Theoretische Informatik – Übung 12

SS 2019 Jochen Schmidt

Folgende Aufgaben bitte vor der Übungsstunde zu Hause lösen:

Aufgabe 1

Bestimmen Sie die Komplexität der folgenden Codeausschnitte in O-Notation:

Aufgabe 2

Zeigen Sie unter Verwendung der Definition der O-Notation, dass $T(n) = a_0 + a_1 n + a_2 n^2 + a_3 n^3 = O(n^3)$. Hinweis: Berechnen Sie eine Konstante c und einen Schwellwert n_0 , so dass $cn^3 \ge T(n)$ für $n \ge n_0$.

Aufgabe 3

Gegeben sind zwei Algorithmen A und B, die $T_A(n) = 5n \log_{10} n$ bzw. $T_B(n) = 25n$ Mikrosekunden für ein Problem der Größe n benötigen.

- a) Welcher Algorithmus ist im Sinne der O-Notation der bessere?
- b) Ab welcher Datenmenge gilt die bessere Performance? $\pi = 26\pi$

Folgende Aufgabe wird in der Übungsstunde bearbeitet:

Aufgabe 4 $\mathcal{O}(\mathcal{A})$

Der offensichtliche Algorithmus zur Berechnung von x^n benötigt n-1 Multiplikationen. Geben Sie einen schnelleren **rekursiven** Algorithmus für den Spezialfall an, dass der Exponent eine Zweierpotenz ist, d.h. $n=2^m$, und berechnen Sie dessen Komplexität in O-Notation (gezählt wird hier die Anzahl der benötigten Multiplikationen).