Abhishek HW2

Question 1

```
# (a) Perform a simple linear regression with mpg as the response and
horsepower as the predictor. Comment on the output.
library(ISLR)
head(Auto)
     mpg cylinders displacement horsepower weight acceleration year origin
##
## 1 18
                 8
                            307
                                       130
                                              3504
                                                           12.0
                                                                  70
## 2 15
                 8
                            350
                                              3693
                                                           11.5
                                                                  70
                                                                          1
                                        165
## 3 18
                 8
                                                                          1
                                       150
                                              3436
                                                           11.0
                                                                  70
                            318
## 4 16
                 8
                                        150
                                              3433
                                                           12.0
                                                                  70
                                                                          1
                            304
## 5 17
                 8
                                        140
                                              3449
                                                           10.5
                                                                  70
                                                                          1
                            302
## 6 15
                 8
                            429
                                       198
                                             4341
                                                           10.0
                                                                  70
                                                                          1
##
                          name
## 1 chevrolet chevelle malibu
## 2
             buick skylark 320
## 3
            plymouth satellite
## 4
                 amc rebel sst
## 5
                   ford torino
## 6
              ford galaxie 500
fit = lm(mpg ~ horsepower, Auto)
summary(fit)
##
## Call:
## lm(formula = mpg ~ horsepower, data = Auto)
##
## Residuals:
        Min
                  1Q
                       Median
                                    30
                                            Max
## -13.5710 -3.2592 -0.3435
                                2.7630 16.9240
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 39.935861
                           0.717499
                                      55.66
                                               <2e-16 ***
## horsepower -0.157845
                           0.006446
                                    -24.49
                                               <2e-16 ***
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 4.906 on 390 degrees of freedom
## Multiple R-squared: 0.6059, Adjusted R-squared: 0.6049
## F-statistic: 599.7 on 1 and 390 DF, p-value: < 2.2e-16
```

```
# Is there a relationship between the predictor and the response?
# Yes. The p-value corresponding to the F-statistic is very low, indicating a
clear evidence of a relationship between mpg and horsepower.
# How strong is the relationship between the predictor and the response?
# Strong evidence of relationship, R2 statistic shows the percentage of
variability in the response that is explained by the predictors. The
predictors explain almost 60% of the variance in mpg.
# Is the relationship between the predictor and the response positive or
negative?
# Negative, since the coefficient has a negative value.
# How to interpret the estimate of the slope?
# If the horsepower increases by 1 unit, then mpg decreases by 0.16 unit.
# What is the predicted mpg associated with a horsepower of 98? What are the
associated 95% confidence and prediction intervals?
predict(fit, data.frame(horsepower = 98), interval = "confidence")
##
                   lwr
                            upr
## 1 24.46708 23.97308 24.96108
predict(fit, data.frame(horsepower = 98), interval = "prediction")
          fit
                  lwr
                           upr
## 1 24.46708 14.8094 34.12476
# 95% confidence interval is [23.97,24.96]
# 95% prediction interval is [14.8,34.12]
# (b) Plot the response and the predictor. Display the least squares
regression line in the plot.
plot(Auto$horsepower, Auto$mpg)
abline(fit, col = "red")
```



```
# (c) Produce the diagnostic plots of the least squares regression fit.
Comment on each plot.
par(mfrow=c(2,2))
plot(fit, which=1)
plot(fit, which=2)
plot(fit, which=3)
plot(fit, which=5)
```



```
# The Residuals vs Fitted graph has a U-shape, thus the relationship between
predictors and response is nonlinear.
# The Residuals vs Fitted graph, it does not show heteroscedasticity.
# The Scale-Location graph indicates that there are outliers.
# The Residuals vs Leverage graph shows that there are many high leverage
points.
#log transformation
log_horsepower = log(Auto$horsepower)
log_fit = lm(mpg ~ log_horsepower, Auto)
plot(log_horsepower, Auto$mpg)
abline(log_fit, col = "red")
summary(log fit)
##
## lm(formula = mpg ~ log_horsepower, data = Auto)
##
## Residuals:
##
                       Median
                                             Max
        Min
                  1Q
                                     3Q
  -14.2299
             -2.7818
                      -0.2322
                                 2.6661
                                        15.4695
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  108.6997
                                3.0496
                                         35.64
                                                 <2e-16 ***
## log horsepower -18.5822
                                        -28.03
                                                 <2e-16 ***
                                0.6629
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.501 on 390 degrees of freedom
## Multiple R-squared: 0.6683, Adjusted R-squared: 0.6675
## F-statistic: 785.9 on 1 and 390 DF, p-value: < 2.2e-16
predict(log_fit, data.frame(log_horsepower = 98), interval = "confidence")
##
           fit
                     lwr
## 1 -1712.354 -1834.091 -1590.618
predict(log_fit, data.frame(log_horsepower = 98), interval = "prediction")
##
           fit
                     lwr
                               upr
## 1 -1712.354 -1834.412 -1590.297
par(mfrow=c(2,2))
```



```
plot(fit, which=1)
plot(fit, which=2)
plot(fit, which=3)
plot(fit, which=5)
```


R2 statistic is 66.8% and hence is a better fit compared to the model without transformation. #Square-root transformation sqrt_horsepower = sqrt(Auto\$horsepower) sqrt_fit = lm(mpg ~ sqrt_horsepower, Auto) plot(sqrt_horsepower, Auto\$mpg) abline(sqrt_fit, col = "red") summary(sqrt_fit) ## ## Call: ## lm(formula = mpg ~ sqrt_horsepower, data = Auto) ## ## Residuals: ## Min **1Q** Median 3Q Max -0.2252 -13.9768 -3.2239 2.6881 16.1411 ## ## Coefficients: Estimate Std. Error t value Pr(>|t|)## 43.52 ## (Intercept) 58.705 1.349 <2e-16 <2e-16 *** 0.132 ## sqrt_horsepower -3.503 -26.54 ## ---'***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## Signif. codes: ## Residual standard error: 4.665 on 390 degrees of freedom

```
## Multiple R-squared: 0.6437, Adjusted R-squared: 0.6428
## F-statistic: 704.6 on 1 and 390 DF, p-value: < 2.2e-16

predict(sqrt_fit, data.frame(sqrt_horsepower = 98), interval = "confidence")

## fit lwr upr
## 1 -284.6402 -307.4641 -261.8163

predict(sqrt_fit, data.frame(sqrt_horsepower = 98), interval = "prediction")

## fit lwr upr
## 1 -284.6402 -309.2378 -260.0425

par(mfrow=c(2,2))</pre>
```



```
plot(fit, which=1)
plot(fit, which=2)
plot(fit, which=3)
plot(fit, which=5)
```


R2 statistic is 64.3% and hence is a better fit compared to the model without transformation.

```
#Square transformation
square_horsepower = (Auto$horsepower)^2
square_fit = lm(mpg ~ square_horsepower, Auto)
plot(square_horsepower, Auto$mpg)
abline(square_fit, col = "red")
summary(square_fit)
##
## Call:
## lm(formula = mpg ~ square_horsepower, data = Auto)
##
## Residuals:
##
       Min
                10
                    Median
                                3Q
                                        Max
                    -1.049
  -12.529
           -3.798
                             3.240
                                    18.528
##
## Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
##
                      3.047e+01 4.466e-01
## (Intercept)
                                              68.22
                                                      <2e-16 ***
## square_horsepower -5.665e-04 2.827e-05
                                             -20.04
                                                      <2e-16 ***
## ---
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 5.485 on 390 degrees of freedom
```

```
## Multiple R-squared: 0.5074, Adjusted R-squared: 0.5061
## F-statistic: 401.7 on 1 and 390 DF, p-value: < 2.2e-16
predict(square_fit, data.frame(square_horsepower = 98), interval =
"confidence")
##
          fit
                  lwr
                           upr
## 1 30.41026 29.5365 31.28401
predict(square_fit, data.frame(square_horsepower = 98), interval =
"prediction")
##
          fit
                   lwr
                            upr
## 1 30.41026 19.59069 41.22982
par(mfrow=c(2,2))
```



```
plot(fit, which=1)
plot(fit, which=2)
plot(fit, which=3)
plot(fit, which=5)
```


R2 statistic is 50.7% and hence is not a better fit compared to the model without transformation.

Question 2

(a) Produce a scatterplot matrix which includes all of the variables in the data set. Which predictors appear to have an association with the response? head(Auto)

```
head(Auto)
     mpg cylinders displacement horsepower weight acceleration year origin
##
                                                  3504
## 1
      18
                  8
                               307
                                                                12.0
                                                                        70
                                                                                 1
                                           130
## 2
      15
                  8
                               350
                                                  3693
                                                                11.5
                                                                        70
                                                                                 1
                                           165
## 3
      18
                   8
                               318
                                           150
                                                  3436
                                                                11.0
                                                                        70
                                                                                 1
                  8
## 4
      16
                               304
                                           150
                                                  3433
                                                                12.0
                                                                        70
                                                                                 1
## 5
      17
                  8
                               302
                                           140
                                                  3449
                                                                10.5
                                                                        70
                                                                                 1
                   8
  6
      15
                                                                                 1
##
                               429
                                           198
                                                  4341
                                                                10.0
                                                                        70
##
## 1 chevrolet chevelle malibu
              buick skylark 320
## 2
             plymouth satellite
## 3
## 4
                   amc rebel sst
## 5
                     ford torino
## 6
               ford galaxie 500
```


mpg vs horsepower, mpg vs weight, dispacement vs weight, weight vs horsepower, weight vs mpg are correlated.

(b) Compute the matrix of correlations between the variables (using the function cor()). You will need to exclude the name variable, which is qualitative.

cor(Auto[,1:8])

```
##
                       mpg cylinders displacement horsepower
                                                                 weight
## mpg
                 1.0000000 -0.7776175
                                        -0.8051269 -0.7784268 -0.8322442
## cylinders
                -0.7776175 1.0000000
                                        0.9508233 0.8429834 0.8975273
## displacement -0.8051269 0.9508233
                                        1.0000000 0.8972570 0.9329944
## horsepower
                -0.7784268 0.8429834
                                         0.8972570
                                                   1.0000000
                                                              0.8645377
## weight
                -0.8322442 0.8975273
                                        0.9329944 0.8645377
                                                              1.0000000
## acceleration 0.4233285 -0.5046834
                                        -0.5438005 -0.6891955 -0.4168392
## year
                0.5805410 -0.3456474
                                       -0.3698552 -0.4163615 -0.3091199
                                        -0.6145351 -0.4551715 -0.5850054
                0.5652088 -0.5689316
## origin
##
                acceleration
                                           origin
                                  year
## mpg
                  0.4233285 0.5805410 0.5652088
                 -0.5046834 -0.3456474 -0.5689316
## cylinders
## displacement
                 -0.5438005 -0.3698552 -0.6145351
## horsepower
                  -0.6891955 -0.4163615 -0.4551715
## weight
                 -0.4168392 -0.3091199 -0.5850054
## acceleration 1.0000000 0.2903161 0.2127458
```

```
## year
                  0.2903161 1.0000000 0.1815277
## origin
                  0.2127458 0.1815277 1.0000000
# (c) Perform a multiple linear regression with mpg as the response and all
other variables except name as the predictors. Comment on the output. For
example.
fit = lm(mpg ~ .-name, data=Auto)
summary(fit)
##
## Call:
## lm(formula = mpg ~ . - name, data = Auto)
##
## Residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -9.5903 -2.1565 -0.1169 1.8690 13.0604
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -17.218435
                            4.644294 -3.707 0.00024 ***
## cylinders
                -0.493376
                            0.323282 -1.526 0.12780
                 0.019896
## displacement
                            0.007515
                                       2.647 0.00844 **
## horsepower
                -0.016951
                            0.013787 -1.230 0.21963
                -0.006474
## weight
                            0.000652 -9.929 < 2e-16 ***
## acceleration 0.080576
                            0.098845 0.815 0.41548
                 0.750773
## year
                            0.050973 14.729 < 2e-16 ***
                            0.278136 5.127 4.67e-07 ***
## origin
                 1.426141
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.328 on 384 degrees of freedom
## Multiple R-squared: 0.8215, Adjusted R-squared: 0.8182
## F-statistic: 252.4 on 7 and 384 DF, p-value: < 2.2e-16
# i) Is there a relationship between the predictors and the response?
# Yes, A large F-statistic and the corresponding small p-value indicates that
there is a relationship between .
# ii) Which predictors appear to have a statiscally significant relationship
to the response?
# Displacement, Weight, Year and Origin.
# iii) What does the coefficient for the year variable suggest?
# For each additional year, more 0.75 miles per galon is possible.
# (d) Produce diagnostic plots of the linear regression fit. Comment on each
plot.
par(mfrow=c(2,2))
plot(fit, which=1)
plot(fit, which=2)
```



```
# The Residuals vs Fitted graph does not have a U-shape curve hence the
possibility of non-linear relationship can be eliminated .
# The Residuals vs Fitted graph takes a funnel shape indicates non-constant
variance of errors.
# The Scale-Location graph shows that there are outliers.
# The Residuals vc Leverage graph showa that observation 14 is a high
Leverage point.
# (e) Is there serious collinearity problem in the model? Which predictors
are collinear?
library(car)
## Loading required package: carData
vif(fit)
##
      cylinders displacement
                               horsepower
                                                 weight acceleration
##
      10.737535
                   21.836792
                                 9.943693
                                             10.831260
                                                            2.625806
##
                      origin
           year
                    1.772386
##
       1.244952
```

A value of VIF>5 indicates serious collinearity. The predictors cylinders, displacement, horsepower and weight contrubute to collinearity problem.
COllinearity reduces the accuracy of the estimates of the regressioN coefficients.

```
# (f) Fit linear regression models with interactions. Are any interactions
statistically significant?
fit_inter = lm(mpg ~ (.-name)*(.-name), data=Auto)
summary(fit_inter)
##
## Call:
## lm(formula = mpg \sim (. - name) * (. - name), data = Auto)
##
## Residuals:
##
      Min
                10
                   Median
                               3Q
                                      Max
## -7.6303 -1.4481
                   0.0596 1.2739 11.1386
##
## Coefficients:
##
                              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                             3.548e+01 5.314e+01
                                                    0.668 0.50475
## cylinders
                             6.989e+00 8.248e+00
                                                    0.847
                                                           0.39738
## displacement
                            -4.785e-01 1.894e-01 -2.527 0.01192 *
## horsepower
                             5.034e-01 3.470e-01
                                                    1.451 0.14769
                                                    0.235 0.81442
## weight
                             4.133e-03 1.759e-02
                                                           0.00735 **
## acceleration
                            -5.859e+00 2.174e+00 -2.696
                             6.974e-01 6.097e-01
                                                   1.144 0.25340
## year
                            -2.090e+01 7.097e+00 -2.944 0.00345 **
## origin
## cylinders:displacement
                            -3.383e-03 6.455e-03
                                                  -0.524 0.60051
## cylinders:horsepower
                             1.161e-02 2.420e-02
                                                    0.480 0.63157
## cylinders:weight
                             3.575e-04 8.955e-04
                                                    0.399 0.69000
## cylinders:acceleration
                            2.779e-01 1.664e-01
                                                    1.670 0.09584 .
## cylinders:year
                            -1.741e-01 9.714e-02 -1.793 0.07389 .
## cylinders:origin
                                                    0.816 0.41482
                             4.022e-01 4.926e-01
                                                   -0.294 0.76867
## displacement:horsepower
                            -8.491e-05
                                        2.885e-04
## displacement:weight
                             2.472e-05 1.470e-05
                                                    1.682 0.09342 .
## displacement:acceleration -3.479e-03 3.342e-03 -1.041
                                                           0.29853
## displacement:year
                             5.934e-03 2.391e-03
                                                    2.482 0.01352 *
                                                    1.232 0.21875
## displacement:origin
                             2.398e-02 1.947e-02
## horsepower:weight
                            -1.968e-05 2.924e-05
                                                   -0.673 0.50124
## horsepower:acceleration
                            -7.213e-03 3.719e-03
                                                   -1.939 0.05325 .
## horsepower:year
                            -5.838e-03 3.938e-03
                                                   -1.482 0.13916
## horsepower:origin
                             2.233e-03 2.930e-02
                                                    0.076 0.93931
                                                    1.025 0.30596
## weight:acceleration
                             2.346e-04 2.289e-04
## weight:year
                            -2.245e-04 2.127e-04
                                                   -1.056 0.29182
## weight:origin
                            -5.789e-04 1.591e-03
                                                   -0.364 0.71623
## acceleration:year
                             5.562e-02 2.558e-02
                                                    2.174
                                                           0.03033 *
## acceleration:origin
                             4.583e-01 1.567e-01
                                                    2.926
                                                           0.00365 **
## year:origin
                             1.393e-01 7.399e-02
                                                    1.882 0.06062 .
## ---
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 2.695 on 363 degrees of freedom
```

```
## Multiple R-squared: 0.8893, Adjusted R-squared: 0.8808
## F-statistic: 104.2 on 28 and 363 DF, p-value: < 2.2e-16

# The p value for acceleration:origin interaction is less than 0.05 and hence this interaction is statistically significant.</pre>
```

Question 3

```
head(Carseats)
     Sales CompPrice Income Advertising Population Price ShelveLoc Age
## 1 9.50
                 138
                         73
                                      11
                                                276
                                                      120
                                                                Bad
                                                                     42
## 2 11.22
                 111
                         48
                                      16
                                                260
                                                       83
                                                               Good
                                                                     65
## 3 10.06
                 113
                         35
                                      10
                                                269
                                                       80
                                                             Medium 59
                                      4
                                                       97
                                                             Medium 55
## 4 7.40
                 117
                        100
                                                466
## 5 4.15
                 141
                         64
                                      3
                                                340
                                                      128
                                                                Bad 38
## 6 10.81
                 124
                        113
                                     13
                                                501
                                                       72
                                                                Bad 78
     Education Urban US
##
## 1
            17
                 Yes Yes
## 2
            10
                Yes Yes
            12
                 Yes Yes
## 3
## 4
            14
                Yes Yes
            13
## 5
                 Yes No
## 6
            16
                  No Yes
fit 1 = lm(Sales ~ Price + Urban + US, data=Carseats)
summary(fit_1)
##
## Call:
## lm(formula = Sales ~ Price + Urban + US, data = Carseats)
##
## Residuals:
##
       Min
                10 Median
                                3Q
                                        Max
## -6.9206 -1.6220 -0.0564 1.5786 7.0581
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.043469
                           0.651012 20.036 < 2e-16 ***
                           0.005242 -10.389
                                             < 2e-16 ***
## Price
               -0.054459
## UrbanYes
               -0.021916
                           0.271650 -0.081
                                                0.936
## USYes
                1.200573
                           0.259042
                                      4.635 4.86e-06 ***
## ---
## Signif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.472 on 396 degrees of freedom
```

```
## Multiple R-squared: 0.2393, Adjusted R-squared: 0.2335
## F-statistic: 41.52 on 3 and 396 DF, p-value: < 2.2e-16
# (b) Provide an interpretation of each coefficient in the model
# The UrbanYes has a very high p-value hence this predictor can be neglected.
# The USYes has a very low p-value hence this predictor cannot be negelected.
An additional 1.2 thousands sales units is assigned for a US location.
# The Price has a negative relationship with Sales
# (c) Write out the model in equation form.
# Sales = 13.043-0.055*Price-0.022*UrbanYes+1.2*USYes
# (d) For which of the predictors can you reject the null hypothesis 🛭 0: 💆 = 0
# We can reject the null hypothesis for Price & US predictors .
# (e) On the basis of your answer to the previous question, fit a smaller
model that only uses the predictors for which there is evidence of
association with the response.
fit_2 = lm(Sales ~ Price + US, data=Carseats)
summary(fit 2)
##
## Call:
## lm(formula = Sales ~ Price + US, data = Carseats)
## Residuals:
       Min
                10 Median
                                3Q
                                       Max
## -6.9269 -1.6286 -0.0574 1.5766 7.0515
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.03079   0.63098   20.652   < 2e-16 ***
## Price
               -0.05448
                           0.00523 -10.416 < 2e-16 ***
## USYes
               1.19964
                           0.25846
                                     4.641 4.71e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.469 on 397 degrees of freedom
## Multiple R-squared: 0.2393, Adjusted R-squared: 0.2354
## F-statistic: 62.43 on 2 and 397 DF, p-value: < 2.2e-16
# (f) How well do the models in (a) and (e) fit the data?
summary(fit 1)
##
## Call:
## lm(formula = Sales ~ Price + Urban + US, data = Carseats)
## Residuals:
```

```
Min 1Q Median
                               30
## -6.9206 -1.6220 -0.0564 1.5786 7.0581
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                        0.651012 20.036 < 2e-16 ***
## (Intercept) 13.043469
## Price
             -0.054459
                          0.005242 -10.389 < 2e-16 ***
## UrbanYes
              -0.021916
                          0.271650 -0.081
                                              0.936
                                   4.635 4.86e-06 ***
## USYes
              1.200573 0.259042
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.472 on 396 degrees of freedom
## Multiple R-squared: 0.2393, Adjusted R-squared: 0.2335
## F-statistic: 41.52 on 3 and 396 DF, p-value: < 2.2e-16
summary(fit 2)
##
## Call:
## lm(formula = Sales ~ Price + US, data = Carseats)
##
## Residuals:
##
      Min
               10 Median
                               3Q
                                      Max
## -6.9269 -1.6286 -0.0574 1.5766 7.0515
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                          0.63098 20.652 < 2e-16 ***
## (Intercept) 13.03079
## Price
                          0.00523 -10.416 < 2e-16 ***
             -0.05448
## USYes
               1.19964
                          0.25846
                                    4.641 4.71e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.469 on 397 degrees of freedom
## Multiple R-squared: 0.2393, Adjusted R-squared: 0.2354
## F-statistic: 62.43 on 2 and 397 DF, p-value: < 2.2e-16
# The R2 statistic is same for both fits. The F-statistic is large for the
second fit and hence is a superior fit.
# (q) Is there evidence of outliers or high leverage observations in the
model from (e)?
par(mfrow=c(2,2))
plot(fit_2, which=1)
plot(fit 2, which=2)
plot(fit_2, which=3)
plot(fit_2, which=5)
```


Scale-Location graph does not show any highlighted outlier.
Residuals vs Leverage graph shows a very high leverage observation.