Intro to PID

Vanderbilt Robotics: Programming Workshop #1

Your Challenge

- Move a motor to a certain position
- Use a potentiometer to read current position and provide feedback
- Use H-Bridge to drive motor output

Keys Terms

- Process: The physical system being controlled
- Setpoint (SP): The desired state of the system
- Control Variable (CV): The output of the PID controller given to the process
- Process Variable (PV): The sensor feedback from the process
- Error: The difference between SP and PV; The term fed into the controller

What is PID?

- Industrial control technique for using process feedback to drive output
- Proportional, Integral, Derivative

$$u(t) = K_{\mathrm{p}} e(t) + K_{\mathrm{i}} \int_0^t e(au) \, d au + K_{\mathrm{d}} rac{de(t)}{dt}$$

- Kp drives PV towards SP when far away and diminishes as error approaches zero
- Ki builds up output overtime to correct for steady state error
- Kd slows down changes in PV to cause convergence towards SP

L293NE or SN754410

EN	1A	2A	FUNCTION	
Н	L	Н	Turn right	
Н	Н	L	Turn left	
Н	L	L	Fast motor stop	
Н	Н	Н	Fast motor stop	
L	X	Х	Fast motor stop	
	H H	H L H H	H L H H L L H L H	H

Arduino Programming Example

https://github.com/vanderbiltrobotics/workshop1

How to Deploy Code

- 1. Connect Arduino to computer with a USB cable
- 2. Go to Tools>Board and pick "Arduino/Genuino Uno"
- 3. Go to Tools>Port and pick the Serial Port
- 4. Click Upload