National University of Computer and Emerging Sciences, Lahore Campus

Instruction/Notes:

- Attempt all the questions on this answer booklet.
- Make sure to write down your roll # on EVERY sheet in the given space.
- Use of calculator is not allowed.

Question 1 [5+5 = 10Marks]: Number System

[CLO 1]

a)
$$(365)_7 + (423)_5 = (307)$$

10

b) Subtract the following signed numbers using 2's complement method.

$$(1010101)_2$$
 - $(1101)_2$ = $(1001000)_2$

Question 2 [4 + 4= 8 Marks]: Designing

[CLO 3]

Candidates are applying for admission in a certain degree. The passing criteria is such that the total aggregate should be greater or equal to 50%. Design a circuit that gives you an indication of the true value of the passing candidate based on below mentioned criteria.

Weightage of each parameter is as follows.

A-level result	25%
Entry test result	25%
Interview	50%

Hint: If the value of "*A level result*" is 1, it means that the candidate is able to attain 25% marks and 0 means unable to attain any mark.

(a) Fill-in the entries for the outputs in the truth table shown below:

	Output		
A-level result	Entry test result	Interview	Pass Candidate
Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

(b) Write the function F in Sum of Minterms form and Product of Maxterm form.

$$F(A,B,C) = \sum m (m1, m3, m5, m6, m7)$$

$$F(A,B,C) = \prod M(M0, M2, M4)$$

Question 3 [5 Marks]: Gates

[CLO 2]

Analyze the following circuit and give its equation (no need for an optimized equation).

O (A, B, C) =
$$(B' + C) \oplus (A \cdot B)$$
 ' + $(B' + C)$ '

Question 4[7 Marks]: K-map Simplification

[CLO 3]

A Boolean function is given as follows:

$$F(A, B, C, D) = \Pi M(4, 7, 11, 10)$$

Don't care: $d(A, B, C, D) = \Sigma m(2, 3, 6, 12, 14, 15)$

Minimize the function ${\bf F}$ in Product of Sums form using K-maps shown below:

\	AΒ			
CD \	00	10	11	01
00	0	8	X 12	0 4
10	X 2	0 10	X 14	X 6
11	X 3	0 11	X 15	0
01	1	9	13	5

Note: No marks will be given if K-map is not properly filled.

	Roll #
Rough Work	