

PL1166A

单片低功耗高性能 2.4GHz 无线射频收发芯片

芯片概述:

PL1166A 是一款工作在 2.4~2.5GHz 世界通用 ISM 频 段的单片低功耗高性能 2.4GHz 无线射频收发芯片。

该单芯片无线收发器集成包括: 频率综合器、功率放大器、晶体振荡器、调制解调器等模块。

输出功率、信道选择与协议等可以通过 SPI 或 I2C 接口进行灵活配置。

支持跳频以及接收信号强度检测等功能,抗干扰性能强,可以适应各种复杂的环境并达到优异的性能。

内置地址及 FEC、CRC 校验功能。

内置自动应答及自动重发功能。

芯片发射功率最大可以达到 5.5dBm,接收灵敏度可以达到-88dBm。

内置电源管理功能,掉电模式和待机模式下待机电流可以减小到接近 1uA。

内置晶振两端电阻(680K)、电容(2*15pF)。

内置 ANT、ANTB 天线端 10K 下拉电阻。

采用专利的 MODE 引脚零电流下拉结构, RSTB 复位时默认选择 SPI 模式。

管脚分布图:

主要特点:

- 低功耗高性能2.4GHz无线射频收 发芯片
- 无线速率: 1Mbps
- 内置硬件链路层
- 内置接收信号强度检测电路
- 支持自动应答及自动重发功能
- 内置地址及FEC、CRC校验功能
- 极短的信道切换时间,可用于跳频
- 使用微带线电感和双层PCB板
- 低工作电压: 1.9~3.6V
- 封装形式: TSSOP16/SOP16
- TSSOP16/SOP16可支持SPI与 I2C接口
- 内置晶振两端电阻、电容
- 内置ANT、ANTB天线端10K下拉电阻
- 专利的MODE引脚零电流下拉结构,RSTB复位时默认选择SPI模式

应用:

- 无线鼠标,键盘,游戏机操纵杆
- 无线数据通讯
- 无线门禁
- 无线组网
- 安防系统
- 遥控装置
- 遥感勘测
- 智能运动设备
- 智能家居
- 工业传感器
- 工业和商用近距离通信
- IP电话,无绳电话
- 玩具

V1.1 © 2018 www.pmicro.com.cn

1概要

PL1166A 是一款工作在 2.4~2.5GHz 世界通用 ISM 频段的单片低功耗高性能 2.4GHz 无线射 频收发芯片。

该单芯片无线收发器集成包括:频率综合器、功率放大器、晶体振荡器、调制解调器等模块。

输出功率、信道选择与协议等可以通过 SPI 或 I2C 接口进行灵活配置。

支持跳频以及接收信号强度检测等功能,抗 干扰性能强,可以适应各种复杂的环境并达到优 异的性能。

内置地址及 FEC、CRC 校验功能。

内置自动应答及自动重发功能。

芯片发射功率最大可以达到 5.5dBm,接收灵敏度可以达到-88dBm。

内置电源管理功能,掉电模式和待机模式下 待机电流可以减小到接近 1uA。

内置晶振两端电阻(680K)、电容(2*15pF)。 内置 ANT、ANTB 天线端 10K 下拉电阻。

采用专利的 MODE 引脚零电流下拉结构, RSTB 复位时默认选择 SPI 模式。

2 特性

- 低功耗高性能2.4GHz无线射频收发芯片
- 无线速率: 1Mbps
- 内置硬件链路层
- 内置接收信号强度检测电路
- 支持自动应答及自动重发功能
- 内置地址及FEC、CRC校验功能
- 极短的信道切换时间,可用于跳频
- 使用微带线电感和双层PCB板
- 低工作电压: 1.9~3.6V

- 封装形式: TSSOP16/SOP16
- TSSOP16/SOP16可支持SPI与I2C接口
- 内置晶振两端电阻、电容
- 内置ANT、ANTB天线端10K下拉电阻
- 专利的MODE引脚零电流下拉结构,RSTB 复位时默认选择SPI模式
- PL1166A的寄存器配置完全兼容PL1167与 PL1166

3 快速参考数据

参数	数值	单位
最低工作电压	1.9	V
最大发射功率	5.5	dBm
数据传输速率	1	Mbps
发射模式功耗@0dBm	16	mA
接收模式功耗	17	mA
工作温度范围	-40 to +105	${\mathbb C}$
接收灵敏度	-88	dBm
掉电模式功耗	1	uA

4 管脚分布图

TSSOP16/SOP16 管脚分布图如下:

5 管脚描述

Pin	管脚名	类型	描述	
1	AVSS	电源	接地(0V)	
2	N/C	悬空	悬空不接	
3	PKT	数字输出	发射/接收包状态指示位	
4	RSTB	数字输入	复位脚,低电平有效	
5	DVSS	电源	接地(0V)	
6	SCSB	数字输入	SPI: SPI接口从模式使能信号,低电平有效 从SLEEP模式唤醒芯片 I2C: 从SLEEP模式唤醒芯片	
7	SCK/SCL	数字输入	SCK: SPI接口时钟输入 SCL: I2C接口时钟输入	
8	SDI/A4	数字输入	SDI: SPI接口数据输入 A4: I2C接口地址位4	
9	SDO/SDA	数字输出 数字I/O	SDO: SPI接口数据输出(无效时为三态) SDA: I2C接口数据输入输出I/O	
10	MODE	数字输入	接口模式选择:专利下拉结构 VSS:选择SPI接口 VCC:选择I2C接口	
11	VCC	电源	电源(3.3V)	
12	VDDO	电源	1.8V内部LDO输出,外接电容	
13	XOUT	模拟输出	晶振输出	
14	XIN	模拟输入	晶振输入	
15	ANTB	天线	天线接口	
16	ANT	天线	天线接口	

6 结构框图

7 最大额定值

参数	符号	范围	单位
VCC 供电电压	VCC	-0.3 to +3.6	V
VDDO 供电电压	VDDO	-0.3 to +2.5	V
输入电压	V_{IN}	-0.3 to (VCC+0.3)	V
输出电压	V _{OUT}	-0.3 to (VCC+0.3)	
工作温度	T _{OP}	-40 to +105	$^{\circ}$ C
仓储温度	T _{ST}	-40 to +125	$^{\circ}$

注释:超过最大额定值可能损毁器件;超过推荐工作范围的芯片功能特性不能保证;长时间工作于最大额定条件下可能会影响器件的稳定性。

V1.1 © *2018* <u>www.pmicro.com.cn</u> 5 of 12

8 电气特性

(VCC=+3V, VSS=0V, TA=−40°C to +105°C)

符号	参数(条件)	说明	最小值	典型	最大值	单位
	工作条件					
VCC	VCC 供电电压		1.9	3.3	3.6	V
T _{OP}	工作温度		-40		105	$^{\circ}$
	数字输入管脚					
V _{IH}	高电平输入电压		0.8VCC		1.2VCC	V
V _{IL}	低电平输入电压		0		0.2VCC	V
	数字输出管脚					
V _{OH}	高电平输出电压		0.8VCC		VCC	V
V _{OL}	低电平输出电压		0		0.2VCC	V
	常规射频条件					
f _{OP}	工作频段		2402		2480	MHz
f _{XTAL}	晶振频率			12		MHz
$\triangle f_{1M}$	频率偏移@1Mbps			280		KHz
R _{GFSK}	数据传输速率			1		Mbps
F _{CHANNEL}	信道间隔			1		MHz
	发射操作					
P _{RF}	最大输出功率			0	5.5	dBm
P _{RFC}	射频功率控制范围		18	20	22	dB
P _{RF1}	第一临近信道发射功率				-20	dBm
P _{RF2}	第二临近信道发射功率				-50	dBm
I _{VCC_H}	高增益时功耗			16		mA
I _{VCC_L}	低增益时功耗			12		mA
	接收操作					
I _{VCC}	接收功耗			17		mA
RX _{SENS}	0.1% BER 时接收灵敏度			-88		dBm

9 SPI 接口

9.1 SPI 接口说明

PL1166A 收发芯片提供简单的 MCU 接口 SPI 模式,芯片的 SPI 接口只支持从模式。

V1.1 © *2018* <u>www.pmicro.com.cn</u> 6 of 12

SPI 接口包含 7 个相关信号,如下表:

管脚	描述
RSTB	复位脚,低电平有效
MODE	模式选择,为0时选择SPI模式,上电默认下拉
SCSB	SPI接口从模式使能信号,低电平有效 从SLEEP模式唤醒芯片
SCK	SPI接口时钟输入
SDI	SPI接口数据输入
SDO	SPI接口数据输出
PKT	发射/接收包状态指示位

9.2 SPI 命令格式

注释: SPI 总线在 SCK 上升沿建立数据,在下降沿采样数据。

符号	最小	典型	最大	描述
T _{SSH}	250ns			两次 SPI 命令时间间隔
T_{SSF} , T_{SSR}	41.5ns			SCSB 与 SCK 时间间隔
T _{A2D}	*1			地址与数据时间间隔
T _{H2L}	*1			高低字节数据时间间隔
$T_{\mathtt{R2R}}$	*1			两个寄存器数据时间间隔
Tsck	83ns			SCK 时钟周期

注: *1—在读FIFO数据时,至少需要 450ns等待时间; 其它寄存器时T3_{min} = 41.5ns。

10 I2C 接口

10.1 I2C 接口说明

管脚	描述
RSTB	复位脚,低电平有效
MODE	模式选择,为1时选择I2C模式,上电默认下拉
SCSB	从 SLEEP 模式唤醒芯片
SCL	I2C接口时钟输入
SDA	I2C 数据输入输出 I/O
A4	I2C 接口地址位 4

10.2 I2C 支持特性

I2C 从模式选择	支持与否
标准模式- 100 kbps	是
快速模式 - 400 kbps	是
增强型快速模式 – 1000 kbps	是
高速模式 - 3200 kbps	否
时钟展宽	否
10 位从地址	否
广呼方式地址	否
软件复位	否
器件 ID	否

10.3 I2C 命令格式

10.4 I2C 器件地址

A6	A5	A4	А3	A2	A 1	Α0	R/W
0	1	A4 Pin	1	0	0	0	Read=1
							Write=0

11 控制寄存器

最新的推荐控制寄存器值参考《用户手册》,请联系聚元微索取。

12 典型应用

13 封装

TSSOP16 封装

TSSOP16 封装尺寸

SYMBOL	MILLIMETER			
STMBOL	MIN	MAX		
A	_	1.20		
A1	0.05	0.15		
A2	0.90	1.05		
A3	0.39	0.49		
b	0.20	0.30		
b1	0.19	0.25		
С	0.13	0.19		
c1	0.12	0.14		
D	4.86	5.06		
Е	6.20	6.60		
e	0.65	BSC		
L	0.45	0.75		
L1	1.00BSC			
θ	0 8°			

1.40

0.05

5.84 3.84

9.90

1.73

0.18

6.24

4.04

10.10

0.70 1.27TYP 0.46 0.2TYP

8°TYP 8°TYP

SOP16 封装

SOP16 封装尺寸

14 版本修订记录

版本号	修订日期	修订内容
0.2	2015/12/18	初稿
1.0	2016/11/07	正式发布版本: TSSOP16/SOP16 1) 9.2 SPI 命令格式加入 SPI 说明 2) 10.3 I2C 命令格式修正 3) 修正f _{OP} : 2402~2480
1.1	2018/07/11	工作温度参数

15 注意事项

为了持续改进产品的可靠性、功能或设计,聚元微保留随时更新修改的权利,并不另行通知客户。 客户在下单前请确认所使用的是最新的完整版说明书。