Wind Energy Harvesting with a Kite

Antonin Bavoil¹, Jean-Baptiste Caillau¹, Lamberto Dell'Elce², Alain Nême³, Jean-Baptiste Leroux³

- 1: Université Côte d'Azur, CNRS, Inria, LJAD
- 2: Inria
- 3: ENSTA Bretagne, iRDL

FGS Conference on Optimization

Gijón, June 2024

Kite Electrical Energy Production (KEEP)

- KEEP is born as a follow up of Beyond the Sea®.
- Idea: generate (on land) electricity with a kite.
- 10x less material than a wind turbine, <u>soft.</u>
- Portable source of power in remote areas.
- \rightarrow Islands, military.

https://www.dailymotion.com/video/x5fwyox

Kite Electrical Energy Production (KEEP)

- Approximately the same power as a wind turbine.
- Currently: 10% of the production used for control.
- Previous works:
 - U. Ahrens, M. Diehl, R. Schmehl. Airborne Wind Energy. Springer, 2013,
 - U. Fechner et al. *Dynamic Model of a Pumping Kite Power System*, Pergamon, 2015.

https://www.iksurfmag.com/reviews/kites/north-kiteboarding-evo-6m-2013/

[→] Can we generate a good amount of electricity while requiring close to no control?

Wind Energy Harvesting with a Kite

- I. Modelling
- II. Numerical Results
- III. Optimization

→ The kite does eights in the sky to swing the arm left to right as much as possible, without tangling the lines.

Replacing the control with an algebraic constraint

- As a preliminary study, we replace the control with a geometric constraint.
- \rightarrow The kite will stay on an 8-based cone centered on O.

• Spherical coordinates in the inertial frame Oxyz:

$$\theta = \theta_0 + \Delta\theta \sin(2\tau)$$

Set of (R, θ, φ) s.t. φ

$$\varphi = \varphi_0 + \Delta \varphi \sin(\tau)$$

$$R = R(\alpha, \tau).$$

Base of the cone

→ Like a railway track guiding a train.

Coordinates

- State of the system in the 3d space:
 - α : 1D position of the tip of the arm (on a circle),
 - (R, τ) : 2D position of the kite (on the 8-based cone).

We can do better: get R through the intersection of a sphere (A, r) with a line:

$$R(\alpha, \tau) = \hat{\tau} \cdot \overrightarrow{OA} + \sqrt{\left(\hat{\tau} \cdot \overrightarrow{OA}\right)^2 + r^2 - OA^2}.$$

 $\begin{array}{c|c}
\hline
 & \Delta \varphi \\
\hline
 & \Delta \varphi \\
\hline
 & & \Delta \varphi \\
\hline
 & & & & & & \\
\hline
 & & & & \\$

 \rightarrow (α, τ) is enough to determine the state of the system.

Base of the cone

Replacing the control with an algebraic constraint

- How? Add a fictitious force $\overrightarrow{F_{\rm cone}}$ that would result from a control.
- No friction with the cone:

$$\overrightarrow{F_{\rm cone}} \cdot \frac{\partial \overrightarrow{OK}}{\partial R} = 0 \text{ and } \overrightarrow{F_{\rm cone}} \cdot \frac{\partial \overrightarrow{OK}}{\partial \tau} = 0.$$

Circle-based cone

https://mathworld.wolfram.com/Cone.html

Compute the dynamics

- Dynamics: conservation of linear & angular momentum.
- All forces apply at point *K* (the kite):
 - Gravity,
 - Aerodynamical forces,
 - Line tension,
 - Fictitious cone force.

Gravity

• Gravity force = weight of the kite $+\frac{1}{2}$ weight of the lines:

$$\overrightarrow{F_{\rm grav}} = -g \left(m_{\rm kite} + \frac{1}{2} m_{\rm lines} \right) \hat{z}.$$

Aerodynamical forces

- Apparent wind: $\overrightarrow{w_{app}} = \overrightarrow{v} \overrightarrow{w}$ (velocity wind).
- Aerodynamical force on the kite:

$$\overrightarrow{F_{\text{aero,kite}}} = -\frac{1}{2} S \rho_{\text{air}} \|\overrightarrow{w_{\text{app}}}\|^2 (C_L \hat{z}_w + C_D \hat{x}_w).$$

• Aerodynamical force on the lines, applied at point K:

$$\overrightarrow{F_{\text{aero,lines}}} = -\frac{1}{2} \frac{nb_l r d_l}{3} \rho_{\text{air}} \|\overrightarrow{w_{\text{app}}} - (\hat{r} \cdot \vec{v}) \hat{r}\|^2 C_{Dl} \hat{e}_w.$$

$$\overrightarrow{F_{\rm aero}} = \overrightarrow{F_{\rm aero,kite}} + \overrightarrow{F_{\rm aero,lines}}$$
.

Line tension & conservation of angular momentum

• Conservation of angular momentum of the arm gives:

$$I_{\text{eq}}\ddot{\alpha} = -\text{torque}(\dot{\alpha}) + F_{\text{tension}} \hat{r} \cdot (\hat{z} \times \overrightarrow{OA}).$$

• Hence $\overrightarrow{F_{\text{tension}}} = \frac{I_{\text{eq}}\ddot{\alpha} - \text{torque}(\dot{\alpha})}{\hat{r} \cdot (\hat{z} \times \overrightarrow{\text{OA}})} \hat{r}$, where $\ddot{\alpha}$ is obtained by solving the dynamics cf. next slide.

Torque from arm to generator

Computing the explicit dynamics

- Recall that $\overrightarrow{F_{\rm cone}} \cdot \frac{\partial \overrightarrow{OK}}{\partial R} = 0$ and $\overrightarrow{F_{\rm cone}} \cdot \frac{\partial \overrightarrow{OK}}{\partial \tau} = 0$.
- Conservation of linear momentum gives: $m \frac{d\vec{v}}{dt} = \overline{F_{\text{cone}}} + \overline{F_{\text{grav}}} + \overline{F_{\text{aero}}} + \overline{F_{\text{tension}}}$.
- Hence $\overrightarrow{F_{\rm cone}} = m \; \frac{d\overrightarrow{v}}{dt} \overrightarrow{F_{\rm grav}} \overrightarrow{F_{\rm aero}} \overrightarrow{F_{\rm tension}}$. Linear in $\ddot{\mathbf{u}} = (\ddot{\alpha}, \ddot{\tau}) \in \mathbb{R}^2$.
- Solve $A(\mathbf{u})\ddot{\mathbf{u}} = b(\mathbf{u}, \dot{\mathbf{u}})$.

First Numerical Results

Solving the dynamics

- Assemble $A(\mathbf{u})$ and $b(\mathbf{u}, \dot{\mathbf{u}})$ using forward auto. diff. for exact, fast & maintainable derivatives: julia> kite_speed = jvp(u -> OK(u, params), u, du)
- Runge-Kutta 5(4) (Tsitouras 2011):

First Numerical Results

Limit Cycle

- Define a Poincaré section at $\tau \equiv 0$ [2 π] where the cycle begins (arbitrary).
- Dense ODE output & continuous callback allow us to save the state every time it crosses one of these hyperplanes:

Iteration	$\Delta t = t(au = 2\pi) - t(au = 0)$ (seconds)
1	2.7857519406370397
2	<mark>3.0</mark> 933710067285087
3	<mark>3.093</mark> 0984474625856
7	<mark>3.09309805692</mark> 1132
8	<mark>3.0930980569206</mark> 064

 \rightarrow 2 limit cycles, interested in the one with $\dot{\tau} < 0$ that does not tangle the lines.

Optimization

Problem: Optimize the Average Power over a limit cycle

• We define the following problem

$$\frac{1}{t_f} \int_0^{t_f} \dot{\alpha}(t) \operatorname{torque}(\dot{\alpha}(t)) dt \to \max_{P(t)}$$

Over $((\alpha_0, \dot{\alpha_0}, \dot{\tau_0}, t_f), p) \in \mathbb{R}^4 \times \mathbb{R}^n$ with n the number of available parameters to optimize.

With constraints:

- $\alpha(t_f) = \alpha_0$, $\dot{\alpha}(t_f) = \dot{\alpha}_0$, $\dot{\tau}(t_f) = \dot{\tau}_0$, $\tau(t_f) = \tau_0 2\pi$
- Box constraints on the state.

With final state obtained by the ODE solver.

Optimization

Augmentations

- Augment ODE state:
 - $(\alpha, \tau, \dot{\alpha}, \dot{\tau}) \rightarrow (\alpha, \tau, \dot{\alpha}, \dot{\tau}, W)$ with W being the cumulated work done by the generator,
 - with its associated differential equation $\dot{W} = \dot{\alpha} \text{ torque}(\dot{\alpha})$.
- Augment optimization variables: $\left((\alpha_0,\mathrm{d}\alpha_0,\mathrm{d}\tau_0,t_f),p\right) \to \left((\alpha_0,\mathrm{d}\alpha_0,\mathrm{d}\tau_0,t_f,W_f),p\right)$
- $\to \text{Maximize } W_f/t_f \text{ over } \left((\alpha_0, \mathrm{d}\alpha_0, \mathrm{d}\tau_0, t_f, W_f), p\right) \in \mathbb{R}^5 \times \mathbb{R}^n \text{ with constraints:}$
 - $\alpha(t_f) = \alpha_0, \dot{\alpha}(t_f) = \dot{\alpha}_0, \dot{\tau}(t_f) = \dot{\tau}_0, \tau(t_f) = \tau_0 2\pi$
 - The augmented constraint $W_f = W(t_f)$
 - Box constraints over the state

Optimization

Ongoing work

- Gradients and Hessians of the constraints computed with automatic differentiation
- Initialization on the limit cycle, where constraints are satisfied
- Use Interior Point OPTimizer (IPOPT)

- → Look for saturated box constraints
- → perform a sensitivity analysis around the optimal point

Conclusion

- Solve the ODE → find the limit cycle → optimize on the limit cycle, thanks to Julia tools
- Move forward to a controlled model, without the cone constraint
- Have an engineer build a prototype that would (in)validate our results through measurements

K. Desenclos, 2022, Production d'électricité par voile de kite.

Annex 1: Basis vectors related to the local wind

• Apparent wind perpendicular to the lines:

$$\widehat{e_w} = \frac{\overrightarrow{w_{app}} - (\hat{r} \cdot \vec{v})\hat{r}}{\left\| \overrightarrow{w_{app}} - (\hat{r} \cdot \vec{v})\hat{r} \right\|}$$

• Basis of the apparent wind:

$$\widehat{x_w} = -\frac{\overrightarrow{w_{app}}}{\left\|\overrightarrow{w_{app}}\right\|}$$

$$\widehat{y_w} = \widehat{r} \times \widehat{e_w}$$

$$\widehat{z_w} = \widehat{x_w} \times \widehat{y_w}$$

Annex 2: Forward Automatic Differentiation

- Define ε st. $\varepsilon^2 = 0$
- A dual number is $a + b\varepsilon$
- Define the base operations:
 - $(a + b\varepsilon) + (c + d\varepsilon) = (a + c) + (b + d)\varepsilon$
 - $(a + b\varepsilon)(c + d\varepsilon) = ac + (ad + bc)\varepsilon$
 - ...
- \sin , \cos , \exp , etc. are defined using +, ×, /, etc.
- $f(x + \varepsilon) = f(x) + \varepsilon f'(x)$
- \rightarrow See ForwardDiff.jl

