

NORMAL MAXIMUM LIKELIHOOD SELECTORS

Why

We want to select a normal density which summarizes well a dataset.

Formulation

Let $D = (x^1, ..., x^n)$ be a dataset in **R**. We want to select a density from among normal densities, which require specifying a mean and covariance.

Following the principle of maximum likelihood, we want to solve

$$\begin{aligned} & & \text{find} & & \mu, \sigma \in \mathsf{R} \\ & \text{to maximize} & & \prod_{k=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2}\left(\frac{x^k - \mu}{\sigma}\right)^2\right) \\ & & \text{subject to} & & \sigma > 0 \end{aligned}$$

We call a solution to the above problem a maximum likelihood normal density with respect to the dataset.

Solution

Prop. 1. Let $(x^1, ..., x^n)$ be a dataset in R. Let f be a normal density with mean

$$\frac{1}{n} \sum_{k=1}^{n} x^k$$

and covariance

$$\frac{1}{n} \sum_{k=1}^{n} \left(x^k - \frac{1}{n} \sum_{k=1}^{n} x^k \right)^2.$$

Then f is a maximum likelihood normal density.

Proof. Every normal density has two parameters: the mean and the covariance. If the likelihood of one normal is less than or equal to the likelihood of another, then so is are their log likelihoods. Let f be a normal density with parameter μ and σ^2 . We express the log likelihood of f by

$$\sum_{k=1}^{n} \left(\frac{1}{2\sigma^2} (x^k - \mu)^2 - \frac{1}{2} \log 2\pi \sigma^2 \right)$$

The partial derivative of the log likelihood with respect to the mean $(\partial_{\mu}\ell): \mathbb{R}^2 \to \mathbb{R}$ is

$$(\partial_{\mu}\ell)(\mu,\sigma^2) = -\sum_{k=1}^{n} \frac{1}{\sigma^2}(x-\mu)$$

and with respect to the covariance $(\partial_{\sigma^2}\ell): \mathbb{R}^2 \to \mathbb{R}$ is

$$(\partial_{\sigma^2}\ell)(\mu,\sigma^2) = \left(\frac{-1}{2(\sigma^2)^2} \sum_{k=1}^n (x^k - \mu)^2\right) - \frac{1}{2\sigma^2}$$

We are interested in finding $\mu_0 \in \mathbf{R}$ and $\sigma_0^2 > 0$, at which $\partial_{\mu}\ell(\mu_0, \sigma_0^2) = 0$ and $\partial_{\sigma^2}\ell(\mu_0, \sigma_0^2) = 0$. So we have two equations. First, notice that $\partial_{\mu}\ell$ is zero if an only if its first argument (the mean) is $\frac{1}{n}\sum_{k=1}^n x^k$. Second, notice that for all $\mu, \sigma^2, \partial_{\sigma^2}\ell$ is zero if and only if

$$\sigma^2 = \sum_{k=1}^{n} (x^k - \mu)^2.$$

So the pair

$$\left(\frac{1}{n}\sum_{k=1}^{k} x^k, \frac{1}{n}\sum_{k=1}^{n} (x_k - \frac{1}{n}\sum_{k=1}^{n} x^k)^2\right)$$

is a stationary point of ℓ .

