Week 5

2/7:

Entropy and the Third Law of Thermodynamics

5.1 Entropy and the Third Law

- An experimental determination of entropy.
 - We have that

$$dU = \delta q_{\text{rev}} + \delta w_{\text{rev}}$$
$$= T dS - P dV$$

- At constant V, dV = 0, so $dS = dU/T = C_V dT/T$.
- More rigorously, we can do the rest of the derivation as in McQuarrie and Simon (1997) to get

$$\left(\frac{\partial S}{\partial T} \right)_V = \frac{C_V}{T}$$

$$\left(\frac{\partial S}{\partial V} \right)_T = \frac{1}{T} \left[P + \left(\frac{\partial U}{\partial V} \right)_T \right]$$

- It follows that $\Delta S = \int_{T_1}^{T_2} C_V/T \, \mathrm{d}T$.
 - This is one way to measure the change in entropy.
 - However, it's not very practical since it's very hard to do constant volume chemistry.
- Derives

$$\left(\frac{\partial S}{\partial T}\right)_P = \frac{C_P}{T} \qquad \qquad \left(\frac{\partial S}{\partial P}\right)_T = \frac{1}{T} \left[\left(\frac{\partial H}{\partial P}\right) - V\right]$$

as in McQuarrie and Simon (1997).

- It follows that $\Delta S = \int_{T_1}^{T_2} C_P/T \, dT$, too.
- However, since this is ΔS at constant pressure, we expect it to be bigger than ΔS at constant volume because work is done.
- Third Law: The entropy of pure ordered crystals is zero at 0 K.
 - Solid CO is *not* ordered, as discussed in McQuarrie and Simon (1997).
 - Derive with $S = k_B \ln W$.
- Since we can't actually achieve 0 K and measure properties such as entropy there, we appeal to the Debye model to determine entropy there and in the viscinity.

- Debye model: The statement that $C_P(T) \propto T^3 = AT^3$ for insulating crystals.
 - It follows that for T_0 sufficiently close to $0 \,\mathrm{K}$,

$$\Delta S = \int_0^{T_0} \frac{AT^3}{T} dT = \frac{1}{3} AT_0^3 = \frac{C_P(T_0)}{3}$$

- Justifying the Debye model.
 - According to the Einstein model, each atom is a harmonic oscillator of frequency $h\nu$. This implies, however, that $C_P(T) \approx 1/(e^{h\nu/k_BT} 1)$ drops too fast at low T.
 - Debye says that sound waves are harmonic oscillators with very low frequencies. If you take $h\nu \ll k_B T$, or $hc/\lambda \ll k_B T$, you are concerned with all λ sufficiently large (or wavevectors $k=2\pi/\lambda$ sufficiently small). The wavevectors are within a sphere in a wavevector space with basis k_x, k_y, k_z . The radius of this sphere is proportional to T. Thus, it's volume, which contains what we're interested in, is $4/3\pi r^3$ and thus the sum of all the wavevectors is proportional to T^3 . Thus, the number of states of energy less than $k_B T$ is proportional to T^3 and each has $k_B T$ of energy (thus, if you were trying to find a scaling for the energy, it would be $U(T) \approx T^4$). Note also $h\nu = hc/\lambda = 2\pi\hbar c/\lambda = c\hbar k$.
- Comparing experimental and theoretical values of entropy of gases to the theory value from the partition function.
 - Ideal gas phase S is accurately calculated with $Q = q^N/N!$.
 - Table 21.4 compares the agreement for seven substances and finds it accurate to within 0.1%.
 - The discrepancies come from disorder at 0 K, as described in McQuarrie and Simon (1997).

5.2 Introduction to Free Energies

- 2/9: Discusses the entropy trends from Chapter 21.
 - More atoms $(CO < CO_2)$ increases entropy.
 - Heavier atoms increases entropy.
 - Floppier molecules (pentane > cyclopentane) have greater entropy.
 - Gases have greater entropy (this rule is king).
 - Example (21-42):
 - When determining which chemical reaction has the greatest increase in entropy, look at the change in number of moles of gas as the first tie-breaker.
 - Consider two systems: Water and ice in a container in thermal contact with a surrounding at zero celsius, and water at room temperature and ice at zero celsius in a thermally isolated container.
 - The first process is reversible since we can melt by raising the temperature slightly (allowing heat flow into the system) and vice versa for freezing.
 - The second process is irreversible because it tends toward thermal equilibrium and there is no way to undo the final equilibrium.
 - We can consider reversible paths for both processes though to calculate state functions.
 - Goes over how to calculate the final temperature T in the second process, which is necessary to get the entropy componentwise.
 - Free energies decrease in a spontaneous process.
 - We know that $dS \ge 0$ for an isolated system, and that $dS \ge \delta q/T$ for any system (equality holds for reversible processes).

- Rearranging, we have that

$$0 \ge \delta q - T \, \mathrm{d}S$$

- It follows since $dU = \delta q + \delta w$ that

$$dU - T dS = (\delta q - T dS) + \delta w$$

$$< \delta w$$

- But since A = U - TS is clearly a state function (as a combination of state functions and state variables),

$$dA = dU - T dS - S dT$$

is an exact differential for a state function. In particular, at constant temperature,

$$dA = dU - T dS$$

- Therefore, $dA < \delta w$ at constant temperature.
- Thus, at constant $T, V, w, dA \leq 0$. In other words, A is monotonically decreasing.
- Helmholtz free energy: The state function A defined above.
 - We use this because it's more "natural" to think about finding the lowest free energy state than
 the largest entropy state.
 - The Helmholtz free energy is most often used in physics where there isn't often a "pressure bath." Chemists prefer the **Gibbs free energy**, which is constructed exactly the same way.
- **Gibbs free energy**: The state function describing the free energy of a system at constant pressure. Denoted by **G**. Given by

$$G = H - TS$$

- It follows from our prior results that at constant temperature,

$$dG = dH - T dS$$

$$= dU + d(PV) - T dS$$

$$= \delta q + \delta w + P dV + V dP - T dS$$

$$= \delta q - P dV + \delta w_{\text{non-rev }PV} + P dV + V dP - T dS$$

$$= \delta q - T dS + \delta w_{\text{non-rev }PV} + V dP$$

$$\leq 0 + \delta w_{\text{non-rev }PV} + V dP$$

- Thus, at constant T, P and with no other w done on the system, $dG \leq 0$.
- In a reversible process (constant T, P), $dG = \delta w_{\text{non-rev}, PV}$.
- Note that δw is the work put into the system, so $\delta w \geq \delta w_{\text{rev}} = dA$.
- The system produces more work when operated reversibly.
- Gibbs free energy and electrochemical work: The case of hydrogen fuel cells vs. thermal engines.
 - The hydrogen fuel cell is based off of the reaction

$$H_2 + \frac{1}{2} O_2 \longrightarrow H_2 O$$

with $\Delta H = 285.76 \,\mathrm{kJ/mol}$ and $\Delta G = 237.1 \,\mathrm{kJ/mol}$.

- $-\Delta H$ can be used to produce heat $q = \Delta H$.
- If we want to produce work, we have to run a thermal engine that will have efficiency bounded above by the Carnot cycle's $(T_h T_c)/T_h$.

- With new materials, people have been able to use hotter thermal reservoirs and achieve efficiencies up to 50%!
- $-\Delta G$ can be converged to work directly (as current and voltage in the fuel cell). Thus, in theory, running a reversible fuel cell produces more work than burning H₂ in a reversible engine.
 - The limitation is overpotential, though, and we would need a better hydrogen burning catalyst.
- Maxwell relations:

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

• If we want to show that $(\partial P/\partial T)_V = (\partial S/\partial V)_T$, we take

$$dA = \delta q_{\text{rev}} - T dS - S dT - P dV$$
$$= -S dT - P dV$$
$$= \left(\frac{\partial A}{\partial T}\right)_{V} + \left(\frac{\partial A}{\partial V}\right)_{T}$$

so that

$$\frac{\partial P}{\partial T} = \frac{\partial}{\partial T} \biggl(-\frac{\partial A}{\partial V} \biggr) = -\frac{\partial^2 A}{\partial T \partial V} = -\frac{\partial^2 A}{\partial V \partial T} = \frac{\partial}{\partial V} \biggl(-\frac{\partial A}{\partial T} \biggr) = \frac{\partial S}{\partial V}$$

- Facts like these help us show things such as

$$\Delta S = \int_{V_1}^{V_2} \frac{\partial S}{\partial V} \, \mathrm{d}V = \int_{V_1}^{V_2} \frac{\partial P}{\partial T} \, \mathrm{d}V = \int_{V_1}^{V_2} \frac{nR}{V} \, \mathrm{d}V = nR \ln \frac{V_2}{V_1}$$

so we don't need to measure the heat flow to measure entropy when we have a more complex equation of state than PV = nRT.

5.3 Chapter 21: Entropy and the Third Law of Thermodynamics

From McQuarrie and Simon (1997).

- In this chapter, we will learn how to calculate absolute (as opposed to relative) values of entropy.
 - Relating thermodynamic quantities to entropy.
 - It follows from the First Law of Thermodynamics that

$$dU = \underbrace{T \, dS}_{\delta q_{\text{rev}}} \underbrace{-P \, dV}_{\delta w_{\text{rev}}}$$

– We have that the total differential of U(V,T) is

$$dU = \frac{\partial U}{\partial T} dT + \frac{\partial U}{\partial V} dV$$

- Combining the two above equations, we have that

$$\begin{split} T\,\mathrm{d}S - P\,\mathrm{d}V &= \frac{\partial U}{\partial T}\,\mathrm{d}T + \frac{\partial U}{\partial V}\,\mathrm{d}V \\ \mathrm{d}S &= \frac{1}{T}\frac{\partial U}{\partial T}\,\mathrm{d}T + \frac{1}{T}\left(P + \frac{\partial U}{\partial V}\right)\mathrm{d}V \\ &= \frac{C_V\,\mathrm{d}T}{T} + \frac{1}{T}\left(P + \frac{\partial U}{\partial V}\right)\mathrm{d}V \end{split}$$

- It follows by comparing the above with the total differential of S(V,T) that

$$\left(\frac{\partial S}{\partial T} \right)_V = \frac{C_V}{T} \qquad \qquad \left(\frac{\partial S}{\partial V} \right)_T = \frac{1}{T} \left[P + \left(\frac{\partial U}{\partial V} \right)_T \right]$$

• Since

$$dH = dU + P dV + V dP = T dS + V dP$$

we can proceed in a similar manner to the above to obtain

$$\left(\frac{\partial S}{\partial T}\right)_P = \frac{C_P}{T} \qquad \qquad \left(\frac{\partial S}{\partial P}\right)_T = \frac{1}{T} \left[\left(\frac{\partial H}{\partial P}\right) - V\right]$$

- Third Law of Thermodynamics: Every substance has a finite positive entropy, but at zero kelvin, the entropy may become zero, and does so in the case of a perfectly crystalline substance.
 - While the first and second laws provide state functions (internal energy and entropy, respectively),
 the third law provides a numerical scale for entropy.
- The third law, although formulated before quantum mechanics, follows nicely from it: At absolute zero, every system in an ensemble will be in the same energy state, so W = 1; it follows that $S = k_B \ln 1 = 0$.
 - If, however, the ground state has a degeneracy of n, then

$$S(0 K) = -k_B \sum_{j=1}^{n} p_j \ln p_j$$
$$= -k_B \sum_{j=1}^{n} \frac{1}{n} \ln \frac{1}{n}$$
$$= k_B \ln n$$

- Nevertheless, even for a degeneracy of N_A , we will only have $S(0 \text{ K}) \approx 7.56 \times 10^{-22} \text{ J mol}^{-1} \text{ K}^{-1}$, which is far less than any measurable value.
- Because of the third law, we can define entropy absolutely (assuming no phase change between 0 and T).

$$S(T) = S(0) + S(T) - S(0)$$

$$= S(0) + \Delta S$$

$$= S(0) + \int_0^T \frac{C_P(t)}{t} dt$$

$$= \int_0^T \frac{C_P(t)}{t} dt$$

- Accounting for phase changes.
 - A phase change is a great example of a reversible process since we only need the temperature to be slightly above or slightly below the transition temperature $T_{\rm trs}$ to accomplish it.
 - Thus.

$$\Delta_{\rm trs} S = \frac{q_{\rm rev}}{T_{\rm trs}} = \frac{\Delta_{\rm trs} H}{T_{\rm trs}}$$

- It follows that, as applicable,

$$S(T) = \int_0^{T_{\mathrm{fus}}} \frac{C_P^s(t)}{t} \, \mathrm{d}t + \frac{\Delta_{\mathrm{fus}} H}{T_{\mathrm{fus}}} + \int_{T_{\mathrm{fus}}}^{T_{\mathrm{vap}}} \frac{C_P^l(t)}{t} \, \mathrm{d}t + \frac{\Delta_{\mathrm{vap}} H}{T_{\mathrm{vap}}} + \int_{T_{\mathrm{vap}}}^{T} \frac{C_P^g(t)}{t} \, \mathrm{d}t$$

- Note that with typical values plugged in, $\Delta_{\text{fus}} S \ll \Delta_{\text{vap}} S$.
- **Debye** T^3 law: As $T \to 0$ (i.e., for about T = 0 15 K), $C_P^s(T) \to T^3$ for most nonmetallic crystals and $C_P^s(T) \to aT + bT^3$ $(a, b \in \mathbb{R}_{>0})$ for most metallic crystals.
 - It follows by the absolute definition of S that

$$S(T) = \frac{C_P(T)}{3}$$

at low temperatures for nonmetallic solids.

- Debye temperature: A constant characteristic of the solid. Denoted by Θ_{D} .
- Third-law entropy: An absolute entropy value calculated according to the convention that S(0 K) = 0. Also known as practical absolute entropy.
- McQuarrie and Simon (1997) calculates the third-law entropy of N₂ based on various thermodynamic data.
- Standard entropy: An entropy value of a gas as presented in the literature. Denoted by S° . Units $\operatorname{J}\operatorname{mol}^{-1}\operatorname{K}^{-1}$.
 - Standard entropies are, by convention, corrected for the nonideality of the gas at one bar (for how to calculate this correction, see Chapter 22).
- McQuarrie and Simon (1997) rederives $S(0 \text{ K}) = k_B \ln n$ from a partition function approach, and then gives a specific example for N_2 , noting how well this value correlates with the one from the previous example.
 - "This type of agreement is quite common, and in many cases the statistical thermodynamic value is more accurate than the calorimetric value... The accepted literature values are often a combination of statistical thermodynamic and calorimetric values" (McQuarrie & Simon, 1997, p. 863).
 - Also gives a linear symmetric example (CO₂).
- Entropy trends.
 - 1. "The standard molar entropies of the gaseous substances are the largest, and the standard molar entropies of the solid substances are the smallest" (McQuarrie & Simon, 1997, p. 865).
 - 2. "The increase in standard molar entropy of the noble gases is a consequence of their increasing mass as we move down the periodic table" (McQuarrie & Simon, 1997, p. 865).
 - More mass implies more translational energy levels are available implies more disorder.
 - This is a consequence of quantum mechanics considering the formula for the energy of a particle in a 3D box, note that m is in the denominator. Thus, increasing m means that the levels are more closely spaced, and hence more are readily accessible.
 - 3. "Generally speaking, the more atoms of a given type in a molecule, the greater is the capacity of the molecule to take up energy and thus the greater is its entropy" (McQuarrie & Simon, 1997, p. 866).
 - More atoms implies more vibrational modes implies more disorder.
 - 4. "For molecules with approximately the same molecular masses, the more compact the molecule is, the smaller is its entropy" (McQuarrie & Simon, 1997, p. 867).
 - Between isomers, the one with more unrestricted motion will have greater entropy.
- We can calculate the entropy for substances that "don't exist" via alternate paths.
 - For example, Br_2 is a liquid at 298 K, but we can still calculate $S^{\circ}[Br_{2(g)}]$ by imagining the following path: Raise $Br_{2(1)}$ to its boiling point; vaporize it; cool it back down to 298 K.

- This calculated value is in agreement with the spectroscopic value.
- \bullet Residual entropy: The difference between the calculated molar entropy of a substance and its experimental molar entropy. Given by

$$\overline{S}_{\rm calc} - \overline{S}_{\rm exp}$$

- We define residual entropy this way because wherever there are discrepancies, it so happens that $S_{\rm calc} > S_{\rm exp}$.
- Large residual entropies are encountered for the linear molecules CO and N₂O.
 - This is because these molecules have small dipole moments, so upon crystallization, there is not a strong tendency for the molecule to align in the most energetically favorable way.
 - Thus, with molecules already locked in higher energy states at $T_{\rm fus}$, as we cool to 0 K, we do not have a "perfect" crystal.
 - Since the ground state is two-fold degenerate in both of these cases (we have CO and OC, and NNO and ONN), $\overline{S}(0\,\mathrm{K}) = R\ln 2$ here.
- We can similarly account for the larger still residual entropy in H_3CD by noting that the ground state is four-fold degenerate, and thus $\overline{S}(0 \text{ K}) = R \ln 4$ here.
- We can use standard molar entropies to calculate the entropy changes of chemical reactions.