Une **liaison chimique** est une **interaction** entre plusieurs entités (atomes, ions ou molécules), à une distance permettant la stabilisation du système.

- I- Des atomes aux entités physico-chimiques stables
 - 1-Liaison covalente (C'est toujours du plus qui attire du moins)
 - 2-Interaction ionique (Commencer par celle là!)
 - 3-Interaction dipolaires
 - 4-Liaisons hydrogènes
- II- Les liaisons chimiques à l'origine de la dissolution
- III- Création et rupture de liaisons chimiques dans les transformations chimiques

Prérequis :

- Schéma de Lewis
- Configuration électronique d'un atome
- Tableau périodique
- Electronégativité

1) Liaisons covalentes

2) Liaisons ioniques

3) Interactions dipolaires

L'électronégativité des éléments de la classification périodique.

4) Liaisons hydrogènes (ponts hydrogènes)

Figure 1 Melting and boiling points of molecules similar to water as a function of their molecular mass. All of them follow the same linear trend except for water, for which the expected values are shown in open red circles and the real values are indicated in blue squares.

Structure of molecules in water

4) Liaisons hydrogènes (ponts hydrogènes)

Éthane: $CH_3 - CH_3$

Éthanol: CH3—CH2—OH

4) Liaisons hydrogènes (ponts hydrogènes)

Figure 1 Melting and boiling points of molecules similar to water as a function of their molecular mass. All of them follow the same linear trend except for water, for which the expected values are shown in open red circles and the real values are indicated in blue squares.

II- Les liaisons chimiques à l'origine de la dissolution

1-Description de la dissolution du sel dans l'eau

II- Les liaisons chimiques à l'origine de la dissolution

2- Application : extraction liquide/liquide de l'acide propanoïque

$$AH_{(aq)} = AH_{(org)}$$

$$K(T) = \frac{[AH]_{org}^{eq}}{[AH]_{aq}^{eq}}$$

Solution aqueuse d'acide propanoïque 1,0 mol/L :

Couleurs du bleu	forme acide	zone de virage 1	forme acide	zone de virage 2	forme basique
de thymol	rouge	pH 1.2 à pH 2.8	jaune	pH 8.0 à pH 9.6	bleu

II- Les liaisons chimiques à l'origine de la dissolution

- 2- Application: extraction liquide/liquide
 - Introduire $V_{aq}=25,0mL$ de la solution d'acide propanoïque (éprouvette graduée), puis $V_{org}=50,0mL$ d'éther diéthylique dans une ampoule à décanter. Agiter vigoureusement 5minutes, en dégazant. - Laisser reposer

 - Séparer la phase aqueuse de la phase organique (qui surnage, éther moins dense).
 - Doser l'acide propanoïque contenu dans la phase aqueuse par de la soude (C = 0,500 mol/L) bleu de thymol
 - -Déduire à la concentration en phase organique puis à la constante de partage (pas niveau lvcée)
 - -Calculer le rendement de l'extraction:

$$\eta = \frac{n_{org}}{n_{total}}$$

Notes : Eprouvette graduée: pas besoin d'être précis car miscibilité partielle des 2 phases On peut commencer à mettre des gants car acide 1mol/L.

Travailler le lien entre l'acide propanoique et le solvant. Quels types d'interactions peut-on imaginer?

III- Création et rupture de liaisons chimiques dans les transformations chimiques Exemple de la réaction d'estérification

$$R_1$$
— C + HO — R_2 = R_1 — C + H_2O

III- Création et rupture de liaisons chimiques dans les transformations chimiques

Exemple de la réaction d'estérification

$$R \stackrel{\overline{O}}{\longrightarrow} H \xrightarrow{\overline{O}} R - C \stackrel{\overline{O}}{\longrightarrow} H$$

	Nom	T° _{eb} / °C	$\epsilon_{\rm r}$	$_{^{30}\mathrm{C.m}}^{\mu/10^{\text{-}}}$	d	Inconvenients majeurs
	Acétate d'éthyle	77	6,02	6,1	0,90	40,
	Acide acétique	118	6,2	5,6	1,05	
<u></u>	Benzène	80	2,3	0	0,88	Myélotoxique et cancérigène
	Cyclohexane	80	2,0	0	0,77	Effet narcotique
0	Dichlorométhane	40	8,9	5,3	1,34	Peu toxique Dangereux pour les yeux
	Diéthyloxyde	35	4,3	3,8	0,71	inflammable
	Eau	100	78,3	5,9	1,00	
	Ethanol	78	24,6	5,8	0,79	1000000
(2)	Hexane	69	1,9	0	0,66	Effet narcotique
9	Méthanol	65	32,7	5,7	0,79	Toxique Troubles graves de la vision
<u></u>	Pentane	36	1,8	0	0,63	Effet narcotique Inflammable
No.	Propanone	56	20,7	9,0	0,79	Très inflammable
<u></u>	Tétrachlorure de carbone	77	2,2	0	1,59	Troubles hépatorénaux Risque de cirrhose
	Toluène	110 M2 SPC p	2,4 répa agn	1,0 eg physique	0,86	Narcotique puissant.Contient edes traces de benzène