

TRIBHUVAN UNIVERSITY SAMRIDDHI COLLEGE

Lokanthali-16, Bhaktapur, Nepal

Bachelor of Science in
Computer Science & Information Technology
(B.Sc. CSIT)
Fourth Semester

Unit 2. Database System-Concepts and Architecture

by:

Er. Bikal Adhikari

(B.E., M.Sc. Engg., M.Sc. ISE)

Date: - 29th Nov., 2023

UNIT OUTLINE

Unit 2. Database System-Concepts and Architecture

3 hours

Data Models, Schemas, and Instances; Three-Schema Architecture and Data Independence; Database Languages and Interfaces; the Database System Environment; Centralized and Client/Server Architectures for DBMSs; Classification of Database Management Systems

DATA MODELS

□ Data abstraction refer to:

- Suppression of details of data organization and storage
- Highlighting of the essential features for an improved understanding of data

□Data model

- Collection of concepts that describe the structure of a database
- Provides means to achieve data abstraction
- Basic operations
 - Specify retrievals and updates on the database
- Dynamic aspect or behavior of a database application
 - Allows the database designer to specify a set of valid operations allowed on database objects (Compute_GPA)

CATEGORIES OF DATA MODELS

- ☐ High-level or conceptual data models
 - Close to the way many users perceive data
- □Low-level or physical data models
 - Describe the details of how data is stored on computer storage media (for Computer specialists)
- □ Representational data models
 - Easily understood by end users
 - Also similar to how data organized in computer storage

☐ Conceptual Data Models Use Concepts Such As

- Entity
 - Represents a real-world object or concept (an Employees)
- Attribute
 - Represents some property of interest
 - Further describes an entity (Employees' names or Salary)
- Relationship among two or more entities
 - Represents an association among the entities

(A works-on relationship between an employee and a project)

Entity-Relationship model

☐ Representational data models is used most frequently in traditional commercial DBMSs.

Relational data model

Used most frequently in traditional commercial DBMSs

Object data model

- New family of higher-level implementation data models
- Closer to conceptual data models

☐ Physical data models

Describe how data is stored as files in the computer
 , (such as record format, record ordering and access path)

- Access path

• Structure that makes the search for particular database records efficient

Index (Example of An Access Path)

 Allows direct access to data using an index term or a keyword (Index of any Books)

SCHEMAS, INSTANCES OR DATABASE STATE

- **Database Schema:** The *description* of a database. It includes descriptions of the database structure and the constraints that should hold on the database.
- Schema Diagram: A diagrammatic display of (some aspects of) a database schema.
- Schema Construct: A component of the schema or an object within the schema, e.g., STUDENT, COURSE.
- **Database Instance:** The actual data stored in a database at a particular moment in time. Also called database state (or occurrence).

□ Distinction

- The *database schema* changes very infrequently.
- The *database state* changes every time the database is updated.
- □ Schema is also called intension.
- ☐ State is also called extension.

STUDENT

Name	Student_number	Class	Major
------	----------------	-------	-------

COURSE

Course_name	Course_number	Credit_hours	Department
-------------	---------------	--------------	------------

PREREQUISITE

Course_number Prerequisite_number

SECTION

Section_identifier	Course_number	Semester	Year	Instructor
--------------------	---------------	----------	------	------------

GRADE_REPORT

Student_number Section_identifier Grade

Figure: Example of database schema

COURSE

Course_name	Course_number	Credit_hours	Department
Intro to Computer Science	CS1310	4	CS
Data Structures	CS3320	4	CS
Discrete Mathematics	MATH2410	3	MATH
Database	CS3380	3	CS

SECTION

Section_identifier	Course_number	Semester	Year	Instructor
85	MATH2410	Fall	04	King
92	CS1310	Fall	04	Anderson
102	CS3320	Spring	05	Knuth
112	MATH2410	Fall	05	Chang
119	CS1310	Fall	05	Anderson
135	CS3380	Fall	05	Stone

GRADE_REPORT

Student_number	Section_identifier	Grade
17	112	В
17	119	С
8	85	Α
8	92	Α
8	102	В
8	135	Α

PREREQUISITE

Course_number	Prerequisite_number
CS3380	CS3320
CS3380	MATH2410
CS3320	CS1310

Figure: Example of a database state or instance

THREE-SCHEMA ARCHITECTURE AND DATA INDEPENDENCE

□Internal level (Internal Schema)

 Describes physical storage structure of the database

□ Conceptual level (Conceptual Schema)

 Describes structure of the whole database for a community of users

External or view level

 Describes part of the database that a particular user group is interested in

Figure 2.2

The three-schema architecture.

DEFINE DATA INDEPENDENCE

Data Independence: Capacity to change the schema at one level of a database system without having to change the schema at the next higher level

☐Types:

- Logical Data Independence:

Capacity to change the conceptual schema without having to change external schema or application program.

- Physical Data Independence:
- Capacity to change the internal schema without having to change conceptual schema.

DBMS LANGUAGES

□ Data Definition Language (DDL)

- DDL stands for Data Definition Language.
- It is used to define database structure or pattern.
- It is used to create schema, tables, indexes, constraints etc in the database.
- Using the DDL statements, we can create the skeleton of the database.
- It is used to store the information of metadata like the number of tables and schemas, their names, indexes, columns in each table, constraints etc.
- Here are some of the tasks that comes under DDL:
 - o Create: It is used to create objects in the database.
 - Alter: It is used to alter the structure of the database
 - Drop: It is used to delete objects from the database.
 - o Truncate: It is used to delete table in database instance.
 - Rename: It is used to rename an object.
 - Comment: It is used to comment on the data dictionary.
- Above commands are used to update database schema, that why they come under Data Definition Language.

□ Data Manipulation Language (DML)

- DML stands for Data Manipulation Language.
- It is used for accessing and manipulating data in a database.
- Database language that enables insert, delete, update and retrieve data from database is called data manipulation language(DML).
- Query language is only a part of data manipulation language.
- DML statements are converted into equivalent low level statement by DML compiler.
- Structured Query Language supports following DML statements:
 - Select: It is used to retrieve data from tables.
 - o Insert: It is used to insert data into a table.
 - Update: It is used to update existing data within a table.
 - Delete: It is used to delete records from a table.

□ Data Control Language (DCL)

- DCL stands for Data Control Language.
- It is used to retrieve the stored or saved data.
- The DCL execution is transactional. It also has rollback parameters.
- But in oracle database the execution of DCL does not have the feature of rolling back.
- Here are some tasks that comes under DCL
 - o Grant: It is used to give user access privilege to a database.
 - O Revoke: It is used to take back permissions from the user.

☐ Transaction Control Language (TCL)

- TCL stands for Transaction Control Language.
- TCL commands are used to manage transactions in a database.
- These commands are used to manage the changes made to the data in a table by DML statements.
- It also allows statements to be grouped together into logical transactions.
- Here are some tasks that comes under TCL:
 - o Commit: It is used to save transaction on the database.
 - Rollback: It is used to restore the database to original since the last commit.

DBMS INTERFACES

☐ Menu-based interfaces for Web clients or browsing: Present the user with lists of options(Menus), Pull-Down menus. ☐ Forms-based interfaces: Displays a form to each user, for naïve users. ☐ Graphical user interfaces(GUI): Utilizes both Menus and Forms. **■** Natural language interfaces: Accepts requests written in English. **☐** Speech input and output: Limited use of speech as an input query and speech as an answer to a question, inquiries for telephone directory, flight arrival. **☐** Interfaces for parametric users: Bank tellers have some set of operations. ☐ Interfaces for the DBA

THE DATABASE SYSTEM ENVIRONMENT

□ DBMS component modules

- Buffer management
- Stored data manager
- DDL Compiler
- Interactive query interface
 - Query compiler
 - Query optimizer
- Precompiler
- Runtime database processor
- System catalog
- Concurrency control system
- Backup and recovery system

Figure 2.3
Component modules of a DBMS and their interactions.

DATABASE SYSTEM UTILITIES

- ☐ Helps DBA manage the database
- Loading: Load existing data files
- Backup: Creates a backup copy of the database

Database storage reorganization

- Reorganize a set of database files into different file organizations
- Performance monitoring
 - Monitors database usage and provides statistics to the DBA

Tools, Application Environments, and Communications Facilities

- ☐ CASE Tools
 - CASE (Computer-Aided Software Engineering) packages are software packages that include many tools that can be helpful when it comes to database design.
- **□** Data dictionary (data repository) system
 - Stores design decisions, usage standards, application program descriptions, and user information
- **□** Application development environments

Providing a tools to create a database.

- **□** Communications software
 - Allow for remote access to DB

CENTRALIZED AND CLIENT/SERVER ARCHITECTURE FOR DBMSs

1. Centralized DBMSs Architecture

- combines everything into single system including-DBMS software, hardware, application programs and user interface processing software.

Figure 2.4
A physical centralized architecture.

□ Servers with specific functionalities

- File server
 - Maintains the files of the client machines.
- Printer server
 - Connected to various printers; all print requests by the clients are forwarded to this machine
- Web servers or e-mail servers
- ☐ Client machines
 - Provide user with:
 - Appropriate interfaces to utilize these servers
 - Local processing power to run local applications

Client

 User machine that provides user interface capabilities and local processing

Server

- System containing both hardware and software
- Provides services to the client machines
 - Such as file access, printing, archiving, or database access

Two-Tier Client/Server Architectures for DBMSs

Server handles

Query and transaction functionality related to SQL processing

Client handles

User interface programs and application programs

Two-Tier Client/Server Architectures (cont'd.)

□Open Database Connectivity (ODBC)

- Provides application programming interface (API)
- Allows client-side programs to call the DBMS
 - Both client and server machines must have the necessary software installed

□JDBC(JavaTM database connectivity)

 Allows Java client programs to access one or more DBMSs through a standard interface

Three-Tier and n-Tier Architectures for Web Applications

Application server or Web server

- Adds intermediate layer <u>between client and the</u> database server
- Runs application programs and stores <u>business</u>
 <u>rules</u>

• N-tier

 Divide the layers between the user and the stored data further into finer components

CLASSIFICATION OF DBMS

1. Data model

- Relational
- Object
- Hierarchical and network (legacy)
- Native XML DBMS

2. Number of users

- Single-user (Same time)
- Multiuser (Same time)

3. Number of sites

- Centralized
- Distributed
 - Homogeneous (Same DBMS software at multiple site)
 - Heterogeneous

4. Cost

- Open source (Free: MYSQL)
- Different types of licensing

SUMMARY

- ☐ Concepts used in database systems
- ☐ Main categories of data models
- ☐ Types of languages supported by DMBSs
- ☐ Interfaces provided by the DBMS
- □ DBMS classification criteria:
 - Data model, number of users, number of sties, access paths, cost

Thank You!!!