2014 年全国硕士研究生入学统一考试

计算机科学与技术学科联考计算机学科专业基础综合试题

一、甲坝选择题:第1~40 小题 只有一个选项最符合试题要求。	,每小题 2 分,共 80 分。卜列每题给出的四个选项中,
1. 下列程序段的时间复杂度是	o
<pre>count=0; for(k=1; k<=n; k*=2) for(j=1; j<=n; j++)</pre>	
描到 f 时,栈中的元素依次是。	C. $O(nlog_2n)$ D. $O(n^2)$ 式 $a/b+(c*d-e*f)/g$ 转换为等价的后缀表达式的过程中,当扫
•	C. /+(*-* D. /+-*
	M-1]中,end1 指向队头元素,end2 指向队尾元素的后一个队操作,队列中最多能容纳 M-1 个元素。初始时为空。下:。
A. 队空: end1 == end2;	队满: $end1 == (end2+1) mod M$
B. 队空: end1 == end2;	队满: end2 == (end1+1)mod (M-1)
	d M;
	d M;
	a b c c e
A. e. c B. e. a	C. d, c D. b, a
	T, F中叶结点的个数等于。
	B. T中度为1的结点个数
	(个数 D. T中右孩子指针为空的结点个数
6.5个字符有如下4种编码方案,	个是削缀编码的是。 ··

B. 011,000,001,010,1

D. 0,100,110,1110,1100

A. 01,0000,0001,001,1

C. 000,001,010,011,100

7. 对如下所示的有向图进行拓扑排序,得到的拓扑序列可能是____。

A.	3,1,2,4,5,6	B. 3,1,2,4,6,5	C.	3,1,4,2,5,6	D. 3,1,4,2,6,5
			2		
			/	(5)	
8. 用	哈希(散列)方法	去处理冲突(碰撞)时	可能	出现堆积 (聚集)	现象,下列选项中,会
受堆积现象	直接影响的是	o			
	存储效率			散列函数	
		子			
9. 在	一棵具有 15 个关	键字的 4 阶 B 树中, 含	含关键	建字的结点个数最	多是。
	5				D. 15
			村,	若第1趟排序结果	是为 9,1,4,13,7,8,20,23,15,
则该趟排序		隔)可能是。			
A.		B. 3		4	D. 5
		能是快速排序第2趟排			
		B. 2,7,5,6,4,3,9			
					令数减少到原来的70%,
而 CPI 增加	1到原来的 1.2 倍,	,则 P 在 M 上的执行	付间,	<u>E</u> 。	
A.	8.4 秒	B. 11.7 秒	C.	14 秒	D. 16.8 秒
					会发生溢出的是。
Α.	x+y	Bx+y	C.	x-y	Dx-y
					t 型变量 x 和 y 分别存放
在 32 位寄	存器 f ₁ 和 f ₂ 中,若				ly之间的关系为。
A.	x <y td="" 且符号相同<=""><td></td><td>В.</td><td>x<y td="" 且符号不同<=""><td></td></y></td></y>		В.	x <y td="" 且符号不同<=""><td></td></y>	
	x>y 且符号相同				
			位的	りDRAM 芯片构成	L,该 DRAM 芯片的地址
引脚和数据	·引脚总数是	o			
A.	19	B. 22	C.	30	D. 36
		数据 Cache 分离的主要		· <u></u>	
A.	降低 Cache 的缺	. 失损失	В.	提高 Cache 的命中	平率
		方存时间			
17. 某	长计算机有 16 个证	通用寄存器,采用 32 位	定定也	长指令字,操作码等	字段(含寻址方式位)为
					业寻址方式。若基址寄存
器可使用任	一通用寄存器,	且偏移量用补码表示,	则	Store 指令中偏移量	齿的取值范围是。
Α.	-32768 ~ +3276°	7	В.	-32767 ~ +32768	
_	-65536 ~ +65535			-65535 ~ +65536	
					效程序包含 2 条微指令,
各指令对应	的微程序平均由	4条微指令组成,采用	断定	法(下地址字段法	(1) 确定下条微指令地址,

则微指令中下地址字段的位数至少是。	
A. 5 B. 6	C. 8 D. 9
19. 某同步总线采用数据线和地址线复用方	式,其中地址/数据线有 32 根,总线时钟频率为
66MHz,每个时钟周期传送两次数据(上升沿利	1下降沿各传送一次数据),该总线的最大数据传
输率(总线带宽)是。	
A. 132 MB/s B. 264 MB/s	C. 528 MB/s D. 1056 MB/s
20. 一次总线事务中,主设备只需给出一个	首地址,从设备就能从首地址开始的若干连续单
元读出或写入多个数据。这种总线事务方式称为	
A. 并行传输 B. 串行传输	C. 突发传输 D. 同步传输
21. 下列有关 I/O 接口的叙述中,错误的是	°
A. 状态端口和控制端口可以合用同一个	寄存器
B. I/O 接口中 CPU 可访问的寄存器称为	g I/O 端口
C. 采用独立编址方式时,I/O 端口地址	和主存地址可能相同
D. 采用统一编址方式时,CPU 不能用证	方存指令访问 I/O 端口
22. 若某设备中断请求的响应和处理时间为	100ns,每 400ns 发出一次中断请求,中断响应
所允许的最长延迟时间为 50ns,则在该设备持续	工作过程中,CPU用于该设备的I/O时间占整个
CPU 时间的百分比至少是。	
A. 12.5% B. 25%	C. 37.5% D. 50%
23. 下列调度算法中,不可能导致饥饿现象	的是。
A. 时间片轮转	B. 静态优先数调度
C. 非抢占式短作业优先	D. 抢占式短作业优先
24. 某系统有 n 台互斥使用的同类设备,三	个并发进程分别需要3、4、5台设备,可确保系
统不发生死锁的设备数 n 最小为。	
A. 9 B. 10	C. 11 D. 12
25. 下列指令中,不能在用户态执行的是_	o
A. trap 指令 B. 跳转指令	C. 压栈指令 D. 关中断指令
26. 一个进程的读磁盘操作完成后,操作系	
A. 修改进程状态为就绪态	
C. 给进程分配用户内存空间	D. 增加进程时间片大小
	兹盘空间以簇(Cluster)为单位进行分配,簇的大小
为 4KB, 若采用位图法管理该分区的空闲空间,	即用一位(bit)标识一个簇是否被分配,则存放该
位图所需簇的个数为。	
A. 80 B. 320	C. 80K D. 320K
28. 下列措施中,能加快虚实地址转换的是	<u> </u>
I. 增大块表(TLB)容量 II. 让页表	常驻内存 III. 增大交换区(swap)
A. 仅 I B. 仅 II	C. 仅 I、II D. 仅 II、III
29. 在一个文件被用户进程首次打开的过程	中,操作系统需做的是。
A. 将文件内容读到内存中	R 将文件控制块壶到内存中
	2. 相久日正嗣次队为门门

的缺页次数会随着分配		某些页面置换算法, 的增加而增加。下列	-	
象的是。			14.51	
	II. FIFO			7
	B. 仅 I、II			X II、III
	〔(Pipe)通信的叙述	中,止佛的走	_	
	了实现双向数据传输 【写示》。	⇒ dut		
	量仅受磁盘容量大小网络			
	道进行读操作和写操作 1.85克,会选进程式			
	、能有一个读进程或- 属于多级页表优点的			
	两丁多级贝表优点的 E换速度		由账次粉	
	で で で で で で で で で で で で で で で で り で り で			左空间
	『加口 〒 19数 真型中,直接为会话层			行工 四
		C. 传输层		网络厚
, , ,	扑及交换机当前转			
00-e1-d5-00-23-c1 发送 1				
发送1个确认帧,交换			, , , , , , , , , , , , , , , , , , ,	
			1	
	交換机		目的地址	端口
	1 2 3	00	-e1-d5-00-23-b1	2
00-e1-d5-00-23-a1				
A. {3}和{1}	B. {2,3}和{1}	C. {2,3}和{	1,2} D. {	1,2,3}和{1}
A. {3}和{1} 35. 下列因素中,	B. {2,3}和{1} 不会影响信道数据传	C. {2,3}和{ 输速率的是。		
A. {3}和{1} 35. 下列因素中, A. 信噪比	B. {2,3}和{1} 不会影响信道数据传 B. 频率宽带	C. {2,3}和{ 存输速率的是。 C. 调制速率	D. 信	言号传播速度
A. {3}和{1} 35. 下列因素中, A. 信噪比 36. 主机甲与主机	B. {2,3}和{1} 不会影响信道数据传 B. 频率宽带 乙之间使用后退 N 帧	C. {2,3}和{ 新速率的是。 C. 调制速率 协议(GBN)传输	D. 信 数据,甲的发送	言号传播速度 送窗口尺寸为 1000,
A. {3}和{1} 35. 下列因素中, A. 信噪比 36. 主机甲与主机 数据帧长为 1000 字节	B. {2,3}和{1} 不会影响信道数据传 B. 频率宽带 乙之间使用后退 N 帧 , 信道带宽为 100Mt	C. {2,3}和{ 表输速率的是。 C. 调制速率 质协议(GBN)传输到 pps,乙每收到一个数	D. 信数据,甲的发送数据,甲的发送数据帧立即利用	言号传播速度 送窗口尺寸为 1000,]一个短帧(忽略其
A. {3}和{1} 35. 下列因素中, A. 信噪比 36. 主机甲与主机 数据帧长为 1000 字节 传输延迟)进行确认,	B. {2,3}和{1} 不会影响信道数据传 B. 频率宽带 乙之间使用后退 N 帧 , 信道带宽为 100Mt	C. {2,3}和{ 表输速率的是。 C. 调制速率 质协议(GBN)传输到 pps,乙每收到一个数	D. 信数据,甲的发送数据,甲的发送数据帧立即利用	言号传播速度 送窗口尺寸为 1000,]一个短帧(忽略其
A. {3}和{1} 35. 下列因素中, A. 信噪比 36. 主机甲与主机 数据帧长为 1000 字节 传输延迟) 进行确认, 速率约为。	B. {2,3}和{1} 不会影响信道数据传 B. 频率宽带 乙之间使用后退 N 帧 ,信道带宽为 100Mt 若甲、乙之间的单向	C. {2,3}和{ 新速率的是。 C. 调制速率 协议(GBN)传输到 pps, 乙每收到一个数 传播延迟是 50ms,则	D. 信数据,甲的发送数据帧立即利用	言号传播速度 送窗口尺寸为 1000, 一个短帧(忽略其 J最大平均数据传输
A. {3}和{1} 35. 下列因素中, A. 信噪比 36. 主机甲与主机 数据帧长为 1000 字节 传输延迟)进行确认, 速率约为。 A. 10Mbps	B. {2,3}和{1} 不会影响信道数据传 B. 频率宽带 乙之间使用后退 N 帧 ,信道带宽为 100Mb 若甲、乙之间的单向 B. 20Mbps	C. {2,3}和{ 完输速率的是。 C. 调制速率 协议(GBN)传输 pps,乙每收到一个数 传播延迟是 50ms,贝 C. 80Mbps	D. 信数据,甲的发送数据帧立即利用 则甲可以达到的	言号传播速度 送窗口尺寸为 1000, 了一个短帧(忽略其 J最大平均数据传输 00Mbps
A. {3}和{1} 35. 下列因素中, A. 信噪比 36. 主机甲与主机 数据帧长为 1000 字节 传输延迟)进行确认, 速率约为。 A. 10Mbps	B. {2,3}和{1} 不会影响信道数据传 B. 频率宽带 乙之间使用后退 N 帧 , 信道带宽为 100Mt 若甲、乙之间的单向 B. 20Mbps 过 CDMA 共享链路,	C. {2,3}和{ 新速率的是。 C. 调制速率 协议(GBN)传输到 pps, 乙每收到一个数 传播延迟是 50ms, 贝 C. 80Mbps A、B、C的码片序列(c)	D. 信数据,甲的发送数据帧立即利用 可以达到的 D. 1 chipping sequen	言号传播速度 送窗口尺寸为 1000, 引一个短帧(忽略其 引最大平均数据传输 00Mbps nce)分别是(1,1,1,1)、
A. {3}和{1} 35. 下列因素中, A. 信噪比 36. 主机甲与主机 数据帧长为 1000 字节 传输延迟)进行确认, 速率约为。 A. 10Mbps 37.站点A、B、C通	B. {2,3}和{1} 不会影响信道数据传 B. 频率宽带 乙之间使用后退 N 帧 , 信道带宽为 100Mt 若甲、乙之间的单向 B. 20Mbps 过 CDMA 共享链路,	C. {2,3}和{ 新速率的是。 C. 调制速率 协议(GBN)传输到 pps, 乙每收到一个数 传播延迟是 50ms, 贝 C. 80Mbps A、B、C的码片序列(c)	D. 信数据,甲的发送数据帧立即利用 可以达到的 D. 1 chipping sequen	言号传播速度 送窗口尺寸为 1000, 引一个短帧(忽略其 引最大平均数据传输 00Mbps nce)分别是(1,1,1,1)、
A. {3}和{1} 35. 下列因素中, A. 信噪比 36. 主机甲与主机 数据帧长为 1000 字节传输延迟)进行确认, 速率约为。 A. 10Mbps 37.站点A、B、C通 (1,-1,1,-1)和(1,1,-1,-1)。 数据是。 A. 000	B. {2,3}和{1} 不会影响信道数据传 B. 频率宽带 乙之间使用后退 N 帧 , 信道带宽为 100Mt 若甲、乙之间的单向 B. 20Mbps 过 CDMA 共享链路, 若 C 从链路上收到的 B. 101	C. {2,3}和{ 表输速率的是。 C. 调制速率 质协议(GBN)传输到 pps,乙每收到一个数 传播延迟是 50ms,则 C. 80Mbps A、B、C的码片序列(c) 为序列是(2,0,2,0,0,-2,0)	D. 信数据,甲的发送数据帧立即利用 则甲可以达到的 D. 1 chipping sequen 0,-2,0,2,0,2), 「	言号传播速度 送窗口尺寸为 1000, 引一个短帧(忽略其 引最大平均数据传输 00Mbps nce)分别是(1,1,1,1)、 则 C 收到 A 发送的
A. {3}和{1} 35. 下列因素中, A. 信噪比 36. 主机甲与主机 数据帧长为 1000 字节传输延迟)进行确认, 速率约为。 A. 10Mbps 37.站点A、B、C通 (1,-1,1,-1)和(1,1,-1,-1)。 数据是。 A. 000 38. 主机甲和主机	B. {2,3}和{1} 不会影响信道数据传 B. 频率宽带 乙之间使用后退 N 帧 ,信道带宽为 100Mb 若甲、乙之间的单向 B. 20Mbps 过 CDMA 共享链路, 若 C 从链路上收到的 B. 101 乙己建立了 TCP 连接	C. {2,3}和{ E输速率的是。 C. 调制速率 协议(GBN)传输的 pps,乙每收到一个数 传播延迟是 50ms,贝 C. 80Mbps A、B、C的码片序列(c) 内序列是(2,0,2,0,0,-2,0) C. 110 接,甲始终以 MSS=1	D. 信数据,甲的发送数据帧立即利用 则甲可以达到的 D. 1 chipping sequen 0,-2,0,2,0,2), 「 D. 1 KB 大小的段发	言号传播速度 送窗口尺寸为 1000, 引一个短帧(忽略其 引最大平均数据传输 00Mbps nce)分别是(1,1,1,1)、 则 C 收到 A 发送的
A. {3}和{1} 35. 下列因素中, A. 信噪比 36. 主机甲与主机 数据帧长为 1000 字节传输延迟)进行确认, 速率约为。 A. 10Mbps 37.站点A、B、C通 (1,-1,1,-1)和(1,1,-1,-1)。 数据是。 A. 000 38. 主机甲和主机 数据发送; 乙每收到一	B. {2,3}和{1} 不会影响信道数据传 B. 频率宽带 乙之间使用后退 N 帧 , 信道带宽为 100Mt 若甲、乙之间的单向 B. 20Mbps 过 CDMA 共享链路, 若 C 从链路上收到的 B. 101 乙己建立了 TCP 连挂 个数据段都会发出一	C. {2,3}和{ 新速率的是。 C. 调制速率 协议(GBN)传输到 pps, 乙每收到一个数 传播延迟是 50ms,则 C. 80Mbps A、B、C的码片序列(c) 内序列是(2,0,2,0,0,-2, C. 110 安,甲始终以 MSS=1 个接收窗口为 10KB	D. 信数据,甲的发送数据,甲的发送数据帧立即利用则甲可以达到的D. 1 chipping sequen 0,-2,0,2,0,2), D. 1 KB 大小的段发的确认段。若	言号传播速度 送窗口尺寸为 1000, 引一个短帧(忽略其 引最大平均数据传输 00Mbps nce)分别是(1,1,1,1)、则 C 收到 A 发送的 11
A. {3}和{1} 35. 下列因素中, A. 信噪比 36. 主机甲与主机 数据帧长为 1000 字节传输延迟)进行确认, 速率约为。 A. 10Mbps 37.站点A、B、C通 (1,-1,1,-1)和(1,1,-1,-1)。 数据是。 A. 000 38. 主机甲和主机 数据发送; 乙每收到一时时拥塞窗口为 8KB,	B. {2,3}和{1} 不会影响信道数据传 B. 频率宽带 乙之间使用后退 N 帧 , 信道带宽为 100Mt 若甲、乙之间的单向 B. 20Mbps 过 CDMA 共享链路, 若 C 从链路上收到的 B. 101 乙己建立了 TCP 连挂 个数据段都会发出一	C. {2,3}和{ 新速率的是。 C. 调制速率 协议(GBN)传输到 pps, 乙每收到一个数 传播延迟是 50ms,则 C. 80Mbps A、B、C的码片序列(c) 内序列是(2,0,2,0,0,-2, C. 110 安,甲始终以 MSS=1 个接收窗口为 10KB	D. 信数据,甲的发送数据,甲的发送数据帧立即利用则甲可以达到的D. 1 chipping sequen 0,-2,0,2,0,2), D. 1 KB 大小的段发的确认段。若	言号传播速度 送窗口尺寸为 1000, 引一个短帧(忽略其 引最大平均数据传输 00Mbps nce)分别是(1,1,1,1)、则 C 收到 A 发送的 11
A. {3}和{1} 35. 下列因素中, A. 信噪比 36. 主机甲与主机 数据帧长为 1000 字节传输延迟)进行确认, 速率约为。 A. 10Mbps 37.站点A、B、C通 (1,-1,1,-1)和(1,1,-1,-1)。 数据是。 A. 000 38. 主机甲和主机 数据发送; 乙每收到一	B. {2,3}和{1} 不会影响信道数据传 B. 频率宽带 乙之间使用后退 N 帧 , 信道带宽为 100Mt 若甲、乙之间的单向 B. 20Mbps 过 CDMA 共享链路, 若 C 从链路上收到的 B. 101 乙己建立了 TCP 连挂 个数据段都会发出一	C. {2,3}和{ 新速率的是。 C. 调制速率 协议(GBN)传输到 pps, 乙每收到一个数 传播延迟是 50ms,则 C. 80Mbps A、B、C的码片序列(c) 内序列是(2,0,2,0,0,-2, C. 110 安,甲始终以 MSS=1 个接收窗口为 10KB	D. 信数据,甲的发送数据,甲的发送数据帧立即利用则甲可以达到的D. 1 chipping sequen 0,-2,0,2,0,2), D. 1 KB 大小的段发的确认段。若	言号传播速度 送窗口尺寸为 1000, 引一个短帧(忽略其 引最大平均数据传输 00Mbps nce)分别是(1,1,1,1)、则 C 收到 A 发送的 11 党送数据,并一直有 后甲在 t 时刻发生超 TT 后,甲的发送窗

- 39. 下列关于 UDP 协议的叙述中,正确的是。
 - I. 提供无连接服务
 - II. 提供复用/分用服务
 - III. 通过差错校验,保障可靠数据传输
 - A. 仅 I
- B. 仅I、II
- C. 仅 II、III D. I、II、III
- 40. 使用浏览器访问某大学 Web 网站主页时,不可能使用到的协议是____。
 - A. PPP
- B. ARP
- C. UDP
- D. SMTP

- 二、综合应用题: 第 41~47 小题, 共 70 分。
- 41. (13 分) 二叉树的带权路径长度 (WPL) 是二叉树中所有叶结点的带权路径长度之和。 给定一棵二叉树 T, 采用二叉链表存储, 结点结构为:

left	weight	right
------	--------	-------

其中叶结点的 weight 域保存该结点的非负权值。设 root 为指向 T 的根结点的指针,请设计 求T的WPL的算法,要求:

- 1)给出算法的基本设计思想:
- 2) 使用 C 或 C++语言,给出二叉树结点的数据类型定义;
- 3) 根据设计思想,采用 C 或 C++语言描述算法,关键之处给出注释。
- 42. (10 分) 某网络中的路由器运行 OSPF 路由协议, 题 42 表是路由器 R1 维护的主要链路 状态信息(LSI), 题 42 图是根据题 42 表及 R1 的接口名构造出来的网络拓扑。

		R1 的 LSI	R2 的 LSI	R3 的 LSI	R4的LSI	备 注
Router ID)	10.1.1.1	10.1.1.2	10.1.1.5	10.1.1.6	标识路由器的 IP 地址
	ID	10.1.1.2	10.1.1.1	10.1.1.6	10.1.1.5	所连路由器的 Router ID
Link1	IP	10.1.1.1	10.1.1.2	10.1.1.5	10.1.1.6	Link1 的本地 IP 地址
	Metric	3	3	6	6	Link1 的费用
	ID	10.1.1.5	10.1.1.6	10.1.1.1	10.1.1.2	所连路由器的 Router ID
Link2	IP	10.1.1.9	10.1.1.13	10.1.1.10	10.1.1.14	Link2 的本地 IP 地址
	Metric	2	4	2	4	Link2 的费用
Net1	Prefix	192.1.1.0/24	192.1.6.0/24	192.1.5.0/24	192.1.7.0/24	直连网络 Net1 的网络前缀
INCLI	Metric	1	1	1	1	到达直连网络 Netl 的费用

题 42 表 R1 所维护的 LSI

题 42 图 R1 构造的网络拓扑

请回答下列问题。

- 1) 本题中的网络可抽象为数据结构中的哪种逻辑结构?
- 2)针对题 42 表中的内容,设计合理的链式存储结构,以保存题 42 表中的链路状态信息(LSI)。要求给出链式存储结构的数据类型定义,并画出对应题 42 表的链式存储结构示意图(示意图中可仅以 ID 标识结点)。
- 3) 按照迪杰斯特拉(Dijkstra)算法的策略,依次给出 R1 到达题 42 图中子网 192.1.x.x 的最短路径及费用。
 - 43. (9分) 请根据题 42 描述的网络,继续回答下列问题。
- 1) 假设路由表结构如下表所示,请给出题 42 图中 R1 的路由表,要求包括到达题 42 图中子 网 192.1.x.x 的路由,且路由表中的路由项尽可能少。

目的网络	下一跳	接口
ロロルルシュン	1. 1190	1女口

- 2) 当主机 192.1.1.130 向主机 192.1.7.211 发送一个 TTL=64 的 IP 分组时, R1 通过哪个接口转发该 IP 分组? 主机 192.1.7.211 收到的 IP 分组 TTL 是多少?
- 3) 若 R1 增加一条 Metric 为 10 的链路连接 Internet, 则题 42 表中 R1 的 LSI 需要增加哪些信息?
- 44. (12 分) 某程序中有如下循环代码段 p "for(int i=0; i< N; i++) sum+=A[i];"。假设编译 时变量 sum 和 i 分别分配在寄存器 R1 和 R2 中。常量 N 在寄存器 R6 中,数组 A 的首地址在寄存器 R3 中。程序段 P 起始地址为 0804 8100H,对应的汇编代码和机器代码如下表所示。

编号	地址	机器代码	汇编代码	注释
1	08048100H	00022080Н	loop: sll R4,R2,2	$(R2) << 2 \rightarrow R4$
2	08048104H	00083020Н	add R4,R4,R3	$(R4)+(R3) \rightarrow R4$
3	08048108H	8C850000H	load R5,0(R4)	$((R4)+0) \rightarrow R5$
4	0804810CH	00250820H	add R1,R1,R5	$(R1)+(R5) \rightarrow R1$
5	08048110H	20420001H	add R2,R2,1	$(R2)+1 \rightarrow R2$
6	08048114H	1446FFFAH	bne R2,R6,loop	if(R2)!=(R6) goto loop

执行上述代码的计算机 M 采用 32 位定长指令字, 其中分支指令 bne 采用如下格式:

3	1 26	25 21	20 16	15 0
	OP	Rs	Rd	OFFSET

OP 为操作码; Rs 和 Rd 为寄存器编号; OFFSET 为偏移量,用补码表示。请回答下列问题,并说明理由。

- 1) M 的存储器编址单位是什么?
- 2) 已知 sll 指令实现左移功能,数组 A 中每个元素占多少位?
- 3) 题 44 表中 bne 指令的 OFFSET 字段的值是多少?已知 bne 指令采用相对寻址方式,当前 PC 内容为 bne 指令地址,通过分析题 44 表中指令地址和 bne 指令内容,推断出 bne 指令的转移目标地址计算公式。
- 4) 若 M 采用如下"按序发射、按序完成"的 5 级指令流水线: IF(取值)、ID(译码及取数)、EXE(执行)、MEM(访存)、WB(写回寄存器),且硬件不采取任何转发措施,分支指令的执行均引起 3 个时钟周期的阻塞,则 P 中哪些指令的执行会由于数据相关而发生流水线阻塞?哪条指

令的执行会发生控制冒险?为什么指令1的执行不会因为与指令5的数据相关而发生阻塞?

- 45. 假设对于 44 题中的计算机 M 和程序 P 的机器代码, M 采用页式虚拟存储管理; P 开始执行时, (R1)=(R2)=0, (R6)=1000, 其机器代码已调入主存但不在 Cache 中; 数组 A 未调入主存,且所有数组元素在同一页,并存储在磁盘同一个扇区。请回答下列问题并说明理由。
 - 1) P 执行结束时, R2 的内容是多少?
- 2) M 的指令 Cache 和数据 Cache 分离。若指令 Cache 共有 16 行,Cache 和主存交换的块大小为 32 字节,则其数据区的容量是多少?若仅考虑程序段 P 的执行,则指令 Cache 的命中率为多少?
- 3) P 在执行过程中,哪条指令的执行可能发生溢出异常?哪条指令的执行可能产生缺页异常?对于数组 A 的访问,需要读磁盘和 TLB 至少各多少次?
- 46. 文件 F 由 200 条记录组成,记录从 1 开始编号。用户打开文件后,欲将内存中的一条记录插入到文件 F 中,作为其第 30 条记录。请回答下列问题,并说明理由。
- 1) 若文件系统采用连续分配方式,每个磁盘块存放一条记录,文件 F 存储区域前后均有足够的空闲磁盘空间,则完成上述插入操作最少需要访问多少次磁盘块? F 的文件控制块内容会发生哪些改变?
- 2) 若文件系统采用链接分配方式,每个磁盘块存放一条记录和一个链接指针,则完成上述插入操作需要访问多少次磁盘块?若每个存储块大小为1KB,其中4个字节存放链接指针,则该文件系统支持的文件最大长度是多少?
- 47. 系统中有多个生产者进程和多个消费者进程,共享一个能存放 1000 件产品的环形缓冲区 (初始为空)。当缓冲区未满时,生产者进程可以放入其生产的一件产品,否则等待;当缓冲区未空时,消费者进程可以从缓冲区取走一件产品,否则等待。要求一个消费者进程从缓冲区连续取出 10 件产品后,其他消费者进程才可以取产品。请使用信号量 P,V(或 wait(), signal())操作实现进程间的互斥与同步,要求写出完整的过程,并说明所用信号量的含义和初值。

2014 年计算机学科专业基础综合试题参考答案

一、单项选择题

```
1.
  C
      2. B
            3. A
                 4. D 5. C
                               6. D
                                    7. D 8.
                                              D
9. D
           11. C 12. D 13. C
    10. B
                               14. A
                                    15. A 16. D
17. A 18. C
           19. C
                 20. C 21. D
                               22. B
                                    23. A 24. B
25. D 26. A
            27. A
                  28. C 29. B
                               30. A 31. C 32. D
33. C 34. B
            35. D 36. C 37. B
                               38. A 39. B 40. D
```

二、综合应用题

- 41. 解答:
- 1) 算法的基本设计思想:
- ① 基于先序递归遍历的算法思想是用一个 static 变量记录 wpl, 把每个结点的深度作为递归 函数的一个参数传递, 算法步骤如下:

若该结点是叶子结点,那么变量 wpl 加上该结点的深度与权值之积;

若该结点非叶子结点,那么若左子树不为空,对左子树调用递归算法,若右子树不为空,对 右子树调用递归算法,深度参数均为本结点的深度参数加1:

最后返回计算出的 wpl 即可。

② 基于层次遍历的算法思想是使用队列进行层次遍历,并记录当前的层数,

当遍历到叶子结点时,累计 wpl;

当遍历到非叶子结点时对该结点的把该结点的子树加入队列;

当某结点为该层的最后一个结点时,层数自增1:

队列空时遍历结束,返回 wpl。

2) 二叉树结点的数据类型定义如下:

```
typedef struct BiTNode{
   int weight;
   struct BiTNode *lchild,*rchild;
}BiTNode,*BiTree;
```

- 3) 算法代码如下:
- ① 基于先序遍历的算法:

```
int WPL(BiTree root) {
    return wpl_PreOrder(root, 0);
}
int wpl_PreOrder(BiTree root, int deep) {
    static int wpl = 0;
    if(root->lchild == NULL && root->rchild == NULL)
```

```
//若为叶子结点,累积 wpl
wpl += deep*root->weight;
if(root->lchild != NULL) //若左子树不空,对左子树递归遍历
wpl_PreOrder(root->lchild, deep+1);
if(root->rchild != NULL) //若右子树不空,对右子树递归遍历
wpl_PreOrder(root->rchild, deep+1);
return wpl;
}
```

② 基于层次遍历的算法:

```
#define MaxSize 100 //设置队列的最大容量
int wpl LevelOrder(BiTree root) {
  BiTree q[MaxSize]; //声明队列, end1 为头指针, end2 为尾指针
                       //队列最多容纳 MaxSize-1 个元素
  int end1, end2;
  end1 = end2 = 0;
                   //头指针指向队头元素,尾指针指向队尾的后一个元素
  int wpl = 0, deep = 0;  //初始化 wpl 和深度
                           //lastNode 用来记录当前层的最后一个结点
  BiTree lastNode;
  BiTree newlastNode;
                          //newlastNode 用来记录下一层的最后一个结点
                           //lastNode 初始化为根结点
  lastNode = root;
  newlastNode = NULL;
                           //newlastNode 初始化为空
  q[end2++] = root;
                           //根结点入队
  while(end1 != end2){
                           //层次遍历, 若队列不空则循环
      BiTree t = q[end1++]; //拿出队列中的头一个元素 if(t->lchild == NULL & t->lchild == NULL) {
         wpl += deep*t->weight;
                           //若为叶子结点,统计 wp1
      if(t->lchild != NULL){ //若非叶子结点把左结点入队
         q[end2++] = t->lchild;
         newlastNode = t->lchild;
                           //并设下一层的最后一个结点为该结点的左结点
      if(t->rchild != NULL){ //处理叶结点
         q[end2++] = t->rchild;
         newlastNode = t->rchild;
      if(t == lastNode){ //若该结点为本层最后一个结点,更新 lastNode
         lastNode = newlastNode;
                           //层数加1
         deep += 1;
  } //while
                            //返回 wpl
  return wpl;
```

【评分说明】

- ① 若考生给出能够满足题目要求的其他算法,且正确,可同样给分。
- ② 考生答案无论使用 C 或者 C++语言,只要正确同样给分。
- ③ 若对算法的基本设计思想和主要数据结构描述不十分准确,但在算法实现中能够清晰反映出算法思想且正确,参照①的标准给分。
- ④ 若考生给出的二叉树结点的数据类型定义和算法实现中,使用的是除整型之外的其他数值,可视同使用整型类型。
 - ⑤ 若考生给出的答案中算法主要设计思想或算法中部分正确,可酌情给分。

注意:上述两个算法一个为递归的先序遍历,一个为非递归的层次遍历,读者应当选取自己 最擅长的书写方式。直观看去,先序遍历代码行数少,不用运用其他工具,书写也更容易,希望

读者能掌握。

在先序遍历的算法中,static 是一个静态变量,只在首次调用函数时声明 wpl 并赋值为 0,以后的递归调用并不会使得 wpl 为 0,具体用法请参考相关资料中的 static 关键字说明,也可以在函数之外预先设置一个全局变量,并初始化。不过考虑到历年真题算法答案通常都直接仅仅由一个函数构成,所以参考答案使用 static。若对 static 不熟悉的同学可以使用以下形式的递归:

C/C++语言基础好的同学可以使用以下更简便的形式:

```
int wpl_PreOrder(BiTree root,int deep) {
    if(root->lchild==NULL&&root->lchild==NULL) //若为叶子结点,累积 wpl
        return deep*root->weight;
    return (root->lchild!=NULL ? wpl_PreOrder(root->lchild, deep+1):0)
    + (root->rchild!=NULL ? wpl_PreOrder(root->rchild, deep+1):0);
}
```

这个形式只是上面方法的简化而已,本质是一样的,而这个形式的代码更短,在时间有限的情况下更具优势,相比写层次遍历能节约很多时间,所以读者应当在保证代码正确的情况下,尽量写一些较短的算法,为其他题目赢得更多的时间。但是,对于基础不扎实的考生,还是建议使用把握更大的方法,否则可能会得不偿失。例如在上面的代码中,考生容易忘记三元式(x?y:z)两端的括号,若不加括号,则答案就会是错误的。

在层次遍历的算法中,读者要理解 lastNode 和 newlastNode 的区别,lastNode 指的是当前遍历层的最后一个结点,而 newlastNode 指的是下一层的最后一个结点,是动态变化的,直到遍历到本层的最后一个结点,才能确认下层真正的最后一个结点是哪个结点,而函数中入队操作并没有 判断 队满,若考试时用到,读者最好加上队满条件,这里队列的队满条件为 end1==(end2+1)modM,采用的是 2014 年真题选择题中第三题的队列形式。同时,考生也可以尝试使用记录每层的第一个结点来进行层次遍历的算法,这里不再给出代码,请考生自行练习。

42. 解答:

很多考生乍看之下以为是网络的题目,其实该题本身并没有涉及太多的网络知识点,只是应用了网络的模型,实际上考查的还是数据结构的内容。

(1)图(1分)

题中给出的是一个简单的网络拓扑图,可以抽象为无向图。

【评分说明】

只要考生的答案中给出与图含义相似的描述,例如,"网状结构"、"非线性结构"等,同样给分。

(2) 链式存储结构的如下图所示。

弧结点的两种基本形态

Flag=1	Next	Flag=2	Next
ID		Pre	fix
IP		Mask	
Metri	ic	Metric	

主义从上	RouterID
表头结点结构示意	LN_link
>11-13/11/2/	Next

其数据类型定义如下: (3分)

```
typedef struct{
   unsigned int ID, IP;
}LinkNode;
                      //Link 的结构
typedef struct{
   unsigned int Prefix, Mask;
                      //Net 的结构
}NetNode;
typedef struct Node{
   int Flag;
                       //Flag=1为Link;Flag=2为Net
   union{
      LinkNode Lnode;
      NetNode Nnode
   }LinkORNet;
   unsigned int Metric;
   struct Node *next;
}ArcNode;
                       //弧结点
typedef struct HNode{
   unsigned int RouterID;
   ArcNode *LN link;
   struct HNode *next;
HNODE;
                       //表头结点
```

对应表 5-1 的链式存储结构示意图如下。(2分)

【评分说明】

- ① 若考生给出的答案是将链表中的表头结点保存在一个一维数组中(即采用邻接表形式),同样给分。
- ② 若考生给出的答案中,弧结点没有使用 union 定义,而是采用两种不同的结构分别表示 Link 和 Net,同时在表头结点中定义了两个指针,分别指向由这两种类型的结点构成的两个链表,同样给分。
- ③ 考生所给答案的弧结点中,可以在单独定义的域中保存各直连网络 IP 地址的前缀长度,也可以与网络地址保存在同一个域中。
- ④ 数据类型定义中,只要采用了可行的链式存储结构,并保存了题目中所给的 LSI 信息,如将网络抽象为一类结点,写出含 8 个表头结点的链式存储结构,均可参照①~③的标准给分。
- ⑤ 若考生给出的答案中,图示部分与其数据类型定义部分一致,图示只要能够体现链式存储结构及图 5-3 中的网络连接关系(可以不给出结点内细节信息),即可给分。
 - ⑥ 若解答不完全正确, 酌情给分。
 - (3) 计算结果如下表所示。(4分)

	目的网络	路径	代价(费用)
步骤1	192.1.1.0/24	直接到达	1
步骤 2	192.1.5.0/24	R1→R3→192.1.5.0/24	3
步骤3	192.1.6.0/24	R1→R2→192.1.6.0/24	4
步骤 4	192.1.7.0/24	R1→R2→R4→192.1.7.0/24	8

【评分说明】

- ① 若考生给出的各条最短路径的结果部分正确,可酌情给分。
- ② 若考生给出的从 R1 到达子网 192.1.x.x 的最短路径及代价正确,但不完全符合代价不减的 次序,可酌情给分。

43. 解答:

1)因为题目要求路由表中的的路由项尽可能少,所以这里可以把子网 192.1.6.0/24 和 192.1.7.0/24 聚合为子网 192.1.6.0/23。其他网络照常,可得到路由表如下:(6分)

目的网络	下一条	接口
192.1.1.0/24	-	E0
192.1.6.0/23	10.1.1.2	L0
192.1.5.0/24	10.1.1.10	Ll

【评分说明】

- ① 每正确解答一个路由项,给2分,共6分。
- ② 路由项解答不完全正确,或路由项多于3条,可酌情给分。
- (2) 通过查路由表可知: R1 通过 L0 接口转发该 IP 分组。(1分) 因为该分组要经过 3个路由器(R1、R2、R4), 所以主机 192.1.7.211 收到的 IP 分组的 TTL 是 64-3=61。(1分)
- (3) R1 的 LSI 需要增加一条特殊的直连网络,网络前缀 Prefix 为"0.0.0.0/0",Metric 为 10。 (1 分)

【评分说明】

考生只要回答: 增加前缀 Prefix 为 "0.0.0.0/0", Metric 为 10,同样给分。

44. 解答:

该题涉及到指令系统、存储管理以及 CPU 三个部分内容,考生应注意各章节内容之间的联系,才能更好地把握当前考试的趋势。

- 1) 已知计算机 M 采用 32 位定长指令字,即一条指令占 4B, 观察表中各指令的地址可知,每条指令的地址差为 4 个地址单位,即 4 个地址单位代表 4B, 一个地址单位就代表了 1B, 所以该计算机是按字节编址的。(2 分)
- 2)在二进制中某数左移两位相当于乘以 4,由该条件可知,数组间的数据间隔为 4 个地址单位,而计算机按字节编址,所以数组 A 中每个元素占 4B。(2分)
- 3) 由表可知, bne 指令的机器代码为 1446FFFAH, 根据题目给出的指令格式,后 2B 的内容为 OFFSET 字段,所以该指令的 OFFSET 字段为 FFFAH,用补码表示,值为-6(1分)。当系统执行到 bne 指令时,PC 自动加 4,PC 的内容就为 08048118H,而跳转的目标是 08048100H,两者相差了 18H,即 24 个单位的地址间隔,所以偏移址的一位即是真实跳转地址的-24/-6=4 位(1分)。可知 bne 指令的转移目标地址计算公式为(PC)+4+OFFSET*4(1分)。
- 4)由于数据相关而发生阻塞的指令为第 2、3、4、6 条,因为第 2、3、4、6 条指令都与各自前一条指令发生数据相关。(3 分)

第6条指令会发生控制冒险。(1分)

当前循环的第五条指令与下次循环的第一条指令虽然有数据相关,但由于第 6 条指令后有 3 个时钟周期的阻塞,因而消除了该数据相关。(1 分)

【评分说明】

对于第 1 问,若考生回答:因为指令 1 和 2、2 和 3、3 和 4、5 和 6 发生数据相关,因而发生阻塞的指令为第 2、3、4、6 条,同样给 3 分。答对 3 个以上给 3 分,部分正确酌情给分。

45. 解答:

- 1) R2 里装的是 i 的值,循环条件是 i<N(1000),即当 i 自增到不满足这个条件时跳出循环,程序结束,所以此时 i 的值为 1000。(1 分)
 - 2) Cache 共有 16 块, 每块 32 字节, 所以 Cache 数据区的容量为 16*32B=512B。(1分)
- P共有 6 条指令,占 24 字节,小于主存块大小(32B),其起始地址为 0804 8100H,对应一块的开始位置,由此可知所有指令都在一个主存块内。读取第一条指令时会发生 Cache 缺失,故将 P 所在的主存块调入 Cache 某一块,以后每次读取指令时,都能在指令 Cache 中命中。因此在 1000次循环中,只会发生 1 次指令访问缺失,所以指令 Cache 的命中率为: $(1000 \times 6 1)/(1000 \times 6) = 99.98\%$ 。(2 分)

【评分说明】若考生给出正确的命中率,而未说明原因和过程,给1分。若命中率计算错误,但解题思路正确,可酌情给分。

3)指令4为加法指令,即对应 sum+=A[i],当数组A中元素的值过大时,则会导致这条加法指令发生溢出异常;而指令2、5虽然都是加法指令,但他们分别为数组地址的计算指令和存储变量i的寄存器进行自增的指令,而i最大到达1000,所以他们都不会产生溢出异常。(2分)

只有访存指令可能产生缺页异常,即指令3可能产生缺页异常。(1分)

因为数组 A 在磁盘的一页上,而一开始数组并不在主存中,第一次访问数组时会导致访盘,把 A 调入内存,而以后数组 A 的元素都在内存中,则不会导致访盘,所以该程序一共访盘一次。(2分)

每访问一次内存数据就会查 TLB 一次,共访问数组 1000 次,所以此时又访问 TLB1000 次,还要考虑到第一次访问数组 A,即访问 A[0]时,会多访问一次 TLB (第一次访问 A[0]会先查一次 TLB,然后产生缺页,处理完缺页中断后,会重新访问 A[0],此时又查 TLB),所以访问 TLB 的

次数一共是 1001 次。(2 分)

【评分说明】

- ①对于第1问,若答案中除指令4外还包含其他运算类指令(即指令1、2、5),则给1分,其他情况,则给0分。
 - ②对于第 2 问,只要回答"load 指令",即可得分。
- ③对于第 3 问,若答案中给出的读 TLB 的次数为 1002,同样给分。若直接给出正确的 TLB 及磁盘的访问次数,而未说明原因,给 3 分。若给出的 TLB 及磁盘访问次数不正确,但解题思路正确,可酌情给分。

46. 解答:

1) 系统采用顺序分配方式时,插入记录需要移动其他的记录块,整个文件共有 200 条记录,要插入新记录作为第 30 条,而存储区前后均有足够的磁盘空间,且要求最少的访问存储块数,则要把文件前 29 条记录前移,若算访盘次数移动一条记录读出和存回磁盘各是一次访盘,29 条记录共访盘 58 次,存回第 30 条记录访盘 1 次,共访盘 59 次。(1 分)

F的文件控制区的起始块号和文件长度的内容会因此改变。(1分)

- 2) 文件系统采用链接分配方式时,插入记录并不用移动其他记录,只需找到相应的记录,修改指针即可。插入的记录为其第 30 条记录,那么需要找到文件系统的第 29 块,一共需要访盘 29 次,然后把第 29 块的下块地址部分赋给新块,把新块存回内存会访盘 1 次,然后修改内存中第 29 块的下块地址字段,再存回磁盘(1 分),一共访盘 31 次。(1 分)
- 4 个字节共 32 位,可以寻址 2³²=4G 块存储块,每块的大小为 1KB,即 1024B,其中下块地址部分占 4B,数据部分占 1020B,那么该系统的文件最大长度是 4G×1020B=4080GB。(2 分)

【评分说明】

- ① 第(1)小题的第2小问,若答案中不包含文件的起始地址和文件大小,则不给分。
- ② 若按 1024×2³²B=4096GB 计算最大长度, 给 1 分。

47. 解答:

这是典型的生产者和消费者问题,只对典型问题加了一个条件,只需在标准模型上新加一个信号量,即可完成指定要求。

设置四个变量 mutex1、mutex2、empty 和 full, mutex1 用于一个控制一个消费者进程一个周期(10次)内对于缓冲区的控制,初值为 1; mutex2 用于进程单次互斥的访问缓冲区,初值为 1; empty 代表缓冲区的空位数,初值为 0; full 代表缓冲区的产品数,初值为 1000,具体进程的描述如下:

```
semaphore mutex1=1;
semaphore mutex2=1;
semaphore empty=n;
semaphore full=0;
producer(){
   while(1){
      生产一个产品;
                            //判断缓冲区是否有空位
      P(empty);
                            //互斥访问缓冲区
      P(mutex2);
      把产品放入缓冲区;
      V(mutex2);
                            //互斥访问缓冲区
                            //产品的数量加1
      V(full);
   }
```

```
consumer() {
   while(1){
                             //连续取 10 次
      P(mutex1)
         for (int i = 0; i < 10; ++i) {
                            //判断缓冲区是否有产品
             P(full);
             P(mutex2);
                            //互斥访问缓冲区
             从缓冲区取出一件产品;
                            //互斥访问缓冲区
             V(mutex2);
             V(empty);
                             //腾出一个空位
             消费这件产品;
         }
      V(mutex1)
```

【评分说明】

- ① 信号量的初值和含义都正确给 2 分。
- ② 生产者之间的互斥操作正确给 1 分; 生产者与消费者之间的同步操作正确给 2 分; 消费者之间互斥操作正确给 1 分。
 - ③ 控制消费者连续取产品数量正确给2分。
 - ④ 仅给出经典生产者一消费者问题的信号量定义和伪代码描述最多给3分。
 - ⑤ 若考生将题意理解成缓冲区至少有10件产品,消费者才能开始取,其他均正确,得6分。
 - ⑥ 部分完全正确, 酌情给分。