Geometría de curvas y superficies Segundo de Matemáticas Curso 2020-2021

Hoja 3 (Superficies y segunda forma fundamental)

	SEGUNDA FORMA FUNDAMENTAL
1. Halla la segunda forma fundamental del paraboloide $z=x^2$ zación $\mathbb{X}(u,\theta)=(u\cos\theta,u\sin\theta,u^2).$	$+y^2$ con respecto a la parametri-
 2. Considera la superficie S dada por el grafo de una función o carta X(x, y) = (x, y, f(x, y)). a) Halla la segunda forma fundamental de S. b) Halla la segunda forma fundamental en el mueta (1.1.1). 	
 b) Halla la segunda forma fundamental en el punto (1,1,1) p c) Comprueba que si la segunda forma fundamental es idér grafo de la función está contenido en un plano. 	
Curvaturas gaussiana y m i $ {\bf 3.} \ \ {\rm Verifica\ que\ todos\ los\ puntos\ de\ la\ superficie} \ x+y=z^3\ {\rm son} $	EDIA. CLASIFICACIÓN DE PUNTOS parabólicos o planares.
4. Una superficie con $K\equiv -1$: la PSEUDOESFERA. Considerer como sigue: $\pmb{\alpha}(t)=({\rm sech}(t),t-{\rm tanh}(t)),\qquad t$	nos la curva plana parametrizada
Consideremos la curva anterior situada en el plano (y, z) . Al en torno al eje z , obtenemos la superficie conocida como $pseud$ cuyo aspecto puedes apreciar en el dibujo de la derecha. Paramo superficie, halla los coeficientes de la primera y segunda formas mentales y comprueba, finalmente, que $K=-1$ en todos sus pu	rotarla loesfera, etriza la s funda-

- 5. La INDICATRIZ DE DUPIN de S en \mathbf{p} es el conjunto de direcciones del plano tangente $T_{\mathbf{p}}S$ en las que la segunda forma fundamental vale 1 (ó –1; recuérdese que el signo de la segunda forma fundamental depende de la elección del normal). Esto es, el conjunto $\{\mathbf{w} \in T_{\mathbf{p}}S : \mathrm{II}_p(\mathbf{w}) = \pm 1\}$. Descríbase geométricamente la indicatriz de Dupin cuando \mathbf{p} es un punto elíptico, parabólico, planar o hiperbólico.
- 6. Considérese una superficie S y un punto \mathbf{p} de ella. Fijada una dirección fija del plano tangente, sea $k(\theta)$ la curvatura normal de S en el punto \mathbf{p} en la dirección que forma un ángulo θ con la dirección fija. Comprueba que

(a)
$$H_{\mathbf{p}} = \frac{1}{2\pi} \int_0^{2\pi} k(\theta) d\theta$$
; b) $H_{\mathbf{p}} = \frac{k(\theta) + k(\theta + \pi/2)}{2}$ para todo $\theta \in [0, 2\pi]$.

- 7. Verifica que las superficies regladas desarrollables (véanse los ejercicios 4 y 5 de la Hoja 2) tienen curvatura gaussiana idénticamente nula.
- 8. Sea $\mathcal{F}_{\mathbf{p}}$ el operador de forma de una superficie S en un punto \mathbf{p} . Comprueba que, si $\mathbf{v}, \mathbf{w} \in T_{\mathbf{p}}S$,

$$\langle \mathcal{F}(\mathbf{v}), \mathcal{F}(\mathbf{w}) \rangle = 2H_{\mathbf{p}} \langle \mathcal{F}(\mathbf{v}), \mathbf{w} \rangle - K_{\mathbf{p}} \langle \mathbf{v}, \mathbf{w} \rangle,$$

donde $K_{\mathbf{p}}$ y $H_{\mathbf{p}}$ son las curvaturas gaussiana y media en \mathbf{p} .

- 9. Sea S una superficie regular y sea \mathbf{p} un punto de S.
 - (a) Sea $\{\mathbf{u}_1,\mathbf{u}_2\}$ una base de $T_{\mathbf{p}}S$ (no necesariamente ortonormal). Comprueba que

(a1)
$$\mathcal{F}_{\mathbf{p}}(\mathbf{u}_1) \times \mathcal{F}_{\mathbf{p}}(\mathbf{u}_2) = K_{\mathbf{p}}(\mathbf{u}_1 \times \mathbf{u}_2);$$
 (a2) $\mathcal{F}_{\mathbf{p}}(\mathbf{u}_1) \times \mathbf{u}_2 + \mathbf{u}_1 \times \mathcal{F}_{\mathbf{p}}(\mathbf{u}_2) = 2H_{\mathbf{p}}(\mathbf{u}_1 \times \mathbf{u}_2),$

donde $K_{\mathbf{p}}$ y $H_{\mathbf{p}}$ son las curvaturas gaussiana y media en \mathbf{p} .

(b) Supongamos ahora que $\{\mathbf{u}_1, \mathbf{u}_2\}$ es una base ortonormal de $T_{\mathbf{p}}S$. ¿Qué información geométrica se deduce de

(b1)
$$\langle \mathcal{F}_{\mathbf{p}}(\mathbf{u}_1), \mathbf{u}_2 \rangle = 0;$$
 (b2) $\mathcal{F}_{\mathbf{p}}(\mathbf{u}_1) \times \mathcal{F}_{\mathbf{p}}(\mathbf{u}_2) = \mathbf{0};$

(b1)
$$\langle \mathcal{F}_{\mathbf{p}}(\mathbf{u}_1), \mathbf{u}_2 \rangle = 0;$$
 (b2) $\mathcal{F}_{\mathbf{p}}(\mathbf{u}_1) \times \mathcal{F}_{\mathbf{p}}(\mathbf{u}_2) = \mathbf{0};$ (b3) $\mathcal{F}_{\mathbf{p}}(\mathbf{u}_1) + \mathcal{F}_{\mathbf{p}}(\mathbf{u}_2) = \mathbf{0};$ (b4) $\langle \mathcal{F}_{\mathbf{p}}(\mathbf{u}_1), \mathcal{F}_{\mathbf{p}}(\mathbf{u}_2) \rangle = 0$?

10. SUPERFICIES PARALELAS. Sea S una superficie regular y $\mathbb{X}(u,v)$ una parametrización (local) suya. Sea a un número (pequeño). Consideremos

$$\overline{\mathbb{X}}(u,v) = \mathbb{X}(u,v) + a \mathbf{N}(\mathbb{X}(u,v)).$$

Supongamos que $\overline{\mathbb{X}}(u,v)$ es carta de una superficie \overline{S} (que se dice paralela a S). Verifica que

- i) $\overline{\mathbb{X}}_u = \mathbb{X}_u a\mathcal{F}(\mathbb{X}_u)$ y que $\overline{\mathbb{X}}_v = \mathbb{X}_v a\mathcal{F}(\mathbb{X}_v)$;
- ii) $\overline{\mathbb{X}}_{u} \times \overline{\mathbb{X}}_{v} = J \mathbb{X}_{u} \times \mathbb{X}_{v}$, donde $J = 1 2aH + a^{2}K$.

(Indicación: el apartado a) del ejercicio 9 puede ser útil aquí). En particular, demuestra que para a suficientemente pequeño, $\overline{\mathbf{N}} = \mathbf{N}$, y por tanto $\overline{\mathbf{N}} \cdot \overline{\mathbb{X}} = \mathbf{N} \cdot \mathbb{X} + a$).

- iii) $\overline{\mathcal{F}}(\overline{\mathbb{X}}_u) = \mathcal{F}(\mathbb{X}_u) \text{ y } \overline{\mathcal{F}}(\overline{\mathbb{X}_v}) = \mathcal{F}(\mathbb{X}_v);$
- iv) $\overline{K} = \frac{K}{I}$ y $\overline{H} = \frac{H aK}{I}$. (De nuevo el apartado a) del ejercicio 9 puede ser útil).