# Data Mining and Data Warehousing

#### **Chapter 2**

Data warehousing

**Instructor: Suresh Pokharel** 

ME in ICT (Asian Institute of Technology, Thailand)
BE in Computer (NCIT, Pokhara University)



# **Data Mining Tasks**



- 1. Classification: learning a function that maps an item into one of a set of predefined classes
- 2. Regression: learning a function that maps an item to a real value
- 3. Clustering: identify a set of groups of similar items
- 4. Dependencies and associations: identify significant dependencies between data attributes
- 5. Summarization: find a compact description of the dataset or a subset of the dataset



# **Data Mining Methods**



#### 1. Decision Tree Classifiers:

Used for modeling, classification

#### 2. Association Rules:

Used to find associations between sets of attributes

# 3. Sequential patterns:

Used to find temporal associations in time series

### 4. Hierarchical clustering:

Used to group customers, web users, etc



# What Is Frequent Pattern Analysis?



- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.)
   that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
  - What products were often purchased together?— Beer and diapers?!
  - What are the subsequent purchases after buying a PC?
  - What kinds of DNA are sensitive to this new drug?
  - Can we automatically classify web documents?
- Applications
  - Basket data analysis, cross-marketing, Web log (click stream) analysis, and DNA sequence analysis.



# **Association Rule Mining**



• Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction.

#### Market-Basket transactions

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

#### Example of Association Rules

```
{Diaper} \rightarrow {Beer},
{Milk, Bread} \rightarrow {Eggs,Coke},
{Beer, Bread} \rightarrow {Milk},
```



# Definition: Frequent Itemset



#### Itemset

- A collection of one or more items
  - Example: {Milk, Bread, Diaper}
- k-itemset
  - An itemset that contains k items

#### Support count (σ)

- Frequency of occurrence of an itemset
- E.g.  $\sigma(\{Milk, Bread, Diaper\}) = 2$

#### Support

- Fraction of transactions that contain an itemset
- E.g. s({Milk, Bread, Diaper}) = 2/5

#### Frequent Itemset

 An itemset whose support is greater than or equal to a minsup threshold

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |



#### **Definition: Association Rule**



#### Association Rule

- An implication expression of the form X →
   Y, where X and Y are itemsets
- Example:{Milk, Diaper} → {Beer}

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

#### Rule Evaluation Metrics

#### Support (s)

 Fraction of transactions that contain both X and Y

#### Example:

 $\{Milk, Diaper\} \Rightarrow Beer$ 

#### Confidence (c)

 Measures how often items in Y appear in transactions that contain X

$$s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$



# **Association Rule Mining Task**



- •Given a set of transactions T, the goal of association rule mining is to find all rules having
  - support ≥ minsup threshold
  - ■confidence ≥ minconf threshold
- Brute-force approach:
  - List all possible association rules
  - Compute the support and confidence for each rule
  - Prune rules that fail the minsup and minconf thresholds
  - ⇒ Computationally prohibitive!



# Mining Association Rules



| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

#### Example of Rules:

```
{Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67)

{Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0)

{Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67)

{Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)

{Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5)

{Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)
```

#### **Observations:**

- All the above rules are binary partitions of the same itemset:
   {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements



# Mining Association Rules



- Two-step approach:
  - Frequent Itemset Generation
    - Generate all itemsets whose support ≥ minsup
  - Rule Generation
    - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive



### Frequent Itemset Generation







### Frequent Itemset Generation



#### Brute-force approach:

Each itemset in the lattice is a candidate frequent itemset Count the support of each candidate by scanning the database



Match each transaction against every candidate Complexity  $\sim$  O(NMw) => Expensive since M =  $2^d$ !!!



# **Reducing Number of Candidates**



### Apriori principle:

If an itemset is frequent, then all of its subsets must also be frequent

Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \geq s(Y)$$

Support of an itemset never exceeds the support of its subsets This is known as the anti-monotone property of support

Anti-monotone: if a set can't pass a test, all of its superset will fail the same test as well



#### Illustrating Apriori Principle









| Item   | Count |
|--------|-------|
| Bread  | 4     |
| Coke   | 2     |
| Milk   | 4     |
| Beer   | 3     |
| Diaper | 4     |
| Eggs   | 1     |

#### Items (1-itemsets)



| Itemset        | Count |
|----------------|-------|
| {Bread,Milk}   | 3     |
| {Bread,Beer}   | 2     |
| {Bread,Diaper} | 3     |
| {Milk,Beer}    | 2     |
| {Milk,Diaper}  | 3     |
| {Beer,Diaper}  | 3     |
|                | •     |

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

#### Minimum Support = 3



Triplets (3-itemsets)

| If every subset is considered,                 |  |  |  |
|------------------------------------------------|--|--|--|
| ${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3} = 41$ |  |  |  |
| With support-based pruning,                    |  |  |  |
| 6 + 6 + 1 = 13                                 |  |  |  |

| Itemset             | Count |
|---------------------|-------|
| {Bread,Milk,Diaper} | 3     |

•••

Q: Total number of possible frequent itemsets ???





#### Method:

- Let k=1
- Generate frequent itemsets of length 1
- Repeat until no new frequent itemsets are identified
  - Generate length (k+1) candidate itemsets from length k frequent itemsets
  - Prune candidate itemsets containing subsets of length k that are infrequent
  - Count the support of each candidate by scanning the DB
  - Eliminate(prune) candidates that are infrequent, leaving only those that are frequent





| Dat                                             | tabase D          |     |       | itemset              | sup |       | itomo        | 201 | 0110   | 1 |
|-------------------------------------------------|-------------------|-----|-------|----------------------|-----|-------|--------------|-----|--------|---|
| TIE                                             |                   |     | $C_1$ | {1}                  | 2   | $L_1$ | items        |     | •      | 1 |
| 10                                              | 0 1 3 4           |     | _     | {2}                  | 3   |       | {1}<br>{2}   |     | 2<br>3 |   |
| 20                                              | 0 2 3 5           |     | can D | {3}                  | 3   |       | {3}          |     | 3      |   |
|                                                 | 0   1 2 3 5       | 5   |       | {4}                  | 1   |       | { <b>5</b> } |     | 3      |   |
| 40                                              | 0 2 5             |     | _     | {5}                  | 3   |       | ( )          |     |        |   |
|                                                 |                   |     | $C_2$ | <mark>itemset</mark> | sup |       | $C_2$        |     | nset   | 4 |
| $L_2$                                           | itemset           | sup |       | {1 2}                | 1   | Scan  | n D          | •   | 2}     | 7 |
|                                                 | {1 3}             | 2   |       | {1 3}                | 2   | •     |              | _   | 3}     |   |
| _                                               | {2 3}             | 2   | ←     | {1 5}                | 1   |       |              | _   | 5}     |   |
|                                                 | {2 5}             | 3   |       | {2 3}                | 2   |       |              | _   | 2 3}   |   |
|                                                 | {3 5}             | 2   |       | {2 5}                | 3   |       |              | _   | 2 5}   |   |
|                                                 |                   |     |       | {3 5}                | 2   |       |              | {3  | 3 5}   |   |
| $V_3$ itemset $V_3$ itemset $V_3$ itemset $V_3$ |                   |     |       |                      |     |       |              |     |        |   |
|                                                 | {2 3 5} {2 3 5} 2 |     |       |                      |     |       |              |     |        |   |

Slide | 17

**Data Mining and Data Warehousing** 

**By: Suresh Pokharel** 



# Maximal Frequent Itemset



An itemset is maximal frequent if none of its immediate supersets is frequent





#### Closed Itemset



An itemset is closed if none of its immediate supersets has the same support as the itemset

| TID | Items         |
|-----|---------------|
| 1   | {A,B}         |
| 2   | $\{B,C,D\}$   |
| 3   | $\{A,B,C,D\}$ |
| 4   | $\{A,B,D\}$   |
| 5   | $\{A,B,C,D\}$ |

| Itemset   | Support |
|-----------|---------|
| {A}       | 4       |
| {B}       | 5       |
| {C}       | 3       |
| {D}       | 4       |
| $\{A,B\}$ | 4       |
| {A,C}     | 2       |
| $\{A,D\}$ | 3       |
| {B,C}     | 3       |
| {B,D}     | 4       |
| $\{C,D\}$ | 3       |

| Itemset   | Support |
|-----------|---------|
| {A,B,C}   | 2       |
| {A,B,D}   | 3       |
| {A,C,D}   | 2       |
| {B,C,D}   | 3       |
| {A,B,C,D} | 2       |



#### Maximal vs Closed Itemsets



| TID | Items |                |
|-----|-------|----------------|
| 1   | ABC   | 124            |
| 2   | ABCD  | A              |
| 3   | BCE   |                |
| 4   | ACDE  | 12 124 24      |
| 5   | DE    | (AB) (AC)      |
|     |       |                |
|     |       | 12 2           |
|     |       | (ADO) (ADD) (A |



by any



# Maximal vs Closed Frequent Itemsets







#### Maximal vs Closed Itemsets









# Frequent Pattern Tree



# Generating Association Rule (Example)



#### Given a frequent itemset L

- Find all non-empty subsets F in L, such that the association rule F ⇒ {L-F} satisfies the minimum confidence
- Create the rule F ⇒ {L-F}

#### □ If L={A,B,C}

- The candidate itemsets are: AB⇒C, AC⇒B, BC⇒A, A⇒BC, B⇒AC, C⇒AB
- In general, there are 2<sup>K</sup>-2 candidate solutions, where k is the length of the itemset L



# **Recap: A Concept Hierarchy**



| TID  | Items Purchased                                                   |
|------|-------------------------------------------------------------------|
| T100 | IBM-ThinkPad-T40/2373, HP-Photosmart-7660                         |
| T200 | Microsoft-Office-Professional-2003, Microsoft-Plus!-Digital-Media |
| T300 | Logitech-MX700-Cordless-Mouse, Fellowes-Wrist-Rest                |
| T400 | Dell-Dimension-XPS, Canon-PowerShot-S400                          |
| T500 | IBM-ThinkPad-R40/P4M, Symantec-Norton-Antivirus-2003              |
|      |                                                                   |





### **Multiple-Level Association Rules**



- Items often form hierarchy.
- Items at the lower level are expected to have lower support.
- Rules regarding itemsets at appropriate levels could be quite useful.
- We can explore shared multilevel mining





### Mining Multi-Level Associations



- A top\_down, progressive deepening approach:
  - First find high-level strong rules:

```
milk \rightarrow bread [20%, 60%].
```

— Then find their lower-level "weaker" rules:

```
2% milk \rightarrow wheat bread [6%, 50%].
```

- Variations at mining multiple-level association rules.
  - Association rules with multiple, alternative hierarchies:

```
2\% milk \rightarrow Wonder bread
```



# **Uniform Support**



# Multi-level mining with uniform support

Level 1 min\_sup = 5%

Level 2 min\_sup = 5%





# **Reduced Support**



# Multi-level mining with reduced support

Level 1 min\_sup = 5%

Level 2 min\_sup = 3%





### **Interestingness Measurements**



- Objective measures
  - Two popular measurements:
  - ☆ support; and
  - **Occupie** confidence
- Subjective measures
  - A rule (pattern) is interesting if
  - ☆ it is *unexpected* (surprising to the user); and/or
  - \*\*Comparison of the user can do something with it)





