Calculating the BER

Binary Channel Model

- The values of P_{e0} and P_{e1} depend upon
 - the transmit levels (r_{min}, r_{max})
 - the power in the noise (σ^2)
 - the threshold (T)

PDF of Received Signal + Noise

y is Gaussian with

- mean r_{min}
- variance σ^2

y is Gaussian with

- mean r_{max}
- variance σ^2

P_{e0} (Probability of Error if IN=0)

- There is an error if
 - OUT = 1
 - The noise pushes y above T

$$P_{e0} = P[y > T \text{ if } IN = 0]$$

 The probability of error decreases as T increases.

P_{e1} (Probability of Error if IN=1)

- There is an error if
 - OUT = 0
 - The noise pushes y below T

$$P_{e1} = P[y < T \text{ if } IN = 1]$$

 The probability of error increases T increases.

Predicting BER

If 0 and 1 input bits are equally likely,

$$BER = \frac{1}{2}P_{e0} + \frac{1}{2}P_{e1}$$

Changing the Threshold

Choosing T is a tradeoff between minimizing P_{e0} and P_{e1}.

best threshold if P[IN = 0] = P[IN = 1]
$$T = \frac{1}{2} \left(r_{min} + r_{max} \right)$$