Artificial Intelligence State Space Search Algorithms

Introduction

In this lab, we will concentrate on programming two basic searching strategies: Depth-First Search (DFS) and Breadth-First Search (BFS) in Java programming language.

Representing state space as Graph

In graph structure, we have two basic properties, vertex and edge. In state space, we can represent state as vertex and edge as state-transition, thus we can take advantage of graph algorithms.

Now, you should implement a Graph class as in **Figure 1**.

Figure 1 Graph class

Implementing Depth-first search algorithm

DFS is an algorithm for traversing or searching tree or graph data structures. One starts at the root (selecting some arbitrary node as the root in the case of a graph) and explores as far as possible along each branch before backtracking. To illustrate the steps in running **DFS** to find a path between two nodes, let's see the example below.

TON DUC THANG UNIVERSITY FACULTY OF INFORMATION TECHNOLOGY

At this point, you knew how the **DFS** traverses the graph from the *start* node to the other nodes. We can summarize the **DFS** algorithm in the following rules:

- Visit adjacent unvisited vertex of the current node, mark it visited, tracking its previous node, push it onto the stack.
- If no adjacent vertex found for current node, pop up a vertex from stack.
- Repeat step 1 and 2 until stack is empty.

Now, we present a Java implementation of **DFS** algorithm in the following figure.

```
private void _DFS(int start)
           Stack<Integer> stack = new Stack<Integer>();
4
          stack.add(start);
           while(!stack.isEmpty())
                  start = stack.pop();
                 g.visited[start] = 1;
10
                  for(int i = g.noOfNode - 1; i > 0; i--)
11
                         if(g.A[start][i] != 0 && g.visited[i] == 0)
15
                               stack.push(i);
16
                               g.tracking[i] = start;
20
```

Figure 2 DFS algorithm

Implementing Depth-first search algorithm

BFS is an algorithm for traversing or searching tree or graph data structures. It starts at the tree root (or some arbitrary node of a graph, sometimes referred to as a "search key") and explores the neighbor nodes first, before moving to the next level neighbors. To illustrate the steps in running **BFS** to find a path between two nodes, let's see the example below.

Step	Traversal	Description	Result
1	A B C Queue	Initialize the queue.	
2	A B C Queue	We start from visiting S (starting node), and mark it visited.	s

TON DUC THANG UNIVERSITY FACULTY OF INFORMATION TECHNOLOGY

We can summarize the **BFS** algorithm in the following rules:

- Visit adjacent unvisited vertex of the current node, mark it visited, tracking its previous node, enqueue it.
- If no adjacent vertex found, remove the first vertex from queue, which means, dequeue.
- Repeat step 1 and 2 until queue is empty.

Now, we present a Java implementation of BFS algorithm in the following figure.

TON DUC THANG UNIVERSITY FACULTY OF INFORMATION TECHNOLOGY

```
private void _BFS(int start)
1
2
             Queue<Integer> queue = new LinkedList<Integer>();
queue.add(start);
3
4
5
             while(!queue.isEmpty())
                     start = queue.remove();
                     g.visited[start] = 1;
                     for(int i = 0; i < g.noOfNode; i++)</pre>
13
                             if(g.A[start][i] != 0 && g.visited[i] == 0)
14
15
16
17
18
                             {
                                    queue.add(i);
                                    g.visited[i] = 1;
g.tracking[i] = start;
19
                     }
20 21 }
```

Figure 3 BFS algorithm

Homework

1. Implement the Graph class and two algorithms, DFS and BFS in Java.