

UML

✓ 모델링

말 그대로 모델을 만드는 작업을 뜻함. 즉, 현실 세계를 단순화 시켜 표현하는 기법

실체 (Reality)

모델 (Model)

▶ 모델링의 필요성

1. 의사소통 하기 좋다

다양한 형태들의 모델을 가시화 시켜 고객-개발자, 개발자-개발자 간의 의사소통을 원활히 하며 요구사항에 부합한 시스템을 개발할 수 있도록 해줌

2. 대규모 프로젝트 구조의 로드맵(길잡이)을 만들 때 유용하다

로드맵을 통해 클래스와 클래스 간에 의존하는 관계 등을 개발자가 빨리 파악 가능

3. 개발할 시스템 구축에 대한 기초를 마련할 수 있다

프로세스 과정 상 분석/설계 후 구현단계로 진행하게 되는데

모델링 단계에서 만들어낸 산출물을 통해 CASE도구에서 소스코드 생성 기능 같은 것들 제공

4. 백엔드 문서용으로 제격이다

프로젝트를 다른 팀에게 넘기거나 이어서 맡는 경우 그 팀에게 유용

✓ UML

통합 모델링 언어(UML, Unified Modeling Language)는 소프트웨어 공학에서 사용되는 표준화된 범용 모델링 언어로 소프트웨어 개념을 다이어그램으로 그리기 위해 사용하는 시각적인 표기법

✓ UML 다이어그램 종류

분류	다이어	그램 유형	목적
정적	클래스		프로그램 안의 주요 클래스와 주요 관계를 보여줌
	객체		시스템 실행 중 어느 순간의 객체와 관계를 포착해서 보여줌
	복합구조		내부 구조를 표현하는 다이어그램
	배치		소프트웨어, 하드웨어, 네트워크를 포함한 실행 시스템의 물리 구조 표현
	컴포넌트		컴포넌트 사이의 의존관계 묘사. 컴포넌트를 구성하는 요소들과 그것들을 구현하는 요소들도 모두 표현 가능
	패키지		대규모 시스템에서 주요 요소간의 종속성을 나타내거나 여러 클래스들의 그룹화된 매커 니즘을 나타낼 때 쓰임
동적	활동		플로우 차트가 uml에 접목된 개념, 여러가지 행위들과 제어구조 등을 모두 포함
	상태		한 객체의 상태 변화를 다이어그램으로 표현한 것
	유스케이스		시스템과 사용자가 상호작용하는 경우를 나타내는 기능 위주의 다이어그램
	상호 작 용	시퀀스	시간 흐름에 따른 객체 사이의 상호작용 표현
		상호작용 개요	여러 상호작용 다이어그램 사이의 제어흐름을 표현
		통신	객체 사이의 관계를 중심으로 표현
		타이밍	객체 상태 변화와 시간 제약을 명시적으로 표현

✓ 클래스 다이어그램

분류	다이어	그램 유형	목적
정적	클래스		프로그램 안의 주요 클래스와 주요 관계를 보여줌
	객체		시스템 실행 중 어느 순간의 객체와 관계를 포착해서 보여줌
	복합구조		내부 구조를 표현하는 다이어그램
	배치		소프트웨어, 하드웨어, 네트워크를 포함한 실행 시스템의 물리 구조 표현
	컴포넌트		컴포넌트 사이의 의존관계 묘사. 컴포넌트를 구성하는 요소들과 그것들을 구현하는 요소들도 모두 표현 가능
	패키지		대규모 시스템에서 주요 요소간의 종속성을 나타내거나 여러 클래스들의 그룹화된 매커 니즘을 나타낼 때 쓰임
동적	활동		플로우 차트가 uml에 접목된 개념, 여러가지 행위들과 제어구조 등을 모두 포함
	상태		한 객체의 상태 변화를 다이어그램으로 표현한 것
	유스케이스		시스템과 사용자가 상호작용하는 경우를 나타내는 기능 위주의 다이어그램
	상호 작용	시퀀스	시간 흐름에 따른 객체 사이의 상호작용 표현
		상호작용 개요	여러 상호작용 다이어그램 사이의 제어흐름을 표현
		통신	객체 사이의 관계를 중심으로 표현
		타이밍	객체 상태 변화와 시간 제약을 명시적으로 표현

✓ 유스케이스 다이어그램

✓ 시퀀스 다이어그램

✓ 소프트웨어(프로그램) 개발 프로세스

요구사항 분석

프로그램 설계 프로그램 구현 테스트 / 납품

유지보수

패키지 다이어그램

유스케이스 다이어그램 클래스 다이어그램 객체 다이어그램

상태 다이어그램 활동 다이어그램 상호작용 다이어그램

> 컴포넌트 복합구조 배치 다이어그램

▶ UML의 V 프로세스

✓ 기능모델링

✓ 동적모델링

✓ 정보모델링

▶ 모델링 시 주의할 점

1. 핵심적인 기능 위주로 작업하라

모든 기능을 상세히 표현하기 위하여 모델링 작업을 진행하면 작성자도 힘들고, 상대방도 알아보기 어려워짐 → 시간 낭비!

2. 모델링 작업은 개발 프로세스 분석/설계 단계에서만 하는 것이 아니다

반복적으로 모델을 수정하여 다듬어 나가는 것이 중요

3. 모델을 보고 개발하려는 기능의 코드를 떠올릴 수 있어야 한다

모델링된 산출물을 보고 코드가 떠오르지 않으면 모델링 과정에 문제가 있을 가능성이 높음