CSC 226

Algorithms and Data Structures: II
Rich Little
rlittle@uvic.ca
ECS 516

Finding a Longest Common Subsequence

Aligning

```
280
         TCAAAGATTAAGC-CATGCATGTCAAAGT--ACAAGCCCCATT<mark>A-AG</mark>--GTGA-AACCGCGAATGGCTCATTAAA
        TCAAAGATTAAGC-CATGCATGTCTAAGT--ACAATCCTCTTGA-GG--GAGA-AACTGCGAAAGGCTCATTAAA
         TCAAAGATTAAGC-CATGCATGTCAAGT--ACAAGCCTCACTA-AG--GTGA-AACCGCGAAATGCCTCATTAA
         TCALAGATTLAGO-CATGCATGTCTAAGT--ACAGNOCG-LTCT-ALG-GCGL-LACCGCGAATGGCT
        TCAAAGATTAAGC-CATGCATGTCTAAGT--ACAGGCCC-ATCT-AAG-GCGA-AACCGCGAAATGGCTC
species 6 TCAAAGATTAAGC-CAT3CATGTCTAAGT--ACAGGCCC-AACT-AAG-GCGA-AACC3C3AATGGCTCAFTAA
species 7 TCGTTGTCTCGTT3CCT3C-TGTCTAAGT--ACAAGCCG-ATTC-AAG-GCGA-AACC3C3AATGGCTCAFTAAA
species 8 TCAAAGATTAAGC-CATGCATGTCTAAGT--ACAAGCCG-ATTT-AAG-GCGA-AACCGCGAAATGGCTCATTAAA
species 9 TCAAAGATTAAGC-CATGCATGTGTAAGT--ACAAGCCG-ATGT-<mark>AAG-GTGA-AACCGCGAAATGGCTCAFTAAA</mark>
species 10 TCAAAGATTAAGC-CATGCATGTCTNNGT--ACA---CCTCTG--GG--GCGA-AACCGCGAAATGGCTCAATAAAA
species 11 TCAAAGATTAAGC-CATGCATGTCTAAGT--ACAAGCGCTATG--CG--GCGA-AACCGCGAATGGCTCATTAAA
species 12 TCAAAGATTAAGC-CATGCATGTCTAAGT--ACAAGCCGCTAGA-CG--GCGA-AACCGCGAATGGCTCAATAAA
species 13 TCAAAGATTAAGC-CATGCAGGTCTAAGT--ATAAGCCGGAAATA-AA--GTGA-GACCGCGAATGGCTCAFTAC
species 14 TCANAGATTNAGC-CATROAGGTCTAAGT--ACGAGCCGANATA-ANT-GTGN-GACCROAGGCTAATTGCTCATTAC
species 15 TCAAAGATTAAGC-CATGCAGGTCTAAGT--ACATGCTCTTATA-TATGGTAA-GACTGCGAACGGCTCATTACA
species 16 TCAAACATTAACC CATCCATCTCTAACT
                                          ACACACCAAATTA AC
species 17 TCAAAGATTAAGC-CAT3CATGTCTAAGT--ACAAAGCCTACAA-GG--CTGA-AACCGCGAATGGCTC
species 18 TCAAAGATTAAGC-CATGCATGTCTAAGT--ACATGCCGCATTA-AG--GCGA-AACCGCGAATGGCTCATTAAA
species 19 Tualagattaagu-uatguatgtutaagt--alat<mark>g</mark>luga<mark>a</mark>at<mark>a-ag</mark>--gtga-aagugugaaatggutuattatu
species 20 TCAGAGATTAAGC-CATGCATGTCTAAGT--ACACACCTTCATA-CG--GTGA-AACCGCGAATGGCTCAFTAAA
species 21 TCAAAGATTAAGC-CATGCATGTCTAAGA--TCA-AGCTCGTCT-CG--CGGACAACTGCGGATGGCTCAFTAAA
species 22 TTAAAGATTAAGC-CATGCANGTATCAGT--ACAAGCCTCACTN-AG--GTGA-AACCGCGAATGGCTCAFTAAA
species 23 TCAAAGATTAAGCCAACTCATGTCTAAGA--TCATGCCGAAACCAAG--GCGA-AACCGCGAATGGCTCATTAAA
                                                                                (Andy Vierstraete 1999)
```


Applications

- Finding similarities between DNA sequences.
 - Test for genetic relationships between organisms.
 - Ex:
 - X = ACCGGTCGAGTGCGCGGAAGCCGGCCGAA
 - Y = GTCGTTCGGAATGCCGTTGCTCTGTAA
 - LCS = GTCGTCGGAAGCCGGCCGAA
- Determining change from one version of source code to another.
- Unix "diff" command for comparing files.
- Distinguish between similar web pages in web crawlers.

Terminology

- A **string** $c = c_1 c_2 \cdots c_n$ is a sequence of characters (or symbols from an alphabet)
- A *substring* $s = s_1 s_2 \cdots s_m$ of a string $c = c_1 c_2 \cdots c_n$ is a string with

$$s_1 = c_i, s_2 = c_{i+1}, \dots, s_m = c_{i+m-1}$$

• A subsequence $x = x_1 x_2 \cdots x_r$ of a string $c = c_1 c_2 \cdots c_n$ is a string with

$$x_1 = c_{i_1}, x_2 = c_{i_2}, \dots, x_r = c_{i_r}$$

where

$$1 \le i_1 < i_2 < \dots < i_r \le n$$

Notes

- Note 1: The characters of a subsequence of a string are not necessarily consecutive in the string.
- Note 2: The characters of a subsequence of a string do preserve the order they have in the string.
- Note 3: A substring is also a subsequence, but the reverse is not necessarily true!
- Note 4: The length of a string is the number of characters in the string.

Examples

- The string lamp is neither a substring nor a subsequence of the string examples.
- The string ample is a substring of the string examples
- amps is a subsequence but not a substring of the string examples

More terminology

- Given two strings $s = s_1 s_2 \cdots s_n$ and $t = t_1 t_2 \cdots t_m$, a **common subsequence** of s and t is a string that is both a subsequence of s and a subsequence of t.
- A *longest common subsequence (lcs)* of two strings *s* and *t* is a common subsequence of maximum length.

Longest Common Subsequence Problem (LCS)

- Input: Strings $x = x_1 x_2 \cdots x_n$ and $y = y_1 y_2 \cdots y_m$
- Output: string lcs, where lcs is a longest common subsequence of x and y

Computing an Ics

- Idea:
 - For the shorter of the two given strings create all possible subsequences
 - From the longest to shortest: check if it is also a subsequence of the longer string; output the first one found
- Running time very high

Dynamic programming

- Elements of dynamic programming
 - optimal substructure
 - overlapping subproblems

The three steps of Dynamic Programming

- Characterize the structure of an optimal solution
- Recursively define the value of an optimal solution
- Compute the value of an optimal solution in a bottom-up fashion (e.g., via table)

	c	h	i	m	p	a	n	Z	e	e
h										
u										
m										
a										
n										

Theorem (Optimal Substructure of Ics)

- Let $x = x_1x_2 \cdots x_n$ and $y = y_1y_2 \cdots y_m$ be strings, and let $z = z_1z_2 \cdots z_k$ be an *lcs* of x and y. Then,
 - 1. If $x_n=y_m$, then $z_k=x_n=y_m$ and $z_1z_2\cdots z_{k-1}$ is an lcs of $x_1x_2\cdots x_{n-1}$ and $y_1y_2\cdots y_{m-1}$.
 - 2. If $x_n \neq y_m$ and $z_k \neq x_n$, then z is an lcs of $x_1 x_2 \cdots x_{n-1}$ and y.
 - 3. If $x_n \neq y_m$ and $z_k \neq y_m$, then z is an lcs of x and $y_1y_2 \cdots y_{m-1}$.

Proof of 1. If $x_n = y_m$ then (a) $z_k = x_n = y_m$ and (b) z_1 $z_2 \dots z_{k-1}$ is an lcs of $x_1 x_2 \dots x_{n-1}$ and $y_1 y_2 \dots y_{m-1}$

 $x_n = y_m$. We prove claim (a) using contradiction: Assume $z_k \neq x_n$.

But then z could be be made longer by appending $x_n = y_m$ to z. But according to the assumptions of the Theorem, z is an lcs of x and y. Therefore, no longer common subsequence of x and y, including z x_n , can exist, a contradiction.

This proves (a).

Proof of 1. If $x_n = y_m$ then (a) $z_k = x_n = y_m$ and (b) z_1 $z_2 \dots z_{k-1}$ is an lcs of $x_1 x_2 \dots x_{n-1}$ and $y_1 y_2 \dots y_{m-1}$

 $x_n = y_m$ and $z_k = x_n = y_m$. We prove claim (b) contradiction: Assume $z_1 z_2 \dots z_{k-1}$ is not an lcs of $x_1 x_2 \dots x_{n-1}$ and $y_1 y_2 \dots y_{m-1}$

But then there must exist a string w that is of length greater than k-1 and a common subsequence of $x_1 x_2 \dots x_{n-1}$ and $y_1 y_2 \dots y_{m-1}$.

Appending $x_n = y_m$ to w creates a common subsequence of x and y. But w is longer than z, a contradiction.

This proves (b).

Proof of 2. If $x_n \neq y_m$ then $z_k \neq x_n$ implies that z_n is an lcs of $x_1 x_2 \dots x_{n-1}$ and y_n

- Assume $x_n \neq y_m$ and $z_k \neq x_n$. Then z is common subsequence of $x_1 x_2 \dots x_{n-1}$ and y (since otherwise z would not be a subsequence of x and y).
- Assume that z is not a longest common subsequence. Then there exists a longer common subsequence, w, of $x_1 x_2 \dots x_{n-1}$ and y. But then w is of length greater than k, which does not exist according to the assumptions of the Theorem. A contradiction. This proves that z is an lcs of $x_1 x_2 \dots x_{n-1}$ and y and therefore (2)

Proof of (3)

Works analogous to the proof of (2)

What can we conclude from the Theorem?

- Let $x = x_1 x_2 ... x_n$ and $y = y_1 y_2 ... y_m$ be strings, and let $z = z_1 z_2 ... z_k$ be an lcs of x and y. Let llcs denote the length of an lcs. Then
 - If $x_n = y_m$ then

$$llcs(x, y) = llcs(x_1 x_2 ... x_{n-1}, y_1 y_2 ... y_{m-1}) + 1$$

• If $x_n \neq y_m$ then

$$llcs(x, y) = max\{llcs(x_1 x_2 ... x_{n-1}, y), llcs(x, y_1 y_2 ... y_{m-1})\}$$

h m This cell should contain the langth of a longest common ruence for strings and hu This cell should contain the h length of a longest common subsequence for strings chimpanzee and human u m a n

		C	h	i	m	р	а	n	Z	е	е
		0	0	0	0	0	0	0	0	0	0
h	0										
u	0										
m	0										
а	0										
n	0										

		С	h	i	m	р	а	n	z	е	е
		0	0	0	0	0	0	0	0	0	0
h	0	0									
u	0										
m	0										
а	0										
n	0										

		С	h	i	m	p	а	n	z	е	е
		0	0	0	0	0	0	0	0	0	0
h	0	0	1								
u	0										
m	0										
а	0										
n	0										

		С	h	i	m	р	а	n	z	е	е
		0	0	0	0	0	0	0	0	0	0
h	0	0	1	1							
u	0										
m	0										
а	0										
n	0										

		C	h	i	m	р	а	n	z	е	е
		0	0	0	0	0	0	0	0	0	0
h	0	0	1	1	1	1	1	1	1	1	1
u	0										
m	0										
а	0										
n	0										

		С	h	i	m	р	а	n	Z	е	е
		0	0	0	0	0	0	0	0	0	0
h	0	0	1	1	1	1	1	1	1	1	1
u	0	0									
m	0										
а	0										
n	0										

		С	h	i	m	р	а	n	Z	е	е
		0	0	0	0	0	0	0	0	0	0
h	0	0	1	1	1	1	1	1	1	1	1
u	0	0	1								
m	0										
a	0										
n	0										

		С	h	i	m	p	a	n	Z	е	е
		0	0	0	0	0	0	0	0	0	0
h	0	0	1	1	1	1	1	1	1	1	1
u	0	0	1	1	1	1	1	1	1	1	1
m	0										
а	0										
n	0										

		С	h	i	m	p	а	n	Z	е	е
		0	0	0	0	0	0	0	0	0	0
h	0	0	1	1	1	1	1	1	1	1	1
u	0	0	1	1	1	1	1	1	1	1	1
m	0	0									
a	0										
n	0										

		С	h	i	m	р	а	n	Z	е	е
		0	0	0	0	0	0	0	0	0	0
h	0	0	1	1	1	1	1	1	1	1	1
u	0	0	1	1	1	1	1	1	1	1	1
m	0	0	1								
a	0										
n	0										

		С	h	i	m	р	а	n	z	е	е
		0	0	0	0	0	0	0	0	0	0
h	0	0	1	1	1	1	1	1	1	1	1
u	0	0	1	1	1	1	1	1	1	1	1
m	0	0	1	1							
а	0										
n	0										

		С	h	i	m	р	а	n	Z	е	е
		0	0	0	0	0	0	0	0	0	0
h	0	0	1	1	1	1	1	1	1	1	1
u	0	0	1	1	1	1	1	1	1	1	1
m	0	0	1	1	2						
а	0										
n	0										

		С	h	i	m	р	а	n	z	е	е
		0	0	0	0	0	0	0	0	0	0
h	0	0	1	1	1	1	1	1	1	1	1
u	0	0	1	1	1	1	1	1	1	1	1
m	0	0	1	1	2	2					
a	0										
n	0										

		С	h	i	m	р	а	n	Z	е	е
		0	0	0	0	0	0	0	0	0	0
h	0	0	1	1	1	1	1	1	1	1	1
u	0	0	1	1	1	1	1	1	1	1	1
m	0	0	1	1	2	2	2	2	2	2	2
a	0										
n	0										

		С	h	i	m	р	а	n	z	е	е
		0	0	0	0	0	0	0	0	0	0
h	0	0	1	1	1	1	1	1	1	1	1
u	0	0	1	1	1	1	1	1	1	1	1
m	0	0	1	1	2	2	2	2	2	2	2
a	0	0									
n	0										

		С	h	i	m	р	а	n	z	е	е
		0	0	0	0	0	0	0	0	0	0
h	0	0	1	1	1	1	1	1	1	1	1
u	0	0	1	1	1	1	1	1	1	1	1
m	0	0	1	1	2	2	2	2	2	2	2
a	0	0	1								
n	0										

		С	h	i	m	р	а	n	Z	е	е
		0	0	0	0	0	0	0	0	0	0
h	0	0	1	1	1	1	1	1	1	1	1
u	0	0	1	1	1	1	1	1	1	1	1
m	0	0	1	1	2	2	2	2	2	2	2
a	0	0	1	1							
n	0										

		С	h	i	m	р	а	n	Z	е	е
		0	0	0	0	0	0	0	0	0	0
h	0	0	1	1	1	1	1	1	1	1	1
u	0	0	1	1	1	1	1	1	1	1	1
m	0	0	1	1	2	2	2	2	2	2	2
a	0	0	1	1	2						
n	0										

		С	h	i	m	р	а	n	Z	е	е
		0	0	0	0	0	0	0	0	0	0
h	0	0	1	1	1	1	1	1	1	1	1
u	0	0	1	1	1	1	1	1	1	1	1
m	0	0	1	1	2	2	2	2	2	2	2
a	0	0	1	1	2	2					
n	0										

		С	h	i	m	p	а	n	Z	е	е
		0	0	0	0	0	0	0	0	0	0
h	0	0	1	1	1	1	1	1	1	1	1
u	0	0	1	1	1	1	1	1	1	1	1
m	0	0	1	1	2	2	2	2	2	2	2
а	0	0	1	1	2	2	3				
n	0										

		С	h	i	m	р	а	n	z	е	е
		0	0	0	0	0	0	0	0	0	0
h	0	0	1	1	1	1	1	1	1	1	1
u	0	0	1	1	1	1	1	1	1	1	1
m	0	0	1	1	2	2	2	2	2	2	2
a	0	0	1	1	2	2	3	3			
n	0										

		С	h	i	m	p	а	n	Z	е	е
		0	0	0	0	0	0	0	0	0	0
h	0	0	1	1	1	1	1	1	1	1	1
u	0	0	1	1	1	1	1	1	1	1	1
m	0	0	1	1	2	2	2	2	2	2	2
а	0	0	1	1	2	2	3	3	3	3	3
n	0										

		С	h	i	m	p	а	n	Z	е	е
		0	0	0	0	0	0	0	0	0	0
h	0	0	1	1	1	1	1	1	1	1	1
u	0	0	1	1	1	1	1	1	1	1	1
m	0	0	1	1	2	2	2	2	2	2	2
а	0	0	1	1	2	2	3	3	3	3	3
n	0	0									

		C	h	i	m	p	а	n	Z	е	е
		0	0	0	0	0	0	0	0	0	0
h	0	0	1	1	1	1	1	1	1	1	1
u	0	0	1	1	1	1	1	1	1	1	1
m	0	0	1	1	2	2	2	2	2	2	2
а	0	0	1	1	2	2	3	3	3	3	3
n	0	0	1								

		С	h	i	m	p	a	n	Z	е	е
		0	0	0	0	0	0	0	0	0	0
h	0	0	1	1	1	1	1	1	1	1	1
u	0	0	1	1	1	1	1	1	1	1	1
m	0	0	1	1	2	2	2	2	2	2	2
а	0	0	1	1	2	2	3	3	3	3	3
n	0	0	1	1	2	2	3				

		С	h	i	m	р	а	n	Z	е	е
		0	0	0	0	0	0	0	0	0	0
h	0	0	1	1	1	1	1	1	1	1	1
u	0	0	1	1	1	1	1	1	1	1	1
m	0	0	1	1	2	2	2	2	2	2	2
а	0	0	1	1	2	2	3	3	3	3	3
n	0	0	1	1	2	2	3	4			

		С	h	i	m	р	а	n	Z	е	е
		0	0	0	0	0	0	0	0	0	0
h	0	0	1	1	1	1	1	1	1	1	1
u	0	0	1	1	1	1	1	1	1	1	1
m	0	0	1	1	2	2	2	2	2	2	2
a	0	0	1	1	2	2	3	3	3	3	3
n	0	0	1	1	2	2	3	4	4		

		С	h	i	m	р	а	n	Z	е	е
		0	0	0	0	0	0	0	0	0	0
h	0	0	1	1	1	1	1	1	1	1	1
u	0	0	1	1	1	1	1	1	1	1	1
m	0	0	1	1	2	2	2	2	2	2	2
а	0	0	1	1	2	2	3	3	3	3	3
n	0	0	1	1	2	2	3	4	4	4	4

We know the length llcs, but not an lcs

 Each time when computing the content of a new cell, remember where you came from!

		C	h	i	m	р	а	n	Z	е	е
		0	0	0	0	0	0	0	0	0	0
h	0										
u	0										
m	0										
а	0										
n	0										

If $x[i] \neq y[j]$: $llcs[i,j] = max{llcs[i,j-1],llcs[i-1,j]}$

	С	h	i	m	р	а	n	z	е	е
	0	0	0	0	0	0	0	0	0	0
h	0 — 0									
u	0									
m	0									
a	0									
n	0									

If x[i] = y[j]: llcs[i,j] = llcs[i-1,j-1]+1

		C	h	i	m	р	а	n	z	е	е
	()	0	0	0	0	0	0	0	0	0
h	0 - 0)	1								
u	0										
m	0										
а	0										
n	0										

If $x[i] \neq y[j]$: $llcs[i,j] = max{llcs[i,j-1],llcs[i-1,j]}$

	C	h	i	m	р	a	n	z	е	е
	0	0	0	0	0	0	0	0	0	0
h	0 — 0	1 +	– 1							
u	0									
m	0									
а	0									
n	0									

If $x[i] \neq y[j]$: $llcs[i,j] = max{llcs[i,j-1],llcs[i-1,j]}$

	C	h	i	m	р	а	n	z	е	е
	0	0	0	0	0	0	0	0	0	0
h	0 — 0	1 +	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
u	0									
m	0									
а	0									
n	0									

If $x[i] \neq y[j]$: $llcs[i,j] = max{llcs[i,j-1],llcs[i-1,j]}$

		C	h	i	m	р	a	n	z	е	е
		0	0	0	0	0	0	0	0	0	0
h	0 —	0	1 ←	1 ←	1 ←	1 ←	1 ←	1 ←	1 ←	1 ←	1
u	0 ←	0									
m	0										
а	0										
n	0										

If $x[i] \neq y[j]$: $llcs[i,j] = max{llcs[i,j-1],llcs[i-1,j]}$

	С	h	i	m	р	a	n	Z	е	е
	0	0	0	0	0	0	0	0	0	0
h	0 — 0	1 ←	– 1 ←	- 1 -	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
u	0 — 0	1								
m	0									
а	0									
n	0									

If $x[i] \neq y[j]$: $llcs[i,j] = max{llcs[i,j-1],llcs[i-1,j]}$

	С	h	i	m	р	a	n	z	е	е
	0	0	0	0	0	0	0	0	0	0
h	0 — 0	1 ←	- 1 ←	– 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
u	0 — 0	1 ←	- 1 ←	– 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
m	0									
а	0									
n	0									

If $x[i] \neq y[j]$: $llcs[i,j] = max{llcs[i,j-1],llcs[i-1,j]}$

	С	h	i	m	р	a	n	z	е	е
	0	0	0	0	0	0	0	0	0	0
h	0 — 0	1 ← ↑	- 1 ←	– 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
u	0 — 0	1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
m	0 — 0									
а	0									
n	0									

If $x[i] \neq y[j]$: $llcs[i,j] = max{llcs[i,j-1],llcs[i-1,j]}$

	C	h	i	m	р	a	n	z	е	е
	0	0	0	0	0	0	0	0	0	0
h	0 — 0	\ 1 ← †	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
u	0 — 0	1 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
m	0 — 0	1								
а	0									
n	0									

If $x[i] \neq y[j]$: $llcs[i,j] = max{llcs[i,j-1],llcs[i-1,j]}$

	С	h	i	m	р	а	n	z	е	е
	0	0	0	0	0	0	0	0	0	0
h	0 — 0	\ 1 ← †	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
u	0 — 0	1 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
m	0 — 0	1 ←	- 1							
а	0									
n	0									

If x[i] = y[j]: llcs[i,j] = llcs[i-1,j-1]+1

	C	h	i	m	p	а	n	Z	е	е
	0	0	0	0	0	0	0	0	0	0
h	0 — 0	\ 1 ← †	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
u	0 — 0	1 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
m	0 — 0	1 ←	- 1	2						
a	0									
n	0									

If $x[i] \neq y[j]$: $llcs[i,j] = max{llcs[i,j-1],llcs[i-1,j]}$

	C	h	i	m	р	a	n	z	е	е
	0	0	0	0	0	0	0	0	0	0
h	0 — 0	\ 1 ← †	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
u	0 — 0	1 1 ← †	- 1 -	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
m	0 — 0	1 ←	- 1	2 -	- 2					
а	0									
n	0									

If $x[i] \neq y[j]$: $llcs[i,j] = max{llcs[i,j-1],llcs[i-1,j]}$

	C	h	i	m	р	a	n	z	е	е
	0	0	0	0	0	0	0	0	0	0
h	0 — 0	\ 1 ← †	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
u	0 — 0	1 1 ←	- 1 -	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
m	0 — 0	1 ←	- 1	2 +	- 2 -	- 2 -	- 2 -	- 2 -	- 2 -	- 2
а	0									
n	0									

If $x[i] \neq y[j]$: $llcs[i,j] = max{llcs[i,j-1],llcs[i-1,j]}$

	C	h	i	m	р	а	n	z	е	е
	0	0	0	0	0	0	0	0	0	0
h	0 — 0	\ 1 ← †	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
u	0 — 0	1 1 ← ↑	- 1 -	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
m	0 — 0	1 ←	- 1	2 -	- 2 -	- 2 -	- 2 -	- 2 -	- 2 -	- 2
а	0 — 0									
n	0									

If $x[i] \neq y[j]$: $llcs[i,j] = max{llcs[i,j-1],llcs[i-1,j]}$

	С	h	i	m	р	a	n	z	е	е
	0	0	0	0	0	0	0	0	0	0
h	0 — 0	\ 1 ← †	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
u	0 — 0	1 1 ← †	- 1 -	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
m	0 — 0	1 1 ←	- 1	2 +	- 2 -	- 2 -	- 2 -	- 2 -	- 2 -	- 2
а	0 — 0	1								
n	0									

If $x[i] \neq y[j]$: $llcs[i,j] = max{llcs[i,j-1],llcs[i-1,j]}$

	С	h	i	m	р	a	n	z	е	е
	0	0	0	0	0	0	0	0	0	0
h	0 — 0	\ 1 ← †	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
u	0 — 0	1 1 ← †	- 1 -	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
m	0 — 0	1 1 ← †	- 1	2 -	- 2 -	- 2 -	- 2 -	- 2 -	- 2 -	- 2
а	0 — 0	¹ 1 ←	- 1							
n	0									

If $x[i] \neq y[j]$: $llcs[i,j] = max{llcs[i,j-1],llcs[i-1,j]}$

	С	h	i	m	р	a	n	z	е	е
	0	0	0	0	0	0	0	0	0	0
h	0 — 0	\ 1 ← †	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
u	0 — 0	1 1 ← †	- 1 -	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
m	0 — 0	1 1 ← †	- 1	2 +	- 2 -	- 2 -	- 2 -	- 2 -	- 2 -	- 2
а	0 — 0	¹ 1 ←	- 1	2						
n	0									

If $x[i] \neq y[j]$: $llcs[i,j] = max{llcs[i,j-1],llcs[i-1,j]}$

	C	h	i	m	р	a	n	z	е	е
	0	0	0	0	0	0	0	0	0	0
h	0 — 0	` 1 ← †	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
u	0 — 0	1 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
m	0 — 0	1 1 ←	- 1	2 -	- 2 ←	2 +	- 2 -	2 +	- 2 ←	- 2
а	0 — 0	1 1 ←	- 1	2 ←	- 2					
n	0									

If x[i] = y[j]: llcs[i,j] = llcs[i-1,j-1]+1

	C	h	i	m	р	a	n	z	е	е
	0	0	0	0	0	0	0	0	0	0
h	0 — 0	\ 1 ← 1	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
u	0 — 0	1 1 ← †	- 1 -	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
m	0 — 0	1 1 ← 1	- 1	2 +	- 2 -	- 2 -	- 2 -	- 2 -	- 2 -	- 2
а	0 — 0	1 1 ←	- 1	2 ←	- 2	3				
n	0									

If $x[i] \neq y[j]$: $llcs[i,j] = max{llcs[i,j-1],llcs[i-1,j]}$

	С	h	i	m	р	a	n	z	е	е
	0	0	0	0	0	0	0	0	0	0
h	0 — 0	\ 1 ← †	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
u	0 — 0	1 1 ← †	- 1 -	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
m	0 — 0	1 1 ←	- 1	2 +	- 2 -	- 2 -	- 2 -	- 2 -	- 2 -	_ 2
а	0 — 0	¹ 1 ←	- 1	2 ←	- 2	3 -	- 3			
n	0									

If $x[i] \neq y[j]$: $llcs[i,j] = max{llcs[i,j-1],llcs[i-1,j]}$

	С	h	i	m	р	a	n	z	е	е
	0	0	0	0	0	0	0	0	0	0
h	0 — 0	\ 1 ← †	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
u	0 — 0	1 1 ← †	- 1 -	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
m	0 — 0	1 1 ← †	- 1	2 +	- 2 -	- 2 -	- 2 -	2 ←	- 2 -	- 2
а	0 — 0	1 1 ←	- 1	2 ←	- 2	3 ←	- 3 ←	- 3 ←	- 3 ←	- 3
n	0									

If $x[i] \neq y[j]$: $llcs[i,j] = max{llcs[i,j-1],llcs[i-1,j]}$

	С	h	i	m	р	а	n	z	е	е
	0	0	0	0	0	0	0	0	0	0
h	0 — 0	\ 1 ← †	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
u	0 — 0	1 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
m	0 — 0	1 1 ←	- 1	2 +	- 2 -	- 2 -	- 2 -	2 -	- 2 -	- 2
a	0 — 0	¹ 1 ←	- 1	2 ←	- 2	3 ←	- 3 ←	- 3 -	- 3 ←	- 3
n	0 — 0									

If $x[i] \neq y[j]$: $llcs[i,j] = max{llcs[i,j-1],llcs[i-1,j]}$

	С	h	i	m	р	а	n	z	е	е
	0	0	0	0	0	0	0	0	0	0
h	0 — 0	\ 1 ← †	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	– 1 ←	- 1
u	0 — 0	1 1 ← †	- 1 -	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
m	0 — 0	1 1 ← †	- 1	2 +	- 2 -	- 2 -	- 2 -	- 2 -	- 2 -	- 2
а	0 — 0	1 1 ← ↑	- 1	2 ←	- 2	3 +	- 3 ←	- 3 ←	- 3 ←	- 3
n	0 — 0	1								

If $x[i] \neq y[j]$: $llcs[i,j] = max{llcs[i,j-1],llcs[i-1,j]}$

	С	h	i	m	р	a	n	z	е	е
	0	0	0	0	0	0	0	0	0	0
h	0 — 0	\ 1 ← †	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
u	0 — 0	' 1 ← †	- 1 -	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
m	0 — 0	1 ← ↑	- 1	2 -	- 2 -	- 2 -	- 2 -	2 ←	- 2 -	- 2
а	0 — 0	' 1 ←	- 1	' 2 ←	- 2	3 -	- 3 ←	- 3 -	- 3 ←	- 3
n	0 — 0	1 ←	- 1	2 -	- 2	3				

If x[i] = y[j]: llcs[i,j] = llcs[i-1,j-1]+1

	С	h	i	m	р	а	n	z	е	е
	0	0	0	0	0	0	0	0	0	0
h	0 — 0	\ 1 ← †	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
u	0 — 0	1 1 ←	- 1 -	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
m	0 — 0	1 1 ←	- 1	2 +	- 2 -	2 ←	- 2 -	- 2 -	- 2 -	- 2
a	0 — 0	A		2 ←				- 3 ←	- 3 ←	- 3
n		•		2 +		'	•			

If x[i] = y[j]: llcs[i,j] = llcs[i-1,j-1]+1

	C	h	i	m	р	a	n	z	е	е
	0	0	0	0	0	0	0	0	0	0
h	0 — 0	\ 1 ← †	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
u	0 — 0	' 1 ← †	- 1 -	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
m	0 — 0	' 1 ←	- 1	2 +	- 2 -	2 -	2 ←	2 -	- 2 -	- 2
a	0 — 0	' 1 ←		2 ←				- 3 ←	- 3 ←	- 3
n	0 — 0	' 1 ←		•		•		- 4		

If x[i] = y[j]: llcs[i,j] = llcs[i-1,j-1]+1

	C	h	i	m	р	a	n	z	е	е
	0	0	0	0	0	0	0	0	0	0
h	0 — 0	\ 1 ← †	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
u	0 — 0	' 1 ← †	- 1 -	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1 ←	- 1
m	0 — 0	' 1 ←	- 1	2 +	- 2 -	2 -	2 ←	2 -	- 2 -	- 2
а	0 — 0			2 ←				- 3 ←	- 3 ←	- 3
n				•		•		- 4 ←	- 4 ←	- 4

Step 4: Extracting the path to obtain the lcd

Algorithm LCS(string *x*, string *y*)

```
n \leftarrow x.\text{length}()
m \leftarrow y.length()
for i from 1 to n do llcs[i,0] \leftarrow 0
for j from 1 to m do llcs[0,j] \leftarrow 0
for i from 1 to n do
 for j from 1 to m do
   if x[i] = y[j] then
     llcs[i, j] \leftarrow llcs[i-1, j-1] + 1; path[i, j] \leftarrow "\"
    else if llcs[i-1, j] > llcs[i, j-1] then
     llcs[i, j] \leftarrow llcs[i-1, j]; path[i, j] \leftarrow "\uparrow"
    else llcs[i, j] \leftarrow llcs[i, j-1]; path[i, j] \leftarrow "\leftarrow"
return llcs & path
```

Algorithm Print-LCS(matrix path, string x, positive integers i, j)

```
if i = 0 or j = 0 then return
if path[i, j] = "\nwarrow" then
  print-LCS(path, x, i-1, j-1)
  print x[i]
else if path[i, j] = "\uparrow" then
  print-LCS(path, x, i-1, j)
else print-LCS(path, x, i, j-1)
```

Running times

- LCS: O(nm)
- print-LCS: O(n+m)