Physics Cheat Sheet (IB New/Old Spec) (AP Physics B/C)

v: velocity
a: acceleration
t: time elapsed
s: distance
a: the rate of
velocity changing

1. Kinematics	
Motion	Forces
v = u + at	W = mg
$s = ut + \frac{1}{2}at^2$	F = ma
$v^2 = u^2 + 2as$	$F_{fs} = \mu_d N$
$s = \frac{(v+u)t}{2}$	$F_{fd} \leq \mu_s N$
$a = \frac{\mathrm{d}v}{\mathrm{d}t}$	$F_b = \rho V g$
dt	$F_d = 6\pi\eta rv$
	$a = \frac{v^2}{r} = \omega^2 r = \frac{4\pi^2 r}{T}$
Work, Energy and Power	Momentum and Impulse
$W = Fs \cos\theta = \int F \mathrm{d}r$	p = mv
$E_k = \frac{1}{2}mv^2$	$p_i = p_f$
$\begin{array}{ccc} & & 2 & & \\ & & & & \\ E & & & & \\ \end{array}$	$p_i = p_f$ $E_k = \frac{p^2}{2m}$

 $J = F\Delta t = \Delta p = \int F \, \mathrm{d}t$

P = Fv

 $E\% = \frac{E_U}{\sum E}$

 $\tau = rF \sin\theta = Ia$

Rotational Mechanics* (AP Physic C) (New Spec HL) (Old Spec Option B)

τ: torque
α: angular
acceleration
ω: angular speed
(initial)
ω: angular speed
(final)
Δθ: angular
displacement
l: inertia
L: angular

momentum

k: elastic coefficient

h: height

Δx: change in displacement P: power

 $\begin{aligned} &\omega_f = \omega_i + at \\ &\omega_f^2 = \omega_i^2 + 2a\theta \\ &\Delta\theta = \frac{\omega_i + \omega_f}{2}t = \omega_i t + \frac{1}{2}at^2 \\ &I = \sum mr^2 \\ &L = I\omega \end{aligned}$

$$\Delta L = \tau \Delta t = \Delta (I\omega)$$

$$E_k = \frac{1}{2}I\omega^2 = \frac{L^2}{2I}$$

W: weight F: force M: mass μα: coefficient of friction (dynamic) μs: coefficient of friction (static) Ffs: friction (dynamic) Ffd: friction (static) F_b: buoyancy Fd: drag force r: radius η: viscosity ω: angular speed F=ma: Newton's 2nd Law T: time-period p: momentum pi=pf: conservation of

momentum

J: impulse

F: the rate of changing
momentum (Newton's 2nd
Law)

x', u', t': position, speed and time in the second reference frame x, u, t: position, speed and time in the first reference

frame
γ: Lorenz factor
c: speed of light
Δt: time between
events

 $\Delta s: \ spacetime \\ interval \\ \Delta x: \ distance \\ \Delta t: \ relativistic \ time \\ \Delta to: \ proper$

relativistic time

Special Relativity* (New Spec HL) (Old Spec Option A)

$$x' = x - vt$$

$$u' = u - v$$

$$\gamma = \frac{1}{(1 - \frac{v^2}{c^2})^{\frac{1}{2}}}$$

$$x' = \gamma (x - vt)$$

$$t^{'} = \gamma (t - \frac{vx}{c^2})$$

$$u' = \frac{u - v}{1 - \frac{uv}{c^2}}$$

$$\Delta s^2 = c^2 \Delta t^2 - \Delta x^2$$

$$\Delta t = \gamma \Delta t_0$$

$$L = \frac{L_0}{v}$$

$$\theta = \arctan \frac{v}{c}$$

L: relativistic length
Lo: proper
relativistic length
0: angle between axes of
inertial frames of
reference

2. Thermal Physics

Thermal Concepts

$Q = mc\Delta T$

$$Q = mL$$

$$\frac{\Delta Q}{\Delta t} = -kA \frac{\Delta T}{\Delta x}$$

$$\rho = \frac{m}{V}$$

$$L = \sigma A T^4$$

$$b = \frac{L}{4\pi d^2}$$

source

b: brightness

Gas Modelling

$$P = \frac{F}{A}$$

$$n = \frac{N}{N_A}$$

$$pV = nRT$$

$$\overline{E_k} = \frac{3}{2}k_BT = \frac{3}{2}\frac{R}{N_A}T$$

$$U = \frac{3}{2}k_B NT$$

$$P = \frac{1}{3}\rho v^2$$

$$P_1V_1 = P_2V_2$$

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

$$Q = \Delta U + W$$

P: pressure

N: number of particles

Na: Avogadro constant

n: number of moles

R: gas constant

E_k: average kinetic

energy

U: total energy (ideal)

ks: Boltzmann constant

v: average particle

speed

Q: total heat energy

ΔU: change in internal

energy

W: work done by gas

P₁/T₁=P₂/T₂: Charles'

Law

P₁V₁=P₂V₂: Boyle's Law

Q: heat energy
c: specific heat
capacity
T: temperature (K)
L: specific latent heat
k: conductivity
constant
A: area
Δx: length of the
object
p: density
V: volume
σ: Stephan-Boltzmann
constant
L: luminosity/power

W: work done by gas ΔS: change in entropy ΔQ: heat transferred S: entropy Ω : number of microstates Tc: temperature of cold reservoir Th: temperature of hot

reservoir

I: Current

Thermodynamics* (AP Physics B) (New Spec HL)

$$W = P\Delta V$$

$$\Delta S = \frac{\Delta Q}{T}$$

$$S = k_B \ln \Omega$$

Carnot efficiency =
$$1 - \frac{T_c}{T_h}$$

$$PV^{\frac{5}{3}} = \text{Constant}$$

Q: Charge Columb's Law - F: force, r: radius k: constant εο: permittivity of free space

V: potential difference W: work done by charge

I: current in a wire n: number of charged

E: electric field strength

particles v: drift velocity

q: average charge

3.	Electricity	

Electric Fields Electric Currents $I = \frac{Q}{t}$ $\sum V_{\text{Loop}} = 0$ $\sum I_{\text{Junction}} = 0 \text{ (Junction)}$ $F = \frac{kq_1q_2}{r^2}$ $R = \frac{V}{I}$ $k = \frac{1}{4\pi\varepsilon_0}$ $P = VI = I^2 R = \frac{V^2}{R} = \frac{\Delta W}{\Delta t}$ $V = \frac{W}{a}$ $\sum R_{\text{Series}} = R_1 + R_2 + \dots$ $E = \frac{F}{a} = -\frac{\Delta V}{\Delta R}$ $\sum R_{\text{Parallel}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$ I = nAvq $R = \frac{\rho L}{\Lambda}$ $\varepsilon = I(R + r)$

Io, Vo: Peak current, voltage Irms, Vrms: Root mean square current, voltage Pmax: Peak power

 \overline{P} : Mean power

$I_{rms} = \frac{I_0}{\sqrt{2}}$

Power Generation* (Old Spec HL)

$$V_{rms} = \frac{V_0}{\sqrt{2}}$$

$$R = \frac{V_{rms}}{I_{rms}}$$

$$P_{max} = I_0 V_0$$

$$\overline{P} = \frac{1}{2}I_0V_0$$

Capacitance* (AP Physics C) (Old Spec HL)

$$C = \frac{q}{V} = \frac{\kappa \varepsilon_0 A}{d} = \frac{\varepsilon A}{d}$$

$$\sum C_{\text{Parallel}} = C_1 + C_2 + \dots$$

$$\frac{1}{\sum C_{\text{Series}}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$$

$$U = \frac{1}{2}CV^2 = \frac{1}{2}EV$$

$$\tau = RC$$

Kirchhoff's Law - total p.d. in a loop, total current in a junction equals to 0 Ohm's Law - R: resistance P: Power Circuit Laws - total resistance: the sum of resistances (series); reciprocal total resistance: the sum of reciprocals of resistance (parallel) L: length of the material

C: capacitance к: dielectric constant ε: emf Capacitance Laws – the total capacitance (parallel): the sum of capacitances; the reciprocal of total capacitance (series): the sum of reciprocals capacitances

τ: time constant

r: internal resistance

A: area

ε: emf

Transformer: ε_p: primary emf εs: secondary emf N_p: primary coil turns Ns: secondary coil turns lp: primary coil current ls: secondary coil current

$$\frac{\varepsilon_p}{\varepsilon_s} = \frac{N_p}{N_s} = \frac{I_s}{I_p}$$

$$q=q_0e^{-\frac{t}{\tau}}$$

$$I = I_0 e^{-\frac{t}{t}}$$

$$V = V_0 e^{-\frac{t}{\tau}}$$

$$C = -\frac{t}{R \ln \frac{Q}{Q_0}}$$

Discharge:

q(Q)o, lo, Vo: initial charge, current

and p.d.

t: time

4. Wave

Simple Harmonic Motion

Diffraction, Resolution, Interference (SL)

Snell's Law:

n₁, n₂: refractive index

of 2 mediums

θ1, θ2: initial angle and

refracted angle

v₁, v₂: speed of wave in

2 mediums

s: fringe spacing

λ: wave length

n: integer - 1,2,3...

b: slit width

D: distance between

source and screen

d: distance between

sources

n: refractive index

m: integer - 1,2,3...

d: slit spacing

Rayleigh's Criterion: θ

 $=1.22\lambda/b$

R: Resolvance

Δλ: smallest λ

N: number of slits

$\omega = \frac{2\pi}{T}$

x: position

v: velocity

xo: initial position

a: acceleration

lowest point

highest point

for pendulum

T_{Mass-Spring}: time-

period for mass

spring

Eт: initial energy

Ep: potential energy

T_{Pendulum}: time-period

x=x₀ sinωt, v=vω₀

 $cos\omega t$, $a=-\omega^2 x_0 sin\omega t$:

 $x=x_0 \cos \omega t$, $v=-v\omega_0$

sin ω t, $a=\omega^2x_0\cos\omega t$:

$$a = -\omega^2 x$$

$$x = x_0 \sin \omega t$$
, $x = x_0 \cos \omega t$

$$v = \omega x_0 \cos \omega t$$
, $v = -\omega x_0 \sin \omega t$

$$a = -\omega^2 x_0 \sin \omega t$$
, $a = \omega^2 x_0 \cos \omega t$

$$v = \pm \omega \, (x_0^2 - x^2)^{\frac{1}{2}}$$

$$E_k = \frac{1}{2} m\omega^2 (x_0^2 - x^2)$$

$$E_T = \frac{1}{2}m\omega^2 x_0^2$$

$$E_P = E_T - E_b$$

$$T_{\text{Pendulum}} = 2\pi \sqrt{\frac{l}{g}}$$

$$T_{\text{Mass-Spring}} = 2\pi \sqrt{\frac{m}{k}}$$

$$\frac{n_1}{n_2} = \frac{\sin \theta_1}{\sin \theta_2} = \frac{v_2}{v_1}$$

 $s = \frac{\lambda D}{d}$ (Double slits)

Constructive Path Difference = $n\lambda$

Destructive Path Difference = $(n + \frac{1}{2})\lambda$

Diffraction, Resolution, Interference (HL)

$$\theta = \frac{\lambda}{b} = \frac{d}{D} \text{ (single slit)}$$

Constructive Interference: $2dn = (m + \frac{1}{2})\lambda$

Destructive Interference: $2dn = m\lambda$

 $n\lambda = d\sin\theta$

$$\theta = 1.22 \frac{\lambda}{b}$$

$$R = \frac{\lambda}{\Delta \lambda} = mN$$

Wave Behavior

$T = \frac{1}{f}$

 $I \propto A^2$, $I \propto x^{-2}$

 $I = I_0 \cos^2 \theta$

Doppler Effect

Moving source:
$$f' = f \frac{v}{v \pm u_s}$$

Moving observer: $f' = f \frac{v \pm u_s}{v}$

$$\frac{\Delta f}{f} = \frac{\Delta \lambda}{\lambda} \approx \frac{v}{c}$$

Moving source:

+: moving away

-: moving towards

Moving observer:

+: moving towards

-: moving away us: initial speed

f: frequency v: speed of wave I: intensity 10: initial intensity A: area

θ: angle

Circular motion – F:
centripetal force, r:
radius, m: mass, v:
velocity
G: gravitational
constant
M: mass of the

planet/stars

Vg: gravitational
potential
g: gravitational
constant
r: radius
Δr: distance
travelled
EP: gravitational
potential energy
m1, m2: mass of
two objects
vesc: escaping
speed

Vorbit: orbiting speed

Gauss Law – E: field strength, A: area (gauss surface) ε: emf UL: potential energy of induction L: inductance dB: rate of changing field strength

W: work done $\Delta \text{Ve: p.d. in}$ magnetic field $\Delta \text{Vg: p.d. in}$ gravitational field

5. Fields

Gravitational Fields (SL)

$F = qvB\sin\theta$ $F = BIL\sin\theta$ $\frac{F}{L} = \frac{\mu_0 I_1 I_2}{r}$
Magnetic Fields (HL)
$V_e = \frac{kq}{r}$
$E = -\frac{\Delta V_e}{\Delta r} = \frac{dV}{dr}$
$E_P = qV_e = \frac{kq_1q_2}{r^2}$

Motion in Magnetic Fields (SL)

Electromagnetic Induction* (AP Physics C) Electromagnetic Induction (HL)

$$\oint E \, \mathrm{d}A = \frac{Q}{\varepsilon_0}$$

$$\varepsilon = \oint E \, \mathrm{d}l$$

$$F = \int I \, \mathrm{d}l \, B$$

$$U_L = \frac{1}{2} L I^2$$

$$\mathrm{d}B = \frac{\mu_0}{4\pi} \frac{I \, \mathrm{d}l^* r}{r^3}$$

Describing Fields

$$W = q\Delta V_e$$

$$W = m\Delta V_{g}$$

F: magnetic force q: charge v: speed of charged particle B: magnetic field strength I: current on the rod L: length of the rod μο: free space permeability r: separation distance Ve: electrical potential E: electric field strength E_P: Electrical potential energy k: constant

q1, q2: charges of two

point chargesr: distance betweenpoint charges

Φ: Magnetic flux
Lenz Law: emf equals
to the negative rate of
changing magnetic
flux linkage
v: speed of rod
L: length of rod

E: energy
h: Planck constant
f: frequency
c: light speed

Emax: maximum kinetic energy

\$\phi\$: Work function E: energy

n: energy level
m: electron mass
v: speed
r: orbital radius

P(r): the probability
that an electron
will be found in a
small volume
ψ: wave function
ΔV: small volume

d: distance p: parallax angle

adioactivity and Radiation (SL)	Nuclear Physics (SL)
=hf	$E = mc^2$
$=\frac{hc}{E}$	Nuclear Physics (HL)
	$R = R_0 A^{\frac{1}{3}}$
dioactivity and Radiation (HL)	$N = N_0 e^{-\lambda t}$
$max = hf - \phi$	$A = \lambda N_0 e^{-\lambda t}$ λ
$= -\frac{13.6}{n^2}eV$	$\sin heta pprox rac{\lambda}{D}$
$vr = \frac{nh}{2\pi}$	$T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$
eisenberg Uncertainty Principle (Old Spec HL)	$\lambda = \frac{h}{p}$
	$\lambda_f - \lambda_i = \frac{h}{m_e c} (1 - \cos \theta)$
$f(r) = \psi ^2 \Delta V$ $f(\Delta p) \ge \frac{h}{4\pi}$	
$\Delta t \geq \frac{h}{4\pi}$	

Stellar Quantities (New Spec HL)

 $d \text{ (parsec)} = \frac{1}{p \text{ (arc-second)}}$

E: energy

R: nuclear radius
Ro: fermi radius
t: time
A: nucleon number
N: parent nuclide
count at t
No: initial nuclide
count (t=0)
\(\lambda\): decay constant
T1: half life
DE Broglie's formula —

λ: wavelength, p: momentum λi, λr: initial, final wavelength me: electron mass θ: scattering angle