Einführung in Visual Computing

Global Illumination

Werner Purgathofer

Surface-Rendering Methods

- polygon rendering methods
- ray tracing
- global illumination
- environment mapping
- texture mapping
- bump mapping

Global Illumination in the Rendering Pipeline object capture/creation scene objects in object space modeling vertex stage viewing ("vertex shader") projection transformed vertices in clip space clipping + homogenization scene in normalized device coordinates viewport transformation rasterization pixel stage shading ("fragment shader")

raster image in pixel coordinates

Radiosity Method

describes the physical process of light distribution in a diffuse reflecting environment

areas that are not illuminated directly are also not completely dark

every object acts as a secondary light source

Radiosity

Radiosity B is the "radiant flux per unit area" that is leaving a surface

incoming light from the environment

$$\int I(x) dx = \int dB$$
hemi
hemi

E

self emission (only for light sources)

reflected light from environment

$$\rho \cdot \int dB$$

radiosity of the point

$$B = E + \rho \cdot \int_{\text{hemi}} dB$$

to calculate the light influence between surfaces

Radiosity = total light leaving a surface point

$$B = E + \rho \cdot \int_{\text{hemi}} dB$$

 $egin{array}{lll} B & ... & radiosity & hemi & ... & half space over possible E & ... & self emission & <math>
ho & ... & reflection coefficient & ... &$ hemi ... half space over point

"radiosity = self emission + reflection property · sum of all incoming light"

Radiosity Properties

- diffuse interreflections in a scene
- radiant energy transfers
- conservation of energy, closed environments
- subdivision of scene into patches with constant radiosity B_i

$$B = E + \rho \cdot \int_{\text{hemi}} dB$$

Radiosity: Subdivision into Patches

the scene is discretized into n "patches" (plane polygons) P_i , for each of these patches a constant radiosity B_i is assumed:

$$B = E + \rho \cdot \int_{\text{hemi}} dB \qquad \Longrightarrow \qquad B_{i} = E_{i} + \rho_{i} \cdot \sum_{j=1}^{n} B_{j} \cdot F_{ij}$$

 ho_i diffuse reflection coefficient of patch i "form factor": describes what % of the influence on patch i comes from patch j; = geometric size!

Radiosity Model

$$B_{i} = E_{i} + \rho_{i} \cdot \sum_{j=1}^{n} B_{j} \cdot F_{ij}$$

B_i ... radiosity of patch i

E_i ... self-emission of patch i

 $\Sigma B_i F_{ii}$... contribution of other patches

 F_{ij} ... form factor, defines

- \blacksquare contribution of B_i on patch j which is equal to
- contribution of patch j to B_i

ρ_i ... reflectivity coefficient of patch i ("albedo")

Solving the Radiosity Equation

$$\mathbf{B}_{i} = \mathbf{E}_{i} + \mathbf{\rho}_{i} \sum_{j \neq i} \mathbf{B}_{j} \mathbf{F}_{ij}$$

$$B_i - \rho_i \sum_{j \neq i} B_j F_{ij} = E_i$$

$$\begin{bmatrix} 1 & -\rho_{1}F_{12} & \dots & -\rho_{1}F_{1n} \\ -\rho_{2}F_{21} & 1 & \dots & -\rho_{2}F_{2n} \\ \vdots & \vdots & & \vdots \\ -\rho_{n}F_{n1} & -\rho_{n}F_{n2} & \dots & 1 \end{bmatrix} \cdot \begin{bmatrix} B_{1} \\ B_{2} \\ \vdots \\ B_{n} \end{bmatrix} = \begin{bmatrix} E_{1} \\ E_{2} \\ \vdots \\ E_{n} \end{bmatrix}$$

Reminder: Projection of a Polygon

Radiosity: Form Factors F_{ij}

form factor F_{ij} : contribution of patch P_j to B_i = contribution of B_i to patch P_j

energy reaching patch j from patch i total energy leaving patch i

form factor F_{ij} : contribution of patch P_j to B_i = contribution of B_i to patch P_i

$$F_{ij} = \frac{\cos\phi_i \cos\phi_j A_j}{\pi r^2}$$

and because
$$\sum_{j=1}^{n} F_{ij} = 1$$

form factor F_{ij} : contribution of patch P_j to B_i = contribution of B_i to patch P_j

$$F_{ij} = \frac{\cos\phi_i \cos\phi_j A_j}{\pi r^2}$$

more precisely: form factor is sum over contributions from $P_{\mathbf{i}}$ averaged over area $A_{\mathbf{i}}$

$$F_{ij} = \frac{1}{A_i} \int_{A_i} \int_{A_j} \frac{\cos \phi_i \cos \phi_j}{\pi r^2} dA_j dA_i$$

form factor properties

conservation of energy

$$\sum_{i=1}^{n} F_{ij} = 1$$

uniform light reflection

$$A_{i}F_{ij} = A_{j}F_{ji}$$

no self-incidence

$$F_{ii} = 0$$

form factor calculation

- most expensive step in radiosity calculation
- numerical integration (Monte Carlo methods)
- hemicube approach (replaces hemisphere)

solving the radiosity equation

- Gaussian elimination
- Gauss-Seidel iteration

$$\begin{bmatrix} 1 & -\rho_{1}F_{12} & \dots & -\rho_{1}F_{1n} \\ -\rho_{2}F_{21} & 1 & \dots & -\rho_{2}F_{2n} \\ \vdots & \vdots & & \vdots \\ -\rho_{n}F_{n1} & -\rho_{n}F_{n2} & \dots & 1 \end{bmatrix} \cdot \begin{bmatrix} B_{1} \\ B_{2} \\ \vdots \\ B_{n} \end{bmatrix} = \begin{bmatrix} E_{1} \\ E_{2} \\ \vdots \\ E_{n} \end{bmatrix}$$

very time and storage intensive

solving the radiosity equation

Gauss-Seidel iteration

$$B_i^{k+1} = E_i + \rho_i \sum_{j \neq i} B_j^k F_{ij}$$

$$\begin{pmatrix}
\mathbf{B} \\
\mathbf{B} \\
\mathbf{B} \\
\mathbf{B}
\end{pmatrix} = \begin{pmatrix}
\mathbf{E} \\
\mathbf{E} \\
\mathbf{E} \\
\mathbf{E}
\end{pmatrix} + \begin{pmatrix}
\mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\
\mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\
\mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\
\mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\
\mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x}
\end{pmatrix} \cdot \begin{pmatrix}
\mathbf{B} \\
\mathbf{B} \\
\mathbf{B} \\
\mathbf{B} \\
\mathbf{B} \\
\mathbf{B}
\end{pmatrix}$$

"gathering"

"gathering" vs. "shooting"

$$\begin{pmatrix}
\mathbf{B} \\
\mathbf{E}
\end{pmatrix} = \begin{pmatrix}
\mathbf{E} \\
\mathbf{Y}
\end{pmatrix} + \begin{pmatrix}
\mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X} & \mathbf{X}
\end{pmatrix} \cdot \begin{pmatrix}
\mathbf{B} \\
\mathbf{B} \\
\mathbf{B} \\
\mathbf{B} \\
\mathbf{B}
\end{pmatrix}$$

$$B_i^{k+1} = E_i + \rho_i \sum_{j \neq i} B_j^k F_{ij}$$

$$\begin{pmatrix}
\mathbf{B} \\
\mathbf{B} \\
\mathbf{B} \\
\mathbf{B} \\
\mathbf{B}
\end{pmatrix} = \begin{pmatrix}
\mathbf{E} \\
\mathbf{E} \\
\mathbf{E} \\
\mathbf{E} \\
\mathbf{E}
\end{pmatrix} + \begin{pmatrix}
\mathbf{x} \\
\mathbf{x} \\
\mathbf{x} \\
\mathbf{x}
\end{pmatrix} \cdot \begin{pmatrix}
\mathbf{B} \\
\mathbf{B} \\
\mathbf{B} \\
\mathbf{B}
\end{pmatrix} = \begin{pmatrix}
\mathbf{E} \\
\mathbf{E} \\
\mathbf{E} \\
\mathbf{E}
\end{pmatrix} + \begin{pmatrix}
\mathbf{x} \\
\mathbf{x} \\
\mathbf{x}
\end{pmatrix} \cdot \begin{pmatrix}
\mathbf{B} \\
\mathbf{B} \\
\mathbf{B} \\
\mathbf{E}
\end{pmatrix} = \begin{pmatrix}
\mathbf{E} \\
\mathbf{E} \\
\mathbf{E}
\end{pmatrix} + \begin{pmatrix}
\mathbf{E} \\
\mathbf{E$$

Progressive Refinement Radiosity (1)

"shooting" \rightarrow select brightest patch P_i and distribute its radiosity B_i

$$B_{i} = E_{i} + \rho_{i} \sum_{j \neq i} B_{j} F_{ij} \implies B_{i \text{ due to } B_{i}} = \rho_{i} B_{j} F_{ij} \implies B_{j \text{ due to } B_{i}} = \rho_{j} B_{i} F_{ji} \implies$$

$$\Rightarrow \begin{array}{c} \text{because of} \\ A_i F_{ij} = A_j F_{ji} \end{array} \Rightarrow \begin{array}{c} B_{j \text{ due to } B_i} = \rho_j B_i F_{ij} \frac{A_i}{A_j} \end{array}$$

Progressive Refinement Radiosity (2)

[one refinement step]

```
select patch i with highest A_1 * \Delta B_1
for selected patch i {
    set up hemicube
    calculate form factors Fig
for each patch j {
     \Delta rad := \rho_{i} * \Delta B_{i} * F_{ii} * A_{i} / A_{i}
     \Delta B_{i} := \Delta B_{i} + \Delta rad
     B_i := B_i + \Delta rad
```

$$\begin{pmatrix}
\mathbf{B} \\
\mathbf{B} \\
\mathbf{B}
\end{pmatrix} = \begin{pmatrix}
\mathbf{E} \\
\mathbf{E} \\
\mathbf{E}
\end{pmatrix} + \begin{pmatrix}
\mathbf{x} \\
\mathbf{x} \\
\mathbf{x}
\end{pmatrix} \cdot \begin{pmatrix}
\mathbf{B} \\
\mathbf{B} \\
\mathbf{E}
\end{pmatrix} \times \begin{pmatrix}
\mathbf{E} \\
\mathbf{E} \\
\mathbf{E}
\end{pmatrix} \times \begin{pmatrix}
\mathbf{x} \\
\mathbf{x} \\
\mathbf{x}
\end{pmatrix} \cdot \begin{pmatrix}
\mathbf{B} \\
\mathbf{B} \\
\mathbf{E}
\end{pmatrix} \times \begin{pmatrix}
\mathbf{E} \\
\mathbf{E} \\
\mathbf{$$

$$B_{j \text{ due to } B_i} = \rho_j B_i F_{ij} \frac{A_i}{A_j}$$

Progressive Refinement Radiosity (3)

- initialize $\Delta B_i = B_i = E_i$
- select patch with highest $\Delta B_i A_i$

cathedral rendered with progressive refinement radiosity

form factors computed with ray-tracing methods

Radiosity Example Images (1)

image of a constructivist museum rendered with progressive refinement radiosity

Werner Purgathofer 28

Radiosity Aspects

radiosity is viewpoint-independent needs a rendering step to display

- polygon rendering
- Gouraud shading
- ray-tracing
- ...

combination with ray-tracing enables

- reflections
- shadows
- •••

Werner Purgathofer

hierarchical radiosity \rightarrow reduces number of form factors

mesh density varies with importance

discontinuity meshing \rightarrow improves shadow boundaries

sharp shadow boundaries ...

... get blurred by arbitrary meshing, ...

... stay correct with discontinuity meshing

Werner Purgathofer

Discontinuity Meshing Example

discontinuity meshing allows for sharp shadows also

Radiosity Example Image

stair tower of a building at Cornell University rendered with progressive refinement radiosity

path tracing

35

quasi-random numbers

path tracing

- also called Monte Carlo ray tracing
- randomly selects ray directions

distribution functions ("importance sampling")

uses Monte Carlo integration to solve

$$B = E + \rho \cdot \int_{\text{hemi}} dB$$

hemi ... half space over point

B ... radiosity
E ... self emission p ... reflection coefficient

photon mapping

→ trace light rays from light source(s) and store illumination on objects

25 samples/pixel

125 samples/pixel

625 samples/pixel

Photon Mapping Example

caustics from the inner surface of a ring created with photon mapping

path tracing + photon mapping combined enable

- all surface properties
- area light sources / penumbras
- indirect lighting
- caustics
- antialiasing
- depth of field
- motion blur
- ...

