MATH 7820 Homework 1

James Harbour

August 25, 2022

Problem 2

Let $\{(U_{\alpha}, \phi_{\alpha})\}$ and $\{(V_{\beta}, \psi_{\beta})\}$ be at lases for smooth manifolds M and N of dimensions m and n respectively. Show that the collection $\{(U_{\alpha} \times V_{\beta}, \phi_{\alpha} \times \psi_{\beta})\}$ of charts is an at last on $M \times N$. Therefore, $M \times N$ is a smooth manifold of dimension m + n.

Proof. For $p \in M$ and $q \in N$, there exist α, β such that $p \in U_{\alpha}$ and $q \in V_{\beta}$ whence $(p, q) \in U_{\alpha} \times V_{\beta}$. Thus $M \times N = \bigcup_{\alpha, \beta} U_{\alpha} \times V_{\beta}$.

For each α, β , as ϕ_{α} and ψ_{β} are homeomorphisms onto $\phi_{\alpha}(U_{\alpha})$ and $\psi_{\beta}(V_{\beta})$ respectively, it follows that $\phi_{\alpha} \times \psi_{\beta}$ is a homeomorphism onto $\phi_{\alpha} \times \psi_{\beta}(U_{\alpha} \times V_{\beta}) = \phi_{\alpha}(U_{\alpha}) \times \psi(V_{\beta})$.

Fix α, β . Then we compute the transition maps

$$(\phi_{\alpha'} \times \psi_{\beta'}) \circ (\phi_{\alpha} \times \psi_{\beta})^{-1} = (\phi_{\alpha'} \times \psi_{\beta'}) \circ (\phi_{\alpha}^{-1} \times \psi_{\beta}^{-1}) = (\phi_{\alpha'} \circ \phi_{\alpha}^{-1}) \times (\psi_{\beta'} \circ \psi_{\beta}^{-1})$$
$$(\phi_{\alpha} \times \psi_{\beta}) \circ (\phi_{\alpha'} \times \psi_{\beta'})^{-1} = (\phi_{\alpha} \times \psi_{\beta}) \circ (\phi_{\alpha'}^{-1} \times \psi_{\beta'}^{-1}) = (\phi_{\alpha} \circ \phi_{\alpha'}^{-1}) \times (\psi_{\beta} \circ \psi_{\beta'}^{-1})$$

which are both smooth as $\phi_{\alpha} \circ \phi_{\alpha'}^{-1}$, $\phi_{\alpha'} \circ \phi_{\alpha}^{-1}$, $\psi_{\beta} \circ \psi_{\beta'}^{-1}$, $\psi_{\beta'} \circ \psi_{\beta}^{-1}$ are smooth. Thus $\{(U_{\alpha} \times V_{\beta}, \phi_{\alpha} \times \psi_{\beta})\}$ is an atlas on $M \times N$.