

UNIVERSITATEA DIN ORADEA FACULTATEA DE PROTECTIA MEDIULUI

CURS: BIOCHIMIE

CURS 3: LIPIDE

Autor:

Conf. dr. Simona Ioana Vicas

CONTINUTUL CURSULUI

Introducere în biochimie
Glucide. Monoglucide
Oligoglucide. Poliglucide
Lipide. Acizii grași din constituția lipidelor
Alcooli din constitutia lipidelor.Lipide simple Lipide complexe
Protide. Aminoacizi
Peptide. Proteine
Enzime. Clasificarea și nomenclatura enzimelor. Structura și conformația
enzimelor. Specificitatea enzimelor. Cinetica reacțiilor enzimatice.
Acizi nucleici (componentele unei mononucleotide)
Fitohormoni (auxine, gibereline, citochinine, acidul abscisic, etilena) și
pigmenți vegetali (carotenoidici, clorofila a si b, flavonoidici, antociani)
Vitamine si minerale. Clasificare si rol biochimic
Metabolismul glucidelor. Anabolismul glucidelor (Fotosinteza).
Catabolismul glucidelor (glicoliza, ciclul Krebs, degradări fermentative)
Metabolismul lipidelor. Biosinteza gliceridelor. Catabolismul gliceridelor.
Metabolismul protidelor și a amoniacului

LIPIDE

Definitie

Din punct de vedere chimic, lipidele sunt *esteri naturali* ai alcoolilor cu acizii graşi.

LIPIDE

Conţinutul în lipide (g/100 g produs) a diverselor produse alimentare de origine vegetală şi animală

Fructe	Lipide %	Legume, cereale, plante oleaginoase	Lipide %	Produse de origine animală	Lipide %
Alune	64,40	Măsline	50,00	Bacon	69,30
Nuci	60,00	Seminţe de dovleac	47,40	Carne gâscă	31,50
Fistic	54,00	Seminţe de floarea soarelui	32,30	Carne raţă	28,6
Avocado	26,40	Soia	20,00	Carne găină	24,80
Zmeură	1,60	Fasole boabe	2,00	Lapte oaie	6,18
Mure	1,40	Grâu	2,00	Lapte vacă	3,40
Măceşe	1,20	Ţelină	0,33	Gălbenuş de ou	24,00
Cireşe	1,50	Spanac	0,30	Albus de ou	<0,4
Banane	0,18	Salată	0,22	Crap	4,20
Prune	0,17	Cartofi	0,11	Somon	13,40
Piersici	0,11	Sfeclă roşie	0,10	Cod	0,30

Clasificarea lipidelor

1.după rolul biologic ce îl îndeplinesc în organism se pot grupa în:

✓ *lipide de rezervă*, reprezentând *elementul variabil* al constituenților celulari care se consumă prima dată în procesele metabolice. Sunt formate predominant din acizi grași saturați, cu număr par de atomi de carbon.

✓ *lipide de constituţie*, care reprezintă *elementul constant* al componenţilor celulari, contribuind la formarea nucleului, membranelor celulare, a mitocondriilor, fiind formate din lipide complexe, unde predomină acizii graşi nesaturaţi.

Clasificarea lipidelor

Acizii grași din constituția lipidelor

Clasificarea acizilor grași

după forma catenei carbonice pot fi:

> după tipul legăturilor dintre atomii de carbon pot fi:

> după prezența altor grupări funcționale în molecula lor pot fi

hidroxiacizi cetoacizi aldoacizi epoxiacizi

Acizii grași saturați

Acizii grași saturați sunt cei mai răspândiți acizi grași din natură, ei având formula moleculară CH_3 - $(CH_2)_n$ -COOH.

Între atomii de carbon se găsesc numai legături simple, care permit rotirea atomilor de carbon în jurul acestor legături.

Între legăturile de carbon din catena liniară aciclică există unghiuri de 109º28', astfel încât atomii de carbon nu se găsesc în catenă în linie dreaptă ci sub formă de zig-zag

Acidul palmitic

Acizi grași saturați liniari				
Denumirea acidului Nr. atomi de carbon		Formula chimică	Simbol	
1.	2.	3.	4.	
Acidul butiric	C4	CH ₃ -(CH ₂) ₂ -COOH	4:0	
Acidul capronic	C6	CH ₃ -(CH ₂) ₄ -COOH	6:0	
Acidul caprilic	C8	CH ₃ -(CH ₂) ₆ -COOH	8:0	
Acidul caprinic	C10	$\mathrm{CH_{3}\text{-}(CH_{2})_{8}\text{-}COOH}$	10:0	
Acidul lauric	C12	CH ₃ -(CH ₂) ₁₀ -COOH	12:0	
Acidul miristic	C14	CH ₃ -(CH ₂) ₁₂ -COOH	14:0	
Acidul palmitic	C16	CH ₃ -(CH ₂) ₁₄ -COOH	16:0	
Acidul stearic	C18	CH ₃ -(CH ₂) ₁₆ -COOH	18:0	
Acidul arahic	C20	CH ₃ -(CH ₂) ₁₈ -COOH	20:0	
Acizi grași saturați cu catenă ramificată				
Acidul izobutiric	C4		4:0	
Acidul izovalerianic	C5		5:0	
Acidul izomiristic	C14		14:0	

Acizi grași nesaturați

Acizii grași nesaturați pot să conțină în molecula lor legături duble sau triple, cei mai răspândiți fiind acizii grași cu 1 până la 3 duble legături.

Formula generală a acizilor grași nesaturați este de $\mathbf{C}_n\mathbf{H}_{2n-x}\mathbf{O}_2$, în funcție de numărul de duble legături pe care le conțin. O dublă legătură reduce cu doi numărul atomilor de hidrogen din molecula acidului. După numărul de duble legături pe care le conțin, acizii nesaturați se pot clasifica în :

acizi monoetenici, $\mathbf{C_nH_{2n-2}O_2}$ (cu o dublă legătură) acizi dietenici, $\mathbf{C_nH_{2n-4}O_2}$ (cu 2 duble legături) acizi trietenici, $\mathbf{C_nH_{2n-6}O_2}$ (cu 3 duble legături) acizi tetraetenici, $\mathbf{C_nH_{2n-8}O_2}$ (cu 4 duble legături) acizi pentaetenici, $\mathbf{C_nH_{2n-8}O_2}$ (cu 5 duble legături)

Acizi grași nesaturați

Prezenţa dublei legături se notează cu Δ (delta), iar la putere se notează atomul sau atomii de carbon la care apar dublele legături. Atomul de carbon din gruparea carboxilică se notează cu 1.

Denumirea acidului	Nr. atomi carbon	Formula chimică	Simbol				
	Acizi grași monoetenici						
Acid laurinoleic	C12	CH ₃ -CH ₂ -CH=CH-(CH ₂) ₇ -COOH	12:1Δ ⁹				
Acid miristoleic	C14	CH_3 - $(CH_2)_3$ - CH = CH - $(CH_2)_7$ - $COOH$	14:1Δ ⁹				
Acid palmitoleic	C16	CH_3 - $(CH_2)_5$ - CH = CH - $(CH_2)_7$ - $COOH$	16:1Δ ⁹				
Acid oleic	C18	CH_3 - $(CH_2)_7$ - CH = CH - $(CH_2)_7$ - $COOH$	18:1Δ ⁹				
Acid erucic	C22	CH ₃ -(CH ₂) ₉ -CH=CH-(CH ₂) ₉ -COOH	$22:1\Delta^{11}$				
		Acizi grași polietenici					
Acid sorbic	C6	CH ₃ -CH=CH-CH=CH-COOH	$6:2\Delta^{2,4}$				
Acid linolic	C18	CH ₃ -(CH ₂) ₄ -CH=CH-CH ₂ -CH=CH-(CH ₂) ₇ -COOH	$18:2\Delta^{9,12}$				
Acid linolenic	C18	$\begin{array}{c} \text{CH}_3\text{-CH}_2\text{-CH}\text{-CH}_2\text{-CH}\text{-CH}_2\text{-CH}\text{-CH}\\ \text{(CH}_2)_7\text{COOH} \end{array}$	$18:3\Delta^{9,12,15}$				
Acid arahidonic	C20	CH ₃ -(CH ₂) ₄ -CH=CH-CH ₂ -CH=CH-CH ₂ -CH=CH-CH ₂ -CH=CH-CH ₂ -COOH	$20:4\Delta^{5,8,11,14}$				

Т

Nomenclatura acizilor grasi

$$CH_3-CH_2-CH=CH-CH_2-CH=CH-(CH_2)_7-COOH$$

Acidul linolenic (18:3 $\Delta^{9,12,15}$)

Acid gras omega (ω) - 3

$$CH_3$$
- $(CH_2)_4$ - CH = CH - CH_2 - CH = CH - $(CH_2)_7$ - $COOH$

Acidul linolic (18: $2\Delta^{9,12}$)

Acizi graşi omega (ω) - 6

$$CH_3$$
- $(CH_2)_7$ - CH = CH - $(CH_2)_7$ - $COOH$

Acidul oleic (18:1 Δ ⁹)

Acizi grași omega (ω) - 9

Acizi omega-3	Simbol
Acidul linolenic (ALA)	18:3 Δ ^{9,12,15}
Acidul stearidonic	18:4 Δ ^{6,9,12,15}
Acidul eicosatetraenoic	20:4 Δ ^{8,11,14,17}
Acidul eicosaopentaenoic (EPA)	20:5 Δ ^{5,8,11,14,17}
Acidul docosapentaenoic	22:5 Δ ^{7,10,13,16,19}
Acidul docosahexaenoic (DHA)	22:6 Δ ^{4,7,10,13,16,19}
Acizi omega - 6	
Acidul linoleic (LA)	18:2 Δ ^{9,12}
Acidul gamma linolenic	18:3 Δ ^{6,9,12}
Acidul eicosadienoic	20:2 Δ ^{11, 14}
Acidul dihomo-gamma linoleic	20:3 Δ ^{8,11,14}
Acidul arahidonic	20:4 Δ ^{5,8,11,14}
Acidul docosadienoic	22:2 Δ ^{13,16}
Acidul adrenic	22:4 Δ ^{7,10,13,16}
Acidul docosapentaenoic	22:5 ∆ ^{4,7,10,13,16}
Acidul calendic	18:3 ∆ ^{8E,10E,12Z}
Acizi omega-9	
Acidul oleic	18:1 Δ ⁹
Acidul eicosenoic	20:1 Δ ¹¹
Acidul mead	20:3 Δ ^{5,8,11}
Acidul erucic	22:1 Δ ¹³
Acidul nervonic	24:1 ∆¹5

ACIZII GRAŞI

Proprietăți fizice ale acizilor grași

Acizii grași nesaturați se deosebesc între ei, atât prin lungimea catenei carbonice, cât și prin felul, numărul și poziția legăturilor nesaturate.

Acizii grași nesaturați se deosebesc de acizii grași saturați prin conformația lor. În acizii grași saturați, catena atomilor de carbon este flexibilă și poate exista în foarte multe conformații, deoarece fiecare legătură simplă din catenă are o completă libertate de rotație. Acizii grași nesaturați au în structura lor unul sau mai multe puncte rigide, datorită dublei legături lipsite de libertatea de rotație

Proprietăți fizice ale acizilor grași

Prezenţa unei duble legături în catena carbonică a acizilor grași determină apariţia a 2 stereoizomeri, numiţi *cis* și *trans*. De exemplu, acidul oleic formează doi stereoizomeri, un izomer *cis* care este acidul *oleic natural*, larg răspândit în plante și un izomer *trans*, care este *acidul elaidic*

Proprietățile chimice ale acizilor grași

Acizii **grași saturați** pot reacționa cu clorul sau bromul, în anumite condiți de reacție, prin **reacții de substituție**, înlocuind hidrogenul din grupările metilen, cu formare de derivați halogenați.

Acizii grași nesaturați dau cu ușurință reacții de adiție la nivelul dublelor legături

- a) prin adiția hidrogenului, acizii grași nesaturați se transformă în acizi grași saturați.
- b) adiţia halogenilor (Cl₂, Br₂, I₂)

La acizii polietenici, halogenarea (dar şi hidrogenarea) se face treptat, începând cu dubla legătură cea mai îndepărtată de gruparea carboxilică, urmând apoi restul dublelor legături de pe catena internă spre gruparea carboxilică.

TEMA: bromurarea dublelor legături din acidului linolenic

3. Reacția de oxidare a acizilor grași

a) Acizii graşi se pot *autooxida*. Autooxidarea acizilor graşi se realizează prin fixarea oxigenului la nivelul dublelor legături, cu formare de *peroxizi* sau *hidroperoxizi*, substanțe instabile, foarte reactive, care vor da naștere la alcooli, aldehide, hidroxiacizi, acizi volatili, care au un gust și un miros neplăcut. Acest tip de autooxidare se produce în timpul râncezirii grăsimilor depozitate în condiții necorespunzătoare.

3. Reacția de oxidare a acizilor grași

b) Autooxidarea se realizează şi prin fixarea oxigenului la atomul de carbon α vecin cu dubla legătură. Se formează iniţial un hidroperoxid, care în prezenţa unui acid gras nesaturat poate duce la formare de epoxizi sau hidroxiacizi.

3. Reacţia de oxidare a acizilor graşi

Acizii grași nesaturați, prin **oxidare energică** cu permanganat-periodat duce la obținerea de produși intermediari (aldehide) prin ruperea dublei legături, iar ca produși finali se obțin acizi cu catenă mai scurtă

R-HC=CH- R
$$\xrightarrow{+ \text{MnO}_{4}}$$
 R-HC-CH-R $\xrightarrow{+ \text{IO}_{4}}$ 2 R-CHO $\xrightarrow{\text{MnO}_{4}}$ 2 R-COOH acid nesaturat OH OH aldehida acid(C $_{\text{n-x}}$) compus intermediar

În acest proces oxidative, periodatul determină ruperea legăturii covalente dintre atomii de carbon care posedă grupări hidroxil vecine, cu formare de aldehide.

3. Reacția de oxidare a acizilor grași

Acizii grași nesaturați reacționează cu *ozonul*, la nivelul dublelor legături cu formare de ozonide, substanțe instabile, care prin descompunere în prezența apei, în mediul bazic, duc la formare de aldehide și aldoacizi. Această reacție servește la stabilirea numărului și poziției dublelor legături din molecula acizilor grași nesaturați.

$$\begin{array}{c} \text{CH}_{3}\text{[CH]}_{7}\text{ CH=CH}_{1}\text{[CH]}_{7}\text{COOH} \xrightarrow{+O_{3}} \quad \text{CH}_{3}\text{[CH]}_{7}\text{CH}_{1}\text{CH}_{1}\text{CH}_{1}\text{CH}_{2}\text{COOH}} \xrightarrow{\text{HzO}} \\ \text{acid oleic} & \text{ozonida} \end{array}$$

$$\longrightarrow \quad \text{CH}_{3}\text{ [CH]}_{7}\text{ CHO} + \text{OHC} - \text{[CH]}_{2}\text{COOH}} \\ \text{aldehida pelargonica} \quad \text{acid aldoazelaic}$$

4. Reactia de esterificare

Acizii grași pot reacţiona cu alcoolii cu formare de *esteri*, substanţe stabile larg răspândite în natură. Prin marcarea atomilor de oxigen din gruparea carboxilică a acidului şi din gruparea hidroxilică a alcoolului, s-a demonstrat că apa se formează din gruparea hidroxilică a acidului si hidrogenul alcoolului.

R-COOH + R'-OH
$$\longrightarrow$$
 R-COOR' + H₂O acid alcool ester

5. Formarea sapunurilor

Acizii grași reacționează cu metalele alcaline și alcalino-pământoase, cu oxizii și bazele acestora, cu formare de săruri numite **săpunuri**.

Alcoolii din constituţia lipidelor

a) saturaţi

1. alcooli monohidroxilici aciclici

Alcoolul cetilic $C_{16}H_{33}OH$ Alcoolul stearilic $C_{18}H_{37}OH$ Alcoolul mirilic $C_{30}H_{61}OH$

b) nesaturaţi CH_3 - $(CH_2)_7$ -CH=CH- $(CH_2)_7$ - CH_2 -OH

3. aminoalcooli

sfingozina

Alcoolii din constituţia lipidelor

4. Sterolii din constituția lipidelor sunt monoalcooli secundari, policiclici care derivă de la hidrocarbura de bază, *steran* ($C_{17}H_{28}$). Steranul are trei hexacicluri, așezate sub formă fenantrenică și un pentaciclu. Inelele se numerotează cu literele A, B, C și D, iar numerotarea atomilor de carbon începe din partea superioară a inelului A

Sterolii conţin în moleculă următoarele elemente constitutive:

- •la atomul de carbon din poziţia 3 este ataşată o grupare hidroxilică,
- •la atomul de carbon din poziția 17 este ataşată o catenă laterală formată din 8 până la 10 atomi de carbon, care se termină într-un radical izopropilic
- •la carbonii din pozițiile 10 și 13 sunt fixați doi radicali metili
- •ciclurile şi catena laterală pot fi saturate sau pot conţine 1 până la 3 duble legături.

Clasificarea lipidelor

Lipide simple

Gliceride, acilgliceroli sau grăsimi neutre Definitie:

Gliceridele sunt esteri naturali ai glicerolului cu acizii grași.

Formula generală a gliceridelor

Clasificarea gliceridelor

- 1. după origine, gliceridele se clasifică în gliceride *vegetale* și *animale*
- 2. după consistență, gliceridele sunt:
 - solide, predomină în regnul animal și sunt formate din acizi grași saturați
 - lichide, predomină în regnul vegetal și sunt formate din acizi grași nesaturați.
- 3. după numărul grupărilor hidroxil esterificate din molecula glicerolului, gliceridele se clasifică în: -monogliceride
 - -digliceride
 - -trigliceride
- 4. Cele mai răspândite sunt trigliceridele, care pot fi **simple**, atunci când grupările –OH sunt esterificate cu acelaş acid gras, sau **mixte**, când grupările hidroxil sunt esterificate cu acizi grași diferiți

Tema: tripalmitina, trioleina, tristearina – gliceride simple palmitooleostearina, stearopalmitooleina – gliceride mixte

1. Reacţia de hidroliză

Indicele de aciditate (Ia)

= cantitatea de acizi grași, exprimată în mg, care se formează prin hidroliza unei molecule gram de gliceride

2. Reacţia de saponificare

Indicele de saponificare (Is)

= cantitatea de KOH, exprimată în mg, necesară pentru a saponifica un gram de grăsime.

4. Hidrogenarea grăsimilor

$$^{\text{CH}_2\text{--}0\text{--}\text{CO}}_{|_2|_7}$$
 $^{\text{CH}}_2$ $^{\text{CH}}_2$ $^{\text{CH}}_2$ $^{\text{CH}}_3$ $^{\text{$

trioleina

4. Halogenarea grăsimilor

Tema: bromurarea trioleinei

Indicele de iod (Ii)

= cantitatea de iod, exprimată în grame, adiţionată de 100 g grăsime

5. Râncezirea grăsimilor

- 1. Autooxidarea se petrece în prezența aerului și este inițiată de radicalii liberi care se formează în urma extragerii, (sub acțiunea luminii, căldurii etc.) unui atom de hidrogen de la o grupare metilen (CH₂), activată de prezența unor duble legături vecine.
- 2. Ulterior, radicalul liber format fixează o moleculă de oxigen, rezultând un radical peroxidic.
- 3. În etapa următoare, radicalul peroxidic (R O -O•) extrage un atom de hidrogen din catena unui alt acid gras, rezultând astfel un hidroperoxid (R O O H).
- 4. Hidroperoxidul format se poate descompune autocatalitic în doi radicali liberi.
- 5. Peroxizii formați exercită acțiune oxidantă asupra acizilor grași formând aldehide, cetone, acizi, ${\rm CO}_2$

Indicele de peroxid (Ip) este proporţional cu conţinutul în peroxizi al grăsimilor (cu gradul lor de râncezire), şi arată gradul de oxidare (râncezire) a unei grăsimi care se exprimă prin numărul de miliechivalenţi de peroxid conţinuţi în 1000 g grăsime.

6. Transformarea glicerinei în acroleină

Clasificarea lipidelor

Ceride

Ceridele sunt esteri naturali ai acizilor grași cu monoalcoolii superiori (nu conțin glicerol). În regnul vegetal, ceridele se găsesc sub formă de cutină pe suprafața fructelor, frunzelor, fructelor, florilor, constituind un înveliş protector împotriva evaporării apei, căldurii și luminii excesive.

Steride

Steridele sunt esteri ai sterolilor cu acizii grași. În regnul vegetal se află în semințe, tuberculi, fructe și frunze. Steridele au un rol biochimic și fiziologic important contribuind la fluidizarea (permeabilizarea) membranelor celulare, la transportul sterolilor.

Etolide

Etolidele sunt formate din hidroxiacizii superiori, esterificaţi intermolecular. Gruparea carboxilică a unui hidroxiacid reacţionează cu gruparea hidroxilică a celuilalt acid şi invers. Se găsesc numai în regnul vegetal, predominant în conifere.

Clasificarea lipidelor

Acizii fosfatidici

Acizii fosfatidici sunt cele mai simple lipide complexe din regnul vegetal. Ele sunt formate din glicerol, acizi grași și acid fosforic.

$$\begin{array}{c} \text{CH}_2 - 0 - \text{CO} - \text{R} \\ | & \text{OH} \\ \text{CH} - 0 - \text{P} = 0 \\ | & \text{OH} \\ \text{CH}_2 - 0 - \text{CO} - \text{R} \end{array}$$

Acidul B-

Inozitolfosfolipidele

Colinfosfolipide

Lecitinele

Colinfosfolipide

Lizolecitinele

Colaminfosfolipide

Cefalinele

Clasificarea lipidelor

