Exercise Sheet 3

Exercise 1. Second Bianchi identity

The goal of this exercise is to prove the second Bianchi identity:

$$(\nabla_U R)(X, Y, V, W) + (\nabla_V R)(X, Y, W, U) + (\nabla_W R)(X, Y, U, V) = 0.$$

(1) Show that the second Bianchi identity can equivalently be written

$$(\nabla_{U}R)(V, W, X, Y) + (\nabla_{V}R)(W, U, X, Y) + (\nabla_{W}R)(U, V, X, Y) = 0.$$
 (1)

- (2) Our proof strategy is to show that (1) holds at any fixed point $p \in M$. Argue carefully that we can assume that the vector fields X, Y, U, V, W are all elements of a local orthonormal frame $(E_i)_{1 \le i \le m}$ and that their covariant derivatives all vanish at $p: \nabla_X Y = 0$, etc.
 - NB: This is a recurring trick in Riemannian geometry, also used in the course notes.
- (3) Under the previous assumptions, show that the first term of (1) can be written:

$$(\nabla_U R)(V, W, X, Y) = \langle \nabla_U \nabla_V \nabla_W X - \nabla_U \nabla_W \nabla_V X, Y \rangle.$$

This is obviously zero, since $\nabla_W X = 0$ and $\nabla_V X = 0$. We can treat the other terms of (1) similarly, so we are done. Right? *No!*

(4) Show that the left-hand side of (1) can be rewritten like below and conclude.

$$\langle R(U,V)(\nabla_W X) + R(V,W)(\nabla_U X) + R(W,U)(\nabla_V X), Y \rangle$$

Exercise 2. Einstein equations in the vacuum with cosmological constant

Let $\Lambda \in \mathbb{R}$ be a constant. Show that a semi-Riemannian manifold (M,g) of dimension $m \neq 2$ satisfies the Einstein equation $\text{Ric}(g) - \frac{1}{2}Sg + \Lambda g = 0$ if and only if $\text{Ric}(g) = \lambda g$ where $\lambda = \frac{2\Lambda}{m-2}$ is a constant. *NB*: *This is called an Einstein manifold (see Exercise 4)*. What about the case dim M = 2?

Exercise 3. Schur's lemma

Let (M,g) be a connected semi-Riemannian manifold of dimension $\neq 2$ such that $Ric(g) = \lambda g$ for some differentiable function $\lambda \colon M \to \mathbb{R}$. Show that λ is constant (in other words (M,g) is Einstein: see Exercise 4). Hint: take the divergence of both sides of $Ric(g) = \lambda g$ to show that $\frac{1}{2} dS = d\lambda$.

Exercise 4. Constant sectional curvature vs Einstein manifold

A semi-Riemannian manifold (M, g) is called an *Einstein manifold* if it has constant Ricci curvature in the sense that there exists a constant $\lambda \in \mathbb{R}$ such that $\text{Ric}(g) = \lambda g$.

- (1) Show that any semi-Riemannian manifold (M,g) with constant sectional curvature is Einstein.
- (2) Show that the converse of (1) is true when dim M = 2.

- (3) (*) Show that the converse of (1) is true when dim M = 3. Do Exercise 5!
- (4) (*) Is the converse of (1) always true? Consider $\mathbb{C}P^n$ with the Fubini-Study metric.

Exercise 5. Einstein manifolds of dimension 3.

Let (M,g) be a semi-Riemannian manifold of dimension 3. If (M,g) has constant sectional curvature, then (M,g) is Einstein: see Exercise 4. The goal of this exercise is to show the converse.

(1) Let (e_1, e_2, e_3) be an orthonormal basis of T_pM for some $p \in M$. Show that:

$$K(e_1, e_2) + K(e_1, e_3) = \text{Ric}(e_1, e_1)$$

 $K(e_1, e_2) + K(e_2, e_3) = \text{Pic}(e_2, e_3)$

$$K(e_1, e_2) + K(e_2, e_3) = \text{Ric}(e_2, e_2)$$

$$K(e_1, e_3) + K(e_2, e_3) = Ric(e_3, e_3)$$

(2) Derive from the previous question that the sectional curvature of any 2-plane through p can be computed in terms of the Ricci curvature. Conclude.

Exercise 6. Minimal hypersurfaces

Let S be a compact oriented manifold of dimension n, let (M,g) be a semi-Riemannian manifold of dimension n+1, and let $f: S \hookrightarrow M$ be a smooth embedding (or immersion).

(1) Let $(f_t)_{t \in I} : S \to M$ be a one-parameter family of maps with $f_0 = f$. Denote $g_t := (f_t)^* g$ (first fundamental form of f_t). Let us assume that (f_t) is a normal variation of f:

$$f_t(x) = \exp_{f(x)} \left(r_t(x) \vec{N}(x) \right)$$

where \vec{N} is the unit normal vector field to $f: S \hookrightarrow M^1$ and r is some smooth function. Show:

$$\frac{\mathrm{d}}{\mathrm{d}t}_{|t=0}g_t = -2\dot{r}b$$

where $\dot{r}(x) := \frac{d}{dt}|_{t=0} r_t(x)$ and b is the second fundamental form of f, defined by:

$$b(X,Y) = -\langle \nabla_{\mathrm{d}f(X)} \vec{N}, \mathrm{d}f(Y) \rangle$$

where ∇ is the L-C connection of (M,g). Feel free to take $(M,g) = \mathbb{R}^{n+1}$ for this question.

(2) Derive from the previous question that for any normal variation f_t as above, denoting $vol(g_t)$ the volume form of g_t :

$$\frac{\mathrm{d}}{\mathrm{d}t}_{|t=0}\operatorname{vol}(g_t) = -\dot{r}H(f)\operatorname{vol}(g_0)$$

where $H := \operatorname{tr}_{g_0} b$ is called the *mean curvature* of the embedding $f: S \to M$.

(3) Define the area functional \mathcal{A} by

$$\mathcal{A}(f) = \int_{S} \operatorname{vol}(f^*g)$$

for any smooth immersion $f: S \to M$. Show that f has vanishing mean curvature (H = 0) if and only if $\frac{d}{dt}\Big|_{t=0} \mathcal{A}(f_t) = 0$ for any normal variation (f_t) of f.

(4) (*) Show that f has vanishing mean curvature iff $\frac{d}{dt}|_{t=0}\mathcal{A}(f_t)=0$ for any variation (f_t) . We proved that H = 0 if and only if f is a critical point of the area functional. Such an immersion is called a minimal hypersurface.

¹The fact that both S and M are orientable implies that $S \hookrightarrow M$ is two-sided. A choice of unit normal vector field is then determined by a choice of orientation of both M and N.