Resumo de aula 5

1 As funções Trigonométricas e suas inversas

Ângulos

Os ângulos podem ser medidos em graus ou radianos(abreviamos por rad.) Tem-se:

$$\pi rad = 180^{0}$$

Exemplo 1.1. (a)Determine a medida em radianos de 60° . (b) Expresse $\frac{5\pi}{4}$ rad em graus. Solução: (a) $60^{\circ} = \frac{\pi}{3}$ rad (b) $\frac{5\pi}{4}$ rad = 225°

A tabela a seguir fornece a correspondência entre medidas de graus e radianos de alguns ângulos comuns.

Graus	0°	3()°		60°		i 20°	135°	150°	180°	270°	360°
Radianos	0	<u>π</u> 6	7	<u>77</u> 3	- 77 	277 3	<u>Э́п</u>	<u>577</u> 6	77	377	27

Posição Padrão

A posição padrão de um ângulo ocorre quando colocamos seu vértice na origem do sistema de coordenadas e seu lado inicial sobre o eixo x positivo. Um ângulo positivo é medido a partir do lado inicial no sentido anti-horário, da mesma forma, ângulo negativo é obtido girando-se no sentido horário.

FIGURA 4 $\theta < 0$

As funções Trigonométricas

Para um ângulo θ , as seis funções trigonométricas são definidas como taxas de comprimentos dos lados de um triângulo retângulo como a seguir

$$sen \theta = \frac{op}{hip} \qquad cos \theta = \frac{hip}{op}$$

$$-cos \theta = \frac{adj}{hip} \qquad sec \theta = \frac{hip}{adj}$$

$$tg \theta = \frac{op}{adj} \qquad cotg \theta = \frac{adj}{op}$$

As taxas exatas para certos ângulos podem ser lidas dos triângulos da figura abaixo. Por exemplo:

$$\operatorname{sen}\frac{\pi}{4} = \frac{1}{\sqrt{2}}$$

$$\sin\frac{\pi}{6} = \frac{1}{2}$$

$$\operatorname{sen} \frac{\pi}{4} = \frac{1}{\sqrt{2}} \qquad \operatorname{sen} \frac{\pi}{6} = \frac{1}{2} \qquad \operatorname{sen} \frac{\pi}{3} = \frac{\sqrt{3}}{2}$$

$$\cos\frac{\pi}{4} = \frac{1}{\sqrt{2}} \qquad \cos\frac{\pi}{6} = \frac{\sqrt{3}}{2} \qquad \cos\frac{\pi}{3} = \frac{1}{2}$$

$$\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$$

$$\cos\frac{\pi}{3} = \frac{1}{2}$$

$$tg\frac{\pi}{4}=1$$

$$tg \frac{\pi}{4} = 1 \qquad tg \frac{\pi}{6} = \frac{1}{\sqrt{3}} \qquad tg \frac{\pi}{3} = \sqrt{3}$$

$$tg\frac{\pi}{3} = \sqrt{3}$$

Essa definição não se aplica para ângulos obtusos ou negativos; logo, para um ângulo geral, na posição padrão, tomamos P(x,y) como um ponto qualquer sobre o lado terminal de θ e seja r a distância | OP | como na figura abaixo. Então definimos

$$sen \theta = \frac{y}{r} \quad cossec \theta = \frac{r}{y}$$

$$cos \theta = \frac{x}{r} \quad sec \theta = \frac{r}{x}$$

$$tg \theta = \frac{y}{x} \quad cotg \theta = \frac{x}{y}$$

Exemplo 1.2. Determine as taxas trigonomtricas exatas para ângulo cuja medida em

radianos $\frac{4\pi}{3} = 240^{\circ}$. Solução: Tomemos P(x,y) no lado terminal do ângulo $\frac{4\pi}{3}$ rad. Podemos supor que $x = -1, y = -\sqrt{3}$ e r = 2. Lodo, $sen\frac{4\pi}{3} = \frac{y}{r} = \frac{-\sqrt{3}}{2}, cos\frac{4\pi}{3} = \frac{x}{r} = \frac{-1}{2}$ e $tg\frac{4\pi}{3} = \frac{y}{x} = \frac{-\sqrt{3}}{-1} = \sqrt{3}$ Agora, $cossec\frac{4\pi}{3} = \frac{r}{y} = \frac{2}{-\sqrt{3}}, sec\frac{4\pi}{3} = \frac{r}{x} = \frac{2}{-1} = -2$ e $cotg\frac{4\pi}{3} = \frac{x}{y} = \frac{-1}{-\sqrt{3}} = \frac{1}{\sqrt{3}}$

2

Uma identidade trigonométrica é uma relação entre as funções trigonométricas. As mais elemetares são as que se seguem.

$$\sin^2\theta + \cos^2\theta = 1$$

$$tg^2\theta + 1 = sec^2\theta$$

Função arco-seno

A função $f(x) = sen x, x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, é crescente, portanto inversível, e sua imagem é o intervalo [-1, 1]. A inversa de f é a função $f^{-1}(x) = arc sen x$ (leia: arco-seno de x), $x \in [-1, 1]$, dada por

$$arc sen x = y \iff sen y = x$$

com $x \in [-1, 1]$ e $y \in [-\frac{\pi}{2}, \frac{\pi}{2}]$.

Função arco-cosseno

A função $f(x) = \cos x, x \in [0, \pi]$, é decrescente, portanto inversível, e sua imagem é o intervalo [-1,1]. A inversa de f é a função $f^{-1}(x) = \arccos x$ (leia: arco-cosseno de x), $x \in [-1, 1]$, dada por

$$arc \cos x = y \Longleftrightarrow cosy = x$$

 $\text{com } x \in [-1,1] \text{ e } y \in [0,\pi].$

Função arco-tangente

A função $f(x)=tg\,x, x\in(-\frac{\pi}{2},\frac{\pi}{2})$, é crescente, portanto inversível, e sua imagem é \mathbb{R} . A inversa de f é a função $f^{-1}(x)=arc\,tg\,x$ (leia: arco-tangente de x), $x\in\mathbb{R}$, dada por

$$arc\,tg\,x=y\Longleftrightarrow tgy=x$$

com $x \in \mathbb{R}$ e $y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

