Simulación computacional

PhD Jorge Rudas

Alcance del curso

Reglas del curso

- Asistencia
- Celular
- Plagio
- Uso de herramientas de IA Generativa
- Fechas de entrega
- Calificaciones
- Pre requisitos

Que es una simulación?

- Basados en un <u>modelo</u>, podemos construir <u>historias artificiales</u> que nos permiten <u>predecir</u> comportamientos de un <u>sistema</u>.
- Es el proceso de diseñar un modelo de un sistema real y llevar a cabo experiencias con él, con la finalidad de aprender el comportamiento del sistema o de evaluar diversas estrategias para el funcionamiento del <u>sistema</u>.

Modelos computacionales

$$P_1 + \frac{1}{2}d_1v_1^2 + d_1gh_1 = P_2 + \frac{1}{2}d_2v_2^2 + d_2gh_2$$

Cual es la utilidad de una simulación?

- El sistema real no existe

Big Bang

Dinosaurios

- Experimentar con el sistema real es complicado, costoso, peligroso, o puede causar serios desajustes

Bioreactores

Diseño de chasis de F1

Reactores nucleares

- Necesidad de estudiar el pasado, presente, o futuro

Bioquimica

Crecimiento poblacional

- Es sistema es tan complejo que su evaluación analítica es prohibitiva

Dinamica cerebral

Tornados

- Optimización

a través de simulación?

Entonces todo lo puedo solucionar

Terminología

- Variables de estado
- Eventos
- Modelos de tiempo continuo o discreto
- Modelos de estado continuo y de estado discreto
- Modelos determinísticos y probabilísticos
- Modelos estáticos y dinámicos
- Modelos lineales y no-Lineales
- Modelos cerrados y abiertos

Tiempo Continuo

tiempo

Tiempo Discreto

Modelo de Estado Discreto → Modelo de Eventos Discretos

Modelo de Estado Continuo → Modelo de Eventos Continuos

Continuidad de tiempo no implica continuidad de estado y viceversa.

Figura 4. Modelos deterministicos y probabilisticos.

$$f(x) = a + bx$$
 vs. $f(x) = a + b\sqrt{x}$

Abierto

Cerrado

Intervalo entre llegadas > tiempo de servicio → modelo estable

Intervalo entre llegadas ≤ tiempo de servicio → modelo inestable.

Etapas de una proceso de simulación

-	Definición del problema
-	Definición del sistema
-	Formulación del modelo
-	Colección de datos
-	Implementación del modelo en la computadora
-	Verificacion y validacion del modelo implementado
-	Diseño de experimentos
-	Experimentación
-	Interpretación
-	Documentación
-	Implementación

una simulación?

Errores comunes durante

Nivel de detalle en una simulación

- Un modelo analitico (matematico) suele ser menos detallado que una simulación.

- De qué depende el nivel de detalle de una simulación?

Más detalle no necesariamente favorece la simulación!

Herramientas computacionales inadecuadas

Herramientas de propósito general \rightarrow + Portabilidad + Eficientes

Herramientas especializados \rightarrow - Tiempo de implementación + Potencial de verificación

Modelos inapropiados o no validados

- Los modelos deben ser validados previamente (Fundamento e implementación)

- Se debe conocer detalladamente el contexto asociado al modelo

Interpretación inadecuado de estados

- Durante una corrida de simulación de un sistema estable, por lo general, los estados en las primeras corridas suelen ser no interpretables.

Simulaciones cortas

- Varianzas grandes entre estados durante una simulación no es adecuado.

- Preferiblemente buscar convergencia.

Efectos estocástico inadecuados

- Generadores de número aleatorios invalidados.

- Generación de variables aleatorias en punto precisos dentro de la simulación

Estados de la simulación inadecuados o anormales

- Los estados iniciales deben ser cuidadosamente seleccionados.

- Tratamiento adecuado de los estados anómalos.

Simulación de sistemas continuos

- Llamaremos "Sistemas Continuos" a los sistemas cuyas variables evolucionan continuamente en el tiempo.

- Los sistemas continuos se describen típicamente mediante ecuaciones diferenciales, ya sea ordinarias o en derivadas parciales.

Ejemplos de modelos de sistemas continuos

Evolución de la concentración de una droga en el estómago

$$\frac{\mathrm{d}c_e(t)}{\mathrm{d}t} = -r_a \cdot c_e(t)$$

Sistemas hidráulicos

$$\dot{V}(t) = -\frac{\rho \cdot g}{A \cdot R} V(t) + Q(t)$$

$$P(t) = \frac{\rho \cdot g}{A} V(t)$$
$$Q_s(t) = \frac{\rho \cdot g}{A \cdot R} V(t)$$

Caída libre con fricción

Evolución de la concentración de una droga entre el estómago y la sangre

$$\dot{c}_e(t) = -r_a \cdot c_e(t)$$
 $\dot{c}_s(t) = r_a \cdot c_e(t) - r_e \cdot c_s(t)$