ARAL ARALISTS Short Qualtrying Eran Arril 39, 1985

Do as much as you can but remember that five correct solutions will count more than ten half-solutions

Throughout this exam (X.A.g) denotes an asbitrary measure space and A denotes Lebesgue cuker measure on the roal line ER

In I and 2 discuss the truth value of the lettered assertions quote theorems, give proofs or counter examples, etc.

- Let E be a k-measurable subset of IR.
 - (a) If $\chi(Z) \simeq 0$, then S contains a nonvoid open interval.
 - . (b) If E is closed but conquire no rational number, then $\lambda(E) = 0$.
 - (c) If $\lambda(\Xi)=0$, then Ξ is of first Baire category in $\Im R$.
- 2. Let $(f_n)_{n=1}^\infty$ be a sequence of p-integrable functions on K This means that each f_n is complex-valued, A-measurable, and $\int |f_n| dg < \infty$.
 - (a) If $\sum_{n=1}^{\infty} \int |f_n| d\mu < \infty$, then $\sum_{n=1}^{\infty} |f_n| = 0$ converges uses
 - (b) If $\lim_{n\to\infty} f_n(x) = 0$ for all $x \in X$, then $\lim_{n\to\infty} \int_0^x du = 0$.
 - (c) If $\lim_{n\to\infty}\int_{-n}^{\infty}fd\mu=0$, then $\lim_{n\to\infty}f_{r_{n}}(n)=0$ p-a.e.
- 3. Prove that if $(f_n)_{n=1}^n$ is a sequence of printegrable functions on X such that

$$\lim_{m,n\to\infty}\int |f_m-f_n|d\mu=0,$$

then there exist a subsequence $(f_n)^m$ and a $_n$ -integrable $_n$ $_k$ $_k$ =1

function f such that

(a) $\lim_{k\to\infty} f_n(x) = f(x) \quad y=x.s.$

and

(b) $\lim_{n\to\infty} \int |f-f_n| d\mu = 0.$

d. Let f : R - Me be tabesque integrable. Suppose that

$$\int_{-\infty}^{\infty} \tilde{\mathbf{f}}(\mathbf{x}) \mathbf{g}(\hat{\mathbf{x}}) d\mathbf{x} = 0$$

for each continuous $g: \mathbb{R} \to \mathbb{R}$ such that $(x \in \mathbb{R} : g(x) \neq 0)$ is bounded. Give a detailed proof that $f \neq 0$ almost everywhere.

- 5. Prove that there exist Banach spaces that are not reflexive.
- 6. Frove that if for $L_1(\mathbb{R})$ and going defined on \mathbb{R} by $g(x) = \int_{-\infty}^{c} f(t) e^{tX^{\frac{1}{2}}} dt,$

then

- (a) g is continuous on IR and
- (b) $\lim_{|\mathbf{x}| \to \infty} g(\mathbf{x}) = 0$.

[Hint: Snow that the set of $|\mathbf{f}|$ for which (a) and (b) hold is both dense and closed in $|\mathbf{L}_1|$

7. Let a x b be real numbers and let $f \in L_{\frac{1}{2}}([a,b])$ Define $F(x) = \int_a^x f(t) dt \qquad (a \le x \le b)$

and

$$V = \sup_{k=1}^{n} | \mathbb{F}(x_k) - \mathbb{F}(x_{k-1}) |$$

where this supremum is taken over all (finite) subdivisions $\{a = x_0 < x_1 < \dots < x_n = b\}$ of $\{a,b\}$. Prove that

$$V = \int_a^b f(\tau) |d\tau|.$$

8. For $f \in C(\{0,1\})$ and $n \in \mathbb{N}$ define $J_n(f) = \int_0^1 f(t) \frac{\sin nt}{t} dt.$

Prove that there exists such an f such that

$$\lim_{n\to\infty} |J_n(t)| = \infty.$$

9. Let a < b be real numbers and let φ : [a,b] \rightarrow IR be Borel measurable and satisfy

$$\lambda(E) = 0 \Longrightarrow \lambda(\phi^{-1}(E)) = 0.$$

(a) Prove that there is a Lebesgue integrable function $w: \mathbb{IR} \to \mathbb{IR}$ such that

$$\int_{a}^{b} f(\phi(t)) dt = \int_{-\infty}^{\infty} f(x) w(x) dx$$

for all bounded Borel measurable functions $f : \mathbb{R} \to \mathbb{C}$.

- (b) If $[a,b] = [0,2\pi]$ and $\phi(t) = \cos t$, then what is w?
- 10. Let f,g ϵ L₁([0,1]). Prove that the formula $h(x) = \int_0^x f(x-t)g(t)dt$

defines h almost everywhere on [0,1], that h ϵ L₁([0,1]), and that

$$||h||_{1} \stackrel{\leq}{=} ||f||_{1} \cdot ||g||_{1}$$

where $||\phi||_1 = \int_0^1 |\phi(t)| dt$ for $\phi \in L_1([0,1])$.