Примечание: Обратите внимание, что данные вариантов большей частью совпадают с теми, что использовались в **Лабораторной работе №2**. Допускается ссылаться на исследования, проведенные в рамках предыдущей работы, при наглядном оформлении итоговых результатов.

Задание 1. Синтез регулятора с заданной степенью устойчивости.

В соответствии с вашим вариантом по **Таблице 1** взять матрицы A и B из **Таблицы 2** и рассмотреть систему

$$\dot{x} = Ax + Bu. \tag{1}$$

Выполнить следующие шаги:

- \bullet Найти собственные числа матрицы A и определить управляемость каждого из них. Сделать вывод об управляемости и стабилизируемости системы.
- Определить, любой ли желаемой степени устойчивости вы можете добиться от данной системы при помощи регулятора вида u = Kx. Объяснить, почему, и, если не любой, то определить максимальную возможную.
- Построить схему моделирования системы (1) замкнутой регулятором u = Kx.
- Задаться не менее, чем парой значений желаемой степени устойчивости $\alpha > 0$. Если существуют ограничения на достижимые степени устойчивости, то одна из выбранных α должна быть максимально возможной, а другие достижимыми. Постарайтесь взять достаточно отличающиеся значения α .
- Для каждого из выбранных значений α синтезировать регулятор, обеспечивающий заданную степень устойчивости, при помощи матричного неравенства типа Ляпунова:

$$PA^{\dagger} + AP + 2\alpha P + Y^{\dagger}B^{\dagger} + BY \leq 0, \quad K = YP^{-1}.$$
 (2)

- \circ Найти соответствующую матрицу регулятора K_1 , обеспечивающую желаемую степень устойчивости α **без ограничений на управление**.
- \circ Найти соответствующую матрицу регулятора K_2 , обеспечивающую желаемую степень устойчивости α совместно с решением задачи минимизации управления.
- \circ Определить собственные числа матриц замкнутых систем $(A+BK_1)$ и $(A+BK_2)$ и сравнить с желаемой степенью устойчивости в подтверждение корректности синтеза регуляторов и между собой. Сделать выводы.
- \circ Для обеих замкнутых систем выполнить компьютерное моделирование и построить графики формируемых регуляторами управлений u(t) и векторов состояния замкнутых систем x(t) при начальных условиях $x(0) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$. Сопоставить результаты моделирования.

• (Необязательно) Для каждого из выбранных значений α синтезировать регулятор, обеспечивающий заданную степень устойчивости, при помощи матричного уравнения типа Риккати при $\nu = 2$ и R = 1:

$$A^{\mathsf{T}}P + PA + Q - \nu PBR^{-1}B^{\mathsf{T}}P + 2\alpha P = 0, \quad K = -R^{-1}B^{\mathsf{T}}P.$$
 (3)

- \circ Найти соответствующую матрицу регулятора K_3 , обеспечивающую желаемую степень устойчивости α при Q=I.
- \circ Найти соответствующую матрицу регулятора K_4 , обеспечивающую желаемую степень устойчивости α **при** Q=0.
- \circ Определить собственные числа матриц замкнутых систем $(A+BK_3)$ и $(A+BK_4)$ и сравнить с желаемой степенью устойчивости в подтверждение корректности синтеза регуляторов, между собой и с полученными для регуляторов с матрицами K_1 и K_2 . Сделать выводы.
- \circ Для обеих замкнутых систем выполнить компьютерное моделирование и построить графики формируемых регуляторами управлений u(t) и векторов состояния замкнутых систем x(t) при начальных условиях $x(0) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$. Сопоставить результаты моделирования между собой и с полученными для замкнутых систем с матрицами регуляторов K_1 и K_2 .

Ожидаемые результаты:

- Собственные числа системы, управляемость каждого из них.
- Схема моделирования замкнутой системы.
- Набор выбранных достижимых степеней устойчивости, для каждого из них:
 - \circ Матрицы регуляторов K_1 и K_2 , собственные числа матриц $(A+BK_1)$ и $(A+BK_2)$.
 - \circ (**Необязательно**) Матрицы регуляторов K_3 и K_4 , собственные числа матриц $(A+BK_3)$ и $(A+BK_4)$.
 - \circ Графики сигналов u(t) и x(t) для систем, замкнутых полученными регуляторами. Для наглядности рекомендуется разместить все графики u(t) на одной координатной плоскости.
- Листинги аналитических расчетов.
- Выводы.

Задание 2. Управление по выходу с заданной степенью устойчивости.

В соответствии с вашим вариантом по **Таблице 1** взять матрицы A, B, C из **Таблиць 3** и рассмотреть систему

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases} \tag{4}$$

Выполнить следующие шаги:

- \bullet Найти собственные числа матрицы A и определить управляемость и наблюдаемость каждого из них. Сделать вывод об управляемости, стабилизируемости, наблюдаемости и обнаруживаемости системы.
- Определить, любой ли желаемой степени устойчивости вы можете добиться от данной системы при помощи регулятора вида u = Kx. Объяснить, почему, и, если не любой, то определить максимальную возможную.
- Определить, любой ли желаемой степени сходимости вы можете добиться от наблюдателя полной размерности для данной системы. Объяснить, почему, и, если не любой, то определить максимальную возможную.
- Построить схему моделирования системы (4), замкнутой регулятором, состоящем из наблюдателя состояния $\dot{x} = A\hat{x} + Bu + L(C\hat{x} y)$ и закона управления и $u = K\hat{x}$.
- Задаться не менее чем парой значений $\alpha > 0$, все из которых могли бы быть использованы в качестве желаемой степени устойчивости для регулятора и желаемой степени сходимости для наблюдателя. Если существуют ограничения на достижимые степени устойчивости или сходимости, то одна из выбранных α должна быть максимально возможной, а другие достижимыми. Постарайтесь взять достаточно отличающиеся значения α .
- Используя выбранные значения α , составить не менее чем 3 набора значений желаемой степени устойчивости α_K и желаемой степени сходимости α_L , среди которых должны быть случаи:
 - $\circ \ \alpha_K = \alpha_L \ ($ наблюдатель и регулятор имеют сопоставимые значения $\alpha);$
 - $\circ \alpha_K > \alpha_L$ (регулятор «сильнее»);
 - $\circ \alpha_K < \alpha_L$ (наблюдатель «сильнее»).

Для каждого из выбранных наборов:

• Найти соответствующую матрицу регулятора K, обеспечивающую желаемую степень устойчивости α_K . Разрешается пользоваться как методом матричных неравенств (2), так и методом уравнений Риккати (3), но отклонения фактических собственных чисел спектра замкнутой системы от желаемой степени устойчивости должны быть минимизированы.

- \circ Определить собственные числа матриц замкнутых систем (A+BK) и сравнить с желаемой степенью устойчивости в подтверждение корректности синтеза регулятора.
- \circ Найти соответствующую матрицу наблюдателя L, обеспечивающую желаемую степень сходимости α_L . Разрешается пользоваться как методом матричных неравенств, так и методом уравнений Риккати, но отклонения фактических собственных чисел спектра наблюдателя от желаемой степени сходимости должны быть минимизированы.
- \circ Определить собственные числа матриц замкнутых систем (A+LC) и сравнить с желаемой степенью устойчивости в подтверждение корректности синтеза наблюдателя.
- Выполнить компьютерное моделирование с начальными условиями системы $x(0) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ и наблюдателя $\hat{x}(0) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$. Построить график формируемого регулятором управления u(t), сравнительные графики x(t) и $\hat{x}(t)$, а также график ошибки наблюдателя $e(t) = x(t) \hat{x}(t)$.
- Сравнить полученные результаты для различных наборов α_K и α_L сделать выводы о взаимном влиянии степени устойчивости регулятора и степени сходимости наблюдателя при управлении по выходу.

Ожидаемые результаты:

- Собственные числа системы, управляемость и наблюдаемость каждого из них.
- Схема моделирования системы замкнутой наблюдателем и регулятором.
- Набор выбранных достижимых значений α , которые могут быть использованы как в качестве степени устойчивости α_K , так и в качестве степени сходимости α_L для вашей системы.
- Набор пар $(\alpha_K; \alpha_L)$, для каждого из них:
 - \circ Матрица регулятора K, собственные числа матрицы (A + BK).
 - \circ Матрица коррекции наблюдателя L, собственные числа матрицы (A + LC).
 - \circ Графики сигналов u(t), x(t), $\hat{x}(t)$ и невязки e(t). Для повышения наглядности рекомендуется размещать графики x(t) и $\hat{x}(t)$ на одной координатной плоскости для одного набора $(\alpha_K; \alpha_L)$.
- Листинги аналитических расчетов.
- Выводы.

Задание 3. (Необязательное) Регулятор с качественной экспоненциальной устойчивостью.

В соответствии с вашим вариантом по **Таблице 1** взять матрицы A, B из **Таблицы 2** и рассмотреть систему (1). Выполнить следующие шаги:

- Найти собственные числа матрицы *A* и определить управляемость каждого из них. Сделать вывод об управляемости и стабилизируемости системы. Допускается сослаться на результаты **Задания 2**.
- Задаться значениями параметра $\beta < 0$, характеризующего среднее значение поведения траекторий ($|\beta|$ как «средняя степень устойчивости»), и параметра r > 0, $\beta + r < 0$, характеризующего разброс поведения траекторий относительно среднего значения β . Рекомендуется выбирать параметр r исходя из соотношения $r = \frac{|\beta|}{k}$, $1.5 \le k \le 4$. При этом, если система имеет неуправляемые собственные числа, они должны находиться на комплексной плоскости в пределах круга с центром в точке $(-\beta; j0)$ и радиусом r.
- Задаться четырьмя наборами параметров Q и R:

```
\circ Q = I и R = 1:
```

$$\circ Q = I$$
 и $R = 0$;

$$Q = 0$$
 и $R = 1$;

$$Q = 0$$
 и $R = 0$.

Для каждого из наборов параметров R и Q синтезировать регулятор, обеспечивающий качественную экспоненциальную устойчивость при помощи **матричного** уравнения типа Риккати:

$$(A-BK-\beta I)^{\mathsf{T}}P(A-BK-\beta I)-r^2P=-Q, \quad K=-(R+B^{\mathsf{T}}PB)^{-1}B^{\mathsf{T}}P(A-\beta I).$$

- \circ Найти соответствующую матрицу K регулятора u=Kx.
- \circ Определить собственные числа матрицы замкнутой системы (A+BK) и вывести их на комплексную плоскость, проверив, находятся ли они в пределах круга с центром в точке $(-\beta; j0)$ и радиусом r в подтверждение корректности синтеза регулятора.
- \circ Выполнить компьютерное моделирование замкнутой системы и построить графики формируемого регулятором управления u(t) и вектора состояния замкнутой системы x(t) при начальных условиях $x(0) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$.

Ожидаемые результаты:

- Собственные числа системы, управляемость каждого из них.
- Набор выбранных параметров β и r.
- Для каждого из наборов параметров R и Q:
 - \circ Матрица регулятора K.
 - \circ Собственные числа матрицы замкнутой системы (A+BK), вывод их на комплексную плоскость с окружностью, задаваемой параметрами β и r. Для наглядного сравнения рекомендуется разместить все наборы собственных чисел для различных наборов R и Q на одной координатной плоскости.
 - \circ Графики сигналов u(t) и x(t) для систем, замкнутых полученными регуляторами. Для наглядности рекомендуется разместить все графики u(t) для различных наборов R и Q на одной координатной плоскости.
- Листинги аналитических расчетов.
- Выводы.

Контрольные вопросы для подготовки к защите:

- 1. Что такое знакоопределенная матрица? Какие существуют критерии определения знакоопределенной матрицы?
- 2. В чем заключается метод функции Ляпунова для линейных систем?
- 3. Как записывается в общем виде матричное уравнение Ляпунова? В каком случае оно имеет единственное положительно определенное решение?
- 4. Как уравнение Ляпунова связано с грамианами?
- 5. Что такое степень устойчивости системы? Для каких систем это определение имеет смысл?
- 6. Как звучит определение асимптотической устойчивости? Экспоненциальной устойчивости? В чем между этими понятиями схожесть, а в чем разница для линейных систем? Почему?
- 7. Как формулируется LMI-критерий экспоненциальной устойчивости?
- 8. Как звучит определение качественной экспоненциальной устойчивости? В чем заключается его идея?
- 9. Какие именно ограничения стабилизируемые, но не полностью управляемые системы, накладывают при синтезе регуляторов, обеспечивающих заданную/качественную экспоненциальную устойчивость?
- 10. Относятся ли регуляторы, обеспечивающие заданную/качественную экспоненциальную устойчивость, к классическим модальным методам? Почему?
- 11. Каким образом при помощи модального регулятора обеспечить заданную степень устойчивости? В чем недостаток такого подхода в сравнении с рассмотренными в данной работе?

Таблица 1: Распределение Заданий по Вариантам

	Зада	пиня	Задания			Задания		
Вариант	1 и 3	2	Вариант	1 и 3	2	Вариант	1 и 3	2
1	№ 1	№ 6	11	№ 6	№ 11	21	№ 11	№ 1
2	№ 2	№ 7	12	№ 7	№ 12	22	№ 12	№ 2
3	№ 3	№ 8	14	№ 8	№ 13	24	№ 13	№ 3
4	№ 4	№ 9	14	№ 9	№ 14	24	№ 14	№ 4
5	№ 5	№ 10	15	№ 10	№ 15	25	№ 15	№ 5
6	№ 1	№ 11	16	№ 6	№ 1	26	№ 11	№ 6
7	№ 2	№ 12	17	№ 7	№ 2	27	№ 12	№ 7
8	№ 3	№ 13	18	№ 8	№ 3	28	№ 13	№ 8
9	№ 4	№ 14	19	№ 9	№ 4	29	№ 14	№ 9
10	№ 5	№ 15	20	№ 10	№ 5	30	№ 15	№ 10

Таблица 2: Исходные данные для Задания 1 и Задания 3

№	A	В	№	A	В	№	A	В
1	$\begin{bmatrix} 3 & 5 & 4 \\ -2 & -4 & -5 \\ 2 & 2 & 3 \end{bmatrix}$	$\begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$	6	$ \begin{bmatrix} 11 & -2 & 13 \\ 6 & -1 & 6 \\ -6 & -1 & -8 \end{bmatrix} $	$\begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$	11	$\begin{bmatrix} 7 & 10 & 5 \\ -10 & -13 & -10 \\ 10 & 10 & 7 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$
2	$\begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$	7	$\begin{bmatrix} 5 & 8 & 5 \\ -6 & -9 & -8 \\ 6 & 6 & 5 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$	12	$\begin{bmatrix} 17 & -5 & 20 \\ 10 & -3 & 10 \\ -10 & 0 & -13 \end{bmatrix}$	$\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$
3	$\begin{bmatrix} 3 & 4 & 2 \\ -4 & -5 & -4 \\ 4 & 4 & 3 \end{bmatrix}$	$\begin{bmatrix} -3\\7\\-7 \end{bmatrix}$	8	$\begin{bmatrix} 13 & 0 & 15 \\ 6 & 1 & 6 \\ -6 & -3 & -8 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$	13	$\begin{bmatrix} 5 & 6 & 4 \\ -4 & -5 & -6 \\ 4 & 4 & 5 \end{bmatrix}$	$\begin{bmatrix} 4 \\ -7 \\ 7 \end{bmatrix}$
4	$\begin{bmatrix} 7 & 0 & 10 \\ 4 & -1 & 4 \\ -4 & -2 & -7 \end{bmatrix}$	$\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$	9	$\begin{bmatrix} 4 & 6 & 4 \\ -4 & -6 & -6 \\ 4 & 4 & 4 \end{bmatrix}$	$\begin{bmatrix} 4 \\ -1 \\ 1 \end{bmatrix}$	14	$ \begin{bmatrix} 12 & -1 & 14 \\ 6 & 0 & 6 \\ -6 & -2 & -8 \end{bmatrix} $	$\begin{bmatrix} 11 \\ 7 \\ -7 \end{bmatrix}$
5	$\begin{bmatrix} 5 & 6 & 3 \\ -6 & -7 & -6 \\ 6 & 6 & 5 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	10	$ \begin{bmatrix} 4 & 1 & 6 \\ 2 & 0 & 2 \\ -2 & -2 & -4 \end{bmatrix} $	$\begin{bmatrix} 2 \\ -2 \\ 2 \end{bmatrix}$	15	$\begin{bmatrix} 8 & 1 & 11 \\ 4 & 0 & 4 \\ -4 & -3 & -7 \end{bmatrix}$	$\begin{bmatrix} -1 \\ -3 \\ 3 \end{bmatrix}$

Таблица 3: Исходные данные для Задания 2 (номера 1-6)

$N_{\overline{0}}$	A	B	C
1	$\begin{bmatrix} 4 & -2 & 0 & 6 \\ -2 & 4 & -6 & 0 \\ 0 & -6 & 4 & 2 \\ 6 & 0 & 2 & 4 \end{bmatrix}$	$\begin{bmatrix} 5 \\ 7 \\ 1 \\ 9 \end{bmatrix}$	$\begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 2 & 0 & 2 \end{bmatrix}$
2	$\begin{bmatrix} 2 & 0 & -4 & 2 \\ 0 & 2 & -2 & 4 \\ -4 & -2 & 2 & 0 \\ 2 & 4 & 0 & 2 \end{bmatrix}$	$\begin{bmatrix} 8 \\ 6 \\ 4 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 & 0 & 2 \\ -1 & 1 & 1 & 1 \end{bmatrix}$
3	$\begin{bmatrix} 3 & -3 & -5 & 7 \\ -3 & 3 & -7 & 5 \\ -5 & -7 & 3 & 3 \\ 7 & 5 & 3 & 3 \end{bmatrix}$	$\begin{bmatrix} 7 \\ 5 \\ 13 \\ 17 \end{bmatrix}$	$\begin{bmatrix} 1 & -1 & 1 & 1 \\ -1 & 3 & 1 & 3 \end{bmatrix}$
4	$\begin{bmatrix} 5 & -7 & -5 & 1 \\ -7 & 5 & -1 & 5 \\ -5 & -1 & 5 & 7 \\ 1 & 5 & 7 & 5 \end{bmatrix}$	$\begin{bmatrix} 5 \\ 7 \\ 1 \\ 9 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 2 & 2 \\ 1 & 1 & -1 & 1 \end{bmatrix}$
5	$\begin{bmatrix} 5 & -9 & -7 & 1 \\ -9 & 5 & -1 & 7 \\ -7 & -1 & 5 & 9 \\ 1 & 7 & 9 & 5 \end{bmatrix}$	[3] 3 1 3]	$\begin{bmatrix} 2 & -2 & 2 & 2 \\ -2 & 4 & 2 & 4 \end{bmatrix}$

Таблица 3: Исходные данные для Задания 2 (номера 6-10)

$N_{\overline{0}}$	A	B	C
6	$\begin{bmatrix} 5 & -5 & -9 & 3 \\ -5 & 5 & -3 & 9 \\ -9 & -3 & 5 & 5 \\ 3 & 9 & 5 & 5 \end{bmatrix}$	[1] 9 7 5]	$\begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 4 & 0 & 4 \end{bmatrix}$
7	$\begin{bmatrix} 2 & 0 & -4 & 2 \\ 0 & 2 & -2 & 4 \\ -4 & -2 & 2 & 0 \\ 2 & 4 & 0 & 2 \end{bmatrix}$	$\begin{bmatrix} 2\\4\\6\\8 \end{bmatrix}$	$\begin{bmatrix} -2 & 2 & 2 & 2 \\ 2 & 0 & 0 & 2 \end{bmatrix}$
8	$\begin{bmatrix} 3 & -11 & -7 & 5 \\ -11 & 3 & -5 & 7 \\ -7 & -5 & 3 & 11 \\ 5 & 7 & 11 & 3 \end{bmatrix}$	$\begin{bmatrix} 2\\4\\2\\4 \end{bmatrix}$	$\begin{bmatrix} 2 & -2 & 2 & 2 \\ 2 & 4 & -2 & 4 \end{bmatrix}$
9	$\begin{bmatrix} 5 & -7 & -5 & 1 \\ -7 & 5 & -1 & 5 \\ -5 & -1 & 5 & 7 \\ 1 & 5 & 7 & 5 \end{bmatrix}$	$\begin{bmatrix} 14\\10\\6\\2 \end{bmatrix}$	$\begin{bmatrix} 1 & -1 & 3 & 3 \\ 2 & 2 & -2 & 2 \end{bmatrix}$
10	$\begin{bmatrix} 4 & -2 & 0 & 6 \\ -2 & 4 & -6 & 0 \\ 0 & -6 & 4 & 2 \\ 6 & 0 & 2 & 4 \end{bmatrix}$	$\begin{bmatrix} 11 \\ -1 \\ 7 \\ 9 \end{bmatrix}$	$C = \begin{bmatrix} 1 & -1 & 1 & 1 \\ 1 & 3 & -1 & 3 \end{bmatrix}$

Таблица 3: Исходные данные для Задания 2 (номера 11-15)

$N_{\overline{0}}$	A	В	C
11	$\begin{bmatrix} 5 & -5 & -9 & 3 \\ -5 & 5 & -3 & 9 \\ -9 & -3 & 5 & 5 \\ 3 & 9 & 5 & 5 \end{bmatrix}$	[2] 6 6 2]	$\begin{bmatrix} 1 & -1 & 1 & 1 \\ 1 & 3 & -1 & 3 \end{bmatrix}$
12	$\begin{bmatrix} 3 & -3 & -5 & 7 \\ -3 & 3 & -7 & 5 \\ -5 & -7 & 3 & 3 \\ 7 & 5 & 3 & 3 \end{bmatrix}$	$\begin{bmatrix} 16\\12\\12\\12\\12 \end{bmatrix}$	$\begin{bmatrix} 3 & -1 & 1 & 3 \\ -2 & 2 & 2 & 2 \end{bmatrix}$
13	$\begin{bmatrix} 3 & -11 & -7 & 5 \\ -11 & 3 & -5 & 7 \\ -7 & -5 & 3 & 11 \\ 5 & 7 & 11 & 3 \end{bmatrix}$	$\begin{bmatrix} 4 \\ 4 \\ 2 \\ 2 \end{bmatrix}$	$\begin{bmatrix} -3 & 3 & 7 & 7 \\ 2 & 2 & -2 & 2 \end{bmatrix}$
14	$\begin{bmatrix} 5 & -9 & -7 & 1 \\ -9 & 5 & -1 & 7 \\ -7 & -1 & 5 & 9 \\ 1 & 7 & 9 & 5 \end{bmatrix}$	[1] [5] [3] [5]	$\begin{bmatrix} -2 & 8 & 2 & 8 \\ 2 & -2 & 2 & 2 \end{bmatrix}$
15	$\begin{bmatrix} 6 & 0 & -12 & 6 \\ 0 & 6 & -6 & 12 \\ -12 & -6 & 6 & 0 \\ 6 & 12 & 0 & 6 \end{bmatrix}$	$\begin{bmatrix} 6\\12\\6\\4 \end{bmatrix}$	$\begin{bmatrix} -6 & 6 & 6 & 6 \\ 3 & 0 & 0 & 3 \end{bmatrix}$