Final Review

Final Exam

- Next Mon. May 6th
- **LH 014**
- 8:00 10:00 AM
- Topics
 - Everything after crypto(midterm)
 - Slides 10 20
- Similar structure as the midterm

Software Security

- Buffer Overflow
 - What makes it possible?
- Code injection
 - 3 Challenges and their countermeasures
- Return to libc vs. code injection
- Race conditions

Mitigation against Software Vulnerabilities

- Defensive coding practices
 - How to program defensively?
- Automated Testing Techniques
 - Static vs. Dynamic
- Fuzzing
 - What
 - Different Types
 - How to measure fuzzing test?
- Symbolic Execution
 - What
 - Goal

Malware

- Understand the different types of malware
 - What
 - Goal
- Virus vs. Worm
- The fight between anti-virus software and virus
 - Different ways to avoid detection

Web Security

- SQL Injection
 - What
 - Countermeasures
- Web Cookies
 - Why?
 - Authentication
- CSRF
 - How it works
 - Goal
 - Countermeasures
- XSS
 - SOP
 - Different types
 - How they work
 - Countermeasures

Authentication

- 3 ways to authenticate human to machine
- Something you know
 - Password
 - Attack on password
 - Countermeasures
- Something you are
 - Identification vs. Authentication
 - Compare different biometrics
- Something you have
 - 2-factor authentication

HW2

- On a particular system, all passwords are 8 characters, there are 128 choices for each character, and there is a password file containing the hashes of 2¹⁰ passwords. Trudy has a dictionary of 2³⁰ passwords, and the probability that a randomly selected password is in her dictionary is 1/4. Work is measured in terms of the number of hashes computed.
- Expected work to crack Alice's password, unsalted
- Ans: Hashes for the dictionary is precomputed
- 128 = 2⁷; we have 8 characters; Possible password = 2 ⁵⁶
- The **expected** work is (1/4 * 0 + 3/4 * 2 56) / 2

HW2

- On a particular system, all passwords are 8 characters, there are 128 choices for each character, and there is a password file containing the hashes of 2¹⁰ passwords. Trudy has a dictionary of 2³⁰ passwords, and the probability that a randomly selected password is in her dictionary is 1/4. Work is measured in terms of the number of hashes computed.
- Expected work to crack Alice's password, salted
- Ans: Hashes for the dictionary is precomputed
- 128 = 2⁷; we have 8 characters; Possible password = 2 ⁵⁶
- The **expected** work is (1/4 * 2 ³⁰ + ³/₄ * 2 ⁵⁶) / 2

HW2

- On a particular system, all passwords are 8 characters, there are 128 choices for each character, and there is a password file containing the hashes of 2¹⁰ passwords. Trudy has a dictionary of 2³⁰ passwords, and the probability that a randomly selected password is in her dictionary is 1/4. Work is measured in terms of the number of hashes computed.
- What is the probability that at least one of the passwords in the password file appears in Trudy's dictionary?
- Ans: $1 (3/4)^{1024}$
- Here, $1024 = 2^{10}$

Authorization

- DAC vs. MAC
- ACL vs. Capabilities
 - Confused Deputy
- Multilevel Security (MLS) Models
 - Why
 - Classification: objects, clearance: subjects
- Bell-Lapadula(BLP)
 - Read, write rule
- Biba
 - Read, write rule
- Compartments
 - Why
 - How it works
- Covert Channel

HW2: Compartments

■ Arrows indicate "≥" relationship

- 1. Can John read **SECRET** {**Nuclear**}?
- 2. Can Mary read TOP SECRET {Diplomatic}?
- 3. TOP SECRET {Nuclear, Diplomatic} file accessibility.

Trusted Computing

- Trusted Systems
 - Hardware-based, software-based
- SELinux
 - How it works
 - What does it offer
- Trusted Platform Module
 - Attestation Identity Key(AIK) and its usage

Basic Authentication Protocol

- Authentication over network
 - machine to machine
- Attacks on simple protocol
 - Replay and its countermeasures
- Mutual authentication based on symmetric key
 - Attack on simple implementation proposals
 - How to provide a secured implementation
- Mutual authentication based on public key
 - Session Key
 - Timestamps

SSH, SSL

- Simplified SSH
 - Details and questions about it
 - Modify the protocol
 - Any attacks?
- SSL
 - Details of each exchanged messages
 - Authentication
 - Session vs. Connection
 - Attacks

Kerberos and IPSec

- Kerberos
 - What is it designed for
 - How does it achieve a scalability?
 - 3 phases
 - login, request to "ticket to bob", use "ticket to bob"
 - Questions about Kerberos
- IPSec
 - IKE(Internet Key Exchange) 2 phases
 - How Phase1 works, different modes, key options, comparisons
 - Phase 2 goal
 - ESP(Encapsulating Security Payload)/AH(Authentication Header)
 - Differences, goal
 - 2 modes: transport, tunnel

Programming 4 – Base Program

- Client Server programs
 - A non-secure implementation is given
 - Client
 - Receive a number from user input
 - Send it to the server
 - Wait for response
 - Display the received result
 - Repeat until exit
 - Sever
 - Wait for client connection
 - Increase client inputs by 1
 - Send it back to client
 - Close the connection if client disconnect
 - Repeat till exit

Programming 4 – Base Program

- Goal: provide a secure client server program implementation using OpenSSL
 - Refer to the links, resources in the description to get familiar with OpenSSL APIs
 - Init the secure context
 - Setup the secure context to use the provided certificates for authorization
 - Modify the exiting program to use secured version read/write

CA and **Certificate**

CA and Certificate: Instructor as CA

CA and Certificate: Client verify certificate

Instructor's public key: ca.pem

Client use this public key to verify server.crt

Self Signed Certificate

Certificate signed by server itself

self_signed_server.crt

Verification failed with ca.pem since self_signed_server.crt is not signed by Instructor

Simplified SSL Protocol

- S is known as **pre-master secret**, randomly generated
- $K = h(S, R_A, R_B)$
- "msgs" means all previous messages
- CLNT and SRVR are constants string

Bonus

 $\begin{array}{c} \text{Can we talk?, cipher list, } R_A \\ \hline \text{Certificate, cipher, } R_B \\ \hline \text{Certificate,} \\ \hline \text{h(msgs,SRVR,K)} \\ \hline \\ \text{Client-} & \text{Data protected with key K} \\ \hline \end{array}$

- S is known as **pre-master secret**, randomly generated
- $\bullet K = h(S, R_A, R_B)$
- "msgs" means all previous messages
- CLNT and SRVR are constants string

