#### **Generic AOCS Simulator**

2<sup>nd</sup> ESA Workshop on Astrodynamics Tools and Techniques

ESTEC, September 13-15, 2004

Erwin Mooij

#### Introduction (1)

- AOCS hardware and software development relies on different simulation environments:
  - Engineering Simulator
  - Hard real-time HILT/SILT
- No commonality in the development and/or use of these simulation environments:
  - Internal: differences from project to project
  - External: prime/sub interfaces
- Solution: Generic AOCS simulation environment, to be used in European Space Community
  - Well documented
  - Validated models
  - Generic interfaces, etc.

#### **Introduction (2)**

#### **Dutch Space**



## MATLAB / Simulink GAOCS Environment

#### **Objectives:**

- Sub-system Model Development and Testing
- Control Algorithm Design and Testing
- Engineering Simulations

#### **Tools:**

- · User-friendly GUI for definition and plotting
- Generic Dynamics Core and Environmental Models
- · Library of Sensor and Actuator Models
- User defined sub-systems can easily be added

## **EuroSim GAOCS Environment**

#### **Objectives:**

- Real Time Simulations
- link to 2D/3D IGS Graphics
- add other "coded" models

#### **Tools:**

- Use of EuroSim GUI and plotting facilities
- Same Generic Dynamics Core and Environmental Models
- Same Library of Sensor and Actuator Models

## **EuroSim / HILT / SILT GAOCS Environment**

#### **Objectives:**

- ASW validation
- SCOE backbone

#### **Tools:**

- MIL1553-bus communication
- Software in loop Simulations
- Hardware in loop Simulations

# Overview Dutch Space

#### GAOCS Simulator elements

- MATLAB/Simulink Environment:
  - Design philosophy
  - Physical modelling
  - Simulator architecture
  - Functional verification
- EuroSim Environment
  - Interface mechanism with MATLAB/Simulink
  - Real-Time Workshop
- Examples
  - Adaptive satellite control
  - Herschel on-board software development
  - ConeXpress rendezvous and docking
- Current status and future work

# MATLAB/Simulink Environment Design philosophy (1)

- Graphical User Interface to "learn" simulator and for quick access to simulation results
- Libraries with Simulink models and corresponding initialisation files
- Set-up of simulator with library links
- Instantiation of library models, automated initialisation of each instantiation
- CMEX functions
  - local workspace defined for definition of global variables
  - Instantiation of simulator core to allow for formation-flying simulator, rendezvous-and-docking simulator, ...

# MATLAB/Simulink Environment Design philosophy (2)



# MATLAB/Simulink Environment Physical modelling

- Equations of (translational and rotational) motion for a rigid satellite with up to 4 solar panels, with Earth as central body
- Sun and Moon as perturbing third bodies
- Tabulated atmosphere according to MSIS-86
- Gravitational field according to inverse-square law ( $+J_2$ ,  $J_3$  and  $J_4$ ) or GRIM-5C1 (spherical harmonics, n=m=99)
- Geomagnetic field based on IGRF-95 (spherical harmonics, n=m=10)
- Solar radiation according to inverse-square law

## **Dutch Space**

**Simulator architecture (1)** 



Main Simulink AOCS simulator window

#### **Dutch Space**

Simulator architecture (2)



#### **Dutch Space**

Simulator architecture (3)

Main Library Simulink window



Sensor Library

**Actuator Library** 





#### **Dutch Space**

Simulator architecture (4)

- Performance improvement by replacing MATLAB scripts by Ccoded S-functions (so-called CMEX S-functions)
- Simulator porting to EuroSim: relatively easy due to use of CMEX functions
- Use Real-Time Workshop to autogenerate C-code of Simulink simulator structure (per sub-system)
- Porting process and integration has been automated to a large extent
- Alternative in latest version: integrate Simulink models directly in EuroSim model

#### **Dutch Space**

**Functional verification (1)** 

- Time propagation, both in relative and absolute sense, and frame and co-ordinate transformations
- Environment, consisting of the Earth's gravitational and magnetic field, the Earth's atmosphere, the motion of Moon and Sun and the interplanetary environment
- Equations of motion, focusing on both translational and rotational motion, and the numerical aspects due to the integration of the differential equations
- Perturbations, of gravitational origin, due to third-bodies (Sun and Moon), the Earth-magnetic field, the Solar radiation and the working of the upper atmosphere

#### **Dutch Space**

**Functional verification (2)** 



Molniya-type orbit

geostationary transfer orbit



#### **EuroSim Environment (1)**



#### **EuroSim Environment (2)**



**EuroSim – SILT Architecture** 

#### **MRAC** application (1)

- Design of MRAC for a satellite in a perturbing environment (LEO, solar-radiation pressure and aerodynamic drag)
- Tuning of controller parameters in ideal environment, with ideal sensors and actuators (MATLAB/Simulink)
  - corrective control roll channel
  - slew maneuver pitch channel
  - scanning pattern yaw channel
- Transfer of models to EuroSim:
  - inclusion of imperfect sensors and actuators, and perturbed environment
  - step response on roll angle, stability check
- Inclusion of MIL-1553 communication, bus frequency check

#### **MRAC** application (2)





#### **MRAC** application (4)



Top level Model Reference Adaptive Control System

#### **MRAC** application (5)





LEO (300x300 km), satellite in full view of Sun

step-function roll response

#### **MRAC** application (6)



#### **MRAC** application (7)

## **Dutch Space**



**EuroSim PSF** 

**EuroSim SILT** 

#### **GAOCS Herschel Implementation (1)**

- MATLAB / Simulink Environment
- Generic Core (Flight Dynamics and Environmental Models)
- (External) Sensor Models (3 versions):
  - 2 Star tracker models
  - 4 Gyros
  - 2 Quartz rate sensors
  - Attitude Anomaly Detector
  - 2 Sun Acquisition sensors
- (External) Actuator Models (3 versions):
  - RCS
  - 4 Reaction wheels
- Controller Models:
  - RCS controller (in-house)
  - RWS controller (external)

#### **GAOCS Herschel Implementation (2)**



#### **GAOCS** Herschel Implementation (3)

#### The Herschel PSF:

- EuroSim Environment under Linux
- Functional (PDR) unit models
- Models ported from MATLAB/Simulink using Real Time Workshop
- Defining the EuroSim schedule similar to Simulink execution order
- Verification against MATLAB/Simulink results:
   EuroSim based PSF\_V0 Simulator with qualitatively similar results
- CDR unit models integrated, verification against PDR results
- Hardware interfaces integrated
- Integration of on-board software

## **ConeXpress R&D simulator (1)**



ConeXPress in mated configuration with target satellite

#### **ConeXpress R&D simulator (2)**



Waiting ellipse (relative position chaser-target)



#### **Current status**

- Generic simulator for rigid satellites in Earth environment has been designed and implemented in MATLAB/Simulink
- Each of the individual models as well as the combination of several models has been evaluated and judged to be correctly implemented
- Performance improvement by factor of 20, by using C-coded Sfunctions
- Basis for further development of Generic EuroSim AOCS simulation environment for SIL and HIL testing
- (Potential) customers: HERSCHEL, ConeXpres, EarthCare, EXPERT re-entry vehicle, Virtual Satellite, *your satellite*, ...

#### **Current and future work (1)**

#### Modelling:

- √ Additional satellite shapes, i.e., cone and sphere, which includes the adjustment of the solar-radiation pressure and atmospheric perturbation models
- > Flexible appendages (NASTRAN data files with mode shapes, etc.)
- > Addition of tip masses to the appendages
- √ Mass variation due to fuel consumption, including sloshing models
- Sun as central body for interplanetary missions
- Etc.

#### • EuroSim:

Development of GUI, possibly combined with MATLAB/Simulink

#### • SILT/HILT:

- GAOCS simulator with MIL-1553 communication → Herschel
- Dedicated (flight) hardware in loop → Herschel

#### **Current and future work (2)**

- Goal: one AOCS simulation and test environment for European Space Programmes (ESA), possible funding GSTP/TRP/?
- Open source of GAOCS Simulator elements
- Central management of GAOCS Simulation Environment :
  - Feedback of user models from industry
  - Screening for potential implementation
  - Validation of user models and implementation in baseline
  - Release of next version of GAOCS Simulation Environment
  - Documentation
- Set-up of data interfaces with COTS products (STK, simsat, ...)