Криптосистеми на еліптичних кривих

Lecture 3: E(F_q)

Грубіян Євген Олександрович

Структура групи Е**(** \mathbb{F}_{q} **)**

Структура групи

Нехай E/F_q — еліптична крива, визначена над скінченним полем \mathbb{F}_q , char (F_q) = р. Тоді група \mathbb{F}_q -раціональних точок $E(\mathbb{F}_q)$ є скінченною абелевою групою, що ізоморфна:

$$E(\mathbb{F}_q) \cong \mathbb{Z}/n_1\mathbb{Z} \oplus \mathbb{Z}/n_2\mathbb{Z}, \quad n_2 \mid n_1.$$

- У випадку, коли одна з циклічних компонент групи тривіальна, група кривої є циклічною.
- Структура залежить від властивостей кривої та характеристики поля.

Підгрупа Е[п] (точок порядку п)

Підгрупа E[n]

Для цілого числа n ≥ 1 підгрупа точок порядку n:

$$\mathrm{E[n]} = \{ \mathrm{P} \in \mathrm{E}(\overline{\mathrm{F}_{\mathrm{q}}}) \mid \mathrm{nP} = \mathcal{O} \},\$$

Якщо р∤п, тоді існує канонічний ізоморфізм:

$$E[n] \cong \mathbb{Z}/n\mathbb{Z} \oplus \mathbb{Z}/n\mathbb{Z}.$$

• Якщо ж $n = p^k$, $char(F_q) = p$: $E[n] \cong \mathbb{Z}/n\mathbb{Z}$ або $\{ \mathcal{O} \}$.

Ординарні та суперсингулярні еліптичні криві

Визначення

- Е називається ординарною, якщо $E[p] \cong \mathbb{Z}/p\mathbb{Z}$.
- Е називається суперсингулярною, якщо $E[p] = \{ \mathcal{O} \}$
- Ординарні криві застосовують в класичних криптосистемах на еліптичних кривих.
- Суперсингулярні криві мають особливу структуру кільця ендоморфізмів, тому їх часто застосовують в криптосистемах на базі ізогеній та білінійних спарювань.

Ендоморфізми на еліптичній кривій

Визначення

Ендоморфізм φ на еліптичній кривій Е/К — це раціональне відображення:

$$\varphi: \mathcal{E} \to \mathcal{E}$$
,

яке є груповим гомоморфізмом, тобто

$$orall P, Q \in E : \varphi(P+Q) = \varphi(P) + \varphi(Q)$$
. При цьому $\varphi(\mathscr{O}) = \mathscr{O}$.

- Ендоморфізми формують кільце End(E) за операцією додавання $(\varphi + \psi)(P) = \varphi(P) + \psi(P)$ та композиції $(\varphi \circ \psi)(P) = \varphi(\psi(P))$ ендоморфізмів.
- Серед них особливо важливим є ендоморфізм Фробеніуса.

Ендоморфізм Фробеніуса

Визначення Фробеніуса

Нехай Е/F $_{
m q}$ — еліптична крива, визначена над $\mathbb{F}_{
m q}$. Ендоморфізм Фробеніуса визначається як:

$$\pi: E \to E$$
, $(x, y) \mapsto (x^q, y^q)$.

- π є ендоморфізмом Е і елементом кільця End(E).
- Якщо x, y \in F_q тоді π має тривіальну дію: $\pi(x, y) = (x, y)$
- Всі F_q -раціональні точки кривої лежать в ядрі ендоморфізму Фробеніуса: $E(F_q) = \ker(1-\pi)$
- Ендоморфізм Фробеніуса відіграє ключову роль у визначенні кількості F_q -раціональних точок на кривій: $\#E(F_q) = \#\ker(1-\pi) = \deg(1-\pi)$.

Характеристичне рівняння Фробеніуса

Характеристичне рівняння

Ендоморфізм Фробеніуса π задовольняє характеристичному рівнянню:

$$T^2 - tT + q = 0,$$

де $t = tr(\pi) = q + 1 - \#E(\mathbb{F}_q)$ - слід ендоморфізму Фробеніуса, $q = deg(\pi)$

- Будь який ендоморфізм на E[n] діє як матриця із $GL_2(\mathbb{Z}/n\mathbb{Z})$
- За теоремою Келі (Cayley–Hamilton) кожен оператор(матриця) задовольняє своєму характеристичному многочлену.

Власні значення ендоморфізму Фробеніуса

Нехай α та β — корені характеристичного рівняння (власні значення оператора):

$$T^2 - tT + q = 0.$$

Тоді:

$$\alpha + \beta = t$$
 i $\alpha \beta = q$.

За теоремою Вейля (для ендоморфізмів еліптичних кривих) маємо:

$$|\alpha| = |\beta| = \sqrt{q}$$
.

Тому, за нерівністю трикутника:

$$|\mathbf{t}| = |\alpha + \beta| \le |\alpha| + |\beta| = 2\sqrt{q}$$
.

Теорема Хассе

Теорема Хассе

Нехай E — еліптична крива, визначена над \mathbb{F}_q . Тоді:

$$\left| \# \mathbf{E}(\mathbb{F}_{\mathbf{q}}) - (\mathbf{q} + 1) \right| \le 2\sqrt{\mathbf{q}}.$$

Оскільки $t = q + 1 - \#E(\mathbb{F}_q)$, отримуємо:

$$|\mathbf{t}| \le 2\sqrt{\mathbf{q}} \implies |\#\mathbf{E}(\mathbb{F}_{\mathbf{q}}) - (\mathbf{q} + 1)| \le 2\sqrt{\mathbf{q}}.$$

Наслідок: сума квадратичних характерів (1 якщо f(x) є квадратом в F_q , інакше -1) рівняння $y^2 = f(x)$: $\sum \chi(f(x)) = t \le 2\sqrt{q}$

Поліноми подільності

Нехай Е/К : $y^2 = x^3 + ax + b$ — еліптична крива. Для кожного цілого числа $n \ge 0$ визначаються поліноми подільності $\psi_n(x, y)$:

$$\forall P \in E : \psi_n(P) = 0 \iff [n]P = \mathcal{O},$$

Поліноми подільності визначаються рекурсивно:

$$\psi_{0}(x, y) = 0, \psi_{1}(x, y) = 1,$$

$$\psi_{2}(x, y) = 2y,$$

$$\psi_{3}(x, y) = 3x^{4} + 6ax^{2} + 12bx - a^{2},$$

$$\psi_{4}(x, y) = 4y \left(x^{6} + 5ax^{4} + 20bx^{3} - 5a^{2}x^{2} - 4abx - 8b^{2} - a^{3}\right).$$

$$\psi_{2n+1}(x, y) = \psi_{n+2}(x, y) \psi_{n}(x, y)^{3} - \psi_{n-1}(x, y) \psi_{n+1}(x, y)^{3}.$$

$$\psi_{2n}(x, y) = \frac{\psi_{n}(x, y)}{2y} \left(\psi_{n+2}(x, y) \psi_{n-1}(x, y)^{2} - \psi_{n-2}(x, y) \psi_{n+1}(x, y)^{2}\right).$$

9/12

Кількість точок на еліптичній кривій

З характеристичного рівняння Фробеніуса маємо:

$$\#\mathrm{E}(\mathbb{F}_{\mathrm{q}}) = \mathrm{q} + 1 - \mathrm{t}.$$

- Теорема Хассе гарантує, що $|t| \le 2\sqrt{q}$.
- Отже, $\#E(\mathbb{F}_q)$ знаходиться в інтервалі:

$$q + 1 - 2\sqrt{q} \le \#E(\mathbb{F}_q) \le q + 1 + 2\sqrt{q}$$
.

• Ідея обчислення кількості точок: $\forall P \in E(F_q): \pi^2(P) + [q]P = \pi([t]P) \text{ 3 характеристичного рівняння}$ Фробеніуса.

Алгоритм Скуфа для обчислення $\#E(\mathbb{F}_q)$

Мета: Обчислити $t=q+1-\#E(\mathbb{F}_q)$ для кривої $y^2=f(x)=x^3+ax+b$. Основні кроки:

- 1. Вибір малих простих чисел ℓ (так, щоб $\ell \neq \mathsf{char}(\mathbb{F}_q)$ та добуток вибраних ℓ перевищував $4\sqrt{q}$).
- 2. Якщо $\ell = 2$ тоді слід перевірити чи існують точки другого порядку:

$$\mathbf{t}_2 = \begin{cases} 1, \deg(\gcd(f(\mathbf{x}), \mathbf{x}^{\mathbf{q}} - \mathbf{x})) \\ 0, \text{ інакше} \end{cases}$$

- Обчислення t mod *l*: Перебираємо t = 0..*l* − 1 допоки не виконається
 ∀P ∈ E[1] : π₁²(P) + [q]P = π₁([t]P) mod (ψ₁(x), y² − f(x)), це і буде шукане значення t₁ = t mod *l*
- 4. Відновлення t: Застосовуючи Китайську теорему залишків, відновлюють t (оскільки $|\mathsf{t}| \le 2\sqrt{\mathsf{q}}$, достатньо знайти t за модулем великого числа).

Кількість точок на кривій

• Обчислення # $\mathbf{E}(\mathbb{F}_{q})$: Нарешті, визначають

$$\#E(\mathbb{F}_q) = q + 1 - t.$$

- Алгоритм Скуфа працює за поліноміальний час: O(log(q)⁸) від розміру скінченого поля
- Також є покращений алгоритм SEA(Schoof-Elkies-Atkin, 1990) що має складність $O(\log(q)^6)$