DAPE2000: Matematikk 2000 med statistikk Eksamen 2020 Høst

Kandidatnr: 574 Antall sider: 8

10. Desember 2020

Oppgave 1)

Siden summen av alle sannsynlighetene må bli 1 så er det enkelt å se her at P(X=2)=0.2.

Kandidatnr: 574

a)

$$P(0 < X < 2) = P(X = 1) = 0.07$$

b)

Per definisjon på betinget sannsynlighet så har vi at

$$P(X \le 2|X > 1) = \frac{P(X \le 2 \cap X > 1)}{P(X > 1)}$$

Siden $P(X \le 2 \cap X > 1) = P(X > 1) = P(X = 2)$. Så gir det oss at $P(X \le 2|X > 1) = 1$.

 $\mathbf{c})$

Per definisjon av forventningsverdi

$$E(X) = \mu_X = \sum_{i=0}^{\infty} x_i P(X = x_i) = 1 \cdot 0.07 + 2 \cdot 0.2 = 0.47$$

d)

Per definisjon av standardavviket har vi at

$$Var(X) = E(X^2) - \mu_X^2$$

Hvor

$$E(X^2) = \sum_{i=0}^{\infty} x_i^2 P(X = x_i) = 1 \cdot 0.07 + 4 \cdot 0.2 = 0.87$$

Dette gir at $\text{Var}(X) = \sigma_X^2 = 0.6491$ som gir igjen at standardavviket til X er $\sigma_X \approx 0.81$.

e)

Fra definisjon av forventningsverdi så har vi at

$$E\left(g\left(X\right)\right) = \sum_{x \in X} g(x) P\left(X = x\right)$$

La $g(X) = a + bX + cX^2$ vi har fra lineæriteten til summen at

$$\begin{split} \sum_{x \in X} \left(a + bx + cx^2 \right) P\left(X = x \right) &= \sum_{x \in X} aP\left(X = x \right) + \sum_{x \in X} bx P\left(X = x \right) + \sum_{x \in X} cx^2 P\left(X = x \right) \\ &= a \sum_{x \in X} P\left(X = x \right) + b \sum_{x \in X}^{\infty} xP\left(X = x \right) + c \sum_{x \in X} x^2 P\left(X = x \right) \end{split}$$

Kandidatnr: 574

Videre har vi også at $\sum_{x \in X} P(X = x) = 1$. Itillegg til at $E(X) = \sum_{x \in X} x P(X = x)$ og $E(X^2) = \sum_{x \in X} x^2 P(X = x)$ som tilslutt gir oss:

$$E(a + bX + cX^{2}) = a + bE(X) + cE(X^{2})$$

Oppgave 2)

 $\mathbf{a})$

La X være antall fotoner som blir produsert. Vi har at $X \sim Poisson(\lambda)$ hvor $\lambda = 0.2 (\text{ns})^{-1}$. Siden X er poissonfordelt har vi også at sannsynlighetstettheten til X er gitt ved

$$P(X = x) = \frac{(\lambda t)^x}{x!}e^{-\lambda t}$$

der $\lambda t = 10$. Vi skal finne $P(X > 12) = 1 - P(X \le 12)$. Slår vi opp i tabellen¹ får vi at $P(X \le 12) = 0.7916$. Dette gir oss P(X > 12) = 0.2084.

b)

For en poissonfordeling har vi at E(X) = Var(X). Dette gir at $\sigma = \sqrt{\lambda t}$ der $\lambda = 0.2 (\text{ns})^{-1}$ og t = 50 ns. Så, standardavviket til X iløpet av 50 ns er $\sigma \approx 3.2$.

 $^{^1 \}rm Institutt$ for matematiske fag NTNU, "Tabeller og formler i statistikk", 6. opplag 2011, side 20.

 $\mathbf{c})$

Ventetiden T er eksponentialfordelt med $\lambda = 0.2 (\mathrm{ns})^{-1}$ og har derfor sannsynlighetstettheten

Kandidatnr: 574

$$P\left(T=t\right) = \lambda e^{-\lambda x}$$

Vi skal nå finne $P(T > 10) = 1 - P(T \le 10)$. Vi har da at

$$P(T \le 10) = \lambda \int_0^{10} e^{-\lambda t} dt = -e^{-\lambda t} \Big|_0^{10} = 1 - e^{-2}$$

Slik at $P(T > 10) = e^{-2} \approx 0.1353$.

d)

Vi har at siden λ er ukjent så vil også både forventningsverdien og variansen av en poissonfordeling også være ukjent. Siden $n \geq 30$ kan vi per sentralgrenseteoremet anta at målingene er normalfordelt. Vi bruker derfor en T-interval med de oppgitte verdiene for $\bar{x}=8.94,\,s=3.27$ og n=30. Videre har vi $\alpha=0.05$ og derfor fra tabellen² at $t_{\alpha/2}^{n-1}=2.045$. Konfidensintervallet vårt er derfor:

$$\left[\bar{x} - t_{\alpha/2}^{n-1} \frac{s}{\sqrt{n}}, \bar{x} + t_{\alpha/2}^{n-1} \frac{s}{\sqrt{n}}\right] = [7.7191, 10.1609]$$

Videre har vi at estimatet $\hat{\lambda} = X/t$ må være forventningsrett. Vi vet også at for en poissonfordeling så er $E(X) = \lambda t$ slik at $\lambda = E(X)t$. Siden vi har gjennomsnittet \bar{x} så kan vi estimere $\hat{\lambda}$ til å være $\hat{\lambda} = \bar{x}/t = 0.1788 (ns)^{-1} (t = 50ns)$.

 $^{^2 \}rm Institutt$ for matematiske fag NTNU, "Tabeller og formler i statistikk", 6. opplag 2011, side 4.

 $\mathbf{e})$

Vi gjennomfører hypotese-testen med en T-test med følgende hypoteser:

$$H_0: \mu \ge 10 \tag{1}$$

Kandidatnr: 574

$$H_1: \mu < 10$$
 (2)

Vi har fra resultatene av \bar{x} og s at

$$t = \frac{\bar{x} - 10}{s / \sqrt{30}} = -1.775$$

Fra tabellen³ har vi at $t_{\alpha}^{n-1}=2.462$. Siden $t>-t_{\alpha}^{n-1}$ så har vi ikke tilstrekkelig med grunnlag for å forkaste H_0 . Altså, forskeren har ikke tilstrekkelig bevis for at forventet antall fotoner μ som apparatet produserer i løpet av 50 nanosekunder er mindre enn 10.

Oppgave 3)

 \mathbf{a}

Egenverdiene til matrisen A er løsningene til den karakteristiske likningen $\det(A - \lambda I) = \lambda^2 - 5\lambda = \lambda(\lambda - 5) = 0$. Egenverdiene til A er derfor $\lambda_1 = 0$ og $\lambda_2 = 5$.

Egenvektorene til A finner vi ved å løse $A-\lambda I=0$ for $\lambda=\lambda_1$ og $\lambda=\lambda_2$.

La $\lambda = \lambda_1$ da har vi at

$$\begin{pmatrix} 4 & -2 \\ -2 & 1 \end{pmatrix} \sim \begin{pmatrix} 2 & -1 \\ 0 & 0 \end{pmatrix}$$

som gir oss egenvektoren $\vec{v}_1 = \begin{pmatrix} 1 & 2 \end{pmatrix}^T$.

Tilsvarende for $\lambda = \lambda_2$ har vi at

$$\begin{pmatrix} -1 & -2 \\ -2 & -4 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}$$

som gir oss egenvektoren $\vec{v}_2 = \begin{pmatrix} -2 & 1 \end{pmatrix}^T$

 $^{^3} Institutt for matematiske fag NTNU, "Tabeller og formler i statistikk", 6. opplag 2011, side 4.$

b)

Med resultatene vi har fra forrige oppgave har vi at matrisen D er gitt ved

Kandidatnr: 574

$$D = \begin{pmatrix} 0 & 0 \\ 0 & 5 \end{pmatrix}$$

og matrisen P

$$P = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} \implies P^{-1} = \frac{1}{5} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$$

Vi kan derfor uttrykke A som $A = PDP^{-1}$.

 $\mathbf{c})$

La $\vec{x}(t)=(x(t),y(t))$. Da har vi at systemet av differensiallikninger oppgitt i oppgaven kan uttrykkes som $\vec{x}'(t)=A\vec{x}(t)$. Dette har da den generelle løsningen

$$\vec{x}(t) = c_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + c_2 \begin{pmatrix} -2 \\ 1 \end{pmatrix} e^{5t}$$

Ved initialbetingelsen $\vec{x}(0) = (0,1)$ har vi at den partikulære løsningen $\vec{x}_p(t)$ er $\vec{x}(t)$ gitt ovenfor der c_1 og c_2 er

$$\begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = P^{-1} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

Den partikulære løsningen for differensiallikningen som tilfredstiller initialbetingelsen er derfor

$$\vec{x}_p(t) = \frac{2}{5} \begin{pmatrix} 1\\2 \end{pmatrix} + \frac{1}{5} \begin{pmatrix} -2\\1 \end{pmatrix} e^{5t}$$

Oppgave 4)

a)

Siden $\ln(1) = 0$ så kan vi se bort ifra første leddet i taylor-rekken. Det vil si at vi evaluerer summen mellom 1 og ∞ for denne rekken. Videre har vi at

Kandidatnr: 574

$$f^{(1)}(x) = \frac{1}{x} \implies f^{(1)}(1) = 1$$

$$f^{(2)}(x) = -\frac{1}{x^2} \implies f^{(2)}(1) = -1$$

$$f^{(3)}(x) = \frac{2}{x^3} \implies f^{(3)}(1) = 2$$

$$f^{(4)}(x) = -\frac{6}{x^4} \implies f^{(4)}(1) = -6$$

$$\vdots$$

$$f^{(n)}(x) = (-1)^{n+1} \frac{1}{x^n} \implies f^{(n)}(1) = (-1)^{n+1} (n-1)!$$

Dette gir at

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} (n-1)!}{n!} (x-1)^n = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (x-1)^n$$

b)

Konvergensradien R for an potensrekke gitt som $\sum b_n(x-c)^n$ er gitt ved

$$R \equiv \lim_{n \to \infty} \left| \frac{b_n}{b_{n+1}} \right|$$

Konvergensradien R til rekken oppgitt er derfor

$$R = \lim_{n \to \infty} \left| \frac{(-1)^{n+1}}{n} \cdot \frac{n+1}{(-1)(-1)^{n+1}} \right|$$
$$= \lim_{n \to \infty} \frac{n+1}{n}$$
$$= \lim_{n \to \infty} 1 + \frac{1}{n} = 1$$

Side 6 av 8

Siden R=1 så vet vi at rekken konvergerer absolutt når |x-c| < R med andre ord c-R < x < c+R. Med c=1. Så da har vi at rekken oppgitt konvergerer absolutt når 0 < x < 2.

Kandidatnr: 574

c)

Hvis vi nå lar x=2 så har vi at

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (x-1)^n = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (1)^n = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$

Her kan vi sjekke konvergens til rekken ved å bruke Dirichlet's test. La $b_n = (-1)^{n+1}$ Da har vi at $\left|\sum_{n=1}^N b_n\right| \le 1$ for alle N. La videre $a_n = 1/n$ da har vi at $a_n \ge 0$ for alle $n \in \mathbb{N}$. Vi har også at $a_{n+1} \le a_n$ og at $\lim_{n \to \infty} a_n = 0$. Siden alle kravene er tilfredstilt så sier Dirichlet's test så konvergerer rekken $\sum_{n=1}^{\infty} b_n a_n$ konvergerer. Altså rekken

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (x-1)^n$$

konvergerer når x=2.

d)

Vi har fra den geometriske rekken at

$$\frac{1}{1-r} = \sum_{n=0}^{\infty} r^n$$

når |r| < 1. La nå r = 1 - x da har vi at

$$\frac{1}{x} = \sum_{n=0}^{\infty} (1-x)^n$$

Integrerer vi på begge sider får vi

$$\ln x = \sum_{n=0}^{\infty} \frac{-1}{n+1} (1-x)^{n+1}$$

Videre har vi at $(1-x)^{n+1} = (-1)^{n+1}(x-1)^{n+1}$ slik at vi får

$$\ln x = \sum_{n=0}^{\infty} \frac{(-1)^{n+2}}{n+1} (x-1)^{n+1}$$

Kandidatnr: 574

Lar vi nå summen gå fra n=1 istedenfor n=0 så har vi at

$$\ln(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (x-1)^n$$

Oppgave 5)

La $\vec{r}=\begin{pmatrix} x & y \end{pmatrix}^T$ da vil tangenten til nivåkurven $g(\vec{r})=9$ i det oppgitte punktet $\vec{r}_0=\begin{pmatrix} 2 & 1 \end{pmatrix}^T$ være gitt ved

$$\nabla g(\vec{r_0}) \cdot \vec{r} = \nabla g(\vec{r}) \cdot \vec{r_0}$$

Med

$$\frac{\partial g}{\partial x} = 4x$$
 og $\frac{\partial g}{\partial y} = 2y$

Så har vi at $\nabla g(\vec{r_0}) = \begin{pmatrix} 8 & 2 \end{pmatrix}^T$. Dette gir oss tangenten 8x + 2y = 18 som kan forenkles til 4x + y = 9.