STAT 641: BOOTSTRAPPING METHODS

Jiyoun Myung

Department of Statistics and Biostatistics California State University, East Bay

Spring 2021, Day 6

Your turn

A high school student was curious about the total number of minutes devoted to commercials during any given half-hour time period on basic and extended cable TV channels (B. Rodgers and T. Robinson, personal communication).

ID	Times	Cable
1	7.0	Basic
2	10.0	Basic
3	10.6	Basic
4	10.2	Basic
5	8.6	Basic
6	7.6	Basic
7	8.2	Basic
8	10.4	Basic
9	11.0	Basic
10	8.5	Basic

ID	Times	Cable
11 12 13 14 15 16 17 18	3.4 7.8 9.4 4.7 5.4 7.6 5.0 8.0	Extended Extended Extended Extended Extended Extended Extended Extended
19	7.8	Extended
20	9.6	Extended

Your turn

```
x.b \leftarrow c(7.0, 10.0, 10.6, 10.2, 8.6, 7.6, 8.2, 10.4, 11.0, 8.5)

x.e \leftarrow c(3.4, 7.8, 9.4, 4.7, 5.4, 7.6, 5.0, 8.0, 7.8, 9.6)
```

Question: Is there a significant difference in the length of commercials (in minutes) during random half hour periods? Use the **sample()** function.

- Bootstrap the difference in mean times, plot the distribution, and give summary statistics of the bootstrap distribution. Obtain a 95% bootstrap percentile confidence interval, and interpret this interval.
- What is the bootstrap estimate of the bias? What faction of the bootstrap standard error does this represent?
- Use the **boot()** function.

Answer

```
set.seed(1)
x.b \leftarrow c(7.0, 10.0, 10.6, 10.2, 8.6, 7.6, 8.2,
          10.4. 11.0. 8.5)
x.e \leftarrow c(3.4, 7.8, 9.4, 4.7, 5.4, 7.6, 5.0, 8.0,
         7.8, 9.6)
boot_rep <- rep(0,10000)
for(i in 1:10000)
 boot.x <- sample(x.b, replace = T)
 boot.y <- sample(x.e, replace = T)
 boot rep[i] <- mean(boot.x) - mean(boot.v)
# bootstrap distribution
(obs <- mean(x,b) - mean(x,e)) # observed value
## [1] 2.34
hist(boot rep)
abline(v = obs. col = "red", ltv = 2)
```

```
# bootstrap statistic
mean(boot_rep) # bootstrap mean
## [1] 2.344121
sd(boot_rep) # bootstrap se
## [1] 0.759423
quantile(boot_rep, c(.025, .975)) # 95% percentile CI
## 2.5% 97.5%
## 0.86 3.83
We are 95\% confident that on average, the length of
commercials on basic channels is from 0.86 to 3.83
min longer than on extended cable.
# bootstrap estimate of bias
(bias <- mean(boot_rep) - obs)
## [1] 0.004121
bias/sd(boot rep)
## [1] 0.005426488
```

Bias is about 0.5% of the standard error.

boot package

Commercial time data

```
library(boot)
set.seed(123)
x.b \leftarrow c(7.0, 10.0, 10.6, 10.2, 8.6, 7.6, 8.2, 10.4, 11.0, 8.5)
x.e \leftarrow c(3.4, 7.8, 9.4, 4.7, 5.4, 7.6, 5.0, 8.0, 7.8, 9.6)
total \leftarrow c(x.b, x.e)
id <- as.factor(c(rep("1", length(x.b)), rep("2", length(x.e))))</pre>
total <- cbind(id, total)
meanDiff <- function(data, ind){
  y <- tapply(data[ind, 2], data[ind, 1], mean)
 y[1] - y[2]
b <- boot(total, meanDiff, strata = id, R = 10000)
mean(b$t) - b$t0 # bootstrap estimate of bias
##
## 0.012786
sd(b$t)
## [1] 0.7608422
n <- length(x.b): m <- length(x.e)
sqrt(var(x.b)/n + var(x.e)/m)
## [1] 0.7981228
sqrt((n-1)*var(x.b)/n^2 + (m-1)*var(x.e)/m^2)
## [1] 0.7571658
```

boot package

Mouse Data

```
trt <- c(94, 197, 16, 38, 99, 141, 23)
ctrl <- c(52, 104, 146, 10, 51, 30, 40, 27, 46)
total <- c(trt, ctrl)
id <- as.factor(c(rep("x", length(trt)), rep("y", length(ctrl))))</pre>
total <- cbind(id, total)
b <- boot(total, meanDiff, strata = id, R = 10000)
mean(b$t) - b$t0 # bootstrap estimate of bias
##
## 0.2567254
sd(b$t)
## [1] 26.85041
n <- length(trt): m <- length(ctrl)
sqrt(var(trt)/n + var(ctrl)/m)
## [1] 28.93607
sqrt((n-1)*var(trt)/n^2 + (m-1)*var(ctrl)/m^2)
## [1] 26.90811
# hist(b$t)
```

You can also use "infer" or "rasmple" package for this case.