Final Project Data Mining & Neural Networks

Dr. Wilmer Garzón

Director, Master's Program in Data Science Department of Computer Engineering

Escuela Colombiana de Ingeniería Universidade da Coruña

Final Project: Data Mining & Neural Networks

- **Objective:** Apply Data Mining and Neural Networks techniques.
- Format: Practical project with student-chosen dataset and theme.
- **Duration:** 9-day course, submission on the last day.

Suggested Project Themes

- **TOPIC 1:** Text Analysis & Natural Language Processing (NLP)
- **TOPIC 2:** Computer Vision
- **TOPIC 3:** Tabular Data Analysis (Num & Categ)
- **TOPIC 4:** Time Series Analysis

TOPIC 1: Text Analysis & Natural Language Processing (NLP)

Description: Ideal for combining text mining with neural networks.

Examples:

- Sentiment Classification: Reviews, social media comments.
- **Spam/Fraud Detection:** Emails, messages.
- **Document Classification:** News, articles.
- **Text Summarization:** Generating concise summaries.

TOPIC 2: Computer Vision

Description: Preparing and analyzing large volumes of image data.

Examples:

- **Image Classification**: Objects, animals, scenes, medical diagnoses.
- Facial/Object Recognition: Detection and recognition.
- Anomaly Detection: Industrial quality control, security.

Types of data analysis

Text analysis

What is happening?

Diagnostic analysis
Why did it happen?

Statistical analysis

What happened?

Prescriptive analysis

What action should we take?

_zapier

TOPIC 3: Tabular Data Analysis (Num & Categ)

- Description: Basis for many business and scientific applications.
- Examples:
 - Fraud Prediction: Financial transactions.
 - Customer Churn Prediction: User retention.
 - Product/Service Recommendation: Purchase history.
 - Price Prediction: Goods, stocks.
 - Medical Diagnosis: Disease prediction.

TOPIC 4: Time Series Analysis

- **Description:** Data that changes over time, using RNNs/LSTMs.
- Examples:
 - Stock/Price Prediction: Price movements.
 - **Demand Forecasting:** Inventory optimization.
 - Weather Prediction: Weather patterns.
 - Signal Analysis: Audio, vibration, sensor data.

Project Phases

- Phase 1: Ideation & Proposal (Day 3 Day 4)
- Phase 2: Data Exploration & Preprocessing (Day 4 Day 5)
- Phase 3: Neural Network Design & Training (Day 5 Day 7)
- Phase 4: Evaluation, Analysis, & Conclusions (Day 8)
- **Phase 5:** Project Presentation (Day 9 Final Presentation)

Phase 1: Ideation & Proposal (Day 3 - Day 4)

• 1.1. Theme Exploration & Problem Definition:

- Choose a specific problem from the suggested themes.
- Key question: What problem do I want to solve?

• 1.2. Dataset Search & Selection:

Find a relevant public dataset (Kaggle, UCI ML, open data).

• 1.3. Proposal Formulation (Written):

- Project Title.
- o Problem to Solve.
- Dataset Description (name, source, size, characteristics).
- Project Objectives.

Phase 2: Data Exploration & Preprocessing (Day 4 - Day 5)

- 2.1. Initial Loading & Exploration:
 - Load dataset, exploratory analysis: data types, nulls, distribution.
- 2.2. Data Cleaning:
 - Handle nulls, duplicates, errors, outliers.
- 2.3. Feature Transformation & Preparation (Feature Engineering):
 - Text: Tokenization, stop-words, lemmatization, TF-IDF,
 Word Embeddings.
 - o **Images:** Resizing, normalization.
 - Tabular: Categorical encoding, numerical scaling.
 - **Time Series:** Lag creation, window-based features.
- 2.4. Dataset Splitting:
 - o Separate into training, validation, and test sets

Phase 3: Neural Network Design & Training (Day 5 - Day 7)

- 3.1. Neural Network Architecture Selection:
 - Choose and justify architecture: Dense, CNN, RNN/LSTM.
- 3.2. Model Construction:
 - Implement in TensorFlow/Keras: layers, activations, output.
- 3.3. Compilation & Training:
 - Configure: loss function, optimizer (Adam, RMSprop),
 metrics (accuracy, precision, recall, F1-score).
 - o Train model and monitor validation.
- 3.4. Hyperparameter Tuning (Optional/Advanced):
 - Experiment with learning rates, epochs, batch sizes,
 layers.

CONFUSION MATRIX

DETAILS

Sensitivity 0.934	Specificity 0.825	Precision 0.565	Recall 0.934	F1 0.704	
	Accuracy 0.846		Kappa 0.608		

Phase 4: Evaluation, Analysis & Conclusions (Day 8)

- 4.1. Model Evaluation:
 - Use test set for final performance metrics.
- 4.2. Results Analysis:
 - Interpret metrics, visualize (confusion matrix, ROC curves).
 - Analyze strengths and weaknesses.
- 4.3. Conclusions & Future Improvements:
 - Reflect on findings, limitations, possible improvements.

Phase 5: Project Presentation (Day 9 - Final Presentation)

- 5.1. Report/Presentation Preparation:
 - Summarize work: Introduction, methodology, results, conclusions, future work.
- 5.2. Demonstration & Defense:
 - Brief model demonstration and Q&A session.

