Optimization

February 14, 2020

0.1 Optimization for Fully Connected Networks

%reload_ext autoreload

In this notebook, we will implement different optimization rules for gradient descent. We have provided starter code; however, you will need to copy and paste your code from your implementation of the modular fully connected nets in HW #3 to build upon this.

CS231n has built a solid API for building these modular frameworks and training them, and we will use their very well implemented framework as opposed to "reinventing the wheel." This includes using their Solver, various utility functions, and their layer structure. This also includes nndl.fc_net, nndl.layers, and nndl.layer_utils. As in prior assignments, we thank Serena Yeung & Justin Johnson for permission to use code written for the CS 231n class (cs231n.stanford.edu).

```
In [5]: ## Import and setups
        import time
        import numpy as np
        import matplotlib.pyplot as plt
        from nndl.fc_net import *
        from cs231n.data_utils import get_CIFAR10_data
        from cs231n.gradient_check import eval_numerical_gradient, eval_numerical_gradient_arra
        from cs231n.solver import Solver
        %matplotlib inline
        plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
        plt.rcParams['image.interpolation'] = 'nearest'
        plt.rcParams['image.cmap'] = 'gray'
        # for auto-reloading external modules
        # see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython
        %load ext autoreload
        %autoreload 2
        def rel_error(x, y):
            """ returns relative error """
            return np.max(np.abs(x - y) / (np.maximum(1e-8, np.abs(x) + np.abs(y))))
The autoreload extension is already loaded. To reload it, use:
```

0.2 Building upon your HW #3 implementation

Copy and paste the following functions from your HW #3 implementation of a modular FC net:

- affine_forward in nndl/layers.py
- affine_backward in nndl/layers.py
- relu_forward in nndl/layers.py
- relu_backward in nndl/layers.py
- affine_relu_forward in nndl/layer_utils.py
- affine_relu_backward in nndl/layer_utils.py
- The FullyConnectedNet class in nndl/fc_net.py

0.2.1 Test all functions you copy and pasted

```
If relu_forward function is working, error should be less than 1e-9:
dx error: 3.2756091601249265e-12
If affine_relu_forward and affine_relu_backward are working, error should be less than 1e-9::
dx error: 8.627086664453249e-10
dw error: 4.3006763454630695e-10
db error: 4.233047189421872e-12
Running check with reg = 0
Initial loss: 2.305421563203023
W1 relative error: 1.341005845108527e-06
W2 relative error: 2.0285785184972844e-07
W3 relative error: 1.4932018514923024e-07
b1 relative error: 1.3509916362742996e-08
b2 relative error: 1.55535708427964e-09
b3 relative error: 1.0231701571196223e-10
Running check with reg = 3.14
Initial loss: 7.230972894567023
W1 relative error: 6.110154884829906e-08
W2 relative error: 6.493037326842818e-07
W3 relative error: 3.4035869194305966e-08
b1 relative error: 4.217496518550663e-07
b2 relative error: 4.427614454923707e-09
b3 relative error: 3.1714715746853306e-10
```

1 Training a larger model

In general, proceeding with vanilla stochastic gradient descent to optimize models may be fraught with problems and limitations, as discussed in class. Thus, we implement optimizers that improve on SGD.

1.1 SGD + momentum

In the following section, implement SGD with momentum. Read the nndl/optim.py API, which is provided by CS231n, and be sure you understand it. After, implement sgd_momentum in nndl/optim.py. Test your implementation of sgd_momentum by running the cell below.

```
In [9]: from nndl.optim import sgd_momentum

N, D = 4, 5
w = np.linspace(-0.4, 0.6, num=N*D).reshape(N, D)
dw = np.linspace(-0.6, 0.4, num=N*D).reshape(N, D)
v = np.linspace(0.6, 0.9, num=N*D).reshape(N, D)
```

```
config = {'learning_rate': 1e-3, 'velocity': v}
       next_w, _ = sgd_momentum(w, dw, config=config)
       expected next w = np.asarray([
           [ 0.1406,
                     0.20738947, 0.27417895, 0.34096842, 0.40775789],
           [0.47454737, 0.54133684, 0.60812632, 0.67491579, 0.74170526],
           [ 0.80849474, 0.87528421, 0.94207368, 1.00886316, 1.07565263],
           [ 1.14244211, 1.20923158, 1.27602105, 1.34281053, 1.4096
                                                                         11)
       expected_velocity = np.asarray([
                      0.55475789, 0.56891579, 0.58307368, 0.59723158],
           [ 0.5406,
           [ 0.61138947, 0.62554737, 0.63970526, 0.65386316, 0.66802105],
           [ 0.68217895, 0.69633684, 0.71049474, 0.72465263, 0.73881053],
           [ 0.75296842, 0.76712632, 0.78128421, 0.79544211, 0.8096
       print('next_w error: {}'.format(rel_error(next_w, expected_next_w)))
       print('velocity error: {}'.format(rel_error(expected_velocity, config['velocity'])))
next_w error: 8.882347033505819e-09
velocity error: 4.269287743278663e-09
```

1.2 SGD + Nesterov momentum

Implement sgd_nesterov_momentum in ndl/optim.py.

```
In [10]: from nndl.optim import sgd_nesterov_momentum
        N, D = 4, 5
        w = np.linspace(-0.4, 0.6, num=N*D).reshape(N, D)
        dw = np.linspace(-0.6, 0.4, num=N*D).reshape(N, D)
        v = np.linspace(0.6, 0.9, num=N*D).reshape(N, D)
        config = {'learning rate': 1e-3, 'velocity': v}
        next_w, _ = sgd_nesterov_momentum(w, dw, config=config)
        expected_next_w = np.asarray([
            [0.08714, 0.15246105, 0.21778211, 0.28310316, 0.34842421],
            [0.41374526, 0.47906632, 0.54438737, 0.60970842, 0.67502947],
            [0.74035053, 0.80567158, 0.87099263, 0.93631368, 1.00163474],
            [1.06695579, 1.13227684, 1.19759789, 1.26291895, 1.32824 ]])
        expected_velocity = np.asarray([
            [ 0.5406, 0.55475789, 0.56891579, 0.58307368, 0.59723158],
            [0.61138947, 0.62554737, 0.63970526, 0.65386316, 0.66802105],
            [ 0.68217895, 0.69633684, 0.71049474, 0.72465263, 0.73881053],
            [ 0.75296842, 0.76712632, 0.78128421, 0.79544211, 0.8096
                                                                          11)
        print('next_w error: {}'.format(rel_error(next_w, expected_next_w)))
        print('velocity error: {}'.format(rel_error(expected_velocity, config['velocity'])))
```

```
next_w error: 1.0875186845081027e-08 velocity error: 4.269287743278663e-09
```

1.3 Evaluating SGD, SGD+Momentum, and SGD+NesterovMomentum

Run the following cell to train a 6 layer FC net with SGD, SGD+momentum, and SGD+Nesterov momentum. You should see that SGD+momentum achieves a better loss than SGD, and that SGD+Nesterov momentum achieves a slightly better loss (and training accuracy) than SGD+momentum.

```
In [11]: num_train = 4000
         small data = {
             'X_train': data['X_train'][:num_train],
             'y_train': data['y_train'][:num_train],
             'X_val': data['X_val'],
             'y_val': data['y_val'],
         }
         solvers = {}
         for update_rule in ['sgd', 'sgd_momentum', 'sgd_nesterov_momentum']:
             print('Optimizing with {}'.format(update_rule))
             model = FullyConnectedNet([100, 100, 100, 100, 100], weight_scale=5e-2)
             solver = Solver(model, small_data,
                             num_epochs=5, batch_size=100,
                             update_rule=update_rule,
                             optim_config={
                                'learning_rate': 1e-2,
                             },
                             verbose=False)
             solvers[update_rule] = solver
             solver.train()
             print
         fig, axes = plt.subplots(3, 1)
         ax = axes[0]
         ax.set_title('Training loss')
         ax.set xlabel('Iteration')
         ax = axes[1]
         ax.set_title('Training accuracy')
         ax.set_xlabel('Epoch')
         ax = axes[1]
         ax.set_title('Validation accuracy')
```

```
ax.set_xlabel('Epoch')
         for update_rule, solver in solvers.items():
             ax = axes[0]
             ax.plot(solver.loss_history, 'o', label=update_rule)
             ax = axes[1]
             ax.plot(solver.train_acc_history, '-o', label=update_rule)
             ax = axes[2]
             ax.plot(solver.val_acc_history, '-o', label=update_rule)
         for i in [1, 2, 3]:
             ax = axes[i - 1]
             ax.legend(loc='upper center', ncol=4)
        plt.gcf().set_size_inches(15, 15)
        plt.show()
Optimizing with sgd
Optimizing with sgd_momentum
Optimizing with sgd_nesterov_momentum
```


1.4 RMSProp

Now we go to techniques that adapt the gradient. Implement rmsprop in nndl/optim.py. Test your implementation by running the cell below.

```
In [12]: from nndl.optim import rmsprop

N, D = 4, 5
w = np.linspace(-0.4, 0.6, num=N*D).reshape(N, D)
dw = np.linspace(-0.6, 0.4, num=N*D).reshape(N, D)
a = np.linspace(0.6, 0.9, num=N*D).reshape(N, D)

config = {'learning_rate': 1e-2, 'a': a}
next_w, _ = rmsprop(w, dw, config=config)
```

next_w error: 9.524687511038133e-08 cache error: 2.6477955807156126e-09

1.5 Adaptive moments

Now, implement adam in nndl/optim.py. Test your implementation by running the cell below.

```
In [13]: # Test Adam implementation; you should see errors around 1e-7 or less
        from nndl.optim import adam
        N, D = 4, 5
        w = np.linspace(-0.4, 0.6, num=N*D).reshape(N, D)
        dw = np.linspace(-0.6, 0.4, num=N*D).reshape(N, D)
        v = np.linspace(0.6, 0.9, num=N*D).reshape(N, D)
        a = np.linspace(0.7, 0.5, num=N*D).reshape(N, D)
        config = {'learning_rate': 1e-2, 'v': v, 'a': a, 't': 5}
        next_w, _ = adam(w, dw, config=config)
        expected_next_w = np.asarray([
          [-0.40094747, -0.34836187, -0.29577703, -0.24319299, -0.19060977],
          [-0.1380274, -0.08544591, -0.03286534, 0.01971428, 0.0722929],
          [0.1248705, 0.17744702, 0.23002243, 0.28259667, 0.33516969],
          [ 0.38774145, 0.44031188, 0.49288093, 0.54544852, 0.59801459]])
        expected_a = np.asarray([
          [0.69966, 0.68908382, 0.67851319, 0.66794809, 0.65738853,],
          [0.64683452, 0.63628604, 0.6257431, 0.61520571, 0.60467385,],
          [0.59414753, 0.58362676, 0.57311152, 0.56260183, 0.55209767,],
          [ 0.54159906, 0.53110598, 0.52061845, 0.51013645, 0.49966, ]])
        expected v = np.asarray([
          [ 0.57736842, 0.59684211, 0.61631579, 0.63578947, 0.65526316],
```

```
[ 0.67473684, 0.69421053, 0.71368421, 0.73315789, 0.75263158],
        [ 0.77210526, 0.79157895, 0.81105263, 0.83052632, 0.85 ]])

        print('next_w error: {}'.format(rel_error(expected_next_w, next_w)))
        print('a error: {}'.format(rel_error(expected_a, config['a'])))
        print('v error: {}'.format(rel_error(expected_v, config['v'])))

next_w error: 1.1395691798535431e-07
a error: 4.208314038113071e-09
v error: 4.214963193114416e-09
```

1.6 Comparing SGD, SGD+NesterovMomentum, RMSProp, and Adam

The following code will compare optimization with SGD, Momentum, Nesterov Momentum, RM-SProp and Adam. In our code, we find that RMSProp, Adam, and SGD + Nesterov Momentum achieve approximately the same training error after a few training epochs.

```
In [14]: learning_rates = {'rmsprop': 2e-4, 'adam': 1e-3}
         for update_rule in ['adam', 'rmsprop']:
             print('Optimizing with {}'.format(update_rule))
             model = FullyConnectedNet([100, 100, 100, 100, 100], weight_scale=5e-2)
             solver = Solver(model, small_data,
                             num_epochs=5, batch_size=100,
                             update_rule=update_rule,
                             optim_config={
                               'learning_rate': learning_rates[update_rule]
                             },
                             verbose=False)
             solvers[update_rule] = solver
             solver.train()
             print
         fig, axes = plt.subplots(3, 1)
         ax = axes[0]
         ax.set_title('Training loss')
         ax.set_xlabel('Iteration')
         ax = axes[1]
         ax.set_title('Training accuracy')
         ax.set xlabel('Epoch')
         ax = axes[2]
         ax.set_title('Validation accuracy')
         ax.set_xlabel('Epoch')
```

```
for update_rule, solver in solvers.items():
    ax = axes[0]
    ax.plot(solver.loss_history, 'o', label=update_rule)

ax = axes[1]
    ax.plot(solver.train_acc_history, '-o', label=update_rule)

ax = axes[2]
    ax.plot(solver.val_acc_history, '-o', label=update_rule)

for i in [1, 2, 3]:
    ax = axes[i - 1]
    ax.legend(loc='upper center', ncol=4)
    plt.gcf().set_size_inches(15, 15)
    plt.show()
Optimizing with adam
Optimizing with rmsprop
```


1.7 Easier optimization

In the following cell, we'll train a 4 layer neural network having 500 units in each hidden layer with the different optimizers, and find that it is far easier to get up to 50+% performance on CIFAR-10. After we implement batchnorm and dropout, we'll ask you to get 55+% on CIFAR-10.

```
In [15]: optimizer = 'adam'
    best_model = None

layer_dims = [500, 500, 500]
  weight_scale = 0.01
  learning_rate = 1e-3
  lr_decay = 0.9
```

```
model = FullyConnectedNet(layer_dims, weight_scale=weight_scale,
                                   use_batchnorm=True)
         solver = Solver(model, data,
                         num_epochs=10, batch_size=100,
                         update rule=optimizer,
                         optim_config={
                           'learning_rate': learning_rate,
                         },
                         lr_decay=lr_decay,
                         verbose=True, print_every=50)
         solver.train()
(Iteration 1 / 4900) loss: 2.318372
(Epoch 0 / 10) train acc: 0.132000; val_acc: 0.158000
(Iteration 51 / 4900) loss: 1.997878
(Iteration 101 / 4900) loss: 1.777806
(Iteration 151 / 4900) loss: 1.749091
(Iteration 201 / 4900) loss: 1.905468
(Iteration 251 / 4900) loss: 1.610811
(Iteration 301 / 4900) loss: 1.653512
(Iteration 351 / 4900) loss: 1.641902
(Iteration 401 / 4900) loss: 1.686620
(Iteration 451 / 4900) loss: 1.594225
(Epoch 1 / 10) train acc: 0.419000; val acc: 0.433000
(Iteration 501 / 4900) loss: 1.520494
(Iteration 551 / 4900) loss: 1.706418
(Iteration 601 / 4900) loss: 1.616758
(Iteration 651 / 4900) loss: 1.740669
(Iteration 701 / 4900) loss: 1.623819
(Iteration 751 / 4900) loss: 1.535345
(Iteration 801 / 4900) loss: 1.390221
(Iteration 851 / 4900) loss: 1.435297
(Iteration 901 / 4900) loss: 1.463761
(Iteration 951 / 4900) loss: 1.519846
(Epoch 2 / 10) train acc: 0.472000; val_acc: 0.470000
(Iteration 1001 / 4900) loss: 1.231058
(Iteration 1051 / 4900) loss: 1.425884
(Iteration 1101 / 4900) loss: 1.213437
(Iteration 1151 / 4900) loss: 1.425379
(Iteration 1201 / 4900) loss: 1.206947
(Iteration 1251 / 4900) loss: 1.589703
(Iteration 1301 / 4900) loss: 1.312044
(Iteration 1351 / 4900) loss: 1.304291
(Iteration 1401 / 4900) loss: 1.417829
(Iteration 1451 / 4900) loss: 1.467388
(Epoch 3 / 10) train acc: 0.527000; val_acc: 0.486000
```

```
(Iteration 1501 / 4900) loss: 1.183901
(Iteration 1551 / 4900) loss: 1.489093
(Iteration 1601 / 4900) loss: 1.330057
(Iteration 1651 / 4900) loss: 1.454370
(Iteration 1701 / 4900) loss: 1.398890
(Iteration 1751 / 4900) loss: 1.152568
(Iteration 1801 / 4900) loss: 1.340097
(Iteration 1851 / 4900) loss: 1.120049
(Iteration 1901 / 4900) loss: 1.367415
(Iteration 1951 / 4900) loss: 1.202580
(Epoch 4 / 10) train acc: 0.543000; val_acc: 0.501000
(Iteration 2001 / 4900) loss: 1.279850
(Iteration 2051 / 4900) loss: 1.279772
(Iteration 2101 / 4900) loss: 1.291935
(Iteration 2151 / 4900) loss: 1.138179
(Iteration 2201 / 4900) loss: 1.186462
(Iteration 2251 / 4900) loss: 1.209129
(Iteration 2301 / 4900) loss: 1.194412
(Iteration 2351 / 4900) loss: 1.253534
(Iteration 2401 / 4900) loss: 1.121386
(Epoch 5 / 10) train acc: 0.584000; val acc: 0.521000
(Iteration 2451 / 4900) loss: 1.181078
(Iteration 2501 / 4900) loss: 1.184234
(Iteration 2551 / 4900) loss: 1.197906
(Iteration 2601 / 4900) loss: 1.259775
(Iteration 2651 / 4900) loss: 1.066522
(Iteration 2701 / 4900) loss: 1.101340
(Iteration 2751 / 4900) loss: 1.284704
(Iteration 2801 / 4900) loss: 1.292758
(Iteration 2851 / 4900) loss: 0.928272
(Iteration 2901 / 4900) loss: 1.248675
(Epoch 6 / 10) train acc: 0.608000; val_acc: 0.496000
(Iteration 2951 / 4900) loss: 1.247589
(Iteration 3001 / 4900) loss: 1.247444
(Iteration 3051 / 4900) loss: 1.165853
(Iteration 3101 / 4900) loss: 1.426414
(Iteration 3151 / 4900) loss: 1.128603
(Iteration 3201 / 4900) loss: 1.064286
(Iteration 3251 / 4900) loss: 1.129055
(Iteration 3301 / 4900) loss: 1.041449
(Iteration 3351 / 4900) loss: 1.213962
(Iteration 3401 / 4900) loss: 1.138624
(Epoch 7 / 10) train acc: 0.630000; val_acc: 0.516000
(Iteration 3451 / 4900) loss: 1.235396
(Iteration 3501 / 4900) loss: 0.849780
(Iteration 3551 / 4900) loss: 1.117824
(Iteration 3601 / 4900) loss: 1.075032
(Iteration 3651 / 4900) loss: 1.232008
```

```
(Iteration 3701 / 4900) loss: 0.913886
(Iteration 3751 / 4900) loss: 1.137040
(Iteration 3801 / 4900) loss: 1.099978
(Iteration 3851 / 4900) loss: 1.048943
(Iteration 3901 / 4900) loss: 1.184148
(Epoch 8 / 10) train acc: 0.646000; val acc: 0.534000
(Iteration 3951 / 4900) loss: 0.896872
(Iteration 4001 / 4900) loss: 1.147640
(Iteration 4051 / 4900) loss: 0.997093
(Iteration 4101 / 4900) loss: 0.969645
(Iteration 4151 / 4900) loss: 0.905662
(Iteration 4201 / 4900) loss: 0.899612
(Iteration 4251 / 4900) loss: 0.984512
(Iteration 4301 / 4900) loss: 0.991168
(Iteration 4351 / 4900) loss: 0.882169
(Iteration 4401 / 4900) loss: 0.933182
(Epoch 9 / 10) train acc: 0.640000; val_acc: 0.503000
(Iteration 4451 / 4900) loss: 0.908620
(Iteration 4501 / 4900) loss: 0.985919
(Iteration 4551 / 4900) loss: 0.988528
(Iteration 4601 / 4900) loss: 0.670831
(Iteration 4651 / 4900) loss: 0.846607
(Iteration 4701 / 4900) loss: 1.064015
(Iteration 4751 / 4900) loss: 0.745071
(Iteration 4801 / 4900) loss: 1.056279
(Iteration 4851 / 4900) loss: 0.972116
(Epoch 10 / 10) train acc: 0.678000; val_acc: 0.540000
In [16]: y test pred = np.argmax(model.loss(data['X test']), axis=1)
         y_val_pred = np.argmax(model.loss(data['X_val']), axis=1)
         print('Validation set accuracy: {}'.format(np.mean(y_val_pred == data['y_val'])))
         print('Test set accuracy: {}'.format(np.mean(y_test_pred == data['y_test'])))
Validation set accuracy: 0.54
Test set accuracy: 0.537
```

layers.py

```
In [ ]: import numpy as np
        import pdb
        11 11 11
        This code was originally written for CS 231n at Stanford University
        (cs231n.stanford.edu). It has been modified in various areas for use in the
        ECE 239AS class at UCLA. This includes the descriptions of what code to
        implement as well as some slight potential changes in variable names to be
```

```
consistent with class nomenclature. We thank Justin Johnson & Serena Yeung for
permission to use this code. To see the original version, please visit
cs231n.stanford.edu.
HHHH
def affine_forward(x, w, b):
   Computes the forward pass for an affine (fully-connected) layer.
   The input x has shape (N, d_1, \ldots, d_k) and contains a minibatch of N
   examples, where each example x[i] has shape (d 1, \ldots, d k). We will
   reshape each input into a vector of dimension D = d_1 * ... * d_k, and
   then transform it to an output vector of dimension M.
   Inputs:
   - x: A numpy array containing input data, of shape (N, d_1, \ldots, d_k)
   - w: A numpy array of weights, of shape (D, M)
   - b: A numpy array of biases, of shape (M,)
   Returns a tuple of:
   - out: output, of shape (N, M)
   - cache: (x, w, b)
   out = None
   # YOUR CODE HERE:
      Calculate the output of the forward pass. Notice the dimensions
      of w are D x M, which is the transpose of what we did in earlier
      assignments.
   # ----- #
   x_transformed = x.reshape(x.shape[0], -1)
   out = np.dot(x_transformed,w) + b
   # END YOUR CODE HERE
   # ----- #
   cache = (x, w, b)
   return out, cache
def affine_backward(dout, cache):
   Computes the backward pass for an affine layer.
   Inputs:
   - dout: Upstream derivative, of shape (N, M)
```

```
- cache: Tuple of:
     - x: A numpy array containing input data, of shape (N, d_1, \ldots, d_k)
     - w: A numpy array of weights, of shape (D, M)
     - b: A numpy array of biases, of shape (M,)
   Returns a tuple of:
   - dx: Gradient with respect to x, of shape (N, d1, \ldots, d_k)
   - dw: Gradient with respect to w, of shape (D, M)
   - db: Gradient with respect to b, of shape (M,)
   x, w, b = cache
   dx, dw, db = None, None, None
   # ----- #
      Calculate the gradients for the backward pass.
   # Notice:
      dout is N x M
      dx should be N x d1 x ... x dk; it relates to dout through multiplication with
     dw should be D x M; it relates to dout through multiplication with x, which is
      db should be M; it is just the sum over dout examples
                                   ------ #
   x_transformed = x.reshape(x.shape[0], -1)
   dx = np.dot(dout,w.T)
   dx = dx.reshape(x.shape)
   dw = np.dot(x_transformed.T,dout)
   db = np.sum(dout,axis=0)
   # ------ #
   # END YOUR CODE HERE
   # ----- #
   return dx, dw, db
def relu forward(x):
   HHHH
   Computes the forward pass for a layer of rectified linear units (ReLUs).
   Input:
   - x: Inputs, of any shape
   Returns a tuple of:
   - out: Output, of the same shape as x
   - cache: x
   # ----- #
   # YOUR CODE HERE:
     Implement the ReLU forward pass.
```

```
# ----- #
  f = lambda x: x * (x > 0) # ReLU
  out = f(x)
  # END YOUR CODE HERE
  cache = x
  return out, cache
def relu_backward(dout, cache):
  Computes the backward pass for a layer of rectified linear units (ReLUs).
  Input:
  - dout: Upstream derivatives, of any shape
  - cache: Input x, of same shape as dout
  Returns:
  - dx: Gradient with respect to x
  HHHH
  x = cache
  # ------ #
  # YOUR CODE HERE:
     Implement the ReLU backward pass
  # ----- #
  # ReLU directs linearly to those > 0
  x_transformed = x.reshape(x.shape[0], -1)
  ones = np.ones(dout.shape)
  dx = dout * (x_transformed >= 0)
  # ----- #
  # END YOUR CODE HERE
  # ----- #
  return dx
def batchnorm_forward(x, gamma, beta, bn_param):
  Forward pass for batch normalization.
```

During training the sample mean and (uncorrected) sample variance are computed from minibatch statistics and used to normalize the incoming data. During training we also keep an exponentially decaying running mean of the mean and variance of each feature, and these averages are used to normalize data at test-time.

At each timestep we update the running averages for mean and variance using an exponential decay based on the momentum parameter:

```
running_mean = momentum * running_mean + (1 - momentum) * sample_mean
running_var = momentum * running_var + (1 - momentum) * sample_var
```

Note that the batch normalization paper suggests a different test-time behavior: they compute sample mean and variance for each feature using a large number of training images rather than using a running average. For this implementation we have chosen to use running averages instead since they do not require an additional estimation step; the torch? implementation of batch normalization also uses running averages.

```
Input:
- x: Data of shape (N, D)
- gamma: Scale parameter of shape (D,)
- beta: Shift paremeter of shape (D,)
- bn_param: Dictionary with the following keys:
  - mode: 'train' or 'test'; required
  - eps: Constant for numeric stability
  - momentum: Constant for running mean / variance.
  - running_mean: Array of shape (D,) giving running mean of features
  - running_var Array of shape (D,) giving running variance of features
Returns a tuple of:
- out: of shape (N, D)
- cache: A tuple of values needed in the backward pass
mode = bn_param['mode']
eps = bn_param.get('eps', 1e-5)
momentum = bn_param.get('momentum', 0.9)
N, D = x.shape
running mean = bn param.get('running mean', np.zeros(D, dtype=x.dtype))
running_var = bn_param.get('running_var', np.zeros(D, dtype=x.dtype))
out, cache = None, None
if mode == 'train':
    # ------ #
    # YOUR CODE HERE:
       A few steps here:
         (1) Calculate the running mean and variance of the minibatch.
         (2) Normalize the activations with the running mean and variance.
         (3) Scale and shift the normalized activations. Store this
```

as the variable 'out'

```
the 'cache' variable.
      # ----- #
      Mean minibatch = x.mean(axis=0)
      Variance_minibatch = np.var(x,axis=0)
      running_mean = momentum * running_mean + (1.0 - momentum) * Mean_minibatch
      running_var = momentum * running_var + (1.0 - momentum) * Variance_minibatch
      Mean_minibatch = np.expand_dims(Mean_minibatch, axis=0)
      Variance_minibatch = np.expand_dims(Variance_minibatch, axis=0)
      x normal = (x - Mean_minibatch)/( np.sqrt(Variance_minibatch + eps ) )
      out = np.expand_dims(gamma, axis=0) * x_normal + np.expand_dims(beta, axis=0)
      cache = (Mean_minibatch, Variance_minibatch, x normal, gamma, beta, x, eps)
      # END YOUR CODE HERE
      # ----- #
   elif mode == 'test':
      # YOUR CODE HERE:
      # Calculate the testing time normalized activation. Normalize using
        the running mean and variance, and then scale and shift appropriately.
         Store the output as 'out'.
      # ----- #
      x_norm = (x - running_mean)/(np.sqrt(running_var.T))
      out = np.expand_dims(gamma, axis=0) * x_norm + np.expand_dims(beta, axis=0)
      # END YOUR CODE HERE
      else:
      raise ValueError('Invalid forward batchnorm mode "%s"' % mode)
   # Store the updated running means back into bn_param
   bn_param['running_mean'] = running_mean
   bn_param['running_var'] = running_var
   return out, cache
def batchnorm_backward(dout, cache):
   11 11 11
```

(4) Store any variables you may need for the backward pass in

Backward pass for batch normalization.

For this implementation, you should write out a computation graph for batch normalization on paper and propagate gradients backward through intermediate nodes.

```
Inputs:
   - dout: Upstream derivatives, of shape (N, D)
   - cache: Variable of intermediates from batchnorm_forward.
   Returns a tuple of:
   - dx: Gradient with respect to inputs x, of shape (N, D)
   - dgamma: Gradient with respect to scale parameter gamma, of shape (D,)
   - dbeta: Gradient with respect to shift parameter beta, of shape (D,)
   dx, dgamma, dbeta = None, None, None
   # ----- #
   # YOUR CODE HERE:
      Implement the batchnorm backward pass, calculating dx, dgamma, and dbeta.
   Mean minibatch = cache[0]
                                    # D
   Variance_minibatch = cache[1]
                                   # D
   x_normal = cache[2]
                                    \# N * D
   gamma = cache[3]
                                    # D
                                    # D
   beta = cache[4]
                                    \# N * D
   x = cache[5]
   eps = cache[6]
                                    # scalar
   M = x_normal.shape[0]
   std = np.sqrt(Variance_minibatch + eps)
                                              # D
   dbeta = dout.sum(axis=0)
                                               # D
   dgamma = np.sum(x_normal * dout ,axis = 0)
                                               # D
   dx_hat = gamma * dout
                                               \# D -- N * D
   da = (1.0 / std) * dx_hat
                                               \# D -- N * D
   dMu = np.sum(-da, axis = 0)
   dVar = np.sum((-1.0 / (2*np.power(std,3))) * dx_hat * (x - Mean_minibatch), axis = 0
   dx = (1.0 / std) * dx_hat + (1.0 / M) * dMu + (2.0 / M) * dVar * (x - Mean_minibar)
   # END YOUR CODE HERE
   # ----- #
   return dx, dgamma, dbeta
def dropout_forward(x, dropout_param):
   11 11 11
```

Performs the forward pass for (inverted) dropout.

```
Inputs:
- x: Input data, of any shape
- dropout param: A dictionary with the following keys:
 - p: Dropout parameter. We keep each neuron output with probability p.
 - mode: 'test' or 'train'. If the mode is train, then perform dropout;
   if the mode is test, then just return the input.
 - seed: Seed for the random number generator. Passing seed makes this
   function deterministic, which is needed for gradient checking but not in
   real networks.
Outputs:
- out: Array of the same shape as x.
- cache: A tuple (dropout_param, mask). In training mode, mask is the dropout
 mask that was used to multiply the input; in test mode, mask is None.
p, mode = dropout_param['p'], dropout_param['mode']
if 'seed' in dropout_param:
   np.random.seed(dropout_param['seed'])
mask = None
out = None
if mode == 'train':
   # ------ #
   # YOUR CODE HERE:
      Implement the inverted dropout forward pass during training time.
     Store the masked and scaled activations in out, and store the
      dropout mask as the variable mask.
   # ----- #
   mask = (np.random.rand(*x.shape) < p) / p</pre>
   out = mask * x
   # =========== #
   # END YOUR CODE HERE
   # ------ #
elif mode == 'test':
   # ============= #
   # YOUR CODE HERE:
      Implement the inverted dropout forward pass during test time.
   # ----- #
   out = x
```

```
# ----- #
    # END YOUR CODE HERE
    # ----- #
  cache = (dropout param, mask)
  out = out.astype(x.dtype, copy=False)
  return out, cache
def dropout_backward(dout, cache):
  Perform the backward pass for (inverted) dropout.
  Inputs:
  - dout: Upstream derivatives, of any shape
  - cache: (dropout_param, mask) from dropout_forward.
  dropout_param, mask = cache
  mode = dropout_param['mode']
  dx = None
  if mode == 'train':
    # ----- #
    # YOUR CODE HERE:
       Implement the inverted dropout backward pass during training time.
    dx = mask * dout
    # ------ #
    # END YOUR CODE HERE
    elif mode == 'test':
    # ----- #
    # YOUR CODE HERE:
       Implement the inverted dropout backward pass during test time.
    # ----- #
    dx = dout
    # ----- #
    # END YOUR CODE HERE
    # ------ #
  return dx
def svm_loss(x, y):
  Computes the loss and gradient using for multiclass SVM classification.
```

```
Inputs:
    - x: Input data, of shape (N, C) where x[i, j] is the score for the jth class
      for the ith input.
    - y: Vector of labels, of shape (N,) where y[i] is the label for x[i] and
      0 <= y[i] < C
    Returns a tuple of:
    - loss: Scalar giving the loss
    - dx: Gradient of the loss with respect to x
    11 11 11
    N = x.shape[0]
    correct_class_scores = x[np.arange(N), y]
   margins = np.maximum(0, x - correct_class_scores[:, np.newaxis] + 1.0)
   margins[np.arange(N), y] = 0
    loss = np.sum(margins) / N
   num_pos = np.sum(margins > 0, axis=1)
    dx = np.zeros_like(x)
    dx[margins > 0] = 1
    dx[np.arange(N), y] -= num_pos
    dx /= N
    return loss, dx
def softmax_loss(x, y):
    Computes the loss and gradient for softmax classification.
    Inputs:
    - x: Input data, of shape (N, C) where x[i, j] is the score for the jth class
      for the ith input.
    - y: Vector of labels, of shape (N,) where y[i] is the label for x[i] and
      0 <= y[i] < C
   Returns a tuple of:
    - loss: Scalar giving the loss
    - dx: Gradient of the loss with respect to x
    probs = np.exp(x - np.max(x, axis=1, keepdims=True))
   probs /= np.sum(probs, axis=1, keepdims=True)
   N = x.shape[0]
    loss = -np.sum(np.log(probs[np.arange(N), y])) / N
    dx = probs.copy()
    dx[np.arange(N), y] = 1
    dx /= N
    return loss, dx
```

3 layers_utils

```
In [ ]: from .layers import *
        11 11 11
        This code was originally written for CS 231n at Stanford University
        (cs231n.stanford.edu). It has been modified in various areas for use in the
        ECE 239AS class at UCLA. This includes the descriptions of what code to
        implement as well as some slight potential changes in variable names to be
        consistent with class nomenclature. We thank Justin Johnson & Serena Yeung for
        permission to use this code. To see the original version, please visit
        cs231n.stanford.edu.
        def affine_relu_forward(x, w, b):
            11 11 11
            Convenience layer that performs an affine transform followed by a ReLU
            Inputs:
            - x: Input to the affine layer
            - w, b: Weights for the affine layer
            Returns a tuple of:
            - out: Output from the ReLU
            - cache: Object to give to the backward pass
            a, fc cache = affine forward(x, w, b)
            out, relu_cache = relu_forward(a)
            cache = (fc_cache, relu_cache)
            return out, cache
        def affine_relu_backward(dout, cache):
            Backward pass for the affine-relu convenience layer
            fc_cache, relu_cache = cache
            da = relu_backward(dout, relu_cache)
            dx, dw, db = affine_backward(da, fc_cache)
            return dx, dw, db
        def affine_batchnorm_relu_forward(x, w, b, gamma, beta, bn_param):
            aff_out, aff_cache = affine_forward(x, w, b)
            batch_out, batch_cache = batchnorm_forward(aff_out, gamma, beta, bn_param)
            out, relu_cache = relu_forward(batch_out)
            cache = (aff_cache, relu_cache, batch_cache)
            return out, cache
```

```
def affine_batchnorm_relu_backward(dout, cache):
    aff_cache, relu_cache, batch_cache = cache
    dbatch = relu_backward(dout, relu_cache)
    daffine, dgamma, dbeta = batchnorm_backward(dbatch, batch_cache)
    dx, dw, db = affine_backward(daffine, aff_cache)
    return dx, dw, db, dgamma, dbeta
```

4 fc_net

```
In []: import numpy as np
        import pdb

from .layers import *
    from .layer_utils import *
```

This code was originally written for CS 231n at Stanford University (cs231n.stanford.edu). It has been modified in various areas for use in the ECE 239AS class at UCLA. This includes the descriptions of what code to implement as well as some slight potential changes in variable names to be consistent with class nomenclature. We thank Justin Johnson & Serena Yeung for permission to use this code. To see the original version, please visit cs231n.stanford.edu.

class TwoLayerNet(object):

H/H/H

A two-layer fully-connected neural network with ReLU nonlinearity and softmax loss that uses a modular layer design. We assume an input dimension of D, a hidden dimension of H, and perform classification over C classes.

The architecure should be affine - relu - affine - softmax.

Note that this class does not implement gradient descent; instead, it will interact with a separate Solver object that is responsible for running optimization.

The learnable parameters of the model are stored in the dictionary self.params that maps parameter names to numpy arrays.

Initialize a new network.

```
Inputs:
   - input_dim: An integer giving the size of the input
   - hidden_dims: An integer giving the size of the hidden layer
   - num_classes: An integer giving the number of classes to classify
   - dropout: Scalar between 0 and 1 giving dropout strength.
   - weight_scale: Scalar giving the standard deviation for random
     initialization of the weights.
   - reg: Scalar giving L2 regularization strength.
   self.params = {}
   self.reg = reg
   # ------ #
     Initialize W1, W2, b1, and b2. Store these as self.params['W1'],
      self.params['W2'], self.params['b1'] and self.params['b2']. The
     biases are initialized to zero and the weights are initialized
     so that each parameter has mean 0 and standard deviation weight_scale.
      The dimensions of W1 should be (input_dim, hidden_dim) and the
      dimensions of W2 should be (hidden_dims, num_classes)
   size_W1 = (input_dim, hidden_dims)
   size_W2 = (hidden_dims,num_classes)
   self.params['W1'] = np.random.normal(loc=0.0,scale=weight_scale,size = size_W1
   self.params['b1'] = np.zeros(hidden_dims)
   self.params['W2'] = np.random.normal(loc=0.0,scale=weight_scale,size = size_W2
   self.params['b2'] = np.zeros(num_classes)
   # ----- #
   # END YOUR CODE HERE
   # ----- #
def loss(self, X, y=None):
   11 11 11
   Compute loss and gradient for a minibatch of data.
   Inputs:
   - X: Array of input data of shape (N, d_1, \ldots, d_k)
   - y: Array of labels, of shape (N,). y[i] gives the label for X[i].
   Returns:
   If y is None, then run a test-time forward pass of the model and return:
   - scores: Array of shape (N, C) giving classification scores, where
     scores[i, c] is the classification score for X[i] and class c.
```

If y is not None, then run a training-time forward and backward pass and

```
return a tuple of:
- loss: Scalar value giving the loss
- grads: Dictionary with the same keys as self.params, mapping parameter
 names to gradients of the loss with respect to those parameters.
scores = None
# ------ #
# YOUR CODE HERE:
  Implement the forward pass of the two-layer neural network. Store
  the class scores as the variable 'scores'. Be sure to use the layers
  you prior implemented.
# ======== #
W1 = self.params['W1']
b1 = self.params['b1']
W2 = self.params['W2']
b2 = self.params['b2']
H, cache_h = affine_relu_forward(X, W1, b1)
Z, cache_z = affine_forward(H, W2, b2)
scores = Z
# ----- #
# END YOUR CODE HERE
# ------ #
# If y is None then we are in test mode so just return scores
if y is None:
   return scores
loss, grads = 0, \{\}
# ----- #
# YOUR CODE HERE:
   Implement the backward pass of the two-layer neural net. Store
  the loss as the variable 'loss' and store the gradients in the
   'grads' dictionary. For the grads dictionary, grads['W1'] holds
  the gradient for W1, grads['b1'] holds the gradient for b1, etc.
   i.e., grads[k] holds the gradient for self.params[k].
   Add L2 regularization, where there is an added cost 0.5*self.reg*W^2
  for each W. Be sure to include the 0.5 multiplying factor to
  match our implementation.
   And be sure to use the layers you prior implemented.
# ----- #
loss, dz = softmax_loss(scores, y)
loss += 0.5*self.reg*(np.sum(W1*W1) + np.sum(W2*W2))
```

```
dh, dw2, db2 = affine_backward(dz, cache_z)
       dx, dw1, db1 = affine_relu_backward(dh, cache_h)
       grads['W1'] = dw1 + self.reg * W1
       grads['b1'] = db1
       grads['W2'] = dw2 + self.reg * W2
       grads['b2'] = db2
       # END YOUR CODE HERE
       # ======== #
       return loss, grads
class FullyConnectedNet(object):
   A fully-connected neural network with an arbitrary number of hidden layers,
   ReLU nonlinearities, and a softmax loss function. This will also implement
   dropout and batch normalization as options. For a network with L layers,
   the architecture will be
   \{affine - [batch norm] - relu - [dropout]\}\ x\ (L - 1) - affine - softmax
   where batch normalization and dropout are optional, and the {...} block is
   repeated L - 1 times.
   Similar to the TwoLayerNet above, learnable parameters are stored in the
   self.params dictionary and will be learned using the Solver class.
   def __init__(self, hidden_dims, input_dim=3*32*32, num_classes=10,
              dropout=1, use_batchnorm=False, reg=0.0,
              weight_scale=1e-2, dtype=np.float32, seed=None):
       11 11 11
       Initialize a new FullyConnectedNet.
       Inputs:
       - hidden_dims: A list of integers giving the size of each hidden layer.
       - input_dim: An integer giving the size of the input.
       - num_classes: An integer giving the number of classes to classify.
       - dropout: Scalar between 0 and 1 giving dropout strength. If dropout=1 then
         the network should not use dropout at all.
       - use batchnorm: Whether or not the network should use batch normalization.
       - reg: Scalar giving L2 regularization strength.
       - weight scale: Scalar giving the standard deviation for random
         initialization of the weights.
       - dtype: A numpy datatype object; all computations will be performed using
```

```
this datatype. float32 is faster but less accurate, so you should use
 float64 for numeric gradient checking.
- seed: If not None, then pass this random seed to the dropout layers. This
 will make the dropout layers deteriminstic so we can gradient check the
 model.
if dropout <= 0 or dropout > 1: print ("Wrong dropout probability")
self.use_batchnorm = use_batchnorm
self.use_dropout = dropout < 1</pre>
self.reg = reg
self.num_layers = 1 + len(hidden_dims)
self.dtype = dtype
self.params = {}
# ----- #
# YOUR CODE HERE:
   Initialize all parameters of the network in the self.params dictionary.
  The weights and biases of layer 1 are W1 and b1; and in general the
  weights and biases of layer i are Wi and bi. The
  biases are initialized to zero and the weights are initialized
  so that each parameter has mean 0 and standard deviation weight_scale.
  BATCHNORM: Initialize the gammas of each layer to 1 and the beta
  parameters to zero. The gamma and beta parameters for layer 1 should
  be self.params['gamma1'] and self.params['beta1']. For layer 2, they
  should be qamma2 and beta2, etc. Only use batchnorm if self.use batchnorm
   is true and DO NOT do batch normalize the output scores.
# ----- #
for i in np.arange(1,self.num_layers+1):
                                                #iterating through layers:
   name_W = 'W' + str(i)
   name_b = 'b' + str(i)
   name gamma = 'gamma' + str(i)
   name_beta = 'beta' + str(i)
   if i == 1:
                               # first layer
       self.params[name_W] = np.random.normal(loc=0.0,scale=weight_scale,size
       self.params[name_b] = np.zeros(hidden_dims[i-1])
       if self.use_batchnorm:
           self.params[name_gamma] = np.ones(hidden_dims[i-1])
           self.params[name_beta] = np.zeros(hidden_dims[i-1])
   elif i == self.num_layers:
                                    # last layer
       self.params[name_W] = np.random.normal(loc=0.0,scale=weight_scale,size
       self.params[name_b] = np.zeros(num_classes)
```

```
# intermediate layers
       else:
           self.params[name_W] = np.random.normal(loc=0.0,scale=weight_scale,size
           self.params[name_b] = np.zeros(hidden_dims[i-1])
           if self.use_batchnorm:
               self.params[name_gamma] = np.ones(hidden_dims[i-1])
               self.params[name_beta] = np.zeros(hidden_dims[i-1])
    # END YOUR CODE HERE
    # When using dropout we need to pass a dropout_param dictionary to each
   # dropout layer so that the layer knows the dropout probability and the mode
   # (train / test). You can pass the same dropout_param to each dropout layer.
   self.dropout_param = {}
   if self.use_dropout:
       self.dropout_param = {'mode': 'train', 'p': dropout}
   if seed is not None:
       self.dropout_param['seed'] = seed
   # With batch normalization we need to keep track of running means and
   # variances, so we need to pass a special bn_param object to each batch
   # normalization layer. You should pass self.bn_params[0] to the forward pass
   # of the first batch normalization layer, self.bn_params[1] to the forward
   # pass of the second batch normalization layer, etc.
   self.bn_params = []
   if self.use_batchnorm:
       self.bn_params = [{'mode': 'train'} for i in np.arange(self.num_layers - 1
   # Cast all parameters to the correct datatype
   for k, v in self.params.items():
       self.params[k] = v.astype(dtype)
def loss(self, X, y=None):
   Compute loss and gradient for the fully-connected net.
   Input / output: Same as TwoLayerNet above.
   X = X.astype(self.dtype)
   mode = 'test' if y is None else 'train'
   # Set train/test mode for batchnorm params and dropout param since they
   # behave differently during training and testing.
   if self.dropout_param is not None:
       self.dropout_param['mode'] = mode
```

```
if self.use_batchnorm:
   for bn_param in self.bn_params:
       bn_param['mode'] = mode
scores = None
# ----- #
# YOUR CODE HERE:
   Implement the forward pass of the FC net and store the output
   scores as the variable "scores".
   BATCHNORM: If self.use_batchnorm is true, insert a bathnorm layer
   between the affine forward and relu forward layers. You may
   also write an affine_batchnorm_relu() function in layer_utils.py.
   DROPOUT: If dropout is non-zero, insert a dropout layer after
   every ReLU layer.
# ----- #
H = \prod
cache h = []
cache_dropout = []
for i in np.arange(1,self.num_layers + 1):
   name_W = 'W' + str(i)
   name_b = 'b' + str(i)
   name_gamma = 'gamma' + str(i)
   name_beta = 'beta' + str(i)
                                         # first layer
   if i == 1:
       if self.use_batchnorm == False:
           H.append(affine_relu_forward(X, self.params[name_W], self.params[name_W]
           cache_h.append(affine_relu_forward(X, self.params[name_W], self.par
       else:
           H.append(affine_batchnorm_relu_forward(X, self.params[name_W], self.
           cache_h.append(affine_batchnorm_relu_forward(X, self.params[name_W]
       if self.use_dropout > 0:
           H[0] = dropout_forward(H[0], self.dropout_param)[0]
           cache_dropout.append(dropout_forward(H[0], self.dropout_param)[1])
                                           # last layer
   elif i == self.num_layers:
       scores = affine_forward(H[i-2], self.params[name_W], self.params[name_
       {\tt cache\_h.append(affine\_forward(H[i-2], self.params[name\_W], self.params}), \\
   else:
                                            # intermediate layers
       if self.use_batchnorm == False:
           H.append(affine_relu_forward(H[i-2], self.params[name_W], self.params
           cache_h append(affine_relu_forward(H[i-2], self params[name_W], se
```

```
cache_h.append(affine_batchnorm_relu_forward(H[i-2], self.params[name=1])
      if self.use_dropout > 0:
          H[i-1] = dropout_forward(H[i-1], self.dropout_param)[0]
          cache_dropout.append(dropout_forward(H[i-1], self.dropout_param)[1]
# ------ #
# END YOUR CODE HERE
# ------ #
# If test mode return early
if mode == 'test':
   return scores
loss, grads = 0.0, {}
# ----- #
# YOUR CODE HERE:
   Implement the backwards pass of the FC net and store the gradients
  in the grads dict, so that grads[k] is the gradient of self.params[k]
  Be sure your L2 regularization includes a 0.5 factor.
   BATCHNORM: Incorporate the backward pass of the batchnorm.
   DROPOUT: Incorporate the backward pass of dropout.
loss, dz = softmax_loss(scores, y)
dh = []
for i in np.arange(self.num_layers,0,-1):
   name_W = 'W' + str(i)
   name b = 'b' + str(i)
   name_gamma = 'gamma' + str(i)
   name_beta = 'beta' + str(i)
   loss += (0.5 * self.reg * np.sum(self.params[name_W]*self.params[name_W]))
   if i == self.num_layers:
      dh1, grads[name_W], grads[name_b] = affine_backward(dz, cache_h[self.n:
      dh.append(dh1)
   else:
      if self.use_batchnorm == False:
          if self.use_dropout > 0:
             dh[self.num_layers-i-1] = dropout_backward(dh[self.num_layers-
```

H.append(affine_batchnorm_relu_forward(H[i-2], self.params[name_W]

else:

5 optim.py

In []: import numpy as np

11 11 11

This code was originally written for CS 231n at Stanford University (cs231n.stanford.edu). It has been modified in various areas for use in the ECE 239AS class at UCLA. This includes the descriptions of what code to implement as well as some slight potential changes in variable names to be consistent with class nomenclature. We thank Justin Johnson & Serena Yeung for permission to use this code. To see the original version, please visit cs231n.stanford.edu.

,,,,,,

This file implements various first-order update rules that are commonly used for training neural networks. Each update rule accepts current weights and the gradient of the loss with respect to those weights and produces the next set of weights. Each update rule has the same interface:

def update(w, dw, config=None):

Inputs:

- w: A numpy array giving the current weights.
- dw: A numpy array of the same shape as w giving the gradient of the loss with respect to w.
- config: A dictionary containing hyperparameter values such as learning rate, momentum, etc. If the update rule requires caching values over many

iterations, then config will also hold these cached values.

```
Returns:
```

update rule.

```
- next_w: The next point after the update.- config: The config dictionary to be passed to the next iteration of the
```

NOTE: For most update rules, the default learning rate will probably not perform well; however the default values of the other hyperparameters should work well for a variety of different problems.

For efficiency, update rules may perform in-place updates, mutating w and setting next_w equal to w.

```
def sgd(w, dw, config=None):
    Performs vanilla stochastic gradient descent.
    config format:
    - learning_rate: Scalar learning rate.
    if config is None: config = {}
    config.setdefault('learning_rate', 1e-2)
    w -= config['learning_rate'] * dw
    return w, config
def sgd_momentum(w, dw, config=None):
    Performs stochastic gradient descent with momentum.
    config format:
    - learning_rate: Scalar learning rate.
    - momentum: Scalar between 0 and 1 giving the momentum value.
      Setting momentum = 0 reduces to sgd.
    - velocity: A numpy array of the same shape as w and dw used to store a moving
      average of the gradients.
    11 11 11
```

config.setdefault('momentum', 0.9) # set momentum to 0.9 if it wasn't there

v = config.get('velocity', np.zeros_like(w)) # gets velocity, else sets it to ze

if config is None: config = {}

YOUR CODE HERE:

config.setdefault('learning_rate', 1e-2)

```
Implement the momentum update formula. Return the updated weights
   # as next_w, and the updated velocity as v.
   # ----- #
   v = config['momentum']*v - config['learning_rate']*dw
  next w = w + v
   # =========== #
   # END YOUR CODE HERE
   # ------ #
   config['velocity'] = v
   return next_w, config
def sgd_nesterov_momentum(w, dw, config=None):
   Performs stochastic gradient descent with Nesterov momentum.
   config format:
   - learning_rate: Scalar learning rate.
   - momentum: Scalar between 0 and 1 giving the momentum value.
    Setting momentum = 0 reduces to sgd.
   - velocity: A numpy array of the same shape as w and dw used to store a moving
    average of the gradients.
   if config is None: config = {}
   config.setdefault('learning_rate', 1e-2)
   config.setdefault('momentum', 0.9) # set momentum to 0.9 if it wasn't there
   v = config.get('velocity', np.zeros_like(w)) # gets velocity, else sets it to ze
   # ----- #
   # YOUR CODE HERE:
      Implement the momentum update formula. Return the updated weights
      as next_w, and the updated velocity as v.
   # ----- #
   v old = v
   v = config['momentum']*v_old - config['learning_rate']*dw
   next_w = w + v + config['momentum']*(v - v_old)
   # END YOUR CODE HERE
   config['velocity'] = v
   return next_w, config
def rmsprop(w, dw, config=None):
   Uses the RMSProp update rule, which uses a moving average of squared gradient
```

```
values to set adaptive per-parameter learning rates.
   config format:
   - learning_rate: Scalar learning rate.
   - decay_rate: Scalar between 0 and 1 giving the decay rate for the squared
     gradient cache.
   - epsilon: Small scalar used for smoothing to avoid dividing by zero.
   - beta: Moving average of second moments of gradients.
   if config is None: config = {}
   config.setdefault('learning_rate', 1e-2)
   config.setdefault('decay_rate', 0.99)
   config.setdefault('epsilon', 1e-8)
   config.setdefault('a', np.zeros_like(w))
   next_w = None
   # ----- #
   # YOUR CODE HERE:
       Implement RMSProp. Store the next value of w as next w. You need
   # to also store in config['a'] the moving average of the second
      moment gradients, so they can be used for future gradients. Concretely,
      config['a'] corresponds to "a" in the lecture notes.
   config['a'] = config['decay_rate'] * config['a'] + (1 - config['decay_rate']) * dw
   coeff = np.ones like(w) / ( np.sqrt(config['a']) + config['epsilon'] * np.ones like
   next_w = w - config['learning_rate'] * (dw * coeff)
   # ----- #
   # END YOUR CODE HERE
   # ----- #
   return next_w, config
def adam(w, dw, config=None):
   11 11 11
   Uses the Adam update rule, which incorporates moving averages of both the
   gradient and its square and a bias correction term.
   config format:
   - learning_rate: Scalar learning rate.
   - beta1: Decay rate for moving average of first moment of gradient.
   - beta2: Decay rate for moving average of second moment of gradient.
   - epsilon: Small scalar used for smoothing to avoid dividing by zero.
   - m: Moving average of gradient.
   - v: Moving average of squared gradient.
   - t: Iteration number.
   11 11 11
```

```
if config is None: config = {}
config.setdefault('learning_rate', 1e-3)
config.setdefault('beta1', 0.9)
config.setdefault('beta2', 0.999)
config.setdefault('epsilon', 1e-8)
config.setdefault('v', np.zeros_like(w))
config.setdefault('a', np.zeros_like(w))
config.setdefault('t', 0)
next_w = None
# ----- #
# YOUR CODE HERE:
# Implement Adam. Store the next value of w as next_w. You need
   to also store in config['a'] the moving average of the second
# moment gradients, and in config['v'] the moving average of the
   first moments. Finally, store in config['t'] the increasing time.
# ----- #
config['v'] = config['beta1'] * config['v'] + (1 - config['beta1']) * dw
config['a'] = config['beta2'] * config['a'] + (1 - config['beta2']) * dw * dw
config['t'] += 1
a_corrected = np.sqrt( config['a'] / (1 - np.power(config['beta2'],config['t'])) )
v_corrected = config['v'] / (1 - np.power(config['beta1'],config['t']))
coeff = np.ones_like(w) / ( a_corrected + (config['epsilon'] * np.ones_like(w)) )
next_w = w - ( config['learning_rate'] * v_corrected * coeff )
# ----- #
# END YOUR CODE HERE
# ----- #
```

Batch-Normalization

February 14, 2020

1 Batch Normalization

In this notebook, you will implement the batch normalization layers of a neural network to increase its performance. Please review the details of batch normalization from the lecture notes.

CS231n has built a solid API for building these modular frameworks and training them, and we will use their very well implemented framework as opposed to "reinventing the wheel." This includes using their Solver, various utility functions, and their layer structure. This also includes nndl.fc_net, nndl.layers, and nndl.layer_utils. As in prior assignments, we thank Serena Yeung & Justin Johnson for permission to use code written for the CS 231n class (cs231n.stanford.edu).

```
In [1]: ## Import and setups
        import time
        import numpy as np
        import matplotlib.pyplot as plt
        from nndl.fc_net import *
        from nndl.layers import *
        from cs231n.data_utils import get_CIFAR10_data
        from cs231n.gradient_check import eval_numerical_gradient, eval_numerical_gradient_arro
        from cs231n.solver import Solver
        %matplotlib inline
        plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
        plt.rcParams['image.interpolation'] = 'nearest'
        plt.rcParams['image.cmap'] = 'gray'
        # for auto-reloading external modules
        \# see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython
        %load ext autoreload
        %autoreload 2
        def rel_error(x, y):
            """ returns relative error """
            return np.max(np.abs(x - y) / (np.maximum(1e-8, np.abs(x) + np.abs(y))))
In [2]: # Load the (preprocessed) CIFAR10 data.
        data = get_CIFAR10_data()
```

1.1 Batchnorm forward pass

Implement the training time batchnorm forward pass, batchnorm_forward, in nndl/layers.py. After that, test your implementation by running the following cell.

```
In [3]: # Check the training-time forward pass by checking means and variances
        # of features both before and after batch normalization
        # Simulate the forward pass for a two-layer network
       N, D1, D2, D3 = 200, 50, 60, 3
       X = np.random.randn(N, D1)
       W1 = np.random.randn(D1, D2)
       W2 = np.random.randn(D2, D3)
        a = np.maximum(0, X.dot(W1)).dot(W2)
        print('Before batch normalization:')
        print(' means: ', a.mean(axis=0))
        print(' stds: ', a.std(axis=0))
        # Means should be close to zero and stds close to one
        print('After batch normalization (gamma=1, beta=0)')
        a_norm, _ = batchnorm_forward(a, np.ones(D3), np.zeros(D3), {'mode': 'train'})
        print(' mean: ', a_norm.mean(axis=0))
        print(' std: ', a_norm.std(axis=0))
        # Now means should be close to beta and stds close to gamma
        gamma = np.asarray([1.0, 2.0, 3.0])
        beta = np.asarray([11.0, 12.0, 13.0])
        a_norm, _ = batchnorm_forward(a, gamma, beta, {'mode': 'train'})
        print('After batch normalization (nontrivial gamma, beta)')
        print(' means: ', a_norm.mean(axis=0))
        print(' stds: ', a_norm.std(axis=0))
Before batch normalization:
 means: [37.92392543 28.09237194 -3.04969567]
  stds: [34.78471832 25.74155703 24.37582532]
After batch normalization (gamma=1, beta=0)
 mean: [ 6.19504448e-16 -4.81698015e-16 3.88578059e-17]
```

Implement the testing time batchnorm forward pass, batchnorm_forward, in nndl/layers.py. After that, test your implementation by running the following cell.

```
In [4]: # Check the test-time forward pass by running the training-time
        # forward pass many times to warm up the running averages, and then
        # checking the means and variances of activations after a test-time
        # forward pass.
        N, D1, D2, D3 = 200, 50, 60, 3
        W1 = np.random.randn(D1, D2)
        W2 = np.random.randn(D2, D3)
        bn_param = {'mode': 'train'}
        gamma = np.ones(D3)
        beta = np.zeros(D3)
        for t in np.arange(50):
            X = np.random.randn(N, D1)
            a = np.maximum(0, X.dot(W1)).dot(W2)
            batchnorm_forward(a, gamma, beta, bn_param)
        bn_param['mode'] = 'test'
        X = np.random.randn(N, D1)
        a = np.maximum(0, X.dot(W1)).dot(W2)
        a_norm, _ = batchnorm_forward(a, gamma, beta, bn_param)
        # Means should be close to zero and stds close to one, but will be
        # noisier than training-time forward passes.
        print('After batch normalization (test-time):')
                means: ', a_norm.mean(axis=0))
        print('
                 stds: ', a_norm.std(axis=0))
After batch normalization (test-time):
          [0.0145487 0.08299104 0.00142647]
         [0.95813208 1.07410707 1.04147374]
  stds:
```

1.2 Batchnorm backward pass

Implement the backward pass for the batchnorm layer, batchnorm_backward in nndl/layers.py. Check your implementation by running the following cell.

```
In [5]: # Gradient check batchnorm backward pass

N, D = 4, 5
```

```
x = 5 * np.random.randn(N, D) + 12
        gamma = np.random.randn(D)
        beta = np.random.randn(D)
        dout = np.random.randn(N, D)
        bn_param = {'mode': 'train'}
        fx = lambda x: batchnorm_forward(x, gamma, beta, bn_param)[0]
        fg = lambda a: batchnorm_forward(x, gamma, beta, bn_param)[0]
        fb = lambda b: batchnorm_forward(x, gamma, beta, bn_param)[0]
        dx_num = eval_numerical_gradient_array(fx, x, dout)
        da_num = eval_numerical_gradient_array(fg, gamma, dout)
        db_num = eval_numerical_gradient_array(fb, beta, dout)
        _, cache = batchnorm_forward(x, gamma, beta, bn_param)
        dx, dgamma, dbeta = batchnorm_backward(dout, cache)
        print('dx error: ', rel_error(dx_num, dx))
       print('dgamma error: ', rel_error(da_num, dgamma))
        print('dbeta error: ', rel_error(db_num, dbeta))
dx error: 2.1298178158532375e-09
dgamma error: 2.8064035777574576e-11
dbeta error: 8.832378711339843e-12
```

Modify the FullyConnectedNet() class in nndl/fc_net.py to incorporate batchnorm layers. You will need to modify the class in the following areas:

(1) The gammas and betas need to be initialized to 1's and 0's respectively in __init__.

Implement a fully connected neural network with batchnorm layers

- (2) The batchnorm_forward layer needs to be inserted between each affine and relu layer (except in the output layer) in a forward pass computation in loss. You may find it helpful to write an affine_batchnorm_relu() layer in nndl/layer_utils.py although this is not necessary.
- (3) The batchnorm_backward layer has to be appropriately inserted when calculating gradients.

After you have done the appropriate modifications, check your implementation by running the following cell.

Note, while the relative error for W3 should be small, as we backprop gradients more, you may find the relative error increases. Our relative error for W1 is on the order of 1e-4.

```
In [8]: N, D, H1, H2, C = 2, 15, 20, 30, 10
    X = np.random.randn(N, D)
    y = np.random.randint(C, size=(N,))
    for reg in [0, 3.14]:
```

```
print('Running check with reg = ', reg)
            model = FullyConnectedNet([H1, H2], input_dim=D, num_classes=C,
                                      reg=reg, weight_scale=5e-2, dtype=np.float64,
                                      use_batchnorm=True)
            loss, grads = model.loss(X, y)
            print('Initial loss: ', loss)
            for name in sorted(grads):
                f = lambda _: model.loss(X, y)[0]
                grad_num = eval_numerical_gradient(f, model.params[name], verbose=False, h=1e-
                print('{} relative error: {}'.format(name, rel_error(grad_num, grads[name])))
            if reg == 0: print('\n')
Running check with reg = 0
Initial loss: 2.124682266830193
W1 relative error: 9.534915440868622e-05
W2 relative error: 2.8163375283113363e-05
W3 relative error: 4.69682309092814e-10
b1 relative error: 0.002220468253710805
b2 relative error: 0.0022204460492503126
b3 relative error: 1.0301907212369804e-10
beta1 relative error: 7.243124540290909e-09
beta2 relative error: 7.393747064546868e-09
gamma1 relative error: 7.425840688735541e-09
gamma2 relative error: 1.680359279959206e-08
Running check with reg = 3.14
Initial loss: 7.114624284555321
W1 relative error: 8.053561230992978e-05
W2 relative error: 3.6760964253817136e-06
W3 relative error: 1.6964865681982366e-07
b1 relative error: 4.440892098500626e-08
b2 relative error: 2.55351295663786e-07
b3 relative error: 2.1193163206493582e-10
beta1 relative error: 2.4691018774031735e-07
beta2 relative error: 1.2914237330979178e-08
gamma1 relative error: 9.043019045521489e-08
gamma2 relative error: 1.5991363525659436e-08
```

1.4 Training a deep fully connected network with batch normalization.

To see if batchnorm helps, let's train a deep neural network with and without batch normalization.

```
num_train = 1000
        small_data = {
            'X_train': data['X_train'][:num_train],
            'y_train': data['y_train'][:num_train],
            'X_val': data['X_val'],
            'y_val': data['y_val'],
       }
       weight_scale = 2e-2
       bn model = FullyConnectedNet(hidden dims, weight_scale=weight_scale, use batchnorm=True
       model = FullyConnectedNet(hidden_dims, weight_scale=weight_scale, use_batchnorm=False)
       bn_solver = Solver(bn_model, small_data,
                        num_epochs=10, batch_size=50,
                        update_rule='adam',
                        optim_config={
                          'learning_rate': 1e-3,
                        },
                        verbose=True, print_every=200)
       bn_solver.train()
        solver = Solver(model, small_data,
                        num epochs=10, batch size=50,
                        update_rule='adam',
                        optim_config={
                          'learning_rate': 1e-3,
                        },
                        verbose=True, print_every=200)
        solver.train()
(Iteration 1 / 200) loss: 2.313824
(Epoch 0 / 10) train acc: 0.110000; val_acc: 0.113000
(Epoch 1 / 10) train acc: 0.355000; val_acc: 0.304000
(Epoch 2 / 10) train acc: 0.413000; val_acc: 0.306000
(Epoch 3 / 10) train acc: 0.517000; val_acc: 0.312000
(Epoch 4 / 10) train acc: 0.584000; val_acc: 0.325000
(Epoch 5 / 10) train acc: 0.632000; val_acc: 0.323000
(Epoch 6 / 10) train acc: 0.650000; val_acc: 0.331000
(Epoch 7 / 10) train acc: 0.728000; val_acc: 0.339000
(Epoch 8 / 10) train acc: 0.760000; val_acc: 0.328000
(Epoch 9 / 10) train acc: 0.791000; val_acc: 0.317000
(Epoch 10 / 10) train acc: 0.814000; val_acc: 0.344000
(Iteration 1 / 200) loss: 2.302852
(Epoch 0 / 10) train acc: 0.157000; val_acc: 0.125000
(Epoch 1 / 10) train acc: 0.212000; val_acc: 0.191000
(Epoch 2 / 10) train acc: 0.287000; val_acc: 0.261000
(Epoch 3 / 10) train acc: 0.357000; val_acc: 0.294000
```

```
(Epoch 4 / 10) train acc: 0.375000; val_acc: 0.288000
(Epoch 5 / 10) train acc: 0.427000; val_acc: 0.303000
(Epoch 6 / 10) train acc: 0.486000; val_acc: 0.339000
(Epoch 7 / 10) train acc: 0.515000; val_acc: 0.312000
(Epoch 8 / 10) train acc: 0.552000; val acc: 0.351000
(Epoch 9 / 10) train acc: 0.631000; val_acc: 0.328000
(Epoch 10 / 10) train acc: 0.643000; val acc: 0.318000
In [10]: fig, axes = plt.subplots(3, 1)
         ax = axes[0]
         ax.set_title('Training loss')
         ax.set_xlabel('Iteration')
         ax = axes[1]
         ax.set_title('Training accuracy')
         ax.set_xlabel('Epoch')
         ax = axes[2]
         ax.set_title('Validation accuracy')
         ax.set_xlabel('Epoch')
         ax = axes[0]
         ax.plot(solver.loss history, 'o', label='baseline')
         ax.plot(bn_solver.loss_history, 'o', label='batchnorm')
         ax = axes[1]
         ax.plot(solver.train_acc_history, '-o', label='baseline')
         ax.plot(bn_solver.train_acc_history, '-o', label='batchnorm')
         ax = axes[2]
         ax.plot(solver.val_acc_history, '-o', label='baseline')
         ax.plot(bn_solver.val_acc_history, '-o', label='batchnorm')
         for i in [1, 2, 3]:
             ax = axes[i - 1]
             ax.legend(loc='upper center', ncol=4)
         plt.gcf().set_size_inches(15, 15)
         plt.show()
```


1.5 Batchnorm and initialization

The following cells run an experiment where for a deep network, the initialization is varied. We do training for when batchnorm layers are and are not included.

```
'y_val': data['y_val'],
         }
         bn_solvers = {}
         solvers = {}
         weight_scales = np.logspace(-4, 0, num=20)
         for i, weight_scale in enumerate(weight_scales):
             print('Running weight scale {} / {}'.format(i + 1, len(weight_scales)))
             bn_model = FullyConnectedNet(hidden_dims, weight_scale=weight_scale, use_batchnorm
             model = FullyConnectedNet(hidden_dims, weight_scale=weight_scale, use_batchnorm=Formula)
             bn_solver = Solver(bn_model, small_data,
                             num_epochs=10, batch_size=50,
                             update_rule='adam',
                             optim_config={
                                'learning_rate': 1e-3,
                             },
                             verbose=False, print_every=200)
             bn_solver.train()
             bn_solvers[weight_scale] = bn_solver
             solver = Solver(model, small_data,
                             num_epochs=10, batch_size=50,
                             update_rule='adam',
                             optim_config={
                                'learning_rate': 1e-3,
                             verbose=False, print_every=200)
             solver.train()
             solvers[weight_scale] = solver
Running weight scale 1 / 20
Running weight scale 2 / 20
Running weight scale 3 / 20
Running weight scale 4 / 20
Running weight scale 5 / 20
Running weight scale 6 / 20
Running weight scale 7 / 20
Running weight scale 8 / 20
Running weight scale 9 / 20
Running weight scale 10 / 20
Running weight scale 11 / 20
Running weight scale 12 / 20
Running weight scale 13 / 20
Running weight scale 14 / 20
Running weight scale 15 / 20
Running weight scale 16 / 20
```

```
/Users/ApplePro/Desktop/School/GradSchool/Courses/C247/hw4/nndl/layers.py:434: RuntimeWarning:
  loss = -np.sum(np.log(probs[np.arange(N), y])) / N
Running weight scale 17 / 20
Running weight scale 18 / 20
Running weight scale 19 / 20
Running weight scale 20 / 20
In [12]: # Plot results of weight scale experiment
         best_train_accs, bn_best_train_accs = [], []
         best_val_accs, bn_best_val_accs = [], []
         final_train_loss, bn_final_train_loss = [], []
         for ws in weight_scales:
             best_train_accs.append(max(solvers[ws].train_acc_history))
             bn_best_train_accs.append(max(bn_solvers[ws].train_acc_history))
             best_val_accs.append(max(solvers[ws].val_acc_history))
             bn_best_val_accs.append(max(bn_solvers[ws].val_acc_history))
             final train loss.append(np.mean(solvers[ws].loss history[-100:]))
             bn_final_train_loss.append(np.mean(bn_solvers[ws].loss_history[-100:]))
         plt.subplot(3, 1, 1)
         plt.title('Best val accuracy vs weight initialization scale')
         plt.xlabel('Weight initialization scale')
         plt.ylabel('Best val accuracy')
         plt.semilogx(weight_scales, best_val_accs, '-o', label='baseline')
         plt.semilogx(weight_scales, bn_best_val_accs, '-o', label='batchnorm')
         plt.legend(ncol=2, loc='lower right')
         plt.subplot(3, 1, 2)
         plt.title('Best train accuracy vs weight initialization scale')
         plt.xlabel('Weight initialization scale')
         plt.ylabel('Best training accuracy')
         plt.semilogx(weight_scales, best_train_accs, '-o', label='baseline')
         plt.semilogx(weight_scales, bn_best_train_accs, '-o', label='batchnorm')
         plt.legend()
         plt.subplot(3, 1, 3)
         plt.title('Final training loss vs weight initialization scale')
         plt.xlabel('Weight initialization scale')
         plt.ylabel('Final training loss')
         plt.semilogx(weight_scales, final_train_loss, '-o', label='baseline')
         plt.semilogx(weight_scales, bn_final_train_loss, '-o', label='batchnorm')
         plt.legend()
```

plt.gcf().set_size_inches(10, 15)
plt.show()

1.6 Question:

In the cell below, summarize the findings of this experiment, and WHY these results make sense.

1.7 Answer:

- 1. Batchnorm makes the model less sensitive to the initialization of the parameters (like w's). In the loss figures, the loss function of the model with batchnorm (orange) is pretty consistant the weight initialization range changing only around 0.3 unit. Whereas within the same range of weight initialization the loss function of the baeline changes drastically (from 2.3 to around 1).
- 2. The training and validation accuracies with batch norm tend to change less sensitive with respect to weight initializations in comparison with baseline model.

2 layers

```
In []: import numpy as np
        import pdb
        .....
        This code was originally written for CS 231n at Stanford University
        (cs231n.stanford.edu). It has been modified in various areas for use in the
        ECE 239AS class at UCLA. This includes the descriptions of what code to
        implement as well as some slight potential changes in variable names to be
        consistent with class nomenclature. We thank Justin Johnson & Serena Yeung for
        permission to use this code. To see the original version, please visit
        cs231n.stanford.edu.
        11 11 11
        def affine_forward(x, w, b):
            Computes the forward pass for an affine (fully-connected) layer.
            The input x has shape (N, d_1, \ldots, d_k) and contains a minibatch of N
            examples, where each example x[i] has shape (d_1, \ldots, d_k). We will
            reshape each input into a vector of dimension D = d_1 * ... * d_k, and
            then transform it to an output vector of dimension M.
            Inputs:
            - x: A numpy array containing input data, of shape (N, d_1, \ldots, d_k)
            - w: A numpy array of weights, of shape (D, M)
            - b: A numpy array of biases, of shape (M,)
            Returns a tuple of:
            - out: output, of shape (N, M)
            - cache: (x, w, b)
            11 11 11
```

```
out = None
   # ----- #
   # YOUR CODE HERE:
      Calculate the output of the forward pass. Notice the dimensions
      of w are D x M, which is the transpose of what we did in earlier
      assignments.
   x transformed = x.reshape(x.shape[0], -1)
   out = np.dot(x_transformed,w) + b
   # ----- #
   # END YOUR CODE HERE
   cache = (x, w, b)
   return out, cache
def affine_backward(dout, cache):
   Computes the backward pass for an affine layer.
   Inputs:
   - dout: Upstream derivative, of shape (N, M)
   - cache: Tuple of:
    -x: A numpy array containing input data, of shape (N, d, 1, \ldots, d, k)
    - w: A numpy array of weights, of shape (D, M)
    - b: A numpy array of biases, of shape (M,)
   Returns a tuple of:
   - dx: Gradient with respect to x, of shape (N, d1, ..., d_k)
   - dw: Gradient with respect to w, of shape (D, M)
   - db: Gradient with respect to b, of shape (M,)
   x, w, b = cache
   dx, dw, db = None, None, None
   # YOUR CODE HERE:
      Calculate the gradients for the backward pass.
   # Notice:
     dout is N x M
      dx should be N x d1 x ... x dk; it relates to dout through multiplication with
      dw should be D x M; it relates to dout through multiplication with x, which is
      db should be M; it is just the sum over dout examples
   # ----- #
   x_transformed = x.reshape(x.shape[0], -1)
```

```
dx = np.dot(dout,w.T)
  dx = dx.reshape(x.shape)
  dw = np.dot(x_transformed.T,dout)
  db = np.sum(dout,axis=0)
  # ----- #
  # END YOUR CODE HERE
  # ----- #
  return dx, dw, db
def relu_forward(x):
  11 11 11
  Computes the forward pass for a layer of rectified linear units (ReLUs).
  Input:
  - x: Inputs, of any shape
  Returns a tuple of:
  - out: Output, of the same shape as x
  - cache: x
  # ------ #
  # YOUR CODE HERE:
     Implement the ReLU forward pass.
  f = lambda x: x * (x > 0) # ReLU
  out = f(x)
  # ----- #
  # END YOUR CODE HERE
  # ----- #
  cache = x
  return out, cache
def relu_backward(dout, cache):
  Computes the backward pass for a layer of rectified linear units (ReLUs).
  Input:
  - dout: Upstream derivatives, of any shape
  - cache: Input x, of same shape as dout
  Returns:
  - dx: Gradient with respect to x
  11 11 11
  x = cache
```

Forward pass for batch normalization.

During training the sample mean and (uncorrected) sample variance are computed from minibatch statistics and used to normalize the incoming data. During training we also keep an exponentially decaying running mean of the mean and variance of each feature, and these averages are used to normalize data at test-time.

At each timestep we update the running averages for mean and variance using an exponential decay based on the momentum parameter:

```
running_mean = momentum * running_mean + (1 - momentum) * sample_mean
running_var = momentum * running_var + (1 - momentum) * sample_var
```

Note that the batch normalization paper suggests a different test-time behavior: they compute sample mean and variance for each feature using a large number of training images rather than using a running average. For this implementation we have chosen to use running averages instead since they do not require an additional estimation step; the torch7 implementation of batch normalization also uses running averages.

Input:

```
x: Data of shape (N, D)
gamma: Scale parameter of shape (D,)
beta: Shift paremeter of shape (D,)
bn_param: Dictionary with the following keys:

mode: 'train' or 'test'; required
eps: Constant for numeric stability
momentum: Constant for running mean / variance.
running_mean: Array of shape (D,) giving running mean of features
```

```
- running_var Array of shape (D,) giving running variance of features
Returns a tuple of:
- out: of shape (N, D)
- cache: A tuple of values needed in the backward pass
mode = bn param['mode']
eps = bn_param.get('eps', 1e-5)
momentum = bn_param.get('momentum', 0.9)
N, D = x.shape
running mean = bn_param.get('running_mean', np.zeros(D, dtype=x.dtype))
running_var = bn_param.get('running_var', np.zeros(D, dtype=x.dtype))
out, cache = None, None
if mode == 'train':
   # ------ #
   # YOUR CODE HERE:
      A few steps here:
        (1) Calculate the running mean and variance of the minibatch.
        (2) Normalize the activations with the running mean and variance.
        (3) Scale and shift the normalized activations. Store this
            as the variable 'out'
        (4) Store any variables you may need for the backward pass in
            the 'cache' variable.
   # ----- #
   Mean_minibatch = x.mean(axis=0)
   Variance_minibatch = np.var(x,axis=0)
   running_mean = momentum * running_mean + (1.0 - momentum) * Mean_minibatch
   running_var = momentum * running_var + (1.0 - momentum) * Variance_minibatch
   Mean_minibatch = np.expand_dims(Mean_minibatch, axis=0)
   Variance_minibatch = np.expand_dims(Variance_minibatch, axis=0)
   x_normal = (x - Mean_minibatch)/( np.sqrt(Variance_minibatch + eps ) )
   out = np.expand_dims(gamma, axis=0) * x_normal + np.expand_dims(beta, axis=0)
   cache = (Mean_minibatch, Variance_minibatch, x_normal, gamma, beta, x, eps)
   # ----- #
   # END YOUR CODE HERE
   # ------ #
elif mode == 'test':
```

```
# ----- #
      # YOUR CODE HERE:
         Calculate the testing time normalized activation. Normalize using
         the running mean and variance, and then scale and shift appropriately.
         Store the output as 'out'.
      # ----- #
      x_norm = (x - running_mean)/(np.sqrt(running_var.T))
      out = np.expand_dims(gamma, axis=0) * x_norm + np.expand_dims(beta, axis=0)
      # ------ #
      # END YOUR CODE HERE
      # ----- #
      raise ValueError('Invalid forward batchnorm mode "%s"' % mode)
   # Store the updated running means back into bn_param
   bn_param['running_mean'] = running_mean
   bn_param['running_var'] = running_var
   return out, cache
def batchnorm_backward(dout, cache):
   11 11 11
   Backward pass for batch normalization.
   For this implementation, you should write out a computation graph for
   batch normalization on paper and propagate gradients backward through
   intermediate nodes.
   Inputs:
   - dout: Upstream derivatives, of shape (N, D)
   - cache: Variable of intermediates from batchnorm_forward.
   Returns a tuple of:
   - dx: Gradient with respect to inputs x, of shape (N, D)
   - dgamma: Gradient with respect to scale parameter gamma, of shape (D,)
   - dbeta: Gradient with respect to shift parameter beta, of shape (D,)
   dx, dgamma, dbeta = None, None, None
   # ----- #
   # YOUR CODE HERE:
      Implement the batchnorm backward pass, calculating dx, dgamma, and dbeta.
   # ----- #
   Mean_minibatch = cache[0]
                                   # D
   Variance_minibatch = cache[1]
                                  # D
```

```
\# N * D
   x_normal = cache[2]
                                         # D
   gamma = cache[3]
   beta = cache[4]
                                         # D
   x = cache[5]
                                         \# N * D
   eps = cache[6]
                                         # scalar
   M = x normal.shape[0]
   std = np.sqrt(Variance_minibatch + eps)
                                                     # D
   dbeta = dout.sum(axis=0)
                                                     # D
   dgamma = np.sum(x_normal * dout ,axis = 0)
                                                     # D
   dx_hat = gamma * dout
                                                     \# D -- N * D
                                                     # D -- N * D
   da = (1.0 / std) * dx_hat
   dMu = np.sum(-da, axis = 0)
   dVar = np.sum((-1.0 / (2*np.power(std,3))) * dx_hat * (x - Mean_minibatch), axis = 0
   dx = (1.0 / std) * dx_hat + (1.0 / M) * dMu + (2.0 / M) * dVar * (x - Mean_minibates)
   # ----- #
   # END YOUR CODE HERE
   # ----- #
   return dx, dgamma, dbeta
def dropout_forward(x, dropout_param):
   11 11 11
   Performs the forward pass for (inverted) dropout.
   Inputs:
   - x: Input data, of any shape
   - dropout_param: A dictionary with the following keys:
     - p: Dropout parameter. We keep each neuron output with probability p.
     - mode: 'test' or 'train'. If the mode is train, then perform dropout;
       if the mode is test, then just return the input.
     - seed: Seed for the random number generator. Passing seed makes this
       function deterministic, which is needed for gradient checking but not in
       real networks.
   Outputs:
   - out: Array of the same shape as x.
   - cache: A tuple (dropout_param, mask). In training mode, mask is the dropout
     mask that was used to multiply the input; in test mode, mask is None.
   p, mode = dropout_param['p'], dropout_param['mode']
   if 'seed' in dropout_param:
       np.random.seed(dropout_param['seed'])
   mask = None
   out = None
```

```
if mode == 'train':
     # ----- #
     # YOUR CODE HERE:
       Implement the inverted dropout forward pass during training time.
       Store the masked and scaled activations in out, and store the
       dropout mask as the variable mask.
     # ------ #
     mask = (np.random.rand(*x.shape) < p) / p</pre>
     out = mask * x
     # ------ #
     # END YOUR CODE HERE
     # ----- #
  elif mode == 'test':
     # ------ #
     # YOUR CODE HERE:
      Implement the inverted dropout forward pass during test time.
     # ----- #
     out = x
     # ------ #
     # END YOUR CODE HERE
     # ----- #
  cache = (dropout_param, mask)
  out = out.astype(x.dtype, copy=False)
  return out, cache
def dropout_backward(dout, cache):
  11 11 11
  Perform the backward pass for (inverted) dropout.
  Inputs:
  - dout: Upstream derivatives, of any shape
  - cache: (dropout_param, mask) from dropout_forward.
  dropout_param, mask = cache
  mode = dropout_param['mode']
  dx = None
  if mode == 'train':
     # ----- #
```

```
# YOUR CODE HERE:
        Implement the inverted dropout backward pass during training time.
     dx = mask * dout
     # ------ #
     # END YOUR CODE HERE
     # ----- #
  elif mode == 'test':
     # YOUR CODE HERE:
        Implement the inverted dropout backward pass during test time.
     dx = dout
     # ----- #
     # END YOUR CODE HERE
     # ============= #
  return dx
def svm_loss(x, y):
   Computes the loss and gradient using for multiclass SVM classification.
  Inputs:
   - x: Input data, of shape (N, C) where x[i, j] is the score for the jth class
    for the ith input.
   - y: Vector of labels, of shape (N,) where y[i] is the label for x[i] and
    0 \leftarrow y[i] < C
  Returns a tuple of:
   - loss: Scalar giving the loss
   - dx: Gradient of the loss with respect to x
   HHHH
  N = x.shape[0]
  correct_class_scores = x[np.arange(N), y]
  margins = np.maximum(0, x - correct_class_scores[:, np.newaxis] + 1.0)
  margins[np.arange(N), y] = 0
  loss = np.sum(margins) / N
  num_pos = np.sum(margins > 0, axis=1)
  dx = np.zeros_like(x)
  dx[margins > 0] = 1
  dx[np.arange(N), y] -= num_pos
  dx /= N
  return loss, dx
```

```
def softmax_loss(x, y):
    Computes the loss and gradient for softmax classification.
    - x: Input data, of shape (N, C) where x[i, j] is the score for the jth class
      for the ith input.
    - y: Vector of labels, of shape (N,) where y[i] is the label for x[i] and
      0 <= y[i] < C
    Returns a tuple of:
    - loss: Scalar giving the loss
    - dx: Gradient of the loss with respect to x
    11 11 11
   probs = np.exp(x - np.max(x, axis=1, keepdims=True))
   probs /= np.sum(probs, axis=1, keepdims=True)
   N = x.shape[0]
   loss = -np.sum(np.log(probs[np.arange(N), y])) / N
    dx = probs.copy()
    dx[np.arange(N), y] = 1
    dx /= N
    return loss, dx
```

3 fc net

```
In []: import numpy as np
    import pdb

from .layers import *
    from .layer_utils import *
```

This code was originally written for CS 231n at Stanford University (cs231n.stanford.edu). It has been modified in various areas for use in the ECE 239AS class at UCLA. This includes the descriptions of what code to implement as well as some slight potential changes in variable names to be consistent with class nomenclature. We thank Justin Johnson & Serena Yeung for permission to use this code. To see the original version, please visit cs231n.stanford.edu.

HHHH

class TwoLayerNet(object):

HHHH

A two-layer fully-connected neural network with ReLU nonlinearity and softmax loss that uses a modular layer design. We assume an input dimension

```
of D, a hidden dimension of H, and perform classification over C classes.
The architecure should be affine - relu - affine - softmax.
Note that this class does not implement gradient descent; instead, it
will interact with a separate Solver object that is responsible for running
optimization.
The learnable parameters of the model are stored in the dictionary
self.params that maps parameter names to numpy arrays.
11 11 11
def __init__(self, input_dim=3*32*32, hidden_dims=100, num_classes=10,
           dropout=0, weight_scale=1e-3, reg=0.0):
   Initialize a new network.
   Inputs:
   - input_dim: An integer giving the size of the input
   - hidden_dims: An integer giving the size of the hidden layer
   - num_classes: An integer giving the number of classes to classify
   - dropout: Scalar between 0 and 1 giving dropout strength.
   - weight_scale: Scalar giving the standard deviation for random
     initialization of the weights.
   - reg: Scalar giving L2 regularization strength.
   self.params = {}
   self.reg = reg
   # ----- #
   # YOUR CODE HERE:
   # Initialize W1, W2, b1, and b2. Store these as self.params['W1'],
      self.params['W2'], self.params['b1'] and self.params['b2']. The
      biases are initialized to zero and the weights are initialized
      so that each parameter has mean O and standard deviation weight scale.
       The dimensions of W1 should be (input_dim, hidden_dim) and the
       dimensions of W2 should be (hidden dims, num classes)
   # ----- #
   size_W1 = (input_dim, hidden_dims)
   size_W2 = (hidden_dims,num_classes)
   self.params['W1'] = np.random.normal(loc=0.0,scale=weight_scale,size = size_W1
   self.params['b1'] = np.zeros(hidden_dims)
   self.params['W2'] = np.random.normal(loc=0.0,scale=weight_scale,size = size_W2
   self.params['b2'] = np.zeros(num_classes)
   # ----- #
   # END YOUR CODE HERE
```

```
# ----- #
def loss(self, X, y=None):
   11 11 11
   Compute loss and gradient for a minibatch of data.
   Inputs:
   - X: Array of input data of shape (N, d_1, \ldots, d_k)
   - y: Array of labels, of shape (N_i). y[i] gives the label for X[i].
   Returns:
   If y is None, then run a test-time forward pass of the model and return:
   - scores: Array of shape (N, C) giving classification scores, where
    scores[i, c] is the classification score for X[i] and class c.
   If y is not None, then run a training-time forward and backward pass and
   return a tuple of:
   - loss: Scalar value giving the loss
   - grads: Dictionary with the same keys as self.params, mapping parameter
    names to gradients of the loss with respect to those parameters.
   scores = None
   # YOUR CODE HERE:
      Implement the forward pass of the two-layer neural network. Store
      the class scores as the variable 'scores'. Be sure to use the layers
      you prior implemented.
   # ======== #
   W1 = self.params['W1']
   b1 = self.params['b1']
   W2 = self.params['W2']
   b2 = self.params['b2']
   H, cache h = affine relu forward(X, W1, b1)
   Z, cache_z = affine_forward(H, W2, b2)
   scores = Z
   # ----- #
   # END YOUR CODE HERE
   # ----- #
   \# If y is None then we are in test mode so just return scores
   if v is None:
      return scores
   loss, grads = 0, {}
   # ----- #
```

```
Implement the backward pass of the two-layer neural net. Store
          the loss as the variable 'loss' and store the gradients in the
          'grads' dictionary. For the grads dictionary, grads['W1'] holds
          the gradient for W1, grads['b1'] holds the gradient for b1, etc.
          i.e., grads[k] holds the gradient for self.params[k].
          Add L2 regularization, where there is an added cost 0.5*self.reg*W^2
          for each W. Be sure to include the 0.5 multiplying factor to
          match our implementation.
          And be sure to use the layers you prior implemented.
       loss, dz = softmax_loss(scores, y)
       loss += 0.5*self.reg*(np.sum(W1*W1) + np.sum(W2*W2))
       dh, dw2, db2 = affine_backward(dz, cache z)
       dx, dw1, db1 = affine_relu_backward(dh, cache_h)
       grads['W1'] = dw1 + self.reg * W1
       grads['b1'] = db1
       grads['W2'] = dw2 + self.reg * W2
       grads['b2'] = db2
       # ========= #
       # END YOUR CODE HERE
       # ----- #
       return loss, grads
class FullyConnectedNet(object):
   11 11 11
   A fully-connected neural network with an arbitrary number of hidden layers,
   ReLU nonlinearities, and a softmax loss function. This will also implement
   dropout and batch normalization as options. For a network with L layers,
   the architecture will be
   \{affine - [batch norm] - relu - [dropout]\}\ x\ (L - 1) - affine - softmax
   where batch normalization and dropout are optional, and the {...} block is
   repeated L - 1 times.
   Similar to the TwoLayerNet above, learnable parameters are stored in the
   self.params dictionary and will be learned using the Solver class.
   def <u>init</u> (self, hidden_dims, input_dim=3*32*32, num_classes=10,
```

YOUR CODE HERE:

```
dropout=1, use_batchnorm=False, reg=0.0,
      weight_scale=1e-2, dtype=np.float32, seed=None):
Initialize a new FullyConnectedNet.
Inputs:
- hidden_dims: A list of integers giving the size of each hidden layer.
- input_dim: An integer giving the size of the input.
- num_classes: An integer giving the number of classes to classify.
- dropout: Scalar between 0 and 1 giving dropout strength. If dropout=1 then
  the network should not use dropout at all.
- use batchnorm: Whether or not the network should use batch normalization.
- reg: Scalar giving L2 regularization strength.
- weight scale: Scalar giving the standard deviation for random
  initialization of the weights.
- dtype: A numpy datatype object; all computations will be performed using
  this datatype. float32 is faster but less accurate, so you should use
  float64 for numeric gradient checking.
- seed: If not None, then pass this random seed to the dropout layers. This
 will make the dropout layers deteriminstic so we can gradient check the
 model.
11 11 11
if dropout <= 0 or dropout > 1: print ("Wrong dropout probability")
self.use_batchnorm = use_batchnorm
self.use_dropout = dropout < 1</pre>
self.reg = reg
self.num_layers = 1 + len(hidden_dims)
self.dtype = dtype
self.params = {}
# ----- #
# YOUR CODE HERE:
   Initialize all parameters of the network in the self.params dictionary.
   The weights and biases of layer 1 are W1 and b1; and in general the
  weights and biases of layer i are Wi and bi. The
  biases are initialized to zero and the weights are initialized
   so that each parameter has mean 0 and standard deviation weight scale.
  BATCHNORM: Initialize the gammas of each layer to 1 and the beta
  parameters to zero. The gamma and beta parameters for layer 1 should
  be self.params['gamma1'] and self.params['beta1']. For layer 2, they
   should be gamma2 and beta2, etc. Only use batchnorm if self.use batchnorm
    is true and DO NOT do batch normalize the output scores.
# ----- #
for i in np.arange(1,self.num_layers+1):
                                               #iterating through layers:
```

```
name_W = 'W' + str(i)
   name_b = 'b' + str(i)
   name_gamma = 'gamma' + str(i)
   name_beta = 'beta' + str(i)
   if i == 1:
                                # first layer
       self.params[name_W] = np.random.normal(loc=0.0,scale=weight_scale,size
       self.params[name_b] = np.zeros(hidden_dims[i-1])
       if self.use_batchnorm:
           self.params[name_gamma] = np.ones(hidden_dims[i-1])
           self.params[name_beta] = np.zeros(hidden_dims[i-1])
   elif i == self.num_layers:
                                      # last layer
       self.params[name_W] = np.random.normal(loc=0.0,scale=weight_scale,size
       self.params[name_b] = np.zeros(num_classes)
   else:
                                # intermediate layers
       self.params[name_W] = np.random.normal(loc=0.0,scale=weight_scale,size
       self.params[name_b] = np.zeros(hidden_dims[i-1])
       if self.use_batchnorm:
           self.params[name_gamma] = np.ones(hidden_dims[i-1])
           self.params[name_beta] = np.zeros(hidden_dims[i-1])
# END YOUR CODE HERE
# ========= #
# When using dropout we need to pass a dropout_param dictionary to each
# dropout layer so that the layer knows the dropout probability and the mode
# (train / test). You can pass the same dropout_param to each dropout layer.
self.dropout_param = {}
if self.use_dropout:
   self.dropout_param = {'mode': 'train', 'p': dropout}
if seed is not None:
    self.dropout_param['seed'] = seed
# With batch normalization we need to keep track of running means and
# variances, so we need to pass a special bn_param object to each batch
# normalization layer. You should pass self.bn_params[0] to the forward pass
# of the first batch normalization layer, self.bn_params[1] to the forward
# pass of the second batch normalization layer, etc.
self.bn_params = []
if self.use_batchnorm:
   self.bn_params = [{'mode': 'train'} for i in np.arange(self.num_layers - 1
# Cast all parameters to the correct datatype
for k, v in self.params.items():
```

```
def loss(self, X, y=None):
   Compute loss and gradient for the fully-connected net.
   Input / output: Same as TwoLayerNet above.
   X = X.astype(self.dtype)
   mode = 'test' if y is None else 'train'
   # Set train/test mode for batchnorm params and dropout param since they
   # behave differently during training and testing.
   if self.dropout_param is not None:
       self.dropout_param['mode'] = mode
   if self.use_batchnorm:
       for bn_param in self.bn_params:
          bn_param['mode'] = mode
   scores = None
   # ------ #
   # YOUR CODE HERE:
      Implement the forward pass of the FC net and store the output
      scores as the variable "scores".
      BATCHNORM: If self.use_batchnorm is true, insert a bathnorm layer
      between the affine_forward and relu_forward layers. You may
      also write an affine_batchnorm_relu() function in layer_utils.py.
       DROPOUT: If dropout is non-zero, insert a dropout layer after
       every ReLU layer.
   H = []
   cache_h = []
   cache_dropout = []
   for i in np.arange(1,self.num_layers + 1):
       name_W = 'W' + str(i)
       name_b = 'b' + str(i)
       name_gamma = 'gamma' + str(i)
       name_beta = 'beta' + str(i)
       if i == 1:
                                           # first layer
           if self.use_batchnorm == False:
              H.append(affine_relu_forward(X, self.params[name_W], self.params[name_W],
              cache_h.append(affine_relu_forward(X, self.params[name_W], self.par
```

self.params[k] = v.astype(dtype)

```
else:
          H.append(affine_batchnorm_relu_forward(X, self.params[name_W], sel;
          cache_h.append(affine_batchnorm_relu_forward(X, self.params[name_W]
       if self.use_dropout > 0:
          H[0] = dropout_forward(H[0], self.dropout_param)[0]
          cache_dropout.append(dropout_forward(H[0], self.dropout_param)[1])
   elif i == self.num_layers:
                                       # last layer
       scores = affine_forward(H[i-2], self.params[name_W], self.params[name_
       cache_h.append(affine_forward(H[i-2], self.params[name_W], self.params
                                        # intermediate layers
   else:
       if self.use_batchnorm == False:
          H.append(affine_relu_forward(H[i-2], self.params[name_W], self.para
          cache_h append(affine_relu_forward(H[i-2], self_params[name_W], se
       else:
          H.append(affine_batchnorm_relu_forward(H[i-2], self.params[name_W]
          cache_h.append(affine_batchnorm_relu_forward(H[i-2], self.params[n-
       if self.use_dropout > 0:
          H[i-1] = dropout_forward(H[i-1], self.dropout_param)[0]
          cache_dropout.append(dropout_forward(H[i-1], self.dropout_param)[1]
# END YOUR CODE HERE
# ----- #
# If test mode return early
if mode == 'test':
   return scores
loss, grads = 0.0, \{\}
             ----- #
# YOUR CODE HERE:
   Implement the backwards pass of the FC net and store the gradients
   in the grads dict, so that grads[k] is the gradient of self.params[k]
   Be sure your L2 regularization includes a 0.5 factor.
   BATCHNORM: Incorporate the backward pass of the batchnorm.
   DROPOUT: Incorporate the backward pass of dropout.
# ----- #
loss, dz = softmax_loss(scores, y)
dh = []
```

```
for i in np.arange(self.num_layers,0,-1):
   name_W = 'W' + str(i)
   name_b = 'b' + str(i)
   name_gamma = 'gamma' + str(i)
   name beta = 'beta' + str(i)
   loss += (0.5 * self.reg * np.sum(self.params[name_W]*self.params[name_W]))
   if i == self.num_layers:
       dh1, grads[name_W], grads[name_b] = affine_backward(dz, cache_h[self.n.
       dh.append(dh1)
   else:
       if self.use_batchnorm == False:
          if self.use_dropout > 0:
              dh[self.num_layers-i-1] = dropout_backward(dh[self.num_layers-
          dr1, grads[name_W], grads[name_b] = affine_relu_backward(dh[self.n.
          dh.append(dr1)
       else:
          if self.use_dropout > 0:
              dh[self.num_layers-i-1] = dropout_backward(dh[self.num_layers-
          dr2, grads[name_W], grads[name_b], grads[name_gamma], grads[name_b
          dh.append(dr2)
   grads[name_W] += self.reg * self.params[name_W]
# ----- #
# END YOUR CODE HERE
return loss, grads
```

4 layers_utils

```
In [ ]: from .layers import *
```

11 11 11

This code was originally written for CS 231n at Stanford University (cs231n.stanford.edu). It has been modified in various areas for use in the ECE 239AS class at UCLA. This includes the descriptions of what code to implement as well as some slight potential changes in variable names to be consistent with class nomenclature. We thank Justin Johnson & Serena Yeung for permission to use this code. To see the original version, please visit cs231n.stanford.edu.

11 11 11

```
def affine_relu_forward(x, w, b):
    Convenience layer that performs an affine transform followed by a ReLU
    Inputs:
    - x: Input to the affine layer
    - w, b: Weights for the affine layer
   Returns a tuple of:
    - out: Output from the ReLU
    - cache: Object to give to the backward pass
    a, fc_cache = affine_forward(x, w, b)
   out, relu_cache = relu_forward(a)
    cache = (fc_cache, relu_cache)
   return out, cache
def affine_relu_backward(dout, cache):
    Backward pass for the affine-relu convenience layer
   fc_cache, relu_cache = cache
    da = relu_backward(dout, relu_cache)
    dx, dw, db = affine_backward(da, fc_cache)
    return dx, dw, db
def affine_batchnorm_relu_forward(x, w, b, gamma, beta, bn_param):
    aff_out, aff_cache = affine_forward(x, w, b)
   batch_out, batch_cache = batchnorm_forward(aff_out, gamma, beta, bn_param)
    out, relu_cache = relu_forward(batch_out)
    cache = (aff_cache, relu_cache, batch_cache)
    return out, cache
def affine_batchnorm_relu_backward(dout, cache):
    aff_cache, relu_cache, batch_cache = cache
   dbatch = relu_backward(dout, relu_cache)
    daffine, dgamma, dbeta = batchnorm_backward(dbatch, batch_cache)
    dx, dw, db = affine_backward(daffine, aff_cache)
    return dx, dw, db, dgamma, dbeta
```

Dropout

February 14, 2020

1 Dropout

In this notebook, you will implement dropout. Then we will ask you to train a network with batchnorm and dropout, and acheive over 55% accuracy on CIFAR-10.

CS231n has built a solid API for building these modular frameworks and training them, and we will use their very well implemented framework as opposed to "reinventing the wheel." This includes using their Solver, various utility functions, and their layer structure. This also includes nndl.fc_net, nndl.layers, and nndl.layer_utils. As in prior assignments, we thank Serena Yeung & Justin Johnson for permission to use code written for the CS 231n class (cs231n.stanford.edu).

```
In [1]: ## Import and setups
        import time
        import numpy as np
        import matplotlib.pyplot as plt
        from nndl.fc_net import *
        from nndl.layers import *
        from cs231n.data_utils import get_CIFAR10_data
        from cs231n.gradient_check import eval_numerical_gradient, eval_numerical_gradient_arro
        from cs231n.solver import Solver
        %matplotlib inline
        plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
        plt.rcParams['image.interpolation'] = 'nearest'
        plt.rcParams['image.cmap'] = 'gray'
        # for auto-reloading external modules
        \# see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython
        %load_ext autoreload
        %autoreload 2
        def rel_error(x, y):
            """ returns relative error """
            return np.max(np.abs(x - y) / (np.maximum(1e-8, np.abs(x) + np.abs(y))))
In [2]: # Load the (preprocessed) CIFAR10 data.
```

```
data = get_CIFAR10_data()
    for k in data.keys():
        print('{}: {} '.format(k, data[k].shape))

X_train: (49000, 3, 32, 32)
y_train: (49000,)

X_val: (1000, 3, 32, 32)
y_val: (1000,)

X_test: (1000, 3, 32, 32)
y_test: (1000,)
```

1.1 Dropout forward pass

Implement the training and test time dropout forward pass, dropout_forward, in nndl/layers.py. After that, test your implementation by running the following cell.

```
In [4]: x = np.random.randn(500, 500) + 10
       for p in [0.3, 0.6, 0.75]:
           out, _ = dropout_forward(x, {'mode': 'train', 'p': p})
            out_test, _ = dropout_forward(x, {'mode': 'test', 'p': p})
           print('Running tests with p = ', p)
           print('Mean of input: ', x.mean())
           print('Mean of train-time output: ', out.mean())
           print('Mean of test-time output: ', out_test.mean())
           print('Fraction of train-time output set to zero: ', (out == 0).mean())
           print('Fraction of test-time output set to zero: ', (out_test == 0).mean())
Running tests with p = 0.3
Mean of input: 9.99812212819963
Mean of train-time output: 10.009874517210564
Mean of test-time output: 9.99812212819963
Fraction of train-time output set to zero: 0.699664
Fraction of test-time output set to zero: 0.0
Running tests with p = 0.6
Mean of input: 9.99812212819963
Mean of train-time output: 9.992874352483557
Mean of test-time output: 9.99812212819963
Fraction of train-time output set to zero: 0.400224
Fraction of test-time output set to zero: 0.0
Running tests with p = 0.75
Mean of input: 9.99812212819963
Mean of train-time output: 9.992721331061508
Mean of test-time output: 9.99812212819963
Fraction of train-time output set to zero: 0.250392
Fraction of test-time output set to zero: 0.0
```

1.2 Dropout backward pass

Implement the backward pass, dropout_backward, in nndl/layers.py. After that, test your gradients by running the following cell:

1.3 Implement a fully connected neural network with dropout layers

Modify the FullyConnectedNet() class in nndl/fc_net.py to incorporate dropout. A dropout layer should be incorporated after every ReLU layer. Concretely, there shouldn't be a dropout at the output layer since there is no ReLU at the output layer. You will need to modify the class in the following areas:

- (1) In the forward pass, you will need to incorporate a dropout layer after every relu layer.
- (2) In the backward pass, you will need to incorporate a dropout backward pass layer.

Check your implementation by running the following code. Our W1 gradient relative error is on the order of 1e-6 (the largest of all the relative errors).

```
Running check with dropout = 0.5
Initial loss: 2.309771209610118
W1 relative error: 2.694274363733021e-07
W2 relative error: 7.439246147919978e-08
W3 relative error: 1.910371122296728e-08
b1 relative error: 4.112891126518e-09
b2 relative error: 5.756217724722137e-10
b3 relative error: 1.3204470857080166e-10
Running check with dropout = 0.75
Initial loss: 2.306133548427975
W1 relative error: 8.72986097970181e-08
W2 relative error: 2.9777307885797295e-07
W3 relative error: 1.8832780806174298e-08
b1 relative error: 5.379486003985169e-08
b2 relative error: 3.6529949080385546e-09
b3 relative error: 9.987242764516995e-11
Running check with dropout = 1.0
Initial loss: 2.3053332250963194
W1 relative error: 1.2744095365229032e-06
W2 relative error: 4.678743300473988e-07
W3 relative error: 4.331673892536035e-08
b1 relative error: 4.0853539035931665e-08
b2 relative error: 1.951342257912746e-09
b3 relative error: 9.387142701440351e-11
```

1.4 Dropout as a regularizer

In class, we claimed that dropout acts as a regularizer by effectively bagging. To check this, we will train two small networks, one with dropout and one without dropout.

In [7]: # Train two identical nets, one with dropout and one without

num_train = 500
small_data = {
 'X_train': data['X_train'][:num_train],
 'y_train': data['y_train'][:num_train],
 'X_val': data['X_val'],
 'y_val': data['y_val'],
}

solvers = {}

```
dropout_choices = [0.6, 1.0]
       for dropout in dropout_choices:
           model = FullyConnectedNet([100, 100, 100], dropout=dropout)
           solver = Solver(model, small data,
                            num epochs=25, batch size=100,
                            update rule='adam',
                            optim_config={
                              'learning_rate': 5e-4,
                            },
                            verbose=True, print_every=100)
            solver.train()
           solvers[dropout] = solver
(Iteration 1 / 125) loss: 2.301218
(Epoch 0 / 25) train acc: 0.132000; val_acc: 0.117000
(Epoch 1 / 25) train acc: 0.134000; val_acc: 0.121000
(Epoch 2 / 25) train acc: 0.160000; val_acc: 0.147000
(Epoch 3 / 25) train acc: 0.250000; val_acc: 0.184000
(Epoch 4 / 25) train acc: 0.314000; val_acc: 0.258000
(Epoch 5 / 25) train acc: 0.308000; val_acc: 0.272000
(Epoch 6 / 25) train acc: 0.324000; val_acc: 0.286000
(Epoch 7 / 25) train acc: 0.360000; val acc: 0.288000
(Epoch 8 / 25) train acc: 0.358000; val_acc: 0.277000
(Epoch 9 / 25) train acc: 0.362000; val acc: 0.263000
(Epoch 10 / 25) train acc: 0.390000; val_acc: 0.309000
(Epoch 11 / 25) train acc: 0.418000; val acc: 0.302000
(Epoch 12 / 25) train acc: 0.418000; val_acc: 0.255000
(Epoch 13 / 25) train acc: 0.460000; val_acc: 0.303000
(Epoch 14 / 25) train acc: 0.466000; val_acc: 0.313000
(Epoch 15 / 25) train acc: 0.448000; val_acc: 0.303000
(Epoch 16 / 25) train acc: 0.476000; val_acc: 0.308000
(Epoch 17 / 25) train acc: 0.468000; val_acc: 0.286000
(Epoch 18 / 25) train acc: 0.512000; val_acc: 0.299000
(Epoch 19 / 25) train acc: 0.516000; val_acc: 0.315000
(Epoch 20 / 25) train acc: 0.522000; val acc: 0.305000
(Iteration 101 / 125) loss: 1.772322
(Epoch 21 / 25) train acc: 0.548000; val acc: 0.314000
(Epoch 22 / 25) train acc: 0.560000; val_acc: 0.327000
(Epoch 23 / 25) train acc: 0.524000; val acc: 0.328000
(Epoch 24 / 25) train acc: 0.554000; val_acc: 0.336000
(Epoch 25 / 25) train acc: 0.578000; val acc: 0.328000
(Iteration 1 / 125) loss: 2.301849
(Epoch 0 / 25) train acc: 0.188000; val_acc: 0.132000
(Epoch 1 / 25) train acc: 0.180000; val_acc: 0.151000
(Epoch 2 / 25) train acc: 0.228000; val_acc: 0.211000
(Epoch 3 / 25) train acc: 0.306000; val_acc: 0.266000
(Epoch 4 / 25) train acc: 0.350000; val_acc: 0.292000
```

```
(Epoch 5 / 25) train acc: 0.352000; val_acc: 0.281000
(Epoch 6 / 25) train acc: 0.424000; val_acc: 0.305000
(Epoch 7 / 25) train acc: 0.480000; val_acc: 0.313000
(Epoch 8 / 25) train acc: 0.468000; val_acc: 0.308000
(Epoch 9 / 25) train acc: 0.554000; val acc: 0.326000
(Epoch 10 / 25) train acc: 0.616000; val_acc: 0.317000
(Epoch 11 / 25) train acc: 0.660000; val_acc: 0.329000
(Epoch 12 / 25) train acc: 0.702000; val_acc: 0.338000
(Epoch 13 / 25) train acc: 0.734000; val_acc: 0.305000
(Epoch 14 / 25) train acc: 0.754000; val_acc: 0.315000
(Epoch 15 / 25) train acc: 0.808000; val_acc: 0.324000
(Epoch 16 / 25) train acc: 0.856000; val_acc: 0.309000
(Epoch 17 / 25) train acc: 0.876000; val_acc: 0.329000
(Epoch 18 / 25) train acc: 0.916000; val_acc: 0.291000
(Epoch 19 / 25) train acc: 0.916000; val_acc: 0.304000
(Epoch 20 / 25) train acc: 0.940000; val_acc: 0.293000
(Iteration 101 / 125) loss: 0.216657
(Epoch 21 / 25) train acc: 0.956000; val_acc: 0.293000
(Epoch 22 / 25) train acc: 0.948000; val_acc: 0.293000
(Epoch 23 / 25) train acc: 0.982000; val_acc: 0.288000
(Epoch 24 / 25) train acc: 0.982000; val_acc: 0.291000
(Epoch 25 / 25) train acc: 0.988000; val acc: 0.290000
In [8]: # Plot train and validation accuracies of the two models
        train_accs = []
        val_accs = []
        for dropout in dropout_choices:
            solver = solvers[dropout]
            train_accs.append(solver.train_acc_history[-1])
            val_accs.append(solver.val_acc_history[-1])
       plt.subplot(3, 1, 1)
        for dropout in dropout_choices:
            plt.plot(solvers[dropout].train_acc_history, 'o', label='%.2f dropout' % dropout)
       plt.title('Train accuracy')
       plt.xlabel('Epoch')
        plt.ylabel('Accuracy')
       plt.legend(ncol=2, loc='lower right')
       plt.subplot(3, 1, 2)
        for dropout in dropout_choices:
            plt.plot(solvers[dropout].val_acc_history, 'o', label='%.2f dropout' % dropout)
       plt.title('Val accuracy')
        plt.xlabel('Epoch')
       plt.ylabel('Accuracy')
        plt.legend(ncol=2, loc='lower right')
```

plt.gcf().set_size_inches(15, 15)
plt.show()

1.5 Question

Based off the results of this experiment, is dropout performing regularization? Explain your answer.

1.6 Answer:

Yes it does regularization. Because of the fact that the model with and without dropout have very similar validation accuracies as it can be seen from the bottom figure. However, the model without dropout (blue) has significantly higher training accury compared to the model with dropout (orange) as it can be seen from the top figure. This means that the additional training accuracy the model without dropout has is overfitting and the model with dropout, in fact, regularize it. As mentioned in the class we can also think of the dropout in fact regularizing each hidden unit to work well in many different contexts.

Final part of the assignment Get over 55% validation accuracy on CIFAR-10 by using the layers you have implemented. You will be graded according to the following equation:

min(floor((X - 32%)) / 23%, 1) where if you get 55% or higher validation accuracy, you get full points.

```
In [9]: # ----- #
       # YOUR CODE HERE:
          Implement a FC-net that achieves at least 55% validation accuracy
          on CIFAR-10.
       # ----- #
       optimizer = 'adam'
      layer_dims = [400, 400, 400]
      weight_scale = 0.04
      learning_rate = 3e-3
      lr_decay = 0.95
      dropout = 0.8
       solvers = {}
      model = FullyConnectedNet(layer_dims, weight_scale = weight_scale, dropout = dropout,
                             use_batchnorm=True)
      solver = Solver(model, data,
                    num epochs = 20, batch size = 500,
                    update_rule = optimizer,
                    optim config = {
                      'learning_rate': learning_rate,
                    },
                    lr_decay = lr_decay,
                    verbose=True, print_every = 50)
       solver.train()
       # ------ #
       # END YOUR CODE HERE
       # ----- #
(Iteration 1 / 1960) loss: 2.468245
(Epoch 0 / 20) train acc: 0.190000; val_acc: 0.195000
(Iteration 51 / 1960) loss: 1.617484
(Epoch 1 / 20) train acc: 0.505000; val_acc: 0.481000
(Iteration 101 / 1960) loss: 1.544442
(Iteration 151 / 1960) loss: 1.414702
(Epoch 2 / 20) train acc: 0.537000; val_acc: 0.503000
(Iteration 201 / 1960) loss: 1.338823
(Iteration 251 / 1960) loss: 1.260380
(Epoch 3 / 20) train acc: 0.550000; val_acc: 0.534000
(Iteration 301 / 1960) loss: 1.394521
(Iteration 351 / 1960) loss: 1.220595
(Epoch 4 / 20) train acc: 0.582000; val_acc: 0.539000
(Iteration 401 / 1960) loss: 1.171243
(Iteration 451 / 1960) loss: 1.346148
(Epoch 5 / 20) train acc: 0.626000; val_acc: 0.560000
```

```
(Iteration 501 / 1960) loss: 1.153530
(Iteration 551 / 1960) loss: 1.235425
(Epoch 6 / 20) train acc: 0.622000; val_acc: 0.572000
(Iteration 601 / 1960) loss: 1.159588
(Iteration 651 / 1960) loss: 1.122976
(Epoch 7 / 20) train acc: 0.643000; val acc: 0.572000
(Iteration 701 / 1960) loss: 1.129781
(Iteration 751 / 1960) loss: 1.173191
(Epoch 8 / 20) train acc: 0.638000; val acc: 0.574000
(Iteration 801 / 1960) loss: 1.150557
(Iteration 851 / 1960) loss: 1.226710
(Epoch 9 / 20) train acc: 0.662000; val_acc: 0.588000
(Iteration 901 / 1960) loss: 1.019273
(Iteration 951 / 1960) loss: 1.086710
(Epoch 10 / 20) train acc: 0.680000; val_acc: 0.558000
(Iteration 1001 / 1960) loss: 1.016350
(Iteration 1051 / 1960) loss: 1.115566
(Epoch 11 / 20) train acc: 0.709000; val_acc: 0.581000
(Iteration 1101 / 1960) loss: 1.004623
(Iteration 1151 / 1960) loss: 1.036867
(Epoch 12 / 20) train acc: 0.709000; val acc: 0.582000
(Iteration 1201 / 1960) loss: 0.917499
(Iteration 1251 / 1960) loss: 0.911666
(Epoch 13 / 20) train acc: 0.703000; val_acc: 0.579000
(Iteration 1301 / 1960) loss: 0.910708
(Iteration 1351 / 1960) loss: 0.977268
(Epoch 14 / 20) train acc: 0.722000; val_acc: 0.581000
(Iteration 1401 / 1960) loss: 0.914110
(Iteration 1451 / 1960) loss: 0.957721
(Epoch 15 / 20) train acc: 0.736000; val_acc: 0.586000
(Iteration 1501 / 1960) loss: 1.014423
(Iteration 1551 / 1960) loss: 0.944550
(Epoch 16 / 20) train acc: 0.755000; val_acc: 0.583000
(Iteration 1601 / 1960) loss: 0.920841
(Iteration 1651 / 1960) loss: 0.904380
(Epoch 17 / 20) train acc: 0.767000; val acc: 0.583000
(Iteration 1701 / 1960) loss: 0.930206
(Iteration 1751 / 1960) loss: 0.817835
(Epoch 18 / 20) train acc: 0.763000; val_acc: 0.595000
(Iteration 1801 / 1960) loss: 0.762914
(Iteration 1851 / 1960) loss: 0.940099
(Epoch 19 / 20) train acc: 0.778000; val_acc: 0.590000
(Iteration 1901 / 1960) loss: 0.822977
(Iteration 1951 / 1960) loss: 0.881921
(Epoch 20 / 20) train acc: 0.794000; val_acc: 0.600000
```

2 layers.py

```
In [ ]: import numpy as np
       import pdb
       This code was originally written for CS 231n at Stanford University
       (cs231n.stanford.edu). It has been modified in various areas for use in the
      ECE 239AS class at UCLA. This includes the descriptions of what code to
       implement as well as some slight potential changes in variable names to be
       consistent with class nomenclature. We thank Justin Johnson & Serena Yeung for
      permission to use this code. To see the original version, please visit
       cs231n.stanford.edu.
       11 11 11
      def affine_forward(x, w, b):
          Computes the forward pass for an affine (fully-connected) layer.
          The input x has shape (N, d_1, \ldots, d_k) and contains a minibatch of N
          examples, where each example x[i] has shape (d_1, \ldots, d_k). We will
          reshape each input into a vector of dimension D = d_1 * ... * d_k, and
          then transform it to an output vector of dimension M.
          Inputs:
          - x: A numpy array containing input data, of shape (N, d_1, \ldots, d_k)
          - w: A numpy array of weights, of shape (D, M)
          - b: A numpy array of biases, of shape (M,)
          Returns a tuple of:
          - out: output, of shape (N, M)
          - cache: (x, w, b)
          HHHH
          out = None
          # ----- #
          # YOUR CODE HERE:
             Calculate the output of the forward pass. Notice the dimensions
             of w are D x M, which is the transpose of what we did in earlier
             assignments.
          # ----- #
          x transformed = x.reshape(x.shape[0], -1)
          out = np.dot(x_transformed,w) + b
          # END YOUR CODE HERE
```

```
cache = (x, w, b)
   return out, cache
def affine_backward(dout, cache):
   Computes the backward pass for an affine layer.
   Inputs:
   - dout: Upstream derivative, of shape (N, M)
   - cache: Tuple of:
     - x: A numpy array containing input data, of shape (N, d_1, \ldots, d_k)
     - w: A numpy array of weights, of shape (D, M)
    - b: A numpy array of biases, of shape (M,)
   Returns a tuple of:
   - dx: Gradient with respect to x, of shape (N, d1, ..., d_k)
   - dw: Gradient with respect to w, of shape (D, M)
   - db: Gradient with respect to b, of shape (M,)
   x, w, b = cache
   dx, dw, db = None, None, None
   # YOUR CODE HERE:
      Calculate the gradients for the backward pass.
   # Notice:
   # dout is N x M
   # dx should be N x d1 x ... x dk; it relates to dout through multiplication with
   \# dw should be D x M; it relates to dout through multiplication with x, which is
     db should be M; it is just the sum over dout examples
   # ----- #
   x_transformed = x.reshape(x.shape[0], -1)
   dx = np.dot(dout,w.T)
   dx = dx.reshape(x.shape)
   dw = np.dot(x_transformed.T,dout)
   db = np.sum(dout,axis=0)
   # END YOUR CODE HERE
   return dx, dw, db
def relu_forward(x):
   Computes the forward pass for a layer of rectified linear units (ReLUs).
```

```
Input:
  - x: Inputs, of any shape
  Returns a tuple of:
  - out: Output, of the same shape as x
  - cache: x
  # ----- #
  # YOUR CODE HERE:
     Implement the ReLU forward pass.
  # ----- #
  f = lambda x: x * (x > 0) # ReLU
  out = f(x)
  # ----- #
  # END YOUR CODE HERE
  # ----- #
  cache = x
  return out, cache
def relu backward(dout, cache):
  Computes the backward pass for a layer of rectified linear units (ReLUs).
  Input:
  - dout: Upstream derivatives, of any shape
  - cache: Input x, of same shape as dout
  Returns:
  - dx: Gradient with respect to x
  x = cache
  # ----- #
  # YOUR CODE HERE:
    Implement the ReLU backward pass
  # ReLU directs linearly to those > 0
  x_transformed = x.reshape(x.shape[0], -1)
  ones = np.ones(dout.shape)
  dx = dout * (x_transformed >= 0)
  # ----- #
  # END YOUR CODE HERE
  # ----- #
  return dx
```

```
def batchnorm_forward(x, gamma, beta, bn_param):
```

Forward pass for batch normalization.

During training the sample mean and (uncorrected) sample variance are computed from minibatch statistics and used to normalize the incoming data. During training we also keep an exponentially decaying running mean of the mean and variance of each feature, and these averages are used to normalize data at test-time.

At each timestep we update the running averages for mean and variance using an exponential decay based on the momentum parameter:

```
running_mean = momentum * running_mean + (1 - momentum) * sample_mean
running_var = momentum * running_var + (1 - momentum) * sample_var
```

Note that the batch normalization paper suggests a different test-time behavior: they compute sample mean and variance for each feature using a large number of training images rather than using a running average. For this implementation we have chosen to use running averages instead since they do not require an additional estimation step; the torch7 implementation of batch normalization also uses running averages.

```
Input:
```

- x: Data of shape (N, D)

- gamma: Scale parameter of shape (D,)

```
- beta: Shift paremeter of shape (D,)
- bn_param: Dictionary with the following keys:
  - mode: 'train' or 'test'; required
  - eps: Constant for numeric stability
  - momentum: Constant for running mean / variance.
  - running mean: Array of shape (D,) giving running mean of features
  - running_var Array of shape (D,) giving running variance of features
Returns a tuple of:
- out: of shape (N, D)
- cache: A tuple of values needed in the backward pass
11 11 11
mode = bn_param['mode']
eps = bn_param.get('eps', 1e-5)
momentum = bn_param.get('momentum', 0.9)
N, D = x.shape
running_mean = bn_param.get('running_mean', np.zeros(D, dtype=x.dtype))
running_var = bn_param.get('running_var', np.zeros(D, dtype=x.dtype))
out, cache = None, None
```

```
if mode == 'train':
  # YOUR CODE HERE:
     A few steps here:
       (1) Calculate the running mean and variance of the minibatch.
       (2) Normalize the activations with the running mean and variance.
       (3) Scale and shift the normalized activations. Store this
          as the variable 'out'
       (4) Store any variables you may need for the backward pass in
          the 'cache' variable.
  # ----- #
  Mean_minibatch = x.mean(axis=0)
  Variance_minibatch = np.var(x,axis=0)
  running_mean = momentum * running_mean + (1.0 - momentum) * Mean_minibatch
  running_var = momentum * running_var + (1.0 - momentum) * Variance_minibatch
  Mean_minibatch = np.expand_dims(Mean_minibatch, axis=0)
  Variance_minibatch = np.expand_dims(Variance_minibatch, axis=0)
  x_normal = (x - Mean_minibatch)/( np.sqrt(Variance_minibatch + eps ) )
  out = np.expand_dims(gamma, axis=0) * x_normal + np.expand_dims(beta, axis=0)
  cache = (Mean_minibatch, Variance_minibatch, x_normal, gamma, beta, x, eps)
  # ----- #
  # END YOUR CODE HERE
  elif mode == 'test':
  # ----- #
  # YOUR CODE HERE:
    Calculate the testing time normalized activation. Normalize using
    the running mean and variance, and then scale and shift appropriately.
    Store the output as 'out'.
  # ----- #
  x_norm = (x - running_mean)/(np.sqrt(running_var.T))
  out = np.expand_dims(gamma, axis=0) * x_norm + np.expand_dims(beta, axis=0)
  # ----- #
  # END YOUR CODE HERE
  # ------ #
```

else:

```
raise ValueError('Invalid forward batchnorm mode "%s"' % mode)
         # Store the updated running means back into bn_param
         bn_param['running_mean'] = running_mean
         bn_param['running_var'] = running_var
        return out, cache
def batchnorm_backward(dout, cache):
         Backward pass for batch normalization.
         For this implementation, you should write out a computation graph for
         batch normalization on paper and propagate gradients backward through
         intermediate nodes.
         Inputs:
         - dout: Upstream derivatives, of shape (N, D)
         - cache: Variable of intermediates from batchnorm_forward.
        Returns a tuple of:
         - dx: Gradient with respect to inputs x, of shape (N, D)
         - dgamma: Gradient with respect to scale parameter gamma, of shape (D,)
         - dbeta: Gradient with respect to shift parameter beta, of shape (D,)
         n n n
         dx, dgamma, dbeta = None, None, None
         # ----- #
                 Implement the batchnorm backward pass, calculating dx, dgamma, and dbeta.
         # ----- #
         Mean_minibatch = cache[0]
                                                                                                  # D
         Variance_minibatch = cache[1]
                                                                                               # D
                                                                                                  \# N * D
         x_normal = cache[2]
                                                                                                  # D
         gamma = cache[3]
                                                                                                  # D
        beta = cache[4]
                                                                                                  \# N * D
        x = cache[5]
         eps = cache[6]
                                                                                                  # scalar
        M = x_normal.shape[0]
         std = np.sqrt(Variance_minibatch + eps)
                                                                                                                             # D
         dbeta = dout.sum(axis=0)
                                                                                                                             # D
         dgamma = np.sum(x_normal * dout ,axis = 0)
                                                                                                                               # D
                                                                                                                             # D -- N * D
         dx_hat = gamma * dout
         da = (1.0 / std) * dx_hat
                                                                                                                             \# D -- N * D
         dMu = np.sum(-da , axis = 0)
         dVar = np.sum((-1.0 / (2*np.power(std,3))) * dx_hat * (x - Mean_minibatch), axis = (-1.0 / (2*np.power(std,3))) * dx_hat * (x - Mean_minibatch), axis = (-1.0 / (2*np.power(std,3))) * dx_hat * (x - Mean_minibatch), axis = (-1.0 / (2*np.power(std,3))) * dx_hat * (x - Mean_minibatch), axis = (-1.0 / (2*np.power(std,3))) * dx_hat * (x - Mean_minibatch), axis = (-1.0 / (2*np.power(std,3))) * dx_hat * (x - Mean_minibatch), axis = (-1.0 / (2*np.power(std,3))) * dx_hat * (x - Mean_minibatch), axis = (-1.0 / (2*np.power(std,3))) * dx_hat * (x - Mean_minibatch), axis = (-1.0 / (2*np.power(std,3))) * dx_hat * (x - Mean_minibatch), axis = (-1.0 / (2*np.power(std,3))) * dx_hat * (x - Mean_minibatch), axis = (-1.0 / (2*np.power(std,3))) * dx_hat * (x - Mean_minibatch), axis = (-1.0 / (2*np.power(std,3))) * dx_hat * (x - Mean_minibatch), axis = (-1.0 / (2*np.power(std,3))) * dx_hat * (x - Mean_minibatch), axis = (-1.0 / (2*np.power(std,3))) * dx_hat * (x - Mean_minibatch), axis = (-1.0 / (2*np.power(std,3))) * dx_hat * (x - Mean_minibatch), axis = (-1.0 / (2*np.power(std,3))) * dx_hat * (x - Mean_minibatch), axis = (-1.0 / (2*np.power(std,3))) * dx_hat * (x - Mean_minibatch), axis = (-1.0 / (2*np.power(std,3))) * dx_hat * (x - Mean_minibatch), axis = (-1.0 / (2*np.power(std,3))) * dx_hat * (x - Mean_minibatch), axis = (-1.0 / (2*np.power(std,3))) * dx_hat * (x - Mean_minibatch), axis = (-1.0 / (2*np.power(std,3))) * dx_hat * (x - Mean_minibatch), axis = (-1.0 / (2*np.power(std,3))) * dx_hat * (x - Mean_minibatch), axis = (-1.0 / (2*np.power(std,3))) * dx_hat * (x - Mean_minibatch), axis = (-1.0 / (2*np.power(std,3))) * dx_hat * (x - Mean_minibatch), axis = (-1.0 / (2*np.power(std,3))) * dx_hat * (x - Mean_minibatch), axis = (-1.0 / (2*np.power(std,3))) * dx_hat * (x - Mean_minibatch), axis = (-1.0 / (2*np.power(std,3))) * dx_hat * (x - Mean_minibatch), axis = (-1.0 / (2*np.power(std,3))) * (x - Mean_minibatch), axis = (-1.0 / (2*np.power(std,3))) * (x - Mean_minibatch), axis = (-1.0 / (2*np.power(std,3))) * (x - Mean_miniba
```

```
dx = (1.0 / std) * dx_hat + (1.0 / M) * dMu + (2.0 / M) * dVar * (x - Mean_minibates)
   # ----- #
   # END YOUR CODE HERE
   return dx, dgamma, dbeta
def dropout_forward(x, dropout_param):
   Performs the forward pass for (inverted) dropout.
   Inputs:
   - x: Input data, of any shape
   - dropout_param: A dictionary with the following keys:
     - p: Dropout parameter. We keep each neuron output with probability p.
    - mode: 'test' or 'train'. If the mode is train, then perform dropout;
      if the mode is test, then just return the input.
    - seed: Seed for the random number generator. Passing seed makes this
      function deterministic, which is needed for gradient checking but not in
      real networks.
   Outputs:
   - out: Array of the same shape as x.
   - cache: A tuple (dropout_param, mask). In training mode, mask is the dropout
    mask that was used to multiply the input; in test mode, mask is None.
   11 11 11
   p, mode = dropout_param['p'], dropout_param['mode']
   if 'seed' in dropout_param:
      np.random.seed(dropout_param['seed'])
   mask = None
   out = None
   if mode == 'train':
      # ----- #
      # YOUR CODE HERE:
         Implement the inverted dropout forward pass during training time.
      # Store the masked and scaled activations in out, and store the
        dropout mask as the variable mask.
      # ----- #
      mask = (np.random.rand(*x.shape) < p) / p</pre>
      out = mask * x
      # ----- #
      # END YOUR CODE HERE
      # ----- #
```

```
elif mode == 'test':
    # ------ #
    # YOUR CODE HERE:
       Implement the inverted dropout forward pass during test time.
    out = x
    # ----- #
    # END YOUR CODE HERE
    # ------ #
  cache = (dropout_param, mask)
  out = out.astype(x.dtype, copy=False)
  return out, cache
def dropout_backward(dout, cache):
  Perform the backward pass for (inverted) dropout.
  Inputs:
  - dout: Upstream derivatives, of any shape
  - cache: (dropout_param, mask) from dropout_forward.
  dropout_param, mask = cache
  mode = dropout_param['mode']
  dx = None
  if mode == 'train':
    # ----- #
    # YOUR CODE HERE:
       Implement the inverted dropout backward pass during training time.
    dx = mask * dout
    # END YOUR CODE HERE
    elif mode == 'test':
    # ======== #
      Implement the inverted dropout backward pass during test time.
```

```
dx = dout
       # ----- #
       # END YOUR CODE HERE
       # ----- #
   return dx
def svm_loss(x, y):
   Computes the loss and gradient using for multiclass SVM classification.
   Inputs:
   - x: Input data, of shape (N, C) where x[i, j] is the score for the jth class
     for the ith input.
   - y: Vector of labels, of shape (N,) where y[i] is the label for x[i] and
     0 <= y[i] < C
   Returns a tuple of:
   - loss: Scalar giving the loss
   - dx: Gradient of the loss with respect to x
   N = x.shape[0]
   correct_class_scores = x[np.arange(N), y]
   margins = np.maximum(0, x - correct_class_scores[:, np.newaxis] + 1.0)
   margins[np.arange(N), y] = 0
   loss = np.sum(margins) / N
   num_pos = np.sum(margins > 0, axis=1)
   dx = np.zeros_like(x)
   dx[margins > 0] = 1
   dx[np.arange(N), y] -= num_pos
   dx /= N
   return loss, dx
def softmax loss(x, y):
   n n n
   Computes the loss and gradient for softmax classification.
   Inputs:
   - x: Input data, of shape (N, C) where x[i, j] is the score for the jth class
     for the ith input.
   - y: Vector of labels, of shape (N,) where y[i] is the label for x[i] and
     0 <= y[i] < C
   Returns a tuple of:
   - loss: Scalar giving the loss
   - dx: Gradient of the loss with respect to x
   n n n
```

```
probs = np.exp(x - np.max(x, axis=1, keepdims=True))
probs /= np.sum(probs, axis=1, keepdims=True)
N = x.shape[0]
loss = -np.sum(np.log(probs[np.arange(N), y])) / N
dx = probs.copy()
dx[np.arange(N), y] -= 1
dx /= N
return loss, dx
```

3 fc_net

11 11 11

```
In []: import numpy as np
    import pdb

from .layers import *
    from .layer_utils import *
```

This code was originally written for CS 231n at Stanford University (cs231n.stanford.edu). It has been modified in various areas for use in the ECE 239AS class at UCLA. This includes the descriptions of what code to implement as well as some slight potential changes in variable names to be consistent with class nomenclature. We thank Justin Johnson & Serena Yeung for permission to use this code. To see the original version, please visit cs231n.stanford.edu.

class TwoLayerNet(object):

11 11 11

A two-layer fully-connected neural network with ReLU nonlinearity and softmax loss that uses a modular layer design. We assume an input dimension of D, a hidden dimension of H, and perform classification over C classes.

The architecure should be affine - relu - affine - softmax.

Note that this class does not implement gradient descent; instead, it will interact with a separate Solver object that is responsible for running optimization.

The learnable parameters of the model are stored in the dictionary self.params that maps parameter names to numpy arrays.

Initialize a new network.

```
Inputs:
   - input_dim: An integer giving the size of the input
   - hidden_dims: An integer giving the size of the hidden layer
   - num_classes: An integer giving the number of classes to classify
   - dropout: Scalar between 0 and 1 giving dropout strength.
   - weight_scale: Scalar giving the standard deviation for random
    initialization of the weights.
   - reg: Scalar giving L2 regularization strength.
   self.params = {}
   self.reg = reg
   # ----- #
   # YOUR CODE HERE:
      Initialize W1, W2, b1, and b2. Store these as self.params['W1'],
   \# self.params['W2'], self.params['b1'] and self.params['b2']. The
     biases are initialized to zero and the weights are initialized
     so that each parameter has mean O and standard deviation weight scale.
      The dimensions of W1 should be (input_dim, hidden_dim) and the
      dimensions of W2 should be (hidden dims, num classes)
   # ----- #
   size_W1 = (input_dim, hidden_dims)
   size_W2 = (hidden_dims,num_classes)
   self.params['W1'] = np.random.normal(loc=0.0,scale=weight_scale,size = size_W1
   self.params['b1'] = np.zeros(hidden_dims)
   self.params['W2'] = np.random.normal(loc=0.0,scale=weight_scale,size = size_W2
   self.params['b2'] = np.zeros(num_classes)
   # END YOUR CODE HERE
   def loss(self, X, y=None):
   Compute loss and gradient for a minibatch of data.
   Inputs:
   - X: Array of input data of shape (N, d_1, \ldots, d_k)
   - y: Array of labels, of shape (N_i). y[i] gives the label for X[i].
   Returns:
   If y is None, then run a test-time forward pass of the model and return:
   - scores: Array of shape (N, C) giving classification scores, where
     scores[i, c] is the classification score for X[i] and class c.
```

```
If y is not None, then run a training-time forward and backward pass and
return a tuple of:
- loss: Scalar value giving the loss
- grads: Dictionary with the same keys as self.params, mapping parameter
 names to gradients of the loss with respect to those parameters.
scores = None
# ----- #
# YOUR CODE HERE:
  Implement the forward pass of the two-layer neural network. Store
  the class scores as the variable 'scores'. Be sure to use the layers
   you prior implemented.
# ------ #
W1 = self.params['W1']
b1 = self.params['b1']
W2 = self.params['W2']
b2 = self.params['b2']
H, cache h = affine relu forward(X, W1, b1)
Z, cache_z = affine_forward(H, W2, b2)
scores = Z
# END YOUR CODE HERE
# If y is None then we are in test mode so just return scores
if y is None:
   return scores
loss, grads = 0, {}
# ------ #
# YOUR CODE HERE:
  Implement the backward pass of the two-layer neural net. Store
  the loss as the variable 'loss' and store the gradients in the
  'grads' dictionary. For the grads dictionary, grads['W1'] holds
   the gradient for W1, grads['b1'] holds the gradient for b1, etc.
   i.e., grads[k] holds the gradient for self.params[k].
   Add L2 regularization, where there is an added cost 0.5*self.reg*W^2
   for each W. Be sure to include the 0.5 multiplying factor to
   match our implementation.
   And be sure to use the layers you prior implemented.
# ----- #
loss, dz = softmax_loss(scores, y)
loss += 0.5*self.reg*(np.sum(W1*W1) + np.sum(W2*W2))
```

```
dh, dw2, db2 = affine_backward(dz, cache_z)
       dx, dw1, db1 = affine_relu_backward(dh, cache_h)
       grads['W1'] = dw1 + self.reg * W1
       grads['b1'] = db1
       grads['W2'] = dw2 + self.reg * W2
       grads['b2'] = db2
       # END YOUR CODE HERE
        # ------ #
       return loss, grads
class FullyConnectedNet(object):
   A fully-connected neural network with an arbitrary number of hidden layers,
    ReLU nonlinearities, and a softmax loss function. This will also implement
    dropout and batch normalization as options. For a network with L layers,
    the architecture will be
    \{affine - [batch norm] - relu - [dropout]\}\ x\ (L - 1) - affine - softmax
    where batch normalization and dropout are optional, and the {...} block is
    repeated L - 1 times.
    Similar to the TwoLayerNet above, learnable parameters are stored in the
    self.params dictionary and will be learned using the Solver class.
    n n n
   def <u>init</u> (self, hidden_dims, input_dim=3*32*32, num_classes=10,
              dropout=1, use_batchnorm=False, reg=0.0,
              weight_scale=1e-2, dtype=np.float32, seed=None):
        11 11 11
       Initialize a new FullyConnectedNet.
       Inputs:
       - hidden_dims: A list of integers giving the size of each hidden layer.
       - input_dim: An integer giving the size of the input.
       - num classes: An integer giving the number of classes to classify.
       - dropout: Scalar between 0 and 1 giving dropout strength. If dropout=1 then
         the network should not use dropout at all.
        - use batchnorm: Whether or not the network should use batch normalization.
       - reg: Scalar giving L2 regularization strength.
        - weight_scale: Scalar giving the standard deviation for random
         initialization of the weights.
```

```
- dtype: A numpy datatype object; all computations will be performed using
  this datatype. float32 is faster but less accurate, so you should use
  float64 for numeric gradient checking.
- seed: If not None, then pass this random seed to the dropout layers. This
  will make the dropout layers deteriminstic so we can gradient check the
  model.
11 11 11
if dropout <= 0 or dropout > 1: print ("Wrong dropout probability")
self.use_batchnorm = use_batchnorm
self.use_dropout = dropout < 1</pre>
self.reg = reg
self.num_layers = 1 + len(hidden_dims)
self.dtype = dtype
self.params = {}
# ----- #
# YOUR CODE HERE:
   Initialize all parameters of the network in the self.params dictionary.
  The weights and biases of layer 1 are W1 and b1; and in general the
  weights and biases of layer i are Wi and bi. The
  biases are initialized to zero and the weights are initialized
   so that each parameter has mean 0 and standard deviation weight_scale.
  BATCHNORM: Initialize the gammas of each layer to 1 and the beta
  parameters to zero. The gamma and beta parameters for layer 1 should
  be self.params['qamma1'] and self.params['beta1']. For layer 2, they
   should be gamma2 and beta2, etc. Only use batchnorm if self.use batchnorm
   is true and DO NOT do batch normalize the output scores.
# ============= #
for i in np.arange(1,self.num_layers+1):
                                                #iterating through layers:
   name_W = 'W' + str(i)
   name b = 'b' + str(i)
   name_gamma = 'gamma' + str(i)
   name beta = 'beta' + str(i)
   if i == 1:
                               # first layer
       self.params[name_W] = np.random.normal(loc=0.0,scale=weight_scale,size
       self.params[name_b] = np.zeros(hidden_dims[i-1])
       if self.use_batchnorm:
           self.params[name_gamma] = np.ones(hidden_dims[i-1])
           self.params[name_beta] = np.zeros(hidden_dims[i-1])
   elif i == self.num_layers:
                                     # last layer
       self.params[name_W] = np.random.normal(loc=0.0,scale=weight_scale,size
```

```
self.params[name_b] = np.zeros(num_classes)
                                    # intermediate layers
       else:
           self.params[name_W] = np.random.normal(loc=0.0,scale=weight_scale,size
           self.params[name_b] = np.zeros(hidden_dims[i-1])
           if self.use batchnorm:
               self.params[name_gamma] = np.ones(hidden_dims[i-1])
               self.params[name_beta] = np.zeros(hidden_dims[i-1])
   # END YOUR CODE HERE
   # ------ #
   # When using dropout we need to pass a dropout param dictionary to each
   # dropout layer so that the layer knows the dropout probability and the mode
   # (train / test). You can pass the same dropout param to each dropout layer.
   self.dropout_param = {}
   if self.use_dropout:
       self.dropout_param = {'mode': 'train', 'p': dropout}
   if seed is not None:
       self.dropout_param['seed'] = seed
   # With batch normalization we need to keep track of running means and
   # variances, so we need to pass a special bn_param object to each batch
   # normalization layer. You should pass self.bn_params[0] to the forward pass
   # of the first batch normalization layer, self.bn params[1] to the forward
   # pass of the second batch normalization layer, etc.
   self.bn_params = []
   if self.use_batchnorm:
       self.bn_params = [{'mode': 'train'} for i in np.arange(self.num_layers - 1
   # Cast all parameters to the correct datatype
   for k, v in self.params.items():
       self.params[k] = v.astype(dtype)
def loss(self, X, y=None):
   Compute loss and gradient for the fully-connected net.
   Input / output: Same as TwoLayerNet above.
   11 11 11
   X = X.astype(self.dtype)
   mode = 'test' if y is None else 'train'
   # Set train/test mode for batchnorm params and dropout param since they
   # behave differently during training and testing.
   if self.dropout_param is not None:
```

```
self.dropout_param['mode'] = mode
if self.use_batchnorm:
   for bn_param in self.bn_params:
       bn_param['mode'] = mode
scores = None
# ------ #
# YOUR CODE HERE:
   Implement the forward pass of the FC net and store the output
   scores as the variable "scores".
   BATCHNORM: If self.use_batchnorm is true, insert a bathnorm layer
   between the affine forward and relu forward layers. You may
   also write an affine_batchnorm_relu() function in layer_utils.py.
   DROPOUT: If dropout is non-zero, insert a dropout layer after
   every ReLU layer.
# ----- #
H = \Gamma
cache_h = []
cache_dropout = []
for i in np.arange(1,self.num_layers + 1):
   name_W = 'W' + str(i)
   name_b = 'b' + str(i)
   name_gamma = 'gamma' + str(i)
   name_beta = 'beta' + str(i)
   if i == 1:
                                         # first layer
       if self.use_batchnorm == False:
           H.append(affine_relu_forward(X, self.params[name_W], self.params[name_W])
           cache_h.append(affine_relu_forward(X, self.params[name_W], self.par
       else:
           H.append(affine_batchnorm_relu_forward(X, self.params[name_W], self.
           cache_h.append(affine_batchnorm_relu_forward(X, self.params[name_W]
       if self.use_dropout > 0:
           H[0] = dropout_forward(H[0], self.dropout_param)[0]
           cache_dropout.append(dropout_forward(H[0], self.dropout_param)[1])
   elif i == self.num_layers:
                                           # last layer
       scores = affine_forward(H[i-2], self.params[name_W], self.params[name_i
       cache_h.append(affine_forward(H[i-2], self.params[name_W], self.params
   else:
                                           # intermediate layers
       if self.use_batchnorm == False:
           H.append(affine_relu_forward(H[i-2], self.params[name_W], self.para
```

```
else:
          H.append(affine_batchnorm_relu_forward(H[i-2], self.params[name_W]
          cache_h.append(affine_batchnorm_relu_forward(H[i-2], self.params[n-
      if self.use_dropout > 0:
          H[i-1] = dropout_forward(H[i-1], self.dropout_param)[0]
          cache_dropout.append(dropout_forward(H[i-1], self.dropout_param)[1]
# END YOUR CODE HERE
# ------ #
# If test mode return early
if mode == 'test':
   return scores
loss, grads = 0.0, \{\}
# ----- #
# YOUR CODE HERE:
   Implement the backwards pass of the FC net and store the gradients
   in the grads dict, so that grads[k] is the gradient of self.params[k]
   Be sure your L2 regularization includes a 0.5 factor.
   BATCHNORM: Incorporate the backward pass of the batchnorm.
   DROPOUT: Incorporate the backward pass of dropout.
# ----- #
loss, dz = softmax_loss(scores, y)
dh = []
for i in np.arange(self.num_layers,0,-1):
   name W = 'W' + str(i)
   name_b = 'b' + str(i)
   name_gamma = 'gamma' + str(i)
   name_beta = 'beta' + str(i)
   loss += (0.5 * self.reg * np.sum(self.params[name_W]*self.params[name_W]))
   if i == self.num_layers:
      dh1, grads[name_W], grads[name_b] = affine_backward(dz, cache_h[self.name_b]
      dh.append(dh1)
   else:
      if self.use_batchnorm == False:
          if self.use_dropout > 0:
```

cache_h append(affine_relu_forward(H[i-2], self params[name_W], se