*חשבון אינפיניטסימלי 1 – סיכום

יונתן אוחיון

2018 בפברואר 2018

המספרים הממשיים

אקסיומות השדה

הבאות: התכונות התכונות מעל \mathbb{R} , כלומר מתקיימות התכונות הבאות: השלשה ($\mathbb{R},\cdot,+$) הינה שדה עם הפעולות

פעולת הכפל (٠)

פעולת החיבור (+)

- :(חילופיות) קומוטטיביות \bullet $\forall x,y \in \mathbb{R}, x \cdot y = y \cdot x$
- קומוטטיביות (חילופיות): $\forall x,y\in\mathbb{R}, x+y=y+x$
- אסוציאטיביות (קיבוץ): $\forall x,y,z \in \mathbb{R}, x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- אסוציאטיביות (קיבוץ): $\forall x,y,z\in\mathbb{R}, x+(y+z)=(x+y)+z$
- ייום איבר ניטרלי (1): $\forall x \in \mathbb{R}, x \cdot 1 = 1 \cdot x = x$
- קיום איבר ניטרלי (1): $\forall x \in \mathbb{R}, x+0=0+x=x$
- קיום איבר הופכי: $\forall 0 \neq x \in \mathbb{R} \ \exists y \in \mathbb{R}, x \cdot y = 1$
- קיום איבר נגדי: $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R}, x+y=0$

בנוסף, שתי הפעולות ביחד מקיימות את תכונת הדיסטריבוטיביות (פילוג), המוגדרת כך:

$$\forall x, y, z \in \mathbb{R}, x \cdot (y+z) = x \cdot y + x \cdot z$$

החדשים החדשים אורי ברזנר באליאנס בסמסטר 2018 + תוספות מהספרים החדשים הרצאות של אורי ברזנר באליאנס ב

המספרים הממשיים – המשך

אקסיומות ותכונות

תכונה 1 (תכונת ארכימדס) לכל $x\in\mathbb{R}$ קייס $n\in\mathbb{N}$ קייס $x\in\mathbb{R}$ לכל $x\in\mathbb{R}$ לכל שנו ארכימדס) לכל $x\in\mathbb{R}$ פר כך שלו ארכימדס.

x < q < yכך שע קכונה 2 (צפיפות הרציונליים בממשיים) לכל $x \neq y$ אייס $x, y \in \mathbb{R}$ כל שע

הערך השלם, הערך השברי ותכונותיהם

- "תחתון הערך השלם ה|x|
 - "עליון השלם ה"עליון $\lceil x \rceil$
- $\langle x
 angle = x |x|$ כך: מוגדר החלק השברי, מוגדר $\langle x
 angle$
 - $\forall x \in \mathbb{R}, |x| \le x < |x| + 1 \bullet$
 - $\forall x \in \mathbb{R}, x 1 < |x| \le x \bullet$

אי שוויונות שימושיים

- $\forall -1 \leq x \in \mathbb{R} \ \forall n \in \mathbb{N}, \ (1+x)^n \geq 1+nx$ אי שוויון ברנולי:
 - $orall a,b\in\mathbb{R},\,|a+b|\leq |a|+|b|$ אי שוויון המשולש: ullet

סדרות

הגדרה: סדרה היא קבוצת מספרים (ממשיים), המסודרת לפי $\mathbb N$

:סימון

$$a_1,a_2,a_3,\ldots \equiv (a_n)_{n=1}^\infty \equiv (a_n)$$
 במקרים בהם ידוע ההקשר,

דוגמאות:

- סדרה קבועה $a_n=17 \; (17,17,17,\ldots)$
 - $a_n = n \ (1, 2, 3, \ldots) \bullet$
- לאפס אואפת שואפת החדמה , $a_n = rac{1}{n} \; (1, rac{1}{2}, rac{1}{3}, \ldots)$

גבול של סדרה

n>N כך שלכל $N\in\mathbb{N}$ קיים arepsilon>0 קיים גבול הסדרה אזי L ייקרא אזי ויקרא גבול תהיים האזים . $|a_n-L|<arepsilon$

בכתיב כמתים, ההגדרה נראית כך:

$$\forall \varepsilon > 0 \exists N \in \mathbb{N} \forall n > N, |a_n - L| < \varepsilon$$

שלילת ההגדרה נראית כך:

$$\exists \varepsilon > 0 \forall N \in \mathbb{N} \exists n > N, |a_n - L| \ge \varepsilon$$

שלילה או למעשה מראה שL נתון אינו גבול של הסדרה. אם ברצוננו להראות שהסדרה מתבדרת (כלומר אין לה גבול), נצטרך להראות שהביטוי מתקיים לכל $L\in\mathbb{R}$

:סימון

$$\lim_{n \to \infty} a_n = L, \ a_n \xrightarrow[n \to \infty]{} L$$

משפט 1 (משפט הסנדוויץ') יהיו $(a_n),(b_n),(c_n)$ שלוש סדרות כך ש $a_n\leq b_n\leq a_n$ כמעט לכל $a_n\leq b_n\leq a_n$ וווח $a_n=a_n\leq a_n=a_n$ כמעט לכל $a_n=a_n\leq a_n=a_n$

סדרות חסומות, סדרות אפסות

 $.\,|a_n| < M$ כך סדרה (a_n) תיקרא סדרה תיקרא סדרה (a_n) הגדרה: סדרה (a_n) תיקרא סדרה אפסה אם $a_n \xrightarrow[n \to \infty]{} 0$ הגדרה:

משפט 2 כל סדרה מתכנסת היא חסומה, כלומר אם סדרה אינה חסומה היא אינה מתכנסת. הערה: לא כל סדרה חסומה מתכנסת.

 $\lim_{n o\infty}a_nb_n=0$ משפט 3 תהי (a_n) סדרה חסומה, (b_n) סדרה חסומה משפט 3

אריתמטיקה של גבולות

ימים: אזי מתקיים: $a_n \xrightarrow[n \to \infty]{} L, \ b_n \xrightarrow[n \to \infty]{} M$ סדרות כך שמתקיים (a_n), (b_n)

$$\lim_{n \to \infty} (a_n + b_n) = L + M \tag{1}$$

$$\lim_{n \to \infty} (a_n \cdot b_n) = L \cdot M \tag{2}$$

גבול של סדרה – המשך

התכנסות במובן הרחב

n>N כך שלכל $N\in\mathbb{N}$ קיים $M\in\mathbb{R}$ מתקיים מתכנסת ל ∞ מתכנסת היקרא סדרה סדרה $M\in\mathbb{R}$ קיים לכל העקרים מתכנסת סדרה תיקרא מתכנסת ל $-\infty$ אם לכל מתכנסת סדרה היקרא מתכנסת ל $-\infty$ מתכנסת מתכנסת במובן הרחב אם היא מתכנסת ל $-a_n>M$

משפט 4 (סדרות הממוצעים) תהי (a_n) סדרה מתכנסת בעובן הצר או בעובן הרחב, ותהי (A_n) סדרת העובעים העובעים החשבוניים של איברי (G_n) , a_n סדרת העובעים ההנדסיים של a_n ו (H_n) סדרת העובעים ההרעוניים של a_n אזי סדרות העובעים מתכנסות לאותו הגבול של a_n

מבחן המנה לגבול של סדרה

תהי (a_n) סדרה.

- $\lim_{n o\infty}a_n=0$ כמעט לכל $\left|rac{a_{n+1}}{a_n}
 ight|< r$ כך שיס $0\leq r<1$ אם קיים $0\leq r<1$
 - $\lim_{n \to \infty} a_n = 0$ אם $\lim_{n \to \infty} \left| rac{a_{n+1}}{a_n}
 ight| < 1$ אם •
- $\lim_{n \to \infty} a_n = \infty$ אז איז (גם במובן הרחב), וו $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$ ומתקיים $a_n > 0$ אם $a_n > 0$

אריתמטיקה של גבולות אינסופיים

יהיו $a_n o \infty$ סדרות, $(a_n), (b_n)$ יהיו

- $(a_n+b_n) o\infty$ אז $b_n o B\in\mathbb{R}$ או $b_n o\infty$ אם
 - $(a_n \cdot b_n) o \infty$ אז $b_n o \infty$ או $b_n o B > 0$ אם
 - $.b_n o 0$ אז $b_n = rac{1}{a_n}$ אם •
 - $rac{1}{b_n} o \infty$ אם $b_n o 0$ וגם $b_n o 0$ וגם $b_n o 0$

משפט 5 (גבול של הזזה) תהי (a_n) סדרה העתכנסת בעובן הצר/רחב ויהי אזי סדרת ההזזה משפט 5 הבול של הזזה) על החזה הגבול. $b_n=a_{n+k}$

מינימום, מקסימום, אינפימום וסופרימום

מינימום ומקסימום

הגדרה: תהי A קבוצה סופית. המינימום של A הוא איבר בA (נסמן בx) כך שלכל A מתקיים $x \leq a$ המינימום של A הוא איבר בA כך שלכל $a \in A$ מתקיים של $a \in A$ המינימום יסומן ב $a \in A$ המינימום יסומן ב $a \in A$ המינימום יסומן ב $a \in A$

חסמים עליונים ותחתונים

בדומה . $\forall a\in A, a\leq M$ אם $A\subseteq \mathbb{R}$ אם קבוצה של מלעיל/מלמעלה מספר ייקרא $M\in \mathbb{R}$ מספר הגדרה: מספר איקרא חסם מלעיל/מלמטה אם $\forall a\in A, a\geq M$ ייקרא חסם מלרע/מלמטה אם M

נסמן ב L_A את קבוצת כל החסמים מלמעלה של קבוצה נתונה A וב L_A את קבוצת החסמים מלמטה שלה, כלומר מתקיים

$$U_A = \{ M \in \mathbb{R} : \forall a \in A, a \leq M \}, L_A = \{ m \in \mathbb{R} : \forall a \in A, a \geq m \}$$

מכך נובע . $\forall a\in A \forall M\in U_A, a\leq M_0\leq M$ כך ש $M_0\in U_A$ מכך נובע . $\forall a\in A \forall M\in U_A$ מכך נובע שש M_0 אם חסם מלעיל של M_0 אך קטן מכל $M_0\in M_0$ ולכן מתקיים $M_0=\min U_A$ הסופרימום (החסם העליון) של $M_0=\sup A$ ומסומן של $M_0=\sup A$

A באופן החסם התחתון) או האינפימום והוא האינפימום כך של כך ש $m_0\in L_A$ כך שקול, קיים מקסימום כאופן כך כד מקסימום באופן באופן באופן דומה במקרה שבו לקבוצה היים מקסימום מתקיים החסם באופן דומה ובאופן דומה החסומן. $\inf A = \min A$

משפט 6 (הגדרה שקולה להגדרת החסם העליון) תהי $A\subseteq\mathbb{R}$ קבוצה וs חסס מלעיל שלה. אזי התנאים הכאים שקולים:

- $s = \sup A \bullet$
- $\forall \varepsilon > 0 \exists a \in A, s \varepsilon < a \bullet$

משפט 7 (הגדרה שקולה להגדרת החסם התחתון) תהי $A\subseteq\mathbb{R}$ קבוצה וs חסס פלרע שלה. אזי התנאים הבאים שקולים:

- $s = \inf A \bullet$
- $\forall \varepsilon > 0 \exists a \in A, a < s + \varepsilon \bullet$

משפט 8 (אפיון החסמים בעזרת סדרות) מהי $A\subseteq\mathbb{R}$ קבוצה חסומה מלעיל/מלרע ויהי m חסס מלעיל/מלרע משפט 8 (אפיון החסמים בעזרת סדרות) על $a_n=m$ של $a_n=m$ הוא החסס העליון/התחתון של $a_n=m$ אמ"מ סיימת סדרה של איברי $a_n=m$ הוא החסס העליון/התחתון של $a_n=m$

תכונה 3 אס A,B קבוצות חסוטות פלעיל אז $B=\sup A+\sup B$ אז A,B אס A,B תכונה 3 אס A,B ערכונה 3 אס $\inf(-A)=-\sup A$

יאפיון החסם התחתון בעזרת סדרות וההגדרה השקולה נמצאות בספר בתור שאלות ולא בתור משפטים, כלומר במבחן עלינו לכתוב "לפי טענה שהוכחה בספר" על מנת להשתמש בהן.

סדרות מונוטוניות