Airbnb Model Selection

Ariana Bucio 11/21/2019

```
# Ariana Bucio
# Jadyn Gonzalez
# Matt Mead
# Bryce Viorst
#######################
# Nov. 14, Submission#
#######################
# Setting working directory and importing data
setwd("~/Desktop/MGSC310-Project-master")
nycAB = read.csv("AB_NYC_2019.csv")
# Dropping name and host name as these variables will not provide any insights
nycAB = nycAB[ , !(names(nycAB) %in% c("name", "id", "host_name", "latitude", "longitude", "last_review",
# Check for missing values
sapply(nycAB, function(x) sum(is.na(x)))
##
              host_id neighbourhood_group
                                                neighbourhood
##
##
                                    price
                                               minimum_nights
            room_type
##
##
    number_of_reviews
                       reviews_per_month
                                             availability_365
##
                                    10052
# It looks like the only missing value is in reviews per month
# We can handle this by just setting NaN values to O
nycAB[is.na(nycAB)] = 0
sum(is.na(nycAB))
## [1] 0
# Check structure of data
str(nycAB)
## 'data.frame':
                   48895 obs. of 9 variables:
## $ host id
                        : int 2787 2845 4632 4869 7192 7322 7356 8967 7490 7549 ...
## $ neighbourhood_group: Factor w/ 5 levels "Bronx", "Brooklyn",..: 2 3 3 2 3 3 2 3 3 ...
## $ neighbourhood : Factor w/ 221 levels "Allerton", "Arden Heights",..: 109 128 95 42 62 138 14
## $ room_type
                       : Factor w/ 3 levels "Entire home/apt",..: 2 1 2 1 1 1 2 2 2 1 ...
                       : int 149 225 150 89 80 200 60 79 79 150 ...
## $ price
## $ minimum_nights : int 1 1 3 1 10 3 45 2 2 1 ...
## $ number_of_reviews : int 9 45 0 270 9 74 49 430 118 160 ...
## $ reviews_per_month : num 0.21 0.38 0 4.64 0.1 0.59 0.4 3.47 0.99 1.33 ...
## $ availability_365 : int 365 355 365 194 0 129 0 220 0 188 ...
```

```
nycAB$host_id = as.factor(nycAB$host_id)
str(nycAB)
## 'data.frame':
                  48895 obs. of 9 variables:
   $ host id
                       : Factor w/ 37457 levels "2438", "2571", ...: 3 4 14 15 19 22 25 37 26 28 ....
## $ neighbourhood_group: Factor w/ 5 levels "Bronx", "Brooklyn",..: 2 3 3 2 3 3 2 3 3 ...
## $ neighbourhood : Factor w/ 221 levels "Allerton", "Arden Heights",..: 109 128 95 42 62 138 14
## $ room_type
                       : Factor w/ 3 levels "Entire home/apt",..: 2 1 2 1 1 1 2 2 2 1 ...
## $ price
                       : int 149 225 150 89 80 200 60 79 79 150 ...
                       : int 1 1 3 1 10 3 45 2 2 1 ...
## $ minimum nights
## $ number of reviews : int 9 45 0 270 9 74 49 430 118 160 ...
## $ reviews_per_month : num 0.21 0.38 0 4.64 0.1 0.59 0.4 3.47 0.99 1.33 ...
## $ availability_365
                      : int 365 355 365 194 0 129 0 220 0 188 ...
# Summary of data
summary(nycAB)
                       neighbourhood_group
##
        host_id
                                                    neighbourhood
   219517861: 327
                    Bronx
                                : 1091
                                          Williamsburg
                                                           : 3920
## 107434423: 232
                    Brooklyn
                                :20104
                                          Bedford-Stuyvesant: 3714
## 30283594 : 121
                   Manhattan
                                :21661
                                          Harlem
                                                           : 2658
## 137358866: 103 Queens
                                          Bushwick
                                                           : 2465
                                : 5666
## 12243051 : 96 Staten Island: 373
                                          Upper West Side : 1971
               96
                                          Hell's Kitchen
## 16098958 :
                                                          : 1958
## (Other) :47920
                                          (Other)
                                                           :32209
##
            room_type
                             price
                                           minimum_nights
## Entire home/apt:25409
                                     0.0
                                          Min. : 1.00
                         Min. :
## Private room :22326
                          1st Qu.:
                                    69.0
                                           1st Qu.:
                                                     1.00
## Shared room
                          Median : 106.0
                                                     3.00
               : 1160
                                           Median :
##
                          Mean : 152.7
                                           Mean :
                                                     7.03
##
                          3rd Qu.: 175.0
                                           3rd Qu.:
                                                     5.00
##
                               :10000.0
                                                 :1250.00
                          Max.
                                           Max.
##
## number_of_reviews reviews_per_month availability_365
## Min. : 0.00
                    Min. : 0.000
                                     Min. : 0.0
## 1st Qu.: 1.00
                    1st Qu.: 0.040 1st Qu.: 0.0
                                   Median : 45.0
## Median : 5.00
                   Median : 0.370
## Mean : 23.27 Mean : 1.091
                                     Mean :112.8
## 3rd Qu.: 24.00
                    3rd Qu.: 1.580
                                     3rd Qu.:227.0
## Max. :629.00
                    Max. :58.500
                                     Max. :365.0
```

Checking distributions of data

hist(nycAB\$price)

##

Histogram of nycAB\$price

Not a good distrubution, try log and squared
hist(log1p(nycAB\$price))

Histogram of log1p(nycAB\$price)

Histogram of (nycAB\$price)^2


```
# Log looks much better so well add the log variable to the set
nycAB$log_price = log1p(nycAB$price)
# Remove outliers with log price > 7 and < 3
nycAB = nycAB[!(nycAB$log_price < 3),]
nycAB = nycAB[!(nycAB$log_price > 7),]
hist(nycAB$log_price)
```

Histogram of nycAB\$log_price

hist(nycAB\$number_of_reviews)

Histogram of nycAB\$number_of_reviews

Histogram of log1p(nycAB\$number_of_reviews)

hist((nycAB\$number_of_reviews)^2)

Histogram of (nycAB\$number_of_reviews)^2


```
# Again log distribution is much better so we'll add that
nycAB$log_num_reviews = log1p(nycAB$number_of_reviews)
par(mfrow=c(1,2))
hist(log(nycAB$reviews_per_month))
hist((nycAB$reviews_per_month)^2)
```



```
par(mfrow=c(1,2))
hist(log(nycAB$minimum_nights))
hist((nycAB$minimum_nights)^2)
#Log looks better, so let's use that.
nycAB$minimum_nights_log = log1p(nycAB$minimum_nights)
# Investigate listings on the neighborhood groups
levels(nycAB$neighbourhood_group)
## [1] "Bronx"
                       "Brooklyn"
                                       "Manhattan"
                                                        "Queens"
## [5] "Staten Island"
# Looking at average price, max, and min for each group
mean(nycAB$price[nycAB$neighbourhood_group=="Bronx"])
```

[1] 85.43107

```
max(nycAB$price[nycAB$neighbourhood_group=="Bronx"])
## [1] 1000
min(nycAB$price[nycAB$neighbourhood_group=="Bronx"])
## [1] 20
mean(nycAB$price[nycAB$neighbourhood_group=="Brooklyn"])
## [1] 118.1739
max(nycAB$price[nycAB$neighbourhood_group=="Brooklyn"])
## [1] 1095
min(nycAB$price[nycAB$neighbourhood_group=="Brooklyn"])
## [1] 20
mean(nycAB$price[nycAB$neighbourhood_group=="Manhattan"])
## [1] 179.3047
max(nycAB$price[nycAB$neighbourhood_group=="Manhattan"])
## [1] 1075
min(nycAB$price[nycAB$neighbourhood_group=="Manhattan"])
## [1] 20
mean(nycAB$price[nycAB$neighbourhood_group=="Queens"])
## [1] 95.16634
max(nycAB$price[nycAB$neighbourhood_group=="Queens"])
## [1] 1000
min(nycAB$price[nycAB$neighbourhood_group=="Queens"])
## [1] 20
```

```
mean(nycAB$price[nycAB$neighbourhood_group=="Staten Island"])

## [1] 98.81622

max(nycAB$price[nycAB$neighbourhood_group=="Staten Island"])

## [1] 1000

min(nycAB$price[nycAB$neighbourhood_group=="Staten Island"])

## [1] 20

# The Bronx has the lowest average price as well as the lowest max price
# Manhattan has the highest average price
library(ggplot2)
```

istogram of log(nycAB\$minimum_nlistogram of (nycAB\$minimum_night)


```
# Summary from the means/max/min reflects in the boxplot
# Have to use log transformed to get best visualization
ggplot(nycAB,aes(x=neighbourhood_group, y=log_price, fill=neighbourhood_group)) + geom_boxplot()
```



```
# We see that Manhattan has the higher price range compared to Queens and Staten Island, this
# makes sense as Manhattan is more of a city/tourist/business area while Queens and Staten Island are
# more residential areas, not sure about Bronx and Brooklyn.
# Let's check the count of listings, this may influence the distributions.
barplot(table(nycAB$neighbourhood_group))
# We see that Brooklyn and Manhattan have far more listings than the other cities.

# Lets check for correlations
library(corrplot)
```

corrplot 0.84 loaded

```
corrplot(cor(nycAB[, c(6,7,8,9,10,11,12,13)]))
```


We see that count of host listings and number of days available per year have some positive correlati
with price, number of reviews and reviews per month shows some negative correlation but this may be
insignificant as there is no way to distinguise between positive and negative reviews
ggplot(nycAB,aes(x=room_type, y=log_price, fill = room_type)) + geom_boxplot()


```
# We can see that listings where the entire home/apartment
#is offered generally has the highest price range, whereas
#a private room has the second highest price range,
#with a shared room falling in the lowest price range
ggplot(nycAB,aes(x=minimum_nights, y=reviews_per_month)) + geom_point() + geom_smooth(size = .5)
```

$geom_smooth()$ using method = gam' and formula $y \sim s(x, bs = cs')'$


```
#This plot shows a relationship between minimum nights and
#reviews per month. It shows that there is a negative
#relationship up to a certain point (as minimum nights increases,
#reviews per month decreases) and then it begins to even out,
#as there is little to no relationship between the two after
#a certain point

ggplot(nycAB,aes(x=minimum_nights_log, y=reviews_per_month_log)) + geom_point() + geom_smooth(size = .5
```

$geom_smooth()$ using method = gam' and formula $y \sim s(x, bs = "cs")'$

#this plot shows the relationship a between the two variables
#a bit more cleanly, as we have found the log of both.

```
############################
### Nov. 21, Submission ###
############################
# We'll run a regression model using a decision tree
# First we'll set the seed and split the data
set.seed(310)
trainidx = sample(1:nrow(nycAB),size=0.75*nrow(nycAB))
train = nycAB[trainidx,]
test = nycAB[-trainidx,]
#making sample of train and test data for random forest model
#efficiency
train_sample = train[sample(1:nrow(train), size=0.3*nrow(train)), ]
test_sample = test[sample(1:nrow(test), size=0.3*nrow(test)), ]
# Next well run two tree models, one with price and one with the log transform price
library(tree)
regMod = tree(price ~ neighbourhood_group + room_type
              + availability_365 + log_num_reviews + reviews_per_month_log
              + minimum_nights_log,
              data = train)
logMod = tree(log_price ~ neighbourhood_group + room_type
```



```
plot(logMod)
text(logMod, pretty = 0)
```



```
# In both trees we can see that the variable that affects price the most is room type,
# more specifically if the room type is the whole house or not. The next most important node
# for both trees is neighbourhood_group, if it is Manhattan or not. The model using log_price only
# gives these nodes. The model using the given price variable includes a node if the room is the
# whole house and is in manhattan it looks at availability.
```

```
\hbox{\it \# We'll use cross-validation to find the best tree size for both models.}
cvTreeR = cv.tree(regMod)
cvTreeR
## $size
## [1] 5 4 3 2 1
##
## $dev
## [1] 364837133 370691820 377276194 395309429 508015797
##
## $k
## [1]
          -Inf 5878954 7102239 18048446 112687423
## $method
## [1] "deviance"
## attr(,"class")
## [1] "prune"
                       "tree.sequence"
bestIdx = which.min(cvTreeR$dev)
cvTreeR$size[bestIdx]
## [1] 5
# Best size is 5
cvTreeL = cv.tree(logMod)
cvTreeL
## $size
## [1] 4 3 2 1
##
## $dev
## [1] 8434.909 8910.014 9468.515 15947.743
##
## $k
          -Inf 475.8630 558.8432 6479.1537
## [1]
## $method
## [1] "deviance"
##
## attr(,"class")
## [1] "prune"
                       "tree.sequence"
bestIdx = which.min(cvTreeL$dev)
cvTreeL$size[bestIdx]
```

[1] 4

```
# Best size is 4
# Now we'll prune the trees using the best size we got from CV and generate predictions
prunedTreeR = prune.tree(regMod, best = 5)
predsTrainR = predict(prunedTreeR)
predsTestR = predict(prunedTreeR, newdata = test)
prunedTreeL = prune.tree(logMod, best = 4)
predsTrainL = predict(prunedTreeL)
predsTestL = predict(prunedTreeL, newdata = test)
# Now we'll calculate MSE for both models
MSE = function(p,t){
  mean((t-p)^2)
MSE(predsTrainR, train$price) #9975.12
## [1] 9990.492
MSE(predsTestR,test$price) #9570.264
## [1] 9516.046
MSE(predsTrainL, train$log_price) #0.231
## [1] 0.2312964
MSE(predsTestL, test$log_price) #0.228
## [1] 0.2258194
# MSE is much lower when we use the log transformation
# we do get a lower MSE in the test set which may be an indication that
# the model is overfitting the data.
plot(prunedTreeL)
text(prunedTreeL, pretty = 0)
```

```
room_type: Private,room,Shared room
bourhood_group: Bronx, Brooklyn, Queenesig State en his beach de group: Bronx, Brooklyn, Queens, St
                                                         4.969
                                                                                5.286
           4.155
                                  4.526
#using random forest model
library(randomForest)
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
##
       margin
set.seed(2019)
#View(nycAB)
#setting mtry to 5 as cross validated best number
#maxnodes to 160 to minimize mse while still optimizing efficiency
#using sample of train to optimize efficiency
#using ntree of 500 to minimize mse
bag_nycAB <- randomForest(log_price~ neighbourhood_group + room_type</pre>
                          + availability_365 + log_num_reviews + reviews_per_month_log
                          + minimum_nights_log,
                          data = train_sample,
                          mtry = 5,
                          maxnodes = 160,
                          ntree = 500,
                          importance = TRUE)
bag_nycAB
```

Call:

```
## randomForest(formula = log_price ~ neighbourhood_group + room_type + availability_365 + log_nu
##
                  Type of random forest: regression
                        Number of trees: 500
##
## No. of variables tried at each split: 5
##
##
             Mean of squared residuals: 0.201634
##
                       % Var explained: 54.08
#prediction of train data
preds_bag_nycAB <- predict(bag_nycAB, newdata = train)</pre>
#prediction of test data
preds_bag_nycAB_test<- predict(bag_nycAB, newdata = test)</pre>
#MSE test
MSE(preds_bag_nycAB_test, test$log_price)
## [1] 0.1956296
#.1951798
#MSE train
MSE(preds_bag_nycAB, train$log_price)
## [1] 0.1945877
#.1948749
#Random forest model has lowest error, so we will use this one.
```