STOCHASTIC PROCESSES

MICHAEL CRAWFORD - 260 454 391

Background Material

The **conditional probability** of Y = y given X = x is $P_{Y|X=x}(y|x) = \frac{P(X=x,Y=y)}{P(X=x)} = P(Y=y|X=x)$

For descrete RVs, the conditional expectation of Y given

X = x is

 $E(Y|X=x)=\sum_y yP_{Y|X=x}(y|x)=\sum_y yP(Y=y,X=x)$ For continuous RVs, the conditional expectation of Ygiven X = x is

 $E(Y|X=x) = \int_{\mathbb{R}} y f_{Y|X=x}(y|x)$

The **conditional PDF** of Y given X = x is

 $f_{Y|X=x}(y|x) = \frac{f_{X,Y}(x,y)}{f_{X}(x)}$ The **Total Law of Prob** says that

$$F_Y(y) = \begin{cases} \sum_x F_{Y|X=x}(y|x) P_X(x) & \text{(discrete case)} \\ \int_{\mathbb{R}} F_{Y|X=x}(y|x) f_X(x) & \text{(continuous case)} \end{cases}$$

 $P_Y(y) = \sum_x P_{Y|X=x}(y|x)P_X(x)$, and

 $f_Y(y) = \int_{\mathbb{R}} f_{Y|X=x}(y|x) f_X(x)$

The Law of Total Exp is summarized by

 $E(Y) = E_X(E(Y|X))$

which can be broken up into discrete/cts cases:

$$E(Y) = \begin{cases} \sum_{x} E(Y|X=x) P_X(x) & \text{discrete case} \\ \int_{\mathbb{R}} E(Y|X=x) f_X(X) dx & \text{continuous case} \end{cases}$$

To compute E(Y|X): a) compute E(Y|X=x) and call this g(x); b) then we let $E(Y|X) = g(X) = g(x)|_X$

Variance form of the law of total expectation:

 $V(Y) = E_X[V(Y|X)] + V_X[E(Y|X)]$

If X_i , $i=1,2,\ldots,N$ and N are all indep and the X_i are i.i.d. with mean μ , then $E[\sum_{i=1}^N]=\mu E(N)$

Probability Generating Functions

The pgf of a discrete RV X is

$$\phi_X(z) = E(z^X) = \sum_{k=0}^{\infty} z^k P_X(k) = \sum_{k=0}^{\infty} z^k P(X=x)$$
 Properties of pgf's:

- a) $\phi_X(0) = P_X(0) = P(X=0)$
- b) $\phi_X(1) = 1$
- c) $\phi_X(z)$ is continuous, increasing and convex
- d) $\phi'_X(0) = P_X(1)$

e) In general, $P_X(k) = \frac{\phi^{(k)}(0)}{k!}$, where $\phi^{(k)} = \frac{d^k}{dz^k} \phi$ For $S_n = \sum_{i=1}^n X_i$ where X_i are indep, we have $\phi_{S_n}(z) = \prod_{i=1}^n \phi_{X_i}(z) = \text{(if also ident. dist)} = (\phi_X(z))^n$

General Into to Stochastic Processes

Stochastic ⇒ Random/non-deterministic

Formally, a stochastic process indexed by a set T is a family of RVs $\{X_t : t \in T\}$ such that for each $t \in T$, X_t is a RV In order to **specify** a stochastic process, one only needs to specify the joint CFD $F_{X_{t_x},...,X_{t_n}}(x_{t_1},...,x_{t_n})$ for all of the subsets (t_1, \ldots, t_n) of t_i 's in T

The set T is called the **parameter space**

The set of values that X_t can assume is called the **state space**

T can be either countable or uncountable, in which case the stoch, pro, is called eiter a discrete paramater process or a continuous parameter process (resp)

The state space $\{X_t\}_{t\in T}$ can be either countable or uncountable, in which case the stoch, pro, is called either a discrete state space process or a continuous state space **process** (resp) Using these two classifiers, we combine them to get a total of **four classes** of stochastic processes

Branching Processes

Specifically, we consider the GALTON-WATSON BRANCHING

A stochastic $\{X_t: t=1,2,\ldots\}$ is called a **branching process** if it satisfies the following:

a) $X_0 = 1$

b) The indiv. at t can give rise to j indiv's at t+1 with prob $p_i, j = 1, 2, \dots$

c) The p_i 's are assumed to be the same during each time period

d) The prob that an indiv. will give rise to j indiv's is assumed to be independent of how many indiv's there are at that time In a branching process, $X_n = \#$ OF INDIV'S AT TIME t = nWe have two useful identities:

 $\phi_{X_n}(z) = \phi_{X_{n-1}}(\phi(z))$

 $\phi_{X_n}(z) = \phi(\phi_{X_{n-1}}(z))$

The probability of extinction, η , is the smallest root satisfying the equation $z = \phi(z)$.

 $\phi'(1) \le 1 \Rightarrow \eta = 1$

 $\phi'(1) > 1 \Rightarrow \eta < 1$

The equation $\mu_n = \mu \cdot \mu_{n-1} \Rightarrow \mu_n = \mu^n$ tells us that if $\mu_n > 1$, then the average increase in pop size will be geometric (i.e. super fast) and if $\mu < 1$, we get the converse.

A useful equation: $\sigma_n^2 = \begin{cases} \mu^{n-1} \sigma^2 (1-\mu^n)/(1-\mu) & \text{if } \mu \neq 1 \\ n\sigma^2 & \text{if } \mu = 1 \end{cases}$

If there are initially a indiv's, then the probabilty of extinction

 $\eta^2 \cdot [P(\text{EXTINTION OF LINE } 1 \cap \cdots \cap \text{EXTINCTION OF LINE } a) -$ INDEP. OF LINES

So the probability of non-extinction is $1 - \eta^a$.

Markov Chains (MC)

Attn is restricted to discrete parameter, contable state SPACE stoch pros here

The stoch. pro. $\{X_n : n = 0, 1, \dot{a}\}$ is called a **discrete** parameter MC if

$$P[X_{n+1} = j | X_0 = i_0, \dots, X_n = i_n] = P[X_{n+1} = j | X_n = i] = P_{ij}$$

This is called the Markov Property. The RHS is called the transition probability P_{ij} . All of the transition probabilities are stored in the transition matrix $(P)_{ij}$

A MC is homogeneous or stationary if

 $P[X_{n+1} = j | X_n = i] = P[X_1 = j | X_0 = i]$ - i.e. P_{ij} does not depend on n

Useful equation: $\sum_{i} P_{ij} = 1$

 $\tilde{P}_i = (P_{0,i}, P_{1,i}, dots)$

 $P_{ij}^n = P[X_{k+n} = j | X_k = i]$ is the **probability of going from** i to i in n steps

The Chapman - Kolmogorov Equations are:

 $P_{ij}^n = \sum_{k=1}^{\infty} P_{ij}^n P_{ik}^m$

 $P^{(m+n)} = P^{(n)}P^{(m)}$

 $P^{(n)} = P^n$

State i is accessible from state j (written $i \to j$) if $\exists n > 0$ s.t. $P_{i,i}^n > 0$.

States i and j communicate (written $i \leftrightarrow j$) iff $i \rightarrow j$ and

The relation '\(\to'\) is an equivalence relation, so we have

a) $i \leftrightarrow i$ b) $i \rightarrow i \Rightarrow i \rightarrow i$

c) $i \to j$ and $j \to k \Rightarrow i \to k$

Markov Chain Triangle Inequality: $P_{ik}^{(m+n)} \geq P_{ij}^m P_{ik}^n$

The set of all states that communicate with each other is called a communicating class

If all states in a MC communicate with each other then the MC is called **irreducible**

 f_i is the prob that an MC will return to state i if it starts in

A state i in an MC is called **recurrent** if $f_i = 1$ and transient if $f_i < 1$

If an MC starts in a recurrent state i, then it will re-enter state i infinitely-many times with probability 1

If an MC starts in a transient state i, then

 $P[X_k$ IS IN STATE *i*FOR *n*TIME PERIODS] = $f_i^{n-1}(1-f_i)$

If a state is transient, then with probability 1 there will be only a finite number of visits to that state

If i is transient, then the expected # of visits in state i is $1/(1=f_i)$ (the mean of the geometric distribution with $p = 1 - f_i$

State *i* is **recurrent** if $\sum_{n=1}^{\infty} P_{ii}^{n} = \infty$ State *i* is **transient** if $\sum_{n=1}^{\infty} < \infty$

If $i \leftrightarrow j$, then either a) both i and j are recurrent; or b) both i and j are transient

In an irreducible MC, either all states are transient or all states are recurrent.

Simple Random Walk

Let X_1, X_2, \ldots be i.i.d. random variables s.t.

$$P(X_i = x) = \begin{cases} p & x = +1\\ q = 1 - p & x = -1 \end{cases}$$

If we definte $S_n = X_1 + \cdots + X_n$ then the stoch. pro. $\{S_n: n=0,1,2,\dots\}$ is a simple random walk on the

The probability that our random walk is on position k after n

$$P(S_n = k) = {n \choose {k+n \choose 2}} p^{(k+n)/2} q^{(n-k)/2}$$

In the SRW, all states communicate, so its an irreducible MC

Long Run Behaviour of Markov Chains

A class A of states is said to be **closed** if

$$P[X_{n+1} \in A | X_n = i] = \begin{cases} 1 & i \in A \\ 0 & i \notin A \end{cases}$$

A MC is **indecomposable** if the state space does not contant 2 or more disjoint classes of closed states

If a chain is IRREDUCIBLE then it is INDECOMPOSABLE If for every pair of stats i and j either $i \to j$ or $j \to i$ holds, the chain is indecomposable

The **period**, d(i), of a state i of a MC is the GCD of all n > 0for which $P_{in}^{in} > 0$ If d(i) = 1 for all states, then the MC is **aperiodic**

For a recurrent state i, let $f_i i^n$ be the probability of returning to state i for the first time in n steps. Then, the probability of

eventual return to state i from i is $f_{ii} = \sum_{n=1}^{\infty} f_{ii}^n$. The expected time to return to state i for the first time is called the **mean recurrence time** and is denoted m_i $m_i < \infty \Rightarrow i$ is positive-recurrent $m_i = \infty \Rightarrow i$ is null-recurrent

It is not contradictory to simultaneously have a prob. of return equal to 1 and a mean return time equal to 0

Stationarity

We call $\tilde{\pi} = \{\pi_1, \pi_2, \dots\}$ a stationary initial distribution of a MC if for i = 1, 2, ... we have: a) $\sum_{j=1}^{\infty} \pi_i P_{ij}$; and b)

$$\sum \pi_i = 1, \, \pi_i > 0$$

 $\sum \pi_i=1,\,\pi_i\geq 0$ In matrix notation, these conditions are written as $\tilde{\pi}=\tilde{\pi}P$ and $\tilde{\pi}\tilde{e} = 1$, where $\tilde{e} = \{1, 1, \dots\}$

THEOREM: Take a MC that is irreducible, recurrent, and aperiodic: 1) If it is positive-recurrent, then

 $\lim_{n\to\infty} P_{ij}^n = \pi_i = 1/m_i < \infty$ and the π_i are unique sols of the above system of equations

- 2) If is is null-recurrent, then $\lim_{n\to\infty} P_{ij}^n = 0$
- 3) If it is irreducible, aperiodic and transient, then $\lim_{n\to\infty} P_{ij}^n = 0 \ \forall \ i,j$