4. 특이값 분해

특이값 분해란? 특이값 분해 과정 특이값 분해 활용

특이값 분해란?

선형변환 A를 회전과 크기 변환 행렬로 나눠서 보는 것.

 $A = U \Lambda V^T$

• $\mathsf{U}:AA^T$ 의 고유벡터 행렬 (회전변환2)

ullet V : A^TA 의 고유벡터 행렬 (회전변환1)

• Λ : 고유값의 제곱근. (크기변환)

특이값 분해 과정

- 1. A^TA 계산.
- 2. A^TA 의 고유값(Λ)과 고유벡터(V) 계산.
 - 고유벡터는 정규 벡터(크기가 1인 벡터)로 대치
- 3. $u_i = rac{1}{\sqrt{\lambda_i}} A v_i$ 를 이용해 $A A^T$ 의 고유벡터 U 계산.
- 4. 그럼... 완성!

 $A = U\Lambda V^T$

특이값 분해 활용

- PCA : 특이값 분해를 수행 → 주성분만 선택 → 차원이 축소됨.
 - 장점: 대칭행렬로 변환하여 연산하기 때문에 원래 행렬 A의 대각화 가능 여부가 중 요하지 않음.

4. 특이값 분해