餐饮客户价值分析:

■ 部分餐饮客户的消费行为特征数据如下,根据数据将客户分成不同客户群,并评价这些客户群的价值

4	A	В	C	D	Е
1	Id	R	F	M	
2	1	27	6	232. 61	
3	2	3	5	1507.11	
4	3	4	16	817.62	
5	4	3	11	232. 81	
6	5	14	7	1913.05	
7	6	19	6	220.07	
8	7	5	2	615.83	
9	8	26	2	1059.66	
10	9	21	9	304.82	
11	10	2	21	1227.96	
12	11	15	2	521.02	
13	12	26	3	438. 22	
14	13	17	11	1744. 55	

餐饮客户价值分析:

□ Python代码

```
#-*- coding: utf-8 -*-
        #使用K-Means算法聚类消费行为特征数据
        import pandas as pd
        #参数初始化
 4
5
        inputfile = '.../data/consumption_data.xls' #销量及其他属性数据
        outputfile = '../tmp/data_type.xls' #保存结果的文件名
        k = 3 #聚类的类别
        iteration = 500 #聚类最大循环次数
        data = pd.read_excel(inputfile, index_col = 'Id') #读取数据
9
        data_zs = 1.0*(data - data.mean())/data.std() #数据标准化
10
11
        from sklearn. cluster import KMeans
12
        model = KMeans(n_clusters = k, n_jobs = 1, max_iter = iteration) #分为k类, 并发数4
13
        model.fit(data_zs) #开始聚类
        #简单打印结果
14
        r1 = pd. Series (model. labels_). value_counts() #统计各个类别的数目
15
16
        r2 = pd. DataFrame (model. cluster_centers_) #找出聚类中心
        r = pd. concat([r2, r1], axis = 1) #横向连接(0是纵向),得到聚类中心对应的类别下的数目
17
        r. columns = list(data. columns) + [u'类别数目'] #重命名表头
18
        #详细输出原始数据及其类别
19
        r = pd. concat([data, pd. Series(model. labels_, index = data. index)], axis = 1) #详细输出每个样本对应的类别
21
        r. columns = list(data. columns) + [u'聚类类别'] #重命名表头
        r. to_excel(outputfile) #保存结果
        def density_plot(data): #自定义作图函数
23
24
          import matplotlib. pyplot as plt
         plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
         plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号
26
         p = data.plot(kind='kde', linewidth = 2, subplots = True, sharex = False)
          [p[i]. set ylabel(u'密度') for i in range(k)]
29
         plt. legend()
      return plt
        pic_output = '../tmp/pd_' #概率密度图文件名前缀
31
32
        for i in range(k):
          density_plot(data[r[u'聚类类别']==i]).savefig(u'%s%s.png' %(pic_output, i))
33
34
```


餐饮客户价值分析:

□ 运行结果

4	Α	В	С	D	E	F
1	ld	R	F	M	聚类类别	
2	1	27	6	232.61	1	
3	2	3	5	1507.11	1	
4	3	4	16	817.62	0	
5	4	3	11	232.81	1	
6	5	14	7	1913.05	1	
7	6	19	6	220.07	1	
8	7	5	2	615.83	1	
9	8	26	2	1059.66	1	
10	9	21	9	304.82	1	
11	10	2	21	1227.96	0	
12	11	15	2	521.02	1	
13	12	26	3	438.22	1	
14	13	17	11	1744.55	0	
15	14	30	16	1957.44	0	
16	15	5	7	1713.79	1	
17	16	4	21	1768.11	0	
18	17	93	2	1016.34	2	

餐饮客户价值分析:

□ 分群一结果分析:分群一的R间隔相对较小,主要集中在0~30天,消费次数集中在 10~25次,消费金额在500~2000

餐饮客户价值分析:

□ 分群二结果分析:分群二的R间隔分布在0~30天,消费次数集中在0~12次,消费金额在0~1800

餐饮客户价值分析:

□ 分群三结果分析:分群三的R间隔较大,间隔分布在30~80天,消费次数集中在0~15次,消费金额在0~2000

餐饮客户价值分析:

- □ 对比分析
- 分群1的时间间隔较短,消费次数多,而且消费 金额较大,时高消费、高价值人群。
- 分群二的时间间隔、消费次数和消费金额处于中等水平,代表着一般客户。
- 分群三的时间间隔较长,消费次数较少,消费金额也不是特别高,是价值较低的客户群体。

