

User Manual for FSS100 – Nano Fine Sun Sensor

V2.0 2021.08.30

Tensor Tech CO., LTD.

Table of Contents

A. Unpacking and Handling	1
B. Storage	2
C. Product Specifications	
D. Environmental Test Standards	4
E. Functional Test Standards	5
F. Frame Definition and Sun Vector Calculations	6
References and Attachments	8

Attachment 1. Mechanical Drawing

Attachment 2. CAD (STEP file)

Abbreviation List

PCBA	Printed Circuit Board Assembly					
SMT	Surface Mount Technology for manufacturing of a PCBA					
OBC	Onboard Computer on a satellite					
ADCS	Satellite Attitude Determination and Control System					
PC	Personal Computer					
ICD	Interface Control Document					
TID	Total Ionizing Dose radiation test					
	Flight model. The product is used for integrating into the user's					
FM	satellite that is planned to be launched into space. Therefore,					
ΓIVI	disruptive environmental tests won't be performed by Tensor Tech					
	before the shipment of the product					
Engineering Model. The product is used for conducting function						
EM	tests, destructive tests, or experiments in the user's laboratory.					
DUT	Device Under Test. Herein refers to the product under functional or					
וטעו	environmental tests.					

Document Revisions

Date	Author	Revision	Descriptions	
2020.12.11	Thomas Yen	V1.0 Establishing initial parameters and definitions		
2021.08.30	Thomas Yen	V2.0	Updating critical specifications and drawings	

P: +886 229319383 W: tensortech.com.tw E: info@tensortech.com.tw A: 3F.-1, No. 211, Sec. 2, Anhe Rd., Da'an Dist., Taipei City 106056, Taiwan (R.O.C.)

A. Unpacking and Handling

1. Control the electrostatic discharges in the environment

FSS100 is an ESD-sensitive device. Please un-packaging and integrating it with proper equipment and procedures.

2. Control the contamination in the environment

FSS100 is assembled in a cleanroom environment certified with ISO 14644-1 ISO5 standard. This preparation is majorly set up to prevent dust from getting into FSS100. To conduct a proper integration of Tensor Tech's FSS100 into your CubeSat, we suggest having a

cleanroom environment of ISO7 standard or at least having an air shower of ISO7 standard to wash out the dust on the lens before sending it to space.

3. Remove the Kapton Tape before launch

A Kapton tape covers the top of the lens before shipping. After the users finish their satellite integration and are ready for launch, please remove that Kapton tape to keep the FSS100 properly function. If users plan to conduct a functional test on the FSS100 under a solar simulator, remove the Kapton tape temporarily during the Test, then put it back after the Test.

4. Do not remove any electrical or mechanical components on the FSS100

The primary cause of the system errors on FSS100 is the imperfection of manufacturing the aperture and its mounting. Tensor Tech performs in-factory calibration on every shipped FSS100 to keep the sensor's error in the guaranteed range. This calibration includes biasing the center of the light spot on the photodiode and correct the error tabulated via the error table. This error table will be input into the FSS100 before the shipment. To keep the calibration result valid, Tensor Tech glues up the aperture with space-grade epoxy. Therefore, do not remove any mechanical parts on the FSS100. Otherwise, the sun vector determination accuracy may vary.

Every surface-mount-technology (SMT) electrical component will be glued with space-grade epoxy before the shipment of FSS100 to prevent possible fall off during the launch or users' vibration test. However, if users find any electrical or mechanical components fall off via visual inspection during proper environmental testing operations that this user manual allows, please contact Tensor Tech's team to ship you a new one.

B. Storage

In Tensor Tech, we storge our standard FSS100 in a dry environment with relative humility that is 2% or lower. To store this FSS100, we recommend having a moisture-proof box with relative humility 20% or lower. Moreover, the recommended storing temperature is listed in Table C-1.

C. Product Specifications

Table C-1. Mechanical Specifications

_	Tuote C 1. Mechanical Specifications						
1	Weight	2.5 grams					
2	Size	22 mm * 15 mm * 5.16 mm					
2	Size	(Length*Width*Height)					
3	Maximum Flock of View (FOV)	+/- 60 deg					
4	Recommended Operation FOV	+/- 45 deg					
5	Pointing Knowledge	less than +/- 0.5 deg in recommended					
		FOV (3-sigma) without albedo					
6	Operating Temperature Range	Absolute Maximum: -40~85 deg C ¹					
6		Recommend: -20~50 deg C					
7	Storing Temperature Range	Absolute Maximum: -40~85 deg C					
7		Recommend: 10~30 deg C					
8	PCB Production Standard	Following IPC-6012C Class 3					
9	PCB Assembly Standard	Following IPC-A-610 Class 3					

Table C-2. Electrical Specifications

1	Current	sampling: 2.4mA		
1	Consumption	not sampling: 1.4mA		
2	Supplied Voltage	Absolute Maximum: 2.3~5.5V		
2	Range	Recommend: 3.2V~3.4V		
3 Interface I2C and UART				
		Two Molex Pico- Ez Mate 0781710004. One for the		
4	Connectors	UART and the other one for I2C communication.		
4	Connectors	Customization on the connector is available; Please		
		contact Tensor Tech's team.		

¹ If the product is operate or storing in absolute maximum rages, its performane and reliability may degrade. The product may still function, but its out of Tensor Tech's warranty.

GND, VDD, SCL, and SDA for the I2C connector; GND, RX, TX, and VDD for the UART connector. Figure C-1 depicts such a pinout diagram. Please glue up the cable and connector before sending the satellite to space. Such a procedure prevents the cables from falling off.

5 | Pinout Definition

Only one of the connectors should be connected to the user's onboard computer (OBC) or Attitude Determination and Control System (ADCS) computer. Both provide the functionalities of supplying power, commanding, and outputting information from the product.

To connect the product to the user's personal computer (PC) for calibration and functional tests, use the UART connector and a TTL to USB converter. (ship with the delivered product) Select the correct Com port on the user's PC with Tensor Tech's customer support software. Detailed instructions are provided in the interface control document (ICD).

Figure C-1. Pinout Definition of the FSS100 (seen from the backside of the product)

D. Environmental Test Standards²

Tensor Tech's FSS100 thermal vacuum and vibration tests follow the ESA QB50 standard. For the total ionizing dose (TID) radiation test, we follow ESCC Basic Specification No. 22900- "TOTAL DOSE STEADY-STATE IRRADIATION TEST METHOD." For the single event effect radiation test, we follow ECSS Basic Specification No. 25100- "SINGLE EVENT EFFECTS TEST METHOD AND GUIDELINES." Our testing specifications are listed in Table D-1.

Thermal Vacuum 3 hours, 50 deg C, 10⁻⁵ mBar 1 Baked-out Test 4 cycles, the temperature varies from -20 to 50 degrees Thermal Vacuum 2 Celsius, 60 hours of testing time in total. The degree of Cycling Test vacuum is kept under 10⁻⁵ mbar for the whole process. 20~2000Hz, 14 Grms for 120 seconds. Perform sine sweep vibration tests from 5 to 500Hz before and after Random Vibration 3 the random vibration test. The acceptance requires a Test pass on QB50-SYS-2.6.1. Total Ionizing Test³ 10 krad using Co-60 radiation source Single Event Effect 10⁸ particles per cm² per second, with a 230 MeV 5 proton beam, Lasting for 1000 seconds. Test

Table D-1. Environmental Test Standard for FSS100

A self-communication check, an embedded function built in the customer support software, is executed after each environmental Test. This self-communication check inspects the survival of FSS100, including the ability to communicate to the user's OBC and the proper functioning of the circuitry. However, the performance spec like sun vector determination accuracy cannot be verified by this function.

Since the environmental tests may influence the product's performance, Tensor Tech calibrates the product and conducts the functional Test after the environmental tests. The detailed specs are listed in section E.

² Executed on every delivered flight model (FM). Self-communication check will be made after each environmental tests.

³ Radiation tests including total ionizing test and single event effect test are disruptive tests. Tensor Tech only excuted these two tests on several finished samples. Therefore, the shipped FM or Engineering Model (EM) will not be excuted with radiation tests unless required by the user.

E. Functional Test Standards⁴

The in-factory calibration carried out by Tensor Tech's team is set up in an ISO7 clean room. An AM0 grade solar simulator and a two-axis rotational table that has accuracies up to arc-minute level are used for the calibration. A power supply is used for checking if the current consumption of the Device Under Test (DUT) is out of our guaranteed level. Moreover, the sun vector determination acracy will be post-validated and recorded in a test report with measured current consumption and environmental testing results. This test report will be shipped with the product, and the user may trace it back to that specific product with a unique serial number. Tensor Tech's customer support software can access that serial number. It helps Tensor Tech's team and the users to identify the differences between every shipped product.

Suppose the current consumption of the DUT or the sun vector determination error of the DUT exceeds the guaranteed specs listed in this user manual, that DUT will be deemed as a defective part. The shipped EMs are required to pass the functional tests. For the shipped FMs, they have to pass both the environmental and functional tests. Here are the conditions that we conduct such functional tests.

- 1. Testing Light source: ASTM AM0, Class AAA
- 2. Two angle errors will be measured in each testing condition, one in Phi and the other in Theta, defined in Figure E-1. Totally 108 testing conditions for completing the error table, exampled in Table E-1.

Figure E-1. Definition of the spherical coordinate that is being used for sun vector outputted and the construction of error table [1]

_

⁴ Executed on every delivered EM and FM. For the FMs, functional tests will be executed after the environmental tests.

Table E-1. Example Error table that will be provided to the user and write into the	е
shipped product. It contains the theta and phi angle error information of the DUT	

	peu prou		l	l	l		l						
Phi∖	D	-60~	-50~	-40~	-30~	-20~	-10~	0~	10~	20~	30∼	40~	50~
Theta	Range	-50	-40	-30	-20	-10	0	10	20	30	40	50	60
Range	Displayed value ⁵	-55	-45	-35	-25	-15	-5	5	15	25	35	45	55
-90~ -70	-80	\	\	\	\	\	\	\	\	\	\	\	\
-70~ -50	-60	\	\	\	\	\	\	\	\	\	\	\	\
-50~ -30	-40	\	\	\	\	\	\	\	\	\	\	\	\
-30~ -10	-20	\	\	\	\	\	\	\	\	\	\	\	\
-10~ 10	0	\	\	\	\	\	\	\	\	\	\	\	\
10~ 30	20	\	\	\	\	\	\	\	\	\	\	\	\
30~ 50	40	\	\	\	\	\	\	\	\	\	\	\	\
50~ 70	60	\	\	\	\	\	\	\	\	\	\	\	\
70~ 90	80	\	\	\	\	\	\	\	\	\	\	\	\

F. Frame Definition and Sun Vector Calculations

The microcontroller (MCU) in FSS100 will automatically calculate the sun vector measured using the following algorithms. Firstly, we define the coordinate in figure F-1, calculation parameters in table F-1. The relative position of photodiode cells is shown in figure F-2. Secondly, the position of the light spot is calculated via equation F-1. Then, the Theta and Phi angle is calculated via equation F-2. [2]

Confidential

⁵ Customer support software has the function for users to conduct error table-cased calibration by themselves. The white-colored blanks show that the angle ranges that will use this error information for correction; the gray-colored blanks show that the displayed angle in the customer support software's screen, as well as the angle that should be used for obtaining that error information; the green-colored blanks show the two error angles, one for Phi, and the other for Theta

Figure F-1. Fine Sun Sensor frame definition

Figure F-2. quad-segmented photodiode cell position definition

Table F-1. Definition of the parameters

	Voltage measurement of cell		Center of the light spot in X-
v_a	A defined in Figure F-2	p_x	axis
22	Voltage measurement of cell	n	Center of the light spot in Y-
v_b	B defined in Figure F-2	p_{y}	axis
	Voltage measurement of cell C		Measured error for Theta angle
v_c	defined in Figure F-2	e_{theta}	in Table E-1. (According to the
	defined in Figure F-2		tilting range)
v_d	Voltage measurement of cell D	e_{phi}	Measured error for Phi angle in

	defined in Figure F-2		Table E-1. (According to the					
			tilting range)					
0	Error for biasing the light spot position in the X and Y-axis. The							
e_x	imperfection on the mounting of the aperture causes such error. Tensor							
	Tech's team measures these erro	put them into FSS100 before						
e_y	shipping. Do not adjust these two values using customer support software							
	unless consulting with Tensor Tech's team.							

Finally, use equation F-3 to change the output theta and phi angle to be compatible with the defined fine sun sensor coordinate. The coefficient k_1 to k_4 are constant parameters relating to the FSS100 aperture structure.

$$\begin{pmatrix} p_x \\ p_y \end{pmatrix} = \begin{pmatrix} \mathbf{k}_1 \cdot \frac{v_a + v_b - v_c - v_d}{v_a + v_b + v_c + v_d} - e_x \\ \mathbf{k}_2 \cdot \frac{v_b + v_c - v_a - v_d}{v_a + v_b + v_c + v_d} - e_y \end{pmatrix}$$
 Equation F-1
$$\begin{pmatrix} \theta \\ \varphi \end{pmatrix} = \begin{pmatrix} \mathbf{k}_3 \cdot \arcsin\left(1.41 \cdot \sin\left(\frac{\sqrt{p_x^2 + p_y^2}}{\sqrt{p_x^2 + p_y^2} + 0.46^2}}\right)\right) + e_{theta} \\ \mathbf{k}_4 \cdot \arcsin\left(\sin\left(\frac{p_y^2}{\sqrt{p_x^2 + p_y^2}}\right)\right) + e_{phi} \end{pmatrix}$$
 Equation F-2
$$\mathbf{if} \ p_x \ge 0, \ \theta = -\theta; \ \mathbf{else}: \ \varphi = -\varphi$$
 Equation F-3

References and Attachments

- [1] International Standard Organization (ISO). (2019, August). ISO 80000-2:2019 Quantities and units. https://www.iso.org/standard/64973.html
- [2] E. Boslooper, N. Heiden, D. Naron, R. Schmits, J. Velde, and J. Wakeren. (2012). BepiColombo fine sun sensor. International Conference on Space Optics. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10564/105641P/BepiColombo-fine-sun-sensor/10.1117/12.2309172.full?SSO=1
- [3] TENSOR TECH. (2021, June 12). An introduction to fine sun sensors –. https://tensortech.com.tw/an-introduction-to-fine-sun-sensors/
- [4] FSS100 Mechanical Drawing

