```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

titanic_data=pd.read_csv('/content/titanic_train.csv')
len(titanic_data)
titanic_data.head()
```

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Far
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.283
				Heikkinen						

titanic_data.index
titanic_data.columns

titanic_data.info()
titanic_data.describe()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns): # Column Non-Null Count Dtype --------0 PassengerId 891 non-null int64 1 Survived 891 non-null int64 891 non-null int64 Pclass 891 non-null object 3 Name 891 non-null Sex object 714 non-null float64 5 Age 891 non-null int64 SibSp 7 Parch 891 non-null int64 8 Ticket 891 non-null object Fare 891 non-null float64 10 Cabin 204 non-null object 11 Embarked 889 non-null object dtypes: float64(2), int64(5), object(5) memory usage: 83.7+ KB

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
cou	nt 891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mea	an 446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
sto	d 257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
mi	n 1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
259	% 223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
509	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
759	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
ma	x 891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200
4							—

sns.countplot(x='Survived',data=titanic_data)

<Axes: xlabel='Survived', ylabel='count'>

sns.countplot(x='Survived',data=titanic_data,hue='Sex')
titanic_data.isna()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabi
0	False	False	False	False	False	False	False	False	False	False	Tru
1	False	False	False	False	False	False	False	False	False	False	Fals
2	False	False	False	False	False	False	False	False	False	False	Tru
3	False	False	False	False	False	False	False	False	False	False	Fals
4	False	False	False	False	False	False	False	False	False	False	Tru
886	False	False	False	False	False	False	False	False	False	False	Tru
887	False	False	False	False	False	False	False	False	False	False	Fals
888	False	False	False	False	False	True	False	False	False	False	Tru
889	False	False	False	False	False	False	False	False	False	False	Fals
890	False	False	False	False	False	False	False	False	False	False	Tru

891 rows × 12 columns

titanic_data.isna().sum()

PassengerId 0 Survived 0 Pclass 0 Name 0 Sex 0 177 Age SibSp 0 Parch 0 Ticket 0 Fare 0 Cabin 687 Embarked dtype: int64

sns.heatmap(titanic_data.isna())

(titanic_data['Age'].isna().sum()/len(titanic_data['Age']))*100
(titanic_data['Cabin'].isna().sum()/len(titanic_data['Cabin']))*100
sns.displot(x='Age',data=titanic_data)

titanic_data['Age'].fillna(titanic_data['Age'].mean(),inplace=True)
titanic_data['Age'].isna().sum()

0

sns.heatmap(titanic_data.isna())


```
titanic_data.drop('Cabin',axis=1,inplace=True)
titanic_data.head()
titanic_data.info()
titanic_data.dtypes
gender=pd.get_dummies(titanic_data['Sex'],drop_first=True)
titanic_data['Gender']=gender
titanic_data.head()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 11 columns):

		, .	
#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	891 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Embarked	889 non-null	object
dtvne	es: float64(2), int64(5), obj	ect(4)

dtypes: float64(2), int64(
memory usage: 76.7+ KB

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Far
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.250
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.283
				Heikkinen						•

Next steps: Generate

Generate code with titanic_data

View recommended plots

```
titanic_data.drop(['Name','Sex','Ticket','Embarked'],axis=1,inplace=True)
titanic_data.head()
x=titanic_data[['PassengerId','Pclass','Age','SibSp','Parch','Fare','Gender']]
y=titanic data['Survived']
    0
    1
            1
     2
            1
    3
            1
            0
     886
           0
     887
            1
    888
            0
     889
            1
     890
from sklearn.metrics import confusion_matrix
pd.DataFrame(confusion_matrix(y_test,predict),columns=['Predicted No','Predicted Yes'],index=['Actual No','Actual Yes'])
```

	Predicted No	Predicted Yes	Ħ
Actual No	151	24	ılı
Actual Yes	37	83	

```
#import train test split method
from sklearn.model_selection import train_test_split
#train test split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=42)
#import Logistic Regression
from sklearn.linear_model import LogisticRegression
#Fit Logistic Regression
lr=LogisticRegression()
lr.fit(x_train,y_train)
LogisticRegression()
#predict
predict=lr.predict(x test)
from sklearn.metrics import classification_report
print(classification_report(y_test,predict))
from sklearn.metrics import confusion_matrix
pd.DataFrame(confusion_matrix(y_test,predict),columns=['Predicted No','Predicted Yes'],index=['Actual No','Actual Yes'])
```

	precision	recall	f1-score	support
0	0.80	0.86	0.83	175
1	0.78	0.69	0.73	120
accuracy			0.79	295
macro avg	0.79	0.78	0.78	295
weighted avg	0.79	0.79	0.79	295

/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py:458: ConvergenceWarning: lbfgs failed to converge (s STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html