Serie di Fourier

1. Sia $f(x) = -2 + 3\sin 7x - \cos x + 2\sin x$. Indicare i coefficienti di Fourier a_n, b_n di f e l'espressione dell'n-esima armonia (termine generale della serie di Fourier).

2. Trovare i valori di a_0 e b_1 nello sviluppo in serie di Fourier della funzione $y = 1 + x^2$ nell'intervallo $(-\pi, \pi)$.

3. Trovare i valori di a_0, a_1, b_1, b_2 nello sviluppo in serie di Fourier della funzione $y = \sin^3 x$ nell'intervallo $(-\pi, \pi)$.

4. Sia f la funzione dispari periodica di periodo 2π tale che

$$f(x) = \begin{cases} -\log(1+x) & 0 \le x \le \frac{\pi}{2} \\ 0 & \frac{\pi}{2} < x \le \pi \end{cases}$$

a) Tracciare il grafico di f nell'intervallo $(-4\pi, 4\pi)$. b) Scrivere, senza calcolarli, l'espressione dei coefficienti dello sviluppo in serie di Fourier di f. c) Dire in quali punti dell'intervallo $[0, 2\pi]$ la serie di Fourier di f converge a f(x).

5. Sia f la funzione pari periodica di periodo 2π tale che $f(x) = x, 0 < x \le \pi$.

a) Tracciare il grafico di f nell'intervallo $[-2\pi, 2\pi]$. b) Calcolare i seguenti coefficienti di Fourier di $f: a_0, a_1, a_2$ e tutti i coefficienti b_n .

6. Sia f la funzione periodica di periodo 2π tale che f(x)=x se $x\in (-\pi,\pi)$. a) Tracciare il grafico di f nell'intervallo $(-2\pi,2\pi)$. b) Calcolare i coefficienti dello sviluppo in serie di Fourier di f. c) Dire in quali punti dell'intervallo $[0,2\pi]$ la serie di Fourier di f converge a f(x). d) Calcolare la somma della serie in $x=\pi, x=0, x=\frac{2}{3}\pi$.

7. Scrivere la serie di Fourier associata alla funzione pari, 2π -periodica, definita in $[0,\pi]$ da

$$f(x) = \begin{cases} 1 & 0 \le x \le \frac{\pi}{2} \\ -1 & \frac{\pi}{2} < x \le \pi \end{cases}$$

Dimostrare che $\sum_{k=0}^{+\infty} (-1)^k \frac{1}{2k+1} = \frac{\pi}{4}$.

- 8. Scrivere la serie di Fourier associata alla funzione pari, 2π -periodica, definita in $[-\pi, \pi]$ da $f(x) = x^2$. Dimostrare che $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.
- **9.** Scrivere la serie di Fourier associata alla funzione di periodo 6, definita in [-3,3] da f(x)=|x|. Determinare: a) i valori di x per i quali la serie di Fourier converge ad f; b) il coefficiente a_0 dello sviluppo di Fourier; c) i coefficienti a_1 e b_1 dello sviluppo di Fourier; d) i coefficienti $a_n, b_n, n \geq 1$ dello sviluppo di Fourier.
- ${\bf 10.}$ Scrivere la serie di Fourier associata alla funzione dispari di periodo 4, definita in [0,2] da

$$f(x) = \begin{cases} x & 0 \le x \le 1\\ 2 - x & 1 < x \le 2 \end{cases}$$

Determinare: a) i valori di x per i quali la serie di Fourier converge ad f; b) il coefficiente a_0 dello sviluppo di Fourier; c) i coefficienti a_1 e b_1 dello sviluppo di Fourier; d) i coefficienti $a_n, b_n, n \ge 1$ dello sviluppo di Fourier.

Soluzioni.

- 1. Si ha che: $a_0 = -4$, $a_1 = -1$, $b_1 = 2$, $b_7 = 3$, gli altri coefficienti sono nulli. La prima armonica è: $-\cos x + 2\sin x$; la settima armonica è: $3\sin 7x$; le altre sono nulle.
- **2.** $f \ \text{è pari, quindi} \ b_1 = 0; \ a_0 = \frac{2}{\pi} \int_0^{\pi} (1 + x^2) \, dx = 2 + \frac{2}{3} \pi^2.$
- 3. $f \ \text{è dispari, quindi} \ a_0 = a_1 = 0;$ $b_1 = \frac{2}{\pi} \int_0^{\pi} \sin^4 x \, dx = \frac{2}{\pi} \left(-\cos x \sin^3 x \Big|_0^{\pi} + \int_0^{\pi} 3\cos^2 x \sin^2 x \, dx \right) = \frac{2}{\pi} \int_0^{\pi} 3(1 \sin^2 x) \sin^2 x \, dx = \frac{3}{4}; \ b_2 = \frac{2}{\pi} \int_0^{\pi} \sin^3 x \sin 2x \, dx = \frac{4}{\pi} \int_0^{\pi} \sin^4 x \cos x \, dx = 0.$
- **4.** b) Poiché f è dispari, $a_n = 0$ per ogni $n \ge 0$. $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = \frac{2}{\pi} \int_{0}^{\pi} x \sin nx \, dx = \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} -\log(1+x) \sin nx \, dx$. c) Dove f è continua, cioé in $[0, 2\pi]$ esclusi i punti $x = \frac{\pi}{2}$ o $x = \frac{3}{2}\pi$.

- **5.** b) Poiché f è pari, $b_n = 0$ per ogni $n \ge 0$; $a_0 = \frac{2}{\pi} \int_0^{\pi} x \, dx = \pi$; $a_1 = \frac{2}{\pi} \int_0^{\pi} x \cos x \, dx = -\frac{4}{\pi}$; $a_2 = \frac{2}{\pi} \int_0^{\pi} x \cos 2x \, dx = 0$.
- **6.** b) Poiché f è dispari, $a_n = 0$ per ogni $n \ge 0$. $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = \frac{2}{\pi} \int_{0}^{\pi} x \sin nx \, dx = \frac{2}{n} (-1)^{n+1}$. c) Dove f è continua, cioé in $[0, 2\pi] \setminus \{\pi\}$. d) In $x = \pi$ la somma della serie vale $\frac{-\pi + \pi}{2} = 0$; in x = 0, vale f(0) = 0; in $x = \frac{2}{3}\pi$, vale $\frac{2}{3}\pi$.
- 7. Poiché f è pari, $b_n = 0$ per ogni $n \ge 1$. $a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx = 0$; $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \frac{2}{\pi} \left(\int_0^{\frac{\pi}{2}} \cos nx \, dx \int_{-\frac{\pi}{2}}^0 \cos nx \, dx \right)$; $a_{2k} = 0, a_{2k+1} = \frac{4}{\pi} \frac{(-1)^k}{2k+1}$. La serie di Fourier di f è: $\frac{4}{\pi} \sum_{k=0}^{+\infty} (-1)^k \frac{\cos(2k+1)x}{2k+1}$. Si ha che $f(0) = 1 = \frac{4}{\pi} \sum_{k=0}^{+\infty} (-1)^k \frac{1}{2k+1}$.
- **8.** Poiché f è pari, $b_n = 0$ per ogni $n \ge 1$. $a_0 = \frac{2}{\pi} \int_0^{\pi} x^2 dx = \frac{2}{3} \pi^2$; $a_n = \frac{2}{\pi} \int_0^{\pi} x^2 \cos nx \, dx = \frac{4}{n^2} (-1)^n$. La serie di Fourier di f è: $\frac{\pi^2}{3} + 4 \sum_{n=1}^{+\infty} (-1)^n \frac{\cos nx}{n^2}$. Si ha che $f(\pi) = \pi^2 = \frac{\pi^2}{3} + 4 \sum_{n=1}^{+\infty} \frac{1}{n^2}$.
- **9.** a) Per ogni $x \in \mathbb{R}$; b) $a_0 = \frac{1}{3} \int_{-3}^{3} |x| \, dx = 3$; c) $a_1 = \frac{1}{3} \int_{-3}^{3} |x| \cos(\frac{\pi}{3}x) \, dx = \frac{2}{3} \int_{0}^{3} x \cos(\frac{\pi}{3}x) \, dx = \frac{2}{3} \left(\frac{3}{\pi}x \sin(\frac{\pi}{3}x)\Big|_{0}^{3} \frac{3}{\pi} \int_{0}^{3} \sin(\frac{\pi}{3}x) \, dx\right) = -\frac{12}{\pi^2}, \ b_1 = 0$; d) $a_n = \frac{2}{3} \int_{0}^{3} x \cos(\frac{n\pi}{3}x) \, dx = \frac{6}{\pi^2 n^2} [(-1)^n 1], \ a_{2k} = 0, a_{2k+1} = -\frac{12}{\pi^2 (2k+1)^2},$ $b_n = 0. \ f(x) \sim \frac{3}{2} \frac{12}{\pi^2} \sum_{k=0} +\infty \frac{1}{(2k+1)^2} \cos\left(\frac{(2k+1)\pi}{3}x\right).$
- **10.** a) Per ogni $x \in \mathbb{R}$; b) $a_0 = 0$; c) $a_1 = 0, b_1 = \frac{1}{2} \int_{-2}^{2} f(x) \sin(\frac{\pi}{2}x) dx = \int_{0}^{2} f(x) \sin(\frac{\pi}{2}x) dx = \int_{0}^{1} x \sin(\frac{\pi}{2}x) dx + \int_{1}^{2} (2-x) \sin(\frac{\pi}{2}x) dx = \frac{8}{\pi^2}$; d) $a_n = 0$

$$0, b_n = \int_0^2 f(x) \sin(\frac{n\pi}{2}x) dx = \frac{8}{\pi^2 n^2} \sin\frac{n\pi}{2}, b_{2k} = 0, b_{2k+1} = \frac{8}{\pi^2 (2k+1)^2} (-1)^k,$$

$$b_n = 0. \ f(x) \sim \sum_{k=0}^{\infty} +\infty \frac{8}{(2k+1)^2 \pi^2} (-1)^k \sin\left(\frac{(2k+1)\pi}{2}x\right).$$