```
% Os dois primeiros exemplos são testes de conceito.
```

Conexões não implementadas

Ainda não temos nenhuma conexão diferente de TCP.

Reserva para em caso no futuro seja desejável outras formas de conexão.

E para ajudar a desacoplar e permitir sobrecarga de métodos.

```
try
    Analysers.Analyser.connGPIB('1234')
catch exception
    disp(exception.message)
end
```

Conexão GPIB não implementada.

Execução com o simulador SA2500PC

Alocação dinâmica ainda não implementada (perfumaria prevista):

Caso só passe o IP, teríamos uma opção de auto discovery:

```
% Auto discovery
try
    Analysers.Analyser.connTCP("localhost");
catch exception
    disp(exception.message)
end
```

Autodiscovery não implementado

```
% Ref. portas a varrer:
% 5025 - Keysight e R&S
% 5555 - R&S EB500
% 9001 - Anritsu
% 34835 - Tektronix
```

Instrumento simulado (Download em SA2500PC).

Conectado e respondendo à sua identificação:

```
disp('Propriedades:')
```

Propriedades:

```
d = Analysers.Analyser.connTCP("localhost", 34835)
```

d =

```
dictionary (string 1 string) with 6 entries:

"Factory" 1 "TEKTRONIX"

"model" 2 "SA2500PC"

"serial" 3 "B000000"

"version" 5 "7.050"

"ip" 2 "localhost"

"port" 3 "34835"
```

Instância dinâmica.

Cada fabricante deve ter, na pasta 'Analysers', sua classe como mesmo nome de sua superclasse (prop:Factory), e cada especifidade de um certo modelo (prop:model) deve estar com o mesmo nome, o que permite escalonar e isolar os componentes em uma interface unificada, e granularizada para o serviço esperado.

O 'Analyser' deve conter todos os comandos genéricos da SCPI (Standard Commands for Programmable Instruments) e IEEE 488.2 Common Commands, este último inicia por um asterisco..

Com base na IDN que o instrumento responde, a instância sempre herda todos os comandos do 'Analyser'.

No caso, o "is a" está representado no classdef como "classdef TEKTRONIX < Analyser", ou seja, Um Tektronix é um analisador, e o SP2500 é um Tektronix ("classdef SA2500PC < TEKTRONIX")

Neste caso herda os comuns e sobrecarrega os comandos do Tektronix, e os específicos do modelo SA2500PC:

```
disp('Instancia Classes:')
Instancia Classes:
obj = Analyser.Analyser.instance(d);
Base de comando(TEKTRONIX), modelo (SA2500PC).
```

O simulador fecha quando recebe o comando de reset, então só fingimos o reset para evitar isso (na implementação específica do modelo). O que ainda oportuna outros casos de uso em casos diferentes, como o EB500 que precisa abrir uma porta específica para receber stream UDP.

Um instrumento real não terá o sufixo PC e portanto automaticamente não herdará esse método, o que possibilita compartilar comandos e especificar no modelo o que for diferente nele.

Aplicando uma sobrecarga no modelo SA2500PC com a resposta da classe:

```
obj.scpiReset;
 Simulando um "SCPI Reset" para o modelo SA2500PC.
Comandos gerais de inicialização:
 obj.startUp()
 Start Ok.
Teste geral de conectividade (SCPI):
 obj.ping()
 Resposta IDN recebida:
 TEKTRONIX, SA2500PC, B000000, 7.050
Obtém parâmetros do objeto:
 disp('getSpan:')
 getSpan:
 disp(obj.getSpan())
 10000
 disp('Parâmetros:')
 Parâmetros:
 obj.getParms()
 ans =
   dictionary (string 2 string) with 10 entries:
     "Function" 2 "NORM"
     "AVGCount" 2 "20"
     "Detection" 2 "AVER"
     "Power" 🗈 "DBM"
     "FStart" 2 "99995000"
     "FStop" 2 "100005000"
     "ResAuto" 🛚 🗈 "1"

  "10"

     "Res"
     "InputGain" 🛭 "1"
                 ② "50"
     "Att"
```

Operação

Aqui perguntamos se o parâmetro corresponde ao que foi solicitado (assert). E verificamos as respostas no simulador em tempo real:

```
disp('Pausas para observar o comportamento no simulador:')
```

Pausas para observar o comportamento no simulador:

```
pause(5) % Como o simulador não vai resetar,
% temos um tempo para ajustes de teste.
```

```
obj.setFreq(120000000)
obj.setSpan(50000)
assert(str2double(obj.getSpan) == 50000, '0 Span não foi ajustado.')
obj.setRes(2000)
assert(str2double(obj.getRes) == 2000, 'O Span não foi ajustado.')
pause(1)
obj.setFreq(10000000)
obj.setSpan(10000)
% Isso gera um alerta na janela do simulador,
% mas não retorna erro.
try
    assert(str2double(obj.getRes()) == 2000, 'A Resolução foi alterada
automaticamente.')
catch exception
    disp('Resolução alterada automaticamente para:')
    disp(obj.getRes())
end
```

Resolução alterada automaticamente para: 1000

```
pause(1)
```

```
disp('Ajuste em faixa larga')
```

Ajuste em faixa larga

```
obj.setFreq(88000000, 1080000000)
obj.setRes(20000) % Warning: Data out of range
try
    assert(str2double(obj.getSpan) == 10000, 'O Span não foi ajustado.')
catch
    disp('Se atribuir o span depois gera erro "out of range"')
end
```

Se atribuir o span depois gera erro "out of range"

```
pause(1)
% Observar o simulador com Spectrum o RBW com Auto em verde
obj.setRes('Auto')
obj.setFreq(88000000, 108000000)
pause(1)
% Escolhe uma portadora para análise
obj.setFreq(10000000)
obj.setSpan(10000)
assert(str2double(obj.getSpan) == 10000, '0 Span não foi ajustado.')
% Cuidado! Os pisos não correspondem aos de um instrumento real!
%obj.preAmp('On')
pause(1)
% Para observar abrir o menu Spectrum -> More -> Ampl
for a = 5:1.5:50
    obj.setAtt(a);
    % O pré desativa sozinho com att acima de 15dB
    % Mesmo expressamente solicitado, sem erro:
    obj.preAmp('On')
end
trace = obj.getTrace(1);
disp('Trace:')
```

Trace:

```
% Só as 5 primeiras linhas
disp(trace (1:5,:));
```

freq value

```
9995020 -70.491
99995040 -65.733
99995060 -66.947
99995080 -70.093

disp('Leitura do marcador:')

Leitura do marcador:

nivel = obj.getMarker(100002000, 1);
disp('Em 100.002 MHz o nível é:')

Em 100.002 MHz o nível é:

disp(nivel)

-18.5520

disp("Pronto")

Pronto
```

99995000 -66.461