Figure 1: Human POSH Coding Sequence (SEQ ID NO:1) (part 1)

ATGGATGAATCAGCCTTGTTGGATCTTTTGGAGTGTCCGGTGTGTCTAGAGCGCCTTGATGCTTCTGCGA AGGTCTTGCCTGCCAGCATACGTTTTGCAAGCGATGTTTGCTGGGGATCGTAGGTTCTCGAAATGAACT CAGATGTCCCGAGTGCAGGACTCTTGTTGGCTCGGGTGTCGAGGAGCTTCCCAGTAACATCTTGCTGGTC AGACTTCTGGATGGCATCAAACAGAGGCCTTGGAAACCTGGTCCTGGTGGGGGAAGTGGGACCAACTGCA CAAATGCATTAAGGTCTCAGAGCAGCACTGTGGCTAATTGTAGCTCAAAAGATCTGCAGAGCTCCCAGGG GCGTTATACAACTATGAAGGAAAAGAGCCTGGAGACCTTAAATTCAGCAAAGGCGACATCATCATTTTGC GAAGACAAGTGGATGAAAATTGGTACCATGGGGAAGTCAATGGAATCCATGGCTTTTTCCCCCACCAACTT TGTGCAGATTATTAAACCGTTACCTCAGCCCCCACCTCAGTGCAAAGCACTTTATGACTTTGAAGTGAAA GACAAGGAAGCAGACAAAGATTGCCTTCCATTTGCAAAGGATGATGTTCTGACTGTGATCCGAAGAGTGG **ATGAAAACTGGGCTGAAGGAATGCTGGCAGACAAATAGGAATATTTCCAATTTCATATGTTGAGTTTAA** $\tt CTCGGCTGCTAAGCAGCTGATAGAATGGGATAAGCCTCCTGTGCCAGGAGTTGATGCTGGAGAATGTTCC$ TCGGCAGCAGCCCAGAGCAGCACTGCCCCAAAGCACTCCGACACCAAGAAGAACACCAAAAAAGCGGCACT CCTTCACTTCCCTCACTATGGCCAACAAGTCCTCCCAGGCATCCCAGAACCGCCACTCCATGGAGATCAG TGCAGTGCCCCTTCTCAGGTTCATATAAGTACCACCGGGTTAATTGTGACCCCGCCCCCAAGCAGCCCAG TGACAACTGGCCCCTCGTTTACTTTCCCATCAGATGTTCCCTACCAAGCTGCCCTTGGAACTTTGAATCC TCCTCTTCCACCACCCCCTCTCCTGGCTGCCACTGTCCTTGCCTCCACACCACCAGGCGCCACCGCCGCC GCTGCTGCTGGAATGGGACCGAGGCCCATGGCAGGATCCACTGACCAGATTGCACATTTACGGCCGC AGACTCGCCCCAGTGTGTATGTTGCTATATATCCATACACTCCTCGGAAAGAGGATGAACTAGAGCTGAG AAAAGGGGAGATGTTTTTAGTGTTTTGAGCGCTGCCAGGATGGCTGGTTCAAAGGGACATCCATGCATACC AGCAAGATAGGGGTTTTCCCTGGCAATTATGTGGCACCAGTCACAAGGGCGGTGACAAATGCTTCCCAAG CTAAAGTCCCTATGTCTACAGCTGGCCAGACAAGTCGGGGAGTGACCATGGTCAGTCCTTCCACGGCAGG AGGGCCTGCCCAGAAGCTCCAGGGAAATGGCGTGGCTGGGAGTCCCAGTGTTGTCCCCGCAGCTGTGGTA TCAGCAGCTCACATCCAGACAAGTCCTCAGGCTAAGGTCTTGTTGCACATGACGGGCAAATGACAGTCA ACCAGGCCCGCAATGCTGTGAGGACAGTTGCAGCGCACAACCAGGAACGCCCCACGGCAGCAGTGACACC CATCCAGGTACAGAATGCCGCCGGCCTCAGCCCTGCATCTGTGGGCCTGTCCCATCACTCGCTGGCCTCC CCACAACCTGCGCCTCTGATGCCAGGCTCAGCCACGCACACTGCTGCCATCAGTATCAGTCGAGCCAGTG CCCCTCTGGCCTGTGCAGCAGCTGCTCCACTGACTTCCCCAAGCATCACCAGTGCTTCTCTGGAGGCTGA $\tt GCCCAGTGGCCGGATAGTGACCGTTCTCCCTGGACTCCCCACATCTCCTGACAGTGCTTCATCAGCTTGT$ $\tt CTGGCGCCTCCACTAAACGGAAGCCCCGCGTGTCTCCTCCAGCATCGCCCACCCTAGAAGTGGAGCTGGG$ GGCTCCTGCCCTGTGGACGGGACGGACCGGTCACGACTGCAGTGCAGGAGCAGCCCTGGCCCAGGATG CTTTTCATAGGAAGGCAAGTTCCCTGGACTCCGCAGTTCCCATCGCTCCACCTCCTCGCCAGGCCTGTTC $\tt CTCCCTGGGTCCTGTCTTGAATGAGTCTAGACCTGTCGTTTGTGAAAGGCACAGGGTGGTTTCCTAT$ ATGGCTGGTTCAAAGGCACATTACAACGTAATGGGAAAACTGGCCTTTTCCCCAGGAAGCTTTGTGGAAAA CATATGA

Figure 2: Human POSH Amino Acid Sequence (SEQ ID NO:2) (part 2)

MDESALLDLLECPVCLERLDASAKVLPCQHTFCKRCLLGIVGSRNELRCPECRTLVGSGVEELPSNILLV RLLDGIKQRPWKPGPGGGSGTNCTNALRSQSSTVANCSSKDLQSSQGQQPRVQSWSPPVRGIPQLPCAK ALYNYEGKEPGDLKFSKGDIIILRRQVDENWYHGEVNGIHGFFPTNFVQIIKPLPQPPPQCKALYDFEVK DKEADKDCLPFAKDDVLTVIRRVDENWAEGMLADKIGIFPISYVEFNSAAKQLIEWDKPPVPGVDAGECS SAAAQSSTAPKHSDTKKNTKKRHSFTSLTMANKSSQASQNRHSMEISPPVLISSSNPTAAARISELSGLS CSAPSQVHISTTGLIVTPPPSSPVTTGPSFTFPSDVPYQAALGTLNPPLPPPPLLAATVLASTPPGATAA AAAAGMGPRPMAGSTDQIAHLRPQTRPSVYVAIYPYTPRKEDELELRKGEMFLVFERCQDGWFKGTSMHT SKIGVFPGNYVAPVTRAVTNASQAKVPMSTAGQTSRGVTMVSPSTAGGPAQKLQGNGVAGSPSVVPAAVV SAAHIQTSPQAKVLLHMTGQMTVNQARNAVRTVAAHNQERPTAAVTPIQVQNAAGLSPASVGLSHHSLAS PQPAPLMPGSATHTAAISISRASAPLACAAAAPLTSPSITSASLEAEPSGRIVTVLPGLPTSPDSASSAC GNSSATKPDKDSKKEKKGLLKLLSGASTKRKPRVSPPASPTLEVELGSAELPLQGAVGPELPPGGGHGRA GSCPVDGDGPVTTAVAGAALAQDAFHRKASSLDSAVPIAPPPRQACSSLGPVLNESRPVVCERHRVVVSY PPQSEAELELKEGDIVFVHKKREDGWFKGTLQRNGKTGLFPGSFVENI

Figure 3: Human POSH cDNA Sequence (SEQ ID NO:3)

CTGAGAGACACTGCGAGCGGCGAGCGCGGTGGGGCCGCATCTGCATCAGCCGCCGCAGCCGCTGCGGGGC CGCGAACAAAGAGGGGGGCGCGAGGCGAGGCAAAGTCTGAAATGGATGTTACATGAGTCATTTTAAG ${\tt CAGCATACGTTTTGCAAGCGATGTTTGCTGGGGATCGTAGGTTCTCGAAATGAACTCAGATGTCCCGAGT}$ GCAGGACTCTTGTTGGCTCGGGTGTCGAGGAGCTTCCCAGTAACATCTTGCTGGTCAGACTTCTGGATGG CATCAAACAGAGGCCTTGGAAACCTGGTCCTGGTGGGGGAAGTGGGACCAACTGCACAAATGCATTAAGG ${\tt TCTCAGAGCAGCACTGTGGCTAATTGTAGCTCAAAAGATCTGCAGAGCTCCCAGGGCGGACAGCAGCCTC}$ GGGTGCAATCCTGGAGCCCCCCAGTGAGGGGTATACCTCAGTTACCATGTGCCAAAGCGTTATACAACTA ${\tt TGAAGGAAAAGAGCCTGGAGACCTTAAATTCAGCAAAGGCGACATCATCTTTTGCGAAGACAAGTGGAT}$ GAAAATTGGTACCATGGGAAGTCAATGGAATCCATGGCTTTTTCCCCACCAACTTTGTGCAGATTATTA AACCGTTACCTCAGCCCCACCTCAGTGCAAAGCACTTTATGACTTTGAAGTGAAAGACAAGGAAGCAGA CAAAGATTGCCTTCCATTTGCAAAGGATGATGTTCTGACTGTGATCCGAAGAGTGGATGAAAACTGGGCT GAAGGAATGCTGGCAGACAAAATAGGAATATTTCCAATTTCATATGTTGAGTTTAACTCGGCTGCTAAGC ${\tt AGCTGATAGAATGGGATAAGCCTCCTGTGCCAGGAGTTGATGCTGGAGAATGTTCCTCGGCAGCAGCCCA}$ GAGCAGCACTGCCCCAAAGCACTCCGACACCAAGAAGAACACCAAAAAGCGGCACTCCTTCACTTCCCTC ACTATGGCCAACAAGTCCTCCAGGCATCCCAGAACCGCCACTCCATGGAGATCAGCCCCCTGTCCTCA TCAGCTCCAGCAACCCCACTGCTGCTGCACGGATCAGCGAGCTGTCTGGGCTCTCCTGCAGTGCCCCTTC TCAGGTTCATATAAGTACCACCGGGTTAATTGTGACCCCGCCCCCAAGCAGCCCAGTGACAACTGGCCCC ${\tt TCGTTTACTTTCCCATCAGATGTTCCCTACCAAGCTGCCCTTGGAACTTTGAATCCTCCTCTTCCACCAC}$ CCCCTCTCCTGGCTGCCACTGTCCTTGCCTCCACACCACCACGCCGCCGCCGCCGCTGCTGCTGCTGG ${\tt AATGGGACCGAGGCCCATGGCAGGATCCACTGACCAGATTGCACATTTACGGCCGCAGACTCGCCCCAGT}$ GTGTATGTTGCTATATATCCATACACTCCTCGGAAAGAGGATGAACTAGAGCTGAGAAAAAGGGGAGATGT TTTTAGTGTTTGAGCGCTGCCAGGATGGCTGGTTCAAAGGGACATCCATGCATACCAGCAAGATAGGGGT TTTCCCTGGCAATTATGTGGCACCAGTCACAAGGGCGGTGACAAATGCTTCCCAAGCTAAAGTCCCTATG TCTACAGCTGGCCAGACAAGTCGGGGAGTGACCATGGTCAGTCCTTCCACGGCAGGAGGGCCTGCCCAGA ${\tt AGCTCCAGGGAAATGGCGTGGCTGGGAGTCCCAGTGTTGTCCCCGCAGCTGTGGTATCAGCAGCTCACAT}$ ${\tt CCAGACAAGTCCTCAGGCTAAGGTCTTGTTGCACATGACGGGGCAAATGACAGTCAACCAGGCCCGCAAT}$ GCTGTGAGGACAGTTGCAGCGCACAACCAGGAACGCCCCACGGCAGCAGTGACACCCATCCAGGTACAGA ATGCCGCCGGCCTCAGCCCTGCATCTGTGGGCCTGTCCCATCACTCGCTGGCCTCCCCACAACCTGCGCC TCTGATGCCAGGCTCAGCCACGCACACTGCTGCCATCAGTATCAGTCGAGCCAGTGCCCCTCTGGCCTGT TAGTGACCGTTCTCCCTGGACTCCCCACATCTCCTGACAGTGCTTCATCAGCTTGTGGGAACAGTTCAGC AACCAAACCAGACAAGGATAGCAAAAAAAGAAAAAAGGGTTTGTTGAAGTTGCTTTCTGGCGCCTCCACT AAACGGAAGCCCCGCGTGTCTCCTCCAGCATCGCCCACCCTAGAAGTGGAGCTGGGCAGTGCAGAGCTTC CTCTCCAGGGAGCGGTGGGCCCGAACTGCCACCAGGAGGTGGCCATGGCAGGGCAGGCTCCTGCCCTGT GGACGGGACCGGTCACGACTGCAGTGGCAGGAGCCCCTGGCCCAGGATGCTTTTCATAGGAAG GCAAGTTCCCTGGACTCCCATCGCTCCACCTCCTCGCCAGGCCTGTTCCTCCCTGGGTCCTG ${\tt TCTTGAATGAGTCTAGACCTGTCGTTTGTGAAAGGCACAGGGTGGTGGTTTCCTATCCTCTCAGAGTGA}$ GGCACATTACAACGTAATGGGAAAACTGGCCTTTTCCCAGGAAGCTTTGTGGAAAACATATGAGGAGACT GACACTGAAGAAGCTTAAAATCACTTCACACAACAAGTAGCACAAAGCAGTTTAACAGAAAGAGCACAT TTGTGGACTTCCAGATGGTCAGGAGATGAGCAAAGGATTGGTATGTGACTCTGATGCCCCAGCACAGTTA $\tt CCCCAGCGAGCAGAGTGAAGAAGATGTTTGTGGGGTTTTGTTAGTCTGGATTCGGATGTATAAGGTGTG$ ATTGTTTACAAGGCTTAACTAATTTATTTGCTTTTTTAAACTTGAACTTTTCGTATAATAGATACGTTCT TTGGATTATGATTTAAGAAATTATTAATTTATGAAATGATAGGTAAGGAGAAGCTGGATTATCTCCTGT ATTTTGGGGTTATGTTTTGCTTCTTTAAGATAGAAATCCCAGTTCTCTAATTTGGTTTTCTTTTGGGA AACCAAACATACAAATGAATCAGTATCAATTAGGGCCTGGGGTAGAGAGACAGAAACTTGAGAGAAGAGA ${\tt AGTTAGTGATTCCCTCTTTTCTAGTTTGGTAGGAATCACCCTGAAGACCTAGTCCTCAATTTAATTGTG}$ TTGAAGTTGTAGTCACTGTCTGAGAATGGCTATGAAGCGTCATTTCACATTTTACCCCAACTGACCTGCA TGCCCAGGACACAAGTAAAACATTTGTGAGATAGTGGTGGTAAGTGATGCACTCGTGTTAAGTCAAAGGC TATAAGAAACACTGTGAAAAGTTCATATTCATCCATTGTGATTCTTTCCCCACGTCTTGCATGTATTACT GGATTCCCACAGTAATATAGACTGTGCATGGTGTATATTTCATTGCGATTTCCTGTTAAGATGAGTTT GTACTCAGAATTGACCAATTCAGGAGGTGTAAAAATAAACAGTGTTCTCTTCTCTACCCCAAAGCCACTA

⁻to be continued

Figure 3: Human POSH cDNA Sequence (SEQ ID NO:3)

TTAGTGAAAGTGGTCTTTTATGTCCTCCCAGCAGACAGCATCAAGGATGAGTTAACCAGGAGACTACTC $\tt CTGTGACTGTGGAGCTCTGGAAGGCTTGGTGGGAGTGAATTTGCCCACACCTTACAATTGTGGCAGGATC$ CAGAAGAGCCTGTCTTTTATATCCATTCCTTGATGTCATTGGCCTCTCCCACCGATTTCATTACGGTGC CACGCAGTCATGGATCTGGGTAGTCCGGAAAACAAAAGGAGGGGAAGACAGCCTGGTAATGAATAAGATCC AACTGGGAAATAGAAACATGAACTGAAAAGTCTTGCAATGACAAGAGGTTTCATGGTCTTAAAAAGATAC TCCTGTGTGTGAATTTAAAAAAAAAAAAAATACTTTACTTGGATATTCATGTAATATATAAAGGTTTGGTG AAATGAACTTTAGTTAGGAAAAAGCTGGCATCAGCTTTCATCTGTGTAAGTTGACACCAATGTGTCATAA GATAATTTTTTACCTGTCTTTTCTCCATATTTTAAGCTATGTGATTGAAGTACCTCTGTTCATAGTTTC ${\tt CTGGTATAAAGTTGGTTAAAATTTCATCTGTTAATAGATCATTAGGTAATAATGTATGGGTTTTCTAT}$ TGGTTTTTTGCAGACAGTAGAGGGAGATTTTGTAACAAGGGCTTGTTACACAGTGATATGGTAATGATAA AATTGCAATTTATCACTCCTTTTCATGTTAATAATTTGAGGACTGGATAAAAGGTTTCAAGATTAAAATT TGATGTTCAAACCTTTGT

Figure 4: 5' cDNA fragment of human POSH (public gi:10432611; SEQ ID NO:4)

ctgagagacactgcgagcggcgagcgcgtggggccgcatctgcatcagccgccgcagccgctgcggggc cgcgaacaaagaggaggagccgaggcgcgagagcaaagtctgaaatggatgttacatgagtcattttaag ttgttggatcttttggagtgtccggtgtgtctagagcgccttgatgcttctgcgaaggtcttgccttgcc agcatacgttttgcaagcgatgtttgctggggatcgtaggttctcgaaatgaactcagatgtcccgagtg caggactettgttggetegggtgtegaggagetteccagtaacatettgetggteagaettetggatgge atcaaacagaggccttggaaacctggtcctggtgggggaagtgggaccaactgcacaaatgcattaaggt ctcagagcagcactgtggctaattgtagctcaaaagatctgcagagctcccagggcggacagcagcctcg ggtgcaatcctggagccccccagtgaggggtatacctcagttaccatgtgccaaagcgttatacaactat gaaggaaaagagcctggagaccttaaattcagcaaaggcgacatcatcattttgcgaagacaagtggatg aaaattggtaccatggggaagtcaatggaatccatggctttttccccaccaactttgtgcagattattaa accgttacctcagccccacctcagtgcaaagcactttatgactttgaagtgaaagacaaggaagcagac aaagattgccttccatttgcaaaggatgatgttctgactgtgatccgaagagtggatgaaaactgggctg aaggaatgctggcagacaaaataggaatatttccaatttcatatgttgagtttaactcggctgctaagca gctgatagaatgggataagcctcctgtgccaggagttgatgctggagaatgttcctcggcagcagcccag agcagcactgcccaaagcactccgacaccaagaagaacaccaaaaaagcggcactccttcacttccctca ctatggccaacaagtcctcccaggcatcccagaaccgccactccatggagatcagccccctgtcctcat cagetecageaaceceactgetgetgeacggateagegagetgtetgggetetectgeagtgeceettet caggttcatataagtaccaccgggttaattgtgaccccgccccaagcagcccagtgacaactggcccct cgtttactttcccatcagatgttccctaccaagctgcccttggaactttgaatcctcctcttccaccacc ccctctcctggctgccactgtccttgcctccacaccaggcgccaccgccgccgctgctgctgctgga atgggaccgaggcccatggcaggatccactgaccagattgcacatttacggccgcagactcgcccagtg tgtatgttgctatatatccatacactcctcggaaagaggatgaactagagctgagaaaaggggagatgtt tttagtgtttgagcgctgccaggatggctggttcaaagggacatccatgcataccagcaagataggggtt ttccctggcaattatgtggcaccagtcacaagggcggtgacaaatgcttcccaagctaaagtccctatgt ctacagctggccagacaagtcggggagtgaccatggtcagtccttccacggcaggagggcctgcccagaa gctccagggaaatggcgtggctgggagtcccagtgttgtccccgcagctgtggtatcagcagctcacatc cagacaagtcctcaggctaaggtcttgttgcacatgacggggcaaatgacagtcaaccaggcccgcaatg ctgtgaggacagttgcagcgcacaaccaggaacgccccacggcagcagtgacacccatccaggtacagaa tgccgccggcctcagccctgcatctgtgggcctgtcccatcactcgctggcctcccacaacctgcgcct ctgatgccaggctcagccacgcacactgctgccatcagtatcagtcgagccagtgcccctctggcctgtg cagcagctgctccactgacttccccaagcatcaccagtgcttctctggaggctgagcccagtggccggat agtgaccgttctccctggactccccacatctcctgacagtgcttcatcagcttgtgggaacagttcagca accaaaccagacaaggatagc

Figure 5: N terminus protein fragment of hPOSH (public gi:10432612; SEQ ID NO:5)

MDESALLDLLECPVCLERLDASAKVLPCQHTFCKRCLLGIVGSRNELRCPECRTLVGSGVEELPSNILLV RLLDGIKQRPWKPGPGGGSGTNCTNALRSQSSTVANCSSKDLQSSQGGQQPRVQSWSPPVRGIPQLPCAK ALYNYEGKEPGDLKFSKGDIIILRQVDENWYHGEVNGIHGFFPTNFVQIIKPLPQPPPQCKALYDFEVK DKEADKDCLPFAKDDVLTVIRRVDENWAEGMLADKIGIFPISYVEFNSAAKQLIEWDKPPVPGVDAGECS SAAAQSSTAPKHSDTKKNTKKRHSFTSLTMANKSSQASQNRHSMEISPPVLISSSNPTAAARISELSGLS CSAPSQVHISTTGLIVTPPPSSPVTTGPSFTFPSDVPYQAALGTLNPPLPPPPLLAATVLASTPPGATAA AAAAGMGPRPMAGSTDQIAHLRPQTRPSVYVAIYPYTPRKEDELELRKGEMFLVFERCQDGWFKGTSMHT SKIGVFPGNYVAPVTRAVTNASQAKVPMSTAGQTSRGVTMVSPSTAGGPAQKLQGNGVAGSPSVVPAAVV SAAHIQTSPQAKVLLHMTGQMTVNQARNAVRTVAAHNQERPTAAVTPIQVQNAAGLSPASVGLSHHSLAS PQPAPLMPGSATHTAAISISRASAPLACAAAAPLTSPSITSASLEAEPSGRIVTVLPGLPTSPDSASSAC GNSSATKPDKDS

Figure 6: 3' mRNA fragment of hPOSH (public gi:7959248; SEQ ID NO:6)

atttcatatqttqaqtttaactcggctqctaagcagctgatagaatgggataagcctcctgtgccaggag ttgatgctggagaatgttcctcggcagcagcccagagcagcactgccccaaagcactccgacaccaagaa qaacaccaaaaaqcqqcactccttcacttccctcactatggccaacaagtcctcccaggcatcccagaac cgccactccatggagatcagccccctgtcctcatcagctccagcaaccccactgctgcacggatca gcgagctgtctggggctctcctgcagtgccccttctcaggttcatataagtaccaccgggttaattgtgac ccqccccaaqcaqcccagtgacaactqqccctcqtttactttcccatcagatgttccctaccaagct gcccttggaactttgaatcctcctcttccaccaccccctctcctggctgccactgtccttgcctccacac caccaggggcaccgccgctgctgctgctqctqqaatqqqaccqaggcccatggcaggatccactgacca gattgcacatttacggccgcagactcgccccagtgtgtatgttgctatatatccatacactcctcggaaa qaqqatqaactaqagctgagaaaaggggagatgtttttagtgttttgagcgctgccaggatggctggttca aagggacatccatgcataccagcaagataggggttttccctggcaattatgtggcaccagtcacaagggc ggtgacaaatgcttcccaagctaaagtccctatgtctacagctggccagacaagtcggggagtgaccatg qtcaqtccttccacggcaggaggcctgcccagaagctccagggaaatggcgtggctgggagtcccagtg ttgtccccgcagctgtggtatcagcagctcacatccagacaagtcctcaggctaaggtcttgttgcacat qacqqqqcaaatqacagtcaaccaggcccgcaatgctgtgaggacagttgcagcgcacaaccaggaacgc cccacggcagcagtgacacccatccaggtacagaatgccgccggcctcagccctgcatctgtgggcctgt ccatcactcqctqqcctccccacaacctgcgcctctgatgccaggctcagccacgcacactgctgccat cagtatcagtcgagccagtgcccctctggcctgtgcagcagctgctccactgacttccccaagcatcacc agtgcttctctggaggctgagcccagtggccggatagtgaccgttctccctggactccccacatctcctg acaqtqcttcatcaqcttqtqqqaacaqttcaqcaaccaaaccagacaaggatagcaaaaaagaaaaaaa gggtttgttgaagttgctttctggegcctccactaaacggaagccccgcgtgtctcctccagcatcgccc accctagaagtggagctgggcagtgcagagcttcctctccagggagcggtggggcccgaactgccaccag agcagccctggcccaggatgcttttcataggaaggcaagttccctggactccgcagttcccatcgctcca cctcctcgccaggcctgttcctccctgggtcctgtcttgaatgagtctagacctgtcgtttgtgaaaggc acagggtggttggtttcctatcctcctcagagtgaggcagaacttgaacttaaagaaggagatattgtgtt tgttcataaaaaacgagaggatggctggttcaaaggcacattacaacgtaatgggaaaactggccttttc ccaggaagctttgtggaaaacatatgaggagactgacactgaagaagcttaaaatcacttcacacaacaa aqtaqcacaaaqcaqtttaacagaaagagcacatttgtggacttccagatggtcaggagatgagcaaagg attggtatgtgactctgatgccccagcacagttaccccagcgagcagagtgaagaagatgtttgtgtggg ttttgttagtctggattcggatgtataaggtgtgccttgtactgtctgatttactacacagagaaacttt taaacttqaacttttcqtataataqatacqttctttqqattatqattttaaqaaattattaatttatqaa atqataqqtaaqqaqaqctqqattatctcctgttgagagcaagagattcgttttgacatagagtgaatg cattttcccctctcctcctcctgctaccattatattttggggttatgttttgcttctttaagatagaaa tcccaqttctctaatttqqttttcttcttttgggaaaccaaacatacaaatgaatcagtatcaattagggc ctggggtagagagacagaaacttgagagaagagaagttagtgattccctctctttctagtttggtaggaa tcaccctgaagacctagtcctcaatttaattgtgtgggtttttaattttcctagaatgaagtgactgaaa caatgagaaagaatacagcacaacccttgaacaaaatgtatttagaaatatatttagttttatagcagaa gcagctcaattgtttggttggaaagtagggaaattgaagttgtagtcactgtctgagaatggctatgaa gcqtcatttcacattttaccccaactgacctgcatgcccaggacacaagtaaaacatttgtgagatagtg gtggtaagtgatgcactcgtgttaagtcaaaggctataagaaacactgtgaaaagttcatattcatccat tgtgattctttccccacgtcttgcatgtattactggattcccacagtaatatagactgtgcatggtgtgt atatttcattgcgatttcctgttaagatgagtttgtactcagaattgaccaattcaggaggtgtaaaaat aaacagtgttctcttctctaccccaaagccactactgaccaaggtctcttcagtgcactcgctccctctc tggctaaggcattgcattagccactacacaagtcattagtgaaagtggtcttttatgtcctcccagcagac agacatcaaggatgagttaaccaggagactactcctgtgactgtggagctctggaaggctttggtgggagt gaatttgcccacaccttacaattgtggcaggatccagaagagcctgtcttttatatccattccttgatg tcattggcctctcccaccgatttcattacggtgccacgcagtcatggatctgggtagtccggaaaacaaa aggagggaagacagcctggtaatgaataagatccttaccacagttttctcatgggaaatacataataaac cctttcatctttttttttttcctttaagaattaaaactgggaaatagaaacatgaactgaaaagtcttgc aatgacaagaggtttcatggtcttaaaaagatactttatatggttgaagatgaaatcattcctaaattaa ttcatctqtqtaaqttqacaccaatqtqtcataatattctttattttgggaaattagtgtattttataaa aattttaaaaagaaaaaagactactacaggttaagataatttttttacctgtcttttctcccatattttaa gctatgtgattgaagtacctctgttcatagtttcctggtataaagttggttaaaatttcatctgttaata gatcattaggtaatataatgtatgggttttctattggttttttgcagacagtagagggagattttgtaac aagggettgttacacagtgatatggtaatgataaaattgcaatttatcactccttttcatgttaataatt tgaggactggataaaaggtttcaagattaaaatttgatgttcaaacctttgt

Figure 7: C terminus protein fragment of hPOSH (public gi:7959249; SEQ ID NO:7)

ISYVEFNSAAKQLIEWDKPPVPGVDAGECSSAAAQSSTAPKHSDTKKNTKKRHSFTSLTMANKSSQASQN RHSMEISPPVLISSSNPTAAARISELSGLSCSAPSQVHISTTGLIVTPPPSSPVTTGPSFTFPSDVPYQA ALGTLNPPLPPPPLLAATVLASTPPGATAAAAAAGMGPRPMAGSTDQIAHLRPQTRPSVYVAIYPYTPRK EDELELRKGEMPLVFERCQDGWFKGTSMHTSKIGVFPGNYVAPVTRAVTNASQAKVPMSTAGQTSRGVTM VSPSTAGGPAQKLQGNGVAGSPSVVPAAVVSAAHIQTSPQAKVLIHMTGQMTVNQARNAVRTVAAHNQER PTAAVTPIQVQNAAGLSPASVGLSHHSLASPQPAPLMPGSATHTAAISISRASAPLACAAAAPLTSPSIT SASLEAEPSGRIVTVLPGLPTSPDSASSACGNSSATKPDKDSKKEKKGLLKLLSGASTKRKPRVSPPASP TLEVELGSAELPLQGAVGPELPPGGGHGRAGSCPVDGDGPVTTAVAGAALAQDAFHRKASSLDSAVPIAP PPRQACSSLGPVLNESRPVVCERHRVVVSYPPQSEAELELKEGDIVFVHKKREDGWFKGTLQRNGKTGLF PGSFVENI

Figure 8: Human POSH full mRNA, Annotated Sequence (part 1)

---- gi|10432611|dbj|AK021429.1|AK021429 Homo sapiens cDNA FLJ11367 fis, clone HEMBA1000303, highly similar to Mus musculus Plenty of SH3s (POSH) mRNA --- - gi|7959248|dbj|AB040927.1|AB040927 Homo sapiens mRNA for KIAA1494 protein, partial cds --- - Both hPOSH and KIAA1495 ---- - Ring Domain - SH3 Domian F-F- - start codon and stop codon of predicted ORF CTGAGAGACACTGCGAGCGGGGGGGGGGGGGGCGCATCTGCATCAGCCGCCGCAGCCGCTGCGGGGC CGCGAACAAAGAGGAGGAGCCGAGGCGCGAGAGCAAAGTCTGAAATGGATGTTACATGAGTCATTTTAAG GCAGGACTCTTGTTGGCTCGGGTGTCGAGGAGCTTCCCAGTAACATCTTGCTGGTCAGACTTCTGGATGG CATCAAACAGAGGCCTTGGAAACCTGGTCCTGGTGGGGGAAGTGGGACCAACTGCACAAATGCATTAAGG TCTCAGAGCAGCACTGTGGCTAATTGTAGCTCAAAAGATCTGCAGAGCTCCCAGGGCGGACAGCAGCCTC AGCTGATAGAATGGGATAAGCCTCCTGTGCCAGGAGTTGATGCTGGAGAATGTTCCTCGGCAGCAGCCCA GAGCAGCACTGCCCCAAAGCACTCCGACACCAAGAAGAACACCAAAAAAGCGGCACTCCTTCACTTCCCTC ACTATGGCCAACAAGTCCTCCAGGCATCCCAGAACCGCCACTCCATGGAGATCAGCCCCCTGTCCTCA ŤŒĀĠĊŦĊÇĀĠĊŊĄĊĊĊŖĊŦĠĊŦĠĊŦĠĊŔĠĊŖĠĊŖĠĊŖĠŔŊŢĊŖĠĊŖĠĊŖĠŖĠŖŖĊŖĸŖŖŖŖŖŖŖŖŶ TCAGGTTCATATAAGTACCACCGGGTTAATTGTGACCCCGGCTAATGCACAAGCAGTGACAACCTGGCCCCC ŢĠĠŦŦŦĄĊŦŦŦĊĊĊĄŢĊĄĠĄŦĠŦŢŢĊĊĊŦĄĊĊĄĄĠĊŦĠĊĊŢŦĠĠĄĄĊŦŦŢĠĄĄŢĊĊŦĊŦŦĊĠĄĊĊĄĊ ĠĊĊĊŢĊŢĊĠŢĠĠĊŢĠĊŊĸĊŶĠŢĊĠŢŢĠĊĊŢĊĊĸĊĸĊĸĊĸĊĊĠĊĊĸĊĊĠĊĊĠĊĠĊŢĠĊŢĠĊŢĠĊŢĠĊŢĠĊ AATGGGACCGAGGCCCATGGCAGATTCCACTGACCAGATTGCACATTTACGGCCGCAGACTCGCCCCC HITEACH POTATION OF THE CONTROL OF T ŢĊŦĄĊĄĠĊŦĠĠĊĊĄĠĄĊĄĄĠŦĊĠĠĠĠĄĠŦĠĄĊĊĄŦĠĠŦĊĄĠŢĊĊŦŦĊĠĄĊĠĠĊĄĠĠĠĠĠĊĊŦĠĊĊĊĄĠĄ AGCTCCAGGGAAATGGCGTGGCTGGGAGTCCCAGTGTTGTCCCCAGCTGTGTGGTATCAGCAGCTCACAT CCÁGACAAGTCCTCAGGCTAAGGTCTTGTTGCACÁTGACGGGGCAAATGACAGTCAACCAGGGCCCGCAAT GCTGTGAGGACAGTTGCAGCGCACAACCAGGAACGCCCCACGGAAGCAGTGACACCCATCCAGGTACAGA ŤĊŢĠĂŤĠÇĊĀĠĠĊŦĊŔĠĊĊĄĊĠĊŔĊĄĊŦĠĊŦĠĊĊĂŦĊĄĠŦŔŤĊĄĠŦĊĠŔĠĊĊĄĠŦĠĊĊĊŢĊŦĠĠĊĊŦĠŦ ĠĊŔĠĊŖĠĊŢĠĊŢĊĊŔĊŦĠŖĊŦŦĊĊĊŔŖĠĊŖŢĊŖĊŖĠŢĠĊŢŢĊŢĠĠŔĠĠĊŢĠŖĠĊĊŔĠŢĠĠĊĊĠĠŔ TAGTGACCGTTCTCCCTGGACTCCCCACATCTCCTGACAGTGCTTCATCAGCTTGTGGGAACAGTTCAGC AACCAAACCAGACAAGGATAGCAAAAAAGAAAAAAGGGTTTGTTGAAGTTGCTTTCTGGCGCCTCCACT AAACGGAAGCCCCGCGTGTCTCCTCCAGCATCGCCCACCCTAGAAGTGGAGCTGGGCAGTGCAGAGCTTC $\tt CTCTCCAGGGAGCGGTGGGGCCGAACTGCCACCAGGAGGTGGCCATGGCAGGCCAGGCTCCTGCCCTGT$ GGACGGGGACGGACCGGTCACGACTGCAGTGGCAGGAGCAGCCCTGGCCCAGGATGCTTTTCATAGGAAG GCAAGTTCCCTGGACTCCGCAGTTCCCATCGCTCCACCTCCTCGCCAGGCCTGTTCCTCCCTGGGTCCTG

-to be continued 9399577 1

Figure 8: Human POSH full mRNA, Annotated Sequence (part 2)

TTGTGGACTTCCAGATGGTCAGGAGATGAGCAAAGGATTGGTATGTGACTCTGATGCCCCAGCACAGTTA ${\tt CCCCAGCGAGCAGAGAGAAGAAGATGTTTGTGGGGTTTTGTTAGTCTGGATTCGGATGTATAAGGTGTG}$ ${\tt ATTGTTTACAAGGCTTAACTAATTTATTTGCTTTTTTAAACTTGAACTTTTCGTATAATAGATACGTTCT}$ TTGGATTATGATTTTAAGAAATTATTAATTTATGAAATGATAGGTAAGGAGAAGCTGGATTATCTCCTGT TGAGAGCAAGAGATTCGTTTTGACATAGAGTGAATGCATTTTCCCCTCCTCCTCCTCCTCCTACCATTAT ${ t ATTTTGGGGTTATGTTTTGCTTCTTTAAGATAGAAATCCCAGTTCTCTAATTTGGTTTTCTTCTTTGGGA$ AACCAAACATACAAATGAATCAGTATCAATTAGGGCCTGGGGTAGAGAGACAGAAACTTGAGAGAAGAGA ${\tt AGTTAGTGATTCCCTCTTTCTAGTTTGGTAGGAATCACCCTGAAGACCTAGTCCTCAATTTAATTGTG}$ ${\tt TGCCCAGGACACAAGTAAAACATTTGTGAGATAGTGGTGGTAAGTGATGCACTCGTGTTAAGTCAAAGGC}$ TATAAGAAACACTGTGAAAAGTTCATATTCATCCATTGTGATTCTTTCCCCCACGTCTTGCATGTATTACT GGATTCCCACAGTAATATAGACTGTGCATGGTGTGTATATTTCATTGCGATTTCCTGTTAAGATGAGTTT $\tt CTGTGACTGTGGAGGCTTGGTGGGAGTGAATTTGCCCACACCTTACAATTGTGGCAGGATC$ ${\tt CAGAAGAGCCTGTCTTTTATATCCATTCCTTGATGTCATTGGCCTCTCCCACCGATTTCATTACGGTGC}$ ${\tt CACGCAGTCATGGATCTGGGTAGTCCGGAAAACAAAAGGAGGGGAAGACAGCCTGGTAATGAATAAGATCC}$ AACTGGGAAATAGAAACATGAACTGAAAAGTCTTGCAATGACAAGAGGTTTCATGGTCTTAAAAAGATAC TCCTGTGTGTGAATTTAAAAAAAAAAAATACTTTACTTGGATATTCATGTAATATATAAAGGTTTGGTG AAATGAACTTTAGTTAGGAAAAAGCTGGCATCAGCTTTCATCTGTGTAAGTTGACACCAATGTGTCATAA ${\tt GATAATTTTTTACCTGTCTTTTCTCCATATTTTAAGCTATGTGATTGAAGTACCTCTGTTCATAGTTTC}$ TGATGTTCAAACCTTTGT

Figure 9: Domain Analysis of Human POSH

Domain Name	begin	end	E-value
RING	12	52	1.06e-08
SH3	137	192	2.76e-19
SH3	199	258	4.84e-15
low complexity	366	384	-
low complexity	390	434	-
SH3	448	505	2.40e-19
low complexity	547	563	-
low complexity	652	668	-
low complexity	705	729	
SH3	832	888	1.47e-14

Figure 10: Diagram of Human POSH Nucleic Acids

Figure 11: Reduction in Full Length POSH mRNA by siRNA Duplexes

Figure 12: POSH Affects Release of VLP from Cells

Figure 13: Release of VLP from Cells at Steady State

Figure 14: Mouse POSH mRNA sequence (public gi:10946921; SEQ ID NO: 8)

GCGAGAGCAAAGTCTGAAATGGATGTTACATGAATCACTTTAAGGGCTGCGCACAACTATGAACGTTCTG ${\tt AAGCCGTTTTCTCACTAAAGTCACTCAAGATGGATGAGTCTGCCTTGTTGGACCTTCTGGAGTGCCCTGT}$ GTGTCTAGAACGCCTGGATGCTTCCGCAAAGGTCTTACCCTGCCAGCATACCTTTTGCAAACGCTGTTTG CTGGGGATTGTGGGTTCCCGGAATGAACTCAGATGTCCCGAATGCCGGACTCTTGTTGGCTCTGGGGTCG ${\tt ACGAGCTCCCCAGTAACATCCTACTGGTCAGACTTCTGGATGGCATCAAGCAGAGGCCTTGGAAACCCGG}$ CCCTGGTGGGGGCGGCGGACCACCTGCACAAACACATTAAGGGCGCAGGGCAGCACTGTGGTTAATTGT GGGGAATACCTCAGTTACCGTGTGCCAAAGCATTATATAACTACGAAGGAAAAGAGCCCGGAGACCTTAA GTTCAGCAAAGGCGACACCATCATTCTGCGCCGACAGGTGGATGAGAATTGGTACCACGGGGAAGTCAGC ${\tt GGGGTCCACGGCTTTTTCCCCACTAACTTCGTGCAGATCATCAAACCTTTACCTCAGCCCCCGCCTCAGT}$ GCAAAGCACTTTACGACTTTGAAGTGAAAGACAAGGAAGCTGACAAAGATTGCCTTCCCTTCGCAAAGGA $\tt CGACGTACTGACCGTGATCCGCAGAGTGGATGAAAACTGGGCTGAAGGAATGCTGGCAGATAAAATAGGA$ ATATTTCCAATTTCATACGTGGAGTTTAACTCAGCTGCCAAGCAGCTGATAGAGTGGGATAAGCCTCCCG $\tt TGCCAGGAGTGGACACGGCAGAATGCCCCTCAGCGACGGCGCAGAGCACCTCTGCCTCAAAGCACCCCGA$ TCCCAGAACCGCCACTCCATGGAGATCAGCCCTCCTGTGCTCATCAGTTCCAGCAACCCCACAGCCGCAG $\tt CCCGCATCAGCGAACTGTCCGGGCTCTCCTGCAGCGCCCCGTCTCAGGTCCATATAAGCACCACTGGGTTCCGGTTCAGGTCCATATAAGCACCACTGGGTTCAGGTCCATATAAGCACCACTGGGTTCAGGTCCATATAAGCACCACTGGGTTCAGGTCCATATAAGCACCACTGGGTTCAGGTCCATATAAGCACCACTGGGTTCAGGTCCATATAAGCACCACTGGGTTCAGGTCCATATAAGCACCACTGGGTTCAGGTTCAGGTCCATATAAGCACCACTGGGTTCAGGTTCAGGTCCATATAAGCACCACTGGGTTCAGG$ AATTGTGACCCCACCCCTAGCAGCCCGGTGACAACTGGCCCTGCGTTCACGTTCCCCTTCAGATGTCCCC TACCAAGCTGCCCTTGGAAGTATGAATCCTCCACTTCCCCCACCCCTCTCCTGGCGGCCACCGTACTCG ${\tt ACCCAGGCCTGTGATGGGGTCCTCTGAACAGATTGCACATTTACGGCCTCAGACTCGTCCCAGTGTATAT$ GTTGCTATATATCCGTACACTCCCCGGAAGGAAGACGAACTGGAGCTGAGGAAAGGGGGAGATGTTTTTGG TGTTTGAGCGTTGCCAGGACGGCTGGTACAAAGGGACATCGATGCATACCAGCAAGATAGGCGTTTTCCC ${\tt TGGCAACTATGTGGCGCCCGTCACAAGGGCGGTGACGAATGCCTCCCAAGCTAAAGTCTCTATGTCTACT}$ GCGGGTCAGGCAAGTCGCGGGGTGACCATGGTCAGCCCTTCCACTGCAGGAGGACCTACACAGAAGCCCC AAGGAAACGGCGTGGCCGGAAATCCCAGCGTCGTCCCCACGGCTGTGGTGTCAGCAGCTCATATCCAGAC AAGTCCTCAGGCTAAGGTCCTGCTGCACATGTCTGGGCAGATGACAGTCAATCAGGCCCGCAATGCTGTG AGGACAGTTGCAGCACATAGCCAGGAACGCCCCACAGCAGCAGTGACTCCCATCCAGGTCCAGAATGCCG $\tt CCTGCCTTGGTCCTGCATCCGTGGGCCTGCCCCATCATTCTCTGGCCTCCCAACCTCTGCCTCCAATGGC$ GGGTCCTGCTGCCCACGGTGCTGCCGTCAGCATCAGTCGAACCAATGCCCCCATGGCCTGCGCTGCAGGG GCTTCTCTGGCCTCCCCAAATATGACCAGTGCCATGTTGGAGACAGAGCCCAGTGGTCGCACAGTGACCA TCCTCCTGGACTCCCCACATCTCCAGAGAGTGCTGCATCAGCGTGTGGGAACAGTTCAGCTGGGAAACC AGACAAGGACAGTAAGAAAGAAAAAAAGGGCCTACTGAAGCTGCTTTCTGGTGCCTCCACCAAACGCAAG GAGCAGTAGGTCCTGAGCTGCCGCTAGGGGGCAGCCACGGCAGAGTGGGGTCATGCCCCACAGATGGTGA TGGTCCAGTGGCCGCTGGAACAGCAGCCCTAGCCCAGGATGCCTTCCACCGCAAGACAAGCTCCCTGGAC $\tt GGCCTGTTGTTGTGAAAGGCACAGGGTGGTTGTTTCCTACCCTCCTCAGAGTGAGGCCGAACTTGAACT$ AATGGGAAGACTGGCCTTTTCCCAGGGAGCTTTGTGGAAAACATCTGAGAAGACGGGACACGGAGAAAGC TTATCATCACACCACGTGTGACTAAAGAGCACAAAGCAGTTTCATAGAAAGAGCACATCTGTGGACTTCC AGATCTTCAAGAACCGAGCAGAAGATGGGCACCTGACTCCAGAGCCCCGGCCTGGTTACCCCAGGGGCAG AGGGAAGGACACACCTGTGTGGGTTCCGTCTCTCTGGGTTCTGATGTGTAAAGTGTGCCTTGTAATG ${\tt AGGCTTAACTAATTTATTTGCTTTTTTAAAACTTGAACTTTCTTGTAATAGCAAAT}$

Figure 15: Mouse POSH Protein sequence (Public gi: 10946922; SEQ ID NO: 9)

MDESALLDLLECPVCLERLDASAKVLPCQHTFCKRCLLGIVGSRNELRCPECRTLVGSGVDELPSNILLV RLLDGIKQRPWKPGPGGGGGTTCTNTLRAQGSTVVNCGSKDLQSSQCGQQPRVQAWSPPVRGIPQLPCAK ALYNYEGKEPGDLKFSKGDTIILRRQVDENWYHGEVSGVHGFFPTNFVQIIKPLPQPPPQCKALYDFEVK DKEADKDCLPFAKDDVLTVIRRVDENWAEGMLADKIGIFPISYVEFNSAAKQLIEWDKPPVPGVDTAECP SATAQSTSASKHPDTKKNTRKRHSFTSLTMANKSSQGSQNRHSMEISPPVLISSSNPTAAARISELSGLS CSAPSQVHISTTGLIVTPPPSSPVTTGPAFTFPSDVPYQAALGSMNPPLPPPPLLAATVLASTPSGATAA VAAAAAAAAGMGPRPVMGSSEQIAHLRPQTRPSVYVAIYPYTPRKEDELELRKGEMFLVFERCQDGWY KGTSMHTSKIGVFPGNYVAPVTRAVTNASQAKVSMSTAGQASRGVTMVSPSTAGGPTQKPQGNGVAGNPS VVPTAVVSAAHIQTSPQAKVLLHMSGQMTVNQARNAVRTVAAHSQERPTAAVTPIQVQNAACLGPASVGL SHHSLASQPLPPMAGPAAHGAAVSISRTNAPMACAAGASLASPNMTSAMLETEPSGRTVTILPGLPTSPE SAASACGNSSAGKPDKDSKKEKKGLLKLLSGASTKRKPRVSPPASPTLDVELGAGEAPLQGAVGPELPLG GSHGRVGSCPTDGDGPVAAGTAALAQDAFHRKTSSLDSAVPIAPPPRQACSSLGPVMNEARPVVCERHRV VVSYPPQSEAELELKEGDIVFVHKKREDGWFKGTLQRNGKTGLFPGSFVENI

Figure 16: Drosophila melanogaster POSH mRNA sequence (public gi:17737480; SEQ ID NO:10)

CATTTGTATCCGCTTGGCCACGAGCTTTGGCTGCACTTGGCAAACTTAATAAATTAAACATTGAATCCTG CCTATTGCAACGATAATATAATCTGATTTAGTGCATTAAGAACGACAAGTAGCGATTATAATAGTAGATT TTAGCATTTGAGCTAAATTTATTTCCCAACCGCGTCTTGGGATTGCGTATGCGTGAGCCAGTACCTGCAT GTGTGTGTTTTGGAATGTGGCCCTGCACGAAATTCAAATAGTGACCATCCTTGAGATTTTTGCATACTG GCAAGATGGACGACCACGTTAAACGACCTGTTGGAGTGCTCCGTGTGTCTTGAGCGACTGGACACCAC ATCGAAGGTGCTGCCATGCCAGCACACCTTCTGCCGCAAATGCTTGCAGGACATTGTGGCCAGTCAGCAC AAGTTGCGATGCCGGAGTGCCGCATCCTGGTCTCTTGCAAAATTGATGAGCTGCCTCCAAACGTCTTGC CTCCAGCTGCAGTCACATCAGCAATCTCATCAGCCGGCTCGTCACAAGCAACGTCGATTTCTACTCCCCC ACGCCTATGCCCTCTTGACTTCGCCTCCGGTGAAGCCACCGATCTAAAGTTCAAGAAAGGGGATCTGAT ACTGATCAAGCATCGCATCGACAACAACTGGTTTGTGGGTCAAGCGAATGGTCAGGAGGGCACATTTCCC ATCAACTACGTCAAGGTATCGGTTCCGCTGCCCATGCCGCAGTGCATTGCCATGTATGACTTTAAGATGG GGCCCAACGACGAGGAGGGATGCCTCGAATTTAAGAAAAGCACTGTAATACAGGTAATGCGCCGAGTTGA TCATAATTGGCCAGAGGACGAATTGGCCAGACCATCGGAATCTTTCCAATAGCATTCGTTGAGCTGAAT GGCAGCGGGCCCTTCCTCCGGTTCCAGTTATTGATCCCACGGTGGTCACGGAATCCAGTTCGGGATCCTC CAATTCCACGCCGGGCAGCAATTCAAGCTCCACATCCAGCTCGAATAACTGCAGTCCGAATCACCAA ATCTCACTGCCGAATACCCCCCAACATGTAGTAGCTTCCGGATCGGCGTCTGTTCGTTTCCGTGACAAGG GAGCAAAGGAGAAACGCCACTCACTAAATGCTTTGCTGGGAGGAGGAGCTCCATTAAGTCTGCTGCAGAC CAACCGCCATTCGGCTGAAATTCTTAGCCTGCCCCATGAACTAAGCCGCTTGGAAGTTTCCAGCTCAACA GCTCTAAAACCCACGTCAGCCCCACAGACATCGCGTGTACTTAAGACCACTGTTCAGCAGCAGATGCAAC $\tt CGAATTTACCCTGGGGATACTTAGCCCTGTTCCCATACAAACCACGCCAAACGGATGAGCTGGAATTAAA$ ATCACTGGAGTGTTCCCGGGCAACTACCTGACGCCCCTGCGCGCCCCGCGACCAGCAGCAGTTAATGCATC AATGGAAATATGTTCCCCAAAATGCAGACGCCCAGATGGCACAAGTACAGCAGCATCCAGTTGCACCAGA TGTGCGACTCAACACATGCTGTCCATGCAACCGCCTGATTTGCCACCTCGTCAGCAGCAGGCTACCGCC ${\tt ACGACCACTGCTCTGTGTGGTCGAAACCAGTGGAGGCGCTGTTCAGCAGAAAATCGGAGCCCAAGC}$ CTGAAACTGCCACAGCTTCGACTACGAGCAGCAGTTCCTCTGGAGCAGTGGGACTTATGAGGAGATTAAC TCACATGAAAACACGCTCCAAATCTCCGGGAGCGTCCTTGCAGCAAGTTCCGAAAGAAGCTATTAGCACA AATGTGGAATTTACAACAAACCCATCAGCTAAATTGCATCCAGTACATGTAAGATCCGGCTCGTGCCCCA GTCAGCTGCAGCACAGTCAACCGCTCAATGAAACTCCAGCAGCCAAGACAGCGGCACAACAACAGCAGTT AAGGAACGTCCTCACTTGATTTGCGCGAGACAATCATTAGATGCAGCTACATTTCGCAGTATGTACAACA ATGCCGCGTCGCCGCCGCCACCTACTACTTCCGTGGCCCCAGCTGTCTACGCCGGCGGTCAGCAACAGGT GATTCCTGGAGGTGGAGCGCAATCCCAGTTGCATGCCAATATGATTATTGCACCCAGCCATCGGAAGTCG CACAGCCTAGATGCGAGTCATGTGCTGAGTCCCAGCAGCAATATGATCACGGAGGCGGCCATTAAGGCCA GCGCCACCACTAAGTCTCCTTACTGCACGAGGGAAAGTCGATTCCGCTGCATTGTGCCGTATCCACCAAA CAGTGACATTGACTAGAGCTACATTTGGGCGACATTATCTACGTCCAGCGGAAGCAGAAGAACGGCTGG ${\tt TATAAGGGCACCCATGCCCGTACCCACAAAACCGGGCTGTTCCCCGCCTCCTTTGTTGAACCGGATTGTT}$ AGGAAAGTTATGGTTCAAACTAGAATTTATTAAGCGAAATTCCAAATTACTTGTCTAAAAGGATTCAATC GTCGGTCTATTCGGGCTTCCAAATACGCAATCTCATATTTCTCTTTTCAAAAAAGAAACCGTTTTGTACT CTTCCAATCGAATGGGCAGCTCGCCGTTGTACTTTTTTATACAATGCTTGATCAAAATAGGCTAGCCATG

Figure 17: Drosophila melanogaster POSH protein sequence (public gi:17737481; SEQ ID NO:11)

MDEHTLINDLLECSVCLERLDTTSKVLPCQHTFCRKCLQDIVASQHKLRCPECRILVSCKIDELPPNVLLM RILEGMKQNAAAGKGEEKGEETETQPERAKPQPPAESVAPPDNQLLQLQSHQQSHQPARHKQRRFLLPHA YALFDFASGEATDLKFKKGDLILIKHRIDNNWFVGQANGQEGTFPINYVKVSVPLPMPQCIAMYDFKMGP NDEEGCLEFKKSTVIQVMRRVDHNWAEGRIGQTIGIFPIAFVELNAAAKKLLDSGLHTHPFCHPPKQQGQ RALPPVPVIDPTVVTESSSGSNSSTFGSSNSSSTSSSNNCSPNHQISLPNTPQHVVASGSASVRFRDKGA KEKRHSLNALLGGGAPLSLLQTNRHSAEILSLPHELSRLEVSSSTALKPTSAPQTSRVLKTTVQQQMQPN LPWGYLALFPYKPRQTDELELKKGCVYIVTERCVDGWFKGKNWLDITGVFPGNYLTPLRARDQQQLMHQW KYVPQNADAQMAQVQQHPVAPDVRLNNMLSMQPPDLPPRQQATATTTSCSVWSKPVEALFSRKSEPKPE TATASTTSSSSSGAVGLMRRLTHMKTRSKSPGASLQQVPKEAISTNVEFTTNPSAKLHPVHVRSGSCPSQ LQHSQPLNETPAAKTAAQQQQFLPKQLPSASTNSVSYGSQRVKGSKERPHLICARQSLDAATFRSMYNNA ASPPPPTTSVAPAVYAGGQQQVIPGGGAQSQLHANMIIAPSHRKSHSLDASHVLSPSSNMITEAAIKASA TTKSPYCTRESRFRCIVPYPPNSDIELELHLGDIIYVQRKQKNGWYKGTHARTHKTGLFPASFVEPDC

Figure 18: POSH Domain Analysis

hPOSH protein sequence:

N terminus protein fragment of hPOSH (public gi:10432612):

C terminus protein fragment of hPOSH (public gi:7959249):

Mouse POSH Protein sequence (Public gi: 10946922):

Drosophila melanogaster POSH protein sequence (public gi:17737481)

Figure 19: Human POSH has ubiquitin ligase activity

Figure 20. PLD activity in medium of transfected cells

Figure 21.

Figure 22.

5,

Figure 23.

Figure 24.

Figure 25.

5

Figure 26.

5

PCT/US2004/010582 WO 2004/089302

Figure 27.

Α

- 50 kDa 50 kDa

В

IB: anti-Herp

IP: anti-Flag (Ubi) IB: anti-Herp

Figure 28.

Figure 29.

