Reinforcement Learning

Value Function Approximation

Stefano Albrecht, Pavlos Andreadis 14 February 2020

Lecture Outline

- Curse of dimensionality and generalisation
- Value function approximation
- Stochastic gradient descent
- Linear value functions and feature construction
- Semi-gradient TD control

Curse of Dimensionality

Theory so far has assumed:

- Unlimited space: can store value function as table
- Unlimited data: many (infinite) visits to all state-action pairs

In practice these assumptions are usually violated, because...

Curse of Dimensionality:

- Number of states grows *exponentially* with number of state variables
- If state described by k variables with values in $\{1, ..., n\}$, then $O(n^k)$ states

Go: 10¹⁷⁰ states

Hydrogen atoms: 10⁸⁰

Compact Value Functions and Generalisation

Two problems...

Compact Value Functions and Generalisation

Two problems...

Not enough memory to store value function as table

- Tabular v(s)/q(s,a) use storage proportional to $|\mathcal{S}|$
- Need compact representation of value function (But sometimes can be enough to store only partial value function; e.g. MCTS)

Compact Value Functions and Generalisation

Two problems...

Not enough memory to store value function as table

- Tabular v(s)/q(s,a) use storage proportional to $|\mathcal{S}|$
- Need compact representation of value function
 (But sometimes can be enough to store only partial value function; e.g. MCTS)

No data (or not enough data) to estimate return in each state

- Many states may never be visited
- Need to generalise observations to unknown state-action pairs

Generalisation

Blue circle must move to red goal

Agent uses optimal policy (shortest path)

Suppose we have return estimates (steps to go) for locations S1–S6

• e.g. v(S5) = -3, v(S4) = -6, v(S2) = -31

We have no data for locations S7 and S8 (not visited yet)

 Can we estimate v(S7) and v(S8) based on other return estimates?

Value Function Approximation

Replace tabular value function with parameterised function:

$$\hat{v}(s, \mathbf{w}) \approx v_{\pi}(s)$$

 $\hat{q}(s, a, \mathbf{w}) \approx q_{\pi}(s, a)$

 $\mathbf{w} \in \mathbb{R}^d$ is parameter ("weight") vector e.g. linear function, neural network, regression tree, ...

- ullet Compact: number of parameters d much smaller than $|\mathcal{S}|$
- Generalises: changing one parameter may change value of many states/actions

Learning a value function is a form of supervised learning:

Examples are pairs of states and return estimates, (S_t, U_t) , e.g.

- MC: $U_t = G_t$
- TD(0): $U_t = R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}_t)$
- n-step TD: $U_t = R_{t+1} + \cdots + \gamma^{n-1} R_{t+n} + \gamma^n \hat{v}(S_{t+n}, \mathbf{w}_{t+n-1})$

6

Desired properties in supervised learning method:

• Incremental updates update \mathbf{w} using only partial data, e.g. most recent (S_t, U_t) or subset

Desired properties in supervised learning method:

- Incremental updates update \mathbf{w} using only partial data, e.g. most recent (S_t, U_t) or subset
- Ability to handle noisy targets
 e.g. different MC updates G_t for same state S_t

Desired properties in supervised learning method:

- Incremental updates update \mathbf{w} using only partial data, e.g. most recent (S_t, U_t) or subset
- Ability to handle noisy targets
 e.g. different MC updates G_t for same state S_t
- Ability do handle non-stationary targets
 e.g. changing target policy, bootstrapping
- \Rightarrow If \hat{v}/\hat{q} differentiable, stochastic gradient descent is suitable method

Gradient Descent

- Let $J(\mathbf{w})$ be differentiable function of \mathbf{w}
- Gradient of J(w) is

$$\nabla J(\mathbf{w}) = \left(\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}_1}, \cdots, \frac{\partial J(\mathbf{w})}{\partial \mathbf{w}_d}\right)^{\mathsf{T}}$$

• To find local minimum of $J(\mathbf{w})$, adjust \mathbf{w} in negative direction of gradient

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{1}{2} \, \alpha \, \nabla J(\mathbf{w}_t)$$

• α is step-size parameter convergence requires standard α -reduction

Stochastic Gradient Descent

Objective: find parameter vector \mathbf{w} by minimising mean-squared error between approximate value $\hat{v}(s,\mathbf{w})$ and true value $v_{\pi}(s)$

$$J(\mathbf{w}) = \mathbb{E}_{\pi} \big[(V_{\pi}(s) - \hat{V}(s, \mathbf{w}))^2 \big]$$

Gradient descent finds local minimum:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{1}{2} \alpha \nabla J(\mathbf{w}_t)$$

= $\mathbf{w}_t + \alpha \mathbb{E}_{\pi}[(v_{\pi}(s) - \hat{v}(s, \mathbf{w}_t)) \nabla \hat{v}(s, \mathbf{w}_t)]$

• Stochastic gradient descent samples the gradient:

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha \left[\frac{\mathbf{U}_t}{\mathbf{V}_t} - \hat{\mathbf{v}}(\mathbf{S}_t, \mathbf{w}_t) \right] \nabla \hat{\mathbf{v}}(\mathbf{S}_t, \mathbf{w}_t)$$

Stochastic Gradient Descent — Convergence

Stochastic gradient descent samples the gradient:

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha \left[U_t - \hat{\mathbf{v}}(\mathbf{S}_t, \mathbf{w}_t) \right] \, \nabla \hat{\mathbf{v}}(\mathbf{S}_t, \mathbf{w}_t) \tag{1}$$

- \mathbf{w}_t will converge to local optimum under standard α -reduction and if U_t is unbiased estimate $\mathbb{E}_{\pi}[U_t|S_t] = v_{\pi}(S_t)$
 - ⇒ MC update is unbiased but TD update is biased (why?)
- Note: (1) is not true TD gradient because U_t also depends on \mathbf{w}

$$U_t = R_{t+1} + \gamma \hat{\mathbf{v}}(\mathbf{S}_{t+1}, \mathbf{w})$$

Hence, we call it semi-gradient TD

Semi-gradient TD(0) for Policy Evaluation

```
Input: the policy \pi to be evaluated
Input: a differentiable function \hat{v}: \mathbb{S}^+ \times \mathbb{R}^d \to \mathbb{R} such that \hat{v}(\text{terminal},\cdot) = 0
Algorithm parameter: step size \alpha > 0
Initialize value-function weights \mathbf{w} \in \mathbb{R}^d arbitrarily (e.g., \mathbf{w} = \mathbf{0})
Loop for each episode:
    Initialize S
    Loop for each step of episode:
         Choose A \sim \pi(\cdot|S)
         Take action A, observe R, S'
         \mathbf{w} \leftarrow \mathbf{w} + \alpha \left[ R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w}) \right] \nabla \hat{v}(S, \mathbf{w})
         S \leftarrow S'
    until S is terminal
```

Linear Value Function Approximation

Linear value function approximation:

$$\hat{\mathbf{v}}(s, \mathbf{w}) \doteq \mathbf{w}^{\top} \mathbf{x}(s) = \sum_{i=1}^{d} \mathbf{w}_{i} \mathbf{x}_{i}(s)$$

- $\mathbf{x}(s) = (\mathbf{x}_1(s), ..., \mathbf{x}_d(s))^{\top}$ is feature vector of state s
- Simple gradient: $\nabla \hat{v}(s, \mathbf{w}) = \left(\frac{\partial \mathbf{w}^{\top} \mathbf{x}}{\partial \mathbf{w}_{1}}, \cdots, \frac{\partial \mathbf{w}^{\top} \mathbf{x}}{\partial \mathbf{w}_{d}}\right)^{\top} = \mathbf{x}(s)$
- Gradient update: $\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha \left[U_t \hat{\mathbf{v}}(\mathbf{S}_t, \mathbf{w}_t) \right] \mathbf{x}(\mathbf{S}_t)$

In linear case, there is only one optimum!

- \Rightarrow MC gradient updates converge to global optimum
- ⇒ TD gradient updates converge *near* global optimum (TD fixed point)

Feature Vectors

$$\mathbf{x}(s) = \begin{pmatrix} x-pos(s) \\ y-pos(s) \end{pmatrix}$$

Remember: State must be Markov!

State Aggregation

Exact representation:

$$\mathbf{x}(s) = \begin{pmatrix} x - pos(s) \\ y - pos(s) \end{pmatrix}$$

Generalise with state aggregation:

• Partition states into disjoint sets S_1 , S_2 , ... with indicator functions $\mathbf{x}_k(s) = [s \in S_k]_1$

$$\mathbf{x}(s) = \begin{pmatrix} \text{in-S1}(s) \\ \text{in-S2}(s) \\ \text{in-S3}(s) \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

State Aggregation

Exact representation:

$$\mathbf{x}(s) = \begin{pmatrix} x - pos(s) \\ y - pos(s) \end{pmatrix}$$

Generalise with state aggregation:

• Partition states into disjoint sets S_1 , S_2 , ... with indicator functions $\mathbf{x}_k(s) = [s \in S_k]_1$

Special case: every state s has its own set $S_s = \{s\}$

⇒ Same as tabular representation!

Coarse/Tile Coding

State aggregation generalises only within sets S_1 , S_2 , ...

- Allow generalisation *across* sets by allowing S_k to overlap
- e.g. coarse coding and tile coding

Example: Random Walk

- States numbered 1 to 1000, start at state 500
- Policy: randomly jump to one of 100 states to left, or one of 100 states to right
- If jump goes beyond 1/1000, terminates with reward -1/+1
- Partition states into 10 groups of 100 states each

Random Walk: MC and TD Prediction

After 100,000 episodes with $\alpha = 2 \times 10^{-5}$

Random Walk: State Aggregation vs Tile Coding

- Linear gradient MC
- Tiles of 200 states each
- Multiple tilings offset by 4 states from each other
- $\alpha =$ 0.0001 for single tiling $\alpha =$ 0.0001/50 for 50 tilings

Approximate Control in Episodic Tasks

- Estimate state-action values: $\hat{q}(s, a, \mathbf{w}) \approx q_{\pi}(s, a)$
- For linear approx., features defined over states and action:

$$\hat{q}(s, a, \mathbf{w}) \doteq \sum_{i=1}^{d} \mathbf{w}_i \mathbf{x}_i(s, a)$$

• Stochastic gradient descent:

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha \left[U_t - \hat{q}(S_t, A_t, \mathbf{w}_t) \right] \nabla \hat{q}(S_t, A_t, \mathbf{w}_t)$$

e.g. Sarsa:
$$U_t = R_{t+1} + \gamma \, \hat{q}(S_{t+1}, A_{t+1}, \mathbf{w}_t)$$

Q-learning:
$$U_t = R_{t+1} + \gamma \max_a \hat{q}(S_{t+1}, a, \mathbf{w}_t)$$

Expected Sarsa:
$$U_t = R_{t+1} + \gamma \sum_a \pi(a|S_{t+1}) \hat{q}(S_{t+1}, a, \mathbf{w}_t)$$

Episodic Semi-gradient Sarsa

```
Input: a differentiable action-value function parameterization \hat{q}: \mathbb{S} \times \mathcal{A} \times \mathbb{R}^d \to \mathbb{R}
Algorithm parameters: step size \alpha > 0, small \varepsilon > 0
Initialize value-function weights \mathbf{w} \in \mathbb{R}^d arbitrarily (e.g., \mathbf{w} = \mathbf{0})
Loop for each episode:
    S, A \leftarrow \text{initial state} and action of episode (e.g., \varepsilon-greedy)
    Loop for each step of episode:
         Take action A, observe R, S'
         If S' is terminal:
              \mathbf{w} \leftarrow \mathbf{w} + \alpha [R - \hat{q}(S, A, \mathbf{w})] \nabla \hat{q}(S, A, \mathbf{w})
              Go to next episode
         Choose A' as a function of \hat{q}(S', \cdot, \mathbf{w}) (e.g., \varepsilon-greedy)
         \mathbf{w} \leftarrow \mathbf{w} + \alpha [R + \gamma \hat{q}(S', A', \mathbf{w}) - \hat{q}(S, A, \mathbf{w})] \nabla \hat{q}(S, A, \mathbf{w})
         S \leftarrow S'
         A \leftarrow A'
```

Example: Mountain Car

SITUATIONS:

car's position and velocity

ACTIONS:

three thrusts: forward, reverse, none

REWARDS:

always -1 until car reaches the goal

Episodic, No Discounting, $\gamma=1$

Semi-gradient Sarsa with linear approximation over 8 8x8 tilings $\epsilon=0$ (optimistic initial values $\hat{q}(s,a,\mathbf{w})=0$)

Learned Action Values in Mountain Car

Learning Curves in Mountain Car

Off-Policy Approximation May Diverge

 $\pi(\mathrm{solid}|\cdot) = 1$, $\mu(\mathrm{solid}|\cdot) = 1/7$ reward is always 0, $\gamma = 0.99$

Initial weights: $\mathbf{w} = (1, 1, 1, 1, 1, 1, 1, 1, 1)^{\top}$

Deadly Triad

Risk of divergence arises when following three are combined:

- 1. Function approximation
- 2. Bootstrapping
- 3. Off-policy learning

Possible fixes:

- Use importance sampling to warp off-policy distribution into on-policy distribution
- Use gradient TD methods which follow true gradient of projected Bellman error (see book)

Policy Improvement Broken

Policy improvement broken under function approximation:

- Assume we make policy π greedy in state s: $\pi(s) \leftarrow \arg \max_{\alpha} \hat{q}(s, \alpha, \mathbf{w}_t)$
- Then we re-evaluate π in state s, resulting in updated parameters \mathbf{w}_{t+1} for \hat{q}
 - \Rightarrow New parameters \mathbf{w}_{t+1} may also have changed values in other states!
 - \Rightarrow No guarantee that we have monotonically improved policy values!

Problem: not all policies can be represented with function approximation

- Which policies we can represent depends on method of function approximation
- Usually results in chattering nearby true optimal policy

Convergence to Global Optimum in Episodic Control

Algorithm	Tabular	Linear	Non-linear
MC control	yes	chatter*	no
semi-gradient (n-step) Sarsa	yes	chatter*	no
semi-gradient (n-step) Q-learning	yes	no	no

^{*}Chatters near optimal solution because optimal policy may not be representable under value function approximation

Reading

Required (RL book):

- Chapter 9 (9.1–9.6)
- Chapter 10 (10.1–10.2)
- Chapter 11 (11.1–11.3)

Optional:

- Remaining sections of chapters
- Tsitsiklis, J. N., Van Roy, B. (1997). An analysis of temporal-difference learning with function approximation. IEEE Transactions on Automatic Control, 42(5):674–690
- Mahadevan, S. (1996). Average reward reinforcement learning: Foundations, algorithms, and empirical results. Machine Learning, 22(1):159–196