RESUMEN MATEMÁTICAS II

Miguel Mejía Jiménez

 \odot Miguel Mejía Jiménez, 2020

Distribuido bajo <u>licencia Creative Commons BY-NC</u>

Compuesto por el autor mediante LibreOffice Writer y TexMaths

Sumario

Álgebra	4
Determinantes	4
Propiedades de los determinantes	4
Matriz inversa	4
Método de Gauss para sistemas de ecuaciones	5
Regla de Cramer (resolver un sistema por determinantes)	5
Sistemas de ecuaciones	6
Incompatible	6
Compatible determinado	
Compatible indeterminado	6
El rango de las matrices es el mismo, pero menor al número de incógnitas	6
El sistema tiene infinitas soluciones	
El número de parámetros de los que dependerá la solución del sistema será	6
Análisis de funciones	7
Esquema general del estudio de funciones	7
Dominio y continuidad	7
Simetría	7
Periodicidad	7
Puntos de corte con los ejes	7
Ramas infinitas y asíntotas	7
Puntos singulares, crecimiento y concavidad	7
Representación gráfica	8
Geometría	9
Operaciones con vectores	9
Producto escalar	9
Producto vectorial	9
Producto mixto	9
Ecuaciones de la recta	10
Ecuación vectorial	10
Ecuaciones paramétrica	10
Ecuaciones en forma continua	10
Ecuaciones implícitas	10
Ecuaciones del plano	11
Ecuación vectorial	11
Ecuaciones paramétricas	11
Ecuación general o implícita	11
Ecuación normal	11
Posiciones relativas	12
Recta y plano	12
Dos planos	12
Tres planos	13
Ángulos	13
Dos rectas	13

Dos planos	13
Recta y plano	13
Proyecciones ortogonales	14
Distancias	
Dos puntos	14
Punto y plano	
Punto y recta	14
Dos rectas	
Dos Planos	14

Álgebra

Determinantes

Propiedades de los determinantes

Sea A una matriz de orden n:

$$A_n = (C_1, C_2, ..., C_n)$$

El determinante de una matriz, si le multiplicamos una fila o columna por un número real, es el mismo determinante de la matriz multiplicado por dicho número.

$$det(C_1, k \cdot C_2, ..., C_n) = k \cdot det(C_1, C_2, ..., C_n)$$

Esto implica que el determinante del producto de una matriz y un número real es igual al producto del número real, elevado al orden de la matriz, y el determinante de la matriz.

$$det(k \cdot A_n) = k^n \cdot det(A_n)$$

El determinante de una matriz cambia de signo si permutamos dos filas o columnas.

$$det(C_1, C_2, ..., C_n) = -det(C_2, C_1, ..., C_n)$$

El determinante de una matriz es igual al de la traspuesta.

$$det(A) = det(A^t)$$

El determinante de la inversa de una matriz es el inverso del determinante de la matriz.

$$det(A^{-1}) = \frac{1}{det(A)}$$

El determinante de un producto de matrices es igual al producto de sus determinantes.

$$det(A \cdot B) = det(A) \cdot det(B)$$

Esto implica que el determinante de la potencia de una matriz es igual a la potencia del determinante de la matriz.

$$det(A^k) = det(A)^k$$

El determinante de una matriz es nulo cuando las filas o columnas de la matriz son linealmente dependientes entre sí. Algunas maneras en las que se nota esto son:

- 1. Una fila o columna está compuesta entera por 0.
- 2. Hay dos filas o columnas iguales.
- 3. Una fila o columna es múltiplo de otra.
- 4. Una fila o columna es el resultado de sumar o restar otras dos.

Matriz inversa

Sea A una matriz cuadrada A de orden n. Su inversa es la matriz A^{-1} para la que:

$$AA^{-1} = A^{-1}A = I_n$$

Una matriz tiene inversa si, y sólo si, su determinante es distinto de 0.

Sean las matrices
$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$
y su inversa $A^{-1} = \begin{pmatrix} a' & b' & c' \\ d' & e' & f' \\ g' & h' & i' \end{pmatrix}$.

Aplicar las transformaciones del método de Gauss para convertir la matriz	
cuadrada en una matriz unidad. El resultado de aplicar $las\ mismas$ $transformaciones\ a\ una\ matriz\ unidad,$ resultan en la matriz inversa. $\begin{pmatrix} a & b & c & 1 & 0 & 0 \\ d & e & f & 0 & 1 & 0 \\ g & h & i & 0 & 0 & 1 \end{pmatrix}$ Matriz que s elemento por (los elemento misma fila o	$A^{-1} = \frac{1}{ A } \cdot (A^*)^t$ Ita matriz adjunta de A . Matriz adjunta se forma sustituyendo cada rel determinante del adjunto sos que no se encuentran en la columna). $\begin{pmatrix} e & f & d & f & d & e \\ h & i & g & i & g & h \end{pmatrix}$ $\begin{vmatrix} b & c & a & c & a & b \\ h & i & g & i & g & h \end{pmatrix}$ $\begin{vmatrix} b & c & a & c & a & b \\ h & i & g & i & g & h \end{pmatrix}$ $\begin{vmatrix} b & c & a & c & a & b \\ h & i & g & i & g & h \end{pmatrix}$

Método de Gauss para sistemas de ecuaciones

Transformar la matriz en una escalonada, sin que cambie su rango, mediante las siguientes transformaciones.

- Permutar filas o columnas.
- Multiplicar una fila o columna por un real no nulo.
- Sumar o restar una fila o columna a otra paralela.

Regla de Cramer (resolver un sistema por determinantes)

• Sistema de Cramer: n ecuaciones con n incógnitas y determinante no nulo.

- Definimos el determinante asociado a una incógnita como el determinante de la matriz que resulta de sustituir la columna correspondiente a dicha incógnita por la columna de los términos independientes.
- Por el **Teorema de Cramer**, el valor de una incógnita es el resultado de dividir su determinante asociada por el determinante de la matriz de coeficientes del sistema.

Sistemas de ecuaciones

El **teorema de Rouché** clasifica los sistemas en *compatibles determinados*, compatibles indeterminados o incompatibles según los rangos de su matriz asociada y su matriz ampliada.

Sea un sistema de ecuaciones de n incógnitas, A su matriz asociada A' su ampliada.

Incompatible	
rg(A) eq rg(A') El rango de las matrices es distinto.	
El sistema no	tiene solución.
Compatible determinado	Compatible indeterminado
rg(A) = rg(A') = n	rg(A) = rg(A') < n
El rango de las matrices es igual al	El rango de las matrices es el mismo, pero
número de incógnitas.	menor al número de incógnitas.
El sistema tiene solución única.	El sistema tiene infinitas soluciones.
	El número de parámetros de los que
	dependerá la solución del sistema será

rg(A) - n

Análisis de funciones

Esquema general del estudio de funciones

Dominio y continuidad	Simetría
Determinar para qué conjunto de números reales existe la función. En las funciones definidas a trozos hay que estudiarlo en los puntos que unen funciones.	 Simetría par f(-x) = f(x) para todo el dominio de f. Simetría impar f(-x) = -f(x) para todo el dominio de f.
Periodicidad	Puntos de corte con los ejes
Si existe un número real <i>P</i> , tal que se cumple que	Abscisas (eje X)
f(x) = f(x+P)	Pueden ser ninguno, uno, varios o infinitos
para todo el dominio.	puntos $(0, n)$, donde n es el resultado de resolver la ecuación $f(x) = 0$.
	Ordenadas (eje Y)
	1. Puede ser como mucho un punto $(0, f(0))$

Ramas infinitas y asíntotas

Verticales	Horizontales	Oblicuas
Recta $x=a$ tales que: $\lim_{x\to a^+,-} f(x) = \pm \infty$ • Se buscan en los puntos de discontinuidad.	Rectas $y=b$ tales que: $\lim_{x\to\pm\infty}f(x)=b$ • Se pueden tener asíntotas horizontales distintas en $+\infty$ y $-\infty$.	Rectas $y=mx+n$ tales que: $m=lim_{x\to\pm\infty}\frac{f(x)}{x}$ $n=lim_{x\to\pm\infty}(f(x)-mx)$ • Se pueden tener asíntotas oblicuas distintas en $+\infty$ y $-\infty$, pero no en el mismo lado en que ya haya una horizontal.

Puntos singulares, crecimiento y concavidad

Sea la función derivable f(x), su derivada f'(x) y su segunda derivada f''(x).

Intervalos de crecimiento y de decrecimiento

$$f'(x) > 0 \Rightarrow f(x)$$
 crece.

$$f'(x) < 0 \Rightarrow f(x)$$
 decrece.

Puntos máximos y mínimos

$$\left. egin{aligned} f'(x) &= 0 \\ f''(x) &< 0 \end{aligned}
ight\} \Rightarrow (x,f(x)) ext{ es un punto máximo.}$$

$$\left. egin{aligned} f'(x) &= 0 \\ f''(x) &> 0 \end{aligned}
ight\} \Rightarrow (x,f(x)) ext{ es un punto mínimo.}$$

Una función crece a la izquierda de un máximo y decrece a su derecha.

Una función decrece a la izquierda de un mínimo y crece a su derecha.

Intervalos de concavidad

$$f''(x) > 0 \Rightarrow f(x)$$
 es cóncava hacia arriba o cóncava \cup .

$$f''(x) < 0 \Rightarrow f(x)$$
 es cóncava hacia abajo o convexa \cap .

Nota: Una función es convexa en sus puntos máximos y cóncava en sus puntos mínimos.

Puntos de inflexión

$$f''(x) = 0 \Rightarrow (x, f(x))$$
 es un punto de inflexión.

No cambia el crecimiento, pero puede cambiar la concavidad.

Representación gráfica

- 1. Dibuja los ejes X e Y.
- 2. Marca los <u>puntos de corte</u> y los <u>puntos singulares</u>.
- 3. Marca con lineas punteadas las <u>asíntotas</u> (para las oblicuas puedes calcular dos puntos de la recta y hacer que pasen por ahí).
- 4. Dibuja la gráfica de la función:
 - Pasando por los puntos marcados.
 - Sin tocar las asíntotas.
 - Teniendo en cuenta dónde crece o decrece.
 - Teniendo en cuenta dónde es cóncava o convexa.
 - Marcando los punto discontinuos (si los hay) con un punto relleno cuando pertenece a la función o con un punto vacío si no.
 - En caso de simetría par, el intervalo positivo y negativo son como un reflejo. En caso de simetría impar, son como un reflejo invertido.

Geometría

Operaciones con vectores

Producto escalar	Producto vectorial
$\overrightarrow{v}\cdot\overrightarrow{w}$	$\overrightarrow{v} imes \overrightarrow{w}$
El resultado es un <u>número real</u> (un escalar). • $\overrightarrow{v} \cdot \overrightarrow{w} = x_v \cdot x_w + y_v \cdot y_w + z_v \cdot z_w$ • $\overrightarrow{v} \cdot \overrightarrow{w} = \overrightarrow{v} \cdot \overrightarrow{w} \cdot \cos(\overrightarrow{v}, \overrightarrow{w})$ Ángulo entre dos vectores $\cos(\overrightarrow{v}, \overrightarrow{w}) = \frac{x_v \cdot x_w + y_v \cdot y_w + z_v \cdot z_w}{ \overrightarrow{v} \cdot \overrightarrow{w} }$	El resultado es un $\frac{\mathbf{vector}}{\mathbf{v}}$. • $\overrightarrow{v} \times \overrightarrow{w} = \begin{vmatrix} i & j & k \\ x_v & y_v & z_v \\ x_w & y_w & z_w \end{vmatrix}$ • Dirección: Perpendicular a \overrightarrow{v} y \overrightarrow{w} . • Sentido: El avance de un sacacorchos de \overrightarrow{v} hacia \overrightarrow{w} . • \mathbf{Area} de un $\mathbf{paralelogramo}$ de lados \overrightarrow{v} y \overrightarrow{w} $ \overrightarrow{v} \times \overrightarrow{w} $ • \mathbf{Area} de un $\mathbf{triángulo}$ entre \overrightarrow{v} y \overrightarrow{w} $ \overrightarrow{v} \times \overrightarrow{w} $ $ \overrightarrow{v} \times \overrightarrow{w} $

Producto mixto

de tres vectores

$$[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}]$$

El resultado es un <u>número real</u> (un escalar).

•
$$[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}] = \overrightarrow{u} \cdot (\overrightarrow{v} \times \overrightarrow{w})$$

Volumen de un paralelepípedo

de aristas \overrightarrow{u} , \overrightarrow{v} y \overrightarrow{w}

Se calcula como el valor absoluto del producto mixto de los vectores que forman sus aristas.

$$|\overrightarrow{u}\cdot\overrightarrow{v} imes\overrightarrow{w}|$$

Ecuaciones de la recta

Ecuación vectorial	Ecuaciones paramétrica
Expresa cualquier punto \overrightarrow{p} de la recta como una combinación lineal de un punto base \overrightarrow{a} y un vector de dirección \overrightarrow{u} .	Separa la ecuación vectorial en las diferentes dimensiones. Desarrollamos $\overrightarrow{p}=(x,y,z)$, $a=(a_1,a_2,a_3)$ y $u=(u_1,u_2,u_3)$ y tenemos:
$\overrightarrow{p} = \overrightarrow{a} + \lambda \overrightarrow{u}$	$\begin{cases} x = a_1 + \lambda u_1 \\ y = a_2 + \lambda u_2 \\ z = a_3 + \lambda u_3 \end{cases}$
Ecuaciones en forma continua	Ecuaciones implícitas
Si despejamos λ en cada ecuación paramétrica, podemos deshacernos del parámetro.	Usando dos igualdades (de cualquiera de las tres) de la forma continua, se pueden operar los elementos para obtener un sistema de dos ecuaciones.
$\begin{cases} \lambda = \frac{x - a_1}{u_1} \\ \lambda = \frac{y - a_2}{u_2} \Rightarrow \frac{x - a_1}{u_1} = \frac{y - a_2}{u_2} = \frac{z - a_3}{u_3} \\ \lambda = \frac{z - a_3}{u_3} \end{cases}$	$\begin{cases} Ax + By + Cz + D = 0 \\ A'x + B'y + C'z + D' = 0 \end{cases}$

Obtener otra forma a partir de las ecuaciones implícitas

Hay dos opciones:

- Usarlas para calcular dos puntos diferentes cualesquiera de la recta y usar el vector que forman como director.
- Resolver el sistema compatible indeterminado que forman para obtener las paramétricas.

Ecuaciones del plano

Ecuación vectorial	Ecuaciones paramétricas
Expresa cualquier punto \overrightarrow{p} del plano como una combinación lineal de un punto base \overrightarrow{a} y dos vectores de dirección \overrightarrow{v} y \overrightarrow{w} .	Separa la ecuación vectorial en las diferentes dimensiones. Desarrollamos $\overrightarrow{p}=(x,y,z), a=(a_1,a_2,a_3),$ $\overrightarrow{v}=(v_1,v_2,v_3)$ y $\overrightarrow{w}=(w_1,w_2,w_3)$ y tenemos:
$\overrightarrow{p} = \overrightarrow{a} + \lambda \overrightarrow{v} + \mu \overrightarrow{w}$	$\begin{cases} x = a_1 + \lambda v_1 + \mu w_1 \\ y = a_2 + \lambda v_2 + \mu w_2 \\ z = a_3 + \lambda v_3 + \mu w_3 \end{cases}$

Ecuación general o implícita

Si expresamos las ecuaciones paramétricas como un sistema de ecuaciones donde las incógnitas son los parámetros λ y μ y lo expresamos de forma matricial obtenemos:

$$\begin{cases} \lambda v_1 + \mu w_1 = x - a_1 \\ \lambda v_2 + \mu w_2 = y - a_2 \Rightarrow M = \begin{pmatrix} v_1 & w_1 \\ v_2 & w_2 \\ v_3 & w_3 \end{pmatrix}, M' = \begin{pmatrix} v_1 & w_1 & x - a_1 \\ v_2 & w_2 & y - a_2 \\ v_3 & w_3 & z - a_3 \end{pmatrix}$$

Sabemos que \overrightarrow{v} y \overrightarrow{w} son linealmente independientes, así que el rango de M es 2. Para que sea compatible, M' debe ser 2 también, para lo cual |M'| debe ser 0.

Para obtener la ecuación implícita del plano, desarrollamos este determinante

$$\begin{vmatrix} v_1 & w_1 & x - a_1 \\ v_2 & w_2 & y - a_2 \\ v_3 & w_3 & z - a_3 \end{vmatrix} = 0$$

$$Ax + By + Cz + D = 0$$

Ecuación normal

Si tomamos los coeficientes de la ecuación implícita del plano, obtenemos el **vector** normal \overrightarrow{n} que es perpendicular al plano.

$$Ax + By + Cz + D = 0 \Rightarrow \overrightarrow{n} = (A, B, C)$$

Si tomamos el punto base \overrightarrow{a} contenido en el plano y formamos un vector con cualquier otro punto \overrightarrow{p} del plano, dicho vector será perpendicular a \overrightarrow{n} y su <u>producto escalar</u> será 0. Con esta igualdad definimos la ecuación normal.

$$A(x - a_1) + B(y - a_2) + C(z - a_3) = 0$$

Posiciones relativas

Recta y plano

Expresamos el plano por su <u>ecuación implícita</u> y la recta por sus <u>ecuaciones</u> paramétricas.

Sustituimos los valores de x, y y z del plano por las paramétricas de la recta y obtenemos:

$$A(a_1 + \lambda u) + B(a_2 + \lambda u) + C(a_3 + \lambda u_3) = 0$$

La igualdad que nos de despejar λ nos indica la relación entre la recta y el plano.

Sea k un número real cualquiera y .

1) $\lambda = k$

La recta atraviesa el plano por un punto P que se obtiene sustituyendo λ por k en las paramétricas de la recta.

2) k = k

La recta está contenida en el plano. La λ se anula y queda una igualdad cierta, lo que significa que λ tiene infinitos valores.

3) $k_1 = k_2$ siendo k_1 y k_2 diferentes.

La recta es paralela al plano. La λ se anula y queda una igualdad incierta, lo que significa que λ no tiene un valor posible.

En este caso se cumple que el <u>vector normal</u> y el <u>vector director</u> de la recta son perpendiculares.

Dos planos

Expresamos ambos planos según sus <u>ecuaciones implícitas</u>. El sistema de ecuaciones que forman ambos se corresponde con las <u>ecuaciones implícitas de la recta</u> que es su intersección.

$$\left\{ \begin{array}{l} \pi : ax + by + cz + d = 0 \\ \pi' : a'x + b'y + c'z + d' = 0 \end{array} \right.$$

Las matrices del sistema son:

$$M = \begin{pmatrix} a & b & c \\ a' & b' & c' \end{pmatrix} \mathbf{y} M' = \begin{pmatrix} a & b & c & -d \\ a' & b' & c' & -d' \end{pmatrix}$$

y la relación entre sus rangos nos indica la relación entre los planos.

1) rg(M) = 1 = rg(M')

Planos coincidentes. El sistema es compatible indeterminado dependiente de dos parámetros; es decir, tiene dos grados de libertad.

2) rg(M) = 1 < rg(M') = 2

Planos paralelos. El sistema es incompatible, es decir, ningún punto de los planos coincide.

3) rg(M) = 2 = rg(M')

Planos secantes. El sistema es compatible indeterminado dependiente de un

parámetro; es decir, tiene un grado de libertad. La recta de intersección está definida por las ecuaciones implícitas de los planos.

Tres planos

Hacemos un sistema de ecuaciones con las ecuaciones implícitas de los planos:

$$\begin{cases} \pi : ax + by + cz + d = 0 \\ \pi' : a'x + b'y + c'z + d' = 0 \\ \pi'' : a''x + b''y + c''z + d'' = 0 \end{cases}$$

Las matrices del sistema son:

$$M = \begin{pmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{pmatrix} \mathbf{y} \ M' = \begin{pmatrix} a & b & c & -d \\ a' & b' & c' & -d' \\ a'' & b'' & c'' & -d'' \end{pmatrix}$$

La relación entre los rangos de estas matrices nos indican la relación entre los planos.

1) rg(M) = 1 = rg(M')

Tres planos coincidentes. El sistema es compatible indeterminado con dos dependiente de dos parámetros; es decir, tiene dos grados de libertad.

2) rg(M) = 1 < rg(M') = 2

Tres planos paralelos o dos coincidentes y uno paralelo. El sistema es incompatible. Los tres planos comparten <u>vector normal</u> pero al menos uno de ellos no toca a los demás.

3) rg(M) = 2 = rg(M')

Tres planos secantes o dos coincidentes y uno secante. El sistema es compatible indeterminado dependiente de un parámetro; es decir, tiene un grado de libertad.

4) rg(M) = 2 < rg(M') = 3

Planos secantes en distintas rectas

Ángulos

Dos rectas	Dos planos
El ángulo de dos rectas es el ángulo que	El ángulo de dos planos es el ángulo que
forman sus vectores directores.	forman sus <u>vectores normales</u> .
Ver: <u>ángulo entre dos vectores</u>	Ver: <u>ángulo entre dos vectores</u>

Recta y plano

Siendo $\overrightarrow{v_r}$ el vector director de la recta y $\overrightarrow{n_\pi}$ el vector normal del plano:

$$\sin(\overrightarrow{v_r}, \overrightarrow{n_\pi}) = \frac{|\overrightarrow{v_r} \cdot \overrightarrow{n_\pi}|}{|\overrightarrow{v_r}||\overrightarrow{n_\pi}|}$$

Si son **perpendiculares**, entonces $\overrightarrow{v_r}$ y $\overrightarrow{n_\pi}$ son proporcionales: $\overrightarrow{v_r} = \lambda \overrightarrow{n_\pi}$

Si son **paralelos**, entonces $\overrightarrow{v_r}$ y $\overrightarrow{n_\pi}$ son perpendiculares: $\overrightarrow{v_r} \cdot \overrightarrow{n_\pi} = 0$

Proyecciones ortogonales

Distancias

Para este apartado, leeremos $d(\alpha, \beta)$ como la distancia entre α y β .

Dos puntos	Punto y plano
Sean A y B dos puntos y \overrightarrow{AB} el vector que forman.	Sea un punto $P=(x_1,y_1,z_1)$ y un plano π de <u>ecuación implícita</u>
$d(A,B) = \overrightarrow{AB} =$ $= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$	$\pi: ax + by + cz + d = 0$ $d(P, \pi) = \frac{ ax_1 + by_1 + cz_1 + d }{\sqrt{a^2 + b^2 + c^2}}$

Punto y recta

Sea un punto
$$P = (x_1, x_2, x_3)$$
 y una recta $r : \frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{z}$
$$|(x_1 - x_0, y_1 - y_0, z_1 - z_0) \times (a, b, c)|$$

$$d(P,r) = \frac{|(x_1 - x_0, y_1 - y_0, z_1 - z_0) \times (a, b, c)|}{\sqrt{a^2 + b^2 + c^2}}$$

Ver: producto vectorial

Dos rectas

Se cortan	Paralelas
d(r,s) = 0	Sean dos rectas r y s y un punto A perteneciente a r . $d(r,s) = d(A,s)$

Se cruzan

Sea una recta r definida por el punto A y el vector vSea una recta s definida por el punto B y el vector w.

$$d(r,s) = \frac{|[\overrightarrow{AB}, v, w]|}{|v \times w|}$$

Ver: producto vectorial, producto mixto

Dos Planos

Se cortan	Paralelos
$d(\pi_1, pi_2) = 0$	Sean dos planos π_1 , π_2 y A un punto perteneciente a π_1 .

$d(\pi_1, \pi_2) = d(A, \pi_2)$