Une méthode de calibration non paramétrique pour les calorimètres de CMS

Samuel Niang

25 août 2017

- Introduction
 - Contexte
 - Production de l'échantillon
- Méthodes de calibrations proposées
 - Calibration par régression linéaire
 - Méthode non paramétrique binée
 - Moyenne pondérée
 - Nettoyage gaussien
 - Fit gaussien
- Comparaisons et résultats
- 4 Conclusion

CMS

- Découverte du boson de Higgs en 2012
- Recherche de nouvelle physique au-delà du modèle standard
- utilisation de détecteurs
- Comment fonctionne CMS?

Détecteur

Figure – Une esquisse des interactions spécifiques des particules dans une tranche transversale du détecteur CMS.

Problématique

Il nous faut connaître l'énergie ($E_{\rm true}$) des particules qui entrent dans le détecteur

- $E_{\rm true} \neq E_{\rm ecal} + E_{\rm hcal}$
- non linéarité des calorimètres ECAL, HCAL
- besoin d'une calibration $E_{\text{calib}} = f(E_{\text{ecal}}, E_{\text{hcal}})$

On souhaite une calibration:

- \bullet $E_{
 m calib}$ le plus proche possible de $E_{
 m true}$
- Calibration non paramétrique

Utilisation de particules simulées

Illustration de particules simulées

Figure – Énergie vraie E_{true} en fonction de l'énergie mesurée dans le ECAL, $E_{\text{ecal}} \neq 0$, et de l'énergie mesurée dans le HCAL.

Limitation

Figure – On place une limite à $E_{\rm ecal} + E_{\rm hcal} = 150$

La régression linéaire

Modèle paramétrique :

$$E_{\text{calib}} = a_1 E_{\text{ecal}} + a_2 E_{\text{hcal}} + b \qquad (1)$$

Minimisation de :

$$\epsilon = \sum_{n=1}^{N} (E_{\text{true}} - a_1 E_{\text{ecal}} - a_2 E_{\text{hcal}} - b)^2$$
(2)

Calibration surface

Calibration par régression linéaire

Méthode non paramétrique bii Moyenne pondérée Nettoyage gaussien

La régression linéaire

Figure – Courbe de calibration dans le plan $E_{\rm ecal}=0$.

Calibration par régression linéaire

Methode non parametrique bin Moyenne pondérée Nettoyage gaussien

$E_{\rm calib}/E_{\rm true}$ en fonction de $(E_{\rm ecal}, E_{\rm hcal})$

Figure – $E_{\text{calib}}/E_{\text{true}}$ en fonction de $(E_{\text{ecal}}, E_{\text{hcal}})$

Calibration par régression linéaire

Metnode non parametrique bine Moyenne pondérée Nettoyage gaussien Fit gaussien

$E_{\rm calib}/E_{\rm true}$ en fonction de $E_{\rm true}$

Figure – Distribution en fonction des $E_{\rm true}$ des $E_{\rm calib}/E_{\rm true}$

La régression linéaire

Figure – Courbe de calibration dans le plan $E_{\rm ecal}=0$.

$E_{\rm calib}/E_{\rm true}$ en fonction de $E_{\rm true}$

Figure – Distribution en fonction des $E_{\rm true}$ des $E_{\rm calib}/E_{\rm true}$ Nous voyons clairement l'apparition d'une structure, liée au caractère biné de la méthode.

$E_{\rm calib}/E_{\rm true}$ en fonction de $(E_{\rm ecal}, E_{\rm hcal})$

Figure – $E_{\text{calib}}/E_{\text{true}}$ en fonction de $(E_{\text{ecal}}, E_{\text{hcal}})$

La régression linéaire

Figure – Courbe de calibration dans le plan $E_{\rm ecal}=0$.

$E_{\rm calib}/E_{\rm true}$ en fonction de $(E_{\rm ecal}, E_{\rm hcal})$

Figure – $E_{\text{calib}}/E_{\text{true}}$ en fonction de $(E_{\text{ecal}}, E_{\text{hcal}})$

$E_{\rm calib}/E_{\rm true}$ en fonction de $E_{\rm true}$

Figure – Distribution en fonction des $E_{\rm true}$ des $E_{\rm calib}/E_{\rm true}$

La régression linéaire

Figure – Courbe de calibration dans le plan $E_{\rm ecal}=0$.

$E_{\rm calib}/E_{\rm true}$ en fonction de $(E_{\rm ecal}, E_{\rm hcal})$

Figure – $E_{\rm calib}/E_{\rm true}$ en fonction de $(E_{\rm ecal}, E_{\rm hcal})$

$E_{\rm calib}/E_{\rm true}$ en fonction de $E_{\rm true}$

Figure – Distribution en fonction des $E_{\rm true}$ des $E_{\rm calib}/E_{\rm true}$

La régression linéaire

Figure – Courbe de calibration dans le plan $E_{\rm ecal}=0$.

$E_{\rm calib}/E_{\rm true}$ en fonction de $E_{\rm true}$

Figure – Distribution en fonction des $E_{\rm true}$ des $E_{\rm calib}/E_{\rm true}$

$E_{\rm calib}/E_{\rm true}$ en fonction de $(E_{\rm ecal}, E_{\rm heal})$

Figure – $E_{\text{calib}}/E_{\text{true}}$ en fonction de $(E_{\text{ecal}}, E_{\text{hcal}})$

1.100

1.075

1.050

1.025

1.000

0.975

0.950

0.925

0.900

$E_{\rm calib}/E_{\rm true}$ moyens en fonction de $(E_{\rm ecal}, E_{\rm heal})$

Figure – Chaque pixel correspond à la moyenne d'un fit gaussien de points $E_{\rm calib}/E_{\rm true}$ proches des coordonnées du pixel pour les particules qui interagissent avec le ECAL et le HCAL.

$E_{\rm calib}/E_{\rm true}$ moyens en fonction de $(E_{\rm ecal}, E_{\rm hcal})$

Figure – Chaque pixel correspond à la moyenne d'un fit gaussien de points $E_{\rm calib}/E_{\rm true}$ proches des coordonnées du pixel pour les particules qui interagissent avec le ECAL et le HCAL.

- Moyenne pondérée - Nettoyage gaussien - Fit gaussien

$E_{\rm calib}/E_{\rm true}$ moyens en fonction de $E_{\rm true}$

Figure – $E_{\rm calib}/E_{\rm true}$ moyens en fonction de $E_{\rm true}$ dans les cas $E_{\rm ecal}=0$ et σ du fit gaussien correspondant.

Conclusion