Задачи по Эконометрике-2: logit/probit-модель

Н.В. Артамонов (МГИМО МИД России)

Содержание

1	ормальное и логистическое распределение	1
2	Оценивание и интерпретация коэффициентов .1 approve equation #1 (probit) .2 approve equation #2 (logit) .3 labour force equation #1 (probit) .4 labour force equation #2 (logit)	3 3 4 4
3	test 1 approve equation #1 (probit)	5 5 6 6
4	R-тест: значимость регрессии 1 approve equation #1 (probit)	7 7 8 8 10
5	R-тест: совместная значимость 1 labour force equation #1 (probit)	
6	ест Вальда: совместная значимость 1 swiss labour force equation #1	13 13
1	Нормальное и логистическое распределение	
Пл	ность стандартного N(0,1) гауссова распределения $\phi(t)=\frac{1}{\sqrt{2\pi}}\exp(-t^2/2)$ ($t\in\mathbb{R}$). Функция стандартно ального распределения $\Phi(x)=\int_{-\infty}^x\phi(t)dt$ ($x\in\mathbb{R}$).	го
λ (кция логистического распределения $\Lambda(x)=\frac{\exp(x)}{1+\exp(x)}$ $(x\in\mathbb{R})$. Плотность логистического распределен $=\Lambda'(x)=\frac{\exp(x)}{(1+\exp(x))^2}$ ности на одном графике	RИ

phi (blue), lambda (red)

Функции распределения на одном графике

Phi (blue), Lambda (red)

Обратные функции распределение $logit(p)=\Lambda^{-1}(p)=\log\frac{p}{1-p}$ и $probit(p)=\Phi^{-1}(p),$ 0< p<1 Их графики

probit (blue), logit (red)

2 Оценивание и интерпретация коэффициентов

2.1 approve equation #1 (probit)

Для датасета loanapp рассмотрим probit-регрессию approve на appine, mortno, unem, dep, male, married, yjob, self

Спецификация: $P(approve=1) = \Phi(\beta_0 + \beta_1 appinc + \beta_2 mortno + \beta_3 unem + \beta_4 dep + \beta_5 male + \beta_6 married + \beta_7 yjob + \beta_8 self)$

Альтернативная спецификация: $probit(P(approve=1)) = \beta_0 + \beta_1 appinc + \beta_2 mortno + \beta_3 unem + \beta_4 dep + \beta_5 male + \beta_6 married + \beta_7 yjob + \beta_8 self$

Оцените модель на данных и укажите коэффициенты подогнанной модели. Ответ округлите до 3-х десятичных знаков.

Ответ:

(Intercept)	appinc	mortno	unem	dep	male
1.142	-0.001	0.407	-0.031	-0.083	0.020
married	yjob	self			
0.221	-0.001	-0.158			

Дайте интерпретацию коэффициентам модели.

2.2 approve equation #2 (logit)

Для датасета loanapp рассмотрим logit-регрессию approve на appinc, mortno, unem, dep, male, married, yjob, self

Спецификация: $P(approve=1) = \Lambda(\beta_0 + \beta_1 appinc + \beta_2 mortno + \beta_3 unem + \beta_4 dep + \beta_5 male + \beta_6 married + \beta_7 yjob + \beta_8 self)$

Альтернативная спецификация: $logit(P(approve=1)) = \beta_0 + \beta_1 appinc + \beta_2 mortno + \beta_3 unem + \beta_4 dep + \beta_5 male + \beta_6 married + \beta_7 yjob + \beta_8 self$

Здесь
$$logit(P(approve=1)) = \log \frac{P(approve=1)}{1 - P(approve=1)} = \log \frac{P(approve=1)}{P(approve=0)}$$

Оцените модель на данных и укажите коэффициенты подогнанной модели. Ответ округлите до 3-х десятичных знаков.

Ответ:

Дайте интерпретацию коэффициентам модели.

2.3 labour force equation #1 (probit)

Для датасета TableF5-1 рассмотрим probit-регрессию LFP на WA, WA^2, WE, KL6, K618, CIT, UN, log(FAMINC)

Спецификация: $P(LFP=1) = \Phi(\beta_0 + \beta_1 WA + \beta_2 WA^2 + \beta_3 WE + \beta_4 KL6 + \beta_5 K618 + \beta_5 CIT + \beta_7 UN + \beta_8 \log(FAMINC))$

Альтернативная спецификация: $probit(P(LFP=1))=\beta_0+\beta_1WA+\beta_2WA^2+\beta_3WE+\beta_4KL6+\beta_5K618+\beta_5CIT+\beta_7UN+\beta_8\log(FAMINC)$

Оцените модель на данных и укажите коэффициенты подогнанной модели. Ответ округлите до 3-х десятичных знаков.

Ответ:

Дайте интерпретацию коэффициентам модели.

2.4 labour force equation #2 (logit)

Для датасета TableF5-1 рассмотрим logit-регрессию LFP на WA, WA^2, WE, KL6, K618, CIT, UN, log(FAMINC)

Спецификация: $P(LFP=1) = \Lambda(\beta_0+\beta_1WA+\beta_2WA^2+\beta_3WE+\beta_4KL6+\beta_5K618+\beta_5CIT+\beta_7UN+\beta_8\log(FAMINC))$

Альтернативная спецификация: $logit(P(LFP=1)) = \beta_0 + \beta_1 WA + \beta_2 WA^2 + \beta_3 WE + \beta_4 KL6 + \beta_5 K618 + \beta_5 CIT + \beta_7 UN + \beta_8 \log(FAMINC)$

Здесь
$$logit(P(LFP=1)) = \log \frac{P(LFP=1)}{1-P(LFP=1)} = \log \frac{P(LFP=1)}{P(LFP=0)}$$

Оцените модель на данных и укажите коэффициенты подогнанной модели. Ответ округлите до 3-х десятичных знаков.

Ответ:

Дайте интерпретацию коэффициентам модели.

3 z-test

3.1 approve equation #1 (probit)

Для датасета loanapp рассмотрим probit-регрессию approve на appinc, mortno, unem, dep, male, married, yjob, self

Подгоните модель на данных и приведите результаты z-теста

Ответ:

z test of coefficients:

```
Estimate Std. Error z value Pr(>|z|)
                                          <2e-16 ***
                         0.1085 10.5241
(Intercept)
              1.1418
appinc
             -0.0005
                         0.0004 -1.3564
                                           0.1750
mortno
             0.4071
                         0.0869 4.6840
                                          <2e-16 ***
             -0.0308
                         0.0162 -1.8961
                                          0.0579 .
unem
                         0.0352 -2.3558
             -0.0828
                                          0.0185 *
dep
male
              0.0200
                         0.0998 0.2002
                                          0.8413
                                          0.0111 *
married
              0.2208
                         0.0869 2.5394
             -0.0007
                         0.0345 -0.0202
                                          0.9839
yjob
self
             -0.1583
                         0.1073 - 1.4751
                                          0.1402
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Модель была подогнана по 1971 наблюдениям. Уровень значимости 10%

Вычислите необходимое критическое значение z-теста. Ответ округлите до 3-х десятичных знаков.

[1] 1.645

Какие коэффициенты значимы? Ответ

```
[1] "(Intercept)" "mortno" "unem" "dep" "married"
```

3.2 approve equation #2 (logit)

Для датасета loanapp рассмотрим logit-регрессию approve на appinc, mortno, unem, dep, male, married, yjob, self

Подгоните модель на данных и приведите результаты z-теста

Ответ:

z test of coefficients:

```
Estimate Std. Error z value Pr(>|z|)
                                        <2e-16 ***
(Intercept)
              1.9315
                         0.1993 9.6891
             -0.0010
                         0.0007 - 1.4717
appinc
                                          0.1411
mortno
             0.7868
                         0.1721
                                4.5714
                                          <2e-16 ***
unem
             -0.0549
                         0.0294 - 1.8661
                                          0.0620 .
             -0.1608
                         0.0647 -2.4861
                                          0.0129 *
dep
              0.0300
                         0.1859 0.1612
                                          0.8719
male
              0.4246
                         0.1624 2.6145
                                          0.0089 **
married
```

```
yjob -0.0065 0.0651 -0.0993 0.9209

self -0.2804 0.1967 -1.4257 0.1539

---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Модель была подогнана по 1971 наблюдениям. Уровень значимости 5%

Вычислите необходимое критическое значение z-теста. Ответ округлите до 3-х десятичных знаков.

[1] 1.96

Какие коэффициенты значимы? Ответ

```
[1] "(Intercept)" "mortno" "dep" "married"
```

3.3 labour force equation #1 (probit)

Для датасета TableF5-1 рассмотрим probit-регрессию LFP на WA, WA^2, WE, KL6, K618, CIT, UN, log(FAMINC)

Подгоните модель на данных и приведите результаты z-теста

Ответ:

z test of coefficients:

```
Estimate Std. Error z value Pr(>|z|)
             -2.0046
                         1.7039 -1.1765 0.2394
(Intercept)
              0.0076
                         0.0701 0.1087
                                          0.9135
I(WA^2)
             -0.0005
                         0.0008 - 0.6554
                                          0.5122
WE
             0.1088
                         0.0241
                                4.5144
                                          <2e-16 ***
             -0.8513
                         0.1154 -7.3778
                                          <2e-16 ***
KL6
K618
             -0.0632
                         0.0417 - 1.5157
                                          0.1296
                         0.1070 -1.1932
                                          0.2328
CIT
             -0.1277
UN
             -0.0106
                         0.0157 -0.6771
                                          0.4983
log(FAMINC)
            0.1996
                         0.1049 1.9021
                                          0.0572 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Модель была подогнана по 753 наблюдениям. Уровень значимости 10%

Вычислите необходимое критическое значение z-теста. Ответ округлите до 3-х десятичных знаков.

[1] 1.645

Какие коэффициенты значимы? Ответ

```
[1] "WE" "KL6" "log(FAMINC)"
```

3.4 labour force equation #2 (logit)

Для датасета TableF5-1 рассмотрим logit-регрессию LFP на WA, WA^2, WE, KL6, K618, CIT, UN, log(FAMINC)

Подгоните модель на данных и приведите результаты z-теста

Ответ:

```
z test of coefficients:
```

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.2407
                        2.8337 -1.1436 0.2528
             0.0070
                        0.1159 0.0602
                                          0.9520
I(WA^2)
            -0.0008
                        0.0013 -0.6061
                                          0.5444
            0.1800
-1.4138
-0.1042
-0.2165
-0.0176
0.3331
                         0.0404 4.4535
                                          <2e-16 ***
KL6
                         0.1987 -7.1152
                                          <2e-16 ***
K618
                         0.0687 -1.5166 0.1294
                        0.1765 -1.2267 0.2199
CIT
UN
                         0.0258 -0.6812
                                          0.4957
log(FAMINC) 0.3331
                         0.1729 1.9272 0.0540 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Модель была подогнана по 753 наблюдениям. Уровень значимости 5%

Вычислите необходимое критическое значение z-теста. Ответ округлите до 3-х десятичных знаков.

[1] 1.96

Какие коэффициенты значимы? Ответ

[1] "WE" "KL6"

4 LR-тест: значимость регрессии

4.1 approve equation #1 (probit)

Для датасета loanapp рассмотрим probit-регрессию approve на appinc, unem, male, yjob, self

Подгоните модель на данных и укажите:

- число наблюдений, на которых была подогнана модель
- логарифм функции правдоподобия для модели $\log L = -734.0891$,
- логарифм функции правдоподобия для регрессии без объясняющих переменных (только на константу)

Ответ округлите до 3-х десятичных знаков.

Ответ:

Тестируется значимость регрессии, т.е. гипотеза $H_0: \beta_{appinc} = \beta_{unem} = \beta_{male} = \beta_{yjob} = \beta_{self} = 0$. Уровень значимости 10%.

Вычислите тестовую статистику. Ответ округлите до 3-х десятичных знаков.

Ответ:

[1] 8.573

Вычислите критическое значение. Ответ округлите до 3-х десятичных знаков.

[1] 9.236

Значима ли регрессия? Ответ

[1] "Незначима"

Какие коэффициенты значимы?

[1] "(Intercept)" "unem"

4.2 approve equation #2 (logit)

Для датасета loanapp рассмотрим logit-регрессию approve на appinc, appinc^2, mortno, unem, dep, male, married, yjob, self

Подгоните модель на данных и укажите:

- число наблюдений, на которых была подогнана модель
- логарифм функции правдоподобия для модели $\log L = -713.7313$,
- логарифм функции правдоподобия для регрессии без объясняющих переменных (только на константу)

Ответ округлите до 3-х десятичных знаков.

Ответ:

Тестируется значимость регрессии, т.е. гипотеза $H_0: \beta_{appinc} = \beta_{unem} = \beta_{male} = \beta_{yjob} = \beta_{self} = 0$. Уровень значимости 5%.

Вычислите тестовую статистику. Ответ округлите до 3-х десятичных знаков.

Ответ:

[1] 48.496

Вычислите критическое значение. Ответ округлите до 3-х десятичных знаков.

[1] 16.919

Значима ли регрессия? Ответ

[1] "Значима"

Какие коэффициенты значимы?

4.3 labour force equation #1 (probit)

Для датасета TableF5-1 рассмотрим несколько probit-регрессий. Результаты оценивания

	3	Зависимая переменная				
		LF	'P			
	(1)	(2)	(3)	(4)		
WA		0.1084*				
I(WA2)		-0.0014* (0.0007)	-0.0016** (0.0007)			
WE	0.1088*** (0.0241)					
KL6	-0.8513*** (0.1154)					
K618	-0.0632					

	(0.0417)			
CIT	-0.1277 (0.1070)	-0.1026 (0.1029)	0.0053 (0.0983)	-0.0024 (0.0975)
UN	-0.0106 (0.0157)	-0.0101 (0.0152)	-0.0102 (0.0151)	
log(FAMINC)	0.1996* (0.1049)	0.3621*** (0.0957)		
Constant	-2.0046 (1.7039)	-5.2365*** (1.5600)		0.2733* (0.1410)
Observations Log Likelihood Akaike Inf. Crit.		753 -502.2236 1016.4470		753 -514.5631 1035.1260
Note:		*p<0.1;	**p<0.05;	***p<0.01

Для каждой регрессии вычислите LR-статистику для тестирования её значимости. **Ответ округлите до 3-х** десятичных знаков.

Ответ

Регрессия	LR.stat
1	105.066
2	25.299
3	10.440
4	0.620

Для каждой регрессии вычислите необходимое критическое значение Уровень значимости 10%. Ответ округлите до 3-х десятичных знаков.

Ответ

========	
Регрессия	Критическое
1	13.362
2	9.236
3	7.779
4	4.605

Какая из регрессий значима?

Регрессия Значимость

1 Значима

2	Значима
3	Значима
4	Незначима

4.4 labour force equation #2 (logit)

Для датасета TableF5-1 рассмотрим несколько logit-регрессий. Результаты оценивания

	========	Зависимая	======== переменная	=======
	(1)	LF: (2)	P (3)	(4)
WA	0.0070 (0.1159)			
I(WA2)	-0.0008 (0.0013)			
WE	0.1800*** (0.0404)	0.2028*** (0.0396)		
KL6		-1.0154*** (0.1646)		
K618			0.0288 (0.0581)	
CIT	-0.2165 (0.1765)		-0.2200 (0.1691)	
UN			-0.0196 (0.0248)	
log(FAMINC)		0.2808* (0.1683)		
Constant			-5.0277*** (1.5542)	
Observations Log Likelihood Akaike Inf. Crit.		-475.6736	-489.7908	-514.5605
Note:	=======	*p<0.1	=======; ; **p<0.05;	***p<0.01

Для каждой регрессии вычислите LR-статистику для тестирования её значимости. **Ответ округлите до 3-х** десятичных знаков.

Ответ

=======	
Регрессия	LR.stat
1	105.274
2	78.399
3	50.165
4	0.625

Для каждой регрессии вычислите необходимое критическое значение Уровень значимости 5%. **Ответ округлите до 3-х десятичных знаков.**

Ответ

=======	
Регрессия	Критическое
1	15.507
2	12.592
3	11.070
4	7.815

Какая из регрессий значима?

Регрессия Значимость
1 Значима
2 Значима
3 Значима
4 Незначима

5 LR-тест: совместная значимость

5.1 labour force equation #1 (probit)

Для датасета TableF5-1 рассмотрим probit-регрессию LFP на WA6 WA^2, WE, KL6, K618, CIT, UN, log(FAMINC).

Оцените регрессию на данных и тестируйте следующие гипотезы, используя LR-статистику. Уровень значимости 10%.

5.1.1 Гипотеза 1

Тестируется значимость влияния возраста, т.е. гипотеза $H_0: \beta_{WA} = \beta_{WA^2} = 0$ по LR-тесту.

Вычислите соответствующую тестовую статистику. Ответ округлите до 3-х десятичных знаков.

[1] 26.718

Вычислите необходимое критическое значение. Ответ округлите до 3-х десятичных знаков.

[1] 4.605

Значимо ли влияние возраста? Ответ

[1] "Значимо"

5.1.2 Гипотеза 2

Тестируется совместная значимость влияния **K618**, **CIT**, **UN**, т.е. гипотеза $H_0: \beta_{K618} = \beta_{CIT} = \beta_{UN} = 0$ по LR-тесту.

Вычислите соотвествующую тестовую статистику. Ответ округлите до 3-х десятичных знаков.

[1] 4.712

Вычислите необходимое кртическое значение. Ответ округлите до 3-х десятичных знаков.

[1] 6.251

Значимо ли влияние переменных? Ответ

[1] "Незначимо"

5.1.3 Гипотеза 3

Тестируется совместная значимость влияния **K618**, **CIT**, **UN**, **FAMINC**, т.е. гипотеза $H_0: \beta_{K618} = \beta_{CIT} = \beta_{UN} = \beta_{\log(FAMINC)} = 0$ по LR-тесту.

Вычислите соотвествующую тестовую статистику. Ответ округлите до 3-х десятичных знаков.

[1] 7.301

Вычислите необходимое кртическое значение. Ответ округлите до 3-х десятичных знаков.

[1] 7.779

Значимо ли влияние переменных? Ответ

[1] "Незначимо"

5.2 approve equation #1 (logit)

Для датасета loanapp рассмотрим probit-регрессию approve на appinc, appinc^2, mortno, unem, dep, male, married, yjob, self

Оцените регрессию на данных и тестируйте следующие гипотезы, используя LR-статистику. Уровень значимости 1%.

5.2.1 Гипотеза 1

Тестируется значимость влияния дохода, т.е. гипотеза $H_0: eta_{appinc} = eta_{appinc^2} = 0$ по LR-тесту.

Вычислите соотвествующую тестовую статистику. Ответ округлите до 3-х десятичных знаков.

[1] 7.213

Вычислите необходимое кртическое значение. Ответ округлите до 3-х десятичных знаков.

[1] 9.21

Значимо ли влияние возраста? Ответ

[1] "Незначимо"

5.2.2 Гипотеза 2

Тестируется совместная значимость влияния **male**, **yjob**, **self**, т.е. гипотеза $H_0: \beta_{male} = \beta_{yjob} = \beta_{self} = 0$ по LR-тесту.

Вычислите соотвествующую тестовую статистику. Ответ округлите до 3-х десятичных знаков.

[1] 3.229

Вычислите необходимое кртическое значение. Ответ округлите до 3-х десятичных знаков.

[1] 11.345

Значимо ли влияние переменных? Ответ

[1] "Незначимо"

5.2.3 Гипотеза 3

Тестируется совместная значимость влияния male, yjob, self, unem, married, т.е. гипотеза $H_0:\beta_{male}=\beta_{yjob}=\beta_{self}=\beta_{unem}=\beta_{married}=0$ по LR-тесту

Вычислите соотвествующую тестовую статистику. Ответ округлите до 3-х десятичных знаков.

[1] 13.711

Вычислите необходимое кртическое значение. Ответ округлите до 3-х десятичных знаков.

[1] 15.086

Значимо ли влияние переменных? Ответ

[1] "Незначимо"

6 Тест Вальда: совместная значимость

6.1 swiss labour force equation #1

Для датасета SwissLabour рассморим logit-регрессию participation на income, income^2, age, age^2, youngkids, oldkids, foreign

Результаты оценивания

Est. S.E. z val. p VIF

(Intercept) -9.4763 17.2451 -0.5495 0.5827

1.8753	3.2660	0.5742	0.5658	276.5677
-0.1377	0.1552	-0.8875	0.3748	276.4963
3.4025	0.6866	4.9553	0.0000	83.0214
-0.4846	0.0851	-5.6916	0.0000	83.3744
-1.1813	0.1723	-6.8578	0.0000	1.5869
-0.2471	0.0843	-2.9321	0.0034	1.4726
1.0728	0.1870	5.7371	0.0000	1.0847
	-0.1377 3.4025 -0.4846 -1.1813 -0.2471	-0.1377 0.1552 3.4025 0.6866 -0.4846 0.0851 -1.1813 0.1723 -0.2471 0.0843	-0.1377 0.1552 -0.8875 3.4025 0.6866 4.9553 -0.4846 0.0851 -5.6916 -1.1813 0.1723 -6.8578 -0.2471 0.0843 -2.9321	-0.1377 0.1552 -0.8875 0.3748 3.4025 0.6866 4.9553 0.0000 -0.4846 0.0851 -5.6916 0.0000 -1.1813 0.1723 -6.8578 0.0000 -0.2471 0.0843 -2.9321 0.0034

Оцените регрессию на данных и тестируйте следующие гипотезы, используя χ^2 -статистику Вальда. Уровень значимости 5%.

6.1.1 Гипотеза 1

Тестируется значимость влияния дохода, т.е. гипотеза $H_0: eta_{income} = eta_{income^2} = 0.$

Вычислите статику теста Вальда и Р-значение.

```
Chisq Pr(> Chisq)

24.441 0.00000
```

Вычислите критическое значение. Ответ округлите до 3-х десятичных знаков.

[1] 5.991

Значимо ли влияние дохода? Ответ

[1] "Значимо"

6.1.2 Гипотеза 2

Тестируется значимость влияния числа детей, т.е. гипотеза $H_0: \beta_{youngkids} = \beta_{oldkids} = 0$. Вычислите статику теста Вальда и Р-значение.

```
Chisq Pr(> Chisq)
-----
48.420 0
```

Вычислите критическое значение. Ответ округлите до 3-х десятичных знаков.

[1] 5.991

Значимо ли влияние числе детей? Ответ

[1] "Значимо"

6.1.3 Гипотеза 3

Тестируется значимость влияния возраста, т.е. гипотеза $H_0: \beta_{age}=\beta_{age^2}=0$. Вычислите статику теста Вальда и Р-значение.

58.911 0 -----

Вычислите критическое значение. Ответ округлите до 3-х десятичных знаков.

[1] 5.991

Значимо ли влияние возраста? Ответ

[1] "Значимо"