Memo: Tutorial 6

April 21, 2004

M[N,T]	a	\$
A	$A \rightarrow a \ A \ a$	$A \rightarrow \varepsilon$
	$A \rightarrow \varepsilon$	

Since we have two entries in M(A, a), the grammar is not LL(1).

Question 2:

(a)		
Grammar rule	Pass 1	Pass 2
$stmt\text{-}sequence \rightarrow stmt \ stmt\text{-}seq'$		$First(stmt\text{-}sequence) = \{s\}$
$stmt\text{-}seq' \rightarrow ; stmt\text{-}sequence$	$First(stmt-seq') = \{ ; \}$	
$stmt$ - $seq' \rightarrow \varepsilon$	$First(stmt-seq') = \{;, \varepsilon\}$	
$stmt \rightarrow s$	$First(stmt) = \{s\}$	
Thus		
$First(stmt-sequence) = \{s\}$		
$First(stmt-seq') = \{;, \varepsilon\}$		
$First(stmt) = \{s\}$		
(b)		
Grammar rule	Pass 1	
$stmt$ -sequence \rightarrow stmt $stmt$ -seq	$Follow(stmt-sequence) = {}$	\$}
	$Follow(stmt) = \{;, \$\}$	
	$Follow(stmt-seq') = \{\$\}$	
$stmt\text{-}seq^{'} \rightarrow ; stmt\text{-}sequence$	1 1/1	
$stmt$ - $seq' \rightarrow \varepsilon$		
$stmt \rightarrow s$		
Thus		
$Follow(stmt-sequence) = \{\$\}$		
$Follow(stmt-seq') = \{\$\}$		

Parsing stack	Input	Action
\$ exp	number + number * number - number	$exp \rightarrow term \ exp^{'}$
\$ exp' term	$\mathbf{number} + \ \mathbf{number} * \ \mathbf{number} - \ \mathbf{number} \$$	$term \rightarrow factor \ term'$
\$ exp term factor	number + number * number - number	$factor \rightarrow number$
\$ exp' term' number	number + number * number - number	match
\$ exp' term'	+ number $*$ number $-$ number\$	$term' \rightarrow \varepsilon$
\$ exp'	+ number * number - number	$exp' \rightarrow addop \ term \ exp'$
\$ exp term addop	+ number * number - number\$	$addop \rightarrow +$
exp' term +	+ number $*$ number $-$ number\$	match
\$ exp term	number * number - number\$	$term \rightarrow factor \ term'$
\$ exp' term' factor	number * number - number\$	$factor \rightarrow number$
\$ exp term number	number * number - number\$	match
\$ exp' term'	* number - number\$	$term' \rightarrow mulop\ factor\ term'$
\$ exp term factor mulop	* number - number\$	$mulop \rightarrow *$
\$ exp' term' factor *	* number - number\$	match
\$ exp term factor	number - number\$	$factor \rightarrow number$
\$ exp' term' number	number - number\$	match
\$ exp ' term'	- number\$	$term \rightarrow \varepsilon$
\$ exp'	- number\$	$exp' \rightarrow addop \ term \ exp'$
\$ exp term addop	- number\$	$addop \rightarrow -$
\$ exp' term -	- number\$	match
\$ exp term	number\$	$term \rightarrow factor \ term'$
\$ exp' term' factor	number\$	$factor \rightarrow number$
\$ exp term number	number\$	match
\$ exp' term'	\$	$term' \rightarrow \varepsilon$
\$ exp	\$	$exp' \rightarrow \varepsilon$
	S S	accept

 $\label{eq:Question 4:} \textbf{Question 4:} \\ (a) and (b) A grammar can not be both LL(1) and ambiguous, since each string in an LL(1) grammar has exactly one leftmost derivation. \\ (c) No. The grammar in Question 1 is unambiguous but not LL(1).$

(c)			
M[N,T]	s	;	\$
stmt-sequence	$stmt\text{-}sequence \rightarrow stmt \ stmt\text{-}seq'$		
stmt-seq		$stmt\text{-}seq' \rightarrow ; stmt\text{-}sequence$	$stmt\text{-}seq' \rightarrow \varepsilon$
stmt	stmt→s		

Question 3:

(a)	1 /		1 5		ı	ı	
M[N,T]	(number)	+	-	*	\$
exp	$exp \rightarrow$	$exp \rightarrow$					
	term exp	term exp'					
exp'			$exp' \rightarrow \varepsilon$	$exp' \rightarrow$	$exp' \rightarrow$		$exp' \rightarrow \varepsilon$
				addop	addop		
				term exp'	term exp'		
addop				$addop \rightarrow +$	$addop \rightarrow -$		
term	$term \rightarrow$	$term \rightarrow$					
	factor	factor					
	term'	term'					
term'			$term' \rightarrow \varepsilon$	$term' \rightarrow \varepsilon$	$term' \rightarrow \varepsilon$	$term' \rightarrow$	$term' \rightarrow \varepsilon$
						mulop	
						factor	
						term'	
mulop						$mulop \rightarrow *$	
factor	$factor \rightarrow$	$factor \rightarrow$					
	(exp)	number					

(b)

2