实外 CCF CSP2023-S 模拟赛(二) (提高组)

时间: 2023年7月12日8:30~12:00

试题名称	exchange	lion	tree	liquid
程序名称	exchange	lion	tree	liquid
输入文件	exchange.in	lion.in	tree.in	liquid.in
输入文件	exchange.out	lion.out	tree.out	liquid.out
时间限制(s)	1	1	2	1
内存限制(M)	256	256	256	256
测试点数目	10	10	10	10
单个测试点分值	10	10	10	10
比较方式	标准	标准	标准	标准
类型	传统	传统	传统	传统
是否有部分分	否	否	否	否

exchange

【背景】

有 n 个人一同出去玩,每个人有一张火车票。由于火车票实行实名制,每张火车票也对应一个人。

【描述】

由于某种原因,现在出现了以下情况:每个人手中有一张票,这张票可能是自己的也可能是别人的。现在任意两个人之间可以交换手中的票,求最少进行多少次交换使得每个人都拿到自己的票。假定交换是依次进行的,即同一时刻只进行一次交换,我们也想知道,第一步有多少种方案,能保证交换次数最少。

【输入格式】

输入有 2 行,第一行有两个用空格隔开的正整数 n、k(k 代表任务种类,详见输出格式),第二行有 n 个用空格隔开的正整数,第 i 个为 Pi,代表着第 i 个人手中的票是第 Pi 个人的。

【输出格式】

如果 k=1,那么输出只有一个整数,表示最少交换的次数;如果 k=2,那么输出有两行,第一行是一个整数,表示最少交换的次数,第二行有一个整数,表示第一步的方案数。

【样例输入】

3 2

2 3 1

【样例输出】

2

【数据范围与约定】

测试点编号	n≤	k	其他
1, 2	8		
3	1000	1	
4, 5	50000		1≤Pi≤n,
6, 7	100		Pi 互不相同
8	1000	2	
9、10	50000		

【样例解释】

方案一: 第1个人和第2个人交换车票, 再和第3个人交换车票。 方案二: 第2个人和第3个人交换车票, 再和第1个人交换车票。 方案三: 第3个人和第1个人交换车票, 再和第2个人交换车票。

【来源】

经典问题

lion

【背景】

森林里有n只狮子,狮子之间不知为何进行了惨烈的厮杀。

【描述】

在某一时刻,存活的狮子有地位高低之分,能力值高的地位高,能力值相同的当中年龄大的地位高。任何时刻,地位最高的狮子可以吃掉地位最低的狮子,但如果这样做,地位最高的狮子能力值会减少它吃掉的狮子的能力值。假定所有狮子都足够聪明,并且在保证自己不死的前提下会尽量吃掉别的狮子。现给出每个狮子的年龄和能力值,求哪些狮子死了。

【输入格式】

输入有 2 行,第一行有一个正整数 n。第二行有 n 个用空格隔开的正整数,按年龄从小到大依次给出每个狮子的能力值,并按输入顺序编号为 1^{\sim} n。

【输出格式】

输出有 2 行,第一行有一个整数 m,表示死去的狮子的个数。第二行有 m 个用空格隔开的正整数,为死去的狮子在输入中的编号(请从小到大输出)。

【样例输入】

4 2 2 3 4

【样例输出】

1 1

【数据范围与约定】

20%的数据, 0<n≤100, 0≤能力值≤1。

50%的数据, 0<n≤1000。

100%的数据, 0<n≤50000, 0≤能力值≤1000000。

【样例解释】

4号狮子如果吃掉1号狮子,那么情景变成(死,2,3,2),此时3号狮子如果吃掉2号狮子,会被4号狮子吃掉,故3号狮子不会吃,所以(死,2,3,2)是最终状态。

【来源】

wc2014 某课件某趣题改编

tree

【背景及描述】

有一只由 n 个结点组成的无根树,树边有权值,权值可正可负。有 q 组询问,每组询问两个点 a 和 b,记 dist[x,y]表示 x 结点和 y 结点在树上的路径经过的边的权值和,则需输出 dist[k,a]+dist[k,b]的最小值,其中 k 为任意结点。

【输入格式】

输入有 n+q 行,第一行有两个用空格隔开的正整数 n、q。接下来的 n-1 行,每一行有三个用空格隔开的整数 x、y、z,表示 x 结点和 y 结点之间有一条权值为 z 的边。接下来的 q 行,每一行有两个用空格隔开的正整数,表示每一组询问。

【输出格式】

输出有 q 行, 依次对应每组询问。

【样例输入】

5 3

1 2 3

 $1 \ 3 \ -2$

34 - 1

 $3 \ 5 \ -1$

1 3

1 4

2 3

【样例输出】

-4

-5

-1

【数据范围与约定】

测试点编号	n	q	边权取值范围	其他
1	10	10	[-10,10]	
2, 3	1000	1000	[-1000,1000]	
4	100000	100000	[0,10000]	
5	100000	100000	[-10000,10000]	保证树随机生成
6、7	100000	100000	[-10000,10000]	每组询问的第一个结点相同
8, 9, 10	100000	100000	[-10000,10000]	

【样例解释】

三组询问的最小值对应的 k 结点分别为 4 或 5、5、4 或 5。

【来源】

经典试题改编

liquid

【背景】

有两种液体 A 和 B, 等量混合时完全反应生成气体挥发不留渣; 不等量混合时等量部分发生上述反应, 多出部分留下。

【描述】

现有 n 个杯子排成一排,每个杯子里装有一种液体。我们可以进行若干次如下操作:选择两个相邻的杯子,这两个杯子中的液体种类必须是不同的,将其中一个杯子里的液体全部倒入另一个杯子中(杯子容积很大,不考虑溢出),反应充分之后拿走所有空杯子(拿走空杯子可以使原本不相邻的杯子变得相邻)。给出一个初始状态,求最少剩下多少个杯子。

【输入格式】

输入有 n+1 行,第一行有一个正整数 n,接下来的 n 行,每行格式为"Vi Ki", Vi 为一正整数,表示这排杯子从左数第 i 个杯子的液体量,Ki 为一个字符 A 或 B,表示这排杯子从左数第 i 个杯子里液体的种类。

【输出格式】

输出有一个整数,表示最少剩下的杯子数。

【样例输入】

4

4 B

2 A

1 A 3 B

【样例输出】

1

【数据范围与约定】

20%的数据, 0<n≤5。

40%的数据, 0<n≤100。

60%的数据, 0<n≤1000。

100%的数据, 0<n≤100000, 0<Vi≤10000。

【样例解释】

将第三个杯子中的液体倒入第四个杯子,拿走第三个杯子,再将第二个杯子中的液体倒入 第四个杯子,拿走第二个和第四个杯子,剩余第一个杯子。

【来源】

原创