

Data exploratory analysis Antonia Chroni for SJCRH DNB_BINF_Core

Contents

1	Information about this notebook	3
2	Set up	3
3	Directories and paths to file Inputs/Outputs	3
4	Read raw data file	4
5	Read processed data file	4
6	Update processed data file per our conversation with Jackie Norrie	4
8	10x matched scRNA-seq and scATAC-seq cohort 7.1 Type of sequencing assay and unit 7.2 Number of samples per experiment 7.3 Number of samples per seq_technology_assay 7.4 Summary of samples 10x Genomics Multiome cohort 8.1 Type of sequencing assay and seq_unit 8.2 Number of samples per experiment 8.3 Number of samples per seq_technology_assay 8.4 Summary of samples	7 8 9 9
9	Notes	12
10	References	12
11	Session Info	13
## ##	The following object is masked _byGlobalEnv:	
##	root_dir	

\mathbf{PI}	: N	$\mathbf{J}\mathbf{A}$				
\mathbf{Pr}	oje	ect:	test	- d	lata	aset
Tas	sk:	NA				
ъ			1/	`	ът.	

Project Lead(s): NA

Department: Developmental Neurobiology

DNB Bioinformatics Core Analysis Team:

Lead Analyst(s): Antonia Chroni, PhD

Group Lead: Cody A. Ramirez, PhD

Contact E-mail: antonia.chroni@stjude.org¹

DNB Bioinformatics Core Pipeline: Standard sc-/sn-ATAC-Seq Analysis in

10X Genomics data

Date started: Dec-16-2024 Date completed: ONGOING

Report generated: 16:23:01 CST 01/10/2025

Reviewed by:]	Date:	

 $^{^1}$ mailto:antonia.chroni@stjude.org

1 Information about this notebook

This is an exploratory analysis of the data available for the testing phase for the sc-atac-seq pipeline(s). We are investigating number of samples overall per condition and variables as defined in the params. We are looking for cohorts that fit the following criteria as described in the ./analyses/README.md².

- Control vs condition (min. 3+3 samples)
- Number of cells/sample size of datasets might determined packages/pipelines to be used
- Single cell/Single-nucleus ATAC
- Integration of scRNA-seq and scATAC-seq data from the same biological system (multiple modalities)
- Pipeline for same samples but not same cells with scRNA-seq and scATAC-seq
- Annotate scATAC-seq cells via label transfer by using scRNA data: cell type annotation
- Available bulk ATAC-seq data for the same samples (matched) this could be used for cell type annotation

2 Set up

```
suppressPackageStartupMessages({
  library(tidyverse)
  library(knitr)
  library(readxl)
})
```

3 Directories and paths to file Inputs/Outputs

```
attach(params)
## The following object is masked _by_ .GlobalEnv:
##
##
       root_dir
analysis dir <- file.path(root dir, "analyses", "data-exploratory-analysis")
# input files
data_file <- file.path(metadata_dir, "TestData_10x_2024_12_16.xlsx")</pre>
jackie_data_file <- file.path(metadata_dir, "cohorts_10x_rna_atac_testing_phase_JN.xlsx")
# File path to `input` directory
input_dir <- file.path(analysis_dir, "input")</pre>
if (!dir.exists(input_dir)) {
  dir.create(input_dir)}
# File path to `plots` directory
plots_dir <- file.path(analysis_dir, "plots")</pre>
if (!dir.exists(plots_dir)) {
  dir.create(plots_dir)}
```

²https://github.com/stjude-dnb-binfcore/sc-atac-seq/tree/main/analyses

```
# File path to `results` directory
results_dir <- file.path(analysis_dir, "results")
if (!dir.exists(results_dir)) {
   dir.create(results_dir)}</pre>
```

4 Read raw data file

```
# Read metadata
raw_data_df <- read_excel(data_file) %>%

# save data under a more descriptive file name
# all edits will be made on this one and not on the RAW data
# RAW data were edited manually by Antonia Chroni to add type of experiment and type of k
write_tsv(file.path(input_dir, "cohorts_10x_rna_atac_testing_phase_not_processed.tsv"))
```

5 Read processed data file

```
df_processed <- raw_data_df %>%
  # Add metadata
  add_column(seq_unit = "nucleus",
             condition = "unknown",
             species = "mouse") %>%
 tidyr::separate(Kit, c("seq_technology", "assay_drop"), sep = ' ', remove = FALSE) %>%
 tidyr::separate(assay_drop, c("assay", "drop"), sep = ' ', remove = FALSE) %>%
  select(!c(assay_drop, drop)) %>%
 mutate(seq_unit = case_when(grepl("More Retina", experiment) ~ "cell",
                              grepl("Stressed Retina", experiment) ~ "cell",
                              TRUE ~ seq_unit),
         Sample = case_when(grepl("6wk Cerebellum", Sample) ~ "6 week cerebellum",
                            grepl("PO Cerebellum,", Sample) ~ "PO cerebellum",
                            grepl("E14.5", Sample) ~ "E14.5 Retina",
                            TRUE ~ Sample),
         # Add condition col
         condition = case_when(grep1("PO cerebellum|6 week cerebellum|E14.5|PO Retina|E14.5
                               grepl("Wt1|Wt2|SEKO_21|SEKO_25", Sample) ~ "knock-out",
                               grepl("ATOH HI|ATOH Low", Sample) ~ "treatment",
                               TRUE ~ condition)) %>%
 write_tsv(file.path(results_dir, "cohorts_10x_rna_atac_testing_phase_2024-12-17.tsv"))
```

6 Update processed data file per our conversation with Jackie Norrie

This is the cohorts_10x_rna_atac_testing_phase_2024-12-17.tsv file updated per our conversation with Jackie Norrie to fix empty cells and/or inconsistencies.

```
df_processed_select <- df_processed %>%
  select(!c(SRM_id, SRM_Sample_id, seq_unit, condition))
# Read and process data
df_processed <- read_excel(jackie_data_file) %>%
  select(DYE, SRM_id, SRM_Sample_id, seq_unit, condition) %>%
  right_join(df_processed_select, by = join_by(DYE)) %>%
  mutate(seq_technology = case_when(grepl("RNA", assay) ~ "10Xv3",
                                    grepl("ATAC", assay) ~ "10Xv2"),
         seq_technology = case_when(grepl("yes", multiome_10x) ~ "10X",
                                    TRUE ~ seq_technology),
         seq_technology_assay = paste(seq_technology, assay, sep = "_")) %>%
  select(experiment, everything()) %>%
  # Add tissue/location information
  mutate(tissue = case_when(grepl("Retina", experiment) ~ "Retina",
                            grepl("Cerebellum", experiment) ~ "Cerebellum",
                            grepl("Victoria Knockout", experiment) ~ "Retina"),
         matched_sample_info = case_when(grepl("Cerebellum", experiment) ~ "same-mouse-same"
                                         grepl("Multiome Retina", experiment) ~ "same-mouse"
                                         grepl("More Retina", experiment) ~ "different-mouse
                                         grepl("Victoria Knockout", experiment) ~ "same-mous"
                                         grepl("Stressed Retina", experiment) ~ "same-mouse"
         wet_lab_info = case_when(grepl("DYE_4687", DYE) ~ "done later, not enough high quainter."
         # to create unique ID per each entry
         unique_ID = row_number(),
         # to assign a number per Sample
         sample_ID = dense_rank(Sample),
         # to create unique IDs per each sample – there were none in the database. We will \cdot
         matched_samples_ID = case_when(grepl("same-mouse-same-tissue", matched_sample info
                                               grepl("different-mouse-same-tissue-same-age",
  add_column(PI = "Dyer") %>%
  arrange(experiment, condition, Sample, assay) %>%
  # save data
  write_tsv(file.path(results_dir, glue::glue("cohorts_10x_rna_atac_testing_phase_{Sys.Date
## New names:
## * `` -> `...12`
```

7 10x matched scRNA-seq and scATAC-seq cohort

We will filter based on matched samples and paired assays. The Sample column indicates the unique sample used for sequencing.

```
df <- df_processed %>%
  filter(multiome_10x == "no",

# we will keep experiments that assays were performed at the same animal and tissu
```

```
matched_sample_info == "same-mouse-same-tissue")
```

7.1 Type of sequencing assay and unit

We should investigate if there are samples from different sequencing technologies and unit.

```
# Was nucleus or whole cell used for the sequencing?
seq_unit_samples <- unique(df$seq_unit)

# What type of assay was used?
assay_samples <- unique(df$assay)

# What type of seq_technology was used?
seq_technology_assay_samples <- unique(df$seq_technology_assay)

# What type of seq_technology was used?
PI_samples <- unique(df$PI)</pre>
```

Single cell sequencing was done by using nucleus, cell and there are 10Xv2_ATAC, 10Xv3_RNA sequencing technologies and assays in the database. Samples are generated by the Dyer lab. Cohort is formed and processed accordingly.

7.2 Number of samples per experiment

Table 1: Summary of samples per experiment

experiment	n
Cerebellum	9
Stressed Retina	3
Victoria Knockout	8

7.3 Number of samples per seq_technology_assay

Here, we investigate the number of libraries per assay, i.e., $seq_technology_assay$ and per $matched_samples_ID$.

Table 2: Number of samples per seq_technology_assay

			matched_sam-		seq_technol-	
experiment	tissue	condition	$ples_ID$	${\rm seq_unit}$	ogy_assay	\mathbf{n}
Cerebellum	Cerebel-	age	6 week	cell	10Xv3_RNA	1
	lum	_	$cerebellum_1$			
Cerebellum	Cerebel-	age	6 week	nucleus	$10 \mathrm{Xv2}$ ATAC	2
	lum		$cerebellum_1$			
Cerebellum	Cerebel-	age	P0	cell	$10 Xv3 _RNA$	1
	lum		$cerebellum_10$			
Cerebellum	Cerebel-	age	P0	nucleus	$10 \mathrm{Xv2}$ ATAC	1
	lum		$cerebellum_10$			
Cerebellum	Cerebel-	sorted	ATOH HI_2	cell	$10 Xv3 _RNA$	1
	lum					
Cerebellum	Cerebel-	sorted	ATOH HI_2	nucleus	$10 \mathrm{Xv2}$ ATAC	1
	lum					
Cerebellum	Cerebel-	sorted	ATOH Low_3	cell	$10Xv3$ _RNA	1
	lum					
Cerebellum	Cerebel-	sorted	ATOH Low_3	nucleus	$10 \text{Xv} 2_\text{ATAC}$	1
	lum					
Stressed	Retina	$_{ m LPS}$	LPS_6	cell	$10Xv3$ _RNA	1
Retina		Injection				
Stressed	Retina	$_{ m LPS}$	LPS_ATAC_7	nucleus	$10 \text{Xv} 2_\text{ATAC}$	1
Retina		Injection				
Stressed	Retina	PBS	PBS_11	cell	$10Xv3$ _RNA	1
Retina	_	Injection				
Victoria	Retina	knock-out	SEKO_21_13	cell	$10Xv3$ _RNA	1
Knockout	_					
Victoria	Retina	knock-out	SEKO_21_13	nucleus	10Xv2_ATAC	1
Knockout	·		~~~~~~~~			
Victoria	Retina	knock-out	SEKO_25_14	cell	$10Xv3$ _RNA	1
Knockout	D	1 1	CEIZO OF 14	1	1037 0 1571 0	-
Victoria	Retina	knock-out	SEKO_25_14	nucleus	10Xv2_ATAC	1
Knockout	D		777.d d.F	11	10M 0 DMA	4
Victoria	Retina	wt	$Wt1_15$	cell	10Xv3_RNA	1
Knockout	D. C.	,	777.1 1F	1	10W 0 ATTAC	1
Victoria	Retina	wt	Wt1_15	nucleus	10Xv2_ATAC	1
Knockout	D - 4 *	4	W40 10	_ 11	10V9 DMA	1
Victoria	Retina	wt	Wt2_16	cell	10Xv3_RNA	1
Knockout	D 04:	t	W40 16	1	10V9 ATAC	1
Victoria	Retina	wt	Wt2_16	nucleus	10Xv2_ATAC	1
Knockout						

7.4 Summary of samples

Table 3: Summary of samples

			matched sam-		seq_technol-
experiment	tissue	condition	ples_ID	seq_unit	ogy_assay
Cerebellum	Cerebel-		6 week	nucleus	10Xv2 ATAC
Cerebellum	lum	age	cerebellum 1	nucleus	10AV2_ATAC
Cerebellum	Cerebel-	age	6 week	nucleus	10Xv2 ATAC
Corobonam	lum	480	cerebellum 1	nacioas	1011,2_111110
Cerebellum	Cerebel-	age	6 week	cell	10Xv3 RNA
	lum	0	$cerebellum_1$		_
Cerebellum	Cerebel-	age	P0 cerebellum_10	nucleus	$10 \mathrm{Xv2}$ ATAC
	lum				
Cerebellum	Cerebel-	age	$P0 \text{ cerebellum}_10$	cell	$10 Xv3 _RNA$
	lum				
Cerebellum	Cerebel-	sorted	ATOH HI_2	nucleus	$10 \text{Xv2}_\text{ATAC}$
<i>a</i>	lum	_			
Cerebellum	Cerebel-	sorted	ATOH HI_2	cell	10Xv3_RNA
C 1 11	lum	, 1	ATTOLL 1	1	10V 0 ATTAC
Cerebellum	Cerebel- lum	sorted	ATOH Low_3	nucleus	10Xv2_ATAC
Cerebellum	Cerebel-	sorted	ATOH Low 3	cell	10Xv3_RNA
Cerebellulli	lum	sorted	ATOII LOW_5	Cell	10AV5_1ttVA
Stressed Retina	Retina	$_{ m LPS}$	LPS 6	cell	10Xv3 RNA
S 01 0550 ct 100 0111ct	10001110	Injection	21 % <u>_</u> 0	0011	1011/0_101/11
Stressed Retina	Retina	LPS	LPS_ATAC_7	nucleus	$10 \mathrm{Xv2}$ ATAC
		Injection			_
Stressed Retina	Retina	PBS	PBS_11	cell	$10 Xv3 _RNA$
		Injection			
Victoria	Retina	knock-out	SEKO_21_13	nucleus	$10 \mathrm{Xv2}$ ATAC
Knockout					
Victoria	Retina	knock-out	SEKO_21_13	cell	$10Xv3$ _RNA
Knockout	D	1 1 .	CDIZO OF 14	1	10W 0 AFFA C
Victoria	Retina	knock-out	SEKO_25_14	nucleus	10Xv2_ATAC
Knockout Victoria	Retina	knock-out	SEKO 25 14	cell	10Xv3_RNA
Knockout	пеша	KHOCK-OUT	SEKO_25_14	cen	IUAV3_RIVA
Victoria	Retina	wt	Wt1_15	nucleus	10Xv2_ATAC
Knockout	reconna	W	W 01_10	nacicas	10/11/2_/11/11
Victoria	Retina	wt	Wt1_15	cell	10Xv3_RNA
Knockout			· · · · -		
Victoria	Retina	wt	Wt2_16	nucleus	$10 \mathrm{Xv2}$ ATAC
Knockout					
Victoria	Retina	wt	$Wt2_16$	cell	$10 Xv3 _RNA$
Knockout					

8 10x Genomics Multiome cohort

```
df <- df_processed %>%
  filter(multiome_10x == "yes")
```

8.1 Type of sequencing assay and seq_unit

We should investigate if there are samples from two different sequencing technologies and unit.

```
# Was nucleus or whole cell used for the sequencing?
seq_unit_samples <- unique(df$seq_unit)

# What type of assay was used?
assay_samples <- unique(df$assay)

# What type of seq_technology was used?
seq_technology_assay_samples <- unique(df$seq_technology_assay)

# What type of seq_technology was used?
PI_samples <- unique(df$PI)</pre>
```

Single cell sequencing was done by using nucleus and there are 10X_ATAC, 10X_RNA sequencing technologies and assays in the database. Samples are generated by the Dyer lab. Cohort is formed and processed accordingly.

8.2 Number of samples per experiment

Table 4: Summary of samples per experiment

experiment			
Multiome Retina	6		

8.3 Number of samples per seq_technology_assay

Here, we investigate the number of libraries per assay, i.e., $seq_technology_assay$ and per $matched_samples_ID$.

Table 5: Number of samples per seq_technology_assay

			matched_sam-		seq_technol-	
experiment	tissue	condition	$ples_ID$	seq_unit	ogy_assay	n
Multiome	Retina	age	Adult Retina_4	nucleus	10X_ATAC	1
Retina						
Multiome	Retina	age	Adult Retina_4	nucleus	$10X$ _RNA	1
Retina						
Multiome	Retina	age	$E14.5 Retina_5$	nucleus	$10X_ATAC$	1
Retina						
Multiome	Retina	age	$E14.5 Retina_5$	nucleus	$10X$ _RNA	1
Retina						
Multiome	Retina	age	P0 Retina_9	nucleus	$10X_ATAC$	1
Retina						
Multiome	Retina	age	P0 Retina_9	nucleus	$10X$ _RNA	1
Retina						

8.4 Summary of samples

Table 6: Summary of samples

experiment	tissue	condition	matched_sam- ples ID	seq_unit	seq_technology_as- say
Multiome	Retina	age	Adult Retina 4	nucleus	10X ATAC
Retina	10001110	~8°	11ddiv 1000iiid1	Hadioas	1011_11110
Multiome	Retina	age	Adult Retina_4	nucleus	10X_RNA
Retina	.				
Multiome	Retina	age	E14.5 Retina_5	nucleus	10X_ATAC
Retina Multiome	Retina	age	E14.5 Retina_5	nucleus	10X_RNA
Retina					
Multiome	Retina	age	P0 Retina_9	nucleus	10X_ATAC
Retina	D		Do Data o	1	10M D314
Multiome Retina	Retina	age	P0 Retina_9	nucleus	10X_RNA

9 Notes

I have identified the following datasets that almost fit the criteria for the testing phase:

- 10x matched scRNA-seq and scATAC-seq: Victoria Knockout experiment with 1 replicate/knock-out group (4 samples for 10x RNA + 4 samples 10x ATAC). Replicates could be potentially grouped together and have 2 replicates for WT and 2 replicates for knock-out. I am unsure how to integrate properly single-cell-RNA-seq with single-nucleus-ATAC-seq data.
- 10x Genomics Multiome: Multiome Retina experiment with 1 replicate/age group (3 samples for 10x RNA (Multiome) + 3 samples for 10x ATAC (multiome).

10 References

- More Retina and Stressed retina experiments published by Norrie et al., 2025³.
- Victoria Knockout experiment published by Honnell et al., 2022⁴.

 $^{^{3}}$ https://doi.org/10.1016/j.devcel.2024.12.014

 $^{^{4}} https://www.nature.com/articles/s41467-021-27924-y\#Sec13$

11 Session Info

```
## R version 4.4.0 (2024-04-24)
## Platform: x86_64-pc-linux-gnu
## Running under: Red Hat Enterprise Linux 8.8 (Ootpa)
## Matrix products: default
## BLAS:
           /usr/lib64/libblas.so.3.8.0
## LAPACK: /usr/lib64/liblapack.so.3.8.0
##
## locale:
                                    LC_NUMERIC=C
    [1] LC_CTYPE=en_US.UTF-8
##
    [3] LC_TIME=en_US.UTF-8
##
                                    LC_COLLATE=en_US.UTF-8
    [5] LC_MONETARY=en_US.UTF-8
                                    LC_MESSAGES=en_US.UTF-8
##
    [7] LC_PAPER=en_US.UTF-8
                                    LC_NAME=C
##
    [9] LC_ADDRESS=C
                                    LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/Chicago
## tzcode source: system (glibc)
## attached base packages:
                 graphics grDevices utils
## [1] stats
                                                datasets methods
                                                                     base
##
## other attached packages:
   [1] readxl_1.4.3
                        knitr_1.48
                                         lubridate_1.9.3 forcats_1.0.0
##
    [5] stringr_1.5.1
                        dplyr_1.1.4
                                         purrr_1.0.2
                                                         readr_2.1.5
   [9] tidyr_1.3.1
                        tibble_3.2.1
                                         ggplot2_3.5.1
                                                         tidyverse_2.0.0
##
## [13] yaml_2.3.10
##
## loaded via a namespace (and not attached):
    [1] bit_4.0.5
                          gtable_0.3.5
##
                                             jsonlite_1.8.8
                                                                crayon_1.5.3
##
    [5] compiler_4.4.0
                          tidyselect_1.2.1
                                             parallel_4.4.0
                                                                jquerylib_0.1.4
    [9] scales_1.3.0
                          fastmap_1.2.0
                                             mime_0.12
                                                                R6_2.5.1
## [13] generics_0.1.3
                          munsell_0.5.1
                                             bslib_0.8.0
                                                                pillar_1.9.0
## [17] tzdb_0.4.0
                          rlang_1.1.4
                                             utf8 1.2.4
                                                                stringi_1.8.4
## [21] cachem_1.1.0
                          xfun_0.47
                                             sass_0.4.9
                                                                bit64_4.0.5
## [25] timechange_0.3.0
                          cli_3.6.3
                                             withr_3.0.1
                                                                magrittr_2.0.3
## [29] digest_0.6.37
                          grid_4.4.0
                                             vroom_1.6.5
                                                                hms_1.1.3
## [33] lifecycle_1.0.4
                          vctrs_0.6.5
                                             evaluate_0.24.0
                                                                glue_1.7.0
## [37] cellranger_1.1.0
                          fansi_1.0.6
                                             colorspace_2.1-1
                                                                rmarkdown_2.28
## [41] tools_4.4.0
                          pkgconfig_2.0.3
                                             htmltools_0.5.8.1
```