Suppose that the magnetic field in some region has the form $B: K \times \hat{\mathcal{A}}$. (where K is a constant). Find the force on a square loop of side a lycry on \mathcal{B} Y^Z plane and centered at the origin, if it carries a current T, flouring counterclockwise when you look down the re axis.

Sol7 - Z $F_{mAP} \leftarrow P$ $F_{mOB} \rightarrow F_{mOB}$ $F_{mOB} \rightarrow F_{mOB}$ F

force dose on part AB
Fig. $\int I(\vec{a} \times \vec{B})$ here $B = K(\frac{a}{2})$.

force $f_m = \emptyset \left(\frac{Ka}{2}\right) * a T = \frac{Ka^2 T}{2} \hat{K}$

force on OB_0 $f_{m} = \int I(\vec{a} \times \vec{B}) = \int_0^2 Ix (\vec{a} \times \vec{B} \times \vec{L}) = \frac{Ka^2 \hat{j}}{4}.$

on oc - $f_{m_0 \epsilon} = -\frac{Ka^2 \hat{j}}{4}.$

Similarly force on PD - Fmpp 4

on AP = FmAP = -Kar 1

our and force on co-

 $f_{m_c} = \int I(\overrightarrow{au} \times \overrightarrow{B}) = \left(\frac{Ka}{2}\right) \times aI = \frac{Ka^2I}{2} \stackrel{?}{K}.$

2) Total force on loop will be
Frot? FmAD + FmoD + FmoC + FmoD + FmCD = Ka2IR+ KaIR

= Ka3A Ka2IR.

2) \ f_{700}= Ka21 k