Finding Relationships in Data with Python

IDENTIFYING AND VISUALIZING COMMON RELATIONSHIPS IN DATA

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Common statistical relationships

Univariate, bivariate and multivariate relationships

Mean, standard deviation and variance

Covariance and correlation

Autocorrelation

Prerequisites and Course Outline

Prerequisites

Basic Python programming

Basic knowledge of math at the level of what an arithmetic mean is

Prerequisites

Python Fundamentals

Course Outline

Identifying and visualizing common relationships in data

Identifying and visualizing probabilistic and statistical relationships

Using interactive visualizations to explore relationships in data

Statistics in Understanding Data

"There are two kinds of statistics, the kind you look up and the kind you make up"

Rex Stout

Statistics

A branch of mathematics that deals with collecting, organizing, analyzing, and interpreting data

Statistics

Descriptive Statistics

Descriptive Statistics

Univariate Descriptive Statistics

Measures of Frequency

Measures of Central Tendency

Measures of Dispersion

Measures of Frequency

Frequency tables
Histograms

Measures of Central Tendency

Average (Mean)

Median

Mode

Other infrequently used measures

- Geometric Mean
- Harmonic Mean

Measures of Dispersion

Range (max - min)

Inter-quartile range (IQR)

Standard deviation and variance

Descriptive Statistics

Descriptive Statistics

Data in One Dimension

Pop quiz: Your thoughtful, fact-based point-of-view on these numbers, please

Mean as Headline

The mean, or average, is the one number that best represents all of these data points

$$\frac{1}{x} = \frac{x_1 + x_2 + ... + x_n}{n}$$

Variation Is Important Too

"Do the numbers jump around?"

Range = $X_{max} - X_{min}$

The range ignores the mean, and is swayed by outliers - that's where variance comes in

Variance is the second-most important number to summarize this set of data points

Variance is the second-most important number to summarize this set of data points

Variance is the second-most important number to summarize this set of data points

We can improve our estimate of the variance by tweaking the denominator - this is called Bessel's Correction

Mean and Variance

Mean and variance succinctly summarise a set of numbers

$$\frac{1}{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$
 Variance =
$$\frac{\sum (x_i - \overline{x})^2}{n}$$

Variance and Standard Deviation

Standard deviation is the square root of variance

Variance =
$$\frac{\sum (x_i - \overline{x})^2}{n-1}$$
 Std Dev =
$$\sqrt{\frac{\sum (x_i - \overline{x})^2}{n-1}}$$

Outliers

Outliers might represent data errors, or genuinely rare points legitimately in dataset

Inter-quartile Range

Q3 = 75th percentile: 75% of points smaller than this

Q1 = 25th percentile: 25% of points smaller than this

Inter-quartile Range (IQR) = 75th percentile - 25th percentile

Median

Median = 50th percentile: 50% of points on either side
Unlike mean, median changes little due to outliers

Bivariate Descriptive Statistics

Correlation Covariance

Covariance

Measures relationship between two variables, specifically whether greater values of one variable correspond to greater values in the other.

Covariance

Measures relationship between two variables, specifically whether greater values of one variable correspond to greater values in the other.

Intuition: Positive Covariance

Intuition: Positive Covariance

The deviations around the means of the two series are in-sync

Intuition: Negative Covariance

Intuition: Negative Covariance

The deviations around the means of the two series are out-of-sync

Similar to covariance; measures whether greater values of one variable correspond to greater values in the other. Scaled to always lie between +1 and -1.

Similar to covariance; measures whether greater values of one variable correspond to greater values in the other. Scaled to always lie between +1 and -1.

A measure of whether a linear relationship exists between two variables; ranges from +1 (positive linear relationship) to -1 (negative linear relationship). Independent variables exhibit zero correlation.

A measure of whether a linear relationship exists between two variables; ranges from +1 (positive linear relationship) to -1 (negative linear relationship). Independent variables exhibit zero correlation.

A measure of whether a linear relationship exists between two variables; ranges from +1 (positive linear relationship) to -1 (negative linear relationship).

Independent variables exhibit zero correlation.

Correlation and Covariance

Covariance (x,y) $\frac{1}{\sqrt{\text{Variance (x)}}}$ Variance (y)

Correlated Random Variables

Correlation Captures Linear Relationships

Correlation = +1

As X increases, Y increases linearly

Correlation = -1

As X increases, Y decreases linearly

Correlation = 0

Changes in X independent* of changes in Y

Independent variables have zero covariance and zero correlation

Multivariate Descriptive Statistics

Correlation Matrices

Covariance Matrices

Descriptive Statistics

Loading, cleaning, and preparing data for exploratory data analysis

Exploring and visualizing relationships in data

Calculating and visualizing correlations and linear relationships

self

Autocorrelation

Measures the relationship between a variable's current value and past value

Measures the relationship between a variable's current value and past value

Measures the relationship between a variable's current value and past value

Same time series is used twice

Original form

Same time series is used twice

Same time series is used twice

Ranges between

Perfect positive correlation

Perfect negative correlation

The measure of the relationship between two items or variables

More likely

Today

Tomorrow

Less likely

Today

Tomorrow

Calculating and visualizing autocorrelations with time lags

Exploring different visualizations to learn relationships in data

Summary

Common statistical relationships

Univariate, bivariate and multivariate relationships

Mean, standard deviation and variance

Covariance and correlation

Autocorrelation