Introduction au Power Management dans Linux Implémentation, Utilisation et Benchmark

maxime.chevallier@smile.fr

21 mars 2017

Plan

- 1 Enjeux
- 2 Power Management Dynamique
- 3 Endormissement

- N'utiliser que les ressources nécessaires
- Etre générique (ACPI, APM, SCPI)
- Respecter les contraintes utilisateur
- Rester transparent

- N'utiliser que les ressources nécessaires
- Etre générique (ACPI, APM, SCPI)
- Respecter les contraintes utilisateur
- Rester transparent

x86, milliers d'unités

- N'utiliser que les ressources nécessaires
- Etre générique (ACPI, APM, SCPI)
- Respecter les contraintes utilisateur
- Rester transparent

x86, milliers d'unités

x86, fléxibilité

- N'utiliser que les ressources nécessaires
- Etre générique (ACPI, APM, SCPI)
- Respecter les contraintes utilisateur
- Rester transparent

x86, milliers d'unités

x86, fléxibilité

Plan

- 1 Enjeux
- 2 Power Management Dynamique
- 3 Endormissement

Power Management Dynamique

Minimiser la consommation d'un système actif

Compromis

- Ressources utilisées
- Ressources nécessaires
- Latences acceptables
- Consommation actuelle
- Température actuelle

PM pour les périphériques

PM core

- API pour drivers
- Interface sysfs
- PM dynamique
- Modes d'endormissement

Documentation: Documentation/power

Headers: include/linux/pm.h **Implémentation**: kernel/power/

runtime_pm

Etats

- active : Est capable d'I/O
- suspended : Pas d'I/O

Callbacks

runtime_suspend(dev)
runtime_resume(dev)
runtime_idle(dev)

Helpers

```
pm_runtime_*
pm_request_*
pm_schedule_*
pm_runtime_{get,put}*
pm_*_autosuspend
```


Quality of Service

Indiquer au noyau les latence et débits à respecter

Paramètres globaux

- cpu_dma_latency (µs)
- memory_bandwidth (mbps)
- network_latency (µs)
- network_throughput (kbps)

Interface Userspace : /dev/* + sysfs

CPU Idle

Que faire quand le CPU n'a rien à faire?

- Choix du mode (governor)
 - select()
 - reflect()
- Implémentation (driver)

CPU Idle

Que faire quand le CPU n'a rien à faire?

- Choix du mode (governor)
 - select()
 - reflect()
- Implémentation (driver)

struct cpuidle_state

- exit_latency
- power_usage
- target_residency
- int enter([...], int index)

CPU Idle

Que faire quand le CPU n'a rien à faire?

- Choix du mode (governor)
 - select()
 - reflect()
- Implémentation (driver)

struct cpuidle_state

- exit_latency
- power_usage
- target_residency
- int enter([...], int index)

cpuidle

Driver intel_idle

i7	47	\sim	N /	\sim
1/	/ /	117	IN 71	()
- 11	41	uz.	IVI	w

name	latency	residency	utilisation
CO	-	-	1.5%
POLL	0	0	0.2%
C1-HSW	2	2	0.6%
C1E-HSW	10	20	0.2%
C3-HSW	33	100	0.0%
C6-HSW	133	400	0.0%
C7s-HSW	166	500	97.4%

cpuidle

Driver ACPI processor_idle

i5 6500		
name	latency	residency
CO	-	-
POLL	0	0
C1	1	2
C2	151	302
C3	256	512

D ynamic V oltage and F requency S caling

Dynamic Voltage and Frequency Scaling

Dynamic Voltage and Frequency Scaling

cpufreq

■ Implémentation hardware (policy)

Dynamic Voltage and Frequency Scaling

cpufreq

- Implémentation hardware (policy)
- Implémentation software (governor) :

Dynamic Voltage and Frequency Scaling

cpufreq

- Implémentation hardware (policy)
- Implémentation software (governor) :
 - performance

Dynamic Voltage and Frequency Scaling

cpufreq

- Implémentation hardware (policy)
- Implémentation software (governor) :
 - performance
 - powersave

Dynamic Voltage and Frequency Scaling

cpufreq

- Implémentation hardware (policy)
- Implémentation software (governor) :
 - performance
 - powersave
 - userspace

Dynamic Voltage and Frequency Scaling

cpufreq

- Implémentation hardware (policy)
- Implémentation software (governor) :
 - performance
 - powersave
 - userspace
 - ondemand

Dynamic Voltage and Frequency Scaling

cpufreq

- Implémentation hardware (policy)
- Implémentation software (governor) :
 - performance
 - powersave
 - userspace
 - ondemand
 - conservative

Dynamic Voltage and Frequency Scaling

cpufreq

- Implémentation hardware (policy)
- Implémentation software (governor) :
 - performance
 - powersave
 - userspace
 - ondemand
 - conservative
 - schedutil (linux 4.6)

Dynamic Voltage and Frequency Scaling

cpufreq

- Implémentation hardware (policy)
- Implémentation software (governor) :
 - performance
 - powersave
 - userspace
 - ondemand
 - conservative
 - schedutil (linux 4.6)

/sys/devices/system/cpu/cpuX/cpufreq/

devfreq

Similaire pour les devices non-CPU

Operating Performance Points

Tuples (Fréquence, Tension) pour un périphérique

```
operating-points = <
/* kHz uV */
792000 1100000
396000 950000
198000 850000
>;
```


Actions en fonction de la température

Actions en fonction de la température

Thermal zone

■ Température (trip_point)

Actions en fonction de la température

- Température (trip_point)
- Politique :

Actions en fonction de la température

- Température (trip_point)
- Politique :
 - step_wise

Actions en fonction de la température

- Température (trip_point)
- Politique :
 - step_wise
 - fair_share

Actions en fonction de la température

- Température (trip_point)
- Politique :
 - step_wise
 - fair_share
 - userspace

Actions en fonction de la température

- Température (trip_point)
- Politique :
 - step_wise
 - fair_share
 - userspace
- Cooling device

Actions en fonction de la température

Thermal zone

- Température (trip_point)
- Politique :
 - step_wise
 - fair_share
 - userspace
- Cooling device

Cooling device

- Hardware : Ventilateur
- Software : cpufreq

thermal

Actions en fonction de la température

Thermal zone

- Température (trip_point)
- Politique :
 - step_wise
 - fair_share
 - userspace
- Cooling device

Cooling device

- Hardware : Ventilateur
- Software : cpufreq

Vue d'ensemble

Vue d'ensemble

A venir

- Unifier cpuidle et cpufreq
- Energy Aware Scheduler

Plan

- 1 Enjeux
- 2 Power Management Dynamique
- 3 Endormissement

PM core

struct dev_pm_ops

Ensemble de callbacks :

```
prepare() freeze()
complete() thaw()
suspend() poweroff()
resume() restore()
```


PM core

struct dev_pm_ops

Ensemble de callbacks :

```
prepare() freeze()
complete() thaw()
suspend() poweroff()
resume() restore()
```

Wakeup

- enable_irq_wake()
- disable_irq_wake()

ACPI State: S1

freeze > /sys/power/state

Suspend to Idle

- Entièrement software
- Freeze userspace
- Périphériques lowpower
- Toujours supporté

Réveil en quelques millisecondes

ACPI State: S2

standby > /sys/power/state

Standby

- Suspend to Idle +
- Coupure des coeurs non-boot
- Coupure de certains composants bas niveau
- Support dépendant de la plateforme

Réveil en quelques millisecondes

ACPI State: S3

mem > /sys/power/state

Suspend to RAM

- Standby +
- Périphériques en lowpower
- CPU en lowpower
- RAM en auto-rafraichissement
- Support dépendant de la plateforme

Réveil en quelques centaines de millisecondes

ACPI State: S4

disk > /sys/power/state

Suspend to disk

- Image mémoire persistée
- Système en lowpower, voire éteint

parametres

/sys/power/disk

- platform
- shutdown
- reboot
- suspend

Wakeup

Device Tree

- wakeup-source (Générique)
- gpio-key, wakeup
- enable-sdio-wakeup
- linux, wakeup
- etc. (Anciens bindings)

Wakeup

Device Tree

- wakeup-source (Générique)
- gpio-key, wakeup
- enable-sdio-wakeup
- linux, wakeup
- etc. (Anciens bindings)

sysfs

- enabled > /sys/devices/.../power/wakeup
- disabled > /sys/devices/.../power/wakeup

Consultation:/sys/kernel/debug/wakeup_sources

C'est fini

Merci

