Из определения ясно, что для конечной точки $\operatorname{res}(f(z),z_0)=C_{-1}=\frac{1}{2\pi i}\int_{\mathbb{R}}\frac{f(\zeta)}{(\zeta-z_0)^0}d\zeta=$ $\frac{1}{2\pi i} \int_{\mathcal{V}} f(\zeta) d\zeta$

Для бесконечной $\operatorname{res}(f(z), z_0) = -C_{-1} = -\frac{1}{2\pi i} \int_{v^+} f(\zeta) d\zeta = \frac{1}{2\pi i} \int_{v^-} f(\zeta) d\zeta$

Здесь вместо у берут для простоты окружность

Nota. Для вычисления вычетов используют более простые формулы, которые зависят от типа особых точек

Th. 2. z_0 – устранимая особая точка $(z_0 \in \mathbb{C})$ функции $f(z) \Longleftrightarrow$ главная часть ряда Лорана равна 0

To есть f(z) в z_0 представима как $\sum_{n=0}^{\infty} C_n(z-z_0)$ тогда и только тогда, когда $\lim_{z\to z_0} f(z)\in\mathbb{C}$

$$\Longrightarrow$$
 z_0 – устранимая $\Longleftrightarrow \lim_{z \to 0} f(z) = A \in \mathbb{C}$

Тогда в некоторой окрестности
$$\overset{\circ}{U}_{\delta}(z_0)$$
 функция ограничена $-|f(z)| \leq M, M \in \mathbb{R}$
$$C_{-n} = \frac{1}{2\pi i} \int_{\gamma_{\delta}} \frac{f(\zeta)d\zeta}{(\zeta - z)^{-n+1}} = \left[\gamma_{\delta} : \zeta = z_0 + \delta e^{i\phi}\right] = \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(\zeta)\delta i e^{i\varphi}d\varphi}{(\delta e^{i\varphi})^{-n+1}} = \frac{1}{2\pi} \int_0^{2\pi} f(\zeta)\delta^n e^{ni\varphi}d\varphi$$

$$|C_{-n}| \leq \frac{1}{2\pi} \int_0^{2\pi} M\delta^n d\varphi = M\delta^n \xrightarrow[\delta \to 0]{} 0$$

 $\lim_{z \to z_0} f(z) = C_0 \in \mathbb{C}$ – устранимая

Следствие: вычет в устранимой точке равен 0

Th. 2. z_0 – полюс m-ого порядка \iff главная часть ряда Лорана содержит не более mненулевых членов подряд (то есть для $i > m \ C_{-i} = 0$)

Полюс m-ого порядка функции f(z) – точка z_0 , для которой $\lim_{z \to z_0} f(z) = \infty \Longrightarrow \lim_{z \to z_0} \frac{1}{f(z)} =$

 $\lim_{z \to z_0} g(z) = 0$ и z_0 — ноль функции g(z) порядка m

To есть g(z) представима как $g(z)=(z-z_0)^mh(z)$, где h(z) – аналитическая в z_0 и $h(z_0)\neq 0$

 \Longrightarrow Рассмотрим $\frac{1}{h(z)} = \sum_{n=0}^{\infty} b_n (z-z_0)^n$, при этом $\frac{1}{h(z_0)} = b_0 \neq 0$ (h(z) — аналитическая

 $\Longrightarrow \frac{1}{h(z)}$ — аналитическая $\Longrightarrow \frac{1}{h(z)}$ — регулярная)

$$f(z) = \frac{1}{g(z)} = \frac{1}{(z-z_0)^m h(z)} = \frac{1}{(z-z_0)^m} \sum_{n=0}^{\infty} b_n (z-z_0)^n = \frac{1}{(z-z_0)^m} (b_0 + b_1 (z-z_0) + \dots) = \frac{b_0}{(z-z_0)^m} + \frac{b_1}{(z-z_0)^{m-1}} + \dots + \frac{b_n}{(z-z_0)^{m-n}} + \dots = \sum_{n=-m}^{\infty} C_n (z-z_0)^n$$
При этом $C_{-n} = 0$ при $n \ge m+1$

ции $g(z) = (z - z_0)^m h(z)$

Тогда $f(z) \underset{z \to z_0}{\longrightarrow} \infty \Longrightarrow z_0$ – полюс (порядок бесконечно большой равен m)

Th. 3. z_0 – существенно особая точка \iff главная часть содержит бесконечное число члено

Очевидно, так как в другом случае, точка была бы полюсом или устранимой

Nota. Для особой точки $z_0 = \infty$ **Th. 1.**, **Th. 2.**, **Th. 3.** справедливы и доказываются аналогично:

- 1. z_0 устранимая \iff главная часть равна 0
- 2. z_0 m-полюс \iff главная часть содержит не более m членов и $C_m \neq 0$
- 3. z_0 существенно особая \iff главная часть содержит бесконечное число членов

$$Ex. \ 1. \ f(z) = \frac{(e^z - 1)^2}{1 - \cos z}, \ z_0 = 0$$
 $f(z) = \frac{(e^z - 1)^2}{1 - \cos z} \sim \frac{z^2}{z \to 0} = 2$ – устранимая

$$Ex. \ \mathcal{Z}. \ f(z) = \operatorname{ctg} z - \frac{1}{z}, \ z_0 = 0$$

$$f(z) = \frac{\cos z}{\sin z} - \frac{1}{z} = \frac{1 - \frac{z^2}{2} + \frac{z^4}{4!} - \dots}{z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots} - \frac{1}{z} = \frac{1}{z} \left(\frac{1 - \frac{z^2}{2} + \frac{z^4}{4!} - \dots}{z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots} - 1 \right) \sim \frac{1}{z} \cdot k \frac{z^2}{1} \xrightarrow{z \to 0} 0 - \text{устранимая}$$

$$Ex. \ 3. \ f(z) = \frac{1}{z(z-1)}, \ z_0 = \infty$$
 $z = \frac{1}{w} \quad f(z) = \tilde{f}(w) = w \frac{1}{\frac{1}{w}-1} = w^2 \frac{1}{1-w} = w^2 \sum_{n=0}^{\infty} w^n = \sum_{n=0}^{\infty} w^{n+2} = \sum_{n=0}^{\infty} \frac{1}{z^{n+2}}$ – устранимая (главной

части нет)

Вычисления вычетов

 $Nota. \ z_0$ — устранимая $\Longrightarrow \operatorname{res}(f(z), z_0) = 0$ z_0 — существенно особая $\Longrightarrow \operatorname{res}(f(z), z_0) = \pm C_{-1}$

Th. z_0 – простой полюс (m=1). Тогда $\operatorname{res}(f(z),z_0)=\lim_{z\to z_0}f(z)(z-z_0),$ где $z_0\in\mathbb{C}$

$$f(z) = \frac{C_{-1}}{z - z_0} + C_0 + C_1(z - z_0) + \dots$$
$$(z - z_0)f(z) = C_{-1} + \sum_{n=0}^{\infty} c_n(z - z_0)^{n+1} \Longrightarrow \lim_{z \to z_0} f(z)(z - z_0) = C_{-1}$$

Th. z_0 — m-полюс. Тогда $\operatorname{res}(f(z),z_0) = \lim_{z \to z_0} \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} (f(z)(z-z_0)^m)$

$$f(z) = \frac{C_{-m}}{(z-z_0)^m} + \dots + C_0 + C_1(z-z_0) + \dots \qquad \Big| \cdot (z-z_0)^m$$

$$f(z)(z-z_0)^m = C_{-m} + C_{-m+1}(z-z_0) + \dots \qquad \Big| \frac{d^{m-1}}{dz^{m-1}}$$

$$\frac{d^{m-1}}{dz^{m-1}} (f(z)(z-z_0)^m) = C_{-1}(m-1)! + C_0(z-z_0)(m-1)! + C_1(z-z_0)^2 \frac{(m-1)!}{2!} + \dots$$

$$\frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} (f(z)(z-z_0)^m) = C_{-1} + C_0(z-z_0) + C_1(z-z_0)^2 \frac{1}{2!} + \dots$$
 Далее переход к пределу, аналогичному доказательству выше

Тh. Теорема о вычетах.

- 1. f(z) аналитична в D кроме особых точек z_1,\dots,z_n . Тогда $\int_{\Gamma_0} f(\zeta)d\zeta = 2\pi i \sum_{k=1}^n \mathrm{res}(f(z),z_k)$
- 2. f(z) аналитична в $\mathbb C$ кроме особых точек $z_1,\ldots,z_n\in\overline{\mathbb C}$. Тогда $\sum_{k=1}^n\operatorname{res}(f(z),z_k)=0$
- 1. По теореме Коши (о многосвязной области) $\int_{\Gamma_0} f(\zeta) d\zeta = \sum_{k=1}^n \int_{\Gamma_k} f(\zeta) d\zeta = \sum_{k=1}^n 2\pi i C_{-1}^{(k)} = 2\pi i \sum_{k=1}^n \mathrm{res}(f(z), z_k), \ \mathrm{где}\ C_{-1}^{(k)} \mathrm{коэффициент}$ для ряда Лорана в точке z_k

2. Очевидно по теореме Коши