Congratulations! You passed!

Grade received 100% **Latest Submission** Grade 100%

To pass 80% or higher

1/1 point

Compute the angle between $\mathbf{x}=\begin{bmatrix}1\\1\end{bmatrix}$ and $\mathbf{y}=\begin{bmatrix}-1\\1\end{bmatrix}$ using the inner product defined by

$$\langle \mathbf{x}, \mathbf{y}
angle = \mathbf{x}^T egin{bmatrix} 2 & -1 \ -1 & 4 \end{bmatrix} \mathbf{y}$$

- $\bigcirc \ \, 1.57\,\text{rad}\,\,(90^\circ)$
- \odot 1.2 rad (69°)
- $\bigcirc \ \, \text{0.35 rad} \ \, (20^{\circ})$

Absolutely right!

Compute the angle between $\mathbf{x}=\begin{bmatrix}0\\-1\end{bmatrix}$ and $\mathbf{y}=\begin{bmatrix}1\\1\end{bmatrix}$ using the inner product defined by

$$\langle \mathbf{x},\mathbf{y}\rangle = \mathbf{x}^T \begin{bmatrix} 1 & -\frac{1}{2} \\ -\frac{1}{2} & 5 \end{bmatrix} \mathbf{y}.$$

To aid in computing this angle and the next ones in this quiz, let's write an expression in Python for the angle between two vectors using a non-standard inner product.

Remember
$$\cos \alpha = \frac{\langle x,y \rangle}{\|x\|\cdot\|y\|} = \frac{\langle x,y \rangle}{\sqrt{\langle x,x \rangle \cdot \sqrt{\langle y,y \rangle}}}$$

 $Complete \ the \ expressions \ for \ norm_x \ and \ norm_y \ and \ then \ run \ the \ code. \ You \ might \ find \ the \ NumPy \ function$ np.sqrt ☐ useful.

```
# the matrix A defines the inner product
A = np.array([[1, -1/2],[-1/2,5]])
x = np.array([0,-1])
y = np.array([1,1])
def find_angle(A, x, y):
    """Compute the angle""
    inner_prod = x.T @ A @ y
    # Fill in the expression for norm_x and norm_y below
    norm_x = np.sqrt([x.T @ A @ x])
    norm_y = np.sqrt([y.T @ A @ y])
    alpha = inner_prod/(norm_x*norm_y)
    angle = np.arccos(alpha)
    return np.round(angle,2)
  find_angle(A, x, y)
```

- \odot 2.69 rad (154°)
- \bigcirc -0.9 rad (-52°)
- \bigcirc 2.35 rad (135°)

1/1 point

Compute the angle between $\mathbf{x}=\begin{bmatrix}2\\2\end{bmatrix}$ and $\mathbf{y}=\begin{bmatrix}-2\\-2\end{bmatrix}$ using the inner product defined by

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{y}$$

Using this inner product, are the vectors...

O Parallel

Antiparallel

 \odot correct $\mbox{Well done! The angle between the vectors is } \pi \approx 3.14.$

1/1 point

Compute the angle between $\mathbf{x}=\begin{bmatrix}1\\1\end{bmatrix}$ and $\mathbf{y}=\begin{bmatrix}1\\-1\end{bmatrix}$ using the inner product defined by

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix} \mathbf{y}$$

```
# Fill in the arrays and use the function `find_angle` defined for you to aid i
A = np.array([[1, 0],[0,5]])
x = np.array([1,1])
y = np.array([1,-1])
find_angle(A, x, y)
```

- \bigcirc -1.57 rad (-90°)
- \bigcirc -2.3 rad (-131°)
- 2.3 rad (131°)
- \bigcirc 1.57 rad (90°)

Correct
Good job.

5. Compute the angle between $\mathbf{x}=\begin{bmatrix}1\\1\\1\end{bmatrix}$ and $\mathbf{y}=\begin{bmatrix}2\\-1\\0\end{bmatrix}$ using the inner product defined by

Fill in the following arrays and use `find_angle` to aim your calculation. A = np.array([[1, 0,0],[0,2,-1], [0,-1,3]]) x = np.array([1,1,1]) y = np.array([2,-1,0]) find_angle(A, x, y)

1/1 point

- $\bigcirc \ \, 0.2\,\text{rad}\,(11^\circ)$
- $\bigcirc \ \ 1.31\, \mathrm{rad}\ (75^\circ)$
- 1.37 rad (78°)

