

Felipe Vieira Cortes

An alternative formalization of reference typing

Tese de Doutorado

Thesis presented to the Programa de Pós–graduação em Informática, do Departamento de Informática da PUC-Rio in partial fulfillment of the requirements for the degree of Doutor em Informática.

Advisor: Prof. Roberto Ierusalimschy

Felipe Vieira Cortes

An alternative formalization of reference typing

Thesis presented to the Programa de Pós–graduação em Informática da PUC-Rio in partial fulfillment of the requirements for the degree of Doutor em Informática. Approved by the Examination Committee:

Prof. Roberto IerusalimschyAdvisor
Departamento de Informática – PUC-Rio

Prof. Roberto Ierusalimschy Departamento de Informática – PUC-Rio

All rights reserved.

Felipe Vieira Cortes

Graduated in computer science by the Pontifícia Universidade Católica do Rio de Janeiro.

Bibliographic data

Cortes, Felipe V.

An alternative formalization of reference typing / Felipe Vieira Cortes; advisor: Roberto Ierusalimschy. – 2023.

22 f: il. color.; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Informática, 2023.

Inclui bibliografia

Informática – Teses. 2. Type References. 3. Programming Languages. 4. Formalization. I. Ierusalimschy, Roberto. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Informática. III. Título.

CDD: 004

Acknowledgments

Abstract

Cortes, Felipe V.; Ierusalimschy, Roberto (Advisor). **An alternative formalization of reference typing**. Rio de Janeiro, 2023. 22p. Tese de Doutorado – Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Reference Typing is a ...

Keywords

Type References; Programming Languages; Formalization.

Resumo

Cortes, Felipe V.; Ierusalimschy, Roberto. An alternative formalization of reference typing. Rio de Janeiro, 2023. 22p. Tese de Doutorado – Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

A tipagem de referencia e
h \dots

Palavras-chave

Type References; Programming Languages; Formalization.

Table of contents

1	Introduction	14
2	Previous Work	15
3	Proposal	18
	Results Comparison	20 20
5	Conclusion and future work	21
6	Bibliography	22

List of figures

Figure	2.1	A set of three subfigures: (a) describes the first subfigure; (b)	
describ	es the	second subfigure; (c) describes the third subfigure.	15
	(a)	Bamboo-pile Vertically Inserted Position	15
	(b)	Bamboo-pile Normal Inserted Position	15
	(c)	bamboo-pile Inserted 45° angle	15
Figure	2.2	A set of six subfigures in two pages.	16
	(a)	Bamboo-pile Vertically Inserted Position	16
	(b)	Bamboo-pile Normal Inserted Position	16
	(c)	bamboo-pile Inserted 45° angle	16
	(d)	Bamboo-pile Vertically Inserted Position	17
	(e)	Bamboo-pile Normal Inserted Position	17
	(f)	bamboo-pile Inserted 45° angle	17

List of tables

Table 4.1 Results for devil mesh

20

List of algorithms

Algorithm 1 Escolha das amostras inicias

19

List of codes

Code	1	Mean Filter	18
Code	2	Mean Filter	21

List of Abreviations

ADI – Análise Digital de Imagens

BIF – Banded Iron Formation

1

Introduction

- What is Reference typing?
- What is the main representation (from Pierce)?
- What we want to propose studying?
- What is our alternative representation?
- What are the differences
- Why should we formalize an idea?
- Which Theorems we want to prove?
- Which usabilites can we identify by this formalization?
- Is this representation simpler or more complicated to prove?
- Is this dissertation meant to be didatic?
- How formal explaining our syntax?
- Define a a typing judgment?
- Explain Mutable References?
- Show studies around semantic of mutable reference and typing relations?

_

Coq is a expressive functional programming language used for stating and proving logical assertions and a standard tool for researchers to reason about complex language definitions (PIERCE et al., 2022) Study the implications of bringing this new semantic. Can be useful for implementing new target languages "we wish to construct type systems with soundness proofs that are machine-checkable in the simplest possible logic. Bring a simplified typing relation, without a store typing By changing our term syntax to include the type information on loc a ref terms

This document is structured as follows. In Chapter 2 we present some previous work relevant to our problem. In Chapter 3 we explain our proposal. In Chapter 4 we show our results. Finally, in Chapter 5 we present our conclusion and future work.

2

Previous Work

Early smoothing methods tried to minimize... In the figure 2.2d we see...

lmage

(c) bamboo-pile Inserted 45° angle

Figure 2.1: A set of three subfigures: (a) describes the first subfigure; (b) describes the second subfigure; (c) describes the third subfigure.

(a) Bamboo-pile Vertically Inserted Position

(b) Bamboo-pile Normal Inserted Position

(c) bamboo-pile Inserted 45° angle

Figure 2.2: A set of six subfigures in two pages.

(f) bamboo-pile Inserted 45° angle

Figure 2.2: A set of six subfigures in two pages.(Continuation)

Proposal

Equation example 1:

$$\min_{u} \int_{x_i \in X} \int_{x_j \in X} q_{ij} u_i u_j da da + \int_{x_i \in X} ||x' - x_i|| u_i da$$

$$s.t. \quad u \in [0, 1] \quad \wedge \quad \int_{x_i \in X} u da = a_0,$$

$$(3-1)$$

Equation exmaple 2:

$$\min_{\mathbf{u}} \alpha \mathbf{u}^{T} \mathbf{A}^{T} \mathbf{Q} \mathbf{A} \mathbf{u} + \beta \mathbf{d}^{T} a' \mathbf{A} \mathbf{u} + \gamma \mathbf{u}^{T} \mathbf{G}^{T} \mathbf{G} \mathbf{u} + \delta \mathbf{f}^{T} a' \mathbf{A} \mathbf{u}$$

$$s.t. \quad \mathbf{0} \leq \mathbf{u} \leq \mathbf{1} \wedge \mathbf{a}^{T} \mathbf{u} = a_{0}.$$
(3-2)

Equation example 3:

$$\mathbf{G} = (g_{ij}) = \begin{cases} \sum_{f_k \in N_f(f_i)} l_{ik} & i = j \\ -l_{ij} & e_{ij} \in E \\ 0 & \text{otherwise} \end{cases}$$
 (3-3)

Code 1: Mean Filter

```
1 #
                -----#
2 # Create filter function
3 # l is the width of window
     5 meanfilter <- function( 1, imagem ) {</pre>
   if(1\%2 == 0)
     print("Please, type an odd number!")
   imagem.result <- imagem</pre>
   lp1d2 \leftarrow (1-1)/2
   L <- dim(imagem)[1]
   C <- dim(imagem)[2]</pre>
   for( j in as.integer(lp1d2+1) : as.integer(C-lp1d2)) {
12
     for( i in as.integer(lp1d2+1) : as.integer(L-lp1d2)) {
13
       imagem.result[i,j] <- mean(imagem[as.integer(i-lp1d2):as.</pre>
14
          integer(i+lp1d2), as.integer(j-lp1d2):as.integer(j+lp1d2)
     }
   }
16
```

```
print("Image filtred with success!")
return(imagem.result)

9 }
20 #
21 # End of Script.
22 #
```

Algorithm 1: Escolha das amostras inicias

Input: Malha e quantidade de pontos a ser amostrado Output: Pontos amostrados na malha

- 1 Crie um vetor de números randômicos entre [0,1] com a quantidade de pontos a ser amostrada e ordene-o
- 2 Calcule a área total dos triângulos da malha
- $\mathbf{3}$ for i=0 to numeroDePontos do
- Navegue entre as faces acumulando a sua $\frac{area}{areaTotal}$ até achar a face com valor acumulado \geqslant numerosRandomicos[i]
- Pegue um ponto randômico dentro da face utilizando o método de Turk e adicione no vetor do resultado

4 Results

Table example. Table 4.1 shows results.

Table 4.1: Results for devil mesh

	Mean Vertex Dis- tance	L2 Vertex Based	Mean Quadric	MSAE	L2 Nor- mal Based	Tangential	Mean Discrete Curva- ture	Area Error	Volume Error
(FLEISHMA DRORI; COHEN- OR, 2003) (JONES;	AN; 0.061277	0.110973	0.236219	19.697900	0.055170	0.047678	0.090284	0.051443	0.045645
DU- RAND; DES- BRUN, 2003)	0.001293	0.002800	0.002289	21.237300	0.021589	0.013026	0.087991	0.000364	0.002621
(SUN et al., 2007)	0.001439	0.002880	0.003540	14.043200	0.012654	0.008911	0.055849	0.007806	0.000582
(ZHENG et al., 2011)	0.000713	0.001537	0.001824	12.171400	0.009654	0.005781	0.054567	0.005617	0.000425
(HE; SCHAE- FER, 2013)	0.002531	0.004560	0.007108	13.830100	0.017459	0.010314	0.114528	0.001686	0.001786
(ZHANG et al., 2015)	0.001623	0.003079	0.005048	10.454200	0.015233	0.008054	0.094668	0.002629	0.001326
(YADAV; REITE- BUCH; POLTH- IER, 2016)	0.000737	0.001548	0.001493	16.880800	0.014129	0.006974	0.079952	0.000209	0.002375
Ours	0.000987	0.001902	0.002686	11.574200	0.010632	0.006796	0.075106	0.003970	0.000722

4.1 Comparison

Conclusion and future work

We proposed an algorithm for triangular mesh denoising with detail preservation...

Code 2: Mean Filter

```
1 #
    -----#
2 # Create filter function
3 # l is the width of window
    ----#
5 meanfilter <- function( 1, imagem ) {</pre>
   if(1\%\%2 == 0)
    print("Please, type an odd number!")
  imagem.result <- imagem
  lp1d2 \leftarrow (1-1)/2
  L <- dim(imagem)[1]
10
   C <- dim(imagem)[2]</pre>
  for( j in as.integer(lp1d2+1) : as.integer(C-lp1d2)) {
    for( i in as.integer(lp1d2+1) : as.integer(L-lp1d2)) {
13
      imagem.result[i,j] <- mean(imagem[as.integer(i-lp1d2):as.</pre>
14
         integer(i+lp1d2), as.integer(j-lp1d2):as.integer(j+lp1d2)
    }
15
   }
16
   print("Image filtred with success!")
   return(imagem.result)
19 }
20 #
     -----#
21 # End of Script.
22 #
     -----#
```

6 Bibliography

FLEISHMAN, S.; DRORI, I.; COHEN-OR, D. Bilateral mesh denoising. In: ACM. **ACM transactions on graphics (TOG)**. [S.I.], 2003. v. 22, n. 3, p. 950–953. Cited in page 20.

HE, L.; SCHAEFER, S. Mesh denoising via I 0 minimization. **ACM Transactions on Graphics (TOG)**, ACM, v. 32, n. 4, p. 64, 2013. Cited in page 20.

JONES, T. R.; DURAND, F.; DESBRUN, M. Non-iterative, feature-preserving mesh smoothing. In: ACM. **ACM Transactions on Graphics (TOG)**. [S.I.], 2003. v. 22, n. 3, p. 943–949. Cited in page 20.

PIERCE, B. C. et al. **Logical Foundations**. [S.I.]: Electronic text-book, 2022. v. 1. (Software Foundations, v. 1). Version 6.2, URL-http://softwarefoundations.cis.upenn.edu. Cited in page 14.

SUN, X. et al. Fast and effective feature-preserving mesh denoising. **IEEE transactions on visualization and computer graphics**, IEEE, v. 13, n. 5, p. 925–938, 2007. Cited in page 20.

YADAV, S.; REITEBUCH, U.; POLTHIER, K. Mesh denoising based on normal voting tensor and binary optimization. **arXiv preprint arXiv:1607.07427**, 2016. Cited in page 20.

ZHANG, W. et al. Guided mesh normal filtering. In: WILEY ONLINE LIBRARY. **Computer Graphics Forum**. [S.I.], 2015. v. 34, n. 7, p. 23–34. Cited in page 20.

ZHENG, Y. et al. Bilateral normal filtering for mesh denoising. **IEEE Transactions on Visualization and Computer Graphics**, IEEE, v. 17, n. 10, p. 1521–1530, 2011. Cited in page 20.