```
clc; clear;
dsFolder = "p_dataset_26";
subFolder = ["0", "4", "7", "8", "A", "D", "H"];
categories = ["0", "4", "7", "8", "A", "D", "H"];
```

```
allData = table('Size', [0, 2], 'VariableTypes', {'cell', 'cell'}, 'VariableNames',
    {'Image', 'Label'});

for i = 1:length(subFolder)
    folderPath = fullfile(dsFolder, subFolder(i));
    pngFiles = dir(fullfile(folderPath, "*.png"));

    for j = 1:length(pngFiles)
        pngFilePath = fullfile(folderPath, pngFiles(j).name);
        image = imread(pngFilePath);
        allData = [allData; {image, categories(i)}];
    end
end
```

```
% define images & labels
numImages = size(allData, 1);
imageSize = size(allData.Image{1});
images = zeros(imageSize(1), imageSize(2), 1, numImages);

for i = 1:numImages
    images(:, :, 1, i) = allData.Image{i};
end

labels = categorical(allData.Label);
```

```
% split data into train and test set
cv = cvpartition(labels, 'HoldOut', 0.25);
trainIdx = training(cv);
testIdx = test(cv);
trainImages = images(:, :, :, trainIdx);
trainLabels = labels(trainIdx);
testImages = images(:, :, :, testIdx);
testLabels = labels(testIdx);
```

```
% Define the layers of the CNN
layers = [
   imageInputLayer([imageSize 1])

   convolution2dLayer(3, 8, 'Padding', 'same')
   batchNormalizationLayer
   reluLayer
```

```
maxPooling2dLayer(2, 'Stride', 2)

convolution2dLayer(3, 16, 'Padding', 'same')
batchNormalizationLayer
reluLayer

maxPooling2dLayer(2, 'Stride', 2)

fullyConnectedLayer(numel(categories))
softmaxLayer
classificationLayer
];
```

```
% Training options
options = trainingOptions( ...
    'sgdm', ... % Stochastic Gradient Descent with Momentum
    'InitialLearnRate', 0.01, ...
    'MaxEpochs', 10, ...
    'Shuffle', 'every-epoch', ...
    'ValidationData', {testImages, testLabels}, ...
    'ValidationFrequency', 30, ...
    'Verbose', true, ...
    'Plots', 'training-progress' ...
);
```

```
% Train the CNN
net = trainNetwork(trainImages, trainLabels, layers, options);
```

Training on single CPU.

Initializing input data normalization.

	========	=========	:=========	==========		==========		-========
	Epoch	Iteration 	Time Elapsed (hh:mm:ss)	Mini-batch Accuracy	Validation Accuracy	Mini-batch Loss	Validation Loss	Base Learnin Rate
	1	========== 1	 00:00:04	 18.75%	 20.05%	2.4268	5.9316	
. !	- i	+ i		!	:			
	3	30	00:00:19	90.62%	90.77%	0.3309	0.2974	0.01
	5	50	00:00:28	93.75%		0.1977		0.03
	6	60	00:00:34	95.31%	94.59%	0.1674	0.1686	0.03
	9	90	00:00:48	97.66%	96.40%	0.1045	0.1000	0.03
ĺ	10	100	00:00:53	100.00%	96.62%	0.0339	0.0914	0.01
	========		.=========					

Training finished: Max epochs completed.


```
% Classify Test Images
predictedLabels = classify(net, testImages);

% Calculate the Accuracy
accuracy = sum(predictedLabels == testLabels) / numel(testLabels);
fprintf('Test Accuracy: %.2f%\n', accuracy * 100);
```

Test Accuracy: 96.85%