# Московский Государственный Университет им. М.В. Ломоносова Факультет Вычислительной Математики и Кибернетики Кафедра Суперкомпьютеров и Квантовой Информатики



# Спецкурс: системы и средства параллельного программирования.

## Отчёт № 2. Анализ влияния кэша на блочное перемножение матриц.

Работу выполнил **Тимачев А. А.** 

#### Постановка задачи и формат данных.

Задача: Реализовать последовательный алгоритм блочного матричного умножения и оценить влияние кэша на время выполнения программы. Дополнить отчёт результатами сбора информации с аппаратных счётчиков, используя систему РАРІ.

**Формат командной строки:** <имя файла матрицы A><имя файла матрицы B><имя файла матрицы C > <режим>.

Режимы: 0 – порядок индексов ijk, блоки размера 32x32;

1 – порядок индексов ikj, блоки размера 32x32;

2 – порядок индексов iki, блоки размера 52x52.

Формат файла-матрицы: Матрица представляются в виде бинарного файла следующего формата:

| Тип                 | Значение              | Описание                 |
|---------------------|-----------------------|--------------------------|
| Число типа char     | T - f (float)         | Тип элементов            |
| Число типа uint64_t | N – натуральное число | Число строк матрицы      |
| Число типа uint64_t | М – натуральное число | Число столбцов матрицы   |
| Массив чисел типа Т | MxN элементов         | Массив элементов матрицы |

Элементы матрицы хранятся построчно.

### Описание алгоритма.

**Математическая постановка:** Представим каждую из матриц A, B и C в следующем виде: 
$$A = \begin{bmatrix} A_{11} & ... & A_{1n} \\ \vdots & & \vdots \\ A_{m1} & ... & A_{mn} \end{bmatrix}$$
, где  $A_{ij}$  блок из нескольких элементов матрицы A; B и C

представляем аналогично. Тогда алгоритм блочного матричного умножения  $A \times B = C$ можно представить в следующем виде:  $C_{ij} = \sum_{k} A_{ik} \cdot B_{kj}$  для каждого блока матрицы C .

 $A_{ik} \cdot B_{ki}$  при этом умножаются поэлементно. Оценка влияния кэша на время выполнения программы осуществляется за счёт перестановки индексов суммирования, а также изменения размера блоков.

Анализ работы: Для оценки времени выполнения программы, а также сбора информации с аппаратных счетчиков использовалась система РАРІ.

Верификация: Для проверки корректности работы программы использовались тестовые данные.

#### Основные функции:

- Чтение матрицы из файла. В рамках функции осуществляется чтение параметров матрицы и значений ее элементов.
- Перемножение матриц. В рамках функции осуществляется блочное перемножение матриц в соответствие с выбранным режимом.
- Запись матрицы в файл. В рамках функции осуществляется запись параметров матрицы и значений ее элементов.

#### Результаты выполнения.

#### Результаты:

Ниже приведены результаты выполнения программы в виде графиков, по оси абсцисс — размеры входных матриц(1000x1000, 2000x2000, 3000x3000, 4000x4000 или 5000x5000,), по оси ординат соответствующий параметр(время, промахи кэша, количество тактов или операций с плавающей точкой).











#### Основные выводы.

Исследования показывают, что изменение порядка индексов суммирования, как и в случае с поэлементным перемножением, оказывает влияние на время выполнения программы. Порядок индексов ikj опять оказался быстрее чем привычный нам ijk. Изменение размера блока сильно повлияло на промахи в кэше, однако это не так сильно отразилось на времени выполнения программы.