H2O.ai Algorithms

Algorithms on H₂O

Supervised Learning

Statistical Analysis

- Penalized Linear Models: Super-fast, super-scalable, and interpretable
- Naïve Bayes: Straightforward linear classifier

Decision Tree Ensembles

Stacking

- Distributed Random Forest: Easy-touse tree-bagging ensembles
- Gradient Boosting Machine: Highly tunable tree-boosting ensembles
- Stacked Ensemble: Combine multiple types of models for better predictions

Unsupervised Learning

Clustering

 K-means: Partitions observations into similar groups; automatically detects number of groups

Dimensionality Reduction

Aggregator

- Principal Component Analysis: Transforms correlated variables to independent components
- Generalized Low Rank Models: Extends the idea of PCA to handle arbitrary data consisting of numerical, Boolean, categorical, and missing data
- Aggregator: Efficient, advanced sampling that creates smaller data sets from larger data sets

Neural Networks

Multilayer Perceptron

Deep

Learning

- Deep neural networks: Multi-layer feed-forward neural networks for standard data mining tasks
- Convolutional neural networks:
 Sophisticated architectures for pattern recognition in images, sound, and text

Anomaly Detection

Term Embeddings

- Autoencoders: Find outliers using a nonlinear dimensionality reduction technique
- **Word2vec:** Generate context-sensitive numerical representations of a large text corpus

Supervised Learning

Regression:

How much will a customers spend?

H₂O algos:

Penalized Linear Models
Random Forest
Gradient Boosting
Neural Networks
Stacked Ensembles

Classification:

Will a customer make a purchase? Yes or No

H₂O algos:

Penalized Linear Models
Naïve Bayes
Random Forest
Gradient Boosting
Neural Networks
Stacked Ensembles

Unsupervised Learning

Clustering:

Grouping rows – e.g. creating groups of similar customers

H₂O algos:

k – means

Feature extraction:

Grouping columns – Create a small number of new representative dimensions

H₂O algos:

Principal components
Generalized low rank models
Autoencoders
Word2Vec

Anomaly detection:

Detecting outlying rows - Finding high-value, fraudulent, or weird customers

H₂O algos:

Principal components
Generalized low rank models
Autoencoders

H ₂ O.ai	Usage	Recommendations	Problems
Penalized Linear Models	RegressionClassification	 Creates interpretable models with super-fast training time Nonlinear and interaction terms to be specified manually Can extrapolate beyond training data domain Select the correct target distribution Few hyperparameters to tune 	NAsOutliers/influential pointsStrongly correlated inputsRare categorical levels in new data
Naïve Bayes	 Classification 	 Nonlinear and interaction terms should be specified by users 	 Linear independence assumption Often less accurate than more sophisticated classifiers Rare categorical levels in new data
Random Forest	RegressionClassification	 Builds accurate models without overfitting Few hyperparameters to tune Requires less data prep Great for implicitly modeling interactions 	 Difficulty extrapolating beyond training data domain Can be difficult to interpret Rare categorical levels in new data
Gradient Boosting Machines	RegressionClassification	 Builds accurate models without overfitting (often more accurate than random forest) Requires less data prep Great for implicitly modeling interactions 	 Many hyperparameters Difficulty extrapolating beyond training data domain Can be difficult to interpret Rare categorical levels in new data
Neural Networks (Deep learning & MLP)	RegressionClassification	 Great for modeling interactions in fully connected topologies Can extrapolate beyond training data domain Deep learning architectures best-suited for pattern recognition in images, videos, and sound 	 NAs Overfitting Outliers/influential points Long training times Difficult to interpret Many hyperparameters Strongly correlated inputs Rare categorical levels in new data

H₂O .ai	Usage	Recommendations	Problems
k - means	Clustering	 Great for creating Gaussian, non-overlapping, roughly equally sized clusters The number of clusters can be unknown 	 NAs Outliers/influential points Strongly correlated inputs Cluster labels sensitive to initialization Curse of dimensionality
Principal Components Analysis	Feature extractionDimension reductionAnomaly detection	 Great for extracting a number <= N of linear, orthogonal features from i.i.d. numeric data Great for plotting extracted features in a reduced-dimensional space to analyze data structure, e.g. clusters, hierarchy, sparsity, outliers 	NAsOutliers/influential pointsCategorical inputs
Generalized Low Rank Models	 Feature extraction Dimension reduction Anomaly detection Matrix completion Recommender Systems 	 Great for extracting linear features from mixed data Great for plotting extracted features in a reduced-dimensional space to analyze data structure, e.g. clusters, hierarchy, sparsity, outliers Great for imputing NAs Great for creating recommendations 	Outliers/influential points
Autoencoders (Neural Networks)	Feature extractionDimension reductionAnomaly detection	 Great for extracting a number of nonlinear features from mixed data Great for plotting extracted features in a reduced dimensional space to analyze structure, e.g. clusters, hierarchy, sparsity, outliers 	 NAs Overtraining Outliers/influential points Long training times Many hyperparameters Strongly correlated inputs Rare categorical levels in new data
Word2Vec	Highly representative feature extraction from text	 Great for extracting highly representative, context sensitive term embeddings (e.g. numerical vectors) from text Great for text preprocessing prior to further supervised or unsupervised analysis 	 Many Hyperparameters • Long training times Overtraining Specifying term weightings prior to training