

DOKUMEN TEKNIS DETEKSI MICROSLEEP DI DALAM KELAS

Disusun untuk memenuhi tugas akhir Mata Kuliah Pengolahan Citra

Disusun oleh:

Kelompok Microsleep / IKI 6B

Arlenee Larasita Putri Pangaribuan	(2203431012)
Doufan Agmarila Fitcor	(2203431022)
Eli Sanjaya	(2203431007)
Fadillah Yaseer	(2203431045)
Muhammad Alief Putra	(2203431044)
Nur Fitrasyania	(2203431001)
Muhammad Rafif Bagastiar	(2203431003)
Shofiyah Zahidah	(2203421023)
Syabilla Anandhira Muzakki	(2203431040)
Yessy Grasella	(2203431036)

Dosen Pengampu: Nurdina Widanti, S.T., M.T.

PROGRAM STUDI D-IV INSTRUMENTASI DAN KONTROL INDUSTRI JURUSAN TEKNIK ELEKTRO POLITEKNIK NEGERI JAKARTA

2025

I. Studi Kasus

Microsleep adalah kondisi di mana seseorang secara tidak sadar tertidur dalam waktu singkat, biasanya selama beberapa detik, akibat kelelahan atau kurang tidur. Di lingkungan kelas, microsleep menjadi tantangan besar karena dapat mengganggu pemahaman materi dan mengurangi kualitas pembelajaran. Kondisi ini sering kali sulit dikenali oleh pengajar, terutama dalam kelas dengan banyak mahasiswa, sehingga menyebabkan pengajar kesulitan untuk memastikan siapa saja yang kurang fokus atau tertidur sejenak. Oleh karena itu, deteksi microsleep yang efektif menjadi penting untuk meningkatkan efektivitas pembelajaran.

II. Penyelesaian Masalah

Untuk mengatasi masalah microsleep di kelas yang sulit dideteksi secara manual, dikembangkan sistem berbasis *computer vision* dan NVIDIA Jetson Nano yang dapat mengenali kondisi mahasiswa secara otomatis. Sistem ini memanfaatkan model AI yang dilatih menggunakan dataset gambar wajah dalam kondisi "sleep" dan "no sleep" yang telah dilabeli melalui platform Roboflow. Setelah model dilatih, sistem di-deploy ke Jetson Nano untuk melakukan deteksi secara real-time. Kamera menangkap wajah, lalu model akan memproses dan mengklasifikasikan apakah mahasiswa tertidur atau tidak. Dengan sistem ini, pendeteksian microsleep menjadi lebih cepat, akurat, dan dapat membantu menjaga fokus belajar di dalam kelas.

III. Spesifikasi Komponen

Di bawah ini merupakan spesifikasi alat yang digunakan dalam Sistem Deteksi Microsleep di Kelas:

No	Nama	Spesifikasi Volum	
1	NVIDIA Jetson Nano	 Prosesor: Quad-core ARM Cortex-A57 GPU: 128 CUDA cores RAM: 4GB LPDDR4 Penyimpanan: MicroSD 	1 buah

		 Konektivitas: Gigabit Ethernet, USB 3.0, HDMI, GPIO, MIPI CSI-2 untuk kamera Catu Daya: 5V/4A 	
2	Adapter	 Input: 220V AC Output: 5V DC Konektor: Jack female DC 	1 buah
3	MicroSD Card San)isk Ultra 64 GB PS 1	Kapasitas: 64 GBSpeed: Up to 140MB/s	1 buah
4	Keyboard	 Jenis: USB Keyboard Tipe: Full-size atau compact Port: USB Type-A Fungsi: Input perintah dan konfigurasi sistem pada Jetson Nano 	1 buah
5	Mouse	 Jenis: USB Optical Mouse Port: USB Type-A Fungsi: Navigasi GUI saat setup dan testing awal 	1 buah
6	Monitor	• Resolusi: Minimal 720p (disarankan Full HD – 1920x1080)	1 buah

- Port Input: HDMI
- Fungsi: Menampilkan antarmuka sistem Jetson Nano saat konfigurasi dan monitoring proses deteksi

IV. Training Model dan Troubleshoot

a. Versi 1,0

Keberhasilan	Kendala	Solusi
Model menunjukkan	Jumlah dataset yang terbatas	Dataset untuk kondisi
keberhasilan yang sangat	membuat sistem belum bisa	sleep dan not sleep perlu
tinggi dengan mAP@50	mendeteksi dengan akurat.	ditambahkan.
sebesar 99.5%, precision		
mencapai 99.1% dan		
recall sempurna di angka		
100%.		

b. Versi 1.1

Keberhasilan	Kendala	Solusi
Hasil evaluasi model menunjukkan nilai	Kondisi <i>not sleep</i> terdeteksi sebagai microsleep	Menambahkan datas
mAP@50, precision, dan recall lebih rendah dari versi sebelumnya	3 1	et kondisi <i>not sleep</i>

c. Versi 1.2

Keberhasilan	Kendala	Solusi
Model menunjukkan	Hasil performa yang terlalu	Melakukan pengujian
keberhasilan yang sangat	sempurna ini menjadikan	lebih lanjut
tinggi dengan mAP@50	terjadinya overfitting	menggunakan data baru
sebesar 99.5%, precision		dan menambahkan
mencapai 99.1% dan		variasi data melalui
recall sempurna di angka		proses augmentasi agar
100%		model bisa lebih
		generalisasi.

d. Versi 1.3

Keberhasilan	Kendala	Solusi
Evaluasi model	Variasi data masih kurang	Seluruh anggota
menunjukkan bahwa nilai mAP@50,	karena subjek foto terbatas	kelompok menambahkan foto
precision, dan recall		masing-masing agar
mengalami penurunan dibanding versi 1.2		dataset lebih beragam

e. Versi 1.4

Keberhasilan	Kendala	Solusi
Model telah berhasil	Tidak ada	Tidak ada
mendeteksi kondisi sleep		
dan not sleep secara		
akurat		

f. Versi 1.5

Epoch = 10

Keberhasilan	Kendala	Solusi
Train loss konsisten	Validation loss sedikit lebih	Training dapat
turun, validation loss juga	fluktuatif dibanding training	dilanjutkan hingga 15-
membaik walau sedikit	loss, menunjukkan	20 epoch dengan early
fluktuatif. Precision,	generalisasi model ke data	stopping untuk
recall, dan mAP naik	validasi belum sepenuhnya	menghindari overfitting.
tajam, bahkan mAP50	stabil. Precision dan recall	Penambahan
tembus lebih dari 0.9,	juga sempat naik-turun di awal	augmentasi data serta
menunjukkan performa	sebelum akhirnya membaik	penyesuaian learning
model sangat baik.		rate juga disarankan
		untuk memperhalus
		hasil pelatihan.

g. Versi 1.6

Keberhasilan	Kendala	Solusi
Model sudah mulai	Masih ada salah baca pada	Memperbanyak data
membedakan sleep dan	microsleep yang dikira not	microsleep, lakukan
not sleep dengan baik,	sleep, dan loss awal sempat	augmentasi tambahan, dan
loss menurun stabil,	fluktuatif dengan F1 score	sesuaikan batch size serta
precision dan recall di	menurun di confidence tinggi	threshold confidence untuk
atas 0,9, serta mAP50		meningkatkan performa.
hampir sempurna.		

h. Versi 1.7

Keberhasilan	Kendala	Solusi
Model makin baik	Microsleep pendek	Memperbanyak data
membedakan sleep	masih sering salah baca	microsleep pendek, tambah
dan not sleep, dengan	sebagai not sleep, dan	variasi augmentasi, dan
loss stabil menurun	loss sempat stagnan di	sesuaikan learning rate serta
dan mAP50 mendekati	beberapa epoch.	threshold.
sempurna.		

i. Versi 1.8

Keberhasilan	Kendala	Solusi
Model lebih stabil	Microsleep pendek masih	Menambah variasi data
membaca sleep dan not	sering salah baca sebagai not	microsleep halus dan
sleep, dengan loss	sleep, dan loss sempat stagnan	mengoptimalkan
training-validation makin	di beberapa epoch.	threshold untuk menjaga
konsisten menurun dan		F1 tetap stabil.
mAP50 tetap tinggi.		

j. Versi 1.9

Keberhasilan	Kendala	Solusi	
membedakan sleep dan	Masih ada kasus microsleep yang dibaca sebagai not sleep, serta F1 sedikit turun saat confidence tinggi.	microsleep, memperhalus	

k. Versi 2.0

Keberhasilan	Kendala	Solusi	
Pada tahap awal	Pada tahap awal pelatihan,	Mengoptimalkan jumlah	
pelatihan, terjadi	terjadi fluktuasi nilai loss	epoch, menerapkan teknik	
fluktuasi nilai loss dan	dan ketidakstabilan dalam	smoothing pada loss curve,	
ketidakstabilan dalam	akurasi deteksi antar kelas	dan menyesuaikan	
akurasi deteksi antar	yang memiliki kemiripan	threshold confidence	
kelas yang memiliki	visual.	berhasil meningkatkan	
kemiripan visual.		stabilitas dan akurasi	
		model.	

Berdasarkan hasil evaluasi model, sistem pendeteksi microsleep menunjukkan kinerja yang sangat baik dengan akurasi sebesar 98%. Pada kelas *not sleep*, model mampu mencapai precision, recall, dan f1-score sebesar 0.96, sementara pada kelas *sleep*, ketiga metrik tersebut berada di angka 0.99. Hal ini menunjukkan bahwa model sangat andal dalam membedakan antara kondisi tidur dan tidak tidur.

Confusion matrix mendukung hasil tersebut, di mana dari 190 data uji, hanya terdapat 4 kesalahan prediksi: 2 data *not sleep* terdeteksi sebagai *sleep*, dan 2 data *sleep* terdeteksi sebagai *not sleep*. Secara keseluruhan, model telah menunjukkan performa yang stabil dan akurat dalam mendeteksi microsleep.

V. Pengujian

Pengujian sistem dilakukan melalui dua metode, yaitu Live Kamera Server dan Upload Gambar Manual. Kedua metode ini bertujuan untuk mengevaluasi performa model dalam mendeteksi kondisi microsleep secara real-time maupun dari input gambar statis. Hasil dari masing-masing pengujian ditampilkan berikut ini.

a. Live Kamera Server

b. Upload Gambar Manual

VI. Hasil Pengujian Deteksi Microsleep

Keadaan Real	Keadaan Real Deteksi		Keterangan
(Not sleep)	For Septime 0.49	0.49 (Not sleep)	Sistem berhasil mendeteksi wajah dan mata dengan akurat. Nilai deteksi 0.49 berada di bawah ambang tidur, sehingga diklasifikasikan sebagai <i>Not Sleep</i> , sesuai dengan kondisi nyata pengguna yang sadar.
(Not sleep)	Total State (C.S.)	0.57 (Not sleep)	meski pandangan sedikit menyamping, sistem tetap mendeteksi wajah dan mata dengan baik. Nilai deteksi 0.57 di bawah ambang tidur, sehingga diklasifikasikan sebagai <i>Not Sleep</i> , sesuai kondisi nyata pengguna.
(Not sleep)	THE PARTY OF STREET	0,53 (Not sleep)	Sistem mendeteksi wajah dan mata dengan baik. Nilai 0.53 masih dalam kategori <i>Not Sleep</i> , sesuai dengan kondisi nyata pengguna yang sadar.
(Sleep)		0.65 (Sleep)	Dengan mata tertutup penuh, sistem mendeteksi kondisi <i>Sleep</i> dengan level 0.65, sesuai dengan keadaan nyata pengguna yang sedang tidur
(Sleep)		0.54 (Sleep)	Mata tertutup sebagian, sistem mengklasifikasikan sebagai <i>Sleep</i> dengan level 0.54, konsisten dengan kondisi nyata pengguna yang tampak mengantuk.

(Slight squinting)		0.73 (Sleep)	Wajah terdeteksi jelas, sistem memberi nilai 0.73 yang menunjukkan kepercayaan tinggi bahwa pengguna tidur, sesuai kondisi nyata dengan mata tertutup
(Half-open eyes)	AND TAKEN DOM	0.58 (Not sleep)	Meski mata sedikit menyipit, sistem mengklasifikasikannya sebagai <i>Not Sleep</i> karena level di bawah ambang, sesuai dengan kondisi mata yang belum sepenuhnya tertutup.
(Half-open eyes)		0.43 (Not sleep)	Dengan mata setengah terbuka, sistem mendeteksi <i>Not Sleep</i> pada level 0.43, sesuai karena pengguna belum dalam kondisi tidur penuh.
(Sleep)		0.45 (Sleep)	Meski level 0.45 tergolong rendah, sistem mengklasifikasikan sebagai <i>Sleep</i> karena mata tertutup penuh, sesuai dengan kondisi nyata pengguna yang tertidur.

Semester VI Pengolahan Citra IKI 6B

CHECK SHEET DOKUMEN INSTRUKSI

Versi 1.0

Nama PIC : Fadillah Yaseer

Hari, Tanggal: Senin, 10 Maret 2025

Uji Bug Sistem

Masalah	Kriteria	Keterangan		
Akurasi deteksi Microsleep	Apakah sistem mendeteksi microsleep saat subjek tidak mengantuk? (gambar positif) ☑ Ya ☐ Tidak	Deteksi cukup akurat. Berdasarkan grafik F1 dan precision tinggi, sistem bisa mengenali perbedaan antara kondisi mengantuk dan tidak		
	Apakah sistem gagal mendeteksi saat subjek benar-benar mengalami microsleep? (gambar negatif) ☐ Ya ☑ Tidak	Berdasarkan nilai recall tinggi dan mAP, sistem jarang gagal mengenali microsleep yang sebenarnya.		

o Kesimpulan

Beberapa kendala yang masih ditemui dalam pengembangan sistem ini antara lain jumlah dataset yang masih terbatas sehingga model belum mampu melakukan generalisasi secara optimal. Selain itu, meskipun gambar berhasil diunggah, deteksi bagian mata tidak selalu akurat, yang berdampak pada hasil klasifikasi. Sistem juga sudah dapat menangkap input dari webcam, namun belum mampu mengklasifikasikan kondisi "sleep" atau "not sleep" dan hanya menampilkan video tanpa hasil deteksi yang sesuai.

TTD PIC

(Fadillah Yaseer)

Semester VI Pengolahan Citra IKI 6B

CHECK SHEET DOKUMEN INSTRUKSI

Versi 1.1

Nama PIC : Eli Sanjaya

Hari, Tanggal: Sabtu, 15 Maret 2025

Uji Bug Sistem

Masalah	Kriteria	Keterangan
Akurasi deteksi Microsleep	Apakah sistem mendeteksi microsleep saat subjek tidak mengantuk? (gambar positif) ☑ Ya ☐ Tidak	Deteksi cukup akurat. Berdasarkan grafik F1 dan precision tinggi, sistem bisa mengenali perbedaan antara kondisi mengantuk dan tidak
	Apakah sistem gagal mendeteksi saat subjek benar-benar mengalami microsleep? (gambar negatif) ☑ Ya ☐ Tidak	Berdasarkan nilai recall tinggi dan mAP, sistem jarang gagal mengenali microsleep yang sebenarnya.

o Kesimpulan

Pada pengujian dengan 20 epoch, model sudah mampu mendeteksi gambar dengan cukup baik serta dapat mendeteksi kondisi melalui webcam. Namun, akurasi deteksi masih belum optimal karena model cenderung underfitting dan sering kali salah dalam membedakan antara kondisi sleep dan not sleep. Hal ini menunjukkan bahwa dataset yang digunakan masih kurang dan perlu ditambah untuk meningkatkan kemampuan generalisasi model.

TTD PIC

(Eli Sanjaya)

Semester VI Pengolahan Citra IKI 6B

CHECK SHEET DOKUMEN INSTRUKSI

Versi 1.2

Nama PIC : Syabilla Anandhira Muzzaki

Hari, Tanggal: Kamis, 20 Maret 2025

o Uji Bug Sistem

Masalah	Kriteria	Keterangan
Akurasi deteksi Microsleep	Apakah sistem mendeteksi microsleep saat subjek tidak mengantuk? (gambar positif) ☐ Ya ☐ Tidak	Deteksi berdasarkan perubahan pola mata (sering menutup) dan kepala (mengangguk)
	Apakah sistem gagal mendeteksi saat subjek benar-benar mengalami microsleep? (gambar negatif) ☐ Ya ☑ Tidak	Webcam masih keliru, sleep bisa terdeteksi sebagai not sleep dan sebaliknya

o Kesimpulan

Sistem pendeteksi microsleep menunjukkan performa baik setelah pelatihan 30 epoch, ditandai dengan penurunan loss dan peningkatan precision, recall, serta mAP. Model mampu mendeteksi kondisi *sleep* dan *not sleep* secara real-time melalui webcam, meski masih ada kesalahan deteksi akibat keterbatasan jumlah dan variasi data. Oleh karena itu, sistem ini sudah berfungsi dengan baik, tetapi masih memerlukan penambahan data agar akurasi deteksi dapat ditingkatkan.

TTD PIC

(Syabilla Anandhira Muzzaki)

Semester VI Pengolahan Citra IKI 6B

CHECK SHEET DOKUMEN INSTRUKSI

Versi 1.3

Nama PIC : Nur Fitrasyania

Hari, Tanggal: Kamis, 10 April 2025

o Uji Bug Sistem

Masalah	Kriteria	Keterangan
Akurasi deteksi Microsleep	Apakah sistem mendeteksi microsleep saat subjek tidak mengantuk? (gambar positif) ☐ Ya ☑ Tidak	Deteksi berdasarkan perubahan pola mata (sering menutup) dan kepala (mengangguk)
	Apakah sistem gagal mendeteksi saat subjek benar-benar mengalami microsleep? (gambar negatif) ☐ Ya ☑ Tidak	Gambar terdeteksi, webcam bisa deteksi, deteksi sleep dan not sleep sudah bisa untuk gambar dan video

o Kesimpulan

Berdasarkan hasil pengujian, sistem berhasil mendeteksi kondisi microsleep dan non-microsleep dengan baik, baik melalui gambar maupun video. Webcam dapat berfungsi dengan optimal untuk menangkap aktivitas pengguna, dan proses deteksi berjalan akurat berdasarkan pola mata dan pergerakan kepala. Tidak ditemukan bug kritis pada fungsi utama sistem.

TTD PIC

(Nur Fitrasyania)

Semester VI Pengolahan Citra IKI 6B

CHECK SHEET DOKUMEN INSTRUKSI

Versi 1.4

Nama PIC : Arlenee Larasita Putri Pangaribuan

Hari, Tanggal: Senin, 14 April 2025

Uji Bug Sistem

Masalah	Kriteria	Keterangan		
Akurasi deteksi Microsleep	Apakah sistem mendeteksi microsleep saat subjek tidak mengantuk? (gambar positif) ☐ Ya ☑ Tidak	Deteksi berdasarkan perubahan pola mata (sering menutup) dan kepala (mengangguk)		
	Apakah sistem gagal mendeteksi saat subjek benar-benar mengalami microsleep? (gambar negatif) ☐ Ya ☑ Tidak	gambar dan webcam bisa terdeteksi,deteksi sleep dan not sleep sudah bisa buat gambar dan video		

o Kesimpulan

Sistem telah berhasil mendeteksi input dari gambar dan webcam dengan baik, serta mampu mengklasifikasikan kondisi "sleep" dan "not sleep" secara lancar dalam bentuk gambar maupun video. Deteksi berjalan secara real-time tanpa hambatan berarti, menunjukkan bahwa integrasi antara model dengan perangkat input telah berjalan optimal dan stabil.

TTD PIC

(Arlenee Larasita Putri Pangaribuan)

Semester VI Pengolahan Citra IKI 6B

CHECK SHEET DOKUMEN INSTRUKSI

Versi 1.5

Nama PIC : Doufan Agmarilla Fitcor

Hari, Tanggal: Senin, 28 April 2025

Uji Bug Sistem

Masalah	Kriteria	Keterangan
Akurasi deteksi Microsleep	Apakah sistem mendeteksi microsleep saat subjek tidak mengantuk? (gambar positif) ☐ Ya ☑ Tidak	Deteksi berdasarkan perubahan pola mata (sering menutup) dan kepala (mengangguk)
	Apakah sistem gagal mendeteksi saat subjek benar-benar mengalami microsleep? (gambar negatif) ☐ Ya ☑ Tidak	Final Model.

Kesimpulan

Model yang dilatih hingga epoch ke-100 menunjukkan performa yang sangat baik dengan nilai loss yang terus menurun dan metrik evaluasi seperti precision, recall, serta mAP yang semakin meningkat. Akurasi deteksi objek sangat tinggi dengan F1 score maksimal mencapai 0.97 pada threshold confidence 0.337, menunjukkan keseimbangan optimal antara precision dan recall. Dibandingkan dengan epoch ke-50, hasil pada epoch ke-100 jelas lebih unggul dan stabil. Oleh karena itu, model ini layak dijadikan sebagai model akhir karena telah mencapai kinerja terbaiknya.

TTD PIC

DA

(Doufan Agmarila Fitcor)

PEMBAGIAN JOB DESC

Nama Lengkap	NIM	Jobdesc	
Arlenee Larasita Putri Pangaribuan	2203431012	Mengumpulkan g a m b a r dataset untuk pelatihan model dan melakukan splir dataset	
Doufan Agmarila Fitcor	2203431022	Melakukan uji model menggunakan openVC (melalui VSCode) dan melakukan deploy model ke web	
Eli Sanjaya	2203431007	Melakukan training model secara lokal dan mengkonfigurasi jetson	
Fadillah Yaseer	2203431045	Melakukan training model secara lokal	
Muhammad Alief Putra	2203431044	Menyusun dokumen teknis	
Nur Fitrasyania	2203431001	Melabeli dan mengunduh dataset dari Roboflow untuk YOLOv5, Pytorch dan YOLOv11 dan melakukan analisis hasil model	
Muhammad Rafif Bagastiar	2203431003	Melakukan deploy model ke web dan mengkonfigurasi jetson	
Shofiyah Zahidah	2203431023	Melakukan split dataset dan melakukan analisis hasil model	
Syabilla Anandhira Muzakki	2203431040	Melabeli dan mengunduh dataset dari Roboflow untuk YOLOv5, Pytorch dan YOLOv11 dan Melakukan pengujian model menggunakan OpenCV (melalui VSCode)	
Yessy Grasella	2203431036	Mengumpulkan g a m b a r dataset untuk pelatihan model dan menyusun dokumen teknis	