- 15. 函数  $f(x) = \sin(2x + \frac{3\pi}{2}) 3\cos x$  的最小值为\_\_\_\_
- 16. 己知 ∠ $ACB = 90^{\circ}$ , P 为平面 ABC 外一点, PC = 2, 点 P 到 ∠ACB 两边 AC, BC 的距离 均为  $\sqrt{3}$ ,那么 P 到平面 ABC 的距离为 .
  - 三、解答题: 共 70 分,第  $17\sim21$  题为必考题,第  $22\sim23$  题为选考题,考生根据要求作答。 (一) 必考题: 共 60 分。

### 17. (12分)

某商场为提高服务质量,随机调查了50男顾客和50名女顾客.每位顾客对该商场的服务 给出满意或不满意的评价,得到下面列联表:

|     | 满意 | 不满意 |
|-----|----|-----|
| 男顾客 | 40 | 10  |
| 女顾客 | 30 | 20  |

- (1) 分别估计男、女顾客对商场服务满意的概率;
- (2) 能否有 95% 的把握认为男、女顾客对该商场服务的评价有差异?

附: 
$$K^2 = \frac{n(ad - bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$
,  $P(K^2 \ge k)$  0.050 0.010 0.001 k 3.841 6.635 10.828

#### 18. (12分)

记  $S_n$  为等差数列  $\{a_n\}$  的前 n 项和,已知  $S_9 = -a_5$ .

- (1) 若  $a_3 = 4$ ,求  $\{a_n\}$  的通项公式;
- (2) 若  $a_1 > 0$ ,求使得  $S_n \ge a_n$  的 n 的取值范围.

# 19. (12分)

如图, 直四棱柱  $ABCD-A_1B_1C_1D_1$  的底面是菱 形,  $AA_1 = 4$ , AB = 2,  $\angle BAD = 60^{\circ}$ , E, M, N 分别是 BC,  $BB_1$ ,  $A_1D$  的中点.

- (1) 证明: *MN* // 平面 *C*₁*DE*;
- (2) 求点 C 到平面  $C_1DE$  的距离.



### 20. (12分)

已知函数  $f(x) = 2\sin x - x\cos x - x$ , f'(x) 为 f(x) 的导数.

- (1) 证明: f'(x) 在区间 (0, π) 存在唯一零点;
- (2) 若  $x \in [0, \pi]$ ,  $f(x) \ge ax$ , 求 a 的取值范围.

## 21. (12分)

已知点 A, B 关于坐标原点对称, |AB| = 4,  $\odot M$  过点 A, B 且与直线 x + 2 = 0 相切, (1) 若 A 在直线 x + y = 0 上,求  $\odot M$  的半径;

- (2) 是否存在定点 P,使得当 A 运动时,|MA| |MP| 为定值? 并说明理由.
- (二)选考题: 共 10 分。请考生在第 22、23 题中任选一题作答,如果多做,则按所做的第一题 计分。
- 22. [选修 4-4: 坐标系与参数方程] (10 分)

极点, x 轴的正半轴为极轴建立极坐标系, 直线 l 的极坐标方程为  $2\rho\cos\theta + \sqrt{3}\rho\sin\theta + 11 = 0$ .

- (1) 求 C 和 l 的直角坐标方程;
- (2) 求 C 上的点到 l 的距离的最小值.

## 23. [选修 4-5: 不等式选讲] (10 分)

已知 a, b, c 为正数, 且满足 abc = 1. 证明:

(1) 
$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \le a^2 + b^2 + c^2$$
;

(2) 
$$(a+b)^3 + (b+c)^3 + (c+a)^3 \ge 24$$
.