

双线性变换方法

❖设计流程—基本内容

双线性变换方法

- *变换方法的来源
 - > 差分方程逼近微分方程

$$H_{a}(s) = \sum_{k=1}^{N} \frac{A_{k}}{s - s_{k}} = \sum_{k=1}^{N} H_{ak}(s) \qquad x[n] = x_{a}(nT) \\ y[n] = y_{a}(nT)$$

$$H_{ak}(s) = \frac{A_{k}}{s - s_{k}} \qquad k = 1, \dots, N$$

$$\frac{dy_{a}(t)}{dt} \leftarrow \frac{y[n] - y[n-1]}{T}$$

$$\frac{dy_{a}(t)}{dt} - s_{k}y_{a}(t) = A_{k}x_{a}(t) \qquad y_{a}(t) \leftarrow \frac{y[n] + y[n-1]}{2}$$

$$x_{a}(t) \leftarrow \frac{x[n] + x[n-1]}{2}$$

双线性变换方法

$$\frac{y[n] - y[n-1]}{T} - s_k \frac{y[n] + y[n-1]}{2} = A_k \frac{x[n] + x[n-1]}{2}$$

$$\frac{1}{T} (1 - z^{-1})Y(z) - s_k \frac{1}{2} (1 + z^{-1})Y(z) = A_k \frac{1}{2} (1 + z^{-1})X(z)$$

$$H_k(z) = \frac{Y(z)}{X(z)} = \frac{A_k \frac{1}{2} (1 + z^{-1})}{\frac{1}{T} (1 - z^{-1}) - s_k \frac{1}{2} (1 + z^{-1})} = \frac{A_k}{\frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}} - s_k}$$

$$H_k(z) = H_{ak}(s)|_{s = \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}}} \qquad s = \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}} \qquad s \to z?$$

双线性变换方法

- *双线性变换关系
 - $\rightarrow H_a(s)$ 到H(z) 变换

$$H(z) = H_a(s)|_{s=\frac{2}{T}\cdot\frac{1-z^{-1}}{1+z^{-1}}}$$
 $S = \frac{2}{T}\cdot\frac{1-z^{-1}}{1+z^{-1}}$

$$s = \frac{2}{T} \cdot \frac{1 - z^{-1}}{1 + z^{-1}}$$

▶S平面到Z平面变换

$$s = \sigma + j\Omega \to z = re^{j\omega}$$

$$z = \left(1 + \frac{T}{2}s\right) / \left(1 - \frac{T}{2}s\right)$$

$$|z|^{2} = \frac{(1+\sigma T/2)^{2} + (\Omega T/2)^{2}}{(1-\sigma T/2)^{2} + (\Omega T/2)^{2}} \quad \langle z = \frac{1+T/2(\sigma + j\Omega)}{1-T/2(\sigma + j\Omega)}$$

数字信号处理 北京航空航天大学

双线性变换方法

>S平面-Z平面映射

$$|z|^{2} = \frac{(1+\sigma T/2)^{2} + (\Omega T/2)^{2}}{(1-\sigma T/2)^{2} + (\Omega T/2)^{2}} \qquad \square \rangle \quad \begin{cases} |z| > 1 & \text{if } \sigma > 0 \\ |z| < 1 & \text{if } \sigma < 0 \\ |z| = 1 & \text{if } \sigma = 0 \end{cases}$$

2019/5/8

数字信号处理 北京航空航天大学

双线性变换方法

双线性变换方法

>S平面-Z平面映射图示

$$|z|^2 = \frac{(1+\sigma T/2)^2 + (\Omega T/2)^2}{(1-\sigma T/2)^2 + (\Omega T/2)^2}$$

$$s = \frac{2}{T} \cdot \frac{1 - z^{-1}}{1 + z^{-1}} = \frac{2}{T} \cdot \frac{1 - (re^{j\omega})^{-1}}{1 + (re^{j\omega})^{-1}}$$

数字信号处理 北京航空航天大学

2019/5/8

数字信号处理 北京航空航天大学

▶ 模拟与数字频率关系

 $\Omega = \frac{2}{T} \tan \left(\frac{\omega}{2} \right)$

$$j\Omega = \frac{2}{T} \frac{1 - e^{-j\omega}}{1 + e^{-j\omega}} = \frac{2}{T} \frac{e^{-j\omega/2}}{e^{-j\omega/2}} \frac{e^{j\omega/2} - e^{-j\omega/2}}{e^{j\omega/2} + e^{-j\omega/2}}$$

$$= \frac{2}{T} \frac{j \sin(\omega/2)}{\cos(\omega/2)} = j \frac{2}{T} \tan\left(\frac{\omega}{2}\right)$$

$$s = \frac{2}{T} \cdot \frac{1 - z^{-1}}{1 + z^{-1}}$$

双线性变换方法

- *设计滤波器过程
 - \triangleright 数字滤波器技术指标: $\alpha_n \alpha_s \omega_n \omega_s$

- ightharpoonup 非线性的预畸变校正: $\Omega = \frac{2}{T} \tan \left(\frac{\omega}{2} \right)$
- 》设计模拟滤波器 $H_a(s)$: $H_a(s) = \sum_{k=1}^{N} \frac{A_k}{s s_k}$
- > 将 $H_a(s)$ 转化为H(z): $H(z) = H_a(s)|_{s=\frac{2}{T}\frac{1-z^{-1}}{1+z^{-1}}}$

2019/5/8

数字信号处理 北京航空航天大学

双线性变换方法

双线性变换方法

模拟滤波器—类型比较

- *数字滤波器设计比较
 - > 比较类型:

巴特沃斯

切比雪夫I

切比雪夫 II

椭圆

>设计指标:

$$\omega_{\rm p} = 0.3\pi$$

$$\omega_s = 0.4\pi$$

$$\alpha_{\rm p} = 0.5 \; \rm dB$$

$$\alpha_s = 30 \text{ dB}$$

2019/5/8

数字信号处理 北京航空航天大学

模拟滤波器—类型比较

> Butterworth滤波器

$$\left| H_a(j\Omega) \right|^2 = \frac{1}{1 + (\Omega/\Omega_c)^2}$$

2019/5/8

2019/5/8

数字信号处理 北京航空航天大学

13

模拟滤波器—类型比较

▶ Chebyshev I 滤波器

$$\left| H_a(j\Omega) \right|^2 = \frac{1}{1 + \varepsilon^2 C_N^2(\Omega / \Omega_p)}$$

2019/5/8

文字信号处理 北京航空航天大学

14

模拟滤波器—类型比较

➤ Chebyshev II 滤波器

$$\left| H_a(j\Omega) \right|^2 = \frac{1}{1 + \varepsilon^2 \left(C_N(\Omega_s / \Omega_p) / C_N(\Omega_s / \Omega) \right)^2}$$

数字信号处理 北京航空航天大学

模拟滤波器—类型比较

▶Elliptic滤波器

$$\left|H_a(j\Omega)\right|^2 = \frac{1}{1+\varepsilon^2 R_N^2(\Omega, L)}$$

2019/5/8

数字信号处理 北京航空航天大学

16

模拟滤波器—类型比较

❖性能差别原因: 误差分配方式不同

本章重点

- ❖ⅡR数字设计流程
 - ▶ 技术指标体系
 - 技术指标转换根据 α_n、α_s求解ε和A
 - > IIR滤波器设计流程
- ❖典型数字滤波器
 - **Butterworth**
 - **≻** Chebyshev I
 - **≻** Chebyshev II
 - **Elliptic**

- ❖滤波器转换方法
 - ▶脉冲响应不变法
 基本原理、映射关系
 - ▶双线性映射方法基本原理、映射关系
 - ▶两种转换方法比较 优势、局限、适用范围

2019/5/8

数字信号处理 北京航空航天大学

- 1

第15次作业

- 1、已知模拟滤波器的系统函数为 $H_a(s) = A/(s+\alpha)$,分别用脉冲响应不变法和双线性变换方法,将 $H_a(s)$ 转换为数字滤波器系统函数H(z)。
- 2、在Matlab软件仿真环境下,基于巴特沃斯模拟滤波器,用双线性变换法设计如下指标的数字低通滤波器: ω_p = 0.3π 、 ω_s = 0.4π 、 α_p = 0.4dB、 α_s = 40 dB,给出Matlab程序代码,并绘制出幅频响应及其分贝表示形式。

