Modelos de Regressão Linear Mistos para dados discretos: Uma abordagem utilizando MCMC através do Stan integrado ao R

Felipe Vieira - RA 160424 Guilherme Artoni - RA 160318

Degeneração macular relacionada à idade (DMRI)

- É uma doença atualmente sem cura;
- Leva a perda progressiva da visão central;
- Visão turva é o principal sintoma;
- É muito comum em pessoas com mais de 55 anos.

Dados

- Grupo de Estudo de Terapias Farmacológicas para Degeneração Macular;
- O objetivo é avaliar se um novo medicamento para DMRI tem poder competitivo com o principal existente no mercado;
- Ensaios clínicos aleatorizados;
- Realizados em diferentes centros de estudos;
- 240 pacientes;
- Foi medida a qualidade da visão de todos os pacientes no início e após 4, 12, 24 e 52 semanas.

Figura 1: Gráfico de perifs de alguns indivíduos selecionados aleatoriamente

Tabela 1: Número de observações, médias e medianas de cada semana obervada.

	P:n	A:n	P:Média	A:Média	P:Mediana	A:Mediana
Início	119	121	55.34	54.58	56.0	57.0
4smn	117	114	53.97	50.91	54.0	52.0
12smn	117	110	52.87	48.67	53.0	49.5
24smn	112	102	49.33	45.46	50.5	45.0
52smn	105	90	44.44	39.10	44.0	37.0

Figura 2: Boxplots das medidas de qualidade da visão de cada tempo observado.

Matriz de Variâncias e Covariâncias

```
## Início 4smn 12smn 24smn 52smn

## Início 220.31 206.71 196.24 193.31 152.71

## 4smn 206.71 246.22 224.79 221.27 179.23

## 12smn 196.24 224.79 286.21 257.77 222.68

## 24smn 193.31 221.27 257.77 334.45 285.23

## 52smn 152.71 179.23 222.68 285.23 347.43
```

Matriz de Correlações

```
## Início 4smn 12smn 24smn 52smn

## Início 1.00 0.89 0.78 0.71 0.55

## 4smn 0.89 1.00 0.85 0.77 0.61

## 12smn 0.78 0.85 1.00 0.83 0.71

## 24smn 0.71 0.77 0.83 1.00 0.84

## 52smn 0.55 0.61 0.71 0.84 1.00
```

Modelo Misto

$$\mathbf{Y}_{j(k_j \times 1)} = \mathbf{X}_{j(k_j \times p)} \beta_{(p \times 1)} + \mathbf{Z}_{j(k_j \times q)} \mathbf{b}_{j(q \times 1)} + \xi_{j(k_j \times 1)}$$

Onde j = 1, 2, ..., n é o individuo

- Y_j = (y_{j1}, ..., y_{jkj}): vetor resposta, no qual k_j é o número de avaliações realizadas no individuo j.
- X_j: matriz de planejamento associada aos efeitos fixos para o indivíduo j.
- β: vetor de efeitos fixos
- Z_j: matriz de planejamento associada aos efeitos aleatórios para o indivíduo j.
- **b**_i: vetor de efeitos aleatórios associado ao indivíduo j.
- ξ_i: vetor de erros associado ao indivíduo j.

$$Y_{it} = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2it} + \beta_3 x_{3i} + \beta_4 x_{2it} x_{3i} + b_{0i} + \xi_{it},$$

- Y_{it} é a qualidade da visão do paciente i (i = 1, ..., 240) no tempo t (t = 1, 2, 3, 4, correspondendo aos valores 4º, 12º, 24º e 52º semana, respectivamente);
- x_{1i} é o valor inicial da qualidade da visão;
- x_{2it} é o tempo t de medição no paciente i;
- x_{3i} é o indicador do tratamento, 0 se placebo e 1 caso contrário;
- x_{2it}x_{3i} é a interação entre as duas covariáveis.

$$Y_{it} = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2it} + \beta_3 x_{3i} + \beta_4 x_{2it} x_{3i} + b_{0i} + \xi_{it},$$

- β_0 é o intercepto geral;
- β₁ é o incremento positivo ou negativo no valor esperado de Y_{it} quando variado em uma unidade o valor inicial da qualidade da visão;
- β₂ é o incremento positivo ou negativo na valor esperado de Y_{it}, quando acrescido o tempo em uma semana entre as que foram observadas;
- β_3 é o efeito geral positivo ou negativo no valor esperado de Y_{it} causado pelo tratamento;
- β₄ é o incremento positivo ou negativo sobre o valor esperado de Y_{it}, gerado pela variação do tempo em uma semana entre as que foram observadas sobre o paciente i que estava sob tratamento.

- b_{0i} é o efeito aleatório específico para cada paciente. Tal que b_{0i} ~ N(0, τ) ∀ i;
- ξ_{it} é o erro aleatório. Tal que $\xi_{it} \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2) \ \forall \ i \ e \ t;$
- b_{0i} representa uma variação especifica do β₀ para cada paciente.

• Forma matricial do modelo para o indivíduo i

$$\begin{pmatrix} Y_{i1} \\ Y_{i2} \\ Y_{i3} \\ Y_{i4} \end{pmatrix} = \begin{pmatrix} 1 & x_{1i} & 4 & x_{3i} & 4x_{3i} \\ 1 & x_{1i} & 12 & x_{3i} & 12x_{3i} \\ 1 & x_{1i} & 24 & x_{3i} & 24x_{3i} \\ 1 & x_{1i} & 52 & x_{3i} & 52x_{3i} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} b_{0t} + \begin{pmatrix} \xi_{i1} \\ \xi_{i2} \\ \xi_{i3} \\ \xi_{i4} \end{pmatrix}$$

Estrutura Uniforme da matriz de Variâncias e Covariâncias

$$\begin{pmatrix} \sigma^2 + \tau & \tau & \tau & \tau \\ \tau & \sigma^2 + \tau & \tau & \tau \\ \tau & \tau & \sigma^2 + \tau & \tau \\ \tau & \tau & \tau & \sigma^2 + \tau \end{pmatrix}$$

Slide With Plot

$$\alpha(\theta, \phi) = \min\{1, \frac{\pi(\phi)q(\phi, \theta)}{\pi(\theta)q(\theta, \phi)}\}$$