Examen

NB: L'utilisation des calculatrices est autorisée

Exercice 1:

Pour a > 0 donné, on désigne par f la fonction

$$f(x) = \begin{cases} e^{-x} & \text{si } x \in [0, a] \\ 0 & \text{sinon} \end{cases}$$

- 1. Trouver une constante k telle que kf soit une densité de probabilité.
- 2. Trouver une constante $c_1 > 1$ telle que $kf(x) \leq \frac{c_1}{a} I_{[0,a]}(x)$, pour tout $x \in \mathbb{R}$.
- 3. Trouver une constante $c_2 > 1$ telle que $kf(x) \le c_2 I_{[0,+\infty[}(x)e^{-x}; x \in \mathbb{R}$.
- 4. On veut mettre en place une méthode de rejet pour simuler la loi de densité kf en utilisant la loi uniforme sur [0,a] ou la loi exponentielle de paramètre 1. Laquelle vaut-il mieux choisir?
- 5. Donner l'algorithme de simulation de kf par la méthode de rejet en utilisant la densité propositionnelle choisie.

Exercice 2:

Soit

$$F(x) = \begin{cases} \frac{x}{3} & \text{si } x \in [0, 1[\\ \frac{x}{3} + \frac{1}{3} & \text{si } x \in [1, 2]\\ 1 & \text{si } x \ge 9 \\ 0 & \text{si } x \le 0 \end{cases}$$

- 1. Donner l'inverse de la fonction F.
- 2. Donner l'algorithme de simulation de données, par la méthode d'inversion, de la distribution de fonction de répartition F.

Exercice 3:

Soit X une variable aléatoire de loi de Cauchy $\mathcal{C}(0,1)$. On s'intéresse au calcul de

$$p = \mathbb{P}(X \ge 5) = \int_5^{+\infty} \frac{1}{\pi(1+x^2)} dx.$$

- 1. Donner la valeur de p.
- 2. En considérant $x_1, ..., x_n$ des réalisations de variables aléatoires i.i.d. suivant la loi de Cauchy C(0,1), donner l'estimateur de Monte Carlo classique de p.
- 3. Justifier que l'on peut écrire p sous la forme :

$$p = \int_0^{1/5} \frac{1}{\pi (1 + x^2)} dx,$$

- 4. Donner l'algorithme qui permet d'estimer p par la méthode d'échantillonnage préférentiel.
- 5. Laquelle des deux méthodes d'estimation utilisée permettra de donner variance plus petite?
- Donner une condition théorique pour que la densité instrumentale donne un estimateur d'échantillonnage préférentiel de variance minimale.

Exercice 4:

On s'intéresse à l'estimation de l'intégrale $I = \int_0^1 e^u du$.

- 1. Rappeler la formule de l'estimation Monte-Carlo standard \hat{I}_n et le Théorème Central Limite auquel il abéit
- 2. Calculer la variance σ^2 qu'il faut intervenir et donner un estimateur $\hat{\sigma}_n^2$ de σ^2 .
- 3. Donner un estimateur \hat{I}_n de I à base de variables antithétiques.
- 4. Quelle est sa variance théorique s^2 ?
- 5. Par rapport au Monte-Carlo standard, par combien (environ) a-t-on divisé le temps de calcul pour atteindre la même précision?

Soit c une constante et $X_c = \exp(U) + c(U - \frac{1}{2})$, où U est une variable aléatoire uniforme sur l'intervalle [0, 1].

- 6. Quelle est la moyenne de la variable X_c ?
- 7. Exprimer la variance de X_c en fonction de c et des variances et covariance de U et $\exp(U)$.
- 8. En déduire la valeur c^* de c rendant cette variance minimale et préciser $Var(X_{c^*})$. Comparer à s^2 .