

A Monte-Carlo investigation of the nematic-isotropic phase transition

Félix Bunel & Hadrien Vergnet

16/01/2017

Introduction

Nematic phase:

No positional order

Sommaire

- The order parameter
- 2 Numerical methods
 - Lebwohl Lasher Model
 - Monte-Carlo Algorithm
 - Equilibration
- Nematic Isotropic Phase Transitions
 - Direct visualisation
 - Energy
 - Order Parameter
 - Histograms
- Influence of an Electric Field
 - Lebwohl Lasher Model
 - Critical point
 - Phase diagram
- 5 Liquid Crystal Display
 - Fréedericksz transition
 - Molecular Orientation

- The order parameter
- 2 Numerical methods
 - Lebwohl Lasher Model
 - Monte-Carlo Algorithm
 - Equilibration
- Nematic Isotropic Phase Transitions
 - Direct visualisation
 - Energy
 - Order Parameter
 - Histograms
- 4 Influence of an Electric Field
 - Lebwohl Lasher Model
 - Critical point
 - Phase diagram
- Liquid Crystal Display
 - Fréedericksz transition
 - Molecular Orientation

The Order Parameter

$$S = \frac{3\langle (\boldsymbol{a} \cdot \boldsymbol{n})^2 \rangle - 1}{2}$$

Nematic phase : S=1

 ${\rm Isotropic\ phase}:\,S=0$

- 1 The order parameter
- 2 Numerical methods
 - Lebwohl Lasher Model
 - Monte-Carlo Algorithm
 - Equilibration
- 3 Nematic Isotropic Phase Transitions
 - Direct visualisation
 - Energy
 - Order Parameter
 - Histograms
- 4 Influence of an Electric Field
 - Lebwohl Lasher Model
 - Critical point
 - Phase diagram
- 5 Liquid Crystal Display
 - Fréedericksz transition
 - Molecular Orientation

Lebwohl Lasher Model

Size : $30 \times 30 \times 30$

$$E = -\epsilon \sum_{\langle i,j \rangle} \frac{3\cos^2 \alpha_{i,j} - 1}{2}$$

Monte-Carlo Algorithm

We select a random site

- We select a random site
- ullet We compute the energy with the neighboors : E_{old}

- We select a random site
- ullet We compute the energy with the neighboors : E_{old}
- We try to swap the chosen site

- We select a random site
- ullet We compute the energy with the neighboors : E_{old}
- We try to swap the chosen site

- We select a random site
- ullet We compute the energy with the neighboors : E_{old}
- We try to swap the chosen site
- ullet We compute the energy with the neighboors : E_{new}

- We select a random site
- ullet We compute the energy with the neighboors : E_{old}
- We try to swap the chosen site
- ullet We compute the energy with the neighboors : E_{new}
- We accept the swap with a probability :

$$p = e^{-\frac{E_{old} - E_{new}}{k_B T}}$$

Equilibration

Equilibration at $T^* = 1$

- The order parameter
- 2 Numerical methods
 - Lebwohl Lasher Model
 - Monte-Carlo Algorithm
 - Equilibration
- Nematic Isotropic Phase Transitions
 - Direct visualisation
 - Energy
 - Order Parameter
 - Histograms
- 4 Influence of an Electric Field
 - Lebwohl Lasher Model
 - Critical point
 - Phase diagram
- Liquid Crystal Display
 - Fréedericksz transition
 - Molecular Orientation

Nematic Isotropic Phase Transitions

$$T^{\star} = 0.05$$

 $T^{\star} = 0.9$

 $T^{\star} = 1.5$

Nematic Isotropic Phase Transitions Energy

Energy and its variance.

Nematic Isotropic Phase Transitions Order Parameter

Order parameter and its variance.

Nematic Isotropic Phase Transitions

Energy Histograms

- 1 The order parameter
- 2 Numerical methods
 - Lebwohl Lasher Model
 - Monte-Carlo Algorithm
 - Equilibration
- Nematic Isotropic Phase Transitions
 - Direct visualisation
 - Energy
 - Order Parameter
 - Histograms
- 4 Influence of an Electric Field
 - Lebwohl Lasher Model
 - Critical point
 - Phase diagram
- 5 Liquid Crystal Display
 - Fréedericksz transition
 - Molecular Orientation

Lebwohl Lasher Model

$$E = -\epsilon \sum_{< i,j>} \frac{3\cos^2\alpha_{i,j}-1}{2} - \epsilon \xi U^2 \sum_i \frac{3\cos^2\beta_i-1}{2}$$

Numerical Methods Energy

Energy for different electric fields.

Phase diagram

Transition temperature as a function of the electric field.

- 1 The order parameter
- 2 Numerical methods
 - Lebwohl Lasher Model
 - Monte-Carlo Algorithm
 - Equilibration
- Nematic Isotropic Phase Transitions
 - Direct visualisation
 - Energy
 - Order Parameter
 - Histograms
- 4) Influence of an Electric Field
 - Lebwohl Lasher Model
 - Critical point
 - Phase diagram
- 5 Liquid Crystal Display
 - Fréedericksz transition
 - Molecular Orientation

Liquid Crystal Display

Fréedericksz transition

Diagram of a LCD pixel using twisted nematic technology.

Liquid Crystal Display

Molecule Orientation

Molecule orientation without electric field

Liquid Crystal Display

Molecule Orientation

Molecule orientation with electric field

Detailed study of nematic-isotropic transition with Lebwohl-Laser model :

• first order transition at $T^{\star} = 1.1232 \pm 0.0005$

Detailed study of nematic-isotropic transition with Lebwohl-Laser model :

• first order transition at $T^{\star} = 1.1232 \pm 0.0005$

Electric field influence:

shifts transition temperature and critical point for strong fields

Detailed study of nematic-isotropic transition with Lebwohl-Laser model :

• first order transition at $T^{\star} = 1.1232 \pm 0.0005$

Electric field influence:

• shifts transition temperature and critical point for strong fields

LCD and Fréedericksz:

Lebwohl-Laser model can be used to model a LCD pixel

Perspectives

Perspectives:

- Find the value of the critical field in that Fréedericksz transition
- Study the temperature dependence of that transition

Thank you for your attention