Mathematics of Machine Learning - Summer School

Lecture 9
High-Dimensional Statistics. Gaussian Complexity

July 2, 2021

Patrick RebeschiniDepartment of Statistics, University of Oxford

Recall. Offline Statistical Learning: Prediction

Offline learning: prediction

Given a batch of observations (images & labels) interested in predicting the label of a new image

/12

Recall. Offline Statistical Learning: Prediction

- 1. Observe training data Z_1, \ldots, Z_n i.i.d. from <u>unknown</u> distribution
- 2. Choose action $A \in \mathcal{A} \subseteq \mathcal{B}$
- 3. Suffer an expected/population loss/risk r(A), where

$$a \in \mathcal{B} \longrightarrow r(a) := \mathbf{E}\,\ell(a,Z)$$

with ℓ is an **prediction** loss function and Z is a new test data point

Goal: Minimize the estimation error defined by the following decomposition

$$\underbrace{r(A) - \inf_{a \in \mathcal{B}} r(a)}_{\text{excess risk}} = \underbrace{r(A) - \inf_{a \in \mathcal{A}} r(a) + \inf_{a \in \mathcal{A}} r(a) - \inf_{a \in \mathcal{B}} r(a)}_{\text{estimation error}} + \underbrace{\inf_{a \in \mathcal{A}} r(a) - \inf_{a \in \mathcal{B}} r(a)}_{\text{approximation error}}$$

as a function of n and notions of "complexity" of the set $\mathcal A$ of the function ℓ

Note: Estimation/Approximation trade-off, a.k.a. complexity/bias

Offline Statistical Learning: Estimation

Offline learning: estimation

User 1

User 2

User 3

Given a batch of observations (users & ratings) interested in $\underbrace{\text{estimating}}$ the missing ratings in a recommendation system

3/12

Offline Statistical Learning: Estimation

- 1. Observe training data Z_1,\ldots,Z_n i.i.d. from distr. parametrized by $a^\star\in\mathcal{A}$
- 2. Choose a parameter $A \in \mathcal{A}$
- 3. Suffer a loss $\ell(A, a^*)$ where ℓ is an **estimation** loss function

Goal: Minimize the estimation loss $\ell(A, a^*)$ as a function of n and notions of "complexity" of the set $\mathcal A$ of the function ℓ

Main differences:

- No test data (i.e., no population risk r). Only training data
- Underlying distribution is not completely unknown We consider a parametric model

Remark: We could also consider prediction losses with a new test data...

Supervised Learning. High-Dimensional Estimation

1. Observe training data $Z_1=(x_1,Y_1),\ldots,Z_n=(x_n,Y_n)\in\mathbb{R}^d\times\mathbb{R}$ i.i.d. from distr. parametrized by $w^*\in\mathbb{R}^d$:

$$Y_i = \langle x_i, \boldsymbol{w}^* \rangle + \sigma \xi_i$$
 $i \in [n]$
 $Y = \mathbf{x} \boldsymbol{w}^* + \sigma \xi$ (data in matrix form: $Y \in \mathbb{R}^n$ and $\mathbf{x} \in \mathbb{R}^{n \times d}$)

- 2. Choose a parameter $W \in \mathcal{W}$
- 3. **Goal:** Minimize loss $\ell(W, \mathbf{w}^*) = \|W \mathbf{w}^*\|_2$

High-dimensional setting: n < d (dimension greater than no. of data)

Assumptions (otherwise problem is ill-posed):

- ▶ Sparsity: $\|w^*\|_0 := \sum_{i=1}^d 1_{|w_i^*|>0} \le k$
- **Low-rank:** Rank $(w^*) \le k$, when w^* can be thought of as a matrix

Non-Convex Estimator. Restricted Eigenvalue Condition

Assume that we know k, the upper bound on the sparsity $(\|\mathbf{w}^{\star}\|_{0} \leq k)$

Algorithm:

$$W^0 := \underset{w:||w||_0 \le k}{\operatorname{argmin}} \frac{1}{2n} ||\mathbf{x}w - Y||_2^2$$

Restricted eigenvalues (Assumption 12.2)

There exists $\alpha>0$ such that for any vector $w\in\mathbb{R}^d$ with $\|w\|_0\leq 2k$ we have

$$\frac{1}{2n} \|\mathbf{x}w\|_2^2 \ge \alpha \|w\|_2^2$$

Statistical Guarantees ℓ_0 Recovery (Theorem 12.5)

If the restricted eigenvalue assumption holds, then

$$\|W^0 - \boldsymbol{w}^*\|_2 \le \sqrt{2} \frac{\sigma \sqrt{k}}{\alpha} \frac{\|\mathbf{x}^\top \boldsymbol{\xi}\|_{\infty}}{n}$$

Proof of Theorem 12.5

▶ Let $\Delta = W^0 - w^*$. By the definition of W^0 , we have

$$\|\mathbf{x}\Delta - \sigma\xi\|_2^2 = \|\mathbf{x}W^0 - Y\|_2^2 \le \|\mathbf{x}w^\star - Y\|_2^2 = \|\sigma\xi\|_2^2$$

so that, expanding the square, we find the basic inequality:

$$\|\mathbf{x}\Delta\|_2^2 \le 2\sigma \langle \mathbf{x}\Delta, \xi \rangle$$

▶ The restricted eigenvalue assumption yields, noticing that $\|\Delta\|_0 \le 2k$:

$$\alpha \|\Delta\|_2^2 \le \frac{1}{2n} \|\mathbf{x}\Delta\|_2^2 \le \frac{\sigma}{n} \langle \mathbf{x}\Delta, \xi \rangle = \frac{\sigma}{n} \langle \Delta, \mathbf{x}^\top \xi \rangle \le \frac{\sigma}{n} \|\Delta\|_1 \|\mathbf{x}^\top \xi\|_{\infty}$$

where the last inequality follows from Hölder's inequality.

▶ The proof follows by applying the Cauchy-Swartz's inequality:

$$\|\Delta\|_1 = \langle \operatorname{sign}(\Delta), \Delta \rangle \le \|\operatorname{sign}(\Delta)\|_2 \|\Delta\|_2 \le \sqrt{2k} \|\Delta\|_2$$

Bounds in Expectation. Gaussian Complexity

Recall:
$$\|W^0 - \mathbf{w}^{\star}\|_2 \leq \sqrt{2} \frac{\sigma \sqrt{k}}{\alpha} \frac{\|\mathbf{x}^{\top} \boldsymbol{\xi}\|_{\infty}}{n}$$

Gaussian complexity (Definition 12.6)

The Gaussian complexity of a set $\mathcal{T} \subseteq \mathbb{R}^n$ is defined as

$$\mathsf{Gauss}(\mathcal{T}) := \mathbf{E} \sup_{t \in \mathcal{T}} \frac{1}{n} \sum_{i=1}^{n} \xi_i t_i$$

where ξ_1, \dots, ξ_n are i.i.d. standard Gaussian random variables

$$\mathbf{E}\frac{\|\mathbf{x}^{\top}\boldsymbol{\xi}\|_{\infty}}{n} = \mathtt{Gauss}(\mathcal{A}_1 \circ \{x_1, \dots, x_n\})$$

Proof of Corollary 12.7

▶ The ℓ_{∞} norm is the dual of the ℓ_1 norm: $\|\mathbf{x}^{\top}\xi\|_{\infty} = \sup_{u \in \mathbb{R}^d: \|u\|_1 \le 1} \langle \mathbf{x}u, \xi \rangle$

Hölder's inequality yields $\langle \mathbf{x}u, \xi \rangle = \langle u, \mathbf{x}^{\top} \xi \rangle \leq \|u\|_1 \|\mathbf{x}^{\top} \xi\|_{\infty}$ for any u, so

$$\|\mathbf{x}^{\top}\xi\|_{\infty} \ge \sup_{u \in \mathbb{R}^d: \|u\|_1 \le 1} \langle \mathbf{x}u, \xi \rangle$$

On the other hand, note that the choice $u = e_j$, $j \in [d]$, satisfies $||u||_1 = 1$ and yields $\langle \mathbf{x}e_j, \xi \rangle = \langle e_j, \mathbf{x}^\top \xi \rangle = (\mathbf{x}^\top \xi)_j$, so that the inequality is achieved by at least one of the vectors e_j , $j \in [d]$.

We have

$$\langle \mathbf{x}u, \xi \rangle = \sum_{i=1}^{n} (\mathbf{x}u)_{i} \xi_{i} = \sum_{i=1}^{n} \langle u, x_{i} \rangle \xi_{i}$$

SO

$$\frac{1}{n}\mathbf{E}\|\mathbf{x}^{\top}\xi\|_{\infty} = \mathbf{E}\sup_{u \in \mathbb{R}^{d}: \|u\|_{1} \leq 1} \frac{1}{n} \sum_{i=1}^{n} \xi_{i} \langle u, x_{i} \rangle = \operatorname{Gauss}(\mathcal{A}_{1} \circ \{x_{1}, \dots, x_{n}\})$$

Bounds in Probability. Gaussian Concentration

Recall:
$$\|W^0 - \mathbf{w}^{\star}\|_2 \leq \sqrt{2} \frac{\sigma \sqrt{k}}{\alpha} \frac{\|\mathbf{x}^{\top} \boldsymbol{\xi}\|_{\infty}}{n}$$

Column normalization (Assumption 12.8)

$$\mathbf{c}_{jj} = \left(\frac{\mathbf{x}^{\top} \mathbf{x}}{n}\right)_{jj} = \frac{1}{n} \sum_{i=1}^{n} x_{ij}^{2} \le 1$$

If the column normalization assumption holds, then

$$\mathbf{P}\bigg(\frac{\|\mathbf{x}^{\top}\boldsymbol{\xi}\|_{\infty}}{n} < \sqrt{\frac{\tau \log d}{n}}\bigg) \ge 1 - \frac{2}{d^{\tau/2 - 1}}.$$

Proof of Corollary 12.9 (Part I)

Let $V = \frac{\mathbf{x}^{\top} \boldsymbol{\xi}}{\sqrt{n}} \in \mathbb{R}^d$. As each coordinate V_i is a linear combination of Gaussian random variables, V is a Gaussian random vector with mean

$$\mathbf{E}V = \frac{1}{\sqrt{n}}\mathbf{x}^{\top}\mathbf{E}\xi = 0$$

and covariance matrix given by

$$\mathbf{E}[VV^{\top}] = \frac{1}{n}\mathbf{E}[\mathbf{x}^{\top}\xi\xi^{\top}\mathbf{x}] = \frac{1}{n}\mathbf{x}^{\top}\mathbf{E}[\xi\xi^{\top}]\mathbf{x} = \frac{\mathbf{x}^{\top}\mathbf{x}}{n} = \mathbf{c}$$

as ξ is made of independent standard Gaussian components, so $\mathbf{E}[\xi\xi^{\top}]=I$

That is, $V \sim \mathcal{N}(0, \mathbf{c})$ and, in particular, the *i*-th component has distribution $V_i \sim \mathcal{N}(0, \mathbf{c}_{ii})$. By the union bound

$$\mathbf{P}\left(\frac{\|\mathbf{x}^{\top}\boldsymbol{\xi}\|_{\infty}}{\sqrt{n}} \geq \varepsilon\right) = \mathbf{P}(\|V\|_{\infty} \geq \varepsilon) = \mathbf{P}\left(\max_{i \in [n]} |V_{i}| \geq \varepsilon\right)$$
$$= \mathbf{P}\left(\bigcup_{i=1}^{d} \{|V_{i}| \geq \varepsilon\}\right) \leq \sum_{i=1}^{d} \mathbf{P}(|V_{i}| \geq \varepsilon) \leq d \max_{i \in [d]} \mathbf{P}(|V_{i}| \geq \varepsilon)$$

Proof of Corollary 12.9 (Part II)

▶ By concentration for sub-Gaussian random variables (Proposition 6.6) and Assumption 12.8 we have

$$\mathbf{P}(|V_i| \ge \varepsilon) \le 2e^{-\frac{\varepsilon^2}{2\mathbf{c}_{ii}}} \le 2e^{-\frac{\varepsilon^2}{2}}$$

▶ Putting everything together we obtain

$$\mathbf{P}\left(\frac{\|\mathbf{x}^{\top}\boldsymbol{\xi}\|_{\infty}}{\sqrt{n}} \ge \varepsilon\right) \le 2de^{-\frac{\varepsilon^2}{2}}$$

By setting $\varepsilon=\sqrt{\tau\log d}$ for $\tau>2$, we have $2de^{-\frac{\varepsilon^2}{2}}=\frac{2}{d^{\tau/2-1}}$ so that

$$\mathbf{P}\left(\frac{\|\mathbf{x}^{\top}\boldsymbol{\xi}\|_{\infty}}{n} < \sqrt{\frac{\tau \log d}{n}}\right) \ge 1 - \frac{2}{d^{\tau/2 - 1}}$$