DIT UNIVERSITY DEHRADUN	
END TERM EXAMINATION, EVEN SEM 2020-21 (SEMESTER I)	
Name of Program	B.Tech. (All)
Subject Name: Engg. Mathematics I	Subject Code: MAF101
Time: 1 Hours	Total Marks: 30
Note: All questions carry equal weightage	
Press Submit Button after completion of Examination	
Name of Course Coordinator and Department	Dr. Vinod Gupta, Assistant Professor, Mathematics

- 1. The curve $y^2 x(1 x^2) = 0$ exist if
- (a) x > 0 and x < -1
- (b) x > 0, and x < 1
- (c) x = 0
- (d) none of these

Ans. (b)

2. The Taylor's series expansion of log(1 + x) is equal to

(a)
$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} - - - -$$

(b)
$$x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} \pm --$$

(c)
$$-x - \frac{x^2}{2!} - \frac{x^3}{3!} - \frac{x^4}{4!} - - - -$$

(d)
$$x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} \pm$$

Ans. (a)

- **3.** Value of $\lim_{x \to \infty} \left(\frac{\cos x}{x} \right)$ is
- (a) 0
- (b) 1
- $(c) \infty$
- (d) none of these
- Ans. (a)

- **4.** The function $f(x) = \frac{x e^{\frac{1}{x}}}{e^{1/x} + 1}$
- (a) is continuous at x=0
- (b) is not continuous at x=0 because $LHL \neq RHL$
- (c) is not continuous at x=0 because LHL and RHL does not exist
- (d) is continuous at x=0 because LHL = RHL = 0

Ans. (a)

- 5. The function f(x) = |x 1| + |3x + 2| is
- (a) continuous at x = 1 but not continuous at x = -2/3
- (b) continuous but not differentiable at x = 1, -2/3
- (c) continuous and differentiable at x = 1, -2/3
- (d) none of these

Ans. (b)

6. The n^{th} derivative of $y = \sin(3x - 1)$ is

(a)
$$y_n = \frac{1}{3^n} \cos(3x - 1)$$

(b)
$$y_n = 3^n \cos\left(3x - 1 + \frac{(n-1)\pi}{2}\right)$$

(c)
$$y_n = \frac{(-1)^{n-1}}{3^n} \cos(3x - 1)$$

(d)
$$y_n = 3^n \sin(3x - 1 + \frac{n\pi}{2})$$

Ans. (d)

- 7. The curve $y^2 = \frac{x^3}{1+x}$ is symmetric about
- (a) y axis
- (b) x-axis
- (c) Line y=x
- (d) none of these

Ans. (b)

8. The asymptotes of the curve $y = \frac{(2x-1)(3x-5)}{6x^2}$ are

(a)
$$x = -1$$
, $y = 2x + 1$

(b)
$$x = 1, y = x$$

(c)
$$x = 0, y = 1$$

(d)
$$x = 0$$
, $y = x + 1$

Ans. (c)

9. If $u = \sqrt{\frac{x^2 + y^2}{x + y}} tan^{-1} \left(\frac{y}{x}\right)$, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} atx = y = 1$ is

(a)
$$\frac{\pi}{4}$$

(b)
$$\frac{\pi}{2}$$

(c)
$$\pi$$

(d)
$$-\frac{\pi}{4}$$

Ans. (a)

10. If $v = \frac{\sqrt{(x^2 + y^2 + z^2)}}{2x + 3y - 4z}$, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z}$ is equal to

Ans. (d)

11. The function $x \tan^{-1} \left(\frac{x}{y} \right) + y \sin^{-1} \left(\frac{y^2}{x^2} \right)$

- (a) Homogeneous function of degree 1
- **(b)** Homogeneous function of degree 2
- (c) Homogeneous function of degree 0
- (d) Not a homogeneous function

Ans. (a)

12. If $f(x,y) = x^3 \sin^{-1} \left(\frac{y^3}{x^3} \right) - xy^2 \sin^{-1} \left(\frac{x}{y} \right)$, x > 0, y > 0 then

(a)
$$x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = 2f$$

(b)
$$x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = 3f$$

(c)
$$x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = 2f + 3$$

(d) 0

Ans. (b)

13. A vector field \vec{v} is said to be conservative if there exist a

- (a) a vector \vec{f} such that $\vec{v} = curl\vec{f}$
- **(b)** a vector \vec{f} such that $\vec{v} = \nabla \cdot \vec{f}$
- (c) a scalar function f such that $\vec{v} = \nabla f$
- (d) None of these

Ans. (c)

14. Value of integral $\int_{-\infty}^{\infty} e^{-x^2} dx$

- (a) $2\sqrt{\pi}$
- (b) $\sqrt{\pi}$
- **(c)** 1
- **(d)** 0

Ans. (b)

15. Unit normal vector to the surface $x^2 + 2y^2 + z^2 = 4$ at the point (1,1,1) is

(a)
$$\frac{x-1}{1} = \frac{y-1}{2} = \frac{z-1}{1}$$

(b)
$$\frac{\hat{\iota}+2\hat{\jmath}+\hat{k}}{\sqrt{6}}$$

(c)
$$2(\hat{\imath}+2\hat{\jmath}+\hat{k})$$

(d) None of these

Ans. (b)

16. If u is a homogeneous function of x and y of degree n then

(a) only $\frac{\partial u}{\partial x}$ is homogeneous function of degree n

(b) only $\frac{\partial u}{\partial y}$ is homogeneous function of degree n

(c) both $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$ are homogeneous function of degree n

(d) None of these

Ans. (d)

17. Function $u(x, y) = x^m y + x y^n + 2x^3$ satisfy Euler's theorem if

(a)
$$m = 1, n = 2$$

(b)
$$m = 2, n = 2$$

(c)
$$m = 1, n = 1$$

(d) u(x, y) never satisfy Euler's theorem for any value of m and n.

Ans. (b)

18. For which of the following function, Euler's theorem satisfy

(a)
$$\frac{x^2-y^2}{x+y}$$

(b)
$$x^n F\left(\frac{y}{x}\right)$$

(c)
$$y^n F\left(\frac{x}{y}\right)$$

(d) All of these

Ans. (d)

19. Stationary point of the function $f(x, y) = y^2 + (y - 2)x$ is

- (a)(-4,-2)
- (b) (-4, 2)
- (c)(4, -2)
- (d) None of these

Ans. (b)

- **20.** A stationary point (a, b) will be point of minima if $rt s^2 > 0$ and
 - (a) r > 0
 - (b) r < 0
 - (c) r = 0
 - (d) None of these

Ans. (a)

- 21. The gamma function [n, (n > 0)] is defined as
 - (a) $\int_0^\infty e^x x^{n-1} dx$
 - (b) $\int_0^\infty e^{-x} x^{n-1} dx$
 - (c) $\int_0^\infty e^{-x} x^{n+1} dx$
 - (d) $\int_0^\infty e^x x^{n+1} \, dx$

Ans. (a)

- **22.** The value of $\left[\frac{3}{2}\right]$ is
 - (a) π
 - (b) $\frac{\pi}{2}$
 - (c) $\frac{\sqrt{\pi}}{2}$
 - (d) $\sqrt{\pi}$

Ans. (c)

- 23. Gradient of the scalar field $x^3 3x^2y^2 + y^3$ at point (1, 2) is
- (a) 21î
- (b) $-21\hat{i}$
- (c) $21\hat{i} 21\hat{j}$
- (d) None of these

Ans. (b)

- The value of the integral $\int_0^1 \frac{x}{(1+x)^{n+1}} dx$ is
- (a) $\beta(1, n)$
- (b) $\beta(2, n)$
- (c) $\beta(n, 2)$
- (d) $\beta(3, n)$

Ans. (a)

- $\int_0^\infty e^{-x} x^3 dx$ is equal to:
- **(a)** Γ3
- (b) 5!
- (c) Γ4
- (d) 4!

Ans. (c)

- **26.** The value of $\int_{1}^{0} \int_{0}^{1} \frac{1}{\sqrt{(1-x^{2})(1-y^{2})}} dxdy$ is equal to
 - (a) $-\frac{\pi^2}{4}$ (b) $\frac{\pi^2}{4}$

 - (c) 1
 - (d) 0

Ans. (b)

- The value of curl(grad f), where $f = x^2 + 2xy^2 + 4z^2y$ is 27.
- (a) $2x + 2y^2 4xy 4z^2 + 8zy$
- **(b)** $(2x+2y^2)\hat{\imath} (4xy+4z^2) + \hat{\jmath} + 8zy\hat{k}$
- **(c)** 0
- **(d)** 3

Ans. (c)

28. Curl of vector field $\hat{v} = 2i + j + 2k$ is given by

- (a) 2xi + yj + 2zk
- (b) 2x + y + 2z
- (c) 0
- (d) None of these

Ans. (c)

29. The value of λ so that the vector $(x+3y)\hat{\imath} + (y-2z)\hat{\jmath} + (x+\lambda z)\hat{k}$ is a solenoidal vector, is

- (a) -2
- **(b)** 3
- (c) 1
- (d) none

Ans. (a)

30. The vector $\vec{v} = e^x \sin y \hat{\imath} + e^x \cos y \hat{\jmath}$, is

- (a) solenoidal
- (b) irrotational
- (c) rotational
- (d) none

Ans. (b)