WHAT IS CLAIMED IS

1	 A method for overcoming stiction in an electro-mechanical system,
2	the method comprising:
3	providing a base layer;
4	providing a contact area, wherein the contact area comprises a portion of
5	the base layer or a stop disposed thereon;
6	providing a structural plate, wherein a side of the structural plate is in
7	contact with the contact area, and wherein a stiction force impedes movement of the
8	structural plate away from the contact area; and
. 9	producing a vibration local to the contact area and sufficient to overcome
10	the stiction force.
1	2. The method of claim 1, wherein the structural plate is one of a
2	plurality of structural plates and the contact area is one of a plurality of contact areas, and
3	wherein each of the structural plates is associated with at least one contact area, the
4	method further comprising:
5	producing a vibration local to a subset of the contact areas.
1	3. An electo-mechanical system capable of overcoming stiction forces
2	through localized vibration, the system comprising:
3	a base layer having a surface;
4	a device supported above the surface by a pivot, wherein the device is
5	movable along a movement path;
6	a stop located at a contact position along the movement path, wherein the
7	device contacts the stop at the contact position, and wherein a stiction force between the
8	device and the stop exits at the contact postion; and
9	a vibration element operable to cause a vibration at or near the contact
10	position, wherein the vibration disrupts the stiction force.
٠	
1	4. The system of claim 3, the system further comprising an device
2	actuator, wherein the device actuator is operable to cause the device to move along the
3	movement path.
1	5. The system of claim 3, wherein the device is a structural plate,
2	comprising a micro mirror.
_	

1		6.	The system of claim 3, wherein the stop comprises an area of the
2 .	base layer.		
1		7.	The system of claim 6, wherein the vibration element is a
2	mechanical st	ructure	operable to repeatedly contact the device at or near the contact point.
1		8.	The system of claim 3, wherein the vibration element comprises a
2	device actuate	or, whe	ein the device actuator is operable to cause the device to move
3	relative along		
1		9.	The system of claim 3, wherein the vibration element is integral to
2	the device.		
1		10.	The system of claim 3, wherein the device is a first device, the
2	pivot is a firs	t pivot,	the stop is a first stop, the contact position is a first contact position,
3	the movemen	ıt path i	s a first movement path, and the vibration device is a first vibration
4	device, the sy	stem fi	arther comprising:
5	•	at lea	st a second device and a second pivot, wherein the second device is
6	supported ab	ove the	surface by the second pivot, and wherein the second device is
7			ond movement path;
8		at lea	st a second stop located at a second contact position along the second
9	movement pa	ath, who	erein the second device contacts the second stop at the second contact
10			n the contact between the second device and the second stop is
11	susceptible to		
12		at lea	st a second vibration element operable to cause a vibration at or near
13	the second co	ontact p	osition, wherein the vibration disrupts the stiction force; and
14			ein the first and second vibration elements are electrically connected
15	such that the	first an	d second vibration elements are activated together.
1		11.	A method for overcoming stiction in an electro-mechanical system,
2	the method o	compris	ing:
3		prov	iding a base layer;
4		prov	iding a device supported above a surface of the base layer by a pivot;
5		prov	iding an actuator disposed on the base layer;

6	activating the actuator to cause the device to deflect until an end of the		
7	device contacts the base layer or a structure disposed thereon at a contact position,		
8	wherein further movement of the device is retarded by a stiction force at the contact		
9	position;		
10	deactivating the actuator to allow the device to return to a static position;		
11	and ·		
12	vibrating an area at or about the contact position, wherein the vibration		
13	disrupts the stiction force.		
	12. The method of claim 11, wherein the device comprises a structura	al	
, 1			
. 2	plate with a micromirror mounted thereon.		
ĺ	13. The method of claim 11, wherein vibrating comprises applying a		
2	force to deform an elastic structure at or near the contact position, and subsequently		
3	removing the force to allow the elastic structure to reform, and wherein reforming the		
4	elastic structure causes a vibration at the contact position.		
1	14. The method of claim 11, wherein the force is a voltage.		
1	15. The method of claim 11, wherein vibrating comprises applying a	Ļ	
2	voltage alternating between a low potential and a high potential at a frequency, and		
3	wherein the high potential causes an elastic structure to deform at or near the contact		
4	position and the low potential allows the elastic structure to reform, and wherein		
5	deforming and reforming the elastic structure causes a vibration at or near the contact		
6	position.		
	The second the contact position is associate	ec	
1	16. The method of claim 11, wherein the contact position is associated		
2	with a stop structure disposed on the base layer.		
1	17. The method of claim 16, wherein vibrating comprises applying a	an	
2	alternating voltage to the stop structure, and wherein the frequency of the alternating		
3	voltage is at or near the natural frequency of the stop structure or a harmonic thereof.		
	·		
1	18. A method for overcoming stiction through vibrations localized t		
2	areas susceptible to stiction forces, the method comprising:		
3	providing a base layer;		

4	providing at least a first and a second device;
5	wherein the first device is moveable to contact the base layer or a
6	first structure thereon at a first contact position, and wherein at the first contact position,
7	movement of the first device is susceptible to stiction forces; and
8	wherein the second device is moveable to contact the base layer or
9	a second structure thereon at a second contact position, and wherein at the second contact
10	position, movement of the second device is susceptible to stiction forces; and
11	concurrently vibrating an area at or about the first and the second contact
12	positions, wherein the vibration disrupts the stiction forces.
1	19. The method of claim 18, wherein the device comprises a structural
2	plate with a micromirror mounted thereon.
1	20. The method of claim 18, wherein vibrating comprises applying a
2.	force to deform an elastic structure at or near the first contact position, and subsequently
3	removing the force to allow the elastic structure to reform, and wherein reforming the
4	elastic structure causes a vibration at the first contact position.
1	21. The method of claim 18, wherein vibrating comprises applying a
2	voltage alternating between a low potential and a high potential at a frequency, and
3	wherein the high potential causes an elastic structure to deform at or near the first contact
4	position and the low potential allows the elastic structure to reform, and wherein
5	deforming and reforming the elastic structure causes a vibration at or near the first contact
6	position.
1	22. The method of claim 21, wherein the elastic structure is a first
2	elastic structure, the method further comprising:
3	concurrently applying the voltage to a second elastic structure, wherein
4	deformation and reformation of the second elastic structure causes a vibration at or near
5	the second contact position.
1	23. The method of claim 18, wherein the first contact position is
2	associated with a first stop structure disposed on the base layer, and wherein the second
3	contact position is associated with a second stop structure disposed on the base layer.

1	24.	The method of claim 23, wherein vibrating comprises applying an
2	alternating voltage to	both the first and the second stop structures, and wherein the
3		nating voltage is at or near the natural frequency of the first and the
4		s or a harmonic thereof.
	0.5	An electro-mechanical system, the system comprising:
1	25.	
2		tural plate in contact with a stop; and
3		uator activated by a force for creating a movement of the stop
4		ral plate, wherein the movement is sufficient to overcome stiction
5	forces between the st	ructural plate and the stop.
1	26.	The system of claim 25, wherein activating the actuator with a
2	force causes the stop	to displace from a static position to a displaced position, and
3		nt results from elastic forces associated with the stop which cause
4		rom the displaced position to the static position when the actuator is
5	de-activated.	
,	27.	The system of claim 26, wherein the movement comprises an
1		
2	oscillation of the stop	
1	28.	The system of claim 27, wherein the oscillation comprises
2	displacement of the s	stop from the displaced position passed the static position to an
3		nd back to the static position.
1	29.	The system of claim 25, the system further comprising a base layer
		al plate is supported above the substrate by a pivot and the stop is
2	disposed over the ba	·
3	disposed over the ba	se layer.
1	30.	The system of claim 29, the system further comprising a micro-
2	mirror disposed on t	he structural plate.
1	31.	The system of claim 29, wherein the actuator is a first actuator, the
2		orising a second actuator, wherein application of a DC voltage to the
2		se the structural plate to displace and contact the stop.

1		32.	A method of providing localized vibration in an electro-mechanical
2	system, the me	ethod c	omprising:
3		provid	ling a base layer;
4		_	ling a stop disposed over the base layer;
5		provid	ling a structural plate supported over the base layer by a pivot,
6	wherein the st	ructura	l plate is moveable to contact the stop;
7 .		provid	ling an actuator disposed relative to the stop;
8		applyi	ing a static force to the actuator, wherein the stop displaces from a
9	static position	to a di	splaced position; and
10			ring the static force from the actuator to cause a movement of the
11	stop relative to	o the st	ructural plate, wherein the movement is sufficient to overcome
12	stiction forces between the stop and the structural plate.		
1		33.	The method of claim 32, wherein the static force is a DC voltage.
1		34.	The method of claim 32, wherein the movement comprises an
2	oscillation of	the stop	o.
		35.	The method of claim 34, wherein the oscillation comprises
1	1:10 - om-om+		stop from the displaced position passed the static position to an
2	•		nd back to the static position.
3	overshoot pos	sition ai	id back to the static position.
1		36.	The method of claim 32, wherein the movement is primarily
2	vertical relati	ve to th	e base layer.
1		37.	The method of claim 32, wherein the movement is primarily
2	horizontal rel	ative to	the base layer.
1		38.	The method of claim 32, wherein the structural plate comprises a
2	micro-mirror	dispos	ed thereon.
,	•	39.	The method of claim 32, wherein the actuator is a first actuator, the
l	mathad firsth		·
2	method furth	,	ding a second actuator, wherein activation of the second actuator
3 4	causes the st	-	plate to contact the stop; and
4	causes the sti		ating the second actuator.

1	40. The method of claim 39, the method further comprising:
2	removing the static force from the first actuator at or about the same time
3	as deactivating the second actuator.
•	the system comprising
1	41. An electro-mechanical system, the system comprising:
2	a mechanical stop;
3	a structural plate disposed relative to the mechanical stop, wherein a side
4	of the structural plate contacts the mechanical stop; and
5	an actuator, wherein application of a DC voltage to the actuator causes the
6	mechanical stop to move relative to the structural plate from a static position to a
7	displaced position, and wherein removal of the static force causes a movement of the
8	mechanical stop from the displaced position to the static position, and wherein the
9	movement is sufficient to overcome stiction forces between the structural plate and the
10	mechanical stop.
1	42. The system of claim 41, wherein the movement comprises an
2	oscillation of the mechanical stop.
1	43. The system of claim 42, wherein the oscillation comprises
2	displacement of the mechanical stop from the displaced position passed the static position
3	to an overshoot position and back to the static position.
1	44. The system of claim 41, the system further comprising a base layer
2	wherein the structural plate is supported above the substrate by a pivot and the
3	mechanical stop is disposed over the base layer.
1	45. The system of claim 44, wherein the actuator is a first actuator, the
2	system further comprising a second actuator, wherein application of a force to the second
3	actuator causes the structural plate to deflect into contact with the mechanical stop.
,	
1	46. An optical routing apparatus comprising a moveable micro-mirror,
2	the optical routing apparatus comprising:
3	a base layer;
4	a stop disposed over the base layer;

5	a structural plate supported above the substrate by a pivot, wherein the		
6	structural plate is deflectable to contact the stop;		
7	an actuator disposed near the stop, wherein application of a DC voltage to		
8	the actuator causes the stop to displace from a static position, and wherein removing the		
9	DC voltage allows the stop to displace to the static position, and wherein displacement to		
10	the static position creates a movement sufficient to overcome stiction related forces		
11	between the stop and the structural plate.		
1	47. The system of claim 46, wherein the movement comprises an		
2	oscillation of the stop.		
2	oscination of the stop.		
1	48. The system of claim 46, wherein the movement comprises a		
2	combination of horizontal and vertical movement relative to the base layer.		
	to the section of the contrator is a first actuator the		
1	49. The system of claim 46, wherein the actuator is a first actuator, the		
2	system further comprising a second actuator, wherein application of a force to the second		
3	actuator causes the structural plate to deflect into contact with the stop.		
1	50. An electro-mechanical system, the system comprising:		
2	a structural plate in contact with a stop; and		
3	an actuator activated by an alternating force for creating an oscillating		
4	movement of the stop relative to the structural plate, wherein the oscillating movement is		
5	sufficient to overcome stiction forces between the structural plate and the stop.		
1	51. The system of claim 50, wherein the alternating force is an AC		
2	voltage or a pulsed DC voltage.		
2	Voltage of a pulsed De Voltage.		
1	52. The system of claim 50, wherein activating the actuator with an		
2	alternating force causes the stop to displace to a displaced position when the alternating		
3	force is at a first potential, and wherein an elastic force associated with the stop causes the		
4	stop to displace toward a static position when the alternating force is at a second potential		
.1	53. The system of claim 52, wherein the oscillating movement results		
2	from displacing the stop to the displaced position and returning the stop toward the static		
2	nosition		

1		54.	The system of claim 53, wherein the oscillating movement
2	oscillates at a	freque	ncy at or about the frequency of the alternating force.
1		55.	The system of claim 50, the system further comprising a base layer,
2	wherein the st	tructura	al plate is supported above the base layer by a pivot and the stop is
3	disposed over		
	•		
1		56.	The system of claim 55, wherein the actuator is a first actuator, the
2	-		rising a second actuator, wherein application of a voltage to the
3	second actuat	or caus	e the structural plate to displace and contact the stop.
.1		57.	A method of providing localized vibration in an electro-mechanical
2	system, the m	nethod o	comprising:
3	. •	provi	ding a base layer;
4		provi	ding a stop disposed over the base layer;
5		provi	ding a structural plate supported over the base layer by a pivot,
6	wherein the s	tructur	al plate is moveable to contact the stop;
7		provi	ding an actuator disposed relative to the stop;
8		apply	ring an alternating force to the actuator to create a movement of the
9	stop, wherein	the sto	op displaces from a static position to a displaced position when the
10	alternating force is at a first potential and returns toward the static position when the		
11			at a second potential; and
12	_,		ein the movement is sufficient to overcome stiction forces between
13	the stop and	the stru	ctural plate.
1		58.	The method of claim 57, wherein the alternating force is an AC
2	voltage.	30.	
_			
1		59.	The method of claim 57, wherein the movement comprises an
2	oscillation of	f the sto	op.
1		60.	The method of claim 59, wherein a frequency of the alternating
2	force determ	ines the	e frequency of the oscillation.
1		61.	The method of claim 57, wherein the actuator is a first actuator, the
2	method furth		
4	Incurve in a	TOT COIL	

3	providing a second actuator, wherein activation of the second actuator		
4	causes the structural plate to contact the stop; and		
5	activating the second actuator.		
	62. The method of claim 61, the method further comprising:		
1	de-activating the second actuator at or about the same time as applying an		
2			
3	alternating force to the first actuator.		
1	63. An electro-mechanical system, the system comprising:		
2	a mechanical stop;		
3	a structural plate disposed relative to the mechanical stop, wherein a side		
4	of the structural plate contacts the mechanical stop; and		
5	an actuator, wherein application of an AC voltage to the actuator causes		
6	the mechanical stop to vibrate, and wherein the vibration is sufficient to overcome stiction		
7	forces between the structural plate and the mechanical stop.		
	·		
1	64. The system of claim 63, wherein the vibration occurs at a		
2	frequency at or about the frequency of the AC voltage.		
1	65. An optical routing apparatus comprising a moveable micro-mirror,		
2	the optical routing apparatus comprising:		
3	a base layer;		
4	a stop disposed over the base layer;		
5	a structural plate supported above the base layer by a pivot, wherein the		
6	structural plate is deflectable to contact the stop; and		
7	an actuator disposed near the stop, wherein application of an AC voltage to		
8	the actuator causes the stop to oscillate at a frequency at or about the frequency of the AC		
9	voltage, and wherein the oscillation is sufficient to overcome stiction related forces		
10	between the stop and the structural plate.		
1	66. The system of claim 65, wherein the oscillation comprises a		
1	combination of horizontal and vertical movement relative to the base layer.		
2			
1	67. The system of claim 65, wherein the actuator is a first actuator, the		
2	system further comprising a second actuator, wherein application of a force to the second		
3	actuator causes the structural plate to deflect into contact with the stop.		

1		68.	An electro-mechanical system, the system comprising:
2		a base l	ayer;
3		a stop d	lisposed on the base layer;
4		a struct	ural plate supported above the base layer by a pivot, wherein the
5	structural plate	e can de	flect to contact the stop; and
6 .	¥	a conta	ct for receiving a driving force, wherein a frequency of the driving
7	force is at or r	near the	resonant frequency, or a harmonic thereof, of either the stop or the
8			herein receiving the driving force causes a vibration of the stop
9	relative to the	structur	al plate.
1		69.	The system of claim 68, wherein the driving force is a mechanical
2	force.		
1		70.	The system of claim 68, wherein the driving force is sound.
1		71.	The system of claim 68, wherein the driving force is an AC
2	voltage.		
1		72.	The system of claim 71, wherein the contact comprises a portion of
2	the stop.		
1		73.	The system of claim 71, wherein the contact comprises a portion of
2	the pivot.	•	
1		74.	The system of claim 71, wherein the contact is an electrically
2	conductive le	ad coup	led to the stop.
1		75.	The system of claim 71, wherein the vibration primarily comprises
2	movement of	f the stop	o.
1		76.	The system of claim 75, wherein the stop is comprised of a
2	material and	the driv	ing force has a frequency at or near the resonant frequency of the
3	material.		
1		77.	The system of claim 71, wherein the vibration primarily comprises
2	movement o	f the stri	ictural plate

			·
1 .		78.	The system of claim 77, wherein the structural plate comprises a
2	structure conn	ecting a	a first and a second portion of the structural plate.
			m
1		79.	The system of claim 78, wherein the structure is a serpentine
2	structure.		
1		80.	The system of claim 78, wherein the structure is comprised of a
2	material and t	he drivi	ng force has a frequency at or near the resonant frequency of the
3	material.		
1		81.	The system of claim 68, the system further comprising an actuator,
2	wherein activa	ation of	the actuator causes the structural plate to deflect and contact the
3	stop.		
1	·	82.	The system of claim 81, wherein the actuator is integral to the stop.
1		83.	A method of providing localized vibration in an electro-mechanical
2	system, the m	ethod c	comprising:
3		_	ding a base layer;
4			ding a stop disposed over the base layer;
5			ding a structural plate supported over the base layer by a pivot,
6	wherein the s		al plate is moveable to contact the stop;
7			ing a driving force to the stop, wherein a frequency of the driving
8			e resonant frequency, or a harmonic thereof, of either the stop or the
9	structural pla	te, and	wherein the driving force causes a vibration of the stop relative to the
10	structural pla		
11		where	ein the movement is sufficient to overcome stiction forces between
12	the stop and t	the stru	ctural plate.
1		0.1	The method of claim 83, wherein the driving force is an AC
1		84.	The method of claim 65, wherein the diving rest is
2	voltage.		
1		85.	The method of claim 83, wherein the stop comprises a material and
2	the vibration	compri	ises a vibration of the stop at or near the resonant frequency of the
3	material.		

1	86. The method of claim 83, wherein the structural plate comprises a	
2	material and the vibration comprises a vibration of the structural plate at or near the	
3	resonant frequency of the material.	
1	87. The method of claim 83, wherein the structural plate comprises a	L
2	structure disposed between a first and second portions of the structural plate.	
1	88. The method of claim 87, wherein the vibration comprises a	
2	vibration of the structural plate at or near the resonant frequency of the structure.	
1	89. The method of claim 83, wherein the structural plate comprises a	3
2	micro-mirror disposed thereon.	
1	90. An electro-mechanical system, the system comprising:	
2	a base layer;	
3	a structural plate supported above the base layer by a pivot, wherein a fi	irs
4	portion of the structural plate contacts the base layer or a stop disposed on the base layer	
5	and a second portion of the structural plate contacts the pivot, and wherein a structure i	is
6	disposed between the first and the second portions;	
7	a driving force, wherein the driving force has a frequency at or near the	
8	natural frequency, or a harmonic thereof, of the structure; and	
9	wherein the driving force causes a vibration of the structural plate relati	V
10	to the base layer, the vibration sufficient to overcome stiction related forces between the	nè
11	base layer and the structural plate.	
1	91. The system of claim 90, wherein the structure is comprised of a	٠.
2	material and the driving force has a frequency at or near the natural frequency of the	
3	material.	