5.2 APIGMHTIKH (TPOOLO)

Ορισμός αριθμητικής προόδου

Μια ακολουθία λέγεται **αριθμητική πρόοδος,** αν κάθε όρος της προκύπτει από τον προηγούμενό του με πρόσθεση του ίδιου πάντοτε αριθμού.

🖹 Γαραδείγματα:

1. Στην ακολουθία 1,3,5,7,... των περιττών αριθμών, κάθε όρος προκύπτει από τον προηγούμενό του με πρόσθεση του αριθμού 2. Δηλαδή για την ακολουθία αυτή ισχύει:

$$\alpha_{\nu+1} = \alpha_{\nu} + 2$$
 $\dot{\eta}$ $\alpha_{\nu+1} - \alpha_{\nu} = 2$

Η ακολουθία (α_{ν}) λέγεται **αριθμητική πρόοδος με διαφορά 2**.

2 Στην ακολουθία 15, 10, 5, 0, -5, -10, ... κάθε όρος προκύπτει από τον προηγούμενό του με πρόσθεση του αριθμού -5. Δηλαδή για την ακολουθία αυτή ισχύει:

$$\alpha_{\nu+1} = \alpha_{\nu} - 5$$
 $\dot{\eta}$ $\alpha_{\nu+1} - \alpha_{\nu} = -5$

Η ακολουθία (α_{ν}) λέγεται **αριθμητική πρόοδος με διαφορά** -5.

Σύμφωνα με τον ορισμό, τον αριθμό αυτό τον συμβολίζουμε με ω και τον λέμε διαφορά της προόδου.

Έτσι, για μια αριθμητική πρόοδο (α_{ν}) με διαφορά ω ισχύει:

$$\alpha_{\nu+1} = \alpha_{\nu} + \omega \quad \dot{\eta} \quad \alpha_{\nu+1} - \alpha_{\nu} = \omega$$

- Η διαφορά δύο οποιωνδήποτε διαδοχικών όρων μιας αριθμητικής προόδου είναι ίση με
 ω.
- ► Για τους όρους μιας αριθμητικής προόδου ισχύουν τα εξής:
 - $\alpha \vee \omega > 0$ τότε οι όροι της **μεγαλώνουν**,
 - $\alpha v \omega < 0$ τότε οι όροι της **μικραίνουν**,
 - αν $\omega = 0$ τότε όλοι οι όροι της είναι **ίσοι** (σταθερή αριθμητική πρόοδος).

Γενικός (ν-οστός) όρος αριθμητικής προόδου

Ο ν-οστός όρος μιας αριθμητικής προόδου με πρώτο όρο α_1 και διαφορά ω είναι:

$$\alpha_{\nu} = \alpha_1 + (\nu - 1)\omega$$

Απόδειξη:

$$\alpha_{1} = \alpha_{1}$$

$$\alpha_{2} = \alpha_{1} + \omega$$

$$\alpha_{3} = \alpha_{2} + \omega$$

$$\alpha_{4} = \alpha_{3} + \omega$$

$$\vdots$$

$$\alpha_{v-1} = \alpha_{v-2} + \omega$$

$$\alpha_{v} = \alpha_{v-1} + \omega$$

Προσθέτοντας κατά μέλη τις παραπάνω σχέσεις προκύπτει ότι:

$$\alpha_1 + \alpha_2 + \alpha_3 + \dots + \alpha_{\nu-1} + \alpha_{\nu} = \alpha_1 + \alpha_1 + \alpha_2 + \alpha_3 + \dots + \alpha_{\nu-1} + (\nu-1)\omega \iff \alpha_{\nu} = \alpha_1 + (\nu-1)\omega$$

Διαδοχικοί όροι αριθμητικής προόδου

Τρεις αριθμοί α , β , γ είναι διαδοχικοί όροι αριθμητικής προόδου αν και μόνο αν ισχύει

$$\beta = \frac{\alpha + \gamma}{2}$$

Απόδειξη:

Θεωρούμε τρεις διαδοχικούς όρους α , β , γ μιας αριθμητικής προόδου με διαφορά ω , τότε ισχύει:

$$\beta - \alpha = \omega$$
 $\kappa \alpha \iota$ $\gamma - \beta = \omega$

Από τις παραπάνω σχέσεις προκύπτει ότι:

$$\beta - \alpha = \gamma - \beta \iff$$

$$2\beta = \alpha + \gamma \iff$$

$$\beta = \frac{\alpha + \gamma}{2}$$

41

Αντίστροφα:

Αν για τρεις αριθμούς α , β , γ ισχύει ότι $\beta = \frac{\alpha + \gamma}{2}$ τότε έχουμε:

$$\beta = \frac{\alpha + \gamma}{2} \iff$$

$$2\beta = \alpha + \gamma \iff$$

$$\beta - \alpha = \gamma - \beta$$

Η τελευταία σχέση σημαίνει ότι οι αριθμοί α , β , γ είναι διαδοχικοί όροι αριθμητικής προόδου.

Αριθμητικός μέρος

Ο αριθμός $\beta = \frac{\alpha + \gamma}{2}$ λέγεται **αριθμητικός μέσος** των αριθμών α και γ .

- Αν οι αριθμοί α , β , γ είναι διαδοχικοί όροι μιας αριθμητικής προόδου, τότε ο αριθμός β είναι ο αριθμητικός μέσος των α και γ .
- **Ο** αριθμητικός μέσος των αριθμών $\alpha_1, \alpha_2, ..., \alpha_{\nu}$ είναι ο αριθμός:

$$\mu = \frac{\alpha_1 + \alpha_2 + \dots + \alpha_{\nu}}{\nu}$$

Τύποι αθροίσματος ν διαδοχικών όρων αριθμητικής προόδου

Έστω (α_{ν}) μια αριθμητική πρόοδος με διαφορά ω . Το άθροισμα S_{ν} των πρώτων ν όρων της δίνεται από τον τύπο:

$$S_{\nu} = \frac{\nu}{2}(\alpha_1 + \alpha_{\nu})$$

Αν στον παραπάνω τύπο αντικαταστήσουμε το α_{ν} με τη σχέση $\alpha_{\nu}=\alpha_1+(\nu-1)\omega$, προκύπτει ότι:

$$S_v = \frac{v}{2} \left[2\alpha_1 + (v - 1)\omega \right]$$