

Tree ADT

- We use positions to abstract nodes (same as node in tree)
- Generic methods:
 - integer size()
 - boolean isEmpty()
 - Iterator iterator()
 - Iterable positions()
- Accessor methods:
 - position root()
 - position parent(p)
 - Iterable children(p)

- Query methods:
 - boolean isInternal(p)
 - boolean isExternal(p)
 - boolean isRoot(p)
- Update method:
 - element replace (p, o)
- Additional update methods may be defined by data structures implementing the Tree ADT

5

Depth of a Node

- The depth of a node is the number of its ancestors, excluding itself
 - depth(A) = 0, depth(B) = , depth(J) =

Algorithm depth(T, v)

if T.isRoot(v)

return 0

else

return 1+depth(T, T.parent(v))

Height of a Node

- □ The height(v) in a tree T is
 - If v is an external node, then height(v) = __
 - Otherwise, height(v) = 1 + max. height of its children

Algorithm height(T, v)if T.isExternal(v)return θ else $h \leftarrow \theta$ for each child w of v in T do $h \leftarrow max(h, height(T, w))$ return 1+h

Height of a Tree

- The height of a tree T is the height of the root
- The height of a tree T is equal to the maximum
 of a external node of T

Algorithm height(T)

 $h \leftarrow 0$

for each node v in T do
 if T.isExternal(v) then
 h ← max(h, depth(T, v)

return h

Preorder Traversal

- A traversal visits the nodes of a tree in a systematic manner
- In a preorder traversal, a node is visited before its descendants
- Application: print a structured document

Algorithm *preOrder(v)*

visit(v)

for each child w of v preorder (w)

- In a postorder traversal, a node is visited after its descendants
- Application: compute space used by files in a directory and its subdirectories

Algorithm *postOrder(v)*

for each child w of v postOrder (w)

visit(v)

Binary Trees

- A binary tree is an ordered tree with the following properties:
 - Each internal node has at most two children (exactly two for proper binary trees)
 - The children of a node are an ordered pair
- We call the children of an internal node _____ child and _____ child
- Alternative recursive definition: a binary tree is either
 - a tree consisting of a single node, or
 - a tree whose root has an ordered pair of children, each of which is a binary tree

- Applications:
 - arithmetic expressions
 - decision processes
 - searching

Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
 - internal nodes: operators
 - external nodes: operands
- □ Example: arithmetic expression tree for the expression $(2 \times (a 1) + (3 \times b))$

Full Binary Tree

 Full Binary Tree: A binary tree in which all of the leaves are on the same level and every nonleaf node has two children

15

Complete Binary Tree

 Complete Binary Tree: A binary tree that is either full or full through the next-to-last level, with the leaves on the last level as far to the left as possible

BinaryTree ADT

- The BinaryTree ADT extends the Tree ADT, i.e., it inherits all the methods of the Tree ADT
- be defined by data structures implementing the BinaryTree ADT

19

Update methods may

- Additional methods:
 - position left(p)
 - position right(p)
 - boolean hasLeft(p)
 - boolean hasRight(p)

Inorder Traversal

In an inorder traversal a node is visited after its left subtree and before its right subtree

Application: draw a binary tree

X(v) = inorder rank of v

Y(v) = depth of v

Algorithm inOrder(v)

if hasLeft (v)

visit(v)

if hasRight (v)

inOrder (right (v))

Print Arithmetic Expressions

- Specialization of an inorder traversal
 - print operand or operator when visiting node
 - print "(" before traversing left subtree
 - print ")" after traversing right subtree

Algorithm *printExpression(v)*

if hasLeft (v)
 print("(")
 inOrder (left(v))
print(v.element ())
if hasRight (v)
 inOrder (right(v))
 print (")")

$$((2 \times (a - 1)) + (3 \times b))$$

21

Evaluate Arithmetic Expressions

- Specialization of a postorder traversal
 - recursive method returning the value of a subtree
 - when visiting an internal node, combine the values of the subtrees

Algorithm evalExpr(v)

if isExternal (v)

return v.element ()

else

 $x \leftarrow evalExpr(leftChild(v))$

 $y \leftarrow evalExpr(rightChild(v))$

 $\Diamond \leftarrow$ operator stored at v

return $x \diamond y$

22

