Integrantes do grupo:
Cassio Gaspar Valezzi – RM 551059
Rafael Perussi Caczan – RM 93092
Octávio Hernandez Chiste Cordeiro – RM 97894
Italo de Souza – RM 551500

Semáforo Inteligente: Don't Stop!

Nosso sistema consiste em uma série de semáforos interconectados e equipados com sensores para possibilitar uma tomada de decisões eficiente, reduzindo engarrafamentos e frustrações no trânsito.

Isso será atingido através de sensores, como um sensor PIR ou ultrassônico, para que seja possível detectar a presença de veículos ou pedestres. Além disso, as informações que forem usadas durante a tomada de decisões serão armazenadas e enviadas para a nuvem em um banco de dados, sintetizando-as em informações úteis para órgãos de mobilidade urbana.

Um exemplo de como isso pode ser feito é através da plataforma TagolO, capaz de receber mensagens através de um tópico MQTT.

Como componentes, utilizamos uma placa Arduíno UNO, leds e um sensor ultrassônico.

Segue um exemplo de uso do TagolO conectado com Node-Red através de um simulador para fazer o display das informações em um dashboard.

Dependências:

Node.JS

Node-Red [Pallete: node-red-node-serialport]

Tago.IO SimulIDE com0com

Biblioteca ArduinoJson

Componentes:
Arduíno UNO
Sensor Ultrassônico
3x LEDs
3x Resistores 220 ohms

Para começar, abra o arquivo "DontStop.sim1" no SimulIDE e o com0com.

Abra uma de suas portas no serialport do simulador.

E tenha em mente o par da mesma.

Após isso, inicie o simulador e abra o Node-Red com o comando "node-red" no CMD e abrindo o endereço localhost:1880 ou 127.0.0.1:1880.

Inicie o flow contido no arquivo "nodered.json"

Configure o node "Serial IN" para que conecte-se à porta pareada a que foi utilizada no SimulIDE. Após isso, acesse o Tago.io e crie um device MQTT Custom.

Retorne agora ao Node-Red e configure o nó "MQTT Out" da seguinte forma:

Server	Tago 🗸	
Topic	tago/data/post	
⊕ QoS	> S Retain	
Name	Tago Output	
O tópico deve ser	"tago/data/post" enquanto o servidor deve ser mqtt.tago.io, na porta 18	83.
Server	mqtt.tago.io Port 1883	
	✓ Connect automatically	
	☐ Use TLS	
Protocol	MQTT V3.1.1 ▼	
Client ID	Sprint 3	
♥ Keep Alive	60	
i Session	✓ Use clean session	
Na aba "Security"	escolha qualquer username e utilize o código do token como senha:	
≜ Username	Don't Stop	
≙ Password	••••••	

Após isso, selecione deploy e o sistema estará funcional!

Para checar que o circuito está funcionando, observe o comportamento dos LEDs e cheque se respondem ao sensor ultrassônico.

Para checar que o Node-Red está recebendo e processando as informações, cheque a área de debug.

Por fim, instale o template de dashboard encontrado neste <u>link</u> e configure-o para visualizar os dados de forma legível.

A aba "Semaphore" indica a posição do semáforo e o quão distante está de permitir a passagem de um pedestre. Ao atingir 2, o semáforo está vermelho e um pedestre pode atravessar, aumentando a contagem "Pedestrians Crossed" em 1.

A aba "Nearest Pedestrian" representa a leitura do sensor ultrassônico e mostra a distância do pedestre mais próximo, em centímetros. Para alterar este valor no simulador, é necessário conectar um controlador de voltagem:

5 V

A partir deste ponto, o sistema já está ativo e quaisquer testes podem ser realizados através do dashboard e do simulador.

Seguem imagens do sistema físico para referência:

