Instituto Militar de Engenharia

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

IME 2022/2023 Discursivo

PROBLEMA 1

O calcário é uma rocha de origem sedimentar constituída predominantemente por carbonato de cálcio. Uma técnica que pode ser utilizada para determinar o teor de carbonato de cálcio em uma amostra de calcário é a volumetria, a qual consiste na determinação da concentração de uma solução A por meio do gasto de uma solução B de concentração conhecida, ocorrendo uma reação química entre A e B. Uma amostra de 1,0 g de calcário foi dissolvida utilizando-se 25,0 mL de uma solução de ácido clorídrico com concentração de 1,0 mol/L. Na sequência, utilizou-se uma solução de hidróxido de sódio com concentração de 0,5 mol/L para neutralizar o excesso de ácido, consumindo-se 17,2 mL da solução.

Considerando que apenas o carbonato de cálcio presente na amostra de calcário reage com o ácido clorídrico, determine:

- a. as equações balanceadas das reações envolvidas no processo;
- a porcentagem mássica de carbonato de cálcio presente na amostra de calcário.

PROBLEMA 2

Uma amostra de 46,8 g de poliestireno foi dissolvida em quantidade suficiente de benzeno para produzir 1,0 L de solução. A pressão osmótica dessa solução foi medida a 300 K e o valor encontrado foi de 7,38 \times 10^{-3} atm.

Calcule o numero médio de unidades monoméricas na cadeia polimérica desta amostra de poliestireno.

PROBLEMA 3

O but-2-enal (aldeído crotônico ou crotonaldeído) é um líquido lacrimogênio usado como precursor de diversos produtos químicos, tais como a vitamina E, o ácido ascórbico e alguns compostos pirimidínicos.

Apresente uma rota química para sintetizar o but-2-enal a partir do carbeto de cálcio

PROBLEMA 4

Uma solução de Na $_2$ SO $_4$ com concentração $1,0 \times 10^{-3}$ mol/L contem, como traçador, o radioisótopo $_{16}^{35}$ S, cujo tempo de meia vida e igual a 88 dias. Uma amostra de $10\,\mathrm{mL}$ dessa solução produz $4,0 \times 10^4$ contagens por minuto em um detector de radiação. Um volume igual de solução de $Pb(NO_3)_2$ com concentração $2,0 \times 10^{-4}$ mol/L é adicionado à solução de Na $_2$ SO $_4$, ocasionando precipitação de $PbSO_4$.

Calcule o numero de contagens por minuto para uma alíquota de 10 mL retirada da solução após a precipitação.

PROBLEMA 5

Um combustível formado por uma mistura equimolar de npropano e 2-metil-propano alimenta a fornalha de uma usina termelétrica, na qual ocorre sua combustão total na presença de ar. Um sensor posicionado na chaminé dessa fornalha detecta a presença de 3% em mol de oxigênio nos gases de exaustão.

Calcule a razão ar/combustível, em proporção mássica, para uma alimentação de 1000 mol/s desse combustível, com a fornalha operando sob essa condição.

PROBLEMA 6

A glicose tem dois estereoisômeros, α e β , que se distinguem pela atividade óptica. A forma α tem poder rotatório específico de 112° e a β de $18,7^{\circ}$. A conversão de uma forma para outra se dá segundo uma reação de primeira ordem reversível:

$$C_6H_{12}O_6(\alpha) \Longrightarrow C_6H_{12}O_6(\beta)$$

Realiza-se, então, uma experiência, na qual um feixe de luz polarizada atravessa um tubo contendo uma solução de glicose. Observa-se a modificação do desvio angular do plano de polarização como mostrado na tabela abaixo:

Tempo, t/min	0	10	100	∞
Ângulo de rotação, θ	112,00°	102,67°	65,35°	56,02°

Sabe-se que o desvio angular da luz polarizada é função linear da conversão do estereoisômero α e que a soma das constantes de reação direta e reversa é 0,015 min $^{-1}$.

Determine:

- a. a conversão específica no instante $t=10\,\text{min}$;
- as constantes de velocidade da reação direta e da reação reversa;
- c. a taxa específica de reação no instante $t=100\,\text{min}$;
- d. a taxa específica de reação no equilíbrio.

PROBLEMA 7

Considere a energia potencial de ligação. Pode-se imaginar um modelo em que a energia de ligação entre as especies seja considerada a própria energia potencial eletrostática.

- a. Esboce, em um único gráfico de energia potencial de ligação versus distância internuclear, as curvas para uma ligação química interatômica (covalente ou iônica) e para uma interação intermolecular.
- Indique o fator crucial que determina a diferença entre as curvas.

^{*}Contato: contato@gpbraun.com, (21)99848-4949

PROBLEMA 8

Uma corrente elétrica constante atravessa duas células eletrolíticas ligadas em serie, sendo que a primeira contem uma solução aquosa de sulfato cúprico e a segunda produz hidrogênio no catodo e oxigênio no anodo.

Considerando essas informações e sabendo que o gás hidrogênio tem solubilidade desprezível em água:

- a. escreva as semirreações e a reação global da eletrólise do sulfato cúprico em meio aquoso, envolvendo o fluxo de elétrons;
- b. determine o tempo, em minutos, necessário para o depósito de 0,254 g de cobre, quando se faz passar uma corrente de 2,0 A na solução da primeira célula eletroquímica;
- c. calcule o pH da solução resultante do borbulhamento do hidrogênio gasoso, produzido no catodo da segunda célula, em 200 mL de uma solução aquosa de NaOH 0,1 mol/L, a 298 K

PROBLEMA 9

Seja a reação genérica balanceada:

$$A(g) + 2B(g) \Longrightarrow C(g) + D(l)$$

Considere que: as solubilidades das especies químicas no líquido formado sao desprezíveis; os gases se comportam idealmente; e as propriedades termodinâmicas a 1,0 atm e 30 °C sao as dadas abaixo.

	A(g)	B(g)	C(g)	D(1)
$\Delta H_f^{\circ} / \frac{kJ}{mol}$	-394	-47,0	-334	-286
$\Delta G_{\mathrm{f}}^{\circ}/rac{\mathrm{k}J}{\mathrm{mol}}$	-394	-16,0	-197	-237

Determine para essa reação:

- a. a expressão da constante de equilíbrio com base nas concentrações, K_c ;
- b. o valor da constante de equilíbrio com base nas pressões parciais, K_P, a 30 °C e 1 atm;
- c. a variação de entalpia a $30\,^{\circ}\text{C}$ e 1 atm, estabelecendo se a reação exotérmica ou endotérmica;
- d. o valor da constante de equilíbrio K_P , a 13 $^{\circ}$ C e 1 atm, com base na equação de Van't Hoff.

PROBLEMA 10

Estabeleça a relação entre as estruturas de cada par abaixo, identificando-as como enantiômeros diastereoisômeros, isômeros constitucionais ou representações diferentes de um mesmo composto.

IME 2021/2022 Discursivo

PROBLEMA 11

Considere a reação entre acetato de etila e hidróxido de sódio em meio aquoso com sendo irreversível. Uma forma simples de estudar a cinética dessa reação é acompanhar, com o uso de um condutivímetro, a condutividade do meio reacional, dada pelo inverso da resistividade e geralmente denotada por k, em S cm $^{-1}$. Tal condutividade é relacionada, quantitativamente, à concentração das espécies iônicas, Na $^+$, OH $^-$ e acetato, em solução, cujas condutividades molares, em S L cm $^{-1}$ mol $^{-1}$, serão denotadas aqui, respectivamente, por $\lambda_{\rm Na}{}^+$, $\lambda_{\rm OH}{}^-$ e $\lambda_{\rm AcO}{}^-$. A condutividade de um meio e dada, portanto, pela soma dos produtos entre a concentração de cada espécie iônica e sua correspondente condutividade.

Foi preparada uma mistura contendo, inicialmente, c_0 mol L^{-1} de hidróxido de sódio e acetato de etila em ligeiro excesso. Determine uma expressão para a concentração do íon acetato em função de k, λ_{Na^+} , λ_{OH} e λ_{ACO} e c_0 .

PROBLEMA 12

Uma célula eletrolítica dotada de eletrodos de platina é preenchida com 1 L de uma solução 4 mol $\rm L^{-1}$ de NaCl puro em água bidestilada. Em seguida, faz-se percorrer pela mesma, por 5 horas 21 minutos e 40 segundos, uma corrente de 5 A, ocorrendo desprendimento de cloro e hidrogênio. Decorrido o tempo mencionado, a corrente é desligada e a solução remanescente é evaporada, obtendo-se um resíduo sólido.

Calcule a massa do resíduo sólido.

PROBLEMA 13

Sob determinadas condições, a água pode ser super-resfriada, ou seja, permanecer no estado líquido em temperaturas inferiores ao seu ponto de congelamento, em uma situação termodinamicamente instável. Considere um processo em que 5 mol de água super-resfriada a $-10\,^{\circ}\mathrm{C}$ e 1,0 atm sejam convertidos em gelo à mesma temperatura.

Determine a variação de entropia:

- a. do sistema;
- b. na vizinhança; e
- c. do universo.

PROBLEMA 14

Os elementos do segundo e terceiro períodos da tabela periódica apresentam desvios da tendência em suas curvas da energia de ionização em função do número atômico. Com relação à esses elementos.

- a. esboce qualitativamente o gráfico da energia de ionização em função do número atômico; e
- b. explique esses desvios de forma sucinta, baseado na estrutura eletrônica e no preenchimento dos orbitais atômicos.

PROBLEMA 15

Suponha um sólido metálico formado por um único elemento que apresenta uma estrutura de empacotamento cúbica de corpo centrado à pressão atmosférica. Ao ser comprimido, esse sólido adota uma estrutura cúbica de face centrada.

Considerando os átomos como esferas rígidas, calcule a razão entre as densidades do sólido antes e depois da compressão.

PROBLEMA 16

A intensidade das emissões radioativas pode ser expressa em curie, Ci, unidade definida como 3.7×10^{10} desintegrações nucleares por segundo. Considere um tanque que armazena $50\,000\,\mathrm{L}$ de um rejeito radioativo aquoso desde 1945, o qual contém o isotopo $^{137\mathrm{Cs}}$, cuja cinética de desintegração radioativa é considerada como de primeira ordem. A meia vida do $^{137}\mathrm{Cs}$ é de 30,1 anos e sua radioatividade específica é de 86,6 Ci/g. Se em 2010 a concentração de 137 neste rejeito aquoso era de 1,155 \times 10 $^{-3}$ g/L, determine:

- a. a fração percentual em massa de 137Cs que deverá ter decaído para que o nível de radioatividade a ele relacionada seja de 1×10^{-3} Ci/L; e
- b. a concentração em g/L de ^{137Cs} no tanque quando o rejeito foi inicialmente estocado, considerando que o volume do rejeito tenha sido constante ao longo do tempo.

PROBLEMA 17

Escreva a fórmula estrutural plana do produto majoritário da mononitração, via substituição eletrofílica aromática, para cada reagente indicado abaixo:

- a. ácido p-toluico (ácido 4-metilbenzoico);
- b. p-cresol (4-metilfenol);
- c. p-tolunitrila (4-metilbenzonitrila);
- d. m-xileno (1,3-dimetilbenzeno); e
- e. 2,6-difluoroacetanilida (N-(2,6-difluorofenil) etanamida);

PROBLEMA 18

Um motor de 6 cilindros e volume total de $5700\,\mathrm{cm}^3$, utilizado em viaturas leves e blindadas, consome $0,5\,\mathrm{g}$ do combustível gasoso de composição média C_8H_{18} , em cada cilindro, por segundo de operação.

Considerações

 o ciclo termodinâmico do motor compreende o funcionamento em 4 tempos: admissão, compressão, combustão e exaustão (escape);

- o motor executa 10 ciclos por segundo, ou seja, a mistura de ar e combustível enche os cilindros e depois é comprimida 10 vezes por segundo;
- a mistura ar e combustível e introduzida à temperatura de 100 °C, ate que a pressão seja de 1 atm em cada cilindro;
- 20,0% da quantidade de combustível sofre combustão incompleta, sendo convertida em CO(g);
- 80,0% da quantidade de combustível sofre combustão completa, sendo convertida em CO₂(g);
- a mistura de ar e combustível comporta-se como gás ideal;
- as capacidades caloríficas molares são independentes da temperatura; e
- as entalpias de formação a 25 °C.

Determine:

- a. a vazão da entrada de ar no motor, em m³/s; e
- a composição percentual molar dos produtos e a temperatura de combustão, em K.

PROBLEMA 19

Na figura abaixo, apresenta-se um conjunto cilindro-pistão, onde o peso do pistão é desprezível, em que ocorre a seguinte reação do óxido de níquel (II) à temperatura constante:

$$NiO(s) + CO(g) \Longrightarrow Ni(s) + CO_2(g)$$

Para a manutenção da temperatura constante até a situação de equilíbrio, devem ser retirados do meio reacional 16,10 kJ de energia por mol de óxido de níquel reagido, na forma de calor. Sabe-se que a constante de equilíbrio para a reação é $K_P=500$ e que, na temperatura de reação, as entropias padrão são:

	NiO(s)	Ni(s)	CO(g)	$CO_2(g)$
$S_{\rm m}^{\circ}/{\rm Jmol}^{-1}{\rm K}^{-1}$	38,10	30,56	251,0	296,0

Com base nas informações fornecidas e considerando que os gases se comportam idealmente, determine a temperatura na qual a reação foi conduzida.

PROBLEMA 20

Estabeleça a relação entre as estruturas de cada par abaixo, identificando-as como enantiômeros diastereoisômeros, isômeros constitucionais ou representações diferentes de um mesmo composto.

IME 2020/2021 Discursivo

PROBLEMA 21

Estabeleça a relação entre as estruturas de cada par abaixo, identificando-as como enantiômeros diastereoisômeros, isômeros constitucionais ou representaçÕes diferentes de um mesmo composto.

PROBLEMA 22

Um cientista prepara uma amostra de 1,1 g do isótopo 11 C do carbono de extrema pureza. Esse isótopo é radioativo, iniciando seu decaimento após a preparação (instante inical $t_0=0$). Sabendose que sua meia-vida é de 21 min, calcule a massa restante de 11 C no instante t=1h31min.

PROBLEMA 23

Titulou-se uma solução 0,15 M de Fe²⁺ com Ce⁴⁺ com o eletrodo de platina mergulhado em 40,0 mL da solução e acoplado a um eletrodo de referência por meio de uma ponte salina. A titulação, conforme a reação abaixo, foi monitorada pela leitura de um voltímetro.

$$Ce^{4+} + Fe^{2+} \Longrightarrow Ce^{3+} + Fe^{3+}$$

Calcule a força eletromotriz (fem) indicada nesse voltímetro após a adição de $8,0\,\mathrm{mL}$ de uma solução de $\mathrm{Ce^{4+}}\ 0,15\,\mathrm{M}$, a $298\,\mathrm{K}$.

PROBLEMA 24

No preparo de uma solução, deseja-se substituir a utilização de massa de soluto, m_s gramas de sacarose, $C_{12}H_{22}O_{11}$ por sorbitol, $C_6H_{14}O_6$, sem alterar o ponto de ebulição da solução. Determine a massa de sorbitol a ser utilizada em função de m_s .

PROBLEMA 25

Determine o número de pares de enantiômeros para um composto de estrutura molecular octaédrica, cujo átomo central X esteja ligado a seis ligantes distintos (A, B, C, D, E e F) e que não possuam estereocentros. Justifique.

PROBLEMA 26

O modelo dos gases ideais, ou perfeitos, descreve bem o comportamento para a maioria dos casos, no entanto, foi necessário desenvolver modelos mais precisos dentre os quais se destaca a equação de Van der Waal. Deduza a equação de Van der Waals, assumindo que o volume da partícula/molécula não seja desprezível e existam interações entre partículas/moléculas. Considere o seguinte:

- V é o volume do recipiente do gás;
- B é o volume total ocupado pelas moléculas do gás;
- As forças de atração são praticamente nulas no seio da mistura do gás; e
- Próximo às paredes do recipiente, as moléculas são atraídas ao centro com uma força proporcional ao quadrado da concentração do gás, o que reduz a intensidade dos impactos nas paredes do recipiente.

PROBLEMA 27

O RDX (ciclo-1,3,5-Trimetileno-2,4,6 trinitroamina) e o TNT (2-metil-1,3,5-trinitrobenzeno), quando misturados na proporção percentual 60 : 40 em massa, formam o *Composto B*. Considerando que cada munição contém 2,5 kg de Composto B, inicialmente mantido a 25 °C, determine a entalpia padrão teórica esperada na combustão completa de uma munição.

PROBLEMA 28

Um propelente (combustível) utilizado nos foguetes Veículo Lançador de Satélites (VLS) contém alumínio, perclorato de amônia e resina de polibutadieno. Considere que esse combustível queime conforme a reação de oxirredução:

$$\begin{split} NH_4ClO_4(s) + (CH_2)_{\mathfrak{n}}(l) + 2\,Al(s) &\longrightarrow \\ \frac{1}{2}\,N_2(g) + CO(g) + 5\,\frac{1}{2}\,H_2(g) + Al_2O_3(g) + HCl(g) \end{split}$$

Se um dos reagentes estiver em excesso, haverá peso desnecessário no foguete. Um protótipo foi desenvolvido na proporção 4 : 1 em massa, entre o agente oxidante e o agente redutor, para um quilo da mistura. Desconsiderando a resina incorporada na massa deste propelente, determine:

- a. Qual é o reagente limitante?
- b. Qual o percentual da mistura de combustível é desperdiçada na queima do propelente nessa proporção?

PROBLEMA 29

A figura abaixo é uma representação da estrutura do explosivo FOX-7 com a seguinte numeração arbitrária:

Baseado na estrutura do explosivo, explique:

- a. Por que C¹ tem menor densidade eletrônica que C²?
- b. Seria esperado que os átomos O¹ e O², assim como os átomos O³ e O⁴, tivessem valores de carga aproximadamente iguais?
- c. Por que das diferenças nos comprimentos das ligações C^1-N^1 e C^2-N^3 ?

PROBLEMA 30

O ácido pirúvico é um alfacetoácido que serve como intermediário no Ciclo de Krebs do metabolismo celular, cuja estrutura é demonstrada abaixo:

Em relação ao ácido pirúvico:

- a. Escreva a fórmula estrutural plana de um isômero do ácido pirúvico;
- Especifique se a conversão de ácido pirúvico em ácido lático (ácido 2-hidroxipropanoico), que pode ocorrer na respiração anaeróbica, trata-se de uma reação de redação ou uma reação de oxidação;
- c. Escreva a fórmula estrutural plana do glicol (diol), que ao ser oxidado com o permanganato de potássio, produz o Ácido Pirúvico (obtenção laboratorial); e
- d. Escreva a fórmula estrutural plana do cloreto de acila, que após reagir com o cianeto de potássio, forma um intermediário, o qual é hidrolisado a ácido pirúvico (obtenção laboratorial).

IME 2019/2020 Discursivo

PROBLEMA 31

Calcule a variação de entalpia, em J, no processo de decomposição de 600 mg de nitroglicerina, C₃H₅N₃O₉, que produz nitrogênio, dióxido de carbono e oxigênio gasosos, além de água líquida.

Dados

	$C_{3}H_{5}N_{3}O_{9}(l) \\$	$H_{2}O\left(l\right)$	$CO_2(g)$
$\Delta H_f^{\circ} / \frac{kJ}{mol}$	-354	-286	-394

PROBLEMA 32

Determine a massa de hidrogênio ionizado em 1 L de uma solução 0,1 M de um ácido monoprótico em água com constante de ionização igual a $1,69 \times 10^{-3}$.

PROBLEMA 33

Considere a reação de decomposição da nitramida em solução aquosa:

$$NH_2NO_2(aq) \longrightarrow N_2O(g) + H_2O(l)$$

Sabendo-se que a lei de velocidade, determinada experimentalmente, é dada pela expressão

$$\nu=k\frac{[NH_2NO_2]}{[H_3O^+]}$$

foram propostos três possíveis mecanismos para a reação:

Mecanismo I

$$NH_2NO_2 + H_2O \Longrightarrow NHNO_2^- + H_3O^+$$
 equilíbrio rápido
 $NHNO_2^- \longrightarrow N_2O + OH^-$ etapa lenta
 $H_3O^+ + OH^- \longrightarrow 2H_2O$ etapa rápida

Mecanismo II

$$NH_2NO_2 \longrightarrow N_2O + H_2O$$
 etapa elementar

Mecanismo III

$$NH_2NO_2 + H_3O^+ \Longrightarrow NH_3NO_2^+ + H_2O$$
 equilíbrio rápido
$$NH_3NO_2^+ \longrightarrow N_2O + H_3O^+$$
 etapa lenta

Com base nas informações acima, determine se cada mecanismo proposto é compatível com a expressão da velocidade experimental, fundamentando suas respostas.

PROBLEMA 34

Os compostos A e B sofrem Esterificação de Fischer para produzir exclusivamente éster ($C_7H_{14}O_2$) e água. Sabendo que o composto A tem um átomo de carbono a menos que o composto B e que o átomo de oxigênio da água formada não provém do composto A, apresente as fórmulas estruturais planas de todos os esteres que possam ser formados nessas condições.

PROBLEMA 35

Na figura abaixo, é mostrado o diagrama de fases Temperatura versus Composição (fração molar) de dois líquidos voláteis, hexano ($T_{eb}=69\,^{\circ}\text{C}$) e octano ($T_{eb}=126\,^{\circ}\text{C}$), para a pressão de 1 atm

Considere uma mistura binária líquida ideal de hexano e octano, contendo 20% de hexano. Quando essa mistura é aquecida, ela entra em ebulição, possibilitando a marcação do ponto A, que representa o líquido α em ebulição e o ponto B, que representa o vapor β gerado pela vaporização do líquido γ . Considere, agora, que o vapor β seja condensado e em seguida vaporizado, gerando o vapor γ .

Com base nessas informações, determine a:

- a. composição no ponto B;
- b. temperatura aproximada de ebulição da mistura líquida de partida que contém 20% de hexano;
- c. composição do líquido formado pela condensação do vapor β ;
- d. composição do vapor γ

PROBLEMA 36

O cloro comercial é comumente usado na maioria das piscinas com o objetivo de eliminar microrganismos. Uma das formas de aplicá-lo na água da piscina é a partir da adição de compostos contendo o íon hipoclorito ou de ácido tricloroisocianúrico, vulgarmente denominado tricloro, que reage com a água, formando ácido hipocloroso e ácido cianúrico. As estruturas do tricloro e do ácido cianúrico são apresentadas abaixo.

A soma das concentrações do ácido hipocloroso e do íon hipoclorito é chamada de *cloro livre*, e ambas estabelecem um equilíbrio dependente do pH, de acordo com o gráfico abaixo.

O ácido hipocloroso é oito vezes mais eficiente como agente biocida do que o íon hipoclorito. Quando o pH está baixo, o excesso de ácido hipocloroso favorece a formação de cloraminas, que são irritantes aos olhos dos banhistas. Quando o pH está alto, o poder de eliminação de microorganismos é reduzido. Costuma-se considerar que o pH ótimo para aplicação em piscinas é de 7,5. Uma das vantagens do uso do tricloro é que o ácido cianúrico retarda o processo de fotólise do *cloro livre* quando a água está exposta à ação dos raios ultravioleta. Sem o ácido cianúrico, a meia-vida do *cloro livre* é de 17 min. A adição do tricloro faz com que a perda de cloro livre ocorra a uma taxa de 15% por dia. No entanto, o teor máximo recomendado de ácido cianúrico para piscinas é de 100 ppm. Já os teores do ácido hipocloroso e do íon hipoclorito devem ser mantidos, individualmente, entre 0,25 ppm e 2,5 ppm.

Em uma piscina residencial de 5000 L, foram medidos um pH de 8,5 e um teor de *cloro livre* de 0,5 ppm. Adicionaram-se então 23,25 g de tricloro, ajustando-se o pH para o valor ótimo.

PROBLEMA 37

Um minério de ferro, contendo Fe $_3$ O $_4$, foi analisado a partir da dissolução de uma amostra de massa 1,161 g em ácido. Na dissolução, todo o ferro proveniente do Fe $_3$ O $_4$ foi reduzido a Fe $^{2+}$. A seguir, a amostra foi titulada com 40 mL de uma solução 0,025 mol/L de KMnO $_4$, tendo como produtos Mn $^{2+}$ e Fe $^{3+}$.

Diante do exposto:

- a. escreva a equação iônica global simplificada de oxirredução, balanceada, ocorrida na titulação;
- b. determine a porcentagem em massa de Fe₃O₄ no minério.

PROBLEMA 38

Estabeleça a relação entre as estruturas de cada par abaixo, identificando-as como enantiômeros diastereoisômeros, isômeros constitucionais ou representaçÕes diferentes de um mesmo composto.

- a.
- b.
- c
- d.
- e.

PROBLEMA 39

O minério de bauxita é uma mistura de óxido de alumínio e outros compostos. Para obtenção do alumínio puro, inicialmente a bauxita é aquecida em um reator, juntamente com uma solução de hidróxido de sódio, formando hidróxido de alumínio. Após purificação e calcinação, o hidróxido gera óxido de alumínio, que é então dissolvido em um eletrólito inerte e eletrolisado com anodos de carbono. Esses anodos reagem com o óxido, eliminando gás não tóxico.

Uma indústria tem a capacidade de processar até 9 mil toneladas de bauxita por dia e, a cada 6 kg desse minério são obtidos 3,6 kg de óxido de alumínio. Atualmente, a indústria aplica à cuba eletrolítica uma corrente de 130 MA durante 24 horas. Supondo 100% de eficiência da corrente, calcule o percentual da capacidade máxima que é atualmente utilizado pela indústria.

PROBLEMA 40

Em um experimento em laboratório, tomaram-se duas amostras de 0,177 g de um composto de fórmula $C_\alpha H_b O_c N_d$. Uma das amostras foi completamente consumida por combustão, gerando 0,264 g de CO_2 e 0,135 g de vapor de água. A outra reagiu totalmente com compostos não nitrogenados, gerando amônia como único produto nitrogenado, a qual necessitou de 3 cm³ de uma solução 0,5 mol/L de ácido sulfúrico para sua completa neutralização. Determine a fórmula empírica do composto.

Gabarito

IME 2022/2023 Discursivo

- 1. a. $CaCO_3(s) + 2 HCl(aq) \longrightarrow CaCl_2(aq) + CO_2(g) + H_2O(l) e$ $HCl(aq) + NaOH(aq) \longrightarrow NaCl(aq) + H_2O(l)$ b. 82%
- **2.** 1500
- 3. Síntese.
- 4. $1,7 \times 10^4$
- **5**. 18,28
- **6**. a. 10%
 - b. $k_{direta} = 0,009 \, min^{-1} \, e \, k_{inversa} = 0,006 \, min^{-1}$
 - c. $1.5 \times 10^{-3} \, \text{min}^{-1}$
 - d. 0
- 7. a. Esboço.
 - As ligações covalentes e iônicas possuem maior energia de dissociação.
- 8. a. $Cu^{2+}(aq) + H_2O(1) \longrightarrow Cu(s) + \frac{1}{2}O_2(g) + 2H^+(aq)$
 - b. 6,4 min
 - c. 13,0
- **9.** a. $K_c = \frac{1}{[A][B]^2}$
 - b. 27
 - c. $-132 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
 - d. 729

Instituto Militar de Engenharia | Gabriel Braun, 2023 a. Representações diferentes de um mesmo composto. b. Isômeros constitucionais. c. Diastereoisômeros. d. Enantiômeros. e. Enantiômeros. IME 2021/2022 Discursivo 11. -12. -13. -14. -15. -16. -17. -18. -19. a. Representações diferentes de um mesmo composto. b. Isômeros constitucionais. c. Diastereoisômeros. d. Enantiômeros. e. Enantiômeros. IME 2020/2021 Discursivo 21. a. Representações diferentes de um mesmo composto. b. Isômeros constitucionais. c. Diastereoisômeros. d. Enantiômeros. e. Enantiômeros. 22. -23. -24. -26. -27. -28. -29. -30. -IME 2019/2020 Discursivo 31. -32. -33. -34. -35. -36. -37. -**38.** a. Representações diferentes de um mesmo composto.

b. Isômeros constitucionais.c. Diastereoisômeros.d. Enantiômeros.e. Enantiômeros.

39. -40. -