Task Description:

Task-1: Count the number of primitive operations executed below and determine the best & the worst cases: (1 points)

Algorithm: arrayMin(A, n)	Dont	Y qtuv<
$currentMin \leftarrow A[0]$	Best<	3"> ewttgpvO kp"? 'C]2
$i \leftarrow 1$	3"> ewttgpvO kp"? 'C]2_ 3"> k"? "3	3''-> k'?''3
while $i \leq n-1$ do	n"> K">? "p"/'3	p'"'> k'">? ''p''/'3
if $currentMin \ge A[i]$ then	n - 1'' - > ewttgpvO kp'' < C k	$p - 1"> ewttgpvO kp">="C]k_$
$currentMin \leftarrow A[i]$	n-1->i=i+1	p"/"3"> ewttgpvO kp"? ""C]k_
$i \leftarrow i + 1$	3"> tgwtp"ewttgpvO kp	p"/"3"> k"? "k"- "3
return currentMin	Vqvcri3n + 1	3"> tgwtp"ewttgpvO kp
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	Vqw:16p

Task-2: Determine the Big-O notation for: (3 points)

a)
$$2 + n(2 + 3n)$$
 $0(n^2)$

b)
$$n + 2(n + 3n) n + \frac{n}{2}$$
 $O(n^2)$

c)
$$n^3 \log n + 2n + 1 + 3n^2 + n(\log n)^2$$
 $O(n^3 \log n)$

Task-3: Determine the Complexity Of The Following Small Functions: (6 points)

c) for (i = n; i >= 1; i--)
$$O(n^2)$$

for (j = i; j <= n; j++) /* Note that the value of the inner loop variable (j) */

/* depends on the value of the outer loop variable (i) */