练习1

列真值表, 无需赘述。

7°

(¬	р	\wedge	q)	\rightarrow	(¬	q	\wedge	r)
0	1	0	1	1	0	1	0	1
0	1	Θ	1	1	0	1	0	0
0	1	0	0	1	1	0	1	1
0	1	0	0	1	1	0	0	0
1	0	1	1	0	0	1	0	1
1	0	1	1	0	0	1	0	0
1	0	0	0	1	1	0	1	1
1	0	0	0	1	1	0	0	0

8°

(p	\rightarrow	q)	\rightarrow	(p	\rightarrow	r)
1	1	1	1	1	1	1
1	1	1	0	1	0	0
1	0	0	1	1	1	1
1	0	0	1	1	0	0
0	1	1	1	0	1	1
0	1	1	1	0	1	0
0	1	0	1	0	1	1
0	1	0	1	0	1	0

9°

(¬	(р	V	(q	\wedge	r)))	\leftrightarrow	((p	V	q)	\wedge	(p	V	r))
0	1	1	1	1	1	0	1	1	1	1	1	1	1
0	1	1	1	Θ	0	0	1	1	1	1	1	1	0
0	1	1	0	Θ	1	0	1	1	0	1	1	1	1
0	1	1	0	0	0	0	1	1	0	1	1	1	0
0	0	1	1	1	1	0	0	1	1	1	0	1	1
1	0	0	1	0	0	0	0	1	1	0	0	0	0
1	0	0	0	0	1	0	0	0	0	0	0	1	1
1	0	0	0	0	0	0	0	0	0	0	0	0	0

练习2

1.

$$L_0 = X_1 = \{x_1\}$$

$$L_1 = \{ \neg \ x_1, \ x_1 o x_1 \}$$

$$L_2 = \{ \neg (\neg x_1), \ \neg (x_1 \to x_1), \ x_1 \to (\neg x_1), \ x_1 \to (x_1 \to x_1), \ (\neg x_1) \to x_1, \ (x_1 \to x_1) \to x_1 \}$$

2.

$$L_0=X_2=\{x_1,\ x_2\}$$

$$L_1 = \{ \lnot x_1, \ \lnot x_2, \ x_1
ightarrow x_1, \ x_1
ightarrow x_2, \ x_2
ightarrow x_1, \ x_2
ightarrow x_2 \}$$

$$L_2 = \{ \lnot (\lnot x_1), \ \lnot (\lnot x_2), \ \lnot (x_1 o x_1), \ \lnot (x_1 o x_2), \ \lnot (x_2 o x_1), \ \lnot (x_2 o x_2), \ \lnot (x_2 o x_$$

$$x_1 o (
eg x_1), \ x_1 o (
eg x_2), \ x_1 o (x_1 o x_1), \ x_1 o (x_1 o x_2), \ x_1 o (x_2 o x_1), \ x_1 o (x_2 o x_2),$$

$$x_2 o (\lnot x_1), \ x_2 o (\lnot x_2), \ x_2 o (x_1 o x_1), \ x_2 o (x_1 o x_2), \ x_2 o (x_2 o x_1), \ x_2 o (x_2 o x_2),$$

$$(\neg x_1) o x_1, \ (\neg x_2) o x_1, \ (x_1 o x_1) o x_1, \ (x_1 o x_2) o x_1, \ (x_2 o x_1) o x_1, \ (x_2 o x_2) o x_1,$$

$$(\neg x_1) o x_2, \; (\neg x_2) o x_2, \; (x_1 o x_1) o x_2, \; (x_1 o x_2) o x_2, \; (x_2 o x_1) o x_2, \; (x_2 o x_2) o x_2 \}$$

3.

$$|L_0| = |X_3| = 3$$

$$|L_1|=3+3 imes 3=12$$

$$|L_2| = 12 + 3 imes 12 + 12 imes 3 = 84$$

$$|L_3| = 84 + 3 \times 84 + 84 \times 3 + 12 \times 12 = 732$$

练习3

2.

1°

$$(1) (\neg x_1 \rightarrow \neg x_2) \rightarrow (x_2 \rightarrow x_1)$$

$$(2) ((\neg x_1 \rightarrow \neg x_2) \rightarrow (x_2 \rightarrow x_1) \rightarrow ((\neg x_1 \rightarrow \neg x_2) \rightarrow ((\neg x_1 \rightarrow \neg x_2) \rightarrow (x_2 \rightarrow x_1)))$$

$$(L_3)$$

$$egin{aligned} (2) \; ((\lnot x_1
ightarrow \lnot x_2)
ightarrow (x_2
ightarrow x_1))
ightarrow ((\lnot x_1
ightarrow \lnot x_2)
ightarrow (x_2
ightarrow x_1))) \ (3) \; (x_1
ightarrow x_2)
ightarrow ((\lnot x_1
ightarrow \lnot x_2)
ightarrow (x_2
ightarrow x_1)) \ (1), (2), MP \end{aligned}$$

2°

$$(1) \; (x_1
ightarrow (x_2
ightarrow x_3))
ightarrow ((x_1
ightarrow x_2)
ightarrow (x_1
ightarrow x_3))$$

$$(2) \ ((x_1 \to (x_2 \to x_3)) \to ((x_1 \to x_2) \to (x_1 \to x_3))) \to (((x_1 \to (x_2 \to x_3)) \to (x_1 \to x_2)) \to ((x_1 \to (x_2 \to x_3)) \to (x_1 \to x_3))) \\ (L_2)$$

$$(3) \; ((x_1 \to (x_2 \to x_3)) \to (x_1 \to x_2)) \to ((x_1 \to (x_2 \to x_3)) \to (x_1 \to x_3)) \\ (1), (2), \mathit{MP}$$

3.

2°

$$(1)$$
 $\neg \neg p$ 假定

 (L_1)

 (L_3)

$$(2) \lnot \lnot p
ightarrow (\lnot \lnot \lnot \lnot p
ightarrow \lnot \lnot p)$$

$$(3) \lnot \lnot \lnot \lnot p
ightarrow \lnot \lnot p$$

$$(4) \ (\lnot \lnot \lnot \lnot p \to \lnot \lnot p) \to (\lnot p \to \lnot \lnot \lnot p)$$

$$(5) \neg p \rightarrow \neg \neg \neg p$$

$$(6) \ (\neg \ p \rightarrow \neg \ \neg \ p) \rightarrow (\neg \ \neg \ p \rightarrow p) \tag{L_3}$$

$$(7) \lnot \lnot p \to p$$

(8) p (1), (7), MP

另法

$egin{aligned} (1) & egin{aligned} \neg p \ (2) & egin{aligned} \neg p ightarrow (egin{aligne$	假定 否定前件律 (1),(2),MP (L_3) (3),(4),MP (L_3)
$egin{aligned} 3^\circ \ (1) &\lnot (q ightarrow r) ightarrow \lnot p \ (2) &(\lnot (q ightarrow r) ightarrow \lnot p) ightarrow (p ightarrow (p ightarrow r)) \ (3) &p ightarrow (q ightarrow r) \ (4) &(p ightarrow (q ightarrow r)) ightarrow ((p ightarrow q) ightarrow (p ightarrow r)) \ (5) &(p ightarrow q) ightarrow (p ightarrow r) \ (6) &p ightarrow q \ (7) &p ightarrow r \end{aligned}$	假定 (L_3) $(1),(2),MP$ (L_2) $(3),(4),MP$ 假定 $(5),(6),MP$
4° (1) $p \to (q \to r)$ (2) $(p \to (q \to r)) \to ((p \to q) \to (p \to r))$ (3) $(p \to q) \to (p \to r)$ (4) $((p \to q) \to (p \to r)) \to (q \to ((p \to q) \to (p \to r)))$ (5) $q \to ((p \to q) \to (p \to r))$ (6) $(q \to ((p \to q) \to (p \to r))) \to ((q \to (p \to q)) \to (q \to (p \to r)))$ (7) $(q \to (p \to q)) \to (q \to (p \to r))$ (8) $q \to (p \to q)$ (9) $q \to (p \to r)$	假定 (L_2) $(1), (2), MP$ (L_1) $(3), (4), MP$ (L_2) $(5), (6), MP$ (L_1) $(7), (8), MP$
2.	
2°	
首先由练习 3.2° ,有 $\{\neg\neg p\}\vdash p$,由演绎定理有 $\vdash\neg\neg p\to p$ 以下先证明 $\vdash p\to\neg\neg p$	
に対象に対象に $p \to \neg \neg p$ $(1) \neg \neg \neg p \to \neg p$ $(2) (\neg \neg \neg p \to \neg p) \to (p \to \neg \neg p)$ $(3) (p \to \neg \neg p)$	定理 (L_3) $(1),(2),MP$
然后,由演绎定理,只需证 $\{q o p\}$ $\vdash \neg p o \neg q$	
$egin{aligned} (1) & p & ightarrow otag & p \ (2) & q & ightarrow p \ (3) & q & ightarrow otag otag & q otag &$	定理 假定 (1),(2), <i>HS</i> 定理 (3),(4), <i>HS</i>

3°

由演绎定理,只需证 $\{(p o q) o p\} \vdash p$

 $(6) \ (\lnot \lnot q
ightarrow \lnot \lnot p)
ightarrow (\lnot p
ightarrow \lnot q) \ (7) \lnot p
ightarrow \lnot q$

 $(1) \lnot p \to (p \to q)$ $(2)\ (p\to q)\to p$ $(3) \neg \, p \to p$ $(4)\ (\neg\ p\to p)\to p$ (5) p

(3), (4), HS

(5), (6), MP

否定前件律

(1), (2), HS

(3), (4), MP

否定肯定律

假定

 $(5) \lnot \lnot q \to \lnot \lnot p$

2°

由演绎定理,只需证 $\{\neg\ p \to q,\ \neg\ q\} \vdash p$

- $(1) \lnot p$
- $(2) \lnot p \to q$
- (3) q
- $(4) \neg q$

由(3)(4)用反证律即得 $\{\neg p \rightarrow q, \neg q\} \vdash p$

 3°

由演绎定理, 只需证 $\{\neg (p \rightarrow q)\} \vdash \neg q$

- (1) q
- $(2) \; q \to (p \to q)$
- $(3)~p \rightarrow q$
- $(4)\
 eg(p o q)$

由(3)(4)用归谬律即得 $\{\neg (p \rightarrow q)\} \vdash \neg q$

练习6

2-2°

即证 $\vdash \lnot (p
ightarrow \lnot q)
ightarrow q$

- $(1) \lnot q
 ightarrow (p
 ightarrow \lnot q)$
- $(2) \; (\neg \; q \rightarrow (p \rightarrow \neg \; q)) \rightarrow (\neg (p \rightarrow \neg \; q) \rightarrow \neg \neg \; q)$
- $(3) \neg (p \rightarrow \neg \ q) \rightarrow \neg \neg \ q$
- $(4) \lnot \lnot q \to q$
- $(5) \ \neg (p \to \neg \ q) \to q$

2-3°

即证 $\vdash \neg (p \to \neg \ q) \to \neg (q \to \neg \ p)$,由演绎定理,即证 $\{\neg (p \to \neg \ q)\} \vdash \neg (q \to \neg \ p)$

- $(1) \; q \to \neg \; p$
- $(2) \; (q \to \neg \; p) \to (\neg \neg \; p \to \neg \; q)$
- $(3) \, \neg \neg p \to \neg \ q$
- $(4)\ p \to \neg\neg\ p$
- $(5)~p \rightarrow \neg~q$
- $(6) \ \neg (q \rightarrow \neg \ p)$

由归谬律得证

2-4°

即证 $\vdash p \to \neg(p \to \neg p)$, 由演绎定理, 即证 $\{p\} \vdash \neg(p \to \neg p)$

- (1) p
- $(2)~p \rightarrow \neg~p$
- $(3) \neg p$

由归谬律得证

4-1°

先证 $\vdash \neg \neg (p \to \neg \ q) \to (\neg \neg \ p \to \neg \ q)$,由演绎定理,即证 $\{\neg \neg (p \to \neg \ q), \ \neg \neg \ p\} \vdash \neg \ q$

新假定 假定

(1),(2),*MP* 假定

新假定 假定

(1),(2),*MP* 假定

 L_1

换位律

新假定

换位律

假定

假定

新假定

(1), (2), MP

(1),(2),MP

(3), (4), HS

第二双重否定律

(1),(2),*MP* 双重否定律

(3), (4), HS

```
(1) \neg \neg (p \rightarrow \neg q)
(2) \lnot \lnot (p \to \lnot q) \to (p \to \lnot q)
(3)~p \to \neg~q
(4) \lnot \lnot p \to p
(5) \neg \neg p
(6) p
(7) \neg q
(1)\ p \to \neg\neg\ p
```

再证 $\vdash (\neg\neg\ p \to \neg\ q) \to \neg\neg(p \to \neg\ q)$ 由演绎定理,即证 $\{\neg\neg\ p \to \neg\ q\} \vdash \neg\neg(p \to \neg\ q)$

$$egin{aligned} (1) & p
ightarrow
eg
otag \ (2) &
eg
otag
o$$

$$(3)\ p \to \neg\ q$$

$$(4)\;(p\to\neg\;q)\to\neg\neg(p\to\neg\;q)$$

$$(5) \lnot \lnot (p \to \lnot q)$$

最后即证 $\vdash \neg \neg (p \rightarrow \neg q) \leftrightarrow (\neg \neg p \rightarrow \neg q)$

$$(1) \ (\neg \neg (p \to \neg \ q) \to (\neg \neg \ p \to \neg \ q)) \to (((\neg \neg \ p \to \neg \ q) \to \neg \neg (p \to \neg \ q)) \to (\neg \neg (p \to \neg \ q) \leftrightarrow (\neg \neg \ p \to \neg \ q)))$$

$$(2) \lnot \lnot (p \to \lnot q) \to (\lnot \lnot p \to \lnot q)$$

$$(3)\;((\lnot\lnot p\to\lnot q)\to\lnot\lnot(p\to\lnot q))\to(\lnot\lnot(p\to\lnot q)\leftrightarrow(\lnot\lnot p\to\lnot q))$$

$$(4) (\neg \neg p \rightarrow \neg q) \rightarrow \neg \neg (p \rightarrow \neg q)$$

$$(5) \lnot \lnot (p \to \lnot q) \leftrightarrow (\lnot \lnot p \to \lnot q)$$

假定 双重否定律

(1), (2), MP

双重否定律 假定

(4), (5), MP

第二双重否定律

假定

(1), (2), HS

第二双重否定律

(3), (4), MP

第二双重否定律 定理

(1), (2), MP

第二双重否定律

(3), (4), MP