CAPSTONE PROJECT

POWER SYSTEM FAULT DETECTION AND CLASSIFICATION

Presented By:

- 1. HEMANTH M
- 2. SAI VIDYA INSTITUTE OF TECHNOLOGY
- 3. CSE(ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING)

OUTLINE

- Problem Statement
- Proposed System/Solution
- System Development Approach (Technology Used)
- Algorithm & Deployment
- Result (Output Image)
- Conclusion
- Future Scope
- References

PROBLEM STATEMENT

- Design a machine learning model to detect and classify different types of faults in a power distribution system. Using electrical measurement data (e.g., voltage and current phasors), the model should be able to distinguish between normal operating conditions and various fault conditions (such as line-to-ground, line-to-line, or three-phase faults). The objective is to enable rapid and accurate fault identification, which is crucial for maintaining power grid stability and reliability.
- •Fault Detection: Develop a machine learning model that can automatically detect abnormal conditions in a power distribution system using electrical measurements like voltage and current phasors.
- •Fault Classification: Accurately classify the type of fault (e.g., line-to-ground, line-to-line, or three-phase) to support rapid diagnosis and ensure power grid stability and reliability.

PROPOSED SOLUTION

1. Data Collection

- The dataset was sourced from **Kaggle**, containing labeled records of power system conditions.
- Features included **electrical measurements** such as voltage, current, and possibly derived phasors.
- Target labels indicated different **fault types** (e.g., Line Breakage, Transformer Failure, Overheating).

2. Data Preprocessing

- Feature Engineering (FE): Additional features may have been derived to improve model input representation.
- Missing Value Handling and Normalization (if required by model).
- **Label Encoding** or One-Hot Encoding for categorical variables.
- Data was prepared in **batch format** for training.

3. Machine Learning Algorithm

Algorithm Used: Batched Tree Ensemble Classifier (specialized in INCR)
This is a robust model for handling multiclass classification with structured tabular data.

Enhancements Applied:

- **HPO-1:** Hyperparameter optimization round 1 to tune model parameters.
- **FE:** Feature Engineering to extract or transform key features.
- **HPO-2:** Further tuning after feature refinement.
- **BATCH:** Model was trained and evaluated in batch mode for scalability.
- Cross-Validation Accuracy: 0.409 (40.9%)
 Indicates potential scope for further improvement, possibly by tuning features or adding more data.

4. Deployment

- The final model was deployed on **IBM Watsonx.ai Studio**, allowing real-time or batch-based fault prediction.
- A user-friendly interface displays fault predictions with confidence levels.

5. Evaluation

- **Evaluation Metrics:** Accuracy (40.9%), prediction confidence for each class.
- **Visualization:** Pie/doughnut chart and prediction table to analyze model behavior.
- Observations:
 - Model distinguishes multiple fault types but may need enhancement for higher precision.
 - Useful for **real-time fault monitoring** in power systems.

SYSTEM APPROACH

1. System Requirements

- Hardware Requirements:
 - Processor: Intel i5/i7 or equivalent (minimum 2.4 GHz, 4 cores)
 - **RAM:** 8 GB (16 GB recommended)
 - Storage: 1 GB available space
 - Internet: Required for IBM Cloud/Watsonx.ai deployment
- Software Requirements:
 - Operating System: Windows 10/11, macOS, or Linux
 - Platform: IBM Watsonx.ai (cloud-based environment)
 - Programming Interface: AutoAl/Notebook environment in Watson Studio

2. Libraries/Packages Required to Build the Model

Library/Tool	Purpose
pandas	Data manipulation and analysis
numpy	Numerical computing and array handling
scikit-learn	Machine learning model building and evaluation
matplotlib/seaborn	Visualization of data and results
Watsonx.ai	Cloud-based deployment and model training
AutoAl	Automated model selection, tuning, and pipeline generation
imblearn (optional)	Handling class imbalance (e.g., SMOTE, oversampling)
json	Reading output results in JSON format

3. Model Development Strategy

Data Acquisition: Electrical fault data collected from Kaggle.

Data Preprocessing: Handled inside Watson Studio pipeline; includes feature selection, encoding, and normalization.

Model Selection: AutoAl selected a Batched Tree Ensemble Classifier with incremental learning support.

Hyperparameter Optimization: Conducted in two stages (HPO-1 and HPO-2).

Batch Training: Data was fed in batches to improve learning stability.

Deployment: Final model deployed on IBM Watsonx.ai for real-time predictions.

ALGORITHM & DEPLOYMENT

- Algorithm Selection
 - Model Used: Batched Tree Ensemble Classifier (with Incremental Learning)
 - Chosen via AutoAl due to:
 - High performance on structured electrical data
 - Strong support for multiclass classification (e.g., Line Breakage, Overheating)
 - Adaptability via batch training

Input Features

- Voltage and Current Phasors
- Derived electrical parameters (e.g., Power, Load if available)
- Fault label as target (Normal, Line Breakage, Transformer Failure, etc.)

Training Process

- Feature Engineering & Batch Processing
- Hyperparameter Tuning (HPO-1 and HPO-2)
- Trained using cross-validation
- Final cross-validation accuracy: 40.9%

Prediction

- Accepts real-time/batch inputs
- Predicts fault type with confidence scores
- Useful for fast, automated grid monitoring

Deployment Platform

IBM Watsonx.ai Studio (cloud-based ML development and deployment environment)

Deployment Workflow

- Model trained & selected using AutoAl
- Best model (Tree Ensemble) exported
- Deployed as REST API endpoint
- Accepts input from sensors or batch files
- Returns fault prediction + confidence

RESULT

- Results Fault Type Classification Model
 - Model Accuracy
 - The final Batched Tree Ensemble Classifier achieved an overall cross-validation accuracy of 40.9%.
 - This accuracy indicates the model's ability to correctly classify fault types under various conditions.
- Performance Highlights
- Multiclass Fault Prediction: The model can distinguish between multiple fault types including:
 - Line Breakage
 - Overheating
 - Transformer Failure
 - Normal Condition (if applicable)
- Confidence-Based Prediction: Predictions include confidence scores for each class, providing insight into how certain the model is.

CONCLUSION

This project successfully demonstrated the application of machine learning for detecting and classifying faults in a power distribution system. Using a Batched Tree Ensemble Classifier deployed through IBM Watsonx.ai, the model was able to distinguish between different types of electrical faults based on real-world measurement data.

Key Findings

- Achieved a cross-validation accuracy of 40.9%, indicating moderate classification performance across multiple fault categories.
- The system can provide real-time fault predictions along with confidence levels, aiding in quick diagnosis and response.

Challenges Faced

- Limited model accuracy, likely due to
 - Small or imbalanced dataset
 - Limited feature diversity
- Model interpretability was a concern due to ensemble complexity.

Impact

 Accurate and automated fault classification is critical for grid stability, reducing downtime, and enabling preventive maintenance. This project proves that ML models can assist power system operators in maintaining a reliable and resilient electricity supply.

FUTURE SCOPE

- The developed system lays the foundation for intelligent fault detection in power grids using machine learning. However, there are multiple opportunities for enhancement and expansion:
 - 1. Incorporating Additional Data Sources
 - Integrate real-time data from IoT sensors, SCADA systems, or smart meters.
 - Include environmental variables such as temperature, humidity, or load demand for richer context.
 - Use historical maintenance logs to improve predictive accuracy and failure pattern recognition.
 - 2. Algorithm Optimization
 - Experiment with advanced ML models like:
 - XGBoost, Random Forest with class weighting
 - Deep Learning models (e.g., LSTM or CNN for sequence or waveform data)
 - 3. Continuous Learning
 - Enable the system to learn from new fault events over time (online or incremental learning).
 - Periodically retrain the model using updated datasets to maintain high performance and adaptability.

REFERENCES

- Kaggle Dataset Electrical Fault Detection Dataset
 Source of labeled data used to train and evaluate the machine learning model.
- Ghosh, A., & Das, B. (2018).
 "Machine Learning Techniques for Power System Fault Detection and Classification: A Review."
- IBM Watsonx.ai Documentation –
 AutoAl and Model Deployment for Classification Tasks.
- Pedregosa, F., Varoquaux, G., Gramfort, A., et al. (2011).
 "Scikit-learn: Machine Learning in Python."

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

HEMANTH M

Has successfully satisfied the requirements for:

Getting Started with Artificial Intelligence

Issued on: Jul 17, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/53e4cd2a-bb7c-41a7-a064-c5f3f6b714b2

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

HEMANTH M

Has successfully satisfied the requirements for:

Journey to Cloud: Envisioning Your Solution

Issued on: Jul 18, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/6c0c4709-c15e-4992-8db4-2d43f506c833

IBM CERTIFICATIONS

IBM SkillsBuild

Completion Certificate

This certificate is presented to

HEMANTH M

for the completion of

Lab: Retrieval Augmented Generation with LangChain

(ALM-COURSE_3824998)

According to the Adobe Learning Manager system of record

Completion date: 27 Jul 2025 (GMT)

Learning hours: 20 mins

THANK YOU

