# COMP9318: Data Warehousing and Data Mining Assignment Project Exam Help

— L3: Data https://eduassistpro.github.lo//g — Add WeChat edu\_assist\_pro

Why preprocess the data?

Assignment Project Exam Help

https://eduassistpro.github.io/

# Why Data Preprocessing?

- Data in the real world is dirty
  - incomplete: lacking attribute values, lacking certain attributes of interest procentaining enly aggregate data
    - e.g., occuphttps://eduassistpro.github.io/
  - noisy: containing errors or
     e.g., Salary= -10 WeChat edu\_assist\_pro
  - inconsistent: containing discrepancies in codes or names
    - e.g., Age="42" Birthday="03/07/1997"
    - e.g., Was rating "1,2,3", now rating "A, B, C"
    - e.g., discrepancy between duplicate records

# Why Is Data Dirty?

- Incomplete data comes from
  - n/a data value when collected
  - different consideration between the time when the data was collected and when it is analyzed.
  - human/hardwhttps://eduassistpro.github.io/
- Noisy data comes from the p ata Add WeChat edu\_assist\_pro
  - collection
  - entry
  - transmission
- Inconsistent data comes from
  - Different data sources
  - Functional dependency violation

## Why Is Data Preprocessing Important?

- No quality data, no quality mining results!
  - Quality decisions must be based on quality data
    - e.g., dans it is in the contract of even misleading
  - Data warehohttps://eduassistpro.githublioh of quality data
     Add WeChat edu\_assist\_pro
- Data extraction, cleaning, and transformation comprises the majority of the work of building a data warehouse. — Bill Inmon
- Also a critical step for data mining.

## Major Tasks in Data Preprocessing

- Data cleaning
- Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies

  Assignment Project Exam Help

  Data integration
- - Integration ohttps://eduassistpro.githesbyidiles
- Data transfor
  - Normalization and aggregation edu\_assist\_pro
- Data reduction
  - Obtains reduced representation in volume but produces the same or similar analytical results
- Data discretization & Data Type Conversion

## Data cleaning

Assignment Project Exam Help

https://eduassistpro.github.io/

# **Data Cleaning**

#### Importance

- "Data cleaning is one of the three biggest problems in data warehousing"—Ralph Kimball Project Exam Help
   "Data cleaning is the number one problem in data
- "Data cleaning is the number one problem in data warehousing https://eduassistpro.github.io/
- Data cleaning tasks Add WeChat edu\_assist\_pro
  - Fill in missing values
  - Identify outliers and smooth out noisy data
  - Correct inconsistent data
  - Resolve redundancy caused by data integration

## Missing Data

- Data is not always available
  - E.g., many tuples have no recorded value for several attributes, such as customer income in sales data
- Missing data saignment Project Exam Help
  - equipment https://eduassistpro.github.io/
  - inconsistentd thus deleted
  - data not entered we Chat edu\_assist\_pro
  - certain data may not be considered important at the time of entry
  - not register history or changes of the data
- Missing data may need to be inferred.
  - Many algorithms need a value for all attributes
  - Tuples with missing values may have different true values

# How to Handle Missing Data?

- Ignore the tuple: usually done when class label is missing (assuming the tasks in classification—not effective when the percentage of missing values per attribute varies considerably.
- Fill in the missing value manually: tedious + infeasible?
- Fill in it automatic https://eduassistpro.github.io/
  - a global constant de wernan edu\_assist\_pro
  - the attribute mean
  - the attribute mean for all samples belonging to the same class: smarter
  - the most probable value: inference-based such as Bayesian formula or decision tree

## **Noisy Data**

- Noise: random error or variance in a measured variable
- Incorrect attribute values may due to
  - faulty datassophactiontipstrumentsam Help
  - data entry pr
  - data transmi https://eduassistpro.github.io/
  - technology linattadioweChat edu\_assist\_pro
  - inconsistency in naming convention
- Other data problems which requires data cleaning
  - duplicate records
  - incomplete data
  - inconsistent data

# How to Handle Noisy Data?

To be discussed in discretization

- Binning method:
  - first sort data and partition into (equi-depth) bins
  - then one can smooth by bin median, smo
- Clustering https://eduassistpro.github.io/
  - detect and remove outliers edu\_assist\_pro
- Combined computer and humn
  - detect suspicious values and check by human (e.g., deal with possible outliers)
- Regression
  - smooth by fitting the data into regression functions

# Regression

| Suburb     | #Residents | Usage                 | Charge |
|------------|------------|-----------------------|--------|
| Kingsford  | 2          | 1502                  | 3047   |
| Kensington | 3          | 987                   | 265.6  |
| Maroubra   | 1Assignmen | t <b>Ps</b> oject Exa | npHelp |
|            |            | ŭ                     | •      |

https://eduassistpro.github.io/



Data integration and transformation

Assignment Project Exam Help

https://eduassistpro.github.io/

## **Data Integration**

- Data integration:
  - combines data from multiple sources into a coherent store
     Assignment Project Exam Help
- Schema integra
  - integrate mehttps://eduassistpro.githraesio/
  - Entity identification proble real world entities from multiple data sources edu\_assist\_pro B.cust-#
- Detecting and resolving data value conflicts
  - for the same real world entity, attribute values from different sources are different
  - possible reasons: different representations, different scales, e.g., metric vs. British units

## Example

- Data source 1:
  - Book(bid, title, isbn)
  - Author(aidigname, Praime Fouth Hate)
  - Writes(bid, https://eduassistpro.github.io/
- Data source 2: Add WeChat edu\_assist\_pro
  - Book(isbn, title, year, a thor2, ..., author10)
- Data source 3:
  - Author(name, bornInYear, description, book1, book2, ..., book5)

## Handling Redundancy in Data Integration

- Redundant data occur often when integration of multiple databases
  - The same sttributen may have relifferent names in different dat
  - One attribut https://eduassistpro.githukeigh another table, e.g., annualwevenueedu\_assist\_pro
- Redundant data may be able to be detected by correlational analysis
- Careful integration of the data from multiple sources may help reduce/avoid redundancies and inconsistencies and improve mining speed and quality

#### Also see other transformations later in the Clustering part

## **Data Transformation**

- Smoothing: remove noise from data
- Aggregation: summarization, data cube construction
- Generalization i some pt Priejarth y caim bild p
- Normalization: <a href="https://eduassistpro.github.lo/">https://eduassistpro.github.lo/</a>
   range
  - min-max normalization
  - z-score normalization
  - normalization by decimal scaling
- Attribute/feature construction
  - New attributes constructed from the given ones

## **Data Transformation: Normalization**

min-max normalization

MinMaxScaler

$$v' = \frac{v - \min_{A}}{\max_{A} \text{Assignment Project Exam Help}} (new \max_{A} - new \min_{A}) + new \min_{A}$$

z-score normal https://eduassistpro.git្ងកម្មគ្គច់្ខ្យុestimate

$$v' = \frac{v - \mu}{\sigma}$$
, where  $\psi$  where  $\psi$  where  $\psi$  where  $\psi$  is the  $\psi$ 

normalization by decimal scaling

$$v' = \frac{v}{10^{j}}$$
 Where j is the smallest integer such that  $\max(|v'|) < 1$ 

In scikit-learn, they are called Scaling.

Normalization means converting vectors to unit vectors.

#### Data reduction

Assignment Project Exam Help

https://eduassistpro.github.io/

## Data Reduction Strategies

- Modern datasets may be very large
  - Ratings of millions of customers on millions of items
  - Many ML algorithms have high time and space complexities.

  - Even learned models could be very large.

    Assignment Project Exam Help

    E.g., learned word embeddings (300 dims) for 1M words 

    at least 1.2GB memory https://eduassistpro.github.io/
- Data reduction
  - Obtain a reduced relation tedu\_assist that is much smaller in volume but yet produce the sa the same) analytical results
- Data reduction strategies
  - Dimensionality reduction—remove unimportant attributes
  - **Data Compression**
  - Numerosity reduction—fit data into models
  - Discretization and concept hierarchy generation

## High-dimensional Features

- It is common for many datasets to contain many features
  - More is Abetiternatnd atajeapturing / tereation
    - 561 featu cognition using smartpho https://eduassistpro.github.io/ https://archive.ics.uchededu\_assists/Human +Activity+Recognition+ rtphones
    - GIST: 128 dimensional feature
  - Mandated by some model
    - A document is converted into a high-dimensional feature vector. #dims = |vocabulary|

# The Curse of Dimensionality

Data in only one dimension is relatively packed

Adding a dimension "stretches" the points across that dimension across that dimension a stretches that dit dimension a stretches that dimension a stretches that dimension

Adding more dim
 points further apart de light edited edu\_assist\_pro
 data is extremely sparse → hard to
 learn

Distance measure tends to become meaningless



Dimension a

(c) 4 Objects in One Unit Bin

(graphs from Parsons et al. KDD Explorations 2004)

## High-dimensional space

- High-dimensional space is totally different from lowdimensional space (e.g., 3D)
- Many counter-intuitive facts about the high-dimensional space
   Assignment Project Exam Help

  - Random sam tups://eduassistpro.git hypercube → most points are on wathind edu\_assisturface (annulus)

## Goals

 Reduce dimensionality of the data, yet still maintain the meaningfulness of the data

Assignment Project Exam Help

https://eduassistpro.github.io/

## Dimensionality reduction

- Dataset X consisting of n points in a ddimensional space
- Data pointaxsignal read vector):
  - $x_i = [x_{i1}, x_{i2}, t_{i2}]$
- Dimensionalit
   Add WeChat edu\_assist\_pro
   Feature selection: ch
  - Feature selection: ch bset of the features
  - Feature extraction: create new features by combining new ones

## **Feature Selection**

- Feature selection (i.e., attribute subset selection):
  - Select a minimum set of features such that the probability distribution of different classes given the values for those features is as close as possible to the original distrint https://eduassistpro.giff.all features
  - reduce # of easier to understand Add WeChat edu\_assist\_pro
- Heuristic methods (due to exponential # of choices):
  - step-wise forward selection
  - step-wise backward elimination
  - combining forward selection and backward elimination
  - decision-tree induction

## Heuristic Feature Selection Methods

- There are 2<sup>d</sup> possible sub-features of d features
- Several heuristic feature selection methods:
  - Best single features under the feature independence assumption: enough by significance tests.
  - Best step-wi https://eduassistpro.github.io/

    - Then next bed Weathet edu\_assist the first, ...
  - Step-wise feature elimination:
    - Repeatedly eliminate the worst feature
  - Best combined feature selection and elimination:
  - Optimal branch and bound:
    - Use feature elimination and backtracking

# Principal Component Analysis (PCA)

- Original dataset: N d-dimensional vectors X = {x<sub>i</sub>}<sub>i=1..n</sub>
  - Find k ≤ d orthogonal basis vectors that can be best used to represent data
     Assignment Project Exam Help
     Preserves maximum "information" (i.e., variance under
  - Preserves maximum "information" (i.e., variance under the orthogon https://eduassistpro.githont.oc/hese k basis vectors
- Add WeChat edu\_assist\_pro

  Reduced data set: Project eac i basis vectors

(aka., principal components)

• 
$$x_i' = [b_1...b_k]^T x_i$$

•  $X' = [b_1...b_k]^T X$  (en masse)



Closed related to Singular Vector Decomposition (SVD)

## Projection

- b<sup>T</sup> x: projection of x onto the basis vector b
- What about x' = B<sup>T</sup> x, where B consists of another set of d-dim basis vectors? Assignment Project Exam Help

https://eduassistpro.github.io/

## JL Lemma

- Johnson-Lindenstrauss Flattening Lemma '84:
  - Given  $\varepsilon>0$ , and an integer n, let k be a positive integer such that kProject  $\mathbb{Q}(\varepsilon)$   $\mathbb{Q}(\varepsilon)$   $\mathbb{Q}(\varepsilon)$ . For every set X of n sts F:  $\mathbb{R}^d \to \mathbb{R}^k$  such that f https://eduassistpro.github.io/

$$\|F(x_i) - F(x_j)\|^2 \in \|x_i - x_j\|^2$$

What is the intuitive interpretation of the Lemma?

## Distributional JL Lemma

- Given  $\varepsilon$  in  $(0, \frac{1}{2}]$ ,  $\delta > 0$ , there is a random linear mapping F:  $R^d \rightarrow R^k$  with  $k = O(\varepsilon^{-2} \log \delta^{-1})$  such that for any unit vector x in Rd, Assignment Project Exam Help<sub> $\delta$ </sub>
- Take  $\delta = n^{-2}$ , https://eduassistpro.github.tb/en for for all  $x_i$ ,  $x_j \in X_{Add \ WeChat \ edu\_assist\_pro}$   $Pr[\|F(x_i) F(x_j)\|^2 \in (1 \pm \|\|_i x_j\|^2] \ge 1 \frac{1}{n^2}$
- Hence, by a simple union bound, the same statement holds for all  $\binom{n}{2}$  pairs from X simultaneously with probability at least  $\frac{1}{2}$ .

## **Explicit Mapping**

•  $F(x) = k^{-1/2} * Ux$ , where  $U_{ij} \sim N(0, 1)$ , i.e., i.i.d. samples from the standard Gaussian distribution.

$$F(x) = \frac{U_{*_1}}{\text{Assignment Project Exam Help}} \\ \frac{V_{*_1}}{V_1} = \frac{V_{*_2}}{V_2} ... V_{k}$$

Quick proof:

Add WeChat edu\_assist\_pro

$$y_{j} = \langle U_{*j}, x \rangle = \sum_{i=1}^{j} x_{i} U_{ij} \sim \mathcal{N}(0, ||x||^{2})$$

$$||y||^{2} \sim ||x||^{2} \cdot \chi_{k}^{2} \longrightarrow \underbrace{E[||y||^{2}] = ||x||^{2} \cdot k}_{Var[||y||^{2}] = 2k}$$

Concentration bound of chisquared distribution:

if 
$$z \sim \chi_k^2 \longrightarrow Pr[|\frac{z}{k} - 1| < \varepsilon] \ge 1 - \exp\left(-\frac{3}{16}k\varepsilon^2\right)$$

# **Approximating Inner Product**

- 20 news groups
- Origin dim: 5000

Assignment Project Exam Help

https://eduassistpro.github.io/

# Non-linear Dimensionality Reduction

- There are many advanced non-linear dimensionality reduction methods
  - Hypothesis: real high-dimensional data live in a manifold with low introjection and property

https://eduassistpro.github.io/

# Digits dataset (d = 64, Class = 0..5)

Assignment Project Exam Help

https://eduassistpro.github.io/

# PCA (time = 0.01s)

Assignment Project Exam Help

https://eduassistpro.github.io/

# t-SNE (time = 5.69s)

Assignment Project Exam Help

https://eduassistpro.github.io/

### **Data Compression**

- String compression
  - There are extensive theories and well-tuned algorithms
  - Typically lossless
  - But only Indiced mahipulation is possible without expansion https://eduassistpro.github.io/
- Audio/video co
  - Typically lossyddompredant edu\_assistressive refinement
  - Sometimes small fragments of signal can be reconstructed without reconstructing the whole
- Time sequence is not audio
  - Typically short and vary slowly with time

## **Numerosity Reduction**

- Parametric methods
  - Assume the data fits some model, estimate model parameters roject Exam Help ters, and discard the data (e https://eduassistpro.github.io/
  - Log-linear analysis: obtain wechat edu\_assist\_pro space as the product on a marginal subspaces
- Non-parametric methods
  - Do not assume models
  - Major families: histograms (binning), clustering, sampling

## Random Sampling

- Allow a mining algorithm to run in complexity that is potentially sub-linear to the size of the data
  - For approximately evaluating models/parameters, etc.
  - Then run th ers on large dataset https://eduassistpro.github.io/

Add WeChat edu\_assist\_pro

8000 points 2000 Points 500 Points

## Other Sampling Methods

- Simple random sampling may have very poor performance in the presence of skew
- Adaptive sampling methods ect Exam Help
  - Stratified sa
    - Approxi https://eduassistpro.githubjass (or subpopulation of intere edu\_assist\_prodatabase
    - Used in conjunction wit
- Sketch/synopsis based methods
  - E.g., count-min sketch
    - A simple and versatile data structure to remember the frequency of elements approximately

- Conversion of data types:
  - Discretizationment Project Exam Help
  - Kernel denhttps://eduassistpro.github.io/
     Add WeChat edu\_assist\_pro

#### Discretization

- Three types of simple attributes:
  - Nominal/categorical values from an unordered set
    - Profession: clerk, driver, teacher, ...
  - Ordinal Assignment Project Feran Help
    - WAM: HD
  - https://eduassistpro.github.io/ing Boolean values
- Other types: Add WeChat edu\_assist\_pro
  - Array
  - String
  - Objects

#### Discrete values Continuous values

- Here we focus on
  - Continuous values → discrete values
    - Removes noise
       Assignment Project Exam Help
       Some ML methods only work with discrete valued features

    - Reduce the improve the https://eduassistpro.gifeatures/which may improve the improve the
    - Reduce data Aiz WeChat edu\_assist\_pro
  - Discrete values → continuous values
    - Smooth the distribution
    - Reconstruct probability density distribution from samples, which helps generalization

#### Discretization

#### Discretization

- reduce the number of values for a given continuous attribute by dividing the range of the ratifibute into intervals. Int used to replace actual data vhttps://eduassistpro.github.io/
- Methods Add WeChat edu\_assist\_pro
  - Binning/Histogram analysis
  - Clustering analysis
  - Entropy-based discretization

#### Simple Discretization Methods: Binning

- Equal-width (distance) partitioning:
  - Divides the range into N intervals of equal size:
     uniform grid
  - if A and Barietherowest and Fightst Values of the attribute, the https://eduassistpro.github.io/
     The most str https://eduassistpro.github.io/ dominate
  - The most str Thips://eduassistpio.grs may dominate presentation Add WeChat edu\_assist\_pro
  - Skewed data is not handled
- Equal-depth (frequency) partitioning:
  - Divides the range into N intervals, each containing approximately same number of samples
  - Good data scaling
  - Managing categorical attributes can be tricky.

### **Optimal Binning Problem**

- After binning, the educated guess or the smoothed value is  $E(x_i)$ , where  $x_i$  are all the values in the same bin
- cost(bin) = SSE([ $x_1, ..., x_m$ ]) =  $\sum_{i=1}^m (x_i E(x_i))^2$
- cost of B binkssigum(audsP(binks), Exaost(binks))
- Problem: find the cost of the resulting bin https://eduassistpro.github.io/
  - Alg( {x<sub>1</sub>, ..., x<sub>h</sub>)ddbWeChat edu\_assist\_pro
  - Optimal Binning: Solve the problem optimally in O(B\*n²) time and O(n²) space.
  - MaxDiff: Solve the problem heuristically in O(n\*log(n)) time and O(n) space.
  - Note: both algorithms do not sort input data
    - Send in sorted({x<sub>1</sub>, ..., x<sub>n</sub>}) if necessary

#### Recursive Formulation

Observation

$$OPT(x[1.. n], B) = min_{i in [n]} \{SSE(x[1.. i]) +$$

Assignment Project Exam Help B-1)} X[3]

Example

https://eduassistpro.github.io/ 5



Data warenousing and Data Mining

x[4]

# Problem Caused by Overlapping Subproblems

Consider calculating Fibonacci function

```
    fib(0)=0
    fib(1)=1 Assignment Project Exam Help
```

■ fib(n) = fib(n-https://eduassistpro.github\_fiQ4)

Naïve D&C implementation is in efficient

fib(2) fib(1) fib(0)

22/03/17 50

#### Memoization

- Remember solutions of all the sub-problems
- Trade space for time

Assignment Project Exam Help



22/03/17 51

### Dynamic Programming

#### Ideas

 Ensure all needed recursive calls are already computed and memorized → a good schedule of computation Assignment Project Exam Help ious recursive

ious recursive call

results https://eduassistpro.github.io/



### 2D Dynamic Programming

```
• OPT(x[1.. n], B) = min_{i in [n]} \{SSE(x[1.. i]) +
                             OPT(x[i+1 .. n], B-1)
  OPT(S<sub>1</sub>, B) Assignment Ptolect Extern Hollo
  Goal:
                  https://eduassistpro.github.io/
                  Add We Chat edu_assist_pro
OPT(S_1,
```

#### Pseudocode

### Example

X = [7, 9, 13, 5], B = 3

| В | 5                  | $S_1$      | S <sub>2</sub> | $S_3$      | S <sub>4</sub> |
|---|--------------------|------------|----------------|------------|----------------|
| 1 | Ass <mark>i</mark> | anment     | Proje          | ect Fyam   | Help           |
| 2 | 7 10012            | giiiiieiii | ??             | 0          | <u>-</u>       |
| 3 | ŀ                  | nttps://e  | eduas          | sistpro.gi | thub.io/       |

- (B=2, S<sub>2</sub>)Add WeChat edu\_assist\_pro
  - What's the problem?
  - How to calculate it?

#### **MaxDiff**

- Complexity of the DP algorithm:
  - O(n<sup>2</sup>\*B) running time!
- · Consider a heuristic method: MaxDiff Help
  - Idea: use th n the data as the bin/bucket b https://eduassistpro.github.io/\_
  - Example:

n=4, B=3



$$(7,9)_1$$
  $(13)_1$   $(5)_1$ 

### Discretization via Clustering

Can consider multiple attributes together

Assignment Project Exam Help

https://eduassistpro.github.io/

## Supervised Discretization Methods

MDLPC [Fayyad & Irani, 1993]

Assignment Project Exam Help

https://eduassistpro.github.io/

### Entropy measures uncertainty

- Two classes:
  - Give a set S of instances with binary classes {+,-}.
     Let the proportions of + and be p+ and p-.
  - Ent(S) = Assignment Project Exam(Note: log  $0 \equiv 0$ )
- m classes:
  https://eduassistprp.github.io/

$$Ent(S) = -\sum_{i=1}^{n} n_i \log WeChat edu_assist_pro$$

Consider drawing a random sample from S. What can you tell about its label?

- If Ent(S) = 0:
- If Ent(S) = log(m):



## **Entropy After Splitting T**

- Split S into two subsets: S1 and S2.
- What about the label of a random sample given that you know which subset it is drawn from?
  - Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu\_assist\_pro

Define 
$$E(T;S) = \frac{|S_1|}{|S|} Ent(S_1) + \frac{|S_2|}{|S|} Ent(S_2)$$
 
$$Gain(T) = Ent(S) - E(T;S)$$

Intuitive meaning of Gain?

### Entropy-Based Discretization: MDLPC

- Given a set of samples S, if S is partitioned into two intervals  $S_1$  and  $S_2$  using boundary T, the entropy after partitioning Assignment Project Exam  $\underset{1}{\text{Help}}|S_2|$   $Ent(S_2)$ The boundary t https://eduassistpro.github.io/ y function over all
- possible boundaries disperented edu\_assist dispretization.
- The process is recursively applied to partitions obtained until some stopping criterion is met, e.g.,

before 
$$Ent(S) - E(T,S) > \delta$$

Experiments show that it may reduce data size and improve classification accuracy

### Stopping Condition of MDLPC

Stop when

Assignment Project Exam Help

https://eduassistpro.github.io/

#### Comments

- Understanding the underlying data distribution is important
  - e.g., via visyahizati moject Exam Help
- Supervised m https://eduassistpro.github.io/
- More advance Add WeChat edu\_assist\_pro
- After learning some ML models, you need to rethink
  - Why discretization?
  - Why different method/parameters affects the model performance?

#### Continuous values Discrete values

- After repeating the experiments (e.g., measuring) customers arriving 3-4pm), we observed the following random variable x<sub>i</sub> (e.g., #customers):
  - $x_i = 2$ ,  $\frac{4}{3}$ ,  $\frac{4}{3}$ ,  $\frac{1}{3}$ ,  $\frac{1}{3}$
  - What's the https://eduassistpro.gith@binpa new experiment? What abou edu\_assist\_pro
- Naive estimation
  - P(x = 3) = 4/7 P(x = 4) = 0 / 7
- Assume x follows the Poisson distribution  $P(x;\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}$ 
  - MLE estimation of  $\lambda$
  - MAP estimation with a prior (typically Gamma)

#### Non-parametric Estimation

- Kernel density estimation (KDE)
  - Let  $\{x_i\}_{i=1:n}$  be n i.i.d. sample of an unknown
  - f(x) Assignment Project Exam Help n We can est https://eduassistpro.github  $\sum_{i=1}^{n} K\left(\frac{x-x_i}{h}\right)$ 
    - K(z) controls the Weight edu\_assist, pronfluence f(x)
      - May think K(x, x<sub>i</sub>) as measuring their similarity
    - h is the bandwidth parameter
  - Gaussian kernel:  $K(x;h) \propto \exp\left(-\frac{x^2}{2h^2}\right)$

# Impact of h

Assignment Project Exam Help

https://eduassistpro.github.io/

### Categorical Values

- One hot encoding is widely used in ML
  - Let there be m distinct values for the attribute
  - The i-th (sategory) Pvalue Is converted into a mdimensiona https://eduassistpro.github.io/
    - $v_i = 0$ , if j
    - v<sub>i</sub> = 1, otherwise VeChat edu\_assist\_pro
  - scikit-learn: OneHotEncoder
- Disadvantages:
  - Ignores similarity between values
- Embedding-based methods can learn better (real) vectors

- Case Study
  - c.f., TUN\_datacleansing.ppt

Assignment Project Exam Help

https://eduassistpro.github.io/