

VERIFICATION OF BOOLEAN IDENTITIES

BAGILI SALMA BEGAM (FWC22130)

1

Contents

1 PROBLEM

2 COMPONENTS

3 INTRODUCTION

4 TRUTH TABLE

5 Implementation

6 Procedure

7 CODE

1 PROBLEM

(GATE CS-2018) Q.4 Let \oplus and \odot denote the Exclusive OR and Exclusive NOR operations,respectively. Which one of the following is NOT CORRECT?

(A)
$$(P \oplus Q)' = (P \odot Q)$$

(B)
$$(P' \oplus Q) = (P \odot Q)$$

(C)
$$(P' \oplus Q') = (P \oplus Q)$$

(D)
$$(P \oplus P') \oplus Q = (P \odot P') \odot Q'$$

2 COMPONENTS

Component	Value	Quantity
Arduino	UNO	1
Bread board	-	1
Jumper wires	M-M	8
LED	-	2
Resistor	150ohms	2

3 INTRODUCTION

An "identity" is merely a relationship that is always

- 1 true, regardless of the values that any variables involved might take on; similar to laws or properties.
- 1 Many of these can be analogous to normal multiplication and addition, particularly when the symbols 0,1
- 1 are used for FALSE, TRUE.

4 TRUTH TABLE

The Truth Table for the above identities is as follows:

2 (A)
$$(P \oplus Q)' = (P \odot Q)$$

2 where $Y1 = (P \oplus Q)', Y2 = (P \odot Q)$

P	\mathbf{Q}	Y 1	$\mathbf{Y2}$
0	0	1	1
0	1	0	0
1	0	0	0
1	1	1	1

Table 1

(B)
$$(P' \oplus Q) = (P \odot Q)$$

where $Y1 = (P' \oplus Q), Y2 = (P \odot Q)$

P	Q	Y 1	Y2
0	0	1	1
$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1	0	0
1	0	0	0
1	1	1	1

Table 2

(C)
$$(P' \oplus Q') = (P \oplus Q)$$

where $Y1 = (P' \oplus Q'), Y2 = (P \oplus Q)$

P	\mathbf{Q}	Y 1	Y2
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	0

Table 3

7 CODE

The arduino code can be downloaded from the below link.

https://github.com/BagiliSalmaBegam/FWC/tree/main/latex

(D)	$(P \oplus P') \oplus Q = (P \odot P') \odot Q'$
	where $Y1 = (P \oplus P') \oplus Q, Y2 = (P \odot P') \odot Q'$

P	\mathbf{Q}	Y 1	$\mathbf{Y2}$
0	0	1	0
0	1	0	1
1	0	1	0
1	1	0	1

Table 4

Here, Except (**D**) identity all other identies are valid according to the mentioned truth tables.

5 Implementation

Table 5: connections

Arduino pin	INPUT	OUTPUT
5	P	
6	Q	
2		С
3		R

6 Procedure

- 1. Connect the circuit as per the above table.
- 2. Connect the Output pins C and R to the LED's.
- 3. Connect the other end of the LED's to the Ground terminal.
- 4. Connect inputs to Vcc for logic 1,ground for logic 0.
- 5. Execute the circuits using the below code.
- 6. Change the values of P,Q in the code and verify the Truth tables respectively.