Master CSI-ENSM-THCS MHT 723-Analyse de Fourier

Examen du 5 novembre 2010, de 8h à 10h

Exercice 1

Calculer la transformée de Walsh du vecteur h suivant en utilisant la transformée rapide.

$$h = [1, -1, -1, -1, 1, 1, 1, 1].$$

Solution:

Un calcul élémentaire donne

$$Wh = [2, 2, 2, 2, -6, 2, 2, 2] \tag{1}$$

Exercice 2

Soit f la fonction de $\mathbb{F}_2^3 \to \mathbb{F}_2$ définie par

$$f((x_1, x_2, x_3)) = x_1 + x_2 + x_1x_2 + x_1x_3 + x_2x_3 + x_1x_2x_3.$$

- 1. En utilisant l'ordre de \mathbb{F}_2^3 défini en cours et utilisé en TD (binaire inversé), écrire le vecteur associé à la fonction f^* .
- 2. En utilisant la transformée de Walsh de f^* calculer la distance de f à l'ensemble des fonctions affines.
- 3. Déterminer l'ensemble des fonctions affines réalisant ce minimum (donner leur expression polynomiale).

Solution:

1. L'ordre binaire inversé est le suivant :

	$(x_1,$	x_2	$, x_{3})$
1	(0,	0	,0)
2	(1,	0	, 0)
3	(0,	1	,0)
4	(1,	1	,0)
5	(0,	0	,1)
6	(1,	0	,1)
7	(0,	1	, 1)
8	(1,	1	,1)

Si on applique la formule définissant f en utilisant l'ordre ci dessus on obtient les vecteurs suivants

$$f = [0, 1, 1, 1, 0, 0, 0, 0]$$
 et $f^* = [1, -1, -1, -1, 1, 1, 1]$

2. La distance d'une fonction f aux fonctions affines est donnée par la formule suivante :

$$d(f, \mathcal{A}) = \frac{1}{2} \left(2^k - \max_k |Wf^*(k)| \right)$$

Dans le cas présent on a d(f, A) = (8-6)/2 = 1.

3. Comme le maximum de la valeur absolue est atteint à la cinquième composante et que cette composante correspond à la fonction $g((x_1, x_2, x_3)) = x_3$ d'après l'ordre décrit au dessus et que cette plus grande valeur absolue et négative, la fonction affine la plus proche est $h((x_1, x_2, x_3)) = x_3 + 1$.

Exercice 3

Déterminer l'ensemble des morphismes de G dans H et préciser ceux qui sont bijectifs dans les cas suivants :

1.
$$G = (\frac{\mathbb{Z}}{4\mathbb{Z}}, +)$$
 et $H = (\frac{\mathbb{Z}}{2\mathbb{Z}} \times \frac{\mathbb{Z}}{2\mathbb{Z}}, +)$,

2.
$$G = (\frac{\mathbb{Z}}{2\mathbb{Z}} \times \frac{\mathbb{Z}}{2\mathbb{Z}}, +)$$
 et $H = (\frac{\mathbb{Z}}{4\mathbb{Z}}, +)$,

3.
$$G = (\frac{\mathbb{Z}}{4\mathbb{Z}}, +)$$
 et $H = (\frac{\mathbb{Z}}{5\mathbb{Z}}^*, \times)$.

Solutions:

1. Comme $\bar{1}$ engendre $\frac{\mathbb{Z}}{4\mathbb{Z}}$, tout morphisme de $(\frac{\mathbb{Z}}{4\mathbb{Z}},+)$ vers $(\frac{\mathbb{Z}}{2\mathbb{Z}}\times\frac{\mathbb{Z}}{2\mathbb{Z}},+)$ est entièrement défini par l'image de $\bar{1}$. En effet

$$\phi(\bar{0}) = (0,0), \ \phi(\bar{2}) = \phi(\bar{1}) + \phi(\bar{1}), \ \phi(\bar{3}) = \phi(\bar{1}) + \phi(\bar{1}) + \phi(\bar{1}).$$
(2)

En choisissant pour image de $\bar{1}$ les 4 éléments de $\frac{\mathbb{Z}}{2\mathbb{Z}} \times \frac{\mathbb{Z}}{2\mathbb{Z}}$ et en utilisant (2) on construit 4 morphismes différents. On a donc 4 morphismes

$$\phi_1(\bar{x}) = (0,0) \,\forall x \in \frac{\mathbb{Z}}{4\mathbb{Z}}$$

$$\phi_2(\bar{0}) = (0,0), \ \phi_2(\bar{1}) = (0,1), \ \phi_2(\bar{2}) = (0,0) \ \text{et} \ \phi_2(\bar{3}) = (0,1).$$

$$\phi_3(\bar{0}) = (0,0), \ \phi_3(\bar{1}) = (1,0), \ \phi_3(\bar{2}) = (0,0) \ \text{et} \ \phi_3(\bar{3}) = (1,0).$$

$$\phi_4(\bar{0}) = (0,0), \ \phi_2(\bar{1}) = (1,1), \ \phi_4(\bar{2}) = (0,0) \ \text{et} \ \phi_4(\bar{3}) = (1,1).$$

On remarque qu'aucun n'est bijectif car l'image de $\bar{2}$ est toujours (0,0).

2. Le groupe $(\frac{\mathbb{Z}}{2\mathbb{Z}}) \times \frac{\mathbb{Z}}{2\mathbb{Z}}$, +) est engendré par deux éléments, par exemple (0,1) et (1,0). Chaque morphisme est ainsi défini par l'image de ces deux éléments. En effet on a toujours

$$\phi((0,0)) = \bar{0} \text{ et } \phi((1,1)) = \phi((0,1)) + \phi((1,0)) \tag{3}$$

Comme $\phi((0,1)) + \phi((0,1)) = \phi((0,0)) = \bar{0}$ on en déduit que $\phi((0,1)) = \bar{0}$ ou $\phi((0,1)) = \bar{2}$. De même pour $\phi((1,0))$. En utilisant (3) et les 4 choix possibles pour les images de (0,1) et (1,0) on construit 4 morphismes. Aucun n'est bijectif car aucun élément n'a $\bar{1}$ pour image dans aucun morphisme.

3. A nouveau on remarque que tout morphisme est entièrement défini par l'image de $\bar{1}$. En effet

$$\forall a \in \left(\frac{\mathbb{Z}}{4\mathbb{Z}}, +\right) \phi(a) = \left(\phi(\bar{1})\right)^a \tag{4}$$

En prenant chaque valeur de $((\frac{\mathbb{Z}}{5\mathbb{Z}}^*), \times)$ pour image de $\bar{1}$ on construit 4 morphismes :

$$\phi_{1}(\bar{x}) = \dot{1} \,\forall x \in \frac{\mathbb{Z}}{4\mathbb{Z}}$$

$$\phi_{2}(\bar{0}) = \dot{1}, \, \phi_{2}(\bar{1}) = \dot{2}, \, \phi_{2}(\bar{2}) = \dot{4} \text{ et } \phi_{2}(\bar{3}) = \dot{3}.$$

$$\phi_{3}(\bar{0}) = \dot{1}, \, \phi_{3}(\bar{1}) = \dot{3}, \, \phi_{3}(\bar{2}) = \dot{4} \text{ et } \phi_{3}(\bar{3}) = \dot{2}.$$

$$\phi_{4}(\bar{0}) = \dot{1}, \, \phi_{2}(\bar{1}) = \dot{4}, \, \phi_{4}(\bar{2}) = \dot{1} \text{ et } \phi_{4}(\bar{3}) = \dot{4}.$$

On observe que ϕ_2 et ϕ_3 sont bijectifs.

Exercice 4

Ecrire une fonction matlab ColonneWalsh qui prend en entrée un entier k et un entier $n \leq 2^k$ et qui renvoie la n-ième colonne de la matrice de Walsh de dimension $2^k \times 2^k$. Le programme ne doit calculer aucune matrice de Walsh de manière à pouvoir être utilisé pour des valeurs de k de l'ordre de 15 sans qu'il y ait de problème de mémoire. On pourra utiliser une procédure récursive et exploiter la structure de la matrice de Walsh.

Exercice 5

Existe t'il des fonctions $f \in L^1(\mathbb{R})$ non nulles presque partout telles que f * f = f? Même question dans $L^2(\mathbb{R})$.

Solution : f * f = f est équivalent à $(\hat{f})^2 = \hat{f}$ c'est à dire est équivalent à

 $\forall \omega \in \mathbb{R} \, (\hat{f}(\omega))^2 = \hat{f}(\omega) \tag{5}$

autrement dit $\forall \omega \in \mathbb{R}$, $\hat{f}(\omega) \in \{0,1\}$. Attention cela ne signifie pas que \hat{f} soit la fonction constante 0 ou la fonctiuon constante 1. Rien n'interdit que \hat{f} puisse changer de valeur, qu'elle vaille 0 pour certaines valeurs de ω et 1 pour d'autres.

Si $f \in L^1(\mathbb{R})$, on sait que \hat{f} est continue et tend vers 0 à l'infini. S'il existe $\omega_0 \in \mathbb{R}$ tel que $\hat{f}(\omega_0) = 1$, comme $\lim_{\omega \to \infty} \hat{f}(\omega) = 0$ et comme \hat{f} est continue il existe ω_1 tel que $\hat{f}(\omega_1) = 1/2$ ce qui contredit le fait que $\hat{f}(\omega) \in \{0,1\} \, \forall \omega \in \mathbb{R}$. Donc f est identiquement nulle. Il n'existe donc pas de fontion f non nulle de $L^1(\mathbb{R})$ telle que f * f = f.

La transformée de Fourier d'une fonction de $L^2(\mathbb{R})$ est dans $L^2(\mathbb{R})$ mais n'est pas nécessairement continue et ne tend pas nécessairement vers 0 en l'infini. Si on prend par exemple une fonction f telle que $\hat{f}(\omega) = 1$ si $\omega \in [-1,1]$ et $\hat{f}(\omega) = 0$ sinon, on construit une fonction f dans $L^2(\mathbb{R})$. Plus précisément on a dans ce cas $f(x) = \frac{\sin(x)}{\pi x}$. Il existe donc bien de telles fonctions dans $L^2(\mathbb{R})$.