Progresii

O funcție $f: \mathbb{N}^* \to A$ se numește *șir de elemente* din mulțimea A. Notăm $f(n) = a_n$, $\forall n \in \mathbb{N}^*$; funcția f se mai notează pe scurt $(a_n)_{n \ge 1}$ sau (a_n) . În acest caz, a_n se numește $termen \ de \ rang \ n$.

Se numește *progresie aritmetică* un șir de numere reale în care fiecare termen, începând cu al doilea, se obține din termenul precedent prin adunarea cu un același număr, numit rația progresiei.

O progresie aritmetică se notează $\div a_1, a_2, ..., a_n, ...$ sau $\div (a_n)$.

Deci $\div(a_n) \stackrel{\text{def.}}{\Leftrightarrow} a_{n+1} = a_n + r$, pentru $n \ge 1$, unde $r \in \mathbb{R}$ este *rația progresiei aritmetice*.

Termenul general al unei progresii aritmetice $\div(a_n)$, de rație r, este dat de formula $a_n = a_1 + (n-1)r$, pentru $n \ge 1$.

Suma primilor *n* termeni ai unei progresii aritmetice este: $S_n = \frac{(a_1 + a_n)n}{2}$.

Se numește *progresie geometrică* un șir de numere reale nenule în care fiecare termen, începând cu al doilea, se obține din termenul precedent prin înmulțirea cu un același număr real nenul, numit rația progresiei.

O progresie geometrică se notează: $\vdots b_1, b_2, ..., b_n, ...$ sau $\vdots (b_n)$.

 $\mathrm{Deci} \div (b_n) \overset{\mathrm{def}}{\Longleftrightarrow} b_{n+1} = b_n \cdot q \text{ , pentru } n \geqslant 1 \text{, unde } q \text{ este } \textit{rația progresiei geometrice}, \ q \neq 0 \text{ .}$

Termenul general al unei progresii geometrice $:: (b_n)$, de rație $q \in \mathbb{R}^*$, este dat de formula $b_n = b_1 \cdot q^{n-1}$, pentru $n \ge 1$.

Suma primilor n termeni ai unei progresii geometrice $(b_{\scriptscriptstyle n})$ de rație $q\in\mathbb{R}^*$ este

$$S_n = \begin{cases} nb_1 &, & \mathrm{dac} \check{a} & q=1 \\ \frac{b_1(q^n-1)}{q-1} &, & \mathrm{dac} \check{a} & q \neq 1 \end{cases}.$$