

## CA-LoRA: Adapting Existing LoRA for Compressed LLMs to Enable Efficient Multi-Tasking on Personal Devices

Weilin Zhao, Yuxiang Huang, Xu Han, Zhiyuan Liu, Zhengyan Zhang, Kuai Li, Chen Chen, Tao Yang, Maosong Sun1





汇报人: 陆俊安 2025.5.23

## 目录

- 研究背景
- 相关工作
- 设计实现
- 实验测试
- 后续思考

## 研究背景

#### ・ 大语言模型 (LLM) :

- 综合能力强大,但难以直接适配下游任务,传统全参微调多任务开销大。
- 性能强大,开销同样巨大,难以在边缘平台部署

#### · 为解决这两个问题:

- 参数高效微调 (PEFT) → 低秩适应 (LoRA)
- 模型压缩 (compressed LLM, 以下简写为CLM)

#### · 以上两种方案产生的新问题:

- 压缩后的模型能力显著退化
- 将原始LLM中的LoRA直接应用到压缩模型中出现性能损失

#### • 解决新问题的方案:

- 本文提出CA-LoRA (Compression-Aware LoRA)
- 通过知识继承和恢复补偿压缩损失

## 相关工作

- ・ 参数高效微调 (parameter-efficient fine-tuning, PEFT)
  - 期望仅调整极少参数适配下游任务。
  - 方法多种多样,由于本文基于LoRA,重点关注LoRA
- · 低秩适应 (Low-Rank Adaptation, LoRA)
  - 核心假设:适应新任务时权重变化有效维度远小于原始维度,且微调(变化)的△W有低内在秩
  - 通过对AW进行低秩分解,减少需要更新的参数量



原始文章: LoRA: Low-Rank Adaptation of Large Language Models

链接: [2106.09685] LoRA: Low-Rank Adaptation of Large Language Models

## 相关工作

#### • 模型压缩

- 任务相关压缩
  - 存储效率低,扩展性差
- 任务无关压缩
  - 存储成本低,多任务支持
- 相关任务无关压缩方法:
  - 量化
  - 剪枝
  - 混合专家化 (MoEfication)





## 相关工作

#### ・ 现有方法与CA-LoRA的对比



#### 数学框架:

假设某LLM模型M可以表示为:  $\mathbf{Y} = f(\mathbf{X}; \boldsymbol{\theta}_{\mathcal{M}})$ 

其中:  $f(\cdot)$  为架构函数; X为输入, Y为输出;  $\theta_{\mathcal{M}}$  为模型参数

若  $(X^t, Y^t)$  为下游任务的数据集,  $\mathcal{L}$  为任务 t 的损失函数,

在LoRA设定中,参数M保持冻结,额外的LoRA模块P在任务特定数据上进行调优。

注入M的LoRA模块参数记作  $\theta_{P(M)}$ 

计算过程调整为:  $\mathbf{Y} = f_{LoRA}(\mathbf{X}; \boldsymbol{\theta}_{\mathcal{M}}, \boldsymbol{\theta}_{\mathcal{P}(\mathcal{M})})$ 

优化目标为:  $\theta_{\mathcal{P}(\mathcal{M})}^t = \arg\min_{\theta_{\mathcal{P}(\mathcal{M})}} \mathcal{L}(f_{LoRA}(\mathbf{X}^t; \theta_{\mathcal{M}}, \theta_{\mathcal{P}(\mathcal{M})}), \mathbf{Y}^t)$ 

 $heta_{\mathcal{P}(\mathcal{M})}^t$ 表示与大语言模型M协同工作的、针对任务t优化的最终LoRA模块参数。

若将该LLM压缩后的模型称为C,则CA-LoRA可形式化定义为: $\theta^t_{\mathcal{P}(\mathcal{C})} = \arg\min_{\theta_{\mathcal{P}(\mathcal{C})}} \mathcal{L}(f_{LoRA}(\mathbf{X}^t; \theta_{\mathcal{C}}, \theta_{\mathcal{P}(\mathcal{C})}), \mathbf{Y}^t)$ 

・ 关键想法:

• 启发:模型压缩能保留那些从头训练小模型无法掌握的能力

- 关键假设:
  - 在未压缩LLM上训练的LoRA模块包含某些任务知识且该知识是仅在CLM上训练的LoRA模块难以掌握的。
  - 通过从原始LLM训练的LoRA模块继承知识的方法。可以恢复压缩 过程导致的知识损失

# Weight Matrix (a) Existing LoRA on LLM

#### ・ 关键办法:

- 两大机制:
  - LoRA知识继承机制:原始LLM上预训练的LoRA模块作为初始化参数,迁移至压缩版本的LoRA训练中。
  - 模型知识恢复机制:为修复压缩过程导致的知识损失,在CLM中注 入低秩非线性恢复模块以弥合知识鸿沟。



#### 知识继承机制

- 首先将原LoRA的参数作为初始化参数载入
- 之后在任务数据上继续训练调优得到最终参数

#### 模型知识恢复机制

- 一个类似LoRA的低秩旁路结构
- 数学定义:

$$\mathcal{R}(\mathbf{X}) = \sigma(\mathbf{X}\mathbf{D})\mathbf{U}$$



- 其中D为其中D为下投影矩阵, $\sigma(\cdot)$ 为激活函数,U为上投影矩阵,二者共同构成恢复模块参数 $heta_{\mathcal{R}}$
- 通过蒸馏获得最优恢复模块参数



#### ・ 蒸馏 (Model Distillation)

- 是模型压缩技术的一种
- 蒸馏是一种让小模型(学生模型)模仿大模型(教师模型)从而获得大模型的知识或能力的技术
- 通过蒸馏, 学生模型能在参数更少的情况下逼近甚至超越教师模型的性能



原始文章: Distilling the Knowledge in a Neural Network

链接[1503.02531] Distilling the Knowledge in a Neural Network

#### • 模型知识恢复机制的蒸馏函数

- 目的:修复压缩过程中损失的知识/能力
- 选择:均方误差 (MSE) 损失函数,如下:

$$\mathcal{L}_{\text{DIST}}(\mathbf{X}^{t}; \boldsymbol{\theta}_{\mathcal{M}}, \boldsymbol{\theta}_{\mathcal{C}}, \boldsymbol{\theta}_{\mathcal{P}(\mathcal{C})}, \boldsymbol{\theta}_{\mathcal{R}}) = \frac{1}{|\mathbf{X}^{t}|} \| f_{\text{LoRA}}(\mathbf{X}^{t}; \boldsymbol{\theta}_{\mathcal{M}}, \boldsymbol{\theta}_{\mathcal{P}(\mathcal{M})}^{t}) - f_{\text{LoRA}}(\mathbf{X}^{t}; \boldsymbol{\theta}_{\mathcal{C}}, \boldsymbol{\theta}_{\mathcal{P}(\mathcal{C})}, \boldsymbol{\theta}_{\mathcal{R}}) \|_{2}^{2},$$

• 其中 $\theta_R$ 是恢复模块参数,实际训练时,将LoRA和恢复模块一同训练,故最终表示如下:

$$\begin{aligned} \boldsymbol{\theta}_{\mathcal{P}(\mathcal{C})}^{t}, & \boldsymbol{\theta}_{\mathcal{R}}^{t} = \\ & \arg \min_{\boldsymbol{\theta}_{\mathcal{P}(\mathcal{C})}, \boldsymbol{\theta}_{\mathcal{R}}} \left[ \mathcal{L}(f_{\text{LoRA}}(\mathbf{X}^{t}; \boldsymbol{\theta}_{\mathcal{C}}, \boldsymbol{\theta}_{\mathcal{P}(\mathcal{C})}, \boldsymbol{\theta}_{\mathcal{R}}), \mathbf{Y}^{t}) \right. \\ & + \alpha \mathcal{L}_{\text{DIST}}(\mathbf{X}^{t}; \boldsymbol{\theta}_{\mathcal{M}}, \boldsymbol{\theta}_{\mathcal{C}}, \boldsymbol{\theta}_{\mathcal{P}(\mathcal{C})}, \boldsymbol{\theta}_{\mathcal{R}}) \right]. \end{aligned}$$

#### ・ 典型自然语言 (NLP) 性能

- 基线 (baseline) 模型: T5-3b
- 数据集: 11个, 如右
- 压缩方法:
  - 量化 (Quatization)
  - 混合专家化 (MoEfication)
  - 结构化剪枝 (Structured Pruning)
  - 非结构化剪枝 (Unstructured pruning)
- 三种方案
  - T5-3b+LoRA: 在原始T5-3b上附加 LoRA, 仅微调LoRA参数
  - CLM+LoRA: 在压缩版T5-3b (CLM)
     上附加LoRA模块,仅微调LoRA
  - CLM+CA-LoRA:在压缩版T5-3b上附加完整CA-LoRA模块,仅微调LoRA和恢复模块。









#### · 高压缩率下的性能表现

- 不同压缩方法和压缩率如右
- 选用压缩率最大的Q+UP+M方案 后,表现如下

| Model          | Model Size | Ideal Speedup |
|----------------|------------|---------------|
| T5-3b (bf16)   | 5.61 GB    | 100%          |
| T5-3b (M)      | 3.74 GB    | 150%          |
| T5-3b (UP)     | 2.81 GB    | 200%          |
| T5-3b (SP)     | 2.81 GB    | 200%          |
| T5-3b (Q)      | 2.81 GB    | 200%          |
| T5-3b (Q+UP+M) | 0.94 GB    | 600%          |
| T5-base (bf16) | 0.44 GB    | 1400%         |

"M" (MoEfication)

"UP"(非结构化剪枝)

"SP" (结构化剪枝)

"Q" (8位量化)

| Method         | Model       | BoolQ       | CB           | RTE         | COPA        | WiC         | SST2        |
|----------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|
|                | Size(GB)    | Acc(%)      | Acc(%)       | Acc(%)      | Acc(%)      | Acc(%)      | Acc(%)      |
| T5-3b + LoRA   | 5.61        | 88.3        | 100.0        | 88.6        | 88.0        | 74.0        | 96.1        |
| T5-base + LoRA | 0.44        | 79.5        | 91.1         | 80.7        | 71.0        | 69.9        | 93.5        |
| CLM + LoRA     | 0.94        | 85.2        | 89.3         | 82.9        | 80.0        | 70.5        | 94.8        |
| CLM + CA-LoRA  | 0.94        | <b>87.1</b> | <b>100.0</b> | <b>84.3</b> | <b>86.0</b> | <b>72.0</b> | <b>96.2</b> |
| Method         | MNLI-m      | QQP         | QQP          | MRPC        | QNLI        | SQuAD       | SQuAD       |
|                | Acc(%)      | Acc(%)      | F1(%)        | Acc(%)      | Acc(%)      | EM(%)       | F1(%)       |
| T5-3b + LoRA   | 90.6        | 91.3        | 90.7         | 89.5        | 95.4        | 84.2        | 92.5        |
| T5-base + LoRA | 84.8        | 90.6        | 89.9         | 86.5        | 93.1        | 79.0        | 87.8        |
| CLM + LoRA     | 89.0        | 90.6        | 89.9         | <b>89.7</b> | 94.7        | 79.9        | <b>90.6</b> |
| CLM + CA-LoRA  | <b>89.9</b> | <b>91.5</b> | <b>90.9</b>  | 89.5        | <b>94.7</b> | <b>81.3</b> | 90.5        |

#### ・消融实验

- 实验对象: T5-3b(Q+UP+M)
- 任务: 文本蕴含识别 (RTE)
- 移除继承 (Inherit) : 表示移除知识继承机制并从 头训练LoRA
- 移除恢复模块 (Recover) : 表示移除恢复模块
- · 移除蒸馏(Distill):表示训练损失仅含任务损失

| Inherit  | Recover | Distill | RTE Acc |
|----------|---------|---------|---------|
|          |         |         | 83.6    |
| <b>√</b> |         |         | 85.4    |
|          | ✓       |         | 82.5    |
|          |         | ✓       | 82.5    |
| ✓        | ✓       |         | 87.5    |
| ✓        |         | ✓       | 85.7    |
|          | ✓       | ✓       | 86.1    |
| ✓        | ✓       | ✓       | 88.6    |

#### • 收敛测试

• 测试对象: 四种不同压缩的T5-3b

• 数据集: BoolQ



## 后续思考

#### ・ 文章有什么问题?

- 清晰度的问题
  - 文章原文对恢复模块的称呼为 "Model Knowledge Recovery" 即知识恢复模块,但其本 质上是一些额外的参数,没有明确包含来自原始LLM的知识,但是却直接叫知识恢复模块。
  - 另一方面,这也体现出理论解释相对薄弱
- 固定秩的问题
  - 在所有测试中, LoRA的秩都是固定的。
- 实验广度不足
  - 缺少跨模态的任务验证

## 后续思考

### · 这篇 paper 的 工作能否进一步深入?

- 是否可以尝试解释其恢复模块的工作原理?
- 是否可以尝试让LoRA的秩进行适应甚至自适应?比如对不同任务或者硬件自动使用不同的秩。
- 除了LLM外,LoRA在图片生成等领域也有广泛应用,这些地方是否也能使用CA-LoRA?

## · 这篇 paper 能不能泛化?

 如果在大模型上训练的LoRA能带来从头训练的小模型不具备的能力,那其他参数微调方法是否 也可以做到?



## Thanks

汇报人: 陆俊安 2025.5.23