

Abstract Algebra

空

作者: 邹文杰

组织:无

时间:2024/10/25

版本:ElegantBook-4.5

自定义:信息

宠辱不惊,闲看庭前花开花落; 去留无意,漫随天外云卷云舒.

目录

第一章	:群论 I——Group Theorey I	1
1.1	幺半群	1
第二章		3

第一章 群论 I——Group Theorey I

1.1 幺半群

定义 1.1 (代数运算/二元运算定义)

设 A 是一个非空集合, 若对 A 中任意两个元素 a, b, 通过某个法则 "·", 有 A 中唯一确定的元素 c 与之对应, 则称法则 "·"为集合 A 上的一个代数运算 (algebraic operation) 或二元运算. 元素 c 是 a, b 通过运算 "·"作用的结果, 将此结果记为 $a \cdot b = c$.

定义 1.2 ((交换) 半群定义)

非空集合 S 和 S 上满足结合律的二元运算·所形成的代数结构叫做**半群**. 这个半群记成 (S,\cdot) 或者简记成 S, 运算 $x\cdot y$ 也常常简写成 xy. 此外, 如果半群 (S,\cdot) 中的运算 "·" 又满足交换律,则 (S,\cdot) 叫做**交换半群**.

注 像通常那样令 $x^2 = x \cdot x, x^{n+1} = x^n \cdot x (= x \cdot x^n, n \ge 1).$

定义 1.3 (幺元素定义)

设 S 是半群, 元素 $e \in S$ 叫做半群 S 的**么元素 (也叫单位元 (unit element) 或恒等元 (identity))**, 是指对每个 $x \in S, xe = ex = x$.

 $\widehat{\mathbf{v}}$ **笔记 如果半群 S 中有幺元素,则幺元素一定唯一.** 因若 e' 也是幺元素,则 e'=e'e=e. 我们将半群 S 中这个唯一的幺元素 (如果存在的话) 通常记作 $\mathbf{1}_S$ **或者 1**.

定义 1.4 ((交换) 含幺半群定义)

如果半群 (S,\cdot) 含有幺元素,则 (S,\cdot) 叫做**含幺半群**. 此外,如果幺半群 (S,\cdot) 中的运算"·"又满足交换律,则 (S,\cdot) 叫做**交换幺半群**.

定义 1.5

设 (S, \cdot) 是含幺半群. 元素 $y \in S$ 叫做元素 $x \in S$ 的**逆元素**, 是指 xy = yx = 1.

奎记 如果 x 有逆元素,则它一定唯一. 因为若 y' 也是 x 的逆元素,则 xy' = y'x = 1. 于是 $y = y \cdot 1 = y(xy') = (yx)y' = 1 \cdot y' = y'$. 所以, 若 x 具有逆元素, 我们把这个唯一的逆元素记作 x^{-1} ,则 $xx^{-1} = x^{-1}x = 1$.

定义 1.6

如果含幺半群 (G,\cdot) 的每个元素均可逆,则 (G,\cdot) 叫做群. 此外,如果群 (G,\cdot) 中的运算"·"又满足交换律,则 G 叫做**交换**群或叫**阿贝尔** (Abel) 群.

 $\stackrel{ ext{$ullet}}{ ext{$ullet}}$ 笔记 容易验证 $(M_n(\mathbb{R}),\cdot)$ 是 (m, \mathbb{R}) 交换幺半群, 其中单位元是零矩阵.

例题 1.1 $(M_n(\mathbb{R}),\cdot)$ 是一个含幺 (乘法) 半群.

证明 $\forall A, B, C \in (M_n(\mathbb{R}), \cdot)$,则不妨设 $A = (a_{ij})_{n \times n}, B = (b_{ij})_{n \times n}, C = (c_{ij})_{n \times n}$. 再设 $A \cdot B = (d_{ij})_{n \times n}, B \cdot C = (e_{ij})_{n \times n}, (A \cdot B) \cdot C = (f_{ij})_{n \times n}, A \cdot (B \cdot C) = (g_{ij})_{n \times n}$. 于是

$$d_{ij} = \sum_{k=1}^{n} a_{ik} b_{kl}, e_{ij} = \sum_{k=1}^{n} b_{ik} c_{kl}.$$

其中 $i, j = 1, 2, \dots, n$.

从而

$$f_{ij} = \sum_{l=1}^{n} d_{il}c_{lj} = \sum_{l=1}^{n} \left(\sum_{k=1}^{n} a_{ik}b_{kl} \right) \cdot c_{lj} = \sum_{l=1}^{n} \sum_{k=1}^{n} a_{ik}b_{kl}c_{lj},$$

$$g_{ij} = \sum_{k=1}^{n} a_{ik}e_{kj} = \sum_{k=1}^{n} a_{ik} \cdot \left(\sum_{l=1}^{n} b_{kl}c_{lj} \right) = \sum_{k=1}^{n} \sum_{l=1}^{n} a_{ik}b_{kl}c_{lj}.$$

由二重求和号的可交换性, 可知 $f_{ij}=g_{ij}, \forall i,j\in\{1,2,\cdots,n\}$. 故 $(A\cdot B)\cdot C=A\cdot (B\cdot C)$.

记
$$I_n=egin{pmatrix}1&&&&&\\&1&&&&\\&&\ddots&&&\\&&&&1\end{pmatrix}\in M_n(\mathbb{R}),$$
 于是 $\forall X\in M_n(\mathbb{R}),$ 则不妨设 $X=(x_{ij})_{n\times n},I_n=(\delta_{ij})_{n\times n}.$ 其中 $\delta_{ij}=(\delta_{ij})_{n\times n}$.

 $\begin{cases} 1, \exists i=j \text{ 时,} \\ 0, \exists i \neq j \text{ 时} \end{cases}$. 再设 $I_n \cdot X = (x'_{ij})_{n \times n}, X \cdot I_n = (x''_{ij})_{n \times n},$ 于是由矩阵乘法的定义可知

$$x'_{ij} = \sum_{k=1}^{n} x_{ik} \delta_{kj} = x_{ij} \delta_{jj} = x_{ij}.$$
$$x''_{ij} = \sum_{k=1}^{n} \delta_{ik} x_{kj} = \delta_{ii} x_{ij} = x_{ij}.$$

故 $x'_{ij} = x''_{ij} = x_{ij}$, $\forall i, j \in \{1, 2, \dots, n\}$. 从而 $X = I_n \cdot X = X \cdot I_n$. 因此 $I_n \in (M_n(\mathbb{R}), \cdot)$ 的单位元. 综上所述, $(M_n(\mathbb{R}), \cdot)$ 是一个含幺 (乘法) 半群.

定义 1.7

*

第二章 环