Denoising Diffusion Probabilistic Models for Image Inpainting $$\operatorname{Pranav}$$ Talluri

2022/23

Declaration of Originality

Proforma

Contents

1	Introduction	Ę
2	Preparation	6
3	Implementation	7
4	Evaluation	8
5	Conclusion	Ç

1 Introduction

Deep learning has enabled...
GANs are popular but have issues...
DDPMs offer a solution...
Applications of DDPMs...
Image inpainting...

2 Preparation

PrepWork...

- logistic distribution
 - normal dist but with heavy tails
 - "increases the robustness of analyses based on it compared with using the normal distribution"

• PixelCNN++

- openai implementation of PixelCNN
- tractable likelihood
- "model fully factorizes the probability density function on an image x over all its subpixels"
- modification to PixelCNN discretised logistic mixture likelihood rather than softmax
- modification conditions on whole pixels rather than rgb vals
- modification downsampling to encourage long range dependencies
- modification shortcut connections
- modification standard binary dropout to prevent overfitting
- DDPMs (modified PixelCNN++)
 - replaced weight normalisation to group normalisation simplicity
 - 4 resolution levels for 32x32 and 6 for 256x256
 - two convolutional residual blocks per resolution level
 - "self-attention blocks at the 16x16 resolution between the convolutional blocks"
 - dropout rate set by sweeping over values
 - linear beta schedule
 - random horizontal flips
 - Adam rather than RMSProp
 - batch size is 128 for CIFAR
 - EMA set to 0.9999 decay factor

Related works...

Maths behind DDPMs...

Alternative methods of image generation...

Alternative methods of image inpainting...

3 Implementation

4 Evaluation

5 Conclusion

Appendicies

Index