

Name:	Muhammad ibraheem
Sapid:	42896
Sem/Sec:	BSCS-5
Subject:	Design and Analysis of Algorithm
Teacher:	Dr Saman Riaz

Assignment 2

• Problem Statement:

Begin with a clear and concise explanation of the problem you're addressing. Include details such as:

- o The domain of the problem (e.g., data science, networking, optimization).
- Why the problem is relevant or pressing (e.g., industry needs, academic interest, societal importance).
- The gap in existing solutions or methods that your work aims to fill.

Research Questions:

Specify the primary and secondary questions your study seeks to answer. Examples include:

- o Which algorithm is most efficient for solving X under Y conditions?
- o How can algorithm Z be optimized for a specific case or dataset?
- What trade-offs exist between computational efficiency and result accuracy in solving the problem?

2. Literature Review

Background on Algorithms:

Summarize past studies or solutions related to the problem. Discuss:

- o Key algorithms that have been applied to similar problems.
- Strengths, weaknesses, and limitations of these algorithms.
- What makes your approach different or necessary.

• Theoretical Foundations:

Discuss relevant theoretical concepts, such as:

- Computational Complexity: Highlight how Big O notation helps to classify algorithms.
- Paradigms: Address which paradigm fits best (e.g., divide and conquer for sorting, dynamic programming for optimization).
- Optimization Techniques: Mention tools or methods (e.g., linear programming, heuristics) relevant to the case.

3. Problem Description and Data

• Problem Definition:

Formulate the problem formally, including inputs, expected outputs, and constraints. Use precise language, and include mathematical notation or pseudocode when beneficial.

• Case Study Context:

Explain the real-world application of the problem. Examples:

- A routing algorithm for optimizing delivery paths in logistics.
- o Data sorting for real-time analytics in finance.
- Scheduling in cloud computing to optimize resource usage.

Input Data:

Describe the nature of the data being used, including:

- o Data size, structure, and source (e.g., synthetic vs. real-world).
- Assumptions or preprocessing steps applied to the data.

4. Algorithm Selection or Design

Algorithm Choice:

Justify why you chose a particular algorithm. Discuss:

- Its applicability and expected performance.
- Theoretical insights and practical considerations.

Design and Innovation:

If designing a new algorithm or tweaking an existing one:

- Highlight the rationale and novelty.
- Explain how your approach improves upon existing solutions.

• Algorithm Description:

Provide a step-by-step explanation of the algorithm using pseudocode, flowcharts, or diagrams. Be clear and comprehensive.

5. Complexity Analysis

Time Complexity:

Analyze how the algorithm's runtime grows with input size.

Space Complexity:

Assess memory requirements and implications for scalability.

• Worst-case, Best-case, and Average-case Analysis:

Provide a breakdown of performance under different scenarios.

6. Experimental Setup

Test Cases:

Define test scenarios, including:

- Dataset characteristics (e.g., small, large, sparse, dense).
- o Edge cases and real-world inputs.

Metrics:

Explain how performance is measured (e.g., runtime, accuracy, memory usage).

• Comparative Analysis:

If applicable, compare your algorithm with alternatives under identical conditions.

7. Results

• Experimental Results:

Present findings using:

- Tables to summarize numerical data.
- Graphs or charts to visualize trends and comparisons.

• Performance Analysis:

Analyze results in the context of theoretical expectations. Discuss any deviations and their implications.

8. Discussion

• Interpretation of Results:

Reflect on what the results reveal about the algorithm's strengths and weaknesses.

• Strengths and Weaknesses:

Discuss where the algorithm excels and where it struggles. Mention areas for improvement.

Contextual Analysis:

Relate findings to the broader field of study. Identify potential applications or follow-up research opportunities.

9. Conclusion

Summary of Findings:

Recap key insights and contributions of your study.

Future Work:

Suggest directions for improving the algorithm, addressing limitations, or exploring related problems.