Prof^a Maria Adelina Raupp Sganzerla masganzerla@gmail.com Ulbra/Gravataí - 2017/1

- É o estudo dos modelos matemáticos que possibilitam:
 - A especificação e o reconhecimento de linguagens (no sentido amplo da palavra)
 - Suas classificações
 - Estruturas
 - Propriedades
 - Características
 - Inter-relacionamentos

- A importância dessa teoria na CC é dupla:
 - Apóia outros aspectos teóricos (decidibilidade, computabilidade, complexidade computacional)
 - Fundamenta diversas aplicações computacionais (processamento de linguagens, reconhecimento de padrões – compiladores, modelagem de sistemas)

 Podem ser representadas de maneira finita e precisa através de sistemas com sustentação matemática.

Entidade	Modelo Matemático	Representação
Mês	Número inteiro no intervalo [1,12]	Caracteres: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Remuneração	Número real positivo	Número real na base 10
Presença	Vetor de números, um para cada dia do mês	Sequência de números reais na base 10
Folha de Pagamento	Relação	Tabela de sequências de símbolos com nome, salário, horas, entre outros.
Cálculo da Folha de Pagamento	Algoritmo	Programa

Teoria das Linguagens Formais

- Linguagem:
 - Forma de comunicação
 - Conjunto de elementos (símbolos)
 - Conjunto de métodos (regras) para combinar esses elementos
- Exemplos:
 - Linguagens naturais (idiomas)
 - Linguagens de Programação
 - Protocolos de comunicação

 São mecanismos formais para representação/especificação de linguagens, baseada na "Teoria da Computação".

Representações

· São feitas por Reconhecedores e Geradores.

- Reconhecedores:
 - São dispositivos formais que servem para verificar se uma sentença pertence ou não a determinada linguagem
- Geradores:
 - Gramáticas (Chomsky)

Reconhecedores

- Autômatos
 - Finitos Determinísticos
 - Finitos Não-Determinísticos
 - Finitos com Movimento Vazio
 - Finitos de Pilha
- Máquina de Turing

Chomsky

 Idealizou uma forma de classificar as Gramáticas segundo suas regras de produção

 Poderiam ser reconhecidos por um autômato

Autômato

- Modelo matemático de uma máquina de estados finitos.
- Um autômato finito determinístico, ou simplesmente autômato finito, pode ser vista como uma máquina composta basicamente por três partes:
 - Fita
 - Unidade de Controle
 - Programa ou Função de Transição

Autômato Finito Determinístico

AFD

$$M = (K, \Sigma, \delta, i, F)$$
 $K = \{q0, q1, q2, q3\}$
 $\Sigma = \{a, b\}$
 $i = q0$
 $F = \{q3\}$

δ	a	b
q0	q1	q2
q1	q0	q3
q2	q3	q0
q3	q2	q1

Máquina de Turing

Noção como Máquina marcador de entrada branco início de fita fita B ß b a b C a cabeça da fita unidade de controle controle

Linguagens Formais: Enfoque

- Análise Léxica
- Análise Sintática

Análise Léxica

- O Analisador Léxico tem como função principal fragmentar o programa fonte em componentes básicos, chamados de átomos ou tokens.
- As funções mais importantes do analisador léxico são:
 - Extração e Classificação de tokens
 - Eliminação de Delimitadores e Comentários
 - Recuperação de Erros

Análise Léxica

- · É a forma de verificar determinado alfabeto;
- Quando analisamos uma palavra, podemos definir através da análise léxica se existe ou não algum caractere que não faz parte do nosso alfabeto proposto;
- O Analisador Léxico é a primeira etapa de um compilador.

Exemplo...

$$a = (a + b) * c;$$

```
a -> identificador
```

(-> símbolo de abre parênteses

+ -> símbolo de adição

) -> símbolo de fecha parênteses

c -> identificador

= -> símbolo de atribuição

a -> identificador

b -> identificador

* -> símbolo de multiplicação

; -> símbolo de finalização

Análise Sintática

 O Analisador Sintático é responsável por verificar quando uma sentença faz parte da gramática da linguagem.

G = (V, T, P, S), onde:

V = Conjunto finito de símbolos

T = Conjunto finito de símbolos terminais

P = Regras de Produção

S = Símbolo inicial

Gramática e Linguagem

$$L(G) = \{ w \in T | S \Rightarrow w \}$$

Exemplo: Gramática, Derivação, Linguagem Gerada.

```
A Gramática G = (V,T,P,N) onde:

V = {N,D}

T = {0,1,2,...,9}

P = {N \rightarrow D,

N \rightarrow DN,

D \rightarrow 0 |1|...|9}

G = ({N, D}, {0, 1, 2, ..., 9},P, N)
```

Abordagem:

- É centrada no tratamento sintático de linguagens lineares abstratas com fácil associação às linguagens típicas da CC.
- Os formalismos usados podem ser classificados nos seguintes tipos:
 - Operacional
 - Axiomático
 - Denotacional

Abordagens:

- Operacional: Autômato Finito, que pode ser determinístico, não determinístico ou com movimento vazio – As principais máquinas teóricas são: Autômato finito, Autômato com Pilha e Máquina de Turing;
- Axiomático: Gramática (regular, livres de contexto, sensível ao contexto e irrestritas);
- Denotacional: Expressão Regular (também pode ser considerado gerador).

Classes de Linguagens

Linguagens Enumeráveis Recursivamente ou Tipo 0

Linguagens Sensíveis ao Contexto ou Tipo 1

Linguagens Livres do Contexto ou Tipo 2

Linguagens Regulares ou Tipo 3

Linguagens Regulares

- Usadas para o desenvolvimento de Analisadores Léxicos
- Editores de Textos
- Sistemas de Pesquisas
- Atualização em Arquivos
- Linguagens Simples de Comunicação Homem-Máquina
- Máquina-Máquina

Linguagens Livre de Contexto

 Usadas principalmente para o desenvolvimento de Analisadores Sintáticos.

Linguagens Enumeráveis

 Estudam a solucionabilidade do problema da existência de algum reconhecedor ou gerador para determinada linguagem.