CONTROLE DE VAZÃO DE ÁGUA EM UM TANQUE DE SEÇÃO DE ÁREA VARIÁVEL

LENITA B. NAVARRO, LUCAS R. C. SANTANA

Laboratório Integrado VI, Departamento de Engenharia Elétrica, Universidade Federal da Bahia Rua Aristides Novis, n° 02, Federação, CEP: 40.210-630

E-mails: lenitanavarro@gmail.com, lucasrcsantana@gmail.com

Resumo— O presente trabalho tem como objetivo projetar e simular o controle de vazão de água em um tanque de seção de área variável. A partir da altura de equilíbrio estabelecida, projetamos um controle para operar bem em toda a extensão do tanque. As áreas variáveis foram linearizadas para atender as características do controlador PI. O controlador possui ganhos escalonados, ou seja, variados para cada altura de equilíbrio escolhida. As simulações foram realizadas no MATLAB e no Simulink.

Palavras-chave— Tanque, vazão, controlador PI, ganho escalonado, MATLAB.

1. Introdução

No mundo físico é muito comum a existência de sistemas não-lineares. Para que possamos realizar o controle efetivo desses sistemas é necessário lançar mão de técnicas mais elaboradas.

Será realizada a simulação de controle de um tanque de área de seção variável e não-linear que está localizado no Laboratório de Automação e Controle (LAC) do Departamento de Engenharia Elétrica da UFBA.

Para tanto foi realizada a linearização da área do tanque, variável não-linear, para cada altura de equilíbrio. Logo após foi realizado o projeto de um controlador Proporcional-Integrador (PI) com ganhos variáveis para cada altura de equilíbrio.

A atuação do controlador foi analisada, relatando-se as implicações da mudanças do ganhos do controlador e alterações nas condições do tanque.

2. Modelagem do sistema

Como foi não possível utilizar o tanque físico do LAC, foi realizada a medição dos tanques segundo a fígura 1. Foi utilizado o tanque 3 neste trabalho.

Figura 2.1 - Tanques do LAC

2.1 Identificação geométrica

O tanque 3 é regido pela equação de equilíbrio descrita na equação 2.1.

$$\frac{\partial h_3}{\partial t} = \frac{q_3}{A_3} - \frac{\sqrt{h_3}}{A_3.R_3} (2.1)$$

 A_3 é a área da seção transversal do tanque, h_3 é a altura de equilíbrio, q_3 é a vazão de água de equilíbrio e R_3 é a resistência da válvula de liberação da água.

$$A_3 = 2. \, esp. \, x_3 \, (2.2)$$

$$x_3 = \sqrt{R^2 - [R - (h_3 - 2,1)]^2} \, (2.3)$$

R é o raio da área circular do tanque 3 que é de 9,5 cm e esp é a espessura do tanque que é de 9,5 cm.

2.2 Modelo matemático

O sistema no espaço de estados, descrito na equação 2.4, necessita que as matrizes A e B sejam linearizadas, pois possuem elementos não-lineares, características do sistema.

$$x' = Ah + Bq$$
$$y = Ch + Dq$$
 (2.4)

Com a derivada da altura no ponto de equilíbrio em relação a h_3 e q_3 obtém-se as matrizes A e B, respectivamente.

$$A = \left[\frac{\partial \left(\frac{q_3}{A_3} - \frac{\sqrt{h_3}}{A_3 \cdot R_3} \right)}{\partial h_3} \right] (2.5)$$

$$B = \left[\frac{\partial \left(\frac{q_3}{A_3} - \frac{\sqrt{h_3}}{A_3 \cdot R_3} \right)}{\partial q_3} \right] (2.6)$$

$$C = [1] e D = [0] (2.7)$$

A função de transferência do sistema, adquirida através do espaço de estados, é descrita pela equação 2 8

$$G(S) = C(SI - A)^{-1}B + D$$
 (2.8)

Utilizando um ponto de equilíbrio para exemplificar o processo, escolhemos a altura de 18 cm e encontramos a função de transferência da equação 2.9.

$$G(S) = \frac{0,007497}{s + 0,002761} (2.9)$$

2.3 Resposta ao degrau

Com a função de transferência identificada foi possível analisar a resposta ao degrau da malha aberta e da malha fechada do sistema. As respostas obtidas são apresentadas na figura 2.2.

Figura 2.2 - Resposta ao degrau de G(s)

Com a figura 2.2 é possível evidenciar que a função de transferência G(s) possui um erro de 26,92% segundo as equações 2.10 e 2.11 utilizando a equação 2.9.

$$K_p = G(0) = 2,7153 (2.10)$$

 $e_p = \frac{1}{1 + K_p} = 0,2692 (2.11)$

Esse comportamento é semelhante para qualquer valor de altura de equilíbrio, uma vez que os parâmetros e as matrizes são relacionadas com a altura desejada.

3. Projeto do controlador

3.1 Caracterização do controlador

Uma vez que o sistema foi caracterizado por uma função de transferência, um controlador será projetado para que não haja erro em regime permanente e que o sistema alcance o regime permanente em menos tempo do que pudermos ver na figura 2.2.

O controlador escolhido foi o controlador PI.

$$C(S) = K.\frac{(s+z)}{s} \quad (3.1)$$

$$K_p = K$$
; $K_i = K.z$ (3.2)

A partir das equações 3.1 e 3.2 é possível caracterizar a função de transferência do controlador além das relações do ganho proporcional e integrador.

Para iniciar o projeto, o zero do controlador é escolhido de modo que seja 5% maior que o polo da malha aberta de G(s), garantindo que o sistema em malha fechada será mais rápido que o sistema em malha aberta.

O ganho K_p pode ser encontrado pela equação que define se um lugar do eixo real faz parte do lugar das raízes, caracterizada na equação 3.3.

$$K_p(-1,05.z) = -1.\frac{s}{G(s)(s+z)}$$
 (3.3)

Desejamos que o sistema chegue em regime permanente em menos de 150 segundos, logo teremos que nosso polo deverá ser maior que -0,0267 1/s. $S_d = -0.04$ será o polo desejado. O polo pertence ao lugar das raízes como podemos ver na figura 3.1.

Figura 3.1 - Lugar das Raízes com e sem controlador

Com o polo desejado é possível calcular o valor de K_p que será.

$$K_p = 5,3556 (3.4)$$

A resposta ao degrau unitário da função de transferência de malha fechada é apresentada na figura 3.2

Figura 3.2 - Resposta ao degrau da malha fechada com controlador

Com isto é possível analisar a influência do K_p na resposta no tempo do sistema. O K_p deixará o sistema mais rápido.

Não haverá sobressinal porque os polos e zeros do sistema são todos reais.

Assim o controlador, para a altura de equilíbrio de 18cm será:

$$C(S) = 5,3556.\frac{(s+0,0029)}{s}$$
 (3.5)

3.2 Escalonamento dos ganhos

Este mesmo procedimento deve ser realizado para todos os pontos do tanque até a altura de 21cm. Com isto será possível encontrar valores de K_p e K_i para cada ponto. Na figura 3.3 é possível notar a relação dos ganhos com a altura.

Figura 3.3 - Ganhos do controlador pela altura

É possível perceber a relação não-linear que os ganhos possuem com a altura de equilíbrio desejada.

No Simulink as duas funções de transferência serão interpoladas para que se possa encontrar os ganhos para qualquer valor de altura.

Essa técnica permitirá que o controlador tenha um desempenho bom em todos os pontos do tanque do que o projeto de um controlador para apenas um ponto. Neste segundo caso, o controlador só teria respostas satisfatórias na região do ponto de equilíbrio desejado.

4. Testes de desempenho

Uma vez obtido o controlador, suas relações e o escalonamento do ganho, foi possível realizar testes de desempenho e comportamento com o sistema.

Mais uma vez foi utilizada a altura de equilíbrio de 18 cm para a realização dos testes.

4.1 – Sinal de erro e controle

Na figura 4.1 é possível analisar o comportamento do sinal de erro e sinal do controlador do sistema.

Figura 4.1 - Erro e Sinal de controle

Com o sinal de erro é possível testar o desempenho do controlador. A figura de mérito IAE (*Integral of Absolute magnitude of the Error*) possui significado importante para o sistema. A IAE permite saber quanta energia é necessária para controlar o nível do tanque. Quanto maior a área abaixo da curva do erro, maior será a energia necessária. Uma análise semelhante é realizada para a curva abaixo do gráfico do sinal de controle.

$$IAE_{com Kp} = 383.6 \ ISE_{com Kp} = 4,966 \ (4.1)$$

$$IAE_{sem Kp} = 364,3 \ ISE_{sem Kp} = 199,81 \ (4.2)$$

$$U_{com Kp} = 3242; U_{sem Kp} = 605,34; (4.3)$$

4.2 – Variação do ganho proporcional

Os resultados das equações 4.2 foram obtidos integrando o sinal de controle U do controlador com o ganho K_p e sem o ganho K_p . É possível perceber que sem o ganho K_p o controlador irá gastar apenas 18,67% da energia. Porém com o ganho K_p o sistema entra em regime permanente com apenas 19,15% do tempo do que sem o ganho K_p no controlador.

Assim é possível inferir que o gasto de energia é inversamente proporcional ao desempenho do período transitório do sistema. É necessário dosar bem as necessidades do sistema para fazer a escolha entre uma das duas opções.

Essa relação fica mais clara na figura 4.2.

Figura 4.2 - Sinal de controle com e sem ganho Kp

Como este trabalho trata-se de uma simulação, o ganho K_p continuará fazendo parte do controlador.

5. Conclusão

O trabalho foi importante para analisar as implicações do projeto do controlador na resposta final do sistema.

O controlador PI foi utilizado por ser o de mais simples implementação que atendia as especificações do sistema. A análise do controlador mais simples é importante, porque resultado num menor custo de implementação física e menor custo de manutenção do processo. Um controlador PID gastaria mais energia em seu sinal de controle, o que significa mais custo.

O ganho K_p não interfere no regime permanente do sistema, mas faz com que o regime transitório seja mais rápido. Além disto, quanto maior o K_p , maior será o esforço do controlador para atingir o regime permanente. É importante ressaltar que o esforço do controlador é inversamente proporcional com o tempo de transitório do sistema. Sendo necessário fazer uma escolha do que é mais importante para cada projeto.

As figuras de mérito IAE e ISE (Integral of the Square of the Error) são importantes no momento da escolha dos parâmetros do controlador. Com o IAE podemos analisar a energia gasta para manter o nível do tanque na altura desejada. Com ISE podemos inferir que a resposta é lenta sem o ganho K_p , uma vez que esse critério dá peso maior para erros grandes. Logo podemos ver que o ganho K_p gera um critério ISE melhor, ou seja, resposta transitória mais rápida.

A escolha do zero do controlador é importante para garantir rapidez na resposta do sistema em malha fechada. Uma vez que o zero ao lado esquerdo do polo do sistema irá deslocar o Lugar das Raízes para a esquerda.

Agradecimentos

Um grande agradecimento ao professor Bernardo Ordonez que foi extremamente solícito em sanar as dúvidas e foi muito elucidativo durante as aulas.

Referências Bibliográficas

- Franklin, G.F., Powell, J.D. & Naeini, E., Feedback Control of Dynamics Systems, Addison-Wesley Publishing Company
- Aströn, K. J., Hägglund. T., PID Controllers, Theory, Design and Tuning, 2° Edition, Instrument Society of America, 1995.
- Ogata, K., Engenharia de Controle moderno, 4ª edição. São Paulo: Pearson, Prentice Hall