dem: $X \xrightarrow{\pi} Y$ then low where π and π' agree is naturally a locally closed subscheme of X; and is closed if Y is separated Z.

Proof: Define L to have the universal property $L(T) = \left\{ f \in X(T) \mid \Pi f = \Pi' f \right\} = X_{\stackrel{\bullet}{y}} X$ $L \longrightarrow X$ $\downarrow \stackrel{\bullet}{\longrightarrow} Y_{\stackrel{\bullet}{x}} Y$

Rop $X \xrightarrow{\pi} Y$ morphisms of \bar{k} -varieties such that $\pi(n) = \pi'(n) + closed pts. <math>\alpha \in X$ then $\pi = \pi'$

Bood Y separated \Rightarrow Jocus L where $\pi=\pi'$ is closed in \times . By hypothesis L contains all closed faints. $\frac{R=\overline{k}}{\text{closed pto}}$ L= \times as sets. Since \times is a variety, its reduces \Rightarrow L= \times as schemes one dense

Th" ("reduced to separated th")

 $U \stackrel{\pi}{\Longrightarrow} Z$ agree on a dense open subset of U If U is reduced be Z is departed then the two morphisms are equal.

Proof. Same as above.

§ 10.3 Propor morphism

Def: Northern $\pi: X \to Y$ is proper if π is separed, finite dybe & <u>universally closed</u>; $Z_{*}X \longrightarrow Z$ closed map $\forall Z \to X$.

When Y= Spec k we say X is complete /k.

eg. · Closed embeddings

Th^m: Tinite morphisms are forefer.

