WS24/25: Numerische Mathematik Übungszettel 4

- 1. Beweisen Sie, dass die Bisektionsmethode zur Nullstellenfindung linear mit asymptotischer Konvergenzrate $\rho = \log_{10} 2$ konvergiert.
- 2. Es sei $f(x) = (x 2)^2 \ln(x)$ gegeben auf I = [1, 2].
 - (a) Beweisen Sie, dass f genau eine Nullstelle ξ auf I hat.
 - (b) Berechnen Sie x_1, \ldots, x_5 mit Hilfe der Bisektions-Methode auf [1, 2] mit $a_0 = 1$, $b_0 = 2$ und $x_k := (a_k + b_k)/2$.
 - (c) Was ist der theoretisch maximale Wert von $|x_5 \xi|$? Wie großmuss n sein, damit $|x_n \xi| \le 10^{-10}$ sicher gilt?
- 3. (P) Die Funktion $f(x) = e^x 3x 1$ hat auf I = [-2, 1] genau eine Nullstelle, $\xi = 0$.
 - (a) Implementieren Sie das Bisektions Verfahren mit Startintervall [-2,1] und lassen Sie sich die ersten 40 x_k ausgeben (wobei x_k als die Intervallmittelpunkte definiert sind). Vergleichen Sie das beobachtete Verhalten mit der zu erwarteten asymp. Konvergenzrate.
 - (b) Betrachten Sie jetzt das Fixpunktproblem x=g(x) mit $g(x)=x-\lambda f(x)$ (Relaxation). Implementieren Sie die Fixpunktiteration für dieses g und $\lambda=-1/3$, verwenden Sie $x_0=1$ und lassen Sie sich die erste 20 x_k ausgeben. Berechnen Sie die asymp. Konvergenzrate und vergleichen Sie das beobachtete Verhalten damit.
 - (c) Bestimmen Sie λ , so dass die obige Fixpunktiteration maximal schnell konvergiert. Überprüfen Sie Ihre Erkenntnisse numerisch.
- 4. Newton für mehrfache Nullstellen: Angenommen f hat eine doppelte Nullstelle an ξ , d.h. $f(\xi) = f'(\xi) = 0$ und $f''(\xi) \neq 0$. Weiters nehmen wir an, dass f'' nahe ξ existiert und stetig ist, und dass die Folge $(x_k)_k$ durch die Newton Methode definiert ist.
 - (i) Zeigen Sie, dass

$$\xi - x_{k+1} = -\frac{1}{2} \frac{(\xi - x_k)^2 f''(\eta_k)}{f'(x_k)} = \frac{1}{2} (\xi - x_k) \frac{f''(\eta_k)}{f''(\chi_k)},$$

mit η_k und χ_k zwischen ξ und x_k .

- (ii) Wir nehmen weiters an, dass es ein $\delta>0$ gibt, sodass 0< m<|f''(x)|< M für alle x in $I_\delta=[\xi-\delta,\xi+\delta]$, und dass m< M. Zeigen Sie, dass für $x_0\in I_\delta$ x_k gegen ξ konvergiert und dass diese Konvergenz linear mit asymptotischer Konvergenzrate $\log_{10}2$.
- (iii) (P) Uberprüfen und demonstrieren Sie Ihre Ergebnisse indem Sie die Newton Methode auf die Gleichung $e^x = 1 + x$, $x_0 = 1$ anwenden.

1

5. Let $f: \mathbb{R}^2 \mapsto \mathbb{R}^2$ defined by $f(x,y) = (f_1(x,y), f_2(x,y))^T$, where

$$f_1(x,y) = x^2 + 4y^2 - 4$$
, $f_2(x,y) = 2y - \sqrt{3}x^2$.

We want to find the roots of f, i.e., all pairs $(x,y) \in \mathbb{R}^2$ such that $f(x,y) = (0,0)^T$.

- (a) Sketch or plot the sets $S_i = \{(x,y) \in \mathbb{R}^2 : f_i(x,y) = 0\}$, i = 1, 2, i.e., the set of all zeros of f_1 and f_2 . What geometrical shapes do these sets have?
- (b) Calculate analytically the roots of f, i.e., the intersection of the sets S_1 and S_2 .
- (c) Calculate the Jacobian of f, defined by

$$J_f(x,y) = \begin{pmatrix} \partial_x f_1(x,y) & \partial_y f_1(x,y) \\ \partial_x f_2(x,y) & \partial_y f_2(x,y) \end{pmatrix} \in \mathbb{R}^{2 \times 2}.$$

Here, $\partial_x f_i(x,y)$ and $\partial_y f_i(x,y)$, i=1,2 denote the partial derivatives of f_i with respect to x and y, respectively.

(d) (P) Implement¹ the Newton method in 2D and use it to calculate the first few iterates for the starting values $(x_0, y_0) = (2, 3)$ and $(x_0, y_0) = (-1.5, 2)$.

¹Some useful syntax: b=[[1],[2]] and A=[[1, 2],[3, 4]] creates the column vector $\boldsymbol{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and the 2-by-2 matrix $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. The numpy package of python can perform matrix operations: numpy.matmult(A,B) gives the matrix multiplication between matrices A and B. Further numpy.linalg.inv(A) gives A^{-1} .