W04-07

Slide 01: In this unit, we will wrap up the discussion on the concept of linear span.

Slide 02: By now, you should have the understanding that a linear span of non zero vectors is a set with infinitely many vectors. The following theorem gives a necessary and sufficient condition on when one linear span will be entirely contained inside another linear span. Let S_1 and S_2 be two subsets of \mathbb{R}^n . More precisely, let S_1 consists of vectors u_1, u_2 and so on till u_k while S_2 contains vectors v_1, v_2 till v_m . Here you can think of the vectors in S_1 being represented by the orange dots while the vectors in S_2 are represented by the red dots.

(#)

The linear span of S_1 is the set of all linear combination of the \boldsymbol{u} 's while the linear span of S_2 is the set of all linear combination of the \boldsymbol{v} 's. Then the linear span of S_1 is a subset of the linear span of S_2

(#)

if and only if each u_i is a linear combination of the vectors in S_2 . In other words, each of the u's can be written in terms of the v's. We will omit the proof of this result and proceed with some illustrative examples.

Slide 03: In this example, we have u_1, u_2, u_3 and also vectors v_1 and v_2 . We would like to show that the linear span of u_1, u_2, u_3 is the same as the linear span of v_1, v_2 .

(#)

The idea is really to use the previous theorem which gave us a necessary and sufficient condition for one linear span to be contained inside another linear span. We will first show the first subset inclusion.

(#)

In order to do so using the theorem, we need to show that each of u_1 , u_2 and u_3 can be written as linear combination of v_1 and v_2 .

Slide 04: How do we check that each of the u is a linear combination of the v's? (#)

This is nothing new as writing a vector as a linear combination of other vectors has been described in a previous unit. We start off with u_1 and set up a vector equation with unknowns a and b which we will try to solve for.

(#)

We do the same for u_2 . Note that even though we use the same symbols of a and b to represent the unknowns, the ones for u_1 and those for u_2 are clearly different.

(#)

We will do the same for u_3 .

(#)

Arising from the first vector equation for u_1 , we have the following linear system.

(#)

From the second equation for u_2 , we have the following,

(#)

and the last system is for u_3 .

(#)

You should notice that even though these are three different linear systems, they have something in common. Namely, the left hand side of the three systems are exactly identical. This is because the three vector equations for u_1 , u_2 and u_3 has the same right hand side. Because of this similarity, we can in fact attempt to solve the three linear systems together by using a special augmented matrix that is modified from the one we are familiar with.

Slide 05: Consider the augmented matrix on the left. Here you see the first two columns which is the identical left hand side of the three linear systems. Following that, we have three columns, each representing the right hand side of the three linear systems. There is one column for u_1 , the next one for u_2 and the last one for u_3 .

(#)

We will perform Gauss-Jordan elimination as per normal on this modified augmented matrix. The resulting matrix in reduced row-echelon form is shown here. How can we interpret this matrix?

(#)

Remember that the first column on the right corresponds to the u_1 linear system. So the two numbers $\frac{1}{5}$ and $\frac{2}{5}$ seen here will give us the unique solution to writing u_1 in terms of v_1 and v_2 . Thus we have $u_1 = \frac{1}{5}v_1 + \frac{2}{5}v_2$.

(#)

The next column in the reduced row-echelon form gives us the solution to the u_2 linear system. Once again, the solution is unique and we have $u_2 = \frac{3}{5}v_1 + \frac{1}{5}v_2$.

(#)

Finally, the last column gives us the unique solution to write u_3 as a linear combination of v_1 and v_2 . More precisely, we have $u_3 = \frac{3}{5}v_1 - \frac{4}{5}v_2$.

(#)

We have now managed to verify that each of the u's is a linear combination of the v's, so we have the linear span of u_1 , u_2 and u_3 to be entirely contained inside the linear span of v_1 and v_2

Slide 06: This is only half the battle won. In order to show that the two linear spans are equal, we need to show the other subset inclusion. In other words, we need to show that the linear span of v_1 and v_2 is contained inside the linear span of u_1 , u_2 and u_3 .

(#)

The method to do so is the same as before. We need to show that each of v_1 and v_2 is a linear combination of u_1 , u_2 and u_3 .

(#)

We write down the v_1 vector equation, where a, b, c are the unknowns.

(#)

Likewise the v_2 vector equation as shown.

Slide 07: Similar to the previous case, we write down the two linear systems,

(#)

one for v_1

(#)

and the other for v_2 .

(#)

Again, the two linear systems has the same left hand side which means that we can once again solve both systems together with a modified augmented matrix.

(#)

Notice that the two columns on the right is such that one represents the v_1 linear system while the other is for v_2 .

Slide 08: When we perform Gauss-Jordan elimination on the augmented matrix, we obtain the following reduced row-echelon form.

(#)

The v_1 linear system can be solved by considering the highlighted portion of the reduced row-echelon form.

(#)

From the reduced row-echelon form, it is clear that the linear system has inifintely many solutions and we can apply knowledge from a previous unit to write down a general solution for this system.

(#)

By letting the arbitrary parameter take on the value of 0, we have a solution to the system as a = -1, b = 2 and c = 0.

(#)

This means that we can write v_1 as $-u_1 + 2u_2 + 0u_3$.

Slide 09: The v_2 linear system can be solved by considering the highlighted portion of the reduced row-echelon form.

(#)

Once again, we observe that this linear system has infinitely many solutions and we can write down a general solution to the system as follows.

(#)

By letting the arbitrary parameter take on the value of 0, we have a solution to the system as a = 3, b = -1 and c = 0.

(#)

This means that we can write v_2 as $3u_1 - u_2 + 0u_3$.

Slide 10: Now that we have shown that each v is a linear comvbination of the u's, we have established that the linear span of v_1 and v_2 is contained inside the linear span of u_1 , u_2 and u_3 .

(#)

Together with what we have shown earlier, we have completed the proof that the two linear spans are identical.

Slide 11: Let us consider another example. Here we have three vectors u_1 , u_2 , u_3 and three other vectors v_1 , v_2 and v_3 . In this case, we would like to show that the linear span of the v's is not contained inside the linear span of u's.

(#)

We will still try to write each of the \boldsymbol{v} 's as a linear combination of the \boldsymbol{u} 's and see what happens.

(#)

As before, we set up the v_1 vector equation and then subsequently write down the associated linear system. Note that there are 4 equations involving 3 unknowns.

- **Slide 12:** Likewise we write down the v_2 vector equation and the associated linear system.
 - Slide 13: We do the same for the v_3 vector equation.
- Slide 14: Once again, the three linear systems share the same left hand side and thus we can try to solve them together. The modified augmented matrix is shown here and

(#)

upon performing Gaussian elimination, we arrive at the following row-echelon form. Unlike the examples we have seen previously, this row-echelon form actually indicates that some of the vector equations are inconsistent.

(#)

In other words, there are some v_i that is not a linear combination of u_1 , u_2 and u_3 . Can you identify which are these v_i 's?

(#)

If we look at the part of the row-echelon form corresponding to the v_1 vector equation, we see that there is a row where the right hand side column is a pivot column. This means that the linear system is inconsistent and thus v_1 is not a linear combination of the u's. There is another v_i that is also not a linear combination of the u's. Can you identify which v_i is it?

Slide 15: We will conclude this unit with a theorem. Suppose u_1 , u_2 until u_k are vectors taken from \mathbb{R}^n .

(#)

If the last vector u_k is a linear combination of the other k-1 vectors, namely, u_1 , u_2 , until u_{k-1} , then

(#)

the linear span of first k-1 vectors is the same as the linear span of all the k vectors. (#)

What this means is that the set of vectors that can be generated by taking linear combinations using the first k-1 vectors is the sames as the set of vectors that can be generated by taking linear combinations using all the k vectors.

(#)

In other words, in this case, it turns out that having one more vector, namely u_k to take linear combinations with, did not generate any additional vectors.

Slide 16: To establish this result we will show that the two linear span are equal by showing two subset inclusions. First, we show that that the linear span of the k-1 vectors is contained inside the linear span of the k vectors.

(#)

We will do this by using the theorem presented earlier in this unit. Starting with the first vector u_1 , is u_1 a linear combination of the k vectors u_1 to u_k ?

(#)

Certainly it is, in fact writing u_1 in terms of the k vectors is trivial.

(#)

Next the second vector u_2

(#)

can also be easily written as a linear combination of the k vectors.

(#)

We can continue doing this

(#)

until u_{k-1} , which is also easily written as a linear combination of the k vectors. Thus the first subset inclusion has been established.

Slide 17: We proceed with the second subset inclusion which is to show that the linear span of the k vectors is contained inside the linear span of the first k-1 vectors.

(#)

We go through the same considerations, starting with u_1 ,

(#)

which is clearly a linear combination of the k-1 vectors.

(#)

Likewise for u_2

(#)

which can be easily written in terms of u_1 to u_{k-1} .

(#)

we will continue with this and all will be fine

Slide 18: until we reach the last vector u_k . Since u_k is not one of the first k-1 vectors, you may wonder if u_k is indeed a linear combination of u_1 to u_{k-1} .

(#)

Here is where the assumption comes in, the fact that u_k is actually a linear combination of u_1 to u_{k-1} is something that we have not used up till now. Thus we have now established that each of the k vectors is a linear combination of the first k-1 vectors

(#)

and this establishes the second subset inclusion. Together with the first case we have proven, we have shown that the two linear spans are the same.

(#)

Intuitively, as we have noted at the beginning before we started on the proof, if u_k is already a linear combination of the first k-1 vectors, then having u_k actually does not add any value or allows additional vectors to be generated in the linear span.

Slide 19: Consider the following example, with the three vectors as shown. It is easily verified that u_3 is a linear combination of u_1 and u_2 .

(#)

By the theorem we have just proven, since u_3 is a linear combination of u_1 and u_2 , the linear span of all three vectors is the same as the linear span of just the first two.

(#)

Are you able to describe the linear span of u_1, u_2 and u_3 geometrically? Since we now know that it is the same as the linear span of just the first two vectors,

(#)

then the linear span of u_1 and u_2 is the span of (1,0,0), which is the x-axis and (0,-1,0), which is the opposite direction of the y-axis. Thus the linear span of u_1 and u_2 is simply the xy-plane, or what is also known as the plane z=0.

Slide 20: To summarise this unit,

(#)

We presented a necessary and sufficient condition for one linear span to be entirely contained inside another linear span.

(#)

We saw a few examples on how this necessary and sufficient condition can be used. (#)

Lastly, we proved a theorem on the equivalence of two linear spans when a vector does not add value in the sense of generating more linear combinations.