VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS INFORMATIKOS KATEDRA

Baigiamasis bakalauro darbas

Algoritmas maksimaliam srautui dinaminiuose tinkluose rasti

(Algorithm for the maximal flow in dynamic networks)

Atliko: 4 kurso 2 grupės studentas

Aleksas Vaitulevičius (parašas)

Darbo vadovas:

lekt. Irmantas Radavičius (parašas)

Recenzentas:

doc. dr. Vardauskas Pavardauskas (parašas)

Vilnius 2018

Santrauka

Paskutiniuose dviejuose dešimtmečiuose yra plačiai domimasi dinaminiais grafais, dėl jų naudos tokiose srityse kaip: komunikacijos tinkluose, VLSI kūrime, kompiuterinėje grafikoje. Šis darbas apima dinaminių grafų problemą, maksimalaus srauto radimą, viena iš labiausiai fundamentalių optimizavimo problemų. Šio darbo tikslas yra įrodyti, kad pateikiamo maksimalaus srauto radimo algoritmas yra efektyvesnis už statinio grafo Fordo Fulkersono algoritmą skaičiavimui panaudojamų briaunų atžvilgiu. Pateikiamo algoritmo veikimas yra pagrįstas modifikuotu grupavimo metodu ir modifikuotu Fordo Fulkersono algoritmu. Grupavimo metodas yra skirtas grafo išskirstymui į grupes, o modifikuotas Fordo Fulkersono algoritmas yra skirtas apskaičiuoti konkretaus regiono maksimaliems srautams. Atmintyje bus saugomas regionų išsidėstymas ir jų pralaidumas grafo pavidale. Perskaičiavus grupes kuriuose įvyko pokytis, galima rasti pakitusio grafo maksimalų srautą.

Raktažodžiai: dinaminiai grafai, maksimalūs srautai, grupavimo metodas, Fordo Fulkersono algoritmas, euristiniai bandymai.

Summary

In the last two decades, there was a growing interest in dynamical graphs, because of their use in such fields like: communication network, VLSI design, graphics. This work is only about dynamical graph problem, maximum flow, one of the most fundamental optimization problems. The main task of this work is to prove that provided algorithm for solving maximum flow problem is more efficient than Ford Fulkerson algorithm for static graph in the context of used edges for calculation. This algorithm is based on modified clustering method and modified Ford Fulkerson algorithm. Clustering method is used for clustering graph into clusters and modified Ford Fulkerson algorithm is used for computing maximum flows in particular cluster. Positioning and capacity of clusters will be saved in memory. Once updated clusters are computed, it is possible to find maximum flow for the whole updated graph.

Keywords: dynamic graphs, max flow, clustering, Ford Fulkerson algorithm, heuristic experiments.

Turinys

Santrauka	
Summary	2
Sąvokų apibrėžimai	4
Įvadas	6
1. Algoritmas maksimaliam srautui dinaminiuose tinkluose rasti	8
1.1. Grupės apibrėžimas	
1.2. Fordo Fulkersono algoritmas	8
1.3. Grupavimo funkcija	10
Išvados	
Conclusions	15
Literatūra	16
Priedas Nr.1	
Priedas Nr.2	

Sąvokų apibrėžimai

- 1. Dinaminiai grafai (angl. Dynamic graphs) tai grafai, kuriuose galima atlikti tokias operacijas: pridėjimo (pridėti briauną, pridėti viršūnę), atėmimo (atimti briauną. atimti viršūnę), papildomos operacijos priklausomai nuo grafo savybių (pavyzdžiui jei grafas yra svorinis, tai jis galėtų turėti papildomą operaciją keisti svorį).
- 2. Dalinai dinaminis grafas (angl. Partial dynamic graph) tai dinaminis grafas, kuriame yra uždrausta bent viena, bet ne visos dinaminio grafo operacijos.
- 3. Pilnai dinaminis grafas (angl. Fully dynamic graph) tai dinaminis grafas, kuriame yra leidžiamos visos operacijos.
- 4. Inkrementalus dinaminis grafas (angl. Incremental dynamic graph) dinaminis grafas, kuriame yra leidžiama pridėjimo operacijos.
- 5. Dekrementalus dinaminis grafas (angl. Decremental dynamic graph) dinaminis grafas, kuriame leidžiamos atėmimo operacijos.
- 6. Grupė (angl. Cluster) tinklo subgrafas, kuris yra naudojamas grupavimo metode.
- 7. Grupavimo metodas (angl. Clustering) algoritmo dinaminiui grafui konstravimo būdas, kuriame grafas yra suskirstomas į grupes.
- 8. Tinklas (angl. Network) orientuotas grafas, kurio briaunos turi pralaidumus.
- 9. Srautas (angle. Flow) tai leistinas kelias konkrečiam kiekiui iš šaltinio į tikslą.
- 10. Šaltinis (angl. Source) tinklo viršūnė, kuri yra srauto pradžios taškas.
- 11. Tikslas (angl. Sink) tinklo viršūnė, kuri yra srauto pabaigos taškas.
- 12. Talpa (angl. Capacity) briaunos savybė, kuri nurodo koks kiekis gali ja praeiti.
- 13. Maksimalus srautas (angl. Max flow) srautas, kurio dydis yra didžiausias iš visų leistinų srautų.
- 14. Vieno šaltinio ir kelių tikslų maksimalus srautas (angl. Single source multi sink max flow) tai maksimalaus srauto tipas, kuriame yra vienas šaltinis ir daugiau nei vienas tikslas.
- 15. Kelių šaltinių ir vieno tikslo maksimalus srautas (angl. Multi source single sink max flow) tai maksimalaus srauto tipas, kuriame yra daugiau nei vienas šaltinis ir vienas tikslas.
- 16. Kelių šaltinių ir kelių tikslų maksimalus srautas (angl. Multi source multi sink max flow) tai maksimalaus srauto tipas, kuriame yra daugiau nei vienas šaltinis ir daugiau nei vienas tikslas.

- 17. Vieno šaltinio ir vieno tikslo maksimalus srautas (angl. Single source single sink max flow) tai maksimalaus srauto tipas, kuriame yra vienas šaltinis ir vienas tikslas.
- 18. BFS (angl. Breadth first search) paieška į plotį.
- 19. Euristinis eksperimentas (angl. heuristic experiment) -

Įvadas

Paskutiniuose dviejuose dešimtmečiuose yra plačiai domimasi algoritmais skirtais spręsti įvairias problemas dinaminiuose grafuose. Šių problemų sprendimai optimizuoja tokias sritis kaip: komunikacijos tinklus, VLSI kūrimą, kompiuterinę grafiką [DFI01; EGI98] Šios problemos yra statinių grafų problemų poaibis. Tačiau dinaminių grafų problemų sprendimai gali būti labiau optimizuoti nei statinių, nes yra daugiau informacijos apie grafą nei statiniame grafe (pavyzdžiui, jei buvo apskaičiuotas grafo maksimalus srautas ir prie grafo buvo pridėta briauna, tai bus žinomas grafo poaibio, kuriam nepriklauso naujai pridėta briauna, maksimalus srautas). Šiame darbe yra sprendžiama maksimalaus srauto paieškos problema, kuriai spręsti buvo sukurtas algoritmas.

Dinaminis grafas - tai grafas, kuriam yra galima atlikti bent vieną iš šių operacijų: pridėjimo (pridėti briauną, pridėti viršūnę), atėmimo (atimti briauną, atimti viršūnę), papildomos operacijos priklausomai nuo grafo savybių (pavyzdžiui jei grafas yra svorinis, tai jis galėtų turėti papildomą operaciją keisti svorį). Pagal leidžiamas operacijas dinaminiai grafai yra skirstomi į: dalinai dinaminius grafus, kurie yra skirstomi į inkrementalius (vykdoma tik pridėjimo operacija) ir dekrementalius (vykdoma tik atėmimas), ir pilnai dinaminius grafus, kuriuose vykdomos visos operacijos. Sukurtas algoritmas yra skirtas spręsti pilnai dinaminio grafo uždavinį.

Maksimalus srautas - tai didžiausias galimas srautas tinkle iš viršūnių s_i (šaltinių) iki viršūnių t_i (tikslų). Tinklas - tai orientuotas grafas $G = \{V, E, u\}$, kur V yra viršūnių aibė, E - briaunų aibė, o u - briaunų pralaidumų aibė $(u: E \to R)$. Pagal šaltinių ir tikslų skaičių ši problema yra skirstoma j:

- Vieno šaltinio ir kelių tikslų tai srautas, kuriame yra vienas šaltinis ir daugiau nei vienas tikslas.
- Kelių šaltinių ir vieno tikslo tai srautas, kuriame yra vienas tikslas ir daugiau nei vienas šaltinis.
- Kelių šaltinių ir kelių tikslų tai srautas, kuriame yra daugiau nei vienas šaltinis ir daugiau nei vienas tikslas.
- Vieno šaltinio ir vieno tikslo tai srautas, kuriame yra vienas šaltinis ir vienas tikslas.

Sukurtas algoritmas sprendžia tik vieno šaltinio ir kelių tikslų problemą. Tačiau tarpinėms reikšmėms gauti yra naudojamas ir likusių problemų sprendimo būdas, Fordo Fulkersono algoritmas [JF62] pritaikytas spręsti kelių šaltinių ir kelių tikslų problemą. Sukurto algoritmo veikimo principas yra pagrįstas grupavimo metodu [Fre85]. Tai reiškia, kad tinklas yra padalinamas į grupes. Šių grupių maksimaliems srautams rasti sukurtas algoritmas naudoja modifikuotas Fordo Fulkersono algoritmas.

Sukurto algoritmo korektiškumui įrodyti reikia pateikti formalų įrodymą. Tačiau formalus įrodymas yra sudėtingas procesas. Todėl verta ištirti algoritmo korektišką veikimą naudojantis empiriniais tyrimais prieš formalų įrodymą. Šie tyrimai suteikia galimybę lengvai nustatyti ar sukurtas

algoritmas veikia nekorektiškai. Jei empiriniais tyrimais yra nustatomas nekorektiškas algoritmo veikimas, tai reiškia, kad formalus įrodymas yra neprasmingas. Tad šiame darbe yra atliekami empiriniai tyrimai, o ne formalus įrodymas. Taip pat nėra nustatyta ar sukurtas algoritmas yra efektyvesnis už algoritmą randantį maksimalų srautą statiniame tinkle. Jei sukurtas algoritmas nėra efektyvesnis, tai jo formalus įrodymas yra neprasmingas, nes algoritmai skirti statiniams grafams, gali būti pritaikyti ir dinaminiams. Tad algoritmai, skirti dinaminiams grafams, yra naudojami tik tuo atveju jei jie yra efektyvesni už algoritmus, skirtus statiniams grafams.

Tad šio darbo **TIKSLAS** yra ištirti sukurtą algoritmą naudojantis empiriniais tyrimais. Šiam tikslui pasiekti reikia atlikti šiuos uždavinius:

1. Pateikti sukurtą algoritmą:

- (a) Pateikti Fordo Fulkersono algoritmą ir kaip jis buvo pritaikytas kelių šaltinių ir kelių tikslų problemai.
- (b) Pateikti grupavimo funkciją.
- (c) Pateikti funkciją, kuri randa viso tinklo maksimalų srautą su pakitusiu bent vienu maksimaliu srautu vienoje ar keliose grupėse.
- (d) Pateikti tiriamo algoritmo pagrindinę funkciją.
- 2. Pateikti sukurto algoritmo panaudojimo pavyzdžius.
- 3. Igyvendinti sukurta algoritma.
- 4. Įgyvendinti ir atlikti empirinius tyrimus.
- 5. Atlikti statistinius skaičiavimus su atliktų tyrimų rezultatais.

Darbas susideda iš trijų dėstymo skyrių. Pirmame skyriuje yra pateikiamas sukurtas algoritmas (1. užduotis). Jame išdėstoma kaip Fordo Fulkersono algoritmas buvo pritaikytas sukurtam algoritmui (1.a užduotis), grupavimo funkcija (1.b užduotis), funkcija, kuri randa viso tinklo maksimalų srautą su pakitusiu bent vienu maksimaliu srautu vienoje ar keliose grupėse (1.c užduotis), ir sukurto algoritmo pagrindinė funkcija (1.d užduotis). Antrame skyriuje pateikiami sukurto algoritmo pavyzdžiai (2 užduotis). Trečiame skyriuje yra aprašomi empiriniai bandymai, pateikiami jų rezultatai (4 užduotis), aprašomi atlikti statistiniai skaičiavimai ir jų rezultatai (5 užduotis).

1. Algoritmas maksimaliam srautui dinaminiuose tinkluose rasti

1.1. Grupės apibrėžimas

Grupė - tai grupuojamo tinklo T subgrafas $G = \{V, E, u\}$. Subgrafo G šaltiniai s_i yra:

- 1. tinklo šaltinis, jei jis yra subgrafo G viršūnių aibėje,
- 2. menamos viršūnės. Jei $\exists x: x \in V$ ir grupė $G_i: G_i \neq G$ turi viršūnę y, kuri nepriklauso grafui G, bei egzistuoja briauna $y \to x$, tai egzistuoja menama viršūnė x' ir briauna $x' \to x$, kurios pralaidumas yra lygus grupės G_i maksimaliam srautui su tikslu x.

subgrafo G tikslai t_i yra:

- 1. tinklo tikslas, jei jis yra subgrafo G viršūnių aibėje,
- 2. menama viršūnė. Jei $\exists x : x \in V$ ir grupė $G_i : G_i \neq G$ turi viršūnę y, kuri nepriklauso grafui G, bei egzistuoja briauna $x \to y$, tai egzistuoja menama viršūnė x' ir briauna $x \to x'$, kurios pralaidumas yra lygus briaunos $x \to y$ pralaidumui.

Kiekviena tinklo T viršūnė v priklauso tik vienai grupei. Kiekviena tinklo T briauna e priklauso tik vienai grupei, nebent $e=x\to y:x\in G_i,y\in G_j,i\neq j$. Taip pat jei tinkle egzistuoja subgrafas, kuriame yra Eulerio ciklas, tai visos viršūnės priklausančios tam subgrafui turi būti vienoje grupėje.

Pavyzdys: tarkime turime tinklą $G=V=s, a, b, c, d, t, E=s \rightarrow a, a \rightarrow b, b \rightarrow c.c \rightarrow d, d \rightarrow t$, kuris yra sugrupuotas į grupes, kurių V yra lygūs s, a, b, c, d, t. Šis grupavimas pavaizduotas paveikslėlyje - 1.

1 pav. Grupavimo pavyzdys

Tada subgrafo b, c šaltinis yra menama viršūnė s_a , kuri yra sujungta briauna, kurios pralaidumas yra subgrafo s, a maksimalus srautas iki tikslo b, o tikslas yra d.

1.2. Fordo Fulkersono algoritmas

Maksimaliems srautams grupėse rasti algoritmas naudoja modifikuotą Fordo Fulkersono algoritmą, kuris naudojasi BFS [BAP13] galimam srautui rasti. Originalus Fordo Fulkersono algoritmas

[JF62] yra skirtas rasti vieno šaltinio ir vieno tikslo maksimalų srautą, tačiau sukurto algoritmo atveju gali susidaryti grupės, kurios turi kelis tikslus ir arba kelis šaltinius. Tad modifikuotas Fordo Fulkersono algoritmas yra skirtas rasti kelių šaltinių ir kelių tikslų maksimalų srautą.

BFS algoritmas, aprašytas publikacijoje:

- 1. Inicializuojami masyvai V, Q ir FLOW, į V ir Q patalpinamas tinklo šaltinis.
- 2. Jei Q yra tuščias, tai einama į žingsnį 9
- 3. Išimamas paskutinis masyvo Q elementas y.
- 4. Jei \nexists viršūnė $x: y \to x, x \notin V$, tai einama į žingsnį 2.
- 5. Briauna $y \to x$ patalpinama į masyvą FLOW.
- 6. Viršūnė x patalpinama į masyvą V
- 7. Viršūnė x patalpinama į Q masyvo pradžią.
- 8. Einama į žingsnį 4.
- 9. Baigiamas algoritmas.

Klasikinis Fordo Fulkersono algoritmas, kuris yra aprašytas publikacijoje bei naudojantis BFS:

- 1. Maksimaliam srautui priskiriama reikšmė nulis. Sukuriama tinklo kopija G ir inicializuojama tinklo MAX reikšmė $V=\{\}, E=\{\}, u=\{\}.$
- 2. Naudojant BFS randamas srautas nuo šaltinio iki tikslo.
- 3. Jei nė vieno srauto nėra randama einama į žingsnį 8.
- 4. Sumažinama visų briaunų, kurie priklauso rastam srautui, pralaidumus per rasto srauto dydį tinkle G.
- 5. Rastas srautas pridedamas prie tinklo MAX.
- 6. Maksimalaus srauto reikšmė yra padidinama per rasto srauto dydį.
- 7. Einama į žingsnį 2.
- 8. Baigiamas algoritmas.

Modifikuotas Fordo Fulkersono algoritmas, naudojantis BFS:

1. Masyvo maksimalaus srauto dydžiai, kurio dydis yra lygus tikslų skaičiui, reikšmės nustatomos į nulį. Sukuriama tinklo kopija G ir inicializuojama tinklo MAX reikšmė $V=\{\}$, $E=\{\}, u=\{\}$.

- 2. Naudojant BFS randami srautai nuo visų šaltinių iki visų tikslų.
- 3. Jei nė vieno srauto nėra randama einama į žingsnį 8.
- 4. Sumažinama visų briaunų, kurie priklauso rastiems srautams, pralaidumus per rasto srauto dydį tinkle G.
- 5. Rasti srautai pridedamas prie tinklo MAX.
- 6. Masyvo maksimalaus srauto dydžiai elementų, kurie atitinka pasiektus tikslus, reikšmės padidinamos per rastų srautų dydžius.
- 7. Einama į žingsnį 2.
- 8. Baigiamas algoritmas.

1.3. Grupavimo funkcija

Šiame darbe tiriamas algoritmas yra paremtas Frederiksono suformuluotu grupavimo metodu [Fre85]. Grupavimo metodas - tai metodas, kuris yra pagrįstas grafo dalinimu į subgrafus vadinamus grupėmis. Grafas yra padalinamas taip, kad kiekviena atlikta operacija turėtų įtakos tik daliai grupių, bet ne visoms. Todėl tiriamas algoritmas veikia pagal grupavimo metodą tik tada kai yra patenkinta sąlyga: jei tinkle egzistuoja subgrafas, kuriame yra Eulerio ciklas, tai visos viršūnės priklausančios tam subgrafui yra vienoje grupėje. Šitai sąlygai patenkinti yra naudojama grupavimo funkcija, kuri naudoja šias pagalbines funkcijas:

Subgrafų su Eulerio ciklais radimo funkcija - tinklo EG, kurio viršūnės yra grupių, tenkinančių pateiktą sąlygą (subgrafai su Eulerio ciklais), viršūnių masyvai, kūrimo funkcija:

- 1. Iš apskaičiuojamo tinklo $C = \{V_C, E_C, u_C\}$ sukuriamas tinklas EG, kurio viršūnės būtų apskaičiuojamo tinklo viršūnės patalpintos masyvuose, o briaunos atitiktų apskaičiuojamo tinklo briaunas.
- 2. Sukuriamas masyvas B, kuriame talpinamos briaunos, su kuriomis reikia daryti skaičiavimus, stekas PATH, kuriame talpinamos aplankytos viršūnės, ir viršūnių iteratorius x, jam suteikiama C šaltinio reikšmė ir patalpinamas į steką PATH.
- 3. Jei PATH yra tuščias, einamana į žingsnį 19.
- 4. Jei masyve B $\exists x \to y: y \in V_C$, tai sukuriamas masyvas B', į kurį yra sudedamos visos viršūnės y iš B masyvo.
- 5. Jei masyve B $\nexists x \to y: y \in V_C$, tai sukuriamas masyvas B', į kurį yra sudedamos visos viršūnės y iš tinklo V.
- 6. Jei B' yra tuščias tai einama į žingsnį 17.

- 7. Iš masyvo B' yra išimamas pirmas elementas y.
- 8. Jei $\nexists y \in V_C$, tai surandama viršūnė z, kuri turi visus y elementus (toliau y := z).
- 9. Jei PATH neturi elemento y, tai elementas y įdedamas į PATH ir einamana į žingsnį 15.
- 10. Inicializuojama nauja viršūnė n su visais y elementais.
- 11. Iš PATH išimamas elementas z.
- 12. Jei elementas z = y, tai enama į žingsnį 15 ir y = n.
- 13. Tinklo EG viršūnės z ir n yra pakeičiamos x ir n konkatenacija (toliau n yra z ir n konkatenacija).
- 14. Einama į žingsnį 11.
- 15. Visi $x \to y : y \in B'$ įdedami į masyvą B ir viršūnių iteratoriui x suteikiama y reikšmė.
- 16. Einama į žingsnį 3.
- 17. Iš steko PATH išimamas elementas, iteratoriui x suteikiama PATH viršutinio elemento reikšmė.
- 18. Einama į žingsnį 3.
- 19. Pabaiga.

Srautui priklausančių grupių sukūrimo funkcija - iš pateikto tinklo $EG=\{V_EG,E_EG,u_EG\}$, kurio viršūnės yra apskaičiuojamo tinklo $C=\{V_C,E_C,u_C\}$ viršūnių, masyvai, sukuriamas grupių tinklas R.

- 1. Sukuriamas stekas B, kuriame talpinamos viršūnės, kurios priklauso konkrečiai grupei, masyvas VR, kuriame talpinamos viršūnės, kurias reikia ištrinti iš tinklo EG, stekas NC, kuriame talpinamos viršūnės kitų grupių kūrimui, ir viršūnių iteratorius x, jam suteikiama EG tinklo viršūnės, kurioje yra tinklo C šaltinis, reikšmė ir patalpinamas į steką NC.
- 2. Inicializuojama nauja grupė G.
- 3. Jei NC yra tuščias, einamana į žingsnį 21.
- 4. Viršutinis NC elementas yra perkeliamas į B ir iteratoriui x yra suteikiama to elemento reikšmė.
- 5. Jei x dydis = 1, tai į tinklą G patalpinama viršūnė elemento x reikšmė ir einama į žingsnį 10.
- 6. Tinklui G priskiriama reikšmė $G=\{x,Y,Y_u\}$, kur Y yra tinklo C briaunos tarp x viršūnių, o Y_u tai tų briaunų svoriai.

- 7. Naudojantis apibrėžimu sukuriamos tinklo R briaunos $G \to Q$, kur Q yra menamos viršūnės, nustatomi grupės G šaltiniai ir tikslai.
- 8. Tinklas G patalpinamas į tinklą R.
- 9. Tinklui G inicializuojama naujos grupės reikšmė.
- 10. Jei B yra tuščias einama į žingsnį 16.
- 11. Iš steko B išimamas viršutinis elementas, kurio reikšmė priskiriama iteratoriui x.
- 12. Jei $\exists y: x \to y$, y dydis > 1, $y \notin NC$, $y \notin B$, tai y talpinamas į steką NC ir einama į žingsnį 12.
- 13. Jei $\exists y: x \to y$, y dydis = $1, y \notin NC, y \notin B$, tai y elemento reikšmė patalpinama į steką B, to elemento reikšmė pridedama į grupę G kaip viršūnė ir einama į žingsnį 12.
- 14. Į steką VR įdedama iteratoriaus x reikšmė.
- 15. Einama į žingsnį 10.
- 16. Tinklui G priskiriamos tinklo C briaunos, kurių viršūnės atitinka G viršūnes.
- 17. Naudojantis apibrėžimu sukuriamos tinklo R briaunos $G \to Q$, kur Q yra menamos viršūnės, nustatomi grupės G šaltiniai ir tikslai.
- 18. Tinklas G patalpinamas į tinklą R.
- 19. Tinklui G inicializuojama naujos grupės reikšmė.
- 20. Einama į žingsnį 3.
- 21. Iš tinklo EG ištrinamos visos viršūnės, kurios yra VR masyve.
- 22. Pabaiga.

Pati grupavimo funkcija:

- 1. Kviečiama subgrafų su Eulerio ciklais radimo funkcija (rezultatas tinklas EG).
- 2. Kviečiama srautui priklausančių grupių sukūrimo funkcija su tinklu EG.
- 3. Likusios tinklo EG viršūnės konkatenuojamos į masyvą X.
- 4. Sukuriamas tinklas $G = \{X, Y, Y_u\}$, kur Y yra tinklo C briaunos tarp X viršūnių, o Y_u tai tų briaunų svoriai.
- 5. Naudojantis apibrėžimu sukuriamos tinklo R briaunos $G \to Q$, kur Q yra menamos viršūnės, nustatomi grupės G šaltiniai ir tikslai.

- 6. Tinklas G patalpinamas į tinklą R.
- 7. Pabaiga.

Išvados

Išvadose ir pasiūlymuose, nekartojant atskirų dalių apibendrinimų, suformuluojamos svarbiausios darbo išvados, rekomendacijos bei pasiūlymai.

Conclusions

Šiame skyriuje pateikiamos išvados (reziume) anglų kalba.

Literatūra

- [BAP13] S. Beamer, K. Asanovic, and D Patterson. Direction-optimizing breadth-first search., 2013. pages 137–148, 1685 KB accessed 2018-05-15.
- [DFI01] C. Demetrescu, I Finocchi, and G. F. Italiano. Dynamic graphs. http://www.diku.dk/PATH05/CRC-book1.pdf, 2001. pages 1-2, 215 KB, accessed 2018-05-13.
- [EGI98] D. Eppstein, Z. Galil, and G. F. Italiano. Dynamic graph algorithms. https://pdfs.semanticscholar.org/d381/f9a7234fcfb57c2f615e5c99cc7362ab60c9.pdf, 1998. pages 13-18, 324 KB, accessed 2018-05-15.
- [Fre85] G. N. Frederickson. Data structures for on-line updating of minimum spanning trees. https://epubs.siam.org/doi/abs/10.1137/0214055, 1985. accessed 2018-05-14.
- [JF62] L. R. Ford Jr. and D. R. Fulkerson. Flows in networks. https://books.google.lt/books?hl=lt&lr=&id=fw7WCgAAQBAJ&oi=fnd&pg=PP1&dq=ford+fulkerson, 1962. pages 1 16, accessed 2018-05-15.

Priedas Nr. 1

Niauroninio tinklo struktūra

2 pav. Paveikslėlio pavyzdys

Priedas Nr. 2 Eksperimentinio palyginimo rezultatai

1 lentelė. Lentelės pavyzdys

Algoritmas	\bar{x}	σ^2
Algoritmas A	1.6335	0.5584
Algoritmas B	1.7395	0.5647