粘着技術とタッキファイヤーの基礎 と応用展開

~ 第六章 タッキファイヤーの働きについて ~

佐々木 裕1

東亞合成株式会社

2024/2/15

¹hiroshi_sasaki@mail.toagosei.co.jp

タッキファイヤーとは? 粘着特性に対する経験則 タッキファイヤーの添加効果

- タッキファイヤーとは?
 - 一般的なタッキファイヤーの説明
 - タッキファイヤーの種類と構造
 - タッキファイヤーの相溶性
- ② 粘着特性に対する経験則
 - Dahlquist のクライテリア
 - Chang の窓
 - 「Chang の窓」の意味するものは?
- ③ タッキファイヤーの添加効果
 - 各種エラストマーとタッキファイヤー
 - タック発現の機構
 - アクリル系粘着剤では

- - 一般的なタッキファイヤーの説明
 - タッキファイヤーの種類と構造
 - タッキファイヤーの相溶性
- ② 粘着特性に対する経験則
 - Dahlquist のクライテリア
 - Chang の窓
 - 「Chang の窓」の意味するものは?
- ③ タッキファイヤーの添加効果
 - 各種エラストマーとタッキファイヤー
 - タック発現の機構
 - アクリル系粘着剤では

タッキファイヤーとは

- タッキファイヤーとは
 - 粘着剤のベースとなるポリマーに添加することにより、 粘着特性を改良できる添加剤
 - 主としてタック(瞬間的なベタつき)を付与することが名前の由来。
- 一般的な特徴
 - 分子量が数千程度の無定形オリゴマー
 - 一般的に高い軟化点を有し、室温で固体
 - 幅広いベースポリマーと相溶

タッキファイヤーの種類

- 一般のテキストでは、以下のようにまとめられている。
- 大きく分類すれば、天然系と合成系

天然樹脂系	ロジン系	ロジン ロジン誘導体(水素化、エステル化等)
	テルペン系	テルペン樹脂、テルペンフェノール樹脂 水素化テルペン樹脂
合成樹脂系	石油樹脂系	脂肪族系、芳香族系、共重合系 水素化石油樹脂
	その他	フェノール樹脂、キシレン樹脂 インデン樹脂、ケトン樹脂

ロジン誘導体

- 主として松ヤニから製造
- アビエチン酸を主成分
- 淡黄色から褐色の固体
- 多様な樹脂に相溶する
- エステル誘導体が主
- 二重結合が酸化されやすい
 - 不均化、水添で改質
- 耐熱性向上
 - 二量化
 - マレイン酸等の付加

「荒川化学」のサイト

テルペン系

- イソプレンユニット (C5) を基本単位とする天然素材
- 各種誘導体が多様な用途に用いられている。

「日本テルペン化学」のサイト

石油樹脂の例

- 原油からの C5 留分と C9 留分を原料とする石油樹脂
- 成分比の制御により特性を調整
- 東ソーのペトロタックを例示
- Mw = 1000 to 4000 のオリゴマー

「東ソー」のサイト

粘着剤の分類と特徴

主要な粘着剤の分類と特徴を以下にまとめた

分類	エラストマー	特徴
ゴム系	天然ゴム	天然ゴムは価格が安い 被着体の選択性が小さい 極性基を有していないので粘着力の上昇が小さい 耐熱、耐候性に劣る
アクリル系	アクリル酸エステル共重合体	ポリマー自体で粘着性がある 変性が自由 ゴム系に比べ耐熱、耐候性に優れる 被着体の選択性がある
シリコーン系	シリコーンゴム	適用温度範囲が広い 耐熱、耐寒性に優れる 耐薬品性、耐候性に優れる 価格が高い
ウレタン系	ウレタン樹脂	再はく離性に優れる 低臭気、低皮膚刺激性に優れる 透湿性に優れる 強粘着性、タックがでにくい

タッキファイヤーの相溶性

- 相溶性は溶解度パラメタで理解可能(第三章)
- 似たものは似たものに溶ける

「タッキファイヤーとは」のまとめ

VVVVVVVVVVVVV

- 一般的なタッキファイヤーの説明
 - ベースポリマーに添加することで粘着特性(とくにタック)を改良
 - 分子量が数千程度の無定形オリゴマー
 - 一般的に高い軟化点を有し、室温で固体
 - 幅広いベースポリマーと相溶
- タッキファイヤーの種類と構造
 - 天然樹脂系(ロジン誘導体、テルペン系等)
 - 合成系(石油樹脂等)
- タッキファイヤーの相溶性
 - SP 値が近いものが相溶する
 - 分子量が低いことも幅広い相溶性に有効

- 1 タッキファイヤーとは?
 - 一般的なタッキファイヤーの説明
 - タッキファイヤーの種類と構造
 - タッキファイヤーの相溶性
- ② 粘着特性に対する経験則
 - Dahlquist のクライテリア
 - Chang の窓
 - 「Chang の窓」の意味するものは?
- ③ タッキファイヤーの添加効果
 - 各種エラストマーとタッキファイヤー
 - タック発現の機構
 - アクリル系粘着剤では

Dahlquist のクライテリアとは?

- 粘着性(タック)発現に関する基本的な経験則
- 1969 年に Dahlquist がその著書¹で提唱
- タックを発現するためには、粘着剤の貯蔵弾性率 G' ≤ 0.1 MPa

- 左図のような表面凸凹を想定
- これと接触できる弾性率を 以下の式で概算

$$G_c = W \cdot \sqrt{\frac{R}{h^3}}$$

¹Dahlquist, C.A., "Adhesion, Fundamental & Practice", McLaren & Sons, Ltd, London (1969)

弾性率と時間

- 時間の概念を周波数として導入
 - タックを発現する時間を $f=10^2 \Leftrightarrow 10^{-2}sec$
 - 。 保持する時間を $f=10^{-2} \Leftrightarrow 10^2 sec$

このグラフのサイト

Chang の窓

- さらに、エネルギー散逸を表す損失弾性率も導入
- 周波数の窓の中に、貯蔵および損失弾性率の値を プロット
 - 高い周波数(100/sec)
 - 低い周波数(0.01/sec)
- 粘着剤の振る舞いを4つの領域に分類

このグラフのサイト

「Chang の窓」のポイント

損失弾性率 G"の振る舞いが重要

- 高い周波数 (100/sec)
 - 高い G" ⇔ 高い流動性: クイックタッキネス
- 低い周波数(0.01/sec)
 - 低い G" ⇔ 変形を抑止;保持力向上

「Chang の窓」のポイント

それぞれの領域の意味

- Quadrant 1: *G*" が低いためタックが弱い
- Quadrant 2: *G'*, *G''* が高くタックもあり保持力もある
- Quadrant 3: *G'*, *G''* ともに低いので再剥離が容易
- Quadrant 4: G' が低いので凝集破壊しやすい

「結局、G', G'' のバランスが重要!」

「粘着特性に対する経験則」のまとめ

- Dahlquist のクライテリア
 - 基材の表面凸凹に対応するための最大限の G'を定義
 - ullet 粘着剤の貯蔵弾性率 G' < 0.1 MPa
- Chang の窓
 - 各種挙動に対応する時間の概念を周波数として導入
 - それぞれの周波数での貯蔵、損失弾性率を定義
- 「Chang の窓」の意味
 - 「結局、*G'*, *G"* のバランスが重要!」

- 1 タッキファイヤーとは?
 - 一般的なタッキファイヤーの説明
 - タッキファイヤーの種類と構造
 - タッキファイヤーの相溶性
- ② 粘着特性に対する経験則
 - Dahlquist のクライテリア
 - Chang の窓
 - 「Chang の窓」の意味するものは?
- ③ タッキファイヤーの添加効果
 - 各種エラストマーとタッキファイヤー
 - タック発現の機構
 - アクリル系粘着剤では

タッキファイヤーの添加

- 各種エラストマーとの相溶性
 - 相溶性は溶解度パラメタで理解可能(第三章)
 - 似たものは似たものに溶ける
 - 分子量が数千程度の無定形オリゴマー

ゴム系ベースポリマーがタックが低い理由

ゴム状エラストマー単独の粘弾性特性

- ガラス転移温度が低い(-60 to -40 ℃)
- ラバープラトーの貯蔵弾性率が比較的に高い
 - 絡みやすいため M_E が小さい
 - 貯蔵弾性率が反比例して大きい

ゴム系ベースポリマーがタックが低い理由

Chang の窓で考えると

- ラバープラトーの貯蔵弾性率が比較的に高い
 - 低周波でも高周波でもあまり変化がない
- ガラス転移温度が低い
 - ⇔ 転移領域に起因した損失弾性率が小さい

- ガラス転移温度を上昇
 - エラストマーの $T_q = 240 \text{ K}$

 - 30 % 添加を想定

$$\frac{1}{T_g} = \frac{0.3}{370} + \frac{0.7}{240}$$

$$\therefore \quad T_g \simeq 268$$

- 約30℃ガラス転移温度を上昇
- ガラス転移温度に起因した転移領域を室温付近に
- ガラス転移温度以上では可塑剤として働く
 - ラバープラトーの貯蔵弾性率を低下

タッキファイヤー添加前後の比較

周波数分散と Chang の窓のイメージ

周波数依存の挙動をチューニング

- 高い周波数 (100/sec)
 - 高い G" ⇔ 高い流動性: クイックタッキネス
- 低い周波数(0.01/sec)
 - 低い G" ⇔ 変形を抑止;保持力向上

アクリル系ポリマーベースの粘着剤

- アクリル系ポリマーでは、
 - 各種モノマーの共重合により
 - ⇔ ガラス転移温度が調整可能
 - 絡み合い点間分子量が大きい
 - ⇔ ラバープラトーの貯蔵弾性率が比較的低い
- その結果
 - タッキファイヤーが必須というわけではない
 - 各種物性調整のために利用はされる

「タッキファイヤーの添加効果」のまとめ

- タッキファイヤーの添加
 - 種類選択で各種エラストマーとの相溶性を確保
 - 分子量が低いことも相溶性に有利
- タック発現の機構
 - ゴム状エラストマー単独では粘着特性に劣る
 - 適切なタッキファイヤーで特性改良が可能
- アクリル系ポリマーベースの粘着剤
 - ガラス転移温度、ラバープラトーの弾性率の 調整が容易
 - タッキファイヤーが必須というわけではない