Name of the Candidate:

(OR)

Reg. No.:

19DS220

M.Sc.DEGREE - APRIL 2022- EXAMINATIONS

	BRANCH:DATA SCIENCE							
	TRANSFORMS AND THEIR APPLICATIONS							
Duration: 3Hours Maximum: 100 Marks								
Answer All Questions								
	PART - A $(5 \times 2 = 10)$	CO	Marks					
A1.	What is mean by Linear Transformations? Give an example.	CO1	(2)					
A2.	State and Prove First shifting Property of Laplace Transforms.	CO2	(2)					
АЗ.	Find the Root Mean Square value of the function $f(x) = 1-x$, $0 < x < 1$.							
A4.								
A5.	A5. $Find Z[n \ a^{n-1}]$							
	PART - B $(4 \times 5 = 20)$	СО	Marks					
B1.	Find i) $L^{-1} \left[\log \left(\frac{s+a}{s+b} \right) \right]$ ii) $L^{-1} \left[\frac{s}{(s+2)^2+4} \right]$ by using the Inverse properties.	CO2	(5)					
	Find i) L $\left(\frac{\log \left(\frac{1}{s+b}\right)^{1}}{s+b}\right)^{1}$ L $\left(\frac{1}{(s+2)^2+4}\right)^{1}$ by using the inverse properties.							
B2.	Find the Fourier series of the function $f(x) = \pi x, -l < x < l$.							
вз.	State and Prove Conjugation Property of Discrete Fourier Transform.							
B4.	CO6	(5)						
	PART – C (<i>70 Marks</i>)	СО	Marks					
C1.	a. Determine the Laplace Transforms of the half sine wave rectifier function	CO2	(7)					
	$\int \sin t, \ 0 < t < \pi$							
	$f(t) = \begin{cases} \sin t, & 0 < t < \pi \\ 0, & \pi < t < 2\pi \end{cases}$							
		CO2	(10)					
	b. Apply Laplace transforms to Solve the differential equation,							
	$y'' + 4y' + 4y = e^{-t}, y(0) = y'(0) = 0.$							
	(OR)							
C2.	a. Apply Convolution the area to angly at I^{-1}	CO2	(7)					
	Apply Convolution theorem to evaluate $L^{-1}\left[\frac{1}{\left(s^2+a^2\right)^2}\right]$							
	b. Solve the integral equation, using Laplace transforms	CO2	(10)					
	$y' + 4y + 5 \int_{0}^{t} y dt = e^{-t}, y(0) = 0.$							
СЗ.	a. Find the Half Range Fourier Cosine series expansion for the function	CO3	(8)					
	$f(x) = (x-1)^2$, in $0 \le x \le 1$. Hence show that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$.							
	b.	CO3	(10)					
	Express the function $f(x) = x(2\pi - x)$ as a Fourier series in $0 \le x \le 2\pi$.		-					

- C4. a. Obtain the Fourier series expansion for the function $f(x) = \begin{cases} l-x, & 0 < x < l \\ 0, & l < x < 2l \end{cases}$ with period 2l. Also deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$
 - **b.** Using Parseval's identity theorem, to find the Fourier series for $f(x) = x^2$ in the interval $-\pi \le x \le \pi$. Hence deduce that $\sum_{n=1}^{\infty} \frac{1}{n^4}$
- **C5.** a. Show that the $e^{-x^2/2}$ is self-reciprocal under Fourier Cosine transform of and also $x e^{-x^2/2}$ is self-reciprocal under Fourier Sine transform. (8)
 - **b.** Obtain the Fourier transform of $f(x) = \begin{cases} a |x|, & |x| \le a \\ 0, & |x| > a \end{cases}$. And hence show that **CO4** (10)
 - $i) \int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{2} dt = \frac{\pi}{2} \quad ii) \int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{4} dt = \frac{\pi}{3}$

(OR)

- **C6.** a. Apply Fourier Integral Theorem, show that $e^{-ax} e^{-bx} = \frac{2(b^2 a^2)}{\pi} \int_0^\infty \frac{\lambda \sin \lambda x}{(\lambda^2 + a^2)(\lambda^2 + b^2)} d\lambda, \quad a, b > 0.$
 - Evaluate the Fourier cosine and Fourier sine transform of e^{-ax} . Also by using Parseval's identity, Evaluate $\int_{0}^{\infty} \frac{dx}{(x^2+a^2)(x^2+b^2)} and \int_{0}^{\infty} \frac{x^2 dx}{(x^2+a^2)(x^2+b^2)}$.
- **C7.** Apply the concept of Convolution Theorem, Obtain $Z^{-1}[\frac{8z^2}{(2z-1)(4z+1)}]$.
 - **b.** Solve $y_{n+2} + 4y_{n+1} + 3y_n = 3^n$ with y(0) = 0, y(1) = 1.

(OR)

- **C8.** a. i) Form the differential equations by eliminating the constants from **C06** (7) $y_n = (A + Bn) 2^n$, ii) Find $Z[2^n \cos \frac{n\pi}{2}]$ and $z[3^n \sin \frac{n\pi}{2}]$
 - **b.** Solve the given differential equation using Z-transform, $y_{n+2} + y_n = 2^n.n$
