Compito n. 1 Nome	Cognome	Numero di matricola
Modalità di risposta: Sul pres nell'apposito riquadro e si barri massima ± 5 %). Ciascuna risposta Problema 1 : Un punto materiale elastica 14.0 N/m, posta su un piar	sente foglio, per ogni risposta, si scr la lettera associata al valore nume a sarà valutata come segue: 3 punti se e di massa 0.420 Kg si trova connesso no inclinato liscio, di angolo 1.10 rad ri	7 - II Prova in itinere - Pisa, 5 Giugno 2017. iva la formula risolutiva in forma algebrica erico corretto (sempre presente con una tolleranza e corretta, 0 punti se sbagliata o non presente. all'estremo libero di una molla ideale, di costante spetto all'orizzontale, con il secondo estremo fissato to, origine dei sistema di coordinate, in cui la molla
1. il valore massimo della distan verso la base del piano inclin	_	si muove inizialmente con velocità 44.0 m/s diretta
$x_{max} [m] =$	A [7.89] B [37	7.0 C 113 D 77.7 E 17.6
2. il valore dell'energia cinetica differenziale non omogenea).	del punto dopo un quarto di periodo	(si consiglia di utilizzare la soluzione dell'equazione
K[J] =	A [1.26] B [0.482]	$ \begin{array}{cccc} & & & & & & & & & & & & & & & & & $
in maniera parzialmente anelastica ad una quota pari a metà della quo	te rimbalza in verticale. Ad ogni urto ota massima prima dell'urto. Determina	dere da ferma da un'altezza di 1.40 m, urta il suolo rimane in contatto con il suolo per 0.180 s e risale nare:
	he agisce sulla pallina nel primo urto;	
F[N] =	A 32.8 B 74.9	$C \begin{bmatrix} 5.36 \end{bmatrix} D \begin{bmatrix} 99.7 \end{bmatrix} E \begin{bmatrix} 38.8 \end{bmatrix}$
4. il modulo della variazione del	lla quantità di moto al secondo rimbal	zo.
$\Delta p [\mathrm{kg m/s}] =$	A 0.593 I	$B \boxed{4.18} C \boxed{2.39} D \boxed{2.29} E \boxed{0.267}$
Problema 3: Su un piano infinito superficiale di carica nei due casi s		aniera uniforme. Determinare il valore della densità
5. un punto materiale carico 19 modulo 2.00 m/s^2 ;	5.0 pC e di massa 0.210 Kg si muove	e nelle vicinanze del piano con un'accelerazione di
$\sigma [\mathrm{C/m^2}] =$	A 0.719 B 0	$\begin{array}{ccc} 0.517 & C \boxed{1.47} & D \boxed{0.496} & E \boxed{0.312} \end{array}$
6 . lo stesso punto materiale carico si muove ortogonalmente al piano per un tratto lungo $8.50~\mathrm{m}$ e, partendo da fermo, acquista un'energia cinetica di $10.0~\mathrm{J}$.		
$\sigma \left[\mathrm{C/m^2} \right] =$	A 1.39 B 20	$\begin{array}{ccc} 0.3 & C \boxed{1.06} & D \boxed{2.38} & E \boxed{18.8} \end{array}$
Problema 4: Una sfera di raggio	0.330 m è uniformemente carica con d	lensità di volume pari a 82.0 pC/m³. Determinare:
	ca superficiale distribuita uniformeme npo all'esterno del guscio sia nullo.	ente su un guscio sottile, concentrico alla sfera e di
$\sigma [pC/m^2] =$	A [-2.26] B [-30.8 C -18.5 D -1.57 E -28.5
		carica 1.20 C, inviato in direzione radiale contro il he possa attraversare indenne il guscio).
$\Delta E [J] =$	A 0.213 B 0.0	513 $C \ 0.305$ $D \ 0.202$ $E \ 0.247$
Problema 5: Due satelliti artificia	ali descrivono due orbite circolari atto	rno alla Terra. Determinare:
9. il rapporto dei raggi orbitali	sapendo che il rapporto delle velocità	vale $v_2/v_1 = 0.190;$
$R_2/R_1 = \phantom{AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA$	A 20.3 B 5.41	C 42.0 D 64.9 E 27.7
10. il periodo dell'orbita del secondo satellite se il raggio dellorbita vale 51000 km.		
T[h] =	A 78.7 B 51.1	$C \boxed{115} D \boxed{288} E \boxed{31.9}$
Compito n. 1		