УДК 618.3

А. Н. Рейда, к. т. н.; Ю. В. Олейник; А. А. Панчук; М. Л. Синенький МЕТОДЫ УЛУЧШЕНИЯ ЦИФРОВОГО ИЗОБРАЖЕНИЯ И ВОССТАНОВЛЕНИЯ ЕГО СТРУКТУРЫ

В статье рассмотрены способы улучшения качества цифровых изображений, принципы обработки цифровых изображений в частотной области с помощью преобразований Фурье. Предложено использовать нелинейную фильтрацию для решения таких задач, как устранение шума, восстановление поврежденных частей изображения.

Ключевые слова: цифровое изображение, улучшение качества изображения, частотные методы обработки, преобразование Фурье, алгоритм фильтрации изображения, нелинейные методы фильтрации.

Введение

В настоящее время получили широкое развитие отрасли науки и техники, в которых применяют системы обработки информации с использованием данных в цифровом виде. Базовыми составляющими элементами таких систем являются системы цифрового преобразования информации, предназначенные для перевода в цифровой вид естественных или искусственных объектов, которые являются носителями информации в аналоговом виде. Данные в цифровом виде используют для сохранения, передачи, анализа и обработки в системах цифровой обработки информации.

Одним из основных типов информационных систем, использующих цифровые данные, являются геоинформационные системы, в которых широко применяют методы дистанционного зондирования Земли, естественных или искусственных объектов. Методы дистанционного зондирования основаны на регистрации электромагнитного излучения в широком спектральном диапазоне электромагнитного излучения и по следующем их анализе. Основной задачей обработки является устранение дефектов, уменьшение влияния искажений и шумов, преобразование изображения в удобное для наблюдения человекомоператором. Особенно важное практическое значение имеют методы обработки аэрокосмических изображений. Эффективность аэрокосмических методов изучения земной поверхности, поверхности других планет в значительной мере определяется качеством цифровых материалов. Повышение качества таких изображений имеет большое экономическое значение, поскольку снижает стоимость выполнения работ за счет уменьшения масштаба съемки.

Анализ современных подходов решения задачи улучшения цифрового изображения и восстановления его структуры

Существующие подходы относительно решения задачи улучшения цифрового изображения и восстановления его структуры разделяют на две категории:

методы обработки в пространственной области (пространственные методы), основанные на прямом манипулировании пикселями изображения;

методы обработки в частотной области (частотные методы), основанные на модификации (фильтрации) сигнала, который формируется путем применения к изображению преобразования Фурье.

Пространственная обработка применяется, когда единственным источником искривлений является аддитивный шум. Частотная фильтрация может использоваться для нечетких изображений с дефектами освещения, также она учитывает и шум [1]. Поэтому частотная обработка является наиболее универсальным и распространенным методом улучшения

качества цифрового изображения.

Описание метода обработки изображений в частотной области

Суть этого метода заключается в представлении изображения как двумерной функции f(x, y), где x и y – координаты в пространстве (конкретно, на плоскости). Значение f в любой точке, заданной парой координат (x, y), называется интенсивностью, или уровнем серого в этой точке.

Общеизвестным является утверждение, что любая функция, которая периодически повторяет свои значения, может быть представлена в виде суммы синусов и косинусов разных частот, умноженных на некоторые коэффициенты. Такое представление функции называется представлением в виде ряда Фурье. Когда функция не является периодической, а площадь под ее графиком является конечной, то это – преобразование Фурье.

Функция, заданная как рядом, так и преобразование Фурье, может быть полностью без потери информации восстановлена с помощью алгоритма преобразования. Это свойство является чрезвычайно важным, поскольку позволяет работать в «Фурье-пространстве», а затем вернуться в начальную область определения функции без потери какой-либо информации [2]. На рис. 1 а изображена сложная функция, которая является суммой четырех синусоид и косинусоид рис. 1 б.

Рис. 1. Разложение функции на составляющие: а) функция; б) ее составляющие

Поскольку цифровые изображения описываются двухмерными дискретными функциями, то рассмотрим дискретное преобразование Фурье (ДПФ) именно для таких функций.

Пусть f(x, y), при x = 0, 1, 2..., M - 1 и y = 0,1,2..., N - 1, обозначает изображение M×N. Двухмерное дискретное преобразование Фурье изображение f(x, y), которое отражается F(u, v), задается уравнением (1).

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)}, \qquad (1)$$

где u=0, 1, 2..., M-1 и v=0, 1, 2..., N-1; М и N- парные числа.

Координатная система, задавая аргументы F(u, v) частотными переменными u v, называется частотной областью. В данном случае можно обнаружить аналогию с заданием аргументов f(x, y) пространственными переменными x u y. Прямоугольную область размера Наукові праці ВНТУ, 2010, № 4

 $M \times N$ при u=0, 1, 2..., M-1 и v=0, 1, 2..., N-1, принято называть частотным прямоугольником. Он имеет те же размеры, что и начальное изображение.

Даже если изображение f(x, y) действительное, его преобразование Фурье является, как правило, комплексным. Основной метод визуального анализа этого преобразования заключается в вычислении его спектра (то есть абсолютной величины F(u, v)) и его отображения на дисплее. Пусть R(u, v) и I(u, v) помечают действительную и мнимую компоненты F(u, v), тогда спектр Фурье задается выражением (2).

$$|F(u,v)| = [R^2(u,v) + I^2(u,v)]^{1/2}.$$
 (2)

Каждый элемент фурье-образа F(u, v) содержит все отсчеты функции f(x, y), умноженные на значение экспоненциальных членов, поэтому обычно невозможно установить прямое соответствие между характерными деталями изображения и его образом. Однако некоторые общие утверждения относительно взаимосвязи частотных составляющих фурье-образа и пространственных характеристик изображения могут быть сделаны. Например, поскольку частота прямо связана со скоростью изменения сигнала, то понятно, что частоты в преобразованиях Фурье связаны с вариацией яркости на изображении. Наиболее медленно изменяемая (постоянная) частотная составляющая (u=v=0) совпадает со средней яркостью изображения. Низкие частоты, соответствующие точкам вблизи начала координат Фурье преобразования, соответствуют медленно переменным компонентам изображения. На изображении комнаты, например, они могут соответствовать плавным изменениям яркости стен и пола. По мере отдаления от начала координат высшие частоты начинают соответствовать все большим изменениям яркости деталей изображения и их граней.

Алгоритм фильтрации изображения в частотной области

Процедура алгоритма фильтрации в частотной области простая и состоит из следующих шагов:

Начальное изображение умножается на $(-1)^{x+y}$, в соответствии с выражением (3). Это делается для того, чтобы его преобразование Фурье оказалось центрируемым, то есть начало координат для образа функции будет находиться в центре частотного прямоугольника в точке (M/2;N/2);

$$\xi \left[f(x,y)(-1)^{x+y} \right] = F(u - M/2, v - N/2). \tag{3}$$

Вычисляется прямое ДП Φ F(u, v) изображения, полученного после шага 1;

Функция F(u, v) множится на некоторую функцию фильтра H(u, v);

Вычисляется обратное ДПФ от результата шага 3;

Выделяется нужная частица результата шага 4;

Результат шага 5 умножается на $(-1)^{x+y}$.

Причина, по которой множитель H(u, v) называется фильтром (часто употребляется также термин передаточная функция фильтра), заключается в том, что он подавляет некоторые «лишние» частоты преобразования, оставляя при этом другие почти без изменения. Вопрос нахождения передаточной функции фильтра и является ключевым, поскольку оно определяет метод фильтрации и указывает, какие именно частоты будут фильтроваться [3].

Пусть f(x,y) обозначает входное изображение после шага 1, а F(u, v) его фурьє-образ. Тогда фурьє-образ исходного изображения определяется выражением (4).

$$G(u,v) = H(u,v) \cdot F(u,v). \tag{4}$$

Умножение функций двух переменных H и F осуществляется поэлементно. Фильтруемое изображение получают путем вычисления вычислением обратного преобразования Фурье от фурье-образа F(u, v), вычисляя по формуле (5).

Улучшенное изображение =
$$\xi^{-1}[G(u,v)]$$
. (5)

Искомое изображение получаем выделением действительной части из последнего результата и умножения на $(-1)^{x+y}$, чтобы компенсировать эффект от умножения входного изображения на ту же величину.

Описана процедура алгоритма фильтрации, схематически изображенная на рис. 2 в более общем виде, включая стадии предыдущей и завершающей обработки.

Рис. 2. Основные этапы фильтрации в частотной области

Данная схема фильтрации может иметь некоторые изменения, связанные с необходимостью уменьшения входного изображения, масштабирования яркости и так далее.

Примером фильтрации в частотном диапазоне является обработка аэрокосмических изображений для геоинформационных систем и человека-оператора. Результаты фильтрации изображения в частотном диапазоне приведены на рис. 3, где в отфильтрованном изображении уменьшается начальное освещение.

Недостатком и предметом исследований всех методов фильтрации в частотной области является невозможность создания идеального фильтра, который отбрасывал бы все «лишние» частоты, возобновляя при этом качество изображения.

Рис. 3. Результаты фильтрации в частотном диапазоне: а) отфильтрованное изображение; б) оригинальное изображение

Нелинейные методы фильтрации

Нелинейные методы фильтрации принадлежат одному из видов методов обработки изображений в частотной области. Класс нелинейных цифровых фильтров является очень широким для того, чтобы проводить их описание в общем виде. Рассмотрим одни из наиболее известных методов из семейства нелинейных цифровых фильтров.

При фильтрации реальных изображений ограниченного размера возникает предельная проблема получения оценок в точках нулевой строки и нулевого столбика. Естественным решением является использование здесь обычной (одномерной) калмановской фильтрации.

Уолкап и Чоэнс предложили использовать винеровскую фильтрацию для борьбы с шумом зернистости фотопленки в модели системы изображения, что описывает формула (6).

$$\widetilde{y}_{i,j} = y_{i,j} + \alpha [y_{i,j}]^{1/3} n_{i,j},$$
(6)

где α — постоянная величина.

Для этой модели была получена частотная характеристика реставрирующего фильтра, соответствующего случаю бесконечного изображения, которое описывается равенством (7).

$$H_R(\omega_x, \omega_y) = \frac{W_{F_1}(\omega_x, \omega_y)}{W_{F_1}(\omega_x, \omega_y) + \alpha^2 E\left[F_1(\omega_x, \omega_y)\right]^{2/3}},$$
 (7)

где $W_{F1}(\varpi_x, \varpi_y)$ — энергетический спектр идеального изображения, Е— обозначение математического прогноза.

Надер и Савчук разработали процедуру винеровского оценивания дискретных изображений на основе модели фотографической записи изображения. Эта модель учитывает химические эффекты фотографического процесса такие, как нелинейность характеристической кривой и пограничные эффекты, обусловленные диффузией проявителя, а также шум зернистости фотопленки. Преимущество рассмотренной винеровской оценки состоит в том, что она основана на модели общего вида (благодаря свойственной ее адаптивности она способна модифицироваться в соответствии с изменениями первого и второго моментов случайного поля представленного идеальным изображением [4]).

Цвейг разработал эвристический нелинейный метод реставрации малоконтрастных изображений с целью послабления шума зернистости фотопленки. При использовании этого метода входное изображение разворачивается с высокой разрешающей способностью, а

каждый его элемент квантируется большим числом уровней. Потом получают изображение сниженной четкости, объединяя элементы в непересекающиеся фрагменты, размером 2×2. Конечно, четкое изображение имеет более резкие границы, чем изображение со сниженной четкостью, однако дисперсия шума последнего оказывается меньше. В случае белого шума дисперсия нечеткого изображения в четыре раза меньше, чем для четкого изображения, которое является следствием пространственного усреднения элементов. Усредненное изображение повторно квантируется с использованием равномерной шкалы, причем шаг квантования выбирается равным учетверенному значению среднеквадратического отклонения шума. Благодаря такому выбору, обеспечивается ошибка квантования 5% при гауссовом шуме. Полученные квантованные элементы нечеткого изображения исследуют в областе размером 3×3 элемента [5].

Рис. 4. Пример алгоритма подавления шума по Надери:

а) массив, который отвечает сниженной разрешающей способности; б) массив, соответствующий высокой разрешающей способности; в) замена элемента, принадлежащего к границе; г) окончательный результат

Если центральный элемент нечеткого изображения лежит на границе (рис. 4), он разделяется на четыре элемента, соответствующих полной разрешающей способности; этим новым элементам приписываются уровни, которые зависят как от уровней, которые соответствуют исходным элементам четкого изображения, так и от уровней ближайших элементов нечеткого изображения.

Может оказаться, что все восемь периферийных элементов проквантованные с одним уровнем, а центральный элемент – с другим уровнем. В этом случае считают, что изолированный центральный элемент содержит ошибку, обусловленную шумом, и Наукові праці ВНТУ, 2010, № 4

приписывают ему средний уровень периферийных элементов. Простой алгоритм заключается в том, что элементу, соответствующему высокой разрешающей способности, приписывают уровень один из четырех связанных элементов (элементы «север» и «восток» или «север» и «запад» и так далее), ближайший уровню искомого элемента.

Выводы

В работе были рассмотрены основные существующие подходы для решения задачи улучшения цифрового изображения и восстановления его структуры. Проанализированы метод обработки изображения в частотной области и его математическая модель. Рассмотрен алгоритм фильтрации в частотной области и представлена пошаговая схема его работы для улучшения качества изображения. Приведен один из видов методов обработки изображений в частотной области — нелинейная фильтрация. Рассмотрены одни из самых известных методов нелинейной фильтрации для устранения помех и улучшения оригинального изображения. Нелинейные фильтры могут использоваться для решения таких проблем, как устранение помех, шума, восстановление поврежденных изображений, улучшение контраста и выделение контуров изображения и тому подобное.

СПИСОК ЛИТЕРАТУРЫ

- 1. Грузман И. С. Цифровая обработка изображений в информационных системах: Учебное пособие. / И. С. Грузман, В. С. Киричук, В. П. Косых, Г. И. Перетягин, А. А. Спектор. Новосибирск: Изд-во НГТУ, 2000. 168 с.
- 2. Фурман Я. А. Цифровые методы обработки и распознавания бинарных изображений. / Я. А. Фурман, А. Н. Юрьев, В. В. Яншин. Красноярск: Изд-во Краснояр. ун-та, 1992. 248 с.
- 3. Хуанг Т. С. Быстрые алгоритмы в цифровой обработке изображений / Т. С. Хуанг, Дж.-О. Эклуид, Г. Дж. Нуссбауыер н др.; пер. с англ.; под ред. Т. С. Хуан га.: М.: Радио и связь, 1984. 224 с.
- 4. Богнер Р., Введение в цифровую фильтрацию. / Р. Богнер, А. Константинидис. Москва.: Мир, 1976. 216 с.
- 5. Рабинер Л.. Теория и применение цифровой обработки сигналов / Л. Рабинер, Б. Гоулд; пер. с англ.; под ред. Ю. Н. Александрова. М.: Мир, 1978. 848 с.

Рейда Александр Николаевич – к. т. н., старший преподаватель кафедры программного обеспечения, тел.+380977882493, e-mail: AlexReyda@hotmail.com.

Олейник Юрий Владимирович – студент 4-го курса факультета компьютерного интеллекта института информационных технологий и компьютерной инженерии, тел. 80967205759, e-mail: Oliynuk_Y_V@mail.ru.

Панчук Анна Александровна — студентка 4-го курса факультета компьютерного интеллекта института информационных технологий и компьютерной инженерии, тел. +380989411135, e-mail: Ann1988@bk.ru.

Синенький Михаил Любомирович – студент 4-го курса факультета компьютерного интеллекта института информационных технологий и компьютерной инженерии, тел. 80971320283, e-mail: mistermishka@meta.ua.

Винницкий национальный технический университет.