

实验与创新实践教育中心

实验报告

课程名称:模拟电子技术实验 实验名称:实验一:二极管与三极管的功能测试

专业-班级:		学号: _	女	性名:	
实验日期:	年	月[日 评分:		
教师评语:					
			助教签字:		
			教师签字:		
			日期:		

实验预习

实验预习和实验过程原始数据记录

世界の	预习结果审核:	<u> </u>				原始数据	居审核:			
表 1-2 二級管判別记录表格	(包括预习时,	,计算的理	论数据)						
二极管正向电压 二极管反向电压 二极管反向电压 二极管反向电阻 (500kΩ档位) 无限管反向电阻 (500kΩ档位) 二极管反向电阻 (5MΩ档位) 表 1-3 晶体管管型判别记录表格 晶体管核性判别 UBE UBE UCE UEB UCB UECB UE		1191114			二极管判别	记录表格				
二极管反向电压 (500kΩ档位) (5MΩ档位) 二极管反向电压 (500kΩ档位) 二极管反向电阻 (500kΩ档位) 表 1-3 晶体管管型判别记录表格 晶体管极性判别 UBE UBE UCB UCB UEE 管型 9012 \$9013 \$\$\frac{1}{8}\$ L4 晶体管的输入特性测试表格 \$\frac{1}{8}\$ LO A) \$\$\frac{1}{8}\$ L4 晶体管的输入特性测试表格 \$\frac{1}{8}\$ LCE \$\$\frac{1}{8}\$ LO A <	二极管极性判别	电压值	二极管	宇 电阻测	量	电阻	二极管	官电阻测量		电阻
(SO0KΩ β d c c c c c c c c c c c c c c c c c c	一担然工力由压		二极管	 至正向电	阻		二极管	正向电阻	1	
Company Co	一		(500	kΩ档位)		(5M	[Ω档位)		
CSOOKΩPICU SMΩPICU	一极签反向由压		二极管	育反向电	阻		二极管	反向电阻	1	
晶体管极性判别 UBE UBE UCE UEB UCB UEC 管型 9012 9013 表 1-4 晶体管的输入特性测试表格 UBE(V) 0 2 4 6 10 20 40 60 80 测试条件 UCE=0 UCE=2V 表 1-5 晶体管的输出特性曲线测试表格 UCE(MA) 0 1 2 3 5 10 测试条件 IB=10μA IB=20μA IB=30μA IB=30μA<	一极自及的电压		(500	kΩ档位)		(5M	[Ω档位)		
9012 9013 表 1-4 晶体管的输入特性测试表格 I _B (μA) U _{BE} (V) 0 2 4 6 10 20 40 60 80 Mil			表	€ 1-3 晶体	管管型判	别记录表格				
Section Se	晶体管极性判别	$U_{ m BE}$	$U_{ m BC}$	Uc	CE	$U_{ m EB}$	$U_{\rm CB}$	L	EC	管型
表 1-4 晶体管的输入特性测试表格 I _B (μ A) U _{BE} (V) 0 2 4 6 10 20 40 60 80 测试条件 U _{CE} =0	9012									
IB(μ A)	9013									
UBE(V) 0 2 4 6 10 20 40 60 80 測试条件 UCE(V)			表 1	1-4 晶体	管的输入。	特性测试表 [;]	格 T			
別试条件										
U _{CE} =2V 表 1-5 晶体管的输出特性曲线测试表格 U _{CE} (V) I _B =10μA I _B =20μA I _B =30μA 测试晶体管三种工作状态的特性: 临界饱和时,集电极电流 I _{CS} = 表 1-6 晶体管的三种工作状态特性测试表格 测试条件 I _B U _{CE} (V) U _{BE} (V) I _C 晶体管的工作 晶体管的两个结 的偏置状态 I _B >=I _{BS} I _B I _B >=0-I _{BS} I _C	$U_{\rm BE}({ m V})$	0	2	4	6	10	20	40	60	80
U _{CE} =2V 表 1-5 晶体管的输出特性曲线测试表格 U _{CE} (V) I _B =10μA I _B =20μA I _B =30μA 测试晶体管三种工作状态的特性: 临界饱和时,集电极电流 I _{CS} = 表 1-6 晶体管的三种工作状态特性测试表格 测试条件 I _B U _{CE} (V) U _{BE} (V) I _C 晶体管的工作 晶体管的两个结 的偏置状态 I _B >=I _{BS} I _B I _B >=0-I _{BS} I _C	测试条件									
表 1-5 晶体管的输出特性曲线测试表格 $I_{C(mA)} = I_{D(mA)} = I_{D$										
UCE(V) Ic(mA) 0 1 2 3 5 10 测试条件 I _B =10μA I _B =20μA I _B =30μA	U _{CE} =2V									
$I_{C}(mA)$ 0 1 2 3 5 10 测试条件 $I_{B}=10\mu A$ $I_{B}=20\mu A$ $I_{B}=30\mu A$ 测试晶体管三种工作状态的特性: 临界饱和时,集电极电流 $I_{Cs}=$ 基极电流 $I_{Ds}=$ 表 1-6 晶体管的三种工作状态特性测试表格 $I_{B}>=I_{BS}$ $I_{B}>=I_{BS}$ $I_{B}>=I_{BS}$ $I_{B}>=I_{BS}$ $I_{B}=0\sim I_{BSs}$			表 1-5	5 晶体管的		 生曲线测试表	 長格			
Mi	$U_{\rm CE}({ m V})$									
测试条件 $I_{B}=10\mu A$ $I_{B}=20\mu A$ $I_{B}=30\mu A$ $I_{B}=30\mu A$ 测试晶体管三种工作状态的特性: 临界饱和时,集电极电流 $I_{cs}=$ 基极电流 $I_{bs}=$ $,$ $\beta=$ ξ 1-6 晶体管的三种工作状态特性测试表格 $I_{B}>=I_{BS}$ $I_{B}>=I_{BS}$ $I_{B}=0\sim I_{BSs}$	$I_{\rm C}({ m mA})$	0		,	2		2	_		10
I_{B} =10 μ A I_{B} =20 μ A I_{B} =30 μ A I_{B} =30 μ A I_{B} =30 μ A I_{B} =4 μ A I_{B} =		U		1	2		3	3		10
$I_{B}=20\mu A$ $I_{B}=30\mu A$	测试条件									
I_{B} =30μA	$I_{\rm B}=10\mu{\rm A}$									
测试晶体管三种工作状态的特性:	•									
临界饱和时,集电极电流 $I_{cs}=$										
表 1-6 晶体管的三种工作状态特性测试表格 $I_{\rm B} \qquad U_{\rm CE}({\rm V}) \qquad U_{\rm BE}({\rm V}) \qquad I_{\rm C} \qquad \qquad $				* * . *	1 33.			_		
测试条件 I_B $U_{CE}(V)$ $U_{BE}(V)$ I_C 晶体管的工作 晶体管的两个结 的偏置状态 $I_B{>=}I_{BS}$ $I_B{=}0{\sim}I_{BSs}$	临界饱和时,集电机	汲电流 $I_{cs}=$						β=		
测试条件 $I_{\rm B}$ $U_{\rm CE}({\rm V})$ $U_{\rm BE}({\rm V})$ $I_{\rm C}$ 区域 的偏置状态 $I_{B}{>}=I_{BS}$ $I_{B}{=}0{\sim}I_{BSs}$			表 1-6 ;	晶体管的 ·	二种工作制	大态特性测证				
I_B =0 \sim I_{BSS}	测试条件	I_{B}	$U_{\mathrm{CE}}(\mathrm{V})$		$U_{\rm BE}({ m V})$	$I_{\rm C}$		管的工作		
	$I_{B}>=I_{BS}$									
I_B =0	$I_B=0\sim I_{BSs}$									
	$I_B=0$									

— 、	实验目	的

二、实验设备及元器件

三、实验原理(重点简述实验原理,画出原理图)

四、实验过程

(叙述具体实验过程的步骤和方法,记录实验数据在原始数据表格,如需要引用原始数据表格,请标注出表头,如"实验数据见表 1→*")

五、实验数据分析

七、实验体会与建议

实验与创新实践教育中心

实验报告

课程名称:_	模拟电子技	术实验	_实验名和	你: <u>实验</u>	二: 单管	<u>交流放大电路</u>
专业-班级:_		学号	 		_ 姓名:	
实验日期: _	年	月	日	评	· 分:	
教师评语:						
			į	助教签号	字:	
			Ę.	教师签:	字:	
				日 其	钥:	

实验预习

实验预习和实验过程原始数据记录

预习结果审核:	原始数据审核:
(包括预习时, 计算的理论数据)	
注意: 所有的波形都必须拍照保存, 用于课堂	<u>全检查和课后分析。</u>

表 2-2 静态工作点数据

	实测数据					根据	实测计算的数	(据	
$U_{ m BE}$ /V	$U_{ m BE}/{ m V}$ $U_{ m CE}/{ m V}$ $V_{ m B}/{ m V}$ $V_{ m E}/{ m V}$ $V_{ m C}/{ m V}$ $R_{ m c}/{ m k}\Omega$ $R_{ m c}/{ m k}\Omega$					$I_{ m B}/\mu{ m A}$	$I_{\rm C}/{ m mA}$	β	

表 2-3 Ce对放大倍数的影响

条件	U _i (mV)	$U_{\rm o}({ m V})$	$A_{ m u}$	u _i 和 u _o 波形
$C_{\rm e}$ =47 μ F				
Ce 断开				

表 2-4 测量电压放大倍数

条件	$U_{\rm i}({ m mV})$	$U_{\rm o}({ m V})$	$A_{ m u}$
$R_L = \infty \ (R_P 不变)$			
$R_L = 10$ kΩ (R_P 不变)			
$R_L = 1$ kΩ $(R_P $ π \mathfrak{T} $)$			

表 2-5 静态工作点对输出电压波形的影响

		R _P 合适	RP减小	RP最大	R _P 合适
		$U_{\rm i}=10{ m mV}$	$U_{\rm i}=10{ m mV}$	$U_{\rm i}=10{ m mV}$	U _i 偏大
	 测量参数/V				
Q	侧里多奴/V				
点					
	计算静态值	$I_{ m B} = \mu { m A}$	$I_{ m B}\!\!=\!$	$I_{ m B}{=}$ $\mu{ m A}$	$I_{ m B} = \mu { m A}$
	月昇閉心阻	$I_{\rm C}$ = mA	I_{C} = mA	$I_{\mathrm{C}}=$ mA	$I_{\mathrm{C}}=$ mA
画车	输入和输出电 压波形	在同一时序下,课后使 用坐标纸画图	在同一时序下,课后使 用坐标纸画图	在同一时序下,课后使 用坐标纸画图	在同一时序下,课后使 用坐标纸画图
	失真判断				

— 、	实验	目	的
•		_	-

二、实验设备及元器件

三、实验原理(重点简述实验原理,画出原理图)

四、实验过程

(叙述具体实验过程的步骤和方法,记录实验数据在原始数据表格,如需要引用原始数据表格,请标注出表头,如"实验数据见表 1-*")

五、实验数据分析

1、在同一时序下,绘制表 2-3 中 u_i 和 u_o 波形,推导说明 C_e 变化对输出波形影响的原因(幅值、相位)。

2、根据表 2-4,并推导分析负载变化对交流电压放大倍数的影响原因。

3、绘制表 2-5 中的 u_i 和 u_o 波形,并注明失真判断。

六、问题思考

(回答指导书中的思考题)

1. 输入信号合适的情况下,晶体管放大电路出现饱和失真或截止失真的原因是什么?在电路中应调整哪个元件才能消除失真?

2. 在此次使用的放大电路中,	如何提高电压放大倍数?
	说明本实验中的放大电路的输出出现削顶失真时,为截止失真,还是饱和失型管构成的共射级放大电路吗?请说明理由。

七、实验体会与建议

实验与创新实践教育中心

实验报告

课程名称:	模拟电子	技术实验	实验名称:	_实验三:	射极跟随器
专业-班级: _		学号: _		姓名: _	
实验日期:	年	月	3 i	平分:	
教师评语:					
			助教签	字:	
			教师签	字:	
			А	掛.	

实验预习

实验预习和实验过程原始数据记录

预习结果	具审核:				原始	数据审核	₹:		
		 计算的组)	7.4.711	27,441 1 12			
注意: 所						5分析。			
17758 • //	TH H J W / V I		W DK 11 3 / 1.	1 1 W T 1		H /J // 10			
			表 3-2 爿	射极跟随器青	争态工作点数	女据表			
	测量	 量值				计	 算值		
V _E /V	$V_{\rm E}$	$V_{\rm B}/{ m V}$ $V_{\rm C}/{ m V}$		V _{BE} /	V	V _{CE} /V	I _E /mA		I _B /mA
	<u>'</u>			'	-		1	'	
			表 3-3 射		大倍数测量	数据表			
				测量值				计算	值
		$U_{ m i}\!/\! m V$		$U_{ m s}\!/\! m V$	U_{o}	$V (R_L=1 \text{k}\Omega)$	2) .	A_{u}	$A_{ m us}$
A点									
B点									
			表 3-4 射		随特性测量	数据表			
U _i /V									
$U_{ m L}/{ m V}$									
			表 3-5 射	极跟随器输	出电阻测量			٦	
			$U_{ m s}/{ m mV}$	$U_{\rm i}/{ m m}$	ıV ,	R _i /ks		4	
					¥	则量值	理论值	4	
		空载						4	
		$R_{\rm L}=1{\rm k}\Omega$							
			丰26 斛	极跟随器输	山中四洲是	粉捉害			
			1次 3-0 別	拟欧胆砧制	山电阻侧里	$R_{\rm o}/{ m k}$	<u> </u>	٦	
			$U_{ m L}/{ m V}$	U _o /	V ,	则量值		+	
		Δ 占按 λ			1	则里徂	理论值	+	
		A 点接入 B 点接入						+	
		表	· 3-7 射极跟随	有器幅频特性	测量数据表	I/≔ V			
		f _L	- 7.7.17.10A.10K.PQ	2 BB TM 227 14 14	f_0	V		$f_{ m H}$	
f	10Hz	50Hz	100Hz	1kHz	10kHz	100kHz	1MHz	2MHz	3MHz

 U_{i}/V U_{o}/V $A_{u}=U_{o}/U_{i}$

— 、	实验目	的

二、实验设备及元器件

三、实验原理(重点简述实验原理,画出原理图)

四、实验过程

(叙述具体实验过程的步骤和方法,记录实验数据在原始数据表格,如需要引用原始数据表格,请标注出表头,如"实验数据见表 1→*")

五、实验数据分析

1. 测定静态工作点

根据表 3-2 的测量数据,和理论计算值比较,分析误差产生的原因。

2. 测量输出电阻 R_0 和输入电阻 R_i

根据表 3-4 和 3-5, 测量的输入电阻和输出电阻, 与理论计算值比较, 分析误差产生的原因。

3. 根据表 3-7, 在坐标纸中, 绘制幅频响应曲线图 $A_u=F(f)$ 。

六、问题思考

(回答指导	书中	的思	考题)
-------	----	----	-----

1. 测量放大器静态工作点时,如果测得 $U_{CE} < 0.5V$,说明晶体管处于什么工作状态? 如果测得 $U_{CE} \approx U_{CC}$,晶体管又处于什么工作状态?

2. 在图 3-2 所示的实验电路中,偏置电阻 RB 起什么作用?

3. 在测试表 3-6 时, 当频率达到 100kHz 以上时, 为什么不能使用 F287C 测量, 而需要使用电子毫伏表, 请在网络上搜索两个设备的资料来回答问题。

七、实验体会与建议

实验与创新实践教育中心

实验报告

课程名称:	模拟电子技7	<u> </u>	金名称: <u>实</u>	<u>验四:带</u>	负反馈的两	极交流电压放
<u>大电路</u> 专	5业-班级:		_ 学号: _		_ 姓名: _	
实验日期:	年_	月	目	评分	ነን፡	
李 加西(亚)五						
教师评语	:					
			F	h数签字	· _	
]:	

实验预习

实验预习和实验过程原始数据记录

预习结果审核: _	原始数据审核:
(包括预习时, 计算	算的理论数据)
注意: 所有的波形都必	须拍照保存,用于课堂检查和课后分析。

表 4-2 静态工作点电压测试

测量项目	$V_{\rm B1}$	$V_{ m E1}$	$V_{\rm C1}$	$V_{ m B2}$	$V_{ m E2}$	$V_{\rm C2}$
测量数据						

表 4-3 有无反馈的放大电路的测试表格

测量电路		测量项目				计算项目		
基本放大电	$U_{ m i}$	U _o (不接 R _L)	U' _o (接 R _L)	<i>U</i> s (接 <i>R</i> s)	A _u (不接 R _L)	A' _u (接 R _L)	r _i	r _o
路(无反馈)	15mV <i>f</i> =1kHz							
反馈放大电	$U_{ m i}$	U _{of} (不接 R _L)	U' _{of} (接 R _L)	U _{sf} (接 Rs)	A _{uf} (不接 R _L)	A' _{uf} (接 R _L)	$r_{ m if}$	$r_{ m of}$
路(AB 连接)	15mV <i>f</i> =1kHz							

表 4-4 有无反馈的放大电路的通频带性能测试表格

测量电路	Ä			计算项目
VV 2 0 8	U _i (参考值,以实测为准) 有效值,频率	<i>U</i> _i (实际) 有效值,频率	U _o (不接 R _L)	A _u (不接 R _L)
甘木分十中四	15mV f _I =300Hz			
基本放大电路	15mV f _L =460Hz			
(无反馈)	15mV f ₂ =2kHz			
	15mV $f_{\text{H}}=8 \text{kHz}$			
	15mV $f_3=15 \text{kHz}$			
	U _i (参考值,以实测为准)	U _i (实际)	U _{of} (不接 R _L)	Auf (不接 RL)
C /电 分 上 占 四	15mV f ₁ =200Hz			
反馈放大电路	15mV $f_L = 300 \text{Hz}$			
(AB 连接)	15mV $f_2 = 2 \text{kHz}$			
	15mV $f_{\text{H}}=23 \text{kHz}$			
	15mV <i>f</i> ₃=40kHz			

 ,	、实验	6目的

二、实验设备及元器件

三、实验原理(重点简述实验原理,画出原理图)

四、实验过程

(叙述具体实验过程的步骤和方法,记录实验数据在原始数据表格,如需要引用原始数据表格,请标注出表头,如"实验数据见表 1-*")

五、实验数据分析

(按指导书中实验报告的要求用图表或曲线对实验数据进行分析和处理,并对实验结果做出判断,如需绘制曲线请在**坐标纸**中进行)

测量电路	测量项目				计算项目			
基本放大电	$U_{ m i}$	<i>U</i> 。 (不接 <i>R</i> L)	U' _o (接 R _L)	<i>U</i> s (接 <i>R</i> s)	A _u (不接 R _L)	A' _u (接 R _L)	$r_{\rm i}$	$r_{ m o}$
路(无反馈)	15mV <i>f</i> =1kHz							
反馈放大电	$U_{ m i}$	U _{of} (不接 R _L)	U' _{of} (接 R _L)	U _{sf} (接 Rs)	A _{uf} (不接 R _L)	A' _{uf} (接 R _L)	$r_{ m if}$	$r_{ m of}$
路(AB 连接)	15mV <i>f</i> =1kHz							

表 4-3 有无反馈的放大电路的测试表格

^{2、}根据表 4-4 数据,画出无反馈和有反馈放大电路的幅频特性曲线(Y 轴放大倍数 A_u ,X 轴频率 f)

六、问题思考

(回答指导书中	'的思考题)
---------	--------

1. 总结电压串联负反馈对放大电路性能的影响,包括输入电阻,输出电阻,放大倍数及波形失真的改善等

2. 如果测量时发现放大倍数 Au 远小于设计值,可能是什么原因造成的?

3. 测量放大电路输入电阻时,若串联电阻的阻值 R_s 比其输入电阻的值大很多或小很多,对测量结果有何影响?

七、实验体会与建议

实验与创新实践教育中心

实验报告

课程名称: ___模拟电子技术实验___实验名称: 实验五: 有源滤波电路的研究__

专业-班级:		学号:			姓名:	
实验日期:	年	月	_日	评	² 分:	
教师评语:						
				助教签	字:	
				教师签	字:	
				- +	4 m	

实验预习

实验预习和实验过程原始数据记录

预	习结果审核:	原始数据审核:	
	包括预习时,计算的理论数据) 一阶有源低通滤波器实域仿真:按照 5-8 图参数进行仿保存电路图截屏和输出波形 Vout 图,并测量输入输出信	· ·	合老师看波形照片。
2、	一阶有源低通滤波器仿真:按照 5-9 图参数,计算的截	止频率=	(写出计算过程)
	保存电路图截屏和输出波形 Vout 图,并测量其截止频率	区,要求给老师看波形照片	L 1 •
3、	二阶有源低通滤波器频域仿真:按照 5-10 图参数,计算改变 R3,R4 大小, R_3 =10k Ω , R_4 =10k Ω ,计算的 Q1=	· · · · · · · · · · · · · · · · · · ·	
1	保存电路图截屏和输出波形 Vout 图,并测量其截止频率,	要求给老师看波形照片。	
4、	二阶有源高通滤波器频域仿真:按照 5-11 图参数,计算出计算过程)	拿的特征频率=,	截止频率=(写
	保存电路图截屏和输出波形 Vout 图,并测量其截止频率	区,要求给老师看波形照片	L 1 o
5、	二阶有源带通滤波器频域仿真:按照 5-12 图参数,计算	章的中心频率=	(写出计算过程)
	保存电路图截屏和输出波形 V_{out} 图,并测量其中心频率	区,要求给老师看波形照片	L 1 •
6、	二阶有源带阻滤波器频域仿真:按照 5-13 图参数,计算	算的中心频率=	(写出计算过程)
	保存电路图截屏和输出波形 Vout 图,并测量其中心频率	区,要求给老师看波形照片	L. 1 o

 .	•	实	验	目	的
	•	_	-	$\overline{}$	

二、实验设备及元器件

三、实验原理(重点简述实验原理,画出原理图)

四、实验过程

(叙述具体实验过程的步骤和方法,记录实验数据在原始数据表格,如需要引用原始数据表格,请标注出表头,如"实验数据见表 1-1")

本次实验过程可简述,不需要描述软件的使用,需要描述遇到的问题,以及你是怎么解决的。

五、实验数据分析

(按指导书中实验报告的要求用图表或曲线对实验数据进行分析和处理,并对实验结果做出判断,如需绘制曲线请在坐标纸中进行。也可以按要求自拟实验数据分析文档附上。)

1、一阶有源低通滤波器实域仿真: (打印出电路图,和输出波形图,贴上)

在两种输入条件下,测试并保存电路图截屏和 vin0 和输出波形 out0 的图,测量输入信号和输出信号的幅值、频率等信息

2、一阶有源低通滤波器频域仿真: (打印出电路图,和输出波形图,贴上)保存电路图截屏和输出波形 $V_{\rm out}$ 图,并测量其截止频率,同计算的截止频率相比较,得出实验和理论分析结论

3、二阶有源低通滤波器频域仿真: (打印出电路图,和输出波形图,贴上)保存电路图截屏和输出波形 V_{out} 图,并测量其截止频率,改变 R_3 , R_4 的大小,来改变 Q 值的大小,保存分析 Q 值大小对于二阶有源低通滤波器幅频特性的影响(需测试 3 中不同情况的 Q 值的波形),并同一阶有源滤波器幅频特性进行比较。

改变 R_3 , R_4 的大小,在 $Q=\infty$ 时,选择一合适的输入电压(幅值、频率),测试此电路的实域波形,观察输入电压 VSIN 和输出电压 out 之间的关系,得出结论,分析理论和仿真是否一致。

4、二阶有源高通滤波器频域仿真: (打印出电路图,和输出波形图,贴上)保存电路图截屏和输出波形 $V_{\rm out}$ 图,并测量其截止频率,同计算的截止频率相比较,得出实验和理论分析结论。

5、二阶有源带通滤波器频域仿真: (打印出电路图,和输出波形图,贴上)保存电路图截屏和输出波形 $V_{\rm out}$ 图,并测量其中心频率,同计算的中心频率相比较,得出实验和理论分析结论。

6、二阶有源带阻滤波器频域仿真:(打印出电路图,和输出波形图,贴上)保存电路图截屏和输出波形 V_{out} 图,并测量其中心频率,同计算的中心频率相比较,得出实验和理论分析结论。

六、问题思考

1. 分析有源滤波器和无源滤波器的差异。

2. 是否可以运用两个运放搭建二阶有源滤波器,如果可以,和单个运放构成的二阶有源滤波器有什么差异。

七、实验体会与建议

实验与创新实践教育中心

实验报告

课程名称: 模拟电子技术实验 实验名称: 实验六: 集成运放的线性和非线性应

实验日期:	用	_专业-班级:		学号:		姓名	፭፡
助教签字:	实验	日期:	年/]日	评	分:	
助教签字:							
助教签字:							
	教师	·····································					
					助教签号	₹.	
教帅佥子:							

实验预习

实验预习和实验过程原始数据记录

预习结果审核:	原始数据审核:	
(预习时,需计算理论数据,	并且使用仿真软件进行仿真,	完成预习报告中的仿
真部分,可另附一预习仿真排	设 告作为预习报告)	
注意: 所有的波形都必须拍照保存	<u>字,用于课堂检查和课后分析。</u>	

1、反相比例放大电路

表 6-2 反相比例放大电路测试数据表格

直流信号源 U _i /V	-0.4	0.4	0.6	0.8
输出电压 U。/V				
直流放大倍数				

u _i 的有效值 /V	输出电压计算值 /V	实测值 u。有效值	交流放大倍数	输入电压和输出电压的
				波形
0.5V				
1V				

仿真电路图(交流输入电压有效值 1V): 仿真波形图(交流输入电压有效值 1V):

用示波器观察 u_i 和 u_o 的波形,并保存波形 u_i 和 u_o 。

2、同相比例放大电路

表 6-3 同相比例放大电路测试数据表格

输入电压有效值	0.5V	1V	2V
理论计算值 U。			
实测值 U。			
误差			

仿真电路图(交流输入电压有效值 1V): 仿真波形图(交流输入电压有效值 1V):

用示波器观察 u_i 和 u_o 的波形, 并保存波形 u_i 和 u_o 。

3、减法器电路

表 6-4 减法运算电路

有效值 Uil	有效值 U _{i2}	有效值 U。(测量)	有效值 U。(理论)	误差
0.5V	1V			
0.5V	1.2V			

仿真电路图 (U_{i1} =0.5V, U_{i2} =1.2V): 仿真波形图 (U_{i1} =0.5V, U_{i2} =1.2V):

用示波器观察 u_{12} 和 u_{0} 的波形, 并保存波形 u_{12} 和 u_{0} 。

4、加法器电路

表 6-5 反相加法运算电路

直流信号源 Uil/V	直流信号源 Ui2/V	<i>U</i> 。(测量)/V	U。(理论)/V	误差
2V	0.5V			
2V	1V			

仿真电路图 (U_{i1} =2V, U_{i2} =0.5V): 仿真波形图 (U_{i1} =2V, U_{i2} =0.5V):

5、电压跟随器电路

表 6-6 电压跟随器电路测试数据表

测试条件	$R_1=10$ k Ω	$R_1=10$ k Ω
	$R_{\rm f}=10{\rm k}\Omega$	$R_{\rm f}=10{ m k}~\Omega$
	RL开路	$R_{\rm L}$ =50 Ω
理论计算值 U。		
实测值 U。		
误差		

仿真电路图和仿真波形图(Vin=1Vdc+0.3Vacp-p R_1 =10k Ω , R_1 =10k Ω , R_L =50 Ω):

6、 积分电路 推导出 u_o 的表达式。	
仿真电路图:	仿真波形图:
用示波器观察 u_i 和 u_o 的波形,	并保存波形 u_i 和 u_o 。
7、微分电路	
推导出 u_o 的表达式	
仿真电路图:	仿真波形图:

用示波器观察 u_i 和 u_o 的波形, 并保存波形 u_i 和 u_o 。

用示波器观察 u_i 和 u_o 的波形,8、电压过零比较器电路	并保存波形 u_i 和 u_o 。
仿真电路图:	仿真波形图:

用示波器观察 u_i 和 u_o 的波形,并保存波形 u_i 和 u_o 。 9、滞回比较器电路 仿真电路图(U=0V):

仿真波形图 (U=0V):

用示波器观察 U=0V 时, u_i 和 u_o 的波形,并保存。 10、 反相滞回比较器电路 仿真电路图: 仿真波形图:

用示波器观察 u_i 和 u_o 的波形,并保存波形 u_i 和 u_o 。

— 、	实验	目	的
•		_	

二、实验设备及元器件

三、实验原理(重点简述实验原理,画出原理图)

四、实验过程

(叙述具体实验过程的步骤和方法,记录实验数据在原始数据表格,如需要引用原始数据表格,请标注出表头,如"实验数据见表 1-1")

本次实验过程可简述。

五、实验数据分析

(按指导书中实验报告的要求用图表或曲线对实验数据进行分析和处理,并对实验结果做出判断,如需绘制曲线请在**坐标纸中**进行)

1、反相比例放大电路

记录同一时序下的输入输出波形图,用示波器观察输入电压和输出电压的相位关系,得出实验和理论分析结论。

2、同相比例放大电路

记录同一时序下的输入输出波形图,用示波器观察输入电压和输出电压的相位关系,得出实验和理论分析结论。

3、电压跟随器电路

记录同一时序下的输入输出波形图,用示波器观察输入电压和输出电压的相位关系,得出实验和理论分析结论。

4、减法器电路 画出实验电路图:

画出同一时序下的输入输出波形图:

面出同一时序下的输入输出波形图:
化。
化。

Ω	电压比较器电路	
8、		

记录同一时序下的输入输出电压波形:

画出电压传输特性图:

在输入电压过零处展开,观察输出波形的变化斜率,时间等参数,并思考输出波形翻转斜率和运放的哪个 参数有关?

9、滞回比较器电路

表 6-7 滞回比较器的测量

		*** * * * * * * * * * * * * * * * * * *	6次間13701至		
			计算值		
U/V	T/μs	$T_{ m H}/\mu{ m s}$	u_{i+}/V	u _{i-} /V	$d = \frac{T_{\rm H}}{T}$
-3					
-1					
0					
2					
3.5					

U=0V 时,记录同一时序下 u_i 和 u_o 的波形图

10.	反相	滞口	比较	哭I	1	賂
101	JX/III	11111 1111	レレイス	THT'	т.	ΨП

① u。由正电压跃变为负电压时 ui 的临界值:

② u。由负电压跃变为正电压时 ui 的临界值:

③ u_i 接频率为 1kHz,峰峰值为 4V 正弦信号,观察并记录输入 u_i 和输出 u_o 的波形,以及电压传输特性图。

④ 将电阻 R_F 由 100kΩ改为 200kΩ,重复测量记录同一时序下的输入和输出波形以及传输特性曲线,说明滞回特性曲线和元件值之间的关系。

11、(*选做)运算放大器的参数(V_{om} VS f_s)

采用μA741 反相比例放大电路频率变化测试

u _i 有效值	u _i 频率	ui有效值	u。频率	放大倍数	u _i 和 u _o 波形
1V	1kHz				需要记录为①号波形
1V	10kHz				
1V	20kHz				需要记录为②号波形
0.2V	20kHz				需要记录为③号波形
0.2V	50kHz				
0.2V	100kHz				需要记录为④号波形

采用 TL071CP 反相比例放大电路频率变化测试

ui有效值	u _i 频率	u。有效值	u。频率	放大倍数	波形
0.2V	20kHz				
0.2V	50kHz				
0.2V	100kHz				需要记录为⑤号波形
1V	100kHz				需要记录为⑥号波形

①号波形 ②号波形

③号波形 ④号波形

⑤号波形	⑥号波形

六、问题思考

(回答指导书中的思考题)

1. 电阻、电容本身就可组成积分器,为什么还要用运算放大器。

2. 反相比例放大器和同相比例放大器的输出电阻,输入电阻各有什么特点?试用负反馈概念解释之。

3. 在电压比较器电路仿真中,在输出交流信号过零处,输出信号翻转的斜率和什么有关系。

七、实验体会与建议

实验与创新实践教育中心

实验报告

课程名称: ____模拟电子技术实验___实验名称: 实验七: 波形发生电路___

专业-班级:		学号	1 :		姓名:	
实验日期:	年	月	目	ì	评分:	
教师评语:						
				助教签	字:	
				教师签	字:	
					U O	

实验预习

实验预习和实验过程原始数据记录

预习结果审核:	原始数据审核:	
(包括预习时,计算的理论数据;	需要完成预习报告中的仿真部分,	可另附一预
习仿真报告作为预习报告)		
1、方波发生电路		
① 分析图 3 的工作原理,请估算:		
(1) <i>u</i> o的幅值。 <i>U</i> om=		
(2) 分别求出 R _f =10k Ω, 以及 R _f =100k Ω	2的 u ₀ 的周期时间。 T ₁ = T ₂ =	
仿真电路图 $(R_{f}=10k\Omega)$:	仿真波形图(R=10kΩ):	

用示波器测出输出电压 u_o 的波形,并记录 $R_i=10$ k Ω 时的输出波形。

2、占空比可调的矩形波发生电路。 仿真电路图和仿真输出波形图(电位器 R_w 动端 b 点与 a 点电阻为 0)

仿真电路图和仿真输出波形图 (电位器 Rw 动端 b 点与 c 点电阻为 0)

	角波发生电路。 析图 5 的电路工作原理,回答下面问题: 运放 A ₁ 和 A ₂ 是否工作在线性范围内?
(2)	要求 V_o 的幅值为 ± 1 V,周期时间为 1 ms,理论计算出 R_1 和 R_4 的电阻值各为多少?
取上法	R_1 = R_4 = 计算的 R_1 和 R_4 的电阻,仿真电路图和仿真输出波形图如下:
水上足	() 并以 N. 14 (1) 它型, 以 共 它如 巨 14 (1) 共 他 山 以 //
4、锯边	
① 分	析图 6 的锯齿波发生电路的工作原理,回答下面问题:
(1)	电容 C 的充电回路和放电回路各是什么? 充电和放电的时间常数是否相同?
	将电阻 R_4 所接的电源为-15V,为获得 u_0 的峰峰值为 2V(即±1V),周期时间为 1 ms 的锯齿波,论计算出 R_4 和 R_1 的大小: R_1 =

5、RC 桥式正弦波震荡电路。

仿真电路图和仿真波形图如下 ($R=10k\Omega$):

— 、	实验	目	的
•	_ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	_	\neg

二、实验设备及元器件

三、实验原理(重点简述实验原理,画出原理图)

四、实验过程

(叙述具体实验过程的步骤和方法,记录实验数据在原始数据表格,如需要引用原始数据表格,请标注出表头,如"实验数据见表 1-1")

五、实验数据分析

(按指导书中实验报告的要求用图表或曲线对实验数据进行分析和处理,并对实验结果做出判断,如需绘制曲线请在坐标纸中进行)

1、方波发生器电路

输出电压参	计算	计算	频率	周期	幅值	占空比	R∈10kΩ的输出电压波形
数	周期	幅值					
$R_{\rm f}=10{ m k}~\Omega$							
$R_{\rm f}$ =100k Ω							

2、 占空比可调的矩形波发生电路(需要测试出 u_o 的**频率、周期、幅值、占空比)** 分别记录 $R_{ab}=0$ 与 $R_{ab}=0$ 的 u_o 波形。

 $R_{ab}=0$ $R_{ab}=0$

表 7-3 占空比可调矩形波发生电路测试表格

幅值 Uom/V	周期 T	调整电位器 R_w 时,周期时间 T 是	一个周期内, u 。大于 0 的时间 T_1 的可调
		否变化	范围:

3、三角波发生电路

表 7-4 三角波发生电路测试表格

1)	运放 A ₁ 和 A ₂ 是否工作在线性范围内? 为什么?	答:
2	$R_1 = \underline{\qquad} \qquad R_4 = \underline{\qquad}$	
3	记录同一时序下的 u_{01} 和 u_{0} 波形	uol 测量: 频率= 占空比= uo 的测量: 周期= 有效值=

4、锯齿波发生电路

表 7-5 锯齿波发生电路测试表格

1	分析图 6-6 的锯齿波发生电路的工作原理,电容 C 的充电	答:
	回路和放电回路各是什么?	
	充电和放电的时间常数是否相同?	
2	R_1 = R_4 =	
3	记录同一时序下的 u_{01} 和 u_{0} 波形	uo1 测量: 频率= 占空比= uo的测量: 周期=
		有效值=
4	将电阻 R_4 所接的电源更改为 $+15V$,并将二极管 D 反接记录同一时序下的 u_{o1} 和 u_{o} 波形	uol 测量: 频率= 占空比= uo的测量: 周期= 有效值=

5、RC 桥式正弦波震荡电路。

	U_{opp}	U_{fpp}	F	f_{o}	u。和 uf的波形
<i>R</i> =10 k Ω					记录同一时序下的 u ₀₁ 和 u _f 波形
R=20 k Ω					记录同一时序下的 u_{01} 和 u_{0} 波形

结合上面的实验结果,根据理论知识,分析 RC 不同取值对振荡频率 f_o 的影响。

设计性实验
使用实验室现有的元器件μA741等,设计一个波形发生电路,实现以下功能:
1) <u>独立</u> 产生幅值为±6.2V,占空比为 50%的方波电压,频率设计在 700Hz~1kHz 之间。
2) 然后,将此方波电压转换为一个三角波,幅值为±2V 左右
要求:
画出设计的电路图,说明工作原理;

② 写出电路参数的计算过程;

③ 搭建出电路,测试方波电压波形和三角波电压波形,并在同一时序下绘制波形图。

六、问题思考

(回答指导书中的思考题)

1. 方波发生器电路中C的数值增大时,频率f和占空比d是否变化?改变 R_2 是否引起f和d的变化?为什么?

2.	分析比较三角波发生器和锯齿波发生器的共同特点和区别;
3.	若仿真时稳压管选择了 3.3V 的稳压管,实验结果有什么不同?(选择一种类型电路说明)

七、实验体会与建议

实验与创新实践教育中心

实验报告

课程名称: ___模拟电子技术实验___实验名称: _实验八:直流稳压电路__

专业-班级:		学号	1 :		姓名	:	
实验日期:	年	月	目		评分:		
教师评语:							
]	助教急	签字:		
			į	教师签	签字:		
					₩p		

实验预习

实验预习和实验过程原始数据记录

预习结果审核:	
(包括预习时, 计算的理论数据)	
原始数据的波形图可手绘,在数据分析中用坐标纸绘图,且按要求画	<u>图</u>
1、单相半波整流电路	
步骤③的仿真电路图和仿真波形图(R_L 为 510 Ω , C 为 100 μ F),测试输出电压的	J最大值和平均值。

2、三端可调集成稳压器 LM317 电路。

仿真电路图和输出波形图 (输入 18Vac,输出 6Vdc),测试输出电压的平均值。

3、由 LM7812 组成的直流稳压电路。 仿真电路图和仿真波形图 (只接 R_{L1}),测试输出电压的平均值。

 ,	、实验	6目的

二、实验设备及元器件

三、实验原理(重点简述实验原理,画出原理图)

四、实验过程

(叙述具体实验过程的步骤和方法,记录实验数据在原始数据表格,如需要引用原始数据表格,请标注出表头,如"实验数据见表 1-1")

五、实验数据分析

(按指导书中实验报告的要求用图表或曲线对实验数据进行分析和处理,并对实验结果做出判断,如需绘制曲线请在坐标纸中进行)

用坐标纸画上面的波形图(名称,时间刻度,幅值刻度,同一时序两波形),并分析实验现象以及计算要求的稳压电源的各指标系数 S_U 和 r_o 。

1、单相半波整流电路

表 8-2 单相半波整流电路测试表格

步骤	7.5.2 单相十级鉴测电路测试》 17.3. 电影中压冲形	测试量
少泳	记录 R _L 两端电压波形	
		频率:
		最大值:
		有效值:
		平均值:
		万用表直流档测量值:
		频率:
		最大值:
(2)		有效值:
4		平均值:
		万用表直流档测量值
		频率:
		最大值:
		有效值:
3		平均值:
		万用表直流档测量值
		频率:
		最大值:
(4)		有效值:
		平均值:
		万用表直流档测量值:
		频率:
		最大值:
5		有效值:
		平均值:
		万用表直流档测量值:
		/4/14/火亞 //16/14/15/14/14/14/14/14/14/14/14/14/14/14/14/14/

2、三端可调集成稳压器 LM317 电路。

表 8-3 LM317 稳压电路测试记录表

V。的最大值	<i>V</i> 。最大值时 <i>V</i> ₁ 值	$V_{\rm o}$ 的最大值时,记录同一时序下的 $V_{\rm l}$ 和 $V_{\rm o}$ 的波形
		输出电压是否稳定,原因为 :
V。的最小值	V。最小值时 V ₁ 值	V_{0} 的最小值时,记录同一时序下的 V_{1} 和 V_{0} 的波形
① 调带 p		+ V 的店 V

$$S_{U} = \frac{\Delta U_{o} / U_{o}}{\Delta U_{i} / U_{i}}$$

表 8-4 LM317 稳压电路稳压系数测试记录表

	输入电压 Vin值	输出电压 V。值
输入 12V 档位时		
输入 18V 档位时		

(1)	使用电子晕伏表,	观察步骤③中的输出电压中的纹波电压有效值 $V_{ m ow}$ 。	

_	1	/ロ・D. /// 十)ナイタ IC . 1. ロタ	
3.	⊞ LM7812	组成的直流稳压电路。	

将上述电路在 A 点	点处断开,在 A 点	点和地之间	可接入电阻力	$R_{LA}=510 \Omega$,输入交流电	以压 $V_{\rm in}$ =18 V ,	测量 忆的
波形 频率 =	,有效值=		并将图形记	!录下来,	和单相半波整	E 流电路实验	中的步骤②
的波形进行对比,	分析原因。						

- ① 断开电源,将电路 A 点连接后级电路,不接 R_{L2} ,打开电源,测量 V_1 和 V_0 的波形,并记录 V_1 、 V_0 和输出纹波电压 V_{ow} 的电压值。填入表 4 中。
- ② 断开电源, R_{L2} 接入电路,打开电源,测量 V_1 和 V_0 的波形,以及 V_0 的纹波电压波形,并记录两个 V_1 和 V_0 电压平均值以及输出纹波电压 V_{ow} 的有效值,填入表 8-5 中。由前面的实验,根据 R_L 的不同,计算输出电阻系数。

表 8-5 LM7812 构成的直流稳压电路的测试表

R _{L2} 不接入电路	R _{L2} 接入电路				
V_1 、 V_0 的波形和幅值, V_{ow} 的幅值	V_1 、 V_0 的波形和幅值, $V_{\rm ow}$ 的幅值				
$V_1 = $ $V_0 = $ $V_{\text{ow}} = $	$V_1 = $ $V_0 = $ $V_{ow} = $				
记录同一时序下的 V_1 与 V_0 波形	记录同一时序下的 V1 与 V0波形				

六、问题思考

(回	答指导书中的.	思考题)	
1.	在整流电路中,	输出电容的作用是什么,	请用实验数据进行分析。

- 2. 对于同样的输入电压,请分析单相半波整流电路和桥式整流电路输出电压有何不同,为什么?
- 3. 桥式整流电路中某二极管接反会出现什么现象?若某二极管开路又会怎样?

4. 绘制电容滤波电路的输出波形,并据此说明二极管的导通角以及流过二极管的电流与无滤波电容时有何变化?

5. 说明如何检测电容滤波电路中二极管的导通角?

七、实验体会与建议

实验与创新实践教育中心

实验报告

课程名称: ___模拟电子技术实验___实验名称: 实验九: 集成功率放大器电路__

专业-班级:		学号:			姓名:	
实验日期:	年	月	_日	评	² 分:	
教师评语:						
				助教签	字:	
				教师签	字:	
				- +	4 m	

实验预习

实验预习和实验过程原始数据记录

预习结	预习结果审核: 原始数据审核:										
(包括	(包括预习时,计算的理论数据)										
		廖可手	<u>绘,在数</u>	据分析	中用坐标	纸绘图,	<u>. 且按要</u>	求画图			
1、静态	工作点测	引试		-	++		ELL D				
公公 叶田	DD	.T1	DDIO		9-5 静态工	1	1	1.5	DINIC	DD	7
管脚 PIN1 PIN2 PIN3 PIN4 PIN5 PIN6 PIN7 电压 (V)								7			
管脚	PI	V8	PIN9	PI	N10	PIN11	PIN	112	PIN13	PIN	14
电压(V		.10	11117	11	.1110	TINII	111	N12	111113	1111	17
2、动态								l			
① 有自		C_7									
输出	电压为晶	最大不失真	兵输出时,	记录: Vi		, V _{on}	_m =	P_{on}			
记录	同一时月	茅下的 Vin	和 V。波形	;							
② 断开	自举电名	$\stackrel{>}{\sim} C_7$									
		100mV 的	†的输出电	压的波形	, 并记录	同一时序	下的 $V_{\rm in}$	和 V。波形			
7,00,71	, m 3 3		, 44 1113	3/22/17	7 71 1211	., 3	1 H 3 7 III	11. 10 00010			
3、在无	输入信号	· 时,观察	输出电压	V。的变化	7. 这个波	形是否正	三常? 并画	出波形。			
4、将负	载 RL 更	换为蜂鸣器	器,输入信	言号为正弦	玄,幅值为	5 150mV	,频率从	50Hz 连约	卖变化到	15kHz,	录输出
电压	随频率变	化数据于	表 9-6,耳	冷听蜂鸣器	器的发生,	观察并指	描述现象。				
		T		表9	0-6 带蜂鸣岩	器测试表格	1				
f/Hz	50	100	150	200	500	1k	4k	8k	10k	12k	15k
U _o /V											

 ,	、实验	目的
	·	

二、实验设备及元器件

三、实验原理(重点简述实验原理,画出原理图)

四、实验过程

(叙述具体实验过程的步骤和方法,记录实验数据在原始数据表格,如需要引用原始数据表格,请标注出表头,如"实验数据见表 1-1")

五、实验数据分析

(按指导书中实验报告的要求用图表或曲线对实验数据进行分析和处理,并对实验结果做出判断,如需绘制曲线请在坐标纸中进行)

用坐标纸画上面的波形图(名称,时间刻度,幅值刻度,同一时序两波形),并分析实验现象。

六、问题思考

(回答指导书中的思考题)

1. 讨论实验中你遇到的问题及解决的方法。

七、实验体会与建议