ABSoNeS: Agent Based Social Network Simulation

2	Simone Ciccolella ¹ and Daniele Bellani ²	
3 4	$^1email \\ ^2email$	
5	14 maggio 2017	
6	TO DO	
7	• Questione omofilia	
8	• Definire costati di proporzione	
9	• Definire alta e bassa probabilità e attività	
10	1 Modellazione	
11	Per la creazione del modello deriviamo delle costanti che saranno sempre vere:	
12 13 14	Fasi Temporali (FT) Dividiamo la giornata in 12 fasi che rappresentano 2 ore l'una in cui ogni utente ha un personale valore di activity che rappresenta il suo utilizzo di Twitter. Tali fasi sono così suddivise:	
15 16	• 4 fasi con activity pari a 0 corrispondente a 8 ore di sonno, ovvero la quantità consigliata (e quasi mai rispettata).	
17	• 4 fasi con activity bassa, corrispondente a 8 ore di lavoro	
18 19	• 4 fasi con activity elevata che rappresenta 8 ore di tempo libero in cui l'utente ha una attività maggiore su Twitter	
20 21	Al momento ignoramo il weekend, ma cercheremo di definirlo e implementarlo nelle prossime versioni. [•SC: definire BASSA e ELEVATA attività•]	>
22 23 24 25	Topic ovvero i possibili argomenti di interesse esistenti nel modello perciò abbiamo una lista $topic = (t_1,, t_n)$ definiti a priori e immutabili. Non vengono mai utilizzati direttamente, ma vengono utilizzati come indici di riferimento dunque non è necessario implementarli realmente.	

1.1 Utenti

26

34

35

36 37

38

39

40

41

56

- Gli utenti sono rappresentati dai nodi della rete. Vediamo ora dunque in che modo viene generato ogni nodo:
- Personal Interest (PI) è una lista PI = $(p_1, ..., p_n)$ dove $p_i \in [0, 1]$ [\bullet SC: valutare inclusione degli estremi \bullet] indica la probabilità di interesse del nodo rispetto al topic i generata casualmente. Al momento tale valore è immutabile. [\bullet SC: modellare valore variabile \bullet]
- Timezone (TZ) ovvero una lista $TZ = (tz_1, ..., tz_{12})$ dove i tz_i sono generati in accordo con le FT generati come segue:
 - Genero $1 \le i \le 12$ casualmente
 - Imposto le ore di sonno $tz_j = 0$ per $j = i, \dots, i+3$
 - Imposto le ore di lavoro $tz_j = \text{bassa activity per } j = i+4, \ldots, i+7$ [•SC: definire•]
 - Imposto le ore di tempo libero $tz_j = \text{alta activity per } j = i+8, \ldots, i+11$ [• SC: definire]
 - Tutte le precedenti operazioni di indici sono da considerarsi *mod* 12. Il motivo di questa scelta è quello di simulare sia diversi orari per le persone, sia diversi fusi orari.
- Per poter fare operazioni sugli utenti abbiamo inoltre bisogno delle seguenti definizioni:
- Followers per ogni utente U definiamo come followers(U) l'insieme dei followers di U.
- Following similmente following(U) indica l'insieme degli utenti seguiti da U.
- Direct Tag (dtag) dtag(U, T) è l'insieme dei tweets che contengo un tag all'utente U generati al tempo T. Sará spiegato meglio nella sezione riguardante i tweet [1.3].
- Interessi per ogni utente U interest(U) è l'insieme dei topic che interessano a U.
- Field Of View (FOV) FOV(U, T) rappresenta l'insieme dei delle notizie visualizzate dal-48 l'utente U al tempo T, con FOV \subseteq tweet(following(U), T_i) \cup retweet(following(U), 49 T_i) \cup dtag(U, T_l) per $T_{i,i,l} \in \overline{T}$ lista di tempi non maggiori al tempo attuale T. Questo 50 insieme è definito sia per una questione computazionale, ma anche per un motivo reale 51 in quanto è difficile che un utente nell'arco della giornata riesca a vedere tutti i tweets 52 e i retweets degli utenti che segue e i tweet che in cui risulta direttamente taqqato. 53 Questa affermazione diventa sempre più ragionevole al crescere della popolarità di un 54 utente. 55
 - Le relazioni tra gli utenti sono descritti dagli archi tra di essi.

- Edges un arco tra due utenti U_1 e U_2 , scritto come (U_1, U_2) rappresenta la relazione di following tra il primo ed il secondo. Di conseguenza, ovviamente, risulta che $U_1 \in followers(U_2)$ e simmetricamente $U_2 \in following(U_1)$
- Attachment ad un arco $e_j \in U \times U$ è associato un valore $\operatorname{attachment}(U_1, U_2) \in [0, 1]$ che rappresenta l' attaccamento di U_1 a U_2 , più questo valore si avvicina a 0 più la probabilità che U_1 smetta di seguire U_2 aumenta e viceversa. Quando il nodo viene creato il valore di attachment è relativamente alto (~ 0.8) in quanto ci si aspetta che un utente non smetta di seguire un altro utente poco dopo aver iniziato a seguirlo.

1.2 Probabilità

57

58

59

65

76 77

78

- In tutto il modello sono definite globalmente le probabilità di compiere una determinata azione.
- Tweet ogni utente U ad ogni tempo T ha la possibilità di creare un tweet secondo la seguente probabilità:

70 (1)
$$P_{tweet} = \alpha T Z(T) \frac{|followers(U)|}{|Users|}$$

- Questo perchè ci si aspetta che un utente popolare sia più attivo di uno sconosciuto, per mantenere il suo livello di popolarità.
- Retweet similmente al precedente un utente U al tempo T ha una possibilità di effettuare un retweet come:

75
$$P_{retweet} = \beta T Z(T) \frac{|followers(U)|}{|Users|}$$

- Risulta da valutare la possibilità che un utente possa fare più retweet rispetto al numero dei tweet, in quanto essa è un'operazione decisamente meno impegnativa e perciò, intuitivamente, con una più elevata probabilità di accadere.
- 79 **Tag** ogni tweet ha una possibilità di contenere un tag diretto ad un altro utente V con probabilità

$$P_{tag} = \gamma \frac{follower(U)followers(V)}{|Users|^2}$$

Ovvero ci si aspetta che il dtag sia proporzionale alla popolarità di entrambi gli utenti coinvolti.

1.3 Attività sociali

- Per prima cosa definiamo gli oggetti che riguardano le attività sociali:
- Tweet II tweet dell'utente U al tempo T è definito come tweet(U,T) = (j, likability, dislikability, dtag, U, T) dove:
 - j è il topic su cui il tweet verte
 - likability $\in [0,1]$ indica la probabilità di quanto il tweet possa piacere agli utenti a cui interessa il topic j.
 - dislikability rappresenta la probabilità di quanto il tweet possa non piacere a chi non è interessato all'argomento
 - dtag indica l'utente V taggato nel tweet. Tale valore può anche essere nullo.
 - U è l'utente che ha effettuato il tweet, e T il tempo in cui è stato creato. Necessari per l'implementazione.
- Retweet Il retweet effettuato dall'utente U al tempo T del tweet di V al tempo \overline{T} , definito come: retweet(U, T) = tweet(V, \overline{T})
- 98 Dtag

84

88

89

90

91

92

93

94

95

99

103

104105

106

107

108

109

110

111

112

113

- In base agli oggetti definiti in precedenza possiamo definire le azioni di:
- Post Nel momento in cui l'utente U è abilitato alla creazione di un tweet allora viene generato casualmente un topic j su cui verterà il tweet in modo tale che un topic di interesse per U sia selezionato con maggiore probabilità. Una volta scelto il topic j:
 - se j è di interesse per U (U.PI(j) ≥ 0.5) allora il tweet risultante avrà una likability elevata mentre la dislikability sarà casuale.
 - viceversa il tweet generato avrà una dislikability alta ed una likability casuale.

Una volta definito il tweet viene generata la probabilità di avere un dtag ad un altro utente V in base alla eq. 3. Se tale tag viene generato allora il tweet avrà un tag all'utente V, altrimenti il post non avrà alcun dtag.

- **Repost** Per ogni utente U viene scelta casualmente una lista di k tweet $\overline{w} \in FOV(U)^k$, successivamente per ogni $\overline{w}_i \in \overline{w}$ viene valutata la possibilità di retweet di \overline{w}_i secondo l' equazione 2, in caso favorevole viene prodotto retweet(U, T) che sarà una lista di retweet effettuati da U al tempo T.
- **Unfollow** Un utente U può decidere di smettere di seguire un utente V, grazie alla variabile attachment che li lega, e all'ultimo tweet W di V con probabilità

$$P_{unfollow}(U, V) = P(W[dislikability] \mid attachment(U, V))$$

114 115 116 117	Nel caso in cui U decida di continuare a seguire V allora $\mathtt{attachment}(U,V) = P_{unfollow}(U, aggiornando dunque la probabilità di unfollow a quella appena calcolata. Risulta dunque che la probabilità di unfollow dipende solo dallo stato precedente di \mathtt{attachment}. [\bullet SC: Markov Chain?\bullet]$	
118 119 120 121 122	Continue Follow Un utente U può avere il desiderio di continuare a seguire un altro utente V , se V ha pubblicato un tweet riguardante un topic di suo gradimento. Tuttavia tale post ha una sua likability che potrebbe pregiudicare, sia in positivo che in negativo, l'attachment (U,V) che perciò a seguito del nuovo tweet W di V risulta che attachment $(U,V) = P(W[likability] \mid attachment(U,V))$	×
123 124 125 126	Nota: Per le due azioni precedenti di Unfollow e Continue Follow bisogna considerare il caso in cui la valutazione venga effettuata rispetto ad un retweet e non ad un tweet dell'utente seguito V. [●SC: Che si fa? Si ignorano i retweet o li si considera come se fossero tweet di V, in quanto se retweetta condivide la loro opinione? ●]	×
127	Follow Esistono diversi tipi di possibili modalità di following:	
128 129	By Retweet (BR) By retweet Ancora da definire. Probabilità simmetrica a Unfollow. [•SC: definire•]	V
130 131 132	Outside Factor (OF) avviene quando un utente U comincia a seguire un nodo V per fattori esterni al Social Network, quali ad esempio nuova amicizia nella vita reale, nuovo follow su altri mezzi di comunicazioni online, ecc. [•SC: prob da definire•]	×
133 134 135	Active Search (AS) un utente U ricerca un qualunque altro utente V tramite la rete sociale anche se non ha collegamenti con esso. Tale ricerca ha senso secondo il modello di omofilia [•SC: definire•].	×
136	1.4 Step Simulazione	
137 138	Usando il modello definito in precedenza possiamo ora descrivere gli step che avvengono nella simulazione al tempo T.	
139 140 141 142	Tweet Step (TS) Per ogni utente U viene generato una probabilità casuale $P_t(U,T)$ che rappresenta la sua inclinazione di produrre un tweet al tempo T. Se $P_t(U,T)$ risulta conforme [•SC: conforme mi fa schifo. Qual è il termine giusto? •] alla probabilità P_{tweet} [eq. 1] allora viene generato il tweet(U, T) come descritto in Post.	×
143 144 145 146 147	Retweet Step (RS) Similmente alla fase precedente, per ogni utente U viene generato una probabilità casuale $P_r(U,T)$ che rappresenta la sua inclinazione di produrre un retweet al tempo T. Se $P_r(U,T)$ risulta conforme [\bullet SC: conforme mi fa schifo. Qual è il termine giusto? \bullet] alla probabilità $P_{retweet}$ [eq. 2] allora viene generato il retweet(U, T) come descritto in Repost.	×

Evaluation Step (ES) Dopo che tutti i tweet e i retweet sono stati creati al tempo T, per ogni utente U viene generato il FOV(U, T) e per ogni $f_i \in FOV(U, T)$ viene valutato l' attachment(U, V), dove V è l'autore di f_i . In base alle probabilità e azioni precedentemente descritte, l'utente U decide se smettere di seguire V (secondo Unfollow) o di continuare a seguire a seguire, modificando l'attachment come descritto in Continue Follow. [•SC: modificare in base alla cosiderazione dei retweet •] Nel caso in cui U stia valutando un retweet di un utente W che non segue, allora valuta la probabilità di seguirlo in base al Following BR. Infine viene valutata la possibilità di creare un nuovo follow per OF e AS.

×

Le azioni descritte in precedenza devono necessariamente essere eseguite sequenzialmente una dopo l'altra, tuttavia i singoli step possono essere facilmente parallelizzati, senza problemi di concorrenza, in quanto il post di un tweet è indipendente per ogni utente; lo stesso vale per il retweet e infine l'aggiornamento dell' attachment è dipendente dai tweet e i retweet effettuati **TS** e **RS**, ma i singoli aggiornamenti sono indipendenti tra gli utenti. Per questo motivo l'idea è quella di fare in modo che le azioni contenute in un step di simulazione vengano effettuate con più thread, ma comunque rispettando l'ordine descritto.