

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

Name:	110	W.	A'	llen				
	2 9 0 0 1 1 2 3 3 3 4 4 5 6 6 6 7 7 8 8 9 9	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 4 0 0		electr You n	ooks, ca onic de nay use full cre	one sheet	ach problem
1	2	3	4	5	6	7	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right], \quad \mathbf{v}_2 = \left[\begin{array}{c} -1 \\ 1 \\ -3 \end{array} \right], \quad \mathbf{v}_3 = \left[\begin{array}{c} 1 \\ 2 \\ 0 \end{array} \right], \quad \mathbf{w} = \left[\begin{array}{c} -2 \\ 2 \\ b \end{array} \right]$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1, v_2, v_3\}$ linearly independent? Justify your answer.

$$\begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 2 & -3 & 0 & b \end{bmatrix} \xrightarrow{R_3 = R_3 - 2R_1}$$

$$0 -1 -2$$
 $0 -1 -2 (4+6)$

$$R_1 = R_1 + R_2$$
 $\begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 2 & 2 \\ 0 & -1 & -2 & (4+b) \end{bmatrix}$ $R_3 = R_3 + R_2$ $\begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & (6+b) \end{bmatrix}$

$$k_3 = k_3 + k_2$$
 $\begin{pmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & (6+b) \end{pmatrix}$

a.
$$w \in Span(v_1, v_2, v_3)$$
 when $b = -6$

b. $\begin{vmatrix} 1 & -1 & 2 \\ 2 & -3 & 0 \end{vmatrix} \longrightarrow 1 -1$

The set is not linearly independent, because the V3 column is a free for variable, so there is not a leading one in each column

2. (10 points) Consider the following matrix:

$$A = \left[\begin{array}{rrr} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{array} \right]$$

Compute A^{-1} .

$$\begin{bmatrix}
1 & -1 & 2 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 2 & -1 & 0 & 0 & 1
\end{bmatrix}
\xrightarrow{R_2 = R_2 - R_1}$$

$$0 & 1 & -1 & -1 & 1 & 0 \\
0 & 2 & -1 & 0 & 0 & 1$$

$$\xrightarrow{R_2 = R_2 - R_1}$$

$$R_1 = R_1 - R_3$$

$$R_1 = R_1 - R_3$$
 $\begin{vmatrix} 1 & 0 & 0 & 1 - 2 & 3 & -1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 2 & -2 & 1 \end{vmatrix}$

$$A^{-1} = \begin{vmatrix} -2 & 3 & -1 \\ 1 & -1 & 1 \\ 2 & -2 & 1 \end{vmatrix}$$

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$
 Simpler:

$$C = (A^{T})^{-1}B = 0$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

$$A^T =$$

$$\begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

Find a matrix
$$C$$
 such that $A^TC = B$ (where A^T is the transpose of A).

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

$$A^T = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$
Then use A^T

$$\begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ -1 & 0 & 2 & 0 & 1 & 0 \\ 2 & 1 & -1 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 1 & 1 & 0 \\ 2 & 1 & -1 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 1 & 1 & 0 \\ 2 & 1 & -1 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{vmatrix}
1 & 0 & 0 & | & -2 & 1 & 2 \\
0 & 1 & 0 & | & 3 & -1 & +2 \\
0 & 0 & 1 & | & -1 & 1 & 1
\end{vmatrix}$$

$$\begin{vmatrix}
-2 & 1 & 2 \\
3 & -1 & -2 \\
-1 & 1 & 1
\end{vmatrix}$$

$$(A^{T})^{-1}A^{T}C = (A^{T})^{-1}B$$

$$\begin{vmatrix} -2 & 1 & 2 \\ 3 & -1 & -2 \\ -1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{vmatrix}$$

$$C = \begin{bmatrix} 8 & 5 & 0 \\ -1 & -3 & 3 \\ 6 & 9 & 2 \end{bmatrix}$$

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.
- b) Find all vectors u satisfying $T(\mathbf{u}) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

$$\alpha, \quad T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix} \qquad x_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix}$$

$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \times e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 1 & 1 \\ 1 & -3 \end{bmatrix}$$

$$e_{1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad e_{2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$$

$$\begin{vmatrix} 1 & -2 & 1 \\ 1 & 1 & 10 \\ 1 & -3 & -2 \end{vmatrix}$$

$$\begin{vmatrix} 1 & -2 & 1 \\ 0 & 3 & 9 \\ 1 & -3 & -2 \end{vmatrix}$$

$$\begin{vmatrix} 1 & -2 & 1 \\ 0 & 3 & 9 \\ 1 & -3 & -2 \end{vmatrix}$$

$$\begin{vmatrix} 1 & -2 & 1 \\ 0 & -1 & -3 \end{vmatrix}$$

$$\begin{vmatrix} 1 & -2 & 1 \\ 0 & -1 & -3 \end{vmatrix}$$

$$\begin{vmatrix} 1 & -2 & 1 \\ 0 & -1 & -3 \end{vmatrix}$$

$$\begin{vmatrix} 1 & -2 & 1 \\ 0 & -1 & -3 \end{vmatrix}$$

$$\begin{vmatrix} 1 & -2 & 1 \\ 0 & -1 & -3 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & 1 & 3 \\ 0 & 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & 7 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & 7 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & 7 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & 7 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{vmatrix}$$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

b)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

The matrix is not one-to-one, because the third column does not have a leading one. V

$$T_A(V_1) = T_A(V_2)$$

$$x_1 - 2x_3 = 0$$

$$X_3$$
 Nul A ε Span $\left(\begin{bmatrix} 2\\-2\\-2\\ \end{bmatrix}\right)$

$$V_1 = \begin{bmatrix} 2 \\ -2 \\ 8 \end{bmatrix}$$
 $V_2 = \begin{bmatrix} -1 \\ -2 \\ 8 \end{bmatrix}$

MTH-309T-F19-EX1-034-P06

- 6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in \text{Span}(u, v)$ then $w \in \text{Span}(u, v)$.

 This statement is false, because W + u =

b) If u, v, w are vectors in \mathbb{R}^3 such that the set {u, v, w} is linearly independent then the set {u, v} must be linearly independent.

This statement is true.

If {u, v, w} is linearly independent

then the each column in the aug matrix

must have a leading one. If you remove one

vector (column), each column will still have

a leading one

- 7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

? T(u) must be in Span(T(v), T(w)), be