Energy-based Model

1 Energy-based Model

Definition 1. [Energy-based Model]

Let \mathcal{M} a measure space, and $E: \mathbb{R}^m \to (\mathcal{M} \to \mathbb{R})$. Then define probabilitic model based on E as

$$p_E(x;\theta) = \frac{\exp(-E(x;\theta))}{\int_{\mathcal{M}} dx' \exp(-E(x';\theta))},$$
(1)

where $\theta \in \mathbb{R}^m$ and $x \in \mathcal{M}$.

We call this an energy-based model, where $E(\cdot;\theta)$ is called a energy function parameterized by θ .

Theorem 2. |Universality|

For any probability density $q: \mathcal{M} \to \mathbb{R}$ and for $\forall C \in \mathbb{R}$, define, for $\forall x \in \text{supp}(q)$,

$$E_q(x) := -\ln q(x) + C, \tag{2}$$

then, for $\forall x \in \text{supp}(q)$,

$$q(x) = \frac{\exp(-E_q(x))}{\int_{\sup(q)} dx' \exp(-E_q(x'))}.$$
(3)

That is, for any probability density, there exists an energy function (up to constant) that can describe the probability density.

Proof. Directly,

$$q(x) = \frac{\exp(-E_q(x))}{\int_{\text{supp}(q)} dx' \exp(-E_q(x'))}$$
$$\{E_q := \cdots\} = \frac{q(x)}{\int_{\text{supp}(q)} dx' \, q(x')}$$
$$\left\{\int_{\text{supp}(q)} dx' \, q(x') = 1\right\} = q(x).$$

Theorem 3. [Maximum Entropy Principle]

For any probability density $p_D: \mathcal{M} \to \mathbb{R}$, we have

$$p_E(x) = \operatorname{argmax}_p H[X], \tag{4}$$

s.t. contrains

$$\mathbb{E}_{x \sim p_D} \left[\frac{\partial E}{\partial \theta^{\alpha}}(x; \theta) \right] = \mathbb{E}_{x \sim p} \left[\frac{\partial E}{\partial \theta^{\alpha}}(x; \theta) \right]$$
 (5)

 $are\ satisfied.$

Theorem 4. [Activity Rule]

The local maximum of $p_E(\cdot;\theta)$ is the local minimum of $E(\cdot;\theta)$, and vice versa.

Theorem 5. |Learning Rule|

For any probability density $p_D: \mathcal{M} \to \mathbb{R}$, define Lagrangian $L(\theta; p_D) := -\int_{\mathcal{M}} dx \, p_D(x) \ln p_E(x; \theta)$. Then, the gradient of Lagrangian w.r.t. component θ^{α} is

$$\frac{\partial L}{\partial \theta^{\alpha}}(\theta; p_D) = \int_{\mathcal{M}} dx \, p_D(x) \, \frac{\partial E}{\partial \theta^{\alpha}}(x; \theta) - \int_{\mathcal{M}} dx \, p_E(x; \theta) \, \frac{\partial E}{\partial \theta^{\alpha}}(x; \theta), \tag{6}$$

or in more compact format,

$$\frac{\partial L}{\partial \theta^{\alpha}}(\theta; p_D) = \mathbb{E}_{x \sim p_D} \left[\frac{\partial E}{\partial \theta^{\alpha}}(x; \theta) \right] - \mathbb{E}_{x \sim p_E(x; \theta)} \left[\frac{\partial E}{\partial \theta^{\alpha}}(x; \theta) \right]. \tag{7}$$

2 Effective Theory

Definition 6. [Effective Energy]

Suppose exists (V, \mathcal{H}) , s.t. $\mathcal{M} = V \oplus \mathcal{H}$. Re-denote $E(x; \theta) \to E(v, h; \theta)$ and $p_E(x; \theta) \to p_E(v, h; \theta)$. Then, define effective energy $E_{\text{eff}}: V \to \mathbb{R}$ as

$$E_{\text{eff}}(v;\theta) := -\ln \int_{\mathcal{H}} dh \exp(-E(v,h;\theta)). \tag{8}$$

Theorem 7. [Effective Theory]

Recall that $p_{E_{\text{eff}}}(v;\theta) := \int_{\mathcal{H}} dh \, p(v,h;\theta)$. Then,

$$p_{E_{\text{eff}}}(v;\theta) = \frac{\exp(-E_{\text{eff}}(v;\theta))}{\int_{\mathcal{V}} dv' \exp(-E_{\text{eff}}(v';\theta))}.$$
(9)

Lemma 8. [Gradient of Effective Energy]

$$\frac{\partial E_{\text{eff}}}{\partial \theta^{\alpha}}(v,\theta) = \int_{\mathcal{H}} dh \, p(h|v;\theta) \, \frac{\partial E}{\partial \theta^{\alpha}}(v,h;\theta). \tag{10}$$

Theorem 9. [Learning Rule of Effective Theory]

For any probability density $p_D: \mathcal{V} \to \mathbb{R}$, define Lagrangian $L(\theta; p_D) := -\int_{\mathcal{V}} dv \, p_D(v) \ln p(v; \theta)$. Then, the gradient of Lagrangian w.r.t. component θ^{α} is

$$\frac{\partial L}{\partial \theta^{\alpha}}(\theta; p_D) = \int_{\mathcal{V}} dv \int_{\mathcal{H}} dh \, p_D(v) \, p(h|v;\theta) \, \frac{\partial E}{\partial \theta^{\alpha}}(v,h;\theta) - \int_{\mathcal{V}} dv \int_{\mathcal{H}} dh \, p(v,h;\theta) \, \frac{\partial E}{\partial \theta^{\alpha}}(v,h;\theta),$$

or in more compact format,

$$\frac{\partial L}{\partial \theta^{\alpha}}(\theta; p_D) = \mathbb{E}_{v \sim p_D, h \sim p_E(h|v;\theta)} \left[\frac{\partial E}{\partial \theta^{\alpha}}(v, h; \theta) \right] - \mathbb{E}_{v, h \sim p_E(v, h; \theta)} \left[\frac{\partial E}{\partial \theta^{\alpha}}(v, h; \theta) \right]. \tag{11}$$

3 Examples

3.1 Boltzmann Machine

Definition 10. [Boltzmann Machine]

Let $\mathcal{M} = \{0,1\}^n$, $W \in \mathbb{R}^{(n \times n)}$, $b \in \mathbb{R}^n$, $\theta := (W,b)$. Given dataset $D := \{x_i | x_i \in \mathcal{M}, i = 1,...,N\}$, denote expectation as \hat{x} . Then a Boltzmann machine is defined by energy function

$$E(x; W, b) := -\frac{1}{2} \sum_{\alpha, \beta} W_{\alpha\beta} (x^{\alpha} - \hat{x}^{\alpha}) (x^{\beta} - \hat{x}^{\beta}) - \sum_{\alpha} b_{\alpha} x^{\alpha}.$$

$$(12)$$

Remark 11. [MaxEnt Principle of BM]

Relating to MaxEnt principle, the observable that the model simulates is

$$\forall (\alpha, \beta), \mathbb{E}_{x \sim P_D}[(x^{\alpha} - \hat{x}^{\alpha})(x^{\beta} - \hat{x}^{\beta})], \tag{13}$$

for which it shall also simulate

$$\forall \alpha, \mathbb{E}_{x \sim P_D}[\hat{x}^{\alpha}]. \tag{14}$$

Theorem 12. [Activity Rule of BM]

Examples 3

For $\forall \alpha$,

$$p_E(x_\alpha = 1|x_{\setminus \alpha}) = \sigma \left(\sum_{\alpha \neq \beta} W_{(\alpha\beta)}(x^\beta - \hat{x}^\beta) + c_\alpha\right),\tag{15}$$

where $W_{(\alpha\beta)} := (W_{\alpha\beta} + W_{\beta\alpha})/2$ and $c_{\alpha} := b_{\alpha} + (1/2 - \hat{x}^{\alpha})W_{\alpha\alpha}$. The sigmoid function $\sigma := 1/(1 + e^{-x})$. This relation is held for arbitrary replacement of the vector \hat{x} .

Proof. Directly, for $\forall \gamma$,

$$\begin{split} & \ln p(x_{\gamma}=1|x_{\backslash\gamma}) - \ln p(x_{\gamma}=0|x_{\backslash\gamma}) \\ & [\alpha=\beta=\gamma] = \frac{1}{2} W_{\gamma\gamma} \left(1-\hat{x}^{\gamma}\right)^{2} - \frac{1}{2} W_{\gamma\gamma} \left(-\hat{x}^{\gamma}\right)^{2} \\ & [\alpha\neq\gamma,\beta=\gamma] + \frac{1}{2} \sum_{\alpha\neq\gamma} W_{\alpha\gamma}(x^{\alpha}-\hat{x}^{\alpha}) (1-\hat{x}^{\gamma}) - \frac{1}{2} \sum_{\alpha\neq\gamma} W_{\alpha\gamma}(x^{\alpha}-\hat{x}^{\alpha}) (-\hat{x}^{\gamma}) \\ & [\alpha=\gamma,b\neq\gamma] + \frac{1}{2} \sum_{\beta\neq\gamma} W_{\gamma\beta} (1-\hat{x}^{\gamma}) (x^{\beta}-\hat{x}^{\beta}) - \frac{1}{2} \sum_{\beta\neq\gamma} W_{\gamma\beta} (-\hat{x}^{\gamma}) (x^{\beta}-\hat{x}^{\beta}) \\ & [\alpha,\beta\neq\gamma] + \frac{1}{2} \sum_{\alpha,\beta\neq\gamma} W_{\alpha\beta}(x^{\alpha}-\hat{x}^{\alpha}) (x^{\beta}-\hat{x}^{\beta}) - \frac{1}{2} \sum_{\alpha,\beta\neq\gamma} W_{\alpha\beta}(x^{\alpha}-\hat{x}^{\alpha}) (x^{\beta}-\hat{x}^{\beta}) \\ & [\alpha=\gamma] + b^{\gamma} - 0 \\ & [\alpha\neq\gamma] + \sum_{\alpha\neq\gamma} b_{\gamma}x^{\gamma} - \sum_{\alpha\neq\gamma} b_{\gamma}x^{\gamma} \\ & = \frac{1}{2} W_{\gamma\gamma} - W_{\gamma\gamma}\hat{x}^{\gamma} \\ & + \frac{1}{2} \sum_{\alpha\neq\gamma} W_{\alpha\gamma}(x^{\alpha}-\hat{x}^{\alpha}) \\ & + 0 \\ & + b_{\gamma} \\ & + 0 \\ & = \left(\frac{1}{2} - \hat{x}^{\gamma}\right) W_{\gamma\gamma} + \sum_{\alpha\neq\gamma} W_{(\gamma\alpha)}(x^{\alpha}-\hat{x}^{\alpha}) + b_{\gamma} \end{split}$$

Thus

$$p(x_{\gamma} = 1 | x_{\backslash \gamma}) = \sigma \left[\sum_{\alpha \neq \gamma} \frac{1}{2} (W_{\alpha \gamma} + W_{\gamma \alpha})(x^{\alpha} - \hat{x}^{\alpha}) + \left(b_{\gamma} + \left(\frac{1}{2} - \hat{x}^{\gamma} \right) W_{\gamma \gamma} \right) \right]. \quad \Box$$

3.2 Restricted Boltzmann Machine

Definition 13. [Restricted Boltzmann Machine]

Let $V = \{0,1\}^{m_1}$ and $\mathcal{H} = \{0,1\}^{m_2}$, $\mathcal{M} = \mathcal{V} \times \mathcal{H}$. Let $U \in \mathbb{R}^{(m_1 \times m_2)}$, $b \in \mathbb{R}^{m_1}$, $c \in \mathbb{R}^{m_2}$. Then a restricted Boltzmann machine is defined by energy function¹

$$E(v,h;U,b,c) := -\sum_{\alpha,i} U_{\alpha i} (v^{\alpha} - \hat{v}^{\alpha}) \left(h^{i} - \hat{h}^{i} \right) - \sum_{\alpha} b_{\alpha} v^{\alpha} - \sum_{i} c_{i} h^{i}. \tag{16}$$

Remark 14. [Relation with Boltzmann machine]

^{1.} We use latin letters for latent variables.

By replacements in Boltzmann machine,

$$x \to (v, h), \tag{17}$$

$$b \to (b, c),$$
 (18)

and

$$W \to \left(\begin{array}{cc} 0 & U \\ U^T & 0 \end{array}\right),\tag{19}$$

we obtain the restricted Boltzmann machine.

Theorem 15. [Activity Rule of RBM]

We have

$$p(v_{\alpha} = 1 | v_{\backslash \alpha}, h_i) = \sigma \left(\sum_{i} U_{\alpha i} (h^i - \hat{h}^i) + b_{\alpha} \right), \tag{20}$$

and

$$p(h_i = 1 | v_{\alpha}, h_{\setminus i}) = \sigma \left(\sum_{\alpha} U_{\alpha i} (v^{\alpha} - \hat{v}^{\alpha}) + c_i \right).$$
 (21)

Theorem 16. [Effective Energy of RBM]

We have

$$E_{\text{eff}}(v; U, b, c) = \sum_{\alpha} \left(\sum_{i} U_{\alpha i} v^{\alpha} \hat{h}^{i} - b_{\alpha} v^{\alpha} \right) - \sum_{i} s \left(\sum_{\alpha} U_{\alpha i} \left(v^{\alpha} - \hat{v}^{\alpha} \right) + c_{i} \right), \tag{22}$$

where soft-plus s is defined as

$$s(x) := \ln(1 + e^x).$$
 (23)

Proof. Directly,

$$\{\text{Definition}\} = -\ln\left(\prod_{i}\sum_{h^{i}=0,1}\right) \exp(-E(v,h))$$

$$\{\text{Definition}\} = -\ln\left(\prod_{i}\sum_{h^{i}=0,1}\right) \exp\left(\sum_{\alpha,i}U_{\alpha\beta}(v^{\alpha} - \hat{v}^{\alpha})(h^{i} - \hat{h}^{i}) + \sum_{\alpha}b_{\alpha}v^{\alpha} + \sum_{i}c_{i}h^{i}\right)$$

$$\{\text{Extract }bv\} = -\sum_{\alpha}b_{\alpha}v^{\alpha} - \ln\left(\prod_{i}\sum_{h^{i}=0,1}\right) \exp\left[\sum_{\alpha,i}U_{\alpha\beta}(v^{\alpha} - \hat{v}^{\alpha})(h^{i} - \hat{h}^{i}) + \sum_{i}c_{i}h^{i}\right]$$

$$\{\text{Combine}\} = -\sum_{\alpha}b_{\alpha}v^{\alpha} - \ln\left(\prod_{i}\sum_{h^{i}=0,1}\right) \exp\left[\sum_{i}\left(\sum_{\alpha}U_{\alpha i}(v^{\alpha} - \hat{v}^{\alpha})(h^{i} - \hat{h}^{i}) + \sum_{i}c_{i}h^{i}\right]$$

$$\{\exp\sum_{\alpha} = \prod_{i}\exp\{-\sum_{\alpha}b_{\alpha}v^{\alpha} - \prod_{i}\left[\sum_{h^{i}=0,1}\exp\left(\sum_{\alpha}U_{\alpha i}(v^{\alpha} - \hat{v}^{\alpha})(h^{i} - \hat{h}^{i}) + c_{i}h^{i}\right)\right]$$

$$\{\ln\prod_{\alpha} = \sum_{\alpha}\ln\} = -\sum_{\alpha}b_{\alpha}v^{\alpha} - \sum_{i}\ln\sum_{h^{i}=0,1}\exp\left(\sum_{\alpha}U_{\alpha i}(v^{\alpha} - \hat{v}^{\alpha})(h^{i} - \hat{h}^{i}) + c_{i}h^{i}\right).$$

Since

$$\begin{split} \sum_{h^i=0,1} & \exp\biggl(\sum_{\alpha} U_{\alpha i} \left(v^{\alpha} - \hat{v}^{\alpha}\right) \left(h^i - \hat{h}^i\right) + c_i \, h^i \biggr) \\ & = \exp\biggl(\sum_{\alpha} U_{\alpha i} \left(v^{\alpha} - \hat{v}^{\alpha}\right) \left(1 - \hat{h}^i\right) + c_i \biggr) + \exp\biggl(\sum_{\alpha} U_{\alpha i} \left(v^{\alpha} - \hat{v}^{\alpha}\right) \left(-\hat{h}^i\right) \biggr) \\ & \{ \text{Extract} \} = \exp\biggl(\sum_{\alpha} U_{\alpha i} \left(v^{\alpha} - \hat{v}^{\alpha}\right) \left(-\hat{h}^i\right) \biggr) \biggl[\exp\biggl(\sum_{\alpha} U_{\alpha i} \left(v^{\alpha} - \hat{v}^{\alpha}\right) + c_i \biggr) + 1 \biggr], \end{split}$$

we have

$$\begin{split} E_{\text{eff}}(v) \\ \{\text{Previous}\} &= -\sum_{\alpha} b_{\alpha} \, v^{\alpha} - \sum_{i} \ln \sum_{h^{i}=0,1} \exp \biggl(\sum_{\alpha} U_{\alpha i} \left(v^{\alpha} - \hat{v}^{\alpha} \right) \left(h^{i} - \hat{h}^{i} \right) + c_{i} \, h^{i} \biggr) \\ \{\text{Plugin}\} &= -\sum_{\alpha} b_{\alpha} \, v^{\alpha} + \sum_{i} \sum_{\alpha} U_{\alpha i} \left(v^{\alpha} - \hat{v}^{\alpha} \right) \hat{h}^{i} \\ &- \sum_{i} \ln \biggl[\exp \biggl(\sum_{\alpha} U_{\alpha i} \left(v^{\alpha} - \hat{v}^{\alpha} \right) + c_{i} \biggr) + 1 \biggr] \\ \{s(x) := \cdots\} &= -\sum_{\alpha} b_{\alpha} \, v^{\alpha} + \sum_{\alpha,i} U_{\alpha i} \left(v^{\alpha} - \hat{v}^{\alpha} \right) \hat{h}^{i} - \sum_{i} s \biggl(\sum_{\alpha} U_{\alpha i} \left(v^{\alpha} - \hat{v}^{\alpha} \right) + c_{i} \biggr) \\ \{\text{Extract Const}\} &= -\sum_{\alpha} b_{\alpha} \, v^{\alpha} + \sum_{\alpha,i} U_{\alpha i} \, v^{\alpha} \hat{h}^{i} - \sum_{i} s \biggl(\sum_{\alpha} U_{\alpha i} \left(v^{\alpha} - \hat{v}^{\alpha} \right) + c_{i} \biggr) + \text{Const.} \\ \{\text{Combine}\} &= \sum_{\alpha} \biggl(\sum_{i} U_{\alpha i} \, v^{\alpha} \hat{h}^{i} - b_{\alpha} v^{\alpha} \biggr) - \sum_{i} s \biggl(\sum_{\alpha} U_{\alpha i} \left(v^{\alpha} - \hat{v}^{\alpha} \right) + c_{i} \biggr) + \text{Const.} \end{split}$$

The constant, which will be eliminated by Z, can be omitted.

4 Perturbation Theory

4.1 Perturbation of Boltzmann Machine

Define $p_i(x)$ by Taylor expansion $p_E(x) = p_0(x) + p_1(x) + \cdots + p_n(x) + \mathcal{O}(W^{n+1})$. Denote $\sigma_{\alpha} := \sigma(b_{\alpha})$.

4.1.1 0th-order

Lemma 17. [Oth-order of Boltzmann Machine]

We have

$$p_0(x) = \prod_{\alpha} p_{\alpha}(x^{\alpha}), \tag{24}$$

where

$$p_{\alpha}(x) := \frac{\exp(b_{\alpha} x)}{1 + \exp(b_{\alpha})}.$$
 (25)

Proof. Since $E_0(x; W, b) := -\sum_{\alpha} b_{\alpha} x^{\alpha}$,

$$p_0(x) = \frac{\exp(\sum_{\alpha} b_{\alpha} x^{\alpha})}{\sum_{x'^1 \in \{0,1\}} \cdots \sum_{x'^n \in \{0,1\}} \exp(\sum_{\alpha} b_{\alpha} x'^{\alpha})}$$

$$\{\exp\sum = \prod \exp\} = \prod_{\alpha} \frac{\exp(b_{\alpha} x^{\alpha})}{\sum_{x'^{\alpha} \in \{0,1\}} \exp(b_{\alpha} x'^{\alpha})}$$

$$= \prod_{\alpha} \frac{\exp(b_{\alpha} x^{\alpha})}{1 + \exp(b_{\alpha})}$$

$$= \prod_{\alpha} p_{\alpha}(x).$$

Lemma 18. We have

$$\frac{\partial p_{\alpha}}{\partial b_{\alpha}}(x) = p_{\alpha}(x)(x - \sigma_{\alpha}). \tag{26}$$

Proof. Directly,

$$\begin{split} \frac{\partial}{\partial b_{\alpha}} p_{\alpha}(x) &= \frac{\partial}{\partial b_{\alpha}} \frac{\exp(b_{\alpha} \, x)}{1 + \exp(b_{\alpha})} \\ &= \frac{\exp(b_{\alpha} \, x) x}{1 + \exp(b_{\alpha})} - \frac{\exp(b_{\alpha} \, x) [\exp(b_{\alpha})]}{[1 + \exp(b_{\alpha})]^2} \\ &= \frac{\exp(b_{\alpha} \, x)}{1 + \exp(b_{\alpha})} \bigg[x - \frac{\exp(b_{\alpha})}{1 + \exp(b_{\alpha})} \bigg] \\ &= p_{\alpha}(x) (x - \sigma(b_{\alpha})). \end{split}$$

Lemma 19. For $\forall \alpha$, the mean of $p_{\alpha} V^{\alpha} := \sum_{x} p_{0}(x) x^{\alpha}$ is

$$V^{\alpha} = \sigma^{\alpha}. \tag{27}$$

Proof. Since $(\partial p_{\alpha}/\partial b_{\alpha})(x) = p_{\alpha}(x)(x - \sigma(b_{\alpha}))$,

$$\begin{split} \sum_{x} \frac{\partial}{\partial b_{\alpha}} p_{\alpha}(x) &= \sum_{x} p_{\alpha}(x) x - \sum_{x} p_{\alpha}(x) \sigma(b_{\alpha}) \\ \frac{\partial}{\partial b_{\alpha}} \sum_{x} p_{\alpha}(x) &= \sum_{x} p_{\alpha}(x) x - \left(\sum_{x} p_{\alpha}(x)\right) \sigma(b_{\alpha}) \\ 0 &= \sum_{x} p_{\alpha}(x) x - \sigma(b_{\alpha}). \end{split}$$

Lemma 20. Variance $V^{\alpha_1 \alpha_2} := \sum_x p_0(x) (x - \sigma^{\alpha_1})(x - \sigma^{\alpha_2}) = \sum_x p_0(x) \prod_{i=1}^2 (x - \sigma^{\alpha_i})$ is $V^{\alpha_1 \alpha_2} = \delta^{\alpha_1 \alpha_2} \sigma^{\alpha_1} (1 - \sigma^{\alpha_1}). \tag{28}$

Proof. Since $(\partial p_{\alpha}/\partial b_{\alpha})(x) = p_{\alpha}(x)(x - \sigma(b_{\alpha}))$,

$$\begin{split} \frac{\partial^2 p_0}{\partial b_\beta \partial b_\alpha}(x) &= \frac{\partial}{\partial b_\beta} [p_0(x)(x - \sigma^\alpha)] \\ &= p_0(x)(x - \sigma^\alpha)(x - \sigma^\beta) - \delta^{\alpha\beta} p_0(x) \sigma^\alpha (1 - \sigma^\alpha). \end{split}$$

Thus,

$$\sum_{x} \frac{\partial^{2} p_{0}}{\partial b_{\beta} \partial b_{\alpha}}(x) = \sum_{x} p_{0}(x)(x - \sigma^{\alpha})(x - \sigma^{\beta}) - \sum_{x} \delta_{x}^{\alpha\beta} p_{0}(x)\sigma^{\alpha}(1 - \sigma^{\alpha}).$$

$$0 = \sum_{x} p_{0}(x)(x - \sigma^{\alpha})(x - \sigma^{\beta}) - \delta^{\alpha\beta}\sigma^{\alpha}(1 - \sigma^{\alpha}).$$

$$\sum_{x} p_{0}(x)(x - \sigma^{\alpha})(x - \sigma^{\beta}) = \delta^{\alpha\beta}\sigma^{\alpha}(1 - \sigma^{\alpha}).$$

Lemma 21. 3-momentum $V^{\alpha_1\alpha_2\alpha_3} := \sum_x p_0(x) \prod_{i=1}^3 (x - \sigma^{\alpha_i})$ is

$$V^{\alpha_1 \alpha_2 \alpha_3} = \delta^{\alpha_1 \alpha_2 \alpha_3} \sigma^{\alpha_1} (1 - \sigma^{\alpha_1}) (1 - 2\sigma^{\alpha_1}). \tag{29}$$

Lemma 22. 4-momentum $V^{\alpha_1\cdots\alpha_4} := \sum_x p_0(x) \prod_{i=1}^4 (x - \sigma^{\alpha_i})$ is

$$V^{\alpha_1 \cdots \alpha_4} = V_c^{\alpha_1 \cdots \alpha_4} + \sum_{all \ pairs} V^{\alpha_{m_1} \alpha_{m_2}} V^{\alpha_{n_1} \alpha_{n_2}}, \tag{30}$$

where "connected" part

$$V_c^{\alpha_1 \cdots \alpha_4} := \delta^{\alpha_1 \cdots \alpha_4} \sigma^{\alpha_1} (1 - \sigma^{\alpha_1}) \left[1 - 6\sigma^{\alpha_1} + 6(\sigma^{\alpha_1})^2 \right], \tag{31}$$

and $(m_1, m_2), (n_1, n_2)$ runs over all (three) pairs.

4.1.2 1st-order

Lemma 23. For $\forall \alpha$,

$$\hat{x}^{\alpha} = \sigma^{\alpha} + \mathcal{O}(W). \tag{32}$$

Proof. The gradient of loss gives

$$\sum_{x} p_{D}(x)x^{\alpha} = \hat{x}^{\alpha} = \sum_{x} p_{E}(x)x^{\alpha}$$

$$\{\text{Tayor expand}\} = \sum_{x} p_{0}(x)x^{\alpha} + \mathcal{O}(W)$$

$$\left\{\sum_{x} p_{0}(x)x^{\alpha} = \sigma^{\alpha}\right\} = \sigma^{\alpha} + \mathcal{O}(W).$$

Theorem 24.

$$\frac{p_1(x)}{p_0(x)} = \frac{1}{2} W_{\alpha\beta}(x^{\alpha} - \sigma^{\alpha})(x^{\beta} - \sigma^{\beta}) - \frac{1}{2} W_{\alpha\beta} V^{\alpha\beta}. \tag{33}$$

Proof. Directly,

$$p_{E}(x) = \frac{\exp\left(b_{\alpha}x^{\alpha} + \frac{1}{2}W_{\alpha\beta}(x^{\alpha} - \hat{x}^{\alpha})(x^{\beta} - \hat{x}^{\beta})\right)}{Z}$$

$$\left\{\text{Extract } b_{\alpha}x^{\alpha}\right\} = \frac{\exp(b_{\alpha}x^{\alpha})\exp\left(\frac{1}{2}W_{\alpha\beta}(x^{\alpha} - \hat{x}^{\alpha})(x^{\beta} - \hat{x}^{\beta})\right)}{Z}$$

$$\left\{\text{Expand to } \mathcal{O}(W)\right\} = \frac{\exp(b_{\alpha}x^{\alpha})\left\{1 + \frac{1}{2}W_{\alpha\beta}(x^{\alpha} - \hat{x}^{\alpha})(x^{\beta} - \hat{x}^{\beta}) + \cdots\right\}}{Z_{0}(1 + Z_{1} + \cdots)}$$

$$\left\{p_{0}(x) = \cdots\right\} = p_{0}(x)\frac{\left\{1 + \frac{1}{2}W_{\alpha\beta}(x^{\alpha} - \hat{x}^{\alpha})(x^{\beta} - \hat{x}^{\beta}) + \cdots\right\}}{1 + Z_{1} + \cdots}$$

$$\left\{\frac{1}{1 + \epsilon} \sim 1 - \epsilon\right\} = p_{0}(x)\left\{1 + \frac{1}{2}W_{\alpha\beta}(x^{\alpha} - \hat{x}^{\alpha})(x^{\beta} - \hat{x}^{\beta}) + \cdots\right\}\left\{1 - Z_{1} + \cdots\right\}$$

$$\left\{\text{Expand}\right\} = p_{0}(x)\left\{1 + \frac{1}{2}W_{\alpha\beta}(x^{\alpha} - \hat{x}^{\alpha})(x^{\beta} - \hat{x}^{\beta}) - Z_{1} + \cdots\right\}$$

$$=: p_{0}(x) + p_{1}(x) + \cdots$$

Thus

$$\begin{split} \frac{p_1(x)}{p_0(x)} &= \frac{1}{2} W_{\alpha\beta}(x^{\alpha} - \hat{x}^{\alpha})(x^{\beta} - \hat{x}^{\beta}) - Z_1 \\ \{\hat{x}^{\alpha} &= \sigma^{\alpha} + \mathcal{O}(W)\} &= \frac{1}{2} W_{\alpha\beta}(x^{\alpha} - \sigma^{\alpha})(x^{\beta} - \sigma^{\beta}) - Z_1. \end{split}$$

Now we compute Z_1 . Since

$$1 = \sum_{x} p_E(x) = \sum_{x} p_0(x) \left\{ 1 + \frac{1}{2} W_{\alpha\beta} (x^{\alpha} - \sigma^{\alpha}) (x^{\beta} - \sigma^{\beta}) - Z_1 \right\}$$

$$\left\{ \sum_{x} p_0(x) = 1 \right\} = 1 + \frac{1}{2} W_{\alpha\beta} \left[\sum_{x} p_0(x) (x^{\alpha} - \sigma^{\alpha}) (x^{\beta} - \sigma^{\beta}) \right] - Z_1$$

$$\left\{ V^{\alpha\beta} := \cdots \right\} = 1 + \frac{1}{2} W_{\alpha\beta} V^{\alpha\beta} - Z_1$$

we have

$$Z_1 = \frac{1}{2} W_{\alpha\beta} V^{\alpha\beta}.$$

Then,

$$\frac{p_1(x)}{p_0(x)} = \frac{1}{2} W_{\alpha\beta}(x^{\alpha} - \sigma^{\alpha})(x^{\beta} - \sigma^{\beta}) - Z_1$$

$$\{Z_1 = \cdots\} = \frac{1}{2} W_{\alpha\beta}(x^{\alpha} - \sigma^{\alpha})(x^{\beta} - \sigma^{\beta}) - \frac{1}{2} W_{\alpha\beta}V^{\alpha\beta}.$$

Lemma 25. Up to $\mathcal{O}(W)$, for $\forall \gamma$,

$$\sum_{\alpha} p_E(x)x^{\gamma} = V^{\gamma} + \frac{1}{2}W_{\alpha\beta}V^{\alpha\beta\gamma}.$$
 (34)

Proof. Directly,

$$\begin{split} \sum_{x} p_{E}(x)x^{\gamma} &= \sum_{x} p_{0}(x)x^{\gamma} + \sum_{x} p_{1}(x)x^{\gamma} \\ \{p_{1}(x) = \cdots\} &= \sum_{x} p_{0}(x)x^{\gamma} + \sum_{x} p_{0}(x) \left[\frac{1}{2}W_{\alpha\beta}(x^{\alpha} - \sigma^{\alpha})(x^{\beta} - \sigma^{\beta}) - \frac{1}{2}W_{\alpha\alpha}\sigma^{\alpha}(1 - \sigma^{\alpha})\right]x^{\gamma} \\ \{\text{Expand}\} &= \sum_{x} p_{0}(x)x^{\gamma} \\ &+ \frac{1}{2}W_{\alpha\beta}\sum_{x} p_{0}(x)(x^{\alpha} - \sigma^{\alpha})(x^{\beta} - \sigma^{\beta})x^{\gamma} \\ &- \frac{1}{2}W_{\alpha\beta}V^{\alpha\beta}\sum_{x} p_{0}(x)x^{\gamma} \\ &= \sum_{x} p_{0}(x)x^{\gamma} \\ \{\text{Combine}\} &+ \frac{1}{2}W_{\alpha\beta}\sum_{x} p_{0}(x)(x^{\alpha} - \sigma^{\alpha})(x^{\beta} - \sigma^{\beta})(x^{\gamma} - \sigma^{\gamma}) + \frac{1}{2}W_{\alpha\beta}\sum_{x} p_{0}(x)(x^{\alpha} - \sigma^{\alpha})(x^{\beta} - \sigma^{\beta})\sigma^{\gamma} \\ &- \frac{1}{2}W_{\alpha\beta}V^{\alpha\beta}\sum_{x} p_{0}(x)x^{\gamma} \\ &= V^{\gamma} \\ &+ \frac{1}{2}W_{\alpha\beta}V^{\alpha\beta\gamma} + \frac{1}{2}W_{\alpha\beta}V^{\alpha\beta}\sigma^{\gamma} \\ &\{V^{\gamma} = \sigma^{\gamma}\} - \frac{1}{2}W_{\alpha\beta}V^{\alpha\beta}\sigma^{\gamma} \\ &= V^{\gamma} + \frac{1}{2}W_{\alpha\beta}V^{\alpha\beta\gamma}. \end{split}$$

Lemma 26. Up to $\mathcal{O}(W)$, for $\forall (\mu, \nu)$,

$$\sum_{x} p_{E}(x)(x^{\mu} - \hat{x}^{\mu})(x^{\nu} - \hat{x}^{\nu}) = V^{\mu\nu} + W_{(\alpha\beta)}V^{\alpha\mu}V^{\beta\nu} + \frac{1}{2}W_{\alpha\beta}V_{c}^{\alpha\beta\mu\nu}.$$
 (35)

Proof. Directly,

$$\begin{split} \sum_{x} p_{E}(x)(x^{\mu} - \hat{x}^{\mu})(x^{\nu} - \hat{x}^{\nu}) \\ \{p_{E} = p_{0} + p_{1}\} &= \sum_{x} p_{0}(x)(x^{\mu} - \hat{x}^{\mu})(x^{\nu} - \hat{x}^{\nu}) + \sum_{x} p_{1}(x)(x^{\mu} - \hat{x}^{\mu})(x^{\nu} - \hat{x}^{\nu}) \\ &= \sum_{x} p_{0}(x)(x^{\mu} - \hat{x}^{\mu})(x^{\nu} - \hat{x}^{\nu}) \\ \{p_{1}(x) = \cdots\} + \sum_{x} p_{0}(x) \left[\frac{1}{2} W_{\alpha\beta}(x^{\alpha} - \sigma^{\alpha})(x^{\beta} - \sigma^{\beta}) - \frac{1}{2} W_{\alpha\beta}V^{\alpha\beta} \right] (x^{\mu} - \hat{x}^{\mu})(x^{\nu} - \hat{x}^{\nu}) \\ &= \sum_{x} p_{0}(x)(x^{\mu} - \hat{x}^{\mu})(x^{\nu} - \hat{x}^{\nu}) \\ \{\text{Expand}\} + \frac{1}{2} W_{\alpha\beta} \sum_{x} p_{0}(x)(x^{\alpha} - \sigma^{\alpha})(x^{\beta} - \sigma^{\beta})(x^{\mu} - \hat{x}^{\mu})(x^{\nu} - \hat{x}^{\nu}) \\ - \frac{1}{2} W_{\alpha\beta}V^{\alpha\beta} \sum_{x} p_{0}(x)(x^{\alpha} - \sigma^{\alpha})(x^{\beta} - \sigma^{\beta})(x^{\mu} - \hat{x}^{\mu})(x^{\nu} - \hat{x}^{\nu}) \\ \{\hat{x}^{\alpha} = \cdots\} &= \sum_{x} p_{0}(x)\left(x^{\mu} - \sigma^{\mu} - \frac{1}{2}W_{\alpha\beta}V^{\alpha\beta\mu}\right)\left(x^{\nu} - \sigma^{\nu} - \frac{1}{2}W_{\alpha\beta}V^{\alpha\beta\nu}\right) \\ \{\hat{x}^{\alpha} = \sigma^{\alpha} + \mathcal{O}(W)\} + \frac{1}{2} W_{\alpha\beta}V^{\alpha\beta} \sum_{x} p_{0}(x)(x^{\alpha} - \sigma^{\alpha})(x^{\beta} - \sigma^{\beta})(x^{\mu} - \sigma^{\mu})(x^{\nu} - \sigma^{\nu}) \\ \{\hat{x}^{\alpha} = \sigma^{\alpha} + \mathcal{O}(W)\} - \frac{1}{2} W_{\alpha\beta}V^{\alpha\beta} \sum_{x} p_{0}(x)(x^{\mu} - \sigma^{\mu}) \\ - \frac{1}{2} W_{\alpha\beta}V^{\alpha\beta\nu} \sum_{x} p_{0}(x)(x^{\mu} - \sigma^{\mu}) \\ - \frac{1}{2} W_{\alpha\beta}V^{\alpha\beta\nu} \sum_{x} p_{0}(x)(x^{\mu} - \sigma^{\mu}) \\ - \frac{1}{2} W_{\alpha\beta}V^{\alpha\beta\nu} \sum_{x} p_{0}(x)(x^{\mu} - \sigma^{\mu}) \\ \{\sigma^{\mu} = V^{\mu} = \cdots\} - 0 \\ \{\sigma^{\mu} = V^{\mu} = \cdots\} - 0 \\ \{\sigma^{\mu} = V^{\mu} = \cdots\} - \frac{1}{2} W_{\alpha\beta}V^{\alpha\beta}V^{\mu\nu} \\ = V^{\mu\nu} \\ = V^{\mu\nu} = \cdots\} - \frac{1}{2} W_{\alpha\beta}V^{\alpha\beta}V^{\mu\nu} \\ = V^{\mu\nu} \\ = V^{\mu\nu} + \frac{1}{2} W_{\alpha\beta}V^{\alpha\beta}V^{\mu\nu} \\ = V^{\mu\nu} + \frac{1}{2} W^{\alpha\beta}V^{\alpha\beta}V^{\mu\nu} \\ = V^{\mu\nu} + \frac{1}{2} W^{\alpha\beta}V^{\alpha\beta}V^{\mu$$

$$\{\text{Combine}\} = V^{\mu\nu} + W_{(\alpha\beta)}V^{\alpha\mu}V^{\beta\nu} + \frac{1}{2}W_{\alpha\beta}V_c^{\alpha\beta\mu\nu}.$$

Theorem 27. [Perturbation Solution of BM]

1. Define $\hat{C}^{\mu\nu} := \sum_x p_D(x)(x^\mu - \hat{x}^\mu)(x^\nu - \hat{x}^\nu)$. Let W symmetric. By loss gradient, we have

$$\hat{x}^{\alpha} = \sum_{x} p_{E}(x)x^{\alpha}; \tag{36}$$

$$\hat{C}^{\mu\nu} = \sum_{x} p_E(x)(x^{\mu} - \hat{x}^{\mu})(x^{\nu} - \hat{x}^{\nu}). \tag{37}$$

2. From these, we get, up to $\mathcal{O}(W)$, for $\forall \mu$,

$$\hat{C}^{\mu\mu} = \hat{x}^{\mu}(1 - \hat{x}^{\mu}) + \mathcal{O}(W^2), \tag{38}$$

$$\sigma^{\mu} = \hat{x}^{\mu} - W_{\mu\mu}\hat{x}^{\mu}(1 - \hat{x}^{\mu}) \left(\frac{1}{2} - \hat{x}^{\mu}\right); \tag{39}$$

and for $\forall \mu, \nu \text{ with } \mu \neq \nu$,

$$W_{\mu\nu} = \frac{\hat{C}^{\mu\nu}}{\hat{x}^{\mu}(1-\hat{x}^{\mu})\,\hat{x}^{\nu}(1-\hat{x}^{\nu})}.$$
(40)

3. This perturbation is valid iff

i. for $\forall \mu, \exists \delta > 0, s.t. \ \hat{x}^{\mu} \in (\delta, 1 - \delta);$

ii. for $\forall \mu$,

$$\left| W_{\mu\mu} \left(\hat{x}^{\mu} - \frac{1}{2} \right) \right| \ll \frac{1}{1 - \hat{x}^{\mu}} < 1;$$
 (41)

iii. and for $\forall \mu, \nu$ with $\mu \neq \nu$,

$$\left| \hat{C}^{\mu\nu} \right| \ll ??. \tag{42}$$

Proof. Here we prove the second declaration.

When $\mu \neq \nu$, we have

$$\begin{split} \hat{C}^{\mu\nu} &= \sum_{x} \, p_E(x) (x^\mu - \hat{x}^\mu) (x^\nu - \hat{x}^\nu) \\ &\{ V^{\mu\nu} \propto \delta^{\mu\nu} \} = W_{(\alpha\beta)} \, V^{\alpha\mu} \, V^{\beta\nu} \\ &\{ W \text{ symmetric} \} = W_{\alpha\beta} \, V^{\alpha\mu} \, V^{\beta\nu} \\ &\{ V^{\alpha_1\alpha_2} = \delta^{\alpha_1\alpha_2} \sigma^{a_1} (1 - \sigma^{\alpha_1}) \} = W_{\mu\nu} \, \sigma^\mu (1 - \sigma^\mu) \, \sigma^\nu (1 - \sigma^\nu) \\ &\{ \hat{x}^\alpha = \sigma^\alpha + \mathcal{O}(W) \} = W_{\mu\nu} \, \hat{x}^\mu (1 - \hat{x}^\mu) \, \hat{x}^\nu (1 - \hat{x}^\nu) \end{split}$$

thus, for $\forall \mu \neq \nu$,

$$W_{\mu\nu} = \frac{\hat{C}^{\mu\nu}}{\hat{x}^{\mu}(1-\hat{x}^{\mu})\,\hat{x}^{\nu}(1-\hat{x}^{\nu})}.$$

And for $\mu = \nu$,

$$\begin{split} \hat{C}^{\mu\mu} &= \sum_{x} p_{E}(x)(x^{\mu} - \hat{x}^{\mu})(x^{\mu} - \hat{x}^{\mu}) \\ \{W_{\mu\nu} \text{ symmetric}\} &= V^{\mu\mu} + W_{\alpha\beta} V^{\alpha\mu} V^{\beta\mu} + \frac{1}{2} W_{\alpha\beta} V^{\alpha\beta\mu\mu} \\ &= \sigma^{\mu} (1 - \sigma^{\mu}) \\ &\quad + W_{\alpha\beta} \delta^{\alpha\beta} \delta^{\beta\mu} [\sigma^{\mu} (1 - \sigma^{\mu})]^{2} \\ &\quad + \frac{1}{2} W_{\alpha\beta} \delta^{\alpha\beta\mu\mu} \sigma^{\mu} (1 - \sigma^{\mu}) [1 - 6\sigma^{\mu} + 6 \left(\sigma^{\mu}\right)^{2}] \\ &= \sigma^{\mu} (1 - \sigma^{\mu}) \\ &\quad + W_{\mu\mu} [\sigma^{\mu} (1 - \sigma^{\mu})]^{2} \\ &\quad + \frac{1}{2} W_{\mu\mu} \sigma^{\mu} (1 - \sigma^{\mu}) [1 - 6\sigma^{\mu} + 6 \left(\sigma^{\mu}\right)^{2}] \\ \{\hat{x} = \sigma + \cdots\} &= \left(\hat{x}^{\mu} - \frac{1}{2} W_{\alpha\beta} V^{\alpha\beta\mu}\right) \left(1 - \hat{x}^{\mu} + \frac{1}{2} W_{\alpha\beta} V^{\alpha\beta\mu}\right) \\ &\quad + W_{\mu\mu} [\sigma^{\mu} (1 - \sigma^{\mu})]^{2} \\ &\quad + \frac{1}{2} W_{\mu\mu} \sigma^{\mu} (1 - \sigma^{\mu}) [1 - 6\sigma^{\mu} + 6 \left(\sigma^{\mu}\right)^{2}] \\ \{\text{Expand}\} &= \hat{x}^{\mu} (1 - \hat{x}^{\mu}) + W_{\alpha\beta} V^{\alpha\beta\mu} \left(\hat{x}^{\mu} - \frac{1}{2}\right) \\ &\quad + W_{\mu\mu} [\sigma^{\mu} (1 - \sigma^{\mu})]^{2} \\ &\quad + \frac{1}{2} W_{\mu\mu} \sigma^{\mu} (1 - \sigma^{\mu}) [1 - 6\sigma^{\mu} + 6 \left(\sigma^{\mu}\right)^{2}] \\ \{V^{\alpha\beta\mu} &= \cdots\} &= \hat{x}^{\mu} (1 - \hat{x}^{\mu}) + W_{\mu\mu} \sigma^{\mu} (1 - \sigma^{\mu}) (1 - 2\sigma^{\mu}) \left(\hat{x}^{\mu} - \frac{1}{2}\right) \\ &\quad + W_{\mu\mu} [\sigma^{\mu} (1 - \sigma^{\mu})]^{2} \\ &\quad + \frac{1}{2} W_{\mu\mu} \sigma^{\mu} (1 - \sigma^{\mu}) [1 - 6\sigma^{\mu} + 6 \left(\sigma^{\mu}\right)^{2}] \\ &\quad = \hat{x}^{\mu} (1 - \hat{x}^{\mu}) + W_{\mu\mu} \hat{x}^{\mu} (1 - \hat{x}^{\mu}) (1 - 2\hat{x}^{\mu}) \left(\hat{x}^{\mu} - \frac{1}{2}\right) \\ [\hat{x}^{\alpha} &= \sigma^{\alpha} + \mathcal{O}(W)] + W_{\mu\mu} [\hat{x}^{\mu} (1 - \hat{x}^{\mu})]^{2} \\ &\quad \{\text{Combine}\} &= \hat{x}^{\mu} (1 - \hat{x}^{\mu}) \\ &\quad + W_{\mu\mu} \hat{x}^{\mu} (1 - \hat{x}^{\mu}) \\ &\quad \times \left\{ (1 - 2\hat{x}^{\mu}) \left(\hat{x}^{\mu} - \frac{1}{2}\right) + \hat{x}^{\mu} (1 - \hat{x}^{\mu}) + \frac{1}{2} [1 - 6 \, \hat{x}^{\mu} + 6 \, (\hat{x}^{\mu})^{2}] \right\} \\ \left\{ \text{Simplify}\} &= \hat{x}^{\mu} (1 - \hat{x}^{\mu}), \end{cases}$$

Thus,

$$\hat{C}^{\mu\nu} = \hat{x}^{\mu}(1 - \hat{x}^{\mu}) + \mathcal{O}(W^2).$$

Finally, we have, for $\forall \mu$,

$$\begin{split} \hat{x}^{\mu} &= V^{\mu} + \frac{1}{2} W_{\alpha\beta} V^{\alpha\beta\mu} \\ &= \sigma^{\mu} + \frac{1}{2} W_{\alpha\beta} \delta^{\alpha\beta\mu} \sigma^{\alpha} (1 - \sigma^{\alpha}) (1 - 2\sigma^{\alpha}) \\ &= \sigma^{\mu} + W_{\mu\mu} \sigma^{\mu} (1 - \sigma^{\mu}) \left(\frac{1}{2} - \sigma^{\mu}\right). \\ \{\hat{x}^{\alpha} &= \sigma^{\alpha} + \mathcal{O}(W)\} = \sigma^{\mu} + W_{\mu\mu} \hat{x}^{\mu} (1 - \hat{x}^{\mu}) \left(\frac{1}{2} - \hat{x}^{\mu}\right) \end{split}$$

Thus

$$\sigma^{\mu} = \hat{x}^{\mu} - W_{\mu\mu}\hat{x}^{\mu}(1 - \hat{x}^{\mu}) \left(\frac{1}{2} - \hat{x}^{\mu}\right).$$

Lemma 28. Let X^{μ} , $\mu = 1, ..., N$ random variables. Then we have matrix

$$\frac{\operatorname{Cov}(X^{\mu}, X^{\nu})}{\operatorname{Var}(X^{\mu})\operatorname{Var}(X^{\nu})}$$

positive semi-definite.

Proof. Directly, define $Z^{\mu} := X^{\mu} / \text{Var}[X^{\mu}]$. Then, we have

$$\mathbb{E}[Z^{\mu}] = \frac{\mathbb{E}[X^{\mu}]}{\operatorname{Var}[X^{\mu}]}.$$

Then,

$$\begin{split} \frac{\operatorname{Cov}(X^{\mu}, X^{\nu})}{\operatorname{Var}(X^{\mu})\operatorname{Var}(X^{\nu})} = & \frac{\mathbb{E}[(X^{\mu} - \mathbb{E}[X^{\mu}])(X^{\nu} - \mathbb{E}[X^{\nu}])]}{\operatorname{Var}(X^{\mu})\operatorname{Var}(X^{\nu})} \\ = & \mathbb{E}\bigg[\frac{(X^{\mu} - \mathbb{E}[X^{\mu}])}{\operatorname{Var}(X^{\mu})}\frac{(X^{\nu} - \mathbb{E}[X^{\nu}])}{\operatorname{Var}(X^{\nu})}\bigg] \\ = & \mathbb{E}[(Z^{\mu} - \mathbb{E}[Z^{\mu}])(Z^{\nu} - \mathbb{E}[Z^{\nu}])] \\ = & \operatorname{Cov}(Z^{\mu}, Z^{\nu}), \end{split}$$

which, as a covariance matrix, is positive semi-definite.

Theorem 29. [Positive Semi-definiteness of W]

1. If set, for $\forall \mu$,

$$W_{\mu\mu} = \frac{1}{\hat{x}^{\mu}(1-\hat{x}^{\mu})},\tag{43}$$

then $W_{\mu\nu}$ is positive semi-defined.

2. In this case, we find, for $\forall \mu$,

$$\sigma^{\mu} = 2\,\hat{x}^{\mu} - \frac{1}{2}.\tag{44}$$

In addition, we shall check whether $\sigma^{\mu} \in (0,1)$ or not.

3. The perburbation is valid iff

i. for
$$\forall \mu, \exists \delta > 0, s.t. \ \hat{x}^{\mu} \in (\delta, 1 - \delta);$$

ii. for $\forall \mu$,

$$\left|\hat{x}^{\mu} - \frac{1}{2}\right| \ll \hat{x}^{\mu};\tag{45}$$

iii. and for $\forall \mu, \nu$ with $\mu \neq \nu$,

$$\left| \hat{C}^{\mu\nu} \right| \ll ??. \tag{46}$$

Proof. Here we prove the declarations one by one.

1. Directly,

$$W_{\mu\mu} = \frac{1}{\hat{x}^{\mu}(1-\hat{x}^{\mu})}$$
$$\left\{\hat{C}^{\mu\nu} = \hat{x}^{\mu}(1-\hat{x}^{\mu}) + \mathcal{O}(W^2)\right\} = \frac{\hat{C}^{\mu\mu}}{[\hat{x}^{\mu}(1-\hat{x}^{\mu})]^2}.$$

Together with $W_{\mu\neq\nu}$, we find, for $\forall (\mu,\nu)$,

$$W_{\mu\nu} = \frac{\operatorname{Cov}[X^{\mu}, X^{\nu}]}{\operatorname{Var}[X^{\mu}] \operatorname{Var}[X^{\nu}]},$$

where we used $Var[X^{\mu}] = \hat{x}^{\mu}(1 - \hat{x}^{\mu})$. This is positive semi-definite.

2. In this case,

$$\begin{split} \sigma^{\mu} &= \hat{x}^{\mu} - W_{\mu\mu} \hat{x}^{\mu} (1 - \hat{x}^{\mu}) \bigg(\frac{1}{2} - \hat{x}^{\mu} \bigg) \\ \{W_{\mu\mu} &= \cdots\} = \hat{x}^{\mu} - \frac{1}{\hat{x}^{\mu} (1 - \hat{x}^{\mu})} \hat{x}^{\mu} (1 - \hat{x}^{\mu}) \bigg(\frac{1}{2} - \hat{x}^{\mu} \bigg) \\ &= \hat{x}^{\mu} - \bigg(\frac{1}{2} - \hat{x}^{\mu} \bigg) \\ &= 2 \, \hat{x}^{\mu} - \frac{1}{2}. \end{split}$$

3. Since perturbation demands

$$|\sigma^{\mu} - \hat{x}^{\mu}| \ll \hat{x}^{\mu},$$

we get

$$|\sigma^{\mu} - \hat{x}^{\mu}| = \left|\hat{x}^{\mu} - \frac{1}{2}\right| \ll \hat{x}^{\mu}.$$

4.2 Perturbation of Restricted Boltzmann Machine

Theorem 30. [Perturbation Solution of RBM]

For $\forall i$, let $\hat{h}^i \equiv 1/2$ and $c_i \equiv 0$, then we have

$$E_{\text{eff}}(v; U, b, c) = -\frac{1}{2} W_{\alpha\beta}^{\text{eff}}(v^{\alpha} - \hat{v}^{\alpha})(v^{\beta} - \hat{v}^{\beta}) - b_{\alpha}^{\text{eff}}v^{\alpha} + \mathcal{O}(U^{3}), \tag{47}$$

where

$$b_{\alpha}^{\text{eff}} := b_{\alpha},\tag{48}$$

and

$$W_{\alpha\beta}^{\text{eff}} := \frac{1}{4} \sum_{i} U_{\alpha i} U_{\beta i}. \tag{49}$$

That is, restricted Boltzmann machine reduces to a Boltzmann machine.

Proof. Recall that

$$E_{\text{eff}}(v; U, b, c) = \sum_{\alpha} \left(\sum_{i} U_{\alpha i} v^{\alpha} \hat{h}^{i} - b_{\alpha} v^{\alpha} \right) - \sum_{i} s \left(\sum_{\alpha} U_{\alpha i} \left(v^{\alpha} - \hat{v}^{\alpha} \right) + c_{i} \right), \tag{50}$$

where soft-plus s is defined as

$$s(x) := \ln(1 + e^x). \tag{51}$$

Taylor expansion of soft-plus is

$$s(x) = 0 + \frac{x}{2} + \frac{x^2}{8} + \mathcal{O}(x^3).$$

Thus

$$\begin{split} E_{\text{eff}}(v) &= \sum_{\alpha} \left(\sum_{i} U_{\alpha i} v^{\alpha} \hat{h}^{i} - b_{\alpha} v^{\alpha} \right) \\ &\{ \text{Taylor expand} \} - \frac{1}{2} \sum_{i} \left[\sum_{\alpha} U_{\alpha i} \left(v^{\alpha} - \hat{v}^{\alpha} \right) + c_{i} \right] - \frac{1}{8} \sum_{i} \left[\sum_{\alpha} U_{\alpha i} \left(v^{\alpha} - \hat{v}^{\alpha} \right) + c_{i} \right]^{2} \\ &\{ \text{Expand} \} = \sum_{\alpha, i} U_{\alpha i} v^{\alpha} \hat{h}^{i} - \sum_{\alpha} b_{\alpha} v^{\alpha} \\ &- \frac{1}{2} \sum_{\alpha, i} U_{\alpha i} \left(v^{\alpha} - \hat{v}^{\alpha} \right) - \frac{1}{2} \sum_{i} c_{i} \\ &- \frac{1}{8} \sum_{\alpha, \beta} \left(\sum_{i} U_{\alpha i} U_{\beta i} \right) \left(v^{\alpha} - \hat{v}^{\alpha} \right) \left(v^{\beta} - \hat{v}^{\beta} \right) - \frac{1}{4} \sum_{\alpha, i} U_{\alpha i} \left(v^{\alpha} - \hat{v}^{\alpha} \right) c_{i} - \frac{1}{8} \sum_{i} c_{i}^{2} \\ &+ \mathcal{O}(U^{3} + c^{3}) \\ \left[\sum_{\alpha, i} U_{\alpha i} v^{\alpha} \right] &= \sum_{\alpha, i} U_{\alpha i} v^{\alpha} \left(\hat{h}^{i} - \frac{1}{2} - \frac{c_{i}}{4} \right) \\ &- \sum_{\alpha} b_{\alpha} v^{\alpha} \\ &- \frac{1}{8} \sum_{\alpha, \beta} \left(\sum_{i} U_{\alpha i} U_{\beta i} \right) \left(v^{\alpha} - \hat{v}^{\alpha} \right) \left(v^{\beta} - \hat{v}^{\beta} \right) \\ &[\text{Without } v] + \text{Const} \\ &+ \mathcal{O}(U^{3} + c^{3}) \end{split}$$

Let $\hat{h}^i \equiv 1/2$ and $c_i \equiv 0$, we have

$$\begin{split} E_{\text{eff}}(v) &= -\sum_{\alpha} b_{\alpha} v^{\alpha} \\ &- \frac{1}{8} \sum_{\alpha,\beta} \bigg(\sum_{i} U_{\alpha i} U_{\beta i} \bigg) (v^{\alpha} - \hat{v}^{\alpha}) (v^{\beta} - \hat{v}^{\beta}) \\ &+ \text{Const} \\ &+ \mathcal{O}(U^{3}). \end{split}$$

That is, omitting the constant, which will be eliminated by Z,

$$E_{\text{eff}}(v) = -\frac{1}{2} W_{\alpha\beta}^{\text{eff}}(v^{\alpha} - \hat{v}^{\alpha})(v^{\beta} - \hat{v}^{\beta}) - b_{\alpha}^{\text{eff}}v^{\alpha} + \mathcal{O}(U^{3}), \tag{52}$$

where

$$b_{\alpha}^{\text{eff}} := b_{\alpha},$$

and

$$W_{\alpha\beta}^{\text{eff}} := \frac{1}{4} \sum_{i} U_{\alpha i} U_{\beta i}. \tag{53}$$

4.3 Validation of Perturbations

Remark 31. [Validation of Perturbations]

For making the perturbation valid, the dataset shall have the properties, for $\forall \alpha$,

$$\hat{x}^{\alpha} \approx 0.5 \tag{54}$$

and for $\forall \alpha, \beta$ with $\alpha \neq \beta$,

$$\hat{C}^{\alpha\beta} \approx 0. \tag{55}$$

Given a dataset of X^a , we construct a "soften version" of it, Y^a , s.t. this Y^a satisfies these properties.

PERTURBATION THEORY 15

Definition 32. [Zoom-in Trick]

Given Bernoulli random variable X, and a parameter $\delta \in [0, 0.5)$, we duplicate it to i.i.d. Bernoulli random variables $Y_1, ..., Y_m$, s.t. for $\forall i$

$$p(y_i = 1|x = 0) = \delta, \tag{56}$$

and

$$p(y_i = 1|x = 1) = 1 - \delta. (57)$$

Lemma 33. We have, for $\forall i$,

$$p(y_i = 1) = 0.5 + (2p - 1)(0.5 - \delta), \tag{58}$$

where p := p(x = 1).

Theorem 34. |Zoom-in Trick|

Let $\epsilon := 0.5 - \delta > 0$. We have, for $\forall (\alpha, i)$,

$$\lim_{\epsilon \to 0} \hat{y}^{(\alpha,i)} = 0,$$

and for $\forall (\alpha, i), (\beta, j)$ with $(\alpha, i) \neq (\beta, j)$,

$$\lim_{\epsilon \to 0} \hat{C}^{(\alpha,i)(\beta,j)} = 0.$$

Specifically for the first limit, we have $\hat{y}^{(\alpha,i)} \sim \mathcal{N}(\mu, \sigma)$ where

$$\mu := 0.5 + (2\hat{x}^{\alpha} - 1)(0.5 - \delta), \tag{59}$$

and

$$\sigma := \sqrt{\frac{0.25 - [(2\hat{x}^{\alpha} - 1)(0.5 - \delta)]^2}{N}},$$

with N the data-size.

Proof. The first limit can be derived from the $\hat{y}^{(\alpha,i)} \sim \mathcal{N}(\mu,\sigma)$. The second limit can be proved by considering the limit case, where $\delta \to 0.5$. In this situation, for $\forall (\alpha, i), y^{(\alpha, i)} \sim \text{Bernoulli}(0.5)$. Thus all independent, leading to $\hat{C}^{(\alpha, i)(\beta, j)} = 0$.