Hacking Femtocells

a femtostep to the holy grail

Ravishankar Borgaonkar

ravii@sec.t-labs.tu-berlin.de

Kevin Redon

kredon@sec.t-labs.tu-berlin.de

Security in Telecommunication

Technical University of Berlin

Introduction

- Ravishankar Borgaonkar
 - PhD student at TU Berlin
 - Area: M2M Security, Mobile Networking Security
- Kevin Redon
 - Master Student at TU Berlin
 - Area: Network Security
- Special thanks to:
 - Collin Mulliner, TU Berlin
 - Prof. Jean-Pierre Seifert, TU Berlin
 - Benjamin Michéle, TU Berlin
 - Monty Python

Contents

Introduction to Femtocell

Security of the Femtocell devices

Location verification methods

Beating the location verification methods

Hacking into the device

Demo

Femtocell Technology

- low power wireless device
- supports any 3G mobile device
- provide 3G coverage for places where macrocells can not
- offloads traffic from the macrocell layer, and improve macrocell capacity
- IP connection to the core network
- higher data rates with power saving option to the mobile devices

Femtocell Future

Femtocells World Summit 2011 June 20th - 23rd, 2011 London, UK

Someday, all Basestations will be Made Like This Nigel Toon - CEO, picoChip

Femtocells - Playing A Pivotal Role In 4G Networks
Timo Hyppola - Head of Indoor Radio, Nokia Siemens Networks

How and where?

- currently in the 9 countries (soon in other places)
- you can buy easily
- you need to provide right address to provision since they lock the device to a particular location
- if you change the address, it will not work (as they say so)
- costs < 100 euro + normal phone subscription
- No Roaming is allowed on the Femtocells

Small base station?

Country	Operator	Vendor
USA	AT & T, Verizon	ip.access, Samsung
Japan	KDDI, NTT Docomo	Airvana, Mitsubishi
Portugal	Optimus	Huawei
France	SFR	Ubiquisys
Singapore	Singtel, Starhub	Huawei
Japan	Softbank	Ubiquisys
Spain	Telefonica	Huawei
UK	Vodafone	Alcatel-Lucent
Greece	Vodafone	Huawei

Difference: Femtocell and NodeB

Femtocell Architecture

- femtocell Device aka HNB (Home NodeB)
- Security Gateway (SeGW)
- Operation, Administration & Management server (OAM)
- User Equipment (UE)

Femtocell Security

Femtocell Security Requirements

- femtocell should be locked to a specific geographical location to avoid misuse (roaming is good) and to respect radio license
- booting process of the femtocell should be secured by cryptographic means (e.g. no ROOT access)
- device should not reveal any secret information such as IMSI, stored keys etc.(e.g. public keys, IPsec keys)
- ...
- Security of H(e)NB, TR 33.820

Location Locking Methods

On the Device

Enable 2G Sniff

Configured Bands

OPLMN Search Enable

GSM Neighbour List Type

true

GSM Neighbour List Type

True

Reselection & Han

	Alarm	Activation time
	=====	
	CannotSelectRFProfile:	INACTIVE
	SoftwareFault:	INACTIVE
	PMReportFailure:	INACTIVE
→	LocationChanged:	INACTIVE
·	PoorRFQos:	INACTIVE
	PoorBackHaulQoS:	INACTIVE
	OverTemperature:	INACTIVE
	UpgradeFailure:	INACTIVE
	FilesystemFailure:	INACTIVE
	HotSpotIndication:	INACTIVE
	NoNtpServer:	INACTIVE
→	InvalidCountry:	INACTIVE
	GatewayChanged:	INACTIVE
	AllTimingServerConnectivityLost:	INACTIVE
	NoTimingSource:	INACTIVE

Breaking locks - IP address

- use VPN (Virtual Private Network)
- only need to show that you are at home :-)

Breaking locks - GNSS (GPS)

- tools you need: GPS jammer or GPS spoofer
- go indoor (low GPS signal)
- not all devices have GPS

Breaking locks - macrocells

- tools you need: GSM jammer, fake BTS, or elevator
- LAC and MCC can be faked using fake BTS
- block the signal (jamming, Faraday cage)

Result

what could go wrong? lawful interception

Rooting the device

different approaches to own an access point:

- scan the network
- finding a serial port
- sniffing the communication

Secured device

- no port open apart http
- serial port found, but no login prompt
- all communication is over IPsec

Recovery procedure

- image download over http
- using hashes in the url
- encrypted and signed
- one small https request
- some https notifications

- 1. small loader getting a recovery file system
- 2. recovery image downloads and flashes all other images

Recovery to failure

- 0. recovery file system in also available unencrypted you cannot modify it (signed), but at least analyze (tivo)
- 1. no mutual authentication over HTTPS
- 2. given public key is not signed
- 3. all images can now be decrypted and analyzed

t2'10 infosec

Your mine: pwnd

setup a fake recovery server

services: DHCP, DNS, NTP, and HTTP[S]

- re-activate login prompt
- flash modified images

Booting H(e)NB with fraudulent software ("re-flashing")

Impact: up to disastrous. Possibility to use any software can mean any violation of the security

t2'10 infosec

Doors to heaven

a small eye drop behind the SeGW

t2'10 infosec

Analysis of the Research

- effective technology in terms of offloading the traffic and of new business cases
- provides higher data rates to the user ... but
- the device security can become a breach
- some serious threats :
 - could open gates to the Telecom infrastructure elements (like HLR)
 - a very cheap IMSI catcher device
 - might used as MiTM device while calling

References

- 3GPP," Security of Home Node B (HNB) / Home evolved Node B (HeNB)", TS 33.320, V9.1.0, April 2010.
 http://www.3gpp.org
- 3GPP Technical Specification Group Service and System Aspect, " Security of H(e)NB", TR 33.820, V8.3.0, December 2009
- 3GPP TR 33.820 Release 8 : 3rd Generation Partnership Project; Technical Specification Group Service and System Aspects; Security of H(e)NB
- The nanoBTS: small GSM basestations.
 http://www.ipaccess.com/picocells/nanoBTS picocells.php

Demo

Questions?

Thank U