вариант	ф. номер	група	поток	курс	специалност
1					
Име:					

Контролна работа по логическо програмиране 9 април 2022 г.

Да няма лист, на който е писано по повече от една задача!

Зад. 1. Универсумът на структурата \mathcal{M} е множеството Σ^* на всички думи над поне двубуквената азбука Σ и е за езика без формално равенство \mathfrak{L} , в който има триместен предикатен символ p и двуместен предикатен символ r, които са интерпретирани така:

 $\langle u,v,w \rangle \in p^{\mathcal{M}} \longleftrightarrow w$ е конкатенация на u и v; $\langle u,v \rangle \in r^{\mathcal{M}} \longleftrightarrow u$ и v са с равна дължина.

- а) Да се докаже, че следните множества са определими в \mathcal{M} :
- (1) $\{\varepsilon\}$; (2) $\{u \mid \text{дължината на } u \text{ се дели на } 3\}$;
- $(3) \{u \mid u \in$ еднобуквена $\};$
- (4) $\{u \mid u$ започва и завършва с различни букви $\};$
- (5) $\{\langle u, u \rangle \mid u \in \Sigma^* \}.$
- 6) Да се напише такава затворена формула φ от $\mathfrak{L},$ че:
- (#) $\mathcal{M} \models \varphi \longleftrightarrow \Sigma$ има повече от две букви.

За написаната формула φ да се докаже, че (#) е вярно.

Зад. 2. Да означим с Γ множеството от следните формули:

 $\forall x \forall y \exists z (p(x, y, z) \& \forall z_1 (p(x, y, z_1) \Rightarrow (z = z_1))), \\ \forall x (p(c, x, x) \& p(x, c, x)) \quad \mathbf{H} \\ \forall x \forall y (p(x, y, c) \Rightarrow ((x = c) \& (y = c))).$

Нека Γ_1 е получено от Γ с добавянето на формулите

 $\exists x \exists y \exists z (p(x, y, z) \& \neg p(y, x, z)),$ $\forall z (\neg (z \dot{\neg} z) \Rightarrow \exists x \exists u (p(x, y, z) \& f(\ell(x))) \land \ell(u))) \land u$

 $\forall z (\neg (z \stackrel{.}{=} c) \Rightarrow \exists x \, \exists y \, (p(x,y,z) \& (\ell(x) \lor \ell(y))) \quad \mathbf{u}$ $\forall x \forall y \forall z ((\ell(x) \& p(y,z,x)) \Rightarrow ((y \stackrel{.}{=} c) \lor (z \stackrel{.}{=} c))).$

Да се докаже, че Γ и Γ_1 са изпълними. (Тук c е индивидна константа, а p и ℓ са предикатни символи.)

Пожелаваме ви приятна и успешна работа!

вариант	ф. номер	група	поток	курс	специалност
2					
Име:					

Контролна работа по логическо програмиране 9 април 2022 г.

Да няма лист, на който е писано по повече от една задача!

Зад. 1. Нека Σ е поне двубуквена азбука и a е буква от Σ . Универсумът на структурата $\mathcal A$ е множеството Σ^* на всички думи над Σ и е за езика с формално равенство $\mathfrak L$, в който има двуместен функционален символ f и едноместен функционален символ g, които са интерпретирани така:

 $f^A(u,v)$ е конкатенацията на думите u и v;

 $g^{A}(u)$ е думата, съдържаща само букви a, с дължина като на u.

- а) Да се докаже, че следните множества са определими в \mathcal{M} :
- (1) $\{\varepsilon\}$; (2) $\{u \mid \text{дължината на } u \text{ се дели на } 3\}$;
- (3) { $u \mid u$ е еднобуквена};
- $(4) \{u \mid u \text{ започва и завършва с различни букви}\};$
- (5) $\{\langle u,v\rangle\mid$ никое непразно собствено начало на u не е край на $v\}.$
- **б)** Да се напише такава затворена формула φ от \mathfrak{L} , че: (\$) $\mathcal{A} \models \varphi \longleftrightarrow \Sigma$ има повече от две букви.

За написаната формула φ да се докаже, че (\$) е вярно.

Зад. 2. Да означим с Γ множеството от следните формули:

 $\forall x \forall y \forall z ((f(x,f(y,z)) \doteq f(f(x,y),z)) \& (f(x,c) \doteq f(c,x))), \ \exists x \exists y \neg (f(x,y) \doteq f(y,x))$ и

 $\forall x \forall y ((f(x,y) = c) \Rightarrow ((x = c) \& (y = c))).$

Нека Γ_1 е получено от Γ с добавянето на формулите $\exists x\,\exists y\,(\neg(x\dot{=}y)\&\neg(h(x)\dot{=}h(y))),$

 $\forall x \forall y (h(f(x,y)) \doteq h(f(h(x),h(y))))$ и $\forall x (h(h(x)) \doteq h(x))$. Да се докаже, че Γ и Γ_1 са изпълними. (Тук c е индивидна константа, а f и h са функционални символи.)

Пожелаваме ви приятна и успешна работа!