TRIGONOMETRY

ADVISORY SESION II

CHAPTER 1, 2, 3

1. Reduzca:
$$E = \frac{30920m}{20m} + \frac{20m20s}{20s}$$

RESOLUCIÓN

Expresando en términos de minutos y segundos centesimales

$$A = \frac{30(100^{\text{m}}) + 20^{\text{m}}}{20^{\text{m}}} + \frac{20(100^{\text{s}}) + 20^{\text{s}}}{20^{\text{s}}}$$

$$A = \frac{3020^{mi}}{20^{mi}} - \frac{2020^{s}}{20^{s}}$$

$$A = 151 - 101$$

2. Si $\frac{\pi}{24}$ rad<> a°(\overline{bc})'; calcule el valor de: M = $\frac{a-c}{b-c}$

RESOLUCIÓN

$$a^{\circ}(\overline{bc})' <> \frac{\pi}{24} rad \left(\frac{180^{\circ}}{\pi rad}\right)$$

$$a^{\circ}(\overline{bc})^{'} <> 3^{\circ} + 0.5^{\circ}$$

$$a^{\circ}(\overline{bc})' <> 3^{\circ} + 0.5(60')$$

$$a^{\circ}(\overline{bc})' <> 3^{\circ} + 30'$$

Piden:
$$M = \frac{3-0}{3-0}$$

3. Nataly tiene dos tarjetas tal como se muestra a continuación

•

$$\alpha = \frac{(x+3)}{20} \pi rad$$

$$\beta = (5x + 10)9$$

Si α y β son ángulos suplementarios, ¿Cuál es el valor de x?

RESOLUCIÓN

Del dato:
$$\alpha + \beta = 180^{\circ}$$

 $\frac{(x + 3)}{20} \pi \operatorname{rad} + (5x + 10)^{\circ} = 180^{\circ}$

Utilizando factores de conversión:

$$\frac{(x+3)}{20} \pi \operatorname{rad}(\frac{180^{\circ}}{\pi \operatorname{rad}}) + (5x+10)^{\circ}(\frac{9^{\circ}}{10^{\circ}}) = 180^{\circ} \Rightarrow 15x = 160^{\circ}$$

$$(x + 3)9 + \frac{(5x + 10)9}{10} =$$

$$(x + 3) + \frac{(5x + 10)}{10} = 20$$

Multiplicando por 10

$$10x + 30 + 5x + 10$$

$$= 200$$

$$15x = 160$$

 $\therefore x = \frac{32}{3}$

Simplifique $A = \frac{2\pi C - 80R}{\frac{\pi S}{9}}$

siendo S, C y R lo convencional para un mismo ángulo.

RESOLUCIÓN

Reemplazando : S = 9n C = 10n $R = \pi n$

$$G = \frac{2\pi(10n) - 80\left(\frac{\pi n}{20}\right)}{\frac{\pi(9n)}{9}}$$

$$G = \frac{20\pi n - 4\pi n}{\pi n}$$

$$G = \frac{16\pi n}{\pi n}$$

5. Calcule la medida de un ángulo en el sistema radial si el triple de su número de grados centesimales excede al doble de su numero en grados sexagesimales en 36.

RESOLUCIÓN

Del enunciado: 3C - 2S = 36

Entonces:
$$3(10n) - 2(9n) = 36$$

$$30n - 18n = 36$$

$$\rightarrow$$
 n = 3

El número de radianes :
$$R = \frac{\pi(3)}{20}$$

∴ Rrad =
$$\frac{3\pi}{20}$$
 rad

Determine la medida de un ángulo en el sistema radial que cumple:

$$C - S + 9R = 20 + 9\pi$$

Siendo S, C y R lo convencional para un mismo ángulo.

RESOLUCIÓN

Reemplazando:
$$10n - 9n + 9\left(\frac{\pi n}{20}\right) = 20 + 9\pi$$

Luego el número de radianes

 $n + 9\left(\frac{\pi n}{20}\right) = 20 + 9\pi$
 $R = \frac{\pi(20)}{20} \Rightarrow R = \pi$

$$n + 9\left(\frac{\pi n}{20}\right) = 20 + 9\pi$$

Factorizando:
$$n\left(1 + \frac{9\pi}{20}\right) = 20 + \pi$$

$$n\left(\frac{20+9\pi}{20}\right)=20+9\pi$$

$$R = \frac{\pi(20)}{20} \Rightarrow R = \pi$$

I La medida del I ángulo en el I sistema radial es: \therefore Rrad = π rad

7. Determine la medida de un ángulo en grados centesimales, si cumple que:

$$\frac{\pi C - \pi S + 40R}{\pi C + \pi S - 160R} - \frac{C - S}{2C - S} = \frac{80R}{11\pi}$$

Siendo S, C y R lo convencional para un mismo ángulo.

RESOLUCIÓN

$$\frac{10n\pi - 9n\pi + 40\frac{\pi n}{20}}{10n\pi + 9n\pi - 160\frac{\pi n}{20}} - \frac{10n - 9n}{2(10n) - 9n} = \frac{80\frac{\pi n}{20}}{11\pi} \begin{vmatrix} \frac{3n\pi}{11} - \frac{1}{11} & \frac{4n}{11} & \frac{2}{11} & \frac{4n}{11} \\ n = \frac{1}{2} \end{vmatrix} = \frac{4n}{11}$$

$$n = \frac{1}{2} \Rightarrow C = 10 \left(\frac{1}{2}\right) = 5$$

$$\frac{n\pi + 2n\pi}{19n\pi - 8n\pi} - \frac{n}{11n} = \frac{4n\pi}{11}$$

$$\therefore El \text{ ángulo mide: } 59$$

$$\frac{3n\pi}{11n\pi} - \frac{1}{11} = \frac{4n}{11} \Rightarrow \frac{2}{11} = \frac{4n}{11}$$

$$n = \frac{1}{2} \implies C = 10 \left(\frac{1}{2}\right) = \frac{9}{11}$$

I I ∴El ángulo mide: <mark>59</mark>

8. Si la longitud de un arco de un sector circular es $45 \,\mathrm{m}$ y el radio $8 \,\mathrm{m}$, calcule el área de dicho sector.

RESOLUCIÓN

Datos:

Piden:
$$S = \frac{L.R}{2}$$

$$\Rightarrow S = \frac{45m.8m}{2}$$

$$S = 180 \text{ m}^2$$

9. Del gráfico, reduzca:

$$G = \frac{2S_3 - 4S_1}{S_2 + 3S_1}$$

RESOLUCIÓN

Por propiedad

Del gráfico, reemplazando:

$$G = \frac{2(5S) - 4(S)}{(3S) + 3(S)}$$

$$G = \frac{6S}{6S}$$

10. Del gráfico calcule el área del sector circular AOB.

3S

35 u²

De la figura:

$$5S = 35 \Rightarrow S = 7$$

Piden el área del sector circular

AOB:
$$S + 3S + 5S + 7S = 16S$$

 \therefore 16S = 112 u²

