Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum

Úloha č. A7

Název úlohy: Pozitronová emisní tomografie

Jméno: Michal Grňo Obor: FOF

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů	
Práce při měření	0-3		
Teoretická část	0-2		
Výsledky a zpracování měření	0-9		
Diskuse výsledků	0-4		
Závěr	0-1		
Použitá literatura	0-1		
Celkem	max. 20		

Posuzoval: dne:

1 Pracovní úkoly

- 1. Poté, co vyučující umístí silnější zářič ²²Na do stojánku, změřte úhlové rozdělení koincidencí v oblasti úhlů potřebné pro nalezení polohy zářiče, doba měření 20s. Vysvětlete tvar naměřeného úhlového rozdělení, získané poznatky využijte při domácím zpracování.
- 2. Změřte četnost koincidencí pro úhly $\varphi=60^\circ,\,90^\circ,\,120^\circ$ bez plechu a 120° s Pb plechem mezi detektory, doba měření 100s. Vysvětlete pozorované četnosti.
- 3. Poté, co vyučující přidá do krabičky druhý zářič, změřte úhlové rozdělení koincidencí s krokem 5°.
- 4. Zvolte aspoň 2 další vhodné úhly otočení krabičky ψ a opakujte měření 3).
- 5. Narýsujte přímky spojující detektory do obrázku připraveného u úlohy a odečtěte polohu průsečíku polohu zářiče vůči krabičce. Pozn.: Při volbě otočení krabičky ψ se můžete řídit polohou už zakreslených průsečíků.
- 6. Vzdálenost detektoru od zářiče zakresleného na obrázku porovnejte s měřením skutečné vzdálenosti.
- 7. Polohy zářičů vůči krabičce určujte pomocí vztahů a metod popsaných v návodu. Podle výsledků zpracování nakreslete obrázky analogické k obrázkům narýsoaným během praktika. Chyby polohy zářičů určete graficky

2 Teoretická část

Účelem práce je použít pozitronovou emisní tomografii (PET) k určení umístění radioaktivního vzorku uvnitř modelu lebky. PET využívá radionuklidů s β^+ rozpadem, tedy takových, které při rozpadu produkují pozitron – ten se po rozpadu v okolní látce zpomalí téměř do klidu (na vzdálenosti řádu 1mm) a potom anihiluje s nějakým elektronem. Výsledkem anihilace jsou dva fotony letící téměř přesně opačným směrem. [1]

Po obvodu kolem krabičky se vzorky jsou umístěny dva detektory v koincidenčním zapojení – tzn. že zaznamenají pouze, když do obou přiletí foton téměř zároveň. Je žádoucí, aby byl časový interval mezi příchozími fotony co nejmenší. Současná technika je schopna dosáhnout intervalů 10^{-6} až 10^{-12} s. [1] Čím delší je interval, tím je aparatura náchylnější na šum.

Obrázek 1: Schéma koincidenčního měření, převzato z [1].

V našem experimentu byl jeden detektor (A) nepohyblivý a druhým detektorem (B) bylo možné pohybovat po kružnici se středem uprostřed vzorku. Polohu detektoru B popisujeme úhlem φ měřeným v kladném směru od polohy naproti detektoru A. Oba detektory jsou umístěny ve vzdálenosti R od středu vzorku. Samotným vzorkem lze otáčet kolem středu, jeho otočení popisujeme úhlem ψ .

Vztažnou sosutavu vzorku popisujeme souřadnicemi x,y. V této souřadné soustavě budou mít detektory A a B souřadnice:

$$x_A = -R\cos\psi \quad x_B = R\cos(\psi + \varphi)$$

$$y_A = -R\sin\psi \quad y_B = R\sin(\psi + \varphi)$$
(1)

Přímka mezi detektory, na které bude ležet zářič, je popsaná rovnicí

$$(y_b - y_a)x + (x_a - x_b)y = (y_b - y_a)x_a + (x_a - x_b)y_a$$
(2)

3 Výsledky měření

Nejprve jsme měřili koincidence pro vzorek s jedním zářičem. Pro pevné hodnoty ψ jsme proměřili několik hodnot φ , naměřené hodnoty jsou v grafu 2. Naměřenými daty byla pomocí metody nejmenších čtverců¹ proložena gaussova křivka. Maxima pro jednotlivé hodnoty ψ i s chybou fitu jsou v tabulce 1.

ψ	φ	$\Delta \varphi$
0	3.51	0.30
30	17.48	0.33
60	29.63	0.21
90	36.38	0.20

Tabulka 1: Úhly získané regresí, 1 zářič

ψ	φ_1	$\Delta \varphi_1$	φ_2	$\Delta \varphi_2$
0	-20.76	0.29	7.21	0.25
60	-21.59	0.25	21.14	0.18
90	-14.97	0.14	22.05	0.10

Tabulka 2: Úhly získané regresí, 2 zářiče

4 Diskuse

Bylo to špatně protože (??)

5 Závěr

Bylo to hezké. assadfasd

6 Literatura

Reference

[1] A7 – Pozitronová emisní tomografie. 3.10.2017.

 $^{^1}$ Teoreticky správné by bylo použít Poissonovu regresi, metoda nejmenších čtverců je ale stále dobrou aproximací.

Obrázek 2: Naměřené koincidence, 1 zářič

Obrázek 3: Nestíněné vs. stíněné detektory

Obrázek 4: Naměřené koincidence, 2 zářiče

Obrázek 5: Průsečíky vypočtených přímek