Fall Real Analysis

Azure

Fall 2021

CONTENTS

Contents

1	Day 1: The Real Number System	5
	1.1 Number Systems	5
	1.2 Real Number System	5
	1.3 Least Upper Bound Property	6
2	Day 2: Fields and Order	7
	2.1 Greatest Upper Bound Property	7
	2.2 Fields	7
	2.3 Ordered Fields	8
3	Day 3: Roots and the Complex Field	10
	3.1 nth Root	10
	3.2 Decimals	11
	3.3 Extended Reals	11
	3.4 Complex Numbers	11
4	Day 4: Euclidean Spaces & Cauchy-Schwarz	13
	4.1 Euclidean Spaces	13
	4.2 Cauchy-Schwarz	13
5	Day 5: Existence of \mathbb{R}	15
6	Day 6: Cardinality	17
	6.1 Cardinality	17
	6.2 Set of Sets	18
7	Day 7: Metric Spaces and Closed/Open	21
	7.1 Metric Spaces	21
	7.2 Intervals and Balls	25
8	Day 8: Open Relative and Compact	26
	8.1 Closure	26
	8.2 Open Relative	26
	8.3 Compact Sets	27
9	Day 9: Perfect & Connected Sets	31
	9.1 Perfect Sets	31
	9.2 Connected Sets	32

CONTENTS

10	Day	10: Convergence & Cauchy Sequences	33
	10.1	Convergent Sequences	33
	10.2	Subsequences	35
	10.3	Cauchy Sequences	36
11	Day	11: Limits & Special Sequences	39
	11.1	Upper and Lower Limits	39
	11.2	Special Sequences	40
12	Day	12: Series & Comparison Test	41
	12.1	Series	41
	12.2	Series of Nonnegative Terms	42
	12.3	The Number e	43
	12.4	Root and Ratio Tests	44
13	Day	13: Power Series	45
	13.1	Power Series	45
	13.2	Summation By Parts	45
	13.3	Absolute Convergence	46
	13.4		46
	13.5	Rearrangements	47
14	Day	14: Continuity	49
	14.1	Limits of Functions	49
	14.2	Continuous Functions	50
15	Day	15: Continuity Properties	52
	15.1	Continuity and Compactness	52
	15.2	Continuity and Connectedness	53
16		16: Discontinuities	54
	16.1	Discontinuities	54
	16.2	Monotonic Functions	54
	16.3	Infinite Limits and Limits at Infinity	55
17	Day	17: Differentiation	56
	17.1	Derivative of a function	56
	17.2	Mean Value Theorems	57
	17.3	Continuity of Derivatives	58
	17.4	L'Hospital's Rule	58

18	Diff	Gerentiation of Vector-Valued Functions	59
	17.6	Taylor's Theorem	59
	17.5	Derivative of Higher Order	59

CONTENTS

CONTENTS

1 The Real Number System

1.1 Number Systems

Natural : $\mathbb{N} = \{1, 2, 3, ...\}$ Integer : $\mathbb{Z} = \{-2, -1, 0, 1, 2, ...\}$

Rational : $\mathbb{Q} = \frac{p}{q}$ where $p,q \in \mathbb{N}$

*** Q is countable, but fails to have the least upper bound property ***

Example 1.1.1

Let $\alpha \in \mathbb{R}$ where $\alpha^2 = 2$. Then α cannot be rational.

Proof

Let $\alpha = \frac{p}{a}$ where p and q cannot both be even.

Let set $A = \{x \in \mathbb{Q} \text{ for } x^2 < 2\}$ where $A \neq \emptyset$ and 2 is an upper bound for A.

But, A has no least upper bound in \mathbb{Q} , but A has a least upper bound in \mathbb{R} .

1.2 Real Number System

 \mathbb{R} is the unique ordered field with the least upper bound property. Also, \mathbb{R} exists and unique.

Definition 1.2.1: Order

Let S be a set. An order on S is a relation < satisfying two axioms:

- Trichotomy: For all $x,y \in S$, only one holds true:
 - -x < y
 - -x = y
 - -x > y
- Transitivity: If x < y and y < z, then x < z.

Definition 1.2.2: Ordered Set

An ordered set is a set with an order.

Definition 1.2.3: Bounds

Let S be an ordered set and $E \subset S$.

An upper bound of E is a $\beta \in S$ if $x \leq \beta$ for all $x \in E$.

If such a β exists, then E is bounded from above.

A lower bound of E is a $\alpha \in S$ if $x \ge \alpha$ for all $x \in E$.

If such a α exists, then E is bounded from below.

Definition 1.2.4: Infimum & Supremum

Let S be an ordered set.

Let $E \subset S$ be bounded from above. Least upper bound $\beta \in S$ exists if:

- β is an upper bound for E
- If $\gamma < \beta$, then γ is not an upper bound for E. Then $\beta = \sup(E)$.

Let $E \subset S$ be bounded from below. Greatest lower bound $\alpha \in S$ exists if:

- α is a lower bound for E
- If $\gamma > \alpha$, then γ is not a lower bound for E. Then $\alpha = \inf(E)$.

Example 1.2.5

Let $S = (1, 2) \cup [3, 4) \cup (5, 6)$ with the order < from \mathbb{R} . For subsets E of S:

- E = (1,2) is bounded above and $\sup(E) = 3$
- E = (5,6) is not bounded above so $\sup(E) = DNE$
- E = [3,4) is bounded below $\inf(E) = 3$ and $\sup(E) = DNE$

Observations on the Least Upper Bound

If sup(E) exists, it may or may not exists at S.

If $\sup(E)$ exists, then $\sup(E)$ is unique. If $\gamma \neq \alpha$, then $\gamma < \alpha$ or $\gamma > \alpha$.

1.3 Least Upper Bound Property

Theorem 1.3.1: Least Upper Bound Property

An ordered set S has a least upper bound property if:

For every nonempty subset $E \subset S$ that is bounded from above: $\sup(E)$ exists in S.

Example 1.3.2

 \mathbb{Q} doesn't have a least upper bound property. For example, $z = \sqrt{2}$.

Proof

Let
$$z = y - \frac{y^2 - 2}{y + 2} = \frac{2y + 2}{y + 2}$$
, then take $z^2 - 2 = \frac{2(y^2 - 2)}{(y + 2)^2}$.

Let set $A = \{y > 0 \in \mathbb{Q} \text{ where } y^2 < 2\}$ and set $B = \{y > 0 \in \mathbb{Q} \text{ where } y^2 > 2\}$

- If $y^2 2 < 0$, then z > y where $z \in A$. So, y is not an upper bound. Since for any y, there is z > y where $z \in A$, then $\sup(A)$ doesn't exists in \mathbb{Q} .
- If $y^2 2 > 0$, then z < y where $z \in B$. So, y is an upper bound, but not sup(E). Since for any y, there is z < y where $z \in B$, then $\inf(B)$ doesn't exists in \mathbb{Q} .

Thus, \mathbb{Q} doesn't have the least upper bound or greatest lower bound property.

2 Day 2: Fields

2.1 Greatest Upper Bound Property

Theorem 2.1.1: Least Upper Bound + Lower Bound implies Greatest Upper Bound

Let S be a ordered set with the least upper bound property.

Let non-empty $B \subset S$ be bounded below.

Let L be the set of all lower bounds of B.

Then $\alpha = \sup(L)$ exists in S.

P<u>roof</u>

L is non-empty since B is bounded from below.

Thus, by the least upper bound property of S, $\alpha = \sup(L)$ exists in S.

We claim that $\alpha = \inf(B)$.

If $\gamma < \alpha$, then γ is not an upper bound for L so $y \notin B$ since all upper bounds for L are in B. Thus, for every $x \in B$, $\alpha \le x$.

If $\gamma \geq \alpha$, then γ is an upper bound of L so $\gamma \in B$. Thus, $\inf(B) = \alpha$.

2.2 Fields

Addition Axioms

- If $x,y \in F$, then $x+y \in F$
- x+y = y+x for all $x,y \in F$
- (x+y)+z = x+(y+z) for all $x,y,z \in F$
- There exists $0 \in F$ such that 0+x = x for all $x \in F$
- For every $x \in F$, there is $-x \in F$ where x+(-x)=0

Multiplicative Axioms

- If $x,y \in F$, then $xy \in F$
- yx = xy for all $x,y \in F$
- (xy)z = x(yx) for all $x,y,z \in F$
- There exists $1 \neq 0 \in F$ such that 1x = x for all $x \in F$
- If $x \neq 0 \in F$, there is $\frac{1}{x} \in F$ where $x(\frac{1}{x}) = 1$

Distributive Law

x(y+z) = xy + xz hold for all $x,y,z \in F$.

Propositions 2.2.1

(a) If x+y = x+z, then y = z

Proof

$$y = 0+y = (-x)+x+y = (-x)+x+z = 0+z = z$$

(b) If x+y = x, then y = 0

Proof

From (a), let z = 0.

(c) If x+y=0, then y=-x

<u>Proof</u>

From (a), let z = -x.

(d) - (-x) = x

<u>Proof</u>

From (c), let x = -x and y = x.

(e) If $x \neq 0$ and xy = xz, then y = z

Proof

$$y = 1y = \frac{1}{x}xy = \frac{1}{x}xz = 1z = z$$

(f) If $x \neq 0$ and xy = x, then y = 1

<u>Proof</u>

From (e), let z = 1.

(g) If $x \neq 0$ and xy = 1, then $y = \frac{1}{x}$

Proof

From (e), let $z = \frac{1}{x}$.

(h) If $x \neq 0$, then $\frac{1}{1/x} = x$

Proof

From (g), let $x = \frac{1}{x}$ and y = x.

(i) 0x = 0

Proof

Since 0x + 0x = (0+0)x = 0x = 0x + 0, then 0x = 0.

(j) If $x,y \neq 0$, then $xy \neq 0$

Proof

Suppose xy = 0, then $1 = \frac{1}{y} \frac{1}{x} xy = \frac{1}{y} \frac{1}{x} 0 = 0$. 0 = 1 is a contradiction.

(k) (-x)y = -(xy) = x(-y)

Proof

$$xy + (-x)y = (x+(-x))y = 0y = 0$$
. Then by part (c), $(-x)y = -(xy)$. $xy + x(-y) = x(y+(-y)) = x0 = 0$. Then by part (c), $x(-y) = -(xy)$.

(1) (-x)(-y) = xy

Proof

By part (k), then (-x)(-y) = -[x(-y)] = -[-(xy)]. By part (d), -[-(xy)] = xy.

2.3 Ordered Fields

An ordered field F is a field F which is also an ordered set for all $x,y,z \in F$.

- If y < z, then y+x < z+x
- If x,y > 0, then xy > 0

Definition 2.3.1: \mathbb{Q} and \mathbb{R} are ordered fields

 \mathbb{Q} , \mathbb{R} are ordered fields, but \mathbb{C} is not an ordered field since $i^2 = -1 \not > 1$.

Propositions 2.3.2

Let F be an ordered field. For all $x,y,z \in F$.

(a) If x > 0, then -x < 0 and vice versa

Proof

$$-x = -x + 0 < -x + x = 0$$

(b) If x > 0 and y < z, then xy < xz

Proof

Since
$$z-y > 0$$
, then $0 < x(z-y) = xz - xy$

(c) If x < 0 and y < z, then xy > xz

Proof

Since
$$-x > 0$$
 and $z-y > 0$, then $0 < -x(z-y) = xy - xz$

(d) If $x \neq 0, x^2 > 0$

$\underline{\text{Proof}}$

If
$$x > 0$$
, then $x^2 = x \cdot x > 0$
If $x < 0$, then $(-x)^2 = (-x) \cdot (-x) = x \cdot x = x^2 > 0$

(e) If 0 < x < y, then 0 < 1/y < 1/x

Proof

Since
$$(\frac{1}{y})y = 1 > 0$$
, then $(\frac{1}{y}) > 0$
Since $x < y$, then $\frac{1}{y} = (\frac{1}{y})(\frac{1}{x})x < (\frac{1}{y})(\frac{1}{x})y = \frac{1}{x}$

Theorem 2.3.3: \mathbb{R} is an ordered field with <

There exists a unique ordered field \mathbb{R} with the least upper bound property. Also, $\mathbb{Q} \subset \mathbb{R}$ so \mathbb{Q} is also an ordered field.

Theorem 2.3.4

For all $x,y \in \mathbb{R}$:

• Archimedean Property: If x > 0, there is $n \in \mathbb{Z}$ such that nx > y.

Proof

Fix x > 0. Suppose there is a y such that the property fails.

Let
$$A = \{ nx: n = 1, 2, 3, ... \}.$$

Then, A is nonempty and bounded from above by y.

Then by the least upper bound property of \mathbb{R} , $\alpha = \sup(A)$ exists in \mathbb{R} .

Since x > 0, then -x < 0 so $\alpha - x < \alpha - 0 = \alpha$.

So $\alpha - x$ is not an upper bound of A.

So there is a $mx \in A$ such that $mx > \alpha - x$.

Then $\alpha < (m+1)x$, but $(m+1)x \in A$ contradicting α is an upper bound for A.

• \mathbb{Q} is dense in \mathbb{R} : If x < y, there is a $p \in \mathbb{Q}$ such that x .

Proof

Since x < y, then y-x > 0. Then by the Archimedean Property, there exists a $n \in Z$ such that n(y-x) > 1. Thus, ny > nx+1 > nx

By the well-ordering principle, there is a smallest $m \in \mathbb{Z}_+$ such that m > nx.

Then, $m > nx \ge m-1$ so $nx+1 \ge m > nx$.

Since $ny > nx+1 \ge m > nx$, then y > m/n > x.

3 Roots & Complex Field

3.1 nth Root

(a) If 0 < t < 1, then $t^n < t$.

Since t > 0 and t < 1, then $t^2 < t$.

Since $t^2 \le t$, then $t^3 \le t^2$ so $t^3 \le t^2 \le t$.

Applying the process n times, then $t^n < t$.

(b) If $t \geq 1$, $t^n \geq t$.

Proof

Since $0 < 1 \le t$, then $t \le t^2$.

Since $t \le t^2$, then $t^2 \le t^3$ so $t \le t^2 \le t^3$.

Applying the process n times, $t \leq t^n$.

(c) If 0 < s < t, then $s^n < t^n$.

<u>Pro</u>of

$$\underbrace{\underbrace{s \cdot s \cdot \ldots \cdot s}_{n} < t \cdot s \cdot \ldots \cdot s < t \cdot t \cdot \ldots \cdot s < \ldots < \underbrace{t \cdot \ldots \cdot t}_{n}}$$

Theorem 3.1.1: $y^n = x$ has a unique y

Fix $n \in \mathbb{Z}_+$. For every x > 0, there exists a unique $y \in \mathbb{R}$ such that $y^n = x$. Also, such a y is written as $y = \sqrt[n]{x} = x^{\frac{1}{n}}$.

Proof

Uniqueness:

y is unique since if $y_1 < y_2$, then $x = y_1^n < y_2^n \neq x$.

Existence:

Let set $A = \{ t > 0 : t^n < x \}.$

 $A \neq \emptyset$ since let $t_1 = \frac{x}{x+1} < 1$ so $t_1 < x$ and thus, $0 < t_1^n < t_1 < x$ so $t_1 \in A$.

A is bounded above since if $t \ge x+1$, then t > 1 so $t^n \ge t \ge x+1 > x$ so $t \notin A$.

So x+1 is an upper bound of A.

Thus by the least upper bound property, $y = \sup(A)$ exists.

For $y^n = x$, show $y^n < x$ and $y^n > x$ cannot hold true.

(Not an upper bound of A if < and not a least upper bound of A if >)

For $0 < \alpha < \beta$:

$$\beta^{n} - \alpha^{n'} = (\beta - \alpha) \underbrace{(\beta^{n-1} + \beta^{n-2}\alpha^{1} + \dots + \alpha^{n-1})}_{\beta^{n-1} < \beta^{n-1}} < (\beta - \alpha)n\beta^{n-1}$$

Suppose $y^n < x$. Pick 0 < h < 1 and $h < \frac{x-y^n}{n(y+1)^{n-1}}$.

From inequality, let $\beta = y+h$ and $\alpha = y$

$$(y+h)^n - y^n < hn(y+h)^{n-1} < hn(y+1)^{n-1} < x - y^n$$

Thus, $(y+h)^n < x$ so $y+h \in A$ and thus, not an upper bound of A which is a contradiction since $y = \sup(A)$.

Suppose
$$y^{n} > x$$
. Pick $0 < k = \frac{y^{n} - x}{ny^{n-1}} < \frac{y^{n}}{ny^{n-1}} = \frac{1}{n}y < y$.
Consider $t \ge y$ -k, then: $y^{n} - t^{n} \le y^{n} - (y-k)^{n} < kny^{n-1} = y^{n} - x$

Thus, $t^n > x$ so $t \notin A$.

Thus, y-k is an upper bound of A which is a contradiction since $y = \sup(A)$. Since $y^n < x$ and $y^n > x$, then $y^n = x$.

Corollary 3.1.2: n-th root of product = product of n-th root

If a,b > 0 and $n \in \mathbb{Z}_+$, then $(ab)^{\frac{1}{n}} = a^{\frac{1}{n}}b^{\frac{1}{n}}$.

Proof

Let $A = a^{\frac{1}{n}}$ and $B = b^{\frac{1}{n}}$.

Then by theorem 3.1.1, since A is a solution to $y_1^n = a$, then $A^n = a$.

Similarly, B is a solution of $y_2^n = b$ so $B^n = b$. Thus:

ab =
$$A^n B^n = A_1 A_2 ... A_n B_1 B_2 ... B_n$$

= $A_1 A_2 ... B_1 A_n B_2 ... B_n = ... = A_1 B_1 A_2 ... A_{n-1} A_n B_3 ... B_n$
= $... = A_1 B_1 A_2 B_2 ... A_n B_n = (AB)^n$

Then again by theorem 3.1.1, there is a unique $(ab)^{\frac{1}{n}} = AB = a^{\frac{1}{n}}b^{\frac{1}{n}}$.

3.2 Decimals

Let n_0 be the largest integer such that $n_0 \le x$ for $x > 0 \in \mathbb{R}$.

Then let n_k be the largest integer such that $d_k = n_0 + \frac{n_1}{10} + \dots + \frac{n_k}{10^k} \le x$ Let E be the set of d_k for $k = 0, 1, \dots \infty$. Then, $x = \sup(E)$.

3.3 Extended Reals

The extended real number system consist of \mathbb{R} and $\pm \infty$ such that:

$$-\infty < x < \infty$$
 for every $x \in \mathbb{R}$

with the properties:

- $x \pm \infty = \pm \infty$
- $x / \pm \infty = 0$
- If x > 0, then $x(\pm \infty) = \pm \infty$
- If x < 0, then $x(\pm \infty) = \mp \infty$

3.4 Complex Numbers

Definition 3.4.1: Complex

A complex number is an ordered pair (a,b) where $a,b \in \mathbb{R}$. For $x,y \in \mathbb{C}$

- x + y = (a,b) + (c,d) = (a + c, b + d)
- xy = (a,b) (c,d) = (ac bd, ad + bc)
- $\frac{1}{x} = (a^2 + b^2)(a,-b)$

Thus, the axioms form a field where (0,0) = 0 and (1,0) = 1 and (0,1) = i.

Definition 3.4.2: Imaginary i

Let
$$i = (0,1)$$
. Then, $i^2 = -1$.

Proof

$$i^2 = (0,1)(0,1) = (0-1,0+0) = (-1,0) = -1$$

Definition 3.4.3: Form a + bi

$$(a,b) = a + bi$$

<u>Proof</u>

$$(a,b) = (a,0) + (0,b) = (a,0) + (b,0)(0,1) = a + bi$$

Definition 3.4.4: Conjugate

Let conjugate: $\bar{z} = a$ - bi where Re(z) = a, Im(z) = b.

Let z = (a,b) and w = (c,d):

(a) $\overline{z+w} = \overline{z} + \overline{w}$

Proof

$$\overline{z+w} = \overline{(a+c,b+d)} = (a+c,-b-d) = (a,-b) + (c,-d) = \overline{z} + \overline{w}$$

(b) $\overline{zw} = \overline{z} \overline{w}$

Proof

$$\overline{zw} = \overline{(ac - bd, ad + bc)} = (ac-bd, -ad-bc) = (a,-b) (c,-d) = \overline{z} \overline{w}$$

(c) $z + \overline{z} = 2 \operatorname{Re}(z)$ $z - \overline{z} = 2i \operatorname{Im}(z)$

Proof

$$z + \overline{z} = (a,b) + (a,-b) = (2a,0) = 2 \text{ Re}(z)$$

 $z - \overline{z} = (a,b) - (a,-b) = (0,2b) = (0,2) = 2i \text{ Im}(z)$

(d) $z\overline{z} \geq 0$

Proof

$$z\overline{z} = (a,b)(a,-b) = (a^2 + b^2, -ab+ab) = a^2 + b^2 \ge 0$$

Definition 3.4.5: Absolute Value

Let absolute value: $|z| = \sqrt{z\overline{z}}$

Let z = (a,b) and w = (c,d):

(a) If $z \neq 0$, then |z| > 0.

Proof

$$\sqrt{z\overline{z}} = \sqrt{a^2 + b^2} \ge 0$$
 where $|z| = 0$ only if a,b = 0 so only if z = (0,0).

(b) $|\overline{z}| = |z|$

Proof

$$|\bar{z}| = \sqrt{a^2 + (-b)^2} = \sqrt{a^2 + b^2} = |z|$$

(c) |zw| = |z| |w|

Proof

$$| zw | = | (ac-bd,ad+bc) | = \sqrt{(ac-bd)^2 + (ad+bc)^2}$$

= $\sqrt{a^2c^2 + b^2d^2 + a^2d^2 + b^2c^2} = \sqrt{(a^2+b^2)(c^2+d^2)}$
= $\sqrt{a^2+b^2} \sqrt{c^2+d^2} = | z | | w |$

(d) $| \text{Re}(z) | \le |z|$

<u>Proof</u>

$$|\operatorname{Re}(z)| = |a| = \sqrt{a^2} \le \sqrt{a^2 + b^2} = |z|$$

(e) $|z+w| \le |z| + |w|$

<u>Proof</u>

$$|z+w|^2 = (z+w)\overline{(z+w)} = (z+w)(\overline{z}+\overline{w}) = z\overline{z} + z\overline{w} + w\overline{z} + w\overline{w}$$

$$= |z|^2 + |w|^2 + 2\operatorname{Re}(z\overline{w}) \le |z|^2 + |w|^2 + 2|z\overline{w}|$$

$$= |z|^2 + |w|^2 + 2|z||w| = (|z| + |w|)^2$$

4 Euclidean Spaces & Cauchy-Schwarz

4.1 Euclidean Spaces

For each positive integer k, let \mathbb{R}^k be the set of all ordered k-tuples:

$$\mathbf{x} = (x_1, ..., x_k)$$
 for each $x_i \in \mathbb{R}$

with the properties:

- $x+y = (x_1 + y_1, ..., x_k + y_k) \in \mathbb{R}^k$
- $\operatorname{cx} = (cx_1, ..., cx_k) \in \mathbb{R}^k$

So, \mathbb{R}^n has a vector space structure. Similarly, for \mathbb{C}^n .

Definition 4.1.1: Inner Product for \mathbb{R}^k

$$x \cdot y = x_1 y_1 + \dots + x_k y_k \in \mathbb{R}$$

Definition 4.1.2: Norm

$$|x| = \sqrt{x \cdot x} = \sqrt{\sum_{i=1}^{n} x_i^2}$$

Definition 4.1.3: Extension to \mathbb{C}^k

For $z, w \in \mathbb{C}^n$

- $z \cdot w = z_1 \overline{w_1} + \dots + z_k \overline{w_k}$
- $z \cdot z = z_1 \overline{z_1} + ... + z_k \overline{z_k} = |z_1|^2 + ... + |z_n|^2 = |z|^2$

4.2 Cauchy-Schwarz

Theorem 4.2.1: Cauchy-Schwarz

If
$$\alpha_1, ..., \alpha_n \in \mathbb{C}$$
 and $b_1, ..., b_n \in \mathbb{C}$, then:
 $|\sum_{j=1}^n a_j(\overline{b_j})|^2 \leq \sum_{j=1}^n |a_j|^2 \sum_{j=1}^n |b_j|^2$

Proof

Let
$$A = \sum |a_j|^2$$
 and $B = \sum |b_j|^2$ and $C = \sum a_j(\overline{b_j})$.

If B = 0, then $b_1 = \dots = b_n = 0$. Thus, $0 \le A(0)$ holds true.

Suppose B > 0. Then:

$$\sum |Ba_{j} - Cb_{j}|^{2} = \sum (Ba_{j} - Cb_{j})\overline{(Ba_{j} - Cb_{j})} = \sum (Ba_{j} - Cb_{j})(\overline{B} \overline{a_{j}} - \overline{C} \overline{b_{j}})$$

$$= \sum (Ba_{j} - Cb_{j})(B\overline{a_{j}} - \overline{C} \overline{b_{j}}) = \sum B^{2}a_{j}\overline{a_{j}} - B\overline{C}a_{j}\overline{b_{j}} - BC\overline{a_{j}}b_{j} + C\overline{C}b_{j}\overline{b_{j}}$$

$$= B^{2} \sum |a_{j}|^{2} - B\overline{C} \sum a_{j}\overline{b_{j}} - BC \sum \overline{a_{j}}b_{j} + |C|^{2} \sum |b_{j}|^{2}$$

$$= B^{2}A - B\overline{C}C - BC\overline{C} + |C|^{2}B = B^{2}A - 2|C|^{2}B + |C|^{2}B = B^{2}A - |C|^{2}B$$

$$= B(AB - |C|^{2})$$

Since $|Ba_i - Cb_i| \ge 0$, then $B(AB - |C|^2) \ge 0$.

Since B > 0, then $AB - |C|^2 \ge 0$ so $AB \ge |C|^2$.

Definition 4.2.2: Consequence of the Cauchy-Schwarz

Since
$$|z_i|^2 = z_i \overline{z_i}$$
, then $\sum z_i \overline{z_i} = \sum |z_i|^2 = |z|^2$. Thus: $|z \cdot w|^2 = |\sum z_i \overline{w_i}|^2 \le \sum |z_i|^2 \sum |w_i|^2 = |z|^2 |w|^2$ Thus, $|z \cdot w| \le |z||w|$.

Propositions 4.2.3

Let $x, y, z \in \mathbb{R}^k$ where $\alpha \in \mathbb{R}$:

(a) $|x| \ge 0$ where |x| = 0 only if x = 0

Proof

$$|x| = \sqrt{\sum_{i=1}^{k} x_i^2} \ge 0$$
 where $|x| = 0$ only if $x_1 = \dots = x_k = 0$

(b) $|\alpha x| = |\alpha||x|$

<u>Proof</u>

$$|\alpha x| = \sqrt{\sum_{i=1}^{k} (\alpha x_i)^2} = \sqrt{\alpha^2} \sqrt{\sum_{i=1}^{k} x_i^2} = |\alpha||x|$$

(c) $|x+y| \le |x| + |y|$

Proof

$$|x+y|^2 = (x+y) \cdot (x+y) = |x|^2 + 2(x \cdot y) + |y|^2$$

$$\leq |x|^2 + 2|x||y| + |y|^2 = (|x| + |y|)^2$$

(d) $|x - y| \le |x - z| + |y - z|$

<u>Proof</u>

$$|x-y| = |x-z+z-y| \le |x-z| + |z-y| = |x-z| + |y-z|$$

5 Construction of \mathbb{R} : Theorem 2.3.3

There exists an ordered field \mathbb{R} which has the least upper bound property. Also, \mathbb{R} contains \mathbb{Q} as a subfield.

Definition 5.1: Cuts

Define a cut as any set $\alpha \subset \mathbb{Q}$ with the properties:

- α is not empty and $\alpha \neq \mathbb{Q}$
- If $p \in \alpha$ and $q \in \mathbb{Q} < p$, then $q \in \alpha$
- If $p \in \alpha$, then $p < r \in \mathbb{Q}$ for some $r \in \alpha$

Proposition 5.2: Order of $\mathbb{R} \to \text{ordered set } \mathbb{R}$

Define $\alpha < \beta$ if α is a proper subset of β .

- If $\alpha \not\geq \beta$, then β is not a subset of α . Then there is a $p \in \beta$ such that $p \not\in \alpha$. Then for any $q \in \alpha$, q < p and thus, $q \in \beta$. Thus, $\alpha \subset \beta$ and since $\alpha \neq \beta$, then $\alpha < \beta$.
- If $\alpha \not< \beta$ and $\alpha \not> \beta$, then either $\alpha = \beta$ or $\alpha \ne \beta$. If $\alpha \ne \beta$, there are p,q such that $p \in \alpha$, but $p \not\in \beta$ and $q \in \beta$, but $q \not\in \alpha$. But if $p \not\in \beta$, then for any $b \in \beta$, b < p. Thus, q < p. Similarly, if $q \not\in \alpha$, then for any $a \in \alpha$, a < q. Thus, p < q. Thus, there is a contradiction since p > q and p < q so $\alpha = \beta$.
- If $\alpha \not\leq \beta$, then α is not a subset of β . Then there is a $p \in \alpha$ such that $p \not\in \beta$. Then for any $q \in \beta$, q < p and thus, $q \in \alpha$. Thus, $\beta \subset \alpha$ and since $\alpha \neq \beta$, then $\beta < \alpha$.
- If $\alpha < \beta$ and $\beta < \gamma$, then since α is a proper subset of β and β is a proper subset of γ , then α is a proper subset of γ . Thus, $\alpha < \gamma$.

Thus, \mathbb{R} is an ordered set with such an order <.

Proposition 5.3: Least Upper Bound of $\mathbb{R} \to \text{Least Upper Bound Property}$

Let $A \subset \mathbb{R}$ and β be an upper bound for A. Let γ be the union of all $\alpha \in A$. Thus, $p \in \gamma$ if and only if $p \in \alpha$ for some $\alpha \in A$. γ defines a cut since:

- Since A is nonempty, there exists a $\alpha_0 \in A$ where α_0 is nonempty. Since α_0 is nonempty, then γ is nonempty. Since every $\alpha \in A$ is $\alpha < \beta$, then $\gamma < \beta$ so $\gamma \subset \beta$ and thus, $\gamma \neq \mathbb{Q}$.
- If $p \in \gamma$, then $p \in \alpha_1$ for some $\alpha_1 \in A$. If q < p, then $q \in \alpha_1$ so $q \in A$.
- If $p \in \gamma$, then $p \in \alpha_1$ for some $\alpha_1 \in A$. Thus, there is a $r \in \alpha_1$ such that r > p so $r \in \gamma$. Thus, there is a $r \in \gamma$ where r > p.

Since γ defines a cut, then $\gamma \in \mathbb{R}$. Since every $\alpha \in A \subset \gamma$, then $\alpha \leq \gamma$ so γ is an upper bound for A.

Suppose $\delta < \gamma$. Then there is a $s \in \gamma$ such that $s \notin \delta$. Since $s \in \gamma$, then there is a $\alpha \in A$ such that $s \in \alpha$. Since $\delta < \alpha$, then δ is not an upper bound of A. Thus, $\gamma = \sup(A)$.

Proposition 5.4: \mathbb{R} is a field

If $\alpha, \beta \in \mathbb{R}$, define $\alpha + \beta$ as the set of all sums r + s where $r \in \alpha$ and $s \in \beta$. Also, let 0^* be the set of all negative rational numbers which is a cut since:

- 0^* is nonempty and $0^* \neq \mathbb{Q}$
- If $p \in 0^*$, then any $q \in \mathbb{Q} < p$ is a negative rational and thus, $q \in 0^*$.
- Since \mathbb{Q} is dense in \mathbb{R} , then for any $p \in 0^*$, there is a $r \in \mathbb{Q}$ where p < r < 0 so r is a negative rational so $r \in 0^*$.

 $\alpha + \beta \in \mathbb{R}$ since $\alpha + \beta$ is a cut:

- $\alpha + \beta$ is non-empty since α , β are non-empty. Take $r' \notin \alpha$, $s' \notin \beta$, then r' + s' > r + s for $r \in \alpha$, $s \in \beta$. Thus, $r' + s' \notin \alpha + \beta$ so $\alpha + \beta \notin \mathbb{Q}$.
- If $p \in \alpha + \beta$, then p = r + s where $r \in \alpha$ and $s \in \beta$. If q < p, then $q - s so <math>q - s \in \alpha$. Since $q - s \in \alpha$ and $s \in \beta$, then $(q - s) + s = q \in \alpha + \beta$.
- If $r \in \alpha$, then there is a $t \in \alpha$ such that t > r. Let $s \in \beta$. Thus, for any $p = r + s \in \alpha + \beta$, there is a $q = t + s \in \alpha + \beta$ such that p = r + s < t + s = q.

 $\alpha + \beta = \beta + \alpha$

If $p = r + s \in \alpha + \beta$ where $r \in \alpha$, $s \in \beta$, then $s + r = r + s = p \in \beta + \alpha$. $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$

If $r \in \alpha$, $s \in \beta$, $t \in \gamma$, then $r + s + t = (r + s) + t \in (\alpha + \beta) + \gamma$ and $r + s + t = r + (s + t) \in \alpha + (\beta + \gamma)$.

 $\alpha + 0^* = \alpha$

If $r \in \alpha$, $s \in 0^*$, then r + s < r. Thus, $r + s \in \alpha$. Thus, $\alpha + 0^* \subset \alpha$. If $p \in \alpha$, there is a $r \in \alpha$ where r > p. Thus, $p - r \in 0^*$.

Since $p = r + (p - r) \in \alpha + 0^*$, then $\alpha \subset \alpha + 0^*$. Thus, $\alpha + 0^* = \alpha$. There is a $-\alpha$ such that $\alpha + -\alpha = 0^*$

Fix $\alpha \in \mathbb{R}$. Let set β be all p where there is r > 0 such that $-p - r \notin \alpha$.

 $\beta \in \mathbb{R}$ since β is a cut:

- If $s \notin \alpha$ and p = -s 1, then $-p 1 \notin \alpha$. Thus, $p \in \beta$ so β is nonempty. If $q \in \alpha$, then $-q \notin \beta$ so $\beta \neq \mathbb{R}$.
- If $p \in \beta$, let r > 0 so $-p r \notin \alpha$. If q < p, then -q r > -p r and thus, $-q r \notin \alpha$ so $q \in \beta$.
- If $p \in \beta$, let t = p + (r/2). Then -t (r/2) = -p $r \notin \alpha$ and thus, $t \in \beta$ where p < t.

If $r \in \alpha$, $s \in \beta$, then $s \notin \alpha$. Thus, r < -s so r + s < 0. Thus, $\alpha + \beta \subset 0^*$. Let $v \in 0^*$ and let w = -v/2 so w > 0.

Thus, by the Achimedean property, there is an integer n such that $nw \in \alpha$, but $(n+1)w \notin \alpha$. Let p = -(n+2)w so $-p - w = (n+1)w \notin \alpha$ so $p \in \beta$. Then, $v = -2w = nw + -nw - 2w = nw + -(n+2)w = nw + p \in \alpha + \beta$.

Since $v \in 0^*$, then $0^* \subset \alpha + \beta$. Thus, $\alpha + \beta = 0^*$. Then, let $-\alpha = \beta$.

Thus, if $\alpha, \beta, \gamma \in \mathbb{R}$ and $\beta < \gamma$, then $\alpha + \beta < \alpha + \gamma$.

Thus, if $\alpha > 0^*$, then $-\alpha = -\alpha + 0^* < -\alpha + \alpha = 0^*$ so $-\alpha < 0^*$.

If $\alpha, \beta \in \mathbb{R}_+$, define $\alpha\beta$ as the set of all p such that $p \leq rs$ for $r \in \alpha$, $s \in \beta$. Define 1* as the set of all q < 1. Then all multiplication axioms holds with similar proofs as addition. Also, note since $\alpha, \beta > 0^*$, then $\alpha\beta > 0^*$.

Also, $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$ holds through cases were $\alpha, \beta, \gamma > < 0^*$.

6 Cardinality

6.1 Cardinality

Definition 6.1.1: Onto and 1-1 Mapping

Suppose for every $x \in A$, there is an associated $f(x) \in B$.

Then f maps A into $B = f: A \rightarrow B$.

- If f(A) = B, then f maps A onto B.
- If for each $y \in B$, $f^{-1}(y)$ consist of at most one $x \in A$ where $f^{-1}(y_1) = x_1 \neq x_2 = f^{-1}(y_2)$ for $y_1 \neq y_2$, then f is a 1-1 mapping of A into B.

Definition 6.1.2: 1-1 Correspondence

Sets A and B are equivalent (have the same cardinality) if there is a 1-1 onto function f: $A \rightarrow B$. (1-1 correspondence between A and B) Then:

$$A \sim B$$

If f: A \rightarrow B is 1-1 and onto, then there is a f⁻¹: B \rightarrow A that is 1-1 and onto.

Definition 6.1.3: Countability

- A is finite if $A \sim J_n = \{0, 1, ..., n\}$ for some $n \in \mathbb{N}$
- A is infinite if A is not finite
- A is countably infinite if $A \sim J = \mathbb{Z}_+$
- A is uncountable if A is not finite or countably infinite
- A is at most countable if A is finite or countably infinite

Example 6.1.4

 \mathbb{Z} is countably infinite

Proof

Let f:
$$\mathbb{Z}_+ \to \mathbb{Z}$$

$$f(n) = \begin{cases} \frac{n}{2} & \text{n is even} \\ -\frac{n-1}{2} & \text{n is odd} \end{cases}$$
So $1 \mapsto 0$, $2 \mapsto 1$, $3 \mapsto -1$, $4 \mapsto 2$, $5 \mapsto -2$, etc. Thus, $\mathbb{Z} \sim \mathbb{Z}_+$.

Definition 6.1.5: Pigeonhole Principle

If A is finite, A is not equivalent to any proper set of A.

Theorem 6.1.6: Infinite subsets of countable sets are countable

An infinite subset E of a countably infinite set A is countably infinite.

Proof

Let $E \subset A$ be an infinite subset. For every distinct $x_i \in A$, let $x = \{x_1, x_2, ...\}$. Let n_1 be smallest integer such that $x_{n_1} \in E$.

Then let n_2 be the smallest integer where $n_2 > n_1$ such that $x_{n_2} \in E$.

Repeat the process to create sequence $f(k) = \{x_{n_1}, x_{n_2}, ..., x_{n_k}, ...\}$.

Thus, there is a 1-1 correspondence between E and \mathbb{Z}_+ so E is countably infinite.

6.2 Set of Sets

Definition 6.2.1: Union and Intersection

Let sets Ω ,B be such that for each $x \in \Omega$, there is an associated $E_x \subset B$.

- $E = \bigcup_{x=1}^n E_x$ only if for every $x \in E$, $x \in E_x$ for at least one $x \in \Omega$.
- $P = \bigcap_{x=1}^n E_x$ only if for every $x \in P$, $x \in E_x$ for all $x \in \Omega$.

with properties:

(a) $A \cup B = B \cup A$

$$A \cap B = B \cap A$$

- (b) $(A \cup B) \cup C = A \cup (B \cup C)$
- $(A \cap B) \cap C = A \cap (B \cap C)$

(c) $A \subset A \cup B$

$$(A \cap B) \subset A$$

(d) If $A \subset B$, then $A \cup B = B$ and $A \cap B = A$

Proof

If $x \in A \cup B$, then $x \in A$ or/and $x \in B$.

- If $x \in A$, since $A \subset B$, then $x \in B$. Then, $(A \cup B) \subset B$.
- If $x \in B$, then immediately $(A \cup B) \subset B$.

If $x \in B$, then $x \in A \cup B$ so $B \subset (A \cup B)$. Thus, $A \cup B = B$.

If $x \in A \cap B$, then $x \in A$ and $x \in B$. Thus, $(A \cap B) \subset A$.

If $x \in A$, since $A \subset B$, then $x \in B$ so $x \in A \cap B$. Thus, $A \subset (A \cap B)$.

Thus, $A \cap B = A$.

(e) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Proof

If $x \in A \cap (B \cup C)$, then $x \in A$ and $(x \in B \text{ or/and } x \in C)$.

- If $x \in B$, then $x \in (A \cap B)$ so $x \in (A \cap B) \cup (A \cap C)$.
- If $x \in C$, then $x \in (A \cap C)$ so $x \in (A \cap B) \cup (A \cap C)$.

Thus, $A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$.

If $x \in (A \cap B) \cup (A \cap C)$, then $x \in A$ and $(x \in B \text{ or/and } x \in C)$.

Thus, $(A \cap B) \cup (A \cap C) \subset A \cap (B \cup C)$.

Thus, $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

(f) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Proof

If $x \in A \cup (B \cap C)$, then $x \in A$ or/and $(x \in B$ and $x \in C)$.

- If $x \in A$, then $x \in (A \cup B)$ and $x \in (A \cup C)$ so $A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C)$.
- If $x \in B,C$, then $x \in (A \cup B)$ and $x \in (A \cup C)$ so $A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C)$.

If $x \in (A \cup B) \cap (A \cup C)$, then $x \in A$ or/and $(x \in B$ and $x \in C)$.

Thus, $(A \cup B) \cap (A \cup C) \subset A \cup (B \cap C)$.

Thus, $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Theorem 6.2.2: Union of countably infinite sets is countably infinite

If $E_1, E_2, ...$ are countably infinite sets, then $S = \bigcup_{n=1}^{\infty} E_n$ is countably infinite.

Proof

For each E_n , there is a sequence $\{x_{n1}, x_{n2}, ...\}$. Then construct an array as such:

$$\begin{pmatrix} x_{11} & x_{12} & \dots \\ x_{21} & x_{22} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

Take elements diagonally, then sequence $S^* = \{ x_{11} ; x_{21}, x_{12} ; x_{31}, x_{32}, x_{33} ; \dots \}$. Since $S^* \sim S$ so S is at most countable and S is infinite since E_1, E_2, \dots are infinite, then S cannot be finite and thus, countably infinite.

Alternative Proof

For each E_n , let set $\widetilde{E_n} = E_n - \bigcup_{m=1}^{\infty} E_m$ where $m \neq n$. Thus, $S = \bigcup_{n=1}^{\infty} \widetilde{E_n}$.

Since each E_n is countably infinite, there exists a 1-1 mapping δ_n : $E_n \to \mathbb{Z}_+$.

Thus, for each $\widetilde{E_n}$, there is a 1-1 mapping $\delta_n : \widetilde{E_n} \to A \subset \mathbb{Z}_+$.

Let $p_1, p_2, ...$ be distinct primes. Since for $s \in S$, there exists a unique $\widetilde{E_i}$ such that $s \in \widetilde{E_i}$, then let $f(s) = p_1^{\delta_1(s)} p_2^{\delta_2(s)} ...$ where $p_k^{\delta_k(s)} = 1$ if $k \neq i$.

Then, by the Fundamental theorem of arithmetic, f maps s to a unique $z \in \mathbb{Z}_+$ and thus, f is a 1-1 function so S is at most countable. Since any $E_n \subset S$ is countably infinite, then S cannot be finite and thus, S is countably infinite.

Theorem 6.2.3: The set of countable n-tuples are countable

Let A be a countably infinite set and B_n be the set of all n-tuples $(a_1,...,a_n)$ where $a_k \in A$. Then B_n is countably infinite.

Proof

The base case B_1 is countably infinite since $B_1 = A$.

Suppose B_{n-1} is countably infinite. Then for every $x \in B$:

$$x = (b,a)$$
 $b \in B_{n-1}$ and $a \in A$

Since for every fixed b, $(b,a) \sim A$ and thus, countably infinite.

Since B is a set of countably infinite sets, then B_n is countably infinite.

Definition 6.2.4: \mathbb{Q} is countable

The set of rational numbers, \mathbb{Q} , is countably infinite.

Proof

Since elements of \mathbb{Q} are of form $\frac{a}{b}$ which is a 2-tuple, then by the theorem 6.2.3, \mathbb{Q} is countably infinite.

Alternative Proof

For every $x \in \mathbb{Q}$, let $x = (-1)^i \frac{p}{q}$ where $p,q \in \mathbb{Z}_+$.

Let $f(x) = 2^i \ 3^p \ 5^q$. Then by the Fundamental theorem of arithmetic, f is a 1-1 mapping of x to $E \subset \mathbb{Z}_+$.

Thus, \mathbb{Q} is at most countable, but since $p,q \in \mathbb{Z}_+$, then \mathbb{Q} cannot be finite and thus, is countably infinite.

Example 6.2.5: Sequences of 0 and 1 are uncountable

Let A be the set of all sequences whose elements are digits 0 and 1. Then A is uncountable.

Proof: Cantor's Diagonalization Proof

Let set E be a countably infinite subset of A which consist of sequences $s_1, s_2, ...$ Then construct a sequence s as follows:

If the n-th digit in s_n is 1, then let the n-th digit of s be 0 and vice versa.

Thus. s differs from every $s_n \in E$ so $s \notin E$.

But, $s \in A$ so E is a proper subset of A.

Thus, every countably infinite subset of A is a proper subset of A.

If A is countably infinite, then A is a proper subset of A which is a contradiction.

7 Metric Spaces & Closed/Open

7.1 Metric Spaces

Definition 7.1.1: Metric Spaces

A set X is a metric space if for ant $p,q \in X$, there is an associated $d(p,q) \in \mathbb{R}$ such that:

- d(p,q) > 0 if $p \neq q$
- d(p,q) = 0 if and only if p = q
- Symmetry: d(p,q) = d(q,p)
- Triangle Inequality: $d(p,q) \le d(p,r) + d(r,q)$ for any $r \in X$. For euclidean spaces \mathbb{R}^k , d(x,y) = |x-y| where $x,y \in \mathbb{R}^k$.

Definition 7.1.2: Types of Points and Sets

(a) Neighborhood

For $p \in \mathbb{R}^k$ and r > 0, $N_r(p)$ is the set of all $q \in X$ where d(q,p) < r

(b) Limit Points and Closed Sets

Closed set E contain all $p \in X$ where every $N_r(p)$ contain a $q \neq p \in E$

• Limit Points

For point $p \in X$, every $N_r(p)$ contains a $q \neq p \in E$ The set of all limit points of E = E'

• Isolated Points

If $p \in E$ is not a limit point of E

Closed

If every limit point p of E is a $p \in E$

(c) Interior Points and Open Sets

Open set E contains all its p which has a $N_r(p) \subset E$

• Interior Point

For $p \in X$, there is a $N_r(p) \subset E$ The set of all interior points = E^o

Open

If every $p \in E$ is an interior point of E

(d) More about Sets

• Bounded

If there is $M \in \mathbb{R}$, $q \in X$ such that d(p,q) < M for all $p \in E$

• Complement

From E, E^c is the set of all $p \in X$ such that $p \notin E$

• Perfect

If E is closed and if every $p \in E$ is a limit point of E

• Dense

If every $p \in X$ is a limit point of E or/and $p \in E$

• Boundary Point

For $p \in X$, if every $N_r(p)$ contains a $x \in E$ and $y \in E^c$ The set of all boundary points $= \partial E$

For a metric space X, $\{X,\emptyset\}$ are both open and closed.

Theorem 7.1.3: $N_r(p)$ is open

Every neighborhood is an open set.

Proof

Let $q \in N_r(p)$. Then there is a $h > 0 \in \mathbb{R}$ such that d(q,p) = r - h. Then for any $s \in N_h(q)$, $d(s,p) \le d(s,q) + d(q,p) = h + (r - h) = r$. Thus, for any $q \in N_r(p)$, there exists a $N_h(q) \subset N_r(p)$.

Theorem 7.1.4: If a set has a limit point, there are infinite $q \in E$ in $N_r(p)$

If p is a limit point of set E, then every $N_r(p)$ contains infinitely many $q \in E$. Proof

Suppose there is $N_{r_1}(p)$ which contains finitely many $q = \{ q_1, ..., q_n \}$. Let $r = \min_{m \in [1,n]} d(p,q_m)$. Then $N_r(p)$ contains no $q \in E$ such that $q \neq p$. So, p is not a limit point of E which is a contradiction since p is a limit point of E.

Corollary 7.1.5: Limit points do not exist in finite sets

A finite set E has no limit points. Since $\emptyset \in A$, all finite set must be closed. Proof

Let p be a limit point of finite set E. By theorem 7.1.4, then any $N_r(p)$ contain infinite $q \in E$ so E is an infinite set which is a contradiction since E is finite. So p cannot be limit point of E and thus, E has no limit points.

Theorem 7.1.6: De Morgan's Laws

Let $E_1, E_2, ...$ be a collection of sets. Then, $(\cup E_x)^c = \cap (E_x^c)$.

Proof

If $p \in (\cup E_x)^c$, then $p \notin (\cup E_x)$.

Thus, $p \notin E_x$ for any x so $p \in E_x^c$ for all x. Thus, $p \in \cap (E_x^c)$ so $(\bigcup E_x)^c \subset \cap (E_x^c)$. If $p \in \cap (E_x^c)$, then $p \in E_x^c$ for all x.

Thus, $p \notin E_x$ for any x so $p \notin U$. Thus, $p \in (U E_x)^c$ so $\cap (E_x^c) \subset (U E_x)^c$. Thus, $(U E_x)^c = \cap (E_x^c)$.

Theorem 7.1.7: Open set \rightarrow Closed complement

A set E is open if and only if E^c is closed.

Proof

Suppose E is open. Let x be a limit point of E^c .

Then for every r > 0, $N_r(x)$ must contain a $p \in E^c$ such that $p \neq x$.

Then, $N_r(x) \not\subset E$ so x is not an interior point of E and thus, $x \not\in E$ so $x \in E^c$.

Since any limit point x of E^c is a $x \in E^c$, then E^c is closed.

Suppose E^c is closed. Let $x \in E$.

Since $x \notin E$, x is not a limit point of E. Then there exists a r > 0 such that any p $\in N_r(x)$ is not in E. Thus, every $p \in N_r(x)$ is $p \in E$ so $N_r(x) \subset E$ and thus, x is an interior point of E. Since any $x \in E$ is an interior point of E, then E is open.

Corollary 7.1.8: Closed set \rightarrow Open complement

A set F is closed if only only if F^c is open.

Proof

From theorem 7.1.7, let $E = F^c$.

Theorem 7.1.9: Union open \rightarrow open and Intersection closed \rightarrow closed

(a) If $\{G_x\}$ is a finite or infinite collection of open sets, then $\cup G_x$ is open. Proof

If $p \in \bigcup G_x$, then $p \in G_x$ for at least one x. Let \overline{x} be such an x. Since $G_{\overline{x}}$ is open, then p is an interior point of $G_{\overline{x}}$ and thus, there is a $N_r(p)$ such that $N_r(p) \subset G_{\overline{x}} \subset \cup G_x$. So p is an interior point of $\cup G_x$. Since any $p \in \bigcup G_x$ is an interior point, then $\bigcup G_x$ is open.

(b) If $\{F_x\}$ is a finite or infinite collection of closed sets, then $\cap F_x$ is closed.

By theorem 7.1.7, any F_x^c is open. Since $\{F_x^c\}$ is a finite or infinite collection of open set, then by part (a), $\cup F_x^c$ is open.

Thus, again by theorem 7.1.7, $(\cup F_x^c)^c$ is closed.

By theorem 7.1.6, $(\cup F_x^c)^c = \cap (F_x^c)^c = \cap F_x$.

(c) If $G_1, ..., G_n$ is a finite collection of open sets, then $\bigcap_{x=1}^n G_x$ is open.

If $p \in \bigcap_{x=1}^n G_x$, then $p \in G_x$ for all G_x for $x = \{1, 2, ..., n\}$. Since each G_x is open, then for any G_x , there is a $N_{r_x}(p) \subset G_x$. Let $r = \min(r_1, r_2, ..., r_n)$. Thus, $p \in N_r(p) \subset N_{r_x}(p)$ for all x. So, $N_r(p) \subset \bigcap_{x=1}^n G_x$ and thus, p is an interior point of $\bigcap_{x=1}^n G_x$ so $\bigcap_{x=1}^n G_x$ G_x is open.

Infinite + Closed: $G_i = (-1/i, 1/i)$ Infinite + Open: $G_i = (-i, i)$

(d) If $F_1, ..., F_n$ is a finite collection of closed sets, then $\bigcup_{x=1}^n F_x$ is closed.

By theorem 7.1.7, any F_x^c is open. Since $F_1^c, ..., F_n^c$ is a finite collection of open set, then by part (c), $\bigcap_{x=1}^n F_x^c$ is open.

Thus, again by theorem 7.1.7, $(\cap_{x=1}^n F_x^c)^c$ is closed.

By theorem 7.1.6, $(\bigcap_{x=1}^n F_x^c)^c = \bigcup_{x=1}^n (F_x^c)^c = \bigcup_{x=1}^n F_x$.

Infinite + Closed: $F_i = [-1/i, 1/i]$ Infinite + Open: $F_i = [1/i, \infty)$

Theorem 7.1.10: E' is closed

Let $E \subset X$. Then, $(E')' \subset E'$. Thus, E' is closed.

Proof

If $x \in (E')$, then for every $N_{r_1}(x)$, there is a $y \neq x$ where $y \in E'$. Since $y \in E'$, then for every $N_{r_2}(y)$, there is a $z \neq y$ where $z \in E$. Let $r = r_1 + r_2$. Then for every $N_r(x)$, there exists a $z \neq x$ where $z \in E$. Thus, $x \in E'$ so $(E')' \subset E'$.

Theorem 7.1.11: E^o is open

Let $E \subset X$. Then, E^o is open.

Proof

If $p \in E^o$, there is a r > 0 such that $N_r(p) \subset E$. Then for 0 < s < r, $N_s(p) \subset N_r(p)$ so any $q \in N_s(p)$ is $q \in E^o$. Since any $p \in E^o$ have a $N_s(p) \subset E^o$, then E^o is open.

7.2 Intervals and Balls

Definition 7.2.1: Segments and Intervals

In \mathbb{R} , a segement is an open interval $(a,b) = \{ x \in \mathbb{R} : a < x < b \}$ In \mathbb{R} , a interval is a closed interval $[a,b] = \{ x \in \mathbb{R} : a \le x \le b \}$

Definition 7.2.2: Open Balls

In \mathbb{R}^k , an open ball of radius r > 0 centered at p is: $N_r(p) = \{ x \in \mathbb{R}^k : |x - p| < r \} = \{ x \in \mathbb{R}^k : d(x,p) < r \}$ A closed ball has $d(x,p) \le r$.

Definition 7.2.3: Convex

 $E \subset \mathbb{R}^k$ is convex if for all $x,y \in E$ and $t \in [0,1]$, $tx + (1-t)y \in E$.

Example 7.2.4: Balls are convex

Balls in \mathbb{R}^k are convex.

Proof

```
Let x,y \in \text{ open ball } N_r(p). Let z = tx + (1-t)y for t \in [0,1].

Since |x-p| < r and |y-p| < r:
|z-p| = |tx + (1-t)y - p| = |tx + (1-t)y - tp + (t-1)p|
= |t(x-p) + (1-t)(y-p)| \le t|(x-p)| + (1-t)|(y-p)|

Thus, <math>z \in N_r(p) so balls are convex. Same proof applies to closed balls.
```

Definition 7.2.5: Dense

 $E \subset X$ is dense if every $x \in X$ is either in E or a limit point of E.

Example 7.2.6: \mathbb{Q} is dense in \mathbb{R}

Let $X = \mathbb{R}$. Then, $E = \mathbb{Q}$ is dense in \mathbb{R} .

Proof

Fix $x \in \mathbb{R}$ and r > 0. There is a $q \in \mathbb{Q}$ such that x-r < q < x. So for any r > 0 and $q \in \mathbb{Q}$, $q \neq x$ and $q \in N_r(x)$. Thus, every $x \in \mathbb{R}$ is a limit point of \mathbb{Q} .

8 Closure, Open Relative, & Compact

8.1 Closure

Definition 8.1.1: Closure

Let $E \subset \text{metric space } X$ and E' be the set of all limit points of E in X.

Then the closure of E: $\overline{E} = E \cup E'$

with the properties:

- (a) \overline{E} is closed
- (b) $E = \overline{E}$ if and only if E is closed
- (c) $\overline{E} \subset F$ for every closed $F \subset X$ such that $E \subset F$

Proof

Suppose $x \in X$, but $x \notin \overline{E}$. Thus, $x \in \overline{E}^c$.

Thus, there is a $N_r(x) \subset \overline{E}^c$ since else there is always a $p \in N_r(x)$ where $p \in \overline{E}$ so x is a limit point of \overline{E} so $x \in \overline{E}$. Thus, \overline{E}^c is open so \overline{E} is closed by theorem 7.1.7.

If $E = \overline{E}$, then by part (a), E is closed.

If E is closed, then $E' \subset E$ so $E = E \cup E' = \overline{E}$.

If closed set F, then F' \subset F and since E \subset F, then E' \subset F' \subset F. Thus, $\overline{E} \subset$ F.

Theorem 8.1.2: $\sup(E) \in \overline{E}$

Let non-empty set of real numbers, E, be bounded above. Let $y = \sup(E)$. Then, $y \in \overline{E}$. Thus, $y \in E$ if E is closed and $y \notin E$ if E is open in \mathbb{R} .

Proof

If $y \in E$, then $y \in \overline{E}$. Suppose $y \notin E$.

For every h > 0, there exists a $x \in E$ such that y-h < x < y otherwise y-h is an upper bound for E which is a contradiction since $y = \sup(E)$.

Thus, y is a limit point of E so $y \in E'$.

If E is closed, then $y \in E$ since $y \in E'$. Also, $y \in \overline{E}$.

If E is open, then any $N_r(y) \not\subset E$ since $N_r(y)$ in \mathbb{R} must contain a $\gamma > y$ so $y \not\in E^o$.

8.2 Open Relative

Definition 8.2.1: Open Relative

Suppose $E \subset Y \subset \text{metric space } X$.

Then E is open relative to Y if for each $p \in E$, there is an r > 0 such that for any $q \in Y$, then $q \in E$ if d(q,p) < r.

Theorem 8.2.2: E is open relative to $Y \subset X$ if $E = Y \cap G$ and G is open in X Suppose $E \subset Y \subset X$.

E is open relative to Y if and only if $E = Y \cap G$ for some open $G \subset X$. Proof:

Suppose E is open relative to Y.

Then for each $p \in E$, there is a $r_p > 0$ such that for any $q \in Y$ where $d(p,q) < r_p$, then $q \in E$.

Since $Y \subset X$, let V_p be the set of all $q \in X$ such that $d(p,q) < r_p$ and define $G = \bigcup_{p \in E} V_p$. Since V_p is open by theorem 7.1.3, then by theorem 7.1.9a, open $G \subset X$. Since $p \in V_p$ for all $p \in E$, then $E \subset G \cap Y$. Also, by construction, then $V_p \cap Y \subset E$ so $G \cap Y \subset E$. Thus, $E = Y \cap G$.

If G is open in X and $E = G \cap Y$, then every $p \in E$ has a $V_p \subset G$.

Then, $V_p \cap Y \subset G \cap Y = E$ so E is open relative to Y.

8.3 Compact Sets

Definition 8.3.1: Open Cover

An open cover of set $E \subset X$ is a collection of open $G_1, G_2, ... \subset X$ such that $E \subset \bigcup G_i$.

Definition 8.3.2: Compact

 $K \subset X$ is compact if every open cover of K contains a finite subcover. If $G_1, G_2, ...$ is an open cover of K, then $K \subset \bigcup_{i=1}^n G_i$ for some n.

Theorem 8.3.3: A compact set is compact in every metric space

Suppose $K \subset Y \subset X$.

Then K is compact relative to X if and only if K is compact relative to Y.

Proof

Suppose K is compact relative to X.

Let $V_1, V_2, ...$ be sets open relative to Y such that $K \subset U_x$. Then by theorem 8.2.2 for each V_x , there is a G_x open relative to X where $V_x = Y \cap G_x$.

Since K is compact relative to X, then there is a n such that $K \subset G_{x_1} \cup ... \cup G_{x_n}$.

Thus, $K = K \cap Y \subset (\bigcup_{i=1}^{n} G_{x_i}) \cap Y = (\bigcup_{i=1}^{n} G_{x_i} \cap Y) = \bigcup_{i=1}^{n} V_{x_i}$.

Since there are open $V_{x_1}, ..., V_{x_n}$ where $K \subset \bigcup_{i=1}^n V_{x_i}$ so K is compact relative to Y. Suppose K is compact relative to Y.

Let open $G_1, G_2, ... \subset X$ such that $X \subset \cup G_x$. For each G_x , let $V_x = Y \cap G_x \subset Y$. Since K is compact relative to Y, there is a n such that $K \subset \bigcup_{i=1}^n V_{x_i}$.

Thus, $K \subset \bigcup_{i=1}^n V_{x_i} = \bigcup_{i=1}^n (Y \cap G_{x_i}) \subset \bigcup_{i=1}^n G_{x_i}$ so K is compact relative to X.

Theorem 8.3.4: A compact set is closed

Compact subsets of metric spaces are closed.

Proof

Let compact $K \subset X$. Suppose $p \in X$, but $p \notin K$ so $p \in K^c$.

If $q \in K$, let W_q be a neighborhood of q with $r < \frac{1}{2}d(p,q)$. Let $V_{p,q}$ be a neighborhood of p with $r < \frac{1}{2}d(p,q)$. Since K is compact, then there are finite points $q_1, ..., q_n$ such that $K \subset W$ where $W = W_{q_1} \cup ... \cup W_{q_n}$.

Let $V = V_{p,q_1} \cap ... \cap V_{p,q_n}$, then $K \cap V \subset W \cap V = \emptyset$ so $V \subset K^c$.

Since there is a neighborhood V for $p \in K^c$ where $V \subset K^c$, then every $p \in K^c$ is an interior point so K^c is open. Then by theorem 7.1.7, K is closed.

Theorem 8.3.5: If closed $E \subset \text{compact set } K$, E is compact

Closed subsets of compact sets are compact.

Proof

Suppose $F \subset K \subset X$ where F is closed relative to X and K is compact.

Let $V_1, V_2, ...$ be an open cover for F. Let open set F^c be all $k \in K$ where $k \notin F$.

$$\mathbf{K} = \mathbf{F} \cup \mathbf{F}^c \subset V_1 \cup V_2 \cup \dots \, \cup \, \mathbf{F}^c$$

Thus, $V_1 \cup V_2 \cup ... \cup F^c$ is an open cover for K.

Since K is compact, there is a finite subcover Ω that covers K and thus, finite subcover Ω covers $F \cup F^c$.

Remove F^c from Ω . Since finite subcover Ω - F^c covers F, then F is compact.

Corollary 8.3.6: Closed $F \cap \text{compact } K = \text{compact}$

If F is closed and K is compact, then $F \cap K$ is compact.

Proof

Since K is compact, then K is closed by theorem 8.3.4.

Then, by 7.1.9b, $F \cap K$ is closed.

Since $F \cap K \subset K$, then by theorem 8.3.5, $F \cap K$ is compact.

Theorem 8.3.7: Nonempty $\bigcap_{i=1}^n K_i \to \text{nonempty} \cap K_i$

For compact sets $K_1, K_2, ... \subset X$ where any intersection of finite K_i is nonempty, then $\cap K_i$ is nonempty.

Proof

Fix K_1 . If there is a $k \in K_1$ where $k \in K_i$ for all i, then $k \in \cap K_i$ so $\cap K_i \neq \emptyset$.

Suppose for every $k \in K_1$, $k \notin K_i$ for some i.

Then for every $k \in K_1$, there is a K_i such that $p \notin K_i$ so $p \in K_i^c$.

Thus, K_2^c, k_3^c, \dots form an open cover for K_1 .

Since K_1 is compact, there is a n where $K_1 \subset K_{i_1}^c \cup ... \cup K_{i_n}^c$.

But then, $K_1 \cap K_{i_1} \cap ... \cap K_{i_n} = \emptyset$ which is a contradiction.

Corollary 8.3.8: Nonempty K_i where $K_{i+1} \subset K_i \to \text{nonempty} \cap K_i$

If $K_1, K_2, ...$ is a sequence of nonempty compact sets such that $K_{i+1} \subset K_i$, then $\cap K_i$ is nonempty.

<u>Proof</u>

Since each K_i is nonempty and if $i_1 < ... < i_n$, then $K_{i_1} \cap ... \cap K_{i_n} = K_{i_n}$ is nonempty, then by theorem 8.3.7, $\cap K_i$ is nonempty.

Theorem 8.3.9: Nonempty intervals I_n where $I_{n+1} \subset I_n \to \text{nonempty} \cap I_n$

If $I_1, I_2, ...$ is a sequence of intervals in \mathbb{R}^1 such that $I_{n+1} \subset I_n$, then $\cap I_n$ is nonempty.

Proof

Let $I_n = [a_n, b_n]$ and thus, each I_n is nonempty. If $n_1 < ... < n_m$, then $I_{n_1} \cap ... \cap I_{n_m} = [a_{n_m}, b_{n_m}]$ is nonempty. Thus, by theorem 8.3.7, $\cap I_n$ is nonempty.

Theorem 8.3.10: $p \in E'$ exists if infinite $E \subset \text{compact } K$

If E is an infinite subset of compact set K, then E has a limit point in K.

Proof

If no $p \in K$ is a $p \in E$, then each p would have a neighbohood V_p contains at most $p \in E$ if $p \in E$. Thus, there is no finite subcover that covers E and thus, there is no finite subcover that covers K since $E \subset K$ which contradicts K is compact.

Definition 8.3.11: K-cells

The set of all $\mathbf{x} = (x_1, ..., x_k) \in \mathbb{R}^k$ where $x_i \in [a_i, b_i]$ for fixed $a_i, b_i \in \mathbb{R}$.

Theorem 8.3.12: K-cells are compact

Every k-cell is compact.

Proof

Let k-cell I consists of all $\mathbf{x} = (x_1, ..., x_k)$ where $x_i \in [a_i, b_i]$ for fixed $a_i, b_i \in \mathbb{R}$.

Let
$$\delta = \sqrt{\sum_{i=1}^{k} (b_i - a_i)^2}$$
. Thus, $|x - y| \le \delta$ for $x, y \in I$.

Suppose there exists an open cover $G_1, G_2, ...$ of I which contain no finite subcover. Let $c_i = \frac{a_i + b_i}{2}$. Then each interval splits into $[a_i, c_i]$ and $[c_i, b_i]$ for $i \in [1,k]$ so there now exists 2^k k-cells Q_i whose union is I.

At least one Q_i cannot be covered else I would be covered. Then subdivide Q_i as before and repeating the process so $Q_{i+1} \subset Q_i$ and each are not covered.

However, there is a point $x^* \in Q_{i_j}$ for all j such that $N_r(x^*) \subset G$ so Q_{i_1} is covered which is a contradiction.

Theorem 8.3.13: Heine-Borel Theorem

If a set $E \subset \mathbb{R}^k$ has one of the three properties, then it has the other two:

- (a) E is closed and bounded
- (b) E is compact
- (c) Every infinite subset of E has a limit point in E

Proof

Suppose E is closed and bounded.

Then there exists a $M \in \mathbb{R}$ and $q \in \mathbb{R}^k$ such that d(p,q) < M for all $p \in E$.

Thus, there is a k-cell K = $[-M+q_1,q_1+M] \times ... \times [-M+q_k,q_k+M]$ such that E \subset K. Then by theorem 8.3.12, K is compact and thus by theorem 8.3.5, E is compact so (a) \rightarrow (b).

Then by thereom 8.3.10, any infinite subset of E has a limit point in E so (b) \rightarrow (c). Suppose E is not bounded.

Then there exists $p \in E$ such that d(p,q) > M for any $M \in \mathbb{R}$ and $q \in \mathbb{R}^k$.

Let $S \subset E$ be such points p.

Then S is infinite else there is a maximal p and thus, p is bounded. Thus, S is infinite and contains no limit points in E since any $d(p_1,p_2) > M$ which contradicts that every infinite subset of E has a limit point in E. Thus, E is bounded.

Suppose E is not closed.

Then there exists a $p \in E'$, but $p \notin E$. Since p is a limit point, then there is a $q \in E$ such that $\frac{1}{n+1} < d(q,p) < \frac{1}{n}$ for $n = \{1, 2, ...\}$.

Let $S \subset E$ be such points q.

Thus, p is the only limit point of S since for $r < \frac{1}{n}$, any $N_r(q_i)$ contains no points of S other than q_i since $d(q_i,q_j) > \frac{1}{n}$ for any $q_1,q_2 \in S$.

Thus, S is infinite, but the only $p \in S'$ is $p \notin E$ which contradicts that every infinite subset of E has a limit point in E. Thus, E is closed. So, $(c) \to (a)$.

Theorem 8.3.14: Weierstrass Theorem

Every bounded infinite set $E \subset \mathbb{R}^k$ has a limit point in \mathbb{R}^k .

Proof

Since E is bounded, then there exists a k-cell K such that $E \subset K$. Since K is compact, then by theorem 8.3.10, E has a limit point in K and thus, in \mathbb{R}^k .

9 Perfect and Connected Sets

9.1 Perfect Sets

Definition 9.1.1: Perfect Set

 $E \subset X$ is perfect if E is closed and if every $p \in E$ is $p \in E'$.

Theorem 9.1.2: Perfect sets are uncountable

Let P be a nonempty perfect set in \mathbb{R}^k . Then, P is uncountable.

Proof

Since P has limit points, then by theorem 7.1.4, P is infinite.

Suppose P is countable. Then let $x_1, x_2, ... \in P$.

Let V_i be a neighborhood of x_i where $y \in V_i$ for any $y \in \mathbb{R}^k$ such that $|y - x_i| < r$. Thus, the $\overline{V_i}$ is the set of all $y \in \mathbb{R}^k$ such that $|y - x_i| \le r$.

Since every x_i are limit points, then any $V_i \cap P$ is not empty where there is a V_{i+1}

- (a) $\overline{V_{i+1}} \subset V_i$
- (b) $x_i \notin \overline{V_{i+1}}$
- (c) $V_{i+1} \cap P$ is nonempty

Let $K_i = \overline{V_i} \cap P$. Since $\overline{V_i}$ is closed and bounded, then by theorem 8.3.11, $\overline{V_i}$ is compact. Since $x_i \notin K_{i+1}$, then no $x_i \in P$ is $x_i \in \cap K_i$. Since $K_n \subset P$, then $\cap K_i$ is empty which contradicts corollary 8.3.8 since each K_i is nonempty and $K_{i+1} \subset K_i$.

Corollary 9.1.3: \mathbb{R} is not countable

Every interval [a,b] is uncountable. Thus, \mathbb{R} is uncountable.

Proof

Since [a,b] is closed and every $p \in [a,b]$ is a limit point, then nonempty set [a,b] is perfect. Thus, by theorem 9.1.2, [a,b] is uncountable.

Definition 9.1.4: Cantor Sets

There exists perfect segments in \mathbb{R}^1 which contain no segment.

Let $E_0 = [0,1]$.

For E_1 , remove $(\frac{1}{3}, \frac{2}{3})$. Thus, $E_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$.

For E_2 , remove $(\frac{1}{9}, \frac{3}{9})$ and $(\frac{7}{9}, \frac{8}{9})$. Thus, $E_2 = [0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{3}{9}] \cup [\frac{6}{9}, \frac{7}{9}] \cup [\frac{8}{9}, 1]$.

Continuing such a sequence, the set of compact sets E_n are such that:

- (a) $E_{n+1} \subset E_n$
- (b) E_n is the union of 2^n intervals each of length 3^{-n} .

 $P = \cap E_n$ is called the Cantor set. P is compact and nonempty.

Thus, any segment of form $(\frac{3k+1}{3^m}, \frac{3k+2}{3^m})$ where k,m $\in \mathbb{Z}_+$ has no points in common with P. Since any segment (a,b) contain a segment of such a form since $3^{-m} < \frac{b-a}{6}$, then P contains no segment.

Let $x \in P$ and segment S contain x. Let I_n be an interval of E_n containing x. Then choose a large enough n so $I_n \subset S$.

Let x_n be an endpoint of I_n where $x_n \neq x$ and thus, x is a limit point. Since P is closed and every $p \in P$ is $p \in P$, then P is perfect.

9.2 Connected Sets

Definition 9.2.1: Connected Set

 $A,B \subset X$ are separated if both $A \cap \overline{B}$ and $\overline{A} \cap B$ are empty.

 $E \subset X$ is connected if E is not the union of two nonempty separated sets.

Separated sets are disjoint, but disjoint sets need not be separated.

Theorem 9.2.2: All points between points in connected sets exists

 $E \subset \mathbb{R}^1$ is connected if and only if:

If $x,y \in E$ and x < z < y, then $z \in E$.

Proof

If there exists $x,y \in E$ and $z \in (x,y)$ such that $z \notin E$, then $E = A_z \cup B_z$ where $A_z = E \cap (-\infty, z)$ and $B_z = E \cap (z, \infty)$.

Since $x \in A_z$ and $y \in B_z$, then A and B are nonempty. Since $A_z \subset (-\infty, z)$ and $B_z = (z, \infty)$, then A_z and B_z are separated. Thus, E is not connected.

Suppose E is not connected. Then, there are nonempty separated sets A and B such that $A \cup B = E$. Pick $x \in A$, $y \in B$ where x < y. Let $z = \sup(A \cap [x,y])$.

Since, $z \in \overline{A}$ so $z \notin B$, then $x \le z < y$. If $z \notin A$, then x < z < y so $z \notin E$.

If $z \in A$, then $z \notin B$ and thus, there exists a z_1 such that $z < z_1 < y$ and $z_1 \notin B$. Then, $x < z_1 < y$ so $z_1 \notin E$.

10 Convergent and Cauchy Sequences

10.1 Convergent Sequences

Definition 10.1.1: Convergent Sequence

A sequence $\{x_n\}$ in metric space X converge if there is a $x \in X$ such that: For every $\epsilon > 0$, there is a $N \in \mathbb{Z}$ such that for all $n \geq N$, $d(x_n, x) < \epsilon$ Then, $\{x_n\}$ converges to x: $\lim_{n\to\infty} x_n = x$ If $\{x_n\}$ does not converge, then it diverges.

Example 10.1.2

(a) Let $x_n = \frac{1}{n}$ in \mathbb{R}^2 . Then, $\lim_{n \to \infty} x_n = 0$

For $\epsilon > 0$, there is a $\frac{1}{N} < \epsilon$. Then: $d(x_n, 0) = |x_n - 0| = \frac{1}{n} < \frac{1}{N} < \epsilon$

(b) Let $x_n = (-1)^n + \frac{1}{n}$ in \mathbb{R}^2 . Then, $\{x_n\}$ diverges.

Proof

 $\lim_{n\to\infty} x_n = \lim_{n\to\infty} (-1)^n + \lim_{n\to\infty} \frac{1}{n} = \lim_{n\to\infty} (-1)^n$ Since $(-1)^n$ alternates between -1 and 1, then $\{x_n\}$ diverges.

Theorem 10.1.3: A convergent sequence is unique and bounded

(a) $\{p_n\}$ converges to $p \in X$ if and only if every $N_r(p)$ contains p_n for all, but finitely many n.

Proof

Suppose $p_n \to p$. Then for $N_{\epsilon}(p)$, any $q \in X$ such that $d(q,p) < \epsilon$ is $q \in N_{\epsilon}(p)$. Since $p_n \to p$, there is a N such that for $n \geq N$, $d(p_n,p) < \epsilon$. Thus, for $n \geq N$, $p_n \in N_{\epsilon}(p)$. Suppose every $N_r(p)$ contains p_n for all, but finitely many n.

For $\epsilon > 0$, let $N_{\epsilon}(p)$ be the set of all $q \in X$ such that $d(p,q) < \epsilon$. Thus, there exists a N such that $p_n \in N_{\epsilon}(p)$ if $n \geq N$.

Thus, $d(p_n, p) < \epsilon \text{ so } p_n \to p$.

(b) If $p,p' \in X$ and $\{p_n\}$ converges to p and p', then p = p'.

Proof

For $\epsilon > 0$, there exists N,N' such that: $d(p_n,p) < \frac{\epsilon}{2} \text{ for } n \geq N \qquad d(p_n,p') < \frac{\epsilon}{2} \text{ for } n \geq N'$ Then for $n \geq \max(N,N')$, $d(p,p') \leq d(p,p_n) + d(p_n,p') < \epsilon$. Thus, p = p'. (c) If $\{p_n\}$ converges, then $\{p_n\}$ is bounded.

Proof

If $\{p_n\} \to p$, there is a N such that for n > N, $d(p_n, p) < 1$. Let $r = \max(d(p_n, p), \dots, d(p_n, p), 1)$. Thus for all $n, d(p_n, p) \le r$.

(d) If $E \subset X$ and $p \in E'$, there is a $\{p_n\}$ in E such that $p = \lim_{n \to \infty} p_n$.

Proof

Since $p \in E'$, then for each $n \in \mathbb{Z}_+$, there is a $p_n \in E$ such that $d(p_n,p) < \frac{1}{n}$. For $\epsilon > 0$, there is a $\frac{1}{N} < \epsilon$ so for $n \geq N$, $d(p_n,p) < \frac{1}{n} \leq \frac{1}{N} < \epsilon$. Thus, $p = \lim_{n \to \infty} p_n$.

Theorem 10.1.4: Arithmetic Operations for sequences

Suppose $\{s_n\},\{t_n\}\in\mathbb{C}$ where $\lim_{n\to\infty}s_n=s$ and $\lim_{n\to\infty}t_n=t$.

(a) $\lim_{n\to\infty} s_n + t_n = s + t$

Proof

For $\epsilon > 0$, there exists N_1 , N_2 such that $|s_n - s| < \frac{\epsilon}{2}$ for $n \ge N_1$ $|t_n - t| < \frac{\epsilon}{2}$ for $n \ge N_2$ If $N = \max(N_1, N_2)$, then for $n \ge N$: $|s_n + t_n - s + t| \le |s_n - s| + |t_n - t| < \epsilon$

(b) $\lim_{n\to\infty} cs_n = cs$ and $\lim_{n\to\infty} c + s_n = c + s$

<u>Proof</u>

For $\epsilon > 0$, there exists a N such that $|s_n - s| < \frac{\epsilon}{|c|}$ for $n \ge N$ $|cs_n - cs| \le |c| \cdot |s_n - s| < \epsilon$

(c) $\lim_{n\to\infty} s_n t_n = \operatorname{st}$

<u>Proof</u>

Note $s_n t_n$ - st = $(s_n - s)(t_n - t)$ + $t(s_n - s)$ + $s(t_n - t)$. For $\epsilon > 0$, there exists N_1, N_2 such that $|s_n - s| < \sqrt{\epsilon}$ for $n \ge N_1$ $|t_n - t| < \sqrt{\epsilon}$ for $n \ge N_2$ If $N = \max(N_1, N_2)$, then for $n \ge N$, $|(s_n - s)(t_n - t)| < \epsilon$. Thus, $\lim_{n \to \infty} (s_n - s)(t_n - t) = 0$. $\lim_{n \to \infty} (s_n t_n - st) = \lim_{n \to \infty} (s_n - s)(t_n - t) + t(s_n - s) + s(t_n - t)$ $= 0 + t \cdot 0 + s \cdot 0 = 0$

(d) $\lim_{n\to\infty} \frac{1}{s_n} = \frac{1}{s}$ where $s_n, s \neq 0$

Proof

Choose m such that $|s_n - s| < \frac{1}{2}|s|$ if $n \ge m$ so $|s_n| > \frac{1}{2}|s|$ for $n \ge m$. For $\epsilon > 0$, there is a N > m such that for $n \ge N$, $|s_n - s| < \frac{1}{2}|s|^2\epsilon$. Thus, for $n \ge N$, $\left|\frac{1}{s_n} - \frac{1}{s}\right| = \left|\frac{s_n - s}{s_n s}\right| < \frac{2}{|s|^2}|s_n - s| < \epsilon$.

Theorem 10.1.5: Extension to \mathbb{R}^k

(a) Suppose $x_n \in \mathbb{R}^k$ and $x_n = (\alpha_{n_1}, \dots, \alpha_{n_k})$. Then $\{x_n\}$ converges to $\mathbf{x} = (\alpha_1, \dots, \alpha_k)$ if and only if $\lim_{n \to \infty} \alpha_{n_i} = \alpha_i$ for $\mathbf{i} \in [1, \mathbf{k}]$.

Suppose $\{x_n\}$ converges to $\mathbf{x} = (\alpha_1, \dots, \alpha_k)$.

Since for any $i \in [1,k]$:

$$|\alpha_{n_i} - \alpha_i| \le \sqrt{|\alpha_{n_1} - \alpha_1|^2 + \dots + |\alpha_{n_k} - \alpha_k|^2} = |x_n - x| < \epsilon.$$

Then, $\lim_{n\to\infty} \alpha_{n_i} = \alpha_i$.

Suppose $\lim_{n\to\infty} \alpha_{n_i} = \alpha_i$ for $i \in [1,k]$.

Then for $\epsilon > 0$, there is an N such that for $n \geq N$:

$$|\alpha_{n_i} - \alpha_i| < \frac{\epsilon}{\sqrt{k}} \text{ for } i \in [1,k]$$

 $|x_n - x| = \sqrt{\sum_{i=1}^k |\alpha_{n_i} - \alpha_i|^2} < \sqrt{k \cdot (\frac{\epsilon}{\sqrt{k}})^2} = \epsilon$

(b) Suppose $\{x_n\}, \{y_n\} \in \mathbb{R}^k$ and $\{\beta_n\} \in \mathbb{R}$ and $x_n \to x$, $y_n \to y$, $\beta_n \to \beta$. $\lim_{n \to \infty} x_n + y_n = x + y$ $\lim_{n \to \infty} x_n \cdot y_n = x \cdot y$ $\lim_{n \to \infty} \beta_n x_n = \beta x$ Proof

By part a, then $\lim_{n\to\infty} x_{n_i} + y_{n_i} = x_i + y_i$ so $\{x_n + y_n\} \to x+y$. Also, $\lim_{n\to\infty} \sum_{i=1}^k x_{n_i} y_{n_i} = \sum_{i=1}^k x_i y_i$ so $\{x_n \cdot y_n\} \to x\cdot y$. Also, $\lim_{n\to\infty} \beta_i x_{n_i} = \beta_i x_i$ so $\{\beta_n x_n\} \to \beta x$.

10.2 Subsequences

Definition 10.2.1: Subsequence

For sequence $\{p_n\}$, let $\{n_k\} \in \mathbb{Z}_+$ where $n_k < n_{k+1}$.

Then $\{p_{n_k}\}$ is a subsequence of $\{p_n\}$.

If $\{p_{n_k}\}$ converges, then its limit is called a subsequential limit.

Theorem 10.2.2: $\{p_n\} \to p \rightleftharpoons \text{Every } \{p_{n_k}\} \to p$

 $\{p_n\}$ converges to p if and only if every subsequence converges to p.

Proof

Suppose $\{p_n\}$ converges to p.

Then for $\epsilon > 0$, there is a N such that for $n \geq N$, $d(p_n, p) < \epsilon$.

Let $\{p_{n_k}\}\subset\{p_n\}$. Then for $n_k\geq N$, $|p_{n_k}-p|<\epsilon$. Thus, $\{p_{n_k}\}\to p$.

Suppose every subsequence converges to p.

Since $\{p_n\}$ is a subsequence of itself, then $\{p_n\}$ converges to p.

Theorem 10.2.3: $\{p_n\}$ in compact space have $\{p_{n_k}\} \to p$

(a) If $\{p_n\}$ is a sequence in a compact metric space X, then some subsequence converges to $p \in X$.

<u>Proof</u>

Let E be the range of $\{p_n\}$.

If E is finite, there is a p \in E and sequence $\{n_k\}$ with $n_k < n_{k+1}$ such that $p_{n_1} = p_{n_2} = \dots = p$. Thus, $\{p_{n_k}\} \to p$.

If E is infinite, then by theorem 8.3.10, then there exists a p \in E'.

Then there are n_k such that $d(p_{n_k}, p) < \frac{1}{k}$. Thus, $\{p_{n_k}\} \to p$.

(b) Every bounded sequence in \mathbb{R}^k contains a convergent subsequence. Proof

Let E be a bounded sequence in \mathbb{R}^k . Since E \cup E' is bounded and closed, then by theorem 8.3.13, E \cup E' is compact.

Thus by part a, E contains a convergent subsequence.

Theorem 10.2.4: The set of subsequential limits is closed

The subsequential limits of $\{p_n\}$ in metric space X form a closed subset of X.

Proof

Let E be the range of the set of all subsequential limits of $\{p_n\}$.

If E is empty, then E is closed. If E is finite, then E' is empty so E is closed.

Suppose E is infinite. Then, let $q \in E'$.

Since $q \in E'$, there is a $x \in E$ where $d(x,q) < \frac{\epsilon}{2}$.

Since $x \in E$, there is a $\{p_{n_k}\} \to x$ so there is a N such that for $n \ge N$, $d(p_{n_k},x) < \frac{\epsilon}{2}$.

Thus, $d(p_{n_k},q) \le d(p_{n_k},x) + d(x,q) < \epsilon \text{ so q is a subsequential limit of } \{p_n\}.$

Thus, $q \in E$ so E is closed.

10.3 Cauchy Sequences

Definition 10.3.1: Metric Spaces

Sequence $\{p_n\} \in X$ is a Cauchy sequence if:

For every $\epsilon > 0$, there is a $N \in \mathbb{Z}$ such that for all $n,m \geq N$, $d(p_n,p_m) < \epsilon$ Let nonempty $E \subset X$ and $S \subset \mathbb{R}$ of d(p,q) where $p,q \in E$.

Let $\sup(S) = \operatorname{diam}(E)$. If $\{p_n\} \in X$, and $p_N, p_{N+1}, \dots \in E_N$, then $\{p_n\}$ is a Cauchy sequence if and only if $\lim_{N\to\infty} \operatorname{diam}(E_N) = 0$.

Theorem 10.3.2: Cauchy sequences and its closure have the same diam

(a) If $\overline{E} \subset X$, then diam(\overline{E}) = diam(E).

Proof

Since $E \subset \overline{E}$, then $diam(E) \leq diam(\overline{E})$.

For $\epsilon > 0$, let p,q \in E'.

Thus, there are $p',q' \in E$ such that $d(p',p) < \epsilon$ and $d(q',q) < \epsilon$. Thus:

 $d(p,q) \le d(p,p') + d(p',q') + d(q',q) < 2\epsilon + d(p',q') \le 2\epsilon + \operatorname{diam}(E).$

Thus, $\operatorname{diam}(\overline{E}) \leq 2\epsilon + \operatorname{diam}(E)$ so $\operatorname{diam}(\overline{E}) = \operatorname{diam}(E)$.

(b) If K_n is a sequence of compact sets of X such that $K_{n+1} \subset K_n$ and $\lim_{n\to\infty} \operatorname{diam}(K_N) = 0$, then $\cap K_n$ consist of only one point.

Proof

Let $K = \cap K_n$. Since K_n is a sequence of compact sets, then by Corollary 8.3.8, K is nonempty.

If K contains more than one point, then diam(K) > 0.

But since $K \subset K_n$, then $\operatorname{diam}(K) \leq \operatorname{diam}(K_n)$ which contradicts that $\operatorname{diam}(K_n) \to 0$.

Theorem 10.3.3: Convergent sequences are cauchy sequences

(a) Every convergent sequence is a Cauchy sequence.

Proof

If $p_n \to p$ and $\epsilon > 0$, there is a N such that for all $n \ge N$, $d(p,p_n) < \frac{\epsilon}{2}$. Thus, for $m,n \ge N$:

 $d(p_n, p_m) \le d(p_n, p) + d(p, p_m) < \epsilon.$

Thus, $\{p_n\}$ is a Cauchy sequence.

(b) If $\{p_n\}$ is a Cauchy sequence in compact metric space X, then $\{p_n\}$ converges to some $p \in X$.

Proof

Let $\{p_n\}$ be a Cauchy sequence in compact space X.

Let $p_N, p_{N+1}, ... \in E_N$.

Since $\{p_n\}$ is a Cauchy sequence, then $\lim_{N\to\infty} \operatorname{diam}(\overline{E_N}) = 0$. Since $\overline{E_N}$ is closed in compact X, then by theorem 8.3.5, $\overline{E_N}$ is compact.

Since $E_{N+1} \subset E_N$, then $\overline{E_{N+1}} \subset \overline{E_N}$ and thus, by theorem 10.3.2b, then there is a unique $p \in \overline{E_N}$ for every N.

Since $p \in \overline{E_N}$, then $d(p,q) < \epsilon$ for every $q \in \overline{E_N}$ so every $q \in E_N$.

Then for $\epsilon > 0$, there is a N_0 such that for $N \geq N_0$, diam $(\overline{E_N}) < \epsilon$.

Thus, $d(p_n, p) < \epsilon$ for $n \ge N_0$ so $\{p_n\} \to p$.

(c) In \mathbb{R}^k , every Cauchy sequence converges.

Proof

Let $\{x_n\}$ be a Cauchy sequence in \mathbb{R}^k . Let $x_N, x_{N+1}, ... \in E_N$.

Then for some N, diam (E_N) < 1. Thus, the range of $\{x_n\} = E_N \cup \{x_1, ..., x_{N-1}\}$. Thus, $\{x_n\}$ is bounded.

Thus, the $\{x_n\}$ is closed and bounded so by theorem 8.3.13, $\{x_n\}$ is compact. Thus, by part b, $\{x_n\}$ converges to some $p \in \mathbb{R}^k$.

Definition 10.3.4: Complete

A metric space where every Cauchy sequence converges is complete.

Thus, by theorem 10.3.3, all compact and Euclidean spaces are complete.

Definition 10.3.5: Monotonic Sequences

A sequence $\{s_n\}$ of real numbers is:

- (a) monotonically increasing if $s_n \leq s_{n+1}$
- (b) monotonically decreasing if $s_n \geq s_{n+1}$

Theorem 10.3.6: Monotonic sequences converge if bounded

Suppose $\{s_n\}$ is monotonic. Then $\{s_n\}$ converges if and only if it is bounded.

Proof

Suppose $s_n \leq s_{n+1}$. Let E be the range of $\{s_n\}$.

Suppose $\{s_n\}$ is bounded.

Let $s = \sup(E)$ so $s_n \le s$. For every $\epsilon > 0$, there is a N such that $s - \epsilon < s_N \le s$ else $s - \epsilon$ would be an upper bound of E which contradicts $s = \sup(E)$.

Since $\{s_n\}$ increases, then for $n \geq N$, $s - \epsilon < s_N \leq s_n \leq s$ so $\{s_n\} \to s$.

Suppose $\{s_n\}$ converges to s.

Then for $\epsilon > 0$, there is a N such that for $n \geq N$, $s - \epsilon < s_N \leq s_n \leq s$.

Thus, $\{s_n\}$ is bounded from above.

Suppose $s_n \geq s_{n+1}$. Let E be the range of $\{s_n\}$.

Suppose $\{s_n\}$ is bounded.

Let $s = \inf(E)$ so $s_n \ge s$. For every $\epsilon > 0$, there is a N such that $s \le s_N < s + \epsilon$ else $s+\epsilon$ would be a lower bound of E which contradicts $s = \inf(E)$.

Since $\{s_n\}$ decreases, then for $n \geq N$, $s \leq s_n \leq s_N < s + \epsilon$ so $\{s_n\} \to s$.

Suppose $\{s_n\}$ converges to s.

Then for $\epsilon > 0$, there is a N such that for $n \geq N$, $s \leq s_n \leq s_N < s + \epsilon$.

Thus, $\{s_n\}$ is bounded from below.

11 Limits and Special Sequences

11.1 Upper and Lower Limits

Definition 11.1.1: Infinite limits

Let $\{s_n\}$ be a sequence of real numbers such that:

For every real M, there is a $N \in \mathbb{Z}$ such that for $n \geq N$, $s_n \geq M$.

Then, $s_n \to +\infty$.

For every real M, there is a $N \in \mathbb{Z}$ such that for $n \geq N$, $s_n \leq M$.

Then, $s_n \to -\infty$.

Definition 11.1.2: Upper and Lower Limits

Let $\{s_n\} \subset \mathbb{R}$ and E contain all subsequential limits of $\{s_n\}$ plus possibly $\pm \infty$.

Then, the upper limit of $\{s_n\}$:

$$s^* = \sup(E)$$
 $\lim_{n \to \infty} \sup(s_n) = s^*$

Then, the lower limit of $\{s_n\}$:

$$s_* = \inf(E)$$
 $\lim_{n \to \infty} \inf(s_n) = s_*$

Theorem 11.1.3: Upper and Lower limits are unique

Let $\{s_n\}$ be a sequence of real numbers. Let E be the set of subsequential limits and s^* be the upper limit of $\{s_n\}$. Then:

(a) $s^* \in E$

<u>Proof</u>

If $s^* = +\infty$, then there is a $\{s_{n_k}\} \to +\infty$ so E is not bounded above.

If $s^* \in \mathbb{R}$, then E is bounded above so $s^* \in E'$.

Then by theorem 10.2.4, $s^* \in E$.

If $s^* = -\infty$, then there are no subsequential limits in E. Thus, for every

M, there is a N such that for $n \geq N$, $s_n \leq M$ so $-\infty \in E$.

(b) If $x > s^*$, there is a N such that for $n \ge N$, $s_n < x$

 $\underline{\text{Proof}}$

Suppose there is a $x > s^*$ such that $s_n \ge x$ for infinitely many n.

Then, there is a $y \in E$ where $y \ge x > s^*$ which contradicts $s^* = \sup(E)$.

(c) s^* is the only number that satisfies (a) and (b)

Proof

Suppose p,q satisfy part a and b where p < q. Choose x where p < x < q. Since p satisfies b, then $s_n < x$ for $n \ge N$. Thus, x is an upper bound for E so $q \not\in E$ since q > x contradicting that q satisfies part a.

The same properties are analogous for s_* .

Theorem 11.1.4: Inf & Sup of $s_n \leq t_n$

If $s_t \leq t_n$ for $n \geq \text{fixed N}$, then $\lim_{n \to \infty} \inf(s_n) \leq \lim_{n \to \infty} \inf(t_n)$ $\lim_{n \to \infty} \sup(s_n) \leq \lim_{n \to \infty} \sup(t_n)$

Proof

Let E_1 be the set of extended reals x such that $\{s_{n_k}\} \to x$ for some $\{s_{n_K}\}$. Let E_2 be the set of extended reals y such that $\{t_{n_k}\} \to y$ for some $\{s_{n_K}\}$. Let $s^* = \sup(E_1)$, $s_* = \inf(E_1)$, $t^* = \sup(E_2)$, and $t_* = \inf(E_2)$.

Since there is a N such that $s_n \leq t_n$ for $n \geq N$, then:

$$x \leftarrow \{s_N, s_{N+1}, ...\} \le \{t_N, t_{N+1}, ...\} \rightarrow y$$

Thus, for $n \ge N$, $\inf(s_n) \le \inf(t_n)$ and $\sup(s_n) \le \sup(t_n)$.

11.2 Special Sequences

Theorem 11.2.1: Special sequences

(a) If p > 0, then $\lim_{n \to \infty} \frac{1}{n^p} = 0$

Proof

For $\epsilon > 0$, let $N > \sqrt[p]{\frac{1}{\epsilon}}$. Then for $n \ge N$, $\lim_{n \to \infty} \frac{1}{n^p} \le \frac{1}{N^p} < \frac{1}{\sqrt[p]{\frac{1}{\epsilon}}} = \epsilon$

(b) If p > 0, then $\lim_{n \to \infty} \sqrt[n]{p} = 1$

Proof

If p > 1, then let $x_n = \sqrt[n]{p} - 1 > 0$. $p = (x_n + 1)^n = x_n^n + nx_n^{n-1} + ... + nx_n + 1 \ge nx_n + 1$ Thus, $0 < x_n \le \frac{p-1}{n}$ so $\{x_n\} \to 0$ and thus, $\{\sqrt[n]{p}\} \to 1$. If p = 1, then $\lim_{n \to \infty} \sqrt[n]{p} = \lim_{n \to \infty} 1 = 1$. If $0 , then <math>\frac{1}{p} > 1$. From the proof above for p > 1, $\{\sqrt[n]{\frac{1}{p}}\} \to 1$. Thus, $\{\frac{1}{\sqrt[n]{p}}\} \to 1$ so $\{\sqrt[n]{p}\} \to 1$.

(c) $\overline{\lim_{n\to\infty} \sqrt[n]{n}} = 1$

Proof

Let $x_n = \sqrt[n]{n} - 1 \ge 0$. $n = (x_n + 1)^n \ge \frac{n(n-1)}{2} x_n^2$ Thus, $0 \le x_n \le \sqrt{\frac{2}{n-1}}$ so $\{x_n\} \to 0$ and thus, $\{\sqrt[n]{n}\} \to 1$.

(d) If p > 0 and $\alpha \in \mathbb{R}$, then $\lim_{n \to \infty} \frac{n^{\alpha}}{(1+p)^n} = 0$

<u>Proot</u>

Let $k \in \mathbb{Z}$ such that $k > \alpha$ and k > 0. For n > 2k: $(1+p)^n > \binom{n}{k} p^k = \frac{n(n-1)\dots(n-k+1)}{k!} p^k > \frac{n^k p^k}{2^k k!}$ Thus, $0 < \frac{n^\alpha}{(1+p)^n} < \frac{2^k k!}{p^k} n^{\alpha-k}$.
Since $\alpha - k < 0$, then $\{n^{\alpha-k}\} \to 0$ so $\{\frac{n^\alpha}{(1+p)^n}\} \to 0$.

(e) If |x| < 1, then $\lim_{n \to \infty} x^n = 0$

Proof

From part d, let $\alpha = 0$. Thus, $\lim_{n \to \infty} \frac{1}{(1+p)^n} = 0$ and since p > 0, then $\frac{1}{(1+p)^n} = (\frac{1}{1+p})^n < 1$. Also, $-\lim_{n \to \infty} \frac{1}{(1+p)^n} = \lim_{n \to \infty} \frac{-1}{(1+p)^n} = 0$ so $\frac{-1}{(1+p)^n} = (\frac{-1}{1+p})^n > -1$.

Series and Comparison Test 12

12.1Series

Definition 12.1.1: Series

For sequence $\{a_n\}$, define $\sum_{n=p}^q a_n = a_p + a_{p+1} + \dots + a_q$.

Then associate $\{a_n\}$ with a sequence $\{s_n\}$ such that $s_n = \sum_{k=1}^n a_k$.

Then $\{s_n\}$ is a series with partial sums s_n .

If $\{s_n\} \to s$, then $\sum_{n=1}^{\infty} a_n = s$ is the sum of the convergent series.

Note $a_1 = s_1$ and $a_n = s_n - s_{n-1}$.

Theorem 12.1.2: Cauchy Criterion for series

 $\sum a_n$ converges if and only if:

For every $\epsilon > 0$, there is a $N \in \mathbb{Z}$ such that for $m \geq n \geq N$, $|\sum_{k=n}^{m} a_k| \leq \epsilon$

Proof

Suppose $\sum_{k=1}^{n} a_k$ converges.

Then by theorem 10.3.3a, $\sum_{k=1}^{n} a_k$ is a Cauchy sequence.

Then for $\epsilon > 0$, there is a \overline{N} such that for $m \ge n \ge N$:

$$d(\sum_{k=1}^{n} a_k, \sum_{k=1}^{m} a_k) = |\sum_{k=1}^{m} a_k - \sum_{k=1}^{n} a_k| = |\sum_{k=n}^{m} a_k| \le \epsilon$$

Suppose for every
$$\epsilon > 0$$
, there is a N such that for $m \ge n \ge N$, $|\sum_{k=n}^m a_k| \le \epsilon$. $|\sum_{k=n}^m a_k| = |\sum_{k=1}^m a_k - \sum_{k=1}^n a_k| = d(\sum_{k=1}^n a_k, \sum_{k=1}^m a_k) \le \epsilon$ Thus, $\sum_{k=1}^n a_k$ is a Cauchy sequence and thus, convergent.

Theorem 12.1.3: Convergent $\sum a_n \Rightarrow \{a_n\} \to 0$

If $\sum a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.

Since $\sum a_n$ converges, then by theorem 12.1.2, for $\epsilon > 0$, there is a N such that for $m \ge n \ge N$, $|\sum_{k=n}^m a_k| \le \epsilon$. Then if $m = n \ge N$, $|\sum_{k=n}^m a_k| = |a_n| \le \epsilon$ so $\{a_n\} \to 0$.

Example 12.1.4: $\{a_n\} \to 0 \not\Rightarrow \text{Convergent } \sum a_n$

 $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + (\frac{1}{3} + \frac{1}{4}) + (\frac{1}{5} + \dots + \frac{1}{8}) + (\frac{1}{9} + \dots) \ge 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots$$
Thus, $s_{2^k} = \sum_{n=1}^{2^k} a_n \ge 1 + k \cdot \frac{1}{2}$ which is unbounded and thus, not convergent.

Theorem 12.1.5: Convergent series \rightleftharpoons Bounded sequence

A series of nonnegative terms converge if and only if its partial sums form a bounded sequence.

Proof

Suppose $\sum a_n$ converges where $a_n \geq 0$.

Since $a_n \geq 0$, then $\{s_n\}$ is monotonic so by theorem 10.3.6, $\{s_n\}$ is bounded above.

Suppose $\{s_n\}$ is bounded where $a_n \geq 0$.

Since $\{s_n\}$ is monotonic and bounded, then by theorem 10.3.6, $\{s_n\}$ converges.

Theorem 12.1.6: Comparison Test

(a) If $|a_n| \leq c_n$ for $n \geq N_0$ and $\sum c_n$ converges, then $\sum a_n$ converges.

For $\epsilon > 0$, there exists a N $\geq N_0$ such that for m \geq n \geq N, $\sum_{k=n}^{m} c_k \leq \epsilon$. Thus, $\sum a_n$ converges.

(b) If $a_n \ge d_n \ge 0$ for $n \ge N_0$ and $\sum d_n$ diverges, then $\sum a_n$ diverges.

Suppose $\sum a_n$ converges.

Then from part a, $\sum d_n$ converges which contradicts that $\sum a_n$ diverges. Thus, $\sum a_n$ diverges.

12.2Series of Nonnegative Terms

Theorem 12.2.1: Infinite Geometric Series

If $x \in [0,1)$, then:

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

 $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ If $x \ge 1$, the series diverges.

Proof

If $x \neq 1$, then using the geometric series:

$$s_n = \sum_{k=0}^n x^k = \frac{1-x^{n+1}}{1-x}$$

If $x \in [0,1)$, then by theorem 11.2.1e, $s_n = \frac{1}{1-x} (1-x^{n+1}) = \frac{1}{1-x} (1-0) = \frac{1}{1-x}$. Also, by theorem 11.2.1e, if $x \ge 1$, then the series diverges.

Theorem 12.2.2: Cauchy's Convergence Criterion

Suppose $0 \le a_{i+1} \le a_i$.

Then the series $\sum_{n=1}^{\infty} a_n$ converges if and only if the series $\sum_{k=0}^{\infty} 2^k a_{2^k} = a_1 + 2a_2 + 4a_4 + 8a_8 + \dots$ converges.

Proof

Let $s_n = a_1 + a_2 + ... + a_n$ and $t_k = a_1 + 2a_2 + ... + 2^k a_{2^k}$. For $n < 2^k$:

$$s_n \le a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + \dots + a_{2^k}$$

$$\le a_1 + (a_2 + a_3) + (a_4 + a_5 + a_6 + a_7) + \dots + (a_{2^k} + \dots + a_{2^{k+1}-1})$$

$$< a_1 + 2a_2 + 4a_4 + \dots + 2^k a_{2^k} = t_k$$

 $\leq a_1 + 2a_2 + 4a_4 + \dots + 2^k a_{2^k} = t_k$ Thus, by the comparison test, if $\sum_{k=0}^{\infty} 2^k a_{2^k}$ converges, then $\sum_{n=1}^{\infty} a_n$ converges. For $n > 2^k$:

$$s_n \ge a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + \dots + a_{2^k}$$

$$= a_1 + a_2 + (a_3 + a_4) + (a_5 + a_6 + a_7 + a_8) + \dots + (a_{2^{k-1}+1} + \dots + a_{2^k})$$

$$\ge \frac{1}{2}a_1 + a_2 + 2a_4 + \dots + 2^{k-1}a_{2^k} = \frac{1}{2}t_k$$

 $\geq \frac{1}{2}a_1 + a_2 + 2a_4 + \dots + 2^{k-1}a_{2^k} = \frac{1}{2}t_k$ Thus, by the comparison test, if $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{k=0}^{\infty} 2^k a_{2^k}$ converges.

Theorem 12.2.3: P-series

 $\sum \frac{1}{n^p}$ converges if p > 1 and diverges if $p \le 1$.

Proof

If p \le 0, then by theorem 12.1.3, $\sum \frac{1}{n^p}$ diverges. If p > 0, then by theorem 12.2.2, $\sum \frac{1}{n^p}$ converges only if $\sum_{k=0}^{\infty} 2^k \frac{1}{(2^k)^p}$ converges. Since $\sum_{k=0}^{\infty} 2^k \frac{1}{(2^k)^p} = \sum_{k=0}^{\infty} 2^{(1-p)k}$, then by theorem 12.2.1, $\sum_{k=0}^{\infty} 2^{k(1-p)}$ converges if $2^{1-p} < 1$ so if 1-p < 0 so p > 1.

Theorem 12.2.4: Log P-series

 $\sum_{n=2}^{\infty} \frac{1}{n(\log(n))^p}$ converges if p > 1 and diverges if p \le 1.

Proof

Since $\frac{1}{n(\log(n))^p}$ decreases, then by theorem 12.2.2, $\sum_{n=0}^{\infty} \frac{1}{n(\log(n))^p}$ converges if $\sum_{k=1}^{\infty} 2^k \frac{1}{2^k \log(2^k)}$ converges. $\sum_{k=1}^{\infty} 2^k \frac{1}{2^k \log(2^k)} = \sum_{k=1}^{\infty} \frac{1}{k \log(2)} = \frac{1}{\log(2)} \sum_{k=1}^{\infty} \frac{1}{k}$ Then by theorem 12.2.3, $\sum_{k=1}^{\infty} 2^k \frac{1}{2^k \log(2^k)}$ converges if p > 1 and diverges if p > 1. Thus, $\sum_{n=0}^{\infty} \frac{1}{n(\log(n))^p}$ converges if p > 1 and diverges and $p \le 1$.

Corollary 12.2.5: Log P-series extended

 $\sum_{n=3}^{\infty} \frac{1}{n \log(n) (\log(\log(n)))^p}$ converges if p > 1 and diverges if $p \le 1$.

Proof

From theorem 12.2.4, replace $n = \log(n)$ and multiplying by $\frac{1}{n} \to \frac{1}{n \log(n)(\log(\log(n)))^p}$. Since $\frac{1}{n \log(n)(\log(\log(n)))^p}$ decreases, by theorem $12.2.2 \sum_{k=1}^{\infty} 2^k \frac{1}{2^k \log(2^k)(\log(\log(2^k)))^p}$: $\sum_{k=1}^{\infty} \frac{1}{\log(2^k)(\log(\log(2^k)))^p} = \frac{1}{\log(2)} \sum_{k=1}^{\infty} \frac{1}{k(\log(k\log(2)))^p} < \frac{1}{\log(2)} \sum_{k=2}^{\infty} \frac{1}{k(\log(k))^p}$ Since $\sum_{k=2}^{\infty} \frac{1}{k(\log(k))^p}$ converges by theorem 12.2.4, $\sum_{n=3}^{\infty} \frac{1}{n \log(n)(\log(\log(n)))^p}$ converges.

12.3 The Number e

Definition 12.3.1: Summation equivalence to e

$$s_m = \sum_{n=0}^m \frac{1}{n!} = 1 + \sum_{n=1}^m \frac{1}{n!} < 1 + \sum_{n=1}^m \frac{1}{2^{n-1}} < 3$$

$$e = \sum_{n=0}^\infty \frac{1}{n!}$$

Theorem 12.3.2: Limit equivalence to e

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$$

Proof

Let $s_n = \sum_{k=0}^n \frac{1}{k!}$ and $t_n = (1 + \frac{1}{n})^n$. Using the binomial theorem: $t_n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k} = \sum_{k=0}^n \frac{n(n-1)...(n-k+1)}{k!} \frac{1}{n^k} = \sum_{k=0}^n \frac{1}{k!} (1)(1 - \frac{1}{n})(1 - \frac{2}{n})(1 - \frac{k-1}{n})$ Thus, $t_n \leq s_n$ so $\lim_{n \to \infty} \sup(t_n) \leq e$. If $n \geq m$, then $t_n \geq \sum_{k=0}^m \frac{1}{k!} (1)(1 - \frac{1}{n})(1 - \frac{2}{n})(1 - \frac{k-1}{n})$. As $n \to \infty$, then $\lim_{n \to \infty} \inf(t_n) \geq \sum_{k=0}^m \frac{1}{k!} = s_m$. As $m \to \infty$, $\lim_{n \to \infty} \inf(t_n) \geq e$.

Definition 12.3.3: Rapidity of convergence of e

$$0 < e - s_n < \frac{1}{n!n}$$

Proof

$$e - s_n = \sum_{k=n+1}^{\infty} \frac{1}{k!} < \frac{1}{(n+1)!} \left(1 + \frac{1}{n+1} + \frac{1}{(n+1)^2} + \dots \right) = \frac{1}{(n+1)!} \frac{1}{1 - \frac{1}{n+1}} = \frac{1}{n!n}$$

Theorem 12.3.4: e is irrational

e is irrational

Proof

Suppose r is rational. Then let $e = \frac{p}{q}$ for $p,q \in \mathbb{Z}_+$.

Thus, by definition 12.3.3, $0 < e - s_q < \frac{1}{q!q}$ so $0 < q!(e - s_q) < \frac{1}{q}$.

Since $e = \frac{p}{q}$, then q!e is an integer and $q!s_q = q!(1+1+\frac{1}{2!}+...+\frac{1}{q!})$ is an integer.

Thus, $q!(e-s_q)$ is an integer which is between 0 and $\frac{1}{q}$ and thus, a contradiction.

12.4 Root and Ratio Tests

Theorem 12.4.1: Root Test

For $\sum a_n$, let $\alpha = \lim_{n \to \infty} \sup(\sqrt[n]{|a_n|})$.

- (a) If $\alpha < 1, \sum a_n$ converges
- (b) If $\alpha > 1$, $\sum a_n$ diverges
- (c) If $\alpha = 1$, unclear

<u>Proof</u>

If $\alpha < 1$, choose β such that $\beta \in (\alpha,1)$ and $N \in \mathbb{Z}$ such that $\sqrt[n]{|a_n|} < \beta$ for $n \geq N$. Since $\beta \in (0,1)$, then by theorem 12.2.1, $\sum \beta^n$ converges. Then by the comparison test, $\sum a_n$ converges.

If $\alpha > 1$, then there is a a_{n_k} such that $\sqrt[n_k]{|a_{n_k}|} \to \alpha$.

Thus, $|a_n| > 1$ for infinitely many n so by theorem 12.1.3, $\sum a_n$ doesn't converge.

For $\alpha = 1$, both $\sum \frac{1}{n}$ and $\sum \frac{1}{n^2}$ have $\alpha = 1$, but $\sum \frac{1}{n}$ diverges and $\sum \frac{1}{n^2}$ converges by theorem 12.2.3.

Theorem 12.4.2: Ratio Test

- (a) $\sum a_n$ converges if $\lim_{n\to\infty} \sup(|\frac{a_{n+1}}{a_n}|) < 1$
- (b) $\sum a_n$ diverges if $\left|\frac{a_{n+1}}{a_n}\right| \ge 1$ for all $n \ge n_0$ for $n_0 \in \mathbb{Z}$

If $\lim_{n\to\infty} \sup(|\frac{a_{n+1}}{a_n}|) < 1$, there is a $\beta < 1$ and N such that for $n \ge N$, $|\frac{a_{n+1}}{a_n}| < \beta$. Then $|a_{N+1}| < \beta |a_N|$ so $|a_{N+2}| < \beta |a_{N+1}| < \beta^2 |a_N|$.

Thus, $|a_{N+p}| < \beta^p |a_N|$ so $|a_n| < |a_N| \beta^{-N} \beta^n$.

Thus, by the comparison test, $\sum a_n$ converges.

If $|a_{n+1}| \geq |a_n| > 0$ for $n \geq n_0$, then by theorem 12.1.3, $\sum a_n$ diverges.

Theorem 12.4.3: Ratio convergence \rightarrow Root convergence

 $\lim_{n\to\infty}\inf(\frac{c_{n+1}}{c_n})\leq \lim_{n\to\infty}\inf(\sqrt[n]{c_n})$ $\lim_{n\to\infty}\sup(\sqrt[n]{c_n})\leq \lim_{n\to\infty}\sup(\frac{c_{n+1}}{c_n})$

Let $\alpha = \lim_{n \to \infty} \inf(\frac{c_{n+1}}{c_n})$. If $\alpha = -\infty$, then $-\infty \le \lim_{n \to \infty} \inf(\sqrt[n]{c_n})$ holds true. If α is finite, there is a $\beta \le \alpha$ and N such that for $n \ge N$, $\frac{c_{n+1}}{c_n} \ge \beta$ so $c_{N+p} \ge \beta^p c_N$.

Then, $c_n \geq c_N \beta^{-N} \beta^n$ so $\sqrt[n]{c_n} \geq \sqrt[n]{c_N \beta^{-N}} \beta$. Thus, $\lim_{n \to \infty} \inf(\sqrt[n]{c_n}) \geq \beta = \alpha$.

Let $\alpha = \lim_{n \to \infty} \sup(\frac{c_{n+1}}{c_n})$. If $\alpha = \infty$, then $\lim_{n \to \infty} \sup(\sqrt[n]{c_n}) \le \infty$ holds true. If α is finite, there is a $\beta \ge \alpha$ and N such that for $n \ge N$, $\frac{c_{n+1}}{c_n} \le \beta$ so $c_{N+p} \le \beta^p c_N$.

Then, $c_n \leq c_N \beta^{-N} \beta^n$ so $\sqrt[n]{c_n} \leq \sqrt[n]{c_N \beta^{-N}} \beta$. Thus, $\lim_{n \to \infty} \sup(\sqrt[n]{c_n}) \leq \beta = \alpha$.

13 Power Series

13.1 Power Series

Definition 13.1.1: Power series

For a sequence $\{c_n\} \in \mathbb{C}$, the series $\sum_{n=0}^{\infty} c_n z^n$ is a power series. c_n are the coefficients and $z \in \mathbb{C}$.

Theorem 13.1.2: Radius of Convergence

For power series $\sum c_n z^n$, let $\alpha = \lim_{n \to \infty} \sup(\sqrt[n]{|c_n|})$ and $R = \frac{1}{\alpha}$. Then $\sum c_n z^n$ converges if |z| < R and diverges if |z| > R.

Proof

Let
$$a_n = c_n z^n$$
. Using the root test,

$$\lim_{n \to \infty} \sup \left(\sqrt[n]{|a_n|} \right) = \lim_{n \to \infty} \sup \left(\sqrt[n]{|c_n z^n|} \right)$$

$$= |z| \lim_{n \to \infty} \sup \left(\sqrt[n]{|c_n|} \right) = \frac{|z|}{R}$$
Thus, $\sum c_n z^n$ converges if $\frac{|z|}{R} < 1$ and diverges if $\frac{|z|}{R} > 1$

13.2 Summation By Parts

Theorem 13.2.1: Summation by parts

For sequences
$$\{a_n\}$$
, $\{b_n\}$, let $A_n = \sum_{k=0}^n a_k$. Then for $0 \le p \le q$:
$$\sum_{n=p}^q a_n b_n = (\sum_{n=p}^{q-1} A_n (b_n - b_{n+1})) + A_q b_q - A_{p-1} b_p$$

Proof

$$\sum_{n=p}^{q} a_n b_n = \sum_{n=p}^{q} (A_n - A_{n-1}) b_n
= \sum_{n=p}^{q} A_n b_n - \sum_{n=p}^{q} A_{n-1} b_n = \sum_{n=p}^{q} A_n b_n - \sum_{n=p-1}^{q-1} A_n b_{n+1}
= \sum_{n=p}^{q-1} A_n b_n - \sum_{n=p}^{q-1} A_n b_{n+1} + A_q b_q - A_{p-1} b_p
= (\sum_{n=p}^{q-1} A_n (b_n - b_{n+1})) + A_q b_q - A_{p-1} b_p$$

Theorem 13.2.2: Conditions for convergent $\sum a_n b_n$

Suppose for $\{a_n\}$, $\{b_n\}$:

- partial sums A_n of $\sum a_n$ form a bounded sequence
- $\bullet \ b_i \ge b_{i+1}$
- $\lim_{n\to\infty} b_n = 0$

Then $\sum a_n b_n$ converges.

Proof

Since $\{A_n\}$ is bounded, $|A_n| \leq M$ for all n.

Since $\{b_n\}$ is monotonically decreasing and $\lim_{n\to\infty} b_n = 0$, then for $\epsilon > 0$, there is a N such that $b_N \leq \frac{\epsilon}{2M}$. Then for $N \leq p \leq q$:

$$\begin{aligned} |\sum_{n=p}^{q} a_n b_n| &= (|\sum_{n=p}^{q-1} A_n (b_n - b_{n+1})) + A_q b_q - A_{p-1} b_p| \\ &\leq M |\sum_{n=p}^{q-1} (b_n - b_{n+1}) + b_q + b_p| &= 2M b_p \leq 2M b_N \leq \epsilon \end{aligned}$$

Corollary 13.2.3: Convergent series of Alternating Sequences

Suppose for $\{c_n\}$:

- $|c_i| \ge |c_{i+1}|$
- $c_{2i-1} \geq 0$ and $c_{2i} \leq 0$
- $\lim_{n\to\infty} c_n = 0$

Then $\sum c_n$ converges.

Proof

From theorem 13.2.2, let $a_n = (-1)^{n+1}$ and $b_n = |c_n|$.

Corollary 13.2.4: Convergent power series

Suppose for $\{c_n\}$:

- Radius of convergence of $\sum c_n z^n$ is 1
- \bullet $c_i \geq c_{i+1}$
- $\lim_{n\to\infty} c_n = 0$

Then $\sum c_n z^n$ converges at every point where |z| = 1 except possibly z = 1.

Proof

From theorem 13.2.2, let $a_n = z^n$ and $b_n = c_n$. A_n of $\sum a_n$ form a bounded sequence since $|A_n| = |\sum_{i=0}^n z^i| = |\frac{1-z^{n+1}}{1-z}| \leq \frac{2}{|1-z|}$.

13.3 Absolute Convergence

Definition 13.3.1: Absolute convergence

 $\sum a_n$ converges absolutely if $\sum |a_n|$ converges.

If $\sum a_n$ converges, but $\sum |a_n|$ diverges, then $\sum a_n$ converges non-absolutely.

Theorem 13.3.2: Absolute convergence \rightarrow convergence

If $\sum a_n$ converges absolutely, then $\sum a_n$ converges.

Proof

Since $\sum a_n$ converges absolutely, then for every $\epsilon > 0$, there is an integer N such that for $m \ge n \ge N$, $|\sum_{k=n}^m |a_k|| = \sum_{k=n}^m |a_k| \le \epsilon$. Thus, $|\sum_{k=n}^m a_k| \le \sum_{k=n}^m |a_k| \le \epsilon$ so $\sum a_n$ converges.

13.4 Addition & Multiplication of Series

Theorem 13.4.1: Addition and Scalar Multiplication

If
$$\sum a_n = A$$
 and $\sum b_n = B$, then $\sum (a_n + b_n) = A + B$ and $\sum ca_n = cA$.

Proof

Let
$$A_n = \sum_{k=0}^n a_k$$
 and $B_n = \sum_{k=0}^n b_k$.
Then $A_n + B_n = \sum_{k=0}^n a_k + b_k$ so $\lim_{n \to \infty} A_n + B_n = A + B$.
Then $\lim_{n \to \infty} cA_n = \underbrace{A + \ldots + A}_{c} = cA$

Definition 13.4.2: Cauchy Product

For
$$\sum a_n$$
 and $\sum b_n$, let $c_n = \sum_{k=0}^n a_k b_{n-k}$ and the product as $\sum c_n$.

$$\sum_{n=0}^{\infty} a_n z^n \sum_{n=0}^{\infty} b_n z^n = (a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n) (b_0 + b_1 z + b_2 z^2 + \dots + b_n z^n)$$

$$= a_0 b_0 + (a_0 b_1 + a_1 b_0) z + (a_0 b_2 + a_1 b_1 + a_2 b_0) z^2 + \dots$$

Theorem 13.4.3: Conditions $\sum c_n = AB$

Suppose

- (a) $\sum_{n=0}^{\infty} a_n$ converges absolutely
- (b) $\sum_{n=0}^{\infty} a_n = A$
- (c) $\sum_{n=0}^{\infty} b_n = B$
- (d) $c_n = \sum_{k=0}^{\infty} a_k b_{n-k}$ Then $\sum_{n=0}^{\infty} c_n = AB$.

Proof

Let
$$A_n = \sum_{k=0}^n a_k$$
, $B_n = \sum_{k=0}^n b_k$, $C_n = \sum_{k=0}^n c_k$, and $\beta_n = B_n$ - B.
 $C_n = a_0b_0 + (a_0b_1 + a_1b_0) + \dots + (a_0b_n + \dots + a_nb_0)$
 $= a_0B_n + a_1B_{n-1} + \dots + a_nB_0$
 $= a_0(B + \beta_n) + a_1(B + \beta_{n-1}) + \dots + a_n(B + \beta_0)$
 $= A_nB + a_0\beta_n + a_1\beta_{n-1} + \dots + a_n\beta_0$

Let $\gamma_n = a_0 \beta_n + a_1 \beta_{n-1} + ... + a_n \beta_0$ so $C_n = A_n B + \gamma_n$.

Since a_n converges absolutely, then $\sum_{n=0}^{\infty} |a_n| = \alpha$.

Since $\sum_{n=0}^{\infty} b_n = B$, then $\beta_n \to 0$.

Then for $\epsilon > 0$, there is a N such that $|\beta_n| \leq \frac{\epsilon}{\alpha}$ for $n \geq N$.

$$\begin{aligned} |\gamma_n| &\leq |\beta_0 a_n + \ldots + \beta_N a_{n-N}| + |\beta_{N+1} a_{n-N-1} + \ldots + \beta_n a_0| \\ &\leq |\beta_0 a_n + \ldots + \beta_N a_{n-N}| + |a_{n-N-1} + \ldots + a_0| \frac{\epsilon}{\alpha} \\ &\leq |\beta_0 a_n + \ldots + \beta_N a_{n-N}| + \alpha \frac{\epsilon}{\alpha} \end{aligned}$$

Thus, with a fixed N, since $a_n \to 0$, then $\lim_{n\to\infty} |\gamma_n| \le \epsilon$ so $\lim_{n\to\infty} \gamma_n = 0$.

Thus, $\lim_{n\to\infty} C_n = \lim_{n\to\infty} A_n B + \gamma_n = AB$.

Theorem 13.4.4: By Cauchy Product, $\sum c_n = C$ implies C = AB

If
$$\sum a_n = A$$
, $\sum b_n = B$, $\sum c_n = C$ where $c_n = a_0b_n + ... + a_nb_0$, then $C = AB$.

13.5Rearrangements

Definition 13.5.1: Rearrangements

Let $a'_n = a_{k_n}$. Then $\sum a'_n$ is a rearrangement of $\sum a_n$.

Theorem 13.5.2: Rearrangements can converge or diverge

Let $\sum a_n \in \mathbb{R}$ converge non-absolutely. Suppose $-\infty \leq \alpha \leq \beta \leq \infty$.

Then there exists a rearrangement $\sum a'_n$ with partial sums s'_n such that:

 $\lim_{n\to\infty}\inf(s'_n)=\alpha$ $\lim_{n\to\infty}\sup(s_n')=\beta$

Proof

Let $p_n = \frac{|a_n| + a_n}{2}$ and $q_n = \frac{|a_n| - a_n}{2}$. Since $\sum |a_n|$ diverge, then $\sum p_n$ and $\sum q_n$ diverges. Let $P_1, P_2, \bar{P}_3, ...$ be the nonnegative terms of $\sum a_n$ in order and $Q_1, Q_2, Q_3, ...$ be the absolute values of the negative terms of $\sum a_n$ in order. Thus, $\sum P_n$ and $\sum Q_n$ differ from $\sum p_n$ and $\sum q_n$ only by the zero terms and thus, are divergent.

Choose real-valued sequences $\{\alpha_n\} \to \alpha$, $\{\beta_n\} \to \beta$ such that $\alpha_n < \beta_n$ and $\beta_1 > 0$. Let m_1, k_1 be the smallest integers such that:

$$P_1 + ... + P_{m_1} > \beta_1$$
 $P_1 + ... + P_{m_1} - Q_1 - ... - Q_{k_1} < \alpha_1$

Let m_2, k_2 be the smallest integers such that:

$$P_1 + \ldots + P_{m_1} - Q_1 - \ldots - Q_{k_1} + P_{m_1+1} + \ldots + P_{m_2} < \beta_2$$

 $P_1 + \ldots + P_{m_1} - Q_1 - \ldots - Q_{k_1} + P_{m_1+1} + \ldots + P_{m_2} - Q_{k_1+1} - \ldots - Q_{k_2} < \alpha_2$

Continuing such a process, then $\lim_{n\to\infty}\inf(s'_n)=\alpha$ and $\lim_{n\to\infty}\sup(s'_n)=\beta$.

Theorem 13.5.3: Absolute rearrangements converges uniquely

If $\sum a_n \in \mathbb{C}$ converges absolutely, then every rearrangement of $\sum a_n$ converges to the same sum.

Let $\sum a'_n$ be a rearrangement with partial sums s'_n . For $\epsilon > 0$, there is a N such that for $m \ge n \ge N$, $\sum_{i=n}^m |a_i| \le \epsilon$. Let p be the maximum index of $\{a_1, a_2, ..., a_N\}$ in a'_n and a_n . Since if n > p, then $a_1, a_2, ..., a_N$ will cancel in $s_n - s'_n$ and thus, $|s_n - s'_n| \le \epsilon$. Thus, every $\{s'_n\}$ converges to $\{s_n\}$.

14 Continuity

14.1 Limits of Functions

Definition 14.1.1: Limits of functions

For metric spaces X,Y, let $E \subset X$, f maps E into Y, and $p \in E'$.

Then $\lim_{x\to p} f(x) = q$ if there is a $q \in Y$ such that:

For every $\epsilon > 0$, there is a $\delta > 0$ such that for all $x \in E$ where $d_X(x, p) < \delta$, then $d_Y(f(x), q) < \epsilon$

Theorem 14.1.2: Sequence definition of $\lim_{x\to p} f(x) = q$

 $\lim_{x\to p} f(x) = q$ if and only if $\lim_{n\to\infty} f(p_n) = q$ for every sequence $\{p_n\} \in E$ where $p_n \neq p$ and $\lim_{n\to\infty} p_n = p$.

<u>Proof</u>

Suppose $\lim_{x\to p} f(x) = q$.

For $\epsilon > 0$, there is a $\delta > 0$ such that $d_Y(f(x), q) < \epsilon$ if $x \in E$ and $d_X(x, p) < \delta$.

Choose $\{p_n\} \in E$ such that $p_n \neq p$ and $\lim_{n \to \infty} p_n = p$.

Then for $\delta > 0$, there is N such that for n > N, then $d_X(p_n, p) < \delta$ so $d_Y(f(p_n), q) < \epsilon$.

Suppose $\lim_{x\to p} f(x) \neq q$. Then there is a $\epsilon > 0$ such that for every $\delta > 0$, there is a $x \in E$ where $d_Y(f(x), q) \geq \epsilon$, but $d_X(x, p) < \delta$. Let $\delta_n = \frac{1}{n}$ and thus, there is a $\{p_n\}$ where $p_n \neq p$ and $\lim_{n\to\infty} p_n = p$, but $\lim_{n\to\infty} f(p_n) \neq q$.

Corollary 14.1.3: A limit of a function is unique

If f has a limit at p, this limit is unique.

Proof

If $\lim_{x\to p} f(x) = q$, then by theorem 14.1.2, $\lim_{n\to\infty} f(p_n) = q$ for every $\{p_n\} \in E$ where $p_n \neq p$ and $\lim_{n\to\infty} p_n = p$.

Thus, if there exists $\lim_{x\to p} f(x) = q'$, then there is a $\{p_n\} \in E$ where $p_n \neq p$ and $\lim_{n\to\infty} p_n = p$, but $\lim_{n\to\infty} f(p_n) = q'$ which is a contradiction.

Theorem 14.1.4: Arithemtic operations on functions of limits

Let $E \subset X$, $p \in E'$, and $f(x),g(x) \in \mathbb{C}$ so $\lim_{x\to p} f(x) = A$, $\lim_{x\to p} g(x) = B$.

- (a) $\lim_{x\to p} (f+g)(x) = A+B$
- (b) $\lim_{x\to p} (fg)(x) = AB$
- (c) $\lim_{x\to p} \left(\frac{f}{g}\right)(x) = \frac{A}{B}$

14.2 Continuous Functions

Definition 14.2.1: Continuous functions on a set

Suppose X,Y are metric spaces, $E \subset X$, $p \in E$, and f maps E into Y.

f is continuous at p if:

For every $\epsilon > 0$, there is a $\delta > 0$ such that for all $x \in E$ where $d_X(x, p) < \delta$, then $d_Y(f(x), f(p)) < \epsilon$

f(p) have to be defined to be continuous.

If f is continuous at every $p \in E$, then f is continuous on E.

f is continuous at isolated points since regardless of ϵ , there is a $\delta > 0$ such that $d_X(x, p) < \delta$ is x = p so $d_Y(f(x), f(p)) = 0 < \epsilon$.

Theorem 14.2.2: Continuity at $p \rightleftharpoons \lim_{p \to \infty} f(p) = f(p)$

Suppose $E \subset X$, $p \in E$, and f maps E into Y. Let $p \in E'$.

Then f is continuous at p if and only if $\lim_{x\to p} f(x) = f(p)$.

Proof

If f is continuous at p, then for every $\epsilon > 0$, there is a $\delta > 0$ such that $d_Y(f(x), f(p)) < \epsilon$ for all $x \in E$ where $d_X(x, p) < \delta$. Thus, $\lim_{x \to p} f(x) = f(p)$.

If $\lim_{x\to p} f(x) = f(p)$, then for every $\epsilon > 0$, there is a $\delta > 0$ where $d_Y(f(x), f(p)) < \epsilon$ for all $x \in E$ where $d_X(x, p) < \delta$. Thus, f is continuous at p.

Theorem 14.2.3: Continuity Chain Rule

Suppose $E \subset X$, $f: E \to Y$, $g: f(E) \to Z$, and $h: E \to Z$ where h(x) = g(f(x)). If f is continuous at p and g is continuous at f(p), then h is continuous at p.

Proof

Since g is continuous at f(p), then for $\epsilon > 0$, there is a δ_1 such that:

 $d_Z(g(y), g(f(p))) < \epsilon \text{ for } d_Y(y, f(p)) < \delta_1 \text{ where } y \in f(E)$

Since f is continuous at p, there is a $\delta_2 > 0$ such that:

 $d_Y(f(x), f(p)) < \delta_1$ for $d_X(x, p) < \delta_2$ where $x \in E$

Thus, $d_Z(h(x), h(p)) = d_Z(g(f(x)), g(f(p))) < \epsilon$ for $d_X(x, p) < \delta_2$ where $x \in E$.

Thus, h is continuous at p.

Theorem 14.2.4: Continuous functions map open sets to open sets

f: $X \to Y$ is continuous on X if and only if:

 $f^{-1}(V)$ is open in X for every open set V in Y.

Proof

Suppose f is continuous on X and V is an open set in Y.

Suppose $p \in X$ and $f(p) \in V$. Since V is open, there exists $\epsilon > 0$ such that $y \in V$ if $d_Y(y, f(p)) < \epsilon$. Since f is continuous at p, there exists $\delta > 0$ such that $d_Y(f(x), f(p)) < \epsilon$ for $d_X(x, p) < \delta$. Thus, $x \in f^{-1}(V)$ for $d_X(x, p) < \delta$.

Suppose $f^{-1}(V)$ is open in X for every open V in Y.

Fix $p \in X$ and $\epsilon > 0$. Let V be the set of all $y \in Y$ such that $d_Y(y, f(p)) < \epsilon$ so V is open and thus, $f^{-1}(V)$ is open. Thus, there exists $\delta > 0$ such that $x \in f^{-1}(V)$ for $d_X(x, p) < \delta$. Since $x \in f^{-1}(V)$, then $f(x) \in V$ so $d_Y(f(x), f(p)) < \epsilon$.

Corollary 14.2.5: Continuous functions map closed sets to closed sets

f: $X \to Y$ is continuous on X if and only if:

 $f^{-1}(C)$ is closed in X for every closed set C in Y.

Proof

By theorem 14.2.4, f is continuous if and only if $f^{-1}(V)$ is open in X for every open set V in Y. Let $C = V^c$. Since V is open, then C is closed.

Since $f^{-1}(C) = f^{-1}(V^c) = (f^{-1}(V))^c$, then $f^{-1}(C)$ is closed since $f^{-1}(V)$ is open.

Theorem 14.2.6: Continuous functions

Let f,g be complex continuous functions on X.

Then f+g, fg, and $\frac{f}{g}$ where g \neq 0 for all x \in X are continuous on X.

Proof

If x is an isolated point, f+g, fg, and $\frac{f}{g}$ are continuous by definition. If x is a limit point, then by theorems 14.1.4 and 14.2.2, f+g, fg, and $\frac{f}{g}$ are continuous since

- $\lim_{x \to p} (f+g)(x) = \lim_{x \to p} f(x) + \lim_{x \to p} f(x) = f(p) + g(p)$
- $\lim_{x\to p} (fg)(x) = \lim_{x\to p} f(x) \lim_{x\to p} g(x) = f(p)g(p)$
- $\lim_{x \to p} \left(\frac{f}{g}\right)(x) = \frac{\lim_{x \to p} f(x)}{\lim_{x \to p} g(x)} = \frac{f(p)}{g(p)}$

Theorem 14.2.7: Continuous functions on \mathbb{R}^k

- (a) Let $f_1, ..., f_k: X \to \mathbb{R}$ and $f: X \to \mathbb{R}^k$ where $f(x) = (f_1(x), ..., f_k(x))$. Then f is continuous if and only if $f_1, ..., f_k$ are continuous.
- (b) If f and g are continuous mappings of X into \mathbb{R}^k , then f + g and $f \cdot g$ are continuous on X.

Proof

Since $|f_i(x) - f_i(y)| \le \sqrt{\sum_{1}^{k} |f_i(x) - f_i(y)|^2} = |f(x) - f(y)|$, then if f is continuous, then each f_i is continuous and vice versa.

Since f,g are continuous, then by part a, each f_i,g_i are continuous. Then by theorem 14.2.6, each f_i+g_i and f_ig_i are continuous so by part a, f + g and f · g are continuous.

Thus, every polynomial, rational, and absolute value function is continuous since polynomials are $x_1 \cdot ... \cdot x_k$ where each x_i is continuous, rationals are polynomials divided by polynomials, and $||x| - |y|| \le |x - y|$ implies |x| is continuous.

Properties of Continuity 15

15.1Continuity and Compactness

Definition 15.1.1: Bounded Functions

f: $E \to \mathbb{R}^k$ is bounded if there is a $M \in \mathbb{R}$ such that $f(x) \leq M$ for all $x \in E$.

Theorem 15.1.2: Continuous functions from compact spaces are compact

Suppose f is a continuous mapping of a compact metric space X into a metric space Y. Then f(X) is compact.

Let $\{V_{\alpha}\}$ be an open cover of f(X). Since f is continuous, then by theorem 14.2.4, each $f^{-1}(V_{\alpha})$ is open.

Since X is compact, there is a n such that $X \subset f^{-1}(V_{\alpha_1}) \cup ... \cup f^{-1}(V_{\alpha_n})$. Thus, $f(X) \subset V_{\alpha_1} \cup ... \cup V_{\alpha_n}$ so f(X) is compact.

Theorem 15.1.3: Continuous functions from compact to \mathbb{R}^k are bounded

If f is a continuous mapping of a compact metric space X into \mathbb{R}^k , then f(X)is closed and bounded.

By theorem 15.1.2, f(X) is compact.

Then by theorem 8.3.13, f(X) is closed and bounded.

Theorem 15.1.4: Generalized extreme value theorem

Suppose f is a continuous real function of a compact metric space X such that $M = \sup_{x \in X} f(x)$ and $m = \inf_{x \in X} f(x)$.

Then there exists $p,q \in X$ such that f(p) = M and f(q) = m.

By theorem 15.1.3, f(X) is closed and bounded.

Let $M = \sup_{x \in X} f(x)$ and $m = \inf_{x \in X} f(x)$.

Since f(X) is bounded, then $M,m \in (f(X))$ ' and since f(X) is closed, then $M,m \in (f(X))$ f(X). Thus, there exists $p,q \in X$ such that f(p) = M and f(q) = m.

Theorem 15.1.5: If f is continuous 1-1, then f^{-1} is continuous

Suppose f is a continuous 1-1 mapping of a compact metric space X onto a metric space Y. Then f^{-1} is a continuous mapping of Y onto X.

Proof

Let V be an open set in X.

Since V^c is closed and $V^c \subset \text{compact set X}$, then by theorem 8.3.5, V^c is compact. Thus by theorem 15.1.2, $f(V^c)$ is a compact subset of Y so $f(V^c)$ is closed.

Since f is 1-1 and onto, $f(V^c) = (f(V))^c$ so f(V) is open. Since from any open set V in X, f(V) is open in Y, then by theorem 14.2.4, f^{-1} is continuous.

Definition 15.1.6: Uniformly Continuous

Let $f: X \to Y$. Then f is uniformly continuous on X if: For every $\epsilon > 0$, there is a $\delta > 0$ such that for all p,q $\in X$ where $d_X(p,q) < \delta$, then $d_Y(f(p), f(q)) < \epsilon$.

Theorem 15.1.6: Continuous functions from compact are uniformly continuous

Let f be a continuous mapping of a compact metric space X into metric space Y. Then f is uniformly continuous on X.

Proof

For $\epsilon > 0$, since f is continuous, then for each $p \in X$, there is a $\phi(p)$ such that for all $q \in X$ where $d_X(q, p) < \phi(p), d_Y(f(q), f(p)) < \frac{\epsilon}{2}$.

Let J(p) be the set of all $q \in X$ where $d_X(q,p) < \frac{1}{2}\phi(p)$.

Since the set of all J(p) is an open cover of X and since X is compact, then there is a n such that $X \subset J(p_1) \cup ... \cup J(p_n)$. Let $\delta = \frac{1}{2} \min(\phi(p_1), ..., \phi(p_n)) > 0$.

Then for p,q \in X where $d_X(p,q) < \delta$, there is a m where $1 \le m \le n$ such that p \in J(p_m) so $d_X(p,p_m) < \frac{1}{2}\phi(p_m)$. Thus:

 $d_X(q, p_m) \le d_X(q, p) + d_X(p, p_m) < \delta + \frac{1}{2}\phi(p_m) \le \phi(p_m)$ $d_Y(f(p), f(q)) \le d_Y(f(p), f(p_m)) + d_Y(f(p_m), f(q)) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$

Theorem 15.1.7: Continuous functions from noncompact $\not\rightarrow$ uniformly continuous

Let E be a noncompact set in \mathbb{R}^1 .

- (a) There exists a continuous function which is not bounded.
- (b) There exists a continuous, bounded function which is has no maximum.
- (c) If E is bounded, there exists a continuous function which is not uniformly continuous.

Proof

Suppose E is bounded so there is a $x_0 \in E'$, but $x_0 \notin E$.

Consider $f(x) = \frac{1}{x-x_0}$ which is continuous on E, but unbounded.

For $\epsilon > 0$ and $\delta > 0$, there is a $x \in E$ such that $|x - x_0| < \delta$. Take t close enough to x_0 so $|f(t) - f(x_0)| > \epsilon$, but $|t - x| < \delta$. Thus, f is not uniformly continuous.

Consider $g(x) = \frac{1}{1 + (x - x_0)^2}$ which is continuous on E and bounded since $g(x) \in (0,1)$. Since $\sup_{x \in E} g(x) = 1$, but g(x) < 1 for all $x \in E$, then g has no maximum on E.

15.2 Continuity and Connectedness

Theorem 15.2.1: Continuous functions map connected to connected

If f is a continuous mapping of X into Y and E is a connected subset of X, then f(E) is connected.

Proof

Suppose $f(E) = A \cup B$ where A and B are nonempty separated subsets of Y.

Let $G = E \cap f^{-1}(A)$ and $H = E \cap f^{-1}(B)$. Then $E = G \cup H$.

Since $A \subset \overline{A}$, $G \subset f^{-1}(\overline{A})$. Since f is continuous, then $f^{-1}(\overline{A})$ is closed so $\overline{G} \subset f^{-1}(\overline{A})$. Thus, $f(\overline{G}) \subset \overline{A}$.

Since f(H) = B and $\overline{A} \cap B$ is empty, $\overline{G} \cap H$ is empty. Similarly, $G \cap \overline{H}$ is empty so G and H are separated which contradicts that $E = G \cup H$ is connected.

Theorem 15.2.2: Generalized intermediate Value Theorem

Let f be a continuous real function on [a,b]. If f(a) < c < f(b), then there exists $x \in (a,b)$ such that f(x) = c.

Proof

Since [a,b] is connected, then by theorem 15.2.1, f([a,b]) is a connected subset of \mathbb{R}^1 . Thus, by theorem 9.2.2, any c where f(a) < c < f(b) is $c \in f(x)$ for some $x \in [a,b]$.

16 Discontinuities

16.1 Discontinuities

Definition 16.1.1: Right and left Limits

Let f be defined on (a,b).

Then for any x where $x \in [a,b)$, f(x+) = q if:

$$f(t_n) \to q$$
 as $n \to \infty$ for all sequences $\{t_n\}$ in (x,b) such that $t_n \to x$.

Then for any x where $x \in (a,b]$, f(x-) = q if:

$$f(t_n) \to q$$
 as $n \to \infty$ for all sequences $\{t_n\}$ in (a,x) such that $t_n \to x$.

Then $\lim_{t\to x} f(t)$ exists if and only if $f(x-) = f(x+) = \lim_{t\to x} f(t)$.

Definition 16.1.2: Types of discontinuities

Let f be defined on (a,b).

If f is discontinuous at x, but f(x+) and f(x-) exists, then f have a simple discontinuity of the first kind else it is a discontinuity of the second kind.

Thus, a simple discontinuity is either:

- $f(x-) \neq f(x+)$
- $f(x-) = f(x+) \neq f(x)$

16.2 Monotonic Functions

Definition 16.2.1: Monotonic

Let f be real on (a,b).

f is monotonically increasing if $f(x) \le f(y)$ for a < x < y < b.

f is monotonically decreasing if $f(x) \ge f(y)$ for a < x < y < b.

Theorem 16.2.2: Right and left limits of monotonics on (a,b)

Let f be monotonically increasing on (a,b).

Then f(x+) and f(x-) exists at every $x \in (a,b)$ where:

$$\sup_{t \in (a,x)} f(t) = f(x-) \le f(x) \le f(x+) = \inf_{t \in (x,b)} f(t)$$

Furthermore, for a < x < y < b, $f(x+) \le f(y-)$.

Properties analogous for monotonically decreasing functions.

Proof

Since f is monotonically increasing, then for $t \in (a,x)$, f(t) is bounded above by f(x) and thus, by the least upper bounded property, $\sup_{t \in (a,x)} f(t)$ exists.

For $\epsilon > 0$, there exists a $\delta > 0$ such that $\sup_{t \in (a,x)} f(t) - \epsilon < f(x - \delta) \le \sup_{t \in (a,x)} f(t)$ for a $< x - \delta < x$. Since $f(x - \delta) \le f(t) \le \sup_{t \in (a,x)} f(t)$ for $t \in (x-\delta,x)$, then $|f(t) - \sup_{t \in (a,x)} f(t)| < \epsilon$ for $t \in (x-\delta,x)$ so $f(x-) = \sup_{t \in (a,x)} f(t)$.

For $\epsilon > 0$, there exists a $\delta > 0$ such that $\inf_{t \in (x,b)} f(t) < f(x + \delta) \le \inf_{t \in (x,b)} f(t) + \epsilon$ for $x < x + \delta < b$. Since $f(x + \delta) \ge f(t) \ge \inf_{t \in (x,b)} f(t)$ for $t \in (x,x+\delta)$, then $|f(t) - \inf_{t \in (x,b)} f(t)| < \epsilon$ for $t \in (x,x+\delta)$ so $f(x+) = \inf_{t \in (x,b)} f(t)$.

Thus, $\sup_{t \in (a,x)} f(t) = f(x^{-}) \le f(x) \le f(x^{+}) = \inf_{t \in (x,b)} f(t)$.

If
$$a < x < y < b$$
, then:

$$f(x+) = \inf_{t \in (x,b)} f(t) = \inf_{t \in (x,y)} f(t) \le \sup_{t \in (x,y)} f(t) = \sup_{t \in (a,y)} f(t) = f(y-)$$

Corollary 16.2.3: Monotonics can only have simple discontinuities

Monotonic functions have no discontinuities of the second kind.

Proof

By theorem 16.2.2, f(x-) and f(x+) exists and thus, f can only have simple discontinuities and not discontinuities of the second kind.

16.3

Theorem 16.2.4: Discontinuities of monotonics is at most countable

Let f be monotonic on (a,b).

Then the set of points of (a,b) where f is discontinuous is at most countable.

Proof

Suppose f is increasing. Let E be the set of points where f is discontinuous. Then for $x \in E$, there is a rational r(x) where f(x-) < r(x) < f(x+).

Then for $x_1 < x_2$, by theorem 16.2.2, $f(x_1+) \le f(x_2-)$. Then:

$$f(x_{1}) < r(x_{1}) < f(x_{1}) \le f(x_{2}) < r(x_{2}) < f(x_{2})$$

Thus, $r(x_1) \neq r(x_2)$ if $x_1 \neq x_2$.

Since there is a 1-1 correspondence between E and a subset of rational numbers which is countable, then E is at most countable.

If f is decreasing, proof is analogous.

16.3 Infinite Limits and Limits at Infinity

Definition 16.3.1: Neighborhoods in extended reals

For any real c, a neighborhood of $+\infty = (c, +\infty)$.

For any real c, a neighborhood of $-\infty = (-\infty, c)$.

Definition 16.3.2: Infinite Limits

Let real function f be defined on $E \subset \mathbb{R}$.

Then $f(t) \to A$ as $t \to x$ where A and x are extended reals if:

For every neighborhood U of A, there is a neighborhood V of x such that $V \cap E \neq \emptyset$ and $f(t) \in U$ for all $t \in V \cap E$ where $t \neq x$.

Theorem 16.3.2: Arithmetric operations on functions of infinite limits

Let f,g be defined on $E \subset \mathbb{R}$ where $f(t) \to A$ and $g(t) \to B$ as $t \to x$.

- (a) If $f(t) \to A'$, then A' = A.
- (b) $(f+g)(t) \rightarrow A + B$
- (c) $(fg)(t) \rightarrow AB$
- (d) $\frac{f}{g}(t) \rightarrow \frac{A}{B}$

Differentiation 17

Derivative of a function 17.1

Definition 17.1.1: Derivative

Let f be defined on any $x \in [a,b]$.

Let I be defined on any
$$x \in [a, t]$$

$$\phi(t) = \frac{f(t) - f(x)}{t - x} \text{ for } t \neq x$$
The derivative of f:

$$f'(x) = \lim_{t \to x} \phi(t)$$

if the limit exist as defined by definition 14.1.1.

If f' is defined at x, then f is differentiable at x.

Theorem 17.1.2: Differentiability \rightarrow Continuity

Let f be defined on [a,b].

If f is differentiable at $x \in [a,b]$, then f is continuous at x.

Proof

As
$$t \to x$$
:

$$f(t) - f(x) = \frac{f(t) - f(x)}{t - x} \cdot (t - x) \rightarrow f'(x) \cdot 0 = 0$$

Theorem 17.1.3: Arithmetic operations on differentiation

Suppose f,g are defined on [a,b] and differentiable on $x \in [a,b]$. Then f+g, fg, and $\frac{f}{a}$ are differentiable at x:

(a)
$$(f+g)'(x) = f'(x) + g'(x)$$

(a)
$$(f+g)'(x) = f'(x) + g'(x)$$

$$\lim_{t \to x} \frac{(f+g)(t) - (f+g)(x)}{t - x} = \lim_{t \to x} \frac{f(t) - f(x) + g(t) - g(x)}{t - x}$$

$$= \lim_{t \to x} \frac{f(t) - f(x)}{t - x} + \lim_{t \to x} \frac{g(t) - g(x)}{t - x} = f'(x) + g'(x)$$

(b)
$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

$$\lim_{t \to x} \frac{(fg)(t) - (fg)(x)}{t - x} = \lim_{t \to x} \frac{f(t)g(t) - f(x)g(x)}{t - x}$$

$$= \lim_{t \to x} \frac{f(t)g(t) - f(x)g(t)}{t - x}$$

$$= \lim_{t \to x} \frac{f(t)g(t) - f(x)g(t) + f(x)g(t) - f(x)g(x)}{t - x}$$

$$= \lim_{t \to x} \frac{f(t)f(t) - f(x)f(t)}{t - x} + \lim_{t \to x} \frac{f(x)f(t) - f(x)g(x)}{t - x}$$

$$= f'(x)g(x) + f(x)g'(x)$$

(c)
$$\frac{\left(\frac{f}{g}\right)'(x)}{\left(\frac{f}{g}\right)} = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

$$\lim_{t \to x} \frac{(\frac{f}{g})(t) - (\frac{f}{g})(x)}{t - x} = \lim_{t \to x} \frac{\frac{f(t)}{g(t)} - \frac{f(x)}{g(x)}}{t - x} = \lim_{t \to x} \frac{f(t)g(x) - f(x)g(t)}{g(t)g(x)(t - x)}$$

$$= \lim_{t \to x} \frac{f(t)g(x) - f(x)g(x) + f(x)g(x) - f(x)g(t)}{g(t)g(x)(t - x)}$$

$$= \lim_{t \to x} \frac{[f(t) - f(x)]g(x)}{g(t)g(x)(t - x)} + \lim_{t \to x} \frac{f(x)[g(x) - g(t)]}{g(t)g(x)(t - x)}$$

$$= \frac{f'(x)g(x)}{g^2(x)} + \frac{f(x)[-g'(x)]}{g^2(x)} = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

Theorem 17.1.4: Differentiation Chain Rule

Suppose f is continuous on [a,b], f'(x) exists at $x \in [a,b]$, g is defined on interval I containing f([a,b]), and g is differentiable at f(x).

If h(t) = g(f(t)), then h is differentiable at x and $h'(x) = g'(f(x)) \cdot f'(x)$

Proof

Since f is differentiable at x and g is differentiable at f(x), then:

$$f(t) - f(x) = (t-x) [f'(x) + u(t)]$$
 for $t \in [a,b]$ and $\lim_{t\to x} u(t) = 0$
 $g(s) - g(f(x)) = (s-f(x)) [g'(f(x)) + v(s)]$ for $s \in I$ and $\lim_{s\to f(x)} v(s) = 0$

Thus:

$$\begin{split} \lim_{t \to x} \, \frac{h(t) - g(x)}{t - x} &= \lim_{t \to x} \, \frac{g(f(t)) - g(f(x))}{t - x} \\ &= \lim_{t \to x} \, \frac{(f(t) - f(x))[g'(f(x)) + v(s)]}{t - x} \\ &= \lim_{t \to x} \, \frac{(t - x)[f'(t) + u(t)][g'(f(x)) + v(s)]}{t - x} \\ &= g'(f(x)) \cdot f'(x) + f'(x) \cdot 0 + g'(f(x)) \cdot 0 + 0 \cdot 0 = g'(f(x)) \, f'(x) \end{split}$$

17.2 Mean Value Theorems

Definition 17.2.1: Local Extrema

Let real valued $f \in X$.

Then f has a local maximum at $p \in X$ if:

There is $\delta > 0$ such that for all $q \in X$ where $d_X(q, p) < \delta$, $f(q) \leq f(p)$.

Then f has a local minimum at $p \in X$ if:

There is $\delta > 0$ such that for all $q \in X$ where $d_X(q, p) < \delta$, $f(q) \ge f(p)$.

Theorem 17.2.2: Derivative at local extrema is 0

Let f be defined on |a,b|.

If f has a local maximum at $x \in (a,b)$ and f'(x) exists, then f'(x) = 0.

If f has a local minimum at $x \in (a,b)$ and f'(x) exists, then f'(x) = 0.

Proof

Suppose x is a local maximum.

Then there is a $\delta > 0$ such that for all $t \in (a,b)$ where $|t-x| < \delta$, then $f(t) \leq f(x)$.

Then for t < x, $\frac{f(t) - f(x)}{t - x} \ge 0$. Thus, $\lim_{t \to x} \frac{f(t) - f(x)}{t - x} = f'(x) \ge 0$. For t > x, $\frac{f(t) - f(x)}{t - x} \le 0$. Thus, $\lim_{t \to x} \frac{f(t) - f(x)}{t - x} = f'(x) \le 0$.

Since f'(x) exists, then f'(x) = 0.

Proof is analogous for local minimum.

Theorem 17.2.3: Generalized Mean Value Thereom

If f,g are continuous real functions on [a,b] and differentiable on (a,b), then there is a $x \in (a,b)$ such that $[f(b) - f(a)] \cdot g'(x) = [g(b) - g(a)] \cdot f'(x)$.

<u>Proof</u>

Let $h(t) = [f(b) - f(a)] \cdot g(t) - [g(b) - g(a)] \cdot f(t)$ for $t \in [a,b]$

Since f,g are continuous on [a,b] and differentiable on (a,b), then h is continuous on [a,b] and differentiable on (a,b). Also, h(a) = f(b)g(a) - f(a)g(b) = h(b).

If h is constant, then h'(x) = 0 and thus, theorem holds true for every $x \in (a,b)$.

If h(t) > h(a) for some $t \in (a,b)$, let $x \in [a,b]$ where h attains a local maximum. If h(t) < h(a) for some $t \in (a,b)$, let $x \in [a,b]$ where h attains a local minimum. Then by theorem 17.2.2, h'(x) = 0 and thus, theorem holds true at local extrema.

Theorem 17.2.4: Mean Value Thereom

If f is a real continuous function on [a,b] and differentiable on (a,b), then there is a $x \in (a,b)$ such that f(b) - f(a) = (b-a) f'(x).

Proof

From thereom 17.2.3, let g(x) = x.

Theorem 17.2.5: Sign of derivative determines monotonics

Suppose f is differentiable on (a,b).

- (a) If $f'(x) \geq 0$ for all $x \in (a,b)$, then f is monotonically increasing.
- (b) If f'(x) = 0 for all $x \in (a,b)$, then f is constant.
- (c) If $f'(x) \leq 0$ for all $x \in (a,b)$, then f is monotonically decreasing

From theorem 17.2.4, $f(x_2) - f(x_1) = (x_2 - x_1) f'(x)$ for $x \in (x_1, x_2) \subset (a,b)$. If $f'(x) \ge 0$ for all $x \in (a,b)$, then $f(x_2) - f(x_1) \ge 0$. Since $f(x_2) \ge f(x_1)$ for $x_2 > x_1$, then f is monotonically increasing.

If f'(x) = 0 for all $x \in (a,b)$, then $f(x_2) - f(x_1) = 0$. Since $f(x_2) = f(x_1)$ for $x_2 > x_1$, then f is constant.

If $f'(x) \leq 0$ for all $x \in (a,b)$, then $f(x_2) - f(x_1) \leq 0$. Since $f(x_2) \leq f(x_1)$ for $x_2 > x_1$, then f is monotonically decreasing.

17.3 Continuity of Derivatives

Theorem 17.3.1: Intermediate values of derivatives exists

Suppose f is a real differentiable function on [a,b] and $f'(a) < \lambda < f'(b)$.

Then there is a $x \in (a,b)$ such that $f'(x) = \lambda$.

Statement holds true if f'(a) > f'(b).

Proof

Suppose $f'(a) < \lambda < f'(b)$. Let $g(t) = f(t) - \lambda t$.

Since f(t), x are differentiable on [a,b], then g(t) is differentiable on [a,b].

Then $g'(a) = f'(a) - \lambda < 0$ so $g(t_1) < g(a)$ for some $t_1 \in (a,b)$.

Also, $g'(b) = f'(b) - \lambda > 0$ so $g(t_2) < g(b)$ for some $t_2 \in (a,b)$.

Thus, there is a x where g(x) is a local minimum so g'(x) = 0 and thus, $f'(x) = \lambda$.

Corollary 17.3.2:

If f is differentiable on [a,b], then f' cannot have simple discontinuities on [a,b].

By theorem 17.3.1, f'(x) exists for any $x \in [a,b]$.

17.4 L'Hospital's Rule

Theorem 17.4.1: L'Hospital's Rule

Suppose f,g are real and differentiable in (a,b) and $g'(x) \neq 0$ for all $x \in (a,b)$. Suppose $\lim_{x\to a} \frac{f'(x)}{g'(x)} \to A$. If either:

- $\lim_{x\to a} f(x) \to 0$ and $\lim_{x\to a} g(x) \to 0$
- $\lim_{x\to a} g(x) \to \infty$ or $\lim_{x\to a} g(x) \to -\infty$

Then, $\lim_{x\to a} \frac{f(x)}{g(x)} \to A$. Statement holds true if $x \to b$.

17.5 Derivative of Higher Order

Definition 17.5.1: Derivative of Higher Order

If f has a derivative f' on an interval and f' is differentiable, then the derivative of f' is f'', the second derivative of f. Then, $f^{(n)}$ is the nth derivative of f.

For $f^{(n)}(x)$ to exist at x, $f^{(n-1)}(t)$ must exist in a neighborhood of x and $f^{(n-1)}$ must be differentiable at x.

If $f^{(n-1)}$ exist in a neighborhood of x, then $f^{(n-2)}$ must be differentiable in that neighborhood.

17.6 Taylor's Theorem

Theorem 17.6.1: Taylor's Theorem

Suppose f is a real function on [a,b], $n \in \mathbb{Z}_+$, $f^{(n-1)}$ is continuous on [a,b], $f^n(t)$ exists at every $t \in (a,b)$.

Let $\alpha, \beta \in [a,b]$ be distinct and $P(t) = \sum_{k=0}^{n-1} \frac{f^k(\alpha)}{k!} (t-\alpha)^k$.

Then there exists a x between α and β such that $f(\beta) = P(\beta) + \frac{f^n(x)}{n!}(\beta - \alpha)^n$

18 Differentiation of Vector-Valued Functions

Theorem 17.7.1: Mean Value Theorem for \mathbb{R}^k

Suppose f is a continuous mapping of [a,b] into \mathbb{R}^k and f is differentiable on (a,b). Then there is a $x \in (a,b)$ such that $|f(b) - f(a)| \leq (b-a) |f'(x)|$

REFERENCES REFERENCES

References

[1] Walter Rudin, Principles of Mathematical Analysis (3rd Edition), ISBN-13: 978-0070542358