IE 539 Convex Optimization Assignment 3

Fall 2022

Out: 18th October 2022

Due: 4th November 2022 at 11:59pm

Instructions

- Submit a PDF document with your solutions through the assignment portal on KLMS by the due date. Please ensure that your name and student ID are on the front page.
- Late assignments will be subject to a penalty. Special consideration should be applied for in this case.
- It is **required** that you typeset your solutions in LaTeX. Handwritten solutions will not be accepted.
- Spend some time ensuring your arguments are **coherent** and your solutions **clearly** communicate your ideas.

Question:	1	2	3	4	5	Total
Points:	20	20	20	30	10	100

- 1. In this question we prove the convergence of the projected subgradient method for functions that are strongly convex and Lipschitz continuous. Let $f: \mathbb{R}^d \to \mathbb{R}$ be a function that is α -strongly convex with respect to the ℓ_2 norm and L-Lipschitz continuous in the ℓ_2 norm. Recall that the projected subgradient method proceeds as follows.
 - Choose $x_1 \in C$.
 - For $t = 1, 2, 3, \dots, T 1$:
 - Select any subgradient $g_t \in \partial f(x_t)$ and step size $\eta_t > 0$.
 - Compute $x_{t+1} = \operatorname{Proj}_C \{x_t \eta_t g_t\}.$
 - (a) (10 points) Set $\eta_t = \frac{2}{\alpha(t+1)}$. Show that

$$f\left(\sum_{t=1}^{T} \frac{2t}{T(T+1)} x_t\right) - f(x^*) \le \frac{2L^2}{\alpha(T+1)}$$

where $x^* \in \arg\min_{x \in C} f(x)$.

(b) (10 points) Set $\eta_t = \frac{1}{\alpha t}$. Show that

$$f\left(\frac{1}{T}\sum_{t=1}^{T} x_t\right) - f(x^*) \le \frac{L^2(1 + \log T)}{2\alpha T}$$

where $x^* \in \arg\min_{x \in C} f(x)$.

- 2. In this question we will work through the convergence analysis of the online (projected) subgradient method for online convex optimization where the loss functions are strongly convex and Lipschitz continuous. Let $f_1, \ldots, f_T : \mathbb{R}^d \to \mathbb{R}$ be a loss functions that are α -strongly convex with respect to the ℓ_2 norm and L-Lipschitz continuous in the ℓ_2 norm. Recall that the online (projected) subgradient method proceeds as follows.
 - Choose $x_1 \in C$.
 - For $t = 1, 2, 3, \dots, T 1$:
 - Observe f_t and Select any subgradient $g_t \in \partial f_t(x_t)$ and step size $\eta_t > 0$.
 - Compute $x_{t+1} = \operatorname{Proj}_C \{x_t \eta_t g_t\}.$
 - (a) (10 points) Show that for each t, we have

$$f_t(x_t) - f_t(x^*) \le \left(\frac{1}{2\eta_t} - \frac{\alpha}{2}\right) \|x_t - x^*\|_2^2 - \frac{1}{2\eta_t} \|x_{t+1} - x^*\|_2^2 + \frac{\eta_t}{2} \|g_t\|_2^2$$

where x^* is an optimal solution to $\min_{x \in C} \sum_{t=1}^{T} f_t(x^*)$.

(b) (10 points) Set $\eta_t = \frac{1}{\alpha t}$. Then use part (a) to show that

$$\sum_{t=1}^{T} f_t(x_t) - \min_{x \in C} \sum_{t=1}^{T} f(x) \le \frac{L^2}{2\alpha} (1 + \ln T).$$

- 3. This question is about analyzing the following algorithm for online convex optimization.
 - Choose $x_1 \in C$.
 - For $t = 1, 2, 3, \dots, T$:
 - Observe f_t .
 - Compute $x_{t+1} \in \operatorname{arg\,min}_{x \in C} \sum_{s=1}^{t} f_s(x)$.
 - (a) (10 points) Use induction on T to show the following bound on the regret of the algorithm up to time T.

Regret(T) =
$$\sum_{t=1}^{T} f_t(x_t) - \min_{x \in C} \sum_{t=1}^{T} f_t(x) \le \sum_{t=1}^{T} f_t(x_t) - \sum_{t=1}^{T} f_t(x_{t+1}).$$

(b) (10 points) Suppose that $C = [-1,1] \subseteq \mathbb{R}$ is the interval between -1 and 1. At each $t \geq 2$, the adversary chooses a function f_t given by $f_t(x) = g_t x$ where $g_t \in [-1,1]$ is chosen so that

$$g_t \in \underset{a \in [-1,1]}{\operatorname{arg\,max}} g \ x_t.$$

The adversary chooses $f_1(x) = 0.5x$. Then prove that the regret of the algorithm starting with $x_1 = 0$ up to time T is T = 0.5.

- 4. This question is about analyzing the following algorithm for online convex optimization where each f_t is given by $f_t(x) = \ell_t^\top x$ for some $\ell_t \in \mathbb{R}^d$. Let C be a bounded convex set that contains the origin 0.
 - Choose $x_1 = 0$.
 - For $t = 1, 2, 3, \dots, T$:
 - Observe ℓ_t .
 - Compute $x_{t+1} \in \arg\min_{x \in C} \left\{ \frac{1}{2\eta} ||x||_2^2 + \sum_{s=1}^t \ell_s^\top x \right\}$ with $\eta > 0$.
 - (a) (10 points) Let $y_1=0$, and y_t for $t\geq 2$ be defined as the following update rule:

$$y_{t+1} \in \operatorname*{arg\,min}_{x \in \mathbb{R}^d} \left\{ \frac{1}{2\eta} \|y\|_2^2 + \sum_{s=1}^t \ell_s^\top y \right\}.$$

Prove that $y_{t+1} = y_t - \eta \ell_t$ for $t \ge 1$.

(b) (10 points) Show the following bound on the regret of the algorithm up to time T.

Regret(T) =
$$\sum_{t=1}^{T} f_t(x_t) - \min_{x \in C} \sum_{t=1}^{T} f_t(x) \le \frac{1}{2\eta} ||x^*||_2^2 + \sum_{t=1}^{T} f_t(x_t) - \sum_{t=1}^{T} f_t(x_{t+1})$$

where $x^* \in \arg\min_{x \in C} \sum_{t=1}^{T} f_t(x)$.

(c) (5 points) Prove that

Regret
$$(T) \le \frac{1}{2\eta} \|x^*\|_2^2 + \eta \sum_{t=1}^T \|\ell_t\|_2^2.$$

(d) (5 points) Prove that by setting a proper value for η ,

$$Regret(T) \le LR\sqrt{2T}$$

if $||x^*|| \le R$ and $||\ell_t||_2 \le L$ for all t.

- 5. (10 points) In this question we prove the convergence of stochastic gradient descent for functions that are strongly convex and Lipschitz continuous. Let $f: \mathbb{R}^d \to \mathbb{R}$ be a function that is α -strongly convex with respect to the ℓ_2 norm and L-Lipschitz continuous in the ℓ_2 norm. Recall that stochastic gradient descent proceeds as follows.
 - Choose $x_1 \in \mathbb{R}^d$.
 - For $t = 1, 2, 3, \dots, T 1$:
 - Obtain an estimator \hat{g}_{x_t} of some $g \in \partial f(x_t)$.
 - Update $x_{t+1} = x_t \eta_t \hat{g}_{x_t}$ for a step size $\eta_t > 0$.

Set $\eta_t = \frac{1}{\alpha t}$. Assuming $\|\hat{g}_{x_t}\|_2 \leq L$ for all t, show that

$$\mathbb{E}\left[f\left(\frac{1}{T}\sum_{t=1}^{T}x_{t}\right)\right] - f(x^{*}) \leq \frac{L^{2}(1 + \log T)}{2\alpha T}$$

where $x^* \in \arg\min_{x \in \mathbb{R}^d} f(x)$.