

Jetson Orin NX Series and Jetson Orin Nano Series

Product Design Guide

Document History

DG-10931-001 v1.3

Version	Date	Description of Change
0.1	April 25, 2022	Preliminary information – Subject to change
0.99	September 30, 2022	Updated to include Orin Nano series modules in addition to Orin NX series modules.
		• Section 3.1. Added supported PCIe to NVMe configurations for secondary boot storage.
		• Table 6-1 and Section 6.1. Updated description of SYS_RESET* behavior when driven by carrier board.
		 Section 6.1. Added note that carrier boards must support VDD_IN at 5V (suppor for higher voltage on VDD_IN optional)
		• Figure 6-4. Power Up Sequence with Power Button. Added missing text for last line (carrier board supplies)
		Table 7-3. USB 3.2 and PCle Lane Mapping: Corrected column title in UPHY mapping table to Orin module instead of AGX Orin.
		 Various: Updated on-module I2C pull-up values to 2.2 KΩ
1.0	December 20, 2022	Table 2-1: Added mention of storage options on USB and PCIe
		• Figure 2-1: Updated to include option for storage on USB 3.2 or PCle
		• Section 3.1:
		> Corrected UPHY block to UPHY2 instead of UPHY1
		> Added USB 3.2 option for storage
		Figure 5.1: Updated with Orin NX/Nano module
		Updated Table 6-1:
		> Updated SLEEP/WAKE* to remove mention of pull-up on module
		> Updated SYS_RESET* on-module pull-up voltage
		> Updated CLK_32K_OUT description
		• Figure 6-3, Figure 6-4, Table 6-3, and Table 6-4: Updated SYS_RESET_N delay from POWER_EN
		• Figure 6-5: Updated figure to remove arrow from SHUTDOWN_REQ* to carrier board supplies falling.
		• Table 7-2:
		> Corrected P/N swap for Orin signal names SF_PCIE7_CLK (Pins 52/54)
		> Corrected +/- swap for SF_PCIE9_CLK descriptions (Pins 227/229)
		• Figure 9-1: Corrected P/N swap for SoC DPAUX pins
		• Figure 9-2: Corrected P/N swap for SoC DPAUX and PIAUX221Z device.
		• Figure 9-8: Corrected P/N swap for SoC DPAUX
		Table 10-1 and Figure 10-1: Updated to show swapped P/N on two data lanes
		Table 10-3: Separated clock and data for all lanes.
		Figure 11-1: Updated notes to correct I2C pull-up resistor value on module.
		Table 12-10: Updated CAN max data rate

Version	Date	Description of Change
1.1	April 7, 2023	General: Updated to use Orin Nano DevKit Carrier Board as reference design.
		Table 2-2: Updated legend
		Updated Chapter 4: Developer Kit Feature Considerations; also updated USB Hub part number.
		Section 5.1: Replaced mention of Xavier NX SCL with Orin NX/Orin Nano SCL.
		Section 6.1.1 and Figure 6-7: Updated Power Button Supervisor MCU part #
		Figure 6-5: Added note above figure about possible discharge circuits.
		Table 7-1: Added mention of Recovery mode for USB_D_N/P interface.
		Updated: Table 7-3 and Table 7-4:
		> Split UPHY mapping options into separate tables per UPHY block
		> Updated text above tables allowing more configuration flexibility.
		> Separated RP and EP into separate configurations within tables.
		> Added two options for PCIe x4 (C4) in UPHY0 table with limitations.
		Section 7.1: Added mention of polarity inversion support for USB 3.2.
		• Table 7-11: Removed mention of Root Port and Endpoint for PCle interface 1 (x1). Also changed from Endpoint to Root Port in title of PCle interface 3 (x1).
		• Table 7-6, Table 7-8, Table 9-3, Table 9-5: Moved smaller figures inside the table instead of following the table.
		Table 8-2: Added Max Inter-Pair (Pair to Pair) skew requirement for MDI.
		Table 9-1: Corrected HDMI_CEC Pin Type. See Jetson Orin NX 16GB Hardware Errata for more details.
		Figure 9-1: Updated HDP connections to include series & pulldown resistors and breakout details for level shifter.
		• Figure 9-2: Removed CEC circuit from DP++ figure and added weak pull-up to pin 14 of DP connector.
		Table 9-4: Updated Termination for DP1_AUX and DP1_HPD.
		Updated Figure 9-6:
		> Added pulldown and series resistors on HPD after level shifter.
		> Added details of HDMI_CEC circuit and HPD/DDC level shifters.
		• Figure 10-1 and Figure 10-2: Separated 2-lane and 4-lane configuration option examples.
		Table 10-3: Updated 2-lane configuration names in "Cameras" row.
		Table 12-1 and Figure 12-1: Added I2C usage on the module for I2C0 and I2C2.
		Table 13-2: Updated pull-up voltage and/or pull-up resistor values for several pins.
1.2	October 24, 2023	Updated Figure 6-3: Power Up Sequence No Power Button – Auto Power On.
1.3	July 15, 2024	Updated Figure 2-1.
		 Updated time duration from POWER_EN to reset release at power-up in Figures 6-3 and 6-4 from ~80ms to >80ms.
		Updated note below Figure 12-5 to include information on strap pins for RAMCODE.
		Updated SHUTDOWN_REQ* is driven active (low) bullet under Power Supply and Sequencing.

Table of Contents

Chapter	er 1. Introduction	
1.1	References	1
1.2	Attachments	2
1.3	Abbreviations and Definitions	2
Chapter	er 2. Jetson Orin Module	4
Chapter	er 3. Jetson Orin Module Boot Considerations	9
3.1	QSPI Boot	9
3.2	USB Recovery Mode	9
Chapter	er 4. Developer Kit Feature Considerations	11
4.1	Button Power MCU	11
4.2	USB SuperSpeed Hub	12
4.3	Power over Ethernet	12
4.4	TI TXB0108 Level Shifters	
4.5	Features Not to Be Implemented	12
Chapter	r 5. Modular Connector	13
5.1	Module Connector Details	13
5.2	Module to Mounting Hardware	13
5.3	Module Installation and Removal	14
Chapter	er 6. Power	15
6.1	Power Supply and Sequencing	17
6.1.	1.1 Power Button Supervisor MCU Power-On	20
6	6.1.1.1 Defined Behaviors	22
6	6.1.1.2 Power-Off -> Power-On (Power Button Case)	22
6	6.1.1.3 Power-Off -> Power-On (Auto-Power-On Cas	e)23
6	6.1.1.4 Power-On -> Power-Off (Long Power Button	Press)24
Chapter	er 7. USB and PCle	26
7.1	USB	29
7.1.	1.1 USB 2.0 Routing Guidelines	30
7.1.	1.2 USB 3.2 Routing Guidelines	31
7	7.1.2.1 Common USB Routing Guidelines	35
7.2	PCIe	36
7.2.	2.1 PCle Routing Guidelines	38
Chapter	er 8. Gigabit Ethernet	43
8.1.	1.1 Ethernet MDI Routing Guidelines	44

Chapter 9. Display	45
9.1 eDP and DP	46
9.1.1 eDP and DP Routing Guidelines	47
9.2 HDMI	51
9.2.1 HDMI Routing Guidelines	52
Chapter 10. MIPI CSI Video Input	58
10.1 CSI Routing Guidelines	61
Chapter 11. Audio	63
11.1.1 I2S Routing Guidelines	
Chapter 12. Miscellaneous Interfaces	66
•	66
12.1.1 I2C Design Guidelines	
12.1.2 I2C routing Guidelines	
12.2 SPI	68
12.2.1 SPI Routing Guidelines	69
12.3 UART	69
12.4 CAN	71
12.4.1 CAN Routing Guidelines	
12.5 Fan	
12.6 Debug	
Chapter 13. PADS	
13.1 Internal Pull-Ups for Dual Voltage Block Pins Po	
13.2 Schmitt Trigger Usage	
13.3 Pins Pulled or Driven High During Power-On	
Chapter 14. Unused Interface Terminations	
14.1 Unused Multi-Purpose Standard CMOS Pad Into	
14.2 Unused Dedicated Special Purpose Pad Interfac	ces76
Chapter 15. Design and Bring-Up Checklists	77
Chapter 16. Orin Module Pin Descriptions	78
Chapter 17. General Routing Guidelines	79
17.1 Signal Naming Convention	79
17.2 Routing Guidelines Format	80
17.3 Signal Routing Conventions	80
17.4 Routing Guidelines	
17.4.1 General PCB Routing Guidelines	
17.5 Common High-Speed Interface Requirements	
17.6 Test Points for High-Speed Interfaces	83
Chapter 18. USB 3.2 and Wireless Coexistence	
18.1 Mitigation Techniques	84

List of Figures

Figure 2-1.	Jetson Orin Module Block Diagram	5
Figure 5-1.	Jetson Orin Module Installed in SODIMM Connector	13
Figure 5-2.	Module to Connector Assembly Diagram	14
Figure 6-1.	System Power and Control Block Diagram	18
Figure 6-2.	System Power and Control Block Diagram	18
Figure 6-3.	Power Up Sequence No Power Button – Auto Power On	19
Figure 6-4.	Power Up Sequence with Power Button	19
Figure 6-5.	Power Down Initiated by SHUTDOWN_REQ* Assertion	20
Figure 6-6.	Power Down Sudden Power Loss	20
Figure 6-7.	Power-On Button Circuit	22
Figure 6-8.	Power-Off to On Sequence Power Button Case	23
Figure 6-9.	Power-Off to On Sequence Auto Power-On Case	24
Figure 6-10.	Power-On to Off Power Button Held Low > 10 Seconds	25
Figure 7-1.	USB Micro B USB Device and Recovery Connection Example	30
Figure 7-2.	USB 3.2 Type A Host Only Connection Example	30
Figure 7-3.	IL/NEXT Plot	34
Figure 7-4.	TDR Plot	34
Figure 7-5.	PCIe Root Port Connections Example	36
Figure 7-6.	PCIe Endpoint Connections Example	37
Figure 7-7.	Insertion Loss S-Parameter Plot SDD21	40
Figure 7-8.	Insertion Loss S-Parameter Plot SDD11	40
Figure 8-1.	Orin Module Ethernet Connections	43
Figure 8-2.	Gigabit Ethernet Magnetics and RJ45 Connections	44
Figure 9-1.	DP and eDP Connection Example	46
Figure 9-2.	DP++ Connection Example	47
Figure 9-3.	eDP and DP Differential Main Link Topology	47
Figure 9-4.	S-Parameter Up to HBR2	50
Figure 9-5.	S-Parameter Up to HBR3	50
Figure 9-6.	HDMI Connection Example	51
Figure 9-7.	HDMI CLK and Data Topology	52
Figure 9-8.	IL/FEXT Plot	56
Figure 9-9.	TDR Plot	56
Figure 10-1.	CSI 2-Lane Connection Options	59
Figure 10-2.	CSI 4-Lane Connection Options	60
Figure 10-3.	Available Camera Control Pins	60
Figure 11-1.	Audio Connection Example	64
Figure 12-1.	I2C Connections	66
Figure 12-2	SPI Connections	68

Figure 12-3.	Basic SPI Initiator and Target Connections	68
Figure 12-4.	SPI Topologies	69
Figure 12-5.	Orin Module UART Connections	70
Figure 12-6.	Orin Module CAN Connections	71
Figure 12-7.	Orin Module Fan Connections	72
Figure 12-8.	Debug UART Connections	73
Figure 17-1.	General PCB Routing Guidelines	81
Figure 17-2.	Common Mode Choke	82
Figure 17-3.	Serpentine	83

List of Tables

Table 1-1.	Abbreviations and Definitions	2
Table 2-1.	Jetson Orin Module Interfaces	4
Table 2-2.	Jetson Orin Module Connector 260-Pin SO-DIMM Pinout Matrix	5
Table 6-1.	Jetson Orin Module Power and System Pin Description	15
Table 6-2.	Power Button Supervisor Control Signals	21
Table 6-3.	Power-Off to On Timing Power Button Case	23
Table 6-4.	Power-Off to On Timing Auto Power-On Case	24
Table 6-5.	Power-On to Off Timing Power Button Held Low > 10 Seconds	25
Table 7-1.	Jetson Orin Module USB 2.0 Pin Description	26
Table 7-2.	Jetson Orin Module USB 3.2 and PCIe Pin Description	27
Table 7-3.	UPHYO Mapping Options (USB 3.2 and PCIe)	29
Table 7-4.	UPHY2 Mapping Options (PCIe)	29
Table 7-5.	USB 2.0 Interface Signal Routing Requirements	30
Table 7-6.	USB 3.2 Interface Signal Routing Requirements	31
Table 7-7.	Orin USB 2.0 Signal Connections	35
Table 7-8.	Miscellaneous USB 2.0 Signal Connections	35
Table 7-9.	Orin USB 3.2 Signal Connections	35
Table 7-10.	PCIe Interface Signal Routing Requirements up to Gen4	38
Table 7-11.	PCIe Signal Connections	41
Table 8-1.	Orin Module Gigabit Ethernet Pin Descriptions	43
Table 8-2.	Ethernet MDI Interface Signal Routing Requirements	44
Table 8-3.	Ethernet Signal Connections	44
Table 9-1.	Orin Module eDP, DP, and HDMI Pin Descriptions	45
Table 9-2.	DP and HDMI Pin Mapping	46
Table 9-3.	eDP and DP Main Link Signal Requirements Including DP_AUX	48
Table 9-4.	eDP and DP Signal Connections	51
Table 9-5.	HDMI Interface Signal Routing Requirements	52
Table 9-6.	HDMI Signal Connections	57
Table 10-1.	Orin Module CSI Pin Descriptions	58
Table 10-2.	Orin Module Camera Miscellaneous Pin Descriptions	59
Table 10-3.	CSI Configurations	61
Table 10-4.	MIPI CSI D-PHY Interface Signal Routing Requirements	61
Table 10-5.	MIPI CSI Signal Connections	62
Table 10-6.	Miscellaneous Camera Connections	62
Table 11-1.	Orin Module Audio Pin Descriptions	63
Table 11-2.	I2S Interface Signal Routing Requirements	64
Table 11-3.	Audio Signal Connection	65
Table 12-1	Orin Module I2C Pin Descriptions	66

Table 12-2.	I2C Interface Signal Routing Requirements	67
Table 12-3.	I2C Signal Connections	67
Table 12-4.	Orin Module SPI Pin Descriptions	68
Table 12-5.	SPI Interface Signal Routing Requirements	69
Table 12-6.	SPI Signal Connections	69
Table 12-7.	Orin Module UART Pin Descriptions	70
Table 12-8.	UART Signal Connections	70
Table 12-9.	Orin Module CAN Pin Descriptions	71
Table 12-10.	CAN Interface Signal Routing Requirements	71
Table 12-11.	CAN Signal Connections	71
Table 12-12.	Orin Module Fan Pin Descriptions	72
Table 12-13.	Orin Module Debug UART Pin Descriptions	73
Table 12-14.	Debug UART Connections	73
Table 13-1.	Pins Pulled or Driven High by Orin Prior to SYS_RESET* Inactive	75
Table 13-2.	Pins with External Pull-Ups to Supply on before SYS_RESET* Inactive	75
Table 14-1.	Unused MPIO Pins and Pin Group	76
Table 17-1.	Signal Type Codes	79
Table 17-2.	Common High-Speed Interface Requirements	82

Chapter 1. Introduction

This design guide contains recommendations and guidelines for engineers to follow to create a product that is optimized to achieve the best performance from the interfaces supported by the NVIDIA® Jetson™ Orin NX and Jetson Orin Nano System-on-Module (SOM).

This design guide provides detailed information on the capabilities of the hardware module, which may differ from supported configurations by provided software. Refer to software release documentation for information on supported capabilities.

Notes:

- References to Orin module refers to the Jetson Orin module series. Modules include Jetson Orin NX 16GB, Jetson Orin NX 8GB, Jetson Orin Nano 8GB, and Jetson Orin Nano 4GB.
- All occurrences of USB 3.2 refer to "USB 3.2 Gen 1x1: SuperSpeed USB 5Gbps" and "USB 3.2 Gen 2x1: SuperSpeed USB 10Gbps" only. Also note that Gen 1x1 and Gen 2x1 are referred to simply as Gen1 and Gen2 in this design guide.

References 1.1

Refer to the following list of documents or models for more information. Use the latest revision of all documents.

- Jetson Orin NX Series Data Sheet
- Jetson Orin Nano Series Data Sheet
- Orin (SoC) Technical Reference Manual
- Jetson Orin NX and Jetson Orin Nano Series Pinmux
- Jetson Orin NX Series and Jetson Orin Nano Series Thermal Design Guide
- Jetson Orin NX Series and Jetson Orin Nano Series SCL (Supported Component List)

1.2 **Attachments**

The following files are attached to this design guide.

- Jetson_Orin_NX_Orin_Nano_Pin_Descriptions.nvxlsx
- Jetson_Orin_NX_Orin_Nano_Schematic_Checklist.nvxlsx
- Jetson_Orin_NX_Orin_Nano_Layout_Checklist.nvxlsx

To access the attached files, click the Attachment icon on the left-hand toolbar on this PDF (using Adobe Acrobat Reader or Adobe Acrobat). Select the file and use the Tool Bar options (Open, Save) to retrieve the documents. Excel files with the .nvxlsx extension will need to be saved as .xlsx.

Abbreviations and Definitions 1.3

Table 1-1 lists the abbreviations that may be used throughout this design and guide and their definitions.

Table 1-1. Abbreviations and Definitions

Abbreviation	Definition			
CAN	Controller Area Network			
CEC	Consumer Electronic Control			
CSI	Camera Serial Interface			
Diff	Differential			
DP	DisplayPort			
eDP	Embedded DisplayPort			
ESD	Electrostatic Discharge			
EMI	Electromagnetic Interference			
FET	Field Effect Transistor			
GPIO	General Purpose Input Output			
HDCP	High-bandwidth Digital Content Protection			
HDMI	High-Definition Multimedia Interface			
12C	Inter IC Interface			
12S	Inter IC Sound Interface			
LDO	Low Dropout (voltage regulator)			
LPDDR5	Low Power Double Data Rate DRAM, Fifth generation			
MDI	Medium-Dependent Interface			
MIPI	Mobile Industry Processor Interface			
mm	Millimeter			
ms	Milliseconds			
PCIe	Peripheral Component Interconnect Express interface			

Abbreviation	Definition
PCM	Pulse Code Modulation
PHY	Physical Interface (that is, USB PHY)
ps	Pico-Seconds
PMIC	Power Management Integrated Circuit
RJ45	8P8C modular connector used in Ethernet and other data links
RTC	Real Time Clock
SE	Single-Ended
SoC	System on Chip
SOM	System on Module
SPI	Serial Peripheral Interface
TMDS	Transition-Minimized Differential Signaling
UART	Universal Asynchronous Receiver-Transmitter
USB	Universal Serial Bus

Chapter 2. Jetson Orin Module

The Jetson Orin module resides at the center of the embedded system solution and includes:

- Power (Power sequencer, regulators, and so on)
- ▶ DRAM (LPDDR5)
- Gigabit Ethernet PHY
- QSPI NOR (Boot device)

In addition, a wide range of interfaces are available at the main connector for use on the carrier board as shown in Table 2-1 and Figure 2-1.

Jetson Orin Module Interfaces Table 2-1.

Category	Function		Category	Function	
	USB 2.0 interface (3x)		LAN	Gigabit ethernet	
USB	USB 3.2 (3x). Note: SSD via USB 3.2 is one option for storage.		12C	4x	
PCIe	PCIe (1 x1, 1 x2 or 2 x1, and 1 x4). Note: NVMe via PCIe is one option for storage.		UART	3x	
Camara	CSI (8 lanes 2 x4 or 4 x2)		SPI	2x	
Camera	Control, clock		CAN	1x	
Display	HDMI/eDP/DP (1x)		Fan	FAN PWM and tach input	
Display	DP_AUX/HPD, CEC		Debug	UART	
	I2S interface (2x)		System	Power control, reset, alerts	
Audio	Codec clock		Power	Main input and pin for optional battery back- up for Real-Time Clock	

Figure 2-1. Jetson Orin Module Block Diagram

Table 2-2. Jetson Orin Module Connector 260-Pin SO-DIMM Pinout Matrix

Module Signal Name	Jetson Orin Module Function	Pin #	Pin #	Module Signal Name	Jetson Orin Module Function
GND	GND	1	2	GND	GND
CSI1_D0_N	CSI1_D0_N	3	4	CSIO_DO_N	CSIO_DO_N
CSI1_D0_P	CSI1_D0_P	5	6	CSIO_DO_P	CSIO_DO_P
GND	GND	7	8	GND	GND
CSI1_CLK_N	CSI1_CLK_N	9	10	CSIO_CLK_N	CSIO_CLK_N
CSI1_CLK_P	CSI1_CLK_P	11	12	CSIO_CLK_P	CSIO_CLK_P
GND	GND	13	14	GND	GND
CSI1_D1_N	CSI1_D1_N	15	16	CSIO_D1_N	CSIO_D1_N
CSI1_D1_P	CSI1_D1_P	17	18	CSIO_D1_P	CSIO_D1_P
GND	GND	19	20	GND	GND
CSI3_D0_N	CSI3_D0_N	21	22	CSI2_D0_N	CSI2_D0_N
CSI3_D0_P	CSI3_D0_P	23	24	CSI2_D0_P	CSI2_D0_P
GND	GND	25	26	GND	GND
CSI3_CLK_N	CSI3_CLK_N	27	28	CSI2_CLK_N	CSI2_CLK_N
CSI3_CLK_P	CSI3_CLK_P	29	30	CSI2_CLK_P	CSI2_CLK_P
GND	GND	31	32	GND	GND
CSI3_D1_N	CSI3_D1_N	33	34	CSI2_D1_N	CSI2_D1_N
CSI3_D1_P	CSI3_D1_P	35	36	CSI2_D1_P	CSI2_D1_P
GND	GND	37	38	GND	GND
DP0_TXD0_N	USBSS1_RX_N	39	40	CSI4_D2_N	PCIE2_RX0_N
DP0_TXD0_P	USBSS1_RX_P	41	42	CSI4_D2_P	PCIE2_RX0_P
GND	GND	43	44	GND	GND
DP0_TXD1_N	USBSS1_TX_N	45	46	CSI4_D0_N	PCIE2_TX0_N
DP0_TXD1_P	USBSS1_TX_P	47	48	CSI4_D0_P	PCIE2_TX0_P

Module Signal Name	Jetson Orin Module Function	Pin #	Pin #	Module Signal Name	Jetson Orin Module Function
GND	GND	49	50	GND	GND
DP0_TXD2_N	USBSS2_RX_N	51	52	CSI4_CLK_N	PCIE2_CLK_N
DP0_TXD2_P	USBSS2_RX_P	53	54	CSI4_CLK_P	PCIE2_CLK_P
GND	GND	55	56	GND	GND
DP0_TXD3_N	USBSS2_TX_N	57	58	CSI4_D1_N	PCIE2_RX1_N (PCIE3_RX0_N)
DP0_TXD3_P	USBSS2_TX_P	59	60	CSI4_D1_P	PCIE2_RX1_P (PCIE3_TX0_P)
GND	GND	61	62	GND	GND
DP1_TXD0_N	DP1_TXD0_N	63	64	CSI4_D3_N	PCIE2_TX1_N (PCIE3_TX0_N)
DP1_TXD0_P	DP1_TXD0_P	65	66	CSI4_D3_P	PCIE2_TX1_P (PCIE3_TX0_P)
GND	GND	67	68	GND	GND
DP1_TXD1_N	DP1_TXD1_N	69	70	DSI_D0_N	RSVD
DP1_TXD1_P	DP1_TXD1_P	71	72	DSI_D0_P	RSVD
GND	GND	73	74	GND	GND
DP1_TXD2_N	DP1_TXD2_N	75	76	DSI_CLK_N	RSVD
DP1_TXD2_P	DP1_TXD2_P	77	78	DSI_CLK_P	RSVD
GND	GND	79	80	GND	GND
DP1_TXD3_N	DP1_TXD3_N	81	82	DSI_D1_N	RSVD
DP1_TXD3_P	DP1_TXD3_P	83	84	DSI_D1_P	RSVD
GND	GND	85	86	GND	GND
GPIO00	GPIO00	87	88	DPO_HPD	RSVD
SPI0_MOSI	SPI0_MOSI	89	90	DP0_AUX_N	RSVD
SPIO_SCK	SPIO_SCK	91	92	DPO AUX P	RSVD
SPIO MISO	SPIO MISO	93	94	HDMI_CEC	HDMI_CEC
SPIO CSO*	SPIO CSO*	95	96	DP1 HPD	DP1 HPD
SPIO CS1*	SPIO CS1*	97	98	DP1_AUX_N	DP1_AUX_N
UARTO_TXD	UARTO_TXD	99	100	DP1_AUX_P	DP1_AUX_P
UARTO_RXD	UARTO_RXD	101	102	GND	GND
UARTO_RTS*	UARTO_RTS*	103	104	SPI1_MOSI	SPI1_MOSI
UARTO_CTS*	UARTO CTS*	105	106	SPI1_SCK	SPI1_SCK
GND	GND	107	108	SPI1 MISO	SPI1_MISO
USBO_D_N	USBO_D_N	109	110	SPI1_CS0*	SPI1_CSO*
USBO_D_P	USBO D P	111	112	SPI1 CS1*	SPI1_CS1*
GND	GND	113	114	CAM0_PWDN	CAM0_PWDN
USB1_D_N	USB1_D_N	115	116	CAM0_MCLK	CAM0_MCLK
USB1_D_P	USB1_D_P	117	118	GPIO01	GPIO01
GND	GND	119	120	CAM1_PWDN	CAM1_PWDN
USB2_D_N	USB2_D_N	121	122	CAM1_MCLK	CAM1_MCLK
USB2 D P	USB2 D P	123	124	GPIO02	GPIO02
GND	GND	125	126	GPI003	GPI003
GPI004	GPIO04	127	128	GPIO05	GPI005
GND	GND	129	130	GPIO06	GPI006
PCIEO RXO N	PCIEO_RXO_N	131	132	GND	GND
PCIEO_RXO_P	PCIEO_RXO_P	133	134	PCIEO_TXO_N	PCIEO_TXO_N
GND	GND	135	136	PCIEO_TXO_P	PCIEO_TXO_P
PCIEO_RX1_N	PCIEO_RX1_N	137	138	GND	GND
PCIEO_RX1_P	PCIEO_RX1_P	139	140	PCIEO_TX1_N	PCIEO_TX1_N
GND	GND	141	142	PCIEO_TX1_P	PCIEO_TX1_P
CAN_RX	CAN_RX	143	144	GND	GND

Module Signal Name	Jetson Orin Module Function	Pin #	Pin #	Module Signal Name	Jetson Orin Module Function
KEY	KEY	KEY	KEY	KEY	KEY
CAN_TX	CAN_TX	145	146	GND	GND
GND	GND	147	148	PCIEO_TX2_N	PCIEO_TX2_N
PCIEO RX2 N	PCIE0_RX2_N	149	150	PCIEO_TX2_P	PCIEO TX2 P
PCIEO_RX2_P	PCIEO_RX2_P	151	152	GND	GND
GND	GND	153	154	PCIEO_TX3_N	PCIEO_TX3_N
PCIEO_RX3_N	PCIEO_RX3_N	155	156	PCIEO_TX3_P	PCIEO_TX3_P
PCIEO_RX3_P	PCIEO RX3 P	157	158	GND	GND
GND	GND	159	160	PCIEO_CLK_N	PCIEO_CLK_N
USBSS_RX_N	USBSSO RX N	161	162	PCIEO_CLK_P	PCIEO_CLK_P
USBSS_RX_P	USBSSO_RX_P	163	164	GND	GND
GND	GND	165	166	USBSS_TX_N	USBSSO_TX_N
PCIE1_RX0_N	PCIE1_RX0_N	167	168	USBSS_TX_P	USBSSO_TX_P
		169	170	GND	GND
PCIE1_RX0_P	PCIE1_RXO_P	171	170		
GND DCIE1 CLK N	GND DCIE1 CLK N			PCIE1_TX0_N	PCIE1_TX0_N
PCIE1_CLK_N	PCIE1_CLK_N	173	174	PCIE1_TX0_P	PCIE1_TX0_P
PCIE1_CLK_P	PCIE1_CLK_P	175	176	GND	GND
GND	GND	177	178	MOD_SLEEP*	MOD_SLEEP*
PCIE_WAKE*	PCIE_WAKE*	179	180	PCIEO_CLKREQ*	PCIEO_CLKREQ*
PCIEO_RST*	PCIEO_RST*	181	182	PCIE1_CLKREQ*	PCIE1_CLKREQ*
PCIE1_RST*	PCIE1_RST*	183	184	GBE_MDI0_N	GBE_MDI0_N
I2CO_SCL	I2CO_SCL	185	186	GBE_MDI0_P	GBE_MDI0_P
I2CO_SDA	I2C0_SDA	187	188	GBE_LED_LINK	GBE_LED_LINK
I2C1_SCL	I2C1_SCL	189	190	GBE_MDI1_N	GBE_MDI1_N
I2C1_SDA	I2C1_SDA	191	192	GBE_MDI1_P	GBE_MDI1_P
I2SO_DOUT	I2S0_DOUT	193	194	GBE_LED_ACT	GBE_LED_ACT
12S0_DIN	12S0_DIN	195	196	GBE_MDI2_N	GBE_MDI2_N
12S0_FS	12S0_FS	197	198	GBE_MDI2_P	GBE_MDI2_P
I2S0_SCLK	I2SO_SCLK	199	200	GND	GND
GND	GND	201	202	GBE_MDI3_N	GBE_MDI3_N
UART1_TXD	UART1_TXD	203	204	GBE_MDI3_P	GBE_MDI3_P
UART1_RXD	UART1_RXD	205	206	GPIO07	GPIO07
UART1_RTS*	UART1_RTS*	207	208	GPIO08	GPIO08
UART1_CTS*	UART1_CTS*	209	210	CLK_32K_OUT	CLK_32K_OUT
GPIO09	GPIO09	211	212	GPIO10	GPIO10
CAM_I2C_SCL	CAM_I2C_SCL	213	214	FORCE_RECOVERY*	FORCE_RECOVERY*
CAM_I2C_SDA	CAM_I2C_SDA	215	216	GPIO11	GPIO11
GND	MODULE_ID	217	218	GPIO12	GPIO12
SDMMC_DAT0	PCIE2_RST*	219	220	I2S1_DOUT	I2S1_DOUT
SDMMC_DAT1	PCIE2_CLKREQ*	221	222	I2S1_DIN	I2S1_DIN
SDMMC_DAT2	PCIE3_RST*	223	224	I2S1_FS	I2S1_FS
SDMMC_DAT3	PCIE3_CLKREQ*	225	226	I2S1_SCLK	I2S1_SCLK
SDMMC_CMD	PCIE3_CLK_N	227	228	GPIO13	GPIO13
SDMMC_CLK	PCIE3_CLK_P	229	230	GPIO14	GPIO14
GND	GND	231	232	I2C2_SCL	I2C2_SCL
SHUTDOWN_REQ*	SHUTDOWN_REQ*	233	234	I2C2_SDA	I2C2_SDA
PMIC_BBAT	PMIC_BBAT	235	236	UART2_TXD	UART2_TXD
POWER EN	POWER_EN	237	238	UART2_RXD	UART2_RXD
SYS_RESET*	SYS_RESET*	239	240	SLEEP/WAKE*	SLEEP/WAKE*
GND	GND	241	242	GND	GND
GND	GND	243	244	GND	GND
GND	GND	245	246	GND	GND
GND	GND	243	248	GND	GND
GND	GND	247	250	GND	GND
GIND	GNU	243	230	GIND	טווט

Module Sig	nal Name		Orin Module Function	Pin #	ŧ		Pin #	Module Signal Name	Jetson Orin Module Function
VDD	_IN		VDD	251			252	VDD_IN	VDD
VDD	_IN		VDD	253			254	VDD_IN	VDD
VDD	_IN	VDD		255			256	VDD_IN	VDD
VDD	_IN		VDD	257			258	VDD_IN	VDD
VDD _.	VDD_IN VDD		VDD	259	9 260 VDD_IN		VDD		
Legend Ground Power Function Significantly Different than Module Pin Name In				Pin Name Implies					

Chapter 3. Jetson Orin Module Boot Considerations

The Jetson Orin Module can boot in two ways:

- QSPI normal operation
- ▶ USB Recovery Mode development and production programming

QSPI Boot 3.1

The Jetson Orin module normally boots from QSPI. However, the QSPI's 64 MB of storage is not expected to contain all the files for a fully functioning system. Secondary storage must be provided. Support is available for the following configurations.

- NVMe through PCIe
 - PCIE0, x4 (Orin UPHY0 Lanes [7:4]), C4
 - PCIE2, x2 (Orin UPHY2 Lanes 1:0]), C7
 - PCIE2, x1 (Orin UPHY2 L0), C7
 - PCIE3, x1 (Orin UPHY2 L1), C9
- SSD through USB 3.2
 - USB 3.2 Port 0, 1, or 2

USB Recovery Mode 3.2

USB Recovery mode provides an alternate boot device (USB). In this mode, the system is connected to a host system and boots over USB. This is used when a new image needs to be flashed. To enter USB recovery mode, the FORCE_RECOVERY* pin is held low when SYS_RESET* goes high which can be when the system is powered on or SYS RESET* is asserted after the system is powered on. FORCE RECOVERY* is the SoC RCM0 strap Only USB0_D_N/P supports USB Recovery Mode

No other signals are required or supported for entering Force Recovery mode. Neither VBus or USB ID detection is needed. If the force recovery strap is held low coming out of reset, Jetson Orin module will configure USBO as a device and enter recovery mode.

See the USB section (Section 7.1) for an example figure that shows USBO connected to a USB Micro B connector.

Chapter 4. Developer Kit Feature Considerations

The Jetson Orin Nano Developer Kit carrier board design files are provided as a reference design. Both Jetson Orin Nano and Jetson Orin NX modules are compatible with this carrier board. This chapter describes details necessary for designers to know to replicate certain features implemented on the NVIDIA Jetson Orin Nano Developer Kit carrier board if desired. In addition, aspects of the design that are specific to the NVIDIA developer kit usage but not useful or supported on a custom carrier board are also identified.

Most of the features implemented on the reference design can be duplicated by copying the connections from the reference design. Some of the following features have aspects that would require additional information.

- Button Power MCU (EFM8SB10F2G)
- USB SuperSpeed Hub (Realtek RTS5420-GR)
- Power over Ethernet (PoE)
- TI TXB0108 level shifters
- ► ID EEPROM (Not to be copied from reference design)

4.1 **Button Power MCU**

The reference design implements a button power MCU (EFM8SB10F2G). This device is programmed with firmware that is available on the Jetson Download Center. It is recommended that the connections used on the reference design are followed exactly to be compatible with the firmware provided to ensure correct functionality.

4.2 **USB SuperSpeed Hub**

The USB 3.2 hub design uses a Realtek RTS5420 device. The hub circuit includes a SPI FLASH device which holds configuration information. A design intending to duplicate the reference design hub implementation should include the same SPI FLASH programmed to match, or the hub should be customized with fuses with the same settings. The configuration in the SPI FLASH includes the following:

- ▶ Power enables (DPS1/2/3/4_PWR) set to be active high
- Charging feature disabled
- SSC valid

4.3 Power over Ethernet

The reference design includes a 4-pin Power over Ethernet (PoE) header (J19) which brings out the VC power pins of the Ethernet connector. To use this alternate PoE power mechanism to power a custom carrier board, the design would require a PoE PD controller or converter to take the high voltage PoE supply (38V-60V) and convert it to the correct voltage for the custom carrier board. The output of the PoE converter would be supplied where the DC Jack power comes in on the NVIDIA Orin Nano DevKit. The DevKit has an optional PoE Backpower jumper (J18) for this purpose.

TI TXB0108 Level Shifters 4.4

The reference design uses these level shifters to shift many of the signals going to the 40-pin header from 1.8V to 3.3V. The design of these level shifters supports bidirectional signaling without the use of a direction signal but has some side effects that should be considered. See the Jetson Nano Developer Kit 40-Pin Expansion Header GPIO Usage Considerations Applications Note for details.

4.5 Features Not to Be Implemented

The reference design features that should not be copied as they are not required or useful for a custom carrier board design. The ID EEPROM (U17) is a feature that is used for NVIDIA internal purposes, but not recommended on a custom design. If a similar functionality is desired for a custom design, avoid using address 7'h57 on the I2C2 interface.

Chapter 5. Modular Connector

5.1 Module Connector Details

Jetson Orin modules connect to the carrier board using a 260-pin SODIMM connector. The mating connector used on the reference design carrier board is listed in the Jetson Orin NX and Jetson Orin Nano Supported Components List. This connector is a DDR4 SODIMM, 260-pin, right-angle, standard key type. The full height of the connector is 9.2 mm. Refer to the connector specification for details. Other heights are available.

Module to Mounting Hardware

The Jetson Orin module is installed in the SODIMM connector which has latching mechanisms to hold the board in place. In addition, it is required that the module is mounted to the main carrier board PCB using metal standoffs and screws (or equivalent), both for mechanical integrity and to provide additional grounding points. The recommended standoffs used on the carrier board are threaded standoffs that are hex, 4.5 mm widths (narrow diameter) × 6.57 ± 0.1 mm length with M2.5 threads (or equivalent). The screws that match the described standoffs are M2.5 \times 3.7 mm, pad head.

Other SODIMM connector heights are available. If a different height connector is used, the standoff height will have to be adjusted accordingly to account for the difference in height from main PCB to module PCB.

Figure 5-1. Jetson Orin Module Installed in SODIMM Connector

5.3 Module Installation and Removal

To install the Jetson Orin module correctly, follow the sequence and mounting hardware instructions:

Here are some suggested assembly guidelines.

- 1. Assemble any required thermal solution on the module.
- 2. Install the module.
 - a). Start with baseboard that has suitable standoff to match SODIMM connector height.
 - b). Insert module fully at an angle of 25-35 degree into the SODIMM connector.
 - c). Arc down the module board until the SODIMM connector latch engages.
 - d). Secure the module to the baseboard with screws into the standoff or spacer (shown in Figure 5-2).

Figure 5-2. Module to Connector Assembly Diagram

To remove the module correctly, follow the installation sequence in reverse.

Chapter 6. Power

Power for the module is supplied on the VDD_IN pins and is nominally 5.0V to 20V (see the Jetson Orin Module Data Sheet for supply tolerance and maximum current).

CAUTION: Jetson Orin module is not hot-pluggable. Before installing or removing the module, the main power supply (to VDD_IN pins) must be disconnected and adequate time allowed for the various power rails to fully discharge.

Table 6-1. Jetson Orin Module Power and System Pin Description

5: "	Module Pin	0 : 5: 1		Recommended	5	D: -
Pin #	Name	Orin Pin Name	Usage and Description	Usage	Direction	Pin Type
251 ↓ 260	VDD_IN	-	Main power – Supplies Power Sequencer / PMIC and other regulators.	Main DC input	Input	5V or 5.0V to 20V See Note 1
235	PMIC_BBAT	-	Real-Time-Clock back-up. Optionally used to provide back-up power for the RTC in the Power Sequencer / PMIC. Connects to a Lithium Cell or similar power source. The cell sources power for the RTC when system is disconnected from power. Note: This pin is input only and rechargeable cells or devices such as Super Caps cannot be supported.	Battery Back-up using coin cell, etc	Input	1.85V to 5.5V
214	FORCE_ RECOVERY*	GP107_ RECOVERY0_ STRAP	Force Recovery strap pin. Held low when SYS_RESET* goes high (i.e. during power-on) places system in USB recovery mode. $10k\Omega$ pull-up to $1.8V$ on the module.	System	Input	CMOS – 1.8V
240	SLEEP/WAKE*	GPO4	Sleep/Wake. Configured as GPIO for optional use to indicate the system should enter or exit sleep mode.	System	Input	CMOS – 5.0V
233	SHUTDOWN_ REQ*	-	When driven/pulled low by the module, requests the carrier board to shut down. $^{\sim}5k\Omega$ pull-up to VDD_IN on the module.	System	Output	Open Drain, VDD_IN level
237	POWER_EN	-	Signal for module on/off: high level on, low level off. Connects to module Power Sequencer / PMIC power on/off control input through converter logic. POWER_EN is routed to a Schmitt trigger buffer on the module. A $100 \text{k}\Omega$ pulldown is on the module.	System	Input	Analog 5.0V
239	SYS_RESET*	-	Module Reset. Reset to the module when driven low by the carrier board (only resets the SoC and QSPI boot device). Used as carrier board supply enable when pulled high by the module when module power sequence is complete. Used to ensure proper power on/off sequencing between	System	Bidir	Open Drain, 1.8V

Pin#	Module Pin Name	Orin Pin Name	Usage and Description	Recommended Usage	Direction	Pin Type
			module and carrier board supplies. $10 k \Omega$ pull-up to 1.8V on the module.			
178	MOD_SLEEP*	SF_PWR_SOC_EN	Module Sleep. When active (low), indicates module has gone to Sleep (SC7) mode.	Control of devices to be disabled in sleep mode.	Output	CMOS – 1.8V
210	CLK_32K_OUT	(Power sequencer 32K CLK Out)	Sleep/Suspend clock. Buffered on the module.	Sleep/suspend clock for devices such as M.2 Key E	Output	CMOS – 1.8V
217	GND (Module ID)	-	Module ID strap: Indicates whether the module is a legacy type supporting only 5V on VDD_IN (tied to GND on the module) or an advanced type supporting from 5V to 20V on VDD_IN (floating on the module - pulled high on the carrier board. See Note 1).	Pulled high on the carrier board if it can support more than the legacy 5V on VDD_IN.	Not applicable	Not applicable. See Note 1

Notes:

- Modules with pin 217 (Module ID) tied to GND support only 5V on VDD_IN. Modules with pin 217 floating (pulled high on carrier board) 1. support full voltage range. Pull-up voltage on the carrier board on the module ID strap pin is up to the carrier board designer.
- 2. In the Direction column, Output is from Orin module. Input is to Orin module. Bidir is for Bidirectional signals.
- The directions for FORCE_RECOVERY* and SLEEP/WAKE* signals are true when used for those functions. Otherwise as GPIOs, the direction is bidirectional.

6.1 **Power Supply and Sequencing**

The carrier board receives the main power source and uses this to generate the enable to Jetson Orin module (POWER EN) after the carrier board has ensured the main supply is stable and the associated decoupling capacitors have charged. The carrier board supplies are not enabled at this time. Once POWER_EN is driven active (high), the module begins to Power-ON. When the module Power-ON sequence has completed, the SYS RESET* signal is released (pulled high on module) and this is used by the carrier board to enable its various supplies.

Note: The carrier board cannot drive high or pull high any signals that are associated with the module when the module rails are off. If the designer cannot guarantee a signal will not be driven or pulled high, then either the power rail related to that signal should be left off, or the signals would need to be buffered to isolate them from the module pins. The buffers should only be enabled towards the module when SYS_RESET* goes high.

POWER EN

POWER EN is a level active signal. When high, the system powers on or stays on. When low, the system powers down or stays off.

SYS RESET*

- SYS_RESET* is bidirectional. The signal is controlled by the Power Sequencer or PMIC during poweron and power-off. When the system is powered on, SYS_RESET* can be driven by the carrier board to reset the SoC and QSPI boot device. This will not result in a full system power cycle.
- SYS RESET* is not asserted externally during the power-down sequence. When POWER EN is deasserted, the Power Sequencer or PMIC performs a power down sequence which includes asserting SYS_RESET*.

SHUTDOWN_REQ*

- SHUTDOWN REQ* is driven active (low) by the module if the system must be shut down, due to a software shutdown request, over-temperature event, undervoltage event (under 4.18V), or other faults. The power control logic on the carrier board must drive POWER EN inactive (low) if SHUTDOWN REQ* is asserted.
- SHUTDOWN REQ* is not driven during power-on. It is pulled up to the VDD IN supply, so stays inactive. If the system is on and reset is driven low, the Power Sequencer or PMIC will initiate a full power cycle and start the power-on sequence. Again, SHUTDOWN_REQ* is not asserted. SHUTDOWN_REQ* will only go low when the module determines the system needs to shut down.
- SHUTDOWN REQ* comes from a latch on module and is cleared when POWER EN goes low.
- ▶ If SHUTDOWN REQ* is asserted, the carrier board must de-assert POWER EN as soon as possible.

Power Rail Discharge

To satisfy the power down sequencing requirement and prevent unwanted back drive from the carrier board to the module, the following must be true:

- ▶ The carrier board 3.3V power supply that powers any module I/O must be off within 1.5 ms of SYS RESET* assertion.
- ▶ The 1.8V power supply that powers any module I/O must be off within 4 ms.
- The power rails should be fully discharged before attempting to power back up.

Module ID

To support both legacy modules that take 5V only on VDD_IN as well as the wide range that advanced modules can support (5V-20V) on VDD IN, one of the original SODIMM GND pins (Pin 217) is re-tasked as a module ID pin. Legacy modules will have this pin tied to GND. Advanced modules will have this pin floating. A pull-up is required on the carrier board on Pin 217 (GND or module ID) if it will support the wide range VDD IN input voltage. This pull-up will cause the module ID level to be high if an advanced module is installed. The module ID pin level should be used on the carrier board to determine if only 5V is supplied to VDD_IN (legacy module) or the full advanced module VDD_IN range.

Note: The carrier board must support VDD_IN at 5V. Supporting the extended range of 5V - 20V is optional.

Figure 6-1. System Power and Control Block Diagram

Figure 6-2. System Power and Control Block Diagram

Notes:

1. MODULE_ID indicates the capability of the module. Low: Legacy module with VDD_IN = 5V nominal. High: Advanced module supporting wide VDD_IN range (5V-20V).

2. Designs which implement an eFUSE or current limiting device on the input power rail of the module should select a part that DOES NOT limit reverse current.

Figure 6-3. Power Up Sequence No Power Button – Auto Power On

Notes:

- 1. SHUTDOWN_REQ* is not driven during power up. The signal is pulled to VDD_IN.
- 2. SYS RESET* is driven by the Power Sequencer or PMIC during power up.

Figure 6-4. Power Up Sequence with Power Button

Notes:

- 1. SHUTDOWN_REQ* is not driven during power up. The signal is pulled to VDD_IN.
- 2. SYS_RESET* is driven by the Power Sequencer or PMIC during power up.

Note: For designs that intend to follow the NVIDIA carrier board design and include the EFM8SB10F2G-A-QFN20 MPU for Power Button control, see 6.1.1 Power Button Supervisor MCU Power-On.

Note: If the carrier board 3.3V or 1.8V supplies are not low in the times shown below, discharge may be required. See the Orin Nano DevKit carrier board reference design for examples. The discharge circuits should be tuned to meet the timing requirements.

Power Down Initiated by SHUTDOWN REQ* Assertion Figure 6-5.

Note: SYS_RESET* is driven by the Power Sequencer or PMIC during power down.

Figure 6-6. Power Down Sudden Power Loss

Note: SHUTDOWN REQ* must always be serviced by the carrier board to toggle POWER EN from high to low, even in cases of sudden power loss.

6.1.1 Power Button Supervisor MCU Power-On

The NVIDIA carrier board reference design implements a power button supervisor. This supervisor is a low power device meant to intercept push-button (momentary) switches to control ON/Enable signals to the module Power Sequencer or PMIC and main processor. This supervisor is always powered and allows close to complete system power OFF while providing proper timing for ON/OFF signals to the system. The selected MCU to perform this function is the EFM8SB10F2G-A-QFN20 from Silicon Labs.

Note: Designs that intend to follow the NVIDIA carrier board design and include the EFM8SB10F2G-A-QFN20 MPU for Power Button control need to replicate the circuitry on the latest P3768 carrier board exactly. NVIDIA provides the binary and source on the Jetson Download Center. The customer should get the flashing instructions from Silicon Labs. Otherwise, another solution designed to meet the requirements earlier in this chapter can be used.

Table 6-2. **Power Button Supervisor Control Signals**

Button MCU Signal Name	Associated Orin Module Pin Name	Associated Module Pin #	I/O Type	Trigger Level	Drive Mode	Description	MCU Pin
BMCU_PWR_BTN*	SLEEP/WAKE*	240	Input (debounced)	Level	OD (HiZ)	Power Button	P0.0
BMCU_P01	-	_		_	_	10kΩ Pull-up to 3V3_AO	P0.1
BMCU_P02	_	_		_	_	10kΩ Pull-up to 3V3_AO	P0.2
BMCU_P03	-	_		_	_	No Connect	P0.3
BMCU_UART_TX	-	_		_	PP	Test point for FW debug	P0.4
BMCU_P05	_	_	_	_	_	No Connect	P0.5
BMCU_ACOK	-	-	Input (debounced)	Edge	OD (HiZ)	Determine when VDD_5V_SYS power is supplied. Used to select either button power on or autopower on.	P0.6
BMCU_GOOD	_	-	Input	Level	OD (HiZ)	10kΩ Pull-up to 3V3_AO	P0.7
FORCE_OFF*	SHUTDOWN_ REQ*	233	Input	Level	OD (HiZ)	Triggers shutdown sequence	P1.0
BUCK_3V3_EN	SYS_RESET*	239	Input	Edge	OD (HiZ)	Carrier board supply enable	P1.1
BMCU_BRD_SEL	_	-	Input		OD (HiZ)	10kΩ Pull-up to 3V3_AO	P1.2
VIN_PWR_ON	_	-	Output		PP	Enables power to module if wide range (5V-20V)	P1.3
BMCU_POWER_EN	POWER_EN	237	Output		PP	Power On/Off control to Power Sequencer/PMC. Also Enable input to main 5V supply (VDD_5V)	P1.5
PWR_BTN_BUF*		_	_	_	_	No Connect	P1.6
BMCU_P17	_	_	-	_	_	No Connect	P1.7
BMCU_C2D	_	_	_	_	_	Data for programming/debug	P2.7_C2D
BMCU_C2CK	-	-	-	_	-	Clock for programming/debug. 4.7kΩ Pull-up to 3V3_AO.	RST*_C2C K

Note: OD – Open-drain. PP = Push-pull.

Figure 6-7. Power-On Button Circuit

Note: Button initiated power on is enabled if the ACOK line is pulled to GND (J1 in figure installed). Auto-Power-On is enabled if the ACOK line is not pulled to GND (J1 not installed - circuit drives ACOK high).

6.1.1.1 **Defined Behaviors**

For all actions triggered by SLEEP/WAKE* or ACOK, there will be a de-bounce time before triggering any output signal. The minimum I/O delay for these signals is therefore the de-bounce time. De-bounce time is 20 ms. If both signals above are triggered within the 20 ms de-bounce time started by the first detected signal, then the de-bounce time for the subsequent signals might extend up to 25 ms.

Note: The time values in the following timing diagrams have an accuracy of \pm 10%.

6.1.1.2 Power-Off -> Power-On (Power Button Case)

Power button press use case: User presses the Power Button briefly, and the MCU sends the power enable signal to the module (POWER_EN) and on to the Power Sequencer on the Orin module. The signal representing the Power Button to the Orin Module (SLEEP/WAKE* pin), will have the same (brief) duration of the Power Button input to the MCU. Once the power button is pressed, the power OK input (ACOK) is ignored, as the power-on sequence is already initiated by the power button.

If power-on is successful, SHUTDOWN REQ* goes high.

Figure 6-8. Power-Off to On Sequence Power Button Case

Table 6-3. Power-Off to On Timing Power Button Case

Timing	Parameter	Typical	Units
T_PB_DET	SLEEP/WAKE* (power button) detect (de-bounce only)	20	ms
T_VPWR_ON	Delay from power button active to POWER_EN	80	ms
T_PE_RST	SYS_RESET* inactive delay from POWER_EN rising edge	80	ms

Power-Off -> Power-On (Auto-Power-On Case) 6.1.1.3

In the auto power on case, the MCU enables POWER_EN as soon as the user connects the main power source. This case is selected when MCU ACOK is driven high.

The signal representing the power button to the Orin module (SLEEP/WAKE* pin) will continue following the power button behavior. However, once the power ON sequence is initiated by the connection of the main power source, and ACOK is driven high (by push-pull driver powered from 3V3_AO), the power button signals will not affect the MCU behavior until the PWR_GOOD signal verification is complete.

Figure 6-9. Power-Off to On Sequence Auto Power-On Case

Table 6-4. Power-Off to On Timing Auto Power-On Case

Timing	Parameter	Typical	Units
T_AC_DET	ACOK assertion detect (de-bounce only)	20	ms
T_VPWR_ON_AC	Delay from ACOK detected high with main power source applied to POWER_EN	80	ms
T_PE_RST	SYS_RESET* inactive delay from POWER_EN rising edge	80	ms

6.1.1.4 Power-On -> Power-Off (Long Power Button Press)

With the system in power-on state, the user holds the power button for either more than about 4 seconds (medium button press) or about 10 seconds (long button press). The same button signal is relayed to Orin module through the POWER_EN signal. For the medium button press case, the system will do a software-controlled shutdown. For the long button press case, system is forced to shut down at about the 10 second mark without software involvement.

Figure 6-10. Power-On to Off Power Button Held Low > 10 Seconds

Table 6-5. Power-On to Off Timing Power Button Held Low > 10 Seconds

Timing	Parameter	Typical	Units
T_ON	Power button active duration for forced OFF	> 10	S
	(T_PWR_ON + T_MPO_ON + T_CPO + T_MPO_OFF1)		
T_PWR_OFF	Delay to first rail OFF	10	ms

Chapter 7. USB and PCIe

Jetson Orin module allows multiple USB 2.0, USB 3.2, and PCIe interfaces to be brought out of the module.

- ▶ USB 2.0: 3x
- ▶ USB 3.2: 3x
- PCle:
 - 1 x1 + 1 x2 + 1 x4

or

• 3 x1 + 1 x4

See Table 7-3 for the supported USB 3.2 and PCIe lane mapping options. These are the only options supported. The PCIe x4 interface supports both Root Port and Endpoint operation. The PCIe x1 and x2 interfaces do not support Endpoint operation. Only supports Root Port.

Table 7-1. Jetson Orin Module USB 2.0 Pin Description

Pin #	Module Pin Name	Orin Pin Name	Usage and Description	Recommended Usage	Direction	Pin Type
87	GPIO00	USB_VBUS_EN0	GPIO #0 (USB 0 VBUS Detect)	USB 2.0 Micro B	Bidir	Open Drain, 1.8V
109	USB0_D_N	HS_USB0_P0_N		USB (for Recovery		
111	USB0_D_P	HS_USB0_P0_P	USB 2.0 Port 0 Data	mode) conn/device/hub (i.e. Micro B)	Bidir	USB PHY
115	USB1_D_N	HS_USBO_P1_N	USB 2.0 Port 1 Data	USB conn/device/hub	Bidir	USB PHY
117	USB1_D_P	HS_USBO_P1_P	USB 2.0 PORT I Data	(i.e. USB 3.2 Hub)	Bidii	USBPHI
121	USB2_D_N	HS_USB0_P2_N	USB 2.0 Port 2 Poto	USB conn/device/hub	Didie	LICE DILIV
123	USB2_D_P	HS_USB0_P2_P	USB 2.0, Port 2 Data	(i.e. M.2 Key E)	Bidir	USB PHY

Note: In the Direction column, Output is from Orin module. Input is to Orin module. Bidir is for Bidirectional signals.

Table 7-2. Jetson Orin Module USB 3.2 and PCIe Pin Description

Pin	Module Pin	Orin SoC Pin Name		Recommended		Pin
#	Name	(See Note 4)	Usage and Description	Usage	Direction	Туре
131	PCIEO_RXO_N	HS_UPHYO_L4_RX_N	PCIe #0 Receive 0 (PCIe Ctrl #4 Lane 0)			
133	PCIEO_RXO_P	HS_UPHYO_L4_RX_P				
137	PCIEO_RX1_N	HS_UPHYO_L5_RX_N	PCIe #0 Receive 1 (PCIe Ctrl #4 Lane 1)			
139	PCIEO_RX1_P	HS_UPHYO_L5_RX_P			Input	PCIe PHY
149	PCIE0_RX2_N	HS_UPHYO_L6_RX_N	PCIe #0 Receive 2 (PCIe Ctrl #4 Lane 2)			
151	PCIEO_RX2_P	HS_UPHY0_L6_RX_P				
155	PCIEO_RX3_N	HS_UPHY0_L7_RX_N	PCIe #0 Receive 3 (PCIe Ctrl #4 Lane 3)			
157	PCIEO_RX3_P	HS_UPHY0_L7_RX_P	, , ,			
134	PCIEO_TXO_N	HS_UPHY0_L4_TX_N	PCIe #0 Transmit 0 (PCIe Ctrl #4 Lane 0)			
136	PCIEO_TXO_P	HS_UPHY0_L4_TX_P	, , , , , , , , , , , , , , , , , , , ,			
140	PCIE0_TX1_N	HS_UPHY0_L5_TX_N	PCIe #0 Transmit 1 PCIe Ctrl #4 Lane 1)			
142	PCIE0_TX1_P	HS_UPHY0_L5_TX_P	Tele no transmit 11 die eur n't zane 17		Output	PCIe PHY
148	PCIE0_TX2_N	HS_UPHY0_L6_TX_N	PCIe #0 Transmit 2 (PCIe Ctrl #4 Lane 2)	PCIe x4 conn/device (i.e.	Output	T CIC T TTT
150	PCIE0_TX2_P	HS_UPHY0_L6_TX_P	Tele #0 Transmit 2 (Fele cui #4 Lane 2)	M.2 Key M)		
154	PCIE0_TX3_N	HS_UPHY0_L7_TX_N	PCIe #0 Transmit 3 (PCIe Ctrl #4 Lane 3)			
156	PCIE0_TX3_P	HS_UPHY0_L7_TX_P	FCIE #0 Transmit 3 (FCIE Ctil #4 Lane 3)			
181	PCIEO_RST*	GP184_PCIE4_RST_N	PCIe #0 Reset (PCIe Ctrl #4). $4.7k\Omega$ pull-up to $3.3V$ on the module. Output when module is Root Port or input when module is Endpoint.		Bidir	On an Dunin
180	PCIEO_CLKREQ*	GP183_PCIE4_ CLKREQ_N	PCIE #0 Clock Request (PCIe Ctrl #4). $47k\Omega$ pull-up to 3.3V on the Orin module. Input when Orin module is Root Port or output when Orin module is Endpoint.			Open Drain 3.3V
160	PCIEO_CLK_N	SF_PCIE4_CLK_N HS_UPHY0_ REFCLK2_N	PCIe #0 Reference Clock controlled by on- module mux by SoC GP21. When GP21 is low, SF_PCIE4_CLK is selected (reference clock		Bidir	DCIa DLIV
162	PCIEO_CLK_P	SF_PCIE4_CLK_P HS_UPHY0_ REFCLK2_P	when Orin module is Root Port). When GP21 is high, UPHY0_REFCLK2_IN is selected (reference clock input when Orin module is an Endpoint).			PCIe PHY
167	PCIE1_RX0_N	HS_UPHY0_L3_RX_N	PCIa #1 Passiva 0 (PCIa Ctrl #1 Lana 0)		Innut	DCIO DUV
169	PCIE1_RX0_P	HS_UPHY0_L3_RX_P	PCIe #1 Receive 0 (PCIe Ctrl #1 Lane 0)		Input	PCIe PHY
172	PCIE1_TX0_N	HS_UPHY0_L3_TX_N	DCIa #1 Transmit 0 /DCIa Ctrl #1 Lana 0)		Output	DCIo DLIV
174	PCIE1_TX0_P	HS_UPHY0_L3_TX_P	PCIe #1 Transmit 0 (PCIe Ctrl #1 Lane 0)	DCI - 4	Output	PCIe PHY
183	PCIE1_RST*	GP178_PCIE1_RST_N	PCle #1 Reset (PCle Ctrl #1). 4.7kΩ pull-up to 3.3V on the module.	PCIe x1 conn/device (i.e. M.2 Key E)	Output	Open Drain 3.3V
182	PCIE1_CLKREQ*	GP177_PCIE1_ CLKREQ_N	PCIE #1 Clock Request (PCIe Ctrl #1). $47k\Omega$ pull-up to 3.3V on the module.		Bidir	Open Drain 3.3V
173	PCIE1_CLK_N	SF_PCIE1_CLK_N	DCIa #1 Pafaranca Clask (DCIa Ctyl #1)		Output	DCIo DLIV
175	PCIE1_CLK_P	SF_PCIE1_CLK_P	PCIe #1 Reference Clock (PCIe Ctrl #1)		Output	PCIe PHY
40	CSI4_D2_N	HS_UPHY2_L0_RX_N	PCIe 2 Receive 0– (PCIe Ctrl #7 Lane 0)		Input	PCIe PHY
42	CSI4_D2_P	HS_UPHY2_L0_RX_P	PCIe 2 Receive 0+ (PCIe Ctrl #7 Lane 0)	PCIe x2 (Ctrl #7) or 2 x PCIe x1 (Ctrl	Input	PCIe PHY
58	CSI4_D1_N	HS_UPHY2_L1_RX_N	PCIe #2 Receive 1– (PCIe Ctrl #7 Lane 1) or PCIe #3 Receive 0– (PCIe Ctrl #9 Lane 0)	#7 and Ctrl #9)	Output	PCle PHY

Pin	Module Pin	Orin SoC Pin Name		Recommended		Pin
#	Name	(See Note 4)	Usage and Description	Usage	Direction	Туре
60	CSI4_D1_P	HS_UPHY2_L1_RX_P	PCIe #2 Receive 1+ (PCIe Ctrl #7 Lane 1) or PCIe #3 Receive 0+ (PCIe Ctrl #9 Lane 0)		Output	PCIe PHY
46	CSI4_D0_N	HS_UPHY2_L0_TX_N	PCIe #2 Transmit 0– (PCIe Ctrl #7 Lane 0)		Output	PCIe PHY
48	CSI4_D0_P	HS_UPHY2_L0_TX_P	PCIe #2 Transmit 0+ (PCIe Ctrl #7 Lane 0)		Output	PCIe PHY
64	CSI4_D3_N	HS_UPHY2_L1_TX_N	PCIe #2 Transmit 1– (PCIe Ctrl #7 Lane 1) or PCIe #3 Transmit 0– (PCIe Ctrl #9 Lane 0)		Output	PCIe PHY
66	CSI4_D3_P	HS_UPHY2_L1_TX_P	PCIe #2 Transmit 1+ (PCIe Ctrl #7 Lane 1) or PCIe #3 Transmit 0+ (PCIe Ctrl #9 Lane 0)		Output	Open Drain 3.3V
52	CSI4_CLK_N	SF_PCIE7_CLK_N	PCIe #2 Reference Clock– (PCIe Ctrl #7)		Input	Open Drain 3.3V
54	CSI4_CLK_P	SF_PCIE7_CLK_P	PCIe #2 Reference Clock+ (PCIe Ctrl #7)		Input	PCIe PHY
219	SDMMC_DAT0	GP188_PCIE7_RST_N	PCIe #2 Reset (PCIe Ctrl #7). $4.7k\Omega$ pull-up to 3.3V on the module.		Output	PCIe PHY
221	SDMMC_DAT1	GP187_PCIE7_ CLKREQ_N	PCIE #2 Clock Request (PCIe Ctrl #7). $47k\Omega$ pull-up to 3.3V on the module.		Bidir	Open Drain 3.3V
229	SDMMC_CLK	SF_PCIE9_CLK_P	PCIe #3 Reference Clock+ (PCIe Ctrl #9)		Output	Open Drain 3.3V
227	SDMMC_CMD	SF_PCIE9_CLK_N	PCIe #3 Reference Clock – (PCIe Ctrl #9)		Output	PCIe PHY
223	SDMMC_DAT2	GP192_PCIE9_RST_N	PCIe #3 Reset (PCIe Ctrl #9). 4.7kΩ pull-up to 3.3V on the module.	PCIe x1 (Ctrl #3)	Output	PCIe PHY
225	SDMMC_DAT3	GP191_PCIE9_ CLKREQ_N	PCIE #3 Clock Request (PCIe Ctrl #9). 47kΩ pull-up to 3.3V on the module.		Bidir	PCIe PHY
179	PCIE_WAKE*	GP185_PCIE_WAKE_N	PCIe Wake. $47k\Omega$ pull-up to 3.3V on the module.	Shared between PCIe interfaces.	Input	Open Drain 3.3V
161	USBSS_RX_N	HS_UPHYO_LO_RX_N				USB 3.2
163	USBSS_RX_P	HS_UPHYO_LO_RX_P	USB 3.2 Receive (Port #0)	USB 3.2	Input	PHY
166	USBSS_TX_N	HS_UPHYO_LO_TX_N		connector, device or hub		USB 3.2
168	USBSS_TX_P	HS_UPHY0_L0_TX_P	USB 3.2 Transmit (Port #0)		Output	PHY
39	DP0_TXD0_N	HS_UPHY0_L1_RX_N	110000000000000000000000000000000000000			USB 3.2
41	DP0_TXD0_P	HS_UPHY0_L1_RX_P	USB 3.2 Receive (Port #1)	USB 3.2	Input	PHY
45	DP0_TXD1_N	HS_UPHY0_L1_TX_N	WGD 2 2 T	connector, device or hub		USB 3.2
47	DP0_TXD1_P	HS_UPHY0_L1_TX_P	USB 3.2 Transmit (Port #1)		Output	PHY
51	DP0_TXD2_N	HS_UPHY0_L2_RX_N	USD 2.2 Descript (Part #2)			USB 3.2
53	DP0_TXD2_P	HS_UPHY0_L2_RX_P	USB 3.2 Receive (Port #2)	USB 3.2	Input	PHY
57	DP0_TXD3_N	HS_UPHY0_L2_TX_N	USD 2.2 Transport (Dort #2)	connector, device or hub	Out -	USB 3.2
59	DP0_TXD3_P	HS_UPHY0_L2_TX_P	USB 3.2 Transmit (Port #2)		Output	PHY

- 1. In the Direction column, Output is from Orin module. Input is to Orin module. Bidir is for Bidirectional signals.
- 2. The direction shown in this table for GPxxx_PCIEx_RST* and GP185_PCIE_WAKE* signals is true when used for those PCIe functions. Otherwise, if used as GPIOs, the direction is bidirectional.
- The light blue highlighting for some of the module pins/functions is just to highlight the different functionality on those pins.
- The table above shows Module Pin Names and Orin SoC Pin Names. For the Orin Module Function, which can be very different than the Module Pin name, see the Pinout Matrix, full Pin Desc. xls attached to this document, or Table 7-3 below.

The following tables shows the supported UPHY mapping for the UPHY blocks [2,0]. The mapping tables indicate which lanes of each UPHY block can be assigned for USB or PCIe. Only one of the supported configurations per UPHY block can be used in a design. Each UPHY block is programmed independently. It is not required to select the same configuration on both UPHY blocks.

UPHYO Mapping Options (USB 3.2 and PCIe) Table 7-3.

Orin Module Pin	Orin Module		Orin Module Configurations		
Names	Functions	UPHY0 Lanes	Option #1	Option #2	Option #3
PCIEO_RXO/TXO	PCIe #0 Lane 0	UPHY0, Lane 4	PCIe x4 (C4), RP	PCIe x4 (C4), EP	PCIe x4 (C4), EP
PCIEO_RX1/TX1	PCIe #0 Lane 1	UPHY0, Lane 5			
PCIE0_RX2/TX2	PCIe #0 Lane 2	UPHY0, Lane 6			
PCIEO_RX3/TX3	PCIe #0 Lane 3	UPHY0, Lane 7			
PCIE1_RX0/TX0	PCIe #1 Lane 0	UPHY0, Lane 3	PCIe x1 (C1), RP	PCIe x1 (C1), RP	PCIe x1 (C1), RP
				Limited to Gen2	
USBSS_RX/TX	USB 3.2 #1	UPHY0, Lane 0	USB 3.2 (P0)	USB 3.2 (P0)	USB 3.2 (P0)
DP0_TXD[1:0]_N/P	USB 3.2 #2	UPHY0, Lane 1	USB 3.2 (P1)	USB 3.2 (P1)	USB 3.2 (P1)
DP0_TXD[3:2]_N/P	USB 3.2 #3	UPHY0, Lane 2	USB 3.2 (P2)	USB 3.2 (P2)	Unused

Table 7-4. **UPHY2 Mapping Options (PCIe)**

	Orin Module		Orin Module (Configurations
Orin Module Pin Names	Functions	UPHY2 Lanes	Option #1	Option #2
CSI4_D[0:2]_RX0/TX0	PCIe #2 Lane 0	Lane 0	PCIe x2 (C7), RP	PCIe x1 (C7), RP
CSI4_D[1:3]_RX1/TX1	PCIe #2 Lane 1	Lane 1		PCIe x1 (C9), RP

7.1 **USB**

Orin module supports up to three USB 2.0 ports and up to three USB 3.2 ports. Two examples are shown in Figure 7-1 and Figure 7-2. Polarity inversion (P/N swapping) is supported for the USB 3.2 interfaces.

Note: Some non-compliant USB 3.0 devices will not function correctly unless USB 3.2 Gen2 is disabled.

The example shown in Figure 7-1 is for connections to a USB device only connector to be used to support recovery mode (See Section 3.2 "USB Recovery Mode" for details on recovery mode) or a USB device if booted normally. A USB Micro B connector is shown in the example.

Figure 7-1. USB Micro B USB Device and Recovery Connection Example

The example shown in Figure 7-2 is for connections to a USB 3.2 Type A connector to support host only. Recovery mode is not supported.

Figure 7-2. USB 3.2 Type A Host Only Connection Example

Notes:

- 1. AC capacitors should be located close to either the USB connector, or the Orin module pins.
- Connector used must be USB Implementers Forum certified if USB 3.2 is implemented.

7.1.1 **USB 2.0 Routing Guidelines**

The following table details the requirements that apply to the USB 2.0 controller PHY interfaces: USB[2:0]_D_N/P.

Table 7-5. **USB 2.0 Interface Signal Routing Requirements**

Parameter	Requirement	Units	Notes
Max frequency (high speed): Bit Rate/UI period/Frequency	480/2.083/240	Mbps/ns/MHz	
Max loading: High Speed / Full Speed / Low Speed	10 / 150 / 600	pF	Max loading should include any passive and active components on the trace such as CMC, Switch, ESD etc.
Reference plane	GND		

Parameter	Requirement	Units	Notes
Trace impedance: Diff pair / SE)	90 / 50	Ω	±15%
Via proximity (signal to reference)	< 3.8 (24)	mm (ps)	See Note 1
Max trace length/delay	6 (960)	In (ps)	
Max intra-pair skew between USBx_D_P and USBx_D_N	7.5	ps	

- 1. Up to four signal vias can share a single GND return via.
- 2. Adjustments to the USB drive strength, slew rate, termination value settings should not be necessary, but if any are made, they MUST be done as an offset to default values instead of overwriting those values.

USB 3.2 Routing Guidelines 7.1.2

The following table details the requirements that apply to the USB 3.2 PHY interfaces.

USB 3.2 Interface Signal Routing Requirements Table 7-6.

Parameter	Requirement	Units	Notes
Specification			'
Data Rate / UI period Gen1	5.0 / 200	Gbps / ps	Device mode supports Gen1 speed only.
Gen2	10.0 / 100		
Max Number of Loads	1	load	
Termination	90 differential	Ω	On-die termination at TX and RX
Electrical Specification			
Insertion Loss (IL)			Only the PCB (and connector) without
Gen1 Host (Type C)	≥ -3.8	dB @ 2.5GHz	added-on components such as CMC, ESD,
Gen1 Host (Type A)	≥ -7.3	dB @ 2.5GHz	and Mux, is considered. The connector is
Gen1 Device (Type C)	≥ -3.8	dB @ 2.5GHz	included. For Gen2 the loss budget is the
Gen1 Device (Micro AB)	≥ -2.5 [*]	dB @ 2.5GHz	same for all connector types. For dual role
Gen2 (Dual role mode)	≥ -4.5	dB @ 5GHz	mode, host and device have the same loss budget
Resonance Dip Frequency	> 8	GHz	[*] the consideration of Gen1 fixture loss
Time-domain Reflectometer (TDR) Dip			@ Tr = 200ps (10%-90%)
Gen1	75	Ω	@ Tr = 61ps (10%-90%)
Gen2	75		
Near End Crosstalk (NEXT)	≤ -45	dB	DC – 5GHz per each TX-RX NEXT
Impedance			
Trace Impedance: Diff pair / Single Ended	85 / 43	Ω	±15%. Intrinsic Zdf, does not account for coupling from other trace pairs
Reference plane	GND		
Trace Length/Skew			
Trace loss characteristic:			Based on the dielectric material EM370(Z
Gen1	< 0.6	dB/in @ 2.5 GHz	The following max length is derived based
Gen2	< 1	dB/in @ 5G Hz	on this characteristic. The length
			constraint must be re-defined if the loss characteristic is changed. Note that microstrip loss could be similar to stripline due to humidity effect.
Breakout Region – Max length	11	mm	Minimum trace width and spacing
Max Trace Length (delay)			Stripline (6.7ps/mm) assumed.
Gen1 Host	160 (1071)	mm (ps)	CMC use length reduction = 30 mm
Gen1 Device	107 (714)	" '	(Gen1/2).
Gen2 Host or Device	114 (765)		ESD use length reduction = 10 mm (Gen1) 12.5 mm (Gen2).

Trace Spacing: Microstrip / Stripline Pair-Pair Pair Pair Pair Pair Pair Pair Pair	Parameter	Requirement	Units	Notes
Trace Spacing: Microstrip / Stripline Pain-Pair To Ref plane and SMT pad 4x / 3x To uncertainty of the plane and SMT pad 4x / 3x To uncertainty of the plane and SMT pad 4x / 3x To uncertainty of the plane and SMT pad 4x / 3x To uncertainty of the plane and SMT pad 4x / 3x Trace Spacing: Microstrip / Stripline Pain-Pair To Ref plane and SMT pad 4x / 3x Trace Spacing for TX/RX Non-interleaving Ax / 3x Trace Spacing for TX/RX Non-interleaving TX-RX Xtalk is very critical in PCS trace routing. The ideal solution is to route TX and RX on different layers. If routing on the same layer, strongly recommend not interleaving TX and RX lanes If have to have interleaving routing in breakout, all the inter-pair spacing should follow the rule of inter-Sucro (between TX/RX pair spacing The breakout trace width is suggested to be the minimum to increase inter-pair spacing Do not perform serpentine routing for intra-pair skew compensation in the breakout region Min Inter-Sucro (between TX/RX) Breakout Ay SX Dielectric height Main-route Main-route Max trace length- Lax Max length Breakout Topology Y-pattern is recommended keep symmetry Y-pattern is recommended keep symmetry Y-pattern is recommended keep symmetry Y-pattern helps with Xtalk suppression. It can also reduce the limit of the pair-pair distance. Review needed (NEXT/FEXT check) if via placement does not use Y-pattern. Max # of Vias PTH vias Micro Vias Not limited if total channel loss meets It spec Max Via Stub Length Ay Trace width Min Bord Length Min Bor	Max Intra-Pair Skew (RX/TX_N to RX/TX_P)	0.15 (1)	mm (ps)	breakout region. Trace length matching
Trace Spacing: Microstrip / Stripline Pair-Pair To Ref plane and SMT pad 4x / 3x To unrelated high-speed signals Trace Spacing for TX/RX Non-interleaving TX-RX Xtalk is very critical in PCB trace routing. The ideal solution is to route TX and RX on different layers. If routing on the same layer, strongly recommend not interleaving TX and RX lanes If have to have interleaving routing in breakout, all the inter-pair spacing should follow the rule of inter-Suscr (between TX/RX pair spacing The breakout trace width is suggested to be the minimum to increase inter-pair spacing Do not perform serpentine routing for intra-pairs-kew compensation in the breakout region Min inter-Suscr (between TX/RX) Breakout Main-route 4.85x Dielectric height Main-route 4.85x Dielectric height Main-route 8 reakout Max trace length M	Differential pair uncoupled length	6.29 (41.9)	mm (ps)	
Pair-Pair To Ref plane and SMT pad 4x / 3x To unrelated high-speed signals 4x / 3x To unrelated high-speed signals 4x / 3x Frace Spacing for TVRX Non-interleaving TX-RX Xtalk is very critical in PCB trace routing. The ideal solution is to route TX and RX on different layers. If routing on the same layer, strongly recommend not interleaving TX and RX lanes If have to have interleaving routing in breakout, all the inter-pair spacing should follow the rule of inter-S _{NCRI} (between TX/RX pair spacing The breakout trace width is suggested to be the minimum to increase inter-pair spacing Do not perform serpentine routing for intra-pair skew compensation in the breakout region Min Inter-S _{NCRI} (between TX/RX) Breakout A	Trace Spacing for TX/RX Interleaving	<u> </u>	·	
To Ref plane and SMT pad To unrelated high-speed signals Ax / 3x Frace Spacing for TX/RX Non-interleaving TX-RX Xtalk is very critical in PCB trace routing. The ideal solution is to route TX and RX on different layers. If routing on the same layer, strongly recommend not interleaving TX and RX lanes If have to have interleaving routing in breakout, all the inter-pair spacing should follow the rule of inter-Sucr (between TX/RX) pair spacing Do not perform serpentine routing for intra-pairs kew compensation in the breakout region Min Inter-Sucr (between TX/RX) Breakout Main-route 4.85x Dielectric height Breakout Main-route 3x Dielectric height Breakout Main-route 11 mm Max trace length Law Weep symmetry Weap symmetry This is the recommended dimensions for meeting the NEXT requirement. Stripline structure in a GSSG structure is assumed (holds in broadside-coupled stripline structure) Weep symmetry Weap symmetry For place GND via as symmetrically as possible to data pair vias. Up to four signal vias (kwo diff pairs) can share a single GND return via Max #1 of Vias PTH vias PTH vias PTH vias PTH vias PTH vias Micro Vias PTH vias PTH vias Micro Vias PTH vias Micro Vias Max Via Stub Length O.4 mm Iong via stub requires review (It and resonance dip check) Seepentine Min Bod angle Min Bod Clength Min Jog Width Min Spacing Min Bod Clength Min Down Width Min Jog Width Min	Trace Spacing: Microstrip / Stripline			
To unrelated high-speed signals Tace Spacing for TX/RX Non-interleaving TX-RX Xtalk is very critical in PCB trace routing. The ideal solution is to route TX and RX on different layers. If routing on the same layer, strongly recommend not interleaving TX and RX lanes If have to have interleaving routing in breakout, all the inter-pair spacing should follow the rule of inter-Swort (between TX/RX pair spacing) The breakout trace width is suggested to be the minimum to increase inter-pair spacing. Do not perform serpentine routing for intra-pair skew compensation in the breakout region Min Inter-Szert (between TX/RX) Breakout Main-route 4.85x Bliefetric height Main-route 4.85x Dielectric height Main-route 74 This is the recommended dimensions for meeting the NEXT requirement. 85 Stripline structure in a GSSG structure is a SSU structure is a SSU structure is a SSU structure in a GSSG st		4x / 3x	Dielectric height	
Trace Spacing for TX/RX Non-interleaving TX-RX Xtalk is very critical in PCB trace routing. The ideal solution is to route TX and RX on different layers.	To Ref plane and SMT pad	4x / 3x		
TX-RX Xtalk is very critical in PCB trace routing. The ideal solution is to route TX and RX on different layers. If routing on the same layer, strongly recommend not interleaving TX and RX lanes If have to have interleaving routing in breakout, all the inter-pair spacing should follow the rule of inter-S _{MCXT} (between TX/RX pair spacing Do not perform serpentine routing for intra-pair skew compensation in the breakout region Min Inter-S _{MCXT} (between TX/RX) Breakout Main-route A.85x Dielectric height Sax Max length Breakout Main-route In Max trace length- Lose V-pattern is recommended keep symmetry Main-route Place GND via as symmetrically as possible to data pair vias. Up to four signal vias (two diff pairs) can share a significant Review needed (NRXT/FEXT check) if via placement does not use Y-pattern. Max # of Vias PTH vias Micro Vias Max Via Stub Length O.4 mm Iong via stub requires review (iL and resonance dip check) Serpentine Min A Spacing Min B, C Length Min Jog Width Min Spacing Min B, C Length Min Jog Width Min	To unrelated high-speed signals	4x / 3x		
If routing on the same layer, strongly recommend not interleaving TX and RX lanes If have to have interleaving routing in breakout, all the inter-pair spacing should follow the rule of inter-Swex (between TX/RX pair spacing The breakout trace width is suggested to be the minimum to increase inter-pair spacing Do not perform serpentine routing for intra-pair skew compensation in the breakout region Min Inter-Swex (between TX/RX)	Trace Spacing for TX/RX Non-interleaving			
If have to have interleaving routing in breakout, all the inter-pair spacing should follow the rule of inter-Secr (between TX/RX pair spacing The breakout trace width is suggested to be the minimum to increase inter-pair spacing Do not perform serpentine routing for intra-pair skew compensation in the breakout region Min Inter-Secr (between TX/RX) Breakout Main-route Main-route Max trace length Laxe Via Topology Y-pattern is recommended keep symmetry Via Topology Place GND via as symmetrically as possible to data pair vias. Up to four signal vias (two diff pairs) can share a signal vias (two di	TX-RX Xtalk is very critical in PCB trace routing. Th	e ideal solution is to rou	te TX and RX on diffe	rent layers.
The breakout trace width is suggested to be the minimum to increase inter-pair spacing Do not perform serpreptnite routing for intra-pair skew compensation in the breakout region Min Inter-Sucr (between TX/RX) Breakout Main-route 3x Dielectric height Stripline structure in a GSSG structure is assumed (holds in broadside-coupled stripline structure) Wa Topology V-pattern is recommended keep symmetry Wa Topology Place GND via as symmetrically as possible to data pair vias. Up to four signal vias (two diff pairs) can share a single GMD return via Max # of Vias PTH vias Micro Vias Max Via Stub Length O.4 Max Via Stub Length O.4 Min Jog Width Min A Spacing Min B, C Length Min Jog Width Tins is the recommended dimensions for meeting the NEXT requirement. This is the recommended dimensions for meeting the NEXT requirement. This is the recommended dimensions for meeting the NEXT requirement. This is the recommended dimensions for meeting the NEXT requirement. This is the recommended dimensions for meeting the NEXT requirement. This is the recommended dimensions for meeting the NEXT requirement. This is the recommended dimensions for meeting the NEXT requirement. This is the recommended dimensions for meeting the NEXT requirement. This is the recommended dimensions for meeting the NEXT requirement. This is the recommended dimensions for meeting the NEXT requirement. This is the recommended dimensions for meeting the NEXT requirement. This is the recommended the NEXT requirement. This is the recommended dimensions for meeting the NEXT requirement. Stripline structure in a GSSG structure is assumed (holds in broadside-coupled stripline structure) This is the recommended the NEXT requirement. This is the recommended the NEXT requirement. This is the recommended the NEXT requirement. This is the recommended to pleak the NEXT requirement. This is the recommended the NEXT requirement. This is the recommended to pleak the NEXT requirement. The NEXT value of the NEXT requirement. The NEXT	If routing on the same layer, strongly recommend	not interleaving TX and	RX lanes	
Do not perform serpentine routing for intra-pair skew compensation in the breakout region Min Inter-Sucr (between TX/RX) Breakout Main-route 4.85x Dielectric height Main-route Max length Breakout Main-route Max trace length Lenx VIA Topology Place GND via as symmetrically as possible to data pair vias. Up to four signal vias (two diff pairs) can share a single GND return via Max # of Vias PTH vias Micro Vias PTH vias Micro Vias Not limited if total channel loss meets IL spec Max Via Stub Length Max Via Stub Length Min A Spacing Min A Spacing Min B, C Length Min Jog Width Max H of Vias Min Jog Width Min Jog Width Associated as Associated as Associated A	If have to have interleaving routing in breakout, a	II the inter-pair spacing s	should follow the rule	of inter-S _{NEXT} (between TX/RX pair spacing
Min Inter-Susar (between TX/RX) Breakout Main-route Main-route Main-route Main-route Main-route Max trace length Lasx Topology Place GND via as symmetrically as possible to data pair vias. Up to four signal vias (two diff pairs) can share a single GND return via Max # of Vias PTH vias Micro Vias PTH vias Micro Vias	The breakout trace width is suggested to be the m	ninimum to increase inte	er-pair spacing	
Breakout Main-route Max length Breakout Main-route Max trace length- Lawx Topology Max trace length- Lawx P-pattern is recommended keep symmetry Weep symmetry Max # of Vias PTH vias PTH vias PTH vias Micro Vias PTH vias Micro Vias Min bend angle Jas Jas Jas Jas Jas Jas Jas Ja	Do not perform serpentine routing for intra-pair s	kew compensation in th	e breakout region	
Breakout Main-route Max length Breakout Main-route Max trace length- Lawx Topology Max trace length- Lawx P-pattern is recommended keep symmetry Weep symmetry Max # of Vias PTH vias PTH vias PTH vias Micro Vias PTH vias Micro Vias Min bend angle Jas Jas Jas Jas Jas Jas Jas Ja		·		This is the recommended dimensions for
Max length Breakout Main-route Wia Topology Place GND via as symmetrically as possible to data pair vias. Up to four signal vias (two diff pairs) can share a single GND return via Max # of Vias PTH vias Micro Vias PTH vias Micro Vias Max Via Stub Length Min Bend angle Dimension Min A Spacing Min B, C Length Min Jog Wvidth Max trace length Myax trace length Min bend angle Dimension Min A Spacing Min B, C Length Min Jog Wvidth Min Jog Wvidth Min Jog Wvidth Min Length Mi		4.85x	Dielectric height	meeting the NEXT requirement.
Breakout Main-route Max trace length - Lank Wia Topology Y-pattern is recommended keep symmetry Y-pattern helps with Xtalk suppression. It can also reduce the limit of the pair-pair distance. Review needed (NEXT/FEXT check) if via placement does not use Y-pattern. GND via Place GND via as symmetrically as possible to data pair vias. Up to four signal vias (two diff pairs) can share a single GND return via Max # of Vias PTH vias Micro Vias Not limited if total channel loss meets IL spec Max Via Stub Length O.4 mm long via stub requires review (IL and resonance dip check) Serpentine Min bend angle 135 deg (a) Dimension Min A Spacing Min B, C Length Min Jog Width 3x Max Vias Stub Length Trace width T	Main-route	3x		Stripline structure in a GSSG structure is
Main-route Max trace length - Lank Via Topology Y-pattern is recommended keep symmetry Y-pattern helps with Xtalk suppression. It can also reduce the limit of the pair-pair distance. Review needed (NEXT/FEXT check) if via placement does not use Y-pattern. Place GND via as symmetrically as possible to data pair vias. Up to four signal vias (two diff pairs) can share a single GND return via Max # of Vias PTH vias Micro Vias Not limited if total channel loss meets IL spec Max Via Stub Length O.4 mm long via stub requires review (IL and resonance dip check) Serpentine Min bend angle Dimension Min A Spacing Min B, C Length Min Jog Width Ax Trace width Trace width Trace width Trace width Trace odd in order to consider Xtalk to adjacent pair.	Max length			assumed (holds in broadside-coupled
Via Topology V-pattern is recommended keep symmetry V-pattern helps with Xtalk suppression. It can also reduce the limit of the pair-pair distance. Review needed (NEXT/FEXT check) if via placement does not use Y-pattern. Place GND via as symmetrically as possible to data pair vias. Up to four signal vias (two diff pairs) can share a single GND return via Max # of Vias PTH vias Micro Vias Not limited if total channel loss meets IL spec Max Via Stub Length O.4 mm long via stub requires review (IL and resonance dip check) Serpentine Min bend angle Dimension Min A Spacing Min B, C Length Min Jog Width Ax Trace width Trace width Trace width Trace of the consider Xtalk to adjacent pair.	Breakout	11	mm	stripline structure)
Topology Y-pattern is recommended keep symmetry Y-pattern helps with Xtalk suppression. It can also reduce the limit of the pair-pair distance. Review needed (NEXT/FEXT check) if via placement does not use Y-pattern. Place GND via as symmetrically as possible to data pair vias. Up to four signal vias (two diff pairs) can share a single GND return via signal vias (two diff pairs) can share a single GND return via: Max # of Vias	Main-route			
keep symmetry Can also reduce the limit of the pair-pair distance. Review needed (NEXT/FEXT check) if via placement does not use Y-pattern. Place GND via as symmetrically as possible to data pair vias. Up to four signal vias (two diff pairs) can share a single GND return via Max # of Vias	Via			
possible to data pair vias. Up to four signal vias (two diff pairs) can share a single GND return via Max # of Vias PTH vias Micro Vias Max Via Stub Length Min bend angle Dimension Min A Spacing Min B, C Length Min Jog Width Max # of Vias PTH vias Four if all vias are PTH via Not limited if total channel loss meets IL spec Max Via Stub Length O.4 mm long via stub requires review (IL and resonance dip check) Serpentine Ax Trace width T		keep symmetry		distance. Review needed (NEXT/FEXT check) if via placement does not use Y-
PTH vias Micro Vias Max Via Stub Length O.4 mm long via stub requires review (IL and resonance dip check) Serpentine Min bend angle Dimension Min A Spacing Min B, C Length Min Jog Width Four if all vias are PTH via Not limited if total channel loss meets IL spec mm long via stub requires review (IL and resonance dip check) S1 must be taken care in order to consider Xtalk to adjacent pair.	GND via	possible to data pair v signal vias (two diff pa	vias. Up to four airs) can share a	
Micro Vias Max Via Stub Length O.4 mm long via stub requires review (IL and resonance dip check) Serpentine Min bend angle Dimension Min A Spacing Min B, C Length Min Jog Width Min Jog Width Not limited if total channel loss meets IL spec mm long via stub requires review (IL and resonance dip check) S1 must be taken care in order to consider Xtalk to adjacent pair.	Max # of Vias			
Max Via Stub Length O.4 mm long via stub requires review (IL and resonance dip check) Serpentine Min bend angle Dimension Min A Spacing Min B, C Length Min Jog Width Min Jog Width Min Jog Width Min Jog Width Min Max Via Stub Length Ax Trace width Min Jog Width Min Jog Width Min Jog Width	PTH vias	Four if all vias are PTH	ł via	
Serpentine Min bend angle Dimension Min A Spacing Min B, C Length Min Jog Width Min Jog Width Trace widt	Micro Vias	Not limited if total ch	annel loss meets IL sp	pec
Min bend angle Dimension Min A Spacing Min B, C Length Min Jog Width Min Jog W	Max Via Stub Length	0.4	mm	1
Dimension Min A Spacing Min B, C Length Min Jog Width Ax Trace width Trace width Trace width Trace width to adjacent pair.	Serpentine			
Min A Spacing Ain B, C Length Min Jog Width Ain Jog Width	Min bend angle	135	deg (a)	
Min A Spacing Min B, C Length Min Jog Width 4x 1.5x 3x Trace width to adjacent pair.	Dimension			S1 must be taken care in
Min B, C Length 1.5x Min Jog Width 3x to adjacent pair.		4x	Trace width	order to consider Xtalk
Min Jog Width 3x				to adjacent pair.
Additional Component Placement Order				n >3w
				w1 S S1<2.5

The following figures show the USB 3.2. Interface signal routing requirements.

Figure 7-3. IL/NEXT Plot

Figure 7-4. **TDR Plot**

7.1.2.1 **Common USB Routing Guidelines**

If routing to USB device or USB connector includes a flex or 2nd PCB, the total routing including all PCBs and flexes must be used for the max trace and skew calculations.

Keep critical USB related traces away from other signal traces or unrelated power traces and areas or power supply components.

Table 7-7. Orin USB 2.0 Signal Connections

Module Ball Name	Туре	Termination	Description
USB[2:0]_D_P USB[2:0]_D_N	DIFF I/O	If used, 90Ω common-mode chokes close to connector. ESD Protection between choke and connector on each line to GND	USB Differential Data Pair: Connect to USB connector, Mini-Card socket, hub, or another device on the PCB.

Miscellaneous USB 2.0 Signal Connections Table 7-8.

Module Pin Name	Туре	Termination	Description
GPIO00 (USB_VBUS_EN0)	1/0		USBO VBUS Enable: Connect to enable and overcurrent pins of load switch (through 100ohm series resistor to OC pin).
GPIO (VBUS Detect)	1	5V to 1.8V level shifter	VBUS Detect: Connect to VBUS pin of USB connector receiving USB0_+/- interface through level shifter.

Table 7-9. Orin USB 3.2 Signal Connections

Module Pin Name	Туре	Termination	Description
USBSS_TX_N/P (USB 3.2 Port #0) DP0_TXD1_N/P (USB 3.2 Port #1) DP0_TXD3_N/P (USB 3.2 Port #2)	DIFF Out	Series 0.1uF caps. ESD Protection near connector if required.	USB 3.2 Differential Transmit Data Pairs: Connect to USB 3.2 connectors, hubs, or other devices on the PCB.
USBSS_RX_N/P (USB 3.2 Port #0) DP0_TXD0_N/P (USB 3.2 Port #1) DP0_TXD2_N/P (USB 3.2 Port #2)	DIFF In	If routed directly to a peripheral on the board, AC caps are needed for the peripheral TX lines. ESD protection near connector if required.	USB 3.2 Differential Receive Data Pairs: Connect to USB 3.2 connectors, hubs, or other devices on the PCB.

7.2 **PCle**

Orin module brings four PCle interfaces to the module pins for up to seven total lanes (1 x4 + 1 x1 + 1x2) for use on the carrier board. The PCIe x4 interface (PCIE0) operates up to Gen4 speed and supports both Root Port and Endpoint operation. The PCle x1 interface (PCIE1) operates up to Gen4 speed and support only Root Port operation. The PCle x2 interface (PCIE2) can also be broken into two x1 interfaces (PCIE2 x1 and PCIE3 x1). PCIE2 and PCIE3 operate up to Gen4 speed and support only Root Port operation. Figure 7-5 shows all possible interfaces as Root Ports. Figure 7-6 shows the x4 interfaces as an Endpoint. Lane reversal and polarity inversion (P/N swapping) is supported per controller.

Figure 7-5. PCIe Root Port Connections Example

- 1. For Root Port operation, the mux should be set to output the SF PCIE10 CLK signals. SoC GP21 which is used for the mux select should be set low.
- 2. AC Capacitors required on RX lines on carrier board if connected directly to device. They should not be on the carrier board if connected to PCIe connector, M.2 Key M, etc. In those cases, the AC caps are on the board connected to those connectors.
- 3. See design guidelines for correct AC capacitor values.
- 4. The PCIe REFCLK inputs and CLK outputs comply to the PCIe CEM specification "REFCLK DC Specifications and AC Timing Requirements." The clocks are HCSL compatible.

Figure 7-6 shows the x4 interface configured as Endpoint for the PCIe Endpoint connections.

Figure 7-6. PCIe Endpoint Connections Example

Notes:

- 1. For Endpoint operation, the mux should be set to output the HS UPHY2 REFCLK2 signals. SoC GP21 which is used for the mux select should be set high.
- 2. AC capacitors required on RX lines on carrier board if connected directly to device. They should not be on the carrier board if connected to PCIe connector, M.2 Key M, etc. In those cases, the AC caps are on the board connected to those connectors.
- 3. See design guidelines for correct AC capacitor values.
- 4. Isolation circuitry is required on the PCIe control signals when Orin module is configured as Endpoint. These isolate the lines from the on-module pull-ups as well as ensure the Endpoint and Root Port devices do not have their pads driven high before power is applied.

5. The PCIe REFCLK inputs and PCIEx_CLK clock outputs comply to the PCIe CEM specification "REFCLK DC Specifications and AC Timing Requirements." The clocks are HCSL compatible.

PCIe Routing Guidelines 7.2.1

The following table provides the PCIe routing guidelines for Gen3 and Gen4.

PCIe Interface Signal Routing Requirements up to Gen4 Table 7-10.

Parameter	Requirement	Units	Notes
Specification		'	<u>'</u>
Data Rate / UI Period Gen3 Gen4	8.0 / 125 16.0 / 62.5	Gbps / ps	
Topology	Point-point		Unidirectional, differential. Driven by 100MHz common reference clock
Termination	43	Ω	To GND Single Ended for P and N
Impedance			
Trace Impedance differential / Single Ended Reference plane Fiber-weave effect (Only required for Gen4)	85 / 50 GND	Ω	±15% Example of zig-zag routing.
Tibel weave cheek (only required for Gen4)	 Use spread-glass (denser weave) instead of regular-glass (sparse weave) to minimize intra-pair skew Use zig-zag route instead of straight to minimize skew, this is mandatory for PCIe gen4 design 		Example of Fig. 20 Total III.
Spacing			
Trace Spacing (Stripline) Pair – Pair To plane and capacitor pad To unrelated high-speed signals	4x 4x 4x	Dielectric height	TX and RX should not be routed on the same layer. If this is required in a design, they should not be interleaved, and the spacing between the closest RX and TX lanes must be 9x Dielectric height spacing.
Length/Skew			
Breakout region (Max delay)	41.9	ps	Minimum width and spacing. 4x or wider dielectric height spacing is preferred
Gen 4.0 max trace loss / length (delay): Direct to device: Insertion loss / length (delay) Routing to 2 nd Orin Module Insertion loss / length (delay) Routing to M.2 (NVMe) connector/card: Insertion loss / length (delay)	-20.51 / 345 (2208) -14.74 / 248 (1587) -11.01 / 185 (1185)	dB / mm (ps)	Direct to device Insertion loss budget is for PCB routing, connectors, and end device (See Note 1). EM-370(Z) PCB material is assumed in the length/delay calculations: Gen 4.0: -1.51 dB/in @ 8Ghz Gen 3.0: -0.86 dB/in @ 4GHz Length to delay calculations assumes 6.4

Parameter	Requirement	Units	Notes
Gen 3.0 max trace:			ps/mm (average of stripline and microstrip).
Direct to device:			The 2 nd Orin Module loss assumption is:
Insertion loss / length (delay)	-15.8 / 467 (2987)	dB / mm (ps)	Gen 4.0: -8 dB @ 8GHz
Routing to 2 nd Orin Module		, (1-7)	Gen 3.0: -6.5 dB @4GHz
Insertion loss / length (delay)	-10.5 / 310 (1985)		The PCIe/M.2 connector/card loss
Routing to PCIe/M.2 connector/module:			assumption is:
Insertion loss / length (delay)	-7.6 / 224 (1437)		Gen 4.0: -9.5 dB @ 8GHz
	, (,		Gen 3.0: -8.2 dB @4GHz
Max PCB via delay from the Device/Connector	41.9	ps	Max distance from Device ball or Connector pin to first PCB via.
PCB within pair (intra-pair) skew	0.15 (1)	mm (ps)	Do trace length (delay) matching before hitting discontinuities.
Within pair (intra-pair) matching between subsequent discontinuities	0.15 (1)	mm (ps)	
Differential pair uncoupled delay	41.9	ps	
Via			
Via placement	Place GND vias as symmon		to data pair vias. GND via distance should be
Max # of Vias	4		Use micro via or back drilled via - no via stub allowed.
Max Via stub length	N/A		Not Allowed
	AC Cap		
Value Min/Max	0.22	uF	20%, 0402 X5R or better. Only required for TX pair when routed to connector. Place close to TX side.
Voiding	Voiding the plane directl ~0.1mm larger than the required.	•	
Serpentine (See USB 3.2 Guidelines)			
Serpentine			
Min bend angle	135	deg (a)	S1 must be taken care in order to consider
Dimension			Xtalk to adjacent pair. (
Min A Spacing	4x	Trace width	
Min B, C Length Min Jog Width	1.5x		
	3x		
Miscellaneous GND fill rule	Remove unwanted GND	fill that is aithar fla	ating or act like antonna
Jilli Tule	Kelliove uliwalited GND	Till that is either no	ating of act like afferina
Connector			
Voiding	Void all layers of golden the pad ~0.15mm larger is recommended.		
Keep critical PCIe traces such as PEX_TX/RX, etc. a components	way from other signal traces	s or unrelated powe	er traces and areas or power supply

- This does not consider the loss of the end device or any additional connectors. These need to be accounted for and will reduce the loss budget which will affect the max length or delay possible.
- The max length and delay numbers are examples. These should be updated based on the actual PCB material loss and the loss for the end 2. device and any additional connections.

GEN3 GEN4 Insertion Loss (SDD21), normalized to 85 ohms

Figure 7-7. Insertion Loss S-Parameter Plot SDD21

Figure 7-8. Insertion Loss S-Parameter Plot SDD11

Table 7-11. **PCIe Signal Connections**

Module Pin Name			
(Function)	Type	Termination	Description
PCIe Interface 0 (x4 – 0	Controller #4, Root Por	rt or Endpoint)	
PCIEO_TX3_N/P PCIEO_TX2_N/P PCIEO_TX1_N/P PCIEO_TX0_N/P	DIFF OUT	Series 0.22uF Capacitor	Differential Transmit Data Pairs: Connect to TX_N/P pins of PCIe connector or RX_N/P pin of PCIe device through AC cap according to supported configuration.
PCIEO_RX3_N/P PCIEO_RX2_N/P PCIEO_RX1_N/P PCIEO_RX0_N/P	DIFF IN	Series 0.22uF capacitors near Orin Module pins or device if device on main PCB.	Differential Receive Data Pairs: Connect to RX_N/P pins of PCIe connector or TX_N/P pin of PCIe device through AC cap according to supported configuration.
PCIEO_CLK_N/P Root Port Endpoint	DIFF OUT DIFF IN		Differential Reference Clock Output: Connected to a mux on the module that selects either SF_PCIE10_CLK or UPHY2_REFCLK2. Connect to REFCLK_N/P pins of PCIe device/connector. For Root Port operation, set the mux to select SF_PCIE10_CLK (GP21 = 0). For Endpoint, set the mux to select UPHY2_REFCLK2 (GP21 = 1).
PCIEO_CLKREQ* Root Port Endpoint	0	47kΩ pull-up to VDD_3V3_SYS on module	PCIe Clock Request for PCIEO_CLK: Connect to CLKREQ pins on device or connectors. If the module is configured as an Endpoint, include isolation between the clock request pin on the module and the device/connector. One isolator should have the output to the module and be powered by the 3.3V rail on the module. The other isolator should have the output pointing at the connector or device and be powered by the 3.3V rail at the connector or device. These isolate the on-module pull-up resistors as well as ensures the pins on both the Root Port and Endpoint sides will not be driven high before the associated power is enabled.
PCIEO_RST* Root Port Endpoint	0 1	4.7kΩ pull-up to VDD_3V3_SYS on module	PCIe Reset: Connect to PERST pins on device/connector(s). If the module is configured as an Endpoint, include an isolator between the reset pin on the module and the device/connector powered by the 3.3V rail at the connector or device. The isolator should have the output toward the module. This isolates the on-module pull-up resistor as well as ensures this signal will not be pulled or driven high before the module is powered on.
PCle Interface 1 (x1 – 0	Controller #1, Root Por	rt only)	
PCIE1_TX0_N/P	DIFF OUT	Series 0.22uF Capacitor	Differential Transmit Data Pair: Connect to TX_N/P pins of PCIe connector or RX_N/P pin of PCIe device through AC cap according to supported configuration.
PCIE1_RXO_N/P	DIFF IN	Series 0.22uF capacitors near Orin Module pins or device if device on main PCB.	Differential Receive Data Pair: Connect to RX_N/P pins of PCIe connector or TX_N/P pin of PCIe device through AC cap according to supported configuration.
PCIE1_CLK_N/P	DIFF OUT		Differential Reference Clock Output: Connect to REFCLK_N/P pins of PCIe device/connector
PCIE1_CLKREQ*	1/0	47kΩ pull-up to VDD_3V3_SYS on module	PCIe Clock Request for PCIE1_CLK: Connect to CLKREQ pins on device/connector(s)
PCIE1_RST*	0	4.7kΩ pull-up to VDD_3V3_SYS on module	PCIe Reset: Connect to PERST pins on device/connector(s)
PCle Interface 2 (x1 or	x2 – Controller #7. Ro	ot Port only)	
CSI4_D3_N/P (PCIE2_TX1_N/P) CSI4_D0_N/P (PCIE2_TX0_N/P)	DIFF OUT	Series 0.22uF Capacitor	Differential Transmit Data Pair: Connect to TX_N/P pins of PCIe connector or RX_N/P pin of PCIe device through AC cap according to supported configuration.
CSI4_D1_N/P (PCIE2_RX1_N/P) CSI4_D2_N/P (PCIE2_RX0_N/P)	DIFF IN	Series 0.22uF capacitors near module pins or device if device on main PCB.	Differential Receive Data Pair: Connect to RX_N/P pins of PCIe connector or TX_N/P pin of PCIe device through AC cap according to supported configuration.
CSI4_CLK_N/P (PCIE2_CLK_N/P)	DIFF OUT		Differential Reference Clock Output: Connect to REFCLK_N/P pins of PCIe device/connector

Module Pin Name			
(Function)	Туре	Termination	Description
SDMMC_DAT1 (PCIE2_CLKREQ*)	I/O	47kΩ pull-up to VDD_3V3_SYS on module	PCIe Clock Request for PCIE1_CLK: Connect to CLKREQ pins on device/connector(s)
SDMMC_DATO (PCIE2_RST*)	О	4.7kΩ pull-up to VDD_3V3_SYS on module	PCIe Reset: Connect to PERST pins on device/connector(s)
•	Controller #9. Available	if PCIe IF #2 is used as x1 or	ıly. Supports Root Port only)
CSI4_D3_N/P (PCIE3_TX0_N/P)	DIFF OUT	Series 0.22uF Capacitor	Differential Transmit Data Pair: Connect to TX_N/P pins of PCIe connector or RX_N/P pin of PCIe device through AC cap according to supported configuration.
CSI4_D1_N/P (PCIE3_RX0_N/P)	DIFF IN	Series 0.22uF capacitors near module pins or device if device on main PCB.	Differential Receive Data Pair: Connect to RX_N/P pins of PCIe connector or TX_N/P pin of PCIe device through AC cap according to supported configuration.
SDMMC_CMD (PCIE3_CLK_N) SDMMC_CLK (PCIE3_CLK_P)	DIFF OUT		Differential Reference Clock Output: Connect to REFCLK_N/P pins of PCle device/connector
SDMMC_DAT3 (PCIE3_CLKREQ*)	I/O	47kΩ pull-up to VDD_3V3_SYS on module	PCIe Clock Request for PCIE1_CLK: Connect to CLKREQ pins on device/connector(s)
SDMMC_DAT2 (PCIE3_RST*)	0	4.7kΩ pull-up to VDD_3V3_SYS on module	PCIe Reset: Connect to PERST pins on device/connector(s)
Common			
PCIE_WAKE*	ı	47kΩ pull-up to VDD_3V3_SYS on module	PCIe Wake: Connect to WAKE pins on device or connector. If the module is configured as an Endpoint, include a isolator between the wake pin on the module and the device/connector powered by the 3.3V rail at the connector or device. The isolator should have the output toward the connector or device. This isolates the on-module pull-up resistors as well as ensures this signal will not be pulled or driven high before the Root Port is powered on.

Chapter 8. Gigabit Ethernet

Orin module integrates a Gigabit Ethernet PHY. The magnetics and RJ45 connector are implemented on the carrier board.

Table 8-1. Orin Module Gigabit Ethernet Pin Descriptions

Pin #	Module Pin Name	Orin Signal	Usage and Description	Recommended Usage	Direction	Pin Type
194	GBE_LED_ACT	-	Ethernet Activity LED (Yellow)		Output	
188	GBE_LED_LINK	-	Ethernet Link LED (Green)		Output	
184	GBE_MDI0_N	-		-		
186	GBE_MDI0_P	-	GbE Transformer Data 0			
190	GBE_MDI1_N	-	Chr. T Chr. A			
192	GBE_MDI1_P	-	GbE Transformer Data 1	LAN	D: 1:	
196	GBE_MDI2_N	-		-	Bidir	MDI
198	GBE_MDI2_P	-	GbE Transformer Data 2			
202	GBE_MDI3_N	-	Chr. Turnella una Parta 2			
204	GBE_MDI3_P	-	GbE Transformer Data 3			

Notes: In the Direction column, Output is from Orin module. Input is to Orin module. Bidir is for Bidirectional signals.

Figure 8-1. **Orin Module Ethernet Connections**

Figure 8-2. Gigabit Ethernet Magnetics and RJ45 Connections

Ethernet MDI Routing Guidelines 8.1.1

The following tables describes the ethernet signal routing requirements and connections.

Ethernet MDI Interface Signal Routing Requirements Table 8-2.

Parameter	Requirement	Units	Notes
Reference plane	GND		
Trace impedance (Diff pair / Single Ended)	100 / 50	Ω	±15%. Differential impedance target is 100Ω. 90Ω can be used if 100Ω is not achievable
Min trace spacing (pair-pair)	0.763	mm	
Max trace length/delay	109 (690)	mm (ps)	
Max within pair (intra-pair) skew	0.15 (1)	mm (ps)	
Max pair to pair (inter-pair skew)	0.22 (1.5)	mm (ps)	
Number of vias	minimum		Ideally there should be no vias, but if required for breakout to Ethernet controller or magnetics, keep very close to either device.

Notes: NVIDIA Orin does not support delay or skewing of clock vs. data. This must be enabled in the PHY.

Table 8-3. **Ethernet Signal Connections**

Module Pin Name	Туре	Termination	Description
GBE_MDI[3:0]_N/P	DIFF I/O		Gigabit Ethernet MDI IF Pairs: Connect to Magnetics -/+ pins
GBE_LED_LINK	0	110Ω (minimum) series resistor	Gigabit Ethernet Link LED: Connect to green LED cathode on RJ45 connector. Anode connected to VDD_3V3_SYS
GBE_LED_ACT	0	110Ω (minimum) series resistor	Gigabit Ethernet Activity LED: Connect to yellow LED cathode on RJ45 connector. Anode connected to VDD_3V3_SYS

Chapter 9. Display

Orin module designs can select from either VESA® Embedded DisplayPort® (eDP) for embedded displays, and HDMI[™] or DisplayPort (DP) for external displays. Only one interface is available. However, DisplayPort does support multi-head display through MST.

Orin Module eDP, DP, and HDMI Pin Descriptions Table 9-1.

Pin #	Module Pin Name	Orin Signal	Usage and Description	Recommended Usage	Direction	Pin Type
98	DP1_AUX_N	SF_DPAUX01_N	Display Port 1 Aux— or HDMI DDC SDA			DP_AUX (eDP/DP) or
100	DP1_AUX_P	SF_DPAUX01_P	Display Port 1 Aux+ or HDMI DDC SCL		Bidir	Open-Drain, 1.8V (3.3V tolerant - DDC)
63	DP1_TXD0_N	HS_DISP0_HDMI_D2_DP0_N	DisplayPort 1 Lane 0 or HDMI Lane			
65	DP1_TXD0_P	HS_DISP0_HDMI_D2_DP0_P	2			
69	DP1_TXD1_N	HS_DISP0_HDMI_D1_DP1_N	Disaber Post 1 on UDA41 love 1			
71	DP1_TXD1_P	HS_DISP0_HDMI_D1_DP1_P	DisplayPort 1 or HDMI Lane 1	HDMI Connector	Output	HDMI / DP
75	DP1_TXD2_N	HS_DISP0_HDMI_D0_DP2_N	DisplayPort 1 Lane 2 or HDMI Lane			
77	DP1_TXD2_P	HS_DISP0_HDMI_D0_DP2_P	0			
81	DP1_TXD3_N	HS_DISP0_HDMI_CK_DP3_N	DisplayPort 1 Lane 3 or HDMI Clk			
83	DP1_TXD3_P	HS_DISP0_HDMI_CK_DP3_P	Lane			
96	DP1_HPD	GP74_HPD0_N	Display Port 1 or HDMI Hot Plug Detect. Must be active high for DP. For HDMI, the polarity can be changed in SW.		Input	CMOS – 1.8V
94	HDMI_CEC	GP05_HDMI_CEC	HDMI CEC		Bidir	Open Drain, 3.3V

Notes:

^{1.} In the Direction column, Output is from Orin module. Input is to Orin module. Bidir is for Bidirectional signals.

The direction shown in this table for DP_AUX_CH[1:0]_HPD is true when used for Hot-plug Detect. Otherwise, if used as GPIOs, the direction is bidirectional.

A standard DP 1.4 or HDMI v2.0 interface is supported. These share the same set of interface pins. Therefore, either DisplayPort or HDMI can be supported natively.

Table 9-2. DP and HDMI Pin Mapping

Module Pin Name	Module Pin #s	HDMI	DP
DP1_TXD3_P	83	TXC+	TX3+
DP1_TXD3_N	81	TXC -	TX3-
DP1_TXD2_P	77	TX0+	TX2+
DP1_TXD2_N	75	TX0-	TX2-
DP1_TXD1_P	71	TX1+	TX1+
DP1_TXD1_N	69	TX1-	TX1-
DP1_TXD0_P	65	TX2+	TX0+
DP1_TXD0_N	63	TX2-	TX0-

9.1 eDP and DP

The following figure shows a basic the DP and eDP connection example.

Figure 9-1. DP and eDP Connection Example

- 1. Level shifter required on DPO HPD to avoid the pin from being driven when Orin module is off. The level shifter must be non-inverting (preserve the polarity of the HPD signal from the display). See the HPD level shifter detail block in the figure above.
- Load Switch enable is from power-good pin of main 3.3V supply.

The following figure shows an example of a DP++ connection.

Figure 9-2. **DP++ Connection Example**

9.1.1 eDP and DP Routing Guidelines

The following routing requirements meet the eDP and DP routing guidelines.

Figure 9-3. eDP and DP Differential Main Link Topology

Table 9-3. eDP and DP Main Link Signal Requirements Including DP_AUX

Parameter	Requirement	Units	Notes
Specification			
Max Data Rate / Min UI			Per data lane
HBR3	8.1 / 123	Gbps / ps	
HBR2	5.4 / 185		
HBR	2.7 / 370		
RBR	1.62 / 617		
Number of Loads / Topology	1	load	Point-Point, Differential, Unidirectional
Termination	100	Ω	On die at TX/RX
Electrical Specification			
Insertion Loss			
E-HBR @ 0.675GHz	<=0.7	dB	
PBR 0.68GHz	<=0.7	ub	
HBR 1.35GHz	<=1.2		
	<=4.5		
HBR2 @ 2.7GHz	<=4.5 <=5.5		
HBR3 @ 4.05GHz	\-3.3		
Resonance dip frequency	. 0	CUL	
HBR2	>8	GHz	
HBR3	>12		
TDR dip	>85	Ω	@ Tr-200ps (10%-90%)
FEXT		IL/FEXT plot – u	o to HBR2. See Figure 9-4.
@ DC	<= -40dB		
@ 2.7GHz	<= -30dB	IL/FEXT plot – H	BR3. See Figure 9-5.
@ 5.4GHz	<= -30dB		
Impedance			
Trace Impedance (Diff pair)	100	Ω (±10%)	100Ω is the spec. target. $95/85Ω$ are
	90		implementation options (Zdiff does not account
	85		for trace coupling)
			95Ω should be used to support DP-HDMI co-
			layout as HDMI 2.0 requires 100Ω impedance
			(see HDMI section for addition of series resistor
			Rs).
			85Ω can be used if eDP/DP only and is
			preferable as it provides better trace loss
			characteristic performance. See Note 1.
Reference Plane	GND		
Trace Length (delay), Spacing and Skew			
Trace loss characteristic			The following max length (delay) is derived
HBR2 or lower (@ 2.7GHz)	< 0.64	dB/in	based on this characteristic. The length (delay)
HBR3 (@4GHz)	<=0.9		constraint must be re-defined if loss
			characteristic is changed.
Max PCB Via dist. from module conn.			
RBR/HBR	No requirement	mm	
HBR2 and HBR3	7.62		
Max trace length (delay) from module to connector			6.9ps/mm assumption for Stripline, 5.9ps/mm
RBR/HBR			for Microstrip.
Stripline	215 (1137.5)	mm (ps)	
Microstrip	215 (975)		
HBR2			
Stripline	184 (1260)		
Microstrip	178 (1050)		
HBR3			
Stripline	162 (1120)		
Microstrip	155 (900)		

Parameter	Requirement	Units	Notes
Trace spacing (Pair-Pair)			
Stripline	3x	dielectric height	
Microstrip (HBR/RBR)	4x		
Microstrip (HBR2/HBR3)	5x to 7x		
Trace spacing (Main Link to AUX): Stripline/Micro	ostrip 3x / 5x	dielectric height	
Max Intra-pair (within pair) Skew	0.15 (1)	mm (ps)	Do not perform length (delay) matching within breakout region. Do trace length (delay) matching before hitting discontinuity (i.e. matching to <1ps before the vias or any discontinuity to minimize common mode conversion).
Max Inter-pair (pair-pair) Skew	150	ps	
Via			
Max GND transition Via distance	< 1x	diff pair pitch	For signals switching reference layers, add symmetrical GND stitching Via near signal Vias.
Impedance dip	≥97	Ω @ 200ps	The via dimension must be required for the
· · · ·	≥92	Ω @ 35ps	HDMI-DP co-layout condition.
Recommended via dimension for impedance cor	ntrol		
Drill/Pad	200/400	um	
Antipad	>840	um	
Via pitch	≥880	um	
	pair-pair distance. For in-line via, the one lane to the adj	distance from a via of	
GND via	i i	ymmetrically as nir vias. Up to 4 signal an share a single GND	GND via is used to maintain return path, while its Xtalk suppression is limited
Max # of Vias	return via		
PTH vias Micro Vias	4 if all vias are PTH Not limited if total spec	via channel loss meets IL	
Max Via Stub Length	0.4	mm	
AC Cap			
Value	0.1	uF	Discrete 0402
Max Dist. from AC cap to connector			
RBR/HBR	No requirement	in	
HBR2/HBR3	0.5		
Voiding			HBR2: Voiding the plane directly under the pad
RBR/HBR	No requirement		~0.1mm larger than the pad size is
HBR2/HBR3	Voiding required		recommended.
Serpentine (See USB 3.2 Guidelines)			
Connector			

Parameter	Requirement	Units	Notes			
HBR2/HBR3	Voiding required		stack-ups, voiding on the layer under the connector pad is required to be 5.7 mil larger than the connector pad.			
General						
Keep critical PCle traces away from other signal traces or unrelated power traces/areas or power supply components						

- 1. For eDP and DP, the specification puts a higher priority on the trace loss characteristic than on the impedance. However, before selecting 85 Ω for impedance, it is important to make sure the selected stack-up, material and trace dimension can achieve the needed low loss
- The average of the differential signals is used for length and delay matching. 2.
- Do not perform length and delay matching within breakout region. Recommend doing trace length and delay matching to <1ps before vias or any discontinuity to minimize common mode conversion.

The following figures show the eDP and DP interface signal routing requirements.

Figure 9-4. S-Parameter Up to HBR2

Figure 9-5. S-Parameter Up to HBR3

Table 9-4. eDP and DP Signal Connections

Module Pin Name	Туре	Termination	Description
DP1_TXD[3:0]_N/P	0	Series 0.1uF capacitors and ESD to GND on all.	eDP/DP Differential CLK/Data Lanes: Connect to matching pins on display connector.
DP1_AUX_N/P	I/OD	Series 0.1uF capacitors DP1_AUX_CH_P pulled to GND through $100k\Omega$ resistor. DP1_AUX_CH_N pulled to VDD_3V3_DP through $100k\Omega$ resistor.	eDP/DP: Auxiliary Channels: Connect to AUX_CH-/+ on display connector.
DP1_HPD	I	100k Ω series resistor and 100k Ω resistor to GND then Level shifter (non-inverting) between connector and module pin.	eDP/DP: Hot Plug Detect: Connect to HPD pin on display connector through level shifter.

9.2 HDMI

A standard DP 1.4 or HDMI v2.1 interface is supported. See Figure 9-6 for more details.

Figure 9-6. **HDMI Connection Example**

Notes:

1. Level shifters required on DDC/HPD. NVIDIA Orin pads are not 5V tolerant and cannot directly meet HDMI VIL/VIH requirements. HPD level shifter can be non-inverting or inverting. The HPD level shifter in the reference design is inverting. The reference design uses a BJT level shifter, and a resistor divider is needed. See the reference design if a similar approach will be used.

- 2. If EMI/ESD devices are necessary, they must be tuned to minimize the impact to signal quality, which must meet the timing and electrical requirements of the HDMI specification for the modes to be supported. See requirements and recommendations in the related sections of the "HDMI Interface Signal Routing Requirements" table (Table 9-5).
- 3. The DP1_TXx pads are native DP pads and require series AC capacitors (ACCAP) and pull-downs (RPD) to be HDMI compliant. The 499 Ω , 1% pull-downs must be disabled when Orin module is off or in sleep mode to meet the HDMI VOFF requirement. The enable to the FET, enables the pull-downs when the HDMI interface is to be used. Chokes between pull-downs and FET are optional improvements for HDMI 2.0 operation.
- 4. See the RS section in Table 9-5 for details.

9.2.1 **HDMI** Routing Guidelines

This section describes the HDMI routing guidelines for the Orin module.

Figure 9-7. **HDMI CLK and Data Topology**

Notes:

- 1. RPD pad must be on the main trace. RPD and ACCAP must be on same layer.
- 2. Chokes (600 Ω @ 100 MHz) or narrow traces (1 uH @ DC-100 MHz) between pull-downs and FET are chokes between pull-downs and FET are optional improvements for HDMI 2.0 operation.
- 3. The trace after the main route via should be routed on the top or bottom layer of the PCB, and either with 100 ohm differential impedance, or as uncoupled 50 ohm SE traces.
- See the RS section in Table 9-5 for details.

Table 9-5. **HDMI Interface Signal Routing Requirements**

Parameter	Requirement	Units	Notes
Electrical Specification			
IL	<= 1.7	dB @ 1GHz	For HDMI 2.0, 6 dB and 6 GHz is supported.
	<= 2	dB @ 1.5GHz	
	<= 3	dB @ 3GHz	
	< 4.3	dB @ 6GHz	
Resonance dip frequency	> 12	GHz	

Parameter	Requirement	Units	Notes	
TDR dip	>= 85	Ω @ Tr=200ps	10%-90%. If TDR dip is 75~85 ohm that dip	
			width should < 250 ps	
FEXT	<= -50	dB at DC		
	<= -40	dB at 3GHz		
	<= -40	dB at 6GHz		
	IL/FEXT plot: See HDN	11 Guideline Figure	TDR plot: See Figure 9-9	
	9-8			
Impedance				
Trace impedance: Diff pair	100	Ω	$\pm 10\%$. Target is 100Ω. 95Ω for the breakout	
			and main route is an implementation	
			option.	
Reference plane	GND			
Trace spacing/Length/Skew				
Trace loss characteristic:	< 1.1	dB/in. @ 6GHz	The max length (delay) is derived based on	
	< 0.8	dB/in. @ 3GHz	this characteristic. The length (delay)	
	< 0.4	dB/in. @ 1.5GHz	constraint must be re-defined if the loss	
			characteristic is changed. See Note 1.	
Min Trace spacing (Pair-Pair)			For Stripline, this is 3x of the thinner of	
Stripline: 2.1	4x	dielectric	above and below.	
Stripline: 1.4b/2.0	3x			
Microstrip: 2.1	7x			
Microstrip: 1.4b/2.0	5x to 7x		Factorial and the state of	
Trace spacing (Main link to DDC)	2	ali a la aturi a	For Stripline, this is 3x of the thinner of	
Stripline	3x	dielectric	above and below.	
Microstrip	5x		Duran cation dalam C One/man commention	
Max Total Delay (2.1)	76 (525)	mm (nc)	Propagation delay: 6.9ps/mm assumption for Stripline, 5.9ps/mm for Microstrip.	
Stripline (4x spacing)	76 (535)	mm (ps)	Tor stripline, 5.9ps/mm for wherestrip.	
Microstrip (7x spacing)	63.5 (375)		Propagation dolars 6 One/mm assumption	
Max Total Delay (1.4b/2.0) Stripline	101 (700)	mm (ps)	Propagation delay: 6.9ps/mm assumption for Stripline, 5.9ps/mm for Microstrip.	
Microstrip (5x spacing)	88.5 (525)	IIIII (þs)	Tor stripinie, 5.9ps/mm for whicrostrip.	
	101 (600)			
Microstrip (7x spacing) Max intra-pair (within pair) skew	0.15 (1)	mm (ps)	Soo notes 1 2 and 2	
			See notes 1, 2, and 3	
Max inter-pair (pair to pair) skew Max GND transition via distance	150 1x	ps Diff pair via pitch	See notes 1, 2, and 3 For signals switching reference layers, add	
iviax GND transition via distance	1X	Dili pali via pitcii	one or two ground stitching vias. It is	
			recommended they be symmetrical to signal	
			vias.	
Via			vius.	
Topology	Y-pattern is recomme	nded	Xtalk suppression is the best by Y-pattern.	
1000064	keep symmetry	naca	Also, it can reduce the limit of pair-pair	
Minimum impedance dip	97	Ω@200ps	distance. Need review (NEXT/FEXT check) if	
	92	Ω@35ps	via placement is not Y-pattern.	
Recommended via dimension		C P-		
drill/pad	200/400	uM		
Antipad	840			
via pitch	880			
·				
			×	
GND via	Place GND via as sym	metrically as	GND via is used to maintain return path,	
-	possible to data pair v		while its Xtalk suppression is limited	
	signal vias (2 diff pairs			
	GND return via	,		

Parameter	Requirement	Units	Notes
Connector pin via Max # of vias PTH via	The break-in trace to the via should be routed or order to avoid via stub. Equal spacing (0.8mm) signal vias. The x-axis distance between the control of th	n the BOTTOM in effect. between adjacent ween signal and	O.Smm
u-via	Not limited if total cha spec.	nnel loss meets IL	CORE CORE CORE CORE CO
Max via stub length	0.4	mm	long via stub requires review (IL and resonance dip check)
The main route via dimensions should comply with For the connector pin vias, follow the rules for the of the traces after main route via should be routed as SE traces on PCB top or bottom. Max distance from R _{PD} to main trace (seg B) Max distance from AC cap to RPD stubbing point (seg A) Max distance between ESD and signal via	connector pin vias (See vi	a section)	See topology in Figure 9-7
Add-on Components Example of a case where space is limited for placing components. AC Cap	ESD array 1 100ohm, diff trace		VIArrakroute
Value	0.1	uF	
Max via distance from BGA	7.62 (52.5)	mm (ps)	
Location	must be placed before		The distance between the AC cap and the HDMI connector is not restricted.
Placement PTH design Micro-via design Void	Place cap on bottom lavabove core Place cap on top layer icore Not Restricted GND (or PWR) void und	f main route below	TIDATI CONTIECTOR IS NOT TESTILICEU.
	is needed. Void size = S dielectric height keepoo		

Parameter	Requirement	Units	Notes
Pull-down Resistor (RPD), choke/FET			
Value	500	Ω	
Location.	Must be placed after A	AC cap	Placement:
Layer of placement	Same layer as AC cap. can be placed on the o PTH via	The FET and choke	Main-route Via with short stub (and optional choke) on opposite side
Choke between R _{PD} and FET choke	600 or	Ω@100MHz	Can be choke or Trace. Recommended option for HDMI2.0 HF1-9 improvement.
Max trace Rdc	1	uH@DC-100MHz	
Max trace length	≤20	mΩ	
	4	mm	
Void	GND/PWR void under/	above cap is	
	preferred		
Common-mode Choke (Not recommended – only See Chapter 17 for details on CMC if implemented	• •	d for EMI issues)	
ESD (On-chip protection diode can withstand 2kV I	HMM. External ESD is opti	onal. Designs should	include ESD footprint as a stuffing option)
Max junction capacitance	0.35	pF	e.g. Texas Instruments TPD4E02B04DQAR
(IO to GND)			
Footprint	Pad right on the net in stub	stead of trace	N.J. OUT.N Gnd OUT.N
Location	After pull-down resisto	r/CMC and before	
Void	GND/PWR void under/ needed. Void size = 1 r pair	•	1000 70 W COL 17 100 W COL 17 1
Series Resistor (RS): Series resistor on P/N path for	HDMI 2.0 but not require	d for HDML2.1 (Mai	ndatory to meet HDML2 0 Compliance)
Value	≤ 6	Ω	± 10%. Oohm is acceptable if the design passes the HDMI2.0 HF1-9 test. Otherwise, adjust the R _S value to ensure the HDMI2.0 tests pass: Eye diagram, Vlow test and HF1-S TDR test
Location	After all components a	nd hefore HDMI	TEN COL
	connector	SC.CIC HEIVII	
Void			is needed. Void size = SMT area + 1x
Trace at Component Region	, J : 2,42		
Value	100	Ω	± 10%
Location	At component region (
Trace entering the SMT pad	One 45°		
Trace between components	Uncoupled structure		
HDMI connector			

Parameter	Requirement	Units	Notes
Connector voiding	Voiding the ground be lanes 0.1448 (5.7 mil) itself	•	

General: See Chapter 17 for guidelines related to Serpentine routing, routing over voids and noise coupling

- 1. Longer trace lengths may be possible if the total trace loss is equal to or better than the target. If the loss is greater, the max trace lengths will need to be reduced.
- 2. The average of the differential signals is used for length matching.
- 3. Do not perform length matching within breakout region. Recommend doing trace length matching to <1ps before vias or any discontinuity to minimize common mode conversion.
- 4. If routing includes a flex or 2nd PCB, the max trace delay and skew calculations must include all the PCBs/flex routing. Solutions with flex/2nd PCB may not achieve maximum frequency operation.

The following figures show the HDMI interface signal routing requirements.

Figure 9-8. IL/FEXT Plot

Figure 9-9. **TDR Plot**

Table 9-6. **HDMI Signal Connections**

Module Pin Name	Туре	Termination (see note on ESD)	Description
DP1_TXD3_N/P	DIFF OUT	0.1uF series AC _{CAP} \rightarrow 500 Ω R _{PD} (controlled by FET) \rightarrow ESD to GND \rightarrow . \leq 6 Ω R _S (series resistor)	HDMI Differential Clock: Connect to C-/C+ and pins on HDMI connector
DP1_TXD[2:0]_N/P	DIFF OUT		HDMI Differential Data: Connect to HDMI Data pins (Table 9-2)
DP1_HPD	I	From module pin: $10k\Omega$ PU to $1.8V \rightarrow$ level shifter \rightarrow $100k\Omega$ series resistor. $100k\Omega$ to GND on connector side \rightarrow $100pF/12pF$ caps to GND \rightarrow ESD to GND .	HDMI Hot Plug Detect: Connect to HPD pin on HDMI connector
HDMI_CEC	I/OD	Gating circuitry, See connection figure for details.	HDMI Consumer Electronics Control: Connect to CEC on HDMI connector through circuitry.
DP1_AUX_N/P	I/OD	From module pins: $10k\Omega$ PU to $3.3V \rightarrow$ level shifter \rightarrow 1.8k Ω PU to 5V \rightarrow ESD to GND . See connection figure for level shifter details.	HDMI: DDC Interface – Clock and Data: Connect DP1_AUX_N to SDA and DP1_AUX_P to SCL on HDMI connector
HDMI 5V Supply	Р	Adequate decoupling (0.1uF and 10uF recommended) on supply near connector and ESD to GND .	HDMI 5V supply to connector : Connect to +5V on HDMI connector.

Note: Any ESD and/or EMI solutions must support targeted modes (frequencies).

Chapter 10. MIPI CSI Video Input

Orin Module brings eight MIPI CSI lanes to the connector. Up to two quad-lane camera streams or up to four dual-lane camera streams are supported. Each data lane has a peak bandwidth of up to 2.5 Gbps.

Orin Module CSI Pin Descriptions Table 10-1.

Pin#	Module Pin Name	Orin Signal	Usage and Description	Recommended Usage	Direction	Pin Type
10	CSIO_CLK_N	HS_CSIO_CLK_N	- Congo and Seconposes		2.1.000.01.	
12	CSIO CLK P	HS_CSIO_CLK_P	Camera, CSI 0 Clock			
4	CSIO_DO_N	HS_CSIO_DO_N		2-lane Camera #1, 4-		
6	CSIO_DO_P	HS_CSI0_D0_P	Camera, CSI 0 Data 0	lane Camera #1 (lower 2 lanes)		
16	CSIO_D1_N	HS_CSIO_D1_P				
18	CSIO_D1_P	HS_CSIO_D1_N	Camera, CSI 0 Data 1			
9	CSI1_CLK_N	HS_CSI1_CLK_N				
11	CSI1_CLK_P	HS_CSI1_CLK_P	Camera, CSI 1 Clock			
3	CSI1_D0_N	HS_CSI1_D0_P		2-lane Camera #2, 4-	Input	MIPI D-PHY
5	CSI1_D0_P	HS_CSI1_D0_N	Camera, CSI 1 Data 0	lane Camera #1 (upper 2 lanes)		
15	CSI1_D1_N	HS_CSI1_D1_N				
17	CSI1_D1_P	HS_CSI1_D1_P	Camera, CSI 1 Data 1			
28	CSI2_CLK_N	HS_CSI2_CLK_N				
30	CSI2_CLK_P	HS_CSI2_CLK_P	Camera, CSI 2 Clock			
22	CSI2_D0_N	HS_CSI2_D0_N		2-lane Camera #3, 4-		
24	CSI2_D0_P	HS_CSI2_D0_P	Camera, CSI 2 Data 0	lane Camera #2 (lower 2 lanes)		
34	CSI2_D1_N	HS_CSI2_D1_N				
36	CSI2_D1_P	HS_CSI2_D1_P	Camera, CSI 2 Data 1			
27	CSI3_CLK_N	HS_CSI3_CLK_N				
29	CSI3_CLK_P	HS_CSI3_CLK_P	Camera, CSI 3 Clock			
21	CSI3_D0_N	HS_CSI3_D0_N	Course CSL2 Pote 0	2-lane Camera #4, 4-		
23	CSI3_D0_P	HS_CSI3_D0_P	Camera, CSI 3 Data 0	lane Camera #2 (upper 2 lanes)		
33	CSI3_D1_N	HS_CSI3_D1_N	Course CSI 2 Poto 1			
35	CSI3_D1_P	HS_CSI3_D1_P	Camera, CSI 3 Data 1			

Notes: In the Direction column, Output is from Orin module. Input is to Orin module. Bidir is for Bidirectional signals.

Table 10-2. Orin Module Camera Miscellaneous Pin Descriptions

Pin#	Module Pin Name	Orin Signal	Usage and Description	Recommended Usage	Direction	Pin Type
213	CAM_I2C_SCL	GP54_I2C3_CLK	Camera I2C. 2.2 kΩ pull-up to 3.3V on the	Composition (alphanoid)	n:d:-	Open Drain
215	CAM_I2C_SDA	GP55_I2C3_DAT	module.	Cameras (shared)	Bidir	- 3.3V
116	CAM0_MCLK	GP52_CLK1	Camera 0 Reference Clock	C		
114	CAM0_PWDN	GP121_UART4_CTS_N	Camera 0 Powerdown or GPIO	Camera #1		
122	CAM1_MCLK	GP53_CLK2	Camera 1 Reference Clock		Output	CMOS –
120	CAM1_PWDN	GP161_SPI5_CLK	Camera 1 Powerdown or GPIO	Camera #2		1.8V
118	GPIO01	GP65	GPIO #1 or Generic Clock Output #1	Camera #3	Output	
216	GPIO11	GP66	GPIO #11 or Generic Clock Output #2	Camera #4	(note)	

- 1. In the Direction column, Output is from Orin module. Input is to Orin module. Bidir is for Bidirectional signals.
- 2. The direction shown in this table for CAM[1:0]_MCLK and CAM[1:0]_PWDN is true when used for those functions. These pins are GPIOs and can support input or output (bidirectional). The direction indicated for GPIO01 and GPIO11 is associated with their use as clock outputs.

Figure 10-1. **CSI 2-Lane Connection Options**

Note: CSI_0_D1 and CSI_1_D0 have P/N swapped on the module.

Figure 10-2. **CSI 4-Lane Connection Options**

Note: CSI_0_D1 and CSI_1_D0 have P/N swapped on the module.

Figure 10-3. **Available Camera Control Pins**

CSI Configurations Table 10-3.

	CSI0	CSI0	CSI1	CSI1	CSI2	CSI2	CSI3	CSI3
Cameras	CLK	Data[1:0]	CLK	Data[1:0]	CLK	Data[1:0]	CLK	Data[1:0]
2-Lanes Each								
1 of 4 cameras	٧	٧						
2 of 4 cameras			٧	٧				
3 of 4 cameras					٧	٧		
4 of 4 cameras							٧	٧
4-Lanes Each								
1 of 2 cameras	٧	٧		٧				
2 of 2 cameras					٧	٧		٧

CSI Routing Guidelines 10.1

The following tables describe the routing guidelines for the CSI design.

MIPI CSI D-PHY Interface Signal Routing Requirements Table 10-4.

Parameter	Requirement	Units	Notes
Max Data Rate (per data lane) for High-Speed mode	2.5	Gbps	
Max Frequency (for Low Power mode)	10	MHz	
Number of loads	1	load	
Reference plane	GND		
Trace impedance: Diff pair / SE	90-100 / 45-50	Ω	±10%
Via proximity (signal to reference)	< 0.65 (3.8)	mm (ps)	
Intra-pair trace spacing	0.15mm	mm	Can be adjusted to meet Differential Impedance.
Trace spacing: Microstrip / Stripline	2x / 2x	dielectric	
Max PCB breakout delay	48	ps	
Max Insertion loss			
1 Gbps	3.00	dB	
1.5 Gbps	2.90		
2.5 Gbps	1.92		
Max trace delay / length			
1 Gbps (Stripline/Microstrip)	2526 (421) / 2487 (421)	ps (mm)	
1.5 Gbps	1913 (319) / 1885 (319)		
2.5 Gbps	900 (150) / 886 (150)		
Max intra-pair skew	1	ps	
Max trace delay skew between DQ and CLK $1/1.5/2.5$ Gbps	40 / 26.7 / 16	ps	DQ includes all the data lines associated with a single clock. This may be 2 differential data lanes fo a x2 interface, or 4 differential dat lanes for a x4 interface.

Parameter	Requirement	Units	Notes
1 didilictei	Regulient	Offics	110103

Note: Any EMI/ESD devices must be tuned to minimize impact to signal quality and meet the timing and Vil/Vih requirements at the receiver and maintain signal quality and meet requirements for the frequencies supported by the design.

Table 10-5. **MIPI CSI Signal Connections**

Module Pin Name		Туре	Termination	Description
CSI[3:0]_CLK_N/P	Camera #[4:1]	ı	See note	CSI Differential Clocks: Connect to clock pins of camera. See $ \label{eq:connect} \text{Table } 103 \text{ for details} $
CSI[3:0]_D[1:0]_N/P	Camera #[4:1]	I	See note	CSI Differential Data Lanes: Connect to data pins of camera. See $ \begin{tabular}{ll} Table 10-3 for details \end{tabular} \begin{tabular}{ll} Table 10-3 for details \end{tabular} $

Table 10-6. Miscellaneous Camera Connections

Module Pin Name	Туре	Termination	Description
CAM_I2C_CLK CAM_I2C_DAT	0 1/0	21.5 kΩ pull-ups VDD_3V3_SYS (on Orin module).	Camera I2C Interface: Connect to I2C SCL and SDA pins of imager.
CAM[1:0]_MCLK GPIO01 (opt. MCLK2) GPIO11 (opt. MCLK3)	0		Camera Initiator Clocks: Connect to camera reference clock inputs.
CAM[1:0]_PWDN	0		Camera Power Control signals (or GPIOs [1:0]): Connect to power down pins on camera(s).

Chapter 11. Audio

NVIDIA Orin supports multiple PCM and I2S audio interfaces. It also includes a flexible audio port switching architecture.

Orin Module Audio Pin Descriptions Table 11-1.

Pin #	Module Pin Name	Orin Signal	Usage/Description	Recommended Usage	Direction	Pin Type
199	I2SO_SCLK	GP122	I2S Audio Port 0 Clock	Audio Device	Bidir	
197	I2SO_FS	GP125	I2S Audio Port 0 Left/Right Clock		Bidir	
193	I2S0_DOUT	GP123	I2S Audio Port 0 Data Out		Output (note)	
195	I2SO_DIN	GP124	I2S Audio Port 0 Data In		Input (note)	
226	I2S1_SCLK	GP206_DAP4_CLK	I2S Audio Port 1 Clock	Audio Device (i.e. M.2 Key E) Audio Device	Bidir	CMOS – 1.8V
224	I2S1_FS	GP209_DAP4_FS	I2S Audio Port 1 Left/Right Clock		Bidir	
220	I2S1_DOUT	GP207_DAP4_DOUT	I2S Audio Port 1 Data Out		Output (note)	
222	I2S1_DIN	GP208_DAP4_DIN	I2S Audio Port 1 Data In		Input (note)	
211	GPIO09	GP167	GPIO #9 or Audio Codec Initiator Clock		Output (note)	

^{1.} In the Direction column, Output is from Orin module. Input is to Orin module. Bidir is for Bidirectional signals.

^{2.} The direction indicated for I2S[1:0]_DOUT and _DIN are associated with their use as I2S data lines. The direction for GPIO09 is associated with its use as Audio Initiator Clock. The pins support GPIO functionality, so support both input and output operation (bidirectional).

Audio Connection Example Figure 11-1.

Notes:

- The Interrupt pin from the audio codec can connect to any available Orin module GPIO. If the pin must be wake-capable, choose one of the GPIOs that supports this function.
- 2. I2C2 supports 1.8V operation since the interface is pulled to 1.8V through 2.2 $k\Omega$ resistors on the module. If another I2C interface on Orin module is used, a level shifter will be required as all the others are 3.3V.
- 3. Refer to the Intel High Definition Audio/AC'97 website for the latest information: https://www.intel.com/content/www/us/en/support/articles/000005512/boards-and-kits/desktopboards.html.

11.1.1 **12S Routing Guidelines**

This section describes the I2S routing guidelines.

Table 11-2. **I2S Interface Signal Routing Requirements**

Parameter	Requirement	Units	Notes
Configuration and device organization	1	load	
Max loading	8	pF	
Reference plane	GND		
Breakout region impedance	Min width/spacing		
Trace impedance	50	Ω	±20%
Via proximity (signal to reference)	< 3.8 (24)	mm (ps)	See note
Trace spacing Microstrip or Stripline	2x	dielectric	
Max trace length/delay	~22 (3600)	In (ps)	
Max trace length/delay skew between SCLK and SDATA_OUT/IN	~1.6 (250)	In (ps)	

Note: Up to four signal vias can share a single GND return via.

Table 11-3. Audio Signal Connection

Module Pin Name	Туре	Termination	Description
I2S[1:0]_SCLK	I/O		I2S Serial Clock: Connect to I2S/PCM CLK pin of audio device.
I2S[1:0]_FS	I/O		I2S Frame Select (Left/Right Clock): Connect to corresponding pin of audio device.
I2S[1:0]_DOUT	I/O		I2S Data Output: Connect to data input pin of audio device.
I2S[1:0]_DIN	1		I2S Data Input: Connect to data output pin of audio device.
GPIO09	0		Audio Codec Initiator Clock: Connect to clock pin of audio codec.

Chapter 12. Miscellaneous Interfaces

12.1 I2C

Orin module brings four I2C interfaces to the connector pins. CAM_I2C is included in the camera pin description table earlier in this design guide. The assignments in the "I2C Interface Mapping" table should be used where applicable for the I2C interfaces.

Table 12-1. Orin Module I2C Pin Descriptions

Pin#	Module Pin Name	Orin Signal	Usage/Description	Recommended Usage	Direction	Pin Type
185	I2CO_SCL	GP13_I2C2_CLK	General I2C 0 Clock/Data. 1.5 kΩ pull-up to 3.3V on module. This I2C interface connects to a power monitor			Open Drain - 3.3V
187	I2CO_SDA	GP14_I2C2_DAT	on the module with I2C address 7/h40.		Bidir	Open Drain - 3.3V
189	I2C1_SCL	GP15_I2C8_CLK	General I2C 1 Clock/Data. 2.2 $k\Omega$ pull-up to 3.3V on the	I2C (general)		Open Drain - 3.3V
191	I2C1_SDA	GP16_I2C8_DAT	module.			Open Drain - 3.3V
232	I2C2_SCL	GP126_I2C1_CLK	General I2C 2 Clock/Data. 2.2 kΩ pull-up to 1.8V on the			Open Drain – 1.8V
234	I2C2_SDA	GP127_I2C1_DAT	module. This I2C interface connects to an ID EEPROM on the module with I2C address 7/h50.			Open Drain – 1.8V
Notes:	In the Direction	column, Output is fr	rom Orin module. Input is to Orin module. Bidir is for Bidir	ectional signals.		

Figure 12-1. **I2C Connections**

12.1.1 **12C Design Guidelines**

Care must be taken to ensure I2C peripherals on the same I2C bus connected to the Orin module, do not have duplicate addresses. Addresses can be in two forms: 7-bit, with the read/write bit removed or 8-bit including the read/write bit. Be sure to compare I2C device addresses using the same form (all 7-bit or all 8-bit format).

Note: The Orin module I2C interfaces have pull-ups on the module (See Table 12-1 or Table 12-3 for values). Pads for additional pull-ups are recommended in case a stronger pull-up is required due to additional loading on the interfaces.

12.1.2 **12C routing Guidelines**

This section describes the I2C routing guidelines for Orin module.

I2C Interface Signal Routing Requirements Table 12-2.

Parameter	Requirement	Units	Notes
Max frequency: Standard-mode / Fm / Fm+	100 / 400 / 1000	kHz	See Note 1
Topology	Single ended, bi-direct	ional, multiple initia	tors/targets
Max loading: Standard-mode / Fm / Fm+	400	pF	Total of all loads
Reference plane	GND or PWR		
Trace impedance	50 – 60	Ω	±15%
Trace spacing	1x	dielectric	
Max trace length/delay			
Standard Mode	3400 (~20)	ps (in)	
Fm, Fm+ Modes	1700 (~10)	p3 (III)	

Notes:

- 1. Fm = Fast-mode, Fm+ = Fast-mode Plus
- 2. Avoid routing I2C signals near noisy traces, supplies or components such as a switching power regulator.
- 3. No requirement for decoupling caps for PWR reference.

Table 12-3. **12C Signal Connections**

Module Pin Name	Type	Termination	Description
I2CO_SCL/SDA	I/OD	1.5 kΩ pull-ups to VDD_3V3 on the module.	I2C #0 Clock and Data. Connect to CLK and Data pins of any 3.3V devices
I2C1_SCL/SDA	I/OD	2.2 kΩ pull-ups to VDD_3V3 on the module.	I2C #1 Clock and Data. Connect to CLK and Data pins of 3.3V devices.
I2C2_SCL/SDA	I/OD	2.2 kΩ pull-ups to VDD_1V8 on the module.	12C #2 Clock and Data. Connect to CLK and Data pins of any 1.8V devices
CAM_I2C_SCL/SDA	I/OD	2.2 kΩ pull-ups to VDD_3V3 on the module.	Camera I2C Clock and Data. Connect to CLK and Data pins of any 3.3V devices

- 1. If some devices require a different voltage level than others connected to the same I2C bus, level shifters are required.
- 2. For I2C interfaces that are pulled up to 1.8V, disable the RCV_33_18_SEL option for these pads. For I2C interfaces that are pulled up to 3.3V, enable the RCV_33_18_SEL option. The RCV_33_18_SEL option is selected in the Pinmux registers.

12.2 SPI

The Orin module brings out two of the Orin SPI interfaces. See Figure 12-2.

Orin Module SPI Pin Descriptions Table 12-4.

Pin#	Module Pin Name	Orin Signal	Usage and Description	Recommended Usage	Direction	Pin Type
91	SPIO_SCK	GP47_SPI1_SCK	SPI 0 Clock		- Bidir	CMOS – 1.8V
93	SPI0_MISO	GP48_SPI1_MISO	SPI 0 Initiator In / Target Out	SPI #0 Device #0 or #1		
89	SPI0_MOSI	GP49_SPI1_MOSI	SPI 0 Initiator Out / Target In	"1		
95	SPIO_CSO*	GP50_SPI1_CS0	SPI 0 Chip Select 0	SPI #0 Device #0		
97	SPIO_CS1*	GP51_SPI1_CS1	SPI 0 Chip Select 1	SPI #0 Device #1		
106	SPI1_SCK	GP36_SPI3_SCK	SPI 1 Clock			
108	SPI1_MISO	GP37_SPI3_MISO	SPI 1 Initiator In / Target Out	SPI #1 Device #0 or #1		
104	SPI1_MOSI	GP38_SPI3_MOSI	SPI 1 Initiator Out / Target In	"1		
110	SPI1_CS0*	GP39_SPI3_CS0	SPI 1 Chip Select 0	SPI #1 Device #0		
112	SPI1_CS1*	GP40_SPI3_CS1	SPI 1 Chip Select 1	SPI #1 Device #1		

Notes: In the Direction column, Output is from Orin module. Input is to Orin module. Bidir is for Bidirectional signals.

Figure 12-2. **SPI Connections**

Basic SPI Initiator and Target Connections Figure 12-3.

SPI Routing Guidelines 12.2.1

The following guidelines meet the SPI routing guidelines.

Figure 12-4. **SPI Topologies**

SPI Interface Signal Routing Requirements Table 12-5.

Parameter	Requirement	Units	Notes
Max frequency	65	MHz	
Configuration / device organization	4	load	
Max loading (total of all loads)	15	pF	
Reference plane	GND		
Breakout region impedance	Minimum width		
	and spacing		
Max PCB breakout delay	75	ps	
Trace impedance	50 – 60	Ω	±15%
Via proximity (signal to reference)	< 3.8 (24)	mm (ps)	See Note
Trace spacing: Microstrip / Stripline	4x / 3x	dielectric	
Max trace length/delay (PCB main trunk) For MOSI, MISO, SCK and CS			
Point-point	195 (1228)	mm (ps)	
2x-load star/daisy	120 (756)		
Max trace length/delay (Branch-A) for MOSI, MISO, SCK and CS			
2x-load star/daisy	75 (472)	mm (ps)	
Max trace length/delay skew from MOSI, MISO and CS to SCK	16 (100)	mm (ps)	At any point

Table 12-6. **SPI Signal Connections**

Module Pin Names (Function)	Type	Termination	Description
SPI[1:0]_CLK	I/O		SPI Clock.: Connect to peripheral CLK pins
SPI[1:0]_MOSI	1/0		SPI Data Output: Connect to target peripheral MOSI pins
SPI[1:0]_MISO	1/0		SPI Data Input: Connect to target peripheral MISO pins
SPI[1:0]_CS[1:0]*	1/0		SPI Chip Selects.: Connect one CSx* pin per SPI interface to each
			target peripheral CS pin on the interface

12.3 UART

The Orin module brings three UARTs out to the main connector. See Figure 12-5 for typical assignments of the three available UARTs.

Table 12-7. Orin Module UART Pin Descriptions

Pin#	Module Pin Name	Orin Signal	Usage and Description	Recommended Usage	Direction	Pin Type
99	UARTO_TXD	GP32_UART2_TXD	UART 0 Transmit		Output	
101	UARTO_RXD	GP33_UART2_RXD	UART 0 Receive	UART general (i.e.	Input	
103	UARTO_RTS*	GP34_UART2_RTS_N	UART 0 Request to Send	M.2 Key E)	Output	
105	UARTO_CTS*	GP35_UART2_CTS_N	UART 0 Clear to Send		Input	
203	UART1_TXD	GP70_UART1_TX_BOOT2_STRAP	UART 1 Transmit		Output	CMOS –
205	UART1_RXD	GP71_UART1_RXD	UART 1 Receive	LIADT consul	Input	1.8V
207	UART1_RTS*	GP72_UART1_RTS_N	UART 1 Request to Send	UART general	Output	
209	UART1_CTS*	GP73_UART1_CTS_N	UART 1 Clear to Send		Input	
236	UART2_TXD	GP11_UART3_TXD	UART 2 Transmit.	Debug HART	Output	
238	UART2_RXD	GP12_UART3_RXD	UART 2 Receive	Debug UART	Input	

Notes:

- 1. In the Direction column, Output is from Orin module. Input is to Orin module. Bidir is for Bidirectional signals.
- 2. The direction indicated for the UART pins except for is true when used for that function. Otherwise, these pins support GPIO functionality and most can support both input and output (bidirectional) functionality. The exception is UARTO TXD, UARTO RTS* and UART1 TXD. These have output-only buffers on the module to keep them from being affected by connected devices during boot as they are associated with SoC strapping pins.

Figure 12-5. Orin Module UART Connections

Note: UARTO_TXD and UARTO_RTS* are strap pins for RAMCODE. These pins are subject to change and not recommended for use as GPIO. Contact the NVIDIA Application Engineer team if alternate use is required.

Table 12-8. **UART Signal Connections**

Ball Name	Туре	Termination	Description
UART[2:0]_TXD	0		UART Transmit: Connect to peripheral RXD pin of device
UART[2:0]_RXD	1		UART Receive: Connect to peripheral TXD pin of device

UART[1:0]_CTS*	1	UART Clear to Send: Connect to peripheral RTS pin of device
UART[1:0]_RTS*	0	UART Request to Send: Connect to peripheral CTS pin of device

12.4 CAN

Orin module brings a single controlled area network (CAN) interface to the main connector.

Table 12-9. Orin Module CAN Pin Descriptions

Pin#	Module Pin Name	Orin Signal	Usage and Description	Recommended Usage	Direction	Pin Type
143	CAN_RX	GP17_CAN0_DOUT	CAN Receive	CAN BUY	Input	CMOS – 3.3V
145	CAN_TX	GP18_CAN0_DIN	CAN Transmit	CAN PHY	Output	CMOS – 3.3V

Notes:

- 1. In the Direction column, Output is from Orin module. Input is to Orin module. Bidir is for Bidirectional signals.
- 2. The direction indicated for the CAN signals are associated with that usage. The pins support GPIO functionality, so support both input and output operation (bidirectional).

Figure 12-6. **Orin Module CAN Connections**

CAN Routing Guidelines 12.4.1

The section describes the CAN routing guidelines for Orin module.

CAN Interface Signal Routing Requirements Table 12-10.

Parameter	Requirement	Units	Notes
Max Data Rate / Frequency	8	Mbps / MHz	
Configuration / Device Organization	1	load	
Reference plane	GND		
Trace Impedance	50	Ω	±15%
Via proximity (Signal via to GND return via)	< 3.8 (24)	mm (ps)	See Note 1
Trace spacing: Microstrip / Stripline	4x / 3x	dielectric	
Max Trace Length (for RX and TX only)	223 (1360)	mm (ps)	See Note 2
Max Trace Length/Delay Skew from RX to TX	8 (50)	mm (ps)	See Note 2

Table 12-11. **CAN Signal Connections**

Module Pin Name	Туре	Termination	Description
CAN_TX	0		CAN Transmit: Connect to matching pin of device
CAN_RX	1		CAN Receive: Connect to Peripheral pin of device

12.5 Fan

Orin module provides PWM and Tachometer functionality for controlling a fan as part of the thermal solution. Information on the PWM and Tachometer pins and functions can be found in the following locations:

- Orin Module Pin Mux
 - This is used to configure GPIO14 (PWM) for FAN PWM and GPIO08 for FAN TACH. The pin used for FAN_PWM is configured as GP_PWM6. The pin used for FAN_TACH is configured as a GPIO.
- Orin (SoC) Technical Reference Manual (TRM)
 - Functional descriptions and related registers can be found in the TRM for the FAN PWM (PWM chapter).

Table 12-12. Orin Module Fan Pin Descriptions

Pin#	Module Pin Name	Orin Signal	Usage and Description	Recommended Usage	Direction	Pin Type
230	GPIO14	GP31_PWM3	Fan PWM	Fan	Output (note)	CMOS – 1.8V
208	GPIO08	GP62	Fan tachometer	Fan	Input (note)	CMOS – 1.8V

Notes:

- 1. In the Direction column, Output is from Orin module. Input is to Orin module. Bidir is for Bidirectional signals.
- 2. The direction indicated for GPIO014 and GPIO08 is associated with their use as Fan PWM/Tach. The pins support GPIO functionality, so support both input and output operation (bidirectional).

Figure 12-7. **Orin Module Fan Connections**

Debug 12.6

Orin Module supports a UART for debugging purposes. The UART intended for debug is UART2.

Table 12-13. Orin Module Debug UART Pin Descriptions

Pin #	Module Pin Name	Orin Signal	Usage and Description	Recommended Usage	Direction	Pin Type
238	UART2_RXD	GP11_UART3_TXD	UART 2 receive	Dalam HART	Input	CMOS – 1.8V
236	UART2_TXD	GP12_UART3_RXD	UART 2 transmit	Debug UART	Output	

Note: In the Direction column, Output is from Orin module. Input is to Orin module. Bidir is for Bidirectional signals.

Table 12-14. **Debug UART Connections**

Module Pin Name	Туре	Termination	Description
UART2_TXD	0		UART #2 Transmit: Connect to RX pin of serial device
UART2_RXD	1	If level shifter implemented, $100k\Omega$ to supply on the non-Orin module side of the device.	UART #2 Receive: Connect to TX pin of serial device

Figure 12-8. **Debug UART Connections**

Note: If level shifter is implemented, pull-up is required on the RXD line on the non-Orin module side of the level shifter. This is required to keep the input from floating and toggling when no device is connected to the debug UART.

Chapter 13. PADS

Orin module signals that come from the SoC may glitch when the associated power rail is enabled. This may affect pins that are used as GPIO outputs. Designers should take this into account. GPIO outputs that must maintain a low state even while the power rail is being ramped up may require special handling.

Internal Pull-Ups for Dual Voltage Block 13.1 Pins Power at 1.8V

Several of the MPIO pads are on blocks designed to be powered at either 1.8V or 3.3V. These blocks are powered at 1.8V on Orin module, and the internal pull-up at initial Power-On is not effective. The signal may only be pulled up a fraction of the 1.8V rail. Once the system boots, software can configure the pins for 1.8V operation and the internal pull-ups will work correctly. If these signals need the pullups during Power-On, external pull-up resistors should be added. The following pins listed are the affected pins. These are the Orin module pins on the dual voltage blocks powered at 1.8V with Power-On reset default of Internal pull-up enabled.

- ► SPI1 CSO*
- ► SPI1 CS1*

Schmitt Trigger Usage 13.2

The MPIO pins have an option to enable or disable Schmitt-trigger mode on a per-pin basis. This mode is recommended for pins used for edge-sensitive functions such as input clocks, or other functions where each edge detected will affect the operation of a device. Schmitt-trigger mode provides better noise immunity and can help avoid extra edges from being "seen" by the Orin inputs. Input clocks include the I2S and SPI clocks (I2Sx SCLK and SPIx SCK) when Orin is in target mode. The FAN TACH pin [GPIO8] is another input that could be affected by noise on the signal edges. Care should be taken if the Schmitt-trigger mode setting is changed from the default initialization mode as this can influence interface timing.

13.3 Pins Pulled or Driven High During Power-

The Orin module is powered up before the carrier board (See Section 6.1 for power sequencing). Table 13-1 lists the pins on Orin module that default to being pulled or driven high. Care must be taken on the carrier board design to ensure that any of these pins that connect to devices on the carrier board (or devices connected to the carrier board) do not cause damage or excessive leakage to those devices. Some of the ways to avoid issues with sensitive devices are:

- External pull-downs on the carrier board that are strong enough to keep the signals low are one solution, given that this does not affect the function of the pin.
- Buffers or level shifters can be used to separate the signals from devices that may be affected. The buffer or shifter should be disabled until the device power is enabled.

Pins Pulled or Driven High by Orin Prior to SYS RESET* Inactive Table 13-1.

Orin Module Pin	Power-On Reset Default	Pull-up Strength (kΩ)
MOD_SLEEP*	Driven high	na
FORCE_RECOVERY*	Internal pull-up	~50

Table 13-2. Pins with External Pull-Ups to Supply on before SYS RESET* Inactive

Orin Module Pin	Pull-Up Supply Voltage (V)	External Pull- Up (kΩ)	Orin Module Pin	Pull-Up Supply Voltage (V)	External Pull- Up (kΩ)
I2CO_SCL/SDA	3.3	1.5	GPIO00	1.8	100
I2C1_SCL/SDA	3.3	2.2	PCIE[3:0]_CLKREQ*	3.3	47
I2C2_SCL/SDA	1.8	2.2	PCIE[3:0]_RST*	3.3	4.7
CAM_I2C_SCL/SDA	3.3	2.2	PCIE_WAKE*	3.3	47

Chapter 14. Unused Interface **Terminations**

14.1 Unused Multi-Purpose Standard CMOS **Pad Interfaces**

The following Orin module pins (and groups of pins) are Orin MPIO pins that support either special function I/Os (SFIO) and GPIO capabilities. Any unused pins or portions of pin groups listed in Table 14-1 that are not used can be left unconnected.

Unused MPIO Pins and Pin Group Table 14-1.

Orin Module Pins and Pin Groups	Orin Module Pins and Pin Groups
FORCE_RECOVERY*	12S
PCIE[1:0]_CLK/RST/CLKREQ/WAKE	UART
GPIO xx	I2C
DP1_HPD, HDMI_CEC	SPI
CAM Control, Clock	

14.2 Unused Dedicated Special Purpose Pad **Interfaces**

See the Unused SFIO (Special Function I/O) interface pins section in the design checklist attached to this design guide.

Chapter 15. Design and Bring-Up Checklists

The design checklist is intended to help ensure that the correct connections have been made in a design. The check items describe connections for the various interfaces and the "Same/Diff/NA" column is intended to be used to indicate whether the design matches the check item description, is different, or is not applicable to the design. The bring-up checklist is intended to provide basic items to check during bring-up for power delivery and the various interfaces used in a design.

To access the attached files, click the Attachment icon on the left-hand toolbar on this PDF (using Adobe Acrobat Reader or Adobe Acrobat). Select the file and use the Tool Bar options (Open, Save) to retrieve the documents. Excel files with the .nvxlsx extension will need to be renamed to .xlsx to open.

Chapter 16. Orin Module Pin Descriptions

The Orin module pin description is attached to this design guide.

To access the attached files, click the Attachment icon on the left-hand toolbar on this PDF (using Adobe Acrobat Reader or Adobe Acrobat). Select the file and use the Tool Bar options (Open, Save) to retrieve the documents. Excel files with the .nvxlsx extension will need to be renamed to .xlsx to open.

Chapter 17. General Routing Guidelines

Signal Naming Convention 17.1

The following conventions are used in describing the signals for Orin module:

- Signal names use a mnemonic to represent the function of the signal. For example, I2S interface #0 shift clock signal is represented as 1250 SCK. All active-low single-ended signals are identified by an asterisk (*) after the signal name. For example, SYS_RESET* indicates an active-low signal. Activehigh signals do not have the (*) after the signal names. For example, I2SO_FS indicates an activehigh signal. Differential signals are identified as a pair with the same names that end with _P and _N (for positive and negative, respectively). For example, CSI_0_D0_P and CSI_0_D0_N indicate a differential signal pair.
- ▶ The signal I/O type is represented as a code to indicate the operational characteristics of the signal. The following table lists the I/O codes used in the signal description tables.

Table 17-1. **Signal Type Codes**

Code	Definition	
A	Analog	
DIFF I/O	Bidirectional Differential Input/Output	
DIFF IN	Differential Input	
DIFF OUT	Differential Output	
1/0	Bidirectional Input/Output	
I	Input	
0	Output	
OD	Open Drain Output	
I/OD	Bidirectional Input / Open Drain Output	
P	Power	

Routing Guidelines Format 17.2

The routing guidelines have the following format to specify how a signal should be routed.

- Breakout traces are traces routed from BGA ball either to a point beyond the ball array, or to another layer where full normal spacing guidelines can be met. Breakout trace delay limited to 12.5 mm unless otherwise specified.
- After breakout, signal should be routed according to specified impedance for differential, singleended, or both (for example: HDMI). Trace spacing to other signals also specified.
- Follow max and min trace delays where specified. Trace delays are typically shown in mm or in terms of signal delay in pico-seconds (ps) or both.
 - For differential signals, trace spacing to other signals must be larger of specified × dielectric height or inter-pair spacing.
 - Spacing to other signals and pairs cannot be smaller than spacing between complementary signals (intra-pair).
 - Total trace delay depends on signal velocity which is different between outer (microstrip) and inner (stripline) layers of a PCB.

Signal Routing Conventions 17.3

Throughout this design guide, the following signal routing convention is used:

- SE Impedance (/ Diff Impedance) at x Dielectric Height Spacing
 - SE impedance of trace (along with diff impedance for diff pairs) is achieved by spacing requirement. Spacing is multiple of dielectric height. Dielectric height is typically different for microstrip and stripline.

Note: Trace spacing requirement applies to SE traces or differential pairs to other SE traces or differential pairs. It does not apply to traces making up a differential pair. For this case, spacing and trace widths are chosen to meet differential impedance requirements.

Routing Guidelines 17.4

Pay close attention when routing high speed interfaces, such as HDMI, DP, USB 3.2, PCIe, or CSI. Each of these interfaces has strict routing rules for the trace impedance, width, spacing, total delay, and delay or flight time matching. The following guidelines provide an overview of the routing guidelines and notations used in this design guide.

- Controlled Impedance Each interface has different trace impedance requirements and spacing to other traces. It is up to designer to calculate trace width and spacing required to achieve specified SE and Diff impedances. Unless otherwise noted, trace impedance values are ±15%.
- Max Trace Lengths/Delays Trace lengths or delays should include the carrier board PCB routing (where the Orin module mating connector resides) and any additional routing on a Flex or secondary PCB segment

connected to main PCB. The max length or delay should be from Orin module to the actual connector (that is USB, HDMI, and so on) or device (that is, onboard USB device, camera imager IC, and so on).

- Trace Delay or Flight Time Matching Signal flight time is the time it takes for a signal to propagate from one end (driver) to other end (receiver). One way to get same flight time for signal within signal group is to match trace lengths within specified delay in the signal group.
 - Total trace delay = Carrier PCB trace delay only. Do not exceed maximum trace delay specified.
 - It is recommended to match trace delays based on flight time of signals. For example, outerlayer signal velocity could be 5.9 ps/mm and inner-layer 6.9 ps/mm. If one signal is routed 250 mm on the outer layer and second signal is routed 250 mm in the inner layer, the difference in flight time between two signals will be 250 ps! That is a big difference if required matching is 15 ps (trace delay matching). To fix this, inner trace needs to be 36 mm shorter or outer trace needs to be 42 mm longer.
 - In this design guide, terms such as intra-pair and inter-pair are used when describing differential pair delays. Intra-pair refers to matching traces within differential pair (for example, true to complement trace matching). Inter-pair matching refers to matching differential pairs average delays to other differential pair average delays.

General PCB Routing Guidelines 17.4.1

For GSSG stack-up to minimize crosstalk, signal should be routed in such a way that they are not on top of each other in two routing layers (see Figure 17-1).

Do not route other signals or power traces and areas directly under or over critical high-speed interface signals.

Figure 17-1. **General PCB Routing Guidelines**

Note: The requirements detailed in the interface signal routing requirements tables must be met for all interfaces implemented or proper operation cannot be guaranteed.

17.5 Common High-Speed Interface Requirements

The following table describes the common high-speed interface requirements.

Common High-Speed Interface Requirements Table 17-2.

Parameter		Requirement	Units	Notes
Common-mode	Choke (Not recommended – only used	if absolutely require	ed for EMI issues)	
Preferred device				Type: TDK ACM2012D-900-2P. Only if needed. Place near connector. Refer to Common Mode Choke Requirement section.
Location - Max distance from to adjacent discontinuities – ex, connector, AC cap)		8 (53)	mm (ps)	TDK ACM2012D-900-2P See Figure 17-2
Common-mode	impedance @ 100MHz Min/Max	65/90	Ω	
Max Rdc		0.3	Ω	
Differential TDR impedance		90	Ω	@T _R -200ps (10%-90%)
Min Sdd21 @ 2.5GHz		2.22	dB	
Max Scc21 @ 2.5	5GHz	19.2	dB	
Serpentine				
Min bend angle		135	deg (α)	S1 must be taken care to consider Xtalk to
Dimension	Min A Spacing Min B, C Length Min Jog Width	4x 1.5x 3x	Trace width	adjacent pair. See USB 3.2 Guideline in Figure 17-3.
General				
Routing over Voids Routing over voids not allowed except void around device ball/pin the routed to.			ept void around device ball/pin the signal is	
Noise Coupling Keep critical high-speed traces away from other signal traces or unrelate traces and areas or power supply components				

The following figures show the common high-speed interface signal routing requirements.

Figure 17-2. Common Mode Choke

Figure 17-3. Serpentine

Test Points for High-Speed Interfaces

Ideally, test points are not preferred on very high-speed interface traces as they can degrade signal integrity. However, to be able to do compliance testing, or interface tuning where applicable, it may be necessary to include test points at least for early revisions of a design. The test points are generally required near the receiver. If a connector or some other device (capacitor, resistor, and so on) exists near the receiver, the pins can be used as test points without creating additional signal degradation. Where connector or discrete device pins are not accessible near the receiver end of an interface, it may be necessary to include test points. When test points are needed for very high-speed interface signals, follow these recommendations:

- ► Test points should be very small (less than 0.5 mm).
- Test points should be located on the existing trace (no stub).
- ▶ If the test points are placed on differential signals, they should be symmetric for each P and N signal.

Chapter 18. USB 3.2 and Wireless Coexistence

USB 3.2 supports a 5 Gbps or 10 Gbps signaling rate. The USB 3.2 specification requires USB 3.2 data to be scrambled and spread-spectrum is required. The noise from the USB 3.2 data spectrum has been found from around DC to 4 GHz and beyond. This noise can desensitize nearby receivers operating in the cellular and WiFi 2.4 GHz band. This includes, for example, WiFi 802.11b/g/n or Bluetooth including Bluetooth mouse devices, Bluetooth keyboards, and. This noise causes the following:

- WiFi sensitivity degradation
- Wireless link throughput drop
- Wireless operation range degradation

This chapter is focusing on USB 3.2, but other high-speed interfaces such as HDMI, DP, and so on, can also cause issues with wireless subsystems. The issues and recommended mitigation techniques would be similar.

Mitigation Techniques 18.1

Each design is different due to unique construction and relative location of USB 3.2 circuits and connectors and receiving antenna. Depending on the level of noise generated, emitted, radiated, and coupled to receiver antenna, some or all the recommendations might need to be implemented to limit unwanted noise from radiating from the circuit.

The following mitigation techniques described will help minimize the USB 3.2 de-sense.

INCREASE THE USB 3.2 TO ANTENNA SEPARATION

During the placement phase of the design, care must be taken to identify the noise source and try to physically increase the separation between the noise source and antenna. One of the major noise sources is the USB 3.2 connector itself. If possible, the antenna or USB 3.2 location can be changed to increase physical isolation. In general, doubling the distance between antenna and noise source, reduces the coupling by around 6 dB.

USB SS CONNECTOR PART SELECTION: CHOOSE A BETTER USB 3.2 PART

A USB 3.2 connector has many metal fingers that are perfect in length for radiating in and around the 2.4 GHz band and beyond. A USB 3.2 connector should be selected to minimize radiation from the USB 3.2 part itself. Some recommendations are:

- Connector is fully enclosed by metal
- No slots in the connector walls, or if there are slots, the size is very small. Also, the number of slots should be minimal.
- Connector has as many grounding legs as possible. More legs provide better grounding from the USB 3.2 exterior to the PCB and the structure is less likely to radiate. Choose four legged connectors over two legged connectors and so on.

The quality of the external USB 3.2 device used in the USB 3.2 port will have impact on the overall experience. If the external USB 3.2 device used in the USB 3.2 port is of poor quality, the part itself will radiate and issues will continue. A plastic base USB 3.2 device works inferior compared to fully metalized USB 3.2 devices.

GROUND THE USB 3.2 PART SOLIDLY

The USB 3.2 connector is grounded through "the grounding legs" previously mentioned. Care must be taken to ensure the leg area is a very good RF ground. One way to do this is to increase the number of ground vias placed in the "grounding leg" area.

IMPROVE THE ROUTING AND GROUNDING AROUND THE USB 3.2 PART AREA

The routing and grounding around the USB 3.2 connector part area must be handled carefully. Since this area is very "hot," any traces running on the surface layer below the physical connector part can pick up noise and transfer it to other areas or radiate the noise. These traces need to be moved to an inner layer, and this area needs to be made a very good ground.

BURY THE USB 3.2 LINES IN INNER LAYERS

The USB 3.2 lines should be routed as impedance controlled differential pairs, with ground on either side and on the layers above and below.

SHIELD THE USB 3.2 CONNECTOR PART

The radiation from the USB 3.2 connector part is very strong. Need to make a "shield" and put on top of the USB 3.2 connectors. The shield must touch the USB 3.2 body in multiple points. The shield track must have number of grounding vias so that any emitted noise from the USB 3.2 connector is swiftly grounded.

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation ("NVIDIA") makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer ("Terms of Sale"). NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed either directly or indirectly by this document.

Unless specifically agreed to in writing by NVIDIA, NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer's own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer's sole responsibility to evaluate and determine the applicability of any information contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer's product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, Jetson, NVIDIA Orin, and Xavier are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables are trademarks owned by the Video Electronics Standards Association in the United States and other countries.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

Bluetooth

The Bluetooth* word mark and logos are registered trademarks owned by the Bluetooth SIG, Inc., and any use of suck marks by NVIDIA is under license.

Copyright

© 2022 - 2024 NVIDIA Corporation. All rights reserved.

