Investigación Operativa

Resolución gráfica - Forma estándar - Método de diccionarios

Nazareno Faillace Mullen

Departamento de Matemática - FCEN - UBA

Dado un modelo de PL con sólo dos variables, podemos resolverlo gráficamente utilizando algunas herramientas básicas. Veamos un ejemplo:

$$\begin{array}{lll} \text{máx} & 3x_1+x_2\\ \text{s.a.} & x_1+4x_2\leq & 8\\ & -x_1+x_2\leq & 1\\ & x_1\leq & 5\\ & x_1,x_2\in\mathbb{R}_{\geq 0} \end{array}$$

Comencemos graficando la región de soluciones factibles

1

$$\{(x_1,x_2)\in \mathbb{R}^2\colon x_1+4x_2\leq 8\}$$

$$\{(x_1,x_2)\in\mathbb{R}^2\colon x_1+4x_2\leq 8, -x_1+x_2\leq 1\}$$

Región de soluciones factibles:

$$\{(x_1,x_2)\in\mathbb{R}^2\colon x_1+4x_2\leq 8, -x_1+x_2\leq 1, x_1\leq 5, x_1\geq 0, x_2\geq 0\}$$

Calculamos ahora la dirección de máximo crecimiento, es decir, ∇f , siendo $f: \mathbb{R}^2 \to \mathbb{R}$ la f.o.:

$$f(x_1, x_2) = 3x_1 + x_2 \Rightarrow \nabla f(x_1, x_2) = (3, 1)$$

Graficamos la curva de nivel f = 0:

$$0 = f(x_1, x_2) = 3x_1 + x_2 \Leftrightarrow x_2 = -3x_1$$

Luego, para hallar el máximo basta encontrar la intersección entre $x_1=5$ y $x_1+4x_2=8$:

$$\begin{cases} x_1 = 5 \\ x_1 + 4x_2 = 8 \end{cases} \Rightarrow x_1 = 5 \land x_2 = \frac{3}{4}$$

La solución óptima es $(5,\frac{3}{4})$ y el valor óptimo es $f(5,\frac{3}{4})=3\cdot 5+\frac{3}{4}=\frac{63}{4}$

9

Luego, para hallar el máximo basta encontrar la intersección entre $x_1=5$ y $x_1+4x_2=8$:

$$\begin{cases} x_1 = 5 \\ x_1 + 4x_2 = 8 \end{cases} \Rightarrow x_1 = 5 \land x_2 = \frac{3}{4}$$

La solución óptima es $(5,\frac{3}{4})$ y el valor óptimo es $f(5,\frac{3}{4})=3\cdot 5+\frac{3}{4}=\frac{63}{4}$

El procedimiento para buscar el mínimo es análogo.

9

Pasos de la resolución gráfica:

- 1. Graficar la región de soluciones factibles
- 2. Calcular ∇f y la curva de nivel f=0
- 3. "Trasladar" la curva de nivel según corresponda a ∇f y al objetivo para determinar el vértice correspondiente al óptimo.
- 4. Hallar los valores de x_1 y x_2 correspondientes al óptimo calculando la intersección de las correspondientes restricciones.

Resolver gráficamente:

$$\begin{array}{lll} & \min & 2x_1 + x_2 \\ & \text{s.a.:} & 6x_1 - 4x_2 \geq & 1 \\ & & x_1 + x_2 \geq & 2 \\ & & x_1 \geq & 1 \\ & & x_1, x_2 \in \mathbb{R}_{\geq 0} \end{array}$$

- \cdot La solución óptima es (1,1) y el valor óptimo es 3.
- · ¿Y si se hubiese pedido máx en vez de mín?

- · La solución óptima es (1,1) y el valor óptimo es 3.
- ¿Y si se hubiese pedido máx en vez de mín? \rightarrow Problema no acotado.

Ejemplo - Infinitas soluciones óptimas

$$\begin{array}{lll} \text{máx} & 2x_1+x_2\\ \text{s.a:} & x_1 \leq & 3x_2+1\\ & 2x_2 \leq & -4x_1+18\\ & x_1-x_2 \geq & 0\\ & x_1 \geq & \frac{1}{2}\\ & x_1,x_2 \in \mathbb{R}_{\geq 0} \end{array}$$

• Hay infinitas soluciones óptimas: cualquier punto del segmento que une (3,3) con (4,1) es una solución óptima. El valor óptimo es 9.

Ejemplo - Problema infactible

$$\begin{array}{ll} \text{máx} & 2x_1+5x_2\\ \text{s.a:} & x_1\leq & 2-x_2 & (1)\\ & x_2\geq & -2x_1+1 & (2)\\ & 4x_1\geq & 9+x_2 & (3)\\ & x_1,x_2\in\mathbb{R}_{\geq 0} \end{array}$$

• No hay soluciones factibles, dado que no existen (x_1,x_2) tales que cumplan todas las restricciones.

SIMPLEX

¿Y si queremos resolver problemas con más de dos variables?

SIMPLEX

¿Y si queremos resolver problemas con más de dos variables? Usaremos SIMPLEX, pero harán falta algunas cuentas más

Pasar a forma estándar

Antes de aplicar cualquiera de los métodos para resolver un modelo de PL con SIMPLEX, debemos pasarlo a forma estándar con objetivo de maximizar o minimizar. Debemos asegurarnos que el problema lineal quede planteado de alguna de las siguientes maneras:

 $\text{Con } c,x\in\mathbb{R}^n\text{, }A\in\mathbb{R}^{m\times n}\text{ y con }b\in\mathbb{R}^m\text{ un vector tal que }b_i\geq 0\;\forall i=1,\dots,m.$

Pasar a forma estándar

- Si una variable x_j es no positiva, introducimos la variable no negativa \tilde{x}_j al modelo, y reemplazamos cada ocurrencia de x_j por $-\tilde{x}_j$
- · Si una variable x_j es libre (es decir, $x_j \in (-\infty, +\infty)$) agregamos dos variables no negativas x_j^+ y x_j^- y reemplazamos cada ocurrencia de x_j por $x_j^+ x_j^-$
- · Si debemos cambiar el objetivo, basta con cambiarle el signo a la función objetivo:

$$\max \ c^T x \ \leftrightarrow \min \ -c^T x$$

Pasar a forma estándar

• Si algún b_i es negativo, multiplicamos ambos lados de la igualdad/desigualdad por -1:

$$\begin{array}{ll} \text{Si } b_i < 0 : & \sum_j a_{ij} x_j \leq b_i \to -\sum_j a_{ij} x_j \geq -b_i \\ & \sum_j a_{ij} x_j \geq b_i \to -\sum_j a_{ij} x_j \leq -b_i \end{array}$$

 \cdot Agregamos variables slack w_i para transformar las desigualdades en igualdades:

$$\sum_{j} a_{ij} x_{j} \le b_{i} \rightarrow \sum_{j} a_{ij} x_{j} + w_{i} = b_{i}$$
$$\sum_{i} a_{ij} x_{j} \ge b_{i} \rightarrow \sum_{i} a_{ij} x_{j} - w_{i} = b_{i}$$

Se agregan también las restricciones:

$$w_i \ge 0 \ \forall i$$

Pasar a forma estándar (con objetivo de minimizar):

$$\begin{array}{llll} \max & x_1-x_2+x_3 \\ \text{s.a:} & x_1+2x_2-x_3 \leq & 3 \\ & x_1-x_2-x_3 \leq & -2 \\ & x_1-x_2 = & 10 \\ & x_1 \geq & 0 \\ & x_2 \leq & 0 \\ & x_3 & \text{libre} \end{array}$$

$$\begin{array}{lll} \max & x_1-x_2+x_3 \\ \text{s.a:} & x_1+2x_2-x_3 \leq & 3 \\ & x_1-x_2-x_3 \leq & -2 \\ & x_1-x_2 = & 10 \\ & x_1 \geq & 0 \\ & x_2 \leq & 0 \\ & x_3 & \text{libre} \end{array}$$

Como x_2 es no positiva, definimos \tilde{x}_2 no negativa y reemplazamos x_2 por $-\tilde{x}_2$

$$\begin{array}{lll} \text{máx} & x_1 + \tilde{x}_2 + x_3 \\ \text{s.a:} & x_1 - 2\tilde{x}_2 - x_3 \leq & 3 \\ & x_1 + \tilde{x}_2 - x_3 \leq & -2 \\ & x_1 + \tilde{x}_2 = & 10 \\ & x_1 \geq & 0 \\ & \tilde{x}_2 \geq & 0 \\ & x_3 & \text{libre} \end{array}$$

Como x_2 es no positiva, definimos \tilde{x}_2 no negativa y reemplazamos x_2 por $-\tilde{x}_2$

$$\begin{array}{llll} & \max & x_1 + \tilde{x}_2 + x_3 \\ & \text{s.a:} & x_1 - 2\tilde{x}_2 - x_3 \leq & 3 \\ & & x_1 + \tilde{x}_2 - x_3 \leq & -2 \\ & & & x_1 + \tilde{x}_2 = & 10 \\ & & & x_1 \geq & 0 \\ & & & \tilde{x}_2 \geq & 0 \\ & & & & x_3 & \text{libre} \end{array}$$

Como x_3 es libre, introducimos las variables no negativas x_3^+ y x_3^- y reemplazamos cada ocurrencia de x_3 por $x_3^+ - x_3^-$

$$\begin{array}{ll} \text{máx} & x_1+\tilde{x}_2+(x_3^+-x_3^-)\\ \text{s.a:} & x_1-2\tilde{x}_2-(x_3^+-x_3^-)\leq & 3\\ & x_1+\tilde{x}_2-(x_3^+-x_3^-)\leq & -2\\ & x_1+\tilde{x}_2=& 10\\ & x_1\geq & 0\\ & \tilde{x}_2\geq & 0\\ & x_3^+,x_3^-\geq & 0 \end{array}$$

Como x_3 es libre, introducimos las variables no negativas x_3^+ y x_3^- y reemplazamos cada ocurrencia de x_3 por $x_3^+ - x_3^-$

$$\begin{array}{lll} \text{máx} & x_1+\tilde{x}_2+x_3^+-x_3^-\\ \text{s.a:} & x_1-2\tilde{x}_2-x_3^++x_3^-\leq & 3\\ & x_1+\tilde{x}_2-x_3^++x_3^-\leq & -2\\ & & x_1+\tilde{x}_2=& 10\\ & & x_1\geq & 0\\ & & \tilde{x}_2\geq & 0\\ & & x_3^+,x_3^-\geq & 0 \end{array}$$

Como x_3 es libre, introducimos las variables no negativas x_3^+ y x_3^- y reemplazamos cada ocurrencia de x_3 por $x_3^+-x_3^-$

$$\begin{array}{lll} \max & x_1+\tilde{x}_2+x_3^+-x_3^-\\ \text{s.a:} & x_1-2\tilde{x}_2-x_3^++x_3^-\leq & 3\\ & x_1+\tilde{x}_2-x_3^++x_3^-\leq & -2\\ & x_1+\tilde{x}_2=& 10\\ & x_1\geq & 0\\ & \tilde{x}_2\geq & 0\\ & x_3^+,x_3^-\geq & 0 \end{array}$$

Como el objetivo es maximizar, lo pasamos a minimizar:

$$\max \ x_1 + \tilde{x}_2 + x_3^+ - x_3^- \ \to \min \ -x_1 - \tilde{x}_2 - x_3^+ + x_3^-$$

$$\begin{array}{lll} \min & -\mathbf{x}_1 - \tilde{\mathbf{x}}_2 - \mathbf{x}_3^+ + \mathbf{x}_3^- \\ \text{s.a.} & x_1 - 2\tilde{x}_2 - x_3^+ + x_3^- \leq & 3 \\ & x_1 + \tilde{x}_2 - x_3^+ + x_3^- \leq & -2 \\ & x_1 + \tilde{x}_2 = & 10 \\ & x_1 \geq & 0 \\ & \tilde{x}_2 \geq & 0 \\ & x_3^+, x_3^- \geq & 0 \end{array}$$

Como el objetivo es maximizar, lo pasamos a minimizar:

$$\max \ x_1 + \tilde{x}_2 + x_3^+ - x_3^- \ \to \min \ -x_1 - \tilde{x}_2 - x_3^+ + x_3^-$$

$$\begin{array}{lll} \min & -x_1-\tilde{x}_2-x_3^++x_3^-\\ \text{s.a:} & \frac{x_1-2\tilde{x}_2-x_3^++x_3^-\leq & 3}{x_1+\tilde{x}_2-x_3^++x_3^-\leq & -2}\\ & x_1+\tilde{x}_2-x_3^++x_3^-\leq & -2\\ & x_1+\tilde{x}_2=& 10\\ & x_1\geq & 0\\ & \tilde{x}_2\geq & 0\\ & x_3^+,x_3^-\geq & 0 \end{array}$$

Agregamos la variable slack w_1 y pedimos que $w_1 \geq 0$:

$$x_1 - 2\tilde{x}_2 - x_3^+ + x_3^- \leq 3 \ \to x_1 - 2\tilde{x}_2 - x_3^+ + x_3^- + w_1 = 3$$

$$\begin{array}{lll} \min & -x_1-\tilde{x}_2-x_3^++x_3^-\\ \text{s.a:} & x_1-2\tilde{x}_2-x_3^++x_3^-+w_1=& 3\\ & x_1+\tilde{x}_2-x_3^++x_3^-\leq & -2\\ & x_1+\tilde{x}_2=& 10\\ & x_1\geq & 0\\ & \tilde{x}_2\geq & 0\\ & x_3^+,x_3^-\geq & 0\\ & w_1\geq & 0 \end{array}$$

Agregamos la variable slack w_1 y pedimos que $w_1 \geq 0$:

$$x_1 - 2\tilde{x}_2 - x_3^+ + x_3^- \leq 3 \ \rightarrow x_1 - 2\tilde{x}_2 - x_3^+ + x_3^- + w_1 = 3$$

$$\begin{array}{lll} \min & -x_1-\tilde{x}_2-x_3^++x_3^-\\ \text{s.a:} & x_1-2\tilde{x}_2-x_3^++x_3^-+w_1=& 3\\ & x_1+\tilde{x}_2-x_3^++x_3^-\leq & -2\\ & x_1+\tilde{x}_2=& 10\\ & x_1\geq & 0\\ & \tilde{x}_2\geq & 0\\ & x_3^+,x_3^-\geq & 0\\ & w_1\geq & 0 \end{array}$$

Multiplicamos ambos lados de la desigualdad por -1 y luego agregamos la variable slack no negativa:

$$\begin{split} x_1 + \tilde{x}_2 - x_3^+ + x_3^- & \leq -2 & \rightarrow & -x_1 - \tilde{x}_2 + x_3^+ - x_3^- \geq 2 \\ -x_1 - \tilde{x}_2 + x_3^+ - x_3^- & \geq 2 & \rightarrow & -x_1 - \tilde{x}_2 + x_3^+ - x_3^- - w_2 = 2 \end{split}$$

$$\begin{array}{lll} \min & -x_1-\tilde{x}_2-x_3^++x_3^-\\ \text{s.a:} & x_1-2\tilde{x}_2-x_3^++x_3^-+w_1=& 3\\ & -x_1-\tilde{x}_2+x_3^+-x_3^--w_2=& 2\\ & x_1+\tilde{x}_2=& 10\\ & x_1\geq & 0\\ & \tilde{x}_2\geq & 0\\ & x_3^+,x_3^-\geq & 0\\ & w_2\geq & 0 \end{array}$$

Multiplicamos ambos lados de la desigualdad por -1 y luego agregamos la variable slack no negativa:

$$\begin{split} x_1 + \tilde{x}_2 - x_3^+ + x_3^- & \leq -2 \to -x_1 - \tilde{x}_2 + x_3^+ - x_3^- \geq 2 \\ -x_1 - \tilde{x}_2 + x_3^+ - x_3^- & \geq 2 \to -x_1 - \tilde{x}_2 + x_3^+ - x_3^- - w_2 = 2 \end{split}$$

Ejemplo

El problema escrito en forma estándar queda entonces:

Una vez encontrado el óptimo de este problema mediante SIMPLEX, se puede recuperar la solución óptima para las variables del problema original recordando que:

$$x_2 = -\tilde{x}_2$$

$$x_3 = x_3^+ - x_3^-$$

Veremos un ejemplo de cómo utilizar este método con **objetivo de maximizar**. Problema original:

Problema estandarizado:

Veremos un ejemplo de cómo utilizar este método con **objetivo de maximizar**. Problema original:

Problema estandarizado:

Problema estandarizado:

$$A = \begin{pmatrix} 2 & 3 & 1 & 1 & 0 & 0 \\ 4 & 1 & 2 & 0 & 1 & 0 \\ 3 & 4 & 2 & 0 & 0 & 1 \end{pmatrix}$$

Obs: rango(A) = 3

$$\begin{pmatrix} 2 & 3 & 1 & 1 & 0 & 0 \\ 4 & 1 & 2 & 0 & 1 & 0 \\ 3 & 4 & 2 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ w_1 \\ w_2 \\ w_2 \end{pmatrix} = \begin{pmatrix} 5 \\ 11 \\ 8 \end{pmatrix} \iff$$

$$\iff \begin{pmatrix} 2\\4\\3 \end{pmatrix} x_1 + \begin{pmatrix} 3\\1\\4 \end{pmatrix} x_2 + \begin{pmatrix} 1\\2\\2 \end{pmatrix} x_3 + \begin{pmatrix} 1\\0\\0 \end{pmatrix} w_1 + \begin{pmatrix} 0\\1\\0 \end{pmatrix} w_2 + \begin{pmatrix} 0\\0\\1 \end{pmatrix} w_3 = \begin{pmatrix} 5\\11\\8 \end{pmatrix}$$

 $\Rightarrow b$ es combinación lineal de las columnas de A.

Obs: si tomo 3 columnas de A que sean l.i., tengo una **base** de \mathbb{R}^3

$$\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

son base de \mathbb{R}^3 , entonces podemos escribir b como combinación lineal de ellas:

$$\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

son base de \mathbb{R}^3 , entonces podemos escribir b como combinación lineal de ellas:

$$\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \underbrace{4}_{x_3} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \underbrace{1}_{w_1} + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \underbrace{3}_{w_2} = \begin{pmatrix} 5 \\ 11 \\ 8 \end{pmatrix}$$

Esto significa que $x_3=4, w_1=1, w_2=3$ y el resto de las variables es 0. Como en este caso todas las variables valen ≥ 0 , el vector:

$$(x_1,x_2,x_3,w_1,w_2,w_3) = (0,0,4,1,3,0) \\$$

es una solución básica factible.

$$\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

son base de \mathbb{R}^3 , entonces podemos escribir b como combinación lineal de ellas:

$$\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \underbrace{4}_{x_3} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \underbrace{1}_{w_1} + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \underbrace{3}_{w_2} = \begin{pmatrix} 5 \\ 11 \\ 8 \end{pmatrix}$$

Esto significa que $x_3=4, w_1=1, w_2=3$ y el resto de las variables es 0. Como en este caso todas las variables valen ≥ 0 , el vector:

$$(x_1,x_2,x_3,w_1,w_2,w_3) = (0,0,4,1,3,0) \\$$

es una solución básica factible.

Decimos que x_3, w_1, w_2 son las **variables básicas** de esa solución, pues corresponden a las columnas de A que elegimos para formar una base de \mathbb{R}^3 . Mientras que x_1, x_2, w_3 son **variables no básicas**.

$$\begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

son base de \mathbb{R}^3 , entonces podemos escribir b como combinación lineal de ellas:

$$\begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

son base de \mathbb{R}^3 , entonces podemos escribir b como combinación lineal de ellas:

$$\begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix} \underbrace{\left(-\frac{1}{5}\right)}_{x_2} + \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \underbrace{\frac{28}{5}}_{x_3} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \underbrace{\left(-\frac{12}{5}\right)}_{w_3} = \begin{pmatrix} 5 \\ 11 \\ 8 \end{pmatrix}$$

Esto significa que $x_2=-\frac{1}{5}, x_3=\frac{28}{5}, w_2=-\frac{12}{5}$ y el resto de las variables es 0. ¿Podemos decir que $(0,-\frac{1}{5},\frac{28}{5},0,0,-\frac{12}{5})$ es una solución básica factible?

En general, si $A \in \mathbb{R}^{m \times n}$ con n > m y tal que rango(A) = m, en el peor de los casos tenemos $\binom{n}{m}$ posibles bases.

En nuestro ejemplo, podrían haber hasta 20 bases.

En general, si $A \in \mathbb{R}^{m \times n}$ con n > m y tal que rango(A) = m, en el peor de los casos tenemos $\binom{n}{m}$ posibles bases.

En nuestro ejemplo, podrían haber hasta 20 bases.

SIMPLEX es un algoritmo que (generalmente) evita tener que enumerarlas a todas.

Problema estandarizado:

Una vez estandarizado, notamos con z a la f.o. y pasamos las variables no básicas (en este caso, las x) al lado derecho de la igualdad.

Problema estandarizado:

Una vez estandarizado, notamos con z a la f.o. y pasamos las variables no básicas (en este caso, las x) al lado derecho de la igualdad.

4

Nuestra solución básica factible inicial es:

$$x_1 = 0, \ x_2 = 0, \ x_3 = 0, \ w_1 = 5, \ w_2 = 11, \ w_3 = 8$$

lo cual da como resultado z=0. Nos gustaría hallar otra solución factible que aumente el valor de z.

Nuestra solución básica factible inicial es:

$$x_1 = 0, \ x_2 = 0, \ x_3 = 0, \ w_1 = 5, \ w_2 = 11, \ w_3 = 8$$

lo cual da como resultado z=0. Nos gustaría hallar otra solución factible que aumente el valor de z.

Como x_1 tiene el mayor coeficiente en z, parece una buena idea intentar aumentar el valor de x_1 .

Fijamos $\mathbf{x_2} = \mathbf{x_3} = \mathbf{0}$ y aumentamos x_1 . Cada ecuación i nos acota el valor que puede tomar x_1 de manera tal que $w_i \ge 0$:

$$\begin{split} 0 & \leq w_1 = 5 - 2x_1 \Rightarrow x_1 \leq \frac{5}{2} \\ 0 & \leq w_2 = 11 - 4x_1 \Rightarrow x_1 \leq \frac{11}{4} \\ 0 & \leq w_3 = 8 - 3x_1 \Rightarrow x_1 \leq \frac{8}{3} \end{split}$$

Fijamos $\mathbf{x_2}=\mathbf{x_3}=\mathbf{0}$ y aumentamos x_1 . Cada ecuación i nos acota el valor que puede tomar x_1 de manera tal que $w_i \geq 0$:

$$\begin{split} 0 & \leq w_1 = 5 - 2x_1 \Rightarrow x_1 \leq \frac{5}{2} \\ 0 & \leq w_2 = 11 - 4x_1 \Rightarrow x_1 \leq \frac{11}{4} \\ 0 & \leq w_3 = 8 - 3x_1 \Rightarrow x_1 \leq \frac{8}{3} \end{split}$$

La cota relevante es la más restrictiva. En este caso, es la primera. Entonces, aumentamos x_1 hasta $\frac{5}{2}$. Esto hace que w_1 disminuya hasta 0.

Como x_1 dejó de valer 0, debe pasar al lado izquierdo (**entra a la base**), mientras que w_1 , que ahora vale 0, debe pasar al lado derecho (**sale de la base**). De la primera ecuación del diccionario obtenemos que:

$$w_1 = 5 - 2x_1 - 3x_2 - x_3 \quad \Rightarrow \quad x_1 = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}w_1$$

Luego, reemplazamos x_1 por la igualdad de arriba en las ecuaciones 2 y 3 y en z:

$$\begin{split} w_2 &= 11 - 4\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}w_1\right) - x_2 - 2x_3 = 1 + 5x_2 + 2w_1 \\ w_3 &= 8 - 3\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}w_1\right) - 4x_2 - 2x_3 = \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}w_1 \\ z &= 5\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}w_1\right) + 4x_2 + 3x_3 = \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}x_3 - \frac{5}{2}w_1 \end{split}$$

Nuestro nuevo diccionario queda:

En el diccionario podemos ver que la solución actual es:

$$x_1 = \frac{5}{2}, \ x_2 = 0, \ x_3 = 0, \ w_1 = 0, \ w_2 = 1, \ w_3 = \frac{1}{2}$$

Con valor en la función objetivo:

$$z = \frac{25}{2}$$

Nuestro nuevo diccionario queda:

En el diccionario podemos ver que la solución actual es:

$$x_1 = \frac{5}{2}, \ x_2 = 0, \ x_3 = 0, \ w_1 = 0, \ w_2 = 1, \ w_3 = \frac{1}{2}$$

Con valor en la función objetivo:

$$z = \frac{25}{2}$$

Si queremos aumentar el valor de z, nuestra única opción es incrementar el valor de x_3 fijando $x_2=w_1=0$. Luego, x_3 entrará a la base.

De nuevo, tenemos que ver cuánto podemos aumentarlo para que se respete $x_1,w_2,w_3\geq 0$:

$$0 \le x_1 = \frac{5}{2} - \frac{1}{2}x_3 \Rightarrow x_3 \le 5$$
$$0 \le w_2 = 1 + 0x_3 \Rightarrow x_3 < \infty$$
$$0 \le w_3 = \frac{1}{2} - \frac{1}{2}x_3 \Rightarrow \mathbf{x_3} \le \mathbf{1}$$

Como la tercera es la condición más restrictiva, x_3 entra a la base y w_3 sale de la base.

De la tercera ecuación, teníamos que:

$$w_3 = \frac{1}{2} + \frac{1}{2} x_2 - \frac{1}{2} x_3 + \frac{3}{2} w_1 \Rightarrow x_3 = 1 + x_2 + 3 w_1 - 2 w_3$$

Reemplazando x_3 por esa expresión en las demás ecuaciones, nos queda el siguiente diccionario:

Nuestra nueva solución es:

$$x_1 = 2, \ x_2 = 0, \ x_3 = 1, \ w_1 = 0, \ w_2 = 1, \ w_3 = 0$$

y su valor en la f.o. es 13.

Ahora elegimos qué variable del lado derecho aumentar para que incremente el valor de z.

Ahora elegimos qué variable del lado derecho aumentar para que incremente el valor de z. Pero... ¡cualquier incremento que hagamos sobre esas variables implica la disminución de $z! \Rightarrow$ ¡Llegamos a un óptimo!

Una solución óptima al problema estandarizado es:

$$x_1=2,\; x_2=0,\; x_3=1,\; w_1=0,\; w_2=1,\; w_3=0$$

Luego, una solución óptima al problema original es:

$$x_1=2,\ x_2=0,\ x_3=1$$

¿Cómo sabemos que llegamos a un óptimo? Estamos maximizando y no hay costos reducidos positivos.

Recapitulando, el procedimiento para aplicar SIMPLEX con el método de diccionarios para un problema con objetivo maximizar (minimizar):

- 1. Estandarizar el problema lineal
- 2. Hallar solución factible inicial (*)
- 3. Escribir el diccionario dejando del lado izquierdo a las variables básicas.
- 4. Mientras hayan coeficientes de la f.o. (z) positivos (negativos):
 - 4.1 Elegir qué variable no básica aumentar, es decir, qué variable entra a la base (siempre alguna con coeficiente positivo (negativo) en z)
 - 4.2 Calcular cuánto puede aumentar dicha variable y cuál es la variable que sale de la base (*Pivote*)
 - 4.3 Escribir el nuevo diccionario con las variables básicas en función de las no básicas. (*Pivotear*)

Observemos nuestro recorrido de soluciones a lo largo de la aplicación de SIMPLEX:

$$x_1 = 0, \quad x_2 = 0, \quad x_3 = 0$$

Observemos nuestro recorrido de soluciones a lo largo de la aplicación de SIMPLEX:

$$x_1 = \frac{5}{2}, \quad x_2 = 0, \quad x_3 = 0$$

Observemos nuestro recorrido de soluciones a lo largo de la aplicación de SIMPLEX:

$$x_1=2, \quad x_2=0, \quad x_3=1 \quad \text{(solución óptima)}$$

