Rapport labo 1 CLD

CLD Lab 01 : Déploiement d'une application web sur Infrastructure as a Service

Auteurs: Amir Mouti et Harun Ouweis

Groupe: GrP

Date: 01.03.2024

Tâche 1: Configuration initiale

Création d'une paire de clés publique/privée

Pour nous connecter à la machine virtuelle nouvellement créée, nous avons généré une paire de clés publique/privée nommée GrP_Mouti/Harun. Cette clé sera utilisée pour accéder de manière sécurisée à nos instances EC2 via SSH.

Création d'un groupe de sécurité par défaut

Nous avons créé un groupe de sécurité par défaut nommé GrP_Mouti/Harun_default pour notre serveur web. Ce groupe de sécurité est configuré pour autoriser le trafic SSH depuis n'importe quelle adresse (0.0.0.0/0) sur le port 22. Ce paramètre est destiné uniquement à l'utilisation en laboratoire et n'est pas recommandé dans un environnement de production.

Tâche 2 : Création d'une instance Amazon EC2

Délivrables

1. Le type d'instance le plus petit et le plus grand disponible :

La plus petite : 1 vCPU 0,5 GiB de mémoire La plus grande : 448 vCPU 24 TiB

- 2. **Temps nécessaire pour que l'instance soit en état de fonctionnement** : Uniquement quelques secondes
- 3. Nom DNS public de l'instance : ec2-52-90-155-30.compute-1.amazonaws.com

Exploration de l'instance

Après nous être connectés à l'instance via SSH, nous avons exécuté plusieurs commandes pour explorer l'instance.

Réponses aux questions :

• **Différence de temps entre la Suisse et l'heure réglée sur la machine** : Utilisé date, comparé à l'heure en Suisse. La machine utilise UTC. alors qu'en Suisse nous utilisons UTC+1.

- Nom de l'hyperviseur : Utilisation de Iscpu a révélé que l'instance fonctionne sur un hyperviseur Xen.
- **Espace libre sur le disque** : Avec df -h, regardé l'espace disponible sur /dev/xvda15 ainsi que /dev/root. on a trouvé 99 Mo ainsi que 5.7GB disponible donc 5.8Go disponible au total:

```
ubuntu@ip-172-31-90-86:~$ df -h
Filesystem
               Size Used Avail Use% Mounted on
/dev/root
               7.6G 2.0G 5.7G 26% /
tmpfs
                               0% /dev/shm
              475M
                       0 475M
tmpfs
              190M 852K 190M
                              1% /run
tmpfs
               5.0M
                       0 5.0M 0% /run/lock
/dev/xvda15
              105M 6.1M
                         99M 6% /boot/efi
tmpfs
                95M 4.0K
                           95M
                                1% /run/user/1000
```

• Tentative de ping de l'instance depuis votre machine locale : avant ajustement, nous avons un Time-Out car l'adresse n'est pas accepter . Après ajustement des règles du groupe de sécurité pour autoriser ICMP, utilisé ping 54.211.14.222. étant mon adresse IPV4, Noté des temps aller-retour moyens de 450 ms.

```
ubuntu@ip-172-31-90-86:~$ ping 54.211.14.222
PING 54.211.14.222 (54.211.14.222) 56(84) bytes of data.
64 bytes from 54.211.14.222: icmp_seq=1 ttl=63 time=0.446 ms
64 bytes from 54.211.14.222: icmp_seq=2 ttl=63 time=0.419 ms
64 bytes from 54.211.14.222: icmp_seq=3 ttl=63 time=0.495 ms
64 bytes from 54.211.14.222: icmp_seq=4 ttl=63 time=0.455 ms
64 bytes from 54.211.14.222: icmp_seq=5 ttl=63 time=0.437 ms
64 bytes from 54.211.14.222: icmp_seq=6 ttl=63 time=0.458 ms
64 bytes from 54.211.14.222: icmp_seq=6 ttl=63 time=0.468 ms
64 bytes from 54.211.14.222: icmp_seq=8 ttl=63 time=0.453 ms
64 bytes from 54.211.14.222: icmp_seq=9 ttl=63 time=0.454 ms
64 bytes from 54.211.14.222: icmp_seq=9 ttl=63 time=0.489 ms
64 bytes from 54.211.14.222: icmp_seq=10 ttl=63 time=0.489 ms
64 bytes from 54.211.14.222: icmp_seq=11 ttl=63 time=0.484 ms
```

• Adresse IP vue par le système d'exploitation dans l'instance EC2 : L'adresse IP identifiée par la commande ifconfig sur l'instance EC2, 172.31.90.86, est une adresse IP privée, typique des réseaux internes et non routable directement sur Internet. En contraste, l'adresse 54.211.14.222, vue lors de l'utilisation de la commande ping, est une adresse IP publique, accessible depuis n'importe quel point d'accès sur Internet.

Cette configuration illustre l'utilisation du Network Address Translation (NAT) par AWS. Le NAT permet à l'adresse IP publique de l'instance EC2, accessible depuis l'extérieur, d'être mappée à son adresse IP privée interne. Ce mécanisme est crucial pour deux raisons principales :

1. **Sécurité** : Il masque l'adresse IP privée de l'instance, réduisant ainsi la surface d'attaque potentielle depuis l'extérieur du réseau AWS.

2. **Connectivité** : Il permet à l'instance de communiquer avec Internet et d'être accessible depuis l'extérieur, malgré l'utilisation d'une adresse IP privée au sein du réseau AWS.

Ainsi, même si l'instance opère en interne avec une adresse IP privée, la traduction d'adresse effectuée par le NAT permet aux utilisateurs externes de se connecter à l'instance en utilisant son adresse IP publique. Cette approche offre un équilibre entre la nécessité de connectivité externe et les impératifs de sécurité interne.

Tâche 3: Installation d'une application web

Installation de la pile LAMP

Nous avons commencé par mettre à jour les paquets et installer la pile LAMP avec les commandes suivantes :

```
sudo apt update
sudo apt install lamp-server^
```

Configuration du pare-feu

Nous avons modifié la configuration du pare-feu pour autoriser les connexions HTTP entrantes en ajoutant une règle pour les connexions HTTP (port 80) depuis n'importe où.

Vérification de l'accès au serveur Apache

En saisissant le nom DNS public de l'instance dans un navigateur web, nous avons confirmé l'accès au serveur Apache, affichant la page de bienvenue par défaut.

Téléchargement et configuration de Wordpress

Nous avons téléchargé la dernière version de Wordpress, extrait les fichiers, et configuré la base de données MySQL pour Wordpress avec les commandes suivantes :

```
wget https://wordpress.org/latest.tar.gz
tar -xzf latest.tar.gz
sudo systemctl start mysql
sudo mysql -e "CREATE USER 'wordpress-user'@'localhost' IDENTIFIED BY 'wordpress-
password';"
sudo mysql -e "CREATE DATABASE wordpress-db;"
sudo mysql -e "GRANT ALL PRIVILEGES ON wordpress-db.* TO 'wordpress-
user'@'localhost';"
sudo mysql -e "FLUSH PRIVILEGES;"
```

Nous avons ensuite configuré Wordpress en ajustant les paramètres de connexion à la base de données dans le fichier wp-config.php et copié les fichiers dans le répertoire Apache pour le contenu du site.

Activation des permaliens Wordpress et redémarrage d'Apache

Nous avons modifié le fichier de configuration Apache pour permettre les permaliens Wordpress et redémarré le serveur Apache.

Installation de Wordpress

En naviguant vers la page d'administration de Wordpress via le navigateur, nous avons complété l'installation en configurant les paramètres du site.

Création et association d'une adresse IP élastique

Pour assurer la pérennité de l'accès au site, nous avons créé et associé une adresse IP élastique à l'instance, puis ajusté l'adresse IP dans la configuration de Wordpress en utilisant wp-cli.

Délivrables

• Capture d'écran de la page créée dans Wordpress : Nous avons ajouté une capture d'écran de la page créée dans Wordpress au rapport.

• Adresse IP élastique créée : Nous avons documenté l'adresse IP élastique attribuée à notre instance dans le rapport. IP elastique : 3.222.134.214

Justification de l'utilisation d'une adresse IP élastique

L'utilisation d'une adresse IP élastique pour un site web (notre application web) est avantageuse car elle permet de maintenir une adresse IP fixe pour l'instance, facilitant la gestion DNS et l'accès constant au site. Contrairement au nom DNS public de l'instance qui peut changer lors de redémarrages, une adresse IP élastique reste associée à l'instance jusqu'à ce qu'elle soit explicitement dissociée ou remappée, offrant ainsi une stabilité et une fiabilité accrues pour les utilisateurs finaux.

Tâche 4 : Benchmark

• Fournissez les URL des résultats Geekbench pour l'instance EC2 et votre machine locale.

EC2 : https://browser.geekbench.com/v3/cpu/9072780 Locale : https://browser.geekbench.com/v3/cpu/9072785

• Fournissez des informations système sur l'instance EC2.

System Information	
	Xen HVM domU
Operating System	Ubuntu 22.04.3 LTS 6.2.0-1017-aws x86_64
Model	Xen HVM domU
Processor	Intel Xeon E5-2686 v4 @ 2.30 GHz 1 Processor, 1 Core
Processor ID	GenuineIntel Family 6 Model 79 Stepping 1
L1 Instruction Cache	32 KB
L1 Data Cache	32 KB
L2 Cache	256 KB
L3 Cache	46080 KB
Motherboard	N/A
BIOS	Xen 4.11.amazon
Memory	949 MB

• Fournissez les scores de performance pour un seul cœur et pour plusieurs cœurs pour les performances globales, entières, en virgule flottante et de mémoire de l'instance EC2.

Geekbench 3 Score

2447

2455

Single-Core Score

Multi-Core Score

Geekbench 3.3.0 Tryout for Linux x86 (32-bit)

Integer Performance	
Single-core	2748
Multi-core	2731
AES	3829
Single-core	3.28 GB/sec
AES	3861
Multi-core	3.30 GB/sec
Twofish	2584
Single-core	145.0 MB/sec
Twofish	2596
Multi-core	145.7 MB/sec
SHA1	3103
Single-core	336.8 MB/sec
SHA1	3127
Multi-core	339.4 MB/sec
SHA2	3149
Single-core	136.2 MB/sec
SHA2	3186
Multi-core	137.9 MB/sec
BZip2 Compress	2213
Single-core	9.00 MB/sec
BZip2 Compress	2195
Multi-core	8.93 MB/sec
BZip2 Decompress	2576 6 / 17

Single-core	14.0 MB/sec
BZip2 Decompress	2573
Multi-core	13.9 MB/sec
JPEG Compress	2360
Single-core	32.9 Mpixels/sec
JPEG Compress	2360
Multi-core	32.9 Mpixels/sec
JPEG Decompress	2769
Single-core	68.5 Mpixels/sec
JPEG Decompress	2706
Multi-core	66.9 Mpixels/sec
PNG Compress	2282
Single-core	1.82 Mpixels/sec
PNG Compress	2280
Multi-core	1.82 Mpixels/sec
PNG Decompress	2484
Single-core	28.7 Mpixels/sec
Single-core PNG Decompress	28.7 Mpixels/sec 2468
Single-core PNG Decompress Multi-core Sobel	28.7 Mpixels/sec 2468 28.5 Mpixels/sec 2784
Single-core PNG Decompress Multi-core Sobel Single-core Sobel	28.7 Mpixels/sec 2468 28.5 Mpixels/sec 2784 101.3 Mpixels/sec 2789
PNG Decompress Multi-core Sobel Single-core Sobel Multi-core Lua	28.7 Mpixels/sec 2468 28.5 Mpixels/sec 2784 101.3 Mpixels/sec 2789 101.5 Mpixels/sec 3484
PNG Decompress Multi-core Sobel Single-core Sobel Multi-core Lua Single-core Lua	28.7 Mpixels/sec 2468 28.5 Mpixels/sec 2784 101.3 Mpixels/sec 2789 101.5 Mpixels/sec 3484 3.13 MB/sec 3409

Floating Point Performance	
Single-core	2559
Multi-core	2455
BlackScholes	2295
Single-core	10.2 Mnodes/sec
BlackScholes	2330
Multi-core	10.4 Mnodes/sec
Mandelbrot	2734
Single-core	2.80 Gflops
Mandelbrot	2732
Multi-core	2.80 Gflops
Sharpen Filter	2521
Single-core	1.87 Gflops
Sharpen Filter	2544
Multi-core	1.89 Gflops
Blur Filter Single-core	2381 2.27 Gflops
Blur Filter	2382
Multi-core	2.27 Gflops
SGEMM Single-core	2453 6.87 Gflops
SGEMM Multi-core	2438 6.83 Gflops
DGEMM	2377
Single-core	3.49 Gflops
DGEMM Multi-core	2343 3.44 Gflops

SFFT Single-core	2649 2.79 Gflops
SFFT Multi-core	2643 2.79 Gflops
DFFT Single-core	2064 1.88 Gflops
DFFT Multi-core	1191 1.09 Gflops
N-Body Single-core	3550 1.32 Mpairs/sec
Single-core N-Body	1.32 Mpairs/sec 3991

Memory Performance	
Single-core	1622
Multi-core	1904
Stream Copy	1076
Single-core	4.30 GB/sec
Stream Copy	3456
Multi-core	13.8 GB/sec
Stream Scale Single-core	1921 7.67 GB/sec
Stream Scale	1621
Multi-core	6.47 GB/sec
Stream Add	1758
Single-core	7.95 GB/sec
Stream Add	1654
Multi-core	7.48 GB/sec
Stream Triad	1909
Single-core	8.39 GB/sec
Stream Triad Multi-core	1421 6.25 GB/sec

[•] Fournissez des informations système sur votre machine locale.

System Information

9F00 P @ 2.10 GHz
P @ 2.10 GHz
ores, 16 Threads
ily 6 Model 154 Stepping 3
9F00
59W (1.40)

• Fournissez les scores de performance pour un seul cœur et pour plusieurs cœurs pour les performances globales, entières, en virgule flottante et de mémoire de votre machine locale.

Geekbench 3 Score

4824

23931

Single-Core Score

Multi-Core Score

Geekbench 3.4.4 Tryout for Windows x86 (32-bit)

Integer Performance	
Single-core	5134
Multi-core	32568
AES	8932
Single-core	7.64 GB/sec
AES	29994
Multi-core	25.7 GB/sec
Twofish	4764
Single-core	267.4 MB/sec
Twofish	36370
Multi-core	1.99 GB/sec
SHA1	19655
Single-core	2.08 GB/sec
SHA1	162518
Multi-core	17.2 GB/sec
SHA2	7488
Single-core	324.0 MB/sec
SHA2	39222
Multi-core	1.66 GB/sec
BZip2 Compress	3901
Single-core	15.9 MB/sec
BZip2 Compress	29919
Multi-core	121.6 MB/sec
BZip2 Decompress	3700

Single-core	20.1 MB/sec
BZip2 Decompress	26973
Multi-core	146.2 MB/sec
JPEG Compress	3704
Single-core	51.6 Mpixels/sec
JPEG Compress	25199
Multi-core	351.1 Mpixels/sec
JPEG Decompress Single-core	5744 142.0 Mpixels/sec
JPEG Decompress Multi-core	37111 917.4 Mpixels/sec
PNG Compress	3184
Single-core	2.54 Mpixels/sec
PNG Compress	19494
Multi-core	15.6 Mpixels/sec
PNG Decompress Single-core	3589 41.4 Mpixels/sec
PNG Decompress Multi-core	30241 348.7 Mpixels/sec
Sobel	5103
Single-core	185.7 Mpixels/sec
Sobel	28547
Multi-core	1.04 Gpixels/sec
Lua	4708
Single-core	4.23 MB/sec
Lua	27333
Multi-core	24.6 MB/sec
Dijkstra	3265
Single-core	11.7 Mpairs/sec
Dijkstra	19218
Multi-core	69.0 Mpairs/sec

Floating Point Performance	
Single-core	4546
Multi-core	24193
BlackScholes	4725
Single-core	21.0 Mnodes/sec
BlackScholes	43077
Multi-core	191.7 Mnodes/sec
Mandelbrot	3846
Single-core	3.94 Gflops
Mandelbrot	28730
Multi-core	29.4 Gflops
Sharpen Filter	3091
Single-core	2.29 Gflops
Sharpen Filter	16790
Multi-core	12.4 Gflops
Blur Filter	3676
Single-core	3.50 Gflops
Blur Filter	18217
Multi-core	17.4 Gflops
SGEMM	5224
Single-core	14.6 Gflops
SGEMM Multi-core	23597 66.1 Gflops
DGEMM	6146
Single-core	9.03 Gflops
DGEMM Multi-core	17786 26.1 Gflops

SFFT Single-core	5023 5.30 Gflops
SFFT	26107
Multi-core	27.5 Gflops
DFFT Single-core	4106 3.74 Gflops
DFFT Multi-core	19050 17.3 Gflops
N-Body Single-core	6549 2.43 Mpairs/sec
N-Body	28407
Multi-core	10.5 Mpairs/sec
Ray Trace	4219
Single-core	4.98 Mpixels/sec
Ray Trace	30616
Multi-core	36.1 Mpixels/sec

Memory Performance	
Single-core	4761
Multi-core	6134
Stream Copy	4705
Single-core	18.8 GB/sec
Stream Copy	6437
Multi-core	25.7 GB/sec
Stream Scale	4928
Single-core	19.7 GB/sec
Stream Scale	6198
Multi-core	24.7 GB/sec
Stream Add	4689
Single-core	21.2 GB/sec
Stream Add	6070
Multi-core	27.5 GB/sec
Stream Triad	4726
Single-core	20.8 GB/sec
Stream Triad	5849
Multi-core	25.7 GB/sec

• Comparez les scores globaux des deux machines.

La performance globale pour un seul cœur est meilleure sur la machine locale que sur l'instance EC2, ce qui est logique puisque c'est une instance bon marché. La plus grande différence est avec la performance multi-cœurs, où la performance de l'EC2 reste inchangée car elle n'a qu'un seul cœur, tandis que la machine locale a un score beaucoup plus élevé en raison de la présence de plusieurs cœurs.

Tâche 5 : Consommation de ressources et tarification

Délivrables recalculés :

1. Coût de l'instance par heure et du disque par heure :

- Coût de l'instance t2.micro par heure : 0,0116 \$/heure
- Coût du volume SSD EBS par heure pour 8 Go: 0,08 \$ par Go-mois. Pour 8 Go: (0,08 \$ * 8 Go) / (30 jours * 24 heures) = 0,0008889 \$/heure

2. Coût pour ce laboratoire (estimation approximative) pour une seule personne :

Si le laboratoire dure 6 heures :

- Coût total de l'instance pour le laboratoire : 0,0116 \$ * 6 = 0,0696 \$
- Coût total du disque pour le laboratoire : 0,0008889 \$ * 6 = 0,0053334 \$
- Coût total estimé pour le laboratoire : 0,0696 \$ + 0,0053334 \$ = 0,0749334 \$

3. Calcul du coût total de la configuration utilisée dans le laboratoire pour un mois de fonctionnement continu en production :

- Coût mensuel de l'instance t2.micro: 0,0116 \$ * 24 heures * 30 jours = 8,352 \$
- Coût mensuel du volume SSD EBS de 8 Go : 0,08 \$ * 8 Go = 0,64 \$

Transfert de données : 100'000 visiteurs téléchargeant chacun 85 MB.

Coût du transfert de données : 0,09 \$ par Go pour les premiers 10 TB / mois : 100'000 * 85 MB = 8 500 GB = 8,5 TB. Coût : 8,5 TB * 0,09 \$ = 765 \$

Adresse IPv4 publique:

- **Coût mensuel**: 0,005 \$ par heure, tant pour une adresse active qu'une adresse inactive.
- Calcul pour une adresse active pour un mois: 0,005 \$ * 24 heures * 30 jours = 3,60 \$

Coût total pour un mois :

Coût de l'instance + Coût du disque + Coût du transfert de données + Coût de l'adresse IPv4 =
 8,352 \$ + 0,64 \$ + 765 \$ + 3,60 \$ = 777,592 \$

Détails de votre calcul:

Cette révision intègre les coûts pour une adresse IPv4 publique, facturés à 0,005 \$ par heure, que l'adresse soit utilisée ou non. Le coût total pour l'utilisation continue des ressources cloud pendant un mois inclut désormais le coût de l'instance, le stockage SSD EBS, le transfert de données, et l'adresse IPv4 publique, menant à une estimation ajustée de 780 \$ pour un mois de fonctionnement.

Tâche 6

Nous avons interrompu les instances mais laissé disponible pour une utilisation antérieure.