# Chapter 2 Network Models

## 2-1 LAYERED TASKS

We use the concept of layers in our daily life. As an example, let us consider two friends who communicate through postal mail. The process of ending a letter to a friend would be complex if there ere no services available from the post office.

Topics discussed in this section:

Sender, Receiver, and Carrier Hierarchy

#### Figure 2.1 Tasks involved in sending a letter



## 2-2 THE OSI MODEL

Established in 1947, the International Standards
Organization (ISO) is a multinational body dedicated
to worldwide agreement on international standards.
In ISO standard that covers all aspects of network
Immunications is the Open Systems
I erconnection (OSI) model. It was first introduced in
I late 1970s.

# Topics discussed in this section:

Layered Architecture
Peer-to-Peer Processes
Encapsulation



ISO is the organization. OSI is the model.

## Figure 2.2 Seven layers of the OSI model



#### Figure 2.3 The interaction between layers in the OSI model



#### Figure 2.4 An exchange using the OSI model



# 2-3 LAYERS IN THE OSI MODEL

In this section we briefly describe the functions of each layer in the OSI model.

# Topics discussed in this section:

Physical Layer
Data Link Layer
Network Layer
Transport Layer
Session Layer
Presentation Layer
Application Layer

### Figure 2.5 Physical layer





The physical layer is responsible for movements of individual bits from one hop (node) to the next.

### Figure 2.6 Data link layer





The data link layer is responsible for moving frames from one hop (node) to the next.

#### Figure 2.7 Hop-to-hop delivery



## Figure 2.8 Network layer





The network layer is responsible for the delivery of individual packets from the source host to the destination host.

#### Figure 2.9 Source-to-destination delivery



## Figure 2.10 Transport layer



Note

The transport layer is responsible for the delivery of a message from one process to another.

## Figure 2.11 Reliable process-to-process delivery of a message



# Figure 2.12 Session layer





The session layer is responsible for dialog control and synchronization.

## Figure 2.13 Presentation layer





The presentation layer is responsible for translation, compression, and encryption.

## Figure 2.14 Application layer





The application layer is responsible for providing services to the user.

#### Figure 2.15 Summary of layers



# 2-4 TCP/IP PROTOCOL SUITE

The layers in the TCP/IP protocol suite do not exactly match those in the OSI model. The original TCP/IP protocol suite was defined as having four layers: ost-to-network, internet, transport, and application. Owever, when TCP/IP is compared to OSI, we can y that the TCP/IP protocol suite is made of five ers: physical, data link, network, transport, and lication.

# Topics discussed in this section:

Physical and Data Link Layers
Network Layer
Transport Layer
Application Layer

#### Figure 2.16 TCP/IP and OSI model



# 2-5 ADDRESSING

Four levels of addresses are used in an internet employing the TCP/IP protocols: physical, logical, port, and specific.

# Topics discussed in this section:

Physical Addresses Logical Addresses Port Addresses Specific Addresses

## Figure 2.17 Addresses in TCP/IP



#### Figure 2.18 Relationship of layers and addresses in TCP/IP

