Algorithmen & Datenstrukturen

Sebastian Wild wild@cs.uni-kl.de

Fachbereich Informatik

10. Januar 2017

*eigentliche Inhalte in Videos

- Erkenntnisse nur für eine Maschine/Plattform gültig
- nur für getestete Eingaben
- nur für getestete Implementierung
- **.** . . .

- Erkenntnisse nur für eine Maschine/Plattform gültig
- nur für getestete Eingaben
- nur für getestete Implementierung
- ...
- ≠ universal truths

- Erkenntnisse nur für eine Maschine/Plattform gültig
- nur für getestete Eingaben
- nur für getestete Implementierung
- ...
- ≠ universal truths
- deshalb: mathematische Modelle für Kosten

- Erkenntnisse nur für eine Maschine/Plattform gültig
- nur für getestete Eingaben
- nur für getestete Implementierung
- ...
- ≠ universal truths
- deshalb: mathematische Modelle für Kosten
 - ≈ Laufzeit auf RAM (Anzahl Schritte)

- Erkenntnisse nur für eine Maschine/Plattform gültig
- nur für getestete Eingaben
- nur für getestete Implementierung
- ...
- ≠ universal truths
- deshalb: mathematische Modelle für Kosten
 - ≈ Laufzeit auf RAM (Anzahl Schritte)
 - gilt (ungefähr) für alle Computer

- Erkenntnisse nur für eine Maschine/Plattform gültig
- nur für getestete Eingaben
- nur für getestete Implementierung
- ...
- ≠ universal truths
- deshalb: mathematische Modelle für Kosten
 - ≈ Laufzeit auf RAM (Anzahl Schritte)
 - gilt (ungefähr) für alle Computer
 - typisch: Beschränkung auf dominante Operationen ("inner loop")

→ Laufzeit-Experimente

- Erkenntnisse nur für eine Maschine/Plattform gültig
- nur für getestete Eingaben
- nur für getestete Implementierung
- ...
- ≠ universal truths
- deshalb: mathematische Modelle für Kosten
 - ≈ Laufzeit auf RAM (Anzahl Schritte)
 - gilt (ungefähr) für alle Computer

z.B. #array accesses

• typisch: Beschränkung auf dominante Operationen ("inner loop")

- Erkenntnisse nur für eine Maschine/Plattform gültig
- nur für getestete Eingaben
- nur für getestete Implementierung
- ...
- ≠ universal truths
- deshalb: mathematische Modelle für Kosten
 - ≈ Laufzeit auf RAM (Anzahl Schritte)
 - gilt (ungefähr) für alle Computer
- z.B. #array accesses
- typisch: Beschränkung auf dominante Operationen ("inner loop")
- → ~ a · (Laufzeit auf RAM) für Konstante a

- Erkenntnisse nur für eine Maschine/Plattform gültig
- nur für getestete Eingaben
- nur für getestete Implementierung
- ...
- ≠ universal truths
- deshalb: mathematische Modelle für Kosten
 - ≈ Laufzeit auf RAM (Anzahl Schritte)
 - gilt (ungefähr) für alle Computer
- z.B. #array accesses
- typisch: Beschränkung auf dominante Operationen ("inner loop")
- → ~ a · (Laufzeit auf RAM) für Konstante a
- mathematische Analyse (im Prinzip) möglich

 Laufzeiten (auf echter Maschine) sind chaotisch zu viele Faktoren für exakte Vorhersage

- Erkenntnisse nur für eine Maschine/Plattform gültig
- nur für getestete Eingaben
- nur für getestete Implementierung
- ...
- ≠ universal truths
- deshalb: mathematische Modelle für Kosten
 - ≈ Laufzeit auf RAM (Anzahl Schritte)
 - gilt (ungefähr) für alle Computer
- z.B. #array accesses
- typisch: Beschränkung auf dominante Operationen ("inner loop")
- → a · (Laufzeit auf RAM) für Konstante a

- ≠ einfach ...
- mathematische Analyse (im Prinzip) möglich
- Beschäftigt AofA-Forscher-Community seit Jahrzehnten!

Warum Asymptotik? • Abstrahiert von unwichtigen Details 2017-01-10 Sebastian Wild Algorithmen & Datenstrukturen WS 16/17

Warum Asymptotik? • Abstrahiert von unwichtigen Details für Gesamtlaufzeit Sebastian Wild Algorithmen & Datenstrukturen WS 16/17 2017-01-10 4/7

• Abstrahiert von unwichtigen Details

für Gesamtlaufzeit

"Premature optimization is the root of all evil"

Quote by C.A.R. 'Tony' Hoare, popularized by Donald Knuth

- Abstrahiert von unwichtigen Details
 - für Gesamtlaufzeit
- Vereinfacht die mathematische Analyse

"Premature optimization is the root of all evil"

Quote by C.A.R. 'Tony' Hoare, popularized by Donald Knuth

• Abstrahiert von unwichtigen Details

für Gesamtlaufzeit

Vereinfacht die mathematische Analyse

"Premature optimization is the root of all evil"

Quote by C.A.R. 'Tony' Hoare, popularized by Donald Knuth

Sebastian Wild

- Abstrahiert von unwichtigen Details
 - für Gesamtlaufzeit
- Vereinfacht die mathematische Analyse

"Premature optimization is the root of all evil"

Quote by C.A.R. 'Tony' Hoare, popularized by Donald Knuth

Sebastian Wild

Abstrahiert von unwichtigen Details

für Gesamtlaufzeit

- Vereinfacht die mathematische Analyse
- Erlaubt oft erst sinnvollen Vergleich von Algorithmen

"Premature optimization is the root of all evil"

Quote by C.A.R. 'Tony' Hoare, popularized by Donald Knuth

Sebastian Wild

$$f(n) \sim g(n)$$
 gdw $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$

"f und g sind asymptotisch äquivalent"

"Big-Oh Notation:"

also write '=' instead
$$f(n) \in O(g(n)) \quad \text{gdw} \quad \left| \frac{f(n)}{g(n)} \right| \text{ beschränkt für } n \geq n_0$$
eed supremum since limit might not exist!

need supremum since limit might not exist!
$$\operatorname{gdw} \lim \sup_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| < \infty$$

Varianten:

• "Tilde-Notation:"
$$f(n) \sim g(n)$$
 gdw $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$ " $f(n) = 1$ " g sind asymptotisch äquivalent"

"Big-Oh Notation:"

also write
$$=$$
 instead
$$f(n) \in O(g(n)) \quad \text{gdw} \quad \left| \frac{f(n)}{g(n)} \right| \text{ beschränkt für } n \geq n_0$$
eed supremum since limit might not exist!

Varianten: "Big-Omega"

•
$$f(n) = \Omega(g(n))$$
 gdw $g(n) = O(f(n))$

• "Tilde-Notation:"
$$f(n) \sim g(n)$$
 gdw $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$
"f und g sind asymptotisch äquivalent"

"Big-Oh Notation:"

also write '=' instead
$$f(n) \in O(g(n)) \quad \text{gdw} \quad \left| \frac{f(n)}{g(n)} \right| \text{ beschränkt für } n \geq n_0$$

Varianten: "Big-Omega"

•
$$f(n) = \Omega(g(n))$$
 gdw $g(n) = O(f(n))$

•
$$f(n) = \Theta(g(n))$$
 gdw $f(n) = O(g(n))$ und $f(n) = \Omega(g(n))$

"Bio-Theta"

• "Tilde-Notation:"
$$f(n) \sim g(n)$$
 gdw $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$

"f und g sind asymptotisch äquivalent"

"Big-Oh Notation:"

also write '=' instead
$$f(n) \in O(g(n)) \quad \text{gdw} \quad \left| \frac{f(n)}{g(n)} \right| \text{ beschränkt für } n \geq n_0$$

Varianten: "Big-Omega"

•
$$f(n) = \Omega(g(n))$$
 gdw $g(n) = O(f(n))$

•
$$f(n) = \Theta(g(n))$$
 gdw $f(n) = O(g(n))$ und $f(n) = \Omega(g(n))$

"Big-Theta"

"Little-Oh Notation:"

$$f(n) \in o(g(n))$$
 gdw $\lim_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| = 0$

 $\omega(g(n))$ wenn $\lim = \infty$

• "Tilde-Notation:"
$$f(n) \sim g(n)$$
 gdw $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$

" f und g sind $asymptotisch äquivalent"$

"Big-Oh Notation:"

also write '=' instead
$$f(n) \in O(g(n)) \quad \text{gdw} \quad \left| \frac{f(n)}{g(n)} \right| \text{ beschränkt für } n \geq n_0$$

Varianten: "Big-Omega"

•
$$f(n) = \Omega(g(n))$$
 gdw $g(n) = O(f(n))$

•
$$f(n) = \Theta(g(n))$$
 gdw $f(n) = O(g(n))$ und $f(n) = \Omega(g(n))$

"Big-Theta"

"Little-Oh Notation:"

$$f(n) \in o(g(n))$$
 gdw $\lim_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| = 0$

 $\omega(g(n))$ wenn $\lim = \infty$

Beispiel: "Square-and-multiply" Algorithmus um x^m zu berechnen ($m \in \mathbb{N}$)

- m als Binärzahl gegeben; der Einfachheit halber: array der bits
- n = #bits in m
- x als double gegeben

```
double pow(double base, boolean[] exponentBits) {
    double res = 1;
    for (final boolean bit : exponentBits) {
        res *= res;
        if (bit) res *= base;
    return res;
```

Beispiel: "Square-and-multiply" Algorithmus um x^m zu berechnen ($m \in \mathbb{N}$)

- *m* als Binärzahl gegeben; der Einfachheit halber: array der bits
- n = #bits in m
- x als double gegeben

```
double pow(double base, boolean[] exponentBits) {
    double res = 1;
    for (final boolean bit : exponentBits) {
        res *= res;
        if (bit) res *= base;
    }
    return res;
}
```

• Kosten: *C* = Anzahl Multiplikationen

Beispiel: "Square-and-multiply" Algorithmus um x^m zu berechnen ($m \in \mathbb{N}$)

- m als Binärzahl gegeben; der Einfachheit halber: array der bits
- n = #bits in m
- x als double gegeben

• Kosten: *C* = Anzahl Multiplikationen

Beispiel: "Square-and-multiply" Algorithmus um x^m zu berechnen ($m \in \mathbb{N}$)

- m als Binärzahl gegeben; der Einfachheit halber: array der bits
- n = #bits in m
- x als double gegeben

```
double pow(double base, boolean[] exponentBits) {
    double res = 1;
    for (final boolean bit : exponentBits) {
        res *= res;
        if (bit) res *= base;
    return res;
```

- Kosten: C = Anzahl Multiplikationen
- C = n (Zeile 4) + #Eins-Bits in Binärdarstellung von m (Zeile 5) \rightarrow n < C < 2n

Beispiel: "Square-and-multiply" Algorithmus um x^m zu berechnen ($m \in \mathbb{N}$)

- m als Binärzahl gegeben; der Einfachheit halber: array der bits
- n = #bits in m
- x als double gegeben

```
double pow(double base, boolean[] exponentBits) {
    double res = 1;
    for (final boolean bit : exponentBits) {
        res *= res;
        if (bit) res
    }
    return res;
    Was ist die genaueste asymptotische Aussage
    über C (für m → ∞), die wir treffen können?
    }
}
```

- Kosten: C = Anzahl Multiplikationen
- C = n (Zeile 4) + #Eins-Bits in Binärdarstellung von m (Zeile 5) $\rightarrow n < C < 2n$

Beispiel: "Square-and-multiply" Algorithmus um x^m zu berechnen ($m \in \mathbb{N}$)

- m als Binärzahl gegeben; der Einfachheit halber: array der bits
- n = #bits in m
- x als double gegeben

```
double pow(double base, boolean[] exponentBits) {
    double res = 1;
    for (final boolean bit : exponentBits) {
        res *= res;
        if (bit) res *= base;
    }
    return res;
}
```

- Kosten: C = Anzahl Multiplikationen
- C = n (Zeile 4) + #Eins-Bits in Binärdarstellung von m (Zeile 5)

$$\rightarrow$$
 $n \le C \le 2n$

Beispiel: "Square-and-multiply" Algorithmus um x^m zu berechnen ($m \in \mathbb{N}$)

- m als Binärzahl gegeben; der Einfachheit halber: array der bits
- n = #bits in m
- x als double gegeben

```
double pow(double base, boolean[] exponentBits) {
    double res = 1;
    for (final boolean bit : exponentBits) {
        res *= res;
        if (bit) res *= base;
    }
    return res;
}
```

- Kosten: C = Anzahl Multiplikationen
- C = n (Zeile 4) + #Eins-Bits in Binärdarstellung von m (Zeile 5) $\rightarrow n \le C \le 2n$

$$\sim$$
 $C = \Theta(n) = \Theta(\log m)$

Achtung: Oft reicht die Intuition: " Θ ist wie \sim mit unbekannter Konstante" hier aber gibt es gar keine Konstante!

6/7

Beispiel: "Square-and-multiply" Algorithmus um x^m zu berechnen ($m \in \mathbb{N}$)

- m als Binärzahl gegeben; der Einfachheit halber: array der bits
- n = #bits in m
- x als double gegeben

```
double pow(double base, boolean[] exponentBits) {
    double res = 1;
    for (final boolean bit : exponentBits) {
        res *= res;
        if (bit) res *= base;
}
return res;
}
```


• C = n (Zeile 4) + #Eins-Bits in Binärdarstellung von m (Zeile 5)

$$\rightarrow n \le C \le 2n$$

$$\rightarrow$$
 $C = \Theta(n) = \Theta(\log m)$

Achtung: Oft reicht die Intuition: " Θ ist wie \sim mit unbekannter Konstante" hier aber gibt es gar keine Konstante!

6/7