Image Pretraining from Pixels



Сеньченко Тимофей Группа 172

# Unsupervised and self-supervised learning

- Успешно используются в NLP (Авторегрессионные модели, BERT)
- Практически нет аналогичных современных применений в задачах связанных с изображениями
- Хорошие генеративные модели выучивают более хорошие представления?
- Воспользуемся domain-agnostic трансформером для авторегрессионного предсказания пикселей

## Pretraining

$$x = (x_1, ..., x_n)$$

$$p(x) = \prod_{i=1}^{n} p(x_{\pi_i} | x_{\pi_1}, ..., x_{\pi_{i-1}}, \theta)$$

Для изображений будем минимизировать:

$$L_{AR} = \mathop{\mathbb{E}}_{x \sim X} [-\log p(x)]$$

Или:

$$L_{BERT} = \underset{x \sim X}{\mathbb{E}} \underset{M}{\mathbb{E}} \sum_{i \in M} \left[ -\log p \left( x_i | x_{[1,n] \setminus M} \right) \right]$$
$$M \subset [1, n]$$







### Architecture

```
Вход: токены x_1, ..., x_n
```

-> эмбеддинги размерности d для каждой позиции

Декодер состоит из L блоков, где l-й блок подает на выход промежуточные эмбеддинги  $h_1^l,...,h_n^l$  размерности d

Авторы статьи используют структуру блока GPT-2: (тензор  $\,h^t\,$  - вход)

$$n^l = \text{layer\_norm}(h^l)$$
  
 $a^l = h^l + \text{multihead\_attention}(n^l)$   
 $h^{l+1} = a^l + \text{mlp}(\text{layer\_norm}(a^l))$ 

# Fine-tuning and Linear Probing





### Fine-tuning:

- Добавляем голову классификатор,
- Дообучаем на лейблах, используя выученные представления
- Loss: кросс-энтропия  $L_{CLF}$ , а лучше:  $L_{GEN} + L_{CLF}$   $L_{GEN} \in \{L_{AR}, L_{BERT}\}$

### **Linear Probing:**

• Выбираем некоторый слой і и по его выходам учим Логистическую регрессию на лейблах

### Context reduction

Входные данные значительно большей размерности, чем в NLP задачах (224^2 X 3)

- -> не можем использовать внимание с исходными данными
- -> уменьшаем Image Resolution (32^2 X 3 или 48^2 X 3 или 64^2 X 3)
- -> переводим картинку из палитры RGB в новую 9ти битную палитру с помощью k-means кластеризации
- -> получаем изображения значительно меньшей размерности (32^2 или 48^2 или 64^2)



### Data and models

- iGPT-XL. L = 60, d = 3072, parameters: 6.8B
- iGPT-L. L = 48, d = 1536, parameters: 1.4B
- iGPT-M. L = 36, d = 1024, parameters: 455M
- iGPT-S. L = 4, d =512, parameters: 76M

#### Datasets:

- CIFAR-10
- CIFAR-100
- STL-10



### Steps:

- 131k
- 262k
- 524k
- 1000k



PRE-TRAINED ON IMAGENET

## Results

Качество моделей предобученных на ImageNet

| EVALUATION                | MODEL                      | ACCURACY | W/O<br>LABELS | W/<br>LABELS |
|---------------------------|----------------------------|----------|---------------|--------------|
| CIFAR-10<br>Linear Probe  | ResNet-152 <sup>50</sup>   | 94.0     |               | <b>~</b>     |
|                           | SimCLR <sup>12</sup>       | 95.3     | <b>~</b>      |              |
|                           | iGPT-L 32x32               | 96.3     | <b>~</b>      |              |
| CIFAR-100<br>Linear Probe | ResNet-152                 | 78.0     |               | <b>✓</b>     |
|                           | SimCLR                     | 80.2     | <b>~</b>      |              |
|                           | iGPT-L 32x32               | 82.8     | <b>~</b>      |              |
| STL-10<br>Linear Probe    | AMDIM-L <sup>13</sup>      | 94.2     | <b>~</b>      |              |
|                           | iGPT-L 32x32               | 95.5     | <b>~</b>      |              |
| CIFAR-10<br>Fine-tune     | AutoAugment <sup>51</sup>  | 98.5     |               |              |
|                           | SimCLR                     | 98.6     | <b>✓</b>      |              |
|                           | GPipe <sup>15</sup>        | 99.0     |               | <b>✓</b>     |
|                           | iGPT-L                     | 99.0     | <b>✓</b>      |              |
| CIFAR-100<br>Fine-tune    | iGPT-L                     | 88.5     | <b>✓</b>      |              |
|                           | SimCLR                     | 89.0     | <b>✓</b>      |              |
|                           | AutoAugment                | 89.3     |               |              |
|                           | EfficientNet <sup>52</sup> | 91.7     |               | <b>✓</b>     |

Качество на ImageNet

| METHOD                 | INPUT<br>RESOLUTION | FEATURES | PARAMETERS | ACCURACY |
|------------------------|---------------------|----------|------------|----------|
| Rotation <sup>53</sup> | original            | 8192     | 86M        | 55.4     |
| iGPT-L                 | 32x32               | 1536     | 1362M      | 60.3     |
| BigBiGAN <sup>37</sup> | original            | 16384    | 86M        | 61.3     |
| iGPT-L                 | 48x48               | 1536     | 1362M      | 65.2     |
| AMDIM <sup>13</sup>    | original            | 8192     | 626M       | 68.1     |
| MoCo <sup>24</sup>     | original            | 8192     | 375M       | 68.6     |
| iGPT-XL                | 64x64               | 3072     | 6801M      | 68.7     |
| SimCLR <sup>12</sup>   | original            | 2048     | 24M        | 69.3     |
| CPC v2 <sup>25</sup>   | original            | 4096     | 303M       | 71.5     |
| iGPT-XL                | 64x64               | 3072 x 5 | 6801M      | 72.0     |
| SimCLR                 | original            | 8192     | 375M       | 76.5     |

#### CIFAR-10





#### **ImageNet**





#### CIFAR-10





#### **ImageNet**





| MODEL                      | 40 LABELS   | 250 LABELS | 4000 LABELS |
|----------------------------|-------------|------------|-------------|
| Improved GAN <sup>55</sup> | _           | _          | 81.4 ± 2.3  |
| Mean Teacher <sup>56</sup> | _           | 67.7 ± 2.3 | 90.8 ± 0.2  |
| MixMatch <sup>57</sup>     | 52.5 ± 11.5 | 89.0 ± 0.9 | 93.6 ± 0.1  |
| iGPT-L                     | 73.2 ± 1.5  | 87.6 ± 0.6 | 94.3 ± 0.1  |
| UDA <sup>58</sup>          | 71.0 ± 5.9  | 91.2 ± 1.1 | 95.1 ± 0.2  |
| FixMatch <sup>59</sup> RA  | 86.2 ± 3.4  | 94.9 ± 0.7 | 95.7 ± 0.1  |
| FixMatch CTA               | 88.6 ± 3.4  | 94.9 ± 0.3 | 95.7 ± 0.2  |

| MODEL                      | 40 LABELS   | 250 LABELS | 4000 LABELS |
|----------------------------|-------------|------------|-------------|
| Improved GAN <sup>55</sup> | _           | _          | 81.4 ± 2.3  |
| Mean Teacher <sup>56</sup> | _           | 67.7 ± 2.3 | 90.8 ± 0.2  |
| MixMatch <sup>57</sup>     | 52.5 ± 11.5 | 89.0 ± 0.9 | 93.6 ± 0.1  |
| iGPT-L                     | 73.2 ± 1.5  | 87.6 ± 0.6 | 94.3 ± 0.1  |
| UDA <sup>58</sup>          | 71.0 ± 5.9  | 91.2 ± 1.1 | 95.1 ± 0.2  |
| FixMatch <sup>59</sup> RA  | 86.2 ± 3.4  | 94.9 ± 0.7 | 95.7 ± 0.1  |
| FixMatch CTA               | 88.6 ± 3.4  | 94.9 ± 0.3 | 95.7 ± 0.2  |

### Conclusion

- Качество моделей в различных задачах не уступает сверточным сетям
- Приходится использовать данные с более низким разрешением, чем сверточные сети
- Большое количество параметров, долгое обучение
- -> На данный момент достаточно непрактично для использования в реальных задачах









ALC: NAME ASSESSMENT

# Links

- Статья
- Блог пост