Prova 3 (P3) – Grafos (INE5413)

Ciências da Computação – Universidade Federal de Santa Catarina Prof. Rafael de Santiago

Nome:	Matrícula:

Observações gerais:

- A prova deverá entregue até as 11h50m.
- Pode ser utilizado material para consulta. Não será permitido compartilhamento de material de consulta.
- Caso seja necessário, uma das questões poderá ser entregue depois. Essa entrega deverá ser realizada de forma manuscrita (a próprio punho) em uma única página. A resposta deverá estar no escaninho do professor no prédio do INE (depto de Informática e Estatística) até 09/12/2022 às 12h00 (meio dia). A resposta deverá ser redigida individualmente sem apoio de outros colegas.

> Informe aqui qual questão será entregue posteriormente: _____

- 1. (2.5pt) Considere um grafo não dirigido e não-ponderado G = (V, E) em formato de anel, no qual, $V = \{1, 2, ..., n\}$ e $E = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, ..., \{n, 1\}\}$. É possível criar um algoritmo para obter a coloração mínima de G em tempo O(n)? Se sim, especifique o algoritmo. Se não for possível, justifique.
- 2. (2.5pt) No contexto do problema de emparelhamento maximal de grafos bipartidos, uma busca em largura com múltiplas origens pode localizar mais de um caminho aumentante e alternante, o que consequentemente aumentaria o tamanho emparelhamento encontrado até então em mais de uma unidade? Justifique.
- 3. (2.5pt) Considere F sendo o valor do fluxo

máximo obtido para um grafo dirigido e ponderado G = (V, A, c), a origem $s \in V$ e o destino $t \in V$. Considere também o valor $l_i = \min_{(u,v)\in A} c((u,v))$ e $l_f = \min\left\{\sum_{v\in N^+(s)} c((s,v)), \sum_{v\in N^-(t)} c((v,t))\right\}$. É correto afirmar que $l_i \leq F \leq l_f$? Justifique.

4. (2.5pt) Dado o conjunto de atividades abaixo e seus requisitos, crie um grafo CPM (caminho crítico) e informe quais são as atividades críticas.

Atividade	Requisitos	Duração
A	-	3
В	-	2
\mathbf{C}	В	5
D	A, C	7
E	B, D	5

Boa Prova!