Introduction to Machine Learning

Regularization Soft-thresholding and lasso (Deep-Dive)

Learning goals

 Understand the relationship between soft-thresholding and L1 regularization

SOFT-THRESHOLDING AND L1 REGULARIZATION

In the lecture, we wanted to solve

$$\min_{m{ heta}} ilde{\mathcal{R}}_{\mathsf{reg}}(m{ heta}) = \min_{m{ heta}} \mathcal{R}_{\mathsf{emp}}(\hat{ heta}) + \sum_{j} \left[rac{1}{2} H_{j,j} (heta_{j} - \hat{ heta}_{j})^{2}
ight] + \sum_{j} \lambda | heta_{j}|$$

with $H_{j,j} \ge 0, \lambda > 0$. Note that we can separate the dimensions, i.e.,

$$ilde{\mathcal{R}}_{\mathsf{reg}}(oldsymbol{ heta}) = \sum_{j} z_{j}(heta_{j}) \; \mathsf{with} \; z_{j}(heta_{j}) = rac{1}{2} H_{j,j} (heta_{j} - \hat{ heta}_{j})^{2} + \lambda | heta_{j}|.$$

Hence, we can minimize each z_i separately to find the global minimum.

If $H_{j,j}=0$, then z_j is clearly minimized by $\hat{\theta}_{\mathsf{lasso},j}=0$. Otherwise, z_j is strictly convex since $\frac{1}{2}H_{j,j}(\theta_j-\hat{\theta}_j)^2$ is strictly convex and the sum of a strictly convex function and a convex function is strictly convex.

