

532577

Rec'd PCT/PTO

2 APR 2005

(12)特許協力条約に基づいて公開された国際出願

101532577

(19)世界知的所有権機関  
国際事務局(43)国際公開日  
2004年5月6日 (06.05.2004)

PCT

(10)国際公開番号  
WO 2004/037904 A1

(51) 国際特許分類<sup>7</sup>: C08J 7/00, 3/20, C08L 101/00

(21) 国際出願番号: PCT/JP2003/013497

(22) 国際出願日: 2003年10月22日 (22.10.2003)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:  
特願2002-308111  
2002年10月23日 (23.10.2002) JP  
特願2003-143952 2003年5月21日 (21.05.2003) JP

(71) 出願人(米国を除く全ての指定国について): 富士電機ホールディングス株式会社 (FUJI ELECTRIC HOLDINGS CO., LTD.) [JP/JP]; 〒210-0856 神奈川県川崎市川崎区田辺新田1番1号 Kanagawa (JP).

(72) 発明者; および

(75) 発明者/出願人(米国についてのみ): 管野敏之 (KANNO,Toshiyuki) [JP/JP]; 〒210-0856 神奈川県川崎市川崎区田辺新田1番1号 富士電機ホールディングス株式会社内 Kanagawa (JP). 矢島あす香 (YAJIMA,Asuka) [JP/JP]; 〒210-0856 神奈川県川崎市川崎区田辺新田1番1号 富士電機ホールディングス株式会社内 Kanagawa (JP).

(81) 指定国(国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国(広域): ARIPO特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ヨーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

## 添付公開書類:

— 國際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイドノート」を参照。

(54) Title: RESIN MOLDED PRODUCT FOR ELECTRIC PARTS AND MANUFACTURING METHOD THEREOF

(54) 発明の名称: 電気部品用樹脂成形品及びその製造方法

WO 2004/037904 A1

(57) **Abstract:** A display device capable of displaying a 3-dimensional image without reducing to half the resolution for displaying a 2-dimensional image and preventing increase of the device size. The display device includes a light emitting device having a plurality of pixels and an optical system arranged at one plane side of the light emitting device. The light emitting device is arranged at each of the plurality of pixels. Two electrodes of a light emitting element are light-transparent. The optical system controls light traveling directions emitted from a plurality of pixels so that one of the two adjacent rays is incident in the left eye of an observer and the other ray is incident in the right eye of the observer.

(57) 要約: 本発明は、耐熱性、機械特性、電気特性、寸法安定性、難燃性、及び成形性に優れ、かつ通常の射出成形が可能な電気部品用の樹脂成形品およびその製造方法を提供する。熱可塑性ポリマーと、主骨格の末端に不飽和基を有する多官能性のモノマー又はオリゴマーからなる架橋剤と、無機充填剤と、強化繊維とを含有する樹脂組成物を成形固化した後、放射線で前記熱可塑性ポリマーを架橋してなる。架橋剤は、あらかじめ無機充填剤に吸着させる吸着工程の後、熱可塑性ポリマーと、強化繊維等とを混練し、射出成形後に放射線照射を行なう。

## 明細書

## 電気部品用樹脂成形品及びその製造方法

## 技術分野

本発明は、例えば、電磁開閉器等の接点支持用の部材やハウジング等として好適に用いられる、耐熱性、難燃性、寸法安定性等の熱的特性、耐磨耗性等の機械的特性に優れる電気部品用の樹脂成形品及びその製造方法に関する。

## 背景技術

一般に、電気部品等に用いられる樹脂成形品は、汎用のプラスチックに比べて、高度の強度、寸法安定性、耐磨耗性等の機械的特性に加えて、耐熱性、難燃性等の熱的特性が要求される。このような電気部品用樹脂成形品としては、従来より、エポキシ樹脂やフェノール系樹脂等の熱硬化性樹脂が多く使用されている。

しかし、近年、電気部品用樹脂成形品は、薄肉成形品による軽量化、機械特性や難燃性の向上に加え、更に環境への対応としてリサイクル性が要望されており、これらの要求性能の点から、熱可塑性樹脂を用いた電気部品用樹脂成形品が検討されている。

一方、上記の電気部品の一例である電磁開閉器は、制御システムの重要な構成部品として、PLCやインバータなど電子応用装置の使用回路やコンデンサ負荷開閉など幅広い分野で使用されており、この成形品は、摺動性を要求される接点で発生する熱及び接点の繰り返し運動による負荷に耐える必要があることから、上記のような機械的強度、耐熱性、寸法安定性、電気的特性、難燃性等に関して高度の物性が要求される部品の一つである。

また、成形品は、薄肉成形が可能で、生産性が良く、寸法精度が要求されるために射出成形などの成形法によって製造されることが多いことからも、汎用の熱可塑性樹脂が使用できることが好ましい。

しかし、熱可塑性樹脂を使用する以上、樹脂単独では耐熱性、機械強度、寸法安定性、難燃性に限界があり、特に上記のような電磁開閉器においては、コスト・軽量化等を含めてすべての要求特性を満たすことは困難である。このため、各種の強化材の添加や、樹脂の改質等が検討されている。

例えば、熱可塑性樹脂の改質として、電子線や $\gamma$ 線等の放射線によって熱可塑性樹脂を架橋し、耐熱性の向上により機械強度・表面の磨耗性を向上されることが知られており、電線の被覆の際に溶融ポリエチレン樹脂（PE）を電子線架橋する方法や、ポリエステル樹脂成形品を放射線重合することで樹脂改質可能なことが、非特許文献「ポリマーの友」，Vol. 17, No. 7, P 435～444 (1980) に開示されている。

また、ポリアミド系樹脂に架橋剤を添加した後、放射線照射によって架橋して耐熱性等を向上させ、架橋剤として、トリアリルシアヌレートや、トリアリルイソシアヌレートを用いることが、特開昭57-119911号公報、特開昭59-12935号公報に開示されている。

また、ポリアミドとポリエーテルアミドとの共重合体に、多官能性アクリルモノマー又は多官能性メタクリレートモノマーを含有せしめてなる樹脂組成物であって、放射線照射架橋されている熱回復性物品が、特開昭61-7336号公報に開示されている。

更に、加熱によって架橋する架橋剤を用いた架橋型ポリアミド系樹脂として、

(A) ポリアミド系樹脂と、(B) 特定構造の1, 2-ジフェニルエタン誘導体又はジイソプロピルベンゼンオリゴマーから選ばれる1種のラジカル発生剤と、(C) 分子中に少なくとも2個以上の炭素間二重結合を有する多官能モノマーとからなるポリアミド系樹脂組成物、及び、それを220～320°Cの温度で加熱・架橋して得られる架橋型ポリアミド系樹脂が、特開2001-40206号公報に開示されている。

また、その他の樹脂改質方法として、シランカップリング剤によって樹脂を架橋硬化させることも、非特許文献J. App. Polymer. Sci., Vol. 28, 3387～3398 (1983) によって知られており、例えば、ポリアミドを主体とするポリマーと、無機充填剤と、シランカップリング剤とを含有する樹脂組成物を成形固化し、射出工程後に加熱してシランカップリング剤によって架橋硬化させる電気部品用樹脂成形品が、特開2002-265631号公報に開示されている。

更に、難燃剤としてメラミン誘導体、シアヌル酸、イソシアヌル酸を配合してポリアミド樹脂に難燃性を付与することも、特開昭47-41745号公報、特開昭51-39750号公報により検討されている。

しかし、上記の従来技術のうち、特開昭57-119911号公報、特開昭59-12935号公報、特開昭61-7336号公報に開示されているような、放射線による架橋を用いた熱可塑性樹脂成形品においては、架橋硬化による収縮や樹脂分解を起こし

やすく、これによる変形を起こしやすかつた。また、樹脂中に練り込むときや成形の際に、架橋助剤が気化して発泡したり、組成が変化しゲル化したりする恐れがあった。更に、金型の表面を汚染して、成形性が悪く薄肉・精密な成形品が得られないという問題点があった。更に、難燃剤等を添加した際にブリードアウトして均一な樹脂組成が得られないという問題もあった。

また、上記の電磁開閉器やコネクタ、又はブレイカー等の成形部材として使用する場合、放射線架橋によって、架橋剤の未反応のモノマーや分解ガスが発生したり、オリゴマー化したものがブリードアウトして電極等の金属汚染を起こしたり、駆動時に付着して誤動作を引き起こしやすく、更に耐磨耗性等の機械特性を低下させたり寸法変化を起こすという問題があった。

また、特開2001-40206号公報や特開2002-265631号公報に開示されているような、熱触媒やシランカップリング剤による架橋硬化を行なう樹脂組成物においては、射出成形時の金型中における加熱によっても、架橋反応が一部進んでしまう。このため、架橋の制御が困難であり、また、成形時の余分のスプール部はリサイクルができないという問題があった。

また、特開昭47-41745号公報や特開昭51-39750号公報に開示されているような、メラミン誘導体、シアヌル酸、イソシアヌル酸の配合による難燃性の付与においても、得られる成形品の耐熱性、寸法変化、機械特性が不充分であるという問題があった。

### 発明の開示

したがって、本発明の目的は、耐熱性、機械特性、電気特性、寸法安定性、難燃性、及び成形性に優れ、特に電磁開閉器等の接点支持用部材やハウジング等として好適に用いることができ、しかも熱可塑性樹脂を使用して射出成形に適した電気部品用の樹脂成形品及びその製造方法を提供することにある。

上記課題を解決するため、本発明の電気部品用樹脂成形品は、熱可塑性ポリマーと、主骨格の末端に不飽和基を有する多官能性のモノマー又はオリゴマーからなる架橋剤と、無機充填剤と、強化纖維とを含有する樹脂組成物を成形固化した後、加熱又は放射線で前記熱可塑性ポリマーを架橋してなることを特徴とする。

本発明の電気部品用樹脂成形品によれば、加熱又は放射線で主成分ポリマーを3次元

網目構造に架橋化反応させることにより、耐熱性と機械強度を向上させることができ、更に、無機充填剤と、強化纖維とを併用することによって架橋に伴う収縮や分解を抑え、化学的安定性、耐熱性、機械特性、電気特性、寸法安定性、難燃性、及び成形性の全てに優れる樹脂成形品を得ることができる。更に薄肉成形加工も可能になる。

また、放射線架橋の場合には、射出成形等の加熱成形時には架橋反応は全く進行しないので、成形時の余分のスプール部は、熱可塑性樹脂としてのリサイクルが可能である。

一方、本発明の電気部品用樹脂成形品の製造方法は、主骨格の末端に不飽和基を有する多官能性のモノマー又はオリゴマーからなる架橋剤を無機充填剤に吸着させる吸着工程と、該吸着後の無機充填剤と、熱可塑性ポリマーと、強化纖維とを含有する樹脂組成物を混練する混練工程と、前記混練された樹脂組成物を射出成形する工程と、前記射出工程後の樹脂組成物を金型から取り出して、加熱又は放射線照射する架橋工程とを含むことを特徴とする。

この製造方法によれば、射出成形機を使用して通常の熱可塑性樹脂と同様な成形が可能であり、更に射出後に加熱又は放射線によって架橋させることにより、架橋反応を促進させて硬化を進行させてるので、機械的強度、耐熱性、難燃性に優れた樹脂成形品を生産性よく製造できる。

また、架橋剤を無機充填剤に吸着させた後に、熱可塑性ポリマー及び強化纖維と混練するので、架橋剤の分散が均一に行なわれる。これによって、得られる樹脂成形品の物性が均一なものとなり、耐熱性、機械特性、電気特性、寸法安定性、難燃性、及び成形性の全てに優れる樹脂成形品を得ることができる。

なお、放射線照射で架橋工程を行う場合には、線量が 10 kGy 以上の電子線又は  $\gamma$  線を照射することが好ましい。これにより、線量不足による 3 次元網目構造の不均一な形成や、未反応の架橋剤残留によるブリードアウトを防止できる。また、特に、照射線量を 10 ~ 45 kGy とすれば、線量過剰によって生じる酸化分解生成物に起因する、樹脂成形品の内部歪みによる変形や収縮等も防止でき、上記の物性に優れる樹脂成形品が得られる。

また、加熱で架橋工程を行う場合には、前記射出成形の温度より 5°C 以上高い温度で加熱することが好ましい。これにより、放射線照射装置等が不要であり、特に熱硬化性樹脂を含有する樹脂組成物に好適に用いることができる。

本発明の電気部品用樹脂成形品及びその製造方法のより好ましい態様によれば、前記

架橋剤として、少なくとも3官能性の前記架橋剤を含有することが好ましい。これにより、均一な3次元網目構造が形成されるので、上記の物性に優れる樹脂成形品が得られる。

本発明の電気部品用樹脂成形品及びその製造方法の更に好ましい態様によれば、前記架橋剤として、2種類以上の多官能性の前記架橋剤を併用することが好ましい。これにより、例えばアリレートとアクリレートのように反応性の異なる架橋剤の併用によって架橋に要する反応速度を制御できるので、急激な架橋反応の進行による樹脂成形品の収縮を防止することができる。また、例えば、2官能性の前記架橋剤と3官能性の前記架橋剤とを併用することによっても、架橋に要する反応速度を制御できるので、急激な架橋反応の進行による樹脂成形品の収縮を防止することができる。

本発明の電気部品用樹脂成形品及びその製造方法の更に好ましい態様によれば、前記熱可塑性ポリマーがポリアミド系樹脂であって、前記架橋剤の主骨格が、N元素を含む環状化合物であることが好ましい。これにより、アミド基のN元素との相溶性がより高まるので、ポリアミド系樹脂との相溶性がより向上する。また、架橋剤であるN元素を含む環状化合物はそれ自身が難燃性も有しているので、樹脂成形品の難燃性が向上する。

本発明の電気部品用樹脂成形品及びその製造方法の更に好ましい態様によれば、前記架橋剤が、下記の一般式(I)で示される化合物であることが好ましい。



(式(I)中、R<sup>1</sup>～R<sup>3</sup>は、-O-R<sup>4</sup>-CR<sup>5</sup>=CH<sub>2</sub>、-R<sup>4</sup>-OOC-CR<sup>5</sup>=CH<sub>2</sub>、-R<sup>4</sup>-CR<sup>5</sup>=CH<sub>2</sub>、-HNOOC-CR<sup>5</sup>=CH<sub>2</sub>、-HN-CH<sub>2</sub>-CR<sup>5</sup>=CH<sub>2</sub>より選ばれる基を表す。R<sup>4</sup>は炭素数1～5のアルキレン基、R<sup>5</sup>は水素又はメチル基を表す。R<sup>1</sup>～R<sup>3</sup>は同一又は異なっていてもよい。)

上記の化合物はホウ素を含有し、ホウ素原子は原子半径が大きいので架橋効果が大きくなり、得られる成形品の機械強度・耐熱性を更に向上することができる。また、樹脂との相溶性も良好であるので成形性が低下することもない。更に、上記の化合物は、そ

れ自身が難燃助剤としての効果も有しているため、特に本発明に好適に用いることができる。

本発明の電気部品用樹脂成形品及びその製造方法の更に好ましい態様によれば、前記熱可塑性ポリマー100質量部に対して、前記架橋剤を0.5～10質量部含有することが好ましい。これにより、成形品の機械的強度が維持できるとともに、寸法安定性が向上する。

本発明の電気部品用樹脂成形品及びその製造方法の更に好ましい態様によれば、前記強化纖維を、前記樹脂組成物全体に対して5～40質量%含有し、前記強化纖維が、樹脂で表面処理されたガラス纖維であることが好ましい。強化纖維の含有により、引張り、圧縮、曲げ、衝撃等の機械的強度を向上させることができ、更に水分や温度に対する物性低下を防止することができる。また、あらかじめ樹脂で表面処理されたガラス纖維を用いたので、熱可塑性ポリマーとの密着性が向上する。

本発明の電気部品用樹脂成形品及びその製造方法の更に好ましい態様によれば、前記無機充填剤を、前記樹脂組成物全体に対して1～15質量%含有することが好ましい。これにより、成形品の機械的強度が維持でき寸法安定性が向上するとともに、過剰の含有によって樹脂成形品が脆くなり、割れ等が生じるのを防止できる。

本発明の電気部品用樹脂成形品及びその製造方法の更に好ましい態様によれば、前記無機充填剤としてシリケート層が積層してなる層状のクレーを含有し、前記層状のクレーを前記樹脂組成物全体に対して1～10質量%含有することが好ましい。これによれば、ナノオーダーで層状のクレーが樹脂中に分散することにより樹脂とのハイブリット構造を形成する。これによって、得られる難燃性樹脂加工品の耐熱性、機械強度等が向上する。

本発明の電気部品用樹脂成形品及びその製造方法の更に好ましい態様によれば、前記樹脂組成物が難燃剤を含有し、該難燃剤を、前記樹脂組成物全体に対して2～35質量%含有することが好ましい。上記範囲の含有量とすることによって、難燃性が向上できるとともに、過剰の添加によるブリードアウトや架橋不良を防止でき、電磁開閉器として使用した際の、耐久性や電気特性等の低下を防止できる。

本発明の電気部品用樹脂成形品及びその製造方法の更に好ましい態様によれば、前記難燃剤として、末端に1つの不飽和基を有する単官能性の有機リン化合物を含有することが好ましい。これにより、難燃剤が樹脂と反応して結合するので、難燃剤のブリード

アウトを防止でき、難燃効果の経時劣化を防止できる。また、少量の添加であっても高い難燃効果を得ることができる。

本発明の電気部品用樹脂成形品及びその製造方法の更に好ましい態様によれば、前記電気部品が電磁開閉器に用いられるものであることが好ましい。電磁開閉器においては、例えば接点を支持するために樹脂成形品が使用されており、接点で発生する熱及び接点の繰返し運動に耐える高度の強度、耐熱性、難燃性、更には寸法安定性等が要求され、火災に対する安全性の要求が高いので、本発明の樹脂成形品及びその製造方法が特に効果的である。

#### 図面の簡単な説明

図1は、実施例におけるはんだ耐熱試験後の外観状態を比較した写真である。

図2は、実施例における耐熱性試験の結果を示す図表である。

#### 発明を実施するための最良の形態

以下、本発明について詳細に説明する。

本発明の電気部品用樹脂成形品は、熱可塑性ポリマーと、主骨格の末端に不飽和基を有する多官能性のモノマー又はオリゴマーからなる架橋剤と、無機充填剤と、強化纖維とを含有する樹脂組成物を成形固化した後、加熱又は放射線で前記熱可塑性ポリマーを架橋してなる。

まず、本発明の樹脂組成物を構成する熱可塑性ポリマーについて説明する。

本発明において用いる熱可塑性ポリマーとしては、特に限定されず、例えば、ポリアミド系樹脂、ポリブチレンテレフタート、ポリエチレンテレフタート等のポリエステル系樹脂、ポリアクリル系樹脂、ポリイミド系樹脂、ポリカーボネート樹脂、ポリウレタン系樹脂、ポリスチレン、アクリロニトリルースチレン共重合体、アクリロニトリルーブタジエンースチレン共重合体等のポリスチレン系樹脂、ポリアセタール系樹脂、ポリオレフィン系樹脂、ポリフェニレンオキシド、ポリフェニレンサルファイド、ポリブタジエン等が挙げられるが、なかでも、耐磨耗性や耐熱性等の点から、ポリアミド系樹脂、ポリブチレンテレフタートを用いることが好ましい。

ポリアミド系樹脂としては、アミノカルボン酸、ラクタムあるいはジアミンとジカルボン酸等を主たる原料としたアミド結合を有するポリマーであればよく特に限定されな

い。例えば、ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド4-6、ポリアミド6-6、ポリアミド6-10、ポリアミド6-12のような脂肪族ポリアミドでもよく、またポリアミドMXD6のような芳香族を含むポリアミドでもよい。更に、これらの群から選択される2種のポリアミドを適宜ブレンド又はアロイとして用いることも可能であり適宜限定されない。

また、上記のホモポリマーには限定されず、例えばポリアミド6とポリアミド6/6(ポリアミド6/6)や、ポリアミド6とポリアミド12(ポリアミド6/12)のような、上記のホモポリマーの少なくとも2種からなる共重合体であってもよい。

更に、本発明においてはポリアミドが変性ポリアミド共重合体であってもよい。変性ポリアミド共重合体としては例えば、フェノール誘導体、メラミン誘導体、グリシジル誘導体、ビニル基含有化合物等により変性されたポリアミド、ポリエステル系の変性ポリマーをグラフト重合したポリアミド、テレフタール酸等のフタル酸変性されたポリアミド等が挙げられる。

次に、本発明に用いる架橋剤について説明する。本発明における架橋剤としては、主骨格の末端に不飽和基を有する多官能性のモノマー又はオリゴマーからなる架橋剤を用いる。

このような架橋剤としては、以下の一般式(a)～(c)で表される2～4官能性の化合物が挙げられる。ここで、Xは主骨格であり、R<sup>6</sup>～R<sup>9</sup>は末端に不飽和基を有する官能性基であって、(a)は2官能性化合物、(b)は3官能性化合物、(c)は4官能性化合物である。



具体的には、以下に示すような一般式の、主骨格Xが、グリセリン、ペンタエリストール誘導体等の脂肪族アルキルや、トリメリット、ピロメリット、テトラヒドロフラン、

シンメトリックトリアジン、イソシアヌル、シアヌル、トリメチレントリオキサン等の芳香族環、ビスフェノール等である構造が挙げられる。



(a-1)



(b-1)



(b-2)



(b-3)



(b-4)



(c-1)



(c-2)

また、熱可塑性ポリマーがポリアミド系樹脂の場合には、主骨格Xが、イソシアヌル環、シアヌル環等のN元素を含む環状化合物であることが好ましい。これにより、アミ

ド基のN元素との相溶性がより高まるので、ポリアミド系樹脂との相溶性がより向上する。また、N元素を含む環状化合物であるので、同時に難燃性も向上するので好ましい。

末端に不飽和基を有する官能性基R<sup>6</sup>～R<sup>9</sup>としては、-O-R<sup>4</sup>-CR<sup>5</sup>=CH<sub>2</sub>、-R<sup>4</sup>-OOC-CR<sup>5</sup>=CH<sub>2</sub>、-R<sup>4</sup>-CR<sup>5</sup>=CH<sub>2</sub>、-HNOOC-CR<sup>5</sup>=CH<sub>2</sub>、-HN-CH<sub>2</sub>-CR<sup>5</sup>=CH<sub>2</sub>より選ばれる基が挙げられる。ここで、R<sup>4</sup>は炭素数1～5のアルキレン基、R<sup>5</sup>は水素又はメチル基を表し、R<sup>6</sup>～R<sup>9</sup>は同一又は異なっていてもよい。

具体的には、ジアクリレート、ジメタクリレート、ジアリレート、トリアクリレート、トリメタクリレート、トリアリレート、テトラアクリレート、テトラメタクリレート、テトラアリレート等が挙げられるが、反応性の点からはジアクリレート、トリアクリレート、テトラアクリレート等のアクリレートであることがより好ましい。

上記の架橋剤の具体例としては、2官能性のモノマー又はオリゴマーとしては、ビスフェノールF-E-O変性ジアクリレート、ビスフェノールA-E-O変性ジアクリレート、イソシアヌル酸E-O変性ジアクリレート、トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ポリエチレングリコールジアクリレート、ペンタエリスリトールジアクリレートモノステアレート等のジアクリレートや、それらのジメタクリレート、ジアリレートが挙げられる。

また、3官能性のモノマー又はオリゴマーとしては、ペンタエリスリトールトリアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンP-O変性トリアクリレート、トリメチロールプロパンE-O変性トリアクリレート、イソシアヌル酸E-O変性トリアクリレート等のトリアクリレートや、それらのトリメタクリレート、トリアリレートが挙げられる。

また、4官能性のモノマー又はオリゴマーとしては、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールテトラアクリレート等が挙げられる。

上記の化合物は、主骨格Xとなる、トリメリット酸、ピロメリット酸、テトラヒドロフランテトラカルボン酸、1, 3, 5-トリヒドロキシベンゼン、グリセリン、ペンタエリストール、N, N', N"-トリアリルイソシアヌレート、2, 4, 6-トリス(クロロメチル)-1, 3, 5-トリオキサン等より選ばれる1種に、末端に不飽和基を有する官能性基となる、臭化アリル、アリルアルコール、アリルアミン、臭化メタリル、メタジルアルコール、メタリルアミン等より選ばれる1種を反応させて得られる。

更に、本発明に用いる架橋剤としては、下記の一般式（I）で示される3官能性の化合物も好ましく用いられる。



式（I）中、R<sup>1</sup>～R<sup>3</sup>は、上記のR<sup>6</sup>～R<sup>9</sup>と同様に、-O-RR<sup>5</sup>=CH<sub>2</sub>、-RR<sup>4</sup>-OOC-CR<sup>5</sup>=CH<sub>2</sub>、-RR<sup>4</sup>-CR<sup>5</sup>=CH<sub>2</sub>、-HNOOC-CR<sup>5</sup>=CH<sub>2</sub>、-HN-CH<sub>2</sub>-CR<sup>5</sup>=CH<sub>2</sub>より選ばれる基を表す。R<sup>4</sup>は炭素数1～5のアルキレン基、R<sup>5</sup>は水素又はメチル基を表す。R<sup>1</sup>～R<sup>3</sup>は同一又は異なっていてもよい。

上記の化合物はホウ素を含有し、ホウ素原子は原子半径が大きいので架橋効果が大きくなり、得られる成形品の機械強度・耐熱性を更に向上することができる。また、樹脂との相溶性も良好であるので成形性が低下することもない。更に、上記の化合物は、それ自身が難燃助剤としての効果も有しているため、特に本発明に好適に用いることができる。

上記の一般式（I）の化合物としては、以下の化合物（I-1）～（I-6）が挙げられる。





なお、上記の一般式（I）で示される化合物は、トリクロロボラジンに、末端に不飽和基を有する官能性基となる、臭化アリル、アリルアルコール、アリルアミン、臭化メタリル、メタリルアルコール、メタリルアミン等より選ばれる1種を反応させて得られる。

上記の架橋剤は、単独で用いてもよいが、反応性を制御するために、複数を併用して用いることがより好ましい。なかでも、2種類以上の3官能性の架橋剤を併用すること

が好ましく、2官能性の架橋剤と3官能性の架橋剤とを併用することがより好ましい。これにより、2官能性の架橋剤によって架橋反応を抑制しながら、順次網目構造を形成できるので、架橋に伴う樹脂成形品の収縮をより抑えることができる。

架橋剤の含有量は、前記熱可塑性ポリマー100質量部に対して、前記架橋剤を0.5～10質量部含有することが好ましく、1.0～7.0質量部がより好ましい。含有量が0.5質量部より少ないと架橋が不充分であり、得られる樹脂成形品の機械的物性、熱的物性、電気的物性が好ましくなく、また、10質量部を超えると、架橋剤が過剰となり、架橋剤の未反応のモノマーや分解ガスが発生したり、オリゴマー化したものがブリードアウトして、電磁開閉器等に用いた際に電極等の金属汚染を起こしたり、駆動時に付着して誤動作を引き起こしやすく、更に耐磨耗性等の機械特性を低下させたり寸法変化を起こすので好ましくない。

次に、本発明の樹脂成形品は無機充填剤を含有する。これにより、成形品の機械的強度が向上するとともに、寸法安定性を向上させることができる。また、架橋剤の吸着させる基体となって、架橋剤の分散を均一化する。

無機充填剤としては、従来公知のものが使用可能であり、代表的なものとしては、銅、鉄、ニッケル、亜鉛、錫、ステンレス鋼、アルミニウム、金、銀等の金属粉末、ヒュームドシリカ、珪酸アルミニウム、珪酸カルシウム、珪酸、含水珪酸カルシウム、含水珪酸アルミニウム、ガラスピーズ、カーボンブラック、石英粉末、雲母、タルク、クレー、マイカ、酸化チタン、酸化鉄、酸化亜鉛、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、酸化カルシウム、硫酸マグネシウム、チタン酸カリウム、ケイソウ土等が挙げられるが、これらの中でも特に多孔質のものを用いることが好ましく、具体的にはタルク、クレー、炭酸カルシウム等を用いることが好ましい。

なお、これらの充填剤は、単独でも、2種以上を併用して用いてもよく、また、公知の表面処理剤で処理されたものでもよい。

無機充填剤の含有量は、樹脂組成物全体に対して1～15質量%含有することが好ましく、2～10質量%がより好ましい。含有量が1質量%より少ないと、樹脂成形品の機械的強度が低下するとともに寸法安定性が不充分であり、更に架橋剤の吸着が不充分となるので好ましくない。また、15質量%を超えると、樹脂成形品が脆くなるので好ましくない。

上記の無機充填剤のうち、シリケート層が積層してなる層状のクレーを用いることが

特に好ましい。シリケート層が積層してなる層状のクレーとは、厚さが約1nm、一辺の長さが約100nmのシリケート層が積層された構造を有しているクレーである。したがって、この層状のクレーはナノオーダーで樹脂中に分散されて樹脂とのハイブリット構造を形成し、これによって、得られる樹脂成形品の耐熱性、機械強度等が向上する。層状のクレーの平均粒径は100nm以下であることが好ましい。

層状のクレーとしては、モンモリロナイト、カオリナイト、マイカ等が挙げられるが、分散性に優れる点からモンモリロナイトが好ましい。また、層状のクレーは、樹脂への分散性を向上させるために表面処理されていてもよい。このような層状のクレーは市販されているものを用いてもよく、例えば「ナノマー」（商品名、日商岩井ベントナイト株式会社製）などが使用できる。

層状のクレーの含有量は、樹脂組成物全体に対して1～10質量%が好ましい。なお、層状のクレーは単独で使用してもよく、他の無機充填剤と併用してもよい。

次に、本発明の樹脂成形品は強化纖維を含有する。これによっても、成形品の機械的強度が向上するとともに、寸法安定性を向上させることができる。

強化纖維はガラス纖維、炭素纖維、金属纖維のいずれも用いることができるが、強度及び熱可塑性ポリマーや無機充填剤との密着性の点からガラス纖維を用いることが好ましい。

また、ガラス纖維は、表面処理されており、更に樹脂で被覆されていることが好ましい。これにより、熱可塑性ポリマーとの密着性を更に向上することができる。

表面処理剤としては、公知のシランカップリング剤を用いることができ、具体的には、メトキシ基及びエトキシ基よりなる群から選択される少なくとも1種のアルコキシ基と、アミノ基、ビニル基、アクリル基、メタクリル基、エポキシ基、メルカプト基、ハロゲン原子、イソシアネート基よりなる群から選択される少なくとも一種の反応性官能基を有するシランカップリング剤が例示できる。

また、被覆樹脂としても特に限定されず、ウレタン樹脂やエポキシ樹脂等が挙げられる。

強化纖維の配合量は、樹脂組成物全体に対して5～40質量%含有することが好ましく、15～30質量%がより好ましい。含有量が5質量%より少ないと、樹脂成形品の機械的強度が低下するとともに、寸法安定性が不充分であるので好ましくなく、また、40質量%を超えると、成形が困難になるので好ましくない。

更に、本発明の樹脂組成物には、難燃剤を含有することが好ましい。

難燃剤としては、従来公知の難燃剤が使用でき特に限定されないが、臭素等のハロゲン元素を分子内に有するハロゲン系難燃剤、リン元素を分子内に有するリン系難燃剤、シアヌール酸又はイソシアヌール酸の誘導体、メラミン誘導体等が好ましく使用できる。放射線照射による難燃剤の分解を防止する点からは、ハロゲン系難燃剤を用いることが好ましい。

ハロゲン系難燃剤としては臭素化ポリスチレン、臭素化ポリフェニレンエーテル、臭素化ポリカーボネート、臭素化エポキシなどが挙げられる。

一方、リン系難燃剤としては、トリフェニルホスフェート、トリクレジルホスフェートなどのモノリン酸エステル、ビスフェノールAビス(ジフェニル)ホスフェート、レゾルシノールビス(ジフェニル)ホスフェートなどの縮合リン酸エステル、ポリリン酸アンモニウム、ポリリン酸アミド、赤リン、リン酸グアニジンなどが挙げられる。これらの難燃剤は単独で用いてもよく、また2種類以上併用することも可能である。

上記のリン系難燃剤のうち、末端に1つの不飽和基を有する单官能性の有機リン化合物を含有することが特に好ましい。これによって、末端の不飽和基が樹脂と反応して結合するので、難燃剤のブリードアウトを防止でき、難燃効果の経時劣化を防止できる。また、少量の添加であっても高い難燃効果を得ることができる。このような化合物としては特に限定されず、例えば、下記の構造式からなる化合物(II)が挙げられる。



なお、上記の化合物(II)は公知であり、例えば、商品名(ACA)として三光化学株式会社より市販されているものを用いることができる。

難燃剤の配合量は、樹脂組成物全体に対して2～35質量%含有することが好ましい。含有量が2質量%より少ないと、難燃性が不充分であるので好ましくなく、35質量%を超えると、難燃剤の過剰の添加による、難燃剤のブリードアウトや架橋不良が発生して、電磁開閉器として使用した際の、耐久性や電気特性が低下するので好ましくない。

また、架橋密度が低下するので耐熱性が劣り、寸法変化率が大きくなるので好ましくない。

なお、本発明の樹脂組成物には、本発明の目的である耐熱性、耐候性、耐衝撃性を著しく損わない範囲で、上記以外の常用の各種添加成分、例えば結晶核剤、着色剤、酸化防止剤、離型剤、可塑剤、熱安定剤、滑剤、紫外線防止剤などの添加剤を添加することができる。

着色剤としては特に限定されないが、放射線照射によって褪色しないものが好ましく、例えば、無機顔料である、ベンガラ、鉄黒、カーボン、黄鉛等や、フタロシアニン等の金属錯体が好ましく用いられる。

次に、本発明の製造方法について説明する。

まず、主骨格の末端に不飽和基を有する多官能性のモノマー又はオリゴマーからなる架橋剤を無機充填剤に吸着させる吸着工程を行なう。このように、本発明の製造方法においては、あらかじめ架橋剤を無機充填剤に吸着させることを特徴としている。これにより、架橋剤の分散が非常に均一に行なわれ、得られる樹脂成形品の物性が均一なものとなり、耐熱性、機械特性、電気特性、寸法安定性、難燃性、及び成形性の全てに優れる樹脂成形品を得ることができる。

次に、上記の吸着後の無機充填剤と、熱可塑性ポリマーと、強化纖維とを含有する樹脂組成物を混練する混練工程を行なう。混合は、通常の混合に使用される従来公知のミキサー、ブレンダーなどによって行なうことができる。又、溶融混練は、単軸或いは二軸押出機、バンパリーミキサー、ニーダー、ミキシングロールなどの通常の溶融混練加工機を使用して行なうことができる。混練温度は熱可塑性ポリマーの種類によって適宜選択可能であるが、例えばポリアミド系樹脂の場合には240～270℃で行なうことが好ましい、また、混練後の樹脂組成物はペレット化して乾燥させることができ。

次に、上記のペレットを射出成形して成形品を得る。成形においては、従来公知の射出成形機を用いることができ、通常の熱可塑性樹脂の射出条件を用いることができる。射出条件としては、用いる熱可塑性ポリマーの種類によって適宜選択可能であるが、例えばポリアミド系樹脂の場合、シリンダー温度260～330℃、金型温度60～130℃が好ましい。なお、この段階では全く架橋は進行していないので、成形時の余分のスプール部は、熱可塑性樹脂としてのリサイクルが可能である。

次に、本発明の製造方法においては、射出工程後に金型中又は金型から取り出して、

加熱又は放射線照射を行ない架橋を行なう。

架橋を放射線照射で行う場合には、電子線、 $\alpha$ 線、 $\gamma$ 線、X線、紫外線等が利用できる。なお、本発明における放射線とは広義の放射線を意味し、具体的には、電子線や $\alpha$ 線等の粒子線の他、X線や紫外線等の電磁波までを含む意味である。なかでも、電子線又は $\gamma$ 線照射によって行なうことが好ましい。電子線照射は公知の電子加速器等が使用できる。加速エネルギーとしては、2. 5 MeV以上であることが好ましい。

$\gamma$ 線照射は、公知のコバルト60線源等による照射装置を用いることができる。 $\gamma$ 線は電子線に比べて透過性が強いために、成形品への照射が均一となり特に好ましい。しかし、照射強度が強いため、過剰の照射を防止するために線量の制御が必要である。

放射線の照射線量は10kGy以上が好ましく、10~45kGyがより好ましく、15~40kGyが特に好ましい。この範囲であれば、架橋によって上記の物性に優れる樹脂成形品が得られる。照射線量が10kGy未満では、架橋による3次元網目構造の形成が不均一となり、未反応の架橋剤がブリードアウトするので好ましくなく、45kGyを超えると、酸化分解生成物による樹脂組成物に内部歪みが残留し、これによつて変形や収縮等が発生するので好ましくない。

架橋を加熱で行う場合には、反応させる温度は、樹脂の成形温度より5°C以上高い温度とすることが好ましく、10°C以上高い温度とすることがより好ましい。

このようにして得られた本発明の電気部品用成形品は、従来の単独の熱可塑性樹脂成形品に比べて耐熱性、難燃性に優れるので、高度な耐熱性、難燃性が要求される電気部品、例えば電磁開閉器等の接点支持用の部材やハウジング、各種センサー類、電子デバイスのハウジング、封止剤等として好適に用いることができる。

#### 実施例

以下、実施例を用いて本発明を更に詳細に説明するが、本発明は実施例に限定されるものではない。

#### 実施例1

無機充填剤として平均粒径2μmのタルク4.5質量部と、着色剤として平均粒径1~2μmの鉄黒1.0質量部となるように混合した系に、架橋剤として、末端に不飽和二重結合を有した3官能性である、イソシアヌル酸EO変性トリアクリレート（東亜合成社製：M-315）3.3質量部となるように液状で添加して表面に吸着させ、吸着物を得た。

次に、上記の吸着物に、熱可塑性ポリマーとして、66/6ナイロンの共重合体（宇部興産社製：2123B）65.8質量部、強化繊維として、シランカップリング剤で表面処理した後にウレタン樹脂が被覆されたガラス繊維25.0質量部、酸化防止剤（チバガイギー社製：イルガノックス1010）0.4質量部、となるように加えて混合して樹脂組成物を得た。

上記の樹脂組成物を、サイドフロー型2軸押出機を用いて240°Cで混練した後、105°Cで4時間乾燥させてペレットを得た。

上記のペレットを、射出成形機（FUNUC社製、α50C）を用い、シリンダー温度270°C、金型温度80°C、射出圧力800kg·F/cm<sup>2</sup>、射出速度120mm/s、冷却時間15秒の条件で成形品を得た。

上記の成形品に、放射線照射として、コバルト60を線源として線量20kGyのγ線を照射して架橋工程を行ない、実施例1の樹脂成形品を得た。

### 実施例2

架橋剤として、N、N'、N“-トリアリルイソシアヌレートを3質量部用い、熱可塑性ポリマーとして、66ナイロン樹脂（宇部興産社製：2020B）66.1質量部を用い、混練温度を270°Cとした以外は実施例1と同様の条件でペレットを得た。

射出成形時のシリンダー温度を280°Cとし、放射線照射のγ線の線量を15kGyとした以外は、実施例1と同様の条件で射出成形、放射線照射を行ない、実施例2の樹脂成形品を得た。

### 実施例3

架橋剤として、N、N'、N“-トリアリルイソシアヌレート2.0質量部と、イソシアヌル酸EO変性トリアクリレート（東亜合成社製：M-315）1.0質量部とを併用して用いた以外は、実施例2と同様の条件でペレットを得て、実施例2と同様の条件で射出成形、放射線照射を行ない、実施例3の樹脂成形品を得た。

射出成形時のシリンダー温度を280°Cとし、放射線照射のγ線の線量を25kGyとした以外は、実施例1と同様の条件で射出成形、放射線照射を行ない、実施例3の樹脂成形品を得た。

### 実施例4

架橋剤として、イソシアヌル酸EO変性トリアクリレート（東亜合成社製：M-315）2.5質量部と、ジアリルイソシアヌル酸0.5質量部とを併用して用いた以外は、

実施例 2 と同様の条件でペレットを得て、実施例 2 と同様の条件で射出成形、放射線照射を行ない、実施例 4 の樹脂成形品を得た。

射出成形時のシリンダー温度を 280°C とし、放射線照射の  $\gamma$  線の線量を 20 kGy とした以外は、実施例 1 と同様の条件で射出成形、放射線照射を行ない、実施例 4 の樹脂成形品を得た。

#### 実施例 5

実施例 2 の樹脂組成物 100 質量部に、更に、臭素化ポリスチレン系樹脂と酸化アンチモンを 3 : 1 の質量割合で併用した難燃剤 25 質量部を添加した以外は、実施例 2 と同様の条件でペレットを得た。

射出成形時のシリンダー温度を 280°C とし、放射線照射の  $\gamma$  線の線量を 20 kGy とした以外は、実施例 1 と同様の条件で射出成形、放射線照射を行ない、実施例 5 の樹脂成形品を得た。

#### 実施例 6

実施例 3 の樹脂組成物 100 質量部に、更に、磷酸エステル系化合物であるノンハロゲン系難燃剤 10 質量部を添加した以外は、実施例 2 と同様の条件でペレットを得た。

射出成形時のシリンダー温度を 280°C とした以外は実施例 1 と同様の条件で射出成形後、放射線として 3.5 MeV の電子線加速器を用い、線量を 25 kGy で放射線照射を行ない、実施例 6 の樹脂成形品を得た。

#### 実施例 7

架橋剤として、末端に不飽和二重結合を有した 3 官能性である、イソシアヌル酸 EO 変性トリアクリレート（東亜合成社製：M-315）1.65 質量部、ペンタエルスリートルトリメチルアクリレート 1.65 質量部を併用して用い、熱可塑性ポリマーとして、PBT 樹脂（東レ社製：トレコン 1401 x 06）を 65.8 質量部、強化繊維として、エポキシ系シランカップリング剤で表面処理されたガラス繊維 25.0 質量部を用い、更に、臭素化ポリスチレン系樹脂と酸化アンチモンを 3 : 1 の質量割合で併用した難燃剤 25 質量部を添加した以外は、実施例 1 と同様の条件でペレットを得た。

射出成形時のシリンダー温度を 250°C とした以外は、実施例 1 と同様の条件で射出成形、放射線照射を行ない、実施例 7 の樹脂成形品を得た。

#### 実施例 8

実施例 5 において、難燃剤の添加量を 40 質量部とした以外は、実施例 5 と同様の条

件で実施例 8 の樹脂成形品を得た。

#### 実施例 9

実施例 5において、難燃剤としてノンハロゲン系難燃剤（ビスフェノールAビス（ジフェニル）ホスフェート系磷酸エステル系）を 1.5 質量部添加した以外は、実施例 5 と同様の条件で実施例 9 の樹脂成形品を得た。

#### 実施例 10

架橋剤として、上記の化合物（I-1）を 6 質量部を用い、熱可塑性ポリマーとして、6.6 ナイロン樹脂（宇部興産社製：2020B）66.1 質量部を用い、混練温度を 280°Cとした以外は、実施例 1 と同様の条件でペレットを得た。射出成形時のシリンダ一温度を 280°C とし、放射線照射の  $\gamma$  線の線量を 30 kGy とした以外は、実施例 1 と同様の条件で射出成形、放射線照射を行ない、実施例 10 の樹脂成形品を得た。

#### 実施例 11

実施例 10 の組成に、更に、難燃剤として臭素化スチレン（フェロ・ジャパン社製）2.0 質量部、三酸化アンチモン（日本精鉱社製）8 質量部を添加して同様にペレットを得て、実施例 10 と同様の条件で射出成形、放射線照射を行ない、実施例 11 の樹脂成形品を得た。

#### 実施例 12

熱可塑性樹脂として 6.6 ナイロン（宇部興産社製：2020B）65.3 質量部、強化繊維としてシランカップリング剤で表面処理した繊維長約 3 mm のガラス繊維（旭ファイバーグラス社製：03.JAFT2Ak 25）2.0 質量部、着色剤としてカーボンブラック 1 質量部、酸化防止剤（チバガイギー社製：イルガノイルガノックス 1010）0.2 質量部、無機充填剤として平均粒径 2  $\mu$ m のタルク 5 質量部、架橋剤としてトリアリルイソシアヌレート（日本化成社製：TAIC）2.5 質量部、難燃剤としてリン元素を含有した単官能性の化合物（上記の化合物（II）、三光化学社製：ACA）6 質量部を混合し、サイドフロー型 2 軸押出機（日本製鋼社製）で 280°C で混練して樹脂ペレットを得て 105°C、4 時間乾燥した後、上記ペレットを射出成形機（FUNUC 社製： $\alpha$ 50C）を用いて樹脂温度 280°C、金型温度 80°C の条件で成形した。

その後、上記成形品に、コバルト 60 を線源とした  $\gamma$  線を 25 kGy 照射して実施例 12 の樹脂成形品を得た。

#### 実施例 13

実施例 1 2 の無機充填剤を、モンモリロナイトからなるナノ粒径のクレー（日商岩井株社：ナイマー）5 質量部にえた以外は、実施例 1 2 と同様の方法で実施例 1 3 の樹脂成形品を得た。

#### 実施例 1 4

熱可塑性樹脂としてポリブチレンテレフタレート樹脂（東レ株式会社製：トレコン 1 4 0 1 X 0 6）55.3 質量部、実施例 1 2 の強化繊維 20 質量部、実施例 1 2 の無機充填剤 5 質量部、実施例 1 2 の着色剤 0.5 質量部、実施例 1 2 の酸化防止剤 0.2 質量部、架橋剤として実施例 3 の併用系を 3 質量部、難燃剤として非反応型の有機りん系難燃剤（三光化学社製：HCA-HQ）9 質量部、酸化アンチモン 10 質量部を用い、混練温度を 245°C で混練りして樹脂コンパウンドペレットを得て 130°C で 3 時間乾燥させ、成形時のシリンダー温度を 250°C の条件に変更した以外は実施例 1 2 と同様に成形した。

その後、上記成形品に、住友重機社製の加速器を用い、加速電圧 4.8 MeV で、照射線量 40 kGy の電子線を照射して実施例 1 4 の樹脂成形品を得た。

#### 実施例 1 5

実施例 2 の系に熱触媒（日本油脂社製：ノフマー BC）を 3 質量部、更に添加した以外は実施例 2 と同様の条件で成形品を成形した。

その後、上記成形品を、245°C、8 時間加熱によって反応して実施例 1 5 の樹脂成形品を得た。

#### 比較例 1

成形品の放射線照射を行なわない以外は、実施例 1 と同様の条件で、比較例 1 の樹脂成形品を得た。

#### 比較例 2

無機充填剤として平均粒径 2 μm のタルク 4.5 質量部と、着色剤として平均粒径 1 ~ 2 μm の鉄黒 1.0 質量部と、架橋剤として、N、N'、N''-トリアリルイソシアヌレート 11.3 質量部と、熱可塑性ポリマーとして、66/6 ナイロンの共重合体（宇部興産社製：2123B）57.8 質量部、酸化防止剤（チバガイギー社製：イルガノックス 1010）0.4 質量部とを同時に混合した後、強化繊維として、シランカッピング剤で表面処理した後にウレタン樹脂が被覆されたガラス繊維 25.0 質量部を更に混合して混練した以外は、実施例 1 と同様の条件で樹脂組成物を得て、射出成形、

放射線照射を行ない、比較例 2 の樹脂成形品を得た。

#### 比較例 3

$\gamma$  線の線量を 50 k Gy とした以外は比較例 2 と同様の条件で、比較例 3 の樹脂成形品を得た。

#### 比較例 4

架橋剤として、熱触媒タイプの樹脂改質剤（日本油脂社製：ノフマー BC）を用いた以外は実施例 2 と同様な条件でペレットを得て、射出成形を行なった。その後、放射線照射は行なわずに、加熱反応によって架橋化し、比較例 4 の樹脂成形品を得た。

#### 比較例 5

無機充填剤（炭酸カルシウム）7.0 質量部にあらかじめシランカップリング剤として、エポキシシラン官能性シラン（信越化学社製：K B P S - 402）1.0 質量部と、アミノ官能性シラン（信越化学社製 K B E - 903）1.0 質量部を併用して吸着処理させた。

更に、これを 66 ナイロン樹脂（旭化成社製：レオナ F G 172 x 61）91 質量部となるように混合して、270°C に設定した 2 軸押出し機を用いてペレットを得た。

このペレットを、実施例に用いた射出成形機で、シリンダ温度 280°C、金型温度 85°C、射出速度 800 kg · f / cm<sup>2</sup>、射出速度 100 mm / s、冷却時間 15 秒の条件で成形品を得て、さらに架橋強化のために、250°C、15 分熟処理を施して比較例 5 の樹脂成形品を得た。

#### 比較例 6

実施例 1 1 の組成に、架橋剤である化合物（I-1）を添加しない以外は、実施例 1 1 と同様の条件で比較例 6 の樹脂成形品を得た。

#### 試験例 1

実施例 1 ~ 15、及び比較例 1 ~ 6 の樹脂成形品を、電気部品用の代表例である、電磁開閉器用の接点部材として用い、表 1 に示す項目について評価を行なった。その結果をまとめて表 2 ~ 5 に示す。

表 1

| 試験項目 | 内容                        | 評価方法                                                   |
|------|---------------------------|--------------------------------------------------------|
| 成形性  |                           | 成形時に増粘、鼻タレ等による問題が無いこと                                  |
| 外観   |                           | 成形後の外観不良等による問題が無いこと                                    |
| 耐熱性  | はんだ耐熱試験                   | 350℃のはんだ浴に10秒浸漬後の寸法変形率                                 |
|      | 熱分解温度                     | DTA-TG (セイコーインスツルメンツ社製: 6200) により測定                    |
|      | 加速駆動試験                    | 120℃環境下で200万回駆動時に異常が無いこと                               |
|      | 金属汚染試験                    | 120℃環境に300時間放置後の接触抵抗が50mΩ以下のこと                         |
| 耐久性  | 耐環境性試験                    | 50℃、95%RHの環境下200時間放置後の寸法変化率2%以下                        |
| 機械特性 | MLT試験                     | オン、オフ動作1000万回で動作不良、破損等無いこと                             |
|      | ヤング率                      | 粘弾性測定機 (日本シーベル社製: US200) により測定 (50℃での値)                |
| 電気特性 | 過電流耐量                     | 12A x 8Inを10秒間通電において溶融・変形等が無い事                         |
|      | AC-4試験<br>(JISC8325-1983) | 72Aで10秒通電、遮断を3万回繰り返し問題無いこと                             |
| 難燃性  | グローワイヤ試験 I<br>EC準拠        | グローワイヤーの先端が0.8~1.2Nの圧着荷重、所定の温度でサンプルと垂直になるように30秒間接触させ評価 |
|      | UL94試験                    | 試験片 (板厚: 1.5mm) を垂直に取りつけ、ブンゼンバーナーで10秒間接炎後、燃焼時間を記録し評価   |

表 2

| 試験項目     | 内容       | 実施例 1          | 実施例 2          | 実施例 3          | 実施例 4          | 実施例 5          |
|----------|----------|----------------|----------------|----------------|----------------|----------------|
| 成形性      |          | 良好             | 良好             | 良好             | 良好             | 良好             |
| 架橋後成形品外観 |          | 良好             | 良好             | 良好             | 良好             | 良好             |
| 耐熱性      | はんだ耐熱試験  | 2%以下           | 2%以下           | 2%以下           | 2%以下           | 2%以下           |
|          | 熱分解温度    | 374.8°C        | 379.5°C        | 378.3°C        | 378.1°C        | 395.2°C        |
|          | 加速駆動試験   | 变形,付着性無:合格     | 变形,付着性無:合格     | 变形,付着性無:合格     | 变形,付着性無:合格     | 变形,付着性無:合格     |
|          | 金属汚染試験   | 合格             | 合格             | 合格             | 合格             | 合格             |
| 耐久性      |          | 变形,付着,寸法変化無:合格 | 变形,付着,寸法変化無:合格 | 变形,付着,寸法変化無:合格 | 变形,付着,寸法変化無:合格 | 变形,付着,寸法変化無:合格 |
| 機械特性     | MLT試験    | 合格             | 合格             | 合格             | 合格             | 合格             |
|          | ヤング率     | 5.8GPa         | 6.3GPa         | 5.3GPa         | 5.7GPa         | 6.2GPa         |
| 電気特性     | 過電流耐量    | 合格             | 合格             | 合格             | 合格             | 合格             |
|          | AC-4 72A | 合格             | 合格             | 合格             | 合格             | 合格             |
| 難燃性      | グローワイヤ試験 | 850°C<br>合格    | 850°C<br>合格    | 850°C<br>合格    | 850°C<br>合格    | 960°C<br>合格    |
|          | UL試験     | HB             | HB             | HB             | HB             | V-0            |

表 3

| 試験項目     | 内容       | 実施例6           | 実施例7           | 実施例8                   | 実施例9                   | 実施例10          |
|----------|----------|----------------|----------------|------------------------|------------------------|----------------|
| 成形性      |          | 良好             | 良好             | 良好                     | 良好                     | 良好             |
| 架橋後成形品外観 |          | 良好             | 良好             | 架橋不充分プリート <sup>*</sup> | 若干表面にプリート <sup>*</sup> | 良好             |
| 耐熱性      | はんだ耐熱試験  | 2 %以下          | 2 %以下          | 8.5%                   | 5.3%                   | 2 %以下          |
|          | 熱分解温度    | 389.2°C        | 365.4°C        | 384.3°C                | 380.2°C                | 375.8°C        |
|          | 加速駆動試験   | 変形,付着性無:合格     | 変形,付着性無:合格     | 変形,付着性有:不合格            | 変形,付着性無:合格             | 変形,付着性無:合格     |
|          | 金属汚染試験   | 合格             | 合格             | 不合格                    | 合格                     | 合格             |
| 耐久性      |          | 変形,付着,寸法変化無:合格 | 変形,付着,寸法変化無:合格 | 粘着,プリード有:不合格           | プリード有:不合格              | 変形,付着,寸法変化無:合格 |
| 機械特性     | MLT試験    | 合格             | 合格             | 合格                     | 合格                     | 合格             |
|          | ヤング率     | 5.8GPa         | 4.8GPa         | 4.8GPa                 | 5.8GPa                 | 5.9 Gpa        |
| 電気特性     | 過電流耐量    | 合格             | 合格             | 不合格                    | 不合格                    | 合格             |
|          | AC-4 72A | 合格             | 合格             | 合格                     | 合格                     | 合格             |
| 難燃性      | グローワイヤ試験 | 960°C          | 850°C          | 960°C                  | 960°C                  | 850°C          |
|          | UL試験     | V-1            | HB             | V-0                    | V-1                    | HB             |

表 4

| 試験項目     | 内容       | 実施例11          | 実施例12          | 実施例13          | 実施例14          | 実施例15          |
|----------|----------|----------------|----------------|----------------|----------------|----------------|
| 成形性      |          | 良好             | 良好             | 良好             | 良好             | 良好             |
| 架橋後成形品外観 |          | 良好             | 良好             | 良好             | 良好             | 良好             |
| 耐熱性      | はんだ耐熱試験  | 2 %以下          | 2 %以下          | 2 %以下          | 2 %以下          | 5 %            |
|          | 熱分解温度    | 380.5°C        | 380.6°C        | 395.0°C        | 380.1°C        | 376.0°C        |
|          | 加速駆動試験   | 変形,付着性無:合格     | 変形,付着性無:合格     | 変形,付着性無:合格     | 変形,付着性無:合格     | 変形,付着性無:合格     |
|          | 金属汚染試験   | 合格             | 合格             | 合格             | 合格             | 合格             |
| 耐久性      |          | 変形,付着,寸法変化無:合格 | 変形,付着,寸法変化無:合格 | 変形,付着,寸法変化無:合格 | 変形,付着,寸法変化無:合格 | 変形,付着,寸法変化無:合格 |
| 機械特性     | MLT試験    | 合格             | 合格             | 合格             | 合格             | 合格             |
|          | ヤング率     | 6.5GPa         | 7.0GPa         | 7.8GPa         | 7.1GPa         | 6.5GPa         |
| 電気特性     | 過電流耐量    | 合格             | 合格             | 合格             | 合格             | 合格             |
|          | AC-4 72A | 合格             | 合格             | 合格             | 合格             | 合格             |
| 難燃性      | グローワイヤ試験 | 960°C          | 850°C          | 850°C          | 850°C          | 850°C          |
|          | UL試験     | V-0            | V-2            | V-1            | V-1            | HB             |

表 5

| 試験項目     | 内容       | 比較例 1       | 比較例 2          | 比較例 3      | 比較例 4       | 比較例 5      | 比較例 6           |
|----------|----------|-------------|----------------|------------|-------------|------------|-----------------|
| 成形性      |          | 良好          | 良好             | 良好         | 増粘し、成形不良    | 増粘し、成形不良   | 良好              |
| 架橋後成形品外観 |          | -           | 硬化収縮有,未反応物プリード | 硬化収縮と表面が劣化 | 硬化時変形       | 硬化時変形      | -               |
| 耐熱性      | はんだ耐熱試験  | 浸漬直後変形      | 6.5%           | 3.1%       | 7.2%        | 5.5%       | -               |
|          | 熱分解温度    | 358.7°C     | 372.0°C        | 374.4°C    | 358.2°C     | 368.7°C    | 378.1°C         |
|          | 加速駆動試験   | 变形大付着性有不合格  | 变形大付着性有不合格     | 变形大付着性有不合格 | 变形,付着性有不合格  | 变形,付着性有不合格 | 变形,付着性無合格       |
|          | 金属汚染試験   | 不合格         | 不合格            | 不合格        | 不合格         | 合格         | 合格              |
| 耐久性      |          | 粘着・プリード有不合格 | 粘着・プリード有不合格    | 粘着性有不合格    | 粘着・プリード有不合格 | 变形有不合格     | 变形,付着,寸法变化有:不合格 |
| 機械特性     | MLT試験    | 不合格         | 不合格            | 合格         | 不合格         | 不合格        | 不合格             |
|          | ヤング率     | 3.1GPa      | 4.9GPa         | 5.9GPa     | 4.8GPa      | 5.2GPa     | 4.8GPa          |
| 電気特性     | 過電流耐量    | 不合格         | 不合格            | 合格         | 不合格         | 不合格        | 不合格             |
|          | AC-4 72A | 不合格         | 不合格            | 合格         | 不合格         | 不合格        | 不合格             |
| 難燃性      | グローワイヤ試験 | 850°C 不合格   | 850°C 不合格      | 850°C 合格   | 850°C 不合格   | 960°C 合格   | 960°C 不合格       |
|          | UL試験     | H B以下       | HB             | HB         | HB          | V-0        | V-1             |

表2～5の結果より、実施例1～7、10～15の樹脂成形品においては、成形性、外観、耐熱性、耐久性、機械特性、電気特性、難燃性のいずれも優れる。

なお、難燃剤の含有量が本発明の好ましい範囲を超える実施例8、難燃剤としてリン系の難燃剤を用いた実施例9においては、難燃剤のプリードが起こっており、過電流耐量、金属汚染試験の評価等が低下していることがわかる。

一方、放射線の架橋を行なっていない比較例1、吸着工程を行なわずに無機充填剤と架橋剤と熱可塑性ポリマーとを混練した比較例2、比較例2において放射線の照射量が本発明の好ましい範囲を超える比較例3、加熱によって架橋する架橋剤を用いた比較例4、架橋剤としてシランカップリング剤を用いた比較例5、架橋剤を添加しない比較例6においては、成形性、外観、耐熱性、耐久性、機械特性、電気特性、難燃性のいずれかの項目が実施例1～7、10～15より劣っていることがわかる。

## 試験例 2

実施例1、比較例1の樹脂成形品について、はんだ耐熱試験後の外観を比較した状態

を図1に示す。

図1から、放射線で架橋した実施例1は変形等が見られないのに対し、放射線未照射で架橋していない比較例1では著しい熱変形が生じていることがわかる。

### 試験例3

実施例1、2、5、6、13及び比較例1、2、4、6の樹脂成形品について、はんだ浴の温度による寸法変化率（10秒浸漬）の変化を測定した。結果を図2に示す。

図2のはんだ耐熱試験の結果から、実施例においては、寸法変化率がいずれのはんだ浴温度においても5%以内と少ないのであるのに対し、比較例においては、大きく低下していることがわかる。

### 産業上の利用可能性

以上説明したように、本発明によれば、耐熱性、機械特性、電気特性、寸法安定性、難燃性、及び成形性に優れる電気部品用の樹脂成形品を提供することができる。したがって、この樹脂成形品は、特に電磁開閉器等の接点支持用部材やハウジング等として好適に用いることができる。

## 請求の範囲

1. 熱可塑性ポリマーと、主骨格の末端に不飽和基を有する多官能性のモノマー又はオリゴマーからなる架橋剤と、無機充填剤と、強化繊維とを含有する樹脂組成物を成形固化した後、加熱又は放射線で前記熱可塑性ポリマーを架橋してなることを特徴とする電気部品用樹脂成形品。
2. 前記架橋剤として、少なくとも3官能性の前記架橋剤を含有する請求項1記載の電気部品用樹脂成形品。
3. 前記架橋剤として、2種類以上の多官能性の前記架橋剤を併用する請求項1又は2記載の電気部品用樹脂成形品。
4. 前記熱可塑性ポリマーがポリアミド系樹脂であって、前記架橋剤の主骨格が、N元素を含む環状化合物である請求項1～3のいずれか1つに記載の電気部品用樹脂成形品。
5. 前記架橋剤が、下記の一般式(I)で示される化合物である請求項1～4のいずれか1つに記載の電気部品用樹脂成形品。



(式(I)中、R<sup>1</sup>～R<sup>3</sup>は、-O-R<sup>4</sup>-CR<sup>5</sup>=CH<sub>2</sub>、-R<sup>4</sup>-OOC-CR<sup>5</sup>=CH<sub>2</sub>、-R<sup>4</sup>-CR<sup>5</sup>=CH<sub>2</sub>、-HNOOC-CR<sup>5</sup>=CH<sub>2</sub>、-HN-CH<sub>2</sub>-CR<sup>5</sup>=CH<sub>2</sub>より選ばれる基を表す。R<sup>4</sup>は炭素数1～5のアルキレン基、R<sup>5</sup>は水素又はメチル基を表す。R<sup>1</sup>～R<sup>3</sup>は同一又は異なっていてもよい。)

6. 前記熱可塑性ポリマー100質量部に対して、前記架橋剤を0.5～10質量部含有する請求項1～5のいずれか1つに記載の電気部品用樹脂成形品。
7. 前記強化繊維を、前記樹脂組成物全体に対して5～40質量%含有し、前記強化繊維が、樹脂で表面処理されたガラス繊維である請求項1～6のいずれか1つに記載の電気部品用樹脂成形品。

8. 前記無機充填剤を、前記樹脂組成物全体に対して1～15質量%含有する請求項1～7のいずれか1つに記載の電気部品用樹脂成形品。

9. 前記無機充填剤としてシリケート層が積層してなる層状のクレーを含有し、前記層状のクレーを前記樹脂組成物全体に対して1～10質量%含有する請求項8に記載の電気部品用樹脂成形品。

10. 前記樹脂組成物が難燃剤を含有し、該難燃剤を、前記樹脂組成物全体に対して2～35質量%含有する請求項1～9のいずれか1つに記載の電気部品用樹脂成形品。

11. 前記難燃剤として、末端に1つの不飽和基を有する単官能性の有機リン化合物を含有する請求項10に記載の電気部品用樹脂成形品。

12. 前記電気部品が電磁開閉器に用いられるものである請求項1～11のいずれか一つに記載の電気部品用樹脂成形品。

13. 主骨格の末端に不飽和基を有する多官能性のモノマー又はオリゴマーからなる架橋剤を無機充填剤に吸着させる吸着工程と、該吸着後の無機充填剤と、熱可塑性ポリマーと、強化繊維とを含有する樹脂組成物を混練する混練工程と、前記混練された樹脂組成物を射出成形する工程と、前記射出工程後の樹脂組成物を金型から取り出して、加熱又は放射線照射する架橋工程とを含むことを特徴とする電気部品用樹脂成形品の製造方法。

14. 前記架橋工程における前記放射線照射として、線量が10kGy以上の電子線又は $\gamma$ 線を照射する請求項13記載の電気部品用樹脂成形品の製造方法。

15. 前記架橋工程における前記加熱として、前記射出成形の温度より5°C以上高い温度で加熱する請求項13記載の電気部品用樹脂成形品の製造方法。

16. 前記架橋剤として、少なくとも3官能性の前記架橋剤を含有させる請求項13～15のいずれか1つに記載の電気部品用樹脂成形品の製造方法。

17. 前記架橋剤として、2種類以上の多官能性の前記架橋剤を併用する請求項13～15のいずれか1つに記載の電気部品用樹脂成形品の製造方法。

18. 前記熱可塑性ポリマーとしてポリアミド系樹脂を用い、前記架橋剤として、前記主骨格にN元素を含む環状化合物を用いる請求項13～17のいずれか1つに記載の電気部品用樹脂成形品の製造方法。

19. 前記架橋剤が、下記の一般式(I)で示される化合物である請求項13～18のいずれか1つに記載の電気部品用樹脂成形品の製造方法。



(式 (I) 中、R<sup>1</sup>～R<sup>3</sup>は、-O-R<sup>4</sup>-CR<sup>5</sup>=CH<sub>2</sub>、-R<sup>4</sup>-OOC-CR<sup>5</sup>=CH<sub>2</sub>、-R<sup>4</sup>-CR<sup>5</sup>=CH<sub>2</sub>、-HNOC-CR<sup>5</sup>=CH<sub>2</sub>、-HN-CH<sub>2</sub>-CR<sup>5</sup>=CH<sub>2</sub>より選ばれる基を表す。R<sup>4</sup>は炭素数1～5のアルキレン基、R<sup>5</sup>は水素又はメチル基を表す。R<sup>1</sup>～R<sup>3</sup>は同一又は異なっていてもよい。).

20. 前記熱可塑性ポリマー100質量部に対して、前記架橋剤を0.5～10質量部含有させる請求項13～19のいずれか1つに記載の電気部品用樹脂成形品の製造方法。

21. 前記強化纖維を、前記樹脂組成物全体に対して5～40質量%含有させ、前記強化纖維として、樹脂で表面処理されたガラス纖維を用いる請求項13～20のいずれか1つに記載の電気部品用樹脂成形品の製造方法。

22. 前記無機充填剤を、前記樹脂組成物全体に対して1～15質量%含有させる請求項13～21のいずれか1つに記載の電気部品用樹脂成形品の製造方法。

23. 前記無機充填剤としてシリケート層が積層してなる層状のクレーを含有させ、前記層状のクレーを前記樹脂組成物全体に対して1～10質量%含有させる請求項22に記載の電気部品用樹脂成形品の製造方法。

24. 前記樹脂組成物に難燃剤を含有させ、該難燃剤を前記樹脂組成物全体に対して2～35質量%含有させる請求項13～23のいずれか1つに記載の電気部品用樹脂成形品の製造方法。

25. 前記難燃剤として、末端に1つの不飽和基を有する単官能性の有機リン化合物を含有させる請求項24に記載の電気部品用樹脂成形品の製造方法。

26. 前記電気部品が電磁開閉器に用いられるものである請求項13～25のいずれか1つに記載の電気部品用樹脂成形品の製造方法。

1/2

図 1



BEST AVAILABLE COPY

2/2

図2



## INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/13497

A. CLASSIFICATION OF SUBJECT MATTER  
Int.Cl<sup>7</sup> C08J7/00, 3/20, C08L101/00

According to International Patent Classification (IPC) or to both national classification and IPC

## B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl<sup>7</sup> C08J7/00-7/18, 3/00-3/28, 5/00-5/24, C08L1/00-101/16

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPI/L

## C. DOCUMENTS CONSIDERED TO BE RELEVANT

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                       | Relevant to claim No. |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| E, X      | JP 2003-327726 A (Sumitomo Electric Fine Polymer Inc.),<br>19 November, 2003 (19.11.03),<br>Claims; Par. Nos. [0024], [0033]<br>(Family: none)                                                           | 1-4, 6-8, 10          |
| P, A      | JP 2003-41128 A (Toray Industries, Inc.),<br>13 February, 2003 (13.02.03),<br>Claims<br>& WO 02/94529 A                                                                                                  | 1-26                  |
| X         | JP 2-209934 A (Mitsubishi Kasei Corp.),<br>21 August, 1990 (21.08.90),<br>Claims; page 1, right column, line 5; page 2,<br>lower left column, line 19 to lower right column,<br>line 3<br>(Family: none) | 1, 6-8, 10-12         |

 Further documents are listed in the continuation of Box C. See patent family annex.

|                                                                                                                                                                         |                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| * Special categories of cited documents:                                                                                                                                |                                                                                                                                                                                                                                                  |
| "A" document defining the general state of the art which is not considered to be of particular relevance                                                                | "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention                                              |
| "E" earlier document but published on or after the international filing date                                                                                            | "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone                                                                     |
| "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) | "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art |
| "O" document referring to an oral disclosure, use, exhibition or other means                                                                                            | "&" document member of the same patent family                                                                                                                                                                                                    |
| "P" document published prior to the international filing date but later than the priority date claimed                                                                  |                                                                                                                                                                                                                                                  |

Date of the actual completion of the international search  
06 January, 2004 (06.01.04)Date of mailing of the international search report  
20 January, 2004 (20.01.04)Name and mailing address of the ISA/  
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

## INTERNATIONAL SEARCH REPORT

|                                                 |
|-------------------------------------------------|
| International application No.<br>PCT/JP03/13497 |
|-------------------------------------------------|

## C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                        | Relevant to claim No. |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Y         | JP 11-315156 A (Shinko Kagaku Kabushiki Kaisha), 16 November, 1999 (16.11.99), Claims; Par. Nos. [0003], [0015], [0017] (Family: none)                                    | 1-4,6-12              |
| Y         | JP 3-33134 A (Mitsubishi Kasei Corp.), 13 February, 1991 (13.02.91), Claims; page 3, upper right column, line 17 to lower left column, line 6 (Family: none)              | 1-4,6-12              |
| Y         | JP 60-108437 A (Sekisui Chemical Co., Ltd.), 13 June, 1985 (13.06.85), Claims; page 2, upper right column, lines 7 to 16; lower right column, lines 1 to 4 (Family: none) | 1-4,6-12              |
| Y         | JP 2002-265631 A (Fuji Electric Co., Ltd.), 18 September, 2002 (18.09.02), Claims; Par. Nos. [0036] to [0037] (Family: none)                                              | 1-4,6-12              |
| A         | JP 5-43633 A (Raychem Corp.), 23 February, 1993 (23.02.93),<br>Claims<br>& GB 2088397 B & EP 55898 B<br>& CA 1179442 A                                                    | 1-26                  |
| A         | JP 61-243831 A (Nisshin Denki Kabushiki Kaisha), 30 October, 1986 (30.10.86),<br>Claims<br>(Family: none)                                                                 | 1-26                  |

## 国際調査報告

国際出願番号 PCT/JP03/13497

## A. 発明の属する分野の分類（国際特許分類（IPC））

Int.C1<sup>7</sup> C08J7/00, 3/20, C08L101/00

## B. 調査を行った分野

## 調査を行った最小限資料（国際特許分類（IPC））

Int.C1<sup>7</sup> C08J7/00-7/18, 3/00-3/28, 5/00-5/24,  
C08L1/00-101/16

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

WPI/L

## C. 関連すると認められる文献

| 引用文献の<br>カテゴリー* | 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示                                                  | 関連する<br>請求の範囲の番号 |
|-----------------|------------------------------------------------------------------------------------|------------------|
| EX              | JP 2003-327726 A(住友電工ファインポリマー株式会社)2003.11.19<br>特許請求の範囲, [0024]及び[0033](ファミリーなし)   | 1-4, 6-8, 10     |
| PA              | JP 2003-41128 A(東レ株式会社)2003.02.13<br>特許請求の範囲&WO 02/94529 A                         | 1-26             |
| X               | JP 2-209934 A(三菱化成株式会社)1990.08.21<br>特許請求の範囲, 第1頁右欄第5行及び第2頁左下欄第19行~右下欄第3行(ファミリーなし) | 1, 6-8, 10-12    |

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

## \* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する（理由を付す）

「O」「図示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

## の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&amp;」同一パテントファミリー文献

|                                                                         |                                                                      |
|-------------------------------------------------------------------------|----------------------------------------------------------------------|
| 国際調査を完了した日<br>06.01.2004                                                | 国際調査報告の発送日<br>20.1.2004                                              |
| 国際調査機関の名称及びあて先<br>日本国特許庁 (ISA/JP)<br>郵便番号 100-8915<br>東京都千代田区霞が関三丁目4番3号 | 特許庁審査官 (権限のある職員)<br>吉澤 英一 印<br>4 J 9543<br>電話番号 03-3581-1101 内線 3455 |

## 国際調査報告

国際出願番号 P C T / J P O 3 / 1 3 4 9 7

| C(続き) .         | 関連すると認められる文献                                                                            |                  |
|-----------------|-----------------------------------------------------------------------------------------|------------------|
| 引用文献の<br>カテゴリー* | 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示                                                       | 関連する<br>請求の範囲の番号 |
| Y               | JP 11-315156 A(伸晃化学株式会社)1999. 11. 16<br>特許請求の範囲, [0003], [0015]及び[0017](ファミリーなし)        | 1-4, 6-12        |
| Y               | JP 3-33134 A(三菱化成株式会社)1991. 02. 13<br>特許請求の範囲及び第3頁右上欄第17行～左下欄第6行(ファミリーなし)               | 1-4, 6-12        |
| Y               | JP 60-108437 A(積水化学工業株式会社)1985. 06. 13<br>特許請求の範囲, 第2頁右上欄第7～16行, 同右下欄第1～4行(ファミリーなし)     | 1-4, 6-12        |
| Y               | JP 2002-265631 A(富士電機株式会社)2002. 09. 18<br>特許請求の範囲及び[0036]-[0037](ファミリーなし)               | 1-4, 6-12        |
| A               | JP 5-43633 A(レイケム・コーポレイション)1993. 02. 23<br>特許請求の範囲&GB 2088397 B&EP 55898 B&CA 1179442 A | 1-26             |
| A               | JP 61-243831 A(日新電機株式会社)1986. 10. 30<br>特許請求の範囲(ファミリーなし)                                | 1-26             |