Analysis In Several Variables Homework 2

Spencer Brouhard

Febuary 2024

1 Question 1

```
Show that the sup and inf are uniquely determined:
```

Let S be a non-empty subset of \mathbb{R}

Suppose $\exists x_1, x_2$ such that $x_1 = Sup(S)$ and $x_2 = Sup(S)$ but $x_1 \neq x_2$

Since $x_1, x_2 \in \mathbb{R}$, one of the following holds by Field Axiom 6

a) $x_1 = x_2$:

It is stated that $x_1 \neq x_2 \rightarrow \leftarrow$

b) $x_1 < x_2$:

 $x_2 = Sup(S)$ which means that there is no real number less than x_2 which is an upper bound of S, but $x_1 < x_2$ and is an upper bound. $\rightarrow \leftarrow$

c) $x_2 < x_1$:

 $x_1 = Sup(S)$ which means that there is no real number less than x_1 which is an upper bound of S, but $x_2 < x_1$ and is an upper bound. $\rightarrow \leftarrow$

Therefore Sup(S) is unique

Suppose $\exists x_1, x_2$ such that $x_1 = Inf(S)$ and $x_2 = Inf(S)$ but $x_1 \neq x_2$

Since $x_1, x_2 \in \mathbb{R}$, one of the following holds by Field Axiom 6

a) $x_1 = x_2$:

It is stated that $x_1 \neq x_2 \rightarrow \leftarrow$

b) $x_1 > x_2$:

 $x_2 = Inf(S)$ which means that there is no real number greater than x_2 which is an lower bound of S, but $x_1 > x_2$ and is a lower bound. $\rightarrow \leftarrow$

c) $x_2 > x_1$:

 $x_1 = Inf(S)$ which means that there is no real number greater than x_1 which is a lower bound of S, but $x_2 > x_1$ and is an lower bound. $\rightarrow \leftarrow$

Therefore Inf(S) is unique

2 Question 2

Let A, B be positive non-empty subsets of \mathbb{R} where a = Sup(A) and b = Sup(B). Let C be the set of all products of the form xy where $x \in A$ and $y \in B$. Prove that ab = Sup(C)

Part 1: Show that ab is an upper bound of C

By the definition of Sup:

 $\forall x \in A, x \leq a \text{ and } \forall y \in B, y \leq b$

 $xy \le ay$

 $xy \le ab$ as $y \le b$

Since all product $xy \leq ab$, ab is an upper bound of C

Part 2: Show ab is the least upper bound of C

Assume towards $\rightarrow \leftarrow$ that ab is not the least upper bound of C

Let w = Sup(C)

We have w < ab

 $w = x_1y_1$ where $x_1 \in A$ and $y_1 \in B$ Note: We can do this because we know that w < ab, so we must be able to multiply to w from elements in a and b By the approximation theorem we have:

 $\exists x_2 y_2 \in A, B \text{ where}$

 $x_1 < x_2 \le a$ and

 $y_1 < y_2 \le b$

And since C is the set of all products of the elements of A and B, $x_2y_2 \in C$ but

 $x_2y_2 > x_1y_1 \Rightarrow x_2y_2 > w$

 $\rightarrow \leftarrow$

Therefore ab is the least upper bound of C

Done!

3 Question 3

Suppose that $S,T\subset\mathbb{R}$ are nonempty and

 $\forall s \in S \ \exists t \in T \text{ such that } s \leq t$

Show: $Sup(S) \leq Sup(T)$

Assume towards contradiction that Sup(S) > Sup(T)

Sup(S) is:

- a) An upper bound for S: $\forall s \in S, s \leq Sup(S)$
- b) The least upper bound: $\nexists x \in S$ s.t $\forall s \in S, s \leq x \leq Sup(S)$

Consider the value Sup(T)

We have $\forall t \in T, t \leq Sup(T)$ and Sup(T) < Sup(S)

But $\forall s \in s, \exists t \in T \text{ s.t. } s \leq t$

Therefore Sup(T) must be an upper bound of S as well

But Sup(T) < Sup(S) which contradicts Sup(S) being the <u>least</u> upper bound. Therefore $Sup(S) \leq Sup(T)$

4 Question 4

Let $S, T \subset \mathbb{R}$ be non empty sets where $\forall s \in S \text{ and } t \in T, s \leq t$ Show $Sup(s) \leq Inf(T)$

Part 1: Show that the inf and sup exist:

Show Sup(S) exists:

Fix $t \in T$

Since $\forall s \in S, s \leq t, t$ is an upper bound of S

Therefore S is bounded above

By the completeness axiom, S has a supremum

Show Inf(T) exists:

Fix $s \in S$

Since $\forall t \in T, t \geq S$, s must be a lower bound of T

Since T has a lower bound, it is bounded below

Therefore, T has an infimum. Note: The book claims this is a consequence of the completeness axiom

Part 2: Show that $Sup(S) \leq Inf(T)$

Assume towards a contradiction that Sup(S) > Inf(T)

Fix some $a \in \mathbb{R}$ such that Inf(T) < a < Sup(S)

By the approximation property:

 $\exists x \in S \text{ s.t. } a < x \leq Sup(S)$

 $\exists y \in T \text{ s.t. } Inf(T) \leq y < a$

From this we have:

 $y < a < x \Rightarrow y < x$

But $y \in T$ and $x \in S$

This is a contradiction since every element in S is less than every element in T. Therefore $Sup(S) \leq Inf(T)$

Done!

The reason these properties are stronger:

Question 3 is a stronger form of the comparison property as it does not require the sets to be disjoint from each other. It only requires that there is some t which is greater than every element s, not that every t is greater than every s

Question 4 is stronger as it is showing that not only is Sup(T) greater than Sup(S), but Inf(T) is greater than Sup(S)! Greatest lower bound is still greater than the least upper bound.