Homework 12

Chengyu Lin*

- Problem 1 First, we have discussed in the class that the maximum size of this intersecting family is 2^{n-1} by pair each set and its complement.
 - Suppose that there exists a intersecting family \mathcal{F} with size 2^{n-1} such that for some $A \subset B$, $A \in \mathcal{F}$ but $B \notin \mathcal{F}$. Since $A \subset B$, every set intersects A that intersects B, $\mathcal{F} \cup \{B\}$ is also an intersecting family but its size would be greater than 2^{n-1} , which is impossible. #
- Problem 2 $\binom{10}{3} = 120$, take every set from $2^{[12]}$ which contains 1 and 2.
- Problem 3 Take 5 sets with size 4: $\{1,2,3,4\},\{2,3,4,5\},\{3,4,5,1\},\{4,5,1,2\},\{5,1,2,3\}$. The intersection between any two of them has size 3. Then there are 6 elements remained in [11] and $5 \times 6 = 30$.
- Problem 4 f(n) = 1. The example for m = 1 can be constructed easily.

Proof: by contradiction

Let $a_i = 2^i$. Assume that m > 1 sets are picked. Suppose p is the largest element in $\bigcup_{i=1}^m A_m$ and $p \in A_k$. Since $\sum_{i=1}^{p-1} 2^i = 2^p - 1$. In order to satisfy the condition $|S(A_i) - S(A_k)| < 1$ for some i, A_i must contain some elements larger than p, which violate the assumption. #

^{*}F1003028-5100309007