

FuZhou Qingda Education

教师姓名	沈炜炜	学生姓名		首课时间		本课时间	
学习科目	数学	上课年级	高一	教材版本		人教A版	
课题名称	三角恒等变换练习						
重点难点	三角恒等变换的应用						

一、 知识点总结

两角的和与差

- $C_{\alpha\pm\beta}$: $\cos(\alpha\pm\beta) = \cos\alpha\cos\beta\mp\sin\alpha\sin\beta$
- $S_{\alpha \pm \beta}$: $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$
- $T_{\alpha \pm \beta}$: $\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$

二倍角公式

- $S_{2\alpha}$: $\sin 2\alpha = 2 \sin \alpha \cos \alpha$
- $C_{2\alpha}$: $\cos 2\alpha = \cos^2 \alpha \sin^2 \alpha = 2\cos^2 \alpha 1 = 1 2\sin^2 \alpha$
- $T_{2\alpha}$: $\tan 2\alpha = \frac{2 \tan \alpha}{1 \tan^2 \alpha}$

半角公式

- $\sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 \cos \alpha}{2}}$
- $\cos \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{2}}$
- $\tan \frac{\alpha}{2} = \frac{\sin \alpha}{1 + \cos \alpha} = \frac{1 \cos \alpha}{\sin \alpha}$

万能公式

- $\sin \alpha = \frac{2 \tan \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}}$
- $\cos \alpha = \frac{1 \tan^2 \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}}$
- $\tan \alpha = \frac{2 \tan \frac{\alpha}{2}}{1 \tan^2 \frac{\alpha}{2}}$

辅助角公式

- $a \sin x + b \sin x = \sqrt{a^2 + b^2} \sin(x + \varphi)$ 其中 $\sin \varphi = \frac{b}{\sqrt{a^2 + b^2}}$, $\cos \varphi = \frac{a}{\sqrt{a^2 + b^2}}$ a > 0 时,
- $a \sin x + b \sin x = \sqrt{a^2 + b^2} \sin(x + \varphi)$ 其中 $\tan \varphi = \frac{b}{a}$, $\varphi \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

习题

$$A. -\frac{2\sqrt{3}}{5}$$

B.
$$\frac{2\sqrt{3}}{5}$$
 C. $-\frac{4}{5}$ D. $\frac{4}{5}$

C.
$$-\frac{4}{5}$$

D.
$$\frac{4}{5}$$

$$A. 3\alpha - \beta = \frac{\pi}{2}$$

$$B. 3\alpha + \beta = \frac{\pi}{2}$$

C.
$$2\alpha - \beta = \frac{\pi}{2}$$

D.
$$2\alpha + \beta = \frac{\pi}{2}$$

2.3 (2013•浙江) 已知
$$\alpha \in \mathbb{R}$$
, $\sin \alpha + 2\cos \alpha = \frac{\sqrt{10}}{2}$, 则 $\tan 2\alpha = \dots$ ()

A.
$$\frac{4}{3}$$

B.
$$\frac{3}{4}$$

C.
$$-\frac{3}{4}$$

D.
$$-\frac{4}{3}$$

2.5 化筒:
$$\sin\left(3x + \frac{\pi}{3}\right)\cos\left(x - \frac{\pi}{6}\right) + \cos\left(3x + \frac{\pi}{3}\right)\cos\left(x + \frac{\pi}{3}\right) = \underline{\qquad}$$

2.6 (2013 • 全国新课标) 设当
$$x = \theta$$
 时,函数 $f(x) = \sin x - 2\cos x$ 取得最大值,则 $\cos \theta =$ _______.

2.7 函数
$$y = \sin\left(\frac{\pi}{2} + x\right)\cos\left(\frac{\pi}{6} - x\right)$$
的最大值为_____.

2.8 已知
$$\cos(x+2\theta) + 2\sin\theta\sin(x+\theta) = \frac{1}{3}$$
,则 $\cos 2x$ 的值为______.

2.9 (2017•江苏) 若
$$\tan\left(\alpha-\frac{\pi}{4}\right)=\frac{1}{6}$$
,则 $\tan\alpha=$ _____.

2.10 已知
$$\sin 2\alpha - 2 = 2\cos 2\alpha$$
,则 $\sin^2 \alpha + \sin 2\alpha =$ ______.

2.11 (2016•上海) 方程
$$3\sin x = 1 + \cos 2x$$
 在区间 $[0, 2\pi]$ 上的解为 ______

2.12 (2014•广东) 已知函数
$$f(x) = A \sin\left(x + \frac{\pi}{4}\right)$$
, $x \in \mathbb{R}$, 且 $f\left(\frac{5\pi}{12}\right) = \frac{3}{2}$.

(I) 求 A 的值;

(II)
$$\ddot{\pi} f(\theta) + f(-\theta) = \frac{3}{2}, \quad \theta \in \left(0, \frac{\pi}{2}\right), \quad \dot{\Re} f\left(\frac{3\pi}{4} - \theta\right).$$

笙 2 面

2.13 (2010•上海) 已知 $0 < x < \frac{\pi}{2}$,化简:

$$\lg\left(\cos x \tan x + 1 - 2\sin^2\frac{x}{2}\right) + \lg\left[\sqrt{2}\cos\left(x - \frac{\pi}{4}\right)\right] - \lg(1 + \sin 2x).$$

- **2.14** (2016•天津) 已知函数 $f(x) = 4 \tan x \sin \left(\frac{\pi}{2} x\right) \sin \left(x \frac{\pi}{3}\right) \sqrt{3}$.
- (I) 求 f(x) 的定义域与最小正周期;
- (II) 讨论 f(x) 在区间 $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ 上的单调性.

- **2.15** (2012 广东) 已知函数 $f(x) = 2\cos\left(\omega x + \frac{\pi}{6}\right)$ (其中 $\omega > 0$, $x \in \mathbb{R}$) 的最小正周期为 10π .
 - (I) 求 ω 的值
- (II) 设 $\alpha, \beta \in \left[0, \frac{\pi}{2}\right]$, $f\left(5\alpha + \frac{5\pi}{3}\right) = -\frac{6}{5}$, $f\left(5\beta \frac{5\pi}{6}\right) = -\frac{16}{17}$, 求 $\cos(\alpha + \beta)$ 的值.

三、参考答案

2.5
$$\cos 2x$$

2.6
$$-\frac{2\sqrt{5}}{5}$$

2.7
$$\frac{2+\sqrt{3}}{4}$$
 2.8 $-\frac{7}{9}$

2.8
$$-\frac{7}{9}$$

2.9
$$\frac{7}{5}$$

2.10 1 或
$$\frac{8}{5}$$

2.11
$$\frac{\pi}{6}$$
, $\frac{5\pi}{6}$

2.12 (I)
$$A = \sqrt{3}$$
; (II) $f\left(\frac{3\pi}{4} - \theta\right) = \frac{\sqrt{304}}{4}$

2.14 (I)
$$f(x) = 2\sin\left(2x - \frac{\pi}{3}\right)$$
, 定义域: $\left\{x \mid x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}\right\}$; 最小正周期: $T = \pi$. (II) $f(x)$ 在区间 $\left[-\frac{\pi}{12}, \frac{\pi}{4}\right]$ 上单调递增,在区间 $\left[-\frac{\pi}{4}, -\frac{\pi}{12}\right]$ 上单调递减.

2.15 (I)
$$\omega = \frac{1}{5}$$
. (II) $\sin \alpha = \frac{3}{5}$, $\cos \beta = \frac{8}{17}$, $\cos \alpha = \frac{4}{5}$, $\sin \beta = \frac{15}{17}$, $\cos (\alpha + \beta) = -\frac{13}{85}$.

第4页