Résolution de Problèmes Recherche Locale

Marie Pelleau

marie.pelleau@univ-cotedazur.fr

Master 1 - Semestre 1

Marie Pelleau Recherche Locale 2020-2021 1/25

Algorithme glouton

Algorithme glouton

Principe

- À chaque étape, on fait un choix, celui qui semble le meilleur à cet instant
- Construit une solution pas à pas
 - sans revenir sur ses décisions
 - en effectuant à chaque étape le choix qui semble le meilleur
 - en espérant obtenir un résultat optimum global
- Approche glouton
 - suivant les problèmes pas de garantie d'optimalité (heuristique gloutonne)
 - peu coûteuse (comparée à une énumération exhaustive)
 - choix intuitif

Marie Pelleau Recherche Locale 2020-2021 2 / 25

Notes			
NI .			
Notes			

Recherche locale

Principe

- On part d'une solution initiale
- À chaque étape, on modifie la solution
 - en essayant d'améliorer la valeur de la fonction objectif
 - en espérant obtenir l'optimum global
- Approche locale
 - suivant les problèmes pas de garantie d'optimalité (heuristique)
 - peu coûteuse

Solution initiale

- Solution "vide"
- Solution aléatoire
- Solution d'un algorithme glouton

2020-2021

Recherche locale

Recherche locale

Principe

- On part d'une solution initiale
- À chaque étape, on modifie la solution
 - en essayant d'améliorer la valeur de la fonction objectif
 - en espérant obtenir l'optimum global
- Approche locale
 - suivant les problèmes pas de garantie d'optimalité (heuristique)
 - peu coûteuse

Modifications

- Modifie la valeur d'une variable
- Échange la valeur de deux variables

2020-2021

Notes			
Votes			

Le sac-à-doc (knapsack)

Description

On a:

- Un Sac dans lequel on peut mettre un poids limité
- Un ensemble d'objets, chaque objet o_i a
 - Un poids : p_i

• Une valeur : v_i

Quels sont les objets que l'on doit prendre pour maximizer la valeur transportée tout en respectant la contrainte de poids ?

- La somme des valeurs des objets pris est maximale
- La somme des poids des objets pris est ≤ poidsmax du sac

Marie Pelleau Recherche Locale 2020-2021

Recherche locale

Le sac-à-doc (knapsack)

Les variables

- On associe à chaque objet une variable 0-1 (elle ne prend que les valeurs 0 ou 1)
- C'est une variable d'appartenance au sac à dos
- Si l'objet est pris alors la variable vaut 1 sinon elle vaut 0

 Marie Pelleau
 Recherche Locale
 2020-2021
 5 / 25

Notes		
Votes		

Le sac-à-doc (knapsack)

Modèle

- La valeur d'un objet et son poids sont des données, donc pour l'objet o_i on a la valeur v_i et le poids p_i
- La variable d'appartenance au sac est x_i
- ullet Le poids maximum du sac est W

Les contraintes

• $max \sum_{i=1}^{n} v_i x_i$

l'objectif

 $\bullet \sum_{i=1}^n p_i x_i \leq W$

somme des poids inférieure ou égale au poids maximal

Marie Pellea

Recherche Locale

2020-2021

6 / 25

Recherche locale

Le sac-à-doc (knapsack)

Solution initiale

- ullet Solution "vide" : sac à dos vide \Rightarrow fonction objectif 0
- Solution aléatoire : sac à dos aléatoire ⇒ il faut vérifier que c'est une solution
- Solution d'un algorithme glouton

Modifications

- Ajoute un élément au sac à dos ⇒ si la capacité max n'est pas dépassée
- Supprime un élément du sac à dos

 Marie Pelleau
 Recherche Locale
 2020-2021
 7 / 25

Notes			
Notes			

Hitting-set: Recouvrement (set cover)

Description

- Un interrupteur est relié à certaines ampoules
- Si on appuie sur l'interrupteur alors on allume toutes les ampoules reliées
- Question : sur combien d'interrupteur au minimum doit-on appuyer pour allumer toutes les ampoules ?

Marie Pelleau

Recherche Locale

2020-2021

8 / 25

Recherche locale

Hitting-set: Recouvrement (set cover)

Solution initiale

- \bullet Solution "vide" : tous les interrupteurs allumés \Rightarrow fonction objectif nombre d'interrupteurs
- \bullet Solution aléatoire : position des interrupteurs aléatoire \Rightarrow il faut vérifier que c'est une solution
- Solution d'un algorithme glouton

Modifications

- Allume un interrupteur
- Éteint un interrupteur ⇒ si toutes les ampoules restent allumées

Marie Pelleau Recherche Locale 2020-2021 9 / 25

Notes			
Notes			

TSP

 Marie Pelleau
 Recherche Locale
 2020-2021
 10 / 25

Recherche locale

TSP

Marie Pelleau

Recherche Locale

2020-2021

10 / 25

Notes	
Notes	

TSP

Solution initiale

- Les villes par ordre alphabétique
- Les villes dans un ordre aléatoire

Notes

• Solution d'un algorithme glouton

 Marie Pelleau
 Recherche Locale
 2020-2021
 10 / 25

Recherche locale

TSP

Marie Pelleau

Modifications

• *k*-opt

Recherche Locale

- k = 2
- k = 3

2020-2021

11 / 25

Notes			
Notes			

TSP

Recherche Locale

Recherche locale

2020-2021 11 / 25

2020-2021 11 / 25

TSP

Marie Pelleau

Marie Pelleau

Recherche Locale

Notes			
Notes			

TSP

Recherche locale

Recherche locale

Principe

- On part d'une solution initiale
- À ch

Voisinage

Pour une

haque étape, on	modifie la solution \Rightarrow notion	de voisinage					
е			- 1				
e solution, l'ense	emble des solutions à une mod	dification près					
arie Pelleau	Recherche Locale	2020-2021	12 / 25				

2020-2021 11 / 25

Notes

Notes

Hitting-set: Recouvrement (set cover)

Voisinage

Marie Pelleau

Marie Pelleau

Recherche Locale

2020-2021 13 / 25

2020-2021

14 / 25

Recherche locale

Hitting-set: Recouvrement (set cover)

Voisinage

Recherche Locale

Notes			
lotes			

Recherche locale

Principe

- On part d'une solution initiale
- À chaque étape, on modifie la solution (on choisit un voisin)

Quel voisin choisir?

- Aléatoirement
- Le meilleur
- Un parmi les meilleurs

2020-2021 Recherche Locale

Recherche locale

Plan

- Marche aléatoire
- 2 Algorithme de la descente
- Restarts
- Recherche Tabou
- **Solution** Recherche locale
- 6 Constraint Based Local Search

Recherche Locale 2020-2021 16 / 25

Notes

Notes

Marche aléatoire

Principe

- On part d'une solution initiale
- À chaque étape, on modifie aléatoirement la solution

Marie Pelleau Recherche Locale 2020-2021 17 / 25

Algorithme de la descente

Algorithme de la descente

Principe

- On part d'une solution initiale
- À chaque étape, on se déplace vers une solution du voisinage améliorant strictement l'objectif

Inconvénients

On peut rester bloquer dans des minimum locaux

Marie Pelleau Recherche Locale 2020-2021 18 / 25

Algorithme de la descente

Algorithme de la descente

Principe

- On part d'une solution initiale
- À chaque étape, on se déplace vers une solution du voisinage améliorant strictement l'objectif

Restarts

On recommence à partir d'une autre solution

 Marie Pelleau
 Recherche Locale
 2020-2021
 18 / 25

Restarts

Recherche locale

Restarts

- Solution aléatoire
- Solution "vide", dans laquelle on fixe un certain pourcentage de variables comme dans la meilleure solution trouvée jusqu'ici
 - 5%, 10%, 20%

Large Neighborhood Search (LNS) [Shaw, 1998]

Pas d'amélioration

On se déplace vers une solution du voisinage sans améliorer l'objectif
 Il ne faut pas être un poisson rouge

 Marie Pelleau
 Recherche Locale
 2020-2021
 19 / 25

Notes			
	·		
Notes			

Recherche Tabou

Recherche Tabou [Glover, 1986]

Principe

- On part d'une solution s
- On se déplace vers la meilleure solution du voisinage qui ne soit pas interdite
- On ajoute s aux solutions interdites pour les m itérations suivantes

Mémoire

- Interdire des solutions peut être coûteux en mémoire
- À la place on interdit des mouvements

Critère d'aspiration

On peut accepter un mouvement tabou s'il permet d'obtenir une meilleure solution que la meilleure solution connue jusqu'ici

2020-2021

Recherche Tabou

Taille de la liste taboue

- Si m trop faible, intensification trop forte \Rightarrow blocage de la recherche autour d'un optimum local
- Si m trop grand, diversification trop forte \Rightarrow risque de rater des solutions

La longueur optimale de la liste varie

- d'un problème à l'autre
- d'une instance à l'autre d'un même problème
- au cours de la résolution d'une même instance

[Battiti, Protasi 2001] : adapter cette longueur dynamiquement

- Besoin de diversification \Rightarrow augmenter m
- Besoin de d'intensification \Rightarrow diminuer m

2020-2021

Notes			
Notes			

Recherche locale

Principe

- On part d'une solution initiale
- À chaque étape, on modifie la solution
 - en essayant d'améliorer la valeur de la fonction objectif
 - en espérant obtenir l'optimum global
- Approche locale
 - suivant les problèmes pas de garantie d'optimalité (heuristique)
 - peu coûteuse

Remarque

- Cela suppose qu'il existe une fonction objectif
- Comment faire s'il n'en existe pas ?

Marie Pellea

Recherche Local

2020-2021

22 / 25

Constraint Based Local Search

Constraint Based Local Search

Principe

- Étant donné un problème sous la forme
 - $\mathcal{V} = \{v_1, \dots, v_n\}$: variables
 - $\mathcal{D} = \{D_1, \dots, D_n\}$: domaines
 - $\mathcal{C} = \{C_1, \dots, C_p\}$: contraintes
- Fonction objectif à minimiser : nombre de contraintes non satisfaites

Intuition

- Recherche guidée par la structure du problème
 - les contraintes donnent de la structure au problème et les variables les lient ensemble
- Tout type de contraintes peut être utilisé

 Marie Pelleau
 Recherche Locale
 2020-2021
 23 / 25

Votes			
Votes			

Constraint Based Local Search

Constraint Based Local Search

N-reines

- Sur un échiquier de $n \times n$
- Placer *n* reines de telle sorte qu'aucune reine ne puisse en capturer une autre

Formulation

- l_i : colonne de la reine sur le ligne i
- $I_i \neq I_j$
- $l_i + i \neq l_j + j$ (diagonale montante)
- $l_i i \neq l_i j$ (diagonale descendante)

Fonction objectif

• Nombre de contraintes non satisfaites

Marie Pelleau

Recherche Locale

2020-2021

24 / 25

Constraint Based Local Search

Constraint Based Local Search

Formulation

Fonction objectif: 4

Marie Pelleau Recherche Locale 2020-2021 25 / 25

Notes			
Votes			

Constraint Based Local Search

Formulation

Fonction objectif: 3

Marie Pelleau

Recherche Locale

2020-2021 25 / 25

Constraint Based Local Search

Constraint Based Local Search

Formulation

Fonction objectif: 1

Marie Pelleau Recherche Locale 2020-2021 25 / 25

Notes			
Votes			

Constraint Based Local Search

Constraint Based Local Search

Formulation

Fonction objectif: 0

 Marie Pelleau
 Recherche Locale
 2020-2021
 25 / 25

Notes	Notes	
Notes		
	Notes	