3. Análisis de Regresion Lineal (RL)
0
0
000000
000000
000000000000000

Análisis de Regresión Lineal Universidad Autónoma de la Ciudad de México Casa Libertad

Carlos E. Martínez Rodríguez

carlos.martinez@uacm.edu.mx Academia de Matemáticas - Modelación Matemática Colegio de Ciencia y Tecnología

Semestre 2019-II

- 3. Análisis de Regresion Lineal (RL)
 - 3.1 Regresión Lineal Simple (RLS)
 - 3.2 Método de Mínimos Cuadrados
 - 3.3 Propiedades de los Estimadores \hat{eta}_0 y \hat{eta}_1
 - 3.4 Prueba de Hipótesis en RLS Estimación de Intervalos en RLS


```
3. Análisis de Regresion Lineal (RL)

O

OOOOO

OOOOO
```

Descripción

Nota

- En muchos problemas hay dos o más variables relacionadas, para medir el grado de relación se utiliza el análisis de regresión.
- Supongamos que se tiene una única variable dependiente, y, y varias variables independientes, x_1, x_2, \dots, x_n .
- La variable y es una varaible aleatoria, y las variables independientes pueden ser distribuidas independiente o conjuntamente.

RLS

▶ A la relación entre estas variables se le denomina modelo regresión de y en x_1, x_2, \ldots, x_n , por ejemplo $y = \phi(x_1, x_2, \ldots, x_n)$, lo que se busca es una función que mejor aproxime a $\phi(\cdot)$.

Supongamos que de momento solamente se tienen una variable independiente x, para la variable de respuesta y. Y supongamos que la relación que hay entre x y y es una línea recta, y que para cada observación de x, y es una variable aleatoria.

El valor esperado de y para cada valor de x es

$$E(y|x) = \beta_0 + \beta_1 x \tag{1}$$

UACM Universidad Autónomo de la Ciudad de Mexico Rote humano no es sano.

 β_0 es la ordenada al orígen y β_1 la pendiente de la recta en cuestión, ambas constantes desconocidas.

3.2 Método de Mínimos Cuadrados Mínimos Cuadrados

Supongamos que cada observación y se puede describir por el modelo

$$y = \beta_0 + \beta_1 x + \epsilon \tag{2}$$

donde ϵ es un error aleatorio con media cero y varianza σ^2 . Para cada valor y_i se tiene ϵ_i variables aleatorias no correlacionadas, cuando se incluyen en el modelo 2, este se le llama *modelo de regresión lineal simple*.

Suponga que se tienen n pares de observaciones $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$, estos datos pueden utilizarse para estimar los valores de β_0 y β_1 . Esta estimación es por el **métodos** de **mínimos cuadrados**.

3.2 Método de Mínimos Cuadrados

Mínimos Cuadrados

Entonces la ecuación 2 se puede reescribir como

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \text{ para } i = 1, 2, \dots, n.$$
 (3)

Si consideramos la suma de los cuadrados de los errores aleatorios, es decir, el cuadrado de la diferencia entre las observaciones con la recta de regresión

$$L = \sum_{i=1}^{n} \epsilon^{2} = \sum_{i=1}^{n} (y_{i} - \beta_{0} - \beta_{1} x_{i})^{2}$$
 (4)

3.2 Método de Mínimos Cuadrados

Mínimos Cuadrados

Para obtener los estimadores por mínimos cuadrados de β_0 y β_1 , $\hat{\beta}_0$ y $\hat{\beta}_1$, es preciso calcular las derivadas parciales con respecto a β_0 y β_1 , igualar a cero y resolver el sistema de ecuaciones lineales resultante:

$$\frac{\partial L}{\partial \beta_0} = 0$$

$$\frac{\partial L}{\partial \beta_1} = 0$$

UACM evaluando en $\hat{\beta}_0$ y $\hat{\beta}_1$, se tiene

Mínimos Cuadrados

$$-2\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$
$$-2\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) x_i = 0$$

simplificando

$$n\hat{\beta}_{0} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} y_{i}$$
$$\hat{\beta}_{0} \sum_{i=1}^{n} x_{i} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2} = \sum_{i=1}^{n} x_{i} y_{i}$$

carlos.martinez@uacm.edu.mx Academia de Matemáticas - Modelación Matemática Colegio de Ciencia y Tecnología 8/32

3.2 Método de Mínimos Cuadrados

Mínimos Cuadrados

Las ecuaciones anteriores se les denominan *ecuaciones normales de mínimos cuadrados* con solución

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x} \tag{5}$$

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} x_{i} y_{i} - \frac{1}{n} \left(\sum_{i=1}^{n} y_{i} \right) \left(\sum_{i=1}^{n} x_{i} \right)}{\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i} \right)^{2}}$$
(6)

entonces el modelo de regresión lineal simple ajustado es

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x \tag{7}$$

Mínimos Cuadrados

Se intrduce la siguiente notación

$$S_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right)^2$$
 (8)

$$S_{xy} = \sum_{i=1}^{n} y_i (x_i - \overline{x}) = \sum_{i=1}^{n} x_i y_i - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right) \left(\sum_{i=1}^{n} y_i \right)$$
 (9)

y por tanto

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} \tag{10}$$

3.3 Propiedades de los Estimadores $\hat{eta}_{f 0}$ y $\hat{eta}_{f 1}$

Propiedades de los estimadores

Nota

3.3 Propiedades de los Estimadores $\hat{eta}_{\mathbf{0}}$ y $\hat{eta}_{\mathbf{1}}$

Propiedades de los estimadores

Nota

- Las propiedades estadísticas de los estimadores de mínimos cuadrados son útiles para evaluar la suficiencia del modelo.
- ▶ Dado que $\hat{\beta}_0$ y $\hat{\beta}_1$ son combinaciones lineales de las variables aleatorias y_i , también resultan ser variables aleatorias.

A saber

$$E\left(\hat{\beta}_{1}\right) = E\left(\frac{S_{xy}}{S_{xx}}\right) = \frac{1}{S_{xx}}E\left(\sum_{i=1}^{n}y_{i}\left(x_{i}-\overline{x}\right)\right)$$

3.3 Propiedades de los Estimadores $\hat{\beta}_{\mathbf{0}}$ y $\hat{\beta}_{\mathbf{1}}$

Propiedades de los estimadores

$$= \frac{1}{S_{xx}} E\left(\sum_{i=1}^{n} (\beta_0 + \beta_1 x_i + \epsilon_i) (x_i - \overline{x})\right)$$

$$= \frac{1}{S_{xx}} \left[\beta_0 E\left(\sum_{k=1}^{n} (x_k - \overline{x})\right) + E\left(\beta_1 \sum_{k=1}^{n} x_k (x_k - \overline{x})\right)\right]$$

$$+ E\left(\sum_{k=1}^{n} \epsilon_k (x_k - \overline{x})\right) = \frac{1}{S_{xx}} \beta_1 S_{xx} = \beta_1$$

por lo tanto

$$E\left(\hat{\beta}_1\right) = \beta_1$$

(11) <u>u</u>

3.3 Propiedades de los Estimadores $\hat{eta}_{\mathbf{0}}$ y $\hat{eta}_{\mathbf{1}}$

Propiedades de los estimadores

Nota

Es decir, $\hat{\beta}_1$ es un estimador insesgado.

Ahora calculemos la varianza:

$$V(\hat{\beta}_{1}) = V(\frac{S_{xy}}{S_{xx}}) = \frac{1}{S_{xx}^{2}}V(\sum_{k=1}^{n}y_{k}(x_{k} - \overline{x}))$$

$$= \frac{1}{S_{xx}^{2}}\sum_{k=1}^{n}V(y_{k}(x_{k} - \overline{x})) = \frac{1}{S_{xx}^{2}}\sum_{k=1}^{n}\sigma^{2}(x_{k} - \overline{x})^{2}$$

$$= \frac{\sigma^{2}}{S_{xx}^{2}}\sum_{k=1}^{n}(x_{k} - \overline{x})^{2} = \frac{\sigma^{2}}{S_{xx}}$$

carlos.martinez@uacm.edu.mx Academia de Matemáticas - Modelación Matemática Colegio de Ciencia y Tecnología Curso de Estadística II 13/32 3.3 Propiedades de los Estimadores $\hat{\beta}_0$ y $\hat{\beta}_1$

Propiedades de los estimadores

por lo tanto

$$V\left(\hat{\beta}_1\right) = \frac{\sigma^2}{S_{xx}} \tag{12}$$

Proposición

$$\begin{split} E\left(\hat{\beta}_{0}\right) &= \beta_{0}, \\ V\left(\hat{\beta}_{0}\right) &= \sigma^{2}\left(\frac{1}{n} + \frac{\overline{x}^{2}}{S_{xx}}\right), \\ Cov\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right) &= -\frac{\sigma^{2}\overline{x}}{S_{xx}}. \end{split}$$

3.3 Propiedades de los Estimadores $\hat{eta}_{f 0}$ y $\hat{eta}_{f 1}$

Propiedades de los estimadores

Para estimar σ^2 es preciso definir la diferencia entre la observación y_k , y el valor predecido \hat{y}_k , es decir

$$e_k = y_k - \hat{y}_k$$
, se le denomina **residuo**.

La suma de los cuadrados de los errores de los reisduos, *suma de cuadrados del error*

$$SC_E = \sum_{k=1}^{n} e_k^2 = \sum_{k=1}^{n} (y_k - \hat{y}_k)^2$$
 (13)

Propiedades de los estimadores

sustituyendo $\hat{y}_k = \hat{eta}_0 + \hat{eta}_1 x_k$ se obtiene

$$\begin{split} SC_E &= \sum_{k=1}^n y_k^2 - n \overline{y}^2 - \hat{\beta}_1 S_{xy} = S_{yy} - \hat{\beta}_1 S_{xy}, \\ E\left(SC_E\right) &= (n-2)\sigma^2, \text{ por lo tanto} \\ \hat{\sigma}^2 &= \frac{SC_E}{n-2} = MC_E \text{ es un estimador insesgado de } \sigma^2. \end{split}$$

- Para evaluar la suficiencia del modelo de regresión lineal simple, es necesario lleva a cabo una prueba de hipótesis respecto de los parámetros del modelo así como de la construcción de intervalos de confianza.
- Para poder realizar la prueba de hipótesis sobre la pendiente y la ordenada al orígen de la recta de regresión es necesario hacer el supuesto de que el error ϵ_i se distribuye normalmente, es decir $\epsilon_i \sim N(0, \sigma^2)$.

Suponga que se desea probar la hipótesis de que la pendiente es igual a una constante, $\beta_{0,1}$ las hipótesis Nula y Alternativa son:

$$H_0$$
: $\beta_1 = \beta_{1,0}$,

$$H_1$$
: $\beta_1 \neq \beta_{1,0}$.

donde dado que las $\epsilon_i \sim N\left(0,\sigma^2\right)$, se tiene que y_i son variables aleatorias normales $N\left(\beta_0+\beta_1x_1,\sigma^2\right)$. De las ecuaciones (5) se desprende que $\hat{\beta}_1$ es combinación lineal de variables aleatorias normales independientes, es decir, $\hat{\beta}_1 \sim N\left(\beta_1,\sigma^2/S_{xx}\right)$, recordar las ecuaciones (11) y (12).

Entonces se tiene que el estadístico de prueba apropiado es

$$t_0 = \frac{\hat{\beta}_1 - \hat{\beta}_{1,0}}{\sqrt{MC_E/S_{xx}}}$$
 (14)

que se distribuye t con n-2 grados de libertad bajo $H_0: \beta_1=\beta_{1,0}.$ Se rechaza H_0 si

$$|t_0| > t_{\alpha/2, n-2}. \tag{15}$$

Prueba de Hipótesis

Para β_0 se puede proceder de manera análoga para

$$H_0: \beta_0 = \beta_{0,0},$$

$$H_1: \beta_0 \neq \beta_{0,0},$$

con
$$\hat{\beta}_0 \sim N\left(\beta_0, \sigma^2\left(\frac{1}{n} + \frac{\overline{x}^2}{S_{xx}}\right)\right)$$
, por lo tanto

$$t_0 = \frac{\beta_0 - \beta_{0,0}}{MC_E \left[\frac{1}{n} + \frac{\vec{x}^2}{S_{xx}} \right]},$$
 (16)

con el que rechazamos la hipótesis nula si

$$|t_0| > t_{\alpha/2, n-2}$$
.

(17) u

Prueba de Hipótesis

- No rechazar H_0 : $\beta_1 = 0$ es equivalente a decir que no hay relación lineal entre x y y.
- National Alternativamente, si H_0 : $\beta_1 = 0$ se rechaza, esto implica que x explica la variabilidad de y, es decir, podrÃa significar que la línea recta esel modelo adecuado.

El procedimiento de prueba para H_0 : $\beta_1=0$ puede realizarse de la siguiente manera:

$$S_{yy} = \sum_{k=1}^{n} (y_k - \overline{y})^2 = \sum_{k=1}^{n} (\hat{y}_k - \overline{y})^2 + \sum_{k=1}^{n} (y_k - \hat{y}_k)^2$$

$$S_{yy} = \sum_{k=1}^{n} (y_k - \overline{y})^2 = \sum_{k=1}^{n} (y_k - \hat{y}_k + \hat{y}_k - \overline{y})^2$$

$$= \sum_{k=1}^{n} [(\hat{y}_k - \overline{y}) + (y_k - \hat{y}_k)]^2$$

$$= \sum_{k=1}^{n} [(\hat{y}_k - \overline{y})^2 + 2(\hat{y}_k - \overline{y})(y_k - \hat{y}_k) + (y_k - \hat{y}_k)^2]$$

$$= \sum_{k=1}^{n} (\hat{y}_k - \overline{y})^2 + 2\sum_{k=1}^{n} (\hat{y}_k - \overline{y})(y_k - \hat{y}_k) + \sum_{k=1}^{n} (y_k - \hat{y}_k)^2$$

$$\stackrel{\square}{=} \sum_{k=1}^{n} (\hat{y}_k - \overline{y})^2 + 2\sum_{k=1}^{n} (\hat{y}_k - \overline{y})(y_k - \hat{y}_k) + \sum_{k=1}^{n} (y_k - \hat{y}_k)^2$$

$$\sum_{k=1}^{n} (\hat{y}_{k} - \overline{y}) (y_{k} - \hat{y}_{k}) = \sum_{k=1}^{n} \hat{y}_{k} (y_{k} - \hat{y}_{k}) - \sum_{k=1}^{n} \overline{y} (y_{k} - \hat{y}_{k})$$

$$= \sum_{k=1}^{n} \hat{y}_{k} (y_{k} - \hat{y}_{k}) - \overline{y} \sum_{k=1}^{n} (y_{k} - \hat{y}_{k})$$

$$= \sum_{k=1}^{n} (\hat{\beta}_{0} + \hat{\beta}_{1} x_{k}) (y_{k} - \hat{\beta}_{0} - \hat{\beta}_{1} x_{k}) - \overline{y} \sum_{k=1}^{n} (y_{k} - \hat{\beta}_{0} - \hat{\beta}_{1} x_{k})$$

$$= \sum_{k=1}^{n} \hat{\beta}_{0} \left(y_{k} - \hat{\beta}_{0} - \hat{\beta}_{1} x_{k} \right) + \sum_{k=1}^{n} \hat{\beta}_{1} x_{k} \left(y_{k} - \hat{\beta}_{0} - \hat{\beta}_{1} x_{k} \right)$$

$$- \overline{y} \sum_{k=1}^{n} \left(y_{k} - \hat{\beta}_{0} - \hat{\beta}_{1} x_{k} \right)$$

$$= \hat{\beta}_{0} \sum_{k=1}^{n} \left(y_{k} - \hat{\beta}_{0} - \hat{\beta}_{1} x_{k} \right) + \hat{\beta}_{1} \sum_{k=1}^{n} x_{k} \left(y_{k} - \hat{\beta}_{0} - \hat{\beta}_{1} x_{k} \right)$$

$$- \overline{y} \sum_{k=1}^{n} \left(y_{k} - \hat{\beta}_{0} - \hat{\beta}_{1} x_{k} \right) = 0 + 0 + 0 = 0.$$

Por lo tanto, efectivamente se tiene

$$S_{yy} = \sum_{k=1}^{n} (\hat{y}_k - \overline{y})^2 + \sum_{k=1}^{n} (y_k - \hat{y}_k)^2, \qquad (18)$$

donde se hacen las definiciones

$$SC_E = \sum_{k=1}^{n} (\hat{y}_k - \overline{y})^2 \cdots \text{Suma de Cuadrados del Error}$$
 (19)

$$SC_R = \sum_{k=0}^{\infty} (y_k - \hat{y}_k)^2 \cdots$$
 Suma de Regresión de Cuadrad(220)

Prueba de Hipótesis

Por lo tanto la ecuación (18) se puede reescribir como

$$S_{yy} = SC_R + SC_E \tag{21}$$

recordemos que $SC_F = S_{vv} - \hat{\beta}_1 S_{vv}$

$$S_{yy} = SC_R + \left(S_{yy} - \hat{\beta}_1 S_{xy}\right)$$

 $S_{xy} = \frac{1}{\hat{\beta}_1} SC_R$

 S_{xy} tiene n-1 grados de libertad y SC_R y SC_E tienen 1 y n-2grados de libertad respectivamente.

Proposición

$$E(SC_R) = \sigma^2 + \beta_1 S_{xx}$$
 (22)

además, SC_E y SC_R son independientes.

Recordemos que $\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}$. Para $H_0: \beta_1 = 0$ verdadera,

$$F_0 = \frac{SC_R/1}{SC_E/(n-2)} = \frac{MC_R}{MC_E}$$

UACM se distribuye $F_{1,n-2}$, y se rechazaría H_0 si $F_0 > F_{\alpha,1,n-2}$.

Prueba de Hipótesis

El procedimiento de prueba de hipótesis puede presentarse como la tabla de análisis de varianza siguiente

Fuente de	Suma de	Grados de	Media	F_0
variación	Cuadrados	Libertad	Cuadrática	

Prueba de Hipótesis

El procedimiento de prueba de hipótesis puede presentarse como la tabla de análisis de varianza siguiente

Fuente de	Suma de	Grados de	Media	$\overline{F_0}$
variación	Cuadrados	Libertad	Cuadrática	
Regresión	SC_R	1	MC_R	MC_R/MC_E

Prueba de Hipótesis

El procedimiento de prueba de hipótesis puede presentarse como la tabla de análisis de varianza siguiente

Fuente de	Suma de	Grados de	Media	F_0
variación	Cuadrados	Libertad	Cuadrática	
Regresión	SC_R	1	MC_R	MC_R/MC_E
Error Residual	SC_E	n - 2	MC_E	

El procedimiento de prueba de hipótesis puede presentarse como la tabla de análisis de varianza siguiente

Fuente de	Suma de	Grados de	Media	F_0
variación	Cuadrados	Libertad	Cuadrática	
Regresión	SC_R	1	MC_R	MC_R/MC_E
Error Residual	SC_E	n-2	MC_E	
Total	S_{yy}	<i>n</i> − 1		

Prueba de Hipótesis

La prueba para la significación de la regresión puede desarrollarse basándose en la expresión (14), con $\hat{\beta}_{1,0} = 0$, es decir

Prueba de Hipótesis

La prueba para la significación de la regresión puede desarrollarse basándose en la expresión (14), con $\hat{\beta}_{1,0}=0$, es decir

$$t_0 = \frac{\beta_1}{\sqrt{MC_E/S_{xx}}} \tag{23}$$

Elevando al cuadrado ambos términos:

$$t_0^2 = \frac{\hat{\beta}_1^2 S_{xx}}{MC_E} = \frac{\hat{\beta}_1 S_{xy}}{MC_E} = \frac{MC_R}{MC_E}$$

UACM Observar que $t_0^2=F_0$, por tanto la prueba que se utiliza para t_0 es la misma que para F_0 .

Intervalos de Confianza

Además de la estimación puntual para los parámetros β_1 y β_0 , es posible obtener estimaciones del intervalo de confianza de estos parámetros.

Intervalos de Confianza

- Además de la estimación puntual para los parámetros β_1 y β_0 , es posible obtener estimaciones del intervalo de confianza de estos parámetros.
- ► El ancho de estos intervalos de confianza es una medida de la calidad total de la recta de regresión.

Estimación de Intervalos en RLS

Intervalos de Confianza

Si los ϵ_k se distribuyen normal e independientemente, entonces

$$\frac{\left(\hat{\beta}_{1} - \beta_{1}\right)}{\sqrt{\frac{MC_{E}}{S_{XX}}}} \quad y \quad \frac{\left(\hat{\beta}_{0} - \beta_{0}\right)}{\sqrt{MC_{E}\left(\frac{1}{n} + \frac{\overline{x}^{2}}{S_{XX}}\right)}}$$

se distribuyen t con n-2 grados de libertad.

Estimación de Intervalos en RLS

Intervalos de Confianza

Si los ϵ_k se distribuyen normal e independientemente, entonces

$$\frac{\left(\hat{\beta}_{1} - \beta_{1}\right)}{\sqrt{\frac{MC_{E}}{S_{XX}}}} \quad y \quad \frac{\left(\hat{\beta}_{0} - \beta_{0}\right)}{\sqrt{MC_{E}\left(\frac{1}{n} + \frac{\overline{X}^{2}}{S_{XX}}\right)}}$$

se distribuyen t con n-2 grados de libertad.Por tanto un intervalo de confianza de $100 (1-\alpha) \%$ para β_1 está dado por

Estimación de Intervalos en RLS

Intervalos de Confianza

$$\hat{\beta}_1 - t_{\alpha/2, n-2} \sqrt{\frac{MC_E}{S_{xx}}} \le \beta_1 \le \hat{\beta}_1 + t_{\alpha/2, n-2} \sqrt{\frac{MC_E}{S_{xx}}}.$$
 (24)

Intervalos de Confianza

$$\hat{\beta}_1 - t_{\alpha/2, n-2} \sqrt{\frac{MC_E}{S_{xx}}} \le \beta_1 \le \hat{\beta}_1 + t_{\alpha/2, n-2} \sqrt{\frac{MC_E}{S_{xx}}}.$$
 (24)

De igual manera, para β_0 un intervalo de confianza al $100 (1 - \alpha) \%$ es

$$\hat{\beta}_0 - t_{\alpha/2, n-2} \sqrt{MC_E \left(\frac{1}{n} + \frac{\overline{x}^2}{S_{xx}}\right)} \le \beta_0 \le \hat{\beta}_0 + t_{\alpha/2, n-2} \sqrt{MC_E \left(\frac{1}{n} + \frac{\overline{x}^2}{S_{xx}}\right)}$$
 (25)

