

Advanced Project S8

Creation of a workload orchestration solution reducing electrical consumption in Orange datacenters

Introduction

2.7%

Global energy consumption of the digital sector of the total global energy consumption (1)

South Africa

Electricity consumption is equivalent to electricity consumption of worldwide datacenters (2)

Orange goals

30%

Reduce CO2 emissions by 2025

zero

Carbon emission by 2040

⁽¹⁾ source: Insee - 2019

⁽²⁾ source: "INTERNATIONAL: ELECTRICITY - CONSUMPTION", U.S. Energy Information Administration

Introduction

Objectives of the project:

- Creating a cluster using **Kubernetes** supervised by **Prometheus**
- Creating a workload orchestration solution
- Creating a final **Grafana dashboard**

Plan

1. Cluster creation

2. Workload orchestration

3. Results

4. Project management

1. Cluster creation

1. Cluster Creation

Kubernetes cluster

Model

Master Node Workloads Manager

Slave NodesData Centers

Pods Workloads (Tasks)

1. Cluster Creation

Physical cluster

Kubernetes on Raspberry Pis: Kubeadm

1. Cluster Creation Physical cluster

Problems encourtered

Incompatibility

Limitation caused by hardware

Integration of Prometheus and Grafana

Solution

Kind

A virtual cluster

1. Cluster Creation

Virtual cluster

Advantages

No material constraint

Easy installation

Prometheus and Grafana supported

Kind

Virtual cluster on a personnal machine

Workload orchestration using Kubernetes

An innovative idea

11.

Weather scenarios

Weather scenarios JSON and Wiremock

```
__files> Scenario1> Scenario2> Scenario3
```

```
✓ __files
✓ Scenario1
{} 1.json
U
{} 2.json
U
{} 3.json
U
{} 4.json
U
```

2. Workload orchestration Weather scenarios with Grafana

Ratio computation

$$E_{available}(t+1) = E_{available}(t) + E_{prod}(t) - E_{cons}(t)$$

$$R(t) = \frac{E_{available}(t)}{E_{available_total}(t)}$$

Labelling

Scoring system **Datacenter ROUEN** Renewable energy available **Datacenter PARIS** Renewable energy available **Datacenter NICE**

Renewable energy available

Total number of workloads: 30

Datacenter	Scores Worload number		
PARIS	0.2	6	
ROUEN	0.3	9	
NICE	0.5	15	

Workload redeployment system

t=0 Total number of workloads: 30 t=1

Datacenter	Scores	Worload number		Datacenter	Scores	Worload number
PARIS	0.2	6	Workload movements	PARIS	0.2	6
ROUEN	0.3	9		ROUEN	0.4	12
NICE	0.5	15		NICE	0.4	12

Global behavior of the algorithm

19.

Objectives of the project:

Create a workload orchestration solution

Create a final Grafana dashboard

Workload distribution depending on ratio

Green energy production

EDF energy use

- An averageweather scenario
- An average solarpanel production
- No **storage** facility for the electricity

4. Project Management

- Transparency
- Visibility
- Flexibilty

4. Project Management Agile Methodology

Conclusion

First

on this innovation

An **efficient** solution

A **starting** point for the Orange strategy team

Skills

developpement

What is next?

Thanks to

Alexis Carrel-Billiard Frédéric Denis

Questions?

```
! worker1.yaml
     apiVersion: v1
      kind: Pod
     metadata:
       name: pod1
      spec:
       nodeName: kind-worker # schedule pod to specific node
        containers:
        - name: nginx
          image: nginx
 9
          imagePullPolicy: IfNotPresent
10
```