Polynomial Methods in Combinatorics

Conrad Crowley

Supervisor: Marco Vitturi

March 2022

What are Polynomial Methods?

A collection of techniques in Combinatorics which use polynomial interpolation and rigidity properties of polynomials to control the size of collections of objects with a certain structure.

What are Polynomial Methods?

A collection of techniques in Combinatorics which use polynomial interpolation and rigidity properties of polynomials to control the size of collections of objects with a certain structure.

Example (Rigidity and Interpolation)

• **Rigidity**: If $P \in \mathbb{R}[X_1, \dots, X_n]$ has degree D and a line ℓ intersects Z(P) in more than D points then $\ell \subset Z(P)$.

What are Polynomial Methods?

A collection of techniques in Combinatorics which use polynomial interpolation and rigidity properties of polynomials to control the size of collections of objects with a certain structure.

Example (Rigidity and Interpolation)

- **Rigidity**: If $P \in \mathbb{R}[X_1, \dots, X_n]$ has degree D and a line ℓ intersects Z(P) in more than D points then $\ell \subset Z(P)$.
- **Interpolation**: We can do parameter-counting arguments using the fact that dim $\mathbb{R}_{\deg < D}[X_1, \dots, X_n] \sim D^n$.

Below lists results that can be proved using the polynomial method:

• Kakeya Conjecture in Finite Fields: If $A \subset \mathbb{F}^n$ contains a line in every direction then $|A| \gtrsim |\mathbb{F}|^n$.

- Kakeya Conjecture in Finite Fields: If $A \subset \mathbb{F}^n$ contains a line in every direction then $|A| \geq |\mathbb{F}|^n$.
- Cauchy-Davenport Theorem: $|A + B| \ge \min\{p, |A| + |B| 1\}$ where $A, B \subset \mathbb{Z}_p$ and $A + B := \{a + b \mid a \in A, b \in B\}$.

- Kakeya Conjecture in Finite Fields: If $A \subset \mathbb{F}^n$ contains a line in every direction then $|A| \gtrsim |\mathbb{F}|^n$.
- Cauchy-Davenport Theorem: $|A + B| \ge \min\{p, |A| + |B| 1\}$ where $A, B \subset \mathbb{Z}_p$ and $A + B := \{a + b \mid a \in A, b \in B\}$.
- **Joints Problem**: A collection of N lines in \mathbb{R}^3 can form at most $N^{3/2}$ joints. A joint is a point which lies in three non-coplanar lines.

- Kakeya Conjecture in Finite Fields: If $A \subset \mathbb{F}^n$ contains a line in every direction then $|A| \gtrsim |\mathbb{F}|^n$.
- Cauchy-Davenport Theorem: $|A + B| \ge \min\{p, |A| + |B| 1\}$ where $A, B \subset \mathbb{Z}_p$ and $A + B := \{a + b \mid a \in A, b \in B\}$.
- **Joints Problem**: A collection of N lines in \mathbb{R}^3 can form at most $N^{3/2}$ joints. A joint is a point which lies in three non-coplanar lines.
- Szemerédi-Trotter Theorem: Given S points and L lines, there are $\lesssim (SL)^{2/3} + S + L$ point-line incidences. (i.e. (p, ℓ) s.t. $p \in \ell$)

- Kakeya Conjecture in Finite Fields: If $A \subset \mathbb{F}^n$ contains a line in every direction then $|A| \gtrsim |\mathbb{F}|^n$.
- Cauchy-Davenport Theorem: $|A + B| \ge \min\{p, |A| + |B| 1\}$ where $A, B \subset \mathbb{Z}_p$ and $A + B := \{a + b \mid a \in A, b \in B\}$.
- **Joints Problem**: A collection of N lines in \mathbb{R}^3 can form at most $N^{3/2}$ joints. A joint is a point which lies in three non-coplanar lines.
- Szemerédi-Trotter Theorem: Given S points and L lines, there are $\lesssim (SL)^{2/3} + S + L$ point-line incidences. (i.e. (p, ℓ) s.t. $p \in \ell$)
- Circle Tangencies: Given a (suitably non-degenerate) collection of N circles in \mathbb{R}^2 , they determine $\lesssim N^{3/2}$ tangencies.

Circle Tangencies

Theorem

Given a (suitably non-degenerate) collection of N circles in \mathbb{R}^2 , they determine $\lesssim N^{3/2}$ tangencies^a.

^aA tangency is a pair of circles (γ, γ') that are tangent.

Circle Tangencies: What's degenerate?

Collection of *N* circles with $\sim N^2$ tangencies:

Theorem

Given a (suitably non-degenerate) collection of N circles in \mathbb{R}^2 , they determine $\lesssim N^{3/2}$ tangencies.

We now present a sketch of a recent proof due to Ellenberg, Solymosi, and Zahl. [1]

Theorem

Given a (suitably non-degenerate) collection of N circles in \mathbb{R}^2 , they determine $\lesssim N^{3/2}$ tangencies.

We now present a sketch of a recent proof due to Ellenberg, Solymosi, and Zahl. [1]

Sketch Proof: Assume:

- There are $\gtrsim N^{3/2}$ tangencies.
- ullet Collection is uniform: each circle tangent to $\gtrsim N^{1/2}$ other circles.

For each circle γ in our collection, we define the curve $\beta(\gamma) \subset \mathbb{R}^3$ as:

$$\beta(\gamma) := \left\{ (x,y,z) \mid (x,y) \in \gamma, \ z = \frac{1}{\mathsf{Slope of tangent at}} \left(x,y \right) \right\}$$

Circle Tangencies: Tangencies to Incidences

Circle Tangencies: Tangencies to Incidences

Intersection \iff z co-ords equal \iff circles are tangent.

Tangency problem in $\mathbb{R}^2 \iff$ Incidences problem in \mathbb{R}^3 .

Circle Tangencies: Tangencies to Incidences

Intersection \implies z co-ords equal \implies circles are tangent.

Tangency problem in $\mathbb{R}^2 \iff$ Incidences problem in \mathbb{R}^3 .

Let us examine the tangent vectors at a point of incidence between two curves:

At every point of intersection, the tangent vectors span a vertical plane.

At every point of intersection, the tangent vectors span a vertical plane.

Let P be a polynomial such that all $N^{3/2}$ incidences are contained in Z(P).

We can find a polynomial P such that all $N^{3/2}$ incidences are contained in Z(P).

Let P be a polynomial such that all $N^{3/2}$ incidences are contained in Z(P).

Let P be a polynomial such that all $N^{3/2}$ incidences are contained in Z(P).

• Recall that $\dim \mathbb{R}_{\deg \leq D}[X,Y,Z] \sim D^3$.

Let P be a polynomial such that all $N^{3/2}$ incidences are contained in Z(P).

- Recall that dim $\mathbb{R}_{\deg < D}[X, Y, Z] \sim D^3$.
- Each incidence point gives one linear equation for the coefficients.

Let P be a polynomial such that all $N^{3/2}$ incidences are contained in Z(P).

- Recall that dim $\mathbb{R}_{\text{deg} \leq D}[X, Y, Z] \sim D^3$.
- Each incidence point gives one linear equation for the coefficients.
- $D^3 \sim N^{3/2} \implies D \sim N^{1/2}$.

• Each curve $\beta(\gamma)$ intersects Z(P) at $\gtrsim N^{1/2}$ points.

- Each curve $\beta(\gamma)$ intersects Z(P) at $\gtrsim N^{1/2}$ points.
- But deg $\beta(\gamma) = O(1)$ and deg $P \sim N^{1/2}$

- Each curve $\beta(\gamma)$ intersects Z(P) at $\gtrsim N^{1/2}$ points.
- But deg $\beta(\gamma) = O(1)$ and deg $P \sim N^{1/2}$
- $\implies \beta(\gamma) \subset Z(P)$ by Bézout's Theorem! (rigidity)

- Each curve $\beta(\gamma)$ contains $\gtrsim N^{1/2}$ points of intersection with Z(P).
- deg $\beta(\gamma) = O(1)$ and deg $P \sim N^{1/2}$
- $\implies \beta(\gamma) \subset Z(P)$ by Bézout's Theorem.

Circle Tangencies: Tangent Vectors

Circle Tangencies: Tangent Vectors

• Before we showed tangent space at incidences is vertical, so $\partial_z P = 0$ on all incidences!

Circle Tangencies: Tangent Vectors

- Before we showed tangent space at incidences is vertical, so $\partial_z P = 0$ on all incidences!
- $\Longrightarrow Z(\partial_z P)$ also contains all incidences.

Circle Tangencies: Tangent Vectors

- Before we showed tangent space at incidences is vertical, so $\partial_z P = 0$ on all incidences!
- $\Longrightarrow Z(\partial_z P)$ also contains all incidences.
- If deg P minimal $\implies P(X, Y, Z) = Q(X, Y)$.

Circle Tangencies: Contradiction

Recall that deg $P = \deg Q \sim N^{1/2}$, but Z(Q) contains N circles. Contradiction!

Circle Tangencies: Recap of Argument

Theorem

Given a (suitably non-degenerate) collection of N circles in \mathbb{R}^2 , they determine $\lesssim N^{3/2}$ tangencies.

- **①** Assume there are $\gtrsim N^{3/2}$ tangencies.
- ② Lift curves into \mathbb{R}^3 and change into an incidence problem.
- Use a low degree polynomial P to interpolate these points. (parameter-counting)
- Argue that if Z(P) contains $\gtrsim N^{1/2}$ points of $\beta(\gamma)$ then $\beta(\gamma) \subset Z(P)$. (rigidity)
- **1** Use structure of the objects to argue P(X, Y, Z) = Q(X, Y).
- **o** Contradiction as degree of Q is $\sim N^{1/2}$ but contains N circles.

Polynomial Partitioning: We can find a polynomial P of degree at most D such that Z(P) partitions \mathbb{R}^3 into $\sim D^3$ cells such that each cell intersects $\lesssim \frac{N}{D^2}$ curves $\beta(\gamma)$.

Polynomial Partitioning: We can find a polynomial P of degree at most D such that Z(P) partitions \mathbb{R}^3 into $\sim D^3$ cells such that each cell intersects $\lesssim \frac{N}{D^2}$ curves $\beta(\gamma)$.

Polynomial Partitioning: We can find a polynomial P of degree at most D such that Z(P) partitions \mathbb{R}^3 into $\sim D^3$ cells such that each cell intersects $\lesssim \frac{N}{D^2}$ curves $\beta(\gamma)$.

Polynomial Partitioning: We can find a polynomial P of degree at most D such that Z(P) partitions \mathbb{R}^3 into $\sim D^3$ cells such that each cell intersects $\lesssim \frac{N}{D^2}$ curves $\beta(\gamma)$.

Set of $\beta(\gamma)$'s can be partitioned:

$$C_1 = \{\beta(\gamma) \not\subset Z(P)\}$$
 and $C_2 = \{\beta(\gamma) \subset Z(P)\}$

Total incidences of $\beta(\gamma)$'s = $I(C_1, C_1) + 2I(C_1, C_2) + I(C_2, C_2)$

 $I(C_1, C_1) =$ incidences between curves inside the cells. Each cell contains $\lesssim \frac{N}{D^2}$ curves so:

$$I(C_1, C_1) \le \sum_{\text{cells}} \left(\frac{N}{D^2}\right)^2$$

= $D^3(N^2D^{-4}) = N^2D^{-1}$

 $I(C_1, C_2) = \text{incidences between a curve } \beta' \text{ in } Z(P) \text{ and a curve } \beta \text{ not in } Z(P).$

$$I(C_1, C_2) = \sum_{\beta \in C_1} \sum_{\beta' \in C_2} \mathbb{1}[\beta \cap \beta' \neq \emptyset]$$

Each $\beta(\gamma) \in C_1$ can intersect Z(P) at most $\lesssim D$ times. (Bézout)

$$\lesssim \sum_{\beta \in C_1} D \lesssim ND$$

 $I(C_2, C_2)$ = incidences between $\beta(\gamma)$'s both in Z(P). We need to consider the class of polynomials:

$$\mathcal{P}_0 = \{ R \in \mathbb{R}[X, Y, Z] \mid \forall \beta(\gamma) \in C_2, \ \beta(\gamma) \subset Z(R) \}$$

We choose the polynomial of minimal degree in \mathcal{P}_0 and label it P_0 . We consider $\partial_z P_0$:

Case 1: $Z(\partial_z P_0)$ contains all the curves of C_2 . Proceed by a similar argument to the previous proof to yield a bound of $\lesssim D^2$.

 $I(C_2, C_2) = \text{incidences between } \beta(\gamma)$'s both in Z(P). We need to consider the class of polynomials:

$$\mathcal{P}_0 = \{ R \in \mathbb{R}[X, Y, Z] \mid \forall \beta(\gamma) \in C_2, \ \beta(\gamma) \subset Z(R) \}$$

We choose the polynomial of minimal degree in \mathcal{P}_0 and label it P_0 . We consider $\partial_z P_0$:

Case 1: $Z(\partial_z P_0)$ contains all the curves of C_2 . Proceed by a similar argument to the previous proof to yield a bound of $\lesssim D^2$.

Case 2: $C_2 \setminus Z(\partial_z P_0)$ is non-empty. We partition C_2 as follows:

$$C_1^{(1)} = \{\beta(\gamma) \not\subset Z(\partial_z P_0)\}$$
 and $C_2^{(1)} = \{\beta(\gamma) \subset Z(\partial_z P_0)\}$

Case 2:

$$I(C_2, C_2) = I(C_1^{(1)}, C_2) + I(C_2^{(1)}, C_2^{(1)})$$

The first term is bounded by $\lesssim |C_1^{(1)}|D$ by Bézout.

The second term continues the recursive process.

$$\mathcal{P}_1 = \{ R \in \mathbb{R}[X, Y, Z] \mid \forall \beta(\gamma) \in C_2^{(1)}, \ \beta(\gamma) \subset Z(R) \}$$

We choose the polynomial of minimal degree and label it P_1 . We consider $\partial_z P_1$:

Case 1: $Z(\partial_z P_1)$ contains all the curves of C_2 . We pick up a term of $\lesssim D^2$, and our recursion stops.

$$\mathcal{P}_1 = \{ R \in \mathbb{R}[X, Y, Z] \mid \forall \beta(\gamma) \in C_2^{(1)}, \ \beta(\gamma) \subset Z(R) \}$$

We choose the polynomial of minimal degree and label it P_1 . We consider $\partial_z P_1$:

Case 1: $Z(\partial_z P_1)$ contains all the curves of C_2 . We pick up a term of $\lesssim D^2$, and our recursion stops.

Case 2: $C_2 \setminus Z(\partial_z P_1)$ is non-empty. We partition $C_2^{(1)}$ as follows:

$$C_1^{(2)} = \{\beta(\gamma) \not\subset Z(\partial_z P_1)\}$$
 and $C_2^{(2)} = \{\beta(\gamma) \subset Z(\partial_z P_1)\}$

Again we have

$$I(C_2^{(1)}, C_2^{(1)}) \lesssim |C_1^{(2)}|D + I(C_2^{(2)}, C_2^{(2)}).$$

At each step after choosing the minimal degree polynomial P_i in

$$\mathcal{P}_i = \{ R \in \mathbb{R}[X, Y, Z] \mid \forall \beta(\gamma) \in C_2^{(i)}, \ \beta(\gamma) \subset Z(R) \}.$$

We have either

Case 1: All curves are within $Z(\partial_z P_i)$ and we collect a term of at most D^2 . The recursion stops.

Case 2: We partition $C_2^{(i)}$ and bound by $\lesssim |C_1^{(i)}|D + I(C_2^{(i+1)}, C_2^{(i+1)})$.

At each step after choosing the minimal degree polynomial P_i in

$$\mathcal{P}_i = \{ R \in \mathbb{R}[X, Y, Z] \mid \forall \beta(\gamma) \in C_2^{(i)}, \ \beta(\gamma) \subset Z(R) \}.$$

We have either

Case 1: All curves are within $Z(\partial_z P_i)$ and we collect a term of at most D^2 . The recursion stops.

Case 2: We partition $C_2^{(i)}$ and bound by $\lesssim |C_1^{(i)}|D + I(C_2^{(i+1)}, C_2^{(i+1)})$. Hence,

$$I(C_2, C_2) \lesssim D^2 + \sum_i |C_1^{(i)}| D \lesssim D^2 + ND.$$

Adding these up we get the number of tangencies to be:

$$I(C_1, C_1) + I(C_1, C_2) + I(C_2, C_2) \lesssim N^2 D^{-1} + ND + D^2$$

Adding these up we get the number of tangencies to be:

$$I(C_1, C_1) + I(C_1, C_2) + I(C_2, C_2) \lesssim N^2 D^{-1} + ND + D^2$$

We optimize D now by setting $N^2D^{-1} \sim ND \implies D \sim N^{1/2}$.

We achieve:

$$\lesssim N^{3/2}$$

Circle Tangencies: Recap of New Proof

- Lift curves into \mathbb{R}^3 and change into an incidence problem.
- ② Use a low degree polynomial P to partition \mathbb{R}^3 into D^3 cells, each intersecting $\lesssim ND^{-2}$ curves. (parameter-counting + Borsuk-Ulam)
- Use a trivial bound in each cell and sum over all cells.
- Oeal with curves contained in the zero set using algebraic tools.
- **⑤** Choose *D* to optimise inequality and achieve $\lesssim N^{3/2}$ bound.

Thank you for your attention.

Any questions?

Jordan S. Ellenberg, Jozsef Solymosi, and Joshua Zahl.

New bounds on curve tangencies and orthogonalities, 2016.