

Compilation Principle 编译原理

第2讲: 词法分析(2)

张献伟

xianweiz.github.io

DCS290, Spring 2021

Review Questions

```
Q1: input and output of lexical analysis?
  character stream → tokens
Q2: how to denote a token?
  <class, lexeme>
Q3: atomic and compound REs?
  atomic: ε, {a}
  compound: R1|R2, R1R2, R1*
Q4: (+|-)?([0-9])*(0|2|4|6|8)
  even numbers
Q5: RE of identifiers in C language?
  (_letter)(_letter|digit)*
```


Alphabet Operations[字母表运算]

- Product[乘积]: $\sum_{1} \sum_{2} = \{ab \mid a \in \sum_{1}, b \in \sum_{2}\}$ E.g., $\{0, 1\}\{a, b\} = \{0a, 0b, 1a, 1b\}$
- Power[幂]: $\Sigma^n = \Sigma^{n-1} \Sigma_n \ge 1$; $\Sigma^0 = \{\epsilon\}$
 - Set of strings of length n
 - $-\{0, 1\}^3 = \{0, 1\}\{0, 1\}\{0, 1\} = \{000, 001, 010, 011, 100, 101, 110, 111\}$
- Positive Closure[正闭包]: Σ+ = Σ U Σ² U Σ³ U ...
 - $\{a, b, c\} + = \{a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, ...\}$
- Kleene Closure[闭包]: ∑ = ∑0 U ∑+

Regular Expressions

• Atomic[原子]

- ε is a RE: $L(ε) = {ε}$
- If a ∈ \sum , then a is a RE: L(a) = {a}

• Compound[组合]

- If both r and s are REs, corr. to languages L(r) and L(s), then:
- -r|s is a RE: $L(r|s) = L(r) \cup L(s)$
- rs is a RE: L(rs) = L(r)L(s)
- $r^* \text{ is a RE: } L(r^*) = (L(r))^*$
- (r) is a RE: L((r)) = L(r)

Different REs of the Same Language

- (a|b)* = ?
 L((a|b)*) = (L(a|b))* = (L(a) U L(b))* = ({a} U {b})* = {a, b}*
 = {a, b}⁰ + {a, b}¹ + {a, b}² + ...
 = {ε, a, b, aa, ab, ba, bb, aaa, ...}
- (a*b*)* = ?
 - -L((a*b*)*) = (L(a*b*))* = (L(a*)L(b*))*
 - $= L({\epsilon, a, aa, ...}{\epsilon, b, bb, ...})*$
 - $= L({\epsilon, a, b, aa, ab, bb, ...})*$
 - $= ε + {ε, a, b, aa, ab, bb, ...} + {ε, a, b, aa, ab, bb, ...}^2 + {ε, a, b, aa, ab, bb, ...}^3 + ...$

Lexical Specification of a Language

- S0: write a regex for the lexemes of each token class
 - Numbers = digit+
 - Keywords = 'if' + 'else' + ...
 - Identifiers = letter(letter + digit)*
- S1: construct R, matching all lexemes for all tokens
 - -R = numbers + keywords + identifiers + ... = R1 + R2 + R3 + ...
- S2: let input be $x_a \dots x_n$, for $1 \le i \le n$, check $x_1 \dots x_i \in L(R)$
- S3: if successful, then we know $x_1 ... x_i \in L(R_i)$ for some j
- S4: remove x₁ ... x_i from input and go to step S2

Lexical Specification of a Language

- How much input is used?
 - $x_1 ... x_i \in L(R), x_1 ... x_j \in L(R), i \neq j$
 - Which one do we want? (e.g., '==' or '=')
 - Maximal match: always choose the longer one
- Which token is used if more than one matches?
 - $x_1 ... x_i \in L(R)$ where $R = R_1 + R_2 + ... + R_n$
 - $-x_1 ... x_i \in L(R_m), x_1 ... x_i \in L(R_n), m \neq n$
 - E.g., keywords = 'if', identifier = letter(letter+digit)*
 - Keyword has higher priority
 - Rule of thumb: choose the one listed first
- What if no rule matches?
 - $-x_1 \dots x_i \notin L(R) \rightarrow Error$

Summary: RE

- We have learnt how to specify tokens for lexical analysis
 - Regular expressions
 - Concise notations for the string patterns

- Used in lexical analysis with some extensions
 - To resolve ambiguities
 - To handle errors
- REs is only a language specification
 - An implementation is still needed
 - Next: to construct a token recognizer for languages given by regular expressions – by using finite automata

Implementation of Lexical Analyzer

- How do we go from specification to implementation?
 - RE → finite automata
- Solution 1: to implement using a tool Lex (for C), Flex (for C++), Jlex (for java)
 - Programmer specifies tokens using REs
 - The tool generates the source code from the given REs
 - □ The Lex tool essentially does the following translation: REs (Specification)
 ⇒ FAs (Implementation)
- Solution 2: to write the code yourself
 - More freedom; even tokens not expressible through REs
 - But difficult to verify; not self-documenting; not portable; usually not efficient
 - Generally not encouraged

Transition Diagram[转换图]

- REs → transition diagrams
 - By hand
 - Automatic

- Node: state
 - Each state represents a condition that may occur in the process
 - Initial state (Start): only one, circle marked with 'start →'
 - Final state (Accepting): may have multiple, double circle

- Edge: directed, labeled with symbol(s)
 - From one state to another on the input

Finite Automata[有穷自动机]

- Regular Expression = specification
- Finite Automata = implementation

- Automaton (pl. automata): a machine or program
- Finite automaton (FA): a program with a finite number of states

- Finite Automata are similar to transition diagrams
 - they have states and labelled edges
 - there are one unique start state and one or more than one final states

FA: Language

- An FA is a program for classifying strings (accept, reject)
 - In other words, a program for recognizing a language
 - The Lex tool essentially does the following translation: REs (Specification) ⇒ FAs (Implementation)
 - For a given string 'x', if there is transition sequence for 'x' to move from start state to certain accepting state, then we say 'x' is accepted by the FA

- Language of FA = set of strings accepted by that FA
 - $-L(FA) \equiv L(RE)$

Example

- Are the following strings acceptable?
 - O **√**
 - 1 X
 - 11110 √
 - 11101 X
 - 11100 X
 - 11111110 √

• What language does the state graph recognize? $\Sigma = \{0, 1\}$ Any number of '1's followed by a single 0

L(FA): all strings of ∑ {a, b}, ending with 'abb'

$$L(RE) = (a|b)*abb$$

DFA and NFA

- Deterministic Finite Automata (DFA): the machine can exist in only one state at any given time
 - One transition per input per state
 - No ε-moves
 - Takes only one path through the state graph
- Nondeterministic Finite Automata (NFA): the machine can exist in multiple states at the same time
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves
 - Can choose which path to take
 - An NFA accepts if some of these paths lead to accepting state at the end of input

State Graph

- 5 components (\sum, S, n, F, δ)
 - An input alphabet Σ
 - A set of states \$

- A start state $n \in S$

– A set of accepting states $F \subseteq S$

– A set of transitions $\delta: S_a \xrightarrow{\text{input}} S_b$

Example: DFA

- There is only one possible sequence of moves --- either lead to a final state and accept or the input string is rejected
 - Input string: aabb

- Successful sequence:

Example: NFA

 There are many possible moves --- to accept a string, we only need one sequence of moves that lead to a final state

Input string: aabb

- Successful sequence: 0 - 3 - 1 - 2 - 3

- Unsuccessful sequence: 0 → 0 → 0 → 0 → 0

Conversion Flow

- Outline: RE → NFA → DFA → Table-driven
 Implementation
 - Converting DFAs to table-driven implementations
 - Converting REs to NFAs
 - Converting NFAs to DFAs

DFA → Table

FA can also be represented using transition table


```
Table-driven Code:
DFA() {
   state = "S";
   while (!done) {
      ch = fetch_input();
      state = Table[state][ch];
      if (state == "x")
         print("reject");
   if (state \in F)
      printf("accept");
   else
      printf("reject");
    Q: which is/are accepted?
        111
       000
```


001

Discussion

- Implementation is efficient
 - Table can be automatically generated
 - Need finite memory $O(S \times \Sigma)$
 - Size of transition table
 - Need finite time O(input length)
 - Number of state transitions

- Pros and cons of table:
 - Pro: can easily find the transitions on a given state and input
 - Con: takes a lot of space, when the input alphabet is large, yet most states do not have any moves on most of the input symbols

$RE \rightarrow NFA$

- NFA can have ε-moves
 - Edges labelled with ε
 - move from state A to state B without reading any input

- M-Y-T algorithm to convert any RE to an NFA that defines the same language
 - Input: RE r over alphabet ∑
 - Output: NFA accepting L(r)

$RE \rightarrow NFA (cont.)$

- Step 1: processing atomic REs
 - □ i is new state, the start state of NFA
 - f is another new sate, the accepting state of NFA
 - Single character RE a

$RE \rightarrow NFA (cont.)$

Step 2: processing compound REs

$$-R = R1 | R2$$

- R = R1R2

$RE \rightarrow NFA (cont.)$

Step 2: processing compound REs

$$-R=R1*$$

Example

Convert "(a|b)*abb" to NFA

Example (cont.)

Convert "(a|b)*abb" to NFA

Example (cont.)

Convert "(a|b)*abb" to NFA

NFA → DFA: Same

NFA and DFA are equvalent

NFA \rightarrow DFA: Theory

- Question: is $L(NFA) \subseteq L(DFA)$
 - Otherwise, conversion would be futile
- Theorem: $L(NFA) \equiv L(DFA)$
 - Both recognize regular languages L(RE)
 - Will show L(NFA) \subseteq L(DFA) by construction (NFA \rightarrow DFA)
 - Since L(DFA) \subseteq L(NFA), L(NFA) \equiv L(DFA)
- Resulting DFA consumes more memory than NFA
 - Potentially larger transition table as shown later
- But DFAs are faster to execute
 - For DFAs, number of transitions == length of input
 - For NFAs, number of potential transitions can be larger
- NFA → DFA conversion is done because the speed of DFA far outweigh its extra memory consumption

