Trabalho Computacional 3 - Teoria da Decisão (ELE088)

Daniel Felipe de Almeida Araújo Universidade Federal de Minas Gerais Matrícula: 2023422617 Milton Pereira Bravo Neto Universidade Federal de Minas Gerais Matrícula: 2018072549 Raphael Henrique Braga Leivas Universidade Federal de Minas Gerais Matrícula: 2020028101

Abstract—The abstract goes here.

I. INTRODUÇÃO

This demo file is intended to serve as a "starter file" for IEEE conference papers produced under LATEX using IEEEtran.cls version 1.6b and later.

May all your publication endeavors be successful.

mds November 18, 2002

II. METODOLOGIA

A. Modelagem do Problema

Inicialmente podemos ver o trabalho como sendo dois problemas mono-objetivo distintos:

- Problema 1: minimização do custo de manutenção total $f_1(\cdot)$
- Problema 2: minimização do custo esperado de falha total $f_2(\cdot)$
- 1) Problema 1: Temos essencialmente um problema de designação simples. Seja N o número de equipamentos e J o número de políticas de manutenção, definimos a variável de decisão x_{ij} por

 x_{ij} : se o equipamento i executa a manutenção j (1) onde

$$x_{ij} \in \{0,1\}$$
 , $i = \{1,2,...,N\}$, $j = \{1,2,...,J\}$

Para a função objetivo, seja c_j o custo de executar a manutenção j. Note que esse custo independe do equipamento i que estamos executando a manutenção. Temos a função objetivo

$$\min f_1 = \sum_{i=1}^{N} \sum_{j=1}^{J} c_j x_{ij}$$
 (2)

sujeito a

$$\sum_{j=1}^{J} x_{ij} = 1 \quad , \quad \forall i = 1, 2, ..., N$$
 (3)

A 3 indica que todo equipamento executa exatamente uma política de manutenção. Além disso, note que solução da 2 é trivial: basta escolher o plano de manutenção com o menor custo para todos os equipamentos.

2) Problema 2: O custo da falha de cada equipamento é dado pelo produto da probabilidade de falha p_{ij} pelo custo da falha do equipamento, dada por d_i . Assim, temos

$$\min f_2 = \sum_{i=1}^{N} \sum_{j=1}^{J} p_{ij} d_i x_{ij}$$
 (4)

onde

$$x_{ij} \in \{0,1\}$$
 , $i = \{1,2,...,N\}$, $j = \{1,2,...,J\}$

$$p_{ij} = \frac{F_i (t_0 + k_j \Delta t) - F_i (t_0)}{1 - F_i (t_0)}$$
 (5)

$$F_i(t) = 1 - \exp\left[-\left(\frac{t}{\eta_i}\right)^{\beta_i}\right] \tag{6}$$

sujeito a

$$\sum_{j=1}^{J} x_{ij} = 1 \quad , \quad \forall i = 1, 2, ..., N$$
 (7)

Note que na Equação 4 temos essencialmente um problema de programação linear inteira. Assim, é possível usar o método Simplex visto em Pesquisa Operacional para resolver esse problema com garantia de otimalidade. Usando o Simplex, a solução encontrada foi

$$\mathbf{x}^* = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ \vdots & \vdots & \vdots \\ 0 & 0 & 1 \end{bmatrix} , \quad f_2(\mathbf{x}^*) = 1048.17$$

Assim, antes mesmo de começar a implementar o BVNS para resolver os problemas isoladamente, já sabemos as soluções ótimas para eles.

3) Modelagem Multiobjetivo: Juntando as modelagens dos problemas mono-objetivos acima, temos a modelagem multi-objetivo do problema.

$$\min f_1 = \sum_{i=1}^{N} \sum_{j=1}^{J} c_j x_{ij}$$

$$\min f_2 = \sum_{i=1}^{N} \sum_{j=1}^{J} p_{ij} d_i x_{ij}$$

 x_{ij} : se o equipamento i executa a manutenção j sujeito a

$$\sum_{j=1}^{J} x_{ij} = 1 \quad , \quad \forall i = 1, 2, ..., N$$

$$x_{ij} \in \{0,1\}$$
 , $i = \{1,2,...,N\}$, $j = \{1,2,...,J\}$

onde

- N = 500: número de equipamentos
- J=3: número de planos de manutenção
- c_i : custo de executar a manutenção j
- p_{ij} : probabilidade de falha do equipamento i executando a manutenção j, definido em 5 e 6
- d_i : custo de falha do equipamento i

A partir dessa modelagem, temos o nosso problema multiobjetivo

$$\min \mathbf{f}(\mathbf{x}) = [f_1(\mathbf{x}), f_2(\mathbf{x})] \tag{8}$$

Considerando o problema de (8), podemos aplicar duas abordagens escalares para obter a fronteira Pareto-ótima no espaço de objetivos, descritas a seguir.

- B. Formulações para resolução do problema multiobjetivo
- 1) Formulação Soma Ponderada P_w : Seja $0 \le w \le 1$ um peso qualquer gerado aleatóriamente de uma distribução uniforme no intervalo [0,1]. Usando a abordagem da soma ponderada, podemos reescrever (8) na forma de mono-objetivo de

$$\min f_{\mathbf{w}} = \min \mathbf{w} f_1 + (1 - \mathbf{w}) f_2$$
 (9)

onde (9) está sujeito às mesmas restrições do problema original. Como (9) é escalar, podemos minimizar $f_{\rm w}$ através de métodos já conhecidos como o Simplex e o BVNS.

2) Formulação ϵ -Restrito P_{ϵ} : Com a abordagem do ϵ -Restrito, vamos minimizar apenas f_1 usando f_2 como restrição. Seja ϵ_2 um real qualquer tal que min $f_2 \le \epsilon_2 \le \max f_2$. Temos

$$\min f_1 \tag{10}$$

sujeito a

$$\begin{cases} f_2 \le \epsilon_2 \\ \sum_{j=1}^{J} x_{ij} = 1 \end{cases}, \quad \forall i = 1, 2, ..., N$$
 (11)

em que (10) possui as mesmas restrições do problema original mais a restrição de $f_2 \le \epsilon_2$.

Contudo, como o BVNS é usado para resolver problemas de otimização irrestritos, precisamos converter (10) em um problema irrestrito. Para isso, adicionamos o termo um termo de penalidade p(x,u) da seguinte forma:

$$p(x, u) = u \max [0, g(x)]^2$$

onde g(x) é a nossa restrição de desigualdade, dada por

$$g(x) \le 0 \implies f_2 - \epsilon_2 \le 0 \implies g(x) = f_2 - \epsilon_2$$

de modo que o nosso problema irrestrito se torna:

$$\min f_1 + u \, \max \left[0, f_2 - \epsilon_2 \right]^2 \tag{12}$$

Note que as demais restrições já estão naturalmente incluídas no BVNS devido à maneira como nós fizemos a representação computacional das variáveis de decisão, de modo que só precisamos fazer a correção para a restrição do ϵ em (12).

3) Normalização: Para garantir que as abordagens escalares sejam condizentes, precisamos normalizar f_1 e f_2 através de

$$f_1(\mathbf{x}) = \frac{f_1(\mathbf{x}) - \min f_1}{\max f_1 - \min f_1}$$
 , $f_2(\mathbf{x}) = \frac{f_2(\mathbf{x}) - \min f_2}{\max f_2 - \min f_2}$ (13)

de modo que a formulação da soma ponderada de (9) pode ser reescrita como

$$\min\left(\mathbf{w}\frac{f_1(\mathbf{x}) - \min f_1}{\max f_1 - \min f_1} + (1 - \mathbf{w})\frac{f_2(\mathbf{x}) - \min f_2}{\max f_2 - \min f_2}\right)$$

que será usado como função objetivo no código do BVNS.

4) BVNS - Basic Variable Neighborhood Search: O Algoritmo 1 mostra a versão do BVNS implementada no trabalho.

```
Algoritmo 1 BVNS implementado no trabalho.
```

```
1: procedure BVNS(\mathbf{x}, \mathbf{k}_{max})
           while num sol avaliadas < max sol avaliadas do
2:
 3:
                 while k < k_{max} do
 4:
                       \mathbf{x'} \leftarrow \text{Shake}(\mathbf{x}, \mathbf{k})
 5:
                      \mathbf{x''} \leftarrow \text{FirstImprovement}(\mathbf{x}, \mathbf{x'}, \mathbf{k})
 6:
                       \mathbf{x}, k \leftarrow \text{NeighborhoodChange}(\mathbf{x}, \mathbf{x''}, \mathbf{k})
 7:
                 end while
 8:
           end while
10: end procedure
```

O Algoritmo 2 mostra a função Shake. Nela estão definidas as três estruturas de vizinhança escolhidas para implementação. As duas primeiras são vizinhaças de refinamento, mas com abordagens diferentes. E a terceira é uma vizinhança de perturbação para buscar sair de mínimos locais:

- A primeira estrutura é o que chamamos de um movimento de *1-swap*, onde é escolhido aleatorimente um equipamento e trocado seu plano para um dos outros dois restantes, a escolha do plano também é aleatória.
- A segunda estrutura é a troca ou permutação dos planos de dois equipamentos diferentes escolhidos também aleatóriamente.

A terceira estrutura por sua vez, altera um bloco de 50
equipamentos em sequência, onde o início do bloco é
aleatório. Nesse bloco é avaliado qual o plano mais comum
e troca-se o plano de manutenção de todos os integrantes
do bloco para um mesmo plano, diferente do mais comum
encontrado anteriormente.

Algoritmo 2 Função Shake.

⊳ Gera uma solução aleatória na k-ésima estrutura de vizinhança.

```
1: procedure SHAKE(x, k)
2.
       if k = 1 then
3:
           \mathbf{y} \leftarrow 1-swap
       end if
4:
5:
       if k = 2 then
           y ← Permutação de dois planos de manutenção
6:
       end if
7:
       if k = 3 then
8.
           y ← Mudança de um bloco de equipamentos para
   outro plano
       end if
10:
11:
       return y
12: end procedure
```

5) Estratégias de Refinamento: O Algoritmo 3 mostra a função de busca local implementanda após gerar uma solução aleatória com o Shake. Ela basicamente realiza uma busca em até N=100 vizinhos à solução inicial ${\bf x}'$ do Shake, e retorna a primeira solução ${\bf x}''$ cujo valor da solução objetivo é menor do que o valor do objetivo na solução inicial ${\bf x}'$ do Shake. Caso nenhuma solução melhor é encontrada, retorna a solução inicial ${\bf x}'$.

Algoritmo 3 Função FirstImprovement.

```
1: procedure FIRSTIMPROVEMENT(x<sup>3</sup>, k)
         N \leftarrow 100
2.
         for all i in range(N) do
3:
              \mathbf{x''} \leftarrow \text{Shake}(\mathbf{x'}, \mathbf{k})
4:
              if f(x'') < f(x') then
 5:
                   return x"
 6:
              end if
 7:
         end for
8:
         return x'
10: end procedure
```

É possível fazer uma pequena modificação no Algoritmo 3 para obter o Best Improvement, exibido no Algoritmo 4. Note que essa função sempre executa as N buscas por uma melhor solução, e portanto o código é mais caro computacionalmente que no Algoritmo 3. No entanto, em geral, a solução encontrada pelo BestImprovement será melhor que a do FirstImprovement.

Algoritmo 4 Função BestImprovement.

```
⊳ Busca a melhor solução na vizinhança de x' melhor que x'.
 1: procedure BESTIMPROVEMENT(x<sup>2</sup>, k)
 2:
          N \leftarrow 100
 3:
         x melhor \leftarrow x'
         for all i in range(N) do
 4:
              \mathbf{x''} \leftarrow \text{SHAKE}(\mathbf{x'}, \mathbf{k})
 5:
              if f(x'') < f(x \text{ melhor}) then
 6:
                   x \text{ melhor} \leftarrow x"
 7:
              end if
 8:
         end for
 9:
         return x_melhor
10:
11: end procedure
```

6) Heurística Construtiva: O Algoritmo 5 mostra a heurística construtiva utilizada para a criação da solução inicial. Basicamente o problema se reduz em escolher um plano de manutenção, dentre os três disponíveis, para cada equipamento minimizando o custo da manutenção e o custo de falha dos equipamentos. A minimização do custo da manutenção se dá escolhendo a manutenção mais barata para todos os equipamentos, e a minimização do custo de falha escolhendo a manutenção mais cara.

Olhando para o segundo problema, temos a matriz de custos de falha $p_{ij}d_i$ onde i é cada equipamento e j os planos de manutenção. Para cada equipamento i fixo avalia-se a variância de $p_{ij}d_i$ e caso esse valor seja maior que o limiar de 0.5 escolhe a manutenção mais cara para compor a solução inicial daquele equipamento, caso seja menor que o limiar é escolhida a manutenção mais barata.

A lógica envolvida é que se o custo de falha não varia tanto para aquele equipamento, não é necessário a manutenção mais cara.

Algoritmo 5 Heurística construtiva para gerar a solução inicial.

```
1: procedure SOLUCAOINICIAL()
       x \leftarrow Solução aleatória
2:
       for all i in x do
3:
            if variancia(p_{ij}d_i) \ge \lim_{i \to \infty} then
4:
5:
                x[i] ← Manutenção mais cara
            else
6:
                x[i] ← Manutenção mais barata
7:
            end if
8:
       end for
9:
10:
       return x
11: end procedure
```

III. RESULTADOS

A. Problemas mono objetivos

A partir da execução do algoritmo BVNS para a resolução dos problemas mono-objetivo foi obtido os seguintes valores:

$$\min f_1 = 0 \tag{14}$$

$$\max f_1 = 1000 \tag{15}$$

$$\min f_2 = 1048.17 \tag{16}$$

$$\max f_2 = 1745.49 \tag{17}$$

Esses resultados são utilizados para a realizar a normalização dos valores ao se utilizar a formulação de Soma Ponderada e os mínimos estão ilustrados nas Figuras 1 e 2.

Fig. 1. Convergência do BVNS implementado para o Problema 1 Isolado.

Fig. 2. Convergência do BVNS implementado para o Problema 2 Isolado.

B. Indicador de Hipervolume (HVI)

Para a realização do cálculo a métrica de HVI foi permitido o uso de mais de 20 soluções pareto na fronteira, de maneira que o valor para a métrica atingisse os valores indicados para comparação. Dessa forma, foram utilizadas 200 soluções e a visualização da fronteira pode ser vista na Figura 3.

O valor de HVI obtido foi:

Fig. 3. Fronteira Pareto para 200 soluções com método ϵ -restrito usada para cálculo do HVI

IV. CONCLUSÃO

The conclusion goes here.

REFERÊNCIAS

[1] H. Kopka and P. W. Daly, *A Guide to LTEX*, 3rd ed. Harlow, England: Addison-Wesley, 1999.