Classy Muse: Music Classification

Prachi Varma, Robert Turnage, Grant Wilson

Problem and Objective

Problem Statement:

• Traditionally, music streaming services, such as Spotify, are provided musical genre metadata by labels and publishers. While this is generally reliable, it is not uncommon for metadata from smaller/indie publishers to be incorrect, leading to a bad user experience.

Objective:

- We want to build an ML model that will classify different musical genres by audio analysis
 - Operation Defining the many community described music genres we will attempt to classify by analyzing audio features of frequency and time alongside metrics of track "energy", tempo, and speed.

Methodology

We want to train a model based on features that important in audio and specifically in music.

Audio Features

- Frequency
- Wavelength
- Amplitude
- Pitch patterns

Data

- 1. GTZAN genre classification dataset (10 genres with 100 .wav files)
- 2. Spotify Web API/ Everynoise.com

EDA and Feature Extraction

- Librosa for feature extraction from audio files
 - Waveforms
 - Mel-Frequency Cepstral Coefficients Spectrographs
 - Chroma Frequencies

Waveforms

MFCC

Chroma Frequencies

Modeling

Convolutional Neural Network

- MFCC Spectrograph log transformation of data
 - o Test Set: 400 files
 - o Train Set: 100 files
- Constant Q Transform Chromagram
 - o Test Set: 400 files
 - o Train Set: 100 files

KNN, Logistic Regression, GPC

DataFrame of 500 Spotify tracks

CNN Results

KNN Results

```
[ ] search = GridSearchCV(pipe, param grid, n jobs=-1)
    search.fit(X train, y train)
    print("Best parameter (CV score=%0.3f):" % search.best_score_)
    print(search.best_params_)
    Best parameter (CV score=0.307):
    {'knn leaf size': 5, 'knn n neighbors': 10}
[ ] print(f"Train Score: {search.score(X_train, y_train)}")
    print(f"Test Score: {search.score(X_test, y_test)}")
    Train Score: 0.4272151898734177
    Test Score: 0.29245283018867924
```


Limitations and Future Work

Limitations

- 30 second audio snippets of much longer tracks may leave out significant features
- Spotify doesn't allow queries based on genres, so data was pulled from a derivative of genre
 - Everynoise.com
- Overfitting of the CNN due to the complexity of having multiple pooling and convolutional layers

Future Work

- Content-based music recommendation systems
- Mood-based playlist creation

Questions?

Appendix

Standards

- Librosa
- Scipy
- Sklearn
- tensorflow / Keras
- Pandas
- numpy

