

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

Deep Learning

Día 6

EXPOSITOR: Ing. Giorgio Morales Luna

Junio 2018

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

6. Modelos Secuenciales

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

6.1. Aplicaciones

Reconocimiento de voz

"The quick brown fox jumps over the lazy dog"

Generación de música

Análisis de sentimiento

"La película fue malísima"

Traducción

"I am hungry"

"Tengo hambre"

Reconocimiento de acciones en video

"Corriendo"

Reconocimiento de nombres

"Ayer, Harry Potter conoció a Hermione Granger"

"Ayer, Harry Potter conoció a Hermione Granger"

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

6.2. Recurrent Neural Network (RNN)

¿Por qué no usar una red neuronal estándar?

Problemas:

- Las entradas y salidas pueden tener distintas dimensiones en distintos ejemplos.
- Las características aprendidas por la red no se comparten con otras posiciones del texto.

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

6.2. Recurrent Neural Network (RNN)

He said "Teddy Roosevelt was a great President"

He said "Teddy bears are on sale!"

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

6.2. Recurrent Neural Network (RNN)

Backpropagation through time

$$L^{}(\hat{y}^{}, y^{})$$

= $-y^{}\log(\hat{y}^{}) - (1 - y^{})\log(1 - \hat{y}^{})$

$$L(\hat{y}, y) = \sum_{t=1}^{T_y} L^{}(\hat{y}^{}, y^{})$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

6.2. Recurrent Neural Network (RNN)

Tipos de RNNs

 $a^{<0>} \rightarrow \begin{array}{|c|c|} \hline \\ \uparrow \\ \uparrow \\ \hline \\ \uparrow \\ \hline \\ \chi^{<1>} \\ \hline \\ \chi^{<2>} \\ \hline \\ Many to many \\ \hline \\ \end{matrix}$

 $a^{<0>} \longrightarrow \qquad \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad$

Many to many

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

6.2. Recurrent Neural Network (RNN)

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

6.3. Gated Recurrent Unit (GRU)

$$c^{< t>} = a^{< t>}$$

$$\tilde{c}^{< t>} = tanh(W_c[c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$c^{} = \Gamma_u * \tilde{c}^{} + (1 - \Gamma_u) * c^{}$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

6.3. Gated Recurrent Unit (GRU)

$$c^{< t>} = a^{< t>}$$

$$\tilde{c}^{} = tanh(W_c[\Gamma_r * c^{}, x^{}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$$

$$c^{} = \Gamma_u * \tilde{c}^{} + (1 - \Gamma_u) * c^{}$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

6.4. Long-Short Term Memory (LSTM)

GRU

$$\tilde{c}^{< t>} = tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u)c^{< t-1>}$$

LSTM

$$\tilde{c}^{< t>} = tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_f = \sigma(W_f[c^{< t-1>}, x^{< t>}] + b_f)$$

$$\Gamma_o = \sigma(W_o[c^{< t-1>}, x^{< t>}] + b_o)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

$$a^{< t>} = \Gamma_o * \tanh(c^{< t>})$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

6.4. Long-Short Term Memory (LSTM)

LSTM

$$\tilde{c}^{< t>} = tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_f = \sigma(W_f[c^{< t-1>}, x^{< t>}] + b_f)$$

$$\Gamma_o = \sigma(W_o[c^{< t-1>}, x^{< t>}] + b_o)$$

$$c^{} = \Gamma_u * \tilde{c}^{} + \Gamma_f * c^{}$$

$$a^{< t>} = \Gamma_o * \tanh(c^{< t>})$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

6.5. Deep RNN

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

6.6. Recurrent Neural Network – Paso a Paso

- 1. Implementar los cálculos necesarios para una sola celda.
- 2. Implementar un loop sobre todos los Tx tiempos para procesar todos los inputs.

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

6.6. Recurrent Neural Network – Paso a Paso

6.6.1. Celda RNN

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

6.6. Recurrent Neural Network - Paso a Paso

6.6.2. Forward Propagation

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

6.6. Recurrent Neural Network – Paso a Paso

$$\begin{split} &\Gamma_{f}^{\langle t \rangle} = \sigma(W_{f}[a^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_{f}) \\ &\Gamma_{u}^{\langle t \rangle} = \sigma(W_{u}[a^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_{u}) \\ &\tilde{c}^{\langle t \rangle} = \tanh(W_{C}[a^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_{C}) \\ &c^{\langle t \rangle} = \Gamma_{f}^{\langle t \rangle} \circ c^{\langle t-1 \rangle} + \Gamma_{u}^{\langle t \rangle} \circ \tilde{c}^{\langle t \rangle} \\ &\Gamma_{o}^{\langle t \rangle} = \sigma(W_{o}[a^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_{o}) \\ &a^{\langle t \rangle} = \Gamma_{o}^{\langle t \rangle} \circ \tanh(c^{\langle t \rangle}) \end{split}$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

6.7. Jazz Generation Example

https://soundcloud.com/deepjazz-ai

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

6.7. Jazz Generation Example

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

6.7. Jazz Generation Example

Dataset

X: Es un array de dimension (m, TxTx, 78). Tenemos "m" datos de entrenamiento examples, cada uno con una secuencia de "Tx=30" valores musicales. En cada momento de la secuencia, el input tiene uno de los 78 diferentes posibles "valores", representado como un vector "one-hot". Así, por ejemplo, X[i,t,:] es un vector one-hot que representa el "valor" de la muestra "i" en el tiempo "t".

Y: En esencia es idéntico a X, pero rotado un paso a la izquierda (al pasado). Esto es porque nos interesa que la red use valores pasados para predecir el siguiente valor, así, nuestro modelo secuencial tratará de predecir $y^{<t>}$ dados $x^{<1>}$, $x^{<2>}$..., $x^{<t>}$. Sin embargo, la data de Y está reordenada para que tenga las dimensiones (Ty,m,78), donde Ty=Tx.

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

6.7. Jazz Generation Example

Build the model

X: Es un array de dimension (m, TxTx, 78). Tenemos "m" datos de entrenamiento examples, cada uno con una secuencia de "Tx=30" valores musicales. En cada momento de la secuencia, el input tiene uno de los 78 diferentes posibles "valores", representado como un vector "one-hot". Así, por ejemplo, X[i,t,:] es un vector one-hot que representa el "valor" de la muestra "i" en el tiempo "t".

Y: En esencia es idéntico a X, pero rotado un paso a la izquierda (al pasado). Esto es porque nos interesa que la red use valores pasados para predecir el siguiente valor, así, nuestro modelo secuencial tratará de predecir $y^{<t>}$ dados $x^{<1>}$, $x^{<2>}$..., $x^{<t>}$. Sin embargo, la data de Y está reordenada para que tenga las dimensiones (Ty,m,78), donde Ty=Tx.

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

6.7. Jazz Generation Example

Predicting and Sampling

<u>character:</u> indices_values[sampled_index]