Question: Design a two-input X-NOR gate around RBF centers at [1 0] and [0 1], as was done in class. Be sure to include the output cell and the weights and bias inputs.

Solution: The network will work on Unipolar Input, the function and the parameters are as follows:

- $Y_{in} = \sum_{1}^{n} W_i \times \phi_i + b$ for the final output after hidden layer
- $\bullet \ \phi_i = e^{-\|x_i t_i\|^2}$
- $t_1 = [0 \ 1] \text{ and } t_2 = [1 \ 0]$
- The truth table for the 2-input X-NOR gate is as follows:

X_i	1	2	A_i
1	0	0	1
2	0	1	0
3	1	0	0
4	1	1	1

• Each X_i and A_i is a column vector where A is target.

Calculations:

• For
$$X_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

1.
$$\phi_1 = e^{-\|x_1 - t_1\|^2} = e^{-1} = 0.368$$

2.
$$\phi_2 = e^{-\|x_1 - t_2\|^2} = e^{-1} = 0.368$$

3. Therefore,
$$y_1 = w_1 \times \phi_1 + w_1 \times \phi_1 + b$$

• For
$$X_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

1.
$$\phi_1 = e^{-\|x_2 - t_1\|^2} = e^0 = 1$$

2.
$$\phi_2 = e^{-\|x_2 - t_2\|^2} = e^{-2} = 0.135$$

3. Therefore,
$$y_2 = w_1 \times \phi_1 + w_1 \times \phi_1 + b$$

EE 456

• For
$$X_3 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

1.
$$\phi_1 = e^{-\|x_3 - t_1\|^2} = e^{-2} = 0.135$$

$$2. \ \phi_2 = e^{-\|x_3 - t_2\|^2} = e^0 = 1$$

3. Therefore,
$$y_1 = w_1 \times \phi_1 + w_1 \times \phi_1 + b$$

• For
$$X_4 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

1.
$$\phi_1 = e^{-\|x_4 - t_1\|^2} = e^{-1} = 0.368$$

2.
$$\phi_2 = e^{-\|x_4 - t_2\|^2} = e^{-1} = 0.368$$

3. Therefore,
$$y_1 = w_1 \times \phi_1 + w_1 \times \phi_1 + b$$

• Therefore the matrix for ϕ_1 and ϕ_2 along with inputs and target looks like:

X_i	1	2	ϕ_1	ϕ_2	A_i
1	0	0	0.368	0.368	1
2	0	1	1	0.135	0
3	1	0	0.135	1	0
4	1	1	0.368	0.368	1

• According to our calculation, one set of possible weights and bias we get is

$$W_{=}\begin{bmatrix} -2.4\\ -2.4\\ 0.5 \end{bmatrix}$$
 initially, where $w_{1}=-2.4, w_{2}=-2.4$ and $b=0.5$

- Let the threshold for the output cell be -2.0 i.e. y=1 if $f(x) \geq 2.0$ and 0 otherwise.
- We test the output for each input including weights and bias:

1. Apply
$$X_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

 $\rightarrow f(y_{in}) = w_1 \times \phi_{11} + w_2 \times \phi_{12} + b$
 $\rightarrow f(y_{in}) = -2.4 \times 0.368 + (-2.4) \times 0.368 + 0.5 = f(-1.2664) = 1 \text{ and target} = 1 \rightarrow \mathbf{ok}$

2. Apply
$$X_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

 $\rightarrow f(y_{in}) = w_1 \times \phi_{21} + w_2 \times \phi_{22} + b$
 $\rightarrow f(y_{in}) = -2.4 \times 1 + (-2.4) \times 0.135 + 0.5 = f(-2.224) = 0 \text{ and target} = 0 \rightarrow \mathbf{ok}$

3. Apply
$$X_3 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

 $\rightarrow f(y_{in}) = w_1 \times \phi_{31} + w_2 \times \phi_{32} + b$
 $\rightarrow f(y_{in}) = -2.4 \times 0.135 + (-2.4) \times 1 + 0.5 = f(-2.224) = 0 \text{ and target} = 0 \rightarrow \mathbf{ok}$

4. Apply
$$X_4 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

 $\rightarrow f(y_{in}) = w_1 \times \phi_{41} + w_2 \times \phi_{42} + b$
 $\rightarrow f(y_{in}) = -2.4 \times 0.368 + (-2.4) \times 0.368 + 0.5 = f(-1.2664) = 1 \text{ and target} = 1 \rightarrow \mathbf{ok}$

- 5. $w_2/w_1 = 1$
- 6. b/w1 = -0.2083
- 7. Equation or decision boundary is $y = w_1 \times x_1 + w_2 \times x_2 + b = -2.4 \times x_1 2.4 \times x_2 + 0.5$ Therefore the network is set for 2-input X-NOR gate.