INSTITUTO SUPERIOR TÉCNICO

DEPARTAMENTO DE ENGENHARIA INFORMÁTICA

ORGANIZAÇÃO DE COMPUTADORES LEIC

Conjunto de Exercícios II

Métricas de Desempenho

Versão 1.1

2025/2026

Exercise 1

A design optimization was applied to a computer system in order to increase the performance of a given execution mode by a factor of 10. The optimized mode is used 50% of the time, measured as a percentage of the execution time *after* the optimization has been applied.

- (a) What is the global speedup value that is achieved with this optimization?
 - **Remind**: Amdahl's law defines the global speedup as a function of the optimized fraction *before* the optimization is applied. As a consequence, the 50% ratio cannot be directly used to evaluate this speedup value.
- (b) What is the percentage of the original execution time that is affected by this optimization?
- (c) How much should such execution mode be optimized in order to achieve a global speedup of 6? Can a global speedup of 12 be achieved? And 11?

Exercise 2 *

Consider three different processors P1, P2, and P3 executing the same instruction set with the clock rates and CPIs given in the following table.

Processor	Clock Rate	СРІ	
P1	3 GHz	1.5	
P2	2.5 GHz	1.0	
P3	4 GHz	2.2	

- (a) Which processor has the highest performance expressed in instructions per second?
- (b) If the processors each execute a program in 10 seconds, find the number of cycles and the number of instructions.
- (c) We are trying to reduce the execution time of the program by increasing the clock speed but this leads to an increase of 20% in the CPI. What clock rate is necessary to get a time reduction of 30%(compared to the original time)?

Exercise 3 †

The following table shows the number of instructions for a program.

Arith	Store	Load	Branch	Total
650	100	600	50	1400

- (a) Assuming that arithmetic instructions take 1 cycle, load and store 5 cycles, and branches 2 cycles, what is the execution time of the program in a 2 GHz processor?
- (b) Find the CPI for the program.
- (c) If the number of load instructions can be reduced by one half, what is the speedup and the CPI?

^{*}Exercises 1.3.1—1.3.3 from [1].

[†]Exercises 1.4.4—1.4.6 from [1].

Exercise 4[‡]

Consider two different implementations of the same instruction set architecture. There are four classes of instructions: A, B, C, and D. The clock rate and CPI of each implementation are given in the following table.

Processor	Clock Rate	CPI Class A	CPI Class B	CPI Class C	CPI Class D
P1	2.5 GHz	2	1.5	2	1
P2	3 GHz	1	2	1	1

- (a) Consider a program executing 10⁶ instructions divided into classes as follows: 10% class A, 20% class B, 50% class C, and 20% class D. Determine which implementation is faster for this program.
- (b) What is the global CPI for each implementation for this program?
- (c) Find the clock cycles required in both cases.

References

[1] David Patterson and John Hennessy. *Computer Organization and Design: The Hardware/Software Interface*. Morgan Kaufmann, 4th edition, 2011.

[‡]Exercises 1.4.1—1.4.3 from [1].

Conjunto de Exercícios II Métricas de Desempenho

Soluções

Exercise 1

- (a) 5.5
- (b) 91%
- (c) Yes it can with an optimization by a factor of 12. No, because factor can't be negative, so it is impossible. Also no, because ∞ optimization \rightarrow impossible.

Exercise 2

- (a) P2.
- (b) cycles(P1)= $10 \times 3 \times 10^9 = 30 \times 10^9$

cycles(P2)=
$$10 \times 2.5 \times 10^9 = 25 \times 10^9$$

$$cycles(P3)=10\times4\times10^{9}=40\times10^{9}$$

inst(P1) =
$$30 \times 10^9 / 1.5 = 20 \times 10^9$$

instr(P2) =
$$25 \times 10^9/1 = 25 \times 10^9$$

$$instr(P3) = 40 \times 10^9 / 2.2 = 18.18 \times 10^9$$

(c) Fnew = $\frac{1.2}{0.7}$ x Fold

Exercise 3

- (a) 2125 ns.
- (b) 3.03
- (c) Speedup = 1.54, CPI = 2.5

Exercise 4

- (a) P2
- (b) CPI(P1) = 1.7CPI(P2) = 1.2
- (c) clock cycle (P1) = 17×10^5 clock cycle (P2) = 12×10^5