ТЕХНИЧЕСКИЙ КОМИТЕТ ПО СТАНДАРТИЗАЦИИ «Программно-аппаратные средства технологий распределенного реестра и блокчейн»

Методические рекомендации ТК 159 MP 159.5.001 - 2020

Протокол обмена сообщениями между распределенными реестрами с децентрализованным подтверждением пересылаемых сообщений

© Технический комитет по стандартизации «Программно-аппаратные средства технологий распределенного реестра и блокчейн»

ПРЕДИСЛОВИЕ

- 1 РАЗРАБОТАНЫ коллективом экспертов Рабочей Группы № 5 Технического комитета по стандартизации ТК 159 «Программно-аппаратные средства технологий распределенного реестра и блокчейн»:
 - Дружинин Илья Александрович, ilya.druzhinin@fintechru.org
 - Колотов Александр Васильевич, <u>a.kolotov@innopolis.ru</u>
 - Каламбет Петр Игоревич, peter@kalambet.dev

2 ВНЕСЕНЫ Техническим комитетом по стандартизации ТК 159 «Программноаппаратные средства технологий распределенного реестра и блокчейн»

СОДЕРЖАНИЕ

Введение	4
Текущий статус документа	4
1 Область применения	4
2. Нормативные ссылки	5
3 Термины, определения и обозначения	5
Термины	5
Обозначения	5
4 Общие положения	6
4.1. Описание	6
4.2 Распределенные реестры и требования к ним	6
4.2.1 Маршрутизирующий распределенный реестр	6
4.2.2 Корпоративный распределенный реестр	6
4.3 Требования к мосту и принципы организации моста	7
4.3.1 Устройство моста на стороне отдельного участника	7
4.3.2 Устройство межорганизационного моста	8
4.4 Смарт-контракты и требования к ним	8
4.4.1 Прикладные смарт-контракты	8
4.4.2 Системные смарт-контакты	9
4.5 Оракул и требования к нему	9
4.6 Организационный уровень и требования к нему	10
4.6.1 Правила добавления участника	10
4.6.2 Правила исключения участника	10
4.6.3 Развертывание, модификация ССмК	10
4.6.4 Развертывание ПСмК	10
4.6.5 Модификация, обновление ПСмК	10
4.6.6 Прекращение деятельности ПСмК	11
4.6.7 Развертывание оракула	11
5 Протокол передачи сообщения	12
5.1 Протокол передачи сообщения	12
5.2 Протокол запроса информации из внешнего РР	12
6 Состав сообщения	14
6.1 Поля сообщения	14
6.1.1 Заголовок сообщения	14
6.1.2 Тело сообщения	14
Ссылки	15
Приложение А. Развитие дополнительных разделов МР	16

Введение

Настоящие рекомендации предназначены для построения взаимодействия информационных систем на базе технологии распределенных реестров, используемый способ именуется экспертным сообществом «мостом».

Существует несколько вариантов реализации «мостов», описанных в опубликованном ранее документе [1]. В настоящих рекомендациях рассматривается вариант распределенной передачи сообщений между распределенными реестрами с децентрализованным подтверждением пересылаемых сообщений. Данный подход позволит повысить безопасность, достоверность передаваемых данных, а также защиту от атак цензурирования и единой точки отказа.

Текущий статус документа

Настоящие рекомендации подготовлены для публичного обсуждения и дополнения экспертами рынка блокчейн-технологий в рамках последовательности разработки и утверждения проекта национального стандарта. Обратную связь, предложения, замечания следует высылать руководителю рабочей группы №5 «Взаимодействие систем распределенного реестра» ТК 159 (Дружинин Илья Александрович, ilya.druzhinin@fintechru.org).

План дополнительных разделов настоящих рекомендаций приведен в Приложении A.

1 Область применения

Настоящие рекомендации описывают протокол обмена сообщениями между распределенными реестрами с подтверждением приема и передачи сообщений, благодаря которому подтверждение пересылаемого сообщения происходит автоматически с достижением консенсуса.

Для организации взаимодействия необходимо участие двух более распределенных реестров, один ИЗ которых должен исполнять роль маршрутизирующего распределенного реестра (МРР), у всех остальных – роль корпоративных распределенных реестров (КРР). В сети могут принимать участие стороны, которые не связаны напрямую друг с другом в рамках жизненного цикла определенного бизнес-сценария.

Участниками протокола должны быть однозначно идентифицированные корпоративные сети, занесенные в реестр участников организующей взаимодействие МРР, и обладающие внутренними цифровыми активами (далее - ЦА), которые могут быть переданы за их пределы. Маршрутизирующий распределенный реестр может не обладать таким внутренним ЦА.

Данный документ предназначен для архитекторов и разработчиков информационных систем на базе распределенного реестра, а также для сотрудников информационной безопасности для проверки соответствия требованиям настоящих

методических рекомендаций разрабатываемой информационной системы и функций взаимодействия со сторонними распределенным реестрами.

2. Нормативные ссылки

В настоящих рекомендациях нормативные ссылки не используются.

3 Термины, определения и обозначения

Термины

Византийская устойчивость (ВFT) – свойство устойчивости протокола консенсуса к недобросовестному, вредоносному поведению.

Внереестровое программное обеспечение – программное обеспечение, действующие вне распределенного реестра и взаимодействующее с распределенном реестром посредством API распределенного реестра.

Консенсус – способ согласования состояния в распределенной среде.

Мост — протокол (архитектурное решение), объединяющий два и более распределенных реестра с использованием автономных агентов («оракулов»), для приема, проверки и передачи информации между распределенными реестрами [на основе ГОСТ 34.321-96 (пункт 2.39)].

Оракул – автономный агент, который находит и подтверждает события в распределенном реестре и передает эти данные в распределенный реестр для использования смарт-контрактами. Агенты могут образовывать сеть подтверждения для проверки достоверности события распределенного реестра.

Цифровой актив – информация, размещенная в информационной системе и представляющая ценность для ее участников.

Пользователь приложения – пользователь, который вызывает MPP API или смартконтракт. Вызов API инициирует отправку транзакции в распределенный реестр.

Обозначения

ПСмК - прикладной смарт-контракт

СмК - смарт-контракт

ССмК - системный смарт-контракт

КРР - корпоративный распределенный реестр

МРР - маршрутизирующий распределенный реестр

ЦА - цифровой актив

API - Application Programming Interface

4 Общие положения

4.1. Описание

На техническом уровне «мост» представляет собой группу равноправных узлов, каждый из которых состоит из программно-аппаратного комплекса, включающего:

- узел подключаемого корпоративного распределенного реестра (КРР);
- узел маршрутизирующего распределенного реестра (МРР);
- набор системных смарт-контрактов (размещаемых в распределенных реестрах **MPP** и **KPP**);
- внереестровое программное обеспечение (далее оракул) для взаимодействия со смарт-контрактами в распределенных реестрах.

Каждый узел «моста» физически должен быть участником обеих сетей (MPP, KPP).

4.2 Распределенные реестры и требования к ним

4.2.1 Маршрутизирующий распределенный реестр

Маршрутизирующий распределенный реестр должен, как правило, состоять из одноранговых узлов, список которых размещен в белом списке узлов маршрутизирующей одноранговой сети. А также обладать:

- механизмом согласования состояния в распределенном среде с византийской устойчивостью;
- смарт-контрактами для выполнения системных функций моста на уровне распределенного реестра (смарт-контрактов в виртуальной машине, исполнение программных функций в среде исполнения узла распределенного реестра):
- изолированностью логики и среды выполнения системных функций моста (в смарт-контрактах распределенного реестра) от внешней среды;
- смарт-контракты моста должны уметь сохранять свое состояние;
- доступом к событиям и состояниям СмК моста посредством АРІ;
- МРР должны формировать одноранговые узлы без выделения отдельных участников;
- окончательной завершенностью истории изменения состояния моста;
- МРР должен поддерживать большое количество участников (>100).

4.2.2 Корпоративный распределенный реестр

Корпоративный распределенный реестр – это распределенный реестр, принадлежащий конкретной компании, группе компаний, консорциуму и отвечающий бизнеспотребностям, ради которых он был разработан и введен в эксплуатацию. КРР может обладать внутренней ценностью (цифровыми активами), которые он может передавать в сторонние КРР. Для этого платформа, реализующая КРР, должна включать:

- окончательность и неподдельность транзакций;
- поддержку и возможность проверки подписи оракула(-ов);
- системные смарт-контракты для проверки, создания подписей;
- КРР должен реализовать общий для всех КРР АРІ.

КРР API — это минимально необходимый набор функциональных возможностей платформы TPP, на которой реализован узел КРР, для возможности взаимодействия с MPP. В состав возможностей должно включаться формирование мультиподписи для формирования и проверки подписи оракула. КРР API может реализовываться на смартконтрактах.

4.3 Требования к мосту и принципы организации моста

Фигура 1

4.3.1 Устройство моста на стороне отдельного участника

Мост на стороне определенного участника представляет собой группу узлов (от 1 до n), каждый из которых включает узел маршрутизирующего распределенного реестра и корпоративного распределенного реестра. При этом:

- узел маршрутизирующего распределенного реестра отвечает за прием внешних сообщений (на картинке - M);
- узел корпоративного распределенного реестра (на картинке К) отвечает за подтверждение и обработку входящих сообщений и отправку сообщений в маршрутизирующий распределенный реестр;

• тождественность приема и получения сообщений достигается на основе голосования оракулов по каждому сообщению, если того требует конфигурация моста.

4.3.2 Устройство межорганизационного моста

Взаимодействие нескольких организаций с помощью моста реализуется без изменения предложенной схемы моста на стороне отдельного участника. Каждый мост подключается к маршрутизирующему распределенному реестру по общему принципу, при соответствии требованиям к корпоративным распределенным реестрам.

Фигура 2.

4.4 Смарт-контракты и требования к ним

Смарт-контракты моста делятся на прикладные и системные.

- <u>Прикладные смарт-контракты (ПСмК)</u> описывают бизнес логику, при которой в процессе своего жизненного цикла они отправляют сообщения в другие распределенные реестры (посредством вызова функций системных смарт-контрактов).
- Системный смарт-контракт (ССмК) отвечает за реализацию функций моста. Унифицированные для всех взаимодействующих КРР смарт-контракты предназначены для приема сообщений из прикладных смарт-контрактов, взаимодействия с оракулом и передачи сообщений в прикладной смарт-контракт КРР.

4.4.1 Прикладные смарт-контракты

Прикладные смарт-контракты отвечают за правила формирования исходящих сообщений и правила обработки входящих сообщений. В том числе ПСмК может:

- определять правила упорядочивания сообщений (абстракция очереди сообщений) и создания очередей входящих и исходящих сообщений, если это важно:
- фиксировать факт отправки сообщения в ССмК;

- проверять отправителя и адреса назначения (сигнатуры смарт-контракта, метода смарт-контракта) сообщения в списках участников сети МРР и/или КРР, чтобы избежать ошибочного получения или ложного сообщения атакующего;
- определять метод для приема входящих сообщений.

Прикладной смарт-контракт должен иметь уникальный адрес в КРР.

4.4.2 Системные смарт-контакты

Логически системные смарт-контракты описывают схему передачи и получения сообщений из одной сети в другую посредством организации исходящей (outbox) и входящей (inbox) очередей сообщений. Повышение доверия к схеме и способу передачи достигается за счет голосования за каждое из передаваемых и получаемых сообщений группой узлов, входящих в мост, если это предусмотрено конфигурацией.

ССмК отвечают за прием входящего от ПСмК КРР сообщения и отправку его в ССмК МРР, при этом:

- ССмК КРР должны иметь ограничения по списку ПСмК и пользователей, которые могут их вызывать:
- ССмК КРР может регистрировать получателей сообщений (ПСмК) из МРР для корректной адресации;
- ССмК может поддерживать блоклист смарт-контрактов, которые не могут взаимодействовать с ССмК;
- ССмК должен ставить в однозначное соответствие вызываемой сущности (ПСмК может регистрировать свой адрес в ССмК) уникальный/конкретный/ стандартизированный адрес в КРР.

Одним из способов оптимизации взаимодействия может быть совмещенная система передачи и голосований за сообщения. Таким образом узлы моста могут осуществлять:

- раздельную передачу и голосование за сообщения обосновано для корпоративных систем, в которых разные уровни ответственности у разных компонент, в целях обеспечения требований ИБ;
- совместную передачу и голосование за сообщение проще для реализации, менее доверенное с точки зрения ИБ.

4.5 Оракул и требования к нему

Оракул — внереестровое (off-ledger, off-chain) программное обеспечение. Призван осуществлять взаимодействие между клиентами распределенного реестра (MPP, KPP) и смарт-контрактами, размещенными в реестрах.

Задачи оракула:

- подписываться на события и отслеживать события, создаваемые в ССмК (в MPP, KPP);
- вызывать методы ССмК в КРР;
- проверять целостность передаваемых сообщений;

- подписывать входящее сообщение в MPP при принятии(например, m-из-n подписей или сборка подписи);
- проверять сертификаты отправителя, прав участия (если реализована модель участия в МРР) (опционально);
- проверять правила финальности для MPP и KPP (организаторы MPP определяют точку финальности и правила финальности (технологическая, организационная).

4.6 Организационный уровень и требования к нему

4.6.1 Правила добавления участника

В смарт-контракт реестра участников МРР по определенным правилам записывается информация по новому добавленному КРР (количество узлов на стороне участника, адреса узлов в МРР).

4.6.2 Правила исключения участника

В смарт-контракте реестра участников МРР по определенным правилам (голосование участников, экономическая модель управления, судебное предписание) обновляется статус исключаемой КРР: адреса КРР вносятся в стоп-лист.

4.6.3 Развертывание, модификация ССмК

На этапе развертывания ССмК моста:

- определяется порог голосования за сообщение (зависит от реализации подписи сообщений оракулами);
- определяется список (в т.ч. список из одного) публичных ключей оракулов, которые передают сообщения;
- определяются технические ограничения на передаваемые сообщения.

4.6.4 Развертывание ПСмК

На этапе развертывания ПСмК:

- указывают адрес ССмК для отправки сообщения;
- определяют параметры, свойственные для принимающей стороны.

4.6.5 Модификация, обновление ПСмК

При обновлении с созданием нового экземпляра ПСмК указывают адрес предыдущего ПСмК, который содержит информацию, и создают функции запроса информации из предыдущего ПСмК.

При обновлении ПСмК без создания нового экземпляра ПСмК интерфейс взаимодействия с ССмК может оставаться прежним.

При обновлении ПСмК, если адрес ПСмК меняется, информацию по нового уникальному адресу следует передать в ССмК либо сохранить в специальном поле состояния ПСмК.

4.6.6 Прекращение деятельности ПСмК

При прекращении деятельности ПСмК должен возвращать вызывающей стороне информацию по статусу ПСмК.

4.6.7 Развертывание оракула

При развертывании оракула:

- задаются адреса ССмК МРР и ССмК КРР;
- задаются правила финальности, свойственные для КРР и МРР;
- задаются правила подписания сообщений (мультиподпись, сборка подписи);
- задаются проверки отправителя и адресата (опционально).

5 Протокол передачи сообщения

5.1 Протокол передачи сообщения

- 1. Инициатор сообщения (клиент или ПСмК КРР) отправляет закодированное сообщение в ССмК КРР, который:
 - а. фиксирует факт отправки сообщения ПСмК;
 - b. формирует голову сообщения на основе сообщения ПСмК;
 - с. регистрирует (создает/генерирует) событие.
- 2. Оракул на стороне отправителя отслеживает события ССмК:
 - а. этап проверки сообщения: оракул проверяет отправителя, финальность записи сообщения в КРР;
 - b. этап отправки сообщения: формирует, подписывает и отправляет транзакцию с сообщение в MPP.
- 3. Произвольный узел моста прослушивает MPP на наличие сообщений для своего КPP. При получении сообщения производит:
 - а. проверку финальности согласно правилам сообщения в МРР;
 - b. подпись транзакции и отправляет сообщение в KPP.
- 4. ССмК КРР, *отвечающий за приём сообщений*, по факту получения сообщения от оракула, проверяет:
 - а. зарегистрировано ли событие в ССмК;
 - b. если событие не зарегистрировано регистрирует сообщение, выставляя переданный голос в качестве начального значения, увеличивается счетчик;
 - с. если событие уже зарегистрировано добавляет переданный голос к списку уже добавленных (инкрементируется счетчик).
 - d. контролирует, что каждый из участников может проголосовать всего один раз;
 - е. проверяет, удовлетворяет ли требование порогу, установленному в правилах работы голосования ССмК;
 - f. если удовлетворяется пороговому значению отправляет сообщение ПСмК(-ам);
 - g. если не удовлетворяет ССмК ждет подтверждение от необходимого количества оракулов.

5.2 Протокол запроса информации из внешнего РР

- 1. Инициатор сообщения (клиент или ПСмК КРР) отправляет в ССмК закодированное сообщение с запросом на чтение, с информацией, что читаем, и указанием информации о получателе результата, который:
 - а. фиксирует факт отправки сообщения ПСМК;
 - b. формирует голову сообщения (тип сообщения (чтение или исполнение), что запрашиваем и кому направить ответ) на основе сообщения ПСмК;
 - с. регистрирует событие.
- 2. Оракул на стороне отправителя отслеживает события ССмК КРР:

- а. этап проверки сообщения: оракул проверяет отправителя и получателя, финальность записи сообщения в КРР;
- b. этап отправки сообщения: формирует, подписывает и отправляет транзакцию с сообщение в MPP.
- 3. Произвольный узел моста прослушивает MPP на наличие сообщений для своего КРР. При получении сообщения производит:
 - а. проверку финальности сообщения согласно правилам, установленным в MPP;
 - b. оракул по временной отметке блока, в котором было сообщение в MPP, определяет номер блока KPP, в котором будет происходить чтение;
 - с. направляет запрос на чтение по конкретному блоку КРР.
- 4. ССмК КРР, *отвечающий за прием сообщений*, по факту получения сообщения от оракула:
 - а. отправляет сообщение ПСмК (-ам);
 - b. при получении сообщения от ПСмК формирует сообщение с получателем;
 - с. информирует оракула о наличии сообщения для получателя.
- 5. Оракул получает ответ от ССмК:
 - а. этап проверки сообщения: оракул проверяет отправителя, финальность записи сообщения в КРР;
 - b. этап отправки сообщения: формирует, подписывает и отправляет транзакцию с сообщение в MPP.

6 Состав сообщения

Сообщение представляет собой составной пакет из «головы» и «тела». Обе части сообщения являются набором байт, которые имеют стандартное расположение относительно друг друга (схема). Семантика сообщения не входит в логику работы моста, чтобы сделать такой подход максимально универсальным, и может быть реализована набором смарт-контрактов, описывающих требуемую бизнес-логику в каждой сети соответственно.

Размер заголовка сообщения имеет фиксированное значение, содержит служебную информацию для оракулов и служит для адресации основного сообщения.

Размер «тела» сообщения может меняться и определяется в зависимости от типа сообщения, нужд и особенностей сценария, к которому они применяются. Содержит основную, значимую информацию сообщения.

6.1 Поля сообщения

6.1.1 Заголовок сообщения

- version версия используемого протокола
- <u>message_id</u> уникальное значение сообщения в MPP, правила формирования определяются на этапе выбора или разработки платформы MPP
- <u>source_chain_id</u> адрес KPP отправителя, указывается в реестре участников MPP, формируется по правилам MPP
- <u>destination_chain_id</u> адрес КРР получателя, указывается в реестре участников МРР, формируется по правилам МРР
- sender_address адрес ПСмК в КРР, который отправляет сообщение
- <u>executor_address</u> удаленный ПСмК в КРР (destination_chain_id), который будет получать и выполнять сообщение
- <u>datatype</u> указывается тип сообщения, write для отправки сообщения в удаленный ПСмК, callback для запроса информации в удаленном ПСмК

6.1.2 Тело сообщения

<u>data</u> (полезная нагрузка) – поле, которое содержит значимую информацию по пересылаемому сообщению

- method вызываемый метод в удаленном ПСмК КРР
- <u>params</u> произвольная длина, набор параметров такого метода, в том числе nonce для прикладных ПСМК, которым важно упорядочение сообщений
 - <u>nonce</u> как основной инструмент определения очередности сообщений должен контролироваться кодом ПСмК, быть частью хранимого состояния ПСмК, отвечающего за приём сообщений в список исходящих

Ссылки

1. <u>ИССЛЕДОВАНИЕ ПРОТОКОЛОВ ВЗАИМОДЕЙСТВИЯ РАСПРЕДЕЛЕННЫХ РЕЕСТРОВ</u>

Приложение А. Развитие дополнительных разделов МР

- 1. Раздел «Типовая реализация». Описание реализации протокола в терминах выбранных платформ распределенных реестров (Мастерчейн, Hyperledger Fabric).
- 2. Раздел «Требования информационной безопасности». Описание целей безопасности, модели угроз и нарушителя, потенциальных атак на протокол и взаимодействующие ИС.
- 3. Раздел «Сценарии использования и бизнес-применение». Описание бизнессценариев, реализованных на протоколе.
- 4. Раздел «Формальная спецификация». Состав формальной спецификации и подходы к верификации протокола.
- 5. Приложение «Рекомендации по организации и эксплуатации MPP». Описание последовательности организационных шагов при запуске и эксплуатации MPP.