CS 375 – Analysis of Algorithms

Professor Eric Aaron

Lecture – M W 1:00pm

Lecture Meeting Location: Davis 117

Business

- SA4 out, due Monday, Nov 21
 - Possibility of *very small* SA5 out today too! More on that if it happens
- Expect PS4-Lookahead out soon
 - Likely due after Thanksgiving break
- Project 3 out
 - Deadline extended: Due end of day Nov. 21
 - Note: Assume you have constructors and accessors for the four types of PLEs (not, and, or, implies)—similar to IBTs and LLists
 - Document your function names in your project and use them as usual, as we did for IBTs and LLists
- Project 2 Grading update:
 - In progress, but will be slow (catching up from illness may take a while...)
 - Please *meet with me* if you'd like prompt feedback on any part of Project 2!

Recursion Tree Exercises

- Use the recursion-tree method to solve the following recurrences for $n \ge 1$
 - $T(n) = 3T(n/3) + n \text{ if } n \ge 3; 1 \text{ if } n < 3$
 - $T(n) = 4T(n/2) + n \text{ if } n \ge 2$; 1 if n = 1
 - $T(n) = T(n/2) + n \text{ if } n \ge 2; 1 \text{ if } n = 1$
 - $T(n) = 2T(n/2) + n \text{ if } n \ge 2; 1 \text{ if } n = 1$

Note: These three cases are important—we'll come back to them on a later slide!

- Those last three examples illustrate three different cases:
 - 1. The amount of work per level increases, with the most work done at the leaves of the tree
 - 2. The amount of work per level decreases, with the most work done at the root
 - 3. The amount of work per level is constant—and there are $(\lg n + 1)$ levels in the tree There are $(\lg n + 1)$ levels in all the

There are $(\lg n + 1)$ levels in all three cases, really, but it's of particular importance here

A Recurring Observation

• In general, many divide-and-conquer algorithm runtimes may be expressed as recurrences of the form:

 $T(n) = \begin{cases} \theta(1) & \text{if } n \le k \\ aT(n/b) + D(n) + C(n) & \text{otherwise} \end{cases}$

- Where:
 - a = number of sub-problems
 - n/b = size of a sub-problem
 - D(n) = time to divide the problem into sub-problems
 - C(n) = time to re-combine the sub-problem solutions

D(n) + C(n) might be represented as a single function f(n), i.e., work done at each node in a recursion tree

See Section 4.5 of CLRS

Master Method

- In many common cases, there is a "cookbook" solution available, using the Master Theorem
- Master Theorem:
 - Let a ≥ 1 , b > 1 be constants, f(n) be a function (asymp. positive),...
 - and T(n) be defined by T(n) = a*T(n/b) + f(n) (on non-neg. integers)
 - Then, T(n) can be bounded asymptotically as follows:
 - 1. $T(n) = \theta(n^{\log_b a})$ if $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$
 - 2. $T(n) = \theta(n^{\log_b a} \lg n)$ if $f(n) = \theta(n^{\log_b a})$
 - 3. $T(n) = \theta(f(n)) \qquad \qquad \text{if } f(n) = \Omega(n^{\log_b a + \epsilon}) \text{ for some constant } \epsilon > 0 \\ \text{and if } a^*f(n/b) \leq c^*f(n) \text{ for some constant} \\ 0 < c < 1 \text{ and all sufficiently large } n.$

Master Terminology

- Master Theorem (slightly abridged / elided):
 - Let $a \ge 1$, b > 1, f(n) be a function, T(n) = a*T(n/b) + f(n); then
 - 1. $T(n) = \theta(n^{\log_b a})$ if $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$
 - 2. $T(n) = \theta(n^{\log_b a} \lg n)$ if $f(n) = \theta(n^{\log_b a})$
 - if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$ 3. $T(n) = \theta(f(n))$ and if $a*f(n/b) \le c*f(n)$ for some constant 0 < c < 1 and all sufficiently large n.
- Note: Comparison of f(n) with $n^{\log_b a}$ (or $\theta(n^{\log_b a})$)
- - case 1: f(n) is polynomially smaller than n log_ba
- by b to get O(1)
- case 2: f(n) is asymptotically equal to $n^{\log_b a}$
- case 3: f(n) is polynomially larger than $n^{\log_b a}$
- Also case 3: regularity condition: $a*f(n/b) \le c*f(n)$ for 0 < c < 1 (etc.)
 - Intuition: Amount of work goes down with each recursive call

Master Key

See Section 4.6 for a proof

• Some intuition behind the Master Theorem

This isn't obvious just by looking at

Please talk with me outside of class if you'd like to understand this in detail!

Incomplete Mastery

- Master Theorem (slightly abridged / elided):
 - Let $a \ge 1$, b > 1, f(n) be a function, T(n) = a*T(n/b) + f(n); then
 - 1. $T(n) = \theta(n^{\log_b a})$ if $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$
 - 2. $T(n) = \theta(n^{\log_b a} \lg n)$ if $f(n) = \theta(n^{\log_b a})$
 - 3. $T(n) = \theta(f(n))$ if $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$ and if $a*f(n/b) \le c*f(n)$ for some constant 0 < c < 1 and all sufficiently large n.
- Note: The three cases are not exhaustive! E.g.,
 - f(n) may be smaller than $n^{\log_b a}$, but not polynomially smaller (see cases 1,2)
 - f(n) may be larger than $n^{\log_b a}$, but not polynomially larger (see cases 2,3)
- If the function falls into one of these gaps, or if the regularity condition can't be shown to hold, the Master Method can't be used

An Example

Master Theorem (slightly abridged / elided):

- 1. $T(n) = \theta(n^{\log_b a})$ if $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$
- 2. $T(n) = \theta(n^{\log_b a} \lg n)$ if $f(n) = \theta(n^{\log_b a})$
- 3. $T(n) = \theta(f(n)) \qquad \qquad \text{if } f(n) = \Omega(n^{\log_b a + \epsilon}) \text{ for some constant } \epsilon > 0 \\ \text{and if } a^*f(n/b) \leq c^*f(n) \text{ for some constant} \\ 0 < c < 1 \text{ and all sufficiently large } n.$
- Example: T(n) = 9T(n/3) + n
 - $-a = 9, b = 3, f(n) = n, n^{\log_b a} = n^{\log_3 9} = n^2$
 - So, compare f(n) = n with n^2 : $n = O(n^{2-\epsilon})$
 - ... Thus, case 1 applies: $T(n) = \theta(n^2)$
- Example: T(n) = T(2n/3) + 1
- i.e., f(n) is polynomially smaller than n^{log}ba

More Examples

Master Theorem (slightly abridged / elided):

- $\begin{array}{ll} 1. & T(n) = \theta(n^{log}b^a) & \text{if } f(n) = O(n^{log}b^a \cdot \epsilon) \text{ for some constant } \epsilon > 0 \\ 2. & T(n) = \theta(n^{log}b^a lgn) & \text{if } f(n) = \theta(n^{log}b^a) \\ 3. & T(n) = \theta(f(n)) & \text{if } f(n) = \Omega(n^{log}b^a + \epsilon) \text{ for some constant } \epsilon > 0 \\ & & \text{and if } a^*f(n/b) \leq c^*f(n) \text{ for some constant } \\ & & 0 < c < 1 \text{ and all sufficiently large } n. \end{array}$
- Examples:
 - $T(n) = 3T(n/4) + n \lg n$
 - $T(n) = 2T(n/2) + n \lg n$
 - $T(n) = 2T(n/2) + \theta(n)$
 - $T(n) = 8T(n/2) + \theta(n^2)$
 - $\overline{T(n)} = 7T(n/2) + \theta(\underline{n^2})$

Design	Analysis		
Paradigm	Complexity (Efficiency)	Correctness	
Iterative	Counting (Exact count of operations / space used)	Loop invariants	
Recursive	Solving recurrences	Induction	

The green-shaded ones are examples of *polynomial time* classes—upper bounded by n^k for some constant *k*. Problems solvable in polynomial time are considered *tractable*. (More about this later in the semester!)

Time Complexity Classes Illustrated!

Complexity Class	What we call it	Example algorithms / objects
O(1)	Constant	Print "Hello, World!"; stack operations [and much, much more—be careful!]
O(lg n)	Log time	Binary search
O(n)	Linear	Exhaustive search of an array (linear search); Merge (as used in Mergesort)
O(n lg n)	n lg n	Mergesort; Heapsort [Recall: sorting can be done in θ(n lg n)]
O(n^2)	n-squared; quadratic	Insertion / selection / bubble sort; several graph algos
O(n^3)	n-cubed; cubic	My favorite algorithm! (a graph algo)
O(2^n)	Exponential	Number of subsets of a set of size n
O(n!)	Factorial	Number of orderings / permutations of elements of a list of length n