Inhaltsverzeichnis

1	Top		ne Gruppen	3
	1.1	Topolog	rische Gruppen	3
		1.1.1	Definition: Topologische Gruppen	3
		1.1.2	Bemerkung	3
		1.1.3	Proposition	3
		1.1.4	Proposition	4
		1.1.5	Proposition	4
		1.1.6	Proposition	5
		1.1.7	Definition	5
		1.1.8	Definition	5
		1.1.9	Definition	6
	1.2	Lokal-K	Tompakte Gruppen	6
		1.2.1	Definition	6
		1.2.2	Bemerkung	6
		1.2.3	Proposition	6
		1.2.4	Proposition	6
	1.3	Zusamn	nenĥangkomponenten	6
		1.3.1	Definition	6
		1.3.2	Bemerkung	7
		1.3.3	Definition	7
		1.3.4	Proposition	7
		1.3.5	Proposition	7
		1.3.6	Proposition	7
		1.3.7	Bemerkung	7
	1.4	Total U	nzusammenhängende Gruppen	7
		1.4.1	Satz	7
		1.4.2	Lemma	7
		1.4.3	Lemma	8
		1.4.4	Korollar	8
	1.5	Limiten	Topologischer Räume	8
		1.5.1	Definition: Gerichtet Geordnet	8
		1.5.2	Definition: Inverses System	8
		1.5.3	Definition: Projektiver Limes	8
		1.5.4	Bemerkung	9
			Proposition	9
		1.5.6	Proposition	9
		1.5.7	Proposition	9
			-	10
		1.5.9	Bemerkung	10
	1.6		· ·	10

		1.6.1	Bemerkung	10
		1.6.2	Definition	10
		1.6.3	Satz	10
		1.6.4	Lemma	11
	1.7	Unend	lliche Galoistheorie	11
		1.7.1	Satz	11
		1.7.2	Satz: Satz der Unendlichen Galoistheorie	11
		1.1.2	Datz. Datz der Chendhenen Galoistheorie	т.т
2	Klas			13
2		ssenkö		13
2		ssenkö	rpertheorie – Motivation und Hauptresultate	13 13
2		ssenkö Abelse	rpertheorie – Motivation und Hauptresultate che und Quadratische Erweiterungen von \mathbb{Q}	13 13 13
2		ssenkö Abelso 2.1.1	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	13 13 13 13

Kapitel 1

Topologische Gruppen

1.1 Topologische Gruppen

1.1.1 Definition: Topologische Gruppen

Ein Paar (G, \mathcal{T}) einer Gruppe und einer Topologie auf G heißt **topologische Gruppe**, wenn die Abbildungen

$$_\cdot_:G\times G\longrightarrow G$$
$$^{-1}:G\longrightarrow G$$

stetig sind.

Unter einem **Homomorphismus topologischer Gruppen** verstehen wir einen stetigen Gruppenhomomorphismus.

1.1.2 Bemerkung

Seien G, H topologische Gruppen.

- $U \subset G$ heißt **Umgebung** von $g \in G$, falls eine Teilmenge $V \subset_o G$ existiert, sodass $g \in V \subseteq U$.
- $\phi:G\to H$ ist genau ein Homomorphismus, wenn das Urbild jeder Umgebung der 1 in H eine Umgebung der 1 in G ist.

1.1.3 Proposition

Sei G eine topologische Gruppe und $U \subset G$ eine Umgebung der 1.

- (i) Es existiert eine offene Umgebung V der 1, sodass $V \cdot V \subset U$ und $V = V^{-1}$.
- (ii) Es existiert eine Umgebung V der 1, deren Abschluss \overline{V} in U enthalten ist.

Sei nun $H \leq G$ eine Untergruppe.

- (iii) Der Abschluss von H ist ebenfalls eine Untergruppe. Dieser ist insbesondere normal, falls H ebenfalls normal ist.
- (iv) Ist $H \leq_o G$ offen, so auch abgeschlossen, also insbesondere eine Zusammenhangkomponente.

Beweis

(i) Definiere

$$f: G \to G, x \mapsto x^2$$

$$V' := f^{-1}(U) \cap U$$

$$V := V' \cap V'^{-1}$$

(ii) Wir geben ohne Beweis einen Satz an, aus dem die Behauptung sofort folgt:

Satz von Weil Eine topologische Gruppe G ist $T_{3\frac{1}{2}}$, d. h., ist $A \subseteq_a G$ eine Teilmenge, die die 1 nicht enthält, so existiert eine stetige Abbildung $f: G \to [0,1] \subset \mathbb{R}$ mit folgenden Eigenschaften:

$$- f(A) = \{1\}$$

- f(1) = 0

- (iii) Seien $a, b \in \overline{H}$, dann existieren Folgen $a_n, b_n \in H$, die gegen a, b konvergieren. Dann ist (a_n, b_n^{-1}) eine Folge in $G \times G$, die gegen (a, b^{-1}) konvergiert. Da Multiplikation stetig ist, konvergiert $a_n b_n^{-1} \in H$ gegen ab^{-1} , ergo liegt ab^{-1} in \overline{H} . Analog zeigt man, dass \overline{H} normal ist, falls H normal ist.
- (iv) Sei $H \leq_o G$ offen und sei $a \in \overline{H}$. Dann existiert eine Folge $a_n \in H$, die gegen a konvergiert. aH ist eine Umgebung von a, ergo existiert ein $N \in \mathbb{N}$, sodass $a_n \in aH$. Daraus folgt $a \in a_nH^{-1} = H$.

1.1.4 Proposition

Sei G eine topologische Gruppe. Dann sind folgende Aussagen äquivalent:

- (i) G ist hausdorffsch.
- (ii) $\{1\}$ ist abgeschlossen in G.
- (iii) $\{g\}$ ist abgeschlossen in G für alle $g \in G$.

Beweis

Es bleibt die Implikation (iii) \Longrightarrow (i) zu zeigen. Seien $g,h\in G$ verschieden. Dann ist $U=G\setminus\{gh^{-1}\}$ offen in G. Laut Proposition 1.1.3 (i) existiert eine offene Teilmenge V von U mit folgenden Eigenschaften:

- $1 \in V$
- $VV \subset U$
- $\bullet \ V^{-1} = V$

Dann sind Vg, Vh disjunkte Umgebungen von g, h. Denn wäre ihr Schnitt nichtleer, so würden $v, w \in V$ existieren, sodass vg = wh, woraus folgt dass gh^{-1} in U liegen würde.

1.1.5 Proposition

Sei G eine topologische Gruppe und $H \leq G$ eine Untergruppe.

- (i) H ist genau dann diskret, wenn H einen isolierten Punkt besitzt.
- (ii) Ist G hausdorffsch und H diskret, so ist H abgeschlossen.

Beweis: (ii)

H ist diskret, d. h., es existiert eine offene Teilmenge $V \subseteq_o G$, s. d. $V \cap H = \{1\}$. Ohne Einschränkung darf angenommen werden, dass $V = V^{-1}$.

G ist hausdorffsch, ergo ist $\{1\}$ abgeschlossen in V. Sei $x \in \overline{H}$, dann existiert ein $y \in H$, das in xV liegt. Man erhält durch Umformung

$$x \in yV \cap \overline{H} = \bigcap_{H \subset A \subset_a G} A \cap yV = \bigcap_{\{y\} = H \cap yV \subset A \subset_a yV} A = \{y\}$$

Ergo gilt $x = y \in H$.

1.1.6 Proposition

Sei G eine topologische Gruppe mit Untergruppe H.

- G operiert stetig auf G/H.
- $\pi_H: G \to G/H$ ist eine offene Abbildung.
- G/H ist genau dann hausdorffsch, wenn H abgeschlossen ist.
- G/H ist genau dann diskret, wenn H offen ist.
- Ist H normal, so ist G/H eine topologische Gruppe und π_H ein Morphismus topologischer Gruppen.

Beweis: (iii)

 \implies : Sei $a \in \overline{H}$, dann existiert eine Folge $a_n \in H$, die gegen a konvergiert. Da π_H stetig ist, gilt

$$\pi_H(a_n) \stackrel{n \to \infty}{\longrightarrow} \pi_H(a)$$

Da alle a_n in H liegen, gilt aber $\pi_H(a_n)=\pi_H(1)$. Da G/H hausdorffsch ist, besitzt diese Folge höchstens einen Grenzwert, ergo gilt

$$\pi_H(a) = \pi_H(1) \Longrightarrow a \in H$$

 \Leftarrow : Seien $\pi_H(b), \pi_H(c) \in G/H$. Ohne Einschränkung nehmen wir an, dass $\pi_H(c) = \pi_H(1)$. In jeder Umgebung \widetilde{U} von $\pi_H(b)$ sei $\pi_H(1)$ enthalten. Dann ist b im Abschluss von H enthalten, denn ist U eine Umgebung von b, so ist $\pi(U)_H$ eine Umgebung von $\pi_H(b)$. Ergo ist $\pi_H(1) \in \pi_H(U)$, ergo existiert ein $h \in H$, sodass $h \in U$.

1.1.7 Definition

Ist G eine topologische, so ist $\overline{\{1\}}$ normal. $G/\overline{\{1\}}$ wird als **Hausdorffquotient** von G bezeichnet.

1.1.8 Definition

Ein Homomorphismus $\phi: G \to G'$ topologischer Gruppen heißt **strikt**, falls er den Isomorphiesatz respektiert, d. h., die induzierte Abbildung

$$\phi: G/\mathsf{Kern}\phi \longrightarrow \mathsf{Bild}\phi$$

ist homöomorph.

1.1.9 Definition

Eine kurze exakte Sequenz topologischer Gruppen heißt **topologisch exakt**, falls alle beteiligten Abbildungen strikt sind.

1.2 Lokal-Kompakte Gruppen

1.2.1 Definition

Sei X ein topologischer Raum.

- Wir nennen X kompakt, falls er quasikompakt ist, d.h., jede offene Überdeckung von X besitzt eine offene Teilüberdeckung.
- X heißt lokal kompakt, falls jeder Punkt eine Umgebung enthält, deren Abschluss kompakt ist.

1.2.2 Bemerkung

- Jede abgeschlossene Teilmenge eines kompakten Raumes ist kompakt.
- Jede kompakte Menge eines Hausdorffraums ist abgeschlossen.
- Ist ein Raum kompakt und hausdorffsch, so erfüllt er **T3**, d. h., er ist **regulär**, d. h., jede abgeschlossene Teilmenge und jeder nicht in dieser Teilmenge liegender Punkt könne durch offene Umgebungen getrennt werden.
- Ein Raum ist genau dann regulär, wenn jeder Punkt eine Umgebungsbasis aus abgeschlossenen Umgebungen besitzt.
- In lokal kompakten Räumen hat jeder Punkt eine Umgebungsbasis aus kompakten Umgebungen.
- Ist ein Raum kompakt und hausdorffsch, so erfüllt er **T4**, d. h., er ist **normal**, d. h., disjunkte abgeschlossene Teilmengen werden durch offene Umgebungen getrennt.
- Eine bijektive, stetige Abbildung von einem Kompaktum nach einem Hausdorffraum ist homöomorph.

1.2.3 Proposition

Sei G eine lokal kompakte Gruppe, $H \leq G$ eine abgeschlossene Gruppe.

- G/H ist ein lokal kompakter Raum.
- \bullet Jede kompakte Teilmenge von G/H besitzt ein kompaktes Urbild.

1.2.4 Proposition

Sei G lokal kompakt und hausdorffsch, $H \leq G$ eine Untergruppe. H ist genau dann diskret, wenn $H \cap K$ für alle kompakten Teilmengen von $K \subset G$ endlich ist.

1.3 Zusammenhangkomponenten

1.3.1 Definition

Ein topologischer Raum heißt **zusammenhängend**, wenn er sich nicht in zwei offene, disjunkte, nichtleere Teilräume zerlegen lässt.

1.3.2 Bemerkung

- Ist eine Teilmenge eines Raumes zusammenhängend, so ist es auch ihr Abschluss.
- Seien $A_i \subset X$ jeweils zusammenhängend, dann gilt

$$\bigcap_{i \in I} A_i \neq \emptyset \Longrightarrow \bigcup_{i \in I} A_i \text{ ist zusammenhängend}$$

- Beliebige Produkte zusammenhängender Räume sind zusammenhängend.
- Bilder zusammenhängender Räume bleiben unter stetigen Abbildungen zusammenhängend.

1.3.3 Definition

Sei X ein topologischer Raum.

- Ist $x \in X$ ein Punkt, so verstehen wir unter der **Zusammenhangkomponente** von x die größte, zusammenhängende Teilmenge von X, die x enthält.
- X heißt total unzusammenhängend, wenn jede Zusammenhangkomponente genau ein Element enthält.
- ullet Ist G eine topologische Gruppe, so bezeichnen wir mit G^o die Zusammenhangkomponente der Eins.

1.3.4 Proposition

Ist G eine topologische Gruppe, so ist G^o ein abgeschlossener Normalteiler.

1.3.5 Proposition

Sei G eine topologische Gruppe, $H \leq G$ eine Untergruppe. Sind H und G/H zusammenhängend, so auch G.

1.3.6 Proposition

Sei G eine topologische Gruppe, dann ist G/G^o hausdorffsch und total unzusammenhängend.

1.3.7 Bemerkung

Eine total unzusammenhängende Gruppe ist hausdorffsch.

1.4 Total Unzusammenhängende Gruppen

1.4.1 Satz

Eine hausdorffsche Gruppe ist genau dann total unzusammenhängend und lokal kompakt, wenn jede Umgebung der Eins eine offene und kompakte Untergruppe enthält.

1.4.2 Lemma

Sei X ein kompakter und total unzusammenhängender Hausdorffraum. Bezeichnet \mathcal{W} für $x \in X$ die Menge der Umgebungen von x, die zugleich offen und abgeschlossen sind, so gilt

$$\bigcap_{W\in\mathcal{W}}W=\{x\}$$

1.4.3 Lemma

Sei G eine lokal kompakte und total unzusammenhängende Gruppe, U eine offene Umgebung von $x \in G$.

Dann existiert eine offene und kompakte Umgebung von x, die in U enthalten ist.

1.4.4 Korollar

Sei G eine kompakte und total unzusammenhängende Gruppe. Dann enthält jede Umgebung der Eins einen offenen Normalteiler.

1.5 Limiten Topologischer Räume

1.5.1 Definition: Gerichtet Geordnet

Sei I eine nichtleere Menge.

- (I, \leq) heißt teilgeordnet, falls \leq auf I eine binäre Relation ist, die reflexiv und transitiv ist.
- Eine teilgeordnete Menge (I, \leq) heißt **gerichtet**, falls für jedes Paar $i, j \in I$ ein $k \in I$ existiert, sodass $i \leq k$ und $j \leq k$.

1.5.2 Definition: Inverses System

Sei I gerichtet.

• Ein **inverses System** (X_i, ϕ_{ij}) topologischer Räume ist ein kontravarianter Funktor $X: I \to \text{Top}$, d. h., die X_i sind topologische Räume und für jedes $i \leq j$ ist

$$\phi_{ij}: X_i \longrightarrow X_i$$

eine stetige Abbildung.

- Ein Morphismus inverser Systeme ist eine natürliche Transformation von inversen Systemen.
- Ist X ein topologische Raum, so verstehen wir unter (X, id_X) das konstante System zu X.

1.5.3 Definition: Projektiver Limes

Ein **projektiver bzw. inverser Limes** eines inversen Systemes (X_i, ϕ_{ij}) ist ein topologischer Raum

$$X = \lim_{i \in I} (X_i, \phi_{ij}) =: \lim_{i \in I} X_i$$

der den Funktor

$$\mathbf{Top} \longrightarrow \mathbf{Set}$$

$$Y \longmapsto \mathsf{Hom}_{\mathsf{inv.Sys.}} \left((Y, \mathsf{id}_Y), (X_i, \phi_{ij}) \right)$$

darstellt, d.h.,

$$\mathsf{Hom}_{\mathbf{Top}}(Y, X) \cong \mathsf{Hom}_{\mathrm{inv.Sys.}}((Y, \mathsf{id}_Y), (X_i, \phi_{ij}))$$

1.5.4 Bemerkung

- Ein Limes ist eindeutig bis auf eindeutige Isomorphie.
- Folgendes Konstrukt ist ein Limes von (X_i, ϕ_{ij})

$$X := \left\{ (x_k) \in \prod_{i \in I} X_i \mid \phi_{ij}(x_i) = x_j \forall i \le j \right\}$$

• Es gilt

$$X = \bigcap_{i \le j} \left\{ (x_k) \in \prod_{i \in I} X_i \mid \phi_{ij}(x_i) = x_j \right\}$$

1.5.5 Proposition

Sei (X_i, ϕ_{ij}) ein inverses System topologischer Räume mit stetigen Abbildungen

$$\phi_i: X_i \longrightarrow X := \lim_{i \in I} X_i$$

- Die ϕ_i^{-1} bilden für alle i und $U \subseteq_o X_i$ eine Basis der Topologie von X.
- Eine Teilmenge $Y \subset X$ mit $\phi_i(Y) = X_i$ für alle $i \in I$ liegt dicht in X.
- Eine Abbildung $f: X \to Y$ ist genau dann stetig, wenn für alle $i \in I$ $\phi_i \circ f$ stetig ist.

1.5.6 Proposition

Sei (X_i, ϕ_{ij}) ein inverses System topologischer Räume mit Limes X.

- Sind alle X_i hausdorffsch, so ist dies auch X.
- Sind alle X_i total unzusammenhängend, so auch X.
- \bullet Sind alle X_i hausdorffsch, so ist

$$\left\{ (x_k) \in \prod_{i \in I} X_i \mid \phi_{ij}(x_i) = x_j \forall i \le j \right\}$$

eine abgeschlossene Teilmenge von $\prod_{i \in I} X_i$.

- Sind alle X_i kompakt und hausdorffsch, so ist es auch X.
- Sind alle X_i nichtleer, kompakt und hausdorffsch, so ist dies auch X.

1.5.7 Proposition

Seien folgende Morphismen inverser Systeme von kompakten und hausdorffschen Gruppen gegeben

$$(F_i, \upsilon_{ij}) \xrightarrow{\alpha} (G_i, \phi_{ij}) \xrightarrow{\beta} (H_i, \chi_{ij})$$

Ist diese Sequenz gradweise exakt, d. h., ist für alle $i \in I$

$$F_i \xrightarrow{\alpha_i} G_i \xrightarrow{\beta_i} H_i$$

exakt, so ist auch die Limessequenz

$$\lim_{i \in I} F_i \xrightarrow{\alpha} \lim_{i \in I} G_i \xrightarrow{\beta} \lim_{i \in I} H_i$$

exakt.

1.5.8 Definition: Kolimes

Sei I gerichtet.

• Ein direktes System topologischer Räume ist ein kovarianter Funktor

$$X:I\longrightarrow \mathbf{Top}$$

- Morphismen direkter System sind natürliche Transformationen der zugrunde liegenden Funktoren.
- Ein Kolimes eines direkten Systemes (X_i, ϕ_{ij}) ist ein topologischer Raum $X = \mathsf{colim}_{i \in I} X_i$, der den Funktor

$$Y \longmapsto \mathsf{Hom}\left((X_i, \phi_{ij}), (Y, \mathsf{id}_Y)\right)$$

darstellt.

1.5.9 Bemerkung

Ist (X_i, ϕ_{ij}) ein direktes System, so ist folgender Kolimes gegeben

$$\coprod_{i\in I} X_i/\sim$$

wobei

$$x_i \sim x_j \iff \exists k \ge i, j : \phi_{ik}(x_i) = \phi_{jk}(x_j)$$

1.6 Proendliche Gruppe

1.6.1 Bemerkung

Jede endliche Gruppe wird als eine topologische Gruppe aufgefasst, indem wir sie mit der diskreten Topologie versehen.

1.6.2 Definition

Eine topologische Gruppe heißt **proendlich**, wenn sie ein projektiver Limes eines inversen Systems endlicher Gruppen ist.

1.6.3 Satz

Sei G eine topologische Gruppe. Folgende Aussagen sind äquivalent:

- \bullet G ist proendlich.
- \bullet G ist kompakt und total unzusammenhängend.
- \bullet G ist kompakt und

$$\bigcap_{N \trianglelefteq_o G} N = \{1\}$$

1.6.4 Lemma

Sei G eine topologische Gruppe, I eine Familie abgeschlossener Normalteiler, sodass gilt

$$N_1, N_2 \in I \Longrightarrow \exists N_3 \in I : N_3 \subseteq N_1 \cap N_2$$

• Definiere für $N_1, N_2 \in I$

$$N_1 \leq N_2 \Longleftrightarrow N_1 \supseteq N_2$$

Dann ist (I, \preceq) gerichtet.

• Setzt man für $N_i \leq N_j$

$$\phi_{ij}: G/N_j \longrightarrow G/N_i$$

so ist $(G/N_i, \phi_{ij})$ ein inverses System.

Definiere

$$\widehat{G} := \lim_{N \in I} G/N$$

Es existiert ein kanonischer Morphismus stetiger Gruppen

$$v:G\longrightarrow \widehat{G}$$

mit Kern

$$\mathsf{Kern} v = \bigcap_{N \in I} N$$

• Ist G kompakt, so ist v surjektiv.

1.7 Unendliche Galoistheorie

1.7.1 Satz

Sei L|K eine galoissche, nicht notwendigerweise endliche Körpererweiterung. Definiere

$$G(L|K) := \operatorname{Aut}_{K-\operatorname{Alg.}}(L)$$

G(L|K) erhält eine Topologie als Gruppe, indem wir Untergruppen der Gestalt

für alle endlichen, galoisschen Teilerweiterungen E|K zu einer Umgebungsbasis der Eins in G(L|K) zusammenfassen. Es gilt dann

$$G = \lim_{\substack{L|E|K \\ E|K \text{ endl., gal.}}} G(E|K)$$

1.7.2 Satz: Satz der Unendlichen Galoistheorie

Für eine galoissche Körpererweiterung K herrschen folgende Dualitäten vor

$$\{L|E|K \text{ galoissche Zwischenerweiterung}\} \longleftrightarrow \qquad \qquad \{U \subseteq_{\mathrm{abg}} G\}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\{L|E|K \text{endliche, galoissche Zwischenerweiterung}\} \longleftrightarrow \qquad \{U \subseteq_{o} G\}$$

durch

$$E \longmapsto G(L|E)$$

$$H \longmapsto L^H$$

Kapitel 2

Klassenkörpertheorie – Motivation und Hauptresultate

2.1 Abelsche und Quadratische Erweiterungen von $\mathbb Q$

2.1.1 Satz: Kroncker-Weber

Sei $L|\mathbb{Q}$ eine endliche Erweiterung. Folgende Aussagen sind äquivalent:

- $L|\mathbb{Q}$ ist abelsch.
- L ist enthalten in einem Kreisteilungskörper $\mathbb{Q}(\mu_n)$.

2.1.2 Satz

Sei $N\in\mathbb{N},\,L|\mathbb{Q}$ endlich. Folgende Aussagen sind äquivalent:

- $L \subseteq \mathbb{Q}(\mu_N)$.
- Ob eine Primzahl p in L voll zerlegt ist, hängt nur von $p \mod n$ ab.

2.1.3 Satz

Sei $L|\mathbb{Q}$ abelsch und N minimal mit

$$L \subseteq \mathbb{Q}(\mu_N)$$

Für jede Primzahl p gilt

p ist in L verzweigt $\iff p|N$

2.1.4 Satz

Sei $N \in \mathbb{N}$ und $H \subseteq (\mathbb{Z}/N\mathbb{Z})^{\times} \cong G(\mathbb{Q}(\mu_N)/\mathbb{Q})$ beliebig. Es bezeichne $L = \mathbb{Q}(\mu_N)$. Für $p \not| N$ prim gilt:

- p ist unverzweigt in L.
- p ist genau dann voll zerlegt in L, wenn $p \mod N \in H$.
- \bullet Ist f die kleinste natürliche Zahl, die

$$p^f \mod N \in H$$

erfüllt, so ist $p\mathcal{O}_L$ ein Produkt von $[L:\mathbb{Q}]/f$ verschiedenen Primidealen.

Proposition 2.1.5

Sei L|Kgaloissch und $\mathfrak{p}\subset\mathcal{O}_K$ unverzweigt in L. Dann gilt