Рост дендритов

Групповой проект. Этап 1.

Дворкина Е.В., Чемоданова А.А., Серёгина И.А., Волгин И.А., Александрова У.В., Голощапов Я.В. 26 марта 2025

Российский университет дружбы народов, Москва, Россия

Состав исследовательской группы

Студенты группы НФИбд-01-22:

- Дворкина Е. В.
- Чемоданова А. А.
- Серёгина И. А.
- Волгин И. А.
- Александрова У. В.
- Голощапов Я. В.

Докладчик

- Александрова Ульяна Вадимовна
- студент учебной группы НФИбд-01-22
- Российский университет дружбы народов
- https://github.com/AleksandrovaUV

Вводная часть

Актуальность

- Ключевая роль в металлургии и литейном производстве.
- теоретическое понимание процессов кристаллизации,
- улучшение технологий производства материалов.

Рис. 1: Дендритная кристаллизация

Объект и предмет исследования

Рис. 2: Двумерные дендритные структуры на основе меди

- Дендриты
- Кристаллические дендриты

Цели и задачи

Цели:

• Исследовать модель роста дендритов

Задачи:

- Рассмотреть комбинированную модель роста дендритов.
- Рассмотреть алгоритм построения модели роста дендритов.
- Построить модель роста дендритов.
- Исследовать зависимость от времени числа частиц в агрегате и его среднеквадратичного радиуса в разных режимах.

Теоретические сведения о модели

Физические свойства вещества

- · плотность ρ ,
- \cdot удельная теплота плавления на единицу массы L,
- \cdot теплоемкость при постоянном давлении c_p (также на единицу массы),
- \cdot коэффициент теплопроводности κ (для простоты будем считать теплопроводность и плотность не зависящими от температуры и одинаковыми для твердой и жидкой фаз так называемая симметричная модель),
- · температура плавления T_m .

Переохлаждение расплава

Безразмерное переохлаждение:

$$S = c_p \frac{(T_m - T_\infty)}{L} \tag{1}$$

При $S \geq 1$ — полное затвердевание, при S < 1 — частичное.

Уравнение теплопроводности

Рис. 3: Взаимосвязь кривизны поверхности и температуры плавления

Для описания изменения температуры со временем в двумерном случае используется уравнение теплопроводности:

$$\rho c_p \frac{\partial T}{\partial t} = \kappa \nabla^2 T \equiv \kappa \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) \tag{2}$$

Скорость роста границы кристализации

Рис. 4: Стадии затвердевания кристалических материалов

Скорость движения границы Vсвязана с градиентом температуры.

Условие Стефана:

$$\mathbf{n} \cdot \mathbf{V} = \frac{\kappa}{\rho L} (\mathbf{n} \cdot \nabla T|_s - \mathbf{n} \cdot \nabla T|_l) \tag{3}$$

Градиенты температуры в твердой и жидкой фазах определяют поток тепла.

Механизмы ограничивающие рост выступов

Условие Гибса-Томсона:

Температура границы снижается для компенсации поверхностного натяжения:

$$T_b = T_m \left(1 - \frac{\gamma T_m}{\rho L^2 R} \right). \tag{4}$$

Кинетическое замедление роста:

$$\Delta T_b = -T_m/\beta V. \tag{5}$$

Здесь β — кинетический коэффициент.

Рис. 5: Демонстрация роста выступов дендрита

Безразмерная температура и уравнение теплопроводности

Вводится безразмерная температура $\tilde{T}=c_p(T-T_\infty)/L$, где T_∞ — начальная температура расплава. Уравнение теплопроводности для \tilde{T} имеет вид

$$\frac{\partial \tilde{T}}{\partial t} = \chi \nabla^2 \tilde{T},\tag{6}$$

где $\chi=\kappa/\rho c_p$ — коэффициент температуропроводности.

Аппроксимация лапласиана

Точное выражение для $abla^2 T$ в узле (i,j)

$$\nabla^2 T \approx \frac{\langle T_{(i,j)} \rangle - T_{i,j}}{(4+4w)(1+2w)h^2},\tag{7}$$

где $\langle T_{(i,j)} \rangle$ — среднее значение температуры в соседних узлах, w — коэффициент, учитывающий влияние диагональных соседей (обычно w=1/2).

Явная разностная схема

$$\hat{T}_{i,j} = T_{i,j} + \frac{\chi \Delta t \nabla^2 T}{m}.$$

m - количество подшагов

(8)

Условие перехода в твердую фазу

Узел переходит из жидкого в твердое состояние, если:

$$T \le \tilde{T}_m(1 + \eta_{i,j}\delta) + \lambda s_{i,j},\tag{9}$$

где:

- \cdot $ilde{T}_m$ безразмерное начальное переохлаждение,
- $\cdot \,\, \eta_{i,j}$ случайное число в интервале [-1,1],
- \cdot δ величина случайного отклонения температуры (теплового шума),
- \cdot λ величина, связанная с капиллярным радиусом,
- · $s_{i,j}$ параметр, учитывающий кривизну границы.

Выводы

Во время выполнения первого этапа группового проекта мы:

- сделали теоретическое описание модели роста дендритов
- определили задачи дальнейшего исследования