Aalto University School of Science Bachelor's Programme in Science and Technology

Detecting multilinear monomials with algebraic fingerprints

Bachelor's Thesis

April 12, 2023

Onni Miettinen

Aalto University School of Science

ABSTRACT OF BACHELOR'S THESIS

Bachelor's Programme in Science and Technology

Author:	Onni Miettinen
Title of thesis:	Detecting multilinear monomials with algebraic fingerprints
Date:	April 12, 2023
Pages:	23
Major:	Computer Science
Code:	SCI3027
Supervisor:	Prof. Eero Hyvönen
Instructor:	D.Sc. Augusto Modanese (Department of Computer Science)
abstract to be	
Keywords:	key, words, the same as in FIN/SWE
Language:	English

KANDIDAATINTYÖN TIIVISTELMÄ

Aalto-yliopisto

Perustieteiden korkeakoulu

Teknistieteellinen kandidaattiohjelma

Tekijä:	Onni Miettinen	
Työn nimi:	Detecting multilinear monomials with algebraic fingerprints	
Päiväys:	12. huhtikuuta 2023	
Sivumäärä:	23	
Pääaine:	Tietotekniikka	
Koodi:	SCI3027	
Vastuuopettaja:	Prof. Eero Hyvönen	
Työn ohjaaja(t):	D.Sc. Augusto Modanese (Tietotekniikan laitos)	
abstrakti tulee tähän		
Avainsanat:	avain, sanoja, niitäkin, tähän, vielä, useampi, vaikkei, niitä, niin,	
	montaa, oikeasti, tarvitse	
Kieli:	Englanti	

Contents

1	Introduction			5		
	1.1	Resea	arch goals and thesis structure	5		
	1.2	Algeb	rization of combinatorial problems	6		
	1.3	Reduc	cing k -3D matching into multilinear monomial detection	7		
2	Rela	elated works				
3	Pre	liminar	ies	9		
	3.1	Group	ps, rings and fields	9		
	3.2	Notat	ion and other terminology	10		
4	Gen	eral m	ultilinear monomial detection	11		
	4.1	Proble	em definition	11		
	4.2	Algeb	raic fingerprinting	12		
		4.2.1	Specifications for the algebra	13		
		4.2.2	Using group algebras of \mathbb{Z}_2^k	14		
		4.2.3	Fingerprints to prevent unwanted cancelation	15		
		4.2.4	Polynomial identity testing	16		
	4.3	Algeb	raic fingerprinting as a framework for parameterized problems	17		
		4.3.1	Time and space complexity	17		
		4.3.2	Implementation	17		
		4.3.3	Limits of the framework	17		
	4.4	Findi	ng the solution	18		
5	Imp	roving	algebraic fingerprinting	19		
	5.1	Finge	rprinting for cancelation of non-solutions	19		
	5.2	Parall	lelizing multilinear monomial detection	20		
6	Con	clusion	ι	21		
Re	References					

1 Introduction

In recent years, there have been rapid advances in the algorithms for combinatorial problems. This has been greatly sparked by the development in algebraic techniques for solving the multilinear monomial detection problem, i.e., finding whether a multivariate polynomial contains a multilinear monomial, first introduced by Koutis in [Kou05], where the set packing problem is reduced to multilinear monomial detection.

Namely, the technique of algebraic fingeprinting, first introduced in [Kou08] and further developed in [Wil09], has found great success for many combinatorial problems. For example, with algebraic fingerprinting, the k-path problem that previously could be solved in $\mathcal{O}^*(4^k)$ time by Chen et al. in [Che+07], could be solved in $\mathcal{O}^*(2^{3k/2})$ time in [Kou08]. This result was quickly improved in [Wil09], where an $\mathcal{O}^*(2^k)$ algorithm was given.

Of course, this technique was further developed, and soon after in [Bjö14] Björklund et al. showed an algorithm AM: This technique was further developed by Björklund [Bjö14], who showed ... that solved the Hamiltonian problem (Hamiltonicity), i.e., finding whether a given graph contains a simple path that visits every vertex, in $\mathcal{O}^*(1.657^n)$ time. Soon enough, for k-path, an $\mathcal{O}^*(1.66^k)$ algorithm was found [Bjö+17]. The fastest algorithms for Hamiltonicity before this ran in $\mathcal{O}^*(2^n)$ and were known since 1962 [HK62], [Bel62]. This was a significant improvement on a problem that had seen no progress in nearly fifty years.

1.1 Research goals and thesis structure

AM: This section can be shortened to one paragraph

The goals of this thesis are to find out how multilinear monomial detection is relevant in combinatorial problems, and how algebraic fingerprints can be utilized to design faster algorithms for problems that use multilinear monomial detection. Also, interesting ideas regarding algebraic fingerprints are explored for.

Multilinear monomial detection is a fundamental problem, since many important combinatorial problems can be reduced into it via a problem specific algebraization. Thus, faster algorithms and new ideas for multilinear monomial detection are important.

Multilinear monomial detection is essentially searching for solutions among non-solutions, both of which are encoded as monomials in a polynomial. The technique of algebraic fingerprinting is present in multilinear monomial detection. With algebraic fingerprints, unwanted cancelation of solution monomials due to the characteristic of a field can be prevented. Moreover, algebraic fingerprints can be used to cancel non-solution monomials by abusing the characteristic.

AM: What is the meaning of $\mathcal{O}^*()$?

AM: Note use of \citeauthor AM: Did Björklund really develop the technique further? or did he only show how to apply it to another problem? AM: n or k?

AM: No need for this since you already have ToC In the next subsections, the thesis discusses algebraization and reduction into multilinear monomial detection. The section 2 covers preliminaries. In section 3, the thesis discusses general multilinear monomial detection. In section 4, some problem specific instances of multilinear monomial detection are given, and clever utilizations of algebraic fingerprints are shown. Section 5 concludes the thesis.

1.2 Algebrization of combinatorial problems

A combinatorial problem asks whether a given finite set of objects satisfies some given constraints. For example, the k-path problem asks for, given a finite set of vertices and edges, a simple path of k vertices. The solutions and non-solutions (solution space) to combinatorial problems can be thought of as combinations of the given objects. The solution space for the k-path problem consists of combinations of k vertices and k-1 edges. A non-solution combination would contain duplicate vertices, or edges that contain vertices outside the combination.

AM: Probably one can drop the vertices and think only about edges?

AM: This sounds like a very simple problem... But I guess the catch is that we want an algorithm with complexity depending only on k?

Algebraization is reducing a given problem into an algebraic form, i.e. AM: that is, a question regarding some algebraic property of some algebraic entity. In an algebraization of a combinatorial problem, the algebraic entity can be constructed from algebraic elements defined from the set of objects given as an input. The motivation behind the construction is some algebraic property that, when satisfied, gives a solution to the problem.

In [Val92], it was observed that multivariate polynomials in certain algebras have natural combinatorial interpretations. Utilizing this idea, [Kou05] managed to reduce a combinatorial problem into an algebraic form, that is, multilinear monomial detection. First, we introduce multiple variables that correspond to elements from the set of objects given as input. Then, we construct an arithmetic circuit representing a multivariate polynomial, such that it encodes all solutions and non-solutions as multivariate monomials, with multilinear monomials corresponding to solutions. Thus, the task of finding a satisfying combination to the combinatorial problem has been reduced to finding a multilinear monomial from the multivariate polynomial. It follows that a decision problem is answered by the existence of a multilinear monomial, and a counting problem by the number of multilinear monomials.

AM:
Somewhere
we need to
reference the
reader to
Sect. 2 for
non-familiar
terms like
multivariate,
algebras, etc.

Appropriate definitions for the variables are problem-specific. In the following section, this thesis gives a reduction into multilinear monomial detection, shown in [KW15], for the k-3D matching problem. Another simple example can be found, for the set packing problem, in [Kou05].

AM: I would merge the two sections and use the k-3D matching as an example to the explanation above

1.3 Reducing k-3D matching into multilinear monomial detection

The k-3D matching problem is defined as follows:

k-3D matching

Input: Three disjoint sets A, B and C, and a set of triples $T \subset A \times B \times C$.

Question: Is there a subset $M \subseteq T$, such that |M| = k and $\forall m \in M$: None of the

elements in m appear in $M \setminus \{m\}$ AM: $M \setminus \{m\}$

We begin by defining new variables corresponding to the elements in A, B and C, labeled as a_i , b_j and c_k , respectively, where $i \in [|A|]$, $j \in [|B|]$ and $k \in [|C|]$.

For every triple $t \in T$, we define a multilinear monomial x that is a product of the elements in t. We introduce a set X that satisfies the following:

$$\forall x \in X : x = abc : (a, b, c) \in T.$$

AM: Probably meant $\forall x \in X, x = abc...$?

Next, we define multivariate polynomials P_1 and P_k as follows:

$$P_1 = \sum_X , P_k = P_1^k.$$

Following this construction, we observe that P_k , when expanded into a sum of multivariate monomials, contains a multilinear term if and only if the original k-3D matching instance can be answered in the positive. Furthermore, every multilinear monomial in the expanded P_k corresponds to a solution to the problem, and the solutions can be directly found from the variables in the multilinear monomial. Thus, a successful reduction into multilinear monomial detection has been given for the k-3D mapping.

An example instance of k-3D matching with this exact algebraization can be found in [KW15]. TODO: show the example here

AM: Use \setminus instead of \backslash AM: T = $A \times B \times C$ not allowed? AM: Either convert \forall into text or what follows into maths AM: Def. of $|\cdot|$? AM: Over what object are we doing

multiplication?

AM: Use ∖[

display math

Meaning of

... \] for

AM:

 \sum_X ?

2 Related works

TODO: go through publications that utilize this algebraic fingerprinting technique, and problems that reduce to multilinear detection

3 Preliminaries

It is necessary to recall basic algebraic concepts before further discussing multilinear monomial detection and algebraic fingerprinting. section 3.1 gives definitions for a group, ring and field, and some useful concepts regarding them. section 3.2 goes through other notation and terminology used throughout the thesis.

3.1 Groups, rings and fields

A group **G** is a tuple (G, +), where G is a set of elements, $+: G \times G \to G$ is a binary operation closed under the elements in G, + is associative, every element $g \in G$ has an inverse $g^{-1} \in G$, and G contains an identity element e such that g + e = g, $g + g^{-1} = e$ and $e = e^{-1}$. Moreover, **G** is called *Abelian* if + is also commutative.

A ring **R** is a tuple (R, \cdot) AM: $(R, +, \cdot)$, where R = (G, +) is an Abelian group, \cdot : $G \times G \longrightarrow G$ is a binary operation closed under G. We call the binary operations + and \cdot addition and multiplication, respectively. Note, that from here on we use R as the set of elements defined for **R**. In general, a bold typeface **X** represents a group, ring or field and X its set of elements. R must contain a multiplicative identity $\mathbf{1} \in R$ such that $\forall a \in R$: $a \cdot \mathbf{1} = a$. We notate the additive identity e required for the group as e0 from here on. Observe, that for any $R \neq \{0\}$, e1 defined and right distributive laws hold for rings, i.e.,

AM: There is also \mathbf AM: See TeX source AM: I think $e = e^{-1}$ follows from the other requirements (but that is not so important)

$$\forall a, b, c \in R: \ a \cdot (b+c) = (a \cdot b) + (a \cdot c) \wedge (b+c) \cdot a = (b \cdot a) + (c \cdot a).$$

 $u \in R$ is called *unit* if it holds that $\exists v \in R$: $u \cdot v = v \cdot u = 1$, i.e., it has a multiplicative inverse $v \in R$.

A field $\mathbf{F} = (F, +, \cdot)$ is defined with the following conditions:

- (F, +) is an Abelian group
- $(F \setminus \{0\}, \cdot)$ is an Abelian group
- ullet Left and right distributive laws hold for ${f F}$

Equivalently, a ring is a field if every non-zero element is unit, $1 \neq 0$, and multiplication is commutative. The *characteristic* of a field **F** is defined as follows:

$$char(\mathbf{F}) = \begin{cases} min\{n \in \mathbb{N} : n \cdot \mathbf{1} = \mathbf{0}\} \\ 0 & \text{if such } n \text{ does not exist} \end{cases}$$
 (1)

Note, that a field **F** with characteristic 2 satisfies the following:

$$\forall u \in F: u + u = u \cdot (\mathbf{1} + \mathbf{1}) = u \cdot \mathbf{0} = \mathbf{0}$$

TODO: group algebra, polynomial ring, linear dependency, "cancelation due to characteristic", Galois field, "multiplicative group"

3.2 Notation and other terminology

TODO: create a table or like, list terms: multilinearity, multivariety, sum of monomials form & generating form (arithmetic circuit) of polynomial, degree of multivariate monomial, \mathcal{O} , Θ , FPT, \mathcal{O}^* , determinism & non-determinism [or use 'Monte Carlo':)], Schwartz-Zippel lemma

AM: Standard \mathcal{O} and Θ notation should be known

4 General multilinear monomial detection

The detection of multilinear monomials in a multivariate polynomial is a fundamental problem, since many important problems can be reduced to it [TODO: quick examples (just refs?)]. Therefore, any progress in general multilinear monomial detection directly implies faster algorithms for all problems, that are reduced to and solved with general multilinear monomial detection. TODO: relate to section 2: related works

In this section, we first define the parameterized multilinear monomial detection problem, and give some non-algebraic background on solving it. Then in Section 4.2, we discuss the algebraic ideas by Koutis and Williams [Kou08; Wil09; KW15]. Section 4.2 is long, but the overall idea as a general framework for parameterized problems is summarized and discussed in Section 4.3. Finally, we briefly discuss finding the solution when its existence is detected in Section 4.4.

AM: These problems should "live" in their own subsection, then you can just call them "problems from Sect. X.Y"

4.1 Problem definition

The general, parameterized multilinear monomial detection problem is defined as follows:

k-multilinear monomial detection

Input: A commutative arithmetic circuit A over a set of variables X representing a

polynomial P(X).

Question: Does the polynomial P(X) extended as a sum of monomials contain a

multilinear monomial of degree k?

AM:
Arithmetic
circuit has
bounded or
unbounded
fan-in /
fan-out?

Clearly, an upper bound for solving the problem is given by a naive expansion of A into P(X) and evaluation of P(X). However, this is not optimal: an N-degree polynomial will have $2^{\Theta(N)}$ possible monomials, and most problems that can use this algebraization, have been solved with faster algorithms. This motivates the detection of multilinear monomials without fully expanding A into a sum of monomials.

Since only multilinear terms are important in P(X), any squared variable can be instantly discarded as soons as it is formed in A. This can be achieved with dynamic programming to create a polynomial P'(X) that only contains multilinear monomials. Since there are 2^N multilinear monomials in P'(X) with N variables, this method results in a faster algorithm than with naive expansion.

AM: but still exponential

However, the underlying problems are usually FPT. This implies that scaling exponentially with the number of variables is far from optimal. In order for the complexity of the algorithm to scale with the parameter k, we can reduce the number of variables by mapping X into Y, where $|X| \ge |Y|$ and $|Y| \propto k$, and dynamically evaluate P(Y) instead of P(X).

AM: Def?

AM: P is unchanged, so it still expects |X| arguments...?

However, since $|X| \geq |Y|$, a multilinear monomial in P(X) may not be multilinear in P(Y). For an algorithm to detect a multilinear monomial, it is necessary to use different mappings from X into Y until a multilinear monomial survives the mapping. However, the probability that any given multilinear monomial survives this mapping is around $e^{-|Y|}$ [KW15]. This implies that $\mathcal{O}(e^{|Y|})$ random mappings must be tried for a multilinear monomial to survive with a reasonable constant probability. Thus, a k-multilinear monomial is detected with a non-deterministic algorithm in $\mathcal{O}^*((2e)^{|Y|})$ time, where $|Y| \propto k$.

AM: randomized

This is essentially the idea behind color coding introduced by Alon, Yuster, and Zwick [AYZ95]. Although here given in this algebraic form for the k-multilinear monomial detection, color coding is combinatorial, and does not rely on algebraic techniques. However, since k-multilinear monomial detection is a purely algebraic problem, it is reasonable to conjecture that there is an algebraic method for solving it.

Indeed, a faster algebraic method exists; the technique of algebraic fingerprinting first introduced by Koutis [Kou08] and further developed by Williams [Wil09] solves k-multilinear monomial detection in $\mathcal{O}^*(2^k)$ time. Since the technique focuses on the abstract k-multilinear monomial detection, to which most parameterized problems can be reduced to, it gives a general framework for solving parameterized problems [KW15].

OM: I think this should maybe be in the introduction section rather than here? AM: I agree

4.2 Algebraic fingerprinting

The idea of discarding squared variables as soon as they are formed in A can be expressed algebraically: any squared variable should be identical to zero.

AM: Quotient

$$\forall x \in X : x^2 = \mathbf{0} \tag{2}$$

This implies that any non-multilinear monomial will evaluate to zero in P(X), since any non-multilinear monomial q, assuming commutativity, can be written as x^2q' for some $x \in X$, and $x^2q' = \mathbf{0}q = \mathbf{0}$. Therefore, P(X) will identically evaluate to zero if there are no multilinear monomials, i.e., there exist no solutions to the original problem.

This is the basis of algebraic multilinear monomial detection introduced by Koutis [Kou08], or later referred to as algebraic fingerprinting [KW15]: we evaluate P(X) over some algebra \mathbf{G} , and detect a multilinear monomial from the value returned by this evaluation. Ideally, with any $\gamma \colon X \to G$, P(X') representing P(X) over \mathbf{G} by γ and $w \neq \mathbf{0}$,

$$P(X') = \begin{cases} \mathbf{0} & \text{if no multilinear monomials exist} \\ w & \text{otherwise} \end{cases}$$
 (3)

In the following subsections, we specify an appropriate algebra such that (3) is met, as well as some requirements for efficiency. Then, we discuss the works of Koutis and Williams

[Kou08; Wil09], and see how these specifications were implemented.

This thesis refers to the general framework [KW09; KW15] by these authors as algebraic fingerprinting. However, algebraic fingerprinting can also be used to refer to the idea behind solving a problem with multilinear monomials canceling out due to characteristic, which is discussed here in Section 4.2.3.

4.2.1 Specifications for the algebra

We have arrived at an important task for multilinear monomial detection: find a field G for the assignment $\gamma \colon X \to G$ to meet (2) and thus the first equality in (3). We specify for fields since rings are not enough for multilinear monomial detection; G should have commutative multiplication in order for (2) to be effective. The ordering of indeterminates in monomials is generally unknown, since the specific algebrization into multilinear monomial detection is abstracted away.

For the second equality in (3), it is necessary that multilinear monomials in P(X) can map to multilinear monomials in P(X'), i.e., it must be that $k \leq |G|$, where k is the degree of the monomials. Moreover, multilinear monomials should not evaluate to $\mathbf{0}$ over \mathbf{G} , and more specifically, w should not be identical to $\mathbf{0}$.

These are the necessary specifications for the field G for algebraic multilinear monomial detection. However, this algebraic detection must be faster than color coding for it to be useful. Therefore, further requirements are necessary: (a) the binary operations of G must be fast for a fast evaluation of P(X'), and (b) multilinear monomials must survive the assignment γ with a reasonable constant probability. We may specify a reasonable probability as something around at least 1/4, since that is the probability of survival reached in the original work for algebraic fingerprinting [Kou08].

Recall that with color coding, multilinear monomials can be detected with a randomized algorithm in $\mathcal{O}^*((2e)^k)$ time. Thus for (a), we may specify for the evaluation of P(X') to take $\mathcal{O}^*(2^k)$ time. The polynomial P(X) will have at most 2^k multilinear monomials. Therefore, it is necessary that the binary operations of \mathbf{G} take polynomial time.

With (b), recall that multilinear monomials survive color coding with probability e^{-k} . With algebraic fingerprinting, although not identical to zero, a multilinear monomial can still evaluate to zero over \mathbf{G} . However, if we specify for a constant probability of survival, we can reliably decide whether a multilinear monomial exists by evaluating P(X) in \mathbf{G} over a constant number of randomized assignments $X \to \mathbf{G}$. Relating to color coding, this would essentially remove the e^k factor in $\mathcal{O}^*((2e)^k)$.

To restate, we now have to find such a field G that meets the following specifications:

•
$$\forall g \in \mathbf{G} \colon g^2 = \mathbf{0}$$

- Operating over **G** should be fast, i.e., evaluating P(X') should take $\mathcal{O}^*(2^k)$ time.
- Multilinear monomials should evaluate to non-zero through a random assignment $\gamma \colon X \to \mathbf{G}$ with a reasonable constant probability.

In the work that introduced this algebraic fingerprinting technique [Kou08], Koutis used the group algebra $\mathbb{Z}_2[\mathbb{Z}_2^k]$. Williams developed the technique further, utilizing the algebra $GF(2^{3+log_2(k)})[\mathbb{Z}_2^k]$ [Wil09]. Next, we look at these group algebras of \mathbb{Z}_2^k for \mathbf{G} .

4.2.2 Using group algebras of \mathbb{Z}_2^k

The multiplicative group \mathbb{Z}_2^k consists of k-dimensional $\{0,1\}$ -vectors with the binary operation defined as component-wise addition modulo 2. For example with k=3,

$$egin{bmatrix} 0 \ 0 \ 1 \end{bmatrix} \cdot egin{bmatrix} 0 \ 0 \ 1 \end{bmatrix} = egin{bmatrix} 0 \ 0 \ 0 \end{bmatrix} = \mathbf{0} \in \mathbb{Z}_2^3.$$

Observe that in general, every element in \mathbb{Z}_2^k is its own inverse:

$$\forall z \in \mathbb{Z}_2^k \colon z^2 = \mathbf{0}. \tag{4}$$

Recall that the elements of a group algebra $\mathbf{F}[\mathbb{Z}_2^k]$ are linear combinations of the form

$$\sum_{v \in \mathbb{Z}_2^k} a_v v,$$

where $a_v \in \mathbf{F}$. From here on, we note the identity of \mathbb{Z}_2^k as v_0 , additive and multiplicative identities of \mathbf{F} as $\mathbf{0}_F$ and $\mathbf{1}_F$, respectively, and use $\mathbf{0}$ and $\mathbf{1}$ for $\mathbf{F}[\mathbb{Z}_2^k]$. Note that $\mathbf{1} = v_0$, and $\mathbf{0}$ corresponds to the element $\sum_{v \in \mathbb{Z}_2^k} a_v v$, where $a_v = \mathbf{0}_F$.

In [Kou08], Koutis assigned X to elements of the form $(v_0 + v_i) \in \mathbf{F}[\mathbb{Z}_2^k]$, such that for every $x_i \in X$, a random $v_i \in \mathbb{Z}_2^k$ is independently and uniformly picked for the assignment $x_i \to (v_0 + v_i)$. We note the assigned values as \overline{X} , and the resulting polynomial as $P(\overline{X}) \in \mathbf{F}[\mathbb{Z}_2^k]$. Koutis observed that due to (4), for all $v \in \mathbb{Z}_2^k$ and $(v_0 + v) \in \mathbf{F}[\mathbb{Z}_2^k]$,

$$(v_0 + v)^2 = v_0^2 + v_0 v + v v_0 + v^2 = v_0 + v + v + v_0 = 2v_0 + 2v.$$

This implies that if we pick a field with characteristic 2 for \mathbf{F} , $\forall v_i \in \mathbb{Z}_2^k \colon (v_0 + v_i)^2 = \mathbf{0}$. Thus, non-multilinear monomials in P(X) vanish in $P(\overline{X})$, and the first equation in (3) will hold.

However, if **F** has characteristic 2, the second equation of (3) does not necessarily hold, and it may be that $w = \mathbf{0}$. Multilinear monomials may cancel each other out in $\mathbf{F}[Z_2^k]$, since they may have even leading coefficients in P(X). Next, we see how Koutis approached this problem.

4.2.3 Fingerprints to prevent unwanted cancelation

Indeed, if we take the example in Section 1.3, we notice that the multilinear monomials have even coefficients, and thus would cancel out in $\mathbf{F}[Z_2^k]$ due to characteristic. TODO: write the example in the section and then add here some example polynomial from there that has even coefficients

In general, when k is even, multilinear monomials will have even coefficients.

To tackle this issue, one idea is to add auxiliary indeterminates, called *fingerprints* [KW15], to the monomials in order to make them unique. For example, let $S = \{s_1, s_2, ...\}$ be the set of an appropriate number of fingerprints and augment them to (EXAMPLE POLYNOMIAL) as follows: (TODO: add fingerprinted polynomial here)

Then, the algorithm could assign every $a \in X \cup S$ to $\mathbf{F}[\mathbb{Z}_2^k]$. With this, non-multilinear monomials will still vanish, but multilinear monomials will not identically cancel each other out when k is even.

However, introducing new indeterminates raises the degree of multilinear monomials. Therefore, it increases the probability that variables in a multilinear monomial are assigned the same value from $\mathbf{F}[Z_2^k]$, which results in the multilinear monomial evaluating to zero with higher probability. Raising the dimension of \mathbb{Z}_2^k , however, would exponentially slow down matrix multiplications which are important for efficiency in the full algebraic framework (see Section 4.3).

Koutis approached this problem by assigning fingerprints to a different algebra: he used $S \to \mathbb{Z}_2$ and set $\mathbf{F} = \mathbb{Z}_2$ [Kou08]. Note that \mathbb{Z}_2 has characteristic 2. With this, Koutis essentially assigns multilinear monomials a coefficient randomly from $\{\mathbf{0}_F, \mathbf{1}_F\}$. The idea is that a multilinear monomial, assigned with the fingerprint $\mathbf{1}_F$, survives the cancelation due to characteristic if the canceling pair is assigned $\mathbf{0}_F$. With randomized assignments $S \to \mathbb{Z}_2$, there is a constant probability (TODO: what is the probability?) that a multilinear monomial will have an odd coefficient, and thus survive the assignment [Kou08].

In practise, fingerprints can be implemented into the algebrization as follows [Wil09]: for every multiplication gate G_i in the arithmetic circuit A for P(X), pick a unique $s_i \in S$. Insert a new multiplication gate $\overline{G_i}$ that takes as input s_i and the output of G_i . The output of $\overline{G_i}$ feeds to the gates that read the output of G_i . We note the new polynomial represented by this circuit as P(X, S). Note that here, Koutis picked random elements from \mathbb{Z}_2 instead of picking unique fingerprints s_i .

In another perspective, we may look at algebraic fingerprinting as polynomial identity testing. That is, we compute P(X, S) over assignments $X \to \mathbf{F}[\mathbb{Z}_2^k]$ into $P(\overline{X}, S)$, i.e., compute until the gates $\overline{G_i}$. Imagine we stop here in the circuit before assigning the

fingerprints S to some algebra and continuing with the multiplication. Now, deciding whether a multilinear monomial exists in P(X) is essentially given by whether the polynomial $P(\overline{X}, S) \in \mathbf{F}[\mathbb{Z}_2^k]$ is identical to $\mathbf{0}$, i.e., with Φ representing the family of mappings $S \to \mathbf{F}$,

$$\forall \phi \in \Phi \colon P(\overline{X}, \phi(S)) = \mathbf{0}.$$

4.2.4 Polynomial identity testing

POLYNOMIAL IDENTITY TESTING

Input: An arithmetic circuit C that computes the polynomial Q(S).

Question: Is Q(S) identical to the zero polynomial?

We frame $P(\overline{X}, S)$ as $Q(S) \in \mathbf{F}[\mathbb{Z}_2^k]$. Here, it is necessary to test whether Q(S) is identical to zero modulo 2, since we used characteristic 2 to eliminate the underlying non-multilinear monomials in $P(\overline{X}, S)$.

Thus, multilinear monomial detection is reduced via algebraic fingerprinting to polynomial identity testing, where a multilinear monomial is detected if $Q(S) \neq \mathbf{0}$ over $\mathbf{F}[\mathbb{Z}_2^k]$ with any field \mathbf{F} of characteristic 2. We note the family of assignments $S \to \mathbf{F}$ as Φ .

Assume multilinear monomials exist in P(X). Koutis achieved to detect a multilinear monomial with a probability (1/4 + 1/4k) by testing whether $Q(S) = \mathbf{0}$ over the field $\mathbf{F} = \mathbb{Z}_2$ with randomized assignments $S \to \mathbb{Z}_2$ [Kou08]. Williams developed the technique of algebraic fingerprinting further by observing that due to the Schwartz-Zippel lemma, if we raise the order of the field \mathbf{F} such that the number of different assignments in Φ is much larger than the number of assignments $\phi \in \Phi$ that have $Q(\phi(S)) = \mathbf{0}$, $Q(\delta(S)) \neq \mathbf{0}$ with a high probability over some $\delta \in \Phi$ [Wil09].

Of course, **F** must have characteristic 2. For this, Williams used the field $GF(2^{3+log_2k})$ [Wil09]. By Schwartz-Zippel lemma, Q(S) evaluates to **0** over a random assignment $S \to GF(2^{3+log_2k})$ with probability at most $1/2^3$ [Wil09]. For the k-path problem, Koutis gave a randomized $\mathcal{O}^*(2^{3k/2})$ time algorithm [Kou08], and Williams developed this into a randomized $\mathcal{O}^*(2^k)$ time algorithm [Wil09] with the ideas discussed here.

TODO: talk briefly about the other requirement (fast operations), results in a $\mathcal{O}^*(2^k)$ time algorithm.

In the following section, we see this as a whole and look further into implementing this stuff. TODO: rephrase

4.3 Algebraic fingerprinting as a framework for parameterized problems

From Section 2, it can be seen that a fast algorithm for k-multilinear monomial detection gives a fast algorithm for many parameterized combinatorial problems. Thus, we may say that algebraic fingerprinting gives a general framework for parameterized combinatorial problems.

In Section 4.2, we discussed the idea behind algebraic fingerprinting: generate a polynomial P(X) from the algebrization of a combinatorial problem, and evaluate P(X) over $GF(2^{3+log_2k})[Z_2^k]$ with randomized assignments $X \to GF(2^{3+log_2k})[Z_2^k]$ of form $x_i \to (v_0 + v_i)$, augmented with scalar multiplications by elements randomly chosen from $GF(2^{3+log_2k})$. This gives a randomized algorithm for k-multilinear monomial detection that runs in $\mathcal{O}^*(2^k)$ time.

This section gives a general overlook on algebraic fingerprinting as a framework for parameterized problems. First, we discuss the time and space complexities of algebraic fingerprinting. Then, we go over an example implementation of algebraic fingerprinting for the k-path problem. Finally, we discuss the limits of this technique: the chosen algebra $GF(2^{3+log_2k})[Z_2^k]$ is optimal for the general multilinear monomial detection.

OM: give all the numbers here?

4.3.1 Time and space complexity

TODO: Probably something about the circuits (time and space complexity of operations) TODO (when talking circuits): arithmetic circuits have addition gates with unbounded fan-in, multiplication gates of fan-in two, no scalar multiplication (augment scalar multiplication (fingerprints) "later")

4.3.2 Implementation

TODO: give an example how to get an algorithm, e.g., for k-path?

4.3.3 Limits of the framework

SHORT SECTION

TODO: explain the limit in general multilinear detection with this algebraic framework (impossible to find better algebra than what is used for the current fastest k-mld algorithm), [KW09]

4.4 Finding the solution

SHORT SECTION

Multilinear monomial detection has only been given as a detector for a solution, i.e., a decision algorithm. Talk about actually finding the solution.

[Kou08] gives an algorithm that solves the decision problem for k-path k-path is found probably with $\mathcal{O}^*(n + min(k^2, m))$ applications of the algorithm.

[Wil09] solves the decision problem for k-path. [Wil09] also gives an algorithm that finds a path when it is known that a k-path exists.

AM: Yes, but probably restrict it to ~ 1 page (there is enough content as it is)

5 Improving algebraic fingerprinting

As mentioned in Section 4.3.3, the algebraic fingerprinting framework proposed by Koutis and Williams [Wil09; KW15] for k-multilinear monomial detection has a lower bound of $\mathcal{O}^*(2^k)$. However, this framework AM: is very generic since it approaches the abstract multilinear monomial detection without utilizing the combinatorial properties specific to the underlying problem. The idea of adding auxiliary fingerprint variables in the algebrization, though, has potential for these properties. TODO: rephrase more clearly

AM: O and "lower bound" don't go well together

Indeed, faster algorithms have been found by designing new algebrizations with techniques similar to algebraic fingerprinting, where the fingerprints are designed to abuse the underlying combinatorial properties. In section 5.1, we show how Björklund [Bjö14] exploited the cancelation due to characteristic to cancel non-solution monomials by clever design of fingerprints.

AM: for...?
AM: make use of

Furthermore, the evaluation of the polynomial in the algebraic fingerprinting framework is done sequentially. However, the matrix representations of the group algebras used in [Wil09] offer possibilities for parallelization. In section 5.2, AM: we discuss the ideas of Ekanayake et al. behind the distributed multilinear monomial detection [Eka+19] (are discussed) AM: .

5.1 Fingerprinting for cancelation of non-solutions

TODO: go over Björklund et al. for k-path or Hamiltonicity, managed to design fingerprints such that non-solutions cancel

In the algebraic framework by Koutis and Williams, fingerprints prevent the cancelation of multilinear monomials. Attacking the Hamiltonian path problem, however, Björklund designed fingerprints such that non-multilinear monomials, i.e. non-solution terms, cancel due to characteristic, while the multilinear terms remain with constant probability [Bjö14]. This resulted in the current fastest algorithm for undirected Hamiltonicity, running in $\mathcal{O}^*(2^n)$ time.

Before discussing the algebrization and the fingerprints, we define the Hamiltonian path problem.

HAMILTONIAN PATH (HAMILTONICITY)

Input: A directed graph G = (V, E).

Question: Does G contain a simple path that visits every vertex?

TODO: give the algebrization and/or show how it works

5.2 Parallelizing multilinear monomial detection

AM: Probably very ambitious to describe the full thing here... (You already need to focus on getting the details right in Sects. 4 and 5.1.) Maybe instead just give a broad picture of what other things people have considered? (unless this is really the only other thing out there)

TODO

6 Conclusion

TODO: conclude

References

- [AYZ95] Noga Alon, Raphael Yuster, and Uri Zwick. "Color-Coding". In: J. ACM 42.4 (July 1995), pp. 844-856. ISSN: 0004-5411. DOI: 10.1145/210332.210337. URL: https://doi.org/10.1145/210332.210337.
- [Bel62] Richard Bellman. "Dynamic programming treatment of the travelling salesman problem". In: *Journal of the ACM (JACM)* 9.1 (1962), pp. 61–63.
- [Bjö14] Andreas Björklund. "Determinant Sums for Undirected Hamiltonicity". In: SIAM Journal on Computing 43.1 (2014), pp. 280–299. DOI: 10.1137/110839229. eprint: https://doi.org/10.1137/110839229. URL: https://doi.org/10.1137/110839229.
- [Bjö+17] Andreas Björklund et al. "Narrow sieves for parameterized paths and packings". English. In: *Journal of Computer and System Sciences* 87.C (2017), pp. 119–139. DOI: 10.1016/j.jcss.2017.03.003.
- [Che+07] Jianer Chen et al. "Improved Algorithms for Path, Matching, and Packing Problems". In: *Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms*. SODA '07. New Orleans, Louisiana: Society for Industrial and Applied Mathematics, 2007, pp. 298–307. ISBN: 9780898716245.
- [Eka+19] Saliya Ekanayake et al. "MIDAS: Multilinear detection at scale". In: J. Parallel Distributed Comput. 132 (2019), pp. 363-382. DOI: 10.1016/j.jpdc.2019.04. 006. URL: https://doi.org/10.1016/j.jpdc.2019.04.006.
- [HK62] Michael Held and Richard M. Karp. "A Dynamic Programming Approach to Sequencing Problems". In: Journal of the Society for Industrial and Applied Mathematics 10.1 (1962), pp. 196–210. DOI: 10.1137/0110015. eprint: https://doi.org/10.1137/0110015.
- [Kou05] Ioannis Koutis. "A faster parameterized algorithm for set packing". In: Information Processing Letters 94.1 (2005), pp. 7-9. ISSN: 0020-0190. DOI: https://doi.org/10.1016/j.ipl.2004.12.005. URL: https://www.sciencedirect.com/science/article/pii/S0020019004003655.
- [Kou08] Ioannis Koutis. "Faster Algebraic Algorithms for Path and Packing Problems". In: Automata, Languages and Programming. Ed. by Luca Aceto et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 575–586. ISBN: 978-3-540-70575-8.

AM: No need for URL if you have DOIs, also no need for ISSNs
AM: You should use math style in the title of [Wil09]
AM: use

dblp.org

- [KW09] Ioannis Koutis and Ryan Williams. "Limits and Applications of Group Algebras for Parameterized Problems". In: Automata, Languages and Programming. Ed. by Susanne Albers et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 653–664. ISBN: 978-3-642-02927-1.
- [KW15] Ioannis Koutis and Ryan Williams. "Algebraic Fingerprints for Faster Algorithms". In: *Commun. ACM* 59.1 (Dec. 2015), pp. 98–105. ISSN: 0001-0782. DOI: 10.1145/2742544. URL: https://doi.org/10.1145/2742544.
- [Val92] Leslie G Valiant. "Why is Boolean complexity theory difficult". In: *Boolean Function Complexity* 169.84-94 (1992), p. 4.
- [Wil09] Ryan Williams. "Finding paths of length k in $O(2^k)$ time". In: Information Processing Letters 109.6 (2009), pp. 315-318. ISSN: 0020-0190. DOI: https://doi.org/10.1016/j.ipl.2008.11.004. URL: https://www.sciencedirect.com/science/article/pii/S0020019008003396.