# Задание практикума: генетический алгоритм

### Дмитрий Волканов, Алексей Сальников

#### 2020

### Содержание

| 4.2. Генерация начальной популяции                                 | 1. | . Введенние                        | 1 |
|--------------------------------------------------------------------|----|------------------------------------|---|
| 4. Методические указания         4.1. Шаги генетического алгоритма | 2. | . Кодирование особи                | 2 |
| 4.1. Шаги генетического алгоритма                                  | 3. | . Требования к программе           | 2 |
| 4.2. Генерация начальной популяции                                 | 4. | . Методические указания            | 2 |
| 4.3. Вычисление целевой функции                                    |    | 4.1. Шаги генетического алгоритма  | 2 |
| 4.4. Произведение селекции                                         |    | 4.2. Генерация начальной популяции | 3 |
| 4.5. Произведение скрещиваний                                      |    | 4.3. Вычисление целевой функции    | 3 |
|                                                                    |    | 4.4. Произведение селекции         | 3 |
| 4.6. Организация мутаций                                           |    | 4.5. Произведение скрещиваний      | 5 |
|                                                                    |    | 4.6. Организация мутаций           | 5 |

### 1. Введенние

Требуется найти экстремум функции одной переменной на заданном интервале генетическим алгоритмом [1].

Размер начальной популяции population\_volume является параметром программы. Значение по умолчанию равно 30. Начальная популяция формируется случайным образом. Количество скрещиваемых особей (допустимых решений) и вероятность мутации особи задаются в параметрах программы.

Все функции заданы на отрезке [0,4). В функциях 1,4-8 необходимо найти max и argmax, а в функциях 2,3 необходимо найти min и argmin

Далее перечислены функции:

$$f_1(x) = (x-2)(x-2.5)(x-3.5)(1-\exp^{x-1.5})$$
 (1)

$$f_2(x) = (x - 2.1)(x - 1.5)(x - 2.4)(x - 0.33)(1 - \exp^{x - 3.5})\cos(x)$$
 (2)

$$f_3(x) = (x-2)(x-0.5)(x-0.25)(x-1.5)\sin(\frac{x}{5})$$
(3)

$$f_4(x) = (x-1)^5(x-0.05)(x-3)(x-3.5)(1-\exp^{x-3.95})ln(x+0.22)$$
 (4)

$$f_5(x) = (x-3)(x-2)(x-0.01)^4(x-3.99)^4(1-\exp^{x-1.5})\sin(\frac{x}{3}+0.2)$$
 (5)

$$f_6(x) = x(x-1.1)^5(x-1.2)^4(x-1.3)^3\cos(x+100)$$
(6)

$$f_7(x) = x \cdot \sin(x+5)\cos(x-6)\sin(x+7)\cos(x-8)\sin(\frac{x}{3})$$
 (7)

$$f_8(x) = x(x-2)(x-2.75)\cos(\frac{x}{10})(2-3^{x-2})\exp^{\frac{x}{10}}$$
(8)

Критерий останова алгоритма:

- 1. Выполнение алгоритмом априорно заданного числа итераций max iters.
- 2. Выполнение алгоритмом априорно заданного числа итераций без улучшения качества популяции при заданном quality epsilon (По умолчанию  $10^{-5}$ ). max valueless iters.
- 3. Достижение некоторого априорно заданного значения целевой функции  $enough\_function\_value$ .

**Виды селекции**: Случайная схема; Схема пропорционального отбора; При помощи рулетки; Турнирная; Отбор усечением.

**Виды скрещивания**: Одноточечное; Двухточечное; Универсальное; Однородное. Виды мутации:

- 1. Изменение случайно выбранного бита
- 2. Перестановка случайно выбранных битов местами
- 3. Реверс битовой строки, начиная со случайно выбранного бита

# 2. Кодирование особи

Генетические алгоритмы работают только с дискретным пространством. Однако максимальное и минимальное значение по условию задачи приходится искать для непрерывного пространства. Поэтому необходимо придумать способ дискретизации индивидума — «кодирования особи». С этой целью, весь отрезок от [0,4) разобьём на  $2^M$  точек. Величину M - желательно подбирать так, чтобы образовавшееся число влезло в стандартные типы данных языка программирования. Соотвественно для отрезка [a,b] особь ent в её непрерывное значение val можно пересчитать по простой формуле:

$$val = a + ent \frac{(b-a)}{2^M}$$

# 3. Требования к программе

Программа должна работать в двух режимах: тестовый и основной.

В тестовом режиме программа должна выводить в файл и, при желании пользователя, на экран популяцию решений, получаемую на каждом шаге работы алгоритма.

В основном режиме на экран выводится только наилучшая точка в популяции и, значение функции в этой точке, номер итерации. В конце окончательную найденую точку, значение в этой точке и число итераций, за которые результат был достигнут.

Все шаги алгоритма должны быть реализованы в виде отдельных процедур.

Параметры алгоритма должны быть собраны в некотором текстовом конфигурационном файле, где параметры могут быть перечислены в любом порядке. Формат записи для одного параметра: "*имя\_параметра = значение*". Так же в файле могут встречаться коментарии задаваемые символом решётка.

# 4. Методические указания

#### 4.1. Шаги генетического алгоритма

Генетический алгоритм работает в соответствии со следующими шагами:

- 1. Чтение параметров
- 2. Формирование начальной популяции
- 3. Вычисление функции качества для каждой особи и сортировка популяции

- 4. Проверка условия остановки. Если достигнуто завершаем алгоритм.
- 5. Селекция
- 6. Формирование новой популяции: скрещивания, мутации
- 7. переход на шаг 3.

Общая схема работы генетических алгоритмов представлена на рисунке 1.

Рассмотрим более подробно каждый из этапов работы Генетического Алгоритма (ГА) и варианты используемых генетических операторов.

### 4.2. Генерация начальной популяции

Генерация начальной популяции может происходить как случайным образом, так и с помощью некоторого алгоритма.

### 4.3. Вычисление целевой функции

Целевая функция (функция качества) позволяет оценить степень приспособленности данной особи в популяции и характеризует качество получаемого решения. В данной задаче целевая функция — это значение одной из функций  $f_1(x),...,f_8(x)$  в точке, соответствующей данной особи. Во время генетического процесса вычисление целевой функции осуществляется над элементами всей популяции решений. Нужно отметить, что достаточно часто сложность генетических алгоритмов оценивается по количеству вычислений целевой функции.

#### 4.4. Произведение селекции

Выбор решений для следующей популяции (оператор селекции) предназначен для улучшения качества решений в новой популяции, а именно сохранение разнообразия популяции, сохранение лучших решений и удаление из нее недопустимых решений. Обычно выбираются элементы с наибольшей приспособленностью (наилучшем значением функции качества).

Селекция в любом случае должна быть устроена так, что как минимум одна лучшая особь защищена от истребления в результате селекции. В алгоритме число защищаемых верхних позиций от отбора является параметром алгоритма preserved\_high\_positions. Так же полезно защищать некоторое количество нижних позиций, так как в результате скрещивания с ними возможны выходы из локальных экстремумов. Параметр preserved low positions.

Возможны различные варианты операции селекции, основанные на разных схемах отбора:

- Случайная схема. В данной схеме отбора особи, попадающие в новую популяцию выбираются случайным образом. Верхняя часть (по значению функции качества) не участвует в отборе.
- Схема пропорционального отбора. В данной схеме отбора вычисляется значение целевой функции для каждого решения  $f_m(x_i)$  и определяется среднее значение целевой функции в популяции  $F_{ave}$ . Затем для каждого решения i вычисляется отношение  $\frac{f_m(x_i)}{F_{ave}}$ . Например, если отношение равно 2.36, то данное решение имеет двойной шанс на выживание в популяции. Так же в зависимости от даннго коэффициента можно вычислять вероятность скрещивания. Тогда решение будет иметь вероятность равную 0.36 для третьего скрещивания. Если же приспособленность равна 0.54, то решение примет участие в единственном скрещивании с вероятностью 0.54.
- Схема отбора на основе рулетки. Каждому решению выделяется сектор рулетки

discretion(i) = 
$$2\pi \cdot \frac{f_m(x_i)}{\sum_{j=1}^{\text{population}} volume} f_m(x_j)$$



Рис. 1: Общая схема работы генетического алгоритма

Решение попадает в новую популяцию, если случайным образом сгенерированное число попадает в этот сектор.

- Турнирный отбор. Схему турнирного отбора можно описать следующим образом: из популяции, содержащей N решений, выбирается случайным образом 2 решения и между выбранными решениями проводится турнир. Победившее решение остаётся в популяции.
- Отбор усечением. Число решений для сохранения в популяции выбирается в соответствии с порогом  $T \in [0;1]$ . Порог определяет, какая доля особей, начиная с самой первой (самой приспособленной) будет принимать участие в отборе.

### 4.5. Произведение скрещиваний

Оператор скрещивания используется для передачи родительских признаков потомкам. Пары для скрещивания выбираются либо случайно, либо на основе одной из схем селекции, описанных выше.

Доля особей участвующих в скрещивании задаётся параметром *crossing\_volume*. Возможны следующие варианты оператора скрещивания (рис. 2).

- Одноточечное скрещивание. Выбирается одна точка, и относительно неё решения обмениваются своими частями.
- Двухточечное скрещивание. Аналогично предыдущему, но точек скрещивания выбирается две.
- Универсальное скрещивание. С некоторой вероятностью выбирается бит либо одного, либо другого родителя.
- Однородное скрещивание. Каждый ген в потомстве создается посредством копирования соответствующего гена от одного или другого родителя, выбранного согласно случайно сгенерированной маске скрещивания. Если в маске скрещивания стоит 1, то ген копируется от первого родителя, если в маске стоит 0, то ген копируется от второго родителя. Процесс повторяется с новыми родителями для создания второго потомства. Новая маска скрещивания случайно генерируется для каждой пары родителей.

После операции скрещивания новые решения остаются в популяции вместе с родителями, по которым были порождены скрещенные особи.

#### 4.6. Организация мутаций

Оператор мутации используется для внесения в решение некоторых новых признаков. Некоторые варианты реализации операции мутации представлены на рисунке 3. Все варианты изменяют биты битовой строки с некоторой вероятностью.

Доля мутирующих особей в популяции определяется параметром алгоритма variability.

- Изменение случайно выбранного бита.
- Перестановка случайно выбранных битов местами.
- Реверс битовой строки, начиная со случайно выбранного бита.



Рис. 2: Варианты оператора скрещивания.



Рис. 3: Варианты операции мутации.

# Список литературы

- [1] Гладков Л.А., Курейчик В.В., Курейчик В.М. Генетические алгоритмы / Под ред. В.М. Курейчика. 2-е изд., испр. и доп. М.: ФИЗМАТЛИТ, 2006. 320 с. ISBN 5-9221-0510-8.
- [2] Holland J.N. Adaptation in Natural and Artificial Systems // Ann Arbor, Michigan: Univ. of Michigan Press, 1975.
- [3] Goldberg D.E. Genethic Algorithms in Search Optimization & Machine Learning // Addison Wesley, Reading, 1989.