On wave diagrams

On wave diagrams

Y=A OR B Assignment Project Exam Help Add WeChat powcoder What will be the waveform of output Y (Class Poll)

Sequential Circuits and https://powcoder.com/Memory_Add WeChat powcoder

Combinational vs. Sequential

- Combinational circuit
 - Always gives the same output for a given set of inputs
- Exampsighment Project Examattelpsum and carry, regardless of previous inputs https://powcoder.com

 Sequential circuit
- - Remembedd Westhat powgoder
 - Output depends on state and input

Sequential Circuits

- **Store** information
- Output depends on stored information (state) plus input
- ◆ So a Asis regniment Priorect Exame Heifferent outputs, depending on the stored information https://powcoder.com
 • Example: ticket counter
- - AdvancesAddeWeChappowtooderutton
 - Output depends on previous state

State Machine

The basic type of sequential circuit

- Combines combinational logic with storage
- "Remembers" state, and changes output (and Assignment Project Exam Help state) based on inputs and current state

https://powcoder.com

Example of State Machine: Traffic Light

State Machine: Overview

Start off in default state Red

 After a specified time Xs switch to next state

 After a specified time Ys switch to next state

 After a specified time Zs switch to next state which is Red.

- Output is equal to Input when clk is high.
- Level sensitive
- Stores last value when clk is low.

- Output is equal to Input when clk is high.
- Stores last value when clk is low.

- Output is equal to Input when clk is high.
- Stores last value when clk is low.

- Output is equal to Input when clk is high.
- Stores last value when clk is low.

- Output is equal to Input when clk is high.
- Stores last value when clk is low.

- Output is equal to Input when clk is high.
- Stores last value when clk is low.

D Flip-Flops

Memory device

Can be positive edge triggered or negative
 edge triggered (by a clock usually abbreviated by clk)

Different typehttpg://powcbder.com/ Inputs/Outputs:

D: input signAldd WeChat powcoder

clk: Clock signal

 en: if 0 Q holds its value, if 1, Q becomes D at clk edge.

rst: if 1 then Q becomes 0

Q: output signal

- Q becomes D at positive clk edge (0 -> 1).
 - Stores value until next positive clk edge.
- clk oscillates between 0 and 1
 - frequency = 1/period

- Q becomes D at positive clk edge (0 -> 1).
 - Stores value until next positive clk edge.
- clk oscillates between 0 and 1
 - frequency = 1/period

- Q becomes D at positive clk edge.
 - Stores value until next positive clk edge.
- clk oscillates between 0 and 1
 - frequency = 1/period

- Q becomes D at positive clk edge.
 - Stores value until next positive clk edge.
- clk oscillates between 0 and 1
 - frequency = 1/period

- Q becomes D at positive clk edge.
 - Stores value until next positive clk edge.
- clk oscillates between 0 and 1
 - frequency = 1/period

- Q becomes D at positive clk edge.
 - Stores value until next positive clk edge.
- clk oscillates between 0 and 1
 - frequency = 1/period

- Q becomes D at negative clk edge.
 - Stores value until next negative clk edge.
- clk oscillates between 0 and 1
 - frequency = 1/period

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Setup and Hold Time

- Setup time: Time before clock edge where signal has to be stable
- Hold time: Time after clock edge where signal has to be signal ent Project Exam Help

- One latch(master) is connected to clk' and the other(slave) to clk (positive triggered).
- When clk transitions to high, slave captures last value Assignment/Project ExamsHelpd since it's clk is low. https://powcoder.com

- One latch(master) is connected to clk' and the other(slave) to clk (positive triggered).
- When clk transitions to high, slave captures last value of spignstremt Projects Exams Help d since it's clk is low.

- One latch(master) is connected to clk' and the other(slave) to clk (positive triggered).
- When clk transitions to high, slave captures last value of spignstremt Projects Exams Help d since it's clk is low.

- When clk transitions to high, slave captures last value of master which is now stored since it's clk is low.
- When Absignmentio Project Example pis open again but slave is closed, retaining value https://powcoder.com

- One latch(master) is connected to clk' and the other(slave) to clk (positive triggered).
- When clk transitions to high, slave captures last value of spignstremt Projects Exams Help d since it's clk is low.

Reset-Set (RS) Latch – or SR

- Two inputs: Set and Reset
- Set to 0 one of the two inputs at a time to store a value, S sets, R clears
- The transfigure of the transfigu

ht	tps://powcoder.com SR latch operation		
A	đ	IRV	VeChanda wcoder
	0	0	Restricted combination
	0	1	Q = 1
	1	0	Q = 0
	1	1	Keep state

R-S Latch

R-S Latch Nor Gates

Four SR Latch States: S' 0, R' 0

https://powcoder.com

Four SR Latch States: S' 0, R' 1

https://powcoder.com

Four SR Latch States: S' 1, R' 0

https://powcoder.com

$$Q = 1$$
, $Q' = 0$ Add WeChat powcoder

E/clk	D	R'	S'	Q	Q'	Comment
0	0	1	1	Q	Q'	Keep state

E	E/clk	D	R'	S'	Q	Q'	Comment
0)	0	1	1	Q	Q'	Keep state
0)	1	1	1	Q	Q'	Keep state

E/clk	D	R'	S'	Q	Q'	Comment
0	0	1	1	Q	Q'	Keep state
0	1	1	1	Q	Q'	Keep state
1	0	0	1	0	1	D = Q

E/clk	D	R'	S'	Q	Q'	Comment
0	0	1	1	Q	Q'	Keep state
0	1	1	1	Q	Q'	Keep state
1	0	0	1	0	1	D = Q
1	1	1	0	1	0	D = Q

Register

- A register stores a multi-bit value
- Common WE which latches the n-bit value

Other types of memory...

Memory

Now that we know how to store bits, we can build a memory – a logical $k \times m$ array of stored bits.

2² x 3 Memory

Let's Build a Computer

Basic Computer

Memory: Could be Flip Flops, SRAM/DRAM, Flash etc

Execute: Combinational Logic (Adder, Shifter, Rotation etc)

Control: Finite State Machine (combination of sequential and combinational logic

circuits)

