Question 1 Marks Solve the following inequality $\frac{x}{1-x^2} \ge 0$ (a) 3 Factorise completely $x^4 + x^3 - 2x^2 - 2x$ (b) (i) 1 Find the roots of the following equation $4x^3 - 4x^2 - 29x + 15 = 0$, (ii) 3 given that one root is the difference between the other two roots. Solve, showing the solution on the number line, $|x-1| \le x+2$ (b) 3 Question 2 (start a new page) Prove by the Principle of Mathematical Induction that 5" + 3" is always even for all positive integers n. Show that a solution of $x^3 + x - 1 = 0$ lies between x = 0 and x = 1. (b) i) ii) By using Halving of the Interval Method once, obtain a better 2 approximation. By using x = 0.5 as a first approximation, apply Newton's method 2 iii) once to obtain a better approximation. (give your answer to three decimal places). Decide which method is more powerful and why is that? iv) Question 3 (start a new page) (a) Use mathematical induction to prove the following result for positive integral values of n: $\sum_{r=1}^{n} 3^{-r} = \frac{3^{n} - 1}{2(3)^{n}}$ (b) Two cars are travelling along roads that intersect at right angles to one another, One starts 200 km away and travels towards the intersection at 80 kmh⁻¹, while the other starts at 120 km away and travels lowards the intersection at 60 kmh⁻¹. i) Show that their distance d apart after t hours is given by: 2 $d^2 = 10000t^2 - 46400t + 54400$ (note: the distance formula is $d = speed \times time$). ii) Hence find how long it takes them to reach their minimum 3 distance apart.

iii) Find their minimum distance apart.

1

Question 4 (start a new page)

- (a) Prove by mathematical induction that $4^n \ge 3n + 7$, for all integers $n \ge 2$
- (b) Sketch, showing all the important features, the real function $f(x) = \frac{x^2}{2x+3}$. Thence, determine the values of x for which the function is decreasing.

End of Test

Mathematics Extension 1 / Test #1

(a) Two circles intersect at E and F. AEC and BFD are straight lines. Copy the diagram and prove that AB is parallel to CD.

Marks

3

(b) If $\sin \alpha = \frac{3}{5}$, and $\tan \beta = \frac{12}{5}$, find the exact value of $\tan(\alpha - \beta)$

- (c) (i) Simplify $\frac{\sin 2x}{1+\cos 2x}$
 - (ii) Hence, find the exact value of tan15.
- (d) A surveyor observes two towers, one due north, of height 80m, and the other on a bearing of θ (θ <90°) of height 120m. The angles of elevation of the two towers are 40° and 36° respectively. If the towers are 150m apart on a horizontal plane, calculate the value of θ to the nearest minute.

Question 2 (start a new page)

- (a) (i) Find $\int \sin^2 3x dx$ 3
 - (ii) Use the substitution u = x 1 to find $\int 5x\sqrt{x 1}dx$
- (b) Find: (i) $\int x^4 (2x^5 1) dx$ (let $u = 2x^5 1$)
 - (ii) $\int_{0}^{3} \frac{t}{\sqrt{t+1}} dt$ 3

Mathematics Extension 1 / Test #2

(c) (i) Differentiate $x \cos x$

1

(ii) Hence find $\int x \sin x dx$

2

Question 3 (start a new page)

(a) (i) Find the exact value for $2\cos^2 22.5^\circ - 1$

2

2

(ii) Show that $\frac{1+\sin\theta-\cos\theta}{1+\sin\theta+\cos\theta} = \tan\frac{\theta}{2}$

(b) Express $\sqrt{3}\sin x + \cos x$ in the form $r\sin(x+\theta)$ and hence solve the trigonometric equation $\sqrt{3}\sin x + \cos x = 1$, for $0 \le x \le 360^\circ$ (Give answers to the nearest degree).

5

Question 4 (start a new page)

(a) (i) Sketch $f(x) = 2\sqrt{x} + 5$. State the Domain and Range for this function.

2

(ii) State if it is a one-one function in its domain, and if it is, find its inverse function $y = f^{-1}(x)$

2

(iii) Sketch $y = f^{-1}(x)$. State the Domain and Range for this function.

2

(b) A curve has $\frac{dy}{dx} = 6 \sin 2x$, and passes through the point $\left(\frac{\pi}{4}, 3\right)$. Find the equation of this curve.

3

- (c) Find:
 - (i) $\int_{a}^{2} \frac{x}{\sqrt{1+x^2}} dx$

3

(ii) $\int_{0}^{1} \sqrt{4 - x^2} dx$ (use the substitution $x = 2\cos\theta$)

4

End of Test

Mathematics Extension 1 / Test #2

