Development of a Digital Assistant for Travel Booking - Phase I

By: Anthony Leung

Agenda

- 1. Overview
- 2. Methodology & Results
 - a. Proof of Concept Model
- 3. Development Demo
- 4. Summary and Next Steps

1

OVERVIEW

Product Introduction
Development Plan

Product Introduction

NotSnapTravel wants to create a digital assistant (i.e., chatbot) that allows users to query the following through conversation:

FLIGHT PRICES

HOTEL BOOKINGS

CAR RENTALS

Development Plan

2020.01.31 20XX

Phase 1

Create a proof of concept model that can extract relevant flight information from conversational text.

Phase 2

Interface model with an API and deploy it in a suitable platform (e.g., Slack).

Development Plan

Phase 1

Create a proof of concept model that can extract relevant flight information from conversational text.

Phase 2

Interface model with an API and deploy it in a suitable platform (e.g., Slack).

METHODOLOGY & RESULTS

Natural Language Understanding
NLP Transfer learning (ULMFit)
Named Entity Recognition & Phrase Matching

Development Toolbox

Experiment/ Prototype environment

Data manipulation

Deep learning modeling

How does the chatbot know what to respond to the user?

NLU: What is the intent when we say stuff?

Natural Language Understanding:
 The ability to interpret text.

SPEECH: "I am looking for one-way flight from Toronto to Tokyo, leaving on Feb 6"

INTENT: SearchFlightPrice

Classification: Associating speech with intents

Dataset size of 236 across 8 different intents

Intent	Count
SearchOneWayFlight	41
SearchHotelPrice	37
SearchCarRentalPrice	35
Greeting	33
Goodbye	26
GiveThanks	25
SearchRoundTripFlight	24
Help	15
Total	236

Challenge: Obtaining an accurate model with a small corpus of travel queries.

How can we obtain one in a feasible manner?

NLP Transfer Learning: ULMFit

- Universal Language Model Fine-tuning (ULMFit)[*]
- A transfer learning approach to text classification.
- Beneficial for tasks with small datasets (i.e., it's fast with great accuracy!).
- Can be perform on fastai.

NLP Transfer Learning: ULMFit

[*] J. Howard & S. Ruder, <u>arXiv preprint:1801.06146</u> (2018).

Training Datasets for LM and NN

- a) LM Pre-training:
- Utilize the AWD-LSTM[**] pretrained model.
- b) <u>LM Fine-tuning</u>:
- "General-Chat-Log-Telegram" (13,207 sentences) + Present dialogues w/o intents (236 sentences).
- c) <u>Classification fine-tuning</u>:
- Present dialogues w/ intents (236 sentences).

Overall intent classification accuracy: 91%

Intent	Accuracy
SearchRoundTripFlight	100%
SearchCarRentalPrice	100%
Greeting	100%
Goodbye	100%
SearchOneWayFlight	92%
SearchHotelPrice	83%
Help	83%
GiveThanks	78%

Chatbot blueprint

X_input =
"Looking for
one-way flight
from Toronto to
Tokyo on Feb 6"

Y_pred =
"SearchOneWayFlight"

CLASSIFICATION
MODEL

RESPONSE
FETCHER

How can the chatbot recognize locations and dates from text?

Named entity recognition (NER): Recognizing places, dates, etc.

- Utilize spaCy library.
- E.g., "Looking for one-way flight from Toronto to Tokyo on Feb 12"

Which one is origin and destination?

How can the chatbot distinguish between origin and destination?

Phrase Matcher: Match sequence of tokens based on pattern rules

Can combine Parts-of-Speech tags and NER labels.

	pattern	start	end	text	location
0	START_LOC	4	6	from Toronto	Toronto
1	END_LOC	6	8	to Tokyo	Tokyo

DEVELOPMENT DEMO

(Subject to Changes)

SUMMARY AND NEXT STEPS

Summary and Next Steps

- <u>Transfer learning (ULMFiT)</u> was used to train a neural network that can classify speech intent.
- Relevant entities of travel queries are extracted by using <u>NER</u> and can be differentiated by <u>Phrase Matching</u>.

Next Steps:

- Further improve the speech intent classifier by including more dialogue and fine-tuning hyperparameters.
- Interact chatbot model with a travel API.
- Deploy chatbot onto a platform (e.g., Slack).