

EXHIBIT A

United States Patent [19]

Greenspan et al.

[11] Patent Number: **5,063,062**[45] Date of Patent: **Nov. 5, 1991****[54] CLEANING COMPOSITIONS WITH
ORANGE OIL****[75] Inventors:** Douglas H. Greenspan, Louisville; Phillip A. Low, Littleton, both of Colo.**[73] Assignees:** D. Greenspan; W. Ingram, both of Louisville, Calif.**[21] Appl. No.:** 413,395**[22] Filed:** Sep. 27, 1989**[51] Int. Cl.⁵** A61F 13/00**[52] U.S. Cl.** 424/443; 424/195.1;
424/401; 252/142; 514/783; 514/846**[58] Field of Search** 424/443, 401; 514/783**[56] References Cited****U.S. PATENT DOCUMENTS**

4,014,995	3/1977	Juliano et al.	514/783
4,533,487	8/1985	Jones	252/173
4,620,937	11/1986	Dellutri	252/162

OTHER PUBLICATIONS

D. Limonene as a Degreasing Agent Richard L. Cole-

man, The Citrus Industry, vol. 56, No. 11, Nov., 1975,
pp. 23-25.*Primary Examiner*—Thurman K. Page*Assistant Examiner*—James M. Spear*Attorney, Agent, or Firm*—Timothy J. Martin**[57] ABSTRACT**

A cleaning composition for cleaning the skin contains orange oil, a pharmaceutically acceptable moisturizer and an emulsifying agent. Preferably the orange oil accounts for between 5% and 60% by volume, and it is further preferred that the composition contains 40% orange oil by volume. The moisturizer is either glycerin, aloe vera, jojoba oil, safflower oil or a combination thereof. The emulsifying agent preferably is oatmeal. The composition is constituted to have a pH of between 4.5 and 6.0, and the composition may be packaged as moistened towlettes in hermetic packets.

12 Claims, No Drawings

5,063,062

1

2

CLEANING COMPOSITIONS WITH ORANGE OIL**FIELD OF THE INVENTION**

The present invention generally relates to cleaning compositions suitable for external application to human skin tissue in order to remove unwanted substances such as tar, caulking compounds, sealants, adhesives and the like. More specifically, however, the present invention is directed to a natural cleaning composition that utilizes only plant based ingredients. As such, the present invention is particularly adapted for cleaning non-water soluble products from the human skin in a safe, effective manner.

BACKGROUND OF THE INVENTION

A wide variety of cleaning compositions are known for external application to skin tissue in order to remove dirt and unwanted materials. Among these cleaning compounds are the various hard and liquid soaps which may be used for cleaning human skin, especially the hands. However, numerous substances with which the hands may be soiled do not respond to ordinary soap compositions. Examples of substances that are difficult to remove include grease, tar, oils, ink, caulking materials, adhesives, sealants, gums, cosmetics and other non-water soluble products.

While some cleaning compositions have been developed for these materials, the typical cleaners are harsh and can damage the skin, especially after prolonged use. Examples of these compounds include turpentine, acetone, toluene and other petroleum based products as well as ammonia based products. These products, though, often damage the skin and otherwise exhibit a high level of toxicity. Further, if inhaled during use, these petroleum based products may cause respiratory damage. When absorbed through the skin, the petroleum based products can cause damage to the major organs of the body and can have a less serious side effect of drying and chapping the skin where applied. Thus, it should be appreciated that, although petroleum is a naturally occurring product, it is not toxilogically healthy for the human body. Accordingly, there have been substantial efforts which have been made to find suitable alternative substances for skin cleaning. While some synthetically derived substances have been developed, many of these substances are medically suspect, and in some instances produce side effects making them unsuitable for use on a regular basis.

Orange oil, as a natural product derived from the rind of oranges, has been recognized in the past to have some cleaning capabilities. Prior to the present invention, however, it is not believed that the suitability of orange oil in cleaning human skin was realized. Orange oil by itself is a skin irritant that can cause inflammation of the tissues. When used by itself, fumes from orange oil may cause headaches, dizziness and other side effects. Accordingly, it has not been readily apparent that orange oil alone or in combination with other substances could prove effective in cleaning compounds otherwise difficult to remove from the tissues of the skin. Rather, efforts in the past have been directed to the combination of orange oil with other cleaning solvents to produce floor cleaners, glass cleaners and the like.

From the foregoing, it should be appreciated that the thrust of prior development of skin cleaners, other than soap, have been directed to petroleum based products and ammonia based products and the industry has ig-

nored the potential for orange oil as a constituent of skin cleaning compounds. Despite the long felt need for better cleaners, the suitability of orange oil has thus not been recognized, and the inventors of the subject invention have found success by examining this substance contrary to the direction of inquiry adopted by the industry at large.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide a new and useful compound for cleaning the human skin.

Another object of the present invention is to provide a skin cleaning compound suitable for cleaning non-water soluble products such as grease, caulking, adhesives, sealants, tar, oils, ink and the like.

Yet another object of the present invention is to provide a skin cleaning composition which is non-toxic.

It is a further object of the present invention is to provide a skin cleaning composition that is derived from natural vegetable and plant sources.

Still a further object of the present invention is to provide a skin cleaning composition that not only removes unwanted substances from the human skin but also acts to help clean and revitalize the human skin.

The present invention, then, provides a skin cleaning composition which is adapted for external use on human tissues. Broadly, this composition comprises a first ingredient being between five percent (5%) and sixty percent (60%) by volume of orange oil, a second ingredient being a pharmaceutically acceptable moisturizer for human skin and a third ingredient being an emulsifying agent. Preferably, the moisturizer is selected from a group consisting of: glycerin, aloe vera, jojoba oil, and safflower oil. Further, it is preferred that the emulsifying agent also function as an emollient. Preferably the emulsifying agent is a natural grain derivative, preferably either oat gum or oatmeal. Further, it is preferred that the first, second, and third ingredients are selected and mixed in a ratio such that the resulting skin cleaning composition has a pH range of between 4.5 and 6.0 inclusively. To this end, a fourth ingredient in the form of a buffering compound may be added to the composition.

In the more specific composition according to the preferred embodiment, the cleaning composition comprises forty-five percent (45%) or less by volume of orange oil, forty-five percent (45%) or less by volume of the emulsifying agent and the pharmaceutically acceptable moisturizer. The preferred emulsifying agent in this composition is oatmeal, and the preferred moisturizer is a mixture of jojoba oil, aloe vera and glycerin mixed by volume of approximately two parts jojoba oil, two parts aloe vera and one part glycerin. It is further desired to use a small portion of safflower oil both as a moisturizer and to help form a stable emulsion.

These and other objects of the present invention will become more readily appreciated and understood from a consideration of the following detailed description of the preferred embodiment:

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The present invention is directed to a cleaning composition utilized on skin tissues and having, as its cleaning ingredient, the commercially available substance known as orange oil derived from the rinds of oranges. In this broad form, the composition includes orange oil,

5,063,062

3

an emulsifying agent and a pharmaceutically acceptable moisturizer. In order to determine the preferred composition of the present invention, a series of samples having differing properties were evaluated to establish a desired range in pH and to establish the necessary proportion of orange oil to give suitable cleaning. These test samples are set forth below.

In their investigation of cleaning compositions according to the present invention, Applicants first investigated several compositions which were mixtures of orange oil, water, moisturizers and vitamin E. These samples were developed to test the cleaning properties of orange oil and to evaluate orange oil mixed with moisturizing agents. A test group of ten persons, male and female, were selected to subjectively evaluate the results of these samples. Initially, three such samples were prepared, and the compositions are set forth as Samples I-III, as follows:

SAMPLE I

Ingredient	Volume Percent (Approximate)
Orange Oil	39
Water	33
Glycerin*	12
Aloe Vera*	12
Jojoba Oil*	3
Vitamin E	1

*Total Moisturizers accounted for approximately 27% by volume.

SAMPLE II

Ingredient	Volume Percent (Approximate)
Orange Oil	34.5
Water	27.5
Glycerin*	17
Aloe Vera*	14
Jojoba Oil*	3.5
Vitamin E	3.5

*Total Moisturizers accounted for approximately 34.5% by volume.

SAMPLE III

Ingredient	Volume Percent (Approximate)
Orange Oil	37
Water	26
Glycerin*	14.75
Aloe Vera*	14.75
Jojoba Oil*	3.5
Vitamin E	4

*Total Moisturizers accounted for approximately 33% by volume.

Prior to presenting these samples to the test group, Applicants tested the relative acidity of the samples since it was believed desirable to avoid a composition that was either too acidic or too basic. The result of this acidity measurement, correlated to the Samples, is set forth in Table 1 below:

TABLE 1

Sample	pH (Approximate)
I	4.5
II	5
III	4.7

In each of the cases of Samples I-III, the respective components were mixed and blended in an attempt to form an emulsion. An initial problem was noted with each of these Samples, however, in that the emulsion separated, that is, "broke" after approximately one to

4

two days. Since it was fairly simple to re-blend the Samples, Samples I-III were submitted to the test group for evaluation. Generally, the results of the composition was excellent with each of Samples I-III readily removing polyurethane and silicone base caulking compounds, tars, grease, oil and adhesives; each of these industrial type substances are regarded as difficult to remove, from the human hands. All ten members of the test group reported comparable cleaning properties and reported that their hands were left soft after a two week period of using the compounds. Indeed, after two weeks of use, certain male members of the test group who had dry hands resulting from the use of other solvents noted substantial improvement in the texture and softness of their hands. No allergic reactions were reported by any members of the test group.

After determining that test Samples I-III performed adequately in cleaning the hands and in moisturizing the hands, it became necessary to determine whether the oil orange and moisturizer emulsion could be stabilized so that it would not break over a period of time. In order to determine if a natural ingredient could act as an emulsifying agent, the Applicants selected a grain base derivative as an emulsifying agent. To this end, Applicants tested oatmeal gum and oatmeal to act as the primary emulsifier. Accordingly, two more test samples, Samples IV and V were prepared according to the compositions set forth below:

SAMPLE IV

Ingredient	Volume Percent (Approximate)
Orange Oil	42.75
Aloe Vera*	7
Jojoba Oil*	3.5
Safflower Oil*	4
Oatmeal Gum	42.75

*Total Moisturizers accounted for approximately 14.5% by volume.

SAMPLE V

Ingredient	Volume Percent (Approximate)
Orange Oil	36.5
Aloe Vera	14
Jojoba Oil*	14
Glycerin*	7
Safflower Oil*	0.5
Oatmeal	28

*Total Moisturizers accounted for approximately 35.5% by volume.

It may be noted that, in Samples IV and V, vitamin E and water were both omitted from the composition. However, it should be noted that both the oatmeal gum in Sample IV and the oatmeal in Sample V each contain a portion of water. In Sample IV, the oatmeal gum was prepared by boiling rolled oats in water and straining the resultant mass to remove the hulls. In Sample V, rolled oats were boiled in water and the resulting mass (containing approximately 50% water) was used to prepare the composition. Relatively equal parts of orange oil and oat derivatives were used and a small portion of safflower oil was included. Again, relative acidity was tested and it was found that Sample IV had a pH of approximately 5.0 while Sample V had a pH of 5.5.

Samples IV and V were submitted to the test group to evaluate cleaning effectiveness and moisturizing ability. Further, observation of the two compositions were

5,063,062

5

made to determine whether or not the emulsions broke. The results of this study determined that the emulsion of Sample IV broke after approximately seven days while the emulsion according to Sample V did not separate over any observed duration of time (several months). The test group observed that the cleaning properties of Samples IV and V were almost, but not quite, as effective as the cleaning properties of Samples I-III, but that the cleaning effectiveness was estimated at approximately 90% of Samples I-III. With respect to Sample IV, the test group reported that their hands did not roughen, but that the sample did not feel as comfortable when on the hands. With respect to Sample V, the test group reported that the emulsion both felt comfortable on the hands and left their hands soft after approximately five days of regular usage. In each case, the emulsions were able to clean all caulking materials and tars, including silicone and polyurethane based caulking compounds as well as oil and grease from the skin. Further tests were conducted on compositions similar to Sample V were in the amount of orange oil was slightly increased while holding the amounts of the remaining ingredients constant until the emulsion broke. It was found that, with these compositions, the emulsion broke when orange oil accounted for approximately 38% by volume of the composition.

From the foregoing, Applicants determined that Sample V offered the best compromise among emulsion stability, cleaning effectiveness, and skin effect. Therefore, utilizing Sample V as a reference, Applicants adjusted the amount of orange oil (ignoring whether the emulsion broke) to determine an effective pH range wherein the composition felt comfortable on the human hands. A first set of samples set forth below as Samples VI-IX were prepared to be less acidic than Sample V, and a second set of test samples, set forth below as Samples X-XIII were tested for compositions having greater acidity than Sample V. Samples VI-IX were prepared by simply buffering Sample V with differing amounts of sodium bicarbonate. The resulting samples were buffered to have pH values according to Table 2 as follows:

TABLE 2

Sample	pH (Approximate)
VI	9.0
VII	8.0
VIII	7.0
IX	6.0

Each of Samples VI-IX were evaluated by the test group. Samples VI and VII were reported to immediately make the hands dry upon first application of the respective composition and removal of the composition with water. With respect to Samples VIII and IX, the test group reported less drying than Samples VI and VII although more dryness of the hands was noted in comparison to test Sample V. These empirical observations lead Applicants to conclude that an acidity of at least pH 6.0 is desirable, that is, that the preferred composition should not be more basic than pH 6.0.

To evaluate test compositions for excess acidity, Applicants merely increased the amount of orange oil in test Sample V while holding the amounts of the remaining ingredients constant to obtain desired acidity levels according to Table 3, below:

5,063,062

6

TABLE 3

Sample	pH (Approximately)
X	2.5
XI	3.0
XII	3.5
XIII	4.0

Test Sample X had a volume percent of approximately 80% orange oil, Sample XI had orange oil of approximately 70% by volume, Sample XII had orange oil of approximately 60% by volume, and Sample XIII had orange oil of approximately 50% by volume.

It had previously been found that orange oil alone exhibited excellent cleaning properties, but left the hands feeling too dry and too astringent. With respect to Samples X-XIII, in each case no emulsion formed. The test group reported that each of Samples X-XIII had excellent cleaning properties, but the emulsions felt too astringent on the hands even after limited use. Applicants accordingly concluded that it was desirable that the emulsified composition have a pH that is approximately 4.5. Thus, Applicants further concluded that the composition according to the preferred embodiment of the present invention should have a pH of between 4.5 and 6.0, inclusively.

As noted in the above examples, the emulsions according to Sample V broke at approximately 38% orange oil by volume. In order to evaluate cleaning properties as a function of percent volume of orange oil, additional samples were prepared wherein the weight percentages of the ingredients other than orange oil was held constant while the amount of orange oil was varied to provide differing volume percentages of orange oil. Accordingly, Samples XIV-XVII were prepared to have volume percents of orange oil approximately 5%, 10%, 15% and 25%, respectively. In each case, the emulsions were stable. These Samples XIV-XVII were given to the test group to subjectively evaluate cleaning effectiveness. With respect to Sample XIV, the test group reported that cleaning properties were substantially reduced; Sample XIV could not effectively clean tar or caulking compounds. Indeed, Sample XIV was only effective in removing cosmetics from the skin. Sample XV eventually was able to remove silicone caulking compounds but was unable to remove polyurethane caulking or tar. With respect to Sample XVI, the test group reported about 50%-60% of the cleaning effectiveness of Sample V with no marked increase in benefits in skin softening. Sample XVII was reported to have approximately 80% of the cleaning effectiveness of Sample V in removing all of the tested materials, but again there was no report of skin enhancements over Sample V.

From these tests, Applicants concluded that, with respect to cosmetics, a composition according to the present invention could have as little as 5% by volume of orange oil although it was preferable to have a cleaning composition having at least 25% by volume of orange oil.

To determine whether the moisturizers had any effect on the composition or whether pH was the dominant skin effecting property, Applicants prepared yet another sample, Sample XVIII, wherein 100% orange oil was buffered with sodium bicarbonate so that it had a pH of 5.5. This Sample XVIII was tested and it was determined that it was exceptionally drying and astrin-

5,063,062

7

gent on the human hands. Indeed, Sample XVIII proved almost as drying and astringent as Sample X.

In order to increase the amount of orange oil, Applicants further tested a variation on Sample V wherein both the amount of orange oil and the amount of oatmeal were increased while the amount of moisturizers was decreased. This Sample XIX, was prepared as follows:

SAMPLE XIX

Ingredient	Volume Percent (Approximate)
Orange Oil	40.5
Aloe Vera*	7.75
Jojoba Oil*	7.75
Glycerin*	4.5
Safflower Oil*	.5
Oatmeal	39

*Total Moisturizers accounted for 20.5% by volume.

From Sample XIX, it was concluded that orange oil could be increased, along with a corresponding increase in an oat grain derivative, until approximately 45% by volume of orange oil was included in the composition. Any amount of orange oil in excess of this amount would result in the diminishment of moisturizers so as to negate the softening effect of the hand cleaning composition according to the preferred invention.

Other samples, set forth below as Samples XX-XXIII were prepared utilizing other materials. These samples are as follows:

SAMPLE XX

Ingredient	Volume Percent (Approximate)
Orange Oil	50
Olive Oil	25
Jojoba Oil	25
Baking Soda	Trace

SAMPLE XXI

Ingredient	Volume Percent (Approximate)
Orange Oil	50
Glycerin	50

SAMPLE XXII

Ingredient	Volume Percent (Approximate)
Orange Oil	50
Aloe Vera	50

SAMPLE XXIII

Ingredient	Volume Percent (Approximate)
Orange Oil	12.5
Vitamin E	87.5

Sample XX was found to have a pH of approximately 8.5. While Sample XX was deemed effective in cleaning, there was some reduction of cleaning effectiveness over Sample V and the composition left a dryness when wiped off of the skin. Further, the emulsion broke almost immediately. With respect to Samples XXI and XXII, both samples left a sticky residue on the hands but were approximately equal in cleaning effectiveness to Sample V. Sample XXI had a pH a little greater than 2.0 while Sample XXII had a pH of approximately 3.5.

5,063,062

8

It was thus observed that aloe vera had some buffering effect on the acidity of the orange oil. Each of Samples XXI and XXII were highly astringent and left the test groups hands dry after washing with water. With respect to Sample XXIII, again this sample proved effective in removing cosmetics, but the sample was not effective in removing heavier, industrial substances such as caulking compounds, adhesives, tars and the like. The orange oil and Vitamin E, however, did mix without separation and a resulting acidity of pH 5.0.

From the information derived from all of the aforementioned samples, Applicants determined that glycerin and safflower oil are both desirable in the preferred compositions. On one hand glycerin appears both to stabilize the emulsion and perform as a moisturizer while, on the other hand, safflower oil appears to act as an emulsion stabilizer, as an emulsifying agent and as a moisturizer.

According to the above, Applicants prefer the compositions set forth in Sample V and Sample XIX for use in cleaning unwanted materials from human skin. In order to test administration of the preferred composition, Applicants applied the compound directly to the skin as a liquid emulsion and removed the emulsion from the hands by washing with water. In addition, Applicants were successful in soaking towlettes, formed of standard absorbent material such as paper, cloth and the like, in the liquid emulsion so that a towlette would become impregnated with the cleaning composition. These towlettes can be hermetically sealed in standard foil packages, as known in the industry, so that the user can simply remove from the skin any of the described unwanted materials with a pre-moistened towlette. This is particularly useful in situations where water is not readily available. Further, individualized packets of pre-moistened towlettes are convenient for portability and on-the-job use.

From the foregoing, the inventors have concluded that a suitable skin cleaning composition can be prepared wherein the skin composition has a first ingredient of between 5% and 60% by volume of orange oil, a second ingredient being a pharmaceutical acceptable moisturizer for human skin and a third ingredient being an emulsifying agent. Preferably, the moisturizer is either one or more of a group of moisturizers selected from the following: glycerin, aloe vera, jojoba oil, safflower oil. However, other pharmaceutically acceptable moisturizers are within the scope of this invention as could be developed without undue experimentation by the ordinarily skilled chemist according to the teachings of the present invention. One example of such a moisturizer is glycerin stearate. These other compositions are thus intended, unless otherwise specifically limited, to be encompassed by the general phrase "moisturizer" both in this specification and in the appended claims. In any event, it is preferred that the resultant composition have a pH between 4.5 to 6.0 and can be so buffered if necessary by the utilization of aloe vera or a buffering agent, such as baking soda.

Accordingly, the present invention has been described with some degree of particularity directed to the preferred embodiment of the present invention. It should be appreciated, though, that the present invention is defined by the following claims construed in light of the prior art so that modifications or changes may be made to the preferred embodiment of the present invention.

5,063,062

9

tion without departing from the inventive concepts contained herein.

We claim:

1. A skin cleaning composition adapted for external use on human tissues, comprising a first ingredient being between five percent (5%) and sixty percent (60%) by volume of orange oil, a second ingredient being a pharmaceutically acceptable moisturizer for human skin and a third ingredient being an emulsifying agent in the form of an oat grain derivative product.

2. A skin cleaning composition according to claim 1 wherein said moisturizer is selected from a group consisting of: glycerin, aloe vera, jojoba oil, and safflower oil.

3. A skin cleaning composition according to claim 1 wherein said oat grain derivative product is one of oat gum and oatmeal.

4. A skin cleaning composition according to claim 1 wherein said first, second and third ingredients are selected and mixed in a ratio such that the resulting skin cleaning composition has a pH range of between 4.5 to 6.0, inclusively.

5. A skin cleaning composition according to claim 1 including as a fourth ingredient a buffering compound in a proportion such that the resulting composition is pH balanced within a range of 4.5 to 6.0, inclusively.

10

6. A skin cleaning composition for external use on human tissues, comprising orange oil, a pharmaceutically acceptable moisturizer for human skin and an oat grain derivative product as an emulsifying agent, wherein said composition has a pH within a range of 4.5 to 6.0, inclusively.

7. A skin cleaning composition according to claim 5 including a buffering compound.

8. A skin cleaning composition according to claim 5 wherein said moisturizer is selected from a group consisting of: glycerin, aloe vera, jojoba oil, safflower oil and glycerol stearate.

9. A cleaning composition for use on human skin comprising forty-five percent (45%) or less by volume of orange oil, forty-five percent (45%) or less by volume of oatmeal and a pharmaceutically acceptable moisturizer.

10. A cleaning composition according to claim 8 wherein said moisturizer is a mixture of jojoba oil, aloe vera and glycerin.

11. A cleaning composition according to claim 1 wherein said mixture includes by volume two parts jojoba oil, two parts aloe vera and one part glycerin.

12. A cleaning composition according to claim 9 wherein said mixture includes safflower oil.

* * * * *

30

35

40

45

50

55

60

65

EXHIBIT B

REDACTED

EXHIBIT C

REDACTED

EXHIBIT D

REDACTED

EXHIBIT E

REDACTED

EXHIBIT F

REDACTED

EXHIBIT G

REDACTED

EXHIBIT H

CTFA
*Cosmetic Ingredient
Handbook*

First Edition

CTFA

Cosmetic Ingredient Handbook

First Edition

Editor

Joanne M. Nikitakis

Consulting Authors

Martin M. Rieger, Ph.D. and Gordon T. Hewitt, Ph.D.

Editorial Advisory Board

James M. Akerson, Chairman
Americo V. Calogero
Lou Calvo
John C. Chang
Emanuel Kroll
Edward Levy, Ph.D.
Justin McCarthy

Published by

The Cosmetic, Toiletry and Fragrance Association, Inc.
1110 Vermont Avenue, N.W.
Washington, D.C. 20005

Copyright © 1988
The Cosmetic, Toiletry and Fragrance Association, Inc.

No portion of the CTFA Cosmetic Ingredient Handbook
may be reproduced in whole or in part in any form or by
any electronic or mechanical means, including
Information storage and retrieval systems, without prior
permission from the Cosmetic, Toiletry and Fragrance
Association, Inc., 1110 Vermont Avenue, N.W.,
Washington, D.C. 20005

Library of Congress Catalog Card No. 88-071506

PRINTED IN THE UNITED STATES OF AMERICA

Laseret by Computer & Communications Services, Inc.

REDUCING AGENTS (Cont.)**SKIN CONDITIONING AGENTS - EMOLlient**

Finally, reducing agents have the ability to split disulfide bonds in hair and, therefore, find use as *hair waving/straightening agents* and *depilating agents*.

Ammonium Bisulfite
Ammonium Sulfate
Ammonium Sulfite
Ammonium Thioglycolate
Cysteine
Cysteine HCl
Ethanolamine Thioglycolate
Hydroquinone

Mercaptopropionic Acid
Potassium Metabisulfite
Potassium Sulfite
Potassium Thioglycolate
Sodium Bisulfite
Sodium Hydrosulfite
Sodium Hydroxymethane Sulfonate

Sodium Metabisulfite
Sodium Sulfite
Sodium Thioglycolate
Thioglycerin
Thioglycolic Acid
Thiosalicylic Acid
Zinc Formaldehyde Sulfoxylate

SKIN BLEACHING AGENTS

Skin bleaching agents are the active ingredients used in over-the-counter (OTC) skin bleaching drug products. In a proposed rule published by the U.S. Food and Drug Administration, "Skin Bleaching Drug Products for Over-the-Counter Human Use" (47 Fed. Reg. 39108, September 3, 1982), a skin bleaching active ingredient is defined as "an agent designed to bleach or otherwise lighten limited areas of hyperpigmented skin through the suppression of melanin pigment formation within skin cells."

The listing below identifies those ingredients that were included in 47 Fed. Reg. 39108 as safe and effective in skin bleaching drug products and which have also been published in the CTFA Cosmetic Ingredient Dictionary. These ingredients have been reported to have a purely cosmetic purpose in cosmetic formulations, in addition to being safe and effective as active ingredients in drug products. To identify the currently allowed skin bleaching agents, or for information on ingredient use limitations, etc., the reader is directed to contact CTFA or the Food and Drug Administration for the most recent information concerning this drug category.

The names cited below are the established drug names as presented in 47 Fed. Reg. 39108. Whenever CTFA adopted names differ, they are presented parenthetically.

Hydroquinone

SKIN CONDITIONING AGENTS

A large number of cosmetic ingredients function as skin conditioning agents. In order to define the specific function performed by these ingredients more precisely, they have been divided into four groups: *skin conditioning agents - emollient*; *skin conditioning agents - humectant*; *skin conditioning agents - miscellaneous*; and *skin conditioning agents - occlusive*.

SKIN CONDITIONING AGENTS - EMOLlient

Skin conditioning agents - emollient are cosmetic ingredients which help to maintain the soft, smooth, and pliable appearance of skin. Emollients function by their ability to remain on the skin surface or in the stratum corneum to act as lubricants, to reduce flaking, and to improve the skin's appearance. Similar functions are served by *skin conditioning agents - humectant*; *skin conditioning agents - miscellaneous*; and especially *skin conditioning agents - occlusive*.

SKIN CONDITIONING AGENTS – EMOLlient (Cont.)

Acetyl Tricetyl Citrate	Dihydrophytosteryl Octyldecanoate	Hydrogenated Lard Glyceride
Apricot Kernel Oil PEG-6 Esters	Dihydroxyethyl Soyamine Dioleate	Hydrogenated Lard Glycerides
Arachidyl Propionate	Dihydroxyethyl Tallowamine Oleate	Hydrogenated Palm Glycerides
Avocado Oil	Diisobutyl Adipate	Hydrogenated Palm Kernel Glycerides
Bay Oil	Diisocetyl Adipate	Hydrogenated Palm Oil Glyceride
Behenyl Erucate	Diisodecyl Adipate	Hydrogenated Palm Oil Glycerides
Bisphenylhexamethicone	Diisopropyl Adipate	Hydrogenated Palm/Palm Kernel Oil
Butyl Acetyl Ricinoleate	Diisopropyl Dilinoleate	PEG-6 Esters
Butyl Myristate	Diisopropyl Sebacate	Hydrogenated Polyisobutene
Butyl Oleate	Disostearyl Adipate	Hydrogenated Soybean Oil Glycerides
Butyl Stearate	Disostearyl Dilinoleate	Hydrogenated Soy Glyceride
C18-36 Acid Glycol Ester	Disostearyl Malate	Hydrogenated Tallow Glyceride
C12-15 Alcohols Benzoate	Diisauryl Citrate	Hydrogenated Tallow Glyceride Citrate
C12-15 Alcohols Lactate	Dimethicone Copolyol	Hydrogenated Tallow Glyceride Lactate
C12-15 Alcohols Octanoate	Dimethiconol	Hydrogenated Tallow Glycerides
C14-15 Alcohols	Diethyl Adipate	Hydrogenated Tallow Glycerides Citrate
C15-18 Glycol	Diethyl Dilinoleate	Hydrogenated Vegetable Glyceride
C18-20 Glycol Isostearate	Diethyl Sebacate	Hydrogenated Vegetable Glycerides
C14-16 Glycol Palmitate	Diethyl Succinate	Hydrogenated Vegetable Glycerides Phosphate
C13-14 Isoparaffin	Dipropylene Glycol Dibenzzoate	Hydroxylated Lanolin
C13-16 Isoparaffin	Distridecyl Adipate	Hydroxyoctacosanyl Hydroxystearate
C20-40 Isoparaffin	Dodecylditetradecanol	Isoamyl Laurate
C11-15 Pareth-3 Oleate	Ethyl Arachidonate	Isobutyl Myristate
C11-15 Pareth-3 Stearate	Ethyl Laurate	Isobutyl Palmitate
C11-15 Pareth-12 Stearate	Ethyl Linoleate	Isobutyl Pelargonate
C12-15 Pareth-9 Hydrogenated Tallowate	Ethyl Lindolenate	Isobutyl Stearate
C12-15 Pareth-12 Oleate	Ethyl Monohuate	Isocetyl Alcohol
C30-46 Piscine Oil	Ethyl Myristate	Isocetyl Isodecanoate
Caprylic/Capric/Diglyceryl Succinate	Ethyl Palmitate	Isocetyl Palmitate
Caprylic/Capric Glycerides	Ethyl Pelargonate	Isocetyl Stearate
Caprylic/Capric/Isostearic/Adipic Triglycerides	Ethyl Persate	Isocetyl Stearyl Stearate
Cetearyl Alcohol	Ethyl Stearate	Isodecyl Hydroxystearate
Cetearyl Isononanoate	Fish Glycerides	Isodecyl Isononanoate
Cetearyl Octanoate	Glyceryl Behenate	Isodecyl Laurate
Cetearyl Palmitate	Glyceryl Caprate	Isodecyl Myristate
Cetyl Acetate	Glyceryl Caprylate	Isodecyl Neopentanoate
Cetyl Alcohol	Glyceryl Caprylate/Caprate	Isodecyl Oleate
Cetyl Arachidol	Glyceryl Cocoate	Isodecyl Palmitate
Cetyl Esters	Glyceryl Dilaurate	Isohexyl Laurate
Cetyl Lactate	Glyceryl Diloleate	Isohexyl Palmitate
Cetyl Myristate	Glyceryl Distearate	Isononyl Isononanoate
Cetyl Octanoate	Glyceryl Erucate	Isopropyl Isostearate
Cetyl Palmitate	Glyceryl Hydroxystearate	Isopropyl Landate
Cetyl Ricinoleate	Glyceryl Isostearate	Isopropyl Laurate
Cetyl Stearate	Glyceryl Lanolate	Isopropyl Linoleate
Coco-Caprylate/Caprate	Glyceryl Laurate	Isopropyl Methoxycinnamate
Cocoglycerides	Glyceryl Linoleate	Isopropyl Myristate
Coconut Alcohol	Glyceryl Myristate	Isopropyl Oleate
Corn Oil PEG-6 Esters	Glyceryl Oleate	Isopropyl Palmitate
Cottonseed Glyceride	Glyceryl Palmitate Lactate	Isopropyl Ricinoleate
Cottonseed Oil	Glyceryl Ricinoleate	Isopropyl Stearate
Cyclomethicone	Glyceryl Sesquioleate	Isopropyl Tallowate
Decyl Alcohol	Glyceryl Stearate	Isostearyl Alcohol
Decyl Isostearate	Glyceryl Stearate Citrate	Isostearyl Benzoate
Decyl Oleate	Glyceryl Stearate Lactate	Isostearyl Isostearate
Decyl Succinate	Glyceryl Triacetyl Hydroxystearate	Isostearyl Lactate
Decyltetradecanol	Glyceryl Triacetyl Ricinoleate	Isostearyl Neopentanoate
Dibutyl Adipate	Glyceryl Tricoctanoate	Isostearyl Palmitate
Dibutyl Sebacate	Glyceryl Triundecanoate	Isotridecyl Isononanoate
DI-C12-15 Alcohols Adipate	Glycol Diocanoate	Laneth-9 Acetate
Dicapryl Adipate	Glycol Hydroxystearate	Laneth-10 Acetate
Dicetyl Adipate	Glycol Oleate	Lanolin
Diethylene Glycol Dibenzzoate	Glycol Ricinoleate	Lanolin Alcohol
Diethyl Palmitoyl Aspartate	Glycol Stearate	Lanolin Oil
Diethyl Sebacate	Heptylundecanol	Lanolin Wax
Dihexyl Adipate	Hexyl Laurate	Lard Glycerides
Dihydrocholesteryl Octyldecanoate	Hydrogenated Coco-Glycerides	

SKIN CONDITIONING AGENTS - EMOLlient (Cont.)**SKIN CONDITIONING AGENTS - HUMECTANT**

Laureth-2 Benzoate	Octyl Myristate	PPG-5 Lanolin Wax Glyceride
Lauryl Alcohol	Octyl Palmitate	PPG-9 Laurate
-ryl Glycol	Octyl Pelargonate	PPG-4 Lauryl Ether
-ryl Isostearate	Octyl Stearate	PPG-3 Myristyl Ether
Lauryl Lactate	Oleyl Acetate	PPG-4 Myristyl Ether
Lauryl Myristate	Oleyl Alcohol	PPG-26 Oleate
Lauryl Palmitate	Oleyl Arachidate	PPG-36 Oleate
Methyl Acetyl Ricinoleate	Oleyl Erucate	PPG-10 Oleyl Ether
Methyl Caproate	Oleyl Lanolate	PPG-20 Oleyl Ether
Methyl Caprylate	Oleyl Myristate	PPG-23 Oleyl Ether
Methyl Caprylate/Caprate	Oleyl Oleate	PPG-30 Oleyl Ether
Methyl Cocoate	Oleyl Stearate	PPG-37 Oleyl Ether
Methyl Dehydroabietate	Palm Kernel Alcohol	PPG-50 Oleyl Ether
Methyl Glucose Sesquioleate	Palm Kernel Glycerides	PPG-9-Steareth-3
Methyl Glucose Sesquistearate	Palm Oil Glycerides	PPG-11 Stearyl Ether
Methyl Hydrogenated Rosinate	PEG-6 Caprylic/Capric Glycerides	PPG-15 Stearyl Ether
Methyl Hydroxystearate	PEG-2 Castor Oil	Propylene Glycol Isostearate
Methyl Laurate	PEG-3 Castor Oil	Propylene Glycol Hydroxystearate
Methyl Linoleate	PEG-4 Castor Oil	Propylene Glycol Laurate
Methyl Myristate	PEG-5 Castor Oil	Propylene Glycol Myristate
Methyl Oleate	PEG-8 Castor Oil	Propylene Glycol Myristyl Ether
Methyl Palmitate	PEG-9 Castor Oil	Propylene Glycol Myristyl Ether Acetate
Methyl Pelargonate	PEG-10 Castor Oil	Propylene Glycol Oleate
Methyl Ricinoleate	PEG-10 Coconut Oil Esters	Propylene Glycol Ricinoleate
Methyl Rosinate	PEG-5 Glyceryl Trisostearate	Propylene Glycol Soyate
Methyl Stearate	PEG-5 Hydrogenated Castor Oil	Propylene Glycol Stearate
Mineral Oil	PEG-7 Hydrogenated Castor Oil	Silica Silicate
Mink Oil	PEG-5 Hydrogenated Corn Glycerides	Soybean Oil Unsaponifiables
Myreth-3 Caprate	PEG-8 Hydrogenated Fish Glycerides	Soy Sterol
Myreth-3 Laurate	PEG-20 Methyl Glucose Sesquistearate	Soy Sterol Acetate
Myreth-3 Myristate	Pentaerythrityl Rosinate	Squalene
Myreth-3 Palmitate	Pentaerythrityl Tetraoctanoate	Stearoxytrimethylsilane
Myristyl Alcohol	Pentaerythrityl Tetraoleate	Stearyl Acetate
*-ristyleicosanol	PPG-4-Ceteth-1	Stearyl Alcohol
-ristyleicosyl Stearate	PPG-8-Ceteth-1	Stearyl Citrate
-myristyl Isostearate	PPG-8-Ceteth-2	Stearyl Lactate
Myristyl Lactate	PPG-10 Cetyl Ether	Sucrose Distearate
Myristyl Lignocerate	PPG-10 Cetyl Ether Phosphate	Sulfurized Jojoba Oil
Myristyl Myristate	PPG-28 Cetyl Ether	Sunflower Seed Oil Glycerides
Myristyl Neopentanoate	PPG-30 Cetyl Ether	Tall Oil Glycerides
Myristyloctadecanoic	PPG-50 Cetyl Ether	Tallow Glyceride
Myristyl Propionate	PPG-17 Dioleate	Tallow Glycerides
Myristyl Stearate	PPG-3 Hydrogenated Castor Oil	Tridecyl Alcohol
Neopentyl Glycol Dicaprate	PPG-30 Isocetyl Ether	Triisocetyl Citrate
Neopentyl Glycol Diocanoate	PPG-5 Lanolate	Trisostearin PEG-6 Esters
Nonyl Acetate	PPG-2 Lanolin Alcohol Ether	Trimethylsilylamodimethicone
Octyl Acetoxystearate	PPG-5 Lanolin Alcohol Ether	Triolein PEG-6 Esters
Octyldodecanol	PPG-10 Lanolin Alcohol Ether	Tris(Tributoxysiloxy)Methylsilane
Octyldodecyl Neodecanoate	PPG-20 Lanolin Alcohol Ether	Undecylpentadecanol
Octyl Hydroxystearate	PPG-30 Lanolin Alcohol Ether	Vegetable Glycerides Phosphate
Octyl Isononanoate	PPG-5 Lanolin Wax	Wheat Germ Glycerides

SKIN CONDITIONING AGENTS - HUMECTANT

Skin conditioning agents - humectant are cosmetic ingredients intended to increase the water content of the top layers of skin. This group of ingredients includes primarily hygroscopic agents employed for this specific purpose. A similar function is attributed to *skin conditioning agents - emollient*; *skin conditioning agents - miscellaneous*; and *skin conditioning agents - occlusive*.

 -stamide MEA
 -Jctose

Glucamine
Glucose

Glucose Glutamate
Glucuronic Acid

SKIN CONDITIONING AGENTS - HUMECTANT (Cont.)

Glutamic Acid
Glycereth-7
Glycereth-12
Glycereth-26
Glycerin
Histidine
Honey
Hydrogenated Honey
Hydrogenated Starch Hydrolysate
Lactose

Maltitol
Mannitol
Methyl Gluceth-10
Methyl Gluceth-20
PCA
PEG-10 Propylene Glycol
Polyamino Sugar Condensate
Propylene Glycol
Pyridoxine Dilaurate
Saccharide Hydrolysate

SKIN CONDITIONING AGENTS - MISCELLANEOUS

Saccharide Isomerate
Sodium Lactate
Sodium PCA
Sorbitol
Sucrose
TEA-Lactate
TEA-PCA
Urea
Xylitol

SKIN CONDITIONING AGENTS - MISCELLANEOUS

Skin conditioning agents - miscellaneous are cosmetic ingredients used to create special effects on skin. This group includes substances which enhance the appearance of dry skin and substantive materials which adhere to the skin to reduce flaking. A similar effect is attributed to *skin conditioning agents - emollient*; *skin conditioning agents - humectant*; and *skin conditioning agents - occlusive*.

Adenosine Phosphate
Adenosine Triphosphate
Alanine
Albumen
Aldioxa
Allantoin
Allantoin Ascorbate
Allantoin Biotin
Allantoin Calcium Pantothenate
Allantoin Galacturonic Acid
Allantoin Glycyrhetic Acid
Allantoin Polygalacturonic Acid
Aloe
Animal Collagen Amino Acids
Animal Elastin Amino Acids
Animal Keratin Amino Acids
Arginine
Asparagine
Aspartic Acid
C10-11 Isoparaffin
C10-13 Isoparaffin
C11-12 Isoparaffin
C11-13 Isoparaffin
C12-14 Isoparaffin
Camphor
Caprylyl/Capryl Glucoside
Casein
Cetyl Betaine
Chlorodeceth-14
Cholesterol
Cocamidoethyl Betaine
Cocamidopropyl Betaine
Cocamidopropyl Hydroxysultaine
Cocamidopropyl Lauryl Ether
Coco-Betaine
Coco/Oleamidopropyl Betaine
Coco-Sultaine
Cod Liver Oil
Cysteine
Cysteine HCl
Cystine
Decyl Betaine

Desamido Animal Collagen
Dicapryloyl Cystine
Diethyl Aspartate
Diethylene Tricaselnamide
Diethyl Glutamate
Dihydrocholesterol
Dipalmitoyl Hydroxyproline
Disodium Adenosine Triphosphate
Dried Buttermilk
Dried Egg Yolk
Egg
Egg Oil
Egg Yolk
Egg Yolk Extract
Ethyl Aspartate
Ethyl Ester of Hydrolyzed Animal Protein
Ethyl Glutamate
Ethyl Serinate
Ethyl Urocanate
Folic Acid
Fructose
Glutamic Acid
Glutamine
Glyceryl Lanolate
Glycine
Glycogen
Guanosine
Hexamethyldisiloxane
Hexyl Nicotinate
Histidine
Human Placental Protein
Hyaluronic Acid
Hydrogenated Animal Glyceride
Hydrogenated Honey
Hydrogenated Palm Oil
Hydrogenated Tallow Betaine
Hydrogenated Tallowtrimonium Chloride
Hydrogenated Laneth-5
Hydrolyzed Animal Elastin
Hydrolyzed Animal Keratin
Hydrolyzed Animal Protein
Hydrolyzed Casein

Hydrolyzed Human Placental Protein
Hydrolyzed Mucopolysaccharides
Hydrolyzed Silk
Hydrolyzed Soy Protein
Hydrolyzed Vegetable Protein
Hydrolyzed Yeast Protein
Hydroxylated Lanolin
Hydroxyproline
Isobutylated Lanolin Oil
Isoleucine
Isostearamidopropyl Betaine
Isostearyl Diglyceryl Succinate
Keratin
Laneth-4 Phosphate
Laneth-5
Lanolinamide DEA
Lanosterol
Lard Glycerides
Lauramidopropyl Betaine
Lauryl Aminopropylglycine
Lauryl Betaine
Lauryl Diethylenediaminoglycine
Lauryl Sultaine
Lecithin
Leucine
Linoleic Acid
Linolenic Acid
Lysine
Magnesium Aspartate
Magnesium Lanolate
Magnesium Sulfate
MEA-Hydrolyzed Animal Protein
Methionine
2-Methyl-4-Hydroxypyrrolidine
Milk
Mixed Isopropanolamines Lanolate
Mixed Mucopolysaccharides
Monosaccharide Lactate Condensate
Myristamidopropyl Betaine
Myristyl Betaine
Niacamide
Nonfat Dry Milk

SKIN CONDITIONING AGENTS - MISCELLANEOUS (Cont.)**SKIN CONDITIONING AGENTS - OCCLUSIVE**

Borvaline	PPG-16 Butyl Ether	Sodium Laneth Sulfate
Cleamidopropyl Betaine	PPG-18 Butyl Ether	Sodium Mannuronate Methylsilanol
Cleamidopropyl Hydroxysultaine	PPG-22 Butyl Ether	Sodium PCA Methylsilanol
Oleyl Betaine	PPG-24 Butyl Ether	Sodium Riboflavin Phosphate
Inositol Acid	PPG-30 Butyl Ether	Sodium Urocanate
Palmanidopropyl Betaine	PPG-33 Butyl Ether	Soluble Animal Collagen
Palmitamidopropyl Betaine	PPG-40 Butyl Ether	Sorbitol
Palmitamidopropyl Dimethylamine	PPG-53 Butyl Ether	Soyaethyl Morpholinium Ethosulfate
Palmitoyl Animal Collagen Amino Acids	PPG-2 Isostearate	Soy Protein
PEG-5 Hydrogenated Lanolin	PPG-10 Methyl Glucose Ether	Stearamidoethyl Diethylamine
PEG-10 Hydrogenated Lanolin	PPG-20 Methyl Glucose Ether	Stearamidoethyl Diethylamine Phosphate
PEG-2 Milk Solids	PPG-20 Methyl Glucose Ether Acetate	Stearamidopropyl Betaine
PEG-6 Soya Sterol Undecylenate	PPG-2 Myristyl Ether Propionate	Stearamidopropyl Dimethylamine
Phenylalanine	Pregnenolone Acetate	Stearyl Betaine
Polyglyceryl-2 Lanolin Alcohol Ether	Proline	Sulfur
Potassium Aspartate	Pyridoxine	Sulfurized Jojoba Oil
Potassium Caseinate	Pyridoxine Dicaprylate	Tall Oil Sterol
Potassium DNA	Pyridoxine Dilaurate	Tallowamidopropyl Betaine
PPG-9	Pyridoxine Dioctenoate	Tallowamidopropyl Hydroxysultaine
PPG-12	Pyridoxine Dipalmitate	Thiamine HCl
PPG-15	Pyridoxine HCl	Thiamine Nitrate
PPG-17	Pyridoxine Tripalmitate	Threonine
PPG-20	Resorcinol Acetate	Tocopheryl Acetate
PPG-26	Retinol	Tocopheryl Linoleate
PPG-30	Retinyl Acetate	Tocopheryl Nicotinate
PPG-34	Retinyl Palmitate	Tocopheryl Succinate
PPG-2-Buteth-3	Ribonucleic Acid	Tridecyl Salicylate
PPG-3-Buteth-5	Ricinoleamidopropyl Betaine	Tridecyl Stearate
PPG-5-Buteth-7	Salicylic Acid	Tryptophan
PPG-7-Buteth-10	Serine	Tyrosine
PPG-9-Buteth-12	Serum Albumin	Undecylenyl Alcohol
PPG-12-Buteth-16	Serum Proteins	Undecypentadecanol
PPG-15-Buteth-20	Silk	Uric Acid
PPG-20-Buteth-30	Silk Amino Acids	Urocanic Acid
PPG-24-Buteth-27	Silk Powder	Vegetable Oil
PPG-26-Buteth-26	Sodium Caseinate	Wheat Germamidopropyl Betaine
PPG-28-Buteth-35	Sodium Chondroitin Sulfate	Wheat Germamidopropyl
PPG-33-Buteth-45	Sodium DNA	Dimethylamine Lactate
PPG-4 Butyl Ether	Sodium Gluconate	Whey Protein
PPG-5 Butyl Ether	Sodium Glutamate	Whole Dry Milk
PPG-9 Butyl Ether	Sodium Hyaluronate	Witch Hazel Distillate
PPG-14 Butyl Ether	Sodium Lactate Methylsilanol	Witch Hazel Extract
PPG-15 Butyl Ether		

SKIN CONDITIONING AGENTS - OCCLUSIVE

Skin conditioning agents - occlusive are cosmetic ingredients which retard the evaporation of water from the skin surface. By blocking the evaporative loss of water, occlusive materials increase the water content of skin. Occlusive agents are generally lipids which tend to remain on the skin surface. Occlusivity is frequently attributed to *skin conditioning agents - emollient*. *Skin conditioning agents - humectant* and *skin conditioning agents - miscellaneous* sometimes exhibit occlusive properties upon application to the skin.

Acetylated Castor Oil
Acetylated Glycol Stearate
Acetylated Hydrogenated Cottonseed Glyceride
Acetylated Hydrogenated Lard Glyceride
Acetylated Hydrogenated Tallow Glyceride
Acetylated Hydrogenated Tallow Glycerides
Acetylated Hydrogenated Vegetable Glyceride

Acetylated Lanolin
Acetylated Lanolin Alcohol
Acetylated Lanolin Ricinoleate
Acetylated Lard Glyceride
Acetylated Palm Kernel Glycerides
Acetylated Sucrose Distearate
Aluminum Isostearates/Laurates/Palmitates
Aluminum Isostearates/Laurates/Stearates

Aluminum Isostearates/Myristates
Aluminum Isostearates/Palmitates
Aluminum Isostearates/Stearates
Aluminum Lanolate
Aluminum Myristates/Palmitates
Aluminum Stearate
Aluminum Stearates
Aluminum Tristearate

SKIN CONDITIONING AGENTS – OCCLUSIVE (Cont.)**SKIN PROTECTANTS**

Apricot Kernel Oil	Hydrogenated Rice Bran Wax	Propylene Glycol Diundecanoate
Avocado Oil	Hydrogenated Shark Liver Oil	Rapeseed Oil
Avocado Oil Unsaponifiables	Hydrogenated Soybean Oil	Rapeseed Oil Unsaponifiables
Betyl Alcohol	Hydrogenated Tallow	Rice Bran Oil
Betyl Isostearate	Hydrogenated Vegetable Oil	Rice Bran Wax
Betyl Stearate	Isobutylated Lanolin Oil	Safflower Oil
Bayberry Wax	Isostearyl Erucate	Sesame Oil
Bisphenyl Hexamethicone	Isostearyl Stearyl Stearate	Shark Liver Oil
Butter	Jojoba Butter	Shea Butter
C18-36 Acid Triglyceride	Jojoba Oil	Shea Butter Unsaponifiables
C30-46 Piscine Oil	Jojoba Wax	Shellac Wax
C10-18 Triglycerides	Lanolin Linoleate	Soybean Oil
Caprylic/Capric/Isostearic/Adipic Triglycerides	Lanolin Ricinoleate	Soybean Oil Unsaponifiables
Caprylic/Capric/Lauric Triglyceride	Lard	Soy Sterol Acetate
Caprylic/Capric/Linoleic Triglyceride	Lauryl Stearate	Squalane
Caprylic/Capric/Stearic Triglyceride	Linseed Oil	Stearoxy Dimethicone
Caprylic/Capric Triglyceride	Menhaden Oil	Stearyl Caprylate
Castor Oil	Methicone	Stearyl Caprylate/Caprate
Chaulmoogra Oil	Mineral Oil	Stearyl Erucate
Cherry Pit Oil	Mink Oil	Stearyl Heptanoate
Cocoa Butter	Mink Wax	Stearyl Octanoate
Coconut Oil	Moringa Oil	Stearyl Stearate
Cod Liver Oil	Neatsfoot Oil	Stearyl Stearyl Stearate
Corn Oil	Octyldodecyl Myristate	Sunflower Seed Oil
Cottonseed Oil	Octyldodecyl Stearate	Sweet Almond Oil
Dihydrogenated Tallow Phthalate	Octyldodecyl Stearyl Stearate	Synthetic Jojoba Oil
Diisostearyl Dilinoleate	Oleostearine	Synthetic Wax
Dilinoleic Acid	Oleyl Lanolate	Tall Oil
Dimethicone	Oleyl Linoleate	Tallow
Diocetyl Dilinoleate	Olive Husk Oil	Tallow Glycerides
Ditridecyl Dilinoleate	Olive Oil	Tricaprin
Egg Oil	Olive Oil Unsaponifiables	Trihydroxystearin
Erucyl Arachidate	Palm Kernel Oil	Trisononanoic
Erucyl Erucate	Palm Oil	Trisopropyl Triinoleate
Ethiodized Oil	Paraffin	Tristearin
Glyceryl Tribehenate	Peach Kernel Oil	Trisostearyl Triinoleate
Glycol Dibehenate	Peanut Oil	Triaurin
Grape Seed Oil	Pengawar Djambi Oil	Triauryl Citrate
Hazel Nut Oil	Pentadesma Butter	Triinoleic Acid
Hexadecyl Methicone	Pentaerythrityl Hydrogenated Rosinate	Triinolein
Hexanediol Distearate	Pentaerythrityl Tetraabietate	Trimethylolpropane Triisostearate
Hybrid Safflower Oil	Pentaerythrityl Tetrabehenate	Trimethylolpropane Trioctanoate
Hydrogenated C6-14 Olefin Polymers	Pentaerythrityl Tetraستearate	Trimethylsiloxysilicate
Hydrogenated Castor Oil	Pentaerythrityl Tetrasqualene	Trimyrustin
Hydrogenated Coconut Oil	Petrolatum	Trioctyl Citrate
Hydrogenated Cottonseed Oil	Phenyl Trimethicone	Triolein
Hydrogenated Jojoba Oil	Pristane	Trioleyl Phosphate
Hydrogenated Jojoba Wax	Propylene Glycol Dicaprylate	Triplamitin
Hydrogenated Lanolin	Propylene Glycol Dicaprylate/Dicaprante	Tristearin
Hydrogenated Lard	Propylene Glycol Dicocoate	Tristearyl Citrate
Hydrogenated Menhaden Oil	Propylene Glycol Dilaurate	Vegetable Oil
Hydrogenated Palm Kernel Oil	Propylene Glycol Dioctanoate	Walnut Oil
Hydrogenated Palm Oil	Propylene Glycol Dipelargonate	Wheat Bran Lipids
Hydrogenated Peanut Oil	Propylene Glycol Distearate	Wheat Germ Oil

SKIN PROTECTANTS

Skin protectants are the active ingredients used in over-the-counter (OTC) skin protectant drug products. In a proposed rule published by the U.S. Food and Drug Administration, "Skin Protectant Drug Products for Over-the-Counter Human Use" (48 Fed. Reg. 6820, February 15, 1983), a skin protectant is defined as "a drug which protects injured or exposed skin or mucous membrane surface from harmful or annoying stimuli."

EXHIBIT I

REDACTED