Equações Diferenciais: Notas de Aula Modelagem matemática com EDOs de primeira ordem

Prof: Felipe Figueiredo

http://sites.google.com/site/proffelipefigueiredo

Versão: 20150905

1 Objetivos de aprendizagem

Ao final desta aula o aluno deve saber ...

2 Pré-requitos da aula

_

3 Conteúdo

O aluno deve consultar o livro texto na seção X.Y para se aprofundar no conteúdo desta aula.

3.1 Resistência do ar

3.2 Lei de Newton do Resfriamento (ou Aquecimento)

Como exatamente uma tulipa de cerveja esquenta, ou uma xícara de café esfria com o tempo? Considere a temperatura T(t) de um objeto, que está em um local onde a temperatura ambiente T_a

é constante.

A Lei de Newton do Resfriamento (ou do aquecimento) diz que "a temperatura do corpo tende a

se igualar com a temperatura do ambiente, a uma taxa proporcional à diferença entre a diferença entre ambas".

Ora, a diferença entre a temperatura do objeto (T) e a temperatura do ambiente (T_a) é simplesmente a subtração destes: $T - T_a$. A variação da temperatura é sua derivada T'. Assim, a proporcionalidade entre essas duas grandezas é dada pela equação

$$T' = -\alpha(T - T_a)$$

Por que α tem sinal negativo? Observe que conforme o tempo passa, a diferença entre a temperatura do objeto e a temperatura do ambiente vai diminuindo. A tendência é que, após um tempo muito grande, essas temperaturas se igualem. Com isso, a temperatura T do objeto deixa de variar (ou seja, derivada T'=0).

Se você souber o valor da temperatura do ambiente, e qual é a temperatura inicial do objeto, você pode montar e resolver um PVI substituindo esses valores na equação acima.

Exemplos: Duas pessoas estão em um restaurante, onde a temperatura ambiente é $T_a = 25^{\circ}$ C. Uma delas pede um café, com temperatura inicial 90° C, e a outra pede um chope com temperatura inicial 6° C. Qual é a função T(t) que determina como a temperatura de cada um desses objetos varia com o tempo? Considere que a taxa de transferência nesse local de temperatura é $\alpha = 1\%$.

Resoluções:

Substituindo os valores $\lambda=1$ e $T_a=25$, temos a equação $T'=-\frac{1}{100}(T-25)$. Para cada uma das temperaturas iniciais T(0) acima, temos um PVI, conforme abaixo.

Como vimos nas aulas anteriores, a família de soluções da equação $T'=-\frac{1}{100}(T-25)$ é: $T(t)=Ke^{-t/100}+25$ (você pode chegar nessa resposta usando separação de variáveis).

Assim, a solução específica de cada PVI é:

$$\text{PVI café: } \begin{cases} T' = -\frac{1}{100}(T-25) \\ T(0) = 90 \end{cases} \\ T(t) = Ke^{-t/100} + 25 \\ T(0) = Ke^{0} + 25 \\ T(0) = Ke^{0} + 25 \\ S = 90 - 25 \\ K = 65 \\ T(t) = 65e^{-t/100} + 25 \end{cases}$$

$$PVI \text{ chope: } \begin{cases} T' = -\frac{1}{100}(T-25) \\ T(0) = 6 \\ T(t) = Ke^{-t/100} + 25 \\ T(0) = Ke^{0} + 25 \\ 6 = K + 25 \\ K = 6 - 25 \\ K = -19 \\ T(t) = -19e^{-t/100} + 25 \end{cases}$$

Qual vai ser a temperatura de cada um após 1 minuto $(t=60\mathrm{s?})$

Café após 60s: $T(60) = 65e^{-60/100} + 25$ Chope após 60s: $T(60) = -19e^{-60/100} + 25$

Como somos todos curiosos, podemos usar uma calculadora qual é o valor numérico dessa expressão (mas apenas em casa ou na aula, não na prova!):

Café após 60s: $T(60) \approx 60.7^{\circ}$ C Chope após 60s: $T(60) \approx 14.6^{\circ}$ C

Desafio: Qual é o limite dessas duas funções quando $t \to \infty$? O que você pode concluir desse resultado?

3.3 Meia vida: decaimento radioativo