This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-016349

(43)Date of publication of application: 20.01.1995

(51)Int.CI.

A63F 9/22

(21)Application number: 05-164821

(71)Applicant:

PIONEER ELECTRON CORP

(22)Dat of filing:

02.07.1993

(72)Inventor:

TAKEYA TOMOYOSHI

AMAMIYA NAOMI

(54) VIDEO GAME DEVICE

(57)Abstract:

PURPOSE: To maintain a game value as long as one likes no matter how many times the same games are played by controlling the reading-out position of a record medium with a reading-out means according to a change in a measured value of player's excitement information of a brake to change the game development according to a chang in the excitement condition of a player.

CONSTITUTION: A signal recorded in a disk 1 is read out by a pick-up 2 and an image signal d modulated by an FM detecting circuit 4 is supplied to a memory controller 7 which controls the writing and reading of data in and out of an image memory 8. A measuring section 46 is connected to a CPU 41 to measure the physiological information of blood pressure, pulse, perspiration, body temperature, etc., as the

xcitement information changed by an exciting player along the progress of a game. The reading-out position of the disk 1 is controlled according to the change in the measuring value to change the game development afterwards. Thus, the game contact corr sponding to the later physical condition and feeling of the player can be provided.

LEGAL STATUS

[Dat of request for examination]

[Dat of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's d cision of rejection or application converted registration]

[Dat of final disposal for application]

[Patent number]

[Dat of registration]

[Numb r of appeal against examiner's decision of rejection]

[Dat of r questing appeal against examiner's decision of

r j ction]

[Dat of xtinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-16349

(43)公開日 平成7年(1995)1月20日

(51) Int.Cl.⁶

識別記号

FΙ

技術表示箇所

A63F 9/22

Α

Н

審査請求 未請求 請求項の数2 OL (全 19 頁)

(21)出願番号

(22)出願日

特願平5-164821

平成5年(1993)7月2日

庁内整理番号

(71)出願人 000005016

パイオニア株式会社

東京都目黒区目黒1丁目4番1号

(72)発明者 竹谷 智良

埼玉県所沢市花園 4 丁目2610番地パイオニ

ア株式会社所沢工場内

(72)発明者 雨宮 直巳

埼玉県所沢市花園 4丁目2610番地パイオニ

ア株式会社所沢工場内

(74)代理人 弁理士 藤村 元彦

(54)【発明の名称】 ビデオゲーム装置

(57)【要約】

【目的】 ビデオゲーム装置において同一のゲームを何回も行なってもゲームの価値をいつまでも維持することを可能にする。

【構成】 プレーヤの興奮情報を測定しその測定値を所定のタイミングで得て測定値の変化に応じて読取手段による記録媒体の読取位置を制御することにより、プレーヤの興奮状態の変化に応じてその後のゲーム展開が変化するようした。

【効果】 プレーヤのその時々の体調や感情に合わせた ゲーム内容にすることができる。例えば、緊張している ときには和らげるような映像と音のシーンとしたり、逆 に更に煽るようなシーンを再生したりすることができ る。この結果、同一のゲームを何度でも楽しむことができ、ゲームの価値をいつまでも維持することが可能となる。

【特許請求の範囲】

【請求項1】 記録媒体に記録された映像信号を含むビデオゲーム用記録信号を前記記録媒体から読み取る読取手段と、

前記読取手段の出力信号から前記記録信号を復調する復 調手段と、

興奮情報を測定する測定手段と、

前記測定手段によって測定された興奮情報の測定値を所定のタイミングで得るサンプリング手段と、

前記サンプリング手段により得た測定値の変化を検出する検出手段と、

前記測定値の変化に応じて前記読取手段による前記記録 媒体の読取位置を制御する読取制御手段とを備えたこと を特徴とするビデオゲーム装置。

【請求項2】 前記検出手段は測定値を前回値として記憶する記憶手段と、測定値の今回値を記憶手段に記憶された前回値と比較する比較手段とを有することを特徴とする請求項1記載のビデオゲーム装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、記録媒体に記録された映像信号を含むビデオゲーム用記録信号を記録媒体から 読み取って復調再生するビデオゲーム装置に関する。

[0002]

【従来の技術】ビデオゲームにおいては、ポイントとなるような場面に複数の選択肢が設けられ、プレーヤの操作によってその複数の選択肢のうちの1の選択肢が選択されると、選択された1の選択肢に従ってその後のゲーム展開が変化するものが多くある。

[0003]

【発明が解決しようとする課題】このようなビデオゲームはプレーヤの意志によって1の選択肢が選択されるので、同一のゲームを何回も行なうと、その後のゲーム展開がある程度予測できてしまい、そのようになるとゲームの価値が半減してしまうという欠点があった。そこで、本発明の目的は、同一のゲームを何回も行なってもゲームの価値をいつまでも維持することを可能にしたビデオゲーム装置を提供することである。

[0004]

【課題を解決するための手段】本発明のビデオゲーム装 40 置は、記録媒体に記録された映像信号を含むビデオゲーム用記録信号を記録媒体から読み取る読取手段と、読取手段の出力信号から記録信号を復調する復調手段と、興奮情報を測定する測定手段と、測定手段によって測定された興奮情報の測定値を所定のタイミングで得るサンプリング手段と、サンプリング手段により得た測定値の変化を検出する検出手段と、測定値の変化に応じて読取手段による記録媒体の読取位置を制御する読取制御手段とを備えたことを特徴としている。

[0005]

2

【作用】本発明のビデオゲーム装置においては、プレーヤの興奮情報を測定しその測定値を所定のタイミングで得て測定値の変化に応じて読取手段による記録媒体の読取位置を制御することにより、プレーヤの興奮状態の変化に応じてその後のゲーム展開が変化するようにした。 【0006】

【実施例】図1は本発明の記録情報再生装置が適用され たビデオゲーム装置を示している。この装置において、 ディスク1としてはアナログ映像信号、2チャンネルの アナログ音声信号及びディジタルデータ信号が周波数多 重記録されたLD-ROMと呼ばれるディスクが用いら れる。アナログ映像信号は例えば、後述のディジタルデ ータから作成されるグラフィックス映像の背景映像等を 示し、奇数フィールドと偶数フィールドとでは異なる映 像である。 2 チャンネルのアナログ音声信号のうちの第 1チャンネルはゲームにおけるナレーションやバックグ ラウンドサウンドを示す主音声信号であり、第2チャン ネルは第1チャンネルの内容と同一又は異なる内容の副 音声信号である。ディジタルデータ (ゲームデータ) 信 号は例えばゲームプログラムの他にキャラクタ、文字等 のグラフィックス映像データや効果音等の音声データを 示す。アナログの映像信号及び音声信号は周波数変調を 施したFM信号であり、ディジタルデータ信号はEFM (Eight to Fourteen Modulation) 変調を施したEFM 信号である。

【0007】ディスク1に記録された信号はピックアッ プ2によって読み取られる。ピックアップ2から出力さ れた読取RF信号はHPF (ハイパスフィルタ) 3にお いて映像信号帯域成分のみとなってFM検波回路4に供 給される。FM検波回路4において復調された映像信号 はCCD (Charge Coupled Device) 5に供給される。 CCD5は復調された映像信号の時間軸エラーを打ち消 すように位相制御を行なう。CCD5の出力映像信号は A/D変換器6及びフィールド判別回路13に供給され る。A/D変換器6においてディジタルビデオデータ化 された映像信号はメモリコントローラ7に供給される。 メモリコントローラ7は画像メモリ8に対するデータの 書き込み及び読み出しを制御する。画像メモリ8はFI FO (First In First Out) からなり、少なくとも1V (垂直走査期間) の映像信号を記憶する容量を有してい る。画像メモリ8から読み出されたビデオデータはメモ リコントローラ7からD/A変換器9に供給される。D /A変換器9は読み出されたデータをアナログ映像信号 に変換する。

【0008】D/A変換器9の出力には映像混合器10が接続されている。混合器10は、D/A変換器9からのアナログ映像信号に第1複合同期信号CS1を加えるためのものである。その第1複合同期信号CS1は同期信号発生回路11において発生される。混合器10の出 力には遅延回路12が接続されている。この遅延回路1

.3

2は遅延線121及び切換スイッチ122を有している。遅延線121は混合器10から出力された映像信号を約140nsec遅延させる。スイッチ122は後述のバースト不連続検出回路19の検出結果に応じて混合器10及び遅延線121のいずれか一方の出力信号を選択的に中継する。スイッチ122の中継出力が遅延回路12の出力である。

【0009】フィールド判別回路13は復調された映像 信号中からフィリップスコードを検出し、フィリップス コードの内容から読み出し中の映像信号のフィールドを 判別し、その結果をフィールド判別信号としてCPU3 3に供給する。 CCD5の出力には同期分離回路14が 接続されている。同期分離回路14は復調された映像信 号から水平同期信号DHS及び垂直同期信号DVSを分 離抽出する。分離抽出された水平同期信号DHS及び垂 直同期信号DVSはメモリコントローラ7に供給される と共にその水平同期信号DHSはPLL回路15にも供 給される。PLL回路15は位相比較回路151、LP F (ローパスフィルタ) 152及びVCO (電圧制御発 振器) 153からなる。位相比較回路151は1/N分 周器16(Nは例えば、910)から出力される基準水 平同期信号RHSと分離水平同期信号DHSとの位相を 比較し、その比較結果をLPF152に供給する。LP F152の出力電圧がVCO153の制御電圧となる 他、スピンドルサーボ回路17に時間軸エラー信号とし て供給される。スピンドルサーボ回路17は時間軸エラ 一信号を打ち消すようにスピンドルモータ32の回転を 制御する。

【0010】同期信号発生回路11は図示しないカウンタを備え、基準クロック発生回路18から出力される基準クロック信号RCLをそのカウンタにより計数して例えば、NTSC方式の映像信号フォーマットに準拠した第1水平、第1垂直及び第1複合同期信号HS1, VS1, CS1を各々発生する。第1水平及び第1垂直同期信号HS1, VS1はメモリコントローラ7に供給され、第1複合同期信号CS1は混合器10に供給される。

【0011】基準クロック発生回路18から出力される 基準クロック信号RCLの周波数は例えば4fSCであ り、そのクロック信号RCLがA/D変換器6、メモリ コントローラ7、D/A変換器9、1/N分周器16及 びバースト不連続検出回路19に供給される。A/D変 換器6、メモリコントローラ7及びD/A変換器9はこ の基準クロック信号RCLをタイミング信号として動作 する。

【0012】バースト不連続検出回路19においては、図2に示すように、信号入力段には基準クロック発生回路18からの基準クロック信号RCLを1/4分周する分周器191及び混合器10の出力信号を2値化する2値化回路192が設けられている。分周器191による

分周出力及び2値化出力が排他的論理和回路193に供給される。排他的論理和回路193の出力にはサンプル回路194が接続されている。サンプル回路194は基準クロック信号RCLに応じて排他的論理和回路193の出力信号を保持し、5サンプル分を保持出力する。サンプル回路194の出力には多数決回路195が接続されている。多数決回路195はサンプル回路194の5

つの保持出力のうちの3つ以上が高レベルのとき高レベル出力となり、それ以外の状態では低レベル出力となる。多数決回路195の出力には更にサンプル回路196が接続されている。サンプル回路196は第1水平同期信号に応じて多数決回路195の出力信号を保持し、5サンプル分を保持出力する。サンプル回路196の出力には多数決回路197が接続されている。多数決回路197は多数決回路195と同様の動作を行ない、サンプル回路196の5つの保持出力のうちの3つ以上が高レベルのとき高レベル出力となり、それ以外の状態では低レベル出力となる。多数決回路197の出力信号がバ

【0013】ピックアップ2から出力された読取RF信号はBPF (バンドパスフィルタ)21,22及びLPF (ローパスフィルタ)23にも供給される。BPF21は読取RF信号中の第1チャンネルのオーディオ信号帯域成分のみをFM検波回路24に供給し、またBPF22は第2チャンネルのオーディオ信号帯域成分のみをFM検波回路25に供給する。FM検波回路24,25には切換スイッチ26が接続され、復調された第1及び第2チャンネル音声信号のいずれか1の音声信号が切換スイッチ26を介して音声混合回路27に供給される。

ースト不連続検出回路19の検出信号となる。

【0014】LPF23は読取RF信号中のCDフォーマット信号帯域成分のみをEFM復調回路31に供給する。EFM復調回路31から出力されるディジタルデータは本体CPU33に供給される。CPU33はこのディジタルデータ及び上記のフィールド判別信号に応じてスイッチ26の切換指令及びメモリコントローラ7の制御指令を発生する。

【0015】また、EFM復調回路31の出力データはROM用誤り訂正回路34、CD-DA(一般のオーディオ専用のコンパクトディスク規格のPCM音声データ)用誤り訂正回路35及びエラー検出回路36に供給される。ROM用誤り訂正回路34はEFM復調回路31から供給されるゲームデータについて誤り訂正を行う回路であり、誤り訂正が可能な場合に訂正後のデータを後述のCPU41に供給し、誤り訂正が不可能な場合にはデータを出力することなく訂正不可を示すエラーグを出力する。CD-DA用誤り訂正回路35はEFM復調回路31から供給されるディジタルオーディオデータについて誤り訂正を行う回路である。エラー検出回路36はEFM復調回路31から供給されるゲームデータについて誤りが誤り訂正回路34において正しく訂正さ

5

れなかったことを上記のエラーフラグから検出する回路であり、その検出出力はCPU41に供給される。CDーDA用誤り訂正回路35の出力にはD/A変換器37が接続され、D/A変換器37はPCM音声データをアナログ音声信号に変換するものである。D/A変換器37の出力信号はミュート回路38を介して音声混合回路27に供給される。

【0016】またディスク1がLD-ROMである場合 には、それがディジタルEFM信号を含むものであるこ とを示す識別情報が、リードインエリアに記録されてい るTOC (Table Of Contents)情報にサブコードQとし て含まれている。TOC情報を形成するサブコードQ信 号のフォーマットは1サブコードフレーム (98フレー ム)では例えば、図3に示す如くなっている。このフォ ーマットについて簡単に説明すると、フレーム0,10 サブコード同期部から始まり、その次の4ビットからな るコントロール部が"0101"又は"0110"のと きLD-ROMであることを示す。8ビットのポイント 部は次の絶対時間PMIN, PSEC, PFRAMEが 何を意味しているか示す。例えば、ポイント部が"00 000001"ならば、トラック番号1の開始時間を示 すことになる。トラック時間MIN, SEC, FRAM Eはディスク1上の各トラック中での時間を示す。この TOC情報はEFM復調回路31で分離されて本体CP U33に供給される。CPU33はCPU41からの各 種の指令に応じて本体ディスクプレーヤのサーボ回路2 8を含む動作を指令制御する。

【0017】ROM用誤り訂正回路34の出力にはゲー ムブロック40が接続される。ゲームブロック40には ゲームプログラムを実行するための基本プログラムを予 30 め記憶したROM (図示せず) を内部に有するゲームC PU41、ゲーム映像回路42、ゲーム音声回路43及 びRAM44が設けられている。CPU41はROM用 誤り訂正回路34からの誤り訂正されたデータを受け入 れ、内部のROMに記憶されたゲーム情報をコントロー ルする基本プログラム及び後述の操作部45の操作に従 ってゲーム映像回路42、ゲーム音声回路43及びRA M44を制御すると共にそれらにデータを供給する。よ って、CPU41、ゲーム映像回路42、ゲーム音声回 路43及びRAM44は共通のデータバスで互いに接続 40 され、またCPU41からの制御信号ラインが個別にゲ ーム映像回路42、ゲーム音声回路43及びRAM44 に接続されている。

【0018】更に、CPU41とCPU33と間では指令及びデータの交換が行なわれるようになっている。ゲーム映像回路42にはグラフィックス映像データがCPU41から供給され、ゲーム映像回路42は供給されたグラフィックス映像データを制御信号に従ってアナログのグラフィックス映像信号に変換しそれを映像混合器10に供給する。映像混合器10はD/A変換器9から出

6

力された映像信号にグラフィックス映像信号を混合するスーパインポーズ機能を有し、その混合した映像信号はCRTディスプレイ(図示せず)に供給される。ゲーム音声回路43には音声データがCPU41から供給され、ゲーム音声回路43は供給された音声データを制御信号に従ってアナログ音声信号に変換しそれを音声混合器27に供給する。音声混合器27は供給される各音声信号を単に加算することにより混合する。

【0019】CPU41には操作部45が接続されている。操作部45はゲームを進行させるためにスタートキー、カーソルキー等を備えている。CPU41には更に、測定部46が接続されている。測定部46はゲームの進行に伴ってプレーヤが興奮すると変化する血圧、脈拍、発汗、体温等の生理的情報を興奮情報として測定する手段である。具体的には図4に示すように圧電シート(例えばマイクロフォン)47,温度センサ48及び湿度センサ49がカフ(血圧測定時に用いられる圧迫帯)50に装着されたものからなる。本実施例においては、圧電シート47により血圧及び脈拍を測定して興奮情報とする例を示すが、温度センサ48及び湿度センサ49により体温及び発汗を測定してそれを興奮情報としても良いことは言うまでもない。

【0020】血圧測定は特開平2-295543号公報に開示されているような圧電シート47で検出したコロトコフ音を用いた方法を用いる。また、脈拍測定は図5(a)に示すように圧電シート47で検出したコロトコフ音のレベルを閾値と比較器(図示せず)により比較し、その比較結果から図5(b)に示すようにパルスを得て、単位時間(例えば、10秒)当たりに得られるパルス数を計数し、その計数値を60秒に換算することにより行なわれる。

【0021】次に、かかる本発明によるビデオゲーム装置において、ゲームプレイの際の動作について説明する。なお、ディスク1は既に所定の位置に装着されているとする。CPU41は図6~図9に示すように操作部45のスタートキーが操作されると、ゲーム開始指令が操作部45から供給されるので、CPU33に対してTOC情報の読取りを指令する(ステップS1)。

【0022】CPU33はTOC情報読取指令に応じて図10に示すように先ず、ディスク1のリードインエリアからTOC情報を読み取る(ステップS41)。読み取ったTOC情報からそのディスク1がLDーROMであるか否かを判別する(ステップS42)。これは上記したようにTOC情報内の4ビットのコントロール部が"0101"又は"0110"ならば、ディスク1はLDーROMであると判別し、それ以外のコードならばLDーROMではないと判別する。ディスク1がLDーROMでない場合にはゲームを開始することができないので、現処理ルーチンを終了する。ディスク1がLDーROMである場合にはディスク1の予め定められたトラッ

7

クからコントロールデータを読み出す(ステップS4 3)。このコントロールデータは興奮情報でゲーム展開を制御できるゲームソフトが記録されているか否かを示すデータ等である。その後、読み取ったTOC情報及びコントロールデータをゲームブロック40のCPU41に転送する(ステップS44)。

【0023】一方、CPU41はTOC情報及びコントロールデータがCPU33から転送されたか否かを判別する(ステップS2)。TOC情報及びコントロールデータが転送されたならば、転送されたTOC情報をRAM44に書き込み(ステップS3)、コントロールデータから興奮情報で制御可能なゲームソフトであるか否かを判別する(ステップS4)。興奮情報で制御可能なゲームソフトである場合には測定部46による興奮情報の測定準備ができているか否か判別する(ステップS5)。これは操作部45のプレーヤによるキー操作によって指令が発せられるようにしても良い。すなわち、CRTディスプレイに「カフを腕に巻いたらキー操作して下さい」の如く表示して、プレーヤにキー操作を促すようにしても良い。又は、カフ50が腕に装着されたことをセンサにより検出しても良い。

【0024】興奮情報の測定準備ができていると判別した場合には血圧及び脈拍を測定する(ステップS6)。上記した測定方法によって血圧値P及び脈拍値HをCPU41は得ることになる。このゲーム開始時に測定した血圧値P及び脈拍値Hを初期値 A_0 及び B_0 とし(ステップS7)、また変数Nを0とする(ステップS8)。そして、最初に読み込むべきゲームデータが記録されている初期アドレスを指定アドレスとしてサーチ動作指令を発生する(ステップS9)。この初期アドレスはソフト制作者によって予め決められたアドレスである。サーチ動作指令の発生後、サーチ終了信号が供給されたか否か判別する(ステップS10)。

【0025】CPU33はステップS44の実行後、サ ーチ動作指令が発生したか否かを判別する(ステップS 45)。サーチ動作指令が供給されたならば、指定アド レスへのサーチ動作を行なう (ステップS46)。指定 アドレスへのサーチ動作を終了すると、サーチ終了信号 をCPU41に対して発生する(ステップS47)。C PU41はステップS10においてサーチ終了信号が供 給されたと判別した場合にはゲームデータの読取動作を 実行する (ステップS11)。 ゲームデータの読取動作 においては、CPU41が先ずゲームデータ読取指令を CPU33に対して発生し、CPU33はステップS4 8においてゲームデータ読取指令に応じてディスク演奏 を行ない、ディスク1からゲームデータをピックアップ 2によって読み取らせてそれをLPF23、EFM復調 回路31及び誤り訂正回路36を介してCPU41に転 送させる。CPU41はゲームデータがCPU33から 転送されたならば、RAM44にそのゲームデータを書 8

き込む。ゲームデータの読取動作後、CPU41は読み取ったゲームデータを処理してゲームを開始する(ステップS12)。

【0026】CPU41はゲームを開始した後、内部の タイムカウンタ(図示せず)を初期化させ(ステップS 14)、そのタイムカウンタの計数動作を開始させる (ステップS15)。そして、タイムカウンタの計数時 間が5分に達したか否かを判別する(ステップS1 6)。計数時間が5分に達したならば、血圧及び脈拍を 測定して血圧値P及び脈拍値Hを得る(ステップS1 7)。次いで、変数Nに1を加算し(ステップS1 8)、変数Nが1であるか否かを判別する(ステップS 19)。 N=1ならば、ゲームを開始してから5分が経 過したので、血圧値P及び脈拍値Hを測定値A1及びB1 とし(ステップS20)、血圧測定値A₁が初期値A₀よ り大でかつ脈拍測定値B₁が初期値B₀より大であるか否 かを判別する(ステップS21)。A₁>A₀でかつB₁ >Boの場合にはゲーム開始時よりプレーヤが興奮して いるので、シーン1へのサーチ動作指令を発生する (ス テップS22)。 $A_1 \le A_0 X$ は $B_1 \le B_0$ の場合にはゲー ム開始時より落ちついているので、シーン3へのサーチ 動作指令を発生する(ステップS30)。

【0027】N≠1ならば、ゲームを開始してから10 分以上が経過したので、血圧値P及び脈拍値Hを今回測 定値 A_2 及び B_2 とし(ステップ S_2 3)、測定値 A_2 が 測定値A1より大でかつ測定値B2が測定値B1より大で あるか否かを判別する (ステップS24)。 A2>A1で かつB2>B1の場合には5分前より興奮しているので、 測定値A2を前回測定値A1としかつ測定値B2を前回測 定値 B_1 として記憶した後(ステップS25)、ステッ プS22に進んでシーン1へのサーチ動作指令を発生す る。 $A_2 \le A_1$ 又は $B_2 \le B_1$ の場合には5分前より落ちつ いているので、測定値A2が初期値A0より大でかつ測定 値B2が初期値B0より大であるか否かを判別する (ステ ップS26)。 $A_2 > A_0$ でかつ $B_2 > B_0$ の場合にはゲー ム開始時より興奮しているので、測定値A2を前回測定 値 A_1 としかつ測定値 B_2 を前回測定値 B_1 とした後(ス テップS27)、シーン2へのサーチ動作指令を発生す る(ステップS28)。A₂≦A₀又はB₂≦B₀の場合に はゲーム開始時より落ちついているので、測定値A2を 前回測定値A1としかつ測定値B2を前回測定値B1とし た後(ステップS29)、ステップS30に進んでシー ン3へのサーチ動作指令を発生する。シーン1~3は同 一のゲームにおいて興奮度が異なる内容であり、ディス ク1の異なるアドレスに記録されている。

【0028】CPU41はステップS22、S28又はS30の実行後、上記のステップS10に移行してサーチ終了信号が供給されたか否か判別する。ゲームデータの処理動作中においてCPU33はCPU41からサーチ動作指令が発生されたか否かを判別する(ステップS

49)。サーチ動作指令が供給されたならば、サーチ動作指令が示すシーンへのサーチ動作を行なう(ステップ S 4 6)。よって、このサーチ動作が終了すれば、C P U 3 3 はステップ S 4 7 にてサーチ終了信号をC P U 4 1 に対して発生し、ステップ S 4 8 の演奏動作に進み、C P U 4 1 はステップ S 1 0 にてサーチ終了信号の供給を判別することになり、上記したステップ S 1 2 のゲームデータの説取動作及びステップ S 1 2 のゲームデータの処理動作と進むので、ステップ S 1 9 ~ S 3 0 の実行によりプレーヤの興奮状態に応じてシーン 1 ~ 3 のいずれか 1 のシーンのゲーム内容に移行する。

【0029】CPU41はステップS12によるデータ 処理動作後、ゲームプレイが終了したか否かを判別する (ステップS13)。ゲームプレイの終了はゲームプレイがデータ処理の上で完了したことから判別しても良いし、ゲームプレイの完了又は途中におけるユーザの操作 部45からの終了指令に応じて判別しても良い。ゲームプレイが終了していない場合にはステップS14に移行する。ゲームプレイが終了してしまった場合にはゲーム 終了信号をCPU33に供給し (ステップS31)、現 20 処理ルーチンを終了する。

【0030】CPU33はステップS49においてCPU41からサーチ動作指令が供給されないと判別した場合には、CPU41からゲーム終了信号が発生されたか否かを判別する(ステップS50)。ゲーム終了信号が供給されなければ、CPU41からの演奏動作指令に応じて演奏動作を行なう(ステップS48)。ステップS4において興奮情報で制御可能なゲームソフトではない場合には、ステップS32~S37の動作を行なう。これらステップS32~S37の動作はステップS9~S13,S31と同様である。

【0031】演奏動作においては、CPU33はディス ク1の指定された読取り位置からの情報の読み取り制御 を行なう。ピックアップ2から出力された読取RF信号 はHPF3、BPF21, 22及びLPF23において 各信号帯域成分に分離される。HPF3の出力信号に応 じてFM検波回路4にて復調された映像信号はCCD5 においてPLL回路15の発振信号に応じてジッタ成分 を除去された後、A/D変換器6、フィールド判別回路 13及び同期分離回路14に供給される。A/D変換器 6 から出力されたディジタル映像信号である映像データ がメモリコントローラ7に供給される。フィールド判別 回路13は映像信号中のフィリップスコードを抽出し、 フィールド判別を行ない、その判別結果を示すフィール ド判別信号をCPU33に供給する。フィールド判別信 号は例えば、奇数フィールドの判別では1を示し、偶数 フィールドの判別では0を示す。

【0032】ディスク1に記録された映像信号にはビデオディスクであることを示すフィリップスコードが各フィールドの所定位置、例えば、水平帰線期間に挿入され 50

. 10.

ている。CAVディスクの場合にはフィリップスコード はディスク上のプログラムエリア(リードインエリア及 びリードアウトエリア以外の領域)における奇数フィー ルドの17H(水平ライン), 18Hにピクチャーナン バ (PICTURE-No.) が記録され、偶数フィールドの28 OH, 281Hにチャプターナンバ (CHAPTER-No.) が 記録されている。フィリップスコードは24ビットから なり、BCDコードで6文字分を示しており、プログラ ムエリアのピクチャーナンバは "F X1X2 X3 X4 X 5"の如く表される。ここで、F (2進数で"111 1")は固定値であり、 $X_1 \sim X_5$ はピクチャーナンバ自 身であり00001~79999を表わす。チャプター ナンバは"8 X₁ X₂ D D D"の如く表される。こ こで、8及びD(2進数で"1000"及び"110 1") は固定値であり、 X_1 , X_2 はチャプターナンバ自 身であり01~69を表わす。よって、このピクチャー ナンバ及びチャプターナンバを識別することにより奇数 及び偶数フィールドのうちいずれのフィールドの映像信 号であるかを判別することができる。

【0033】CLVディスクの場合には奇数フィールド の17H (水平ライン), 18Hにタイムナンバ (TIME -No.) が記録され、偶数フィールドの280HにCLV コード、281Hにチャプターナンバが記録されてい る。CLVコードは"8 7 FF F F"の如く全て固 定値で表される。タイムナンバは"F X_1 D D X_4 X5"の如く表される。ここで、 X_1 , X_4 , X_5 はタイムナ ンバ自身であり0 (時) 00 (分) ~9 (時) 59 (分)を表わす。よって、CLVディスクでもタイムナ ンバ、CLVコード及びチャプターナンバを識別するこ とにより奇数及び偶数フィールドのうちいずれのフィー ルドの映像信号であるかを判別することができる。本発 明においては、これらピクチャーナンバ、タイムナン バ、CLVコード及びチャプターナンバ等のコードを映 像信号のフィールドが奇数及び偶数フィールドのいずれ であるかを示す判別データとして用いている。

【0034】CPU33はステップ48の演奏動作において再生すべきフィールドの映像信号が読み出されたときには、メモリコントローラ7に対して書込許可信号を発生し、再生すべきフィールドとは異なるフィールドの映像信号が読み出されたときにはメモリコントローラ7に対して書込許可信号の発生を停止する。メモリコントローラ7は書込許可信号を受けているとき、すなわち再生すべきフィールドの映像信号がA/D変換器6から供給されているときには、同期分離回路14において分離された水平同期信号DHS及び垂直同期信号DVS及び基準クロック発生回路18からの基準クロック信号RCLに応じて画像メモリ8の書込みアドレスを順次指定し、その書込みアドレスの記憶位置に映像データを書き込む。これにより、例えば、1H(水平走査期間)当り910画案分の映像データが書き込まれる。一方、書込

許可信号を受けていないとき、すなわち再生すべきフィールドとは異なるフィールドの映像信号がA/D変換器6から供給されているときには映像データの書込みを停止する。よって、演奏動作中において画像メモリ8には奇数及び偶数フィールドのうちの一方のフィールドの映像信号のみが書き込まれる。

【0035】また、画像メモリ8においては第1水平同 期信号HS1及び第1垂直同期信号VS1及び基準クロ ック発生回路18からの基準クロック信号RCLに応じ て読出アドレスがメモリコントローラフによって順次指 定されかつそのアドレスから1画素分の映像データが読 み出される。読み出された映像データは奇数及び偶数フ ィールドにおいて同一のデータであり、D/A変換器9 にてアナログ映像信号に変換される。 すなわち、1フィ ールド分の映像情報で1画面を構成するいわゆるフィー ルド再生が行なわれる。D/A変換器9の出力映像信号 は映像混合器10において同期信号発生回路11からの NTSC方式の映像信号フォーマットに準拠した第1複 合同期信号 CS1と混合され、ディスク演奏により得ら れた演奏複合映像信号となる。この複合映像信号は遅延 回路12を介してCRTディスプレイ装置(図示せず) に出力される。

【0036】バースト不連続検出回路19においては、 混合器10から出力された映像信号が2値化回路192 を介することにより、方形波信号となる。一方、基準ク ロック発生回路18からの周波数が4fSCの基準クロッ ク信号RCLが分周器191により1/4分周されるの で周波数 f SCの方形波信号となる。この双方の方形波信 号の排他的論理和が排他的論理和回路193においてと られる。よって、排他的論理和回路193の出力信号は 30 双方の方形波信号レベルが等しいときにのみ高レベルと なる。サンプル回路194は基準クロック信号RCLに 同期して排他的論理和回路193の出力信号を保持し、 5サンプル分を保持出力する。この5サンプル分の保持 出力のうちの3つ以上が高レベルのときは多数決回路1 95は高レベル出力となる。5つの保持出力のうちの3 つ以上が低レベルのときには多数決回路195は低レベ ル出力となる。多数決回路195の出力信号はサンプル 回路196に第1水平同期信号HS1に応じて5サンプ ル分保持される。サンプル回路196の5サンプル分の 保持出力のうちの3つ以上が髙レベルのときは、混合器 10から出力された映像信号のカラーバースト信号の位 相の連続性が保たれているとして、多数決回路197は 髙レベル出力となる。5つの保持出力のうちの3つ以上 が低レベルのときにはカラーバースト信号の位相の連続 性が保たれていないとして、多数決回路197は低レベ ル出力となる。この多数決回路197の出力信号がバー スト不連続検出回路19の検出信号として遅延回路12 に供給される。

【0037】遅延回路12においては、検出信号が高レ

12

ベルのときにはスイッチ122が非遅延側aに切り換わりスルー状態となり、検出信号が低レベルのときにはスイッチ122が遅延側bに切り換わり約140nsecの遅延状態となる。これにより、カラーバースト信号の位相の連続性が保たれているときには遅延回路12はスルー状態であるので、混合器10から出力される演奏複合映像信号はそのまま出力される。

【0038】上記のように一方のフィールドのみが画像メモリ8から読み出される場合にはカラーバースト信号の位相の連続性が保たれていないので、遅延回路12は1フィールド毎に約140nsecの遅延状態となり、混合器10から出力される演奏複合映像信号は約140nsecだけ遅延されて出力される。読取RF信号中の第1チャンネルの音声信号成分はBPF21及びFM検波回路24によりアナログ音声信号に変換され、読取RF信号中の第2チャンネルの音声信号に変換され、読取RF信号中の第2チャンネルの音声信号に変換される。FM検波回路24,25の各アナログ音声信号のいずれか一方がCPU33からの選択指令に応じて切換スイッチ26により音声混合器27に中継される。

【0039】また、読取RF信号中のデータ信号成分はLPF23を介してEFM復調回路31に供給され、そこで復調されてデータ出力となり、ROM用誤り訂正回路34で誤り訂正されてCPU41に供給される。CPU41はゲームプログラム及び操作部45におけるキー操作に従ってデータ処理してグラフィックス映像データを映像回路42に供給し、音声データをゲーム音声回路43に供給する。ゲーム映像回路42においては映像データがアナログのグラフィックス映像信号に変換される。

【0040】映像混合器10は上記のようにA/D変換器9から出力されるアナログ映像信号に第1複合同期信号CS1を重畳して出力するが、グラフィックス映像信号がゲーム映像回路42から出力されると、そのグラフィックス映像信号を優先的に出力するか、またはゲームプログラムデータ中にアナログ映像信号とグラフィック映像信号との合成比を入れておきゲームCPU41から映像混合器10をコントロールして合成して出力する。

【0041】ゲーム音声回路43においては音声データがアナログの音声信号に変換される。また、EFM復調回路31からディジタル音声データが出力されている場合にはそのデータは誤り訂正回路35で誤り訂正され、更にD/A変換器37でアナログ化された後、ミュート回路38を介して音声混合器27に供給される。ミュート回路38が信号の通過状態及び遮断状態のいずれの状態となるかはCPU41からの指令に応じてCPU33により制御される。音声混合器27においては切換スイッチ26からのアナログ音声信号をそのまま出力し、ゲーム音声回路43或いはミュート回路38から音声信号が出力されているときには各音声信号が混合されて出力

される。

【0042】なお、上記した実施例においては、興奮情報の今回の測定値と前回の測定値との大小関係を検出してその後のサーチ場所を変更する例を示したが、大小関係だけでなく測定値の差(大小関係と差の絶対値)に応じて変更するようにしても良い。また、上記した実施例においては、興奮情報に応じて各シーンの同一アドレスへサーチする例を述べたが、各シーンを同様の興奮度を有する複数の情報群で構成し、測定回数や各シーンへサーチした回数等に応じて各シーンに対応した情報が記録 10された別のアドレスへサーチするようにしても良い。

13

【0043】更に、各シーンはフィールド記録するようにしても良く、例えば、シーン1を奇数フィールド、シーン2を偶数フィールドに対応させ、興奮情報に応じて再生フィールドを切り換えるようにしても同様の効果が期待できる。この場合、各シーンの記録されたアドレスと再生するフィールドを記録媒体上の記録位置として指定すれば良い。

【0044】また、興奮情報に応じてサーチするシーンを選択すると共に、スイッチ26を介して出力されるア 20 ナログ音声信号の選択指令を変更するようにしても良い。同様に、音声混合器27においてディジタル音声信号をD/A変換した信号とスイッチ26からのアナログ音声信号との混合比を変更して出力するようにしても良い。

【0045】また、興奮情報としては血圧、脈拍、発汗、体温を検出するだけでなく、例えば、目の動きを検出して前回と違った目の動きをするシーンへのサーチを施すようにしても良い。また、上記した実施例においては、血圧測定方法としてコロトコフ音を検出する例を示い、これに限定されるものではなく、例えば、超音波等の音波のドップラー効果による干渉を用いて測定する方法でも良い。

【0046】また、上記した実施例においては、測定部46で検出される興奮情報はワイヤードでCPU41に伝送されるが、操作性の自由度が要求される場合にはワイヤレスにて伝送することも可能である。更に、本実施例においては、LD-ROMディスクを用いたビデオゲーム装置の例を示したが、これに限らず、CD-ROMやビデオテープ等の他の記録媒体を用いたビデオゲーム40装置に本発明を適用できることは勿論である。

【0047】また、上記した実施例においては、時間が5分経過する毎のタイミングで興奮情報の測定値を得ているが、ゲームのポイントとなるような場面毎のタイミングで測定値を得て前回値と比較しても良い。また、従

14

来のように、操作部45を介してプレーヤの意志で選択した1の選択肢に対応づけて、上記実施例における興奮情報の測定値の変化に対応する複数のシーンを組み合わせるようにしても良く、その組み合わせ方によってより多肢に亘ってゲーム展開を変化させることができる。

[0048]

【発明の効果】本発明のビデオゲーム装置においては、プレーヤの興奮情報を測定しその測定値を所定のタイミングで得て、測定値の変化に応じて読取手段による記録媒体の読取位置を制御することにより、プレーヤの興奮状態の変化に応じてその後のゲーム展開が変化するようした。これにより、プレーヤのその時々の体調や感情に合わせたゲーム内容にすることができる。例えば、緊張しているときには和らげるような映像と音のシーンとしたり、逆に更に煽るようなシーンを再生したりすることができる。この結果、同一のゲームを何度でも楽しむことができ、ゲームの価値をいつまでも維持することが可能となる。

【図面の簡単な説明】

【図1】本発明の実施例を示すブロック図である。

【図2】図1の装置中のバースト不連続検出回路の構成を示すブロック図である。

【図3】サブコードQ信号のフォーマット示す図である。

【図4】図1の装置中の測定部を具体的に示す図である。

【図5】コロトコフ音の発生特性及び比較器から得られるパルスを示す図である。

【図6】ゲームCPUの動作を示すフロー図である。

【図7】図6の動作の続き部分を示すフロー図である。

【図8】図6の動作の続き部分を示すフロー図である。

【図9】図6の動作の続き部分を示すフロー図である。

【図10】本体CPUの動作を示すフロー図である。 【主要部分の符号の説明】

1 ディスク

- 2 ピックアップ
- 4, 24, 25 FM検波回路
- 5 CCD
- 7 メモリコントローラ
- 8 画像メモリ
 - 15 PLL回路
 - 31 EFM復調回路
 - 33, 41 CPU
 - 40 ゲームメモリブロック

【図1】

【図3】

	ザ		ア	느	术°	トラック時間			†7"	絶対時間			C.D.C	1
	П-:	17.	エン	ツク	イン	分	秋	ブロック		分	秒	プロック	はの検出	
	飼期	コール	ス	番号	۲	MIN	SEC	FRAME		PMIN	PSEC	•	パリティ	
_	2	4	4	8	8	8	8	8	8	8	8	8	16 -75	ニット

【図4】

【図5】

【図7】

【手続補正書】 【提出日】平成5年7月12日 【手続補正1】 【補正対象書類名】図面

【補正対象項目名】全図 【補正方法】変更 【補正内容】

【図1】

