# STATS hw4

### August 12, 2018

## 1 Chapter 8: Exercise 10

```
1.1 a
In [1]: library(ISLR)
        data(Hitters)
        # summary(Hitters)
        sum(is.na(Hitters$Salary))
Warning message:
package ISLR was built under R version 3.4.2
   59
In [2]: Hitters = na.omit(Hitters)
        sum(is.na(Hitters$Salary))
   0
In [3]: Hitters$Salary = log(Hitters$Salary)
1.2 b
In [4]: Hitters.train = head(Hitters, 200)
        Hitters.test = tail(Hitters, -200)
1.3 c
In [5]: library(gbm)
        set.seed(1)
        p = seq(-10, -0.1, by = 0.1)
        n = length(p)
        lambda = 10^p
        boost.train_errors = rep(1, n)
        boost.test_errors = rep(1, n)
Loading required package: survival
Loading required package: lattice
Loading required package: splines
```

In [7]: plot(lambda, boost.train\_errors, type = "b", xlab = "Shrinkage", ylab = "Train MSE")



## 1.4 d

In [8]: plot(lambda, boost.test\_errors, type = "b", xlab = "Shrinkage", ylab = "Test MSE", col =



### 1.5 e

0.491795937545494

#### 0.470053732710274

The test MSE of boosting is lower than both of the regression methods.

#### 1.6 f

|           | var       | rel.inf    |
|-----------|-----------|------------|
| CAtBat    | CAtBat    | 16.4028631 |
| CRuns     | CRuns     | 15.0957847 |
| PutOuts   | PutOuts   | 9.4543457  |
| CWalks    | CWalks    | 6.7508573  |
| CRBI      | CRBI      | 6.4133341  |
| CHmRun    | CHmRun    | 6.0778920  |
| Walks     | Walks     | 6.0434466  |
| Years     | Years     | 5.9694890  |
| Hits      | Hits      | 4.9492273  |
| Assists   | Assists   | 4.5706789  |
| RBI       | RBI       | 4.3533790  |
| AtBat     | AtBat     | 3.1830285  |
| HmRun     | HmRun     | 2.9616488  |
| Runs      | Runs      | 2.5244563  |
| Errors    | Errors    | 2.2067482  |
| CHits     | CHits     | 1.5986893  |
| Division  | Division  | 0.6707407  |
| NewLeague | NewLeague | 0.6083337  |
| League    | League    | 0.1650564  |



 ${\tt CAtBat,CRuns,PutOuts}\ are\ most\ important\ predictors\ in\ the\ boosted\ model.$ 

# 1.7 g

0.278460475018155

# 2 Chapter 8, Exercise 11 (p. 335)

#### 2.1 a

|                 | var                  | rel.inf    |
|-----------------|----------------------|------------|
| PPERSAUT        | PPERSAUT             | 14.6350478 |
| MKOOPKLA        | MKOOPKLA             | 9.4709165  |
| MOPLHOOG        | MOPLHOOG             | 7.3145742  |
| <b>MBERMIDD</b> | MBERMIDD             | 6.0865197  |
| PBRAND          | PBRAND               | 4.6676612  |
| MGODGE          | MGODGE               | 4.4946326  |
| ABRAND          | ABRAND               | 4.3242776  |
| MINK3045        | MINK3045             | 4.1759062  |
| MOSTYPE         | MOSTYPE              | 2.8640258  |
| PWAPART         | PWAPART              | 2.7819107  |
| MAUT1           | MAUT1                | 2.6192915  |
| MBERARBG        | MBERARBG             | 2.1048051  |
| MSKA            | MSKA                 | 2.1018515  |
| MAUT2           | MAUT2                | 2.0217251  |
| MSKC            | MSKC                 | 1.9868434  |
| MINKGEM         | MINKGEM              | 1.9212271  |
| MGODPR          | MGODPR               | 1.9177754  |
| MBERHOOG        | MBERHOOG             | 1.8071062  |
| MGODOV          | MGODOV               | 1.7869391  |
| PBYSTAND        | PBYSTAND             | 1.5727959  |
| MSKB1           | MSKB1                | 1.4355140  |
| MFWEKIND        | MFWEKIND             | 1.3726426  |
| MRELGE          | MRELGE               | 1.2080518  |
| MOPLMIDD        | MOPLMIDD             | 0.9379197  |
| MINK7512        | MINK7512             | 0.9259072  |
| MINK4575        | MINK/512<br>MINK4575 | 0.9259072  |
| MGODRK          | MGODRK               | 0.9076554  |
| MFGEKIND        | MFGEKIND             | 0.8574537  |
| MZPART          | MZPART               | 0.8253107  |
| MRELOV          | MRELOV               | 0.8073125  |
| WIKELOV         | WIKELOV              | 0.6073123  |
| PAANHANG        | PAANHANG             | 0          |
| PTRACTOR        | PTRACTOR             | 0          |
| PWERKT          | PWERKT               | 0          |
| PBROM           | PBROM                | 0          |
| <b>PPERSONG</b> | PPERSONG             | 0          |
| <b>PGEZONG</b>  | PGEZONG              | 0          |
| <b>PWAOREG</b>  | PWAOREG              | 0          |
| PZEILPL         | PZEILPL              | 0          |
| PPLEZIER        | PPLEZIER             | 0          |
| PFIETS          | PFIETS               | 0          |
| PINBOED         | PINBOED              | 0          |
| AWAPART         | AWAPART              | 0          |
| AWABEDR         | AWABEDR              | 0          |
| AWALAND         | AWALAND              | 0          |
| ABESAUT         | ABESAUT              | 0          |
| AMOTSCO         | AMOTSCO              | 0          |
| AVRAAUT         | AVRAAUT              | 0          |
| AAANHANG        | AAANHANG             | 0          |
| ATRACTOR        | ATRACTOR             | 0 7        |
| AWERKT          | AWERKT               | 0          |
| ABROM           | ABROM                | 0          |
| ADIONI          | 1 1DIXO1VI           | U          |



PPERSAUT, MKOOPKLA and MOPLHOOG are the most important predictors

```
2.3 c
```

#### 0.211538461538462

In [52]: library(class)

21.1% of the people predicted to make a purchase by boosting model do make one.

#### KNN:

```
knn.pred = knn(Caravan.train, Caravan.test, Caravan.train$Purchase, k = 3, l = 0, prob
         table(Caravan.test$Purchase, knn.pred)
  knn.pred
       0
            1
  0 4474
          59
  1 279
          10
In [53]: 10/(59+10)
  0.144927536231884
  Logistic:
In [59]: lm.fit = glm(as.factor(Purchase) ~ .-Purchase, data = Caravan.train, family = binomial)
         lm.prob = predict(lm.fit, Caravan.test, type = "response")
         lm.pred = ifelse(lm.prob > 0.2, 1, 0)
         table(Caravan.test$Purchase, lm.pred)
Warning message:
glm.fit: fitted probabilities numerically 0 or 1 occurredWarning message in predict.lm(object, n
prediction from a rank-deficient fit may be misleading
```

lm.pred 0 1 0 4183 350 1 231 58

In [60]: 58/(350 + 58)

0.142156862745098

The fraction by boosting is higher.

# 3 Chapter 9, Exercise 1 (p. 368)

```
In [76]: X1 = -10:10

X2 = 1 + 3 * X1

plot(X1, X2, type = "l", col = "blue")

text(c(0), c(-20), TeX("1 + 3X_1 - X_2 > 0"), col = "blue")

text(c(0), c(20), TeX("1 + 3X_1 - X_2 < 0"), col = "blue")

lines(X1, 1 - X1/2)

text(c(0), c(-15), TeX("-2 + X_1 + 2X_2 < 0"))

text(c(0), c(15), TeX("-2 + X_1 + 2X_2 > 0"))
```



# 4 Chapter 9, Exercise 8 (p. 371)

### 4.1 a

#### 4.2 b

Support vector classifier has 419 support vectors (209 CH, 210 MM) out of 800 training points.

#### 4.3 c

Training Error Rate:

```
In [92]: test.pred = predict(svm.fit, OJ.test)
                            table(OJ.test$Purchase, test.pred)
                            mean(OJ.test$Purchase != test.pred)
            test.pred
                  CH MM
      CH 133 21
     MM 34 82
         0.203703703703704
4.4 d
In [95]: set.seed(1)
                            svm.tune = tune(svm, Purchase ~ ., data = OJ.train, kernel = "linear", ranges = list(come of the state o
                                         1, by = 0.25))
                            summary(svm.tune)
Parameter tuning of svm:
- sampling method: 10-fold cross validation
- best parameters:
  cost
      0.1
- best performance: 0.15625
- Detailed performance results:
                                cost error dispersion
            0.01000000 0.16750 0.02838231
            0.01778279 0.17125 0.02208726
            0.03162278 0.17000 0.02776389
       0.05623413 0.16375 0.02729087
        0.10000000 0.15625 0.03076005
6
        0.17782794 0.15750 0.03446012
        0.31622777 0.16250 0.03173239
7
        0.56234133 0.15875 0.03283481
        1.00000000 0.15875 0.03120831
10 1.77827941 0.16000 0.02622022
11 3.16227766 0.16000 0.03106892
12 5.62341325 0.16250 0.03061862
13 10.00000000 0.15625 0.02585349
```

```
4.5 e
```

```
In [108]: svm.fit_best = svm(Purchase ~ ., kernel = "linear", data = OJ.train, cost = 0.1)
         train.pred = predict(svm.fit_best, OJ.train)
          table(OJ.train$Purchase, train.pred)
          train_error = mean(OJ.train$Purchase != train.pred)
          train_error
          test.pred = predict(svm.fit_best, OJ.test)
          table(OJ.test$Purchase, test.pred)
          test_error = mean(OJ.test$Purchase != test.pred)
         test_error
   train.pred
      CH MM
  CH 444 55
 MM 66 235
  0.15125
   test.pred
      CH MM
  CH 134 20
 MM 32 84
  0.192592592592593
4.6 f
In [102]: library(e1071)
          svm.fit = svm(Purchase ~ ., kernel = "radial", data = OJ.train, cost = 0.01)
          summary(svm.fit)
Call:
svm(formula = Purchase ~ ., data = OJ.train, kernel = "radial", cost = 0.01)
Parameters:
  SVM-Type: C-classification
SVM-Kernel: radial
      cost: 0.01
      gamma: 0.0555556
Number of Support Vectors:
 (301 303)
```

```
Number of Classes: 2
Levels:
 CH MM
In [103]: train.pred = predict(svm.fit, OJ.train)
          table(OJ.train$Purchase, train.pred)
          train_error = mean(OJ.train$Purchase != train.pred)
          train_error
          test.pred = predict(svm.fit_best, OJ.test)
          table(OJ.test$Purchase, test.pred)
          test_error = mean(OJ.test$Purchase != test.pred)
          test_error
    train.pred
      CH MM
  CH 499
           0
  MM 301
           0
   0.37625
    test.pred
      CH MM
  CH 134 20
  MM 32 84
   0.192592592592593
In [104]: set.seed(1)
          svm.tune = tune(svm, Purchase ~ ., data = OJ.train, kernel = "radial", ranges = list(c
              1, by = 0.25))
          summary(svm.tune)
Parameter tuning of svm:
- sampling method: 10-fold cross validation
- best parameters:
      cost
 0.5623413
```

```
- best performance: 0.15625
- Detailed performance results:
          cost
               error dispersion
   0.01000000 0.37625 0.05876330
   0.01778279 0.37625 0.05876330
  0.03162278 0.36375 0.06599926
   0.05623413 0.20375 0.03175973
5
  0.10000000 0.17625 0.03606033
  0.17782794 0.17500 0.03061862
6
7
  0.31622777 0.16250 0.03173239
8
   0.56234133 0.15625 0.03498512
9 1.00000000 0.15625 0.03644345
10 1.77827941 0.15625 0.02901748
11 3.16227766 0.16500 0.02024160
12 5.62341325 0.16375 0.02972676
13 10.00000000 0.16875 0.03346329
In [107]: svm.fit_best = svm(Purchase ~ ., kernel = "radial", data = 0J.train, cost = 0.5623413)
         train.pred = predict(svm.fit_best, OJ.train)
         table(OJ.train$Purchase, train.pred)
         train_error = mean(OJ.train$Purchase != train.pred)
         train_error
         test.pred = predict(svm.fit_best, OJ.test)
         table(OJ.test$Purchase, test.pred)
         test_error = mean(OJ.test$Purchase != test.pred)
         test_error
   train.pred
     CH MM
 CH 460 39
 MM 72 229
  0.13875
   test.pred
     CH MM
 CH 138 16
 MM 35 81
  0.1888888888888
4.7 g
In [111]: svm.fit = svm(Purchase ~ ., kernel = "poly", degree = 2, data = OJ.train, cost = 0.01)
          summary(svm.fit)
```

```
Call:
svm(formula = Purchase ~ ., data = OJ.train, kernel = "poly", degree = 2,
    cost = 0.01)
Parameters:
   SVM-Type: C-classification
 SVM-Kernel: polynomial
       cost: 0.01
     degree: 2
     gamma: 0.0555556
     coef.0: 0
Number of Support Vectors: 606
 ( 301 305 )
Number of Classes: 2
Levels:
 CH MM
In [112]: train.pred = predict(svm.fit, OJ.train)
          table(OJ.train$Purchase, train.pred)
          train_error = mean(OJ.train$Purchase != train.pred)
          train_error
         test.pred = predict(svm.fit_best, OJ.test)
          table(OJ.test$Purchase, test.pred)
          test_error = mean(OJ.test$Purchase != test.pred)
         test_error
   train.pred
     CH MM
  CH 499
          0
 MM 301
          0
  0.37625
   test.pred
     CH MM
  CH 134 20
 MM 32 84
```

#### 0.192592592592593

```
In [113]: svm.fit_best = svm(Purchase ~ ., kernel = "poly", degree = 2, data = OJ.train, cost =
         train.pred = predict(svm.fit_best, OJ.train)
          table(OJ.train$Purchase, train.pred)
         train_error = mean(OJ.train$Purchase != train.pred)
          train_error
         test.pred = predict(svm.fit_best, OJ.test)
         table(OJ.test$Purchase, test.pred)
         test_error = mean(OJ.test$Purchase != test.pred)
         test_error
   train.pred
     CH MM
 CH 470 29
 MM 113 188
  0.1775
   test.pred
     CH MM
  CH 142 12
 MM 51 65
```

#### 0.233333333333333

Overall, radial basis kernel gives the best result on this data.