University of Saskatch

Communication EE 352

Quiz #1 - Mar.14/2

ieee.usask.ca

Time: 25 minutes

Permitted: - text. printed notes, student's own hand-written materials

Use the space below each question for your answer.

Complete the following drill problem (1 point)

Example 4.1 - Natural Sampling A signal containing a 2.82 Vrms tone at 2 kHz is presented to the sampling gate. The sampling pulse sequence has frequency 10 kHz and duty cycle 25%. What frequencies will be present in the output of the sampling gate?

Solution: 2 kHz, 8 kHz, 12 kHz, 18 kHz, 22 kHz,

_Drill Problem 4.1
Determine the rms voltages
of all frequency components
up to 25 kHz.

f (kHz) 2	V rms 0.705
8 12	0.635
18	0.448
	0.4118
Checksum	2.871

- *2 A PAM multiplexing system interleaves samples from 24 voice channels. The system bandwidth for the voice channels is 3.4 kHz. (2 pts)
 - i) What is the maximum duty cycle of the sample pulses for one voice channel.

ii) Considering the sampling theorem and the properties of practical filters, suggest a practical aggregate sample rate on the transmission channel connecting the transmitter and receiver.

- A baseband color television signal has frequency components as high as 4.6 MHz. (2 pts) against i) What is the theoretical minimum sampling rate that *3
 - reproduce this signal?

ii) Suggest a practical minimum sampling rate.

4 Times would leave more more for to little for prostrict

- 4 The graph illustrates 8-bit LPCM SNR for sinusoids and for voice. (2 pts)
 - * i) Identify the points A, B, and C as talking, whispering and shouting.
 - ii) Explain why voice SNR is less than sinewave SNR as the signal level approaches the overload level (0 dB0). *Hint:* voice contains several frequency components.

5. The following illustration represents quantizing bins for the grading eggs. What is the range of error (in grams) when the large egg is assumed to be exactly 59 grams? How many binary bits are required to represent the "quantized" egg sizes shown? (2 pts)

6. How many minutes of music can be stored on a 1.5 megabyte floppy disk if 16 bit quantization is used at a sampling rate of 44.1 kHz. Assume monaural recording. (1 pt)