

مثال: فرض کنید در یک مربع $n \times n$ معرف تعداد مسیرهای بالا – راست از راس پایینی سمت چپ A به سمت بالایی سمت راست B باشد به طوری که این مسیرها هر گز بالای قطر A نروند. ثابت کنید:

$$C_n = \sum_{m=0}^{n-1} C_m . C_{n_m 1}$$

 $\mathbf{C}_{(m,m)}$ این مساله $\mathbf{C}_{(m,m)}$ این مساله $\mathbf{C}_{(m,m)}$ این مساله $\mathbf{C}_{(m,m)}$ این مساله $\mathbf{C}_{(m,m)}$ این صورت ادامه مسیر از نقطه $\mathbf{C}_{(m+1,m)}$ تا $\mathbf{C}_{(n,n-1)}$ است و هر گز بالای خط $\mathbf{C}_{(m,m)}$ نمی رود چون $\mathbf{C}_{(m,m)}$ آخرین برخورد با $\mathbf{C}_{(m,n-1)}$ است. حال $\mathbf{C}_{(m,m)}$ قطر مربعی به طول و عرض $\mathbf{C}_{(m+1)}$ $\mathbf{C}_{(m+1)}$ است. پس، از $\mathbf{C}_{(m+1)}$ $\mathbf{C}_{(m+1)}$ مسیر وجود دارد و از $\mathbf{C}_{(m+1)}$ نیز $\mathbf{C}_{(m+1)}$ مسیر موجود است، پس در این حالت بنا بر اصل ضرب $\mathbf{C}_{(m+1)}$ مسیر وجود دارد. در حالت کلی که نقطه $\mathbf{C}_{(m+1)}$ میتواند هرجا روی $\mathbf{C}_{(m+1)}$ به جز خود $\mathbf{C}_{(m+1)}$ با این مسیرها از $\mathbf{C}_{(m+1)}$ با بر اصل جمع و با فرض $\mathbf{C}_{(m+1)}$ برابر است با :

 $C_{\rm n} = \sum_{m=0}^{n-1} C_{\rm m} . C_{\rm n _ m _ 1}$

تبصره: با استفاده از تابع مولد و با فرض $C_0=1$ و n یک عدد صحیح مثبت , مقدار c_n را بدست می آید :

$$C_n = \frac{1}{n+1} \binom{7n}{n}$$

ا می نویسیم: C_n را می نویسیم:

$$(f(x))^2 = (\sum_{i=0}^{\infty} C_i.x^i).(\sum_{i=0}^{\infty} C_i.x^i)$$

$$(f(x))^{2} = \sum_{i=0}^{\infty} (C_{0}C_{i} + C_{1}C_{i-1} + \dots + C_{i}C_{0})x^{i}$$
$$= \sum_{i=0}^{\infty} C_{i+1}x^{i}$$

دو طرف را به توان ۲ میبریم:

$$C_n = \sum_{m=0}^{n-1} C_m C_{n-m-1}$$
 از تبجه می شود:

برای اینک توان i+1 ، X بشود ، دو طرف را در X ضرب می کنیم:

$$x(f(x))^2 = \sum_{i=0}^{\infty} C_{i+1} x^{i+1} = \sum_{i=1}^{\infty} C_i x^i$$

$$= \sum_{i=0}^{\infty} C_i x^i - C_0 = f(x) - 1$$

$$xf^{2}(x) - f(x) + 1 = 0$$

که معادله رو به رو نتیجه می شود:

$$f(0)=C_0=1$$
 جواب های معادله به صورت: $x=rac{1\pm\sqrt{1-4x}}{2x}$ است که با فرض $x=rac{1\pm\sqrt{1-4x}}{2x}$ است. جواب $x=\frac{1-\sqrt{1-4x}}{2x}$ است. با استفاده از بست دو جمله ای $x=\sum_{r=0}^{\infty}\binom{n}{r}y^r$ که در آن $x=\frac{1-\sqrt{1-4x}}{2x}$ با استفاده از بست دو جمله ای $x=\frac{1\pm\sqrt{1-4x}}{2x}$ که در آن $x=\frac{1-\sqrt{1-4x}}{2x}$ با استفاده ای $x=\frac{1-\sqrt{1-4x}}{2x}$ با است داریم:

$$f(x) = \frac{1}{2x} \left\{ 1 - \left(1 - \frac{1}{2} \cdot 4x - \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{4^2 x^2}{2!} - \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{4^3 x^3}{3!} - \cdots \right) \right\}$$

$$= \frac{1}{2x} \left\{ \frac{1}{2} \cdot 4x + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{4^2 x^2}{2!} + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{4^3 x^3}{3!} + \cdots \right\}$$

$$= 1 + \frac{1}{2} \cdot \frac{4x}{2!} + \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{4^2 x^2}{3!} + \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{5}{2} \cdot \frac{4^3 x^3}{4!} + \cdots$$

$$C_n = \frac{1.3.5...(2n-1)}{2^n(n+1)!} 4^n = \frac{2^n}{(n+1)!} 1.3.5...(2n-1)$$

پس برای C_n داریم:

$$1.3.5...(2n-1) = \frac{1.2.3.4...(2n-1)(2n)}{2.4.6...(2n)}$$
$$= \frac{(2n)!}{2^n(1.2.3...n)} = \frac{(2n)!}{2^n n!}$$

$$n \ge 1$$

$$C_n = \frac{2^n}{(n+1)!} \times \frac{(2n)!}{2^n n!} = \frac{1}{(n+1)} \times \frac{(2n)!}{n! \cdot n!}$$

پایان