Assignment 5

World Development Indicators Analysis 2022

Minjoo Kim

2025-02-24

Table of contents

1	Introduction	1				
	1.1 Loading the Data	1				
2	Exploratory Data Analysis	2				
	2.1 GDP Per Capita Analysis	2				
	2.2 Life Expectancy Analysis	3				
	2.3 Education and Health Indicators	5				
3	Key Statistics Summary	6				
4	Conclusion	7				
5 References						

1 Introduction

This report analyzes the World Development Indicators dataset from 2022, focusing on key developmental metrics across different countries.

1.1 Loading the Data

```
import pandas as pd
import numpy as np
import seaborn as sns
```

```
import matplotlib.pyplot as plt

# Read the dataset
df = pd.read_csv('wdi.csv')
df
```

	country	$inflation_rate$	$exports_gdp_share$	gdp_growth_rate	gdp_per_capita	adı
0	Afghanistan	NaN	18.380042	-6.240172	357.261153	Na
1	Albania	6.725203	37.197085	4.826688	6846.426143	98.
2	Algeria	9.265516	30.808979	3.600000	4961.552577	Na
3	American Samoa	NaN	46.957520	1.735016	18017.458938	Na
4	Andorra	NaN	NaN	9.564612	42414.059009	Na
212	Virgin Islands (U.S.)	NaN	97.367295	-1.311232	44320.909186	Na
213	West Bank and Gaza	3.741224	18.436253	4.082760	3799.955270	98.
214	Yemen, Rep.	NaN	NaN	NaN	615.702079	Na
215	Zambia	10.993204	40.193998	5.211224	1447.123101	Na
216	Zimbabwe	104.705171	27.872171	6.139263	2040.552459	89.

2 Exploratory Data Analysis

2.1 GDP Per Capita Analysis

plt.legend() plt.show()

```
GDP per capita statistics:
count
            207.000000
mean
          20520.336828
std
          30640.741594
min
            250.634225
25%
           2599.752468
50%
           7606.237525
75%
          27542.145523
         226052.001905
max
```

Name: gdp_per_capita, dtype: float64

Figure 1: Distribution of GDP per capita across countries

The distribution of GDP per capita in Figure 1 shows significant inequality across countries. We observe: - A strong positive skew, with many countries clustered at lower GDP values - A long tail extending to higher-income countries - A substantial difference between mean

and median values, further indicating skewed distribution - Several outlier countries with exceptionally high GDP per capita

2.2 Life Expectancy Analysis

```
# Calculate correlation
correlation = df['gdp_per_capita'].corr(df['life_expectancy'])
# Create scatter plot
plt.figure(figsize=(10, 6))
sns.scatterplot(data=df, x='gdp_per_capita', y='life_expectancy', alpha=0.7)
plt.title('GDP per Capita vs Life Expectancy')
plt.xlabel('GDP per Capita (USD)')
plt.ylabel('Life Expectancy (years)')
# Add a logarithmic trendline
x = df['gdp_per_capita'].dropna()
y = df['life_expectancy'].dropna()
mask = ~np.isnan(x) & ~np.isnan(y)
x = x[mask]
y = y[mask]
if len(x) > 0:
    z = \text{np.polyfit(np.log(x+1), y, 1)}
    p = np.poly1d(z)
    x_sorted = np.sort(x)
    plt.plot(x_sorted, p(np.log(x_sorted+1)), "r--",
             label=f"Trend (correlation={correlation:.2f})")
    plt.legend()
plt.show()
```


Figure 2: Relationship between GDP per capita and life expectancy

Our scatterplot shown in Figure 2 reveals: - A strong positive correlation between GDP per capita and life expectancy - The relationship appears logarithmic rather than linear, suggesting diminishing returns - Life expectancy tends to plateau at higher income levels - There is still significant variation in life expectancy among countries with similar GDP levels, suggesting other factors play important roles

2.3 Education and Health Indicators

```
# Create quartiles of education expenditure for grouped analysis
df['edu_quartiles'] = pd.qcut(df['education_expenditure_gdp_share'].dropna(), 4, labels=['Q1
# Simple bar chart comparing education quartiles to immunization rates
plt.figure(figsize=(10, 6))
sns.barplot(x='edu_quartiles', y='measles_immunisation_rate', data=df.dropna(subset=['edu_quartile('Education Expenditure vs Immunization Rates')
plt.xlabel('Education Expenditure Quartiles (% of GDP)')
```


Figure 3: Relationship between education expenditure and immunization rates

As shown in Figure 3, there is a relationship between a country's investment in education and public health outcomes: - Countries in higher education expenditure quartiles generally show better immunization coverage - The trend suggests that investment in education may have positive spillover effects on health outcomes - This correlation could reflect broader government priorities in human development - The difference between the lowest and highest quartiles demonstrates how resource allocation impacts population health

3 Key Statistics Summary

```
summary_stats = df[['gdp_per_capita', 'life_expectancy', 'education_expenditure_gdp_share',
corr_matrix = df[['gdp_per_capita', 'life_expectancy', 'education_expenditure_gdp_share', 'm
display(summary_stats)
display(corr_matrix)
```

Table 2: Summary Statistics of Key Development Indicators

	gdp_per_capita	life_expectancy	$education_expenditure_gdp_share$	measles_immunisation_rat
count	207.000000	209.000000	137.000000	193.000000
mean	20520.336828	72.416519	4.164884	84.103627
std	30640.741594	7.713322	1.771027	15.413050
\min	250.634225	52.997000	0.348517	33.000000
25%	2599.752468	66.782000	2.951592	76.000000
50%	7606.237525	73.514634	3.938396	90.000000
75%	27542.145523	78.475000	4.959176	96.000000
max	226052.001905	85.377000	10.703345	99.000000

Table 3: Summary Statistics of Key Development Indicators

	gdp_per_capita	life_expectancy	$education_expenditure_gdp_share$
gdp_per_capita	1.00	0.64	-0.09
life_expectancy	0.64	1.00	0.05
education_expenditure_gdp_share	-0.09	0.05	1.00
$measles_immunisation_rate$	0.32	0.56	0.24

Table Table 3 highlights key statistics from the analysis, highlighting the range and distribution of development indicators across countries. The standard deviations across all metrics underscore the global inequality in development outcomes.

4 Conclusion

This analysis of World Development Indicators reveals several important patterns in global development: 1. Economic prosperity, as measured by GDP per capita, remains highly unequal across countries 2. There is a strong but non-linear relationship between economic development

and health outcomes 3. Countries that invest more in education tend to have better health outcomes

5 References

(World Bank 2022) (Patel, Patel, and Desai 2021)

Patel, Mahendra, Ankit Patel, and Priya Desai. 2021. Handbook of Development Indicators and Benchmarks: A Statistical Guide to the World's Development Goals. Oxford, UK: Oxford University Press.

World Bank. 2022. "World Development Indicators 2022." Database. The World Bank. https://databank.worldbank.org/source/world-development-indicators.