Automi e Linguaggi Formali - Esame del 24 Giugno 2022

Problema 1 (12 punti)

Se L è un linguaggio regolare sull'alfabeto {0,1}, dimostra che anche ROR(L) è regolare, dove:

 $ROR(L) = \{aw \mid wa \in L, w \in \{0,1\}^*, a \in \{0,1\}\}\$

Dimostrazione costruttiva

Teorema: Se L è regolare, allora ROR(L) è regolare.

Dimostrazione: Costruiamo un NFA per ROR(L) dato un DFA per L.

Dato: M = $(Q, \{0,1\}, \delta, q_0, F)$ è un DFA che riconosce L.

Costruzione dell'NFA M' per ROR(L):

 $M' = (Q', \{0,1\}, \delta', q_0', F')$ dove:

- **Stati:** $Q' = Q \cup \{(q,a) \mid q \in Q, a \in \{0,1\}\} \cup \{q_0'\}$
- **Stato iniziale:** q₀' (nuovo stato)
- Stati finali: $F' = \{(q,a) \mid \delta^*(q_0, a) = q, q \in F\}$
- Transizioni:

1. Lettura del primo simbolo:

• $\delta'(q_0', a) = \{(q_0, a)\} \text{ per } a \in \{0, 1\}$

2. Elaborazione del resto della stringa:

- $\delta'((q,a), b) = \{(\delta(q,b), a)\} \text{ per ogni } q \in Q, a,b \in \{0,1\}$
- 3. Transizioni su epsilon alla fine:
 - Aggiungiamo transizioni ε da ogni stato (q,a) verso δ(q,a)
 - Se $\delta(q,a) \in F$, allora $(q,a) \in F'$

Spiegazione dell'algoritmo:

- 1. All'inizio, M' legge non-deterministicamente il primo simbolo a e lo "memorizza" negli stati
- 2. Simula M sul resto della stringa w, mantenendo a in memoria

3. Alla fine, verifica che il simbolo memorizzato a, se "aggiunto" alla fine, porterebbe a uno stato finale

Correttezza:

⇒: Se aw ∈ ROR(L), allora wa ∈ L. Quindi $\delta^*(q_0, wa)$ ∈ F, cioè $\delta(\delta^*(q_0, w), a)$ ∈ F. M' può:

- Leggere a e andare in (q₀, a)
- Simulare l'elaborazione di w: $(q_0, a) \rightarrow w (\delta^*(q_0, w), a)$
- Verificare che $\delta(\delta^*(q_0, w), a) \in F$

 \Leftarrow : Se M' accetta aw, allora durante la computazione ha memorizzato il primo simbolo a e ha verificato che $\delta(\delta^*(q_0, w), a) \in F$, il che significa wa $\in L$.

Approccio alternativo con espressioni regolari

Se L ha espressione regolare R, allora ROR(L) ha espressione regolare:

```
\mathsf{ROR}(\mathsf{R}) = 0.\mathsf{SHIFT}(\mathsf{R}, 0 \rightarrow \varepsilon, 1 \rightarrow \varepsilon) \cdot 0 + 1.\mathsf{SHIFT}(\mathsf{R}, 0 \rightarrow \varepsilon, 1 \rightarrow \varepsilon) \cdot 1
```

dove SHIFT sposta il primo simbolo alla fine.

Poiché le espressioni regolari sono chiuse sotto queste operazioni, ROR(L) è regolare.

□

Problema 2 (12 punti)

Dimostra che $L_2 = \{uv \mid u \in \Sigma, v \in \Sigma 1\Sigma^* \text{ e } |u| \ge |v|\}$ non è regolare.**

Dimostrazione per contraddizione usando il Pumping Lemma

Definizione precisa di L₂:

```
L_2 = \{uv \mid u \in \{0,1\}^*, v \in \{0,1\}^* | \{0,1\}^*, |u| \ge |v|\}
```

Quindi v deve contenere almeno un '1' e la lunghezza di u deve essere almeno quella di v.

Assunzione: Supponiamo per contraddizione che L₂ sia regolare.

Applicazione del Pumping Lemma: Esiste p > 0 tale che ogni stringa $w \in L_2$ con $|w| \ge p$ può essere decomposta come w = xyz con:

1.
$$|xy| \le p$$

2.
$$|y| > 0$$

3.
$$xy^i z \in L_2$$
 per ogni $i \ge 0$

Scelta della stringa di test: Consideriamo $w = 0^{(2p)} 1 \in L_2$.

Verifichiamo che $w \in L_2$:

•
$$u = 0^{(2p)}, v = 1$$

•
$$|u| = 2p \ge 1 = |v| \checkmark$$

•
$$v = 1 \in \{0,1\} 1\{0,1\} \checkmark$$

Inoltre, $|w| = 2p + 1 \ge p$.

Analisi della decomposizione: Poiché $|xy| \le p$ e w inizia con 2p zeri, xy deve essere contenuto interamente nei primi p zeri. Quindi:

- $x = 0^a$ per qualche $a \ge 0$
- $y = 0^b$ per qualche b > 0
- $z = 0^{(2p-a-b)} 1$

Derivazione della contraddizione: Consideriamo $xy^0z = xz = 0^(2p-b) 1$.

Per essere in L₂, questa stringa deve essere decomponibile come uv dove:

- v contiene almeno un '1'
- $|u| \ge |v|$

Le possibili decomposizioni sono:

1.
$$u = 0^k$$
, $v = 0^2$

Per la condizione $|u| \ge |v|$:

$$k \ge 2p-b-k+1$$

$$2k \ge 2p-b+1$$

$$k \ge p - b/2 + 1/2$$

Ma $k \le 2p-b$, quindi:

$$p - b/2 + 1/2 \le 2p-b$$

$$-p + b/2 + 1/2 \le 0$$

$$b/2 \le p - 1/2$$

$$b \le 2p - 1$$

Questo è sempre vero. Proviamo con xy^2z.

Consideriamo $xy^2z = 0^(2p+b) 1$.

Le decomposizioni possibili sono u = 0^k, v = 0^(2p+b-k) 1. Per $|u| \ge |v|$: $k \ge 2p+b-k+1$ $2k \ge 2p+b-k+1$

2p+b+1

$$k \ge p + b/2 + 1/2$$

Ma $k \le 2p+b$, quindi:

$$p + b/2 + 1/2 \le 2p+b$$

$$-p + b/2 + 1/2 \le 0$$

Questo è la stessa disuguaglianza di prima.

Strategia alternativa: Consideriamo $w = 0^p 1^p$.

Verifichiamo che $w \in L_2$:

- $u = 0^p, v = 1^p$
- |u| = |v| = p, quindi $|u| \ge |v| \checkmark$
- $v = 1^p \in \{0,1\} 1\{0,1\} \checkmark$

Nella decomposizione xyz con $|xy| \le p$:

- y consiste solo di zeri (y = 0^b , b > 0)
- $xy^0z = 0^(p-b) 1^p$

Per essere in L₂, dobbiamo avere una decomposizione uv con $|u| \ge |v|$.

L'unica possibilità è $u = 0^{(p-b)}$, $v = 1^p$.

Ma allora |u| = p-b , contraddizione!

Contraddizione! Quindi L₂ non è regolare. □

Problema 3 (12 punti)

Mostra che per ogni PDA P esiste un PDA P_2 con due soli simboli di stack tale che $L(P_2)$ = L(P).

Dimostrazione costruttiva

Teorema: Ogni linguaggio context-free può essere riconosciuto da un PDA con alfabeto di stack binario.

Dimostrazione: Dato un PDA P = $(Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, costruiamo P_2 con alfabeto di stack $\{0, 1\}$.

Strategia: Codificare ogni simbolo $\gamma \in \Gamma$ con una stringa binaria encode $(\gamma) \in \{0,1\}^{+}$.

Codifica dell'alfabeto di stack

Assegnazione delle codifiche: Sia $\Gamma = \{\gamma_1, \gamma_2, ..., \gamma_k\}$. Definiamo:

- k = |Γ|
- $\ell = \lceil \log_2 k \rceil$ (lunghezza delle codifiche)
- encode(y_i) = rappresentazione binaria di i-1 con ℓ bit

Esempio: Se $\Gamma = \{Z_0, A, B, C\}$, allora:

- $encode(Z_0) = 00$
- encode(A) = 01
- encode(B) = 10
- encode(C) = 11

Costruzione di P₂

 $P_2 = (Q', \Sigma, \{0,1\}, \delta_2, q_0', 0, F')$ dove:

Stati: $Q' = Q \cup \{\text{stati ausiliari per codifica}\}\$

Simulazione di una transizione $\delta(q, a, \gamma) = (q', \alpha)$:

- 1. Decodifica del simbolo in cima:
 - Leggi ℓ bit dalla pila per ricostruire γ
 - Verifica che corrisponda al simbolo aspettato
- 2. Applicazione della transizione:
 - Se $\alpha = \epsilon$ (pop), non fare nulla
 - Se $\alpha = \gamma_1 \gamma_2 ... \gamma_m$ (push), scrivi encode(γ_m)...encode(γ_2)encode(γ_1)
- 3. Aggiornamento dello stato: $q \rightarrow q'$

Algoritmo dettagliato

Per simulare $\delta(q, a, \gamma) = (q', \gamma_1 \gamma_2 ... \gamma_m)$:

Fase 1: Decodifica (stati ausiliari q_decode_1, ..., q_decode_l)

- Leggi l bit dalla pila
- Ricostruisci y e verifica che sia quello aspettato

Fase 2: Elaborazione simbolo input

- Consuma a dall'input (se a $\neq \epsilon$)

Fase 3: Codifica e push (stati ausiliari q_encode_1, ..., q_encode_m)

- Per i = m, m-1, ..., 1:
 - Scrivi encode(yı) sulla pila (bit per bit)

Fase 4: Transizione di stato

- Vai in stato q'

Gestione dello stack vuoto

Problema: Come riconoscere quando lo stack è vuoto?

Soluzione: Usiamo un marker speciale:

- encode(Z₀) include sempre un pattern riconoscibile (es. inizia con 00)
- Quando decodifichiamo e troviamo questo pattern, sappiamo di essere al fondo

Correttezza

Invariante: In ogni momento, il contenuto dello stack di P₂ è la concatenazione delle codifiche dei simboli nello stack di P.

Lemma: Ogni configurazione (q, w, $\gamma_1\gamma_2...\gamma_n$) di P corrisponde alla configurazione (q, w, encode(γ_1)encode(γ_2)...encode(γ_n)) di P₂.

Dimostrazione per induzione:

- Base: Configurazione iniziale corrisponde
- Passo: Ogni transizione di P è fedelmente simulata da una sequenza di transizioni in P2

Complessità della costruzione

• Numero di stati: $|Q'| = O(|Q| \cdot |\Gamma| \cdot \ell)$

- Lunghezza transizioni: Ogni transizione di P richiede $O(\ell \cdot |\alpha|)$ transizioni in P_2
- Alfabeto stack: {0, 1} (fissato)

Conclusione: P₂ riconosce L(P) usando solo due simboli di stack. □

Esempio pratico

PDA originale:

```
\delta(q_0, a, Z_0) = (q_1, AZ_0)

\delta(q_1, b, A) = (q_1, AA)

\delta(q_1, c, A) = (q_2, \epsilon)
```

PDA con stack binario:

```
Codifica: Z_0 \rightarrow 00, A \rightarrow 01
\delta_2(q_0, a, 0) = (temp_1, \epsilon) \quad // \text{ leggi primo bit di } Z_0
\delta_2(temp_1, \epsilon, 0) = (temp_2, \epsilon) \quad // \text{ leggi secondo bit di } Z_0
\delta_2(temp_2, \epsilon, \epsilon) = (temp_3, 0) \quad // \text{ push primo bit di } A
\delta_2(temp_3, \epsilon, \epsilon) = (temp_4, 1) \quad // \text{ push secondo bit di } A
\delta_2(temp_4, \epsilon, \epsilon) = (temp_5, 0) \quad // \text{ push primo bit di } Z_0
\delta_2(temp_5, \epsilon, \epsilon) = (q_1, 0) \quad // \text{ push secondo bit di } Z_0
```

Questo dimostra che la costruzione è sempre possibile e preserva il linguaggio riconosciuto.