代数系统简介

第9章代数系统简介

- 9.1 二元运算及其性质
- 9.2 代数系统
- 9.3 几个典型的代数系统

9.1 二元运算及其性质

- 二元运算及一元运算的定义
- ■二元运算的性质
 - □交换律、结合律、幂等律、消去律
 - □分配律、吸收律
- 二元运算的特异元素
 - □単位元
 - □零元
 - □可逆元素及其逆元

.

二元运算的定义及其实例

定义 设S为集合,函数 $f: S \times S \rightarrow S$ 称为S上的二元运算,简称为二元运算.也称S对f封闭.

例1

- (1) N 上的二元运算:加法、乘法.
- (2) Z上的二元运算:加法、减法、乘法.
- (3) 非零实数集 R*上的二元运算: 乘法、除法.
- (4) 设 $S = \{a_1, a_2, \dots, a_n\}, a_i \circ a_j = a_{i,j} \circ 为 S 上二元运算.$

二元运算的实例(续)

(5) 设 *M_n*(R) 表示所有 *n* 阶 (*n*≥2) 实矩阵的集合,即

$$M_{n}(\mathbf{R}) = \left\{ \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \middle| a_{ij} \in \mathbf{R}, i, j = 1, 2, ..., n \right\}$$

矩阵加法和乘法都是 $M_n(\mathbf{R})$ 上的二元运算.

- (6) 幂集 P(S) 上的二元运算: $\cup, \cap, -, \oplus$.
- (7) S^S 为 S 上的所有函数的集合: 合成运算。.

n元运算

定义 设S为集合,n为正整数,函数

称为S上的n元运算,简称为n元运算.

- 例2 (1) Z, Q 和 R 上的一元运算: 求相反数
- (2) 非零有理数集 Q*和实数集 R*的一元运算: 倒数
- (3) 复数集合 C 上的一元运算: 求共轭复数
- (4) 幂集 P(S) 上, 全集为 S: 求绝对补运算~
- (5) A 为 S 上所有双射函数的集合, $A \subseteq S^S$: 求反函数
- (6) 在 M_n(R) (n≥2)上,求转置矩阵

运算的表示

算符: ∘, *, ·, ⊕, ⊗ 等符号

表示n元运算

 $\circ (a_1, a_2, ..., a_n) = b.$

对二元运算 o,如果 x 与 y 运算得到 z,记做 $x \circ y = z$;

对一元运算 o, x 的运算结果记作 ox

注意: 在同一问题中不同的运算使用不同的算符

二元与一元运算的表示

公式表示

例3 设 R 为实数集合,如下定义 R 上的二元运算*:

$$\forall x, y \in \mathbb{R}, \ x * y = x.$$

那么
$$3*4=3$$

$$0.5 * (-3) = 0.5$$

运算表(表示有穷集上的一元和二元运算)

0	a_1	a_2	•••	a_n
a_1	$a_1 \circ a_1$	$a_1 \circ a_2$	•••	$a_1 \circ a_n$
a_2	$a_2 \circ a_1$	a_2 o a_2	•••	$a_2 \circ a_n$
•		• • •		
•		• • •		
•		• • •		
a_n	$a_n \circ a_1$	$a_n \circ a_2$	•••	$a_n \circ a_n$

	$\circ a_i$
a_1	•a ₁
a_2	$\circ a_2$
•	•
•	•
•	•
a_n	$\circ a_n$

运算表的实例

例4 $A = P(\{a, b\})$, \oplus , ~分别为对称差和补集运算 ($\{a,b\}$ 为全集)

⊕ 的运算表

~ 的运算表

⊕	Ø	<i>{a}</i>	{ b }	$\{a,b\}$
Ø	Ø	<i>{a}</i>	{ b }	$\{a,b\}$
<i>{a}</i>	{a}	Ø	{ <i>a.b</i> }	{ <i>b</i> }
{ b }	{ b }	<i>{a,b}</i>	Ø	<i>{a}</i>
$\{a,b\}$	$\{a,b\}$	{ b }	<i>{a}</i>	Ø

X	~X
Ø	{a,b}
<i>{a}</i>	{ b }
{ b }	<i>{a}</i>
{a,b	Ø
}	

运算表的实例(续)

例5 $Z_5 = \{0, 1, 2, 3, 4\}, \oplus, \otimes$ 分别为模 5 加法与乘法

⊕ 的运算表

	ムムハー かか一十	
\sim		•
V		
		~

\oplus	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

\otimes	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

二元运算的性质

定义 设。为S上的二元运算,

(1) 如果对于任意的 $x, y \in S$ 有 $x \circ y = y \circ x$,

则称运算在S上满足交换律.

- (2) 如果对于任意的 $x, y, z \in S$ 有 $(x \circ y) \circ z = x \circ (y \circ z)$, 则称运算在 S 上满足结合律.
- (3) 如果对于任意的 $x \in S$ 有 $x \circ x = x$, 则称运算在 S 上满足幂等律.

实例分析

Z, Q, R分别为整数、有理数、实数集; $M_n(R)$ 为 n 阶实矩阵集合, $n \ge 2$; P(B)为幂集; A^A 为 A上A, $|A| \ge 2$.

集合	运算	交换律	结合律	幂等律
Z, Q, R	普通加法+	有	有	无
	普通乘法×	有	有	无
$M_n(\mathbf{R})$	矩阵加法+	有	有	无
	矩阵乘法×	无	有	无
P(B)	并し	有	有	有
	交∩	有	有	有
	相对补-	无	无	无
	对称差⊕	有	有	无
A^A	函数符合o	无	有	无

二元运算的性质 (续)

定义 设。和*为S上两个不同的二元运算,

(1) 如果 $\forall x, y, z \in S$ 有

$$(x * y) \circ z = (x \circ z) * (y \circ z)$$

$$z \circ (x * y) = (z \circ x) * (z \circ y)$$

则称。运算对*运算满足分配律.

(2) 如果。和 * 都可交换, 并且 $\forall x, y \in S$ 有

$$x \circ (x * y) = x$$

$$x*(x\circ y)=x$$

则称。和*运算满足吸收律.

实例分析

Z, Q, R分别为整数、有理数、实数集; $M_n(R)$ 为 n 阶实 矩阵集合, $n \ge 2$; P(B)为幂集; A^A 为 $A \perp A$, $|A| \ge 2$.

集合	运算	分配律	吸收律
Z,Q,R	普通加法 + 与乘法 ×	×对+可分配	无
		+对×不分配	
$M_n(\mathbf{R})$	矩阵加法 + 与乘法 ×	×对+可分配	无
**		+对×不分配	
P(B)	并∪与交∩	∪对○可分配	有
		○対∪可分配	
	交∩与对称差⊕	○对⊕可分配	无
		⊕对○不分配	15

M

二元运算的特异元素

单位元

定义 设•为S上的二元运算,如果存在 e_l (或 e_r) $\in S$,使得对任意 $x \in S$ 都有

$$e_l \circ x = x \ (\overrightarrow{\mathfrak{D}} x \circ e_r = x),$$

则称 e_l (或 e_r)是 S 中关于 。 运算的 左 (或右)单位元.

若 $e \in S$ 关于 。运算既是左单位元又是右单位元,则称 e 为 S 上关于 。运算的 单位元. 单位元也叫做 幺元.

二元运算的特异元素 (续)

零元

设。为S上的二元运算,如果存在 θ_l (或 θ_r) $\in S$,使得对任意 $x \in S$ 都有

$$\theta_l \circ x = \theta_l \ (\ \text{if} \ x \circ \theta_r = \theta_r),$$

则称 $\theta_l($ 或 $\theta_r)$ 是S中关于。运算的左(或右)零元.

若 θ ∈S关于•运算既是左零元又是右零元,则称 θ 为S上关于运算。的零元.

二元运算的特异元素 (续)

可逆元素及其逆元

令 e 为 S 中关于运算•的单位元. 对于 $x \in S$,如果存在 y_r (或 y_r) $\in S$ 使得

$$y_l \circ x = e \ (\overrightarrow{\mathfrak{g}} x \circ y_r = e) ,$$

则称 $y_l($ 或 $y_r)$ 是x的左逆元(或右逆元).

关于 o运算,若 $y \in S$ 既是 x 的左逆元又是 x 的右逆元,则称 y 为 x 的逆元.

如果 x 的逆元存在, 就称 x 是可逆的.

实例分析

集合	运算	单位元	零元	逆元
Z,	普通加法+	0	无	<i>x</i> 的逆元 - <i>x</i>
Q, R	普通乘法×	1	0	x 的逆元 x ⁻¹ (x ⁻¹ 属于给定集合)
$M_n(\mathbf{R})$	矩阵加法+	n阶全0矩阵	无	<i>X</i> 逆元– <i>X</i>
	矩阵乘法×	n阶单位 矩阵	n阶全0 矩阵	X的逆元 X ⁻¹ (X是可逆矩阵)
P(B)	并し	Ø	В	Ø的逆元为Ø
	交∩	В	Ø	B的逆元为B
	对称差⊕	Ø	无	X的逆元为X

唯一性定理

定理 设 •为S上的二元运算, e_l 和 e_r 分别为 S中关于运算的左和右单位元,则 $e_l = e_r = e$ 为 S上关于。运算的惟一的单位元.

证 $e_l = e_l \circ e_r = e_l \circ e_r = e_r$ 所以 $e_l = e_r$,将这个单位元记作 e. 假设 e' 也是 S 中的单位元,则有

$$e'=e\circ e'=e.$$

惟一性得证.

类似地可以证明关于零元的惟一性定理. 注意: 当 $|S| \ge 2$,单位元与零元是不同的; 当 |S| = 1 时,这个元素既是单位元也是零元.

惟一性定理(续)

定理 设 o为 S 上可结合的二元运算, e 为该运算的单位元, 对于 $x \in S$ 如果存在左逆元 y_l 和右逆元 y_r , 则有 $y_l = y_r = y$, 且 y 是 x 的惟一的逆元.

证 由 $y_l \circ x = e$ 和 $x \circ y_r = e$ 得

 $y_l = y_l \circ e = y_l \circ (x \circ y_r) = (y_l \circ x) \circ y_r = e \circ y_r = y_r$ 令 $y_l = y_r = y$,则 y 是 x 的逆元.

假若 $y' \in S$ 也是 x 的逆元, 则

 $y'=y'\circ e=y'\circ (x\circ y)=(y'\circ x)\circ y=e\circ y=y$ 所以 y 是 x 惟一的逆元.

说明:对于可结合的二元运算,可逆元素 x 只有惟一的逆元,记作 x^{-1} .

消去律

定义 设。为V上二元运算,如果 $\forall x, y, z \in V$,若 $x \circ y = x \circ z$,且x不是零元,则y = z 若 $y \circ x = z \circ x$,且x 不是零元,则y = z 那么称。运算满足 消去律.

实例: Z, Q, R 关于普通加法和乘法满足消去律.

 $M_n(\mathbf{R})$ 关于矩阵加法满足消去律,但是关于矩阵乘法不满足消去律.

 Z_n 关于模n 加法满足消去律,当n 为素数时关于模n乘法满足消去律. 当n 为合数时关于模n乘法不满足消去律.

例题分析

例6 设。运算为Q上的二元运算,

$$\forall x, y \in \mathbf{Q}, \quad x \circ y = x + y + 2xy,$$

- (1)。运算是否满足交换和结合律?说明理由.
- (2) 求。运算的单位元、零元和所有可逆元.
- 解 (1)。运算可交换,可结合. 任取 $x, y \in \mathbb{Q}$, $x \circ y = x + y + 2xy = y + x + 2yx = y \circ x$, 任取 $x, y, z \in \mathbb{Q}$,

$$(x \circ y) \circ z = (x+y+2xy) + z + 2(x+y+2xy) z$$

= $x+y+z+2xy+2xz+2yz+4xyz$
 $x \circ (y \circ z) = x + (y+z+2yz) + 2x(y+z+2yz)$
= $x+y+z+2xy+2xz+2yz+4xyz$

例题分析 (续)

(2) 设。运算的单位元和零元分别为 e 和 θ ,则对于任意 x 有 xoe = x 成立,即 x+e+2xe = x \Rightarrow e = 0 由于。运算可交换,所以 0 是幺元.

对于任意
$$x$$
 有 $x \circ \theta = \theta$ 成立,即 $x+\theta+2$ x $\theta = \theta \Rightarrow x+2$ x $\theta = 0 \Rightarrow \theta = -1/2$

给定 x, 设 x 的逆元为 y, 则有 $x \circ y = 0$ 成立,即 $x+y+2xy=0 \Rightarrow y=-\frac{x}{1+2x} \quad (x \neq =-1/2)$ 因此当 $x \neq -1/2$ 时, $y=-\frac{x}{1+2x}$ 是 x 的逆元.

例题分析 (续)

例7 (1) 说明那些运算是交换的、可结合的、幂等的. (2) 求出运算的单位元、零元、所有可逆元素的逆元.

*	a	b	C
a	C	a	b
b	a	\boldsymbol{b}	C
C	b	C	a

0	a	b	C	
a b	_	a b	_	
C	C	C	C	

	a	b	C
a	_	b	
b	b	C	C
C	C	C	C

- 解(1)*满足交换、结合律;。满足结合、幂等律;
 - •满足交换、结合律.
- (2)*的单位元为 b, 没零元, $a^{-1}=c$, $b^{-1}=b$, $c^{-1}=a$
 - 的单位元和零元都不存在,没有可逆元素.
 - 的单位元为 a,零元为c, $a^{-1}=a$. b, c不可逆.

例题分析 (续)

例8 设 $A = \{a, b, c\}$,构造 A 上的二元运算*使得 a*b=c, c*b=b, 且*运算是幂等的、可交换的,给 出关于*运算的一个运算表,说明它是否可结合, 为什么?

*	a	b	C
a	a	C	
b	C	b	b
c		b	C

根据幂等律和已知条件a*b=c, c*b=b 得到运算表 根据交换律得到新的运算表 方框 可以填入a, b, c中任 一选定的符号, 完成运算表

不结合,因为 (a*b)*b = c*b = b, a*(b*b) = a*b = c

re.

由运算表判别算律的一般方法

- 交换律:运算表关于主对角线对称
- 幂等律: 主对角线元素排列与表头顺序一致
- 消去律: 所在的行与列中没有重复元素
- 单位元: 所在的行与列的元素排列都与表头一致
- 零元:元素的行与列都由该元素自身构成
- A 的可逆元: a 所在的行中某列 (比如第j 列) 元素为 e,且第j 行 i 列的元素也是 e,那么 a 与第j 个元素互逆
- 结合律:除了单位元、零元之外,要对所有3个元素的组合验证表示结合律的等式是否成立