Improving the Expressiveness of K-hop Message-Passing GNNs by Injecting Contextualized Substructure Information

In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Minining

Tianjun Yao tianjun.yao@mbzuai.ac.ae

MB7UAI

June 1, 2023

Background

How to enhance the expressive power of graph neural networks is currently a active research area. Many methods have been proposed in the literatures.

- [1, 5, 12, 6, 7, 8] leverages positional and structural encodings to improve the expressive power.
- [10, 9, 4] uses higher-order message-passing schemes.
- [3, 9, 18, 17, 16] proposes to utilize subgraphs through GNNs.
- ullet Some works proposes K-hop GNN models [2, 11, 13] that iteratively updates node representations by aggregating information from K-hop neighbors instead of direct neighbors.

Motivation

Intuitively, 1-WL subgraph GNNs are more powerful than K-hop message-passing GNNs due to its pairwise attention mechanism. Question: How to improve the expressive power of K-hop message-passing GNNs by mitigating this issue?

June 1, 2023 3 / 21

Notations

Symbol	Notation				
{}	sets				
{{ }}}	multisets				
$[n] := \{1, \cdots, n\}$	index set				
$G = (\mathcal{V}, \mathcal{E})$	graph				
$\mathcal{N}_G(u)$	direct neighbors of node u				
$\mathcal{N}_G^k(u)$	K-hop neighbors of node $\it u$				
$\overset{G}{G}_{u}^{K}$	node-induced subgraph of root node \boldsymbol{u}				
р	column vector				
Р	matrix				

June 1, 2023 4 / 21

Proposed Method

Definition: Substructure Encoding Function

A substructure encoding function $f:G_u^K\times G\to \mathcal{R}^d$ takes as input a K-hop subgraph rooted at node u and graph G, and outputs an encoded d-dimensional features which can reflect the internal substructure of G_u^K .

- A proper substructure encoding function $f(\cdot)$ can capture the structural information of G_u^K , and mitigate the issues of hub-spoken attention patterns induced by K-hop message-passing GNNs.
- We resort to random walk to calculate the self-return probability for every node $u \in \mathcal{V}$. Intuitively, two nodes with different internal substructures would lead to different random walk patterns given sufficient steps of random walk.
- In addition to self-return probability, Central node to k-hop neighbors landing probability and Landing probability across k-hop neighbors are also designed to enrich the function.

5 / 21

Substructure Encoding Function

$$f_{1}(G_{u}^{K}, G) := \left\{H_{uu}^{(t)}\right\}_{t=1}^{l},$$

$$f_{2}(G_{u}^{K}, G) := AGG_{k}(\left\{H_{ui}^{(t)} : dis(u, i) = k, k \in [K]\right\}_{t=1}^{l}),$$

$$f_{3}(G_{u}^{K}, G) := AGG_{k}(\left\{H_{i, j}^{(t)} : dis(i, u) = dis(j, u), k \in [K]\right\}_{t=1}^{l}),$$

$$f(G_{u}^{K}, G) := COMBINE(f_{i}(G_{u}^{K}, G), i \in \{1, 2, 3\}).$$

$$(1)$$

In the above equations, $H^{(t+1)}=\widetilde{D}^{-1}\widetilde{A}H^{(t)}$ and $H^{(0)}=I.$ $H^{(t)}$ is the t^{th} step random-walk probability matrix.

Theorem 1

Given two n-node r-regular graphs G and H, let $3 \leq r < (2 \log 2n)^{1/2}$ and ϵ be a fixed constant. For two K-hop ego-networks G_u^K and H_v^K with K being at most $\left\lceil \left(\frac{1}{2} + \epsilon\right) \frac{\log 2n}{\log (r-1)} + 1 \right\rceil$, 2K steps of random walk is sufficient to discriminate the internal substructure of G_u^K and H_v^K .

Substructure-Enhanced 1-WL Algorithm

- K-hop 1-WL Test: A K-hop 1-WL color refinement algorithm iteratively refines node colors using all k-hops neighbors, where $k \in [K]$.
- Subgraph 1-WL Test: A subgraph 1-WL color refinement algorithm hashes the node-induced subgraph instead of direct neighbors.
- SEK 1-WL Test: SEK 1-WL updates node colors using both K-hop neighbors as well as the contextualized internal substructure information.

Theorem 2

SEK 1-WL test is strictly more powerful than K-hop 1-WL test and Subgraph 1-WL test.

Practical Implementation

We provide an implementation of the SEK 1-WL algorithm, namely SEK-GNN. SEK-GNN achieves SOTA performance on a variety of datasets with significantly lower space and time complexity compared with 1-WL subgraph GNNs.

$$\begin{split} m_v^{l,k} &= \operatorname{MESSAGE}_k^l \left(h_v^{l-1}, f\left(G_v^K, G\right), \left\{ \left\{ \left(h_u^{l-1}, f\left(G_u^K, G\right) \right) : u \in \mathcal{N}_G^k(v) \right\} \right\} \right), \\ h_v^{l,k} &= \operatorname{UPDATE}_k^l \left(m_v^{l,k} \right), \\ h_v^l &= \operatorname{COMBINE}^l \left(\left\{ \left\{ h_v^{l,k} : k \in [K] \right\} \right\} \right). \end{split}$$

As shown in the equations, SEK-GNN can be easily implemented using a message-passing framework such as PyTorch Geometric.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

June 1, 2023

Model Architecture

SEK-GNN first extract subgraphs for central node(v_1 in this case) and all contextualized nodes (up to K hops), and utilize $f(\cdot)$ to encode the structural information, then use Eq. 8 to perform message-passing to update the node representation.

Complexity Analysis

Preprocessing

- Space. SEK-GNN only requires $\mathcal{O}(2m)$ space which is on par with standard GNNs. ^a
- Time. SEK-GNN requires $\mathcal{O}(lm)$ time to preprocess $\left\{H^{(t)}\right\}_{t=1}^{l}$ for a l-step random walk(The major bottleneck of our algorithm. However, it only performs one time, and l is a small integer.)

Training/Inference

- Space. Requires $\mathcal{O}(n)$ space which is much more efficient than 1-WL subgraph $\mathsf{GNN}(\mathcal{O}(n^2))$.
- Time. Requires $\mathcal{O}(cn)$ time, also much faster than 1-WL subgraph $\mathsf{GNN}(\mathcal{O}(nm))$.

 $^{^{}a}m$ and n are the number of edges and nodes in graph ${\cal G}$ respectively.

Experiments on Synthetic Datasets

We perform experiments on both synthetic datasets and real-world datasets.

	Gr	aph Propert	ies	Counting Substructures			
Method	Connect.	Diameter	Radius	Tri.	Tailed Tri.	Star	4-Cycle
GIN	-1.9239	-3.3079	-4.7584	0.3569	0.2373	0.0224	0.2185
PNA	-1.9395	-3.4382	-4.947	0.3532	0.2648	0.1278	0.243
PPGN	-1.9804	-3.6147	-5.0878	0.0089	0.0096	0.0148	0.009
GIN-AK+	-2.7513	-3.9687	-5.1846	0.0123	0.0112	0.015	0.0126
K-GIN+	-2.1782	-3.9695	-5.3088	0.1316	0.0813	0.0017	0.0916
KP-GIN+	-4.4322	-3.9361	-5.3345	0.0012	0.0016	0.0014	0.0067
SEK-GIN	-2.6162	-3.6101	-5.6821	0.0031	0.0058	0.0007	0.0032
SEK-PPGN	-4.9883	-4.4438	-5.2273	0.0010	0.0021	0.0020	0.0063

Table: Simulation dataset results. Top two results are highlighted by **First** and **Second**.

Experiments on TU Datasets

Method	MUTAG	PTC-MR	PROTEINS	ENZYMES	BZR	COX2	IMDB-B	IMDB-M
WL	90.4 ± 5.7	59.9 ± 4.3	75.0 ± 3.1	-	78.5 ± 0.6	81.7 ± 0.7	73.8 ± 3.9	50.9± 3.8
RetGK	90.3 ± 1.1	62.5 ± 1.6	75.8 ± 0.6	=		-	71.9 ± 1.0	47.7 ± 0.3
GNTK	90.0 ± 8.5	67.9 ± 6.9	75.6 ± 4.2	=	83.6 ± 2.9	-	76.9 ± 3.6	-
WWL	87.2 ± 1.5	66.3 ± 1.2	74.2 ± 0.5	=	84.4 ± 2.0	78.2 ± 0.4	74.3 ± 0.8	-
FGW	88.4 ± 5.6	65.3 ± 7.9	74.5 ± 2.7	-	85.1 ± 4.1	77.2 ± 4.8	63.8 ± 3.4	-
DGCNN	85.8 ± 1.7	58.6 ± 2.5	75.5 ± 0.9	38.9±5.7	-	-	70.0 ± 0.9	47.8
CapsGNN	86.6 ± 6.8	66.0 ± 1.8	76.2 ± 3.6	=	=	-	73.1 ± 4.8	-
GraphSAGE	85.1 ± 7.6	63.9 ± 7.7	75.9 ± 3.2	-	-	-	72.3 ± 5.3	-
GIN	89.4 ± 5.6	64.6 ± 7.0	75.9 ± 2.8	59.6±4.5	-	-	75.1 ± 5.1	52.3 ± 2.8
GIN-AK+	91.3 ± 7.0	68.20 ± 5.6	77.1 ± 5.7	-	-	-	75.6 ± 3.7	-
GraphSNN	91.57 ± 2.8	66.70 ± 3.7	76.83 ± 2.5	61.7±3.4	88.69 ± 3.2	82.86 ± 3.1	77.86 ± 3.6	-
KP-GIN	92.2 ± 6.5	66.80 ± 6.8	75.80 ± 4.6	-	-	-	76.6 ± 4.2	-
SEK-GIN	92.2± 6.2	$66.86 \!\pm 7.2$	78.32 ± 2.7	61.85 ± 5.1	89.65 ± 3.8	85.89±4.4	76.9 ± 3.8	53.80 ± 3.2
†GIN-AK+	$95.1 \pm\ 6.1$	74.1± 5.9	78.9 ± 5.4	-	-	-	77.3 ± 3.1	-
†GraphSNN	94.70 ± 1.9	70.58 ± 3.1	78.42 ± 2.7	=	91.12 ± 3.0	86.28 ± 3.3	78.51 ± 2.8	-
†KP-GIN	96.1 ± 4.6	76.20 ± 4.5	79.50 ± 4.4	=	=	=	80.7 ± 2.6	-
†SEK-GIN	96.9± 3.6	75.71± 6.4	81.70 ± 2.5	66.12±5.4	93.36± 2.3	89.73±2.5	80.3± 3.2	56.13 ± 3.0

Table: Evaluation result on TU dataset using two different evaluation settings. The first one follows [15], and the second follows [14]. We use † to denote the second setting. Top two results are highlighted by **First** and **Second**.

Experiments on QM9 Dataset

Target	DTNN	MPNN	Deep LRP	PPGN	Nested 1-2-3-GNN	KP-GIN+	SEK-GIN
μ	0.244	0.358	0.364	0.231	0.433	0.367	0.358
α	0.95	0.89	0.298	0.382	0.265	0.242	0.228
ε HOMO	0.00388	0.00541	0.00254	0.00276	0.00279	0.00247	0.00106
$arepsilon_{ extsf{LUMO}}$	0.00512	0.00623	0.00277	0.00287	0.00276	0.00238	0.00229
$\Delta arepsilon$	0.0112	0.0066	0.00353	0.00406	0.0039	0.00345	0.00335
$\langle R^2 \rangle$	17	28.5	19.3	16.7	20.1	16.49	16.91
ZPVÉ	0.00172	0.00216	0.00055	0.00064	0.00015	0.00018	0.00013
U_0	2.43	2.05	0.413	0.234	0.205	0.0728	0.0587
U	2.43	2	0.413	0.234	0.2	0.0553	0.0672
H	2.43	2.02	0.413	0.229	0.249	0.0575	0.073
G	2.43	2.02	0.413	0.238	0.253	0.0526	0.0592
C_v	0.27	0.42	0.129	0.184	0.0811	0.0973	0.0924

Table: Evaluation result on QM9, Top two results are highlighted by **First** and **Second**.

Ablation Study on SEK-GIN

	Substructure counting			Graph property regression				
Method	Tri.	Tailed Tri.	Star	4-cycle	Connect.	Diameter	Radius	
SEK-GIN(#steps=0)	0.1529	0.0891	0.0011	0.0948	-2.215	-2.647	-4.823	
SEK-GIN(#steps=8)	0.0043	0.0059	0.0008	0.0039	-2.439	-3.078	-4.915	
SEK-GIN(#steps=16)	0.0034	0.0061	0.0007	0.0037	-2.555	-3.268	-4.902	
SEK-GIN(#steps=24)	0.0034	0.0068	0.0007	0.0043	-2.765	-3.423	-5.005	
SEK-GIN(#steps=32)	0.0033	0.0066	0.0008	0.0043	-2.663	-3.591	-5.103	

Table: Ablation study on synthetic datasets using SEK-GIN

Method	IMDB-BINARY	PROTEINS	BZR	MUTAG
SEK-GIN(#steps=0)	0.781 ± 0.037	0.790 ± 0.030	0.906 ± 0.021	0.936 ± 0.052
SEK-GIN(#steps=8)	0.791 ± 0.036	$0.796 {\pm} 0.035$	0.911 ± 0.030	0.952 ± 0.039
SEK-GIN(#steps=16)	$0.792{\pm}0.043$	0.803 ± 0.034	0.911 ± 0.019	0.952 ± 0.039
SEK-GIN(#steps=24)	0.785 ± 0.041	0.803 ± 0.029	0.912 ± 0.019	0.952 ± 0.029
SEK-GIN(#steps=32)	0.787 ± 0.034	$0.808 {\pm} 0.027$	$0.921 {\pm} 0.022$	0.958 ± 0.033

Table: Ablation study on TU datasets using SEK-GIN

Training Curves on SubstructureCount Dataset

As illustrated in the figure, incorporating substructure information brings performance gains for all four tasks.

Summarization

Our main contribution is summarized as follows:

- We propose a general notion of substructure encoding function by establishing connections between K-hop message-passing GNNs and 1-WL subgraph GNNs.
- We propose an instantiation of the substructure encoding function by leveraging multi-step random walk. Our proposed structural encoding scheme is effective, parallelizable with theoretical guarantees to extract structural information of subgraphs.
- ullet We propose SEK 1-WL test, which is provably more powerful than Subgraph 1-WL test and K-hop 1-WL test, and is not less powerful than 3-WL test.
- We propose an implementation of SEK 1-WL test, namely SEK-GNN, which
 is easy to implement, and can be naturally incorporated into message
 passing framework with parallelizability and effectiveness. Furthermore,
 SEK-GNN is able to achieve SOTA performance in a variety of datasets with
 significantly lower space complexity than 1-WL subgraph GNNs.

Bibliography I

- [1] Ralph Abboud et al. "The surprising power of graph neural networks with random node initialization". In: arXiv preprint arXiv:2010.01179 (2020).
- [2] Sami Abu-El-Haija et al. "Mixhop: Higher-order graph convolutional architectures via sparsified neighborhood mixing". In: *international conference on machine learning*. PMLR. 2019, pp. 21–29.
- [3] Beatrice Bevilacqua et al. "Equivariant subgraph aggregation networks". In: arXiv preprint arXiv:2110.02910 (2021).
- [4] Cristian Bodnar et al. "Weisfeiler and Lehman go cellular: CW networks". In: Advances in Neural Information Processing Systems 34 (2021), pp. 2625–2640.
- [5] Giorgos Bouritsas et al. "Improving graph neural network expressivity via subgraph isomorphism counting". In: *IEEE Transactions on Pattern Analysis and Machine Intelligence* (2022).

Bibliography II

- [6] Vijay Prakash Dwivedi et al. "Graph neural networks with learnable structural and positional representations". In: arXiv preprint arXiv:2110.07875 (2021).
- [7] Devin Kreuzer et al. "Rethinking graph transformers with spectral attention". In: *Advances in Neural Information Processing Systems* 34 (2021), pp. 21618–21629.
- [8] Derek Lim et al. "Sign and Basis Invariant Networks for Spectral Graph Representation Learning". In: arXiv preprint arXiv:2202.13013 (2022).
- [9] Haggai Maron et al. "On learning sets of symmetric elements". In: International Conference on Machine Learning. PMLR. 2020, pp. 6734–6744.

Bibliography III

- [10] Christopher Morris et al. "Weisfeiler and leman go neural: Higher-order graph neural networks". In: *Proceedings of the AAAI conference on artificial intelligence*. Vol. 33. 01. 2019, pp. 4602–4609.
- [11] Giannis Nikolentzos, George Dasoulas, and Michalis Vazirgiannis. "k-hop graph neural networks". In: *Neural Networks* 130 (2020), pp. 195–205.
- [12] Omri Puny, Heli Ben-Hamu, and Yaron Lipman. "Global attention improves graph networks generalization". In: arXiv preprint arXiv:2006.07846 (2020).
- [13] Guangtao Wang et al. "Multi-hop attention graph neural network". In: arXiv preprint arXiv:2009.14332 (2020).
- [14] Asiri Wijesinghe and Qing Wang. "A New Perspective on" How Graph Neural Networks Go Beyond Weisfeiler-Lehman?"" In: International Conference on Learning Representations. 2021.

Bibliography IV

- [15] Keyulu Xu et al. "How powerful are graph neural networks?" In: arXiv preprint arXiv:1810.00826 (2018).
- [16] Jiaxuan You et al. "Identity-aware graph neural networks". In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35. 12. 2021, pp. 10737–10745.
- [17] Muhan Zhang and Pan Li. "Nested graph neural networks". In: Advances in Neural Information Processing Systems 34 (2021), pp. 15734–15747.
- [18] Lingxiao Zhao et al. "From stars to subgraphs: Uplifting any GNN with local structure awareness". In: arXiv preprint arXiv:2110.03753 (2021).

Thank You for Your Attention!