Lecture 2 - Probability Distributions

Caspar J. van Lissa

2023-08-13

Probability

Defining probability

Probability: How likely something is to occur.

• Specifically, the proportion of times we expect to observe an outcome in a random experiment that could be repeated many times

Random experiment

- Could theoretically be repeated an infinite number of times
- Before I flip a coin, the coinflip is a random experiment with $P_{heads}=.5$, or 50%
- After I flip the coin, it's no longer random; it's fixed (either 100% or 0%)

Examples probability

Probability:

- ullet of a baby being born male, $p_{male}=.51$
- of rolling a 7 with two dice in Catan, $p_7=.167$ Not probability:
- The probability that there is life on other planets is either 100% or 0%
- Even if you don't know which is correct

Random variables

Random variable: An unknown value that follows some probability distribution.

Disambiguation: Last lecture we used "variable" as a placeholder for some unknown number.

- The outcome of a coin toss is a random variable
- It is discrete because it has only two possible outcomes
- The probability distributions is
 - P(X = heads) = 0.5
 - P(X = tails) = 0.5
 - Together: 1.0, so all possible outcomes are covered

Discrete probability distributions

Frequency vs probability

Frequency distributions

- Summarize observed outcomes in a sample
- E.g., the number of Dutch/foreign students in this class

A probability distribution is similar, but

- Can be interpreted as the (estimated) probability of observing these outcomes in the future
- E.g., if I select a random student in this class, what's the probability that they will be Dutch?

Discrete distributions

- Probability mass function
 - 100% of the probability mass is distributed among finite discrete outcomes
- Finite number of outcomes
 - Dutch student / foreign student
 - Student has tattoos / no tattoos
 - Describe using contingency table or bar chart

	Tat	too	
	No	Yes	Total
Dutch			
No	16	5	21
Yes	24	29	53

Tattoo No Yes Total

Total 40 34 74

Indexing contingency tables

i: row

j: column

f: frequency (number of observations)

 $f_{i,j}$: frequency in the cell in row i, column j

i	j = 1	j=2	Margin rows
i = 1	$f_{1,1}$	$f_{1,2}$	$f_{1,+}$
i=2	$f_{2,1}$	$f_{2,2}$	$f_{2,+}$
Margin columns	$f_{+,1}$	$f_{+,2}$	$f_{+,+}$

Marginal frequency distribution

Separate frequency distribution of each variable in contingency table

i	j = 1	j=2	Margin rows
i = 1	$f_{1,1}$	$f_{1,2}$	$f_{1,+}$
i=2	$f_{2,1}$	$f_{2,2}$	$f_{2,+}$
Margin columns	$f_{+,1}$	$f_{+,2}$	$\overline{f_{+,+}}$

Marginal frequency distribution

For the variable "Tattoo": How many people do / don't have one? For the variable "Dutch": How many students are Dutch / International?

Tattoo

Dutch	No	Yes	Total row
No	16	5	21
Yes	24	29	53
Total column	40	34	74

Conditional frequency distribution

Frequency distribution of one variable, for specific value of the other variable

E.g.: What is the conditional frequency distribution of Tattoos **for Dutch students?**

	Tattoo		
Dutch	No	Yes	Total row
No	16	5	21
Yes	24	29	53
Total column	40	34	74

Joint frequency distribution

Frequency of a combination of two (or more) variables

E.g.: What is the frequency of **Dutch students with a tattoo**?

Tattoo

Dutch	No	Yes	Total row
No	16	5	21
Yes	24	29	53
Total column	40	34	74

Frequencies to probabilities

Divide frequencies by a total to get a probability distribution Which frequencies and which total you use depends on what probability distribution you want

Marginal probability distribution

Divide marginal totals by the global total

E.g.: What is the marginal probability distribution of being Dutch? P(Dutch)

Dutch	No	Yes	Total row
No	16	5	21 / 74 = 0.28
Yes	24	29	53 / 74 = 0.72
Total column	40	34	74

Conditional probability distribution

Tattaa

Divide the row- or column frequencies by the marginal total E.g.: What is the conditional probability of having a tattoo for international students? P(Tattoo|Dutch)

	rattoo		
Dutch	No	Yes	Total row
No	16	5	21
Yes	24 / 53 = 0.45	29 / 53 = 0.55	53
Total column	40	34	74

Joint probability distribution

Divide the cell frequency by the global total

E.g.: What is the joint probability of someone being Dutch and having a tattoo? $P(Dutch \cap Tattoo)$

Tattoo

Dutch	No	Yes	Total row
No	16	5	21
Yes	24 / 74 = 0.32	29	53
Total column	40	34	74

Continuous probability distributions

Continuous probability distributions

- Infinite possible outcomes
- No exact probability for specific values
- Continuous probability density function describes how likely each outcome is
 - Cf. probability mass function for discrete outcomes
- Surface area determines probability
- Many probability distributions exist
- This course covers only one...

Normal Distribution

Theoretical distribution for continuous variables Bell-shaped, symmetric, from -infinity to +infinity You can use it to describe (=model) real data Two parameters:

- Mean μ ("mu"): Most common / average value
- Standard deviation σ ("sigma"): Average deviation from the mean

Examples of Normal Distributions

Dist.	μ	σ
1	-1.0	0.5
2	0.5	0.5
3	0.5	1.5
4	2.0	1.0

App

https://statdist.com/distributions/normal

Standard Normal Distribution (Z-distribution)

$$Z \sim N(\mu=0,\sigma^2=1)$$
 (so also $\sigma=1$)

- We can standardize any normal distribution to the *Z*-distribution
- This removes the units of measurement of our original variable
- Standardizing allows us to calculate probabilities more easily
- Stats books contain probability values for the Z-distribution
- We can always convert back to the original units

Standard Normal Distribution

$$Z \sim N(\mu=0,\sigma=1)$$

.

X to Z and vice versa

You can standardize values of any normally distributed variable $Z=rac{X-\mu_x}{\sigma_x}$

Standardizing: Removing the original units of measurement And reverse it to get the units back; for any Z-value:

$$X = \mu_x + (Z * \sigma_x)$$

Properties of normal distribution

• The distribution is symmetric

$$P(Z<-1.64)=P(Z>1.64)=0.05$$

Properties 2

- Total surface area is 1
- We can find areas by taking the complement (1-something)

$$P(Z < 1.64) = .95$$

So
$$P(Z>1.64)=1-.95=.05$$

Properties 3

• Areas can be added

$$P(Z>0)=.5 \ P(-.5 < Z < 0)=.19$$
 : So $P(Z>-.5)=.5+.19=.69$

Properties 4

Standard percentages for mean, +/- 1, 2, 3 SD

• 50% of distribution is below μ , 50% above

Percentiles

The k-th percentile is the score below which k percent of scores fall So in the standard normal distribution:

- ullet The mean/median is the 50th percentile, because P(Z<0)=.5
- We call the 25th and 75th percentile the first and third quartile
- +1SD is the 84th percentile, because P(Z < 1) = .84

Percentiles for X-scores

Let's apply this to $IQ \sim N(\mu=100,\sigma=15)$

- What percentile corresponds to IQ < 120?
- $Z = \frac{120 100}{15} = 1.33$
- P(Z < 1.33) pprox .90, so 90th percentile

Describing data

A simple model

We can use the normal distribution as a *model* for the distribution of an observed variable

A simple model

"We assume variable X to be normally distributed" This allows us to:

- Summarize people's values with just a mean and SD
- Calculate probabilities of observing certain scores using table

Models can be wrong

Of course, the assumption can be wrong

- "All models are wrong, but some are useful" (Box)
- In this example, mean, SD, and probabilities are going to misrepresent our data somewhat (i.e.: not very useful)

What if the model is wrong?

Solution:

- Choose a different probability distribution (not part of this course)
- Comment that the assumption of normality may be violated (e.g., in Discussion section)

Exercises

Exercises

Neuroticism is distributed $N(\mu=50,\sigma=10)$

What is the probability that a randomly chosen person has a neuroticism score of 60 or higher?

Complete the sentence: "95% of the population scores between ... and ... on neuroticism.

Solutions

What is the probability that a randomly chosen person has a neuroticism score of 60 or higher?

Solutions

Complete the sentence: "95% of the population scores between ... and ... on neuroticism.

Calculate Z-values and p-values

- 1. Draw the problem
- 2. Check if the solution is (close to) a standard value like +/-SD
- 3. If not, calculate Z-score
- 4. Find p-value
 - In Z-table
 - Using an online calculator, e.g. https://onecompiler.com/r: pnorm(zscore, mean, sd, lower.tail = TRUE)
 - Using Excel formula: =NORM.DIST(zscore, mean, sd, TRUE)

More difficult example

Example: Assume height is distributed

Height
$$\sim N(\mu=180,\sigma=20)$$

• What percentage of the population is taller than 212cm?

Step 1: Draw the problem

Step 2: Standard solution? Not really

Calculate p-value

Step 3: Calculate Z-score

•
$$Z = \frac{212 - 180}{20} = 1.6$$

Step 4: Find p-value

- To the **right** of 1.6
- Excel: =1-NORM.DIST(1.6, 0, 1, TRUE)
- R:pnorm(1.6, 0, 1, lower.tail = FALSE)
- Table (next slide)

7-	-ta	h	le
L.	-La	עו	ιe

Conclusion: 5.48% of the population is taller than 212cm.

Error	×