

The complete mitochondrial genome of the terrestrial snail Monacha cartusiana (O.F. Müller, 1774) (Gastropoda, Eupulmonata, Hygromiidae)

Ewa Kosicka^{1,2}, Joanna R. Pieńkowska¹, Andrzej Lesicki¹

I Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland 2 Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland

Corresponding author: Andrzej Lesicki (alesicki@amu.edu.pl)

Academic editor: Thierry Backeljau | Received 6 August 2022 | Accepted 24 October 2022 | Published 17 November 2022

https://zoobank.org/E888FADF-7957-4DF7-AF40-DB5DA4329189

Citation: Kosicka E, Pieńkowska JR, Lesicki A (2022) The complete mitochondrial genome of the terrestrial snail *Monacha cartusiana* (O.F. Müller, 1774) (Gastropoda, Eupulmonata, Hygromiidae). ZooKeys 1130: 65–78. https://doi.org/10.3897/zookeys.1130.91325

Abstract

The mitochondrial genome of *Monacha cartusiana* is the first complete mitochondrial sequence described for the pulmonate snail genus *Monacha* and for the family Hygromiidae. The identified mitogenome has a length of 13,894 bp and encodes 13 proteins, 22 tRNAs, and two rRNAs. A phylogenetic analysis of available mitogenomes from representatives of helicoid families shows a sister group relationship of Hygromiidae and Geomitridae, which have been recently recognised as separate families.

Keywords

Carthusian snail, Helicoidea, mitogenome, phylogeny, Stylommatophora

Introduction

Mollusca is the second largest animal phylum after Arthropoda in terms of the number of named species, with the class Gastropoda as the most speciose group with approximately 95,000 species (Ponder et al. 2020). Stylommatophoran pulmonates constitute the most species-rich gastropod order with an estimated number of about 30,000 species (Mordan and Wade 2008). Although the monophyly of Stylommatophora within

panpulmonate heterobranchs is relatively well established (Jörger et al. 2010; Ponder et al. 2020), the phylogenetic relationships between stylommatophoran families are still debated (White et al. 2011; Gaitán-Espitia et al. 2013; Razkin et al. 2015; Doğan et al. 2020; Ponder et al. 2020).

Mitogenome sequences are of great importance in molecular phylogenetic studies (Moritz et al. 1987), especially to infer evolutionary relationships at species level (Avise et al. 1987); this is also the case within Mollusca (Boore 1999). The analysis of mitogenomes may thus provide additional evidence related to stylommatophoran phylogeny (White et al. 2011; Parmakelis et al. 2013; Minton et al. 2016a). The number of available stylommatophoran mitogenomes has increased in the last two decades, from three at the end of the 20th century (Hatzoglou et al. 1995; Terrett et al. 1996; Yamazaki et al. 1997) to 35 in recent years (Yang et al. 2019; Doğan et al. 2020). However, considering the number of recognised extant families within the Stylommatophora (117 according to Bouchet et al. 2017), the number of stylommatophoran mitogenomes still is very small and new mitogenomes, especially from families for which no, or very few, mitogenomes are available, are worth publishing. Hitherto, two mitogenomes were available for the Hygromiidae, viz. Cernuella virgata (Da Costa, 1778) and Helicella itala (Linnaeus, 1758), published by Lin et al. (2016) and Romero et al. (2016), respectively. However, these two species have recently been transferred from the Hygromiidae to the Geomitridae (Razkin et al. 2015; Neiber et al. 2017; Bouchet et al. 2017), so that the Hygromiidae, very rich in species, is left without any available mitogenome.

The hygromiid genus *Monacha* Fitzinger, 1833 is widespread in the western Palaearctic from western Europe to North Africa, Iran, and Arabia. It includes a large number of nominal species and shows its highest diversity in south-eastern Europe and Turkey (Hausdorf 2000a, 2000b; Welter-Schultes 2012). Although most of the *Monacha* species occur in rather narrow areas (Welter-Schultes 2012; Neiber and Hausdorf 2017), *Monacha cartusiana* (O.F. Müller, 1774), the type species of the genus, is widely distributed and can be found in almost the whole of Europe excluding its north-eastern fringes (Scandinavia, Russia, Baltic States, Belarus, northern Ukraine) (Welter-Schultes 2012; Pieńkowska et al. 2018). The mitogenome of this species will facilitate the future identification of species within the genus and the understanding of their phylogenetic relationships, as is the case with other families of terrestrial pulmonate snails (González et al. 2016; Groenenberg et al. 2017; Korábek et al. 2019; Doğan et al. 2020). Hence, in this paper, we present the complete mitogenome of *M. cartusiana* and analyse its phylogenetic position within the superfamily Helicoidea.

Material and methods

The specimen of *Monacha cartusiana* used for this research was collected in Ostrowiec Świętokrzyski (Poland) by Mariusz Gwardjan on 03.07.2015. It was identified by the sequence of the cytochrome c oxidase subunit I gene fragment (col) of M. cartusiana in GenBank (KX258398) deposited by Pieńkowska et al. (2016). Total genomic DNA was extracted following Pieńkowska et al. (2015). The sequencing of the M. cartusiana

mitogenome (for gene acronyms see Table 3) was started using four pairs of primers complementary to the conservative regions of *coI* (Folmer et al. 1994), *16S rRNA* (Palumbi et al. 1991), *coII* (Hugall et al. 2002) and *cytb* (Merritt et al. 1998), the missing fragments between them were identified by primer walking (Lin et al. 2016). The primers used for the amplification of mtDNA are listed in Table 1.

The mitogenome was annotated using the MITOS Web Server (Bernt et al. 2013). For the phylogenetic analysis we used a concatenated sequence alignment of 12 protein coding genes (PCGs; excluding atp8), and 2 rRNAs (12S rRNA and 16S rRNA). Every set of 14 sequences was separately aligned using CLUSTAL W (Thompson et al. 1994) implemented in BIOEDIT v. 7.0.6 (Hall 1999; BioEdit 2017). The length of the alignment after combining the 14 gene sequences was for each species 14,287 bp. For the phylogenetic analysis we used all mitogenome sequences deposited in GenBank for species of the superfamily Helicoidea (Table 2). The mitogenome of Theba pisana (MH362760) was not annotated, so we designated the individual PCGs and rRNAs by aligning the whole T. pisana sequence with the extracted sequences of species belonging to the family Helicidae. Each of the T. pisana PCGs was tested for start and stop codons with ORF FINDER (2004). Mitogenomes of two arionoid species (Arion vulgaris and Meghimatium bilineatum, Table 2) were used as the outgroup.

Phylogenetic analysis was performed using maximum likelihood (ML) as implemented in the online version of IQ-TREE (Trifinopoulos et al. 2016). ML analysis

Table 1. List of primers used for the amplification of *Monacha cartusiana* mitochondrial DNA.

Primer	Sequence 5' – 3'	References		
LCO1490	GGTCAACAAATCATAAAGATATTGG	Folmer et al. 1994		
HC02198	TAAACTTCAGGGTGACCAAAAAATCA	Folmer et al. 1994		
16Sar-L	CGCCTGTTTATCAAAAACAT	Palumbi et al. 1991		
16Sbr-H	CCGGTCTGAACTCAGATCACGT	Palumbi et al. 1991		
144F	TGAGSNCARATGTCNTWYTG	Merritt et al. 1998		
272R	GCRAANAGRAARTACCAYTC	Merritt et al. 1998		
FCOII	AAATAATGCTATTTCATGAYCAYG	Hugall et al. 2002		
RCOII	GCTCCGCAAATCTCTGARCAYTG	Hugall et al. 2002		
1F_556 Os	TACCTGTACTAGCGGGGGCT	this paper		
1R_75 Os	CAGTCAGGGTACTGCGGCTA	this paper		
2F_342 Os	TTGTGACCTCGATGTTGGACT	this paper		
2R_83 Os	CCGCCTCAGACCCAACTAAC	this paper		
3F_320 Os	GGCCTAACTTGTTCACTGATCCT	this paper		
3R_50 Os	TTTCTAGGGTCTGCGCTTCA	this paper		
4F_429 Os	TTGTGGGGGTTTATTACGGGC	this paper		
4R_110 Os	ATCACTCAACACCCCTGAAGT	this paper		
seqF_F1	ACGGTTTCCTGTTCTATTATTTG	this paper		
seqF_R1	CAAATAATAAGCTCCTAATGTAATC	this paper		
seqF_R2	ATAAACTTTCCACTTCAGGGAAT	this paper		
seqF_R3	GTAAAACATTTATTGGGGCCCAG	this paper		
seqF_R4	AACTAATTAACAACCTATATAGGG	this paper		
seqF_R5	TAGTCCCGTGCTGGCTAGTATT	this paper		
seqH_F2	CTATTGTAACTCGCCTTAACTCTAA	this paper		
seqH_R2	GAAATAAACACCTAAAATTACTGTA	this paper		
seqH_R3	GATGTACCTGATATTAAACCTA	this paper		
seqH_F4	CTACTAAACAGAAAAAGCGAACCC	this paper		
seqH_R4	GCAGCCACAATTTACTTCTT	this paper		

Table 2. Mitogenomes from GenBank used in the phylogenetic analysis and their lengths.

species	GenBank Accession No.	Mitogenome length (bp)	References			
Camaenidae: Aegista aubryana (Heude, 1882)	KT192071	14238	Yang et al. 2016			
Camaenidae: Aegista diversifamilia Huang, Lee, Lin & Wu, 2014	KR002567	14039	Huang et al. 2016			
Camaenidae: Camaena cicatricosa (O. F. Müller, 1774)	KM365408	13843	Wang et al. 2014			
Camaenidae: Camaena poyuensis Zhou, Wang & Ding, 2016	KT001074	13798	Lin et al. 2016			
Camaenidae: Dolicheulota formosensis (Adams, 1866)	KR338956	14237	Huang et al. 2016			
Camaenidae: Fruticicola koreana (L. Pfeiffer, 1850)	KU237291	13979	Hwang 2015			
Camaenidae: Mastigeulota kiangsinensis (Martens, 1875)	KM083123	14029	Deng et al. 2016			
Geomitridae: Cernuella virgata (Da Costa, 1778)	KR736333	14147	Lin et al. 2016			
Geomitridae: Helicella itala (Linnaeus, 1758)	KT696546	13967	Romero et al. 2016			
Helicidae: Cylindrus obtusus (Draparnaud, 1805)	JN107636	14610	Groenenberg et al. 2012			
Helicidae: Cepaea nemoralis (Linnaeus, 1758)	U23045	14100	Terrett et al. 1996			
Helicidae: Cornu aspersum (O. F. Müller, 1774)	JQ417194	14050	Gaitán-Espitia et al. 2013			
Helicidae: Helix pomatia Linnaeus, 1758	MK347426	14070	Korabek et al. 2019			
Helicidae: Helix pomatia Linnaeus, 1758	MK488030	14072	Groenenberg and Duijm 2019			
Helicidae: Helix pomatia Linnaeus, 1758	MK488031	14070	Groenenberg and Duijm 2019			
Helicidae: Theba pisana (O. F. Müller, 1774)	MH362760	14795	Wang et al. 2018			
Hygromiidae: Monacha cartusiana (O. F. Müller, 1774)	MW485067	13894	This paper			
Polygyridae: Practicolella mexicana Perez, 2011 1	KX278421	14008	Minton et al. 2016a			
Polygyridae: Practicolella mexicana Perez, 2011 2	KX240084	14153	Minton et al. 2016b			
Arionidae: Arion vulgaris Moquin-Tandon, 1855	MN607980	14548	Doğan et al. 2020			
Philomycidae: Meghimatium bilineatum (Benson, 1842)	MG722906	14347	Yang et al. 2019			

¹Deposited in GenBank as mitogenome of *Polygyra cereolus* (Megerle von Mühlfeldt, 1818) but according to Minton et al. (2016a) it represents *Practicolella mexicana* Perez, 2011.

was done using 14 partitions. Best substitution models were inferred according to the Bayesian information criterion (BIC) for each of the partitions by MODELFIND-ER (Kalyaanamoorthy et al. 2017) implemented in IQ-TREE. The TVM+F+I+G4 model was selected for *nd1*, *nd2*, *nd4*, *nd5*, *atp6*, and *16S rRNA*; TPM3u+F+I+G4 for *nd3*; K3Pu+F+G4 for *nd4l*; TPM3+F+I+G4 for *nd6*; K3Pu+F+I+G4 for *cytb*, and *coII*; TIM+F+I+G4 for *coII*, and *12S rRNA*. ML trees were constructed under 1,000 ultrafast bootstrap replicates (Minh et al. 2013) and with Shimodaira-Hasegawa-like approximate likelihood ratio test with 1,000 replicates (SH-aLRT; Guindon et al. 2010). A Bayesian inference (BI) analysis was performed with MRBAYES v. 3.2.6 (Ronquist et al. 2012). Four Monte Carlo Markov chains were run for 1 million generations, sampling every 100 generations (the first 25% of trees were discarded as "burn-in"). Ultrafast bootstrap support, SH-aLRT support (both expressed in percentages) and posterior probability (PP) values obtained on 50% majority rule consensus Bayesian tree were mapped on the ML tree of concatenated sequences. The ML tree was visualized using FIGTREE v. 1.4.3 (Rambaut 2016).

Results and discussion

The complete mitogenome of *M. cartusiana* was deposited in GenBank under accession number MW485067. With 13,894 bp in length, it was one of the shortest mito-

² Mitogenome not mentioned in the paper by Minton et al. (2016a) but directly submitted to GenBank (Minton et al. 2016b).

Table 3. Organisation of the mitogenome of *Monacha cartusiana*.

Туре	Gene product	Gene acronym	Start	End	Length (bp)	Direction	Start codon	Stop codor
PCG	cytochrome c oxidase subunit I	coI	0	1552	1552	+	ATG	TAA ¹
tRNA	valine transfer RNA	tRNA Val	1525	1585	61	+		
rRNA	16S ribosomal RNA	16S rRNA	1242	2652	1410	+		
tRNA	leucine transfer RNA	tRNA Leu	2593	2657	65	+		
tRNA	proline transfer RNA	tRNA Pro	2654	2718	60	+		
tRNA	alanine transfer RNA	tRNA Ala	2716	2778	63	+		
PCG	NADH dehydrogenase subunit 6	nd6	2777	3263	451	+	ATT	TAA
PCG	NADH dehydrogenase subunit 5	nd5	3316	4915	1657	+	ATA	TAG
PCG	NADH dehydrogenase subunit 1	nd1	4896	5799	901	+	ATA	TAA^1
PCG	NADH dehydrogenase subunit 4L	nd4l	5843	6076	233	+	TTG	TAT
PCG	cytochrome b	cytb	6054	7192	1097	+	GTC	TAA^1
tRNA	aspartic acid transfer RNA	tRNA Asp	7192	7263	71	+		
tRNA	cysteine transfer RNA	tRNA Cys	7250	7310	61	+		
tRNA	phenylalanine transfer RNA	tRNA Phe	7310	7369	60	+		
PCG	cytochrome c oxidase subunit II	coII	7370	8052	672	+	ATG	TAA^1
tRNA	tyrosine transfer RNA	tRNA Tyr	8040	8102	55	+		
tRNA	tryptophan transfer RNA	tRNA Trp	8094	8158	65	+		
tRNA	glycine transfer RNA	tRNA Gly	8158	8223	66	+		
tRNA	histidine transfer RNA	tRNA His	8216	8274	58	+		
tRNA	glutamine transfer RNA	tRNA Gln	8274	8331	57	-		
tRNA	leucine transfer RNA	tRNA Leu	8320	8392	73	-		
PCG	ATP synthase F0 subunit 8	atp8	8385	8544	104	-	ATG	TAA^1
tRNA	asparagine transfer RNA	tRNA Asn	8544	8602	59	_		
PCG	ATP synthase F0 subunit 6	atp6	8582	9242	661	-	ATG	TAA
tRNA	arginine transfer RNA	tRNA Arg	9241	9304	62	-		
tRNA	glutamic acid transfer RNA	tRNA Glu	9303	9367	65	_		
rRNA	12S ribosomal RNA	12S rRNA	9412	10120	798	-		
tRNA	metionine transfer RNA	tRNA Met	10118	10180	63	-		
PCG	NADH dehydrogenase subunit 3	nd3	10160	10493	307	-	ATT	TAA^1
tRNA	serine transfer RNA	tRNA Ser	10523	10576	53	-		
tRNA	serine transfer RNA	tRNA Ser	10648	10700	52	+		
PCG	NADH dehydrogenase subunit 4	nd4	10721	12005	1210	+	ATT	TAG
tRNA	threonine transfer RNA	tRNA Thr	11996	12058	63	-		
PCG	cytochrome c oxidase subunit III	coIII	12046	12833	776	-	ATG	TAA^1
tRNA	isoleucine transfer RNA	tRNA Ile	12877	12937	61	+		
PCG	NADH dehydrogenase subunit 2	nd2	12899	13872	833	+	ATA	TAA^1
tRNA	lysine transfer RNA	tRNA Lys	13842	13894	60	+		

 $^{^{\}rm 1}$ Stop codons completed by the addition of 3' A residues to mRNA.

genomes known in Helicoidea, which ranged from 13,798 bp (*Camaena poyuensis*) to 14,795 bp (*Theba pisana*) (Table 2). The mitogenome included: 13 PCGs, 22 tRNA genes and two rRNA genes (Fig. 1, Table 3), typical for most metazoan mitogenomes. The base composition of the *M. cartusiana* mitogenome was: 30.26% A, 37.95% T, 16.94% G and 14.85% C, i.e. with a bias towards A and T (68.21% content of A-T). These values differ from other helicoid species, but fit into the range previously reported for helicoids, especially when compared with the A-T values for *C. virgata* (65.96%) and *H. itala* (66.22%) (Doğan et al. 2020: table S3). The total length of all PCGs was 10,404 bp (74.88% of the entire mitogenome), and they had different start and stop codons, which also vary among helicoid mitogenomes (Table 4). Some of the stop codons TAA were generated by posttranscriptional polyadenylation (as in Groenenberg et

Figure 1. Circular diagram of the mitochondrial genome of *Monacha cartusiana* (GenBank acc. no. MW485067). Genes encoded in the "plus" and the "minus" directions are shown outside and inside the circle, respectively. Particular gene types are marked with different colours: red – PCGs coding I, II, and III subunits of cytochrome c oxidase; green – PCGs coding NADH dehydrogenase family; orange – PCGs coding ATPase family; yellow – sequence coding cytochrome b; purple – tRNAs coding sequences; blue – rRNA coding genes. Noncoding sequences are mapped on a small inner circle. The circular diagram was created with GENOMEVX (Conant and Wolfe 2008).

al. 2012 and Yang et al. 2016). Nine PCGs were encoded in the "plus" direction (nd1, nd2, nd4, nd4l, nd5, nd6, cytb, coI, coII) and four in the "minus" direction (coIII, atp6, atp8, nd3). Furthermore, 14 tRNA and one rRNA were encoded in the "plus" direction and eight tRNA and one rRNA in the "minus" direction (Table 3). Additionally, seven intergenic regions (with noncoding sequences) were identified with a total length of 295 bp (the longest was 70 bp while the shortest 19 bp) (Fig. 1). The gene order in

Species	Start codons	Stop codons				
Monacha cartusiana	ATA – 3; ATG – 5; ATT – 3; GTC – 1; TTG – 1	TAA – 10; TAG – 2; TAT – 1				
Cernuella virgata	ATA - 4; $ATG - 4$; $ATT - 5$	TAA – 9; TAG – 4				
Helix pomatia	ATA – 1; ATC – 1; ATG – 6; GTG – 3; TTG – 2	TAA – 8; TAG – 5				
Cepaea nemoralis	ATA – 5; ATG – 2; ATT – 6	TAA - 2; $TAG - 4$; $TA - 7$				
Cornu aspersum	ATA – 5; ATG – 6; TTG – 2	TAA - 5; $TAG - 5$; $T - 3$				
Theba pisana	ATA - 2; $ATC - 1$; $ATG - 2$; $ATT - 8$	TAA/TAG - 12; T - 1				
Cylindrus obtusus	ATA – 5; ATG – 4; ATC – 1; GTG – 1; TTG – 2	TAA - 4; $TAG - 5$; $T - 4$				
Practicolella mexicana	ATC – 1; ATG – 5; ATT – 2; GTG – 2; TTG – 3	TAA - 3, $TAG - 4$; $T - 6$				
Aegista aubryana	ATA - 6; $ATG - 7$	TAA/TAG - 11; T - 2				
Aegista diversifamilia	ATG – 5; ATT – 3; TTG – 3; TTA – 2	TAA - 5; $TAG - 2$; $TA - 2$; $T - 4$				
Camaena cicatricosa	ATA – 5; ATG – 4; ATT – 3; GTG – 1	TAA – 11; TAG – 2				
Dolicheulota formosensis	ATG – 4; ATA – 3; ATT – 3; TTG – 2; GTG – 1	TAA - 5; $TAG - 2$; $TA - 6$				
Mastigeulota kiangsinensis	ATA – 4; ATG – 7; ATT – 1; GTG – 1	TAA - 7; $TAG - 6$				

Table 4. Start and stop codons in the mitogenome protein coding genes of helicoid species.

For references see Table 2.

M. cartusiana mitogenome was exactly the same as in C. virgata and H. itala (geomitrid species). Yet, the polygyrid Practicolella mexicana differed in four places and helicid species in seven (Table 5). The species representing the Camaenidae formed three groups with the same order of genes, but each of these groups differed in gene order from species from Hygromiidae, Geomitridae, Helicidae, and Polygyridae (Table 5).

Phylogenetic analyses of the stylommatophoran mitogenomes (González et al. 2016; Romero et al. 2016) showed them in a well-supported clade among Panpulmonata (with PP and bootstrap values 1 and 99, respectively). Previous mitogenome phylogenies of stylommatophoran superfamilies (Groenenberg et al. 2017; Harasewych et al. 2017; Yang et al. 2019; Doğan et al. 2020) showed a clade of Helicoidea separate from other superfamilies, although mitogenomes of only 11 stylommatophoran superfamilies (Yang et al. 2019) out of 26 listed by Bouchet et al. (2017) are represented in GenBank. According to Bouchet et al. (2017), Helicoidea includes 17 families but hitherto phylogenetic relationships could be analysed only for three or four of them, namely Helicidae, Camaenidae, Geomitridae, and Polygyridae (González et al. 2016; Lin et al. 2016; Minton et al. 2016a; Harasewych et al. 2017; Doğan et al. 2020).

For the phylogenetic analysis, a concatenated alignment of 12 PCGs (excluding atp8, because it was too short, too variable, and not annotated in the mitogenome of Cernuella virgata) and 2 rRNAs (12S and 16S) was used. The dataset included 19 helicoid species (Table 2) yielding the ML tree shown in Fig. 2. The Bayesian tree (not shown) had the same topology.

The mitogenome of *M. cartusiana* allows to add Hygromiidae to the previous analyses of Helicoidea families. It shows up in a clade with mitogenomes of the geomitrid species, *Cernuella virgata* and *Helicella itala*, confirming the close relationships of two families, i.e., Hygromiidae and Geomitridae (Razkin et al. 2015). The mitogenome of the helicid *Cylindrus obtusus* of the subfamily Ariantinae forms a branch separated from the subfamily Helicinae (Fig. 2). This was also noted in previous phylogenetic analyses (Korábek et al. 2019; Doğan et al. 2020). Moreover, Camaenidae are separated into

Table 5. Gene order in known mitogenomes of helicoid species.

M. col	C. virgata col	H. itala col	P. mexicana col	H. pomatia col	C. aspersum col	C. nemoralis col	C. obtusus col	Ae. aubryana col Val 16S Leu Pro	Los	diversifamilia	Col	formosensis	F. koreana col	Los	kiangsinensis	C. cicatricosa col Val 16S Leu Pro Ala nd6 nd5 nd1 nd4l cytb Cys Phe coll Asp Tyr	C. poyuensis col Val
Val	Val	Val	Val	Val	Val	Val	Val	Val	Val				Val	Val		Val	Val
891	S91	<i>S91</i>	col Val 16S Leu Pro	col Val 16S Leu	168	168	168	<i>S91</i>	168		168		168	Val 16S		<i>S91</i>	168
Leu	Ten	Ten	Leu	Leu	Leu	Leu	Leu	Leu	Ten		Ten		Ten	Leu Pro		Ten	ren
Pro 1	Pro .	Pro 1	Pro .	Ala n	col Val 16S Leu Ala nd6	col Val 16S Leu Ala nd6	col Val 16S Leu Ala nd6	Pro .	Pro .		Pro ,		Pro .			Pro 1	Pro .
4la n	4la n	4la n	4la n	1 9pu	1 9pi	1 9pi	1 9pi	4la n	4la n		4la n		4la n	4la n		4la n	4la n
n 9pa	19 y	<i>n</i> 9 <i>p</i> .	<i>n</i> 9 <i>p</i> .	Pro n	Pro n	Pro n	Pro n	19 y	19 y		19 y		19 y	19 Jp		n 9p.	d6 n
d5 m	d5 nu	ds no	Ala nd6 nd5 nd1	Pro nd5 nd1	Pro nd5 nd1	Pro nd5 nd1	Pro nd5 nd1	Ala nd6 nd5 nd1	Val 16S Leu Pro Ala nd6 nd5 nd1		Val 16S Leu Pro Ala nd6 nd5 nd1		ds n	Ala nd6 nd5 nd1		ds no	d5 nu
dI n.	dI m	dI n									dI m		dI m			dl m	dl m
col Val 16S Leu Pro Ala nd6 nd5 nd1 nd4l cyth Asp Cys Phe coll Tyr	Val 16S Leu Pro Ala nd6 nd5 nd1 nd4l cyth Asp Cys Phe coll Tyr	col Val 16S Leu Pro Ala nd6 nd5 nd1 nd4l cytb Asp Cys Phe coll Tyr	nd4l c	nd4l c	nd4l c	nd4l c	nd4l c	nd4l c	nd4l c		nd4l c		col Val 16S Leu Pro Ala nd6 nd5 nd1 nd4l cytb Asp Cys Phe coll Gly	nd4l cytb Asp		d41 c	16S Leu Pro Ala nd6 nd5 nd1 nd41 cyth Cys Phe coII Asp Tyr
ytb A	ytb A	ytb A	cytb A.	cytb A.	cytb A.	cytb A.	cytb A.	cytb A	cytb A.		cytb Asp		ytb A	ytb A		ytb C	ytb C
sp G	sp G	sp G	Asp Cy	Asp Cy	Asp Gy	Asp Cy	Asp Cy	Asp Cy	Asp Cy		sp G		sp G	sp G		ys Ph	ys Ph
s Pho	s Phe	s Phe	Cys Phe coll	Cys Phe	Cys Phe	Cys Phe	Cys Phe	Cys Phe coll Gly	Cys Phe coll Gly		Cys Phe coll Gly		y Phe	Cys Phe		los al	e coli
loo a	loo .	loo .	loo .	Hoo .	loo .	Hoo ;	coll :	loo .	loo .		Hoo .		loo .	Hoo :		1 Asp	I Asp
I Tyr	Tyr	Tyr	r Gby	coll Tyr	coll Tyr	Tyr	Tyr	Gh	Gly		Gly		Gb	r Gb		Tyr	Tyr
Trp	Trp	Trp	His	Trp	Trp	Trp	Trp	His	His		His		His	His		Gly	Gly
Gly	Gb	Gh	Tyr	Gb	Gly	Gly	G	Tyr	Tyr		Tyr		Tyr	Tyr		His	His
His	His (His (Trp	His	His (His (His (spu 2	pq		Trp		Trp	Trp		Trp	Trp
Gln Leu atp8	Gln I	Gln I	Gln I	Gln I	Gln I	Gln I	Gln I	Trp (Trp (Gln I		Glu I	Gln I		Gln I	Gln I
seu a	Leu a	Leu a	Leu a	Leu a.	Leu a	Leu a	Leu a	Gln I	Gln I		Leu a		Leu a	Leu a		Leu atp8	Leu a
	atp8	atp8	atp8	atp8	atp8	atp8	atp8	Leu ,	Ten o		atp8		atp8	atp8		841	atp8
Asn a	Asn a	Asn a	Asn a	Asn a	Asn a	Asn a	Asn a	atp8	atp8		Asn a		Asn a	Asn a		Asn a	Asn a
atp6 Arg	atp6	atp6	atp6	atp6	atp6	atp6	atp6	Asn u	Asn atp6 Arg Glu 12S		atp6		atp6	atp6		atp6	atp6
	Arg	Arg	Arg	Arg	Arg	Arg	Arg	atp6	atp6.		Arg		Arg	Arg		Arg	Arg
Glu 12S Met nd3	Glu 1	Glu	Glu 1	Glu 1	Glu 1	Glu 1	Glu 1	Arg (Arg (Glu 12S Met		Glu 1	Glu 1		Glu 1	Glu 1
12S A	12S N	12S N	12S N	12S A	12S A	12S N	12S A	Glu 12S	Ilu I		125 A		12S N	12S A		12S A	12S A
let n	Met n	Met n	Met n	Met n	Met n	Met n	Met n				let n		Met n	Met n		Met n	Met n
	nd3 Ser	s Epu	nd3 Se	nd3 Se	nd3 Se	nd3 Se	nd3 Se	Met S.	Met S		nd3 Ser		S Epu	s Epu		nd3 Se	nd3 Ser
Ser Ser	er Ser	Ser Ser	Ser Ser	Ser Thr	Ser Thr	Ser Thr	Ser Thr	Ser Ser	Ser Ser		er Ser		Ser Ser	Ser Ser		Ser Ser	er Ser
r nd4	r nd4	r $nd4$	r nd4	r coIII	r coIII	r coIII	r coIII	r nd4	r nd4		r nd4		r $nd4$	r nd4		r nd4	r nd4
	4 Thr	4 Thr	4 Thr	II Ser	II Ser	II Ser	II Ser	4 Thr	4 Thr		4 Thr		4 Thr	4 Thr		4 Thr	4 Thr
Thr coIII Ile	IIIoo .	IIIoo .	colli	nd4	nd4	nd4	nd4	collI	. coIII		IIIoo .		IIIoo .	. coIII		IIIoo .	IIIoo .
I Ile	I Ile	I Ile	I Ile	Ile	Ile	Ile	Ile	I Ile	I Ile		I Ile		I Ile	I Ile		I Ile	I Ile
nd2	nd2	nd2	nd2	nd2	nd2	nd2	nd2	nd2	nd2		nd2		nd2	nd2		nd2	nd2
Lys	Lys	Lys	Lys	Lys	Lys	Lys	Lys	Lys	Lys		Lys		Lys	Lys		Lys	Lys

Light blue background shows the same position in gene order as in M. cartusiana mitogenome. For gene acronyms (tRNA genes shortened to aminoacid symbol) and references see Table 2. Colours for the families as in Fig. 2: light blue – Hygromiidae; green – Geomitridae; brown – Polygyridae; red – Helicidae; dark blue – Camaenidae

Figure 2. Maximum likelihood (ML) tree of mitochondrial genomes of species representing the superfamily Helicoidea (see Table 1). Mitogenome sequences included all PCGs (except *atp8*) and two rRNA genes were 14,287 positions in length. Ultrafast bootstrap support values (%), SH-aLRT support values (%) and Bayesian posterior probabilities are indicated next to the branches. The tree was rooted with sequences of *Arion vulgaris* (MN607980) and *Meghimatium bilineatum* (MG722906) mitogenomes deposited in GenBank by Doğan et al. (2020) and Yang et al. (2019), respectively.

two clades i.e., Bradybaeninae and Camaeninae, treated frequently as two separate families (Lin et al. 2016; Minton et al. 2016a; Harasewych et al. 2017). Our results agree with the division of Helicidae and Camaenidae into subfamilies (Bouchet at al. 2017). However, the five helicid and seven camaenid species (Table 2, Fig. 2) represent only a tiny fraction of these speciose families. Therefore, more helicoid and stylom-matophoran mitogenomes are urgently needed.

Acknowledgements

We are grateful to Ondřej Korábek (Charles University, Prague, Czech Republic) and two anonymous reviewers for their constructive remarks, Thierry Backeljau (Royal Belgian Institute of Natural Sciences, Brussels, Belgium) for his editorial help, Robert A.D. Cameron (University of Sheffield, UK) for revising the English text, and Krzysztof Duda (Adam Mickiewicz University, Poznań) for help in preparing figures for print.

References

Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: The mitochondrial DNA bridge between population

- genetics and systematics. Annual Review of Ecology and Systematics 18(1): 489–522. https://doi.org/10.1146/annurev.es.18.110187.002421
- Bernt M, Donath A, Jühling F, Exterbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF (2013) MITOS: Improved *de novo* metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution 69(2): 313–319. https://doi.org/10.1016/j. ympev.2012.08.023
- BioEdit (2017) BioEdit 7.2. https://bioedit.software.informer.com/7.2 [Accessed on: 2021-03-04]
- Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Research 27(8): 1767–1780. https://doi.org/10.1093/nar/27.8.1767
- Bouchet P, Rocroi J-P, Hausdorf B, Kaim A, Kano Y, Nützel A, Parkhaev P, Schrödl M, Strong EE (2017) Revised classification, nomenclator and typification of gastropod and monoplacophoran families. Malacologia 61(1–2): 1–526. https://doi.org/10.4002/040.061.0201
- Conant GC, Wolfe KH (2008) GenomeVx: Simple web-based creation of editable circular chromosome maps. Bioinformatics 24(6): 861–862. https://doi.org/10.1093/bioinformatics/btm598
- Deng PJ, Wang WM, Huang XC, Wu XP, Xie GL, Ouyang S (2016) The complete mitochondrial genome of Chinese land snail *Mastigeulota kiangsinensis* (Gastropoda: Pulmonata: Bradybaenidae). Mitochondrial DNA. Part A, DNA Mapping, Sequencing, and Analysis 27: 1441–1442. https://doi.org/10.3109/19401736.2014.953083
- Doğan Ö, Schrödl M, Chen Z (2020) The complete mitogenome of *Arion vulgaris* Moquin-Tandon, 1855 (Gastropoda: Stylommatophora): mitochondrial genome architecture, evolution and phylogenetic considerations within Stylommatophora. PeerJ 8: e8603. https://doi.org/10.7717/peerj.8603
- Folmer O, Black M, Hoeh W, Lutz RA, Vrijenhoek RC (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.
- Gaitán-Espitia JD, Nespolo RF, Opazo JC (2013) The complete mitochondrial genome of the land snail *Cornu aspersum* (Helicidae: Mollusca): intra-specific divergence of protein-coding genes and phylogenetic considerations within Euthyneura. PLoS ONE 8(6): e67299. https://doi.org/10.1371/journal.pone.0067299
- González VL, Kayal E, Halloran M, Shrestha Y, Harasewych MG (2016) The complete mitochondrial genome of the land snail *Cerion incanum* (Gastropoda: Stylommatophora) and the phylogenetic relationships of Cerionidae within Panpulmonata. The Journal of Molluscan Studies 82(4): 525–535. https://doi.org/10.1093/mollus/eyw017
- Groenenberg DSJ, Duijm E (2019) The complete mitogenome of the Roman snail *Helix pomatia* Linnaeus, 1758 (Stylommatophora: Helicidae). Mitochondrial DNA Part B 4(1): 1494–1495. https://doi.org/10.1080/23802359.2019.1601512
- Groenenberg DSJ, Pirovano W, Gittenberger E, Schilthuizen M (2012) The complete mitogenome of *Cylindrus obtusus* (Helicidae, Ariantinae) using Illumina next generation sequencing. BMC Genomics 13(1): 114. https://doi.org/10.1186/1471-2164-13-114
- Groenenberg DSJ, Harl J, Duijm E, Gittenberger E (2017) The complete mitogenome of *Orcula dolium* (Draparnaud, 1801); ultra-deep sequencing from a single long-range PCR

- using the lon-Torent PGM. Hereditas 154(1): 7. https://doi.org/10.1186/s41065-017-0028-2
- Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology 59(3): 307–321. https://doi.org/10.1093/sysbio/syq010
- Hall TA (1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.
- Harasewych MG, González VL, Windsor AM, Halloran M (2017) The complete mitochondrial genome of *Cerion uva uva* (Gastropoda: Panpulmonata: Stylommatophora: Cerionidae). Mitochondrial DNA Part B 2(1): 159–160. https://doi.org/10.1080/23802359.20 17.1303343
- Hatzoglou E, Rodakis GC, Lecanidou R (1995) Complete sequence and gene organization of the mitochondrial genome of the land snail *Albinaria coerulea*. Genetics 140(4): 1353–1366. https://doi.org/10.1093/genetics/140.4.1353
- Hausdorf B (2000a) The genus *Monacha* in Turkey (Gastropoda: Pulmonata: Hygromiidae). Archiv für Molluskenkunde 128(1–2): 61–151. https://doi.org/10.1127/arch.moll/128/2000/61
- Hausdorf B (2000b) The genus *Monacha* in the Western Caucasus (Gastropoda: Hygromiidae). Journal of Natural History 34(8): 1575–1594. https://doi.org/10.1080/00222930050117495
- Huang CW, Lin SM, Wu WL (2016) Mitochondrial genome sequences of land snails *Aegista diversifamilia* and *Dolicheulota formosensis* (Gastropoda: Pulmonata: Stylommatophora). Mitochondrial DNA. Part A, DNA Mapping, Sequencing, and Analysis 27(4): 2793–2795. https://doi.org/10.3109/19401736.2015.1053070
- Hugall A, Moritz C, Moussalli A, Stanisic J (2002) Reconciling paleodistribution models and comparative phylogeography in the wet tropics rainforest land snail *Gnarosophia bellendenkerensis* (Brazier 1875). Proceedings of the National Academy of Sciences of the United States of America 99: 6112–6117. https://doi.org/10.1073/pnas.092538699
- Hwang UW (2015) Complete mitochondrial genome of *Koreanohadra koreana*. Direct submission. https://www.ncbi.nlm.nih.gov/nuccore/KU237291. [Accessed on: 2021-03-04]
- Jörger KM, Stöger I, Kano Y, Fukuda H, Knebelsberger T, Schrödl M (2010) On the origin of Acochlidia and other enigmatic euthyneuran gastropods, with implication for the systematics of Heterobranchia. BMC Evolutionary Biology 10(1): 323. https://doi.org/10.1186/1471-2148-10-323
- Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods 14(6): 587–589. https://doi.org/10.1038/nmeth.4285
- Korábek O, Petrusek A, Rovatsos M (2019) The complete mitogenome of *Helix pomatia* and the basal phylogeny of Helicinae (Gastropoda, Stylommatophora, Helicidae). ZooKeys 827: 19–30. https://doi.org/10.3897/zookeys.827.33057
- Lin JH, Zhou W, Ding HL, Wang P, Ai HM (2016) The mitochondrial genome of the land snail *Cernuella virgata* (Da Costa, 1778): The first complete sequence in the family

- Hygromiidae (Pulmonata, Stylommatophora). ZooKeys 589: 55–69. https://doi.org/10.3897/zookeys.589.7637
- Merritt TJS, Shi L, Chase MC, Rex MA, Etter RJ, Quattro JM (1998) Universal cytochrome *b* primers facilitate intraspecific studies in molluscan taxa. Molecular Marine Biology and Biotechnology 7: 7–11.
- Minh BQ, Nguyen MAT, von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30(5): 1188–1195. https://doi.org/10.1093/molbev/mst024
- Minton RL, Martinez Cruz MA, Farman ML, Perez KE (2016a) Two complete mitochondrial genomes from *Praticolella mexicana* Perez, 2011 (Polygyridae) and gene order evolution in Helicoidea (Mollusca, Gastropoda). ZooKeys 626: 137–154. https://doi.org/10.3897/zookeys.626.9633
- Minton RL, Martinez Cruz MA, Farman ML, Perez KE (2016b) Direct submission. https://www.ncbi.nlm.nih.gov/nuccore/KX240084 [Accessed on: 2021-03-04]
- Mordan P, Wade C (2008) Heterobranchia II: the Pulmonata. In: Ponder W, Linberg DR (Eds) Phylogeny and Evolution of the Mollusca. University of California Press, Berkeley, 409–426. https://doi.org/10.1525/california/9780520250925.003.0015
- Moritz C, Dowling TE, Brown WM (1987) Evolution of animal mitochondrial DNA: Relevance for populational biology and systematics. Annual Review of Ecology and Systematics 18(1): 269–292. https://doi.org/10.1146/annurev.es.18.110187.001413
- Neiber MT, Hausdorf B (2017) Molecular phylogeny and biogeography of the land snail genus *Monacha* (Gastropoda, Hygromiidae). Zoologica Scripta 46(3): 308–321. https://doi.org/10.1111/zsc.12218
- Neiber MT, Razkin O, Hausdorf B (2017) Molecular phylogeny and biogeography of the land snail family Hygromiidae (Gastropoda: Helicoidea). Molecular Phylogenetics and Evolution 111: 169–184. https://doi.org/10.1016/j.ympev.2017.04.002
- ORF FINDER (2004) Open Reading Frame Finder [Internet]. National Library of Medicine (US), National Center for Biotechnology Information, Bethesda. https://www.ncbi.nlm.nih.gov/orffinder/ [Accessed on: 2022-07-06]
- Palumbi S, Martin A, Romano S, McMillan WO, Stice L, Grabowski G (1991) The Simple Fool's Guide to PCR. Department of Zoology, University of Hawaii, Honolulu, 45 pp.
- Parmakelis A, Kotsakiozi P, Rand D (2013) Animal mitochondria, positive selection and cytonuclear coevolution: Insight from Pulmonates. PLoS ONE 8(4): e61970. https://doi.org/10.1371/journal.pone.0061970
- Pieńkowska JR, Giusti F, Manganelli G, Lesicki A (2015) *Monacha claustralis* (Rossmässler 1834) new to Polish and Czech malacofauna (Gastropoda: Pulmonata: Hygromiidae). Journal of Conchology 42: 79–93. http://docplayer.net/56112556-Monacha-claustralis-rossmassler-1834-new-to-polish-and-czech-malacofauna-gastropoda-pulmonata-hygromiidae.html
- Pieńkowska JR, Górka M, Matuszak M, Bocianowski P, Gwardjan M, Lesicki A (2016) New data on the distribution and molecular diagnostics of *Monacha claustralis* (Rossmässler 1834) and *M. cartusiana* (O. F. Müller, 1774) (Gastropoda: Eupulmonata: Hygromiidae) in Poland, Bosnia and Serbia. Folia Malacologica 24(4): 223–237. https://doi.org/10.12657/folmal.024.019

- Pieńkowska JR, Proćków M, Górka M, Lesicki A (2018) Distribution of *Monacha claustralis* (Rossmässler, 1834) and *M. cartusiana* (O. F. Müller, 1774) (Eupulmonata: Hygromiidae) in central European and Balkan countries: new data. Folia Malacologica 26(2): 103–120. https://doi.org/10.12657/folmal.026.009
- Ponder WF, Lindberg DR, Ponder JM (2020) Biology and Evolution of the Mollusca. Volume 1. CRC Press Taylor & Francis Group, Boca Raton, London/New York, 870 pp. https://doi.org/10.1201/9781351115254-1
- Rambaut A (2016) Molecular evolution, phylogenetics and epidemiology: FigTree. Institute of Evolutionary Biology, University of Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/ [Accessed on: 2022-10-18]
- Razkin O, Gómez-Moliner BJ, Prieto CE, Martínez-Ortí A, Arrébola JR, Muñoz B, Chueca LJ, Madeira MJ (2015) Molecular phylogeny of the western Palaearctic Helicoidea (Gastropoda, Stylommatophora). Molecular Phylogenetics and Evolution 83: 99–117. https://doi.org/10.1016/j.ympev.2014.11.014
- Romero PE, Weigand AM, Pfenninger M (2016) Positive selection on panpulmonate mitogenomes provide new clues on adaptations to terrestrial life. BMC Evolutionary Biology 16(1): 164. https://doi.org/10.1186/s12862-016-0735-8
- Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029
- Terrett JA, Miles S, Thomas RH (1996) Complete DNA sequence of the mitochondrial genome of *Cepaea nemoralis* (Gastropoda: Pulmonata). Journal of Molecular Evolution 42(2): 160–168. https://doi.org/10.1007/BF02198842
- Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22(22): 4673–4680. https://doi.org/10.1093/nar/22.22.4673
- Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ (2016) W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44(W1): 232–235. https://doi.org/10.1093/nar/gkw256
- Wang P, Yang HF, Zhou WC, Hwang CC, Zhang WH, Qian ZX (2014) The mitochondrial genome of the land snail *Camaena cicatricosa* (Muller, 1774) (Stylommatophora, Camaenidae): The first complete sequence in the family Camaenidae. ZooKeys 451: 33–48. https://doi.org/10.3897/zookeys.451.8537
- Wang P, Yang SP, Lin JH, Zhang MZ, Zhou WC (2018) The mitochondrial genome of the land snail *Theba pisana* (Müller, 1774) (Stylommatophora: Helicidae): the first complete sequences in the genus *Theba*. Mitochondrial DNA Part B 3(2): 798–800. https://doi.org/10.1080/23802359.2018.1491341
- Welter-Schultes FW (2012) European Non-marine Molluscs, a Guide for Species Identification. Planet Poster Editions, Göttingen, 679 pp.
- White TR, Conrad MM, Tseng R, Balayan S, Golding R, de Frias Martin AM, Dayrat B (2011) Ten new complete mitochondrial genomes of pulmonates (Mollusca: Gastropoda)

- and their impact on phylogenetic relationships. BMC Evolutionary Biology 11(1): 295. https://doi.org/10.1186/1471-2148-11-295
- Yamazaki N, Ueshima R, Terrett JA, Yokobori S, Kaifu M, Segawa R, Kobayashi T, Numachi K, Ueda T, Nishikawa K, Watanabe K, Thomas RH (1997) Evolution of pulmonate gastropod mitochondrial genomes: Comparisons of gene organizations of *Euhadra*, *Cepaea* and *Albinaria* and implications of unusual tRNA secondary structures. Genetics 145(3): 749–758. https://doi.org/10.1093/genetics/145.3.749
- Yang X, Xie GL, Wu XP, Ouyang S (2016) The complete mitochondrial genome of Chinese land snail *Aegista aubryana* (Gastropoda: Pulmonata: Bradybaenidae). Mitochondrial DNA Part A, DNA Mapping, Sequencing, and Analysis 27(5): 3538–3539. https://doi.org/10.3109/19401736.2015.1074207
- Yang T, Xu G, Gu B, Shi Y, Mzuka HL, Shen H (2019) The complete mitochondrial genome sequences of the *Philomycus bilineatus* (Stylommatophora: Philomycidae) and phylogenetic analysis. Genes 10(3): 198. https://doi.org/10.3390/genes10030198