Formale Sprachen und Automaten Prof. Dr. Uwe Nestmann - 07. April 2016

Schriftlicher Test

Studentenidentifikation:

NACHNAME	
VORNAME	
Matrikelnummer	
STUDIENGANG	□ Informatik Bachelor, □

Aufgabenübersicht:

AUFGABE	SEITE	Punkte	THEMENBEREICH
1	2	19	MODELLE REGULÄRER SPRACHEN
2	3	18	Untermengen-Konstruktion
3	4	20	MINIMIERUNG EINES DFA
4	5	19	Grenzen Regulärer Sprachen
5	6	11	Modelle Kontextfreier Sprachen I
6	7	13	Modelle Kontextfreier Sprachen II

Zwei Punkte in diesem Test entsprechen einem Portfoliopunkt.

Korrektur:

AUFGABE	1	2	3	4	5	6	\sum
PUNKTE	19	18	20	19	11	13	100
ERREICHT							
Korrektor							
EINSICHT							

Aufgabe 1: Modelle Regulärer Sprachen

(19 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{a, b\}$, die reguläre Sprache $A_1 \triangleq \{\ (ab)^n (ba)^m b \mid n,m \in \mathbb{N}\ \}$, die reguläre Grammatik $G_2 \triangleq (\{\ S,\ T,\ U\ \},\ \Sigma,\ P_2,\ S)$ und der NFA $M_3 \triangleq (\{q_0, q_1, q_2, q_3\}, \Sigma, \Delta_3, \{q_0, q_1\}, \{q_3, q_2\})$ mit:

a. (**, 4 Punkte) Gib einen NFA M_1 mit $L(M_1) = A_1$ an.

b. (**, 4 Punkte) Gib eine Typ-3 Grammatik G_1 mit $L(G_1) = A_1$ an.

c. (**, 3 Punkte) Gib die Ableitung des Wortes bbaba in G_2 an.

d. (***, 2 Punkte) $Gib L(G_2)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

e. (**, 3 Punkte) Gib eine Ableitung des Wortes aabba in M_3 an.

f. (***, 3 Punkte) *Gib* $L(M_3)$ *an*, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 2: Untermengen-Konstruktion

(18 Punkte)

 $\text{Gegeben sei der NFA } M \triangleq \left(\left\{ \right. q_0, \right. q_1, \right. q_2, \left. q_3 \right. \right\}, \left. \left. \left\{ \right. q_0, \right. q_3 \left. \left\{ \right. q_0, \right. q_3 \left. \left\{ \right. q_2 \left. \left\{ \right. q_0, \right. q_3 \left. \left\{ \right. q_2 \left. \left\{ \right. q_0, \right. q_3 \left. \left\{ \right. q_0, \right. q_0, \right. q_0 \left. q_0, \right.$ Δ :

a. (**, 15 Punkte) Berechne: Konstruiere nur mit Hilfe der Untermengen-Konstruktion den DFA M' zum NFA M. Gib die bei der Untermengen-Konstruktion entstehende Tabelle sowie das Tupel des entstehenden Automaten M' an.

Hinweis: Es ist nicht nötig die Übergangsfunktion δ' von M' graphisch anzugeben.

b. (***, 3 Punkte) Gib L(M) an, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 3: Minimierung eines DFA

(20 Punkte)

Gegeben sei der DFA $M \triangleq (Q, \Sigma, \delta, q_4, \{ q_6 \})$ mit $Q = \{ q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7 \}$, $\Sigma = \{ a, b \}$ und δ :

- a. (**, 1 Punkt) Gib an: Welche Zustände sind nicht erreichbar?
- b. (**, 7 Punkte) *Gib an:* Fülle die folgende Tabelle entsprechend des Table-Filling-Algorithmus zum Minimieren von DFAs aus. *Hinweis: Bitte streiche zunächst alle Zeilen und Spalten für nicht erreichbare Zustände, falls es solche Zustände in M gibt.*

c. (**, 4 Punkte) Die Minimierung unterteilt Q in Äquivalenzklassen. Gib alle Äquivalenzklassen an, die sich aus der Tabelle ergeben.

Hinweis: Die Namen der Klassen in der Form $[q_0]$ genügen hier nicht. Es müssen auch die zugehörigen Mengen, also so etwas wie $[q_0] = \{\ldots\}$, angegeben werden.

d. (**, 5 Punkte) Gib den minimierten DFA M' an.

e. (***, 3 Punkte) Gib L(M) an, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 4: Grenzen Regulärer Sprachen

(19 Punkte)

a. (***, 13 Punkte) Beweise nur mit Hilfe des Pumping Lemma, dass die Sprache $A_1 \triangleq \left\{ \begin{array}{l} a^k b^l c^m \mid k,l,m \in \mathbb{N} \land (k \mod 2 = 0 = l \mod 2) \land l < m \end{array} \right\}$ nicht regulär ist.

b. **(***, 6 Punkte)** Gib alle Myhill-Nerode Äquivalenzklassen für die Sprache $A_2 \triangleq \{ xc^n \mid n \in \mathbb{N} \land x \in \{ a, b \}^* \land |x|_a = |x|_b \}$ über $\Sigma_2 \triangleq \{ a, b, c \}$ an. Hinweis: Die Namen der Klassen in der Form [a] genügen hier nicht. Es müssen auch die zugehörigen Mengen, also so etwas wie $[a] = \{ \dots \}$ oder $[a] = L(\dots)$, angegeben werden.

Matrikelnummer: _	Name:

Aufgabe 5: Modelle Kontextfreier Sprachen I

(11 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{\ a,\ b,\ c\ \}$ und die kontextfreie Sprache

$$A \triangleq \left\{ \ a^k b^l c^m \mid k, l, m \in \mathbb{N} \land (k \text{ mod } 2 = 0 = l \text{ mod } 2) \land l < m \ \right\}$$

a. (**, 4 Punkte) Gib eine Typ-2 Grammatik G mit L(G)=A an.

b. (**, 7 Punkte) Gib einen PDA M mit $L_{End}(M) = L_{Kel}(M) = A$ an.

Aufgabe 6: Modelle Kontextfreier Sprachen II

(13 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{\ a,\ b,\ c,\ d\ \}$ und der PDA $M \triangleq (\{\ q_0,\ q_1,\ q_2,\ q_3\ \},\ \Sigma,\ \{\ \square,\ +,\ -\ \},\ \square,\ \Delta,\ q_0,\ \{\ q_3\ \})$ mit Δ :

- a. **(*, 1 Punkt)** *Gib an:* Ist *M* ein DPDA?
- b. (*, 3 Punkte) Gib eine Ableitung von abc in M an, die zeigt das $abc \in L_{Kel}(M)$.

c. (***, 2 Punkte) $Gib \perp_{Kel}(M)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

d. (*, 4 Punkte) Gib eine Ableitung von add in M an, die zeigt das $add \in L_{End}(M)$.

e. (***, 3 Punkte) $Gib \ L_{End}(M)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

Matrikelnummer:	Name:
Auf dieser Seite löse ich einen T	eil der Aufgabe <u> </u> :
Teilaufgabe:	_