安徽大学 2010—2011 学年第一学期

《高等数学 C (一)》考试试卷 (B 卷) (闭卷 时间 120 分钟)

题 号	 1 1	三	四	五.	总分
得 分					
阅卷人					

— 、	填空题	(本题共五小题,	每小题2分,	共10分
------------	-----	----------	--------	------

得分

- 1. 已知 $\lim_{x\to 0} \frac{a\sin x}{\sqrt{1+x}-1} = 4$,则 a =______。
- 3. 设方程 $xy = e^y$ 确定 $y \in x$ 的函数,则 $\frac{dy}{dx}$ 在 (0,1) 处的值为_______。
- **4.** 函数 $f(x) = 2x^2 + |x| 1$ 的极小值点为______。

得分

)

二、选择题(本题共五小题,每小题2分,共10分)

- 6. 设函数 y = f(x) 在 $x = x_0$ 处可微, $\Delta y = f(x + x_0) f(x_0)$,则 当 $\Delta x \to 0$ 时,下列说法一定正确的是 (
 - A. dy 是比 Δx 高阶的无穷小量。
 - C. Δy 是比 Δx 高阶的无穷小量。
- B. dy 是比 Δx 低阶的无穷小量。
 - D. $\Delta y dy$ 是比 Δx 高阶的无穷小量。

- 7. 当x > 0时,曲线 $y = x \sin \frac{1}{x}$
 - A. 有且仅有水平渐近线。
 - C. 既有水平渐近线,也有垂直渐近线。
- B. 有且仅有垂直渐近线。
- D. 既无水平渐进线, 也无垂直渐近线。

- 8. 若 f(x) 为 R 上可导的奇函数,则 $\int f(x)f'(-x)dx =$
- A. $-\frac{1}{2}f^2(x) + C$ B. $\frac{1}{2}f^2(x) + C$ C. $-\frac{1}{2}f(x^2) + C$ D. $\frac{1}{2}f(x^2) + C$

- 9. 下列广义积分收敛的是

)

- 10. 已知函数 f(x) 在区间 $(1-\delta,1+\delta)$ 内具有二阶导数,又 f'(x) 严格单调减少,且 f(1) = f'(1) = 1, \mathbb{N}
 - A. 在 $(1-\delta,1)$ 和 $(1,1+\delta)$ 内均有f(x) < x。
 - B. 在 $(1-\delta,1)$ 和 $(1,1+\delta)$ 内均有f(x) > x。
 - C. 在 $(1-\delta,1)$ 内,f(x) < x; 在 $(1,1+\delta)$ 内,f(x) > x。
 - D. 在 $(1-\delta,1)$ 内,f(x) > x;在 $(1,1+\delta)$ 内,f(x) < x。
- 三、计算题(本题共八小题,每小题6分,共48分)

得分

11.
$$\lim_{n\to\infty} \left(\frac{1}{n+\sqrt{1}} + \frac{1}{n+\sqrt{2}} + \dots + \frac{1}{n+\sqrt{n}}\right)$$

12.
$$\lim_{x \to 0} (\frac{1}{x^2} - \frac{1}{x \tan x})$$

袎

14.
$$\lim_{x \to 1} \frac{\int_{1}^{x^{2}} (t-1) \ln t dt}{(x-1)^{3}}$$

15.
$$\int \frac{2x-5}{x^2-6x+10} dx$$

16. $\int \sin(\ln x) dx$

17.
$$\int_{-1}^{1} \frac{x^2 + x^8 \sin x}{1 + \sqrt{1 - x^2}} dx$$

18.
$$\iint_{D} \sqrt{x^2 + y^2} dx dy , \quad \sharp \oplus D = \{(x, y) \mid x^2 + y^2 \le 2y\} .$$

19. 某工厂生产两种产品 I 与 II ,出售单价分别为 I0 元与 9 元,生产 x 单位的产品 I 与生产 y 单位的产品 II 的总费用是:

$$400 + 2x + 3y + 0.01(3x^2 + xy + 3y^2)$$
 (元)

求两种产品各生产多少, 工厂可取得最大利润?

- 20. 在曲线 $y = x^2$ ($x \ge 0$)上某点 A 处作一切线,使之与曲线以及 x 轴所围图形的面积为 $\frac{1}{12}$,试求: (1) 切点 A 的坐标及过 A 的切线方程;
 - (2) 由上述所围平面图形绕 Ox 轴旋转一周所成旋转体的体积。

纵

节

製

礟

物

五、证明题(本题共两小题,每小题5分,共10分)

得分

21. 设 f(x) 在 $[0,+\infty)$ 上连续且单调增加,证明: 当 x>0 时, $x\int_0^x f(t)dt \le 2\int_0^x tf(t)dt \ .$

22. 设不恒为常数的函数 f(x) 在[a,b]上连续,在(a,b)内可导,且 f(a) = f(b),证明:存在 $\xi \in (a,b)$,使得 $f'(\xi) > 0$ 。