A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 1EG

Bookmark

Show all steps: ON

Problem

If H is a subgroup of a group G, let X designate the set of all the left cosets of H in G. For each element $a \in G$, define $p_a: X \to X$ as follows:

$$p_a(xH) = (ax)H$$

Prove that each p_a is a permutation of X.

Step-by-step solution

Step 1 of 4

Assume that G be a group and H be its subgroup. Consider that X is the set of all the left cosets of H in G. Define a mapping, for some $a \in G$, $p_a: X \to X$ by

$$p_a(xH) = (ax)H$$

Objective is to prove that each p_a is a permutation of X.

The defined mapping p_a will said to be a permutation on X if it is bijective. That is, it is sufficient to prove that p_a is one-one and onto map.

Comment

Step 2 of 4

To show that mapping p_a is one-one, consider two typical elements $x, y \in G$ such that

$$p_a(xH) = p_a(yH)$$
$$(ax)H = (ay)H$$
$$axH = ayH$$
$$xH = yH.$$

The last step is obtained by the left cancellation law of group G. Since the condition

Commen	t
	Step 3 of 4
so a^{-1}	is the left coset of H in G , then $a^{-1}xH \in X$. This is so because G is a group and $a \in G$ of G . Then, $H = (a(a^{-1}x))H$ $= (aa^{-1}x)H$ $= exH$ $= xH$.
Note that map.	$xH\in X$. This tells that every element of X has a pre-image, and so p_a is an onto
Commen	t
	Step 4 of 4
Thus, p_{c}	is a permutation of X .
Commen	