

GLOBECOM 2022 -Rio de Janeiro (Brazil)

NeCSTGen: An approach for realistic network traffic generation using Deep Learning.

Authors:

- Fabien MESLET-MILLET (IRIT/Toulouse INP)
- Sandrine MOUYSSET (IRIT/Toulouse UPS)
- Emmanuel CHAPUT (IRIT/Toulouse INP)

Table of contents

- Presentation of the problem
- NeCSTGen architecture
- Results
- Contributions

Presentation of the problem

- Goals
- Formalization

Presentation of the problem

Goals

Goals

Perform network traffic generation, without payload, by using Deep Learning methods.

Interests

- IoT (Internet of Things)
- Protocol agnostic
- Ground truth

Issues

- Generate dynamics and variables together
- Dealing with long sequences
- Dealing with different protocols
- Multi-level (packet, flow, flow aggregate, ...)

Presentation of the problem

Formalization

- Datasets
 - o IoT
 - LoraWan
 - Google Home
 - LAN
 - DARPA
- Generation
 - Protocol diversity
 - Application diversity
 - Dynamic diversity

- Header
 - o IP
 - TCP/UDP
- Payload
 - SMTP
 - o HTTP
 - SNMP
 - o ...etc

- Overview
- Step 1: Projection
- Step 2: Clustering
- Step 3: Generate dynamic
- Step 4: Sampling
- Step 5: Generate features
- Multi-levels

Overview

Step 1: Embedding (1/3)

Step 1: Embedding (2/3)

N	o.	Time	Source	Destination	Protocol	Length	Info
г	5774	887.885958	172.16.116.201	209.67.29.11	TCP	60	177
Т	5775	887.890582	209.67.29.11	172.16.116.201	TCP	60	80
	5776	887.891270	172.16.116.201	209.67.29.11	TCP	60	177
	5777	887.891866	172.16.116.201	209.67.29.11	HTTP	200	GET
	5778	887.913371	209.67.29.11	172.16.116.201	TCP	60	80
	5779	887.953759	209.67.29.11	172.16.116.201	TCP	1514	80
	5780	887.954981	209.67.29.11	172.16.116.201	TCP	1514	80
	5781	887.956982	172.16.116.201	209.67.29.11	TCP	60	177
	5782	887.961852	209.67.29.11	172.16.116.201	TCP	1514	80
	5783	887.963079	209.67.29.11	172.16.116.201	TCP	1514	80
	5784	887.964307	209.67.29.11	172.16.116.201	TCP	1514	80
	5785	887.967026	172.16.116.201	209.67.29.11	TCP	60	177
	5786	887.971671	209.67.29.11	172.16.116.201	TCP	1514	80
	5787	887.972846	209.67.29.11	172.16.116.201	TCP	1514	80
	5788	887.974076	209.67.29.11	172.16.116.201	TCP	1514	80
	5789	887.975309	209.67.29.11	172.16.116.201	TCP	1514	80
	5790	887.977120	172.16.116.201	209.67.29.11	TCP	60	177
	5791	887.981773	209.67.29.11	172.16.116.201	TCP	1514	80
	5792	887.983023	209.67.29.11	172.16.116.201	TCP	1514	80
	5793	887.984265	209.67.29.11	172.16.116.201	TCP	1514	80
	5794	887.985468	209.67.29.11	172.16.116.201	TCP	1514	80
	5795	887.987274	172.16.116.201	209.67.29.11	TCP	60	177
	5796	887.991916	209.67.29.11	172.16.116.201	TCP	1514	80
	5797	887.993142	209.67.29.11	172.16.116.201	TCP	1514	80
	5798	887.994411	209.67.29.11	172.16.116.201	TCP	1514	80
	5799	887.995660	209.67.29.11	172.16.116.201	TCP	1514	80
	5000	997 006992	200 67 20 11	177 16 116 201	TCD	151/	QA

PCAP including an aggregate of HTTP flows

Features extraction for each packet

Features vector generated for **1** packet (level 2/3/4 header, rate in bytes/s...etc)

Step 2: Clustering (1/3)

Step 2: Clustering HTTP (2/3)

Projection of the features of each packet by the VAE.

Distribution of the projection of the features of each packet by the VAE.

Clustering with GMM of the projection of the features of each packet by the VAE.

Step 2: Clustering LoraWAN (fport: 1) (3/3)

Projection of the features of each packet by the VAE.

Distribution of the projection of the features of each packet by the VAE.

Clustering with GMM of the projection of the features of each packet by the VAE.

Step 3: Generate dynamic (1/2)

Step 3: Generate dynamic (2/3)

Step 3: Generate dynamic (3/3)

Step 4: Sampling (1/2)

Step 4: Sampling (2/2)

Step 5: Generate features (1/2)

Step 5: Generate features

Multi-levels

- Packet dynamic
- Packet fields
- Flow and aggregate dynamics
- Scale characteristics
- QoS/QoE

Packet dynamic (1/2)

Packet dynamic (2/2)

Packet fields

Flows and aggregate dynamic

Scale characteristics

Results QoS/QoE

Contributions

Generation

- Protocol agnostic
- Ground truth
- Generate dynamics and variables together
- Multi-level (packet, flow, flow aggregate)

Limits

- Dimension of the transition matrix
- Projection / Identification (with GMM)

• Paths of exploration

- Dealing with rare events
- o Include variability of the traffic related to the human