Number Theory ITT9131 Konkreetne Matemaatika

Chapter Four

Divisibility

Primes

Prime examples

Factorial Factors

Relative primality

'MOD': the Congruence Relation

Independent Residues

Additional Applications

Phi and Mu

Contents

- 1 Modular arithmetic
- 2 Primality test
 - Fermat' theorem
 - Fermat' test
 - Rabin-Miller test
- 3 Phi and Mu

Next section

- 1 Modular arithmetic
- 2 Primality test
 - Fermat' theorem
 - Fermat' test
 - Rabin-Miller test
- 3 Phi and Mu

Congruences

Definition

Integer a is congruent to integer b modulo m > 0, if a and b give the same remainder when divided by m. Notation $a \equiv b \pmod{m}$.

Alternative definition: $a \equiv b \pmod{m}$ iff $m \mid (b-a)$. Congruence is

a equivalence relation:

```
Reflectivity: a \equiv a \pmod{m}

Symmetry: a \equiv b \pmod{m} \Rightarrow b \equiv a \pmod{m}

Transitivity: a \equiv b \pmod{m} ja b \equiv c \pmod{m} \Rightarrow a \equiv c \pmod{m}
```


If $a \equiv b \pmod{m}$ and $d \mid m$, then $a \equiv b \pmod{d}$

- If $a \equiv b \pmod{m_1}$, $a \equiv b \pmod{m_2}$,..., $a \equiv b \pmod{m_k}$, then $a \equiv b \pmod{lcm(m_1, m_2, ..., m_k)}$
- If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$
- If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$
- If $a \equiv b \pmod{m}$, then $ak \equiv bk \pmod{m}$ for any integer k
- If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a c \equiv b d \pmod{m}$
- If $a \equiv b \pmod{m}$, then $a + um \equiv b + vm \pmod{m}$ for every integers u and v
- If $ka \equiv kb \pmod{m}$ and gcd(k,m) = 1, then $a \equiv b \pmod{m}$
- lacksquare $a \equiv b \pmod{m}$ iff $ak \equiv bk \pmod{mk}$ for any natural number b

- If $a \equiv b \pmod{m}$ and d|m, then $a \equiv b \pmod{d}$
- If $a \equiv b \pmod{m_1}$, $a \equiv b \pmod{m_2}$,..., $a \equiv b \pmod{m_k}$, then $a \equiv b \pmod{lcm(m_1, m_2, ..., m_k)}$
- If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$
- If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$
- If $a \equiv b \pmod{m}$, then $ak \equiv bk \pmod{m}$ for any integer k
- If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a c \equiv b d \pmod{m}$
- If $a \equiv b \pmod{m}$, then $a + um \equiv b + vm \pmod{m}$ for every integers u and v
- If $ka \equiv kb \pmod{m}$ and gcd(k,m) = 1, then $a \equiv b \pmod{m}$
- $a \equiv b \pmod{m}$ iff $ak \equiv bk \pmod{mk}$ for any natural number

- If $a \equiv b \pmod{m}$ and $d \mid m$, then $a \equiv b \pmod{d}$
- If $a \equiv b \pmod{m_1}$, $a \equiv b \pmod{m_2}$,..., $a \equiv b \pmod{m_k}$, then $a \equiv b \pmod{lcm(m_1, m_2, ..., m_k)}$
- If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$
- If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$
- If $a \equiv b \pmod{m}$, then $ak \equiv bk \pmod{m}$ for any integer k
- \blacksquare If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a c \equiv b d \pmod{m}$
- If $a \equiv b \pmod{m}$, then $a + um \equiv b + vm \pmod{m}$ for every integers u and v
- If $ka \equiv kb \pmod{m}$ and gcd(k,m) = 1, then $a \equiv b \pmod{m}$
- $a \equiv b \pmod{m}$ iff $ak \equiv bk \pmod{mk}$ for any natural number

- If $a \equiv b \pmod{m}$ and $d \mid m$, then $a \equiv b \pmod{d}$
- If $a \equiv b \pmod{m_1}$, $a \equiv b \pmod{m_2}$,..., $a \equiv b \pmod{m_k}$, then $a \equiv b \pmod{lcm(m_1, m_2, ..., m_k)}$
- If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$
- If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$
- If $a \equiv b \pmod{m}$, then $ak \equiv bk \pmod{m}$ for any integer k
- If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a c \equiv b d \pmod{m}$
- If $a \equiv b \pmod{m}$, then $a + um \equiv b + vm \pmod{m}$ for every integers u and v
- If $ka \equiv kb \pmod{m}$ and gcd(k,m) = 1, then $a \equiv b \pmod{m}$
- \blacksquare $a \equiv b \pmod{m}$ iff $ak \equiv bk \pmod{mk}$ for any natural number

- If $a \equiv b \pmod{m}$ and $d \mid m$, then $a \equiv b \pmod{d}$
- If $a \equiv b \pmod{m_1}$, $a \equiv b \pmod{m_2}$,..., $a \equiv b \pmod{m_k}$, then $a \equiv b \pmod{lcm(m_1, m_2, ..., m_k)}$
- If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$
- If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$
- If $a \equiv b \pmod{m}$, then $ak \equiv bk \pmod{m}$ for any integer k
- If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a c \equiv b d \pmod{m}$
- If $a \equiv b \pmod{m}$, then $a + um \equiv b + vm \pmod{m}$ for every integers u and v
- If $ka \equiv kb \pmod{m}$ and gcd(k,m) = 1, then $a \equiv b \pmod{m}$
- $a \equiv b \pmod{m}$ iff $ak \equiv bk \pmod{mk}$ for any natural number

- If $a \equiv b \pmod{m}$ and $d \mid m$, then $a \equiv b \pmod{d}$
- If $a \equiv b \pmod{m_1}$, $a \equiv b \pmod{m_2}$,..., $a \equiv b \pmod{m_k}$, then $a \equiv b \pmod{lcm(m_1, m_2, ..., m_k)}$
- If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$
- If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$
- If $a \equiv b \pmod{m}$, then $ak \equiv bk \pmod{m}$ for any integer k
- If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a c \equiv b d \pmod{m}$
- If $a \equiv b \pmod{m}$, then $a + um \equiv b + vm \pmod{m}$ for every integers u and v
- If $ka \equiv kb \pmod{m}$ and gcd(k,m) = 1, then $a \equiv b \pmod{m}$
- lacksquare $a \equiv b \pmod{m}$ iff $ak \equiv bk \pmod{mk}$ for any natural number b

- If $a \equiv b \pmod{m}$ and $d \mid m$, then $a \equiv b \pmod{d}$
- If $a \equiv b \pmod{m_1}$, $a \equiv b \pmod{m_2}$,..., $a \equiv b \pmod{m_k}$, then $a \equiv b \pmod{lcm(m_1, m_2, ..., m_k)}$
- If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$
- If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$
- If $a \equiv b \pmod{m}$, then $ak \equiv bk \pmod{m}$ for any integer k
- If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a c \equiv b d \pmod{m}$
- If $a \equiv b \pmod{m}$, then $a + um \equiv b + vm \pmod{m}$ for every integers u and v
- If $ka \equiv kb \pmod{m}$ and gcd(k,m) = 1, then $a \equiv b \pmod{m}$
- lacksquare $a \equiv b \pmod{m}$ iff $ak \equiv bk \pmod{mk}$ for any natural number b

- If $a \equiv b \pmod{m}$ and $d \mid m$, then $a \equiv b \pmod{d}$
- If $a \equiv b \pmod{m_1}$, $a \equiv b \pmod{m_2}$,..., $a \equiv b \pmod{m_k}$, then $a \equiv b \pmod{lcm(m_1, m_2, ..., m_k)}$
- If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$
- If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$
- If $a \equiv b \pmod{m}$, then $ak \equiv bk \pmod{m}$ for any integer k
- If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a c \equiv b d \pmod{m}$
- If $a \equiv b \pmod{m}$, then $a + um \equiv b + vm \pmod{m}$ for every integers u and v
- If $ka \equiv kb \pmod{m}$ and gcd(k,m) = 1, then $a \equiv b \pmod{m}$
- $a \equiv b \pmod{m}$ iff $ak \equiv bk \pmod{mk}$ for any natural number

- If $a \equiv b \pmod{m}$ and $d \mid m$, then $a \equiv b \pmod{d}$
- If $a \equiv b \pmod{m_1}$, $a \equiv b \pmod{m_2}$,..., $a \equiv b \pmod{m_k}$, then $a \equiv b \pmod{lcm(m_1, m_2, ..., m_k)}$
- If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$
- If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$
- If $a \equiv b \pmod{m}$, then $ak \equiv bk \pmod{m}$ for any integer k
- If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a c \equiv b d \pmod{m}$
- If $a \equiv b \pmod{m}$, then $a + um \equiv b + vm \pmod{m}$ for every integers u and v
- If $ka \equiv kb \pmod{m}$ and gcd(k,m) = 1, then $a \equiv b \pmod{m}$
- $a \equiv b \pmod{m}$ iff $ak \equiv bk \pmod{mk}$ for any natural number k.

Warmup: An impossible Josephus problem

The problem

Ten people are sitting in circle, and every mth person is executed. Prove that, for every $k \geqslant 1$, the first, second, and third person executed cannot be 10, k, and k+1, in this order.

Warmup: An impossible Josephus problem

The problem

Ten people are sitting in circle, and every *mth* person is executed.

Prove that, for every $k \ge 1$, the first, second, and third person executed *cannot* be 10, k, and k+1, in this order.

Solution

- If 10 is the first to be executed, then 10|m.
- If k is the second to be executed, then $m \equiv k \pmod{9}$.
- If k+1 is the third to be executed, then $m \equiv 1 \pmod{8}$, because k+1 is the first one after k.

But if 10|m, then m is even, and if $m \equiv 1 \pmod 8$, then m is odd: it cannot be both at the same time.


```
Example 1: Find the remainder of the division of a = 1395^4 \cdot 675^3 + 12 \cdot 17 \cdot 22 by 7.
```

```
22 \equiv 1 \pmod{7}, then a \equiv 2^4 \cdot 3^3 + 5 \cdot 3 \cdot 1 \pmod{7} As 2^4 = 16 \equiv 2 \pmod{7}, 3^3 = 27 \equiv 6 \pmod{7}, and 5 \cdot 3 \cdot 1 = 15 \equiv 1 \pmod{7} it follows a \equiv 2 \cdot 6 + 1 = 13 \equiv 6 \pmod{7}
```

As $1395 \equiv 2 \pmod{7}$, $675 \equiv 3 \pmod{7}$, $12 \equiv 5 \pmod{7}$, $17 \equiv 3 \pmod{7}$ and

Example 2: Find the remainder of the division of $a = 53 \cdot 47 \cdot 51 \cdot 43$ by 56.

A. As
$$53 \cdot 47 = 2491 \equiv 27 \pmod{56}$$
 and $51 \cdot 43 = 2193 \equiv 9 \pmod{56}$, then

$$a \equiv 27 \cdot 9 = 243 \equiv 19 \pmod{56}$$

$$B.~$$
 As $53\equiv -3$ (mod 56), $47\equiv -9$ (mod 56), $51\equiv -5$ (mod 56) and $43\equiv -13$ (mod 56), then

$$a \equiv (-3) \cdot (-9) \cdot (-5) \cdot (-13) = 1755 \equiv 19 \pmod{56}$$

Example 3: Find a remainder of dividing 45⁶⁹ by 89

Make use of so called method of squares:

$$45 \equiv 45 \pmod{89}$$

$$45^2 = 2025 \equiv 67 \pmod{89}$$

$$45^4 = (45^2)^2 \equiv 67^2 = 4489 \equiv 39 \pmod{89}$$

$$45^8 = (45^4)^2 \equiv 39^2 = 1521 \equiv 8 \pmod{89}$$

$$45^{16} = (45^8)^2 \equiv 8^2 = 64 \equiv 64 \pmod{89}$$

$$45^{32} = (45^{16})^2 \equiv 64^2 = 4096 \equiv 2 \pmod{89}$$

$$45^{64} = (45^{32})^2 \equiv 2^2 = 4 \equiv 4 \pmod{89}$$

As
$$69 = 64 + 4 + 1$$
, then

$$45^{69} = 45^{64} \cdot 45^4 \cdot 45^1 \equiv 4 \cdot 39 \cdot 45 \equiv 7020 \equiv 78 \pmod{89}$$

Let $n = a_k \cdot 10^k + a_{k-1} \cdot 10^{k-1} + \ldots + a_1 \cdot 10 + a_0$, where $a_i \in \{0, 1, \ldots, 9\}$ are digits of its decimal representation.

Theorem: An integer n is divisible by 11 iff the difference of the sums of the odd numbered digits and the even numbered digits is divisible by 11:

$$11|(a_0+a_2+\ldots)-(a_1+a_3+\ldots)$$

Proof

Note, that $10 \equiv -1 \pmod{11}$. Then $10^i \equiv (-1)^i \pmod{11}$ for any i. Hence,

$$n \equiv a_k(-1)^k + a_{k-1}(-1)^{k-1} + \dots - a_1 + a_0 =$$

= $(a_0 + a_2 + \dots) - (a_1 + a_3 + \dots) \pmod{11}$ Q.E.D.

Example 4: 34425730438 is divisible by 11

Indeed, due to the following expression is divisible by 11:

$$(8+4+3+5+4+3)-(3+0+7+2+4)=27-16=11$$

Addition:

\oplus	Su	Мо	Tu	We	Th	Fr	Sa
Su	Su	Мо	Tu	We	Th	Fr	Sa
Мо	Мо	Tu	We	Th	Fr	Sa	Su
Tu	Tu	We	Th	Fr	Sa	Su	Мо
We	We	Th	Fr	Sa	Su	Мо	Tu
Th	Th	Fr	Sa	Su	Мо	Tu	We
Fr	Fr	Sa	Su	Мо	Tu	We	Th
Sa	Sa	Su	Мо	Tu	We	Th	Fr

Multiplication:

	Multiplication.										
	0	Su	Мо	Tu	We	Th	Fr	Sa			
	Su	Su	Su	Su	Su	Su	Su	Su			
	Мο	Su	Мо	Tu	We	Th	Fr	Sa			
	Tu	Su	Tu	Th	Sa	Мо	We	Fr			
	We	Su	We	Sa	Tu	Fr	Мо	Th			
ĺ	Th	Su	Th	Мο	Fr	Tu	Sa	We			
	Fr	Su	Fr	We	Мо	Sa	Th	Tu			
	Sa	Su	Sa	Fr	Th	We	Tu	Мο			

Addition:

\oplus	Su	Мо	Tu	We	Th	Fr	Sa
Su	Su	Мо	Tu	We	Th	Fr	Sa
Мо	Мо	Tu	We	Th	Fr	Sa	Su
Tu	Tu	We	Th	Fr	Sa	Su	Мо
We	We	Th	Fr	Sa	Su	Мо	Tu
Th	Th	Fr	Sa	Su	Мо	Tu	We
Fr	Fr	Sa	Su	Мо	Tu	We	Th
Sa	Sa	Su	Мо	Tu	We	Th	Fr

Multiplication:

0	Su	Мо	Tu	We	Th	Fr	Sa			
Su										
Мо	Su	Мо	Tu	We	Th	Fr	Sa			
Tu	Su	Tu	Th	Sa	Мο	We	Fr			
We	Su	We	Sa	Tu	Fr	Мо	Τh			
Th	Su	Th	Мо	Fr	Tu	Sa	We			
Fr	Su	Fr	We	Мо	Sa	Th	Tu			
Sa	Su	Sa	Fr	Th	We	Tu	Мо			

Commutativity:

$$Tu + Fr = Fr + Tu$$

$$Tu \cdot Fr = Fr \cdot Tu$$

Addition:

\oplus	Su	Мо	Tu	We	Th	Fr	Sa
Su	Su	Мо	Tu	We	Th	Fr	Sa
Мо	Мо	Tu	We	Th	Fr	Sa	Su
Tu	Tu	We	Th	Fr	Sa	Su	Мо
We	We	Th	Fr	Sa	Su	Мо	Tu
Th	Th	Fr	Sa	Su	Μо	Tu	We
Fr	Fr	Sa	Su	Мо	Tu	We	Th
Sa	Sa	Su	Мо	Tu	We	Th	Fr

Multiplication:

	iviuit	iplica	LIOII	•				
	0	Su	Мо	Tu	We	Th	Fr	Sa
	Su	Su	Su	Su	Su	Su	Su	Su
	Мο	Su	Мо	Tu	We	Th	Fr	Sa
	Tu	Su	Tu	Th	Sa	Мо	We	Fr
ĺ	We	Su	We	Sa	Tu	Fr	Мо	Th
	Th	Su	Th	Мо	Fr	Tu	Sa	We
	Fr	Su	Fr	We	Мо	Sa	Th	Tu
	Sa	Su	Sa	Fr	Th	We	Tu	Мо

Associativity:

$$(Mo + We) + Fr = Mo + (We + Fr)(Mo \cdot We) \cdot Fr = Mo \cdot (We \cdot Fr)$$

Addition:

\oplus	Su	Мо	Tu	We	Th	Fr	Sa
Su	Su	Мо	Tu	We	Th	Fr	Sa
Мо	Мо	Tu	We	Th	Fr	Sa	Su
Tu	Tu	We	Th	Fr	Sa	Su	Мо
We	We	Th	Fr	Sa	Su	Мо	Tu
Th	Th	Fr	Sa	Su	Мο	Tu	We
Fr	Fr	Sa	Su	Мо	Tu	We	Th
Sa	Sa	Su	Мо	Tu	We	Th	Fr

Multiplication:

iviuitipiication.									
0	Su	Мо	Tu	We	Th	Fr	Sa		
Su	Su	Su	Su	Su	Su	Su	Su		
Мо	Su	Мо	Tu	We	Th	Fr	Sa		
Tu	Su	Tu	Th	Sa	Мо	We	Fr		
We	Su	We	Sa	Tu	Fr	Мо	Th		
Th	Su	Th	Мο	Fr	Tu	Sa	We		
Fr	Su	Fr	We	Мо	Sa	Th	Tu		
Sa	Su	Sa	Fr	Th	We	Tu	Мо		

Subtraction is inverse operation of addition:

$$Th-We=(Mo+We)-We=Mo$$

Addition:

\oplus	Su	Мо	Tu	We	Th	Fr	Sa
Su	Su	Мо	Tu	We	Th	Fr	Sa
Мо	Мо	Tu	We	Th	Fr	Sa	Su
Tu	Tu	We	Th	Fr	Sa	Su	Мо
We	We	Th	Fr	Sa	Su	Мо	Tu
Th	Th	Fr	Sa	Su	Мо	Tu	We
Fr	Fr	Sa	Su	Мо	Tu	We	Th
Sa	Sa	Su	Мо	Tu	We	Th	Fr

Multiplication:

iviuit	ipiica	LIOII	•				
0	Su	Мо	Tu	We	Th	Fr	Sa
Su	Su	Su	Su	Su	Su	Su	Su
Мо	Su	Мо	Tu	We	Th	Fr	Sa
Tu	Su	Tu	Th	Sa	Мο	We	Fr
We	Su	We	Sa	Tu	Fr	Мо	Th
Th	Su	Th	Мο	Fr	Tu	Sa	We
Fr	Su	Fr	We	Мо	Sa	Th	Tu
Sa	Su	Sa	Fr	Th	We	Tu	Мо

Su is zero element:

$$We + Su = We$$

$$We \cdot Su = Su$$

Addition:

\oplus	Su	Мо	Tu	We	Τh	Fr	Sa
Su	Su	Мо	Tu	We	Th	Fr	Sa
Мо	Мо	Tu	We	Th	Fr	Sa	Su
Tu	Tu	We	Th	Fr	Sa	Su	Мо
We	We	Th	Fr	Sa	Su	Мо	Tu
Th	Th	Fr	Sa	Su	Мо	Tu	We
Fr	Fr	Sa	Su	Мо	Tu	We	Th
Sa	Sa	Su	Мο	Tu	We	Th	Fr

Multiplication:

	iviurupiication.									
	0	Su	Мо	Tu	We	Th	Fr	Sa		
	Su	Su	Su	Su	Su	Su	Su	Su		
	Мο	Su	Мо	Tu	We	Th	Fr	Sa		
	Tu	Su	Tu	Th	Sa	Мо	We	Fr		
ĺ	We	Su	We	Sa	Tu	Fr	Мо	Th		
	Th	Su	Th	Мо	Fr	Tu	Sa	We		
	Fr	Su	Fr	We	Мо	Sa	Th	Tu		
	Sa	Su	Sa	Fr	Th	We	Tu	Мо		

Mo is unit:

$$We \cdot Mo = We$$

Arithmetic modulo *m*

- Numbers are denoted by $\overline{0}, \overline{1}, \dots, \overline{m-1}$, where \overline{a} represents the class of all integers that dividing by m give remainder a.
- Operations are defined as follows

$$\overline{a} + \overline{b} = \overline{c}$$
 iff $a + b \equiv c \pmod{m}$
 $\overline{a} \cdot \overline{b} = \overline{c}$ iff $a \cdot b \equiv c \pmod{m}$

Examples

- "arithmetic of days of the week", modulus 7
- Boolean algebra, modulus 2

■ Dividing \overline{a} by \overline{b} means to find a quotient x, such that $\overline{b} \cdot x = \overline{a}$, s.o. $\overline{a}/\overline{b} = x$

In "arithmetic of days of the week"

- \blacksquare Mo/Tu = Th ja Tu/Mo = Tu
- We cannot divide by Su, exceptionally Su/Su could be any day.
- A quotient is well defined for $\overline{a}/\overline{b}$ for every $\overline{b} \neq \overline{0}$, if the modulus is a prime number.

■ Dividing \overline{a} by \overline{b} means to find a quotient x, such that $\overline{b} \cdot x = \overline{a}$, s.o. $\overline{a}/\overline{b} = x$

In "arithmetic of days of the week":

- lacktriangledown Mo/Tu = Th ja Tu/Mo = Tu
- We cannot divide by Su, exceptionally Su/Su could be any day.
- A quotient is well defined for $\overline{a}/\overline{b}$ for every $\overline{b} \neq \overline{0}$, if the modulus is a prime number.

0	Su	Мо	Tu	We	Th	Fr	Sa
Su							
Мо	Su	Мо	Tu	We	Th	Fr	Sa
Tu	Su	Tu	Th	Sa	Мо	We	Fr
We	Su	We	Sa	Tu	Fr	Мо	Th
Th	Su	Th	Мо	Fr	Tu	Sa	We
Fr	Su	Fr	We	Мо	Sa	Th	Tu
Sa	Su	Sa	Fr	Th	We	Tu	Мо

■ Dividing \overline{a} by \overline{b} means to find a quotient x, such that $\overline{b} \cdot x = \overline{a}$, s.o. $\overline{a}/\overline{b} = x$

In "arithmetic of days of the week":

- Mo/Tu = Th ja Tu/Mo = Tu.
- We cannot divide by Su, exceptionally Su/Su could be any day.
- A quotient is well defined for $\overline{a}/\overline{b}$ for every $\overline{b} \neq \overline{0}$, if the modulus is a prime number.

0	Su	Мо	Tu	We	Th	Fr	Sa
Su							
Мо	Su	Мо	Tu	We	Th	Fr	Sa
Tu	Su	Tu	Th	Sa	Мо	We	Fr
We	Su	We	Sa	Tu	Fr	Мо	Th
Th	Su	Th	Мо	Fr	Tu	Sa	We
Fr	Su	Fr	We	Мо	Sa	Th	Tu
Sa	Su	Sa	Fr	Th	We	Tu	Мо

■ Dividing \overline{a} by \overline{b} means to find a quotient x, such that $\overline{b} \cdot x = \overline{a}$, s.o. $\overline{a}/\overline{b} = x$

In "arithmetic of days of the week":

- Mo/Tu = Th ja Tu/Mo = Tu.
- We cannot divide by Su, exceptionally Su/Su could be any day.
- A quotient is well defined for $\overline{a}/\overline{b}$ for every $\overline{b} \neq \overline{0}$, if the modulus is a prime number.

0	Su	Мо	Tu	We	Th	Fr	Sa
Su							
Мо	Su	Мо	Tu	We	Th	Fr	Sa
Tu	Su	Tu	Th	Sa	Мо	We	Fr
We	Su	We	Sa	Tu	Fr	Мо	Th
Th	Su	Th	Мо	Fr	Tu	Sa	We
Fr	Su	Fr	We	Мο	Sa	Th	Tu
Sa	Su	Sa	Fr	Th	We	Tu	Мо

Division modulo prime p

Theorem

If m is a prime number and x < m, then the numbers

$$\overline{x} \cdot \overline{0}, \overline{x} \cdot \overline{1}, \dots, \overline{x} \cdot \overline{m-1}$$

are pairwise different.

Proof. Assume contrary, that the remainders of dividing $x \cdot i$ and $x \cdot j$, where i < j, by m are equal. Then m|(j-i)x, that is impossible as j-i < m and $\gcd(m,x)=1$. Hence, $\overline{x} \cdot \overline{i} \neq \overline{x} \cdot \overline{j}$ Q.E.D.

Corollary

If m is prime number, then the quotient of the division $\overline{x}=\overline{a}/\overline{b}$ modulo m is well defined for every $b\neq 0$.

If the modulus is not prime ...

The quotient is not well defined, for example:

$$\overline{1} = \overline{2}/\overline{2} = \overline{3}$$

\odot	0	1	2	3
0	0	0	0	0
1	0	1	2	3
<u>2</u> <u>3</u>	0	2	0	2
3	Ō	3	2	$\overline{1}$

Computing of $\overline{x} = \overline{a}/\overline{b}$ modulo \overline{p} (where p is a prime number)

In two steps:

How to compute $\overline{y}=\overline{1}/\overline{b}$ i.e. find such a \overline{y} , that $\overline{b}\cdot\overline{y}=\overline{1}$

Algorithm:

- 1 Using Euclidean algorithm, compute gcd(p,b) = ... = 1
- 2 Find the coefficients s and t, such that ps + bt = 1
- 4 return(t)

% Property:
$$\overline{t} = \overline{1}/\overline{b}$$

Division modulo p

Example: compute $\overline{53}/\overline{2}$ modulo 234 527

■ At first, we find $\overline{1}/\overline{2}$. For that we compute GCD of the divisor and modulus:

$$gcd(234527,2) = gcd(2,1) = 1$$

■ The remainder can be expressed by modulus ad divisor as follows:

$$1 = 2(-117263) + 234527 \text{ or}$$

$$-117263 \cdot 2 \equiv 117264 \pmod{234527}$$

Thus,
$$\overline{1}/\overline{2} = \overline{117264}$$

■ Due to $x = 53 \cdot 117264 \equiv 117290 \pmod{234527}$, the result is $\overline{x} = \overline{53} \cdot \overline{117264} = \overline{117290}$.

Linear equations

Solve the equation $\overline{7}\overline{x} + \overline{3} = \overline{0}$ modulo 47

Solution can be written as $\overline{x} = -\overline{3}/\overline{7}$

■ Compute GCD using Euclidean algorithm

$$gcd(47,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1,$$

that yields the relations

$$1 = 5 - 2 \cdot 2$$

$$2 = 7 - 5$$

$$5 = 47 - 6 \cdot 7$$

■ Find coefficients of 47 and 7:

$$1 = 5 - 2 \cdot 2 =$$

$$= (47 - 6 \cdot 7) - 2 \cdot (7 - 5) =$$

$$= 47 - 8 \cdot 7 + 2 \cdot 5 =$$

$$= 47 - 8 \cdot 7 + 2 \cdot (47 - 6 \cdot 7) =$$

$$= 3 \cdot 47 - 20 \cdot 7$$

Linear equations (2)

Solve the equation $\overline{7x} + \overline{3} = \overline{0}$ modulo 47

- The previous expansion of the gcd(47,7) shows that $-20 \cdot 7 \equiv 1 \pmod{47}$ i.e. $27 \cdot 7 \equiv 1 \pmod{47}$ Hence, $\overline{1/7} = \overline{-20} = \overline{27}$
- The solution is $\overline{x} = \overline{-3} \cdot \overline{27} = \overline{13}$

The latter equality follows from the congruence relation $44\equiv -3\pmod{47}$, therefore $x=44\cdot 27=1188\equiv 13\pmod{47}$

Solving a system of equations using elimination method

Example

Assuming modulus 127, find integers x and y such that:

$$\left\{ \begin{array}{l} \overline{12}\overline{x} + \overline{31}\overline{y} = \overline{2} \\ \overline{2}\overline{x} + \overline{89}\overline{y} = \overline{23} \end{array} \right.$$

Accordingly to the elimination method, multiply the second equation by $-\overline{6}$ and sum pu the equations, we get

$$\overline{y} = \frac{\overline{2} - \overline{6} \cdot \overline{23}}{\overline{31} - \overline{6} \cdot \overline{89}}$$

Due to $6\cdot 23=138\equiv 11\pmod{127}$ and $6\cdot 89=534\equiv 26\pmod{127}$, the latter equality can be transformed as follows:

$$\overline{y} = \frac{\overline{2} - \overline{11}}{\overline{31} - \overline{26}} = \frac{-\overline{9}}{\overline{5}}$$

Substituting \overline{y} into the second equation, express \overline{x} and transform it further considering that $5 \cdot 23 = 115 \equiv -12 \pmod{127}$ and $9 \cdot 89 = 801 \equiv 39 \pmod{127}$:

$$\overline{x} = \frac{\overline{23} - \overline{89}\overline{y}}{\overline{2}} = \frac{\overline{23} \cdot \overline{5} - \overline{899}}{\overline{10}} = \frac{\overline{-12} + \overline{39}}{\overline{10}} = \frac{\overline{27}}{\overline{10}}$$

Solving a system of equations using elimination method (2)

Continuation of the last example ...

Computing:

$$\begin{cases}
\overline{x} = \overline{27}/\overline{10} \\
\overline{y} = -\overline{9}/\overline{5}
\end{cases}$$

if the modulus is 127.

Apply the Euclidean algorithm:

$$gcd(127,5) = gcd(5,2) = gcd(2,1) = 1$$

 $gcd(127,10) = gcd(10,7) = gcd(7,3) = gcd(3,1) = 1$

That gives the equalities:

$$1 = 5 - 2 \cdot 2 = 5 - 2(127 - 25 \cdot 5) = (-2)127 + 51 \cdot 5$$

$$1 = 7 - 2 \cdot 3 = 127 - 12 \cdot 10 - 2(10 - 127 + 12 \cdot 10) = 3 \cdot 127 - 38 \cdot 10$$

Hence, division by $\overline{5}$ is equivalent to multiplication by $\overline{51}$ and division by $\overline{10}$ to multiplication to $-\overline{38}$. Then the solution of the system is

$$\left\{ \begin{array}{l} \overline{x} = \overline{27}/\overline{10} = -\overline{27} \cdot \overline{38} = -\overline{1026} = \overline{117} \\ \overline{y} = -\overline{9}/\overline{5} = -\overline{9} \cdot \overline{51} = -\overline{459} = \overline{49} \end{array} \right.$$

Next section

- 1 Modular arithmetic
- 2 Primality test
 - Fermat' theorem
 - Fermat' test
 - Rabin-Miller test
- 3 Phi and Mu

- Try all numbers 2, ..., n-1. If n is not dividisble by none of them, then it is prime.
- Same as above, only try numbers $2, ..., \sqrt{n}$.
- Probabilistic algorithms with polynomial complexity (the Fermat' test, the Miller-Rabin test, etc.).
- Deterministic primality-proving algorithm by Agrawal-Kayal-Saxena (2002).

- Try all numbers 2, ..., n-1. If n is not dividisble by none of them, then it is prime.
- Same as above, only try numbers $2, ..., \sqrt{n}$.
- Probabilistic algorithms with polynomial complexity (the Fermat' test, the Miller-Rabin test, etc.).
- Deterministic primality-proving algorithm by Agrawal-Kayal-Saxena (2002).

- Try all numbers 2, ..., n-1. If n is not dividisble by none of them, then it is prime.
- Same as above, only try numbers $2, ..., \sqrt{n}$.
- Probabilistic algorithms with polynomial complexity (the Fermat' test, the Miller-Rabin test, etc.).
- Deterministic primality-proving algorithm by Agrawal-Kayal-Saxena (2002).

- Try all numbers 2, ..., n-1. If n is not dividisble by none of them, then it is prime.
- Same as above, only try numbers $2, ..., \sqrt{n}$.
- Probabilistic algorithms with polynomial complexity (the Fermat' test, the Miller-Rabin test, etc.).
- Deterministic primality-proving algorithm by Agrawal–Kayal–Saxena (2002).

Next subsection

- 1 Modular arithmetic
- 2 Primality test
 - Fermat' theorem
 - Fermat' test
 - Rabin-Miller test
- 3 Phi and Mu

Fermat's "Little" Theorem

Theorem

If p is prime and a is an integer not divisible by p, then

$$p|a^{p-1}-1$$

Lemma

If p is prime and 0 < k < p, then $p \mid \binom{p}{k}$

Proof. This follows from the equality

$$\binom{p}{k} = \frac{p^{\underline{k}}}{k!} = \frac{p(p-1)\cdots(p-k+1)}{k(k-1)\cdots 1}$$

Pierre de Fermat (1601–1665)

Another formulation of the theorem

Fermat's "little" theorem

If p is prime, and a is an integer, then $p|a^p-a$.

- *Proof.*If a is not divisible by p, then $p|a^{p-1}-1$ iff $p|(a^{p-1}-1)a$
- The assertion is trivally true if a = 0. To prove it for a > 0 by induction, set a = b + 1. Hence,

$$\begin{aligned} a^{p} - a &= (b+1)^{p} - (b+1) = \\ &= \binom{p}{0} b^{p} + \binom{p}{1} b^{p-1} + \dots + \binom{p}{p-1} b + \binom{p}{p} - b - 1 = \\ &= (b^{p} - b) + \binom{p}{1} b^{p-1} + \dots + \binom{p}{p-1} b \end{aligned}$$

Here the expression $(b^p - b)$ is divisible by p by the induction hypothesis, while other terms are divisible by p by the Lemma. Q.E.D.

Application of the Fermat' theorem

Example: Find a remainder of division the integer 3⁴⁵⁶⁵ by 13.

Fermat' theorem gives $3^{12} \equiv 1 \pmod{13}$. Let's divide 4565 by 12 and compute the remainder: $4565 = 380 \cdot 12 + 5$. Then

$$3^{4565} = (3^{12})^{380} 3^5 \equiv 1^{380} 3^5 = 81 \cdot 3 \equiv 3 \cdot 3 = 9 \pmod{13}$$

Application of the Fermat' theorem (2)

Prove that $n^{18} + n^{17} - n^2 - n$ is divisible by 51 for any positive integer n.

Let's factorize

$$A = n^{18} + n^{17} - n^2 - n =$$

$$= n(n^{17} - n) + n^{17} - n =$$

$$= (n+1)(n^{17} - n) =$$

$$= (n+1)n(n^{16} - 1) =$$

$$= (n+1)n(n^8 - 1)(n^8 + 1) =$$

$$= (n+1)n(n^4 - 1)(n^4 + 1)(n^8 + 1) =$$

$$= (n+1)n(n^2 - 1)(n^2 + 1)(n^4 + 1)(n^8 + 1) =$$

$$= (n+1)n(n-1)(n+1)(n^2 + 1)(n^4 + 1)(n^8 + 1)$$
divisible by 3

Hence, A is divisible by $17 \cdot 3 = 51$.

Pseudoprimes

A pseudoprime is a probable prime (an integer that shares a property common to all prime numbers) that is not actually prime.

- The assertion of the Fermat' theorem is valid also for some composite numbers.
- For instance, if $p = 341 = 11 \cdot 31$ and a = 2, then dividing

$$2^{340} = (2^{10})^{34} = 1024^{34}$$

by 341 yields the remainder 1, because of dividing 1024 gives the remainder 1.

- Integer 341 is a Fermat' pseudoprime to base 2.
- However, 341 the assertion of Fermat' theorem is not satisfied for the base 3.
 Dividing 3³⁴⁰ by 341 results in the remainder 56.

Carmichael numbers

Definition

An integer n that is a Fermat pseudoprime for every base a that are coprime to n is called a Carmichael number.

Example: let $p = 561 = 3 \cdot 11 \cdot 17$ and gcd(a, p) = 1.

$$a^{560}=(a^2)^{280}$$
 gives the remainder 1, if divded by 3 $a^{560}=(a^{10})^{56}$ gives the remainder 1, if divded by 11 $a^{560}=(a^{16})^{35}$ gives the remainder 1, if divded by 17

Thus $a^{560} - 1$ is divisible by 3, by 11 and by 17.

See http://oeis.org/search?q=Carmichael, sequence nr A002997

Next subsection

- 1 Modular arithmetic
- 2 Primality test
 - Fermat' theorem
 - Fermat' test
 - Rabin-Miller test
- 3 Phi and Mu

Fermat' test

Fermat' theorem: If p is prime and integer a is such that $1 \leqslant a < p$, then

$$a^{p-1} \equiv 1 \pmod{p}$$
.

To test, whether n is prime or composite number:

- Check validity of $a^{n-1} \equiv 1 \pmod{n}$ for every a = 2, 3, ..., n-1
- If the condtion is not satisfiable for one or more value of a, then n is composite, otherwise prime.

Example: is 221 prime?

$$\begin{aligned} 2^{220} &= \left(2^{11}\right)^{20} \equiv 59^{20} = \left(59^4\right)^5 \equiv 152^5 = \\ &= 152 \cdot \left(152^2\right)^2 \equiv 152 \cdot 120^2 \equiv 152 \cdot 35 = 5320 \equiv 16 \pmod{221} \end{aligned}$$

Hence, 221 is a composite number. Indeed, $221 = 13 \cdot 1$

Fermat' test

Fermat' theorem: If p is prime and integer a is such that $1 \leqslant a < p$, then

$$a^{p-1} \equiv 1 \pmod{p}$$
.

To test, whether *n* is prime or composite number:

- Check validity of $a^{n-1} \equiv 1 \pmod{n}$ for every a = 2, 3, ..., n-1.
- If the condtion is not satisfiable for one or more value of a, then n is composite, otherwise prime.

Example: is 221 prime?

$$\begin{split} 2^{220} &= \left(2^{11}\right)^{20} \equiv 59^{20} = \left(59^4\right)^5 \equiv 152^5 = \\ &= 152 \cdot \left(152^2\right)^2 \equiv 152 \cdot 120^2 \equiv 152 \cdot 35 = 5320 \equiv 16 \pmod{221} \end{split}$$

Hence, 221 is a composite number. Indeed, $221 = 13 \cdot 17$

Problems of the Fermat' test

- Computing of LARGE powers ~> method of squares
- Computing with LARGE numbers modular arithmetic
- n is a pseudoprime ~> choose a randomly and repeat

Modified Fermat' test

```
Input: n - a value to test for primality
    k - the number of times to test for primality
Output: "n is composite" or "n is probably prime"

    for i := 0 step 1 to k
    do
        pick a randomly, such that 1 < a < n
        if a<sup>n-1</sup> ≠ 1 (mod n) return("n is composite"); exit
    od
        return("n is probably prime")
```

Example, n = 221, randomly picked values for a are 38 ja 26

$$a^{n-1}=38^{220}\equiv 1\pmod{221}$$
 $\leadsto 38$ is pseudoprime $a^{n-1}=26^{220}\equiv 169\not\equiv 1\pmod{221}$ $\leadsto 221$ is composite number

Modified Fermat' test

```
Input: n - a value to test for primality
    k - the number of times to test for primality
Output: "n is composite" or "n is probably prime"

    for i := 0 step 1 to k
    do
        pick a randomly, such that 1 < a < n
        if a<sup>n-1</sup> ≠ 1 (mod n) return("n is composite"); exit
    od
        return("n is probably prime")
```

Example, n = 221, randomly picked values for a are 38 ja 26

$$a^{n-1}=38^{220}\equiv 1\pmod{221}$$
 $\leadsto 38$ is pseudoprime $a^{n-1}=26^{220}\equiv 169\not\equiv 1\pmod{221}$ $\leadsto 221$ is composite number

Next subsection

- 1 Modular arithmetic
- 2 Primality test
 - Fermat' theorem
 - Fermat' test
 - Rabin-Miller test
 - 3 Phi and Mu

An idea, how to battle against Carmichael numbers

- \blacksquare Let n be an odd positive integer to be tested against primality
- Randomly pick an integer a from the interval $0 \le a \le n-1$.
- Consider the expression $a^n a = a(a^{n-1} 1)$ and until possible, transform it applying the identity $x^2 1 = (x 1)(x + 1)$
- If the expression $a^n a$ is not divisible by n, then all its divisors are also not divisible by n.
- If at least one factor is divisible by n, then n is probably prime. To increase this probability, it is need to repeat with another randomly chosen value of a.

Example: n = 221

Let's factorize:

$$a^{221} - a = a(a^{220} - 1) =$$

$$= a(a^{110} - 1)(a^{110} + 1) =$$

$$= a(a^{55} - 1)(a^{55} + 1)(a^{110} + 1)$$

- If a=174, then $174^{110}=(174^2)^{55}\equiv (220)^{55}=220\cdot (220^2)^{27}\equiv 220\cdot 1^{27}\equiv 220\equiv -1\pmod{221}$. Thus 221 is either prime or pseudoprime to the base 174.
- If a = 137, then 221 $\frac{1}{2}a$,221 $\frac{1}{2}(a^{55} 1)$,221 $\frac{1}{2}(a^{55} + 1)$,221 $\frac{1}{2}(a^{110} + 1)$. Consequently, 221 is a composite number

Rabin-Miller test

```
Input: n > 3 – a value to test for primality
       k - the number of times to test for primality
Output: "n is composite" or "n is probably prime"
   ■ Factorize n-1=2^s \cdot d, where d is an odd number
   • for i := 0 step 1 to k
      {
        1 Randomly pick value for a \in \{2, 3, ..., n-1\};
        x := a^d \mod n;
        3 if x = 1 or x = n - 1 then { continue; }
        4 for r := 1 step 1 to s - 1
              1 x := x^2 \mod n
              2 if x = 1 then { return("n is composite"); exit; }
              3 if x = n - 1 then { break; }
        5 return("n is composite"); exit;
   return("n is probably prime");
 Complexity of the algorithm is \mathcal{O}(k \log_2^3 n)
```


Next section

- 1 Modular arithmetic
- 2 Primality test
 - Fermat' theorem
 - Fermat' test
 - Rabin-Miller test
- 3 Phi and Mu

Euler's totient function ϕ

Euler's totient function

Euler's totient function ϕ is defined for $m \ge 2$ as

$$\phi(m) = |\{n \in \{0, \dots, m-1\} \mid gcd(m, n) = 1\}|$$

Computing Euler's function

Theorem

- 1 If $p \geqslant 2$ is prime and $k \geqslant 1$, then $\phi(p^k) = p^{k-1} \cdot (p-1)$.
- 2 If $m, n \geqslant 1$ are relatively prime, then $\phi(m \cdot n) = \phi(m) \cdot \phi(n)$.

Proof

- **1** Exactly every pth number n, starting with 0, has $gcd(p^k, n) \ge p > 1$. Then $\phi(p^k) = p^k p^k/p = p^{k-1} \cdot (p-1)$.
- 2 If $m \perp n$, then for every $k \geqslant 1$ it is $k \perp mn$ if and only if both $m \perp k$ and $n \perp k$.

Multiplicative functions

Definition

 $f: \mathbb{N}^+ \to \mathbb{N}^+$ is *multiplicative* if it satisfies the following condition: For every $m, n \geqslant 1$, if $m \perp n$, then $f(m \cdot n) = f(m) \cdot f(n)$

Theorem

If $g(m) = \sum_{d|m} f(d)$ is multiplicative, then so is f.

- $g(1) = g(1) \cdot g(1) = f(1)$ must be either 0 or 1.
- If $m=m_1m_2$ with $m_1\perp m_2$, then by induction

$$g(m_1m_2) = \sum_{d_1d_2|m_1m_2} f(d_1d_2)$$

$$= \left(\sum_{d_1|m_1} f(d_1)\right) \left(\sum_{d_2|m_1} f(d_2)\right) - f(m_1)f(m_2) + f(m_1m_2)$$
with $d_1 \perp d_2$

$$= g(m_1)g(m_2) - f(m_1)f(m_2) + f(m_1m_2)$$
:

whence $f(m_1m_2) = f(m_1)f(m_2)$ as $g(m_1m_2) = g(m_1)g(m_2)$.

$$\sum_{d|m} \phi(d) = m$$
: Example

The fractions

$$\frac{0}{12}, \frac{1}{12}, \frac{2}{12}, \frac{3}{12}, \frac{4}{12}, \frac{5}{12}, \frac{6}{12}, \frac{7}{12}, \frac{8}{12}, \frac{9}{12}, \frac{10}{12}, \frac{11}{12}$$

are simplified into:

$$\frac{0}{1}, \frac{1}{12}, \frac{1}{6}, \frac{1}{4}, \frac{1}{3}, \frac{5}{12}, \frac{1}{2}, \frac{7}{12}, \frac{2}{3}, \frac{3}{4}, \frac{15}{6}, \frac{11}{12}.$$

The divisors of 12 are 1, 2, 3, 4, 6, and 12. Of these:

- The denominator 1 appears $\phi(1) = 1$ time: 0/1.
- The denominator 2 appears $\phi(2) = 1$ time: 1/2.
- The denominator 3 appears $\phi(3) = 2$ times: 1/3, 2/3.
- The denominator 4 appears $\phi(4) = 2$ times: 1/4, 3/4.
- The denominator 6 appears $\phi(6) = 2$ times: 1/6, 5/6.
- The denominator 12 appears $\phi(12) = 4$ times: 1/12, 5/12, 7/12, 11/12.

We have thus found: $\phi(1) + \phi(2) + \phi(3) + \phi(4) + \phi(6) + \phi(12) = 12$.

$$\sum_{d|m} \phi(d) = m$$
: Proof

Call a fraction a/b basic if $0 \le a < b$.

After simplifying any of the m basic fractions with denominator m, the denominator d of the resulting fraction must be a divisor of m.

Lemma

In the simplification of the m basic fractions with denominator m, for every divisor d of m, the denominator d appears exactly $\phi(d)$ times.

It follows immediately that $\sum_{d|m} \phi(d) = m$.

Proof

- After simplification, the fraction k/d only appears if gcd(k,d)=1: for every d there are at most $\phi(d)$ such k.
- But each such k appears in the fraction kh/n, where $h \cdot d = n$.

Euler's theorem

Statement

If m and n are positive integers and $n \perp m$, then $n^{\phi(m)} \equiv 1 \pmod{m}$.

Note: Fermat's little theorem is a special case of Euler's theorem for m = p prime.

Euler's theorem

Statement

If m and n are positive integers and $n \perp m$, then $n^{\phi(m)} \equiv 1 \pmod{m}$.

Note: Fermat's little theorem is a special case of Euler's theorem for m = p prime.

Proof with $m \ge 2$ (cf. Exercise 4.32)

Let $U_m = \{0 \leqslant a < m \mid a \perp m\} = \{a_1, \dots, a_{\phi(m)}\}$ in increasing order.

- The function $f(a) = na \pmod{m}$ is a permutation of U_m : If $f(a_i) = f(a_i)$, then $m|n(a_i - a_i)$, which is only possible if $a_i = a_i$.
- Consequently,

$$n^{\phi(m)}\prod_{i=1}^{\phi(m)}a_i\equiv\prod_{i=1}^{\phi(m)}a_i\pmod{m}$$

■ But by construction, $\prod_{i=1}^{\phi(m)} a_i \perp m$: we can thus simplify and obtain the thesis.

Möbius function μ

Mobius function

Mobius' function μ is defined for $m\geqslant 1$ by the formula

$$\sum_{d|m}\mu(d)=[m=1]$$

Möbius function μ

Mobius function

Mobius' function μ is defined for $m\geqslant 1$ by the formula

$$\sum_{d|m}\mu(d)=[m=1]$$

As [m=1] is clearly multiplicative, so is $\mu!$

Computing the Möbius function

Theorem

For every $m \geqslant 1$,

$$\mu(m) = \begin{cases} (-1)^k & \text{if } m = p_1 p_2 \cdots p_k \text{ distinct primes,} \\ 0 & \text{if } p^2 | m \text{ for some prime } p. \end{cases}$$

Indeed, let p be prime. Then, as $\mu(1) = 1$:

- $\mu(1) + \mu(p) = 0$, hence $\mu(p) = -1$. The first formula then follows by multiplicativity.
- $\mu(1) + \mu(p) + \mu(p^2) = 0$, hence $\mu(p^2) = 0$. The second formula then follows, again by multiplicativity.

Möbius inversion formula

Theorem

Let $f,g:\mathbb{Z}^+ \to \mathbb{Z}^+$. The following are equivalent:

- 1 For every $m \geqslant 1$, $g(m) = \sum_{d|m} f(d)$.
- 2 For every $m \ge 1$, $f(m) = \sum_{d|m} \mu(d)g(\frac{m}{d})$.

Corollary

For every $m \geqslant 1$,

$$\phi(m) = \sum_{d|m} \mu(d) \cdot \frac{m}{d} :$$

because we know that $\sum_{d|m} \phi(d) = m$.

Proof of Möbius inversion formula

Suppose $g(m) = \sum_{d|m} f(d)$ for every $m \ge 1$. Then for every $m \ge 1$:

$$\begin{split} \sum_{d|m} \mu(d)g\left(\frac{m}{d}\right) &= \sum_{d|m} \mu\left(\frac{m}{d}\right)g(d) \\ &= \sum_{d|m} \mu\left(\frac{m}{d}\right) \sum_{k|d} f(k) \\ &= \sum_{k|m} \left(\sum_{d|(m/k)} \mu\left(\frac{m}{kd}\right)\right) f(k) \\ &= \sum_{k|m} \left(\sum_{d|(m/k)} \mu(d)\right) f(k) \\ &= \sum_{k|m} \left[\frac{m}{k} = 1\right] f(k) \\ &= f(m) \, . \end{split}$$

The converse implication is proved similarly.

