Week 2 Discussion Solutions

Properties of integers:

Assume a, b, and c are integers.

- 1. Even / odd
 - If a and b are both even, then a + b is even and a · b is even

To see why, if a and b are both even, then $a = 2 \cdot k$ and $b = 2 \cdot j$ for some integers k and j. Then $a + b = (2 \cdot k) + (2 \cdot j) = 2 \cdot (k + j)$ and $a \cdot b = (2 \cdot k) \cdot (2 \cdot j) = 2 \cdot (k \cdot 2 - j)$.

• If a and b are both odd, then a + b is even and a · b is odd

To see why, if *a* and *b* are both odd, then $a = 2 \cdot k + 1$ and $b = 2 \cdot j + 1$ for some integers *k* and *j*. Then $a + b = (2 \cdot k + 1) + (2 \cdot j + 1) = 2 \cdot (k + j + 1)$ and $a \cdot b = (2 \cdot k + 1) \cdot (2 \cdot j + 1) = 4 \cdot k \cdot j + 2 \cdot k + 2 \cdot j + 1 = 2 \cdot (2 \cdot k \cdot j + k + j) + 1$.

- 2. 71 mod 6 is 5. If a mod b is 0 then b is a divisor of a
- 3. Justification if statement is true, counter-example if statement is false.
 - a. If a divides $b \cdot c$, then a divides b or a divides c

This statement is false. Let a = 12, b = 3, and c = 8. Then 12 divides 24 but 12 does not divide 3 and 12 does not divide 8.

b. If a divides b and a divides c, then a divides (b - c)

This statement is true. If a divides b, then $b = a \cdot k$ for some integer k. If a divides c, then $c = a \cdot m$ for some integer m. Then, $b \cdot c = a \cdot k \cdot a \cdot m = a \cdot (k \cdot m) = a \cdot n$ for some integer $n = k \cdot m$. So, by definition, a divides $(b \cdot c)$.

c. If gcd(a, b) = 1, then a and b are prime

This statement is false. Let a = 3 and b = 4. Then gcd(3, 4) = 1 but 4 is not prime. However, if gcd(a, b) = 1, then we say that a and b are co-prime (or relatively prime).

d. If a and b are prime, then gcd(a, b) = 1

(Note that c. and d. are *converses* of each other.) This statement is false. Let a = 7 and b = 7, then gcd(7, 7) = 7. Note that if we add in the restriction that $a \neq b$, then the statement "If a and b are prime and $a \neq b$, then gcd(a, b) = 1" is true.

Propositional logic

- 1. 2^N Recall that a truth table specifies the truth value of a propositional formula for every possible combination of truth values for the N variables in the formula.
- 2. Show that $\neg P \Rightarrow Q$ is equivalent to $P \lor Q$:

P	Q	$\neg P \Rightarrow Q$	P v Q
Т	Т	Т	Т
Т	F	Т	Т
F	Т	Т	Т
F	F	F	F

3. Show that $(P\Rightarrow Q) \land (\neg P\Rightarrow \neg Q)$ is equivalent to $P\Leftrightarrow Q$: One way to show this is to use a truth table (as was done for 2. above). Another way is to note that the *contrapositive* of $\neg P\Rightarrow \neg Q$ is $\neg (\neg Q)\Rightarrow \neg (\neg P)$ which can be rewritten as $Q\Rightarrow P$. Thus, $(P\Rightarrow Q)\land (\neg P\Rightarrow \neg Q)$ is equivalent to $(P\Rightarrow Q)\land (Q\Rightarrow P)$, which is equivalent to $P\Leftrightarrow Q$

4.

- a. XOR is the negation of \Leftrightarrow
- b. XOR is equivalent to $(A \land \neg B) \lor (\neg A \land B)$:

Α	В	A XOR B	(i) <i>A</i> ∧ ¬ <i>B</i>	(ii) ¬A ∧ B	(i) v (ii)
Т	Т	F	F	F	F
Т	F	Т	Т	F	Т
F	Т	Т	F	Т	Т
F	F	F	F	F	F