Chapter 2

IP Addressing

Huynh Nguyen Chinh

Internet Protocol Characteristics

- Operates at network layer of OSI
- Connectionless protocol
- Packets treated independently
- Hierarchical addressing
- Best-effort delivery
- No data-recovery features

Why IP Addresses?

- They uniquely identify each device on an IP network.
- Every host (computer, networking device, peripheral) must have a unique address.
- Host ID:
 - Identifies the individual host
 - Is assigned by organizations to individual devices

Network.Host

IP PDU Header

IP Address Format: Dotted Decimal Notation

	Example				
An IP address is a 32-bit binary number	10101100	00010000	10000000	00010001	
For readability, the 32-bit binary number can be divided into four 8-bit octets	10101100	00010000	10000000	00010001	
Each octet (or byte) can be converted to decimal	172	16	128	17	
The address can be written in dotted decimal notation	172.	16.	128.	17	

The binary-to-decimal and decimal-tobinary conversion will be detailed later in this course.

IP Address Classes: The First Octet

A B C ... Easy as 1 2 3

Class A ... First 1 bit fixed 0 x x x x x x x x

Host

Host

Host

Class B ... First 2 bits fixed

<u>10</u>xxxxxx

Network

. Host

Host

Class C ... First 3 bits fixed

<u>110</u>xxxxx

Network

Network

Host

IP Address Ranges

IP Address Class	First Octet Binary Value	First Octet Decimal Value	Possible Number of Hosts
Class A	1-126	<u>0</u> 0000001 to <u>0</u> 1111110*	16,777,214
Class B	128-191	10000000 to 10111111	65,534
Class C	192-223	11000000 to 11011111	254

^{*127 (01111111)} is a Class A address reserved for loopback testing and cannot be assigned to a network.

Reserved Address

Network Addresses 32 Bits **Network** 000000000000000 Broadcast Addresses 32 Bits 11111111111111111 **Network**

Public IP Addresses

Class	Public IP Ranges
Α	1.0.0.0 to 9.255.255.255 11.0.0.0 to 126.255.255.255
В	128.0.0.0 to 172.15.255.255 172.32.0.0 to 191.255.255.255
С	192.0.0.0 to 192.167.255.255 192.169.0.0 to 223.255.255.255

Private IP Addresses

Class	Private Address Range				
А	10.0.0.0 to 10.255.255.255				
В	172.16.0.0 to 172.31.255.255				
С	192.168.0.0 to 192.168.255				

DHCP

DNS

- Application specified in the TCP/IP suite
- A way to translate human-readable names into IP addresses

Network Connection

ipconfig

C:\WINDOWS\system32\cmd.exe	_ 🗆 🗙
C:\Documents and Settings>ipconfig /all	_
Windows IP Configuration	
Host Name : PCUSER Primary Dns Suffix : Node Type : Hybrid IP Routing Enabled : No WINS Proxy Enabled : No DNS Suffix Search List ::	
Ethernet adapter Local Area Connection:	
Connection-specific DNS Suffix Description Intel(R) PRO/1000 PL Network Connection Physical Address 00-15-58-2F-21-E6 Dhcp Enabled Yes Autoconfiguration Enabled Yes IP Address 192.168.1.102 Subnet Mask 255.255.255.0 Default Gateway 192.168.1.1 DHCP Server 192.168.1.1 DNS Servers 127.107.241.185 127.135.250.69 Lease Obtained Wednesday, April 25, 2007 12:27:51 AM Lease Expires Thursday, April 26, 2007 12:27:51 AM	
	-

Subnetworks

- Smaller networks are easier to manage.
- Overall traffic is reduced.
- You can more easily apply network security policies.

Possible Subnets and Hosts for a Class C Network

Network . Network . Network

Number of Bits Borrowed (s)	Number of Subnets Possible ^(2^S)	Number of Bits Remaining in Host ID (8 - s = h)	Number of Hosts Possible Per Subnet (2 ^h - 2)
1	2	7	126
2	4	6	62
3	8	5	30
4	16	4	14
5	32	3	6
6	64	2	2
7	128	1	2

Possible Subnets and Hosts for a Class B Network

Number of Bits Borrowed (s)	Number of Subnets Possible (2 ^S)	Number of Bits Remaining in Host ID (16 - s = h)	Number of Hosts Possible Per Subnet (2 ^h - 2)
1	2	15	32,766
2	4	14	16,382
3	8	13	8,190
4	16	12	4,094
5	32	11	2,046
6	64	10	1,022
7	128	9	510

Possible Subnets and Hosts for a Class A Network

Number of Bits Borrowed (s)	Number of Subnets Possible (2 ⁸)	Number of Bits Remaining in Host ID (24 - s = h)	Number of Hosts Possible Per Subnet (2 ^h - 2)
1	2	23	8,388,606
2	4	22	4,194,302
3	8	21	2,097,150
4	16	20	1,048,574
5	32	19	524,286
6	64	18	262,142
7	128	17	131,070

End System Subnet Mask Operation

How Routers Use Subnet Masks

Applying the Subnet Address Scheme

Octet Values of a Subnet Mask

128	64	32	16	8	4	2	1		
1	0	0	0	0	0	0	0	=	128
1	1	0	0	0	0	0	0	=	192
1	1	1	0	0	0	0	0	=	224
1	1	1	1	0	0	0	0	=	240
1	1	1	1	1	0	0	0	=	248
1	1	1	1	1	1	0	0	=	252
1	1	1	1	1	1	1	0	=	254
1	1	1	1	1	1	1	1	=	255

Subnet masks, like IP addresses, are represented in the dotted decimal format like 255.255.255.0

Default Subnet Masks

Example Class A address (decimal): 10.0.0.0

Default Class A mask (binary): 11111111.00000000.00000000.00000000

Default Class A mask (decimal): 255.0.0.0

Default classful prefix length: /8

Example Class B address (decimal): 172.16.0.0

Example Class B address (binary): 10010001.10101000.00000000.00000000

Default Class B mask (decimal): 255.255.0.0

Default classful prefix length: /16

Example Class C address (decimal): 192.168.42.0

Example Class C address (binary): 11000000.10101000.00101010.000000000

Default Class C mask (decimal): 255.255.255.0

Default classful prefix length: /24

Procedure for Implementing Subnets

- Determine the IP address assigned by the registry authority.
- Based on the organizational and administrative structure, determine the number of subnets required.
- Based on the address class and required number of subnets, determine the number of bits you need to borrow from the host ID.
- Determine the binary and decimal value of the subnet mask.
- Apply the subnet mask to the network IP address to determine the subnet and host addresses.
- Assign subnet addresses to specific interfaces.

Eight Easy Steps for Determining Subnet Addresses

IP Address: 192.168.221.37 Subnet Mask /29

Step	Description	Example		
1.	Write the octet that is being split in binary.	Fourth octet: 00100101		
2.	Write the mask or classful prefix length in binary.	Assigned mask: 255.255.255.248 (/29) Fourth octet: 11111000		
3.	Draw a line to delineate the significant bits in the assigned IP address. Cross out the mask so you can view the significant bits in the IP address.	Split octet (binary): 00100101 Split mask (binary): 11111000		

Eight Easy Steps for Determining Subnet Addresses (Cont.)

Step	Description	Example
4.	Copy the significant bits four times.	00100 000 (network address) 00100 001 (first address in subnet)
5.	In the first line, define the network address by placing all zeros in the significant bits.	00100 110 (last address in subnet) 00100 111 (broadcast address)? Completed Subnet Addresses
6.	In the last line, define the broadcast address by placing all ones in the significant bits.	Network address: 192.168.221.32 Subnet mask: 255.255.255.248 First subnet: 192.168.221.32 First host address: 192.168.221.33 Last host address: 192.168.221.38
7.	In the middle lines, define the first and last host number.	Drondonst address: 102 169 221 20 +
8.	Increment the subnet bits by one.	0010 <mark>1</mark> 000 (next subnet)

Example: Applying a Subnet Mask for a Class C Address

IP Address 192.168.5.139 Subnet Mask 255.255.255.224

IP Address	192	168	5	139	
IP Address	11000000	10101000	00000101	100 <mark>01011</mark>	
Subnet Mask	11111111	11111111	11111111	111 <mark>00000</mark>	/27
Subnetwork	11000000	10101000	00000101	10000000	
Subnetwork	192	168	5	128	
First Host	192	168	5	10000001=129	
Last Host	192	168	5	10011110=158	
Directed Broadcast	192	168	5	10011111=159	
Next Subnet	192	168	5	10100000=160	

Example: Applying a Subnet Mask for a Class B Address

IP Address 172.16.139.46 Subnet Mask /20

IP Address	172	16	139	46	
IP Address	10101100	00010000	1000 <mark>1011</mark>	00101110	
Subnet Mask	11111111	11111111	1111 <mark>0000</mark>	00000000	/20
Subnetwork	10101100	00010000	10000000	00000000	
Subnetwork	172	16	128	0	
First Host	172	16	10000000	00000001=128.1	
Last Host	172	16	10001111	11111110=143.254	
Directed Broadcast	172	16	10001111	11111111=143.255	
Next Subnet	172	16	10010000	00000000=	144.0

Example: Applying a Subnet Mask for a Class A Address

IP Address 10.172.16.211 Subnet Mask /18

IP Address	10	172	16	211		
IP Address	00001010	10101100	00010000	11010011		
Subnet Mask	11111111	11111111	11000000	00000000	/18	
Subnetwork	00001010	10101100	00000000	00000000		
Subnetwork	10	172	0	0		
First Host	10	172	00000000	00000001=0.1		
Last Host	10	172	00111111	11111110=63.254		
Directed Broadcast	10	172	00111111	11111111=63.255		
Next Subnet	10	172	01000000	00000000=64.0		

Exercises: IP Class Recognize

Recognize these features:

- **Class of IP address**
- Public or Private
- Default Subnet Mask

Exercises: IP Class Recognize

Apply to the following IP address:

a. 171.10.1.1

c. 6.12.2.1

e. 192.168.1.10

g. 129.6.5.4

I. 191.168.1.1

b. 172.31.1.1

d. 10.22.22.10

f. 221.222.200.1

h. 172.18.16.1

j. 166.64.12.12

Exercises: IP Subnetting

Subnetting

Pls determine these features:

- Default SM and Current SM
- Number of network bit
- Number of host bit
- Number of Subnet bit
- Number of usable subnet
- Number of usable host per subnet

Exercises: IP Subnetting

Apply to the following IP address:

a.192.160.1.0/24

Borrow 3 bits

c.10.16.1.0/8

Borrow 20 bits

e.179.18.0.0/16

Borrow 11 bits

g.66.65.0.0/28

b.171.16.0.0/16

Borrow 6 bits

d.198.10.10.0/29

f.192.169.12.0/24

Borrow 3 bits

h.191.172.0.0/20

i.126.172.0.0/30

Exercises

Question 1

The IP address 131.107.0.0 is a class B address. What is the range of binary values for the first octet in this address class?

A. 10000000 - 11111111

B. 00000000 - 10111111

C. 10000000 - 10111111

D. 10000000 - 11011111

E. 11000000 - 11101111

Exercises

Question 2

What is the network address for a host with the IP address 123.200.8.68/28?

- A. 123.200.8.0
- B. 123.200.8.32
- C. 123.200.8.64
- D. 123.200.8.65
- E. 123.200.8.31
- F. 123.200.8.1

Exercises

Question 3

Using a class C address range 192.168.21.12 your network needs twenty-eight subnets. Which subnet mask should you use?

- A. 255.255.0.28
- B. 255.255.255.0
- C. 255.255.255.28
- D. 255.255.255.248
- E. 255.255.252

Question 4

You need to configure an IP address for workstation TestKingA. Based on the information shown above, what IP address should be assigned to this host?

A. 192.168.1.159/28

B. 192.168.1.145/28

C. 192.168.1.160/28

D. 192.168.1.144/28

E. 192.168.1.143/28

Answer: B

Question 5

Which of the following addresses can be assigned to a host when using a subnet mask of 255.255.254.0? (Select three)

- A. 113.10.4.0
- B. 186.54.3.0
- C. 175.33.3.255
- D. 26.35.2.255
- E. 152.135.7.0
- F. 17.35.36.0

Answer: B, D, E

Question 6

Answer: C

Based on the information above, which IP address should be assigned to the host?

A. 192.168.5.5 B. 192.168.5.32

C. 192.168.5.40 D. 192.168.5.63

E. 192.168.5.75 F. None of the above

Question 7

If a host on a network has the address 172.16.45.14/30, what is the address of the subnetwork to which this host belongs?

- A. 172.16.45.0
- B. 172.16.45.4
- C. 172.16.45.8
- D. 172.16.45.12
- E. 172.16.45.18

Answer: D

Question 8

Give the following IP: 172.16.80.92/20, 172.16.32.100/20 and 172.16.65.100/20.

What are the <u>broadcast addresses</u> of the subnets in which these IP address belong to? (Select three options.)

A. 172.16.82.255

B. 172.16.95.255

C. 172.16.64.255

D. 172.16.32.255

E. 172.16.47.255

F. 172.16.79.255

Correct Answer: B, E, F

ABC company is acquiring a new Class C IP network. Which of the following <u>subnet masks</u> will provide one useful subnet for each department while still making allowance for <u>enough usable host</u> addresses per department as specified in the graphic?

A. 255.255.255.128

B. 255.255.255.192

C. 255.255.255.224

D. 255.255.255.240

E. 255.255.258

F. 255.255.252

Correct Answer: C

Question 10

You are a network technician at NewStar.vn. Your company has a larger 172.12.0.0 network that you want to divide into subnets. You want each subnet to support 459 hosts. You also want to provide the maximum number of subnets.

Which network mask should you use?

A. 255.255.0.0

B. 255.255.128.0

C. 255.255.224.0

D. 255.255.254.0

Correct Answer: D

Question 11

You are a network administrator at Seibels. You must configure a new subnetwork at the Seibels branch office in Berlin. You have been provided with the subnet mask of 255.255.255.224. You want to assign IP addresses to hosts on the subnet.

Which of the following IP addresses would you use? (Choose all that apply.)

A. 16.23.118.63

B. 87.45.16.159

C. 92.11.178.93

D. 134.178.18.56

E. 192.168.16.87

F. 217.168.166.192

Correct Answer: C, D, E

Question 12

You are a network technician at Zysese company. You have subnetted the 210.106.14.0 network with a /24 mask.

Your supervisor asks you how many usable subnetworks and usable host addresses per subnet this would make provision for.

What would your response be?

- A. 1 network with 254 hosts
- B. 4 networks with 128 hosts
- C. 2 networks with 24 hosts
- D. 6 networks with 64 hosts
- E. 8 networks with 36 hosts

Correct Answer: A

Question 13

You have subnetted the 213.105.72.0 network with a /28 mask. How many usable subnetworks and usable host addresses per subnet will be provided?

- A. 2 networks with 62 hosts
- B. 6 networks with 30 hosts
- C. 16 networks and 16 hosts
- D. 62 networks and 2 hosts
- E. 16 networks and 14 hosts

Correct Answer: E

Question 14

You are a network technician at Fravo, Inc. You are planning a network installation for the company. The design requires 100 separate subnetworks, resulting in the acquisition of a Class B network address. Which of the following subnet masks will provide the 100 subnetworks required, if 500 usable host addresses are required per subnet?

- A. 255.255.0.0
- B. 255.255.224.0
- C. 255.255.254.0
- D. 255.255.255.0
- E. 255.255.254
- F. 255.255.254

Correct Answer: C

Question 15

You are a network technician at company. Company has a class C network license. The company requires 5 usable subnets. Each subnet must accommodate at least 18 hosts.

Which network mask should you use?

- A. 225.225.224.0
- B. 225.225.240.0
- C. 225.225.255.0
- D. 255.255.254
- E. 225.225.255.240

Correct Answer: D

Question 16

Correct Answer: C

You are a network technician at NEWSTAR company. You add a new workstation to the network to accommodate a new employee. The relevant section of the network is shown in the beside exhibit.

The employee is unable to connect to the server at IP address 192.168.18.141/27.

Can you identify the incorrectly configured network parameter in the workstation configuration?

- A. IP address of the Ethernet 0 router interface
- **B.** Server
- C. Workstation default gateway
- D. Workstation subnet mask
- E. Workstation IP address

Subnet 172.16.14.0/24 is divided into smaller subnets.

- Subnet with one mask (/27).
- Then further subnet one of the unused /27 subnets into multiple /30

Subnetted Address: 172.16.32.0/20

In Binary 10101100. 00010000.0010000.000000000

VLSM Address: 172.16.32.0/26

In Binary 10101100. 00010000. 0010 0000.00 000000

1st subnet:

2nd subnet:

3rd subnet:

4th subnet:

5th subnet:

172	16	.0010	0000.00
172	16	.0010	0000.01
172	16	.0010	0000.10
172	16	.0010	0000.11
172	16	.0010	001.00

000000=172.16.32.64/26 000000=172.16.32.128/26 000000=172.16.32.192/26

000000=172.16.32.0/26

000000=172.16.33.0/26

Network

Subnet VLSM Subnet

Host

