

Straight conductor

Narrow coil

Solenoid

Magnetic Field Strength

A vector, S.I. unit: Tesla (T)

Narrow coil

$$B=rac{F_m}{I\ell}$$

$$B = rac{\mu_0 NI}{2r}$$

Straight Conductor

$$B=rac{\mu_0 I}{2\pi r}$$

$$B = \mu_0 n I$$

Lenz's law

Electromagnetic Induction

lectromagnetisn

Faraday's Law

Current is induces when a conductor meets a changing magnetic flux

 $I_i = rac{arepsilon_i}{R}$

Direction of induced emf is opposed to the change causing it

Direction of induced current opposes the change producing it

Magnetic Field

Ampere Force

Magnetic Forces

$$F_m = BI\ell sin heta$$

Direction: I imes B

Lorentz Force

$$F_m = q(\hat{v} imes \hat{B}) = Bqvsin heta$$

$$r=rac{mv}{Bq}$$

$$T=rac{2\pi m}{Bq}$$
 is independent of v

For helix:
$$R=rac{mvsin heta}{Bq}$$

Applications

Mass Spectrometer

Cyclotron

Magnetic flux

$$\phi = \hat{B} \cdot \hat{A}$$