Week 1 Plan: Qubits & Measurement Curriculum Development - Tier 2

1. Notebook Metadata & Setup				
Deliverable	Target Audience: Grade 9-11			
Notebook Framework		Prerequisites: Basic programming, introductory Algebra (vectors, magnitude).		

Prerequisite Scaffolding (Recap)

Requirement: A short section (2-3 markdown cells) that quickly reviews the conceptual idea of superposition and measurement randomness (the Tier 1 concepts), preparing them to move to math/code.

Concept	Objectives	Key Qiskit Tool
Qubit Representation	Introduce the qubit state as a vector in a 2-dimensional complex space. Show the standard notation and explain what the components represent.	Define the Qubit State Vector (using standard bracket notation): **State
Qiskit Activity		Focus on: Vectors, Magnitudes, Basic Algebra (solving for a or b).

2. Lab 1: Getting Started with the Qubit (Hands-On)				
Section	Instruction in Notebook	Expected Student Action (using Python)		
Circuit Setup	Step 1: Import the necessary Qiskit tools and define a simple circuit with one quantum bit (1) and one classical bit (1).	Students write: from qiskit import QuantumCircuit, Aer and then qc = QuantumCircuit(1, 1)		
Classical Bit (0/1)	Step 2: Use the X-gate method (qc.x()) to flip the state from the starting state **	0)** to the definitive **		
Measurement & Runs	Step 3: Run the circuit on the Aer simulator for 100 shots and retrieve the results. This tests our classical-like operation.	Students write the code to execute the circuit and display the histogram.		
Question 1 (Worksheet)	Question: Record the histogram result. Why is the outcome guaranteed to be 100% 1, even after running it 100 times? (Connect to classical logic)	Students record their observation in a markdown cell and reference the classical nature of the X-gate operation.		

3. Noise: The "Glitch"				
Section	Instruction in Notebook	Expected Student Action (Conceptual/Analysis)		
Noise Focus	Introduce the idea of "Energy Leakage" and "Decay" (specifically the T1 process). Explain that quantum computers are imperfect and errors can creep in.	Students read the explanation in a dedicated markdown cell.		
Scientific Alignment	Explain that superconducting qubits (like the Transmon) work best near absolute zero (0 Kelvin). Relate leakage to the Kelvin Scale from their chemistry/physics class—if the device gets too "hot," the qubit state can spontaneously flip from **	1)** back to **		
Activity/Challenge	Question: Imagine a quantum computer is running in a room that is slightly too warm. Which state is the qubit most likely to "leak" into: **	0>** or **		

5. Summary and Reflection

The Qubit State: The quantum state is represented by a state vector, $|\psi\rangle$ = (a, b), which lives in a multi-dimensional space.

Superposition: The Hadamard (H) gate puts the qubit into a state where it is simultaneously both $|0\rangle$ and $|1\rangle$.

Measurement is Probabilistic: Measurement forces the qubit to collapse to a definite state, and the probability of getting $|0\rangle$ or $|1\rangle$ is determined by the squared magnitude of the vector components: $|a|^2 + |b|^2 = 1$.

Qiskit is the Language: We can build and test these concepts using the Qiskit SDK by writing simple Python code.

Noise is Energy: Errors are not just glitches; they are often caused by Energy Leakage (like T1 decay) that we must understand by referencing the Kelvin Scale and the physics of the qubit hardware.

Final Reflection Questions:

The final questions should encourage the student to bridge the code, math, and science alignment established in the notebook:

Code to Math: If you ran your simple circuit 1000 times, you probably got a histogram that wasn't exactly 500 for $|0\rangle$ and 500 for $|1\rangle$. Why does running the code 1000 times not guarantee a perfect 50/50 split, even though the math says it should?

Science Connection: Based on the Energy Leakage concept, if we wanted to measure a qubit's state very accurately, should the quantum computer's refrigerator be warmer or colder? Explain your reasoning using the concept of energy states.

Procedural Challenge: What single line of Qiskit Python code is responsible for turning the abstract quantum state into a measurable classical result?