

CAI 4104/6108 — Machine Learning Engineering: Linear Models

Prof. Vincent Bindschaedler

Spring 2024

Administrivia

- Homework 0 has been graded
 - If you lost points, you should be able to see the feedback
 - Note: we are still trying to optimize the process
 - For questions/comments/concerns: please contact the grading team
- Future homeworks
 - Important: please do not change cell types
 - Changing cell types or adding cells interferes with the grading process
- Reminder: **Homework 1** is due **2/2**

Reminder: Supervised Learning

Classification

- Task: predict the corresponding label
- Different types:
 - Binary classification: there are only two classes (0,1; +,-, etc.)
 - Multiclass: more than two classes
 - Multi-label: each instance can belong to more than one class
 - One-class: there is only one class, we want to distinguish it from everything else

Regression

- Task: predict the corresponding value (typically a real number) or target
 - * E.g.: you want to predict a person's future income based on their high school GPA

Sequence-to-sequence, similarity learning/metric learning, learning to rank, etc.

Reminder: Training and Inference

- Training phrase:
 - We use a learning algorithm that takes as input:
 - * a training dataset
 - a loss function or objective function, and
 - a set/class of candidate models
 - to find the one model that best fits the training data (under some assumptions)
- Inference phase:
 - We feed new data to the model to get predictions
 - Hopefully the predictions of our model are accurate which means it generalizes

(Some) Learning Theory in 5 Minutes

General learning framework

- Learner's input:
 - Domain set: X stuff we want to label; often represented as a vector of features
 - * Label set: Y set of possible labels; e.g. Y={0,1} for binary classification
 - * Training data set: $S = (x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ sequence of labeled examples ("points") for training
- Learner's output:
 - Model h also called "classifier", "prediction rule" or "hypothesis"
- Assumptions:
 - ★ The training data is generated using a distribution D over X
 - * There exists a correct labeling function $f: X \to Y$
- Performance measures:
 - * Error of a classifier is the probability that a random x (sampled according to distribution D) is mislabeled
 - * Generalization error: $Err_{D,f}(h) = Pr_{x\sim D}[h(x) \neq f(x)]$

(Some) Learning Theory in 5 Minutes

- How do we train the model (i.e., how to select h)?
 - We have to select h from a hypothesis class \mathcal{H} , i.e., $h \in \mathcal{H}$
 - We also need to select h given the training data set S
 - Observation: we cannot compute the generalization error of h. Why?
 - We don't know the distribution D over X
 - However, we can compute the training error
 - * Training error (also called empirical error or empirical risk): $Err_S(h) = Pr_{i\sim [n]}[h(x_i) \neq y_i]$
 - \bullet In other words, the training error is the proportion of training data examples mislabeled by h
 - Empirical Risk Minimization (ERM):
 - * Select h to minimize the training error, i.e.: $h^* = \operatorname{argmin}_{h \in \mathcal{H}} \operatorname{Err}_{S}(h)$
 - What could go wrong here? Overfitting!

Concrete Formulation

- Supervised Learning ERM
 - Dataset $D = (x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
 - The model to be trained is a function f that is parameterized by parameters θ
 - * $f_{\theta}(x)$ is the predicted label (or a **probability distribution** over possible labels)
 - Training means finding the **best** parameters θ given the dataset D and a **loss function** l()

What about the loss of the model on new unseen data?

Linear Regression

Dataset

- Matrix X (n × m) and the target vector y (n × 1)
 - * Let x_i be the feature vector for example i and $y_i \in \mathbb{R}$ is the corresponding target/value

Prediction task:

- Given the feature vector x, predict the target/value $y \in \mathbb{R}$ as accurately as possible
 - * For example: given college GPA, predict future yearly income in USD

Linear Regression:

- The model is: $h_{w,b}(x) = w x + b$
 - * Here w x is the dot-product of w and x
 - i.e.: $w x = w_1x_1 + w_2x_2 + ... + w_mx_m$
 - * The prediction is: $y' = h_{w,b}(x)$
- Training the model means finding the optimal parameters $\theta^* = (w^*, b^*)$
 - What does optimal mean?

Linear Regression

Dataset

- Matrix **X** $(n \times m)$ and the target vector **y** $(n \times 1)$
 - * Let x_i be the feature vector for example i and $y_i \in \mathbb{R}$ is the corresponding target/value
- Prediction task:
 - Given a feature vector x, predict the target/value $y \in \mathbb{R}$ as accurately as possible
- Linear Regression:
 - The model is: $h_{\theta}(x) = h_{w,b}(x) = w x + b$
 - The prediction is: $y = h_{\theta}(x)$
- Training:
 - We want to minimize the Mean Squared Error (MSE) [this is called OLS]
 - * $MSE(w,b) := MSE(h_{w,b}, X, y) = 1/n \sum_{i} [h_{w,b}(x_i) y_i]^2 = 1/n \sum_{i} [w x_i + b y_i]^2$
 - Optimal parameters: $\theta^* = (w^*, b^*) = \operatorname{argmin}_{w,b} \operatorname{MSE}(w,b)$
 - Remark: MSE is the expected squared error loss
 - * Squared Error Loss (L₂ loss): $L(\theta) = [y h_{\theta}(x)]^2$

Linear Regression

Training:

- In Linear Regression we want to minimize the Mean Squared Error (MSE) [this is called OLS]
- Q: Why the squared error? Why not the sum of absolute value of error?
 - Why not minimize $L(\theta) = |h_{\theta}(x) y|$ instead?
 - This is called least absolute deviation (LAD) regression
 - · Pro: more robust to outliers
 - · Con: mathematically less convenient than OLS!
- Linear regression (i.e., OLS) has a closed-form solution!
 - Normal equation: θ* = (X^T X)⁻¹ X^T y
 - Do we need to use the normal equation? No!
 - We could use some optimization procedure (e.g., gradient descent)

Linear Regression: Stepping Back

What:

- An algorithm to solve regression problems
- Models the relationship between input (features) and output (target) as linear
- Objective function: minimize least squares error (OLS)

Advantages:

- Simple algorithm; fast to train; optimization problem has a closed-form solution
- Interpretable and explainable model (model parameters aka "coefficients")

Disadvantages:

- Susceptible to underfitting/high bias, especially for high-dimensional data.
- Highly sensitive to outliers (e.g., noise or poor quality data)

Polynomial Regression

- What if the data is non-linear?
 - Then a linear model won't fit (it will have high bias)
- Can we still use linear regression?
 - Yes, we can fit a linear model on non-linear data!
 - How? Add features that can capture non-linearity!
 - Example: suppose we have a single feature
 - * The linear regression model is: $h_{\theta}(x) = wx + b$
 - # If we add x^2 as a feature, then the model is: $h_{\theta}(x) = w_1 x + w_2 x^2 + b$

Polynomial regression

- If we have several features, say x, y, z, then we can consider all combinations of features up to some degree. That is:
 - * x^3 , y^3 , z^3 , x^2y , x^2z , y^2x , y^2z , z^2x , z^2y , xyz (and x, y, z, 1)
- Q: If we have m features and want all combinations up to degree k, how many features do we get?
 - * m+k choose k: C(m+k, k) = (m+k)! / (m! k!)

Next Time

■ Wednesday (1/31): Logistic Regression & SVM

- Upcoming:
 - Homework 1 is due 2/2 by 11:59pm