Recap for Tutorial 9 MH1101

April 3, 2025

1 Convergence Tests

Theorem 1 (Integral Test). Suppose f is a continuous, positive, decreasing function on $[N, \infty)$, and let $a_n = f(n)$.

$$\int_{N}^{\infty} f(x) \, dx \, \text{convergent/divergent} \implies \sum_{n=N}^{\infty} a_n \, \text{convergent/divergent} \implies \sum_{n=1}^{\infty} a_n \, \text{convergent/divergent}$$

Theorem 2 (p-series). Consider $\sum_{n=1}^{\infty} \frac{1}{n^p}$. This series converges if p > 1 and diverges otherwise.

Theorem 3 (Comparison Test). Suppose that $\sum a_n$ and $\sum b_n$ are series with **positive** terms.

- If $\sum b_n$ is convergent and $a_n \leq b_n$ for all n, then $\sum a_n$ is convergent.
- If $\sum b_n$ diverges and $a_n \geq b_n$ for all n, then $\sum a_n$ diverges.

Theorem 4 (Limit Comparison Test). Suppose that $\sum a_n$ and $\sum b_n$ are series with **positive** terms.

- If $\lim_{n\to\infty}\frac{a_n}{b_n}=c<\infty$, then either both series converge or both series diverge.
- If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ converges, then $\sum a_n$ converges.
- If $\lim_{n\to\infty}\frac{a_n}{b_n}=\infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

2 Extra Exercises

Problem 1. Determine whether the following series converges or diverges.

- $\bullet \sum_{n=2}^{\infty} \frac{1}{n \ln n}.$
- $\bullet \sum_{n=1}^{\infty} \frac{4+3^n}{2^n}.$
- $\sum_{n=1}^{\infty} \frac{n^2 1}{3n^4 + 1}$.
- $\bullet \sum_{n=1}^{\infty} \frac{n \sqrt{n} \sin n}{n^2 + n + 1}.$