Limites et continuité

Limite en un point

▶ 1 Fonction continue définie par morceaux

1) On considère la fonction f définie par

$$f(x) = \begin{cases} \alpha \sin x + \cos x & \text{si } x < \frac{\pi}{2}, \\ \pi - x & \text{si } x \in \left[\frac{\pi}{2}, \pi\right[, \\ \frac{x^2}{2} + \beta & \text{si } x \ge \pi. \end{cases}$$

Déterminer les réels α et β pour que f soit continue en $\frac{\pi}{2}$ et en π .

2) On considère la fonction g définie par

$$f(x) = \begin{cases} \sin(2x - \frac{\pi}{6}) & \text{si } x \le 0, \\ \cos(x + \varphi) & \text{si } x \in \left]0, \frac{4\pi}{3}\right[, \\ 2\sin(2x + \psi) & \text{si } x \ge \frac{4\pi}{2}. \end{cases}$$

Déterminer les réels ϕ et ψ pour que f soit continue sur IR.

▶ 2 Pas de limite!

Soit f la fonction définie sur \mathbb{R}^* par $f(x) = \sin(\frac{1}{x})$.

- 1) Montrer que f n'admet pas de limite en 0.
- **2)** Justifier que $f(]0, +\infty[] = [-1, 1]$.
- **3)** Montrer que, pour tout a > 0, f(]0, a[) = [-1, 1].

Les preuves doivent s'appuyer sur des théorèmes précis.

► 3 Continuité de fonctions

Déterminez le domaine de définition des fonctions suivantes et dites où elles sont continues :

1)
$$f: x \longmapsto \frac{x^2 + 2x + 2}{3 - 2x - x^2}$$

2)
$$g: x \longmapsto \sqrt{\frac{x^2 + 2x + 2}{3 - 2x - x^2}}$$

3)
$$h: x \longmapsto \arccos\left(\frac{x^2 + 2x + 2}{3 - 2x - x^2}\right)$$

► 4 • Morphismes continus de (IR,+) dans (IR,+)

Le but de cet exercice est de déterminer toutes les applications $f\colon \operatorname{IR} \to \operatorname{IR}$ qui soient continues et qui vérifient la propriété

$$\forall (x, y) \in \mathbb{R}^2$$
, $f(x+y) = f(x) + f(y)$.

On procède par analyse-synthèse.

- 1) Si f vérifie les conditions de l'énoncé, montrer successivement que :
 - **a.** f(0) = 0;
 - **b.** f est impaire;
 - **c.** $\forall x \in \mathbb{R}, \forall n \in \mathbb{N}, f(nx) = n f(x);$
 - **d.** $\forall n \in \mathbb{Z}, f(n) = n f(1);$
 - **e.** $\forall r \in \mathbb{Q}, f(r) = r f(1)$;
 - **f.** $\forall x \in \mathbb{R}, f(x) = x f(1).$
- 2) Montrer alors que toutes les fonctions obtenues sont bien solutions du problème posé et conclure.

► 5 • Indicatrice de Q

- 1) Rappeler la définition de la fonction indicatrice de $\mathbb{Q},$ notée $\mathbb{1}_{\mathbb{O}}.$
- 2) Montrer que $\mathbb{1}_{\mathbb{Q}}$ n'est pas continue en 0.
- 3) Montrer que $\mathbb{1}_{\mathbb{Q}}$ n'est continue en aucun point $x_0 \in \mathbb{R}$.

Le coin des casse-têtes

▶ 6

Soit $f \colon [0, +\infty[\to \mathbb{R}$ une application continue sur $[0, +\infty[$ telle que $\lim f = -\infty$.

Montrer que f admet un maximum.

▶ 7

Soit a un réel, $f: [a, +\infty[\to \mathbb{R}] \to \mathbb{R}$ une application croissante sur $[a, +\infty[$ telle que $\lim_{t \to \infty} f = b \in \mathbb{R}$. On suppose que l'application g, définie sur $[a, +\infty[$ par

$$\forall x > a, \quad g(x) = \frac{f(x) - f(a)}{x - a},$$

est croissante sur $]a, +\infty[$. Montrer que f est constante.

▶ 8

Soit $f:]0, +\infty[\rightarrow \mathbb{R} \text{ et } g:]0, +\infty[\rightarrow \mathbb{R} \text{ définie par}]$

$$\forall x > 0, \quad g(x) = \frac{f(x)}{x}.$$

Montrer que si f est croissante sur $]0,+\infty[$ et g est décroissante sur $]0,+\infty[$, alors f et g sont continues.

▶ 9

Soit $f: \mathbb{R} \to \mathbb{R}$ une application bornée et $g: \mathbb{R} \to \mathbb{R}$ une application continue sur \mathbb{R} .

Montrer que $f \circ g$ et $g \circ f$ sont bornées.

▶10

Soit I un intervalle de IR contenant au moins deux points et $f:I\to \mathrm{IR}.$

- 1) Donner un exemple de fonction f non constante telle que f(I) est un ensemble fini.
- 2) On suppose désormais f continue sur I. Montrer que f est constante si et seulement si f(I) est un ensemble fini.

►11

Soit $f: \mathbb{R} \to \mathbb{R}$ continue sur \mathbb{R} et périodique. Montrer que f est bornée.

▶12

Soit $f: [a,b] \rightarrow [a,b]$ vérifiant

$$\forall (x, y) \in [a, b]^2, |f(x) - f(y)| = |x - y|.$$

- 1) Montrer que f est continue sur [a,b].
- 2) Montrer que f est bijective de [a, b] dans [a, b].