1.2: GCDs and their properties

May 8, 2012

Outline

- Proof of the Division Algorithm
- Greatest Common Divisor
 - Definition, Existence
 - Méziriac-Bézout Identity
 - How dividing and multiplying effects GCDs
 - How addition effects GCDs

Recall the Division Algorithm

- Given integers a, b, with a > 0, there exist unique integers q and r such that b = qa + r, $0 \le r < a$.
- We will prove this theorem, and then use it to prove a fundamental fact about GCDs in the next section.
- We first prove that there is such an r and q, then prove r and q are unique.

Proof: existence

- Consider set of all $b \pm ka$.
- Well-ordering

 there is a smallest element.
- r = this smallest element.
- \bullet r = b qa

Proof: uniqueness

Suppose q_1 , r_1 is another pair.

- $r < r_1$ by choice of r.
- $0 < r r_1 = a(q q_1) < a \text{ (since } r < a)$
- Thus $a|r-r_1$. So a divides a number smaller than it in absolute value.
- This contradicts a fact about | from lecture 1.
- $r = r_1$. Hence $q = q_1$.

Outline

- Proof of the Division Algorithm
- Greatest Common Divisor
 - Definition, Existence
 - Méziriac-Bézout Identity
 - How dividing and multiplying effects GCDs
 - How addition effects GCDs

- There are a finite number of divisors of any non-zero integer.
- Because if $a \mid c$ then $-c \le a \le c$.
- Thus there are a finite number of common divisors.
- Unless b = c = 0.

- There are a finite number of divisors of any non-zero integer.
- Because if a|c then $-c \le a \le c$.
- Thus there are a finite number of common divisors.
- Unless b = c = 0.

- There are a finite number of divisors of any non-zero integer.
- Because if a|c then $-c \le a \le c$.
- Thus there are a finite number of common divisors.
- Unless b = c = 0.

- There are a finite number of divisors of any non-zero integer.
- Because if a|c then $-c \le a \le c$.
- Thus there are a finite number of common divisors.
- Unless b = c = 0.

Examples

•
$$b = 14, c = 21: -7, -1, 1, 7$$

•
$$b = 36, c = 54$$
: $\pm 18, \pm 9, \pm 6, \pm 3, \pm 2, \pm 1$

•
$$b = 1, c = 14: \pm 1$$

•
$$b = 0, c = 14$$
: $\pm 14, \pm 7, \pm 2, \pm 1$

•
$$b = 14, c = 14$$
: $\pm 14, \pm 7, \pm 2, \pm 1$

linear combinations

Recall from lecture 1: If a|b and a|c then $a|(x_0b+y_0c)$.

• Thus a common divisor also divides $\mathbb{Z}-$ linear combinations.

Greatest common divisors

Since there are a finite number of common divisors, there is a greatest one.

- Note well-ordering again.
- Of course well-ordering = induction.

Examples

$$(14,21) = 7$$

$$(36,54) = 18$$

$$(1,14)=1$$

$$(0,14) = 14$$

GCD is always positive!

Outline

- Proof of the Division Algorithm
- Greatest Common Divisor
 - Definition, Existence
 - Méziriac-Bézout Identity
 - How dividing and multiplying effects GCDs
 - How addition effects GCDs

The Identity

If g is the common divisor of b and c, then there exist x_0, y_0 such that

$$g=(b,c)=bx_0+cy_0.$$

- First known statement is Méziriac in the 1600s
- Most often called Bézout identity, but he proved it for polynomials.
- The gcd is expressible as a Z-linear combination of the two integers.
- Recall that any common divisor divides Z-linear combinations.x1
- So this is a sort of converse.

Proof Outline

- Ohoose the smallest (positive) Z-linear combination, I.
- Prove that I is a common divisor using the division algorithm and proof by contradiction (using the choice of I).
- Note that a common divisor divides any \mathbb{Z} -linear combination, thus g|I. Conclude the theorem.

Step 2

(Step 1 and 3 being easy).

- Without loss of generality, only prove *I*|*b*.
- Assume I does not divide b.
- Division algorithm gives r > 0 such that r = b lq.
- $b lq = b(1 qx_0) + c(-qy_0)$ so r is in the set l is chosen from.
- Thus r > I. This contradicts the choice of r from the division algorithm.

Consequence

We could have defined GCD this way:

Theorem

The greatest common divisor of b and c is the least positive \mathbb{Z} -linear combination of b and c.

Or this way:

Theorem

The greatest common divisor of b and c is the positive common divisor that is divisible by every other common divisor.

Outline

- Proof of the Division Algorithm
- Greatest Common Divisor
 - Definition, Existence
 - Méziriac-Bézout Identity
 - How dividing and multiplying effects GCDs
 - How addition effects GCDs

Common factors

Theorem

For any positive integer m,

$$(ma, mb) = m(a, b)$$

Proof.

(ma, mb) is the least positive value of max + mby, which is the same as the least positive value of ax + by times m.

Common factors

Theorem

If d|a and d|b and d>0 then

$$(\frac{a}{d},\frac{b}{d})=\frac{1}{d}(a,b)$$

This is just a restatement of the previous statement.

What do these common factor statements mean?

What we are really saying is, by definition:

$$g=(a,b)$$

$$(\frac{a}{g},\frac{b}{g})=1$$

i.e. dividing doesn't do something non-atomic.

Relatively prime pairs

If both a and b are relatively prime to m, so is ab.

Proof.

By the Méziriac-Bézout identity

$$1 = ax_0 + my_0 = bx_1 + my_1$$

$$1 = 1 \cdot 1 = abx_0x_1 + m(Stuff)$$

i.e. by the identity again ab, m = 1.

Thus, multiplying doesn't create new factors.

relatively prime

Note: We used the term relatively prime. Above. It's defined how you think.

One must fall!

If b and c are relatively prime, and c|ab, then c|a.

Outline

- Proof of the Division Algorithm
- Greatest Common Divisor
 - Definition, Existence
 - Méziriac-Bézout Identity
 - How dividing and multiplying effects GCDs
 - How addition effects GCDs

general addition

In general addition is screwy:

$$(12,2)=2$$

$$(12,3)=3$$

$$(12,4)=4$$

$$(12,5)=1$$

Adding multiples

But ...

Theorem

$$d=(a,b)=(a,b+ax)$$

This isn't as satisfying as the results on division/multiplication, but next lecture we will see it is very powerful.

Proof Outline

Let,

$$d = (a, b)$$
$$g = (a, b + ax)$$

- **1** Show that d|b + ax.
- ② Show g|d.
- Since d|b + ax, by lecture 1 d|g.
- **1** Conclude $d = \pm g$.
- **5** Since d, g > 0 d = g.

Show d|b+ax

Since d|a and d|b by definition, we have by the linear combination property from lecture 1 that d|b + ax.

Show g|d.

By the Méziriac-Bézout identity there are x_0 and y_0 :

$$d = ax_0 + by_0$$

 $d = a(x_0 - xy_0) + (b + ax)y_0$

Since d is a linear combination of a and (b + ax) by the definition of g and the linear combination property from lecture 1, we have g|d.