From Science to Data Science

Stephane SENECAL @ Orange Labs stephane.senecal@orange.com
CRI Data Science Club, 31/03/2017

"From Science to Data Science" Overview

- Academic Background and Activities (17 slides)
- Professional Background and Activities (33 slides + 2 videos!)
- (Data Science...) Projects (6 slides)
- Working @ Orange Labs (3 slides)
- Machine Learning/Data Science... (2 slides)
- Take Away Messages (1 slide)
- Bonus: Appendix (44 slides)

Academic Background (1/3): Masters in Mathematics & Signal Processing

- MS in mathematics:
 - obtained in 1998 @ Joseph Fourier University, Grenoble, France
 - thesis on holomorphic functions of several complex variables
- MEng/MS in signal processing:
 - obtained in 1999 @ Grenoble INP, France
 - thesis on curvilinear component analysis for model order estimation

Data Dimension Reduction

Input: dataset composed of N samples each of dimension n (n >> 1)

Output: dataset composed of N samples each of dimension p (p << n)

Various techniques:

Principal Component Analysis and its extensions, Kohonen/self-organizing maps, Multi-Dimensional Scaling, ...

Principal Component Analysis

Computation of an output representation basis (orthogonal axes)

from the covariance matrix of the input dataset (eigenvectors obtained from diagonalization)

Curvilinear Component Analysis

→ Data projected on curves (instead of axes)

Academic Background (2/3): PhD in Applied Statistics for Signal Processing

- PhD in statistical signal processsing for telecommunications:
- obtained from Grenoble INP, France
- conducted from 1999 to 2002 @ GIPSA-Lab
- with MESR fellowship support
- → Statistical simulation methods:
 - Markov Chain Monte Carlo (MCMC): Hastings-Metropolis,
 Gibbs sampling, reversible jumps MCMC
 - Sequential Monte Carlo/Particle Filtering
- → Application to Bayesian estimation problems for:
 - Independent Component Analysis/Blind Source Separation
 - Equalization of nonlinear system for satellite communications

Independent Component Analysis/Source Separation → The Cocktail Party Problem

ill-posed inverse problem $\rightarrow x = Ms + noise$

→ Recover/estimate source signals s from noisy mixtures x

Independent Component Analysis/Source Separation → Example

Blind Equalization in Digital Communications

Blind Equalization Setup

Monte Carlo Approach (1/2)

Approximation of π :

dots inside circle
/
dots inside square

 \approx

Monte Carlo Approach (2/2)

Numerical approximations of expectations (integrals) of functions under/for non-standard distributions

- → How to sample from non-standard distributions?
- → Markov chains!

Markov Chain Example: Weather → Discrete-valued Markov Chain (3 states)

Transition Probabilities Matrix/Operator → Target Distribution = Fixed Point of Matrix/Operator

Markov Chain Monte Carlo (1/2) → Convergence after Burn-in (Ergodicity)

5 realizations of a Markov chain (≠ colors), 100 iterations

Markov Chain Monte Carlo (2/2) → Convergence in Distribution

→ Computation of

Monte Carlo estimates
from the samples
after convergence of
the Markov chain

Bayesian Estimation Problems→ Solved by Markov Chain Monte Carlo

Independent Component Analysis/Source Separation:

```
x = Ms + noise noise drawn from Gaussian(0,sigma^2)
```

■ → Bayesian posterior distribution p(s, M, sigma | x)

```
p(s, M, sigma | x) \alpha p(x | s, M, sigma )p(s, M, sigma)
```

- → Generate samples from p(s, M, sigma | x) via a Markov chain
- → Compute Monte Carlo estimates of (s, M, sigma) from the samples

Academic Background (3/3): Post-Doc in Computational Statistics

- Post-PhD: Post-Doc in Computational Statistics
- conducted @ Institute of Statistical Mathematics, Research Organization of Information and Systems (Tokyo, Japan)
- conducted in 2003-2004
- thanks to a JSPS fellowship support
- Design of statistical simulation algorithms/methods/techniques:
 - Block/fixed-lag sampling strategies for Sequential Monte Carlo methods, applications in:
 - optimal filtering for bearing-only target tracking in radar
 - estimation/prediction of stochastic volatility in econometrics
 - Space alternating data augmentation techniques, application to the estimation of finite mixtures of Gaussian distributions for speaker recognition

Bearing-Only Tracking (Radar) Estimation of Nonlinear State Space Models

Stochastic Volatility (Econometrics) Nonlinear/Non-Gaussian Time Series Prediction/Forecasting

Financial Time series

Speaker Recognition Bayesian Modeling and Estimation

Speakers voices:

- → Gaussian mixture models (GMM)
- → estimation of these models via EM-type/Gibbs sampling algorithms

Professional Background and Activities (1/7): Machine Learning/Data Science

- Research Engineer/Scientist @ Orange Labs since 2005:
 - 2005-2006: Orange Labs Tokyo (Japan)
 - since 2007: Orange Labs Paris (now in Châtillon (92))
- Tackling problems and models/techniques/algorithms/methods in Machine Learning (statistical learning):
 - reinforcement learning → optimization/control of dynamic systems
 - supervised learning → input/output systems modeling and prediction
 - unsupervised learning → clustering, data dimensionality reduction
- Applications to telecommunications:
 - design of fixed and mobile networks optimization systems
 - design of traffic data processing systems

Reinforcement Learning Core Idea (1/2)

Reinforcement Learning Core Idea (2/2)

Reinforcement learning goal: optimize rewards by choosing adequately actions for given observations \Rightarrow from policies

Professional Background and Activities (2/7): Orange Labs Tokyo, 2005-2006

- Markov Decision Processes (MDP) models and Reinforcement Learning techniques:
 - Dynamic programming
 - Temporal Differences (TD-lambda)
 - Q-Learning algorithm and its extensions (SARSA, eligibility traces)
 - Parametric approximation techniques (Policy Gradient, Least Squares Policy Iteration)
- Support Vector Machines (SVM) techniques and related extensions for regression and classification (→ input/output systems modeling and prediction)

Professional Background and Activities (3/7): Orange Labs Tokyo, 2005-2006

- Applications for telecommunication systems:
 - Radio Resource Management for mobile networks (via Reinforcement Learning techniques)
 - Automated selection of radio access networks (via Support Vector Machines techniques)

Learning & Control (1/3): Reinforcement Learning Framework

Learning & Control (2/3): Reinforcement Learning Framework

Learning & Control (3/3): Radio Resource Management for Mobile Networks

Professional Background and Activities (4/7): Orange Labs, Since 2007

Reinforcement Learning:

- Partially observed models (POMDP) and dedicated learning techniques (Belief States → Monte Carlo POMDP, 2007-2009)
- Policy Gradient (2011-2013):
 - Application to solution implementation for association problem of users to base stations for a mobile communication network
 - Design of variance reduction algorithms for Policy Gradient type estimation techniques in Reinforcement Learning
- Dynamic Programming (2015):
 - Application to joint QoS and energy consumption control for mobile communication networks

Users Association Problem for Mobile Networks

Joint QoS and Energy Consumption Control

- 1: Physical Resource Block
- 2: Physical Resource Element

Reinforcement Learning Applications

- Dynamic channel allocation for mobile communications
- Job-shop scheduling
- Robotics: self-localization and mapping (SLAM)
- Learn helicopter-drones to perform loopings ©
- Computer games:
 - Backgammon...
 - Reinforcement learning combined with deep learning architectures (Al agents designed by Google DeepMind):
 - Video Games: Space Invaders, Breakout, ...
 - Computer Go: AlphaGo system

Professional Background and Activities (5/7): Orange Labs, 2010-2012

Unsupervised learning:

- Clustering: K-Means algorithm and its extensions
- Application to computer networks platforms optimization for handling, managing, processing Internet traffic
- Domain Name System (DNS), Internet traffic load balancing,
 DNSSEC implementation

Data Segmentation/Clustering

Various techniques:
combinatorial algorithms, Gaussian mixture models,
vector quantization, hierarchical clustering (dendograms),
K-Means and its extensions...

K-Means Clustering Algorithm Example

Professional Background and Activities (6/7): Orange Labs, 2011-2015

Supervised Learning:

- Models and methods for implementing Internet/DNS traffic traces classification:
 - Kernel Learning (Multiple Kernel Learning, Support Vector Data Description, 2011-2014)
 - Artificial Neural Networks (Extreme Learning Machines, 2013-2014)
 - Decision Trees (with time series as inputs, 2014-2015)
- Application to Internet traffic analysis for network security
 - → Botnets/malwares detection

Botnets/Malwares Detection from @IP Traffic Data

Supervised Learning (1/2): Training/Learning Phase

Supervised Learning (2/2): Prediction/Testing Phase

Decision Trees (1/4): Training Data Example

Id	Outlook (O)	Temperature (T)	Humidity (H)	Windy (W)	Play
а	overcast	83° <i>F</i>	86%	false	yes
b	overcast	64° <i>F</i>	65%	true	yes
С	overcast	72° <i>F</i>	90%	true	yes
d	overcast	81° <i>F</i>	75%	false	yes
е	rainy	70° <i>F</i>	96%	false	yes
f	rainy	68° <i>F</i>	80%	false	yes
g	rainy	65° <i>F</i>	70%	true	no
h	rainy	75° <i>F</i>	80%	false	yes
i	rainy	71° <i>F</i>	91%	true	no
j	sunny	85° <i>F</i>	85%	false	no
k	sunny	80° <i>F</i>	90%	true	no
Ι	sunny	72° <i>F</i>	95%	false	no
m	sunny	69° <i>F</i>	70%	false	yes
n	sunny	75° <i>F</i>	70%	true	yes

Decision Trees (2/4): Building a Tree Model

Decision Trees (3/4): Building a Tree Model

Decision Trees (4/4): Prediction from a Tree Model

Artificial Neural Networks Models (1/4)

Inspired from the brain architecture...

Artificial Neural Layer

Artificial Neural Networks Models (2/4)

Output $y = f(z) = f(x \cdot w)$ function **W** Weight Input X

(a) Biological neuron.

(b) Artificial neuron.

Artificial Neural Networks Models (3/4)

« Multi-Layer Perceptron » (MLP) architecture

Artificial Neural Networks Models (4/4)

Model Learning/Training with Backpropagation of the Error (Chain Rule)

Professional Background and Activities (7/7): Orange Labs, Currently: 2016-2017

- Deep Reinforcement Learning techniques:
 - Understanding of Google DeepMind AlphaGo system, 2016
 - Application to resource allocation for mobile networks, 2017
- Markov Chain Monte Carlo (MCMC) simulation methods:
 - Event-Chain based Monte Carlo techniques
 - → Nonreversible Markov chains
- Networks metrics data prediction benchmark for autonomic network management:
 - Many Machine Learning models and techniques
 - Essentially supervised learning (regression)

AlphaGo?

 Computer program, designed by Google DeepMind, which plays the game of Go

Video: AlphaGo masters the game of Go!

Deep Learning → Convolutional Neural Networks (1/3): Modeling and Training/Learning Phases

Output → high-level features

Input → images

Deep Learning → Convolutional Neural Networks (2/3): Example of a Convolution Kernel

Deep Learning → Convolutional Neural Networks (3/3): Testing/Prediction Phase

Output → scores of dog types

Samoyed 16; Papillon 5.7; Pomeranian 2.7; Arctic fox 1.0; Eskimo dog 0.6; white wolf 0.4; Siberian husky 0.4

Input → image of a dog

(unseen during previous training/learning phase)

AlphaGo System Training/Learning Global Pipeline

"From Science to Data Science" Overview → Break! ©

- Academic Background and Activities (17 slides)
- Professional Background and Activities (33 slides + 2 videos!)
- → Projects (in Data Science and others...) (6 slides)
- Working @ Orange Labs (3 slides)
- Machine Learning/Data Science... (2 slides)
- Take Away Messages (1 slide)
- Bonus: Appendix (44 slides)

Machine Learning/Data Science Activities → Projects

- Daily work organization in Projects, e.g. hosted by the "Applied Maths and Computer Science" Research Group @ Orange Labs:
 - Internal/Orange projects
 - Bilateral projects with Orange ("external research contracts")
 - Collaborative projects:
 - ANR "ECOSCELLS" 2009-2012
 - EU FP7 STREP "HARP" 2012-2015
 - ANR INFRA "NETLEARN" 2013-2017
 - EU H2020 5G-PPP "COGNET" 2015-2017

Projects: Practical Aspects (1/4) → Organization

- Working on a research theme in a "fixed-term" mode:
 - Work schedule: Project Management Plan (PMP), including Gantt charts, elaborated and submitted for validation before the launch of the project ("Kick-Off")
 - Costs management:
 - In human resources: People*Day, People*Month or People*Year with monthly follow-up/reporting of consumed resources
 - Financial: elaboration of an initial budget, then management of missions and material costs, with on-the-fly reporting

Projects: Practical Aspects (2/4) → Organization

- Organization of the works in "Work Packages" (WP) with specific Tasks with tasks and WPs leaders + 1coordinator (Project Head) and 1 technical coordinator/leader
- Working meetings (Face-to-Face, conf calls) and milestones meetings (plenary = for all partners, Face-to-Face)
- Scientific and technical skills indeed, but also good communication and relational skills, patience, resilience and a certain sense of humor!

Projects: Practical Aspects (3/4) → Deliverables

- Valorization of project works → "Deliverables":
 - Internal valorization:
 - Elaboration of technical reports and presentations
 - Reporting:
 - towards Orange: on the fly + semestrial official meetings with the hierarchy and with project entities (Project Head, Research Group Head)
 - towards the sponsor (ANR, EU) officially on a trimestrial, semestrial or annual basis
 - External valorization for research projects:
 - Publications in scientific and technical conferences (oral and poster presentations) and in scientific and technical journals/magazines: IEEE, ACM...
 - Organization of Workshops/Seminars in conferences or by ourselves

Projects: Practical Aspects (4/4) → Deliverables

- Valorization of project works → "Deliverables":
 - Patent filling
 - Normalization/standardization activities: 3GPP, IETF, ETSI, ITU...
 - Development of technical solutions and industrialization:
 - internally: simulators and prototypes → development transfer
 → inclusion in the Information System and/or transfer towards technical and operational directions, even towards Business Units (BU) sometimes...
 - externally: Open Source...

Research Works Valorization Example Publications

Conferences:

- 27 papers published (3 invited papers)
- 1 submitted
- 2 in preparation

Journals:

- 6 papers published
- 2 in preparation

Books:

1 chapter in "Data Mining Applications with R", Elsevier, 2013

Working @ Orange Labs (1/2)

- "Department" (Team) "Modeling and Statistical Analysis"
- Activities on networks and traffic modeling for fixed (ADSL and Fiber Internet) and mobile (2G/3G/4G → 5G) communications
- Currently 22 people, including:
 - 1 intern
 - 1 apprentice
 - 5 CIFRE PhD students
 - 1 post-doc

Working @ Orange Labs (2/2)

- "Modeling and Statistical Analysis" Department/Team Goals:
 - Come up with a better understanding of communication trafic, related to terminals and usage evolution, regarding the very important increase of this trafic
 - Estimate and optimize networks infrastructure costs by geographical zones regarding the strategic choices for deploying new generation technologies (optical fiber, 4G mobile networks) with new architectures
 - Improve the Quality of Service (QoS) and performance for mobile networks
 - Provide analytical models for equipments energy consumption in order to estimate and predict the networks energy consumption

Information about Working @ Orange

- Opportunities for internships for MS/MEng students:
 - 4 to 6 months duration
 - Schedule: application from November for the forthcoming year
- Opportunities for apprenticeship, PhD programs (CIFRE) and post-docs
- Opportunities for permanent positions: e.g. @ R&D/Orange Labs,
 Research Engineer/Scientist positions
- → Check and apply on https://orange.jobs/site/en-home/
- Contact: Stephane SENECAL
 - email: <u>stephane.senecal@orange.com</u>
 - LinkedIn: https://www.linkedin.com/in/stephanesenecal/

More Information (1/2): → Machine Learning/Data Science

- Informal meetings and discussion groups (meet ups) in Paris/IDF:
 - → Paris Machine Learning Applications Group:
 - https://www.meetup.com/fr-FR/Paris-Machine-learning-applications-group/
 - 1+ meeting(s) per month
 - + Groups on LinkedIn, Facebook and Google+, Twitter account,
 Nuit Blanche blog (including the meet ups archive)...
 - − → Deep Learning Paris:
 - https://www.meetup.com/fr-FR/Deep-Learning-Paris-Meetup/
 - + Workshops…

More Information (2/2): → Machine Learning/Data Science

- Academic seminar on Machine Learning in Paris:
 - → Statistical Machine Learning "SMILE in Paris"
 - https://sites.google.com/site/smileinparis/
 - Organized by ENS and Mines-ParisTech
- Academic group on Data Science in France:
 - → GdR MaDICS: Masses de Données, Informations et Connaissances en Science
 - http://www.madics.fr/
 - Organized by CNRS
- Internet Group/Forum (worldwide audience → in English ©):
 - → Google Group: Machine Learning News
 - CFPs, job offers, ...
 - https://groups.google.com/forum/#!forum/ML-news

"From Science to Data Science" → Key/Take Away Messages!

- Even with a different background, you can make it in Machine Learning/Data Science!
- Machine Learning/Data Science is a broad field → choose 1 or 2 specific topics first... and study/work hard! ©
- Many information sources and resources in Data Science...
 → finding relevant and appropriate/useful information is essential
- Try to be kept up-to-date for recent advances in the field,
 e.g. for Machine Learning: follow-up of ICML and NIPS conferences,
 JMLR journal and papers on ArXiv repository...
- → Always be curious in science and in technology!

Thank You!© Questions?

Appendix

Reinforcement Learning Policy Evaluation, Policy Iteration

Learning and Control Framework

• Optimization: find policy $\pi: s \in \mathcal{S} \mapsto \pi(a|s)$ to maximize objective/target function $f_{\pi}(\mathcal{R}(s,a))$

Policy Evaluation → Value Function

 $lue{}$ Policy evaluation ? \to state-action value function for delayed rewards under policy π

$$Q^{\pi}(s, a) = E_{(s_t \sim \mathcal{P}, a_t \sim \pi)} \left\{ \sum_{t=0}^{+\infty} \gamma^t r_t \, | s_0 = s, a_0 = a \right\}$$

 γ = discount factor $0 < \gamma < 1$

Find the optimal policy

$$\pi^* = \arg\max_{\pi} Q^{\pi}$$

Policy Iteration → Dynamic Programming

Policy Iteration → Reinforcement Learning

Supervised Learning Support Vector Machines

Supervised Learning: Classification

Figure 11: Classification process

Supervised Learning: Regression

y is a numerical or vector variable (classification → regression)

Supervised Learning: Models

- Linear
- Logistic, sigmoid
- Bayesian classifiers (naive and general)
- → Decision trees
- Neural networks
- → Support vector machines
- Kernel learning
- Relevance vector machines
- . . .

Support Vector Machines (1/2)

Embedding of the data set in a representation (« feature ») space computation of a linear separating hyperplane

Support Vector Machines (2/2)

→ computation of the optimal separating hyperplane with maximum margin
 → typically via quadratic programming techniques

Markov Chain Monte Carlo Sequential Monte Carlo

Bayesian Estimation

Information on (x, θ) : distribution of probability

$$p(x, \theta|y, F, prior) \propto p(y|x, \theta, F, prior) \times p(x, \theta|prior)$$

 $\Rightarrow \text{ Estimates } (\widehat{x}, \widehat{\theta})$

Bayesian Estimates

• Maximum a posteriori (MAP)

$$(\widehat{x}, \widehat{\theta}) = \arg \max_{x, \theta} p(x, \theta | y, prior)$$

• Expectation: posterior mean $E\{x, \theta | y, prior\}$

$$E_{p(.|y,prior)} \{f(x,\theta)\} = \int f(x,\theta)p(x,\theta|y,prior)d(x,\theta)$$

Computation: asymptotic, numerical, stochastic methods

 \Rightarrow Monte Carlo simulation methods

Monte Carlo Estimates

$$x_1, \dots, x_N \sim \pi$$

$$\Rightarrow \widehat{\pi}_N = \frac{1}{N} \sum_{n=1}^{N} \delta_{x_n}$$

$$\widehat{S}_N(f) = \frac{1}{N} \sum_{n=1}^N f(x_n) \longrightarrow \int f(x) \pi(x) dx = \mathbf{E}_{\pi} \{ f \}$$

$$\widehat{x}_{max} = \arg \max_{x_n} \widehat{\pi}_N$$
 approximates $x_{max} = \arg \max_{x} \pi(x)$

 \Rightarrow generate samples $x_{\ell} \sim \pi$?

→ Markov chain and sequential Monte Carlo

Simulation Techniques

- Classical distributions : cumulated density function
 - \rightarrow transformation of uniform random variable
- Non-standard distributions, \mathbb{R}^n , known up to a normalizing constant \rightarrow usage of instrumental distribution:

Accept-reject, importance sampling \rightarrow sequential/recursive

- ⇒ SMC aka particle filtering, condensation algorithm
- \Rightarrow MCMC : distribution = fixed point of an operator

$$\pi = K\pi$$

 \rightarrow simulation schemes with Markov chain: Hastings-Metropolis, Gibbs sampling

Markov Chain

Definition:

$$X_n | X_{n-1}, X_{n-2}, \dots, X_0 \stackrel{d}{=} X_n | X_{n-1}$$

homogeneity: $X_n | X_{n-1}$ independent of n

Realization:

$$X_0 \sim \pi_0(x_0)$$

$$p.d.f.$$
 of $X_n|X_{n-1} = \text{transition kernel } K(x_n|x_{n-1})$

Simulation of a Markov Chain

Convergence: $X_n \sim \pi$ asymptotically?

$$\pi$$
-invariance : $\pi(.) = K\pi(.)$

$$\int_{A} \pi(x)dx = \int_{y \in A} \int K(y|x)\pi(x)dxdy$$

 $\Leftarrow \pi\text{-reversibility}: Pr(A \to B) = Pr(B \to A)$

$$\int_{y \in B} \int_{x \in A} K(y|x)\pi(x)dxdy = \int_{y \in A} \int_{x \in B} K(y|x)\pi(x)dxdy$$

Construct kernels K(.|.) such that the chain is π -invariant

- Hastings-Metropolis algorithm
- Gibbs sampling

Hastings-Metropolis algorithm (1/2): scheme

Draw \boldsymbol{x} from $\pi(.)$

- 1. initialize $oldsymbol{x}_0 \sim \pi_0(oldsymbol{x})$
- 2. Iteration ℓ
 - ullet propose candidate $oldsymbol{x}^{\star}$ for $oldsymbol{x}_{\ell+1} \longrightarrow oldsymbol{x}^{\star} \sim q(oldsymbol{x}|oldsymbol{x}_{\ell})$
 - accept it with prob $\alpha = \min\{1, r\}$
- 3. $\ell \leftarrow \ell + 1$ and go to (2)

$$r = \frac{\pi(\boldsymbol{x}^{\star})q(\boldsymbol{x}_{\ell}|\boldsymbol{x}^{\star})}{q(\boldsymbol{x}^{\star}|\boldsymbol{x}_{\ell})\pi(\boldsymbol{x}_{\ell})} \to \pi(x)K(y|x) = \pi(y)K(x|y)$$

$$\pi(x)q(y|x)\min\left\{1, \frac{\pi(y)q(x|y)}{q(y|x)\pi(x)}\right\} = \min\left\{\pi(x)q(y|x), \pi(y)q(x|y)\right\}$$

$$q(\boldsymbol{x}^{\star}|\boldsymbol{x}_{\ell}) = q(\boldsymbol{x}^{\star}) \quad q(\boldsymbol{x}^{\star}|\boldsymbol{x}_{\ell}) = q(|\boldsymbol{x}^{\star} - \boldsymbol{x}_{\ell}|)$$

Hastings-Metropolis algorithm (2/2): example

sample
$$x \sim p(x) \propto \frac{1}{1+x^2}$$
 20,000 iterations

$$x^{\star} \sim \mathcal{N}(x_{\ell}, 0.1^2)$$

acc. rate = 97%

acc. rate = 26%

Gibbs Sampling algorithm (1/2): scheme

Sample
$$\mathbf{x} = (x_1, ... x_p) \sim \pi(x_1, ... x_p)$$

- 1. initialize $oldsymbol{x}^{(0)} \sim \pi_0(oldsymbol{x})$, $\ell=0$
- 2. iteration ℓ : Sample

$$x_{1}^{(\ell+1)} \sim \pi_{1}(x_{1}|x_{2}^{(\ell)}, \dots, x_{p}^{(\ell)})$$

$$x_{2}^{(\ell+1)} \sim \pi_{2}(x_{2}|x_{1}^{(\ell+1)}, x_{3}^{(\ell)}, \dots, x_{p}^{(\ell)})$$

$$\vdots$$

$$x_{p}^{(\ell+1)} \sim \pi_{p}(x_{p}|x_{1}^{(\ell+1)}, \dots, x_{p-1}^{(\ell+1)})$$

3. $\ell \leftarrow \ell + 1$ and go to (2)

 \rightarrow no rejection, reversible kernel

Gibbs Sampling algorithm (2/2): example

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \sim \mathcal{N} \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \end{pmatrix}$$
$$x_1^{(\ell+1)} | x_2^{(\ell)} \sim \mathcal{N} \left(\rho x_2^{(\ell)}, 1 - \rho^2 \right)$$
$$x_2^{(\ell+1)} | x_1^{(\ell+1)} \sim \mathcal{N} \left(\rho x_1^{(\ell+1)}, 1 - \rho^2 \right)$$

5,000 samples, ρ =0.5

histograms (x_1^{ℓ}, x_2^{ℓ})

Improving convergence of simulation techniques

How to obtain fast converging simulation scheme?

→ Missing Data, Data Augmentation, Latent Variables

Idea: extend sampling space $x \to (x, z)$ and distribution $\pi(x) \to \widetilde{\pi}(x, z)$ with constraint

$$\int \widetilde{\pi}(x,z)dz = \pi(x)$$

such that Markov chain $(x^{(i)}, z^{(i)}) \sim \widetilde{\pi}$ faster

- Optimization : Expectation-Maximization (EM) algorithm
- Simulation: Data Augmentation, Gibbs sampling

Efficient Data Augmentation Schemes

Idea: construct missing data space as less informative as possible

Information introduced in missing data \downarrow : convergence \uparrow

Estimation of State Space Models

$$x_{t} = f_{t}(x_{t-1}, u_{t}) \qquad y_{t} = g_{t}(x_{t}, v_{t})$$

$$p(x_{0:t}|y_{1:t}) \rightarrow p(x_{t}|y_{1:t}) = \int p(x_{0:t}|y_{1:t}) dx_{0:t-1}$$

distribution of $x_{0:t} \Rightarrow \text{computation of estimate } \widehat{x}_{0:t}$:

$$\widehat{x}_{0:t} = \int x_{0:t} p(x_{0:t}|y_{1:t}) dx_{0:t} \to \mathcal{E}_{p(.|y_{1:t})} \{ f(x_{0:t}) \}$$

$$\widehat{x}_{0:t} = \arg \max_{x_{0:t}} p(x_{0:t}|y_{1:t})$$

Computation of the estimates

 $p(x_{0:t}|y_{1:t}) \Rightarrow$ multidimensionnal, non-standard distributions:

 \rightarrow analytical, numerical approximations

 \rightarrow integration, optimisation methods

 \Rightarrow Monte Carlo techniques

Monte Carlo Approach

compute estimates for distribution $\pi(.) \to \text{samples } x_1, \ldots, x_N \sim \pi$

 \Rightarrow distribution $\widehat{\pi}_N = \frac{1}{N} \sum_{i=1}^N \delta_{x_i}$ approximates $\pi(.)$

Monte Carlo Estimates

$$\widehat{S}_N(f) = \frac{1}{N} \sum_{i=1}^N f(x_i) \longrightarrow \int f(x) \pi(x) dx = \mathbf{E}_{\pi} \{ f(x) \}$$

 $\arg \max_{(x_i)_{1 \le i \le N}} \widehat{\pi}_N(x_i)$ approximates $\arg \max_x \pi(x)$

 \Rightarrow sampling $x_i \sim \pi$ difficult

→ importance sampling techniques

Importance Sampling (1/2)

 $x_i \sim \pi \rightarrow \text{candidate/proposal distribution } x_i \sim g$

Importance Sampling (2/2)

 $x_i \sim g \neq \pi \rightarrow (x_i, w_i)$ weighted sample

$$\Rightarrow$$
 weight $w_i = \frac{\pi(x_i)}{g(x_i)}$

Estimation

importance sampling \rightarrow computation of Monte Carlo estimates $e.\ g.$ expectations $\mathcal{E}_{\pi}\{f(x)\}$:

$$\int f(x) \frac{\pi(x)}{g(x)} g(x) dx = \int f(x) \pi(x) dx$$

$$\sum_{i=1}^{N} w_i f(x_i) \to \int f(x) \pi(x) dx = \mathcal{E}_{\pi} \{ f(x) \}$$

dynamic model $(x_t, y_t) \Rightarrow \text{recursive estimation } \widehat{x}_{0:t-1} \to \widehat{x}_{0:t}$ Monte Carlo techniques \Rightarrow sampling sequences $x_{0:t-1}^{(i)} \to x_{0:t}^{(i)}$

Sequential Simulation

sampling sequences $x_{0:t}^{(i)} \sim \pi_t(x_{0:t})$ recursively:

Sequential Simulation: Importance Sampling

samples $x_{0:t}^{(i)} \sim \pi_t(x_{0:t})$ approximated by weighted particles $(x_{0:t}^{(i)}, w_t^{(i)})_{1 \leq i \leq N}$

Sequential Importance Sampling (1/2)

diffusing particles
$$x_{0:t_1}^{(i)} \to x_{0:t_2}^{(i)}$$

$$\Rightarrow$$
 sampling scheme $x_{0:t-1}^{(i)} \rightarrow x_{0:t}^{(i)}$

Sequential Importance Sampling (2/2)

updating weights
$$w_{t_1}^{(i)} \to w_{t_2}^{(i)}$$

$$\Rightarrow$$
 updating rule $w_{t-1}^{(i)} \rightarrow w_{t}^{(i)}$

Sequential Importance Sampling Scheme

$$x_{0:t} \sim \pi_t(x_{0:t}) \Rightarrow (x_{0:t}^{(i)}, w_t^{(i)})_{1 \le i \le N}$$

Simulation scheme $t-1 \rightarrow t$:

- Sampling step $x_t^{(i)} \sim q_t(x_t|x_{0:t-1}^{(i)})$
- Updating weights

$$w_t^{(i)} \propto w_{t-1}^{(i)} \times \underbrace{\frac{\pi_t(x_{0:t-1}^{(i)}, x_t^{(i)})}{\pi_{t-1}(x_{0:t-1}^{(i)})q_t(x_t^{(i)}|x_{0:t-1}^{(i)})}}_{\text{incremental weight (iw)}}$$

normalizing
$$\sum_{i=1}^{N} w_t^{(i)} = 1$$

Sequential Importance Sampling Issue (1/2)

$$x_{0:t} \sim \pi_t(x_{0:t}) \Rightarrow (x_{0:t}^{(i)}, w_t^{(i)})_{1 \le i \le N}$$

proposal + reweighting \rightarrow

Sequential Importance Sampling Issue (2/2)

proposal + reweighting $\rightarrow \text{var}\{(w_t^{(i)})_{1 \leq i \leq N}\} \nearrow \text{with } t$

$$\rightarrow w_t^{(i)} \approx 0$$
 for all i except one

→ Resampling

 \rightarrow draw N particles paths from the set $(x_{0:t}^{(i)})_{1 \leq i \leq N}$ with probability $(w_t^{(i)})_{1 \leq i \leq N}$

Sequential Importance Sampling/Resampling Scheme

Simulation scheme $t-1 \rightarrow t$:

- Sampling step $x_t^{(i)} \sim q_t(x_t|x_{0:t-1}^{(i)})$
- Updating weights $w_t^{(i)} \propto w_{t-1}^{(i)} \times \frac{\pi_t(x_{0:t-1}^{(i)}, x_t^{(i)})}{\pi_{t-1}(x_{0:t-1}^{(i)})q_t(x_t^{(i)}|x_{0:t-1}^{(i)})}$
 - \rightarrow parallel computing
- \Rightarrow Resampling step: sample N paths from $(x_{0:t-1}^{(i)}, x_t^{(i)})_{1 \le i \le N}$
 - \rightarrow particles interacting : computation at least O(N)

Sequential simulation: SISR

Recursive estimation of state space models.

Approximation with particles, importance sampling.

Bootstrap, particle filtering

Gordon et al. 1993, Kitagawa 1996, Doucet et al. 2001

 \rightarrow time series, tracking.

Sequential Importance Sampling Resampling (SISR)

Samples $x_{0:t}^{(i)} \sim \pi_t(x_{0:t})$ approximated by weighted particles $(x_{0:t}^{(i)}, w_t^{(i)})_{1 \leq i \leq N}$

Simulation scheme $t-1 \rightarrow t$:

• Sampling step $x_t^{(i)} \sim q_t(x_t^{(i)}|x_{0:t-1}^{(i)})$

• Updating weights
$$w_t^{(i)} \propto w_{t-1}^{(i)} \times \underbrace{\frac{\pi_t(x_{0:t-1}^{(i)}, x_t^{(i)})}{\pi_{t-1}(x_{0:t-1}^{(i)})q_t(x_t^{(i)}|x_{0:t-1}^{(i)})}}_{\text{incremental weight (iw)}}$$

• Resampling step: sample N paths from $(x_{0:t-1}^{(i)}, x_t^{(i)})_{1 \leq i \leq N}$

SISR for Recursive Estimation of State Space Models

$$x_t = f_t(x_{t-1}, u_t) \rightarrow p(x_t | x_{t-1})$$
$$y_t = g_t(x_t, v_t) \rightarrow p(y_t | x_t)$$

Usual SISR: Bootstrap filter (Gordon et al. 93, Kitagawa 96):

- Sampling step $x_t^{(i)} \sim p(x_t|x_{t-1}^{(i)})$
- Updating weights : incremental weight $w_t^{(i)} \propto w_{t-1}^{(i)} \times iw$

$$iw \propto p(y_t|x_t^{(i)})$$

• Stratified/Deterministic resampling

efficient, easy, fast for a wide class of models tracking, time series \to nonlinear non-Gaussian state spaces

Improving Simulation

Optimal proposal distribution $q_t(x_t|x_{0:t-1}^{(i)})$

 \rightarrow mimimizing variance of incremental weight $(w_t^{(i)} \propto w_{t-1}^{(i)} \times iw)$

$$iw = \frac{\pi_t(x_{0:t-1}^{(i)}, x_t^{(i)})}{\pi_{t-1}(x_{0:t-1}^{(i)})q_t(x_t^{(i)}|x_{0:t-1}^{(i)})}$$

 \Rightarrow 1-step ahead predictive:

$$\pi_t(x_t|x_{0:t-1}) = p(x_t|x_{t-1}, y_t)$$

 \Rightarrow incremental weight:

$$iw \to \frac{\pi_t(x_{0:t-1})}{\pi_{t-1}(x_{0:t-1})} = \frac{p(x_{0:t-1}|y_{1:t})}{p(x_{0:t-1}|y_{1:t-1})}$$

$$\propto p(y_t|x_{t-1}) = \int p(y_t|x_t)p(x_t|x_{t-1})dx_t$$