## **Supporting Information**

#### Figure S1. Correlation of transcript levels to modified domains: positional effect

For each of the 15 domain codes, expression levels of transcripts that were assigned to domains of this code are plotted against the absolute distance of the domain to the TSS. "CC" is the Spearman Rank Correlation Coefficient between absolute distance and expression level.

## Figure S2. Verification of gene expression array data

Shown are average  $\log_2$  values over two independent biological replicates. (A) Comparison of  $\log_2$  intensities, the scale of the real-time PCR data was adjusted to the array intensities. (B) The  $\log_2$  fold changes as determined from expression arrays in comparison to real-time PCR fold changes normalized to Hprt1.

## Figure S3. Validation of ChIP enrichment

From each cell type two biological replicates (set1 and set2) were analyzed for each histone modification. Fold changes were calculated relative to input. Primers named "all\_mr" were designed for sites showing enrichment on arrays (positive controls), primers named "no\_mr" were designed for non-enriched sites (negative controls). (A) Validation of ChIP enrichment before linear amplification. Normal rabbit IgG ChIP was analyzed as control. ChIP with normal rabbit IgG showed no enrichment over input at any tested site. (B) Validation of modified sites identified by ChIP-chip using amplified material

Fischer et al. 1 of 20

Figure S1 Н3ас H4ac-H3ac H4ac-H3acK4me2 Expression level [log2] Expression level [log2] Expression level [log2] 4 0 1000 3000 5000 1000 3000 5000 1000 3000 Distance of domain to TSS [bp] Distance of domain to TSS [bp] Distance of domain to TSS [bp] CC = 0.01CC = 0.03CC = -0.06H4ac-H3acK4me2/3 H4ac-H3acK4me3 H3acK4me2 Expression level [log2] 4 Expression level [log2] 4 Expression level [log2] 4 2 2 1000 3000 1000 3000 0 1000 0 5000 0 5000 Distance of domain to TSS [bp] Distance of domain to TSS [bp] CC = 0.01CC = -0.06H3acK4me2/3 H3acK4me3 Expression level [log2] Expression level [log2] Expression level [log2] 4 2 2 1000 5000 1000 3000 1000 0 3000 0 5000 0 Distance of domain to TSS [bp] Distance of domain to TSS [bp] CC = 0CC = 0.05H4ac-H3K4me2 H4ac-H3K4me2/3 Expression level [log2] Expression level [log2] Expression level [log2] 4 4 4 2 0 1000 3000 5000 0 1000 3000 1000 Distance of domain to TSS [bp] Distance of domain to TSS [bp]

5000



# Figure S2A





Fischer et al. 3 of 20

### Figure S2B







Fischer et al. 4 of 20













Fischer et al. 6 of 20

# **Table S1.** Sites enriched for histone modifications per cell type and comparison to published data

Table lists the number and median size of identified modified sites of each modification and cell type. The median site sizes and the average number of sites per gene are compared to published data (1).

| Number of Modified Sites |        |        |       | N      | /ledian Site | Size [b | p]           | Average Number of Sites per Gene |        |      |                |
|--------------------------|--------|--------|-------|--------|--------------|---------|--------------|----------------------------------|--------|------|----------------|
| Modifications            | C2C12u | C2C12d | HL1   | C2C12u | C2C12d       | HL1     | HepG2<br>[1] | C2C12u                           | C2C12d | HL1  | HepG2 [1]<br>* |
| Н3ас                     | 3,059  | 3,248  | 3,210 | 637    | 645          | 609     | 703          | 0.34                             | 0.36   | 0.35 | 0.50           |
| H4ac                     | 2,925  | 3,026  | 2,940 | 561    | 561          | 543     | n.a.         | 0.32                             | 0.33   | 0.32 | n.a.           |
| H3K4me2                  | 3,297  | 3,205  | 3,378 | 621    | 613          | 608     | 605          | 0.36                             | 0.35   | 0.37 | 0.31           |
| H3K4me3                  | 3,493  | 3,538  | 3,357 | 647    | 647          | 607     | 659          | 0.39                             | 0.39   | 0.37 | 0.36           |

u, undifferentiated; d, differentiated; n.a., not available

1. Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK, et al. (2005) Genomic Maps and Comparative Analysis of Histone Modifications in Human and Mouse. Cell 120: 169-181.

Fischer et al. 7 of 20

<sup>\*</sup>These values were calculated from the number of modified sites as listed in Table 1 of the publication by Bernstein *et al.* [1], assuming a total of 1,397 genes on Chr 21 and Chr 22 (Ensembl v36).

# **Table S2.** Transcripts categorized by associated modified sites: *p* values for pair wise comparison of transcript categories as shown in Figure 5A

Table gives p values for pair wise comparison of categories as shown in Figure 5A. Transcripts were categorized according to the modification status of the respective gene into five groups corresponding to the rows and columns of the table. Expression levels of the categories were compared by two-sided two-sample Wilcoxon tests, and p values were adjusted for multiple testing using the Bonferroni procedure. For each comparison, the table gives sign of the difference and the p value: +, row category has higher levels than column category; -, row category has lower levels than column category; o, no rejection.

| Transcript<br>Category | No modification         | H3K4me2        | H3K4me3        | H4ac           |
|------------------------|-------------------------|----------------|----------------|----------------|
| Н3ас                   | +(<10 <sup>-30</sup> )  | $+(4x10^{-8})$ | $+(8x10^{-7})$ | $+(2x10^{-3})$ |
| H4ac                   | $+(<10^{-30})$          | +(0.04)        | 0              |                |
| H3K4me3                | $+(<10^{-30})$          | o              |                |                |
| H3K4me2                | + (<10 <sup>-30</sup> ) |                |                |                |

Fischer et al. 8 of 20

# **Table S3.** Transcripts categorized by associated modified domains: *p* values for pair wise comparison of categories as shown in Figure 5B

Table gives p values for pair wise comparison of categories as shown in Figure 5B. Transcripts were categorized according to presence of modified domains in the respective gene. Only the eight most frequent domain types are listed. Expression levels of the categories were compared by two-sided two-sample Wilcoxon tests, and p values were adjusted for multiple testing using the Bonferroni procedure. For each comparison, the table gives sign of the difference and the p value: +, row category has higher levels than column category; -, row category has lower levels than column category; o, no rejection.

| Transcript<br>Category | No<br>modification     | H3K4me2         | H3K4me2/3       | H3K4me3        | H3ac-K4me3     | H3ac-<br>K4me2/3 | H4acH3ac-<br>K4me2/3 | H4ac           |
|------------------------|------------------------|-----------------|-----------------|----------------|----------------|------------------|----------------------|----------------|
| Н3ас                   | +(<10 <sup>-30</sup> ) | $+(1x10^{-16})$ | $+(2x10^{-19})$ | $+(6x10^{-8})$ | $+(3x10^{-2})$ | $+(4x10^{-5})$   | $+(2x10^{-2})$       | $+(9x10^{-6})$ |
| H4ac                   | +(<10 <sup>-30</sup> ) | $+(3x10^{-6})$  | $+(5x10^{-8})$  | o              | o              | o                | o                    |                |
| H4ac-H3ac-<br>K4me2/3  | +(<10 <sup>-30</sup> ) | $+(7x10^{-11})$ | $+(1x10^{-13})$ | $+(7x10^{-3})$ | o              | o                |                      |                |
| H3ac-<br>K4me2/3       | +(<10 <sup>-30</sup> ) | $+(8x10^{-9})$  | $+(2x10^{-11})$ | o              | o              |                  |                      |                |
| H3ac-K4me3             | $+(2x10^{-16})$        | $+(2x10^{-6})$  | $+(8x10^{-8})$  | o              |                |                  |                      |                |
| H3K4me3                | $+(6x10^{-12})$        | $+(2x10^{-4})$  | $+(4x10^{-5})$  |                |                |                  |                      |                |
| H3K4me2/3              | o                      | o               |                 |                |                |                  |                      |                |
| H3K4me2                | o                      |                 |                 |                |                |                  |                      |                |

Fischer et al. 9 of 20

## Table S4. Gene Ontology (GO) association for differentially expressed genes

GO association for genes differentially expressed between C2C12 undifferentiated and differentiated cells (A and B) and between C2C12 undifferentiated cells and HL-1 cells (C and D).

**Table S4A.** GO association of genes upregulated in C2C12 differentiated cells compared to undifferentiated cells

| ID         | p value | Odds Ratio | Expected Count | Observed<br>Count | Size | Term                               | Ontology              |
|------------|---------|------------|----------------|-------------------|------|------------------------------------|-----------------------|
| GO:0006937 | 2.1E-06 | 31.74      | 1              | 6                 | 10   | regulation of muscle contraction   | Biological<br>Process |
| GO:0006986 | 7.3E-04 | 9.39       | 1              | 5                 | 16   | response to<br>unfolded<br>protein | Biological<br>Process |
| GO:0005861 | 1.2E-08 | Inf        | 0              | 6                 | 6    | troponin<br>complex                | Cellular<br>Component |
| GO:0030017 | 9.7E-06 | 10.75      | 1              | 8                 | 24   | sarcomere                          | Cellular<br>Component |
| GO:0005783 | 1.2E-05 | 4.52       | 5              | 16                | 100  | endoplasmic reticulum              | Cellular<br>Component |
| GO:0043292 | 2.6E-05 | 9.03       | 1              | 8                 | 27   | contractile fiber                  | Cellular<br>Component |
| GO:0015629 | 2.9E-05 | 5.83       | 3              | 11                | 53   | actin<br>cytoskeleton              | Cellular<br>Component |

**Table S4B.** GO association of genes downregulated in C2C12 differentiated cells compared to undifferentiated cells

| ID         | p value | Odds Ratio | Expected Count | Observed<br>Count | Size | Term                                                                | Ontology              |
|------------|---------|------------|----------------|-------------------|------|---------------------------------------------------------------------|-----------------------|
| GO:0000279 | 9.0E-12 | 18.05      | 2              | 16                | 29   | M phase                                                             | Biological<br>Process |
| GO:0000278 | 6.6E-11 | 14.63      | 3              | 16                | 32   | mitotic cell<br>cycle                                               | Biological<br>Process |
| GO:0006260 | 1.6E-09 | 12.01      | 3              | 15                | 33   | DNA replication                                                     | Biological<br>Process |
| GO:0051301 | 2.7E-09 | 15.31      | 2              | 13                | 31   | cell division                                                       | Biological<br>Process |
| GO:0043283 | 7.9E-07 | 3.09       | 17             | 40                | 264  | biopolymer<br>metabolism                                            | Biological<br>Process |
| GO:0007067 | 1.5E-06 | 13.51      | 1              | 9                 | 21   | mitosis                                                             | Biological<br>Process |
| GO:0007059 | 2.5E-05 | 19.65      | 1              | 6                 | 10   | chromosome<br>segregation                                           | Biological<br>Process |
| GO:0051241 | 3.0E-05 | Inf        | 0              | 4                 | 4    | negative<br>regulation of<br>organismal<br>physiological<br>process | Biological<br>Process |
| GO:0006334 | 9.8E-05 | 13.08      | 1              | 6                 | 12   | nucleosome assembly                                                 | Biological<br>Process |
| GO:0007160 | 1.0E-04 | 21.61      | 1              | 5                 | 8    | cell-matrix adhesion                                                | Biological<br>Process |
| GO:0006333 | 1.1E-04 | 9.23       | 1              | 7                 | 17   | chromatin<br>assembly or<br>disassembly                             | Biological<br>Process |
| GO:0006268 | 1.4E-04 | 51.38      | 0              | 4                 | 5    | DNA<br>unwinding<br>during<br>replication                           | Biological<br>Process |

Fischer et al. 10 of 20

|            | 1       |       |    |    |     |                               |                       |
|------------|---------|-------|----|----|-----|-------------------------------|-----------------------|
| GO:0051726 | 2.2E-04 | 4.20  | 4  | 12 | 51  | regulation of cell cycle      | Biological<br>Process |
| GO:0006270 | 4.0E-04 | 25.67 | 0  | 4  | 6   | DNA                           | Biological            |
|            |         |       |    |    |     | replication                   | Process               |
| GO:0000910 | 4.0E-04 | 25.67 | 0  | 4  | 6   | initiation<br>cytokinesis     | Biological            |
| 30.0000710 | 4.0L-04 | 23.07 | O  | 7  | O   | cy tokinesis                  | Process               |
| GO:0007126 | 4.0E-04 | 12.94 | 1  | 5  | 10  | meiosis                       | Biological            |
| CO-0051221 | 4.05.04 | 12.04 | 1  | _  | 10  | 11                            | Process               |
| GO:0051321 | 4.0E-04 | 12.94 | 1  | 5  | 10  | meiotic cell<br>cycle         | Biological<br>Process |
| GO:0007088 | 4.1E-04 | Inf   | 0  | 3  | 3   | regulation of                 | Biological            |
|            |         |       |    |    |     | mitosis                       | Process               |
| GO:0007001 | 4.4E-04 | 5.00  | 3  | 9  | 33  | chromosome                    | Biological            |
|            |         |       |    |    |     | organization and biogenesis   | Process               |
|            |         |       |    |    |     | (sensu                        |                       |
|            |         |       |    |    |     | Eukaryota)                    |                       |
| GO:0006323 | 5.7E-04 | 4.79  | 3  | 9  | 34  | DNA                           | Biological            |
| GO:0006461 | 6.6E-04 | 7.82  | 1  | 6  | 28  | packaging<br>protein          | Process<br>Biological |
| GO:0000401 | 0.0E-04 | 7.02  | 1  | 0  | 20  | complex                       | Process               |
|            |         |       |    |    |     | assembly                      | 110000                |
| GO:0006139 | 8.2E-04 | 2.10  | 20 | 37 | 310 | nucleobase,                   | Biological            |
|            |         |       |    |    |     | nucleoside,<br>nucleotide and | Process               |
|            |         |       |    |    |     | nucleotide and                |                       |
|            |         |       |    |    |     | metabolism                    |                       |
| GO:0005694 | 4.9E-08 | 7.63  | 4  | 16 | 54  | chromosome                    | Cellular              |
| GO:0043228 | 2.45.07 | 2.47  | 14 | 35 | 208 |                               | Component<br>Cellular |
| GO:0043228 | 2.4E-07 | 3.47  | 14 | 33 | 208 | non-<br>membrane-             | Component             |
|            |         |       |    |    |     | bound                         | component             |
|            |         |       |    |    |     | organelle                     |                       |
| GO:0005634 | 5.3E-07 | 2.98  | 23 | 50 | 378 | nucleus                       | Cellular<br>Component |
| GO:0000793 | 9.1E-07 | 80.55 | 1  | 6  | 7   | condensed                     | Component             |
|            | J.12 07 | 00.55 | •  | Ü  | ,   | chromosome                    | Component             |
| GO:0000776 | 1.3E-04 | 52.49 | 0  | 4  | 5   | kinetochore                   | Cellular              |
| CO-0000797 | 1.05.04 | 17.55 | 1  | _  | 0   |                               | Component             |
| GO:0000786 | 1.9E-04 | 16.55 | 1  | 5  | 9   | nucleosome                    | Cellular<br>Component |
| GO:0005876 | 3.9E-04 | Inf   | 0  | 3  | 3   | spindle                       | Cellular              |
|            |         |       |    |    |     | microtubule                   | Component             |
| GO:0005657 | 8.2E-04 | 17.47 | 1  | 4  | 7   | replication                   | Cellular              |
|            | l       |       |    |    |     | fork                          | Component             |

**Table S4C.** GO association of genes upregulated in HL-1 cells compared to undifferentiated C2C12 cells

| ID         | p value | Odds Ratio | Expected Count | Observed<br>Count | Size | Term                                                            | Ontology              |
|------------|---------|------------|----------------|-------------------|------|-----------------------------------------------------------------|-----------------------|
| GO:0006941 | 2.0E-04 | 34.15      | 1              | 5                 | 6    | striated<br>muscle<br>contraction                               | Biological<br>Process |
| GO:0015980 | 2.0E-04 | 3.96       | 6              | 14                | 39   | energy<br>derivation by<br>oxidation of<br>organic<br>compounds | Biological<br>Process |
| GO:0044275 | 2.7E-04 | 6.25       | 3              | 9                 | 19   | cellular<br>carbohydrate<br>catabolism                          | Biological<br>Process |

Fischer et al. 11 of 20

| GO:0006096 | 3.8E-04 | 6.92 | 2 | 8  | 16 | glycolysis                 | Biological<br>Process |
|------------|---------|------|---|----|----|----------------------------|-----------------------|
| GO:0005975 | 6.8E-04 | 2.95 | 8 | 17 | 58 | carbohydrate<br>metabolism | Biological<br>Process |

**Table S4D.** GO association of genes downregulated in HL-1 cells compared to undifferentiated C2C12 cells

| ID         | p value | Odds Ratio | Expected Count | Observed<br>Count | Size | Term                            | Ontology              |
|------------|---------|------------|----------------|-------------------|------|---------------------------------|-----------------------|
| GO:0007275 | 2.5E-07 | 2.66       | 29             | 56                | 235  | development                     | Biological<br>Process |
| GO:0007155 | 4.0E-07 | 4.41       | 9              | 24                | 65   | cell adhesion                   | Biological<br>Process |
| GO:0000902 | 3.5E-06 | 4.88       | 6              | 18                | 45   | cellular<br>morphogenesis       | Biological<br>Process |
| GO:0007160 | 4.1E-06 | 48.78      | 1              | 7                 | 8    | cell-matrix adhesion            | Biological<br>Process |
| GO:0042060 | 5.1E-05 | 11.18      | 2              | 8                 | 13   | wound healing                   | Biological<br>Process |
| GO:0006817 | 1.2E-04 | 12.16      | 2              | 7                 | 11   | phosphate<br>transport          | Biological<br>Process |
| GO:0007399 | 1.5E-04 | 3.34       | 8              | 18                | 57   | nervous system development      | Biological<br>Process |
| GO:0001525 | 1.7E-04 | 4.72       | 4              | 12                | 30   | angiogenesis                    | Biological<br>Process |
| GO:0009887 | 1.9E-04 | 3.13       | 9              | 19                | 63   | organ<br>morphogenesis          | Biological<br>Process |
| GO:0030216 | 2.8E-04 | Inf        | 1              | 4                 | 4    | keratinocyte<br>differentiation | Biological<br>Process |
| GO:0001568 | 3.5E-04 | 3.69       | 6              | 14                | 41   | blood vessel<br>development     | Biological<br>Process |
| GO:0048637 | 8.7E-04 | 6.93       | 2              | 7                 | 14   | skeletal muscle<br>development  | Biological<br>Process |
| GO:0031012 | 2.5E-08 | 6.11       | 7              | 22                | 47   | extracellular<br>matrix         | Cellular<br>Component |
| GO:0005576 | 2.7E-06 | 2.42       | 30             | 54                | 223  | extracellular region            | Cellular<br>Component |
| GO:0005581 | 1.4E-04 | 19.26      | 1              | 6                 | 8    | collagen                        | Cellular<br>Component |
| GO:0005604 | 3.8E-04 | 9.02       | 2              | 7                 | 12   | basement<br>membrane            | Cellular<br>Component |
| GO:0005615 | 4.5E-04 | 1.99       | 27             | 44                | 201  | extracellular<br>space          | Cellular<br>Component |

Fischer et al. 12 of 20

#### Table S5. Linear model and obtained coefficients

Given is a linear model relating absolute expression level to cell type, presence of modified sites, median probe GC content and interactions. The table specifies for each predictor variable the coefficient estimate, its standard error and p value for the null hypothesis that the coefficient is equal to 0.

#### The model (in S-plus/R formula notation)

```
y ~ H3ac + H4ac + H3K4me2 + H3K4me3 + GC + H3ac:H4ac + H4ac:H3K4me2 + H4ac:H3K4me3 + H4ac:H3K4me3 + H3ac:H4ac:H3K4me3 + H3ac:H3K4me3 + H3Ac:H
```

where

y: expression level of transcript in cell line

*H3ac*: indicator variable for transcript's associated modification H3ac; it is 1 if at least one H3ac is associated to the transcript, 0 otherwise.

H4ac, H3K4me2, H3K4me3: analogous to H3ac

GC: median percent GC content of all expression microarray probes mapped to transcript

cell.type: one of "C2C12U", "C2C12D" or "HL1"

The expression "A:B" denotes the interaction term between predictors A and B, and the function "lm" of R version 2.4 was used to fit the model.

#### Coefficients of model

|                           | Estimate | Std.Error | t value | p value               |
|---------------------------|----------|-----------|---------|-----------------------|
| Intercept                 | 4.26     | 0.06      | 76.24   | < 2*10 <sup>-16</sup> |
| НЗас                      | 0.58     | 0.05      | 11.07   | $< 2*10^{-16}$        |
| H4ac                      | 0.38     | 0.03      | 13.28   | $< 2*10^{-16}$        |
| H3K4me2                   | 0.06     | 0.05      | 1.19    | 1                     |
| H3K4me3                   | 0.39     | 0.04      | 9.01    | $< 2*10^{-16}$        |
| GC                        | 8.22     | 0.02      | 75.22   | $< 2*10^{-16}$        |
| cell.type.C2C12U          | -0.02    | 0.02      | -0.99   | 1                     |
| cell.type.C2C12D          | 0        | 0.02      | -0.25   | 1                     |
| H3ac:H4ac                 | -0.23    | 0.1       | -2.34   | 0.37                  |
| H4ac:H3K4me2              | 0.08     | 0.09      | 0.93    | 0.35                  |
| H4ac:H3K4me3              | -0.33    | 0.09      | -4.44   | $3.1*10^{-3}$         |
| H3ac:H3K4me2              | -0.23    | 0.11      | -2.09   | 0.7                   |
| H3ac:H3K4me3              | -0.37    | 0.11      | -3.11   | $1.7*10^{-4}$         |
| H3K4me2:H3K4me3           | -0.33    | 0.08      | -4.1    | 7.9*10 <sup>-4</sup>  |
| H4ac:H3K4me2:H3K4me3      | 0.05     | 0.15      | 0.31    | 1                     |
| H3ac:H4ac:H3K4me2         | -0.11    | 0.18      | -0.63   | 1                     |
| H3ac:H4ac:H3K4me3         | 0.24     | 0.16      | 2.33    | 0.38                  |
| H3ac:H3K4me2:H3K4me3      | 0.46     | 0.14      | 3.4     | 1.3*10 <sup>-2</sup>  |
| H3ac:H4ac:H3K4me2:H3K4me3 | -0.08    | 0.23      | -0.33   | 1                     |

p values have been corrected for multiple testing using the Bonferroni procedure.

Certain interaction terms between modifications are significantly different from zero. This confirms the non-additivity of the modification effects.

Fischer et al. 13 of 20

**Tables S6.** Contingency Tables for Differential Upregulation versus Modification Gains For each of the four histone modifications, a contingency table relates the proportion of transcripts that are differentially upregulated to the proportion of transcripts that gain the respective modification during differentiation.

The following tables contrast differential upregulation of transcripts in differentiated C2C12 (rows) against whether these transcripts gain histone modification marks during differentiation (columns).

#### Table S6A. H4ac

| _                   | H4ac no change | H4ac gain |
|---------------------|----------------|-----------|
| No diff. expression | 10025          | 825       |
| Significant up      | 97             | 29        |

#### Table S6B. H3ac

|                     | H3ac no change | H3ac gain |
|---------------------|----------------|-----------|
| No diff. expression | 10267          | 583       |
| Significant up      | 114            | 12        |

### Table S6C. H3K4me2

|                     | H3K4me2 no change | H3K4me2 gain |
|---------------------|-------------------|--------------|
| No diff. expression | 10259             | 591          |
| Significant up      | 109               | 17           |

#### Table S6D: H3K4m3

|                     | H3K4me3 no change | H3K4me3 gain |
|---------------------|-------------------|--------------|
| No diff. expression | 10281             | 569          |
| Significant up      | 112               | 14           |

Fischer et al. 14 of 20

## Table S7. Logistic regression model and obtained coefficients

Associating modification gains during differentiation to differentially up-regulated genes.

Logistic regression analysis of binary indicator variable for upregulation between undifferentiated and differentiated C2C12 cells against gain of modified sites. The table gives for each predictor variable the coefficient estimate, its standard error of the *p* value for the null hypothesis that the coefficient is equal to 0.

#### The model (in S-plus/R formula notation)

$$dy \sim dH3ac + dH4ac + dH3K4me2 + dH3K4me3$$

where

dy: indicator variable: 1 if the transcript is found at significantly higher level in differentiated C2C12 cells than in undifferentiated cells, 0 otherwise

dH3ac: factor variable for transcript's H3ac modification change with two levels: gain or no change. For gain, the transcript had no H3ac modification in undifferentiated cells but in differentiated cells. dH4ac, dH3K4me2, dH3K4me3: analogous to dH3ac

Because individual observations are actually matched pairs of transcripts before and after differentiation and the median probe GC content stays constant during differentiation, we did not include it as a predictor in this model.

The function "glm" of R version 2.4 with option family="binomial" was used to fit the model.

#### Coefficients of model

|              | Estimate | Std.Error | z value | n volue              |
|--------------|----------|-----------|---------|----------------------|
|              | Estimate | Stu.Effor | Z value | p value              |
| Intercept    | -4.73    | 0.11      | -43.72  | <2*10 <sup>-16</sup> |
| H3ac.gain    | 0.12     | 0.33      | 0.35    | 1                    |
| H4ac.gain    | 1.18     | 0.22      | 5.55    | $1.4*10^{-7}$        |
| H3K4me2.gain | 0.73     | 0.3       | 2.41    | 0.08                 |
| H3K4me3.gain | 0.35     | 0.33      | 1.08    | 1                    |

p values have been corrected for multiple testing using the Bonferroni procedure.

Gain of H4ac is significantly associated with differentially upregulated genes. 62 out of 126 up-regulated transcripts, however, do not show any modification gains (significant intercept).

Fischer et al. 15 of 20

#### **Table S8.** Logistic regression model and obtained coefficients

Associating modification losses to differentially down-regulated genes.

Logistic regression analysis of binary indicator variable for downregulation between undifferentiated and differentiated C2C12 cells against loss of modified sites. The table gives for each predictor variable the coefficient estimate, its standard error of the *p* value for the null hypothesis that the coefficient is equal to 0.

#### The model (in S-plus/R formula notation)

 $dy \sim dH3ac + dH4ac + dH3K4me2 + dH3K4me3$ 

where

dy: indicator variable: 1 if the transcript is found at significantly lower level in differentiated C2C12 cells than in undifferentiated cells, 0 otherwise

dH3ac: factor variable for transcript's H3ac modification change with two levels: loss or no change. For loss, the transcript had a H3ac modification in undifferentiated cells but not in differentiated cells. dH4ac, dH3K4me2, dH3K4me3: analogous to dH3ac

The function "glm" of R version 2.4 with option family="binomial" was used to fit the model.

#### Coefficients of model

|              | Estimate | Std.Error | z value | p value              |
|--------------|----------|-----------|---------|----------------------|
| Intercept    | -4.23    | 0.09      | -49.31  | <2*10 <sup>-16</sup> |
| H3ac.loss    | 0.49     | 0.3       | 1.67    | 0.48                 |
| H4ac.loss    | 0.18     | 0.27      | 0.69    | 1                    |
| H3K4me2.loss | -0.04    | 0.31      | -0.14   | 1                    |
| H3K4me3.loss | 0.64     | 0.28      | 2.28    | 0.11                 |

p values have been corrected for multiple testing using the Bonferroni procedure

Fischer et al. 16 of 20

**Table S9.** List of primers used for verification of microarray expression analysis All primers are exon spanning. f - forward primer; r - reverse primer

| MGI<br>Symbol | ENSEMBL Transcript ID                                          | Primer Name      | Sequence                | Partner Primers  | Orientation |
|---------------|----------------------------------------------------------------|------------------|-------------------------|------------------|-------------|
| Acta1         | ENSMUST00000034453                                             | acta1_rt_m_f     | TTGTGTGACAACGGCTCTG     | acta1_rt_m_r     | f           |
| Acta1         | ENSMUST00000034453                                             | acta1_rt_m_r     | ACCCACGTAGGAGTCCTTCTGA  | acta1_rt_m_f     | r           |
| Cox6a2        | ENSMUST00000033049                                             | Cox6a2-exp-f.1   | CCCAGAGTTCATCCCGTATCA   | Cox6a2-exp-r.1   | f           |
| Cox6a2        | ENSMUST00000033049                                             | Cox6a2-exp-r.1   | TGGAAAAGCGTGTGGTTGC     | Cox6a2-exp-f.1   | r           |
| Ctgf          | ENSMUST00000020171                                             | Ctgf-exp-f.1     | CATCTCCACCCGAGTTACCAA   | Ctgf-exp-r.1     | f           |
| Ctgf          | ENSMUST00000020171                                             | Ctgf-exp-r.1     | TGTCCGGATGCACTTTTTGC    | Ctgf-exp-f.1     | r           |
| lprt1         | ENSMUST00000026723                                             | hprt_m_f         | AAACAATGCAAACTTTGCTTTCC | hprt_m_r         | f           |
| lprt1         | ENSMUST00000026723                                             | hprt_m_r         | GGTCCTTTTCACCAGCAAGCT   | hprt_m_f         | r           |
| .mna          | ENSMUST00000029699<br>ENSMUST00000036252                       | lmna_m_f1        | CGCAACAAGTCCAACGAGG     | lmna_m_r1        | f           |
| mna           | ENSMUST00000029699<br>ENSMUST00000036252                       | lmna_m_r1        | TGGGAAGCGATAGGTCATCA    | lmna_m_f1        | r           |
| /lcm6         | ENSMUST00000027601                                             | Mcm6-exp-f.1     | TCTTCCTTGCCT GCCATGT    | Mcm6-exp-r.1     | f           |
| /lcm6         | ENSMUST00000027601                                             | Mcm6-exp-r.1     | TCTCAGCGGTCTGTTCCTCATC  | Mcm6-exp-f.1     | r           |
| 1ki67         | ENSMUST00000033310                                             | Mki67-exp-f.1    | CTGTGAGGCTGAGACATGGAGA  | Mki67-exp-r.1    | f           |
| lki67         | ENSMUST00000033310                                             | Mki67-exp-r.1    | TGGCTTGCTTCCATCCTCAT    | Mki67-exp-f.1    | r           |
| lylfp         | ENSMUST00000032910                                             | Mylpf-exp-f.1    | AGCTCCAACGTCTTCTCCATGT  | Mylpf-exp-r.1    | f           |
| lylfp         | ENSMUST00000032910                                             | Mylpf-exp-r.1    | TCGATAATGCCATCCCTGTTC   | Mylpf-exp-f.1    | r           |
| rps2          | ENSMUST00000026839                                             | Prps2-exp-f.1    | AGATGCTGGAGGAGCCAAAA    | Prps2-exp-r.1    | f           |
| rps2          | ENSMUST00000026839                                             | Prps2-exp-r.1    | CCATCCGGTCCACTTCATTT    | Prps2-exp-f.1    | r           |
| 100a4         | ENSMUST0000001046                                              | S100a4-exp-f.1   | GCTCAAGGAGCTACTGACCAGG  | S100a4-exp-r.1   | f           |
| 100a4         | ENSMUST00000001046                                             | S100a4-exp-r.1   | CCAAGTTGCTCATCACCTTCTG  | S100a4-exp-f.1   | r           |
| lc25a37       | ENSMUST00000037064                                             | Slc25a37-exp-f.1 | CCACCCTACTCCACGATGCA    | Slc25a37-exp-r.1 | f           |
| lc25a37       | ENSMUST00000037064<br>ENSMUST00000014911                       | Slc25a37-exp-r.1 | CGCCACACTGTCCGGATACA    | Slc25a37-exp-f.1 | r           |
| bp            | ENSMUST00000039079<br>ENSMUST00000080441<br>ENSMUST00000014911 | tbp_m_f1         | TGCCACACCAGCTTCTGAGA    | tbp_m_r1         | f           |
| bp            | ENSMUST00000039079<br>ENSMUST00000080441                       | tbp_m_r1         | GATGACTGCAGCAAATCGCTT   | tbp_m_f1         | r           |
| m4sf1         | ENSMUST00000029376                                             | Tm4sf1-exp-f.1   | TACGAAAACTACGGCAAGCG    | Tm4sf1-exp-r.1   | f           |
| m4sf1         | ENSMUST00000029376                                             | Tm4sf1-exp-r.1   | CACAGTAAGCAGATCCCACGAT  | Tm4sf1-exp-f.1   | r           |
| nni1          | ENSMUST00000027674                                             | tnni1_rt_m_f     | GCTCTAAGCACAAGGTGTCCAT  | tnni1_rt_m_r     | f           |
| nni1          | ENSMUST00000027674                                             | tnni1_rt_m_r     | TTCCTCCAGTCTCCTACCTCGA  | tnni1_rt_m_f     | r           |
| nnt2          | ENSMUST00000027671                                             | Tnnt2-exp-f.1    | CAGACTCTGATCGAGGCTCACT  | Tnnt2-exp-r.1    | f           |
| nnt2          | ENSMUST00000027671                                             | Tnnt2-exp-r.1    | GACGCTTTTCGATCCTGTCTT   | Tnnt2-exp-f.1    | r           |

Fischer et al. 17 of 20

**Table S10.** List of primers used for ChIP-chip verification f - forward primer; r – reverse primer

| MGI Gene<br>Symbol | ENSMBL Closest Transcript                                      | GeneBank<br>Sequence<br>Accession<br>Number | Primer Name | 5' to 3' Sequence      | Genomic Sequence<br>Region   | Partner<br>Primer | Orientation |
|--------------------|----------------------------------------------------------------|---------------------------------------------|-------------|------------------------|------------------------------|-------------------|-------------|
| Mpz                | ENSMUST00000070758                                             | AC163497                                    | all_mr01_f1 | CCACGGTTTTGAGGATTCCA   | chr1:172987900-<br>172988350 | all_mr01_r1       | f           |
| Mpz                | ENSMUST00000070758                                             | AC163497                                    | all_mr01_r1 | TTCTCCCTTTGCCTTGCCA    | chr1:172987900-<br>172988350 | all_mr01_f1       | r           |
| Tm9sf4             | ENSMUST00000089027                                             | AC078911                                    | all_mr03_f1 | TTAAAAACACCTCTGGCCCTG  | chr2:152853750-<br>152854300 | all_mr03_r1       | f           |
| Tm9sf4             | ENSMUST00000089027                                             | AC078911                                    | all_mr03_r1 | CCTCCACTCTCATCCACAAAGA | chr2:152853750-<br>152854300 | all_mr03_f1       | r           |
| Rragc              | ENSMUST00000030399<br>ENSMUST00000072215                       | AL606962                                    | all_mr06_f1 | CAGCGATCTGCTTACGGAATTA | chr4:123418800-<br>123419200 | all_mr06_r1       | f           |
| Rragc              | ENSMUST00000030399<br>ENSMUST00000072215                       | AL606962                                    | all_mr06_r1 | CACGTGCGAAAGGCAATTAG   | chr4:123418800-<br>123419200 | all_mr06_f1       | r           |
| Rps11 ; Rpl13a     | ENSMUST00000051978<br>ENSMUST0000003518<br>ENSMUST00000083285  | AC126256                                    | all_mr09_f1 | AGCTAAATCCCGTCTCAGGCAT | chr7:44995900-<br>44996400   | all_mr09_r1       | f           |
| Rps11 ; Rpl13a     | ENSMUST00000051978<br>ENSMUST00000003518<br>ENSMUST00000083285 | AC126256                                    | all_mr09_r1 | AGTTCCGGAGACCCTCCAGTAA | chr7:44995900-<br>44996400   | all_mr09_f1       | r           |
| Dctn5              | ENSMUST00000033156                                             | AC122232                                    | all_mr10_f1 | ACATATGTAAACTGCCCCCGTT | chr7:121924700-<br>121925000 | all_mr10_r1       | f           |
| Dctn5              | ENSMUST00000033156                                             | AC122232                                    | all_mr10_r1 | TGTGCATTCAGACCCCACTTC  | chr7:121924700-<br>121925000 | all_mr10_f1       | r           |
| Polr3b             | ENSMUST00000077175                                             | AC140333                                    | all_mr13_f1 | TAATTGCTTCACGGTGAACTGC | chr10:84052890-<br>84053060  | all_mr13_r1       | r           |
| Polr3b             | ENSMUST00000077175                                             | AC140333                                    | all_mr13_r1 | TGCCAAAGATGTCAAGGTTCAG | chr10:84052890-<br>84053060  | all_mr13_f1       | r           |
| Aldh3a2            | ENSMUST0000066277<br>ENSMUST00000074127<br>ENSMUST00000071413  | AL672172                                    | all_mr14_f1 | CACAGCCCCTCTTTACCAGAA  | chr11:61082000-<br>61082400  | all_mr14_r1       | f           |
| Aldh3a2            | ENSMUST0000066277<br>ENSMUST0000074127<br>ENSMUST00000071413   | AL672172                                    | all_mr14_r1 | TCCAGGCATGGTAAGACCTCTA | chr11:61082000-<br>61082400  | all_mr14_f1       | r           |
| Txndc5             | ENSMUST00000035988                                             | AC154747                                    | all_mr16_f1 | TTGGATTCCACAGGCACATT   | chr13:38534600-<br>38535000  | all_mr16_r1       | f           |
| Txndc5             | ENSMUST00000035988                                             | AC154747                                    | all_mr16_r1 | TGGCTGTGTTTATTGCTGAGC  | chr13:38534600-<br>38535000  | all_mr16_f1       | r           |
| Sfrs2ip            | ENSMUST00000047835                                             | AC158769                                    | all_mr19_f1 | CCGCTTAGGAATGCAATGAA   | chr15:96289800-<br>96290200  | all_mr19_r1       | f           |
| Sfrs2ip            | ENSMUST00000047835                                             | AC158769                                    | all_mr19_r1 | GCGAAATACTTGCACACAGGA  | chr15:96289800-<br>96290200  | all_mr19_f1       | r           |
| Nhlrc2             | ENSMUST00000071423                                             | AC116849                                    | all_mr20_f1 | TTTCGGACCCTTTTGCACTC   | chr19:56602500-<br>56603200  | all_mr20_r1       | f           |
| Nhlrc2             | ENSMUST00000071423                                             | AC116849                                    | all_mr20_r1 | CCTCCATGCAGCCAATTCTT   | chr19:56602500-<br>56603200  | all_mr20_f1       | r           |

Fischer et al. 18 of 20

| 1810074P20Rik | ENSMUST00000038705                                             | AL833775 | all_mr21_f1 | GTTCCTCCCAAACTTGATGTGA | chr4:41040964-<br>41041134    | all_mr21_r1 f |  |
|---------------|----------------------------------------------------------------|----------|-------------|------------------------|-------------------------------|---------------|--|
| 1810074P20Rik | ENSMUST00000038705                                             | AL833775 | all_mr21_r1 | GCAGCGTGCTAATAGCTCTGTC | chr4:41040964-<br>41041134    | all_mr21_f1 r |  |
| Rpl21         | ENSMUST00000035983                                             | AC124828 | all_mr22_f1 | GGTGGTCTTCAAGTTACCCTGG | chr5:147143984-<br>147144446  | all_mr22_r1 f |  |
| Rpl21         | ENSMUST00000035983                                             | AC124828 | all_mr22_r1 | CCTCTTAGCAAAAGAGGCCAAA | chr5:147143984-<br>147144446  | all_mr22_f1 r |  |
| Cdh8          | ENSMUST00000067860<br>ENSMUST00000067839<br>ENSMUST00000093249 | AC162867 | no_mr01_f1  | AGGTTCCAGAGATAGGAACCCA | chr8:102300000-<br>102303000  | no_mr01_r1 f  |  |
| Cdh8          | ENSMUST00000067860<br>ENSMUST00000067839<br>ENSMUST00000093249 | AC162867 | no_mr01_r1  | GGCCACCATCTGATTTAGCA   | chr8:102300000-<br>102303000  | no_mr01_f1 r  |  |
| Slc26a9       | ENSMUST00000049027                                             | AC161805 | no_mr02_f1  | CCGCTGAATGTGACCTATTGTC | chr1:133571000-<br>133572000  | no_mr02_r1 f  |  |
| Slc26a9       | ENSMUST00000049027                                             | AC161805 | no_mr02_r1  | AAGGTCCCAAATGAACAGCC   | chr1:133571000-<br>133572000  | no_mr02_f1 r  |  |
| Rp2h          | ENSMUST00000067979<br>ENSMUST00000033372                       | BX294384 | no_mr04_f1  | TCCCAGCAGCTCTTACCACATG | chrX:19531200-<br>19532000    | no_mr04_r1 f  |  |
| Rp2h          | ENSMUST00000067979<br>ENSMUST00000033372                       | BX294384 | no_mr04_r1  | TCAACCAACACTTGGATACCCA | chrX:19531200-<br>19532000    | no_mr04_f1 r  |  |
| XP_916743.1   | ENSMUST00000062483                                             | AC122287 | no_mr05_f1  | GCACCCAGGCATTTTCTTCA   | chr1:120718500-<br>120719500  | no_mr05_r1 f  |  |
| XP_916743.1   | ENSMUST00000062483                                             | AC122287 | no_mr05_r1  | TGTGTGTCAGTTCGGAGCTGAG | chr1:120718500-<br>120719500  | no_mr05_f1 r  |  |
| Dock7         | ENSMUST00000030282<br>ENSMUST00000097962<br>ENSMUST00000075836 | AL935325 | no_mr06_f1  | TCTCCTGCCAACCTTGTGTGT  | chr4:98522600-<br>98523600    | no_mr06_r1 f  |  |
| Dock7         | ENSMUST00000030282<br>ENSMUST00000097962<br>ENSMUST00000075836 | AL935325 | no_mr06_r1  | AATTTGGAACTTCTCCCTCCTG | chr4:98522600-<br>98523600    | no_mr06_f1 r  |  |
| Syt6          | ENSMUST00000090697<br>ENSMUST00000098785                       | AC123057 | no_mr07_f1  | GCTGCTAAAGGCAGAAATGTGG | chr3:103704000-<br>103706000  | no_mr07_r1 f  |  |
| Syt6          | ENSMUST00000090697<br>ENSMUST00000098785                       | AC123057 | no_mr07_r1  | AATGGAAAAGGCGCTCTGG    | chr3:103704000-<br>103706000  | no_mr07_f1 r  |  |
| Zswim6        | ENSMUST00000052377                                             | CT572986 | no_mr08_f1  | GTTTCTGGCTCCGGTTGTATTG | chr13:108908700-<br>108910100 | no_mr08_r1 f  |  |
| Zswim6        | ENSMUST00000052377                                             | CT572986 | no_mr08_r1  | TGTGTGCAGAAGCTGACCTCT  | chr13:108908700-<br>108910100 | no_mr08_f1 r  |  |
| Calb2         | ENSMUST00000003754                                             | AC163615 | no_mr09_f1  | CATCTGATGCAATCCGCCA    | chr8:113051000-<br>113051600  | no_mr09_r1 f  |  |
| Calb2         | ENSMUST00000003754                                             | AC163615 | no_mr09_r1  | AATCTTCCCCAATTCCCACA   | chr8:113051000-<br>113051600  | no_mr09_f1 r  |  |
| Foxj1         | ENSMUST00000036215<br>ENSMUST00000078514                       | AL645861 | no_mr10_f1  | AATCTCCTCTTCCCACCCAAAC | chr11:116149000-<br>116151000 | no_mr10_r1 f  |  |
| Foxj1         | ENSMUST00000036215<br>ENSMUST00000078514                       | AL645861 | no_mr10_r1  | CTCCTTATTCAATGCCTTTGCC | chr11:116149000-<br>116151000 | no_mr10_f1 r  |  |
|               |                                                                |          |             |                        |                               |               |  |

Fischer et al. 19 of 20

#### Table S11. Sources considered for array design

Human or mouse transcripts expressed in heart, skeletal or smooth muscle were selected from several sources as listed in the first column. The number of transcripts from each source is listed in the second column. The unified list of transcripts from these sources was represented on ChIP and expression arrays.

| Source                                                          | Number of Transcripts |
|-----------------------------------------------------------------|-----------------------|
| Key genes of cardiac development                                | 55                    |
| Human chromosome 21 transcipts in Ensembl v26                   | 211                   |
| Manually selected controls                                      | 204                   |
| Transcripts expressed in human heart Kaynak et al. [1]          | 2,546                 |
| Symatlas human atrioventricularnode – A/B [2]                   | 2,399 / 2,399         |
| Symatlas human cardiac myocytes – A/B [2]                       | 4,786 / 3,981         |
| Symatlas human heart – A/B[2]                                   | 3,391 / 3,978         |
| Symatlas human skeletal muscle – A/B [2]                        | 1,889 / 1,761         |
| Symatlas human smoothmuscle – A/B [2]                           | 5,296 / 5,237         |
| Symatlas mouse heart                                            | 1,665                 |
| Symatlas mouse skeletal muscle                                  | 1,793                 |
| Transcripts expressed in mouse hearts Tabibiazar et al. [3]     | 132                   |
| All transcription factors listed in Transfac [4] as of Jan 2005 | 2,236                 |

- 1. Kaynak B, von Heydebreck A, Mebus S, Seelow D, Hennig S, et al. (2003) Genome-wide array analysis of normal and malformed human hearts. Circulation. pp. 2467-2474.
- 2. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, et al. (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A 101: 6062-6067.
- 3. Tabibiazar R, Wagner RA, Liao A, Quertermous T (2003) Transcriptional profiling of the heart reveals chamber-specific gene expression patterns. Circ Res 93: 1193-1201.
- 4. Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, et al. (2006) TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 34: D108-110.

Fischer et al. 20 of 20