3 D Rotations

$$\frac{31}{2} R(y) = \begin{cases} cps & y > -siny > 0 \\ sin & y > cos & y > 0 \end{cases}$$

$$\frac{2}{2} \frac{2}{3} \frac{$$

Ry
$$(0)$$
 = $\begin{bmatrix} \cos 0 & 0 & \sin 0 \\ 0 & 1 & 0 \\ -\sin 0 & 0 & \cos 0 \end{bmatrix}$

$$R_{x}(\phi) = \begin{bmatrix} 1 & 6 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{bmatrix}$$

In general a rotation matrix

$$R = \begin{bmatrix} Y_{11} & Y_{12} & T_{13} \\ Y_{21} & T_{22} & Y_{23} \\ Y_{31} & Y_{32} & Y_{33} \end{bmatrix}$$
 q numbers

Certain properties restrict the range Ivalues that r's in the Rotation matrix can take on

$$R^TR = I = RR^T$$
 (I = 3x3 identity matrix)

Scaled to 1 is encomposed in diagonal element ormogondity is " non-diagonal elements

$$Y_{11}^{2} + Y_{21}^{2} + Y_{31}^{2} = 1$$
 rotation matrix

 $Y_{12}^{2} + Y_{22}^{2} + Y_{32}^{2} = 1$ has unit magn

 $Y_{13}^{2} + Y_{23}^{2} + Y_{33}^{2} = 1$ 3 condition

 $\leq \gamma_{i_1} \gamma_{i_2} = 0 = \gamma_{i_1} \gamma_{i_2} + \gamma_{i_1} \gamma_{i_2} + \gamma_{i_3} \gamma_{i_3} = 0$

\[
 \cdot \text{i}_2 \text{Ti}_3 = 0
 \]
 \[
 \text{i}_{1,2,3}
 \]

\[
 \chi_{13} \gamma_{i_1} = 0
 \]
 \[
 i = 1/2/3
 \]

3 conditions

- 6 conditions = 3 free 9 parameters

> - 3 unique numbers EULER angles.

Angles

tait · Bryan aero space

x-y- 2

y- x- t

モーャーブ

メーモーゲ

we will use these in

x-7-x

7-7-2

fu course

7-2-7

ムーパーチ

= 12 un 9 me ways describing rotations.

rotations commute

order of rotation is not important in 2D => rotations communte.

=> rotations communite.

Rotations_in 3D do Nos ammute 90° abt x-axis 子 90 abt 90° abt. r-aris

R= Rz (4) Ry (0) Rx (4) Corrected			
-	Cosy cos o	cos y sind sind - cos & siny	Sin & sin 4 + cos 4 cosp
	cos & sin y	(os y cos p + sin p sin y sino	Cos of Sing Sing -
l	, -sin0	los o sin p	Cosp cosa
		3X Z	