Devoir maison 1: 20/09/2022

Exercice 1 On définit la suite (u_n) par la relation de récurrence suivante :

$$\begin{cases} u_0 = 1 \\ u_{n+1} = 3u_n - 2n + 3 \end{cases}$$

Démontrer, par récurrence, que :

$$\forall n \in \mathbb{N}, u_n \ge n$$

Initialisation:

On vérifie la propriété au rang n = 0.

On a $u_0 = 1 \ge 0$: *l'initialisation est donc établie.*

Hérédité:

On suppose que la propriété est vraie à un rang $n \ge 0$:

 $u_n \ge n$: c'est l'hypothèse de récurrence

On va montrer qu'elle est vraie au rang n + 1:

$$u_{n+1} = 3u_n - 2n + 3 \ge 3n - 2n + 3$$
 hypothèse de récurrence $\ge n + 3$ $\ge n + 1$

On vient donc d'établir l'hérédité. Par conséquent : $\forall n \in \mathbb{N}, u_n \geq n$.

Exercice 2 On définit la suite (v_n) par la relation de récurrence suivante :

$$\begin{cases} v_0 = 5 \\ v_{n+1} = 4v_n - 3 \end{cases}$$

Démontrer, par récurrence, que :

$$\forall n \in \mathbb{N}, \ v_n = 4^{n+1} + 1$$

Initialisation:

On vérifie la propriété au rang n = 0.

On a $v_0 = 5$ et $4^{0+1} + 1 = 4 + 1 = 5$: l'initialisation est établie.

Hérédité:

On suppose que la propriété est vraie à un rang $n \ge 0$:

$$v_n = 4^{n+1} + 1$$
: c'est l'hypothèse de récurrence

On va montrer qu'elle est vraie au rang n + 1:

$$v_{n+1} = 4v_n - 3 = 4(4^{n+1} + 1) - 3$$
 hypothèse de récurrence
= $4^{n+2} + 4 - 3$
= $4^{n+2} + 1$

On vient donc d'établir l'hérédité. Par conséquent : $\forall n \in \mathbb{N}, \ v_n = 4^{n+1} - 3$.