt tccacgttag aaaaatttag caacatgttt caaattgcgg
 120151 atgggtgtgt tatttaactg gcaatattctt cttgcagCTG ACACAGCCCG
 120201 TGGCACTGAT GATGTATATG ATGAAAAAGG ATGCCAGTGT GATGTATCAG
 120251 TGGAAAGACCT CACCCCCACCA CTTAAAATG TCATTGAGC TATCAGGttt
 120301 gtggaaatct tgaacaacgt gattcagaga catacttatg attaattgaa
 120351 ttactatgtt gctaaggctt tttctgcag gtaaatatcc tggaaataacc
 120401 actttccctt tccttattcat nnnnnnnnnn aatagagtgt ttgc当地
 120451 catttgtatc tcaaaaatgc atgtgttcc ataaaagacc attttaacag
 120501 cctttatatt ttttaaggaa tgcttattact agatgtgtta tcttggactt
 120551 ctggagatttgc catggaaaag tttagaattgc attttgactt taacttacat
 120601 tcagggtttc aacggacatt aaaaaggcaaa aacacttagt gtcagcctc
 120651 ttttttagt gtttttctt ttcttaaggt gttgtctcac atgagatgtt
 120701 cttaaattgt ccactgtat ctcaggctt tatattacac atctgc当地
 120751 gccaaaaata attttagtgc tgacttttcc cccagagtt tcttattata
 120801 ttactgtgtt aactattttg gtaacttata ttaacagagtt tataaagatt
 120851 aatataatgtt atgttctcat acagAATTAT GAAATTTCAT GTTGCAAAAC
 120901 GGAAGTTAA GGAAACATTA CGTCCATATG ATGTAAGA TGTCAATTGAA
 120951 CAATATTCTG CTGGTCATCT GGACATGTTG TGTAGAATTA AAAGCCTTCA
 121001 AACACGGtaa gcaatggaaa tgtaatttcc tggaaaggaa tggccataga
 121051 acctatcttag gaagaacttct tcttttagtag agtaaacctc tgaactccat
 121101 atttttcatt catttttagt gggcaatgg aatttgcattt aaacattgtat
 121151 tttatttgc ttttaacata gatataactc aggcatccaa agcatccaac
 121201 tgcatttgcatt tccttattttg taaaatggg aagaaagttt gttcttgcct
 121251 tatagggttg tcatgaggat tgaacaagtt aatgcattgtt attcataaca
 121301 tgtaacaggc ctggactgt gtcataaaa catcaatggg tttgtctgat
 121351 gtttgaatta ttactgtgtc tgatcctaaa ttatctaaat tccatttatt
 121401 atctaaatttca taatcatctt ttggaaataa cgtacttattt ctcttcatt
 121451 aagtttcatc caaccatcca acctgtgaag acggggccctt ctctgacctt
 121501 tatacgttag cagagtctac tgcagagcac aagagactc agaatctcg
 121551 tgtgtctggc caaagtttagt acttggccct tttgttgcattt cctgggttgc
 121601 agtgtgttca cttgtctgt gactaagact gaggccctt attcatgtcc
 121651 tgtacgggtc tacaatata ctatccttctt agtagcatct tattgagtga
 121701 taaaagaaaa tgaattccac atgttatttca accacacata tgggttattt
 121751 tgattatctc aaagccaaaa tattcagtaa attcattttt ttaagagcc
 121801 tgcttatttca ccagcacaata ttaccagcat ttgtgatgtt atagtgc当地
 121851 aaatgcaagg actgagactt gactttttt tatgcccccc agcacactt
 121901 gcccagtgtg aggcatafaa tggccctta gtaaaaatacc ttttgcatt
 121951 ttgttataga aataacaatt ttttattca tttagcaggat aattattgag
 122001 cccatcatgt gtgccaggac ctgtggacat ccagagattt aaaaataat
 122051 gacccagacc ttgttaggtt tgcattttt gaaatttagat gnnnnnnnnn
 122101 ngaacatctg aacatgacca gagattgtgg tcatattgca atctctgcct
 122151 agatggccat ggccttctaa gttttaat aaaaactgtct acagctccca

Exon 11

Exon 12

122201 aggtttata aagttgaact gctacagaat ttatagaacc aatcttgggt
 122251 ttctagctca tgcgttctt ccaactgaa ctccgaaaaga aaaagaccat
 122301 ggctttcta tctgcttac tttcacat gtacaataga tgctcataga
 122351 ataatctgtt ctattaatgt aagatctcta tagttatgtat ttttgtcata
 122401 tttgaaatg gttaaattca ggaactgcct gatcagaggt agaaacatat
 122451 tactttgttag tttaggacac ttttacttcc agaagatcac ccataagtga
 122501 tttcatcttg gaccagaata atgagaaaat taatttcattg tgtaatctca
 122551 tgttcaaata agcatatcaa ctggaacaag ttctttctta tttcatctta
 122601 cataaaattga agataactgt attaatttt tttttccaaa acttttcatt
 122651 ctgacctagg gcaatctcca ctttcagccc tcataatcag atcttccttt
 122701 tctctgatag TGTTGATCAA ATTCTTGGAA AAGGGCAAAT CACATCAGAT
 122751 AAGAAGAGCC GAGAGAAAAT AACAGCAGAA CATGAGACCA CAGACGATC
 122801 CAGTATGCTC GGTCGGGTGG TCAAGGTTGA AAAACAGgt caactcaact
 122851 acgctggta tctttttagc cagaattttt ttaatcaaaa ttttattatag
 122901 gcaattgtat gtattccagt gattattttt aaataaataa aatcacaaaa
 122951 agagtgaata aaattaaattt ttctttgtgt gtagacagtg ctctctgaaa
 123001 cactctggat ttccctttaa ggaatagaaa atctcatctc atcaattat
 123051 agttaattgg aaacaactat agatttccaa tagttaaaaa tcgtttaaaa
 123101 ataacaagaat tctatttttcc atttgcgtttt cagttgtttt tattgtttt
 123151 ttttaggtc attaattttt tttttttttt ttttnnnnnnnn nnngggacta
 123201 tggcatgca ccaccacacc tgctgattt ttgtattttt tttggtagag
 123251 acgaggcttc accatgttgc ccaggctgtt ctcaaactcc tgggctcaat
 123301 tctctgtt cagtttttcca aagtgttggc attacaggca tgagccactg
 123351 caccacgtt ggaatggaaa gtcatttttta tagtgcattat
 123401 atgacttttta agaggcacta tttaaagaag tgggtgggggagagatgctaa
 123451 taaagactgt atagaagccaa aagtgtccct ctcttcttaa gtccttctct
 123501 gccccatca ttgttaatgtt ttcattttcc taagggttcaaa gactgcattcg
 123551 tactttat tcaatatttc tttaaatgtt ttggcacacc ttgacttcat
 123601 tttcaaaaat taaaaatga agtccattct taataacaga ttataactcat
 123651 gtgttaaccat tttcttact tctagGTACA GTCCATAGAA TCCAAGCTGG
 123701 ACTGCCTACT AGACATCTAT CAACAGGTCC TTGGAAAAGG CTCTGCCTCA
 123751 GCCCTCGCTT TGGCTTCATT CCAGATCCCA CCTTTGAAAT GTGAACAGAC
 123801 ATCTGACTAT CAAAGCCCTG TGGATAGCAA AGATCTTCG GGTTCCGCAC
 123851 AAAACAGTGG CTGCTTATCC AGATCAACTA GTGCCAACAT CTCGAGAGGC
 123901 CTGCAGTTCA TTCTGACGCC AAATGAGTTTCA AGTGCCCCAGA CTTTCTACGC
 123951 GCTAGCCCT ACTATGCCACA GTCAAGCAAC ACAGGTGCCA ATTAGTCAAA
 124001 GCGATGGCTC AGCAGTGGCA GCCACCAACA CCATTGCAAA CCAAATAAAT
 124051 ACGGCACCCA AGCCAGCAGC CCCAACAACT TTACAGATCC CACCTCCTCT
 124101 CCCAGCCATC AAGCATTGCA CCAGGCCAGA AACTCTGGCAC CCTAACCCCTG
 124151 CAGGCTTACA GGAAAGCATT TCTGACGTCA CCACCTGCC TGGTGCCTCC
 124201 AAGGAAAATG TTCAGGGTGC ACAGTCAAAT CTCACCAAGG ACCGGTTCTAT
 124251 GAGGAAAAGC TTTGACATGG GAGGAGAAAC TCTGTTGTCT GTCTGCCCCA
 124301 TGGTGCCTGAA GGACTTGGC AAATCTTTGT CTGTGCAAAA CCTGATCAGG
 124351 TCGACCGAGG AACTGAATAT ACAACTTTCA GGGAGTGTAGT CAAGTGGGTC
 124401 CAGAGGCAGC CAAGATTTT ACCCCAAATG GAGGGATTC AAATTGTTTA
 124451 TAATGTGAA AGAGGTGGGT CCCGAAGAGA CAGAGACAGA CACTTTGAT
 124501 GCCGCACCGC AGCCTGCCAG GGAAGCTGCC TTTGCATCAG ACTCTCTAAG
 124551 GACTGGAGG TCACGATCAT CTCAGAGCAT TTGTAAGGCA GGAGAAAGTA
 124601 CAGATGCCCT CAGCTTGCCT CATGTCAAAC TGAAAATAGT TCTTCATT
 124651 CTTTCCAGGC ATAGCAGTTT CTTAGCCATA CATATCATTG CATGAACATAT
 124701 TTGAAAAGCC CTTCTAAAAA GTTGAATTTG CAAGAATCGG GAAGAACATG
 124751 AAAGGCAGTT TATAAGCCCG TTACCTTTTA ATTGCATGAA ATGCATGTT
 124801 TAGGGATGGC TAAAATCCA AGGTGCATCG ACATTAACCC ACTCATTTCAG
 124851 TAATGTACCT TGAGTTAAAA AGCCTGAGAA ACCAAACACA GCTAATGCTA
 124901 TGGGGTGTAT GAATATGTCA AGTTTAGGTC ATTTAGAAGA TTTGACACTG
 124951 TATTTTGGAAA TTATGGGAGT AAACACCTTC AAATTTCAGG CATTCTGCT
 125001 TTGTGACTAA ATACAAACTA CATTTCAGG ATTAGGCCAT AATGTATATT
 125051 TAAACACAAT GGCTATCAAC AGCTGCTAAT AAGGTATCAA CTAAAGCAGA
 125101 ATTGGGGAAAT AATAGAAATG GCTGCTTATT TCAAGATATA TTTGCCAAC
 125151 CATTCTTATT CAGTCATTAT ATTATTAATG TAATTGAAAT GTCATTGTT
 125201 GTGCTTTGG TGATTTAGCG CTGTGGCAAG CAATTGCA CATCATTTC
 125251 ATGTTGTTCT TTATGACAAG AATGTTCTTC AATTAGAAAA TGTGCAAATA
 125301 ATGAAATTCA GGGCCAGTGA GGCAGATAGA CTATCTGACA TTTTGACTT

Exon 13

Exon 14

125351 TATGAAAAACA TATTGCCTGA TGGCAGAAC TC AACTTTATAA GTGGTCAACT
125401 TCTACACAAG CGTATGAAAT ACTGGTCAGT AGAACAGCCA TTGTGATTGG
125451 ACTGGTTCT CTGCAATGGC GCCAACCCCA GGCTTGCCAA TACTGCCAT
125501 GTAAAGGGCA AGTGTGAGAA GCTATTCTCA TTTCGCTGAC ATACAGGTAG
125551 GACTATGGGG GATGGGACAT TTGAGTGGGA CTGAGATAGG AAAGGCTTGA
125601 AAAGAACCCA GAAACACCCAC CAGGAAGTTG GCAAAGTAAA AGAAAATGAC
125651 TTCCCCCTCA AAGGGCAATG AGAGGGAGAG AAACAAACCA AAATAGAAGA
125701 ACTAGACTTT TTAGAAAATG AGTATTGCTA GGGAAATTCAA CTACCTAATC
125751 TTCCCTTATT CTTATATATA AGCAGAGAAAT TTTTGCAGG TATTTATTTT
125801 TTAATATGCC CTGAATGTCT TTTGCTATTA TGTGTACATT TTGCATATGA
125851 AAGTCTAAAA CGAAACCTCC TTTACTTTTT ATACTGTAGT GAAAATTTTC
125901 TATTCTTCCC AAGAATGTTG TCCCAAATCT GAAATTACTG GTTCAATTTC
125951 CTGATATAAA

FIGURE 2A

KCN6q cDNA

1	CTGGAGTGAGGCGCGGGAAAGATGCCTGGTCCTGCCTCGCGGACTTGGCA	50
51	GCCGCGTCCTCGGGGTCTGTCCACTGAACCTGCTGAGGACTGCAGGGCGGTGG	100
101	CCTGAGGGAGAGCCGCCGGGCAAGCAGGGGCCGGATGAGCCTGCTGG 1 M S L L G	150
151	GGAAGCCGCTCTCTTACACGAGTAGCCAGAGCTGCCGGCGAACGTCAAG 6 K P L S Y T S S Q S C R R N V K	200
201	TACCGGCGGGTGCAGAACTACCTGTACAACGTGCTGGAGAGACCCCGCGG 22 Y R R V Q N Y L Y N V L E R P R G	250
251	CTGGGCAGTCATCTACCACGCTTCGTTCTCCTGCTTTGGTTGCT 39 W A F I Y H A F V F L L V F G C L	300
301	TGATTTGTCAGTGTCTTCTACCATCCCTGAGCACACAAAATTGGCCTCA 56 I L S V F S T I P E H T K L A S	350
351	AGTTGCCTCTGATCCTGGAGTTCTGATGATTGTCGTCTGGTTGGA 72 S C L L I L E F V M I V V F G L E	400
401	GTTCATCATTCAAATCTGGCTGCGGGTTGCTGTTGTCGATATAGAGGAT 89 F I I R I W S A G C C C R Y R G W	450
451	GGCAAGGAAGACTGAGGTTGCTCGAAAGCCCTCTGTGTTATAGATAACC 106 Q G R L R F A R K P F C V I D T	500
501	ATTGTTCTTATCGCTTCAATAGCAGTTGTTCTGCAAAAACTCAGGGTAA 122 I V L I A S I A V V S A K T Q G N	550
551	TATTTTGCCACGTCTGCACTCAGAAAGTCTCCGTTCTACAGATCCTCC 139 I F A T S A L R S L R F L Q I L R	600
601	GCATGGTGCATGGACCGAAGGGGAGGCACTTGGAAATTACTGGTTCA 156 M V R M D R R G G T W K L L G S	650
651	GTGGTTATGCTCACAGCAAGGAATTAAATCACAGCTGGTACATAGGATT 172 V V Y A H S K E L I T A W Y I G F	700
701	TTTGGTTCTTATTTTCTGCTTTCTTGTCTATCTGGGGAAAGGATG 189 L V L I F S S F L V Y L V E K D A	750
751	CCAATAAAAGAGTTTCTACATATGCAGATGCTCTGGTGGGGCACAAATT	800

FIGURE 2B

206	N K E F S T Y A D A L W W G T I	221
801	ACATTGACAACATATTGGCTATGGAGACAAAACCTCCCTAACCTGGCTGGG	850
222	T L T T I G Y G D K T P L T W L G	238
851	AAGATTGCTTCTGCAGGCTTGCACTCCTGGCATTTCTTCAC	900
239	R L L S A G F A L L G I S F F A L	255
901	TTCCTGCCGGCATTCTGGCTCAGGTTTGCAATTAAAAGTACAAGAACAA	950
256	P A G I L G S G F A L K V Q E Q	271
951	CACCGCCAGAACACTTGAGAAAAGAAGGAACCCAGCTGCCAACCTCAT	1000
272	H R Q K H F E K R R N P A A N L I	288
1001	TCAGTGTGTTGGCGTAGTTACGCAGCTGATGAGAAATCTGTTCCATTG	1050
289	Q C V W R S Y A A D E K S V S I A	305
1051	CAACCTGGAAGGCCACACTTGAAGGCCTTGACACACCTGCAGCCCTACCAAG	1100
306	T W K P H L K A L H T C S P T K	321
1101	AAAGAACAAAGGGGAAGCATCAAGCAGTCAGAACGTAAGTTAAGGAGCG	1150
322	K E Q G E A S S S Q K L S F K E R	338
1151	AGTCGCATGGCTAGCCCCAGGGGCCAGAGTATTAAGAGGCCAACGCCT	1200
339	V R M A S P R G Q S I K S R Q A S	355
1201	CAGTAGGTGACAGGAGGTCCCCAAGCACCGACATCACAGCCGAGGGCAGT	1250
356	V G D R R S P S T D I T A E G S	371
1251	CCCACCAAAGTGCAGAACAGAGCTGGAGCTTCAACGACCGAACCCGCTTCCG	1300
372	P T K V Q K S W S F N D R T R F R	388
1301	GCCCTCGCTGCGCTCAAAAGTTCTCAGCCAAAACCAAGTGTATAGATGCTG	1350
389	P S L R L K S S Q P K P V I D A D	405
1351	ACACAGCCCTGGCACTGATGATGTATGATGAAAAAGGATGCCAGTGT	1400
406	T A L G T D D V Y D E K G C Q C	421
1401	GATGTATCAGTGGAAAGACCTCACCCACCACCTAAAACGTCAATTGAGC	1450
422	D V S V E D L T P P L K T V I R A	438
1451	TATCAGAATTATGAAATTCTATGTTGCAAAACGGAAGTTAAGGAAACAT	1500
439	I R I M K F H V A K R K F K E T L	455
1501	TACGTCCATATGATGATAAAGATGTCATTGAACAATATTCTGCTGGTCAT	1550
456	R P Y D V K D V I E Q Y S A G H	471

1551	CTGGACATGTTGTAGAATTAAAAGCCTCAACACACGTGTTGATCAAAT	1600
472	L D M L C R I K S L Q T R V D Q I	488
1601	TCTTGGAAAAGGGCAAATCACATCAGATAAGAAGAGCCGAGAGAAAATAA	1650
489	L G K G Q I T S D K K S R E K I T	505
1651	CAGCAGAACATGAGACCACAGACGATCTCAGTATGCTCGGTGGTGGTC	1700
506	A E H E T T D D L S M L G R V V	521
1701	AAGGTTGAAAAACAGGTACAGTCCATAGAATCCAAGCTGGACTGCCTACT	1750
522	K V E K Q V Q S I E S K L D C L L	538
1751	AGACATCTATCAACAGGTCTTCGGAAAGGCTCTGCCCTAGCCCTCGCTT	1800
539	D I Y Q Q V L R K G S A S A L A L	555
1801	TGGCTTCATTCCAGATCCCACCTTTGAATGTGAACAGACATCTGACTAT	1850
556	A S F Q I P P F E C E Q T S D Y	571
1851	CAAAGCCCTGTGGATAGCAAAGATCTTCGGGTTCCGCACAAAACAGTGG	1900
572	Q S P V D S K D L S G S A Q N S G	588
1901	CTGCTTATCCAGATCAACTAGTGCCAACATCTCGAGAGGCCTGCAGTTCA	1950
589	C L S R S T S A N I S R G L Q F I	605
1951	TTCTGACGCCAAATGAGTCAGTGCCCAGACTTCTACCGCCTTAGCCCT	2000
606	L T P N E F S A Q T F Y A L S P	621
2001	ACTATGCACAGTCAGCAACACAGGTGCCATTAGTCAAAGCGATGGCTC	2050
622	T M H S Q A T Q V P I S Q S D G S	638
2051	AGCAGTGGCAGCCACCAACACCATTGCAAACCAAATAATACGGCACCCA	2100
639	A V A A T N T I A N Q I N T A P K	655
2101	AGCCAGCAGCCCCAACAACTTACAGATCCCACCTCCTCTCCAGCCATC	2150
656	P A A P T T L Q I P P P L P A I	671
2151	AAGCATCTGCCAGGCCAGAAACTCTGCACCCCTAACCTGCAGGCTTACA	2200
672	K H L P R P E T L H P N P A G L Q	688
2201	GGAAAGCATTCTGACGTCAACCACCTGCCTTGTGCCTCCAAGGAAAATG	2250
689	E S I S D V T T C L V A S K E N V	705
2251	TTCAGGTTGCACAGTCAAATCTCACCAAGGACCCTATGAGGAAAAGC	2300
706	Q V A Q S N L T K D R S M R K S	721
2301	TTTGACATGGGAGGAGAACTCTGTTGTCTGTCTGCCCATGGTGCCGAA	2350

722	F D M G G E T L L S V C P M V P K	738
2351	GGACTTGGGCAAATCTTGTCTGTGCAAAACCTGATCAGGTGACCGAGG	2400
739	D L G K S L S V Q N L I R S T E E	755
2401	AACTGAATATAACAACCTTCAGGGAGTGAGTCAGTGCCCTCAGAGGCAGC	2450
756	L N I Q L S G S E S S A S R G S	771
2451	CAAGATTTTACCCCAAATGGAGGGAATCCAAATTGTTATAACTGATGA	2500
772	Q D F Y P K W R E S K L F I T D E	788
2501	AGAGGTGGGTCCCGAAGAGACAGAGACAGACACTTTGATGCCGCACCGC	2550
789	E V G P E E T E T D T F D A A P Q	805
2551	AGCCTGCCAGGGAAAGCTGCCCTTGATCAGACTCTAAGGACTGGAAGG	2600
806	P A R E A A F A S D S L R T G R	821
2601	TCACGATCATCTCAGAGCATTGTAAGGCAGGAGAAAGTACAGATGCCCT	2650
822	S R S S Q S I C K A G E S T D A L	838
2651	CAGCTTGCCTCATGTCAAACGTAAAGTTCTCATTTCTTCCAGGC	2700
839	S L P H V K L K	846
2701	ATAGCAGTTTTAGCCATACATATCATTGATGAACATTTGAAAGCC	2750
2751	CTTCTAAAAGTTGAAATTGCAAGAACGGAGAACATGAAAGGCAGTT	2800
2801	TATAAGCCC GTTACCTTTAATTGATGAAATGCATGTTAGGGATGGC	2850
2851	TAAAATTCCAAGGTGCATCGACATTAACCCACTCATTAGTAATGTACCT	2900
2901	TGAGTTAAAAGCCTGAGAACCAAACACAGCTAATGCTATGGGGTGTAT	2950
2951	GAATATGTCAAGTTAGGTCAATTAGAAGATTGACACTGTATTTGAAA	3000
3001	TTATGGGAGTAAACACCTCAAATTCAAGGCATTCTGCTTGTGACTAA	3050
3051	ATACAAACTACATTTCAGATTAGGCCATAATGTATATTAAACACAAT	3100
3101	GGCTATCAACAGCTGCTAATAAGGTATCAACTAAAGCAGAATTGGGAAT	3150
3151	AATAGAAATGGCTGCTTATTCAAGATATATTGCCAACCCATTCTATT	3200
3201	CAGTCATTATTATTAAATGTAATTGAAATGTCAATTGCTGCTTTGG	3250

FIGURE 2E

3251	TGATTTAGCGCTGTGGCAAGCAATTTCACATCATTTCATGTTGTTCT	3300
3301	TTATGACAAGAATGTTCTTCAATTAGAAAATGTGCAAATAATGAAATTCA	3350
3351	GGGCCAGTGAGGCAGAACATAGACTATCTGACATATTCGACTTTATGAAAACA	3400
3401	TATTGCCTGATGGCAGAACATCAACTTATAAGTGGTCAACTCTACACAAG	3450
3451	CGTATGAAATACTGGTCAGTAGAACAGCCATTGTGATTGGACTGGTTCT	3500
3501	CTGCAATGGCGCCAACCCCAGGCTTGCCTACTGCCTATGTAAAGGGCA	3550
3551	AGTGTGAGAAGCTATTCTCATTCGCTGACATACAGGTAGGACTATGGGG	3600
3601	GATGGGACATTGAGTGGGACTGAGATAGGAAAGGCTTGAAGAACCCCA	3650
3651	GAAACACCACCAAGGAAGTGGCAAAGTAAAAGAAAATGACTTCCCCCTCA	3700
3701	AAGGGCAATGAGAGGGAG	

FIGURE 3A

probe: DL/ER pre fragment.

FIGURE 3B

RT-PCR analysis of the KCN6q gene expression in human tissues

FIGURE 4A

KCN6q_ MS LLGKPLS
 KCNQ4_ MAEAPPRLGEPPPGDAPRAELVALTAVQSEOGEEAGGGGSPRRLGLLSPLPPGAPLPG
 consensus masapprrig-9pppgdapraelvaltavqseqgeaggg sprrigllg pl pgapips

KCN6q_ YTS.SQS.CR.RN...VK.YRRQONIYNVLERPRGWAFYHAFYFLLVFCCLLSVEST
 KCNQ4_ PGSACGQRSSAAKRYRRQONYNVLERPRGWAFYHVFYFLLVFSCLLSVLST
 consensus Sgs Sac QR saa KryRRvQNy1YNVLERPRGWAF1YH FvFLLVF CLILSV ST

KCN6q_ IPEHTKLASSCLLILEEVVMIVVFGLEIIRIWSAGCCCRRYRGWQGRRFARKPCVIDI
 KCNQ4_ IOEHQELANECLLILEEVVMIVVFGLEIIRIWSAGCCCRRYRGWQGRRFARKPCVIDI
 consensus I EH LA CLLILEEVVMIVVFGLEIIRIWSAGCCCRRYRGWQGR RFARKPCVID I

KCN6q_ VLIKASIAVVSAKTQGNIFATSALRSIRFLQILRMVRMDRRGGTWKLGLGSVVVAHSKELIT
 KCNQ4_ VFIKASIAVVAAAGTOGNIFATSALRSIRFLQILRMVRMDRRGGTWKLGLGSVVVAHSKELIT
 consensus V IASIAVV A TQGNIFATSALRSIRFLQILRMVRMDRRGGTWKLGLGSVVVAHSKELIT

KCN6q_ AWYIGFLVLIESSFLVYLVEKDANKSFSYADALWWGTITLTIGYGDKTPLTWLGRILS
 KCNQ4_ AWYIGFLVLIFASFLVYLAEKDANSFSSYADSLWWGTITLTIGYGDKTPHTWLGRIL
 consensus AWYIGFLVLIF SFLVYL EKDAN SFSTYAD LWWGTITLTIGYGDKTP TWLGRIL

KCN6q_ AGFALLGISFFALPAGILGSGFALKVQEQRQKHFKEKRRNPAANLIOQCVWRSYADEKS.
 KCNQ4_ AGFALLGISFFALPAGILGSGFALKVQEQRQKHFKEKRRNPAANLIOAWRLYSTD.MSR
 consensus AGFALLGISFFALPAGILGSGFALKVQEQRQKHFKEKRR PAANLIO WR Y De SR

KCN6q_ .VSIATWKP...HLK....ALH.....
 KCNQ4_ AYLTATWYYYDSILPSFRELALLFEHVORARNGGLRPLEVRRAPVPGAPSRYPPVATCH
 consensus a ATW yds L sfrelAL fehvqrarngglrplevrrapvpgapsryppvatch

KCN6q_ .P..TKKEQGEASSSQKLISFKDRMRMSP.R..GOSIKSRQASVGDRRSPSNTTETP.S
 KCNQ4_ RPGSTSFCPGESSRMG.IKDRMRMSSQRRTGPS.KOQLAPPTMPTSPSSZQVGENTS
 consensus rpgst GEassS s KeRvRMas QRrtc SIK A SPstd aEgts

KCN6q_ PTKVQKSWSFNDRTFRPSLRLKSSOPSPVIDAATALGIDDVYDEKCCQCDVAVIDTTP
 KCNQ4_ PTKVQKSWSFNDRTFRASLRK...P...TSAIDAP.HEVATEKSYOCRAVVDMPA
 consensus PTKVQKSWSFNDRTFR SLRLKssqPKpv Ad A gtddv dEX QCdvsVeDl P

KCN6q_ GKTIVAIRIMKFHVAKRKFKETLRLPYDVKDVIEQYSAGHLDMLRIKSLQTRVDQIIGK
 KCNQ4_ GKTIVSIRIKELVAKRKFKETLRLPYDVKDVIEQYSAGHLDMLRIKSLQTRVDQIIGK
 consensus 1KTIVIR IRIMKF VAKRKFKETLRLPYDVKDVIEQYSAGHLDML RIKSLQTRVDQIIGK

KCN6q_ GOITSDKSKSREK...ITAHEETTDGSMIGRVVKVEKQVQSIIESKLDCLLDIVQQVLRKG
 KCNQ4_ G..PGDKAREKGDKGPSDABVVDDGSMIGRVVKVEKQVQSIIEHKLDLLLGFYSRCLRSG
 consensus Gqi DKK REKgdk e B DdISMIGRVVKVEKQVQSIIE KLD LL Y LR G

KCN6q_ .SASALALISFQKPPFECQTSVDYQSPVD SKDSSGSAQ.NSGCISRSTSANISRGLOFIL
 KCNQ4_ TSAS..LGAVQOMPLEDPDITSVDYHSPVDHEDISVSQAQTLS..ISRSVSTND
 consensus tSAASalaLa QIP Fe e TSDY SPVD DIS SAqt Sgc1SRS S Ni rglqfil

KCN6q_ TPNEFSAQTfyalsptmhsqatqvpisqsdgsavaatntianqintapkpaapttlqipp
 KCNQ4_
 consensus tpnefsaqtfyalsptmhsqatqvpisqsdgsavaatntianqintapkpaapttlqipp

KCN6q_ PLPAIKHLPBPETLHPNPAGLQESISDVTTCLVASKENVQVAOSNLTKDRSMRKSFDMMGG
 KCNQ4_
 consensus pipaikhlprpetlhpnpaglqesisisdvttclvaskenvqvaqsnltdrsmrksfdmrg

KCN6q_ ETLLSVCMPVKDLGKSLSVQNLIRSTEELNIQLSGSESSASRGSDFYPKWRESKLFIT
 KCNQ4_
 consensus etllsvcpmpkdlgkslsvqnliirsteelinqlsgseessasrgsdfyfypkwrsklfit

KCN6q_ DEEVGPEETETDTFDAAPQPAREAAFAASDSLRTGRSRSSQSICKAGESTDALSLPHVKLK
 KCNQ4_
 consensus deevgpeetetdtfdapqparesaafasdsltgrsrssqsickagestdalslphvklik

FIGURE 4B

KCN6q_ M~~E~~A~~P~~P~~R~~RLG... LGPP~~E~~GD... APRAELVALTAVQSE... QGEAGG
 KCNQ4_ MVQKSR... NGGVY~~P~~G... P~~S~~GEKKLKV~~G~~... FVGLD~~P~~GARDSTRDGALLI
 KCNQ2_ M~~G~~LKARRAAGAAGGGGGGGGGGGGAANPAGGDAAAAGDEERKVGLAPG... LVEQVTLALG
 KCNQ3_ .
 KCNQ1_ consensus ma k rr gaag gg pg gggaa pag al ag er vgl pgapd g alg

KCN6q_ MS... LLGKPLS... YTS... SQS.C.R.N.. VK.YRR~~Q~~N...
 KCNQ4_ CGSPRRLG~~L~~LGSP~~L~~PF~~G~~... PLPG... PGSG... SGSACQ~~R~~SSAAH~~K~~RYRRLQ~~N~~
 KCNQ2_ AGS... EAPKRG~~S~~ILSKP... RAGG... AGAG... K... PPKRN... AE.YR~~Q~~LQ~~N~~
 KCNQ3_ AG... ADKD~~G~~LLLEG~~G~~GR~~D~~E~~G~~Q~~R~~RTPOGIGLLAKT~~T~~PLSRPVKRNN... AK.YR~~Q~~OTL~~E~~
 KCNQ1_ ... METRGS... RLTC~~G~~QGRY
 consensus agspr a lgsplis gagr qqrtp gsgllakts s kRnsaaakryrrlQbyl

KCN6q_ YNVLERPRGWA. F~~Y~~HAFVFLLVFGCLILSVFSTIPEHTKLA~~S~~C~~L~~L~~I~~LE~~P~~VMI~~V~~VGLE
 KCNQ4_ YNVLERPRGWA. F~~Y~~H~~V~~F~~L~~LVFSCL~~L~~SVL~~S~~T~~I~~QPHQELANECLL~~I~~LE~~P~~VMI~~V~~VGLE
 KCNQ2_ YNVLERPRGWA. F~~Y~~HAFVFLLVFSCL~~L~~SV~~E~~STIKEYEKSSEGALVILEIVTIVVFG~~E~~
 KCNQ3_ YDA~~L~~ERPRGWA. L~~Y~~HALVFL~~L~~VLGC~~L~~L~~I~~LA~~V~~L~~T~~FKEYET~~T~~SGDW~~L~~LE~~T~~FA~~I~~E~~F~~GA~~E~~
 KCNQ1_ YNF~~L~~ERPTGWR~~C~~YHF~~A~~VFL~~L~~LVCLIFSVL~~S~~TIEQYAA~~L~~A~~G~~TLFW~~M~~PIV~~O~~VFFGTE
 consensus YnvLERPrGwaciYHafvFLlvf CLilsvl~~S~~T~~I~~keyeklasgc~~L~~l~~I~~LE vmi~~V~~VGLE

KCN6q_ YIVR~~I~~WSAGCC~~C~~RYRGW~~G~~GR~~L~~RF~~A~~RK~~P~~FC~~V~~ID~~I~~TIVLIA~~S~~AV~~I~~SA~~I~~QGN~~I~~FAT~~S~~ALR~~S~~
 KCNQ4_ YIVR~~I~~WSAGCC~~C~~RYRGW~~G~~GR~~L~~RF~~A~~RK~~P~~FC~~V~~ID~~I~~PIV~~I~~VAS~~I~~AV~~I~~AA~~I~~QGN~~I~~FAT~~S~~ALR~~S~~
 KCNQ2_ YFVR~~I~~WAAGCC~~C~~RYRGW~~G~~R~~G~~LF~~A~~RK~~P~~FC~~V~~ID~~I~~TIVLIA~~S~~AV~~I~~AA~~I~~QGN~~V~~FAT~~S~~ALR~~S~~
 KCNQ3_ Y~~A~~YR~~I~~WAGCC~~C~~RYRGW~~G~~R~~G~~LF~~A~~RK~~P~~FC~~V~~ID~~I~~TIVLIA~~S~~AV~~I~~AA~~I~~QGN~~V~~FAT~~S~~ALR~~S~~
 KCNQ1_ Y~~A~~YR~~I~~W~~S~~AGCR~~S~~LYVGLW~~G~~R~~L~~RF~~A~~RK~~P~~FC~~V~~ID~~I~~TIVLIA~~S~~AV~~I~~AA~~I~~QGN~~V~~FAT~~S~~ALR~~S~~
 consensus Y~~A~~YR~~I~~WAGCC~~C~~RYRGW GR~~L~~RF~~A~~RK~~P~~fc~~V~~ID~~I~~TIVLIA~~S~~AV~~I~~AA~~I~~QGN~~V~~FAT~~S~~ALR~~S~~

KCN6q_ RFLQILRM~~M~~RM~~D~~RRGG~~T~~W~~K~~LLGSVVYAH~~S~~KELITAWYIGFLV~~L~~IFSSFLV~~V~~YL~~V~~EKD...
 KCNQ4_ RFLQILRM~~M~~RM~~D~~RRGG~~T~~W~~K~~LLGSVVYAH~~S~~KELITAWYIGFLV~~L~~IF~~S~~FLV~~V~~YL~~V~~AEKD...
 KCNQ2_ RFLQILRM~~M~~RM~~D~~RRGG~~T~~W~~K~~LLGSVVYAH~~S~~KELITAWYIGFL~~C~~L~~I~~LA~~S~~FLV~~V~~YL~~V~~AEK...
 KCNQ3_ RFLQILRM~~M~~RM~~D~~RRGG~~T~~W~~K~~LLGSVVYAH~~S~~KELITAWYIGFL~~C~~L~~I~~LA~~S~~FLV~~V~~YL~~V~~VEKD~~V~~PEV
 KCNQ1_ RFLOI~~L~~RM~~M~~MDROGG~~G~~GT~~W~~LLGSVVYAH~~S~~KELITAWYIGFL~~C~~L~~I~~LA~~S~~FLV~~V~~YL~~V~~VEKD~~V~~DAVN.
 consensus RFLQILRM~~M~~RM~~D~~RRGG~~T~~W~~K~~LLGSVVYAH~~S~~KELITAWYIGFL~~C~~L~~I~~LA~~S~~FLV~~V~~YL~~V~~VEKD v

KCN6q_ANKEFSTYADALWWG~~T~~ITLT~~T~~IGYGD~~K~~T~~P~~L~~T~~WLGR~~L~~SAC~~F~~AL~~G~~ISF~~F~~ALPAG
 KCNQ4_ANSEFSEYAD~~S~~LW~~W~~G~~T~~ITLT~~T~~IGYGD~~K~~T~~P~~L~~T~~WLGR~~L~~LAAC~~F~~AL~~G~~ISF~~F~~ALPAG
 KCNQ2_ ...GE..N~~S~~HFDTYADALWWG~~T~~ITLT~~T~~IGYGD~~K~~T~~P~~Q~~T~~WN~~G~~R~~L~~LAAT~~F~~AL~~G~~ISF~~F~~ALPAG
 KCNQ3_ DAOGEEMK~~E~~FT~~E~~TYADALWWG~~T~~ITLT~~T~~IGYGD~~K~~T~~P~~K~~T~~WEGR~~L~~LAAT~~F~~AL~~G~~ISF~~F~~ALPAG
 KCNQ1_ ...ESCRVEEF~~C~~TYADALWWG~~T~~ITLT~~T~~IGYGD~~K~~T~~P~~W~~G~~T~~A~~SC~~F~~AL~~G~~ISF~~F~~ALPAG
 consensus daqge andefstYADalWWG~~T~~ITLT~~T~~IGYGD~~K~~T~~P~~WT~~W~~Grilla~~a~~ Ft1lgisF~~F~~ALPAG

KCN6q_ ILGSGFALKVQEQR~~H~~RQ~~H~~FEK~~R~~RR~~N~~PAANL~~I~~QCVWR~~S~~YAA~~E~~KS.. VSIATW~~K~~P... H~~L~~
 KCNQ4_ ILGSGFALKVQEQR~~H~~RQ~~H~~FEK~~R~~RR~~N~~PAANL~~I~~QAA~~W~~RLYST~~P~~.MSRAYLTATW~~Y~~Y~~Y~~... S~~I~~L
 KCNQ2_ ILGSGFALKVQEQR~~H~~RQ~~H~~FEK~~R~~RR~~N~~PAAGL~~I~~QSAWR~~S~~YATN. LSRTDLH~~S~~TWOYYERTV~~V~~
 KCNQ3_ ILGSGFALKVQEQR~~H~~RQ~~H~~FEK~~R~~RR~~N~~PAAGL~~I~~QAA~~W~~RLYST~~P~~.MSRAYLTATW~~Y~~Y~~Y~~... S~~I~~V~~E~~SV~~V~~
 KCNQ1_ ILGSGFALKVQEQR~~H~~RQ~~H~~FEK~~R~~RR~~N~~PAAGL~~I~~QAA~~W~~RLYST~~P~~.MSRAYLTATW~~Y~~Y~~Y~~... S~~I~~STW~~K~~Y
 consensus ILGSGFALKVQEQR~~H~~RQ~~H~~FEk~~r~~rr~~n~~PAAnL~~I~~Qaa~~W~~R~~f~~Yat~~d~~ psr dl aTw~~k~~yye vtl

KCN6q_ K....ADH... TCS.P... TKKE
 KCNQ4_ PSFRE... ALLPEHVQRARNGGLRPLEVRRAPV~~P~~DAPSRYPPVATCH~~R~~PGS... TS~~P~~C
 KCNQ2_ PM~~S~~RL~~X~~PLNQL~~E~~LLRN... LKS~~S~~GLA~~F~~R~~K~~D~~P~~
 KCNQ3_ PPERKE... QLEAA... S...
 KCNQ1_ ..IRKA~~P~~RSHTULSP... S...
 consensus p frk~~l~~p L ... qrarngg~~l~~rplevrrapv~~p~~dapsryppvatc~~s~~rg~~a~~ aftk

KCN6q_ QCEASS~~S~~OK~~S~~E~~K~~ER~~V~~RM~~A~~SP.R... GOSIKSRQASVGDR~~R~~SPSTD~~I~~AEG. SP~~K~~V~~O~~KS~~W~~
 KCNQ4_ P~~C~~E... SS~~R~~MG... K~~D~~R~~E~~RM~~G~~SS~~Q~~RT~~G~~S. K~~Q~~Q~~L~~AP~~T~~PT~~S~~PS~~E~~Q~~V~~GEAT~~S~~PK~~V~~OK~~W~~
 KCNQ2_ P~~P~~EP~~S~~PS~~S~~Q~~K~~SL~~D~~RV~~R~~SN~~P~~. P~~R~~GV~~I~~AK~~G~~K~~G~~SPQA~~T~~RR~~S~~P~~S~~AD~~O~~GLE. SP~~K~~V~~P~~KS~~W~~
 KCNQ3_ ...SOK~~G~~LL~~D~~RV~~R~~SN~~P~~. RGSNTKG~~K~~PT... PLNVD~~A~~IEE. SP~~S~~KE~~P~~K~~P~~V
 KCNQ1_ .PKPK~~K~~SVV~~V~~KKKKFK~~K~~LD~~K~~D~~N~~. GVTP~~G~~E~~K~~L~~T~~V~~P~~... HITCD~~P~~PEE.. RR~~L~~D~~H~~PS~~V~~
 consensus p apssSqklslkdrvr~~m~~ss~~p~~q~~x~~gv~~g~~pk~~l~~ tap tmrrspstd t Eatsptkv ksw

KCN6q_ SFND~~R~~RFRPSLRLK~~S~~QPK~~P~~YIDARTALG. TEDVY~~D~~E~~K~~GC~~Q~~CV~~V~~S~~T~~EDLT~~P~~PL~~K~~T~~V~~IR~~A~~
 KCNQ4_ SFND~~R~~RFRASLRLK... PR... TSAEDAP.. S~~E~~V~~A~~E~~K~~S~~Y~~Q~~C~~L~~E~~ED~~C~~MP~~V~~K~~T~~VI~~R~~
 KCNQ2_ SF~~G~~DR~~R~~R~~A~~QAF~~R~~E~~K~~CAASR... ONSEZASL~~P~~G~~D~~IV~~V~~D~~P~~K~~S~~CP~~C~~F~~V~~TEDLT~~P~~GL~~K~~V~~S~~IR~~A~~
 KCNQ3_ GLNNK~~N~~ER~~R~~FA~~R~~PRM~~K~~YAFW... QSSEDAGT. G~~P~~PM~~A~~ED~~R~~GY~~G~~N~~D~~FP~~E~~D~~M~~PT~~L~~K~~A~~IR~~A~~
 KCNQ1_ DG~~Y~~D~~S~~SV~~V~~R~~K~~S~~T~~L~~L~~E~~V~~S~~M~~PH~~H~~M~~R~~T~~N~~SP~~A~~E~~D~~. LD~~E~~GET~~L~~LT~~P~~I~~T~~H~~S~~QL~~R~~EH~~H~~R~~A~~T~~I~~IV~~V~~
 consensus sfndrtrfrt rlkgsapr vqs edA pgddvadek qcdfsvedltpalk vira

FIGURE 4C

KCN6q_ IRIMFELVAKRKFKE~~T~~LRPYDVKD~~V~~IEQYSAGHLDMLGRIKSLQTRVDQI~~G~~~~G~~Q. ITSD
 KCNQ4_ IRIMFELVAKRKFKE~~T~~LRPYDVKD~~V~~IEQYSAGHLDMLGRIKSLQTRVDQIVG~~G~~...PGD
 KCNQ2_ VCKMFLVSKRKFKE~~T~~LRPYDV~~M~~D~~V~~IEQYSAGHLDMLSRIKSLQ~~Q~~RVDQIVG~~G~~GP~~A~~ITDK
 KCNQ3_ VRIMOF~~R~~GYK~~N~~KFKETLRPYDVKD~~V~~IEQYSAGHLDMLSRIKSLQ~~Q~~RVDQIVG~~G~~GP~~A~~ITDK
 KCNQ1_ IRRMOKFVAKK~~K~~FE~~Q~~QAR~~K~~PYDV~~R~~D~~V~~IEQYSAGHLDMLSRIKSLQ~~Q~~RVDQIVG~~G~~GP~~A~~ITDK
 consensus irimkf1vaKrkPketl~~T~~PYDVKD~~V~~IEQYSAGHldm1sRIKSLQ~~T~~R~~D~~qivgk~~G~~ps...LP

KCN6q_ KKSREK.....ITAEHETTD.....D~~I~~SMMGR~~V~~VKEKQVQS~~E~~SKLECL~~E~~
 KCNQ4_ KAREKGDK.....GPSCAE~~V~~D.....D~~S~~MMGR~~V~~VKEKQVQS~~E~~EHKL~~D~~L~~L~~
 KCNQ2_ D..RTKG.....PAEAE~~E~~P.....ED~~P~~MMGR~~V~~VKEKQVLSMEKKL~~D~~L~~L~~
 KCNQ3_ HKKSQKGSAFFFPSQQSPRNEPYVAR.ESTSEIEDOSMMGR~~V~~VKEKQVLSMEKKL~~D~~L~~L~~
 KCNQ1_ ISVSEK.....SKDR.GSN.....D~~E~~CAR~~H~~REV~~E~~DKV~~T~~Q~~G~~OR~~L~~AL~~E~~
 consensus kk rekg ftfpsqqspn p eaevp seiedlsmmmgrvvkverkvqsi~~k~~ld 11

KCN6q_ D~~Y~~YQQNLRL~~G~~.SASAXALESPQ~~Y~~PPFECEQTS~~D~~YQSPVDS~~I~~...DLSGSAQ.NSGC~~X~~RS~~S~~
 KCNQ4_ GFYSRC~~L~~RS~~G~~T~~S~~AS...LC~~A~~VQ~~Y~~PLEDPH~~I~~TS~~D~~YHSPV~~D~~H~~E~~...D~~S~~VSAQ~~T~~LS..ISRS
 KCNQ2_ N~~Z~~Y~~M~~OR~~M~~G...IPPTETE~~A~~Y..FG~~A~~KEPEPAPPYHSPEDSH~~E~~EDR~~H~~GCIV...KIVRS
 KCNQ3_ D~~A~~HMO~~H~~ME~~E~~..L~~Q~~VQ~~Y~~TEYYPTKGTSSPA~~E~~AE..KKEDN~~N~~..ISDLK...T~~I~~ICN
 KCNQ1_ D~~A~~LH~~Q~~HL~~S~~LHGG~~S~~PG~~S~~GG~~P~~REGGA~~H~~IT~~Q~~PCGSGGS~~V~~D~~P~~EL~~E~~PSNTL~~P~~TYEQ~~L~~TX~~P~~RR
 consensus diymqvrlkg sas lt aypqigafepeq sdyhspvDsk yvdlsqsaq s tisrs

KCN6q_ SANIS~~G~~LOFILT~~P~~N~~E~~PSAOT~~F~~Y~~A~~LS~~T~~TMHS~~Q~~AT~~Q~~V~~P~~ISQ~~S~~D~~G~~S~~A~~VAAT~~N~~TIAMQIN~~T~~A
 KCNQ4_ V~~S~~T~~N~~MD.....
 KCNQ2_ S~~S~~ST~~G~~Q~~X~~...NFSAPPAA.....
 KCNQ3_ YSETG.....PPE.....
 KCNQ1_ GPDEGS.....
 consensus ts garglq PPE saqtifyalpp qt is a p n prng gts

KCN6q_ EKPIAPTT~~L~~Q~~I~~PPPLPAIKH~~H~~PR~~P~~E~~E~~L~~H~~PNP~~N~~GL~~O~~ES~~I~~SDV~~T~~TC~~L~~VASKEN~~N~~QVAQS~~N~~L~~T~~
 KCNQ4_ EV.GDHG~~S~~LVR~~I~~PP~~P~~RAH...ER...S~~L~~SAYGGGN.....
 KCNQ2_SGKVO~~A~~TP~~E~~SSATTY~~V~~ERPTV~~L~~PI~~T~~LL~~D~~S.....
 KCNQ3_RASME~~P~~E~~I~~...ROEDTP~~P~~
 KCNQ1_RV~~S~~CH~~S~~...QADEQ
 consensus p pa gtlq pp pa lerp tl ag esisdvttclras e vqv q dl

KCN6q_ KDRSMRKSFDMGGETLLSVCPMVKDLGKSL.SV~~S~~NLIRSTEELNIQLSGSESSASRG~~S~~Q
 KCNQ4_ G.....CR~~P~~PEG~~N~~LR.....D...SD~~T~~S~~S~~PS~~V~~D.....HEELERS~~P~~SGFSISOS~~S~~VL
 KCNQ2_ GPYSDRISPRQR~~S~~ITR.....D...SD~~T~~P~~S~~LM~~S~~V~~N~~.....HEELERS~~P~~SGFSISODRM~~R~~..
 KCNQ3_
 KCNQ1_
 consensus g s r s r tlrsvcpdvp~~s~~dt is1 svqnli~~r~~sheelers sgfsisqsr

KCN6q_ D~~Y~~PKWRESK~~L~~ETDEEVGPEETETDT~~F~~DAAP~~P~~.....AREAXPASDS~~G~~RTGR~~S~~SS
 KCNQ4_ D~~A~~INSCY~~T~~AVAPCAKVR~~P~~Y~~A~~E~~G~~E~~S~~DTD~~S~~DLCT~~C~~PCG~~G~~PP~~R~~SAT~~G~~GP~~F~~GDVG~~W~~AG~~P~~RK~~R~~
 KCNQ2_ D~~A~~IFGPNGGSSNNR~~Z~~KR.Y~~A~~E~~G~~E~~T~~DT~~D~~DP~~F~~TP~~S~~GS~~M~~PL~~S~~ST~~G~~~~G~~.ISDS~~W~~WT~~P~~SN~~K~~P~~I~~
 KCNQ3_
 KCNQ1_
 consensus dfi aa fi d r yiaegetdtdsd tp g p satgeg sdslwtg k

KCN6q_ QSICKAGESTDALSLPHVKLK
 KCNQ4_
 KCNQ2_
 KCNQ3_
 KCNQ1_
 consensus qsickagestdalsiphvk~~L~~

INTERNATIONAL SEARCH REPORT

International application No. PCT/US00/09587

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) : C07K 1/00, 16/00; G01N 33/53
US CL : 530/350, 387.1; 435/7.1

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 530/350, 387.1; 435/7.1

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WEST DIALOG EMBASE MEDLINE BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X,P	KANANURA et al. The new voltage gated potassium channel KCNQ5 and neonatal convulsions. NeuroReport. June 2000 Vol. 11, No. 9, pages 2063-2067, see entire document.	1-10
Y	WANG et al. KCNQ2 and KCNQ3 Potassium Channel Subunits: Molecular Correlates of the M-Channel. Science. 04 December 1998, Vol. 282, pages 1890-1893, see entire document	1-21

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E" earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
"O" document referring to an oral disclosure, use, exhibition or other means		
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

24 JULY 2000

Date of mailing of the international search report

04 AUG 2000

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Faxsimile No. (703) 305-3230

Authorized officer
PATRICK NOLAN

Telephone No. (703) 308-1235

Form PCT/ISA/210 (second sheet) (July 1998)*

FIGURE 1A

KCNBq gene: DNA sequence

- Underlined nucleotides in capitals represent exons.
 - Initiating ATG codon in exon 1 and terminating TAA codon in exon 14 are shown in bold italics
 - D6D280 genetic marker and phosphoglycerate mutase pseudogene are bold underlined
 - The exact lengths of the gaps between exons 1 and 2, 2 and 3, 10 and 11, 11 and 12, 12 and 13, 13 and 14 are unknown; these gaps are presented as runs of ten bold n as a convenience only

Exon 1

Exon 2

FIGURE 1B

FIGURE 1C

5601 aagttotgtc acgcttccac accacacctt gtgcagcazt gattctgtaa
 5651 atatccatgt gtccttaaca ccaggtaaaa tttagccccctt tggtaaaaaac
 5701 attcattccc tc当地tccatc tcccaataca ctaatatacc tcccaaaaaa
 5751 gtaaggagaa gcttggaaagc tagetggatt gatgatggta tggatgttc
 5801 tataagttat agtttagtaag catgtttta ggatattttt ctgtctcca
 5851 aagagacaca attccggaaag atatttactt ttgtgttattt ccacattttg
 5901 gtttaagttt ggagccatctt ctatgtctta atttcatcc cctaatatgt
 5951 gtataactag tagaattttt cttttttt tgcattttt gatgcagttt acatcacaaa
 6001 tctgactgtat gctttttt tgcattttt gatgcagttt acatcacaaa
 6051 ttctttccctt ggagggatta tgtaaagagg catgttgacc tgctagccct
 6101 atgttacattt aagtataatgc acscacacaa aaagaacaa aaacagctgg
 6151 gaattgatta tgitgtatatt ctgaataaaaa gcaatagttc taattatgt
 6201 tgtctaatta gecacagctc tcaagaattt getgcataatg toacagggtt
 6251 tataatgtcc gcatatccatc ttcacgaaaa tgcatttttga tggcataaaaa
 6301 ccagaaaaaa ctaatgtcc cagaagacag ctttagatt agacaaaaagg
 6351 cactgtgtttt tcatggacag tgcgtttaat taatggaaaa acacactggta
 6401 catgatctttt taagcattgtt gattttgcac ccaaaaaatc aatctgcata
 6451 aaacaattttt aagtaactaa aaaacaaaaat aacggcaaga acataattta
 6501 aacctcaatggc ggcacacggc agttatatgt atcaattttt ttgaatcaca
 6551 gttttcagggtt gtgcacatatg aagaggctt tttatgcct ggaaaaggg
 6601 gttaatatgg attggatctt tcaatataca ttgttagataa aatcteaagat
 6651 tagetetacc actgcetttt ttctttttt ttttttttt ttatttgaga
 6701 cagtagatcc ctcttttgc caagctggag tgcagtgcc tgcgtcgcc
 6751 toactgcaatcc ctccgcctcc cgggttccatc ecattttctt gcttcagect
 6801 cctgagttgc tgggactaca ggcgeeecc accacacccaa gctaaattttt
 6851 tgtatttttt gtagagacgg ggtttcacct tattagccag gatggatcg
 6901 atcttcgtcc ctgcgttgc accgcgcctcg gctttccgaa ggcgttggat
 6951 tacagggtgtt aaccacccggc cccggccccc actgcctttt aggettctta
 7001 attttcattt catttaagaa gaataagaaaa atgttttat gttttaccaa
 7051 Aattctgtga ggacaaatgtt ggaacccatgg taacttcac aaggtagtg
 7101 ataaaaataaa tacacattt ttgttcttttgc ttttgtaaag agttatccaa
 7151 gccaagcttc taggggetta aataagggaa gacggacca ttgttataaa
 7201 catcaatgtt ccactacatc ttcttcataa acaatgtccaa tattctgtat
 7251 attttcactt aatctttttt gtcgcctttt cagtaataatg cgagcatttt
 7301 sttcaacta aaaccaagca agagaaaaatg aactgttttta tccgtgggt
 7351 cagcagcaaa gycacccagaa ctgttctcat ggttacccaa gcaagggtca
 7401 gaagaaccat cccttttttta aatcatctcg actgaatgtt acagetttt
 7451 gtatttccatc ctcataatgtt gataaaaaaa tgagacccca tccaaagggt
 7501 gattttggaa gtacccctaa aaaaaacaca gttggaaatgg acccagccatc
 7551 tggatttggaa gaacacattt ttttttttttgc gtttacccaa ttgttctgt
 7601 tgcttgcctt ggttttttttta aattttttt gttttttttt gttttttttt
 7651 ttccatgtca gttgtttagat atgttgcata tccctgtgtt atactttacc
 7701 caattttccgc aaaaaatggtaac attttggaaa aatctatgtt aatatacaca
 7751 ccaggataat aatattgtata cagtcacaa atcttcattttt gattttccaa
 7801 gtttttttttgc aatcatatgg ttttttttttgc ttttttttttgc ttttttttttgc
 7851 ttgttatttttgc ctcttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc
 7901 aaaaaatccat ctttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc
 7951 ctgttaatcc ctttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc
 8001 gggatccatcc accatccctgg ctttttttttgc ttttttttttgc ttttttttttgc
 8051 aatgttttttttta attagctggg ctttttttttgc ttttttttttgc ttttttttttgc
 8101 ctggggggccatc tgaggccatc gtttttttttgc ttttttttttgc ttttttttttgc
 8151 ctttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc
 8201 actctgttcc aaaaaaaaaa aaaaaaaaaa gtttttttttgc ttttttttttgc ttttttttttgc
 8251 tc当地atgttccatc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc
 8301 tc当地atgttccatc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc
 8351 atctgttccatc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc
 8401 ggaataataac agtgcataatc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc
 8451 ataatttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc
 8501 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc
 8551 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc
 8601 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc
 8651 ataaatgttccatc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc
 8701 catatgttccatc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc

D6S280

FIGURE 1D

FIGURE 1E

Exon 3(D)

FIGURE 1F

15051 ccacttatta aaccagaatt tatggaaatg tggctgtgtg tgaggcactg
 15101 gtgttacaat agtgaatctca gttggattat cagttaaatc tatetttaaaa
 15151 taccttgtt ggccttcacg aatgcagttt gttgtctgt ctcttcacat
 15201 aataggctt actgtttttt ggaagccatc atgctaagggt atggagcaaa
 15251 gtcggtggtt actccssgac ttgcagggtt ataaagecccc aaggcatatt
 15301 agtgaaggca tttagttttt ctccctggag atgtttttt ctcctgtaat
 15351 tcctacttc ggcagcatta caaaggactg taacctgtg tgaaactact
 15401 gcacccaaag tactttctgt cccataaaggg gcccacaaa aacatctcc
 15451 aaggcagatg gttagccaaat attcactcaa ctcttacagg atagggtcag
 15501 ttcatggatg aetggaaaaa tgtttcatcc cagttttaa aaccaattaa
 15551 aaatggttt ttttccaaatt tcaagaagca tgccaaatgtt tctctggcc
 15601 ccatgcgaaa aagaasagtt tttcccaagat gtcgtctgcc ttttgatagc
 15651 tggtttccaa tacggataca tcaacacatc ttagtcctt atgttttcc
 15701 ttcttcaccc agatctttgc aggtttgtt atatatgtt gttttaaaaa
 15751 tggatgttatg ttatctataa ttctactgtc ttgtggatgt ataaatagtg
 15801 acetteaaaaa tttagtataa tgcctggcgc agtcaacttc gctgttaattc
 15851 ccagccctt ggaaggctga ggaaaggcaga tcaacttgagc ccaggagttt
 15901 aagaccagcc tgggtatggaa agacctgtt ctacaaaaaat ttadaatatta
 15951 gctgggcattg gtggcataca cctgttagcc cagctactca gaaggctgag
 16001 actggaggat catttgagcc caggagttt aggtgtcagt gagccatgtt
 16051 cctgtccacta cactccagcc tggataaaaa gatgtttttt gatgttttt
 16101 aaaaatactatg ttttgcataa tttagcataa attcgtttt tttttttttt
 16151 tcaagactt ttttttttta gatattttac ctcttaggaas ttaattgtt
 16201 tggaaagaaaa ttctatggat aaatataataa tgaatccccca ttagaaacaaa
 16251 gtcttagttt gtacttacag tttttttttt tttttttttt ttagtctttt
 16301 atttttttttta catgtttcac ccatgttccca gttttttttt tttttttttt
 16351 aagcatgttc aatgtttttt tttttttttt tttttttttt tttttttttt
 16401 acacaaazaga atcaaaacatc accttcctgtt aggcagccaa ctgttaccaga
 16451 tgactgttgc gctttttttt tttttttttt tttttttttt tttttttttt
 16501 tggatgttact ggtttttttt tttttttttt tttttttttt tttttttttt
 16551 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 16601 ctttgcataact gtttgcataatg ggtttttttt tttttttttt tttttttttt
 16651 aatcttcattt tttttttttt tttttttttt tttttttttt tttttttttt
 16701 accccaaatat tttttttttt tttttttttt tttttttttt tttttttttt
 16751 gattgtggta gactggctgt gttttttttt tttttttttt tttttttttt
 16801 cacaccaatg tttttttttt tttttttttt tttttttttt tttttttttt
 16851 ggtttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 16901 atttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 16951 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 17001 atttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 17051 gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 17101 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 17151 atgttatgtt tttttttttt tttttttttt tttttttttt tttttttttt
 17201 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 17251 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 17301 atgttatgtt tttttttttt tttttttttt tttttttttt tttttttttt
 17351 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 17401 gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 17451 aacccctttttt tttttttttt tttttttttt tttttttttt tttttttttt
 17501 gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 17551 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 17601 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 17651 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 17701 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 17751 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 17801 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 17851 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 17901 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 17951 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 18001 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 18051 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 18101 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 18151 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt

FIGURE 1G

18201 gtgatttaact ggaccatctg aggacaatta aaacctgttg gatggcgtga
 18251 tcacaaaaaca ttaaaaacaat ttaatccct ctagttagt atagctgata
 18301 ttatttggaa actactatst attaggtact acitaaagca ctttataaat
 18351 atggctttat ttaatttctac ataaatgtacta taatgtcattt atttatttt
 18401 tttatttta ctteacttta tttatctta tttatttta tttatctta
 18451 tttatctta tttatctta tttatctta tttatctta tttatctta
 18501 ctatcatcacc caggctggag tccaaatggc atagtcctcg ctcactacaa
 18551 ctcggccctc ctgggttccaa ccattctca tgccttgcgc tcccgagtag
 18601 ctgggactac aggcacacgc caccacaccc agctaatttt tgcatttt
 18651 gtagagatag gatttacccg tggggcccg gctggcttg aactccctggc
 18701 ctcactatctt ccacccgcct cagcgtccca aagtgttgtt attacaatgt
 18751 tgagccacca cgcctggccct tttatgttc ccattttata gatgagggaa
 18801 taagacaaga ctcggactt tatagatggag gaaagaaagac aacataaaa
 18851 agatgatagg tgaaagaacc tggattttt ttcattgtt tcactctaga
 18901 aaaaataaca tacccaaactg gaaattgttc tttactgttt attacatatt
 18951 taasatttza tttatgtaa ctttatctat tttatgttc tttatgttc
 19001 aagaacatga tactattatg cttatcttta gtaattcaag atctttaaag
 19051 aaaageccgg ctttataaaaa cattatttgc agtacatcggc ttatctat
 19101 caactaaatc atgttacccca ttgtgtgtt cttatcttgc tggaaatctt
 19151 gpacctaaaa tagacttact tacatgttcc aacttgcattt atacttcc
 19201 gttgttggta toatgaggtt ccctgttcc tttccaaatgg gagacccctg
 19251 gagagccatg aacatactc gaggactac ctccaaatgt ttttazat
 19301 taataaaaata tccgttattt agataattttt tgacccgtt cccaaaccc
 19351 aaggttggaa ttacaagaca gtttggatgg tttatgttgg tggcccccatt
 19401 gaagaaaaat tttttccggaa gaggaaatgg aataaggatt atttccact
 19451 ctttctataaa acrrtagtag agactatgttataactgttataatctt
 19501 taatcttccatc tttatgttcc gaaatccat tttatgttccatc
 19551 atgtgttccaa cataatcttta agtataaaagg atacaaatggc gacttccatc
 19601 cggccccctgc ctgttccatc agaatcttcc tttatgttccatc
 19651 aacttccatc aggttacttta taattatgtt gttacccatc aatgggttgc
 19701 gaaattgttccatc tagtcttccatc aagaaatggc tggaaatccatc tgatgttccatc
 19751 tataaaaaataa agaagccaaatgg gacttccatc aggtttccatc attatgttccatc
 19801 agtcatccatc tgaaatccatc tacaatccatc accatgttccatc
 19851 tggatgttccatc agaggcttccatc tggccatccatc tggccatccatc
 19901 atagagatataa tattatgttccatc gacaaagaaaa aacatataac
 19951 ttgaaaaaca agataatgttccatc atccatc aatggccatc aagaaaaataa
 20001 aacagaaaaaaa gtagaggcttccatc ctttgcatttccatc gttgttccatc
 20051 ctaatgttccatc gacccatgttccatc ttgttccatc tttatgttccatc
 20101 ttggggatgttccatc tagacacacaa ttttccatc ccaggaaatccatc
 20151 ggttattttccatc ctttgcatttccatc gtttgcatttccatc tttatgttccatc
 20201 ttcgttggct ggagcttccatc gaggccatgttccatc gggatgttccatc
 20251 gggggagacac gcaatgttccatc cccatgttccatc gccatgttccatc
 20301 ctgttccatc gtttgcatttccatc aagccatgttccatc accaggccaaatccatc
 20351 gttgttccatc gggccatgttccatc gtttgcatttccatc tttatgttccatc
 20401 taatccatc acaaaaatgg tttatgttccatc atggccatgttccatc
 20451 atgtatgttccatc gtttgcatttccatc ctttgcatttccatc atataatccatc
 20501 ttatgttccatc aaaaaatgg tttatgttccatc atataatccatc
 20551 attttgcatttccatc ctttgcatttccatc gtttgcatttccatc
 20601 tttatgttccatc ttatgttccatc atggccatgttccatc
 20651 attttgcatttccatc agccatgttccatc gtttgcatttccatc
 20701 ctttgcatttccatc ggacttccatc ctttgcatttccatc
 20751 aatggccatgttccatc tttatgttccatc tttatgttccatc
 20801 ttgttccatc atgttccatc aatggccatgttccatc
 20851 ttgttccatc gggatgttccatc tttatgttccatc
 20901 agtccatc acttccatc aatggccatgttccatc
 20951 ttgttccatc tttatgttccatc
 21001 taatccatc agggccatgttccatc
 21051 gttgttccatc tttatgttccatc
 21101 tttatgttccatc tttatgttccatc
 21151 tttatgttccatc
 21201 gttgttccatc
 21251 tagatggaaatccatc
 21301 ctttgcatttccatc

FIGURE 1H

21351 attgtcttac agcactgcct cttgttagag tccatttta ttatagtata
 21401 atccgtttas ttcatgtg gagaatataa gaaaggagcag gaaaaatgaa
 21451 ttcttttaca gatcagtggc aaccatatt acatagatta gcaactgtct
 21501 ttccaaatgc ctgtatitcg ctatgtacta gatgtatct gatgecatga
 21551 aaccaaatat ttcattcca ctggccagaa ctggcaaaaga acttcttatt
 21601 ttcctcactt tgcacataa gtaaagggtt tcacttcaa atttataag
 21651 ccattgtgt tgattcgatt cctgtccca aatctccctc ttctctgggg
 21701 ccattgtcta aagtcataa gaaacatac cagcacagt ggetcatgoc
 21751 tgtaatccca gcaattttaa gggagagcga ggttggagga tcacttgago
 21801 ctatggatgc aaaaatcatca acctggggca cataatgaga ccctatctt
 21851 acaaaaaaaa caaacaaaaa caaaaaacaaa caaaaaaaac tgaataget
 21901 ggggtgtggg gaaacacactg gtatgtctcg ctatcaggaa ggctgttggg
 21951 aqaaggtaac ttctgtccccag gaattcaagg ctgcagtgsa ttatgttgc
 22001 accactgtac tgcacgttgg gcaacaggtt aqacagaga gagagataga
 22051 caaaaggaaa ggaaggaagg aaaaaggaa ggagggaaagg aaggaa:ja
 22101 gaaaggaaagg aaggaaggaa gggagggaaagg aaggaaggaa gggagggaaagg
 22151 agggaaggaa gggagggaaagg gggggggaaagg aagaaaggaa aggaaaggaaa
 22201 ataaatgtaa ctattataa agatgttcaz ttttttatkt tggaaataact
 22251 ttagacttac ttagaaggttt caaaaatagt acggatttc catgttcaaa
 22301 tgcacttett aactaactt ccccaaaaata ttttacatc gtataactyca
 22351 attatcaaaa ccagatatg aatacataact attagctata gtctttattt
 22401 gaattttcacc agtttttaca tgcgttcaat ttttataac aactctataaa
 22451 aatttttca tgcgtatata tgcattttaa caccaccaaa atcaaaatac
 22501 aaaaacttttcc tccatccca aataaaactt gaaatgatata ctttgttatta
 22551 ttcctttaca ggtactcoct ctcttcaatc ctaacctctg ggaaccacta
 22601 tatactgtttt cttrtactgt aaaaaatgtca ttttataat gttatataaa
 22651 tqaaatttgc aagtagtaat tttttgaaat tggtttttc ttacacagca
 22701 tgcgttgcattt gagatccatc caagtgcattt aatagtgcatt tccgtttat
 22751 tgcattaaatg aatccatgtc ttatagatgtt aacccattttg tattatcatt
 22801 tcccttataca aggttattt ggttgcattt agtttttgc tattacaaat
 22851 aaggcagcgt tgcattttca tttttttttt tttttttttt tttttttttt
 22901 tatttttca gggtcattata gttttttttt acetttttca gttttttttt
 22951 aactattttcc tttttttttt tagaaatgtt aatgcataa tttttttttt
 23001 ggtcagcagc cccacccccc gccccacgct gccactgtt ccagtgttggaa
 23051 catatgcattt gagggtggca gccccacgct caccacttgc ctggcccttgc
 23101 actgcacgtt ctaccatgtt ggggttgcac atggaggccg gcaaaaaat
 23151 ggccacccagc acttgccecc agttttttttt tttttttttt tttttttttt
 23201 cacttgcattt tggacttgcattt tttttttttt tttttttttt tttttttttt
 23251 ctgcacccac cccaccaaaat tttttttttt tttttttttt tttttttttt
 23301 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 23351 taacccatgtt gggccatgtt aatccatgtt aatccatgtt aatccatgtt
 23401 aaagtttgcac catacagccc aatgtttttt tttttttttt tttttttttt
 23451 ttttttttttt aatgtttttt aatgtttttt tttttttttt tttttttttt
 23501 aaaaacttcc gggcatcaaa aatgtttttt tttttttttt tttttttttt
 23551 aaaaaacttcc tccaaaggac aatgtttttt tttttttttt tttttttttt
 23601 cccacacat gataaagaac aatgtttttt tttttttttt tttttttttt
 23651 agatgtttttt tttttttttt tttttttttt tttttttttt tttttttttt
 23701 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 23751 agatgtttttt tttttttttt tttttttttt tttttttttt tttttttttt
 23801 agatgtttttt tttttttttt tttttttttt tttttttttt tttttttttt
 23851 agatgtttttt tttttttttt tttttttttt tttttttttt tttttttttt
 23901 cccacacat gataaagaac aatgtttttt tttttttttt tttttttttt
 23951 aatcttcacat tttttttttt tttttttttt tttttttttt tttttttttt
 24001 aatcttcacat tttttttttt tttttttttt tttttttttt tttttttttt
 24051 aatcttcacat tttttttttt tttttttttt tttttttttt tttttttttt
 24101 ggg
 24151 aatcttcacat tttttttttt tttttttttt tttttttttt tttttttttt
 24201 agagacccct tttttttttt tttttttttt tttttttttt tttttttttt
 24251 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 24301 aatcttcacat tttttttttt tttttttttt tttttttttt tttttttttt
 24351 aatcttcacat tttttttttt tttttttttt tttttttttt tttttttttt
 24401 aatcttcacat tttttttttt tttttttttt tttttttttt tttttttttt
 24451 aatcttcacat tttttttttt tttttttttt tttttttttt tttttttttt

FIGURE 11

**Phosphoglycerate
mutase,
processed
pseudogene**

FIGURE 1J

27651	<u>ccccggggca</u>	<u>aaaaaaagaa</u>	<u>gtggaggcca</u>	gcaaaacggc	acccctcccg
27701	ccccattgcac	ccatctgtcc	ctccctctcg	aaactgtccac	actgaccaca
27751	tctatacgaca	tcttggatgg	cagetgcaga	ttggggaccgg	tggcccccgt
27801	tttcatttttta	gcattttgt	cttctgcacc	cactcccttc	atccatttca
27851	gtcagaatag	cacttcagg	gcacagggtc	tcagtctaaq	ctgtggaaa
27901	gccccggtt	tcasagagag	ttcsaagata	gtgacttggg	tttttgcaag
27951	tgccttgcgtt	actaaggact	tgtggggagg	agccatgtg	agctaaegacc
28001	aatggggaga	agcaagagag	cctgtctcc	cccaaggagct	agtccttgtc
28051	ttgtctgttag	tcagggccat	gcctggggc	tctatgttate	ccagtggaa
28101	atgaatgtaa	cctgcatgtt	gtgtgacag	ctgtttctc	cttgacccca
28201	ttacattttac	ttttatcaa	aaaaaaa	gtatagtgtt	tataaatast
28251	acaaaaacat	aaccccttca	gggttttcc	gtgggtgggt	asatagtccc
28301	acatgtggtc	atcaagaaat	Agccatcc	tcataaccat	atggggtaag
28351	ctccctgacc	tttgggggc	aggagtgtt	catgtgtgt	gttttagaa
28401	ccctccctgc	tttgcattat	ggcagtggaa	tgccctttgg	tcctctccaa
28451	gtgttttttt	cactgatcc	tgaatcatgt	tgcaatgt	ttggccctggc
28501	acatagggtt	agtgttcatt	tg>ataao	tgtactaaat	cttttttca
28551	gtcaatgtt	ataaaagggt	gtgtgcaat	aaaaaaa	atgcccattcc
28601	atgcacacca	gttagatgg	tgatcattas	aaatgtcaagg	aaaaaacagg
28651	gttgggegg	atgtggagaa	ataggaaat	ttttacactc	ttgggtgggc
28701	tgtaaacttag	ttcaaccatt	gtggaaqaca	gtgtgggtat	tccttaagga
28751	tcttagaacta	gaatccat	tttgacccagc	cataccat	ctgggtatata
28801	actcaaaagg	tttataatca	tgcttttata	aaagccatcg	cacatgtatg
28851	tttatttgcag	cactattcac	atagcaaaag	acttagaaac	aaaaaaazag
28901	ttccatccctg	atagacttgg	tttggaaat	gtggcaatgt	tacaccatgg
28951	atatactatgc	agccataaaaa	aaaggatgtgt	tcatgttett	tgcaaggpaca
29001	ttggatgttgg	ttggggccat	catttccgc	aaatctatcc	aaaggacagaa
29051	acccaaacac	cacatgttct	cactcatagg	ttggaaattgt	acaaatgagaa
29101	cacttggatg	cagggtgggg	aaatccacac	actggggccct	gtcatggggt
29151	ggggggaaag	ggggggggat	agccatttagga	gtatccatcg	atgtaaatgt
29201	caatgttata	ggtgccggcc	accaacatgg	cacatgtata	catgtgtatc
29251	aaatctgtcac	attgtgcaca	tgtacccitg	aacttataatg	atagtaaaaa
29301	atataataaa	taataaaaaa	ttttaaaaat	gatccatata	cataaaaaata
29351	cagctaacc	gttaggtgaa	agatcttcc	aaaaagcatt	ataaaaacact
29401	gtctcaatgt	atctgagatg	atataaaces	aaaggaaaa	ttttccatgt
29451	catggatacg	aaaaagcaat	attgttataa	ttggccatatt	gcccaaaagca
29501	attttcacat	tcagtgttat	ttcttccaa	ctaccagttc	ttccacagaa
29551	tagaaaaaaa	aattattttaa	aaatttgtat	gaaacccaaa	aaaaagccat
29601	atagccaaagg	caatktcaag	aaaaaacaac	aaaggccagaa	gtatccatcc
29651	gtgtgactt	aaatctatatt	acaaggttcc	agtaeccaca	acagcatgtt
29701	actgggtaccc	aaatctataga	ccaatggaa	agaagagata	gccccagaaat
29751	atatggccac	acaaaccatt	tgatcttataa	caacccatac	aaaaacaaagc
29801	atatggggaaa	aaatcttca	ttccataataat	ggtgcgtggg	taactggota
29851	ggccatatgc	aaagatttgg	attggacccc	ttgttttatac	cataatcaaa
29901	aatcaactcc	agatgggtt	aaaggatataa	cataaaacct	aaaactggcc
29951	ggggcacegtg	gtccacggct	gtatccatcg	cacttggga	gcccgaggca
30001	ggcggtatcc	ggggctcagg	gtatcgatcc	atccctggca	acacgggtgg
30051	acggccatotg	tactaaaatt	acaaaaattt	agctggggca	ggtggcgggc
30101	acctgttagt	ccatgttactc	gggggggtcga	ggcaggggaaa	ttgggtgttac
30151	ccggggggggc	gggggtgtca	gtggggccgg	atgtgtccac	tcgcactcc
30201	ctctggggcc	agggggactc	cgttcteaaa	aaaaacaaac	ctaaaaactat
30251	aaaaaccctg	aaagatgtacc	ttggggaaatac	cacttggac	atataaggacc
30301	tggcaaaat	tttgcacaa	tttttttttt	gattgttgc	aaaaaaa
30351	tttgacttaat	ttgtccat	aaatccatgg	ttctatattaa	actaaacacgc
30401	ttctgcacat	aaaaaaatcc	tatccatcg	gtgcacac	aaatctatcg
30451	ataggagaaa	atatttgcac	actatgtc	ttggaaaatgt	ttttatccg
30501	gtatctgtaa	ggaatttaas	aaatattata	agccaaaaaa	aaaaacaaac
30551	tttttttttt	ttggggaaatg	cttgcacat	accccttta	aaaaagacat
30601	acatgtggcc	aaatggatca	ttttttttat	ttttttttat	ttttttttat
30651	gagaaaatgc	aaatccaaacc	aaatataatg	ttttttttat	ttttttttat
30701	atggcttatt	ttttttttat	ttttttttat	ttttttttat	ttttttttat
30751	agaaaaagg	atgttttat	ttttttttat	ttttttttat	ttttttttat
30801	cggtgtggaa	agccgtttgg	ttttttttat	ttttttttat	ttttttttat

FIGURE 1K

30851 ccatttgacc cagtaatctc ectattgggt ttatttcas aggaatgtas
 30901 ctcattctac ottaaagaca tatgcactca tataattcata acagtactat
 30951 tcacaatagc aaagcacatga aatcaacca catgcccatt gatggtggat
 31001 tgataaaaga aatgtggta catacatacc ataaatacta cacagecata
 31051 aaaaagazca agatcatgtc ttttgcaca acatggatga ggctggagge
 31101 catteaccts agcgaactga cccaggaaaca gaaaaccasa tacatcatgtt
 31151 ctcaattaca agtgagagct aagcatttgag ttatgtgtc acaaacaaga
 31201 gaacaacaga cgcgttaagcc tacttgagge tggaaagtgg gaggagggag
 31251 agcataaaaa aactacatc caggactat gcttttacc tgcgtgtgt
 31301 aataatctgtc acatcaacca cccataatc acaattcacc tatataacaa
 31351 acotgcacat gtaccacsga acctgaaata saagtttaaa aataaatacat
 31401 aaaaataaaat gttgaatgc ctgaatgtt tcatagcatt aaatttagacc
 31451 atgtgttctt aatgacatc ttatgttcat agaaatcatg ttgtgttctt
 31501 ttctgttttt ctatgassat ttttttaaca agegaaagt eacgaaatgt
 31551 atatttacc acttgggtca agazacaaat gaaagtattg ccattaaagg
 31601 agcagtctt catactgtga taatgtaaatg taatgtattat gtttacatag
 31651 atgaagtata sagagaccaa ttaatgtaaa aagccaatac tgcataat
 31701 ectgaaggac cattatata atcaactt aatttttaga aagtccttat
 31751 tcaagcaaac ttatgtgaga ccaataactaa ttatctttc ctgtcaaaag
 31801 atacagataa tgacattgt tagagecctt aagtactact ccaatggaaat
 31851 aaaaatttttaa aatgtccac caazgaaaaag tgggtctta tagagaggte
 31901 ggcccaatat tcatggttt aatgtgtat aaaaagaatg cgtttgcgtt
 31951 ctttaattca acacotctca gaaattggcc tattttaaa actatcttct
 32001 aegactactt ttcctccaaag actctgcacaa atgttctccc ttggatcttc
 32051 caccataacc aacaaaaaca ttatgttctc aaagtttagaa acaacccctgt
 32101 gtggccaaaa tatgtaaatc ccaatttcat tctoactctg gttgtaaagaa
 32151 atgtgttcaat aatattttac tttttttggaa aaaaattaaag ctgtatccat
 32201 atctatctta ccagatttca agataaaactc caatmaatc aaagattttaa
 32251 aataatataag accataaaaat atccccccaga agasattgggt aacactctt
 32301 agaaccttgg aatctggaaa gattttctaa ttatctaa aatataaaaa
 32351 gtcataggag aaaaatttga tagaataatc aatatacaag aatactgtat
 32401 gataaaactaa acagcaacgt caaaagacaa atgtggaaaa atatttacaa
 32451 ctcctactaa aaaaatagaaa ctaatcacct taaaatttataa ggagctctag
 32501 aatcaagaa aaaccccaaca acctaacaacaa aataaaaaatg gatatqaaca
 32551 gactggtcac agastmagaa atacatataat accttttac catacccaagt
 32601 ctcactcata aaaaagaaat gcaaaatgaaa ctattcttc acctattcaga
 32651 ttggccaaaaat tctgcagttt gcccacccac tttattgtat agactgcacg
 32701 gaatstaggca ctcacatgac acaggaggtc aaaggggtat cccccctatg
 32751 gaagagtgta aatatctacc aatatttactt aacgttttac ttttgcacc
 32801 aggaagtctt cttcttata atttcatcaa ttgtgtgtat atgttcaata
 32851 tagctgtata aacttatttta aatccaaaca aataatataca gtggaaagacc
 32901 tttctgcaca ctatcagaag aatccccaaatg tataatggaaat aaaaagaaaaa
 32951 tgasatgttcc tactgcataat atatgtgtct acttttgtt aagaaaggag
 33001 aaaaataaaaa gttgactttc aatatttttttgcct tttttgtata aagaaacatt
 33051 gaaataattt ttacaaaaaa aagagaatataa aatgtttaa ctgaggatag
 33101 cgaatgagga cagcatgtat ggaaacgggt aggagtaags tttttcagca
 33151 ttatcccttt tatgtcattt tttatgttttca aatataatata tttttactat
 33201 tcacaaaaacta aataaaaaga attattttcc ggcacagatg aagtcacgtt
 33251 tagatgttca ctattttat ttttttatag caatattttgg atgggttaat
 33301 gggctcatat tatgtacagt ttttccgaat ctatccacac tccaggccact
 33351 tttgtcattt caaagggggca caatgcacaa gataatttac cataggattt
 33401 ccatgtgcac ctcctcgtt ctatgtgttca gtaacataga atggcccttt
 33451 taatctcaga aaaaactctgt ttttttttttttttttttttttttttttttttt
 33501 ttgtcttca tatatttctt ttttttttttttttttttttttttttttttttt
 33551 ttttcaaaagg attggcccaag aagatgtat ggggtgtatc atgtttaaatg
 33601 cttagctttaa ttt
 33651 gcaaaaaaaa tcataaaaatg gatgtgttca gtttttttttttttttttttt
 33701 tegaatcgat acatcaatc aaaaaaaaaat ttttttttttttttttttttt
 33751 gatgtttttt gtt
 33801 ctatgtatcc aatgtgttca tatcttttttttttttttttttttttttttt
 33851 gaggttt
 33901 gtt
 33951 ggatgtgtttt taatt

34001 ttcattatgg cttcacatca gtttctccca gaaggcttcc ctggccttcc
 34051 aactaaagttt atttgccttg caatgtgtcc cttgttattt ttctgttata
 34101 atattcatca cttatgattt tggttactcg attcsgcgtc ttctatgcas
 34151 accatgcctt cagcccttgg cagacagaag gcatccatct ggccacaccc
 34201 agccatggcc ttaataattt tatgeccagg toctagaagt ttctgcccac
 34251 aatgtatgtt tattgaatga aaaaaattt qagaaaaactg caagctatgt
 34301 aacagtccaca tgagaaegctt catccccccg gcceccatcc ceaccctac
 34351 acacacaaag taatccacac acagtcaccc ttagccaaa gaaaaaaa
 34401 atgtggcaat tattcaagca atgcacatgtt aaaaatagec cctttgcetc
 34451 aatgtatcaga ggttttcaas aaggatatttt ttgcctgtat tttttatct
 34501 aattgtctca attatttttt ttggtcatgg gaacatgattt atattttta
 34551 aaaaatgtt tattttgtat gcatgtttt aattgttagt tcttttacag
 34601 gaggttttgc tactccata ttgcctttt ctcaattttt ttaatttgc
 34651 ctttgcataa atgtttttaa ttttgattt tagccccatcc cacagactcc
 34701 aaatctgtgc ttggaaattt gagatcaaag tactgtatct aatccatgg
 34751 acatttgcac ttgtgtgact taaaatccca tcttttatac agttttgtg
 34801 gtttttgcac sttttacag gtccacatgtt caaaatgtgc acatctgaaa
 34851 ctattttgcattt attatgtttt ctttataactt ttccatattt agttatgg
 34901 aaaaatccca gtcctgtat ggttattgaaac tcgatccatgg cttccatgg
 34951 ctcccttataaa aaggatccca aatccatgg tttttttttt tttttttttt
 35001 ttgtttttgt tctccctttaa acagagcggtg tttttttttt tttttttttt
 35051 acaatggaa aggaattttt aatggaaa aatgtggatcc gaaaggaggt
 35101 ttttccat agcttttagga ttgttttataa gaaatgtgtt ttccatgg
 35151 gacctgcaccc ttcaaggatgtt ggttccatgtt aattttgtatcc ttgttttgc
 35201 aagtaatttta tcgttattttt tttttttttt tttttttttt tttttttttt
 35251 ttcccttttaa gcaatggatcc gggccatcc aatccatgg tttttttttt
 35301 acagcaatcc ataaaaatggatcc aatccatgg aatccatgg tttttttttt
 35351 ctatctgtt gtcgttgggg gaaaaattttt gtaaggatcc tttttttttt
 35401 gatggggatcc agatgtatcc ttatatgtatcc cttttttttt tttttttttt
 35451 actgtatccat agatagatcc tttttttttt tttttttttt tttttttttt
 35501 atagatatgtt gatagatcc tttttttttt tttttttttt tttttttttt
 35551 gatagatccat gatagatcc tttttttttt tttttttttt tttttttttt
 35601 agatataatcc tttttttttt tttttttttt tttttttttt tttttttttt
 35651 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 35701 aatgtgtatcc tttttttttt tttttttttt tttttttttt tttttttttt
 35751 ccaatgtttt tttttttttt tttttttttt tttttttttt tttttttttt
 35801 atatccatgg tttttttttt tttttttttt tttttttttt tttttttttt
 35851 gaaatggatcc tttttttttt tttttttttt tttttttttt tttttttttt
 35901 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 35951 ttgttacatcc tttttttttt tttttttttt tttttttttt tttttttttt
 36001 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 36051 atctgtatcc tttttttttt tttttttttt tttttttttt tttttttttt
 36101 ctatccatcc tttttttttt tttttttttt tttttttttt tttttttttt
 36151 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 36201 ttgttacatcc tttttttttt tttttttttt tttttttttt tttttttttt
 36251 aatccatgg tttttttttt tttttttttt tttttttttt tttttttttt
 36301 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 36351 gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 36401 gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 36451 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 36501 aatccatgg tttttttttt tttttttttt tttttttttt tttttttttt
 36551 aatccatgg tttttttttt tttttttttt tttttttttt tttttttttt
 36601 aatccatgg tttttttttt tttttttttt tttttttttt tttttttttt
 36651 aatccatgg tttttttttt tttttttttt tttttttttt tttttttttt
 36701 gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 36751 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 36801 aatccatgg tttttttttt tttttttttt tttttttttt tttttttttt
 36851 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 36901 aatccatgg tttttttttt tttttttttt tttttttttt tttttttttt
 36951 gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 37001 gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 37051 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 37101 gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt

FIGURE 1M

37151 tcccacagtc agtctttcag caagtcttgg ctcttcacc ttacacaatgt
37201 gcacccaaatc cagtcctt acagtcctc ctgactttaa ctcaactt
37251 gtaatgtgtc ttcacccct tgccagacc acagcagtgg ctttttacct
37301 ggccctccag cttectctc gacatrtggc ttccttctg gcatccagcc
37351 ttcctcttgtt tggttccca aaggtaacca aatgtatctt gtaaaataca
37401 ctatgttcc tgcactctgc caaaaacccct tcccttgcgg ctatctata
37451 atacttagaa ggacatctaa agtattccc aaagctgtcg tgatctggct
37501 ggagccctct tcacccggc tcaagetaac ttgatctct tgccttccct
37551 tgaacacact gaaacacactt ccaccccaag gtcttttat attttttgtc
37601 ctggaaacct tttecttag atatgtcac gtcacccct tcacccgtt
37651 gggtcategc tcccttgaga tgcttccca tgagacaaac cgaaataact
37701 aaaaacggcc gggctcagtg gtcacgccc ataattccag cacttggga
37751 ggc当地 ggtggatcac ttgaggtcag gagttcgaga ccagccctggc
37801 caacatggc aaaaaacccat ttcctccaaa atacaatattt aacccggagt
37851 ggtgggtcgc acctgtatac ccagctactt gggaaagctca ggcaggaaaa
37901 togettaac ccagagggcg gaggttgcag tgagctgaga tcatccatt
37951 gcacccggc ctgggtgaaa gagactgtct aaaaataaa ataaaaacta
38001 zaatataaa aacatgttca ttataagatg tttgttaat ttacccgtaa
38051 ttcacccat ttgcacggtag ttatattcc tttttttat aataatttt
38101 ttcttgyaac ttacacattaa gatagacac ccgcctctt gtgactccat
38151 ctccatctg ctctgcattt cccccagggtt ttgtcaacta cccacattha
38201 tattctgtac ttgtttatgg cttaacate aacccatcccc aggccacat
38251 aagtcctatg agggccggaaa acctttctt ttttttcaact gctctatacc
38301 tcatgttgg ctatccgttag ctatgcacca aaaaatattt gtgactgaa
38351 ctaatgtatg aaaaatataaa ttgccttaac acttaattt aaaaaaggca
38401 tateccaaaac acctccctgt atgcctccct gttcaaccag batccaaac
38451 aaaaatgtt ccacttagaa ttgagaaat tcaatgttag saaggatct
38501 tgagccctgc cgttcaatc caacatattt aaggtatgg aaaccagccc
38551 tgagggatca gttgtacca agcttagttt tggcgaacag ataataaaac
38601 taggcatagt tcaatgttt ttatgttcc atgttttac tctctgttcc
38651 ttttggaaatg tccctctgt tacataagca aatataatgg aaccggaaac
38701 ctcttattcc ttcttatttt gctgtctgt tggcaataaa acatctggca
38751 catgtatcc atggggccact aaaaatattt ttttttttgc cagaaaaagggg
38801 ctcacattga taaggccagat tqacccctctt gtcacatctt gtcctccat
38851 tgggaccaacc taaaatataaa aaaaatgtt aattataata ttttcaactaa
38901 attttacctg aatatacaact atttgcacgt agttatattt ctatcttgc
38951 staataacttt acttcttggc atatcacatg taaggcccttgc ttgactttc
39001 tacatccctg ttacttaggc ttctatgac ataaasagca cccaaaaggaa
39051 aacacgggaa aaaaatataat aagtgtctgt gaaacagaaat ttagtttgat
39101 ttttggctcc atttaccggc taaaatgtactt tggataagat tcttggactt
39151 ttttagtata aatattctee ttagaaaaag tgaaggggaaat ggtatctctt
39201 taaaacattt ttttttagt tqagagttaa catgtatcca ggtacactee
39251 ggcagactaa aggctttata ttttgcattt cattaaatca tcccaataagc
39301 cctgtgagaa aaaaatgtt atcccttatt tgcagggtgg gactccaaaga
39351 ctcaaggcasga ttaatggcc caaggtcaca caactaaagaa eggcacagssac
39401 tagaaatacc tggggctgttcc ccatgtaaat ttataactcat aacccctgttgc
39451 cctcccttggaa gggcttattat ggagaaaaaa tggaaatattt tctgtgtact
39501 gagccatcccg cacagccca tataatcgag gtactcaata aatgttgcacc
39551 attttcttcc ttgtttccca ccactgtacta aataaattac ttggcccaat
39601 gtacttgcact tcttagggcc tagttttttt tttaaatattt ttttttttgc
39651 cttttttcttcc attacaaaaat ccatacatgg ctatcaaata tcaattttggat
39701 aaaaatgtata tataatata taaaactaaa atttgtacgg aatcttacca
39751 cctaaagata atcaccatca atatgcacat gtagtattt atactatitt
39801 tttttttata tactataaga atacatataat tggccaaatg caatgactca
39851 caatgtatg cccaggactt tagggggccca aggtctggggg atacttggag
39901 gtcaggagtt cgataccaggc tgcaccaaca tgggtaaata tctgtctcttac
39951 tagaaatata aaaaatgtt gggcatggtg gcaagggtggct gtaatcccaag
40001 ctactggggc ggctggggccca ggagggacac tggaaatccca gaggtgggg
40051 ttgcacgttgc ctgcacgttgc gccattggccc ttttttttttttttttttt
40101 gggaaactccg ttcacaaaaat tataatataat aatccatccat atttttgggg
40151 agccaaaaactg aaaaatgttgc atctgtcttac gtaatgtttt attttttttt
40201 ttagtggatgg aacatttttca ttcacacataa tttttttttttttttttttt
40251 ttgtggctgt atcgcatitg tggtaataat aatagtaata ataaatttag

40301 tcaaatgtat gtttagtattg tactgagatg tttcacatgt aacttattca
 40351 atttttgcacccatgtaca taggtaccc tattatetac atttttcaga
 40401 taaaggaaact gaggcacaga aagattcagt caetttaacaa ggtaaccgg
 40451 ctattaagca gtagagccag gatggaaact gaggcacatg agcaccatag
 40501 cccatgtct ggaaggata tagcatgtt ttttttttia atccatccc
 40551 atttagaaatc tggatgtttt ctcatatcc atactgttac taatagtgtt
 40601 aggatgagc tgggaggaga aaaaaaaaat agtttaatss statgtgtt
 40651 gcaaaacttgt taacatrtac aatitttatca tacatccctc cagtttacat
 40701 tcctgtaaaa agtttatcac atttgttac gtttgcacaa ataatgtcaa
 40751 attgtctcccc caaaaataac cataccaaat tattttaca gaaatcttc
 40801 atccaaaaaac tttttttcc tgccttgcca acattgacaa ttcattttt
 40851 taaatctttgt cagtttgata aaataaaatg gtacctttt atgtttttaa
 40901 atttccaaaaac tagaaattgt aaagaaatcc tctatataatt aatttagtcat
 40951 tgtttctctt teettagata aattegtctt ttttttttgc tttttttt
 41001 ctatctatgt gttttttttt tttttttttt ttatataattt aagatattaa
 41051 tttttttttt atccatataat atgttgcatt tttttttccag gttttttttt
 41101 tgcattttca tctgtgtaga gttttttttt aatgtatggaa attttgcgtt
 41151 gttagtgcct tcaatcttca actgcacaaat atgggagat aactatatt
 41201 gtttttaaaa cttttttttt tttttttttt tttttttttt tttttttttt
 41251 tacatccaaac aatccatcta tcaaggaaatg atccatccaa taatgtttga
 41301 acatctatcg tatgatatgt acggagatcg tcaatgtggat taaaaaaaac
 41351 aaaggacccccc tgcattgtt tggttttttt tagtttacta tagaaagagac
 41401 cagcaaggatc acagactt agtataatcc tgggtaatcc gtgttatgtac
 41451 aggagcatac ctccatcc tgggcacaatg tggcccttgc tgggtgtatst
 41501 ctgtgttgtt tcccaagaacg aacgcataatg gacccaggta aagaaaggag
 41551 gagggccccc tagggagage egcaggatcc tataagacac tttttttttt
 41601 aggttagcaga atttgttctt tttttttttt atttttttttt tttttttttt
 41651 ccacatgggtt atgtatcc tttttttttt tttttttttt tttttttttt
 41701 aaagtgggtt agagaaatggaa aaaaacaggag atgtggaaacc aggcataca
 41751 ttgttgggtt gcccaapaga gaaatggatg atgcctgtt aaggaggaga
 41801 caggataaaat ggaaatggaa atttttttttt tttttttttt tttttttttt
 41851 aatcaacccaa atgtatccatc tcaatgttata tttttttttt tttttttttt
 41901 agaaggagat gttatccgtt gaaatttttt tttttttttt tttttttttt
 41951 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 42001 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 42051 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 42101 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 42151 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 42201 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 42251 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 42301 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 42351 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 42401 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 42451 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 42501 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 42551 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 42601 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 42651 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 42701 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 42751 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 42801 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 42851 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 42901 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 42951 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 43001 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 43051 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 43101 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 43151 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 43201 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 43251 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 43301 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 43351 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 43401 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt

FIGURE 10

43451 gagatcacat gacgagagat gaagcaagac ataagtgcga tttttttt
 43501 aacaaccaaa ttttaaggga acttacagag ccagaactca gtcattaccc
 43551 caaggccgt accaaggccat tcatgagcga tcctccccca tgaccacac
 43601 acctccccatt aggttccccc tetaacactg gggatcacat ttcaacatga
 43651 tattttgggg tcatastatcc aactatagc ataagtaatt ggtaattaa
 43701 ataaattagt gtcctaccc tatacattt gtattttttt gatattttac
 43751 ttatataactt taaagtgtat attttatcaa aattttcaaa aacttagett
 43801 atagtgggc cccatggaaa atccaaaaa ctggAACAA AAAATGTGGT
 43851 gggagggggg patataaaca tcaagaacat tttttttttt gttttttttt
 43901 ttgttctcaga gagaaccaaa tgaatgtgggt ttaazggaa agaggtaaat
 43951 ttatgttagt tatttagggaa aacttttgcg aactatagaa taacttttaa
 44001 ttacaaaaaa tttaaaaggc ctgaagttcc cagacagttt ctggaaatca
 44051 agatataccccc tttttgtggc ttacttaccc cgaggggggtt tatctgtcc
 44101 tataactact agtttggaaag tttcaacca tttttttttt gatccagatg
 44151 atttagttt tttttttttt tttttttttt gatccatgtt atacttttca
 44201 atacatgcattt tttttttttt tttttttttt tttttttttt tttttttttt
 44251 ttcagatgtt tttttttttt tttttttttt tttttttttt tttttttttt
 44301 gggaaatccc ggtatgttaat aatgggggtt tttttttttt tttttttttt
 44351 acacccccc gacagggtcc atgggtatca tttttttttt tttttttttt
 44401 ctatataataa ctttgagcaaa tttttttttt tttttttttt tttttttttt
 44451 cacagtcattt atgtgttta aatatcatta tttttttttt tttttttttt
 44501 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 44551 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 44601 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 44651 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 44701 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 44751 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 44801 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 44851 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 44901 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 44951 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 45001 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 45051 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 45101 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 45151 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 45201 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 45251 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 45301 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 45351 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 45401 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 45451 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 45501 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 45551 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 45601 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 45651 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 45701 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 45751 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 45801 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 45851 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 45901 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 45951 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 46001 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 46051 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 46101 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 46151 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 46201 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 46251 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 46301 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 46351 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 46401 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 46451 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 46501 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 46551 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt

FIGURE 1P

46601 gaataatgeca agcacatagt aagttttaaq ttagtattt tctgcaccc
46651 tactagccat gtacttatct ctagtatttc caatatttta gcatagggaa
46701 tgggttagta tatcttttc ttttttttct acacttggga gaaaggcgggaa
46751 ttacaatgaa Ataaaagcaz atcgatgtc caacagggtc atataatgtaa
46801 tgtctgtttt taaccacactt gcttcaggag caatccctc acatcgatgtaa
46851 aaaccasqag atgttttgc acataactt ttttataaag tttttttcaat
46901 tgcggagaca tagtcgttgt taaaacttc caacatacag aatataataa
46951 ttacaaatgt gaaaggcccc ttatgtata tattacttc agetcaetcc
47001 ctttagaaat attaatagt aataatcage gtatgttct actttttttt
47051 ttttttttgag acgcgttctt gcttgcgtc taggtggag tgcgtggca
47101 cgatcttggc tcaatgcac ctccgeetcc tgggttcaaq ggatetccat
47151 gcttcagccat tccaatgtc tgggattaca ggcacgtggc accacaccca
47201 gctaattttt gtatTTT tagagacagg gtttccat gttggccagg
47251 atggcttcgaa tttatgtacc tcatgtatcc occacettgg cttcccaaaag
47301 tgcgggatt acagggtgtg gcaatgtcgc ccagctatgt ctcaatattt
47351 ttccatgttc atataactat atatattttt attaaatata aatcacattt
47401 tacatactgt ttgcacatgt gcttttattt aetttaaaata tgatTTTgt
47451 gtcgtgtca acacatttag tttttttttt tttccacag tgcggggagg
47501 tggtaactctt ttttgcgtt ctgggtactt accccaaaaa gcaatgtc
47551 ttagatgtgg tggaaaaaagt ctttcagggtc ggacacccgg ggcacacacc
47601 tgaatctca actttttggg aggccaaaggc tggcagatga tgcgtgtca
47651 ggatgttgg accaggctgg gcaacatagc aataccccat ctccacaaaa
47701 aataacaaaa attagccagg cttgttgggt catgcctgtc gtcctagtc
47751 cttgggaggg tgggggggca cacaagggtt gcaatgtc gacatgtc
47801 cagtgcactc cggctttgtt gataatgtt gacccgtca aaggatggaa
47851 agagggaaaga aaggagggaa gagggggaaaga aeecctttg ctgaasctt
47901 cactgccaaac aactggcccc cttttttttt caaagcaatgt accccaaaaag
47951 gggcccccggc agaggggttc aaaaatgtt cttatgtcc accaggagac
48001 cagacatttc tttatgtcagg gggaggatg agetgtatg gaaataacttca
48051 ttatatacgc agttatccca gggatgtca gaaatatttca aatgtgtaca
48101 tcottigaaat ggaacttctt tttggatgtt ggaagccccag tttatgtcaca
48151 cccactttggc gcaatgttggg aattgttattt gggatgttta aatgtcaatgt
48201 aactttttttt aaaaattgtca cggggggccca ttatcccaat tttatgtt
48251 cccacttca aacttacttc cttatgttca gatgtttact tttatgtt
48301 ttatgtttttt tttatgttca tttatgttcat gggatgttca aatgtt
48351 tttttttgtt agaaaaaggaa gattttttttca gtttttttttca aatgtt
48401 aatataatgtt ttatccatgt tttatgttca tttatgttata aatgtt
48451 ttatccatgtt aatgttataa ttatccatgtt aatgttata aatgtt
48501 atgggtgtttt aatgttataaagg aatgttata aatgttata aatgtt
48551 agctttagtcg aggtttttgtt tttatgttca aatgttata aatgtt
48601 ttatgtttttt aatgttataaagg aatgttata aatgttata aatgtt
48651 agaaaaatgtt ttatccatgtt aatgttata aatgttata aatgtt
48701 ctttgcacatc atccacccgg aatgttgggtt tttatgttca aatgtt
48751 ttatccatgtt aatgttata aatgttata aatgttata aatgtt
48801 ccccaatgtt tttatgttca aatgttata aatgttata aatgtt
48851 tttatgttca aatgttata aatgttata aatgttata aatgtt
48901 agccgcggat gggccaaaggc tttatgttca aatgttata aatgtt
48951 ctatgtttttt tttatgttca aatgttata aatgttata aatgtt
49001 cttatgttca aatgttata aatgttata aatgttata aatgtt
49051 tttatgttca aatgttata aatgttata aatgttata aatgtt
49101 agtgcgttact tttatgttca aatgttata aatgttata aatgtt
49151 TACGGCTTCATAGGCAATTG TTTCTGC>A AACTCGGGGT ATATTTTTC
49201 CGACGCTCTGC ACTCGAGAATG TCCGTTTCC TACAGATCTT CGCGATGGG
49251 CGCATGGGCC GAGGGGGAGC CACTTGGAA TTTCTGGTT CAGTGTT
49301 TGGTACACGC AGgttaatgtt ttgtttttttt aatgttata aatgtt
49351 gaaatccat tttatgttca aatgttata aatgttata aatgtt
49401 aatgttata aatgttata aatgttata aatgttata aatgtt
49451 atggatattt tttatgttca aatgttata aatgttata aatgtt
49501 agatgttca tttatgttca aatgttata aatgttata aatgtt
49551 aatgttata aatgttata aatgttata aatgttata aatgtt
49601 AGGATTTTGT TTTCTGGTTT TTTCTGGTTT CTTCTGTTT CTTCTGGGAA
49651 AGGTGGCCAA TTAAGGTTT TTTACATATG CAGATGTCTT CTTCTGGGAA
49701 AGgttaatgtt tttatgttca aatgttata aatgttata aatgtt

Exon 4(A)

Exon 5(B)

49751 ttttttaat scaacgtaat ggttcctatg gatggttca ataaaaat
 49801 taaattgcga aagagagtta tatggaaaat aaataactat tattattgtc
 49851 taaggcctt ccacatccc ttggccaac ttagtgtct tgtaaaccat
 49901 cttatatt tcttgagtgc tagattttt cttaaaattaa aaatataaa
 49951 aatatataaa tatatacat ttttaaatg gtgattaaaa catgtatgt
 50001 ttgttattt gtttaacctt tggggcac aaatttaat gatcaattgt
 50051 tcattgtatttccatgtttt ctttttttgc tctgggtt aaaaatgt
 50101 ggaagctgtg aataaaaaatg cagcacaaag aatgtaaaaa gaagactgg
 50151 aaccatctgt gagatcagag attatgtca cttttttca aaccatcc
 50201 ctcacaaacctt ctttttttt tatattatta aagataattt ttccaaataa
 50251 ataaatgtttt atcatgattt ttacatagaa agaaaaattaa cacatgttt
 50301 acattcattt aactcatttt aaaaatgttta gtcatttttta atgaagaaac
 50351 cagtaagatg tttaaaccag ttcaagccac ttttttttca aacatccat
 50401 ttaaagatca ggaatatttg aatcaatgtt caatgtggg caaaactgg
 50451 teetttccaca gtgtgggggg gaaatgtttt ctttttttttccac taggcggaaat
 50501 ttatccatc gttccataggc aagaattttt tttttttttt accagttatc
 50551 aacaacttac agatgtgtaa aatagcttca aggctatgaa aagagcag
 50601 cccatataaa tcaatgttttca aaaaatgttgg aagggttact ctgttttt
 50651 catatgttttccatgttttttttccatgttttttttccatgttttttttccatgttt
 50701 gaaacagtca ttggatgtat gggatataaa gatgttttttttttttttttttttt
 50751 gtgtttttatg ctt
 50801 ggttattccaa aaaaaaaaaatg aatgttttttttttttttttttttttttttttt
 50851 ctcaacggctt ttt
 50901 tgagcttcaqg ctt
 50951 ctatgttt
 51001 ccacatccccatccatgttttttttttttttttttttttttttttttttttttttt
 51051 gattataat gtt
 51101 ccccggttgcgtt ttt
 51151 ttt
 51201 gataggctttt ttattttttt gtttttttttttttttttttttttttttttttt
 51251 gatattgtttccatgttt
 51301 gtcacgg
 51351 att
 51401 tcacccatccatgttt
 51451 aagattatccatgttt
 51501 teccgggttt
 51551 ggg
 51601 taatgttt
 51651 actgg
 51701 atccgggttt
 51751 ctggggatgttt
 51801 ttggggatgttt
 51851 tt
 51901 ttt
 51951 gtt
 52001 agtt
 52051 ttccatgttt
 52101 gatgttt
 52151 gatgttt
 52201 ttatgttt
 52251 ttt
 52301 gtt
 52351 aatgttt
 52401 agtgg
 52451 ctt
 52501 gatgttt
 52551 aggg
 52601 aatgttt
 52651 aacttt
 52701 ctt
 52751 ctt
 52801 aatgttt
 52851 attt

FIGURE 1R

52901 atgaaagca ccttttaatac aaaaaggaaaca aaaaaaaggt tatgtgtttt
 52951 gatgcagaccc cacagtttgc acacagaaga ggcttgggaa ttgggggggg
 53001 tcatgaaaag atgtcttggg ttctgtatgtq gcaactaaag ttgcatttgat
 53051 ggcagaaaaat ggaacaaaggga agtaqctcta gtatgtgagg cactgagage
 53101 tgtctggaaaaa ggggatcttc tgattttttg atagagatcc atttattate
 53151 attttcttatc ttatattttc tcattttttgg ttgttcaga tttaatctea
 53201 aataatattca gaatgggtt ccctggaggat ttttcttctt ttgatctgtt tttagattat
 53251 tcctgtttttg tggggatgtat ttttcttctt ttgatctgtt tttagattat
 53301 tttggaaataa cttaaagatca gttttccctg cactccaccc tgggtgttgg
 53351 agtggagaccc tgcctccaaag atccccctgg ggagaattat accgtgcac
 53401 ggaaatctac caacagtttgc ttgttccactt gaaacacatta gctataaact
 53451 aatgtacata gatttactaa aaacatattt gatatcttca aaccagggtca
 53501 ataaaatattt gttgatitgt tgcctgaaag aaaaaggat ttatatctcc
 53551 tgattttggaa ttaattctgc tattggaaag aaaaaaaact ttageetttac
 53601 caatgttcttta aattataatc tgaccatagc ctccatccatc tcattttaaa
 53651 aaaaaatccaa gaaaagtctg gaccaggat ttccatgtt tttcagtatt
 53701 attttcgagg aaaaatcttgc gatgtcttgc aacaragaagg tgcggggact
 53751 ccacccctcaga ttttccatccaa ataaaatccaa ctttatgeca acatttccaa
 53801 cccacagatt ttcagaatgt attttcttc acctgtgtga ctgtatccat
 53851 gcataggaaa cataaaggcc aaaaatatac taatgtttt ctatctgca
 53901 gaaegecttca aataaatttttgc tccatgttgc agatgttca aataaccagg
 53951 gattttctgag gcccggctgt ggggggttgc agggttttgg agaccatccc
 54001 tgcggcagatc ctatccgcg ttgttaccct gcaatgttca aaggcagctg
 54051 ccagtttttc agttaatggc ttgtggccaa aatggccatc ttctcttca
 54101 aggaaatctc tactctgect agaacttttc tgaaagagat ggtggacatt
 54151 tttgcactt gtaattttttt ttaattttca aaaaatgttca tcaaaatgtc
 54201 atgacccatc ctatgtatattt aataagatca tactaaaaag tcacggatgt
 54251 gaatcacacaa agattttttt aataaaaatgt taatctatcc agtgcatgtt
 54301 caccacgtatc tttttttttttt gctctggat gggggaaaaa aatggaaat
 54351 tgtccatataatc cgtgtatgtt aatccatccct ctcttatttcc ctgttttcc
 54401 tcttt
 54451 ggggatccaa agtcacccaa scactattttt gtttacttgc ccacttattt
 54501 aaaaatgttca ttgttt
 54551 ctcttccatc actggggccaa tttaaccaccc ctccatccatc ccacaaaaaca
 54601 tactgggggttgc tgcagagatc aaaaatgttca ttagtateca cagaattctg
 54651 ttctgttt
 54701 accccttt
 54751 gttgcagtgc acttgggttca ttatgttgc tgcagatgttcc ttttttttttt
 54801 gttgcggcag ccctccggcc ttttttttttttttttttttttttttttttttttt
 54851 scatgcaccc atgcacccat aattttttttttttttttttttttttttttttttt
 54901 gttgcacccat gttgcacccagg ctgggttccaa accttttaggt tcaacccatc
 54951 tgtctgtttt ggcctccaa aatgttggat ttacagggtt gageccactgt
 55001 gcacccatccaa ttcttt
 55051 tggcatgggtt ttt
 55101 aaaaaaaaggaaatggatgggtttt acggaaaatag aatgttttttttttttt
 55151 ttaatgcaccc atactaaatc ttttttttttttttttttttttttttttttttt
 55201 gggggttgcaccc cacaactatc ttttttttttttttttttttttttttttttt
 55251 tgtctgtttca tagctccatc aaaaatgttgc ttttttttttttttttttt
 55301 aatt
 55351 gatgttt
 55401 atcccttccatc aaaaatattt ttttttttttttttttttttttttttttttt
 55451 tgcacccatc aatgttccatc ttttttttttttttttttttttttttttttt
 55501 ttaatgcaccc agtacccatc aaaaatgttgc ttttttttttttttttttt
 55551 tgttt
 55601 aaaaataaccc ggcgttgcaccc ttttttttttttttttttttttttttttt
 55651 gttt
 55701 aatt
 55751 atataatgttca ttgttttttttttttttttttttttttttttttttttttt
 55801 accatccatc ccacccatccatc ttttttttttttttttttttttttttttt
 55851 aatt
 55901 tcatgggttca cccggatgttca acggatgttca ttttttttttttttt
 55951 tcacccatccatc gactcaaccc ttgcacccatc atgcacccatc cccatata
 56001 actggcagatc aatt

56051 tcaaaagg&gc aactacatta ttatattttt gttggattec cagtctaaaag
 56101 atagtgtaaa gggatttattt atttaaargtt ggatcccaag cttaaasgaca
 56151 gtgttaaagggg aacgtgttat ttatattttt ttctttataa cagtaatcca
 56201 ttttttccaa aatcagetct ggctctttaa cttcatttgc cccatatttc
 56251 tgtgttaact gtataactgtt aagtgateat agccacatgc ctttctgcct
 56301 gagagatcaact gaeatcgca gttgtaaac aatcgtccata cagagatgtat
 56351 gagatacaat cgaataaagtc atcttcccat ccattccat caggatgtcg
 56401 ctgggttctt gaagatctgt gagaatgtt ttagaaaaac gaaatgtactg
 56451 cttccatcacc caattcaatt gtgaatgttca gacgtgtttt cttccaaagcc
 56501 cttttaaagatc gcatatgcag ctttccagg ttcttgcata catgtctgtat
 56551 ttccagaatc tccccactt ttctgtaaagaa cgggtgcctt tgggttcttg
 56601 tgggggtctt cccttcttcc gacccgttac ctaaatgaaa cttatcattt
 56651 ctgggttcttca ccagtgtaaa gatccataac atttttggaa ggcagaaaaa
 56701 gtttattttt ttagccaaag catggggagaa taageacccaa gagggtctt
 56751 gctactcgt tcatgttccaa aggatcaact gataaacatt agcggggct
 56801 cccaaatgtt aggaatggaa aagatataa atgtatgtt acatgtccaa
 56851 ggagacttcc tggtacttca agggcattt gacccgttac tccggaaaaaa
 56901 tcaatgttataa totatgttcc gtcattttt ggttgtttt tcaatgttcc
 56951 ctgttcttcc accttggatgt tcaatggccat atcaagcaga tgggttccgg
 57001 tgaatccctt gaaaaatataa acatttttt atgttacgtt catcttccaa
 57051 acttcataat ttatgtctt gttgtatctt tctgttccata tcatgeaccc
 57101 cagggtgtctt ctttgcactt ccggaaaggaa aatgtatgtt gcacgttcc
 57151 ggcacaaaaac gagggttccatcc ctttgcactt cccttcttccat ctttgcgg
 57201 gacccatctt ccacccctt gcaatgttccat tcccaatgtt aatgtgtccaa
 57251 caatggccc ctttgcattt accatggaaa atccatgtt catttgcata
 57301 cagagggggag aaatgttattt aggttggggg ttcattttgtt ggctgttcc
 57351 gtcatttgcata ttcaatgttca ttttgcatttccat ctttgcactt ggttgttcc
 57401 gtatggggagaa agtggggcagg gttttgttccat acccccatgg gaaatccaga
 57451 gtgtgttttccat ctttgcatttccat ttttttttttccat aatccatcc
 57501 tggatggagaa agggggcaacc ctttgcatttccat aatgttccat ctttgcgg
 57551 ctttgcatttccat ctttgcatttccat ttttgcatttccat ttttgcatttcc
 57601 catttttcgtt agttatgttccat ttttgcatttccat ttttgcatttccat
 57651 ggcacggccaa atgttattttt ttttgcatttccat ttttgcatttccat
 57701 taacatttttt gtttttttttccat ttttgcatttccat ttttgcatttccat
 57751 tattatataaa cccatgttccat ttttgcatttccat ttttgcatttccat
 57801 gtagatgttccat ttttgcatttccat ttttgcatttccat ttttgcatttcc
 57851 tggaaatttt ttttgcatttccat ttttgcatttccat ttttgcatttccat
 57901 ttttgcatttccat ttttgcatttccat ttttgcatttccat ttttgcatttcc
 57951 catatccctt ttttgcatttccat ttttgcatttccat ttttgcatttccat
 58001 ttatataccctt gtttttttttccat ttttgcatttccat ttttgcatttcc
 58051 ttgccttccat ttttgcatttccat ttttgcatttccat ttttgcatttcc
 58101 gtttttttttccat ttttgcatttccat ttttgcatttccat ttttgcatttcc
 58151 cacactggggccatccat ttttgcatttccat ttttgcatttccat ttttgcatttcc
 58201 ctgccttgggc ttttgcatttccat ttttgcatttccat ttttgcatttcc
 58251 gtatccatccat ttttgcatttccat ttttgcatttccat ttttgcatttcc
 58301 ctcttccat ttttgcatttccat ttttgcatttccat ttttgcatttcc
 58351 gagatccctt ttttgcatttccat ttttgcatttccat ttttgcatttcc
 58401 ttttgcatttccat ttttgcatttccat ttttgcatttccat ttttgcatttcc
 58451 ctttgcatttccat ttttgcatttccat ttttgcatttccat ttttgcatttcc
 58501 ctgttccat ttttgcatttccat ttttgcatttccat ttttgcatttcc
 58551 atataaacttccat ttttgcatttccat ttttgcatttccat ttttgcatttcc
 58601 taatataatgttccat ttttgcatttccat ttttgcatttccat ttttgcatttcc
 58651 ccaatgttccat ttttgcatttccat ttttgcatttccat ttttgcatttcc
 58701 gggatggatgttccat ttttgcatttccat ttttgcatttccat ttttgcatttcc
 58751 gggatggatgttccat ttttgcatttccat ttttgcatttccat ttttgcatttcc
 58801 gtttttttttccat ttttgcatttccat ttttgcatttccat ttttgcatttcc
 58851 ttttgcatttccat ttttgcatttccat ttttgcatttccat ttttgcatttcc
 58901 gtttttttttccat ttttgcatttccat ttttgcatttccat ttttgcatttcc
 58951 gtttttttttccat ttttgcatttccat ttttgcatttccat ttttgcatttcc
 59001 atttttttttccat ttttgcatttccat ttttgcatttccat ttttgcatttcc
 59051 gagaaaaatggggatgttccat ttttgcatttccat ttttgcatttccat ttttgcatttcc
 59101 ctttgcatttccat ttttgcatttccat ttttgcatttccat ttttgcatttcc
 59151 atttttttttccat ttttgcatttccat ttttgcatttccat ttttgcatttcc

59201 ttaagacagg aaggaatata ttggtaga .ttaaggttc tgtttttagtc
 59251 acattaaattt aaatgactgt gecatotaaa tggactgtgc aactgcagac
 59301 atgtgaattt gggactcaga aaagtggct ggcttagaga ttaaaatttg
 59351 gatgttttag cataaaatgt gcattttaaat ctatgagaac atttaagatc
 59401 acctggaaag agagaadaaa gaggggatag taaaagaaagg aaagtctaaq
 59451 aagaatacaa tttttsaaag Aagaaaaaaga ottagaacaa wacctttaaaa
 59501 atccagtgtc caagggttgs aaagggttaag aggagccaca gaaaaaagago
 59551 caccaaggaa tacaagaga aaaccatgg aatggaaagaga agatgtgttc
 59601 tagaaagagg tggteagctg agtgcatttgc ttctggatca tctggatca
 59651 tagaaattttgt ctccccctttt atcaaacctg ttctgttaattt ttccccccctc
 59701 ttccaaaggcc caggttaaggt ggcattgacca gagcaaccac ttccctcaatg
 59751 attgccatgt accacatata cccacccat tcaatgttctt ttcttcatgt
 59801 ctcatgtcc ttgtttttt ttctctcttctt tttttttttt tttttttttt
 59851 ttcccaatgt gagtttcaat ctgttgcacs ggtggagtg caatgggttg
 59901 atcttggctc actgcacccctt ccacatctt gattttttttt gatccatgt
 59951 ctccacccccc tgatgtgtc ggatttttttggatccatgttccatgttcc
 60001 tagttttgtt tttttttttt agatggatgtt tttttttttt ggcacggctgt
 60051 gtcctcaatctt cttttttttt tttttttttt tttttttttt tttttttttt
 60101 gtcgtttttttt gtcgtttttttt tttttttttt tttttttttt tttttttttt
 60151 tetattttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 60201 ttctctttttt tttttttttt tttttttttt tttttttttt tttttttttt
 60251 tggaaatgtt gttttttttt tttttttttt tttttttttt tttttttttt
 60301 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 60351 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 60401 cccctgtttttt tttttttttt tttttttttt tttttttttt tttttttttt
 60451 ctcaggactc gttttttttt tttttttttt tttttttttt tttttttttt
 60501 agtcataatgtt tttttttttt tttttttttt tttttttttt tttttttttt
 60551 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 60601 caatccatctt tttttttttt tttttttttt tttttttttt tttttttttt
 60651 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 60701 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 60751 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 60801 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 60851 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 60901 atagggtttttt tttttttttt tttttttttt tttttttttt tttttttttt
 60951 atggccatca tttttttttt tttttttttt tttttttttt tttttttttt
 61001 aacccacata tttttttttt tttttttttt tttttttttt tttttttttt
 61051 taatcaatat tttttttttt tttttttttt tttttttttt tttttttttt
 61101 atgaacacaa tttttttttt tttttttttt tttttttttt tttttttttt
 61151 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 61201 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 61251 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 61301 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 61351 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 61401 aatgtttttt tttttttttt tttttttttt tttttttttt tttttttttt
 61451 cccatgtttttt tttttttttt tttttttttt tttttttttt tttttttttt
 61501 tcattttttt tttttttttt tttttttttt tttttttttt tttttttttt
 61551 taattttttt tttttttttt tttttttttt tttttttttt tttttttttt
 61601 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 61651 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 61701 agtgtttttt tttttttttt tttttttttt tttttttttt tttttttttt
 61751 gtggatgtt tttttttttt tttttttttt tttttttttt tttttttttt
 61801 cccatgtttttt tttttttttt tttttttttt tttttttttt tttttttttt
 61851 tagatgtttt tttttttttt tttttttttt tttttttttt tttttttttt
 61901 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 61951 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 62001 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 62051 tagccatctt tttttttttt tttttttttt tttttttttt tttttttttt
 62101 agttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 62151 aacgatttttt tttttttttt tttttttttt tttttttttt tttttttttt
 62201 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 62251 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 62301 taactcaatg tttttttttt tttttttttt tttttttttt tttttttttt

FIGURE 1U

62351 tagtttcagg ctctatattt tttttttttt tccaccccaa gttqatttt
 62401 gtatgtggtg agaaatgagg acccgtttt attctcttac atatggctag
 62451 ccaattatcc cttttttttt tttttttttt ggtgtttttt gttttttttt
 62501 agaagacatt tatacagccaa acacaaaaattt gaaaaatgtc tcatcatcac
 62551 tggccatcaa agaaatgcac gttttttttt cttttttttt cttttttttt
 62601 ccattttttt tttttttttt tttttttttt tttttttttt tttttttttt
 62651 aggtatgtggta gaaataggaa cttttttttt tttttttttt tttttttttt
 62701 tagttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 62751 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 62801 gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 62851 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 62901 atgttagact ggataaagaa atgtttttttt tttttttttt tttttttttt
 62951 tacatgtttt tttttttttt tttttttttt tttttttttt tttttttttt
 63001 aactggaaaaac catcattttt tttttttttt tttttttttt tttttttttt
 63051 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 63101 acacaggggag gggaaatccaa cacatgtttt tttttttttt tttttttttt
 63151 tgggggggggg atttttttttt tttttttttt tttttttttt tttttttttt
 63201 tgggtttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 63251 actttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 63301 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 63351 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 63401 gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 63451 ttataccat tttttttttt tttttttttt tttttttttt tttttttttt
 63501 cgggtttttt tttttttttt tttttttttt tttttttttt tttttttttt
 63551 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 63601 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 63651 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 63701 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 63751 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 63801 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 63851 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 63901 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 63951 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 64001 gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 64051 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 64101 gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 64151 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 64201 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 64251 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 64301 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 64351 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 64401 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 64451 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 64501 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 64551 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 64601 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 64651 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 64701 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 64751 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 64801 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 64851 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 64901 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 64951 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 65001 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 65051 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 65101 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 65151 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 65201 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 65251 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 65301 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 65351 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 65401 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 65451 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt

65501 agesggttat ttaattccaa tatatttgcg tggctttgaa agttcattt
 65551 ggagttgatt ttcagtttgc ttccactgtg gtcgtggaga gtgttgtata
 65601 taatttcaat ttctttaat ttattggagc tcattttgtg gcttgctgt
 65651 tggcttacat tggagaaagt tccatgcact gaatagaatg tatatttat
 65701 ggttggtgcg tggaaatgttc tgtatatac tgtaaagtat atttgttcca
 65751 agttatagtt taatccatt gtttcattgt tgacccatg tcttgattat
 65801 ctgtccaggc ctgtcaatgtt gttttttttt gttttttttt
 65851 gcccacccgttc tcatttttca gttttttttt tttttttttt
 65901 tagtttcaatgtt gttttttttt tttttttttt tttttttttt
 65951 tggacttaggc tttttatcat tatataatgc cttttttttt tttttttttt
 66001 gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 66051 ttgggttccaa tttttttttt tttttttttt tttttttttt tttttttttt
 66101 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 66151 gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 66201 atttaageca ttttacatca acgttagat tttttttttt tttttttttt
 66251 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 66301 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 66351 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 66401 agatgtttttt tttttttttt tttttttttt tttttttttt tttttttttt
 66451 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 66501 agatagttt tttttttttt tttttttttt tttttttttt tttttttttt
 66551 aggaggctga agacaaaggcc ccaatccat tttttttttt tttttttttt
 66601 tgaaatccat tttttttttt tttttttttt tttttttttt tttttttttt
 66651 acctttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 66701 tacctgttgc caatgttgc tttttttttt tttttttttt tttttttttt
 66751 aggtgtttttt tttttttttt tttttttttt tttttttttt tttttttttt
 66801 tggggaaatgtt tttttttttt tttttttttt tttttttttt tttttttttt
 66851 gattttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 66901 aacccatccat tttttttttt tttttttttt tttttttttt tttttttttt
 66951 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 67001 ctgtttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 67051 gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 67101 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 67151 gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 67201 ccctgattttt tttttttttt tttttttttt tttttttttt tttttttttt
 67251 gggattttttt tttttttttt tttttttttt tttttttttt tttttttttt
 67301 tggggatgtt tttttttttt tttttttttt tttttttttt tttttttttt
 67351 gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 67401 ggctgtttttt tttttttttt tttttttttt tttttttttt tttttttttt
 67451 ctcccccattt tttttttttt tttttttttt tttttttttt tttttttttt
 67501 atgtttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 67551 ggcttggcac tttttttttt tttttttttt tttttttttt tttttttttt
 67601 gggttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 67651 ctccaggat tttttttttt tttttttttt tttttttttt tttttttttt
 67701 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 67751 agttgttatac tttttttttt tttttttttt tttttttttt tttttttttt
 67801 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 67851 agttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 67901 agttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 67951 aacccatccat tttttttttt tttttttttt tttttttttt tttttttttt
 68001 atgtttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 68052 atctttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 68101 aacccatccat tttttttttt tttttttttt tttttttttt tttttttttt
 68151 cttagggat tttttttttt tttttttttt tttttttttt tttttttttt
 68201 aaggccaggat tttttttttt tttttttttt tttttttttt tttttttttt
 68251 atctttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 68301 ggagctggat tttttttttt tttttttttt tttttttttt tttttttttt
 68351 atccatggat tttttttttt tttttttttt tttttttttt tttttttttt
 68401 atatccatggat tttttttttt tttttttttt tttttttttt tttttttttt
 68451 aatccatggat tttttttttt tttttttttt tttttttttt tttttttttt
 68501 gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 68551 accatccat tttttttttt tttttttttt tttttttttt tttttttttt
 68601 cactttttttt tttttttttt tttttttttt tttttttttt tttttttttt

FIGURE 1W

68651 aagtcaaaag ticaaaaaaccc gcccggccas catggtgaaa ccctgttct
 68701 actsgaaaata caaaaatcg ctgggtgtgg tggggatgc ctgtaatccs
 68751 agctactcaa gagggctgaaa caggagaatc acttgaacct gggaggcagt
 68801 ttccggtaag ctgagaccgt gcccactgcac tccagtcgtgg gtgcacaggt
 68851 gactcagtcg cagaaaaaaa aatgtggta zqagaaatttg aaatttagtc
 68901 ttagtaattt tgaaatgcac zatacacatt actaactgtt ttcaccacac
 68951 tgtgeaaatg atctcatata tatataatata tatataatata tatataatata
 69001 taacacacca catacacata ttgttctgt ttaactgagg ctttgtgtcc
 69051 tttgaccate atctccccat tcccccaacc cccacccctt ggttaccaggc
 69101 atactactt ctcttaccat gggtttcatt gtttcaagatt ccccatgttag
 69151 tgaaaaacatg cagtatttc cttttgtgc ctgggttattt gcaatgtatc
 69201 tcatttagatg cggaaacatc attgtatcaa atttttttc ataataaaaa
 69251 tccccaaccc attaggttac gaggaaatgt acctcaacac zataaaaaago
 69301 atatattata agccaaatac taacattata ctccacagtg aaaaaattgaa
 69351 atcttttcctt ctaagatccs gaacaaaaata aggatgttcc ctggagccag
 69401 atctatgtgt gtgtgtggctt caggctcaac ccagtgcagt ctcaatgtgt
 69451 gtggcccaaa gggtgtttgtt gtcgcgcctc accaaatgttcc aggcacccca
 69501 gcaacagagaa agagagacte gtttggggg gagaatgtaa ggaagagaaac
 69551 aaggtttttt gcccgttaat ccagagaaat ctttcagatc ttattcaaga
 69601 ccaccaamggt gataccctca caagtctca agaaccatag cattactggg
 69651 cttgggggtat cccttaatgc zggaaatgttcc gcaatgttcc aaaaatttag
 69701 tcataatctt gaaatccctt caataccag gaaaggcttcc ccaaggaggg
 69751 tggctacaa caagcccaaa gacactgaca aacaccacaa cttcaagatc atccaggaaaz
 69801 tcaatgtccca acatgagaca ctcacatca cacagagaaat gaaatccaa ttttatcaga
 69851 taaatttaac aataaatttgc aataaatttgc aaaaatccaa gcaaaatcc
 69901 tggaggttcaaa aatgtcaact gacatactgc aaaaatccaa gagtccttca
 70001 atacgagaaat tgcataatgc gaaagaaagaa ctatgtgtca tgaaggacagg
 70051 ctatitaaaaa atacatggtc aacagagaca aaaaatccaa gaaatccaa
 70101 gaaggaaatgt cccaaatata ctataaaata gtttcaagg gcaaaatcc
 70151 agttatttggc cttttttttt agggagagag agagaatgtt tattcaagg
 70201 gataataaca gcaatccca aacccatggaa aagatataaa tattcaagg
 70251 aaaaagggtt atagaacacc aacatggat aacccatccaa ctttcactaa
 70301 taaaacttgc aaaaatccaa aatgttccaa ataaagaaaa gtttttagaa gcaagcaaaag
 70351 aagagaaata aataacgttca aatggaggttcc caatccatcc ggcacggagac
 70401 ttttcgtgg aacccatca ggcaggaa gatggcatc gcatatcc
 70451 agtgcgtgg gggaaaaata tttatccctt gaaatgtata tctggccaaa
 70501 atacgccttca tgaaggagaa ataaagactt tcccaagacaa acaaaaaactg
 70551 aaggcaatccca tcaacaccag acctgttca caagaaatgc taaaatgtt
 70601 tttttatggat gaaagaaaaa aycatttca gaaaaactaa aacccatcc
 70651 aagggttggaa actcaatgtt aatgtatgttcc acacggaaaa acagaatatt
 70701 atacccat aatgttgc aatccatccaa tttttatggat gaaatccaa
 70751 agatgtatcc acaaaaaata acaacacaa cttttcaaga tataccacage
 70801 aataaataatg aatgtggaaa cccaaaaatgg tttttatggt ggttgcacaa
 70851 gttaaaaatgtt agcatttca ttttttttcc ttttttttcc tttttatggat
 70901 aatccggatgtt aatgttgc aatgttccaa taatgggttca taatggat
 70951 tttgcacggcc tcaatgttca aaaaaatccaa aaaaacgttca caatggatcc
 71001 acacaaaaaa ataaaaatccaa agaaactaa tcaatccccc agagaaaaatc
 71051 actttcaatgc aatggggggc aagggggaaa gaaaaatccaa aagggggggcc
 71101 acacaaaaatccaa taaaaaatccaa ataaaaatccaa ggcaggagta agtcccttact
 71151 tttccatata aacactgttca ataaaaatccaa tttttatggat tttttatggat
 71201 cacaggatttgc aatggatcc aatggatcc aatccatccaa tttttatggat
 71251 accccatgttca tttttatggat tttttatggat tttttatggat tttttatggat
 71301 catagatttgc aatccatccaa ataaaaatccaa tttttatggat tttttatggat
 71351 cccaaaaatccaa gtcaggatgttcc aatccatccaa ataaaaatccaa tttttatggat
 71401 agacaaaaatccaa tttttatggat tttttatggat tttttatggat tttttatggat
 71451 gaaatccatccaa agcggggggc tttttatggat tttttatggat tttttatggat
 71501 cactggggcc tttttatggat tttttatggat tttttatggat tttttatggat
 71551 agacaaaaatccaa tttttatggat tttttatggat tttttatggat tttttatggat
 71601 gttttatggat tttttatggat tttttatggat tttttatggat tttttatggat
 71651 aatccatccaa ataaaaatccaa tttttatggat tttttatggat tttttatggat
 71701 atcccaacccgc tttttatggat tttttatggat tttttatggat tttttatggat
 71751 ttctcaagggta tagatccatccaa tttttatggat tttttatggat tttttatggat

71801 ttaagacatt cagaatattg saataatac aagcttcc tctgaccaca
 71951 attgaacgaa actaaaaatc agtaacaags gaaaattttgg aaacttataca
 71901 aacacatgtt aattttttttt tatgtcttc aatgcaccat gggtaatgtt
 71951 aqagattaag aagcattttt aaaaatgtt tgcacatgtt gataatggaa
 72001 acacaaccta taacaaaaacc aatgggatgc agcattttttt gtaatggaa
 72051 ggaagtttat aactttttt aactttttt gttttttttt gtaatggaa
 72101 atataccccc tattttttttt ttatgtttttt tttttttttt gtaatggaa
 72151 aqttttttttt aqttttttttt aqttttttttt aqttttttttt gtaatggaa
 72201 aacaaaaaaa aataaaaaaa aataaaaaaa aataaaaaaa aatggaaattttt
 72251 ctgtttttttt aqctttttttt aqctttttttt aqctttttttt gttttttttt
 72301 gagaccgata ccacccccc ttatgtttttt tttttttttt gtaatggaa
 72351 aataaaaaaa aaaaatgtt gggcggtttttt gttttttttt gtaatggaa
 72401 ctactttttttt aqetttttttt gggatgtttttt gttttttttt gtaatggaa
 72451 ttgcgtttttt cccatgtttttt aatgtttttttt tttttttttt gtaatggaa
 72501 gagactttttt tttttttttt aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa
 72551 ttgtttttttt aaaaatgtt aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa
 72601 aaaaaggaggg aagccccaaa tttttttttt tttttttttt gtaatggaa
 72651 ttttttttttt aatgtttttttt aatgtttttttt tttttttttt gtaatggaa
 72701 aataatata aataatata aataatata aataatata aataatata aataatata
 72751 atataatata aataatata aataatata aataatata aataatata aataatata
 72801 acaaaaaaaa aataaaaaaa aataaaaaaa aataaaaaaa aataaaaaaa aataaaaaaa
 72851 gttttttttt aatgtttttttt aatgtttttttt aatgtttttttt gtaatggaa
 72901 aatgtttttttt aatgtttttttt aatgtttttttt aatgtttttttt gtaatggaa
 72951 agagaaaaaa aatattttttt aatattttttt aatattttttt gttttttttt gtaatggaa
 73001 atacccatcc aacccatcc aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 73051 catccctttttt aatgtttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 73101 cgtttttttttt aatgtttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 73151 tatctttttttt aatgtttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 73201 atgtttttttt tttttttttt tttttttttt tttttttttt gttttttttt gtaatggaa
 73251 cagcaatcc aqaaagagaga aataaaaaaa aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 73301 agtcaatcc aatgtttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 73351 ctatgtttttt aatgtttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 73401 gtgtttttttt aatgtttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 73451 aactgtttttt aatgtttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 73501 agtcaatcc aatgtttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 73551 ctctttttttt aatgtttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 73601 aaaaaaaaagg aatgtttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 73651 taatgtttttt aatgtttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 73701 acaaaaaaaa aatgtttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 73751 attttttttttt aatgtttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 73801 aaaaaggaaaaa aactttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 73851 agagatata aatgtttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 73901 accaatgggg aagaagagag aaaaaaaa aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 73951 gaatttttttt aatgtttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 74001 tttttttttttt aatgtttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 74051 tttttttttttt aatgtttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 74101 gggatata aatgtttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 74151 aatgtttttttt aatgtttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 74201 aatgtttttttt aatgtttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 74251 aaaaatgtttttt aatgtttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 74301 cacaaaaatgg aaaaaaaa aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 74351 taatgtttttt aatgtttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 74401 aatccatcc aatgtttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 74451 tgatccatcc aatgtttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 74501 atatgtttttt aatgtttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 74551 gtaatgtttttt aatgtttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 74601 aatgtttttttt aatgtttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 74651 ggcacatcc aatgtttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 74701 aatgtttttttt aatgtttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 74751 aatgtttttttt aatgtttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 74801 atccatcc aatgtttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 74851 tttttttttttt aatgtttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa
 74901 catccatcc aatgtttttttt aatgtttttttt aatgtttttttt gttttttttt gtaatggaa

Exop 6(E)

FIGURE 144.

81251 cacatataatg cacataaaatg catgtatata tactacatet tataaataata
81301 tggccggaaat tttggtattt catatttotct tcacatgtcta cactttatga
81351 aaatgttat taaaggggaaa ataaagaat ctttcttaaa tgatcttaca
81401 cagcagaaaaa aatattagaag ttacaaatga cttaaatgtt tctggatcca
81451 gaaaatggagg ggcatttttt taacaccaa atggagggaa atgttggtt
81501 aatetataaa ccagatcaca gagaccagg ttttataaag cttatgttgt
81551 acaatcacaat cctgtatgag atagagatet tagacagcgt aagacagtca
81601 ctgaaaagga gagatggaaa acagaaectt tcatgttaat tctaatttca
81651 tagtacagtc atttataacta attataatg gagtagatca ttgtctcaga
81701 gtageaaata atttatcag accactgcattttaaeca tgattgcatt
81751 acttattgtt tggattatgt cactgtatgtt cttaaatgtt tggatctca
81801 agataayaag gaaggttmaa gttatctatg agccccaaaaa tatactcagee
81851 aagttgttat tcaatgttggaa cttaaacccat tctagaatataa aaaaacccac
81901 caccttcctca gagagccat tccatctttt aaccatctt gagctactt
81951 aaaaataaaa agaaaaagaa agcaaccatt ctttacccat tggatctt
82001 gacttagtgc ttaataatg tccatcttata acqaaagggt tagactt
82051 gaagtttaat aaaaaatctaa taatttataa atggcaatgtt aatacccccag
82101 acttggaaagc agcagagatc ccagccccat gctaaataaaac tcaagatgtt
82151 aagacaaaaagc ccagagatc ttttagcaaa gtcggaaaaag ccaacccaaag
82201 gctggagacaa agcatcttgc ttttacaaat tttagttagat cagagccaaat
82251 tgaaaaagagt gggggcacatc aaaaaacccat aattttggca gatcaatgt
82301 atasgeaaaa gaaaaagcaaa cggccccaaa actaatgtaa acctagggagg
82351 gaatactatc ttactataatc ccaaaatctt aatagggttgg cccaaataaaa
82401 aaaaaggcaagg aatggaaaaa gttgtcaatta aatggggat gtgttttgea
82451 atgtatccatg tttttgttct tagtgcataa atggccaaaaa tagaaaaaccc
82501 ttactatgtt attttcaaaa ctggatcttcc ctgttttttca ttttactt
82551 cttttatgtt gttgtacatgtt ataaatattt aaaaactatc agetgggaca
82601 gattttatc agtcttctt cttttatccatc atgastatgg aatctt
82651 tcggatgtt atcaatgttgc tggatgttccatc cccatgttca cagcaatgt
82701 actttatc cccatgttgc tttttatccatc tttttatccatc gttgtttt
82751 atgttttctca cttttatc atggatgttccatc cttttatccatc tttttatccatc
82801 aaaaagaaaaat gtcacccggaa aggccacaca cacaaaaaaaa aattttattt
82851 tgatttttattt tataatgttgc tttttatccatc tttttatccatc aatggatata
82901 atgacaatgtt cttttatccatc tttttatccatc tttttatccatc aatggatata
82951 agtattgtcc aacaatgttgc tttttatccatc tttttatccatc tttttatccatc
83001 atactgttca tttttatccatc tttttatccatc tttttatccatc tttttatccatc
83051 ttgttttctca tttttatccatc tttttatccatc tttttatccatc tttttatccatc
83101 aacatgttgc tttttatccatc tttttatccatc tttttatccatc tttttatccatc
83151 CATTCTTGGC TTAGGTTTG CATTAAAGT ACACAGBACCA CACCCCCAGA
83201 AACATTTGA GAAABCGAGC ACCCCAGCTG CCACCCCTCCTT TCAAGgtt
83251 gtcaatgttca taggtatgttgc tttttatccatc tttttatccatc tttttatccatc
83301 tcattttccatc atctatgttgc tttttatccatc tttttatccatc tttttatccatc
83351 ctttttccatc aatgttgc aaaaatgttgc tttttatccatc tttttatccatc tttttatccatc
83401 agtcttggat tttttatccatc tttttatccatc tttttatccatc tttttatccatc
83451 caaatgttgc atgttttgc tttttatccatc tttttatccatc tttttatccatc tttttatccatc
83501 gcaaaaggatc gcaatgttgc tttttatccatc tttttatccatc tttttatccatc tttttatccatc
83551 aattttatgttgc tttttatccatc tttttatccatc tttttatccatc tttttatccatc tttttatccatc
83601 cattgtttccatc tttttatccatc tttttatccatc tttttatccatc tttttatccatc tttttatccatc
83651 tttttatccatc tttttatccatc tttttatccatc tttttatccatc tttttatccatc tttttatccatc
83701 aatgttttgc tttttatccatc tttttatccatc tttttatccatc tttttatccatc tttttatccatc
83751 ttggatgttgc tttttatccatc tttttatccatc tttttatccatc tttttatccatc tttttatccatc
83801 aataatgttgc tttttatccatc tttttatccatc tttttatccatc tttttatccatc tttttatccatc
83851 tttttatccatc tttttatccatc tttttatccatc tttttatccatc tttttatccatc tttttatccatc
83901 atgttttgc tttttatccatc tttttatccatc tttttatccatc tttttatccatc tttttatccatc
83951 gttttatccatc tttttatccatc tttttatccatc tttttatccatc tttttatccatc tttttatccatc
84001 agtattatgttgc tttttatccatc tttttatccatc tttttatccatc tttttatccatc tttttatccatc
84051 gggatgttgc tttttatccatc tttttatccatc tttttatccatc tttttatccatc tttttatccatc
84101 cccatgttgc tttttatccatc tttttatccatc tttttatccatc tttttatccatc tttttatccatc
84151 ttgtttatgttgc tttttatccatc tttttatccatc tttttatccatc tttttatccatc tttttatccatc
84201 tttttatccatc tttttatccatc tttttatccatc tttttatccatc tttttatccatc tttttatccatc
84251 atctcggttgc tttttatccatc tttttatccatc tttttatccatc tttttatccatc tttttatccatc
84301 cttttatccatc tttttatccatc tttttatccatc tttttatccatc tttttatccatc tttttatccatc
84351 taatgttgc tttttatccatc tttttatccatc tttttatccatc tttttatccatc tttttatccatc

Exon 7(c)

FIGURE 14B

B4401 tggtctccat ctctcaacccct cgtgatcccgc ccaccccggt ctcccaaagt
B4451 gctggggatta caggcatgag ccacgggtccc cggccacaag cacactgttt
B4501 taatttagat tgtagggttg ggtgggtggg trgggtggggg ataaaccacca
B4551 caaccctac ctttagtgtt gategtgac tgcgtatataat gcatgtcc
B4601 ccacagacat ggagctgggg aaagaagggg gcagttatgtt tcagttat
B4651 catgaggag atctgtttat atcttaaccat taaatgagga tattaatttt
B4701 taaatcaago tatttccaa cttgtgacaa gaaagtagac catcggcat
B4751 gaettccagt gcaatctact gagaatctt atttttttac attattttt
B4801 acsattttt ttttttacat atttttttac ggtttttaaa ggttactaaa
B4851 gagaagttaa actttatccc ttatstatgaa gttggagttt aagatctgt
B4901 gccaaacaat aatcageage atgaaasagag gagtcacaca cttttagaca
B4951 cacgczaaat accccaaaggc ccagaattca tagetttca teetttaca
B5001 ctetttact ggttacacat gtcccaatcc ttctataaag tttttcttt
B5051 taetgttctt atcttttaat ttcccttcaac tttagaacaat cgttttccaa
B5101 cctgtgagtg cagaagttat tgcatgggtt ctttccatcc gttggagcc
B5151 caagetttgt ctacatatgg aaccaataat acattttaca caatggacc
B5201 ttttggata tcaagttgtt ttttagaaag tgagttttt gaggaaattt
B5251 tcatgcacat atcaattttgtt atgatcacaa gttgtggccgc tcaatacagt
B5301 aaccacttgc tacatgttgc ttttttacatt taaatattt aaaaattttaa
B5351 accaagtttg ccaatggccat tggccacitc tcaagtgttca aatagctaca
B5401 gttggctatc ggttgcacata ccatacaaga gaaatataaa gaaataactgc
B5451 eggaaatctc ctgtatctaaac ttgttacttat tgaactactaa actgtgcacc
B5501 taaatattcc aattgaactt gaaatataat tttttttttt acagoaaatc
B5551 attggagcag aggcatttt atgttacag taaaatgag gcaaggccct
B5601 cttcacagg ttttttttgg aggacaggct aattttttttt gttttacttgg
B5651 aggecttgc tttttttttt tggaaacttggg ttatgttacca tttttttttt
B5701 tcagttatgg aactttgtaca aatggggatc acaatgttgtt aaaaatctgt
B5751 gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
B5801 aatgcacat ggaatgttttgg aatggggatc tttttttttt tttttttttt
B5851 catagttca tttttttttt tttttttttt tttttttttt tttttttttt
B5901 ctttccat tttttttttt tttttttttt tttttttttt tttttttttt
B5951 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
B6001 aggetttaag ctttgcattttt tttttttttt tttttttttt tttttttttt
B6051 atagattgaa aagccaaactt tttttttttt tttttttttt tttttttttt
B6101 ataaaaacttgc ctgggtttttt tttttttttt tttttttttt tttttttttt
B6151 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
B6201 atgccccaaat tttttttttt tttttttttt tttttttttt tttttttttt
B6251 cattttttttt tttttttttt tttttttttt tttttttttt tttttttttt
B6301 atttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
B6351 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
B6401 aatccatgtcc caaatgttcc aactttttttt tttttttttt tttttttttt
B6451 aatgtttttttt tttttttttt tttttttttt tttttttttt tttttttttt
B6501 ctccggacaa gcttgggggg tttttttttt tttttttttt tttttttttt
B6551 ctgtttttttt tttttttttt tttttttttt tttttttttt tttttttttt
B6601 stgtttttttt tttttttttt tttttttttt tttttttttt tttttttttt
B6651 aatgtttttttt tttttttttt tttttttttt tttttttttt tttttttttt
B6701 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
B6751 atgactttttt tttttttttt tttttttttt tttttttttt tttttttttt
B6801 gctcaagccca tttttttttt tttttttttt tttttttttt tttttttttt
B6851 aataaaaaaaat tttttttttt tttttttttt tttttttttt tttttttttt
B6901 ttgggggggg aaggtggggg tttttttttt tttttttttt tttttttttt
B6951 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
B7001 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
B7051 aatggtaaqat tttttttttt tttttttttt tttttttttt tttttttttt
B7101 ttgggggggg aatggggggg tttttttttt tttttttttt tttttttttt
B7151 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
B7201 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
B7251 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
B7301 ggacaggagg tttttttttt tttttttttt tttttttttt tttttttttt
B7351 accaaaaacttccatccaaat tttttttttt tttttttttt tttttttttt
B7401 caaaagggggat tttttttttt tttttttttt tttttttttt tttttttttt
B7451 gataaggat tttttttttt tttttttttt tttttttttt tttttttttt
B7501 aatggaaacaaat tttttttttt tttttttttt tttttttttt tttttttttt

FIGURE 1AC

87551 taggcattca agatctcaa aattaatca ccatttaccc ttactcaaga
 87601 aactttgtaa atagaaaccttc tcttccacaa caaggggata agccaagaga
 87651 gaaagagaca tggagtcaag saaacaagag attccgcaca ggaaagagca
 87701 aaggggattt ctatgataat aggaaaggga agtcccaga caacagctat
 87751 gcaggcccttg agaacagaat qagaaggagg ctgagagc cagg&gaaag
 87801 atcttcaagg aagcgccaga atggagttt cagatttcat gatgcattt
 87851 accagaggas ttttatagtt ctgttggaaa gatctggat gtaatcataa
 87901 caggtacata taggcaaatc aqmaattaa aatagggcaa ttataactcc
 87951 aaaaaaaaccs azaacttgs taagaaaages agagcagccaa tagtacatca
 88001 catgctgaa ctggaaacag cagttacatt gtcataataa tattaaatag
 88051 taacttagct aagaacctgtg atattaaaat gttgatagga tgaaaggagg
 88101 ggaaaggggc atgttaatgtt gcaatataat tategttca gatagggaaat
 88151 taattgataa tgcataaattt tgeaaaatca agaaatataa ctataagcat
 88201 aatccttaaa mataagcatt ctgggcttggc cgcagttgc tcattgcctgt
 88251 accccccgtca ctgttggagg ctgggtggg aggatcactt gagggccagga
 88301 gtccaaagacc aaccgtgtca acatagccgg accccccctc tacaazzzaaa
 88351 ttttaaaaag tcaagtgcac tggcacacac ctgttgcctt cacacacccgt
 88401 tagtactca gggggcttggc gccagaggat tgggtgagcc tgggagttt
 88451 aagctgttgtt gagctataat tgcatttactt cactccagcc tgggtgtatag
 88501 agtatgaccc tgcattttttt ataaatgtttaa taataaataa ggattcttaa
 88551 aataagaage sccactata agaattgttgg ggggttgcctc tgaggaaacq
 88601 aaagtgttgtt gaagaaagat gtggaaagggtt atgtgttgtt ctttttttt
 88651 aacttccgg acttttccat tttaaactt gttttttttt aaaaaatgtt
 88701 ctgttgcatttattttt gatggccgtc tggatgttcc taaaacccattt
 88751 ccaggtaagg tttttttttt tttttttttt tttttttttt tttttttttt
 88801 aatctcccaaa aaaaacttgcataatgttcc tttttttttt tttttttttt
 88851 tccaaatctt tttttttttt tttttttttt tttttttttt tttttttttt
 88901 aagttggctc tttttttttt tttttttttt tttttttttt tttttttttt
 88951 aaccatgtttaa tttttttttt tttttttttt tttttttttt tttttttttt
 89001 cccactactt tttttttttt tttttttttt tttttttttt tttttttttt
 89051 tccatggat tttttttttt tttttttttt tttttttttt tttttttttt
 89101 gggacccaaatggat tttttttttt tttttttttt tttttttttt tttttttttt
 89151 cactttccat tttttttttt tttttttttt tttttttttt tttttttttt
 89201 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 89251 gagttatgttcc tttttttttt tttttttttt tttttttttt tttttttttt
 89301 aatagccaaatggat tttttttttt tttttttttt tttttttttt tttttttttt
 89351 agtggccctt tttttttttt tttttttttt tttttttttt tttttttttt
 89401 ggtttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 89451 aataatgttcc tttttttttt tttttttttt tttttttttt tttttttttt
 89501 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 89551 aettaaggaa tttttttttt tttttttttt tttttttttt tttttttttt
 89601 cactactata tttttttttt tttttttttt tttttttttt tttttttttt
 89651 attttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 89701 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 89751 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 89801 atgaaaggcc tttttttttt tttttttttt tttttttttt tttttttttt
 89851 aaaaatgttcc tttttttttt tttttttttt tttttttttt tttttttttt
 89901 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 89951 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 90001 caggacccccc tttttttttt tttttttttt tttttttttt tttttttttt
 90051 ctgtgttacc tttttttttt tttttttttt tttttttttt tttttttttt
 90101 tatggaaatg tttttttttt tttttttttt tttttttttt tttttttttt
 90151 catggatgttcc tttttttttt tttttttttt tttttttttt tttttttttt
 90201 tagtattgttcc tttttttttt tttttttttt tttttttttt tttttttttt
 90251 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 90301 tagtacatata tttttttttt tttttttttt tttttttttt tttttttttt
 90351 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 90401 agaaaacttcc tttttttttt tttttttttt tttttttttt tttttttttt
 90451 agcatacatt tttttttttt tttttttttt tttttttttt tttttttttt
 90501 acatittttcc tttttttttt tttttttttt tttttttttt tttttttttt
 90551 agggatgttcc tttttttttt tttttttttt tttttttttt tttttttttt
 90601 ccctgttacc tttttttttt tttttttttt tttttttttt tttttttttt
 90651 gaggagttca agatccatata tttttttttt tttttttttt tttttttttt

Exon 8

FIGURE 1A

93851 tcgtatgtttg gattaaatc ctatccatc ttagatctt aagttttgt
93901 gaactttta tggagtttaa gacccatca acattttgat atccaaaaac
93951 cgaatataga acataactcc tggccattt atcccttggg agtataaacc
94001 aaaaataaa attatataga aattgtatcc ctgttccca tgaagtttgc
94051 tggtaaatg taaaaaggga atctgagtag gaaaactgtat agagaattct
94101 caagtgcacg aggagagttt ttattatca tatgtgatta ttgggttcc
94151 cacttctgc agtttttggg taaaatgtca ttaasagect ggaaaaacty
94201 ttaataatg agtcaaattt ccccagtaaa tcaacttata ttttattcac
94251 ataagtttt totacteete tgatattttc cctgtttaa gtgggggtgg
94301 aggtggagga ggatttatgc aaacacrtgt gttoctcatg tctactgtg
94351 ctttccttc actttccctt tcttgcacaa tcatgaacca tggggctcag
94401 ctccattgas tggagaacag ttattttgtcc agaatgacac agcagtcact
94451 ggtttttttt atggggaaact agatgttca scatctctec cttccagtg
94501 atgttttcaatt gtttcaaaaat gcaagagggtt ttaatcttgg ttgatgttt
94551 ttgttaaacc attgagaatg tgatggaaat tatgggggtt tteccaaagaa
94601 agataatca tggacgagaa zataatact tttcttacaa ttttaatgt
94651 tccacagagt ccgtgaagcc agttcaaaac ttttggttt taaagcaaac
94701 ttttttttat caagtgcacaa ttttttccatg ttttttttttggatggat
94751 acattnaagt ggettacoga atggagatgt ttgttagtaag aaacagacta
94801 caattatctt ttatttaca ttgtgtattt ttttttagca ttcagcttca
94851 gaaatcttgc tggaaagat ctttttca gtcatgtat catttacaa
94901 ttacttccatg agcacctata agtgcacagg catatgttca ggcactgaga
94951 atgaagcagt tggatgttttttttttttttttttttttttttttttttttttt
95001 ggaagtatgt ttccaaaggga ttgttggata qacaatataaa ataaatataat
95051 ataggatgt ttagatggca ttaatgtcta agggagaaag taaaataaaq
95101 aaggatttt gggagcataa gaggttataa ttttttttttttttttttttttt
95151 gggatcaat ttatccaa atatcatcat catcatcatc aatgttactg
95201 ttatcattaa aaaaaccccg cccatgttc ttgttccccca gttttaaags
95251 catatggga tggatgttttccatg ttttttttttttttttttttttttttttt
95301 aaaaacgtgt gcaagggcaga gagaatggg aggagggaca ttttttttttt
95351 ccagggtatc aaccagcagt ttcttactt ttttttttttttttttttttt
95401 ttcttacat acacttttgc ggttttttttttttttttttttttttttttt
95451 ttaatccaa gaaggatgttca ttttttttttttttttttttttttttttt
95501 ttt
95551 ttt
95601 aaaaacccctt ttttttttttttttttttttttttttttttttttttttt
95651 taaagccctt gttttactca ttttttttttttttttttttttttttttt
95701 gtgttt
95751 ttt
95801 ttt
95851 ttt
95901 gcaagtgtact gatgttttttttttttttttttttttttttttttttt
95951 gtt
96001 gtt
96051 gtt
96101 ttt
96151 ttt
96201 ttt
96251 ttt
96301 ttt
96351 ttt
96401 ttt
96451 ttt
96501 ttt
96551 ttt
96601 ttt
96651 ttt
96701 ttt
96751 ttt
96801 ttt
96851 ttt
96901 ttt
96951 ttt

Exon 9

97001 ccccatcccc atctttttagg aag>acaa ccccccdaa aatccccca
97051 staattttt atcagctcc catgacttag atggaatgcg tcgtcagatt
97101 acagcagaga atccaaccta gagggaaatc gaggtgasag aaaaattttt
97151 tgcattgtgt taatgatc cagg>gc ctagattta gacaaagcc
97201 ctgaaaaaaca gggccaggta gaaatccagta ttatgttgtt gaaagatggt
97251 agaggccggaa ccaccaaggaa gaatccagg tgcctggaaa ggaagaagag
97301 atacatttt ttcctataca ttgtcaatgt gtttccataa gaaatgaa
97351 gcatccaccc acccagatgtt ggttccataag tggaggcccg tttggggccca
97401 gggattgttc ttttagctta gtactattat aataattata ttaataata
97451 tatattttatg caatactgaa ccacgttttgg aagtttactt tgggttatca
97501 aggttctgga ttatccattt tgccattatg ttatatatgtt aagataadca
97551 zatgaaaaaca tsaatgoatt cgttatgtt gggagatagg cacgatagga
97601 tatacaacat cggccacate ttetgegttag
97651 cattazagtt ctttcttca tttggtagca
97701 ttggatattc ttggagata ttccagaaas
97751 aageaaegtt ttggaccata gagagggttt
97801 tcttgcata gacactgaa gagacaat
97851 tecatttttt agatccata cagacccac
97901 ttacttgaa aaaaatttacaaat
97951 ttatagttgc ttgggtgata tttaaaagc
98001 tecattttact aattatctca aagggtgtatc
98051 agagaccatc ttggcacaat tttccagagc
98101 catcttagtt tcatcttca aacccggatc
98151 ttgttssatg acatggaggt gettpaccaa
98201 ctgaagggegg ggaccccttg ggttggcaca
98251 aatgttagca cggcagaaaa caaagacaaa
98301 ctctgtca ctgtccaaa aacaaagttc
98351 aaaaaaaacta ccaaccaat ttccacatt
98401 acgacatttca cctcttgc tgcacgac
98451 ccccatagg tttaaatatc tcaaaaaacca
98501 agagaatcac acatggaaat ttcttgc
98551 ggcaaaaaaaaaccc accttgaant aagtctgtca
98601 attatttat attttatatt tcaatcacatt
98651 agctgtccaa tcaccctggg taaatgtatt
98701 aatcttttgc tagatgtataa aatggccct
98751 aagagataaa acaccaacan aaaaatgggaa
98801 agaaataaa attaaaaaac attycataa
98851 getccattt aatattttgt aagotttccac
98901 gaatttataa tcctgcataa tgaatgcaga
98951 Agcaacagta ccatatgtaa aagtttacaa
99001 atatcacaaa gtaaaatgtca ttataatgt
99051 gtagatctgg ttccagagta ttgtttaatt
99101 ggaactaatt aacaccaccc aactgtcagag
99151 cactgtgtt tttatgtgtt gtcagaaagg
99201 ccaaggccggc gccaacattt tcacccattt
99251 taatgttcc ttcatggctt ttcttgggt
99301 agtgttagatg aactcaacac agcagccaaac
99351 cacttcacc aatggacggc gccatgtactt
99401 gaggttttcc ttctgtcaac attgtatgtt
99451 acccttagtt aactacatc cgggttttgg
99501 attttgtttt ttcactactgtt ggtttaggtt
99551 acgtatgtttt gggctttagga aaaaatgtca
99601 aactttttt tttatataca atggccaaat
99651 tccccacat ttgggagggcc aagagatgt
99701 tcgaggccag ctggccaaac statgttca
99751 acaaaaatta gtggggcggtt gtgtgtcatg
99801 gggagctgtggc gaaaggaaat cacttgaacc
99851 gagctgatgtt cacacccatc cactttagcc
99901 catctcaaaa actaaaaat aaaaaat
99951 agatgtttt aatataatgtt cacttgcac
100001 ttcgttctttt tttgttccat tttatgttca
100051 gctgtgtttt ttttccatcat tttatgttca
100101 tttatctactt tttttttt cctctgtttt

FIGURE 1AG

100151 ctccatatacg tggtggtaaa tggttttatt gattcattc tattaaaaaa
 100201 ttatgtggaa aagtcaattt taatatggga caagttttt tctgttttga
 100251 tatasattgt cattttcaga gaaatgaaatt tacetctgaa tcacatctgc
 100301 cagaataaggc caatatttc acetttagggt tttatgtggg tctcccttcc
 100351 teettgacca gattatcaaa tagtagttag tcatcacatt gatacaagaa
 100401 ggctttact tctatctacc taattttat tgcataaaaaa ctagattata
 100451 ttatctgggg ttttgaggt atctatacat ctgtgtccct ctgttactc
 100501 tgcttctta atcaacatgg gttggctata tgcctgttttta atacttaaggc
 100551 ttccttaatgg gcaattttaa aagttttgtt agaaccctt cagtttctg
 100601 agtagactaa aqttgttttta ccaggtaatc gtgagactgt tgtaaagatg
 100651 catgttttaa aqgttaaggc aaamatgata tttttatatt acattacact
 100701 ctttgtctgtt gageccacccg gtcgttttca tgaaccactc ctgtgtgggt
 100751 ggcttttggg ggaaagggggg gttctg> gttgtgtggc ttttggagag
 100801 aactcttagaa ccttgggaa aqactgtgtg cttttatatt ttttctgtat
 100851 ttattttctg ttatttcaat ttctttttt ctgtgtgtaa tgaatgtat
 100901 gcatgtgtt gttttttttt ctcataatggc cttagatttt gtttttttcc
 100951 aacatgtca acctgtgtcc ttatggcaaa aatgttccat ttttccaaaa
 101001 acaatcttcc caaatggtc ttcctttctg ttcacatttta tttgtataggg
 101051 aaacggattt aqcccttcaa caacacatca taggacttaa aataagaaac
 101101 gtactttttt ttcgtttttt acatccatggc aatetagaat ttttttttt
 101151 gttttgttca acatataattc tatctgacaa ttggttaccc atatcaacta
 101201 taaatgcaga tggtttccaa aacccsagaa ttacgtttt caattccaa
 101251 caattatgt catgttttca ttgttttctg tagttattttt ttgaagttt
 101301 aaagtaegtt attatccatt tatactatgt gtgttttata ttattacag
 101351 gggtaecccattt attctaaatg atttattttt aatgttccat acagagacta
 101401 tcatcattttg tatgtatgtc ctatgttcaaa tccaaatttt caaccttagee
 101451 gttaagatca ctggatatctt ttcasggcggc acaattaaac aacatgtatc
 101501 tctctgttta aatgttccatgt gtactttttat attaaaaasca ataaagccaa
 101551 atgtttttgt tttttttttttaaa gaatccctgtc gcacttccat attcgtgaaa
 101601 tgccttagaa tgcgttgc ttttttttttcc actccatgtc aqtttctgttag
 101651 taatcggcag aagcttccaa gaatgttaccc ctcacggaaag cagaggttcc
 101701 cagcatccgg gtttttttttgc tggatgttgc gaaatggccaa taacccatgg
 101751 tgcattgacca ggttacccgg ccacccccc tggatgttgc tggatgttgc
 101801 acttttttca gggacttttttcc gatgttgc ttttttttttccatccatgg
 101851 ctttttttttgc tggatgttgc ttttttttttccatccatgg ggacaaatag
 101901 tggatgttgc ggttgcactt ggcgttgc gtttttttttccatccatgg
 101951 ttggacactt gtttttttttgc tggatgttgc ggttgcactt ggttgcactt
 102001 ccatattgttgc ctttttttttgc gtttttttttgc ggttgcactt ccatggatgg
 102051 ctttttttttgc aatgttgc ttttttttttgc ggttgcactt ggttgcactt
 102101 ggatgttgc ttttttttttgc ggttgcactt ggttgcactt ggttgcactt
 102151 gggatgttgc ttttttttttgc ggttgcactt ggttgcactt ggttgcactt
 102201 ttttttttttgc ggttgcactt ggttgcactt ggttgcactt ggttgcactt
 102251 ttttttttttgc ggttgcactt ggttgcactt ggttgcactt ggttgcactt
 102301 ttttttttttgc ggttgcactt ggttgcactt ggttgcactt ggttgcactt
 102351 ttttttttttgc ggttgcactt ggttgcactt ggttgcactt ggttgcactt
 102401 ttttttttttgc ggttgcactt ggttgcactt ggttgcactt ggttgcactt
 102451 gggatgttgc ttttttttttgc ggttgcactt ggttgcactt ggttgcactt
 102501 aatgttgc ttttttttttgc ggttgcactt ggttgcactt ggttgcactt
 102551 ttttttttttgc ggttgcactt ggttgcactt ggttgcactt ggttgcactt
 102601 aatgttgc ttttttttttgc ggttgcactt ggttgcactt ggttgcactt
 102651 ttttttttttgc ggttgcactt ggttgcactt ggttgcactt ggttgcactt
 102701 ttttttttttgc ggttgcactt ggttgcactt ggttgcactt ggttgcactt
 102751 ttttttttttgc ggttgcactt ggttgcactt ggttgcactt ggttgcactt
 102801 ggttgcactt ggttgcactt ggttgcactt ggttgcactt ggttgcactt
 102851 ttttttttttgc ggttgcactt ggttgcactt ggttgcactt ggttgcactt
 102901 aatgttgc ttttttttttgc ggttgcactt ggttgcactt ggttgcactt
 102951 ttttttttttgc ggttgcactt ggttgcactt ggttgcactt ggttgcactt
 103001 ttttttttttgc ggttgcactt ggttgcactt ggttgcactt ggttgcactt
 103051 aatgttgc ttttttttttgc ggttgcactt ggttgcactt ggttgcactt
 103101 ttttttttttgc ggttgcactt ggttgcactt ggttgcactt ggttgcactt
 103151 ttttttttttgc ggttgcactt ggttgcactt ggttgcactt ggttgcactt
 103201 aatgttgc ttttttttttgc ggttgcactt ggttgcactt ggttgcactt
 103251 ttttttttttgc ggttgcactt ggttgcactt ggttgcactt ggttgcactt

FIGURE 1A

103301 tgataatctat gtcaacctcgaa gatatttcatt aatctgaats asgggtgcaga
103351 agtgagcata tgccttccatgaa artagatcat tgtaaatttcc aatccatggaa
103401 cagatgtgtt gaaaactaass egaatgttga aacttttaca atttaaaaaaa
103451 aaaaaagctt gagaaaaatgt gatatttttg ggcacccatcc cttingacaga
103501 ttgtttaaaa taattgaaagg ctttgggatc acatggaaaa octagectga
103551 gaattaaaaag atgcagggtt atgatettat tgtrgetctt gtttaatgtt
103601 atctatcatt taatcaaaaaa tttttttttt acagataaee tttttccactg
103651 ttgggattyt tgtaaagaaac tttttttttt acctgacccat atcaccaaaaac
103701 tgccccgect gtttttgcg tttttttttt gtcgtatcg otggactttt
103751 ctgtgtctgc tttttttttt ggatgttgcg tttttttttt caacttggtt
103801 attgtttcca gaaactccctg accaccagggtt catgatttgc tttttttttt
103851 tgtaaaaaaca cataaaaaatgt ggtttttttt tagaatatcg ttgtttaagg
103901 aactggcat ggaaaaaataa atgttactgt tttttttttt ttttttttttagt
103951 catatccact aaaaaacatcc tttttttttt gttttttttt tttttttttttagt
104001 gacatttgcg taagtggaca aaaaaaggcc tttttttttt tttttttttttagt
104051 ctttatccat gagaatggctt tttttttttt tttttttttt tttttttttttagt
104101 ctcttcaga gtagetgtt tttttttttt tttttttttt tttttttttttagt
104151 gatttttca gggccctgtt gttttttttt tttttttttt tttttttttttagt
104201 tcacottca tttttttttt tttttttttt tttttttttt tttttttttttagt
104251 aaacagaatg ggttacaaaaa tttttttttt tttttttttt tttttttttttagt
104301 aatcccttag ctgtgttgc tttttttttt tttttttttt tttttttttttagt
104351 ctggcccccg tttttttttt tttttttttt tttttttttt tttttttttttagt
104401 astatcttttg atttggaaag tttttttttt tttttttttt tttttttttttagt
104451 ttgttaatgc tttttttttt tttttttttt tttttttttt tttttttttttagt
104501 gagaaaaatg aatggcttgc tttttttttt tttttttttt tttttttttttagt
104551 aaatcaataa cttttttttt tttttttttt tttttttttt tttttttttttagt
104601 ctcatttttt tttttttttt tttttttttt tttttttttt tttttttttttagt
104651 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttttagt
104701 taatgtttaag tttttttttt tttttttttt tttttttttt tttttttttttagt
104751 ctatgagatt gcatgtttt tttttttttt tttttttttt tttttttttttagt
104801 aatgcatttgc aatgtttaggt tttttttttt tttttttttt tttttttttttagt
104851 tagaaatgtc tagaaatattac aatgtttaggt tttttttttt tttttttttttagt
104901 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttttagt
104951 tcmaigtgtt tttttttttt tttttttttt tttttttttt tttttttttttagt
105001 aatgtttagt tttttttttt tttttttttt tttttttttt tttttttttttagt
105051 atgttacgtt tttttttttt tttttttttt tttttttttt tttttttttttagt
105101 aaagtcmaa tttttttttt tttttttttt tttttttttt tttttttttttagt
105151 tggaaaaatc tttttttttt tttttttttt tttttttttt tttttttttttagt
105201 tactcaccca agcaaaatgg tttttttttt tttttttttt tttttttttttagt
105251 ctctgttttccatcagTGAGA AGCTTACGTT TAAGGGCGCGA GTGGCGCATGG
105301 CTAGCCCCAG GGGCCCGAGTC ATTAGAGCCT CACAAAGCTTC AGTAAAGTGC
105351 AGGGAGGTCCC CGAGCGCGGA CATCAGACCC GGGGGAGTC CCACGAGATG
105401 SCAGBAGAGC TGGAGGTCTCA ACGGCCCGAAC CGCGTTGGGCG CCGGGGGCTCG
105451 GCGTCAAAG TTTCTCAGGCCA AAACCCAGTCG TAGATGGttaa gcoctgtttt
105501 tecatcaccat tttttttttt tttttttttt tttttttttt tttttttttttagt
105551 aattaattttt tttttttttt tttttttttt tttttttttt tttttttttttagt
105601 aaagaatttgt tttttttttt tttttttttt tttttttttt tttttttttttagt
105651 atgttacagaa cttttttttt tttttttttt tttttttttt tttttttttttagt
105701 acatccccaa gttttttttt tttttttttt tttttttttt tttttttttttagt
105751 aaattttttt tttttttttt tttttttttt tttttttttt tttttttttttagt
105801 ctgtatgtttt tttttttttt tttttttttt tttttttttt tttttttttttagt
105851 ccagggtgtt tttttttttt tttttttttt tttttttttt tttttttttttagt
105901 ttgtttttttt tttttttttt tttttttttt tttttttttt tttttttttttagt
105951 ccaggccaaat tttttttttt tttttttttt tttttttttt tttttttttttagt
106001 aaagtatttt tttttttttt tttttttttt tttttttttt tttttttttttagt
106051 caagggaaat tttttttttt tttttttttt tttttttttt tttttttttttagt
106101 ttgtttttttt tttttttttt tttttttttt tttttttttt tttttttttttagt
106151 aatattttt tttttttttt tttttttttt tttttttttt tttttttttttagt
106201 cccccctggga tttttttttt tttttttttt tttttttttt tttttttttttagt
106251 cccatataatg cttttttttt tttttttttt tttttttttt tttttttttttagt
106301 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttttagt
106351 taacacccatg ggggtttataat cttttttttt tttttttttt tttttttttttagt
106401 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttttagt

Exon 10

FIGURE 1AI

106451 agggatatact ttcccaacgtc caagtgcgca acacaagtc accttttcacy
 106501 ccctactcca caccccttgtg ggtgcacatgc ttttcagggt gacccttagt
 106551 ggetgeacty acgtggccca tcctggggga gttgtcggtt cccatatggg
 106601 cgcagaagacgg ctgatccgtc catgttccc cgcageectgt ctgtgtctaa
 106651 gcaaggaaaa acctccgcga caasacggg acactctcc atcgagccac
 106701 tggcaggat tgatcactt gtggcacage ttttcaatgtt cttctagtt
 106751 cttcaacttc ctccctggat ttggctgaa agcccttgag cagctgagtc
 106801 aaggttacc agtgacaggg ctttatgtt cactcaaaaat aggcttgcgt
 106851 aataaaatgtt ggtacatctt ttctgggggg caatttggca aataatatta
 106901 aaagtctta catagtctt aacatagaca catccccaccc accaattcta
 106951 ttcttaggtt ataataga aatgtggca ttagaaatgt
 107001 tgcctaaat taataattttt tgacacaggg aatgtataac aaaaatata
 107051 ttccattttat atatattata taatattttt tttttatagg aacaatgtcg
 107101 gaaagatttt caagaatgtg tggacagttt cttttgagtg gtggatcac
 107151 agtttatattt tggtttttca ttttttatac ttttttctt aatattttta
 107201 caatgsacag gtaa...gtttt tggatzaaagg aaccaataaa ggatttttt
 107251 tttttttttt aaaa...ggccc tcaatggaa aaaaatataat gttaggggg
 107301 aaaaaagaaa aaaaaacta gccccctcaag aaaaaaaaattt aaccccttctt
 107351 ttccacacact ccctcttcc ctggcccttac tttttttttt cttttttttt
 107401 ctgttacttc octaacactt tttttttttt tttttttttt
 107451 gaaaggacgg ctgtttttttt tttttttttt tttttttttt
 107501 catagactat gtaatgtt tttttttttt tttttttttt
 107551 attagtttgc tcaatgtt tttttttttt tttttttttt
 107601 aaaaattttt ttccatgtt tttttttttt tttttttttt
 107651 cagcagggtt ggtttttttt tttttttttt tttttttttt
 107701 tttttttttt tttttttttt tttttttttt tttttttttt
 107751 tttttttttt tttttttttt tttttttttt tttttttttt
 107801 ataaatccat tttttttttt tttttttttt tttttttttt
 107851 gtcgrattttt ggggtttttt tttttttttt tttttttttt
 107901 gggatgtttt tttttttttt tttttttttt tttttttttt
 107951 atccctggaa agctggatgt tttttttttt tttttttttt
 108001 cacactgtt tttttttttt tttttttttt tttttttttt
 108051 tttttttttt tttttttttt tttttttttt tttttttttt
 108101 tttttttttt tttttttttt tttttttttt tttttttttt
 108151 tttttttttt tttttttttt tttttttttt tttttttttt
 108201 tttttttttt tttttttttt tttttttttt tttttttttt
 108251 aaaaatgtt tttttttttt tttttttttt tttttttttt
 108301 caatgtttttt tttttttttt tttttttttt tttttttttt
 108351 tttttttttt tttttttttt tttttttttt tttttttttt
 108401 tttttttttt tttttttttt tttttttttt tttttttttt
 108451 gttttttttt tttttttttt tttttttttt tttttttttt
 108501 tttttttttt tttttttttt tttttttttt tttttttttt
 108551 tttttttttt tttttttttt tttttttttt tttttttttt
 108601 tttttttttt tttttttttt tttttttttt tttttttttt
 108651 agtagtgc tttttttttt tttttttttt tttttttttt
 108701 acetttttttt tttttttttt tttttttttt tttttttttt
 108751 aataatata tttttttttt tttttttttt tttttttttt
 108801 gcccattttt tttttttttt tttttttttt tttttttttt
 108851 tttttttttt tttttttttt tttttttttt tttttttttt
 108901 tttttttttt tttttttttt tttttttttt tttttttttt
 108951 aaaaatata tttttttttt tttttttttt tttttttttt
 109001 tttttttttt tttttttttt tttttttttt tttttttttt
 109051 tttttttttt tttttttttt tttttttttt tttttttttt
 109101 taatgtttt tttttttttt tttttttttt tttttttttt
 109151 tttttttttt tttttttttt tttttttttt tttttttttt
 109201 tttttttttt tttttttttt tttttttttt tttttttttt
 109251 tttttttttt tttttttttt tttttttttt tttttttttt
 109301 tttttttttt tttttttttt tttttttttt tttttttttt
 109351 tttttttttt tttttttttt tttttttttt tttttttttt
 109401 tttttttttt tttttttttt tttttttttt tttttttttt
 109451 tttttttttt tttttttttt tttttttttt tttttttttt
 109501 tttttttttt tttttttttt tttttttttt tttttttttt
 109551 tttttttttt tttttttttt tttttttttt tttttttttt

109601 ataaggtaag gagccaccat gcacatgcag gcaattgaat ttcacggtec
 109651 tccttacaaac gtattttcag stgttctct agatattata tcattttccc
 109701 tttagaatac tttsattttt tccccctcccc caaaaaaac cacccttctt
 109751 ttggccgtgtc tccttcaact tcaatcggtc agatccccct tcccatatgg
 109801 gcaacttgcg catgaccatg ccactatccc atcttttcc cagectcgc
 109851 tpcacaaacct ctcaactaca tcatttcaag ggagccagag ctggaaaggatt
 109901 aggcaatttg gggaaatggc ctttcaatgtc cgggttctgt ttttgcataz
 109951 gtatctggga agagactcaq gataacagcc atactgggtt tggtctattt
 110001 tccctggagg gaggccatgg gtatgggtat ctgaggcccc tttcaagatg
 110051 caaaaagatag tgcggaaqa tgcacgggtg ttggccaaacg acaagtaagt
 110101 ggaagggtggc agatttcaag cgagaaatgg agcaagcago caaaacccac
 110151 aagaatgtata ctaaggtaga gtcaggagaa aatcttcgga ttcttgggtga
 110201 ctatgttgcg acaaggagt ctacactta ctgaacccca ctgcatttgg
 110251 gagtgeetttt cagaaatgtca atcaaaaggat acaataaccct ggacagtgaa
 110301 ggagaaggac gtatgttag ggagctccac ttacatgtc ttgtatattag
 110351 ctcaaaaaaa ctgttctgttag tttttagat gtgttccca gaaatggccaa
 110401 tagetctyaa aatctgttcc acatacatgtt ataaaccatgc atgttttaac
 110451 aagtctaaac ttgttttgc ttaaggagaa attaccattt ctgttgcagea
 110501 atcccttgtt ctatgttag ctgcacatgtc aggtacatcc ttcatttttttgc
 110551 ttatggggaa aaaaatggcac agccctgggtt cagggatgt ttaggggtca
 110601 ccagggtggg atctgggtga gtcggaaatg cagaataatct tccgtatgtg
 110651 ggggtccctt aaggatgtg cttttttttcc aggcactgtt ggtatattct
 110701 ctatcttcat ttatgttgc tttttagat ttatgttgc agtgtatcaa
 110751 ttaggatgtc ttatggcgtt tttttagat tttttagat tttttagat
 110801 aactatataat gcaatttata ataccacata gaaagggatc cagggataag
 110851 acagcttcac acagacccca aaggcttctgg cttaattttt ctgttgcattt
 110901 gaggctttttt ttgttttttcc atatgtgtt gcttgcctt tttttagat
 110951 ggaaggaaaa tggctacaggc aytgtcaat tttttagat tttttagat
 111001 tccagggggc gaaatggggc atctttatgtt tttttagat tttttagat
 111051 agggaaactg ttttttttcc tttttagat tttttagat tttttagat
 111101 caatccatgg catggaggat gggacccgc tttttagat tttttagat
 111151 ggacccagca gctggatcc gggccggccatcc tttttagat tttttagat
 111201 tttttttttttt tttttagat tttttagat tttttagat tttttagat
 111251 atttggggaa acaacttttcc tttttagat tttttagat tttttagat
 111301 cttttttccat tttttagat tttttagat tttttagat tttttagat
 111351 gtgttttttcc tttttagat tttttagat tttttagat tttttagat
 111401 gtccgggttttcc tttttagat tttttagat tttttagat tttttagat
 111451 tttttagat tttttagat tttttagat tttttagat tttttagat
 111501 cttttttttcc tttttagat tttttagat tttttagat tttttagat
 111551 ataaataaat tagtatttttcc tttttagat tttttagat tttttagat
 111601 cccataaaatg tttttagat tttttagat tttttagat tttttagat
 111651 cttttttttcc tttttagat tttttagat tttttagat tttttagat
 111701 gttttttcc tttttagat tttttagat tttttagat tttttagat
 111751 cttttttttcc tttttagat tttttagat tttttagat tttttagat
 111801 accctcaatg tttttagat tttttagat tttttagat tttttagat
 111851 cttttttttcc tttttagat tttttagat tttttagat tttttagat
 111901 atataatggat cttttttttcc tttttagat tttttagat tttttagat
 111951 gttttttcc tttttagat tttttagat tttttagat tttttagat
 112001 atttttttcc tttttagat tttttagat tttttagat tttttagat
 112051 cttttttttcc tttttagat tttttagat tttttagat tttttagat
 112101 stttttttcc tttttagat tttttagat tttttagat tttttagat
 112151 gacatttttttcc tttttagat tttttagat tttttagat tttttagat
 112201 tttttagat tttttagat tttttagat tttttagat tttttagat
 112251 ataaatttttcc tttttagat tttttagat tttttagat tttttagat
 112301 gacttgcgt tttttagat tttttagat tttttagat tttttagat
 112351 taggtttttcc tttttagat tttttagat tttttagat tttttagat
 112401 ctgtgttaggg cttttttttcc tttttagat tttttagat tttttagat
 112451 gttttttttcc aatgttttcc tttttagat tttttagat tttttagat
 112501 tttttagat tttttagat tttttagat tttttagat tttttagat
 112551 gttttttcc tttttagat tttttagat tttttagat tttttagat
 112601 aaaaacgttttcc tttttagat tttttagat tttttagat tttttagat
 112651 aaaaatgtt tttttagat tttttagat tttttagat tttttagat
 112701 cttttttcc tttttagat tttttagat tttttagat tttttagat

FIGURE 14K

115901 AAAATTATAT TTAATCGEETT TCTGGTGTG CTCCTACTTGG TAAAGAAGGG
115951 GGGAAACAAAG GTTAAGTAAAG GGCAGGAGTC CTTTTCTGC ATGGATGAC
116001 TGACATGGGA AAGAGETGAG TTACCCAGGC TTTCGTTTT GTCACCTGCA
116051 GTATAAAACT CCCTGACATT GTCCCAAAATT GCTTTTACAG GATTTTATT
116101 TTCACACATCT ATCTTGTCG GCTTTCTTC CCTGCCATC TTTTTCTTC
116151 TTGCCATGT ATAATCAGS &CAACASCTT CTGAACTCCA AAAGCATAGA
116201 AACCTCAGAA TAACATTACG TGGGAAAGT TAATCTCTT ACCTCCAGCT
116251 ACCSAGAGAA TCATTTGCAC ATGAAACCCCT GAGATTGCG TCTTCATTA
116301 ATCTAATGCA TTAGCAATTG TTAATCACCACA TCTGTTCTT GGAATTGATG
116351 ACTAACATCTT CCCCCAAACTC TTGTTGAAART ATGTTCCCA TAATTTGTY
116401 TTTTGATTGA AAAATGTCAT GACCCATATAT CTCCTCATGT TATCTGTTG
116451 ATAGCTAACCC CTCCTCCCTCA GATTAGTGGG CTTAAACACAG CAACCATTTG
116501 TTGAGCCAC EATTCTGTTA GGCAGTTCTT CTGGTCCTTA GTGAACCTGAT
116551 TCTATGCTCTG TGTTCAGCTG CTGTTGTTG CTTGTCGTGAC TGGACTAAGG
116601 TGGTCCCAGT TAGAATTACT GCTCTTGTG CTCCTCATGT TATCTGTTG
116651 AGCAGGCTGG GCTGGTICAC ATGGTGGTGG TGGGTTCCCA AGAGCAGTAC
116701 ATTGATATCT GAAGGGCTCTI TGAAGTTCAG GCTCAACCTA TCAACAGTAT
116751 ATGTCACCA TGTCTCTGTT GTCACAGCAAA TCTGTCAGAAGGA CAGCCCCACAT
116801 GCAAGAGAGA GAGAAGAGA TTCAACCCCT TCTGTCAGAAGGA AGCTGCAAGT
116851 GTCTGGCCCA GTATTGCACT CTACCACTCC AGCCATTAA AGCTTATTTG
116901 CTTTGTAT TTTCTCACAT CTGTTGGTTC TATGAAGACA GTGTCAGTGT
116951 CTAAATTGACT TTTTTATTC TCTCTGTAGT ATCTTCATCT CAAAGAGEECT
117001 AGAAGAGAAA AGGAAATAG CATTGTTAYC ACCTCATGTA TCGAGGCACTT
117051 GGTAGACAT TTCTATGAA TTGGTCATT TAATACACAC ATAGCTTATT
117101 TGCAGATTTG GAAATTGGG CTCAGAAAT TGTAAATTTCTT GTCAGTAACT TGGCCACATA
117151 ATTCAGTCTA AATGCCAAGA CTGGGGTTTG AGTTGCACT TGGTCTAAAG
117201 TCTAAAGCTT TTATGTTCT ACCATGCTG CTGTTAGCA TGTCTTCTT
117251 CATATAATTC ATGCTGCTAA TGAAACAGTA TAATACACAC ATAGCTTATT
117301 TGCTAGTGAAT ATGATTATT GTCTTCTT TCAAGAAATA TGGCAAGTGT
117351 GTCAAATTTC TTCCCTTTT CATTGCAAC TCTACCACTT CTCACAAATA
117401 ATACCTTCAC ATGTCATTA AGGATGCAA TGTAAATTTCTT GTCAGTAACT
117451 AAGCAATGCT TATGTTACCA TCTCTAGACA CTCACCACTT CTCACCACTT
117501 GGGTTAACAT GTTGGCATT CTCGGCACTA AGTTAGTGTG TGTACTGTTAG
117551 GTGAAAAGTT GGGGAAAZAT TTACCAAGATE CTCACCACTT CTCACCACTT
117601 CTGCTATATA GAACTACCTG AGACCTGGGTG AGTTAGTCTA TGTATTAGT
117651 TTGACTESCA GTTCCACACAC CTGTACAGGA ATTATAAAAG AAGAGTTAA
117701 AGAAACCTTC AGTCATGTC GAGAGAGGAA GGTAAAGGAA GGTGTCCTCA
117751 ACGTGGTAGE AGAAGAGAAA GAGACAGAGA GGTAAACAGCA GGGGAAGGAA
117801 AGGGGGAAAGT GCCACACTT TAAACCATAA GGTAAACAGCA GGTGAGAGTGA
117851 ACCTCCCAAC CAGTCCTCC CTCACCACTT GGTAAACAGCA TCCACCECTT
117901 GATTTGGTG GGTTACAGA GCGAAACCAT CTCACCACTT GGTAAACAGCA
117951 CTCACAGCA TTTGATTAAAC ATATAGTATT GGTAAACAGCA ATTCAGATGAA
118001 GGTCTATTAA AACATGGET GCTTGTATTG CTCACCACTT GGTAAACAGCA
118051 TGGTCCAAAG GAAACAGGTC TGTCTTGT CTCACCACTT GGTAAACAGCA
118101 CTCCTCAGT CATTTCGCA TTGTTCTG CTCACCACTT GGTAAACAGCA
118151 GTACTGTTT AGCTTAAAGT GTTAAACAGCA ATTCAGATGAA ATTCAGATGAA
118201 GTCACACCT GTGATCCCCA CACTTGGGA CTCACCACTT GGTAAACAGCA
118251 TTGAGCCCCAG GGTAAAGAGA CTCACCACTT GGTAAACAGCA TGGGGATCAC
118301 TCTACAAAAA ATGTAZZZAT TAGCTGGCA CTCACCACTT GGTAAACAGCA
118351 CCCAGCCACT TYGGAGGCTG AGAAATGGGA GGTAAACAGCA GGTCTATAGC
118401 GTGAGGCTG CAGTGAGCCTA TGATCCTGCTC ACTGCACTCC ATCTGGGCA
118451 ACAGAAACAAG TCTCTGTCTC AAAAAAAAGA AAAAAAAAGA AAAAAAAAGCA
118501 ATTCAATTGAT CTCATCTAGT TTGACTAGT CTCACCACTT GGTAAACAGCA
118551 CTATCTGAGA TGTATGTCAGG TGTGGAGCAG CTCACCACTT GGTAAACAGCA
118601 ATGTGATTGA CTCATCTGCT CTCACCACTT GGTAAACAGCA TGGGGATCAC
118651 ATAAAGGCAG TCTCTCTAGT CTCATGAGTTT ACCTCCCTT GGTAAACAGCA
118701 ACTTCAGTGA TATCTCTATG AAACCTAAAAA ATTCACCACTT GGTAAACAGCA
118751 TGTATGTCAG TTTAAAAAA TTGTTTCAAC CAGGTGTGA GTRTTATGTC
118801 TTGTTTCTT ATGGGATAC TAATAGTGTG ATGACTATAG TATGTTCTCA
118851 AGGAATCTT TATGAAATTG GATTAACTC GACACAGTGC ATGGTTTGG
118901 AGTAAACAG BACTTGTCTT AAACCTCTGT CTCACCACTT GGTGGGGTGA
118951 GATGAGACAA AGGACTTAC CTCACCACTT CTCACCACTT GGTGGGGTGA
119001 CTCTTCTGGG CGGTAGGAAAT GTCACCACTT TAATAGGGTGA ACCTCTCTCA

FIGURE 1AM

119051 taataagata taatgtgtgt aaaaatttttg tacaatgccc agacacagaat
 119102 agggtgcctaa tatattaaat statgtttat tattttactaa ttaattaatg
 119151 ctgatttttg cattaatttt gactaattga aatccctggac ttgtttaatt
 119201 tgcatgtatt tgccttcctt tcttccagta ctgtatggca atttctaccc
 119251 gtggtaatgt gaacgtttaaa agtttatatgc ttatacaaaac tttagtcctt
 119301 tatttcctgg agtqsgttt aagagtccct atgttgcata attcatgtaa
 119351 tcacagaaaaat aatactatgt atcaggggact gtttccctta ttaaagataa
 119401 aggcctgtgg aatactgtct ttgtcaaaaa tacttcagtt actctgagag
 119451 agagagacat ttgttacta tatgacagcg cagtgcctgg cadataaatag
 119501 aagtttggaa aataatttatt ttgaatgcat gaataatgaa cacattgtga
 119551 acaaataaaat ggtttactat ttaatttttc aggaatcaat taagtttat
 119601 taataaaaaat tttttggggg tttaaaaaag ccacacacca aatgagaggg
 119651 atcacagagg caaacggat gacattatta aatacgat tgcataatca
 119701 cagttcagca ataaacaaat gtttggggc ttcaatataag tgagtatttt
 119751 agtgcactta agaagataat gaaactccct cactgtttt cagggtcaat
 119801 aatttttttaag gacatataa aacatattt tagtgtttcc atttgcataa
 119851 agatagtata tataacatata geattaaaa agaagaaga aaccaatatt
 119901 taatgtgttt ttctttttttt cttatggca gttactatg gtatnnnnnn
 119951 aaaaaacccctt atcttgcctt tagaaaaacag ttcaaaaaaag tatttcatatt
 120001 taaaactegg gaggtgttag aaaaageaga aagaataata ttggcaagac
 120051 aatttgtgtt ctttatacat atcttgggtt atcagtttac tctgtgagta
 120101 tccccccatt tccacgtgg aaaaatttcag caacatgttt caatttgcgg
 120151 atgttgtgtt tattttactg geatattttt ctggcagCTG ACACAGCCCT
 120201 TGGCACTGTAT GATGTATATG ATGAAAAGG ATGCCAGTGT GTGTATTCAG
 120251 TGGTAGCCTT CCCCCCCCCA CCTTAAACTG TCATTGAGGC TATCAGgttg
 120301 gtgaaaaaatc tgaacaaacgt gattcagaga catactatg attaattgaa
 120351 ttactatgtt gttttttttt tttttttttt gttttttttt tttttttttt
 120401 actttccctt tttttttttt tttttttttt tttttttttt tttttttttt
 120451 catttgtatc taaaaatgc atgtatgtttt atttttttttt tttttttttt
 120501 cttttatatt tttttttttt tttttttttt tttttttttt tttttttttt
 120551 ctggagatgg ctggaaaaat tttttttttt tttttttttt tttttttttt
 120601 tcagggtttt aacggdttttt aaaaaggccaa aacacttggt gttcagccct
 120651 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 120701 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 120751 gaaaaatata atttttttttt tttttttttt tttttttttt tttttttttt
 120801 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 120851 aataatgtat aatgtttttttt tttttttttt tttttttttt tttttttttt
 120901 GGAAAGTTAA GGAAACCTTA CGTCCAYATE ATGTAATAAGA TETCATTGAA
 120951 CAACTTTCTT CTGGTCATCT CGAACTTTCTT TCTAGAATTTA AAAGCTTCA
 121001 AGAACGttaa gcaatggaaa tttttttttt tttttttttt tttttttttt
 121051 acctatctgtt gaaagaaactt tttttttttt tttttttttt tttttttttt
 121101 attttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 121151 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 121201 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 121251 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 121301 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 121351 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 121401 atttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 121451 aatgtttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 121501 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 121551 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 121601 agttgtttttt tttttttttt tttttttttt tttttttttt tttttttttt
 121651 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 121701 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 121751 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 121801 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 121851 aatgtttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 121901 gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 121951 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 122001 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 122051 gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 122101 aatgtttttttt tttttttttt tttttttttt tttttttttt tttttttttt
 122151 agatggccat ggtttttttt tttttttttt tttttttttt tttttttttt

Exon 11

Exon 12

122201 ~~gggttttata aagtggact gctacagaat ttataagaacc aatcttggtt~~
 122251 ~~ttcttagctca tctatcttc ccaacttgcg ctcggaaaga aaaaagacat~~
 122301 ~~ggcttttata tctgttttcc tttcacacat gtacataga tgcgtcataga~~
 122351 ~~ataatctgtt ctattatgt aagatctca tagttatgtat ttttgtcata~~
 122401 ~~ttttggaaatcg gttaaattca gggactgcgt gtcggagggt agaaaacatat~~
 122451 ~~tactttgtat ttttagacac ttttacttcc agaagatcac ccataaagtcg~~
 122501 ~~tttcacatgg gaccagaata atgagaaaaat taatttcatg tgtaatctca~~
 122551 ~~tgttcaatata agcatatcaa ctggmacaag ttctttctt tttcatctta~~
 122601 ~~cataatgtt agataactgt atttaatttt tttttccaaa acttttcatt~~
 122651 ~~ctgacotagg gcaatctcca ctttcggccc tcataatcag atcttcatt~~
 122701 ~~tctctgatag ~~TGTTGATCA ATTCTTGGAA~~ AAGGGCAATT ~~GTCTCAGAT~~~~
 122751 ~~AAGAAGAATT AACAGGAGGA CATEGACCA CAGACGATCT~~
 122801 ~~CAGTATGTCG GGTCTGGTGG TCAAGCTTCA AAAACAGGta caactcaact~~
 122851 ~~acyctgggtt tcttttttgc cagaattttt ttaatcaaaaa ttattatag~~
 122901 ~~gcaatttgcgt gtattccagt gattttttt aaataaataaa aatcaaaaaa~~
 122951 ~~agagtgaata ~~AA~~attaaattt ttctttgtgt gtagscagtg ctctctgaa~~
 123001 ~~cactctggat ttccccctttaa ggaatagaaa atctcatctc atcaatataat~~
 123051 ~~agttatgtgg aaacaactat agatitccaa tagttggaaa tggttttaaa~~
 123101 ~~atataaaaga totatcttc attttgtttt cagttgtttt battgtttt~~
 123151 ~~tttttaggtc attatattttt ttttttttt tttttttttt mmmgggacta~~
 123201 ~~tgggcattgc cccacacacc tggctgtttt ttgtattattt tttegttagag~~
 123251 ~~ccgggttcc accatgttgc ccagggtggg ctcacactee tgggtctcaat~~
 123301 ~~tcttcgttgc cagttttccaa aagtgttggc attacaggca tgagccactg~~
 123351 ~~cacccagect ggaatggaaa gtccttaaagt tgcattttta tagtgettat~~
 123401 ~~atgacttttta Agaggcacta tttaaagggg tggtgggggg gagatgtcaa~~
 123451 ~~taaaagactgt atagaagcga aagtgtccct tttttttttt gtccttctct~~
 123501 ~~ggccccatca ttgtctttttt ttcattttttc taaggccaa gactgcattc~~
 123551 ~~tacttttatat tttatatttc tttaatgttgc ttggccacacc ttgacttcat~~
 123601 ~~tttcaaaaat taaaaatgtt atgatcttctt tttatccaga ttataactcat~~
 123651 ~~gtgttaaccat tttecttcat ttcag~~GTACA GTCCGTAGAA~~ TCCAGCTGG~~
 123701 ~~ACTGCCTTCT AGACATCTAT CAAACGGGTCG TTCCCCAAGG CTCAGCTTA~~
 123751 ~~GCGCTCTTTT TGGCTTCTTCTT CCAGATCCCA CCTTTTGAAAT GTGAACAGAC~~
 123801 ~~ATCTGACTTAT CAAAGCCTTC TGCTTAGGAA AGATTTTTCG GGTTCCTCCAC~~
 123851 ~~AAAACAGTGG CTGCTTCTCC AGATCBACTA GTCGCCACAT CTGAGAGGAC~~
 123901 ~~CTGAGTTCA TTCTGAAGCC AAATGGGTCG AGTSCCCAGB CTTTGTACCC~~
 123951 ~~GCTAGCCCT ACTATGCAAA STCAAGGCAAC ACAGGTGCGB ATTAATGCAA~~
 124001 ~~GCGATGCTTC AGGAGTGGCA CCACCCACCA CCATTCGAAA CCAATAAAT~~
 124051 ~~ACGGCACCCCA AGECAGCAGC CCACACACT TTACAGATCC CTCCTTCTT~~
 124101 ~~CCCAAGCCATC RAGCATCTGC CCAGGCCAGA RACTTCGAC CCAACCCCTG~~
 124151 ~~CAAGCTTACA CGAAAGCATT TTGAGCTGCA CCACCTGCTT TGTTGCCCTG~~
 124201 ~~AGGGAAAATG TTCAAGGTTGC AGAGTCATT CTCAACCAAGG AGCGTTCTTC~~
 124251 ~~GAAGAAAGC TT-TGAAATGG GAGGAGAAA TCTTTTGTCT GTGAGGCGA~~
 124301 ~~TGGTGGGAA GGAACTTGGC BAACTTTCGTT CTGTCACAAA CTTGATTCAG~~
 124351 ~~TGGACGGGEE PAACTGATAT AGAACTTTCA AGGAGTGTGT CAGTGGGCLL~~
 124401 ~~CAAGGGCAAC CAAGTTTTT ACCTTCATG GAGGGATTCG AATTTTTT~~
 124451 ~~TAATCTATG AAGAGTGTGT CCCTGAGGAA CAGAGACAGA CACTTTTGAA~~
 124501 ~~GGGGACCCGC AGGCTGCGAG GGAAGCTGCG TTTCGATTCAG ACTCTCTAA~~
 124551 ~~GAATGAGGG TGACCTTAT CTGAGGCAAC TGAAATAGT TTTCGATTTT~~
 124601 ~~CAGATGCCCT CAGCTTGCCT CTGAGGCAAC TTGTAAAGGCA GGGAGAGTA~~
 124651 ~~CTTTCCAGG AATAGCTTTC TTTCGATTTG CATACTTTCG CATGACTTAT~~
 124701 ~~TTCCGAAAGCC CTTTCTAAAA GTGAAATTG CAAAGAATGG CAAGAACATG~~
 124751 ~~AAGGGCAATT TATAGGGGG TTACCTTCA ATTTCATGAA ATTCGAGT~~
 124801 ~~TAGGGATGCC TAAATTTTCG AGGTGCTTCG ACCTCTACCC ACTCTCTTTCG~~
 124851 ~~TATGCTACCT TGTCTTAAAG ACCCTGAGAA ACCAACACAA CCTATCTGCTA~~
 124901 ~~TGGGCTGAT GAATATGTCG AGTCTAGGTC ATTTCAGAAGA TTTCGACACTG~~
 124951 ~~TATTTCTAAA TTATGGCAGT AACACCTTC AATTTTCTGG CATTCTGCT~~
 125001 ~~CTGTGATTC AATACACCTTC CTTTCTGGCAGT ATTGGCCCAT AATGTATAT~~
 125051 ~~TAACACACAT GGCTTCTTCAC AGCTCTTATG AAGGTCTGAC CCAGAGAGA~~
 125101 ~~ATTTGGGAAAT ATTCGAAATG GCTGCTTATT TCAAGATATA TTTCGCAACC~~
 125151 ~~CATTCTTATT CAGCTTATT TTATTAATG TATTTGGAT GTCATTTGT~~
 125201 ~~GTGCAATTGG TGTCTTGGCC CTGTTGGCAAG CAAATTGGCA CTCATTTTC~~
 125251 ~~ATGTTGCTCT TTATGAGCTAGG ATGTTCTTC BATTAGRAAA TGTGCAAAATA~~
 125301 ~~ATGAAATGAA GGGCAATGCA GGCAAAATGCA CTCATCTGCA TATTTGACT~~

Exon 13

Exon 14

125351 TATGAAACCA TATTGCCCTGA TGGCAGAATTC TACTTATAAA GTTGGTCAACT
125401 TCTTCACAAAG CTTATGAAAT ATCTGTCTGT AGAACCGGCCA TTGTGATTCG
125451 ACTGGTTTCT CTGCAATGGC CGCAACCCCCA CGGTTCGCCAA TACTGCCAT
125501 GTAAAGGGCA ACTGTGAGAAA GCTATTCTCA TTTCGGTGAC ATTCAGGTAAC
125551 GACTATGGGG GTTGGGACAT TTGAGCTGGGA CTGAGATAGG AAAGGCCTTG
125601 AAAGAACCCC GAAACACAC CGGGAACTTG GCAAGCTAA AAGAAATGAC
125651 TTCCCGCTTA AAGGGCCTTG AGGGGGAGAGG AAGCTACCA AAATAGGAA
125701 ACTTAGCTT TTGAAATG AGTATTGCTA CGGAACTCAA CTACCTATTC
125751 TTCCGTTATT CTTATATATA AGGAGGAAAT TTTTGCGAGG TATTATTTT
125801 TTATATGCC TTGAACTTCTT TTGCTATTAA TGTGTACATT TTGCATATGA
125851 AAGTCTAAAA CGGAACTTCC TTTACTTTTT ATACTGTAGT GAAATTTTC
125901 TATTGTTCCC AAGAACTTGT TCCCAAAATCTT GAAATTTCTG TTTCGATTTG
125951 TTGTGTATAAA

KCN6q cDNA

1	C T G G A G T G A G G D G C G G G A A G A T G C C T G G T C C T G C C T G G G A C T T G G C A	50
51	G C C G C G T C C T G C G G G T C T G C C T G A C T G A C T G C G G A C T G C G G G G T G G	100
101	C C T G A G S S A G A G G C C G C C G G G G C A A G C A G G G G G C C D E G A T G A G G C T G C T G G	150
	M S L L G	5
151	G G A A G C C G C T C T C T T A C C G A S T A C C A G A G C T G C C G G G C A A C G T C A A G	200
6	K P L S Y T S S Q S C R R N V K	21
201	T A C C G G C G G G T G C A G A A C T A C C T G T A D A A C G T G C T G G A G A G A D C C C G G G	250
22	Y R R V Q N Y L Y N V L E R P R G	38
251	C T G G G C G T T C A T C T A C C A C G C T T T C T T T C T C T T G T C T T T G G T T G C T	300
39	W A F I Y H A F V F L L V F G C L	55
301	T G A T T T G C C T C T G A T C C T G G A G T T C G T G A T G A T G T C G T C T T G G T T G G A	350
56	I L S V F S T I P E H T K L A S	71
351	A G T T G C C T C T G A T C C T G G A G T T C G T G A T G A T G T C G T C T T G G T T G G A	400
72	S C L L I L E F V M I V V F G L E	88
401	G T T C A T C A T T C G A A T C T G G T C T G C G G G T T G C T G T G C G A T A T A G A G G A T	450
89	F J I R E W S A G C C C C R Y R G W	105
451	G G C A A G G A A G A C T G A G G T T G C T C G A A A G C C C T T C T G T G T T A T A G A T A C C	500
106	Q G R L R F A R K P F C V I D T	121
501	A T T G T T C T T A T C C T T C A A T A G C A G T T G T T T C T G C A A A A A C T C A G G G T A A	550
122	I V L I A S T A V V S A K T Q G N	138
551	T A T T T T G C C A C G T C T G C A C T C A G A A G T C T C C G T T T C T A C A G A T C T C C	600
139	I F A T S A L R S L R F L Q I L R	155
601	G C A T G G T G C G C A T G G A C C G A A G G G G A G G C A C T T G G A A A T T A C T G G G T C A	650
156	M V R M D R R G G T W K L L G S	171
651	G T G G T T A T G C T C A C A G C A A G G A A T T A A T C A C A G C T T G G T A C A T A G G A T T	700
172	V V Y A S K E L I T A W Y I G F	188
701	T T T G G T T C T T A T T T T C S T C T T C C T T G T C T A T C T G G T G C A A A A G G A T G	750
189	L V L I F S S F L V Y L V E K D A	205
751	C C A A T T A A G A G T T T C T A C A T A T G C A G A T G C T C T G G T G G G G C A C A A T T	800

206	N K E F S T Y A D A L N W G T I	221
601	ACATTGACRAACTATTGGCTATGGAGACRAAACTCCCTAATGGCTGG	850
222	T L T T I G Y G D K T P L T W L G	238
851	AAGATTGCTTCTGCAGGCTTGCACTCCTGGCATTTCCTTGCAC	900
239	R L L S A G F A L L G I S F F A L	255
901	TTCCCGCCGGCATTCTGGCTCAGGTTTGCAATTAAAGTACAAGAACAA	950
256	P A G I L G S G F A L K V Q E Q	271
951	CACCGCCAGAAACACTTGAGAAGGAAGGAAACCCAGCTGCCAACCTCAT	1000
272	H R Q X H F E K R R N P A A N L I	286
1001	TCACTGTGTTGGCGTAGTTACGCAGCTGATGAGAAATCTGTTCCATTG	1050
289	Q C V W R S Y A A D E K S V S I A	305
1051	CAACCTGGAAAGCCACACTTGAGSCTTGCACACCTGCAGCCCTACCAAAG	1100
306	T W K P H L K A L H T C S P T K	321
1101	AAAGAAACAAGGGGAAGCATCAAGCAGTCAGAAGCTAGTTAAGGAGCG	1150
322	K E Q G E A S S S Q K L S F K E R	338
1151	AGTGGCGATGGCTAGCCCCAGGGGCCAGAGTAATAAGAGCCGACAAGCCT	1200
339	V R M A S P R G Q S I K S R Q A S	355
1201	CAGTAGGTGACAGGAGGTCCCCCAGGCACCGCACACAGCCGAGGGCAGT	1250
356	V G D R R S P S T D I T A E G S	371
1251	CCCACCAAAGTGCAGAAGAGCTGGAGCTTCACGGACCCACCCGCTTCCG	1300
372	P T K V Q K S W S F N D R T R F R	388
1301	GCCCTGGCTGGCGCTCAAAAGTTCTAGCCAAAACCACTGATAGATGGCTG	1350
389	P S L R L K S S Q P K P V I D A D	405
1351	ACACAGCCCTGGCACTGATGATGATATGATGAAAAAGGATGCCAGTGT	1400
406	T A L G T D D V Y D E K G C Q C	421
1401	GATGTAJCAGTGGAAAGACCTCACCCCCACCCACTTAAACACTGTCATTCGAGC	1450
422	D V S V E D L T P P L K T V I R A	438
1451	TATCAGAAATTATGAAATTTCATGTTGCACAAACGGAAAGCTTAAAGGAAACAT	1500
439	I R I M K F E V A K R K F E T L	455
1501	TACGTCCCATATGATGGAAAAAGATGTCATTGAACAAATATTCTGCTGGTCAT	1550
456	R P Y D V K D V I E Q Y S A G H	471

1551	CTGGACATGTTGTAGAATTAAAGCTTCAAAACACGTGTTGATCAAAT	1600
472	L D M L C R I K S L Q T R V D Q J	468
1601	TCTTGGAAAGGGCAAAATCACATCAAGAAGAGAACGGCGAGAGAAATAA	1650
489	I G K G Q I T S D K K S R E K I T	505
1651	CAGCAGAACATGAGACCACAGACGATCTCAGTATGCTCGGTGGGTGGTC	1700
506	A E H E T T D D L S M L G R V V	521
1701	AACGTTGAAAAACAGGTACAGTCATAGAATCCAAGCTGGACTGCCTACT	1750
522	K V E K Q V Q S I E S K L D C L L	538
1751	AGACATCTATCAACAGGTCTTCGGAAAGGCTCTGCCTCAGCCCTGGCTT	1800
539	D I Y Q O V L R K G S A S A L A L	555
1801	TGGCTTCATTCCAGATCCCACCTTTGAATGTGAAACAGACATCTGACTAT	1850
556	A S F Q I P P F E C E Q T S D Y	571
1851	CAAGCCCTGGATAGCAACAGTCATCTTCCGGGTCGGCACAAACAGTGG	1900
572	Q S P V D S K D L S G S A Q N S G	588
1901	CTGCTTATCCAGATCAACTAGTGCCAAACATCTCGAGAGGCCCTGCAGTTC	1950
589	C L S R S T S A N I S R G L Q F I	605
1951	TTCTGACGCCAAATGAGTCCAGTGCCAGACTTCTACGGCGTTAGCCCT	2000
606	L T P N E F S A Q T F Y A L S P	621
2001	ACTATGCACAGTCAGCAACACAGGTGCCAAATTAGTCAGGCAATGGCTC	2050
622	T M H S Q A T Q V P I S Q S D G S	638
2051	AGCAGTGGCAGCCACCAACACCATTCGCAACCAATAATACGGCACCC	2100
639	A V A R T N T I A N Q I N T A P K	655
2101	AGCCAGCAGCCAAACAACTTACAGATCCACCTCCTCTCCAGCCATC	2150
656	P A A P T T L Q I P P P L P A I	671
2151	AAGCATCTGCCAGGCCAGAAACTCTGCACCCCAACCTGAGGCTTACA	2200
672	K H L P R P E T L K P N P A G L Q	688
2201	GGAAAGCATTTCTGACGTCAACACCTGCCCTCTGCCTCCAGGAAATG	2250
689	E S I S D V T T C L V A S K E N V	705
2251	TTCAAGGTGGCAGACTCAAACTCAACCAAGGACCGTTCTGAGGAARAGE	2300
706	Q V A Q S N L T K D R S M R K S	721
2301	TTTGACATGGGAGGGAGAAACTCTGTTGTCTGCTCTGCCATGGTGGCGAA	2350

722	F D M G G E T L L S V C P H V P K	730
2351	GGACTTGGSCAATCTTGTCTGTCGCAAAACCTGATCAGGTGGACCGEAGG	2400
739	D L G K S L S V Q N L I R S T E E	755
2401	AACTGAAATATAACAACCTTCAGGGAGTGAGTCAGTGCCCTCCAGGGCAGC	2450
756	L N I Q L S G S E S S A S R S S	771
2451	CAAGATTTCACCCAAATGGAGGGAAATCCAATTTGTTATAACTGATGA	2500
772	Q D F Y P K W R E S K L F I T D E	788
2501	AGAGGTGGGTCCCCAAGGAGACAGAGACAGACACTTTGATGCCGCACCGC	2550
789	E V G P E E T E T D T F D A A P Q	805
2551	AGCCTGCCAGGGAAAGCTGCCCTTGATCAGACTCTCAAGGACTGGAAAGG	2600
806	P A R E A A F R S D S L R T G R	821
2601	TCAAGATCATCTCAGAGCATTTGTAAGGCAAGGAGAAAGTCAGATGCCCT	2650
822	S R S S Q S I C K A G E S T D A L	838
2651	CAGCTTGCCTCATGTCAAACTGAAATAAGTTCTTCATTTCTTCCAGGC	2700
839	S L P H V K L X	846
2701	ATAGCAGTTCTTAGCCATACATACTCATGCACTATTTGAAAGCC	2750
2751	CTTCTAAAAAGTTGAAATTGCAAGAAATGGGAAGAAACATGAAAGGAGTT	2800
2801	TATAASCCCGTTACCTTTAATTCGATGAAATGCAATGTTAGGGATGGC	2850
2851	TAAAATCCAGGTGCTGACATTACCCCTCATTTAGTAATGACCT	2900
2901	TGAGTTAAAAGCCTGAGAAACCAACACAGCTATGCTATGGGTGTAT	2950
2951	GAATATGTCAGTTAGGECATTAGAAGATTTGACACTGTATTTGAAA	3000
3001	TTATGGGAGTAAACACCTTCAAATTTCAGGCATTCTGCTTTGACTAA	3050
3051	ATACAAACTACATTTCAGATTAGGCCATAATGATATATTAAACAAAT	3100
3101	GGCTATCAACAGCTGCTAAATAGGTATCAACTAAAGCAGAATTGGGAAT	3150
3151	AATAGAAAATGGGTGCTTATTCAAGATATTTGCAACCCATTCTATT	3200
3201	CAGTCATTATTATTAAATGTAATTGAAATGCAATTGTGTGCTTTGG	3250

3251	TGATTTAGCGCTGTGGCAAGCAATTTCACATCATTTCATGTTCTTCT	3300
3301	TTATGACAAGAAATGTTCTCAATTAGAAAATGTGCAAATAATGAAATTCA	3350
3351	GGGCCAGTGAGGCAAAATAGACTATCTGACATATTGACTTATGAACAA	3400
3401	TATTCGCCTGATGGCAGAATCAACTTATAAGTGGTCACITCTACACAAAG	3450
3451	CGTATGAAATACTGGTCAGTAGAACAGCATTGTGATTGGACTGGTTCT	3500
3501	CTGCATGGCGCCAACCCCGGCTTGCACATACTGCCTATGTAAGGGCA	3550
3551	AAGTGTGAGAAGCTATTCTCAATTCTGACATACAGGTAGGACTATGGG	3600
3601	GATGGGACATTGAGTGGGACTGAGATAGGAAAGGCTTGAAAGAAACCA	3650
3651	GAACACCCACCAAGGAAGTGGCAAAAGTAAAAGAAAAATGACTTCCTCTCA	3700
3701	AAGGGCAATGAGAGGGAG	

FIGURE 3A

probe: DL/CR see front.

FIGURE 3B

RT-PCR analysis of the KCN6q Gene expression in human tissues

FIGURE 4A

FIGURE 4B

FIGURE 4C

KCN6q_	ILHIIQHAAKKEFETLKEIYDVKETSTROXGAGIITLTTTGTTCRTEBQCKHDCIAGKQ...TSD
KCNQ4_	IT TIE D E V A R K K F E T L K E I Y D V K E T S T R O X G A G I I T L T T T G T C R T E B Q C K H D C I A G K Q . . . T S D
KCRQ2_	K C N M D E N T K R K R E E L K E I Y D V K E T S T R O X G A G I I T L T T T G T C R T E B Q C K H D C I A G K Q . . . T S D
KCNQ3_	T K H I I Q D E R I K K E F E T L K E I Y D V K E T S T R O X G A G I I T L T T T G T C R T E B Q C K H D C I A G K Q . . . T S D
KCNQ1_	I K A P Q F Q Y F D V K D V I K Q Y S A G H L d m i s K I K E L Q t R T D q i t e k o p i t
consensus	irimkglvaktXYketlxPYDVKDViQySAGHldmisKIKELQtRTDqitekOp it
KCN6q_	REK I T A R E H T T D D I M K A G H D M I V K V O S S E C A L C
KCNQ4_	A H E M G D X G D S M R E K V D D I M K A G H D M I V K V O S S E C A L C
KCRQ2_	D H T H C D A P A K E D I F F E N C I C C H V E R E L E R H W M I P
KCNQ3_	H I K S O K O S A E T T E H O O S F R A D E P T V U R . D S T O R I D O S I U M I T R U M E V O D S C H E R I P
KCNQ1_	I S V A E K E K D R . G S M D S C H E R I P D R T O D O S C H E R I P
consensus	kk reKg ztipzqqspzn p eavp seidistmugt vkvBkqVqsiakhd 11
KCN6q_	D I K C O O D L H M G . G A R R A L I S D O P P F E C D T H I Q O S P V D H . . . D I S S E R A U . K S C C E R E
KCNQ4_	G P H K C L I S C T S A S . . . L A I V A P P L M P H I T S D I N S P V D H . . . D I S S E R A U T L S . . . T S D
KCRQ2_	H E M M I M M G . . . I P P T E T E V . . . F O M A E P P R V H A P D O N H M A R E C I V . . . H I V I H
KCNQ3_	C H E M C H I K . . . L Q V C I T W T M P T C T S E H A B A K . . . K K E D K A . K E D K . . . T I C Y
KCNQ1_	C N L H C I I S L H G C S T C C O M P R E C H A N I T Q P C A C C G D . P E L A P P M T L F T T C Q I . S P C R
consensus	diymqvlirkq eas lt kypqigafebaq adyhsqvdk ydlaegsaq + tisre
KCN6q_	R A K I S H E E P I L T Q M F H A C T Y A L S E P T M A S A P Q V P S Q D C E H V A A T T P I A # Q I N T A
KCNQ4_	V E T H M D
KCRQ2_	M E S T D Q S . . . N P H A S P A A P P V Q C P P S C W Q D o n i u r a n c h a
KCNQ3_	Y H E T T E P E P P Y S P E P Q V E I N K Y . P Y G F F A D B D P V C K H . C . C P S
KCNQ1_	C P D B H
consensus	te g a r a l q p p a c t f y a l p p q t is e p a p x a g c t s
KCN6q_	D E C I A P T A D O I P P L E H I K A M P R E H I P H Y P I L O C E D C O V T C L V A S K R P E R P M A S W T
KCNQ4_	W V . C O M M O D U L I V I P P R E H I N . . . R D . . . S A Y C O M H A M M Y Q . R E S T P P
KCRQ2_	S U M M O D T P R E S H T T V E H T V P I L T L L S W V A C H S S A D O
KCNQ3_	W V A C H S
KCNQ1_	W V A C H S
consensus	p pa g t l q p p pa lar p tl eg es i s i s d v t t e l r a s e v q v q d i
KCN6q_	K O R G M P X 3 F O M C G T I L C O S C M M I K O L C K H I . G C T T L I K E T S E H M I L H S Z Z S A H I S C O
KCNQ4_	Q C A F F E C Q M H D D U T P E K S P V D D E E L E R K P B C G F S I O S
KCRQ2_	K P Y G D H I S P G O R R S I T A D D U T P E K S P V D M V N H M E L E R K P B C G F S I O S
KCNQ3_	K P Y G D H I S P G O R R S I T A D D U T P E K S P V D M V N H M E L E R K P B C G F S I O S
KCNQ1_	K P Y G D H I S P G O R R S I T A D D U T P E K S P V D M V N H M E L E R K P B C G F S I O S
consensus	9 8 7 6 5 t l r a v e p d v p d t i s l s v g a l i r s h e e l e r s s y f i s i s q s r e
KCN6q_	D E Y U R K H A R E S K L E T T E D V C B E T T O D F C A R P C D R E A K Y A N D E X T R I M A
KCNQ4_	D A E N A C Y U E V A P C A K V W E N V A R G E D O M H N L C T P C G P P B R A C A C G P F G L V O V A G P R .
KCRQ2_	D A E N A C Y U E V A P C A K V W E N V A R G E D O M H N L C T P C G P P B R A C A C G P F G L V O V A G P R .
KCNQ3_	D A E N A C Y U E V A P C A K V W E N V A R G E D O M H N L C T P C G P P B R A C A C G P F G L V O V A G P R .
KCNQ1_	D A E N A C Y U E V A P C A K V W E N V A R G E D O M H N L C T P C G P P B R A C A C G P F G L V O V A G P R .
consensus	dcl aa fi a r y i n e g e t d d a q te g p satgeg adslwtg k
KCN6q_	Q E T C K A C A S T H A L E L P H V K I K
KCNQ4_	Q E T C K A C A S T H A L E L P H V K I K
KCRQ2_	Q E T C K A C A S T H A L E L P H V K I K
KCNQ3_	Q E T C K A C A S T H A L E L P H V K I K
KCNQ1_	Q E T C K A C A S T H A L E L P H V K I K
consensus	q a i c k a g a s t d a l a l p h v k i k

