# Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/006581

International filing date: 29 March 2005 (29.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-127134

Filing date: 22 April 2004 (22.04.2004)

Date of receipt at the International Bureau: 28 April 2005 (28.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)



# 日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日

Date of Application: 2004年 4月22日

出 願 番 号

 Application Number:
 特願2004-127134

パリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

する出願の国コートと出願 等号

JP2004-127134

The country code and number

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

出 願 人 松下電工株式会社

Applicant(s):

2005年 4月13日

特許庁長官 Commissioner, Japan Patent Office





```
【書類名】
              特許願
【整理番号】
              0 3 P 0 3 2 1 9
              特許庁長官殿
【あて先】
【国際特許分類】
              6010 19/56
【発明者】
  【住所又は居所】
              大阪府門真市大字門真1048番地 松下電工株式会社内
  【氏名】
                幸司
              辻
【発明者】
  【住所又は居所】
              大阪府門真市大字門真1048番地 松下電工株式会社内
  【氏名】
                   佳治
              佐名川
【発明者】
  【住所又は居所】
              大阪府門真市大字門真1048番地 松下電工株式会社内
  【氏名】
                 昌男
              桐原
【発明者】
              大阪府門真市大字門真1048番地 松下電工株式会社内
  【住所又は居所】
  【氏名】
              江田 和夫
【発明者】
              大阪府門真市大字門真1048番地 松下電工株式会社内
  【住所又は居所】
  【氏名】
              西嶋 洋一
【特許出願人】
  【識別番号】
              000005832
  【住所又は居所】
              大阪府門真市大字門真1048番地
  【氏名又は名称】
              松下電工株式会社
【代理人】
  【識別番号】
              100067828
  【弁理士】
  【氏名又は名称】
              小谷 悦司
【選任した代理人】
  【識別番号】
              100075409
  【弁理士】
  【氏名又は名称】
              植木 久一
【選任した代理人】
  【識別番号】
              100096150
  【弁理士】
  【氏名又は名称】
              伊藤 孝夫
  【電話番号】
              0.6 - 6.233 - 1.456
  【連絡先】
              担当
【先の出願に基づく優先権主張】
  【出願番号】
              特願2003-346304
  【出願日】
              平成15年10月 3日
【手数料の表示】
  【予納台帳番号】
             0 1 2 4 7 2
  【納付金額】
              16,000円
【提出物件の目録】
  【物件名】
              特許請求の範囲
  【物件名】
              明細書
  【物件名】
              図面
  【物件名】
              要約書
  【包括委任状番号】
              9 1 1 2 0 2 5
  【包括委任状番号】
```

9205886

## 【書類名】特許請求の範囲

## 【請求項1】

センサ本体部と、

前記センサ本体部と同一材料で形成された上部封止体と、

前記上部封止体と協同して前記センサ本体部を内部に収納するように前記上部封止体と接合され、前記センサ本体部と同一材料で形成された下部封止体と、を備えることを特徴とするセンサ装置。

## 【請求項2】

前記センサ本体部、前記上部封止体及び前記下部封止体の材料が半導体である請求項1 記載のセンサ装置。

#### 【請求項3】

前記上部封止体及び前記下部封止体は、前記センサ本体部を気密に収納している請求項1又は2記載のセンサ装置。

## 【請求項4】

前記上部封止体と前記下部封止体との少なくとも一方の封止体の外側表面に設けられた 実装用電極と、

前記少なくとも一方の封止体を貫通することにより前記実装用電極と前記センサ本体部とを電気的に接続する貫通電路とを更に備える請求項1乃至3の何れかに記載のセンサ装置。

## 【請求項5】

前記少なくとも一方の封止体と前記貫通電路との間に設けられた絶縁膜を更に備える請求項4記載のセンサ装置。

## 【請求項6】

前記上部封止体と前記下部封止体との少なくとも一方の封止体の外側表面に設けられた 実装用電極と、

前記少なくとも一方の封止体の相対する封止体との接合面を這うことにより前記実装用電極と前記センサ本体部とを電気的に接続する第1配線パターンと、を更に備える請求項 1乃至3の何れかに記載のセンサ装置。

#### 【請求項7】

前記上部封止体と前記下部封止体との一方又は双方が、前記センサ本体部を駆動するための回路が形成された集積回路基板であることを特徴とする請求項1乃至6の何れかに記載のセンサ装置。

#### 【請求項8】

請求項1乃至6の何れかに記載のセンサ装置と、

前記センサ装置を駆動するための集積回路とを備えることを特徴とするセンサシステム

## 【請求項9】

前記センサ装置と前記集積回路とを互いに積層した状態で支持するように前記センサ装置と前記集積回路との間に介在し、且つ前記センサ装置と前記集積回路との電気的接続を中継するMID基板と、

前記MID基板に設けられ前記MID基板を通じて前記センサ装置と前記集積回路との少なくとも一方に電気的に接続された実装用外部電極と、を更に備える請求項8記載のセンサシステム。

#### 【請求項10】

前記集積回路が前記センサ装置と接続されて積層体を形成しており、

前記センサ装置と前記集積回路との間に介在することなく前記積層体を支持するMID 基板と、

前記MID基板に設けられ前記MID基板を通じて前記センサ装置と前記集積回路との少なくとも一方に電気的に接続された実装用外部電極と、を更に備える請求項8記載のセンサシステム。

## 【請求項11】

前記実装用外部電極が階段状に屈曲したピンである請求項9又は10記載のセンサシステム。

#### 【請求項12】

前記集積回路が前記センサ装置と接続されて積層体を形成しており、

前記積層体に設けられた実装用外部電極を更に備える請求項8記載のセンサシステム。

#### 【請求項13】

前記実装用外部電極が、前記集積回路の表面のうち前記センサ装置に面する側とは反対側に設けられており、

前記集積回路が、前記センサ装置を駆動するための回路が形成された集積回路基板と、前記集積回路基板の側面を這うことにより前記実装用外部電極と前記センサ装置とを電気的に接続する第2配線パターンを更に備える請求項12記載のセンサシステム。

## 【請求項14】

前記実装用外部電極が、前記センサ装置の表面のうち前記集積回路に面する側とは反対側に設けられており、

前記センサ装置が、前記上部封止体の側面と前記下部封止体の側面とを這うことにより前記実装用外部電極と前記集積回路とを電気的に接続する第2配線パターンを更に備える請求項12記載のセンサシステム。

#### 【請求項15】

請求項4又は5記載のセンサ装置を製造する方法であって、

前記少なくとも一方の封止体に貫通孔を形成する第1工程と、

前記貫通孔に導電体を埋設することにより前記貫通電路を形成する第2工程とを備えることを特徴とするセンサ装置の製造方法。

#### 【請求項16】

前記第2工程は、

前記貫通孔の表面に前記導電体を堆積する第3工程と、

前記第3工程の後に、前記貫通孔全体を埋めるように前記導電体を堆積する第4工程とを備える請求項15記載のセンサ装置の製造方法。

#### 【請求項17】

請求項6記載のセンサ装置を製造する方法であって、

前記少なくとも一方の封止体の表面にメッキ下地層を形成する第1工程と、

前記メッキ下地層を選択的に除去することによりパターニングする第2工程と、

パターニング後のメッキ下地層の上に導電体をメッキすることにより前記第1配線パターンを形成する第3工程と、

前記第1配線パターンの上に前記実装用電極を形成する第4工程と、

早くとも前記第3工程の後に、前記センサ本体部を内部に収納するように前記上部封止体と前記下部封止体とを接合する第5工程とを備えることを特徴とするセンサ装置の製造方法。

## 【請求項18】

請求項9乃至11の何れかに記載のセンサシステムを製造する方法であって、

前記センサ装置及び前記集積回路の何れかと前記MID基板とを電気的に接続する部分を常温で形成することを特徴とするセンサシステムの製造方法。

## 【書類名】明細書

【発明の名称】センサ装置、センサシステム、センサ装置の製造方法及びセンサシステムの製造方法

## 【技術分野】

## $[0\ 0\ 0\ 1\ ]$

本発明は、センサ装置、センサシステム、センサ装置の製造方法及びセンサシステムの 製造方法に関する。

## 【背景技術】

## $[0\ 0\ 0\ 2]$

半導体プロセスを基盤としたマイクロマシン技術を用いたマイクロサイズのセンサ、アクチュエータ等、及びそれらの駆動回路(制御回路を含む)を集積化した微細システムは、MEMS(Micro Electro Mechanical System)と称される。図12は、MEMSとして形成された従来のセンサシステムの側面断面図である。このセンサシステム150は、セラミクス基板70、センサ装置74、集積回路75、実装用外部電極77、及び封止材78を備えている。セラミクス基板70は配線バターン76を有している。

## [0003]

センサ装置74は角速度センサであり、シリコンを基材とするセンサ本体部71、ガラスを材料とする上部封止体72、及び同じくガラスを材料とする下部封止体73を備えている。上部封止体72と下部封止体73とは、センサ本体部71を気密に収納する部材である。集積回路75は、センサ装置74を駆動(制御を含む)する駆動回路であり、ベアチップの形態でバンプを通じてセラミクス基板70の上の配線バターン76に接続されている。即ち、集積回路75はセラミクス基板70にフリップチップ実装されている。センサ装置74もフリップチップ実装と同様の形態でセラミクス基板70に実装されている。また、センサ装置74及び集積回路75は、樹脂の封止材78によって封止されている。センサシステム150は、配線バターン76に接続された実装用外部電極77を通じて、外部の回路基板等に実装することができる。このように、センサシステム150は、あたかも一つの集積回路と同様に取り扱うことが可能となっている。

## $[0\ 0\ 0\ 4\ ]$

センサ装置74に関して、シリコンを基材とするセンサ本体部71を、ガラス製の上部 封止体72及び下部封止体73で封止する技術は、特許文献1にも開示されているように 、当分野では一般的に用いられる技術である。しかしながら、シリコンとガラスとの間で は、熱膨張係数の差が大きく、温度変化に伴ってセンサ本体部71に歪が生じるという問 題点があった。この歪は、センサ本体部71の共振周波数を変化させる等により、センサ としての特性に温度ドリフトを生じる要因となっていた。更に、センサシステム150は 、センサ装置74と集積回路75とを互いに横に並ぶように実装するので、システムの小 型化に限界を有していた。

【特許文献1】特開2001-153881号公報

## 【発明の開示】

【発明が解決しようとする課題】

## [0005]

本発明は上記の問題点に鑑みてなされたもので、センサ特性における温度ドリフトを低減したセンサ装置及びセンサシステム、並びにそれらの製造方法を提供することを目的とする。更に、小型化を図ることのできるセンサシステム及びその製造方法を提供することを目的とする。

### 【課題を解決するための手段】

#### $[0\ 0\ 0\ 6\ ]$

上記課題を解決し上記目的を達成するために、本発明のうち第1の態様に係るものはセンサ装置であって、センサ本体部と、前記センサ本体部と同一材料で形成された上部封止体と、前記上部封止体と協同して前記センサ本体部を内部に収納するように前記上部封止体と接合され、前記センサ本体部と同一材料で形成された下部封止体と、を備えることを

特徴とするものである。

## $[0\ 0\ 0\ 7\ ]$

本発明のうち第2の態様に係るものは、第1の態様に係るセンサ装置であって、前記センサ本体部、前記上部封止体及び前記下部封止体の材料が半導体であるものである。

## [0008]

本発明のうち第3の態様に係るものは、第1又は第2の態様に係るセンサ装置であって、前記上部封止体及び前記下部封止体が、前記センサ本体部を気密に収納しているものである。

## [0009]

本発明のうち第4の態様に係るものは、第1乃至第3の何れかの態様に係るセンサ装置であって、前記上部封止体と前記下部封止体との少なくとも一方の封止体の外側表面に設けられた実装用電極と、前記少なくとも一方の封止体を貫通することにより前記実装用電極と前記センサ本体部とを電気的に接続する貫通電路とを更に備えるものである。

## [0010]

本発明のうち第5の態様に係るものは、第4の態様に係るセンサ装置であって、前記少なくとも一方の封止体と前記貫通電路との間に設けられた絶縁膜を更に備えるものである

#### 

本発明のうち第6の態様に係るものは、第1乃至第3の何れかの態様に係るセンサ装置であって、前記上部封止体と前記下部封止体との少なくとも一方の封止体の外側表面に設けられた実装用電極と、前記少なくとも一方の封止体の相対する封止体との接合面を這うことにより前記実装用電極と前記センサ本体部とを電気的に接続する第1配線パターンと、を更に備えるものである。

## [0012]

本発明のうち第7の態様に係るものは、第1乃至第6の何れかの態様に係るセンサ装置であって、前記上部封止体と前記下部封止体との一方又は双方が、前記センサ本体部を駆動するための回路が形成された集積回路基板であることを特徴とするものである。

#### $[0\ 0\ 1\ 3\ ]$

本発明のうち第8の態様に係るものは、センサシステムであって、第1乃至6の何れかの態様に係るセンサ装置と、前記センサ装置を駆動するための集積回路とを備えることを特徴とするものである。

#### $[0\ 0\ 1\ 4\ ]$

本発明のうち第9の態様に係るものは、第8の態様に係るセンサシステムであって、前記センサ装置と前記集積回路とを互いに積層した状態で支持するように前記センサ装置と前記集積回路との電気的接続を中継するMID基板と、前記MID基板に設けられ前記MID基板を通じて前記センサ装置と前記集積回路との少なくとも一方に電気的に接続された実装用外部電極と、を更に備えるものである。

## $[0\ 0\ 1\ 5]$

本発明のうち第10の態様に係るものは、第8の態様に係るセンサシステムであって、前記集積回路が前記センサ装置と接続されて積層体を形成しており、前記センサ装置と前記集積回路との間に介在することなく前記積層体を支持するMID基板と、前記MID基板に設けられ前記MID基板を通じて前記センサ装置と前記集積回路との少なくとも一方に電気的に接続された実装用外部電極と、を更に備えるものである。

#### $[0\ 0\ 1\ 6\ ]$

本発明のうち第11の態様に係るものは、第9又は第10の態様に係るセンサシステムであって、前記実装用外部電極が階段状に屈曲したピンであるものである。

#### $[0\ 0\ 1\ 7]$

本発明のうち第12の態様に係るものは、第8の態様に係るセンサシステムであって、前記集積回路が前記センサ装置と接続されて積層体を形成しており、前記積層体に設けら

れた実装用外部電極を更に備えるものである。

## [0018]

本発明のうち第13の態様に係るものは、第12の態様に係るセンサシステムであって、前記実装用外部電極が、前記集積回路の表面のうち前記センサ装置に面する側とは反対側に設けられており、前記集積回路が、前記センサ装置を駆動するための回路が形成された集積回路基板と、前記集積回路基板の側面を這うことにより前記実装用外部電極と前記センサ装置とを電気的に接続する第2配線パターンを更に備えるものである。

## [0019]

本発明のうち第14の態様に係るものは、第12の態様に係るセンサシステムであって、前記実装用外部電極が、前記センサ装置の表面のうち前記集積回路に面する側とは反対側に設けられており、前記センサ装置が、前記上部封止体の側面と前記下部封止体の側面とを這うことにより前記実装用外部電極と前記集積回路とを電気的に接続する第2配線パターンを更に備えるものである。

## [0020]

本発明のうち第15の態様に係るものは、第4又は第5の態様に係るセンサ装置を製造する方法であって、前記少なくとも一方の封止体に貫通孔を形成する第1工程と、前記貫通孔に導電体を埋設することにより前記貫通電路を形成する第2工程とを備えることを特徴とするものである。

#### $[0 \ 0 \ 2 \ 1]$

本発明のうち第16の態様に係るものは、第15の態様に係るセンサ装置の製造方法であって、前記第2工程は、前記貫通孔の表面に前記導電体を堆積する第3工程と、前記第3工程の後に、前記貫通孔全体を埋めるように前記導電体を堆積する第4工程とを備えるものである。

#### $[0 \ 0 \ 2 \ 2]$

本発明のうち第17の態様に係るものは、第6の態様に係るセンサ装置を製造する方法であって、前記少なくとも一方の封止体の表面にメッキ下地層を形成する第1工程と、前記メッキ下地層を選択的に除去することによりバターニングする第2工程と、パターニング後のメッキ下地層の上に導電体をメッキすることにより前記第1配線バターンを形成する第3工程と、前記第1配線バターンの上に前記実装用電極を形成する第4工程と、早くとも前記第3工程の後に、前記センサ本体部を内部に収納するように前記上部封止体と前記下部封止体とを接合する第5工程とを備えることを特徴とするものである。

#### $[0\ 0\ 2\ 3\ ]$

本発明のうち第18の態様に係るものは、第9乃至11の何れかの態様に係るセンサシステムを製造する方法であって、前記センサ装置及び前記集積回路の何れかと前記MID 基板とを電気的に接続する部分を常温で形成することを特徴とするものである。

#### 【発明の効果】

## $[0\ 0\ 2\ 4\ ]$

以上のように本発明のセンサ装置及びセンサシステムは、センサ本体部を収納する上部封止体及び下部封止体がセンサ本体部と同一材料で形成されているので、それらの部材の間で熱膨張係数に差違がない。このため、センサ装置を構成する部材の間の熱膨張係数の差違に起因する温度ドリフトが抑制される。また、好ましいセンサシステムによれば、センサ装置と集積回路とが積層状態にあるので、小型化を図ることができる。更に、本発明のセンサ装置の製造方法によれば、温度ドリフトが抑制されたセンサ装置を容易に製造することができる。また、本発明のセンサシステムの製造方法によれば、センサシステムの製造後にセンサ装置に残留する熱歪を低減して、センサ特性の設計値からずれを抑えることができる。

#### 【発明を実施するための最良の形態】

### [0025]

(第1の実施形態)

図1は、本発明の第1の実施形態によるセンサシステムの構成を示す断面図である。図

1(a)は、同センサシステムの縦断面図であり、図1(b)は図1(a)のA-A切断線に沿った断面図である。このセンサシステム101は、MEMSとして形成されており、センサ装置10、集積回路20、MID(Molded Interconnect Device)基板30、実装用外部電極31、及び封止材32を備えている。センサ装置10は、例えば角速度センサであり、シリコンを基材とするセンサ本体部1、同じくシリコンを基材とする上部封止体2、及び同じくシリコンを基材とする下部封止体3を備えている。「シリコンを基材とする」とは、不純物がドープされたシリコンをも含める趣旨である。

## [0026]

上部封止体2と下部封止体3とは、互いに接合されることにより、その内部に形成する空洞にセンサ本体部1を気密に収納している。上部封止体2と下部封止体3とは、周知のシリコン基板の貼り合わせ技術を用いて接合することができる。上部封止体2の外側表面には、センサ装置10を実装するための実装用電極5が設けられている。実装用電極5は、例えばバンプ電極であり、上部封止体2を貫通する導電体である貫通電路4によって、センサ本体部1に電気的に接続されている。

## [0027]

下部封止体3は、基板状部材35とこれに接合した枠状部材36とを含んでいる。基板状部材35を一つのウェハから形成し、センサ本体部1と枠状部材36とを別のウェハから形成し、上部封止体2を更に別のウェハから形成することができる。各ウェハに貫通電路4を形成するための処理等を行った後に、3枚のウェハを例えば貼り合わせにより接合し、その後に個々のチップに切り出すことにより、センサ装置10を得ることができる。図1以下の各図では、枠状部材36は下部封止体3に含めているが、上部封止体2に含めても良い。

## [0028]

集積回路20は、センサ装置10を駆動(制御を含む)する駆動回路であり、ベアチップの形態で、実装用電極5を通じてセンサ装置10と接続されて2層の積層体を形成している。集積回路20は、集積回路基板であるチップ本体11と、その一主面に形成された配線バターン12とを有しており、実装用電極5は配線バターン12に接続されている。センサ装置10と集積回路20との積層体は、MID基板30に設けられた凹部に挿入された状態で、MID基板30に支持されている。更に、積層体は樹脂等の封止材32で封止されている。

#### [0029]

MID基板(立体回路形成用基板)30は、樹脂等を成型することにより形成された絶縁体を材料とする基板本体部21と、その表面に配設された配線パターン22とを有している。配線パターン22には、センサシステム101を外部の回路基板に実装するための実装用外部電極31が接続されている。集積回路20の配線パターン12は、集積回路20を実装するための実装用電極23を通じて配線パターン22に接続されている。それにより、積層体と実装用外部電極31とが電気的に接続されている。実装用電極23は、例えばバンプ電極である。このように、センサシステム101は、あたかも一つの集積回路と同様に取り扱うことが可能となっている。

#### $[0 \ 0 \ 3 \ 0]$

以上のようにセンサシステム101は、センサ本体部1が、自身と材料を同一にする上部封止体2及び下部封止体3によって収納され且つ固定されているので、それらの部材の間に熱膨張係数の差違がない。このため、センサ装置10の構成部材の間での熱膨張係数の差違に起因するセンサ特性の温度ドリフトが解消される。センサ本体部1とMID基板30との間には集積回路20及び上部封止体2が介在するので、MID基板30とセンサ装置10との間の熱膨張係数の相違に起因する温度ドリフトも低く抑えられる。それにより、高精度のセンサ特性が得られる。

#### $[0\ 0\ 3\ 1]$

また、上部封止体2を貫通する貫通電路4によりセンサ本体部1と実装用電極5とが接続されることにより、センサ装置10について、集積回路のフリップチップと同様の形態

を実現するので、センサ装置10が横に広がらず小型化される。上部封止体2がシリコンを基材とすることから、センサ本体部1と同様に微細加工が可能であり、そのことが貫通電路4の形成を容易にしている。更に、センサ装置10と集積回路20とが積層体を形成するので、センサシステム101を小型に形成することができる。また、集積回路20は、フリップチップの形態でMID基板30に実装されており、このこともセンサシステム101の小型化に寄与している。

## $[0\ 0\ 3\ 2]$

また、MID基板30が用いられるので、実装用外部電極31を容易に形成することができる。更に、図1に示すように実装用外部電極31は、階段状に屈曲したピンとして形成されているので、センサシステム101が実装される回路基板(例えば、マザーボード)とセンサシステム101との間の熱膨張係数の差違によりセンサシステム101の内部に発生する熱歪が低減される。それにより、センサ特性への熱歪の影響が更に抑制される

## [0033]

図2は、上部封止体2に貫通電路4を形成する工程を示す製造工程図である。上部封止体2に貫通電路4を形成するには、まず、例えばICPを用いることにより上部封止体2に貫通孔42を形成し、その後、例えば熱酸化により二酸化シリコンの絶縁膜41を上部封止体2の表面に形成する(図2(a))。次に、CVD(化学気相成長)を用いることにより、例えば銅などの導電体43を上部封止体2の表面に堆積させる(図2(b))。導電体43は、銅以外の金属であっても良く、不純物をドープした多結晶シリコンであってもよい。その後、例えば銅メッキを実行して導電体44を堆積させることにより、貫通孔42を導電体44で埋め込む(図2(c))。銅メッキの代わりに、CVDを用いても良い。次に、例えばマスクバターンを用いてメタルRIE(反応性イオンエッチング)を実行し、導電体44を選択的に除去することにより配線バターン(バッドを含む)46、47を形成する(図2(d))。

## [0034]

このように、周知の半導体プロセスを組み合わせることにより、上部封止体2に貫通電路4を容易に形成することができる。また、図2(c)の工程により、貫通孔42を導電体44により容易に埋め込むことができるので、センサ本体部1を収納するために上部封止体2と下部封止体3とが内部に形成する収納室を容易に気密に保つことができ、特に高真空に保つことも可能となる。それにより品質の良いセンサ装置10を得ることができる。更に、上部封止体2の表面に絶縁膜41が形成されるので、シリコンを基材とする上部封止体2と貫通電路4との間が良好に電気的に絶縁される。それにより、高精度のセンサ装置10が得られる。

### [0035]

更に、図2(d)に示すように、上部封止体2の下面を平坦に形成することにより、下部封止体3との貼り合わせを容易化することができる。なお、上部封止体2の代わりに、或いはそれと併せて、下部封止体3に貫通電路4を形成することも可能である。

#### $[0\ 0\ 3\ 6]$

また、センサ本体部1、上部封止体2及び下部封止体3は、シリコンを基材とする材料以外の半導体であってもよい。しかしながら、数多くの半導体の中で、シリコンについては微細加工を行うための技術が幅広く確立されており、且つ材料も低コストであることから、特にシリコンを基材とする材料が望ましい。また、センサ本体部1、上部封止体2及び下部封止体3は、半導体を材料としなくても、材料が互いに同一であれば、熱膨張係数の差違に起因する温度ドリフトの問題は解消される。しかしながら、半導体を材料とすることで、半導体プロセスを用いて微細加工を容易に行うことができ、高精度且つ小型のセンサ装置10及びセンサシステム101を容易に得ることができる。

#### $[0\ 0\ 3\ 7]$

(第2の実施形態)

図3は、本発明の第2の実施形態によるセンサシステムの構成を示す縦断面図である。

なお、以下の図において図1と同一の部分乃至同一の機能を果たす部分については、同一の符号を付して詳細な説明を略する。図3に示すセンサシステム102は、MID基板30が、互いに積層されたセンサ装置10と集積回路20との間に介在するように形成されている点において、図1のセンサシステム101とは主として異なっている。センサ装置10は実装用電極5を通じて配線バターン22に接続され、集積回路20は実装用電極23を通じて配線バターン22に接続されている。また、MID基板30には、開口部25が設けられており、配線バターン30は開口部25にも配設されている。それにより、MID基板30は、センサ装置10と集積回路20との間の電気的接続をも中継している。また、配線バターン22を通じて、センサ装置10及び集積回路20の少なくとも一方は、実装用外部電極31に接続された例を示している。

## [0038]

以上のようにセンサシステム102は、センサシステム101と同様に、センサ本体部 1が、自身と材料を同一にする上部封止体 2及び下部封止体 3とによって収納され且つ固定されているので、センサ装置 10の構成部材の間での熱膨張係数の差違に起因するセンサ特性の温度ドリフトが解消される。また、センサ装置 10と集積回路 20とがMID基板 30を介して積層状態にあるので、センサシステム 102を小型に形成することができる。また、センサ装置 10及び集積回路 20は、フリップチップの形態でMID基板 30 に実装されており、このこともセンサシステム 102の小型化に寄与している。また、MID基板 30が用いられるので、実装用外部電極 31を容易に形成することができる。更に、実装用外部電極 31は、センサシステム 101の場合とは異なり、バンプ電極として形成されているので、マザーボード等の回路基板上でのセンサシステム 102の実装面積を更に縮小化することができる。

## [0039]

#### $[0 \ 0 \ 4 \ 0]$

(第3の実施形態)

図4は、本発明の第3の実施形態によるセンサシステムの構成を示す縦断面図である。このセンサシステム103は、実装用外部電極31の基端部が、MID基板30の基板本体部21に埋設されている点において、図1に示したセンサシステム101とは主として異なっている。センサシステム103においても、センサシステム101と同様に、実装用外部電極31は階段状に屈曲したピンとして形成されているので、センサシステム103が実装される回路基板とセンサシステム103との間の熱膨張係数の差違によりセンサシステム103の内部に発生する熱歪が低減され、熱歪に起因するセンサ特性の劣化が抑制される。

#### $[0 \ 0 \ 4 \ 1]$

実装用外部電極31を基板本体部21に埋設するには、実装用外部電極31を多数連結するリードフレーム(不図示)を準備し、このリードフレームとともに樹脂等の基板本体部21の材料を成型(モールド)するとよい。基板本体部21の成型が終了した後に、実装用外部電極31をリードフレームから切り離し、更に階段状にフォーミングすることにより、図4の形状の実装用外部電極31が容易に得られる。

#### [0042]

(第4の実施形態)

図5は、本発明の第4の実施形態によるセンサシステムの構成を示す縦断面図である。

このセンサシステム104は、図1に示したセンサシステム101と同様にセンサ装置10と集積回路20とが、MID基板30を介することなく接続されて積層体を形成している。しかしセンサシステム104は、センサ装置10に実装用外部電極31が設けられている点において、図1に示したセンサシステム101とは主として異なっている。即ち、センサシステム104は、MID基板30を必要としない。図5の例では、実装用外部電極31は、上部封止体2及び下部封止体3を貫通する貫通電路51及び実装用電極5を通じて、集積回路20の配線パターン12に接続されている。センサシステム104の製造工程において、貫通電路51は、上部封止体2及び下部封止体3を互いに貼り合わせるときに印加される押圧力によって、容易に一体的に連結する。

## [0043]

以上のようにセンサシステム104は、MID基板30を要しないので、更に小型に形成することができ、回路基板への実装面積を更に縮小化することができる。また、センサシステム104は、MID基板30を要しないので、MID基板30とセンサ装置10との間の熱膨張係数の差異に起因する熱応力の問題を生じない。即ち、センサ特性の設計値からのずれ及び使用時におけるセンサ特性の温度ドリフトが更に抑えられ、更に高品位のセンサ特性が得られる。

## $[0 \ 0 \ 4 \ 4]$

(第5の実施形態)

図6にセンサシステム105として示すように、センサシステム104における実装用外部電極31を、集積回路20Aの側に設けても良い。図6の例では、外部電極31は、集積回路20Aを貫通する貫通電路52によって配線パターン12に接続されている。この形態においても、センサシステム104について述べた上記の利点は同様に得られる。

## [0045]

(第6の実施形態)

図7は、本発明の第6の実施形態によるセンサ装置の構成を示す縦断面図である。このセンサ装置10Aは、上部封止体2が集積回路基板即ちチップ本体81として形成されている点、及び貫通電路4に代えてチップ本体81の接合面を這うように形成された配線パターン60によって、センサ本体部1と実装用電極5とが電気的に接続されている点において、図1等に示したセンサ装置10とは異なっている。チップ本体81には、センサ本体部1を駆動するための図略の回路が形成されている。チップ本体81と配線パターン60とは、集積回路を構成する。

#### [0046]

配線パターン60は、チップ本体81の内側主面に配設された配線パターン61と、チップ本体81の側面に配設された配線パターン62と、チップ本体81の外側主面に配設された配線パターン63とを含んでいる。配線パターン61、62及び63は互いに連結している。センサ本体部1は配線パターン61に電気的に接続されている。実装用電極5は配線パターン63の上に形成されている。配線パターン61は、チップ本体81の相対する下部封止体3との接合面にも配設されており、それによって貫通電路4なしでセンサ本体部1と実装用電極5との電気的接続を実現している。

## $[0 \ 0 \ 4 \ 7]$

センサ装置10Aでは、上部封止体2としてのチップ本体81が、少なくとも一部において配線パターン61を挟んで、下部封止体3と接合されている。本明細書では、この形態をも含めて下部封止体3と上部封止体2(チップ本体81)とが接合している、と表現する。

#### [0048]

図8は、チップ本体81に配線パターン60を配設する工程を示す製造工程図である。図8(a)、(c)、(e)及び(g)は、各工程におけるチップ本体81の縦断面図であり、図8(b)、(d)、(f)及び(h)は、対応する各工程におけるチップ本体81の側面図である。各縦断面図は、同列の側面図のB-B切断線に沿った断面図に該当する。

## [0049]

配線パターン60を配設するには、まず、周知の半導体プロセスを通じて回路が形成されたチップ本体81を準備する(図8(a)、(b))。チップ本体81は、ウェハから切り出される前のものであることが製造工程の容易化の観点から望ましいが、切り出された後のものであっても良い。次に、チップ本体81の表面全体に、メッキ下地層65を形成する(図8(c)、(d))。メッキ下地層65は、例えばアルミニウムをスパッタリングすることにより形成される。メッキ下地層65は、例えば1μm程度の厚さに形成される。

#### $[0\ 0\ 5\ 0]$

次に、メッキ下地層65を選択的に除去することにより、メッキ下地層65をパターニングする(図8(e)、(f))。メッキ下地層65の選択的除去は、例えば、レーザビームを選択的に照射することにより達成することができる。或いは、フォトリソグラフィを用いることによりメッキ下地層65の選択的除去を行っても良い。次に、図8(e)及び(f)の工程後の生成物を、例えばメッキ液に浸漬して電流を通じることにより、パターニング後のメッキ下地層66の上に配線パターン60を形成する(図8(g)、(h))。配線パターン60は、例えばニッケルを材料とし、例えば10μm程度の厚さに形成される。

#### $[0\ 0\ 5\ 1]$

図8(h)において、3つの領域に分割された配線バターン60のうち、例えば、中央を占める領域が不要なバターンであれば、この部分を他の部分から孤立するようにバターニングしておくとよい。それにより、メッキ工程において中央の領域には電流が流れないので、中央の領域における配線バターン60の形成を阻止することができる。中央の領域にメッキ下地層66が残らないように、メッキ下地層65をバターニングすることによっても、中央の領域に配線バターン60が形成されないようにすることも可能である。但し、レーザビームを用いてバターニングする場合には、スループットを高める上で、レーザビームを照射すべき面積を節減することが望ましい。また、中央の領域が不要な領域であったとしても、この領域に形成される配線バターン60か回路の動作を妨げない場合には、図8(h)に示すようにこの領域に配線バターン60を形成しても支障がない。

## $[0\ 0\ 5\ 2]$

次に、図7に戻って、配線パターン60の一部である配線パターン63の上に実装用電極5を形成する。その後、上部封止体2としてのチップ本体81と下部封止体3とを、例えば貼り合わせにより接合することにより、図7に示すセンサ装置10Aが得られる。

#### $[0\ 0\ 5\ 3]$

以上のように、センサ装置10Aは、上部封止体2としてチップ本体81を用いるので、集積回路20或いは20Aを別途に要することなく、図5のセンサシステム104等と同等の機能を実現する。即ち、センサ装置10Aはセンサシステムの小型化を実現する。また、貫通電路4を要することなく、接合面を這うように形成される配線パターン60によって、センサ本体部1と実装用電極5とが電気的に接続されるので、貫通電路4を形成するためのスペースが無用となる。このことは、センサシステムの更なる小型化に寄与する。また、貫通電路4に比べて配設容易な配線パターン60が用いられるため、製造コストが節減される。

#### $[0\ 0\ 5\ 4]$

なお、チップ本体81に配線パターン60の代わりに、貫通電路4を形成しても良い。 この形態においても、上部封止体2としてチップ本体81を用いることによる利点は同様 に得られる。また、上部封止体2だけでなく下部封止体3にも、チップ本体81と同様に 回路を形成しても良い。

#### $[0\ 0\ 5\ 5]$

(第7の実施形態)

図9は、本発明の第7の実施形態によるセンサシステムの構成を示す縦断面図である。 このセンサシステム106は、貫通電路4に代えて上部封止体2の相対する下部封止体3 との接合面を這うように形成された配線パターン60によってセンサ本体部1と実装用電極5とが電気的に接続されている点において、図6に示したセンサシステム105とは異なっている。上部封止体2は、図7に示したチップ本体81とは異なり、回路が作り込まれていない封止体である。即ち、センサ装置10Bは、上部封止体2がチップ本体81ではない点において、図7に示したセンサ装置10Aとは異なっている。配線パターン60は、図8に示した工程と同様の工程を通じて、上部封止体2に配設することができる。

## [0056]

このようにセンサシステム106では、貫通電路4を要することなく、接合面を這うように形成される配線パターン60によって、センサ本体部1と実装用電極5とが電気的に接続されるので、貫通電路4を形成するためスペースが無用となる。それにより、センサシステム106を小型に形成することができる。また、貫通電路4に比べて配設容易な配線パターン60が用いられるため、製造コストが節減される。

## $[0\ 0\ 5\ 7]$

(第8の実施形態)

図10は、本発明の第8の実施形態によるセンサシステムの構成を示す縦断面図である。このセンサシステム107は、センサ装置10Cが、上部封止体2及び下部封止体3を貫通する貫通電路51に代えて、上部封止体2の側面と下部封止体3の側面とを這うことにより実装用外部電極31と集積回路20とを電気的に接続する配線バターン65を備えている点において、図5に示したセンサシステム104とは異なっている。配線バターン65は、互いに接合された上部封止体2と下部封止体3との積層体を、あたかもチップ本体81として図8の工程を実行することにより、容易に形成することができる。

## [0058]

このように、センサシステム107では、貫通電路51を要することなく、上部封止体2と下部封止体3との側面を這うように形成される配線パターン65によって、実装用外部電極31と集積回路20とが電気的に接続されるので、貫通電路51を形成するためのスペースが無用となる。それにより、センサシステム107を小型に形成することができる。また、貫通電路51に比べて配設容易な配線パターン65が用いられるため、製造コストが節減される。

#### [0059]

(第9の実施形態)

図11は、本発明の第9の実施形態によるセンサシステムの構成を示す縦断面図である。このセンサシステム109は、集積回路20Bが、チップ本体11の側面を這うことにより実装用外部電極31とセンサ装置10Bとを電気的に接続する配線パターン67を備えており、チップ本体11を貫通する貫通電路52を除去している点において、図9に示したセンサシステム106とは異なっている。配線パターン67のうち、チップ本体11のセンサ装置10Bに対向する主面に配設される部分は、図9に示した配線パターン12と同様に配設されている。配線パターン67は、チップ本体11をあたかもチップ本体81として図8の工程を実行することにより、容易に形成することができる。

## $[0\ 0\ 6\ 0\ ]$

このように、センサシステム108では、貫通電路52を要することなく、チップ本体11の側面を這うように形成される配線パターン67によって、実装用外部電極31とセンサ装置10Bとが電気的に接続されるので、貫通電路52を形成するためのスペースが無用となる。それにより、センサシステム108を小型に形成することができる。また、貫通電路52に比べて配設容易な配線パターン67が用いられるため、製造コストが節減される。

#### 【図面の簡単な説明】

 $[0\ 0\ 6\ 1]$ 

【図1】本発明の第1の実施形態によるセンサシステムの構成を示す縦断面図である

【図2】図1の上部封止体に貫通電路を形成する工程を示す製造工程図である。

【図3】本発明の第2の実施形態によるセンサシステムの構成を示す縦断面図である 【図4】本発明の第3の実施形態によるセンサシステムの構成を示す縦断面図である 【図5】本発明の第4の実施形態によるセンサシステムの構成を示す縦断面図である 【図6】本発明の第5の実施形態によるセンサシステムの構成を示す縦断面図である 【図7】本発明の第6の実施形態によるセンサ装置の構成を示す縦断面図である。 【図8】図7のチップ本体に配線パターンを配設する工程を示す製造工程図である。 【図9】本発明の第7の実施形態によるセンサシステムの構成を示す縦断面図である 【図10】本発明の第8の実施形態によるセンサシステムの構成を示す縦断面図であ る。 【図11】本発明の第9の実施形態によるセンサシステムの構成を示す縦断面図であ る。 【図12】従来技術によるセンサシステムの構成を示す縦断面図である。 【符号の説明】  $[0\ 0\ 6\ 2]$ 2 上部封止体 3 1 センサ本体部 下部封止体 4 貫通電路 5、23 実装用電極 10、10A、10B、10C センサ装置 11 チップ本体(集積回路基板) 1 2 配線パターン 3 0 20、20A、20B 集積回路 MID基板 3 1 実装用外部電極 4 2 貫通孔 4 1 絶縁膜 配線パターン 65 メッキ下地層 43、44 導電体 6 0

81 チップ本体(集積回路基板)

67 配線パターン

101~108 センサシステム















【図4】





【図6】





<u>10A</u>





(b)



(c)

















(h)





【図10】







【書類名】要約書

【要約】

【課題】 センサ特性における温度ドリフトを低減する。

【解決手段】 センサ装置10は、シリコンを基材とするセンサ本体部1と、同じくシリコンを基材とする上部封止体2と、同じくシリコンを基材とする下部封止体3とを備えている。上部封止体2と下部封止体3とは、協同してセンサ本体部1を内部に気密状態で収納するように互いに接合されている。センサ装置10を駆動する集積回路20は、センサ装置10とともに積層体を形成している。センサ本体部1は、上部封止体2を貫通する貫通電路4及び上部封止体2の外表面に設けられた実装用電極5を通じて集積回路20の配線パターン12に電気的に接続されている。センサ装置10は、集積回路20を通じてMID基板30へ接続されている。

【選択図】 図1

# 出願人履歴

大阪府門真市大字門真1048番地松下電工株式会社