Data Cleaning and Hypothesis Testing Report

1. Introduction

This document outlines the data cleaning process and hypothesis testing performed on a dataset related to food, nutrition, and health habits. The data was first cleaned using Python's Pandas library, and then statistical analysis and visualizations were carried out using R.

2. Data Cleaning with Pandas (Python)

The following code was used to clean the dataset:

import pandas as pd

```
# Load the dataset
file_path = "cleaned_food_data.xlsx"
data = pd.read_excel(file_path)
```

```
# Check for missing values
data.isnull().sum().sort_values(ascending=False)
```

```
# Drop or fill missing values as necessary (example)
data.dropna(subset=['GPA', 'breakfast', 'fruit_day', 'veggies_day'], inplace=True)
```

```
# Convert data types if needed data['GPA'] = pd.to_numeric(data['GPA'], errors='coerce') data['fruit_day'] = pd.to_numeric(data['fruit_day'], errors='coerce') data['veggies_day'] = pd.to_numeric(data['veggies_day'], errors='coerce')
```

```
# Save cleaned data
data.to_excel("cleaned_food_data.xlsx", index=False)
```

3. Hypothesis Testing and Visualizations (R)

```
library(readxl)
data <- read_excel("cleaned_food_data.xlsx")

# Convert GPA to numeric
data$GPA <- as.numeric(as.character(data$GPA))

# Hypothesis 1: GPA and Breakfast
```

```
boxplot(GPA ~ breakfast, data = data, main = "GPA vs Breakfast", xlab = "Breakfast (1=Yes,
0=No)", ylab = "GPA")
t.test(GPA ~ breakfast, data = data)
# Hypothesis 2: Vegetable intake vs Vitamin use
boxplot(as.numeric(veggies_day) ~ vitamins, data = data, main = "Vegetable Intake vs
Vitamin Use", xlab = "Takes Vitamins (1=Yes, 2=No)", ylab = "Vegetables per Day")
t.test(as.numeric(veggies day) ~ vitamins, data = data)
# Hypothesis 3: Gender and Breakfast (Chi-squared Test)
table(data$Gender, data$breakfast)
chisq.test(table(data$Gender, data$breakfast))
# Hypothesis 4: Calories per day vs GPA (Correlation)
plot(data$calories day, data$GPA, main = "Calories vs GPA", xlab = "Calories per Day", ylab
= "GPA")
cor.test(data$calories_day, data$GPA, use = "complete.obs")
# Hypothesis 5: Fruit and Vegetable consumption (Correlation)
data$fruit_day <- as.numeric(data$fruit_day)</pre>
data$veggies day <- as.numeric(data$veggies day)</pre>
cor.test(data$fruit_day, data$veggies_day, use = "complete.obs")
```

4. Inferences

- Hypothesis 1 (GPA ~ Breakfast):
 - o p-value: 0.9601
 - No statistically significant difference in GPA between those who eat breakfast and those who do not.
- Hypothesis 2 (Vegetable intake ~ Vitamins):
 - o p-value: 0.00989
 - Significant difference in vegetable intake between vitamin users and non-users. Vitamin users tend to eat more vegetables.
- Hypothesis 3 (Gender ~ Breakfast):
 - o p-value: 0.8378
 - No significant association between gender and breakfast habits.

• Hypothesis 4 (Calories vs GPA):

- o Correlation coefficient: -0.0947753
- o p-value: 0.4
- Very weak and non-significant negative correlation between calorie intake and GPA.

• Hypothesis 5 (Fruit vs Vegetable intake):

- o Correlation coefficient: 0.6653829
- o p-value: 5.046e-12
- Strong, significant positive correlation between fruit and vegetable consumption.

5. Summary of Results:

- Eating breakfast does not significantly improve GPA.
- Vitamin users do consume more vegetables than non-users.
- No significant correlation was found between calorie intake and GPA.
- There is a **strong positive correlation** between fruit and vegetable intakes.