Ficha - Otimização com restrições: condições de otimalidade

1. Verifique se o ponto $w^* = (2.5, -1.5, -1)^T$ satisfaz as condições de otimalidade do problema

minimizar
$$w_1^2 - 2w_1 + w_2^2 - w_3^2 + 4w_3$$

sujeito a
$$w_1 - w_2 + 2w_3 = 2$$
.

2. Considere o problema

minimizar
$$w_1^2 + w_1^2 w_3^2 + 2w_1 w_2 + w_2^4 + 8w_2$$

sujeito a $2w_1 + 5w_2 + w_3 = 3$.

Verifique se os pontos $(0,0,2)^T$, $(0,0,3)^T$ e $(1,0,1)^T$ são pontos estacionários da Lagrangeana e indique quais são os minimizantes locais.

3. Verifique se o ponto $w^* = (1,1)^T$ satisfaz as condições de otimalidade do problema

minimizar
$$w_1^2 + w_2^2$$

sujeito a
$$w_1 + w_2 = 2$$
.

4. Verifique se o ponto $w^* = (1,0,0)^T$ satisfaz as condições de otimalidade do problema

minimizar
$$w_1^4 w_2^2 + w_1^2 w_3^4 + \frac{1}{2} w_1^2 + w_1 w_2 + w_3$$

sujeito a
$$w_1 + w_2 + w_3 = 1$$
.

5. Considere os seguintes problemas

(a) minimizar
$$w_1^2 - w_2^2$$

sujeito a $w_1^2 + 2w_2^2 = 4$.

(b) minimizar
$$(w_1 - 2)^2 + (w_2 - 2)^2 + (w_3 - 3)^2 + (w_4 - 4)^2$$

sujeito a $w_1 - 2 = 0$
 $w_3 + w_4 - 2 = 0$

(c) minimizar
$$2(w_1^2 + w_2^2 - 1) - w_1$$

sujeito a $w_1^2 + 2w_2^2 - 1 = 0$.

Calcule os pontos estacionários da Lagrangeana associada a cada um dos problemas e indique quais são os minimizantes locais.

6. Resolva os seguintes problemas

(a) minimizar
$$w_1^3 - w_2^3 - 2w_1^2 - w_1 + w_2$$

sujeito a $-w_1 - 2w_2 \ge -2$
 $w_1 \ge 0$

(b) minimizar
$$\frac{1}{2}w_1^2 + w_2^2$$

sujeito a $2w_1 + w_2 \ge 2$
 $w_1 - w_2 \le 1$

(c) minimizar
$$-w_1^2 + w_2^2 - w_1 w_2$$

sujeito a $2w_1 - w_2 \ge 2$
 $w_1 + w_2 \le 4$