# Leinster - Basic Category Theory - Selected problem solutions for Chapter 2

## Adam Barber

### October 28, 2021

#### 2.1.16

(a) Interesting adjoint functors to G-sets.

The trivial group functor I sends a set to a **G**-set with the trivial action gx = x. Interesting functors

Orbit functor sends a G-set with underlying set elements a of A to:

$$A_G = \{g \cdot a, g \in G\}$$

Fixed point functor sends a G-set with underlying set elements a of A to:

$$A^G = \{a \text{ such that } g \cdot a = a \text{ for all } g \in G, a \in A\}$$

Fixed point functor - right adjoint Morphisms in a G-set are functions on the underlying set, where f commutes with g for every  $g \in G$ .

There is a bijection for each  $A \in \mathbf{Set}$  and  $B \in [G, \mathbf{Set}]$  as follows

$$[G,\mathbf{Set}](I(A),B)\to\mathbf{Set}(A,B^G)$$

$$\psi\mapsto\overline{\psi}$$

 $\overline{\psi}$  sends each element a of A to  $\psi(a)$  if  $g \cdot a = a$ , otherwise it sends a to  $\psi(\emptyset)$ .

$$\mathbf{Set}(A, B^G) \to [G, \mathbf{Set}](I(A), B)$$
  
 $\phi \mapsto \overline{\phi}$ 

 $\phi$  sends each  $a\in A$  in the underlying set of the G-set to the G-set  $(g,\overline{\phi}(a)),g\in G.$ 

**Orbit functor - left adjoint** There is a bijection for each  $A \in [G, \mathbf{Set}]$  and  $B \in \mathbf{Set}$  as follows

$$\mathbf{Set}(A_G, B) \to [G, \mathbf{Set}](A, I(B))$$

$$\psi \mapsto \overline{\psi}$$

So each morphism in **Set** sends the set formed by the orbits of an element a of A, call this  $a_G$ , to  $\psi(\underline{a}_G)$ , where  $\psi$  is a function of sets. Choose a G-set morphism  $\overline{\psi} = \psi$ , where  $\overline{\psi}$  commutes with g for every g in G.

$$[G, \mathbf{Set}](A, I(B)) \to \mathbf{Set}(A_G, B)$$
  
 $\phi \mapsto \overline{\phi}$ 

Choose  $\overline{\phi}$  to be a disjoint union of each orbit of a in A,  $\overline{\phi}(a) = \coprod \{\phi(g \cdot a), g \in G\}$ 

#### 2.1.17

Write  $\mathcal{O}(X)$  for the poset of open subsets of a topological space X ordered by inclusion.

$$\Delta : \mathbf{Set} \to [\mathcal{O}(X)^{op}, \mathbf{Set}]$$

Write  $\mathcal{P}$  for the presheaf functor category, and  $P \in \mathcal{P}$  for the functor which maps  $\mathcal{O}(X)^{op}$  to **Set**. Take open sets U, V, such that  $U \subseteq V$  in X. A presheaf consists of

- restriction maps,  $P(V) \to P(U)$ , these are morphisms which enforce some sort of ordering of the mapped sets,
- and the actual mapped sets P(U), P(V) which are called sections.

Write  $\Gamma P = P(X)$  for the **global** sections functor which takes an element of  $\mathcal{P}$  to a **Set**.

**Intuition** Defining the sections functor to map the entire space in this way means in **Set** we have a map into every section. You can think of the presheaf as loosely a blueprint on how to sort the sections. So if we provide a presheaf sorting some of these sections, and a mapping of these sections, then we can get back a new presheaf sorting the mapped sections.

For A in **Set** and B in  $\mathcal{P}$ 

$$\mathbf{Set}(A, \Gamma B) \to \mathcal{P}(\Delta A, B)$$
$$\phi \mapsto \phi \circ P$$

In  $\mathcal{P}$  we take  $\phi \circ P$  as the presheaf functor.