

Question: Let $A \subset P(n) = \S S : S \subset \S n \rceil \S$ be a family of sets of size n. such that $A \not\subset B$ $\forall A, B \in A$ $A \not\subset B$ \nearrow Called an antichain

Theorem (Sperner, 1910s) $A \subset P(n)$ and an antichain $\Rightarrow |A| \leq \binom{n}{n/2}$

Theorem (Lemma of LYMB, 608) A is an antichair $\Rightarrow \sum_{A \in A} \frac{1}{\binom{n}{1A1}} \leq 1$ | Rollabas!

Proof of Spermer using LYMB: $\binom{n}{1A1} \leq \binom{n}{nA} \Rightarrow 1 > \sum_{A} \frac{1}{\binom{n}{1A1}} > 1A1 \frac{1}{\binom{n}{nA2}}$

 \Rightarrow $|A| \leq \binom{n}{n/2}$

Proof of LYMB: We will prove this by counting something in two ways.

Lets count parmutations IT of [n] in a way that involves IAI.

We count # pairs (π, A) s.t. IT is perm. of Cn, $A \in A$ and $\S\pi(i), \ldots, \pi(IAI)\S=A$.

First Pix A = A. #{ = such that {\pi(1), ---, \pi(1A1)} ?= A{ = 1A!! (n-1A)!}

Now fix π perm of [n]. $\#A \in A$ s.t. $\{\pi(1),...,\pi(1A1)\}=A$ is $\{\#A \in P(n) \text{ s.t. } \{\pi(1),...,\pi(1A1)\}=A$ $\{\#A \in P(n) \text{ s.t. } \{\pi(1),...,\pi(1A1)\}=A$ $\{\#A \in P(n) \text{ s.t. } \{\pi(1),...,\pi(1A1)\}=A$ $\{\#A \in P(n) \text{ s.t. } \{\pi(1),...,\pi(1A1)\}=A$

Thus $\sum_{A \in A} |A! (n-|A|)! = \# of pairs (\pi, A) \leq n!$ so done.

s.b. To perm. of Ca?

A ∈ A and {π(n)} = A

Lecture 7 (2)

Question: A is intersecting if ANB $\neq \emptyset$ for all A, B \in A.

A \subset P(n) is intersecting \Rightarrow $(A) \in ?$

Note: Phrased diff. Let A be a set of frienship groups, what'r He maximum number of friendship groups such that each group shares a friend.

Proof: For each set take $\S A, A^{c} \S$, can only have one of each.

Theorem (Erdös-Ko-Rado) $A \subset [n]^{(k)}$ is intersecting $\Rightarrow |A| \leq {n-1 \choose k-1}$

Proof: Count cycles. Say two permutations are equivalent if they are the same up to their starting point. e.g. 123 = 231 = 312.

Fix $A \in A$, # 77 s.t. A is an interval = Can order A in k! ways, Hen have $(n-k)(n-k-1)\cdots -2\cdot 1$ choices for the other elements. So Here are 4: (n-k)! choices.

Now fix IT a permutation of circle.

#AEA s.t. A is an interval &