Homework №6

Вадим Шабашов

Задание 1

Равны ли данные регулярные выражения над алфавитом $\{a,b\}$:

- $b^*a((a|b)b^*a)^*$
- $((a|b)^*ba|a)(aa)^*$

Решение:

1. Кажется, что данные регулярки равны. Довольно сложно строго доказать, не строя при этом автоматы, но уж очень не хочется строить их :)

Попробую аккуратно объяснить с помощью того, что все строки первого принимаются вторым и наоборот.

2. Поймем, какие слова кодирует вторая регулярка:

$$((a|b)^*ba|a)(aa)^* \Rightarrow \begin{bmatrix} (a|b)^*ba(aa)^* \\ a(aa)^* \end{bmatrix} \Rightarrow \begin{bmatrix} vba^m, & v = \{a,b\}^* \text{ и } m - \text{нечетное} \\ a^m, & m - \text{нечетное} \end{bmatrix}$$

То есть можно понимать так, что кодируем все слова, в которых число всех a в конце нечетно.

- 3. Для первой регулярки сначала проверим, что принимаем все слова второй.
 - a^m , где m нечетное: Регулярка принимает, т.к. $b^*a((a|b)b^*a)^* = a(aa)^*$
 - vba^m , $v = \{a, b\}^*$ и m нечетное. Пусть m = 2k + 1. Тогда раскроем регулярку так:

$$b^*a((a|b)b^*a)^* = b^*a((a|b)b^*a)^*\underbrace{(aa)...(aa)}_k$$

Тогда конец с a^{2k} как раз покроется. Тогда останется показать, что можем принять слово vba $(v \in \{a,b\}^*)$ регуляркой $b^*a((a|b)b^*a)^*$.

В самом общем виде слово $vba = b^{j_1}a^{i_1}...b^{j_n}a^{i_n}b^{j_{n+1}}a$, где $n \ge 0, j_l \ge 1, i_l \ge 1$.

- Если n=0, то слово $b^{j_1}a^m$ принимается, т.к. $b^*a((a|b)b^*a)^*=b^*a(aa)^*$
- Если n > 0.

Сначала с помощью b^*a частью от регулярки уничтожим $b^{j_1}a$.

Остается $a^{i_1-1}b^{j_2}a^{i_2}...b^{j_n}a^{i_n}b^{j_{n+1}}a$ и хотим понять, можно ли его принять регуляркой $((a|b)b^*a)^*$. Заметим, что дальше можно все свести к индуктивному процессу, где просто будет уничтожать на каждом шаге $a^{i_1-1}b^{j_1}a$ спереди. Как это сделать покажу на примере $a^{i_1-1}b^{j_2}a$:

* Сначала уничтожаем лишние a.

Если
$$(i_1-1)$$
 — четное и равно $2p$, то $((a|b)b^*a)^* = \underbrace{(aa)...(aa)}_{p}((a|b)b^*a)^*$.

Остается $b^{j_2}a^{i_2}...b^{j_n}a^{i_n}b^{j_{n+1}}a$.

Если
$$(i_1-1)$$
 — нечетное и равно $2p+1$, то опять берем $((a|b)b^*a)^* = \underbrace{(aa)...(aa)}_{p}((a|b)b^*a)^*$.

Остается $ab^{j_2}a^{i_2}...b^{j_n}a^{i_n}b^{j_{n+1}}a$.

- * Далее в зависимости от того, что у нас спереди после предыдущего шага, a или b, берем соответственно $((a|b)b^*a)^* = ab^*a$ или $((a|b)b^*a)^* = bb^*a$. Тогда остается показать, что $a^{i_2-1}...b^{j_n}a^{i_n}b^{j_{n+1}}a$ принимается регуляркой $((a|b)b^*a)^*$. То есть в точности показали, как избавиться спереди от $a^{i_1-1}b^{j_2}a$.
- * Заметим, что на последнем шаге будем уничтожать $a^{i_n-1}b^{j_{n+1}}a$. И, действуя точно по алгориму-индукции выше, мы целиком все уничтожим регуляркой.
- 4. Теперь надо показать, что первой регуляркой не принимаются другие слова. А другие слова это у которых на конце четное число a.
 - a^m , где m четное.

Его принять нельзя, т.к. без b регулярка упрощается к $b^*a((a|b)b^*a)^*=a(aa)^*$, а здесь обязательно нечетное число a.

• vba^m , где $v\in\{a,b\}^*$ и m — четное.

Попробуем получить хоть какое-нибудь слово с четным числом a на конце. Возможны на две ситуации:

- Самый правый b берется из b^* из регулярки $b^*a((a|b)b^*a)^*$. Тогда все a^m получились из $a((a|b)b^*a)^*$. Там не может быть b, поэтому регулярка упрощается к $a(aa)^*$, а это опять штука, которая не может дать a^m для m— четного.
- Самый правый b берется из $((a|b)b^*a)^*$. Не важно, откуда именно b берется: из b^* или из (a|b). Главное, что в любом из этих случаев правее стоит одна a в $(a|b)b^*a$. После этого идет $((a|b)b^*a)^*$. Это значит, что a^m должно взяться из $a((a|b)b^*a)^* = a(aa)^*$. Опять получили эту ситуацию, которая не выполняется.

Таким образом показали, что слово, которое кончается на четное число a не кодируется первой регуляркой.

5. Итак, явно нашел, какие именно слова кодирует вторая регулярка, а затем показал, что первая регулярка кодирует их же и ничего кроме них.

Задание 2

- $\bullet \ L = \{a^n b^m a^l | l = n + m\}$
- $L = \{a^n | n$ простое число $\}$
- $L = \{wbva | |w|_a > |v|_b, w \in \{a, b\}^*, v \in \{a, b\}^*\}$

Решение:

• 1. Пусть язык регулярный.

Тогда по лемме о накачке существует n, что выполняются свойства из леммы.

Рассмотрим слово $w=b^na^n$. Оно принадлежит языку и длины больше n. Тогда по лемме должно быть разбиение на x,y,z. Причем т.к. |xy|< n, то $y=b^i$, где $1\leq i< n$. Но тогда при k=0 слово должно принадлежать языку, но это не так: $b^{n-i}a^n$ — слово не принадлежи языку, т.к. $n-i\neq n$. Противоречие.

• 1. Пусть язык регулярный.

Тогда по лемме о накачке существует n, что выполняются свойства из леммы.

Рассмотрим слово $w = a^m$, где m > n и m — простое. Оно принадлежит языку и длины больше n. Тогда по лемме должно быть разбиение на x, y, z.

В этом разбиении $y=a^i$, где $1\leq i< n$. По лемме слово $a^{m+(k-1)i}$ должно принадлежать языку $\forall k\in\mathbb{N}_0$. Возьмем k=m+1: слово имеет вид $a^{m+m\cdot i}=a^{m(i+1)}$; но такое слово не может принадлежать языку, т.к. m(i+1) — не простое (явно выделились два делителя как минимум; и, т.к. $i\geq 1$ и $m>n\geq 1$, то ни один из них не равен 1). Противоречие.

• 1. Язык регулярен. Покажу явным приведением регулярки.

Но сначала надо понять структуру слов, которые принимаются языком.

- 2. Пусть есть какое-то слово wbva, которое принимается. Заметим, что мы можем изменить разбиение на части и слово по-прежнему будет с ним приниматься: мы можем выбрать самое правое b во всем слове. Оно окажется либо тем, которое уже было, либо где-то в v. Обозначим новое слово так: $\tilde{w}b\tilde{v}a$. Заметим, что в новом разбиении могли только уменьшить число b ($|v|_b \ge |\tilde{v}|_b = 0$) и только увеличить число a ($|w|_a \ge |\tilde{w}|_a$). Раз слово исходно принималось, то $|\tilde{w}|_a| > |\tilde{v}|_b$ тем более будет верно. То есть мы показали, что если слово принимается, то обязательно при разбиении с помощью последнего b оно тоже должно приниматься. Это значит, что принадлежность к языку можно проверять только с помощью приведенного разбиения.
- 3. Теперь поймем, какая структура может быть у слова, которое принимаем. Разбиваем его способом, указанным до этого (с выделением последнего b). Тогда, чтобы слово было принято, должны выполниться следующие условия:
 - -v состоит только из a.
 - После v обязательно есть хотя бы одна a.
 - В w есть хотя бы одна a (т.к. хотим $|w|_a \ge 1 > |v|_b = 0$).

А из этих условий легко составить регулярку:

$$(a|b)^*a(a|b)^*ba^+$$

Здесь просто первые два пункта комбинируются в a^+ . Последний пункт, что в w есть хотя бы одна $a: (a|b)^*a(a|b)^*$.

4. Раз есть регулярка, то есть и ДКА; то есть регулярный язык.

Задание 3

Построить КС грамматику для языка арифметических выражений с операциями + и * над натуральными числами в десятичной записи.

Решение:

- 1. Введем:
 - N терминал для обозначения натурального числа
 - А произвольное арифметическое выражение
 - B выражение, где не может быть + на верхнем уровне (имеет смысл слагаемого)
 - C выражение, где не может быть ни +, ни * на верхнем уровне (либо произвольное выражение в скобках, либо число).

Тогда:

$$V_{T} = \{+, *, N, (,)\}$$

$$V_{N} = \{A, B, C\}$$

$$S = A$$

$$P: A \rightarrow B + A$$

$$A \rightarrow B$$

$$B \rightarrow C \cdot B$$

$$B \rightarrow C$$

$$C \rightarrow (A)$$

$$C \rightarrow N$$