Fonctions à ensembles fonctionnels

Ewen Le Bihan

2020-12-29

Abstract

La notation $\mathcal{D}(A, B)$ désignant l'ensemble des fonctions dérivables sur A de type $A \to B$ est assez commune, et facilement définissable de manière formelle, ainsi que sa généralisation, \mathcal{D}^n , ou son homologue pour les fonctions continues, \mathcal{C} . Mais il y a bien un lien entre ces trois notations: ce sont des fonctions à valeurs d'ensembles ne contenant que des fonctions du type correspondants aux deux arguments passés à la fonction, ou, plus succintement, pour tous ensembles A et B, $\mathcal{D}(A, B) \in \mathcal{P}(\mathcal{F}(A, B))$.

Dans cet article est exploré cette "classe" d'objets particuliers. On défini pour tout le reste de l'article l'abbréviation **FEF**, signifiant "Fonctions à valeurs d'ensembles fonctionnels". On note dans la suite de tout l'article A et B deux ensembles quelconques, := l'égalité par définition et univers l'unique ensemble tel que pour tout ensemble A, $A \neq \text{univers} \implies A \subset \text{univers}$.

1 Définitions

1.1 Définition de l'ensemble des FEF

On définit dès lors un nouvel ensemble Y

$$\mathbb{Y} := \mathcal{F}(A \times B, \ \mathcal{P}(\mathcal{F}(A, B)))$$

Où:

- \mathcal{F} désigne l'ensemble des fonctions de type $A \to B$. Pour la définition formelle de \mathcal{F} , cf. 1.3.
- $\mathcal{P}(A)$ désigne l'ensemble des parties de A

On a bien:

- $\mathcal{F} \in \mathbb{Y}$
- $\mathcal{C} \in \mathbb{Y}$
- $\mathcal{D} \in \mathbb{Y}$

1.2 Un conflit de notations: l'exposant

Cette perspective de \mathcal{D}^n ou \mathcal{C}^n comme de simples fonctions soulève un conflit assez désagréable de notation: si \mathcal{D} est une fonction, on devrait avoir:

$$\forall n \in \mathbb{N}, \mathcal{D}^n = \bigcap_{i=0}^n \mathcal{D}$$

Ce qui n'est évidemment pas le cas.

Dès lors, par souci de clarté, contrairement à la notation traditionnelle, \mathcal{D}_n désignera l'ensemble des fonctions n fois dérivables, et \mathcal{D}^n la fonction \mathcal{D} n fois composée avec elle-même. On fera la même entorse aux notations classiques pour \mathcal{C} .

1.3 Définition formelle de \mathcal{F}

L'ensemble \mathcal{F} est particulier: il est nécéssaire que \mathcal{F} soit définie pour définir \mathbb{Y} même.

De ce fait, la définition de \mathcal{F} nécéssite une définition formelle des applications. On restera au stade d'une définition semi-formelle:

$$\mathcal{F} := (A, B) \mapsto \{ f \in \text{univers}, \ f : A \to B \}$$

1.4 Extension des opérateurs ensemblistes aux FEF

On a, pour tout élément $F \in \mathbb{Y}$:

- 1. F est d'arité 2 (i.e. F prend deux arguments)
- 2. F est à valeur d'ensembles

On en déduit que tout élément de Y possède la même arité et renvoie des valeurs de nature ensembliste.

Il est donc possible d'étendre canoniquement et sans ambiguïté les opérateurs ensemblistes aux FEF. On a donc:

$$\forall \Box \in \{\cup, \cap, \setminus, \Delta\}, \ \forall (F, G) \in \mathbb{Y}^2, \ F \Box G := (A, B) \mapsto F(A, B) \Box G(A, B) \tag{1}$$

$$\forall F \in \mathbb{Y}, \ ^{c}F := (A, B) \mapsto {}^{c}(F(A, B)) \tag{2}$$

$$\forall F \in \mathbb{Y}, \ F^* := F \setminus (A, B) \mapsto \{x \mapsto 0_A\}$$
 (3)

On précise pour (2) que l'"univers" des FEF (c'est-à-dire tel que le complémentaire de l'univers est \emptyset) est \mathcal{F} : On a bien $^c\mathcal{F} = \emptyset$, l'ensemble des fonctions de A dans B qui ne sont pas des fonctions de A dans B est vide. De ce fait, on a:

$$\forall F \in \mathbb{Y}, \ ^{c}F := \mathcal{F} \setminus F$$

On précise pour (3) que 0_A représente l'élément neutre du magma unitaire (A, +). Cette définition a donc un sens si et seulement si (A, +) est un magma unitaire.

Cette extension de notation permettra notamment de définir la FEF des bijections de manière très succinte (cf 1.7.6)

1.5 Surcharge de \in

Il peut être souhaitable de vouloir exprimer la contrainte "cette fonction vérifie cette propriété", sans avoir à contraindre la source ou le but de ladite fonction. On redéfini donc \in avec une fonction à gauche et un FEF à droite de la manière suivante:

$$\forall \mathsf{LHS}, \mathsf{RHS}, \ \begin{cases} \mathsf{LHS} & \in \mathcal{F}(A,B) \\ \mathsf{RHS} & \in \mathbb{Y} \end{cases} \implies \Big(\mathsf{LHS} \in \mathsf{RHS} \ \stackrel{\mathsf{def}}{\Longleftrightarrow} \ \mathsf{LHS} \in \mathsf{RHS}(A,B) \Big)$$

Par exemple, on a $f \in \mathcal{C}$ équivalent à $f \in \mathcal{C}(D_f, f^{\rightarrow}(D_f))$. Cette notation est pratique pour exprimer des contraintes sur des fonctions dont on connaît déjà la source et le but.

1.6 Notation succinte pour définir des FEF

On note, pour tout $F \in \mathbb{Y}$ et pour toute proposition P convenablement définie:

$$\underset{f:A \to B}{\text{FEF}} P(f, A, B) := (A, B) \mapsto \{ f \in B^A, \ P(f, A, B) \}$$

Cette notation définit un opérateur similaire à lim qui est exprimable en tant que fonction, en effet, on a $\text{FEF} \in \mathcal{F}(B^A \times A \times B \times \mathcal{F}(B^A, A, \mathbb{B}), \mathbb{Y})$

 $^{^{1}}$ i.e. A possède un élément neutre pour +

1.6.1 Exemple: Définition de la FEF des paires

$$= \underset{f:A \to B}{\text{FEF}} f \circ (-\operatorname{id}_A) = (A, B) \mapsto \{ f \in B^A, \ f \circ (-\operatorname{id}) = f \}$$

1.7 Définition de quelques FEF

1.7.1 Dérivabilité, continuité

Soit $n \in \mathbb{N}$. Soit $u \in -\mathbb{N}^*$.

$$\mathcal{D}_{n} := \underset{f:A \to B}{\text{FEF}} \left(\exists l \in \mathbb{R}, \ \frac{f(x) - f(a)}{x - a} \xrightarrow[x \to a]{} l \right)$$

$$\mathcal{D}_{u} := \underset{f:A \to B}{\text{FEF}} \left(\exists F \in B^{A}, \ F' = f \right)$$

$$\mathcal{C}_{n} := \underset{f:A \to B}{\text{FEF}} \left(\forall a \in A, \ \lim_{\epsilon \to a} f(\epsilon) = a \right)$$

$$UC := \underset{f:A \to B}{\text{FEF}} \forall a \in A, \ \forall \epsilon > 0, \ \exists \eta > 0, \ \forall x \in A, \ |x - a| < \epsilon \implies |f(x) - f(a)| < \eta$$

1.7.2 Monotonie

Sont définies ci-après les FEF des fonctions croissantes \angle , des fonctions décroissantes \supseteq et leurs homologues stricts \angle et \supseteq , en s'inspirant fortement des notations de la théorie des ensembles. Finalement, le FEF des fonctions strictements monotones est noté \supseteq .

$$\angle := \underset{f:A \to B}{\operatorname{FEF}} (\forall x, y \in A, \ x \ge y \implies f(x) \ge f(y))$$

$$\angle := \underset{f:A \to B}{\operatorname{FEF}} (\forall x, y \in A, \ x > y \implies f(x) > f(y))$$

$$\triangle := \underset{f:A \to B}{\operatorname{FEF}} (\forall x, y \in A, \ x \ge y \implies f(x) \le f(y))$$

$$\angle := \underset{f:A \to B}{\operatorname{FEF}} (\forall x, y \in A, \ x \ge y \implies f(x) \le f(y))$$

$$\angle := \underset{f:A \to B}{\operatorname{FEF}} (\forall x, y \in A, \ x > y \implies f(x) < f(y))$$

$$\angle := \underbrace{} \bigcirc \cup \angle$$

1.7.3 Concavité

1.7.4 Lipschitziannité

On définit ici formellement les ensembles $k\!-\!\mathcal{L}$ et \mathcal{L}

$$\forall k \in \mathbb{R}_+^*, \ k\!-\!\mathcal{L} := \underset{f:A \to B}{\operatorname{FEF}} \forall x, y \in A, \ |f(x) - f(y)| \le k|x - y|$$

$$\mathcal{L} := \bigcup_{k \in \mathbb{R}_+^*} k\!-\!\mathcal{L}.$$

1.7.5 Parité

Sont définies ci-après les FEF des fonctions paires \checkmark et impaires \checkmark . Leurs symboles proviennent du graphe d'une fonction $(id)^n$ avec n pair ou impair.

$$\stackrel{\longleftarrow}{\longleftarrow} := \underset{f:A \to B}{\text{FEF}} f \circ (-\text{id}_A) = f$$

$$\stackrel{\longleftarrow}{\longleftarrow} := \underset{f:A \to B}{\text{FEF}} f \circ (-\text{id}_A) = -f$$

1.7.6 *jectivité

Sont définies ci-après les FEF des fonctions injectives (\mathcal{H}) , surjectives (\mathcal{H}) et bijectives (\mathcal{H}) . Leurs symboles proviennent des diagrammes sagittaux.

$$\bigoplus := \underset{f:A \to B}{\text{FEF}} \left(\forall (a_1, a_2) \in A^2, \ f(a_1) = f(a_2) \implies a_1 = a_2 \right) \\
\bigoplus := \underset{f:A \to B}{\text{FEF}} f \in B^A, \ (\forall b \in B, \ \exists a \in A, \ f(a) = b)$$

La surcharge de la notation d'intersection permet de définir facilement () à partir de () et ():

$$(\not\pm) := (\not+) \cap (\not+)$$

C'est enfait la définition même du quantificateur $\exists!$ qui intervient dans cette facilité de définition.

1.7.7 Périodicité

Soit $T \in A$. On définit les fonctions périodiques de période T et les fonctions périodiques, respectivement.

$$\circlearrowleft_T := \underset{f:A \to B}{\text{FEF}} \forall n \in \mathbb{Z}, \ f \circ (\operatorname{id} + nT) = f$$

$$\circlearrowleft := \bigcup_{T \in \mathbb{R}_+} \circlearrowleft_T.$$

1.8 Domaine d'appartenance à un FEF

On généralise ici la notation D_f à n'importe quel FEF:

$$\forall F \in \mathbb{Y}, \ \forall f \in B^A, \ D_{f,F} := \{I \subset A, \ f_{|I} \in F\}.$$

A étant le neutre pour la restriction de $f: A \to B$, on a bien $D_{f,\mathcal{F}} = A = D_f$.

2 Applications

2.1 Définition formelle succinte de nombreux ensembles et énoncés

Notamment:

- L'ensemble des extractrices, $\mathcal{A}(\mathbb{N}, \mathbb{N})$
- Toute fonction croissante a une dérivée positive, $d^{\rightarrow}(\underline{\nearrow}(\mathbb{R},\mathbb{R})) = \mathcal{F}(\mathbb{R},\mathbb{R}_+)$ Même si un énoncé plus simple serait "Soit $f: \mathbb{R} \to \mathbb{R}$ croissante. Alors f' > 0", l'énoncé premier a deux avantages:
 - Il est totalement symbolique (et donc ne requiert pas de traduction, en plus d'être bien défini)
 - Permet un énoncé sans introduction de variables (liées ou libres).
- Plus généralement, la quantification d'une fonction et de propriété requises est combinée en une simple quantification: Au lieu d'avoir $\forall f \in \mathcal{F}(A,B), P(f) \implies Q(f)$, on peut condenser l'énoncé à $\forall f \in FEF_{f:A \to B}P(f)(A,B), Q(f)$, ce qui peut s'avérer plus naturel dans certains cas².
- La définition succinte de la relation "les ensembles A et B sont en bijection":

$$\forall A, B \in \mathcal{P}(\text{univers}), \ A \approx B \iff ()$$

²Bien évidemment, l'énoncé est plus succint si $\underset{f:A \to B}{\text{FEF}} P(f)$ est un FEF assigné à un symbole, comme \angle .

Contents

1	Défi	initions	1
	1.1	Définition de l'ensemble des FEF	1
	1.2	Un conflit de notations: l'exposant	1
	1.3	Définition formelle de $\mathcal F$	2
	1.4		2
	1.5		2
	1.6		2
			3
	1.7		3
		1.7.1 Dérivabilité, continuité	3
			3
			3
		1.7.4 Lipschitziannité	3
			3
			4
		·	4
	1.8	Domaine d'appartenance à un FEF	4
2	App	olications	4
	2.1	Définition formelle succinte de nombreux ensembles et énoncés	4