

NEW YORK UNIVERSITY

AFOSR-TN-56-489

ASTIA DOCUMENT No. AF 110302

INSTITUTE OF MATHEMATICAL SCIENCES

25 Waverly Place, New York 3, N.Y.

NEW YORK UNIVERSITY

Institute of Mathematical Sciences

Division of Electromagnetic Research

RESEARCH REPORT No. BR-20

On a Fredholm Equation in Diffraction Theory

IRVING J. EPSTEIN

Mathematics Division

Air Force Office of Scientific Research

Contract No. AF 18(600)-367

File No. 2.2

OCTOBER 1956

AFOSR-TN-56-489

ASTIA DOCUMENT No. AD 110-302

NEW YORK UNIVERSITY

Institute of Mathematical Sciences
Division of Electromagnetic Research

Research Report No. BR-20

ON A FREDHOLM EQUATION IN DIFFRACTION THEORY

Irving J. Epstein

I. J. Epstein
Irving J. Epstein

Morris Kline
Morris Kline
Project Director

October, 1956

This research was supported by the United States Air Force through the Air Force Office of Scientific Research of the Air Research and Development Command under Contract No. AF 18(600)-367.

New York, 1956

Abstract

The problem of diffraction of a plane wave by a circular aperture in a plane screen has been treated by Levine and Schwinger, who reduced it to a system of infinitely many linear equations. This system has been modified by Bouwkamp, and Magnus has proved that Bouwkamp's system is equivalent to a Fredholm integral equation of the second kind. If $a = ka$, where k is the wave number of the incident wave and a denotes the radius of the circular aperture, then the coefficients of Bouwkamp's system depend on a . Their asymptotic behavior for $a \rightarrow \infty$ is investigated and explicit expressions for the first few terms are stated in this report. The integral equation equivalent to Bouwkamp's system degenerates into an integral equation of the first kind as $a \rightarrow \infty$. The solution of the degenerate integral equation can be given explicitly, and a perturbation method yields some formulas for the solution of the original integral equation if a is large.

Table of Contents

	<u>Page</u>
1. Introduction	1
2. The field in the aperture for $a \rightarrow \infty$	2
3. Asymptotic expansion of the diffraction integrals	8
4. An approximation formula for large a	17
5. A related result	28
References	31
Distribution List	

1. Introduction

We consider here the problem of the diffraction of a plane scalar wave normally incident on a plane screen with a circular aperture. Let u be the solution of $\Delta u + K^2 u = 0$, which represents the diffracted wave, and let ρ, θ be polar coordinates on the screen such that $\rho = 0$ represents the center of the aperture. We assume that on the screen $u = 0$. Let the radius of the aperture be a and let $\Phi(\rho)$ be the value of u in the aperture, $0 \leq \rho \leq a$. Bouwkamp [1], using the Levine and Schwinger [2] variational method, derived the following result.

If $\Phi(\rho)$ is expanded in a series of Legendre polynomials of the type

$$(1) \quad \Phi(\rho) = \sum_{n=0}^{\infty} b_n P_{2n+1} \left(\sqrt{1 - \rho^2/a^2} \right)$$

then the b_n satisfy the system of infinitely many linear equations

$$(2) \quad \sum_{n=0}^{\infty} d_{m,n} b_n = \frac{6}{ia} \delta_{m,0},$$

where $a = Ka$, $\delta_{0,0} = 1$ and $\delta_{m,0} = 0$ if $m \neq 0$, and where

$$(3) \quad d_{m,n} = \left(\frac{6}{a} \right)^2 \frac{\Gamma(n + \frac{3}{2})}{n!} \frac{\Gamma(m + \frac{3}{2})}{m!} g_{m,n}^*(a)$$

and

$$(4) \quad g_{m,n}^*(a) = \int_0^{\infty} \frac{\sqrt{v^2 - 1}}{v^2} J_{2m+3/2}(av) J_{2n+3/2}(av) dv.$$

In (4), J denotes the Bessel function of the first kind, and

$$(5) \quad \sqrt{v^2 - 1} = -i\sqrt{1-v^2}, \quad \sqrt{1-v^2} > 0$$

for $0 \leq v < 1$. The diffracted amplitude in the forward direction is given by

$$(6) \quad A_1 = \frac{-ia}{3} b_0 .$$

Instead of using Bouwkamp's coefficients b_n for the expansion of the field in the aperture, we introduce the quantities

$$(7) \quad s_n = (-1)^n \frac{\Gamma(n + \frac{3}{2})}{n!} b_n .$$

Let $y = \sqrt{1 - \rho^2/a^2}$, so that

$$(8) \quad \mathcal{E}(y) = \sum_{n=0}^{\infty} s_n P_{2n+1}(y) .$$

Then Magnus has shown [3] that $\mathcal{E}(y)$ satisfies the following integral equation:

$$(9) \quad \frac{-iay}{\sqrt{\pi}} = \mathcal{E}(y) + \frac{2a}{\pi} \int_0^1 G(x,y;a) \mathcal{E}(x) dx, \quad 0 \leq y \leq 1 .$$

The kernel $G(x,y)$ is given by

$$(10) \quad G(x,y;a) = -\frac{\pi}{4} \int_{|x-y|}^{x+y} \frac{J_1(a\zeta) + iH_1(a\zeta)}{\zeta} d\zeta ,$$

where J_1 is a Bessel function and H_1 is a Struve function and a is a real parameter.

From a knowledge of $\mathcal{E}(y)$ we can (using (8), (7) and (1)) obtain $\Phi(\rho)$, the value of u in the aperture.

2. The field in the aperture for $a \rightarrow \infty$

Magnus has shown [3] that a solution of (9) exists for all real positive a . We wish to study the asymptotic solution of this equation for large positive a . Our first task is to determine how the solution $\mathcal{E}(x;a)$ behaves for $a \rightarrow \infty$. To do this we will need to know

$$\lim_{a \rightarrow \infty} G(x, y; a) = G(x, y; \infty)$$

for $0 \leq x, y \leq 1$ and for $x \neq y$. From (10)

$$G(x, y; \infty) = \lim_{a \rightarrow \infty} -\frac{\pi}{4} \int_{|x-y|}^{x+y} \frac{J_1(a \bar{z}) + i H_1(a \bar{z})}{\bar{z}} d\bar{z} .$$

If $x \neq y$,

$$\begin{aligned} \lim_{a \rightarrow \infty} -\frac{\pi}{4} \int_{|x-y|}^{x+y} \frac{J_1(a \bar{z})}{\bar{z}} d\bar{z} &= \lim_{a \rightarrow \infty} -\frac{\pi}{4} J_1(a \bar{z}) \int_{|x-y|}^{x+y} \frac{d\bar{z}}{\bar{z}} \\ &= -\frac{\pi}{4} \log \left| \frac{x+y}{x-y} \right| \lim_{a \rightarrow \infty} J_1(a \bar{z}) , \end{aligned}$$

where $|x-y| \leq \bar{z}(a) \leq |x+y|$. Since $x \neq y$, $J_1(a \bar{z}) \rightarrow 0$ as $a \rightarrow \infty$. Likewise

$$\lim_{a \rightarrow \infty} -\frac{\pi}{4} \int_{|x-y|}^{x+y} \frac{H_1(a \bar{z})}{\bar{z}} d\bar{z} = -\frac{\pi}{4} \log \left| \frac{x+y}{x-y} \right| \lim_{a \rightarrow \infty} H_1(a \bar{z}^*) ,$$

where $|x-y| \leq \bar{z}^*(a) \leq |x+y|$. Since $x \neq y$,

$$\lim_{a \rightarrow \infty} H_1(a \bar{z}^*) = \frac{1}{\Gamma(\frac{3}{2}) \Gamma(\frac{1}{2})} = \frac{2}{\pi} .$$

Hence if $x \neq y$

$$(10a) G(x, y; \infty) = -\frac{1}{2} \log \left| \frac{x+y}{x-y} \right| , \quad \text{for } 0 \leq x, y \leq 1 .$$

Let $\mathcal{E}_0(x)$ denote the limit of $\mathcal{E}(x; a)$ as $a \rightarrow \infty$. We can now show

Theorem 1. For $a \rightarrow \infty$, the solution of (9) tends towards

$$\mathcal{E}_0(x) = \frac{1}{\sqrt{\pi}} \frac{x}{\sqrt{1-x^2}} .$$

Proof: Divide (9) by a and let $a \rightarrow \infty$. We assume that $\lim_{a \rightarrow \infty} \frac{G(y; a)}{a} = 0$, and that

$$\lim_{a \rightarrow \infty} \int_0^1 G(x, y; a) \mathcal{E}(x, a) dx = \int_0^1 G(x, y; \infty) \mathcal{E}_0(x) dx ;$$

the validity of these assumptions will be justified later. Then, taking into account (10a), we have the following integral equation of the first kind for the determination of $\mathcal{E}_0(x)$:

$$(11) \quad y = \frac{1}{\sqrt{\pi}} \int_0^1 \log \left| \frac{x+y}{x-y} \right| \mathcal{E}_0(x) dx ; \quad 0 \leq y \leq 1 .$$

The easiest way to obtain the solution of (11) is to proceed from the known solution of the following integral equation [4]:

$$(12) \quad y = -\frac{1}{\pi} \int_{-1}^{+1} \frac{x}{\sqrt{1-x^2}} \log|x-y| dx ; \quad -1 \leq y \leq 1 .$$

This may be transformed as follows:

$$\begin{aligned} y &= -\frac{1}{\pi} \int_{-1}^0 \frac{x}{\sqrt{1-x^2}} \log|x-y| dx - \frac{1}{\pi} \int_0^{+1} \frac{x}{\sqrt{1-x^2}} \log|x-y| dx \\ &= \frac{1}{\pi} \int_0^1 \frac{x}{\sqrt{1-x^2}} \log|x+y| dx - \frac{1}{\pi} \int_0^{+1} \frac{x}{\sqrt{1-x^2}} \log|x-y| dx \\ &= \frac{1}{\pi} \int_0^1 \frac{x}{\sqrt{1-x^2}} \log \left| \frac{x+y}{x-y} \right| dx . \end{aligned}$$

Comparison of this result with equation (11) yields the desired result

$$\mathcal{E}_0(x) = \frac{1}{\sqrt{\pi}} \frac{x}{\sqrt{1-x^2}} .$$

For this limiting case we have the first transmission coefficient A_1 :

$$\begin{aligned} A_1 &= -\frac{ia}{3} b_0 = -\frac{ia}{3} \frac{s_0}{\Gamma(\frac{3}{2})} = \frac{-ia}{3\Gamma(\frac{3}{2})} \cdot 3 \int_0^1 P_1(x) \mathcal{E}_0(x) dx \\ &= \frac{-2ia}{\sqrt{\pi}} \int_0^1 x \frac{1}{\sqrt{\pi}} \frac{x}{\sqrt{1-x^2}} dx = -\frac{ia}{2} . \end{aligned}$$

We now justify our assumption that letting $a \rightarrow \infty$ while keeping the radius of the aperture constant is equivalent to keeping a constant while letting the radius of the aperture approach ∞ . If a is constant and the radius of the aperture tends to infinity we know that the wave goes through undisturbed. Hence if $\mathcal{E}_0(x)$ makes $\Phi(\rho)$ constant in the aperture we feel justified in our assumption. We will now show that this is indeed the case.

We have from (8)

$$(13) \quad \mathcal{E}_0(x) = \frac{1}{\sqrt{\pi}} \frac{x}{\sqrt{1-x^2}} = \sum_{n=0}^{\infty} s_n P_{2n+1}(x) .$$

Using the orthogonality property of the Legendre polynomials we get

$$\begin{aligned} s_n &= \frac{4n+3}{4\sqrt{\pi}} \int_0^1 \frac{x}{\sqrt{1-x^2}} P_{2n+1}(x) dx \\ &= \frac{4n+3}{4\sqrt{\pi}} \int_0^{2\pi} P_{2n+1}(\cos \theta) \cos \theta d\theta \\ &= \frac{4n+3}{4\sqrt{\pi}} \cdot 2\pi \binom{2n}{n} \binom{2n+2}{n+1} 2^{-4n-2} \quad * \end{aligned}$$

* See [4], p. 51.

$$\begin{aligned}
 &= \frac{4n+3}{2} \sqrt{\pi} \cdot \frac{\Gamma(2n+1) \Gamma(2n+3)}{n! n! (n+1)! (n+1)! 2^{4n+2}} \\
 &= \frac{4n+3}{2} \sqrt{\pi} \cdot \frac{\Gamma(n+\frac{1}{2}) n! 2^{2n+1} \Gamma(n+\frac{3}{2})(n+1)! 2^{2n+3}}{(n!)^2 (n+1)! (n+1)! 2^{4n+2} 2\sqrt{\pi} \cdot 2\sqrt{\pi}} \quad + \\
 &= \frac{4n+3}{2\sqrt{\pi}} \cdot \frac{\Gamma(n+\frac{1}{2}) \Gamma(n+\frac{3}{2})}{n! (n+1)!} .
 \end{aligned}$$

From (7) we get

$$\begin{aligned}
 (14) \quad b_n &= \frac{(-1)^n n!}{\Gamma(n+\frac{3}{2})} \frac{4n+3}{2\sqrt{\pi}} \frac{\Gamma(n+\frac{1}{2}) \Gamma(n+\frac{3}{2})}{n! (n+1)!} \\
 &= (-1)^n \frac{4n+3}{2\sqrt{\pi}} \frac{\Gamma(n+\frac{1}{2})}{\Gamma(n+2)} .
 \end{aligned}$$

Let us now determine the c_n in the relation

$$1 = \sum_{n=0}^{\infty} c_n P_{2n+1}(x) .$$

We get

$$\begin{aligned}
 c_n &= \frac{1}{4n+3} \int_0^1 1 \cdot P_{2n+1}(x) dx = \frac{4n+3}{2n+1} (-1)^n \frac{\frac{1}{2} \cdot \frac{3}{2} \cdots \frac{2n+1}{2}}{(n+1)!} \\
 &= (-1)^n \frac{4n+3}{2\sqrt{\pi}} \frac{\Gamma(n+\frac{1}{2})}{\Gamma(n+2)} .
 \end{aligned}$$

Hence $c_n = b_n$ and $\Phi(\rho)$ is constant in the aperture.

⁺ Here we have used the formula $\Gamma(2z) = \frac{1}{2\sqrt{\pi}} 2^{2z} \Gamma(z) \Gamma(z + \frac{1}{2})$.

There exists a general formula which permits us to express the field $\Phi(\rho)$ in the aperture in terms of the solution $\xi(y)$ of the integral equation (9). The connection between the two functions is given by the following:

Lemma 1: Let $\xi(y)$ be given by (8) and let

$$\Phi(x) = \sum_{n=0}^{\infty} (-1)^n \frac{n!}{\Gamma(n+\frac{3}{2})} s_n P_{2n+1}(x) .$$

Then

$$\Phi(x) = \int_0^1 \Omega(x,y) \xi(y) dy ,$$

where

$$\Omega(x,y) = \frac{1}{i\sqrt{\pi}} \int_0^1 \left\{ W(x,y,it) - W(x,y,-it) \right\} \frac{dt}{\sqrt{1-t^2}}$$

and

$$W(x,y,t) = \frac{1}{2\pi} \int_0^\pi \frac{(1-t^2) d\omega}{\left\{ 1-2t[xy+(1-x^2)^{1/2}(1-y^2)^{1/2} \cos \omega] + t^2 \right\}^{3/2}} .$$

Proof: According to Watson [5],

$$W(x,y,t) = \sum_{n=0}^{\infty} \left(n + \frac{1}{2} \right) P_n(x) P_n(y) t^n .$$

Therefore,

$$\frac{1}{2i} \left\{ W(x,y,it) - W(x,y,-it) \right\} = \sum_{n=0}^{\infty} \left(2n + \frac{3}{2} \right) P_{2n+1}(x) P_{2n+1}(y) (-1)^n t^{2n+1} .$$

Since

$$\int_0^1 t^{2n+1} \frac{dt}{\sqrt{1-t^2}} = \frac{\sqrt{\pi}}{2} \frac{\Gamma(n+1)}{\Gamma(n+\frac{3}{2})} ,$$

we see that

$$\Omega(x,y) = \sum (-1)^n \frac{\Gamma(n+1)}{\Gamma(n+\frac{3}{2})} P_{2n+1}(x) P_{2n+1}(y) .$$

This and the orthogonality relations for the Legendre functions prove Lemma 1.

3. Asymptotic expansion of the diffraction integrals

In this section we study the asymptotic expansion of the diffraction integrals (4). (4) may be written

$$g_{m,n}^*(a) = -i \int_0^1 \frac{\sqrt{1-v^2}}{v^2} J_{2m+3/2}(av) J_{2n+3/2}(av) dv + \int_1^\infty \frac{\sqrt{v^2-1}}{v^2} J_{2m+3/2}(av) J_{2n+3/2}(av) dv.$$

We treat the real and imaginary parts separately. Consider

$$- \operatorname{Im} g_{m,n}^*(a) = \int_0^1 \frac{\sqrt{1-v^2}}{v^2} J_\mu(av) J_\nu(av) dv$$

where $\mu = 2m + \frac{3}{2}$, $\nu = 2n + \frac{3}{2}$. We have [†]

$$J_\mu(av) J_\nu(av) = \sum_{n=0}^{\infty} \frac{(-1)^n (\frac{av}{2})^{\mu+\nu+2n}}{n! \Gamma(\mu+1+n) \Gamma(\nu+1+n) \Gamma(\mu+\nu+1+n)}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \left(\frac{av}{2}\right)^{\mu+\nu+2n} \frac{2^{\mu+\nu+1+2n} \Gamma\left(\frac{\mu+\nu+1}{2} + n\right) \Gamma\left(\frac{\mu+\nu+2}{2} + n\right)}{2\sqrt{\pi} \Gamma(\mu+1+n) \Gamma(\nu+1+n) \Gamma(\mu+\nu+1+n)} .$$

Substituting this sum in our integral and interchanging summation and integration we obtain

$$-\operatorname{Im} g_{m,n}^*(a) = \frac{1}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \frac{a^{\mu+\nu+2n} \Gamma\left(\frac{\mu+\nu+1}{2} + n\right) \Gamma\left(\frac{\mu+\nu+2}{2} + n\right)}{\Gamma(\mu+1+n) \Gamma(\nu+1+n) \Gamma(\mu+\nu+1+n)} \int_0^1 \sqrt{1-v^2} v^{\mu+\nu-2+2n} dv.$$

Evaluating the integral on the right, we have

$$\int_0^1 \sqrt{1-v^2} v^{\mu+\nu-2+2n} dv = \int_0^{\pi/2} (\sin \theta)^{2\left(\frac{\mu+\nu-2}{2} + n\right)} \cos^2 \theta d\theta = \frac{\Gamma\left(\frac{\mu+\nu-1}{2} + n\right) \Gamma\left(\frac{3}{2}\right)}{2 \Gamma\left(\frac{\mu+\nu+2}{2} + n\right)} .$$

[†] See [6], p. 147.

So, finally,

$$-\operatorname{Im} g_{m,n}^*(\alpha) = \frac{\alpha^{\mu+\nu}}{4} \sum_{n=0}^{\infty} \frac{(-\alpha^2)^n}{n!} \frac{\Gamma\left(\frac{\mu+\nu+1}{2} + n\right) \Gamma\left(\frac{\mu+\nu+1}{2} + n\right)}{\Gamma(\mu+1+n) \Gamma(\nu+1+n) \Gamma(\mu+\nu+1+n)} = \frac{\alpha^{\mu+\nu}}{4} \sum_{n=0}^{\infty} \frac{(-\alpha^2)^n}{n!} f(n),$$

where

$$f(n) = \frac{\Gamma\left(\frac{\mu+\nu+1}{2} + n\right) \Gamma\left(\frac{\mu+\nu-1}{2} + n\right)}{\Gamma(\mu+1+n) \Gamma(\nu+1+n) \Gamma(\mu+\nu+1+n)}.$$

To obtain the asymptotic expansion of a series of the form

$$\sum_{n=0}^{\infty} \frac{(-\alpha^2)^n}{n!} f(n),$$

for large positive α we use a method due to E.M. Wright [7].

Using Wright's notation we now state that the following asymptotic expansion holds:

$$-\operatorname{Im} g_{m,n}^*(\alpha) \sim I(z_1) + I(z_2) + J(\alpha^2),$$

where the meaning of these symbols is defined for our case by (for details see [7]):

$$I(x) = x^\theta e^x \left\{ \sum_{m=0}^{M-1} A_m x^{-m} + O(x^{-M}) \right\}$$

$$J(y) = \sum_{r=1}^p \sum_{\ell=0}^{L_r} P_{r,\ell} y^{-(\ell+\beta_r)/\alpha_r} + O(y^{-N+\delta}).$$

In the above equations M denotes any positive integer; N is an integer which may be taken as large as we please; and δ is an arbitrary positive number, and finally L_r is an arbitrary integer. If

$$f(t) = \frac{\Gamma(\beta_1 + \alpha_1 t) \Gamma(\beta_2 + \alpha_2 t)}{\Gamma(\mu_1 + \rho_1 t) \Gamma(\mu_2 + \rho_2 t) \Gamma(\mu_3 + \rho_3 t)}$$

has a pole of order s at the point $-(\ell+\beta_r)/\alpha_r$, then $s P_{r,\ell} y^{-(\ell+\beta_r)/\alpha_r}$ is the residue of $\Gamma(-t)f(t)y^t$ at this point; if $a > 1$, then $P_{r,\ell}$ is a polynomial in $\log y$ of degree $s - 1$. We know that

$$\Gamma(\beta+ta) = e^{-at} (at)^{\beta+at-1/2} \left\{ \sum_{m=0}^{M-1} a_m t^{-m} + O(t^{-M}) \right\} .$$

Using this fact we arrive at the following inequality:

$$\left| \frac{f(t)}{4^t \Gamma(t+1)} - \sum_{m=0}^{M-1} \frac{A_m}{\Gamma(2t-\theta+m+1)} \right| < \frac{K}{|\Gamma(2t-\theta+M+1)|} ,$$

where K is independent of t .

This inequality serves to determine the number A_0, A_1, \dots uniquely.

In particular, if we let $M = 1$ and let $t \rightarrow \infty$, we get

$$A_0 = 2^{2m+2n+6} / \sqrt{2\pi} .$$

Using this procedure we can define further A_i 's recursively.

Finally, we need the following:

$$p = 2, \quad q = 3, \quad a_1 = a_2 = \rho_1 = \rho_2 = \rho_3 = 1$$

$$\beta_1 = \frac{\mu+\nu-1}{2}, \quad \beta_2 = \frac{\mu+\nu+1}{2}$$

$$\mu_1 = \mu+1, \quad \mu_2 = \nu+1, \quad \mu_3 = \mu+\nu+1$$

$$\theta = \sum_{r=1}^p \beta_r - \sum_{r=1}^q \mu_r + \frac{q-p}{2} = -2m-2n - \frac{11}{2}$$

$$z_1 = 2ai, \quad z_2 = -2ai .$$

Now $f(t)$ has a simple pole at $t = -\beta_1/a_1 = -(\mu+\nu-1)/2$. All its other poles are of order 2 and occur at

$$t = -\left(\frac{\beta_1 + \ell}{a_1}\right) = -\left(\frac{\mu+\nu-1+2\ell}{2}\right) \quad \text{for } \ell = 1, 2, \dots .$$

The residue of $\Gamma(-t)f(t)y^t$ at

$$t = -\frac{\mu+\nu-1}{2}$$

is

$$\frac{\Gamma\left(\frac{\mu+\nu-1}{2}\right)}{\Gamma\left(\frac{\mu+\nu+3}{2}\right)\Gamma\left(\frac{\mu-\nu+3}{2}\right)\Gamma\left(\frac{\nu-\mu+3}{2}\right)} y^{-(\mu+\nu-1)/2} .$$

The residue of $Q(t) = \Gamma(-t)f(t)y^t$ at

$$t = -\left(\frac{\mu+\nu+2\ell-1}{2}\right) = -(\beta_1 + \ell)$$

is obtained as follows. We first obtain the Laurent expansion of

$$\Gamma(\beta_1 + a_1 t) = \Gamma(\beta_1 + t), \quad \text{at } t = -(\beta_1 + \ell) .$$

Let $Z_1 = \beta_1 + t$. Then $Z_1 = -\ell$ when $t = -(\beta_1 + \ell)$, and we now need the Laurent expansion of $\Gamma(Z_1)$ about $Z_1 = -\ell$. We obtain (cf. [8], p. 46)

$$\Gamma(Z_1) = \frac{(-1)^\ell}{\ell!} \left\{ (Z_1 + \ell)^{-1} + \gamma(\ell + 1) + \dots \right\} .$$

Next we need the Laurent expansion of

$$\Gamma(\beta_2 + a_2 t) = \Gamma(\beta_1 + 1 + t) \quad \text{at } t = -(\beta_1 + \ell) .$$

Let $Z_2 = \beta_1 + 1 + t$. Then $Z_2 = 1 - \ell$ when $t = -(\beta_1 + \ell)$, and now we seek the Laurent expansion of $\Gamma(Z_2)$ about $Z_2 = 1 - \ell = -(\ell - 1)$; we obtain

$$\Gamma(Z_2) = \frac{(-1)^{\ell-1}}{(\ell-1)!} \left\{ (Z_2 + \ell - 1)^{-1} + \gamma(\ell) + \dots \right\} .$$

We now obtain the expansion of

$$\frac{\Gamma(-t)y^t}{\Gamma(\mu_1 + t)\Gamma(\mu_2 + t)\Gamma(\mu_3 + t)} = P(t)$$

at the regular point $t = -(\beta_1 + \ell)$:

$$\begin{aligned} P(t) &= P(-(\beta_1 + \ell)) + P'(-(\beta_1 + \ell)) (t + (\beta_1 + \ell)) + \dots \\ &= \frac{\Gamma(\beta_1 + \ell)y^{-(\beta_1 + \ell)}}{\Gamma(\mu_1 - \beta_1 - \ell)\Gamma(\mu_2 - \beta_1 - \ell)\Gamma(\mu_3 - \beta_1 - \ell)} \\ &\quad + \left[\frac{d}{dt} \left\{ \frac{\Gamma(-t)}{\Gamma(\mu_1 + t)\Gamma(\mu_2 + t)\Gamma(\mu_3 + t)} \right\} \right] \Big|_{t = -(\beta_1 + \ell)} y^{-(\beta_1 + \ell)} \\ &\quad + \left[\frac{\Gamma(-t)}{\Gamma(\mu_1 + t)\Gamma(\mu_2 + t)\Gamma(\mu_3 + t)} \right] \Big|_{t = -(\beta_1 + \ell)} \log y y^{-(\beta_1 + \ell)} (t + \beta_1 + \ell). \end{aligned}$$

Now

$$\Gamma(z_1) = \frac{(-1)^\ell}{\ell!} \left\{ (t + \beta_1 + \ell)^{-1} + \Gamma(\ell + 1) + \dots \right\},$$

$$\Gamma(z_2) = \frac{(-1)^{\ell-1}}{(\ell-1)!} \left\{ (t + \beta_1 + \ell)^{-1} + \Gamma(\ell) + \dots \right\},$$

and

$$\begin{aligned} P(t) &= y^{-(\beta_1 + \ell)} \left\{ \frac{\Gamma(\beta_1 + \ell)}{\Gamma(\mu_1 - \beta_1 - \ell)\Gamma(\mu_2 - \beta_1 - \ell)\Gamma(\mu_3 - \beta_1 - \ell)} \right. \\ &\quad \left. + \left[\frac{d}{dt} \left(\frac{\Gamma(-t)}{\prod_{i=1}^3 \Gamma(\mu_i + t)} \right) \right] \Big|_{t = -(\beta_1 + \ell)} + \left[\frac{\Gamma(-t)}{\prod_{i=1}^3 \Gamma(\mu_i + t)} \right] \Big|_{t = -(\beta_1 + \ell)} \log y \right\}^{(t + \beta_1 + \ell)} \\ &= y^{-(\beta_1 + \ell)} \left\{ A + (B + C \log y) (t + \beta_1 + \ell) \right\}, \end{aligned}$$

where the meaning of A, B, C is obvious. Finally

$$\Gamma(z_1)\Gamma(z_2) = \frac{(-1)}{\ell!(\ell-1)!} \left\{ \frac{1}{(t+\beta_1+\ell)^2} + \frac{\Psi(\ell) + \Psi(\ell+1)}{(t+\beta_1+\ell)} + \dots \right\} .$$

Hence the residue of $Q(t) = \Gamma(-t)f(t)y^t$ at $t = -(\beta_1 + \ell)$ is

$$\frac{(-1)y^{-(\beta_1+\ell)}}{\ell!(\ell-1)!} \left[A (\Psi(\ell) + \Psi(\ell+1)) + (B + C \log y) \right] .$$

With these calculations before us we write the asymptotic expansion of

$$- \operatorname{Im} \left\{ g_{m,n}^*(a) \right\} = \sum_{n=0}^{\infty} \frac{(-a^2)^n}{n!} f(n)$$

for large positive a . It is given by

$$\begin{aligned} I(z_1) + I(z_2) + J(a^2) &= \frac{a^{\mu+\nu}}{4} \left\{ (2ai)^{\theta} e^{2ai} \left[\sum_{m=0}^M A_m (2ai)^{-m} + O((2ai)^{-M}) \right] \right. \\ &\quad \left. + (-2ai)^{\theta} e^{-2ai} \left[\sum_{m=0}^M A_m (-2ai)^{-m} + O(a^{-M}) \right] \right\} \\ &\quad + \frac{a^{\mu+\nu}}{4} \left\{ \frac{\Gamma(\frac{\mu+\nu-1}{2})}{\Gamma(\frac{\mu+\nu+3}{2}) \Gamma(\frac{\mu-\nu+3}{2}) \Gamma(\frac{\nu-\mu+3}{2})} \frac{1}{a^{\mu+\nu-1}} \right. \\ &\quad \left. + \sum_{\ell=1}^{\infty} \frac{-1}{\ell!(\ell-1)!} \frac{1}{a^{\mu+\nu+2\ell-1}} \left\{ A (\Psi(\ell) + \Psi(\ell+1)) \right. \right. \\ &\quad \left. \left. + (B + 2C \log a) \right\} \right\} . \end{aligned}$$

$\Psi(z)$ is the logarithmic derivative of the gamma function:

$$\Psi(z) = \frac{d}{dz} \log \Gamma(z) = \frac{\Gamma'(z)}{\Gamma(z)} .$$

We now consider the real part

$$\int_1^\infty \frac{\sqrt{v^2 - 1}}{v^2} J_\mu(av) J_\nu(av) dv = \operatorname{Re} \left\{ g_{m,n}^*(a) \right\} .$$

We remark first that if only a few terms of the asymptotic expansion of the real part are desired, we can obtain these by substituting for $J_\mu(av)$ and $J_\nu(av)$ the first few terms of their known asymptotic expansions (in fact these expansions consist of a finite number of terms). In what follows we give a slight modification of this procedure in which we will again make use of Wright's methods.

We have

$$J_\mu(av) J_\nu(av) = \frac{(av)^{\mu+\nu}}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-a^2 v^2)^n}{n!} \frac{\Gamma\left(\frac{\mu+\nu+1}{2} + n\right)}{\Gamma(\mu+1+n)} \frac{\Gamma\left(\frac{\mu+\nu+2}{2} + n\right)}{\Gamma(\nu+1+n)} .$$

Since the range of integration is from 1 to infinity we know that av is large if a is large. We obtain now the asymptotic expansion of this product for large av .

Let

$$g(t) = \frac{\Gamma\left(\frac{\mu+\nu+1}{2} + t\right) \Gamma\left(\frac{\mu+\nu+2}{2} + t\right)}{\Gamma(\mu+1+t) \Gamma(\nu+1+t) \Gamma(\mu+\nu+1+t)} .$$

The following will be needed:

$$p = 2, \quad q = 3, \quad a_1 = a_2 = \rho_1 = \rho_2 = \rho_3 = 1 ;$$

$$\beta_1 = \frac{\mu+\nu+2}{2}, \quad \beta_2 = \frac{\mu+\nu+1}{2} ;$$

$$\mu_1 = \mu+1, \quad \mu_2 = \nu+1, \quad \mu_3 = \mu+\nu+1 ;$$

$$\theta = \sum_1^p \beta_r - \sum_1^q \mu_r + \frac{1}{2}(q-p) = -2m - 2n - 4 ;$$

$$\left| \frac{g(t)}{t \Gamma(t+1)} - \sum_{m=0}^{M-1} \frac{A_m}{\Gamma(2t-\theta+m+1)} \right| < \frac{K}{|\Gamma(2t-\theta+M+1)|},$$

where K is independent of t . This last inequality makes possible the calculation of the A_i . In particular $A_0 = 1/\sqrt{\pi} 2^{2m+2n+4}$. Also

$$z_1 = 2\alpha v i, \quad z_2 = -2\alpha v i.$$

$g(t)$ has simple poles only and these occur at $t = -(\beta_2 + \ell)$, $\ell = 0, 1, 2, \dots, (m+n+2)$.

The residue of $\Gamma(-t) g(t) y^t$ at $t = -(\beta_2 + \ell)$ is

$$\frac{\Gamma(\beta_2 + \ell) \frac{(-1)^\ell}{\ell!} \Gamma(\frac{1}{2} - \ell) y^{-\frac{(\mu+\nu+1)}{2} + \ell}}{\Gamma(\frac{\mu-\nu+1}{2} - \ell) \Gamma(\frac{\nu-\mu+1}{2} - \ell) \Gamma(\frac{\mu+\nu+1}{2} - \ell)}.$$

Thus the asymptotic expansion of $J_\mu(\alpha v) J_\nu(\alpha v)$ for αv large is

$$\begin{aligned} \frac{(\alpha v)^{\mu+\nu}}{\sqrt{\pi}} & \left\{ (2\alpha v i)^\theta e^{2\alpha v i} \sum_{m=0}^M A_m (2\alpha v i)^{-m} + O((\alpha v)^{-M}) \right. \\ & + (-2\alpha v i)^\theta e^{-2\alpha v i} \sum_{m=0}^M A_m (-2\alpha v i)^{-m} + O((-2\alpha v)^{-M}) \\ & \left. + \sum_{\ell=0}^{m+n+2} \frac{(-1)^\ell}{\ell!} \frac{\Gamma(\frac{\mu+\nu+1}{2} + \ell) \Gamma(\frac{1}{2} - \ell)}{\Gamma(\frac{\mu-\nu+1}{2} - \ell) \Gamma(\frac{\nu-\mu+1}{2} - \ell) \Gamma(\frac{\mu+\nu+1}{2} - \ell) (\alpha v)^{\mu+\nu+1+2\ell}} \right\}. \end{aligned}$$

We now multiply by $\frac{\sqrt{\frac{2}{v}-1}}{v^2}$ and integrate from 1 to infinity. Then we get essentially two different types of integrals to evaluate. The first type is of the form

$$\int_1^\infty \frac{\sqrt{\frac{2}{v}-1}}{v^{3+2\ell}} dv = \int_0^1 t^{2\ell} \sqrt{1-t^2} dt = \int_0^{\frac{\pi}{2}} (\cos \theta)^{2\ell} \sin^2 \theta d\theta = \frac{\Gamma(\ell + \frac{1}{2}) \Gamma(1 + \frac{1}{2})}{2 \Gamma(\ell + 2)}.$$

The second type is more difficult to evaluate. It is of the form

$$\int_1^\infty \frac{\sqrt{v^2-1}}{v^2} \frac{1}{(av)^p} e^{2avi} dv, \quad p \text{ an integer.}$$

We let $v-1 = t$ and we get

$$\frac{e^{2ai}}{a^p} \int_1^\infty \frac{\sqrt{t(t+2)}}{(t+1)^{2+p}} e^{-(-2ai)t} dt.$$

An application of Watson's lemma (see [6], p. 236) will give the asymptotic expansion of this last integral. We see then that, after some tedious calculations, we can obtain the complete asymptotic expansion of the diffraction integrals $g_{m,n}^*(a)$. For the first terms of these expansions, we have:

Theorem 2. Let $g_{m,n}^*(a)$ be the functions defined by equation (4), and let $a \rightarrow \infty$. Then the asymptotic expansion of the $g_{m,n}^*(a)$ up to terms of the order $a^{-5/2}$ is given by

$$\operatorname{Re} g_{m,n}^*(a) \sim \frac{(-1)^{m+n}}{4a} + (-1)^{m+n} \frac{\sqrt{\pi}}{2} \frac{\cos(2a + \frac{3\pi}{4})}{a^{5/2}} + \dots,$$

$$\operatorname{Im} g_{m,n}^*(a) \sim - \frac{\Gamma(m+n+2)}{4\Gamma(m+n+3)\Gamma(m-n+3/2)\Gamma(n-m+3/2)} a$$

$$+ \frac{(-1)^{n+m}}{2\pi} \frac{\log a}{a} + \frac{(1-2\gamma)(-1)^{n+m}}{4\pi} \frac{1}{a}$$

$$+ \frac{B(t)}{4} \frac{1}{a} + \frac{(-1)^{m+n+1}}{2\sqrt{\pi}} \frac{\cos(2a - \frac{3\pi}{4})}{a^{5/2}} + \dots,$$

where γ denotes Euler's constant and where

$$B(t) = \frac{d}{dt} \left\{ \frac{\Gamma(-t)}{\Gamma(2m+5/2+t)\Gamma(2n+5/2+t)\Gamma(2m+2n+4+t)} \right\}$$

evaluated at $t = -(m+n+2)$.

4. An approximation formula for large a

In this section we study the next term in the asymptotic expansion for $a \rightarrow \infty$ of the solution $\mathcal{E}(x)$ of our integral equation

$$(9) \quad -\frac{iay}{\gamma\pi} = \mathcal{E}(y) + \frac{2a}{\pi} \int_0^1 G(x,y;a) \mathcal{E}(x) dx .$$

To obtain this information, we integrate (9). We get

$$\int_0^z -\frac{iay}{\gamma\pi} dy = \int_0^z \mathcal{E}(y) dy + \frac{2a}{\pi} \int_0^z \int_0^1 G(x,y;a) \mathcal{E}(x) dx dy$$

or

$$(15a) \quad -\frac{iaz^2}{2\gamma\pi} = E(z) + \frac{2a}{\pi} \int_0^1 K(z,x) E'(x) dx ,$$

where

$$0 \leq z \leq 1 , \quad E(z) = \int_0^z \mathcal{E}(y) dy$$

and

$$K(z,x) = \int_0^z G(y,x) dy = -\frac{i}{2} \int_0^1 \frac{\sqrt{1-w^2}}{iaw^2} \left[2e^{iawx} - e^{iaw(x+z)} - 1 + \text{sgn}(z-x)(e^{iaw|z-x|} - 1) \right] dw .$$

For later use we note

$$\frac{\partial K}{\partial x} = -\frac{i}{2} \int_0^1 \frac{\sqrt{1-w^2}}{w} \left\{ 2e^{iawx} - e^{iaw(x+z)} - e^{iaw|x-z|} \right\} dw .$$

An integration by parts of (15a) gives

$$(15b) \quad -\frac{iaz^2}{2\gamma\pi} = E(z) + \frac{2a}{\pi} \left[K(z,1)E(1) - \int_0^1 \frac{\partial K}{\partial x} E(x) dx \right] ,$$

where

$$K(z,\sigma) = \int_0^z G(\sigma,y;a) dy = 0$$

since

$$G(\sigma, y; a) = -\frac{\pi}{4} \int_{|\sigma-y|}^{|\sigma+y|} \frac{J_1(a\tau) + iH_1(a\tau)}{\tau} d\tau = 0.$$

Equation (15b) is exact. The limiting solution as $a \rightarrow \infty$ will therefore be given by

$$E_0(z) = \int_0^z \frac{1}{\sqrt{\pi}} E_0(x) dx = -\frac{1}{\sqrt{\pi}} \sqrt{1-z^2} + \frac{1}{\sqrt{\pi}}.$$

We wish now to obtain some information about the next term $E_1(z)$ in the asymptotic expansion of $E(z)$. Towards this end we now make the following approximations in equation (15b). We write $E(z) = E_0(z) + E_1(z) + \dots$ and substitute this into (15b) dropping terms of higher order. We therefore replace $E(z)$ by $E_0(z)$, $E(1)$ by $E_0(1)$ and $E(x)$ (which occurs in the integrand) by $E_0(x) + E_1(x)$. We get

$$\begin{aligned} & -\frac{iaz^2}{2\sqrt{\pi}} - E_0(z) - \frac{2a}{\pi} K(z, 1) \frac{1}{\sqrt{\pi}} + \frac{2a}{\pi} \int_0^1 \frac{\partial K}{\partial x} E_0(x) dx \\ (16) \quad & = -\frac{iaz^2}{2\sqrt{\pi}} - E_0(z) - \frac{2a}{\pi^{3/2}} K(z, 1) + \frac{2a}{\pi^{3/2}} \int_0^1 \frac{\partial K}{\partial x} dx \\ & - \frac{2a}{\pi^{3/2}} \int_0^1 \frac{\partial K}{\partial x} \sqrt{1-x^2} dx = -\frac{2a}{\pi} \int_0^1 \frac{\partial K}{\partial x} E_1(x) dx. \end{aligned}$$

This is an integral equation of the first kind for the determination of $E_1(x)$, since the left-hand side contains known quantities.

We now show that after division by a the left-hand side of (16) vanishes to a higher order than $a^{-5/2}$ as $a \rightarrow \infty$. For this purpose we need the following calculations:

$$1) - \frac{2a}{\pi \sqrt{\pi}} K(z, l) :$$

$$\begin{aligned}
 K(z, l) &= -\frac{i}{2} \frac{1}{ia} \int_0^1 \frac{\sqrt{1-w^2}}{w} \left\{ 2e^{iaw} - e^{iaw(l+z)} - e^{iaw(l-z)} \right\} dw \\
 &= -\frac{1}{2a} \int_0^1 \frac{\sqrt{1-w^2}}{w^2} \left\{ 2 \cos aw - \cos aw(l+z) - \cos aw(l-z) \right\} dw \\
 &\quad - \frac{i}{2a} \int_0^1 \frac{\sqrt{1-w^2}}{w^2} \left\{ 2 \sin aw - \sin aw(l+z) - \sin aw(l-z) \right\} dw \\
 &= -\frac{1}{2a} \int_0^1 dw \frac{\sqrt{1-w^2}}{w^2} \left\{ \left(+2 \sin \left(aw + \frac{awz}{2} \right) \sin \frac{awz}{2} \right) - \left(2 \sin \left(aw - \frac{awz}{2} \right) \sin \frac{awz}{2} \right) \right\} \\
 &\quad - \frac{i}{2a} \int_0^1 dw \frac{\sqrt{1-w^2}}{w^2} \left\{ \left(-2 \cos \left(aw + \frac{awz}{2} \right) \sin \frac{awz}{2} \right) + \left(2 \cos \left(aw - \frac{awz}{2} \right) \sin \frac{awz}{2} \right) \right\} \\
 &= -\frac{2^2}{2a} \int_0^1 dw \frac{\sqrt{1-w^2}}{w^2} \sin \frac{awz}{2} \cos aw \sin \frac{awz}{2} \\
 &\quad + \frac{i2^2(-1)}{2a} \int_0^1 dw \frac{\sqrt{1-w^2}}{w^2} \sin \frac{awz}{2} \sin aw \sin \left(\frac{awz}{2} \right) \\
 &\stackrel{?}{=} \frac{4i}{2a} \int_0^1 \sin^2 \frac{awz}{2} \sin aw \frac{\sqrt{1-w^2}}{w} dw \\
 &\stackrel{?}{=} \frac{4}{2a} \int_0^1 \sin^2 \frac{awz}{2} \cos aw \frac{\sqrt{1-w^2}}{w} dw .
 \end{aligned}$$

Therefore

$$-\frac{2a}{\pi \sqrt{\pi}} K(z, l) = \frac{4}{\pi \sqrt{\pi}} \left\{ \int_0^1 \sin^2 \frac{awz}{2} \cos aw \frac{\sqrt{1-w^2}}{w} dw + i \int_0^1 \sin^2 \frac{awz}{2} \sin aw \frac{\sqrt{1-w^2}}{w} dw \right\}$$

Now we need the value of $\frac{2a}{\pi^{3/2}} \int_0^1 \frac{\partial K}{\partial x} dx$. Calculations 2) and 3) give its value:

$$2) \quad \frac{2a}{\pi} \left(-\frac{i}{2} \right) \left(+\frac{1}{\sqrt{\pi}} \right) \int_0^1 dw \quad \frac{\sqrt{1-w^2}}{w} \int_0^1 (2 \cos awx - \cos aw(z+x) - \cos aw(x-z)) dx$$

$$- \frac{ia}{\pi^{3/2}} \int_0^1 dw \quad \frac{\sqrt{1-w^2}}{w} \left\{ \left(\frac{2 \sin awx}{aw} - \frac{\sin aw(z+x)}{aw} - \frac{\sin aw(x-z)}{aw} \right) \Big|_0^1 \right\}$$

$$= - \frac{i}{\pi^{3/2}} \int_0^1 dw \quad \frac{\sqrt{1-w^2}}{w^2} \left\{ 2 \sin aw - \sin aw(z+1) - \sin aw(1-z) \right\}$$

$$= - \frac{i}{\pi^{3/2}} \int_0^1 dw \quad \frac{\sqrt{1-w^2}}{w^2} \left\{ 2 \sin aw - 2 \sin aw \cos awz \right\}$$

$$= - \frac{2i}{\pi^{3/2}} \int_0^1 dw \quad \frac{\sqrt{1-w^2}}{w^2} \left\{ 1 - \cos awz \right\} \sin aw$$

$$= - \frac{4i}{\pi^{3/2}} \int_0^1 \frac{\sqrt{1-w^2}}{w^2} \sin aw \sin^2 \frac{awz}{2} dw ;$$

$$3) \quad \frac{2a}{\pi} \left(-\frac{i}{2} \right) \left(+\frac{1}{\sqrt{\pi}} \right) i \int_0^1 dw \quad \frac{\sqrt{1-w^2}}{w} \int_0^1 (2 \sin awx - \sin aw(z+x) - \sin aw|z-x|) dx$$

$$= \frac{a}{\pi \sqrt{\pi}} \int_0^1 dw \quad \frac{\sqrt{1-w^2}}{w} \left\{ -2 \frac{\cos awx}{aw} \Big|_0^1 + \frac{\cos aw(z+x)}{aw} \Big|_0^1 \right. \\ \left. + \frac{\cos aw(z-x)}{-aw} \Big|_0^z + \frac{\cos aw(x-z)}{aw} \Big|_z^1 \right\}$$

$$\begin{aligned}
 &= \frac{1}{\pi \sqrt{\pi}} \int_0^1 dw \frac{\sqrt{1-w^2}}{w} \left\{ \begin{array}{l} -2 \cos \alpha w + 2 + \cos \alpha w(z+1) - \cos \alpha wz \\ -1 + \cos \alpha wz + \cos \alpha w(1-z) - 1 \end{array} \right\} \\
 &= \frac{1}{\pi \sqrt{\pi}} \int_0^1 dw \frac{\sqrt{1-w^2}}{w} \left\{ -2 \cos \alpha w + 2 \cos \alpha w \cos \alpha wz \right\} \\
 &= -\frac{2}{\pi \sqrt{\pi}} \int_0^1 dw \frac{\sqrt{1-w^2}}{w} \left\{ 1 - \cos \alpha wz \right\} \cos \alpha w \\
 &= -\frac{4}{\pi \sqrt{\pi}} \int_0^1 dw \frac{\sqrt{1-w^2}}{w} \sin^2 \frac{\alpha wz}{2} \cos \alpha w .
 \end{aligned}$$

We note that 1) + 2) + 3) = 0. Consequently equation (16) simplifies to

$$(16a) \quad \frac{\sqrt{\pi} iz^2}{4} + \frac{\pi}{2\alpha} E_0(z) + \frac{1}{\sqrt{\pi}} \int_0^1 \frac{\partial K}{\partial x} \sqrt{1-x^2} dx = \int_0^1 \frac{\partial K}{\partial x} E_1(x) dx .$$

We consider now the integral in the left-hand side of equation (16a):

$$\begin{aligned}
 \frac{1}{\sqrt{\pi}} \int_0^1 \frac{\partial K}{\partial x} \sqrt{1-x^2} dx &= -\frac{i}{2\sqrt{\pi}} \int_0^1 dw \frac{\sqrt{1-w^2}}{w} \int_0^1 dx \sqrt{1-x^2} \left\{ \begin{array}{l} 2 \cos \alpha wx - \cos \alpha w(z+x) - \\ - \cos \alpha w(z-x) + i(2 \sin \alpha wx - \sin \alpha w(z+x) - \sin \alpha w|z-x|) \end{array} \right\} .
 \end{aligned}$$

We wish to know the value of the imaginary part of this last expression as $\alpha \rightarrow \infty$. We have

$$\begin{aligned}
 & -\frac{i}{2\sqrt{\pi}} \int_0^1 dw \frac{\sqrt{1-w^2}}{w} \int_0^1 \sqrt{1-x^2} (2 \cos \alpha wx - \cos \alpha w(z+x) - \cos \alpha w(z-x)) dx \\
 & = -\frac{i}{2\sqrt{\pi}} \int_0^1 dw \frac{\sqrt{1-w^2}}{w} \frac{1}{4} \sin^2 \frac{\alpha wz}{2} \int_0^1 \cos \alpha wx \sqrt{1-x^2} dx \\
 & = -i\sqrt{\pi} \int_0^1 dw \frac{\sqrt{1-w^2}}{\alpha w} J_1(\alpha w) \sin^2 \frac{\alpha wz}{2} \\
 & = -i\sqrt{\pi} \int_0^{\infty} \sin^2 \frac{tz}{2} \frac{J_1(t)}{t^2} \sqrt{1 - (\frac{t}{\alpha})^2} dt .
 \end{aligned}$$

The limit as $\alpha \rightarrow \infty$ of this last expression is

$$-i\sqrt{\pi} \int_0^{\infty} \sin^2 \frac{tz}{2} \frac{J_1(t)}{t^2} dt = R(z) ,$$

and

$$R'(z) = -\frac{i\sqrt{\pi}}{2} \int_0^{\infty} \sin tz \frac{J_1(t)}{t} dt = -\frac{i\sqrt{\pi}}{2} z$$

(cf. [4], p. 36). Hence

$$R(z) = -\frac{i\sqrt{\pi} z^2}{4}$$

and this cancels the first term of the left-hand side of equation (16a).

We now differentiate equation (16a) with respect to α , and evaluate

$$\frac{\partial}{\partial \alpha} \int_0^1 \frac{\partial K}{\partial x} \sqrt{1-x^2} dx . \quad \text{We have, considering each term separately,}$$

$$A(\alpha) = 2i \left\{ \int_0^1 \int_0^1 x \cos \alpha w x \sqrt{1-w^2} \sqrt{1-x^2} dw dx + i \int_0^1 \int_0^1 x \sin \alpha w x \sqrt{1-w^2} \sqrt{1-x^2} dw dx \right\};$$

$$A_1(\alpha) = 2i \frac{\pi}{2} \int_0^1 \frac{J_1(\alpha x)}{\alpha} \sqrt{1-x^2} dx = \frac{-\pi i}{\alpha} \int_0^1 J'_0(\alpha x) \sqrt{1-x^2} dx$$

$$= \frac{-\pi i}{\alpha} \left\{ \left(\frac{J_0(\alpha x)}{\alpha} \sqrt{1-x^2} \right) \Big|_0^1 + \frac{1}{\alpha} \int_0^1 J_0(\alpha x) \frac{x}{\sqrt{1-x^2}} dx \right\}$$

$$= \frac{-\pi i}{\alpha} \left\{ -\frac{1}{\alpha} + \frac{1}{\alpha} \int_0^1 J_0(\alpha x) \frac{x}{\sqrt{1-x^2}} dx \right\};$$

$$A_2(\alpha) = -2 \frac{\pi}{2\alpha} \int_0^1 H_1(\alpha x) \sqrt{1-x^2} dx = \frac{-\pi}{\alpha} \left\{ \int_0^1 \frac{2}{\pi} \sqrt{1-x^2} dx - \int_0^1 H'_0(\alpha x) \sqrt{1-x^2} dx \right\}$$

$$= -\frac{2}{\alpha} \frac{\pi}{4} + \frac{\pi}{\alpha} \left\{ \left(\frac{H_0(\alpha x)}{\alpha} \sqrt{1-x^2} \right) \Big|_0^1 + \frac{1}{\alpha} \int_0^1 H_0(\alpha x) \frac{x}{\sqrt{1-x^2}} dx \right\};$$

$$B(\alpha) = -i \int_0^1 \int_0^1 (x+z) e^{i\alpha w(x+z)} \sqrt{1-w^2} \sqrt{1-x^2} dx dw$$

$$= -i \int_0^1 \int_0^1 (x+z) \left\{ (\cos \alpha w(x+z) + i \sin \alpha w(x+z)) \right\} \sqrt{1-w^2} \sqrt{1-x^2} dx dw;$$

$$B_1 = -i \int_0^1 \int_0^1 (x+z) \cos \alpha w(x+z) \sqrt{1-w^2} \sqrt{1-x^2} dx dw$$

$$= -\frac{\pi i}{2} \int_0^1 \frac{J_1(\alpha(x+z))}{\alpha} \sqrt{1-x^2} dx$$

$$= +\frac{\pi i}{2\alpha} \left\{ \left(\frac{J_0(\alpha(x+z))}{\alpha} \sqrt{1-x^2} \right) \Big|_0^1 + \frac{1}{\alpha} \int_0^1 J_0(\alpha(x+z)) \frac{x}{\sqrt{1-x^2}} dx \right\} \sim -\frac{\pi i}{2\alpha} J'_0(\alpha z);$$

$$\begin{aligned}
 B_2(a) &= + \int_0^1 \int_0^1 (x+z) \sin aw(x+z) \sqrt{1-w^2} \sqrt{1-x^2} dw dx = + \frac{\pi}{2} \int_0^1 \frac{H_1(a(x+z))}{a} \sqrt{1-x^2} dx \\
 &= + \frac{\pi}{2a} \left\{ \int_0^1 \frac{2}{\pi} \sqrt{1-x^2} dx - \int_0^1 H_0'(a(x+z)) \sqrt{1-x^2} dx \right\} \\
 &= + \frac{\pi}{4a} - \frac{\pi}{2a} \left\{ \left(\frac{H_0(a(x+z))}{a} \sqrt{1-x^2} \right) \Big|_0^1 + \frac{1}{a} \int_0^1 H_0(a(x+z)) \frac{x}{\sqrt{1-x^2}} dx \right\} \\
 &= + \frac{\pi}{4a} + \frac{\pi}{2a} H_0(a z);
 \end{aligned}$$

$$\begin{aligned}
 C(a) &= -i \int_0^1 \int_0^1 |x-z| \left\{ \cos aw|x-z| + i \sin aw|x-z| \right\} \sqrt{1-w^2} \sqrt{1-x^2} dw dx \\
 &= -i \frac{\pi}{2} \int_0^1 \frac{J_1(a|x-z|)}{a} \sqrt{1-x^2} dx + \frac{\pi}{2} \int_0^1 \frac{H_1(a|x-z|)}{a} \sqrt{1-x^2} dx;
 \end{aligned}$$

$$\begin{aligned}
 C_1(a) &= -\frac{\pi i}{2a} \left[\int_0^z J_1(a(z-x)) \sqrt{1-x^2} dx + \int_z^1 J_1(a(x-z)) \sqrt{1-x^2} dx \right] \\
 &= \frac{\pi i}{2a} \left[\int_0^z J_0'(a(z-x)) \sqrt{1-x^2} dx + \int_z^1 J_0'(a(x-z)) \sqrt{1-x^2} dx \right] \\
 &= \frac{\pi i}{2a} \left\{ \left(\frac{J_0(a(z-x))}{a} \sqrt{1-x^2} \right) \Big|_0^z - \frac{1}{a} \int_0^z J_0(a(z-x)) \frac{x}{\sqrt{1-x^2}} dx \right. \\
 &\quad \left. + \frac{J_0(a(x-z))}{a} \sqrt{1-x^2} \Big|_z^1 + \frac{1}{a} \int_z^1 J_0(a(x-z)) \frac{x}{\sqrt{1-x^2}} dx \right\} \\
 &\sim \frac{\pi i}{2a} \left\{ -\frac{\sqrt{1-z^2}}{a} + \frac{J_0(az)}{a} - \frac{\sqrt{1-z^2}}{a} \right\};
 \end{aligned}$$

$$\begin{aligned}
 C_2(a) &= \frac{\pi}{2a} \left[\int_0^1 \frac{2}{\pi} \sqrt{1-x^2} dx - \int_0^1 H_0^1(a|x-z|) \sqrt{1-x^2} dx \right] \\
 &= \frac{\pi}{4a} - \frac{\pi}{2a} \int_0^1 H_0^1(a|x-z|) \sqrt{1-x^2} dx \\
 &= \frac{\pi}{4a} - \frac{\pi}{2a} \left\{ \int_0^z H_0^1(a(z-x)) \sqrt{1-x^2} dx + \int_z^1 H_0^1(a(x-z)) \sqrt{1-x^2} dx \right\} \\
 &= \frac{\pi}{4a} - \frac{\pi}{2a} \left\{ \left(\frac{H_0^1(a(z-x))}{-a} \sqrt{1-x^2} \right) \Big|_0^z - \frac{1}{a} \int_0^z H_0^1(a(z-x)) \frac{x}{\sqrt{1-x^2}} dx \right. \\
 &\quad \left. + \left(\frac{H_0^1(a(x-z))}{a} \sqrt{1-x^2} \right) \Big|_z^1 + \frac{1}{a} \int_z^1 H_0^1(a(x-z)) \frac{x}{\sqrt{1-x^2}} dx \right\} \\
 &\sim \frac{\pi}{4a} - \frac{\pi}{2a} \left\{ \frac{H_0^1(az)}{a} \right\} .
 \end{aligned}$$

Combining, we find that

$$-\frac{i}{2\sqrt{\pi}} \left\{ A + B + C \right\} = \frac{\sqrt{\pi}}{2a^2} - \frac{\sqrt{\pi}}{2a^2} \sqrt{1-z^2} + R ,$$

where

$$\begin{aligned}
 R &= -\frac{i}{2\sqrt{\pi}} \left\{ \frac{-\pi i}{a^2} \int_0^1 J_0(\alpha x) \frac{x}{\sqrt{1-x^2}} dx \right. \\
 &\quad + \frac{\pi}{a^2} \int_0^1 H_0^1(\alpha x) \frac{x}{\sqrt{1-x^2}} dx + \frac{\pi i}{2a^2} \int_0^1 J_0(a(x+z)) \frac{x}{\sqrt{1-x^2}} dx \\
 (17) \quad &\quad \left. - \frac{\pi}{2a^2} \int_0^1 H_0^1(a(x+z)) \frac{x}{\sqrt{1-x^2}} dx - \frac{\pi i}{2a^2} \int_0^z J_0(a(z-x)) \frac{x}{\sqrt{1-x^2}} dx \right. \\
 &\quad \left. + \frac{\pi i}{2a^2} \int_z^1 J_0(a(x-z)) \frac{x}{\sqrt{1-x^2}} dx + \frac{\pi}{2a^2} \int_0^1 H_0^1(a(z-x)) \frac{x}{\sqrt{1-x^2}} dx \right\} .
 \end{aligned}$$

We now differentiate the following with respect to α :

$$q(\alpha) = \frac{\pi}{2\alpha} E_0(z) = \frac{\pi}{2\alpha} \left(-\frac{1}{\sqrt{\pi}} \sqrt{1-z^2} + \frac{1}{\sqrt{\pi}} \right) .$$

We get

$$q'(\alpha) = + \frac{\sqrt{\pi}}{2\alpha^2} \sqrt{1-z^2} - \frac{\sqrt{\pi}}{2\alpha^2} .$$

Adding, we get

$$-\frac{i}{2\sqrt{\pi}} (A + B + C) + q'(\alpha) = R .$$

When z is not in the neighborhood of 0 or 1, $R(z;\alpha)$ vanishes at least to order $\alpha^{-5/2}$ as $\alpha \rightarrow \infty$. Therefore

$$(18) \quad T(z;\alpha) = \int_{\infty}^{\alpha} R(z;\beta) d\beta$$

exists. We see then that the left-hand side of equation (16a) vanishes to a higher order than $\alpha^{-5/2}$ as $\alpha \rightarrow \infty$.

We now give the value of E_1 in closed form. We have

$$\frac{\partial K}{\partial x} = -\frac{i}{2} \int_0^1 \frac{\sqrt{1-w^2}}{w} \left\{ e^{iawx} - e^{iaw(z+x)} + e^{iawx} - e^{iaw|z-x|} \right\} dw .$$

We have already shown that

$$\lim_{\alpha \rightarrow \infty} G(x,y;\alpha) = -\frac{i}{2} \log \left| \frac{x+y}{x-y} \right| .$$

Magnus [3] has shown that $G(x,y;\alpha)$ is also given by

$$-\frac{i}{2} \int_0^1 \frac{\sqrt{1-w^2}}{w} \left\{ e^{iaw|x-y|} - e^{iaw|x+y|} \right\} dw .$$

It follows that

$$\lim_{\alpha \rightarrow \infty} \frac{\partial K}{\partial x} = -\frac{i}{2} \log \left| \frac{z^2 - x^2}{x^2} \right| .$$

From the above calculations we now get

$$(19) \quad T(z; \alpha) = -\frac{i}{2} \int_0^1 \log \left| \frac{z^2 - x^2}{x^2} \right| E_1(x) dx .$$

Now $T(0; \alpha) = 0$, and so we can write the above as follows:

$$(20) \quad T(z; \alpha) - T(0; \alpha) = \left(-\frac{i}{2} \int_0^1 \log |z^2 - x^2| E_1(x) dx \right) - \left(-\frac{i}{2} \int_0^1 \log x^2 E_1(x) dx \right) .$$

If we find a solution for

$$(21) \quad T(z; \alpha) = -\frac{i}{2} \int_0^1 \log |z^2 - x^2| E_1(x) dx$$

which is valid for $0 \leq z \leq 1$ then this solution will also satisfy (20).

We obtain a solution of (21) as follows. Let $z^2 = s$ and let $x^2 = t$.

Equation (21) becomes

$$(21a) \quad T(\sqrt{s}; \alpha) = -\frac{i}{2} \int_0^1 \log |s-t| E_1(\sqrt{t}) \frac{dt}{2\sqrt{t}} .$$

Let

$$\frac{E_1(\sqrt{t})}{2\sqrt{t}} = Y(t) ,$$

and we get

$$(22) \quad 2iT(\sqrt{s}; \alpha) = \int_0^1 \log |s-t| Y(t) dt .$$

This last equation has been studied by T. Carleman (cf. Schmeidler [9], p. 56).

The solution is given as follows

$$(23) \quad Y(t) = \frac{E_1(\sqrt{t})}{2\sqrt{t}} = -\frac{1}{2\pi^2 \log 2 \sqrt{t} \sqrt{1-t}} \int_0^1 \frac{T(\sqrt{s})}{\sqrt{s(1-s)}} ds + \frac{1}{\pi^2 \sqrt{t(1-t)}} \int_0^1 \frac{\frac{d}{ds} T(\sqrt{s}) \sqrt{s(1-s)}}{s-t} ds$$

where the last integral is a principle value integral.

We find from (23):

$$(24) \quad E_1(x) = -\frac{2}{\pi^2 \log 2 \sqrt{1-x^2}} \int_0^1 \frac{T(z)}{\sqrt{1-z^2}} dz + \frac{2}{\pi^2 \sqrt{1-x^2}} \int_0^1 \frac{\frac{d}{dz} T(z) \sqrt{1-z^2}}{z^2 - x^2} dz ,$$

$$(25) \quad \mathcal{E}_1(x) = \frac{dE_1(x)}{dx} .$$

We state this last as

Theorem 3. Let the function $\mathcal{E}_1(x)$ be defined by (17), (18), (24), (25). Then $\mathcal{E}_1(x)$ is the first-order term arising from a perturbation of the integral equation (9) for $\mathcal{E}(x)$ at $a = \infty$.

5. A related result

We give finally a result which, although it is not directly connected with the diffraction problem, follows immediately from it.

One of the integrals which arose in the above calculation was

$$\int_0^1 \int_0^1 \sqrt{1-x^2} \frac{\sqrt{1-w^2}}{w} \sin \alpha w(x+z) dw dx .$$

We shall evaluate this integral as $\alpha \rightarrow \infty$ (in a manner different from that which has preceded). We have

$$\begin{aligned} & \int_0^1 \int_0^1 \sqrt{1-x^2} \frac{\sqrt{1-w^2}}{w} \sin \alpha w(x+z) dw dx \\ &= \int_0^1 \int_0^1 \sqrt{1-x^2} \frac{\sqrt{1-w^2}}{w} \left\{ \sin \alpha wx \cos \alpha wz + \cos \alpha wx \sin \alpha wz \right\} dw dx \\ &= \int_0^1 dw \frac{\sqrt{1-w^2}}{w} \cos \alpha wz \int_0^1 dx \sqrt{1-x^2} \sin \alpha wx \\ &+ \int_0^1 dw \frac{\sqrt{1-w^2}}{w} \sin \alpha wz \int_0^1 dx \sqrt{1-x^2} \cos \alpha wx \\ &= \frac{\pi}{2} \int_0^1 \frac{H_1(\alpha w)}{\alpha w^2} \cos \alpha wz \sqrt{1-w^2} dw + \frac{\pi}{2} \int_0^1 \frac{J_1(\alpha w)}{\alpha w^2} \sqrt{1-w^2} \sin \alpha wz dz \\ &= \frac{\pi}{2} \int_0^a \frac{H_1(t)}{t^2} \cos tz \sqrt{1 - (\frac{t}{a})^2} dt + \frac{\pi}{2} \int_0^a \frac{J_1(t)}{t^2} \sin tz \sqrt{1 - (\frac{t}{a})^2} dt . \end{aligned}$$

If we take the limit of this last expression as $a \rightarrow \infty$ we get

$$\frac{\pi}{2} \left\{ \int_0^\infty \frac{H_1(t)}{t^2} \cos tz dt + \int_0^\infty \frac{J_1(t)}{t^2} \sin tz dt \right\} .$$

On the other hand we have

$$\begin{aligned}
 & \lim_{a \rightarrow \infty} \int_0^1 \int_0^1 \sqrt{1-x^2} \frac{\sqrt{1-w^2}}{w} \sin aw(x+z) dw dz \\
 &= \lim_{a \rightarrow \infty} \int_0^1 \int_0^a \sqrt{1-x^2} \sqrt{1 - \left(\frac{t}{a}\right)^2} \sin t(x+z) \frac{dt}{t} dx \\
 &= \int_0^1 dx \sqrt{1-x^2} \int_0^\infty \frac{\sin t(x+z)}{t} dt = \frac{\pi}{2} \int_0^1 \sqrt{1-x^2} dx .
 \end{aligned}$$

Equating these two results we get

$$\int_0^\infty \frac{H_1(t)}{t^2} \cos tz dt + \int_0^\infty \frac{J_1(t)}{t^2} \sin tz dt = \frac{\pi}{4} .$$

Since the sine transform of $J_1(t)/t^2$ is known we have a formula which gives the cosine transform of $H_1(t)/t^2$.

To our knowledge this has not been evaluated previously. We remark that there is some generality in the method and that other transforms can be obtained similarly. For example if $\sqrt{1-x^2}$ is replaced by $(1-x^2)^{3/2}$, etc., we can obtain in this manner

$$\left\{ \int_0^\infty \frac{H_2(t)}{t^3} \cos tz dt + \int_0^\infty \frac{J_2(t)}{t^3} \sin tz dt \right\} = \frac{1}{4} \Gamma(3) .$$

Acknowledgment

The author wishes to express his gratitude to Dr. W. Magnus for his guidance and for the time and effort which he devoted in making possible this research.

The author wishes also to express his appreciation to the Evans Signal Laboratory for their interest and encouragement.

References

- [1] Bouwkamp, C.J. - Diffraction theory; Reports on Progress in Physics, 17, 35-100 (1954).
Also Research Report No. EM-50, New York University, Institute of Mathematical Sciences, Division of Electromagnetic Research, April, 1953.
- [2] Levine, H. and Schwinger, J. - On the theory of diffraction by an aperture in a plane screen; Phys. Rev., 74, 958-974 (1948).
- [3] Magnus, W. - An infinite system of linear equations arising in diffraction theory; New York University, Institute of Mathematical Sciences, Division of Electromagnetic Research, Research Report No. EM-80, June, 1955.
- [4] Magnus, W. and Oberhettinger, F. - Formulas and theorems for the special functions of Mathematical Physics; Chelsea Publishing Co., 1949.
- [5] Watson, G.N. - Notes on generating functions of polynomials I, II, III; J. London Math. Soc., 8, 189-192, 194-199, 289-292 (1933).
- [6] Watson, G.N. - A treatise on the theory of Bessel functions; Second Edition, Cambridge, 1944.
- [7] Wright, E.M. - Asymptotic expansions of hypergeometric functions; J. London Math. Soc., 10, 287-293 (1935).
- The asymptotic expansion of the generalized hypergeometric functions; Proc. London Math. Soc., (2), 46, 389-408 (1940).
- [8] Erdelyi, A., et. al.- Higher transcendental functions; Bateman Project, 1, New York, 1953.
- [9] Schmeidler, W. - Integral gleichungen mit Anwendungen in Physik und Technik; Leipzig, 1955.

DISTRIBUTION LIST FOR RESEARCH REPORTS

Contract No. AF 18(600)-367

(ONE copy unless otherwise noted)

The Air University Libraries
Maxwell Air Force Base, Alabama

Applied Mathematics and Statistics Lab.
Stanford University
Stanford, California

Department of Mathematics
University of California
Berkeley, California

Commander
Air Force Flight Test Center
ATTN: Technical Library
Edwards Air Force Base, California

The Rand Corporation
Technical Library
1700 Main Street
Santa Monica, California

Director, Office of Advanced Studies
Air Force Office of Scientific Research
Post Office Box 2035
Pasadena 2, California

Commander
Western Development Division
ATTN: WDSIT
P.O. Box 262
Inglewood, California

Department of Mathematics
Yale University
New Haven, Connecticut

Commander
Air Force Armament Center
ATTN: Technical Library
Eglin Air Force Base, Florida

Commander
Air Force Missile Test Center
ATTN: Technical Library
Patrick Air Force Base, Florida

Department of Mathematics
Northwestern University
Evanston, Illinois

Institute for Air Weapons Research
Museum of Science and Industry
University of Chicago
Chicago 37, Illinois

Department of Mathematics
University of Chicago
Chicago 37, Illinois

Department of Mathematics
University of Illinois
Urbana, Illinois

Institute for Fluid Dynamics & Applied Math.
University of Maryland
College Park, Maryland

Mathematics and Physics Library
The Johns Hopkins University
Baltimore, Maryland

Department of Mathematics
Harvard University
Cambridge, Massachusetts

Commander
Air Force Cambridge Research Center
ATTN: Geophysics Research Library
Cambridge 39, Massachusetts

Commander
Air Force Cambridge Research Center
ATTN: CRRA
Cambridge 39, Massachusetts

Commander
Air Force Cambridge Research Center
ATTN: Electronic Research Library
Cambridge 39, Massachusetts

Institute of the Aeronautical Sciences
ATTN: Library Acquisitions
2 East 64th Street
New York 21, N.Y.

Department of Mathematics
Columbia University
New York 27, New York
ATTN: Professor B.O. Koopman

Commander
Rome Air Development Center
ATTN: Technical Library
Griffiss Air Force Base
Rome, New York

Institute of Statistics
North Carolina State College of A & E
Raleigh, North Carolina

Department of Mathematics
University of North Carolina
Chapel Hill, North Carolina

Office of Ordnance Research
Box CM
Duke Station
Durham, North Carolina

Department of Mathematics
Duke University
Duke Station
Durham, North Carolina

Commander
Air Technical Intelligence Center
ATTN: ATIAE-4
Wright-Patterson Air Force Base, Ohio

Commander
Wright Air Development Center
ATTN: Technical Library
Wright-Patterson Air Force Base, Ohio

(2) Commander
Wright Air Development Center
ATTN: ARL Technical Library, WCRR
Wright-Patterson Air Force Base, Ohio

(2) Commandant
USAF Institute of Technology
ATTN: Technical Library, MCL1
Wright-Patterson Air Force Base, Ohio

(5) Chief, Document Service Center
Armed Services
Technical Information Agency
Knott Building
Dayton 2, Ohio

Department of Mathematics
Carnegie Institute of Technology
Pittsburgh, Pennsylvania

Department of Mathematics
University of Pennsylvania
Philadelphia, Pennsylvania

Commander
Arnold Engineering Development Center
ATTN: Technical Library
Tullahoma, Tennessee

Defense Research Laboratory
University of Texas
Austin, Texas

Department of Mathematics
Rice Institute
Houston, Texas

Commander
Air Force Personnel & Training Research
Center
ATTN: Technical Library
Lackland Air Force Base
San Antonio, Texas

Department of Mathematics
University of Wisconsin
Madison, Wisconsin

(2) Commander
Air Force Office of Scientific Research
ATTN: SROAM
Washington 25, D.C.

Commander
Air Force Office of Scientific Research
ATTN: SRRI
Washington 25, D.C.

Dr. Y.W. Chen
2645 Stuart Street
Berkeley, California

Willow Run Research Center
University of Michigan
Ypsilanti, Michigan

Department of Mathematics
Folwell Hall
University of Minnesota
Minneapolis, Minnesota

Department of Mathematics
Institute of Technology
Engineering Building
University of Minnesota
Minneapolis, Minnesota

Department of Mathematics
Washington University
Saint Louis 5, Missouri

Department of Mathematics
University of Missouri
Columbia, Missouri

Commander
Strategic Air Command
ATTN: Operations and Analysis
Offutt Air Force Base
Omaha, Nebraska

The James Forrestal Research Center Library
Princeton University
Princeton, New Jersey

Library
Institute for Advanced Study
Princeton, New Jersey

Department of Mathematics
Fine Hall
Princeton University
Princeton, New Jersey

Commander
Holloman Air Development Center
ATTN: Technical Library
Holloman Air Force Base, New Mexico

Commander
Air Force Special Weapons Center
ATTN: Technical Library
Kirtland Air Force Base
Albuquerque, New Mexico

Prof. J. Wolfowitz
Mathematics Department
White Hall
Cornell University
Ithaca, New York

Department of Mathematics
Syracuse University
Syracuse, New York

Commander
Rome Air Development Center
ATTN: Intelligence and Analysis Section of
Electronic Warfare
Rome, New York

- Department of Mathematical Statistics
Fayerweather Hall
Columbia University
New York 27, New York
ATTN: Dr. Herbert Robbins
- Human Factors Operations Research Labs.
Air Research and Development Command
Bolling Air Force Base
Washington 25, D.C.
- (2)Chief of Naval Research
Department of the Navy
ATTN: Code 432
Washington 25, D.C.
- Department of Commerce
Office of Technical Services
Washington 25, D.C.
- Director National Security Agency
ATTN: Dr. H.H. Campaigne
Washington 25, D.C.
- Library
National Bureau of Standards
Washington 25, D.C.
- National Applied Mathematics Labs.
National Bureau of Standards
Washington 25, D.C.
- Headquarters, USAF
Director of Operations
Washington 25, D.C.
ATTN: Operations Analysis Division, AFOOP
- Commander
European Office ARDC
60 Rue Ravenstein
Brussels, Belgium
- Naval Electronics Laboratory
San Diego 52, California
- Research Laboratory of Electronics
Massachusetts Institute of Technology
Rm. 20B-221
Cambridge 39, Massachusetts
- Signal Corps Engineering Laboratories
Technical Documents Center
Evans Signal Laboratory
Belmar, New Jersey
- Commanding General
Signal Corps Engineering Laboratories
ATTN: Technical Reports Library
Fort Monmouth, New Jersey
- Chief of Staff
HQ United States Air Force
Pentagon, Washington 25, D.C.
ATTN: AFMRD - 5
- Office of Chief Signal Officer
Signal Plans and Operations Division
Com. Liaison Br., Radio Prop. Section
The Pentagon, Washington 25, D.C.
ATTN: SIGOL - 2, Rm. 20
- Naval Research Laboratory
Washington 25, D.C.
ATTN: Technical Data Section
- Central Radio Propagation Laboratory
National Bureau of Standards
Washington 25, D.C.
ATTN: Technical Reports Library
- Air Force Development Field Representative
Naval Research Laboratory
Code 1110
Washington 25, D.C.
- Ballistics Research Laboratory
Aberdeen Proving Ground
Aberdeen, Maryland
ATTN: Dr. Keats Pullen
- Massachusetts Institute of Technology
Lincoln Laboratory
P.O. Box 390
Cambridge 39, Massachusetts
ATTN: Dr. T.J. Carroll
- Mr. Keeve Siegel
Willow Run Research Center
Willow Run Airport
Ypsilanti, Michigan
- Willow Run Research Center
Willow Run Airport
Ypsilanti, Michigan
ATTN: Dr. C.L. Dolph
- Director, Naval Research Lab.
Code 3480
Washington 25, D.C.
ATTN: Dr. L.C. van Atta
- Director, Naval Research Lab.
Washington 25, D.C.
ATTN: Mr. Robert E. Roberson
- Director Naval Research Lab.
Washington 25, D.C.
- National Bureau of Standards
Computation Laboratories
Washington 25, D.C.
ATTN: Dr. John Todd
- Dr. A.G. McNish
National Bureau of Standards
Washington 25, D.C.
- Dr. Derrick H. Lehmer
Department of Mathematics
University of California
Berkeley, California
- Dr. Joseph Kaplan
Department of Physics
University of California
Los Angeles, California
- Division of Electrical Engineering
Electronics Research Laboratory
University of California
Berkeley 4, California
ATTN: Dr. Samuel Silver
- Dr. A. Erdelyi
California Institute of Technology
1201 E. California Street
Pasadena, California
- Dr. Robert Kalaba
Electronics Division
Rand Corporation
Santa Monica, California
- Stanford Research Institute
Starford, California
ATTN: Dr. J.V.N. Granger
head, Radio Systems Laboratory
- Dr. Vic Twersky
Electronics Defense Laboratory
Box 205
Mountain View, California
- Hughes Aircraft Company
Research and Development Library
Culver City, California
ATTN: Ms. Bodner
- National Bureau of Standards
Boulder Laboratories
Boulder, Colorado
ATTN: Library
- Georgia Institute of Technology
Engineering Experimental Station
Atlanta, Georgia
ATTN: Dr. James E. Boyd
- Applied Physics Laboratory
The Johns Hopkins University
8621 Georgia Avenue
Silver Spring, Maryland
ATTN: Mr. F.T. McClure
- Dr. Donald E. Kerr
Department of Physics
The Johns Hopkins University
Baltimore 18, Maryland
- Dr. A. Weinstein
Institute of Fluid Dynamics and Applied Math.
University of Maryland
College Park, Maryland
- Professor J.A. Pierce
Harvard University
Cambridge 38, Massachusetts
- Mrs. Marjorie L. Cox, Librarian
Technical Report Collection
Room 303 A, Pierce Hall
Harvard University
Cambridge 38, Massachusetts
- Dr. F.M. Wiener
Bolt Beranek and Newman Inc.
16 Eliot Street
Cambridge 38, Massachusetts
- Dr. Arthur A. Oliner
Microwave Research Institute
Polytechnic Institute of Brooklyn
55 Johnson Street
Brooklyn, New York
- Professor J.H. Mulligan
School of Engineering
New York University
New York, N.Y.
- Dr. H.G. Booker
School of Electrical Engineering
Cornell University
Ithaca, New York
- Professor Bernard Epstein
Department of Mathematics
University of Pennsylvania
Philadelphia 4, Pennsylvania
- Professor Albert Heins
Carnegie Institute of Technology
Pittsburgh, Pennsylvania
- Professor Fred A. Ficken
University of Tennessee
Knoxville, Tennessee
- Miss Barbara C. Grimes, Librarian
Federal Communications Commission
Washington 25, D.C.
- Carnegie Institute of Washington
Department of Terrestrial Magnetism
521 Broad Branch Road, N.W.
Washington 15, D.C.
ATTN: Library
- Mathematical Reviews
80 Waterman Street
Brown University
Providence, Rhode Island
- Mr. Martin Katzin
154 Fleetwood Terrace
Silver Spring, Maryland
- Prof. B.H. Bissinger
Lebanon Valley College
Annville, Pennsylvania
- Applied Physics Laboratory
The Johns Hopkins University
8621 Georgia Avenue
Silver Spring, Maryland
ATTN: Dr. B.S. Gourary
- Dr. Charles H. Papas
Department of Electrical Engineering
California Institute of Technology
Pasadena, California
- Dr. Rodman Doll
209 A Emmet Street
Ypsilanti, Michigan
- Mr. Calvin H. Wilcox
California Institute of Technology
Pasadena 4, California

Technical Director
Combat Development Dept.
Army Electronic Proving Ground
Fort Huachuca, Arizona

National Bureau of Standards
Boulder, Colorado
ATTN: Dr. W.R. Gallet

Mrs. A.M. Gray
Engineering Library
Plant 5
Grumman Aircraft Corp.
Bethpage, L.I., N.Y.

Prof. Bernard Friedman
55 Hilltop Avenue
New Rochelle, N.Y.

Dr. Jane Scanlon
284 South Street
Southbridge, Massachusetts

Dr. Solomon L. Schwobel
3689 Louis Road
Palo Alto, California

Dr. Bernard Lippmann
Microwave Laboratory
55 Johnson Street
Brooklyn, N.Y.

University of Minnesota
The University Library
Minneapolis 14, Minnesota
ATTN: Exchange Division

Lincoln Laboratory
Massachusetts Institute of Technology
P.O. Box 73
Lexington 73, Massachusetts
ATTN: Dr. Shou Chin Wang, Rm. C-351

Mr. K.S. Kelleher
Section Head
Melpar, Inc.
3000 Arlington Boulevard
Falls Church, Virginia

Technical Research Group
17 Union Square West
New York 3, N.Y.
ATTN: Dr. L. Goldmuntz

Antenna Research Section
Microwave Laboratory
Hughes Aircraft Company
Culver City, California
ATTN: Dr. Richard B. Barrar

Institute of Fluid Dynamics & Applied Math.
University of Maryland
College Park, Maryland
ATTN: Dr. Elliott Montroll

Brandeis University
Waltham, Massachusetts
ATTN: Library

General Electric Company
Microwave Laboratory
Electronics Division
Stanford Industrial Park
Palo Alto, California
ATTN: Library

Dr. W.A. Dolid
Hughes Research Laboratories
Hughes Aircraft Company
Culver City, California
Bldg. 12, Rm. 2529

Dr. Jerry Shmoys
Dept. of Electrical Engineering
Brooklyn Polytechnic
85 Livingston Street
Brooklyn, N.Y.

Dr. I. Kolodner
Dept. of Mathematics
University of New Mexico
Albuquerque, New Mexico

Dr. John B. Smyth
Smyth Research Associates
3930 4th Avenue
San Diego 3, California

Dr. Georges G. Weill
Electrical Engineering
California Institute of Technology
Pasadena, California

Naval Research Laboratory
Washington 25, D.C.
ATTN: Dr. Henry J. Passerini
Code 5278 A

California Institute of Technology
Electrical Engineering Dept.
Pasadena, California
ATTN: Dr. Zohreh A. Kaprielian

Dr. Nathan Marcuvitz
Brooklyn Polytechnic
85 Livingston Street
Brooklyn, N.Y.

Dr. Harry Hochstadt
W.L. Maxon
460 W. 34th Street
New York, N.Y.

Prof. C.A. Woonton, Director
Eaton Electronics Research Laboratory
McGill University
Montreal, Canada

Science Abstracts
Institute of Electrical Engineers
Savoy Place
London W.C. 2, England
ATTN: R.M. Crowther

Dr. D.S. Jones
University of Manchester
Manchester 13, England

Dr. Jean-Claude Simon
Centre de Recherches techniques
Compagnie generale de T.S.F.
Paris 19, France

Prof. A. van Wijngaarden
Mathematisch Centrum
2^o Boerhaavestraat 49
Amsterdam-Zuid, Holland

Dr. C.J. Bouwkamp
Philips Research Laboratories
Eindhoven, Netherlands

Dr. H. Bremmer
Philips Research Laboratories
Eindhoven, Netherlands

Dr. E.T. Copson
Dept. of Mathematics
United College
University of St. Andrews
St. Andrews, Scotland

Universite de Paris
Cabinet du Departement
des Sciences Mathematiques
Institut Henri Poincare
11 Rue Pierre Curie
Paris 5^e, France

Dr. W. Elwyn Williams
57 Ramsbury Road
St. Albans
Hertfordshire, England

University of Cambridge
Cavendish Laboratory
Cambridge, England
ATTN: Prof. Philip Clemmow

The Department of Mathematics
Manchester University
Manchester, England
ATTN: Dr. V.M. Papadopoulos

Technische Hogeschool
Instituut voor Toegepaste Wiskunde
Jaffalaan 162
Delft, Holland
ATTN: Prof. Dr. R. Timman

Date Due

NYU

BR-

20

Epstein.

c. 2 On a Fredholm equation
in diffraction theory.

NYU

BR-

20

Epstein.

CITR 2

On a Fredholm equation
in diffraction theory.

DATE DUE

BORROWER'S NAME

ITEM
NUMBER

N. Y. U. Institute of
Mathematical Sciences
25 Waverly Place
New York 3, N. Y.

