

Impact based forecasting:

IMPACT BASED FORECASTING

1: Understanding risk

- DEVELOP RISK MODELS
- **OVERVIEW OF VULNERABLE AREAS**
- COMMUNITY RISK ASSESSMENT

POPULATION DATA

COMMUNITY RISK ASSESSMENT DASHBOARD

2: Identify impact

- HISTORICAL EVENTS DATA
- **ANALYSIS & INSIGHTS**
- MACHINE LEARNING
- IMPACT ON POPULATION
- **IDENTIFY TRIGGER LEVELS**

DATA ANALYSES

MACHINE LEARNING

3: Forecast triggered action

- IDENTIFY VULNERABLE PEOPLE
- TRIGGER RELEASE FUNDS
- TAKE ACTION (E.G. DIRECT CASH)

EARLY WARNING EARLY ACTION

SAVE TIME

SAVE MONEY

IMPACT BASED FORECASTING

1: Understanding risk

- DEVELOP RISK MODELS
- OVERVIEW OF VULNERABLE AREAS
- COMMUNITY RISK ASSESSMENT

POPULATION DATA

COMMUNITY RISK ASSESSMENT DASHBOARD

2: Identify impact

- HISTORICAL EVENTS DATA
- ANALYSIS & INSIGHTS
- MACHINE LEARNING
- IMPACT ON POPULATION
- IDENTIFY TRIGGER LEVELS

DATA ANALYSES

MACHINE LEARNING

3: Forecast triggered action

- IDENTIFY VULNERABLE PEOPLE
- TRIGGER RELEASE FUNDS
- TAKE ACTION (E.G. DIRECT CASH)

EARLY WARNING EARLY ACTION

SAVE TIME

SAVE LIVES

SAVE MONEY

Research question:

"How accurate can we predict the impact of future floods in Uganda at district-level based on historical data (i.e. historical impact and historical rainfall) and Community Risk Assessment data?"

Merge three datasets

district	date	DI_deaths	DI_injured	DI	RAIN_at_day	RAIN_1day_before	RAIN	CRA_employed	CRA_literacy	CRA
ABIM	2011-04-11	0	0		16.53387	38.02542		0.9187	0.5891	
ABIM	2012-07-23	0	0		8.214587	10.58498		0.9187	0.5891	
ZOMBO	2012-06-09	600	3		0.000000	6.254879		0.9009	0.5305	
ZOMBO	2017-04-13	0	0		2.145846	32.65487		0.9009	0.5305	

Impact variables (dependent variables)

Rain variables (independent variables)

CRA variables (independent variables)

Aggregate floods in the same district on the same day or within several days

district	date	DI_deaths	DI_injured	DI_houses_destroyed	
ABIM	2007-07-29	0	0	0	
ABIM	2007-07-30	0	0	0	
ABIM	2007-07-30	300	0	1000	
ABIM	2007-08-02	600	3	350	
ABIM	2007-08-02	0	0	0	

Before aggregation

district	date	DI_deaths	DI_injured	DI_houses_destroyed	
ABIM	2007-08-02	450	3	675	

After aggregation

- Create one total binary impact variable (impact yes/no)
- Based on only the 9 <u>binary</u> impact variables

Correlationmatrix impact-variables

Data preparation:

1. Higher correlation between binary impact variables

9 binary impact

variables

- 1. Higher correlation between binary impact variables
- 2. Positive relationship binary impact variables vs. rainfall

- 1. Higher correlation between binary impact variables
- 2. Positive relationship binary impact variables vs. rainfall
- 3. More info available for binary impact variables

Remove independent variables with more than 85% NA's

Rain variables:

- Rain _at_day
- Rain_1_day_before_cumulative
- Rain_2_days_before_cumulative
- Rain_3_days_before_cumulative
- Rain_4_days_before_cumulative
- Rain_1_day_before
- Rain_2_days_before
- Rain_3_days_before
- Rain_4_days_before
- Rain_5_day_before

- CRA_violent_incidents
- CRA_drought_exposure
- CRA_earthquake_exposure
- CRA_flood_exposure
- CRA_disability
- CRA_employed
- CRA_literacy
- CRA_mosquito_nets
- CRA_orphans
- CRA_poverty
- CRA_roof_type
- CRA_wall_type
- CRA_subsistence_farming
- CRA_drinking_water
- CRA_educational_facilities
- CRA_time_to_city

- CRA_electricity
- CRA_health_facilities
- CRA sanitation
- CRA_internet_access
- CRA_mobile_access
- CRA land area
- CRA_displaced_persons
- CRA_displaced_local_population
- CRA elevation
- CRA_population_density
- CRA_population
- CRA_general_coping
- CRA_general_risk
- CRA_general_hazard
- CRA_general_vulnerability

Remove incorrect variables

Rain variables:

- Rain _at_day
- Rain_1_day_before_cumulative
- Rain_2_days_before_cumulative
- Rain_3_days_before_cumulative
- Rain_4_days_before_cumulative
- Rain_1_day_before
- Rain_2_days_before
- Rain_3_days_before
- Rain 4 days before
- Rain_5_day_before

- CRA_violent_incidents
- CRA_drought_exposure
- CRA_earthquake_exposure
- CRA_flood_exposure
- CRA_disability
- CRA_employed
- CRA_literacy
- CRA_mosquito_nets
- CRA_orphans
- CRA_poverty
- CRA_roof_type
- CRA_wall_type
- CRA_subsistence_farming
- CRA_drinking_water
- CRA_educational_facilities
- CRA_time_to_city

- CRA_electricity
- CRA_health_facilities
- CRA sanitation
- CRA_internet_access
- CRA_mobile_access
- CRA land area
- CRA_displaced_persons
- CRA displaced local population
- CRA_elevation
- CRA_population_density
- CRA_population
- CRA_general_coping
- CRA_general_risk
- CRA_general_hazard
- CRA_general_vulnerability

- Remove unimportant variables:
 - Lasso logistic regression: variables of which coefficients is shrunken to zero
 - Stepwise logistic regression: variables not selected by model
 - Random forest: variables with lowest mean decrease in accuracy and/or Gini

Remove unimportant variables

Rain variables:

- Rain _at_day
- Rain_1_day_before_cumulative
- Rain_2_days_before_cumulative
- Rain_3_days_before_cumulative
- Rain_4_days_before_cumulative
- Rain_1_day_before
- Rain_2_days_before
- Rain 3 days before
- Rain 4 days before
- Rain_5_day_before

- CRA violent incidents
- CRA_drought_exposure
- CRA_earthquake_exposure
- CRA_flood_exposure
- CRA_disability
- CRA_employed
- CRA_literacy
- CRA_mosquito_nets
- CRA_orphans
- CRA_poverty
- CRA_roof_type
- CRA_wall_type
- CRA_subsistence_farming
- CRA_drinking_water
- CRA_educational_facilities
- CRA_time_to_city

- CRA_electricity
- CRA_health_facilities
- CRA sanitation
- CRA internet access
- CRA mobile access
- CRA land area
- CRA_displaced_persons
- CRA_displaced_local_population
- CRA elevation
- CRA_population_density
- CRA population
- CRA_general_coping
- CRA_general_risk
- CRA_general_hazard
- CRA_general_vulnerability

- 1 dependent variable (total binary impact variable)
- 17 independent variables → standardized

5 rain variables:

- Rain _at_day
- Rain_1_day_before_cumulative
- Rain_2_days_before_cumulative
- Rain_3_days_before_cumulative
- Rain_4_days_before_cumulative

- CRA_disability
- CRA_literacy
- CRA_mosquito_nets
- CRA_orphans
- CRA_roof_type
- CRA_wall_type
- CRA_subsistence_farming
- CRA_electricity
- CRA_health_facilities
- CRA_mobile_access
- CRA_general_risk
- CRA_general_vulnerability

(Nested) 5-fold cross-validation to get estimates of several performance metrics for 4 different models:

- Stepwise logistic regression
- Lasso logistic regression
- Support vector machine (with radial basis kernel)
- Random forest

	Stepwise logistic	Lasso logistic	Support vector	Random forest
	regression	regression	machine	
AUC	0.666	0.675	0.641	0.644
Accuracy	0.675	0.671	0.678	0.652
F1 score	0.774	0.780	0.794	0.748

	Actual: no impact (0)	Actual: impact (1)
Predicted: no impact (0)	13	10
Predicted: impact (1)	28	65

	Actual: no impact (0)	Actual: impact (1)
Predicted: no impact (0)	10	7
Predicted: impact (1)	31	67

	Actual: no impact (0)	Actual: impact (1)
Predicted: no impact (0)	6	3
Predicted: impact (1)	35	72

	Actual: no impact (0)	Actual: impact (1)
Predicted: no impact (0)	15	15
Predicted: impact (1)	25	60

Mean rainfall per catchment area of a district

Rainfall predictor(s) created based on the mean rainfall per catchment area of a district

Rainfall predictor(s) created based on the mean rainfall per district

R = 0.13

R = 0.09

- Mean rainfall per catchment area of a district
- Add GloFAS dataset
- Add more accurate impact data
- Predict different impact variables (i.e. related to people, houses etc.)
- Create total impact variable based on expertise knowledge
- Select most important variables based on expertise knowledge
- Resample the minority class (= no impact)
- Tune the parameters of the models (even further)
- Make R-script more reproducible

Mean rainfall per catchment area of a district

Add GloFAS dataset

- Add more accurate impact data
- Predict different impact variables (i.e. related to people, houses etc.)
- Create total impact variable based on expertise knowledge
- Select most important variables based on expertise knowledge
- Resample the minority class (= no impact)
- Tune the parameters of the models (even further)
- Make R-script more reproducible

Questions...?