Versuch 236 Zur Stroin- und Ladungsmessung valvahomet.2 Lehnziele In diesem Vertrick sollen Anthon Funktionswise und Terrendung eines Dichspulgaluanometers nachwellrogen werden superdem soll die Genduigheet dieses Geroits untersucht werden. An Beispiel des gotvanometers sell der Einfluss von Dimpfungsgraden out die Bewegungsformen eines hoursonisch schwingungsfähigen Systems experimentell untersucht and verstanden werden. De Messverfahren mit einem Goldvarnometer (von Lordwing und (großen) Wederstoinden sollen gent werden · Erlauterungs Grehspulyalvanometers - Lufbour eines oc. von oben; Termocrent 1 Spule fred bourgetes! 6.1 seitlich : Torsconsorocht

An dem Jorgionsolpult himsel (diehlan) eine starge recht eckele Dreppule mit folgenden Ezigenschoeften: a. 1 Kuntenliengen a und f 6.1 Chrischer Wederstand Ry (1) Windungednowhl is. Diese befindet sich in einem zykundrischen Luftspalt, der uns den Polen zines Termomentmeigneten iend einen Weicheisenkern K besteht bzw. gebildet wird. - Krifte und Diehmomente: 1) Durch die Torsien des Drochtes erzeugtes Drehmoment (M) C Mo (t) = - D. q (t) mit ce (t) - Drehminkel.

6) Durch die mechenische Dimpfung der Spulenbeneffung erzeugtes Brehmoment (M)! M2(t) = -P. G(t) P-Diempfungskonstante, G't)-Diehgeschwisden keit) a.) Durch des Strom I (t) uzungtes elektrodynormisches Drehmement (Me): Me(t) = hock B I(t) mit B-Betroy des Mugnet felole
Nie (t) = 6. I(t) mit G=halb- Colvanomele fontante. Es wind außerdem durch die Drehung ein Spahnung (Und) indu zient : Uint (± = - \$\vec{\pi} = - 6 \cdot \vec{\pi}(t) mit \$\vec{\pi} - mougnetischen Fluss im

Incluktionsstrom : Lind (t) = Uind | Uind | Luftspalt. Tind (c) = Kat Ry Ry Rat Rules in Schlesungshreisens Es thingst ein geseinter Strom I+ I'm > Me = BI - Ry+Ra

Differentialyteichung für if (-)! $\theta \cdot \phi(t) + (f + \frac{G^2}{R_0 + R_0}) \cdot \phi(t) + D \phi(t) = G I d$ - Messung eines konstanten Stromstanke (I) North dem einschweingen erhalt man: M=DQ=GI Just die Stromenpfiellinklist (C1) gilt domit: C1 9 Form der Drehspule.
Fort der Schringens um die Rechelowse (I=0) G+ 1 (p+G+ D 9-0) Appendisher Genzfull (B = ce) : 1 (P+ R+Rx) = V 0 Bestimmung des Grangwid retandes (Ry) for B= co. RG1 = Ra = 2-VOD-P - Rg - Extloquing eines Kondensetons über- den Wedersteinel. - Messeny con Localung in einem Galfornometer. Es wind die Roportionalität zerschen der Lawlungsmenge (9) eines Kondensotors und dem (ersten) Museimalougechlags (4m) des éguliconometers ausgementent.

Fin bleine Doingsfung (B < co) und für eine sehr kleine Strom-Alusszeit It gilt: O co = G of (Drehimpuls) Mit dem Energieonsotte tolgt: $\frac{0}{2}(\dot{\varphi}_{(st)})^2 = \frac{G^2q^2}{20} = \frac{0}{2}\varphi^2m$ (Bolationsenergie = polenlielle Energie) = 1 9m = 6 d Voraufgaben Aufgabe 236. A: Schnittomsicht: Allejameine Definition der herentskræft. Demit gilt: |F= IaB. sin (90° - q) = |F_3| und Fz = 16 B sin 90° = 16B = Fn Die Kriefte F und F Leben sich auf, meht abor Found Fy. Damit kann man umfarmen; Me (t) = halo IB = hal F2 = hal Fy then die sich aufhebenden kroufte hoengen vom Diehvinkel al Aufozbe 236 B: Es gilt : U ind = - \$ = - 6 \$ - Uind - 4 Diese proposionalität ergitt sich deuturch, dass der Geschwein digkeitsrektor seanksecht auf des (homogene Illegretfeld teen gesounten Mugnetischen Huss (El trougen fer - den Maynetische Fliss des Permoinentmayneten (2 m241)

- der Mugnetische Fluss des inderzierten Stroms (Dini) I = I nayn + tet & ind Aufgabe 236 D: Es munde der Term ourger ocht delæssen, der durch die U:nd = - L · I selbstimuliention intetett: Disser dout vermedoissigt weaten, de Bleichston verwentde word and danit I = 0 => Und = -I.L.-0 Aufgabe 236, E Dus Drehmoment für olsesen Fall wierde berechtnet werden Me = anb BI cos (q) = GI cos (p), and downit: 9 = G I (cos (p) Es entsteht sine WS(Q) (mit Q- Drehwinkel) Hohoingy gheit Aufgübe 236 F: Betsochte die einzelnen Einheiten: $[G] = kgm^2, CPI = Nm5 = \frac{kgm^2}{5} = I[B] = \frac{1}{5}$ Wood mit co: = - and [D] = kg m = 15°, [O] = kg m2 =) [ce; =] = [co;] = 1 Aufgabe 236 6 Doe bei den Messungen ein Einschwung phoese vennieden werden soll wird der aperisolische Granafall preferiert (da dieser sich & besonders schnell der Mullarge nichent), Dieser Fall antsprecht læsst sich über Rager bestimmen, da Ran = Ra (und samit B= (00) getten muss. 2. Ein höheren Wesdenstound ermöglicht eine verningsnung der Massimulamentitude and kinn to siner literschwindung fahren

Auf gabe 236. M.
Es gitt: CID D D Wenn man C. AMH vengroßern soll kann man: - a 6. h color B größer wichten / einstellen. Aufgabe 236. I Sourch a b sels duch in missen in praktischen Grenzen bleiben denn das Messgerich dast nicht zu groß werden. Bist durch die große tim Starke von Magneten begrenst, D from sway theoretisch wendlich klein werden, proektisch aben ist ein su gevinger West richt creekbar. Aufgabe 236 J $G_{1} = \frac{C}{E}$ $C\varphi_{J} = m$ $C = \frac{1}{E}$ $C = \frac{1}{E}$ $C = \frac{1}{E}$ Nufgzer Z36.K: Bereits beforete Methoden. - Wheatston' sche Bricken sochaltung - Ohnsehes Gesetz R= 4 für kleine Strome - DMM Diese Methoden konnen schlicht fei hahen Widerstünden verwendet mengestet werden, da dabei kaum strom fließt und oleher die Kessung von Strom und spormung schlecht durchfutrofor ist

236 12 Versuchs durch führung 1 Eigenschaften eines Drenspulgzlvanometers Aufgibe 236 ec. 1) offener Stormkreis; es wurde beobachtet, dass sich die Jule 1 frei diehen ließ. Verregentaune Stromteres ! ein Magnetfeld, dieses wirkt seiner Urseche entgegen und downit entsteht sine spiirboere Knoeft! Die Spiele lieset sich nicht mehr frei obshen. Aufgabe 236.b. Es soll mit der folgentolen Schaltung der aperiodische Grenzfall exeicht werden und down unter den Bedingung RAR: des Essenzucidesstand (durch ausprobieren reschiedenen Wide stande Ra bestimmt werden. Schooltung Groote: Mezsfiehler: - - DMM - kleinste angezeigte Helle a lo la Rac 2.) mittlere Genichte: Ro = R 6, = (301, 5 ± 0, 1) 12 3.1 große Gewichte: Ru= Rov = (251,5±0,1)-2 Dieser zusamenhang spiegelt sich in der bleichung! Ru = Rin = 3100 - D - Ry weeden

der de Bruch je grobber die Masse desto der Wenzwielenstown 2361. Autolabe Schoeltung foldender (mut Schoeltein Stello (mit dem WIIII bestimmt wwwlen Uo = 1939 + 0,09) K= 1100 = 11 C 1/ R, = (4, E = 0,1) Ungechning Ex foldt whie Von ZOL Messher (bestimmt wit der godiffse R [Ohm] ϕ [Skt.] delta(ϕ) [Skt.] 1/ ϕ [1/Skt.] delta(1/ ϕ) 100 170 10 0.006 0,00035 200 97 3 0,010 0,00032 300 68 2 0,015 0,00043 400 52 2 0,019 0,00074 500 42 2 0,024 0,0011 600 35 0,029 0,0008 1 700 30 0.0011 1 0,033 800 26 0,038 0,0015 900 23 0,043 0,0019 1000 21 0,048 0,0023 His tohungigheit Turshen werden (dus flotzdrunden Seite

AU+02be 236. 4: Es soll der West von Rog mit einem DMM Demessen werden and met dem expechantien West verglichen werden Messengetniss; Rd = (23 ± 2) 52 Relative Atmelching 1 + 26 1% Die Abweichung ist ielorten groß man willte aber ouch die Messteller beachten Beide Weste (execute und demessen) liegen im jeweeligen Fehlerbreich voneindunder Duker ist der direkte vergleich der Messwerte nicht so sussongehoo tig wie des betrachten der Messtehler. Die Lohan Messtehler Jassen sich wachtscheinlich observent zurückführen, dass sehr vielt fehler beshoeftete großen int die Bestimming von Ka einfließen (19614) 12 pc 236 d Es soll der Ausschlag (54) für ein Ra mit verschiefdenen Lusutzgewichten gemessen und dusgementet merden. Konstonten Wederstand! Ru = (1000 ± 2) 2 Don so non ween Thoule abyelesen wind ist die Große ge aver ichtbeerheit olen Anzeige I mit Waterschiedlichen Jehlenn behoer 1. while Bernickte 16 = (21 ± 1) 2.1 kleine Cerrichte: 149= (21±1) 8. 1 mittles Gewichte, 19 = (Apr 21 = 2) 4.) große bewichte: (4 (20 ± 1) wind heine (significante) Whinderung des Ausschlaus beobuchtet dies læsst sich mit folgenden Lusummenherng 9= 0,I = C, I Erklichen hat herre lineaux (oder anderweitige) Abhoryteet von den Theigheitstenson & and alumit dech micht von der Mosse

236. 2. 2 Versuch sour on fahrung Z. Ballistisches Galvahometer Wix der folgepolen Schoeltung will ein großer Wiolerstand Rx (in unsern Fall R;) bestimmt weeden Messlehler und Weste - Spanningsquelle - 40 = (4,35 ± 0,01) V - C = 10 MF LT - Kondensoctor - Stoppuls Realtionszeit : ± 0.55 - Dichwinkelshald - Allesstehler is no Ausschurg! Zum bestimmen vom Wederstand Rx = Rs wird outs erstes die Abhungkiffeit von dem Musemulousschlag ig, und der Entholdezeit eines Kondonsaktors (1t) gemessen und graphisch dungestalt Die Feit Dt ist oloter die Eest die vergeht zwischen dem offnen von schoelter 5 und umklaggen des Umschaelters W Bein öffren von S fringt der (zu diesem Eestpunkt gelow ne Konfelensotor (dn sich zu entlowen über den Wiolerstand R Wenn mon nun den Umschwelter W festatioft wind die der konden school und en Deceler des Gale ensmeter und verussacht den Mornimolvusschlag 4m Tur holblogorithmischen Dorp-Δt [s.] |delta(Δt)| φ_m |delta(φ_m)| ln(φ_m) | delta(ln(φ m)) 0,10 3,69 stelling wird on the 16 (Jm) 0,11 3,64 8,31 0,5 0,11 3,58 15,12 0,5 36 umgerechtet und der Fehler 0,12 25,56 0,5 33 3,50 0,13 30,18 0,5 3,18 delta ((infin) mit der Fehler -3,00 0,15 35,16 0,5 0,17 2,89 40,05 0,5 fortyflowning with laufs 0,15 2,56 50,22 0.5 2,20 0,11 0,5 bestumt (siehe Tabelle)

Halblogarithmische gruphische Darstellung st. Ashangigher Aufgabe 236.h: $\log(\phi_m)$ gegen die Zeit 3.75 3.50 3.25 (^ωφ)60 2.75 2.50 $-\log(\phi) = -0.027 * t + 3.961$ 20 30 50 10 40 60 Zeit t [s] Steingunof der \$ 6/ = 0/0. e zur geroedengleichung! (mit digital bestemmten a = -0.0274) R = 3,6996 Ms Mit der Tehlenfortyflornang noch bourt engitt sich OR, = AR = 298036 IZ = 0, 293 M.C. Mac = 0.00 ZZ (3,6496 ± 9,295) M-2 12 13 13 ± 0 8 Durch die helblogasithmische Derstellung wird der Konstoente und beeingli weeker die Stesquing, noch die lineage entwicklung von (n. com). Duken ist es micht notig den Mornimoelolsschlorg im in die Tiel des durchgeführeten versuchs wer es die Funktionsweise und die Verwendungsmecke eines Drehspulgalvanemeters noich zwollziehen. Die Venzuchsteile ir und b sollten zu einem besseren Tenstandnis für docs Doempefrengsverhalten eines Gollvanometers führen die Verzuchsderchführung enzub ders erwartete Verhoelten. Die Versuchsteile c bez of konnten leider nicht sinnoll durchgefricht werden die meisten Fehlenquellen wurden daber oursgrechlossen so clocks der Undwert auf ein fellesfierttes Drehspulgali anometer testeht. Downit dennich eine inn volle Auswertung aluschyptichet werden konnte wurden Weste übernemmen. Diese huben donn in der Auswestung dus conoce tete Engebniss geliefent. Durch diesen Versuchsteil warde does Verstoindnis für die Stromempfiondlichkeit und den die Methede sur testimming dis Innerwidestands unes Culvanameters vestieft im letzten Feil des Verenchs sollte die Messung en- 3 opopen Wilesstandes mit einem Galvanometer geitt und nochvollzogen werden, such hier fichite die tururstung zum ungestretten Engetnis. Allgemein konn man sugen dass die Juswestung der zinselnen Teelversuche derchaus erfolgseich was lediglish die Durchführung & was problematisch aufgrund eines ulsmittich fehleshaften Drefspulgalvano-

- Bukentire der 1) hadracide Nachbesserung Der Aufbolic des Versuchs (insbegondere der Spiedel) hat einen signifikænten (zuvor micht beachteten, Einflus auf die Messengebnisse. Eur Anschauligheit folgt eine Skirze des Authores ion lightstochl Spriegel und Ablesevorrichtung V Skala Bisher winde für den Winkel ig der Winkel 2 g ungenomme was zu verdappling fan haltiering van unigen Westen ge witht hat Duker wurden die Weste nun nochmal mit dem tatsoichlichen Winkel og berechtnet und die Groghen neu etstellt. Du Aufgate 236 C! 1/φ [1/Skt.] | delta(1/φ) R [Ohm] ф [Skt.] delta(φ) [Skt.] 0,012 0,001 100 0,021 0,001 200 48,5 300 0,029 0,001 0,038 0,001 400 1 0,048 0,002 500 21 0,057 0,002 0,5 600 17,5 0,067 0,002 700 0,003 13 0,077 0,5 800 0,004 11,5 0,5 0,087 900 0,005 10.5 0,5 0.095 1000 Aus den konsegsenten Werten wurde die Abhaings kest von to und

Hier weer		der die	dustembres	ng fetye	ichtet , daher	folgen
jetzt die	korvegie	stin Mi	sswerte 1	unit der	r holbierten	Auglen-
kungen:	Δt [s.]	delta(Δt) φ_m	delta(φ_m)	ln(φ_m)	delta(ln(φ_m))	
	5,41	0,5 20	2	3,00	0,10	
	8,31	0,5 19	2	2,94	0,11	
	15,12	0,5 18		2,89	0,11	
	25,56	0,5 16,5		2,80	0,12	
	30,18	0,5 1	 		0,13	
	35,16	0,5 10		2,30	0,15 0,17	
	40,05	0,5 6,5		1,87	0,15	
	60,21	0,5 4,5			0,11	
Die Musse	1111 121	furen su	ch esento	elle (no	ch brounds)	
	The state of the s					11
Mit des	- Korrega	exten u	cuten is	wrole d	il halbloge	exithmis
drughische	Doustelle	ing des	yn st- a	Changey	hert new Jean	attet.
y wymsere		7	7-12-1	10	J.	
		Korrigiorto	r Plot Aufant	ne 226 h		
		Romgierte	r Plot Aufgal	á l		
	3.00		 In(φ) =-0.0 Messwerte 	027 * t + 3.	26/	
	2.75		I MESSMELTE			
	2.50					
	© 2.25					
	2.00					
	2.00					
	1.75					
	1.50					
		*			1 412	
		10 20	30 40	50	60	
			Zeit t / s			
				1 1 1 1		
		3 , , 11				
Man Kan	n nun	feststille	n, olass se	ich die	Steigung 10	e) durch
day hall	egen de	* Auslen	kung nic	ht vero	indert host	und old
11	/		0 1			11.11
im folge	noten R	x mil	Kx = - oce	bestim	ant winde	beeibt
auch diese	er West	unverido	rolest 1	R = 13.4	±03)M2	

