GBTx Communication Document

 $University\ of\ Maryland\ LHCb\ group$

April 18, 2018

Rev: 0.1 (35572cd)

Contents

Hardware setup		dware setup	2
	1.1	Overview	2
	1.2	Configure GBTx to use external $\mathrm{I}^2\mathrm{C}$ adapter	2
	1.3	Configure slave GBTx to use master SCA channel $\ \ \ldots \ \ \ldots$	2
	1.4	Configure GBTx to use GBT-IC channel	3
	1.5	Reset GBTx	4
	G 0		
2 Software setup		4	

1 Hardware setup

1.1 Overview

Our current setup consists of one master and one slave GBTx board. The master is connected to the MiniDAQ GBTx channel 3 (fiber 8), and the slave can be connected to either GBT channel 0 (fiber 6) or channel 6 (fiber 11). The master synchronizes its on-board clock to the signal from the MiniDAQ, and propagates its clock signal to the slave. The slave does not have an on-board clock, and is configured to obtain clock signal externally.

The master I²C port is connected to an external USB device. The slave I²C port is connected to the master. Both are set to be programmed by the I²C channel, rather than GBT-IC channel.

The current setup is capable of:

- 1. Program the slave GBTx board with MiniDAQ directly.
- Read/Write the register value of the master GBTx board with GBT-IC specification on the MiniDAQ.
- 3. Do PBPS tests from MiniDAQ to the slave, then back to the MiniDAQ. The master is also required as the slave can only obtain its reference clock from the master.

1.2 Configure GBTx to use external I²C adapter

This setup is required to program a GBTx board using an external I²C adapter. Follow Figure 1 to connect an external I²C adapter.

Figure 1: Schematic for external I²C adapter setup.

The I^2C adapter used in our lab is made in-house. For the 2x1 connector, make sure the side that has *no* metal contact is facing up.

1.3 Configure slave GBTx to use master SCA channel

This setup is required to program a slave via a master SCA channel. In a typical scenario, the master is connected to a MiniDAQ so that programming the slave using the MiniDAQ directly² is possible. Follow Figure 2 to connect a slave GBTx to the SCA channel of a master GBTx board.

¹ The master GBTx is also connected to the MiniDAQ with a different channel, to provide reference clock to the slave.

² MiniDAQ \rightarrow master GBTx \rightarrow slave GBTx.

Figure 2: Schematic for slave to master SCA setup.

The black ground cable can be connected to any of the ground pin on the master GBTx.

There is a 2x1 to 2x1 cross-type cable made in-house to replace the redblue cables. To use that cable, make sure the two 2x1 connectors have the same orientation (e.g. the sides *without* metal contact are both facing up).

1.4 Configure GBTx to use GBT-IC channel

It might be useful to read/write individual registers from/to a GBTx board. In this case, follow the Figure 3 to flip the configSelect switch.

Flip the configSelect switch will render the external I²C adapter ineffective. None of the GBTx register value is fused onto the board, so a GBTx board in our lab must always be programmed externally via I²C before flipping the switch.

Figure 3: Schematic for flipping the configSelect switch. A jumper should be used to connect the two pins marked above.

1.5 Reset GBTx

Sometimes GBTx boards will not be properly reset by reprogramming. In such case, a hard reset is needed. Follow the Figure 4 to reset GBTx boards.

Figure 4: Schematic for resetting GBTx boards. A jumper should be used to connect the two pins marked above.

2 Software setup