Mathématiques – Première spécialité

Corrigés des exercices

Table des matières

1	Le second degré : équations et paraboles	2
2	Probabilités	11
3	Suites numériques	18

1 Le second degré : équations et paraboles

Dans chaque exercice, on note ${\mathcal S}$ l'ensemble des solutions des équations.

Exercice 1 1. On résout l'équation $x^2 + 2x = 0$:

On factorise:

$$x(x+2) = 0.$$

Un produit de facteurs est nul lorsque l'un des facteurs est nul, donc il y a deux possibilités :

$$x = 0$$
 ou $x + 2 = 0$
 $x + 2 - 2 = 0 - 2$
 $x = -2$

Conclusion : l'équation a deux solutions : x = 0 et x = -2. Autrement dit :

$$\mathscr{S} = \{0; -2\}.$$

2. On résout l'équation $x^2 - 16 = 0$:

On « isole » x^2 :

$$x^{2} - 16 = 0$$

$$x^{2} - \cancel{16} + \cancel{16} = 0 + 16$$

$$x^{2} = 16$$

Comme 16 est positif, il y a deux solutions :

$$x = \sqrt{16} = 4$$
 ou $x = -\sqrt{16} = -4$.

Conclusion:

$$\mathscr{S} = \{4; -4\}.$$

3. On résout l'équation (2x-1)(x-5) = 0:

$$2x-1=0 \qquad \text{ou} \qquad x-5=0$$

$$2x-\cancel{1}+\cancel{1}=0+1 \qquad \text{ou} \qquad x-\cancel{5}+\cancel{5}=0+5$$

$$\frac{\cancel{2}x}{\cancel{2}}=\frac{1}{2} \qquad \text{ou} \qquad x=5$$

$$x=\frac{1}{2}$$

Conclusion:

$$\mathscr{S} = \left\{ \frac{1}{2}; 5 \right\}.$$

4. On résout l'équation $x^2 + 7 = 0$:

$$x^{2} + 7 = 0$$

$$x^{2} + 7 - 7 = 0 - 7$$

$$x^{2} = -7$$

Il n'y a pas de solution, car un carré est positif (donc aucun nombre x ne peut avoir un carré égal à -7). Conclusion :

$$\mathcal{S} = \emptyset$$
.

(On rappelle que Ø désigne l'ensemble vide : l'ensemble qui ne contient aucun élément.)

Exercice 2 Dans chaque cas, on note Δ le discriminant.

- 1. On résout l'équation $x^2 3x 4 = 0$:
 - a = 1, b = -3, c = -4.
 - $\Delta = b^2 4ac = (-3)^2 4 \times 1 \times (-4) = 9 + 16 = 25$.
 - $\Delta > 0$, donc il y a deux solutions :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-(-3) - \sqrt{25}}{2 \times 1} = \frac{3 - 5}{2} = -1,$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-(-3) + \sqrt{25}}{2} = \frac{3 + 5}{2} = 4.$$

Conclusion:

$$\mathscr{S} = \{-1; 4\}.$$

2. On résout l'équation $2x^2 - 12x = -18$:

On se ramène d'abord à la situation du cours (équation de la forme $ax^2 + bx + c = 0$) en « transposant -18 »:

$$2x^{2} - 12x + 18 = -18 + 18$$
$$2x^{2} - 12x + 18 = 0$$

- a = 2, b = -12, c = 18.
- $\Delta = b^2 4ac = (-12)^2 4 \times 2 \times 18 = 144 144 = 0.$
- $\Delta = 0$, donc il y a une seule solution :

$$x_0 = \frac{-b}{2a} = \frac{-(-12)}{2 \times 2} = \frac{12}{4} = 3.$$

Conclusion:

$$\mathscr{S} = \{3\}.$$

- 3. On résout l'équation $x^2 4x + 5 = 0$:
 - a = 1, b = -4, c = 5.
 - $\Delta = b^2 4ac = (-4)^2 4 \times 1 \times 5 = 16 20 = -4$.
 - Δ < 0, donc il n'y a pas de solution.

Conclusion:

$$\mathcal{S} = \emptyset$$
.

- 4. On résout l'équation $x^2 + 2x 4 = 0$:
 - a = 1, b = 2, c = -4.
 - $\Delta = b^2 4ac = 2^2 4 \times 1 \times (-4) = 4 + 16 = 20$.
 - $\Delta > 0$, donc il y a deux solutions :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-2 - \sqrt{20}}{2 \times 1} = \frac{-2 - \sqrt{20}}{2},$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-2 + \sqrt{20}}{2 \times 1} = \frac{-2 + \sqrt{20}}{2}.$$

Conclusion:

$$\mathcal{S} = \left\{ \frac{-2 - \sqrt{20}}{2}; \frac{-2 + \sqrt{20}}{2} \right\}.$$

Remarque: On peut écrire les solutions de façon plus élégante : sachant que

$$\sqrt{20} = \sqrt{4 \times 5} = \sqrt{4} \times \sqrt{5} = 2 \times \sqrt{5},$$

on trouve

$$x_2 = \frac{-2 + \sqrt{20}}{2} = \frac{-2 + 2\sqrt{5}}{2} = \frac{\cancel{2}(-1 + \sqrt{5})}{\cancel{2}} = -1 + \sqrt{5}.$$

De même, $x_1 = -1 - \sqrt{5}$.

5. On résout l'équation $x^2 = -6x$:

À partir de maintenant, on s'autorise à aller un peu plus vite : on transpose directement le «-6x» dans le membre de gauche, qui devient «+6x».

$$x^2 = -6x$$
$$x^2 + 6x = 0.$$

Ici, il y a deux méthodes possibles:

- soit on utilise le discriminant, avec a = 1, b = 6 et c = 0 (puisque $x^2 + 6x = 1x^2 + 6x + 0$);
- soit on factorise.

On utilise la deuxième méthode, qui est plus rapide 1:

$$x(x+6) = 0$$

 $x = 0$ ou $x+6 = 0$
 $x = -6$.

Conclusion:

$$\mathcal{S} = \{0; -6\}.$$

Exercice 3 On commence par un schéma indicatif, qui n'est bien sûr pas à l'échelle puisqu'on ne connaît pas x.

D'après le théorème de Pythagore :

$$x^2 + (x+7)^2 = 17^2$$
.

On développe $(x+7)^2$ avec l'identité remarquable

$$(a+b)^2 = a^2 + 2 \times a \times b + b^2$$
.

L'équation se réécrit :

$$x^{2} + x^{2} + 2 \times x \times 7 + 7^{2} = 289$$
$$2x^{2} + 14x + 49 - 289 = 0$$
$$2x^{2} + 14x - 240 = 0.$$

- a = 2, b = 14, c = -240.
- $\Delta = b^2 4ac = 14^2 4 \times 2 \times (-240) = 196 + 1920 = 2116$.
- $\Delta > 0$, donc il y a deux solutions :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-14 - \sqrt{2116}}{2 \times 2} = \frac{-14 - 46}{4} = -15,$$

$$x_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-14 + \sqrt{2116}}{2 \times 2} = \frac{-14 + 46}{4} = 8.$$

Or x désigne une longueur, donc la première solution (x_1) est impossible. On a donc x=8.

Remarque: Ce n'est pas demandé, mais on peut donner la longueur des trois côtés:

$$x = 8$$
, $x + 7 = 8 + 7 = 15$ et 17.

On peut alors vérifier que

$$8^2 + 15^2 = 17^2$$
.

^{1.} De plus, il y a un gros risque d'erreur de résolution lorsqu'on utilise la méthode avec Δ dans le cas où b ou c valent 0.

Exercice 4 1. Voici un schéma du terrain en notant x la largeur de la pelouse (donc la longueur est 2x):

2. La longueur du terrain (en m) est

$$2x + 3 + 3 = 2x + 6,$$

sa largeur est

$$x + 3 + 3 = x + 6$$
.

Donc la surface du terrain (en m²) est

longueur × largeur =
$$(2x+6) \times (x+6)$$
.

Or on sait que cette surface vaut 360 m², donc

$$(2x+6) \times (x+6) = 360.$$

3. On résout l'équation obtenue dans la question précédente ² :

$$(2x+6) \times (x+6) = 360$$

$$\iff 2x \times x + 2x \times 6 + 6 \times x + 6 \times 6 = 360$$

$$\iff 2x^2 + 12x + 6x + 36 = 360$$

$$\iff 2x^2 + 18x + 36 - 360 = 0$$

$$\iff 2x^2 + 18x - 324 = 0.$$

Il s'agit d'une équation du second degré.

- a = 2, b = 18, c = -324.
- $\Delta = 18^2 4 \times 2 \times (-324) = 2916$.
- $\Delta > 0$, donc il y a deux solutions :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-18 - \sqrt{2916}}{2 \times 2} = \frac{-18 - 54}{4} = \frac{-72}{4} = -18,$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-18 + \sqrt{2916}}{2 \times 2} = \frac{-18 + 54}{4} = \frac{36}{4} = 9.$$

Or x désigne une longueur, donc x ne peut pas être négatif et seule la solution $x_2 = 9$ est valable.

Conclusion : x = 9, donc la longueur du terrain (en m) est $2 \times 9 + 3 + 3 = 24$, sa largeur est 9 + 3 + 3 = 15.

Exercice 5 On utilise le mètre comme unité de longueur, le mètre carré comme unité de surface. On note *x* et *y* les dimensions du champ.

^{2.} Les « 👄 » que l'on place entre les lignes se lisent « équivalent à ». Cela signifie que la résolution de l'équation écrite à une ligne est équivalente à la résolution de l'équation écrite à la ligne suivante.

• Le périmètre est 54, donc la moitié du périmètre est

$$x + y = 27$$
.

• L'aire est 180, donc

$$x \times y = 180$$
.

On obtient ainsi le système

$$\begin{cases} x + y = 27 & L_1 \\ xy = 180 & L_2 \end{cases}$$

On multiplie L_1 par x:

$$(x + y) \times x = 27 \times x$$
, soit $x^2 + xy = 27x$.

Or d'après L_2 , xy = 180, donc

$$x^2 + 180 = 27x$$
, et ainsi $x^2 - 27x + 180 = 0$.

On aboutit à une équation du 2^d degré. En utilisant la méthode habituelle, on trouve deux solutions (je ne détaille pas) : $x_1 = 12$, $x_2 = 15$.

On sait que x + y = 27, donc si x = 12, alors y = 27 - x = 27 - 12 = 15; et si x = 15, alors y = 27 - x = 27 - 15 = 12. Dans les deux cas, on obtient un champ qui mesure 12 m sur 15 m.

Exercice 6 On note n le nombre d'amis initialement présents, et p le prix à payer par chacun (en euros).

• Le montant total de la location est 2 400 €, donc

$$n \times p = 2400. \tag{1}$$

• Si deux amis s'en vont, le montant individuel augmente de 40 €. On a donc dans ce cas (*n* − 2) amis, et chacun paye alors (*p* + 40) €. En revanche, le montant total de la location ne change pas, il vaut toujours 2 400 €. On en déduit

$$(n-2) \times (p+40) = 2400.$$

En développant, cela donne encore

$$np + 40n - 2p - 80 = 2400. (2)$$

On compare (1) et (2) : comme les membres de droite valent 2400 dans les deux cas, on obtient l'égalité

$$np = np + 40n - 2p - 80$$
,

soit

$$40n - 2p - 80 = 0$$
.

Finalement, le couple (n, p) est solution du système

$$\begin{cases} n \times p = 2400 \\ 40n - 2p - 80 = 0. \end{cases}$$

On résout ce système comme dans l'exercice 5 (je ne détaille pas) et l'on obtient

$$n = 12$$
 , $p = 200$.

Conclusion : comme 12 - 10 = 2, ce sont 10 amis qui sont finalement partis.

Exercice 7 1. $P_1: y = x^2 - 6x + 5$.

- a = 1, b = -6, c = 5.
- a est \oplus , donc P_1 est vers le haut.
- On note S le sommet de P_1 . D'après le cours

$$x_S = -\frac{b}{2a} = -\frac{-6}{2 \times 1} = \frac{6}{2} = 3.$$

On en déduit

$$y_S = 3^2 - 6 \times 3 + 5 = 9 - 18 + 5 = -4.$$

On a donc S(3; -4).

Venons-en au tracé de la parabole. On fait un tableau de valeurs sur [0;6], avec un pas de 1³. Pour cela, on utilise la calculatrice:

^{3.} Nous choisissons un intervalle symétrique par rapport à l'abscisse du sommet, et qui ne soit ni trop court, ni trop long. On choisit un pas de 1 par facilité, mais le graphique serait bien sûr plus précis avec un pas plus petit.

• MODE ou MENU • 4: TABLE ou 4: Tableau • f(X)=X² - 6X + 5 EXE (si on demande g(X)=, ne rien rentrer)

• Début?0 EXE

• Fin?6 EXE

• Pas?1 EXE

Pas

choisir Valider

NUMWORKS

X s'obtient avec la touche x, t, θ, n
• $f(x)$
$\bullet Y_1 = X^2 - 6X + 5 \boxed{EXE}$
• 2nde déf table
• DébTable=0 EXE
• PasTable=1 EXE
ou
ΔTbl=1 EXE
• 2nde table

TI graphiques

	CASIO graphiques
	X s'obtient avec la touche X, θ, T
che	MENU puis choisir TABLE EXE
	• $Y_1: X^2 - 6X + 5$ EXE
	• F5 (on choisit donc SET)
	• Start:0 EXE
	• End:6 EXE
	• Step:1 EXE
	• EXIT
	• F6 (on choisit donc TABLE)

On obtient le tableau de valeurs :

х	0	1	2	3	4	5	6
у	5	0	-3	-4	-3	0	5

Enfin on construit le graphique (j'ai un peu « écrasé » l'axe des ordonnées pour gagner de la place) :

Remarque : On peut avoir intérêt à ajouter des points près du sommet pour obtenir un tracé plus précis. C'est ce que l'on a fait ci-dessus avec les deux losanges rouges, correspondant au tableau de valeurs ci-dessous.

I	х	2,5	3,5
	у	-3,75	-3,75

- 2. $P_2: y = -0.5x^2 x + 4.$
 - a = -0.5, b = -1, c = 4.
 - $a \operatorname{est} \ominus$, donc $P_2 \operatorname{est} \operatorname{vers} \operatorname{le} \operatorname{bas}$.
 - On note S le sommet de P_2 . D'après le cours

$$x_S = -\frac{b}{2a} = -\frac{-1}{2 \times (-0,5)} = \frac{1}{-1} = -1.$$

On en déduit

$$y_S = -0.5 \times (-1)^2 - (-1) + 4 = -0.5 + 1 + 4 = 4.5.$$

On a donc S(-1; 4,5).

Tableau de valeurs :

х	-4	-3	-2	-1	0	1	2
у	0	2,5	4	4,5	4	2,5	0

Tracé de la parabole:

Exercice 8 1. On trace la parabole P:

- qui coupe l'axe des abscisses en $x_1 = -1$ et en $x_2 = 3$.
- dont le sommet est le point S(1;2).

Remarque : Il est difficile de faire un tracé hyper précis avec si peu d'informations. L'élève intéressé peut essayer de prouver – en faisant un bel effort – que $f(x) = -0.5x^2 + x + 1.5$. Auquel cas, il pourra faire un tableau de valeurs et obtenir une courbe presque aussi parfaite que celle dessinée ci-dessus avec l'ordinateur.

- 2. On pose $\Delta = b^2 4ac$.
 - Comme P est vers le bas, a est du signe Θ .
 - Comme P coupe l'axe des abscisses en deux points, il y a deux racines et Δ est du signe \oplus .

Exercice 9 La trajectoire de la balle en fonction du temps est la parabole $P: y = -0.525t^2 + 2.1t + 1.9$, tracée ci-dessous :

1. Clément commence sa passe à la hauteur

$$h(0) = -0.525 \times 0 + 2.1 \times 0 + 1.9 = 1.9$$
 mètres.

Cela correspond au point bleu sur la figure.

2. La hauteur maximale de la balle est l'ordonnée du sommet S de la parabole, en rouge sur la figure.

- a = -0.525, b = 2.1, c = 1.9.
- On calcule avec la formule:

$$x_S = -\frac{b}{2a} = -\frac{2,1}{2 \times (-0,525)} = \frac{-2,1}{-1,05} = 2.$$

On en déduit

$$y_S = -0.525 \times 2^2 + 2.1 \times 2 + 1.9 = 4$$

et donc la hauteur maximale de la balle est de 4 mètres.

3. Pour déterminer le temps de vol de la balle, on cherche à quel moment elle retombe au sol (point vert sur la figure). On résout donc l'équation

$$-0.525t^2 + 2.1t + 1.9 = 0.$$

- $\Delta = 2, 1^2 4 \times (-0,525) \times 1, 9 = 8, 4.$
- $\Delta > 0$, donc il y a deux solutions :

$$t_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-2, 1 - \sqrt{8, 4}}{2 \times (-0, 525)} \approx 4,76,$$

$$t_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-2, 1 + \sqrt{8, 4}}{2 \times (-0, 525)} \approx -0,76.$$

La deuxième solution est impossible, car le temps cherché est positif.

Conclusion: la balle retombe au sol après 4,76 secondes environ.

Exercice 10 On a tracé une parabole $P: y = ax^2 + bx + c$.

- 1. a > 0, car P est vers la haut.
 - Si x = 0, alors $y = a \times 0^2 + b \times 0 + c = c$, donc la P passe par le point de coordonnées (0; c) autrement dit, elle coupe l'axe des ordonnées en c.

Par lecture graphique, on obtient donc c < 0.

- Il y a deux racines, car P coupe l'axe des abscisses deux fois. On a donc $\Delta > 0$.
- 2. D'après le cours, $x_S = -\frac{b}{2a}$, donc

$$x_S \times 2a = -\frac{b}{2a} \times 2a$$
$$x_S \times 2a = -b$$
$$-x_S \times 2a = b.$$

On sait que $x_S < 0$ et a > 0, donc $b = -\underbrace{x_S}_{\oplus} \times \underbrace{2a}_{\oplus}$ est du signe $\oplus : b > 0$.

Exercice 11 Soit $P: y = ax^2 + bx + c$ une parabole et S son sommet. On sait que $x_S = -\frac{b}{2a}$, donc

$$\begin{split} y_S &= a \times \left(-\frac{b}{2a} \right)^2 + b \times \left(-\frac{b}{2a} \right) + c = \cancel{a} \times \frac{b^2}{4a^{\frac{1}{2}}} - \frac{b^2 \times 2}{2a \times 2} + \frac{c \times 4a}{1 \times 4a} \\ &= \frac{b^2}{4a} - \frac{2b^2}{4a} + \frac{4ac}{4a} = \frac{b^2 - 2b^2 + 4ac}{4a} = \frac{-b^2 + 4ac}{4a} = -\frac{b^2 - 4ac}{4a} = -\frac{\Delta}{4a}. \end{split}$$

Exercice 12 1. Le coût de fabrication des *x* objets est

$$C(x) = x^2 + 230x + 325$$
.

9

Chaque objet est vendu 300 \in , donc la recette issue de la vente des x objets est

$$R(x) = 300x$$
.

On en déduit que le bénéfice est

$$B(x) = \text{Recette} - \text{Coût} = R(x) - C(x) = 300x - (x^2 + 230x + 325) = 300x - x^2 - 230x - 325 = -x^2 + 70x - 325.$$

- 2. Le bénéfice est une expression du second degré, avec a < 0. Il est donc représenté par une parabole orientée vers le bas. Maximiser le bénéfice revient donc à trouver le (l'abscisse du) sommet de cette parabole :

 - a = -1, b = 70, c = -325. $x_S = -\frac{b}{2a} = -\frac{70}{2 \times (-1)} = \frac{-70}{-2} = 35$.

Conclusion: le bénéfice est maximal lorsqu'on produit et vend 35 objets.

Remarque: Le bénéfice maximal est

$$-35^2 + 70 \times 35 - 325 = 900 \in$$
.

Exercice 13 1. On résout l'équation :

$$x^{3} = 2x$$

$$\Rightarrow \qquad x^{3} - 2x = 0$$

$$\Rightarrow \qquad x(x^{2} - 2) = 0$$

$$\Leftrightarrow \qquad x = 0 \quad \text{ou} \quad x^{2} - 2 = 0$$

$$\Leftrightarrow \qquad x^{2} = 2$$

$$\Leftrightarrow \qquad x = \sqrt{2} \quad \text{ou} \quad x = -\sqrt{2}$$

Conclusion: il y a trois solutions:

$$\mathcal{S} = \left\{0; \sqrt{2}; -\sqrt{2}\right\}.$$

(a) Pour démontrer l'égalité, on développe et on réduit le membre de droite : pour tout nombre x,

$$(x+1)(x^2+3x-4) = x \times x^2 + x \times 3x + x \times (-4) + 1 \times x^2 + 1 \times 3x + 1 \times (-4)$$
$$= x^3 + 3x^2 - 4x + x^2 + 3x - 4$$
$$= x^3 + 4x^2 - x - 4.$$

Conclusion: on a bien

$$x^{3} + 4x^{2} - x - 4 = (x+1)(x^{2} + 3x - 4).$$

(b) On utilise la factorisation de la question 2.(a) pour résoudre l'équation :

$$x^{3} + 4x^{2} - x - 4 = 0$$

$$\iff (x+1)(x^{2} + 3x - 4) = 0$$

$$\iff x+1=0 \quad \text{ou} \quad x^{2} + 3x - 4 = 0$$

On résout chaque équation séparément :

$$x+1=0 \iff x=-1.$$

L'autre équation est du second degré, on utilise le discriminant :

$$x^2 + 3x - 4 = 0$$
.

- a = 1, b = 3, c = -4.
- $\Delta = 3^2 4 \times 1 \times (-4) = 9 + 16 = 25$.

• $\Delta > 0$, donc il y a deux solutions :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-3 - \sqrt{25}}{2 \times 1} = \frac{-3 - 5}{2} = -4,$$
$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-3 + \sqrt{25}}{2 \times 1} = \frac{-3 + 5}{2} = 1.$$

Conclusion : l'équation $x^3 + 4x^2 - x - 4 = 0$ a trois solutions :

$$\mathcal{S} = \{-1; -4; 1\}.$$

2 Probabilités

Exercice 14 1. On traduit les données de l'énoncé par un tableau d'effectif :

	Abonnés au soir	Pas abonnés au soir	Total
Abonnés au matin	50	20	70
Pas abonnés au matin	50	160	210
Total	100	180	280

2. (a)
$$P(S) = \frac{100}{280} = \frac{5}{14}$$
 et $P(\overline{M}) = \frac{210}{280} = \frac{3}{7}$.

(b) • L'événement « le pensionnaire est abonné aux deux journaux » s'écrit $S \cap M^4$. On a

$$P(S \cap M) = \frac{50}{280} = \frac{5}{28}.$$

- L'événement « le pensionnaire est abonné à au moins un journal » s'écrit *S* ∪ *M* ⁵. Il y a plusieurs façons de dénombrer les cas favorables à cet événement :
 - ▶ ajouter les pensionnaires qui sont abonnés au *Soir* et ceux qui sont abonnés au *Matin*, puis retrancher ceux qui sont abonnés aux deux journaux (sinon ils sont comptés deux fois) : 100 + 70 50 = 120.
 - ▶ ajouter ceux qui ne sont abonnés qu'au *Soir*, ceux qui ne sont abonnés qu'au *Matin*, et ceux qui sont abonnés aux deux journaux : 50 + 20 + 50 = 120.
 - ▶ retrancher l'effectif de pensionnaires qui ne sont abonnés à aucun journal de l'effectif total : 280 160 = 120.

Quelle que soit la méthode de calcul, on obtient :

$$P(S \cup M) = \frac{120}{280} = \frac{3}{7}.$$

(c) On choisit au hasard un pensionnaire abonné au *Matin*. La probabilité qu'il soit aussi abonné au *Soir* est ⁶

$$P_M(S) = \frac{50}{70} = \frac{5}{7}.$$

Exercice 15 1. Le candidat connaît 3 des questions d'histoire, donc $P(H) = \frac{3}{6} = \frac{1}{2}$; et il connaît 2 des 5 questions de géographie, donc $P(G) = \frac{2}{5}$.

2. Pour simplifier et sans rien enlever à la généralité du raisonnement, on suppose que les questions sont numérotées de 1 à 6 en histoire et de 1 à 5 en géographie, et que le candidat connaît les questions n°1, 2, 3 en histoire, n°1 et 2 en géographie. Dans le tableau ci-dessous, les questions connues sont écrites en bleu, les questions inconnues sont écrites en rouge.

On a colorié les cases de trois couleurs :

- en vert : le candidat connaît les deux questions;
- en orange : le candidat connaît une seule des deux questions ;
- en magenta : le candidat ne connaît aucune des deux questions.
- 4. On rappelle que \cap se lit « inter » et correspond au mot français « ET ».
- 5. On rappelle que ∪ se lit « union » et correspond au mot français « OU ».
- 6. On utilise la notation des probabilités conditionnelles, qui sera vue dans le paragraphe 2 du cours.

Hist Géo	1	2	3	4	5	6
1						
2						
3						
4						
5						

6 des 30 cases sont coloriées en vert, donc la probabilité que le candidat connaisse les deux questions est

$$P(G \cap H) = \frac{6}{30} = \frac{1}{5}.$$

3. 6+15 = 21 des 30 cases sont coloriées en vert ou en orange, donc la probabilité que le candidat connaisse au moins l'une des deux questions est

$$P(G \cup H) = \frac{21}{30} = \frac{7}{10}.$$

Remarque: On peut aussi obtenir 21 avec le calcul 30 – 9, ou utiliser la formule du cours de 2^{de}:

$$P(G \cup H) = P(G) + P(H) - P(G \cap H) = \frac{1}{2} + \frac{2}{5} - \frac{1}{5} = \frac{5}{10} + \frac{4}{10} - \frac{2}{10} = \frac{7}{10}.$$

Exercice 16 On utilise un tableau à double entrée. On place un symbole dans chacune des cases favorable à l'événement

A: « les deux dés montrent la même couleur ».

Il y a 12 cases favorables à *A* sur 36, donc $P(A) = \frac{12}{36} = \frac{1}{3}$.

Exercice 17 1. On représente la situation par un arbre pondéré :

- 2. D'après l'arbre:
 - $P(M \cap T) = 0.60 \times 0.95 = 0.57$;
 - D'après la formule des probabilités totales, la probabilité que le test soit positif est :

$$P(T) = P(M \cap T) + P(\overline{M} \cap T)$$

= 0,60 \times 0,95 + 0,40 \times 0,10 = 0,61.

Exercice 18 1. On représente la situation par un arbre pondéré :

2. D'après la formule des probabilités totales, la probabilité que la pièce ait un défaut est :

$$P(D) = P(A \cap D) + P(\overline{A} \cap D)$$

= 0,70 \times 0,02 + 0,30 \times 0,03 = 0,023.

Exercice 19 Rappelons pour commencer que 6 des 26 lettres de l'alphabet sont des voyelles : A - E - I - O - U - Y. Venons-en à l'arbre pondéré. Notons que si une première voyelle a été tirée, il reste 25 jetons dans le sac, parmi lesquels ne figurent plus que 5 voyelles. Cela explique le $\frac{5}{25}$ ci-dessous; et avec un raisonnement similaire, on justifie tous les nombres sur les branches de droite.

L'événement A: « on tire une voyelle et une consonne (dans n'importe quel ordre) » est réalisé quand on prend l'un des deux chemins $V_1 \cap \overline{V_2}$, ou bien $\overline{V_1} \cap V_2$, donc

$$P(A) = P\left(V_1 \cap \overline{V_2}\right) + P\left(\overline{V_1} \cap V_2\right) = \frac{6}{26} \times \frac{20}{25} + \frac{20}{26} \times \frac{6}{25} = \frac{120}{650} + \frac{120}{650} = \frac{240}{650} = \frac{24}{65}$$

Exercice 20 Une urne contient 8 boules blanches et 2 boules noires, indiscernables au toucher. On tire sans remise et successivement 3 boules de cette urne.

Pour i = 1, 2, 3, on considère l'événement

 A_i : « la i-ème boule tirée est blanche ».

1. On représente la situation par un arbre pondéré :

2. Le contraire de

B: « on a tiré au moins une boule noire »

est

 \overline{B} : « on n'a tiré que des boules blanches ».

D'après l'arbre (chemin tout en haut)

$$P\left(\overline{B}\right) = \frac{\cancel{8}}{10} \times \frac{7}{9} \times \frac{6}{\cancel{8}} = \frac{42}{90} = \frac{7}{15},$$

donc

$$P(B) = 1 - P(\overline{B}) = 1 - \frac{7}{15} = \frac{8}{15}.$$

Exercice 21 1. On rappelle les zones de tir à 2 et 3 points :

On représente la situation par un arbre pondéré :

Remarque : \overline{D} signifie « Stephen Curry tire à 3 points ».

2. La probabilité que Stephen Curry tire à 2 points et marque est

$$P(D \cap M) = 0.53 \times 0.52 = 0.2756.$$

3. D'après la formule des probabilités totales, la probabilité que Stephen Curry marque est :

$$P(M) = P(D \cap M) + P(\overline{D} \cap M)$$

= 0.53 \times 0.52 + 0.47 \times 0.44 = 0.4824.

4. Stephen Curry a marqué. La probabilité qu'il ait tiré à deux points est

$$P_M(D) = \frac{P(M \cap D)}{P(M)} = \frac{0.2756}{0.4824} \approx 0.57.$$

1. On commence par faire un arbre pondéré. Comme un appareil en parfait état de fonctionnement est toujours Exercice 22 accepté à l'issue du test, il y a un 1 et un 0 sur les branches en haut à droite.

On en vient au calcul des probabilités demandé par l'énoncé :

- $P\left(\overline{F} \cap T\right) = \frac{1}{10} \times \frac{1}{11} = \frac{1}{110}$; d'après la formule des probabilités totales :

$$P(T) = P\left(F \cap T\right) + P\left(\overline{F} \cap T\right) = \frac{9}{10} \times 1 + \frac{1}{10} \times \frac{1}{11} = \frac{9}{10} + \frac{1}{110} = \frac{99}{110} + \frac{1}{110} = \frac{100}{110} = \frac{10}{11}.$$

2. Sachant qu'un appareil a été accepté à l'issue du test, la probabilité qu'il ne fonctionne pas parfaitement est

$$P_T(\overline{F}) = \frac{P(T \cap \overline{F})}{P(T)} = \frac{\frac{1}{110}}{\frac{10}{11}} = \frac{1}{110} \times \frac{11}{10} = \frac{11}{1100} = \frac{1}{100}.$$

Exercice 23 1. On construit l'arbre et on le complète à partir des données de l'énoncé :

- 2. $P(R \cap J) = 0,17 \times 0,32 = 0,0544$.
- 3. L'énoncé donne P(J) = 0,11. On utilise la formule des probabilités totales :

$$P(J) = P(R \cap J) + P(\overline{R} \cap J)$$
$$0,11 = 0,0544 + P(\overline{R} \cap J)$$
$$0,11 - 0,0544 = P(\overline{R} \cap J)$$
$$0,0556 = P(\overline{R} \cap J)$$

Conclusion : $P(\overline{R} \cap J) = 0.0556$.

4. La proportion de jeunes de 18 à 24 ans parmi les utilisateurs non réguliers des transports en commun est égale à la probabilité qu'un utilisateur non régulier soit un jeune. Cette proportion vaut donc

$$P_{\overline{R}}(J) = \frac{P(\overline{R} \cap J)}{P(\overline{R})} = \frac{0.0556}{0.83} \approx 0.0670.$$

C'est le point d'interrogation rouge de l'arbre pondéré du début.

Exercice 24 Il faut prendre l'initiative de nommer des événements et de construire un arbre pondéré. On pose ainsi :

- E : « le dé est équilibré »,
- \overline{E} : « le dé est pipé »,
- *S* : « on obtient 6 ».

La probabilité qu'il faut calculer est $P_S(\overline{E})$. On utilise la formule des probabilités conditionnelles :

$$P_S\left(\overline{E}\right) = \frac{P\left(\overline{E} \cap S\right)}{P(S)}.$$

Or $P(\overline{E} \cap S) = \frac{1}{4} \times \frac{1}{2} = \frac{1}{8}$ et $P(S) = \frac{3}{4} \times \frac{1}{6} + \frac{1}{4} \times \frac{1}{2} = \frac{3}{24} + \frac{1}{8} = \frac{1}{8} + \frac{1}{8} = \frac{2}{8} = \frac{1}{4}$ (formule des probabilités totales), donc :

$$P_S\left(\overline{E}\right) = \frac{\frac{1}{8}}{\frac{1}{4}} = \frac{1}{8} \times \frac{4}{1} = \frac{4}{8} = \frac{1}{2}.$$

Exercice 25 Il faut calculer $P_B(\overline{A_1})$. On utilise la formule du cours :

$$P_B\left(\overline{A_1}\right) = \frac{P\left(\overline{A_1} \cap B\right)}{P(B)}.$$

L'événement $\overline{A_1} \cap B$ est égal à $\overline{A_1}$, puisque si la première boule tirée est noire, alors on en a au moins une noire. On a donc $P\left(\overline{A_1} \cap B\right) = P\left(\overline{A_1}\right) = \frac{2}{10}$, puis finalement ⁷:

$$P_B\left(\overline{A_1}\right) = \frac{P\left(\overline{A_1} \cap B\right)}{P(B)} = \frac{\frac{2}{10}}{\frac{8}{15}} = \frac{2}{10} \times \frac{15}{8} = \frac{30}{80} = \frac{3}{8}.$$

Exercice 26 • Les nombres pairs sont 2, 4, 6, ..., 100. Il y en a 50, donc

$$P(A) = \frac{50}{100} = 0,5.$$

^{7.} On rappelle que P(B) a été calculé dans l'exercice 20.

• Les multiples de 5 sont

$$5 = 5 \times 1$$
, $10 = 5 \times 2$, $15 = 5 \times 3$, ..., $100 = 5 \times 20$.

Il y en a 20, donc

$$P(B) = \frac{20}{100} = 0, 2.$$

• L'événement $A \cap B$ s'écrit « le nombre est pair et multiple de 5 », ou de façon plus simple (et plus explicite) « le nombre est multiple de 10 ». Or les multiples de 10 sont 10, 20, 30, ..., 100, et comme il y en a 10,

$$P(A \cap B) = \frac{10}{100} = 0, 1.$$

• On calcule le produit

$$P(A) \times P(B) = 0,5 \times 0,2 = 0,1.$$

On constate que

$$P(A \cap B) = P(A) \times P(B) = 0, 1,$$

donc A et B sont indépendants.

Remarque : La raison profonde de l'indépendance de *A* et *B* est que 100 est un multiple de 2 et de 5 d'une part, et que 2 et 5 sont premiers entre eux d'autre part.

Exercice 27

• D'un côté $P(R) = \frac{3}{6} = \frac{1}{2}$ et $P(U) = \frac{3}{6} = \frac{1}{2}$, donc

$$P(R) \times P(U) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}.$$

D'un autre côté, $R \cap U$ est réalisé quand on tire le jeton 1, donc

$$P(R \cap U) = \frac{1}{6}.$$

Conclusion : $P(R \cap U) \neq P(R) \times P(U)$, donc les événements R et U ne sont pas indépendants.

• D'un côté $P(R) = \frac{3}{6} = \frac{1}{2}$ et $P(D) = \frac{2}{6} = \frac{1}{3}$, donc

$$P(R) \times P(U) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}.$$

D'un autre côté, $R \cap D$ est réalisé quand on tire le jeton |2|, donc

$$P(R \cap D) = \frac{1}{6}.$$

Conclusion : $P(R \cap D) = P(R) \times P(D)$, donc les événements R et U sont indépendants.

Exercice 28 Les trois questions sont indépendantes.

1. D'après une formule du cours de 2^{de},

$$P(A \cap B) = P(A) + P(B) - P(A \cup B) = 0,4 + 0,6 - 0,9 = 0,1.$$

D'un côté $P(A) \times P(B) = 0, 4 \times 0, 6 = 0, 24$, de l'autre $P(A \cap B) = 0, 1$; donc $P(A \cap B) \neq P(A) \times P(B)$.

Conclusion : *A* et *B* ne sont pas indépendants.

2. D'après la formule du cours de 2^{de} déjà utilisée dans la question 1 et la propriété d'indépendance :

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cup B) = P(A) + P(B) - P(A) \times P(B)$$

$$0,7 = 0,4 + P(B) - 0,4 \times P(B)$$

$$0,7 = 0,4 + x - 0,4x$$

$$0,7 = 0,4 + 0,6x$$

$$0,7 - 0,4 = 0,6x$$

$$0,7 - 0,4 = 0,6x$$

$$0,6 = \frac{0,6x}{0,6}$$

$$0,5 = x.$$
(on utilise l'indépendance)
(on pose $x = P(B)$)

Conclusion : P(B) = 0.5.

3. Un événement A est indépendant de lui-même si, et seulement si

$$P(A \cap A) = P(A) \times P(A). \tag{3}$$

Or $A \cap A = A$, donc $P(A \cap A) = P(A)$, et l'égalité (3) ci-dessus se réécrit

$$P(A) = (P(A))^2.$$

On pose x = P(A), on est ramené à résoudre l'équation $x = x^2$:

$$x = x^2 \iff x - x^2 = 0 \iff x(1 - x) = 0 \iff x = 0 \text{ ou } x = 1.$$

Conclusion : A est indépendant de lui-même lorsque P(A) = 0 (A est alors un événement impossible) ou lorsque P(A) = 1 (A est alors un événement certain).

3 Suites numériques

Exercice 29 1. $u_n = 0, 5n - 3$ pour tout $n \in \mathbb{N}$.

$$u_0 = 0,5 \times 0 - 3$$
 $u_1 = 0,5 \times 1 - 3$ $u_2 = 0,5 \times 2 - 3$ $u_3 = 0,5 \times 3 - 3$ $u_4 = -2,5$. $u_5 = -2$. $u_{10} = -3$.

2. $v_n = 1 - \frac{1}{n}$ pour tout $n \in \mathbb{N}^*$.

$$v_{1} = 1 - \frac{1}{1}$$

$$v_{1} = 0.$$

$$v_{2} = 1 - \frac{1}{2}$$

$$v_{2} = \frac{1}{2}.$$

$$v_{3} = 1 - \frac{1}{3}$$

$$v_{4} = 1 - \frac{1}{4}$$

$$v_{4} = \frac{3}{4}.$$

3. $\begin{cases} u_0 = 2 \\ u_{n+1} = 10 - u_n \text{ pour tout } n \in \mathbb{N}. \end{cases}$

Avec
$$n = 0$$
:
$$u_{0+1} = 10 - u_0$$

$$u_1 = 10 - 2$$

$$u_1 = 8.$$
Avec $n = 1$:
$$u_{1+1} = 10 - u_1$$

$$u_{2+1} = 10 - u_2$$

$$u_{2+1} = 10 - u_2$$

$$u_{3} = 10 - 2$$

$$u_{3} = 8.$$
Avec $n = 3$:
$$u_{3+1} = 10 - u_3$$

$$u_{4} = 10 - 8$$

$$u_{4} = 2.$$

On obtient la suite périodique (2;8;2;8;2;···).

4. $u_0 = 1$ et pour tout entier naturel n:

$$u_{n+1}=4u_n$$
.

Avec
$$n = 0$$
:
 $u_{0+1} = 4u_0$
 $u_1 = 4 \times 1$
 $u_1 = 4$.

Avec
$$n = 1$$
:
 $u_{1+1} = 4u_1$
 $u_2 = 4 \times 4$
 $u_2 = 16$.

Avec
$$n = 2$$
:
 $u_{2+1} = 4u_2$
 $u_3 = 4 \times 16$
 $u_3 = 64$.

Avec
$$n = 3$$
:
 $u_{3+1} = 4u_3$
 $u_4 = 4 \times 64$
 $u_4 = 256$.

5. $v_0 = 1$ et $v_{n+1} = \frac{v_n}{v_n + 2}$ pour tout $n \in \mathbb{N}$.

Avec
$$n = 0$$
:

$$v_{0+1} = \frac{v_0}{v_0 + 2}$$

$$v_1 = \frac{1}{1+2}$$

$$v_1 = \frac{1}{3}$$

Avec
$$n = 1$$
:
$$v_{1+1} = \frac{v_1}{v_1 + 2}$$

$$v_2 = \frac{\frac{1}{3}}{\frac{1}{3} + 2}$$

$$v_2 = \frac{\frac{1}{3}}{\frac{1}{3} + \frac{6}{3}}$$

$$v_2 = \frac{\frac{1}{3}}{\frac{7}{3}}$$

$$v_2 = \frac{1}{\cancel{3}} \times \frac{\cancel{3}}{7}$$

$$v_2 = \frac{1}{7}.$$

Avec
$$n = 2$$
:
$$v_{2+1} = \frac{v_2}{v_2 + 2}$$

$$v_3 = \frac{\frac{1}{7}}{\frac{1}{7} + 2}$$

$$v_3 = \frac{\frac{1}{7}}{\frac{1}{7} + \frac{14}{7}}$$

$$v_3 = \frac{\frac{1}{7}}{\frac{15}{7}}$$

$$v_3 = \frac{1}{7} \times \frac{7}{15}$$

$$v_3 = \frac{1}{15}.$$

Avec
$$n = 3$$
:
$$v_{3+1} = \frac{v_3}{v_3 + 2}$$

$$v_4 = \frac{\frac{1}{15}}{\frac{1}{15} + 2}$$

$$v_4 = \frac{\frac{1}{15}}{\frac{1}{15} + \frac{30}{15}}$$

$$v_4 = \frac{1}{\frac{1}{15}}$$

$$v_4 = \frac{1}{15} \times \frac{15}{31}$$

$$v_4 = \frac{1}{15} \times \frac{15}{31}$$

$$v_4 = \frac{1}{31}$$

6. $u_0 = 0$ et $u_{n+1} = f(u_n)$ pour tout entier naturel n, où $f(x) = (x+1)^2$. Autrement dit, $u_{n+1} = (u_n + 1)^2$.

Avec
$$n = 0$$
:
 $u_{0+1} = (u_0 + 1)^2$
 $u_1 = (0 + 1)^2$
 $u_1 = 1$.

Avec
$$n = 1$$
:
 $u_{1+1} = (u_1 + 1)^2$
 $u_2 = (1+1)^2$
 $u_2 = 4$.

Avec
$$n = 2$$
:
 $u_{2+1} = (u_2 + 1)^2$
 $u_3 = (4+1)^2$
 $u_3 = 25$.

Avec
$$n = 3$$
:
 $u_{3+1} = (u_2 + 1)^2$
 $u_4 = (25 + 1)^2$
 $u_4 = 676$.

7. $u_0 = 4$ et $u_{n+1} = u_n + n - 3$ pour tout $n \in \mathbb{N}$. $\triangle \mathbb{N}$ If y a un gros risque de décalage dans les indices!!

Avec
$$n = 0$$
:

 $u_{0+1} = u_0 + 0 - 3$
 $u_1 = 4 + 0 - 3$
 $u_1 = 1$.

Avec $n = 1$:

 $u_{1+1} = u_1 + 1 - 3$
 $u_2 = 1 + 1 - 3$
 $u_3 = -1 + 2 - 3$
 $u_3 = -2$.

Avec $n = 2$:

 $u_{2+1} = u_2 + 2 - 3$
 $u_3 = -1 + 2 - 3$
 $u_3 = -2$.

Avec n = 3: $u_{3+1} = u_3 + 3 - 3$ $u_4 = -2 + 3 - 3$ $u_4 = -2$.

8. $u_0 = 2$ et $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$, avec $f(x) = x^2 - 2x$. Autrement dit, $u_{n+1} = u_n^2 - 2u_n$.

Avec
$$n = 0$$
:
 $u_{0+1} = u_0^2 - 2u_0$
 $u_1 = 2^2 - 2 \times 2$
 $u_1 = 0$.
Avec $n = 1$:
 $u_{1+1} = u_1^2 - 2u_1$
 $u_2 = 0^2 - 2 \times 0$
 $u_2 = 0$.
 $u_{2+1} = u_2^2 - 2u_2$
 $u_3 = 0^2 - 2 \times 0$
 $u_3 = 0$.

La suite est constante égale à 0 à partir du rang 1 : (2;0;0;0;···).

Exercice 30 1. 100% - 15% = 85% = 0.85, donc pour diminuer un nombre de 15 %, il faut le multiplier par 0.85. Ainsi, dans le schéma ci-dessous, l'intensité lumineuse est-elle multipliée par 0.85 à chaque nouvelle plaque :

Remarque : Le lumen est une unité de mesure du flux lumineux, utilisée notamment pour indiquer la capacité d'éclairement des ampoules électriques.

2. La relation de récurrence est

$$u_{n+1} = 0.85 \times u_n$$
 pour tout entier naturel *n*.

3. L'intensité lumineuse est divisée par 10 lorsqu'on descend en dessous de $12 \div 10 = 1,2$ lm. Pour savoir le nombre minimal de plaques à superposer pour qu'il en soit ainsi, on rentre les valeurs initiales 0 et 12 dans la colonne B, puis on rentre les formules ci-dessous dans la colonne C, que l'on étire vers la droite jusqu'à obtenir une intensité lumineuse inférieure à 1,2.

	A	В	С	•••	P	Q
1	Nb de plaques	0	=B1+1	•••	14	15
2	Intensité (lm)	12	=B2*0,85	•••	1,23	1,05

Conclusion: il faut superposer au moins 15 plaques pour que l'intensité lumineuse soit divisée par 10.

Exercice 31 On administre à un patient un médicament par injection intraveineuse. On programme une machine de façon que :

- à l'instant 0, elle injecte 10 mL de médicament;
- toutes les minutes, elle injecte 1 mL de médicament.

On estime que 20 % du médicament présent dans le sang est éliminé par minute.

Pour tout entier naturel n, on note w_n la quantité de médicament, en mL, présente dans le sang du patient au bout de n minutes.

1. $w_0 = 10$. C'est la quantité injectée à l'instant 0.

D'une minute à la suivante, 20% du médicament présent dans le sang est éliminé (multiplication par 0,80), puis on injecte 1 mL, donc :

$$w_1 = 0.8 \times w_0 + 1 = 0.8 \times 10 + 1 = 9$$

 $w_2 = 0.8 \times w_1 + 1 = 0.8 \times 9 + 1 = 8.2$
 $w_3 = 0.8 \times w_2 + 1 = 0.8 \times 8.2 + 1 = 7.56.$

2. D'une manière générale, pour tout $n \in \mathbb{N}$:

$$w_{n+1} = 0.8 \times w_n + 1.$$

3. On entre:

	A	В	С	•••	AO	AP
1	Temps (min)	0	=B1+1	•••	39	40
2	Qtité de médic.	10	=B2*0,8+1	•••	5,0006…	5,0005
	(mL)					

Sur le long terme, la quantité de médicament se rapproche d'une valeur limite : 5 mL (elle s'en rapproche très rapidement, car elle est presque stable au bout de 30 min).

Exercice 32 Le 01/01/2020, on emprunte 10 000 € à la banque au taux d'intérêt mensuel de 2 %. À chaque fin de mois on rembourse 300 €.

Comment ça marche?... Le 01/01/2020 on emprunte 10 000 € au taux d'intérêt mensuel de 2 %, donc à la fin du mois de janvier 2020 la somme à rembourser est passée à

$$1,02 \times 10000 = 10200 \in$$
.

À ce moment on rembourse 300 €, donc le 01/02/2020 il reste à rembourser

$$10200 - 300 = 9900 \in$$
.

On note u_n la somme à rembourser le 1^{er} jour du n^e mois (en convenant que janvier 2020 est le mois 0, février 2020 le mois 1, etc.). On a donc $u_0 = 10000$ et $u_1 = 9900$.

1. On complète le schéma ci-dessous pour calculer les termes u_1 et u_2 . Les sommes écrites dans chaque case sont les sommes restant à rembourser aux dates indiquées.

Pour passer d'un terme de la suite au terme suivant, on multiplie par 1,02 (ajout des intérêts) puis on retranche 300 (remboursement mensuel). On peut donc continuer plus rapidement :

$$u_3 = 9798 \times 1,02 - 300 = 9693,96$$
 (somme à rembourser le 01/04/20),
 $u_4 = 9693,96 \times 1,02 - 300 = 9587,84$ (somme à rembourser le 01/05/20).

Et plus généralement, pour tout entier naturel n:

$$u_{n+1} = u_n \times 1,02 - 300.$$

2. On entre les formules

=B1+1

et

=B2*1,02-300

dans les cellules C1 et C2, puis on étire vers la droite :

	A	В	С	•••
1	Nombre de mois	0	=B1+1	•••
2	Reste à rembourser	10000	=B2*1,02-300	•••

On continue jusqu'à ce que la somme à rembourser soit nulle. En réalité, au bout d'un moment, elle est négative :

	A	•••	BD	BE	BF
1	Nombre de mois	•••	54	55	56
2	Reste à rembourser	•••	432,69	141,35	-155,83

À la fin du 55^e fois, il reste 141,35 € à rembourser; et si on rembourse 300 € au début du 56^e mois, la banque nous devra 155,83 €.

Conclusion:

- le crédit dure 56 mois;
- on rembourse 56 fois 300 €, mais à la fin on a dépassé de 155,83 € ce que l'on devait à la banque;
- la somme totale remboursée est donc

$$56 \times 300 - 155,83 = 16664,17 \in$$
;

• le « coût du crédit » est la différence entre ce que l'on a remboursé et ce que la banque nous a prêté :

Coût du crédit = Somme remboursée - Somme empruntée = 16664,17 - 10000 = 6664,17 €.

Exercice 33 La suite $(u_n)_{n\in\mathbb{N}}$ est définie par $u_0=0,25$ et pour tout entier naturel $n:u_{n+1}=f(u_n)$, avec $f(x)=-x^2+2x$.

1. et 2.

La droite d'équation y = x est tracée en noir.

La fonction f est du second degré, donc sa courbe représentative est une parabole. On la trace (en bleu) à partir d'un tableau de valeurs :

х	0	0,2	0,4	0,6	0,8	1
f(x)	0	0,36	0,64	0,84	0,96	1

Parallèlement au graphique, calculons les premiers termes de la suite :

$$u_0 = 0.5$$

 $u_1 = f(u_0) = f(0.5) = -0.5^2 + 2 \times 0.5 = 0.75$
 $u_2 = f(u_1) = f(0.75) = -0.75^2 + 2 \times 0.75 = 0.9375$
 $u_3 = f(u_2) = f(0.9375) = -0.9375^2 + 2 \times 0.9375 \approx 0.996$

 $(u_3 \approx 0.996 \text{ et } \ell = 1 \text{ se confondent presque.})$

3. Un escalier se dessine, qui monte vers le point de coordonnées (1;1). Par conséquent, la suite $(u_n)_{n\in\mathbb{N}}$ semble converger vers la valeur limite $\ell=1$. On note :

$$\lim_{n\to+\infty}u_n=1.$$