APPENDIX A PROOF OF LEMMA 1

Case 1. f is a Lipschitz function. For any $\epsilon > 0$, there is a constant r > 0 such that $2lr < \epsilon$, for any $x \in \mathbb{R}^d$, where l is the Lipschitz constant. Hence

$$\frac{1}{\mu(B(x,r_x))} \int_{B(x,r_x)} |f(y) - f(x)| d\mu(y) < 2lr_x < \epsilon,$$

which means that Equation (2) is obtained. For any $x \in A$, $r_x \le r$,

$$\frac{\int_{\mathbb{R}^d} |f(x') - f(x)| k(x', x; r_x, m) d\mu(x')}{\int_{\mathbb{R}^d} k(x', x; r_x, m) d\mu(x')} \le 2lCr_x < C\epsilon,$$

where

$$C = \frac{\int_{\mathbb{R}^d} |x| e^{-|x|^m} d\mu(x)}{\int_{\mathbb{D}^d} e^{-|x|^m} d\mu(x)}.$$

We obtain that

$$\begin{split} & \lim_{r \to 0} \sup_{x \in A} |\frac{1}{\mu(B(x,r_x))} \int_{B(x,r_x)} f d\mu - f(x)| = 0, \\ & \lim_{r \to 0} \sup_{x \in A} |\frac{\int_{\mathbb{R}^d} (f(x') - f(x)) k(x',x;r_x,m) d\mu(x')}{\int_{\mathbb{R}^d} k(x',x;r_x,m) d\mu(x')}| = 0. \end{split}$$

Therefore,

$$\begin{split} &\lim_{r\to 0}\sup_{x\in A}|\frac{1}{\mu(B(x,r_x))}\int_{B(x,r_x)}fd\mu|\\ &=\sup_{x\in A}|f(x)|=\sup_{x\in A}\lim_{r\to 0}|\frac{1}{\mu(B(x,r_x))}\int_{B(x,r_x)}fd\mu|, \end{split}$$

and

$$\begin{split} & \lim_{r\to 0} \sup_{x\in A} |\frac{\int_{\mathbb{R}^d} f(x')k(x',x;r_x,m)d\mu(x')}{\int_{\mathbb{R}^d} k(x',x;r_x,m)d\mu(x')}| \\ &= \sup_{x\in A} |f(x)| = \lim_{r\to 0} \sup_{x\in A} |\frac{1}{\mu(B(x,r_x))} \int_{B(x,r_x)} f d\mu|, \end{split}$$

which implies that

$$\begin{split} \sup_{x \in A} \lim_{r \to 0} \frac{1}{\mu(B(x,r_x))} \int_{B(x,r_x)} f d\mu \\ &= \lim_{r \to 0} \sup_{x \in A} \frac{1}{\mu(B(x,r_x))} \int_{B(x,r_x)} f d\mu \\ &= \lim_{r \to 0} \sup_{x \in A} \frac{\int_{\mathbb{R}^d} f(x') k(x',x;r_x,m) d\mu(x')}{\int_{\mathbb{R}^d} k(x',x;r_x,m) d\mu(x')}. \end{split}$$

Case 2. f is a continuous function with a compact support set. We can construct sequence $\{f_n\}_{n=1}^{\infty}$, where f_n is a Lipschitz function, such that $\sup_{x \in \mathbb{R}^d} |f_n(x) - f(x)| \to 0$, when $n \to \infty$. Based on Case 1, f_n satisfies Equation (3).

$$\sup_{x \in A} \lim_{r \to 0} \left| \frac{1}{\mu(B(x, r_x))} \int_{B(x, r_x)} f_n d\mu \right|$$

$$= \lim_{r \to 0} \sup_{x \in A} \left| \frac{\int_{\mathbb{R}^d} f_n(x') k(x', x; r_x, m) d\mu(x')}{\int_{\mathbb{R}^d} k(x', x; r_x, m) d\mu(x')} \right|$$

$$= \sup_{x \in A} |f_n(x)|,$$
(24)

If we take $n \to \infty$ for above equation, we obtain the result. This lemma is proved.

APPENDIX B

PROOF OF THEOREM 2

Based on Lemma 1 and the definition of L_d , we have

$$\sup_{x} |f_{p}(x) - f_{q}(x)|$$

$$= \sup_{x} \lim_{r \to 0} \left| \frac{\int_{B(x,r_{x})} f_{p}(x') - f_{q}(x') dx'}{\int_{B(x,r_{x})} dx'} \right|$$

$$= \lim_{r \to 0} \sup_{x} |L_{d}(x)|. \tag{25}$$

Equation (25) is obtained by using Equation (3). It directly points out the relation between $L_d(x)$ and the maximum density discrepancy between p and q. Thus, the last term in Equation (25) can be used to measure the discrepancy between p and q. However, we cannot calculate $\sup_x |L_d(x)|$ because the maximum value of $|L_d(x)|$ cannot be estimated using observations. Because $\sup_x |\cdot|$ can be replaced with $\|\cdot\|_{L^\infty}$, based on Lemma 1, we arrive at the following equations.

$$\begin{split} \sup_{x} &|f_p(x) - f_q(x)| \\ &= \sup_{x \in \operatorname{supp}(p+q)} |f_p(x) - f_q(x)| \\ &= \lim_{r \to 0} \sup_{x \in \operatorname{supp}(p+q)} |L_d(x)| \\ &= \lim_{r \to 0} \left\| L_d(x) \right\|_{L^{\infty}(\mu^+)}, \end{split}$$

where μ^+ is p+q.

Then, we prove the following lemma to demonstrate the relation between $L^{\tilde{p}}$ -norm and L^{∞} -norm.

Lemma 4. Let μ be a finite measure in \mathbb{R}^d , Then we have the following equality.

$$\lim_{\tilde{p} \to \infty} ||f||_{L^{\tilde{p}}(\mu)} = ||f||_{L^{\infty}(\mu)},\tag{26}$$

where f is a μ -measurable function. Moreover, if $\mu(\mathbb{R}^d) = 2$, then for $\tilde{p} > \log(2)/\log(c+1)$,

$$|\|f\|_{L^{\tilde{p}}(\mu)} - \|f\|_{L^{\infty}(\mu)}| \le \|f\|_{L^{\infty}(\mu)} - M'\mu(A)^{1/\tilde{p}},$$

where c is a positive constant $(c \le 1)$ to make sure $\mu(A) \le 1$, here $M' \le \|f\|_{L^{\infty}(\mu)}(1-c)$, $A = \{x \in \mathbb{R}^d : f \ge M'\}$.

Proof. Case 1. We assume $M = \|f\|_{L^{\infty}}$ and $A = \{x \in \mathbb{R}^d : f \geq M'\}$, where M' < M. Then

$$||f||_{L^{\tilde{p}}(\mu)} = \left(\int_{\mathbb{R}^d} |f|^{\tilde{p}} d\mu\right)^{1/\tilde{p}} \ge M'(\mu(A))^{1/\tilde{p}},$$

which means that

$$\liminf_{\tilde{p}\to\infty} \|f\|_{L^{\tilde{p}}(\mu)} \ge M'.$$

Let $M' \to M$, then

$$\liminf_{\tilde{p}\to\infty} \|f\|_{L^{\tilde{p}}(\mu)} \ge M.$$

Because $||f||_{L^{\tilde{p}}(\mu)} \leq (\int_{\mathbb{R}^d} M^{\tilde{p}} d\mu)^{1/\tilde{p}} = M(\mu(\mathbb{R}^d))^{1/\tilde{p}}$, we obtain that

$$\limsup_{\tilde{p}\to\infty} \|f\|_{L^{\tilde{p}}(\mu)} \le M.$$

Therefore, we get that

$$\lim_{\tilde{p} \to \infty} ||f||_{L^{\tilde{p}}(\mu)} = ||f||_{L^{\infty}(\mu)}.$$

Case 2. When $\mu(\mathbb{R}^d)=2$ and $\tilde{p}>\log(2)/\log(c+1)$, we obtain that $\|f\|_{L^\infty}(2^{1/\tilde{p}}-1)< c\|f\|_{L^\infty}\leq \|f\|_{L^\infty(\mu)}-M'\mu(A)^{1/\tilde{p}}$, where c is a positive constant $(c\leq 1)$, $M'\leq \|f\|_{L^\infty(\mu)}(1-c)$ and $A=\{x\in\mathbb{R}^d: f\geq M'\}$. Because

$$|||f||_{L^{\tilde{p}}(\mu)} - ||f||_{L^{\infty}(\mu)}| \le \max\{||f||_{L^{\infty}}(2^{1/\tilde{p}} - 1), ||f||_{L^{\infty}(\mu)} - M'\mu(A)^{1/\tilde{p}}\}.$$

Therefore,

$$|||f||_{L^{\tilde{p}}(\mu)} - ||f||_{L^{\infty}(\mu)}| \le ||f||_{L^{\infty}(\mu)} - M'\mu(A)^{1/\tilde{p}}.$$

This lemma is proved.

Based on Lemma 4, we have the following equation, which is an equivalent form for Equation (6),

$$\sup_{x} |f_p(x) - f_q(x)| = \lim_{r \to 0} \lim_{\tilde{p} \to +\infty} ||L_d(x)||_{L^{\tilde{p}}(\mu^+)},$$

where μ^+ is p+q. This theorem is proved.

APPENDIX C

PROOF OF THEOREM 3

We begin by considering the simple situation that d = 1 and m = 1. Under this situation, the Formula (20) has an equivalent form:

$$T \circ h = 0 \Rightarrow \int_{-\infty}^{+\infty} (x')^n dh(x') = 0, \forall n \in \mathbb{Z}_{\geq 0}, \tag{27}$$

where $\mathbb{Z}_{\geq 0} = \{0, 1, 2, ...\}$. If r_x is a constant for any $x \in \mathbb{R}^d$, then the Formula (27) is proved using:

$$\lim_{x \to \infty} \frac{\partial^n (T \circ h)(x)}{\partial x^n} = 0 \Rightarrow \int_{-\infty}^{+\infty} (x')^n dh(x') = 0.$$

Thus, we are motivated to calculate the n^{th} derivative of the function $(T \circ h)(x)$ with respect to x to prove the Formula (27) under the simple situation. In the rest of this subsection, we denote $k(x', x; r_x, m)$ by $exp(b_m(x', x))$, and $K_m^{(n)}$ by n^{th} derivatives $k(x', x; r_x, m)$ with respect to x, and $b_m^{(n)}$ by n^{th} derivatives $b_m(x', x)$ with respect to x. Based on the definitions of $k(x', x; r_x, m)$ and r_x , we have

$$b_1(x',x) = -\frac{(x'-x)^2}{r_x^2}$$
$$= -\frac{(x'-x)^2}{\beta \int_{-\infty}^{+\infty} (x'-x)^2 d_{p_{x'}+q_{x'}}}.$$

Denote m_p^1 and m_p^2 by the first moment and the second moment of p, and denote m_q^1 and m_q^2 by the first moment and the second moment of q, $b_1(x',x)$ is expressed as follows:

$$b_1(x',x) = \frac{-(x'-x)^2}{\beta(2x^2 - 2(m_p^1 + m_q^1)x + m_p^2 + m_q^2)}$$

$$= \frac{-(x'-x)^2}{c_2x^2 + c_1x + c_0}.$$
(28)

Then, the following lemma is proved to show that, $\forall n \in \mathbb{Z}_{\geq 0}, b_1^{(n)}$ is a polynomial function with respect to x' and the degree of $b_1^{(n)}$ is always 2.

Lemma 5. Given p, q defined in Problem 1 and $b_1(x', x)$ in Equation (28), we have

$$b_1^{(n)} = \frac{\partial^n b_1(x', x)}{\partial x^n} = a_{0n}(x) + a_{1n}(x)x' + a_{2n}(x)(x')^2, \tag{29}$$

where $a_{0n}(x), a_{1n}(x)$ and $a_{2n}(x)$ are rational functions with respect to x and $a_{0n}(x) = \mathcal{O}(x^{-(1+n)}), a_{1n}(x) = \mathcal{O}(x^{-(1+n)})$ and $a_{2n}(x) = \mathcal{O}(x^{-(2+n)})$.

Proof. According to Equation (28), we have

$$b_1(x',x) = -\frac{1}{c_2x^2 + c_1x + c_0}(x')^2 + 2\frac{x}{c_2x^2 + c_1x + c_0}x' - \frac{x^2}{c_2x^2 + c_1x + c_0}.$$

Since $\beta > 0$, c_2 is thus over 0, which indicates that $b_1^{(n)}$ is a polynomial function with respect to x' and the degree of $b_1^{(n)}$ is always 2. Let $C_2(x) = -(c_2x^2 + c_1x + c_0)^{-1}$, we have

$$b_1(x',x) = C_2(x)(x')^2 - C_2(x)xx' + C_2(x)x^2.$$

Then, we have

$$\frac{\partial^n b_1(x',x)}{\partial x^n} = \frac{\partial^n C_2(x)}{\partial x^n} (x')^2 + \frac{\partial^n x C_2(x)}{\partial x^n} x' + \frac{\partial^n x^2 C_2(x)}{\partial x^n}$$

Because of the definition of $C_2(x)$, we know

$$\frac{\partial^n C_2(x)}{\partial x^n} = \mathcal{O}(x^{-(2+n)}), \quad \frac{\partial^n x C_2(x)}{\partial x^n} = \mathcal{O}(x^{-(1+n)}), \quad \frac{\partial^n x^2 C_2(x)}{\partial x^n} = \mathcal{O}(x^{-(1+n)}).$$

Based on Lemma 5, Faà di Bruno's formula and Bell polynomial, the n^{th} derivative of the function $k(x', x; r_x, 1)$ with respect to x is given in the following lemma.

Lemma 6. Given p, q defined in Problem 1, d = 1 and $k(x', x; r_x, 1)$ in Equation (17), we have

$$K_1^{(n)} = \frac{\partial^n k(x', x; r_x, 1)}{\partial x^n} = K_1^{(0)} \sum_{i=0}^{2n} c_{in}(x) (x')^i,$$

where $c_{in}(x)$ is a rational function with respect to x, $c_{in}(x) = \mathcal{O}(x^{-i-n})$, i = 1, ..., 2n, and $c_{0n}(x) = \mathcal{O}(x^{-1-n})$.

Proof. To prove this lemma, the basic idea is to use Faà di Bruno's formula and Bell polynomial. Based on the Faà di Bruno's formula and Bell polynomial, we have

$$K_{1}^{(n)} = \frac{\partial^{n} exp(b_{1}(x', x))}{\partial x^{n}}$$

$$= K_{1}^{(0)} B_{n}(b_{1}^{(1)}, b_{1}^{(2)}, ..., b_{1}^{(n)})$$

$$= K_{1}^{(0)} \sum_{(m_{1}, ..., m_{n})} \frac{n!}{m_{1}! m_{2}! \cdots m_{n}!} \prod_{j=1}^{n} \left(\frac{b_{1}^{(j)}}{j!}\right)^{m_{j}},$$
(30)

where B_n is called the n^{th} complete exponential Bell polynomial, the sum is over all n-tuples of nonnegative integers $(m_1, ..., m_n)$ satisfying the constraint $1m_1 + 2m_2 + 3m_3 + ... + nm_n = n$. Substituting Equation (29) into Equation (30), we have

$$K_1^{(n)} = K_1^{(0)} \sum_{(m_1, \dots, m_n)} \frac{n!}{1m_1! 2m_2! \cdots nm_n!} \prod_{j=1}^n \left(a_{0j}(x) + a_{1j}(x)x' + a_{2j}(x)(x')^2 \right)^{m_j}.$$

Then, using the trinomial expansion, we have

$$K_1^{(n)} = K_1^{(0)} \sum_{(m_1, \dots, m_n)} \frac{n!}{1m_1! 2m_2! \cdots nm_n!} \prod_{j=1}^n \sum_{j_0, j_1, j_2} \frac{m_j!}{j_0! j_1! j_2!} a_{0j}^{j_0}(x) (a_{1j}(x)x')^{j_1} (a_{2j}(x)(x')^2)^{j_2},$$

where $j_0 + j_1 + j_2 = m_j$. Without loss of the generality, we assume that x > 0. Then, based on two constraints: 1) $1m_1 + 2m_2 + 3m_3 + ... + nm_n = n$ and 2) $j_0 + j_1 + j_2 = m_j$, we know the maximum coefficients of x' and $(x')^2$ appears in the tuple (0,0,...,1). Based on Lemma 5, the coefficients have the same order with x^{-1-n} and x^{-2-n} , respectively. Similarly, we know the maximum coefficients of $(x')^3$ and $(x')^4$ appear in the tuple (1,0,...,1,0) and the coefficients have the same order with x^{-3-n} and x^{-4-n} , respectively. Finally, the maximum coefficients of $(x')^{2n-1}$ and $(x')^{2n}$ appears in the tuple (n,0,...,0) and the coefficients have the same order with $x^{-2n-n+1}$ and x^{-3n} , respectively. This lemma is proved.

Based on Lemma 6, the Formula (27) is proved in the following theorem.

Theorem 8. Given p, q defined in Problem 1, d = 1 and m = 1, we have

$$\frac{\partial^n (T \circ h)(x)}{\partial x^n} = \int_{-\infty}^{+\infty} K_1^{(0)} \sum_{i=0}^{2n} c_{in}(x)(x')^i dh(x').$$

Then, because $\frac{\partial^n(T \circ h)(x)}{\partial x^n} = 0$ for any $x \in \mathbb{R}^d$ and h has a compact support set, we have

$$\int_{-\infty}^{+\infty} (x')^l dh(x') = 0, \ \forall l \in \mathbb{Z}_{\geq 0}.$$

Proof. We begin by considering n = 1. When n = 1, we have

$$\frac{\partial (T \circ h)(x)}{\partial x} = \int_{-\infty}^{+\infty} K_1^{(0)} \sum_{i=0}^{2} c_{in}(x)(x')^i dh(x') = 0.$$

Because $(T \circ h)(x) = 0$, we know

$$\int_{-\infty}^{+\infty} K_1^{(0)}(c_{11}(x)x' + c_{21}(x)(x')^2)dh(x') = 0$$

$$\Leftrightarrow \int_{-\infty}^{+\infty} K_1^{(0)}c_{11}(x)x'dh(x') = -\int_{-\infty}^{+\infty} K_1^{(0)}c_{21}(x)(x')^2dh(x')$$

$$\Leftrightarrow \int_{-\infty}^{+\infty} K_1^{(0)}\frac{c_{11}(x)}{x^{-2}}x'dh(x') = -\int_{-\infty}^{+\infty} K_1^{(0)}\frac{c_{21}(x)}{x^{-2}}(x')^2dh(x')$$

Because $\frac{\partial^n(T \circ h)(x)}{\partial x^n} = 0$ for any $x \in \mathbb{R}^d$, taking $x \to +\infty$, we know $x^2 c_{11}(x) \to a$ nonzero constant, $x^2 c_{21}(x) \to 0$ and $K_1^{(0)}$ is a positive constant. This means

$$\int_{-\infty}^{+\infty} (x')dh(x') = 0.$$

We also obtain that

$$\int_{-\infty}^{+\infty} K_1^{(0)} \frac{c'_{22}(x)}{x^{-4}} (x')^2 dh(x') = -\int_{-\infty}^{+\infty} K_1^{(0)} \frac{c_{32}(x)}{x^{-4}} (x')^3 dh(x').$$

Taking $x \to +\infty$, we know $x^4c'_{22}(x) \to a$ nonzero constant, $x^4c_{32}(x) \to 0$ and $K_1^{(0)} \to a$ positive constant. This means

$$\int_{-\infty}^{+\infty} (x')^2 dh(x') = 0.$$

Using the same idea, we prove that

$$\int_{-\infty}^{+\infty} (x')^l dh(x') = 0, \ \forall l \in \mathbb{Z}_{\geq 0}.$$

This theorem is proved.

Then, similar to Lemma 5, we prove that $\forall n \in \mathbb{Z}_{\geq 0}$, $b_m^{(n)}$ is a polynomial function with respect to x' and the degree of $b_m^{(n)}$ is always 2m (m > 1), and a following corollary is directly obtained via Lemma 5 and Theorem 8.

Corollary 1. Given p, q defined in Problem 1, if d = 1, we will have

$$\frac{\partial^n (T \circ h)(x)}{\partial x^n} = \int_{-\infty}^{+\infty} K_m^{(0)} \sum_{i=0}^{2mn} c_i(x)(x')^i dh(x').$$

Then, because $\frac{\partial^n(T \circ h)(x)}{\partial x^n} = 0$ for any $x \in \mathbb{R}^d$ and h has a compact support set, we have

$$\int_{-\infty}^{+\infty} (x')^l dh(x') = 0, \ \forall l \in \mathbb{Z}_{\geq 0}.$$

Proof of Theorem 3: Next, we consider the situation that d > 1. When d > 1, $b_m(x', x)$ has the following expression:

$$b_{m}(x',x) = \frac{-\|x'-x\|^{2m}}{\beta^{m} \int_{\mathbb{R}^{d}} \|x'-x\|^{2m} d_{p_{x'}+q_{x'}}}$$

$$= \frac{-(\sum_{j=1}^{d} ((x')_{j}-x_{j})^{2})^{m}}{\beta^{m} \int_{\mathbb{R}^{d}} (\sum_{j=1}^{d} ((x')_{j}-x_{j})^{2})^{m} d_{p_{x'}+q_{x'}}}$$

$$= -\sum_{i_{0},i_{1},i_{2}} \frac{m!}{i_{0}!i_{1}!i_{2}!} \frac{(\sum_{j=1}^{d} x_{j}^{2})^{i_{0}} (\sum_{j=1}^{d} -2x_{j}(x')_{j})^{i_{1}} (\sum_{j=1}^{d} (x')_{j}^{2})^{i_{2}}}{\beta^{m} \int_{\mathbb{R}^{d}} (\sum_{j=1}^{d} ((x')_{j}-x_{j})^{2})^{m} d_{p_{x'}+q_{x'}}},$$
(31)

where $i_0+i_1+i_2=m$. We use r_x to denote $\beta^m \int_{\mathbb{R}^d} (\sum_{j=1}^d ((x')_j-x_j)^2)^m d_{p_{x'}+q_{x'}}$. Then, based on the trinomial expansion, $b_m(x',x)$ is rewritten as follows:

$$b_m(x',x) = -\sum_{i_0,i_1,i_2} \frac{(-2)^{i_1} m!}{i_0! i_1! i_2!} \left(\sum_{\{v_{ji_0}\}_{j=1}^d} \prod_{j=1}^d x_j^{2v_{ji_0}} \cdot \sum_{\{v_{ji_1}\}_{j=1}^d} \prod_{j=1}^d (x_j x_j')^{v_{ji_1}} \cdot \sum_{\{v_{ji_2}\}_{j=1}^d} \prod_{j=1}^d (x_j')^{2v_{ji_2}} \right) \frac{1}{r_x}, \quad (32)$$

where $v_{ji_0}, v_{ji_1}, v_{ji_2} \in \mathbb{Z}_{\geq 0}$, $\sum_{j=1}^d v_{ji_0} = i_0$, $\sum_{j=1}^d v_{ji_1} = i_1$ and $\sum_{j=1}^d v_{ji_2} = i_2$. In Equation (32), we can re-arrange it according to $\prod_{j=1}^d (x'_j)^{v_{ji}}$ as follows, where $\sum_{j=1}^d v_{ji} = l$.

$$b_m(x',x) = \sum_{l=0}^{2m} \sum_{\{v_{jl}\}_{j=1}^d} A_{\{v_{jl}\}_{j=1}^d}(x) \prod_{j=1}^d (x'_j)^{v_{jl}}.$$
(33)

Based on Equation (32) and $i_0 + i_1 + i_2 = m$, we have

$$A_{\{v_{jl}\}_{j=1}^{d}}(x) = \mathcal{O}\left(\frac{\sum_{\{v_{j,2m-l}\}_{j=1}^{d}} \prod_{j=1}^{d} x_{j}^{v_{j,2m-l}}}{r_{x}}\right),$$

$$= \mathcal{O}\left(\frac{\sum_{\{v_{j,2m-l}\}_{j=1}^{d}} \prod_{j=1}^{d} x_{j}^{v_{j,2m-l}}}{\sum_{\{v_{j,2m}\}_{j=1}^{d}} \prod_{j=1}^{d} x_{j}^{v_{j,2m}}}\right).$$
(34)

where $\sum_{j=1}^d v_{j,2m-l} = 2m-l$ and $\sum_{j=1}^d v_{j,2m} = 2m$. So, we have

$$\frac{\partial^n A_{\{v_{jl}\}_{j=1}^d}(x)}{\partial x_j^n} = \mathcal{O}\left(\frac{1}{\sum_{\{v_{j,l+n}\}_{j=1}^d} \prod_{j=1}^d x_j^{v_{j,l+n}}}\right),\tag{35}$$

where l > 0 and $\sum_{j=1}^{d} v_{j,l+1} = l+1$. Then, we have

$$\frac{\partial^n (T \circ h)(x)}{\partial x_j^n} = \int_{\mathbb{R}^d} K_m^{(0)} \sum_{l=0}^{2mn} \sum_{\{v_{jl}\}_{j=1}^d} \frac{\partial^n A_{\{v_{jl}\}_{j=1}^d}(x)}{\partial x_j^n} \prod_{j=1}^d (x_j')^{v_{jl}} dh(x').$$

Since $\frac{\partial^n (T \circ h)(x)}{\partial x_i^n} = 0$, based on the same idea used to prove Theorem 8, we obtain

$$\int_{\mathbb{R}^{d}} \sum_{\{v_{jl}\}_{j=1}^{d}} \lim_{x_{j} \to +\infty} x_{j}^{l+n} \frac{\partial^{n} A_{\{v_{jl}\}_{j=1}^{d}}(x)}{\partial x_{j}^{n}} \prod_{j=1}^{d} (x_{j}')^{v_{jl}} dh(x')$$

$$= \sum_{\{v_{jl}\}_{j=1}^{d}} \lim_{x_{j} \to +\infty} x_{j}^{l+n} \frac{\partial^{n} A_{\{v_{jl}\}_{j=1}^{d}}(x)}{\partial x_{j}^{n}} \int_{\mathbb{R}^{d}} \prod_{j=1}^{d} (x_{j}')^{v_{jl}} dh(x')$$

$$= 0, \tag{36}$$

where $\lim_{x_j \to +\infty} x_j^{l+n} \frac{\partial^n A_{\{v_{jl}\}_{j=1}^d}(x)}{\partial x_j^n}$ is a function related to $x_1, ..., x_{j-1}, x_{j+1}, ..., x_d$ according to Equation (35). Since Equation (36) is correct for any $x \in \mathbb{R}^d$, we know

$$\int_{\mathbb{R}^d} \prod_{j=1}^d (x'_j)^{v_{jl}} dh(x') = 0.$$

Theorem 3 is proved.

APPENDIX D PROOF OF THEOREM 4

We first write a *multi-index* μ is an element of $(\mathbb{Z}_{\geq 0})^d$ as follows:

$$\Lambda(d) = (\mathbb{Z}_{\geq 0})^d.$$

Then, we recall a notation for this proof. For $\mu = (\mu_1, ..., \mu_d) \in \Lambda(d)$ and $x = (x_1, ..., x_d) \in \mathbb{R}^d$, set

$$x^{\mu} = x_1^{\mu_1} x_2^{\mu_2} \cdots x_d^{\mu_d}.$$

If we want to prove $(T \circ (p-q))(x)$ is a real analytic function defined on \mathbb{R}^d , we need to prove that, $\forall x_0 \in \mathbb{R}^d$,

$$(T \circ (p-q))(x) = \sum_{\mu \in \Lambda(d)} a_{\mu} (x - x_0)^{\mu},$$

where $x \in U_{x_0}$ and U_{x_0} is an open set containing x_0 . In the following, we use h = p - q for a short expression. Because e^{-x^m} , $\|x - x'\|^2$ and r_x are real analytic functions and $r_x > 0$, $k(x', x; r_x, m)$ is also a real analytic function (based on Proposition 2.2.2 in [28]). Then $\forall x_0, x'_0 \in A$, there exists an open set $B(x_0, r) \times B(x'_0, r)$, we can write $k(x', x; r_x, m)$ as power series:

$$k(x', x; r_x, m) = \sum_{\mu \in \Lambda(d), \mu' \in \Lambda(d)} a_{\mu, \mu'} (x - x_0)^{\mu} (x' - x'_0)^{\mu'}.$$

Let $A = \operatorname{supp}(h)$ and any $x_0 \in \mathbb{R}^d$, because h has a compact support set A, there are L balls $B(x_i', \epsilon_{x_i'})$ to cover A, where i = 1, ..., L, such that $k(x', x; r_x, m)$ can be written as power series in every ball $B(x_0, \epsilon_{x_i'}) \times B(x_i', \epsilon_{x_i'})$, where i = 1, ..., L. Through these balls, we can construct L subsets A_i such that every A_i is contained in the ball $B(x_i', \epsilon_{x_i'})$, and

$$A=\cup_{i=1}^L A_i,\ A_i\cap A_j=\emptyset\ \forall i\neq j, i,j\in\{1,2,...,L\}.$$

For every $x \in B(x_0, \epsilon)$, where $\epsilon = \min_{i=1,\dots,L} \epsilon_{x_i'}$, we have

$$\begin{split} (T \circ h)(x) &= \sum_{i=1}^{L} \int_{A_{i}} k(x', x; r_{x}, m) dh(x') \\ &= \sum_{i=1}^{L} \int_{A_{i}} \sum_{\mu \in \Lambda(d), \mu' \in \Lambda(d)} a_{\mu, \mu'} (x - x_{0})^{\mu} (x' - x'_{i})^{\mu'} dh(x') \\ &= \sum_{i=1}^{L} \sum_{\mu \in \Lambda(d)} \sum_{\mu' \in \Lambda(d)} \int_{A_{i}} a_{\mu, \mu'} (x' - x'_{i})^{\mu'} dh(x') (x - x_{0})^{\mu} \\ &= \sum_{\mu \in \Lambda(d)} \sum_{i=1}^{L} \sum_{\mu' \in \Lambda(d)} \int_{A_{i}} a_{\mu, \mu'} (x' - x'_{i})^{\mu'} dh(x') (x - x_{0})^{\mu}. \end{split}$$

Taking

$$a_{\mu} = \sum_{i=1}^{L} \sum_{\mu' \in \Lambda(d)} \int_{A_i} a_{\mu,\mu'} (x' - x_i')^{\mu'} dh(x'),$$

we have

$$(T \circ h)(x) = \sum_{\mu \in \Lambda(d)} a_{\mu}(x - x_0)^{\mu}.$$

This theorem is proved.

APPENDIX E PROOF OF THEOREM 5

To prove Theorem 5, we first prove the following lemma:

Lemma 7. For any real analytic function f in \mathbb{R}^d , if Lebesgue measure $\mu(\{x: f=0\}) > 0$, then f=0.

Proof. Because $\mu(\lbrace x: f=0\rbrace) > 0$, there exists a closed ball $\overline{B(0,r)}$ such that $\mu(\lbrace x: f=0\rbrace) \cap \overline{B(0,r)} > 0$.

Let
$$B = \{x : f = 0\} \cap \overline{B(0, r)}, A_0 = \{x \in B : |Df| \neq 0\} \text{ and } B_0 = \{x \in B : |Df| = 0\}.$$

Claim 1: $\mu(B_0) > 0$.

According to Implicit Function Theorem, we obtain that for every $x \in A_0$, there exists an open set $U_x \subset \mathbb{R}^d$ such that $U_x \cap A_0$ is a d-1 dimensional manifold M_x^{d-1} . Moreover, M_x^{d-1} can be presented as a graph:

$$M_x^{d-1} = \{(x.g(x)) : x \in U\},\tag{37}$$

where U is an open set in \mathbb{R}^{d-1} and U is bounded. Therefore, $\mu(M_x^{d-1})=0$. According to Vitali's Covering Theorem, there exist countable manifolds $\{M_i^{d-1}\}_{i=1}^{\infty}$ and zero measurable sets C, such that

$$A_0 \subset \bigcup_{i=1}^{\infty} M_i^{d-1} \cup C,$$

which implies $\mu(A_0) \leq \sum_{i=1}^{\infty} \mu(M_i^{d-1}) + \mu(C) = 0$. But $\mu(A_0) + \mu(B_0) = \mu(B) > 0$, we obtain that

$$\mu(B_0) > 0.$$

Step 2

Assume for $i \in \mathbb{Z}^+$

$$A_i = \{x \in B_{i-1} : |D^{(i)}f| \neq 0\},\$$

$$B_i = \{x \in B_{i-1} : |D^{(i)}f| = 0\},\$$

and $k_1, k_2, ..., k_i \in \{1, 2, ..., d\},\$

$$A_i(k_1, k_2, ..., k_i) = \{x \in B_i : \frac{\partial^{k_1 k_2 ... k_i} f}{\partial x_{k_1} \partial x_{k_2} ... \partial x_{k_i}} \neq 0\}.$$

Then we know that

$$B_{i-1} = A_i \cup B_i,$$

$$A_i = \bigcup_{k_1, k_2, \dots, k_i} A_i(k_1, k_2, \dots, k_i).$$

Claim 2: $\mu(B_i) > 0, i \in \mathbb{Z}_{>0}$.

We use Mathematical induction to prove Claim 2.

1) $\mu(B_0) > 0$ has been proved in Claim 1.

2) Assume $\mu(B_i) > 0$, where $i \ge 0$, we need to prove $\mu(B_{i+1}) > 0$. If $\mu(B_{i+1}) = 0$, then $\mu(A_{i+1}) > 0$, because $\mu(B_{i+1}) + \mu(A_{i+1}) = \mu(B_i) > 0$.

Therefore, there exists $k_1, k_2, ..., k_i, k_{i+1}$ such that

$$\mu(A_{i+1}(k_1, k_2, ..., k_{i+1})) > 0.$$

Consider the function

$$g = \frac{\partial^{k_2...k_{i+1}} f}{\partial x_{k_2}...\partial x_{k_{i+1}}},$$

then

$$A_{i+1}(k_1, k_2, ..., k_{i+1}) \subset \{x \in B_i : g \neq 0\}.$$

According to the idea of Claim 1, we can prove that there exist countable manifolds $\{M_i^{d-1}\}_{i=1}^{\infty}$ and zero measurable set C, such that

$$\{x \in B_i : g \neq 0\} \subset \bigcup_{i=1}^{\infty} M_i^{d-1} \cup C,$$

which implies that

$$\mu(A_{i+1}(k_1, k_2, ..., k_{i+1})) \le \mu(\{x \in B_i : g \ne 0\}) \le \sum_{i=1}^{\infty} \mu(M_i^{d-1}) + \mu(C) = 0.$$

This conflicts with $\mu(A_{i+1}) > 0$. Hence, $\mu(B_{i+1}) > 0$.

Step 3

We obtain a sequence $\{B_i\}_{i=1}^{\infty}$, which satisfy

$$B_{i+1} \subset B_i$$

$$\mu(B_i) > 0$$
,

and B_i is compact, $i \in \mathbb{Z}_{\geq 0}$.

Claim 3: there exists $p \in \mathbb{R}^d$ such that $p \in B_i$, $i \in \mathbb{Z}_{\geq 0}$.

Because $\mu(B_i) > 0$, we can find a point $x_i \in B_i$. Then we obtain a sequence

$$\{x_i\}_{i=0}^{\infty}$$
.

Because $B_{i+1} \subset B_i$, we know that

$$x_i \in B_j, i \leq j.$$

Hence,

$$\{x_i\}_{i=0}^{\infty} \subset B_0.$$

Therefore, there exists a subsequence $\{x_{ik}\}_{k=0}^{\infty}$ of $\{x_i\}_{i=0}^{\infty}$ such that there exists a point p satisfying

$$x_{ik} \to p, \quad k \to +\infty,$$
 (38)

because B_0 is compact.

Because B_i is closed, we obtain that $p \in B_i$.

Step 4 According to the definition of B_i , we know that

$$D^{(i)}f(p) = 0,$$

for $i \in \mathbb{Z}_{>0}$.

According to the property of analytic function, we obtain that f(x) = 0, for any $x \in \mathbb{R}^d$.

Proof for Theorem 5:

According to Theorem 4, $T \circ (p-q)$ is a real analytic function. Moreover, $\operatorname{supp}\{p+q\} \subset \{x \in \mathbb{R}^d : T \circ (p-q) = 0\}$.

According to the assumption $\mu(\text{supp}\{p+q\}) > 0$, we get

$$\mu(\{x \in \mathbb{R}^d : T \circ (p - q) = 0\}) > 0,$$

which implies

$$T \circ (p-q)(x) = 0, \forall x \in \mathbb{R}^d,$$

according to Lemma 7. This theorem is proved.

APPENDIX F PROOF OF LEMMA 2

Using the definition of $V(r_x)$ and $L_d(x)$, we have

$$|L_d(x)| = \left| \int \frac{k(x', x)}{V(r_x)} dp(x') - dq(x') \right|.$$

Without loss of generality, we assume that $\int \frac{k(x',x)}{V(r_x)} dp(x') \ge \int \frac{k(x',x)}{V(r_x)} dq(x')$. Thus, $|L_d(x)|$ is less than $\int \frac{k(x',x)}{V(r_x)} dp(x')$. Based on the Equation (12) and $0 \le k(x',x_1) \le 1$, we have

$$|L_d(x)| = \left| \int \frac{m\Gamma(\frac{d}{2})k(x', x)}{\Gamma(\frac{d}{2m})(\sqrt{\pi}r_x)^d} dp(x') - dq(x') \right|$$

$$< \left| \int \frac{m\Gamma(\frac{d}{2})k(x', x)}{\Gamma(\frac{d}{2m})(\sqrt{\pi}r_x)^d} dp(x') \right|$$

$$\leq \frac{m\Gamma(d/2)}{\Gamma(d/2m)(\sqrt{\pi}r_x)^d}.$$

Because $(d/2m) \cdot \Gamma(d/2m) = \Gamma(1 + d/2m)$, we have

$$|L_d(x)| < \frac{d\Gamma(d/2)}{2\Gamma(1+d/2m)(\sqrt{\pi}r_x)^d}.$$

This lemma is proved.

APPENDIX G PROOF OF THEOREM 6

We first prove the case for $|\mathrm{MLD}_{z}^{\tilde{p}}(p,q) - \widehat{\mathrm{MLD}}_{z}^{\tilde{p}}(X_{1},X_{2})|$ and then prove the case for $|\mathrm{MLD}(p,q) - \widehat{\mathrm{MLD}}(X_{1},X_{2})|$.

Case 1. We denote $\Delta(p,q,X_1,X_2) = \widehat{\mathrm{MLD}}^{\tilde{p}}(X_1,X_2) - \mathrm{MLD}^{\tilde{p}}(p,q)$. Then, in terms of Lemma 1, changing either x_{1i} or x_{2i} in $\Delta(p,q,X_1,X_2)$ results in changes in magnitude of at most $d^{\tilde{p}}\Gamma^{\tilde{p}}(d/2)/(\Gamma^{\tilde{p}}(1+d/2m)(\sqrt{\pi}C_r)^{d\tilde{p}}n_1)$ or $d^{\tilde{p}}\Gamma^{\tilde{p}}(d/2)/(\Gamma^{\tilde{p}}(1+d/2m)(\sqrt{\pi}C_r)^{d\tilde{p}}n_2)$, respectively. We can apply McDiarmid's inequality [10], given a denominator in the exponent of

$$n_1 \left(\frac{d^{\tilde{p}} \Gamma^{\tilde{p}}(d/2)}{\Gamma^{\tilde{p}}(1+d/2m)(\sqrt{\pi}C_r)^{d\tilde{p}} n_1} \right)^2 + n_2 \left(\frac{d^{\tilde{p}} \Gamma^{\tilde{p}}(d/2)}{\Gamma^{\tilde{p}}(1+d/2m)(\sqrt{\pi}C_r)^{d\tilde{p}} n_2} \right)^2 = \frac{2d^{2\tilde{p}} \Gamma^{2\tilde{p}}(d/2)(n_1+n_2)}{\Gamma^{2\tilde{p}}(1+d/2m)n_1 n_2 \pi^{d\tilde{p}} C_r^{2d\tilde{p}}}.$$

to obtain

$$\Pr_{X_1, X_2}(\Delta(p, q, X_1, X_2) - \mathbb{E}_{X_1, X_2}(\Delta(p, q, X_1, X_2)) > \epsilon) \le \exp\left(\frac{-\epsilon^2 \Gamma^{2\tilde{p}} (1 + d/2m) n_1 n_2 \pi^{d\tilde{p}} C_r^{2d\tilde{p}}}{2d^{2\tilde{p}} \Gamma^{2\tilde{p}} (d/2) (n_1 + n_2)}\right). \tag{39}$$

So, we need to calculate $\mathbb{E}_{X_1,X_2}(\Delta(p,q,X_1,X_2))$. First, we need to prove the following formula.

$$\sqrt{n_1} \left(\frac{1}{n_1} \sum_{j=1}^{n_1} \frac{k(x_{1j}, x_{1i})}{V(r_{x_{1i}})} - \int_{\mathbb{R}^d} \frac{k(x', x_{1i})}{V(r_{x_{1i}})} dp_{x'} \right) \stackrel{\mathcal{D}}{\to} \mathcal{N}(0, \sigma_{1i}^2), \tag{40}$$

where $\sigma_{1,1i}^2 = Var(k(x_{1j}, x_{1i})/V(r_{x_{1i}}))$. Because

$$\mathbb{E}\left(\frac{1}{n_1} \sum_{j=1}^{n_1} \frac{k(x_{1j}, x_{1i})}{V(r_{x_{1i}})}\right) = \frac{1}{n_1} \sum_{j=1}^{n_1} \mathbb{E}\left(\frac{k(x_{1j}, x_{1i})}{V(r_{x_{1i}})}\right) \\
= \frac{n_1}{n_1} \int_{\mathbb{R}^d} \frac{k(x_{1j}, x_{1i})}{V(r_{x_{1i}})} dp_{x_{1j}} \\
= \int_{\mathbb{R}^d} \frac{k(x', x_{1i})}{V(r_{x_{1i}})} dp_{x'},$$

 $k(x', x; r_x, m) \le 1$ and $r_x \ge C_r > 0$ (meaning that $\sigma_{1i}^2 < +\infty$), using the central limit theorem, we prove Formula (40). Thus, we have

$$\frac{1}{n_1} \sum_{j=1}^{n_1} \frac{k(x_{1j}, x_{1i})}{V(r_{x_{1i}})} = \int_{\mathbb{R}^d} \frac{k(x', x_{1i})}{V(r_{x_{1i}})} dp_{x'} + O_{p_1}(\frac{1}{\sqrt{n_1}}), \tag{41}$$

where $O_{p_1}(1/\sqrt{n_1}) = 1/\sqrt{n_1}\mathcal{N}(0,\sigma_{1,1i}^2)$. Similarly, we know

$$\frac{1}{n_2} \sum_{i=1}^{n_1} \frac{k(x_{2j}, x_{1i})}{V(r_{x_{1i}})} = \int_{\mathbb{R}^d} \frac{k(x', x_{1i})}{V(r_{x_{1i}})} dq_{x'} + O_{p_2}(\frac{1}{\sqrt{n_2}}), \tag{42}$$

where $O_{p_2}(1/\sqrt{n_2}) = 1/\sqrt{n_2}\mathcal{N}(0, \sigma_{2,1i}^2)$. Substituting Equations (41) and (42) into $\widehat{\text{MLD}}_l$, we have

$$\widehat{\text{MLD}}_{l} = \frac{1}{n_{l}} \sum_{i=1}^{n_{l}} \left| \frac{1}{n_{1}} \sum_{j=1}^{n_{1}} \frac{k(x_{1j}, x_{li})}{V(r_{x_{li}})} - \frac{1}{n_{2}} \sum_{j=1}^{n_{2}} \frac{k(x_{2j}, x_{li})}{V(r_{x_{li}})} \right|^{\tilde{p}},$$

$$= \frac{1}{n_{l}} \sum_{i=1}^{n_{l}} \left| \int_{\mathbb{R}^{d}} \frac{k(x', x_{li})}{V(r_{x_{li}})} d_{p_{x'} - q_{x'}} + O_{p} \left(\frac{1}{\sqrt{n_{1}}} + \frac{1}{\sqrt{n_{2}}} \right) \right|^{\tilde{p}},$$
(43)

where $O_p(1/\sqrt{n_1}+1/\sqrt{n_2})=\mathcal{N}(0,\sigma_{1,1i}^2/n_1+\sigma_{2,1i}^2/n_2).$ Using Taylor series, expand Equation (43) at the value $\int \frac{k(x',x_{li})}{V(r_x)}d_{p_{x'}-q_{x'}}$, we have

$$\widehat{\text{MLD}}_l = \frac{1}{n_l} \sum_{i=1}^{n_l} \left(\left| \int_{\mathbb{R}^d} \frac{k(x', x_{li})}{V(r_{x_{li}})} d_{p_{x'} - q_{x'}} \right|^{\tilde{p}} + \left| O_p' (\frac{1}{\sqrt{n_1}} + \frac{1}{\sqrt{n_2}}) \right| \right),$$

where $O_p'(1/\sqrt{n_1}+1/\sqrt{n_2})=\mathcal{N}(0,M\sigma_{1,li}^2/n_1+M\sigma_{2,li}^2/n_2)$ and M is a positive finite number. Because $\int_{\mathbb{R}^d} \frac{k(x',x_{li})}{V(r_{x_{li}})} d_{p_{x'}-q_{x'}}$ is a function related to x_{li} , So, we have

$$\mathbb{E}_{X_1, X_2}(\widehat{\text{MLD}}_l - \text{MLD}_l) = \mathbb{E}_{X_1, X_2} \left(O_{p_1}(1/\sqrt{n_l}) + \frac{1}{n_l} \sum_{i=1}^{n_l} \left| O'_p(\frac{1}{\sqrt{n_1}} + \frac{1}{\sqrt{n_2}}) \right| \right)$$

$$= \frac{1}{n_l} \sum_{i=1}^{n_l} \mathbb{E}\left(\left| O'_p(\frac{1}{\sqrt{n_1}} + \frac{1}{\sqrt{n_2}}) \right| \right).$$

Because $|O'_p|$ is a random variable that obeys the half-normal distribution, we know

$$\mathbb{E}_{X_1, X_2}(\widehat{\text{MLD}}_l - \text{MLD}_l) = \frac{1}{n_l} \sum_{i=1}^{n_l} \frac{\sqrt{2}}{\sqrt{\pi}} \sqrt{M\left(\frac{\sigma_{1, li}^2}{n_1} + \frac{\sigma_{2, li}^2}{n_2}\right)}.$$

Thus, we know

$$\mathbb{E}_{X_1, X_2}(\Delta(p, q, X_1, X_2)) = \sum_{l=1}^{2} \frac{1}{n_l} \sum_{i=1}^{n_l} \frac{\sqrt{2}}{\sqrt{\pi}} \sqrt{M\left(\frac{\sigma_{1, li}^2}{n_1} + \frac{\sigma_{2, li}^2}{n_2}\right)}$$
(44)

Combining Inequality (39) and Equation (44), we have

$$\begin{aligned} & \Pr_{X_{1},X_{2}}(\widehat{\text{MLD}}^{\tilde{p}}(X_{1},X_{2}) - \text{MLD}^{\tilde{p}}(p,q) - \sum_{l=1}^{2} \frac{1}{n_{l}} \sum_{i=1}^{n_{l}} \frac{\sqrt{2}}{\sqrt{\pi}} \sqrt{M\left(\frac{\sigma_{1,li}^{2}}{n_{1}} + \frac{\sigma_{2,li}^{2}}{n_{2}}\right)} > \epsilon) \\ & \leq \exp\left(\frac{-\epsilon^{2} \Gamma^{2\tilde{p}}(1 + d/2m) n_{1} n_{2} \pi^{d\tilde{p}} C_{r}^{2d\tilde{p}}}{2d^{2\tilde{p}} \Gamma^{2\tilde{p}}(d/2)(n_{1} + n_{2})}\right). \end{aligned} \tag{45}$$

Case 2. Because of Inequality (45), we have

$$\begin{split} & \operatorname{Pr}_{X_1,X_2}(\operatorname{MLD}(p,q) - \widehat{\operatorname{MLD}}(X_1,X_2) - U^{1/\tilde{p}} > \epsilon) \\ & = \operatorname{Pr}_{X_1,X_2}(\operatorname{MLD}^{\tilde{p}}(p,q) > (\widehat{\operatorname{MLD}}(X_1,X_2) + U^{1/\tilde{p}} + \epsilon)^{\tilde{p}}) \\ & \leq \operatorname{Pr}_{X_1,X_2}(\operatorname{MLD}^{\tilde{p}}(p,q) > \widehat{\operatorname{MLD}}^{\tilde{p}}(X_1,X_2) + U + \epsilon^{\tilde{p}}) \\ & \leq \exp\left(\frac{-\epsilon^{2\tilde{p}}\Gamma^{2\tilde{p}}(1 + d/2m)n_1n_2\pi^{d\tilde{p}}C_r^{2d\tilde{p}}}{2d^{2\tilde{p}}\Gamma^{2\tilde{p}}(d/2)(n_1 + n_2)}\right), \end{split}$$

where

$$\begin{split} U &= \sum_{l=1}^{2} \frac{1}{n_{l}} \sum_{i=1}^{n_{l}} \frac{\sqrt{2}}{\sqrt{\pi}} \sqrt{M \left(\frac{\sigma_{1,li}^{2}}{n_{1}} + \frac{\sigma_{2,li}^{2}}{n_{2}} \right)} \\ &= \frac{1}{\sqrt{n}} \sum_{l=1}^{2} \frac{1}{n_{l}} \sum_{i=1}^{n_{l}} \frac{\sqrt{2}}{\sqrt{\pi}} \sqrt{M \left(\frac{\sigma_{1,li}^{2}}{\lambda_{1}} + \frac{\sigma_{2,li}^{2}}{\lambda_{2}} \right)}, \end{split}$$

 $n = n_1 + n_2$ and $\lambda_l = n_l/n$. Hence, the following inequality is obtained.

$$\Pr{X_{1},X_{2}(|\mathrm{MLD}(p,q)-\widehat{\mathrm{MLD}}(X_{1},X_{2})|-\mathcal{O}(n^{-\frac{1}{2\tilde{p}}})>\epsilon)}\leq 2\mathrm{ex}p\left(\frac{-\epsilon^{2\tilde{p}}\Gamma^{2\tilde{p}}(1+d/2m)n_{1}n_{2}\pi^{d\tilde{p}}C_{r}^{2d\tilde{p}}}{2d^{2\tilde{p}}\Gamma^{2\tilde{p}}(d/2)(n_{1}+n_{2})}\right).$$

The theorem is proved.

APPENDIX H PROOF OF LEMMA 3

It is clear that $k(z_j, z_i)/V(z_i)$, as a n-by-n matrix, will not change further if X_1 and X_2 are obtained. The one-time permutation of $\widehat{\text{MLD}}(X_1, X_2)$ uniformly chooses n_1 from z_i as the new X_1 and selects the rest of z_i as the new X_2 , and then calculates the new $\widehat{\text{MLD}}(X_1, X_2)$. We do not need to calculate this new $\widehat{\text{MLD}}(X_1, X_2)$ from the very beginning (e.g. re-calculating $k(x_{1j}, x_{1i})$) but rather only from $k(z_j, z_i)/V(z_i)$. This allows us to find the asymptotic null distribution of $\widehat{\text{MLD}}(X_1, X_2)$.

Consider the following random variable b_i ,

$$P\left(b_j = n_1^{-1} \frac{k(z_j, x_{1i})}{V(r_{x_{1i}})}\right) = \lambda_1, P\left(b_j = -n_2^{-1} \frac{k(z_j, x_{1i})}{V(r_{x_{1i}})}\right) = \lambda_2,$$

where P means the probability and $\lambda_1 + \lambda_2 = 1$. Under the permutation null (p = q), we know

$$n_1^{-1} \sum_{j=1}^{n_1} \frac{k(x_{1j}, x_{1i})}{V(r_{x_{1i}})} - n_2^{-1} \sum_{j=1}^{n_2} \frac{k(x_{2j}, x_{1i})}{V(r_{x_{1i}})} = \sum_{j=1}^{n} b_j.$$

Because $L(z_i, z_j)$ is fixed after obtaining X_1 and X_2 , each b_j is independent and $n_1^{-1} \sum_{j=1}^{n_1} \frac{k(x_{1j}, x_{1i})}{V(r_{x_{1i}})} - n_2^{-1} \sum_{j=1}^{n_2} \frac{k(x_{2j}, x_{1i})}{V(r_{x_{1i}})}$ is the sum of n independent random variables. To apply the Lyapunov central limit theorem to $\sum b_j$, we need to verify the following condition.

$$\lim_{n \to \infty} \frac{\sum_{j=1}^{n} \mathbb{E}\left(\left(b_{j} - \mathbb{E}(b_{j})\right)^{3}\right)}{s_{n}^{3}} = 0, \ s_{n}^{2} = \sum_{j=1}^{n} \mathbb{E}\left(\left(b_{j} - \mathbb{E}(b_{j})\right)^{2}\right)$$

$$(46)$$

In terms of the definition of b_j , we know $\mathbb{E}(b_j) = 0$ and

$$\mathbb{E}\Big(\big(b_j - \mathbb{E}(b_j)\big)^3\Big) = \lambda_1 n_1^{-3} \Big(\frac{k(z_j, x_{1i})}{V(r_{x_{1i}})}\Big)^3 - \lambda_2 n_2^{-3} \Big(\frac{k(z_j, x_{1i})}{V(r_{x_{1i}})}\Big)^3,$$

$$\mathbb{E}\Big(\big(b_j - \mathbb{E}(b_j)\big)^2\Big) = \lambda_1 n_1^{-2} \Big(\frac{k(z_j, x_{1i})}{V(r_{x_{1i}})}\Big)^2 + \lambda_2 n_2^{-2} \Big(\frac{k(z_j, x_{1i})}{V(r_{x_{1i}})}\Big)^2$$

It is clear that any non-zero $n_1^{-1} \frac{k(x_{1j}, x_{1i})}{V(r_{x_{1i}})}$ or $n_2^{-1} \frac{k(x_{2j}, x_{1i})}{V(r_{x_{1i}})}$ has a minimum value, denoted by $L_{\min} > 0$, and a maximum value, $L_{\max} < +\infty$. If $\mathbb{E}\left(\left(b_j - \mathbb{E}(b_j)\right)^3\right) > 0$, we have

$$\frac{\sum_{j=1}^{n} \mathbb{E}\left(\left(b_{j} - \mathbb{E}(b_{j})\right)^{3}\right)}{s_{n}^{3}} < \frac{n\lambda_{1}L_{\max}^{3}}{n^{\frac{3}{2}}(\lambda_{1} + \lambda_{2})L_{\min}^{2}} = \mathcal{O}\left(\frac{1}{\sqrt{n}}\right).$$

If $\mathbb{E}((b_i - \mathbb{E}(b_i))^3) < 0$, we have

$$\frac{\sum_{j=1}^{n} \mathbb{E}\left(\left(b_{j} - \mathbb{E}(b_{j})\right)^{3}\right)}{s_{n}^{3}} > \frac{-n\lambda_{2}L_{\max}^{3}}{n^{\frac{3}{2}}(\lambda_{1} + \lambda_{2})L_{\min}^{2}} = \mathcal{O}\left(\frac{-1}{\sqrt{n}}\right).$$

Hence, the condition in Formula (46) is verified, which means, due to the Lyapunov central limit theorem, we have

$$\frac{1}{s_n} \sum_{j=1}^n (b_j - \mathbb{E}(b_j)) \stackrel{\mathcal{D}}{\to} \mathcal{N}(0,1).$$

Using the definitions of b_i and s_n , this lemma is proved.

APPENDIX I PROOF OF THEOREM 7

The main idea to prove this theorem is to construct a new random variable $a_{x_{1,i}}$ as per the following.

$$a_{x_{1i}} = \frac{1}{n_1^{1/\tilde{p}}} L_d(x_{1i}).$$

So, we know $\widehat{\mathrm{MLD}}_1 = \sum_i |a_{x_{1i}}^{\tilde{p}}|$. Similarly, we can construct $a_{x_{2i}}$ and $\widehat{\mathrm{MLD}}_2 = \sum_i |a_{x_{2i}}^{\tilde{p}}|$. Since $k(z_j, x_{1i})$ are fixed after obtaining X_1 and X_2 and all of x_{1i} are independent, all of $a_{x_{1i}}$ are independent. Thus, applying Lyapunov's central limit theorem to $\sum_i |a_{x_{1i}}^{\tilde{p}}|$, this theorem can be proved.

To use Lyapunov's central limit theorem, we first need to know whether the first, second and third moments of the random variable $|a_{x_{1i}}^{\tilde{p}}|$ are finite. If these three moments are finite, we can easily verify the Lyapunov condition:

$$\lim_{n \to \infty} \frac{\sum_{i=1}^{n_1} \mathbb{E}\left(\left(|a_{x_{1i}}^{\tilde{p}}| - \mathbb{E}(|a_{x_{1i}}^{\tilde{p}}|)\right)^3\right)}{s_{n_1}^3} = 0, \ s_{n_1}^2 = \sum_{i=1}^{n_1} \mathbb{E}\left(\left(|a_{x_{1i}}^{\tilde{p}}| - \mathbb{E}(|a_{x_{1i}}^{\tilde{p}}|)\right)^2\right). \tag{47}$$

From Lemma 3, it is clear that $L_d(x_{1i})$ is finite. Thus, the value of $|a^{\tilde{p}}_{x_{1i}}|$ is always finite. Assume $|a^{\tilde{p}}_{x_{1i}}|$ is bounded by a finite number M, we have $\mathbb{E}(|a^{\tilde{p}}_{x_{1i}}|) < M$, $\mathbb{E}(|a^{\tilde{p}}_{x_{1i}}|^2) < M^2$ and $\mathbb{E}(|a^{\tilde{p}}_{x_{1i}}|^3) < M^3$. So, we have

$$\frac{\sum_{i=1}^{n_1} \mathbb{E}\left(\left(|a_{x_{1i}}^{\tilde{p}}| - \mathbb{E}(|a_{x_{1i}}^{\tilde{p}}|)\right)^3\right)}{s_{n_1}^3} < \frac{8n_1 M^3}{2n_1^{\frac{3}{2}} M^2} = \mathcal{O}(\frac{1}{\sqrt{n_1}}),$$

which means that the condition in Formula (47) is verified. Based on the Lyapunov's central limit theorem, we have

$$\frac{1}{s_{n_1}} \sum_{i=1}^{n_1} (|a_{x_{1i}}^{\tilde{p}}| - \mathbb{E}(|a_{x_{1i}}^{\tilde{p}}|)) \stackrel{\mathcal{D}}{\to} \mathcal{N}(0,1).$$

Hence,

$$\frac{1}{s_{n_1}}\widehat{\mathrm{MLD}}_1 - \frac{1}{s_{n_1}} \sum_{i=1}^{n_1} \mathbb{E}(|a_{x_{1i}}^{\tilde{p}}|) \stackrel{\mathcal{D}}{\to} \mathcal{N}(0,1).$$

Similarly, we will obtain

$$\frac{1}{s_{n_1} + s_{n_2}} \left(\widehat{\text{MLD}}_1 + \widehat{\text{MLD}}_2 \right) - \frac{1}{s_{n_1} + s_{n_2}} \left(\sum_{i=1}^{n_1} \mathbb{E}(|a_{x_{1i}}^{\tilde{p}}|) + \sum_{i=1}^{n_2} \mathbb{E}(|a_{x_{2i}}^{\tilde{p}}|) \right) \stackrel{\mathcal{D}}{\to} \mathcal{N}(0, 1),$$

where

$$s_{n_2}^2 = \sum_{i=1}^{n_2} \mathbb{E}\Big(\left(|a_{x_{2i}}^{\tilde{p}}| - \mathbb{E}(|a_{x_{2i}}^{\tilde{p}}|) \right)^2 \Big).$$

Then, we will show how to calculate $\mathbb{E}(|a^{\tilde{p}}_{x_{1i}}|),\,\mathbb{E}(|a^{\tilde{p}}_{x_{2i}}|),\,s_{n_1}$ and s_{n_2} using the fact

$$\frac{1}{\sigma_{x_{1i}}} L_d(x_{1i}) \stackrel{\mathcal{D}}{\to} \mathcal{N}(0,1),$$

where $\lambda_1 = \lim_{n \to \infty} n_1/n$, $\lambda_2 = \lim_{n \to \infty} n_2/n$, $\sigma_{x_{1i}}^2 = (\lambda_1 n_1^{-2} + \lambda_2 n_2^{-2}) \sum_{j=1}^n k(z_j, x_{1i})^2/V^2(r_{x_{1i}})$ and \mathcal{D} is "converges in distribution". We assume that Y is a random variable that obeys standard normal distribution. Then, based on the continuous mapping theorem, we have

$$\frac{1}{\sigma_{x_{1,i}}^{\tilde{p}}} |L_d^{\tilde{p}}(x_{1i})| \stackrel{\mathcal{D}}{\to} |Y^{\tilde{p}}|.$$

Because $|L_d^{\tilde{p}}(x_{1i})|$ is finite, $|L_d^{\tilde{p}}(x_{1i})|$ is uniformly integrable, which means that $\lim_{n\to\infty}\mathbb{E}(|L_d^{\tilde{p}}(x_{1i})|^k/\sigma_{x_{1i}}^{k\tilde{p}})=\mathbb{E}(|Y^{\tilde{p}}|^k)$, k=1,2,3. Because Y obeys a standard normal distribution, we can calculate the probability density function related to $|Y^{\tilde{p}}|$ as follows.

$$f_{|Y^{\bar{p}}|}(x) = \frac{2}{\sqrt{2\pi\tilde{p}}} x^{\frac{1}{\bar{p}} - 1} exp(-\frac{x^{\frac{2}{\bar{p}}}}{2}). \tag{48}$$

Then, using the definition of the gamma function and the integral of the probability density function of the gamma distribution equals 1, we have

$$\mathbb{E}(|L_{d}^{\tilde{p}}(x_{1i})|^{k}/\sigma_{x_{1i}}^{k\tilde{p}}) = \frac{2}{\sqrt{2\pi}\tilde{p}} \int_{0}^{+\infty} x^{\frac{1}{\tilde{p}}-1+k} exp(-\frac{x^{\frac{2}{\tilde{p}}}}{2}) dx$$

$$= \frac{2}{\sqrt{2\pi}\tilde{p}} \int_{0}^{+\infty} t^{\frac{\tilde{p}}{2}(\frac{1}{\tilde{p}}-1+k)} exp(-\frac{t}{2}) \frac{\tilde{p}}{2} t^{\frac{\tilde{p}}{2}-1} dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{+\infty} t^{\frac{1}{2}(1+k\tilde{p})-1} exp(-\frac{t}{2}) dt$$

$$= \frac{1}{\sqrt{2\pi}} 2^{\frac{1}{2}(1+k\tilde{p})} \Gamma\left(\frac{1}{2}(1+k\tilde{p})\right). \tag{49}$$

In Equation (49), we use $t = x^{2/\tilde{p}}$. So, we have

$$\mathbb{E}(|a_{x_{1i}}^{\tilde{p}}|) = \mathbb{E}(|L_d^{\tilde{p}}(x_{1i})|/n_1) = \frac{2^{\frac{1}{2}(1+\tilde{p})}\Gamma(\frac{1}{2}(1+\tilde{p}))}{n_1\sqrt{2\pi}}\sigma_{x_{1i}}^{\tilde{p}},\tag{50}$$

$$\mathbb{E}\Big(\left(|a_{x_{1i}}^{\tilde{p}}| - \mathbb{E}(|a_{x_{1i}}^{\tilde{p}}|)\right)^{2}\Big) = \mathbb{E}(|a_{x_{1i}}^{\tilde{p}}|^{2}) - (\mathbb{E}(|a_{x_{1i}}^{\tilde{p}}|))^{2} \\
= \frac{\sigma_{x_{1i}}^{2\tilde{p}}}{n_{1}^{2}\sqrt{2\pi}} 2^{\frac{1}{2}(1+2\tilde{p})} \Gamma\Big(\frac{1}{2}(1+2\tilde{p})\Big) - \frac{\sigma_{x_{1i}}^{2\tilde{p}}}{2\pi n_{1}^{2}} 2^{1+\tilde{p}} \Big(\Gamma\Big(\frac{1}{2}(1+\tilde{p})\Big)\Big)^{2} \\
= \frac{2^{\frac{1}{2}+\tilde{p}} \Gamma\Big(\frac{1}{2}+\tilde{p}\Big) - \frac{2^{1+\tilde{p}}}{\sqrt{2\pi}} \Big(\Gamma\Big(\frac{1}{2}(1+\tilde{p})\Big)\Big)^{2}}{n_{1}^{2}\sqrt{2\pi}} \sigma_{x_{1i}}^{2\tilde{p}}.$$
(51)

According to definition of s_{n_1} , we know

$$s_{n_1} = \frac{2^{\frac{1}{2} + \tilde{p}} \Gamma\left(\frac{1}{2} + \tilde{p}\right) - \frac{2^{1 + \tilde{p}}}{\sqrt{2\pi}} \left(\Gamma\left(\frac{1}{2}(1 + \tilde{p})\right)\right)^2}{n_1^2 \sqrt{2\pi}} \sum_{i=1}^{n_1} \sigma_{x_{1i}}^{2\tilde{p}}.$$
 (52)

Similarly, we can give s_{n_2} and we have

$$\frac{\widehat{\text{MLD}}^{\widetilde{p}}(X_1, X_2) - \mu_{\text{MLD}}}{\sigma_{\text{MLD}}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, 1), \tag{53}$$

where \mathcal{D} means "converges in distribution", and both μ_{MLD} and σ_{MLD} are related to $\sigma_{x_{li}}^2$ in Lemma 3, i.e.,

$$\mu_{\text{MLD}} = C_{\mu} \left(\sum_{i=1}^{n_1} \frac{\sigma_{x_{1i}}^{\tilde{p}}}{n_1} + \sum_{i=1}^{n_2} \frac{\sigma_{x_{2i}}^{\tilde{p}}}{n_2} \right)$$

and

$$\sigma_{\text{MLD}}^2 = C_{\sigma} \left(\sum_{i=1}^{n_1} \frac{\sigma_{x_{1i}}^{2\tilde{p}}}{n_1^2} + \sum_{i=1}^{n_2} \frac{\sigma_{x_{2i}}^{2\tilde{p}}}{n_2^2} \right),$$

where

$$C_{\mu} = \frac{2^{\frac{1}{2}(1+\tilde{p})}\Gamma(\frac{1}{2}(1+\tilde{p}))}{\sqrt{2\pi}},$$

with $\Gamma(\cdot)$ referring to the gamma function,

$$C_{\sigma} = \frac{2^{\frac{1}{2} + \tilde{p}} \Gamma\left(\frac{1}{2} + \tilde{p}\right) - \frac{2^{1 + \tilde{p}}}{\sqrt{2\pi}} \left(\Gamma\left(\frac{1}{2}(1 + \tilde{p})\right)\right)^{2}}{\sqrt{2\pi}},$$

$$\sigma_{x_{1i}}^{2} = (\lambda_{1} n_{1}^{-2} + \lambda_{2} n_{2}^{-2}) \sum_{j=1}^{n} k(z_{j}, x_{1i})^{2} / V^{2}(r_{x_{1i}}), \text{ and } \sigma_{x_{2i}}^{2} = (\lambda_{1} n_{1}^{-2} + \lambda_{2} n_{2}^{-2}) \sum_{j=1}^{n} k(z_{j}, x_{2i})^{2} / V^{2}(r_{x_{2i}}).$$