MAT 275 Project 4

ID: 1213399809

Name: Lucas Saldyt (lsaldyt@asu.edu)

Collaborators: \varnothing

Problem 1. Forced Equations and Resonance

1

Problem 1. Forced Equations and Resonance

This homework investigates spring equations using the following code, which has been slightly modified to use correct variable names:

```
function LAB6
omega0 = 2; c = 1; omega = 1.4;
param = [omega0,c,omega];
t0 = 0; y0 = 0; v0 = 0; Y0 = [y0; v0]; tf = 50;
options = odeset('AbsTol',1e-10,'RelTol',1e-10);
[t,Y] = ode45(@f,[t0,tf],Y0,options,param);
y = Y(:,1); v = Y(:,2);
figure(1)
plot(t,y,'b-'); ylabel('y'); grid on;
t1 = 25; i = find(t>t1);
C = (\max(Y(i,1)) - \min(Y(i,1)))/2;
disp(['computed amplitude of forced oscillation = ' num2str(C)]);
Ctheory = 1/sqrt((omega0^2-omega^2)^2+(c*omega)^2);
disp(['theoretical amplitude = ' num2str(Ctheory)]);
function dYdt = f(t, Y, param)
y = Y(1); v = Y(2);
omega0 = param(1); c = param(2); omega = param(3);
dYdt = [v ; cos(omega*t)-omega0^2*y-c*v];
```

Originally, this generates the following plot:

Solution

Part (a)

What is the period of the forced oscillation? What is the numerical value (modulo 2π) of the angle α defined by (L6.4)?

Since the frequency is known ($\omega = 1.4$), the period is the inverse of this, or 0.7143 seconds/radian, which can be verified on the graph included (as 4.487 seconds, roughly, which is $2\pi * 0.7143$). Since $\omega < \omega_0$, α is $\arctan(\frac{c\omega}{\omega_0^2 - \omega^2})$, or $\arctan(\frac{\sqrt{15/4}}{4-15/4}) = 0.451$ radians.

Part (b)

Modify the above code to plot the complementary solution of (L6.1), that is, the first term in (L6.2). First define in the file the angle α using (L6.4), then evaluate the complementary solution y_c by subtracting the quantity $Ccos(\omega t\alpha)$ from the numerical solution y. Plot the resulting quantity. Does it look like an exponentially decreasing oscillation? Why or why not? Include the modified M-file and the corresponding plot.

The modified code is posted below. It adds an α calculated and y_c calculation. Based on the plot, the y_c is certainly exponentially decreasing, because it decreases... exponentially, where the previous plot showed (seemingly) stability after an initial period. This is because the exponential portion of the equation approaches zero, while $C\cos(\omega t - \alpha)$ is a typical (stable, non-dampening) \cos function (with scaling, stretching, and translation), much like in the very first example discussed in class, x - y. So if the second part of y is removed, then the exponentential portion simply goes to zero (because the power is negative).

```
function LAB6
omega0 = 2; c = 1; omega = 1.4; a = 0;
if omega0 > omega
    a = atan((c * omega) / (omega0 * omega0 - omega * omega))
else
    a = atan((c * omega) / (omega0 * omega0 - omega * omega)) + 3.1415
end
param = [omega0,c,omega,a];
t0 = 0; y0 = 0; v0 = 0; Y0 = [y0; v0]; tf = 50;
options = odeset('AbsTol',1e-10,'RelTol',1e-10);
[t,Y] = ode45(@f,[t0,tf],Y0,options,param);
v = Y(:,1); v = Y(:,2);
t1 = 25; i = find(t>t1);
C = (\max(Y(i,1)) - \min(Y(i,1))) / 2;
y = y - C * cos(omega * t - a)
figure(1)
plot(t,y,'b-'); ylabel('y'); grid on;
disp(['computed amplitude of forced oscillation = ' num2str(C)]);
Ctheory = 1/sqrt((omega0^2-omega^2)^2+(c*omega)^2);
disp(['theoretical amplitude = ' num2str(Ctheory)]);
```

```
function dYdt = f(t,Y,param)
y = Y(1); v = Y(2);
omega0 = param(1); c = param(2); omega = param(3); a = param(4);
dYdt = [ v ; cos(omega*t)-omega0^2*y-c*v ];
```

