EDUCATION

School of Computer Science, Carnegie Mellon University: Rising Senior graduating in 2026 Concentration – Machine Learning

TECHNICAL SKILLS

- Languages Python, Java, C/C++, R, JavaScript, SML (Functional Programming Language), Protobuf, HTML, CSS
- IDE's: Visual Studio Code, PyCharm, IntelliJ, RStudio
- Others Unix, SQL, Machine Learning, PySpark, PyTorch, CI/CD, APIs, RPC, Math Modeling, Probability, GitHub, Socnety, LaTeX

INTERNSHIP / WORK EXPERIENCE

Google SWE Intern - Workspace AI Platform Team (May 2025 - Aug 2025)

Designed and developed end-to-end LLM-based topic modeling system to effectively assign topics to any given input document context. This enabled analysis of live user data without direct human review; expanded the capabilities of Google's internal Gen AI analysis service; and improve the quality of synthetic evaluation datasets for Gemini.

- Engineered a robust Python data pipeline to preprocess synthetic document context data, effectively
 removing noise and utilizing coherence classifier for a higher-quality dataset, and established a humanlabeled benchmark subset.
- Implemented a comprehensive topic modeling workflow, covering topic generation, clustering, and assignment, developing colabs for full end-to-end execution.
 - Iteratively developed and optimized LLM prompts (zero-shot, one-shot, and few-shot variations) for topic generation, leveraging the Gemini API to produce candidate topics and descriptions from over 600 document contexts. Conducted rigorous human and automated evaluations to achieve high accuracy & consistency.
 - Refined and curated the generated topic list by applying embedding models (Gecko), KMeans clustering, and optimized LLM prompts to effectively select representative topic labels for each cluster.
 - Improved topic assignment efficacy through iterative prompt refinement and comprehensive evaluations (human and automated), selecting the most effective strategy for classifying new contexts.
- Designed and implemented a new RPC classification API within the analysis service, including Mendel flags, proto definitions, RPC handler logic (with C++), and Piccolo configs, followed by thorough testing.
- Used internal tools including Moma, Buganizer, Piper, Blaze, Critique, Codesearch, and Fig to manage code, documentation, feedback loops, and other tasks.

Research Assistant – Robotics Institute, CMU (May 2024 – Jul 2024)

Contributing to a project to enhance the physics-solving capabilities of large language models (LLMs).

- Developed a DSL format in YAML to represent various physics topics, such as forces and Newton's Laws problems.
- Simulated spring problems using the MuJoCo engine and employed the mujoco-py library to model and solve dynamic spring systems.

ML Intern - Infinite Solutions (Jun 2024 – Aug 2024)

Worked with data on equipment failures to develop a machine learning model aimed at predicting future issues and informing maintenance plans. My responsibilities included

- Extracting and cleaning the data using Python libraries such as pandas and numpy
- Splitting data into training and testing sets
- Developing the predictive model. Generated outputs and created files to feed the model's predictions back into ERP for the development of effective maintenance plans.

Intern - Machine Learning Lab at University of Delaware (Jun 2023 - Aug 2023)

Vision-based Neural Solver for Combinatorial Optimization over Graphs - Teaming with a PhD student, contributed to the development of a neural solver to determine if a given network is Non-Hamiltonian or Hamiltonian using vision-based machine learning techniques. Utilized keras, matplotlib, numpy and other ML related libraries

• Developed an algorithm to generate 3D embeddings for nodes from 2D adjacency matrices and represented edges as points proportional to their lengths.

- Graphed these coordinates using matplotlib to form 3D spherical point cloud representations.
- Edited the PointNet model to accept point clouds as inputs and classify networks as Hamiltonian or Non-Hamiltonian. Conducted training and testing of the PointNet model using point cloud datasets to evaluate its accuracy.

Research Intern - University of Delaware Computational Data Science Lab (Jun 2021 - Aug 2021)

- Completed an independent research project on NLP and social network visualization.
- Developed algorithms and code to construct, visualize, and analyze social networks of Reddit forums using Python libraries such as gensim, pandas, requests, nltk, and numpy

OTHER IMPORTANT PROJECT EXPERIENCE

Machine Learning – Model Compression with Pruning Techniques (Apr 2025)

- Implemented and compared three pruning techniques—magnitude-based pruning, L1-norm filter pruning, and ThiNet pruning—on a GPT model with ~593K parameters to remove low-importance weights and filters
- Fine-tuned pruned models with binary masks to maintain sparsity and recover accuracy; plotted the Pareto frontier to visualize accuracy—sparsity trade-offs.

Deep Learning - Machine Translation Model for Low-Resource Language (Nov 2024 - Dec 2024)

Developed a machine translation model to translate sentences from English to Chichewa. Tested several baseline models, including Helsinki-NLP's MarianMT, Cohere, and Meta's LLaMA before fine-tuning. Fine-tuned the MarianMT model by integrating LoRA (Low-Rank Adapters) to enable parameter-efficient fine-tuning & also implemented a sequence-to-sequence (Seq2Seq) model using LSTM-based architectures with an attention mechanism

- Utilized pytorch, transformers, peft, scikit-learn, pandas, and matplotlib libraries to implement and evaluate our translation models
- Used the Chichewa machine translation dataset from Hugging Face, preprocessed and split into training and testing data accordingly.
- Evaluated model performances with BLEU scores and WER (Word Error Rate)

Machine Learning - Logistic Regression and KNN Models on Weather (Apr 2024 - May 2024)

Implemented and compared logistic regression and KNN (K-Nearest Neighbor) models to predict the weather summary (Cloudy, Clear, Foggy, etc) given various inputs such as temperature, humidity, wind speed, and visibility.

- Used PyTorch, scikit-learn, pandas, numpy, and matplotlib to implement models and visualize accuracy
- Randomly split the 11 years of hourly data (96k hours) into 80% training and 20% testing. Filtered out extra data and only used the 12 most popular weather outputs
- For logistic regression, implemented a single statistical model considering all weather type outputs together (multi-class with softmax) to determine the probabilities of a given input falling into each weather category.
- For KNN, optimized the value of k during training of the implemented model to maximize accuracy

Software Engineering - PrestoDB Array Splitting and Concatenation (Mar 2024 - Apr 2024)

Resolved performance issues in PrestoDB's array constructor by enabling support for arrays exceeding 255 elements.

- Rewrote constructor logic to split large arrays into 200-element chunks and reassemble using ARRAY and CONCAT functions
- Created unit tests to validate output and committed changes to the open-source GitHub repository
- Project listed in the CMU course website Hall of Fame

Egyptian Ratscrew Game (Nov 2022 - Dec 2022)

• Developed the popular card game Egyptian Ratscrew using standard Python and Tkinter, incorporating graphics and event-based animations.

MAJOR ACHIEVEMENTS / AWARDS

- Qualified for AIME (American Invitational Mathematics Examination) every year of high school and scored 11
- Ranked 10th among all 11th graders in the National Math League High School Championship held across the US
- Received honors in Online Physics Olympiad Contest by placing top 40 among 340 teams across 45 countries
- Tied for 2nd place nationally in the 2021 Math League Press Contest
- Ranked in the top 5 on the PUMaC (Princeton University Mathematics Competition) Division B Geometry Section
- Selected all four years for Lehigh Valley ARML team (DE, NJ, PA) via highly competitive test.
 - o I was part of top 10 (2022 Ice) and top 20 (2021 Lightning) national team finishes
- Participated in Putnam 2022 and was in the top 800