5. Abgeschlossenheit von Regulären Sprachen

Definition REG(X)

REG(X) heißt die Menge aller regulären Sprachen über einem Alphabet X.

Satz Abgeschlossenheit von REG(X)

REG(X) ist abgeschlossen bezüglich:

- 1. Schnitt ∩
- 2. Vereinigung ∪
- 3. Komplement ¬
- 4. Komplexprodukt · ("Aneinanderhängen zweier Sprachen")
- 5. Kleene Abschluss * ("Beliebige Wiederholung")

Das heißt, verknüpft man zwei beliebige reguläre Sprachen L_1 und L_2 mit einem dieser Operatoren miteinander, so ist auch das Ergebnis eine reguläre Sprache.

Aufgabe 1

Gegeben sind die beiden Sprachen L_1 = {ab^na | n \in \mathbb{N}_0} und L_2 = {ba^n | n \in \mathbb{N}_0}

- a) Geben Sie einen Automaten für die Sprachen L1 und L2 an
- b) Konstruieren Sie mit den aus der Vorlesung bekannten Verfahren Automaten zu den folgenden Sprachen
 - i. $L_1 \cup L_2$
 - ii. $\neg L_1$
 - iii. $L_1 \cdot L_2$
 - iv. L₂*

Alexander Bleicher Tutorium

Aufgabe 2

Gegeben sind die beiden Automaten A_1 = ({a, b}, {S₀, S₁, S₂}, S₀, δ_1 gem. Tabelle, {S₁}) und A_2 = ({a, b}, {Z₀, Z₁, Z₂} Z₀, δ_2 gem. Tabelle, {Z₂}). Konstruieren Sie mit den aus der Vorlesung bekannten Methoden $A_1 \cap A_2$

δ_1	a	b
S_0	S_1	S_0
S_1	S_2	S_2
S_2	S_1	S_2
2	1 -	<u> </u>
02	a	b
$\frac{\delta_2}{Z_0}$	$ Z_1 $	Z_1
$\overline{Z_1}$	$ Z_1 $	\mathbb{Z}_2
$\overline{\mathbf{Z}_2}$	Z_2	Z_2