

SPECIFICATION

TITLE OF INVENTION

5 A SEMICONDUCTOR DEVICE HAVING REDUNDANCY CIRCUIT

This application is a continuation of Appln. Serial No. 10/401,975, filed March 31, 2003, which is a continuation of 10 Appln. Serial No. 09/992,001, filed November 26, 2001, now U.S. Patent No. 6,577,544; which, in turn, is a continuation of Appln. Serial No. 09/633,271, filed August 4, 2000, now U.S. Patent No. 6,337,817; which, in turn, is a continuation of U.S. Patent application Serial No. 09/363,000, filed July 15 30, 1999, now U.S. Patent No. 6,104,647; which, in turn, is a continuation of application Serial No. 09/144,258, filed August 31, 1998, now U.S. Patent No. 5,966,336; which, in turn, is a continuation of application Serial No. 08/825,605, filed March 31, 1997, now U.S. Patent No. 5,815,448; which, 20 in turn, is a continuation of application Serial no. 08/535,574, filed September 27, 1995, now U.S. Patent No. 5,617,365; which, in turn, is a continuation of application Serial No. 08/155,848, filed November 23, 1993, now abandoned; which, in turn, is a divisional of application 25 Serial No. 07/818,434, filed December 27, 1991, now U.S. Patent No. 5,265,055; and which, in turn, is a continuation of application Serial No. 07/419,399, filed October 10, 1989, now abandoned; and the entire disclosures of all of which are hereby incorporated by reference.

30

BACKGROUND OF THE INVENTION

The present invention relates to a semiconductor memory, and more particularly to a technique for repairing a semiconductor memory in such a manner

1 that defective memory cells are replaced by spare
memory cells.

In recent years, the level of integration
of a semiconductor memory has been increased at high
5 speed, and a semiconductor memory having a storage
capacity of 1 mega bits has been mass-produced. How-
ever, as the level of integration of a semiconductor
memory is made larger, each element is decreased in
size, and the semiconductor chip is increased in area.

10 Thus, there arises a problem that the manufacturing
yields of the memory become correspondingly reduced.

In order to solve the problem, the so-called
redundancy technique is used, in which defective
memory cells are replaced by spare memory cells
15 already provided on a chip. As discussed on
pages 479 to 487 of the IEEE Journal of Solid-State
Circuits, Vol. SC-16, No. 5, Oct., 1981, the above
technique is very effective for improving the
manufacturing yields of a semiconductor memory.

20 In addition to the above technique, a
redundancy method is proposed in JP-A-60-130,139,
in which method a regular line in one of a plurality
of memory mats can be replaced by a spare line in
another memory mat. In this method, however, there
25 arises the following problem. That is, in a case

1 where a semiconductor memory is divided into a large
number of memory mats, a complicated control operation
is required to specify one of the memory mats. This
is because a predetermined or another memory mat has
5 to be selected in accordance with whether or not an
address to be accessed is defective. Specifically in
a case where a memory mat other than the predetermined
memory mat is selected in a DRAM, it is required to
operate a sense amplifier other than a predetermined
10 sense amplifier. Thus, the access time associated
with operation of the memory is increased.

SUMMARY OF THE INVENTION

Fig. 1A shows an example of a semiconductor
memory which utilizes the redundancy technique and has
15 been studied by the present inventors. In Fig. 1A,
reference numeral 10 designates a memory array, in which
memory cells are arranged so as to form a matrix. The
memory array 10 is divided into a region 11 where
regular memory cells are arranged, and a region 12 where
20 spare memory cells are arranged. In the region 11,
 $N_W \times N_B$ memory cells are disposed at desired ones of
two-level crossings of N_W word lines $W[i]$ (where $i=0, 1,$
 $\dots N_W-1$) and N_B bit lines $B[j]$ (where $j=0, 1, \dots N_B-1$).
In the region 12, $L \times N_B$ memory cells (in the figure,
25 $L=4$) are disposed at two-level crossings of L spare word

1 lines SW[k] (where k=0, 1, ... L-1) and the N_B bit
lines. In a case where a folded bit line structure is
used, each bit line is formed of two wiring conductors,
but only one wiring conductor is shown in the figure for
5 the sake of simplicity. Further, in Fig. 1A, reference
numeral 20 designates sense amplifiers for amplifying
the signals read out from memory cells and input/output
lines for transferring data (or common signal lines in a
case where only input or output data is sent), 30 an X-
10 decoder applied with row address signals $A_X[i]$ (where
 $i=0, 1, \dots n_W-1$, and $n_W=\log_2 N_W$) for selecting one of N_W
word lines, 40 a Y-decoder applied with column address
signals $A_Y[j]$ (where $j=0, 1, \dots n_B-1$, and $n_B=\log_2 N_B$) for
selecting one of N_B bit lines, 50 a redundancy control
15 circuit, 60 a spare word line selection circuit applied
with the output of the redundancy control circuit for
selecting a spare word line, 701 a data input buffer,
and 702 a data output buffer.

The present memory is provided with the
20 redundancy control circuit for word lines. Accordingly,
in a case where a regular word line is defective, the
memory can be repaired in such a manner that the
defective word line is replaced by one of the spare word
lines with the aid of the redundancy control circuit 50
25 and the spare word line selection circuit 60. Further,
L address comparing circuits AC[k] (where k=0, 1, ...
L-1) are provided on a one-to-one basis for each spare
word line. Each address comparing circuit stores

1 therein the row address of a defective word line, and
checks whether or not an address to be accessed is
coincident with the stored address. When the address to
be accessed is coincident with the stored address, the
5 output $XR[k]$ of the address comparing circuit $AC[k]$ used
is set at a high level. The spare word line selection
circuit 60, as shown in Fig. 1B, includes L spare word
drivers 650. Each of the spare word drivers 650 is
activated when the output $XR[k]$ of a corresponding
10 address comparing circuit $AC[k]$ has a high level. Thus,
a corresponding spare word line $SW[k]$ is selected in
response to a word line drive signal ϕ_X and the
output of an NOR gate 501 is set at a low level
thereby disabling the X-decoder 30. Accordingly, a
15 regular word line which is to be selected, is never
selected. That is, the regular word line is replaced by
the spare word line $SW[k]$.

Fig. 2A shows another example of a semi-conductor memory which utilizes the redundancy technique
20 and has been studied by the present inventors. In Fig. 2A, reference numeral 10 designates a memory array, in
which memory cells are arranged so as to form a matrix.
The memory array 10 is divided into a region 14 where
regular memory cells are arranged, and a region 15 where
25 spare memory cells are arranged. In the region 14, $N_W \times N_B$ memory cells are disposed at two-level crossings of
 N_W word lines $W[i]$ (where $i=0, 1, \dots, N_W-1$) and N_B bit
lines $B[j]$ (where $j=0, 1, \dots, N_B-1$). In the region 15,

1 L X N_W memory cells (in the figure, L=4) are disposed at
two-level crossings of L spare bit lines SB[k] (where
k=0, 1, ... L-1) and the N_W word lines. Further, in Fig.
2A, reference numeral 20 designates sense amplifiers for
5 amplifying the signals read out from memory cells and
input/output lines for transferring data, 30 an X-
decoder applied with row address signals A_X[i] (where
i=0, 1, ... n_W-1, and n_W = log₂N_W) for selecting one of
N_W word lines, 40 a Y-decoder applied with column
10 address signals A_Y[j] (where j=0, 1, ... n_B-1, and
n_B=log₂N_B) for selecting one of N_B bit lines, 50 a
redundancy control circuit, and 63 a spare bit line
selection circuit applied with the output of the
redundancy control circuit for selecting a spare bit
15 line.

The present memory is provided with the
redundancy control circuit for bit lines. Accordingly,
in a case where a regular bit line is defective, the
memory can be repaired in such a manner that the
20 defective bit line is replaced by one of the spare bit
lines with the aid of the redundancy control circuit 50
and the spare bit line selection circuit 63. Further, L
address comparing circuits AC[k] (where k=0, 1, ... L-1)
are provided on a one-to-one basis for each of L spare
25 bit lines. Each address comparing circuit stores
therein the column address of a defective bit line, and
checks whether or not an address to be accessed is
coincident with the stored address. When the address to

1 be accessed is coincident with the stored address, the
output $YR[k]$ of the address comparing circuit $AC[k]$ used
is set at a high level. The spare bit line selection
circuit 63, as shown in Fig. 2B, includes L drivers 680.
5 Each of the drivers 680 is activated when the output
 $YR[k]$ of a corresponding address comparing circuit $AC[k]$
has the high level. Thus, a corresponding spare bit
line $SB[k]$ is connected to input/output lines I/O
through MOS transistors 690 and 691, in response to a
10 bit line selection signal ϕ_Y and the output of a NOR
gate 501 is set at a low level thereby disabling the Y-
decoder 40. Accordingly, a regular bit line
which is to be selected, is never selected. That is,
the regular bit line is replaced by the spare bit line
15 $SB[k]$.

The present inventors have studied the above-mentioned redundancy technique and have found that the following problem occurs when increasing the level of integration of a semiconductor memory. That is, when the level of
20 integration of a semiconductor memory is increased, a large number of memory cells are simultaneously replaced by spare memory cells through the redundancy technique, and thus a probability that a defective spare memory cell is used, is increased. This is because a large number of
25 memory cells are arranged along a single word or bit line. For example, in a 256 Kbit memory ($N_W=N_B=512$), 512 memory cells are simultaneously replaced by spare memory cells. While, in a 16 Mbit memory ($N_W=N_B=4,096$),

- 1 4,096 memory cells are simultaneously replaced by spare memory cells. When at least one of the spare memory cells substituted for regular memory cells is defective, a chip having the spare and regular memory cells is faulty.
- 5 The redundancy technique is used on the premise that spare memory cells are not defective. Accordingly, when the level or degree of integration of a semiconductor memory is increased, the manufacturing yields thereof cannot be improved by the redundancy technique.
- 10 In a case where a large-scale semiconductor memory is constructed in such a manner that a memory array is divided into a plurality of memory mats, the above problem becomes even more serious. When a semiconductor memory is made large in scale, the number of
- 15 memory cells connected to a single word (or bit) line is increased, and wiring length is increased. Thus, the parasitic resistance and capacitance of a wiring conductor are increased. Hence, there arises a problem that a signal propagation time is increased and a
- 20 signal-to-noise ratio is reduced. In order to solve this problem, a practice widely employed is to divide a memory array into a plurality of memory mats, thereby shortening the wiring length of a single word (or bit) line. However, when the redundancy technique is applied
- 25 to a semiconductor memory which is divided into memory mats, the following problem is further aroused.

Fig. 3 shows an example of a semiconductor memory which corresponds to a case where the memory

1 array of Fig. 1A is divided into four memory mats (that
is, each word line is divided into two parts, and each
bit line is divided into two parts). In Fig. 3, refer-
ence numerals 100 to 103 designate memory mats, 200 to
5 203 sense amplifiers and input/output lines, 300 and 301
X-decoders, 400 a Y-decoder, 610 and 611 spare word line
selection circuits, 700 a multiplexer, 701 a data input
buffer, and 702 an data output buffer. Each memory mat
includes a region 110, 111, 112, or 113 where regular
10 memory cells are arranged, and a region 120, 121, 122,
or 123 where spare memory cells are arranged. In each
of the regions 110, 111, 112 and 113 (which correspond
to the sub-regions 11A, 11B, 11C and 11D of Fig. 1A,
respectively), $N_W \times N_B/4$ memory cells are disposed at
15 two-level crossings of $N_W/2$ word lines and $N_B/2$ bit
lines. In each of the regions 120, 121, 122 and 123,
 $L \times N_B/2$ memory cells (in the figure, $L=4$) are disposed
at two-level crossings of L spare word lines and the
 $N_B/2$ bit lines. For example, in a semiconductor memory
20 described in the above-mentioned reference, $N_W/2=64$,
 $N_B/2=128$, and $L=4$.

Explanation will first be made of a word-line
selecting method in the example of Fig. 3. In the
present example, word lines are selected from a pair of
25 memory mats. For example, at the same time as a word
line $W[i, 0]$ in the memory mat 110 is selected, a
corresponding word line $W[i, 2]$ in the memory mat 112 is
selected. At this time, no word line in the memory mats

1 l11 and l13 is selected. Similarly, when word lines in
1 the memory mats l11 and l13 are selected, no word line
1 in the memory mats l10 and l12 is selected. This is
5 because the word lines $W[i, 0]$ and $W[i, 2]$ are made by
5 dividing a single word line into two parts, and hence
can be logically regarded as a single word line. Such is
determined by one of the row address signals (in the
present example, the address signal $A_x[n_w-1]$ indicative of
the leftmost bit of a row address) as to which of a memory
10 mat group l10 and l12 and a memory mat group l11 and l13
is to be selected. A memory cell is finally selected by
using column address signals $A_y[j]$ (where $j=0, 1, \dots$
 n_B-1). At this time, the multiplexer 700 determines
which of a memory cell in the memory mat l10 or l11 and
15 a memory cell in the memory mat l12 or l13 is to be
selected, by using one of the column address signals (in
this example, the address signal $A_y[n_B-1]$ indicative of
the leftmost bit of a column address).

In the present example, each address comparing
20 circuit compares the row address signals other than the
address signal $A_x[n_w-1]$ indicative of the leftmost bit,
with the corresponding row address signals stored in the
address comparing circuit. The outputs $X_R[k]$ of the
address comparing circuits $AC[k]$ are supplied to the
25 spare word line selection circuit. The spare word line
selection circuit, as shown in Fig. 4, makes the logical
product of the row address signal $A_x[n_w-1]$ (or the
complement thereof) and each of the outputs $X_R[k]$, to

1 drive only a spare word line in the selected memory mat.

In the present memory, the replacement of a regular line by a spare line is made in all the memory mats at the same time. This fact will be explained
5 below with reference to Fig. 5. Fig. 5 shows an example of a method of replacing word lines by spare word lines. In Fig. 5, defective word lines $W[0, 0]$, $W[2, 0]$, $W[1, 1]$ and $W[3, 3]$ are replaced by spare word lines $SW[0, 0]$, $SW[1, 0]$, $SW[2, 1]$ and $SW[3, 3]$, respectively.
10 However, when the above replacement is carried out, other word lines are replaced by spare word lines. For example, at the same time as the defective word line $W[0, 0]$ is replaced by the spare word line $SW[0, 0]$, corresponding word lines $W[0, 1]$, $W[0, 2]$ and $W[0, 3]$ in
15 the memory mats 101, 102 and 103 are replaced by spare word lines $SW[0, 1]$, $SW[0, 2]$ and $SW[0, 3]$, respectively.

In the example of Fig. 3, there arises the following problems. The first problem is that, as is apparent from the comparison of Fig. 3 with Fig. 1A, an
20 area necessary for spare word lines is increased by dividing a memory array into memory mats. This is because each memory mat includes L spare word lines. A sub-region 12A shown in Fig. 1A corresponds to the regions 120 and 121 of Fig. 3, and a sub-region 12B
25 shown in Fig. 1A corresponds to the regions 122 and 123 of Fig. 3. Hence, in the present example, an area for spare word lines is twice as large as that in the example of Fig. 1A. When each word line is divided into

- 1 M_W parts and each bit line is divided into M_B parts, an
area for spare word lines is generally increased by a
factor of M_B , and an area for spare bit lines is
generally increased by a factor of M_W , though the spare
5 bit lines are not shown in Figs. 1A and 3. Thus, a chip
area is increased.

The second problem is that when a defective word line is replaced by a spare word line, a large number of memory cells are replaced by spare memory 10 cells. This is because, as mentioned above, the replacement of a word line by a spare word line is made in all the memory mats at the same time. When each word line is divided into M_W parts and each bit line is divided into M_B parts, the number of spare memory cells 15 which are simultaneously substituted for regular memory cells at a time a defective word line is replaced by a spare word line, is generally increased by a factor of M_B , and the number of spare memory cells which are simultaneously substituted for regular memory cells at a 20 time a defective bit line is replaced by a spare bit line, is generally increased by a factor of M_W . As has been already mentioned, an increase in the number of spare memory cells simultaneously substituted for regular memory cells reduces the manufacturing yields.
25 The first and second problems become serious in a large-scale integration memory, in which each of M_W and M_B has a large value.

1 Fig. 6 shows another method of applying the
redundancy technique to a semiconductor memory, in which
a memory array is divided into a plurality of memory
mats. In Fig. 6, address comparing circuits are
5 provided on a one-to-one basis for each of the spare
word lines in the memory mats. Accordingly, $4L$ address
comparing circuits (in the figure, eight address
comparing circuits) are used. Each address comparing
circuit compares row address signals $A_x[0]$ to $A_x[n_w-1]$
10 and column address signal $A_y[n_B-1]$ indicative of the
leftmost bit, with those stored in the circuit.

Fig. 7 shows how defective word lines are replaced by spare word lines, by way of example. As is apparent from the comparison of Fig. 7 with Fig. 5, the
15 method shown in Fig. 6 is superior in two points to the method shown in Fig. 3. The first point is that the utilization efficiency of a spare word line is high, and thus the same number of defective word lines as in the example of Fig. 3 can be replaced by spare word lines
20 even when the number of spare word lines per one memory mat is made smaller than that in the example of Fig. 3. This is because the probability that many defective word lines are included in one memory mat, is very low. The second point is that the number of spare memory cells
25 which are simultaneously substituted for regular memory cells is small.

In the method shown in Fig. 6, however, there arises a problem that the number of address comparing

1 circuits is increased. When each word line is divided
into M_W parts and each bit line is divided into M_B
parts, $M_W M_B L$ address comparing circuits are generally
required, and thus a chip area is increased. This
5 problem is very serious in a large-scale integration
memory, in which each of M_W and M_B has a large value.

According to the present invention, when a
memory array is divided into M memory mats (where $M \geq$
2), the number \underline{m} of word or bit lines which are
10 simultaneously replaced by spare lines in accordance
with the redundancy technique, is made smaller than the
number M and equal to a divisor of the number M .

Further, an address comparing circuit can
store therein not only logical values "0" and "1" but
15 also a don't-care value "X". When input data is
compared with the don't-care value, the result of
comparison indicates "coincidence", independently of
which of the logical values "1" and "0" is indicated by
the input data. Fig. 8 shows the results of comparison
20 made by the address comparing circuit.

By making the number \underline{m} smaller than the number
 M , the number of memory cells which are simultaneously
replaced by spare memory cells, is decreased. Thus, the
probability that the spare word lines are defective, is
25 reduced. Accordingly, a redundancy control circuit
capable of greatly improving the manufacturing yields
can be formed even in a large-scale integration memory.

When the address comparing circuit is so constructed as to be capable of storing the don't-care value "X", each bit of an applied address can be selectively compared with a stored value. As shown in Fig. 8, when a logical value "0" or "1" is stored in the address comparing circuit, the result of comparison indicates "coincident" or "not coincident" in accordance with input data. That is, the stored value is compared with a corresponding bit of an input address. When the don't-care value "X" is stored in the address comparing circuit, the result of comparison indicates "coincident", independently of input data. That is, that bit of an input address which corresponds to the stored value, is not compared therewith. Thus, for example, the following defect-repairing operations can be performed.

When all the bits of an address (that is, all the bits of row and column addresses) are compared with stored values, each of regular memory cells can be replaced by a spare memory cell. When only a column address is compared with a stored column address, each bit line can be replaced by a spare bit line. When bits of a column address other than the rightmost bit are compared with stored values, a pair of memory cells can be replaced by a pair of spare memory cells. That is, various defects in a semiconductor memory such as a single-bit defect, a bit-line defect and a pair-bit defect, can be repaired. Thus, the manufacturing yields

1 of a semiconductor memory can be made higher than that
due to the conventional redundancy technique.

It is an object of the present invention to
provide a redundancy technique which can greatly improve
5 the manufacturing yields of a semiconductor memory
without requiring a large chip area.

It is another object of the present invention
to provide a redundancy technique which can enhance the
utilization efficiency of spare bits.

10 These and other objects and many of the
attendant advantages of the present invention will be
readily appreciated and become better understood by
reference to the following detailed description when
considered in connection with the accompanying drawings.

15 BRIEF DESCRIPTION OF THE DRAWINGS

Figs. 1A to 8 are diagrams for explaining
redundancy control circuits which were studied by the
present inventors, and the points of issue of these
circuits.

20 Figs. 9 and 10 are diagrams for explaining the
first embodiment of the present invention.

Figs. 11 to 13 are diagrams for explaining the
second embodiment of the present invention.

25 Figs. 14 to 16 are diagrams for explaining the
third embodiment of the present invention.

Figs. 17 is a diagrams for explaining the
fourth embodiment of the present invention.

1 Fig. 18 is a diagrams for explaining the fifth
embodiment of the present invention.

5 Fig. 19 is a diagram showing the first
embodiment of an address comparing circuit used in the
present invention.

Fig. 20 is a diagram showing the second
embodiment of an address comparing circuit used in the
present invention.

10 Figs. 21 and 22 are diagrams for explaining
the sixth embodiment of the present invention.

Fig. 23, 24A, 24B and 25 are diagrams for
explaining the seventh embodiment of the present
invention.

15 Figs. 26 and 27 are diagrams for explaining
the eighth embodiment of the present invention.

Fig. 28 and 29 are diagrams for explaining
the ninth embodiment of the present invention.

20 Fig. 30 is a diagram showing the third
embodiment of an address comparing circuit used in the
present invention.

Fig. 31 is a diagram showing the fourth
embodiment of an address comparing circuit used in the
present invention.

25 Fig. 32 is a diagram showing the fifth
embodiment of an address comparing circuit used in the
present invention.

Fig. 33 is a diagram showing an embodiment of
a one-chip microcomputer, to which the present invention

1 is applied.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Now, embodiments of the present invention will be explained below, with reference to the drawings.

5 Although explanation will be made of a case where a redundancy technique is applied to a dynamic random access memory (DRAM), especially, a DRAM which includes memory cells each made up of a single transistor and a single capacitor, the present invention is also
10 applicable to other semiconductor memories such as a static random access memory (SRAM), an erasable programmable read only memory (EPROM), and an electrically erasable programmable read only memory (EEPROM). Further, although a semiconductor memory
15 utilizing CMOS techniques will mainly be explained, the present invention is also applicable to a semiconductor memory made up of MOS transistors of the same polarity, bipolar transistors, or the combination of these transistors. Further, the combination of a
20 semiconductor memory according to the present invention and a microcomputer can produce a remarkable effect, and it is preferable to form the semiconductor memory and the microcomputer on a single chip.

Embodiment 1

25 Fig. 9 shows the first embodiment of a semiconductor memory according to the present invention.

1 In Fig. 9, reference numerals 100 to 103 designate
memory mats, 200 to 203 sense amplifiers and input/
output lines, 300 and 301 X-decoders, 400 a Y-decoder,
500 a redundancy control circuit, 600 a spare word line
5 selection circuit (having the same circuit configuration
as shown in Fig. 1B), 700 a multiplexer, 701 a data
input buffer, and 702 a data output buffer. Each of the
memory mats includes a region 110, 111, 112, or 113
where regular memory cells are arranged, and a region
10 120, 121, 122, or 123 where spare memory cells are
arranged. In each of the regions 110 to 113, $N_W \times N_B/4$
memory cells are disposed at the two-level crossings of
 $N_W/2$ word lines $W[i, n]$ (where $i=0, 1, \dots, N_W/2 - 1$, and
 $n=0, 1, \dots, 3$) and $N_B/2$ bit lines $B[j, n]$ (where $j=0, 1,$
15 $\dots, N_B/2 - 1$, and $n=0, 1, \dots, 3$). In each of the
regions 120 to 123, $L \times N_B/2$ memory cells (in the
figure, $L=2$) are disposed at the two-level crossings of
 L spare word lines $SW[k, n]$ (where $k=0, \dots, L-1$ and $n=0,$
 $1, \dots, 3$) and $N_B/2$ bit lines. Although the memory array
20 of the present embodiment has the folded bit line
structure, the present invention is also applicable to a
semiconductor memory having the open bit line structure.
In a case where the folded bit line structure is used, a
bit line is formed of two wiring conductors. However,
25 only one wiring conductor is shown in the drawings for
the sake of simplicity. Details of the folded bit line
structure and open bit line structure are described on
pages 127 to 135 of the IEE PROC., Vol. 130, No. 3,

1 June, 1983.

Now, explanation will be made of a redundancy technique which is carried out for a defective word line in the present embodiment. A word line selection method 5 will first be explained. In the present embodiment, word lines in two memory mats are simultaneously selected. For example, in a case where a word line $W[i, 0]$ in the memory mat 110 is selected, a corresponding word line $W[i, 2]$ in the memory mat 112 is selected 10 at the same time as the word line $W[i, 0]$ is selected. At this time, no word line in the memory mats 111 and 113 is selected. Similarly, when word lines in the memory mats 111 and 113 are selected, no word line in the memory mats 110 and 112 is selected. This is 15 because the word lines $W[i, 0]$ and $W[i, 2]$ are made by dividing a single word line into two parts, and hence can be logically regarded as a single word line. It is determined by one of row address signals (for example, the address signal $A_x[n_w-1]$ indicative of the leftmost 20 bit of a row address) which of a memory mat group 110 and 112 and a memory mat group 111 and 113 is to be selected. A memory cell is finally selected by using column address signals $A_y[j]$ (where $j=0, 1, \dots, n_B-1$). At this time, the multiplexer 700 determines which of a 25 memory cell in the memory mat 110 or 111 and a memory cell in the memory mat 112 or 113 is to be selected, by using one of the column address signals (for example, the address signal $A_y[n_B-1]$ indicative of the leftmost

1 bit of a column address).

Next, a method of replacing a defective word line by a spare word line will be explained. In the memory of Fig. 3, as shown in Fig. 5, regular word lines in four memory mats are simultaneously replaced by spare word lines. For example, in a case where the word line $W[0, 0]$ in the memory mat 110 is defective, corresponding word lines $W[0, 1]$, $W[0, 2]$ and $W[0, 3]$ in other memory mats are replaced by spare word lines at the same time as the word line $W[0, 0]$ is replaced by a spare word line. In the present embodiment, however, word lines in two memory mats which are simultaneously selected are simultaneously replaced by spare word lines. Fig. 10 shows how word lines are replaced by spare word lines. For example, in a case where the word line $W[0, 0]$ in the memory mat 110 is defective, word lines $W[0, 0]$ and $W[0, 2]$ are simultaneously replaced by spare word lines, but no word line in the memory mats 111 and 113 is replaced by a spare word line.

In order to realize the above replacement method, each address comparing circuit compares the row address signal $A_x[n_w-1]$ indicative of the leftmost bit of a row address with a stored value. As has been already mentioned, the row address signal $A_x[n_w-1]$ is used for selecting one of the memory mat group 110 and 112 and the memory mat group 111 and 113. In the memory of Fig. 3, word lines in four memory mats are simultaneously replaced by spare word lines, and hence each

1 address comparing circuit does not compare the address
signal $A_x[n_w-1]$ with stored data. In the present embodiment,
however, the row address signal $A_x[n_w-1]$ is compared
with the stored data, to realize the above-mentioned
5 replacement method.

The first advantage of the present embodiment
is that, since the above replacement method is used, the
number of memory cells which are simultaneously replaced
by spare memory cells, is reduced. In the memory of
10 Fig. 3, $N_B/2 \times 4$ ($=2N_B$) memory cells are simultaneously
replaced by spare memory cells while in the present
embodiment, $N_B/2 \times 2$ ($=N_B$) memory cells are simul-
taneously replaced by spare memory cells. That is, the
number of memory cells which are simultaneously replaced
15 by spare memory cells is one-half that in the memory of
Fig. 3. Thus, the probability that a defective memory
cell is included in the spare memory cells substituted
for regular memory cells is reduced, and the manu-
facturing yields of a semiconductor memory are improved.
20 This effect is not remarkable in the present embodiment,
since the memory array is divided into a relatively
small number of memory mats. In a large-scale integra-
tion memory where a memory array is divided into a large
number of memory mats, however, the above effect becomes
25 remarkable. This is because the probability that none of
the spare memory cells is defective is inversely propor-
tional to an exponential function having the number of
spare memory cells as the power.

1 Now, let us consider a memory where each word
line is divided into M_W parts and each bit line is
divided into M_B parts. In a case where corresponding
regular word lines in all memory mats are simultaneously
5 replaced by spare word lines, $N_B M_B$ memory cells are simul-
taneously replaced by spare memory cells. On the other hand,
in a case where corresponding regular word lines in \underline{m}
memory mats (where \underline{m} is a divisor of a numerical value
 $M_W M_B$) are simultaneously replaced by spare word lines in
10 accordance with the present invention, $m N_B / M_W$ memory
cells are simultaneously replaced by spare memory
cells. That is, the number of memory cells which are
simultaneously replaced by spare memory cells, is
reduced by a factor of $m / M_W M_B$, as compared with that in
15 the former case. It is to be noted that, in the present
embodiment of Fig. 9, $M_W=2$, $M_B=2$, and $m=2$. For example,
let us consider a 16 Mbit memory where $N_W=N_B=4,096$,
 $M_W=4$, $M_B=16$, and $m=8$. In a case where corresponding
regular word lines in all memory mats are simultaneously
20 replaced by spare word lines, 65,536 memory cells are
simultaneously replaced by spare memory cells. However,
in a case where corresponding regular word lines in \underline{m}
memory mats are simultaneously replaced by spare word
lines in accordance with the present invention, 8,192
25 memory cells which is one-eighth of 65,536 memory cells,
are simultaneously replaced by spare memory cells, and
thus the probability that a defective memory cell is
included in the spare memory cells, is greatly reduced.

1 The second advantage of the present embodiment
is that each spare word line has high utilization
efficiency. Let us consider a case where the word line
W[i₁, 0] in the memory mat 110 and the word line
5 W[i₂, 1] in the memory mat 111 are defective (where
i₁ ≠ i₂), by way of example. In the memory of Fig. 3, in
order to repair such defects, two spare word lines are
used in each memory mat. That is, word lines W[i₁, 0]
to W[i₁, 3] are replaced with spare word lines SW[0, 0] to
10 SW[0, 3], respectively, and word lines W[i₂, 0] to
W[i₂, 3] are replaced by spare word lines SW[1, 0] to
SW[1, 3], respectively. In the present embodiment, how-
ever, only one spare word line is used in each memory
mat to repair the above defects, that is, only four
15 spare word lines are used. In other words, word lines
W[i₁, 0] and W[i₁, 2] are replaced by spare word lines
SW[0, 0] and SW[0, 2], respectively, and word lines
W[i₂, 1] and W[i₂, 3] are replaced by spare word lines
SW[0, 1] and SW[0, 3], respectively. Thus, the spare
20 word lines SW[1, 0] to SW[1, 3] can be used for repair-
ing other defects, and hence the manufacturing yields of
a memory can be improved.

A further advantage of the present embodiment
is that the degree of freedom in selecting the number L
25 of spare word lines included in one memory mat and the
number R of address comparing circuits is large. In the
conventional method shown in Fig. 3, corresponding
regular word lines in all the memory mats are

1 simultaneously replaced by spare word lines, and hence
it is required to satisfy a relation $L=R$. For example,
in Fig. 3, $L=R=4$. While, according to the present
invention, the number L and the number R can be
5 relatively freely selected, and hence a redundancy
control circuit can be formed which is small in area and
high in operation efficiency. Next, the relation
between the number L and the number R will be explained.

In a case where corresponding regular lines in
10 m memory mats are simultaneously replaced by spare
lines, the following relation is generally satisfied:

$$L \leq R \leq LM_WM_B/m \quad (1)$$

The inequality sign on the left side indicates that it
is nonsense to make the number of spare lines included
in one memory mat greater than the number of address
15 comparing circuits. The inequality sign on the right
side has the following meaning. Each memory mat
includes L spare lines, and the number of memory mats is
 M_WM_B . Accordingly, LM_WM_B spare lines are provided in a
physical sense. However, m spare lines are simul-
20 taneously substituted for regular lines. Accordingly,
 LM_WM_B/m spare lines exist in a logical sense. The
inequality sign on the right side in the formula (1)
indicates that it is nonsense to make the number of
address comparing circuits greater than the number of
25 logical spare lines. In the conventional method shown

1 in Fig. 3, the number m is equal to $M_W M_B$, and hence it
is required to make the number L equal to the number R.
According to the present invention, however, the number L
and the number R can be freely selected, provided that
5 the formula (1) is satisfied.

When viewed from the standpoint of chip area,
it is preferable to increase the number R rather than
the number L. This is because an area for one address
comparing circuit is generally smaller than an area
10 necessary for providing one spare line in each memory
mat. In the conventional method, it is required to
satisfy the relation $L=R$, and hence it is impossible to
increase only the number R. According to the present
invention, only the number R can be increased. Accord-
15 ingly, it is possible to make the number L relatively
small and to make the number R relatively large. Thus,
a redundancy control circuit can be formed which is
small in area and high in operation efficiency. In
other words, the gist of the present invention is to
20 satisfy a relation which is obtained by eliminating the
equality sign on the left side from the formula (1),
that is, the following relation:

$$L < R \leq LM_W M_B/m \quad (2)$$

For example, in the present embodiment of Fig. 9,
 $M_W=M_B=2$, and $m=2$. Accordingly, the formula (2) is
25 rewritten as follows:

$$L < R \leq 2L$$

1 It is to be noted that, in the present embodiment, $L=2$ and $R=4$.

When the number R is made greater than the number L , it may become impossible to replace defective lines by spare lines, in spite of a fact that the number of defective lines is less than the number R . For example, in a case where defective lines are concentrated in a memory mat, and the number of defective lines included in the memory mat is less than the number R but 10 is greater than the number L , the above problem is realized. In this case, a sufficient number of address comparing circuits exist, but the faulty memory mat is deficient in physical spare lines, and hence it is impossible to replace the defective lines by spare 15 lines. However, the probability that a large number of defective lines are concentrated in one memory mat is very small. Accordingly, when the number L is made greater than or equal to two (2), the above problem is scarcely realized.

20 The present embodiment is applicable not only to a memory employing the address multiplex system but also to a memory which does not employ the address multiplex system.

Embodiment 2

25 As is evident from the above explanation, it

1 is desirable to make the number \underline{m} of word lines which
are simultaneously replaced by spare word lines, through
the redundancy technique, as small as possible. Fig. 11
5 shows the second embodiment of a semiconductor memory
embodiment is different from the first embodiment of
Fig. 9 in the word line selection method and the
defective word line replacement method. In the
10 embodiment of Fig. 9, corresponding regular word lines
in two memory mats are simultaneously selected, and are
simultaneously replaced by spare word lines. In the
present embodiment, however, only a word line in one memory
mat is selected and replaced by a spare word line.

15 In the present embodiment, the column address
signal $A_y[n_B-1]$ is used for realizing the above
selection/replacement operation. As has been already
mentioned, the address signal $A_y[n_B-1]$ is used for
discriminating between the memory mats 110 and 112, and
20 for discriminating between the memory mats 111 and 113.
First of all, not only the row address signals but also
the column address signal $A_y[n_B-1]$ is applied to the X-
decoders, to select only one memory mat from four memory
mats. Next, not only the row address signals but also
25 the column address signal $A_y[n_B-1]$ is compared with
stored data in each address comparing circuit, to
replace a regular word line in one memory mat by a spare
word line. In order to perform such an operation, each

1 of the spare word line selection circuits 610 to 613
has the circuit configuration shown in Fig. 12.
Referring to Fig. 12, the logical product of the output
5 $XR[k]$ of an address comparing circuit and the column
address signal $A_y[n_B-1]$ (or the complement thereof) is
produced, to drive only a spare word line in the
selected memory mat.

As shown in the above, it is a feature of the
present embodiment to use a column address in replacing
10 a defective word line by a spare word line. In the
conventional redundancy technique, only a row address is
used for replacing a defective word line by a spare word
line, and only a column address is used for replacing a
defective bit line by a spare bit line. When a column
15 address is used for replacing a defective word line by a
spare word line in a memory including a plurality of
memory mats, and a row address is used for replacing a
defective bit line by a spare bit line in the memory,
the following effects are produced.

20 Fig. 13 shows how defective word lines are
replaced by spare word lines in the present embodiment,
by way of example. As mentioned above, the number \underline{m} of
word lines which are simultaneously replaced by spare
word lines is equal to one (1). Hence, the number of
25 memory cells which are simultaneously replaced by spare
memory cells, is one-half that in the embodiment of Fig.
9. Accordingly, the probability that the spare memory
cells include a defective memory cell, is further

1 reduced, and thus the manufacturing yields of a
semiconductor memory is further improved.

Further, since the number of word lines which
are simultaneously replaced by spare word lines, is
5 reduced, the utilization efficiency of spare word lines
is higher than that in the embodiment of Fig. 9. For
example, let us consider a case where word lines $W[i_1,$
0] and $W[i_2, 0]$ (where $i_1 \neq i_2$) are defective. In the
embodiment of Fig. 9, four spare word lines are used for
10 repairing the above defects. While, in the present
embodiment, only two spare word lines are used.

In the present embodiment, the number \underline{m} of
word lines which are simultaneously replaced by spare
word lines, is smaller than that in the embodiment of
15 Fig. 9. Accordingly, as can be seen from the formula
(1), the degree of freedom in determining the number R
of address comparing circuits is larger than that in the
embodiment of Fig. 9. Therefore, an efficient
redundancy control circuit can be formed in accordance
20 with how defects are generated. This will be evident
from the comparison of the present embodiment with the
memory of Fig. 6. In the memory of Fig. 6, address
comparing circuits are provided for all the spare word
lines in all memory mats, and thus $R=LM_WM_B$. That is,
25 the equality sign on the right side in the formula (1)
is used. In the present embodiment, it is not always
required to realize the equality sign on the right side.
That is, in a case where a relatively small number of

1 defective word lines exist, the number R of address
comparing circuits can be made smaller than that in the
memory of Fig. 6. Accordingly, the area for address
comparing circuits can be reduced. In the present
5 embodiment, m=1 and L=2. Accordingly, the formula (1)
is rewritten as follows:

$$L = 2 \leq R \leq 8 = LM_W M_B / m$$

The number R is actually equal to four (4).

Embodiment 3

Fig. 14 shows the third embodiment of a
10 semiconductor memory according to the present invention.
In the present embodiment, an address comparing circuit
is not directly connected to a spare word line selection
circuit, but is connected thereto through a switching
circuit 510 and an OR gate 505 or 506. In keeping with
15 such circuit connection, each of address comparing
circuits 620 to 623 has the circuit construction shown
in Fig. 15. Referring to Fig. 15, the logical product
of an output $XL[k]$, the address signal $A_x[n_W-1]$ (or the
complement thereof) and the address signal $A_y[n_B-1]$ (or
20 the complement thereof) is produced to drive only a
spare word line in a selected memory mat. The address
signals $A_x[n_W-1]$ and $A_y[n_B-1]$ are used for specifying
the memory mat. The present embodiment has the
following features.

1 The first feature resides in that the number
of wiring conductors for connecting the redundancy
control circuit 500 to the spare word line selection
circuits 620 to 623 can be reduced. In the embodiment
5 of Fig. 11, R wiring conductors are used. While, in the
present embodiment, L wiring conductors are used. As
has been already mentioned, in the present invention,
the number L is generally smaller than the number R.
Accordingly, the number of wiring conductors in the
10 present embodiment is smaller than that in the
embodiment of Fig. 11.

 The second feature of the present embodiment
resides in that the electrical connection between the
address comparing circuits and the spare word lines can
15 be flexibly altered, and hence each address comparing
circuit can be flexibly utilized. In the memories which
have been already mentioned, the electrical connection
between address comparing circuits and spare word lines
is fixed. For example, in the memory of Fig. 3, an
20 address comparing circuit AC[k] is used for driving only
spare word lines SW[k, 0] to SW[k, 3] (where k=0, 1, 2,
or 3). In the memory of Fig. 6, an address comparing
circuit AC[k, ℓ] is used for driving only a spare word
line SW[k, ℓ] (where k=0 or 1, and ℓ=0, 1, 2 or 3). In
25 the embodiment of Fig. 11, an address comparing circuit
AC[2k] is used for driving only spare word lines SW[k,
0] and SW[k, 2], and an address comparing circuit
AC[2k+1] is used for driving only spare word lines

1 SW[k, 1] and SW[k, 3] (where k=0, or 1). In the
present embodiment, such restrictions do not exist,
and each address comparing circuit can drive a
desired one of spare word lines, provided that the
5 address stored in the address comparing circuit is
changed, and the corresponding one of the switching
circuits 510 is put in an appropriate connecting state.
Two bits $A_x[n_w-1]$ and $A_y[n_B-1]$ of the address stored in
the address comparing circuit specify a memory mat,
10 and one of the switching circuits 510 specifies a spare
word line in the specified memory mat. Thus, the
probability that defects can be repaired, is increased.
Let us consider a case where two defective word lines
exist in each of the memory mats 110 and 112, by way of
15 example, the embodiment of Fig. 11 cannot repair such
defects, but the present embodiment can repair the
defects.

The third feature of the present embodiment
is that the present embodiment is tolerant to the
20 trouble in an address comparing circuit, since the
electrical connection between address comparing circuits
and spare word lines can be flexibly changed. For
example, let us consider a case where the address
comparing circuit AC[0] is used for driving the spare
25 word line SW[0, 0]. When the address comparing circuit
AC[0] is found defective, for example, the address
comparing circuit AC[1] can be used in place of the
circuit AC[0].

1 Needless to say, the present embodiment has
the features of the embodiment of Fig. 11, in addition
to the first, second and third features.

Fig. 16 shows an example of the switching
5 circuit 510 included in the present embodiment. In Fig.
16, reference numeral 511 designates a fuse which can be
blown by a laser beam, 512, 518 and 520 N-channel MOS
transistors, 517 and 519 P-channel MOS transistors, 513
an inverter, and 514 and 515 NAND gates. When the fuse
10 is not blown, a node 532 is kept at a low potential
level, and a node 533 is kept at a high potential level.
Thus, a signal can be transmitted between terminals x
and z. When the fuse is blown, the node 532 is put to a high
potential level, and the node 533 is put to a low
15 potential level. Thus, a signal can be transmitted
between terminals y and z.

The present embodiment is an improved version
of the embodiment of Fig. 11. A similar improved
version can be formed for the embodiment of Fig. 9.

20 Embodiment 4

Fig. 17 shows the fourth embodiment of a semi-conductor memory according to the present invention. In the present embodiment, the outputs XR[0] to XR[3] of four address comparing circuits (generally speaking, R
25 address comparing circuits) are not directly applied to the spare word line selection circuits, but the logical product of two outputs (generally speaking, R/L outputs)

1 is produced. Two signals $XL[0]$ and $XL[1]$ (generally
speaking L signals) thus obtained are applied to the
spare word line selection circuits. In keeping with
such a circuit configuration, each of the spare word
5 line selection circuits has the circuit connection shown
in Fig. 15. In each spare word line selection circuit,
as shown in Fig. 15, the logical product of the output
 $XL[k]$, the address signal $A_x[n_w-1]$ (or the complement
thereof) and the address signal $A_y[n_B-1]$ (or the
10 complement thereof) is produced to drive only a spare
word memory in a selected memory mat. The address
signals $A_x[n_w-1]$ and $A_y[n_B-1]$ are used for selecting the
memory mat. The present embodiment has the following
features.

15 The features of the embodiment of Fig. 14 are
also contained in the present embodiment, as they are.
That is, the first feature is that the number of wiring
conductors which are extended from the redundancy
control circuit to the spare word line selection
20 circuits, can be reduced. The second feature is that
the electrical connection between the address comparing
circuits and the spare word lines can be flexibly
changed, and thus each address comparing circuit can be
flexibly utilized. The third feature is that the
25 present embodiment is tolerant to the defect in an
address comparing circuit. In addition to these
features, the present embodiment has the following
features. The present embodiment is simpler in circuit

1 construction than the embodiment of Fig. 14. Further,
the electrical connection between an address comparing
circuit and spare word lines can be changed, not by
blowing the fuse of a switching circuit but by varying
5 the address stored in the address comparing circuit.
Two bits (that is, $A_x[n_w-1]$ and $A_y[n_B-1]$) of the address
stored in the address comparing circuit specify one
memory mat.

In the present embodiment, as is evident from
10 the above explanation, it is preferable to make the
number R equal to a multiple of the number L.

The present embodiment is an improved version
of the embodiment of Fig. 11. A similar improved
version can be constructed for the embodiment of Fig. 9.

15 The embodiments of Figs. 11, 14 and 17 are
superior to the embodiment of Fig. 9, in that the number
m is equal to one (1). However, it is impossible to use
the redundancy techniques of Figs. 11, 14 and 17 as they
are, for the purpose of replacing a defective word line
20 included in a DRAM with the ordinary address multiplex
system. The first reason is as follows. In the DRAM,
it is necessary to refresh memory cells, and thus it is
impossible to freely determine the number of word lines
which are simultaneously selected. In the embodiment of
25 Fig. 9, N_B memory cells are simultaneously refreshed
while in the embodiments of Figs. 11, 14 and 17, $N_B/2$
memory cells are simultaneously refreshed. Accordingly,
in order to apply the redundancy techniques of Figs. 11,

1 14 and 17 to a DRAM, it is necessary to vary the
repetition frequency of refresh operation. The second
reason is that since the address multiplex system is
used, a column address is not yet inputted at a time a
5 word line is selected. However, in a case where the
above problems do not arise, the redundancy techniques
of Figs. 11, 14 and 17 are applicable. For example,
these techniques are applicable to a static RAM, and are
also applicable to a DRAM which does not use the address
10 multiplex system, and in which the repetition frequency
of fresh operation is not restricted. Even in an
ordinary DRAM, the above redundancy techniques can be
used for repairing the defect in a bit line. This is
because the repetition frequency of refresh operation is
15 not affected by the number of bit lines which are
simultaneously selected; and moreover a column address
has been inputted at a time a bit line is selected.

Embodiment 5

As is evident from the above, in a case where
20 a defective word line in a DRAM is replaced by a spare
word line, it is preferable that memory cells which are
simultaneously refreshed, are simultaneously replaced by
spared memory cells, as in the embodiment of Fig. 9.
Even in a case where a defective word line in a DRAM is
25 replaced by a spare word line, the structure shown in
Fig. 18 can make the number m equal to one (1). This is
because a memory array is divided into four memory mats

1 in such a manner that each word line is not divided but
each bit line is divided into four parts. In the fifth
embodiment shown in Fig. 18, a defective word line can
be replaced by a spare word line in the same manner as
5 in the embodiment of Fig. 17. In the present embodiment,
however, N_B memory cells are simultaneously
refreshed and only row address signals are used for
specifying a memory mat, as in the embodiment of Fig. 9.

In the present embodiment, a single Y-decoder
10 40 is provided at an end of the memory, and an output
 $YS[j]$ of the Y-decoder is supplied to each memory mat
through a wiring conductor which is indicated by a dot-
dash line in Fig. 18. That is, a technique is used
which is called "multi-division bit line", and a
15 plurality of memory mats have one Y-decoder in common,
to reduce a chip area. Further, two memory mats use a
circuit block which includes sense amplifiers and
input/out lines, in common. In more detail, memory mats
130 and 131 use a circuit block 240 in common, and
20 memory mats 132 and 133 use a circuit block 241 in
common. This technique is called "shared sense", and is
effective in reducing the area of sense amplifiers. The
"multi-division bit line" and the "shared sense" are
described, for example, on pages 282 and 283 of the IEEE-
25 ISSCC Digest of Technical Papers, Feb., 1984, and in
U.S. patent No. 4,675,845.

In the first to fifth embodiment, a word line
is replaced by a spare word line in accordance with the

1 present invention. However, the present invention is
not limited to a word line, but is applicable to the
replacement of a bit line by a spare bit line.

Embodiment 1 of Address Comparing Circuit

5 Next, explanation will be made of an address
comparing circuit used in the present invention. Fig.
19 shows an embodiment of an address comparing circuit
included in the semiconductor memory of Fig. 9. In Fig.
19, reference numeral 801 designates an N-channel MOS
10 transistor, 802 and 803 P-channel MOS transistors, 804
an inverter, 810 a bit comparing circuit for storing therein
one bit of a wrong (e.g., defective) address to compare one
bit of an applied address with the stored bit, 811 a fuse
which can be blown by a laser beam, 812 and 821 to 824
15 N-channel MOS transistors, 817 to 820 P-channel MOS
transistors, 813 an inverter, and 814 and 815 NAND
gates. Now, explanation will be made of the operation
of the address comparing circuit of Fig. 19.

First, a pre-charge signal XDP is brought to a
20 low level, to make the transistor 802 conductive,
thereby setting a node 805 to a high potential level.
At this time, an output XR has a low level. Next,
address signals $A_x[i]$ (where $i=0, 1, \dots, n_w-1$) are
applied to bit comparing circuits 810. Each bit
25 comparing circuit 810 compares one bit stored therein
(namely, one bit of a wrong address stored in the
address comparing circuit) with an address signal $A_x[i]$.

1 When the address signal $A_x[i]$ coincides with the stored bit, an output $C[i]$ has a high level. When the above address signal does not coincide with the stored bit, the output $C[i]$ has a low level. When the results of
5 comparison in all the bit comparing circuits indicate coincidence, all of the transistors 801 are put in a conductive state. Thus, the node 805 is discharged, and has a low potential level. At this time, the output XR has a high level. That is, it is judged (for example,
10 a determination is made) that the applied address coincides with the stored wrong address. In a case where at least one bit of the applied address does not coincide with a corresponding one bit of the stored wrong address, the node 805 is not discharged, and hence the output XR
15 is kept at the low level. The transistor 803 has relatively small transfer conductance, and is used for latching the potential of the node 805. When the node 805 is not discharged, the output XR has the low level, and hence the transistor 803 is made conductive. Thus,
20 the potential of the node 805 is kept at the high level.

Next, the bit comparing circuit 810 will be explained in detail. In the bit comparing circuit, the logical value of one bit of a wrong address is indicated by whether or not the fuse 811 is blown. In Fig. 19, a
25 state that the fuse is not blown, corresponds to a logical value "0", and a state that the fuse is blown, corresponds to a logical value "1". In a case where the fuse is not blown, a node 830 has a high potential

1 level, and a node 831 has a low potential level. Nodes
832 and 833 on the output side of a latch circuit, which
is formed of cross-coupled NAND gates 814 and 815, have
low and high potential levels, respectively. According-
5 ly, when the address signal $A_x[i]$ indicates a logical
value "0", that is, when the address signal $A_x[i]$ has a
low level and the complement thereof $\overline{A_x[i]}$ has a high
level, the output $C[i]$ has the high level. In a case
where the fuse is blown, the potentials of the nodes 830
10 to 833 are reversed. Thus, when the address signal
 $A_x[i]$ indicates a logical value "1", the output $C[i]$ has
the high level.

One of the bit comparing circuits is not
applied with the signals $A_x[i]$ and $\overline{A_x[i]}$, but is applied
15 with a source voltage V_{CC} and a timing signal $\overline{\phi_A}$ which
is put from a high level to a low level in synchronism
with the level change of the address signal, to be used
as an enable circuit. It is determined by the enable
circuit whether or not the address comparing circuit is
20 used for repairing a defect. In a case where the
address comparing circuit is used, the fuse of the
enable circuit is blown. When this fuse is not blown,
the output E of the enable circuit is always kept at a
low level, and thus the output X_r of the address
25 comparing circuit is always kept at a low level.

As mentioned above, in the embodiments of
Figs. 11, 14 and 17, the column address signal $A_x[n_B-1]$
is compared with stored data. This comparison can be

1 carried out by adding one bit comparing circuit 810 and
one MOS transistor 801 to the address comparing circuit
of Fig. 19.

A device for storing a wrong address is not
5 always required to include a fuse which can be blown by
a laser beam, but may include a fuse which can be
electrically blown, or may be formed of a nonvolatile
memory such as an EPROM.

Embodiment 2 of Address Comparing Circuit

10 Fig. 20 shows another embodiment of an address
comparing circuit. This embodiment is suitable for use
in the semiconductor memories of Figs. 17 and 18. The
present embodiment is different from the embodiment of
Fig. 19 in that a pair of circuit blocks 850 and 851
15 each including a plurality of bit comparing circuits 810
and N-channel MOS transistors 801 are provided. Two wrong
(e.g., defective) addresses are stored in the circuit blocks
850 and 851. The operation of the present embodiment will
be explained below.

20 First, the pre-charge signal XDP is put to a
low level, to set the node 805 to a high potential
level. Next, the address signals $A_x[i]$ (where $i=0, 1, \dots, n_w-1$) are applied to the circuit blocks 850 and
851. Thus, the address signals are compared with wrong
25 addresses stored in the circuit blocks 850 and 851.
When the applied address coincides with one of the wrong
addresses, the node 805 is discharged, and thus the

1 output X_r has a high level.

As is evident from the above explanation, the present embodiment is equivalent to the combination of two address comparing circuits and one OR gate 502 or 5 503 in the redundancy control circuit of Fig. 17 or 18. Accordingly, when the present embodiment is used, the OR gate can be omitted from the redundancy circuit. Moreover, the discharge time of the node 805 is the same as in the embodiment of Fig. 19, and thus a delay time due 10 to the OR gate can be eliminated.

Now, let us consider a case where troubles with a bit line are generated in the memory of Fig. 18. In this case, defects may occur in a plurality of memory mats, since the memory mats use the Y-decoder and a 15 sense amplifier in common. This problem can be solved by storing not only logical values "0" and "1" but also a don't-care value "X" in the address comparing circuit, as will be explained below. Now, explanation will be made of embodiments of a semiconductor memory according 20 to the present invention which embodiments utilize the don't-care value.

Embodiment 6

Fig. 21 shows the sixth embodiment of a semiconductor memory according to the present invention.

25 In Fig. 21, reference numeral 10 designates a memory

1 array, 20 sense amplifiers and input/output lines, 30 an
X-decoder, 40 a Y-decoder, 500 a redundancy control
circuit, 630 a spare bit line selection circuit (having
the same circuit construction as that of Fig. 33), 701 a
5 data input buffer, and 702 a data output buffer. The
memory array 10 includes a region 14 where regular
memory cells are arranged, and a region 15 where spare
memory cells are arranged. In the region 14, $N_W \times N_B$
memory cells $M[i, j]$ are disposed at two-level crossings
10 of N_W word lines $W[i]$ (where $i=0, 1, \dots, N_W-1$) and
 N_B bit lines $B[j]$ (where $j=0, 1, \dots, N_B-1$). In the
region 15, $N_W \times L$ spare memory cells (in the figure,
 $L=2$) are disposed at two-level crossings of N_W word
lines and L spare bit lines $SB[k]$ (where $k=0, \dots, L-1$).
15 Although the folded bit line structure is used in the
present embodiment, the present invention is also
applicable to a case where the open bit line structure
is used.

Now, explanation will be made of the features
20 of the redundancy technique used in the present
embodiment. The features reside in that not only column
address signals but also row address signals $A_x[0]$ to
 $A_x[N_W-1]$ are applied to each address comparing circuit,
and a don't-care value "X" can be stored in each address
25 comparing circuit. Thus, it is possible to compare the
applied address with a stored address, or not to compare
the applied address with any data. In the conventional
redundancy technique of Fig. 2A, only the applied column

1 address is compared with the column address stored in
the address comparing circuit, to replace regular memory
cells belonging to one bit line by spare memory cells.
According to the present embodiment, when the applied
5 row address is not compared with any data, regular
memory cells belonging to one bit line are simul-
taneously replaced by spare memory cells. When not only
the column address but also the row address is compared
with stored data, a regular memory cell can be replaced
10 by a spare memory cell, bit by bit.

Now, the redundancy technique in the present embodiment will be explained below, with reference to Fig. 22. Fig. 22 is a table showing examples of the replacement method which can be carried out by the 15 redundancy control circuit of the present embodiment, that is, how many regular memory cells are simultaneously replaced by spare memory cells. In the table of Fig. 22, a sign O indicates that an input address signal is compared with a stored value, (that is, a 20 logical value "0" or "1" is stored in a bit comparing circuit) and a sign x indicates that the input address signal is not compared with any data, (that is, a don't-care value "X" is stored in the bit comparing circuit). When all of row address signals and column address 25 signals are compared with stored data, as shown in the first column of the table, a regular memory cell can be replaced by a spare memory cell, bit by bit. When the row address signals are not compared with any data, as

1 shown in the third column of the table, one bit line is
replaced by a spare bit line. Further, when only the
rightmost bit of the input row address is not compared
with any data, as shown in the second column, a pair of
5 regular memory cells are simultaneously replaced by
spare memory cells.

As mentioned above, it is one feature of the present embodiment to use the row address in repairing a defect with respect to a bit line. In the conventional 10 redundancy technique, only the row address is used for replacing a defective word line by a spare word line, and only the column address is used for replacing a defective bit line by a spare bit line. When the row address is used for repairing a defect with respect to a 15 bit line, as in the present embodiment, or when the column address is used for repairing a defect with respect to a word line, various replacement methods mentioned above can be realized.

It is an advantage of the present invention to 20 make it possible to take a carefully thought-out measure for various defects in a semiconductor memory by using the above-mentioned replacement methods. In general, defects in a semiconductor memory include a single-bit defect (which is generated by, for example, a pin hole 25 in the capacitor of a memory cell), a pair-bit defect (which is caused by, for example, a bad contact), a bit-line defect (which is generated by, for example, the breaking of a bit line), and others. According to the

1 conventional technique of Fig. 2A, even when a single-bit defect is generated, a bit line containing a defective memory cell is replaced by a spare bit line.

5 While, according to the present embodiment, when a single-bit defect is generated, only a defective memory cell is replaced by a spare memory cell. Further, when a pair-bit defect is generated, only two defective memory cells are replaced by spare memory cells. It is needless to say that when a bit-line defect is

10 generated, a defective bit line can be replaced by a spare bit line. As mentioned above, according to the present embodiment, only a minimum number of regular memory cells are replaced by spare memory cells. Thus,

15 the probability that a defective memory cell is included in the spare memory cells substituted for the regular memory cells, is reduced, since the probability that all the spare memory cells are non-defective, is inversely proportional to an exponential function having the number of spare memory cells as the power.

20 Further, according to the present embodiment, a minimum number of spare memory cells necessary for repairing a defect are used, and thus the utilization efficiency of spare memory cells is improved. For example, let us consider a case where regular memory

25 cells $M[i_1, j_1]$ and $M[i_2, j_2]$ are defective (where $i_1 \neq i_2$ and $j_1 \neq j_2$). According to the redundancy technique of Fig. 2A, two spare bit lines are required for repairing such defects. While, according to the present

1 embodiment, the wrong addresses $[i_1, j_1]$ and $[i_2, j_2]$
are stored in, for example, the address comparing
circuits AC[0] and AC[1], respectively. Then, the
defects can be repaired by using only a spare bit line
5 SB[0]. Accordingly, another spare bit line SB[1] can
be used for repairing other defects. Thus, the
manufacturing yields of a semiconductor memory can be
improved.

Next, the redundancy control circuit 500 will
10 be explained in detail. The redundancy control circuit
of the present embodiment includes R address comparing
circuits AC[k] (where $k=0, 1, \dots, R-1$), OR gates 502 and
503, and an NOR gate 504. The redundancy control
circuit generally includes L OR gates, each of which
15 produces the logical sum of the outputs of R/L address
comparing circuits. In Fig. 21, however, $R=4$, and
 $R/L=2$. Two of the outputs YR[0] to YR[3] of $R(=4)$
address comparing circuits are applied to the OR gate
502, and the remaining outputs are applied to the OR
20 gate 503. The signals YL[0] and L[1] outputted from the
OR gates 503 and 502 are applied to the spare bit line
selection circuit 630, to select a spare bit line. When
one of the outputs YR[0] to YR[3] has a high level, the
NOR gate 504 disables the Y-decoder 40.

25 An advantage of the present invention is that
the degree of freedom in determining the number L of
spare bit lines and the number R of address comparing
circuits is large. In the conventional redundancy

1 technique, the whole of a regular bit line is replaced
by a spare bit line, and hence it is required to satisfy
a relation $L=R$. For example, in the memory of Fig. 2A,
L=R=4. While, according to the present invention, the
5 number L and the number R can be relatively freely
selected, and hence a redundancy control circuit can be
formed which is small in area and high in operation
efficiency. The relation between the number L and the
number R will be explained below.

10 When the number of regular memory cells which
are replaced by spare memory cells at one time, is
expressed by b , the following relation is generally
satisfied:

$$L \leq R \leq LN_W/b \quad ----- (3)$$

The inequality sign on the left side indicates that it
15 is nonsense to make the number of spare lines greater
than the number of address comparing circuits. The
inequality sign on the right side has the following
meaning. The number of spare memory cells is LN_W , and b
spare memory cells are simultaneously substituted for
20 regular memory cells. Accordingly, LN_W/b replacement
operations can be performed. Hence, it is nonsense to
make the number of address comparing circuits greater
than LN_W/b . In the conventional technique, in which the
whole of a regular bit line is replaced by a spare bit
25 line, a relation $b=N_W$ exists, and hence it is required

1 to satisfy a relation $L=R$. While, according to the
present embodiment, the number b can be freely selected,
provided that a relation $1 \leq b \leq N_w$ is satisfied.
Accordingly, the degree of freedom in determining the
5 number L and the number R is increased.

When viewed from the standpoint of chip area,
it is preferable to increase the number R rather than
than the number L . This is because an area for one
address comparing circuit is generally smaller than an
10 area necessary for providing one spare line in each
memory mat. In the redundancy technique of Fig. 2A, it
is required to satisfy the relation $L=R$, and hence it is
impossible to increase only the number R . According to
the present invention, only the number R can be in-
15 creased. That is, it is possible to make the number L
relatively small and to make the number R relatively
large. Thus, a redundancy control circuit can be formed
which is small in area and high in operation efficiency.
In other words, the gist of the present invention is to
20 satisfy a relation which is obtained by eliminating the
equality sign on the left side from the formula (3),
that is, the following relation:

$$L < R \leq LN_w/b \quad ----- \quad (4)$$

For example, in the present embodiment shown in Fig. 21,
 $L=2$, and $R=4$. As is evident from this example, it is

1 preferable to make the number R equal to a multiple of
the number L.

Embodiment 7

Fig. 23 shows the seventh embodiment of a
5 semiconductor memory according to the present invention.
The present embodiment is different from the embodiment
of Fig. 21, in the wiring method for the outputs of
address comparing circuits. In the present embodiment,
a signal YL which is the logical sum of the outputs
10 YR[0] TO YR[3], is applied to a spare bit line selection
circuit 640. In keeping with such circuit connection,
the spare bit line selection circuit 640 has a circuit
structure shown in Fig. 24A or 24B. This circuit
structure is used for preventing the multiple selection
15 of spare bit lines. In Fig. 24A, the logical product of
the signal YL and an address signal Ay[0] for selecting
a bit line (or the complement of the address signal) is
produced, to specify only one spare bit line. Further,
in Fig. 24B, a bit line selection signal ϕ_y is pre-
20 decoded by the address signal Ay[0] and the complement
thereof, and the signals ϕ_{y0} and ϕ_{y1} thus obtained are
used for specifying only one spare bit line.

A feature of the present embodiment is that
two bit lines can be used as one unit in a replacement
25 operation. Now, this feature will be explained, with
reference to a table shown in Fig. 25. The first,
second and fifth columns of the table correspond to a

1 single-bit defect, a pair-bit defect and a bit-line
defect, respectively, as in Fig. 22. The third column
of the table corresponds to a pair-bit defect of
different type, that is, a case where adjacent bits on
5 the same word line are defective. It is to be noted
that the second column corresponds to a case where adjacent
bits on the same bit line are defective. Such pair-bit
defects are caused by the short circuit between the
capacitors of adjacent memory cells. The fourth column
10 of the table corresponds to a case where 2 x 2 memory
cells are defective. In a static RAM, this defect is
caused by, for example, a bad contact. The sixth column
of the table corresponds to a case where two bit lines
which are adjacent to each other, are defective. This
15 defect is caused by, for example, the short circuit
between the bit lines. According to the present
embodiment, various defects which have been mentioned
above, can be readily repaired.

Another feature of the present embodiment is
20 that the number of wiring conductors which are extended
from the redundancy control circuit 500 to the spare bit
line selection circuit 640, is reduced.

Embodiment 8

Fig. 26 shows the eighth embodiment of a
25 semiconductor memory according to the present invention.
The present embodiment is different from the embodiments
of Figs. 21 and 23 in that a memory array is divided

1 into a plurality of memory mats (in the figure, four
memory mats 130 to 133) in a direction parallel to bit
lines. Each memory mat includes a region 140, 141, 142,
or 143 where regular memory cells are arranged, and a
5 region 150, 151, 152, or 153 where spare memory cells
are arranged. In each of the regions 140 to 143, $N_W \times$
 $N_B/4$ memory cells are disposed at two-level crossings of
 $N_W/4$ word lines $W[i, n]$ (where $i=0, 1, \dots, N_W/4 - 1$, and
 $n=0, 1, \dots, 3$) and N_B bit lines $B[j, n]$ (where $j=0,$
10 $1, \dots, N_B-1$, and $n=0, 1, \dots, 3$). In each of the regions
150 to 153, $N_W \times L/4$ spare memory cells (in the figure,
 $L=2$) are disposed at two-level crossings of $N_W/4$ word
lines $W[i, n]$ (where $i=0, 1, \dots, N_W/4 - 1$, and $n=0,$
 $1, \dots, 3$) and L spare bit lines $SB[k, n]$ (where $k=0, \dots,$
15 $L-1, n=0, 1, \dots, 3$). Circuit blocks 230 to 233 each
including sense amplifiers and input/output lines are
provided so as to correspond to the memory mats 130 to
133, respectively. However, only a single Y-decoder 40
is provided in an end portion. An output $YS[j]$ of the
20 Y-decoder is applied to each memory mat through a wiring
conductor which is indicated by a dot-dash line in Fig.
26. Similarly, an output $SYS[k]$ of the spare bit line
selection circuit 630 is applied to each memory mat
through a wiring conductor which is indicated by another
25 dot-dash line in Fig. 26. A technique which is
called "division of bit line", is used in the present
embodiment. That is, a plurality of memory mats use one
Y-decoder in common, and thus a chip area is reduced.

1 The present invention is specifically
effective for a semiconductor memory, in which a
plurality of memory mats use circuit means (for example,
a Y-decoder and output lines thereof) in common, such as
5 the present embodiment. The reason for this is as
follows. When a fault is generated in the common
circuit means, a defect may be generated in a plurality
of memory mats. According to the present invention,
such a defect can be readily repaired, as will be
10 explained below with reference to a table shown in Fig.
27. The first and second columns of the table corre-
spond to single-bit and pair-bit defects, respectively,
as in Fig. 22. The third column of the table corre-
sponds to a bit-line defect. In the present embodiment,
15 however, the memory array is divided into four memory
mats. Accordingly, address signals for specifying one
of the memory mats (that is, address signals $A_x[n_w-1]$
and $A_x[n_w-2]$ indicative of two leftmost bits of a row
address) are compared with stored data. Thus, only a
20 bit line in the specified memory mat is replaced by a
spare bit line. The fourth column of the table corre-
sponds to a case where the Y-decoder is defective. In
this case, the address signals $A_x[n_w-1]$ and $A_x[n_w-2]$ are
not compared with any data. Thus, corresponding bit
25 lines in four memory mats are simultaneously replaced by
spare bit lines.

1 Embodiment 9

Fig. 28 shows the ninth embodiment of a semiconductor memory according to the present invention. The present embodiment is different from the embodiment 5 of Fig. 26 in that two memory mats use a circuit block which includes sense amplifiers and input/output lines, in common. That is, the memory mats 130 and 131 use a circuit block 240 in common, and the memory mats 132 and 133 use a circuit block 241 in common. This technique 10 is called "shared sense", and can reduce an area necessary for sense amplifiers.

According to the present embodiment, when a fault is generated in a sense amplifier, corresponding bit lines in the memory mats on the left and right sides 15 of the sense amplifier become defective. Such defects can be readily repaired, as will be explained below with reference to a table shown in Fig. 29. The first, second, third and fifth columns of table correspond to a single-bit defect, a pair-bit defect, a bit-line defect 20 and a Y-decoder defect, respectively, as in Fig. 27. The fourth column of the table corresponds to a case where a sense amplifier is defective. In this case, an address signal for specifying one of a memory mat group 130 and 131 and a memory mat group 132 and 133 (that is, 25 address signal $A_x[n_w-1]$ indicative of the leftmost bit of a row address) is compared with stored data. Thus, corresponding bit lines in memory mats which exist on both sides of the defective sense amplifier are

1 simultaneously replaced by spare bit lines.

In the sixth to ninth embodiments, a defect with respect to a bit line has been repaired. However, an inventive redundancy technique utilizing a don't-care 5 value is also applicable to a case where a defect with respect to a word line is repaired.

Embodiment 3 of Address Comparing Circuit

Next, explanation will be made of an address comparing circuit which is used in the sixth to ninth 10 embodiments of a semiconductor memory according to the present invention. The feature of the above address comparing circuit is that three kinds of values "0", "1" and "X" can be stored in the address comparing circuit, to indicate a wrong address. Fig. 30 shows the third 15 embodiment of an address comparing circuit. In Fig. 30, reference numeral 800 designates an AND gate, 810 a bit comparing circuit for storing one bit of a wrong address to compare one bit of an applied address with the stored bit, 861 to 863 fuses which can be blown by a laser 20 beam, 864 and 867 inverters, 865 and 866 NAND gates, 809 an enable circuit for determining whether or not the address comparing circuit is to be used in a redundancy 25 circuit, 811 a fuse which can be blown by a laser beam, 812 an N-channel MOS transistor, 813 and 816 inverters, and 814 and 815 NAND gates. The operation of the address comparing circuit will be explained below.

The enable circuit will first be explained.

1 In a case where the address comparing circuit is used
for repairing a defect, the fuse 811 of the enable
circuit is first blown. Thus, a node 830 is brought to
a low potential level, a node 831 is put to a high
5 potential level, a node 832 has a high potential level,
and a node 833 has a low potential level. Accordingly,
an enable signal E has a high level. In a case where
the fuse 811 is not blown, the potential levels of the
nodes 830 to 833 are reversed, and thus the enable
10 signal E has a low level.

Next, the bit comparing circuit will be explained. The bit comparing circuit 810 compares a value which is stored in accordance with the state of the fuses 861 to 863, with an address signal $A_x[i]$ (or $A_y[j]$). When the address signal coincides with the stored value, an output $C_x[i]$ (or $C_y[j]$) has a high level. When the address signal does not coincide with the stored value, the output has a low value. The fuses 861 to 863 are treated as follows. In a case where a logical value "0" is stored, the fuses 861 and 862 are blown. Thus, when an address indicates a logical value "0", that is, when the address signal $A_x[i]$ (or $A_y[j]$) has a low level, and the complement thereof $\overline{A_x[i]}$ (or $\overline{A_y[j]}$) has a high level, the output $C_x[i]$ (or $C_y[j]$) 20 has a high level. In a case where a logical value "1" is stored, the fuses 861 and 863 are blown. Thus, when an address indicates a logical value "1", that is, when the address signal $A_x[i]$ (or $A_y[j]$) has a high level,

1 and the complement thereof $A_x[i]$ or $\bar{A}_x[i]$) has a low
level, the output $C_x[i]$ (Or $C_y[j]$) has a high level. In
a case where the value "X" is stored, the fuses 862 and
863 are blown. In this case, the output $C_x[i]$ (or
5 $C_y[j]$) has a high level, independently of the applied
address. When coincidence is shown in all the bit
comparing circuits, the output YR of the AND gate 800
has a high level. That is, it is judged that an applied
address coincides with the wrong address. In a case
10 where at least one bit of the applied address does not
coincide with the stored value, the output YR has a low
level. The above operation is performed in a case where
the enable signal E has a high level. In a case where
the enable signal E has a low level, the output $C_x[i]$
15 (or $C_y[j]$) of each bit comparing circuit has a low
level, and thus the output YR has a low level.

It is a feature of the present embodiment to
be able to make small the circuit scale of an address
comparing circuit and the area occupied by the circuit.

20 A device for storing a wrong address is not
always required to include a fuse which can be blown by
a laser beam, but may include a fuse which can be
electrically blown, or may be formed of a nonvolatile
memory such as an EPROM.

25 Embodiment 4 of Address Comparing Circuit

Fig. 31 shows the fourth embodiment of an
address comparing circuit. The present embodiment is

1 different from the embodiment of Fig. 30 in circuit
configuration of each bit comparing circuit 810. In
Fig. 31, reference numerals 871, 881 and 882 designate
fuses which can be blown by a laser beam, 872 an N-
5 channel MOS transistors, 873 and 887 inverters, 874,
875, 885 and 886 NAND gates, and 883 and 884 OR gates.
The operation of this bit comparing circuit will be
explained below.

In a case where the value "X" is stored in the
10 bit comparing circuit 810, the fuse 871 is blown. Thus,
a node 890 is brought to a low potential level, a node
891 is put to a high potential level, a node 892 has a
high potential level, and a node 893 has a low potential
level. Accordingly, a don't-care signal D has a high
15 level. Thus, an output $C_x[i]$ (or $C_y[j]$) has a high
level, independently of an applied address. In order to
store a logical value "0" or "1" in the bit comparing
circuit, the fuse 871 is not blown, and thus the don't-
care signal D has a low level. In a case where the
20 logical value "0" is stored, the fuse 881 is blown.
Thus, when an applied address indicates the logical
value "0", that is, when an address signal $A_x[i]$ (or
 $A_y[j]$) has a low level, and the complement $\overline{A_x[i]}$ (or
 $\overline{A_y[j]}$) of the address signal has a high level, the
25 output $C_x[i]$ (or $C_y[j]$) has the high level. In a case
where the logical value "1" is stored, the fuse 882 is
blown. Thus, when the applied address indicates the
logical value "1", that is, when the address signal

1 $A_x[i]$ (or $A_y[j]$) has a high level, and the complement
 $\bar{A}_x[i]$ (or $\bar{A}_y[j]$) of the address signal has a low level,
the output $C_x[i]$ (or $C_y[j]$) has the high level.

A feature of the present embodiment is that
6 each of the values "0", "1" and "X" can be stored in the
bit comparing circuit by blowing only a single fuse. In
the embodiment of Fig. 30, each of these values is
stored by blowing two fuses. Accordingly, the present
embodiment can shorten a time necessary for repairing a
10 defect in the course of the inspection of a semi-
conductor memory. Another feature of the present
embodiment is that a plurality of bit comparing circuits
can use the don't-care signal D in common, though such
circuit connection is not shown in Fig. 31. For
15 example, in a case where five kinds of replacement
methods shown in Fig. 29 are carried out, a plurality of
bit comparing circuits corresponding to the address
signals $A_x[1]$ to $A_x[n_w-2]$ can use the don't-care signal
in common. That is, only a single circuit part made up
20 of circuit elements '871 to 875 is provided, and thus the
area occupied by the address comparing circuit can be
reduced.

Embodiment 5 of Address Comparing Circuit

Fig. 32 shows the fifth embodiment of an
25 address comparing circuit. The present embodiment is
different from the embodiment of Fig. 30, in circuit
configuration of each bit comparing circuit 810. In

1 Fig. 32, reference numerals 901 and 911 designate fuses
which can be blown by a laser beam, 902 and 912 N-
channel MOS transistors, 903 and 913 inverters, 904,
905, 914 and 915 NAND gates, 917, 918, 919 and 920 P-
5 channel MOS transistors, and 921, 922, 923 and 924 N-
channel MOS transistors. The operation of the bit
comparing circuit will be explained below.

When the fuses 901 and 911 are not blown,
nodes 932 and 942 are kept at a low potential level.

10 Accordingly, the output $C_x[i]$ (or $C_y[j]$) of the bit
comparing circuit 810 has a high level, independently of
an applied address. This indicates a state that the
value "X" is stored. In a case where a logical
value "0" is stored, the fuse 901 is blown. Thus, the
15 node 932 has a high potential level, and the node 942
has a low potential level. Accordingly, when an address
indicates the logical value "0", that is, when an
address signal $A_x[i]$ (or $A_y[j]$) has a low level, and the
complement $\bar{A}_x[i]$ (or $\bar{A}_y[j]$) of the address signal has a
20 high level, the output $C_x[i]$ (or $C_y[j]$) has the high
level. In a case where a logical value "1" is stored,
the fuse 911 is blown. Thus, the node 932 has the low
potential level, and the node 942 has the high potential
level. Accordingly, when the address indicates the
25 logical value "1", that is, when the address signal
 $A_x[i]$ (or $A_y[j]$) has the high level, and the complement
 $\bar{A}_x[i]$ (or $\bar{A}_y[j]$) has the low level, the output $C_x[i]$ (or
 $C_y[j]$) has the high level.

1 A feature of the present embodiment is that
the number of fuses can be reduced, as compared with
the embodiments of Figs. 30 and 31, and thus an area
occupied by the address comparing circuit can be
5 reduced. Moreover, in a case where the value "X" is
stored, it is not required to blow the fuses.
Accordingly, a time necessary for repairing a defect can
be shorter than that in the embodiments of Figs. 30
and 31.

10 Another feature of the present embodiment is
that when both of the fuses 901 and 911 are blown, the
address comparing circuit concerned is made invalid.
This is because the output $C_x[i]$ (or $C_y[j]$) is always
kept at the low level, and thus the output YR is always
15 kept at the low level. This function can be used in a
case where a spare memory cell substituted for a regular
memory cell is defective. For example, let us consider
a case where a defective regular bit line in the
semiconductor memory of Fig. 21 is replaced by a spare
20 bit line SB[0] with the aid of the address comparing
circuit AC[0]. When the spare bit line SB[0] is found
defective, the address comparing circuit AC[0] is
invalidated in the above-mentioned manner, and one of
the remaining address comparing circuits (for example,
25 an address comparing circuit AC[2]) is used for
replacing the defective regular bit line by a spare bit
line SB[1].

1 In the third to fifth embodiments of an
address comparing circuit, the don't-care value "X" can
be stored in all the bit comparing circuits. In some
cases, however, it is not required to store the
5 value "X" in some of the bit comparing circuits. For
example, in a case where five kinds of replacement
methods shown in Fig. 29 are carried out, it is not
required to store the value "X" in bit comparing
circuits corresponding to address signals $A_Y[0]$ to
10 $A_Y[n_B-1]$. In this case, an area occupied by the address
comparing circuit can be reduced by using a bit
comparing circuit incapable of storing the value "X"
(for example, the bit comparing circuit of Fig. 19) as
each of the bit comparing circuits corresponding to the
15 address signals $A_Y[0]$ to $A_Y[n_B-1]$. Further, in a case
where only three kinds of replacement methods shown in
the third to fifth columns of Fig. 29 are carried out
(that is, single-bit and pair-bit defects are not
repaired), each of bit comparing circuits corresponding
20 to address signals $A_X[n_W-2]$ and $A_X[n_W-1]$ is formed of a
circuit capable of storing the value "X", each of bit
comparing circuits corresponding to address signals
 $A_Y[0]$ to $A_Y[n_B-1]$ is formed of a circuit incapable of
storing the value "X", and bit comparing circuits
25 corresponding to address signals $A_X[0]$ to $A_X[n_W-3]$ are
omitted.

1 Embodiment 10

Fig. 33 shows an embodiment of a microcomputer according to the present invention. Referring to Fig. 33, a main memory MM, a central processing unit CPU and 5 an input/output circuit I/O are formed on a single chip. The main memory MM is formed of one of the first to ninth embodiments of a semiconductor memory, and thus the manufacturing yields of the one-chip microcomputer is improved in a great degree.

10 According to the present invention, the number of memory cells which are simultaneously replaced by spare memory cells to repair a defect, is reduced. Thus, the probability that a defective memory cell is included in the spare memory cells, is reduced, and 15 moreover the utilization efficiency of the spare memory cells is enhanced. Further, it is possible to increase the degree of freedom in determining the number of spare bit lines included in each memory mat and the number of address comparing circuit. Thus, a redundancy control 20 circuit can be formed which is small in area, and can improve the manufacturing yields of a semiconductor memory in a great degree.

It is further understood by those skilled in the art that the foregoing description shows only 25 preferred embodiments of the disclosed device and that various changes and modifications may be made in the invention without departing from the spirit and scope thereof.