ফাই ফাংশন ও অয়লারের উপপাদ্য

Phi Function and Euler's Theorem

মতাসিম মিম

আগস্ট ২০১৬

১. অয়লার ফাংশন $\phi(n)$

সংজ্ঞা ১: (a,b) দারা a ও b এর গ.সা.গু. বোঝানো হবে।

সংজ্ঞা ২: a ও b দুটি পূর্ণসংখ্যা হলে a ও b সহমৌলিক বলা হবে যদি a ও b এর মধ্যে কোন সাধারণ উৎপাদক না থাকে। যেমন: 27 ও 10 সংখ্যা দুটির মধ্যে কোন সাধারণ উৎপাদক নেই। তাই এরা সহমৌলিক। অন্যভাবে বলা যায়, (a,b)=1 হলে a ও b সহমৌলিক।

সংজ্ঞা ৩: n একটি স্বাভাবিক সংখ্যা। 1 হতে n পর্যন্ত যেসব সংখ্যা n এর সাথে সহমৌলিক তাদের সংখ্যাকে $\phi(n)$ লেখা হয়। একে পড়া হয় ফাই অফ n. যেমন: 18 সংখ্যাটি দেখা যাক। 1 হতে 18 পর্যন্ত যেসব সংখ্যার সাথে 18 এর কোন সাধারণ উৎপাদক নেই সেগুলো হল, 1,5,7,11,13,17.এখানে 6 টি সংখ্যা আছে। সুতরাং $\phi(18)=6$. আবার, 1 হতে 15 পর্যন্ত যেসব সংখ্যার সাথে 15 এর কোন সাধারণ উৎপাদক নেই সেগুলো হল 1,2,4,7,8,11,13,14. ফলে $\phi(n)=8$.

অনুশীলন ১.১: 20 হতে 40 পর্যন্ত সবগুলো পূর্ণসংখ্যার ফাই ফাংশনের মান বের কর।

উপপাদ্য ১.১:

- i) n একটি মৌলিক সংখ্যা হলে $\phi(n)=n-1$ হবে।
- ii) n এমন একটি স্বাভাবিক সংখ্যা যেন $\phi(n)=n-1$. তাহলে n অবশ্যই মৌলিক সংখ্যা হবে।

প্রমাণ: n মৌলিক হলে 1 হতে n-1 পর্যন্ত সবগুলো সংখ্যাই n এর সাথে সহমৌলিক হবে।অর্থাৎ $\phi(n)=n-1$ হবে। আবার যদি n যৌগিক হয়, তাহলে 1 হতে n-1 পর্যন্ত অন্তত একটি সংখ্যা দ্বারা n বিভাজ্য হবে, ফলে $\phi(n)< n-1$ হবে।

২. রিডিউসড রেসিডিউ সিস্টেম (Reduced Residue System)

একটি সেট S কে একটি $\operatorname{Reduced}$ $\operatorname{Residue}$ $\operatorname{System}(\operatorname{mod} m)$ বলা হবে যদি m এর সাথে সহমৌলিক যেকোন পূর্ণসংখ্যা a-এর জন্য S-এ কেবল মাত্র একটি সদস্য r থাকে যেন $a \equiv r \pmod m$ হয়।

 $S=\{1,3,5,7\}$ সেটটি দেখা যাক। S সেটটি একটি $Reduced\ Residue\ System\ (mod\ 8)$. কারণ, ধরা যাক, পূর্ণ সংখ্যা a কে 8 দ্বারা ভাগ করলে ভাগফল q ও ভাগশেষ r হয়, অর্থাৎ, a=8q+r. $0\leq r\leq 8$. a ও 8 সহমৌলিক বলে, 8 ও r সহমৌলিক হবে। সুতরাং r হবে 1,3,5,7 এর কোন একটি। আবার, $a-r=8q, a\equiv r\pmod 8$. অর্থাৎ a ও 8 সহ মৌলিক হলে $a\equiv 1,3,5,7\pmod 8$ এর কোন একটি হবে।

একইভাবে $T=\{-7,3,45,-41\}$ সেটটিও একটি Reduced Residue System (mod 8), কারণ a ও 8 সহ মৌলিক হলে $a\equiv 1,3,5,7\pmod 8$ এর কোন একটি হবে। এখন $a\equiv 1\pmod 8$ হলে, $a\equiv -7\pmod 8$ হবে। আবার, $a\equiv 3\pmod 8$, $a\equiv 5\pmod 8$, $a\equiv 7\pmod 8$ হলে যথাক্রমে $a\equiv 3\pmod 8$, $a\equiv 45\pmod 8$, $a\equiv -41\pmod 8$ হবে। তাহলে দেখা যাচ্ছে 8 এর সাথে সহ মৌলিক যেকোনো a এর জন্যই T সেট এ কেবল একটি সংখ্যা r পাওয়া যাচ্ছে যেন $a\equiv r\pmod 8$ হয়। এজন্য T একটি Reduced Residue System (mod 8). লক্ষ্য কর, Reduced Residue System(mod m) এর সকল সদস্যই m এর সাথে সহমৌলিক। নিশ্চিতভাবেই বলা যায়, m একটি স্বাভাবিক সংখ্যা হলে একটি Reduced Residue System(mod m) এর সদস্য সংখ্যা হবে $\phi(m)$

সংখ্যাতত্ত্বে Reduced Residue System এর ধারণা খুবই গুরুত্বপূর্ণ। ধরা যাক, p একটা মৌলিক সংখ্যা। $S=\{1,2,3,\ldots,(p-1)\}$ সেটটি দেখা যাক। p দ্বারা বিভাজ্য নয় এমন যেকোনো a এর জন্য a ও p সহমৌলিক হবে। ধরা যাক,a=pq+r, যেখানে 0< r< p. $r\neq 0$, কারণ তাহলে p দ্বারা =বিভাজ্য হতো। 0< r< p বা, $1\leq r\leq p-1$ হতে বলা যায়, r অবশ্যই S সেট এর সদস্য। a=pq+r হতে বলা যায় $a\equiv r\pmod p$. তাহলে দেখা যাচছে p এর সাথে সহমৌলিক যেকোনো a এর জন্য S-এ একটি সদস্য r আছে যেন $a\equiv r\pmod p$ হয়। আবার যদি কোন S এর কোন দুটি সদস্য c,d এর জন্য $a\equiv c\pmod p$, এবং $a\equiv d\pmod p$ হয়, তাহলে $c\equiv d\pmod p$ হবে, অর্থাৎ p|c-d হবে। কিন্তু তা সম্ভব নয় কারণ c,d দুটির মানই p এর চেয়ে ছোট। তাহলে আমরা এই সিদ্ধান্তে আসতে পারি যে p এর সাথে সহ মৌলিক যেকোনো a এর জন্য S এ এমন কেবল একটি সংখ্যা r আছে যেন $a\equiv r\pmod p$ হয়। যার অর্থ হল S সেটটি একটি Reduced Residue System(mod p) উপরের অনুচ্ছেদ এর সারমর্ম হল,

উপপাদ্য ২.১: যেকোনো মৌলিক সংখ্যা p এর জন্য $\{1,2,3,\ldots,p-1\}$ সেটটি একটি Reduced Residue System(mod p).

অনুসিদ্ধান্ত ২.১: মৌলিক সংখ্যা p এর Reduced Residue System এ (p-1) টি উপাদান থাকবে। নিশ্চিতভাবেই বলা যায়,

উপপাদ্য ২.২: m একটি স্বাভাবিক সংখ্যা হলে একটি $\operatorname{Reduced} \operatorname{Residue} \operatorname{System} \pmod{m}$ এর সদস্য সংখ্যা হবে $\phi(m)$.

অয়লারের উপপাদ্য প্রমাণে আরেকটি ফলাফল আমাদের দরকার হবে।

উপপাদ্য ২.৩: $\{r_1, r_2, r_3, \dots, r_{p-1}\}$ একটি Reduced Residue System \pmod{p} হলে যেকোনো (a, p) = 1 এর জন্য ও একটি Reduced Residue System \pmod{p} হবে। (এখানে p কে মৌলিক হতে হবে এমন নয়)

প্রমাণ: $S=\{r_1,r_2,r_3,\ldots,r_{p-1}\}, T=\{ar_1,ar_2,ar_3,\ldots,ar_{p-1}\}.$ S সেটটিতে p-1 সংখ্যক উপাদান আছে মধ্যে কোন দুটি উপাদান r_1,r_2 এর জন্যই $r_1\equiv r_2\pmod p$ নয়। T সেটেও p-1 সংখ্যক উপাদান আছে। এটা দেখানোই যথেষ্ট যে T এর কোন দুটি উপাদান ar_i,ar_j এর জন্যই $ar_i\equiv ar_j\pmod p$ নয়। যদি $ar_i\equiv ar_j\pmod p$ হয়, তাহলে $p|ar_i-ar_j$ বা, $p|a(r_i-r_j)$. কিন্তু a,p দ্বারা বিভাজ্য নয়। সুতরাং, $p|(r_i-r_j)$ কিন্তু তা সম্ভব

নয়। কারণ r_i, r_j দুটিই S সেট এর ভিন্ন উপাদান। সুতরাং T হল একটি $\operatorname{Reduced}$ $\operatorname{Residue}$ $\operatorname{System}(\operatorname{mod} p)$

এখন আমরা অয়লারের উপপাদ্য প্রমাণ করতে প্রস্তুত।

উপপাদ্য ২.8 (অয়লারের উপপাদ্য): a ও m দুটি সহমৌলিক পূর্ণসংখ্যা, অর্থাৎ (a,m)=1. তাহলে

$$a^{\phi(m)} \equiv 1 \pmod{m}$$

প্রমাণ: $\phi(m)=k$ ধরা যাক (লেখার সুবিধার্থে)। m এর কোন reduced residue system এ $\phi(m)=k$ সংখ্যক উপাদান থাকবে। ধরা যাক $S=\{r_1,r_2,r_3,\ldots,r_k\}$ একটি reduced residue system (mod m). যেহেতু (a,m)=1, তাই আগের উপপাদ্য অনুসারে $T=\{ar_1,ar_2,ar_3,\ldots,ar_k\}$ ও একটি reduced residue system (mod m). S এর সদস্যগুলোকে m দ্বারা ভাগ করে প্রাপ্ত ভাগশেষগুলো এবং T এর সদস্যগুলোকে m দ্বারা ভাগ করে প্রাপ্ত ভাগশেষগুলো একই হবে। অর্থাৎ T এর সদস্য প্রত্যেকটি ar_i -এর জন্য S এ একটি অনন্য সদস্য r_j পাওয়া যাবে যেন $ar_i\equiv r_j\pmod m$ হয়। এমন সবগুলো অনুসমতা গুণ করলে পাওয়া যায়

$$ar_1 \cdot ar_2 \cdot ar_3 \cdots ar_k \equiv r_1 \cdot r_2 \cdot r_3 \cdots r_k \pmod{m}$$

$$\Rightarrow \qquad \qquad a^k (r_1 \cdot r_2 \cdot r_3 \cdots r_k) \equiv r_1 \cdot r_2 \cdot r_3 \cdots r_k \pmod{m}$$

$$\Rightarrow \qquad \qquad (r_1 \cdot r_2 \cdots r_3 \cdot r_k) (a^k - 1) \equiv 0 \pmod{m}$$

কিন্তু $(r_1, r_2, r_3, \cdots, r_k)$ সংখ্যাগুলোর কোনটির সাথেই aএর কোন সাধারণ উৎপাদক নেই। সুতরাং,

$$m|(a^k - 1)$$

$$\Rightarrow a^k \equiv 1 \pmod{m}$$

$$\Rightarrow a^{\phi(m)} \equiv 1 \pmod{m}$$

সমস্যা ১: দেওয়া আছে $\phi(40)=16$. তাহলে 2949 কে 40 দিয়ে ভাগ করলে কত ভাগশেষ থাকে তা বের কর। সমস্যা ২: অয়লারের উপপাদ্য ব্যাবহার করে ফার্মার উপপাদ্য প্রমাণ কর।

৩. ফাই ফাংশনের মান বের করা

ফাই ফাংশনের সংজ্ঞাটি আরেকবার উল্লেখ করা হল।

সংজ্ঞা 8: n একটি স্বাভাবিক সংখ্যা। 1 হতে n পর্যন্ত যেসব সংখ্যা n এর সাথে সহমৌলিক তাদের সংখ্যাকে $\phi(n)$ লেখা হয়। একে পড়া হয় ফাই অফ n.

অয়লারের উপপাদ্য ব্যাবহার করার জন্য যেকোনো সংখ্যার ফাই ফাংশনের মান বের করতে পারতে হবে।

কয়েকটি ধাপে স্বাভাবিক সংখ্যা n এর জন্য $\phi(n)$ মান বের করার পদ্ধতি দেখান হল। সংজ্ঞা অনুসারে, $\phi(1)=1$. আবার আমরা আগেই প্রমাণ করেছি মৌলিক সংখ্যা p এর জন্য $\phi(p)=p-1$. এখন আমরা মৌলিক সংখ্যা p এর জন্য p^k এর মান বের করব।

•

উপপাদ্য ৩.১: p মৌলিক হলে $\phi(p^k)=p^k-p^{k-1}$

প্রমাণ: 1 হতে p^k পর্যন্ত সংখ্যাগুলোর মধ্যে কেবল p এর গুণিতকগুলোরই p^k এর সাথে সাধারণ উৎপাদক আছে। এরকম সংখ্যা গুলো হল $p,2p,3p,\ldots,(p^{k-1})p,$ অর্থাৎ p^{k-1} টি। বাকি সংখ্যাগুলোর সাথে p^k এর কোন সাধারণ উৎপাদক নেই। বাকি সংখ্যা থাকে p^k-p^{k-1} টি। অর্থাৎ,

$$\phi(p^k) = p^k - p^{k-1}$$

উদাহরণ ১: $\phi(52)=52-5=20$. পরীক্ষা করে দেখ।

নিচের উপপাদ্যটির সাহায্যে একাধিক মৌলিক উৎপাদক বিশিষ্ট সংখ্যার ফাই ফাংশনের মান নির্ণয় করা যায়। **উপপাদ্য ৩.২:** মনে করি, $n=a_1^{s_1}a_2^{s_2}\cdots a_k^{s_k}$, যেখানে $a_1,a_2\ldots,a_k$ ইত্যাদি হল মৌলিক সংখ্যা। তাহলে,

$$\phi(n) = a_1^{s_1 - 1} a_2^{s_2 - 1} \cdots a_k^{s_k - 1} (a_1 - 1)(a_2 - 1) \cdots (a_k - 1)$$