BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 57 569.3

Anmeldetag:

10. Dezember 2003

Anmelder/inhaber:

Bayer CropScience AG,

40789 Monheim/DE

Bezeichnung:

Pyrazolopyrimidine

IPC:

C 07 D, A 01 N

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 14. Oktober 2004

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

SQQU!

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b) Schmidt C.

Pyrazolopyrimidine

Die vorliegende Erfindung betrifft neue Pyrazolopyrimidine, mehrere Verfahren zu deren Herstellung und deren Verwendung zur Bekämpfung von unerwünschten Mikroorganismen.

Es ist bereits bekannt geworden, dass bestimmte Pyrazolopyrimidine fungizide Eigenschaften besitzen (vergleiche DE-A 3 130 633 oder FR-A 2 794 745). Die Wirkung dieser Stoffe ist gut, lässt aber bei niedrigen Aufwandmengen in manchen Fällen zu wünschen übrig.

Es wurden nun neue Pyrazolopyrimidine der Formel

$$R^{1}$$
 R^{2}
 R^{5}
 R^{5}
 R^{4}
 R^{3}
 R^{4}
 R^{4}

in welcher

15

20

- 10 R¹ für gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Alkenyl, gegebenenfalls substituiertes Alkinyl, gegebenenfalls substituiertes Cycloalkyl oder für gegebenenfalls substituiertes Heterocyclyl steht,
 - R² für Wasserstoff oder Alkyl, steht, oder
 - R¹ und R² gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, für einen gegebenenfalls substituierten heterocyclischen Ring stehen,
 - R³ für Wasserstoff, Halogen, gegebenenfalls substituiertes Alkyl oder gegebenenfalls substituiertes Cycloalkyl steht,
 - R⁴ für Halogen, Cyano, Nitro, Alkyl, Hydroxyalkyl, Alkoxyalkyl, Halogenalkyl, Cycloalkyl, Formyl, Thiocarbamoyl, Alkoxycarbonyl, Alkylcarbonyl, Benzylcarbonyl, Cycloalkylcarbonyl, Hydroxyiminoalkyl, Alkoximinoalkyl, Alkylthio, Alkylsulfinyl, Alkylsulfonyl oder Alkylaminocarbonyl steht,
 - Hal für Halogen steht und
 - R⁵ für Alkyl, Halogenalkyl, Alkenyl, Halogenalkenyl, Cycloalkyl, durch Halogen substituiertes Cycloalkyl, Cycloalkenyl oder für durch Halogen substituiertes Cycloalkenyl steht,

gefunden.

5

10

15

Weiterhin wurde gefunden, dass sich Pyrazolopyrimidine der Formel (I) herstellen lassen, indem man

a) Halogen-pyrazolopyrimidine der Formel

in welcher

R³, R⁵ und Hal die oben angegebenen Bedeutungen haben,

R⁶ für Halogen, Cyano, Nitro, Alkyl, Halogenalkyl, Cycloalkyl, Formyl, Thiocarbamoyl, Alkoxycarbonyl, Alkylthio, Alkylsulfinyl, Alkylsulfonyl oder Alkylaminocarbonyl steht und

Y¹ für Halogen steht,

mit Aminen der Formel

$$R^1$$
 R^2 R^2 R^2

in welcher

R¹ und R² die oben angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels, gegebenenfalls in Gegenwart eines Katalysators und gegebenenfalls in Gegenwart eines Säureakzeptors, umsetzt,

oder

b) Pyrazolopyrimidine der Formel

$$R^{1}$$
 R^{2}
 R^{5}
 R^{5}
 R^{3}
 CN
(Ia)

in welcher

R¹, R², R³, R⁵ und Hal die oben angegebenen Bedeutungen haben,

entweder

5

 mit Diisobutyl-aluminiumhydrid in Gegenwart von wässriger Ammoniumchlorid-Lösung sowie in Gegenwart eines organischen Verdünnungsmittels umsetzt,

oder

β) mit Grignard-Verbindungen der Formel

$$R^7 - Mg - X$$
 (IV)

10

in welcher

- R⁷ für Alkyl, Benzyl oder Cycloalkyl steht und
- X für Chlor, Brom oder Iod steht,

in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysator umsetzt,

15 oder

c) Pyrazolopyrimidine der Formel

$$R^{1}$$
 R^{2}
 R^{5}
 R^{5}
 R^{3}
 R^{3}

in welcher

 R^1 , R^2 , R^3 , R^5 und Hal die oben angegebenen Bedeutungen haben und

 ${\bf R}^{\bf 8}$ für Wasserstoff , Alkyl, Benzyl oder Cycloalkyl steht,

entweder

α) mit Amino-Verbindungen der Formel

$$H_2N-OR^9$$
 (V)

in welcher

R⁹ für Wasserstoff oder Alkyl steht,

in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysators umsetzt, wobei die Amino-Verbindungen der Formel (V) auch in Form ihrer Säureadditions-Salze eingesetzt werden können,

oder

β) mit Diisobutyl-aluminiumhydrid in Gegenwart von wässriger Ammoniumchlorid-Lösung sowie in Gegenwart eines organischen Verdünnungsmittels umsetzt, oder mit Natriumborhydrid in Gegenwart eines Verdünnungsmittels umsetzt, und gegebenenfalls die dabei entstehenden Pyrazolopyrimidine der Formel

$$R^{1}$$
 R^{2}
 R^{5}
 N
 N
 R^{3}
 CH
 R^{8}
 OH

in welcher

 \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^5 , \mathbb{R}^8 und Hal die oben angegebenen Bedeutungen haben,

mit Alkylierungsmitteln der Formel

$$R^{10} - X^1 \qquad (VI)$$

10

5

15

20

in welcher

R¹⁰ für Alkyl steht und

X¹ für Chlor, Brom, Iod oder den Rest R¹⁰O-SO₂-O- steht,

gegebenenfalls in Gegenwart einer Base und in Gegenwart eines Verdünnungsmittels umsetzt,

oder

5

10

d) Pyrazolopyrimidine der Formel

$$R^{1}$$
 R^{2}
 R^{5}
 R^{5}
 R^{3}
 R^{3}
 R^{3}

in welcher

R¹, R², R³, R⁵ und Hal die oben angegebenen Bedeutungen haben,

mit Säurehalogeniden der Formel

$$R^{11}$$
 C X^{2} $(VIII)$

in welcher

R¹¹ für Alkyl, Benzyl oder Cycloalkyl steht und

15 X² für Chlor oder Brom steht,

oder

mit Säureanhydriden der Formel

15

20

25

in welcher

R¹² für Alkyl steht,

jeweils in Gegenwart eines Katalysators und in Gegenwart eines Verdünnungsmittels umsetzt.

Schließlich wurde gefunden, dass sich die Pyrazolopyrimidine der Formel (I) sehr gut zur Bekämpfung von unerwünschten Mikroorganismen eignen. Sie zeigen vor allem eine starke fungizide Wirksamkeit und lassen sich sowohl im Pflanzenschutz als auch im Materialschutz verwenden.

Überraschenderweise besitzen die erfindungsgemäßen Pyrazolopyrimidine der Formel (I) eine wesentlich bessere mikrobizide Wirksamkeit als die konstitutionell ähnlichsten, vorbekannten Stoffe gleicher Wirkungsrichtung.

Die erfindungsgemäßen Verbindungen können je nach Substitutionsmuster gegebenenfalls als Mischungen verschiedener möglicher isomerer Formen, insbesondere von Stereoisomeren, wie E-und Z-, threo- und erythro-, sowie optischen Isomeren, gegebenenfalls aber auch in Form von Tautomeren vorliegen. Ist R⁵ an beiden Atomen, die der Bindungsstelle benachbart sind, ungleich substituiert, können die betreffenden Verbindungen in einer besonderen Form der Stereoisomerie vorliegen, und zwar als Atropisomere.

Die erfindungsgemäßen Pyrazolopyrimidine sind durch die Formel (I) allgemein definiert. Bevorzugt sind diejenigen Stoffe der Formel (I), in denen

- R¹ für Alkyl mit 1 bis 6 Kohlenstoffatomen steht, das einfach bis fünffach, gleichartig oder verschieden substituiert sein kann durch Halogen, Cyano, Hydroxy, Alkoxy mit 1 bis 4 Kohlenstoffatomen und/oder Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, oder
- R¹ für Alkenyl mit 2 bis 6 Kohlenstoffatomen steht, das einfach bis dreifach, gleichartig oder verschieden substituiert sein kann durch Halogen, Cyano, Hydroxy, Alkoxy mit 1 bis 4 Kohlenstoffatomen und/oder Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, oder
- R¹ für Alkinyl mit 3 bis 6 Kohlenstoffatomen steht, das einfach bis dreifach, gleichartig oder verschieden substituiert sein kann durch Halogen, Cyano, Alkoxy mit 1 bis 4 Kohlenstoffatomen und/oder Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, oder

10

- R¹ für Cycloalkyl mit 3 bis 6 Kohlenstoffatomen steht, das einfach bis dreifach, gleichartig oder verschieden substituiert sein kann durch Halogen und/oder Alkyl mit 1 bis 4 Kohlenstoffatomen, oder
- R¹ für gesättigtes oder ungesättigtes Heterocyclyl mit 5 oder 6 Ringgliedern und 1 bis 3 Heteroatomen, wie Stickstoff, Sauerstoff und/oder Schwefel, steht, wobei das Heterocyclyl einfach oder zweifach substituiert sein kann durch Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen, Cyano, Nitro und/oder Cycloalkyl mit 3 bis 6 Kohlenstoffatomen,
 - R² für Wasserstoff oder Alkyl mit 1 bis 4 Kohlenstoffatomen steht, oder
 - R¹ und R² gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, für einen gesättigten oder ungesättigten heterocyclischen Ring mit 3 bis 6 Ringgliedern stehen, wobei der Heterocyclus ein weiteres Stickstoff-, Sauerstoff- oder Schwefelatom als Ringglied enthalten kann und wobei der Heterocyclus bis zu dreifach substituiert sein kann durch Fluor, Chlor, Brom, Alkyl mit 1 bis 4 Kohlenstoffatomen und/oder Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 Fluor- und/oder Chloratomen,
- 15 R³ für Wasserstoff, Fluor, Chlor, Brom, Iod, Alkyl mit 1 bis 4 Kohlenstoffatomen, Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 4 Halogenatomen oder für Cycloalkyl mit 3 bis 6 Kohlenstoffatomen steht,
- für Cyano, Fluor, Chlor, Brom, Iod, Nitro, Formyl, Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 Fluor, Chlor und/oder Bromatomen, Alkyl mit 1 bis 4 Kohlenstoffatomen, Hydroxyalkyl mit 1 bis 4 Kohlenstoffatomen, Alkoxyalkyl mit 1 bis 4 Kohlenstoffatomen im Alkoxyteil und 1 bis 4 Kohlenstoffatomen im Alkylteil, Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, Thiocarbamoyl, Alkoxycarbonyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil, Benzylcarbonyl, Cycloalkylcarbonyl mit 3 bis 6 Kohlenstoffatomen im Cycloalkylteil, Hydroximinoalkyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil, Alkoximinoalkyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil, Alkylthio mit 1 bis 4 Kohlenstoffatomen, Alkylsulfinyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil steht,
- 30 Hal für Fluor, Chlor oder Brom steht und

10

15

für Alkyl mit 1 bis 6 Kohlenstoffatomen, Alkenyl mit 2 bis 6 Kohlenstoffatomen, Cycloalkyl mit 3 bis 8 Kohlenstoffatomen, Cycloalkenyl mit 3 bis 8 Kohlenstoffatomen, Halogenalkyl mit 1 bis 6 Kohlenstoffatomen und 1 bis 5 Fluor-, Chlor- und/oder Bromatomen, Halogenalkenyl mit 2 bis 6 Kohlenstoffatomen und 1 bis 5 Fluor-, Chlor- und/oder Bromatomen, durch 1 bis 3 Fluor, Chlor- und/oder Bromatome substituiertes Cycloalkyl mit 3 bis 8 Kohlenstoffatomen oder für durch 1 bis 3 Fluor-, Chlor- und/oder Bromatome substituiertes Cycloalkenyl mit 3 bis 8 Kohlenstoffatomen steht.

Besonders bevorzugt sind diejenigen Pyrazolopyrimidine der Formel (I), in denen

R¹ für einen Rest der Formel

wobei # die Anknüpfungsstelle markiert,

R² für Wasserstoff, Methyl, Ethyl oder Propyl steht, oder

R¹ und R² gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, für Pyrrolidinyl, Piperidinyl, Morpholinyl, Thiomorpholinyl, Piperazinyl, 3,6-Dihydro-1(2H)-piperidinyl oder Tetrahydro-1(2H)-pyridazinyl stehen, wobei diese Reste durch 1 bis 3 Fluoratome, 1 bis 3 Methylgruppen und/oder Trifluormethyl substituiert sein können,

oder

 ${\mathbb R}^1$ und ${\mathbb R}^2$ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, für einen Rest der Formel

$$-N \longrightarrow (R")_m \qquad \text{oder} \qquad N \longrightarrow (R"')_n \qquad \text{stehen.}$$

5 worin

R' für Wasserstoff oder Methyl steht,

R" für Methyl, Ethyl, Fluor, Chlor oder Trifluormethyl steht,

m für die Zahlen 0, 1, 2 oder 3 steht, wobei R" für gleiche oder verschiedene Reste steht, wenn m für 2 oder 3 steht,

10 R'" für Methyl, Ethyl, Fluor, Chlor oder Trifluormethyl steht

und

15

20

n für die Zahlen 0, 1, 2 oder 3 steht, wobei R'" für gleiche oder verschiedene Reste steht, wenn n für 2 oder 3 steht,

R³ für Wasserstoff, Fluor, Chlor, Brom, Iod, Methyl, Ethyl, Isopropyl, Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Triflourmethyl, 1-Trifluormethyl-2,2,2-trifluorethyl oder Heptafluorisopropyl steht,

R⁴ für Cyano, Fluor, Chlor, Brom, Jod, Nitro, Formyl, Trifluormethyl, Difluormethyl, Chlormethyl, Methyl, Ethyl, Cyclopropyl, Thiocarbamoyl, Methoxycarbonyl, Methylcarbonyl, Ethylcarbonyl, Benzylcarbonyl, Cyclopropylcarbonyl, Cyclopentylcarbonyl, Cyclohexylcarbonyl, Hydroximinomethyl, Methylthio, Methylsulfinyl, Methylsulfonyl, Methylaminocarbonyl, Hydroxymethyl, Hydroxyeth-1-yl, Methoxymethyl, Ethoxymethyl oder 1-Methoxy-ethyl steht,

Hal für Fluor oder Chlor steht und

für Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkenyl mit 2 bis 4 Kohlenstoffatomen, Cycloalkyl mit 3 bis 7 Kohlenstoffatomen oder Cycloalkenyl mit 3 bis 7 Kohlenstoffatomen steht, oder

10

20

für Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 5 Fluor-, Chlor- und/oder Bromatomen, Halogenalkenyl mit 3 oder 4 Kohlenstoffatomen und 1 bis 3 Fluor-, Chlor- und/oder Bromatomen, durch 1 bis 3 Fluor-, Chlor- und/oder Bromatome substituiertes Cycloalkyl mit 3 bis 6 Kohlenstoffatomen oder für durch 1 bis 3 Fluor-, Chlor- und/oder Bromatome substituiertes Cycloalkenyl mit 3 bis 6 Kohlenstoffatomen steht.

Eine ganz besonders bevorzugte Gruppe erfindungsgemäßer Pyrazolopyrimidine sind diejenigen Verbindungen der Formel (I), in denen

R¹, R², R⁴ und Hal die zuvor angegebenen besonders bevorzugten Bedeutungen haben,

R³ für Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, Isopropyl, Trifluormethyl oder Cyclopropyl steht und

R⁵ für Methyl, Ethyl, Propyl, Isopropyl, n-Butyl, i-Butyl, sec.-Butyl, tert-Butyl, Alllyl, But-2-en-1-yl, Cyclopropyl, Cyclopentyl, Cyclohexyl, Cyclopentenyl, Cyclohexenyl, Chlormethyl, Trifluorisopropyl, Trichlorallyl, 2,2-Dichlorcyclopropyl oder Dichlorcyclohexenyl steht.

Die zuvor genannten Reste-Definitionen können untereinander in beliebiger Weise kombiniert werden. Außerdem können auch einzelne Definitionen entfallen.

Verwendet man 3-Cyano-5,7-dichlor-6-(sec-butyl)-pyrazolo[1,5-a]pyrimidin und 2,2,2-Trifluor-isopropylamin als Ausgangsstoffe, so kann der Verlauf des erfindungsgemäßen Verfahrens (a) durch das folgende Formelschema veranschaulicht werden.

$$\begin{array}{c} CH_3 \\ + H_2N\text{-}CH\text{-}CF_3 \\ - HCI \\ \end{array}$$

Verwendet man 3-Cyano-5-chlor-6-(sec-butyl)-7-(2,2,2-trifluorisopropylamino)-pyrazolo[1,5-a]-pyrimidin als Ausgangsstoff und Di-isobutylaluminiumhydrid als Reaktionskomponente, so kann der Verlauf des erfindungsgemäßen Verfahrens (b, Variante α) durch das folgende Formelschema veranschaulicht werden.

10

15

Verwendet man 3-Cyano-5-chlor-6-(sec-butyl)-7-(2,2,2-trifluorisopropylamino)-pyrazolo[1,5-a]-pyrimidin als Ausgangsstoff und Methyl-magnesium-bromid als Reaktionskomponente, so kann der Verlauf des erfindungsgemäßen Verfahrens (b, Variante β) durch das folgende Formelschema veranschaulicht werden.

$$\begin{array}{c} \text{CH}_3 \\ \text{CH-CF}_3 \\ \text{NH} \\ \text{N} \\ \text{N} \\ \text{CI} \\ \text{N} \\ \text{CN} \\ \end{array}$$

Verwendet man 3-Formyl-5-chlor-6-(sec-butyl)-7-(2,2,2-trifluorisopropylamino)-pyrazolo[1,5-a]-pyrimidin und Methoxyamin-hydrochlorid als Ausgangsstoffe, so kann der Verlauf des erfindungsgemäßen Verfahrens (c, Variante α) durch das folgende Formelschema veranschaulicht werden.

Verwendet man 3-Methylcarbonyl-5-chlor-6-(sec-butyl)-7-(2,2,2-trifluorisopropylamino)-pyrazolo[1,5-a]-pyrimidin als Ausgangsstoff, Di-isobutylaluminiumhydrid als Reaktionskomponente in der ersten Stufe und Methyliodid als Reaktionskomponente in der zweiten Stufe, so kann der Verlauf des erfindungsgemäßen Verfahrens (c, Variante β) durch das folgende Formelschema veranschaulicht werden.

10

Verwendet man 5-Chlor-6-(sec.-butyl)-7-(2,2,2-trifluorisopropylamino)-pyrazolo[1,5-a]pyrimidin und Acetylchlorid als Ausgangsstoffe und Aluminium-trichlorid als Katalysator, so kann der Verlauf des erfindungsgemäßen Verfahrens (d) durch das folgende Formelschema veranschaulicht werden.

Die zur Durchführung des erfindungsgemäßen Verfahrens (a) als Ausgangsstoffe benötigten Halogenpyrazolopyrimidine sind durch die Formel (II) allgemein definiert. In dieser Formel (II) haben R³, R⁵ und Hal vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für diese Reste als bevorzugt genannt wurden.

- Y¹ steht vorzugsweise für Fluor, Chlor oder Brom, besonders bevorzugt für Fluor oder Chlor.
- steht vorzugsweise für Cyano, Fluor, Chlor, Brom, Iod, Nitro, Halogenalkyl mit 1 bis 4
 Kohlenstoffatomen und 1 bis 9 Fluor-, Chlor- und/oder Bromatomen, Alkyl mit 1 bis 4
 Kohlenstoffatomen, Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, Formyl, Thiocarbamoyl,
 Alkoxycarbonyl mit 1 bis 4 Kohlenstoffatomen im Alkoxyteil, Alkylthio mit 1 bis 4 Koh-

lenstoffatomen, Alkylsulfinyl mit 1 bis 4 Kohlenstoffatomen, Alkylsulfonyl mit 1 bis 4 Kohlenstoffatomen oder für Alkylaminocarbonyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil.

R⁶ steht besonders bevorzugt für Cyano, Fluor, Chlor, Brom, Iod, Nitro, Trifluormethyl,
 Difluormethyl, Methyl, Ethyl, Cyclopropyl, Formyl, Thiocarbamoyl, Methoxycarbonyl,
 Methylthio, Methylsulfinyl, Methylsulfonyl oder Methylaminocarbonyl.

Die Halogen-pyrazolopyrimidine der Formel (II) lassen sich herstellen, indem man

e) Hydroxy-pyrazolopyrimidine der Formel

$$R^{5}$$
 N
 R
 R^{3}
 R
 R
 R

in welcher

10

15

20

 \mathbb{R}^3 und \mathbb{R}^5 die oben angegebenen Bedeutungen haben und

R für Halogen, Cyano, Nitro, Alkyl, Halogenalkyl, Cycloalkyl, Thiocarbamoyl, Alkoxycarbomyl, Alkylthio, Alkylsulfinyl, Alkylsulfonyl oder Alkylaminocarbonyl steht,

mit Halogenierungsmitteln, gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt,

oder

f) Hydroxy-pyrazolopyrimidine der Formel

$$R^{5}$$
 N
 R^{3}
 R^{3}
 R^{3}
 R^{3}

in welcher

R³ und R⁵ die oben angegebenen Bedeutungen haben,

15

20

mit Phosphoroxychlorid in Gegenwart von Dimethylformamid umsetzt und gegebenenfalls unter Zugabe von Phosphorpentachlorid nachreagieren lässt.

Die bei der Durchführung des Verfahrens (e) als Ausgangsstoffe benötigten Hydroxypyrazolopyrimidine sind durch die Formel (X) allgemein definiert. In dieser Formel haben R³ und
R⁵ vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der
erfindungsgemäßen Stoffe der Formel (I) für diese Reste als bevorzugt genannt wurden. R steht
vorzugsweise für Cyano, Fluor, Chlor, Brom, Iod, Nitro, Alkyl mit 1 bis 4 Kohlenstoffatomen,
Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 Fluor-, Chlor- und/oder Bromatomen,
Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, Thiocarbamoyl, Alkylcarbonyl mit 1 bis 4 Kohlenstoffatomen im Alkoxyteil, Alkylthio mit 1 bis 4 Kohlenstoffatomen, Alkylsulfinyl mit 1 bis 4 Kohlenstoffatomen, Alkylsulfonyl mit 1 bis 4 Kohlenstoffatomen oder für Alkylaminocarbonyl mit 1 bis
4 Kohlenstoffatomen im Alkylteil.

R steht besonders bevorzugt für Cyano, Fluor, Chlor, Brom, Iod, Nitro, Trifluormethyl, Difluormethyl, Chlormethyl, Methyl, Ethyl, Cyclopropyl, Thiocarbamoyl, Methoxycarbonyl, Methylthio, Methylsulfinyl, Methylsulfonyl oder Methylaminocarbonyl.

Die Hydroxy-pyrazolopyrimidine der Formel (X) lassen sich herstellen, indem man

g) Malonester-Derivate der Formel

$$R^{5}$$
COOR¹³
(XII)

in welcher

R⁵ die oben angegebene Bedeutung hat und

R¹³ für Alkyl mit 1 bis 4 Kohlenstoffatomen steht,

mit Aminopyrazolen der Formel

$$H_2N$$
 R R^3 (XIII)

in welcher

10

15

20

R³ und R die oben angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt.

Die bei der Durchführung des Verfahrens (g) als Ausgangsstoffe benötigten Malonester-Derivate sind durch die Formel (XII) allgemein definiert. In dieser Formel hat R⁵ vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) für diesen Rest als bevorzugt genannt wurden. R¹³ steht vorzugsweise für Methyl oder Ethyl.

Die Malonester-Derivate der Formel (XII) sind bekannt oder lassen sich nach bekannten Methoden herstellen.

Die bei der Durchführung des Verfahrens (g) als Reaktionskomponenten benötigten Aminopyrazole sind durch die Formel (XIII) allgemein definiert. In dieser Formel haben R³ und R vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I), beziehungsweise der Hydroxy-pyrazolopyrimidine der Formel (X) für diese Reste als bevorzugt genannt werden.

Die Aminopyrazole der Formel (XIII) sind bekannt oder lassen sich nach bekannten Methoden herstellen.

Als Verdünnungsmittel kommen bei der Durchführung des Verfahrens (g) alle für derartige Umsetzungen üblichen, inerten organischen Solventien in Frage. Vorzugsweise verwendbar sind Alkohole, wie Methanol, Ethanol, n-Propanol, i-Propanol, n-Butanol und tert.-Butanol.

Als Säurebindemittel kommen bei der Durchführung des Verfahrens (g) alle für derartige Umsetzungen üblichen anorganischen und organischen Basen in Betracht. Vorzugsweise verwendbar sind tertiäre Amine, wie Tributylamin oder Pyridin. Im Überschuss eingesetztes Amin kann auch als Verdünnungsmittel fungieren.

Die Temperaturen können bei der Durchführung des Verfahrens (g) in einem größeren Bereich variiert werden. Im Allgemeinen arbeitet man bei Temparaturen zwischen 20°C und 200°C, vorzugsweise zwischen 50°C und 180°C.

Bei der Durchführung des Verfahrens (g) setzt man Malonester-Derivat der Formel (XII) und Aminopyrazol der Formel (XIII) im Allgemeinen in äquivalenten Mengen um. Es ist aber auch möglich, die eine oder andere Komponente in einem Überschuß zu verwenden. Die Aufarbeitung erfolgt nach üblichen Methoden.

Das Verfahren (f) eignet sich zur Herstellung von Halogen-pyrazolopyrimidin der Formel

$$R^{5}$$
 N
 N
 R^{3}
 CHO
(IIa)

5 in welcher

10

15

20

25

R³ und R⁵ die oben angegebenen Bedeutungen haben.

Die bei der Durchführung des Verfahrens (f) als Ausgangsstoffe benötigten Hydroxypyrazolopyrimidine sind durch die Formel (XI) allgemein definiert. In dieser Formel haben R³ und R⁵ vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) für diese Reste als bevorzugt genannt wurden.

Die Hydroxy-pyrazolopyrimidine der Formel (XI) lassen sich nach dem Verfahren (g) herstellen.

Das Verfahren (f) wird unter den Bedingungen der Vilsmeier-Formylierung mit Hilfe von Phosphoroxychlorid in Gegenwart von Dimethylformamid durchgeführt. Dabei kann auch Phosphorpentachlorid als Chlorierungsmittel hinzugefügt werden.

Die Reaktionstemperaturen können bei der Durchführung des Verfahrens (f) in einem größeren Bereich variiert werden. Im Allgemeinen arbeitet man bei Temperaturen zwischen -10°C und +150°C, vorzugsweise zwischen 0°C und 120°C.

Bei der Durchführung des Verfahrens (f) setzt man auf 1 mol an Hydroxypyrazolopyrimidin der Formel (XI) im Allgemeinen 2 bis 5 mol an Dimethylformamid, 5 bis 15 mol Phosphoroxychlorid und gegebenenfalls 0 bis 2 mol Phosphorpentachlorid ein. Die Aufarbeitung erfolgt nach üblichen Methoden.

Als Halogenierungsmittel kommen bei der Durchführung des Verfahrens (e) alle für den Ersatz von Hydroxygruppen durch Halogen üblichen Komponenten in Betracht. Vorzugsweise verwendbar sind Phosphortrichlorid, Phosphortribromid, Phosphorpentachlorid, Phosphoroxychlorid, Thionylchlorid, Thionylbromid oder deren Gemische. Die entsprechenden Fluor-Verbindungen

20

25

der Formel (II) lassen sich aus den Chlor- oder Brom-Verbindungen durch Umsetzung mit Kaliumfluorid herstellen.

Die genannten Halogenierungsmittel sind bekannt.

Als Verdünnungsmittel kommen bei der Durchführung des Verfahrens (e) alle für derartige Halogenierungen üblichen Solventien in Frage. Vorzugsweise verwendbar sind halogenierte aliphatische oder aromatische Kohlenwasserstoffe, wie Chlorbenzol. Als Verdünnungsmittel kann aber auch das Halogenierungsmittel selbst, z.B. Phosphoroxychlorid oder ein Gemisch von Halogenierungsmitteln fungieren.

Die Temperaturen können auch bei der Durchführung des Verfahrens (e) in einem größeren Bereich variiert werden. Im Allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 150°C, vorzugsweise zwischen 10°C und 120°C.

Bei der Durchführung des Verfahrens (e) setzt man Hydroxy-pyrazolopyrimidin der Formel (XI) im Allgemeinen mit einem Überschuss an Halogenierungsmittel um. Die Aufarbeitung erfolgt nach üblichen Methoden.

Die weiterhin zur Durchführung des erfindungsgemäßen Verfahrens (a) als Ausgangsstoffe benötigten Amine sind durch die Formel (III) allgemein definiert. In dieser Formel haben R¹ und R² vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für R¹ und R² als bevorzugt angegeben wurden.

Die Amine der Formel (III) sind bekannt oder lassen sich nach bekannten Methoden herstellen.

Als Verdünnungsmittel kommen bei der Durchführung des erfindungsgemäßen Verfahrens (a) alle üblichen inerten organischen Solventien in Betracht. Vorzugsweise verwendbar sind halogenierte Kohlenwasserstoffe, wie beispielsweise Chlorbenzol, Dichlorbenzol, Dichlormethan, Chloroform, Tetrachlormethan, Dichlorethan oder Trichlorethan; Ether, wie Diethylether, Diisopropylether, Methyl-t-butylether, Methyl-t-amylether, Dioxan, Tetrahydrofuran, 1,2-Dimethoxyethan, 1,2-Diethoxyethan oder Anisol; Nitrile, wie Acetonitril, Propionitril, n- oder i-Butyronitril oder Benzonitril; Amide, wie N,N-Dimethylformamid, N,N-Dimethylacetamid, N-Methylformanilid, N-Methylpyrrolidon oder Hexamethylphosphorsäuretriamid; Ester wie Essigsäuremethylester oder Essigsäureethylester; Sulfoxide, wie Dimethylsulfoxid; Sulfone, wie Sulfolan.

Als Säureakzeptoren kommen bei der Durchführung des erfindungsgemäßen Verfahren (a) alle für derartige Umsetzungen üblichen anorganischen oder organischen Basen in Frage. Vorzugsweise verwendbar sind Erdalkalimetall- oder Alkalimetallhydride, -hydroxide, -amide, -alkoholate,

20

-acetate, -carbonate oder -hydrogencarbonate, wie beispielsweise Natriumhydrid, Natriumamid, Lithium-diisopropylamid, Natrium-methylat, Natrium-ethylat, Kalium-tert.-butylat, Natriumhydroxid, Kaliumhydroxid, Natriumacetat, Kaliumacetat, Calciumacetat, Natriumcarbonat, Kaliumcarbonat, Kaliumhydrogencarbonat und Natriumhydrogencarbonat, und außerdem Ammonium Verbindungen wie Ammoniumhydroxid, Ammoniumacetat und Ammoniumcarbonat, sowie tertiäre Amine, wie Trimethylamin, Triethylamin, Tributylamin, N,N-Dimethylanilin, N,N-Dimethylamin, Pyridin, N-Methylpiperidin, N-Methylmorpholin, N,N-Dimethylaminopyridin, Diazabicyclooctan (DABCO), Diazabicyclononen (DBN) oder Diazabicycloundecen (DBU).

Als Katalysatoren kommen bei der Durchführung des erfindungsgemäßen Verfahrens (a) alle für derartige Umsetzungen üblichen Reaktionsbeschleuniger in Betracht. Vorzugsweise verwendbar sind Fluoride wie Natriumfluorid, Kaliumfluorid oder Ammoniumfluorid.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (a) in einem größeren Bereich variiert werden. Im Allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 150°C, vorzugsweise bei Temperaturen zwischen 0°C und 80°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens (a) setzt man auf 1 mol an Halogenpyrazolopyrimidin der Formel (II) im Allgemeinen 0,5 bis 10 mol, vorzugsweise 0,8 bis 2 mol an Amin der Formel (III) ein. Die Aufarbeitung erfolgt nach üblichen Methoden.

Die bei der Durchführung des erfindungsgemäßen Verfahrens (b) als Ausgangsstoffe benötigten Pyrazolopyrimidine sind durch die Formel (Ia) allgemein definiert. In dieser Formel haben R¹, R², R³, R⁵ und Hal vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) für diese Reste als bevorzugt genannt wurden.

Bei den Pyrazolopyrimidinen der Formel (Ia) handelt es sich um erfindungsgemäße Stoffe, die sich nach dem erfindungsgemäßen Verfahren (a) herstellen lassen.

Als Verdünnungsmittel kommen bei der Durchführung des erfindungsgemäßen Verfahrens (b, Variante α) alle üblichen inerten, organischen Solventien in Frage. Vorzugsweise verwendbar sind aliphatische oder aromatische, gegebenenfalls halogenierte Kohlenwasserstoffe, wie Toluol, Dichlormethan, Chloroform oder Tetrachlorkohlenstoff.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (b, Variante α) innerhalb eines bestimmten Bereiches variiert werden. Im Allgemeinen arbeitet man bei Temperaturen zwischen -80°C und +20°C, vorzugsweise zwischen -60°C und +10°C.

10

20

25

Bei der Durchführung des erfindungsgemäßen Verfahrens (b, Variante α) setzt man auf 1 mol an Pyrazolopyrimidin der Formel (Ia) im Allgemeinen eine äquivalente Menge oder auch einen Überschuss, vorzugsweise 1,1 bis 1,2 mol an Di-isobutyl-aluminiumhydrid ein und fügt anschließend einen Überschuss an wässriger Ammoniumchlorid-Lösung hinzu. Die Aufarbeitung erfolgt nach üblichen Methoden. Im Allgemeinen verfährt man in der Weise, dass man das Reaktionsgemisch ansäuert, die organische Phase abtrennt, die wässrige Phase mit einem mit Wasser wenig mischbaren organischen Solvens extrahiert, die vereinigten organischen Phasen wäscht, trocknet und unter vermindertem Druck einengt.

Die bei der Durchführung des erfindungsgemäßen Verfahrens (b, Variante β) als Reaktions-komponenten benötigten Grignard-Verbindungen sind durch die Formel (IV) allgemein definiert. In dieser Formel steht R⁷ vorzugsweise für Alkyl mit 1 bis 4 Kohlenstoffatomen, Benzyl oder Cycloalkyl mit 3 bis 6 Kohlenstoffatomen. Besonders bevorzugt steht R⁷ für Methyl, Ethyl, Cyclopropyl, Cyclopentyl, Cyclohexyl oder Benzyl. X steht auch vorzugsweise für Chlor, Brom oder Iod.

Als Katalysatoren kommen bei der Durchführung des erfindungsgemäßen Verfahrens (b, Variante β) alle für derartige Grignard-Reaktionen üblichen Reaktionsbeschleuniger in Betracht. Beispielsweise genannt seien Kaliumiodid und Iod.

Als Verdünnungsmittel kommen bei der Durchführung der erfindungsgemäßen Verfahrens (b, Variante β) alle für derartige Umsetzungen üblichen, inerten organischen Solventien in Frage. Vorzugsweise verwendbar sind Ether, wie Diethylether, Dioxan oder Tetrahydrofuran, außerdem aromatische Kohlenwasserstoffe, wie Toluol, und auch Gemische aus Ethern und aromatischen Kohlenwasserstoffen, wie Toluol/Tetrahydrofuran.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (b, Variante β) in einem bestimmten Bereich variiert werden. Im Allgemeinen arbeitet man bei Temperaturen zwischen -20°C und +100°C, vorzugsweise zwischen 0°C und 80°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens (b, Variante β) setzt man auf 1 mol an Pyrazolopyrimidin der Formel (Ia) im Allgemeinen 2 bis 3 mol an Grignard-Verbindung der Formel (IV) ein. Anschließend wird eine wässrige Aufarbeitung nach üblichen Methoden durchgeführt.

Die bei der Durchführung des erfindungsgemäßen Verfahrens (c) als Ausgangsstoffe benötigten Pyrazolopyrimidine sind durch die Formel (Ib) allgemein definiert. In dieser Formel haben R¹, R², R³, R⁵ und Hal vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der

Beschreibung der erfindungsgemäßen Stoffe der Formel (I) für diese Reste als bevorzugt genannt wurden. R⁸ steht vorzugsweise für Wasserstoff oder Alkyl mit 1 bis 4 Kohlenstoffatomen, Benzyl oder Cycloalkyl mit 3 bis 6 Kohlenstoffatomen. Besonders bevorzugt steht R⁸ für Wasserstoff Methyl, Ethyl, Benzyl, Cyclopropyl, Cyclopentyl oder Cyclohexyl.

Bei den Pyrazolopyrimidinen der Formel (Ib) handelt es sich um erfindungsgemäße Stoffe, die sich nach dem erfindungsgemäßen Verfahren (b) herstellen lassen.

Die bei der Durchführung des erfindungsgemäßen Verfahrens (c, Variante α) als Reaktions-komponenten benötigten Amino-Verbindungen sind durch die Formel (V) allgemein definiert. In dieser Formel steht R⁹ vorzugsweise für Wasserstoff oder Alkyl mit 1 bis 4 Kohlenstoffatomen, besonders bevorzugt für Wasserstoff, Methyl oder Ethyl.

Als Reaktionskomponenten in Betracht kommen auch Säureadditions-Salze, vorzugsweise Chlorwasserstoff-Additions-Salze von Amino-Verbindungen der Formel (V).

Sowohl die Amino-Verbindungen der Formel (V) als auch deren Säureadditions-Salze sind bekannt oder lassen sich nach bekannten Methoden herstellen.

Als Verdünnungsmittel kommen bei der Durchführung des erfindungsgemäßen Verfahrens (c, Variante α) alle üblichen inerten, organischen Solventien in Frage. Vorzugsweise verwendbar sind Alkohole, wie Methanol, Ethanol, n-Propanol oder Isopropanol.

Als Katalysatoren kommen bei der Durchführung des erfindungsgemäßen Verfahrens (c, Variante α) alle für derartige Umsetzungen üblichen Reaktionsbeschleuniger in Betracht. Vorzugsweise verwendbar sind saure oder basische Katalysatoren, wie z.B. der unter der Bezeichnung Amberlyst A-21[®] im Handel befindliche, schwach basische Ionenaustaucher.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (c, Variante α) innerhalb eines bestimmten Bereiches variiert werden. Im Allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 80°C, vorzugsweise zwischen 10°C und 60°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens (c, Variante α) setzt man auf 1 mol an Pyrazolopyrimidin der Formel (Ib) im Allgemeinen eine äquivalente Menge oder einen Überschuss, vorzugsweise zwischen 1,1 und 1,5 mol an Amino-Verbindung der Formel (V) oder eines Säureadditions-Salzes davon ein. Die Aufarbeitung erfolgt nach üblichen Methoden. Im Allgemeinen geht man so vor, dass man das Reaktionsgemisch gegebenenfalls filtriert, dann einengt und reinigt.

20

30

Bei der Durchführung des erfindungsgemäßen Verfahrens (c, Variante β) als Reaktionskomponenten benötigten Alkylierungsmittel sind durch die Formel (VI) allgemein definiert. In dieser Formel steht R¹⁰ vorzugsweise für Alkyl mit 1 bis 4 Kohlenstoffatomen, besonders bevorzugt für Methyl oder Ethyl, X¹ steht vorzugsweise für Chlor, Brom, Iod oder den Rest R¹⁰-O-SO₂-O, worin R¹⁰ die zuvor angegebenen Bedeutungen hat.

Die Alkylierungsmittel der Formel (VI) sind bekannt oder lassen sich nach bekannten Methoden herstellen.

Verwendet man bei der Durchführung des erfindungsgemäßen Verfahrens (c, Variante β) in der ersten Stufe Di-isobutyl-aluminiumhydrid als Reduktionsmittel, so arbeitet man zweckmäßigerweise unter den Bedingungen, die bereits im Zusammenhang mit der Beschreibung des erfindungsgemäßen Verfahrens (b, Variante α) erwähnt wurden.

Verwendet man bei der Durchführung des erfindungsgemäßen Verfahrens (c, Variante β) in der ersten Stufe Natriumborhydrid als Reduktionsmittel, so verwendet man als Verdünnungsmittel im Allgemeinen Alkohole, vorzugsweise Methanol, Ethanol oder Isopropanol.

Bei der Reduktion mit Natriumborhydrid können die Reaktionstemperaturen innerhalb eines bestimmten Bereiches variiert werden. Im Allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 70°C, vorzugsweise zwischen 0°C und 50°C.

Bei der Durchführung der Reduktion mit Natriumborhydrid setzt man auf 1 mol an Pyrazolopyrimidin der Formel (Ib) eine äquivalente Menge oder auch einen Überschuss an Natriumborhydrid ein. Die Aufarbeitung erfolgt wiederum nach üblichen Methoden.

Bei der Durchführung der zweiten Stufe des erfindungsgemäßen Verfahrens (c, Variante β) kommen als Basen alle üblichen Säurebindemittel in Frage. Vorzugsweise verwendbar sind Alkalimetall-hydride, -alkoholate und -carbonate, wie Natriumhydrid, Natriummethylat, Kaliumtert.-butylat, Natriumcarbonat, Kaliumcarbonat oder Lithiumcarbonat.

Als Verdünnungsmittel kommen bei der Durchführung der zweiten Stufe des erfindungsgemäßen Verfahrens (c, Variante β) alle üblichen, inerten organischen Solventien in Betracht. Vorzugsweise verwendbar sind Ether, wie Dioxan oder Tetrahydrofuran, und außerdem Nitrile, wie Acetonitril.

Die Temperaturen können bei der Durchführung der zweiten Stufe des erfindungsgemäßen Verfahrens (c, Variante β) innerhalb eines größeren Bereiches variiert werden. Im Allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 100°C, vorzugsweise zwischen 20°C und 80°C.

Bei der Durchführung der zweiten Stufe des erfindungsgemäßen Verfahrens (c, Variante β) setzt man auf 1 mol an Pyrazolopyrimidin der Formel (Ic) im Allgemeinen 1 bis 2 mol, vorzugsweise 1 bis 1,5 mol an Alkylierungsmittel der Formel (VI) ein. Die Aufarbeitung erfolgt wiederum nach üblichen Methoden.

Die bei der Durchführung des erfindungsgemäßen Verfahrens (d) als Ausgangsstoffe benötigten Pyrazolopyrimidine sind durch die Formel (VII) allgemein definiert. In dieser Formel haben R¹, R², R³, R⁵ und Hal vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) für diese Reste als bevorzugt genannt wurden.

Die Pyrazolopyrimidine der Formel (VII) sind bekannt oder lassen sich nach bekannten Methoden herstellen.

Die bei der Durchführung des erfindungsgemäßen Verfahrens (d) als Reaktionskomponenten benötigten Säurehalogenide und Säureanhydride sind durch die Formeln (VIII) und (IX) allgemein definiert. In der Formel (VIII) steht R¹¹ vorzugsweise für Alkyl mit 1 bis 4 Kohlenstoffatomen, Benzyl oder Cycloalkyl mit 3 bis 6 Kohlenstoffatomen. X² steht bevorzugt für Chlor oder Brom.

Besonders bevorzugt sind Säurehalogenide der Formel (VIII), in denen

R¹¹ für Methyl, Ethyl, Propyl, Benzyl, Cyclopropyl, Cyclopentyl oder Cyclohexyl steht und

X² für Chlor oder Brom steht.

15

20

25

In der Formel (IX) steht R¹² vorzugsweise für Alkyl mit 1 bis 4 Kohlenstoffatomen, besonders bevorzugt für Methyl, Ethyl oder Propyl.

Sowohl die Säurehalogenide der Formel (VIII) als auch die Säureanhydride der Formel (IX) sind bekannt oder lassen sich nach bekannten Methoden herstellen.

Als Katalysatoren kommen bei der Durchführung des erfindungsgemäßen Verfahrens (d) alle für Friedel-Crafts-Reaktionen üblicherweise verwendbaren Reaktionsbeschleuniger in Betracht. Vorzugsweise verwendbar sind Lewis-Säuren, wie Aluminium-trichlorid, Aluminium-tribromid und Eisen(III)chlorid.

Als Verdünnungsmittel kommen bei der Durchführung des erfindungsgemäßen Verfahrens (d) alle für derartige Friedel-Crafts-Reaktionen üblichen, inerten organischen Solventien in Frage.

10

15

20

Vorzugsweise verwendbar sind Ether, wie Diethylether, Methyl-tert-butylether, Dioxan und Tetrahydrofuran, sowie auch Schwefelkohlenstoff.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (d) in einem bestimmten Bereich variiert werden. Im Allgemeinen arbeitet man bei Temperaturen zwischen -10°C und +100°C, vorzugsweise zwischen 0°C und 80°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens (d) setzt man auf 1 mol an Pyrazolopyrimidin der Formel (VII) im Allgemeinen 1 bis 5 mol, vorzugsweise 1 bis 2 mol an Säurehalogenid der Formel (VIII) und 1,1 bis 5 mol, vorzugsweise 1,1 bis 3 mol an Katalysator, beziehungsweise 1 bis 5 mol, vorzugsweise 1 bis 2 mol an Säureanhydrid der Formel (IX) und 2,1 bis 6 mol, vorzugsweise 2,1 bis 4 mol an Katalysator ein. Man verfährt im Allgemeinen in der Weise, dass man die Reaktionskomponenten zunächst bei niedriger Temperatur zusammengibt und nach dem Abklingen der anfangs heftigen Reaktion allmählich bis auf Rückflusstemperatur erhitzt. Die Aufarbeitung erfolgt nach üblichen Methoden.

Alle zuvor beschriebenen Verfahren werden im Allgemeinen unter Atmosphärendruck durchgeführt. Es ist jedoch auch möglich, unter erhöhtem Druck zu arbeiten.

Die erfindungsgemäßen Stoffe weisen eine starke mikrobizide Wirkung auf und können zur Bekämpfung von unerwünschten Mikroorganismen, wie Fungi und Bakterien, im Pflanzenschutz und im Materialschutz eingesetzt werden.

Fungizide lassen sich Pflanzenschutz zur Bekämpfung von Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes und Deuteromycetes einsetzen.

Bakterizide lassen sich im Pflanzenschutz zur Bekämpfung von Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae und Streptomycetaceae einsetzen.

Beispielhaft aber nicht begrenzend seien einige Erreger von pilzlichen und bakteriellen Erkrankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt:

25 Xanthomonas-Arten, wie beispielsweise Xanthomonas campestris pv. oryzae;
Pseudomonas-Arten, wie beispielsweise Pseudomonas syringae pv. lachrymans;
Erwinia-Arten, wie beispielsweise Erwinia amylovora;
Pythium-Arten, wie beispielsweise Pythium ultimum;
Phytophthora-Arten, wie beispielsweise Phytophthora infestans;

Pseudoperonospora-Arten, wie beispielsweise Pseudoperonospora humuli oder Pseudoperonospora cubensis;

Plasmopara-Arten, wie beispielsweise Plasmopara viticola;

Bremia-Arten, wie beispielsweise Bremia lactucae;

Peronospora-Arten, wie beispielsweise Peronospora pisi oder P. brassicae;

Erysiphe-Arten, wie beispielsweise Erysiphe graminis;

5 Sphaerotheca-Arten, wie beispielsweise Sphaerotheca fuliginea;

Podosphaera-Arten, wie beispielsweise Podosphaera leucotricha;

Venturia-Arten, wie beispielsweise Venturia inaequalis;

Pyrenophora-Arten, wie beispielsweise Pyrenophora teres oder P. graminea

(Konidienform: Drechslera, Syn: Helminthosporium);

10 Cochliobolus-Arten, wie beispielsweise Cochliobolus sativus

(Konidienform: Drechslera, Syn: Helminthosporium);

Uromyces-Arten, wie beispielsweise Uromyces appendiculatus;

Puccinia-Arten, wie beispielsweise Puccinia recondita;

Sclerotinia-Arten, wie beispielsweise Sclerotinia sclerotiorum;

15 Tilletia-Arten, wie beispielsweise Tilletia caries;

Ustilago-Arten, wie beispielsweise Ustilago nuda oder Ustilago avenae;

Pellicularia-Arten, wie beispielsweise Pellicularia sasakii;

Pyricularia-Arten, wie beispielsweise Pyricularia oryzae;

Fusarium-Arten, wie beispielsweise Fusarium culmorum;

20 Botrytis-Arten, wie beispielsweise Botrytis cinerea;

30

Septoria-Arten, wie beispielsweise Septoria nodorum;

Leptosphaeria-Arten, wie beispielsweise Leptosphaeria nodorum;

Cercospora-Arten, wie beispielsweise Cercospora canescens;

Alternaria-Arten, wie beispielsweise Alternaria brassicae;

25 Pseudocercosporella-Arten, wie beispielsweise Pseudocercosporella herpotrichoides.

Die erfindungsgemäßen Wirkstoffe weisen auch eine sehr gute stärkende Wirkung in Pflanzen auf. Sie eignen sich daher zur Mobilisierung pflanzeneigener Abwehrkräfte gegen Befall durch unerwünschte Mikroorganismen.

Unter pflanzenstärkenden (resistenzinduzierenden) Stoffen sind im vorliegenden Zusammenhang solche Substanzen zu verstehen, die in der Lage sind, das Abwehrsystem von Pflanzen so zu stimulieren, dass die behandelten Pflanzen bei nachfolgender Inokulation mit unerwünschten Mikroorganismen weitgehende Resistenz gegen diese Mikroorganismen entfalten.

Unter unerwünschten Mikroorganismen sind im vorliegenden Fall phytopathogene Pilze, Bakterien und Viren zu verstehen. Die erfindungsgemäßen Stoffe können also eingesetzt werden,

15

25

30

um Pflanzen innerhalb eines gewissen Zeitraumes nach der Behandlung gegen den Befall durch die genannten Schaderreger zu schützen. Der Zeitraum, innerhalb dessen Schutz herbeigeführt wird, erstreckt sich im allgemeinen von 1 bis 10 Tage, vorzugsweise 1 bis 7 Tage nach der Behandlung der Pflanzen mit den Wirkstoffen.

Die gute Pflanzenverträglichkeit der Wirkstoffe in den zur Bekämpfung von Pflanzenkrankheiten notwendigen Konzentrationen erlaubt eine Behandlung von oberirdischen Pflanzenteilen, von Pflanz- und Saatgut, und des Bodens.

Dabei lassen sich die erfindungsgemäßen Wirkstoffe mit besonders gutem Erfolg zur Bekämpfung von Getreidekrankheiten, wie beispielsweise gegen Erysiphe-Arten, von Krankheiten im Wein-, Obst- und Gemüseanbau, wie beispielsweise gegen Botrytis-, Venturia-, Sphaerotheca- und Podosphaera-Arten, einsetzen.

Die erfindungsgemäßen Wirkstoffe eignen sich auch zur Steigerung des Ernteertrages. Sie sind außerdem mindertoxisch und weisen eine gute Pflanzenverträglichkeit auf.

Die erfindungsgemäßen Wirkstoffe können gegebenenfalls in bestimmten Konzentrationen und Aufwandmengen auch als Herbizide, zur Beeinflussung des Pflanzenwachstums, sowie zur Bekämpfung von tierischen Schädlingen verwendet werden. Sie lassen sich gegebenenfalls auch als Zwischen- und Vorprodukte für die Synthese weiterer Wirkstoffe einsetzen.

Erfindungsgemäß können alle Pflanzen und Pflanzenteile behandelt werden. Unter Pflanzen werden hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie erwünschte und unerwünschte Wildpflanzen oder Kulturpflanzen (einschließlich natürlich vorkommender Kulturpflanzen). Kulturpflanzen können Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sortenschutzrechte schützbaren oder nicht schützbaren Pflanzensorten. Unter Pflanzenteilen sollen alle oberirdischen und unterirdischen Teile und Organe der Pflanzen, wie Spross, Blatt, Blüte und Wurzel verstanden werden, wobei beispielhaft Blätter, Nadeln, Stängel, Stämme, Blüten, Fruchtkörper, Früchte und Samen sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den Pflanzenteilen gehört auch Erntegut sowie vegetatives und generatives Vermehrungsmaterial, beispielsweise Stecklinge, Knollen, Rhizome, Ableger und Samen.

Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffen erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den

15

20

üblichen Behandlungsmethoden, z.B. durch Tauchen, Sprühen, Verdampfen, Vernebeln, Streuen, Aufstreichen und bei Vermehrungsmaterial, insbesondere bei Samen, weiterhin durch ein- oder mehrschichtiges Umhüllen.

Im Materialschutz lassen sich die erfindungsgemäßen Stoffe zum Schutz von technischen

Materialien gegen Befall und Zerstörung durch unerwünschte Mikroorganismen einsetzen.

Unter technischen Materialien sind im vorliegenden Zusammenhang nichtlebende Materialien zu verstehen, die für die Verwendung in der Technik zubereitet worden sind. Beispielsweise können technische Materialien, die durch erfindungsgemäße Wirkstoffe vor mikrobieller Veränderung oder Zerstörung geschützt werden sollen, Klebstoffe, Leime, Papier und Karton, Textilien, Leder, Holz, Anstrichmittel und Kunststoffartikel, Kühlschmierstoffe und andere Materialien sein, die von Mikroorganismen befallen oder zersetzt werden können. Im Rahmen der zu schützenden Materialien seien auch Teile von Produktionsanlagen, beispielsweise Kühlwasserkreisläufe, genannt, die durch Vermehrung von Mikroorganismen beeinträchtigt werden können. Im Rahmen der vorliegenden Erfindung seien als technische Materialien vorzugsweise Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Anstrichmittel, Kühlschmiermittel und Wärmeübertragungsflüssigkeiten genannt, besonders bevorzugt Holz.

Als Mikroorganismen, die einen Abbau oder eine Veränderung der technischen Materialien bewirken können, seien beispielsweise Bakterien, Pilze, Hefen, Algen und Schleimorganismen genannt. Vorzugsweise wirken die erfindungsgemäßen Wirkstoffe gegen Pilze, insbesondere Schimmelpilze, holzverfärbende und holzzerstörende Pilze (Basidiomyceten) sowie gegen Schleimorganismen und Algen.

Es seien beispielsweise Mikroorganismen der folgenden Gattungen genannt:

Alternaria, wie Alternaria tenuis,
Aspergillus, wie Aspergillus niger,

Chaetomium, wie Chaetomium globosum,
Coniophora, wie Coniophora puetana,
Lentinus, wie Lentinus tigrinus,
Penicillium, wie Penicillium glaucum,
Polyporus, wie Polyporus versicolor,

Aureobasidium, wie Aureobasidium pullulans,
Sclerophoma, wie Sclerophoma pityophila,
Trichoderma, wie Trichoderma viride,

10

15

20

25

30

Escherichia, wie Escherichia coli, Pseudomonas, wie Pseudomonas aeruginosa, Staphylococcus, wie Staphylococcus aureus.

Die Wirkstoffe können in Abhängigkeit von ihren jeweiligen physikalischen und/ oder chemischen Eigenschaften in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole, Feinstverkapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, sowie ULV-Kalt- und Warmnebel-Formulierungen.

Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im Wesentlichen infrage: Aromaten, wie Xylol, Toluol oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, Alkohole, wie Butanol oder Glycol sowie deren Ether und Ester, Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser. Mit verflüssigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgase, wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und Kohlendioxid. Als feste Trägerstoffe kommen infrage: z.B. natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate. Als feste Trägerstoffe für Granulate kommen infrage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Bims, Marmor, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnussschalen, Maiskolben und Tabakstängel. Als Emulgier und/oder schaumerzeugende Mittel kommen infrage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäureester, Polyoxyethylen-Fettalkoholether, z.B. Alkylarylpolyglycolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate. Als Dispergiermittel kommen infrage: z.B. Lignin-Sulfitablaugen und Methylcellulose.

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum,

10

Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe, wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.

Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren Formulierungen auch in Mischung mit bekannten Fungiziden, Bakteriziden, Akariziden, Nematiziden oder Insektiziden verwendet werden, um so z.B. das Wirkungsspektrum zu verbreitern oder Resistenzentwicklungen vorzubeugen. In vielen Fällen erhält man dabei synergistische Effekte, d.h. die Wirksamkeit der Mischung ist größer als die Wirksamkeit der Einzelkomponenten.

Als Mischpartner kommen zum Beispiel folgende Verbindungen in Frage:

Fungizide:

15 2-Phenylphenol; 8-Hydroxychinolinsulfat;

Acibenzolar-S-methyl; Aldimorph; Amidoflumet; Ampropylfos; Ampropylfos-potassium; Andoprim; Anilazine; Azaconazole; Azoxystrobin;

Benalaxyl; Benodanil; Benomyl; Benthiavalicarb-isopropyl; Benzamacril; Benzamacril-isobutyl; Bilanafos; Binapacryl; Biphenyl; Bitertanol; Blasticidin-S; Bromuconazole; Bupirimate; Buthiobate; Butylamin;

Calcium-polysulfide; Capsimycin; Captafol; Captan; Carbendazim; Carboxin; Carpropamid; Carvone; Chinomethionat; Chlobenthiazone; Chlorfenazole; Chloroneb; Chlorothalonil; Chlozolinate; Clozylacon; Cyazofamid; Cyflufenamid; Cymoxanil; Cyproconazole; Cyprodinil; Cyprofuram;

Dicloran; Diethofencarb; Dichlofluanid; Dichlone; Dichlorophen; Diclocymet; Diclomezine; Dicloran; Diethofencarb; Difenoconazole; Diflumetorim; Dimethirimol; Dimethomorph; Dimoxystrobin; Diniconazole; Diniconazole-M; Dinocap; Diphenylamine; Dipyrithione; Ditalimfos; Dithianon; Dodine; Drazoxolon;

Edifenphos; Epoxiconazole; Ethaboxam; Ethirimol; Etridiazole;

Famoxadone; Fenamidone; Fenapanil; Fenarimol; Fenbuconazole; Fenfuram; Fenhexamid; Fenitropan; Fenoxanil; Fenpiclonil; Fenpropidin; Fenpropimorph; Ferbam; Fluazinam; Flubenzimine; Fludioxonil; Flumetover; Flumorph; Fluoromide; Fluoxastrobin; Fluquinconazole; Flurprimidol; Flusilazole; Flusulfamide; Flutolanil; Flutriafol; Folpet; Fosetyl-Al; Fosetyl-sodium; Fuberidazole; Furalaxyl; Furametpyr; Furcarbanil; Furmecyclox;

Guazatine;

5

Hexachlorobenzene; Hexaconazole; Hymexazol;

Imazalil; Imibenconazole; Iminoctadine triacetate; Iminoctadine tris(albesil; Iodocarb; Ipconazole; Iprobenfos; Iprodione; Iprovalicarb; Irumamycin; Isoprothiolane; Isovaledione;

10 Kasugamycin; Kresoxim-methyl;

Mancozeb; Maneb; Meferimzone; Mepanipyrim; Mepronil; Metalaxyl; Metalaxyl-M; Met-conazole; Methasulfocarb; Methfuroxam; Metiram; Metominostrobin; Metsulfovax; Mildiomycin; Myclobutanil; Myclozolin;

Natamycin; Nicobifen; Nitrothal-isopropyl; Noviflumuron; Nuarimol;

Ofurace; Orysastrobin; Oxadixyl; Oxolinic acid; Oxpoconazole; Oxycarboxin; Oxyfenthiin;

Paclobutrazol; Pefurazoate; Penconazole; Pencycuron; Phosdiphen; Phthalide; Picoxystrobin; Piperalin; Polyoxins; Polyoxorim; Probenazole; Prochloraz; Procymidone; Propamocarb; Propanosine-sodium; Propiconazole; Propineb; Proquinazid; Prothioconazole; Pyraclostrobin; Pyrazophos; Pyrifenox; Pyrimethanil; Pyroquilon; Pyroxyfur; Pyrrolnitrine;

Ouinconazole; Ouinoxyfen; Quintozene;

Simeconazole; Spiroxamine; Sulfur;

Tebuconazole; Tecloftalam; Tecnazene; Tetcyclacis; Tetraconazole; Thiabendazole; Thicyofen; Thifluzamide; Thiophanate-methyl; Thiram; Tioxymid; Tolclofos-methyl; Tolylfluanid; Triadimefon; Triadimenol; Triazbutil; Triazoxide; Tricyclamide; Tricyclazole; Tridemorph;

25 Trifloxystrobin; Triflumizole; Triforine; Triticonazole;

Uniconazole;

Validamycin A; Vinclozolin;

Zineb: Ziram; Zoxamide;

(2S)-N-[2-[4-[[3-(4-Chlorphenyl)-2-propinyl]oxy]-3-methoxyphenyl]ethyl]-3-methyl-2-[(methyl-

30 sulfonyl)amino]-butanamid;

1-(1-Naphthalenyl)-1H-pyrrol-2,5-dion;

2,3,5,6-Tetrachlor-4-(methylsulfonyl)-pyridin;

2-Amino-4-methyl-N-phenyl-5-thiazolcarboxamid;

2-Chlor-N-(2,3-dihydro-1,1,3-trimethyl-1H-inden-4-yl)-3-pyridincarboxamide;

5 3,4,5-Trichlor-2,6-pyridindicarbonitril;

Actinovate;

cis-1-(4-Chlorphenyl)-2-(1H-1,2,4-triazol-1-yl)-cycloheptanol;

Methyl 1-(2,3-dihydro-2,2-dimethyl-1H-inden-1-yl)-1H-imidazol-5-carboxylat;

Monokaliumcarbonat;

10 N-(6-Methoxy-3-pyridinyl)-cyclopropancarboxamid;

Natriumtetrathiocarbonat;

sowie Kupfersalze und -zubereitungen, wie Bordeaux mixture; Kupferhydroxid; Kupfernaphthenat; Kupferoxychlorid; Kupfersulfat; Cufraneb; Kupferoxid; Mancopper; Oxine-copper.

Bakterizide:

Bronopol, Dichlorophen, Nitrapyrin, Nickel-dimethyldithiocarbamat, Kasugamycin, Octhilinon, Furancarbonsäure, Oxytetracyclin, Probenazol, Streptomycin, Tecloftalam, Kupfersulfat und andere Kupfer-Zubereitungen.

Insektizide / Akarizide / Nematizide:

Abamectin, ABG-9008, Acephate, Acequinocyl, Acetamiprid, Acetoprole, Acrinathrin, AKD-1022, AKD-3059, AKD-3088, Alanycarb, Aldicarb, Aldoxycarb, Allethrin, Allethrin 1R-isomers, Alpha-Cypermethrin (Alphamethrin), Amidoflumet, Aminocarb, Amitraz, Avermectin, AZ-60541, Azadirachtin, Azamethiphos, Azinphos-methyl, Azinphos-ethyl, Azocyclotin,

Bacillus popilliae, Bacillus sphaericus, Bacillus subtilis, Bacillus thuringiensis, Bacillus thuringiensis strain EG-2348, Bacillus thuringiensis strain GC-91, Bacillus thuringiensis strain NCTC11821, Baculoviren, Beauveria bassiana, Beauveria tenella, Bendiocarb, Benfuracarb, Bensultap,
Benzoximate, Beta-Cyfluthrin, Beta-Cypermethrin, Bifenazate, Bifenthrin, Binapacryl, Bioallethrin, Bioallethrin-S-cyclopentyl-isomer, Bioethanomethrin, Biopermethrin, Bioresmethrin,
Bistrifluron, BPMC, Brofenprox, Bromophos-ethyl, Bromopropylate, Bromfenvinfos (-methyl),
BTG-504, BTG-505, Bufencarb, Buprofezin, Butathiofos, Butocarboxim, Butoxycarboxim, Butylpyridaben,

Cadusafos, Camphechlor, Carbaryl, Carbofuran, Carbophenothion, Carbosulfan, Cartap, CGA-50439, Chinomethionat, Chlordane, Chlordimeform, Chloethocarb, Chlorethoxyfos, Chlorfenapyr,

10

Chlorfenvinphos, Chlorfluazuron, Chlormephos, Chlorobenzilate, Chloropicrin, Chlorproxyfen, Chlorpyrifos-methyl, Chlorpyrifos (-ethyl), Chlovaporthrin, Chromafenozide, Cis-Cypermethrin, Cis-Resmethrin, Cis-Permethrin, Clocythrin, Cloethocarb, Clofentezine, Clothianidin, Clothiazoben, Codlemone, Coumaphos, Cyanofenphos, Cyanophos, Cycloprene, Cycloprothrin, Cydia pomonella, Cyfluthrin, Cyhalothrin, Cyhexatin, Cypermethrin, Cyphenothrin (1R-trans-isomer), Cyromazine,

DDT, Deltamethrin, Demeton-S-methyl, Demeton-S-methylsulphon, Diafenthiuron, Dialifos, Diazinon, Dichlofenthion, Dichlorvos, Dicofol, Dicrotophos, Dicyclanil, Diflubenzuron, Dimethoate, Dimethylvinphos, Dinobuton, Dinocap, Dinotefuran, Diofenolan, Disulfoton, Docusat-sodium, Dofenapyn, DOWCO-439,

Eflusilanate, Emamectin, Emamectin-benzoate, Empenthrin (1R-isomer), Endosulfan, Entomopthora spp., EPN, Esfenvalerate, Ethiofencarb, Ethiprole, Ethion, Ethoprophos, Etofenprox, Etoxazole, Etrimfos,

Famphur, Fenamiphos, Fenazaquin, Fenbutatin oxide, Fenfluthrin, Fenitrothion, Fenobucarb, Fenothiocarb, Fenoxacrim, Fenoxycarb, Fenpropathrin, Fenpyrad, Fenpyrithrin, Fenpyroximate, Fensulfothion, Fenthion, Fentrifanil, Fenvalerate, Fipronil, Flonicamid, Fluacrypyrim, Fluazuron, Flubenzimine, Flubrocythrinate, Flucycloxuron, Flucythrinate, Flufenerim, Flufenoxuron, Flufenprox, Flumethrin, Flupyrazofos, Flutenzin (Flufenzine), Fluvalinate, Fonofos, Formetanate, Formothion, Fosmethilan, Fosthiazate, Fubfenprox (Fluproxyfen), Furathiocarb,

20 Gamma-HCH, Gossyplure, Grandlure, Granuloseviren,

Halfenprox, Halofenozide, HCH, HCN-801, Heptenophos, Hexaflumuron, Hexythiazox, Hydramethylnone, Hydroprene,

IKA-2002, Imidacloprid, Imiprothrin, Indoxacarb, Iodofenphos, Iprobenfos, Isazofos, Isofenphos, Isoprocarb, Isoxathion, Ivermeetin,

25 Japonilure,

Kadethrin, Kernpolyederviren, Kinoprene,

Lambda-Cyhalothrin, Lindane, Lufenuron,

Malathion, Mecarbam, Mesulfenfos, Metaldehyd, Metam-sodium, Methacrifos, Methamidophos, Metharhizium anisopliae, Metharhizium flavoviride, Methidathion, Methiocarb, Methomyl,

Methoprene, Methoxychlor, Methoxyfenozide, Metolcarb, Metoxadiazone, Mevinphos, Milbemectin, Milbemycin, MKI-245, MON-45700, Monocrotophos, Moxidectin, MTI-800,

Naled, NC-104, NC-170, NC-184, NC-194, NC-196, Niclosamide, Nicotine, Nitenpyram, Nithiazine, NNI-0001, NNI-0101, NNI-0250, NNI-9768, Novaluron, Noviflumuron,

OK-5101, OK-5201, OK-9601, OK-9602, OK-9701, OK-9802, Omethoate, Oxamyl, Oxydemeton-methyl,

Paecilomyces fumosoroseus, Parathion-methyl, Parathion (-ethyl), Permethrin (cis-, trans-), Petroleum, PH-6045, Phenothrin (1R-trans isomer), Phenthoate, Phorate, Phosalone, Phosmet, Phosphamidon, Phosphocarb, Phoxim, Piperonyl butoxide, Pirimicarb, Pirimiphos-methyl, Pirimiphos-ethyl, Prallethrin, Profenofos, Promecarb, Propaphos, Propargite, Propetamphos, Propoxur, Prothiofos, Prothoate, Protrifenbute, Pymetrozine, Pyraclofos, Pyresmethrin, Pyrethrum, Pyridaben, Pyridalyl, Pyridaphenthion, Pyridathion, Pyrimidifen, Pyriproxyfen,

Quinalphos,

Resmethrin, RH-5849, Ribavirin, RU-12457, RU-15525, S-421, S-1833, Salithion, Sebufos, SI-0009, Silafluofen, Spinosad, Spirodiclofen, Spiromesifen, Sulfluramid, Sulfotep, Sulprofos, SZI-121,

Tau-Fluvalinate, Tebufenozide, Tebufenpyrad, Tebupirimfos, Teflubenzuron, Tefluthrin, Temephos, Temivinphos, Terbam, Terbufos, Tetrachlorvinphos, Tetradifon, Tetramethrin, Tetramethrin (1R-isomer), Tetrasul, Theta-Cypermethrin, Thiacloprid, Thiamethoxam, Thiapronil, Thiatriphos, Thiocyclam hydrogen oxalate, Thiodicarb, Thiofanox, Thiometon, Thiosultap-sodium, Thuringiensin, Tolfenpyrad, Tralocythrin, Tralomethrin, Transfluthrin, Triarathene, Triazamate, Triazophos, Triazuron, Trichlophenidine, Trichlorfon, Triflumuron, Trimethacarb,

Triazophos, Triazuron, Trientophenidine, Trientorion, Trintanaron, Trintonaeur

Vamidothion, Vaniliprole, Verbutin, Verticillium lecanii, WL-108477, WL-40027, YI-5201, YI-5301, YI-5302,

XMC, Xylylcarb,

ZA-3274, Zeta-Cypermethrin, Zolaprofos, ZXI-8901,
die Verbindung 3-Methyl-phenyl-propylcarbamat (Tsumacide Z),
die Verbindung 3-(5-Chlor-3-pyridinyl)-8-(2,2,2-trifluorethyl)-8-azabicyclo[3.2.1]octan-3-carbonitril (CAS-Reg.-Nr. 185982-80-3) und das entsprechende 3-endo-Isomere (CAS-Reg.-Nr. 185984-60-5) (vgl. WO-96/37494, WO-98/25923),

30 sowie Präparate, welche insektizid wirksame Pflanzenextrakte, Nematoden, Pilze oder Viren enthalten.

10

15

20

25

30

Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden oder mit Düngemitteln und Wachstumsregulatoren, Safener bzw. Semiochemicals ist möglich.

Darüber hinaus weisen die erfindungsgemäßen Verbindungen der Formel (I) auch sehr gute antimykotische Wirkungen auf. Sie besitzen ein sehr breites antimykotisches Wirkungsspektrum, insbesondere gegen Dermatophyten und Sprosspilze, Schimmel und diphasische Pilze (z.B. gegen Candida-Spezies wie Candida albicans, Candida glabrata) sowie Epidermophyton floccosum, Aspergillus-Spezies wie Aspergillus niger und Aspergillus fumigatus, Trichophyton-Spezies wie Trichophyton mentagrophytes, Microsporon-Spezies wie Microsporon canis und audouinii. Die Aufzählung dieser Pilze stellt keinesfalls eine Beschränkung des erfassbaren mykotischen Spektrums dar, sondern hat nur erläuternden Charakter.

Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, wie gebrauchsfertige Lösungen, Suspensionen, Spritzpulver, Pasten, lösliche Pulver, Stäubemittel und Granulate angewendet werden. Die Anwendung geschieht in üblicher Weise, z.B. durch Gießen, Verspritzen, Versprühen, Verstreuen, Verstäuben, Verschäumen, Bestreichen usw. Es ist ferner möglich, die Wirkstoffe nach dem Ultra-Low-Volume-Verfahren auszubringen oder die Wirkstoffzubereitung oder den Wirkstoff selbst in den Boden zu injizieren. Es kann auch das Saatgut der Pflanzen behandelt werden.

Beim Einsatz der erfindungsgemäßen Wirkstoffe als Fungizide können die Aufwandmengen je nach Applikationsart innerhalb eines größeren Bereiches variiert werden. Bei der Behandlung von Pflanzenteilen liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugsweise zwischen 10 und 1.000 g/ha. Bei der Saatgutbehandlung liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,001 und 50 g pro Kilogramm Saatgut, vorzugsweise zwischen 0,01 und 10 g pro Kilogramm Saatgut. Bei der Behandlung des Bodens liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugsweise zwischen 1 und 5.000 g/ha.

Wie bereits oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden. In einer bevorzugten Ausführungsform werden wild vorkommende oder durch konventionelle biologische Zuchtmethoden, wie Kreuzung oder Protoplastenfusion erhaltenen Pflanzenarten und Pflanzensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausführungsform werden transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetically Modified Organisms) und deren Teile behandelt. Der Begriff "Teile" bzw. "Teile von Pflanzen" oder "Pflanzenteile" wurde oben erläutert.

10

15

20

25

30

Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt. Unter Pflanzensorten versteht man Pflanzen mit neuen Eigenschaften ("Traits"), die sowohl durch konventionelle Züchtung, durch Mutagenese oder durch rekombinante DNA-Techniken gezüchtet worden sind. Dies können Sorten, Rassen, Bio- und Genotypen sein.

Je nach Pflanzenarten bzw. Pflanzensorten, deren Standort und Wachstumsbedingungen (Böden, Klima, Vegetationsperiode, Ernährung) können durch die erfindungsgemäße Behandlung auch überadditive ("synergistische") Effekte auftreten. So sind beispielsweise erniedrigte Aufwandmengen und/oder Erweiterungen des Wirkungsspektrums und/oder eine Verstärkung der Wirkung der erfindungsgemäß verwendbaren Stoffe und Mittel, besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen.

Zu den bevorzugten erfindungsgemäß zu behandelnden transgenen (gentechnologisch erhaltenen) Pflanzen bzw. Pflanzensorten gehören alle Pflanzen, die durch die gentechnologische Modifikation genetisches Material erhielten, welches diesen Pflanzen besondere vorteilhafte wertvolle Eigenschaften ("Traits") verleiht. Beispiele für solche Eigenschaften sind besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte. Weitere und besonders hervorgehobene Beispiele für solche Eigenschaften sind eine erhöhte Abwehr der Pflanzen gegen tierische und mikrobielle Schädlinge, wie gegenüber Insekten, Milben, pflanzenpathogenen Pilzen, Bakterien und/oder Viren sowie eine erhöhte Toleranz der Pflanzen gegen bestimmte herbizide Wirkstoffe. Als Beispiele transgener Pflanzen werden die wichtigen Kulturpflanzen, wie Getreide (Weizen, Reis), Mais, Soja, Kartoffel, Baumwolle, Tabak, Raps sowie Obstpflanzen (mit den Früchten Äpfel, Birnen, Zitrusfrüchten und Weintrauben) erwähnt, wobei Mais, Soja, Kartoffel, Baumwolle, Tabak und Raps besonders hervorgehoben werden. Als Eigenschaften ("Traits") werden besonders hervorgehoben die erhöhte Abwehr der Pflanzen gegen Insekten, Spinnentiere, Namatoden und Schnecken durch in den Pflanzen entstehende Toxine, insbesondere solche, die durch das genetische Material aus Bacillus Thuringiensis (z.B. durch die Gene CryIA(a), CryIA(b), CryIA(c), CryIIA, CryIIIA, CryIIIB2,

10

15

20

25

Cry9c Cry2Ab, Cry3Bb und CryIF sowie deren Kombinationen) in den Pflanzen erzeugt werden (im folgenden "Bt Pflanzen"). Als Eigenschaften ("Traits") werden auch besonders hervorgehoben die erhöhte Abwehr von Pflanzen gegen Pilze, Bakterien und Viren durch Systemische Akquirierte Resistenz (SAR), Systemin, Phytoalexine, Elicitoren sowie Resistenzgene und entsprechend exprimierte Proteine und Toxine. Als Eigenschaften ("Traits") werden weiterhin besonders hervorgehoben die erhöhte Toleranz der Pflanzen gegenüber bestimmten herbiziden Wirkstoffen, beispielsweise Imidazolinonen, Sulfonylharnstoffen, Glyphosate oder Phosphinotricin (z.B. "PAT"-Gen). Die jeweils die gewünschten Eigenschaften ("Traits") verleihenden Gene können auch in Kombinationen miteinander in den transgenen Pflanzen vorkommen. Als Beispiele für "Bt Pflanzen" seien Maissorten, Baumwollsorten, Sojasorten und Kartoffelsorten genannt, die unter den Handelsbezeichnungen YIELD GARD® (z.B. Mais, Baumwolle, Soja), KnockOut® (z.B. Mais), StarLink® (z.B. Mais), Bollgard® (Baumwolle), Nucoton® (Baumwolle) und NewLeaf® (Kartoffel) vertrieben werden. Als Beispiele für Herbizid tolerante Pflanzen seien Maissorten, Baumwollsorten und Sojasorten genannt, die unter den Handelsbezeichnungen Roundup Ready® (Toleranz gegen Glyphosate z.B. Mais, Baumwolle, Soja), Liberty Link® (Toleranz gegen Phosphinotricin, z.B. Raps), IMI® (Toleranz gegen Imidazolinone) und STS® (Toleranz gegen Sulfonylharnstoffe z.B. Mais) vertrieben werden. Als Herbizid resistente (konventionell auf Herbizid-Toleranz gezüchtete) Pflanzen seien auch die unter der Bezeichnung Clearfield® vertriebenen Sorten (z.B. Mais) erwähnt. Selbstverständlich gelten diese Aussagen auch für in der Zukunft entwickelte bzw. zukünftig auf den Markt kommende Pflanzensorten mit diesen oder zukünftig entwickelten genetischen Eigenschaften ("Traits").

Die aufgeführten Pflanzen können besonders vorteilhaft erfindungsgemäß mit den Verbindungen der allgemeinen Formel (I) bzw. den erfindungsgemäßen Wirkstoffmischungen behandelt werden. Die bei den Wirkstoffen bzw. Mischungen oben angegebenen Vorzugsbereiche gelten auch für die Behandlung dieser Pflanzen. Besonders hervorgehoben sei die Pflanzenbehandlung mit den im vorliegenden Text speziell aufgeführten Verbindungen bzw. Mischungen.

Die Herstellung und die Verwendung der erfindungsgemäßen Wirkstoffe geht aus den folgenden Beispielen hervor.

Herstellungsbeispiele

Beispiel 1

Verfahren (a):

1,0 g (0,004 mol) 3-Cyano-5,7-dichlor-6-(sec-butyl)-pyrazolo[1,5-a]pyrimidin werden bei 0°C unter Rühren in eine Lösung von 0,389 g (0,004 mol) (S+)-3-Methyl-2-butylamin in 0,451 g (0,004 mol) Triethylamin und 20 ml Dichlorethan gegeben. Das Reaktionsgemisch wird 16 Stunden bei Raumtemperatur gerührt und dann unter Rühren auf Wasser gegossen. Das erhaltene Gemisch wird durch Zugabe von Salzsäure sauer gestellt und mit Dichlormethan extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet und dann unter ver-Rückstand wird mit Cycloeingeengt. Der verbleibende mindertem Druck hexan:Essigsäureethylester = 8:2 an Kieselgel chromatographiert. Man erhält auf diese Weise 0.8 g (64,3 % der Theorie) an 3-Cyano-5-chlor-6-(sec-butyl)-7-[(S+)-3-methyl-2-butyl-amino]pyrazolo[1,5-a]pyrimidin.

HPLC: logP = 4,59

Beispiel 2

10

Verfahren (a):

Ein Gemisch aus 1 g 3-Formyl-5,7-dichlor-6-(sec-butyl)-pyrazolo[1,5-a]-pyrimidin und 30 ml 20 Acetonitril wird bei Raumtemperatur unter Rühren nacheinander mit 0,51 g Kaliumcarbonat und 0,32 g 3-Methyl-2-butylamin versetzt. Das Reaktionsgemisch wird 12 Stunden bei Raumtemperatur gerührt und dann unter Rühren auf Wasser gegossen. Das entstehende Gemisch wird dreimal mit Essigsäureethylester extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet und dann unter vermindertem Druck eingeengt. Der verbleibende Rückstand wird mit Cyclohexan:Essigsäureethylester = 4:1 an Kieselgel chromatographiert. Man erhält auf diese Weise 0,14 g (9,2 % der Theorie) an 3-Formyl-5-chlor-6-(sec-butyl)-7-(3-methyl-2-butylamino)-pyrazolo[1,5-a]pyrimidin.

HPLC: logP = 4,17

Nach den zuvor angegebenen Methoden werden auch die in der folgenden Tabelle 1 aufgeführten Pyrazolopyrimidine der Formel

$$R^{1}$$
 R^{2}
 R^{5}
 R^{5}
 R^{4}
(I)

erhalten.

Tabelle 1

Bsp Nr.	R ¹ R ²	R ³	R ⁴	Hal	R ⁵	logP*)
3	CH ₃ HN—CH—CF ₃ (chiral) (L+)	Н	-CN	Cl	CH ₃ I —CH—C ₂ H ₅	3,90
4	CH ₃ CH ₃ HN—CH—CH—CH ₃ (chiral) (R-)	Н	-CN	Cl	CH ₃ 	4,62

15 *) Die Bestimmung der logP-Werte erfolgte gemäß EEC-Directive 79/831 Annex V. A8 durch HPLC (Gradientenmethode, Acetonitril/0,1 % wässrige Phosphorsäure)

Herstellung von Ausgangsprodukten

Beispiel 5

Verfahren (e):

5

10

15

20

In ein Gemisch aus 21,477 g (0,092 mol) 3-Cyano-5,7-dihydroxy-6-(sec-butyl)-pyrazolo[1,5-a]-pyrimidin und 126, 196 g (0,823 mol) Phosphoroxychlorid werden bei Raumtemperatur unter Rühren 10,976 g Phosphorpentachlorid gegeben. Das Reaktionsgemisch wird 3 Stunden auf 110°C erhitzt und dann unter vermindertem Druck eingeengt. Der verbleibende Rückstand wird in Dichlormethan gelöst. Die entstehende Lösung wird zunächst mit Eiswasser gewaschen, dann über Natriumsulfat getrocknet und unter vermindertem Druck eingeengt. Der verbleibende Rückstand wird mit Petrolether: tert.-Butyl-methyl-ether = 2:1 an Kieselgel chromatographiert. Man erhält auf diese Weise 9,4 g (33 %) der Theorie) an 3-Cyano-5,7-dichlor-6-(sec-butyl)-pyrazolo-[1,5-a]pyrimidin.

HPLC: logP = 3,27

Beispiel 6

Verfahren (f):

Ein Gemisch aus 15 g 5,7-Dihydroxy-6-(sec.-butyl)-pyrazolo[1,5-a]pyrimidin und 35 ml Phosphoroxychlorid wird eine Stunde unter Rückfluss erhitzt und dann auf 0°C abgekühlt. Das Reaktionsgemisch wird dann unter Rühren tropfenweise so mit 10,6 g Dimethylformamid vesetzt, dass die Temperatur des Gemisches nicht über 20°C steigt. Nach beendeter Zugabe wird zunächst 1 Stunde bei Raumtemperatur gerührt und dann 2 Stunden unter Rückfluss erhitzt. Anschließend wird unter vermindertem Druck eingeengt. Der verbleibende Rückstand wird mit Eiswasser ver-

rührt, und das entstehende Gemisch wird mit Essigsäureethylester extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet und dann unter vermindertem Druck eingeengt. Der verbleibende Rückstand wird in Essigsäureethylester gelöst und über Kieselgel filtriert. Man erhält auf diese Weise 7 g an 3-Formyl-5,7-dichlor-6-(sec-butyl)-pyrazolo[1,5-a]-pyrimidin. Das Produkt wird ohne zusätzliche Reinigung für die weitere Synthese eingesetzt.

Beispiel 7

5

10

15

Verfahren (g):

Ein Gemisch aus 20,0 g (0,092 mol) sec-Butyl-malonsäure-diethylester, 9,997 g (0,092 mol) 4-Cyano-5-amino-1H-pyrazol und 18,854 g (0,102 mol) Tri-n-butyl-amin wird 6 Stunden unter Rühren auf 180°C erhitzt. Dabei wird kontinuierlich das während der Umsetzung frei werdende Ethanol abdestilliert. Anschließend wird das Reaktionsgemisch unter vermindertem Druck eingeengt. Man erhält auf diese Weise 21,5 g (100 % der Theorie) an 3-Cyano-5,7-dihydroxy-6-(secbutyl)-pyrazolo[1,5-a]pyrimidin. Das Produkt wird ohne zusätzliche Reinigung für weitere Synthesen eingesetzt.

Verwendungsbeispiele

Beispiel A

Venturia - Test (Apfel) / protektiv

Lösungsmittel:

24,5 Gewichtsteile Aceton

5

24,5 Gewichtsteile Dimethylacetamid

Emulgator:

1,0 Gewichtsteile Alkyl-Aryl-Polyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Konidiensuspension des Apfelschorferregers Venturia inaequalis inokuliert und verbleiben dann 1 Tag bei ca. 20°C und 100 % relativer Luftfeuchtigkeit in einer Inkubationskabine.

Die Pflanzen werden dann im Gewächshaus bei ca. 21°C und einer relativen Luftfeuchtigkeit von ca. 90 % aufgestellt.

10 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

20 In diesem Test zeigen die in den Beispielen 1, 3 und 4 aufgeführten erfindungsgemäßen Verbindungen bei einer Aufwandmenge von 100 g/ha einen Wirkungsgrad von über 80 %.

Beispiel B

Botrytis - Test (Bohne) / protektiv

Lösungsmittel:

24,5 Gewichtsteile Aceton

24,5 Gewichtsteile Dimethylacetamid

5 Emulgator:

10

1,0 Gewichtsteile Alkyl-Aryl-Polyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden auf jedes Blatt 2 kleine mit Botrytis einerea bewachsene Agarstückehen aufgelegt. Die inokulierten Pflanzen werden in einer abgedunkelten Kammer bei ca. 20°C und 100 % relativer Luftfeuchtigkeit aufgestellt.

2 Tage nach der Inokulation wird die Größe der Befallsflecken auf den Blättern ausgewertet.
15 Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

In diesem Test zeigen die in den Beispielen 1 und 4 aufgeführten erfindungsgemäßen Verbindungen bei einer Aufwandmenge von 500 g/ha einen Wirkungsgrad von über 80 %.

Beispiel C

Erysiphe - Test (Gerste) / protektiv

Lösungsmittel:

49 Gewichtsteile N,N-Dimethylacetamid

Emulgator:

15

1,0 Gewichtsteil Alkyl-Aryl-Polyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf protektive Wirksamkeit bespritzt man junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. 1 Tag nach der Behandlung werden die Pflanzen mit Sporen von Erysiphe graminis f. sp. hordei inokuliert. Anschließend werden die Pflanzen in einem Gewächshaus bei 70 % relativer Luftfeuchtigkeit und einer Temperatur von 18°C aufgestellt.

7 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

In diesem Test zeigt die in Beispiel 3 aufgeführte erfindungsgemäße Verbindung bei einer Aufwandmenge von 750 g/ha einen Wirkungsgrad von über 80 %.

Patentansprüche

1. Pyrazolopyrimidine der Formel

$$R^{2}$$
 R^{1}
 R^{5}
 R^{5}
 R^{3}
 R^{4}
(I)

in welcher

5

- R¹ für gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Alkenyl, gegebenenfalls substituiertes Alkinyl, gegebenenfalls substituiertes Cycloalkyl oder für gegebenenfalls substituiertes Heterocyclyl steht,
- R² für Wasserstoff oder Alkyl, steht, oder

10

R¹ und R² gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, für einen gegebenenfalls substituierten heterocyclischen Ring stehen,

R³ für Wasserstoff, Halogen, gegebenenfalls substituiertes Alkyl oder gegebenenfalls substituiertes Cycloalkyl steht,

R⁴ für Halogen, Cyano, Nitro, Alkyl, Hydroxyalkyl, Alkoxyalkyl, Halogenalkyl, Cycloalkyl, Formyl, Thiocarbamoyl, Alkoxycarbonyl, Alkylcarbonyl, Benzylcarbonyl, Cycloalkylcarbonyl, Hydroximinoalkyl, Alkoximinoalkyl, Alkylthio, Alkylsulfinyl, Alkylsulfonyl oder Alkylaminocarbonyl steht,

Hal für Halogen steht und

20

- R⁵ für Alkyl, Halogenalkyl, Alkenyl, Halogenalkenyl, Cycloalkyl, durch Halogen substituiertes Cycloalkyl, Cycloalkenyl oder für durch Halogen substituiertes Cycloalkenyl steht.
- 2
 - 2. Verfahren zur Herstellung von Pyrazolopyrimidinen der Formel (I) gemäß Anspruch 1, dadurch gekennzeichnet, dass man
 - (a) Halogen-pyrazolopyrimidine der Formel

in welcher

R³, R⁵ und Hal die im Anspruch 1 angegebenen Bedeutungen haben,

R⁶ für Halogen, Cyano, Nitro, Alkyl, Halogenalkyl, Cycloalkyl, Formyl, Thiocarbamoyl, Alkoxycarbonyl, Alkylthio, Alkylsulfinyl, Alkylsulfonyl oder Alkylaminocarbonyl steht und

Y¹ für Halogen steht,

mit Aminen der Formel

$$R^1 \longrightarrow R^2$$
 I
 H
(III)

10

15 ·

5

in welcher

 R^1 und R^2 die im Anspruch 1 angegebenen Bedeutungen haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels, gegebenenfalls in Gegenwart eines Säureakzeptors und gegebenenfalls in Gegenwart eines Katalysators umsetzt,

oder

b) Pyrazolopyrimidine der Formel

$$R^{1}$$
 R^{2}
 R^{5}
 N
 N
 R^{3}
 CN
(Ia)

5

10

in welcher

R¹, R², R³, R⁵ und Hal die im Anspruch 1 angegebenen Bedeutungen haben,

entweder

 α) mit Diisobutyl-aluminiumhydrid in Gegenwart von wässriger Ammoniumchlorid-Lösung sowie in Gegenwart eines organischen Verdünnungsmittels umsetzt,

oder

β) mit Grignard-Verbindungen der Formel

$$R^7 - Mg - X^2 \qquad (IV)$$

in welcher

R⁷ für Alkyl, Benzyl oder Cycloalkyl steht und

X² für Chlor, Brom oder Iod steht,

in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysators umsetzt,

15 oder

c) Pyrazolopyrimidine der Formel

$$R^{1}$$
 R^{2}
 R^{5}
 R^{5}
 R^{8}
 $C=O$
 R^{8}
(Ib)

in welcher

R¹, R², R³, R⁵ und Hal die oben angegebenen Bedeutungen haben und

R⁸ für Wasserstoff , Alkyl, Benzyl oder Cycloalkyl steht,

entweder

α) mit Amino-Verbindungen der Formel

$$H_2N-OR^9$$
 (V)

in welcher

R⁹ für Wasserstoff oder Alkyl steht,

in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysators umsetzt, wobei die Amino-Verbindungen der Formel (V) auch in Form ihrer Säureadditions-Salze eingesetzt werden können,

oder

β) mit Diisobutyl-aluminiumhydrid in Gegenwart von wässriger Ammoniumchlorid-Lösung sowie in Gegenwart eines organischen Verdünnungsmittels umsetzt,

oder mit Natriumborhydrid in Gegenwart eines Verdünnungsmittels umsetzt,

und gegebenenfalls die dabei entstehenden Pyrazolopyrimidine der Formel

$$R^{1}$$
 R^{2}
 R^{5}
 R^{5}
 R^{5}
 R^{6}
 R^{7}
 R^{3}
 $CH-R^{8}$
 OH

in welcher

 R^1 , R^2 , R^3 , R^5 R^8 und Hal die oben angegebenen Bedeutungen haben,

mit Alkylierungsmitteln der Formel

$$R^{10} - X^{1}$$
 (VI)

in welcher

5

10

15

20

5

R¹⁰ für Alkyl steht und

X¹ für Chlor, Brom, Iod oder den Rest R⁸O-SO₂-O- steht,

gegebenenfalls in Gegenwart einer Base und in Gegenwart eines Verdünnungsmittels umsetzt,

d) Pyrazolopyrimidine der Formel

in welcher

 $\mathbb{R}^1, \mathbb{R}^2, \mathbb{R}^3, \mathbb{R}^5$ und Hal die oben angegebenen Bedeutungen haben,

mit Säurehalogeniden der Formel

$$R^{11} \longrightarrow C \longrightarrow X^2$$
(VIII)

10

15

in welcher

R¹¹ für Alkyl, Benzyl oder Cycloalkyl steht und

X² für Chlor oder Brom steht,

oder

mit Säureanhydriden der Formel

$$R^{12} C O$$

$$R^{12} C O$$

$$C O O$$

$$C IX)$$

in welcher

5

R¹² für Alkyl steht,

jeweils in Gegenwart eines Katalysators und in Gegenwart eines Verdünnungsmittels umsetzt.

- 3. Mittel zur Bekämpfung von unerwünschten Mikroorganismen, gekennzeichnet durch einen Gehalt an mindestens einem Pyrazolopyrimidin der Formel (I) gemäß Anspruch 1 neben Streckmitteln und/oder oberflächenaktiven Stoffen.
- 4. Verwendung von Pyrazolopyrimidinen der Formel (I) gemäß Anspruch 1 zur Bekämpfung von unerwünschten Mikroorganismen.
- 5. Verfahren zur Bekämpfung von unerwünschten Mikroorganismen, dadurch gekennzeichnet, dass man Pyrazolopyrimidine der Formel (I) gemäß Anspruch 1 auf die unerwünschten Mikroorganismen und/oder deren Lebensraum ausbringt.
- 6. Verfahren zur Herstellung von Mitteln zur Bekämpfung von unerwünschten Mikroorganismen, dadurch gekennzeichnet, dass man Pyrazolopyrimidine der Formel (I) gemäß Anspruch 1 mit Streckmitteln und/oder oberflächenaktiven Stoffen vermischt.

Pyrazolopyrimidine

Zusammenfassung

Neue Pyrazolopyrimidine der Formel

$$R^{1}$$
 R^{2} R^{5} R^{5} R^{4} R^{4} R^{3} R^{4}

in welcher

R¹, R², R³, R⁴, R⁵ und Hal die in der Beschreibung angegebenen Bedeutungen haben,

mehrere Verfahren zur Herstellung dieser Stoffe und deren Verwendung zur Bekämpfung von unerwünschten Mikroorganismen.