Longitudinal Data I

Roberta De Vito

Multi-level Structure

- grouped data
- repeated measurements
- time-series

Varying-intercept and varying-slope models (Q1)

Data on child support (Q2)

	dad	mom	informal	city	city	enforce	benefit	C	ity ir	ndicat	ors
ID	age	race	support	IĎ	name	intensity	level	1	2		20
1	19	hisp	1	1	Oakland	0.52	1.01	1	0		0
2	27	black	0	1	Oakland	0.52	1.01	1	0		0
3	26	black	1	1	Oakland	0.52	1.01	1	0		0
:	:	:	:	:	:	:	:	:	:		:
248	19	white	1	3	Baltimore	0.05	1.10	0	0		0
249	26	black	1	3	Baltimore	0.05	1.10	0	0		0
:	:	:	:	;	:	:	;	;	;		:
1366	21	black	i	20	Norfolk	-0.11	1.08	ò	ò		i
1367	28	hisp	0	20	Norfolk	-0.11	1.08	0	0		1

Data on child support

ID	dad age	mom race	informal support	city ID
1	19	hisp	1	1
2	27	black	0	1
3	26	black	1	1
÷	÷	÷	:	:
248	19	white	1	3
249	26	black	1	3
: 1366	: 21	: black	:	: 20
1367	28	hisp	0	20

city ID	city name	enforce- ment	benefit level
1	Oakland	0.52	1.01
2	Austin	0.00	0.75
3	Baltimore	-0.05	1.10
: 20	: Norfolk	∶ -0.11	: 1.08
20	Norfolk	-0.11	1.08

Ways of analyzing these data

Individual-Level Regression

- ▶ Informal support: binary outcome
- Several individual- and city-level predictors
- ▶ Enforcement is the treatment
- ► The model (Q3):

Ways of analyzing these data

Group-Level Regression

cit Il		city name	enforce- ment	benefit level	# in sample	avg. age	prop. black	proportion with informal support
	1	Oakland	0.52	1.01	78	25.9	0.67	0.55
	2	Austin	0.00	0.75	91	25.8	0.42	0.54
	3	Baltimore	-0.05	1.10	101	27.0	0.86	0.67
	:	÷	:	:	:	:	:	:
2	0	Norfolk	-0.11	1.08	31	27.4	0.84	0.65

Ways of analyzing these data

Individual-level regression with city indicators, followed by group-level regression

- ▶ logistic regression: 22 predictors
- ▶ linear regression

Multilevel models

▶ the model

▶ the city coefficient

$$\alpha_j \sim N(U_j \gamma, \sigma_{alpha}^2), \ j = 1, \dots, 20$$

▶ 2000 Australian adolescents

person		parents smoke?			w	wave 1		wave 2	
	ID	sex	mom	dad	age	smokes?	age	smokes?	
	1	f	Y	Y	15:0	N	15:6	N	
	2	f	N	N	14:7	N	15:1	N	
	3	m	Y	N	15:1	N	15:7	Y	
	4	f	N	N	15:3	N	15:9	N	
	:	:	:	:	:	:	:	:	٠.

```
y <- data[,seq(6,16,2)]
female <- ifelse (data[,2]=="f", 1, 0)
mom.smoke <- ifelse (data[,3]=="Y", 1, 0)
dad.smoke <- ifelse (data[,4]=="Y", 1, 0)
psmoke <- mom.smoke + dad.smoke
```

Q4

```
y <- data[,seq(6,16,2)] female <- ifelse (data[,2]=="f", 1, 0) mom.smoke <- ifelse (data[,3]=="Y", 1, 0) dad.smoke <- ifelse (data[,4]=="Y", 1, 0) psmoke <- mom.smoke + dad.smoke \Pr(y_{jt} = 1) = \log i t^{-1} (\beta_0 + \beta_1 psmoke_j + \beta_2 female_j + \beta_3 (1 - female_j) \cdot t + \beta_4 female_j \cdot t + \alpha_j),
```

Different Table

age	smokes?	person ID	wave
15:0	N	1	1
14.7	N	2	1
15:1	N	3	1
15:3	N	4	1
:	:	:	:
15:6	N	1	2
15:1	N	2	2
15:7	Y	3	2
15:9	N	4	2
÷	÷	:	:

person ID	sex	parents mom	s smoke? dad
1	f	Y	Y
2	f	N	N
3	m	Y	N
4	f	N	N
÷	:	÷	÷

Different Table

```
y <- obs.data[,2]

person <- obs.data[,3]

wave <- obs.data[,4]

female <- ifelse (person.data[,2]=="f", 1, 0)

mom.smoke <- ifelse (person.data[,3]=="Y", 1, 0)

dad.smoke <- ifelse (person.data[,4]=="Y", 1, 0)

psmoke <- mom.smoke + dad.smoke

\Pr(y_i=1) = \log t^{-1}(\beta_0 + \beta_1 psmoke_{j[i]} + \beta_2 female_{j[i]} + \beta_3 (1 - female_{j[i]}) \cdot t[i] + \beta_4 female_{j[i]} \cdot t[i] + \alpha_{j[i]}).
```

Time-series cross-sectional data

- Repeated measurements could easily have irregular patterns
- ► Time-series cross-sectional data commonly have overall time patterns
- ► One must consider the state-year data as clustered within states and also within years

Motivation

- Accounting for individual- and group-level variation
- Modeling variation among individual-level regression
- Estimating regression coefficients for particular groups
- Complexity
- When does multilevel modeling make a difference?

Notation

- ► The units
- Outcome
- Regression Predictor

Notation

- ► The units
- Outcome
- Regression Predictor

- Groups
- ▶ Index variables *j*[*i*] (Q5)
- Varying-intercept and Varying-slope

Radon example

- Estimate the distribution of radon
- 85 counties in Minnesota

Radon example

- Estimate the distribution of radon
- 85 counties in Minnesota

Radon example

$$\widehat{\alpha}_{j}^{multilevel} pprox rac{rac{n_{j}}{\sigma_{y}^{2}} ar{y}_{j} + rac{1}{\sigma_{\alpha}^{2}} ar{y}_{all}}{rac{n_{j}}{\sigma_{y}^{2}} + rac{1}{\sigma_{\alpha}^{2}}} \quad Q6$$

Complete-pooling and no-pooling analyses

- Log home radon
- Floor of measurement
- ▶ Measurements were taken in the lowest living area of each house (with basement as 0, and first floor as 1)

Complete-pooling and no-pooling analyses

Complete-pooling and no-pooling analyses

Complete-pooling (dashed line) and no-pooling (solid line)

The simplest multilevel model

$$ightharpoonup lpha_j \sim N(\mu_{lpha}, \sigma_{lpha}^2)$$

The simplest multilevel model

The simplest multilevel model

Interpret the coefficients

$$\widehat{\mu}_{\alpha}=1.46$$
, $\widehat{\beta}=-0.69$, $\widehat{\sigma}_{y}=0.76$, $\widehat{\sigma}_{\alpha}=0.33$

average regression for each counties

▶ The variance ratio $\hat{\sigma}_{\alpha}^2/\hat{\sigma}_y^2$

The intraclass correlation

$$\frac{\widehat{\sigma}_{\alpha}^{2}}{\widehat{\sigma}_{y}^{2} + \widehat{\sigma}_{\alpha}^{2}}$$

Allowing regression coefficients to vary across groups

▶ Allow β to vary across groups

$$y_i = \beta_{0j[i]} + \beta_{1j[i]} X_{i1} + \beta_{2j[i]} X_{i2} + \dots + \epsilon_i$$

Varying-intercept

$$y_i = \alpha_{j[i]} + \beta_1 X_{i1} + \beta_2 X_{i2} + \epsilon_i$$

• $\alpha_j \sim N(\mu_{alpha}, \sigma_{\alpha}^2)$ or also

$$\alpha_j = \mu_\alpha + \eta_j \ \eta_j \sim N(0, \sigma_\alpha^2)$$

$$y_i \sim \textit{N}(lpha_{j[i]} + eta x_i, \sigma_y^2)$$
 and $lpha_i \sim \textit{N}(\gamma_0 + \gamma_1 u_i, \sigma_lpha^2)$


```
lmer(formula = y ~ x + u.full + (1 | county))
         coef.est coef.se
(Intercept) 1.47
                 0.04
         -0.67 0.07
u.full
         0.72
                 0.09
Error terms:
Groups Name Std.Dev.
county (Intercept) 0.16
Residual
                 0.76
# of obs: 919, groups: county, 85
deviance = 2122.9
 $county
     (Intercept) x u.full
 1
         1.45 -0.67 0.72
            1.48 -0.67 0.72
 85
             1.42 -0.67 0.72
```