Last Updated: February 13, 2022

Contents

1	Academic Presentation	1
	1.1 Conference	
	1.2 Weekly Meeting	1
2	Campus	2
Re	deferences	3

1 Academic Presentation

1.1 Conference

There are many famous theorems in Mathematics. One of the most famous theorems is Fermat's Last Theorem.

Theorem 1.1 (Fermat's Last Theorem). *If* n > 2, there are no integers a, b, c with $abc \neq 0$ such that $a^n + b^n = c^n$.

1.2 Weekly Meeting

Theorem 1.1 is one of the most famous theorems in Mathematics. But most undergraduate students do not learn Fermat's Last Theorem. Instead, many students learn formulas such as:

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S \nabla \times \mathbf{F} \cdot dS$$

But Mathematics starts far more simple than that. The first topic in Mathematics that one typically sees is Arithmetic. For instance, students typically will learn "FOIL."

$$(x+y)^2 = x^2 + 2xy + y^2 (1.1)$$

However, (1.1) tends to be a stumbling block for students. Many students will instead claim, incorrectly, that $(x + y)^2 = x^2 + y^2$. The purpose of this course will be to prove Dirichlet's Unit Theorem, which states:

Theorem 2.1 (Dirichlet's Unit Theorem). Let K be a number field of degree n with r real embeddings and s conjugate pairs of complex embeddings. Then the abelian group \mathcal{O}_K^{\times} is a finitely generated abelian group with rank r+s-1 and $\mathcal{O}_K^{\times} \cong \mu_K \times \mathbb{Z}^{r+s-1}$, where μ_K are the roots of unity in \mathcal{O}_K .

However, it will take some time to prove Theorem 2.1.

2 Campus

Recall that the goal of this course was to prove Dirichlet's Unit Theorem:

Theorem 2.1 (Dirichlet's Unit Theorem). Let K be a number field of degree n with r real embeddings and s conjugate pairs of complex embeddings. Then the abelian group \mathcal{O}_K^{\times} is a finitely generated abelian group with rank r+s-1 and $\mathcal{O}_K^{\times}\cong \mu_K\times \mathbb{Z}^{r+s-1}$, where μ_K are the roots of unity in \mathcal{O}_K .

Example 2.1. If $K = \mathbb{Q}$, then r = 1 and s = 0 so that r + s - 1 = 0. Therefore, $\mathcal{O}_{\mathbb{Q}}^{\times} = \mathbb{Z}^{\times} = \{\pm 1\}$. Of course, this is the most trivial possible example.

To learn even more Mathematics, read [Neu99].

References

[Neu99] Jürgen Neukirch. *Algebraic Number Theory (Schappacher, N., trans.)* New York: Springer-Verlag, 1999.