

Programme Specific Orientation Session

M.Tech. in Artificial Intelligence and Machine Learning

BITS Pilani

Pilani | Dubai | Goa | Hyderabad

22nd October 2023

Welcome to BITS Pilani and

Work Integrated Learning Programmes (WILP)

Agenda

- Academic Guidelines for M.Tech. AIML Programme
- M.Tech. AIML Programme Overview
- M.Tech. AIML Programme Operations
- Operations Support
- Question & Answer

Academic Guidelines for M.Tech. AIML

Academic Guidelines for M.Tech. AIML Programme

2 Years, 4 Semesters programme

Year	First Semester			Second Semester		
	Course No.	Course Title	Units	Course No.	Course Title	Units
	AIML* ZC416	Mathematical Foundations for Machine Learning	4	AIML* ZG511	Deep Neural Networks	4
	AIML* ZC418	Introduction to Statistical Methods	4	AIML* ZG512	Deep Reinforcement Learning	4
'	AIML* ZG557	Artificial and Computational Intelligence	5		Elective 1	
	AIML* ZG565	Machine Learning	4		Elective 2	
		Total	17		Total	16
		Elective 3		AIML* ZG628T	Dissertation	16
		Elective 4				
11		Elective 5				
		Elective 6				
		Total	16		Total	16

- Minimum units required for graduation is 48 (course work)
- Dissertation is of 16 units, standalone
- Each unit corresponds to about 30 hours of effort

Sample Course Handout

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI

WORK INTEGRATED LEARNING PROGRAMMES

COURSE HANDOUT

Part A: Content Design

Course Title Mathematical Foundations for Data Science	
Course No(s)	
Credit Units	4
Course Author	G Venkiteswaran
Version No	2
Date	15.09.2019

Course Description

Vector and matrix algebra, systems of linear algebraic equations and their solutions; eigenvalues, eigenvectors and diagonalization of matrices; graphs and digraphs; trees, lists and their uses; partially ordered sets and lattices; Boolean algebras and Boolean expressions;

Course Objectives

No	Objective- The course aims to	
CO1	Introduce concepts in linear algebra and to use it as a platform to model physical problems.	
CO2	Provide techniques for analytical and numerical solutions of linear equations and introduce the concept of convergence.	
CO3	Utilize concepts of linear algebra and calculus in solving optimization problems.	
CO4	Introduce some of the mathematical structures, concepts and notations used in discrete mathematics.	
CO5	Introduce some concepts from graph theory, partially ordered sets, Boolean algebras.	

Text Book(s)

No	Author(s), Title, Edition, Publishing House
T1	Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India, 9 th Edition, 2011
T2	Kenneth H. Rosen, Discrete Mathematics and its Applications, Tata McGraw Hill, 7th Ed.,
	2011.

Reference Book(s) & other resources

No	Author(s), Title, Edition, Publishing House			
R1	K Hoffman and R Kunze, Linear Algebra, Pearson Education, 2 nd Edition, 2005.			
R2	Kolman, Busby, Ross and Rehman, Discrete Mathematical Structures for Computer Science,			
	Pearson Education, 6th Edition, 2017			

Content Structure

No	Title of the module	References
M1	1. Matrices, System of equations, determinants and inverse of a matrix	T1: Sec 7.1 -
		7.3, 7.5, 7.8
	1.1. Matrix Algebra-Row-reduced echelon form of a matrix, inverse of a matrix	
	1.2. System of linear equations, Consistency and inconsistency of system of linear equations	
	equations	
M2	Vector spaces and Linear transformations	T1: Sec 7.4,
		7.9, R1: Sec
	2.1 Vector space, subspace and span of a set, Linear dependence and	3.2
	independence of a set of vectors, basis and dimension	
	2.2. Linear transformation, rank and nullity	
МЗ	3. Eigenvalues, Eigenvectors and singular values	T1: Sec 8.2,
		8.3 and class
	3.1. Eigenvalues	notes
	3.2. Eigenvectors 3.3. Singular value decomposition	
	5.5. Singual value decomposition	
M4	4. Numerical linear algebra	T1: Sec 20.1
	4.1. Gauss elimination with partial pivoting and scaling	
	4.2. Iterative methods for solving linear system of equations	
M5	5. Matrix Eigenvalue Problems	T1: Sec 20.3,
		20.8
	5.1. Eigenvalue problems in linear system of equations	
140	5.2. Power method for finding the dominant eigenvalue	Cl
M6	6. Linear and non-linear optimization	Class notes
	6.1 Basics of calculus	
	6.2 Linear optimization using simplex method and sensitivity	
	6.3 Non-linear optimization	
M7	COLD C IDIC DI ALL	TO 6 21
MI/	6. Sets, Functions and Relations, Boolean Algebra	T2: Sec 2.1, 2.2, 2.3, 7.1 -
	6.1 Introduction to set theory, set relations, set operators, cardinality of sets,	
	Cartesian product of sets	,,
	6.2 Fundamentals of functions – range, domain, injection, surjection, bijection of	
	functions	
	6.3 Fundamentals of relations, reflexive, symmetric and transitive properties in	
	relations, representing relations, applications of relations, equivalence relations,	
	partial order relations, lattices.	
	6.4 Boolean functions, representing Boolean functions	
M8	7. Graph Theory	T2: Sec 8.1-8.5
	7.1 Introduction to graph theory, directed and undirected graphs, handshaking	
	theorem, special graph structures, graph representations and isomorphism of	
	graphs, connectedness, components, Euler, Hamilton paths and cycles	

Sample Course Handout

Part B: Contact Session Plan

Academic Term	I semester 2018-2019
Course Title	Mathematical Foundations for Data Science
Course No	
Lead Instructor	

Course Contents

Contact Hours		
1	Introduction to matrices, now-reduced echelon form of a matrix, Consistency of linear systems and matrix inversion • Unary and binary operations and special matrices (orthogonal matrix, upper and lower triangular, diagonal and sparse) • Row reduction and determination of rank. Comparison to computation using determinants • Use of rank in determining the consistency and inconsistency of linear systems • Row reduction to determine the inverse of the matrix (the Gauss Jordan method) (this is to be used in Simplex method later on)	T1: Sec 7.1 – 7.3, 7.5 7.8
2	Vector space, subspace and span, Linear dependence and independence, basis and dimension, Linear transformation, rank and nullity and the rank nullity theorem Definition and examples of vector space (R/n, space of polynomials of finite degree, n x m matrices etc) Determination of whether a non-empty set of a vector space is a subspace or not Span of a finite set Linear dependence and independence (theory and couple of examples) Basis and dimension of a finite dimensional vector space	T1¦ Sec 7.4, 7.9 R1: Sec 3.2

	Linear transformation T: V → W (definition and a couple of examples) Range(T) and Ker(T) as subspaces of W and V respectively Rank Nullity Theorem (statement without proof) with examples	
3	Eigenvalues and eigenvectors of a matrix with applications Eigenvalues – definition and method of determination of eigenvalues Eigenvectors – definition and methods of finding the eigenvectors	T1: Sec 8.2 – 8.4

	and applications (Face recognition with SVD)	Class notes
	SVD of a matrix (derivation) Exemplify using matlab for a couple of matrices and also show that the singular values are arranged in descending order. Face recognition example.	
5	Gauss elimination with scaling and partial pivoting; LU factorization and related methods Gauss elimination (with and without scaling and partial pivoting). Take an example to shown the role played by precision. LU factorization, Cholesky and Crout's methods with examples	T1: Sec 20.1, 20.2
6	Iterative methods of solving linear systems; Matrix eigenvalue problems and Power method for finding the dominant eigenvalue • Write Ax = b in the form (L+D+U) x = b and work out the iterative scheme for Gauss Jacobi and Gauss Seidel iterations. • Introduce vector and matrix norms (row sum, column sum and Frobenius norms) and work out a few problems in Excel / Matlab • Explain the power method and work out a couple of problems.	T1: Sec 20.3, 20.8
7-8	Application of linear algebra in optimization. Modelling linear programming problem and the basics of Simplex algorithm and sensitivity analysis. Model a LPP in construction of buildings. Model the currency conversion optimization problem. Work out the graphical method of solution in the case of 2 variable case Simplex method for simple cases Outline how Gauss Jordan produces the inverse matrix. Graphical sensitivity analysis (Change in objective value coefficients and rhs of constraints)	Class notes
9	Calculus of one and several variables; Limits, continuity and	Class notes

Lagrange multipliers (for more number of constraints)

Evaluation Components

- Evaluation Component 1 (EC1) Quizzes and Assignments
 - Minimum weightage 20%
 - Individual or group assignments
 - Quizzes administered through LMS
- Evaluation Component 2 (EC2) Mid-Semester Examination
 - Minimum weightage 30%
 - Closed Book Exam, 120 minutes
- Evaluation Component 3 (EC 3) Comprehensive Examination
 - Minimum weightage 40%
 - Open Book Exam, 150 minutes

Programme Overview

M.Tech. AIML Programme Overview

An Inter-disciplinary field comprising Computer Science and Engineering & Statistics Machine Learning algorithms and Al applications are the focus

Topics would span:

- Contemporary AIML techniques that drives the application applications in Natural Language Processing & other application areas
- Algorithmic and computational techniques for AI system design, model building using curated data, implement machine learning techniques for handling large datasets and in resource constrained environments and applications

Curriculum:

- Strong foundation in mathematics, necessary statistical techniques
- Computing techniques and algorithms for machine learning
- Model development for a Al-driven application pipeline

M.Tech. AIML Specializations

Natural Language Processing

Deep Learning

General

M.Tech. AIML Programme Overview

innovate achieve lea

Programme Structure

Year	First Semester			Second Semester		
rear	Course No.	Course Title	Units	Course No.	Course Title	Units
	AIML* ZC416	Mathematical Foundations for Machine Learning	4	AIML* ZG511	Deep Neural Networks	4
	AIML* ZC418	Introduction to Statistical Methods	4	AIML* ZG512	Deep Reinforcement Learning	4
'	AIML* ZG557	Artificial and Computational Intelligence	5		Elective 1	
	AIML* ZG565	Machine Learning	4		Elective 2	
		Total	17		Total	16
		Elective 3		AIML* ZG628T	Dissertation	16
		Elective 4				
11		Elective 5				
		Elective 6				
		Total	16		Total	16

Please note:				
Elective I	AIML* ZG530	Natural Language Processing ** #	4U	
Elective III	AIML* ZG513	Advanced Deep Learning *** ##	4U	

M.Tech. AIML Programme Overview for Natural

Language Processing Specialization

Electives on the offer – Semester 2					
Mandatory Elective	AIML* ZG530 Natural Language Processing				
	1 Electives must be chosen among the ones offered below so that minimum 16 unit requirements are met				
AIML* ZG537	Information Retri	Information Retrieval (course under NLP) 4U			
AIML* ZG517	Fair Accountable Transparent Machine Learning 4U				
AIML* ZG529	Data Management for Machine Learning 40				
AIML* ZG526	Probabilistic Graphical Models				
AIML* ZG567	Al and ML Techniques for Cyber Security				
AIML**ZG516	ML**ZG516 ML System Optimization				

M.Tech. AIML Programme Overview for Natural

Language Processing Specialization

Electives on the offer – Semester 3			
4 Electives must be chosen among the ones offered below so that minimum 16 unit requirements are met			
AIML* ZG519	NLP Applications (course under NLP)	4U	
AIML* ZG522	Social Media Analytics (course under NLP)	4U	
AIML* ZG513	Advanced Deep Learning 4U		
AIML* ZG514	IML* ZG514 Graph Neural Networks 4U		
AIML* ZG523 MLOps 4U			
AIML* ZG525 Computer Vision 4U			
AIML* ZG531 Video Analytics 4U			

Note: At least 3 courses under NLP are **required** to be completed in semester 2 & 3 including the mandatory elective for NLP specialization.

M.Tech. AIML Programme Overview for Deep Learning Specialization

Electives on the offer – Semester 2			
2 Electives must be chosen among the ones offered below so that minimum 16 unit requirements are met			
AIML* ZG537	Information Retrieval	4U	
AIML* ZG517	Fair Accountable Transparent Machine Learning (course under DL)	4U	
AIML* ZG529	Data Management for Machine Learning	4U	
AIML* ZG526	Probabilistic Graphical Models 4U		
AIML* ZG567 AI and ML Techniques for Cyber Security 5U			
AIML**ZG516 ML System Optimization 4U			
AIML* ZG530 Natural Language Processing 4U			

M.Tech. AIML Programme Overview for Deep Learning Specialization

Electives on the offer – Semester 3			
AIML* ZG513	4U		
3 Electives must be chosen among the ones offered below so that minimum 16 unit requirements are met			
NLP Applications	NLP Applications 4U		
Social Media Analyti	4U		
Graph Neural Networks (course under DL)			
MLOps			
Computer Vision	4U		
Video Analytics			
	AIML* ZG513 chosen among the ore met NLP Applications Social Media Analyti Graph Neural Netwo MLOps Computer Vision	AIML* ZG513 Advanced Deep Learning chosen among the ones offered below so that minimule met NLP Applications Social Media Analytics Graph Neural Networks (course under DL) MLOps Computer Vision	

Note: At least 3 courses under DL are required to be completed in semester 2 & 3 including the mandatory elective for DL specialization.

M.Tech. AIML Programme Overview – General Specialization

Electives on the offer – Semester 2

2 Electives must be chosen among the ones offered below so that minimum 16 unit requirements are met

AIML* ZG537	Information Retrieval	4U
AIML* ZG517	Fair Accountable Transparent Machine Learning	4U
AIML* ZG529	Data Management for Machine Learning	4U
AIML* ZG526	Probabilistic Graphical Models	4U
AIML* ZG567	Al and ML Techniques for Cyber Security	5U
AIML**ZG516	ML System Optimization	4U
AIML* ZG530	Natural Language Processing	4U

M.Tech. AIML Programme Overview for General Specialization

Electives on the offer – Semester 3			
4 Electives must be chosen among the ones offered below so that minimum 16 unit requirements are met			
AIML* ZG519	NLP Applications	4U	
AIML* ZG522	Social Media Analytics	4U	
AIML* ZG513	Advanced Deep Learning 4U		
AIML* ZG514	ZG514 Graph Neural Networks 4U		
AIML* ZG523	MLOps	4U	
AIML* ZG525 Computer Vision 4U			
AIML* ZG531 Video Analytics			

M.Tech. AIML

4U

4U

5U

4U

Programme Overvier				
Electives on the	Electives or			
AIML* ZG530	Natural Language Processing ** #	4U	AIML* ZG51	
AIML* ZG537	Information Retrieval **	4U	AIML* ZG52	
AIML* ZG517	Fair Accountable Transparent Machine Learning ***	4U	AIML* ZG51	

Data Management for Machine

Probabilistic Graphical Models

Al and ML Techniques for Cyber

ML System Optimization***

Electives on the offer – Semester 3			
NLP Applications **	4U		
Social Media Analytics **	4U		
Advanced Deep Learning *** ##	4U		
Graph Neural Networks ***	4U		
Video Analytics	4U		
MLOps	4U		
Computer Vision	4U		
	NLP Applications ** Social Media Analytics ** Advanced Deep Learning *** ## Graph Neural Networks *** Video Analytics MLOps		

** Courses under NLP,

*** Courses under DL

AIML* ZG529

AIML* ZG526

AIML* ZG567

AIML**ZG516

Mandatory Elective for NLP Specialization ## Mandatory Elective for DL Specialization

Learning

Security

Note: Atleast 3 courses from respective category are **required** to be completed including the mandatory elective for the opted specialization. The elective list is tentative and subject to change depending on the availability in the academic year

M.Tech. AIML Programme Overview

Faculty

 Experts drawn from industry and academia

Pedagogical Tools/Techniques

- Experiential learning
 - Assignments, case studies, lab exercises
- Collaborative learning
 - Group activities& exercises

Evaluation

- Quiz
- Lab, Assignments, Projects
- Mid semester exam
- End semester exam

Assignments

 Students will work in a virtual group of three, as assigned by the backend using some constraints.

Quizzes

- Quizzes are online for all the courses. Each quiz will be evaluated for 5%.
- Timelines for quizzes and assignments to be announced by the IC for each courses.

Units and Courses	Quiz	Assignment		End Semester Exam (Open Book)	Total
4 Unit Courses	10	20	30	40	100
5 Unit Courses	5	25	30	40	100

M.Tech. AIML Programme Overview

- Python, programming language of choice for all the courses
- Optional Course on '<u>Introduction to Python for Data Science</u>'
 - Designed to give an overview of Python and some of python libraries used in courses
 - Recorded sessions are shared through the canvas for your personal reference.
 - No evaluation for this course not a part of formal course package
 - Python will not be taught as programming language as a part of any other course
 - No evaluation components. Exercises will be given for practice purposes.

Programme Operations

innovate achieve

Schedules Program Timelines - [November 2023]

Schedule - Lecture Sessions

- Classes will be held over weekends through online mode
- Tentative Schedule: 4 Sessions / Day or 5 Sessions / Day
 - Class #1: 8:30 AM to 10:30 AM
 - Class #2: 10:40 AM to 12:40 PM
 - Class #3: 1:40 PM to 3:40 PM
 - Class #4: 3:50 PM to 5:50 PM
 - Class #5: 6:00 PM to 8:00 PM
- Each course will be offered in multiple sections. Students will be allotted a
 section for a course. Sections will be allotted in such a way that a student
 attends all the classes either on Saturday or Sunday. (If needed, One
- session on Friday evening)
- Sessions will be recorded and automatically made available in Microsoft Teams account for streaming

People involved in the Course Delivery

- Instructor in Charge (IC)
 - Leads the course delivery
- Instructors
- Teaching Assistants

Led by IC						
Sec: Sat #1 Sec: Sat #2 Sec: Sun #1 Sec: Sun #2						
Instructor #1	Instructor #2	Instructor #3	Instructor #4			
Supported by Teaching Assistants						

Course Delivery

• Semester #2

Session	Saturday Sunday		
1	Core Course	e Core Course	
2	Core Course	Core Course	
3	Electives Electives		
4	Electives	Electives	

Note:

Desirable to plan for the specialization before the start of second semester course selections.

Only ONE Specialization must be chosen by the students after the end of fourth semester course selections

No change request for consideration of both specializations or change in specialization is allowed after this process.

Course Delivery

- Semester #3
 - 7 electives
 - We do not guarantee that all four courses/sections of their choice can be taken on the same day.

Code	Title	Saturday Slot #1 Saturday Slot #2	Sunday Slot #1
AIML* ZG514	Graph Neural Networks ***	2:00 PM [GNN #1]	No Sunday Section
AIML* ZG522	Social Media Analytics **	4:15 PM [SMA #1]	2:00 PM [SMA #2]
AIML* ZG519	NLP Applications **	No Sunday Section	2:00 PM [NLPA #1]
AIML* ZG523	MLOps	2:00 PM [MLOP #1]	4:15 PM [MLOP #2]
AIML* ZG525	Computer Vision	2:00 PM [CV #1]	4:15 PM [CV #2]
AIML* ZG513	Advanced Deep Learning *** ##	2:00 PM [ADL #1]	8:45 AM [ADL #2]
AIML* ZG515	Video Analytics	4:15 PM [VA #1]	No Sunday Section

This table is only for representation. Actual schedule & the list of electives may be different from this subject to the availability in that academic semester.

Course Delivery

- Semester #4
- Dissertation
- No. of units: 16
- 3 Interactions between Student and BITS Examiners

innovate achieve lead

Schedules -Tutorial, evaluation components

- Tutorials / Webinar Sessions
 - 4 sessions of 90 mins for each course
 - Recitation of topics, problem solving will be the focus of the sessions
 - Typically delivered by Teaching Assistants, attached to the course
 - On Tuesday / Thursday from 7:00 PM to 8:30 PM
 - Sessions will be recorded and posted for later reference.
- Mid Semester (120 Mins / course), Comprehensive Exams (150 Mins / course)
 - Schedules to be announced at the beginning of semester
 - Exam may fall on Friday/Saturday/Sunday
- Assignments & Quizzes
 - To be announced through canvas for each courses. No make-ups.

Virtual Lab/ Remote Lab

Virtual Lab/ Remote Lab

Formal Communication

- Formal BITS Notices will be delivered through Canvas Announcements and Emails in BITS ID.
- Configure your BITS email signature to carry the following details

[Your Name as it appears on University Records]

[Your Student ID - All Caps]

M.Tech (AIML)[2023 October Batch]

- Include relevant details when you initiate a email communications with instructors / IC's / and others in BITS.
- For Ex: your section #, when you write to your IC.
- Always use BITS Email ID for all official communication

Operations Support

Formal Communication

- Communicate with the appropriate ones for quick resolutions. For Ex:
 - Raise all queries on course contents, clarifications in the canvas discussion forums, messages to TA's, instructors or IC's
 - Other course related concerns as emails to your instructor / IC by email
 - Issues with canvas, matters related to access etc, issue with hall tickets, exam venues etc as tickets in student care help desk Queries raised here will be typically resolved in 48 hours You will find options to escalate your queries in the student care help desk in canvas.

Whom to Contact for support?

- Student Care Helpdesk Portal:
 - https://wilpqueries.bits-pilani.ac.in/

- Programme Coordinators Contact:
 - o pc.aiml@wilp.bits-pilani.ac.in

- Operations Team Contact:
 - ops.aiml@wilp.bits-pilani.ac.in

BITS Pilani

Pilani | Dubai | Goa | Hyderabad

Questions?

Programme Specific Orientation Session - M.Tech. in AIML 22nd October, 2023

Orientation Programme

innovate achieve lead

M.Tech. in Artificial Intelligence and Machine Learning
01st April, 2023

