

Literature survey – Students should refer to 15-20 research papers from reputed journals and prepare a literature survey in the following format

S. No	Title (Name of the journal, author and publication details)	Methodology (Provide a Summary of key studies and their findings)	Identification of gaps and limitations. (Identify the limitations of the Research Paper)
1	Odeh, A., Aboshgifa, A., Belhaj, N., 2023. Mitigating DDoS Attacks in Cloud Computing Environments: Challenges and Strategies. IEEE Access.	Discusses challenges in DDoS mitigation for cloud environments and proposes strategies like anomaly detection, ML models, and scalable architectures.	Limited testing on real-world, large-scale environments; lacks analysis of emerging attack vectors and their mitigation.
2	Wang, T., Lee, K., Zhou, X., 2022. Dynamic Defense Mechanisms Against DDoS in Cloud Computing. IEEE Trans. Cloud Comput.	Proposes real-time dynamic mechanisms for mitigating volumetric DDoS attacks in cloud systems by monitoring traffic patterns and applying adaptive scaling strategies.	Insufficient exploration of cost implications for dynamic scaling; limited adaptability for complex, multi-vector DDoS attacks.
3	Chen, R., 2022. Al-Based Detection for DDoS Attacks in Cloud Networks. IEEE Trans. Neural Netw. Learn. Syst.	Implements AI models to predict and mitigate DDoS attacks using historical data patterns and advanced neural networks in a cloud-based environment.	High computational overhead of AI models; reliance on historical data reduces real-time accuracy in detecting novel attacks.
4	Nguyen, T., Park, J., 2022. Advanced Architectures for Cloud-Based DDoS Mitigation. IEEE Trans. Emerg. Topics Comput.	Examines future-proof architectures incorporating SDN and distributed detection systems to efficiently mitigate evolving DDoS attack patterns.	Requires significant infrastructure changes to deploy SDN-based systems; limited scalability for small-scale or hybrid cloud setups.
5	Iqahtani, H., Anwar, A., Ahmed, S., 2022. Comparative Study of Security Methods Against DDoS Attacks in Cloud Platforms. IEEE Access.	Provides a comparative analysis of DDoS mitigation techniques, emphasizing machine learning methods and their deployment in multi-cloud platforms.	Lack of testing under diverse attack scenarios; limited insights into long-term reliability and integration challenges.
6	Puri, M.E., 2023. Adaptive Filtering for DDoS Mitigation in Cloud Computing. IEEE Trans. Cloud Comput.	Introduces an adaptive filtering mechanism to detect and block anomalous traffic in real-time, ensuring minimal impact on cloud-hosted applications.	Does not address attack persistence or multi-vector strategies; potential false negatives in sophisticated attacks.
7	Chen, F., 2022. Machine Learning in DDoS Detection for Cloud Platforms. IEEE Access.	Explores supervised learning methods for anomaly detection and mitigation in cloud infrastructures facing volumetric attacks.	Limited scalability for large-scale deployments; over-reliance on labeled data for training ML models.

8	Wu, Y., 2022. Traffic Analysis in Cloud Networks for DDoS Detection. IEEE Trans. Dependable Secure Comput.	Focuses on using traffic analysis techniques to identify attack vectors, leveraging network-level metrics and cloud-native monitoring tools.	No integration with real-time defenses; lacks focus on novel attack methodologies like slow-rate or application-layer DDoS.
9	Nguyen, H.M., 2022. Future Directions in Cloud DDoS Defense. IEEE Trans. Netw. Sci. Eng.	Highlights advancements in DDoS protection tools and provides recommendations for hybrid cloud environments integrating SDN and AI-based systems.	Feasibility and cost concerns for deploying hybrid systems; lacks a unified framework for integrating diverse technologies.
10	Xu, M., 2022. Performance Analysis of DDoS Mitigation Techniques in Cloud. IEEE Access.	Evaluates the efficiency and scalability of various mitigation techniques, including anomaly-based filtering and resource scaling mechanisms in cloud setups.	No real-world validation under sustained attack conditions; neglects hybrid or multicloud operational complexities.