Self Adaptive Reconfigurable Arrays: Learning Flexible GEMM Accelerator Configuration & Mapping-space using ML

59th Design Automation Conference (DAC), 2022

Sang-Soo Park 2022-09-15

Contents

- Systolic array (SA) architectures
 - Rigid, Flexible, Distributed
 - Motivation: Various GEMM operations
- SAGAR: <u>Shape adaptive GEMM accelerator</u>
 - Self adaptive unit (SA) and Reconfigurable array (RA) units
 - ADAPTNET: Recommendation for GEMM operations
- SAGAR evaluations
 - Performance and hardware cost analysis

- Rigid monolithic array
 - Simple to construct but no flexibility leaning to high under utilization
 - TPU's systolic array

- Flexible monolithic array
 - Flexibility via cluster of interconnects and configuration logics w/ SW
 - MAERI, Eyeriss v2, SIGMA

buffer

Flexible Monolithic

Structural scalability

No mapping search

No arch config search

- Distributed architecture
 - Exacerbating mapping search problem by distribute array
 - NoC architecture (Simba, Tangram)

Distributed

- ✓ Structural scalability
- No mapping search
- ✓ No arch config search

- Distributed architecture
 - Exacerbating mapping search problem by distribute array
 - NoC architecture (Simba, Tangram)

Motivation: Various GEMM operations

- Trade-off between performance and loss of reuse
 - Scale-Sim with16K PE array configurations
 - 16 32×32 array: 2× times faster, 4× memory access (energy eff. ↓)

Trade-off between runtime and lost reuse in compute equivalent monolithic & distributed SA7

Motivation: Various GEMM operations

- Trade-off between performance and loss of reuse
 - Scale-Sim with16K PE array configurations
 - 16 32×32 array: 2× times faster, 4× memory access (energy eff. ↓)

Distributed arrays (Scale-out) are more performant than that of equivalent monolithic array (Scale-in). However, <u>optimal size</u> of each device in distributed setting is <u>workload dependent</u>. <u>Monolithic configurations</u> are <u>more energy efficient</u> than that of <u>distributed arrays</u>, due to loss the of <u>spatio-temporal reuse</u> in the latter.

(a) Theoret 7281.1 A GARD 1532.1 SA 161.1 156 ST 1024 AT 156 ST 10

Trade-off between runtime and lost reuse in compute equivalent monolithic & distributed SA8

Shape <u>a</u>daptive <u>GEMM accelerator</u>

- Mapping & configuration space of reconfigurable accelerator
 - Reconfigurable array: <u>Various dataflow, Mono/Distribute architecture</u>
 - Self adaptive: Accelerator for ML model (Optimal parameters)

Constitution and interactions of self adaptive (SA) and reconfigurable array (RA)

- SAGAR architecture
 - SA (1D adder-tree unit)
 - Streamed input & Stationary weight
 - Inference of ADAPTNET
 - Choosing RA operations
 - RA (Reconfigurable SA)
 - Various dataflow (OS/WS/IS)
 - Monolithic, Distributed

- SAGAR architecture
 - SA (1D adder-tree unit)
 - Streamed input & Stationary weight
 - Inference of ADAPTNET
 - Choosing RA operations
 - RA (Reconfigurable SA)
 - Various dataflow (OS/WS/IS)
 - Monolithic, Distributed

SAGAR architecture

- SA (1D adder-tree unit)
 - Streamed input & Stationary we
 - Inference of ADAPTNET
 - Choosing RA operations
- RA (Reconfigurable SA)
 - Various dataflow (OS/WS/IS)
 - Monolithic, Distributed

- SAGAR architecture: Reconfigurable SA
 - Mapping flexibility improved by work on different operations
 - Needs to provision for additional links from SRAM to PE units (Area, Energy ↑)
 - Systolic cell: Small grid of PE units augmented with MUXs at edges

SAGAR architecture: Reconfigurable SA

Recommendation for GEMM operations

- Architecture design as ML problem
 - Framing as classification and recommendation task works best
 - Number and logical layout of partitions
 - Dimensions of array in each partition, mapping/dataflow (OS/WS/IS)

	Horizontal systolic cells ①	Vertical systolic cells ②	Systolic cell rows _③	Systolic cell cols	Dataflow ⑤
0	16	64	4	4	os
1	32	32	4	4	os
2	32	32	4	4	WS
3	16	16	8	8	IS
4	8	32	8	8	WS
·	:	:	:	:	:
N	2	2	32	32	IS

Recommendation for GEMM operations

- Implementation, Methodology, and Workloads
 - RTL as 32×32 array of 4×4 systolic-cells, ASIC flow till PnR
 - 28nm library, SRAM buffers as collection of 1024 1KB cells (Synopsys)
 - Operating frequency of 1GHz, 32.768 TOPS, 81.90 mm², 13.01W
 - SA: 8.65% of area and 1.36% of power
 - In-house script to generate Scale-Sim to perform workload partitioning
 - Faster RCNN, DeepSpeech2, and AlphaGo Zero

SAGAR					
Systolic cell dims	4x4				
Num systolic cells	1024				
Max Throughput	32.768 TOPs				
Frequency	1 GHz				
Tech node	28nm				
Area	81.90 mm2				
Power	13.01 Watts				

- Performance analysis: Runtime
 - Baseline/Distributed: 128×128 monolithic systolic and 1024 4×4 arrays
 - Flexibility leading to lower aggregated runtime for SAGAR

- Performance analysis: Runtime
 - Baseline/Distributed: 128×128 monolithic systolic and 1024 4×4 arrays
 - Flexibility leading to lower aggregated runtime for SAGAR

- Performance analysis: Run
 - Baseline/Distributed: 128×12
 - Flexibility leading to lower ag

Fig. 12. Distribution of favorable array sizes for a 16384 MAC distributed system which attain the lowest runtime when run for each layer in (a) synthetic GEMM workloads (b) AlphaGoZero, (c) DeepSpeech2, and (d) FasterRCNN.

- Performance analysis: Memory
 - Baseline/Distributed: 128×128 monolithic systolic and 1024 4×4 arrays
 - Mitigated efficiency loss in reuse by bypassing links

- Performance analysis: Overall
 - About > 10× speedup over monolithic baseline
 - 98% to 80% less EDP compared to monolithic baseline

- Hardware cost analysis
 - Monolithic configuration (Best efficient in teams of area)
 - 50% more power than that of monolithic (3.5× expensive)

Hardware cost analysis

Hardware cost analysis

<u> 감사합니다</u>