FIT2102 Programming Paradigms Lecture 7

Y-Combinator Typeclasses Maybe

Informal Feedback

Were the in-lecture activities useful?

107 responses

Which of the resources provided for this unit have you accessed?

110 responses

How much time did you spend before the lecture working on the preactivities prescribed each week (reading course notes, slides, watching videos)?

110 responses

Learning Outcomes

- Apply beta reduction to expressions involving the Y-Combinator to see how it is divergent and results in recurrence
- Describe how Haskell typeclasses afford polymorphism
- Create custom data types that:
 - o derive typeclasses to so that standard functions can be applied to them
 - use new instances of existing typeclasses to provide custom implementations of standard functions
- Apply the Maybe data type to achieve alternative behavior when a value is empty or improperly formed

$$\mathbf{Y} = \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))$$

Y *g*

```
\mathbf{Y} = \lambda f. \ (\lambda x. \ f(x \ x)) \ (\lambda x. \ f(x \ x))
\mathbf{Y} \ g
\Rightarrow (\lambda f. \ (\lambda x. \ f(x \ x)) \ (\lambda x. \ f(x \ x))) \ g \qquad <= \text{expand } \mathbf{Y}
```

```
\mathbf{Y} = \lambda f. \ (\lambda x. \ f(x \ x)) \ (\lambda x. \ f(x \ x))
\mathbf{Y} \ g
\Rightarrow (\lambda f. \ (\lambda x. \ f(x \ x)) \ (\lambda x. \ f(x \ x))) \ g
\Rightarrow (\lambda f \ [f := g]. \ (\lambda x. \ f(x \ x)) \ (\lambda x. \ f(x \ x))) \ <= \text{beta reduce}
```

```
Y = \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))

Y g

\Rightarrow (\lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))) g

\Rightarrow (\lambda f[f := g]. (\lambda x. f(x x)) (\lambda x. f(x x))) <= beta reduce

\Rightarrow \lambda x. f(x x)) (\lambda x. f(x x) [f := g]
```

```
\mathbf{Y} = \lambda f. \ (\lambda x. \ f(x \ x)) \ (\lambda x. \ f(x \ x))
\mathbf{Y} \ g
\Rightarrow (\lambda f. \ (\lambda x. \ f(x \ x)) \ (\lambda x. \ f(x \ x))) \ g
\Rightarrow (\lambda f \ [f := g]. \ (\lambda x. \ f(x \ x)) \ (\lambda x. \ f(x \ x))) \ <= \text{beta reduce}
\Rightarrow (\lambda x. \ g(x \ x)) \ (\lambda x. \ g(x \ x))
```

```
\mathbf{Y} = \lambda f. \ (\lambda x. \ f(x \ x)) \ (\lambda x. \ f(x \ x))
\mathbf{Y} \ g
\Rightarrow (\lambda f. \ (\lambda x. \ f(x \ x)) \ (\lambda x. \ f(x \ x))) \ g
\Rightarrow (\lambda f \ [f := g]. \ (\lambda x. \ f(x \ x)) \ (\lambda x. \ f(x \ x)))
\Rightarrow (\lambda x. \ g(x \ x)) \ (\lambda x. \ g(x \ x))
\Rightarrow (\lambda x. \ [x := (\lambda x. \ g(x \ x))]. \ g(x \ x)) \ <= \text{beta reduce}
```

```
\mathbf{Y} = \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))
\mathbf{Y} g
\Rightarrow (\lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))) g
\Rightarrow (\lambda f[f := g]. (\lambda x. f(x x)) (\lambda x. f(x x)))
\Rightarrow (\lambda x. g(x x)) (\lambda x. g(x x))
\Rightarrow (\lambda x [x := (\lambda x. g(x x))]. g(x x))
                                                                  <= beta reduce
\Rightarrow g((\lambda x. g(x x))(\lambda x. g(x x)))
```

```
\mathbf{Y} = \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))
\mathbf{Y} g
\Rightarrow (\lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))) g
\Rightarrow (\lambda f[f := g]. (\lambda x. f(x x)) (\lambda x. f(x x)))
\Rightarrow (\lambda x. g(x x)) (\lambda x. g(x x))
\Rightarrow (\lambda x [x := (\lambda x. g(x x))]. g(x x))
\Rightarrow g((\lambda x. g(xx))(\lambda x. g(xx)))
                                                                          <= alpha equivalent to: Y g
```

```
\mathbf{Y} = \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))
\mathbf{Y} g
\Rightarrow \overline{(\lambda f. (\lambda x. f(x x)) (\lambda x. f(x x)))} g
\Rightarrow (\lambda f[f := g]. (\lambda x. f(x x)) (\lambda x. f(x x)))
\Rightarrow (\lambda x. g(x x)) (\lambda x. g(x x))
\Rightarrow (\lambda x [x := (\lambda x. g(x x))]. g(x x))
\Rightarrow g((\lambda x. g(x x))(\lambda x. g(x x)))
                                                                              <= alpha equivalent to: Y g
\Rightarrow g(\mathbf{Y} g)
```

```
\mathbf{Y} = \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))
\mathbf{Y} g
\Rightarrow (\lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))) g
\Rightarrow (\lambda f[f := g]. (\lambda x. f(x x)) (\lambda x. f(x x)))
\Rightarrow (\lambda x. g(x x)) (\lambda x. g(x x))
\Rightarrow (\lambda x [x := (\lambda x. g(x x))]. g(x x))
\Rightarrow g((\lambda x. g(x x))(\lambda x. g(x x)))
\Rightarrow g(\mathbf{Y} g)
\Rightarrow g g (\mathbf{Y} g)
\Rightarrow g g g (Y g)
```

Y-Combinator meets JavaScript - Not examinable

```
\mathbf{Y} = \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))
const Y = f=> (x \Rightarrow f(x)(x))(x\Rightarrow f(x)(x)) // Direct translation from Lambda Calc
// A simple function that recursively calculates 'n!'.
const FAC = next \Rightarrow n \Rightarrow n>1 ? n * next(n-1) : 1
const fac = Y(FAC)
console.log(fac(5))
```

... stack overflow

Strict Evaluation

- Not examinable

```
\lambda f[f := FAC]. (\lambda x. f(xx)) (\lambda x. f(xx))
\lambda x[x:=(\lambda x. FAC(xx))]. FAC(xx) <= beta reduction
FAC ((\lambda X. FAC (XX))(\lambda X. FAC (XX))) <= need to evaluate args before calling function
FAC (\lambda X [ X := (\lambda X, FAC(XX)) ]. FAC (XX)) <= beta reduction again...
FAC (FAC ((\lambda X. FAC (XX))(\lambda X. FAC (XX))))
FAC ( FAC ( (\lambda X \mid X := (\lambda X, FAC (XX))) ]. FAC ( (XX) ) ) ) <= beta reduction again...
FAC ( FAC ( (\lambda X. FAC (XX)) (\lambda X. FAC (XX)) ) ) <= and so on...
forever...
```

Strict Y-Combinator

- Not examinable

```
FAC = next => n => n>1 ? n * next(n-1) : 1
Y = \lambda f [f := FAC]. (\lambda x. f (\lambda v. x x v)) (\lambda x. f (\lambda v. x x v))
                                                                         <= beta reduction
<u>(</u>λχ. <u>FAC</u> (λν. χ χ ν)) (λχ. <u>FAC</u> (λν. χ χ ν))
\Lambda X [X:=(\Lambda X. FAC (\Lambda V. X X V)]. FAC (\Lambda V. X X V)) <= beta reduction
FAC (\lambda V. (\lambda X. FAC (\lambda V. X X V)) (\lambda X. FAC (\lambda V. X X V)) V) \le at this point, FAC actually gets called...
const Y = f => (x => f(v => x(x)(v)))(x => f(v => x(x)(v)))
const fac = Y(FAC)
console.log(fac(5))
> 120
```

Lambda functions in Haskell

```
A lambda function in haskell looks like: \x -> \ come expression of x> Compare to a lambda in JavaScript: x => \ come expression of x> and lambda calculus: \lambda x \cdot < come expression of x>
```

```
> map (\x->2*x) [1..4]
[2,4,6,8]
```

...but often we can avoid explicit lambdas with partially applied functions (to achieve a point-free style):

```
> map (2*) [1..4] [2,4,6,8]
```

The Y-Combinator in Haskell

GHCi> y ("circular reasoning works because " ++)

- Not examinable

It's possible to evaluate the lazy version of the Y-Combinator in Haskell (but we have to disable type checking):

"circular reasoning works because circular reasoning works because circular reasoning works because ...

Recap: declaring data types in Haskell

```
data IntPair = IntPair Int Int
data IntPair = IntPair { first::Int, second::Int } -- record syntax

// typescript
type Pair = { first: number, second: number}
```

Recap: declaring data types in Haskell

```
data IntPair = IntPair Int Int
data IntPair = IntPair { first::Int, second::Int }
p = IntPair 1 2
> first p
1
plusPair :: IntPair -> Int
plusPair (IntPair a b) = a + b
> plusPair p
3
```

Parametric Polymorphism in Haskell

```
data PairOfA a = APair a a
                                                          // typescript
data PairOfA a = APair {
                                                         type PairOfT<T> = {
    first::a, second::a }
                                                                  first: T, second: T }
ghci> data PairOfA a = APair a a deriving Show
ghci> APair 23 48
APair 23 48
ghci> APair "hello" "tim"
APair "hello" "tim"
ghci> APair "hello" 48
<interactive>:16:25: error:
   * No instance for (Num [Char]) arising from the literal `48'
```

Polymorphism in Haskell

```
data PairOfInt = PairOfInt { fst::Int, sec::Int }
                                                    // typescript
data PairOfA a = PairOfA { fst::a, sec::a }
                                                   type PairOfT<T> = {fst: T, sec: T}
                                                   type Pair<U, V> = {fst: U, sec: V}
data Pair a b = Pair { fst::a, sec::b }
ghci> :kind PairOfInt
                                                    The kind of a type is like a little
                      Constructor returns a type
PairOfInt :: *
                                                     lambda calculus to describe the
ghci> :kind PairOfA
                                                    arity of its constructor's type
                      Constructor takes one type
Int :: * -> *
                                                    parameters
                        parameter returns a type
ghci> :kind Pair
                      Constructor takes two type
                                                     '*' represents any concrete type
Pair :: * -> * -> *
```

parameters and returns a type

Polymorphism in Haskell

```
data Pair a = Pair a a
data Pair a = Pair { first::a, second::a }
p = Pair 1 2
> first p
>:t p
p :: Pair Integer
plusPair (Pair a b) = a + b
> :t plusPair
plusPair :: Num a => Pair a -> a
```

Polymorphism in Haskell

Typeclasses define a set of functions that can have different implementations depending on the type of data they are given. (Real World Haskell)

```
data WeekDay = Mon | Tue | Wed | Thu | Fri | Sat | Sun
> Mon == Wed
<interactive>:1:1: error:
    * No instance for (Eq WeekDay) arising from a use of `=='
    * In the expression: Mon == Wed
     In an equation for `it': it = Mon == Wed
> :i Eq
class Eq a where
  (==) :: a -> a -> Bool
  (/=) :: a -> a -> Bool
```

```
data WeekDay = Mon | Tue | Wed | Thu | Fri | Sat | Sun
  deriving Eq

> Mon == Wed
False
> Wed == Wed
True
```

```
data WeekDay = Mon | Tue | Wed | Thu | Fri | Sat | Sun
 deriving Eq
> print Mon
<interactive>:1:1: error:
    * No instance for (Show WeekDay) arising from a use of `print'
    * In the expression: print Mon
      In an equation for `it': it = print Mon
```

```
data WeekDay = Mon | Tue | Wed | Thu | Fri | Sat | Sun
  deriving (Eq, Show)

> print Mon
Mon
```

Custom instances of typeclasses

```
data Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun
instance Show Day where
   show Sat = "Sleep in"
   show Sun = "Oh no it's nearly Monday"
   show _ = "Sigh"
> print Mon
"Sigh"
```

Exercise 1:

... to be announced

Ord typeclass

```
GHCi> :i compare
class Eq a => Ord a where
  compare :: a -> a -> Ordering
GHCi> :i Ordering
data Ordering = LT | EQ | GT
```

Ord typeclass

```
data Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun
  deriving (Eq, Ord, Show)
week = [ Thu, Mon, Sun, Wed, Tue, Fri, Sat ]
> sort week
[Mon, Tue, Wed, Thu, Fri, Sat, Sun]
> sort [(12, "Sally"), (7, "Sam"), (7, "Alice")]
[(7, "Alice"), (7, "Sam"), (12, "Sally")]
```

Haskell already has an instance of Ord for Tuples

Ord typeclass

```
data Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun
deriving (Eq, Show)
instance Ord Day where
   compare Mon Tue = LT
   compare Tue Wed = LT
   compare Wed Thu = LT
> Mon < Tue
True
> Mon < Wed
   Exception: src\DaysOfTheWeek.hs:(7,5)-(9,24):
   Non-exhaustive patterns in function compare
```

instance Ord Day where compare Mon Tue = LT compare Mon Wed = LT compare Mon Thu = LT compare Mon Fri = LT compare Mon Sat = LT compare Mon Sun = LT compare Tue Wed = LT compare Tue Thu = LT compare Tue Fri = LT compare Tue Sat = LT compare Tue Sun = LT compare Wed Thu = LT compare Wed Fri = LT compare Wed Sat = LT compare Wed Sun = LT compare Thu Fri = LT compare Thu Sat = LT compare Thu Sun = LT compare Fri Sat = LT compare Fri Sun = LT compare Sat Sun = LT compare a b b == a = E0otherwise = GT

A custom instance of Ord has to fully specify all possible comparisons

Exercise 2:

... to be announced

Some Typeclasses Used for Numbers

Total Function

f :: a -> b a

Everything in a is mapped by f to a value in b

Partial Function

f is partial because it is undefined for some inputs

Maybe

```
data Maybe a = Just a | Nothing
    deriving (Eq, Ord)
phonebook :: [(String, String)]
phonebook = [ ("Bob", "01788 665242"), ("Fred", "01624 556442"), ("Alice", "01889 985333") ]
> :t lookup
lookup :: Eq a => a -> [(a, b)] -> Maybe b
> lookup "Fred" phonebook
Just "01624 556442"
> lookup "Tim" phonebook
Nothing
```

lookup is a partial function A partial function is not defined over all the elements of its input set (domain)

We can pattern match Just a or Nothing to give default behaviour

Pattern matching Maybes

```
printNumber name = msg $ lookup name phonebook
  where
     msg (Just number) = print number
     msg Nothing = print $ name ++ " not found in database"
*GHCi> printNumber "Fred"
"01624 556442"
*GHCi> printNumber "Tim"
"Tim not found in database"
```

Conclusions

- The Y-Combinator is an important theoretical concept that enables the Lambda Calculus to be Turing Complete
- Typeclasses give Haskell flexible polymorphism
- Maybe is a datatype that enables alternative behaviour for partial functions