과제 Review

3.1 (예 1.1 계속) 포도수확량 자료

- 3.1.1 단순선형희귀모형에 대한 분산분석표와 R^2 의 값을 구하라.
- $3.1.2 \hat{\beta}_0$ 과 $\hat{\beta}_1$ 의 표준오차값을 구하라.
- 3.1.3 β₀와 β₁의 95% 신뢰구간을 구하라.
- 3.1.4 6월의 포도 열매개수가 100개로 나타났다. 가을철 포도의 수확량
- 의 기대값과 예측값의 95% 신뢰구간을 구하라.
- $3.1.5 \sigma^2$ 의 95% 신뢰구간을 구하라.

32

과제 Review

 $\hat{\beta}_1 = \ 0.05138 \qquad \qquad \hat{\beta}_0 = \ -1.0279$

SSE = 1.3254 $\hat{\sigma}^2 = MSE = 0.13254$ SSR = (0.05138)(129.564) = 6.6570

Source	df	SS	MS	F^*
Regression	1	6.6571	6.6571	50.2265
Residual	10	1.3254	0.1325	
Total	11	7.9825		

 $R^2 = \frac{6.6571}{7.9825} = 0.8340$

3.1.2
$$s.e.(\hat{\beta}_1) = \sqrt{MSE/S_{xx}} = \sqrt{0.13254/2521.64} = \sqrt{.00005256} = .007250$$

 $s.e.(\hat{\beta}_0) = \sqrt{MSE\left(\frac{1}{n} + \frac{\overline{x}^2}{S_{xx}}\right)} = \sqrt{.13254\left(\frac{1}{12} + \frac{107.1^2}{2521.64}\right)} = \sqrt{0.6139} = 0.7835$

3.1.3
$$\hat{\beta}_1 \pm t (.025, 10)$$
 s.e. $(\hat{\beta}_1) = 0.0514 \pm 2.228 \times 0.007250 = 0.0514 \pm 0.0162$
 $\Rightarrow (0.352, 0.676)$

$$\begin{split} \hat{\beta}_0 \, \pm \, t \, (.025, 10) \; \; s.e. (\hat{\beta}_0) = \; \; -1.0279 \pm 2.228 \times 0.7835 = \; \; -1.0279 \pm 1.7456 \\ \\ \Rightarrow \; \; (-2.7735, 0.7177) \end{split}$$

과제 Review

$$\hat{y}_0 \pm t (.025, 10) \sqrt{\mathit{MSE} \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right)} = 4.1102 \pm 2.228 \times \sqrt{.13254 \left(\frac{1}{12} + \frac{(100 - 107.1)^2}{2521.64} \right)}$$

$$= 4.1102 \pm 0.261 \qquad \Rightarrow \quad (3.849, 4.371)$$

$$\hat{y}_0 \pm t (.025, 10) \sqrt{\textit{MSE} \left(1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}\right)} = 4.1102 \pm 2.228 \times \sqrt{.13254 \left(1 + \frac{1}{12} + \frac{(100 - 107.1)^2}{2521.64}\right)}$$

$$= 4.1102 \pm 0.852 \qquad \Rightarrow \quad (3.258, 4.962)$$

3.1.5
$$\left(\frac{SSE}{\gamma^2(.025, 10)}, \frac{SSE}{\gamma^2(.975, 10)}\right) = \left(\frac{1.3254}{20.483}, \frac{1.3254}{3.247}\right) = (0.0647, 0.4082)$$

과제 Review

3.4 공해물질 자료

다음의 자료는 공해물질이 함유된 유화액에 물고기를 투입하고 공해물질의 농도와 물고기의 생존시간(단위 : 분)을 측정하였다. 공해물질의 농도와 생 존시간에 상용로그를 취한 값을 각각 설명변수(X)와 반응변수(Y)로 한다.

log ₁₀ (공해물질농도)	log ₁₀ (생존시간)			
5	2.516	2.572	2.438	
4.8	2.621	2.742	2.689	
4.6	2.830	2.910	2.983	
4.4	3.175	3.056	3.095	
4.2	3.332	3.221	3.293	
4.0	3.447	3.523	3.551	

자료원 : Nagasawa 등(1964)

- 3.4.1 단순선형모형의 적합성 여부를 검정하라.
- **3.4.2** 분산분석표, $β_0$ 와 $β_1$ 의 95% 신뢰구간을 구하라.

과제 Review

 $\hat{\beta}_1 = -2.096/2.1 = -0.9981 \qquad \hat{\beta}_0 = 3.000 - (-0.9981)(4.5) = 7.491$

x	n_i		y		\overline{y}	$\sum (y - y)^2$
5.0	3	2.516	2.572	2.438	2.509	0.00906
4.8	3	2.621	2.742	2.689	2.684	0.00736
4.6	3	2.830	2.910	2.983	2.908	0.01171
4.4	3	3,175	3.056	3.095	3.109	0.00736
4.2	3	3.332	3.221	3.293	3.282	0.00634
4.0	3	3.447	3.523	3.551	3.507	0.00579
합계	18					0.04762

$$S\!S\!E\!=\!S_{\!y\!y}-\hat{\beta}_1\!S_{\!x\!y}\!=\;2.142-\left(-\,0.9981\right)\left(-\,2.096\right)=2.142-2.092\;=0.050$$

$$SS_{PE} = 0.04762$$
 $SS_{LOF} = SSE - SS_{PE} = 0.050 - 0.04762 = 0.00238$

$$F^* = \frac{SS_{LOF}/(m-2)}{SS_{PE}/(n-m)} = \frac{0.00238/(6-2)}{0.04762/(18-6)} = 0.150 \qquad F(0.05;4,12) = 3.26$$