Game Comonads & Generalised Quantifiers

CSL 2021

Adam Ó Conghaile & Anuj Dawar, University of Cambridge

• Logic, Complexity & Games: a (very) brief history

- Logic, Complexity & Games: a (very) brief history
- Game Comonads: logical "resources" compositionally

- Logic, Complexity & Games: a (very) brief history
- Game Comonads: logical "resources" compositionally
- Generalised Quantifiers: a very powerful "resource"

- Logic, Complexity & Games: a (very) brief history
- Game Comonads: logical "resources" compositionally
- Generalised Quantifiers: a very powerful "resource"
- $\mathbb{G}_{n,k}$: a game comonads for generalised quantifiers

Logic, Complexity and Games

Descriptive Complexity

A quick tour

Descriptive Complexity A quick tour

 (Fagin's Theorem, 1973)
 A class of finite structures is decidable in NP if and only if it is expressible in ∃SO

Descriptive Complexity A quick tour

- (Fagin's Theorem, 1973)
 A class of finite structures is decidable in NP if and only if it is expressible in ∃SO
- (Gurevich's Conjecture, 1988)
 There is no equivalent logic for P

Descriptive Complexity A quick tour

- (Fagin's Theorem, 1973)
 A class of finite structures is decidable in NP if and only if it is expressible in ∃SO
- (Gurevich's Conjecture, 1988)
 There is no equivalent logic for P
- Candidate logics for P include rank logic, and choiceless polynomial time.

Games: a key tool for logic

Spoiler-Duplicator Games on relational structures \mathscr{A},\mathscr{B} over signature σ

Games: a key tool for logic

Spoiler-Duplicator Games on relational structures \mathscr{A},\mathscr{B} over signature σ

The exact ${\mathscr L}$ depends on the rules of the game

Example of Spoiler-Duplicator Games

Ehrenfeucht-Fraïssé Game between 🛈 and 🔾

 $(\sigma = \{E\})$

Round 1

Round 2

Duplicator responds b_1

Ehrenfeucht-Fraissé Game between 🗋 and 🔾

Round 5

Duplicator winning implies that \mathscr{A} and \mathscr{B} are related in \mathscr{L}

Harder game for Duplicator means more expressive £

Reference	Game	Corresponding Logical Relation
Fraïssé 1950's	$\exists EF_k(\mathscr{A},\mathscr{B})$	$\mathscr{A} \Rrightarrow_{\exists^{+}\mathscr{L}_{k}} \mathscr{B}$

Reference	Game	Corresponding Logical Relation
Fraïssé 1950's	$(\exists)EF_k(\mathscr{A},\mathscr{B})$	$\mathscr{A} \Rightarrow_{\exists^{+}\mathscr{L}_{k}} \mathscr{B}/\mathscr{A} \equiv_{\mathscr{L}_{k}} \mathscr{B}$

Reference	Game	Corresponding Logical Relation
Fraïssé 1950's	$(\exists)EF_k(\mathscr{A},\mathscr{B})$	$\mathscr{A} \Rrightarrow_{\exists^{+}\mathscr{L}_{k}} \mathscr{B}/\mathscr{A} \equiv_{\mathscr{L}_{k}} \mathscr{B}$
Kolaitis & Vardi 1992	$\exists Peb_k(\mathscr{A},\mathscr{B})$	$\mathscr{A} \Rrightarrow_{\exists^{+}\mathscr{L}^{k}} \mathscr{B}$

Reference	Game	Corresponding Logical Relation
Fraïssé 1950's	$(\exists)EF_k(\mathscr{A},\mathscr{B})$	$\mathscr{A} \Rrightarrow_{\exists^{+}\mathscr{L}_{k}} \mathscr{B}/\mathscr{A} \equiv_{\mathscr{L}_{k}} \mathscr{B}$
Kolaitis & Vardi 1992	$\exists Peb_k(\mathscr{A},\mathscr{B})$	$\mathscr{A} \Rrightarrow_{\exists^{+}\mathscr{L}^{k}} \mathscr{B}$
Hella 1996	$Bij_k(\mathscr{A},\mathscr{B})$	$\mathscr{A}\equiv_{\mathscr{C}^k}\mathscr{B}$

Reference	Game	Corresponding Logical Relation
Fraïssé 1950's	$(\exists)EF_k(\mathscr{A},\mathscr{B})$	$\mathscr{A} \Rrightarrow_{\exists^{+}\mathscr{L}_{k}} \mathscr{B}/\mathscr{A} \equiv_{\mathscr{L}_{k}} \mathscr{B}$
Kolaitis & Vardi 1992	$\exists Peb_k(\mathscr{A},\mathscr{B})$	$\mathscr{A} \Rrightarrow_{\exists^{+}\mathscr{L}^{k}} \mathscr{B}$
Hella 1996	$Bij_k(\mathscr{A},\mathscr{B})$	$\mathscr{A} \equiv_{\mathscr{C}^k} \mathscr{B}$
Hella 1996	$Bij^k_n(\mathscr{A},\mathscr{B})$	$\mathscr{A}\equiv_{\mathscr{L}^k(\mathcal{Q}_n)}\mathscr{B}$

The Rise of Game Comonads

Can we connect these two categorically?

$$(\mathcal{R}(\sigma), \to, \cong)$$
 $(\mathcal{R}(\sigma), \Rightarrow_{\mathcal{Z}}, \equiv_{\mathcal{Z}})$

Abramsky, Dawar & Wang's Pebbling Comonad

 $\mathbb{P}_k \mathscr{A} = \langle (A \times [k])^+, \text{ relations from } \mathscr{A} \text{ according to tree structure} \rangle$

Counit $\epsilon: \mathbb{P}_k \mathcal{A} \to \mathcal{A}$

$$\epsilon([(a_1, p_1), ..., (a_m, p_m)]) = a_m$$

Comultiplication $\delta: \mathbb{P}_k \mathcal{A} \to \mathbb{P}_k \mathbb{P}_k \mathcal{A}$

$$\delta([(a_1, p_1), ..., (a_m, p_m)]) = [(s_1, p_1), ...(s_m, p_m)]$$

where
$$s_i = [(a_1, p_1)..., (a_i, p_i)]$$

Abramsky, Dawar & Wang's Pebbling Comonad

 $\mathbb{P}_k \mathscr{A} = \langle (A \times [k])^+, \text{ relations from } \mathscr{A} \text{ according to tree structure} \rangle$

Kleisli Category $\mathcal{K}(\mathbb{P}_k)$

 $\mathbb{P}_k \mathscr{A} \to \mathscr{B} \iff \text{Duplicator has a winning strategy for } \exists \text{Peb}_k(\mathscr{A},\mathscr{B})$

 $\mathscr{A} \cong_{\mathscr{K}(\mathbb{P}_k)} \mathscr{B} \iff \mathsf{Duplicator} \; \mathsf{has} \; \mathsf{a} \; \mathsf{winning} \; \mathsf{strategy} \; \mathsf{for} \; \mathsf{Bij}_k(\mathscr{A},\mathscr{B})$

Abramsky, Dawar & Wang's Pebbling Comonad

 $\mathbb{P}_k \mathscr{A} = \langle (A \times [k])^+, \text{ relations from } \mathscr{A} \text{ according to tree structure} \rangle$

Kleisli Category $\mathcal{K}(\mathbb{P}_k)$

 $\mathbb{P}_k \mathscr{A} \to \mathscr{B} \iff \text{Duplicator has a winning strategy for } \exists \text{Peb}_k(\mathscr{A},\mathscr{B})$

 $\mathscr{A} \cong_{\mathscr{K}(\mathbb{P}_k)} \mathscr{B} \iff \mathsf{Duplicator} \; \mathsf{has} \; \mathsf{a} \; \mathsf{winning} \; \mathsf{strategy} \; \mathsf{for} \; \mathsf{Bij}_k(\mathscr{A},\mathscr{B})$

Coalgebras

 $\alpha: \mathscr{A} \to \mathbb{P}_k \mathscr{A} \iff \mathscr{A}$ has a tree decomposition of width k

Can we connect these two categorically? Yes!

$$(\mathcal{R}(\sigma), \to, \cong)$$
 $(\mathcal{R}(\sigma), \Rightarrow_{\mathcal{Z}}, \equiv_{\mathcal{Z}})$

Can we connect these two categorically? Yes!

$$(\mathcal{R}(\sigma), \to, \cong)$$
 \mathbb{P}_k $(\mathcal{R}(\sigma), \Rrightarrow_{\exists^+\mathcal{L}^k}, \equiv_{\mathscr{C}^k})$

Where \mathbb{P}_k is graded in k which controls the number of variables in the underlying logic

Reference	Comonad	Related games	Logical Resource
ADW 2017	\mathbb{P}_k	Pebble games	Variables

Reference	Comonad	Related games	Logical Resource
ADW 2017	\mathbb{P}_k	Pebble games	Variables
Abramsky & Shah 2018	\mathbb{E}_n	Ehrenfeucht-Fraïssé	Quantifier Depth

Reference	Comonad	Related games	Logical Resource
ADW 2017	\mathbb{P}_k	Pebble games	Variables
Abramsky & Shah 2018	\mathbb{E}_n	Ehrenfeucht-Fraïssé	Quantifier depth
Abramsky & Shah 2018	\mathbb{M}_n	Modal bisimulation	Modal depth

$$ightarrow \mathscr{K} ext{ is } \Longrightarrow_{\exists^{+}\mathscr{L}}$$
 and $\simeq_{\mathscr{K}} ext{ is } \Longrightarrow_{\mathscr{L}(\exists^{\geq m})}$

Quantifiers as a Resource

A relational structure

$$\mathcal{A} = \langle A, (R^{\mathcal{A}})_{R \in \sigma} \rangle \in \mathcal{R}(\sigma)$$

$$\mathscr{A} = \langle A, (R^{\mathscr{A}})_{R \in \sigma} \rangle \in \mathscr{R}(\sigma)$$

A class of structures

$$\mathcal{K} \subset \mathcal{R}(\tau)$$

$$\mathscr{A} = \langle A, (R^{\mathscr{A}})_{R \in \sigma} \rangle \in \mathscr{R}(\sigma)$$

$$\mathcal{K} \subset \mathcal{R}(\tau)$$

An interpretation

$$\Psi(\mathbf{x}, \mathbf{y}) = \langle \psi_T(\mathbf{x}_T, \mathbf{y}_T) \rangle_{T \in \tau}$$

A relational structure

$$\mathcal{A} = \langle A, (R^{\mathcal{A}})_{R \in \sigma} \rangle \in \mathcal{R}(\sigma)$$

A class of structures

$$\mathcal{K} \subset \mathcal{R}(\tau)$$

An interpretation

$$\Psi(\mathbf{x}, \mathbf{y}) = \langle \psi_T(\mathbf{x}_T, \mathbf{y}_T) \rangle_{T \in \tau}$$

A new quantifier

$$\mathcal{A}, \mathbf{b} \models Q_{\mathcal{K}} \mathbf{x} \cdot \Psi(\mathbf{x}, \mathbf{y})$$

Building a new quantifier

$$\mathscr{A} = \langle A, (R^{\mathscr{A}})_{R \in \sigma} \rangle \in \mathscr{R}(\sigma)$$

$$\mathcal{K} \subset \mathcal{R}(\tau)$$

$$\Psi(\mathbf{x}, \mathbf{y}) = \langle \psi_T(\mathbf{x}_T, \mathbf{y}_T) \rangle_{T \in \tau}$$

A new quantifier

$$\mathcal{A}, \mathbf{b} \nvDash Q_{\mathcal{K}} \mathbf{x} \cdot \Psi(\mathbf{x}, \mathbf{y})$$

A game to control these new quantifiers

 $\mathscr{L}^k(\mathbf{Q}_n)$ is k-variable infinitary first-order logic extended by quantifiers of isomorphism-closed classes of structures with no relation of arity > n

Theorem (Hella 1996)

Duplicator has a winning strategy for $\operatorname{Bij}_n^k(\mathscr{A},\mathscr{B})$ if and only if $\mathscr{A} \equiv_{\mathscr{L}^k(\mathbf{Q}_n)} \mathscr{B}$

$\mathbb{G}_{n,k}$: a comonad for quantifiers

Inventing new games and relating them to new logics

Hella's Game

Inventing new games and relating them to new logics

Theorem 15 (Ó C. & Dawar, 2021)

For a game $\mathscr G$ from the left-hand diagram, Duplicator wins $\mathscr G(\mathscr A,\mathscr B)$ if and only if $\mathscr A \Rrightarrow_{\mathscr L^{\mathscr G}} \mathscr B$ where $\mathscr L^{\mathscr G}$ is the corresponding logic from the right-hand diagram

Duplicator's strategy in $\exists Peb_k(\mathcal{A}, \mathcal{B})$

A homomorphism $\mathbb{P}_k \mathcal{A} \to \mathcal{B}$

$$[(p_1, a_1)] \mapsto b_1$$

Duplicator's strategy in $\exists Peb_k(\mathcal{A}, \mathcal{B})$

Responds by moving p_i to b_i

A homomorphism $\mathbb{P}_k \mathcal{A} \to \mathcal{B}$

$$[(p_1, a_1)] \mapsto b_1$$

$$\vdots$$

$$[(p_1, a_1), \dots, (p_j, a_j)] \mapsto b_j$$

Duplicator's strategy in $+\operatorname{Fun}_n^k(\mathcal{A},\mathcal{B})$

A homomorphism $\mathbb{G}_{n,k}\mathcal{A} \to \mathcal{B}$

???

Lemma 20 (Ó C. & Dawar, 2021)

Duplicator has a winning strategy for $+\operatorname{Fun}_n^k(\mathscr{A},\mathscr{B})$ if and only if she has an "n-consistent" winning strategy for $\exists \operatorname{Peb}_k(\mathscr{A},\mathscr{B})$

Duplicator's "n-consistent" strategy for $\exists Peb_k(\mathcal{A}, \mathcal{B})$

A "special" homomorphism $\mathbb{P}_k \mathscr{A} \to \mathscr{B}$

 $\mathbf{Declares}\,f:A\to B$

Duplicator's "*n*-consistent" strategy for $\exists Peb_k(\mathcal{A}, \mathcal{B})$

A "special" homomorphism $\mathbb{P}_k \mathscr{A} \to \mathscr{B}$

$$[(p_1, a_1)] \mapsto$$

Duplicator's "*n*-consistent" strategy for $\exists Peb_k(\mathcal{A}, \mathcal{B})$

A "special" homomorphism $\mathbb{P}_k \mathcal{A} \to \mathcal{B}$

$$[(p_1, a_1)] \mapsto f(a_1)$$

Duplicator's "n-consistent" strategy for $\exists Peb_k(\mathcal{A}, \mathcal{B})$

A "special" homomorphism $\mathbb{P}_k \mathcal{A} \to \mathcal{B}$

Game continues with Duplicator declaring a new f after Spoiler moves n pebbles (or earlier if Spoiler repeats a pebble).

 \exists an equiv. rel. \approx_n s.t. homomorphism $\mathbb{P}_k \mathscr{A}/\approx_n \to \mathscr{B} \iff n$ -consistent strategy for Duplicator in $\exists \operatorname{Peb}_k(\mathscr{A},\mathscr{B})$ \iff strategy for Duplicator in $+\operatorname{Fun}_n^k(\mathscr{A},\mathscr{B})$

Consequences of this new comonad

$$\mathbb{G}_{n,k} \mathcal{A} = \mathbb{P}_k \mathcal{A} / \approx_n$$

Kleisli Category $\mathcal{K}(\mathbb{G}_{n,k})$

 $\mathbb{G}_{n,k} \mathscr{A} \to \mathscr{B} \iff \text{Duplicator has a winning strategy for } + \text{Fun}_n^k(\mathscr{A},\mathscr{B})$

 $\mathscr{A} \cong_{\mathscr{K}(\mathbb{G}_{n,k})} \mathscr{B} \iff \text{Duplicator has a winning strategy for } \text{Bij}_n^k(\mathscr{A},\mathscr{B})$

Coalgebras

 $\alpha: \mathscr{A} \to \mathbb{G}_{n,k} \mathscr{A} \iff \mathscr{A}$ has an extended tree decomposition of width k and arity n

Conclusions & Future Directions

A much clearer understanding of the relation between quantifiers and the Kleisli Category of game comonads

$$ightarrow_{\mathscr{K}}$$
 is $ightharpoonup_{\exists^{+}\mathscr{L}}$ and $\simeq_{\mathscr{K}}$ is $ightharpoonup_{\mathscr{L}(\exists^{\geq m})}$

Conclusions & Future Directions

A much clearer understanding of the relation between quantifiers and the Kleisli Category of game comonads

$$ightarrow_{\mathscr{K}}$$
 is $ightharpoonup_{\exists^{+}\mathscr{L}}$ and $\simeq_{\mathscr{K}}$ is $ightharpoonup_{\mathscr{L}(\exists^{\geq m})}$

A method for constructing new games and new game comonads from old ones. Can we turn more game theoretic translations into category theory?

$$\mathbb{G}_{n,k} \mathcal{A} = \mathbb{P}_k \mathcal{A} / \approx_n$$

Conclusions & Future Directions

A much clearer understanding of the relation between quantifiers and the Kleisli Category of game comonads

$$ightarrow_{\mathscr{K}}$$
 is $ightarrow_{\exists^{+}\mathscr{L}}$ and $\simeq_{\mathscr{K}}$ is $ightarrow_{\mathscr{L}(\exists^{\geq m})}$

A method for constructing new games and new game comonads from old ones. Can we turn more game theoretic translations into category theory?

$$\mathbb{G}_{n,k} \mathcal{A} = \mathbb{P}_k \mathcal{A} / \approx_n$$

Some of the candidate logics for P (e.g. rank logic) are defined using classes of generalised quantifiers. Can techniques from this work help us to make new comonads for these logics?