HW#3 電信所 R04942131 蔡銘穎

Approach and Discussion

這次的作業要求我們從 cifar-10 的資料庫中的 5000 筆 label data 和 45000 筆 unlabel data ,以兩種方式 train 得 model 後,測試 10000 筆 data。

(1) Supervised learning

首先我在 label data 中,每五筆資料取出一筆當作我的 validation data,也就是說在 label 0-9 中,每個 label 都會有 100 筆 data,共 1000 筆,剩下的 4000 筆當作我的 training set。

在此要特別注意的是使用 tensorflow 和 theano 時,input dimension shape 並不相同。

```
model = Sequential()
model.add(Convolution2D(16, 3, 3, input_shape=(3, 32, 32)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(32, 3, 3))
model.add(AveragePooling2D(pool_size=(2, 2)))
model.add(Convolution2D(64, 3, 3))
model.add(AveragePooling2D(pool_size=(2, 2)))

model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Activation('relu'))
model.add(Activation('relu'))
model.add(Dense(10))
model.add(Activation('softmax'))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer=Adam(), metrics=['accuracy'])
```

在此我使用了三層 neuron,filter number 為 16,32,64 ,這是我測試出最準確的 model,可以將 training data fit 到 0.98 左右,而 validation data 則是 0.8。

(2) Semi-supervised learning(1)

Semi-supervised 即是將第一次 train 好的 model 測試 unlabel data 後,拿來擴大自己的資料庫後,在 train 一組新的 model (架構相同)。

在這邊我使用的 batch size 為 32, epoch 為 25 在使用 GPU (GeForce GT 730) 下,可在 10 分鐘內完成。 Fit accuracy 為 0.95 , validation accuracy 則為 0.76。

(3) Semi-supervised learning(2)

第二個我所使用的是 autoencoder,方法是將 input data(3,32,32)先進行 encode,再 decode,而 output 要是自己本身(3,32,32),而這組 model 我只能 fit 到 mse error 為 0.08 左右

Model 完成之後,我們必須將 input 丟到此 model,而在 encode 時即拿出,不進行 decode,在以此 code 當成 feature 丟到下一組 model 進行 training,故第二組 model 的 I/O 為一組 code (32,4,4) 以及 label (0-9),但此方法因為 training 時間長而且並沒有非常準確,最後只達到 fit accuracy 0.6 Validation accuracy 0.52。

(4) Compare and analyze your results

其實這兩種方法應該可以有更好的 performance,但因為時間有限,而且一開始並沒有開啟 GPU 進行 training,所以感覺應該還可以調到更好的參數。 方法二是先做了 feature extract ,此方法有利有弊,如果在此即不能 train 出一個好的 model,那後面也不太可能會有好的準確率,在這邊我試過了 SGD, Adam,兩層三層 neuron 等等的變化,始終沒辦法 fit 到一個很好的數字, 也使得後面的準確率不盡理想,我想這是一個還可以再進步的地方。