Tutorial 4: Solutions

1. Evaluate the Laplace transform of the signal $x(t) = e^{-t}u(t) + e^{-4t}u(t)$.

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt = \int_{-\infty}^{\infty} e^{-t}u(t)e^{-st}dt + \int_{-\infty}^{\infty} e^{-4t}u(t)e^{-st}dt = \int_{0}^{\infty} e^{-(s+1)t}dt + \int_{0}^{\infty} e^{-(s+4)t}dt$$
$$X(s) = \frac{1}{s+1} \left[-e^{-(s+1)t} \right]_{0}^{\infty} + \frac{1}{s+4} \left[-e^{-(s+4)t} \right]_{0}^{\infty} = \frac{1}{s+1} + \frac{1}{s+4}, \operatorname{Re}\{s\} > -1.$$

2. Verify the following Laplace transform pairs

(i)
$$\frac{dx(t)}{dt} \leftrightarrow sX(s)$$

We know that $x(t) = \frac{1}{j2\pi} \int_{c-i\infty}^{c+j\infty} X(s)e^{st}ds$. Differentiate both sides w.r.t. to t gives

$$\frac{dx(t)}{dt} = \frac{1}{j2\pi} \int_{c-j\infty}^{c+j\infty} X(s) s e^{st} ds = \frac{1}{j2\pi} \int_{c-j\infty}^{c+j\infty} (sX(s)) e^{st} ds.$$

Therefore $\frac{dx(t)}{dt}$ is the inverse Laplace Transform of sX(s), i.e, $\frac{dx(t)}{dt} \leftrightarrow sX(s)$.

(ii)
$$-tx(t) \leftrightarrow \frac{dX(s)}{ds}$$

Start with $X(s) = \int_{-\infty}^{\infty} x(t)e^{-st} dt$. Differentiate both sides w.r.t. *s* gives,

$$\frac{dX(s)}{ds} = \int_{-\infty}^{\infty} -tx(t)e^{-st}dt = \int_{-\infty}^{\infty} (-tx(t))e^{-st}dt.$$

Therefore the Laplace Transform of -tx(t) is $\frac{dX(s)}{ds}$, i.e, $-tx(t) \leftrightarrow \frac{dX(s)}{ds}$.

(iii)
$$\int_{-\infty}^{t} x(\tau)d\tau \leftrightarrow \frac{X(s)}{s}$$
.

Consider, the time domain convolution defined by $x(t) * u(t) = \int_{-\infty}^{\infty} x(\tau)u(t-\tau)d\tau$. The

signal $u(t-\tau)$ is when $\tau > t$ as shown below

$$x(t) * u(t) = \int_{-\infty}^{\infty} x(\tau)u(t-\tau)d\tau = \int_{-\infty}^{t} x(\tau)d\tau$$

Using the convolution property we know that convolution in time domain is equivalent to multiplication in s-domain.

$$\int_{-\infty}^{t} x(\tau)d\tau = x(t) * u(t) \longleftrightarrow X(s)U(s) = \frac{X(s)}{s}.$$

3. Find the values of $y(t) = 2e^{-2t}u(t) - e^{-t}u(t)$ for t = 0 and $t \to \infty$. Verify your answer using the initial and the final value theorems.

At
$$t = 0$$
, $y(0) = 2 - 1 = 1$.

As
$$t \to \infty$$
, $\lim_{t \to \infty} y(t) = 0$.

Taking the Laplace Transform of y(t) gives,

$$Y(s) = \frac{2}{s+2} - \frac{1}{s+1} = \frac{2(s+1) - (s+2)}{(s+2)(s+1)} = \frac{s}{s^2 + 3s + 2}.$$

$$sY(s) = \frac{s^2}{s^2 + 3s + 2} = \frac{1}{1 + 3/s + 2/s^2}$$
.

Using the initial value theorem

$$y(0) = \lim_{s \to \infty} sY(s) = \lim_{s \to \infty} \frac{1}{1 + 3/s + 2/s^2} = 1.$$
Using the final value theorem,

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} \frac{s^2}{s^2 + 3s + 2} = 0.$$

These values are the same as those calculated above.

4. Compute the impulse response and the unit step response of a system with transfer

function described by
$$H(s) = \frac{3s}{2s^2 + 10s + 12}$$
.

$$H(s) = \frac{3s}{2s^2 + 10s + 12} = \frac{3s}{(2s+4)(s+3)} = \frac{3s/2}{(s+2)(s+3)} = k_0 + \frac{k_1}{s+2} + \frac{k_2}{s+3}$$

Using partial fraction expansion

$$k_o = \frac{3s}{s^2 + 10s + 12} \bigg|_{s=\infty} = \frac{3/s}{1 + 10/s + 12/s^2} \bigg|_{s=\infty} = 0,$$

$$k_1 = \frac{3s/2}{(s+2)(s+3)}(s+2)\Big|_{s=-2} = \frac{3s/2}{(s+3)}\Big|_{s=-2} = \frac{-3}{1} = -3,$$

$$k_2 = \frac{3s/2}{(s+2)(s+3)}(s+3)\Big|_{s=-3} = \frac{3s/2}{(s+2)}\Big|_{s=-3} = \frac{-9/2}{-1} = \frac{9}{2}.$$

Alternatively,

$$\frac{3s/2}{(s+2)(s+3)} = \frac{k_0(s+2)(s+3) + k_1(s+3) + k_2(s+2)}{(s+2)(s+3)}$$

$$3s/2 = k_0(s^2 + 5s + 6) + (k_1 + k_2)s + 3k_1 + 2k_2 = k_0s^2 + (5k_0 + k_1 + k_2)s + (6k_0 + 3k_1 + 2k_2)s + (6k_0 + 3k_1$$

Comparing the coefficients for s^2 gives $k_0 = 0$.

Comparing the coefficients for s gives $k_1 + k_2 = 3/2$.

We also have $3k_1+2k_2=0$ and hence $k_2=-3k_1/2$.

Substituting k_2 gives $k_1 - 3k_1/2 = 3/2$ and hence $k_1 = -3$ and $k_2 = 9/2$

The transfer function is

$$H(s) = -\frac{3}{s+2} + \frac{9/2}{s+3} = \frac{9}{2} \cdot \frac{1}{s+3} - \frac{3}{s+2}$$

Therefore the impulse response is described by $h(t) = \frac{9}{2}e^{-3t}u(t) - 3e^{-2t}u(t)$ in the time domain.

If the input is a unit step, The output is given by

$$Y(s) = H(s)U(s) = \frac{3s/2}{(s+2)(s+3)} \frac{1}{s} = \frac{3/2}{(s+2)(s+3)} = \frac{k_1}{(s+2)} + \frac{k_2}{(s+3)}.$$

Using partial fraction expansion,

$$k_{1} = \frac{3/2}{(s+2)(s+3)}(s+2) \Big|_{s=-2} = \frac{3/2}{(s+3)} \Big|_{s=-2} = \frac{3/2}{1} = \frac{3}{2},$$

$$k_{2} = \frac{3/2}{(s+2)(s+3)}(s+3) \Big|_{s=-3} = \frac{3/2}{(s+2)} \Big|_{s=-3} = \frac{3/2}{-1} = -\frac{3}{2}.$$

Alternatively,

$$\frac{3/2}{(s+2)(s+3)} = \frac{k_1(s+3) + k_2(s+2)}{(s+2)(s+3)}$$

$$3/2 = (k_1 + k_2)s + (3k_1 + 2k_2)$$

Comparing the coefficients for s, $k_1 = -k_2$.

$$k_1$$
=3/2 and k_2 = -3/2.

$$Y(s) = \frac{3}{2(s+2)} - \frac{3}{2(s+3)}$$
.

Therefore the unit step response in time domain is

$$y(t) = \frac{3}{2}e^{-2t}u(t) - \frac{3}{2}e^{-3t}u(t) = \frac{3}{2}u(t)(e^{-2t} - e^{-3t}).$$

5. Determine the poles, the natural frequency and the damping factor of systems with the following transfer functions and state the nature of the system response:

(i)
$$G(s) = \frac{0.3}{s^2 + 7s + 10} = \frac{0.3}{(s+5)(s+2)}$$

Compare
$$G(s) = \frac{0.3}{s^2 + 7s + 10} \text{ with } \frac{k}{s^2 + 2\zeta\omega_n + \omega_n^2}$$
.

Natural oscillating frequency is $\omega_n = \sqrt{10}$ rad/s.

Damping factor is
$$\zeta = \frac{7}{2\omega_n} = \frac{7}{2\sqrt{10}} = 1.107$$
.

The system is lightly overdamped. Poles are $p_1 = -5$ and $p_2 = -2$.

The unit step response is in the form, $y(t) = K_o + K_1 e^{-5t} u(t) + K_2 e^{-2t} u(t)$, where K_o , K_1 and K_2 are constants.

(ii)
$$G(s) = \frac{1}{s^2 + 4s + 13} = \frac{1}{(s^2 + 4s + 4) + 9} = \frac{1}{(s + 2)^2 + (3)^2}$$
.

Compare
$$G(s) = \frac{1}{s^2 + 4s + 13}$$
 with $\frac{k}{s^2 + 2\zeta\omega_n + \omega_n^2}$ and

$$G(s) = \frac{1}{(s+2)^2 + (3)^2} \text{ with } \frac{k}{(s+\zeta \omega_n)^2 + \omega_d^2}.$$

Natural oscillating frequency is $\omega_n = \sqrt{13}$ rad/s.

Damping factor is
$$\zeta = \frac{4}{2\omega_n} = \frac{2}{\sqrt{13}} = 0.555$$
.

The system is underdamped. The poles are complex and are given by $p_{1,2} = -\zeta \omega_n \pm j\omega_d$, where $\omega_d = 3$.

$$p_{1,2} = -\frac{2}{\sqrt{13}}\sqrt{13} \pm j3 = -2 \pm j3$$
. The unit step response is

 $y(t) = K_0 + K_1 e^{-2t} \sin(3t + \theta)u(t)$, where K_0 and K_1 are constants. y(t) is a sinusoid with frequency 3 rad/s that decays exponentially with at a time constant 1/2 s.

(iii)
$$G(s) = \frac{0.1}{s^2 + 16}$$

Compare
$$G(s) = \frac{0.1}{s^2 + 16}$$
 with $\frac{k}{(s^2 + \omega_n^2)}$.

Natural oscillating frequency is $\omega_n = \sqrt{16} = 4$ rad/s.

Damping factor is $\zeta = 0$.

The system is undamped. The poles are $p_{1,2} = \pm j\omega_n = \pm j4$.

The unit step response is $y(t) = K_0 + K_1 \cos(4t)u(t)$, where K_0 and K_1 are constants.

(iv)
$$G(s) = \frac{15}{s^2 + 6s + 9}$$

Compare
$$G(s) = \frac{15}{s^2 + 6s + 9}$$
 with $\frac{k}{s^2 + 2\zeta\omega_n + \omega_n^2}$

Natural oscillating frequency is $\omega_n = \sqrt{9} = 3$ rad/s.

Damping factor is
$$\zeta = \frac{6}{2\omega_n} = \frac{3}{3} = 1$$
.

The system is critically damped. The poles are $p_{1,2} = -\omega_n = -3$.

The unit step response is $y(t) = K_0 (1 - (1 + 3t)e^{-3t}u(t))$ where K_0 is a constant.

6. Determine the Laplace transforms of the following signals. Sketch the pole-zero plot and region of convergence (if it exists).

(i)
$$x(t) = e^{-4t}u(t)$$

$$X(s) = \int_{-\infty}^{\infty} e^{-4t} u(t) e^{-st} dt = \int_{0}^{\infty} e^{-4t} e^{-(\sigma + j\omega)t} dt = \int_{0}^{\infty} e^{-(4+\sigma)t} e^{-j\omega t} dt . X(s) \text{ exists if } 4 + \sigma > 0, \text{ i.e.}$$

$$\sigma = \text{Re}\{s\} > -4$$
. Therefore we have $X(s) = \int_{0}^{\infty} e^{-(s+4)t} dt = \frac{1}{s+4} \left[-e^{-(s+4)t} \right]_{0}^{\infty} = \frac{1}{s+4}$.

$$X(s) = \frac{1}{s+4}$$
, Re $\{s\} > -4$. Pole = -4.

(ii)
$$x(t) = e^{-t}u(t) + e^{-3t}u(t)$$

The Laplace Transform of $e^{-t}u(t)$ is

$$\int_{-\infty}^{\infty} e^{-t} u(t) e^{-st} dt = \int_{0}^{\infty} e^{-t} e^{-(\sigma + j\omega)t} dt = \int_{0}^{\infty} e^{-(1+\sigma)t} e^{-j\omega t} dt$$

with an region of convergence described by $\sigma=\text{Re}\{s\}>-1$.

The Laplace Transform of $e^{-3t}u(t)$ is

$$\int_{-\infty}^{\infty} e^{-3t} u(t) e^{-st} dt = \int_{0}^{\infty} e^{-3t} e^{-(\sigma+j\omega)t} dt = \int_{0}^{\infty} e^{-(3+\sigma)t} e^{-j\omega t} dt$$

with an region of convergence described by $\sigma=\text{Re}\{s\}>-3$.

Therefore for

$$X(s) = \frac{1}{s+1} + \frac{1}{s+3}$$
.

we have $\sigma = \text{Re}\{s\} > -1$.

(iii)
$$x(t) = e^{-a|t|}, a > 0$$

The signal is shown below

We have $x(t) = e^{-a|t|} = e^{-at}u(t) + e^{at}u(-t)$ since a > 0.

The Laplace transform for $e^{at}u(-t)$ is $\int_{-\infty}^{\infty} e^{at}u(-t)e^{-st}dt = \int_{-\infty}^{0} e^{at}e^{-(\sigma+j\omega)t}dt = \int_{-\infty}^{0} e^{(a-\sigma)t}e^{-j\omega t}dt$.

The Laplace transform for $e^{at}u(-t)$ exists if $a - \sigma > 0$, i.e $\sigma = \text{Re}\{s\} < a$.

$$\int_{-\infty}^{0} e^{(a-s)t} dt = \frac{1}{a-s} \left[e^{(a-s)t} \right]_{-\infty}^{0} = -\frac{1}{s-a}$$

The region of convergence for $\frac{1}{s+a}$, Re $\{s\} > -a$ and for $-\frac{1}{s-a}$, Re $\{s\} < a$

We have, $X(s) = \frac{1}{s+a} - \frac{1}{s-a}$ with region of convergence defined by $-a < \text{Re}\{s\} < a$.

Therefore
$$x(t) = e^{-a|t|} \leftrightarrow X(s) = \frac{1}{s+a} - \frac{1}{s-a}, -a < \text{Re}\{s\} < a$$
.

7. Find the Laplace transforms of the signal $x(t) = e^{-t}u(t) * u(t)$ and sketch x(t).

Using the convolution property, $X(s) = \frac{1}{s+1} \times \frac{1}{s} = \frac{k_1}{s} + \frac{k_2}{s+1}$.

Using partial fraction expansion,

$$k_1 = \frac{1}{s+1}\Big|_{s=0} = 1$$
 and $k_2 = \frac{1}{s}\Big|_{s=-1} = -1$.

Therefore
$$X(s) = \frac{1}{s} - \frac{1}{s+1}$$
, $\text{Re}\{s\} > -1$ and $x(t) = 1 - e^{-t}u(t)$.

8. Determine the initial and the final values of the signal with Laplace transform

$$X(s) = \frac{10s}{s^2 + 10s + 300}$$

Using the initial value theorem,

$$x(0) = \lim_{s \to \infty} (sX(s)) = \lim_{s \to \infty} \left(s \frac{10s}{s^2 + 10s + 300} \right) = \lim_{s \to \infty} \left(\frac{10}{1 + 10/s + 300/s^2} \right) = 10.$$

Using the final value theorem.

$$\lim_{t \to \infty} x(t) = \lim_{s \to 0} \left(sX(s) \right) = \lim_{s \to 0} \left(s \frac{10s}{s^2 + 10s + 300} \right) = \lim_{s \to 0} \left(\frac{10s^2}{s^2 + 10s + 300} \right) = 0$$

9. Determine the transfer function of the circuit shown below.

(i) If $R = 1 \Omega$ and C = 1 pF calculate the value of L required so that the circuit is critically damped. Sketch $v_o(t)$ if $v_i(t)$ is a unit step function.

Let
$$Z_1 = \frac{R/sC}{R+1/sC} = \frac{R}{1+sRC}$$
.

The transfer function,
$$H(s) = \frac{V_o(s)}{V_i(s)} = \frac{Z_1}{Z_1 + sL} = \frac{\frac{R}{1 + sRC}}{\frac{R}{1 + sRC} + sL}$$
.

$$H(s) = \frac{R}{R + sL(1 + sRC)} = \frac{R}{R + sL + s^2RLC} = \frac{1/LC}{s^2 + (1/RC)s + (1/LC)}.$$

The natural oscillating frequency is, $\omega_n = \frac{1}{\sqrt{LC}}$ and the damping factor is

$$\zeta = \frac{1/RC}{2\omega_n}$$
. To achieve critical damping, $\zeta = \frac{1/RC}{2\omega_n} = 1$.

If R = 1
$$\Omega$$
 and C = 1pF, $\omega_n = \frac{1}{2RC} = \frac{1}{2 \times 1 \times 1 \times 10^{-12}} = \frac{1}{2 \times 10^{-12}}$.

$$\frac{1}{L} = C\omega_n^2. \text{ Therefore } L = \frac{1}{C\omega_n^2} = \frac{(2 \times 10^{-12})^2}{1 \times 10^{-12}} = 4 \times 10^{-12} H.$$

If $v_i(t) = u(t)$, $V_i(s) = 1/s$.

$$H(s) = \frac{1/LC}{s^2 + (1/RC)s + 1/LC} = \frac{(1/4 \times 10^{-24})}{s^2 + (1/11 \times 10^{-12})s + (1/4 \times 10^{-12})} = \frac{(1/4 \times 10^{-24})}{(s + 1/2 \times 10^{-12})^2} = \frac{k}{(s + \omega_n)^2}$$

The Laplace Transform of the unit step response is

$$V_o(s) = H(s)V_i(s) = \frac{k}{s(s+\omega_n)^2}$$
.

From lecture notes, the unit step response in time domain is

$$v(t) = \frac{k}{\omega_n^2} - \frac{k}{\omega_n^2} [1 + \omega_n t] e^{-\omega_n t} u(t) = 1 - [1 + 5 \times 10^{11} t] e^{-t/2 \times 10^{-12}} u(t).$$

(ii) If $R = 50 \Omega$, C = 1 nF and $L = 2.5 \mu$ H calculate the damping factor and natural oscillating frequency. Sketch and describe $v_o(t)$ if $v_i(t)$ is a unit step function.

If R = 50
$$\Omega$$
, C = 1nF and L = 2.5 μ H, $\omega_n = \sqrt{\frac{1}{LC}} = \frac{1}{\sqrt{2.5 \times 10^{-6} \times 1 \times 10^{-9}}} = 20 \times 10^6$

rad/s.

$$\zeta = \frac{1/RC}{2\omega_n} = \frac{1/50 \times 10^{-9}}{2 \times 20 \times 10^6} = 0.5.$$

The system is underdamped. The unit step response is

$$y(t) = \frac{k}{\omega_n^2} \left(1 - \frac{k}{\omega_n \omega_d} e^{-\zeta \omega_n t} \sin(\omega_d t + \phi) u(t) \right).$$

$$\omega_d = \omega_n \sqrt{1 - \zeta^2} = 20 \times 10^6 \sqrt{1 - 0.5^2} = 17.32 \times 10^6 \text{ rad/s}.$$

$$\phi = \tan^{-1}(\omega_d / \zeta \omega_n) = \tan^{-1}(17.32 \times 10^6 / 0.5 \times 20 \times 10^6) = 1.565 \text{ rad}.$$

$$1/\zeta \omega_n = 1/0.5 \times 20 \times 10^6 = 1/10 \times 10^6 = 0.1 \times 10^{-6} \text{ s}.$$

The unit step response is a sinusoid with a frequency of $\omega_d = 17.32 \times 10^6$ rad/s that decays exponentially with a time constant of $1/\zeta \omega_n = 0.1 \times 10^{-6}$ s.

10. (i) The response is

$$Y(s) = \frac{sL.X(s)}{sL + R + \frac{1}{sC}} = \frac{s^2LC.X(s)}{s^2LC + sRC + 1}$$

The response to a unit step function is

$$Y(s) = \frac{s^2(2)(0.25)1/s}{s^2(2)(0.25) + (6)(0.25)s + 1} = \frac{s/2}{(\frac{1}{2})s^2 + (3/2)s + 1}$$
$$Y(s) = \frac{s}{s^2 + 3s + 2} = \frac{s}{(s+1)(s+2)} = \frac{2}{(s+2)} - \frac{1}{(s+1)}$$

Taking the inverse Laplace Transform gives $y(t) = (2e^{-t} - e^{-t})u(t)$.

We have X(s) = Y(s) + I(s)R + I(s)/sC. When x(t) = 0, we have

$$0 = Y(s) + I(s)R + I_c(s)/sC$$

I(s) and $I_c(s)$ are currents flowing through the resistor and capacitor associated with the initial conditions.

$$I(s) = I_L(s) = \frac{Y(s)}{sL} + \frac{i(0)}{s} \quad \text{[note that } Y(s) = sLI_L(s) - Li(0) \text{] and}$$

$$v_c(t) = \frac{1}{C} \int_0^t i(\tau) d\tau + v_c(0)$$

$$V_c(s) = \frac{I(s)}{sC} + \frac{v_c(0)}{s}$$

$$I_c(s) = sCV_c(s) = I(s) + Cv_c(0) = \frac{Y(s)}{sL} + \frac{i(0)}{s} + Cv_c(0)$$

Substituting I(s) and $I_c(s)$ we have

$$0 = Y(s) + \left| \frac{Y(s)}{sL} + \frac{i(0)}{s} \right| R + \frac{1}{sC} \left| \frac{Y(s)}{sL} + \frac{i(0)}{s} + Cv_c(0) \right|$$
$$Y(s) \left| \frac{s^2 LC + sRC + 1}{s^2 LC} \right| = -\left| \frac{i(0)sRC + i(0) + v_c(0)sC}{s^2 C} \right|$$

$$Y(s) = -\left[\frac{i(0)sLRC + i(0)L + v_c(0)sLC}{s^2LC + sRC + 1}\right]$$

$$Y(s) = -\left[\frac{i(0)L(sRC + 1) + v_c(0)sLC}{s^2LC + sRC + 1}\right]$$

$$Y(s) = -\left[\frac{1(2)(3s/2 + 1) + s/2}{(\frac{1}{2})s^2 + 3s/2 + 1}\right] = -\frac{7s + 4}{(s + 2)(s + 1)} = \frac{3}{(s + 1)} - \frac{10}{(s + 2)}$$
Therefore $y(t) = (3e^{-t} - 10e^{-2t})u(t)$

11. Consider a system with a transfer function $H(s) = \frac{1}{s+3}$. Find the forced and natural responses of this system if the input signal is given by $x(t) = \exp(-3t)u(t)$ and an initial condition of $y_o(0) = 1$, where $y_o(0)$ is the output signal at t = 0.

To work out the forced response, $Y_{forced}(s) = \frac{X(s)}{(s+3)} = \frac{1}{(s+3)(s+3)} = \frac{1}{(s+3)^2}$. Therefore we have time domain forced response given by $y_{forced}(t) = t \exp(-3t)]u(t)$. To work out the natural response, $Y_{natural}(s) = \frac{y(0)}{(s+3)} = \frac{1}{(s+3)}$ and therefore the corresponding expression in time domain is $y_{natural}(t) = [\exp(-3t)]u(t)$.