Algèbre relationnelle

1

I. Introduction (1/3)

- L'algèbre relationnelle est une collection d'opérateurs permettant de réaliser des opérations sur des relations.
- Elle permet par exemple de sélectionner certains enregistrements d'une relation satisfaisant une condition ou encore de regrouper des enregistrements de relations différentes.

I. Introduction

(2/3)

3

- Le résultat de l'application d'un opérateur sur une ou deux relations est une nouvelle relation.
- Cette propriété est appelée fermeture.
- Elle implique notamment qu'il n'y a pas de doublons dans le résultat et permet l'écriture d'expressions de calcul.

- 4)
- L'AR utilise les opérateurs classiques de manipulation des ensembles (union, intersection, différence et produit cartésien)
- Introduit des opérateurs propres aux bases de données (sélection, projection, jointure et division).
- Ces opérateurs sont soit unaires soit binaires.
- Les opérateurs unaires impliquent une seule opérande: sélection (noté σ), projection (Π), renommage (α)
- Les opérateurs binaires impliquent deux opérandes: produit cartésien (X), jointures (⋈), union (∪), intersection (∩), différence (-), division (/)

II- Opérateurs ensemblistes

- Les opérateurs ensemblistes correspondent aux opérateurs habituels de la théorie des ensembles
- Ces opérateurs sont l'union, l'intersection et la différence
- Le schéma suivant illustre l'effet des trois premiers opérateurs sur des tables de mêmes schémas. Le résultat étant la partie colorée.

II.1- Opérateur union (∪)

Définition:

- Soient r et s, deux relations de schémas respectifs R et S. Les schémas R et S doivent être union-compatibles.
- Deux relations sont dites union-compatibles si elles ont le même schéma de relation, càd qu'elles ont le même nombre d'attributs et que ceux-ci ont le même domaine.
- L'union des deux relations R ∪ S produit une nouvelle relation de schéma identique à R et à S possédant les enregistrements appartenant à R ou à S ou aux deux relations.

<u>Description</u>:

- Type opération : binaire
- Syntaxe : $R \cup S$
- Sémantique : réunit dans une même relation les tuples de R et ceux de S (sans doublons)
- Schéma : $schéma(R \cup S) = schéma(R) = schéma(S)$
- Pré-condition : schéma(R) = schéma(S)

Exemple : Soit la base de données relationnelle suivante :

Produit	(NP, LibP, Coul, Poids, PU,	Désigne l'ensemble des produits.
Qtes)		
Client	(NCl, NomCl, AdrCl)	Désigne l'ensemble des clients.
Command	le (<u>NCmd</u> , DateCmd, #NCl)	Désigne l'ensemble des commandes.
Ligne_Cm	nd (# <u>NCmd, #NP</u> , Qte)	Désigne l'ensemble des lignes commandes.

Client

NCl	NomCl	AdrCl
CL01	BATAM	Tunis
CL02	BATIMENT	Tunis
CL03	AMS	Sousse
CL04	GLOULOU	Sousse
CL05	PRODELEC	Tunis
CL06	ELECTRON	Sousse
CL07	SBATIM	Sousse
CL08	SANITAIRE	Tunis
CL09	SOUDURE	Tunis
CL10	MELEC	Monastir
CL11	MBATIM	
CL12	BATFER	Tunis

Produit

NP	LibP	Coul	Poids	PU	Qtes
P001	Robinet	Gris	5	18.000	1200
P002	Prise	Blanc	1.2	1.500	1000
P003	Câble	Blanc	2	25.000	1500
P004	Peinture	Blanc	25	33.000	900
P005	Poignée	Gris	3	12.000	1300
P006	Serrure	Jaune	2	47.000	1250
P007	Verrou	Gris	1.7	5.500	2000
P008	Fer	Noir	50	90.000	800

Commande

NCmd	DateCmd	NC1
C001	10/12/2003	CL02
C002	13/02/2004	CL05
C003	15/01/2004	CL03
C004	03/09/2003	CL10
C005	11/03/2004	CL03

Ligne_Cmd

NCmd	NP	Qte
C001	P001	250
C001	P004	300
C001	P006	100
C002	P002	200
C002	P007	550
C003	P001	50
C004	P002	100
C004	P004	150
C004	P005	70
C004	P008	90
C005	P001	650
C005	P002	100

Exemple:

- Supposons que nous disposons de 2 tables produit: produit1 et produit2 exprimant le fait que les produits sont stockés dans deux dépôts différents.
- Question: Lister tous les produits.
- <u>Réponse</u> : Réaliser l'union des deux tables de produit.

Produit1

NP	LibP	Coul	Poids	PU	Qtes
P001	Robinet	Gris	5	18.000	1200
P002	Prise	Blanc	1.2	1.500	1000
P003	Câble	Blanc	2	25.000	1500
P004	Peinture	Blane	25	33.000	900

Produit2

NP	LibP	Coul	Poids	$_{ m PU}$	Qtes
P005	Poignée	Gris	3	12.000	1300
P006	Serrure	Jaune	2	47.000	1250
P007	Verrou	Gris	1.7	5.500	2000
P008	Fer	Noir	50	90.000	800

Produit1 ∪ Produit2

NP	LibP	Coul	Poids	PU	Qtes
P001	Robinet	Gris	5	18.000	1200
P002	Prise	Blanc	1.2	1.500	1000
P003	Câble	Blane	2	25.000	1500
P004	Peinture	Blanc	25	33.000	900
P005	Poignée	Gris	3	12.000	1300
P006	Serrure	Jaune	2	47.000	1250
P007	Verrou	Gris	1.7	5.500	2000
P008	Fer	Noir	50	90.000	800

Représentation graphique:

II-2 Opérateur intersection (∩)

Définition:

- Soient r et s, deux relations de schémas respectifs R et S. Les schémas R et S doivent être union-compatibles.
- L'intersection des deux relations R ∩ S produit une nouvelle relation de schéma identique à R et à S possédant les enregistrements appartenant conjointement à R et à S.

Description:

- Type opération: binaire
- Syntaxe : $R \cap S$
- Sémantique : sélectionne les tuples qui sont à la fois dans R et S
- Schéma : schéma (R ∩ S) = schéma (R) = schéma
 (S)
- Pré-condition : schéma(R) = schéma(S)

Exemple:

- Supposons que nous disposons de 2 tables produit produit1 et produit2 donnant respectivement les produits achetés par le client1 et le client2
- <u>Question</u>: Lister tous les produits identiques achetés par les 2 clients.
- <u>Réponse</u> : Réaliser l'intersection des deux tables produit1 et produit2.

Produit1

NP	LibP	Coul	Poids	PU	Qtes
P001	Robinet	Gris	5	18.000	1200
P002	Prise	Blanc	1.2	1.500	1000
P003	Câble	Blanc	2	25.000	1500
P004	Peinture	Blanc	25	33.000	900

Produit2

NP	LibP	Coul	Poids	PU	Qtes
P002	Prise	Blanc	1.2	1.500	1000
P004	Peinture	Blanc	25	33.000	900
P007	Verrou	Gris	1.7	5.500	2000
P008	Fer	Noir	50	90.000	800

Produit1 ∩ Produit2

NP	LibP	Coul	Poids	PU	Qtes
P002	Prise	Blanc	1.2	1.500	1000
P004	Peinture	Blanc	25	33.000	900

Représentation graphique

II-3 Opérateur différence (-)

Définition:

- Soient r et s, deux relations de schémas respectifs R et S. Les schémas R et S doivent être union-compatibles.
- La différence des deux relations R S produit une nouvelle relation de schéma identique à R ou à S possédant les enregistrements présents dans R mais pas dans S.

Description:

- Type opération: binaire
- Syntaxe: R S
- Sémantique : sélectionne les tuples de R qui ne sont pas dans S
- Schéma : schéma (R S) = schéma (R) = schéma (S)
- Pré-condition : schéma (R) = schéma (S)

Exemple:

- Supposons que nous disposons de 2 tables produit produit1 et produit2 donnant respectivement les produits achetés par le client1 et le client2
- Question : Lister tous les produits achetés par le client1 et que le client2 n'a pas acheté.
- <u>Réponse</u> : Réaliser la différence entre les deux tables de produit.

Produit1

NP	LibP	Coul	Poids	PU	Qtes
P001	Robinet	Gris	5	18.000	1200
P002	Prise	Blanc	1.2	1.500	1000
P003	Câble	Blanc	2	25.000	1500
P004	Peinture	Blanc	25	33.000	900
P005	Poignée	Gris	3	12.000	1300
P006	Serrure	Jaune	2	47.000	1250

Produit2

NP	LibP	Coul	Poids	PU	Qtes
P005	Poignée	Gris	3	12.000	1300
P006	Serrure	Jaune	2	47.000	1250
P007	Verrou	Gris	1.7	5.500	2000
P008	Fer	Noir	50	90.000	800

Produit1 - Produit2

<u>NP</u>	LibP	Coul	Poids	PU	Qtes
P001	Robinet	Gris	5	18.000	1200
P002	Prise	Blane	1.2	1.500	1000
P003	Câble	Blanc	2	25.000	1500
P004	Peinture	Blanc	25	33.000	900

Représentation graphique

II-4 Opérateur produit cartésien (x)

- Le produit cartésien est un opérateur issu de la théorie des ensembles défini comme suit :
 - o si A et B sont deux ensembles, leur produit cartésien A x B contient toutes les paires (a, b) avec a ∈A et b∈B.
 - Ceci signifie que le produit cartésien permet d'obtenir toutes les combinaisons possibles entre les éléments de deux ensembles.

Définition:

- Soient r et s, deux relations de schémas respectifs R et S. Les schémas R et S doivent être disjoints c'est à dire ne pas avoir d'attributs communs.
- Le produit cartésien des deux relations R x S produit une nouvelle relation de schéma Z égal à l'union des schémas R et S et possédant comme enregistrements, la concaténation des enregistrements de R avec ceux de S.

Description:

- Type opération: binaire
- Syntaxe : R x S
- Sémantique : chaque tuple de R est combiné avec chaque tuple de S
- Schéma : schéma (R x S) = schéma(R) \cup schéma(S)
- Pré-condition: R et S n'ont pas d'attributs de même nom (sinon, renommage des attributs avant de faire le produit).

Exemple:

- Supposons maintenant que nous disposons de 2 tables produit et client.
- <u>Question</u>: Lister tous les achats possibles des clients (produits pouvant être achetés par tous les clients).
- <u>Réponse</u> : Réaliser le produit cartésien entre les deux tables produit et client.

Pour simplifier, nous avons réduit le nombre de tuples.

Client

NC1	NomCl	AdrCl
CL01	BATAM	Tunis
CL02	BATIMENT	Tunis
CL03	AMS	Sousse

Produit

NP	LibP	Coul	Poids	PU	Qtes
P001	Robinet	Gns	5	18.000	1200
P002	Prise	Blanc	1.2	1.500	1000

Client X Produit

NC1	NomCl	AdrCl	NP	LibP	Coul	Poids	PU	Qtes
CL01	BATAM	Tunis	P001	Robinet	Gris	5	18.000	1200
CL01	BATAM	Tunis	P002	Prise	Blane	1.2	1.500	1000
CL02	BATIMENT	Tunis	P001	Robinet	Gris	5	18.000	1200
CL02	BATIMENT	Tunis	P002	Prise	Blane	1.2	1.500	1000
CL03	AMS	Sousse	P001	Robinet	Gris	5	18.000	1200
CL03	AMS	Sousse	P002	Prise	Blane	1.2	1.500	1000

Représentation graphique

III Opérateurs propres aux Bases de Données

III-1 Renommage (α)

32

Définition

• Le renommage ou l'affectation permet de renommer les attributs d'une relation pour résoudre des problèmes de compatibilité entre noms d'attributs de deux relations opérandes d'une opération binaire.

Description:

- Type opération: unaire
- Syntaxe : α[ancien_nom : nouveau_nom] R
- Sémantique : les tuples de R avec un nouveau nom de l'attribut
- Schéma : schéma (α[n, m] R) le même schéma que R avec n renommé en m
- Pré-condition : le nouveau nom n'existe pas déjà dans R

Exemple:

- Supposons que nous disposons de la table produit.
- <u>Question</u>: Renommer l'attribut LibP par l'attribut DésigP.
- <u>Réponse</u> : Réaliser le renommage de l'attribut LibP par l'attribut DésigP.

III-2 Sélection (σ)

(35)

Définition:

- La sélection appelée encore restriction est un opérateur unaire qui prend en entrée une relation r de schéma R et produit en sortie une nouvelle relation de même schéma R ayant comme enregistrements ceux de r satisfaisant la condition de sélection.
- Le but étant de sélectionner un ensemble de tuples d'une relation, en fonction d'un critère de sélection (prédicat ou expression logique de prédicats).
- La condition de sélection utilise les opérateurs de comparaison (=, <, <=, >, >=, !=), les connecteurs logiques (et, ou, non) et les parenthèses.

Description:

- Type opération: unaire
- Syntaxe: σ [p] R
 p: prédicat de sélection (condition de sélection)
- Sémantique : crée une nouvelle relation de population l'ensembles des tuples de R
 - qui satisfont le prédicat p
- Schéma: Schéma (résultat) = Schéma (opérande)
- Population: population (résultat) ⊆ population (opérande)

Exemple:

- Supposons maintenant que nous disposons de la table produit.
- Question: Lister tous les produits dont le prix unitaire est < 33.000.
- Réponse : Il faut réaliser une sélection sur les tuples dont le prix unitaire est < 33.000 :
 - σ [p] Produit avec p=PU < 33.000.

Produit $2 = \sigma$ [p] Produit avec p=PU < 33.000

Produit1

NP	LibP	Coul	Poids	PU	Qtes
P001	Robinet	Gris	5	18.000	1200
P002	Prise	Blanc	1.2	1.500	1000
P003	Câble	Blane	2	25.000	1500
P004	Peinture	Blane	25	33.000	900
P005	Poignée	Gris	3	12.000	1300
P006	Serrure	Jaune	2	47.000	1250

Produit2

<u>NP</u>	LibP	Coul	Poids	PU	Qtes
P001	Robinet	Gris	5	18.000	1200
P002	Prise	Blanc	1.2	1.500	1000
P003	Câble	Blane	2	25.000	1500
P005	Poignée	Gris	3	12.000	1300

Donner les clients de la ville de Sousse. $\sigma[Adrcl = 'Sousse']$ Client

	Client		
_	NCI	NomCl	AdrCl
	CL01	BATAM	Tunis
	CL02	BATIMENT	Tunis
	• CL03	AMS	Sousse
\rightarrow	► CL04	GLOULOU	Sousse
	CL05	PRODELEC	Tunis
\rightarrow	CL06	ELECTRON	Sousse
\dashv	CL07	SBATIM	Sousse
	CL08		Tunis
		SANITAIRE	
	CL09	SOUDURE	Tunis
	CL10	MELEC	Monastir
	CL11	MBATIM	
	CL12	BATFER	Tunis

NCI	NomC1	AdrCl
CL03	AMS	
		Sousse
CL04	GLOULOU	
		Sousse
CL06	ELECTRON	
		Sousse
CL07	SBATIM	
		Sousse

• Donner la liste des commandes dont la date est supérieure à '01/01/2004'.

σ[DateCmd>'01/01/2004'] Commande

	Command	e	
	NCmd	DateCmd	NC1
-	C001	10/12/2003	CL02
_	C002	13/02/2004	CL05
	C003	15/01/2004	CL03
	C004	03/09/2003	CL10
	C005	11/03/2004	CL03

+	NCmd	DateCmd	NCI
	C002	13/02/2004	CL05
	C003	15/01/2004	CL03
	C005	11/03/2004	CL03

Donner la liste des produits dont le prix est compris entre 20 et 50.

$$\sigma$$
[(PU >= 20) AND (PU <= 50)] Produit;

NP	LibP	Coul	Poids	PU	Qtes
P001	Robinet	Gris	5	18.000	1200
P002	Prise	Blane	1.2	1.500	1000
P003	Câble	Blane	2	25.000	1500
P004	Peinture	Blane	25	33.000	900
P005	Poignée	Gris	3	12.000	1300
P006	Semure	Jaune	2	47.000	1250
P007	Verrou	Gris	1.7	5.500	2000
P008	Fer	Noir	50	90.000	800

NP	LibP	Coul	Poids	PU	Qtes
P003	Câble	Blane	2	25.000	1500
P004	Peinture	Blane	25	33.000	900
P006	Serrure	Jaune	2	47.000	1250

• Lister tous les ouvrages dont le genre est BD et dont l'éditeur est Eyrolles

LIVRE

CodeOuv	Titre	Genre	Editeur	Collection
255	Bases de données relationnelles	BD	Eyrolles	Info
786	Réseaux Téléinformatiques	Réseaux	Hermes	Telec
355	Bases de données Orientés Objet	BD	Dunod	Info
800	Bases de données réparties	BD	Eyrolles	Info
241	Programmation C++	Programmation	Dunod	Info

CodeOuv	Titre	Genre	Editeur	Collection
255	Bases de données relationnelles	BD	Eyrolles	Info
355	Bases de données réparties	BD	Eyrolles	Info

Représentation graphique

III-3 Projection (Π)

44)

Définition

- La projection est un opérateur unaire qui prend en entrée une relation r de schéma R (A₁; A₂; ...; A_n) et produit en sortie une nouvelle relation de schéma (A₁; A₂; ...; A_i; A_j) inclus dans R ayant comme enregistrements ceux de r restreints à ce sous-schéma (A₁; A₂; ...; A_i; A_j).
- Elle consiste à supprimer les attributs autres que A_1 , ... A_n d'une relation et à éliminer les n-uplets en double apparaissant dans la nouvelle relation.

<u>Description</u>:

- Type opération: unaire
- Syntaxe: Π [attributs] R

(attributs: liste l'ensemble des attributs de R à conserver dans le résultat.)

- Notation fonctionnelle : R{liste d'attributs}
- Sémantique : crée une nouvelle relation de population l'ensemble des tuples de R réduits aux seuls attributs de la liste spécifiée
- Schéma (résultat) ⊆ schéma (opérande)
- Résultat : nombre tuples (résultat) = nombre tuples (opérande) (en comptant les doublons)

Exemple:

- Supposons maintenant que nous disposons de la table produit.
- Question : Lister toutes les désignations de produit.
- Réponse : Il faut réaliser une projection sur la table produit pour ne garder que l'attribut
- LibP : Π [LibP] (Produit1)

Produit2 = π [LibP] (Produit1) Produit1

NP	LibP	Coul	Poids	PU	Qtes
P001	Robinet	Gris	5	18.000	1200
P002	Prise	Blanc	1.2	1.500	1000
P003	Câble	Blane	2	25.000	1500
P004	Peinture	Blanc	25	33.000	900
P005	Poignée	Gris	3	12.000	1300
P006	Serrure	Jaune	2	47.000	1250

Produit2

LibP
Robinet
Prise
Câble
Peinture
Poignée
Serrure

• Donner la liste des clients :

• ∏ [*] Client

Client

NCI	NomCl	AdrCl	
CL01	BATAM	Tunis	
CL02	BATIMENT	Tunis	
CL03	AMS	Sousse	
CL04	GLOULOU	Sousse	
CL05	PRODELEC	Tunis	
CL06	ELECTRON	Sousse	
CL07	SBATIM	Sousse	
CL08	SANITAIRE	Tunis	
CL09	SOUDURE	Tunis	
CL10	MELEC	Monastir	
CL11	MBATIM		
CL12	BATFER	Tunis	

NCl	NomCl	AdrCl
CL01	BATAM	Tunis
CL02	BATIMENT	Tunis
CL03	AMS	Sousse
CL04	GLOULOU	Sousse
CL05	PRODELEC	Tunis
CL06	ELECTRON	Sousse
CL07	SBATIM	Sousse
CL08	SANITAIRE	Tunis
CL09	SOUDURE	Tunis
CL10	MELEC	Monastir
CL11	MBATIM	
CL12	BATFER	Tunis

- Donner l'ensemble des numéros des produits qui ont été commandés (NP seulement).
- Π [NP] Ligne_Cmd

NP
Poo1
Poo4
Poo6
Poo2
Poo7
Poo5
Poo8

• Représentation graphique

III-4 Division (/)

[51]

Définition

- Le résultat de la division d'une relation R(X,Y) par une relation S (Y) est une relation Q(X) définie par :
- 1) le schéma de Q est constitué de tous les attributs de R n'appartenant pas à S.
- 2) les tuples qj de Q tels que, quels que soit les tuples si de S, le tuple (qj,si) est un tuple de R (c'est-à-dire QXS \subseteq R).

La division traite les requêtes de style «les ... tels que TOUS les ...»

Description:

- Type opération: binaire
- Syntaxe: R / S
 soient R(A1, ..., An) et S(A1, ..., Am) avec n>m et A1, ..., Am des attributs de même nom dans R et S
 - $R / S = \{ <am+1, am+2, ..., an > / \forall <a1, a2, ..., am > \in S, existe <a1, a2, ..., am, am+1, am+2, ..., an > \in R \}$
- Sémantique : crée une nouvelle relation de population des tuples dont la concaténation avec tous les n-uplets de S appartiennent à R.
- Schéma: schéma (résultat) ⊆ schéma (opérande)
- Résultat : nombre tuples (résultat) <= nombre tuples (opérande)

Exemple 1:

- Question: Quels sont les commandes qui portent sur tous les produits
- Réponse: Diviser la relation Ligne_Cmd par la relation produit (ne contenant que NP).

Ligne_Cmd

NCmd	NP
C001	P001
C001	P002
C001	P003
C001	P004
C001	P005
C001	P006
C001	P007
C001	P008
C004	P005
C004	P008
C005	P001
C005	P002

Produit NP P001 P002 P003 P004 P005 P006 P007 P008

Ligne Cmd / Produit

NCmd
C001

Exemple 2:

• Quels sont les étudiants qui ont réussi tous les cours ?

R			
Etudiant	Cours	Réussi	
François	BDR	Oui	
Jacques	BDR	Oui	
Pierre	BDR	Non	
François	Prog	Oui	
Pierre	Prog	Oui	
Jacques	Math	Oui	
François	Math	Oui	

v		
Cours	Réussi	
BDR	Oui	
Prog	Oui	
Math	Oui	

R/V François • Représentation graphique

III-5 Jointure

56)

Définition

- Soient r et s deux relations de schémas respectifs R et S. La jointure de R et S, selon une condition que doivent vérifier les valeurs des tuples, est l'ensemble des tuples du produit cartésien R x S satisfaisant cette condition. Donc on peut la considérer comme un <u>produit cartésien suivid'une sélection</u>.
- La relation résultant de la jointure possède comme schéma l'union des deux schémas R et S et comme enregistrements la concaténation des enregistrements de R avec ceux de S qui répondent à la condition de sélection.
- La condition de sélection utilise les opérateurs de comparaison (= ; < ; <= ; > ; >= ; !=), les connecteurs logiques (et, ou, non) et les parenthèses.
- Lorsque le critère de sélection est l'égalité, on parle d'équi-jointure sinon on parle de Thétajointure

Description:

- Type opération: binaire
- But: créer toutes les combinaisons significatives entre tuples de deux relations (le critère de combinaison est explicitement défini en paramètre de l'opération)
- Syntaxe : R⋈[p]Sp: prédicat de sélection (condition de jointure)
- Sémantique : combine certains tuples qui répondent à une condition

Client

NC1	NomCl	AdrCl	
CL01	BATAM	Tunis	
CL02	BATIMENT	Tunis	
CL03	AMS	Sousse	
CL04	GLOULOU	Sousse	
CL05	PRODELEC	Tunis	
CL06	ELECTRON	Sousse	
CL07	SBATIM	Sousse	
CL08	SANITAIRE	Tunis	
CL09	SOUDURE	Tunis	
CL10	MELEC	Monastir	
CL11	MBATIM		
CL12	BATFER	Tunis	

Commande

NCmd	DateCmd	NCI	
C001	10/12/2003	CL02	
C002	13/02/2004	CL05	
C003	15/01/2004	CL03	
C004	03/09/2003	CL10	
C005	11/03/2004	CL03	

colonne commune

NCmd	DateCmd	NCl	NomCl	AdrCl
C001	10/12/2003	CL02	BATIMENT	Tunis
C002	13/02/2004	CLo ₅	PRODELEC	Tunis
C003	15/01/2004	CLo3	AMS	Sousse
C004	03/09/2003	CL10	MELEC	Monastir
C005	11/03/2004	CLo3	AMS	Sousse

table COMMANDE ←

table CLIENT

Exemple

<u>Question</u>: Lister le numéro, le libellé des produits commandés par des clients de sousse.

La réponse est indiquée par l'arbre suivant :

Exemple

On considè re la Base de Données suivante :

ASSURE (num_assu, nom_assu, adr_assu)

CONTRAT (code_contrat, num_assu, code_bien, intitulé, date_début, date_fin)

EMPLOYE (matricule, nom_employé)

GESTION (matricule, code_contrat, annee_gestion)

BIEN (code_bien, libellé, type, valeur)

L'utilisateur exécute la requête suivante :

Caractéristique des contrats concernant des biens de type Véhicule gérés par l'employé Hochet en 1998.

Une caractéristique comprend : intitulé, date début et fin du contrat, nom de l'asuré et libellé des biens.

QUESTION:

Construire l'arbre algébrique optimisé correspondant à la requête?