G	C527		Constructing Proteins Estell et al.	Humans & Me g, Identifying &	thods for Producing Such					Mutant Proteins day Mutant Proteins den Response in Human Constructions	ving Lower Allergenic ving Methods for ans & Methods for ans fifting & Producing Such antifring &				
-			SN# 09/062	•						Mutant Prov. Human Response in Human Response incling, Iden	ntifying				
		<u>-</u> 0	Met ATG	2/15 eca 800 800	Asp GAT	Gin	Val GTA			Consult Proteins Estell et al. SN# 09/062,87	12				
		r Ser	Thr MA	Asp Al	Glu As GAA G	Ser G TCT C	Lys V. AAG G			SN# (D)	1115				
	-107 Met GTG	Ser Thr AGC ACA	Ser Th AGC AC	Val As GTA G/	Glu Gl GAA G	His SE CAC TO	Leu Ly TTA Av		GC5 ²¹						·.
		Gly Se	-60 Met Se ATG AC	Tyr TAT G	-10 Val GI GTT G	Leu H CTG C	Asp Le GAT T	Ç	+		`				
	ATAAA		Thr MA	Lys Ty AAA TV	Tyr V.	Ala Li GCT C	Pro A	·	·						
	S SAGG/	Ala Phe GCG TTC	Gin Th	Phe Ly	Ala T) GCT T	Pro A CCT G	His P CAT C		4	五					
	RB:	Met Al ATG G	Lys AAA C	Gin Pi	Val A GTC G	Ala P GCC C	Ser H TCT C		684	Mean					
	5 P P P P P P P P P P	Thr MA	Phe Ly	Lys G AAG C	Ser V	Lys A	Ser S TCT T								
	ATGAA	Phe T	Gly P	Gin L	Pro S CCG A	lle L ATT	Asp S	//	× (8)		N THE		•		:
	GCAA	-90 lle P ATC T	val GTC	Val G	Asp F	10 Gin CAA	lle A		BRAT SHA		Ar Ar				
	ATTCT	Leu II	۵۲		Lys AAA 0	Ser TCA	Gly GGT		182		A				
	беп	Ala L	PRO Tyr # TAT A	Gly Lys GGG AAA	Lys	Val GTA	Ser AGC	1 -				} . \			
	4 CTATT	Leu	Lys	Gly GGC	Leu	Gly GGC	Asp GAC	1B			f		4		
	гстат	Ala GCT	-70 Lys AAG	Lys AAA	-20 Glu GAA	Tyr TAC	lle ATC					MART SKD			
	ATAA1	Phe					30 Val GTT	FIG.					FIG		
	CAGA		Gly Glu GGG GAA	Ser Glu TCT GAA	Ala Val Lys GCT GTA AAA	Val Pro GTG CCT	Ala GCG	4							
	ATACA	PRE Leu Leu TTG CTG	Asn	lle ATT	Ala GCT	Ser	Val GTA					TIN THE			
	3 ← &TT&	Ser AGT	Ser TCA	Val GTC	Lys	1 Ala Gin GCG CAG	Lys AAA					Clarpour	Or /		
	ATACA	-100 lle ATC	Lys AA	-50 Asp GAT	Glu	1 Ala GCG	Val GTT					0 /		1	;
s.'	TACT!		Gly GGG	ς AA AA	Asn	Ala Tyr GCG TAC	Asn AAT						PRE		
	TCCA	Val Trp GTA TGG	Ala GCA	Lys AAG	Thr Leu ACA TTA	Ala GCG	Ser TCA					c	HESSE	1	
	ATTA	Lys AAA	Gin Ala Ala Gly Lys Ser CAG GCG GCA GGG AAA TCA	-50 Ser Ala Ala Lys Lys Asp AGC GCC GCT AAG AAG AAA GAT	Thr ACA	Ala His GCA CAT	Thr Gly Ser Asn Val Lys Val Ala Val ACT GGA TCA AAT GTT AAA GTA GCG GTT						70		
	9	Gly Lys GGC AAA	Gin	Ata GCT	Ala GCT	Ala GCA	Thr						蓝岩	V	
	YACT.	Giy GGC	-80 Ala GCC	Ala GCC	-30 Ser TCA	Val GTA	Tyr TAC			4.	•		ECO		
	5 → GGTO	Arg AGA	Ser TCT	Ser AGC	Ala GCT	His CAC	20 Gly GGC								•
	-	66	174	249	324	399	474	1			e.				

+

APPROVIDE (I.C. F.IG. BAPTISMAN FILASS SUBCLASS

Mutant Proteins Having Lower Allergenic Response in Humans & Methods for Constructing, Identifying & Producing Such Proteins Estell et al. SN# 09/062,872s GC527 821 3/15 Gly Pro GGA CCT 9 9 9 9 oca GCA A A C Asn Val Gly Tyr Pro (ATG Met \$\$ Ala Val GIY ASN LYS TYY GIY AIA TYY GGA AAC AAA TAC GGG GCG TAC gCC GCC Ala Ash Ash GCA AAC AAT Ser Val AGC GTA (Ala Val I GCT GTA HIS GIV THY HIS VAI V. CAC GGA ACT CAC GTT (ASP LYS GAT AAA Ser TCA Leu Tyr CTT TAC ASN GIV IIE GIU TTP AIA IIE ASC GGA ATC GAG TGG GCG ATC 1 1 1 1 1 1 1 160 Ser Ser Thr Gly Ser CA AGC ACA GGC AGC TCA AGC ACA Ala Ala Val GCG GCA GTT (15t 1C1 Ser Ala Ala Ser GCA TCA Gin Arg Ala E CAA AGA GCA 1 Ser TCT Ala Pro Ser I Ala Ala Leu Lys A Asp Ser Ser Asn C GAC AGC AGC AAC C Thr Ser TCC 60 Asp GAC GIU GIY Thr GAA GGC ACT GGC GTT (/a Ser Thi CAA CAA FE Phe TC ser 101 GIY GIN TYR SER TRP IIE GGC CAA TAC AGC TGG ATC 80 Val Leu Gly Val TTA GGT GTA TTA Asn Pro CCT 66.6 8 2 E Ala Ala Ala Gly Asn GCG GCA GCC GGT AAC Pro ' GIU Thr Ash F GAA ACA AAT C Ser TCT Val Gly Ala V 65 Met Ser Leu Gly Gly Pro ATG AGC CTC GGC GGA CCT arc Arc ase 1CA Pro Ser CCT TCT Leu Ash Ash . Ser 100 雪哥 150 雪岩 95 95 159 310 Ser Met \ je Naj Ala Asp GAC Ala Ala GCG GCT Val Asn Asp GCT Gy Val Ala Gly Gly Ala S GCA GGC GGA GCC A ATE ATE GG1 雪岩 雪島 35 Ş Ser 100 阜 120 Asp GAC 18 ES ද ල්ලි ව

EL ASS SUBCLASS

, APPROVIT بر دند DRAFTSMAIN

O 18-Ala Gly Ala Ala ta

Leu lle TTG ATT

Ala GCT

230 Ala

AC.

Leu Ser Lys His Pro Ash Trp Thr Ash CTT TCT AAG CAC CCG AAC TGG ACA AAC

13 Pro 210

ē

CAA AGC ACG CTT

Ser lle TCT ATC

Gly Val

200 Ala GCA 1

Met ATG

val GTC

Asp GAT

35

Glu GAG

<u>გ</u>

횰

SCA GCA

Val le GTC ATT

Ser 1C1

873

4¥ AC

Lys

849

669

624

549

924

Ser . Thr

Pro His Val 1 CCG CAC GTT C

Met Ala Ser ATG GCA TCT

Sec

220 Thr

ACG TCA

1316 ATAATCGACGGATGGCTCCCTCTGAAAATTTTAACGAGAGAGGGGGGTTGACCCGGCTCAGTCCCGTAACGGCCAAGTCCTGAAACGTCTCAATCGCCG TERM
270
270
Val Gin Ala Ala Ala Gir AA AACATAAAAACCGGCCTTGGCCCCGCGGTTTTTTATTTTCTTCCTCCGCATGTTCAATCCGCTCC
1224 GTA CAG GCG GCA GCT CAG TAA AACATAAAAACCGGCCTTGGCCCCGCGGTTTTTTATTTTCTTCCTCCGCATGTTCAATCCGCTCC IN ASS SUBCLASS APPRIONE 1 (1. G. F16. DRAFTSHAN

Mutant Proteins Having Lower Allergenic Response in Humans & Methods for Constructing, Identifying & Producing Such Proteins Estell et al. SN# 09/062,872

4/15

1416 CTICCCGGTTTCCGGTCAGCTCAATGCCGTCGGCGCGCGTTTTCCTGATACCGGGAGGCGGCATTCGTAATCGGATC

FIG.-1B-3

Mutant Proteins Having Lower Allergenic Response in Humans & Methods for Constructing, Identifying & Producing Such Proteins Estell et al. SN# 09/062,872

5/15

CONSERVED RESIDUES IN SUBTILISINS FROM BACILLUS AMYLOLIQUEFACIENS

1 A	Q	s	v	P	•	G	•	•	10	•	•	A	P	A	•	н	•	•	20 G
21	T	G	s	•	v	ĸ	v	A	3 (V	•	D	•	G	•	•	•	•		40 P
41 D	L	•	•	•	G	G	A	s	50	v	P	•	•	•	•	•	•	Q	60 D
61	N	•	н	G	T	н	v	A	7 (G	T	•	A	A	L	N	N	s	I	80 G
81 V	L	G	v	A	P	s	A	•	9(L	Y	A	v	ĸ	v	L	G	A		G
10 S	1 G	•	•	s	•	L	•		11(G		E	W	A	•	N	•	•		
12 V	1	N	•	s	L	G	•	P	13(S		s	•	•	•	•	•	A		L 4 0
14	1	•	•	•	G	v	•	v	150 V) A	A	•	G	N	•	G	•		
16	1	•	•	•	•	Y	P	:	170) Y	•	•	•	•	A	v	G	A	
18 D	1	•	N	•	•	A	s	F	19(S		•	G	•	•	L	D	•		200 A
20 P	1 G	v	•	•	Q	s	T											G	220 T
22 S	1 M	A	•	P	н	v	A	G	23(A	0 A	A	L	•	•	•	ĸ	•		240
24 W		•	•	Q	•	R	•		25 L				•	•	•	L	G		260
26		Y	G	•	G	L			27		Α	A	•	•			F	IC	ā2

Mutant Proteins Having Lower Attergenic Response in Humans & Methods for Constructing, Identifying & Producing Such **Proteins** Estell et al. SN# 09/062,872

6/15

COMPARISION OF SUBTILISIN SEQUENCES FROM:

B.amyloliquefaciens

B.licheniformis

B.lentus

B.subtilis

C.ASS (SUBCLASS

75

DRAFTSMAH

APFIDOUT : C

4444 I H S SSAF 200 0000 SSHF 9 > > > >> Ö Z SAS G C H × O O G 9 9 9 K **S** A Z 0 K × 0 × K S > SH 9999 01 K KK

000 HH SES ZZ Z ZOZ 7 K K H > G G 4 FF HH O 00 HH H 8 8 8 8 ZSZZ ZUU Ö Ω 999 a a H Ø # H Z S ZXA K . 西田田田 8 6 6 D4 D4 D4 S SS KKK 00 Ö 00 C H Z コココ 9999

Σ X G C Z Z SE Z Ü 3 3 F 回回 G Ç C S Q 30 S S S S S Ö C 100 G S S Ö G E S A S S A Z 11 H H S S M S Д > C C > >

0000 8 8 8 8 H O Z Ö C G 田のの Z Z Z O Ö C 5 5 C SEE S S H Z S $\alpha \alpha$ 区 区 J Σ **ಬ** ಬ ಬ ಬ D P O G 8 8 A d O **5** 8 O C Q h h J SS 2 X Z 121 >

FI ASS SUBCLASS

; ;

DRAFTSMAN

APPROVED D. G. FIG.

Mutant Proteins Having Lower Allergenic Response in Humans & Methods for Constructing, Identifying & Producing Such **Proteins** Estell et al. SN# 09/062,872

7/15

RKKK ΣΣ **E** > > > > H **D B D D** ココココ 医医医氏 ABRA 0000 > < > > 8880 S S S S 14 14 14 14 8 8 8 8 KKKK 民民民民 aazz ZZSZ SSZZ 8888 180 V D Ω ZAA > > H KKK 000 > KKK Σ **H** > SSZ 4 G S S S 161 S S S T S T T S 0 F F *

ZHZS þ 4 HHZ X X X X 8 8 8 B ひしひと AA K K KK G G C C H Д SESE AA **EZZZ** 220 220 11 S 11 S 11 S S ∞ 8 C ZZ H A H S ZUZU O U 21 P Q, **KKFF** H H H H 8 8 8 8 $aa \times a$ G S K > O Ö 201 P G P G P G Ü G

9998 KKH 270 C O C O Z 1111 00 Ü XXS G C E E Z DZSS O 000 コココ **HHH** HKKK 8 8 8 8 zooz 国区の区 ち段取用 SUZZ 我我我我 > > > H a a a a F & 50 > ZKZ F F 8 8 241 3 43 3

GC527

Response in Humans & Methods for Constructing, Identifying & Producing Such Proteins
Estell et al.
SN# 09/062,872

9/15

APPTOVICE C.C. FIG.

LV

LV

RLASS SUBCLASS

DRAFTSMAN

FIG._5

GC527

45

46

47

48

D4

D3

D2

D1

Mutant Proteins Having Lower Allergenic Response in Humans & Methods for Constructing, Identifying & Producing Such Proteins Estell et al. SN# 09/062,872

10/15

116.	SUBCLASS	
	7.7.55 5	
APPLIEVED	A-52	DRAFTSHAN

1	A12	IKDFHVYFRESRDAG	49	E12	SATSRGVLVVAASGN
2	A11	LEQAVNSATSRGVLV	50	E11	SRGVLVVAASGNSGA
3	A10	AQSVPWGISRVQAPA	51	E10	VLVVAASGNSGAGSI
4	A10	VPWGISRVQAPAAHN	52	E 9	VAASGNSGAGSISYP
5	A9 A8	GISRVQAPAAHNRGL	53	Ē8	SGNSGAGSISYPARY
6	A8 A7	RVQAPAAHNRGLTGS	54	E7	SGAGSISYPARYANA
7		APAAHNRGLTGSGVK	55	Ē6	GSISYPARYANAMAV
8	A6	AHNRGLTGSGVKVAV	56	E5	SYPAR <u>YANAMAVGA</u> T
9	A5	RGLTGSGVKVAVLDT	57	E4	ARYANAMAYGATDON
10	A4	TGSGVKVAVLDTGIS	58	E3	ANAMAVGATDQNNNR
11	A3	GVKVAVLDTGISTHP	59	E2	MAVGATDQNNNRASF
12	A2	VAVLDTGISTHPDLN	60	Ē1	GATDQNNNRASFSQY
13	A1 B12	LDTGISTHPDLNIRG	61	F12	DONNNRASFSQYGAG
14	B12	GISTHPDLNIRGGAS	62	F11	NNRASFSQYGAGLDI
15	B10	THPDLNIRGGASFVP	63	F10	ASFSQYGAGLDIVAP
16		DLNIRGGASFVPGEP	64	F9	SQYGAGLDIVAPGVN
17	B9	IRGGASFVPGEPSTQ	65	F8	GAGLDIVAPGVNVQS
18	B8 B7	GASFVPGEPSTQDGN	66	F7	LDIVAPGVNVQSTYP
19	B6	FVPGEPSTQDGNGHG	67	F6	VAPGVNVQSTYPGST
20	B5	GEPSTQDGNGHGTHV	68	F5	GVNVQSTYPGSTYAS
21		STODGNGHGTHVAGT	69	F4	VQSTYPGSTYASLNG
22	B4 B3	DGNGHGTHVAGTIAA	70	F3	TYPGSTYASLNGTSM
23	B2	GHGTHVAGTIAALNN	71	F2	GSTYASLNGTSMATP
24	-B1	THVAGTIAALNNSIG	72	F1	YASLNGTSMATPHVA
25	C12	AGTIAALNNSIGVLG	73	G12	LNGTSMATPHVAGAA
26	C12	IAALNNSIGVLGVAP	74	G11	TSMATPHVAGAAALV
27	C10	LNNSIGVLGVAPSAE	75	G10	ATPHVAGAAALVKQK
28	C10	SIGVLGVAPSAELYA	76	G9	HVAGAAALVKQKNPS
29	C8	VLGVAPSAELYAVKV	77	Ğ8	GAAALVKQKNPSWSN
30	C7	VAPSAELYAVKVLGA	78	G7	ALVKQKNPSWSNVQI
31	C6	SAELYAVKVLGASGS	79	G6	KQKNPS <u>WSNVOIRNH</u>
32	C5	LYAVKVLGASGSGSV	80	G5	NPS <u>WSNVOIRNH</u> LKN
33	C4	VKVLGASGSGSVSSI	81	G4	WSNVQIRNHLKNTAT
34	C3	LGASGSGSVSSIAQG	82	G3	VQIRNHLKNTATSLG
35	C2	SGSGSVSSIAQGLEW	83	G2	RNHLKNTATSLGSTN
36	C1	GSVSSIAQGLEWAGN	84	G1	LKNTATSLGSTNLYG
37	D12	SSIAQGLEWAGNNGM	85	H12	TATSLGSTNLYGSGL
38	D11	AQGLEWAGNNGMHVA	86	H11	SLGSTNLYGSGLVNA
39	D10	LEWAGNNGMHVANLS	87	H10	STNLYGSGLVNAEAA
40	D9	AGNNGMHVANLSLGS	88	Н9	NLYGSGLVNAEAATR
41	D8	NGMHVANLSLGSPSP			
42	D7	HVANLSLGSPSPSAT			
43	D6	NLSLGSPSPSATLEQ	•		
44	D5	LGSPSPSATLEQAVN			
45	53	DCDCATT.FOAVNSAT			

PSPSATLEQAVNSAT

SATLEQAVNSATSRG

LEQAVNSATSRGVLV

AVNSATSRGVLVVAA

FIG._6A

GC527

Mutant Proteins Having Lower Allergenic Response in Humans & Methods for Constructing, Identifying & Producing Such Proteins Estell et al. SN# 09/062,872

11 / 15

					WALL DATE NI CICCODE
1	A12	IKDFHVYFRESRDAG	49	E12	KKIDVLNLSIGGPDF
2	A11	DAELHIFRVFTNNQV	50	E11	DVLNLSIGGPDFMDH
3	A10	PLRRASLSLGSGFWH	51	E10	NLSIGGPDFMDHPFV
4	A9	RASLSLGSGFWHATG	52	E9	IGGPDFMDHPFVDKV
5	A8	LSLGSGFWHATGRHS	53	E8	PDFMDHPFVDKVWEL
6	A7	GSGFWHATGRHSSRR	54	E7	MDHPFVDKVWELTAN
7	A6	FWHATGRHSSRRLLR	55	E6	PFVDKVWELTANNVI
8	A5	ATGRHSSRRLLRAIP	56	E5	DKVWELTANNVIMVS
9	AS A4	RHSSRRLLRAIPRQV	57	E 4	WELTANNVIMVSAIG
10		SRRLLRAIPRQVAQT	58	E3	TANNVIMVSAIGNDG
	A3	LLRAIPROVAOTLQA	59	E2	NVIMVSAIGNDGPLY
11 12	A2 A1	AIPRQVAQTLQADVL	60	E1	MVSAIGNDGPLYGTJ
	B12	ROVAQTLQADVLWQM	61	F12	AIGNDGPLYGTLNNP
13		AQTLQADVLWQMGYT	62	F11	NDGPLYGTLNNPADQ
14	B11	LQADVLWQMGYTGAN	63	F10	PLYGTLNNPADQMDV
15	B10	DVLWQMGYTGANVRV	64	F9	GTLNNPADQMDVIGV
16	B9	WOMGYTGANVRVAVF	65	F8	NNPADOMDVIGVGGI
17	B8 B7	GYTGANVRVAVFDTG	66	F7	ADOMDVIGVGGIDFE
18		GANVRVAVEDIG GANVRVAVEDTGLSE	67	F6	MDVIGVGGIDFEDNI
19	B6	VRVAVFDTGLSEKHP	68	F5	IGVGGIDFEDNIARF
20	B5	AVFDTGLSEKHPHFK	69	F4	GGIDFEDNIARFSSR
21	B4	DTGLSEKHPHFKNVK	70	F3	DFEDNIARFSSRGMT
22	B3		71	F2	DNIARFSSRGMTTWE
23	B2	LSEKHPHFKNVKERT	72	F1	ARFSSRGMTTWELPG
24	B1	KHPHFKNVKERTNWT	73	G12	SSRGMTTWELPGGYG
25	C12	HFKNVKERTNWTNER	7 <i>3</i>	G11	GMTTWELPGGYGRMK
26	C11 C10	NVKERTNWTNERTLD	75	G10	TWELPGGYGRMKPDI
27		ERTNWTNERTLDDGL	75 76	G9	LPGGYGRMKPDIVTY
28	C9	NWTNERTLDDGLGHG	77	G8	GYGRMKPDIVTYGAG
29	C8	NERTLDDGLGHGTFV	7 <i>1</i> 78	G7	RMKPDIVTYGAGVRG
30	C7	TLDDGLGHGTFVAGV	76 79	G6	PDIVTYGAGVRGSGV
31	C6	DGLGHGTFVAGVIAS	80	G5	VTYGAGVRGSGVKGG
32	C5	GHGTFVAGVIASMRE		G4	GAGVRGSGVKGGCRA
33	C4	TFVAGVIASMRECQG	81 82	G3	VRGSGVKGGCRALSG
34	C3	AGVIASMRECQGFAP		G2	SGVKGGCRALSGTSV
35	C2	IASMRECQGFAPDAE	83	G1	KGGCRALSGTSVASP
36	C1	MRECQGFAPDAELHI	84	H12	CRALSGTSVASPVVA
37	D12	CQGFAPDAELHIFRV	85	H11	LSGTSVASPVVAGAV
38	D11	FAPDAELHIFRVFTN	86		TSVASPVVAGAVTLL
39	D10	DAELHIFRVFTNNQV	87	H10	ASPVVAGAVILL
40	D9	LHIFRVFTNNQVSYT	88	H9	VVAGAVTLLVSTVQK
41	D8	FRVFTNNQVSYTSWF	89	H8	
42	D7	FTNNQVSYTSWFLDA	90	H7	GAVTLLVSTVQKREL
43	D6	NQVSYTSWFLDAFNY	91	H6	TLLVSTVQKRELVNP
44	D5	SYTSWFLDAFNYAIL	92	Н5	VSTVQKRELVNPASM
45	D4	SWFLDAFNYAILKKI	93	H4	VOKRELVNPASMKQA
46	D3	LDAFNYAILKKIDVL	94	Н3	RELVNPASMKQALIA
47	D2	FNYAILKKIDVLNLS	95	H2	VNPASMKQALIASAR
48	D1	AILKKIDVLNLSIGG	96	H1	ASMKQALIASARRLP

FIG._6B

CLASS (SUBOLASS

APPOOYFU

Response in Humans & Methods for Constructing, Identifying & Producing Such Proteins
Estell et al.
SN# 09/062,872

12/15

97	I12	IKDFHVYFRESRDAG
98	111	DAELHIFRVFTNNQV
99	I 10	KQALIASARRLPGVN
100	19	LIASARRLPGVNMFE
101	18	SARRLPGVNMFEQGH
102	17	RLPGVNMFEQGHGKL
103	16	GVNMFEQGHGKLDLL
104	15	MFEQGHGKLDLLRAY
105	Ĭ 4	OGHGKLDLLRAYQIL
106	13	GKLDLLRAYQILNSY
107	12	DLLRAYQILNSYKPQ
108	I 1	RAYQILNSYKPQASL
109	J12	QILNSYKPQASLSPS
110	J11	NSYKPQASLSPSYID
111	J10	KPQASLSPSYIDLTE
112	J9	ASLSPSYIDLTECPY
113	J8	SPSYIDLTECPYMWP
114	J7	YIDLTECPYMWPYCS
115	J6	LTECPYMWPYCSQPI
116	J5	CPYMWPYCSQPIYYG

FIG._6C

FIG._10

U. ASS SUBCLASS

APPROVED

DRAFTSMAN

Mutant Proteins Having Lower Allergenic Response in Humans & Methods for Constructing, Identifying & Producing Such Proteins
Estell et al.
SN# 09/062,872

13 / 15

IVTYGAGVRGSGVKGGCRALSGTSVASPVVAGAVTLLVSTVQKRELVNPASMKQALIASARRLPG VNMFEQGHGKLDLLRAYQILNSYKPQASLSPSYIDLTECPYMWPYCSQPIYYGGMPTVVNVTILN TANNVIMVSAIGNDGPLYGTLNNPADQMDVIGVGGIDFEDNIARFSSRGMTTWELPGGYGRMKPD TLQADVLWQMGYTGANVRVAVFDTGLSEKHPHFKNVKERTNWTNERTLDDGLGHGTFVAGVLASM AKARNSFISSALKSSEVDNWRIIPRNNPSSDYPSDFEVIQIKEKQKAGLLTLEDHPNIKRVTPQR KVFRSLKYAESDPTVPCNETRWSQKWQSSRPLRRASLSLGSGFWHATGRHSSRRLLRAIPRQVAQ RECQGFAPDAELHIFRVFTNNQVSYTSWFLDAFNYAILKKIDVLNLSIGGPDFMDHPFVDKVWEL MKLVNIWLLLLVVLLCGKKHLGDRLEKKSFEKAPCPGCSHLTLKVEFSSTVVEYEYIVAFNGYFT

FIG._7

J.EAHLGDPKPRPLPACPRLSWAKPQPLNETAPSNLWKHQKLLSIDLDKVVLPNFRSNRPQVRPL

SPGESGAWDIPGGIMPGRYNQEVGQTIPVFAFLGAMVVLAFFVVQINKAKSRPKRRKPRVKRPQL

TVASPAETESKNGAEQTSTVKLPIKVKIIPTPPRSKRVLWDQYHNLRYPPGYFPRDNLRMKNDPL DWNGDHIHTNFRDMYQHLRSMGYFVEVLGAPFTCFDASQYGTLLMVDSEEEYFPEEIAKLRRDVD NGLSLVIFSDWYNTSVMRKVKFYDENTRQWWMPDTGGANIPALNELLSVWNMGFSDGLYEGEFTL ANHDMYYASGCSIAKFPEDGVVITQTFKDQGLEVLKQETAVVENVPILGLYQIPAEGGGRIVLYG DSNCLDDSHRQKDCFWLLDALLQYTSYGVTPPSLSHSGNRQRPPSGAGSVTPERMEGNHLHRYSK

GMGVTGRIVDKPDWQPYLPQNGDNIEVAFSYSSVLWPWSGYLAISISVTKKAASWEGIAQGHVMI

Mutant Proteins Having Lower Allergenic Response in Humans & Methods for Constructing, Identifying & Producing Such Estell et al. SN# 09/062,872

14 / 15

275 269 280 235 229 192 145 144 191 197 96 98 94 47 ----DVMAPGVSIQSTLPGNKYGAYNGTSMASPHVAGAAALIL ----DIVAPGVNVQSTYPGSTYASLNGTSMATPHVAGAAALVK VVVAAAGNEGTSGSSSTVGYPGKYPSVIAVGAVDSSNQRASFSSVGPEL-LVVAASGNSGA----GSISYPARYANAMAVGATDQNNNRASFSQYGAGL-IMVSAIGNDGP--LYGTLNNPADQMDVIGVGGIDFEDNIARFSSRGMTTW SVASPVVAGAVTLLV DGSGQYSWIINGIEWAIANNMDVINMSLGGPS-GSAALKAAVDKAVASGV SGSGSVSSIAQGLEWAGNNGMHVANLSLGSPS-PSATLEQAVNSATSRGV NQVSYTSWFLDAFNYAILKKIDVLNLSIGGPDFMDHPFVDKVWELTANNV SMVPSETNPFQDNNSHGTHVAGTVAALNNSIGVLGVAPSASLYAVKVLGA SFVPGEPST-QDGNGHGTHVAGTIAALNNSIGVLGVAPSAELYAVKVLGA AQSVPYGVSQ-IKAPALHSQGYTGSNVKVAVIDSGIDSSHPDLK-VAGGA AQSVPWGISR-VQAPAAHNRGLTGSGVKVAVLDTGI-STHPDLN-IRGGA --TNERTLDDGLGHGTFVAGVIASMRECQGF---APDAELHIFRVFTN - RAIPRQVAQTLQADVLWQMGYTGANVRVAVFDTGLSEKHPHFKNVKERT SKHPNWTNTQ----VRSSLENTTTKLGDSFYYGKGLINVQAAAQ QKNPSWSNVQ---IRNHLKNTATSLGSTNLYGSGLVNAEAATR STVQKRELVNPASMKQALIASARRLPGVNMFEQG----HGKL GCRALSGT GRMKPDIVTYGAGVRGSGVKG ELPGGY SAVINASE SAVINASE SAVINASE SAVINASE SAVINASE SAVINASE S2HSBT S2HSBT SZHSBT S2HSBT S2HSBT S2HSBT BPN'

DRAFTSMAN

D. A.SS SUBCLASS

ALPYIN ۲.) د.)

GC527
Response in Humans & Methods for
Constructing, Identifying & Producing Such
Proteins
Estell et al.
SN# 09/062,872

AL POUNT

US 090608720TP1

Creation date: 10-01-2003

Indexing Officer: TLEGESSE - TSEGAYE LEGESSE

Team: OIPEBackFileIndexing

Dossier: 09060872

Legal Date: 09-09-2002

No.	Doccode	Number of pages
1	EXIN	4

Total number of pages: 4

Remarks:

Order of re-scan issued on