Non-Perturbative Topological Recursion and Knot Invariants

Roderic Guigo Corominas

04-08-2021

Boston University

A Big Picture

Topological recursion is an axiomatic construction with links to many interesting geometric problems

- Kontsevich-Witten intersection numbers
- Weil-Peterson volumes L. ...
- Hurwitz Numbers
- Gromov-Witten invariants

Main Goals

- Interpret TR and non-perturbative wave functions as graph sums
- Implementation of efficiently algorithm. Compute non-perturbative wave functions and quantum curve in genus one
- Application to two conjectures: knot theory and Weierstrass curve

Main Goals

- Interpret TR and non-perturbative wave functions as graph sums
- Implementation of efficiently algorithm. Compute non-perturbative wave functions and quantum curve in genus one
- Application to two conjectures: knot theory and Weierstrass curve

Warning: if a formula looks too complicated, stare at the picture!

Table of Contents

- 1. Topological Recursion and Quantum Curves
- 2. Knot Invariants
- 3. Computations
- 4. Applications

Quantum Curves

Topological Recursion and

Spectral Curves

A **spectral curve** is a tuple $S = (\Sigma, x, y, \omega_{0,2})$, where Σ is a complex curve, x and y are two meromorphic functions on Σ and $\omega_{0,2}$ a fundamental bidifferential.

- Ramification points $\mathcal{R} = (p_1, \dots, p_s)$ of $x: \Sigma \to \mathbb{CP}^1$
- Order of ramification r_{α} at each p_{α} (simple $r_{\alpha}=2$)
- Symmetric fundamental bidifferential

$$\omega_{0,2}(z_1, z_2) = \left(\frac{1}{(z_1 - z_2)^2} + \text{holo.}\right) dz_1 dz_2$$

4

Topological Recursion

Topological Recursion (Eynard & Orantin 2007)

Symmetric differentials $\omega_{g,n+1}(z_0,z_1,\ldots,z_n)$ (correlators) defined recursively:

$$\begin{split} \omega_{g,n+1}(z_0,\dots,z_n) \coloneqq \\ \sum_{p_{\alpha} \in \mathcal{R}} \sum_{z=p_{\alpha}}^{\text{Res}} \frac{\int_{o}^{z} \omega_{0,2}(z_1,\cdot)}{(y(z)-y(-z))dx(z)} \left(\omega_{g-1,n+2}(z,\overline{z},z_1,\dots,z_n) + \sum_{h+h'=g} \omega_{h,1+|I|}(z,z_I)\omega_{h',1+|J|}(\overline{z},z_J) \right). \end{split}$$

Recursion on $\mathcal{X} = 2g - 2 + n$ starting at $\mathcal{X} = 0$ with $\omega_{0,2}$.

Prototypical Example: Airy Spectral Curve

The Airy spectral curve is defined as:

$$\left(\mathbb{CP}^{1}, x(z) = \frac{z^{2}}{2}, y(z) = -z, \omega_{0,2} = \frac{dz_{1}dz_{2}}{(z_{1} - z_{2})^{2}}\right)$$

- Simple ramification point at z = 0
- Recursion kernel

$$K(z_1, z) = \frac{\int_o^z \omega_{0,2}(z_1, \cdot)}{(y(z) - y(-z))dx(z)} = -\frac{dz_1}{2z_1 z(z_1 - z)dz}$$

Prototypical Example: Airy Spectral Curve

Two correlators $\omega_{1,1}$ and $\omega_{0,3}$ with $\mathcal{X}=1$:

$$\omega_{1,1}(z_1) = \underset{z=0}{\text{Res}} K(z_1, z) \omega_{0,2}(z, -z) = \underset{z=0}{\text{Res}} \frac{dz_1 d(-z)}{8z^3 z_1 (z_1 - z)} = \frac{dz_1}{8z_1^4}$$

$$\omega_{0,3}(z_1, z_2, z_3) = \underset{z=0}{\text{Res}} K(z_1, z) \left(\omega_{0,2}(z, z_2) \omega_{0,2}(-z, z_3) + \omega_{0,2}(-z, z_2) \omega_{0,2}(z, z_3) \right) = \frac{dz_1 dz_2 dz_3}{z_1^2 z_2^2 z_3^2}$$

W-Algebras

Borot, Bouchard, Chidambaram, Creutzig & Noshchenko (2019):

- Reformulate topological recursion in terms of differential operators
- Near a ramification point $p_{\alpha} \in \mathcal{R}$, coordinate $\frac{\zeta^r}{r} = x x(p_{\alpha})$

$$y = \sum_{\ell \geq r_{\alpha}} F_{0,1} { \begin{bmatrix} \alpha \\ -\ell \end{bmatrix}} \zeta^{\ell - r_{\alpha}} \qquad \omega_{0,2} = \left(\frac{\delta_{\alpha_{1},\alpha_{2}}}{(\zeta_{1} - \zeta_{2})^{2}} + \sum_{\ell_{1},\ell_{2} > 0} \phi_{\ell_{1},\ell_{2}}^{\alpha_{1},\alpha_{2}} \zeta_{1}^{\ell_{1} - 1} \zeta_{2}^{\ell_{2} - 1} \right) d\zeta_{1} d\zeta_{2}$$

• Differential operator on functions of variables $\{x_\ell^{\alpha}\}_{\substack{\alpha \in \mathcal{R} \\ \ell>0}}^{\alpha \in \mathcal{R}}$

$$D = \left(\sum_{\alpha,\ell} \frac{F_{0,1} \begin{bmatrix} \alpha \\ -\ell \end{bmatrix} + \delta_{\ell,s_{\alpha}}}{\ell} \partial_{x_{\ell}^{\alpha}} + \frac{\hbar}{2} \sum_{\substack{\alpha_{1},\alpha_{2} \\ \ell_{1},\ell_{2}}} \frac{\phi_{\ell_{1},\ell_{2}}^{\alpha_{1},\alpha_{2}}}{\ell_{1}\ell_{2}} \partial_{x_{\ell_{1}}^{\alpha_{1}}} \partial_{x_{\ell_{2}}^{\alpha_{2}}} \right)$$

Perturbative generating function

$$Z_{\mathsf{P}}[x_{\ell}^{\alpha}, \hbar] \coloneqq \mathsf{e}^{D} \prod_{\alpha \in \mathcal{R}} Z^{(r_{\alpha})} \left[x_{\ell}^{\alpha}, \hbar \right]$$

8

TR from W-Algebras

Building blocks are obtained from W algebra constraints

$$Z_{P}[x_{\ell}^{\alpha}, \hbar] := e^{D} \prod_{\alpha \in \mathcal{R}} Z^{(r_{\alpha})} [x_{\ell}^{\alpha}, \hbar]$$

Simple ramification $(r_{\alpha} = 2)$, then L_i are a rep. of the Virasoro algebra $[L_m, L_n] = (m - n)L_{m+n}$:

$$L_{-1} = -\frac{x_1^2}{4\hbar} + \frac{1}{2} \sum_{\rho_1 \ge 1} (-1)^{\rho_1} (p_1 + 2) x_{\rho_1 + 2} \partial_{\rho_1} + \frac{\partial_1}{2}$$

$$L_0 = \frac{1}{2} \sum_{\rho_1 \ge 1} (-1)^{\rho_1} \rho_1 x_{\rho_1} \partial_{\rho_1} - \frac{1}{16} + \frac{\partial_3}{2}$$

$$L_{k\geq 1} = \frac{\hbar}{4} \sum_{\substack{p_1+p_2=2(k-1)\\p_1,p_2\geq 0}} (-1)^{p_1} \partial_{p_1} \partial_{p_2} + \frac{1}{2} \sum_{\substack{p_1-p_2=2(k-1)\\p_1,p_2\geq 0}} (-1)^{p_1} p_2 x_{p_2} \partial_{p_1} + \frac{\partial_{2k+1}}{2}$$

$$L_i \cdot Z^{(2)}[x_\ell, \hbar] = 0, \forall i \ge -1,$$
 $Z^{(2)}[x_\ell, \hbar] = \exp\left(\sum_{n \ge 0, g \ge 0} \frac{\hbar^{g-1}}{n!} F_g^{(r_\alpha)}[x_\ell]\right)$

TR from W-Algebras

Building blocks are obtained from W algebra constraints

$$Z_{\mathsf{P}}[\mathsf{x}_{\ell}^{\alpha},\hbar] \coloneqq e^{D} \prod_{\alpha \in \mathcal{R}} Z^{(r_{\alpha})} \left[\mathsf{x}_{\ell}^{\alpha},\hbar\right]$$

Simple ramification $(r_{\alpha} = 2)$, then L_i are a rep. of the Virasoro algebra $[L_m, L_n] = (m-n)L_{m+n}$:

$$\begin{split} L_{-1} &= -\frac{x_1^2}{4\hbar} + \frac{1}{2} \sum_{p_1 \geq 1} (-1)^{p_1} (p_1 + 2) x_{p_1 + 2} \partial_{p_1} + \frac{\partial_1}{2} \\ L_0 &= \frac{1}{2} \sum_{p_1 \geq 1} (-1)^{p_1} p_1 x_{p_1} \partial_{p_1} - \frac{1}{16} + \frac{\partial_3}{2} \\ L_{k \geq 1} &= \frac{\hbar}{4} \sum_{p_1 + p_2 = 2(k-1)} (-1)^{p_1} \partial_{p_1} \partial_{p_2} + \frac{1}{2} \sum_{p_1 - p_2 = 2(k-1) \atop p_1, p_2 \geq 0} (-1)^{p_1} p_2 x_{p_2} \partial_{p_1} + \frac{\partial_{2k+1}}{2} \end{split}$$

$$L_i \cdot Z^{(2)}[x_{\ell}, \hbar] = 0, \forall i \ge -1,$$
 $Z^{(2)}[x_{\ell}, \hbar] = \exp\left(\sum_{n \ge 0, g \ge 0} \frac{\hbar^{g-1}}{n!} F_g^{(r_{\alpha})}[x_{\ell}]\right)$

 $Z^{(2)}$ generating function of **Kontsevich-Witten** intersection numbers

TR from W-Algebras

- $Z_{P}[x_{\ell}^{\alpha}, \hbar] = \exp\left(F_{P}[x_{\ell}^{\alpha}, \hbar]\right)$
- Free energy functions $F_{g,n}[x_\ell^{\alpha}]$ and coefficients $F_{g,n}\begin{bmatrix} \alpha_1 & \dots & \alpha_n \\ \ell_1 & \dots & \ell_n \end{bmatrix}$:

$$F_{\mathsf{P}}[x_{\ell}^{\alpha}, \hbar] =: \sum_{g \geq 0, n \geq 1 \atop 2g - 2 + n > 0} \frac{\hbar^{g-1}}{n!} \sum_{\substack{\alpha_1, \dots, \alpha_n \\ \ell_1, \dots, \ell_n}} F_{g,n} \begin{bmatrix} \alpha_1 & \dots & \alpha_n \\ \ell_1 & \dots & \ell_n \end{bmatrix} \prod_{j=1}^n x_{\ell_j}^{\alpha_j} =: \sum_{g \geq 0, n \geq 1 \atop 2g - 2 + n > 0} \frac{\hbar^{g-1}}{n!} F_{g,n}[x_{\ell}^{\alpha}]$$

• Meromorphic one-forms:

$$d\xi_{\ell}^{\alpha}(z) \coloneqq \mathop{\mathrm{Res}}_{z'=p_{\alpha}} \left(\int_{p_{\alpha}}^{z'} \omega_{0,2}(\cdot,z) \right) \frac{d\zeta(z')}{\zeta(z')^{\ell+1}}$$

Theorem (BBCCN)

The correlators $\{\omega_{g,n}\}_{2g-2+n>0}$ can be decomposed as finite sums

$$\omega_{g,n}(z_1,\ldots,z_n) = \sum_{\substack{\alpha_1,\ldots,\alpha_n\\\ell_1,\ldots,\ell_n>0}} F_{g,n} \begin{bmatrix} \alpha_1 \ldots \alpha_n\\\ell_1 \ldots \ell_n \end{bmatrix} \bigotimes_{j=1}^n \mathrm{d} \xi_{\ell_j}^{\alpha_j} \left(z_j \right)$$

W-Algebras: Upshot

(i) The TR correlators $\omega_{g,n}$ can be computed from the perturbative generating function $Z_P[x_\ell^\alpha, \hbar]$ via a differential operator:

$$Z_{\mathsf{P}}[x_{\ell}^{\alpha}, \hbar] = e^{D} \prod_{\alpha \in \mathcal{R}} Z^{(r_{\alpha})} \left[x_{\ell}^{\alpha}, \hbar \right]$$

(ii) Building blocks $Z^{(r_{\alpha})}\left[x_{\ell}^{\alpha},\hbar\right]$ only depend on the order of ramification r_{α}

W-Algebras: Upshot

(i) The TR correlators $\omega_{g,n}$ can be computed from the perturbative generating function $Z_P[x_\ell^\alpha, \hbar]$ via a differential operator:

$$Z_{\mathsf{P}}[x_{\ell}^{\alpha}, \hbar] = \mathsf{e}^{D} \prod_{\alpha \in \mathcal{R}} Z^{(r_{\alpha})} \left[x_{\ell}^{\alpha}, \hbar \right]$$

(ii) Building blocks $Z^{(r_{\alpha})}\left[x_{\ell}^{\alpha},\hbar\right]$ only depend on the order of ramification r_{α}

 $Z^{(r_{\alpha})}$: intersection numbers in moduli of higher spin curves $\overline{M}_{g,n}^{1/r_{\alpha}}$

W-Algebras: Upshot

(i) The TR correlators $\omega_{g,n}$ can be computed from the perturbative generating function $Z_P[x_\ell^\alpha, \hbar]$ via a differential operator:

$$Z_{\mathsf{P}}[x_{\ell}^{\alpha}, \hbar] = \mathsf{e}^{D} \prod_{\alpha \in \mathcal{R}} Z^{(r_{\alpha})} \left[x_{\ell}^{\alpha}, \hbar \right]$$

(ii) Building blocks $Z^{(r_{\alpha})}\left[x_{\ell}^{\alpha},\hbar\right]$ only depend on the order of ramification r_{α}

 $Z^{(r_{lpha})}$: intersection numbers in moduli of **higher spin curves** $\overline{M}_{g,n}^{1/r_{lpha}}$

Goal: interpret $Z_P = e^{F_P}$ as a graph sum

Perturbative Graphs

Set of **perturbative graphs** $G: \Gamma = (V, E, L \coprod \tilde{L})$ connected with

- ullet Ordinary L and dilaton \tilde{L} leaves
- Half edges H.
- Vertex labels: genus $g: V \to \mathbb{Z}_{\geq 0}$ and ramification points $\alpha: V \to \mathcal{R}$
- Half-edge labels: $\ell: H \to \mathbb{Z}_{\geq 0}$, such that $\ell(I) > r_{\alpha} + 1, \forall I \in \tilde{L}$
- Stability

$$\chi_v = 2g(v) - 2 + \hat{\delta}(v) > 0$$

 $\hat{\delta}(v)$ valence not counting dilaton leaves

• Euler characteristic

$$\chi(\Gamma) = 2\left(\sum_{v \in V} g(v) + h_1(\Gamma)\right) - 2 + |L|$$

Perturbative Graphs: Weights

- Spectral curve S determines: $F_{0,1}$, ϕ and R
- Weight $w: \mathcal{G} \to \mathbb{C}[\{x_{\ell}^{\alpha}\}]$

$$w(\Gamma) = \prod_{v \in V} \left(\frac{-1}{F_{0,1} \begin{bmatrix} \alpha(v) \\ -r_{\alpha(v)} - 1 \end{bmatrix}} \right)^{\chi_V} \prod_{i \in L} x_{\ell_i}^{\alpha(\alpha(i))} \prod_{j \in \bar{L}} \frac{-F_{0,1} \begin{bmatrix} \alpha(\alpha(j)) \\ -\ell_j \end{bmatrix}}{F_{0,1} \begin{bmatrix} \alpha(\alpha(j)) \\ -r_{\alpha(\alpha(j))} - 1 \end{bmatrix}} \prod_{e \in E} \phi_{\ell(e_1),\ell(e_2)}^{\alpha(\alpha(e_1)),\alpha(\alpha(e_2))} \prod_{v \in V} I(v)$$

Perturbative Graphs: Weights

- Spectral curve S determines: $F_{0,1}$, ϕ and R
- Weight $w: \mathcal{G} \to \mathbb{C}[\{x_{\ell}^{\alpha}\}]$

$$w(\Gamma) = \prod_{v \in V} \left(\frac{-1}{F_{0,1} \begin{bmatrix} \alpha(v) \\ -r_{\alpha(v)-1} \end{bmatrix}} \right)^{\chi_{V}} \prod_{i \in L} x_{\ell_{i}}^{\alpha(\alpha(i))} \prod_{j \in \tilde{L}} \frac{-F_{0,1} \begin{bmatrix} \alpha(\alpha(j)) \\ -\ell_{j} \end{bmatrix}}{F_{0,1} \begin{bmatrix} \alpha(\alpha(j)) \\ -r_{\alpha}(\alpha(j)) - 1 \end{bmatrix}} \prod_{e \in E} \phi_{\ell(e_{1}),\ell(e_{2})}^{\alpha(\alpha(e_{1})),\alpha(\alpha(e_{2}))} \prod_{v \in V} I(v)$$

Proposition (Graph Properties)

• Dimensional condition at each vertex $v \in V$

$$\sum \ell(l) = (r_{\alpha(v)} + 1)(2g(v) - 2 + \delta(v))$$

- Weight function $w(\Gamma)$ does not depend on local coordinate ζ_{α}
- Finitely many graphs of genus g and n ordinary leaves

•

$$F_{\mathsf{P}}[\mathsf{x}_{\ell}^{\alpha}, \hbar] = \sum_{\Gamma \in \mathcal{G}} \hbar^{g(\Gamma)-1} \frac{w(\Gamma)}{|\mathsf{Aut}(\Gamma)|}$$

Perturbative Graphs: Example

Perturbative graphs (times automorphism factor) contributing to $F_{1,1}$ for a spectral curve S with one ramification point of order 2 and one of order 3.

Non-Perturbative TR

From $Z[x_{\ell}^{\alpha}, \hbar]$ one can define

- Perturbative wave function ψ_P :
 - Quantum Curve Conjecture in $g(\Sigma) = 0$ (Eynard & Bouchard 2015)
 - For $g(\Sigma) > 0$, the wave function ψ_P
 - does not have modular properties
 - is not background independent
 - does not satisfy the quantum curve conjecture (experimental)
- Non-perturbative wave function ψ_{NP} (Eynard & Mariño 2009):
 - Global structure of Σ (compact)
 - Symplectic basis $\{\mathcal{A}_i, \mathcal{B}_i\}_{i \leq g}$ of $H_1(\Sigma, \mathbb{Z})$
 - Parameter ζ_h (=0 in our examples)

Non-Perturbative TR

From $Z[x_{\ell}^{\alpha}, \hbar]$ one can define

- Perturbative wave function ψ_P :
 - Quantum Curve Conjecture in $g(\Sigma) = 0$ (Eynard & Bouchard 2015)
 - For $g(\Sigma) > 0$, the wave function ψ_P
 - does not have modular properties
 - is not background independent
 - does not satisfy the quantum curve conjecture (experimental)
- Non-perturbative wave function ψ_{NP} (Eynard & Mariño 2009):
 - Global structure of Σ (compact)
 - Symplectic basis $\{\mathcal{A}_i, \mathcal{B}_i\}_{i \leq g}$ of $H_1(\Sigma, \mathbb{Z})$
 - Parameter ζ_h (=0 in our examples)

Goal: describe ψ_{NP} as **another** graph sum for genus one curves

Non-Perturbative Graphs

Set of non-perturbative graphs \mathcal{F} : $\Gamma = (V_B \coprod V_W, E, L)$ connected bipartite with

- Black vertex labels $g: V \to \mathbb{Z}_{>0}$
- Black vertices:

• White vertices: choice of theta function $\Theta(\eta) := \theta \begin{bmatrix} \nu \\ \mu \end{bmatrix} (\eta; \tau)$

$$\left. \begin{array}{cc} & & \frac{d^m}{d\eta^m} \ln \Theta(\eta) \right|_{\eta = z - o}$$

• Stability of black vertices:

$$2g(v) - 2 + \delta(v) > 0$$

Non-Perturbative Wave Function

Definition

S(z) is a sum over non-perturbative graphs \mathcal{F}

$$S(z) := \frac{1}{h} \sum_{n=2}^{\infty} h^n S_n(z) = \sum_{\Gamma \in \mathcal{F}} h^{\chi(\Gamma)} \frac{w(\Gamma)}{|\mathsf{Aut}(\Gamma)|}$$

Non-perturbative wave function is defined as

$$\psi_{\rm NP}(z) := \exp\left(\frac{1}{h}\sum_{n=2}^{\infty}h^nS_n(z)\right)$$

• [k|k]-kernels defined in a similar way

Non-Perturbative Graphs

Non-perturbative graphs contributing to S_2 , and the corresponding automorphism factors

Quantum Curves

A Quantum Curve \hat{P} of a spectral curve S with defining polynomial P is a differential operator of the form

$$\hat{P}(\hat{x}, \hat{y}; h) = P(\hat{x}, \hat{y}) + \sum_{n \ge 1} h^n P_n(\hat{x}, \hat{y}), \qquad \hat{x} = x, \qquad \hat{y} = h \frac{d}{dx}$$

where P_n are polynomials in \hat{x} and \hat{y} of degree in \hat{y} smaller than P.

Quantum Curve Conjecture

Let $\mathcal S$ be a global spectral curve of genus g>0 defined as the zero locus in \mathbb{CP}^2 or $\mathbb{CP}^1\times\mathbb{CP}^1$ of a polynomial P(x,y). Then there exists a quantum curve $\hat P(\hat x,\hat y;h)$ that annihilates the non-perturbative wave function ψ_{NP} of $\mathcal S$, for a suitable choice of half characteristic (v,μ) and a base point $o\in\Sigma$.

$$P(\hat{x}, \hat{y}; h) \cdot \psi_{\mathsf{NP}} = 0$$

TR & Graph Sums: Upshot

Given a global spectral curve S:

- (i) Perturbative graph sum to obtain correlators $\omega_{g,n}$
- (ii) Non-perturbative graph sum to obtain wave function ψ_{NP}
- (iii) Can evaluate corresponding quantum curve

Next goal: implement algorithm and find applications

Knot Invariants

Physics Perspective

Chern-Simons (CS) on a compact oriented 3-fold M with gauge group G.

- G = SU(2): N-colored Jones polynomial $J_K(N; q)$ (Witten 1993)
- $G_{\mathbb{C}} = SL(2, \mathbb{C})$: Hyperbolic geometry, A-polynomial

Volume Conjecture (Kashaev 1998, Murakami & Murakami 1999) Let K by any knot. The N-colored Jones Polynomials $J_K(N,q)$ satisfy

$$\lim_{N \to \infty} \frac{2\pi}{N} \log \left| J_K \left(N; q = e^{\frac{2\pi i}{N}} \right) \right| = \text{Vol}(S^3 \setminus K)$$

• Generalized Volume Conjecture (Gukov 2005): asymptotic expansion of the colored Jones polynomial depending on a parameter $u = N \cdot h$ as $N \to \infty$ and $h \to 0$

- Generalized Volume Conjecture (Gukov 2005): asymptotic expansion of the colored Jones polynomial depending on a parameter $u = N \cdot h$ as $N \to \infty$ and $h \to 0$
- AJ Conjecture (Garoufalidis 2004): difference equation for the colored Jones polynomial

- Generalized Volume Conjecture (Gukov 2005): asymptotic expansion of the colored Jones polynomial depending on a parameter $u = N \cdot h$ as $N \to \infty$ and $h \to 0$
- AJ Conjecture (Garoufalidis 2004): difference equation for the colored Jones polynomial
- State Integral Model (Hikami 2006): another graph sum from a state model for hyperbolic 3-manifolds

- Generalized Volume Conjecture (Gukov 2005): asymptotic expansion of the colored Jones polynomial depending on a parameter $u = N \cdot h$ as $N \to \infty$ and $h \to 0$
- AJ Conjecture (Garoufalidis 2004): difference equation for the colored Jones polynomial
- State Integral Model (Hikami 2006): another graph sum from a state model for hyperbolic 3-manifolds
- (Dimofte, Gukov, Lenells & Zagier 2009): equivalent methods to compute the partition function $G_{\mathbb{C}}$ Chern-Simons

- Generalized Volume Conjecture (Gukov 2005): asymptotic expansion of the colored Jones polynomial depending on a parameter $u = N \cdot h$ as $N \to \infty$ and $h \to 0$
- AJ Conjecture (Garoufalidis 2004): difference equation for the colored Jones polynomial
- State Integral Model (Hikami 2006): another graph sum from a state model for hyperbolic 3-manifolds
- (Dimofte, Gukov, Lenells & Zagier 2009): equivalent methods to compute the partition function $G_{\mathbb{C}}$ Chern-Simons
- Â Topological Recursion Conjecture
 (Dijkgraaf, Fuji & Manabe 2011 and Borot & Eynard 2015)

A-polynomial

- Hyperbolic 3-manifold M with boundary $\partial M \cong \mathbb{T}^2$ (maybe $S^3 \setminus K$)
- Representation variety $R(\pi_1(M)) = \text{Hom}(\pi_1(K), SL(2, \mathbb{C}))$
- Generators μ , λ of $\pi_1(\partial M) \cong \mathbb{Z} \times \mathbb{Z}$.
- $R_U \subset R(\pi_1(M))$ upper triangular

$$\rho(\mu) = \begin{pmatrix} m & * \\ 0 & m^{-1} \end{pmatrix}, \rho(\lambda) = \begin{pmatrix} \ell & * \\ 0 & \ell^{-1} \end{pmatrix}$$

• A-polynomial: defining polynomial of the image $\rho \mapsto (m, \ell)$ in \mathbb{C}^2

A-polynomial

- Polynomial in two variables $A(x, \ell)$
- Involution $x^r \ell^s A(1/x, 1/\ell) = A(x, \ell)$
 - Unknot **0**₁:

• Figure eight knot 4₁:

$$(\ell-1)(\ell^2x^2 - \ell(x^4 - x^3 - 2x^2 - x + 1) + x^2)$$

• Three twist knot **5**₂:

A-polynomial Spectral Curve

Spectral curve from A-polynomial

$$\left(\Sigma,\frac{1}{2}\ln(x),\ln(\ell),\omega_{0,2}\right)$$

- Complex curve $\Sigma = \{(x, \ell) \in \mathbb{CP}^1 \times \mathbb{CP}^1 \mid A(x, \ell) = 0\}$ may be singular
- Normalized bidifferential $\omega_{0,2}$ on resolution $\tilde{\Sigma} \to \Sigma$
- Ramification points related by involution $\iota(x,\ell) = (1/x,1/\ell)$
- $\zeta_h = 0$ if $g(\Sigma) = 1$ and $\iota_* = -id$
- Genus ≥ 1 (except $\mathbf{10}_{152}^{(1)}$ up to 8 crossings)

\hat{A} -TR Conjecture

Conjecture (Borot & Eynard)

- Let M be hyperbolic 3-fold with $\partial M \cong \mathbb{T}^2$ (maybe $S^3 \setminus K$).
- Chern-Simons partition function (Jones or AJ or Hikami)

$$\mathcal{J}_{CS} = \exp\left(\sum_{n \ge 0} h^{n-1} S_n\right)$$

• Non-perturbative [2 | 2]-kernel $\psi_{\rm NP}^{[2|2]}$ of the *A*-polynomial spectral curve $A(m,\ell)$ of M. Then the following agree:

$$\mathcal{J}_{CS}(u,h) = C_h e^{\frac{1}{h}S_0 + S_1} \left(\psi_{NP}^{[2|2]}(m,1/m) \right)^{1/2}$$

Earlier version by Dijkgraaf, Fuji & Manabe 2011 using perturbative part found discrepancies.

Computations

Algorithm

Given a spectral curve $S = (\Sigma, x, y)$ (• if genus one)

- Find singularities and genus of Σ and ramifications of $x: \Sigma \to \mathbb{CP}^1$
- One-forms η_1, \ldots, η_g and fundamental bidifferential $\omega_{0,2}$
- Compute elliptic invariants (g_2, g_3)
- Solve $W^i_{\alpha,k} \cdot Z^{(r)} = 0$ to evaluate the building blocks $Z^{(r)}[x^\alpha_\ell, \hbar]$
- ullet Generate perturbative graphs and evaluate $d\xi_\ell^lpha$ to find $F_{g,n}$ and $\omega_{g,n}$
- Evaluate Θ , $\oint_{\mathcal{B}} d\xi_{\ell}^{\alpha}$, $\int_{o}^{p} d\xi_{\ell}^{\alpha}$ to find $G_{n}^{g,(d)}$'s
- Generate non-perturbative graphs to find S_n 's

Fundamental Forms

Compact curve
$$\Sigma = \{(x, y) \in \mathbb{CP}^1 \times \mathbb{CP}^1 \mid P(x, y) = 0\}$$

- ullet Forms on Σ described by combinatorics of Newton polygon
- Blow-up (if Σ singular)
- Example: knot $\mathbf{4}_1 A(x, \ell) = (\ell^2 x^2 \ell(x^4 x^3 2x^2 x + 1) + x^2)$

$$\eta(x,\ell) = \frac{(1-x^2)}{2\ell x^2 - (x^4 - x^3 - 2x^2 - x + 1)} dx$$

$$\begin{split} &\omega_{0,2}(x_1,\ell_1,x_2,\ell_2) = \frac{dx_1dx_2}{12(x_1-x_2)^2} \frac{1}{A_\ell(x_1,\ell_1)A_\ell(x_2,\ell_2)} \\ &\left(12(1-x_1-x_2+x_1^2x_2+x_1x_2^2) - 19(x_1^2+x_2^2) + 7(x_1^4+x_2^4) + 2x_1x_2 + 38x_1^2x_2^2 \right. \\ &\left. + 10(x_1^3x_2+x_1x_2^3) + 12(x_1^3x_2^2+x_1^2x_2^3) - 19(x_1^4x_2^2+x_1^2x_2^4) + 2x_1^3x_2^3 + 12x_1^4x_2^4 \right. \\ &\left. + 2(x_1^2x_2^3\ell_1+x_1^3x_2^2\ell_2-x_1^2x_2^4\ell_1-x_1^4x_2^2\ell_2+x_1x_2^2\ell_2+x_1^2x_2\ell_1) - 12(x_1^2\ell_1+x_2^2\ell_2) \right. \\ &\left. + 24(x_1^2x_2^2\ell_2+x_1^2x_2^2\ell_1+x_1^2x_2^2\ell_1\ell_2) - 12(x_1^4x_2^3+x_1^3x_2^4) \right) \end{split}$$

Curves of Genus One

Isomorphism via integration of the unique holomorphic one-form

$$a: \Sigma \to \mathbb{C}/\Lambda, \qquad a(p) = \frac{1}{\varpi_1} \int_0^p \eta$$

Fundamental bidifferential

$$\omega_{0,2}(z_1, z_2) = (\wp(z_1 - z_2) + \kappa) dz_1 dz_2$$

ullet Evaluation of one-forms $d\xi_\ell^lpha$

$$\begin{split} d\xi_\ell^\alpha(z) &= \frac{1}{\ell!} \frac{d^{\ell-1}}{d\zeta^{\ell-1}} \left(\wp(z-z(\zeta)) \frac{dz}{d\zeta} \right) \bigg|_{\zeta=0} dz \\ \frac{dz}{d\zeta} &= \frac{dz}{dx} \frac{dx}{d\zeta} = \eta(x(\zeta), y(\zeta)) \zeta^{r-1} \end{split}$$

Relations to theta functions

$$\frac{d}{dz}\ln\left(\theta\left[\frac{1/2}{1/2}\right](z;\tau)\right) = \zeta(z;\tau) - G_2z$$

Graph Generation

Graph generation:

- Building blocks can be pre-computed
- Avoid redundancies of differential operator
- Maggiolo-Pagani: efficient generating algorithm (modified and implemented by Greyson Potter)

Table 1: Generation of Perturbative Graphs $|\mathcal{R}| = 4$

(g, n)	Run time (s)	(g, n)	Run time (s)	
(0, 3)	0.003	(0,6)	2.088	
(1, 1)	0.003	(1, 4)	17.84	
(0, 4)	0.011	(2, 2)	52.57	
(1, 2)	0.078	(0,7)	48.47	
(0,5)	0.103	(1, 5)	554.8	
(1, 3)	0.593	(2, 3)	2121	
(2, 1)	1.249	(3, 1)	2404	

Graph Generation

Graph generation:

- Building blocks can be pre-computed
- Avoid redundancies of differential operator
- Maggiolo-Pagani: efficient generating algorithm (modified and implemented by Greyson Potter)

Table 1: Number of terms in $F_{g,n}[x_{\ell}^{\alpha}]$ for a 1 and 4 simple ramifications

(g, n)	$ \mathcal{R} = 1$	$ \mathcal{R} = 4$	(g, n)	$ \mathcal{R} = 1$	$ \mathcal{R} = 4$
(0, 3)	1	4	(2, 2)	109	8698
(1, 1)	3	12	(0, 7)	55	4540
(0, 4)	3	18	(1, 5)	122	28796
(1, 2)	9	78	(2, 3)	248	73840
(0, 5)	9	108	(3, 1)	334	76228
(1, 3)	23	540	(0, 8)	122	29606
(2, 1)	42	948	(1, 6)	261	199598
(0, 6)	23	690	(2, 4)	520	575818
(1, 4)	55	3991	(3, 2)	849	793602

Applications

Weierstrass Spectral Curve

The Weierstrass spectral curve:

$$\left(\mathbb{C}/\Lambda, x(z) = \wp(z), y(z) = \wp'(z), \left(\wp(z1 - z2) + G_2\right)dz_1dz_2\right)$$

- With $(g_2, g_3) = (0, 4)$
- If $g_2 = 0$ then $\zeta_h = 0$
- Weierstrass equation $y^2 = 4x^3 4$
- Symplectic basis $\mathcal{A} = [0,1]$ and $\mathcal{B} = [0,\tau]$

Weierstrass Spectral Curve

- $S_0(z) = \int_0^z \wp'(z)^2$
- $S_1(z) = -\frac{\log \wp'(z)}{2}$
- $S_2(z) = \frac{1}{12\wp'(z)^3} (19\wp(z)^2 4\wp(z)^5)$
- $S_3(z) = \frac{1}{36\wp'(z)^6} (-2\wp(z)^{10} + 18\wp(z)^7 + 159\wp(z)^4 + 230\wp(z))$
- $S_4(z) = \frac{1}{6480 \wp'(z)^9} (-80 \wp(z)^{15} + 640 \wp(z)^{12} + 9400 \wp(z)^9 + 337067 \wp(z)^6 + 906596 \wp(z)^3 + 88952)$
- $S_5(z) = \frac{1}{648\wp'(z)^{12}} (-2\wp(z)^{20} + 36\wp(z)^{17} 6\wp(z)^{14} + 12016\wp(z)^{11} + 538839\wp(z)^8 + 2345964\wp(z)^5 + 810118\wp(z)^2)$
- $S_6(z) = \frac{1}{816480\wp'(z)^{15}} (-672\wp(z)^{25} + 21519680\wp(z)^{22} 159722000\wp(z)^{19} + 515348640\wp(z)^{16} 682123900\wp(z)^{13} + 15322295767\wp(z)^{10} + 88286246520\wp(z)^7 + 63712854800\wp(z)^4 + 4159251040\wp(z))$
- $S_7(z) = \frac{1}{21870\wp'(z)^{18}} (-5\wp(z)^{30} 22850913\wp(z)^{27} + 206235312\wp(z)^{24} 827215278\wp(z)^{21} + 1936629852\wp(z)^{18} 2769153528\wp(z)^{15} + 12887012988\wp(z)^{12} + 80565969228\wp(z)^{9} + 98319454233\wp(z)^{6} + 18580283543\wp(z)^{3} + 245668068)$

Weierstrass Spectral Curve

• Set $x = \wp(z)$. Solve

$$\hat{P}(\hat{x}, \hat{y}; h) \cdot \psi_{\text{NP}} = 0$$

• Quantum Curve Conjecture up to $O(h^8)$:

Theorem (G.)

$$\begin{split} \hat{P}(\hat{x},\hat{y};h) = & h^2 \frac{d^2}{dx^2} - 4(x^3 - 1) + h^2 \frac{x}{2^2 3} + h^4 \frac{1}{2^6 3^2} \frac{d}{dx} + h^4 \frac{x^2}{2^8 3^3} \\ & + h^6 \frac{x}{2^{12} 3^4} \frac{d}{dx} + h^6 \frac{x^3}{2^{14} 3^5} + h^8 \frac{x^2}{2^{18} 3^6} \frac{d}{dx} + O(h^8). \end{split}$$

· Closed form:

Conjecture (G.)

$$\hat{P}(\hat{x}, \hat{y}; h) = h^2 \frac{d^2}{dx^2} - 4(x^3 - 1) + \frac{h^2}{576 - h^2 x} \left(48x + h^2 \frac{d}{dx} \right)$$

- A-polynomial $A_{4_1}(x,\ell) = \ell^2 x^2 \ell(x^4 x^3 2x^2 x + 1) + x^2$
- Two singular points (1,-1) and (-1,1)
- Newton Polygon

• Four simple ramification points $(x, \ell) = \left(\frac{3 \pm \sqrt{5}}{2}, 1\right), \left(\frac{-1 \pm i\sqrt{3}}{2}, -1\right)$

Theorem (G., Potter)

Let $\psi_{\mathrm{NP}}^{[2|2]}$ be the non-perturbative [2|2]-kernel obtained from topological recursion on the A-polynomial of the figure right knot $\mathbf{4}_1$, for the choice of half-characteristic $(\nu,\mu)=\left(0,\frac{1}{2}\right)$ and basepoint $o=\left(\frac{3+\sqrt{5}}{2},1\right)$. There is an agreement

$$\left(\psi_{\mathsf{NP}}^{[2|2]}\right)^{\frac{1}{2}} = \mathcal{J}_{\mathsf{CS}}$$

where \mathcal{J}_{CS} denotes the perturbative function of $\mathbf{4}_1$ up to order $O(h^7)$.

- AJ Conjecture (Dimofte, Gukov, Lenells & Zagier 2009)
- Hikami state integral model (Dijkgraaf, Fuji & Manabe 2011)

$$G_g^{n,(m)}(x) := \frac{1}{(2\pi i)^m} \underbrace{\int_o^z \cdots \int_o^z}_{n} \underbrace{\oint_{\mathcal{B}} \cdots \oint_{\mathcal{B}}}_{m} \omega_{g,n+m}$$

- $G_0^{0,(6)} = \frac{1122304}{307546875}$
- $G_2^{Q,(4)} = \frac{2}{20503125\Delta(x)^8} (-234752x^{16} + 2564703x^{15} 8808220x^{14} + 6090610x^{13} + 5770000x^{12} + 72992081x^{11} 163015744x^{10} 24209375x^9 + 281797720x^8 24209375x^7 163015744x^6 + 72992081x^5 + 5770000x^4 + 6090610x^3 8808220x^2 + 2564703x 234752)$
- $\bullet \quad G_4^{0,(2)} = \frac{1}{1366875\Delta(x)^{10}} (12736x^{20} 263667x^{19} + 1499890x^{18} 1315655x^{17} 5030352x^{16} 1733042x^{15} + \\ 166645716x^{14} 374143470x^{13} + 99288000x^{12} + 1029625271x^{11} 1679582106x^{10} + 1029625271x^{9} + 99288000x^{8} 374143470x^{7} + 166645716x^{6} 1733042x^{5} 5030352x^{4} 1315655x^{3} + 1499890x^{2} 263667x + 12736)$
- $G_6^{0,(0)} = \frac{1}{360\Delta(x)^{12}} (3x^{23} 12x^{22} + 28x^{21} + 1320x^{20} 5106x^{19} + 6924x^{18} + 38643x^{17} 152016x^{16} + 222629x^{15} + 33156x^{14} 560514x^{13} + 3862392x^{12} 560514x^{11} + 33156x^{10} + 222629x^{9} 152016x^{8} + 38643x^{7} + 6924x^{6} 5106x^{5} + 1320x^{4} + 28x^{3} 12x^{2} + 3x^{2} + 3x^{$
- $\bullet \quad G_0^{1,(4)} = \frac{6079232}{307546875}$
- $\bullet \quad \mathbf{G}_{2}^{1,(2)} = \frac{1}{6834375\Delta(x)^{10}} (-371936x^{20} + 4803226x^{19} 21523757x^{18} + 38988643x^{17} 35114069x^{16} + 161440552x^{15} + 107735247x^{14} 1577876619x^{13} + 2268678786x^{12} + 2942948147x^{11} 7615329394x^{10} + 2942948147x^9 + 2268678786x^8 1577876619x^7 + 107735247x^6 + 161440552x^5 35114069x^4 + 38988643x^3 21523757x^2 + 4803226x 371936)$
- $\bullet \quad G_4^{1,(0)} = \frac{1}{32805000\Delta(x)^{12}} (85072x^{24} 2099108x^{23} + 13455756x^{22} 12921090x^{21} + 147170281x^{20} 698849930x^{19} + 3524017584x^{18} + 2230020768x^{17} 34162937438x^{16} + 79999579944x^{15} 26758597924x^{14} 155011998246x^{13} + 270985521139x^{12} 155011998246x^{11} 26758597924x^{10} + 79999579944x^{9} 34162937438x^{8} + 2230020768x^{7} + 3524017584x^{6} 698849930x^{5} + 147170281x^{4} 12921090x^{3} + 13455756x^{2} 2099108x + 85072)$
- $\bullet \quad G_0^{2,(2)} = \frac{27617936}{922640625}$

Non-perturbative graph sum:

•
$$S_2(x) = \frac{x^6 - x^5 - 2x^4 + 15x^3 - 2x^2 - x + 1}{6\Delta(x)^3}$$

•
$$S_3(x) = \frac{4x^3(x^6-x^5-2x^4+5x^3-2x^2-x+1)}{\Lambda(x)^6}$$

•
$$S_4(x) = -\frac{x}{45\Delta(x)^9}(x^{16} - 4x^{15} - 128x^{14} + 36x^{13} + 1074x^{12} - 5630x^{11} + 5782x^{10} + 7484x^9 - 18311x^8 + 7484x^7 + 5782x^6 - 5630x^5 + 1074x^4 + 36x^3 - 128x^2 - 4x + 1)$$

•
$$S_5(x) = \frac{4x^3}{3\Delta(x)^{12}}(x^{18} + 5x^{17} - 35x^{16} + 240x^{15} - 282x^{14} - 978x^{13} + 3914x^{12} - 3496x^{11} - 4205x^{10} + 9819x^9 - 4205x^8 - 3496x^7 + 3914x^6 - 978x^5 - 282x^4 + 240x^3 - 35x^2 + 5x + 1)$$

$$\begin{array}{l} \bullet \quad S_6(x) = \frac{2x}{945\Delta(x)^{15}}(x^{28} + 2x^{27} + 169x^{26} + 4834x^{25} - 24460x^{24} + 241472x^{23} - 65355x^{22} - \\ 3040056x^{21} + 13729993x^{20} - 15693080x^{19} - 36091774x^{18} + 129092600x^{17} - 103336363x^{16} - \\ 119715716x^{15} + 270785565x^{14} - 119715716x^{13} - 103336363x^{12} + 129092600x^{11} - 36091774x^{10} - \\ 15693080x^9 + 13729993x^8 - 3040056x^7 - 65355x^6 + 241472x^5 - 24460x^4 + 4834x^3 + 169x^2 + 2x + 1) \end{array}$$

$$\bullet \quad S_7(x) = \frac{8x^3}{85(3x)18}(x^{30} + 47x^{29} - 176x^{28} + 3373x^{27} + 9683x^{26} - 116636x^{25} + 562249x^{24} - 515145x^{23} - 3761442x^{22} + 14939871x^{21} - 15523117x^{20} - 29061458x^{19} + 96455335x^{18} - 71522261x^{17} - 80929522x^{16} + 179074315x^{15} - 80929522x^{14} - 71522261x^{13} + 96455335x^{12} - 29061458x^{11} - 15523117x^{10} + 1493971x^9 - 3761442x^8 - 515145x^7 + 562249x^6 - 116636x^5 + 9683x^4 + 3373x^3 - 176x^2 + 47x + 1)$$

- Torus bundle over S^1 : $M = (T^2 \setminus \{0\}) \times [0,1]/(x,0) \sim (\phi(x),1)$
- Monodromy $\phi = L^2 R = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} \in SL(2, \mathbb{C})$
- Admits complete hyperbolic structure (Thurston)

- A-polynomial $A_{L_2R}(x,\ell) = \ell^2 x^2 + \ell(-x^3 + 2x^2 + 2x 1) + x$.
- One singular point (1, -1)
- Newton Polygon

• Four simple ramification points

$$(x,\ell) = \left(\frac{1}{2} + \sqrt{2} \mp \frac{1}{2}\sqrt{5 + 4\sqrt{2}}, \frac{1}{2}\left(1 + \sqrt{2} \pm \sqrt{2\sqrt{2} - 1}\right)\right),$$

$$(x,\ell) = \left(\frac{1}{2} - \sqrt{2} \mp \frac{1}{2}i\sqrt{4\sqrt{2} - 5}, \frac{1}{2}\left(1 - \sqrt{2} \mp i\sqrt{1 + 2\sqrt{2}}\right)\right).$$

Theorem (G., Potter)

Let $\psi_{\mathrm{NP}}^{[2|2]}$ be the non-perturbative [2|2]-kernel obtained from topological recursion on the A-polynomial of L^2R , for the choice of half-characteristic $(\nu,\mu)=\left(0,\frac{1}{2}\right)$ and basepoint $o=\left(\frac{3+\sqrt{5}}{2},1\right)$. There is an agreement

$$\left(\psi_{\mathsf{NP}}^{[2|2]}\right)^{\frac{1}{2}} = \mathcal{J}_{\mathsf{CS}}$$

where \mathcal{J}_{CS} denotes the perturbative function of L^2R up to order $O(h^5)$.

• Hikami state integral model (Dijkgraaf, Fuji & Manabe 2011)

$$G_g^{n,(m)}(x) := \frac{1}{(2\pi i)^m} \underbrace{\int_o^z \cdots \int_o^z}_{n} \underbrace{\oint_{\mathcal{B}} \cdots \oint_{\mathcal{B}}}_{m} \omega_{g,n+m}$$

- $\bullet \quad G_1^{0,\,(4)} = \frac{1}{28812\Delta(x)^5} \left(-405x^{10} + 2509x^9 + 1829x^8 31810x^7 + 17655x^6 + 103891x^5 + 17655x^4 31810x^3 + 1829x^2 + 2509x 405 \right)$
- $G_{3}^{0,(2)} = \frac{1}{98784\Delta(x)^7} (405x^{14} 15543x^{13} + 85620x^{12} + 205355x^{11} 848819x^{10} + 2602758x^9 + 3614417x^8 2326433x^7 + 3614417x^6 + 2602758x^5 848819x^4 + 205355x^3 + 85620x^2 15543x + 405)$
- $G_1^{1,(2)} = \frac{1}{76832\Delta(x)^7}(-1629x^{14} + 16263x^{13} 32316x^{12} 96499x^{11} + 235411x^{10} + 1561162x^9 602369x^8 3948791x^7 602369x^6 + 1561162x^5 + 235411x^4 96499x^3 32316x^2 + 16263x 1629)$
- $G_3^{1,(0)} = \frac{1}{1778112\Delta(x)^9/2} (2403x^{18} 122715x^{17} + 979587x^{16} + 6670552x^{15} + 3536346x^{14} + 85677342x^{13} + 209713378x^{12} 94163736x^{11} + 43538733x^{10} + 570479611x^9 + 3646736x^{11} + 364673$
- $\begin{array}{l} 43538733x^8 94163736x^7 + 209713378x^6 + 85677342x^5 + 3536346x^4 + 6670552x^3 + 979587x^2 122715x + 2403) \\ \bullet \quad G_1^{2}(0) = \frac{1}{138792760/(x)9^72} (-50175x^{18} + 573019x^{17} 945107x^{16} 5002380x^{15} + 43143278x^{14} + 222424934x^{13} + 224424934x^{13} + 22444934x^{13} + 244446x^{13} + 244446x^{13} + 24446x^{13} +$
- $\begin{array}{l} -1362970001(x)^{2} 262011936x^{11} + 338200043x^{10} + 1765057977x^{9} + 338200043x^{8} 626011936x^{7} + 80209986x^{6} + \\ 222424934x^{5} + 43143278x^{4} 5002380x^{3} 945107x^{2} + 573019x 50175) \end{array}$
- $G_0^{0,(6)} = \frac{9153}{4705960}$
- $\bullet \quad G_2^{0,(4)} = \frac{1}{4840416\Delta(x)^4} (-35235x^{16} + 468576x^{15} 1040588x^{14} 8404896x^{13} + 28367282x^{12} + 60969152x^{11} 203134224x^{10} 4676800x^9 + 482817047x^8 4676800x^7 203134224x^6 + 60969152x^5 + 28367282x^4 8404896x^3 1040588x^2 + 468576x 35235)$

Non-perturbative graph sum:

- $S_2(x) = \frac{5x^6 11x^5 + 22x^4 + 105x^3 + 22x^2 11x + 5}{24\Delta(x)^3}$
- $S_3(x) = \frac{-x^{12} + 6x^{11} + 67x^{10} + 466x^9 298x^8 130x^7 + 1339x^6 130x^5 298x^4 + 466x^3 + 67x^2 + 6x 1}{64\Delta(x)^6}$
- $S_4(x) = \frac{x}{720\Delta(x)^9} (1 68x 3770x^2 + 137x^3 30073x^4 58605x^5 + 104390x^6 + 20753x^7 222062x^8 + 20753x^9 + 104390x^{10} 58605x^{11} 30073x^{12} + 137x^{13} 3770x^{14} 68x^{15} + x^{16})$
- $S_5(x) = \frac{x^2}{24\Delta^{12}}(1+86x+179x^2+3870x^3+7447x^4-7820x^5+51914x^6+60396x^7-183475x^8-25486x^9+311325x^{10}-25486x^{11}-183475x^{12}+60396x^{13}+51914x^{14}-7820x^{15}+7447x^{16}+3870x^{17}+179x^{18}+86x^{19}+x^{20})$

Other Knots

Other knots with A-polynomials of genus one:

Acknowledgements

Takashi

Greyson

(Rest of you probably in my thesis acknowledgements)

Gràcies a tothom per ser aquí !!!!

Questions?