CS1270 Homework #1

Banner ID: B01532164

Warmup #1

For dealership:

Super keys:

- 1) dealership_name
- 2) dealership_name + city
- 3) dealership name + country
- 4) dealership name + city + county

Candidates keys:

1) dealership_name

Primary keys:

1) dealership_name

For cars

Super keys:

- 1) car_id + dealership_name
- 2) car_id + dealership_name + car_name
- 3) car_id + dealership_name + year_made
- 4) car_id + dealership_name + car_name + year_made

Candidate keys:

1) car_id + dealership_name

Primary keys

1) car_id + dealership_name

Warmup #2

- 1. $\pi_{driver_id}(\sigma_{age>45 \text{ AND state}="Rhode Island"}(driver))$
- 2. $\pi_{driver_name}(\sigma_{year_produced>1990\ AND\ year_produced<2000}(driver\bowtie car))$
- 3. $\pi_{car_id}(car) \pi_{car_id}(\sigma_{state="Rhode Island"}(driver))$
- 4. $_{\text{model}}$ **g** $_{\text{avg(year_produced)}}$ (car)

Problem #3

1 Answer:

#natural join table department and course to get the information about which course is provided by which department

#find courses from departments in CIT building

Temp2
$$\leftarrow \pi_{course_id}(\sigma_{building = "CIT"}(Temp1))$$

#natural join table student and takes to get information about which student takes which courses and save column "s-ID", "name" and "course-id" only

$$Temp3 \leftarrow \pi_{s_ID,name,course_id}(student \bowtie takes)$$

#natural join table Temp3 and Temp2 to find the students that take courses from departments in CIT building

$$Temp4 \leftarrow \pi_{s_ID,name}(Temp3 \bowtie Temp2)$$

#Find the students don't take courses from departments in CIT building

Result
$$\leftarrow \pi_{s \text{ ID,name}}(\text{students}) - \text{Temp4}$$

2 Answer:

#get only course-id, sec-id and time-slot from table section

Temp1
$$\leftarrow \pi_{\text{course id.sec id.time slot}}(\text{section})$$

#cartesian product of Temp1 itself and get all combinations of courses

$$Temp2$$
 ← $Temp1$ × $Temp1$

#rename the columns to make it more readable

Temp3
$$\leftarrow \rho_{Temp3(course_id1, sec_id1, time_slot1, course_id2, sec_id2, time_slot2)}$$
 (Temp2)

#select the different courses that have the same time-slot

$$Temp4 \leftarrow \sigma_{time_slot1 = time_slot2 \ AND \ course_id1! = course_id2 \ AND \ sec_id1! = sec_id2} (Temp3)$$

#get course-id and sec-id

Result
$$\leftarrow \pi_{course id,sec id}(Temp4)$$

3 Answer:

natural join table instructor and teaches to find information which instructor teaches which courses and save column "i-id", "name" and "course-id"

Temp1 ←
$$\pi_{i \text{ id,name,course id}}$$
 (instructor \bowtie teaches)

#find courses from "CS" or "Math" departments

$$Temp2 \leftarrow \pi_{course_id}(\sigma_{dept_name="Computer Science" \ Or \ dept_name="Math"}(course))$$

#find courses with no prerequisites

$$Temp3 \leftarrow \pi_{course\ id}(courses) - \pi_{course\ id}(prereq)$$

#find courses in the "Computer Science" or "Math" department or with no prerequisites

natural join table Temp1 and Temp4 to get the i-id and name of instructor that teaches courses in Temp4

Result
$$\leftarrow \pi_{i \text{ id,name}}(\text{Temp1} \bowtie \text{Temp4})$$

Problem #4

1 Answer:

#natural join table takes and course to get information about which student takes which courses and the course's department and save column "s-ID", and "dept-name" only

$$Temp1 \leftarrow \pi_{s_ID,dept_name}(takes \bowtie course)$$

#group Temp1 by dept-name and count the students that take courses from the department

```
\alpha \leftarrow_{dept\_name} \boldsymbol{g}_{count(s\_id)}(Temp1)
```

2(a) Answer:

result_a
$$\leftarrow \rho_{result(t_name,t_count,s_name,s_count)}(\alpha \times \alpha)$$

2(b) Answer:

$$result_b \leftarrow \sigma_{t \ count < s \ count}(course)$$

2(c) Answer:

```
result_c \leftarrow \pi_{t \text{ name.t count}}(result_a - result_b)
```

3 Answer:

 $\pi_{\underline{t_name,t_count}}(\rho_{\mathit{result}(\underline{t_name,t_count,s_name,s_count})}(\alpha \times \alpha) - \sigma_{\underline{t_count} < \underline{s_count}}(\rho_{\mathit{result}(\underline{t_name,t_count,s_name,s_count})}(\alpha \times \alpha)))$

Problem #5

1(a) Answer:

 $\alpha \leftarrow \pi_{s_ID,course_id}(\sigma_{dept_name="Math"}(takes \bowtie course))$

1(b) Answer:

$$\beta \leftarrow \pi_{course_id}(\sigma_{dept_name="Math"}(course))$$

1(c) Answer:

$$\gamma \leftarrow \pi_{s_ID}(\alpha) \times \beta$$

2(a) Answer:

$$\delta \leftarrow \gamma \, - \, \alpha$$

2(b) Answer:

$$result \leftarrow \pi_{s_ID}(\alpha) - \pi_{s_ID}(\delta)$$

3 Answer:

Step1:

Find all student IDs and the course IDs they take that are from "Math" department

$$\alpha \leftarrow \pi_{s_ID,course_id}(\sigma_{dept_name="Math"}(takes \bowtie course))$$

Step2:

Find the course IDs for all "Math" courses.

$$\beta \leftarrow \pi_{course_id}(\sigma_{dept_name = "Math"}(course))$$

Step3:

#Find the IDs of all students who have taken all "Math" courses. This is a more complicated way to do "division".

result
$$\leftarrow \pi_{s_ID}(\alpha) - \pi_{s_ID}(\pi_{s_ID}(\alpha) \times \beta - \alpha)$$