DynamicEarthNet: towards FedSPD

March 25, 2025

Overview

- 1. Data Setting
- 2. Motivation for Federated Learning
- 3. Federated Procedure
 Riemannian local optimization
 Differential Privacy Option
 Euclidean local optimization
- 4. Server Aggregation Riemannian aggregation Euclidean aggregation

DynamicEarthNet dataset

Multi-spectral images

- 75 Areas of Interest (AOI)
- ullet Satellite images collection: daily 2018/01/01
 ightarrow 2019/12/31
- ullet 730 images/AOI ightarrow 54,750 satellite images in total
- 4 channels: RGB+NIR
- Spatial resolution: 3 meters
- Image size: 1024 × 1024

One time-series: $x \in \mathbb{R}^{T \times H \times W \times 4}$ with T:number of days in the month, H = W = 1024.

Land Use/Land Cover (LULC)

- Labels: $24 \times 75 = 1,800$
- 7 different (imbalanced) classes:

class name	%	#AOIs	color
impervious surface	7.1	70	
agriculture	10.3	37	
forest & other vegetation	44.9	71	
wetlands	0.7	24	
soil	28.0	75	
water	8.0	58	
snow & ice	1.0	2	

No single AOI contains all 7 classes.

For a given time series, label:

$$y \in \{0, \dots, 6\}^{T \times H \times W}$$

Challenges

Issue 1 Voluminous data (hundreds of GB)

Issue 2 Slow to move all images to a single processing server

Why Federated Learning is relevant?

Solution Issue 1 client \rightarrow smaller dataset & own stat. heterogeneity with clear interpretation Solution Issue 2 No exchange of raw datasets, just each client's updates

- Each AOI → local phenomena
- FL: adapt to local distrib and aggregate knowledge for better generalization
 - \star Idea 1 one AOI = one client \to too many clients (75);
 - * Idea 2 create clients based on dominant LULC categories across AOI
 - 1. Urban areas
 - 2. Agricultural areas
 - 3. Forest-dominated areas
 - 4. Water-dominated areas
 - 5. Mixed land-use areas

Federated Learning Overview

Framework

K clients. Each client k has dataset D_k of n_k pixel annotation pairs $\{x_i^{(k)}, y_i^{(k)}\}_{i=1,\dots,n_k}$, where

- $x_i^{(k)}$ is a covariance matrix in $\mathbb{R}^{4T\times 4T}$ (with T=31),
- $y_i^{(k)} \in \{0, \dots, 6\}$ is a semantic mask

Total number of samples $n := \sum_{k=1}^{K} n_k$

Loss function ℓ (CE)

Forward pass SPD-Net $f_{\Theta}(\cdot)$

Each client's SPD-net with L layers has learnable parameters

$$\Theta = (\underbrace{W_1, \dots, W_L}_{\textit{BiMap}}, \underbrace{G_1, \dots, G_L}_{\textit{BN}}, \underbrace{\xi_1, \dots, \xi_d}_{\textit{FC}}) \in \mathcal{M}$$

with

$$\mathcal{M} := \left(\prod_{l=1}^L \mathsf{St}(d_l, d_{l+1})\right) imes \left(\prod_{l=1}^L \mathsf{SPD}_{d_l}\right) imes \mathbb{R}^d.$$

Local objective functions For each client k = 1, ..., K,

$$F_k(\Theta) := \frac{1}{n_k} \sum_{i=1}^{n_k} \ell(f_{\Theta}(x_i^{(k)}), y_i^{(k)}).$$

Global objective function

$$\arg\min_{\Theta\in\mathcal{M}}F(\Theta):=\sum_{k=1}^Krac{n_k}{n}\,F_k(\Theta).$$

Federated procedure

Algorithm

- \star Initialization Θ_0 to all clients (random)
- **★ Outer loop** For t = 0, ..., T 1 (rounds):
 - 1. A subset S_t of $r \leq K$ clients is sampled (random)
 - 2. Server broadcasts Θ_t to clients.
 - 3. Each client $k \in \mathcal{S}_t$ runs E_k local updates on Θ with initialization Θ_t .
 - 4. Aggregation of each client's local updated parameters via barycenters ightarrow Θ_{t+1}
- * **Global output** Final aggregated param. Θ_T or Unif($\{\Theta_0, \ldots, \Theta_T\}$)

If each local function F_k is L_k -smooth and geodesically convex, then the algorithm converges in O(1/T) (provided some curvature/manifold additional assumptions).

Riemannian local updates at client $k \in \mathcal{S}_r$

Let θ denote a Riemannian parameter (either one of the W_l or G_l).

- Initialize $\theta_0^{(k)} = \theta_t$
- For $s = 1, ..., E_k$:

$$\theta_{s+1}^{(k)} = R_{\theta_s^{(k)}} \left(-\eta^{(k)} g^{(k)} \right),$$

where the local Riemannian gradient is

$$g^{(k)} = \operatorname{grad} F_k(\theta_s^{(k)}) - \mathcal{T}_{\theta_t \to \theta_s^{(k)}} \Big(\operatorname{grad} F_k(\theta_t) - \operatorname{grad} F(\theta_t) \Big),$$

• The blue term is the optional **SVR correction** (variance reduction).

Differential Privacy as a model variant

Besides the variance-reduction approach, we can also inject **DP noise** on each local gradient to protect sensitive data.

Key idea: Add tangent-space Gaussian noise before retraction/exponential update.

- DP can be combined with or without the SVR term.
- Each client *k* ensures local DP by perturbing its gradient:

$$g_{\mathsf{DP}}^{(k)} = g^{(k)} + \varepsilon_t$$
, where $\varepsilon_t \sim \mathcal{N}_{\theta_{\varepsilon}^{(k)}}(0, \sigma^2)$.

• This noise is drawn from a tangent-space Gaussian distribution at $\theta_s^{(k)}$.

Privacy Guarantee: With an appropriate choice of σ and composition rules, the entire FL pipeline can provide an (ε, δ) -DP guarantee.

Riemannian local updates with optional DP

- Initialize $\theta_0^{(k)} = \theta_t$
- For $s = 1, ..., E_k$:

$$egin{aligned} g^{(k)} &= \operatorname{grad} F_kig(heta_s^{(k)}ig) \ - \mathcal{T}_{ heta_t
ightarrow heta_s^{(k)}} \Big(\operatorname{grad} F_kig(heta_tig) \ - \operatorname{grad} Fig(heta_tig)\Big), \ g^{(k)}_{\mathsf{DP}} &= g^{(k)} \ + \ arepsilon_s, \qquad arepsilon_s \ \sim \ \mathcal{N}_{ heta_s^{(k)}}ig(0,\sigma^2ig). \end{aligned}$$

Then update via retraction (or exponential map):

$$\theta_{s+1}^{(k)} = R_{\theta_s^{(k)}} \left(-\eta^{(k)} g_{\mathsf{DP}}^{(k)} \right).$$

- Red term is the DP noise addition (optional)
- Blue term is still the SVR correction (optional).

Local updates for Euclidean FC weights (SVR + DP)

Let $\xi \in \mathbb{R}^{d_{FC}}$ be the parameter vector for the final fully-connected layer. During each local epoch on client k:

$$\begin{split} \xi_0^{(k)} &= \xi_t, \quad \text{and for } s = 0, \dots, E_k - 1: \\ \xi_{s+1}^{(k)} &= \xi_s^{(k)} - \eta^{(k)} \left(\nabla F_k \left(\xi_s^{(k)} \right) - \left[\nabla F_k (\xi_t) - \nabla F(\xi_t) \right] + \varepsilon_s \right), \end{split}$$

where:

- $\nabla F_k(\xi_s^{(k)})$: local Euclidean gradient on client k.
- $[\nabla F_k(\xi_t) \nabla F(\xi_t)]$ is the **SVR correction** term.
- $\varepsilon_s \sim \mathcal{N}(0, \sigma^2 I)$ is the **DP noise** term.
- After E_k steps, client k sends $\xi_{E_k}^{(k)}$ to the server.

Server aggregation (Karcher flow) for heta=G SPD

After each client $k \in \mathcal{S}_r$ sends back $\theta_{E_k}^{(k)}$, we compute the Riemannian (Fréchet) mean on the manifold:

$$\Theta_{t+1} = \arg\min_{\Theta \in \mathcal{M}} \sum_{k \in S_t} p_k d(\Theta, \theta_{E_k}^{(k)})^2.$$

• In practice, we use a gradient-descent-based procedure (Karcher flow):

$$\Theta_{t+1} \leftarrow \operatorname{Exp}_{\Theta_t} \left(-\gamma \sum_{k \in \mathcal{S}_r} p_k \operatorname{Log}_{\Theta_t}(\theta_{E_k}^{(k)}) \right),$$

where γ is a step size for the Karcher flow.

Server aggregation (projection-based) for $\mathbf{W} \in \mathrm{St}(d_I,d_{I+1})$

For the BiMap parameters W_l living on the Stiefel manifold, we can use:

• Karcher flow or Riemannian gradient-based aggregator:

$$W_{t+1} = \arg\min_{W \in \text{St}(d_l, d_{l+1})} \sum_{k \in S_t} p_k d^2(W, W_{\tau}^{(k)}),$$

which can be iteratively approximated (exp/log maps).

Projection-based aggregator:

$$W_{t+1} = \operatorname{uf}\left(\underbrace{\sum_{k \in S_t} p_k \ W_{\tau}^{(k)}}\right) \quad \text{or} \quad W_{t+1} = \operatorname{qf}\left(\sum_{k \in S_t} p_k \ W_{\tau}^{(k)}\right).$$

No iterative scheme needed, computationally cheaper (simple retractions/liftings).

Server aggregation of FC weights

At round t, we receive each client's updated $\xi_{E_k}^{(k)}$ for $k \in \mathcal{S}_t$. To get ξ_{t+1} , standard weighted average (FedAvg):

$$\xi_{t+1} = \sum_{k \in \mathcal{S}_t} \frac{n_k}{\sum_{j \in \mathcal{S}_t} n_j} \xi_{E_k}^{(k)}$$

No need for any Riemannian retraction or manifold-based aggregator.

References