Prinzipien von ADCs

#DigiErstellt #Q3 Erstellt am 11.12.2024 um 20:13 Uhr

Integrationsverfahren:

- Single-/Dual-Slope Converter
- Spannungs-Freqzenz Wandler

Indirektverfahren:

- Zählerverfahren
- Sukzessive Approximation

Parallelverfahren (Flash-Wandler)

Es gibt N (7) Referenzspannungen.

Eingangsspannung wird mit jeder Referenzspannung gleichzeitig verglichen. Eingangssignal liegt an mehreren Komparatoren an (Auflösung: 16K für 4 Bit). Prioritätsdecoder gibt ermittelte Spannung als Dualzahl aus.

Staircase-Ramp (Zählverfahren/Compare & Count)

Zähler initialisiert auf 0, Zählstand wird mittels DAC analog gewandelt und mit Eingangsspannung verglichen. Zählerspannung = Eingangsspannung, Zähler stoppt und Zählwert wird im Speicher übertragen.

Vorteil: Extrem Genau

Nachteil: Je größer der Messwert, desto langsamer

Wägeverfahren (Sukzessive Approximation)

Verbesserung des Zählverfahrens

Zählverfahren = Langsam, deshalb mit jedem Taktimpuls ein Bit eines Digitalworts festlegen.

Register wird zu beginn auf einen mittleren Wert gesetzt (0x80). DA-Wandler am Register erzeugt entsprechende Spannung, Ausgangspannung des DA-Wandlers wird näherungsweise an Eingangspannung angeglichen => Beide Spannungen gleich = Speicherung des Wertes.

Komparator vergleicht Eingangsspannung mit Registerwert.

Eingangspannung höher als 0x80; Register bleibt gesetzt.

Eingangspannung kleiner als 0x80; MSB wird gelöscht.

Für alle Bits wird so stufenweise vorgegangen. Bedingung für die einwandfreie Verwendung ist ein Sample and Hold Glied, damit sich die Eingangsspannung nicht während des Wandelns ändert.

Rampenverfahren/Integrationsverfahren

Single-Slope

Eingangsspannung wird solange integriert, bis integrierte Spannung gleich einer Referenzspannung.

Integrationsspannung ist indirekt-proportional zu der Eingangsspannung.

Sägezahnspannung wird von negativen bis positive Werte durchgefahren.

Gatterausgang so lange 1, wie sich Sägezahnspannung zwischen Null und Eingangsspannung befindet \Rightarrow Zähler zählt Schwingungen des Quarz-Oszillators.

Durch Vergleich mit der Zeit, die benötigt wird, den ganzen Bereich des Sägezahngenerators durchzufahren, wird die Eingangsspannung ermittelt.

Nachteile:

- Frequenzunsicherheit begrenzt Genauigkeit
- Stark Temperaturabhängig (Frequenz)
- · Kondensatoren schwer mit ausreichender Genauigkeit erwerbbar
- Relativ teuer

Dual-Slope

- Integrator integriert Eingangspannung \rightarrow liegt bei U_1 an (negativ)
- Komparator schaltet, Zählt bis t_1
- Referenzspannung mit gedrehtem Vorzeichen wird integriert, U_1 steigt

- Solange $(U_1>0)$ zählt der Zähler $o t_2$
- Vergleich von t_2 mit t_1 wird der digitale Wert ermittelt

Unterschied zwischen Single- und Dual-Slope Verfahren:

Single-Slope: Bezug auf eine Rampe, vergleicht ob Eingangspannung schon Sägezahn Spannung erreicht hat (zeit größer desto größer Eingangspannung), mehrere Bauteil Toleranzen haben einen Einfluss aufs Messergebnis (Verfälschung)

Dual-Slope: Bauteil Toleranzen heben sich gegenseitig auf => robusteres verfahren