Bosonic modes in Fermi liquid

Jinyuan Wu

May 8, 2023

1 / 20

Jinyuan Wu May 8, 2023

Background

In a Fermi liquid we have . . .

- ullet Quasiparticles (electron/hole) with Σ -correction
- Any anything else?

...and more

2 / 20

Jinyuan Wu Introduction May 8, 2023

Question

What to do

Finding modes other than the corrected single electron/hole

Why it's important

Usually not for C_V but for optical response: ϵ , $\chi^{(3)}$, etc.

Jinyuan Wu Introduction May 8, 2023 3 / 20

Question

What to do

Finding modes other than the corrected single electron/hole

Why it's important

Usually not for C_V but for optical response: ϵ , $\chi^{(3)}$, etc.

Today's topic

Electron-hole bosonic modes in Fermi liquid (with *some* scattering picked up back, i.e. beyond $\delta E \sim \varepsilon \, \delta n + f \, \delta n \, \delta n$), i.e.

$$|\text{single excitation}\rangle = \sum_{\boldsymbol{k}_1,\boldsymbol{k}_2} c_{\boldsymbol{k}_1\boldsymbol{k}_2} \left| \begin{array}{c} \bullet \\ \bullet \end{array} \right\rangle \tag{1}$$

No trion, higher order correlation, or even more exotic spinons, etc. beyond Fermi liquid

Jinyuan Wu Introduction May 8, 2023 3 / 20

Methodology

Serious quantitative prediction Bethe-Salpeter eq. (BSE) *Problem*: no picture about "how the electron moves"

 Jinyuan Wu
 Introduction
 May 8, 2023
 4 / 20

Methodology

Serious quantitative prediction Bethe-Salpeter eq. (BSE) *Problem*: no picture about "how the electron moves"

Single electron linear response singularity = bosonic modes $c_{\mathbf{k}_1}^{\dagger} c_{\mathbf{k}_2} = \text{single-electron distribution} = \text{electron-hole pair annihilation}$ operator

 Jinyuan Wu
 Introduction
 May 8, 2023
 4 / 20

<u>Methodology</u>

Serious quantitative prediction Bethe-Salpeter eq. (BSE) Problem: no picture about "how the electron moves"

Single electron linear response singularity = bosonic modes $c_{m{\iota}}^{\dagger}, c_{m{k}}, = ext{single-electron distribution} = ext{electron-hole pair annihilation}$ operator

Quantum Boltzmann eq. (QBE) Easiest kinetic theory for single-electron distribution to external field perturbation.

Conditions of QBE

- low (external and inherent) ω
- long wave length
- well-defined quasiparticles; high order correlation not important

Introduction

Jinyuan Wu May 8, 2023

4 / 20

Overview

What to investigate

Stable oscillation modes of QBE (\Leftrightarrow infinite response to external field \Leftrightarrow bosonic mode): for $n_{\boldsymbol{p}\sigma\sigma'}(\boldsymbol{r})$, $\varepsilon_{\boldsymbol{p}\sigma\sigma'}=\varepsilon[\delta n]$,

$$\frac{\partial n_{\mathbf{p}}}{\partial t} + \underbrace{\frac{\partial \varepsilon_{\mathbf{p}}}{\partial \mathbf{p}} \cdot \frac{\partial n_{\mathbf{p}}}{\partial \mathbf{r}}}_{\text{diffusion}} - \underbrace{\frac{\partial \varepsilon_{\mathbf{p}}}{\partial \mathbf{r}} \cdot \frac{\partial n_{\mathbf{p}}}{\partial \mathbf{p}}}_{\text{force}} + \underbrace{\mathsf{i}\left[\varepsilon_{\mathbf{p}}, n_{\mathbf{p}}\right]}_{\text{multi-band}} = \underbrace{I_{\text{Fermi golden rule}}}_{\text{collision}}.$$
 (2)

◆ロト ◆個ト ◆差ト ◆差ト を めへぐ

Jinyuan Wu Introduction May 8, 2023 5 / 20

Overview

What to investigate

Stable oscillation modes of QBE (\Leftrightarrow infinite response to external field \Leftrightarrow bosonic mode): for $n_{\boldsymbol{p}\sigma\sigma'}(\boldsymbol{r})$, $\varepsilon_{\boldsymbol{p}\sigma\sigma'}=\varepsilon[\delta n]$,

$$\frac{\partial n_{\mathbf{p}}}{\partial t} + \underbrace{\frac{\partial \varepsilon_{\mathbf{p}}}{\partial \mathbf{p}} \cdot \frac{\partial n_{\mathbf{p}}}{\partial \mathbf{r}}}_{\text{diffusion}} - \underbrace{\frac{\partial \varepsilon_{\mathbf{p}}}{\partial \mathbf{r}} \cdot \frac{\partial n_{\mathbf{p}}}{\partial \mathbf{p}}}_{\text{force}} + \underbrace{i\left[\varepsilon_{\mathbf{p}}, n_{\mathbf{p}}\right]}_{\text{multi-band}} = \underbrace{I_{\text{Fermi golden rule}}}_{\text{collision}}.$$
 (2)

What to expect

Three types of important bosonic modes:

- Zero sound in uncharged Fermi liquid: collective density fluctuation in
 k- (but not r-) space
- Plasmon in charged Fermi liquid = zero sound + long range interaction
- Exciton in charged multi-band Fermi liquid

Jinyuan Wu Introduction May 8, 2023 5 / 20

Equation governing zero sound

System Single-band Fermi liquid with spin ignored

Jinyuan Wu Zero sound May 8, 2023 6 / 20

Equation governing zero sound

System Single-band Fermi liquid with spin ignored

Kinetics of uncharged Fermi liquid Landau equation = QBE +

$$\varepsilon_{\boldsymbol{p}}(\boldsymbol{r}) = \varepsilon_{\boldsymbol{p}}^{0} + \frac{1}{V} \sum_{\boldsymbol{p}'} f_{\boldsymbol{p}\boldsymbol{p}'} \, \delta n_{\boldsymbol{p}}(\boldsymbol{r})$$
 (3)

(assumption: ${m q} o 0$ in $c^{\dagger}_{{m p}+{m q}} c_{{m p}}$, i.e. $\delta n_{{m p}}({m r})$ being smooth in ${m r})$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Jinyuan Wu Zero sound May 8, 2023 6 / 20

Equation governing zero sound

System Single-band Fermi liquid with spin ignored

 $\textbf{Kinetics of uncharged Fermi liquid } \textit{Landau equation} = \mathsf{QBE} + \\$

$$\varepsilon_{\mathbf{p}}(\mathbf{r}) = \varepsilon_{\mathbf{p}}^{0} + \frac{1}{V} \sum_{\mathbf{p}'} f_{\mathbf{p}\mathbf{p}'} \, \delta n_{\mathbf{p}}(\mathbf{r})$$
 (3)

(assumption: ${m q} o 0$ in $c^\dagger_{{m p}+{m q}} c_{m p}$, i.e. $\delta n_{m p}({m r})$ being smooth in ${m r})$

EOM governing zero sound No nonlinearity, no dissipation:

$$\frac{\partial \delta n_{\mathbf{p}}}{\partial t} + \frac{\partial \varepsilon_{\mathbf{p}}^{\text{static}}}{\partial \mathbf{p}} \cdot \frac{\partial \delta n_{\mathbf{p}}}{\partial \mathbf{r}} - \frac{\partial n_{\mathbf{p}}^{\text{static}}}{\partial \mathbf{p}} \cdot \underbrace{\frac{1}{V} \sum_{\mathbf{p'}} f_{\mathbf{p}\mathbf{p'}} \frac{\partial \delta n_{\mathbf{p}}}{\partial \mathbf{r}}}_{\partial \delta \varepsilon_{\mathbf{p}}/\partial \mathbf{r}} = 0 \qquad (4)$$

Jinyuan Wu Zero sound May 8, 2023 6 / 20

Fermi surface vibration

Ansatz Disturbance as small as possible . . .

$$n_{\mathbf{p}}(\mathbf{r},t) = e^{i(\mathbf{q}\cdot\mathbf{r} - i\,\omega t)}\,\theta(\mu - \varepsilon_{\mathbf{p}}^{\text{stable}} - h(\hat{\mathbf{p}})) \tag{5}$$

Eigenvalue problem

$$(\omega - \mathbf{q} \cdot \mathbf{v})h(\hat{\mathbf{k}}) = \mathbf{q} \cdot \mathbf{v} \int \frac{\mathrm{d}\Omega'}{4\pi} F(\vartheta)h(\hat{\mathbf{k}}'). \tag{6}$$

where \mathbf{v} is single-electron velocity. \Rightarrow zero sound has linear dispersion. Non-trivial zero sound requires $F \neq 0$ ($F = 0 \Rightarrow$ bare electron-hole pair)

Jinyuan Wu Zero sound May 8, 2023 7 / 20

Modes

Shape of Fermi surface when q = 0 In the d = 2 case:

Distortion when $q \neq 0$ More electrons in \hat{q} ; less electrons in $-\hat{q}$

Zero sound is not real space density wave In zero sound $V_{\text{Fermi sea}} = \text{const.} \Rightarrow \text{zero sound is not ordinary sound}$

Comparison with ordinary sound

Ordinary sound Fermi liquid theory $\Rightarrow \partial \rho/\partial P \Rightarrow$ another sound mode ("first sound", ordinary sound, density mode) from hydrodynamics

Relation with zero sound

- First sound appears when $\omega \tau \ll 1$: ordinary hydrodynamics \Leftrightarrow local equilibrium $\Leftrightarrow \tau \ll 1/\omega$
- ullet zero sound appears when $\omega au\gg 1$: no collision integral $\Leftrightarrow au\gg 1/\omega$

The two are connected: a radical finite-T correction

Jinyuan Wu Zero sound May 8, 2023 9 / 20

What happens with long-range interaction

The origin of $f_{pp'}$

$$f_{\mathbf{k}\mathbf{k}'} = \lim_{\mathbf{q} \to 0} \begin{pmatrix} \mathbf{k} & \mathbf{k} & \mathbf{k} & \mathbf{k}' \\ + & \mathbf{k}' - \mathbf{k} \\ \mathbf{k}' + \mathbf{q} & \mathbf{k} + \mathbf{q} \end{pmatrix}$$
(7)

Coulomb interaction \Rightarrow first term divergent in k space \Rightarrow it should be considered in r space

 Jinyuan Wu
 Plasmon
 May 8, 2023
 10 / 20

What happens with long-range interaction

The origin of $f_{pp'}$

$$f_{\mathbf{k}\mathbf{k}'} = \lim_{\mathbf{q} \to 0} \mathbf{k} + \mathbf{q} + \mathbf{k}' + \mathbf{k} + \mathbf{k}' + \mathbf{$$

Coulomb interaction \Rightarrow first term divergent in k space \Rightarrow it should be considered in r space

Landau-Silin eq.

$$\frac{\partial n_{\mathbf{p}}}{\partial t} + \frac{\partial \varepsilon_{\mathbf{p}}}{\partial \mathbf{p}} \cdot \frac{\partial n_{\mathbf{p}}}{\partial \mathbf{r}} - \frac{\partial (\varepsilon_{\mathbf{p}} - e\varphi(\mathbf{r}))}{\partial \mathbf{r}} \cdot \frac{\partial n_{\mathbf{p}}}{\partial \mathbf{p}} = \underbrace{I_{\text{Fermi golden rule}}}_{\text{collision}}, \tag{8}$$

$$\varepsilon_{\boldsymbol{p}}(\boldsymbol{r}) = \varepsilon_{\boldsymbol{p}}^{0} + \frac{1}{V} \sum_{\boldsymbol{p}'} f_{\boldsymbol{p}\boldsymbol{p}'} \, \delta n_{\boldsymbol{p}}(\boldsymbol{r}), \quad \nabla^{2} \varphi = e \cdot \frac{1}{V} \sum_{\boldsymbol{p}} \delta n_{\boldsymbol{p}}(\boldsymbol{r}).$$
 (9)

Jinyuan Wu Plasmon May 8, 2023 10 / 20

Plasmon mode

Plasmon is gapped When ${m q} o 0$ we get to the elementary case

$$m\ddot{\mathbf{x}} = -m\omega^2 \mathbf{x} = (-e)\mathbf{E} = -e \cdot \frac{1}{\epsilon_0} en\mathbf{x} \Rightarrow \omega = \sqrt{\frac{ne^2}{\epsilon_0 m}}.$$
 (10)

Comparison with zero sound When $q \to 0$, $\varphi(r) \Rightarrow$ oscillation: long-range interaction \Rightarrow finite gap

Comparison with first sound $V_{\text{Fermi sea}} = \text{const.}$ in plasmon as well: plasmon is not a density mode in real space

4 D F 4 B F 4 E F

Summary

Fermi liquid, uncharged: zero sound

- Linear, gapless
- From $f_{pp'}$

Fermi liquid, charged: plasmon

- Divergent Hartree term ⇒ self-energy correction in real space
- When $\mathbf{q} = 0$: $f_{\mathbf{p}\mathbf{p}'}$ not important; gapped

Two bands: exciton

Jinyuan Wu Summary May 8, 2023 12 / 20

Determining r and p at the same time in QBE??

Why $n_p(\mathbf{r})$ makes sense Because it's not a probabilistic distribution function: it's a Wigner function of $G^{<}(\mathbf{r}_1,\mathbf{r}_2)$. By Fourier transform

$$\int d^3 \mathbf{r} \, n_{\mathbf{p}}(\mathbf{r}) \, \mathrm{e}^{-\mathrm{i} \, \mathbf{q} \cdot \mathbf{r}} \simeq n_{\mathbf{p}\mathbf{q}} \simeq c_{\mathbf{p}}^{\dagger} c_{\mathbf{p}+\mathbf{q}} \tag{11}$$

we get the total momentum of the bosonic mode q.

Why $\varepsilon_{p}(r)$ makes sense Similarly, because of $\Sigma(r_1, r_2)$

Why $f_{pp'}$ has no spatial dependence

- **1** Interaction channel: $\delta n_{pq} f_{pp'qq'} \delta n_{p'q'} \delta_{qq'} (\sum q = \text{const.})$
- 2 But we are working with QBE $\Rightarrow q$ small
- **3** So we take $q, q' \rightarrow 0$ limit:

$$\sum \delta n_{\boldsymbol{p}\boldsymbol{q}} f_{\boldsymbol{p}\boldsymbol{p'}} \delta n_{\boldsymbol{p'}\boldsymbol{q'}} \delta q_{\boldsymbol{q'}} \stackrel{\mathsf{Fourier}}{\longrightarrow} \int \mathrm{d}^3 \boldsymbol{r} \, \delta n_{\boldsymbol{p}} (\boldsymbol{r}) f_{\boldsymbol{p}\boldsymbol{p'}} \, \delta n_{\boldsymbol{p'}} (\boldsymbol{r}) \tag{12}$$

Jinyuan Wu Further discussion May 8, 2023 13 / 20

BSE and single-electron kinetic theory

Series calculation

Bethe–Salpeter equation (BSE) is for quantitative calculations.

What we need Linear response of single-electron under external field = BSE (simplest single-electron theory: QBE)

Next step: relation between K and Σ

Linking Σ with K

Linear response of a single self-energy diagram

Jinyuan Wu Further discussion May 8, 2023 15 / 20

Linking Σ with K

Whole picture

Linking Σ with K

Example: linear response from time-dependent GW = BSE

$$\Sigma = \begin{array}{c} & & \\ & & \\ & & \\ \end{array}, \qquad (17)$$

$$K = \begin{array}{c} & \\ \\ \end{array}$$

- First term = Electron Hartree term = Electron direct term = Exciton exchange term; +1 prefactor;
- Second term = Electron Fock term = Electron exchange term = Exciton direct term; (-1) prefactor.

4 □ Þ 4 ∰ Þ 4 ᢓ Þ 4 ᢓ Þ ½ *)\(\%

Justifying quantum Boltzmann equation

Is QBE reliable?

Yes! When we intuitively expect it to work -

Keldysh formalism, Martin-Schwinger $G^{(2)}$ truncation Kadanoff-Baym eq. Kadanoff-Baym eq. about $G^{<}$, $G^{>}$, G^{A} about G< various K-B ansatz gradient expansion, Quantum master eq. quasiparticle\approx. about $\rho^{(1)}$ gradient expansion QBE disorder, high T, etc. hydrodynamics

Fermi liquid is really liquid

In small T **limit** Infinite degrees of freedom; QBE still works but the system is not hydrodynamic in the normal sense; bosonization (note that $n_{p}(r)$ may also be seen as the field operator or single-electron hole pair wave function)

In large ${\mathcal T}$ limit Only five hydrodynamic equations; described by Navier-Stokes equation.

Jinyuan Wu Further discussion May 8, 2023 19 / 20

Subtlety about plasmon

Classical derivation of plasmon involves a positive background; where does this background go in Landau-Silin equation? Note that only when $\delta n \neq 0$ do we have non-zero φ : we have already assumed a positive jellium background.

20 / 20

Jinyuan Wu Further discussion May 8, 2023