ex $\frac{\int u(x,3)}{\int x} + \frac{\int^2 u(x,3)}{\int 3^2} + \int u(x,3) = 0$

微二階PDE.

2. 次数 (degree)

要先將所有項有理化

def: 一了DE中每項均為有理項,最高階導致項 的幂次,即称态此DE之次数

3. 线性微分为猩式

def:不具下列任何一項

- a. 因变故的自乘项.
- ex. 32(x), 33(x).
- b. 因变数等较的自乘项 ex. (f(x))*, (f'(x))*.
- C. 图复数及其尊牧的互乘填 (x), 3(x), 3(x), 3(x).

則称微緩性微分方程式

反之,若一微分方程式具上述任一項

即称為非織性微分方程式

ex. x(x)+5x(x)=ex 為非紙性、一階1次0.D.E

$$\frac{\Delta u(x,3)}{\Delta x} + u(x,3) \cdot \frac{\Delta u(x,3)}{\Delta 3} + 3u(x,3) = 0$$

為非线性,一階1次P.D.E.

3u + x·3u = 0 微緩性、二階/次P.D.E.

3"(x) + 53"(x) + 29(x) = x

為 緩性、三階 1次 0.0, E.

							ALL PR	://attenat	Sheng Nung 🕏	conversity .
0	一线	性微	分方分	程式包	之藏》	色重	量立	と運	· · · · · · · · · · · · · · · · · · ·	4
	- _V		_c -	Vc,						
	<u>V;</u>	$\stackrel{2}{\longrightarrow}$		·						
	1. 若	复Viz	= 0 =	> Vi,=	Vc1					
	2. 若	食心,	=0 =	> Vi, =	Vc2					
	3 若	input	& Vis	+ Vi2	=> 1	/c = 7	/c1 +	Vc2		
	€ ex	itend:	Vc lt	$)=k_{1}$	Vc1 +	K2 Vc	Ζ.			
							·····			
0					•				色何面	來.
		_) = C ,			· 6.	何消	去 C	?	
			微分白							
	s>	dg(x)	= 0		我们	秘包	气锐	此微	分方程:	t
			x)= C,	$\dot{x} + C$	ı , (C_{i} , C_{i}	ϵ	onst		
	级证	自夫 (C, . C ₂						. 1	
	> d	\$(X) =	- C,	=>	dg (x) = C)	~ ~ 祥	,此代 (x)=C;;	舒解
					α Λ :•			即负了	$(x) = C_{ij}$	x + Ce
			多子.							
		3(x) =	- cx+	C.,	$C \in C$	onst	_	= i	<i>L</i> 1 m	
	=>	92(X)	= c	→	172)	= 0	1	3人2	年上例 新紹介)相闭
			••••			· · · · · · · · · · · · · · · · · · ·				
••••) - 2)	2 (';	母次	不定债	分
	• • • • • • • • • • • • • • • • • • • •		生一5			ند ا		- = 1		
			法应用	. w	4		V			
	=> 4 (() =	d g(x).	x + (d3(x)	`	— H	, 寸 的	解才叫《+c ² ·	***************************************
	(~ /\		· · · /		J ()	イ 丿 ニ C7	1+C.	
	ي جا	非线性	<u> </u>	陷 22	<u> </u>	D.Z	*			

 $\eta(x) = C_1 e^{2x} + C_2 e^{x}$, C_1 , C_2 e const. $\longrightarrow 0$ x 2 1915) = 2C1ex+C2ex $\frac{d^2g(x)}{dx^2} = 4C_1e^{2x} + C_2e^{x}$

> 3"(x) - 33(x) + 23(x) = 0.

ex. $g(x) = c_1 \cdot cod(3x + c_2 \cdot sin(3x)) \rightarrow 0 \times 9$ c, . cz E const $\Rightarrow \frac{dy}{dx} = -3C_1 \sin 3\chi + 3C_2 \cos 3\chi \rightarrow 0 \times 0$ $\frac{d^2y}{dx^2} = -9 \, \mathbf{c}_1 \cos 3x - 9 \, \mathbf{c}_2 \sin 3x \rightarrow \mathbf{S} \times 1$

>> 3"(x)+93(x) = 0.

簡單來說 利用微分技巧名。 function. 簡易渾算、消去所有 言某些未) 未知枚. 微分方程式! 包含某些表 な的const,

我們你function為D.E的通解(general solution) or 原因数. (只適用於 O. D. E)

◎ 一階常微分方程式(First order ordinary differiential equation) 一般可表示成

1. M(x,3) dx + N(x,3) d3 = 0.

2. 3(x) = f(x, 3).

由1推至2:

 $M(x,q) + N(x,q) \cdot \frac{dq}{dx} = 0$ $g'(x) = \frac{dq}{dx} = f(x,q)$.

由 2 推至 1:

$\Rightarrow N(x,3), \frac{d3}{dx} = -M(x,3).$	$\Rightarrow f(x,3).dx = dg.$
> 13 - M(x,3)	=> $f(x,3) \cdot dx - dg = D \cdot #$
$dX \qquad \mathcal{N}(\chi, \mathcal{Z})$	7
\Rightarrow $3' = f(x,3) \pm$	

◎ 定理 in P.17 \$ 1-2

対 g(x) = f(x,g) 之 D.E. 有一ケ I,C (initial condition) s.t $g(x_0) = g_0$ 。若. $f(x_0,g_0)$, $\frac{sf(x_0,g_0)}{2g_0}$ 於 (x_0,g_0) 泉之鄰域 (neighborhood) 為連續,則存在 E>0 s.t $g(x_0)$ 於 (x_0-E) x_0+E)間有唯一解.

$$\Rightarrow (1) \cdot f(x,3) = e^{x3^2} f(0,1)$$
 有連續 $\Rightarrow f(x,3) = e^{x3^2} \cdot 2xy f(0,1)$ 有連續. $\Rightarrow f(x,3) = e^{x3^2} \cdot 2xy f(0,1)$ 有連續.

(2).
$$f(x,g) = \sqrt{3}$$
, 在(0,0) 有 //.
$$\frac{2 f(x,g)}{2 g} = \frac{1}{2 \sqrt{3}}$$
 在(0,0) 在 //

3).
$$f(x,3) = \sqrt{3}$$
 在 (0,1) 有 ",
 $\frac{2f(x,3)}{2\sqrt{3}} = \frac{1}{2\sqrt{3}}$ 在 (0,1) 有 ", \Rightarrow ✓

$$\Delta u(x,3) = u(x+\Delta x, 3+\Delta 3) - u(x,3)$$

$$= (\frac{u(x+ax,g+ag)-u(x,g+ag)}{1}) + (\frac{u(x,g+ag)-u(x,g)}{1})$$

$$\frac{\partial u(x,3)}{\partial x} \cdot (x + \Delta x - x) + \frac{\partial u(x,3)}{\partial 3} \cdot (3 + \Delta 3 - 3) = 0$$

$$\begin{cases}
* mean-value-theorm. \\
 & f(x), a \le x \le b \quad \exists c, a \le c \le b \\
 & s.t \quad f'(c) = \frac{f(b)-f(a)}{b-a} \\
 & \Rightarrow f(b)-f(a) = f'(c)\cdot(b-a).
\end{cases}$$

$$\Rightarrow \Delta u(x,g) = \frac{3u}{3x} \cdot \Delta x + \frac{3u}{13} \cdot \Delta g = 0.$$

$$\Rightarrow du(x,g) = \frac{3u}{3x} \cdot dx + \frac{3u}{3g} \cdot dg = 0$$

$$Lep M(x,g) = Lep N(x,g).$$

	National Chang Kung University
$M(x,z) = \frac{\lambda u}{\lambda x}$	$N(x, z) = \frac{\partial u}{\partial z}$
⇒ du=M(x,g)·dx	$\Rightarrow \lambda u = N(x, q) \cdot \lambda q$
$\Rightarrow \int \partial u = \int M(x, g) \cdot \partial x + f(g)$	$\Rightarrow \int du = \int N(x, g) \cdot Jg + f_2(x).$
$\Rightarrow u = \int M(x, \xi) dx + f(\xi) =$	相当是const的角色————————————————————————————————————
由於2回相等,我們可得	知f.(3) 每f.(x); 当然也就能
知道 U(X, 3) = C 3.	
	计成立的條件即為前頁
	号那句話.
所以. 如何知道從以(不了))=C至1/14(x,3)dx+1V(x,3)d3=0·
只有微分而已?	
⇒從上例,把M,N拿來	
$\Rightarrow M(x,3) = \frac{\lambda h(x,3)}{\lambda x}$	$N(x,q) = \frac{Ju(x,q)}{Jq}$
$\Rightarrow \frac{\lambda M(x,3)}{\lambda 3} = \frac{\lambda^2 U(x,3)}{\lambda \times \lambda 3}$	$N(x,3) = \frac{3u(x,3)}{33}$ $\Rightarrow \frac{3N(x,3)}{3x} = \frac{3u(x,3)}{333x}$
33 3×35	1X 72 2X
1	/
ス事 = 考	·相等即可(益然前提是(1(x,3)
要能偏微2次,才有用)。	
L二階偏導校	
则我們特称此微分方程	式為「正合」(exact).
$ex u(X, \xi) = x^2 \xi^3 = C$	
$\Rightarrow du(x,g) = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y}$	4 dg = 0
$= (3.2\times)dX$	$+(x^2\cdot 3z^2)\cdot dz=0$
上述式子整分进程只有微	分,我們來檢查此式是否exact·
3M = 2x 332 3N = 332	- Σχ 🖻 🗸

ex. $u(x, 3) = x3^2 + 3x + 13 = C$.
$\Rightarrow du(x, 3) = \frac{3u}{3x} \cdot dx + \frac{3u}{33} \cdot dy = 0.$
⇒ (g+3)dx + (2xg+5)dg = 0·⇒給定題目為此式.
如何解?
fol: ② M(x,g)= 3+3, N(x,g)=2xg+5:
先判断是否正合。 $\Rightarrow \frac{M}{3} = \frac{23}{3} = 23$. 又 $\frac{34}{3} = M(x, 3)$. $\frac{34}{3} = 2 \times 3 + 5$.
X
$\Rightarrow \lambda u = (3^{2}+3) \lambda x \Rightarrow \lambda u = (2x3+5) \lambda 3.$
$\Rightarrow \int du = \int (3^{2}+3)dx + f_{1}(3). \Rightarrow \int du = \int (6x3+5)d3 + f_{2}(x).$
$\Rightarrow u = \chi 3^2 + 3 \times + f(3). \qquad \Rightarrow u = \chi 3^2 + J 3 + f_2(\chi).$
此2式必相等(12正合).
$\Rightarrow f_1(3) = 53, f_2(x) = 3x$
$\Rightarrow u(x, g) = xg^2 + 3x + 5g = C.$
,