Sujet de TP n°1: Sur les modèles MA(1), AR(1), etc.

On utilisera le script R « scriptTP1.R » disponible sur Campus.

Partie 1. (étude d'un MA(1))

1. Faire une simulation de taille n = 200 d'un MA(1) avec $\mu = 0$, $\theta = 1$, $\sigma_Z = 1$ et visualiser le chronogramme. Expliquer l'allure de la série ainsi simulée sachant que $x_t = z_t + \theta z_{t-1}$...

Faire la même analyse avec $\theta = -1$. Comparer avec le cas $\theta = +1$.

- 2. Pour ces deux valeurs de θ (1 ou 1), retrouver la structure d'auto-corrélation vue au TD n°1 en visualisant à chaque fois les auto-corrélations empiriques ainsi que l'ACF (augmenter n si besoin).
- 3. On modifie maintenant la valeur de σ_Z . Avec $\theta=1$, comparer des séries simulées avec respectivement $\sigma_Z=0.1, 1$ et 10. Que peut-on dire de ce paramètre ?
- 4. Faire une simulation avec $\sigma_Z = 1$ mais $\theta = 10$. Que peut-on dire de la série simulée au regard de l'ACF empirique? Expliquer qualitativement ce phénomène à partir de la relation $x_t = z_t + \theta z_{t-1}$.
- 5. Enfin, faire varier µ et expliquer comment se modifie la série.

Partie 2. (étude d'un AR(1))

- 1. Faire une simulation de taille n = 200 d'un AR(1) avec $\mu = 0$, $\phi = 0.9$, $\sigma_Z = 1$ et visualiser le chronogramme. Expliquer l'allure de la série ainsi simulée sachant que $x_t = \phi \times x_{t-1} + z_t$. Faire la même analyse avec $\phi = -0.9$. Comparer avec le cas $\phi = 0.9$.
- 2. Pour ces deux valeurs de ϕ (0.9 ou 0.9), retrouver la structure d'autocorrélation théorique (vue en TD) en visualisant à chaque fois les autocorrélations empiriques. On essaiera les valeurs successives n = 100, n = 200 et n = 500. Commentaires.
- 3. On modifie maintenant la valeur de σ_Z . Avec $\phi = 0.9$, comparer des séries simulées avec respectivement $\sigma_Z = 0.1$, 1 et 10. Que peut-on dire à nouveau de ce paramètre ?
- 4. Que se passe-t-il si ϕ s'approche trop de 1 ou de -1? Et si $|\phi| > 1$?

Partie 3. (étude du modèle AR(p) pour p = 2)

Modifier le script fourni pour simuler un AR(2). Faire différentes simulations et analyser vos observations.

Partie 4. (étude du modèle ARMA(1,1)) S'il vous reste du temps, simuler un processus ARMA(1,1) et analyser les formes possibles de l'ACF à partir de simulations...