CMSC 510 – L03 Regularization Methods for Machine Learning

Instructor:

Dr. Tom Arodz

Recap: Linear Models

 A very simple but often powerful family of machine learning models (classifiers or regressors)

• "predicted y" =
$$<$$
w,x>+b
= w^Tx +b
= $w_1x_1 + w_2x_2$ +b

- How to find w, b that leads to lowest MSE?
 - We need to talk about optimization methods
 - Plug in known values of features (x) and targets (y)
 - Treat MSE as a function MSE(w,b) that is, not a function of x anymore!
 - Find w,b that leads to minimum of the function MSE(w,b)

Recap: iterative learning

Apple vs Orange

- Let:
 - x denote object's color (wavelength in nm)
 - y denote object's class (-1 = orange, 1 = apple)
- Prediction will be made by evaluating a function:
 - f(x)=sign(x-b) it returns either -1 or 1 (or 0: tough to predict)
- Example of an algorithm:
 - Set initial values of b (0, or random, or a guess)
 - Loop:
 - Present a sample x_i and predict $f(x_i)=sign(x_i-b)$
 - Compare true class y_i with predicted class $f(x_i)$
 - If prediction is right, go to next sample (i=i+1)
 - If prediction is wrong, update b
 - In a way that would make it more likely to get correct prediction for the current sample
 - if y_i = 1, f(x_i)=-1, what should we do? Decrease b to increase f
 - if y_i = -1, f(x_i)=1, what should we do? Increase b to decrease f

Recap: General Scheme

Any method based on an oracle operates by performing a series of queries to oracle O, acting based on information I obtained from the queries

Any oracle-based optimization method M is an iterative scheme:

- 0. Create initial solution x_0 , set k=0, $I_{-1}=empty$
- 1. Call oracle 0 at x_k
- 2. Update accumulated information $I_k=I_{k-1}+(x_k,O(x_k))$
- 3. Apply internal rules of method M to \mathbf{I}_k , to generate \mathbf{x}_{k+1}
- 4. Calculate error ε, check stopping criterion based on ε If criterion met, exit with the solution, if no, k=k+1, go back to step 1.

Two measures of computational complexity of M on problem P:

Analytical complexity $A(M,\epsilon)$: number of calls to oracle O required to get error at most ϵ

Arithmetic complexity: number of all operations (typically proportional to analytical complexity)

Recap: simple grid search

Simple method M_{grid}:

Generate (p+1)ⁿ points on a n-dimensional grid in [0,1]

$$x(i_1,i_2,...,i_n)=(i_1/p, i_2/p, ..., i_n/p), i_k \in \{0,1,...,p\}$$

Call oracle (p+1)ⁿ times, get values of f(x) for each grid point x Return the grid point x' with lowest f

- p=5,
- If n=2, we need 6²=36 points in the grid
- If n=3, we need 6³=216 points in the grid
- each cell has side length of 1/5

Problem: Find minimum f(x) s.t. $x \in B_n$, assuming f is Lipschitz contin.

```
| f(x) - f(y) | \le L || x-y ||_{\infty} for all x,y \in B_n, where: || x ||_{\infty} = \max_{1 \le i \le n} |x^{(i)}|
```

What is the highest error we can get with method M_{qrid} ?

Let $f^*=f(x^*)$ be the value of f in the real global minimum x^* $e(x')=|f^*-f(x')|$

We can prove that e(x') <= L/2p (next slide)

For given ϵ , if we want certainty we get x' with error below ϵ , $e(x') <= \epsilon$, we need p that gives $\epsilon = L/2p$, i.e., $p >= floor(L/2\epsilon)+1$

A(M, ϵ): number of calls to O required to get error at most ϵ A(M_{grid}, ϵ) = (p+1)ⁿ >= (floor(L/2 ϵ) + 2)ⁿ = O((L/ ϵ)ⁿ)

Simple method M_{grid}:

Generate $(p+1)^n$ point on a n-dimensional grid in [0,1], return lowest grid point x'

What is the worst error we can get with this method?

Let $f^*=f(x^*)$ where x^* is global minimum: $e(x')=|f^*-f(x')|$

We can prove that e(x') <= L/2p

x* must be in one of the grid cells, cell side length=1/p

there is at least one corner x[^] of that cell with

$$|| x^* - x^* ||_{\infty} <= \frac{1}{2} \times \frac{1}{p}$$

Thus, from Lipschitz, we get

$$| f(x^*) - f(x^*) | \le L || x^* - x^* ||_{\infty} \le L^* \frac{1}{2} \frac{1}{p} = L/2p$$

We analyzed all grid points, including x^{-} , and found x' as minimum, so $f(x^{*}) <= f(x') <= f(x^{-})$

Thus:
$$e(x') = f(x^*) - f(x') <= f(x^*) - f(x^*) <= L/2p$$

Problem: Find minimum f(x) s.t. $x \in B_n$, assuming f is Lipschitz cont.

$$| f(x) - f(y) | \le L || x-y ||_{\infty}$$
 for all $x,y \in B_n$, where: $|| x ||_{\infty} = \max_{1 \le i \le n} |x^{(i)}|$

Simple method M_{grid}: Test (p+1)ⁿ points on a n-dimensional grid

$$A(M_{grid}, \varepsilon) = (floor(L/2\varepsilon) + 2)^n >= (L/\varepsilon)^n$$

 $A(M_{qrid}, \epsilon)$: number of calls to oracle O required to get error at most ϵ

Let L=1, n = 10, what is $(L/\epsilon)^n$ for different ϵ ?

Let L=1, ε = 0.1, what is $(L/\varepsilon)^n$ for different n?

Problem: Find minimum f(x) s.t. $x \in B_n$, assuming f is Lipschitz cont.

$$| f(x) - f(y) | \le L || x-y ||_{\infty}$$
 for all $x,y \in B_n$, where: $|| x ||_{\infty} = \max_{1 \le i \le n} |x^{(i)}|$

M_{grid} is a very simple method, maybe we can to better?

Better than this: $A(M_{qrid}, \epsilon) = (floor(L/2\epsilon) + 2)^n >= O((L/\epsilon)^n)$

M_{grid} shows an upper bound on the analytical complexity of solving arbitrary Lipschitz-continuous minimization problems

What is the lower bound?

That is, the lowest complexity $A(M_{best}, \varepsilon)$ we can get for any method working with a black-box oracle?

Problem: Find minimum f(x) s.t. $x \in B_n$, assuming f is Lipschitz cont. with constant L

$$| f(x) - f(y) | \le L || x-y ||_{\infty} \text{ for all } x,y \in B_n, \text{ where: } || x ||_{\infty} = \max_{1 < i < n} |x^{(i)}|$$

We will prove that for any ϵ small enough (ϵ < L/2)

the analytical complexity is $A(M_{any}, \varepsilon) >= (floor(L/2\varepsilon))^n$ for all methods that use oracle that returns f(x) for query x

This is practically the same as $A(M_{grid}, \epsilon) = (floor(L/2\epsilon) + 2)^n$ we had for the simple grid method

Proof: involves a *resisting* oracle, an oracle that chooses the worst problem on the fly, based on the queries from method M

Problem: Find minimum f(x) s.t. $x \in B_n$, assuming f is Lipschitz cont. with constant L

$$| f(x) - f(y) | \le L || x-y ||_{\infty}$$
 for all $x,y \in B_n$, where: $|| x ||_{\infty} = \max_{1 \le i \le n} |x^{(i)}|$

A *resisting* oracle:

Initially, we don't know anything about the behavior of function f

So, before the first query, the oracle can choose any function f for us

After the first answer $f_1=f(x_1)$, the possibilities narrow, only functions with $f(x_1)=f_1$ are possible, but there's still many of them

Let's say we ask for $f(x_2)$ for x_2 that is close to x_1 e.g. $||x_1-x_2||_{\infty}=d_{12}$

Oracle cannot return an arbitrary number, it has to be consistent with:

$$| f(x_1) - f(x_2) | \le d_{12} L$$
 $f(x_1) = f_1$

But the oracle can choose any function that meets the constraints above

As long as the answers:

are consistent with previous answers, and don't result in an empty set of functions for future answers

the oracle can pick any function f to make search for min. slow

Problem: Find minimum f(x) s.t. $x \in B_n$, assuming f is Lipschitz continuous with constant L $| f(x) - f(y) | <= L || x-y ||_{\infty}$ for all $x,y \in B_n$, where: $|| x ||_{\infty} = \max_{1 < i < n} |x^{(i)}|$

We will prove that for any ε small enough (ε < L/2) the analytical complexity is $A(M_{any}, \varepsilon) >= (floor(L/2\varepsilon))^n$

Let $p=floor(L/2\epsilon)>=1$.

Assume there exists M_{best} that needs $N < p^n$ calls to oracle to get error $< = \epsilon$ no matter what (L-Lipschitz continuous) f we have

Recipe for the resisting Oracle:

return f(x)=0 for any point for the first p^n queries In N< p^n steps, the method can find only x^n with $f(x^n)=0$

Problem: Find minimum f(x) s.t. $x \in B_n$, assuming f is Lipschitz continuous with constant L

 $| f(x) - f(y) | \le L || x-y ||_{\infty}$ for all $x,y \in B_n$, where: $|| x ||_{\infty} = \max_{1 \le i \le n} |x^{(i)}|$

Prove: For any $\varepsilon < L/2$, $A(M_{any}, \varepsilon) >= (floor(L/2\varepsilon))^n$

Let $p=floor(L/2\epsilon)>=1$ Assume M_{best} needs $N < p^n$ oracle calls to get error $<=\epsilon$

Resisting Oracle: return $f(x^{\sim})=0$ for any point x^{\sim} in the first p^{n} queries

Inside B_n , there is n-dimensional box with side 1/p and center x* that doesn't contain any of the N<pn query points the closest query x^* is outside , so > 1/2p away: $||x^*-x^*||_{\infty} = 1/2p + \delta$, $\delta > 0$

We can show that $f(x^*) = -(\varepsilon + \delta L)$ is not inconsistent with

previous oracle answers, the error of method M_{best} is $\varepsilon + \delta L > \varepsilon$

Assume there exists M_{best} that needs $N < p^n$ calls to oracle to get error $e(x') < = \epsilon$ no matter what (L-Lipschitz continuous) f we have

 $f(x^{\sim})=0$ for all queried N points

But
$$f(x^*) = -(\varepsilon + L\delta)$$

Thus, $e(x') = \varepsilon + L\delta$ and error is not $\le \varepsilon$

Our assumption that there exists M_{best} that needs N<pⁿ calls to oracle is false

The box is wide enough for $f(x^*)$ to be more negative than $-\varepsilon$ even though all queries outside of the box have f(x)=0

Assume there exists M_{best} that needs $N < p^n$ calls to oracle to get error $e(x') < = \epsilon$ no matter what (L-Lipschitz continuous) f we have

 $f(x^{\sim})=0$ for all queried N points

But, inside B_n , there is n-dimensional box with side 1/p and center x^* that doesn't contain any of the N queries

the closest query x^{\(\)} is > 1/2p away: $|| x^*-x^{\(\)}||_{\infty} = 1/2p+\delta, \delta > 0$

Let
$$f(x^*) = -(\varepsilon + L\delta)$$
. Is this choice ok?

We need to show:
$$| f(x^*) - f(x^*) | \le L || x^* - x^* ||_{\infty}$$

$$| f(x^*) - f(x^*) | = | f(x^*) - 0 | = | f(x^*) | = \varepsilon + L\delta$$

$$L || x^*-x^{-} ||_{\infty} = L(1/2p+\delta) = L/2p+L\delta$$

$$\varepsilon + L\delta <= L/2p + L\delta$$

$$\varepsilon <= L/2p$$
 is it true?

Yes, we defined p=floor(L/2 ϵ), that is p<=L/2 ϵ and ϵ <=L/2 ρ

Problem: find minimum f(x) s.t. $x \in B_n$, assuming f is Lipschitz cont. with constant L

For any ϵ small enough (ϵ < L/2) the analytical complexity is $A(M_{any},\epsilon) >= (floor(L/2\epsilon))^n$

for all methods that use oracle that returns f(x) for query x

Very slow: minimization of general functions is hard

(even if we have some bounds on their local fluctuations, i.e., we know they are Lipschitz continuous with constant L)

Optimization => machine learning

Minimization of general functions is hard

If we build arbitrary machine learning model, and want to train it to find the best set of parameters, it may take forever

Solutions:

- Focus on special classes of functions (e.g. linear models: y=ax+b)
 or
- Aim for "good enough" not best (e.g. deep neural networks)

REVIEW: Optimization

Categorization of Oracles:

Zero-order: for x, return f(x)

First-order:

for x, return f(x) and **derivative/gradient** f'(x)

Second-order:

for x, return f(x), first derivative/gradient f'(x), and second derivative/Hessian f''(x)

We will use basic concepts from calculus

First derivative or gradient: denoted ∇f or f' gradient of a n-dimensional function f:Rⁿ→R is a generalization of derivative of a single-dimensional function f:R→R

gradient of a n-dimensional function $f:R^n \rightarrow R$ is:

an n-dimensional **vector** of partial derivatives, pointing (for a given x) in direction of steepest slope of f at that x

Pointing always in the direction in which the function grows (locally) positive value in a vector = f grows (vector points) towards $+\infty$; negative value = f grows towards $-\infty$, vector points towards $-\infty$

Defines a line or plane or hyperplane tangent to f

$$\nabla f(\mathbf{z}) = \left(\frac{\partial}{\partial x_1} f(\mathbf{x})|_{\mathbf{x} = \mathbf{z}}, \dots, \frac{\partial}{\partial x_n} f(\mathbf{x})|_{\mathbf{x} = \mathbf{z}}\right)$$

$$\nabla f(\mathbf{z}) = \left(\frac{\partial}{\partial x_1} f(\mathbf{x})|_{\mathbf{x} = \mathbf{z}}, \dots, \frac{\partial}{\partial x_n} f(\mathbf{x})|_{\mathbf{x} = \mathbf{z}}\right)$$

Gradient $\nabla f(x)$ gives a linear approximation of function f at x:

$$f(y)=f(x) + \langle \nabla f(x), y-x \rangle + o(||y-x||)$$

o(r) for r>0: $\lim_{r\to 0} o(r)/r=0$

Just like derivative df/dx gives a linear approximation of a 1D function in the neighborhood of x

$$f(y)=f(x) + df/dx (y-x) + o(||y-x||)$$

<x,y> represents inner product (dot product) of two vectors x,y

$$\left\langle \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \right\rangle := x^{\mathrm{T}}y = \sum_{i=1}^n x_i y_i = x_1 y_1 + \dots + x_n y_n$$

Dot product: coordinate-wise multiplication

$$=+$$

 $=ab$ for real a,b; in particular $=0$
 $=||x||^2$ $=$
vectors with $=0$ are called orthogonal

Gradient descent

Gradient descent:

We start from x_0 We calculate $x_1=x_0 - \nabla f(x_0)/L$ We calculate $x_2=x_1 - \nabla f(x_1)/L$ $\mathbf{x_{n+1}} = \mathbf{x_n} - \nabla f(\mathbf{x_n})/L$

If we choose L large enough g.d. goes down in each step, converging towards global minimum (e.g. for convex f) or local minimum

Co

Convex optimization

We can do infinite number of steps, each smaller & smaller each closer to the global optimum

when to stop?

Simple criterion – when gradient becomes close to zero – slope is almost flat

Convex optimization

step size and direction influences what the new step will be

Convex optimization

Gradient descent: can be slow

Zig-zags

Tiny steps

Convex optimization

A step size that is too large can overshoot the minimum:

4

Convex optimization

 $x_{n+1} = x_n - \nabla f(x_n)/L$

n: number of iterations required to obtain error $|f(x_n)-f^*| \le \varepsilon$

Convergence rates:

 $C_L^{0,0}$ – arbitrary function f:R^d \rightarrow R, Lipschitz continuous

Grid search:

$$n \sim (1/\epsilon)^d$$
 or $\epsilon \sim 1/n^{1/d}$

 $F_L^{1,1}$ – convex f:R^d \rightarrow R, with Lipschitz continuous gradient

Gradient descent:

$$n \sim 1/\epsilon$$
 or $\epsilon \sim 1/n$

Optimal gradient methods: (e.g. Nesterov's accelerated gradient):

$$n \sim 1/\sqrt{\epsilon}$$
 or $\epsilon \sim 1/n^2$

 $S_{\mu,L}^{1,1}$ – strongly convex f:R^d \rightarrow R, with Lipschitz continuous gradient

Gradient descent (accelerated gradient = better constant):

$$n \sim \ln 1/\epsilon$$
 or $\epsilon \sim 1/\rho^n$

Gradient of a linear model / MSE

Apply chain rule of differentiation to:

$$\frac{\partial}{\partial a} ((y - (ax + b))^2) = -2x(-ax - b + y)$$

∂(y-(ax+b))²/ ∂b

$$\frac{\partial}{\partial b} ((y - (ax + b))^2) = -2(-ax - b + y)$$

- Might be helpful to define:
 - h(x,a,b)=ax+b
 - E(y,x,a,b)=y-h(x,a,b)