Esercizio 13: Soluzione. Siano dati lo schema di relazione R(A,B,C,D,E,F,G,H,I,J) ed il relativo insieme di dipendenze funzionali $F = \{ABD \to E, AB \to G, B \to F, C \to J, CJ \to I, G \to H\}.$

- (8.1) Stabilire se F e' o meno una copertura minimale. In caso di risposta negativa, determinare una copertura minimale di F.
 - Soluzione. Applichiamo l'algoritmo per ottenere una copertura minimale.
 - Passo 1. I membri destri delle DF in F sono gia' unitari. Il passo 1 dell'algoritmo lascia dunque inalterato F.
 - Passo 2. Rimuoviamo dalle dipendenze gli attributi ridondanti. In $ABD \to E$ l'attributo A e' ridondante sse $E \in BD^+$. Poiche' $BD^+ = \{BDF\}$, concludiamo che A non e' ridondante in $ABD \to E$

L'attributo B e' ridondante in $ABD \to E$ sse $E \in AD^+$. $AD^+ = \{AD\} \Rightarrow B$ non e' ridondante in $ABD \to E$.

L'attributo D e' ridondante in $ABD \to E$ sse $E \in AB^+$. $AB^+ = \{ABFGH\} \Rightarrow D$ non e' ridondante in $ABD \to E$.

L'attributo A e' ridondante in $AB \to G$ sse $G \in B^+$. $B^+ = \{BF\} \Rightarrow A$ non e' ridondante in $AB \to G$.

L'attributo B e' ridondante in $AB \to G$ sse $G \in A^+$. $A^+ = \{A\}$ $\Rightarrow B$ non e' ridondante in $AB \to G$.

L'attributo C e' ridondante in $CJ \to I$ sse $I \in J^+$. $J^+ = \{J\}$ $\Rightarrow C$ non e' ridondante in $CJ \to I$.

L'attributo J e' ridondante in $CJ \to I$ sse $I \in C^+$. $C^+ = \{CIJ\} \Rightarrow C$ e' ridondante in $CJ \to I$. Sostituiamo dunque $CJ \to I$ con $C \to I$, ottenendo $F = \{ABD \to E, AB \to G, B \to F, C \to J, C \to I, G \to H\}$

– Passo 3. Eliminiamo infine le dipendenze ridondanti dall'insieme ottenuto al passo precedente. Per ogni dipendenza $X \to Y$ e' sufficiente verificare se y appartiene alla chiusura di X rispetto ad $F \setminus \{X \to Y\}$

$X \to Y \mid X^+ \text{ rispetto a } F \setminus \{X \to Y\} \mid X \to Y \text{ e' ridondante?}$			
$ABD \rightarrow E$	$ABD^+ = \{ABDGFH\}$	No	
$AB \rightarrow G$	$AB^+ = \{ABF\}$	No	
B o EF	$B^+ = \{B\}$	No	
C o J	$C^+ = \{CI\}$	No	
$C \rightarrow I$	$C^+ = \{CJ\}$	No	
$G \rightarrow H$	$G^+ = \{G\}$	No	

La copertura minimale richiesta e' dunque:

$$F = \{ABD \rightarrow E, AB \rightarrow G, B \rightarrow F, C \rightarrow J, C \rightarrow I, G \rightarrow H\}$$

(8.2) Determinare l'insieme delle chiavi candidate di R.

Gli attributi A, B, C, D devono far parte di ogni chiave poiche', non comparendo a destra di alcuna DF in F, non possono essere derivati. Dunque, ogni chiave condidata K e' tale che $K \supseteq \{A, B, C, D\}$. Si ha $ABCD^+ = ABCDEFGHIJ = R$. Dunque, ABCD e' una superchiave, rispetta il vincolo di minimalita' ed e' l'unica chiave candidata di R.

Esercizio 14: Soluzione. Siano dati lo schema relazionale R(A,B,C,D,E,F) e gli insiemi di dipendenza funzionali $G = \{AB \to C, B \to A, AD \to E, BD \to F\}$ ed $H = \{AB \to C, B \to A, AD \to EF\}$

- (9.1) Determinare una copertura minimale per G ed una copertura minimale per H.
 - Soluzione. Calcoliamo una copertura minimale per G con l'algoritmo visto a lezione.
 - Passo 1. I membri destri sono gia' unitari e dunque il primo passo non apporta modifiche a G.
 - Passo 2. Rimuoviamo gli attributi ridondanti da ogni dipendenza.

L'attributo A e' ridondante in $AB \to C$ sse $C \in B^+$. $B^+ = \{BAC\} \supseteq \{B\}$. A e' dunque ridondante in $AB \to C$ che viene sostituita con $B \to C$.

L'attributo A e' ridondante in $AD \to E$ sse $E \in D^+$. $D^+ = \{D\}$ $\Rightarrow A$ non e' ridondante in $AD \to E$.

L'attributo D e' ridondante in $AD \to E$ sse $E \in A^+$. $A^+ = \{A\}$ $\Rightarrow D$ non e' ridondante in $AD \to E$.

L'attributo B e' ridondante in $BD \to F$ sse $F \in D^+$. $D^+ = \{D\}$ $\Rightarrow B$ non e' ridondante in $BD \to F$.

L'attributo D e' ridondante in $BD \to F$ sse $F \in B^+$. $B^+ = \{B\}$ $\Rightarrow D$ non e' ridondante in $BD \to F$.

– Passo 3. Eliminiamo infine le dipendenze ridondanti dall'insieme ottenuto al passo precedente. Per ogni dipendenza $X \to Y$ e' sufficiente verificare se y appartiene alla chiusura di X rispetto ad $F \setminus \{X \to Y\}$

$X \to Y \mid X^+$ rispetto a $F \setminus \{X \to Y\} \mid X \to Y$ e' ridondante?			
$B \rightarrow C$	$B^+ = \{BA\}$	No	
$B \rightarrow A$	$B^+ = \{BC\}$	No	
$AD \rightarrow E$	$AD^+ = \{AD\}$	No	
$BD \to F$	$BD^+ = \{BDCAE\}$	No	

L'insieme di DF:

$$\{B \to C, B \to A, AD \to E, BD \to F\}$$

e' dunque una copertura per G. Operando analogamente su H otteniamo la seguente copertura minimale:

$$\{B \to C, B \to A, AD \to E, AD \to F\}$$

- (9.2) Stabilire se G ed H sono equivalenti.
 - Soluzione. Dobbiamo verificare che g e' coperto da H ed H e' coperto da G. Verifichiamo se G e' coperto da H ovvero G ⊆ H⁺. Le dipendenze AB → C, B → A, AD → E in G appartengono anche ad H e dunque ad H⁺. Vediamo se BD → F ∈ H⁺. BD → F ∈ H⁺ sse F ∈ BD⁺ (rispetto ad H). BD⁺ rispetto ad H equivale a {BDACEF ⊇ {F}}. Possiamo dunque concludere che G ⊆ H⁺. Al fine di provare H ⊆ G⁺ dobbiamo verificare se AD → F ∈ G⁺. Si ha F ∉ AD⁺ (rispetto a G). Infatti AD⁺ = {ADE}. Dunque H ⊈ G⁺ e G ed H non sono equivalenti.