Kinematics -the simplest types of motion

Uniform linear motion

$$\vec{v}(t) = constant$$

On
$$\overrightarrow{OX}$$
: $\vec{r} = x \vec{i}$

$$\vec{\mathbf{v}} = (\mathbf{v}_{\mathbf{x}})\vec{\mathbf{i}}$$

$$x(t) = x_0 + v_x \cdot (t - t_0)$$

<u>Uniformly accelerated linear motion</u> $\vec{a}(t) = \text{constant}$

$$\vec{a}(t) = constant$$

$$OY: \vec{r} = y \vec{j}$$

$$\vec{\mathbf{v}} = \mathbf{v}_{\mathbf{y}} \vec{\mathbf{j}} \qquad \qquad \vec{\mathbf{a}} = \mathbf{a}_{\mathbf{y}} \vec{\mathbf{j}}$$

$$\vec{\mathbf{a}} = \mathbf{a_y} \, \vec{\mathbf{j}}$$

$$\mathbf{v}_{\mathbf{y}}(\mathbf{t}) = \mathbf{v}_{\mathbf{0}\mathbf{y}} + \mathbf{a}_{\mathbf{y}} \cdot (\mathbf{t} - \mathbf{t}_{\mathbf{0}})$$

$$y(t) = y_0 + v_{oy} \cdot (t - t_0) + a_y \cdot \frac{(t - t_0)^2}{2}$$

<u>UNIFORM LINEAR MOTION</u> $\vec{v}(t) = constant$

$$OX: \vec{r} = x \vec{i}$$

$$\vec{F} = 0$$
 $\vec{v}(t) = constant$

$$\Rightarrow$$
 $\mathbf{x}(\mathbf{t}) = \mathbf{x_0} + \mathbf{v_x} \cdot (\mathbf{t} - \mathbf{t_0})$

Initial Conditions: initial position \mathbf{x}_0 at the initial moment of time \mathbf{t}_0

<u>UNIFORM LINEAR MOTION</u> $\vec{v}(t) = constant$

A man travels for 3.6 km with 3km/h, then 2.9 km in 66 min, and at the end, walks for 42min with 4km/h in the same direction. Find the man's average speed.

Solution:

$$v = \frac{\Delta x}{\Delta t}$$

$$v_{av} = \frac{\Delta x_{total}}{\Delta t_{total}} = \frac{+ + +}{- + -} \frac{\text{km}}{\text{h}} = 3.1 \frac{\text{km}}{\text{h}} = \cdots \text{ m/s}$$

	Δx (km)	Δt (h)	v(km/h)
	3.6	=-h	3
II .	2.9	66min = – h	
III		$42\min = -h$	4

• A man travels for 4,8km with 4km/h, then 1,5 km in 33min, and at the end, walks for 45min with 3,6km/h in the same direction. Find the man's average speed.

<u>Uniformly accelerated linear motion</u> $\vec{a}(t) = const.$

$$OY: \qquad \vec{r} = y \vec{j}$$

$$\vec{F} = \text{const} \iff \vec{a}(t) = \text{constant}$$

$$\implies v_y(t) = v_{0y} + a_y \cdot (t - t_0)$$

Initial Conditions: initial position y_0 and initial velocity v_{0y} at the initial moment of time $\boldsymbol{t_0}$

$$\Rightarrow$$
 $y(t) = y_0 + v_{oy} \cdot (t - t_0) + a_y \cdot \frac{(t - t_0)^2}{2}$

Uniformly accelerated linear motion $\vec{a}(t) = const.$

•A small body is freely released from a platform located 180 meters above the ground. If g=10m/s² and we ignore air resistance find a) the time required to reach the ground b) the velocity at the ground c) the velocity at 55 m from the ground d) the distance traveled in the last 2 seconds of flight.

Velocity law
$$\mathbf{v}(\mathbf{t}) = \mathbf{v}_{A} - \mathbf{g} \cdot \mathbf{t}$$

Motion law $\mathbf{y}(\mathbf{t}) = \mathbf{y}_{A} + \mathbf{v}_{A} \cdot \mathbf{t} - \mathbf{g} \cdot \frac{\mathbf{t}^{2}}{2}$ \Rightarrow a) $0 = H - g \frac{t_{AO}^{2}}{2}$ \Rightarrow $t_{AO} = \sqrt{\frac{2H}{g}} = \sqrt{\frac{2 \cdot 180}{10}} = 6s$
a) $v_{O} = -g \cdot t_{AO} = -60 \text{m/s}$
b) $y(t) = y_{A} - g \cdot \frac{t^{2}}{2} \Rightarrow a$ $h_{1} = H - g \frac{t_{AB}^{2}}{2}$ $\Rightarrow t_{AB} = \sqrt{\frac{2(H - h_{1})}{g}} = \sqrt{\frac{2 \cdot 125}{10}} = 5s$
 $v_{B} = -g \cdot t_{AB} = -50 \text{m/s}$

a) Let h_2 -the distance traveled in the last 2 seconds of flight

$$t_{AC} = \cdots$$
 $h_2 = H - g \frac{t_{AC}^2}{2} = \cdots$

- A small body is freely released from a platform located 605 meters above the ground. If g=10m/s² and we ignore air resistance find: a) the time required to reach the ground; b) the velocity at the ground; c) the velocity at 425 m from the ground; d) the distance traveled in the first 4 seconds of flight; e) the distance traveled in the last 4 seconds of flight; f) the distance traveled in the third second of flight and in the seventh.
- A body is thrown vertically upward from the Earth ground with 10m/s. Neglecting air friction and considering g=10m/s² find: a) the maximum height of the body; b) total time of flight; c) moments when the body has ¼ from its initial velocity.

<u>Uniformly accelerated linear motion</u> $\vec{a}(t) = const.$

- •A car on a linear highway has an initial speed of 23 m/s. The car accelerates at a constant rate for 10 s to a final speed of 29 m/s. How far does the car travel during this time interval?
- •An object moves along the x-axis with a constant acceleration of 6 m/s² and an initial velocity of -24 m/s. It is located at x = 6 m when t = 0 s. Write the motion law of the object. What is its position when its velocity is zero?
- A mass point (m=2kg) moves linearly onto Ox axes under the law: $x(t) = -10t^2 + 20t 8$ (m) (with the initial moment $t_0=0$, and the total time of motion 10s.).

The initial position is -8 m, the initial velocity is 20 m/s, time until stop is 1 s and the **distance** traveled until the stopping moment is 10 m.

After the stopping moment the body continues to move and returns in the initial position.

•A mass point (m=2kg) moves linearly onto Ox axes under the law: $x(t) = -10t^2 + 20t - 8$ (m) (with the initial moment $t_0=0$, and the total time of motion 10s.).

The initial position is m, the acceleration is m/s^2 , time until stop iss and the position at the stopping moment ism.

After the stopping moment the body Consequently the body passes the reference origin ats .

Linear Momentum definition: $\vec{p} = m \cdot \vec{v}$ (N's)

$$\vec{\mathbf{p}} = \mathbf{m} \cdot \vec{\mathbf{v}} \qquad (N \cdot \mathbf{s})$$

The Kinetic Energy definition
$$E_K = \frac{\mathbf{m} \cdot \mathbf{v}^2}{2}$$
 (JOULE) $\left(\mathbf{E}_K = \frac{\mathbf{p}^2}{2\mathbf{m}}\right)$

The Potential Energy expression depends on the type of forces that act upon the bodies of the system (exists *only for conservative forces*).

Examples:

- Potential energy for near Earth gravity

$$E_p = mgy$$
 (force $G = -mg$)

- Potential energy for a linear spring = elastic potential energy

$$E_p = \frac{kx^2}{2}$$
 (force $F_{el} = -kx$)

Work for
$$\vec{F}$$
=const. $L = \vec{F} \cdot \Delta \vec{r}$

$$L = \overrightarrow{F} \cdot \Delta \overrightarrow{r}$$

THE LAW OF CONSERVATION OF LINEAR MOMENTUM

From Newton's second law if $\vec{F} = 0$ $\iff \vec{p} = constant$

$$\vec{\mathbf{F}} = \mathbf{0}$$

$$\Leftrightarrow \vec{p} = \text{constant}$$

The total linear momentum of an isolated physical system is conserved.

THE WORK- (KINETIC) ENERGY THEOREM

$$L = \Delta E_K$$

$$L = \frac{m{v_2}^2}{2} - \frac{m{v_1}^2}{2}$$

For *conservative* forces

$$L = -\Delta E_{p}$$

$$L = -(E_p(2) - E_p(1))$$

THE LAW OF CONSERVATION OF ENERGY

The total energy of an isolated system under the action of conservative forces is conserved.

$$E_K(1) + E_P(1) = E_K(2) + E_P(2) = constant$$