High-Dimensional Semi-Quantum Cryptography

Hasan Iqbal, Walter O. Krawec

Computer Science and Engineering, UConn

Objectives

Can we have unconditional security with limited Quantum resource?

- Restrict one parties capability.
- Bridge the gap between Classical and Quantum Realm
- Use less expensive Quantum hardwares
- Fallback option for fully fledged QKD

Introduction

- Perfect security is impossible with all-classical capabilities.
- Surprisingly, it is possible with quantum resources.
- Develop high-dimensional semi-quantum protocol with better security.

Figure: Quantum Key Distribution

Using qudits instead of qubits, modify The following figure shows a general depiction of high-dimensional semi-quantum QKD.

Figure: HD-SQKD

Materials

HD-QKD offers:

- More information transmitted in each iteration.
- Robust against quantum cloning.
- Better noise resistance.

HD-SQKD	OW-SQKD
$\begin{array}{c c} & & & & \\ \hline A_1 & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	One-Way A ₁ Rw (1) B A ₂
$ \psi angle = rac{1}{\sqrt{N}} \sum_{a} a,a angle \ U_F a angle \otimes \chi angle = \sum_{b} b,e_{ab} angle \ U_F \psi angle = rac{1}{\sqrt{N}} \sum_{a} a angle \sum_{b} b,e_{ab},b angle_{TEB}$	$ \phi\rangle = \sum_{b=0}^{N-1} \sqrt{p(b)} b, b, b\rangle_{A_1 A_2 B}$ $R_w b, b\rangle_{A_1 A_2} = \frac{\sum_a a, b, e_{ab}\rangle}{\sqrt{N.p(b)}}$ $R_w \phi\rangle = \sum_b \sqrt{p(b)} \left(\frac{\sum_a a, b, e_{ab}\rangle}{\sqrt{N.p(b)}}\right) \otimes b\rangle_B$ $= \frac{1}{\sqrt{N}} \sum_a a\rangle_{A_1} \sum_b b, e_{ab}, b\rangle_{A_2 EB}$

Reduction

Figure: Figure caption

Important Result

High-dimensional SQKD offers the best key-rate so far. Proof technique developed here is applicable to other protocols.

Mathematical Section

$$|z\rangle \in \{|0\rangle, |1\rangle, \dots, |N-1\rangle\}, |x\rangle = \mathcal{F}|z\rangle$$
 $|\phi_R\rangle = \sum_{b=0}^{2^n-1} \sqrt{p(b)} |b, b\rangle_{A_1A_2} \otimes |0\rangle_B$
 $|\phi_{MR}\rangle = \sum_{b=0}^{2^n-1} \sqrt{p(b)} |b, b, b\rangle_{A_1A_2B}$

HD-SQKD	OW-SQKD
1. A prepares $ z\rangle$ or $ x\rangle$, sends to Bob	1. Bob prepares and sends $ \phi_R\rangle$ or $ \phi_{MR}\rangle$ if he wants to reflect or measure respectively
2. Eve attacks with U _F	2. Eve attacks with U
3. Bob measures or resends in \mathcal{Z} basis	3. Alice measures A_1 and A_2 registers in \mathcal{Z} or \mathcal{X} basis
4. Eve attacks with <i>U_R</i> 5. Alice measures the returning n qubits in the preparation basis	

Figure: Figure caption

Evaluation

Figure: Figure caption

Conclusion

- We have proposed a new HD-SQKD protocol.
- Performed an information theoratic-security analysis.
- Showed how to reduce a two-way protocol to one way.

Additional Information

Maecenas ultricies feugiat velit non mattis. Fusce tempus arcu id ligula varius dictum.

- Curabitur pellentesque dignissim
- Eu facilisis est tempus quis
- Duis porta consequat lorem

References

[1] J. M. Smith and A. B. Jones. *Book Title*.

Publisher, 7th edition, 2012.

[2] A. B. Jones and J. M. Smith. Article Title.

Journal title, 13(52):123-456, March 2013.

Contact Information

• Email: hasan.iqbal@uconn.edu

• Phone: +1 (312) 975 7006