Lecture 10

§22 Induction

- To prove the statement P(n) about $n \in \mathbb{N}$ by using induction on n:
 - (1) Check the very first statement P(0). This is called the *basic step*.
 - (2) Prove that for any $k \ge 1$, P(k-1) is true implies P(k) is true (inductive step). The assumption that P(k-1) is true is called the induction hypothesis.
- Examples
 - (1) Let n be a natural number. Then

$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2},$$

$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6},$$

$$\sum_{k=0}^{n} k^3 = \frac{n^2(n+1)^2}{4}.$$

(2) Let n be a natural number. Then

$$\sum_{k=0}^{n} 2^k = 2^{n+1} - 1.$$

(3) A sequence $\{a_n; n \in \mathbb{N}\}$ is defined as following: $a_0 = -1$, $a_{n+1} = 2a_n - a_n^2$ for all $n \in \mathbb{N}$. Prove that

$$a_n = -2^{2^n} + 1.$$

(4) The Fibonacci numbers F_0, F_1, \cdots are defined as following: $F_0 = F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for all $n \geq 2$. Prove that for all $n \geq 1$,

$$\sum_{k=0}^{n} (-1)^k F_k = (-1)^n F_{n-1} + 1.$$

Remark: In this example, the basic step is n = 1.

- (5) Prove that 3 divides $n^3 n$ for any natural number n.
- (6) Prove that for all $n \ge 5$, we have $2^n \ge n^2$.
- (7) Prove that $n! \leq n^n$ for all positive integer n.
- There are variations of the regular induction:
 - (1) Sometimes two or more basic steps are needed.
 - (2) Sometimes we need stronger induction hypothesis. The strongest hypothesis is that we assume all the statements P(0), P(1), \cdots , P(k-1) are all true. In this case we call it strong induction.
- Examples
 - (8) Consider a sequence b_0, b_1, \cdots , defined as following: $b_0 = 2$, $b_1 = 5$, and $b_n = 5b_{n-1} 6b_{n-2}$ for all $n \ge 2$. Prove that $b_n = 2^n + 3^n$ for all $n \in \mathbb{N}$.

1

(9) Prove that every positive integer can be written as a sum of distinct powers of 2.

HW5(b) (Due 3/2/2016)

- 22.4(c),(d)
- 22.5(c),(d)
- 22.16(e)
- 22.18