Security in Multi-tier Systems (part 01)

- Trust
- HTTPS handshake
- Certificates
- Encryption

• [CS 308 / 350 / 354]

Trust

 How do you know you are communicating with the right server? And how do we know the communication is private and secure?

Public/private key encryption

- Encryption is performed using a pair of keys
- If we have US Bank's public key, we can encrypt and send them a message --- and only they can decrypt it because only they have the matching private key

Proof of identity

 Also --- if we have US Bank's public key and successfully decrypt their message, we know it's from US Bank because only they have the private key

HTTPS "handshake"

 HTTPS is designed to prove identity *and* encrypt by securely getting public key to the client

Example: SSL / TLS certificate

Figure 3: https://www.medium.com TLS Certificate Contents at the Time of Writing

Asymmetric encryption

- Public/private key encryption is an example of asymmetric encryption
 - Different keys to encrypt vs. decrypt
- Advantage?
 - The private key is never shared / transmitted

Bi-directional

Both parties can encrypt and decrypt

- Client encrypts with public, server decrypts with private
- Server encrypts with private, client decrypts with public

Beware!

- It's bi-directional, but...
 - Encryption only guarantees privacy in one direction
 - Trust is only established in one direction

Example

- Client has US Bank's public key
- Server (US Bank) has its private key

Full security in both directions?

Two options:

- (1) You need 2 pairs of public/private keys, with each party having public key of the other
- (2) Use a symmetric key (next slide)

Symmetric encryption

- After HTTPS handshake, client and server exchange a single key for faster symmetric encryption
 - Single key can be used by both parties to encrypt & decrypt

SSL / TLS certificates

- The good news?
- Easy to obtain, sign, and register certificate so you can secure your app

https://docs.aws.amazon.com/acm/latest/userguide/gs-acm-request-public.html

https://www.verisign.com/en_US/website-presence/online/ssl-certificates/index.xhtml

SSL = secure sockets layer (deprecated)

TLS = transport layer security (new std)

That's it, thank you!