Example 85. Evaluate by Strokes theorem $\oint (yz \, dx + zx \, dy + xy \, dz)$ where C is the curve $x^2 + y^2 = 1$, $z = y^2$. (M.D.U., Dec 2009)

$$\phi = x^{2} + y^{2} - 1$$

$$\phi = 2x^{2} + 2y^{2}$$

$$= 2x^{2} + 2y^{2}$$

$$= 2x^{2} + 2y^{2}$$

$$= 4x^{2} + 4y^{2}$$

$$= 2(x^{2} + y^{2})$$

JXF = 0

. By stokes theorem & wax + w dy + wd2

Example 86. Using Stoke's theorem or otherwise, evaluate

$$\int_{C} [(2x - y) dx - yz^{2} dy - y^{2}z dz]$$

where c is the circle $x^2 + y^2 = 1$, corresponding to the surface of sphere of unit radius. (U.P., I Semester, Winter 2001)

W. K. 7 By Stoke's theorem

$$\vec{x} = (2x - y)\hat{i} - yz^2\hat{j} - y^2z\hat{k}$$

DXF = X

$$\hat{S} = \frac{70}{1701} = \frac{2x\hat{i} + 2y\hat{j}}{2\sqrt{x^2 + y^2}} = \frac{x\hat{i} + y\hat{j} + 2\hat{k}}{\sqrt{x^2 + y^2 + 2^2}}$$

$$ds = \frac{\partial x}{\partial x} \frac{\partial y}{\partial x}$$

$$\int_{-1}^{\infty} \hat{x} \cdot \hat{n} \frac{dx dy}{\hat{x} \cdot \hat{x}} = \int_{-1}^{\infty} \frac{dx dy}{\hat{x} \cdot \hat{x}}$$

$$\int_{-1}^{\infty} dx dy = \int_{-1}^{\infty} \frac{dx dy}{\hat{x} \cdot \hat{x}}$$

$$\int_{-1}^{\infty} dx \cdot y = \int_{-1}^{\infty} \frac{dx}{\hat{x} \cdot \hat{x}}$$

$$\int_{-1}^{\infty} dx \cdot y = \int_{-1}^{\infty} \frac{dx}{\hat{x} \cdot \hat{x}}$$

$$= 2\sqrt{1-x^2} dx$$

$$= 2\sqrt{1-x^2} dx$$

$$= 2\sqrt{1-x^2} dx$$

$$= 4 \cdot \int_{-1}^{\infty} (1-x^2) dx$$

$$= 4 \cdot \int_{-1}^{\infty} (1-x^2) dx$$

$$= 4 \cdot \int_{-1}^{\infty} (1-x^2) dx$$

$$= \frac{1}{2} \left(\frac{1^2 - x^2}{x^2 - x^2} + \alpha^2 \sin^2(\frac{x}{\alpha}) \right)$$

$$= \frac{1}{2} \left(\frac{x}{x^2 - x^2} + \alpha^2 \sin^2(\frac{x}{\alpha}) \right)$$

$$= 2 \cdot \left[\frac{x}{x^2 - x^2} + \alpha^2 \sin^2(\frac{x}{\alpha}) \right]$$

$$= 2 \cdot \left[\frac{x}{x^2 - x^2} + \alpha^2 \sin^2(\frac{x}{\alpha}) \right]$$

Example 87. Evaluate $\int_C \vec{F} \cdot d\vec{r}$, where $F(x, y, z) = -y^2 \hat{i} + x \hat{j} + z^2 \hat{k}$ and C is the curve of intersection of the plane y + z = 2 and the cylinder $x^2 + y^2 = 1$. (Gujarat, I sem. Jan. 2009)

$$\oint \vec{F} \cdot d\vec{r} = \iint \vec{\nabla} \times \vec{F} \cdot \hat{n} \frac{dzdy}{|\hat{n} \cdot \hat{k}|}$$

So we have

$$\hat{\gamma} = \frac{\hat{j} + \hat{k}}{\sqrt{1+i}} = \frac{1}{\sqrt{2}} (\hat{j} + \hat{k})$$

$$\sim \chi = \frac{1}{\sqrt{2}}$$

$$|\vec{y}| = |\vec{x}| = |\vec{y}| = |$$

$$(\overrightarrow{p} \times \overrightarrow{F}) \cdot \widehat{n} = \widehat{x} (1+2y) \cdot \widehat{y} + \widehat{x}$$

$$(\overrightarrow{p} \times \overrightarrow{F}) \cdot \widehat{n} = 1+2y$$

By Stoke'n Meonen

$$\begin{cases}
\frac{1}{\sqrt{2}} & \frac{1+2y}{\sqrt{2}} \\
\frac{1+2y}{\sqrt{2}}
\end{cases}$$

$$\frac{dxdy}{\sqrt{2}} = \iint_{S} (1+2y)dxdy$$

tis integral is we confirmed for the continuation of the continuat

$$= \iint \frac{1+2y}{\sqrt{2}} \frac{dx \, dy}{\frac{1}{\sqrt{2}}} = \iint (1+2y) \, dx \, dy = \int_0^{2\pi} \int_0^1 (1+2r\sin\theta) \, r \, d\theta \, dr$$

$$= \int_0^{2\pi} \int_0^1 (r+2r^2\sin\theta) \, d\theta \, dr$$

$$= \int_0^{2\pi} d\theta \left[\frac{r^2}{2} + \frac{2r^3}{3}\sin\theta \right]_0^1 = \int_0^{2\pi} \left[\frac{1}{2} + \frac{2}{3}\sin\theta \right] d\theta$$

$$= \left[\frac{\theta}{2} - \frac{2}{3}\cos\theta \right]_0^{2\pi} = \left(\pi - \frac{2}{3} - 0 + \frac{2}{3} \right) = \pi \quad \text{Ans.}$$

mple 88. Apply Stoke's Theorem to find the value of

$$\frac{1}{2} = \frac{2}{3} \cos \frac{1}{2} = \frac{2}{3} \cos \frac{1}$$

op = a
$$hy^{2} = g^{2} + ad^{2}$$

$$ad = a$$

$$hy^{2} = a^{2} + a$$

$$hy^{2}$$

$$hy^2 = \frac{\alpha^2}{4} + \frac{\alpha}{4}$$

$$hy^2 = \frac{\alpha^2}{4} + \frac{\alpha^2}{4}$$

$$hy^2 = \frac{2\alpha^2}{4} + \frac{\alpha^2}{4}$$

$$hy^2 = \frac{\alpha^2}{4} + \frac{\alpha^2}{4} + \frac{\alpha^2}{4}$$

$$hy^2 = \frac{\alpha^2}{4} + \frac{\alpha^2}{4} + \frac{\alpha^2}{4}$$

$$hy^2 = \frac{\alpha^2}{4} + \frac{\alpha^2}{4} + \frac{\alpha^2}{4} + \frac{\alpha^2}{4}$$

$$hy^2 = \frac{\alpha^2}{4} + \frac{\alpha^2$$

The circulation of vector F around a closed curve C is equal to the flux of the curve of the vector through the surface S bounded by the curve C.

$$\oint_c \overline{F} \cdot d\overline{r} = \iint_S curl \overrightarrow{F} \cdot \hat{n} d\overrightarrow{s} = \iint_S curl \overrightarrow{F} \cdot d\overrightarrow{S}$$

Problems:

Example 85. Evaluate by Strokes theorem $\oint_C (yz \, dx + zx \, dy + xy \, dz)$ where C is the curve $x^2 + y^2 = 1$, $z = y^2$. (M.D.U., Dec 2009)

Example 86. Using Stoke's theorem or otherwise, evaluate $\int_{c} [(2x-y) dx - yz^{2} dy - y^{2} z dz]$ where c is the circle $x^{2} + y^{2} = 1$, corresponding to the surface of sphere of unit radius. (U.P., I Semester, Winter 2001)

Example 87. Evaluate $\int_C \vec{F} \cdot d\vec{r}$, where $F(x, y, z) = -y^2 \hat{i} + x\hat{j} + z^2 \hat{k}$ and C is the curve of intersection of the plane y + z = 2 and the cylinder $x^2 + y^2 = 1$. (Gujarat, I sem. Jan. 2009)

Example 88. Apply Stoke's Theorem to find the value of

$$\int_{C} (y \, dx + z \, dy + x \, dz)$$

where c is the curve of intersection of $x^2 + y^2 + z^2 = a^2$ and x + z = a. (Nagpur, Summer 2001)

Example 89. Directly or by Stoke's Theorem, evaluate $\iint_s curl \ \overrightarrow{v} \cdot \hat{n} \ ds, \ \overrightarrow{v} = \hat{i}y + \hat{j}z + \hat{k}x$, s is the surface of the paraboloid $z = 1 - x^2 - y^2$, $z^3 \ge 0$ and \hat{n} is the unit vector normal to s.

Example 90. Use Stoke's Theorem to evaluate $\int_c \vec{v} \cdot d\vec{r}$, where $\vec{v} = y^2 \hat{i} + xy \hat{j} + xz \hat{k}$, and c is the bounding curve of the hemisphere $x^2 + y^2 + z^2 = 9$, z > 0, oriented in the positive direction.

Example 91. Evaluate the surface integral $\iint_S \text{curl } \vec{F} \cdot \hat{n} \, dS$ by transforming it into a line integral, S being that part of the surface of the paraboloid $z = 1 - x^2 - y^2$ for which $z \ge 0$ and $\vec{F} = y \, \hat{i} + z \, \hat{j} + x \, \hat{k}$. (K. University, Dec. 2008)

Example 92. Evaluate $\oint_C \overrightarrow{F} \cdot \overrightarrow{dr}$ by Stoke's Theorem, where $\overrightarrow{F} = y^2 \hat{i} + x^2 \hat{j} - (x + z) \hat{k}$ and C is the boundary of triangle with vertices at (0, 0, 0), (1, 0, 0) and (1, 1, 0). (U.P., I Semester, Winter 2000)

Example 93. Evaluate $\oint_C \overrightarrow{F} \cdot \overrightarrow{dr}$ by Stoke's Theorem, where $\overrightarrow{F} = (x^2 + y^2) \hat{i} - 2 xy \hat{j}$ and C is the boundary of the rectangle $x = \pm a$, y = 0 and y = b. (U.P., I Semester, Winter 2002)

Example 94. Apply Stoke's Theorem to calculate $\int_c 4y \, dx + 2z \, dy + 6y \, dz$ where c is the curve of intersection of $x^2 + y^2 + z^2 = 6z$ and z = x + 3.

Example 95. Verify Stoke's Theorem for the function $\overline{F} = z\hat{i} + x\hat{j} + y\hat{k}$, where C is the unit circle in xy-plane bounding the hemisphere $z = \sqrt{(1-x^2-y^2)}$. (U.P., I Semester Comp. 2002)

Example 96. Verify Stoke's theorem for the vector field $\overline{F} = (2x - y)\hat{i} - yz^2\hat{j} - y^2z\hat{k}$ over the upper half of the surface $x^2 + y^2 + z^2 = 1$ bounded by its projection on xy- plane. (Nagpur University, Summer 2001)

Example 97. Verify Stoke's Theorem for $\vec{F} = (x^2 + y - 4)\hat{i} + 3xy\hat{j} + (2xz + z^2)\hat{k}$ over the surface of hemisphere $x^2 + y^2 + z^2 = 16$ above the xy-plane.

Example 98. Verify Stoke's theorem for a vector field defined by $\overrightarrow{F} = (x^2 - y^2) \hat{i} + 2xy \hat{j}$ in the rectangular in xy-plane bounded by lines x = 0, x = a, y = 0, y = b. (Nagpur University, Summer 2000)

Example 99. Verify Stoke's Theorem for the function

 $\overrightarrow{F}=x^2\widehat{i}-xy\widehat{j}$ integrated round the square in the plane z=0 and bounded by the lines $x=0,\ y=0,\ x=a,\ y=a.$

Example 100. Verify Stoke's Theorem for $\overrightarrow{F} = (x + y) \ \hat{i} + (2x - z) \ \hat{j} + (y + z) \ \hat{k}$ for the surface of a triangular lamina with vertices (2, 0, 0), (0, 3, 0) and (0, 0, 6). (Nagpur University 2004, K. U. Dec. 2009, 2008, A.M.I.E.T.E., Summer 2000)

Example 101. Verify Stoke's Theorem for

$$\vec{F} = (y - z + 2) \hat{i} + (yz + 4) \hat{j} - (xz) \hat{k}$$

 $\overrightarrow{F}=(y-z+2)\ \hat{i}+(yz+4)\ \hat{j}-(xz)\ \hat{k}$ over the surface of a cube $x=0,\ y=0,\ z=0,\ x=2,\ y=2,\ z=2$ above the XOY plane (open the bottom).

Gaussian Theorem:

$$\iiint_S \overrightarrow{F} \cdot \hat{n} \, ds = \iiint_V div \, \overrightarrow{F} dw$$

Example 102. State Gauss's Divergence theorem $\iint_S \overrightarrow{F} \cdot \hat{n} ds = \iiint_S Div \overrightarrow{F} dv$ where S is the surface of the sphere $x^2 + y^2 + z^2 = 16$ and $\overrightarrow{F} = 3x \hat{i} + 4y \hat{j} + 5z \hat{k}$.

Example 103. Evaluate $\iint_S \vec{F} \cdot \hat{n} \, ds$ where $\vec{F} = 4xz\,\hat{i} - y^2\,\hat{j} + yz\,\hat{k}$ and S is the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1. (U.P., Ist Semester, 2009, Nagpur University, Winter 2003)

Example 104. Find $\iint \vec{F} \cdot \hat{n} \cdot ds$, where $\vec{F} = (2x + 3z) \hat{i} - (xz + y) \hat{j} + (y^2 + 2z) \hat{k}$ and S is the surface of the sphere having centre (3, -1, 2) and radius 3. (AMIETE, Dec. 2010, U.P., I Semester, Winter 2005, 2000)

Example 105. Use Divergence Theorem to evaluate $\iint_S \vec{A} \cdot \vec{ds}$, where $\overrightarrow{A} = x^3 \hat{i} + y^3 \hat{j} + z^3 \hat{k}$ and S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$. (AMIETE, Dec. 2009)

Example 106. Use divergence Theorem to show that $\iint_{S} \nabla (x^2 + y^2 + z^2) \, d\overrightarrow{s} = 6 V$ where S is any closed surface enclosing volume V. (U.P., I Semester, Winter 2002)

Example 107. Evaluate $\iint_S (y^2 z^2 \hat{i} + z^2 x^2 \hat{j} + z^2 y^2 \hat{k}) \hat{n} dS$, where S is the part of the sphere $x^2 + y^2 + z^2 = 1$ above the xy-plane and bounded by this plane.

Example 108. Use Divergence Theorem to evaluate $\iint_S \vec{F} \cdot d\vec{S}$ where $\vec{F} = 4 x\hat{i} - 2 y^2 \hat{j} + z^2 \hat{k}$ and S is the surface bounding the region $x^2 + y^2 = 4$, z = 0 and z = 3. (A.M.I.E.T.E., Summer 2003, 2001)

Example 109. Apply the Divergence Theorem to compute $\iint \vec{u} \cdot \hat{n} \, ds$, where s is the surface of the cylinder $x^2 + y^2 = a^2$ bounded by the planes z = 0, z = b and where $u = \hat{i}x - \hat{j}y + \hat{k}z$.

Example 110. Apply Divergence Theorem to evaluate $\iiint_V \vec{F} \cdot \hat{n} \, ds$, where $\vec{F} = 4x^3\hat{i} - x^2y\,\hat{j} + x^2z\hat{k}$ and S is the surface of the cylinder $x^2 + y^2 = a^2$ bounded by the planes z = 0 and z = b. (U.P. Ist Semester, Dec. 2006)

Example 111. Evaluate surface integral $\iint_{F} \cdot \hat{n} ds$, where $\stackrel{\rightarrow}{F} = (x^2 + y^2 + z^2) (\hat{i} + \hat{j} + \hat{k})$, S is the surface of the tetrahedron x = 0, y = 0, z = 0, x + y + z = 2 and n is the unit normal in the outward direction to the closed surface S.

Example 112. Use the Divergence Theorem to evaluate

$$\iint_{S} (x \, dy \, dz + y \, dz \, dx + z \, dx \, dy)$$

where S is the portion of the plane x + 2y + 3z = 6 which lies in the first Octant. (U.P., I Semester, Winter 2003)

Example 113. Use Divergence Theorem to evaluate : $\iint (x \, dy \, dz + y \, dz \, dx + z \, dx \, dy)$ over the surface of a sphere radius a. (K. University, Dec. 2009)

Example 114. Using the divergence theorem, evaluate the surface integral $\iint_{S} (yz \, dy \, dz + zx \, dz \, dx + xy \, dy \, dx) \text{ where } S : x^2 + y^2 + z^2 = 4.$

(AMIETE, Dec. 2010, UP, I Sem., Dec 2008)

Example 115. Evaluate $\iint_S xz^2 dy dz + (x^2y - z^3) dz dx + (2xy + y^2z) dx dy$ where S is the surface of hemispherical region bounded by

$$z = \sqrt{a^2 - x^2 - y^2}$$
 and $z = 0$.

Example 116. Evaluate $\iint_S \vec{F} \cdot \hat{n} \, ds$ over the entire surface of the region above the xy-plane bounded by the cone $z^2 = x^2 + y^2$ and the plane z = 4, if $F = 4xz\hat{i} + xyz^2\hat{j} + 3z\hat{k}$.

Example 117. The vector field $\overrightarrow{F} = x^2 \hat{i} + z \hat{j} + yz \hat{k}$ is defined over the volume of the cuboid given by $0 \le x \le a$, $0 \le y \le b$, $0 \le z \le c$, enclosing the surface S. Evaluate the surface integral $\iint_{c} \overrightarrow{F} \cdot \overrightarrow{ds}$ (U.P., I Semester, Winter 2001)

Example 118. Verify the divergence Theorem for the function $\overline{F} = 2 x^2 y i - y^2 j + 4 x z^2 k$ taken over the region in the first octant bounded by $y^2 + z^2 = 9$ and x = 2.

Example 119. Verify the Gauss divergence Theorem for

$$\stackrel{
ightharpoonup}{F}=(x^2-yz) \; \hat{i}\; +(y^2-zx) \; \hat{j}\; +(z^2-xy) \; \hat{k}\; taken\; over\; the\; rectangular\; parallelopiped \ 0\leq x\leq a,\; 0\leq y\leq b,\; 0\leq z\leq c.$$
 (U.P., I Semester, Compartment 2002)

Example 120. Verify Divergence Theorem, given that $\hat{F} = 4xz\hat{i} - y^2\hat{j} + yz\hat{k}$ and S is the surface of the cube bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.