

MC78XX/LM78XX/MC78XXA 3-Terminal 1A Positive Voltage Regulator

Features

- · Output Current up to 1A
- Output Voltages of 5, 6, 8, 9, 10, 12, 15, 18, 24V
- · Thermal Overload Protection
- · Short Circuit Protection
- Output Transistor Safe Operating Area Protection

Description

The MC78XX/LM78XX/MC78XXA series of three terminal positive regulators are available in the TO-220/D-PAK package and with several fixed output voltages, making them useful in a wide range of applications. Each type employs internal current limiting, thermal shut down and safe operating area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

Internal Block Digram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Input Voltage (for V _O = 5V to 18V) (for V _O = 24V)	VI VI	35 40	V
Thermal Resistance Junction-Cases (TO-220)	Rejc	5	°C/W
Thermal Resistance Junction-Air (TO-220)	ReJA	65	°C/W
Operating Temperature Range	Topr	0 ~ +125	°C
Storage Temperature Range	TSTG	-65 ~ +150	°C

Electrical Characteristics (MC7805/LM7805)

(Refer to test circuit ,0°C < T_J < 125°C, I_O = 500mA, V_I = 10V, C_I= $0.33\mu F$, C_O= $0.1\mu F$, unless otherwise specified)

Parameter	Symbol	nbol Conditions		MC7805/LM7805			
	- J.III.			Min.	Тур.	Max.	Unit
		T _J =+25 °C		4.8	5.0	5.2	
Output Voltage	Vo	5.0 mA \leq lo \leq 1.0A, PO \leq 15W VI = 7V to 20V		4.75	5.0	5.25	V
Line Regulation (Note1)	Regline	T _J =+25 °C	Vo = 7V to 25V	-	4.0	100	mV
	rtogilito		VI = 8V to 12V	-	1.6	50	
			Io = 5.0mA to1.5A	-	9	100	mV
Load Regulation (Note1)	Regload	TJ=+25°C	IO =250mA to 750mA	-	4	50	
Quiescent Current	lQ	T _J =+25 °C		-	5.0	8.0	mA
Quiescent Current Change	Mo	Io = 5mA to 1.0A		-	0.03	0.5	mA
	ΔlQ	V _I = 7V to 25V		-	0.3	1.3	
Output Voltage Drift	ΔV0/ΔΤ	Io= 5mA		-	-0.8	-	mV/ °C
Output Noise Voltage	VN	f = 10Hz to 100KHz, TA=+25 °C		-	42	_	μV/Vo
Ripple Rejection	RR	f = 120Hz Vo = 8V to 18V		62	73	-	dB
Dropout Voltage	VDrop	Io = 1A, T _J =+25 °C		-	2	-	V
Output Resistance	ro	f = 1KHz		-	15		mΩ
Short Circuit Current	Isc	VI = 35V, TA =+25 °C		-	230	_	mA
Peak Current	lp _K	T _J =+25 °C		-	2.2		A

Note:

Load and line regulation are specified at constant junction temperature. Changes in V₀ due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC7815)

(Refer to test circuit ,0°C < T_J < 125°C, I_O = 500mA, V_I =23V, C_I= 0.33μ F, C_O= 0.1μ F, unless otherwise specified)

	0	Symbol Conditions		MC7815			1114
Parameter	Symbol			Min.	Тур.	Max.	Unit
		T _J =+25 °C		14.4	15	15.6	
Output Voltage	Vo		5.0mA ≤ I _O ≤ 1.0A, P _O ≤ 15W V _I = 17.5V to 30V		15	15.75	٧
	5	TJ =+25 °C	V _I = 17.5V to 30V	-	11	300	mV
Line Regulation (Note1)	Regline		V ₁ = 20V to 26V	-	3	150	
) Regload TJ	T _J =+25 °C lo	Io = 5mA to 1.5A	-	12	300	mV
Load Regulation (Note1)			IO = 250mA to 750mA	-	4	150	
Quiescent Current	lQ	TJ =+25 °C		-	5.2	8.0	mA
		ΔI_Q $I_O = 5 \text{mA to } 1.0 \text{A}$ $V_I = 17.5 \text{V to } 30 \text{V}$		-	-	0.5	mA
Quiescent Current Change	ΔIQ			-	-	1.0	
Output Voltage Drift	ΔV0/ΔΤ	IO = 5mA		-	-1	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100KHz, T _A =+25 °C		-	90	-	μV/Vο
Ripple Rejection	RR	f = 120Hz V _I = 18.5V to 28.5V		54	70	-	dB
Dropout Voltage	VDrop	Io = 1A, TJ=+25 °C		-	2	-	V
Output Resistance	ro	f = 1KHz		-	19	-	mΩ
Short Circuit Current	Isc	VI = 35V, TA=+25 °C		-	250	-	mA
Peak Current	ĺРК	TJ =+25 °€		-	2.2	-	Α

Note:

Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC7815A)

(Refer to the test circuits. 0° C < T_J < 125 $^{\circ}$ C, I_O =1A, V I =23V, C I=0.33 μ F, C O=0.1 μ F, unless otherwise specified)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
		T _J =+25 °C		14.7	15	15.3	
Output Voltage	Vo	I _O = 5mA to 1A, P _O ≤15W V _I = 17.7V to 30V		14.4	15	15.6	V
		V _I = 17.9V to 30V I _O = 500mA		-	10	150	
Line Regulation (Note1)	Regline	VI= 20V to 26	6V	-	5	150	mV
		T _J =+25°C	V _I = 17.5V to 30V	-	11	150	1
		1J =+25 C	V _I = 20V to 26V	-	3	75	1
Load Regulation (Note1)	Regload	T _J =+25 °C I _O = 5mA to 1.5A		-	12	100	mV
		Io = 5mA to 1.0A		-	12	100	
		Io = 250mA to 750mA		-	5	50	
Quiescent Current	lQ	TJ =+25 °C		-	5.2	6.0	mA
Quiescent Current Change	ΔlQ	VI = 17.5V to 30V, TJ =+25 °C		-	-	0.8	mA
		V _I = 17.5V to 30V, I _O = 500mA		_	- 1	8.0	
		Io = 5mA to 1.0A		-	- 1	0.5	
Output Voltage Drift	ΔV/ΔΤ	I _O = 5mA		-	-1.0	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100KHz T _A =+25 °C		-	10	-	μV/Vo
Ripple Rejection	RR	f = 120Hz, I _O = 500mA V _I = 18.5V to 28.5V		-	58	-	dB
Dropout Voltage	V _{Drop}	IO = 1A, TJ =+25 °C		-	2.0	_	V
Output Resistance	ro	f = 1KHz		-	19	-	mΩ
Short Circuit Current	Isc	V _I = 35V, T _A =+25 °C		-	250	-	mA
Peak Current	IPK	TJ=+25°C		-	2.2	-	Α

Note:

Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Typical Perfomance Characteristics

Figure 1. Quiescent Current

Figure 3. Output Voltage

Figure 2. Peak Output Current

Figure 4. Quiescent Current

Typical Applications

Figure 5. DC Parameters

Figure 6. Load Regulation

Figure 7. Ripple Rejection

Figure 8. Fixed Output Regulator

Figure 9. Constant Current Regulator

Notes:

- (1) To specify an output voltage, substitute voltage value for "XX." A common ground is required between the input and the Output voltage. The input voltage must remain typically 2.0V above the output voltage even during the low point on the input ripple voltage.
- (2) CI is required if regulator is located an appreciable distance from power Supply filter.
- (3) Co improves stability and transient response.

 $V_O = V_{XX}(1 + R_2/R_1) + I_QR_2 \label{eq:VO}$ Figure 10. Circuit for Increasing Output Voltage

 $I_{R1} \ge 5IQ$

 $\label{eq:local_local} I_{Ri} \geq \! 5 \; I_Q$ $V_O = V_{XX}(1 + R_2/R_1) + I_QR_2$ Figure 11. Adjustable Output Regulator (7 to 30V)

Figure 12. High Current Voltage Regulator

Figure 13. High Output Current with Short Circuit Protection

Figure 14. Tracking Voltage Regulator

Figure 15. Split Power Supply (±15V-1A)

Figure 16. Negative Output Voltage Circuit

Figure 17. Switching Regulator

Mechanical Dimensions

Package

TO-220

Mechancal Dimensions (Continued)

Package

D-PAK

Ordering Information

Product Number	Output Voltage Tolerance	Package	Operating Temperature
LM7805CT	±4%	TO-220	0~+125°C

Product Number	Output Voltage Tolerance	Package	Operating Temperature
MC7805CT			
MC7806CT			
MC7808CT			
MC7809CT			
MC7810CT		TO-220	
MC7812CT			
MC7815CT			
MC7818CT	±4%		
MC7824CT			
MC7805CDT			
MC7806CDT			
MC7808CDT			
MC7809CDT		D-PAK	0 ~ + 125°C
MC7810CDT			
MC7812CDT		.s	
MC7805ACT		_	
MC7806ACT		÷	
MC7808ACT			
MC7809ACT			
MC7810ACT	±2%	TO-220	
MC7812ACT			
MC7815ACT			
MC7818ACT			
MC7824ACT	1		