PRUEBAS DE HIPOTESIS

A PRUEBAS PARA UNA MEDIA

A 1. Pruebas para m cuando s^2 es conocida.

Estadística de prueba		$Z = \frac{\overline{X} - \mathbf{m}_0}{\mathbf{s} / \sqrt{n}} \sim N(0,1)$	
Hipótesis	Hipótesis	\mathbf{s}/\sqrt{n} Rechace H_0 si	Valor <i>p</i>
Nula	Alternativa	v	-
$H_0: \mathbf{m} = \mathbf{m}_0$	$H_A: \boldsymbol{m} \neq \boldsymbol{m}_0$	$Z_{obs} > z_{1-a/2}$ o $Z_{obs} < -z_{1-a/2}$	$2P(Z > \left Z_{obs} \right)$
$H_0: \mathbf{m} \leq \mathbf{m}_0$	$H_A: \mathbf{m} > \mathbf{m}_0$	$Z_{obs} > z_{1-a}$	$P(Z > Z_{obs})$
$H_0: \mathbf{m} \geq \mathbf{m}_0$	$H_A: \boldsymbol{m} < \boldsymbol{m}_0$	$Z_{obs} < -z_{1-a}$	$P(Z < Z_{obs})$

A 2. Pruebas de hipótesis para m cuando s^2 es desconocida.

Estadística de prueba		$T = \frac{\overline{X} - \mathbf{m}_0}{S / \sqrt{n}} \sim t_{n-1}$	
Hipótesis	Hipótesis	Rechace H_0 si	Valor <i>p</i>
Nula	Alternativa		
$H_0: \boldsymbol{m} = \boldsymbol{m}_0$	$H_A: \boldsymbol{m} \neq \boldsymbol{m}_0$	$T_{obs} > t_{n-1,1-{f a}/2}$ o $T_{obs} < -t_{n-1,1-{f a}/2}$	$2P(T > T_{obs})$
$\boldsymbol{H}_0: \boldsymbol{m} \leq \boldsymbol{m}_0$	$H_A: m > m_0$	$T_{obs} > t_{n-1,1-a}$	$P(T > T_{obs})$
$H_0: \mathbf{m} \geq \mathbf{m}_0$	$H_A: \mathbf{m} < \mathbf{m}_0$	$T_{obs} < -t_{n-1,1-\mathbf{a}}$	$P(T < T_{obs})$

B COMPARACION DE DOS MEDIAS

B 1 Pruebas para $m_1 - m_2 \cos s_1^2 y s_2^2$ conocidas.

Estadística de prueba: $Z = \frac{(\overline{X} - \overline{Y}) - D_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \sim N(0,1)$					
Hipótesis Nula	Hipótesis Alternativa	Rechace H_0 si	Valor p		
$H_0: \mathbf{m}_1 - \mathbf{m}_2 = D_0$	$H_{\mathrm{A}}: \mathbf{m}_{1} - \mathbf{m}_{2} \neq D_{0}$	$Z_{obs} > z_{l-\mathbf{a}/2}$ o $Z_{obs} < -z_{l-\mathbf{a}/2}$	$2P(Z > Z_{obs})$		
$\boldsymbol{H}_0: \boldsymbol{m}_1 - \boldsymbol{m}_2 \le D_0$	$H_{\mathrm{A}}: \mathbf{m}_{1} - \mathbf{m}_{2} > D_{0}$	$Z_{obs} > z_{1-a}$	$P(Z > Z_{obs})$		
$\boldsymbol{H}_0: \boldsymbol{m}_{\!\!1} - \boldsymbol{m}_{\!\!2} \ge D_0$	$H_A: \mathbf{m}_1 - \mathbf{m}_2 < D_0$	$Z_{obs} < -z_{l-a}$	$P(Z < Z_{obs})$		

B2 Pruebas para $m_1 - m_2 \cos s_1^2$ y s_2^2 desconocidas pero iguales a s^2 .

Estadística de prueba:
$$T = \frac{(\overline{X} - \overline{Y}) - D_0}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_n \text{ con } \mathbf{n} = n_1 + n_2 - 2 \text{ y } S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

Hipótesis Nula Hipótesis Alternativa Rechace H_0 si Valor p
 $H_0: \mathbf{m}_1 - \mathbf{m}_2 = D_0$ $H_A: \mathbf{m}_1 - \mathbf{m}_2 \neq D_0$ $T_{obs} > t_{\mathbf{n},1-\mathbf{a}/2}$ o $T_{obs} < -t_{\mathbf{n},1-\mathbf{a}/2}$ $2P(T > |T_{obs}|)$
 $H_0: \mathbf{m}_1 - \mathbf{m}_2 \leq D_0$ $H_A: \mathbf{m}_1 - \mathbf{m}_2 > D_0$ $T_{obs} > t_{\mathbf{n},1-\mathbf{a}}$ $P(T > T_{obs})$
 $H_0: \mathbf{m}_1 - \mathbf{m}_2 \geq D_0$ $H_A: \mathbf{m}_1 - \mathbf{m}_2 < D_0$ $T_{obs} < -t_{\mathbf{n},1-\mathbf{a}}$ $P(T < T_{obs})$

B3 Pruebas para $m_1 - m_2 \cos s_1^2 y s_2^2$ desconocidas y distintas.

Estadística de prueb	$T = \frac{(\overline{X} - \overline{Y})}{\sqrt{\frac{S_1^2}{n_1} + \dots}}$	$\frac{S_2^2}{(S_1^2/n_1)^2} + \frac{(S_2^2)^2}{(S_1^2/n_1)^2}$	
Hipótesis Nula	Hipótesis Alternativa	Rechace H_0 si	Valor p
$\boldsymbol{H}_0: \boldsymbol{m}_1 - \boldsymbol{m}_2 = D_0$	$H_{\rm A}: \boldsymbol{m}_1 - \boldsymbol{m}_2 \neq D_0$	$T_{obs} > t_{\mathbf{n},1-\mathbf{a}/2}$ o $T_{obs} < -t_{\mathbf{n},1-\mathbf{a}/2}$	$2P(T > \left T_{obs} \right)$
$\boldsymbol{H}_0: \boldsymbol{m}_1 - \boldsymbol{m}_2 \le D_0$	$H_{\mathrm{A}}: \boldsymbol{m}_{\!\scriptscriptstyle 1}-\boldsymbol{m}_{\!\scriptscriptstyle 2}>D_0$	$T_{obs} > t_{n,1-a}$	$P(T > T_{obs})$
$\boldsymbol{H}_0: \boldsymbol{m}_1 - \boldsymbol{m}_2 \ge D_0$	$H_A: \mathbf{m}_1 - \mathbf{m}_2 < D_0$	$T_{obs} < -t_{n,1-a}$	$P(T < T_{obs})$

C COMPARACION DE DOS MEDIAS CON BASE EN MUESTRAS PAREADAS

Estadística de prueb	a: $T = \frac{C}{2}$	$\frac{\overline{X} - \overline{Y}) - D_0}{S_D / \sqrt{n}} \sim t_{n-1}$	
Hipótesis Nula	Hipótesis Alternativa	Rechace H_0 si	Valor p
$\boldsymbol{H}_0: \boldsymbol{m}_1 - \boldsymbol{m}_2 = D_0$	$H_{\rm A}: \boldsymbol{m}_1 - \boldsymbol{m}_2 \neq D_0$	$T_{obs} > t_{n-1,1-\boldsymbol{a}/2}$ o $T_{obs} < -t_{n,1-\boldsymbol{a}/2}$	$2P(T > \left T_{obs} \right)$
$\boldsymbol{H}_0: \boldsymbol{m}_1 - \boldsymbol{m}_2 \le D_0$	$H_{\mathrm{A}}: \mathbf{m}_{1} - \mathbf{m}_{2} > D_{0}$	$T_{obs} > t_{n-1,1-a}$	$P(T > T_{obs})$
$H_0: \mathbf{m}_1 - \mathbf{m}_2 \ge D_0$	$H_A: \mathbf{m}_1 - \mathbf{m}_2 < D_0$	$T_{obs} < -t_{n-1,1-a}$	$P(T < T_{obs})$

D PRUEBAS PARA s^2

Estadística de prueba $Q = \frac{(n-1)S^2}{S_0^2} \sim C_{n-1}^2$					
Hipótesis Nula	Hipótesis Alternativa	Rechace H_0 si	Valor p		
$H_0: \mathbf{S}^2 = \mathbf{S}_0^2$	$H_A: \mathbf{S}^2 \neq \mathbf{S}_0^2$	$Q_{obs} > c_{n-1,1-a/2}^2 \circ Q_{obs} < c_{n-1,a/2}^2$			
$H_0: \boldsymbol{s}^2 \leq \boldsymbol{s}_0^2$	$H_A: \boldsymbol{S}^2 > \boldsymbol{S}_0^2$	$Q_{obs} > c_{n-1,1-a}^2$	$P(Q > Q_{obs})$		
$H_0: \boldsymbol{s}^2 \geq \boldsymbol{s}_0^2$	$H_A: \mathbf{S}^2 < \mathbf{S}_0^2$	$Q_{obs} < c_{n-1,a}^2$	$P(Q < Q_{obs})$		

E PRUEBAS PARA COMPARAR VARIANZAS

Estadística de prueba: $F = \frac{S_1^2}{S_2^2} \sim F_{n_1-1,n_2-1}$					
Hipótesis nula	Hipótesis Alternativa	Rechace H_0 si	Valor p		
$H_0: \mathbf{S}_1^2 / \mathbf{S}_2^2 = 1$	$H_A: \mathbf{S}_1^2 / \mathbf{S}_2^2 \neq 1$	$F_{obs} > F_{n_1-1,n_2-1,1-\mathbf{a}/2} \text{ o } F_{obs} < F_{n_1-1,n_2-1,\mathbf{a}}$	/2		
$H_0: \boldsymbol{S}_1^2 / \boldsymbol{S}_2^2 \leq 1$	$H_A: \boldsymbol{s}_1^2/\boldsymbol{s}_2^2 > 1$	$F_{obs} > F_{n_1 - 1, n_2 - 1, 1 - a}$	$P(F > F_{obs})$		
$H_0: \boldsymbol{s}_1^2/\boldsymbol{s}_2^2 \geq 1$	$H_A: \mathbf{S}_1^2 / \mathbf{S}_2^2 < 1$	$F_{obs} < F_{n_1 - 1, n_2 - 1, a}$	$P(F < F_{obs})$		

F PRUEBAS PARA UNA PROPORCION

Estadística de prueba: $Z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}} \sim N(0, 1)$					
Hipótesis nula	Hipótesis Alternativa	Rechace H_0 si	Valor p		
$H_0: p = p_0$	$H_A: p \neq p_0$	$Z_{obs} > z_{1-a/2}$ o $Z_{obs} < -z_{1-a/2}$	$2P(Z > \left Z_{obs} \right)$		
$H_0: p \leq p_0$	$H_A: p > p_0$	$Z_{obs} > z_{1-a}$	$P(Z > Z_{obs})$		
$H_0: p \ge p_0$	$H_A: p < p_0$	$Z_{obs} < -z_{1-a}$	$P(Z < Z_{obs})$		

G PRUEBAS PARA COMPARAR PROPORCIONES

Estadística de prueba: $Z = ((\hat{p}_1 - \hat{p}_2) - P_0) / \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}} \sim N(0, 1)$					
Hipótesis nula	Hipótesis Alternativa	Rechace H_0 si	Valor p		
$H_0 = p_1 - p_2 = P_0$	$H_A = p_1 - p_2 \neq P_0$	$Z_{obs} > z_{1-a/2}$ o $Z_{obs} < -z_{1-a/2}$	$2P(Z > \left Z_{obs} \right)$		
$H_0 = p_1 - p_2 \le P_0$	$H_A = p_1 - p_2 > P_0$	$Z_{obs} > z_{1-a}$	$P(Z > Z_{obs})$		
$H_0 = p_1 - p_2 \ge P_0$	$H_A = p_1 - p_2 < P_0$	$Z_{ m obs} < -z_{ m l-}a$	$P(Z < Z_{obs})$		

Nota:

- o Z_{obs} , T_{obs} , Q_{obs} y F_{obs} son los valores de las respectivas estadísticas de prueba cuando se reemplazan en ellas los datos.
- o Si se quiere probar igualdad de medias o igualdad de proporciones, entonces $D_0=0$ o $P_0=0$ respectivamente.