

第二章 制动系统

- 1 常规制动组件
- 1.1组件位置索引

1.2 制动系统的检查与测试

1、组件检查

组件	检查程序	其它检查项目
制动主缸	检查损坏或漏油迹象: ● 油杯或油杯油封 ● 管路接头 ● 制动主缸和真空助力器之间	油杯盖上的油封鼓起,说明被矿物油污染
制动软管	检查损坏或漏油迹象: ● 管路接头和与制动器连接端扁接头 ● 软管和管路,还要检查是否扭曲或损坏	管路鼓起、扭曲或弯曲
制动钳	检查损坏或漏油迹象: ● 活塞密封 ● 制动软管扁接头 ● 排气阀螺钉	制动钳销被卡死或粘结
ABS/ESP控制单元 检查损坏或漏油迹象: ● 管路接头 ● 液压单元		

制动时,制动踏板下沉/逐渐失灵

- (1)接通整车电源,启动发动机,使其有 足够的时间对真空助力器抽真空。
- (2) 沿着方向盘的底部贴一片 2 英寸的不透光胶纸,并在胶纸上画一条水平参考线。
- (3) 轻轻地踩下制动踏板并保持此状态 (大约相当于让 A /T车保持缓行所需的压力), 然后松开驻车制动。
- (4) 在踩住制动踏板的同时,捏住放在其后方的卷尺端部。然后,将卷尺向上拉,直至方向盘,注意卷尺会在何处与你在胶纸上画的参考线对齐。
- (5)给制动踏板施以稳定的压力,并保持3分钟。
 - (6) 观察卷尺。
- 如果位移小于 10mm,那么制动总泵是合格的。
- 如果位移超过 10mm,则更换制动总泵。 制动片迅速磨损、汽车震动(长时间驾驶 后)或制动踏板高而难踩。
- (1) 驾驶汽车直至制动器拖滞,或直至踏板变得高而难踩。在长时间的试车过程中,可能要踩 20 次或更多次的制动踏板。
- (2)接通整车电源,用举升机举升汽车, 并用手转动四个车轮。

是否有车轮存在制动器拖滞现象?

是 转向第 3 步

否 寻找其它可能引起制动片磨损、踏 板偏高或汽车震动的原因。

(3) 关掉整车电源,反复踩踏制动踏板数次,使制动助力器内的真空耗尽,然后再次转动车轮,检查是否存在制动器拖滞现象。

是否有车轮存在制动器拖滞现象?

是 转向第 4 步

否 更换真空助力器

(4) 不拆除制动管路, 松开螺栓, 并使制动总泵与助力器分离, 然后转动车轮, 检查是否存在制动器拖滞现象。

是否有车轮存在制动器拖滞现象?

是 转向第 5 步

否 检查制动踏板位置开关的调整情况和 踏板的自由行程。

(5) 松开制动总泵上的液压管路,然后转动车轮,检查是否存在制动器拖滞现象。

是否有车轮存在制动器拖滞现象?

是 转向第6步

否 更换制动主缸。

(6) 松开各制动钳上的排放阀螺钉, 然后转动车轮, 检查是否存在制动器拖滞现象。

是否有车轮存在制动器拖滞现象?

是 分解出现制动器咬死车轮上的制动 钳,并维修故障。

否 检查制动主缸盖密封圈是否膨胀、 制动主缸中的制动液是否变色或污染、制动管 路是否损坏。

如果上述任何一项损坏,请予以更换。如果以上项目良好,则更换 ESP 液压单元。

1.3 制动踏板和制动踏板灯开关的调整

1、制动踏板开关间隙

(1) 逆时针转动制动踏板灯开关(C), 拆下制动灯开关, 然后将制动灯开关插入安装支座 B, 使 AB 间的间隙有 1.5-2.5mm, 并确认松开踏板后制动指示灯熄灭。

(2) 检查制动踏板的自由行程。

2、踏板自由行程

(1) 整车退电 6min 后,用手推动踏板,以检测踏板(B) 处的自由行程(A)。

自由行程: ≤5mm

(2) 如果踏板自由行程不符合技术要求,则调整制动踏板位置开关(C)。如果踏板行程不够,则可能引起制动器拖滞。

1.4 制动踏板的更换

- (1) 拆除仪表板。
- (2) 取下锁销(A)、销轴(B)。

- (3) 拆除制动踏板支架上连接管梁的螺栓 (D) 和卡片 (E)。
 - (4) 断开制动踏板位置开关插接器(C)
- (5) 拆除 4 个非金属嵌件六角法兰面锁紧螺母(F)。
 - (6) 将制动踏板总成拆除。
 - (7) 以与拆卸相反的顺序进行安装。

(8) 对制动踏板和制动踏板位置开关进行 调整。

要求力矩:

和管梁(螺栓D): 22±2N.m 和助力器(螺母F): 22±2N.m

1.5 制动系统排气

注:

- ●排出的制动液不可再用。
- ●须使用纯正的 **DOT 4 制动液**。使用非规定制动液可能会造成腐蚀,并缩短系统使用寿命。
- ●请勿让制动液溅洒在车辆上,否则,可能损坏油漆,如果制动液已经溅洒在漆层上,应立即用水清洗。
- ●在开始进行排气时,制动总泵储液罐的液位 必须处于最大液位标志处(上液位),每个制 动钳排放之后都必须检查。
- ●按要求补足制动液。
- (1) 确认储液罐中制动液液位处于最大液位标志处("MAX"上液位)。
- (2) 将一段干净的排放管接在排放螺钉上。
- (3) 由助手缓慢踏压制动踏板几次,然后施加持续不变的压力。
- (4) 从左后方开始,松开制动器排气螺钉,让空气从系统中释放出来,然后牢固地拧紧排气螺钉。
- (5) 按图示顺序,依次对每个车轮进行上 述操作,直到排放管中出来的制动液中见不到 气泡为止。

排液顺序: 左后→右前→右后→左前

前:

(6) 再次将制动总泵储液罐注满, 使液面达到 "MAX"(最高液位)标线。

1.6 制动系统指示灯电路示意图 ^{仪表总成}

1.7 制动液液位开关的检测

浮标在下位和上位时,检查端子(1)之间

的导通性。

- ●将储液罐中的制动液全部排出,浮标下 沉,端子间应导通。
- ●将储液罐注满制动液,使液面达到 "MAX" (最高液位)标线(A),浮标上 浮,端子间应断开。

1.8制动软管及管路的检测

- (1) 检查制动软管是否损坏、老化、泄露、相互干扰既扭曲。
- (2) 检查制动管路是否损坏、锈蚀及泄漏。还要检查制动管路是否被碰弯。
- (3) 检查软管和管路接头和连接处是否出现泄漏,必要时重新紧固。
- (4)检查制动总泵和ESP控制单元是否破损或 泄漏。

注: 一旦检修制动管路, 务必更换制动管路管夹。

1.9 制动软管的更换

注:

- 在重新安装之前,检查所有零件,上 面不得有灰尘和其它杂质。
 - 按规定更换新零件。
- 勿将制动液溅洒在车辆上;否则可能 损坏油漆,如果制动液已经溅洒在漆层上,应 立即用水将其清洗干净。
- (1)制动软管被扭曲、开裂或泄漏,请更换制动软管(A),否则会出现泄漏。

- (2) 使用 10#油管扳手,将制动软管从制动管路(B)上拆下。
- (3) 将制动软管(A) 上的 E 型卡拆除并 废弃。
- (4) 拆除制动软管(A), 将制动软管与制动钳分离。
- (5) 从减振器支架,转向节上拆除制动软管。(后制动软管无此步骤)
 - (6) 首先使用紧固螺栓(B) 将制动软管
- (A) 装在减振器支架上, 然后用连接螺栓
- (C) 和新的密封垫圈(D) 将制动软管与制动钳连接起来(见下图)。

(7) 用新的 E 型卡 (C) 将制动软管 (A) 装在制动软管上支架 (B) 上 (见下图)。

BYD Lt亚迪汽车 BYD AUTO

- (8) 把制动管路(D) 与制动软管连接起来。
- (9)制动软管安装完毕后,将制动系统排气,参照本章 1.5 操作。
 - (10) 进行下列检查:
- 检查制动软管及管路接头是否泄漏。 必要时予以紧固。
 - 检查制动软管是否相互干扰、扭曲。

要求力矩:

制动软管和制动硬管: 18±2N.m 制动软管中间支架和减振器支架: 22 ± 2N.m

制动软管和制动钳(连接螺栓): 32 ± 3N.m

1.10 前制动器摩擦片的检查及更换

特别注意

制动片的构成成份为有毒物质, 经常吸入其尘屑,会有害于您的健 康。

- 避免吸入摩擦片尘屑。
- 切勿使用吸气软管或毛刷清 理制动器总成,必须使用真空清洁 吸尘器。

1、检测

- (1)举升车辆前部,利用安全支撑,在合适的位置将其支撑,拆下前轮。
- (2) 检查内侧摩擦片和外侧摩擦片的厚度。垫片的厚度不计。

摩擦材料厚度:

标准:11mm

维修极限: 2mm

内侧摩擦片检测

外侧摩擦片

(3)如果摩擦片厚度小于维修极限,**则需** 更换制动片维修包(包括制动片和制动片护 函)。

2、更换

- (1) 升高车辆前部,利用安全支撑,在合适的位置将其支撑。拆除前轮。
 - (2) 拆下制动软管安装螺栓。
 - (3) 用扳手夹紧销钉, 拆下法兰面螺栓
- (A)。夹紧销钉要小心,以防损坏销护套。把制动钳(B)向上旋出。检查软管及销护套是否破损或老化。

(4) 拆下制动片(A)。

(5) 拆下制动片护座(A)

- (6) 将制动钳彻底清理干净,除去全部锈蚀,并检查是否有沟槽及裂纹。
 - (7) 检查制动盘是否破损及有裂纹。
 - (8) 装上新的制动板护座。

(10) 正确安装制动片,注意将带有磨损报警器(B) 的制动片安装在内侧。(如果内外摩擦片均有报警器,则装配时不分内外)

(11)推进活塞(A),使制动钳卡在制动板上。确认活塞护套就位,以防向下转动制动钳时将活塞损坏。

- (12) 向下转动制动钳(B), 使其就位。 装上法兰面螺栓(C), 用扳手夹住销钉, 用规 定的力矩将法兰面螺栓拧紧。小心不要损坏小 护套。
- (13)装上制动软管固定螺栓,并用规定 力矩将其上紧。
- (14) 向下踏压制动踏板数次,确认制动器工作正常,然后进行试车。
- 注: 全套制动片刚换上时,进行制动可能需要较大的踏板行程。踏压几次制动踏板可恢

复正常的踏板行程。

(15)安装结束后,检查软管及管路接口 或连接机构是否有泄漏,必要时重新紧固。

要求力矩:

钳体和导向销: 65±3N.m

1.11、 前制动盘的检测及更换

1、振摆

- (1) 升高车辆前部,利用安全支撑,在合适的位置将其支撑,拆下前轮。
- (2) 拆下制动片
- (3)检查制动盘表面是否破损或开裂。彻底清洁制动盘,并清除所有锈蚀。
- (4) 安装合适的平垫圈(A) 及车轮螺母, 用规定力矩将螺母拧紧,使制动盘紧紧贴住轮 毂。

- (5) 如图将百分表靠制动盘放置,测量从制动 盘外缘起 10mm 处的振摆。
- (6) 如果制动盘振摆超出 0.08mm 的维修极限, 用车载制动器车床对制动盘进行休整。最大休整极限: 26mm。
- (7) 若制动盘超出休整极限值,应予以更换 2、厚度及平行度
- (1) 升高车辆前部,利用安全支撑,在合适的 位置将其支撑。拆下前轮。
- (2) 拆下制动片。
- (3)使用千分尺,在距制动盘外缘 10mm、间隔大约为 45°的 8 个点处测量制动盘的厚度,如果最小测量值小于最大休整极限,则更换制动盘。

制动盘厚度:

标准: 28mm

最大休整极限: 26mm

制动盘平行度:最大 0.05mm

注: 此为厚度测量值的最大容许偏差。

- (4) 如果最小测量值小于最大修正极限,则更 换制动盘。
- (5) 如果制动盘的平行度超出维修极限,用车载制动器车床对制动盘进行修整。最大休整极限: 26mm。
- 3、前制动盘的更换
- (1) 拆下制动钳:
- (2) 拆下制动盘。
- (3) 装上制动盘
- (4) 装上制动钳

注意: 拆卸时应使用防锈剂,不得硬性将制动盘从轮毂上拆下,否则会损坏制动盘。在安装制动盘之前应均匀打磨两侧盘面,保证有足够的磨损余量。注意: 在同一桥上的两个制动盘应同时更换。

要求力矩:

钳体和转向节: 175±26N.m 制动盘和螺钉: 10±1N.m

1.12 前轮毂总成的更换

- 1、前轮毂和轴承的拆卸:
- (1) 升起车辆;
- (2) 拆卸前车轮;
- (3) 拆卸前制动钳:
- (4) 拆卸前制动盘。
- (5) 用一个的推杆压下轮毂(见下图), 杆的直径要略小于轴承的内径。

(6) 拆除转向节上的卡环和挡泥板(见下

(7) 利用一个直径 41mm 的推杆压下轴承 (见下图)

- 2、前轮毂和轴承的安装:
- (1) 安装轮毂轴承(见下图)。

(2) 可靠地将卡环安装到转向节上(见下

图)

(3) 安装轮毂(见下图)

- (3) 安装制动盘,紧固力矩: 10±1N•m。
- (4) 安装前制动器,安装好制动管路,插 好轮速传感器线束。
 - (5) 安装车轮。
 - (6) 放下车辆。

注意:在安装轮毂和轮毂轴承之前,需要 检查在拆卸过程中是否损坏轮速传感器支架或 者使传感器支架移位,以确保安装以后轮速传 感器能正常工作,同时确保传感器支架不会与 传动轴发生摩擦。

要求力矩:

钳体和转向节: 175±26N.m

1.13 后制动制动片的检测及更换

注意

制动片的构成成份为有毒物质, 经常吸入其尘屑,会有害于您的健 康。

- 避免吸入摩擦片尘屑。
- 切勿使用吸气软管或毛刷清理制动器总成,必须使用真空清吸尘器。

1、检测

- (1) 举升车辆后部,利用安全支撑,在合适的位置将其支撑。拆下后轮。
 - (2) 检查内侧摩擦片(A) 和外侧摩擦片
- (B) 的厚度。垫片的厚度不计。摩擦材料厚度:

标准:10mm 维修极限:2mm

(3) 如果摩擦片厚度小于维修极限,则需更换制动片维修包(包括制动片和制动片护座)。

2、更换

- (1) 升高车辆后部,利用安全支撑,在合适的位置将其支撑; 拆除后轮,整车上电状态下拔掉EBP线束。
- (2) 用扳手将销(B) 夹住,拆除法兰面螺栓(A),小心不要损坏销子护套,打开制动钳(C)。检查软管和销子护套是否破损或老化。

(3) 拆下制动片(A)。

- (4) 拆下制动片护座
- (5) 将制动钳彻底清理干净,除去全部锈蚀,并检查是否有沟槽及裂纹。
 - (6) 检查制动盘是否破损及有裂纹。
 - (7) 装上新制动板护座。
 - (8) 正确安装制动片,将带有磨损报警器
 - (B) 的制动片安装在内侧。

(9) 推进活塞(A),使制动钳卡在制动片上。确认活塞护套就位,以防安装制动钳时将 其损坏。

- (10) 安装制动钳,使其就位。装上法兰面螺栓(B),用扳手夹住销钉(C),用规定的力矩将法兰面螺栓拧紧。小心不要损坏小护套。
- (11) 向下踏压制动踏板数次,确认制动器 工作正常,然后进行试车。
- 注: 全套制动片刚换上时,进行制动可能需要较大的踏板行程。踏压几次制动踏板可恢复 正常的踏板行程。
- (12) 安装结束后,检查软管及管路接口或连接机构是否有泄漏,必要时重新紧固。

1.14 后轮制动盘的检测及更换

1、振摆

- (1) 升高车辆后部,利用安全支撑,在合适的位置将其支撑。拆下后轮。
- (2) 拆下制动片
- (3) 检查制动盘表面是否破损或开裂。彻底清洁制动盘,并清除所有锈蚀。
- (4) 安装合适的平垫圈(A) 及车轮螺母,用规定力矩将螺母拧紧,使制动盘紧紧贴住轮毂。

- (5) 如图将百分表靠制动盘放置,测量从制动盘外缘起 10mm 处的振摆。
- 制动盘振摆维修极限: 0.08mm
- (6) 如果制动盘振摆超出维修极限,用车载制动器车床对制动盘进行休整

最大休整极限: 10mm;

注:

- 动盘超出休整极限值,应予以更换
- 制动盘振摆大于 0.08mm, 则要进行修整

2、厚度及平行度

- (1) 升高车辆后部,利用安全支撑,在合适的 位置将其支撑。拆下后轮。
- (2) 拆下制动片。
- (3)使用千分尺,在距制动盘外缘 10mm、间隔大约为 45°的 8 个点处测量制动盘的厚度,如果最小测量值小于最大休整极限。则更换制动盘。

制动盘厚度:

标准: 12mm

最大休整极限: 10mm

制动盘平行度: 最大 0.05mm

注: 此为厚度测量值的最大容许偏差。

(4) 如果制动盘的平行度超出维修极限,用车载制动器车床对制动盘进行修整。

注:如果制动盘的平行度超出重新维修极限, 用更换制动盘。

1.15 后轮毂单元总成的更换

后毂单元总成和挡泥板拆卸:

- (1) 升起车辆;
- (2) 拆下后车轮;
- (3) 拆下后轮速传感器线束, EPB 线束及支架;
- (4) 松开螺栓(A) 拆下后制动卡钳(B);
- (5) 拆下后制动盘(C);

(6) 把螺栓(E)松开,取下后轮毂单元

(F) 与挡泥板(D);

(7) 以与拆卸相反的顺序进行安装。 要求力矩:

制动卡钳与转向节连接螺栓: 100±10N.m 轮毂单元与转向节连接螺栓: 100±10N.m

1.16 真空助力器带主缸总成的更换

注:请勿将制动液溅洒在车辆上;否则可能损坏油漆,如果制动液已经溅洒在漆层上,应立即

用水将其清洗干净。

- (1) 拆下前舱的蓄电池总成:
- (2) 拆下前舱的空气滤清器总成;
- (3) 拆下雨刮总成:
- (4) 拆下通风盖板总成;
- (5) 拆下雨刮电机总成;
- (6) 拆下流水槽总成;
- (7) 打开储液罐盖,并将制动主缸储液罐中的制动液排干;
- (8) 取下固定销轴与锁销,拆下真空助力器与

(9) 从制动主缸上断开制动管路(A); 为了防止溅洒,要用抹布或维修用毛巾包住管 路

接头:

(10) 拆下真空管路(B);

- (12) 取下真空助力器带主缸总成; **小心不要** 损坏和折弯制动管路;
- (13) 以与拆卸相反的顺序进行安装。 注意以下事项:

安装了真空助力器和制动总泵之后,给储液 罐中加注新制动液,给制动系统排气,并调整 制动踏板高度。

要求力矩:

制动管路至制动主缸: 18±1N.m 真空助力器与制动踏板连接螺母: 22±2N.m

2.00

1.17 真空助力器的检测

- (1) 深踩 2 次制动踏板。
- (2) 真空泵停止工作后,用诊断仪读取真空压力数据,如果30秒后真空读数下降值等于或大于2.7kPa,则检查以下部件是否泄漏。
- 1) 真空管路。
- 2) 密封件。
- 3) 真空助力器
- 4)制动主缸。

1.18 电动真空泵的更换

- (1) 将动力总成落下(A);
- (2) 拆开真空泵线束上的接插件(B);
- (3) 剪开真空泵线束与真空管的固定扎带
- (C);
- (4) 用卡箍钳将真空管与真空泵连接卡箍
- (D) 取下, 拔下真空管;
- (5) 将真空泵从减震垫中取出;
- (6) 以与拆卸相反的顺序进行安装。

● 真空管路要按照要求装配,工字标按下图 方向装配。

1.19 EPB 驱动总成的检测和更换

1.19.1 检测

当仪表上制动系统报警灯 点亮时,需连接诊断设备,并按以下步骤读取故障码,确认是否检修 EPB 驱动箱。

若出现以下故障码,需确认是否更换 EPB 驱动总成:

DTC	故障描述	故障范围	故障码产生时对应的原因
C11B013	左电机开路或故障	EPB	EPB 内部故障
		线束	线束开路
		左卡钳电机	电机开路
C11B113	右电机开路或故障	EPB	EPB 内部故障
		线束	线束开路
		右卡钳电机	电机开路
C11B41D	左电机过电流	EPB	EPB 内部故障
		线束	线束短路
		左卡钳电机	左电机短路
C11B51D	右电机过电流	EPB	EPB 内部故障
		线束	线束短路
		右卡钳电机	右电机短路
C11B617	左电机长时间工作	EPB	EPB 内部故障
		线束	线束损坏
		左卡钳电机	左电机损坏
C11B717	右电机长时间工作	EPB	EPB 内部故障
		线束	线束损坏
		右卡钳电机	右电机损坏
C11B815	左电流检测回路开路	EPB	EPB 内部故障
		线束	线束损坏

维修手册

		左卡钳电机	左电机损坏
C11B915	右电流检测回路开路	EPB	EPB 内部故障
		线束	线束损坏
		右卡钳电机	右电机损坏
C11BA29	左电流检测回路信号异常	EPB	EPB 内部故障
		线束	线束损坏
		左卡钳电机	左电机损坏
C11BB29	右电流检测回路信号异常	EPB	EPB 内部故障
		线束	线束损坏
		右卡钳电机	右电机损坏
C11BC00	左 EPB 未初始化或初始化 失败	EPB	EPB 内部故障或未进行初始化
		线束	线束损坏
		左卡钳电机	左电机损坏
C11BD00	右 EPB 未初始化或初始化 失败	EPB	EPB 内部故障或未进行初始化
		线束	线束损坏
		右卡钳电机	右电机损坏

在依次排除供电电压、线束、接插件和 ECU 故障后,故障依然重现,可确认是 EPB 驱 动总成故障,并进行更换。

1.19.2 更换

1.19.2.1 拆卸

注意:

EPB是涉及到安全的部件,因此对它进行维修诊断时,除遵守一般的安全和预防措施外,还必须遵下列诊断注意事项。

- EPB 系统必须由经过专业培训并掌握维修技能的技师进行维修,并只许使用原厂零部件进行更换。
- 进行 EPB 系统硬件更换,必须在有举升设备的专业维修厂或 4S 店进行。
- 当车辆行驶过程中,禁止操作电子驻车,除非紧急制动。
- 请勿在 EPB 不释放的故障情况下强制驾驶。
- 需避免在 EPB 驱动总成更换过程中意外激活动作,因此,在把 EPB 驱动总成从卡钳体上拆除之前,需确保线束的接插件断开。
- a 操作维修释放(操作方法参考 1.19.4)。
- b 车辆被举起后,在车轮悬空状态下拆卸连接线束的接插件。

c 使用内六角扳手逆时针旋转拧开 EPB 驱动总成的固定螺栓 A。

- d 沿轴向平稳地从卡钳体上取下 EPB 驱动总成。
- e 从卡钳体 0 型圈槽中拆除 0 型密封圈。

注意:使用带有柔软尖端的工具把0型密封圈从卡钳体0型圈槽拆下。拆卸过程一定不要损伤卡钳体0型圈槽,若划伤会导致泄漏以及传动总成的损坏,甚至导致驻车完全失效。

1.19.3 装配

a 装配新的0型密封圈在卡钳体0型圈槽上

注意: 新的 0 型密封圈必须没有灰尘和污染。为了避免液体污染 EPB 驱动总成,不得使用装配液。在安装后检查 0 型密封圈是否有扭曲和撕裂。

b 清理卡钳体螺纹孔内的螺纹,去除螺纹上的螺纹胶。通过轴向平稳的推入,来安装新的 EPB 驱动总成到卡钳体上。EPB 驱动总成必须推至与卡钳体的接触面上如图 A。EPB 驱动总成的固定孔须在相应卡钳体螺纹孔的前面。

- c 使用与 EPB 驱动总成同时提供的新的固定螺栓,顺时针旋进螺栓直到螺栓头部与 EPB 驱动总成安装耳面接触。然后控制拧紧力矩至 8±2NM。 注意:
- ➤ 在拧紧螺栓时,在 EPB 驱动总成与卡钳体之间不能产生扭矩、剪切力及拉力。
- ▶ 螺栓的螺纹上涂有防松胶,该防松胶只能确保在初次使用时的锁紧,因此不得使用旧螺栓,否则会导致松脱。当安装 EPB 驱动总成时总是使用新的螺栓。
- d 把线束的连接插头与 EPB 驱动总成的连接插槽接好,拉动插头确认已将线束装配牢固,线束连接插头设计有防松机构以确保插接良好的接头不会松脱。
- 注意:线路连接插头连接到 EPB 驱动总成的连接插槽时,最大推力和拉力不应超过 100N。
- e 用诊断设备进行 EPB 初始化(操作方法参考 4.2), 确认无 EPB 故障码。

1.19.4 其它

1.19.4.1 维修释放

方法一:

使用诊断设备 (VDS 1000/VDS 2000), 按以下步骤操作:

维修手册

方法二:

使用 EPB 开关操作维修释放

- 1) 整车上电(ON挡)或启动车辆:
- 2) 持续踩住制动踏板,踩制动踏板的效果为"制动灯常亮";
- 3) 持续按下 EPB 开关 10 秒以上,此时仪表上的报警指示灯(红色叹号灯 (1))会闪烁:
- 4) 在报警指示灯开始闪烁的 2 秒内松开 EPB 开关;
- 5) 松开 EPB 开关后开始计时,在之后的第 3~5 秒的范围内,再次按一下 EPB 开关:
- 6) EPB 开始执行完全释放,报警指示灯转为常亮:
- 7) 松开制动踏板,操作完成。

注意:

- a) 全过程必须始终踩下制动踏板;
- b) 第一次按下开关若保持时间少于 10 秒或多于 12 秒, 系统都会自动恢复为初始状态, 需要重新操作;
- c) 再按下开关若是在第一次松开开关后的3秒以内或5秒以后,系统都会自动恢复为初始状态,需要重新操作;
- d) 进入完全释放后,系统将不会响应任何功能,需要重新"初始化"或使用 EPB 开关退出维修释放。

注:通过以上两种方法进行维修释放后,EPB 所有功能将会失效,避免在维修过程中意外动作导致对 EPB 驱动总成的损伤。在完成维修操作并恢复车辆状态后,必须进行"初始化",EPB 系统才能恢复正常。

方法三:

由于电器故障导致在以上两种方法失效时,可采取机械维修释放,具体方法如下:

1) 使用内六角扳手把花型圆柱头螺钉(A)和(B)拆卸,取下 EPB 电机即可。

2) 把安装了内六角头的力矩扳手连接到卡钳体的花键内(注意:轴向力请勿超过 10N);通过顺时针旋转卡钳体上的花键来释放制动活塞。放松制动活塞直到卡钳体的推力螺杆旋转自由(力矩≤0.2 Nm)。

1.19.4.2 初始化

使用诊断设备,按以下步骤进行 EPB 初始化,可退出维修释放状态。

注: EPB 驱动总成一旦从车辆上拆除,禁止使用通电的方式进行驱动。