Отчёт по лабораторной работе

⊘ User

Стойко Елисей Алексеевич, 5130904/50005, вариант 11

Общая постановка задачи

11 - Вывести номер строки, в которой находится самая длинная серия подряд идущих равных элементов.

Входные данные:

- Размер квадратной матрицы N (целое число)
- N×N целых чисел элементы матрицы

Выходные данные:

Номер строки (от 1 до N), в которой находится самая длинная серия подряд идущих равных элементов

Основные условия:

- Если таких строк несколько, возвращается первая встретившаяся
- Матрица хранится в динамической памяти
- Обработка исключений (некорректный ввод, ошибки памяти)

Описание алгоритма:

Заведём вспомогательный массив lenCount размер N, в котором будем хранить максимальную длину серии из одинаковых элементов в i-й строке. Заполним массив -1, чтобы корректно обновлять максимум (в любой строке максимум точно будет >= 1).

В цикле пройдёмся по строкам, для каждой строки заведём переменную currentMaxSubLen, в которой будем хранить максимальную длину серии в данной строке. Пройдёмся по элементам строки, обновляя currentMaxSubLen, если элементы одинаковые. Обновим lenCount, сбросив счётчик currentMaxSubLen до 1, если серия кончилась или мы дошли до конца строки. Если на какой-то итерации цикла lenCount[i] == size, то можем досрочно завершить цикл.

Заполнив массив lenCount, пробежимся в цикле по его элементам и найдём максимальную серию всей матрицы — maxLenCount. Ещё одним циклом найдём номер строки содержащей maxLenCount (запишем в переменную maxLineNum). Функция вернёт maxLineNum + 1.

Детальные требования и тест план

Требование	Детальные требования	Данные	Ожидаемый результат
1. Корректность размера матрицы			
1.1 Размер матрицы - целое число	1.1 Если размер не число, исключение при чтении	а	"ERROR: Invalid size specified"
1.2 Размер матрицы > 0	1.2 Если размер ≤ 0, исключение invalid_argument	0	"ERROR: Invalid size specified"
2. Корректность элементов матрицы			
2.1 Все элементы матрицы - целые числа	2.1 Если элемент не число, исключение runtime_error	2 1 2 3 a	"ERROR: Invalid matrix element"
2.2 Введено ровно size×size элементов	2.2 Если элементов меньше, исключение runtime_error	2 1 2 3 ^D	"ERROR: Not enough matrix elements"
3. Корректность работы алгоритма поиска серий			
3.1 Матрица 1×1	3.1 Длина серии всегда 1	1 5	[1]
3.2 Все элементы в строке одинаковые	3.2 Длина серии равна размеру матрицы	2 1 1 2 3	1
3.3 Серия в начале строки	3.3 Корректно определяется серия в начале	3 1 1 2 3 4 5 6 7 8	1
3.4 Серия в середине строки	3.4 Корректно определяется серия в середине	4 1 2 2 1 3 4 5 7 6 7 8 9	1
3.5 Серия в конце строки	3.5 Корректно определяется серия в конце	3 1 2 3 4 5 5 6 7 8	2
 3.6 Все строки с одинаковой максимальной серией 	3.6 Возвращается первая встретившаяся строка	3 1 1 2 3 3 4 5 6 6	1
3.7 Все элементы разные	3.7 В каждой строке серия длины 1	2 1 2 3 4	1
4. Особые и граничные случаи			
4.2 Отрицательные числа	4.2 Алгоритм работает с отрицательными числами	2 -1 -1 2 -3	1
4.3 Нули в матрице	4.3 Алгоритм работает с нулями	2 0 0 1 2	1
5. Управление памятью			
5.1 Корректное выделение памяти	5.1 Память выделяется без утечек	Любой тест	Нет утечек памяти ^[1]
5.2 Корректное освобождение памяти	5.2 Память освобождается полностью	Любой тест	Нет утечек памяти ^[1-1]
5.3 Исключение при выделении памяти	5.3 Обработка bad_alloc без утечек	Очень большой размер	"ERROR: Memory is not allocated"

Проверка на наличие утечек памяти

```
# компилируем с отладочной информацией
clang++ −g a.cpp −o a
# ищем утечки памяти
leaks --list --atExit -- ./a
1. Валидный тест
2
1 1
2 3
1
leaks Report Version: 3.0
Process 7302: 188 nodes malloced for 21 KB
Process 7302: 0 leaks for 0 total leaked bytes.
2. Тест вызывающий исключение
2
1 2
ERROR: Not enough matrix elements
leaks Report Version: 3.0
Process 8219: 189 nodes malloced for 16 KB
Process 8219: 0 leaks for 0 total leaked bytes.
```

1. см. Проверка на наличие утечек памяти \leftrightarrow