Dennis Mao, Julian Rodemann, Michael Kobl

Besprechung 04.07.2022/06.07.2022

Aufgabe 1

Erstellen Sie eine schematische Übersicht der verschiedenen Konvergenzarten, die Sie in der Vorlesung kennengelernt haben. Welche Konvergenz folgt aus welcher? (Tipp: Folie 417 aus der Vorlesung)

Aufgabe 2

Gegeben seien Zufallsvariablen $X_n \sim \operatorname{Exp}(\lambda_n), \ n \in \mathbb{N} \text{ mit } \lambda_n \xrightarrow{n \to \infty} \lambda, \text{ wobei } \lambda_n, \lambda > 0.$ Zeigen Sie, dass

$$X_n \xrightarrow{\mathcal{D}} X$$

für eine Zufallsvariable $X \sim \text{Exp}(\lambda)$.

Aufgabe 3

Es sei X_n , $n \in \mathbb{N}$ eine Folge von Zufallsvariablen mit $\mathbb{E}(|X_n|) < \infty \ \forall \ n \in \mathbb{N}$ und sei X eine weitere Zufallsvariable.

a) Zeigen Sie:

$$X_n \xrightarrow{1} X \quad \Rightarrow \quad \mathbb{E}(X_n) \to \mathbb{E}(X).$$

Hinweis: Jensen'sche Ungleichung.

b) Es seien nun $X_n \sim \text{Bin}(1,\frac{1}{n})$ und X sei definiert durch

$$X: \Omega \to \{-1, 1\}$$
 mit $P(X = -1) = P(X = 1) = \frac{1}{2}$

mit X_n, X stu. für alle $n \in \mathbb{N}$.

Zeigen Sie, dass in diesem Fall die Rückrichtung nicht gilt, d.h.

$$\mathbb{E}(X_n) \to \mathbb{E}(X) \quad \not\Rightarrow \quad X_n \stackrel{1}{\to} X.$$