

Seminarium Dyplomowe Semestr 7

Zajęcia nr 4

Projektowanie (koncepcja) rozwiązań

Mgr inż. Jerzy Stankiewicz

ZAJĘCIA NR 1 - ROZLICZENIE

- **Przygotować harmonogram prac** z wykorzystaniem MS Project (za okres październik 2018 : 31-03-2019r)
- Utworzyć dokument pracy dyplomowej (nazwisko imię v1.docx) ze stroną tytułową, proponowanymi rozdziałami (z wygenerowanym spisem treści)
- Literatura (na końcu dokumentu) przedstawić propozycje literatury z dziedzin:
 - Projektowania systemów informatycznych
 - Modelowania systemów
 - Projektowania baz danych
 - Języków programowania
 - Dziedziny tematycznej pracy dyplomowej (normy prawne, dzienniki ustaw itp.)
 - Strony internetowe (ćwiczenia, opisy, przegląd produktów rynkowych o podobnej tematyce itp.)
- Opracować rozdział wstępny w zakresie: temat pracy, cel i zakres pracy, wprowadzenie do problemu (ogólne)

ZAJĘCIA NR 2 - ROZLICZENIE

- Opracować część analityczną pracy dyplomowej w zakresie:
 - szczegółowy opis problemu

ZAJĘCIA NR 3 - ROZLICZENIE

Opracować część analityczną pracy dyplomowej w zakresie:

- Wymagania funkcjonalne systemu
- Wymagania pozafunkcjonalne systemu
- Użytkownicy systemy i dostępne im funkcje

Zakres tematyczny

- Modele kontekstowe
- Techniki strukturalne /ogólnie/
- Techniki obiektowe

Modele kontekstowe

- Prezentują operacyjny kontekst: system-otoczenie
- We wczesnej fazie procesu określania i analizowania wymagań należy ustalić granice systemu
- Kwestie społeczne i organizacyjne mogą mieć wpływ na ustalenia:
 - co do systemu należy?
 - a co jest poza jego granicami?
- W niektórych wypadkach granica między systemem, a jego środowiskiem jest dość czytelna
- Granicę między systemem a jego środowiskiem należy ustalić w trakcie procesu inżynierii wymagań

Kontekst Systemu Bankomatu

Kontekst Administrowanie Gospodarką Magazynową

Przeznaczenie

- Diagramy kontekstowe mają zastosowanie dla:
 - Projektantów
 - Programistów
 - Użytkowników systemu

Koncepcja rozwiązań

Modelowanie strukturalne

Diagram Hierarchii Funkcji Diagram Przepływu danych Diagram Związków Encji

Koncepcja rozwiązań

Modele obiektowe

Modele obiektowe

- Naturalnie odzwierciedlają elementy rzeczywistości, którymi manipuluje system.
- Opisują system w terminach klas obiektów i relacji pomiędzy nimi.
- Obiekty mogą być rzeczywiste lub abstrakcyjne.
- Identyfikacja klas obiektów jest uważana za trudny proces (wymaga głębokie znajomości dziedziny aplikacji).
- Klasy opisujące obiekty z dziedziny problemowej mają duży potencjał ponownego użycia.

UML

- UML cieszy się aktualnie bardzo dużą popularnością
- Prawdopodobnie przez wiele najbliższych lat będzie dominował w obszarze analizy i projektowania
- UML nie jest metodyką projektowania
- Notacja UML, która opiera się o podstawowe pojęcia obiektowości może być wykorzystana w dowolnej metodyce
- Pojęcia UML, wynikające z doświadczenia jej twórców, mają w założeniu przykrywać większość istotnych aspektów modelowanych systemów

Perspektywy modelowania w UML

UML jest określany jako język modelowania z 4+1 perspektywą:

- Perspektywa przypadków użycia opisuje funkcjonalność systemu widzianą przez użytkowników
- **Perspektywa logiczna** sposób realizacji funkcjonalności, struktura systemu widziana przez projektanta
- Perspektywa implementacyjna zawiera moduły i interfejsy, przeznaczona dla programisty
- **Perspektywa procesowa** podział systemu na czynności i jednostki wykonawcze (wątki, procesy, współbieżność) służy głównie programistom i instalatorom
- **Perspektywa wdrożeniowa** fizyczny podział elementów systemu i ich rozmieszczenie w infrastrukturze, ważna dla instalatorów

Diagramy definiowane w UML

Model a diagram?

- <u>Model</u> pewna abstrakcja projektowanego systemu, widziana z określonej perspektywy, na określonym poziomie szczegółowości.
- <u>Diagram</u> środek służący do opisu modelu. Dany model może być opisany przy pomocy wielu diagramów. Dany element modelu może pojawiać się na wielu diagramach jednego modelu.
- Dwa najważniejsze modele w UML, wykorzystywane w fazie analizy (modelowania), to:
 - *model przypadków użycia* opisujący system widziany z perspektywy jego przyszłego użytkownika (za pomocą diagramów przypadków użycia),
 - <u>model obiektowy</u> przedstawiający statyczną budowę, czyli strukturę systemu (za pomocą diagramów klas i diagramów obiektów). Diagram klas może zawierać obiekty. Diagram obiektów nie zawiera klas, ale wyłącznie obiekty.

Model a diagram?

Notacja:

- Klasy obiektów reprezentowane są jako prostokąty Opis podzielony jest na trzy części:
 - Nazwa
 - Atrybuty
 - Operacje
- Powiązania pomiędzy klasami (*zwane asocjacjami*) reprezentowane są przez linie łączące klasy
- Dziedziczenie, określane mianem związku generalizacji modeluje związek "jest rodzaju"
- Agregacja modelująca zależności typu całość część

Diagram przypadków użycia

Diagram przypadków użycia (ang. *use-case diagram*) służy do modelowania aktorów (użytkowników systemu, odbiorców efektów pracy systemu, systemów zewnętrznych) i ich potrzeb w stosunku do tworzonego systemu.

Przypadki użycia prezentowane na diagramie to sekwencje czynności, które prowadzą do spełnienia celu przypadku użycia (zaspokojenia pewnej potrzeby użytkownika).

- definiuje granice modelowanego systemu
- określa jego kontekst
- wymienia użytkowników systemu i jednostki zewnętrzne
- przedstawia funkcje dostępne dla użytkowników
- określa powiązania i zależności pomiędzy nimi

Przypadki użycia komunikują się z aktorami poprzez powiązania, pokazujące, który aktor ma dostęp do podanego przypadku użycia.

Ponadto mogą być powiązane pomiędzy sobą: *relacją uogólnienia*, *rozszerzenia* i *zawierania*.

Przykład 1: Diagram przypadków użycia

Przykład 2: Diagram przypadków użycia

Przypadki użycia: Powiązania rozszerza i używa

Używa/zawieranie (include):

- wskazuje na wspólny fragment wielu przypadków użycia, wyłączony "przed nawias" (w tym sensie jest "abstrakcyjny", podobieństwo do dziedziczenia)
- Wykonanie jednego przypadku użycia przez drugi

Rozszerza (extend): strzałka prowadzi od przypadku użycia, który czasami (nie zawsze) rozszerza przypadki użycia.

/Dodatkowa funkcjonalność przypadku użycia/

Opis przypadków użycia /szablon/

Nazwa:	Pełna nazwa przypadku użycia (PU)
Numer:	Numer identyfikacyjny przypadku użycia
Twórca:	Dane twórcy, np.: imię, nazwisko, stanowisko
Poziom ważności:	Poziom ważności z pkt. widzenia użytkownika, np. niski, średni, wysoki
Typ przypadku użycia:	Określenie typu PU z pkt. widzenia jego złożoności, oraz zaspokojenia potrzeb użytkownika, np.ogólny/szczegółowy; niezbędny/istotny/mało istotny
Aktorzy:	Lista aktorów będących w związku z PU
Krótki opis:	Ogólna charakterystyka PU
Warunki początkowe:	Ch-ka koniecznych warunków inicjujących przypadek
Warunki końcowe:	Ch-ka stanu systemu po realizacji PU
Główny przepływ zdarzeń:	Wypunktowana i scharakteryzowana lista przepływów zdarzeń (scenariusz główny)
Alternatywne przepływy zdarzeń:	Scenariusz alternatywny
Specjalne wymagania:	Wypunktowana i scharakteryzowana lista dodatkowych zidentyfikowanych wymagań niefunkcjonalnych
Notatki i kwestie:	Lista wszystkich komentarzy i otwartych kwestii

Przykład 1: Opis przypadków użycia

Nazwa przypadku użycia	
Przeglądanie kont	
Aktorzy	
Administrator	
Opis	
Przypadek użycia dotyczy przeglądania przez administratora systemu listy kont użytkowników oraz ich właściwości.	
Warunki początkowe	
 Na ekranie wyświetlony jest graficzny interfejs użytkownika System czeka na aktywność użytkownika Użytkownik jest zalogowany w systemie z uprawnieniami administratora 	
Zdarzenie inicjujące	
Użytkownik inicjuje akcję poprzez żądanie za pośrednictwem graficznego interfejsu użytkownika.	
Podstawowa sekwencja akcji	
 Na ekranie zostaje wyświetlona lista kont użytkowników zawierająca następujące składniki: Login Hasło Imię Nazwisko Data utworzenia konta Termin wygaśnięcia konta Informacja czy użytkownik posiada prawa administratora	
Alternatywna sekwencja akcji	
Brak.	
Warunki końcowe	
Brak.	

Przykład 2: Opis przypadków użycia

Nazwa przypadku użycia: Przeglądanie zdarzeń systemowych

Aktorzy: Administrator

Opis: Przypadek użycia dotyczy przeglądania przez administratora listy sesji oraz zdarzeń zapisanych w systemie. Przypadek jest rozszerzony przez przypadek użycia "Edycja filtra zdarzeń".

Warunki poczatkowe

- 1. Na ekranie wyświetlony jest graficzny interfejs użytkownika
- 2. System czeka na aktywność użytkownika
- 3.Użytkownik jest zalogowany w systemie z uprawnieniami administratora
- 4. Użytkownik klika w menu głównym aplikacji pozycję "Panel administracyjny"

Podstawowa sekwencja akcji

- 1. Na ekranie zostają wyświetlone:
- Tabela sesji zawierająca następujące składniki:
 - Nr sesji
 - Data i czas rozpoczęcia sesji
 - Data i czas zakończenia sesji
 - Adres IP komputera użytkownika
 - Nazwa aplikacji użytkownika
 - Login użytkownika
 - Imię użytkownika
 - Nazwisko użytkownika
- Tabela zdarzeń zawierająca poniższe składniki:
 - Czas zdarzenia
 - Nazwa rodzaju zdarzenia
 - Opis zdarzenia
- Pole tekstowe
- Filtr danych zawierający pola pozwalające zdefiniować zakres informacji prezentowanych w tabelach:
 - Rodzaj prezentowanych sesji (otwarte, zamknięte lub wszystkie)
 - Adres IP
 - Nazwa aplikacji
 - Login
 - Imię
 - Nazwisko
 - Rodzaj zdarzenia
- Jeżeli administrator zaznaczy wiersz w tabeli sesji, system aktualizuje dane prezentowane w tabeli zdarzeń ograniczając zakres prezentowanych danych do zdarzeń związanych z zaznaczoną sesją.
- Jeżeli administrator zaznaczy wiersz w tabeli zdarzeń, system w celu ułatwienia odczytu wyświetla w polu tekstowym opis związany z zaznaczonym zdarzeniem.
- Przypadek dobiega końca w sytuacji zamknięcia okna przez administratora.

Alternatywna sekwencja akcji: Brak

Warunki końcowe: brak

Przykład 3: Opis przypadków użycia

Nazwa przypadku użycia

Edycja danych profilu użytkownika

Opis

Przypadek użycia opisuje funkcję modyfikacji danych profilu użytkownika

Aktorzy – użytkownicy

Użytkownik Uprawniony, Administrator

Warunki początkowe

Brak.

Sekwencja akcji – edytuj dane profilu użytkownika

1.Aktor wprowadza dane do profilu:

Imię

Nazwisko

E-mail

Hasło

Potwierdzenie hasła

Warunki końcowe

2.Aktor wybiera przycisk "Zapisz".

Przykład 4: Opis przypadków użycia

Nazwa przypadku użycia
Usunięcie placówki
Opis:
Przypadek użycia opisuje funkcję usunięcia placówki szkolnej z systemu.
Aktorzy – użytkownicy
Administrator
Warunki początkowe:
Placówka musi istnieć w systemie.
Sekwencja akcji – Dodaj klienta:
 Aktor wybiera placówkę do usunięcia. Aktor wybiera przycisk "Usuń".
Warunki końcowe:
Placówka zostaje usunięta z systemu.

Diagram klas

- Diagram klas (ang. class diagram) jest najczęściej używanym diagramem UML
- Z reguły zawiera także największą ilość informacji i stosuje największą liczbę symboli
- Przedstawia klasy występujące w systemie i statyczne relacje pomiędzy nimi wraz z ograniczeniami
- Jest podstawowym diagramem struktury logicznej systemu
- Na diagramie są prezentowane klasy, ich atrybuty i operacje, oraz powiązania między klasami.
- Diagram klas przedstawia więc podział odpowiedzialności pomiędzy klasy systemu i rodzaj wymienianych pomiędzy nimi komunikatów.
- Z uwagi na rodzaj i ilość zawartych na tym diagramie danych jest on najczęściej stosowany do generowania kodu na podstawie modelu

Klasa jest reprezentowana przez prostokąt z wydzielonymi przedziałami: nazwą, atrybutami i operacjami.

Cechy klasy reprezentują informację, jaką klasa przechowuje. Mogą zostać zapisane w postaci dwóch, w zasadzie równoważnych notacji: jako atrybuty klasy (umieszczane w przedziale atrybutów) lub jako relacje pomiędzy klasami (zapisywane w postaci linii łączącej klasy). Zwykle pierwsza notacja jest stosowana do typów prostych lub obiektów reprezentujących wartości, natomiast druga do typów złożonych.

Operacje reprezentują usługi, jakie klasa oferuje. Ich realizacje – metody – dostarczają implementacji tych usług.

Diagram klas

Hierarchia klas w systemie biblioteka

Uogólnienie tworzy hierarchię klas, od ogólnych do bardziej szczegółowych. Pozwala wyłączyć części wspólne klas.

Hierarchia klas użytkowników w systemie biblioteka

Diagram obiektów

- Diagram obiektów (ang. object diagram) prezentuje możliwą konfigurację obiektów w określonym momencie, jest pewnego rodzaju instancją diagramu klas, w której zamiast klas przedstawiono ich obiekty.
- Diagram ten posługuje się identycznymi symbolami co diagram klas, jednak, dla odróżnienia obiektów od klas, nazwy instancji są podkreślone.
- Ponadto, nazwa składa się z nazwy obiektu i nazwy klasy, oddzielonych dwukropkiem.
- Obie części nazwy można pominąć, więc aby uniknąć nieporozumień, jedna część nazwy oznacza nazwę obiektu, a sama nazwa klasy musi być zawsze poprzedzona dwukropkiem.
- Diagramy obiektów przydają się w przypadku szczególnie skomplikowanych zależności, których nie można przedstawić na diagramie klas. Wówczas przykładowe konfiguracje obiektów pomagają w zrozumieniu modelu.

Modelowanie zachowania /Interakcji/ obiektów

- Głównym zadaniem pomocniczego modelu dynamicznego (zachowania) w UML jest wypełnienie diagramu klas metodami wynikającymi z analizy zachowania systemu w trakcie wykonywania zadań, gdzie zadaniem może być np. realizacja przypadku użycia czy też jednego konkretnego scenariusza danego przypadku użycia.
- W UML do modelowania zachowania wykorzystuje się głównie diagramy sekwencji i współpracy wspomagane diagramami stanów.

Diagram sekwencji

- **Diagramy sekwencji** (ang. sequence diagrams) intuicyjnie prezentują kolejność wywołań operacji, przepływ sterowania pomiędzy obiektami oraz szablon realizowanego algorytmu. Pomijają natomiast całkowicie aspekt dostępu i operacji na danych, związany z komunikacją.
- Uczestnikami diagramów sekwencji są obiekty, opisane nazwą obiektu i jego klasą, które wymieniają między sobą komunikaty.
- Diagram sekwencji jest zapisany w prostokącie oznaczonym operatorem sd (od angielskiej nazwy diagramu) i składa się z pionowych linii życia (ang. *lifelines*) poszczególnych obiektów uczestniczących w interakcji oraz wymienianych między nimi komunikatów (wywołań operacji).
- Białe prostokąty umieszczone na linii życia obiektu oznaczają, że obiekt jest zajęty wykonywaniem pewnej czynności (natomiast nie mają bezpośredniego związku z istnieniem obiektu).
- Czas jest reprezentowany w postaci pionowej osi diagramu.
- Linia życia obiektu to czas, w którym konkretna instancja obiektu jest w stanie przyjmować komunikaty i wysyłać je. Innymi słowy, obejmuje ona czas istnienia obiektu w systemie.

Przypadek użycia w postaci diagramu sekwencji

Diagram sekwencji przedstawia sposób wymiany komunikatów pomiędzy obiektami z zachowaniem ich kolejności

Blok: obiekt + pewna akcja podejmowana przez system s_i - zdarzenia

Pobranie oprogramowania z biblioteki

Zamówienie w restauracji

Przykład diagramu sekwencji

Diagram czynności

Diagramy czynności (ang. *activity diagrams*) prezentują przepływ sterowania w systemie związany z wykonaniem pewnej funkcji.

- Przepływy łączą czynności wykonywane przez poszczególne obiekty i stany obiektów, w których znajdują się po wykonaniu czynności.
- Diagramy stanu skupiają się jak nazwa wskazuje na stanach, a akcje związane z ich zmianą są elementem dodatkowym.
- W diagramach czynności jest odwrotnie: akcje są na pierwszym planie, a zmiany stanów są efektem ich wykonania.
- Dlatego diagramy czynności dobrze nadają się do opisu przepływu sterowania pomiędzy obiektami (szczególnie w przypadku przetwarzania współbieżnego) oraz przepływu danych pomiędzy nimi.
- Diagram, podobnie jak diagram stanu, może posiadać punkt startowy i dowolną liczbę stanów końcowych.
- Najważniejszym jego elementem są akcje, reprezentowane przez prostokąty z zaokrąglonymi narożnikami oraz przejścia (łuki) przedstawiające przepływ sterowania.
- Łuki mogą być opatrzone warunkami dozoru, które decydują o wykonaniu przejścia oraz zdarzeniami, które są generowane w momencie gdy przejście jest wykonywane.
- Diagramy czynności zawierają także stany, w jakich może znaleźć się określony obiekt po wykonaniu akcji oraz elementy decyzyjne czy synchronizujące.

Przykład 1: Diagram czynności

Przykład 2: Diagram czynności

Rozliczenie usługi

Diagram hierarchii funkcji

Zajęcia nr 2 - Analiza Zadania Dyplomowego

2 Przykład analizy – Port jachtowy:

- 1. Istnieje port jachtowy na jeziorze X
- 2. Port posiada miejsca do cumowania jachtów
- 3. Port posiada kilka pomostów < pomost A, B, C...>, przy których są miejsca do cumowania <miejsce 1, 2, ... 10.. > (uwaga: przy jednym pomoście może być wiele miejsc), miejsce ma określoną długość < 10m, 15 m, 20 m>, potrzebna jest również wiedza czy miejsce jest aktualnie wolne czy zajęte, niedostępne bo awaria, naprawa
- 4. W porcie cumują jachty, potrzebna wiedza <nazwa jachtu, długość jachtu, właściciel jachtu>
- 5. Potrzeba wiedzy o właścicielu jachtu < imię, nazwisko, adres, kraj> (uwaga: właściciel może mieć wiele jachtów, jeden jacht <cumujący> ma jednego właściciela).
- 6. Zajęcie miejsca cumowania <parkowanie> to: jaki jacht, jaki właściciel, które zajął miejsce na przystani, data przypłynięcia, data odpłynięcia, łączna cena za cumowanie za dobę w tym miejscu.
- 7. Cumując można korzystać z pewnych (dodatkowo płatnych) usług <wymycie pokładu, doładowanie akumulatorów> jakie potrzebne informacje oprócz cennika?
- 8. Potrzeba ewidencjonowania tych usług, (uwaga jedno cumowanie może być wiele usług),
- 9. Cumując można odpłatnie pożyczyć na przystani narzędzia <młotek, siekiera, wiertarka> potrzeba ewidencjonowania tych płatnych pożyczek (uwaga jedno cumowanie może być wiele pożyczek sprzętu).

Wymagania do zajęć nr 4

Zamodelować system z wykorzystaniem statycznych i dynamicznych diagramów UML

Seminarium Dyplomowe

