le	ctn	re 5	<u>:</u> ገ	PR,	F	PR,	ς.	tati	3 th'c	-1 [)ist	r;b	utia	ms,	Dr.	Fart	in
		li.													l .		
		vs.															
		evlo															
		ed o															
	•	tribo Tru	e P	osit	ive	(TP	·): 7	he	nui	nber	-	Tru	e Neg	atiq	Tr	ue Postth	-4
				tive								7	fin] /	. 4		
		bleo	:						(¥.	\s	\	
	•	Fals		osit	ive	(F	P): 7	The	nui	mber	_	5	227		mi'.	٠,	
				ative									Fals	∫ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	10°	nlse	
		A .		L.						,			rego	e Hive	10	DI LIVE	
	•	Tru				CTN	り: ⁻	The	nu	mbei	0	f,	ega	tive	ins	tan-	
				rect			_						,				
	•	Fals			Ī				nu	mbe	r ot	re	gati	've	inst	ances	
				. 1 1,	_												
	•	Tri						CTP	R):								
		TP	R =	Tf	/(TP	+ 8	ことと									
	•	Fa	lse	Pos	i tiv	e R	ate	(F	PR)	:							
		FP	'R :	F	P/((FP	+7	N)									
	•	Ac															
				(†													
	A۶	you	v 0	lato	י גיי	dim	ensi'	On	incr	rease	25, t	this	ge	t s	hor	der.	

Expectation Value IE: Given some random variable x and some probability distribution P(x) such that x P(x) the expectation value of some function of x is $\mathbb{E}[f(x)] = \begin{cases} \int_{-\infty}^{\infty} f(x) p(x) dx ; x \text{ is continuous} \\ \sum_{\{x,y\}} f(x) p(x) ; x \text{ is discrete} \end{cases}$ Mean, Variance, and Standard deviation: In the case where fix = x, we find that the mean of x is $\mu = \mathbb{E}[x] = \begin{cases} \int_{-\infty}^{\infty} x p(x) dx ; x \text{ is continuous} \\ \sum_{\{x,j\}} x_{j} p(x_{j}); x \text{ is discrete} \end{cases}$ L> Usually we do not have the prob. distribution, but we have the histogram is, of the data. If nix) represents the count numbers for some given x, N represents the total number of data, and Dx is the bin Size, $\lim_{N\to\infty} \frac{n(x)}{N\cdot\Delta x} \approx \frac{n(x)}{N\cdot\Delta x}$ Thus we find

M = [E[x] = N all data X; This gives us an estimate of the mean of x from the data it self Variance measures the spread of your data and is given by $\sigma^2 = \left[\sum_{i=1}^{n} \left[x^2 \right] - \mu^2 \right] = \left[\frac{1}{N-1} \sum_{i \in \mathcal{X}_i : i}^{n} \left(x_i - \mu_i \right)^2 \right]^2$

While the Standard deviation is given by $\sigma = \sqrt{\frac{1}{N-1}} \sum_{\{x_i\}} (x_i - x_i)^2$ Binomial distribution: Consider the case of flipping a coin. We have N independent flips (a.K.a. tests) w bulean results (true for heads, false for tails). If you flipped 100 times, getting 52 H (true) and 48 T (false), how can you tell if the result makes sense or is due to an unfair coin? La Ansvening this simply requires one to consider A(n| N, P) = [N!/(n!(N-n)!)]. P^(1-P)N-n n: # of successes (true values) P: underlying prob. for success For this type of distribution E(n)= N.P 0 2(p) = V(p) = N.P(1-P) Estimating using our data, we find StD(p) ~ JN L) This shows that the more trials and samples one Collects, the better

Poisson distribution: Consider now the case where you own a Store. You know the overage # of customers. How many Supplies and staff do you need to make sure you are prepared 90% of the days! Is we start with the Binomial distribution, but demand that N -> 00 and P -> 0, So $E \rightarrow \nu$ $f(n;\nu) = \frac{\nu^n}{n!} e^{-\nu}$ $StD(n) = \sqrt{\nu}$ Exponential Distribution: let's say you have a customer, how long do you reed to wait before another arrives? t=0 $P(t|\tau) = \begin{cases} \tau e^{-t/\tau}, & t \ge 0 \end{cases}$ Distribution Summary: All in all, when considering a problem, one should find the underlying distribution, as the statistics associated with it can help mold one's approorch in the analysis. Central Limit Theorem: Consider two random variables x and y (not necessarily following the same distribations). The combined distribution will end us as a normal distribution 2 = x + y

 $f(z, \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2}$ E[z]= M StD[z] = o Receiver Operating Characteristive Curve: Consider a model identifying people as obese (positive) or not (regative) This model will assume that people below some fat % threshold value are not obese and vice versa. But how can we check the model's performance with different threshold choices? La Answer: The ROC Curve, which graphically illustrates the performance of a classification model across different threshold settings. The ROC curve plots TPR (y-axis) against FPR (x-axis). A curve closer to the top left corner indicates a better performing model because it has high TPR and by FPR.
Counts Not obese threshold different thresholds FRR Worse model

Area Under the Curve: Consider two ROC curves as depicted. Which one represents a better model? The Area under each curve, AUC,
Summarizes the overall performance of the Curve! classification model across all thresholds Ly An AUC of 0.5 indicates a model with no discrimative ability, while on AUC of 1-0 represents a perfect model that correctly classifies all positive and regative instances. Comparing Models: let's say you have two models based on the binomial distribution with 200 data points. We note AUC (Model 1) = 0.75 Auc (Mode: 2) = 0.78 Is model 2 actually better? L> Since we are considering a binomial distribution, in order for made 2 to be statistically better than model 1 it reeds to perform at least 100 -> 10% · In this case, the consumer is no, but one should train and test both models multiple times, only than could one venity with confidence model 1 vs. 2