一. 选择填空(每空1分,最高得50分)

空格号	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
答案	D	C	D	В	В	C	A	C	В	A	C
空格号	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
答案	C	В	A	В	C	A	D	A	В	D	D
空格号	(23)	(24)	(25)	(26)	(27)	(28)	(29)	(30)	(31)	(32)	(33)
答案	В	В	C	A	В	D	D	A	С	A	C
空格号	(34)	(35)	(36)	(37)	(38)	(39)	(40)	(41)	(42)	(43)	(44)
答案	C	A	C	A	C	C	D	В	D	C	C
空格号	(45)	(46)	(47)	(48)	(49)	(50)	(51)	(52)	(53)	(54)	(55)
答案	C	C	В	A	D	В	С	A	В	В	C

=

(1)图如下,功率是 1W,带宽是 2000Hz

(2)图如下, 功率是 2W, 带宽是 4000Hz

(3)图如下,功率是 1W,带宽是 2000Hz

(4)功率是 2W, 最大频偏是 8000Hz, 带宽是 20000Hz

Ξ.

$$(1) \hat{m}(t) = \sin 180\pi t , \quad s(t) = \cos 180\pi t \cos 2\pi f_c t - \sin 180\pi t \sin 2\pi f_c t = \cos(2180\pi t)$$

或者
$$m(t) + j \cdot \hat{m}(t) = \cos(180\pi t) + j \cdot \sin(180\pi t) = e^{j180\pi t}$$
,

$$s(t) = \operatorname{Re}\left\{\left[m(t) + j \cdot \hat{m}(t)\right] e^{j2\pi f_c t}\right\} = \operatorname{Re}\left\{e^{j2180\pi t}\right\} = \cos 2180\pi t$$

$$(2) S(f) = \frac{1}{2} \delta(f - 1090) + \frac{1}{2} \delta(f + 1090), \quad P_s(f) = \frac{1}{4} \delta(f - 1090) + \frac{1}{4} \delta(f + 1090)$$

(3)BPF 输出端s(t)的功率是 0.5, 噪声n(t)功率是 $100 \times 10^{-5} = 0.001$,信噪比是 500。LPF 输出端是s(t) + n(t)的同相分量 $m(t) + n_c(t)$,m(t)功率是 0.5, $n_c(t)$ 的功率等于n(t)功率0.001,信噪比是 500。

四.

(1)E[s(t)] = 0,功率谱密度为

$$P_{s}(f) = \frac{1}{T} |G(f)|^{2} = \frac{1}{2} |\operatorname{sinc}(f) \cdot e^{-j\pi f} - \operatorname{sinc}(f) \cdot e^{-j3\pi f}|^{2}$$
$$= \frac{1}{2} \operatorname{sinc}^{2}(f) |e^{j\pi f} - e^{-j\pi f}|^{2} = 2 \operatorname{sinc}^{2}(f) \operatorname{sin}^{2}(\pi f)$$

 $s^{2}(t) = 1$ 故功率是 1

$$(2) \operatorname{E} \left[s(t) \right] = \operatorname{E} \left[\sum_{n=-\infty}^{\infty} a_n g(t-nT) \right] = \sum_{n=-\infty}^{\infty} \operatorname{E} \left[a_n \right] g(t-nT) = \sum_{n=-\infty}^{\infty} g(t-nT) = 1.$$

s(t)是幅度为 ± 1 的双极性 NRZ 叠加直流 1,其功率谱密度为

$$P_s(f) = \delta(f) + \frac{1}{2} \left| 2 \cdot \operatorname{sinc}(2f) \right|^2 = 2\operatorname{sinc}^2(2f) + \delta(f)$$

s(t)的功率是 2

五.

(1)图如下,最佳采样时刻是1

(2)均值是 2, 方差是 $\sigma^2 = \frac{1}{4}$

(3)最佳门限是 1,误比特率是
$$\frac{1}{2}$$
erfc $\left(\sqrt{\frac{E_{\rm b}}{2N_{\rm 0}}}\right) = \frac{1}{2}$ erfc $\left(\sqrt{2}\right)$

(4)若门限取 0,发 s_2 的错误率是 1/2,发 s_2 的错误率是噪声大于 2 的概率,为 $\frac{1}{2}$ erfc $\left(\frac{2}{\sqrt{2\sigma^2}}\right) = \frac{1}{2}$ erfc $\left(\sqrt{8}\right)$,

平均误比特率为 $\frac{1}{4} + \frac{1}{4} \operatorname{erfc}(\sqrt{8})$