Single-sequence hidden Markov models
Posterior probabilities for single-sequence HMMs
Pair Hidden Markov models
Evolutionary Hidden Markov models
Discriminative models and conditional random fields
Summary

Hidden Markov Models Stochastic Regular Grammars

I. Holmes

Department of Bioengineering University of California, Berkeley

Spring semester

Outline

- Single-sequence hidden Markov models
- Posterior probabilities for single-sequence HMMs
- Pair Hidden Markov models
- 4 Evolutionary Hidden Markov models
- 5 Discriminative models and conditional random fields

Single-sequence hidden Markov models Posterior probabilities for single-sequence HMMs Pair Hidden Markov models Evolutionary Hidden Markov models Discriminative models and conditional random fields Summary

- Early motivation: isochores
 - Long regions of uniform GC content (which is correlated with gene density, recombination frequency...)
 - e.g. Major Histocompatibility Complex (MHC) class II and class III sequences on human chromosome 6
 - Lengths 900.9 kb, 642.1 kb; GC-content 41%, 52%
 - Gary Churchill: first Hidden Markov Model for isochore detection (1989)
 - Earliest non-thermodynamic hit to "isochore" on PubMed is 1986, Alonso et al
 - HMM analogy: occasionally dishonest casino (Durbin et al)
- Hidden Markov model: notation
 - Let x denote hidden state, y observed symbol. State space includes START and END
 - Let e(x, y) be probability of emitting character y in state x
 - Let t(i, j) be probability of transition to state j if currently in state i

 Definition of the posterior probability that position n is in state k: sum over paths

$$P(x_n = k|Y) = \frac{\sum_X P(X, Y)\delta(x_n = k)}{P(Y)}$$

• Splitting the path into three parts: < n, = n and > n

$$P(x_n|Y) = \sum_{x_1...x_{n-1}} \sum_{x_{n+1}...x_L} \frac{P(x_1...x_n, y_1...y_n|x_0) P(x_{n+1}...x_{L+1}, y_n|x_n)}{P(Y)}$$

where

$$B_n(x_n) = P(x_{L+1}, y_{n+1} \dots y_L | x_n) = \sum_{x_{n+1} \dots x_L} P(x_{n+1} \dots x_{L+1}, y_{n+1} \dots x_n)$$

Likewise,

$$P(x_n, x_{n+1}|Y) = \frac{F_n(x_n)t(x_n, x_{n+1})e(x_{n+1}, y_{n+1})B_{n+1}(x_{n+1})}{P(Y)^{n+1}B_{n+1}(x_{n+1})}$$

- Motivation: pairwise sequence alignment, pairwise genefinding, etc.
- Let x denote hidden state, y character in sequence Y, z character in sequence Z
- Let $\Delta y(x)$ be 1 if state x emits a character to Y, and 0 otherwise; likewise $\Delta z(x) = 1$ iff x emits to Z
- Emission probability e(x, y, z) is defined as follows:
 - If $\Delta y(x) = 1$ and $\Delta z(x) = 0$, then x is called a **delete** state and $e(x, y, z) \equiv e_d(x, y)$ is a function of x and y only
 - If $\Delta y(x) = 0$ and $\Delta z(x) = 1$, then x is called an **insert** state and $e(x, y, z) \equiv e_i(x, z)$ is a function of x and z only
 - If $\Delta y(x) = 1$ and $\Delta z(x) = 1$, then x is called a **match** state and $e(x, y, z) \equiv e_m(x, y, z)$ is a function of x, y and z
 - If $\Delta y(x) = 0$ and $\Delta z(x) = 0$, then x is called a **null** state and e(x, y, z) is a function of x only (typically just 1)
 - We will assume for now that there are no null states (apart

- As before, t(i, j) is the probability of transition to state j if currently in state i
- Suppose sequence lengths are K, L so observed data are $Y = \{y_1 \dots y_K\}$ and $Z = \{z_1 \dots z_L\}$
- Again we have a state path x₁, x₂...x_N and for convenience we set x₀ =START and x_{N+1} =END.
 - Denote by Λ_{kl} the event that there exists a *break* at (k, l):

$$\Lambda_{kl} \Rightarrow \exists n : \sum_{i=1}^{n} \Delta y(x_i) = k, \sum_{i=1}^{n} \Delta z(x_i) = l$$

So Λ_{kl} means that, at some point n on the state path, the model has emitted k symbols to Y and l symbols to Z.

Viterbi

$$V_{kl}(x_n) = \max_{x_1...x_{n-1}} P(\Lambda_{kl}, x_1...x_n, y_1...y_k, z_1...z_l|x_0)$$

Recursion (assuming no null states)

$$V_{kl}(x_n) = \begin{cases} e(x_n, y_k, z_l) \max_{x_{n-1}} t(x_{n-1}, x_n) V_{k-\Delta y(x_n), l-\Delta z(x_n)}(x_{n-1}) \\ 1 \\ 0 \\ 0 \end{cases}$$

Forward

$$F_{kl}(x_n) = P\left(\Lambda_{kl}, x_n, y_1 \dots y_k, z_1 \dots z_l | x_0\right) = \sum_{x_1 \dots x_{n-1}} P\left(\Lambda_{kl}, x_1 \dots x_n, x_n \right)$$

Recursion (assuming no null states)
$$F_{kl}(x_n) = \begin{cases} e(x_n, y_k, z_l) \sum_{x_{n-1}} t(x_{n-1}, x_n) F_{k-\Delta y(x_n), l-\Delta z(x_n)}(x_{n-1}) & \text{if } \\ 1 & \text{if } \\ 0 & \text{if } \end{cases}$$

Backward

$$B_{kl}(x_n) = P(\Lambda_{kl}, x_{N+1}, y_{k+1} \dots y_K, z_{l+1} \dots z_L | x_n) = \sum_{x_{n+1} \dots x_N} P(\Lambda_{kl}, x_n)$$

Recursion (assuming no null states)

$$B_{kl}(x_n) = \begin{cases} \sum_{x_{n+1}} t(x_n, x_{n+1}) e(x_{n+1}, y_{k+1}, z_{l+1}) B_{k+\Delta y(x_n+1), l+\Delta z(x_n+1)} \\ t(x_n, \mathsf{END}) \\ 0 \end{cases}$$

Evidence, posterior probabilities & EM counts

I. Holmes

$$P(Y,Z) = \sum_{x} F_{KL}(x)t(x, \text{END})$$

$$P(\Lambda_{kl}, x_n | Y, Z) = \frac{F_{kl}(x_n)B_{kl}(x_n)}{P(Y)}$$

$$P(\Lambda_{kl}, x_n, x_{n+1} | Y) = \frac{F_{kl}(x_n)t(x_n, x_{n+1})e(x_{n+1}, y_{k+1}, z_{l+1})B_{k+\Delta y}}{P(Y)}$$

$$\hat{t}(i,j) = \sum_{k=0}^{K} \sum_{l=0}^{L} P(\Lambda_{kl}, x_n = i, x_{n+1} = j | Y, Z)$$

$$\hat{e}_m(x, y, z) = \sum_{k: y_k = y} \sum_{l: z_l = z} P(\Lambda_{kl}, x_n = x | Y, Z)$$

$$\hat{e}_d(x, y) = \sum_{k: y_k = y} \sum_{l: z_l = z} P(\Lambda_{kl}, x_n = x | Y, Z)$$

HMMs

Decision theory ("optimal accuracy").

- Decision theory: maximise expected "reward", making use of the posterior distribution
- Overlap score: an objective function (i.e. reward) that compares predicted alignment α with true alignment α'
 - Overlap score is $|\alpha \cap \alpha'|$, where an alignment is viewed as a set of match co-ords $\alpha = \{(k_1, l_1), (k_2, l_2) \dots\}$
 - Several other good objective functions (e.g. "Cline shift score"); overlap is simpler, albeit less realistic
 - NB also $\delta(\alpha=\alpha')$ which only rewards perfect alignments, yielding a multiplicative, Viterbi-like recursion
 - Example criteria: how good is alignment for structure prediction? homology detection? benchmark of choice?
 - e.g. PROBCONS (Batzoglou et al) uses the sum-of-pairs score, same as the BAliBASE benchmark
- Posterior expectation of overlap score for an alignment (NB only match states have $\Delta y(x)\Delta z(x) \neq 0$).

Single-sequence hidden Markov models
Posterior probabilities for single-sequence HMMs
Pair Hidden Markov models
Evolutionary Hidden Markov models
discriminative models and conditional random fields
Summary

- Dynamic programming algorithms whose finite state automata are almost or exactly Pair HMMs
 - Needleman-Wunsch; Smith-Waterman; Gotoh; Altschul, Proteins 1998
 - General implementations: DART library (C++), Exonerate (C), HMMoC (Java/C++), ...

- Can readily extend the Pair HMM to a multi-sequence HMM for multiple sequence alignment
 - Arbitrary number N of output sequences $Y^{(1)}, Y^{(2)}, Y^{(3)} \dots Y^{(N)}$ of lengths $L_1 \dots L_N$ (see e.g. Holmes 2003)
 - Dynamic programming time/memory complexity is $O(\prod_n L_n)$ —not cheap
 - Ultimately, would like to structure $\Delta Y^{(n)}(x)$, t(x, x') and $e(x, y^{(1)} \dots y^{(N)})$ according to some underlying phylogenetic tree
 - The DP algorithms can also be tree structured, c.f. "progressive alignment"
 - For now, we ignore phylogenetic structure of indels (Δ,t) and concentrate on substitution model (e)
- Initial, simplistic, restrictive concept of Evolutionary HMM, lacking a good gap model:
 - A single-sequence HMM that emits

- HMMs model $P(Y) = \sum_{X} P(X, Y)$ (generative modeling). ML training maximizes this probability.
- Intuitively, since we are interested in predicting X correctly, it may make more sense to model conditional probability P(X|Y) (discriminative modeling)
- Consider the conditional likelihood for an HMM, expressed in terms of the feature vector {u, f} implied by X:

$$\log P(X|Y) = \frac{1}{P(Y)} \exp \left(\sum_{i,j} u(i,j) \log t(i,j) + \sum_{i,k} f(i,k) \log e(i,k) \right)$$

where P(Y) is computed by the Forward algorithm.

• We can write down a likelihood P(X|Y) for a similarly trellis-structured graphical model as follows

Single-sequence hidden Markov models
Posterior probabilities for single-sequence HMMs
Pair Hidden Markov models
Evolutionary Hidden Markov models
Discriminative models and conditional random fields
Summary

Summary

HMMs