Papers written by Australian Maths Software

SEMESTER ONE

REVISION 1

MATHEMATICS METHODS UNIT 3

2016

SOLUTIONS

SECTION ONE

1. (7 marks)

(a)
$$y = x^2 (2x - 1)$$

$$\frac{dy}{dx} = 2x(2x-1)+2(x^2)$$

$$\frac{dy}{dx} = 6x^2 - 2x$$
(2)

(b)
$$y = \frac{\sin(2x)}{2x}$$

$$\frac{dy}{dx} = \frac{2(\cos(2x)) \times 2x - 2(\sin(2x))}{4x^2}$$

$$\frac{dy}{dx} = \frac{4x(\cos(2x)) - 2(\sin(2x))}{4x^2}$$
(3)

(c)
$$y = (x + e^{x})^{4}$$

$$\frac{dy}{dx} = 4(x + e^{x})^{3} \times (1 + e^{x})$$

$$\checkmark \qquad \checkmark$$
(2)

2. (9 marks)

(a)

- (b) The displacement graph is a cubic polynomial. ✓ (1)
- (c) At a(t)=0 on the acceleration graph, there is a point of inflection on the displacement graph. \checkmark (1)
- (d) At a(t)=0, the velocity graph has a turning point. \checkmark In this case the velocity goes from decreasing to increasing so the velocity graph has a minimum turning point. (1)

- (e) At v(t)=0, then the particle changes direction on the displacement graph. The velocity goes from positive to negative or from negative to positive. \checkmark (2) On the displacement graph, the first time v(t)=0 the displacement had been increasing and the particle turned around and began decreasing. The second time v(t)=0, the displacement had been decreasing and the particle turned around and began increasing.
- 3. (6 marks)

(a) (i)
$$\int \sqrt{2x+1} \, dx = \frac{2\sqrt{(2x+1)^3}}{3\times 2} + c = \frac{\sqrt{(2x+1)^3}}{3} + c \quad \checkmark \quad \checkmark$$
 (2)

(ii)
$$\int 1 + x - e^{-x} dx = x + \frac{x^2}{2} + e^{-x} + c \quad \checkmark \quad \checkmark$$
 (2)

(b)
$$\frac{dy}{dx} = 2x + 3x^2 - x^{\frac{1}{2}}$$

$$y = x^2 + x^3 - \frac{2x^{\frac{3}{2}}}{3} + c$$

(1,4) belongs to the function

$$4 = 1 + 1 - \frac{2}{3} + c$$

$$c = 2\frac{2}{3}$$

$$y = x^2 + x^3 - \frac{2x^{\frac{3}{2}}}{3} + \frac{8}{3}$$

(2)

4. (7 marks)

(a)
$$\int_{2}^{4} (x^{2} - 2x + 3) dx = \left[\frac{x^{3}}{3} - x^{2} + 3x \right]_{2}^{4}$$

$$= \left(\frac{64}{3} - 16 + 12 \right) - \left(\frac{8}{3} - 4 + 6 \right)$$

$$= \frac{56}{3} - 4 - 2$$

$$= 12 \frac{2}{3}$$

(b)
$$\int_{\frac{\pi}{2}}^{\pi} (\sin(x) - \cos(x)) dx = \left[-\cos(x) - \sin(x) \right]_{\frac{\pi}{2}}^{\pi}$$

$$= -\left[(\cos(\pi) + \sin(\pi)) - \left[\cos\left(\frac{\pi}{2}\right) + \sin\left(\frac{\pi}{2}\right) \right] \right]$$

$$= -\left(-1 + 0 - (0 + 1) \right)$$

$$= 2$$
(2)

(c)
$$\int_{0}^{1} \sqrt{e^{x}} dx = \int_{0}^{1} e^{\frac{x}{2}} dx = 2 \left[e^{\frac{x}{2}} \right]_{0}^{1} = 2 \left(e^{\frac{1}{2}} - 1 \right) = 2 \left(\sqrt{e} - 1 \right)$$

5. (5 marks)

(a) (i)
$$\int_{2}^{2} (x^{3}) dx = 0$$
 (1)

(ii)
$$\int_{0}^{2} (x^{3}) dx = \frac{1}{4} \left[x^{4} \right]_{0}^{2} = 4 \quad \checkmark$$
 (1)

(iii) Area =
$$2 \int_0^2 (x^3) dx = 2 \times \frac{1}{4} [x^4]_0^2 = 8 \text{ units}^2$$
 (1)

(b) (i)
$$2\int_0^2 x^2 dx = \int_2^2 x^2 dx$$

True as the function is
(a) symmetrical about the y axis
(b) not below the x axis.

(ii)
$$\int_{0}^{1} x^3 dx = \int_{0}^{2} x^3 dx$$

False as the graph has different y values on the different domain. The area below the curve is different on the same base as the height of the curve changes.

6. (8 marks)

(a) If
$$F(x) = x^3 - x^2$$

(i) $F'(x) = 3x^2 - 2x$
(1)

(ii)
$$\int_{0}^{p} F'(x) dx = \left[x^{3} - x^{2} \right]_{0}^{p} = p^{3} - p^{2} \quad \checkmark \checkmark$$
 (2)

(b)
$$F(x) = \int_{1}^{x} t^{3} dt$$
$$F'(x) = x^{3} \quad \checkmark \checkmark$$
 (2)

(c)
$$\frac{d}{dx} \left(\int_{-\infty}^{3x} \cos(2y) dy \right) = 3\cos(6x)$$

$$\checkmark \checkmark \checkmark \checkmark$$
(3)

7. (8 marks)

(a)

Given $f(x) = e^x$, g(x) = cos(x) and h(x) = -x

(i)
$$y = h(g(x)) = h(\cos(x)) = -\cos(x)$$
 \checkmark (1)
(ii) show $\frac{d}{dx}(h(g(x))) = g\left(\frac{\pi}{2} - x\right)$ $\frac{d}{dx}(h(g(x))) = -(-\sin(x)) = \sin(x)$ \checkmark $g\left(\frac{\pi}{2} - x\right) = \cos\left(\frac{\pi}{2} - x\right) = \sin(x)$ \checkmark $\therefore \frac{d}{dx}(h(g(x))) = g\left(\frac{\pi}{2} - x\right)$ (2)

(b) (i)
$$y = f(h(x)) = f(-x) = e^{-x} \checkmark$$
 (1)

(ii)
$$\frac{d}{dx}(f(h(x))) = -e^{-x} \quad \checkmark \checkmark$$
 (2)

(c)
$$g(f(x))=g(e^x)=cos(e^x)$$
 \checkmark $g(f(0))=cos(e^0)=cos(1)$ \checkmark (2)

END OF SECTION ONE

SECTION TWO

8. (4 marks)

$$V = x^{3}$$

$$\frac{dV}{dx} = 3x^{2}$$

$$\delta V \approx \frac{dV}{dx} \times \delta x$$

$$\delta V \approx 3x^2 \times \delta x$$

At
$$\delta x = -0.1$$
 cm, $x = 1$ cm

$$\delta V \approx 3 \times 1^2 \times (-0.1) = -0.3$$

$$\delta V \approx -0.3 \, \text{cm}^3$$

The decrease in volume when the side has melted to 9 mm is 0.3 cm³ (4)

9. (10 marks)

- (a) (i) Not a probability density function as the total is only 0.9. ✓ (1)
 - (ii) Not a probability density function as you can't have a negative probability. ✓(1)
 - (ii) Is a probability density function as the total is 1. \checkmark (1)
 - (iv) Not a probability density function as you can't have a probability greater than 1. ✓(1)

(b)	(i)	у	1	2	3	4	5	6
			1	1	1	1	1_	1_
		P(Y = y)	6	6	6	6	6	6

(1)

(ii)
$$P(y \le 4) = \frac{4}{6} \checkmark$$
 (1)

(iii)
$$E(X) = 1 \times \frac{1}{6} + 2 \times \frac{1}{6} + 3 \times \frac{1}{6} + 4 \times \frac{1}{6} + 5 \times \frac{1}{6} + 6 \times \frac{1}{6} = \frac{21}{6} = 3.5$$

 $Var(X) = E(X^2) - (E(X))^2$

$$E(X^2) = 1^2 \times \frac{1}{6} + 2^2 \times \frac{1}{6} + 3^2 \times \frac{1}{6} + 4^2 \times \frac{1}{6} + 5^2 \times \frac{1}{6} + 6^2 \times \frac{1}{6} = 15\frac{1}{6}$$

$$Var(X) = 15\frac{1}{6} - 3.5^2 = 2.91\frac{1}{6}$$

$$Sd(X) = 1.707825$$

$$Sd(X) \approx 1.7$$

(4)

(2)

(5)

10. (8 marks)

(a)
$$P = \pi r + 2r + 2l$$
 (1)

(b)
$$A = \frac{\pi r^2}{2} + 2rl$$

But $P = 4$
 $4 = \pi r + 2r + 2l \Rightarrow l = \frac{4 - \pi r - 2r}{2}$
 $\therefore A = \frac{\pi r^2}{2} + 2r \left(\frac{4 - \pi r - 2r}{2}\right)$
 $A = \frac{\pi r^2}{2} + 4r - \pi r^2 - 2r^2$
 $A = 4r - \frac{\pi r^2}{2} - 2r^2$

(c) $A = 4r - \frac{\pi r^2}{2} - 2r^2$

Maximum area occurs when A'(r)=0 and A''(r)<0

$$A'(r) = 4 - \pi r - 4r$$

$$A''(r) = -\pi - 4$$

If
$$A'(r) = 0$$
 then $0 = 4 - \pi r - 4r \Rightarrow r = \frac{4}{\pi + 4}$

r = 0.5600991535

 $r \approx 0.56$

$$A''\left(\frac{4}{\pi+4}\right) = -\pi - 4 < 0$$
 so maximum

At
$$r = 0.56$$
, $A = 1.1202 \, m^2$

The maximum area of the window is 1.12 m².

11. (6 marks)

(a)
$$t = 2s \checkmark$$

(b)
$$a > 0 \ \forall t \ st \ t \ge 0.$$

 $x = (t - 2)^2 + 2$

$$v = \frac{dx}{dt} = 2(t-2)$$

 $a = \frac{d^2x}{dt^2} = 2$ which is always positive!

(2)

(c)
$$v = 2(t-2)$$

At
$$t = 3$$
, $v = 2$ m/s. \checkmark (1)

(d) Distance travelled for $1 \le t \le 4 =$?

$$x(1)=3, x(2)=2, x(4)=6$$

Distance travelled = 1 + 4 = 5m

(2)

12. (7 marks)

(ii) Point shows where the maximum gradient is. (1)

(b) If
$$f(x) = cos(x)$$
, then $f'(x) = -sin(x)$ \checkmark (1)

(c)
$$\lim_{h\to 0} \left(\frac{e^h - 1}{h} \right) = 1 \quad \checkmark \checkmark$$
 (2)

13. (5 marks)

(a)
$$\int_{3}^{\pi/8} \left(\frac{\sin(2x)}{1+2x} \right) dx = 0.0981 \checkmark \checkmark$$
 (2)

(b) (i)
$$f(x) = e^x \times \sin(x) \Rightarrow f'(x) = e^x \times \sin(x) + e^x \times \cos(x)$$
$$= e^x \left(\sin(x) + \cos(x) \right)$$

(1)

(ii) Hence

$$y = \int e^{x} (\sin(x) + \cos(x)) dx = e^{x} \times \sin(x) + c$$

$$At (0,1) \ 1 = 0 + c$$

$$\therefore y = e^{x} \sin(x) + 1$$

(2)

14. (9 marks)

(a)
$$v = -3t + 6m/s$$

 $x = \int (-3t + 6) dt$
 $x = -\frac{3t^2}{2} + 6t + c$
At $t = 0$, $x = 2 \Rightarrow c = 2$
 $x = -\frac{3t^2}{2} + 6t + 2$

(2)

(b)
$$a = -3 \ m/s^2 \quad \checkmark$$
 (1)

(c)
$$2 = -\frac{3t^2}{2} + 6t + 2 \implies t = 4 \text{ s}$$
 (2)

(d) Changes direction when v = 0 *i.e.* at t = 2 s \checkmark x = 8 m \checkmark (2)

(e) At
$$t = 2 s$$
, $x = 8$
At $t = 3 s$, $x = 6.5$.

The distance travelled in the second is 1.5 m. \checkmark (2)

15. (13 marks)

(a) (i)
$$\int_{0}^{\pi} \sin(x) dx = 2 \quad \checkmark$$
 (1)

(ii) $\int_{0}^{\pi/2} \sin(x) dx = 1$ An estimate cab be made because the graph

is symmetrical.
$$\checkmark$$
 (1)

(iii) Area = 8 units²
$$\checkmark$$
 (1)

(iv)
$$\int_{0}^{4\pi} \sin(x) dx = 0 \quad \checkmark$$
 (1)

(b) (i) Estimate from below

Area =1
$$\times$$
0.5+1 \times 0.33+1 \times 0.25
=1.08

Estimate from above

$$Area = 1 \times 1 + 1 \times 0.5 + 1 \times 0.33$$

$$= 1.83$$

$$(4)$$

(ii)
$$\int_{-1}^{4} \frac{1}{x} dx = \int_{-1}^{4} x^{-1} dx = \left[\frac{x^{0}}{0} \right]_{1}^{4} \checkmark \checkmark$$

Conventional methods do not work as you cannot divide by zero. •

(3)

(iii)
$$\int_{-x}^{4} \frac{1}{x} dx = 1.386 \ (3dp) \quad \checkmark\checkmark$$
 (2)

16. (8 marks)

(a)
$$2000 t = 0 P = 400$$

 $2008 t = 8 P = 550$
 $550 = 400 (r)^8$
 $r = 1.040609622$

The annual rate of increase of the population of numbats was 4.06%. (3)

(b)
$$2016 \ t = 16 \ P = ?$$

$$P = 400 (1.040609622)^{16}$$

$$P = 756.25$$

The expected population in 2016 is 756 numbats.

(2)

(c)
$$2016 \ t = 0 \ P = 756$$

 $2020 \ t = 4 \ P = 780$
 $780 = 756 \ (r)^4$
 $r = 1.0078$

The rate of increase has dropped from 4.05% to 0.78%.

It is possible that predators had found a way in.

(3)

(2)

(2)

17. (10 marks)

(a) (i)

House	Hawke	Howard	Gillard	Turnbull	
P(House)	0.15	0.25	0.35	0.25	✓

(ii) $0.15 + 0.35 = 0.5 \quad \checkmark \quad \checkmark$ (2)

(b) (i)

House	Hawke	Howard	Gillard	Turnbull
P(House)	0.25	0.25	0.25	0.25

(ii) A subset of a parent population with elements selected at random can produce a different distribution to that of the parent population. ✓ ✓

(iii) P(the student is assigned to Howard or Hawke house) = $0.5 \checkmark (1)$

(iv) P(the student is not assigned to Turnball house) = $0.75 \checkmark$ (1)

18. (9 marks)

(b)
$$P(x \ge 3) = 0.83692 \quad \checkmark \checkmark$$
 (2)

(c)
$$n = 4$$
 $P(x = 2) = 0.2646$ $\checkmark \checkmark$ (2)

(d)
$$\mu = np = 5 \times 0.7 = 3.5 \quad \checkmark \checkmark$$
 (2)

(e)
$$\delta = \sqrt{npq} = \sqrt{5 \times 0.7 \times 0.3} = 1.025 \quad \checkmark \checkmark$$
 (2)

19. (6 marks)

(a)

X	НН	HT or TH	TT	
P(X = x)	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	

(2)

(b) (i)
$$0.0985 \checkmark$$
 (1)

20. (5 marks)

Four Apple MacBooks

$$p = 0.7$$

$$P(x=3) \cap P(y=3)$$

$$=0.4116 \times 0.5$$
Y2

The probability that 3 Apple MacBooks and 3 ASUS are being used is 0.21 (5)

Three ASUS

p = 0.8

END OF SECTION TWO