

# Carga e Descarga de um condensador

#### Apresentado por:

Vasco Sousa, 1221700 Rafael Araújo, 1201804 João Pinto, 1221694 José Sá, 1220612

#### Preparado para:

Lijian Meng - LJM, Carlos Augusto Ramos - CAR

## Procedimento experimental

01

Montagem Inicial do Circuito

02

Medição da Tensão da Fonte de Alimentação 03

Medição da Resistência R1 e do Condensador 04

Atividade Laboratorial -Medição da Carga do Condensador 05

Análise da Descarga do Condensador 06

Modificação do Circuito de Descarga do Condensador

### Tratamento de dados

| Exercício 1 | Exercício 2   | Exercício 3 | Exercício 5          | Exercício 9    |
|-------------|---------------|-------------|----------------------|----------------|
| E = 5,91 V  | R1 = 9,80 OHM | C = OV      | Valor = 03,200<br>mV | Vc (t=0) = 5,9 |

### Tratamento de dados

#### Exercício 6

| Tempo (s) | Tensão Vc (V) medida com o voltímetro |
|-----------|---------------------------------------|
| 0         | 0,003                                 |
| 5         | 0.667                                 |
| 10        | 1.077                                 |
| 15        | 1.474                                 |
| 20        | 1.699                                 |
| 25        | 1.978                                 |
| 30        | 2.150                                 |
| 35        | 2.280                                 |
| 40        | 2.400                                 |
| 45        | 2.490                                 |
| 50        | 2.550                                 |
| 55        | 2.610                                 |
| 60        | 2.650                                 |
| 65        | 2.690                                 |
| 70        | 2.720                                 |
| 75        | 2.740                                 |
| 80        | 2.760                                 |
| 85        | 2.770                                 |
| 90        | 2.780                                 |
| 95        | 2.790                                 |
| 100       | 2.800                                 |
| 105       | 2.810                                 |
| 110       | 2.810                                 |
| 115       | 2.820                                 |
| 120       | 2.820                                 |
|           |                                       |

#### Exercício 10

Tempo (s) medida com o voltímetro

| Tempo (3) | nedida com o volumeno |
|-----------|-----------------------|
| 0         | 5,9                   |
| 5         | 5.150                 |
| 10        | 4.080                 |
| 15        | 3.320                 |
| 20        | 2.570                 |
| 25        | 2.040                 |
| 30        | 1.628                 |
| 35        | 1.349                 |
| 40        | 1.068                 |
| 45        | 0.857                 |
| 50        | 0.697                 |
| 55        | 0.561                 |
| 60        | 0.457                 |
| 65        | 0.368                 |
| 70        | 0.300                 |
| 75        | 0.239                 |
| 80        | 0.198                 |
| 85        | 0.167                 |
| 90        | 0.151                 |
| 95        | 0.136                 |
| 100       | 0.121                 |
| 105       | 0.109                 |
| 110       | 0.099                 |
| 115       | 0.091                 |
| 120       | 0.082                 |
| 125       | 0.074                 |
|           |                       |

#### **Exercício 11**

| Tempo (s) | Tensão Vc (V) medida com o voltímetro |  |
|-----------|---------------------------------------|--|
| 0         | 5.900                                 |  |
| 5         | 4.720                                 |  |
| 10        | 3.420                                 |  |
| 15        | 2.470                                 |  |
| 20        | 1.420                                 |  |
| 25        | 1.210                                 |  |
| 30        | 0.882                                 |  |
| 35        | 0.659                                 |  |
| 40        | 0.483                                 |  |
| 45        | 0.349                                 |  |
| 50        | 0.252                                 |  |
| 55        | 0.179                                 |  |
| 60        | 0.144                                 |  |
| 65        | 0.117                                 |  |
| 70        | 0.097                                 |  |
| 75        | 0.079                                 |  |

## Resultados e representação gráfica Na carga do condensador

### 12 – Qual o valor previsível (ou teórico) de queda de tensão nos terminais do condensador após a carga?

R: Devido ao facto de que, quando o condensador está totalmente carregado, ele não deixa passar nenhuma carga, o que significa que a tensão da fonte é zero, o valor teórico de queda de tensão nos terminais do condensador seria de 6V.

## Resultados e representação gráfica Na carga do condensador

13 – Represente graficamente os dados experimentais de Vc em função do tempo, obtidos no ponto 6, com R1=10 M . Faça o ajuste aos dados representados, e apresente a equação da curva que melhor se ajuste aos valores experimentais, assim como o seu coeficiente de correlação.

Após passarmos todos os dados para o Excel, o gráfico que obtemos para a Carga foi o seguinte:



De forma a obtermos o coeficiente de correlação de forma mais eficaz, calculamos o logaritmo de cada valor e obtivemos o gráfico que se segue, gráfico este que nos permite concluir que temos uma correlação linear positiva.



## Resultados e representação gráfica Na carga do condensador

## 14 – Da equação obtida determine a constante de tempo, e através de leitura no gráfico, qual a constante de tempo na carga do condensador, tal como pode observar na figura 2?

De forma a obtermos a constante de tempo na carga do condensador, calculamos utilizando a equação polinomial que obtivemos no Excel, da seguinte forma:

$$-0,0003x^{2} + 0,0558x + 0,531 =$$

$$0,632 * [(-0,0003(5x)^{2} + 0,0558(5x) + 0,531]$$

$$\iff -0,0003x^{2} + 0,0558x + 0,531 = 0,632 * [-0,0075 + 0,279x + 0,531]$$

$$\iff -0,0003x^{2} + 0,0558x + 0,0558x + 0,531 = -0,00474x^{2} + 0,176328x +$$

$$0,335592 + 0,00444x^{2}$$

$$\iff 0,00444x^{2} + (-0,120528)x + 0,195408 = 0$$

$$\iff 0,00444x^{2} - 0,120528x + 0,195408 = 0$$

$$\iff x = 25,4144$$

#### 15 – Qual é a duração previsível da carga do condensador?

R: Durante a carga do condensador, este vai aumentado a sua tensão até que atinge o valor máximo. Como resultado, "teoricamente" espera-se que o valor da carga do condensador dure para  $t = \infty$ .

## Resultados e representação gráfica Na descarga do condensador

16 – Represente graficamente os dados experimentais obtidos no ponto 10, de Vc em função do tempo, dos dados para R1 = 10 M . Faça o ajuste aos dados representados, e apresente a equação da curva que melhor se ajuste aos valores experimentais, assim como o seu coeficiente de correlação.

Após passarmos todos os dados para o Excel, o gráfico que obtemos para a Descarga, quando R1 = 10 M $\Omega$ , foi o seguinte:



De forma a obtermos o coeficiente de correlação de forma mais eficaz, calculamos o logaritmo de cada valor e obtivemos o gráfico que se segue, gráfico este que nos permite concluir que temos uma correlação linear negativa.



## Resultados e representação gráfica Na descarga do condensador

### 17 – Da equação obtida determine a constante de tempo para este circuito.

Cálculo através da equação exponencial:

$$5,0719 * e^{-0,038x} = (5,0719 * e^{-0,038*0}) * 0,368$$

$$\iff 5,0719 * e^{-0,038x} = 5,0719 * 0,368$$

$$\iff e^{-0,038x} = 0,368$$

$$\iff -0,038x = ln(0,368) \iff x = \frac{ln(0,368)}{-0,038} \iff x = 26,31$$

Cálculo através do declive da equação da reta de ajuste:

| Equação da reta de ajuste : | y = -0,0376x + 1,6237 |  |
|-----------------------------|-----------------------|--|
| declive = -1/tau            | -0,0376               |  |
| constante de tempo =        | 26,60                 |  |

## 18 – Estime a constante de tempo na descarga do condensador, obtida pela representação gráfica anterior (no ponto 16), como se pode observar na figura 4.

R: De acordo com a visualização da Figura 2, através da definição da reta tangente à curva da descarga e a interseção da mesma com a linha de tempo (no eixo xx) conseguimos obter uma aproximação do valor = 28,5 segundos.

## Resultados e representação gráfica Na descarga do

condensador

19 – Junte ao gráfico criado no ponto 16, os dados obtidos no ponto 11, quando R1 = 5 M . Faça o ajuste aos dados representados desta nova curva e apresente a equação da curva que melhor se ajuste a estes valores experimentais, assim como o seu coeficiente de correlação.

Após passarmos todos os dados para o Excel, o gráfico que obtemos para a Descarga, quando R1 = 10 M $\Omega$ , foi o seguinte:



De forma a obtermos o coeficiente de correlação de forma mais eficaz, calculamos o logaritmo de cada valor e obtivemos o gráfico que se segue, gráfico este que nos permite concluir que temos uma correlação linear negativa.



## Resultados e representação gráfica Na descarga do condensador

### 20 – Da equação obtida nesta nova representação gráfica, determine a constante de tempo de descarga para este circuito

Cálculo através da equação exponencial:

$$5,5808 * e^{-0,06x} = (5,5808 * e^{-0,06*0}) * 0,368$$

$$\iff 5,5808 * e^{-0,06xx} = 5,5808 * 0,368$$

$$\iff e^{-0,006x} = 0,368$$

$$\iff -0,06x = ln(0,368) \iff x = \frac{ln(0,368)}{-0,06} \iff x = 16,66$$

Cálculo através do declive da equação da reta de ajuste:

| Equação da reta de ajuste : | y = -0,0647x + 3,8245 |
|-----------------------------|-----------------------|
| declive = -1/tau            | -0,0647               |
| constante de tempo =        | 15,46                 |

## 21 – Estime a constante de tempo de descarga do condensador, nesta nova representação gráfica, como se pode observar na figura 4.

R: De acordo com a visualização da Figura 3, através da definição da reta tangente à curva da descarga e a interseção da mesma com a linha de tempo (no eixo xx) conseguimos obter uma aproximação do valor = 18,5 segundos.

### Questão 1

Qual o valor previsível de queda de tensão nos terminais do condensador no início da descarga? De notar que a resistência de descarga não é apenas R1, mas o paralelo de R1 com Ri, considerando-se assim o efeito de carga do voltímetro.

$$Vt(condensador) = (\frac{(R_1 + R_i)}{(R_1 + R_i) + 10 * 10^3} * 6 = \frac{(5 * 10^6)}{5 * 10^6 + 10 * 10^3} * 6 = 5,988V$$

R: A tensão esperada é de 6,0V sabendo que a descarga do condensador começa no momento t = 0s e que a resistência equivalente é de  $5M\Omega$ , a resistência interna do voltímetro é de  $10M\Omega$ . Se repararmos o condensador no início da descarga, ele está totalmente carregado, o que significa que não permite passar nenhuma corrente, o circuito é como um circuito aberto. Através da lei das malhas, sabemos que a soma das tensões em cada resistência é igual à soma das f.e.m., então podemos provar que o condensador tem, aproximadamente, 6,0V.

### Questão 2

Compare os valores das constantes de tempo obtidas na descarga do condensador nas duas situações experimentais quando R1 = 10 M e R1 = 5 M, obtidas pelas equações das representações e através da leitura nos gráficos construídos. E compare com a situação ideal calculada (os valores teóricos). Comente as diferenças obtidas entre as constantes de tempo das diferentes situações.

Para  $R_1 = 5M\Omega$ 

R: Após os cálculos, os valores experimentais/calculados para R1 =  $10M\Omega$  e R1 =  $5M\Omega$  são semelhantes, mas apresentam discrepância em relação aos valores teóricos. Isso se deve à influência do multímetro na leitura da queda de tensão, afetando o valor de  $\tau$ . A resistência interna do multímetro não é a única razão; variações nos componentes e imprecisões nas medições também contribuem para as diferenças. Ao medir circuitos RC, é essencial considerar e compensar a resistência interna do multímetro, minimizando outras fontes de erro.

 $R_1 = 10M\Omega$ 

$$Req = (\frac{1}{3,3*10^6})^{-1} + 10*10^3$$

 $t3 = Req * C = 3,31 * 10^6 * 4,7 * 10^{-6}$ 

$$t1 = 16,66s (ex20)$$
  
 $t2 = 18,5s (ex21)$   
 $t3 = 15,56s$ 

$$\begin{split} e_{\%1} &= \frac{|T1 - T2|}{T2} * 100 = 9,95\% \\ e_{\%2} &= \frac{|T1 - T3|}{T3} * 100 = 7,07\% \\ e_{\%3} &= \frac{|T2 - T3|}{T3} * 100 = 18,90\% \end{split}$$

$$Req = (rac{1}{5*10^6})^{-1} + 10*10^3$$

$$t3 = Req * C = 5,01*10^6*4,7*10^{-6}$$

$$t1 = 26,31s (ex17)$$
  
 $t2 = 28,50s (ex18)$   
 $t3 = 23,55s$ 

$$e_{\%1} = \frac{|T1 - T2|}{T2} * 100 = 7,68\%$$
 $e_{\%2} = \frac{|T1 - T3|}{T3} * 100 = 11,72\%$ 
 $e_{\%3} = \frac{|T2 - T3|}{T3} * 100 = 21,02\%$ 

### Observações

- 1. Cálculos de Tangente no Excel:
  - Nos pontos 14, 18 e 21, a ausência de funcionalidades no Excel para calcular tangentes em x=0 exigiu a construção manual da reta tangente nesses pontos.
- 2. Possíveis Imprecisões na Construção Manual:
  - A abordagem manual pode resultar em imprecisões, potencialmente afetando a determinação das constantes de tempo do estudo.
- 3. Flutuações nos Valores de Tensão:
  - Devido à constante flutuação nos valores de tensão, as alíneas 6, 10 e 11 podem conter uma margem de erro.
- 4. Margem de Erro devido à Observação em Intervalos de 5 Segundos:
  - A dificuldade em observar com precisão os valores em intervalos de 5 segundos pode introduzir uma margem de erro, especialmente devido às variações contínuas na tensão.