Experiment 3: Concave Grating Spectrometer

Ashmit Bathla, 210216.

10th Febuary 2025

```
In [1]: # import necessary libraries
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        from scipy.stats import linregress
In [2]: # set default params for matplotlib :
        plt.rcParams['font.size'] = 14
        plt.rcParams['lines.linewidth'] = 2
        plt.rcParams["figure.figsize"] = (8,5)
In [3]: # read all the data form the excel file:
        data_dict = {f'Linear-Order-{i+1}' : pd.read_excel('data.xlsx' , sheet_na
        data_dict.update( {f'Angular-Order-{i-1}' : pd.read_excel('data.xlsx' , s
        data_dict['Sodium'] = pd.read_excel('data.xlsx' , sheet_name=-1)
In [4]: # list to store interpolated results:
        sodium_wavelenght = np.array([])
In [5]: # define function to plot the clabration curves and get the iterpolated v
        # the given data set
        def calibrate_interpolate(x,y,p,order:int):
                param x: independet variable of the data.
                param y: give data points of the function.
                param p: list of points to intepolate on.
                returns: interpolated values of y(p).
            if( type(x) == list ):
                x = np.array(x)
            if( type(y) == list ):
                y = np.array(y)
            if( type(p) == list ):
                p = np.array(p)
            # get the linear interpolated results :
            q = np.interp(p, x, y)
            # plot the curves :
            plt.plot(x, y, linewidth = 3)
```

```
plt.scatter( x , y , linewidths=2 , label = 'Recorded Data Point')
plt.scatter( p , q , color = 'r' , marker = '|' , s = 160 , label =
plt.xlabel(r'Linear Distance from the Slit $X$ ($cm$)')
plt.ylabel(r'Wavelength $\lambda$ ($nm$)')
plt.grid()
plt.title(fr'$X$ vs $\lambda$ Calibration Curve of Hg for Order {orde
plt.legend()
plt.show()

# return the slope of the regression line
return q
```

```
In [6]: print('----Reading for the Sodium Lamp-----')
sodium_data = data_dict['Sodium']
sodium_data
```

-----Reading for the Sodium Lamp-----

Out [6]: Linear Distance (cm) Color Order 0 13.94 Yellow(1) 1 1 13.98 Yellow(2) 1 2 29.23 Yellow(1) 2 3 29.25 Yellow(2) 2

```
In [7]: print('-----Linear Readings for Order 1 Bands of Hg------')
display( data_dict['Linear-Order-1'] )

p = sodium_data['Linear Distance (cm) '].to_numpy()[:2]
q = calibrate_interpolate(
    x = data_dict['Linear-Order-1']['Linear Distance (cm) '].to_numpy() ,
    y = data_dict['Linear-Order-1']['Wavelength (nm)'].to_numpy() , p = p
)

sodium_wavelenght = np.append( sodium_wavelenght , q )
q
```

-----Linear Readings for Order 1 Bands of Hg------

	Linear Distance (cm)	Color	Wavelength (nm)
0	10.00	Violet[Deep]	404.7
1	11.54	Blue/Green	491.6
2	12.91	Green	546.1
3	13.72	Yellow-Orange(1)	577.0
4	13.78	Yellow-Orange(2)	579.1
5	14.69	Red(1)	623.4
6	14.76	Red(2)	690.8

Out[7]: array([586.88901099, 588.83626374])

```
In [8]: print('-----Linear Readings for Order 2 Bands of Hg------')
display( data_dict['Linear-Order-2'] )

p = sodium_data['Linear Distance (cm) '].to_numpy()[2:]
q = calibrate_interpolate(
    x = data_dict['Linear-Order-2']['Linear Distance (cm) '].to_numpy() ,
    y = data_dict['Linear-Order-2']['Wavelength (nm)'].to_numpy() , p = p
)

sodium_wavelenght = np.append( sodium_wavelenght , q )
q
```

-----Linear Readings for Order 2 Bands of Hg-----

	Linear Distance (cm)	Color	Wavelength (nm)
0	21.24	Violet[Deep]	404.7
1	21.38	Violet	407.8
2	24.17	Blue/Green	491.6
3	27.00	Green	546.1
4	28.60	Yellow-Orange(1)	577.0
5	28.72	Yellow-Orange(2)	579.1
6	30.60	Red(1)	623.4
7	30.91	Red(2)	690.8

Out[8]: array([591.11755319, 591.58882979])

In [9]: print('----Angular Readings for Order 1 Bands of Hg-----')
 data_dict['Angular-Order-1']

-----Angular Readings for Order 1 Bands of Hg-----

		J	J	· · · · · · · · · · · · · · · · · · ·
Out[9]:		Angular Distance (*)	Color	Wavelength (nm)
	0	3.8	Violet[Deep]	404.7
	1	2.0	Blue/Green	491.6
	2	0.0	Green	546.1
	3	-0.8	Yellow-Orange(1)	577.0
	4	-1.0	Yellow-Orange(2)	579.1
	5	-2.2	Red(1)	623.4
	6	-2.4	Red(2)	690.8

In [10]: print('-----Angular Readings for Order 2 Bands of Hg-----')
 data_dict['Angular-Order-2']

-----Angular Readings for Order 2 Bands of Hg------

Out[10]:		Angular Distance (*)	Color	Wavelength (nm)
	0	7.8	Violet[Deep]	404.7
	1	7.6	Violet	407.8
	2	3.8	Blue/Green	491.6
	3	0.0	Green	546.1
	4	-2.2	Yellow-Orange(1)	577.0
	5	-2.4	Yellow-Orange(2)	579.1
	6	-4.8	Red(1)	623.4
	7	-5.2	Red(2)	690.8

Out[11]:		Linear Distance (cm)	Color	Order	Calculated Wavelenght (nm)
	0	13.94	Yellow(1)	1	586.889011
	1	13.98	Yellow(2)	1	588.836264
	2	29.23	Yellow(1)	2	591.117553
	3	29.25	Yellow(2)	2	591.588830

