Prof. José Roberto Silva dos Santos

Depto. de Estatística e Matemática Aplicada - UFC

Fortaleza, 24 de outubro de 2022

Definição:

Seja X uma variável aleatória contínua, que tome somente valores não negativos. Diremos que X possui distribuição gama, se sua fdp for dada por

Definição:

Seja X uma variável aleatória contínua, que tome somente valores não negativos. Diremos que X possui distribuição gama, se sua fdp for dada por

$$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x} I(x) ,$$

$$_{(0,\infty)}$$

para todo $\alpha > 0$ e $\lambda > 0$.

2/5

Definição:

Seja X uma variável aleatória contínua, que tome somente valores não negativos. Diremos que X possui distribuição gama, se sua fdp for dada por

$$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x} I(x) ,$$

$$_{(0,\infty)}$$

para todo $\alpha > 0$ e $\lambda > 0$.

• Notação: $X \sim \text{Gama}(\alpha, \lambda)$.

Figura 1: Comportamento da fdp da distribuição gama para diferentes valores dos parâmetros

Figura 2: Comportamento da f
da da distribuição gama para diferentes valores dos parâmetros

Propriedades:

• Se $\alpha = 1$ temos que $f(x) = \lambda e^{-\lambda x}$. Portanto, a distribuição exponencial é um caso particular da distribuição gama.

Propriedades:

- Se $\alpha = 1$ temos que $f(x) = \lambda e^{-\lambda x}$. Portanto, a distribuição exponencial é um caso particular da distribuição gama.
- Na maioria das aplicações o parâmetro α é um inteiro positivo. Neste caso, existe uma interessante relação entre a fda da distribuição gama e a distribuição Poisson.

Propriedades:

- Se $\alpha = 1$ temos que $f(x) = \lambda e^{-\lambda x}$. Portanto, a distribuição exponencial é um caso particular da distribuição gama.
- Na maioria das aplicações o parâmetro α é um inteiro positivo. Neste caso, existe uma interessante relação entre a fda da distribuição gama e a distribuição Poisson.
- Se $X \sim \text{Gama}(\alpha, \lambda)$ então

$$\mathbb{E}(X) = \frac{\alpha}{\lambda} \text{ e } \operatorname{Var}(X) = \frac{\alpha}{\lambda^2}$$