The Frobenius Number of Balanced Numerical Semigroups

Jeremy L Thompson

United States Air Force Academy jeremy.thompson@usafa.edu

August 9, 2014

Overview

We will discuss the algebraic structure known as a numerical semigroup and definitions related to them.

We will investigate the Frobenius number of balanced numerical semigroups.

Overview

- Background
- 2 Balanced Numerical Semigroups
- Frobenius Number of Balanced Numerical Semigroups
- Future Research
- Questions

Coin Exchange Problem

Given 5 and 7 cent coins, what is the largest amount of change that cannot be created?

Coin Exchange Problem

Given 5 and 7 cent coins, what is the largest amount of change that cannot be created?

Coin Exchange Problem

Given 5 and 7 cent coins, what is the largest amount of change that cannot be created?

$$\mathbf{0}, 1, 2, 3, 4, \mathbf{5}, 6, \mathbf{7}, 8, 9, \mathbf{10}, 11, \mathbf{12}, 13, \mathbf{14}, \mathbf{15}, 16, \mathbf{17}, 18, \mathbf{19}, \mathbf{20}, \mathbf{21}, \mathbf{22}, \mathbf{23}, \mathbf{24}, \mathbf{25}, \cdots$$

$$23 = 7 \cdot 5 - 7 - 5$$

Numerical Semigroups

A subset S of $\mathbb N$ closed under addition, containing zero, and having a largest integer not in S

Numerical Semigroups

Let
$$a_1, a_2, ..., a_n \in \mathbb{N}$$
 such that $gcd(a_1, a_2, ..., a_n) = 1$.

$$S = \langle a_1, a_2, ..., a_n \rangle = \{ a_1 t_1 + ... + a_n t_n | t_i \in \mathbb{N} \}$$
$$x \in S = (t_1, t_2, \cdots, t_n)$$

Numerical Semigroups

Let $a_1, a_2, ..., a_n \in \mathbb{N}$ such that $gcd(a_1, a_2, ..., a_n) = 1$.

$$S = \langle a_1, a_2, ..., a_n \rangle = \{ a_1 t_1 + ... + a_n t_n | t_i \in \mathbb{N} \}$$

 $x \in S = (t_1, t_2, \cdots, t_n)$

 $a_1, a_2, ..., a_n$ are called generators

Frobenius Number

Frobenius Number: largest integer not in S

$$S = \langle 8, 9, 11, 12 \rangle$$

$$F(S) = 15$$

Known Results

"It would be nice to have a finite set of formulas which covers all possible cases for computing F(S). Unfortunately, no such collection of formulas has ben found and probably does not exist at all."

- 'The exact solutions to the Frobenius problem with three variables' by Mihaly Hujter and Bela Vizvri; J. Ramanujan Math. Soc. 2 (1987)

Known Results

- 2 Generators $S = \langle a, b \rangle$ (Sylvester 1884) $F(S) = a \cdot b - a - b$
- 3+ Generators $S = \langle a_1, a_2, \cdots, a_n \rangle$ F(S) = ????

Known Results

- 2 Generators $S = \langle a, b \rangle$ (Sylvester 1884) $F(S) = a \cdot b - a - b$
- 3+ Generators $S = \langle a_1, a_2, \cdots, a_n \rangle$ F(S) = ????
- Arithmetic sequence $S = \langle a, ma + d, ma + 2d, \cdots, ma + kd \rangle$ (Lewin 1975) $F(S) = m \cdot a \cdot \left(1 + \left\lfloor \frac{a-2}{k} \right\rfloor\right) + (d-1)(a-1) 1$
- $S = \langle a_1, \dots, a_n \rangle$ (not necessarily in ascending order) and let $d = \gcd\{a_1, \dots, a_{n-1}\}$ (Brauer and Schockley 1962) $F(S) = d \cdot F(\langle \frac{a_1}{d}, \dots, \frac{a_{n-1}}{d}, a_n \rangle) + (d-1) a_n$
- $S = \langle a_1, a_2, a_3 \rangle$ and $a_i | (a_1 + a_2 + a_3)$ for some i = 2, 3 (Brauer and Schockley 1962) $F(S) = -a_1 + max_{i=2,3} \{ a_i \cdot \lfloor \frac{a_1 \cdot a_{5-i}}{a_2 + a_2} \rfloor \}$

Apery Set relative to a_1 :

All elements in S such that $x \in S$ and $x - a_1 \notin S$

Apery Set relative to a_1 :

All elements in
$$S$$
 such that $x \in S$ and $x - a_1 \notin S$

or: all elements in S that can only be made without a_1

Note:
$$Max(Ap(S)) - a_1 = F(S)$$

Apery Set Relative to
$$a_1$$
 (8): $x \in S$ and $x - 8 \notin S$
$$S = \langle 8, 9, 11, 12 \rangle$$

 $\mathbf{0}, 1, 2, 3, 4, 5, 6, 7, \mathbf{8}, \mathbf{9}, 10, \mathbf{11}, \mathbf{12}, 13, 14, 15, \mathbf{16}, \mathbf{17}, \mathbf{18}, \mathbf{19}, \mathbf{20}, \mathbf{21}, \mathbf{22}, \mathbf{23}, \cdots$

Apery Set Relative to
$$a_1$$
 (8): $x \in S$ and $x - 8 \notin S$
$$S = \langle 8, 9, 11, 12 \rangle$$

[0, 1, 2, 3, 4, 5, 6, 7] [8, 9, 10, 11, 12, 13, 14, 15] [16, 17, 18, 19, 20, 21, 22, 23] ...

Apery Set Relative to
$$a_1$$
 (8): $x \in S$ and $x - 8 \notin S$
$$S = \langle 8, 9, 11, 12 \rangle$$

$$Ap(S) = \{0, 9, 11, 12, 18, 21, 22, 23\}$$

 $|\mathbf{0}, 1, 2, 3, 4, 5, 6, 7|\mathbf{8}, \mathbf{9}, 10, \mathbf{11}, \mathbf{12}, 13, 14, \mathbf{15}|\mathbf{16}, \mathbf{17}, \mathbf{18}, \mathbf{19}, \mathbf{20}, \mathbf{21}, \mathbf{22}, \mathbf{23}| \cdots$

Apery Set Relative to
$$a_1$$
 (8): $x \in S$ and $x - 8 \notin S$
$$S = \langle 8, 9, 11, 12 \rangle$$

$$Ap(S) = \{0, 9, 11, 12, 18, 21, 22, 23\}$$
 Note: $Max(Ap(S)) - 8 = 23 - 8 = 15 = F(S)$ $|\mathbf{0}, 1, 2, 3, 4, 5, 6, 7|\mathbf{8}, \mathbf{9}, 10, \mathbf{11}, \mathbf{12}, 13, 14, \mathbf{15}|\mathbf{16}, \mathbf{17}, \mathbf{18}, \mathbf{19}, \mathbf{20}, \mathbf{21}, \mathbf{22}, \mathbf{23}| \cdots$

$$S = \langle 6, 8, 13, 15 \rangle$$

$$S = \langle 6, 8, 13, 15 \rangle$$

$$\boldsymbol{0}, 1, 2, 3, 4, 5, \boldsymbol{6}, 7, \boldsymbol{8}, 9, 10, 11, \boldsymbol{12}, \boldsymbol{13}, \boldsymbol{14}, \boldsymbol{15}, \boldsymbol{16}, 17, \boldsymbol{18}, \boldsymbol{19}, \boldsymbol{20}, \boldsymbol{21}, \boldsymbol{22}, \boldsymbol{23}, \cdots$$

$$S = \langle 6, 8, 13, 15 \rangle$$
$$F(S) = 17$$

$$S = \langle 6, 8, 13, 15 \rangle$$

$$F(S) = 17$$

$$Ap(S) = \{0, 8, 13, 15, 16, 23\}$$

 $|\mathbf{0}, 1, 2, 3, 4, 5|\mathbf{6}, 7, \mathbf{8}, 9, 10, 11|\mathbf{12}, \mathbf{13}, \mathbf{14}, \mathbf{15}, \mathbf{16}, \mathbf{17}|\mathbf{18}, \mathbf{19}, \mathbf{20}, \mathbf{21}, \mathbf{22}, \mathbf{23}| \cdots$

Balanced Numerical Semigroups

$$S = \langle pD, pD + n, qD - n, qD \rangle$$

Balanced Numerical Semigroups

$$S = \langle pD, pD + n, qD - n, qD \rangle$$
 $p, q, D, n \in \mathbb{N}$
 $p < q \text{ and } \gcd(p, q) = 1$
 $\gcd(D, n) = 1$
 $D \ge 1 \text{ and } 1 \le n < \frac{p+q}{2}D$

$$S = \langle pD, pD + n, qD - n, qD \rangle$$

$$p=2, q=3, D=4, \ \mathrm{and} \ n=1$$

$$S=\langle pD,pD+n,qD-n,qD \rangle$$
 $p=2,q=3,D=4, ext{ and } n=1$ $S=\langle pD,pD+n,qD-n,qD \rangle = \langle 8,9,11,12 \rangle$

$$S = \langle pD, pD + n, qD - n, qD \rangle$$

$$p = 2, q = 3, D = 4, \text{ and } n = 1$$

$$S = \langle pD, pD + n, qD - n, qD \rangle = \langle 8, 9, 11, 12 \rangle$$

$$\mathbf{0}, 1, 2, 3, 4, 5, 6, 7, \mathbf{8}, \mathbf{9}, 10, \mathbf{11}, \mathbf{12}, 13, 14, \mathbf{15}, \mathbf{16}, \mathbf{17}, \mathbf{18}, \mathbf{19}, \mathbf{20}, \mathbf{21}, \mathbf{22}, \mathbf{23}, \cdots$$

F(S) = 15

Frobenius Number of Balanced Numerical Semigroups

We use relationships among the generators to find elements of Ap(S)

If
$$x \in S$$
 and $x=t_1a_1+t_2a_2+t_3a_3+t_4a_4$ We say $x=(t_1,t_2,t_3,t_4)$ $t_1,t_2,t_3,t_4 \geq 0$

Relations Among the Generators

$$S = \langle 8, 9, 11, 12 \rangle$$

$$(A) \quad (3,0,0,0) = (0,0,0,2)$$

(B)
$$(1,0,0,1) = (0,1,1,0)$$

$$(C_0)$$
 $(2,0,1,0)=(0,3,0,0)$

$$(D_0)$$
 $(3,1,0,0)=(0,0,3,0)$

$$(C_1)$$
 $(1,0,2,0) = (0,2,0,1)$

$$(D_1)$$
 $(2,2,0,0) = (0,0,2,1)$

Relations Among the Generators

Note that

(A)
$$(3,0,0,0) = (0,0,0,2)$$

implies

if
$$x = (0,0,0,a) \in Ap(S)$$
 then $a < 2$

Members of Ap(S)

$$S = \langle 8, 9, 11, 12 \rangle$$

- (A) (3,0,0,0) = (0,0,0,2)if $x = (0,0,0,a) \in Ap(S)$ then a < 2
- (B) (1,0,0,1) = (0,1,1,0)
- (C₀) (2,0,1,0) = (0,3,0,0)if $x = (0,c_0,0,0) \in Ap(S)$ then $c_0 < 3$
- (D_0) (3,1,0,0) = (0,0,3,0)if $x = (0,0,d_0,0) \in Ap(S)$ then $d_0 < 3$
- (C₁) (1,0,2,0) = (0,2,0,1)if $x = (0,c_1,0,1) \in Ap(S)$ then $c_1 < 2$
- (D₁) (2,2,0,0) = (0,0,2,1)if $x = (0,0,d_1,1) \in Ap(S)$ then $d_1 < 2$

Members of Ap(S)

$$S = \langle 8, 9, 11, 12 \rangle, F(S) = 15$$

(C₁)
$$(1,0,2,0) = (0,2,0,1)$$

if $x = (0,c_1,0,1) \in Ap(S)$ then $c_1 < 2$

(
$$D_1$$
) $(2,2,0,0) = (0,0,2,1)$
if $x = (0,0,d_1,1) \in Ap(S)$ then $d_1 < 2$

Members of Ap(S)

$$S = \langle 8, 9, 11, 12 \rangle, F(S) = 15$$

(C₁)
$$(1,0,2,0) = (0,2,0,1)$$

if $x = (0,c_1,0,1) \in Ap(S)$ then $c_1 < 2$

$$(D_1)$$
 $(2,2,0,0) = (0,0,2,1)$
if $x = (0,0,d_1,1) \in Ap(S)$ then $d_1 < 2$

$$(0,1,0,1)<(0,0,1,1)$$
, so

$$F(S) = (0,0,1,1) - 8 = 11 + 12 - 8 = 15$$

Relations Among the Generators

$$(A) \qquad (q,0,0,0) = (0,0,0,p)$$

(B)
$$(1,0,0,1) = (0,1,1,0)$$

$$\begin{aligned} (C_0) \qquad & \left(\frac{ap+aq+n}{p}+k,0,\frac{pD}{p+q}-\frac{pk}{p+q}-a,0\right) \\ & = \left(0,\frac{qD}{p+q}+\frac{pk}{p+q}+a,0,0\right) \end{aligned}$$

$$(D_0) \qquad \left(q - \frac{ap + aq + n}{p} - k + p, \frac{qD}{p + q} + \frac{pk}{p + q} + a - p, 0, 0\right)$$

$$= \left(0, 0, \frac{pD}{p + q} - \frac{pk}{p + q} - a + p, 0\right)$$

. . .

$$(C_{p-1}) \quad \left(\frac{ap+aq+n}{p} + k - p + 1, 0, \frac{pD}{p+q} - \frac{pk}{p+q} - a + p - 1, 0\right)$$

$$= \left(0, \frac{qD}{p+q} + \frac{pk}{p+q} + a - p + 1, 0, p - 1\right)$$

$$\begin{array}{ll} (D_{p-1}) & \left(q - \frac{ap + aq + n}{p} - k + 1, \frac{qD}{p+q} + \frac{pk}{p+q} + a - 1, 0, 0\right) \\ & = \left(0, 0, \frac{pD}{p+q} - \frac{pk}{p+q} - a + 1, p - 1\right) \end{array}$$

Frobenius Number

Smaller
$$k$$
 Values:
$$k
$$Max(Ap(S)) = (0, 0, \delta_{p-1}, p - 1)$$

$$F(S) = \delta_{p-1}a_3 + (p-1)a_4 - a_1$$

$$= (pq - p - q)D + (qD - n)\left(\frac{pD - pk}{p + q} - a\right)$$

$$Larger \ k \ Values: \\ k > p - \frac{ap + aq + n}{p} + \frac{n}{d}$$

$$Max(Ap(S)) = (0, \kappa_{p-1}, 0, p - 1)$$

$$F(S) = \kappa_{p-1}a_2 + (p-1)a_4 - a_1$$

$$= (pq - p - q)D + (pD + n)\left(\frac{qD + pk}{p + q} + a - p\right)$$$$

Future Research

Future research:

Expand proof into smaller values of D

Develop new formula for very small values of D

Balanced numerical semigroups with 6, 8, 10 or more generators

Questions

Questions?

Thanks

Research Partners:

Dr Kurt Herzinger, USAFA

Dr Trae Holcomb, Houston Baptist University

The Frobenius Number of Balanced Numerical Semigroups

Jeremy L Thompson

United States Air Force Academy jeremy.thompson@usafa.edu

August 9, 2014

k - Congruence Class of D Modulo p + q

k - the congruence class of D modulo p+q

$$k \in \{1 - \frac{ap + aq + n}{p}, 2 - \frac{ap + aq + n}{p}, \dots, p + q - \frac{ap + aq + n}{p}\}$$
 where $a = -nq^{-1} \bmod p$

k - Congruence Class of D Modulo p + q

k - the congruence class of D modulo p + q

$$k \in \{1 - \frac{\mathit{ap} + \mathit{aq} + \mathit{n}}{\mathit{p}}, 2 - \frac{\mathit{ap} + \mathit{aq} + \mathit{n}}{\mathit{p}}, \ldots, \mathit{p} + \mathit{q} - \frac{\mathit{ap} + \mathit{aq} + \mathit{n}}{\mathit{p}}\}$$
 where $\mathit{a} = -\mathit{nq}^{-1} \bmod \mathit{p}$

Example:
$$p = 2, q = 9, D = 8$$
, and $n = 1$

$$k \in \{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5\}$$

 $k = -3$

Frobenius Number of Balanced Numerical Semigroups

We use relationships among the generators to find elements of Ap(S)

Frobenius Number of Balanced Numerical Semigroups

We use relationships among the generators to find elements of Ap(S)

If
$$x\in S$$
 and $x=t_1a_1+t_2a_2+t_3a_3+t_4a_4$ We say $x=(t_1,t_2,t_3,t_4)$ $t_1,t_2,t_3,t_4\geq 0$

Note that

(A)
$$(q,0,0,0) = (0,0,0,p)$$

implies

if
$$x = (0, 0, 0, a) \in Ap(S)$$
 then $a < p$

(A)
$$(q,0,0,0) = (0,0,0,p)$$

(B)
$$(1,0,0,1) = (0,1,1,0)$$

$$\begin{array}{ll} (C_0) & \left(\frac{ap+aq+n}{p}+k,0,\frac{pD}{p+q}-\frac{pk}{p+q}-a,0\right) \\ & = \left(0,\frac{qD}{p+q}+\frac{pk}{p+q}+a,0,0\right) \end{array}$$

$$\begin{array}{ll} (D_0) & \left(q - \frac{ap + aq + n}{p} - k + p, \frac{qD}{p + q} + \frac{pk}{p + q} + a - p, 0, 0\right) \\ & = \left(0, 0, \frac{pD}{p + q} - \frac{pk}{p + q} - a + p, 0\right) \end{array}$$

. . .

$$\begin{array}{ll} \left(C_{p-1} \right) & \left(\frac{ap + aq + n}{p} + k - p + 1, 0, \frac{pD}{p+q} - \frac{pk}{p+q} - a + p - 1, 0 \right) \\ & = \left(0, \frac{qD}{p+q} + \frac{pk}{p+q} + a - p + 1, 0, p - 1 \right) \end{array}$$

$$\begin{array}{ll} (D_{p-1}) & \left(q - \frac{ap + aq + n}{p} - k + 1, \frac{qD}{p+q} + \frac{pk}{p+q} + a - 1, 0, 0\right) \\ & = \left(0, 0, \frac{pD}{p+q} - \frac{pk}{p+q} - a + 1, p - 1\right) \end{array}$$

Note: These values only valid when
$$k \in \{p - \frac{ap + aq + n}{p}, \dots, q - \frac{ap + aq + n}{p}\}$$

$$D \ge k + \frac{ap + aq}{p}, -\frac{kp}{q} - \frac{ap + aq}{q} + \frac{p}{q}(p + q)$$

Note: These values only valid when
$$k \in \{p - \frac{ap+aq+n}{p}, \dots, q - \frac{ap+aq+n}{p}\}$$

$$D \ge k + \frac{ap+aq}{p}, -\frac{kp}{q} - \frac{ap+aq}{q} + \frac{p}{q}(p+q)$$

Similar arguments needed for
$$k \in \{1 - \frac{ap + aq + n}{p}, \dots, p - 1 - \frac{ap + aq + n}{p}\}$$
 and $k \in \{q + 1 - \frac{ap + aq + n}{p}, \dots, p + q - \frac{ap + aq + n}{p}\}$

Note: These values only valid when
$$k \in \{p - \frac{ap+aq+n}{p}, \dots, q - \frac{ap+aq+n}{p}\}$$

$$D \ge k + \frac{ap+aq}{p}, -\frac{kp}{q} - \frac{ap+aq}{q} + \frac{p}{q}(p+q)$$

Similar arguments needed for $k \in \{1 - \frac{ap + aq + n}{p}, \dots, p - 1 - \frac{ap + aq + n}{p}\}$ and $k \in \{q + 1 - \frac{ap + aq + n}{p}, \dots, p + q - \frac{ap + aq + n}{p}\}$

But ... results are the same for all values of k

Apery Set Relative to pD

Relations give us elements of Ap(S)

(A)
$$(0,0,0,a), a \in \{0,\cdots,p-1\}$$

(C₀)
$$(0, c_0, 0, 0), c_0 \in \{1, \cdots, \frac{qD}{p+q} + \frac{pk}{p+q} + a - 1\}$$

$$(D_0)$$
 $(0,0,d_0,0),\ d_0 \in \{1,\cdots,\frac{pD}{p+q}-\frac{pk}{p+q}-a+p-1\}$

. . .

$$(C_{p-1})$$
 $(0, c_{p-1}, 0, p-1), c_{p-1} \in \{1, \cdots, \frac{qD}{p+q} + \frac{pk}{p+q} + a - p\}$

$$(D_{p-1})$$
 $(0,0,d_{p-1},p-1),\ d_{p-1}\in\{1,\cdots,rac{pD}{p+q}-rac{pk}{p+q}-a\}$

Max(Ap(S))

Max(Ap(S)) is one of

(A)
$$(0,0,0,\alpha), \alpha = p-1$$

(C₀)
$$(0, \kappa_0, 0, 0)$$
, $\kappa_0 = \frac{qD}{p+q} + \frac{pk}{p+q} + a - 1$

$$(D_0)$$
 $(0,0,\delta_0,0)$, $\delta_0 = \frac{pD}{p+q} - \frac{pk}{p+q} - a + p - 1$

. . .

$$(C_{p-1})$$
 $(0, \kappa_{p-1}, 0, p-1), \ \kappa_{p-1} = rac{qD}{p+q} + rac{pk}{p+q} + a - p$

$$(D_{p-1})$$
 $(0,0,\delta_{p-1},p-1)$, $\delta_{p-1}=rac{pD}{p+q}-rac{pk}{p+q}-a$

Frobenius Number

Smaller
$$k$$
 Values:
 $k
 $Max(Ap(S)) = (0, 0, \delta_{p-1}, p - 1)$
 $F(S) = \delta_{p-1}a_3 + (p-1)a_4 - a_1$
 $= (pq - p - q)D + (qD - n)\left(\frac{pD - pk}{p + q} - a\right)$$

Larger
$$k$$
 Values:
 $k > p - \frac{ap+aq+n}{p} + \frac{n}{d}$
 $Max(Ap(S)) = (0, \kappa_{p-1}, 0, p-1)$
 $F(S) = \kappa_{p-1}a_2 + (p-1)a_4 - a_1$
 $= (pq - p - q)D + (pD + n)\left(\frac{qD+pk}{p+q} + a - p\right)$

D Ranges

Middle k Values:

$$k \in \{p - \frac{ap + aq + n}{p}, \dots, q - \frac{ap + aq + n}{p}\}$$
$$D \ge k + \frac{ap + aq}{p}, -\frac{kp}{q} - \frac{ap + aq}{q} + \frac{p}{q}(p + q)$$

Smaller k Values:

$$k \in \left\{1 - \frac{ap + aq + n}{p}, \dots, p - 1 - \frac{ap + aq + n}{p}\right\}$$

$$D \ge k + \frac{ap + aq}{p}, -\frac{kp}{q}, -\frac{ap + aq}{q} + \frac{i}{q}(p + q)$$

$$i = k + \frac{ap + aq + n}{p}$$

Larger k Values:

$$k \in \{q+1 - \frac{ap+aq+n}{p}, \dots, p+q - \frac{ap+aq+n}{p}\}$$

$$D \ge k + \frac{ap+aq}{p} - \frac{p-i}{q}(p+q), -\frac{kp}{q} - \frac{ap+aq}{q} + \frac{p}{q}(p+q)$$

$$i = q+p-k - \frac{ap+aq+n}{p}$$

Problem - Smaller k

The relations C_i, \dots, C_{p-1} have invalid a_1 values

$$t_{C_i} = 0$$
 for $i = \frac{ap + aq + n}{p} + k$

Can repair with relation (B)

$$(1,0,-1,1)=(0,1,0,0)$$

Relations Among the Generators - Smaller k

(A)
$$(q, 0, 0, 0) = (0, 0, 0, p)$$

$$\begin{array}{ll} (C_0) & \left(\frac{ap+aq+n}{p}+k,0,\frac{pD}{p+q}-\frac{pk}{p+q}-a,0\right) \\ & = \left(0,\frac{qD}{p+q}+\frac{pk}{p+q}+a,0,0\right) \end{array}$$

$$\begin{array}{ll} (D_0) & \qquad \left(q-\frac{ap+aq+n}{p}-k+p,\,\frac{qD}{p+q}+\frac{pk}{p+q}+a-p,0,0\right)\\ & = \left(0,0,\,\frac{pD}{p+q}-\frac{pk}{p+q}-a+p,0\right)\\ \ldots \end{array}$$

$$\begin{array}{ll} (C_i^*) & \left(\frac{ap+aq+n}{p} + k - i + 1, 0, \frac{pD}{p+q} - \frac{pk}{p+q} - a + i - 1, 1\right) \\ & = \left(0, \frac{qD}{p+q} + \frac{pk}{p+q} + a - i + 1, 0, i\right) \end{array}$$

$$\begin{array}{ll} (C_{p-1}^*) & \left(\frac{ap+aq+n}{p}+k-i+1,0,\frac{pD}{p+q}-\frac{pk}{p+q}-a+i-1,p-i\right) \\ & = \left(0,\frac{qD}{p+q}+\frac{pk}{p+q}+a-i+1,0,p-1\right) \end{array}$$

$$\begin{array}{ll} (D_{p-1}) & \left(q - \frac{ap + aq + n}{p} - k + 1, \, \frac{qD}{p+q} + \frac{pk}{p+q} + a - 1, 0, 0\right) \\ & = \left(0, 0, \, \frac{pD}{p+q} - \frac{pk}{p+q} - a + 1, p - 1\right) \end{array}$$

Apery Set - Smaller k

The Apery Set can be represented as before

But we have duplicates and invalid elements as below:

(C_i)
$$\left(0,0,\frac{pD}{p+q}-\frac{k}{p+q}-a+i,j\right) \\ = \left(0,\frac{qD}{p+q}+\frac{k}{p+q}+a-i,0,i+j\right), j \in \{0,\cdots,p-i-1\}$$

$$(C_{i+1}) \quad \left(0,0,\frac{pD}{p+q}-\frac{k}{p+q}-a+i+1,j\right) \\ = \left(1,\frac{qD}{p+q}+\frac{k}{p+q}+a-i+1,0,i+1+j\right), j \in \{0,\cdots,p-i-2\} \\ \dots$$

$$\begin{array}{ll} \left(C_{p-1}\right) & \left(0,0,\frac{pD}{p+q}-\frac{k}{p+q}-a+p-1,j\right) \\ & = \left(p-i,\frac{qD}{p+q}+\frac{k}{p+q}+a-p+1,0,p-1+j\right), j \in \{0\} \end{array}$$

Problem - Larger k

The relations D_i, \dots, D_{p-1} have invalid a_1 values

$$t_{D_i}=0$$
 for $i=q-rac{ap+aq+n}{p}-k+p$

Can repair with relation (B)

$$(1,-1,0,1)=(0,0,1,0)$$

Relations Among the Generators - Larger k

(A)
$$(q, 0, 0, 0) = (0, 0, 0, p)$$

$$\begin{array}{ll} (C_0) & \left(\frac{ap + aq + n}{p} + k, 0, \frac{pD}{p+q} - \frac{pk}{p+q} - a, 0 \right) \\ & = \left(0, \frac{qD}{p+q} + \frac{pk}{p+q} + a, 0, 0 \right) \end{array}$$

$$\begin{array}{ll} (D_0) & \quad \left(q-\frac{ap+aq+n}{p}-k+p,\frac{qD}{p+q}+\frac{pk}{p+q}+a-p,0,0\right) \\ & = \left(0,0,\frac{pD}{p+q}-\frac{pk}{p+q}-a+p,0\right) \end{array}$$

$$\begin{array}{ll} (D_i^*) & \qquad \left(q - \frac{ap + aq + n}{p} - k + p - i + 1, \frac{qD}{p + q} + \frac{pk}{p + q} + a - p + i - 1, 0, 1\right) \\ & = \left(0, 0, \frac{pD}{p + q} - \frac{pk}{p + q} - a + p - i + 1, i\right) \end{array}$$

$$\begin{array}{ll} (C_{p-1}) & \left(\frac{ap+aq+n}{p}+k-p+1,0,\frac{pD}{p+q}-\frac{pk}{p+q}-a+p-1,0\right) \\ & = \left(0,\frac{qD}{p+q}+\frac{pk}{p+q}+a-p+1,0,p-1\right) \end{array}$$

$$\begin{array}{ll} (D_{p-1}^*) & \left(q - \frac{ap + aq + n}{p} - k + p - i + 1, \frac{qD}{p+q} + \frac{pk}{p+q} + a - p + i - 1, 0, p - i\right) \\ & = \left(0, 0, \frac{pD}{p+q} - \frac{pk}{p+q} - a + p - i + 1, p - 1\right) \end{array}$$

Aperv Set - Larger k

The Apery Set can be represented as before

But we have duplicates and invalid elements as below:

$$(D_{i}) \qquad \left(0, \frac{qD}{p+q} + \frac{k}{p+q} + a - p + i, 0, j\right) \\ = \left(0, 0, \frac{pD}{p+q} - \frac{k}{p+q} - a + p - i, i + j\right), j \in \{0, \dots, p - i - 1\}$$

$$(D_{i+1}) \quad \left(0, \frac{qD}{p+q} + \frac{k}{p+q} + a - p + i + 1, 0, j\right) \\ = \left(1, 0, \frac{pD}{p+q} - \frac{k}{p+q} - a + p - i - 1, i + 1 + j\right), j \in \{0, \dots, p - i - 2\}$$

$$\begin{array}{ll} \left(D_{p-1}\right) & \left(0, \frac{qD}{p+q} + \frac{k}{p+q} + a - 1, 0, j\right) \\ & = \left(p - i, 0, \frac{pD}{p+q} - \frac{k}{p+q} - a + 1, p - 1 + j\right), j \in \{0\} \end{array}$$

Frobenius Number

Smaller
$$k$$
 Values:
 $k
 $Max(Ap(S)) = (0, 0, \delta_{p-1}, p-1)$
 $F(S) = \delta_{p-1}a_3 + (p-1)a_4 - a_1$
 $= (pq - p - q)D + (qD - n)\left(\frac{pD - pk}{p+q} - a\right)$$

Larger
$$k$$
 Values:
 $k > p - \frac{ap+aq+n}{p} + \frac{n}{d}$
 $Max(Ap(S)) = (0, \kappa_{p-1}, 0, p-1)$
 $F(S) = \kappa_{p-1}a_2 + (p-1)a_4 - a_1$
 $= (pq - p - q)D + (pD + n)\left(\frac{qD+pk}{p+q} + a - p\right)$

The Frobenius Number of Balanced Numerical Semigroups

Jeremy L Thompson

United States Air Force Academy jeremy.thompson@usafa.edu

August 9, 2014