○ True

False

1.	. (1 points) Honor Code		
	I promise that I will complete this quiz independently and will not use any electronic products of paper-based materials during the quiz, nor will I communicate with other students during this quiz.		
	I will not violate the Honor Code during this quiz.	○ True ○	False
2.	2. (9 points) True or False Determine whether the following statements are true or false.		
	(a) (1') The shortest path in DAG can be computed in $O(V)$ topological sort. However, Dijkstra's algorithm may fail to		
		○ True ○	False
	(b) (1') Given a directed graph G with no negative-weight edge s to node t if we negate the weight of one edge in the path algorithm can still find the correct shortest path from s to	P (i.e, multiply it by -1), l	
	(c) (1') Given a directed graph $G=(V,E)$, where $V=\{v_1,\ldots,v_n\}$. In Bellman-Ford's algorithm, after k out-most iterations, consists of at most k edges is computed.	the shortest path from v_1 t	
	(d) (1') After applying Bellman-Ford's algorithm on node v , if the minimum distance between any two different nodes v_i as		, we have False
	(e) (2') On a graph with n vertices and m edges, if all edges algorithm uses $O(mn)$ iterations to find the shortest distant		an-Ford's
		○ True ○	False
	(f) (1') In any connected graph without a negative cycle, A* Heuristics can always find the shortest path between two n		onsistent False
	(g) (1') A* Graph Search algorithm returns the optimal shor admissible.	test path if the heuristic fu	
	(h) (1') In A* graph search algorithm with a consistent heur	9	

3. (8 points) Lets code!

to u.

We want to find a single source min distance with Dijkstra's Algorithm and A* graph search algorithm. Suppose all edges have positive weight and the heuristic function is consistent. The graph mentioned in this problem is a simple directed graph.

visited before v, then $d(u) + h(u) \leq d(v) + h(v)$, where d(u) is the distance from the start vertex

Note: 'w' is a weight map, where you can get any edge (u, v)'s weight by using 'w(u, v)'. 'h' is a consistent heuristic function, you can get the heuristic value of a node u by using 'h(u)'.

dist[i] represents the shortest distance from s to i, pre[i] represents the previous node on the shortest path from s to i.

Q is a min-heap storing a tuple: (key, value), and sorted by value. And you have the following operations for Q:

- 1. Q.push({u, val}): put a tuple (u, val) into the heap.
- 2. {u, val} = Q.pop(): get the tuple with minimum value in the heap, and then pop the tuple out of the heap.
- 3. Q.update({u, val}): find the tuple in the heap whose key is 'u', and update its value into 'val'.

Algorithm 1 Single Source Shortest Path Algorithm

```
1: Input: Weight map w, min-heap Q, Source node s, heuristic function h.
 2: Output: The shortest distance from s to all other nodes, and their previous node in the shortest path.
 3: for i \leftarrow 0 to V do
       \mathrm{dist}[\mathrm{i}] \leftarrow \mathrm{Inf}
 4:
       pre[i] \leftarrow NULL
 5:
       Q.push(\{i, dist[i]\})
 6:
 7: end for
 8: dist[s] \leftarrow 0
 9: Q.update(\{s, 0\})
10: while Q is not empty do
       Fill this part with your pseudo code
11:
12:
13: end while
14: return dist, pre
```

What you need to do is to write some **pseudo code** to fill in to implement the algorithms with the given operations.

- (a) (4') Implement Dijkstra's algorithm.
- (b) (4') Implement A* graph search algorithm. You can use h(v) to get the heuristic value for any node v.

Hint: The algorithm should not differ too much from Dijkstra's algorithm.