ДВОЙНЫЕ СМЕЖНЫЕ КЛАССЫ И ФОРМУЛА ИНДЕКСА ФРОБЕНИУСА

Сейчас мы рассмотрим важное обобщение понятие смежного класса, введенное в 1887–1894 годах Георгом Фробениусом и Рихардом Дедекиндом. В современных учебниках это понятие обычно спрятано в действия групп (орбиты подгруппы $F \leq G$ на однородном G-множестве G/H). Однако, нам кажется, что начинающему *намного* проще понять доказательства многих классических теорем, если явно артикулировать их в терминах двойных смежных классов, как это, собственно, и делали Фробениус и Бернсайд. Содержание настоящего параграфа — в особенности формула индекса Фробениуса! — абсолютно необходимо для понимания большинства доказательств в лекции о p-группах и теоремах Силова.

1. Двойные смежные классы.

Пусть G – группа, $F, H \leq G$. Произведение вида

$$FgH = \{fgh \mid f \in F, h \in H\}$$

называется **двойным смежным классом** (double coset, Doppelnebenklasse) группы G по паре подгрупп (F, H). Множество всех двойных смежных классов обозначается через

$$F \backslash G / H = \{ FgH \mid g \in G \}.$$

Вся теория алгебраических групп и весь гармонический анализ основаны на изучении этих множеств. Перенесем на них основные факты, относящиеся к обычным смежным классам.

Лемма 1. Два двойных смежных класса FxH и FyH либо не пересекаются, либо совпадают.

Доказательство. Пусть $z \in FxH \cap FyH$. Это значит, что z можно представить в виде $z = f_1xh_1 = f_2yh_2$, где $f_i \in F, h_i \in H$. Тогда $x = f_1^{-1}f_2yh_2h_1^{-1} \in FyH$, тем самым $FxH \leq FyH$. Доказательство обратного включения совершенно аналогично.

Таким образом, отношение \sim на G, определенное посредством: $x \sim y$ если и только если FxH = FyH, является отношением эквивалентности, называемым **сравнимостью по двойному модулю** (F,H). Трансверсаль к этому отношению эквивлентности называется **системой представителей** двойных смежных классов по модулю (F,H). Например, если $X=\{x_1,\ldots,x_n\}$ — система представителей смежных классов, то

$$G = Fx_1H \sqcup \ldots \sqcup Fx_nH.$$

Это разложение известно как **разложение на двойные смежные классы** по модулю (F, H) или, коротко, Doppelnebenklassenzerlegung.

Задача 1. Убедитесь, что в качестве системы представителей двойных смежных классов по модулю (H,F) можно взять

$$X^{-1} = \{x_1^{-1}, \dots, x_n^{-1}\},\$$

иными словами,

$$G = Hx_1^{-1}F \sqcup \ldots \sqcup Hx_n^{-1}F.$$

2. Формула Фробениуса для индекса.

Сейчас мы докажем один из самых фундаментальных фактов всей теории групп, столь же элементарный, как теорема Лагранжа, но гораздо более могущественный.

Лемма 2. Двойной смежный класс FxH содержит в точности

$$|H:H\cap x^{-1}Fx|$$

левых смежных классов по F.

Доказательство. Каждый левый смежный класс по F, содержащийся в FxH имеет вид Fxh для некоторого $h \in H$. Ясно, что для двух $h, g \in H$ равенство Fxh = Fxg означает в точности $hg^{-1} \in x^{-1}Fx$. Но так как изначально, кроме того, $hg^{-1} \in H$, то $hg^{-1} \in H \cap x^{-1}Fx$. Но это как раз и значит, что

$$Fxh = Fxg \iff (H \cap x^{-1}Fx)h = (H \cap x^{-1}Fx)g,$$

как и утверждалось.

Следствие 3. Двойной смежный класс FxH содержит в точности

$$|F:F\cap xHx^{-1}|$$

npaвых смежных классов no H.

Доказательство. Лемма утверждает, что двойной класс $Hx^{-1}F$ содержит $|F:F\cap xHx^{-1}|$ левых смежных классов по H. Однако $fxH\mapsto Hx^{-1}f^{-1}$ устанавливает биекцию между правыми смежными классами в FxH и левыми смежными классами в $Hx^{-1}F$.

Мы будем $\ \, \partial e c s m \kappa u$ раз пользоваться следующим утверждением, классически известным как формула Фробениуса для индекса = Indexformel, но последнее время все чаще называемым формулой индекса Фробениуса = Frobenius index formula 1 .

Теорема 4 (Indexformel). Пусть $G = Fx_1H \sqcup \ldots \sqcup Fx_nH -$ разложение G по двойному модулю (F, H). Тогда

$$|G:F| = |H:H \cap x_1^{-1}Fx_1| + \ldots + |H:H \cap x_n^{-1}Fx_n|.$$

Доказательство. В силу леммы 1 имеем $|G| = |Fx_1H| \sqcup \ldots \sqcup |Fx_nH|$, осталось подставить сюда формулу для количества левых смежных классов по F, содержащихся в FxH, установленную в лемме 2.

Теорема Лагранжа является частным случаем этого утверждения, получающимся при H=1.

Следствие 5. В условиях теоремы 4

$$|G:H| = |F:F \cap x_1 H x_1^{-1}| + \ldots + |F:F \cap x_n H x_n^{-1}|.$$

3. Пересечения левых и правых смежных классов, общая формула произведения.

Приведем еще несколько вариаций на тему леммы 2 предыдущего параграфа, с тем, чтобы парафразировать доказательство формулы Фробениуса. Хотя это второе доказательство не содержит ничего нового и даже чуть длиннее, в нем эксплицируется связь с пересечениями односторонних классов, а сама формула индекса принимает более симметричный вид, который, по-видимому, легче запомнить тому, кто видит формулу в первый раз.

Пусть G – группа, $F,H \leq G$. Что можно сказать о пересечениях левых смежных классов Fx и правых смежных классов yH? Сейчас мы дадим полный ответ на этот вопрос. Лемма 1 утверждает, что два двойных смежных класса по (F,H) либо не пересекаются, либо совпадают. Это можно сформулировать чуть иначе, а именно: если Fx и Fy — два левых смежных класса по F, то множества правых смежных классов zH таких, что $Fx \cap zH \neq \emptyset$ и $Fy \cap zH \neq \emptyset$ либо не пересекаются, либо совпадают. Таким образом, если множество двойных смежных классов $F \setminus G/H$ конечно, то левые смежные классы $F \setminus G$ и правые смежные классы G/H можно разбить на одинаковое количество $n = |F \setminus G/H|$ дизъюнктных блоков $F \setminus G = X_1 \sqcup \ldots \sqcup X_n$ и $G/H = Y_1 \sqcup \ldots \sqcup Y_n$ так что если $Fx \in X_i$, $yH \in Y_j$ и $Fx \cap yH \neq \emptyset$, то i = j. Оказывается, этот результат можно уточнить, а именно, если $Fx \in X_i$ и $yH \in Y_i$, то порядок их пересечения $Fx \cap yH$ зависит не от самих классов Fx и yH, а только от i.

Лемма 6. Если $Fx \cap yH, Fx \cap zH \neq \emptyset$, то $|Fx \cap yH| = |Fx \cap zH|$.

¹В этом месте те из первокурсников, кто еще не слышал о нарушении ассоциативности в языке, обычно спрашивают, что такое индекс Фробениуса.

Доказательство. Пусть $u \in Fx \cap yH$, $v \in Fx \cap zH$. Тогда Fu = Fx = Fv, uH = yH и vH = zH и, таким образом,

$$Fx \cap yH = Fu \cap uH = u(u^{-1}Fu \cap H),$$

$$Fx \cap zH = Fv \cap vH = v(v^{-1}Fv \cap H).$$

С другой стороны, так как Fu = Fv, то $u^{-1}Fu = v^{-1}Fv$ (проверьте!). Это значит, что оба пересечения $Fx \cap yH$ и $Fx \cap zH$ являются смежными классами по одной и той же подгруппе $u^{-1}Fu \cap H$, и, тем самым,

$$|Fx \cap yH| = |u^{-1}Fu \cap H| = |Fx \cap zH|,$$

как и утверждалось.

В частности, отсюда получается такое обобщение формулы произведения: $|F| \cdot |H| = |FgH| \cdot |F \cap gHg^{-1}|$. Сформулируем его чуть иначе.

Теорема 7 (Allgemeine Produktformel). Если $F, H \leq G$ подгруппы конечной группы $G, g \in G,$ то

$$|FgH| = \frac{|F|\cdot |H|}{|F\cap gHg^{-1}|}.$$

Обычная формула произведения получается если подставить сюда g=1. Теперь у нас все готово, чтобы еще раз доказать формулу Фробениуса. В самом деле, суммируя общую формулу произведения по всем классам $G=Fx_1H\sqcup\ldots\sqcup Fx_nH$, получаем

$$|G| = \sum_{i=1}^{n} \frac{|F||H|}{|F \cap x_i H x_i^{-1}|}.$$

Обе части формулы можно разделить хоть на |H|, хоть — воспользовавшись тем, что $|F \cap x_i H x_i^{-1}| = |x_i^{-1} F x_i \cap H|$ — на |F|.