### Résolution d'équations différentielles par réseaux de neurones

Matthieu Carreau
Telecom Paris, Institut Polytechnique de Paris
F-91120, Palaiseau, France
matthieu.carreau@telecom-paris.fr

Supervisors:
Stam Nicolis
Institut Denis Poisson
Université de Tours, Université d'Orléans, CNRS (UMR7013)
Parc de Grandmont, F-37200, Tours, France
stam.nicolis@lmpt.univ-tours.fr

Pascal Thibaudeau
CEA Le Ripault
BP 16, F-37260, Monts, France
pascal.thibaudeau@cea.fr

Juillet 2022

#### Résumé

Faire un résumé de ce qu'il y a dans ce document

## Table des matières

| 1        | Inti                              | roduction                                                | 2  |
|----------|-----------------------------------|----------------------------------------------------------|----|
| <b>2</b> | Equation différentielle d'ordre 1 |                                                          | 3  |
|          | 2.1                               | Solutions en séries de Fourier                           | 3  |
|          |                                   | 2.1.1 Première méthode : inversion d'un système linéaire | 4  |
|          |                                   | 2.1.2 Seconde méthode : descente de gradients            |    |
|          | 2.2                               | Solutions par réseau de neurones                         |    |
|          |                                   | 2.2.1 Résultats obtenus                                  | 10 |
| 3        | Mo                                | uvement de précession                                    | 11 |
|          | 3.1                               | Solutions en séries de Fourier                           | 11 |
|          |                                   | 3.1.1 Résultats obtenus                                  | 12 |
| 4        | Cor                               | nclusion et perspectives                                 | 13 |

## Chapitre 1

## Introduction

Cette partie positionne le travail dans un contexte. Décrire le contexte. Dire ici ce que l'on doit faire et proposer un petit résumé des documents lus de façon à montrer en quoi ils sont pertients pour le problème posé. Par exemple : Bidulle et Machin dans la référence [1] ont montré que ... tandis que Truc et Chmuc dans la référence [2] ont prouvé que... Dans la section 2, je montrerai que... Dans la section 3, je montrerai... Enfin dans la section 4, je discuterai des résultats obtenus et proposerai quelques perspectives.

## Chapitre 2

## Equation différentielle d'ordre 1

Soit  $\Psi$  une fonction réelle à une variable dont la solution satisfait l'équation différentielle suivante, où  $\psi_0$  désigne la valeur initiale de la fonction.

$$\begin{cases} \frac{d\Psi(x)}{dx} + \cos(2\pi x) = 0\\ \Psi(0) = \psi_0 \end{cases}$$
 (2.1)

On cherche à tester les méthodes présentées dans la section 1 sur l'équation (2.1), pour tout  $x \in [0, 1]$ . L'équation (2.1) et sa condition initiale donnée en x = 0, admet une solution analytique unique qui s'écrit

$$\Psi(x) = \psi_0 - \frac{1}{2\pi} \sin(2\pi x) \tag{2.2}$$

Cela nous permettra par la suite d'évaluer nos solutions numériques, en les comparant à cette solution analytique.

#### 2.1 Solutions en séries de Fourier

On cherche des solutions numériques approchées de l'équation (2.1) sous la forme de séries de Fourier tronquées avec M harmoniques. On écrit pour cela la solution approchée  $\tilde{\Psi}$  comme la somme de deux termes, le premier  $\psi_0$  constant non ajustable vérifiant la condition initiale, et le deuxième  $\mathcal{N}(x, \mathbf{A})$  dépendant des coefficients  $(A_m)_{m \in [\![1,M]\!]}$  représentés par le vecteur  $\mathbf{A}$ , construit de façon à ne pas influencer la valeur initiale de la fonction.

$$\begin{cases} \tilde{\Psi}(x) = \psi_0 + \mathcal{N}(x, \mathbf{A}) \\ \mathcal{N}(x, \mathbf{A}) = \sum_{m=1}^{M} A_m \sin(2\pi mx) \end{cases}$$
 (2.3)

On définit une fonction d'erreur pour ces solutions potentielles, à partir de la valeur de la dérivée de  $\tilde{\Psi}$  aux N points suivants :  $\forall i \in [\![1,N]\!], x_i = \frac{i-1}{N}$ 

$$E = \frac{1}{2} \sum_{i=1}^{N} \left( \sum_{m=1}^{M} 2\pi m A_m \cos(2\pi m x_i) + \cos(2\pi x_i) \right)^2$$
 (2.4)

On cherche à présent le minimum de E en tant que fonction de  $\mathbf{A}$ . Une condition nécessaire sur  $\mathbf{A}$  pour être un antécédent d'un minimum est

$$\forall l \in [1, M], \frac{\partial E}{\partial A_l} = 0 \tag{2.5}$$

Or ces dérivées partielles sont données pour  $l \in [1, M]$  par :

$$\frac{\partial E}{\partial A_l} = \sum_{i=1}^{N} (\sum_{m=1}^{M} 2\pi m A_m \cos(2\pi m x_i) + \cos(2\pi x_i)) 2\pi l \cos(2\pi l x_i)$$
 (2.6)

Les deux méthodes suivantes ont pour objectif de trouver les coefficients  $(A_m)_{m \in [\![1,M]\!]}$  qui vérifient la condition 2.5, et de vérifier que le vecteur de coefficients trouvé correspond bien à la solution analytique, i.e  $\forall m \in [\![1,M]\!], A_m = -\frac{1}{2\pi}\delta_1^m$ .

#### 2.1.1 Première méthode : inversion d'un système linéaire

On cherche à résoudre le système linéaire donné par :  $\forall l \in [\![1,M]\!], \frac{\partial E}{\partial A_l} = 0$ , on définit pour cela les matrices suivantes :

$$\mathcal{M} = (r_{m,l})_{(m,l) \in \llbracket 1,M \rrbracket^2}, \mathbf{A} = \begin{pmatrix} A_1 \\ A_2 \\ \vdots \\ A_M \end{pmatrix}, \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_M \end{pmatrix}$$
(2.7)

$$\forall (m, l) \in [1, N]^{2}, \begin{cases} r_{m, l} = 2\pi m l \sum_{i=1}^{N} \cos(2\pi m x_{i}) \cos(2\pi l x_{i}) \\ b_{l} = -l \sum_{i=1}^{N} \cos(2\pi x_{i}) \cos(2\pi l x_{i}) \end{cases}$$

$$(2.8)$$

On souhaite alors résoudre le système linéaire en écrivant l'équation matricielle le représentant, c'est-à-dire :

$$\mathcal{M}\mathbf{A} = \mathbf{b} \Leftrightarrow \mathbf{A} = \mathcal{M}^{-1}\mathbf{b} \tag{2.9}$$

On réalise l'implémentation en python, en instanciant les matrices définies précédemment et à l'aide de la bibliothèque numpy. On peut constater que la matrice  $\mathcal{M}$  n'est pas toujours inversible selon le choix de M et N. En effet, on peut montrer (à rajouter en annexe) que c'est nécessairement le cas lorsque M>N, mais on remarque également qu'elle ne l'est pas non plus lorsque M et N sont proches par exemple pour M=N=10. Il serait interressant d'approfondir ce point pour savoir si cela se traduit par le fait que E admette plusieurs minimums locaux par exemple. Il semble que choisir  $N\gg M$  soit suffisant pour que  $\mathcal M$  soit inversible. On choisira alors M=10, N=100 pour la suite. On obtient alors les coefficients présentés en figure 2.1 avec les valeurs absolues des erreurs de chacun par rapport à la valeur théorique. On constate que les erreurs sur chaque coefficient est inférieure à  $10^{-16}$ , on valide donc cette première méthode.

#### 2.1.2 Seconde méthode : descente de gradients

On définit les paramètres suivants :

$$\alpha > 0, \mathbf{A^{(0)}} = \begin{pmatrix} A_1^{(0)} \\ A_2^{(0)} \\ \vdots \\ A_M^{(0)} \end{pmatrix}, \mathbf{g^{(0)}} = \begin{pmatrix} \frac{\partial E^{(0)}}{\partial A_1^{(0)}} \\ \frac{\partial E^{(0)}}{\partial A_2^{(0)}} \\ \vdots \\ \frac{\partial E^{(0)}}{\partial A_2^{(0)}} \end{pmatrix}, \tag{2.10}$$

Puis on calcule itérativement :





(a) Coefficients trouvés

(b) Valeurs absolue de l'erreur pour chaque coefficient

FIGURE 2.1 – Résultats de la méthode de l'inversion de système

$$\mathbf{A}^{(\mathbf{k}+\mathbf{1})} = \mathbf{A}^{(\mathbf{k})} - \alpha \mathbf{g}^{(\mathbf{k})} \tag{2.11}$$

On cherche à trouver le coefficient  $\alpha$  optimal qui assure la convergence tout en maximisant la vitesse de convergence. On exprime tout d'abord le gradient en fonction de la matrice  $\mathcal{M}$  et du vecteur  $\mathbf{b}$  définis précédemment qui sont indépendants de  $\mathbf{A}$  et de k:

$$\mathbf{g^{(k)}} = \mathcal{M}\mathbf{A^{(k)}} - \mathbf{b} \tag{2.12}$$

Ainsi, l'équation de récurrence (2.11) se réécrit comme une suite arithméticogéométrique de vecteurs :

$$\mathbf{A}^{(\mathbf{k}+\mathbf{1})} = (\mathcal{I}_{\mathbf{M}} - \alpha \mathcal{M}) \mathbf{A}^{(\mathbf{k})} + \alpha \mathbf{b}$$
 (2.13)

On en déduit que la suite converge si et seulement si la norme  $(\mathcal{R}^n_{\alpha})_{n\in\mathbb{N}}$  tend vers 0de le maximum du module des valeurs propres de la matrice  $\mathcal{R}_{\alpha} = \mathcal{I}_M - \alpha \mathcal{M}$  est strictement inférieur à 1. De plus, elle convergera d'autant plus vit que ce maximum est faible. On trace donc ce maximum en fonction de  $\alpha$  en figure 2.2. On en déduit la valeur critique  $\alpha_c = 6.2807.10^{-5}$ , pour laquelle le maximum des modules vaut 1, ainsi que la valeur  $\alpha_{min} = 6.2189.10^{-5}$  pour laquelle le maximum des modules est minimum.

On éxécute l'algorithme en parallèle pour les deux valeurs de  $\alpha$  trouvées précédemment ainsi que pour une valeur  $\alpha_1 = 6.3.10^{-5}$ , tel que le maximum des modules des valeurs propres de  $\mathcal{R}_{\alpha}$  soit supérieur à 1. On montre





(b) Au voisinage de l'intersection avec 1

FIGURE 2.2 – Maximum des valeurs propres de  $\mathcal{R}_{\alpha}$  en fonction de  $\alpha$ 

l'évolution de l'erreur en fonction du nombre d'itérations en figure 2.3. On constate que  $\alpha_{min}$  donne lieu à une décroissance exponentielle de l'erreur pendant les 2000 premières itérations, qui devient ensuite stationnaire. Tandis que  $\alpha_1$  donne une erreur qui croît exponentiellement car la norme de  $(\mathcal{R}^n_\alpha)_{n\in\mathbb{N}}$  diverge exponentiellement. La valeur  $\alpha_c$  donne une erreur constante, elle correspond au cas limite entre les 2 cas précédents.

On retient donc les résultats obtenus pour  $\alpha_{min}$  que l'on montre en figure 2.4 avec les valeurs absolues des erreurs de chacun par rapport à la valeur théorique. On constate que les erreurs sur chaque coefficient est inférieure à  $10^{-16}$ , on valide donc cette seconde méthode.

#### 2.2 Solutions par réseau de neurones

On cherche à présent à utiliser un réseau de neurones pour approcher la solution de l'équation différentielle. On cherche désormais des solutions approchées sous la forme suivante :

$$\begin{cases} \tilde{\Psi}(x) = \psi_0 + \mathcal{N}(x, P) \\ \mathcal{N}(x, P) = \sum_{j=1}^{H} v_j \sigma(w_j x + b_j) \end{cases}$$
 (2.14)

 $\mathcal{N}(x, P)$  correspond donc à la sortie d'un réseau de neurones dont l'architecture est présentée en figure 2.5, contenant une couche cachée intermédiaire,



FIGURE 2.3 – Erreurs en fonction du nombre d'itérations pour 3 valeurs de  $\alpha$ 



FIGURE 2.4 – Résultats de la méthode de descrite de gradients



FIGURE 2.5 – Réseau de neurones

qui réalise en sortie une somme pondérée de sigmoïdes, la fonction utilisée est  $\forall x \in \mathbf{R}, \sigma(x) = \frac{1}{1+e^{-x}}$ . Les paramètres P à ajuster sont désormais les coefficients  $(w_j)_{j \in [\![1,H]\!]}$ ,  $(b_j)_{j \in [\![1,H]\!]}$  et  $(v_j)_{j \in [\![1,H]\!]}$ .

Peux-tu donner une référence pour quelqu'un qui cherche ce que tout ceci veut dire?

On définit une nouvelle fonction d'erreur, calculée à partir des N points suivants :  $\forall i \in [\![1,N]\!], x_i = \frac{i-1}{N-1}$ 

$$E(P) = \sum_{i=1}^{N} \left(\frac{d\tilde{\Psi}}{dx}(x_i) + \cos(2\pi x_i)\right)^2$$
 (2.15)

#### L'équation (2.15) est-elle correcte?

On calcule ensuite les expressions analytiques des dérivées partielles de E(P) par rapport à chaque paramètre ajustable, puis on cherche à minimiser cette erreur à l'aide de l'algorithme de descente de gradients.



FIGURE 2.6 – estimation de la solution par un réseau de neurones

#### 2.2.1 Résultats obtenus

On initialise l'algorithme avec les paramètres suivants : (H=4,N=20)On obtient une erreur de  $1,2.10^{-2}$  et une estimation visible en figure 2.6. Cela permet de valider notre modèle sur l'étude à une dimension.

## Chapitre 3

## Mouvement de précession

On s'intéresse désormais au problème de la précession d'un moment magnétique dans un champ magnétique constant. On le modélise par les équations suivantes pour  $t \in [0,1]$ :

$$\begin{cases}
\frac{dv_x}{dt} = \omega v_y \\
\frac{dv_y}{dt} = -\omega v_x
\end{cases}$$
(3.1)

avec les conditions initiales

$$\begin{cases} v_x(0) = V_0 \\ v_y(0) = 0 \end{cases}$$
 (3.2)

dont la solution analytique vaut

$$\begin{cases} v_x(t) = V_0 \cos(2\omega t) \\ v_y(t) = -V_0 \sin(2\omega t) \end{cases}$$
(3.3)

#### 3.1 Solutions en séries de Fourier

On cherche des solutions numériques approchées sous la forme de séries de Fourier tronquées avec M harmoniques, en posant la forme suivante :

$$\begin{cases} \tilde{v}_x(t) = V_0 + \sum_{m=1}^M A_m(\cos(m\omega t) - 1) + B_m \sin(m\omega t) \\ \tilde{v}_y(t) = \sum_{m=1}^M -A_m \sin(m\omega t) + B_m(\cos(m\omega t) - 1) \end{cases}$$
(3.4)

Les coefficients  $(A_m)_{m \in \llbracket 1,M \rrbracket}$  et  $(B_m)_{m \in \llbracket 0,M \rrbracket}$  sont les paramètres à ajuster. On cherche à obtenir la solution analytique, i.e  $\forall m \in \llbracket 0,M \rrbracket, A_m = \delta_1^m$  et  $\forall m \in \llbracket 1,M \rrbracket, B_m = 0$ . On remarque que le coefficient  $A_0$  n'a aucune influence.

On définit une fonction d'erreur pour ces solutions potentielles, en s'interressant aux N points suivants :  $\forall i \in [1, N], t_i = \frac{i-1}{N}$  :

$$E(P) = \sum_{i=1}^{N} \left(\frac{d\tilde{v}_x}{dt}(t_i) - \omega \tilde{v}_y(t_i)\right)^2 + \left(\frac{d\tilde{v}_y}{dt}(t_i) + \omega \tilde{v}_x(t_i)\right)^2$$
(3.5)

On utilise ensuite la méthode de descente de gradients définie précédemment, en calculant les dérivées partielles suivantes :  $(\frac{\partial E}{\partial A_l}, \frac{\partial E}{\partial B_l})_{l \in [\![ 1,M ]\!]}$ 

#### 3.1.1 Résultats obtenus

On initialise l'algorithme avec les paramètres suivants :  $(M=10,N=100,V_0=1,\omega=2\pi,\alpha=10^{-6})$  On obtient au bout de 10000 itérations les résultats suivants :

 $A = \begin{bmatrix} 1.00000255e + 00, -1.23919994e - 06, -2.20679520e - 07, -9.12537244e - 08, -4.93048945e - 08, -3.05670278e - 08, -2.06219718e - 08, -1.47337251e - 08, -1.09721848e - 08, -8.43076573e - 09 \end{bmatrix},$ 

 $B = \begin{bmatrix} -6.59235880e - 07, 3.20274560e - 07, 5.70352161e - 08, 2.35847707e - 08, 1.27429827e - 08, 7.90013061e - 09, 5.32980412e - 09, 3.80797092e - 09, 2.83579070e - 09, 2.17895410e - 09 \end{bmatrix}$ 

On constate comme attendu que le coefficient  $A_0$  est très proche de 1 (erreur relative inférieure de  $2.5510^{-6}$ ), et que les autres coefficients ont une valeur absolue maximale de  $1.2410^{-6}$ . On peut donc valider notre modèle.

# Chapitre 4 Conclusion et perspectives

# Bibliographie

- [1] C.Bidule and A.Machin, Journal of Computer Power 12 123 (2020)
- [2] C.Truc and T.Chmuc, (2020)