DINAMIEKO PROGRAMIRANJE

- PROBLEM: uspo teoliti sličnost DNA dva organizma

- razmotati polinuklestidhe lance grastene ad 4 vrste muklestida

4 - adenius

T - timin S

c - citozin 7

9 - granin S

odgovor: koliko je dugačak najohulji zajednički podniz?

(3)

G G C T T T A

Poblem:

Za dana 2 niza

treba pronači zajednički podniz od X i Y tako da je njegova duljina najveća.

skraćeno: LCS - engl. longest common subsequence

ringer:

$$X = \langle A, C, T, T, C, A, G \rangle$$

$$Y = \langle G, A, C, T, C, A, G, T \rangle$$

$$U = \langle G, G, C, T, T, T \rangle$$

$$|CS(X, U) = 3$$

$$|CS(X, Y) = \langle A, C, T, C, A, G \rangle$$

$$|CS(X, Y) = \langle A, C, T, C, A, G \rangle$$

Maiuno rješevje:

- progeriti svaki podniz od X je li podniz od Y - uzeti najdulji

Algoritam:

end if

kvaj za svaki Vrati Z

Složemost algoritma???

M = |X| , n = |Y|

Koliko ima podnitova d X?

Koliko "kosta" provjeca je 11 S podskup od Y

O(n)

Odgavor: O(n2m)

1×1,141 ≈ 12650000 (kromosom 5)

Broj atoma u svemiru: 1080

2 1006

| deja: _ koristiti tehniku dinamičkog programinanja _ riješenje potproblema koristiti ta rješenje problema

Oznake:

$$Z_5 = LCS(X_6, Y_6)$$

£3 + 96

akynicak;

2014m (o optimalnoj podstrukturi LCS problema)

eka su $X = (x_1, \dots, x_m)$ i $Y = (y_1, \dots, y_m)$ nizori i $Z = (z_1, \dots, z_k)$ lo koji LCS od X i Y . Tada vrijede syedeće tvroluje:

- 1. Ako je Xm=Xm'n onda je Zk = Xn = Xm // Zk-1 = LCS (Xm-1, Yn-1)
- 2. Neka je xm + yn. Ako je Zk + xm onda je Z= LCS (Xm-1, Y)
- 3. Neka je xm fyn. Ako je zk fyn onola je Z= LCS (X1 Yn-1)

corz. (Leiserson, Rivest, Stein 2nd edition, 351, str)

68

Interpretacija teorema:

 $Z_{i} \neq X_{i} \qquad X_{i} = Y_{i}$ $Z_{i} \neq X_{i} \qquad Z_{i} \neq X_{i} \qquad Z_{i} = LCS(X_{i}, Y_{i}) \qquad X_{i} \qquad dada + i \quad || na \quad kvaj \quad || mid \Rightarrow Z_{k-1}$ $I_{j} \neq Q_{i} \qquad ie \quad biti$ $Olulpi \quad pooluiz$ $C[i,j] = \begin{cases} c[i-1,j-1] + 1 & \text{i.i.j.} > 0 \\ max(c[i,j-1],c[i-1,j]) & \text{i.i.j.} > 0 \end{cases} \times i \neq Y_{i}$

- najprije (emo izračunati duufinu najdužeg zajed ničkog podniza

LCS-LENGTH (XIY)

me Xilength

ne Xilength

for i e 1+0 m

for i e 1+0 m

for je 1 to n

end for

Sor je 1 to n

end for

for i e 1-1 to m

do for $j \leftarrow 1$ to wdo if $x_i = y_j$ then $p[i_1j] \leftarrow p[i_1-1,j-1] + 1$ $p[i_1j] \leftarrow x_j$ else if $p[i_1-1,j] \geq p[i_1,j-1]$ then $p[i_1j] \leftarrow p[i_1-1,j]$

else
$$f(i,j) \leftarrow "\uparrow"$$

$$else \quad f(i,j) \leftarrow f(i,j-1)$$

$$else \quad f(i,j) \leftarrow "\leftarrow"$$

$$else \quad f(i,j) \leftarrow "\leftarrow"$$

$$else \quad f(i,j) \leftarrow "\leftarrow"$$

XX	100	4	A	G	T	0.	A·	9.1	TI
	0	0	0	0	0	0	0	0	0
A	0	O	1/80%	-1 <	-1F	-1	18	-14	-1
C ·	0	0	1	14/	- 2	2 +	-2	- 2	-2
-	0	0-	1	12/1	31	13	-34	-3	3
T .	0	0	4	2	13/1	3	3	3	4
C	0	0	Ó	2	3	1/x	-4	+4	-4
A	0	0	1	7	3	4	5	+5	-5
9	0	1	1	2	3	14	15	16/	4/6/

tekonstrukcija najduljeg zajedničkog podniza

l'equitat na prethodnom primien: ACTCAG Vijeme itursavanja: LCS-LENGTH - O(mn) PRINT-LCS - O(m+n)

- LCE primjer optimizacijskog problema
- optimizacijski problem srocko ije jenje ima pridruženu vrijednost ci je promaći rjevenje s najvećom | naj manj vrijednosću
- dinamičko programinauji koristimo u rješavoniju uglavnom optimitacijskih problema
- Kyuini koraci:
 - 1. Okarakterizirati strukturu optimalnog yesenja
 - 2. Rekuzivno definirati vrijednost optimalnog istenja
 - 3. krazumati vrijednost optimalnog rješenja (koristeći bottom-up pristup)
 - 4. Rekonstruirati optimalno rješenje na osnovu izračumatih informacija

Pringer (LCS)

- 1. Teorem o optimalnoj podstrukturi LCS problema
- 2. Rekurzivna relacija za ratunanje optimalne vrijednosti
- 3, LCS-LENGTH algoritam i tablica
- 4. PRINT-ICS algoritam (i tablica)

```
Problem:
```

ulaz: niz matrica A1,..., An , næ N &a koje je definiran produkt A1 A2----An

izlaz: izračunati produkt AIAz--- An koristici
najmanji mognici broj operacija množenja skalara

- asocipetivnost muo zenja matrica: $(A_1 (A_2 (A_3 A_4)))$ $(A_1 (A_2 A_3) A_4))$ $((A_1 A_2 (A_3 A_4))$ $((A_1 (A_2 A_3) A_4)$ $(((A_1 A_2) A_3) A_4)$

- motimo de raspored tagrada ima utjecej na broj operacija Primjer: A1 × A2 × A3 10×100 100 ×5 5×50

dva nacina: $((A_1 A_2) A_3)$ $(A_1 \times A_2)$ $10 \cdot 100 \cdot 5 = 5000$

(A1 × A2) × A3
10 × 5 × 5 × 50

10.5.50 = 2500

Ukupno: 7500 op.

A1 (A2 A3)

$$(A_2 \times A_3)$$

 $100 \times 5 \cdot 50 = 25000$

An X (Az X Az)

10.100,50 = 50000

Ukupno: 75000 op.

Fællynček: prvi pristup je 10 puta brži.

Iznake:

An Az Au Poxpa Paxpz - - - pn-1 x pa

matrica Ai Ima dimenziojn

voj vazlititih natina postavljanje zagrada

broj nacina & broj nacine ovolje

k=1,---, u-1

 $P(n) = \begin{cases} 1 & 1 \\ N=1 \end{cases}$ $\sum_{k=1}^{N-1} P(k) P(n-k) & n \ge 2$

 (A_1)

Može se pokazeti de je P(n) € S2(2ⁿ) (D.Z).

Brute-force metodo ne prolozi ?

Struktura optimalnog postavljanja zagrada

Rekurzija:

m [ij]

minimalan broj skal množenja ta vačunanje produkta

Ai Aj 1 < i < j < n

rjerenje (ono sto trazimo) je ma, n)

i=j =) Ai--Ai => M[i,i] = 0 | (i) < u

i<j=) Ai---Aj => m[i,j] = m[i,k] + m[k+1,j] + pi-1 Pk pj

Pi-1 Pk Pj op.

Rekurzivna relacija:

$$m[i,j] = \begin{cases} 0 & j = j \\ \min \{ m[i,k] + m[k+1,j] + pi-1pkpj \}, & i < j \end{cases}$$

$$i \leq k < j$$

OFNaka: neka je stilj = k takar de je
mtilj = mtilk]it mtk+1,j]+ pi-1) Pk Pj Die 1911/11 1/2

```
pristup kao kad (SC-a. tabularizacija (bottom-up)
· broj moženja ovisi samo o dimenzipema
            P = < Po, 121, ---, Pw p. Lewtyth = 4+1
 MATRIX-CHAIN- ORDER (P)
                                Ai ---- Aj
                                Pin --- Pi
  n ← p. length - 1
                                  ima in j- 11-1) = j-1+1
 for i < 1 to n
        m[i,i] + 0
                                 Ai ---- Ai+l-1
 for l = 2 +0 n
     for i + 1 +0 n- 1+1
       すとえナレー1
            m[ij] = 0
            for kei to j-1
              9 < m[i, k] + m[k+1,j] + Pi-1 Pk Pj
              if q < m [is]
                  miij] = 2
                     Still = k
               end if
     end for
end for
return m, s
```

Pringer:

N	1	2	3	4	7	6
1	O	15/10	7875	9375	14875	15/25
2	1	0	2625	4375	7125	10500
3			0	A50	2500	1375
4		X		0	1000	3500
5		/			0	5000
6	/	1				0
6	/	1	-	1		

1/4	1	12	3	19	5	8
1-	×	*	1	3	3	3
2	1.34	×	2	3	3	3
3			X	3	3	3
4		***************************************		×	4	8
5					X	*
6						X

$$m[1,2] = m[1,1] + m[2,2] + p_0 p_1 p_2 = 30.35.15 = 15750$$
 $m[2,3] = m[3,3] + m[3,3] + p_1 p_2 p_3 = 35.15.5 = 2625$
 $m[3,4] = \frac{1}{12}$
 $m[4,5] = \frac{1}{12}$
 $m[4,5] = \frac{1}{12}$
 $m[4,5] = \frac{1}{12}$
 $m[4,6] = m[5,6] + m[6,6] + p_4 p_5 p_6 = 10.20.25 = 5000$

$$m.[1,3] = m[1,1] + m[2,3] + PoPP3 = 0 : 2625 + 5250 = (875)$$

$$m[1,3] = min \begin{cases} m[1,1] + m[2,3] + PoPP3 = 0 : 2625 + 5250 = (875) \\ m[1,2] + m[3,3] + PoP2P3 = 15750 + 0 + 1250 \\ = 18000 \end{cases}$$

$$S[1,3] = 1$$

Konstrukcija optimalnog rjesenja:

PRINT-OPTIMAL- PARENS (S, i, i)

else print "("

enol is

$$(45) (23) (45) (6)$$

/rijeme itersavanja:

MATRIX-CHAIN-DRDER:

3 for pettie

$$T(n) = \sum_{l=2}^{n} \sum_{i=1}^{n-l+l} \frac{i+l-2}{k \in i} D(1) = O(n^3)$$

prostorna složemost: \(\O(u^2)\)

Ratmotrimo rekurtivan pristup (nije tabularizacija)


```
RECURSIVE - MATRIX-CHAIN (PII)
    if i== j
      return o
    w [i,j] e w
    for keitoj-1
           9 = RECURSIVE- MATRIX- CHAIXI (pii,k)
              + RECURSIVE - MATRIX - CHAIN ( P, &+1, +)
            + Pi-1 Du Pj
          if 9 < m [i,j]
        m [i,j] = q
  return m [i,i]
                                      RECURSIVE - MATKIX - CHAIN ( SDR)
 Vrijeme izvršavanja:
                      (doma meste)
 T(1) 2 1
 T(n) \geq 1 + \sum_{k=1}^{n-1} \left(T(k) + T(n-k) + 1\right)
    ekvivelentus
   T(n) z 22. T(i) + n (stablo rekurzije + metoda
supstituc
                                                  supstitucije)
                  Pretp: T(n1 = S(2")
                                                T(n) ≥ 2"-1 ner
Baze: T(!) < 21-1 = 20=1
Pretpostavka + (k) ≥ 2k-1, k ≤ w, 1
Konek: T(n+1) \ge 2 \ge T(i) + n+1
```

-ukoliko "pamtimo" rješenje potproblema koji se preklapaju dolazimo do pristupa koji se zove memoizacija

Memorzep - Matrix - Chain (p)

$$n \in p$$
. length -1

for $i \in 1$ to n

for $j \in 1$ to n
 $m \in p$. $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$.

 $m \in p$

return m [iii]

Vrijeme iznisavanje: O(43) ??? (analiza D.Z)