

Driving an LCD display over SPI

10.10.2016

Programming Microcontrollers

C:\Keil_v5\ARM\PACK\Keil\STM32F1xx_DFP\1.1.0\Device\Include\stm32f10x.h

 LCD-SPI-uC

 dnd1/V16
 2

Why drive a display?

full sunlight

- a small embedded controller has no intrinsic display capabilites
- a display might be useful during development and debugging

mbed 016-01 application shield by Keil

Interfaced with Arduino Uno PinOut

RGB LED

Common Anode!

LED: R G

Cree® PLCC4 3-in-1 SMD LED CLV1A-FKB

LED	R	G	В
Shield:	D5	D9	D8
Port	PA9	PC7	PB4

DED (ONTHODE) (ON IN IN IN CONTROLL)

!! LED R does not work on NUCLEO STM32F103, electrically ok !!

Logic Analyzer

→ Analyse hardware signals, both digital and analog!

User button on PC13 Nucleo

Locate LCD pins

Arduino R3-pins

NUCLEO-64 pins

		1/	PA3/SAR VREF+
A2	PA4	20	PA4
D13	PA5	21	
D12	PA6	22	PA5 PA6
D11	PA7	23	
D7 `	PA8	41	PA7
D8	PA9	42	PA8
D2 .	PA10	43	PA9
	DA11	44	PA10

Connections to LCD (display data sheet)

A0 = high, display data A0 = low, command data

Display Controller pin functions

F

(ST7565 page 9/56)

ST7565

System Bus Connection Pins

Pin Name	I/O	Function	No. of Pins
D5 to D0 D6 (SCL) D7 (SI)	I/O	This is an 8-bit bi-directional data bus that connects to an 8-bit or 16-bit standard MPU data bus. When the serial interface is selected (P/S = "L"): D7: serial data input (SI); D6: the serial clock input (SCL). D0 to D5 are set to high impedance. When the chip select is not active, D0 to D7 are set to high impedance.	8
A0	1	This is connect to the least significant bit of the normal MPU address bus, and it determines whether the data bits are data or a command. A0 = "H": Indicates that D0 to D7 are display data. A0 = "L": Indicates that D0 to D7 are control data.	1
RES	I	When /RES is set to "L," the settings are initialized. The reset operation is performed by the /RES signal level.	1
CS1 CS2	I	This is the chip select signal. When /CS1 = "L" and CS2 = "H," then the chip select becomes active, and data/command I/O is enabled.	2

Configuration of SPI pins (uC datasheet)

STM32F103x8, STM32F103xB

Pinouts and pin description

Table 5. Medium-density STM32F103xx pin definitions (continued)

	Pins						ir-definity OTIMOZI			Alternate fu	nctions ⁽⁴⁾	7	
LFBGA100	UFBG100	LQFP48/UFQFPN48	TFBGA64	LQFP64	LQFP100	VFQFPN36	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap	
G3	МЗ	14	НЗ	20	29	11	PA4	I/O		PA4	SPI1_NSS ⁽⁸⁾ / USART2_CK ⁽⁸⁾ / ADC12_IN4] -
НЗ	K4	15	F4	21	30	12	PA5	I/O		PA5	SPI1_SCK ⁽⁸⁾ / ADC12_IN5		
J3	L4	16	G4	22	31	13	PA6	I/O		PA6	SPI1_MISO ⁽⁸⁾ / ADC12_IN6/ TIM3_CH1 ⁽⁸⁾	TIM1_BKIN	
Кз	M4	17	H4	23	32	14	PA7	I/O		PA7	SPI1_MOSI ⁽⁸⁾ / ADC12_IN7/ TIM3_CH2 ⁽⁸⁾	TIM1_CH1N	
G4	K5	-	H5	24	33		PC4	I/O		PC4	ADC12_IN14		

SPI Configuration STM32Fx (stm32f10x_spi.h)

(1)

```
SPI InitStructure.
                                           SPI Direction 2Lines FullD
                                           SPI_Direction_2Lines_RxOn
   SPI Direction
                                           SPI_Direction_1Line_Rx
   SPI Mode
                                           SPI Direction 1Line Tx
   SPI DataSize
   SPI CPOL
                                           SPI_Mode_Master
   SPI CPHA
                                           SPI Mode Slave
   SPI NSS
   SPI BaudRatePrescaler
                                           SPI DataSize 16b
   SPI FirstBit
                                           SPI DataSize_8b
   SPI CRCPolynomial
                                           SPI CPOL Low
                                                                       Clock polarity
                                           SPI CPOL High
                                           SPI_CPHA_1Edge
                                                                       Clock phase
SPI BaudRatePrescaler 2
                                           SPI CPHA 2Edge
SPI BaudRatePrescaler_4
SPI BaudRatePrescaler 8
                                           SPI NSS Soft
                                                                       Not Slave Select
SPI BaudRatePrescaler 16
                                           SPI NSS Hard
SPI BaudRatePrescaler 32
SPI BaudRatePrescaler 64
                                           SPI FirstBit MSB
                                                                       msb: most
SPI BaudRatePrescaler 128
                                           SPI_FirstBit_LSB
                                                                       significant bit
SPI BaudRatePrescaler 256
```

LCD timing diagram

The 4-line SPI Interface

ST7565 Serial interface

figure 1 page 13/56

The Serial Interface

When the serial interface has been selected (P/S = "L") then when the chip is in active state (/CS1 = "L" and CS2 = "H") the serial data input (SI) and the serial clock input (SCL) can be received. The serial data is read from the serial data input pin in the rising edge of the serial clocks D7, D6 through D0, in this order. This data is converted to 8 bits parallel data in the rising edge of the eighth serial clock for the processing.

The A0 input is used to determine whether or the serial data input is display data or command data; when A0 = "H", the data is display data, and when A0 = "L" then the data is command data. The A0 input is read and used for detection every 8th rising edge of the serial clock after the chip becomes active. Figure 1 is a serial interface signal chart.

Figure 1

SPI1 is on which Peripheral bus?

...running at ?? MHz

MĊÒ

datasheet STM32F103 Clock tree

SPI block diagram

ai14744

LCD-SPI-uC	
dnd1/V16	16

Setup of GPIO PA5 und PA7 as SPI

LCD-SPI-uC	
dnd1/V16	17

If Keil uVision does not simulate the peripherals in STM32F103RB chip:

Debugging with standard Cortex-M3 Systemviewer:

Debugging peripherals in detail using STM32F10x uC:

*.uvprojx file content:

Setting up the LCD Display to work

- define RCC_
- define GPIO_
- define SPI_
- Set uVision defines

LCD driver chip ST7565 (Sitronix)

Data to display is written into the DISPLAY DATA RAM

LCD minimum Software

Code to be written in order to really see the inverted points!!

```
Logic Analyzer
// Write to SPI
RCC_Config_...
                                            One Byte only!
GPIO Config ...
//deactivate Slave Select
                                               Set SS to 0
GPIO_ResetBit(GPIOB,GPIO_Pin_6);
                                               spi_write()
                                               Set SS to 1
SPI_Config_...
                                               while(1);
delay(10); //ms
// Initialise GLCD
                                            Many Bytes:
glcd_reset();
                                             Set SS to 0
glcd_ST7565R_init();
                                             // wait for SPI available
                                             spi_write()
// Define
                                            // wait for SPI sent
                                             set SS to 1
glcd command(0xA5); while(1);
```

Step 1: Initialise Clock, GPIO, SPI just SCK and MISO


```
void RCC_configuration(void)
       //$TASK SPI
       RCC APB2PeriphClockCmd(RCC APB2Periph GPIOA
       RCC APB2Periph GPIOB | RCC APB2Periph SPI1, ENABLE);
void GPIO configuration(void)
       GPIO InitTypeDef GPIO InitStructure;
       //$TASK SPI
       /* Set up GPIO for SPI pins (SCK PA5, MOSI PA7) */
       GPIO InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
       GPIO InitStructure.GPIO Mode = GPIO Mode AF PP;
       GPIO InitStructure.GPIO Pin = GPIO Pin 5 | GPIO Pin 7;
       GPIO Init(GPIOA, &GPIO InitStructure);
```

SPI_ Configuration ...

main:

```
SPI_I2S_SendData(SPI1, (uint16_t) 0xA5);
while(1);
```


Step 2: Start reading SPI: Clk, MISO Logic Analyzer, NO SPI decoding

SCK and MOSI are shown, no trigger, no interpretation! Raw data

Step 3: Initialise NSS slave select line and drive it when sending

GPIO_Configuration:

```
//$TASK SPI
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;

/* SS pin (PB6) */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
GPIO_Init(GPIOB, &GPIO_InitStructure);
```

 LCD-SPI-uC

 dnd1/V16
 24

Step 4: Extend glcd_spi_write with select line switching


```
void glcd spi write(uint8 t c)
       //$TASK glcd
       /* Activate GLCD SELECT line*/
       GPIO ResetBits(GPIOB,GPIO Pin 6);
       /*! < Loop while DR register in not empty */
       while (SPI I2S GetFlagStatus(SPI1, SPI I2S FLAG TXE) == RESET);
       SPI I2S SendData(SPI1, (uint16 t) c);
       /* Wait until byte has been written */
       while(SPI I2S GetFlagStatus(SPI1, SPI I2S FLAG BSY) != RESET);
       /* Deactivate GLCD SELECT line */
       GPIO SetBits(GPIOB,GPIO Pin 6);
```


Logic Analyzer: Setup SPI analyzer

Inspect SPI output right after the µC reset


```
0 s : 817 ms : 880 μs
     Start
00 Channel 0
01 Channel 1
             ♦ +F
02 Channel 2

→ +<sub>f</sub>

03 Channel 3
             ♦ +F
04 Channel 4
             ♦ +£
                                                               while(1){
                                                                    glcd_spi_write(0xa5);
```


Why is there no correct SPI interpretation of the first Byte sent?

What is the net data throughput we get here? What is the protocol efficiency? (net data rate / baudrate)

Logic Analyzer SPI

Save

Cancel

LCD-SPI-uC		
dnd1/V16	28)

Analyzer Settings				
MOSI	1 - 'Channel 1' ▼			
MISO	None ▼			
Clock	0 - 'Channel 0' ▼			
Enable	2 - 'Channel 2' ▼			
	Most Significant Bit First (Standard) ▼			
	8 Bits per Transfer (Standard) ▼			
	Clock is High when inactive (CPOL = 1) ▼			
	Data is Valid on Clock Trailing Edge (CPHA = 1) ▼			
	Enable line is Active Low (Standard) ▼			
	Save Cancel			

LCD-SPI-uC	
dnd1/V16	29

after reset:

after initialisation and Invert command

glcd_command(0xA5);

Enable must be high be default, right from the start:

GPIO_SetBits(GPIOB, GPIO_Pin_6); // CS inactive high