Understanding Theft in America on the County Level

Mason Shihab and Elinor Chu

12/19/21

Contents

1	Top 10 Counties	1
2	Ridge Coefficients	2
3	Boosting Importance	2
4	Model Evaluation	3

1 Top 10 Counties

Table 2: Standardized coefficients for features in the Ridge model based on the one-standard-error rule.

Feature	Coefficient
housing_density	0
pop_density	0
pertrump	0
$unemp_bens_possible$	0
police_funding_score	0
gini	0
Marriedcouplefamily	0
no_health_ins	0
$pct_child_in_pov$	0
svi_overall	0

Table 1: This a table showing the top 10 counties with the highest theft rate.

State	County	Theft Rate
Indiana	Hamilton	0.10498
Nebraska	Sarpy	0.08697
New York	New York	0.07927
Colorado	Jefferson	0.07638
Colorado	Denver	0.04860
Mississippi	Tunica	0.04465
California	San Francisco	0.04427
Missouri	Greene	0.04167
New Mexico	Bernalillo	0.04156
West Virginia	Wayne	0.04136

2 Ridge Coefficients

3 Boosting Importance

```
## Rows: 12 Columns: 2
## -- Column specification ------
```

Table 4: Root-mean-squared prediction errors.

Model	Test_RMSE
Boosting	0.004769
$Random_Forest$	0.004865
Intercept-only	0.004891
Ridge	0.004913
Lasso	0.004913
$Elastic_Net$	0.004913

```
## Delimiter: "\t"
## chr (1): var
## dbl (1): rel.inf

##
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
```

Table 3: These are the first ten rows of the relative influence table for the optimal boosting model above.

Variable	Relative influence
unemp_bens_possible	10.452
PctEmpFIRE	9.574
bachplus	8.831
poor_fair_health	8.352
pertrump	7.120
dis35to64	6.330
PopChangeRate1819	6.276
PerCapitaInc	5.060
housing_density	4.751
no_health_ins	3.582
police_accountability_score	3.470
inundergrad	3.035

4 Model Evaluation