1: Computing the Canonical Divisor for \mathbb{P}^2 .

We know that $\operatorname{Pic}\mathbb{P}^2 = \mathbb{Z} = \langle L \rangle$ and that the canonical divisor is W = -3L. We will show how to compute this using differential 2-forms.

Let \mathbb{P}^2 have homogeneous coordinates X,Y,Z, and let the function field K=k(x,y)where x=X/Z and y=Y/Z. Let $\omega=\mathsf{d} x\wedge \mathsf{d} y\in\Omega^2_{\mathbb{P}^2}.$ We will compute

$$\operatorname{div}(\omega) = \sum_{i \ge 1} i \bigcup_{\substack{P \in \mathbb{P}^2 \\ \operatorname{ord}_{\omega}(P) = i}} P.$$

We claim that $\operatorname{ord}_{\omega}(P) = -3$ for $P \in \mathfrak{Z}(Z)$ and $\operatorname{ord}_{\omega}(P) = 0$ elsewhere. Let us first pick the point Q = (1,0,0). We know that $\mathfrak{m}_Q = (x^{-1},yx^{-1})$. Note that $yx^{-1} \notin (x^{-1})$ because $y \notin \mathcal{O}_{\mathbb{P}^2,Q}$. Then $\operatorname{ord}_{\omega}(Q) = -\operatorname{ord}_f(Q)$ where $f = \frac{\operatorname{d} x^{-1} \wedge \operatorname{d} yx^{-1}}{\operatorname{d} x \wedge \operatorname{d} y}$. Note $\operatorname{d} x^{-1} = -x^{-2}\operatorname{d} x$ and $dyx^{-1} = x^{-1}dy + ydx^{-1} = x^{-1}dy - x^{-2}ydx$. Therefore the numerator simplifies to $(-x^{-2}\mathsf{d} x) \wedge (x^{-1}\mathsf{d} y - x^{-2}y\mathsf{d} x) = -x^{-2}\mathsf{d} x \wedge x^{-1}\mathsf{d} y = -x^{-3}(\mathsf{d} x \wedge \mathsf{d} y).$

Therefore f simplifies to $-x^{-3}$. We know that $\operatorname{ord}_{-x^{-3}}(1,0,0)=3$ and so $\operatorname{ord}_{\omega}(Q)=-3$. This remains true for all $P \in \mathfrak{Z}(Z)$. And for other $P \in \mathbb{P}^2 \setminus \mathfrak{Z}(Z) = \mathfrak{D}_+(Z)$, we have $\operatorname{ord}_{\omega}(P) = 0.$

Let $R = (a, b, 1) \in \mathfrak{D}_+(Z)$ Then $\mathfrak{m}_R = (x - a, y - b)$. Then $\mathrm{ord}_{\omega}(R) = -\mathrm{ord}_q(R)$ where $g = \frac{\mathsf{d}(x-a) \wedge \mathsf{d}(y-b)}{\mathsf{d}x \wedge \mathsf{d}y} = \frac{\mathsf{d}x \wedge \mathsf{d}y}{\mathsf{d}x \wedge \mathsf{d}y} = 1. \text{ Then } \mathrm{ord}_g(R) = 0 \text{ so } \mathrm{ord}_\omega(R_=0.$ Thus we know that $\mathrm{div}(\omega) = -3\mathfrak{Z}(Z) \cong -3L$. This method also scales to higher dimensional discontinuous discontinu

sions. In general, the canonical divisor for \mathbb{P}^n is $\mathcal{O}(-n-1)$.

2: Why
$$\mathcal{L}(D) = \mathcal{O}(\deg D)$$
 and $\mathcal{L}(-D) = \mathcal{I}(D)$ in \mathbb{P}^n .

First note $\operatorname{Pic}\mathbb{P}^n = \mathbb{Z} = \langle H \rangle$. Let us first observe $\mathcal{L}(-H)$. Note that $\mathcal{L}(-H)$ has no global sections. This is because there is no function in the function field K can have an order of at least 1 at H without having a negative order elsewhere. Similarly, $\mathcal{O}(-1)$ has no global sections. Let H be determined by the function f, so $f \in \mathcal{O}(1)$. Then we can define an isomorphism $\varphi: \mathcal{L}(-H) \to \mathcal{O}_{\mathbb{P}^n}(-1)$ by $\varphi(U)(g) = g/f$. Note that for $g \in \mathcal{L}(-H)$, we know that for all points $P \in U$,

$$\operatorname{ord}_g(P) \ge \begin{cases} 1 & P \in H \\ 0 & P \notin H \end{cases}.$$

And we don't care about $\operatorname{ord}_q(P)$ for $P \notin U$. Since $g \in \mathcal{L}(-H)(U) \subseteq K(U)$ we know $\deg g = 0$. Since $\deg f = 1$, we know $\deg(g/f) = -1$. But also to check $g/f \in \mathcal{O}(-1)(U)$ we will need to make sure q/f does not have a negative order at any point in U. We know that q does not have negative order anywhere in U, and also that q has order at least 1 along H since $g \in \mathcal{L}(-H)(U)$. Additionally, f only has order 1 along H, and order 0 everywhere else, so g/f cannot have negative order anywhere. Therefore $g/f \in \mathcal{O}(-1)(U)$.

In general, we can define an isomorphism $\varphi: \mathcal{L}(nH) \to \mathcal{O}(n)$ via $\varphi(U)(g) = f^n g$.

In general, $\mathcal{L}(D)$ is a little different from \mathcal{O} because since it is a subspace of K, we are allowed to have functions with poles at points in our U, but these functions still must fulfill certain order requirements. In \mathcal{O} , these ord requirements are simply that $\operatorname{ord}(P) \geq 0$ for all $P \in U$, but for $\mathcal{L}(D)$ they are different (and sometimes allow negative order at certain points in our U) and depend specifically on the divisor. But like \mathcal{O} , we throw out any ord requirements for points not in U.

Now why $\mathcal{L}(-D) = \mathcal{I}(D)$, for D an effective Cartier divisor. We know that every function $g \in \mathcal{L}(-D)(U)$ has order at least D(P) for every point $P \in U$. Since D is effective, this $\mathcal{L}(-D)$ is actually a subsheaf of \mathcal{O} as all of the ord requirements are positive. Specifically, the ord requirements are exactly what they need to be to give us $\mathcal{I}(D)$. For example, the ideal of a conic in \mathbb{P}^2 is $\mathcal{L}(-2L) = \mathcal{O}(-2)$.

3: Why $\mathcal{O}(n)$ is invertible.

The short answer is $\mathcal{O}(n)$ is invertible because $\mathcal{O}(n) \otimes \mathcal{O}(-n) = \mathcal{O}$ as the product of a degree-n polynomial and a degree-n polynomial is a degree-0 polynomial.

The more interesting question is why $\mathcal{O}(n)$ is a locally free sheaf of rank 1. Let S be a graded ring and let $X = \operatorname{Proj} S$. From Hartshorne (II.5.12): Let $f \in S_1$ and consider the restriction $\mathcal{O}_X(n)|_{\mathfrak{D}_+(f)}$. By (5.11) this is isomorphic to $S(n)_{(f)}^{\sim}$ on $\operatorname{Spec} S_{(f)}$. We will show that this restriction is free of rank 1. Indeed, $S(n)_{(f)}$ is a free $S_{(f)}$ -module of rank 1. For $S_{(f)}$ is the group of elements of degree 0 in S_f , and $S(n)_{(f)}$ is the group of elements of degree n in S_f . We obtain an isomorphism of one to the other by sending s to $f^n s$. This makes sense, for any $n \in \mathbb{Z}$, because f is invertible in S_f . Now since S is generated by S_1 as an S_0 -algebra, X is covered by open sets $\mathfrak{D}_+(f)$ for $f \in S_1$. Hence $\mathcal{O}(n)$ is invertible.

4: Why the Exceptional Curve has Negative Self-Intersection.

We will begin with Hartshorne's proof, which is more scheme-theoretic. Then we will proceed with a more geometrically-minded investigation.

Hartshorne (II.7.13). Let X be a noetherian scheme, \mathcal{I} a coherent sheaf of ideals, and let $\pi: \widetilde{X} \to X$ by the blowing up of \mathcal{I} . Then the inverse image ideal sheaf $\widetilde{\mathcal{I}} = \pi^{-1} \mathcal{I} \cdot \mathcal{O}_{\widetilde{X}}$ is an invertible sheaf on \widetilde{X} .

Proof. Since $X = \operatorname{Proj} \mathcal{S}$, where $\mathcal{S} = \bigoplus_{d \geq 0} \mathcal{I}^d$, it comes equipped with a natural invertible sheaf $\mathcal{O}(1)$. For any open affine $U \subseteq X$, this sheaf $\mathcal{O}(1)$ on $\operatorname{Proj} \mathcal{S}(U)$ is the sheaf associated to the graded $\mathcal{S}(U)$ -module $\mathcal{S}(U)(1) = \bigoplus_{d \geq 1} \mathcal{I}^d(U)$. But this is clearly equal to the ideal $\mathcal{I} \cdot \mathcal{S}(U)$ generated by \mathcal{I} in $\mathcal{S}(U)$, so we see that the inverse image ideal sheaf $\widetilde{\mathcal{I}} = \pi^{-1}\mathcal{I} \cdot \mathcal{O}_X$ is in fact equal to $\mathcal{O}_{\widetilde{X}}(1)$. Hence it is an invertible sheaf.

Then (V.1.4.1) gives the definition of C^2 as $\deg_C \mathcal{N}_{C/X}$, where $\mathcal{N}_{C/X}$ is the dual of the sheaf $\mathcal{I}(C) \otimes \mathcal{O}_C \cong \mathcal{I}(C)/\mathcal{I}(C)^2$ (\mathcal{O}_C is like $\mathcal{O}_X/\mathcal{I}(C)$). Note that the dual of $\mathcal{I}(E) = \mathcal{O}(1)$ is $\mathcal{O}(-1)$. So $E^2 = -1$.

Related note, given any ring A and ideal \mathfrak{a} of A, we have $\mathfrak{a}/\mathfrak{a}^2 \cong \mathfrak{a} \otimes_A A/\mathfrak{a}$. The simple tensor $a \otimes b + \mathfrak{a}$ will be associated to $ab + \mathfrak{a}^2$. Even more generally, for a ring A, an ideal \mathfrak{a}

and an A-module M, $M/\mathfrak{a}M \cong M \otimes_A A/\mathfrak{a}$.

From Wikipedia's article on Divisor (algebraic geometry): When D is smooth, $\mathcal{N}_{D/X} = \mathcal{O}_D(D)$, which is $\mathcal{L}(D) \otimes \mathcal{O}_D = \mathcal{O}_X(D) \otimes \mathcal{O}_D$. This is the dual of $\mathcal{L}(-D) \otimes \mathcal{O}_D = \mathcal{I}(D) \otimes \mathcal{O}_D = \mathcal{I}(D)/\mathcal{I}(D)^2$, which lines up with what we already knew.

Now for the more geometric point of view. Let X be a surface and let P be the point we are blowing up. Let C be a line through P and let D be a line not containing P. Let $\pi: \widetilde{X} \to X$ be the blowup map.

Then note C.D=1 since two lines meet at a point. We can call this point Q. Now let us observe the proper transforms of each of these divisors: $\pi^*C=\widetilde{C}+E$ and $\pi^*D=\widetilde{D}$ where \widetilde{C} and \widetilde{D} are the strict transforms of C and D, respectively, and E is the exceptional divisor. Then note that $(\pi^*C).(\pi^*D)=1$ as π^*C and π^*D still meet at Q. Then $(\widetilde{C}+E).(\widetilde{D})=\widetilde{C}.\widetilde{D}+E.\widetilde{D}=1+0=1$, as D does not contain P and so \widetilde{D} does not meet E. Since C and D are linearly equivalent, their proper transforms must have the same intersection number with E. Thus $0=(\pi^*C).E=(\widetilde{C}+E).E=\widetilde{C}.E+E^2$. We know that $\widetilde{C}.E=1$ since $P\in C$, so solving gives $E^2=-1$.

Note that also the *strict* transforms of C and D become fundamentally different as well. We know $1 = (\pi^*D)^2 = \widetilde{D}^2$, but $1 = (\pi^*C)^2 = (\widetilde{C} + E)^2 = \widetilde{C}^2 + 2\widetilde{C}.E + E^2 = \widetilde{C}^2 + 2 - 1$. Solving gives $\widetilde{C}^2 = 0$. This means that \widetilde{C} will not meet any divisors that are linearly equivalent to it, whereas \widetilde{D} will meet any divisor linearly equivalent to it exactly once. The fact $E^2 = -1$ implies there is no other divisor linearly equivalent to it. It is exceptional after all!

5: Why Dimension Goes Down by 1 When We Assign a Base Point.

Let \mathfrak{d} be a linear system. It is associated to some vector subspace V of some vector space $\mathcal{L}(X)$, where $V = \{s \in \mathcal{L}(X) : (s)_0 \in \mathfrak{d}\} \cup \{0\}$. The dimension of \mathfrak{d} is its dimension as a linear projective variety, so dim $\mathfrak{d} = \dim V - 1$. When we assign a base point P to \mathfrak{d} to get a new linear system \mathfrak{d}' , we are only including the divisors in \mathfrak{d} that contain the point P. So we are only looking at a subset of V where s(P) = 0. This forms a subspace of dimension 1 less?

Hartshorne (IV.3.1): |D| has no base points if and only if for every point $P \in X$,

$$\dim |D - P| = \dim |D| - 1.$$

(This was only proven for curves) (Also abuse of notation: D-P does not necessarily mean assigning a base point here).

First consider the exact sequence of sheaves

$$0 \to \mathcal{L}(D-P) \to \mathcal{L}(D) \to k(P) \to 0.$$

Taking global sections, we get

$$0 \to \Gamma(X, \mathcal{L}(D-P)) \to \Gamma(X, \mathcal{L}(D)) \to k,$$

so in any case we see that dim |D-P| is equal to either dim |D| or dim |D|-1. Furthermore, sending a divisor E to E+P defines a linear map

$$\varphi:|D-P|\to |D|$$

which is injective. Therefore, the dimensions of these two linear systems are equal if and only if φ is surjective. On the other hand, φ is surjective if and only if P is a base point of |D|. This proves (IV.3.1).

We know that if P is not already an unassigned base point of \mathfrak{d} that $\mathfrak{d}' \subsetneq \mathfrak{d}$, so dim $\mathfrak{d}' <$ dim \mathfrak{d} . I think $k(P) = \mathcal{L}(P)$, but the global sections of $\mathcal{L}(P)$ is not k???

Anyway, let V correspond to \mathfrak{d} and let U correspond to \mathfrak{d}' . So $U = \{f \in V : f(P) = 0\}$. We get that U is the kernel of the map $\psi : V \to k$ defined by $\psi(f) = f(P)$. Thus dim $U = \dim V - 1$, so dim $\mathfrak{d}' = \dim \mathfrak{d} - 1$.