

VECTEURS DE L'ESPACE page

Vecteurs de l'espace :

1. Prolongement de la notion d'un vecteur dans le plan à l'espace :

a. notion de vecteur dans l'espace (\mathcal{E}) :

dans le plan un vecteur \overrightarrow{AB} est défini par :

- \mathcal{M} Direction de \overrightarrow{AB} : c'est la droite (AB).
- M Sens de \overline{AB} : c'st le sens de A vers B.
- \angle La norme de \overrightarrow{AB} (ou la longueur de \overrightarrow{AB}) .est la distance AB on note : $\overrightarrow{AB} = \|\overrightarrow{AB}\|$.
- \mathscr{A} Cette notion sera prolongée à l'espace (\mathscr{E}) et ainsi toutes les propriétés des vecteurs dans le plan sont valables dans chaque plan de l'espace (\mathscr{E}) .

b. Exemple :

- I est le milieu de [AB] est équivaut à $\overrightarrow{AB} = 2\overrightarrow{AI}$.
- Soient A et B et C trois points non alignés de l'espace (\mathcal{E}) donc A et B et C détermine un plan et un seul noté (ABC).
- Dans le plan (ABC), on considère le triangle non aplati EFG; I et J sont respectivement les milieux de [EF] et [EG] donc on peut déduire que $\overrightarrow{IJ} = \frac{1}{2}\overrightarrow{FG}$ et aussi les droites (IJ)||(FG).

<u>c.</u> Remarque:

- Le cas A = B le vecteur $\overrightarrow{AA} = \overrightarrow{0}$ (le vecteur nul) n'a pas de direction et de sens et sa norme est nulle.
- > On dit que deux vecteurs sont égaux si ils ont des directions parallèles et même sens et même norme.
- ightharpoonup Un quadrilatère ABCD dans l'espace (\mathcal{E}) est un parallélogramme si et seulement si $\overrightarrow{AB} = \overrightarrow{DC}$.

02. Calculs vectoriels dans l'espace :

<u>a.</u> Remarque

La somme de deux vecteurs et le produit d'un vecteur par un réel sont définis de la même manière que dans la géométrie plane et on a les mêmes propriétés.

Par exemple:

- \rightarrow $-\overrightarrow{AB} = \overrightarrow{BA}$.
- \triangleright Relation de Chasles \forall A,B,C∈(ε): \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC} .
- L'opposé du vecteur u est le vecteur qui a même direction et même norme mais sens opposé du sens u et on note —u.
- \triangleright Le vecteur $\overrightarrow{v} = \overrightarrow{ku}$:
 - $\vec{v} = \vec{ku}$ a la même direction que \vec{u} .
 - $\vec{v} = \vec{k}\vec{u}$ a le même sens que \vec{u} si $\vec{k} > 0$. $\vec{v} = \vec{k}\vec{u}$ a le sens opposé que \vec{u} si $\vec{k} < 0$.

Michel Chasles (1793 - 1880)

VECTEURS DE L'ESPACE page

- La norme de $\overrightarrow{v} = \overrightarrow{ku}$ vérifie $\|\overrightarrow{v}\| = |\overrightarrow{k}| \|\overrightarrow{u}\|$.
- \rightarrow Pour tout vecteur \vec{u} on pose $0.\vec{u} = \vec{0}$.
- \triangleright Pour tout $k \in \mathbb{R}$ on a $k \cdot \vec{0} = \vec{0}$.

d. Propriétés :

Pour tous vecteurs $\overrightarrow{\mathbf{u}}$ et $\overrightarrow{\mathbf{v}}$ de l'espace (\mathscr{E}) et pour tous réels \mathbf{k} et \mathbf{k} ' on a :

$$(k+k').\vec{u} = k\vec{u} + k'\vec{u}$$
.

$$2. \quad k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}.$$

3.
$$k(k'.\vec{u}) = k'(k\vec{u}) = (k \times k')\vec{u}$$
.

4.
$$1.\vec{u} = \vec{u}$$
.

5.
$$\vec{k} \cdot \vec{u} = \vec{0} \Leftrightarrow (\vec{k} = 0 \text{ et } \vec{u} = \vec{0}).$$

Colinéarité de deux vecteurs – définition vectoriel d'une droite dans l'espace (\mathcal{E}) .

01. Colinéarité de deux vecteurs – Colinéarité de trois points :

a. Définition

Deux vecteurs $\overrightarrow{\mathbf{u}}$ et $\overrightarrow{\mathbf{v}}$ sont colinéaires si et seulement s'il existe un α de \mathbb{R} tel que $\overrightarrow{\mathbf{u}} = \alpha \overrightarrow{\mathbf{v}}$ ou $\overrightarrow{\mathbf{v}} = \alpha \overrightarrow{\mathbf{u}}$ (c.à.d. l'un des deux vecteurs s'écrit en fonction de l'autre).

b. Remarque

> Le vecteur nul est colinéaire avec tous les vecteurs de l'espace.

$$\mathbf{v} = \overrightarrow{AB}$$
 et $\overrightarrow{\mathbf{v}} = \overrightarrow{CD}$ sont colinéaires si et seulement si $(AB) \parallel (CD)$.

A et B et C trois points de l'espace (\mathcal{E}) sont alignés si et seulement si $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$ sont colinéaires.

02. Définition vectoriel d'une droite dans l'espace (\mathcal{E}) :

a. Définition et propriété :

Soient A et B deux points distincts de l'espace (\mathcal{E}) .

- Tout vecteur non nul u de l'espace (\mathcal{E}) colinéaire avec le vecteur \overrightarrow{AB} est appelé vecteur directeur de la droite (AB).
- L'ensemble des points M de l'espace (ε) qui vérifient $\overrightarrow{AM} = \alpha \overrightarrow{u}$ tel que α de \mathbb{R} est la droite (D) qui passe par le point A et de vecteur directeur \overrightarrow{u} , on note D(A, \overrightarrow{u})

d'où:
$$D(A, \overrightarrow{u}) = \{M \in (\mathcal{E}) / \overrightarrow{AM} = \alpha \overrightarrow{u}; \alpha \in \mathbb{R}\}.$$

VECTEURS DE L'ESPACE page

b. Exemple:

Soit A un point et \vec{u} est un vecteur non nul de l'espace (\mathcal{E}) (voir figure ci contre).

Construire la droite $D(A, \vec{u})$.

Vecteurs coplanaires – détermination vectoriel d'un plan dans l'espace :

01. Vecteurs coplanaires :

a. Définition et théorème :

- \triangleright Quatre points A et B et C et D de l'espace (\mathcal{E}) sont coplanaires si et seulement si les quatre points appartiennent au même plan .
- Trois vecteurs \vec{u} et \vec{v} et \vec{w} de l'espace (\mathcal{E}) sont coplanaires si et seulement s'il existe quatre points A et B et C et D coplanaires tel que : $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$ et $\vec{w} = \overrightarrow{AD}$.

<u>b.</u> Exemple :

ABCDEFGH est parallélépipède trouver 3 vecteurs coplanaires puis 3 vecteurs non coplanaires.

Correction:

On considère les vecteurs: $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{DG}$ et $\vec{w} = \overrightarrow{DH}$.

On $\vec{a} : \vec{u} = \overrightarrow{AB} = \overrightarrow{DC}$ et $\vec{v} = \overrightarrow{DG}$ et $\vec{w} = \overrightarrow{DH}$ et on sait que les points \vec{D} et \vec{C} et \vec{C}

d'où les vecteurs \overrightarrow{u} et \overrightarrow{v} et \overrightarrow{w} sont coplanaires .

c. Remarque

- Si parmi les vecteurs u et v et w deus vecteurs sont colinéaires alors les vecteurs u et v et w sont coplanaires.
- Si trois vecteurs sont constitués par cinq points on ne peut pas confirmer que les cinq points sont coplanaires .Exemple $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AD}$ et $\vec{w} = \overrightarrow{EF}$ sont coplanaires car $\vec{u} = \overrightarrow{AB}$ et $\vec{w} = \overrightarrow{EF}$ sont colinéaires mais les points A et B et D et E et F sont non coplanaires car le point D n'appartient pas au plan déterminé par A et B et E et F.

VECTEURS DE L'ESPACE page

02. Détermination vectoriel d'un plan dans l'espace :

- a. Définition et théorème :
 - Tout plan de l'espace (\mathcal{E}) est déterminé par un point donné de l'espace (\mathcal{E}) et de deux vecteurs \vec{u} et \vec{v} non coplanaires de (\mathcal{E}).
 - Les vecteurs \vec{u} et \vec{v} sont appelés vecteurs directeurs du plan, ce plan sera noté $(P) = P(A, \vec{u}, \vec{v})$.
 - L'ensemble des points M de l'espace (\mathscr{E}) qui vérifient $\overrightarrow{AM} = \overrightarrow{xu} + y\overrightarrow{v}$ tel que x et y de \mathbb{R} est le plan (P) qui passe par le point A et orienter par les vecteurs \overrightarrow{u} et \overrightarrow{v} , on note P(\overrightarrow{A} , \overrightarrow{u} , \overrightarrow{v})
 - \mathbf{d} 'où: $\mathbf{P}(\mathbf{A}, \mathbf{u}, \mathbf{v}) = \{\mathbf{M} \in (\mathcal{E}) / \overrightarrow{\mathbf{A}\mathbf{M}} = \mathbf{x}\mathbf{u} + \mathbf{y}\mathbf{v} ; \mathbf{x} \text{ et } \mathbf{y} \in \mathbb{R} \}$.

b. Remarque:

u et v et w trois vecteurs de l'espace (&).

- u et v et w sont coplanaires si l'un des trois vecteurs s'écrit en fonction des deux autres.
- \vec{u} et \vec{v} et \vec{w} sont coplanaires si et seulement si $\exists x, y \in \mathbb{R} / \vec{w} = x\vec{u} + y\vec{v}$.

Exemple

❖
$$\overrightarrow{AB} = x\overrightarrow{AC} + y\overrightarrow{AD}$$
 (\overrightarrow{AB} s'écrit en fonction de \overrightarrow{BA} et \overrightarrow{BD})

❖
$$\overrightarrow{BC} = x\overrightarrow{BA} + y\overrightarrow{BD}$$
 (\overrightarrow{BC} s'écrit en fonction de \overrightarrow{AC} et \overrightarrow{AD})

• Le vecteur nul est coplanaire avec deux autres vecteurs de l'espace (\mathcal{E}) .

c. Exercice :

On considère les points les points A et B et C et D et E de l'espace (\mathcal{E}) tel que :

$$(1): 2\overrightarrow{EA} + 4\overrightarrow{EB} - 5\overrightarrow{EC} - \overrightarrow{ED} = \overrightarrow{0}.$$

1. Montrer que : les points A et B et C et D sont coplanaires .

Correction:

On a:

(1)
$$\Leftrightarrow 2\overrightarrow{EA} + 4\overrightarrow{EB} - 5\overrightarrow{EC} - \overrightarrow{ED} = \overrightarrow{0}$$

 $\Leftrightarrow 2\overrightarrow{EA} + 4(\overrightarrow{EA} + \overrightarrow{AB}) - 5(\overrightarrow{EA} + \overrightarrow{AC}) - (\overrightarrow{EA} + \overrightarrow{AD}) = \overrightarrow{0}$
 $\Leftrightarrow 4\overrightarrow{AB} - 5\overrightarrow{AC} - \overrightarrow{AD} = \overrightarrow{0}$
 $\Leftrightarrow \overrightarrow{AD} = 4\overrightarrow{AB} - 5\overrightarrow{AC}$

D'où: $\overrightarrow{AD} = 4\overrightarrow{AB} - 5\overrightarrow{AC}$ donc le vecteur \overrightarrow{AD} est écrit en fonction de \overrightarrow{AB} et \overrightarrow{AC} .

Donc les vecteurs : \overrightarrow{AD} et \overrightarrow{AB} et \overrightarrow{AC} sont coplanaires .

D'où : les points A et B et C et D sont coplanaires.

Conclusion: les points A et B et C et D sont coplanaires.

VECTEURS DE L'ESPACE page

ĪV.

Parallélisme dans l'espace :

1. Parallélisme des droites dans l'espace (\mathcal{E}) :

a. Définition :

 $D(A, \vec{u})$ et $\Delta(B, \vec{v})$ sont deux droites de l'espace (\mathcal{E}) .

 $\Delta \left(B, \overrightarrow{v} \right) \parallel D \left(A, \overrightarrow{u} \right) \Leftrightarrow (\overrightarrow{u} \text{ et } \overrightarrow{v} \text{ sont colinéaires}) \text{ ou encore } \Delta \left(B, \overrightarrow{v} \right) \parallel D \left(A, \overrightarrow{u} \right) \Leftrightarrow \overrightarrow{v} = \alpha \overrightarrow{u} \text{ ; } \alpha \in \mathbb{R}^*.$

<u>b.</u> Exemple :

 $\underline{\mathbf{02}_{\bullet}}$ Parallélisme d'une droite et d'un plan de l'espace (\mathcal{E}) :

<u>a.</u> Définition :

 $D(A, \vec{u})$ et $P(B, \vec{v}, \vec{w})$ sont une droite et un plan de l'espace (\mathcal{E}) .

la droite $D(A,\vec{u})$ est parallèle au plan $P(B,\vec{v},\vec{w})$ si et seulement si les vecteurs \vec{u} et \vec{v} et \vec{w} sont coplanaires ou encore $D(A,\vec{u}) || P(B,\vec{v},\vec{w}) \Leftrightarrow \vec{u} = x\vec{v} + y\vec{w} / x$, $y \in \mathbb{R}$.

<u>b.</u> Exemple :

VECTEURS DE L'ESPACE page

03. Parallélisme de deux plans dans l'espace (\mathcal{E}) :

a. Définition :

 $P(B, \overrightarrow{v}, \overrightarrow{w})$ et $Q(B, \overrightarrow{u_1}, \overrightarrow{v_1})$ sont deux plans parallèles dans l'espace (\mathcal{E}) si et seulement si les vecteurs \overrightarrow{u} et \overrightarrow{v} et $\overrightarrow{u_1}$ et $\overrightarrow{v_1}$ sont coplanaires ou encore.

$$P(A, \overrightarrow{u}, \overrightarrow{v}) \parallel Q(B, \overrightarrow{u_1}, \overrightarrow{v_1}) \Leftrightarrow (\overrightarrow{u_1} = \overrightarrow{xv} + y\overrightarrow{w} / x, y \in \mathbb{R} \text{ et } \overrightarrow{u_2} = \overrightarrow{x'} + y\overrightarrow{w} / x', y' \in \mathbb{R})$$

b. Exemple:

<u>04.</u> Exercice :

On considère un cube ABCDEFGH, tel que I est le milieu de [AH] et J est un point de [FI]

tel que :
$$\overrightarrow{FJ} = \frac{2}{3}\overrightarrow{FI}$$
.

1. Construire la figure.

2. Montrer que : $\overrightarrow{EC} = -\overrightarrow{AE} + \overrightarrow{AB} + \overrightarrow{AD}$.

3. Montrer que : $\overrightarrow{EJ} = \frac{1}{3}\overrightarrow{EC}$.

4. Que peut-on conclure pour les points E et J et C . Correction :

1. On construit une figure :

VECTEURS DE L'ESPACE page

2. Montrons que : $\overrightarrow{EC} = -\overrightarrow{AE} + \overrightarrow{AB} + \overrightarrow{AD}$:

On a:

$$\overrightarrow{EC} = \overrightarrow{EA} + \overrightarrow{AB} + \overrightarrow{BC}$$
$$= -\overrightarrow{AE} + \overrightarrow{AB} + \overrightarrow{AD} ; (\overrightarrow{BC} = \overrightarrow{AD})$$

Conclusion: $\overrightarrow{EC} = -\overrightarrow{AE} + \overrightarrow{AB} + \overrightarrow{AD}$.

3. Montrons que : $\overrightarrow{EJ} = \frac{1}{3} \overrightarrow{EC}$:

On a:

$$\begin{split} \overrightarrow{EJ} &= \overrightarrow{EF} + \overrightarrow{FJ} \\ &= \overrightarrow{AB} + \frac{2}{3} \overrightarrow{FI} \\ &= \overrightarrow{AB} + \frac{2}{3} \left(\overrightarrow{FE} + \overrightarrow{EA} + \overrightarrow{AI} \right) \\ &= \overrightarrow{AB} + \frac{2}{3} \left(\overrightarrow{FE} + \overrightarrow{EA} + \frac{1}{2} \overrightarrow{AH} \right) \\ &= \overrightarrow{AB} + \frac{2}{3} \left(\overrightarrow{FE} + \overrightarrow{EA} + \frac{1}{2} \overrightarrow{AH} \right) \\ &= \overrightarrow{AB} + \frac{2}{3} \left(\overrightarrow{FE} + \overrightarrow{EA} + \frac{1}{2} \overrightarrow{EH} \right) \\ &= \overrightarrow{AB} + \frac{2}{3} \left(\overrightarrow{FE} + \frac{1}{2} \overrightarrow{EA} + \frac{1}{2} \overrightarrow{EH} \right) \\ &= \overrightarrow{AB} + \frac{2}{3} \overrightarrow{FE} + \frac{1}{3} \overrightarrow{EA} + \frac{1}{3} \overrightarrow{EH} \\ &= \overrightarrow{AB} - \frac{2}{3} \overrightarrow{AB} - \frac{1}{3} \overrightarrow{AE} + \frac{1}{3} \overrightarrow{AD} \quad \left(\overrightarrow{FE} = \overrightarrow{AB} ; \overrightarrow{EH} = \overrightarrow{AD} \right) \\ &= \frac{1}{3} \overrightarrow{AB} - \frac{1}{3} \overrightarrow{AE} + \overrightarrow{AD} \right) \\ &= \frac{1}{3} \overrightarrow{EC} ; \left(\overrightarrow{EC} = -\overrightarrow{AE} + \overrightarrow{AB} + \overrightarrow{AD} \right) \end{split}$$

Conclusion: $\overrightarrow{EJ} = \frac{1}{3}\overrightarrow{EC}$.

4. Déduction pour les points E et J et C :

Puisque $\overrightarrow{EJ} = \frac{1}{3}\overrightarrow{EC}$ donc les vecteurs \overrightarrow{EJ} et \overrightarrow{EC} sont colinéaires par suite les points E et J et C sont colinéaires.

Conclusion : les points E et J et C sont colinéaires.