Московский государственный технический университет им. Н.Э.Баумана Факультет «Радиоэлектроника и лазерная техника» Кафедра «Радиоэлектронные системы и устройства»

Лабораторная работа №2

«Исследование биполярного транзистора.»

по дисциплине

«Электроника»

Вариант № 12

Выполнил ст. группы РЛ6-41 Мухин Г.А. Филимонов С.В. Проверил доцент

Оценка в баллах

Крайний В.И.

Цель работы: исследование характеристик и параметров биполярного транзистора, изучение методики измерений вольт-амперных характеристик, расчет параметров модели Эберса-Молла.

Приборы и измерительные устройства: Мультиметр М3900, 2 источника питания МАРС, Вольтметр В7-58/2, Резистор сопротивлением 51 кОм, исследуемый транзистор VT2 – KT203Б.

Параметры исследуемых элементов:

КТ203Б:

Транзистор универсальный кремниевый эпитаксиально-планарные p-n-p усилительный маломощный.

Максимально допустимое (импульсное) напряжение коллектор-база 30 В.

Максимально допустимое (импульсное) напряжение коллектор-эмиттер 30 В.

Максимально допустимый постоянный (импульсный) ток коллектора 10(50) мА.

Максимально допустимая постоянная рассеиваемая мощность коллектора без теплоотвода (с теплоотводом) 0.15 Bt.

Статический коэффициент передачи тока биполярного транзистора в схеме с общим эмиттером 30-150.

Обратный ток коллектора <=1 мкА.

Граничная частота коэффициента передачи тока в схеме с общим эмиттером =>5 МГц.

Примечания.

1. Указанные параметры даны для температуры 298 – 343 К.

Рис. 3. Схема для исследования выходных ВАХ биполярного транзистора

Собираем схему для снятия характеристики; схему на лабораторной установке собрать в соответствии со схемой рис. 3. В цепь базы включим резистор 51 кОм. Изменяя напряжение источника питания в коллекторной цепи Ек, установим Uкэ = -5 В. Плавно изменяя напряжение источника питания в базовой цепи Еб, установим ток коллектора Iк = 5 мА и измерим семейство выходных характеристик транзистора I6 = 69 мкА.

I, mA	U, B
3	0,1
4,48	0,5
4,53	0,7
4,57	1
4,81	3
4,99	5
5,17	7

Таблица 1 – Результаты снятия ВАХ для І'б.

I, mA	U, B
1,2	0,1
2,42	0,3
2,44	0,5

2,49	1
2,6	3
2,7	5
2,8	7

Таблица 2 – Результаты снятия BAX для 0,5*I'б.

I, mA	U, B
2,2	0,1
6,22 6,3	0,3
	0,5
6,37	1
6,7	3
6,96	5
7,2	7

Таблица 3 – Результаты снятия ВАХ для 1,5*I'б.

По результатам измерений построить графики ВАХ.

Определим статический коэффициент передачи тока базы для нормального включения транзистора для точки с напряжением на коллекторе -5 В и током базы I6 = 69 мкА (Ik = 5 мА).

$$k = \frac{I_{\kappa}}{I_{6}} = \frac{5 \cdot 10^{-3}}{69 \cdot 10^{-6}} = 72,46.$$

Снимем входные характеристики транзистора при нормальном включении.

Рис. 4. Схемы для исследования входной ВАХ биполярного транзистора

Собираем схему в соответствии с рис. 4 Установим Uкэ = -5В. Изменяя Eб, установим по миллиамперметру в базовой цепи необходимые значения Iб и измерим соответствующие значения Uбэ. Ток базы изменяется от 0 до 1,5*I°б. И аналогично измерим входную характеристику при напряжении на коллекторе 0В.

U,B	I,mkA
0,64	13
0,67	26
0,68	39
0,69	52
0,7	69,2
0,705	78

0,71	91
0,72	103

Таблица 4 – Результаты снятия BAX при Uкэ = -5 B.

U,B	I,mkA
0,56	13
0,59	26
0,6	39
0,61	52
0,62	65
0,63	78
0,635	91
0,64	103

Таблица 5 - Результаты снятия BAX при Uкэ = 0 B.

Построим график:

Выводы по результатам работы:

В ходе выполнения работы МЫ исследовали статические характеристики кремниевого биполярного транзистора и определили его основные параметры, в отчёте привели таблицы, графики и результаты расчётов. р-п-переход образуется на контакте двух полупроводников с различными типами проводимости - электронного и дырочного. Устройства с такими р-п-переходами используются в качестве усилителей и генераторов сверхвысоких частот. Например в данной схеме транзистор используется как усилитель. Усилительные свойства транзистора оценивают статистическим коэффициентом передачи тока базы h_{213} и выражают числом, показывающим, во сколько раз изменяется ток коллекторной цепи по сравнению с изменением тока в базовой цепи. В нашей цепи h_{213} =72,46. Чем больше численное значение коэффициента h_{219} транзистора, тем, естественно, больше усиление сигнала, которое он может обеспечить.