김정수교수님

3주 1강

무선통신공학

본 강의 콘텐츠는 학습 용도 외의 불법적 이용, 무단 전재 및 배포를 금지합니다.

지난 시간 복습

주파수 스펙트럼과 대역폭

● 통신시스템의 주파수 영역

통신 시스템	주파수 영역
FM 라디오 방송	88 ~ 108 (MHz)
AM 라디오 방송	530 ~ 1700 (KHz)
셀룰러 이동통신	824~894 (MHz)
와이브로(Wibro)	2.3, 2.5, 3.5 (GHz)
Wi-Fi	2.4 , 5(GHz)
블루투스(Bluetooth)	2.4 (GHz)

주파수 스펙트럼과 대역폭

● 국내 TV Channel 대역 및 주파수 대역폭

- ISM (Industrial Scientific and Medical) Band
 - 산업용, 과학용, 의학용으로 이용되는 주파수로 제한이 없다.

- 신호강도측정의 단위(dB)
 - 비교되는 두 신호간의 상대적인 크기
 - Decibel: $dB = 10 \times \log_{10} \frac{P_2}{P_1}$

P: 신호의 에너지(강도)

 대수에 비례하는 사람의 청각 반응을 표현
 ex) 실제 10,000배 커진 소리 → 청각적으로는 40배 커진 소리로 인식

● dB사용의 용이점

- 간단한 연산(대수함수의 성질 이용)
- 시스템의 특성 파악 용이(+, -로 표현)

● 사람이 인지할 수 있는 소리들의 상대적인 크기

소리의 종류	dB	느낌
제트기 이륙(60m)	120 dB	견디기 어렵다
공사장 소음, 헤비메탈 연주회	110 dB	
고함(1.5m)	100 dB	대단히 시끄럽다
대형 트럭(15m에서), 굴착기(1m)	90 dB	
대도시 거리 소음	80 dB	꽤 시끄럽다
자동차 실내 소음	70 dB	

● 사람이 인지할 수 있는 소리들의 상대적인 크기

소리의 종류	dB	느낌
보통 대화(1m)	60 dB	보통
교실, 사무실	50 dB	
조용한 거실	40 dB	조용하다
밤중의 침실	30 dB	고요하다
방송국 스튜디오	20 dB	
나뭇잎 스치는 소리	10 dB	겨우 무엇인가 들린다
들을 수 있는 가장 작은 소리	0 dB	

● 신호의 상대적인 크기

- 신호 P_0 에 대한 신호 P_1 의 크기를 표기
 - dB = 10 $\log \frac{P_1}{P_0}$
 - dB (for volts) = 20 $log \frac{V1}{V_0}$
- 예시 1) 어떤 회로에 0.1V의 전압을 가지는 신호를 가해서 5V로 증폭,
 이때 dB = ?

20
$$\log \frac{5}{0.1} = 34 \text{ dB}$$
 $f(t) = 0.1 \text{v} \longrightarrow h(t) \longrightarrow g(t) = 5 \text{v}$

• 예시 2) 5V 신호가 0.1V 감쇠, 이때 dB = ?

20
$$log \frac{0.1}{5} = -34 \text{ dB}$$
 $f(t) = 5v$ $h(t)$ $g(t) = 0.1v$

- 신호의 dB값이 증폭 등으로 늘어날 경우
 - 양수(positive) 값으로 표현 : 이득

- 신호의 dB값이 감쇄 등으로 줄어들 경우
 - 음수(negative) 값으로 표현 : 손실

- 두 신호의 값이 같은 크기를 가지고 있을 경우
 - 0 dB로 표현

- ♥ 낮은 신호 레벨
 - dBm 단위로 1mW에 대한 신호의 크기 표현
- 높은 신호 레벨
 - dBW 단위로 1W에 대한 신호의 크기 표현
- 전압: 1V에 대한 값으로 dBV가 사용
- 신호의 절대 강도
 - 신호의 절대적인 강도 측정
 - 와트(Watt) 혹은 밀리와트(milliWatt)에 대한 dB로 표현

(a)
$$dBm = 10 \times log \frac{Power}{1mW}$$
 (b) $dBW = 10 \times log \frac{Power}{1W}$

● 값이 두 배가 되면

• 전력 값이 두배

dB = 10
$$\log \left(2x \frac{P_0}{P_0} \right) = 10 \log 2 = 3.01$$

3dB = 전력 값이 2배

-3dB: 전력 값이 1/2(0.5)배

• 전압 값이 두배

dB = 20
$$log (2x \frac{V_0}{V_0}) = 20 log 2 = 6.02$$

6dB: 전압 값이 2배

-6dB: 전압 값이 1/2(0.5)배

● dB사용의 예

• $(A dB) \pm (B dB) = (A \pm B)dB$

● dB 단위: 두 신호의 전력, 전압의 비를 빠르게 산출

● 전력의 경우

```
 10dB: 10배 증가
 3dB: 2배 증가
```

10dB(10배)와 3dB(2배), 즉 20배의 전력비를 나타낸다.

10, 10, 10, 2, 2로 총 4000배의 전력 비

ex3) 7dB(10-3)의 이득

10 과 (1/2)의 곱으로 5배의 전력비를 나타낸다.

● 전압의 경우

- 20dB: 10배 증가 6dB: 2배 증가
 - -20dB: 1/10배 감소 -6dB: 1/2배 감소
 - · 46dB(20+20+6)
 - → 이득 10배, 10배, 2배로 200배의 전압비
 - · 34dB(20+20-6)의 전압 이득
 - → 10배, 10배, (1/2)배로 50의 전압 이득을 나타낸다.

● 무선매체 - 무선 대역에서 통신을 위한 전자기적 스펙트럼

VLF(very low frequency)

- 주로 공기나, 해수를 통해 지구 표면으로 전달
- 전송 시 많은 감쇄는 없으나, 열이나 전기와 같은 대기 중의 잡음에 민감하게 반응
- 주로 장거리 라디오 네비게이션이나 해상 통신에 사용

LF(low frequency)

- 주로 지구표면으로 전달
- 장거리 라디오 navigation이나 navigator, locators 등에 사용
- 자연물에 의한 파의 흡수가 증가되는 낯 시간대에 감쇠 증가

MF(middle frequency)

- 대류권(troposphere)에서 전파, 전리층(ionosphere)에서 흡수
- 전송 거리는 대류권(troposphere)에서 반사되는 각도에 의해 결정
- 낮에는 전파의 흡수가 많기 때문에 가시선으로 전송
- 주로 AM 라디오, 해양 라디오 및 비상용 주파수로 사용

HF(high frequency)

- 전리층(ionosphere)에서 전파
- 아마추어 라디오(햄 라디오), 개인용 주파수대(citizen`s band), 국제적 방송(international broadcasting), 전화, 전신 등에 사용

- VHF(very high frequency)
 - VHF 텔레비전, FM 라디오 및 비행기에서의 AM 라디오 및 위치 정보 등에 사용
- UHF(ultra high frequency)
 - UHF 텔레비전, 이동 전화, 마이크로 웨이브 링크 등에 사용
- SHF(super high frequency)
 - 가시선 혹은 우주 공간의 전파로 사용
 - 주로 위성 마이크로 웨이브 및 레이더 통신에 이용
- EHF(extremely high frequency)
 - 우주 전파에 사용되어지며, 레이더, 위성 및 과학적/실험적 통신을 위해 사용

전송 손상과 신호의 성능

● 전송 손상(transmission impairment)

● 감쇠(attenuation)

- 전송신호가 전송매체를 통해 전달되는 동안 일부의 신호가 열로 변하여 에너지를 손실하는 것을 의미
- 실제적으로 이중나선이나, 광섬유 등의 유선매체를 이용할 때 전송길이에 따른 신호의 감쇄를 보정하기 위해 증폭기나 중계기(repeater)를 사용하여 감쇠를 보정

왜곡(distortion)

• 다양한 주파수로 구성된 신호가 전송 매체를 통해 전달될 시 그 신호의 각각의 주파수 신호 성분들은 다른 전송 속도를 가지게 되어 도착 시간이 각각 다르게 되어 원 신호의 형태가 변하게 되는 현상

● 잡음(noise)

- 모든 통신 시스템에는 송수신 사이에는 원하지 않는 잡음이 더해진다.
- 통신 성능을 저하시키는 주요한 요인
- 신호대 잡음비(SNR; Signal to Noise Ratio)
- → 수신 신호로부터 신호를 추출 시 원신호에 대한 잡음의 상대적인 크기를 신호 대 잡음비라 한다.

● 열 잡음(Thermal noise)

- 분자들의 불규칙한 움직임에 의해 나타난다.
- 어떠한 형태의 전자장비와 매체에도 나타난다.
- 절대온도에 비례
- 전력은 모든 범위의 주파수 스펙트럼에 균일하게 분포
 - → 백색 잡음(white noise)

- 주파수 간 상호간섭 잡음(inter-modulation noise)
 - 서로 다른 주파수를 사용하는 신호들이 동일 전송 매체를 공유하게 되면 발생
 - 사용된 주파수들의 합, 차, 또는 배수에 해당하는 새로운 주파수 요소를 발생시키는 잡음

주 파 수

● 누화(혼선, crosstalk)

- 전화통화 중 다른 사람의 말이 들리는 혼선과 같은 현상
- 차폐가 안 된 동선 가닥이 인접해 있거나, 안테나로 신호 수신 시 반사된 신호가 같이 수신되는 경우 등에 발생
- ISM 대역에서는 누화 잡음이 많이 발생

- 돌발적 잡음(Impulsive noise)
 - 예측할 수 없는 전자기적 방해 즉, 번개, 통신장비의 결함 등으로 발생하는 잡음

● 아날로그 전송에서 노이즈의 영향

채널 용량

● 채널 용량(channel capacity)

C = 10

채널 용량

- 예제) 20kbps의 비트 전송률로 전화 통화 하려고 한다. 1번 전송방식은 300Hz~3400Hz의 전송대역폭을 가지고 신호 대 잡음비는 40dB이다. 2번 전송방식은 600Hz~2800Hz의 전송대역폭을 가지고 있으며 신호 대 잡음비는 30dB를 가지고 있다. 이 두 가지 전송방식 중 어느 전송방식이 더 경제적이라고 할 수 있겠는가? 샤논의 공식을 활용해 설명해 보아라.
 - · 1번 전송방식

Bandwidth =
$$3400 - 300 = 3100$$
Hz
SNR = 40 dB = 10000

$$C = 3100\log(10000 + 1) = 41.2$$
Kbps

· 2번 전송방식

Bandwidth =
$$2800 - 600 = 2200$$
Hz

$$SNR = 30dB = 1000$$

$$C = 2200\log(1000+1) = 21.9$$
Kbps

· 2번의 방식이 더 경제적인 전송방식임을 알 수 있다.

