Interação da radiação com a matéria através da equação de Bethe-Bloch

Quando partículas carregadas, massivas e energéticas, passam pela matéria, elas podem ionizar ou excitar os átomos em seu caminho ao colidir e transmitir energia aos elétrons atômicos. Embora a perda de energia ocorra devido a uma série de eventos discretos, e embora cada evento tenha um resultado aleatório (por exemplo, os elétrons liberados podem obter uma quantidade variável de energia), ainda podemos aproximar o processo como uma perda contínua de energia. O resultado, elaborado pela primeira vez por Hans Bethe (1906–2005), é conhecido como Fórmula Bethe ou Equação Bethe-Bloch, que descreve a média da perda de energia por distância percorrida das partículas carregadas atravessando a matéria (ou, alternativamente, o "poder de parada" do material). Eventos da história dos estudos da perda de energia de radiação:

- 1915: Niels Bohr, fórmula clássica, prêmio Nobel em 1922.
- 1930: Fórmula não-relativistíca encontrada por Hans Bethe
- 1932: Fórmula relativística encontrada por Hans Bethe

Equação de Bethe-Bloch:

$$-\frac{dE}{dx} = Kz^2 \varrho \frac{Z}{A} \frac{1}{\beta^2} \left[\ln \left(\frac{2m_e c^2 \beta^2 \gamma^2}{I} \right) - \beta^2 \right]$$

Símbolo	Significado	valor ou unidade
K	$4\pi N_A r_e^2 m_e c^2$	$0.307 \; \mathrm{MeV} \; \mathrm{cm}^2 mol^{-1}$
N_A	Número de Avagadro	$6,022 \times 10^{23} mol^{-1}$
r_e	Raio clássico do elétron ¹	2,818 fm
$m_e c^2$	Massa do elétron	$0,5110~{ m MeV}$
M	Massa da partícula incidente	${ m MeV}$
z	Carga da Partícula incididente	adimensional (e)
Z	Número atômico do meio	adimensional (e)
A	Número de massa do meio	$gmol^1$
I	Energia média de excitação	MeV
ρ	Densidade do meio	gcm^3

A figura abaixo é a função calculada para múons ao interagir com o cobre.

O projeto² consiste em calcular a distribuição diferencial da energia de um múon passando pelo cobre e integrar a equação para obter a perda total de energia por

Inicialmente será explorada a relação entre β^3 , γ^4 e $\beta\gamma$, onde as partículas carregadas irão variar de fracamente relativísticas ($\beta = 0.1$) a ultra-relativísticas ($\gamma = 100$). Em seguida, a equação de Bethe-Bloch será construída um pedaço de cada vez.

- (1) Escreva uma função em Python chamada **def gamma (beta)**: que tenha como argumento β e retorna γ . Teste-o para um valor de β , como por exemplo, 0,6.
- (2) Certifique-se de que sua função gama (beta) pode aceitar um vetor de β e retornar um vetor compatível de γ .
- (3) A partir de um vetor de valores β variando de 0 a 0,995, faça um gráfico qamma versus
- (4) Faça um gráfico $\gamma\beta$ versus β . O que você observa?
- (5) Trace o argumento do log natural na equação de Bethe-Block em uma função de $\gamma\beta$. Faça o argumento ser uma nova função ln_argument(). Para você: essa função deve aceitar β ou γ como um argumento, ou ambos, ou seu produto? Observe que pode ser muito difícil obter β com uma boa precisão a partir γ em baixas velocidades; o oposto é difícil em velocidades muito altas. Faça o gráfico para um intervalo de 0,1 a 100.
- (6) Esse gráfico não mostra a região de interessante para valores baixos de β . Faça o plot com uma escala logarítmica no eixo vertical? Dica: Procure na ajuda do matplotlib a função semilogy(). Ficou melhor? Talvez ambos os eixos?
- (7) Provável que agora, seus valores $\gamma\beta$ não estão uniformemente espaçados no gráfico. Faça um vetor de valores $\gamma\beta$ que tenham um logaritmo uniformemente espaçado de 0,1 a 100. Repita o gráfico mais uma vez usando os novos argumentos. Uma identidade útil aqui é $\gamma^2 = (\gamma\beta)^2 + 1$
- (8) Plote o conteúdo dos colchetes versus $\gamma\beta$ usando o mesmo espaçamento do vetor de log para o argumento x. Para termos números reais de I, escolha múons que penetram em um absorvedor de cobre. Esse é um número adimensional que pode variar de 3,55 a mais
- (9) Finalmente, plote toda a equação -(dE/dx), a energia perdida por unidade de distância, para múons que passam pelo cobre. Os dados de que você precisa sobre o cobre estão todos no PDG. Além disso, pode encontrar mais sobre o múon aqui. Convertendo para nossas unidades, a perda de energia deve ter uma largura mínima de 13 MeV / cm para o momento do múon ou energia em torno de 300 MeV.

Agora você pode comparar seu resultado com a figura apresentada anteriormente.

Lembretes:

- Esse é um projeto da disciplina de Introdução a Python, portanto também estaremos avaliando o seu conhecimento da linguagem de programação;
- Lembre-se de *encapsular* sempre que necessário;
- Estaremos avaliando pontos como:
 - O seu programa está rodando sem problemas?
 - A estrutura e organização do programa;
 - O uso de dados estruturados (listas) e funcionalidades do Python;
 - O resultado de Física proposto.

²Este projeto baseia-se nas atividades desenvolvidas no curso "Seminar in Computational Physics" da Universidade de Princeton: http://physics.princeton.edu/~phy209/.

 $^{^3}$ Velocidade de um objeto em relação à velocidade da luz. $\beta=v/c$. 4 Fator de Lorentz, $\gamma=\frac{1}{\sqrt{1-v^2/c^2}}.$