Tópicos de Matemática

Licenciatura em Ciências da Computação

2° teste

__ duração: 2 horas _____

1. Sejam $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ e $g: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ as funções definidas por

$$f((x,y)) = x + y \qquad \qquad \mathbf{e} \qquad \qquad g(x) = \left\{ \begin{array}{ll} (0,x) & \quad \text{se } x \geq 0 \\ (x,0) & \quad \text{se } x < 0 \end{array} \right. .$$

(a) Determine, justificando:

i.
$$g(\{-1,0,1\})$$
).

Uma vez que $g(\{-1,0,1\})) = \{g(-1),g(0),g(1)\}$ e

$$g(-1) = (0, -1), g(0) = (0, 0), g(1) = (1, 0)$$

tem-se
$$g(\{-1,0,1\}) = \{(0,-1),(0,0),(1,0)\}.$$

ii. $f^{\leftarrow}(\{0\})$.

Tem-se

$$f^{\leftarrow}(\{0\}) = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid f((x, y)) = 0\},\$$

então, atendendo a que

$$f((x,y)) = 0 \Leftrightarrow x + y = 0 \Leftrightarrow y = -x,$$

segue que

$$f^{\leftarrow}(\{0\}) = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid y = -x\} = \{(x, -x) \mid x \in \mathbb{Z}\}.$$

(b) Diga, justificando, se a aplicação f é injetiva e se é sobrejetiva.

A aplicação f é injetiva se, para quaisquer $(x,y),(z,w)\in\mathbb{Z}\times\mathbb{Z},$

$$f((x,y)) = f((z,w)) \Rightarrow (x,y) = (z,w).$$

Ora, atendendo a que

$$f((-1,1)) = f((1,-1)) e(-1,1) \neq (1,-1),$$

a aplicação f não é injetiva.

A aplicação f é sobrejetiva se, para qualquer $z \in \mathbb{Z}$, existe $(x,y) \in \mathbb{Z} \times \mathbb{Z}$ tal que f((x,y)) = z. Uma vez que, para todo $z \in \mathbb{Z}$, existe $(0,z) \in \mathbb{Z} \times \mathbb{Z}$ tal que f((0,z)) = z, concluímos que a aplicação f é sobrejetiva.

(c) Justifique que $f \circ g = \mathrm{id}_{\mathbb{Z}}$. Sem determinar $g \circ f$, justifique que $g \circ f \neq \mathrm{id}_{\mathbb{Z} \times \mathbb{Z}}$.

Uma vez que o codomínio de g coincide com o domínio de f, a composta de f com g está definida e $f\circ g$ é uma função de $\mathbb Z$ em $\mathbb Z$. Além disso, para qualquer $x\in\mathbb Z$,

$$(f\circ g)(x)=f(g(x))=\left\{\begin{array}{ll} f((0,x)) & \quad \text{se } x\geq 0 \\ f((x,0)) & \quad \text{se } x<0 \end{array}\right.=\left\{\begin{array}{ll} x & \quad \text{se } x\geq 0 \\ x & \quad \text{se } x<0 \end{array}\right.,$$

pelo que, para todo $x \in \mathbb{Z}$, $(f \circ g)(x) = x$.

A função $\mathrm{id}_{\mathbb{Z}}$ é definida por

$$\mathrm{id}_{\mathbb{Z}}: \mathbb{Z} \quad \to \quad \mathbb{Z}$$
$$x \quad \mapsto \quad x$$

Uma vez que as funções $f\circ g$ e $\mathrm{id}_{\mathbb{Z}}$ têm o mesmo domínio e o mesmo conjunto de chegada e, para todo $x\in\mathbb{Z}$, $(f\circ g)(x)=\mathrm{id}_{\mathbb{Z}}(x)$, então $f\circ g=\mathrm{id}_{\mathbb{Z}}$.

Se admitirmos que $g \circ f = \mathrm{id}_{\mathbb{Z} \times \mathbb{Z}}$, então, atendendo a que $f \circ g = \mathrm{id}_{\mathbb{Z}}$, segue que f é uma função invertível e, portanto, bijetiva. Ora, pela alínea (b) sabe-se que a função f não é bijetiva, pois não é injetiva. Logo $g \circ f \neq \mathrm{id}_{\mathbb{Z} \times \mathbb{Z}}$.

2. Sejam S e T as relações binárias em $\mathbb N$ definidas por

$$S = \{(x,y) \mid x,y \in \mathbb{N} \land x + 1 = 2y\},\$$
$$T = \{(1,2), (2,1), (3,5), (5,2)\}.$$

(a) Determine $Dom(S) \cap Dom(T)$.

Um vez que

$$\begin{array}{lcl} \mathrm{Dom}(S) & = & \{x \in \mathbb{N} \,|\, \exists_{y \in \mathbb{N}} \; (x,y) \in S\} \\ & = & \{x \in \mathbb{N} \,|\, \exists_{y \in \mathbb{N}} \; x+1=2y\} \\ & = & \{x \in \mathbb{N} \,|\, \exists_{y \in \mathbb{N}} \; x=2y-1\} \\ & = & \{x \in \mathbb{N} \,|\, x \; \mathrm{\acute{e}} \; \mathrm{\acute{impar}}\} \end{array}$$

е

$$Dom(T) = \{ x \in \mathbb{N} \mid \exists_{y \in \mathbb{N}} (x, y) \in T \} = \{ 1, 2, 3, 5 \},\$$

tem-se

$$Dom(S) \cap Dom(T) = \{1, 3, 5\}.$$

(b) Justifique que $S \cap S^{-1} \subseteq id_{\mathbb{N}}$. Conclua que S é antissimétrica.

Para qualquer $(a,b) \in \mathbb{N} \times \mathbb{N}$, tem-se

$$(a,b) \in S \cap S^{-1} \quad \Leftrightarrow \quad (a,b) \in S \wedge (a,b) \in S^{-1} \\ \Leftrightarrow \quad (a,b) \in S \wedge (b,a) \in S^{-1} \\ \Leftrightarrow \quad a+1=2b \wedge b+1=2a \\ \Leftrightarrow \quad a=b=1.$$

Logo
$$S \cap S^{-1} = \{(1,1)\} \subseteq id_{\mathbb{N}}$$
.

Uma relação binária ρ definida num conjunto A é antissimétrica se e só se $\rho \cap \rho^{-1} \subseteq id_A$. Então, atendendo a que S é uma relação binária em $\mathbb N$ e $S \cap S^{-1} \subseteq id_{\mathbb N}$, concluímos que a relação S é antissimétrica.

(c) Verifique que $T \circ T \nsubseteq T$. Dê exemplo de uma relação binária R em $\mathbb N$ tal que $R \neq \omega_{\mathbb N}$, $T \subseteq R$ e $R \circ R \subseteq R$.

Tem-se

$$\begin{array}{lcl} T\circ T & = & \{(a,c)\in \mathbb{N}\times \mathbb{N}\,|\,\exists_{b\in \mathbb{N}}\;(a,b)\in T\wedge (b,c)\in T\}\\ & = & \{(1,1),(2,2),(3,2),(5,1)\}. \end{array}$$

Então, como $(1,1) \in T \circ T$ e $(1,1) \not\in T$, $T \circ T \not\subseteq T$.

Dada uma relação binária ρ definida num conjunto A, tem-se $\rho\circ\rho\subseteq\rho$ se e só se ρ é transitiva. Sendo assim, pretende-se determinar uma relação binária R em $\mathbb N$ tal que $R\neq\omega_{\mathbb N},\ T\subseteq R$ e R seja transitiva. Para que $T\subseteq R$ e R seja transitiva, é necessário ter $T\cup T\circ T\subseteq R$, ou seja, é necessário ter $T\cup \{(1,1),(2,2),(3,2),(5,1)\}\subseteq R$. A relação $R'=T\cup \{(1,1),(2,2),(3,2),(5,1)\}$ não é transitiva, pois $(3,5),(5,1)\in R'$ e $(3,1)\notin R'$. Assim, (3,1) tem de pertencer a R. A relação $R=T\cup \{(1,1),(2,2),(3,2),(5,1)\}\cup \{(3,1)\}$ é uma relação transitiva e tem-se $R\circ R\subseteq R$; de facto,

$$R \circ R = \{(1,1), (1,2), (2,1), (2,2), (3,1), (3,2), (5,1), (5,2)\} \subseteq R.$$

Claramente, tem-se $R \neq \omega_{\mathbb{N}} = \{(a,b) \in \mathbb{N} \times \mathbb{N}\}$, pois $(3,3) \in \omega_{\mathbb{N}}$ e $(3,3) \notin R$.

3. Seja R a relação binária em $A=\{n\in\mathbb{N}\,|\,n\leq 10\}$ definida por

$$x R y$$
 se e só se $\exists_{k \in \mathbb{Z}} y = 2^k x$,

para quaisquer $x, y \in A$.

(a) Sabendo que R é reflexiva e simétrica, justifique que R é uma relação de equivalência em A.

Uma relação binária R definida num conjunto A diz-se uma relação de quivalência se é uma relação reflexiva, simétrica e transitiva. Assim, uma vez que é dito que R é reflexiva e simétrica, resta provar que R é uma relação transitiva.

Para quaisquer $a, b, c \in \mathbb{N}$, tem-se

$$\begin{array}{lll} a\,R\,b \wedge b\,R\,c & \Rightarrow & \exists_{k \in \mathbb{Z}} \,\, b = 2^k a \,\, \wedge \,\, \exists_{k' \in \mathbb{Z}} \,\, c = 2^{k'} b \\ & \Rightarrow & \exists_{k,k' \in \mathbb{Z}} \,\, c = 2^{k'} (2^k a) \\ & \Rightarrow & \exists_{k,k' \in \mathbb{Z}} \,\, c = 2^{k'+k} a \\ & \Rightarrow & \exists_{j=k+k' \in \mathbb{Z}} \,\, c = 2^j a \\ & \Rightarrow & a\,R\,c. \end{array}$$

(b) Determine $[1]_R$ e A/R.

Tem-se

$$\begin{array}{lcl} [1]_R & = & \{y \,|\, y \in A \wedge 1 \,R \,y\} \\ & = & \{y \,|\, y \in A \wedge \,y = 2^k \times 1, \text{ para algum } k \in \mathbb{Z}\} \\ & = & \{1,2,4,8\} = [2]_R = [4]_R = [8]_R. \end{array}$$

Uma vez que

$$A/R = \{ [x]_R \mid x \in A \}$$

е

$$[3]_R = \{3,6\} = [6]_R, [5]_R = \{5,10\} = [10]_R, [7]_R = \{7\}, [9]_R = \{9\},$$

tem-se

$$A/R = \{[1]_R, [3]_R, [5]_R, [7]_R, [9]_R\} = \{\{1, 2, 4, 8\}, \{3, 6\}, \{5, 10\}, \{7\}, \{9\}\}.$$

4. Sejam A um conjunto e Π uma partição de A. Seja R_{Π} a relação de equivalência em A determinada por Π , i.e., R_{Π} é a relação binária em A definida por

$$(a,b) \in R_{\Pi}$$
 se e só se $\exists_{S \in \Pi} \ a,b \in S$.

Mostre que, para quaisquer $X\in\Pi$ e $x\in X$, $[x]_{R_\Pi}=X$.

Dado um conjunto A, diz-se que Π é uma partição de A se as condições seguintes são satisfeitas:

- (i) $\forall C \in \Pi, C \neq \emptyset$.
- (ii) $\forall_{C,D\in\Pi} (C \neq D \Rightarrow C \cap D = \emptyset)$.
- (iii) $\forall_{x \in A} \exists_{C \in \Pi} x \in C$.

Seja $y\in [x]_{R_\Pi}$. Então $x\,R_\Pi\,y$ e, por definição de R_Π , existe $S\in\Pi$ tal que $x,y\in S$. Atendendo a que $x\in X,\ x\in S,\ X,S\in\Pi$ e Π é uma partição de A, tem-se X=S (considerando (ii)). Logo $y\in X$ e, portanto, $[x]_{R_\Pi}\subseteq X$. Reciprocamente, se $y\in X$, então, pela definição de R_Π e tendo em conta que $x\in X$, tem-se $x\,R_\Pi\,y$; assim, $y\in [x]_{R_\Pi}$ e, portanto, $X\subseteq [x]_{R_\Pi}$. Desta forma, provámos que $[x]_{R_\Pi}=X$.

- 5. Considere o c.p.o. (A,\leq) com o seguinte diagrama de Hasse associado: Indique, caso exista(m):
 - (a) os elementos maximais, os elementos minimais, o máximo e o mínimo de A.

Maximais de A: l.

Minimais de A: b, c, a, e, f.

Máximo de A: l.

Mínimo de A: não existe (note-se que não existe $m \in A$ tal que $m \le x$, para todo $x \in A$). $^{\ell}$

Tem-se $Min(\{h,i,j\}) = \{d,a\}$. O elemento máximo do conjunto dos minorantes de $\{h,i,j\}$ é o elemento d; logo $inf(\{h,i,j\}) = d$.

Uma vez que $\mathrm{Maj}(\{d,e,f\})=\{i,k,l\}$ e o conjunto dos minorantes de $\{d,e,f\}$ não tem elemento mínimo, então não existe supremo de $\{d,e,f\}$.

Tem-se $Min(\emptyset) = A$; o elemento máximo do conjunto A é o elemento l, logo $inf(\emptyset) = l$.

Atendendo a que $\mathrm{Maj}(\emptyset) = A$ e o conjunto A não tem elemento mínimo, então não existe o supremo do conjunto vazio.

(c) um subconjunto X de A tal que $(X, \leq_{|_X})$ não seja uma cadeia e seja um reticulado.

Um c.p.o (P,\leq) diz-se uma cadeia se, para quaisquer $x,y\in P$, tem-se $x\leq y$ ou $y\leq x$. Um c.p.o (P,\leq) diz-se um reticulado se, para quaisquer $x,y\in P$, existem o supremo e o infímo de $\{x,y\}$. Seja $X=\{d,h,j,l\}$. O c.p.o. $(X,\leq_{|X})$ é um reticulado e não é uma cadeia.

(d) uma relação de ordem \leq' em A tal que $\leq \cup \leq'$ não seja uma relação de ordem.

Seja $\leq'=id_A\cup\{(d,a)\}$. A relação \leq' é uma relação de ordem em A e $\leq\cup\leq'$ não é uma relação de ordem em A, pois não é antissimétrica $((a,d)\in\leq\cup\leq', (d,a)\in\leq\cup\leq'$ e $a\neq d)$.

6. Sejam A e B conjuntos. Mostre que se A é um conjunto não contável e B é um conjunto não vazio, então $A \times B$ não é contável.

No sentido de fazer a prova por redução ao absurdo, admitamos que A não é contável, $B \neq \emptyset$ e $A \times B$ é contável. Uma vez que $A \times B$ é contável, existe uma função injetiva de $A \times B$ em \mathbb{N} ; seja $f: A \times B \to \mathbb{N}$ uma dessas funções. Dado que $B \neq \emptyset$, existe $b \in B$, pelo que podemos considerar a função $g: A \to A \times B$ definida por g(a) = (a,b). A função g é injetiva. Então, como f e g são funções injetivas, a função $f \circ g: A \to \mathbb{N}$ é também injetiva; logo o conjunto A é contável (contradição). Assim, se A é um conjunto não contável e B é um conjunto não vazio, o conjunto $A \times B$ não é contável.

 $\text{Cotação: } 1\text{-}(1,5+1,5+1,5); \ 2\text{-}(1,5+1,5+1,5); \ 3\text{-}(1,5+1,5); \ 4\text{-}(1,5); \ 5\text{-}(1,0+1,5+1,0+1,0); \ 6\text{-}(2,0).$