МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

Департамент молекулярной и биологической физики

ОТЧЁТ

ПО ЛАБОРАТОРНОЙ РАБОТЕ В РАМКАХ КУРСА ФМИ-ЛП: СПЕКТРОСКОПИЯ ЭЛЕКТРОННОГО ПАРАМАГНИТНОГО РЕЗОНАНСА

Работу выполнили студентки 4 курса: Ушакова А. В. (5112) Долотова С. М. (5111)

Долгопрудный 2018

Содержание

1	Теоретическая часть					
	1.1	- Физич	неские основы ЭПР	3		
	1.2		ктура линий ЭПР спектра	4		
	1.3		ость поглощения энергии при ЭПР			
	1.4	Ушир	ение линий и релаксационные процессы	6		
2	Методическая часть					
	2.1	Ход р	аботы и обработка данных	10		
		2.1.1	Исследование влияния амплитуды высокочастотной			
			модуляции на вид спектров ЭПР	10		
		2.1.2	Исследование скорости спинового обмена в раство-			
			рах и кристаллах	12		
		2.1.3				
		2.1.4	Исследование влияния уровня диэлектрических по-			
			терь на вид спектров ЭПР	16		
		2.1.5	Исследование формы линии			
3	Вы	воды		18		
4	Лиз	герату	pa	18		

Аннотация: В данной работе была оценена максимально достижимая для данного прибора амплитуда модуляции постоянного магнитного поля, константа спинового обмена K_e и частота столкновения парамагнитных частиц в растворах с различными концентрациями $MnCl_2$. Также было проведено качественное сравнение ЭПР-спектров $MnCl_2$ в растворе и в кристаллическом состоянии, определена константа сверхтонкого взаимодействия и объяснено образование сверхтонкой структуры для ионов Mn^{2+} .

Теоретическая часть

Физические основы ЭПР

Метод электронного парамагнитного резонанса применяется для исследования парамагнитных центров и их окружения в веществе. Электронный парамагнитный резонанс — избирательное поглощение энергии излучения системой парамагнитных частиц во внешнем магнитном поле. В квантовой теории проекция орбитального момента импульса на заданную ось OZ может принимать лишь дискретные значения:

$$l_z = m_l \cdot \hbar, \qquad m_l = 0, \pm 1, ..., \pm l, \qquad l^2 = l(l+1)\hbar^2$$

где m_l — магнитное и орбитальное квантовые числа, $\hbar=1.0545\cdot 10^{-27}$ эрг · Гс — постоянная Планка.

Орбитальный магнитный момент электрона:

$$\mu_l = \sqrt{l(l+1)} \cdot \beta, \qquad \beta = \frac{e\hbar}{2mc} = 9.274 \cdot 10^{-21} \frac{\text{9pr}}{\Gamma_c},$$

где β – магнетон Бора.

Полный механический момент электрона J=L+S складывается из его спинового и орбитального моментов. Для большинства радикалов необходимо рассматривать только спиновый момент, в то время как орбитальный практически «заморожен». Спин-орбитальное взаимодействие (взаимодействие спинового и орбитального моментов электрона) является возмущением, смешивающим волновые функции основного состояния с волновыми функциями возбужденных орбитальных состояний радикала, что приводит к отклонению величин g-факторов радикалов от чисто спинового значения g_s :

$$g = g_s \left(1 - \frac{a\lambda_{SL}}{\Delta E} \right),\,$$

где ΔE — расщепление между основным и ближайшим по энергии орбитальным состоянием, участвующим в орбитальном движении; a — множитель, который зависит от природы парамагнитного центра и ориентации его по отношению к внешнему магнитному полю. Таким образом, по величие g-фактора можно судить о структуре орбиталей исследуемой молекулы. Для определенности далее будем рассматривать частицы с чисто спиновым парамагнетизмом ($J=S,\,L=0$) при включении внешнего магнитного поля H_0 появляется выделенное направление, вдоль которого ориентируются магнитные моменты частиц. Тогда, с учетом спинового квантования будет выглядеть как:

$$E = g\beta H_0 m_s$$

Согласно правилам отбора, возможны лишь такие переходы, при которых $\Delta m_J = \pm 1$, что приводит к возможности переходов с энергией:

$$h\nu = \Delta E = g\beta H_0$$

Если ядро атома также обладает магнитным моментом (имеет ненулевой спин), структура линий ЭПР спектра становится более сложной.

Структура линий ЭПР спектра

При достаточно больших внешних полях энергия взаимодействия магнитного момента электронной оболочки с этим полем будет больше, чем энергия взаимодействия с магнитным моментом ядра. Это приведёт к «разрыву» связи ядра и электронной оболочки, т.е. магнитные моменты ядра и электронной оболочки будут ориентироваться во внешнем магнитном поле независимо друг от друга. В таком случае на электрон будет действовать локальное магнитное поле $H_0 + \Delta H$ — дополнительное магнитное поле, созданное ядром. Такое взаимодействие магнитных моментов электрона и ядра приводит к изменению условия резонанса и носит название сверхтонкого взаимодействия (СТВ).

Например, в случае атома водорода $(I=\frac{1}{2})$ возможны две ориентации спина ядра: со- и противонаправленное с вектором внешнего магнитного поля. Следовательно, возможно два значения локального поля, в котором может находиться электрон, и в спектре возникают две линии сверхтонкой структуры. Расстояние между ними называют константой сверхтонкого взаимодействия (a).

Электроны различных атомов будут находиться в магнитных полях, создаваемых ядрами, имеющих 2I+1 различных значений. Условие резонанса при плавном изменении внешнего магнитного поля будет вы-

полняться для электронов 2I+1 раз, т.е. произойдёт расщепление линии поглощения. В том случае, когда мы имеем дело с многоатомным радикалом с суммарным спином $S=\frac{1}{2}$, локальное магнитное будет определяться суммарным действием нескольких близлежащих ядер. Расщепление поле будет происходить при взаимодействии электрона со всеми магнитными ядрами в молекуле, вероятность нахождения электрона вблизи которых отлична от нуля. Общую энергию системы в этом случае можно записать в виде суммы энергий электрона и ядер во внешнем поле и энергии сверхтонкого взаимодействия:

$$E = g \beta H_0 m_s - \sum_i g_i \beta_{\mathrm{\scriptsize AJL}} H_0 m_i + \sum_i g \beta a_i m_s m_i$$

Скорость поглощения энергии при ЭПР

Одним из важных применений метода ЭПР является определение числа парамагнитных частиц в образце по величине поглощаемой при резонансе мощности электромагнитной энергии. Заселённости уровней в отсутствие поглощения энергии будут определяться константами скорости спонтанных (безызлучательных) переходов K_1 и K_2 :

$$\frac{N_2}{N_1} = \frac{K_1}{K_2} = e^{-\frac{\Delta E}{k_T}},$$

где N_1 и N_2 — число частиц на каждом из подуровней. При $T\sim 300$ и ~ 3000 Э будет выполняться:

$$\frac{\Delta E}{kT} \ll 1$$
 $\left(\frac{\Delta E}{kT} \sim 10^{-3}\right)$

Тогда при разложении в ряд получим:

$$\frac{N_2}{N_1} = 1 - \frac{\Delta E}{kT}$$

Энергия, поглощяемая в единицу времени, будет определяться соотношением:

$$W = \Delta E \cdot K_{ind}(N_1 - N_2) = \frac{\Delta E^2}{kT} \cdot \frac{N}{2} \cdot \frac{K_{ind}}{1 + \frac{K_{ind}}{K_1}}$$

Из этого выражения следует, что скорость поглощения энергии пропорциональна числу парамагнитных частиц N. Этот факт позволяет оценивать число парамагнитных частиц в образце путём измерения мощности поглощения при ЭПР.

Уширение линий и релаксационные процессы

Ширина линии поглощения и ширина уровня энергии связаны со временем жизни частицы на определенном уровне энергии соотношением неопределенностей:

$$\delta\omega\sim 1$$
 или $\delta E\cdot au\sim \hbar$

Время жизни τ определяется релаксационными процессами, происходящими при взаимодействии спинов друг с другом и с другими степенями свободы системы (с так называемой решёткой, вне зависимости от наличия реальной кристаллической решетки). Существуют два типа релаксации. Первый – продольная релаксация, то есть релаксация продольной намагниченности образца к её равновесному значению вдоль внешнего постоянного магнитного поля: $M_z \to M_0$. Энергия из спиновой системы при этом передается в решётку. Поэтому такую релаксацию называют также спин-решёточной. Скорость релаксации характеризуют временем продольной релаксации T_1 , за которое продольная компонента намагниченности спиновой системы уменьшается в e раз. Второй тип – поперечная релаксация. Она приводит к обнулению поперечных компонент вектора намагниченности образца $M_x, M_y \to 0$. В отличие от продольной, в ходе поперечной релаксации энергия спиновой системы не изменяется.

Поскольку взаимодействие спинов с решёткой также приводит к расфазировке прецессии магнитных моментов, оно также вносит вклад в процесс поперечной релаксации, наравне со спин-спиновой:

$$\frac{1}{T_2} = \frac{1}{T_1} + \frac{1}{\tau_{ss}} > \frac{1}{T_1}$$

Таким образом, $T_2 < T_1$. T_2 ограничивает время жизни спинового состояния и определяет ширину резонансных линий $\delta\omega$. Выразая ширину линии в единицах магнитного поля, получим следующее соотношение:

$$\delta H[\Im] = \frac{\delta \omega}{\gamma} = 5 \cdot 10^{-8} \frac{1}{T_2[c]}$$

Уширение линий за счёт спин-спинового взаимодействия может быть уменьшено путём уменьшения концентрации парамагнитных частиц.

При столкновении двух парамагнитных частиц в растворе между ними возникает обменное взаимодействие (если электронные оболочки неспаренных электронов перекрываются), при котором частица 1 приобретает спиновое состояние частицы 2, а частица 2 приобретает спиновое

состояние частицы 1. Скорость спинового обмена пропорциональна частоте двойных соударений парамагнитных частиц, т.е. пропорциональна концентрации C [моль/л] парамагнитных частиц в растворе:

$$\frac{1}{\tau_{\scriptscriptstyle \rm B}} = K_{\scriptscriptstyle \rm B} \cdot C,$$

где K_e – константа спинового обмена.

В результате обмена спин электрона может оказаться в другом магнитном окружении.

Пусть $\Delta\omega$ — разница резонансных частот при различном магнитном окружении в отсутствии спинового обмена. В случае медленного обмена $(\frac{1}{\tau_e} \ll \Delta\omega)$ расщепление линии на отдельные компоненты сохранится, но при этом сократится время пребывания электрона m_e в состоянии с тем или иным магнитным окружением. В соответствии с соотношением неопределённости это приведёт к уширению каждой из компонент расщеплённой линии:

$$\delta H_e = \frac{1}{\gamma \tau_e} = K_e \cdot C \cdot \frac{1}{\gamma}$$

Методическая часть

Основными компонентами спектрометра ЭПР в микроволновом диапазоне являются:

- постоянный магнит (или магнитная система)
- генератор СВЧ излучения
- резонатор с местом для введения образца
- детектор СВЧ излучения
- усилители сигнала
- большинство ЭПР-спектрометров оборудованы также системой высокочастотной (ВЧ) модуляции сигнала

Рис. 1: Схема установки

Основными блоками прибора являются:

- Измерительный модуль (ИМ) Измерительный модуль включает в себя магнитную систему, резонатор, генератор СВЧ излучения, индикатор мощности СВЧ излучения, блок управления генератором СВЧ излучения и предварительного усиления сигнала (БУГ-ПУ).
- Влок управления и модуляции магнитного поля (БУММП) В этом блоке осуществляется управление разверткой магнитного поля, здесь же расположен источник тока для ВЧ модуляции магнитного поля. Блок регистрации и управления режимами спектрометра (БР) Здесь расположены усилители сигнала, синхронный детектор, фильтр нижних частот, аналоговоцифровой преобразователь и процессор, с которого сигнал передаётся на персональный компьютер. В процессе измерений частота микроволнового генератора, возбуждающего электромагнитные колебания в полости, поддерживается постоянной, а поиск резонанса производится за счет развёртки статического магнитного поля H_0 .

Bысокочастотная модуляция статического магнитного поля H_0 используется для повышения отношения сигнал/шум. За счёт переноса спектра сигнала (при ВЧ модуляции) в область высоких частот f добиваются уменьшения мощности шумов кристаллического детектора СВЧ-поля с частотной зависимостью 1/f. Дополнительно вклад шума ограничивается частотами, близкими к частоте модуляции. Модуляция статического поля H_0 высокочастотным (100 кГц) магнитным полем с малой амплитудой приводит к амплитудной модуляции выходного сигнала с детектора с той же частотой. Если амплитуда ВЧ модуляции меньше ширины резонансной линии, то амплитуда детектируемого сигнала будет приблизительно пропорциональна наклону кривой поглощения $I(H_0)$ в центральной точке модулирующего поля, а именно интервальному среднему функции $I(H_0)$ в данной точке. В результате при сканировании по магнитному полю будет зарегистрирована не сама кривая поглощения, а её первая производная по полю $\frac{dI}{dH_0}$.

где $2Y'_{max}$ – амплитуда между точками максимального наклона, ΔH_{max} – расстояние между экстремумами первой производной сигнала. Соотношение между шириной линии спектра на полувысоте δH и ΔH_{max} зависит от линии спектра:

$$y=rac{a}{1+bx^2}$$
 — лоренцев контур, $\Delta H_{max}=rac{2}{\sqrt{3}}\cdot\delta H$ $y=ae^{-bx^2}$ — гауссов контур, $\Delta H_{max}=\sqrt{rac{2}{\ln 2}}\cdot\delta H$

2.1 Ход работы и обработка данных

2.1.1 Исследование влияния амплитуды высокочастотной модуляции на вид спектров ЭПР

Были зарегистрированы спектры ЭПР ДФПГ при разных амплитудах модуляции магнитного поля, изменяя величину тока в модуляционных катушках. На Рис. 2 видно, что с увеличением амплитуды модуляции амплитуда сигнала и расстояние между экстремумами увеличивается:

Рассчитали полуширину линии поглощения δH для каждой величины тока модуляции и построили их зависмость от величины тока модуляции (Табл. 1 и Рис. 3)

I, A	$\delta H, \Im$
0.05	1.2 ± 0.1
0.4	1.4 ± 0.1
1,05	1.5 ± 0.1
1.4	2.4 ± 0.1
1.8	3.1 ± 0.1

Таблица 1: Полуширина линий поглощения ДФПГ при различных токах модуляции

Максимальная амплитуда модуляции оказалась равна (0.93 ± 0.06) Э.

Основные вычисления и погрешности: Считаем, что кривые имеют вид гауссового контура.

$$\sigma_{\Delta H_i} \le h = 0.029, \qquad \sigma_{\Delta H_{max}} = \sigma(H_2 - H_1) = \sqrt{\sigma_{H_1^2} + \sigma_{H_2^2}}$$

Рис. 2: Спектры ЭПР ДФПГ при разных токах модуляции

Рис. 3: Зависимость полуширины линий поглощения δH от величины тока модуляции

$$\delta_H=\sqrt{rac{\ln 2}{2}}\Delta H_{max}, \qquad \sigma_{\delta H}=\sqrt{rac{\ln 2}{2}}\sigma_{\Delta H_{max}} \ \delta H=k\cdot I+b,$$
 где I – ток модуляции, $\iff y=kx+b$

Максимальная амплитуда модуляции $A = \delta H(0) = b$

$$\sigma_k = \sqrt{\frac{1}{n^2} \left(\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - k^2 \right)}$$
$$\sigma_b = \sigma_k \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$$

2.1.2 Исследование скорости спинового обмена в растворах и кристаллах

Исследование в растворах. Были зарегистрированы спектры ЭПР при разных концентрациях соли Mn^{2+} . На Рис. 4 видно, как с увеличением концентрации уменьшается амплитуда сигнала, но положения экстремумов остаётся практически теми же:

Рис. 4: Спектры ЭПР раствора Mn^{2+} при разной концентрации

В Табл. 3 приведена информация о полуширинах линии поглощения при различных концентрациях раствора. На Рис. 5(а) приведён график зависимости полуширины линии поглощения от концентрации образца. Также была получена зависимость поглощения энергии СВЧ-поля от концентрации раствора (Рис. 5(б)).

C, M	ΔH_{max} , Θ	δH , Θ	Частота столкновения, ГГц	Y'_{max}	$S, 10^3$
0.05	23.4 ± 0.2	13.8 ± 0.1	0.04 ± 0.01	145	80 ± 1
0.1	28.5 ± 0.2	16.8 ± 0.1	0.08 ± 0.02	113	92 ± 1
0.2	36.6 ± 0.2	21.5 ± 0.1	0.17 ± 0.04	102	137 ± 1
0.4	40.7 ± 0.2	23.9 ± 0.1	0.33 ± 0.08	103.5	171 ± 2
0.8	50.4 ± 0.2	29.6 ± 0.1	0.7 ± 2	71.5	181 ± 1

Таблица 2: Рассчитанные величины при различных концентрациях раствора

а) Зависимость полуширины линии б) Зависимость поглощения энергии поглощения от концентрации СВЧ поля от концентрации раствора

Рис. 5: Основные зависимости

$$k = (50 \pm 11) \frac{9}{M}, \qquad K_e = (8 \pm 2) \cdot 10^8 \frac{\pi}{\text{моль} \cdot \text{c}}$$

Основные вычисления и погрешности: Погрешность полуширины линии поглощения были посчитаны тем же методом, что и в Задании 1.

$$\delta H = K_e \cdot C \cdot \frac{1}{\gamma} \iff Y = k \cdot C$$

$$\gamma = 17.6 \cdot 10^6 \Im^{-1} c^{-1}$$

$$k = \frac{\langle CY \rangle}{\langle C^2 \rangle}, \qquad \sigma_k = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle Y \rangle^2}{\langle C \rangle^2} - k^2}$$

$$K_e = k \cdot \gamma, \qquad \sigma_{K_e} = \gamma \cdot \sigma_k$$

Частота соударений $(1/\tau_e)$:

$$\frac{1}{\tau_e} = K_e \cdot C, \qquad \sigma_{\frac{1}{\tau_e}} = C \cdot \sigma_{K_e}$$

Поглощение энергии СВЧ-поля:

$$S \sim Y'_{max} (\Delta H_{max})^2, \qquad \frac{\sigma_S}{S} = 2 \left(\frac{\sigma_{\Delta H_{max}}}{\Delta H_{max}} \right)$$

Исследование в кристаллах. Был зарегистрирован спектр порошка соли Mn^{2+} (Рис. 6):

Рис. 6: Сравнение спектров ЭПР раствора и порошка соли Mn^{2+}

В растворе наблюдаем случай медленного спинового обмена. Скорость обмена увеличивается линейно с увеличением концентрации, что можно заметить, сравнив изменение полуширины линии поглощения с увеличением концентрации раствора. Для кристаллического марганца имеем случай быстрого спинового обмена, т.к. имеем только одну среднюю линию, что справедливо для быстрого спинового обмена.

2.1.3 Исследование сверхтонкой структуры ЭПР

Определение константы сверхтонкого взаимодействия: Была определена константа сверхтонкого взаимодействия a. Пользуясь свойством эквидистантности линий ЭПР, измерили расстояние между соседними максимумами производной, которое равно константе сверхтонкого взаимодействия $a = (100.38 \pm 0.04)$ Э.

Число линий обусловлено спином ядра и определяется по формуле n=2I+1, где I — спин ядра (для Mn^{2+} I=5/2). Все линии имеют одинаковую интенсивность.

Основные вычисления и их погрешности: Постоянная сверхтонкой структуры — это расстояния между соседними максимумами производной сигнала. Были взяты крайние максимумы (H_1 и H_2):

$$a = \frac{H_2 - H_1}{5}$$

$$\sigma_a = \frac{1}{5} \sqrt{\sigma_{H_1}^2 + \sigma_{H_2}^2}$$

Исследование спектра ЭПР порошка мела На Рис. 7 можно увидеть 6 линий поглощения. Причиной этого является ядро со спином 5/2. В $CaCO_3$ может быть одно ядро со спином $5/2 - {}^{17}O$. Доля кислорода-17 в природе— 0.038%.

Рис. 7: Спектр ЭПР порошка мела

2.1.4 Исследование влияния уровня диэлектрических потерь на вид спектров $\Im\Pi P$

Были измерены спектры ЭПР для растворов Mn^{2+} низкой концентрации:

- а) в капилляре
- б) в пробирке, сохраняя ту же высоту столба жидкости, что и в пункте а)
- в) в пробирке, сохраняя то же количество парамагнитных центров, что и в пункте а) при таком же объёме, как в пункте б)

Рис. 8: Спектр ЭПР порошка мела

На Рис. 8 изображены все три спектра. Уровень диамагнитных потерь:

- а) наименьший, сигнал наиболее чёткий.
- б) большой. В пробирке должно быть больше парамагнитных центров, но амплитуда сигнала уменьшается вследствие увеличения диаметра сосуда с образцом.
- в) большой, потому что число парамагнитных центров осталось тем же, а амплитуда сигнала уменьшилась также из-за увеличения диаметра сосуда с образцом.

2.1.5 Исследование формы линии

Исходя из спектров маргнаца при высокой и низкой концентрациях, можно сделать вывод, что при малых концентрациях спектр лучше описывается лоренцовой формой кривой, а при повышении концентрации форма спектра приближается к гауссовой. Реальные линии ЭПР, как видно, имеют промежуточную форму. Также видно, что спектры ЭПР исследуемого раствора имеют форму, более близкую к лоренцевой, в середине и более близкую к гауссовой по краям.

3 Выводы

- 1. Было установлено, что увеличение амплитуды модуляции уменьшает шумы на спектре, но увелицивает ширину пиков. Оптимальная величина тока модуляции оказалась равной 1 A, максимальная амплитуда модуляции — 1.8 A.
- 2. Было установлено, что увеличение концентрации раствора Mn^{2+} увеличивает скорость спинового обмена, уширяя пики и делая их более форму более приближенной к гауссовой, в то время как при уменьшении концентрации пики начинают принимать форму лоренцевых контуров. Константа спинового обмена приняла значение $K_e = (8 \pm 2) \cdot 10^8 \frac{\pi}{\text{моль·с}}$, также была оценена частота столкновений и поглощение энергии для различных концентраций (Табл. 2). Затем был снят спектр порошка соли Mn^{2+} , с помощью которого были объяснены типы обменов в растворах (медленный) и в кристаллах (быстрый).
- 3. Была определена константа сверхтонкого взаимодействия для раствора Mn^{2+} ($a=100.38\pm0.04$ Э).
- Было продемонстрировано ухудшение сигнала при сильном разбавлении и увеличении объёма образца.
- 5. Было установлено, что при высоких концентрациях форма линии была гауссовой, но при её уменьшении начинала отклоняться в сторону лоренцевской.

4 Литература

[1] Спектроскопия электронного парамагнитного резонанса: учеб.-метод. пособие / сост.: Е.Н.Кукаев, А.Ю.Куксин, А.О.Тишкина - М.: МФТИ, 2016.-36 с.