

United International University (UIU)

Dept. of Computer Science & Engineering (CSE)

Final Exam Spring 2024

CSE 2233/CSI 233: Theory of Computation/Theory of Computing

Total Marks: 40

Duration: 2 Hours

Answer all questions. Figures are in the right-hand margin indicates full marks.

Any examinee found adopting unfair means will be expelled from the trimester / program as per UIU disciplinary rules.

1. Consider the following Context-free grammars (CFG) and answer according to it:

4*2

- a) $S \rightarrow AB \mid C$
 - $A \rightarrow aAb \mid ab$
 - $B \rightarrow cBd \mid cd$
 - $C \rightarrow aCd \mid aDd$
 - $D \rightarrow bDc \mid bc$
- b) $E \rightarrow +E \mid -E \mid *E \mid X$
 - $X \rightarrow pXq \mid pYq$
 - $Y \rightarrow rYw \mid rw$

Ambiguous or not for the string " **aabbccdd** ".

With the help of **Top-Down Parse Trees**, find out if the grammar is

- With the help of **Leftmost derivation**, derive the following string "+*-ppprrwwqqq".
- **2.** Design **CFGs** that generate the following languages:

2*4

- a) Design a CFG for a language of all strings over {1,0} that contains "110", "010" or "011".
- b) Design a CFG for a language of all strings over {1,0} representing binary numbers divisible by 4.
- c) Design a CFG for $L = \{ X^{2n} (Y^m Z^m)^n \} \mid m,n >= 0 \}$ over $\{X,Y,Z\}$ (e.g. XXXXYZYYZZ, XXYYYZZZ)
- d) Design a CFG for $L = \{ a^n b^m c^p \mid \text{where, } (n,m > 1), (n \neq m) \text{ and } (p > 3) \} \text{ over } \{a,b,c\}$
- **3.** Convert the following grammars into Chomsky Normal Form (CNF):

4*3

- a) $E \rightarrow T \mid E + T$
 - $T \rightarrow F \mid T * F$
 - $F \rightarrow I \mid (E)$
 - $I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$
- b) $S \rightarrow ASB \mid \epsilon$
 - $A \rightarrow aAS \mid a$
 - $B \rightarrow SbS \mid A \mid bb$
- C) $A \rightarrow BAB \mid B \mid \epsilon$
 - $B \rightarrow 00 \mid \epsilon$

- **4.** Draw the Push Down Automata (PDA) for the following languages:
 - a) $L = \{ a^m b^n c^n a^m | m, n > 0 \}$
 - b) $L = \{w@w^r | w \text{ is a string over } \{a, b\}^* \text{ and } w^r \text{ is the reverse of } w\}$

4*2

4

5. Draw a Turing Machine for the following language.

$$L = \{a^i b^j c^k \mid i < j < k, i > = 1\}$$