Villamosmérnök A1X (2014 ősz)

Pót ZH

Minden feladat 10 pontos, tehát 2×30 pontot lehet összegyűjteni. Minden feladat esetében szükséges a világos indoklás, nem elég a végeredmény és/vagy a válasz.

- 1. zh pótlása
- 1. Milyen relációban állnak az A és B halmazok, ha

(a)
$$A \cup B \subseteq A \cap B$$

(b)
$$A \cap C = B \cap C$$
 és $A \cap \bar{C} = B \cap \bar{C}$

Megoldás. (a) $A \subseteq A \cup B \subseteq A \cap B \subseteq B$, és a szimmetria miatt $B \subseteq A$. Tehát A = B. (b) $A = A \cap (C \cup \overline{C}) = (A \cap C) \cup (A \cap \overline{C}) = (B \cap C) \cup (B \cap \overline{C}) = B \cap (C \cup \overline{C}) = B$.

2. Határozza meg a P=(7,-1,11) pontnak az S:2x+y+3z=4 síkra vetett merőleges vetületét!

Megoldás. A keresett pont a sík, és a rá merőleges, P-re illeszkedő egyenes: e: $\begin{cases} x = 7 + 2t \\ y = -1 + t \\ z = 11 + 3t \end{cases}$

metszéspontja: e(-3) = (1, -4, 2).

3. Oldja meg a $\frac{|z|}{z} = 1 + z$ egyenletet a komplex számok körében!

Megoldás. $z \neq 0$; $\bar{z} = |z|(1-|z|) \in \mathbb{R}$, tehát $\bar{z} = z \in \mathbb{R}$. Utóbbiból, ha $z \geq 0$, akkor 0 = -z, ami ellentmondás, ha pedig z < 0, akkor z = -2. Vagyis z = -2 az egyetlen megoldás.

2. zh pótlása

4. (a)
$$\lim_{n\to\infty} n - \sqrt{n^2 - n}$$
 (b) $\lim_{n\to\infty} \frac{2^{2n}}{(n+1)^2}$

Megoldás. (a) $n - \sqrt{n^2 - n} = \frac{n}{n + \sqrt{n^2 - n}} = \frac{1}{1 + \sqrt{1 - 1/n}} \to \frac{1}{2}$ (b) $\frac{2^{2n}}{(n+1)^2} = \frac{1}{(n/2^n + 1/2^n)^2} \to \mathbf{0}$ mert $n < 2^n$ $(n = o(2^n))$.

(b)
$$\frac{2^{2n}}{(n+1)^2} = \frac{1}{(n/2^n+1/2^n)^2} \to \mathbf{0}$$
 mert $n \triangleleft 2^n$ $(n = o(2^n))$

5. (a)
$$\lim_{x\to\infty} \cos x$$
 (b) $\lim_{x\to 0} \frac{x^2}{\sin 2x}$

Megoldás. (a) Legyen $x_n = 2\pi n$ és $y_n = \frac{\pi}{2} + 2\pi n$; akkor $x_n, y_n \to \infty$ és $\cos x_n = 1 \to 1$, $\cos y_n = 0 \to 0$, tehát $\angle \lim_{x \to \infty} \cos x$. (b) $\lim_{n \to 0} \frac{x^2}{\sin 2x} = \lim_{n \to 0} \frac{1}{2} x \frac{2x}{\sin 2x} = 0 \cdot 1 = 0$.

6. Hol folytonos, és ahol nem, ott milyen szakadása van az $f(x) = e^{\frac{1}{x^3-x^2}}$ függvénynek?

Megoldás. A belső függvény nevezőjének nullahelyei (0 és 1) kivételével mindenütt folytonos, mert folytonos függvényekből van összetéve folytonosságot megőrző módon. $\lim_{x\to 0} f(x) = 0$ és $\lim_{x\to 1+} f(x) = \infty$, tehát megszüntethető szakadása van 0-ban és másodfajú szakadása van 1-ben.