ECON 703, Fall 2007 Answer Key, HW4

1.

f is separately continuous: For each fixed t_0 , f is a function of s only.

$$f(s,t_0) == \begin{cases} \frac{2s}{t_0} & , s \in [0,t_0/2] \\ 2 - \frac{2s}{t_0} & , s \in (t_0/2,t_0] \\ 0 & , s \in (t_0,1] \end{cases}.$$

Observe that $f(s,t_0)$ is linear or constant (so is continuous) in each sub-domain $[0,\frac{t_0}{2}]$, $(\frac{t_0}{2},t_0]$ and $(t_0,1]$. So the discontinuity would occur only at $s=\frac{t_0}{2}$ and $s=t_o$. We know that $f(\frac{t_0}{2}_-,t_0)=\lim_{s\to\frac{t_0}{2}_-}f(s,t_0)=\lim_{s\to\frac{t_0}{2}_+}f(s,t_0)=\lim_{s\to\frac{t_0}{2}_+}f(s,t_0)=\lim_{s\to\frac{t_0}{2}_+}(2-\frac{2s}{t_0})=1$, so we have $f(\frac{t_0}{2}_-,t_0)=f(\frac{t_0}{2}_+,t_0)=1=f(\frac{t_0}{2},t_0)$. Therefore, $f(s,t_0)$ is continuous at $s=\frac{t_0}{2}$. Similarly, $f(s,t_0)$ is continuous at $s=t_0$. So $f(s,t_0)$ is continuous in [0,1].

For fixed value of s, we can rewrite f as follows:

$$f(0,t) = 0, \forall t \in [0,1],$$

and for $s_0 > 0$,

$$f(s_0, t) = \begin{cases} \frac{2s_0}{t} & , t \in [2s_0, 1] \\ 2 - \frac{2s_0}{t} & , t \in [s_0, 2s_0) \\ 0 & , t \in [0, s_0). \end{cases}$$

(Note: if $s_0 = 1$, $f(s_0, t) = 0$ for $t \in [0, 1]$. if $s_0 = 0$, $f(s_0, t) = 0$ for $t \in [0, 1]$)

Then the similar arguments apply: $f(s_0,t)$ is continuous in each sub-domain $[0,s_0)$, $[s_0,2s_0)$ and $[2s_0,1]$ since $\frac{2s_0}{t}$, and $2-\frac{2s_0}{t}$ are continuous functions of t except at t=0. Also, since $f(s_0,2s_{0-})=f(s_0,2s_{0+})=1=f(s_0,2s_0)$ and $f(s_0,s_{0-})=f(s_0,s_{0+})=0=f(s_0,s_0)$, $f(s_0,t)$ is continuous at $t=2s_0$ and $t=s_0$ respectively.

f is not joint continuous: Let $(s_n, t_n) = (\frac{1}{2n}, \frac{1}{n})$. Then $f(s_n, t_n) \to 1$, but $f(\lim(s_n, t_n)) = f(0, 0) = 0$.

B is not closed: We show this by proving that B^c is not open. Take the point $x=(0,1)\in B^c$. For any open ball B(x,r), we can find an N, such that 1) $y_1=\frac{2}{(4N-3)\pi}< r$, thus $y=(y_1,1)\in B(x,r)$; 2) $\sin\left(\frac{1}{y_1}\right)=1$, thus $y\in B$, i.e., $y\notin B^c$. By 1) and 2), B(x,r) is not a subset of B^c . Therefore B^c is not open, and B is not closed. In this example, all points with x=0 and $y\in [-1,1]$ are limit points of B, because any open ball around this kind of point has point in B other than that point.

B is not open, because no neighborhoods $B((\frac{1}{\pi},0),r)$ of $(\frac{1}{\pi},0)$ is contained in B. (For example $(\frac{1}{\pi},\frac{r}{2}) \in B((\frac{1}{\pi},0),r)$ but $\notin B$.)

B is not bounded, because the range of the x coordinate is unbounded.

B is not compact, because B is not closed in \mathbb{R}^2 .

3.

Yes, every point of every open set $E \subset \mathbb{R}^2$ is a limit point of E. Take any $x \in E$, then there exists $r \downarrow 0$, such that $B(x,r) \subset E$. Thus under Euclidean Metric, any neighborhood of x must contain a y, such that $y \neq x$ and $y \in B(x,r)$ (hence $y \in E$).

(here, we are talking about Euclidean Metric. This statement is not correct if we use discrete metric.) For a closed set, the answer is no. The set containing just one point is closed. But this point is not a limit point of the set. In fact, a closed set is composed of limit point and isolated point. In (Z, d_2) , any point in any set is an isolated point.

4.

Way1: f(x,y) is continuous, so f(x,y) is continuous at (x_0,y) . So $\forall \epsilon$, there is a δ s.t. if $d((x_0,y),(x,y')) < \delta$, then $d(f(x_0,y),f(x',y')) < \epsilon$, especially, if $d((x_0,y),(x_0,y')) < \delta$, then $d(f(x_0,y),f(x_0,y')) < \epsilon$. Under product metric, $d((x_0,y),(x_0,y')) = maxd(x_0,x_0),d(y,y') = d(y,y')$. So, $ifd(y,y') < \delta$, then $d(h(y),h(y')) = d(f(x_0,y),f(x_0,y')) < \epsilon$. So h(y) is continuous. Similarly, we can prove g(x) is continuous.

Way2: Given a neighborhood $V = B(f(x_0, y), r)$ of $f(x_0, y)$ in Z, since f is continuous, there exists a neighborhood $U = B((x_0, y), s)$ of (x_0, y) in $X \times Y$ s.t. $f(U) \subset V$. Projecting U to the Y coordinate will induce a neighborhood B(y, s) of y, and then $h(B(y, s)) = f(x_0, B(y, s)) \subset f(B(x_0, y), s) = f(U) \subset V$. So h(y) is continuous. A similar argument applies for g(x).

Note: If U_y is the projection of U to Y coordinate, then under product metric, "U open in $X \times Y$ " implies U_y open in Y.

Proof: Suppose $B_y((x,y),r)$ is the projection of B((x,y),r). $y' \in B_y((x,y),r) \iff (x,y') \in B((x,y),r) \iff d((x,y),(x,y')) < r \iff d(y,y') < r (because d(y,y') = max(d(x,x),d(y,y')) = d((x,y),(x,y'))) \iff y' \in B(y,r)$. Therefore $B(y,r) = B_y((x,y),r)$.

Given $x \in U_x$, for any $y \in U_y$, we have $(x,y) \in U$. Because U is open, then $\exists B((x,y),r) \subset U$. So $B_y((x,y),r) \subset U_y$, so $B_y((x,y),r) \subset$

5. "⇒":

Suppose that f is continuous, we want to show that G(f) is closed in $X \times Y$.

Consider any sequence $\{(x_n, y_n)\}\subset G(f)$ s.t. $(x_n, y_n)\to (x, y)$ as $n\to\infty$. Since we are using the product metric in $X\times Y$, $\{x_n\}$ and $\{y_n\}$ converge to x and y respectively. Since $y_n=f(x_n)$ and f is continuous, $y=\lim_{n\to\infty}y_n=\lim_{n\to\infty}f(x_n)=f(x)$. So $(x,y)\in G(f)$, hence G(f) is closed. " \Leftarrow ":

Suppose that G(f) is closed in $X \times Y$, we want to show that f is continuous.

Suppose to the contrary, i.e. f is not continuous, so there must exist a sequence $\{x_n\}$ which converges to x, but $f(x_n)$ does not converge to f(x) (there are two possibilities: either 1) $y = \lim_{n\to\infty} f(x_n) \neq f(x)$ or 2) $\{f(x_n)\}$ does not converge.).

Since $\{f(x_n)\}$ does not converge to f(x), there must exist $\varepsilon > 0$ such that for any N, there is a $n \ge N$ s.t. $d_Y(f(x_n), f(x)) > \varepsilon$. Now since Y is compact, $\{f(x_n)\}$ must have a convergent subsequence $\{f(x_{n_k})\}$. Suppose it converges to y, then we have $\forall \epsilon, \exists N, s.t, \forall n \ge N$, we have $d(f(x_{n_k}), y) < \epsilon$. But as $\{f(x_{n_k})\}$ is a subsequence of $\{f(x_n)\}$, so $d(f(x_{n_k}), f(x)) > \epsilon$ for some $n \ge N$. Therefore $y \ne f(x)$. Since we are using the product metric, the sequence $\{(x_{n_k}, f(x_{n_k}))\} \subset G(f)$ converges to $(x, y) \notin G(f)$. Thus G(f) is not closed.