INDIAN INSTITUTE OF TECHNOLOGY INDORE

MA 203: Complex Analysis and Differential Equations-II
Autumn Semester
Tutorial -6 (Complex Analysis)

1. Solve (i) $e^z = -1$ (ii) $e^z = 1$

- Ans: (i) $z = i(2k+1)\pi, k \in \mathbb{Z}$.
- 2. Prove that $\sin z = 0$ iff $z = k\pi$, and $\cos z = 0$ iff $z = k\pi + \frac{\pi}{2}$, where $k \in \mathbb{Z}$.
- 3. Show that (i) $\sin(\overline{z})$ and (ii) $\cosh(\overline{z})$ are nowhere analytic.
- 4. Show that
 - (a) $Log(1+i)^2 = 2Log(1+i)$
 - (b) $Log(-1+i)^2 \neq 2Log(-1+i)$
 - (c) $\log(i^2) \neq 2\log(i)$
- 5. Find all roots of the equation $\log z = i\pi/2$.

Ans: i

- 6. Find a parametric representation $\gamma:[a,b]\to\mathbb{C}$ for the following curves:
- (a) The straight-line segment from 0 to 4-7i Ans: $\gamma(t)=(4-7i)t,\ 0\leq t\leq 1$
 - (b) The upper half of |z-4+2i|=3 Ans: $\gamma(t)=4-2i+3(\cos t+i\sin t),\ 0\leq t\leq \pi$
 - (c) |z+3-i|=5, counter clockwise Ans: $\gamma(t)=-3+i+5(\cos t+i\sin t),\ 0\leq t\leq 2\pi$
 - (d) |z+3-i| = 5, clockwise Ans: $-3+i+5(\cos(2\pi-t)+i\sin(2\pi-t))$, $0 \le t \le 2\pi$
- 7. Give two different parametric representations of $y = \frac{1}{x}$ from (1,1) to $(4,\frac{1}{4})$.
- 8. Which properties such as smooth, piecewise smooth, closed, simple are applicable to the following curves
 - (a) $\gamma_1(t) = t + i|t|, t \in [-1, 1]$
 - (b) $\gamma_2(t) = |t| + it, t \in [-1, 1]$
 - (c) $\gamma_3(t) = |t^3| + it^3, t \in [-1, 1]$
- 9. Examine if the following curve is piecewise smooth for $t \in [-\pi, \pi]$

$$\gamma(t) = \left\{ \begin{array}{ll} t \left(1 + it \sin(1/t) \right), & t \neq 0 \\ 0, & t = 0. \end{array} \right.$$

