

UNIVERSITÀ DEGLI STUDI DI TRENTO

DIPARTIMENTO DI INGEGNERIA CIVILE, AMBIENTALE E MECCANICA Corso di Laurea Magistrale in Ingegneria Civile

RELAZIONE IDRAULICA

Rete di drenaggio acque meteoriche Quartiere "Le Albere" – Ex Parco Michelin (Trento)

DOCENTI Alberto Bellin Maria Grazia Zanoni STUDENTI Nicola Meoli 225077 Luca Zorzi 227085

Indice

El	delle tabelle delle figure 3	
El	lenco delle figure	3
	Caratteristiche pluviometriche dell'area di studio	4
	1.1 Curve di possibilità pluviometrica	4

Elenco delle tabelle

1.1	Parametri a ed n per la costruzione della CPP	4
$\mathrm{El}\epsilon$	enco delle figure	
1.1		
1.2	mento con i tre metodi della distribuzione di Gumbel	5
1.2	test di Paerson per una durata t_p fissata	5
1.3		6
1.4	Curve di possibilità pluviometrica con i parametri a ed n ricavati dalla regressione loga-	
	ritmica e sostituiti nell'equazione ?? con T_r di 25 anni $\dots \dots \dots \dots \dots \dots$	6

Caratteristiche pluviometriche dell'area di studio

1.1 Curve di possibilità pluviometrica

Dopo che si è eseguito un primo inquadramento della zona si procede con le elaborazioni dei dati dei massimi annuali degli scrosci e delle precipitazioni orarie ricavate dalla stazione pluviometrica di Laste a Trento. Attraverso queste elaborazioni si pone l'obiettivo di determinare le curve di possibilità pluviometrica (CPP) a diversi tempi di ritorno T_r . Per la progettazione successiva si è scelto un tempo di ritorno di pari a 25 anni.

Per graficare le CPP a tempo di ritorno assegnato occorre conoscere i parametri a ed n della loro equazione

$$h = a\left(T_r\right)t_p^n\tag{1.1}$$

Tali parametri sono ottenuti attraverso una regressione lineare tra le altezze di pioggia $h_c(T_r)$ e le durate di intensità di pioggia t_p . I parametri a ed n sono rispettivamente il coefficiente angolare e l'intercetta di tale regressione, visualizzata in scala logaritmica a base 10.

Per calcolare le altezze di pioggia $h_c(T_r)$ si è fatto uso di tre metodi diversi all'interno della distribuzione di Gumbel, ovvero la probabilità di non superamento

$$P(X \le x) = \exp\left[-\exp\left[-x\right]\right] \tag{1.2}$$

dove $x = \alpha(h - u)$ mentre h è il vettore con i massimi annuali relativi ad una specifica durata di precipitazione, ottenuti dalla stazione pluviometrica.

I tre diversi metodi sono:

- dei momenti;
- dei minimi quadrati;
- della massima verosimiglianza.

Avendo quindi tre diversi parametri α ed u (avendo usato tutti e tre i metodi), per scegliere la coppia di parametri migliore si è usato il test di Pearson o del χ^2 .

Fatto ciò si hanno i valori dell'altezza di precipitazione per ogni tempo di ritorno per una durata fissata. Eseguendo il calcolo per ogni durata ed eseguendo la regressione lineare, si ottiene infine a ed n per poter graficare la CPP.

Nelle figure 1.1 e 1.2 viene mostrato la distribuzione di Gumbel e il relativo test di Pearson per una durata t_p fissata di un'ora. In figura 1.3 è rappresentata la regressione lineare relativa ai due macro insiemi di durata (scrosci e orarie), ottenuta avendo fissato un tempo di ritorno di 25 anni. Da questo sono ottenuti i parametri a ed n riportati in tabella 1.1 e da cui è stato rapresentato l'andamento delle due curve in figura 1.4.

Tabella 1.1: Parametri a ed n per la costruzione della CPP

	a	n
Scrosci	34,890380507987	0,380 264 379 496
Orarie	32,123336325361	0,447 173 501 027

Da tale grafico si evince come si ottenga una maggiore altezza di precipitazione, dovuta agli scrosci, per le prime tre ore e mezza (\hat{t}_p) e poi le precipitazioni orarie superano gli scrosci. Per il seguente progetto, che riguarda un breve lasso di tempo, si prenderanno in considerazione soltanto gli scrosci.

Figura 1.1: Confronto (a durata fissata) tra la frequenza campionaria e la probabilità di non superamento con i tre metodi della distribuzione di Gumbel

Figura 1.2: Andamento dell'altezza di precipitazione h in funzione dei tempi di ritorno T_r ottenuta dal test di Paerson per una durata t_p fissata

Figura 1.3: Regressione lineare delle altezze di pioggia con un $T_r=25$ anni in scala logaritmica

Figura 1.4: Curve di possibilità pluviometrica con i parametri a ed n ricavati dalla regressione logaritmica e sostituiti nell'equazione $\ref{eq:contra}$ con T_r di 25 anni