Department of Electrical Engineering

National Taiwan University

Probability and Statistics, Spring 2012

Final Examination

15:30-18:30, Thursday, June 21, 2012

- 1. (Recitation, 7%) Consider two random variables X and Y. Prove that $E^2[XY] \leq E[X^2]E[Y^2]$.
- 2. (Recitation, 13%) Ting breaks a unit-length stick at a point randomly chosen in [0, 1]. For the piece of length Y that contains the left end of the stick, Ting breaks it again at a random point. Let X be the length of the resulting piece that contains the left end after the second breaking.
 - (a) Find the joint probability density function of X and Y. (5%)
 - (b) Let Z be the length of the piece with the longest length among the three pieces. Find E[Z]. (8%)
- 3. (Recitation, 10%) Assume that bus arrivals follow a Poisson process with a mean arrival rate of α per unit time. Let X, Y, and Z be the arrival times of the first, second and the third bus after t=0, respectively.
 - (a) Find $f_{X,Y}(x,y)$. (7%)
 - (b) Find $f_{Y,Z|X}(y,z|x)$. (3%)
- 4. (8%) Consider N continuous random variables $X_1, X_2, ..., X_N$ which have cumulative distribution functions $F_{X_1}(x), F_{X_2}(x), ..., F_{X_N}(x)$ with $N \geq 2$. Assume further that these random variables are related by $X_{n+1} = F_{X_n}(X_n)$ for $n \in \{1, 2, ..., N-1\}$. Suppose that the continuous distribution $F_{X_1}(x)$ is known but arbitrary. Derive $F_{X_2}(x), ..., F_{X_N}(x)$.
- 5. (8%) Consider independent and identically distributed Gaussian random variables X and Y with zero mean, i.e., E[X] = E[Y] = 0, and unit variance, i.e., Var[X] = Var[Y] = 1. Find the probability density function of $Z = \min(X + Y, X Y)$ where $\min(u, v)$ denotes the smaller value between u and v.
- 6. (12%) Let X be a continuous random variable with the probability density function $f_X(x)$ which is an even function, i.e., $f_X(x) = f_X(-x)$. Also, define a new random variable Y = |X|. Determine whether each of the following statements is true or false. Prove it if the statement is true. Explain it if the statement is false.
 - (a) X has zero mean, i.e., E[X] = 0. (3%)
 - (b) X and Y are orthogonal, i.e., E[XY] = 0 (3%)

- (c) X and Y are uncorrelated, i.e., E[XY] = E[X]E[Y]. (3%)
- (d) If $f_X(x) = \frac{1}{\sqrt{2\pi}} \exp[-x^2/2]$, then X and Y are independent. (3%)
- 7. (16%) Let the number of jobs, N, submitted to a computer in an hour follow the following distribution: $P(N=n) = p*(1-p)^n$, $n=0,1,2,\cdots$. Let the job execution times T_i 's be independent exponentially distributed random variables with a mean of $\frac{1}{\alpha}$ hours.
 - (a) Find the moment generating functions of N and T_i . (6%)
 - (b) Find α as a function of p so that the computer is not overly loaded. That is, the expected value of the total execution time of the jobs submitted to the computer in an hour is less than 1 hour. (4%)
 - (c) Find the pdf for the total execution time of the jobs submitted in an hour. (6%)
- 8. (16%) Let X_1, X_2, \dots, X_n be a random sample of a random variable that is uniformly distributed in the interval $[0, \theta]$. Consider the following estimator for θ :

$$\hat{\theta} = \max\{X_1, X_2, \cdots, X_n\}. \tag{1}$$

- (a) Find the pdf of $\hat{\theta}$. (4%)
- (b) Determine whether $\hat{\theta}$ is a unbiased, consistent estimator of θ . (8%)
- (c) Based on your answers in (a) and (b), find an unbiased estimator of θ . (4%)
- 9. (10%) Let X_i be iid discrete random variables, and $P(X_i = 0) = P(X_i = 2) = \frac{1}{2}$. Let $Y_{100} = \sum_{i=1}^{100} X_i$.
 - (a) Estimate $P[10 \le Y_{100} \le 12]$ using the central limit theorem. (5%)
 - (b) Calculate the exact value of $P[10 \le Y_{100} \le 12]$. What is the estimation error (percentage) when using the central limit theorem? (5%)

Table 1: Table of the Standard Normal Cumulative Distribution Function $\Phi(z)$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8 -2.7	0.0026 0.0035	$0.0025 \\ 0.0034$	0.0024 0.0033	0.0023 0.0032	0.0023 0.0031	0.0022 0.0030	$0.0021 \\ 0.0029$	0.0021 0.0028	$0.0020 \\ 0.0027$	$0.0019 \\ 0.0026$
-2.6	0.0033	0.0034 0.0045	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.5	0.0047	0.0043	0.0059	0.0043	0.0041	0.0040	0.0059	0.0051	0.0037	0.0036
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8 -1.7	0.0359 0.0446	$0.0351 \\ 0.0436$	0.0344 0.0427	0.0336 0.0418	0.0329 0.0409	0.0322 0.0401	0.0314 0.0392	0.0307 0.0384	$0.0301 \\ 0.0375$	$0.0294 \\ 0.0367$
-1.6	0.0548	0.0430	0.0526	0.0418	0.0505	0.0401	0.0392	0.0384	0.0375	0.0367
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9 -0.8	0.1841 0.2119	0.1814 0.2090	0.1788 0.2061	0.1762 0.2033	0.1736 0.2005	0.1711 0.1977	0.1685 0.1949	0.1660 0.1922	0.1635 0.1894	0.1611 0.1867
-0.8	0.2119	0.2389	0.2061 0.2358	0.2033	0.2005	0.1977	0.1949 0.2236	0.1922	0.1894 0.2177	0.1867
-0.6	0.2420	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2140
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4960	0.4920	0.4880 0.5120	0.4840	0.4801	0.4761	0.4721 0.5279	0.4681	0.4641
0.0	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5319 0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7 0.8	0.7580 0.7881	$0.7611 \\ 0.7910$	$0.7642 \\ 0.7939$	0.7673 0.7967	0.7704	0.7734 0.8023	$0.7764 \\ 0.8051$	0.7794 0.8078	0.7823 0.8106	0.7852 0.8133
0.8	0.7881	0.7910	0.7939	0.7907	0.7995 0.8264	0.8023	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5 1.6	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452 0.9554	0.9463 0.9564	0.9474 0.9573	0.9484 0.9582	0.9495 0.9591	0.9505 0.9599	0.9515 0.9608	0.9525 0.9616	$0.9535 \\ 0.9625$	$0.9545 \\ 0.9633$
1.8	0.9554	0.9649	0.9656	0.9664	0.9671	0.9599	0.9686	0.9693	0.9625	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918 0.9938	0.9920	0.9922	0.9925 0.9943	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.6	0.9938	0.9940 0.9955	0.9941 0.9956	0.9943	0.9945 0.9959	0.9946	0.9948 0.9961	0.9949	0.9963	0.9952 0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993 0.9995	0.9993 0.9995	0.9994 0.9995	0.9994	0.9994 0.9996	0.9994 0.9996	0.9994 0.9996	0.9995 0.9996	0.9995 0.9996	0.9995 0.9997
3.4	0.9995	0.9995 0.9997	0.9995 0.9997	0.9996	0.9996 0.9997	0.9996	0.9996 0.9997	0.9996	0.9996 0.9997	0.9997 0.9998
9.1	3.0001	3.0001	3.0001	3.0001	3.0001	3.0001	3.0001	3.0001	3.0001	3.0000