Arithmetic Logic Unit (ALU)

Dr. Igor Ivkovic

iivkovic@uwaterloo.ca

[with material from "Computer Organization and Design" by Patterson and Hennessy, and "Digital Design and Computer Architecture" by Harris and Harris, both published by Morgan Kaufmann]

Objectives

- Binary Representations of Integers
- Basic Arithmetic Circuitry
- Composing Arithmetic Logic Unit (ALU)
- Multipliers and Dividers

Unsigned Binary Integers

Given an n-bit number:

$$x = x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \dots + x_12^1 + x_02^0$$

- No sign bit present
- Range: 0 to +2ⁿ 1

Example:

0000 0000 0000 0000 0000 0000 1011₂

$$= 0 + ... + 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$$

= $0 + ... + 8 + 0 + 2 + 1 = 11_{10}$

Using 32 bits:

- Represent 0 to +4,294,967,295
- How do we represent negative numbers?

One Idea: Signed/Magnitude Binary Integers

Given an n-bit number:

$$x = x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \dots + x_12^1 + x_02^0$$

- Left-most bit represents the sign (1 for negative, 0 for nonnegative)
- Range: $-2^{n-1} + 1$ to $+2^{n-1} 1$ (cannot represent -2^{n-1} and 2^{n-1})

Example:

Using 32 bits with signed/magnitude representation:

- Represent –2,147,483,647 to +2,147,483,647
- 0 is represented twice as 1000...0000₂ and 0000...0000₂
- Not trivial to perform arithmetic operations such as addition and subtraction

Better Idea: Two's Complement Integers /1

Given an n-bit number:

$$x = x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \dots + x_12^1 + x_02^0$$

- Left-most bit represents the sign (1 for negative, 0 for nonnegative)
- Range: -2^{n-1} to $+2^{n-1}-1$ (cannot represent 2^{n-1})

Example:

Using 32 bits

- Represent –2,147,483,648 to +2,147,483,647
- 0 is represented only once as 0000...0000₂
- Easier to perform arithmetic operations such as addition and subtraction (see the discussion that follows)

Better Idea: Two's Complement Integers /2

Bit 31 or the left-most bit:

The most significant bit (MSB) or the sign bit

- MSB = 1 for negative numbers
- MSB = 0 for non-negative numbers
- Non-negative numbers have the same unsigned and two's complement representation
- Compute the negative value when MSB = 1:
 - Start with -2ⁿ⁻¹ and add +2^k for each k-th bit from n 2 to 0 that is 1; ignore the bits that are not 1

Example:

Start with $1100_2 = -2^3 + 2^2 = -8 + 4 = -4_{10}$

Better Idea: Two's Complement Integers /3

Some specific numbers:

```
Most positive: 0111 1111 ... 1111
        0000 0000 ... 0010
        0000 0000 ... 0001
        0000 0000 ... 0000
 0:
        1111 1111 ... 1111
-1:
        1111 1111 ... 1110
        1111 1111 ... 1101
-3:
        1111 1111 ... 1100
-4:
        1111 1111 ... 1011
-5:
-6:
        1111 1111 ... 1010
-7:
        1111 1111 ... 1001
        1111 1111 ... 1000
-8:
```

Most negative: 1000 0000 ... 0000

Notice the pattern for the negative numbers: counting the binary numbers in reverse

Signed Negation

How to negate a signed integer?

- Easy: Compute the complement and add 1
- Compute the complement means convert $1 \rightarrow 0$ and $0 \rightarrow 1$

$$x + \overline{x} = 1111...111_2 = -1$$

 $\overline{x} + 1 = -x$

■ Example: Negate +2

- **+2** = 0000 0000 ... 0010₂
- $-2 = 1111 \ 1111 \dots \ 1101_2 + 1$ = 1111 \ 1111 \ \dots \ \ 1110_2
- Interesting: What if you have to negate 0?

Sign Extension

- Representing a number using more bits
 - The first goal is to preserve the numeric value
- How to extend the bit representation?
 - Fill the extra bit slots with the MSB (the sign bit)
 - For the unsigned values, fill the extra slots with 0
- Example: 4-bit to 8-bit
 - +5: 0101 => 0000 0101
 - -5: 1011 => 1111 1011
- Example: 8-bit to 16-bit
 - +2: 0000 0010 => 0000 0000 0000 0010
 - -2: 1111 1110 => 1111 1111 1111 1110

Logical Operations

Instructions for bitwise manipulation:

Operation	С	Java	MIPS
Shift left	<<	<<	sH
Shift right	>>	>>>	srl
Bitwise AND	&	&	and, andi
Bitwise OR			or, ori
Bitwise NOT	~	~	nor

- Useful for extracting and inserting groups of bits in a word
- MIPS instructions discussed later in the course

Shift Operations

Shift left logical (sll)

- Shift left and fill with 0 bits
- sll by i bits multiplies by 2ⁱ
- **Example:** 11001 << 2 = 00100

Shift right logical (srl)

- Shift right and fill with 0 bits
- srl by i bits divides by 2ⁱ (unsigned only)
- Example: 11001 >> 2 = 00110

We will use shifters in creation of multipliers

More on shifters in the context of MIPS later in the course

AND Operation

AND Operation

- Useful to mask bits in a word
- Select some bits, clear others to 0
- MIPS: and \$t0, \$t1, \$t2

\$t2	0000	0000	0000	0000	0000) 11	01	1100	0000
\$t1	0000	0000	0000	0000	0011	L 11	00	0000	0000
\$t0	0000	0000	0000	0000	0000) 11	00	0000	0000

OR Operation

OR Operation

- Useful to include bits in a word
- Set some bits to 1, leave others unchanged
- MIPS: or \$t0, \$t1, \$t2

NOT Operation

NOT Operation

- Useful to invert bits in a word
- Change 0 to 1, and 1 to 0
- MIPS has a NOR 3-operand instruction
- a NOR b == NOT (a OR b)
 MIPS: nor \$t0, \$t1, \$0

 Register \$0 always reads zero

Arithmetic Circuitry

Digital building blocks:

- So far, we have covered gates, multiplexers, decoders, and registers
- We will use these to build arithmetic circuits, counters, memory arrays, and logic arrays
- Digital building blocks demonstrate hierarchy, modularity, and regularity:
 - Hierarchy of simpler components
 - Well-defined interfaces and functions
 - Regular structure easily extends to different sizes
- We will use all of these building blocks to create a microprocessor

Adders /1

Adders:

- Add two input bits, A and B, and output the result, S
- If there is carry-over, it is outputted as C_{out}
- Carry-over is added to the next adder in the chain, or it indicates overflow if it is the last adder in the chain

Carry-over when A and B are both 1

Half Adder

Α	В	Cout	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$S = C_{out} =$$

Full Adder

\mathbf{C}_{in}	A	В	Cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Adders /2

Adders:

- Half adder has no carry-over input from the previous adder

How to create an adder from gates?

 Use the logical formulas shown below each truth table

Half Adder

Α	В	C _{out}	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$S = A \oplus B$$

 $C_{out} = AB$

Full Adder

\mathbf{C}_{in}	Α	В	Cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = A \oplus B \oplus C_{in}$$

 $C_{out} = AB + AC_{in} + BC_{in}$

Adders /3

Multibit Adders (CPAs)

 When composing multibit adders, different strategies for propagating carry-over bits apply

Types of carry propagate adders (CPAs):

Ripple-carry (slow)

Carry-lookahead (fast)

Prefix (faster)

 Carry-lookahead and prefix adders can perform faster for large adders but require more hardware

Ripple-Carry Adder

Ripple-Carry Adder

- Simply chain 1-bit adders together
- Carry ripples through entire chain
- Advantage: simpler operational semantics
- Disadvantage: slower performance

Ripple-Carry Adder Delay

• $\mathbf{t}_{ripple} = \mathbf{N} \times \mathbf{t}_{FA}$, where t_{FA} is the delay of a full adder

Carry-Lookahead Adder

- Instead of waiting for each adder to compute the carry-out bit,
 divide the addition into k-bit blocks and precompute carry-outs
- Compute carry-out (C_{out}) for k-bit blocks using generate, G_i,
 and propagate, P_i, signals

Operational Semantics:

- Column i adder produces a carry-out by either generating a carry-out or propagating a carry-in to the carry-out
- Generate (G_i) and propagate (P_i) signals for each column:
 - Column i will generate a carry-out if A_i AND B_i are both 1
 G_i = A_i B_i
 - Column i will propagate a carry-in to the carry-out if A_i OR B_i is 1 $P_i = A_i + B_i$
 - The carry-out of column i (C_i) is: $C_i = A_i B_i + (A_i + B_i)C_{i-1} = G_i + P_i C_{i-1}$

Operational Semantics Continued:

- Step 1. Compute G_i and P_i for all columns
- Step 2. Compute G and P for k-bit blocks
- Step 3. C_{in} propagates through each k-bit P/G block

Example: 4-bit blocks (G_{3:0} and P_{3:0})

$$G_{3:0} = G_3 + P_3 (G_2 + P_2 (G_1 + P_1 G_0))$$

$$P_{3:0} = P_3 P_2 P_1 P_0$$

Generally, as shown on the previous slide:

$$G_{i:j} = G_i + P_i (G_{i-1} + P_{i-1} (G_{i-2} + P_{i-2}G_i))$$

$$P_{i:j} = P_i P_{i-1} P_{i-2} P_j$$

$$C_i = G_{i:j} + P_{i:j} C_{i-1}$$

Carry-Lookahead Adder Delay

For N-bit CLA with k-bit blocks:

$$t_{CLA} = t_{pg} + t_{pg_block} + (N/k - 1) \times t_{AND_OR} + k \times t_{FA}$$

- □ where t_{pg} is the delay needed to generate all P_i, G_i
- \Box t_{pg_block} is the delay needed to generate all $P_{i:j}$, $G_{i:j}$
- t_{AND_OR} is the delay from C_{in} to C_{out} of final AND/OR gate in k-bit CLA block
- An N-bit CLA is generally much faster than a ripple-carry adder for N > 16

Prefix Adder /1

Prefix Adder

- Continues on the idea of carry-lookahead adder
- Computes carry-in (Ci-1) for each column then computes the sum $S_i = (A_i \oplus B_i) \oplus C_i$
- Computes G and P for 1-, 2-, 4-, 8-, etc bit blocks until all G_i (carry-in) are known (computed in log₂N stages)

Operational Semantics Overview:

- Carry-in either generated in a column or propagated from a previous column
- Column -1 holds C_{in} , so $G_{-1} = C_{in}$ and $P_{-1} = 0$
- Carry-in to column i equals carry-out of column i-1: C_{i-1} = G_{i-1:-1}
- G_{i-1:-1} is the generate signal spanning columns i-1 to -1
- Sum equation: S_i = (A_i ⊕ B_i) ⊕ G_{i-1:-1}
- Goal: Quickly compute G_{0:-1}, G_{1:-1}, G_{2:-1}, G_{3:-1}, G_{4:-1}, G_{5:-1}, ...
 - These are called prefixes

Prefix Adder /3

Operational Semantics Continued:

Generate and propagate signals for a block spanning bits i:j:

$$G_{i:j} = G_{i:k} + P_{i:k} G_{k-1:j}$$

 $P_{i:j} = P_{i:k} P_{k-1:j}$

Generate Stage: block i:j will generate a carry if

- Upper part (i:k) generates a carry, or
- Upper part propagates a carry generated in lower part (k-1:j)

Propagate Stage: block i:j will propagate a carry if

- Both the upper and lower parts propagate the carry
- See Section 5.2.1 of the Harris textbook for details

Prefix Adder /4

Prefix Adder Delay

For N-bit prefix adder (PA):

$$t_{PA} = t_{pg} + log_2 N x (t_{pg_prefix}) + t_{XOR}$$

- \Box t_{pq} is the delay to produce P_i G_i (OR and AND gate)
- \Box $t_{pg prefix}$ is the delay of black prefix cell (AND-OR gate)
- The delay grows logarithmically instead of linearly
- An N-bit PA is generally faster than a CLA for N ≥ 32

Adder Delay Comparisons

- Let us compare the delay of 32-bit ripple-carry, carry-lookahead, and prefix adders
 - CLA has 4-bit blocks
 - 2-input gate delay = 100 ps; full adder delay = 300 ps
 - $t_{ripple} = N \times t_{FA} = 32(300 \text{ ps}) = 9.6 \text{ ns}$
 - $t_{CLA} = t_{pg} + t_{pg_block} + (N/k 1) \times t_{AND_OR} + k \times t_{FA}$ = [100 + 600 + (7)200 + 4(300)] ps = 3.3 ns
 - $t_{PA} = t_{pg} + log_2 N \times (t_{pg_prefix}) + t_{XOR}$ $= [100 + log_2 32(200) + 100] \text{ ps} = 1.2 \text{ ns}$

Subtractor

Subtraction:

- Subtract A from B by first changing the sign of B using an inverter (i.e., complement B's bits and then add 1)
- Then add A and the inverted B

Symbol

Implementation

Equality Comparator

Comparator:

 Determines if two N-bit binary numbers, A and B, are equal, or if one number is greater than or less than the other number

Equality Comparator:

Produces a single output that indicates if A is equal to B

Symbol

Implementation

Magnitude Comparator

Magnitude Comparator:

- Produces one or more outputs indicating the relative values of A and B
- First compute A B and then look at the MSB of the result
- If the MSB equals 1 (i.e., the result is negative), A is less than B; otherwise, A is greater than or equal to B

Arithmetic/Logical Unit (ALU):

- Combines mathematical and logical operations
- A typical ALU performs AND, OR, addition, subtraction, and magnitude comparison operations
- The ALU is at the core of most computer systems
- Certain ALUs produce extra outputs, called flags, that indicate information about the ALU output
- For example, overflow flag indicates that the result of the adder overflowed; zero flag indicates that the result is zero

■ The symbol for ALU:

F _{2:0}	Function
000	A & B
001	A B
010	A + B
011	not used
100	A & ~B
101	A ~B
110	A - B
111	SLT

F _{2:0}	Function
000	A & B
001	A B
010	A + B
011	not used
100	A & ~B
101	A ~B
110	A - B
111	SLT

Configure 32-bit ALU for SLT operation:

- A = 25 and B = 32
- A < B, so Y should be 32-bit representation of 1 (0x00000001)
- $F_{2.0} = 111$
 - □ $F_2 = 1$ (adder acts as subtracter), so 25 32 = -7
 - -7 has 1 in the most significant bit $(S_{31} = 1)$
 - □ $F_{1:0}$ = 11 multiplexer selects Y = S_{31} (zero extender) = 0x00000001

Shifters and Rotators:

- Move bits and multiply or divide by powers of 2.
- Shifter: Circuit that shifts a binary number left or right by a specified number of bit positions
- Rotator: Rotates a binary number in a circle pattern, so that empty spots are filled with bits shifted from the other end
- Logical Shifter: Shifts a binary number to the left (s11) or right (sr1), and fills the empty bits with 0s
- Arithmetic Shifter: Performs the same as the logical shifter on left (sla and sll are the same); on right, it fill the bits with a copy of the MSB (sra is different than srl)

Shifters and Rotators Examples:

Logical shifter:

Arithmetic shifter:

Rotator:

shamt_{1:0}:

- Represents the shift magnitude
- The input, A, is shifted by

 $A_3 A_2 A_1 A_0$

shamt_{1:0}

 Y_3

01

Shifters and Rotators Applied:

- $A << N = A \times 2^{N}$ $00001 << 2 = 00100 (1 \times 2^{2} = 4)$ $11101 << 2 = 10100 (-3 \times 2^{2} = -12)$
- A >>> N = A / 2^N 01000 >>> 2 = 00010 (8 / 2^2 = 2) 10000 >>> 2 = 11100 (-16 / 2^2 = -4)
- Trace these through the matching shifters on the next slide

Multipliers /1

Multipliers:

- N-by-N multipliers multiply two N-bit numbers, and produce 2N-bit results
- The partial products in binary multiplication are either the multiplicand or all 0s
- Multiplication of 1-bit binary numbers is equivalent to the AND operation, so AND gates are used to form the partial products

Divider Overview

Divider Example:

- The divider computes A/B and produces a quotient,
 Q, and a remainder, R
- N indicates if R B is negative, and it is obtained from the C_{out} bit of the left-most block

Food for Thought

Download and Read Assignment #2 Specifications

- Read:
 - Chapter 3 of the course textbook
 - Review the material discussed in the lecture notes in more detail
 - (Optional) Chapter 5 of the Harris and Harris textbook