METODE INTELIGENTE DE REZOLVARE A PROBLEMELOR REALE

Laura Dioşan Tema 3

Procesarea imaginilor

□ De ce?

- Îmbunătăţirea calităţii imaginilor
 - □ Reducerea zgomotolui și a altor defecte
 - Evidenţierea anumitor zone
 - Determinarea contururilor
- Extragerea de informaţii

Aplicaţii

- Recunoaşterea caracterelor
- Recunoaşterea amprentelor
- Prelucrarea imaginilor medicale
- Prelucrarea imaginilor din satelit

Procesarea imaginilor

- Captarea imaginilor şi reprezentarea lor
- Operaţii asupra imaginilor
 - Operaţii geometrice
 - Operaţii de îmbunătăţire
 - Operaţii de comprimare
- Extragerea de informaţii relevante din imagini

Captarea imaginilor și reprezentarea lor

Captare

- Foto
- Video

Reprezentare

- În domeniul spaţial (geometric)
 - Imaginea = un ansamblu de valori plasate dupa o formă spaţială (regulată sau nu) de dimensiune supra-unitară (plan, spaţiu, dar nu dreaptă)
 - Matrice de pixeli (picture elemnt)
 - Reprezentare intuitivă dpdv al ochiului uman
- În domeniul frecvenţelor (spectral)
 - Imaginea = un ansamblu de frecvenţe care compun imaginea (culoare frecvenţă lungime de undă (IP) amplitudine)
 - Imaginea = semnal bidimensional
 - Grafic, pe OX, OY se află distribuţia frecvenţelor pe cele 2 axe ale imaginii, iar culoarea pixelilor va reprezenta amplitudinea (mai deschis înseamnă amplitudine superioară)
 - Reprezentare f utilă în procesele de analiză comprimare și prelucrare a imaginilor

Captarea imaginilor și reprezentarea lor – domeniul spațial

Imaginea = ansamblu de pixeli

Tipologia imaginilor în domeniul spaţial (geometric)

- După valoarea unui pixel
 - Imagini scalare orice valoare este un scalar (intensitatea luminoasă, distanţa, temperatura)
 - □ imagini monocrome (binare) \rightarrow 0/1
 - □ imagini alb-negru (cu nivele de gri) → 8 biţi
 - 0 → negru
 - 255 → alb
 - Imagini vectoriale orice valoare este un vector; imaginea vectorială = sandwich de imagini scalare
 - Imagini color vectori de 3 componente
 - Imagini satelitare vectori de 3-200 componente
 - Imagini termografice vectori de 2-5 componente în bandă de infraroşu

Captarea imaginilor și reprezentarea lor

Blue

Black

Cyan

Green

Magenta

Red

White

Yellow

domeniul spațial

- Imagini color vectori de 3 componente
 - Modelul RGB (Red-Green-Blue)
 - $(0,0,0) \rightarrow \text{negru}$
 - □ (255, 255, 255) \rightarrow alb

□ Saturaţia → puritatea culorii (procentual)

ea
$$\begin{bmatrix}
H \\
S \\
I
\end{bmatrix} = \begin{bmatrix}
\frac{\pi}{2} - \arctan & \left\{ \frac{2R - G - B}{\sqrt{3}} (G - B) \right\} + \pi \\
& \frac{2\pi}{3} \\
& \frac{R + G + B}{3} \\
& \frac{R + G + B}{3}
\end{bmatrix}$$

- Modelul CMY (Cyan-Magenta-Yellow)
 - $(0,0,0) \rightarrow alb$
 - □ (255,255,255) \rightarrow negru
- Conversii între modele

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Captarea imaginilor și reprezentarea lor – domeniul spațial

Tipologia imaginilor în domeniul spaţial (geometric)

- După semnificaţia valorilor
 - Imagini de intensitate valori DP cu mărimea fizică măsurată în scenă
 - Imagini indexate valorile sunt indici (adrese) într-un tabel asociat imaginii, în care se găseşte informaţia de intensitate

Captarea imaginilor și reprezentarea lor – domeniul spațial

- Pp. o imagine de dimensiune MxN
- \Box f_{ii} valoarea pixelului de pe linia i și coloana j
- P mulţimea tuturor pixelilor
- Vecinătăţi
 - Pt. un pixel p situat la poziţia (i,j)
 - Vecini ortogonali:
 - $p_1 (i-1,j), p_2 (i+1,j), p_3 (i,j-1), p_4 (i,j+1)$
 - Formează ansamblul $N_4(p)$
 - Vecini diagonali
 - $p_5 (i-1,j-1), p_6 (i-1,j+1), p_7 (i+1,j-1), p_8 (i+1,j+1)$
 - formează ansamblul $N_D(p)$
 - $N_8(p) = N_4(p) \ U \ N_D(p)$
- Conectivități
 - 2 pixeli $p_1(i_1,j_1)$ şi $p_2(i_2,j_2)$ se află în relaţie de
 - k-conectivitate
 - dacă $p_1 \in N_k(p_2)$ sau $p_2 \in N_k(p_1)$, $k \in \{4,8\}$
- Drum
 - de lungime n mulţimea de pixeli $D_n = \{p_1, p_2, ..., p_n\}$ a.î. p_i se află în relaţie de conectivitate cu p_{i+1} , i=1,2,...,n-1
- □ Pixelii p şi q sunt conectaţi dacă există un drum între ei
- Regiune
 - set de pixeli conectaţi

Captarea imaginilor și reprezentarea lor

- domeniul spațial
- Metrici între 2 pixeli $p_1(i_1,j_1)$ şi $p_2(i_2,j_2)$
 - Distanţa Euclideană
 - $d(p_1,p_2)=[(i_1-i_2)^2+(j_1-j_2)^2]^{1/2}$
 - Distanţa Manhattan
 - □ $d_4(p_1,p_2)=|i_1-i_2|+|j_1-j_2| \rightarrow N_4(p)=\{q\in P \ a.\hat{i}.\ d_4(p,q)\leq 1\}$
 - Distanţa jocului de şah
 - □ $d_8(p_1,p_2)=\max(|i_1-i_2|,|j_1-j_2|) \rightarrow N_8(p)=\{q\in P \ a.\hat{i}.\ d_8(p,q)\leq 1\}$

Captarea imaginilor și reprezentarea lor

- domeniul frecvenţelor
- Imaginea = ansamblu de frecvenţe
- Transformarea unei imagini din domeniul spaţial în domeniul spectral
 - Serii Fourier
 - Matrice de pixeli → matrice de frecvenţe (lungimi de undă)
 - Orice undă (sinusoidală) poate fi descompusă într-o sumă de mai multe sinusoidale

- Captarea imaginilor şi reprezentarea lor
- Operaţii asupra imaginilor
 - Operaţii geometrice
 - Operaţii de îmbunătăţire
 - Operaţii de comprimare
 - Operaţii de segmentare
 - Operaţii de restaurare
- Extragerea de informaţii relevante din imagini

Operații geometrice

- Pentru reprezentarea spaţială a imaginilor
- Nu modifică valorile pixelilor (compoziţia)
- Modifică așezarea lor spaţială (structura)
- Translaţie
 - Modificarea după o traiectorie dreaptă a coordonatelor unui pixel

$$x'=x+Tx$$

$$y'=y+Ty$$

- Rotaţie
 - Modificarea după o traiectorie circulară a coordonatelor unui pixel
 - □ Coordonate carteziene → coordonate polare
 - x=r cos(θ)
 - y=r sin(θ)
 - x'= r cos(Θ+φ)
 - $y'=r \sin(\Theta+\Phi)$
- Oglindire
 - Faţă de o axă de simetrie

- □ Îmbunătățirea calității imaginilor
 - Originale sau nu
 - Prin accentuarea unor caracteristici
 - Muchii
 - Contururi
 - Contrast
 - Nu modifică cantitatea de informaţie din imagine
 - Modificarea valorii unor pixeli
 - Reducerea degradărilor perceptuale sau aleatoare:
 - Contrast scăzut
 - Imagine supra- sau sub-expusă
 - Zgomot suprapus peste semnalul util

Restaurare

- Reducerea degradărilor deterministe
 - Mişcare
 - Lipsa focalizării
 - Defecte optice

Segmentare

Descompunerea imaginii în elementele componente

Compresie

Reducerea volumului de date necesare reprezentării informaţiei dintr-o imagine

□ Pentru reprezentarea spaţială

În funcție de numărul de pixeli din imaginea inițială folosiți pentru calculul valorii unui pixel în

imaginea prelucrată

Operaţii punctuale 1 – 1

Operații de vecinătate (locale) $k-1_{linia}$

Operaţii integrale (unitare) nxm - 1

imagine prelucrata g

coloana

linia

coloana

imagine initiala f

- □ Operaţii punctuale 1 1
 - $g(x,y) = \emptyset(f(x,y))$
 - Negativarea imaginilor
 - Modificarea contrastului
 - Decuparea

- □ Operaţii punctuale 1 1
 - Negativarea imaginilor
 - $\square \emptyset(x)=(L-1)-x$, de obicei L = 256

 - Utilitate
 - Imagini negative (de tip peliculă)

- Operații punctuale 1 1
 - Modificarea contrastului
 - - Pantă subunitară apropierea nivelelor de gri
 - Pantă supraunitară depărtarea nivelelor de gri
 - Caz particular: întinderea maximă a contrastului

$$\phi(x) = \begin{cases} 0, & pentru & x \in [0, a) \\ \beta(x - a), & pentru & x \in [a, b] \\ L - 1, & pentru & x \in (b, L) \end{cases}$$

- Nivelele de gri din [a,b] vor fi distanţate
- Restul nivelelor de gri vor fi înlocuite cu alb, respectiv negru
- Caz particular: binarizarea (a = b)

Operaţii punctuale 1 – 1

- Decuparea
 - □ Cu păstrarea fundalului $\phi(x) = \begin{cases} L-1, & pentru & x \in [a,b] \\ x, & în \ rest. \end{cases}$
 - □ Fără păstrarea fundalului $\phi(x) = \begin{cases} L-1, & pentru & x \in [a,b] \\ 0, & \hat{i}n \ rest. \end{cases}$
 - Utilitate
 - decuparea regiunilor de temperatură joasă reprezentate de nori din imaginile obţinute de un satelit meteo

□ Operaţii de vecinătate (locale) k - 1

- În funcție de scop:
 - □ op. care vizează reducerea zgomotului sau a altor defecte (filtrare) → filtre trece-jos
 - □ op. care vizează accentuarea detaliilor (evidenţierea muchiilor, a contururilor, etc) → filtre trece-sus
- În funcție de tip
 - □ op. liniare → combinaţii liniare între pixeli vecini
 - □ op. neliniare → combinaţii complexe între pixeli

Operații de vecinătate (locale) $k-1 \rightarrow$ operații de filtrare

- Tehnici de filtrare
 - Filtrare prin tehnica ferestrei glisante → convoluție bidimensională
 - Filtru = mască de filtrare (convoluție) = formă + coeficienți + origine = kernel
 - Convoluţie = schimbarea intensităţii unui pixel a.î. să reflecte intensitatea pixelilor vecini
 - Filtrare prin estimare statistică
 - Filtrare prin clustering
- Filtre liniare noua valoare a pixelui = combinație liniară a r pixeli din imaginea originală (principiul superpoziției)
 - $g(m,n) = \sum \sum_{(k,l) \in W} w_{kl} * f(m-k,n-l)$, unde w o structură de puncte \rightarrow vecinătate

 - \mathbf{w}_{kl} coeficienții filtrului (tehnica ferestri glisante)
 - **Tipologie**
 - Filtre de netezire
 - Suma coeficientilor = 1
 - Filtru de mediere
 - Toţi coeficienţii sunt egali $(=1/k^2)$
 - Filtre de detectare a contururilor → filtre trece-sus
 - Suma coeficienților = 0
 - Filtre de accentuare a contrastelor
 - Filtre derivative

w_{-1}	.,–1	$w_{-1,0}$	$w_{-1,1}$
$w_{0,}$	-1	$w_{0,0}$	$w_{0,1}$
$w_{1,}$	-1	$w_{1,0}$	$w_{1,1}$

Operaţii de vecinătate (locale) $k - 1 \rightarrow$ operaţii de filtrare

- Filtre neliniare
 - Tehnica ferestrei glisante → ordonarea pixelilor
 - Tipologie
 - Filtre de ordine
 - Filtru median → eliminarea zgomotului "sare şi piper"
 - Filtru de minim
 - Filtru de maxim
 - □ Filtre adaptive → modificarea formei şi a coeficienţilor ferestrei de filtrare
 - Filtre bazate pe distanţă (relativă) coeficienţii se calculează în funcţie de distanţa dintre punctul respectiv şi un punct fix
 - Filtre bazate pe orientare → fereastra are formă liniară, orientată după o anumită direcţie
 - Filtre distanţă-direcţie combinaţia celor 2 filtre precedente

- □ Operaţii integrale (unitare) nxm 1
 - Egalizarea histogramei
 - Scop: manipularea contrastului
 - Transformarea Fourier discretă
 - Transformarea cosinus discretă
 - Transformarea sinus discretă
 - Transformarea Walsh-Hadamard
 - Transformarea Karhaunen-Loeve

Operații integrale (unitare) *nxm* – 1 Egalizarea histogramei

- Histograma nivelurilor de gri
 - O funcţie care asociază fiecărui nivel de gri prezent în imagine frecvenţa sa (relativă) de apariţie
 - Estimarea densităţii de probabilitate

- Utilitate
 - Îmbunătăţirea constrastului
 - □ Îmbunătăţirea luminozităţii → segmentarea imaginii
- Ne-ajunsuri
 - Lipsa informaţiilor privind
 - locaţia pixelilor
 - poziţia relativă a pixelilor

Operații integrale (unitare) *nxm* – 1 Egalizarea histogramei

- Egalizarea histogramei reprezintă o operaţie de accentuare a contrastului şi are ca scop obţinerea unei histograme uniforme
- Algoritm
 - Se calculează histograma h(x) imaginii
 - Se calculează histograma cumulativă $h_c(x)$
 - Se calculează noile nivele de gri

$$x' = (h_c(x) - h_{cmin})/(h_{cmax} - h_{cmin})*(L-1) + 0.5$$

Extragerea atributelor

- Metodă de captare a conţinutului vizual al imaginilor în vederea indexării lor
- Atribute vizuale tipologie
 - În funcție de domeniu:
 - Generale
 - Ex. Culoare, textură, formă
 - Pot fi considerate la nivelul
 - unui pixel
 - unei regiuni de pixeli
 - întregii imagini
 - Specifice
 - Amprente
 - Feţe umane
 - În funcţie de modul de extragere
 - De nivel primar
 - Extrase direct din imagine
 - De nivel înalt
 - Determinate pe baza atributelor de nivel primar
 - Exemple de atribute
 - Contururi (margini ale unor regiuni)
 - Intersecţii (puncte de interes, colţuri)
 - Regiuni de interes
 - Creste

Culoare

- reprezentată prin diferite modele
- atribute
 - Histograma culorii pixelilor
 - Histograma gradienţilor orientaţi (Histogram of oriented gradients)

■ Histograma culorii pixelilor

- Procentul fiecărei culori care apare în imagine $(h_k, k=1,2,...,K, K nr. de culori)$
- nu ţine cont de poziţia culorilor (se pierde informaţia regională) → partiţionarea imaginii în regiuni şi determinarea histogramelor regionale

- Histograma gradienţilor orientaţi
 (Histogram of oriented gradients HOG)
 - Determinare
 - Nivele de calcul
 - Îmbunătăţiri
 - Parametri
 - Instrumente

HOG – determinare

- Gradientul unei imagini
 - O schimbare direcţională a intensităţii sau culorii întro imagine

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

Este orientat în direcția în care apare cea mai rapidă schimbare de culaore

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

Magnitudinea gradientului

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

■ HOG – determinare

- Gradientul unei imagini
 - Se poate aproxima magnitudinea gradientului în cazul discret (domeniul spaţial al imaginii)
 - De ordin I operatori
 - Sobel → algoritmul Cany
 - Schar
 - Roeberts Cross
 - Prewitt
 - Costella
 - De ordin II: Operatori Laplacieni ai Gaussianului

□ HOG → determinare

- Gradient = vectori orientaţi în direcţia celor mai semnificative schimbări de culoare
- Paşi
 - Se calculează magnitudinea fiecărui piexel
 - Se calculează gradientul orientat pentru fiecare pixel
 - Se calculează histograma gradienţilor orientaţi

□ HOG → determinare

- Pas1: se calculează magnitudinea gradientului fiecărui piexel
 - □ De ce?
 - Magnitudinea = cât de abruptă este schimbarea
 - Cum?
 - Pentru o imagine I de dimensiune nxm, se efectuează
 - o convoluţie pe Ox cu un anumit filtru-mască Dx
 - Ex. Dx = [-1,0,1], Ix = Dx*I
 - o convoluţie pe Oy cu un anumit filtr-mască Dy
 - Ex. Dy = $[-1,0,1]^T$, Iy = Dy*I

HOG → determinare

- Pas2: Se calculează orientarea gradientului pentru fiecare pixel
 - De ce?
 - Cum?

$$atan2(y, x) =$$

Orientarea
$$\Rightarrow$$
 direcţia modificărilor um?

• θ =arctan(Iy/Ix) radians
$$\arctan(y,x) = \begin{cases} \arctan(\frac{y}{x}) & x > 0 \\ \arctan(\frac{y}{x}) + \pi & y \geq 0, x < 0 \\ \arctan(\frac{y}{x}) - \pi & y < 0, x < 0 \\ +\frac{\pi}{2} & y > 0, x = 0 \\ -\frac{\pi}{2} & y < 0, x = 0 \\ \text{undefined} & y = 0, x = 0 \end{cases}$$

- se transformă unghiul θ din radiani în grade
 - $\alpha = \theta * 180/\pi \in [-180,180]$
- se determină gradientul:
 - cu semn se translatează unghiul α din [-180,180] în [0,360]

$$\alpha_{signed} = \begin{cases} \alpha, if \ \alpha \ge 0 \\ \alpha + 360, if \ \alpha \le 0 \end{cases}$$

• fără semn - se translatează unghiul α din [-180,180] în [0,180]

$$a_{unsigned} = egin{cases} lpha, & if & lpha \geq 0 \ lpha + 180, & if & lpha \leq 0 \end{cases}$$

se obține o matrice O cu nxm valori

Extragerea atributelor Atribute vizuale – Generale – Culoare

■ HOG - determinare

- Pas3: se calculează histograma gradienţilor orientaţi folosind matricea O
 - Se împarte domeniul unghiului orientării D în k sectoare egale
 - D = [0.360] sau D = [0,180]
 - Primul sector va cuprinde unghiuri între 0 şi |D|/k,
 - Al doilea sector va cuprinde unghiuri între |D|/k şi 2*|D|/k
 - ş.a.m.d.
 - k=4,8,9,16,18,36,...
 - Pentru fiecare sector se numără pixelii a căror orientare a gradientului cade în sectorul respectiv
 - Numărul de pixeli din fiecare sector se poate pondera cu
 - Voturi binare aparţine (1) sau nu (0) acelui sector
 - Voturi bazate pe magnitudinea gradientului
 - Voturi bazate pe pătratul magnitudinii
 - Voturi bazate pe rădăcina pătrată a magnitudinii
 - Se reprezintă grafic valorile obţinute
 - Pe axa Ox se trec sectoarele domeniului
 - Pe axa Oy se trece numărul de pixeli (ponderat) din fiecare sector

Extragerea atributelor Atribute vizuale – Generale – Culoare

HOG

- Nivele de calcul
 - La nivelul întregii imagini
 - La nivelul unei celule a imaginii
 - Câte imagini, atâtea histograme → concatenarea histogramelor
- Îmbunătăţiri
 - Considerarea unor blocuri de celule
 - R-HOG
 - C-HOG
 - Normalizarea la nivel de bloc pentru a ţine cont de "culorile vecine"
 - L2-norm
 - L1-Norm

Extragerea atributelor Atribute vizuale – Generale – Culoare

HOG

- Parametri
 - Scara gradientului
 - Dimensiunea unei celule/unui bloc
 - Numărul de sectoare
 - Procentul suprapunerii blocurilor
- Instrumente
 - □ OpenCV → <u>www.opencv.org/</u>
 - □ PMT → http://vision.ucsd.edu/~pdollar/toolbox/doc/
 - Altele

Atribute vizuale – Generale

- Textură
 - Caracteristica tactilă sau vizuală a unei suprafeţe
 - Elementele componente = texteli
 - Forme geometrice care se repetă pe o suprafaţă
 - Tipologie
 - □ Texturi slabe → interacţii slabe între texteli
 - Texturi puternice -> interacţii puternice între texteli
 - Cuantifică
 - Diferențele între nivelurile de gri (contrastul)
 - Mărimea regiunii unde apar modificări (fereastră)
 - Direcţia sau lipsa ei

Atribute vizuale - Generale - Textură

- Poate fi analizată prin metode
 - Sintactice (structurale)
 - □ → relaţiile spaţiale din textură ~ gramatică (texteli simboluri terminale, relaţiile - reguli de transformare)
 - Statistice
 - De ordin I calculate la nivel de pixel:
 - Media $\mu = \sum_{k=1,2,...,K} k * p_k$
 - Varianţa $\sigma^2 = \sum_{k=1,2,...,K} (k-\mu)^2 * p_k$
 - Turtirea (skewness) $\gamma_3 = 1/\sigma^3 \sum_{k=1,2,...,K} (k-\mu)^3 * p_k$
 - Excesul (kurtosis) $\gamma_4=1/\sigma^4\sum_{k=1,2,...,K}(k-\mu)^4*p_k-3$, unde $p_k=h_k/\sum_{k=1,2,...,K}h_k \rightarrow p$ rocentul fiecărei culori care apare în imagine (h_k , k=1,2,...,K, K nr. de culori)

Atribute vizuale – Generale – Textură

- Poate fi analizată prin metode
 - Sintactice
 - Statistice
 - De ordin II calculate la nivelul unei vecinătăți de 2 pixeli
 - Matricea de co-ocurență a nivelurilor de gri
 - $C(i,j) = \text{cardinal}\{((x_1,y_1),(x_2,y_2)) \text{ pentru care } f(x_1,y_1) = i \text{ i } f(x_2,y_2) = j, (x_2,y_2) = (x_1,y_1) + (d*\cos\Theta,d*\sin\Theta)\}, i,j=1,2,...,K$
 - Energia
 - $\sum_{i=1,2,...,K} \sum_{j=1,2,...,K} C(i,j)^2$
 - Inerția
 - $\sum_{i=1,2,...,K} \sum_{j=1,2,...,K} (i-j)^2 C(i,j)$ Corelaţia
 - - $\sum_{i=1,2,...,K} \sum_{j=1,2,...,K} (ij)C(i,j)-\mu_i\mu_j/\sigma\rho_j$ Momentul diferenței
 - - $\sum_{i=1,2,...,K} \sum_{j=1,2,...,K} C(i,j)/(1+(i-j)^2)$
 - Entropia
 - $\sum_{i=1,2,...,K} \sum_{j=1,2,...,K} C(i,j) \log C(i,j)$
 - Filtre Gabor
 - Atribute de tip Markov

unde:

- $\begin{array}{ll} \bullet & \mu_i = \sum_{i=1,2,...,K} i \sum_{j=1,2,...,K} C(i,j) \\ \bullet & \mu_j = \sum_{j=1,2,...,K} j \sum_{i=1,2,...,K} C(i,j) \\ \bullet & \sigma_i = \sum_{i=1,2,...,K} (i-\mu_i)^2 \sum_{j=1,2,...,K} C(i,j) \\ \bullet & \sigma_j = \sum_{i=1,2,...,K} (j-\mu_j)^2 \sum_{j=1,2,...,K} C(i,j) \end{array}$

- Atribute vizuale Generale
 - Formă
 - Metode bazate pe
 - Regiuni
 - Contur

Atribute vizuale – Generale

- Formă
 - Metode bazate pe
 - Regiuni
 - Momentele geometrice
 - Momentele centrale şi momentele centrale normalizate
 - Invarianţii momentului
 - Momentele Zernike şi Legendre
 - Momentele complexe

Atribute vizuale – Generale

- Formă
 - Metode bazate pe
 - Contur
 - Circularitatea cir=4pA/P²
 - Rata aspectului ar=(p1+p2)/C
 - Iregularitatea unghiului de discontinuitate $(\Sigma | \Theta_{i-1} | / 2\pi (n-2))^{1/2}$
 - Iregularitatea lungimii lir= ∑|L_i-L_{i+1}|/K, unde K=2P pt n>3 şi K=P pt n=3
 - Complexitatea com=10^{-3/n}

Detecţia contururilor

- Contururile sunt acolo unde apar schimbări de culoare
- Schimbările de direcţie ale unei funcţii pot fi detectate cu ajutorul derivatei I → cele mai mari schimbări apar acolo unde derivata I are magnitudine (normă, mărime, dimensiune) maximă ⇔ derivata II = 0

- Algoritmi pentru extragerea atributelor
 - Scale-invariant feature transform (SIFT)
 - http://www.cs.ubc.ca/~lowe/keypoints/
 - Biblioteca OpenCV http://opencv.willowgarage.com/wiki/
 - Speeded Up Robust Features (SURF)
 - openCV
 - Gradient Location and Orientation Histogram (GLOH)
 - Local Energy based Shape Histogram (LESH)

- □ Trebuie ghidată cf. următoarelor principii
 - Atributele trebuie să conţină suficientă informaţie despre imagine şi nu trebuie folosite informaţii specifice în procesul de extracţie
 - Atributele trebuie să fie uşor calculabile → imagini mari şi numeroase

- Compresia imaginilor
 - Compresie la nivel de pixel
 - Compresie predictivă (bazată pe o vecinătate)
 - Compresie cu transformate
 - Compresie cu fractali, etc
- Segmentarea imaginilor

- http://www.lsv.unisaarland.de/dsp ss05 chap8.pdf
- http://facweb.cti.depaul.edu/research/vc/ VC Workshop/presentations/pdf/daniela t utorial2.pdf