KØBENHAVNS UNIVERSITET

Binomialfordelingen: egenskaber, estimation og test

Anders Tolver Institut for Matematiske Fag

I dag

Dagens forelæsning dækkes af lærebogens kapitel 11

- Hvilken slags problemer skal vi se på?
- Binomialfordelingen (med kendt sandsynlighed)
- Statistik for en enkelt binomialfordeling
- Statistik for to binomialfordelinger (estimation og KI)

Generel info:

- Afleveringsopgaver: opgave 3 afleveres idag ved øvelserne. Husk, at du kan spørge både hjælpelærer og mig om rettelser, som du ikke forstår (også til opgave 1+2).
- Kursusevaluering: Udfyld som minimum multiple choice rubrikker, men skriv gerne kommentarer, hvis du har noget på hjerte.

Hvilken slags problemer skal vi se på?

Eksempel: Binomialdata

Antag at vi ved at en bestemt slags frø spirer med ssh. 60%.

- Hvis vi ser på 8 frø, hvor stor er så sandsynligheden for at mindst 5 af dem spirer?
- Skal designe et forsøg, hvor der skal bruges mindst 10 planter.
 Hvor mange frø skal der plantes, hvis vi vil være 90% sikre på at mindst 10 frø bliver til noget?

Vi skal bruge binomialfordelingen.

Men som regel vil sandsynligheden ikke være kendt! Data \to estimat for sandsynlighed, konfidensinterval, hypotesetest.

Eksempel vedr. quiz. H_0 : sandsynlighed svarer til at gætte.

Eksempel: Tabeller

Data fra 100 mus: Har kastrerede mus større risiko for at udvikle diabetes end ikke-kastrerede mus? Mere om det i dag og onsdag.

	Diabetes	Ikke diabetes	Total
Katrerede mus	26	24	50
Ikke-kastrerede mus	12	38	50

Svar fra 1000 personer vedr. politisk ståsted og foretrukket finansøkonomisk redskab: Er der sammenhæng? På onsdag.

		Demokrat	Republikaner	Uafhængig
	Begrænse udgifter	101	282	61
	Øge skatter	38	67	25
	Øge offentlige invest.	131	88	31
	Lade underskuddet vokse	61	90	25

Fællestræk

Fælles for eksemplerne er at data består af antal.

Vi kan ikke bruge normalfordelingen. I stedet:

- I dag: Binomialfordelingen
- Onsdag: Tabeldata

I har nok set en del allerede i gymnasiet, men nu har I bedre forudsætninger for at forstå hvad der foregår og hvorfor.

På mange måder meget **nemmere** end normalfordelingsanalyserne!

Måske lidt forvirrrende fordi man ofte kan gøre flere forskellige ting i R, som alle er fornuftige men ikke giver præcis samme resultater.

Binomialfordelingen

Eksempel: spiring af frø

Antag at vi ved, at et frø har en sandsynlighed på 60% for at spire. Betragt tre frø.

- Hvad er sandsynligheden for at netop et frø spirer?
- Hvad er sandsynligheden for at mindst et frø spirer?

Spørgsmål

- Hvilke antagelser lå egentlig bag beregningerne?
- Hvordan formaliserer vi sandsynlighedsberegningerne, så vi også kan klare et større antal frø?
- Hvordan beregner vi sandsynligheder i R?

Independent trials

Independent trials / uafhængige gentagelser:

- n gentagelser af simpelt eksperiment
- Hver gentagelser har to mulige udfald: succes/fiasko
 Kan være hvad som helst: død/levende, spiret eller ikke, prisen stiger/falder, korrekt/forkert, osv.
- Samme sandsynlighed for succes i hver gentagelse: p
- Gentagelserne er uafhængige

Binomialfordelingen

Lad Y betegne antallet af succeser fra n uafhængige forsøg med samme successandsynlighed p.

Så er Y binomialfordelt med antalsparameter (engelsk: size) n og sandsynlighedsparameter p. Vi skriver $Y \sim \text{bin}(n, p)$.

Binomialsandsynlighederne er givet ved

$$P(j \text{ "succeser"}) = P(Y = j) = \binom{n}{j} \cdot p^j \cdot (1-p)^{n-j},$$

hvor **binomialkoefficienten** — antal måder man kan vælge j dimser ud af n dimser — er givet ved

$$\binom{n}{j} = \frac{n!}{j!(n-j)!}$$

Eksempel: Spiring af frø

n=3 frø der hver især har en sandsynlighed på 60% for at spire.

- P(Y = 1) og $P(Y \ge 1)$, nu vha. formlen og i R
- Hvad er ssh. for at højst to frø spirer, altså $P(Y \le 2)$?

Hvis der i stedet er 8 frø: Hvad er sandsynlighederne så?

R

Binomialsandsynligheder i R.

- Sandsynligheder P(Y = j) beregnes med dbinom
- Sandsynligheder $P(Y \le j)$ beregnes med pbinom.

I begge dele skal size (dvs. n) og prob (dvs. p) angives.

```
dbinom(1, size=3, prob=0.6)
                            ## P(Y=1)
## [1] 0.288
pbinom(2, size=3, prob=0.6) ## P(Y<=2)
## [1] 0.784
dbinom(0, size=3, prob=0.6) ## P(Y=0)
## [1] 0.064
1-dbinom(0, size=3, prob=0.6) ## P(Y>=1)
## [1] 0.936
```


Binomialfordelinger, her med n = 20

Eksempel: Spiring af frø

Nyt spørgsmål:

- Skal designe et forsøg, hvor der skal bruges mindst 10 planter.
- Hvor mange frø skal der plantes, hvis vi vil være mindst 90% sikre på at mindst 10 frø bliver til noget?

Middelværdi og varians for binomialfordelinger

For en binomialfordelt variabel $Y \sim bin(n, p)$ gælder:

Middelværdien er

$$EY = n \cdot p$$

Spredningen

$$sd(Y) = \sqrt{n \cdot p \cdot (1-p)}$$

Se figurerne fra før.

Normalfordelingsapproksimation

En binomialfordelt variabel er en sum af $n \ 0/1$ -variable.

Den centrale grænseværdisætning giver **normalfordelingsapprokimation**:

- bin(n, p) kan approksimeres med N(np, np(1-p)), dvs. normalfordelingen med den korrekte middelværdi og spredning
- Tommelfingerregel: Approksimation er "god" hvis både $np \ge 5$ og $n(1-p) \ge 5$.

I bogen bliver dette bla. brugt til at beregne diverse binomialsandsynligheder — men brug blot pbinom og dbinom.

Nogle normalfordelingsapproksimationer

Statistik for en enkelt binomialfordeling

Statistik

Indtil nu har vi lavet beregninger når successsh. er kendt.

Men det er den sjældent i videnskabelige sammenhænge. Faktisk udfører vi snarere forsøg for at undersøge hvad sandsynligheden er! Givet data vil vi gøre noget af "det sædvanlige":

- **Estimere** sandsynligheden
- Lave et konfidensinterval for sandsynligheden
- Lave hypotesetest for om p er noget bestemt (hvis relevant)

Senere: Sammenligning af to eller flere binomialsandsynligheder.

Eksempel: Quizspørgsmål

Quizspørgsmål 11 fra kursusuge 6, med seks svarmuligheder:

Vi er i gang med at udføre et t-test og får T=2.57. Det er tilfældigvis præcis det samme som 99 % fraktilen i den relevante t-fordeling.

Hvad kan vi konkludere om p-værdien?

PS. Lav meget gerne en tegning til eget brug.

Der var 16 ud af 62 der svarede korrekt, svarende til 25.8%.

Quiz: Set-up og spørgsmål

- Statistisk model: Y ~ bin(62, p) hvor p er ukendt.
 Fortolkning af p: Sandsynlighed for at tilfældig studerende svarer korrekt; eller andel studerende der kan svare korrekt.
 Er antagelserne for at Y er binomialfordelt egentlig OK?
- Estimat for p? Tilhørende standard error (SE)?
- Konfidensinterval?
- Hvilken værdi af p svarer til at I bare gættede? Hypotesetest.

Generel teori: Statistisk model, estimation, SE

Statistisk model: $Y \sim bin(n, p)$ med kendt n og ukendt p.

Observation, y

Estimation: Naturligt estimat for p (når n er kendt):

$$\hat{p} = \frac{\text{antal succeser}}{\text{antal forsøg}} = \frac{y}{n}$$

Standard error: Husk at SE for \hat{p} er (etimeret) spredning for \hat{p} .

$$\operatorname{sd}(Y) = \sqrt{np(1-p)}$$

$$\operatorname{sd}(\hat{p}) = \operatorname{sd}\left(\frac{Y}{n}\right) = \frac{1}{n}\sqrt{np(1-p)} = \sqrt{\frac{p(1-p)}{n}}$$

$$\operatorname{SE}(\hat{p}) = \frac{\sqrt{n\hat{p}(1-\hat{p})}}{n} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Generel teori: Konfidensinterval

Pga. normalfordelingsapproksimationen kan vi lave et 95% konfidensinterval for p som

$$\hat{p} \pm 1.96 \cdot \text{SE}(\hat{p}) = \hat{p} \pm 1.96 \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Bemærk, at vi bruger 97.5%-fraktilen i standardnormalfordelingen N(0,1), nemlig 1.96.

Hvis vi i stedet ønsker 90% KI: Udskift 1.96 med 1.645 som er 95% fraktilen i standardnormalfordelingen.

Generel teori: Forbedret konfidensinterval

KI på forrige slide bygger på N-approx. som kun er OK hvis $np \ge 5$ og $n(1-p) \ge 5$, altså hvis p ikke er for tæt på 0 eller 1 eller n er for lille.

Ellers kan vi risikere at konfidensgraden for vores KI slet ikke er 95% som vi troede, og det kan indeholde værdier udenfor (0,1).

Kan i stedet bruge følgende forbedrede KI:

$$ilde{p} \pm 1.96 \cdot \sqrt{rac{ ilde{p}(1- ilde{p})}{n+4}} \quad \mathsf{med} \quad ilde{p} = rac{y+2}{n+4}$$

Bemærk at $\tilde{p} = \frac{y+2}{n+4}$ er "rykket væk" fra 0 og 1 ift. $\hat{p} = \frac{y}{n}$.

Eksempel: Quiz

Observation: y = 16.

Statistisk model: $Y \sim bin(62, p)$ hvor p er ukendt.

Estimation:

$$\hat{\rho} = \frac{16}{62} = 0.258, \quad \text{SE}(\hat{\rho}) = \sqrt{\frac{\hat{\rho}(1-\hat{\rho})}{62}} = 0.056$$

Simpelt 95% konfidensinterval:

$$\hat{p} \pm 1.96 \cdot \text{SE}(\hat{p}) = 0.258 \pm 1.96 \cdot 0.056 = (0.149, 0.367)$$

Forbedret 95% KI: $\tilde{p} = 0.273$, 95% KI

$$\tilde{p} \pm 1.96 \cdot \text{SE}(\tilde{p}) = 0.273 \pm 1.96 \cdot 0.057 = (0.162, 0.384)$$

R: Det simple KI

Det simple KI beregnes "manuelt", ved indsættelse i formler:

```
p <- 16/62
## [1] 0.2580645
SE <- sqrt(p * (1-p) / 62)
SE
## [1] 0.0555714
p - 1.96 * SE
## [1] 0.1491446
p + 1.96 * SE
## [1] 0.3669845
```


R: Forbedret KI

Det forbedrede KI beregnes "manuelt", ved indsættelse i formler:

```
p \leftarrow (16 + 2)/(62 + 4)
## [1] 0.2727273
SE <- sqrt(p * (1-p) / 62)
SE
## [1] 0.056561
p - 1.96 * SE
## [1] 0.1618677
p + 1.96 * SE
## [1] 0.3835868
```


Quiz: Test af hypotese

Observation: y = 16

Statistisk model: $Y \sim bin(62, p)$ hvor n er kendt og p er ukendt.

Hypotese: Hvis studerende gætter, så er p=1/6=0.167. Vi tester derfor hypotesen H_0 : p=1/6.

"Løsning" via KI: Check om 1/6 ligger i konfidensintervallet.

Men vi kan også lave et egentligt hypotesetest:

- Under hypotesen, dvs. hvis H_0 er sand, kender vi fordelingen af Y fuldstændigt: $Y \sim \text{bin}(62, 1/6)$
- p-værdi: ssh. for hvis H_0 er sand at få data der passer lige så dårligt eller dårligere med hypotesen, som y = 16.

Quiz: Fordeling af Y under hypotesen

- Store/små værdier passer dårligt med H_0
- Værdier "længere væk fra midten" end 16 passer dårligere. Skal formuleres lidt mere præcist…

Quiz: p-værdi

Husk at vi kender fordelingen under hypotesen: $Y \sim bin(62, 1/6)$

Bruger observationen y = 16 selv som **teststørrelse**.

- Observationer med $P(Y = y) \le P(Y = 16)$ passer mindst lige så dårligt med hypotesen som værdien 16
- Læg punktsandsynlighederne for disse y sammen

Formelt:

$$p\text{-værdi} = \sum_{y: P(Y=y) \le P(Y=16)} P(Y=y).$$

Quiz: p-værdi

- Røde punkter har samme eller mindre ssh. end y = 16.
- p-værdi = sum af røde sandsynligheder = 0.061
- Vi forkaster ikke H_0 ; Kan ikke afvise, at blot gættede

R: binom.test

p-værdien kan beregnes med binom.test (eller manuelt)

```
binom.test(16, 62, p=1/6)

##

## Exact binomial test
##

## data: 16 and 62

## number of successes = 16, number of trials = 62, p-value = 0.06053

## alternative hypothesis: true probability of success is not equal to 0.1666667

## 95 percent confidence interval:
## 0.1552700 0.3849725

## sample estimates:
## probability of success
## 0.2580645
```


R: prop.test

Bemærk at prop.test (-se nedenfor) også kan bruges til beregning af en p-værdi. Men dette test benytter en anden teststørrelse (og givet et lidt andet resultat).

Et forbedret KI kan dog næsten beregnes med prop.test og option correct=FALSE. Ikke helt det samme som på slide 26, men I må gerne bruge det!

```
##
## 1-sample proportions test without continuity correction
##
## data: 16 out of 62, null probability 1/6
## X-squared = 3.729, df = 1, p-value = 0.05347
## alternative hypothesis: true p is not equal to 0.1666667
## 95 percent confidence interval:
## 0.1655488 0.3788113
## sample estimates:
## p
## 0.2580645
```


Generel teori: Hypotesetest

- **Stat. model:** $Y \sim bin(n, p)$ hvor n er kendt og p er ukendt.
- Observation, $y = y_0$
- **Hypotese**, $H_0: p = p_0$ for hypoteseværdi p_0 . Under hypotesen er $Y \sim \text{bin}(n, p_0)$. Kan tegne denne fordeling!
- p-værdi = sandsynligheden for at få observationer der passer lige så dårligt eller dårligere med hypotesen end y₀, dvs.

$$p\text{-vardi} = \sum_{y: P(Y=y) \le P(Y=y_0)} P(Y=y).$$

Konklusion som sædvanlig

Eksempel (figur 11.6 fra bogen)

- n = 8, y = 1, H_0 : p = 0.35. Figuren viser ssh. fra bin(8, 0.35)
- p-værdi = sum af ikke-stiplede sandsynligheder = 0.275

Statistik for to binomialfordelinger

Eksempel: Kastrering og diabetes

Mistanke om at tidlig kastrering øger risikoen for diabetes.

Forsøg:

- 100 mus inddelt tilfældigt i to grupper (50+50).
- Den ene gruppe mus blev kastreret dagen efter fødsel; den anden gruppe mus blev ikke kastreret
- Efter 112 dage undersøgte man om musene havde udviklet diabetes

	Diabetes	Ikke diabetes	Total
Katrerede mus	26	24	50
Ikke-kastrerede mus	12	38	50

Er der forskel er der på risikoen for at udvikle diabetes? Hvor stor?

Kastrering og diabetes: Statistisk model og formål

Statistisk model:

- Data fra de to grupper er uafhængige
- Kastrerede mus: Observation y = 26 fra bin(50, p)
- Ikke-kastrerede mus: Observation x = 12 fra bin(50, q)

Interesseret i forskellen mellem de to grupper:

- Estimat og konfidensinterval for p-q
- Test for hypotesen $H_0: p = q$.

Generel teori: Statistisk model, estimation

Generelt set-up:

- Statistisk model: $Y \sim bin(n, p)$ og $X \sim bin(m, q)$, uafhængige
- Observationer y og x
- Interesseret i forskellen p q.

Estimat for forskel:

$$\widehat{p-q} = \widehat{p} - \widehat{q} = \frac{y}{n} - \frac{x}{m}$$

Generel teori: Standard error (SE) for forskel

Vi ved godt hvordan vi beregner SE for \hat{p} og \hat{q} :

$$\mathsf{SE}(\hat{p}) = \sqrt{rac{\hat{p}\cdot(1-\hat{p})}{n}}, \quad \mathsf{SE}(\hat{q}) = \sqrt{rac{\hat{q}\cdot(1-\hat{q})}{m}},$$

Regneregler for varianser/spredninger giver SE for forskel:

$$\mathsf{SE}(\hat{p} - \hat{q}) = \sqrt{\mathsf{SE}(\hat{p})^2 + \mathsf{SE}(\hat{q})^2} = \sqrt{\frac{\hat{p} \cdot (1 - \hat{p})}{n} + \frac{\hat{q} \cdot (1 - \hat{q})}{m}}$$

Generel teori: KI for forskel mellem sandsynligheder

95% KI for differensen mellem de to sandsynligheder, p-q:

$$\hat{p} - \hat{q} \pm 1.96 \cdot \mathsf{SE}(\hat{p} - \hat{q})$$

Altså:

$$\hat{
ho} - \hat{q} \pm 1.96 \cdot \sqrt{rac{\hat{
ho} \cdot (1-\hat{
ho})}{n} + rac{\hat{q} \cdot (1-\hat{q})}{m}}$$

Vi kan bruge dette konfidensinterval til at lave et "groft" test for hypotesen $H_0: p=q$. På onsdag laves et egentligt hypotesetest.

Kastrering og diabetes: Estimat og KI

	Diabetes	Ikke diabetes	Total
Katrerede mus	26	24	50
Ikke-kastrerede mus	12	38	50

Estimater for hver gruppe:

$$\hat{p} = \frac{26}{50} = 0.52 \text{ (SE 0.071)}, \quad \hat{q} = \frac{12}{50} = 0.24 \text{ (SE 0.060)}$$

Estimat for forskel: $\hat{p} - \hat{q} = 0.28$ (SE 0.093)

95% KI for differens p - q:

$$0.28 \pm 1.96 \cdot 0.093 = (0.098, 0.462)$$

Nul ligger ikke i KI, så risikoen er større blandt de kastrerede mus.

SE for forskel kan beregnes manuelt; se dagens R-kode.

KI for forskel kan beregnes med prop.test:

```
prop.test(c(26,12), c(50,50), correct=FALSE)
##
##
    2-sample test for equality of proportions without continuity
##
    correction
##
## data: c(26, 12) out of c(50, 50)
## X-squared = 8.3192, df = 1, p-value = 0.003923
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## 0.09781821 0.46218179
## sample estimates:
## prop 1 prop 2
## 0.52 0.24
```


Opsummering vedr. R

En enkelt binomialfordeling

- Simpelt KI skal laves "i hånden", dvs. beregn selv de forskellige størrelser
- prop.test giver næsten (men ikke helt) det forbedrede KI.
 Med/uden "kontinuitetskorrektion": Bogens formler svarer til ikke at bruge korrektionen.
- binom.test giver p-værdi for hypotesen $H_0: p=p_0$
- prop.test giver også en p-værdi, men en anden end vi har beregnet. Fornuftig nok så længe np og n(1-p) er ≥ 5

I må selv vælge metoden medmindre I bliver spurgt om noget eksplicit.

Opsummering vedr. R

To binomialfordelinger

- prop.test giver estimater for hver ssh. samt KI for forskel.
 Med/uden "kontinuitetskorrektion": Bogens formler svarer til ikke at bruge korrektionen.
- SE for forskel skal beregnes manuelt, hvis den bruges
- Giver også en p-værdi. Mere om det på onsdag.

I må selv vælge metoden medmindre I bliver spurgt om noget eksplicit.

