

B. Tech. Degree VI Semester Regular Examination April 2022

CS 19-202-0603 ANALYSIS AND DESIGN OF ALGORITHMS

(2019 Scheme)

Time: 3 Hours

Maximum Marks: 60

Course Outcome

On successful completion of the course, the students will be able to:

- CO1: Analyse a given algorithm and express its worst, best and average time and space complexities in asymptotic notations.
- CO2: Solve recurrence equations using Substitution Method, Changing Variables, Recursion Tree and Masters Theorem.
- CO3: Understand the dynamic programming paradigm and its algorithmic design solutions.
- CO4: Familiarise optimization problems using Greedy Method.
- CO5: Design efficient algorithms using Backtracking and Branch and Bound Techniques for solving problems.
- CO6: Familiarize some approximation algorithms and the benefit of using them.
- CO7: Classify computational problems into P, NP, NP-Hard and NP-Complete complexity classes.

Bloom's Taxonomy Levels (BL): L1 – Remember, L2 – Understand, L3 – Apply, L4 – Analyze,

- L5 Evaluate, L6 Create
- PO Programme Outcome

PART A (Answer ALL questions)

1.		$(8 \times 3 = 24)$	Marks	BL	CO	PO
	(a)	What are the different asymptotic notations?	3	L1	1	1,2,3
	(b)	Estimate worst case, best case and average case complexity of linear search.	3	L2	1	1,2,3
	(c)	Give the analysis of Insertion sort.	3	LÌ	2	1,2,3
	(d)	Differentiate between Binomial heap and Fibonacci heap.	3	L2	1	1,2,3
	(e)	Discuss the properties of RBT.	3	L1	. 1	1,2,3 3
	(f)	What are Minimum Spanning Tree? Differentiate between Prim's and Kruskal's algorithms.	3	L1	4	3
	(g)	Write short notes on the P, NP, NP hard and NP complete complexity classes.	3	L1	7	4,5
	(h)	What are PRAM models? Give an example.	3	Ll	6	3,10
		PART B				
		$(4\times12=48)$				
П.	(a)	Solve the following equations by Masters theorem.	6	L3	2	1,2,3
		(i) $T(n) = 2T\left(\frac{n}{2}\right) + n$	•			
		(ii) $T(n) = T\left(\frac{n}{2}\right) + n^3$				
	(b)	Solve the given equations using iterative method.	6	L3	2	1,2,3
		$T(n) = 3T\left(\frac{n}{4}\right) + n$.*			

BTS-VI(R)-04-22-0293

III.	(a)	Solve the given equations using recursive tree method.	6	L3	2	1,2,3
		(i) $T(n) = 2T\left(\frac{n}{2}\right) + n^2$				
		(ii) $T(n) = T\left(\frac{n}{2}\right) + T\left(\frac{n}{4}\right) + T\left(\frac{n}{8}\right) + n$				
	(b)	Differentiate between greedy and dynamic programming.	6	L2	4	3
IV.		Explain the analysis of Quick sort algorithm with an example and analyze its best case and worst case complexity.	12	L4	3	3
V.		Explain the analysis of Heap sort algorithm with an example analyze its best case and worst case complexity.	12	L4	3	3
VI.		Explain backtracking with an example. OR	12	L1	5	3
VII.		Given a chain of four matrices. The matrices have size 5×4 , 4×6 , 6×2 , 2×7 . Evaluate M [1, 4] using dynamic programming approach of Matrix chain multiplication.	12	L3	3	3
VIII.		Discuss the approximation algorithm for Graph coloring. OR	12	Li	6	3,10
IX.		Discuss the approximation algorithm for TSP in detail with an example.	12	L1	6	3,10

Bloom's Taxonomy Levels L1 = 50%, L2 = 17%, L3 = 22%, L4 = 11%
