SÍNTESE, FUNCIONALIZAÇÃO E CARACTERIZAÇÃO DE NANOPARTÍCULAS DE SÍLICA

Marina Barim do Nascimento, João Guilherme dos Santos Caramês Ilum School of Science, CNPEM, Campinas - Brasil email: marina220055@ilum.cnpem.br, joao220064@ilum.cnpem.br

ABSTRACT

A busca frequente pela melhora da saúde humana tenta acelerar o surgimento de técnicas inovadoras para preservação e tratamento de diversas patologias. Nesse contexto, a nanotecnologia é um ótimo meio para a ligação entre indústrias e a medicina pois, através dela, é possível aumentar a eficiência de um fármaco e diminuir os custos de produção, ganhando assim destaque em sistemas de Drug Delivery. Nanopartículas de sílica são frequentemente usadas nesse sistema, e pensando nisso, abordamos nesse texto detalhes sobre a síntese desse tipo de nanopartícula e suas caracterizações, a fim de estudar suas características morfológicas, estruturais, químicas e funcionais. Sendo assim, foi possível caracterizar, a partir do FTIR, as ligações presentes e, através do MEV, pôde-se encontrar o diâmetro médio das nanopartículas presente na amostra. Além disso, concluímos que a funcionalização funcionou, tornando possível sua aplicação em ensaios biológicos com Daphnia Similis.

Introdução

O dióxido de silício, também conhecido como sílica, é um óxido de silício com a fórmula química SiO₂. É mais comumente encontrado na natureza como quartzo, que compreende mais de 10% da massa da crosta terrestre. As nanopartículas de sílica (SiPs) são nanoestruturas consideradas reservatórios robustos e estáveis, além de serem biocompatíveis, não tóxicas e facilmente sintetizadas. Possuem alta área superficial, estabilidade química e térmica, que fazem delas excelentes substratos e suportes catalíticos. [1]

Podem ser sintetizadas por meio de variações do método de Stöber, dependendo da característica desejada. O método utilizado nesse estudo foi o bottom-up, que consiste basicamente em construir estruturas átomo a átomo ou molécula por molécula, ou seja, envolvem espécies moleculares em reações químicas para gerar o crescimento dos aglomerados síntese eletroquímica ou uso de elementos biológicos para essa síntese. [2]

Figura 1: Esquema do método bottom up de síntese de nanopartículas.[2]

São uma das nanopartículas mais usadas em aplicações de drug delivery, que requerem otimizações sequenciais de suas propriedades para eliminar ou melhorar características tóxicas identificada. Foi descoberto que a citotoxicidade das

nanopartículas está ligada seu tamanho, sua dose, tempo de tratamento, área de superfície etc. Para tanto, nossas amostras foram sintetizadas em diferentes tempos, sendo a primeira sintetizada em 30 minutos e a segunda em uma hora.[3]

A partir disso, realizamos caracterizações como FTIR e MEV, a fim de compará-las e entender o que a variação temporal influenciou em sua estrutura.

Objetivos

Temos como objetivo desse trabalho, sintetizar nanopartículas de sílica, a partir de uma versão modificada do método de Stöber, variando o tempo de síntese de duas amostras. Além disso, temos como propósito, caracterizá-las quanto a suas características morfológicas, estruturais, químicas e funcionais, a partir do uso de diversas técnicas de caracterização, como microscopia e espectroscopia.

Materiais e métodos

A síntese das nanopartículas de sílica foi feita a partir de uma versão adaptada do Método de Stöber usado por [4] em duas etapas. A primeira etapa é a de hidrólise do Ortossilicato de Tetraetila (TEOS), na qual é formada o Ácido Ortosilícico (Si(OH)₄) e etanol. A segunda etapa é a de condensação da sílica, na qual o Si(OH)₄ sofre condensação, formando sílica e água. Vale notar que são usados o Hidróxido de Amônio (NH₄OH) e a água como catalisadores da reação e o etanol como solvente.

Para isso, utilizamos:

- 0.75 mL de TEOS:
- 9.38 mL de Etanol;
- 5.6 mL de Água;
- 0.56 mL de Hidróxido de Amônio.

Para a funcionalização core-shell (partículas recobertas com fluoróforo) das SiP's, foi utilizada uma versão adaptada do procedimento feito em [5] e [6], sendo que o fluoróforo utilizado foi o Isotiocianato de Fluoresceína (FITC), agregado ao agente ligante o (3-aminopropil) trimetoxisilano (APTMS). Nesse contexto, os compostos se ligam pelos grupos amina (FITC) e isotiocianato (APTMS), depois são adicionados no recipiente contendo a sílica e etanol, onde sofre hidrólise e se agrega às moléculas da partícula por condensação. Para isso, utilizamos:

• 25 μ L de FITC, C = 10 mg/mL;

• 0.26 μL de APTMS;

Com isso, tendo o objetivo de verificar a possibilidade de realização de ensaios biológicos com as partículas sintetizadas em Daphnia Similis. Assim, 5 indivíduos adultos foram mantidos em um eppendorf por três dias. Esses pequenos crustáceos são filtradores e essa característica permite identificar se houve a absorção das nanopartículas pelo animal.

Resultados

As ondas de infravermelho (IR) são ondas eletromagnéticas de energia mais baixa que da luz no espectro eletromagnético. Quando uma IR entra em contato com a amostra, pode interferir em vibrações específicas das moléculas, ou seja, as ligações químicas presentes em moléculas absorvem a energia do infravermelho em faixas específicas que são correspondentes às vibrações dessas ligações, sejam afetadas por deformação angular ou por estiramento. [7]

Assim, a espectroscopia de infravermelho com transformada de Fourier (FTIR) é uma técnica que analisa como as amostras interagem com as IR's, ou seja, analisa as vibrações que absorveram determinadas faixas do espectro IR. Portanto, o resultado da técnica é um espectro de transmissão ou absorção de cada número de onda nessa faixa, que depende da quantidade de cada ligação química existente na amostra. [7]

Figura 2: Espectro de transmitância no infravermelho para as nanopartículas de sílica.

Sendo assim, para ambas as amostras, obtivemos picos característicos da sílica localizados nos intervalos com número de onda entre 400 e 500 cm⁻¹, entre 850 e 950 cm⁻¹ e entre 1000 e 1100 cm⁻¹, como é possível observar na Figura 2. O primeiro

pode condizer com a deformação angular entre as ligações Si-O da sílica, o segundo com deformações assimétricas do grupo silanol, o qual pode estar presente pois as nanopartículas foram sintetizadas e mantidas em etanol, e o terceiro com o estiramento das ligações da sílica. Além disso, é possível visualizar um pico na faixa de 3100 a 3500 cm⁻¹, o qual pode estar relacionado à hidroxilas presentes no silanol ou no etanol e um pico entre 2900 e 3000 cm⁻ ¹ que pode estar relacionado com a ligação entre carbono e hidrogênio, como há no etanol. Por fim, as duas amostras tiveram diferenças consideráveis apenas na transmitância, a qual pode mostrar que quão maior for o tempo de síntese, maior será a absorbância da nanopartícula e, por isso, apenas a partícula sintetizada por 60 minutos foi escolhida para as próximas etapas. [8][9]

A microscopia eletrônica de varredura (MEV) é uma técnica capaz de fornecer características nano, microestruturais e químicas das amostras, e consiste no bombardeamento de um feixe de elétrons de alta energia, os quais são chamados primários e provém de uma fonte para controlar a dispersão do feixe de elétrons e evitar grandes danos às amostras além de ser um apoio para as amostras, o qual deve ser formado por um substrato adequado à maneira que se deseja espalhar amostra para aferição da técnica e ser capaz de conduzir a intensa corrente elétrica gerada pelo aparelho. Além disso, vale destacar que o equipamento é capaz de gerar informações de maneiras diferentes, sendo que as três principais são por elétrons secundários, que fornece uma visão superficial da amostra, por retroespalhamento, o qual gera informações de estrutura e composição, ou por emissão de raios x, que fornecem dados sobre a composição química da amostra. [10]

Figura 3: Vista ampla das SiP's com HFW (Horizontal Field Width) de 5.92 pm

Figura 4: Vista aproximada para estimar o diâmetro médio das SiP's com HFW de 2.59 pm.

As imagens obtidas possibilitaram a obtenção de informação sobre a disposição das nanopartículas. Na Figura 3, é possível notar que há uma grande dispersão de nanopartículas, e assim, concluímos visualmente que o objetivo da síntese foi alcançado, pois não houve agregação delas.

Para calcularmos o tamanho aproximados das partículas presentes na imagem, traçamos 162 círculos ao redor de cada uma por meio de um programa feito em python, o qual trata a imagem, reconhece as nanopartículas e traça os círculos vistos na Figura 4, e concluímos que o raio médio aproximado era de aproximadamente 32.00 nm, com desvio padrão de aproximadamente 5.81 nm.

Luminescência é a emissão de luza por alguma substância, que ocorre a partir de estados eletrônicos excitados. É dividida em duas categorias, a fluorescência e a fosforescência, as quais dependem da natureza do estado excitado. A fluorescência é a emissão de luz a partir de um estado excitado singleto, em que a orientação do spin do elétron excitado não, continuando desemparelhado. Em consequência disso, o retorno ao estado excitado é permitido, e ocorre rapidamente por meio da emissão de um fóton. A taxa de emissão de fluorescência é da ordem de 10⁸s⁻¹ e, portanto, o tempo de vida de fluorescência geralmente é da ordem de 10⁻⁹s. O tempo de vida de um fluoróforo é a média de tempo que ele passa no seu estado excitado antes de retornar para o estado fundamental. [11]

A microscopia de fluorescência utiliza a fluorescência ao invés de dispersão, reflexão e absorção, para possibilitar o estudo de substâncias orgânicas ou inorgânicas. No microscópio, a amostra é iluminada com luz de um comprimento de onda específico, que é absorvido pelos fluoróforos, o que faz com que eles emitam luz de comprimentos de onda mais longos, o que faz com que a luz emitida

seja de uma cor diferente da cor da luz absorvida. A luz da iluminação é separada da fluorescência emitida através de um filtro de emissão espectral. Os componentes de um microscópio de fluorescência são uma fonte de luz, o filtro de excitação, um espelho dicroico, e um filtro de emissões. Os filtros e o divisor de feixe dicroico são escolhidos de forma a corresponder à excitação espectral e às características de emissão do fluoróforo usado para rotular a amostra.[12]

A fim de comprovar o sucesso do processo de funcionalização core-shell das nanopartículas de sílica com FITC, uma amostra dispersa em etanol foi levada à um microscópio de fluorescência, no qual foi emitida uma luz azul com comprimento de onda de 480 nm que é próximo do comprimento de excitação máxima da FITC de 490 nm e foi possível obter imagens que comprovam a agregação do fluoróforo às partículas, com fortes cores verde emitidas, com máximo geralmente em 525nm, pela substância após o efeito de fluorescência. [13]

Figura 5: Vista ampla das SiP's funcionalizadas com FITC. As manchas observadas são decorrentes da presença do etanol.

Tendo a garantia da funcionalização, foi feito o ensaio com Daphnia Similis e, após o período indicado, um indivíduo foi selecionado para verificar a absorção das SiP's funcionalizadas. Assim, esse foi colocado no microscópio de fluorescência e, de maneira similar à Figura 5, foi possível obter a Figura 6, a qual mostra as partículas localizadas no intestino do animal.

Figura 6: SiP's funcionalizadas no intestino de Daphnia Similis.

Conclusão

Tendo em vista os resultados obtidos usando as três técnicas citadas, foi possível comprovar o sucesso da rota de síntese escolhida para as nanopartículas de sílica com as imagens e resultados obtidos usando a MEV e fazer a caracterização química das ligações clássicas presentes nas SiP's. Além disso, foi mostrada a possibilidade de estudar efeitos das nanopartículas funcionalizadas em sistemas vivos, o que pode contribuir no desenvolvimento de diversas tecnologias associadas à área de biotecnologia e saúde, por exemplo, pela facilidade de monitorar o local de presença das SiP's funcionalizadas, como na marcação células cancerígenas. [14]

REFERÊNCIAS

- [1] **Silicon dioxide**, Wikipedia, The Free Encyclopedia, 1 November 2022. Disponível em:
 - https://en.wikipedia.org/w/index.php?title=Silic on_dioxide&oldid=1119475763 Acesso em: 22 de novembro de 2022.
- Machado, Bruno & Barbieri, Bruna & Sousa, Emanuel & Marques, Victor & Cavalcante, Iara & Maciel, Amanda & Lima, Mariel & Gondim, Josué. (2021). Potencial nanoantimicrobiano nanopartículas das metálicas Nanoantimicrobial of metallic potential Brazilian nanoparticles. Journal Development. 7. 63038-63044. Disponível em: https://doi.org/10.34117/bjdv7n6-604. Acesso em: 22 de novembro de 2022.

- [3] C. Zhong, M. He, K. Lou, F. Gao, Chapter 10 The Application, Neurotoxicity, and Related Mechanism of Silica Nanoparticles, Neurotoxicity of Nanomaterials and Nanomedicine, Academic Press, 2017, pages 227-257, ISBN 9780128045985, Disponível em: https://doi.org/10.1016/B978-0-12-804598-5.00010-6. Acesso em: 22 de novembro de 2022.
- [4] Costa, Carlos A. R., Carlos A. P. Leite, e Fernando Galembeck. Size Dependence of Stöber Silica Nanoparticle Microchemistry. The Journal of Physical Chemistry B 107, no 20 (2003): 4747–55. Disponível em: https://doi.org/10.1021/jp027525t. Acesso em: 19 de agosto de 2022.
- [5] Petry, Romana, Viviane M. Saboia, Lidiane S. Franqui, Camila de A. Holanda, Thiago R. R. Garcia, Marcelo A. de Farias, Antonio G. de Souza Filho, Odair P. Ferreira, Diego S. T. Martinez, e Amauri J. Paula. On the formation of protein corona on colloidal nanoparticles stabilized by depletant polymers. Materials Science and Engineering: C 105 (2019): 110080. Disponível em: https://doi.org/10.1016/j.msec.2019.110080. Acesso em: 19 de agosto de 2022.
- [6] Maia, M. T., Victor T. N., Naiara C. O., Ana C. A., Andreia F. F., Diego T. S. M., Odair P. F., e Amauri J. P.. Silica Nanoparticles and Surface Silanization for the Fabrication of Water-Repellent Cotton Fibers. ACS Applied Nano Materials 5, n° 4 (2022): 4634–47. Disponível em: https://doi.org/10.1021/acsanm.1c03346. Acesso em: 22 de novembro de 2022.
- [7] K. Nakamoto, John Wiley & Sons. Infrared and Raman Spectra of Inorganic and Coordinatio Compounds, Part A: Theory and Applications in Inorganic Chemistry. Volume 6. Wiley-Interscience. 2008.
- [8] Zanoni, E. T. et al. **Síntese e avaliação de nanopartículas de sílica mesoporosas na liberação controlada de feromônios repelentes de abelha**. Cerâmica [online]. 2019, v. 65, n. 374, pp. 200-206. Epub 06 Jun 2019. ISSN 1678-4553. Disponível em: https://doi.org/10.1590/0366-69132019653742464. Acesso em: 22 de novembro de 2022.

- [9] Cunha, Caroline Barlette da et al. Assessment of Chemical and Mechanical Properties of Polymers Aiming to Replace the Stainless Steel in Distillation Column. Materials Research [online]. 2018, v. 21, n. 3 [Accessed 22 November 2022], e20170679. Available from: https://doi.org/10.1590/1980-5373-MR-2017-0679. Epub 12 Apr 2018. ISSN 1980-5373. Disponível em: https://doi.org/10.1590/1980-5373-MR-2017-0679. Acesso em: 22 de novembro de 2022.
- [10] Zhou, W., Robert A., Zhong L. W., David J.. Fundamentals of Scanning Electron
 Microscopy (SEM). In Scanning Microscopy
 for Nanotechnology: Techniques and
 Applications, 1–40. New York, NY: Springer
 New York, 2007. Disponível em:
 https://doi.org/10.1007/978-0-387-39620-0_1.
 Acesso em: 01 de setembro de 2022.
- [11] Luiz, F. C. L.. Estudo de fluorescência estacionária e resolvida no tempo de anestésicos locais e de antibióticos da classe das fluoroquilonas. Tese (doutorado) Curso de Física, PUC-Rio, Rio de Janeiro, outubro de 2009.
- [12] **Fluorescence microscope**, Wikipedia, The Free Encyclopedia, 4 November 2022, Disponível em: https://en.wikipedia.org/w/index.php?title=Fluorescence_microscope&oldid=1119973599. Acesso em: 23 de novembro de 2022.
- [13] Fluorescein (FITC). ThermoFisher Scientific.

 Disponível em:

 https://www.thermofisher.com/br/en/home/lifescience/cellanalysis/fluorophores/fluorescein.html. Acesso
 em: 23 de novembro de 2022.
- [14] Jeelani, Peerzada Gh, Prajakta Mulay, Rajesh Venkat, e C. Ramalingam. **Multifaceted Application of Silica Nanoparticles.** A **Review**. Silicon 12, nº 6 (2020): 1337–54. Disponível em: https://doi.org/10.1007/s12633-019-00229-y. Acesso em: 22 de novembro de 2022.