Übungen zur Kryptographie und Datensicherheit

Andre Löffler

December 11, 2013

Aufgabe 1

 $A \subseteq \mathbb{N}, \ \mu$ probabilistische Maschine mit $P(\mu(x) = c_A(x)) = \alpha \geq \frac{3}{4}$. O.B.d.A gibt μ nur Werte aus 0,1 zurück. μ' arbeitet wie folgt:

- 1. simuliere $\mu(x)$ und weise diesen Wert y_1 zu.
- 2. simuliere $\mu(x)$ und weise diesen Wert y_2 zu.
- 3. simuliere $\mu(x)$ und weise diesen Wert y_3 zu.
- 4. simuliere $\mu(x)$ und weise diesen Wert y_4 zu.
- 5. simuliere $\mu(x)$ und weise diesen Wert y_5 zu.
- 6. simuliere $\mu(x)$ und weise diesen Wert y_6 zu.
- 7. simuliere $\mu(x)$ und weise diesen Wert y_7 zu.
- 8. Falls Mehrzahl der y_i gleich 1 ist, gib 1 zurück.

 $P(\mu'(x) \neq c_A(x)) = P(\text{mind. 4 der } y_i \text{ haben nicht den Wert } c_A(x))$ $= \sum_{i=1}^{r} P(\text{genau k der } y_i \neq c_A(x))$ $= \binom{7}{4} (1-\alpha)^4 \alpha^3 + \binom{7}{5} (1-\alpha)^5 \alpha^2 + \binom{7}{6} (1-\alpha)^6 \alpha + \binom{7}{7} (1-\alpha)^7$

Nebenüberlegung: $\begin{array}{l} \alpha(1-\alpha)=-(\alpha-\frac{1}{2})^2+\frac{1}{4}. \ \alpha \ \text{ist im Intervall} \ [\frac{1}{2},1] \ \text{monoton fallend:} \\ \alpha(1-\alpha)\leq\frac{3}{4}\cdot\frac{1}{4}=\frac{3}{16}. \\ \text{Schätze damit} \ 1-\alpha\leq\frac{1}{4} \ \text{ab. Damit ist obige Summe} \leq 0,08. \\ P(\mu'(x)=c_A(x))=1-P(\mu'(x)\neq c_A(x))\geq 1-0,08\geq\frac{11}{12} \end{array}$

1.2Aufgabe 2

- 1. Alphabet $\{1,2\}$ ist endliche, nichtleere Menge. \checkmark
- K ist deterministisch, also auch probabilistischer Algorithmus.
 - Legendres Vermutung: zwischen n^2 und $(n+1)^2$ liegt stets eine Primzahl.
 - \bullet Angenommen, die Vermutung gilt und wir suchen ab $m=\underbrace{1\dots 1}$ nach einer Primzahl, könnte es sein, dass wir erst bei $(\sqrt{m} + 1)^2 =$ $m + 2\sqrt{m} + 1$ fündig werden.
 - Testen also, $O(\sqrt{n}) = O(n^{\frac{1}{2}}) = O(2^{\frac{1}{2}n})$ Zahlen ⇒ nicht klar, ob Polynomialzeit möglich ist.
- 3. $\varepsilon(e, m)$ liefert $e \cdot dya^{-1}(m)$ für $m \in \{1, 2\}^*$ \Rightarrow Polynomialzeit-Algorithmus \checkmark

- 4. D(d,c) liefert dya $(\frac{c}{q})$, wobei q der größte Primfaktor von q ist. \Rightarrow unklar ob im Polynomialzeit möglich, da Faktorisierung nötig.
- 5. Sei (e, d) ein von $K(1^n)$ genutzes Schlüsselpaar und $m \in \{1, 2\}$ $\Rightarrow (e, d) = (q, 1)$, wobei q die kleine Primzahl mit $|\operatorname{dya}(q)| > n$ $\Rightarrow \varepsilon(e, m) = q \cdot \operatorname{dya}^{-1}(m)$

$$D(d, \varepsilon(e, m)) = D(1, q \cdot \text{dya}^{-1}(m)) = \text{dya}\left(\underbrace{\frac{e}{q \cdot \text{dya}^{-1}(m)}}_{q'}\right), \text{ wobei } q' \text{ der}$$

größte Primfaktor von c ist.

q = q', weil |m| = n < |dya(q)|, q größter Primfaktor von $q \cdot \text{dya}^{-1}(m)$ $\Rightarrow D(d, \varepsilon(e, m)) = \text{dya}(\text{dya}^{-1}(m)) = m \checkmark$

1.3 Hinweise zu Übungsblatt 2

1. Sei p eine Primzahl.

 $\mathbb{F}_p =_{\operatorname{def}} (\mathbb{Z}_p, +_p, \cdot_p)$ mit $+_p, \cdot_p$: Addition und Multiplikation modulo p. \mathbb{F}_p ist ein endlicher Körper, der (bis auf Isomorphie) einzige endliche Körper mit genau p Elementen.

Beispiel: \mathbb{F}_2 : 1 ist das Einselement, 0 ist das Nullelement. $5 \cdot 3 = 1$, also ist 3 das inverse Element zu 5.

2. Sei $q=p^n$ mit einer Primzahl p und $n\geq 2$. Ziel: der Körper \mathbb{F}_q mit q Elementen.

$$\begin{split} \mathbb{F}_p[x] &= \text{ Menge aller Polynome mit Koeffizienten aus } \mathbb{F}_p \\ &= \{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0 | n \geq 0, a_0, \dots, a_n \in \mathbb{F}_p\} \\ &= \{(a_n, \dots, a_0) | n \geq 0, a_n, \dots, a_0 \in \mathbb{F}_p\} \end{split}$$

Die Multiplikation von Elementen aus $\mathbb{F}_p[x]$ entspricht der Polynommultiplikation.

Beispiel:
$$\mathbb{F}_2[x]$$
: $(x^2+1)(x^2+1) = x^4 + 2x^2 + 1 = x^4 + 1$

Definition 1. Ein Polynom $g \in \mathbb{F}_p[x]$ heißt <u>irreduzibel</u> über \mathbb{F}_p \Leftrightarrow_{def} es gibt keine Polynome $p_1, p_2 \in \mathbb{F}_p[x]$ mit $Grad \geq 1$ mit $g = p_1 \cdot p_2$

Satz 1.1. $x^8 + x^4 + x^3 + x + 1$ ist irreduzibel über \mathbb{F}_p .

Definition 2. Sei $g \in \mathbb{F}_p[x]$ irreduzibel und vom Grad $k \geq 1$.

$$\begin{split} \mathbb{F}_p[x]/g &=_{def} \{ f \in \mathbb{F}_p[x] | \textit{Grad von } f < k \} \\ &= \textit{Reste bei Polynom division durch } g \\ &= \{ (a_{k-1}, \cdots, a_0) | a_0, \cdots, a_{k-1} \in \mathbb{F}_p \} \end{split}$$

Satz 1.2. [Addition in F]

Addition der Polynome, wobei die Koeffizienten entsprechend \mathbb{F}_p addiert werden.

Satz 1.3. [Multiplikation in F]

$$\underbrace{p_1 \cdot p_2} = Rest \ von \qquad \underbrace{p_1 \cdot p_2} \qquad bei \ Division \ durch \ g.$$

Multiplikation in $\mathbb{F}_p[x]/g$ Multiplikation in $\mathbb{F}_p[x]$ Beispiel: p=2 und $g(x)=x^8+x^4+x^3+x+1\in\mathbb{F}_2[x]$.

Sei
$$p_1 = x^7 + x^2 + 1$$
 und $p_2 = x_2 + 1 \in \mathbb{F}_2[x]/g$.

$$p_1 \cdot p_2 = ((x^7 + x^2 + 1) \cdot (x^2 + 1)) \mod g$$

$$= (x^9 + x^4 + x^2 + x^7 + x^2 + 1) \mod g$$

$$= (x^9 + x^7 + x^4 + 1) \mod g$$

$$= ((x^9 + x^7 + x^4 + 1) - x \cdot g) \mod g$$

$$= ((x^9 + x^7 + x^4 + 1) - (x^9 + x^5 + x^4 + x^2 + x)) \mod g$$

$$= (x^7 + x^5 + x^2 + x + 1) \mod g$$

$$= (x^7 + x^5 + x^2 + x + 1)$$

Satz 1.4. Sei p eine Primzahl, $k \geq 2$ und $g \in \mathbb{F}_p[x]$ irreduzibel und vom Grad k. Dann ist

$$\mathbb{F}_{p^k} = \operatorname{def}(\mathbb{F}_p[x]/g, +, \cdot)$$

der einzige endliche Körper mit p^k Elementen (bis auf Isomorphie).

Beispiel: Sei $g = x^8 + x^4 + x^3 + x + 1$. Die Elemente von $\mathbb{F}_{2^8} = \mathbb{F}_2[x]/g = \{(a_7, \dots, a_0) | a_0, \dots, a_7 \in \{0, 1\}\}$ lassen sich als Bytes interpretieren.

$$0x03 \cdot 0xa1 = 0b00000011 \cdot 0b10100001$$

$$= (x+1) \cdot (x^7 + x^5 + 1) \mod g$$

$$= (x^8 + x^6 + x + x^7 + x^5 + 1) \mod g$$

$$= (x^7 + x^6 + x^5 + x^4 + x^3)$$

$$= 0b111111000 = 0xf8$$

 $\Rightarrow 3 \cdot 161 = 248.$

2 Übung 2

2.1 Aufgabe 1

- 1. $(\{0,1,2,3,4\},f)$ mit $f(x,y)=(x+y) \mod 5$ ist eine endliche kommutative Gruppe
 - $f: \mathbb{Z}_5 \times \mathbb{Z}_5 \to \mathbb{Z}_5$ ist total \checkmark
 - Assoziativität:

$$\begin{split} f(f(a,b),c) &= f((a+b) \mod 5,c) \\ &= ((a+b) \mod 5 + c) \mod 5 \\ &= (a+b+c) \mod 5 = (a+(b+c) \mod 5) \mod 5 \\ &= f(a,f(b,c))\checkmark \end{split}$$

- Neutrales Element: $f(x,0) = (x+0) \mod 5 = x$ $f(0,x) = (0+x) \mod 5 = x$
- Inverses Element: Sei $a \in \mathbb{Z}_5$:

$$b = (-a) \mod 5$$
$$= (a + (-a) \mod 5) \mod 5$$
$$= 0 \mod 5 = 0$$

Eindeutigkeit: $0 \mod 5 = 0 \checkmark$ Angenommen f(a,b') = 0 = f(a,b) mit $b' \in \mathbb{Z}_5$ $\Rightarrow b' \mod 5 = b \mod 5$ $\Rightarrow b' = b$ \Rightarrow genau ein inverses Element.

• Kommutativität:

$$f(a,b) = f(b,a) = (a+b) \mod 5 = (b+a) \mod 5 = f(b,a)$$

2. (\mathbb{Z}_6, f, g) mit $f(x, y) = (x + y) \mod 6$, $g(x, y) = (x \cdot y) \mod 6$ ist kein Körper:

Damit (\mathbb{Z}_6) , f, g) ein Körper ist, muss $(\{1, 2, 3, 4, 5\}, g)$ kommutative Gruppe sein.

$$\Rightarrow \forall a \in \{1, 2, 3, 4, 5\} \exists ! b \in 1, 2, 3, 4, 5 : [g(a, b) = 1]$$

- g(2,1)=2
- g(2,2) = 4
- g(2,3) = 0
- g(2,4) = 2
- g(2,5) = 4
- \Rightarrow 2 besitzt kein inverses Element in $(\{1, 2, 3, 4, 5\}, g)$
- $\Rightarrow (\mathbb{Z}_6, f, g)$ ist kein Körper.

Hinweise zu Übungsblatt 32.2

Monoalphabetische Verschlüsselung (Substitutionschiffre): ABCDEFGHJKLMNOPQRSTUVWXYZ pfeile und so

$$S = (\Sigma, \mathcal{K}, \mathcal{E}, \mathcal{D})$$

- $\Sigma = \{A, \cdots, Z\}$
- Schlüssel: $\pi: \Sigma \to \Sigma$ Bijektion

$$P = \text{Menge aller Permutationen auf } \Sigma$$

= $\{\pi : \Sigma \to \Sigma | \pi \text{ bijektiv} \}$

- $\mathcal{K}(1^n)$ liefert gleichverteilt Element aus $\{(\pi,\pi)|\pi\in P\}$
- $\mathcal{E}(\pi, m_1, m_2, \cdots, m_n) = \pi(m_1)\pi(m_2)\cdots\pi(m_n)$
- $\mathcal{D} = \pi^{-1}(c_1)\pi^{-1}(c_2)\cdots\pi^{-1}(c_n)$

Ist S perfekt sicher?

• Betrachte Klartext der Länge 1

 $P_{\Sigma^1}(a) = \frac{1}{26}$ für alle $a \in \Sigma$ Sei nun $m \in \Sigma^1$ beliebig.

 $P(E_m) = \frac{1}{26}$ [Wahrscheinlichkeit, das Klartext m gewählt wird.] Sei $c \in C_1$ beliebig. $[C_1 = \Sigma$ alle möglichen Chiffretexte der Länge 1]

$$P(E_m|E_c) = P(\mathcal{K}(1) \text{ liefert Permutation } \pi \text{ mit } \pi(m) = c)$$

= $\frac{25!}{26!} = \frac{1}{26} = P(E_m)$

 \Rightarrow S ist perfekt sicher bezüglich P_{Σ^1}

• Betrachte gleichverteilte Klartexte der Länge 2

Problem = Received that the term of the problem is
$$P_{\Sigma^2}(m)=\frac{1}{26^2}$$
 für alle $m\in\Sigma^2$ $[|\Sigma^2|=26^2]$ Wähle $m=AF\in\Sigma^2$:

$$P(E_m) = \frac{1}{26^2}$$

$$C_2 = \Sigma^2$$

$$C_2 = \Sigma^2$$

Sei $c = ww \in C_2$

$$P(E_m|E_c) = P(\mathcal{K}(11) \text{ liefert Permutation } \pi \text{ mit } \pi(A) = w \text{ und } \pi(F) = w)$$

= $0 \neq P(E_m)$

- \Rightarrow S nicht perfekt sicher bezüglich P_{Σ^2}
- \Rightarrow S nicht perfekt sicher

3.1 Aufgabe 2

- a) $\mathcal{M} = \{1, 2, 3, 4, 5, 6\}$ $\mathcal{P} = \mathcal{M} \rightarrow [0, 1]$ $\mathcal{P}(x) = \frac{1}{6^5}$ für jedes $x \in \mathcal{M}$ wegen $|\mathcal{M}| = 6^5$
- b) $G = \{(a_1, \dots, a_5) \in \mathcal{M} | \{a_1, \dots, a_5\} \in \{1, 2, 3, 4, 5\}, \{2, 3, 4, 5, 6\}\}$

$$K = \{(a_1, \dots, a_5) \in \mathcal{M} |$$

$$\{1, 2, 3, 4\} \subseteq \{a_1, \dots, a_5\} \vee$$

$$\{2, 3, 4, 5\} \subseteq \{a_1, \dots, a_5\} \vee$$

$$\{3, 4, 5, 6\} \subseteq \{a_1, \dots, a_5\} \}$$

c)
$$P(G) = P((a_1, \dots, a_5) | \{a_1, \dots, a_5\} = \{1, 2, 3, 4, 5\})$$

 $+P(G) = P((a_1, \dots, a_5) | \{a_1, \dots, a_5\} = \{2, 3, 4, 5, 6\})$
 $= 2 \cdot \frac{5!}{6^5} = \frac{5!}{16^2} \approx 3, 1\%$
 $P(K)$:

- 1. Fall: Alle Würfel sind verschieden, dann gibt es die Möglichkeiten (bis auf Permutation): 1234 5, 1234 6, 13456, 2345 6
 - \Rightarrow 4! viele Möglichkeiten
- 2. Fall: Genau eine Zahl kommt doppelt vor: Es gibt die Möglichkeiten: $1234,\,2345,\,3456$

$$\Rightarrow 3 \cdot \underbrace{4}_{\text{doppelte Ziffern}} \cdot \underbrace{5}_{2} \cdot \underbrace{3!}_{\text{3 verschiedene M\"oglichkeiten}}$$

$$\Rightarrow \text{Gesamt: } |K| = 4 \cdot 5! + 3 \cdot 4 \cdot \frac{5!}{2! \cdot 3!} \cdot 3! = 4 \cdot 5! + 6!$$

$$\Rightarrow P(K) = \sum_{x \in K} P(x) = \sum_{x \in K} \frac{1}{6^5} = \frac{|K|}{6^5} = \frac{4 \cdot 5! + 6!}{6^5} = \frac{25}{16^2} \approx 15\%$$

$$P(G|K) = \frac{P(G \cap K)}{P(K)} = \frac{P(G)}{P(K)} = \frac{1}{5}$$

3.2 Aufgabe 3

 $K_n := \{e | (e, a) \text{ ist Ausgabe von } K(1^n) \}$

 $C_n := \{c | c \text{ ist Ausgabe von } \mathcal{E}(e, m) \text{ für } e \in K_n, m \in \Sigma^n\}$

 $E_m := \{m\} \times \Sigma^n \times C_n \text{ für } m \in \Sigma^n$

 $E_c := \Sigma^n \times K_n \times \{e\} \ c \in C_n$

Wir wählen $n=2, P_{\Sigma^n}$ gleichverteilt, m=00, c=01.

 $E_m \cap E_c = \emptyset \Rightarrow P(E_m \cap E_c) = 0 \neq P(E_m) = \frac{1}{4}$

 $\Rightarrow S$ nicht perfekt sicher.

oder:

Proposition 3.7:

 $K_n \subseteq \Sigma^n$ für $n \ge 2 : K_n \subsetneq \Sigma^n$

 $\Rightarrow |K_n| < |\Sigma^n|$

 $\Rightarrow S$ ist nicht perfekt sicher.

Aufgabe 1

- a) $S = (\Sigma, \mathcal{K}, \mathcal{E}, \mathcal{D})$ mit
 - (i) $\exists n \geq 1 \exists e \in K_n \text{ mit } P(E_e) \neq \frac{1}{|K_n|}$
 - (ii) $\forall n \geq 1 \forall m \in \Sigma^n \forall c \in C_n \exists ! e \in K_n \text{ mit } E(e, m) = c.$ $\Sigma = \{0, 1\}$

 $\mathcal{K}(1^n)$ liefert jedes Element aus $\{(e,e)|e\in 0\Sigma^n\}$ mit Wahrscheinlichkeit

 $\frac{3}{4}\cdot\frac{1}{2^n}$ $\mathcal{K}(1^n)$ liefert jedes Element aus $\{(e,e)|e\in 1\Sigma^n\}$ mit Wahrscheinlichkeit

$$E(e_0 \cdots e_n, m_1 \cdots m_n) := e_0 c_1 \cdots c_n \text{ mit } c_i = (m_+ e_i) \mod 2$$

$$D(e_0 \cdots e_n, c_0 \cdots c_n) := m_1 \cdots m_n \text{ mit } m_i = (c_i - e_i) \mod 2$$

zu (i):
$$n = 1, |K_n| = 4, P(e_{00}) = \frac{3}{8} \neq \frac{1}{|K_n|}$$

zu (ii): Sei $m = m_1 \cdots m_n$ und $c = c_0 \cdots c_n \in C_n$

Der einzige Schlüssel $e \in k_1$ mit E(e, m) ist: $e = e_0 \cdots e_m$ mit $e_0 = c_0$ und $e_i = (c_i + m_i) \mod 2 \text{ für } i \ge 1$

Zeigen, dass S perfekt sicher ist:

Sei $n \geq 1$ und P_{Σ^n} eine Verteilung auf Σ^n

Sei $m \in \Sigma^n$ und $c = c_0 \cdots c_n \in C_n$

O.B.d.A.
$$c_0 = 0$$
, zeigen $P(E_m|E_c) = P(E_m)$

1. Fall:
$$P(E_m) = 0$$
: $P(E_m|E_c) = P(E_m) = 0$

- 2. Fall: $P(E_m) > 0$:
- für jedes $q \in \Sigma^n$ gibt es genau ein $e \in \Sigma^{n+1}$, sodass E(e,q) = cBezeichnen dieses e mit $e_{m,c}$. Es gilt $e_{m,c} \in 0\Sigma^n$

• Aus
$$P(E_m) > 0$$
, $P_{K_n} = \frac{3}{4} \frac{1}{2^n}$ und $E(e_{m,c}, m) = c$ folgt $P(E_c) > 0$
• $P(E_m|E_c) = \frac{P(E_m)P(E_c|E_m)}{P(E_c)} = \frac{P(E_m)P(e_{m,c}|E_m)}{P(E_c)} = \frac{P(E_m)P(E_c)}{P(E_c)} = \frac{P(E_m)\frac{3}{4} \frac{1}{2^n}}{P(E_c)} = \frac{P(E_m)\frac{3}{4} \frac{1}{2^n}}{P(E_c$

 \Rightarrow S ist perfekt sicher.

- b) $S = (\Sigma, \mathcal{K}, \mathcal{E}, \mathcal{D})$ mit
 - (i) $\exists n \geq 1 \exists e \in K_n \text{ mit } P(E_e) \neq \frac{1}{|K_n|}$
 - (ii) $\forall n \geq 1 \forall m \in \Sigma^n \forall c \in C_n \exists e_1, e_2 \in K_n \text{ mit } e_1 \neq e_2 \text{ und } E(e_1, m) =$ $E(e_2,m)=c.$

 $\Sigma = \{0,1\}, \mathcal{K}(1^n)$ liefert jedes Element aus Σ^{n+1} gleichverteilt.

$$\mathcal{E}(e_0 \cdots e_n, m_1 \cdots m_n) = c_1 \cdots c_n \text{ mit } c_i = (e_i + m_i) \mod 2$$

$$\mathcal{D}(e_0 \cdots e_n, c_1 \cdots c_n) = m_1 \cdots m_n \text{ mit } m_i = (e_i + c_i) \mod 2$$

Zu (ii): n = 1, m = 0, c = 0: $e_1 = 10$ und $e_2 = 00$ mit $\mathcal{E}(10, 0) = 0$

Zeige, dass S perfekt sicher ist: Sei $n \geq 1, P_{\Sigma^n}$ eine Verteilung über $\Sigma^n, m \in \Sigma^n, c = c_1 \cdots c_n \in C_n$

- 1. Fall: $E(E_m|E_c) = 0 = E(E_m)$
- 2. Fall: $E(E_m) > 0$

Zeigen, dass
$$P(E_m|E_c) = P(E_m)$$
:
Definiere $e_{0,m,c} = 0e_1 \cdots e_n$ und $e_{1,m,c} = 1e_1 \cdots e_n$
 $\Rightarrow e_i = (m_i + c_i) \mod 2$
 $P(E_m|E_c) = \frac{P(E_m)P(E_c|E_m)}{P(E_c)} = \frac{P(E_m)P(E_{e_{0,m,c}} \cup E_{e_{1,m,c}}|P(E_m))}{\sum_{q \in \Sigma^n} P(E_q)P(E_{e_{0,m,c}} \cup E_{e_{1,m,c}})} = \frac{P(E_m)\frac{2}{|K^n|}}{\frac{2}{|K^n|} - \sum_{q \in \Sigma^n} P(E_q)} = P(E_m)$
 $\Rightarrow S$ ist perfekt sicher.

c) $S = (\Sigma, \mathcal{K}, \mathcal{E}, \mathcal{D})$. Annahme: $|\Sigma| \geq 2$: zu $n \geq 1$: Wegen $|\Sigma| \geq 2$ finde $m, m' \in \Sigma^n, m \neq m'$. Ferner gilt: Ausgaben von $\mathcal{E}(e_i, m)$ und $\mathcal{E}(e_i, m')$ stets verschieden, denn $m = \mathcal{D}(d, \mathcal{E}(e, m)) = \mathcal{D}(d, \mathcal{E}(e, m')) = m'$ Sei P_{Σ^n} gleichverteilt auf Σ^n . Sei c Ausgabe von $\mathcal{E}(e, m')$: $0 = P(E_m | E_c \cap E_e) < P(E_m | E_e) = P(E_m)$

4.2 Hinweise zu Blatt 5

Der erweiterte Euklidsche Algorithmus für 99 und 78:

Ziel: Berechne qqT(a,b)

Erweiterter Euklidscher Algorithmus: Berechne $s,t\in\mathbb{Z}$ mit $ggT(a,b)=s\cdot a+t\cdot b$

$$99 = 1 \cdot 78 + 21$$

$$78 = 3 \cdot 21 + 15$$

$$21 = 1 \cdot 15 + 6$$

$$15 = 2 \cdot 6 + 3$$

$$6 = 2 \cdot 3 + 0$$

$$\begin{array}{l} \Rightarrow ggT(99,78) = 3 \\ 3 = 15 - 2 \cdot 6 = 15 - 2 \cdot (21 - 2 \cdot 15) = 3 \cdot 15 - 2 \cdot 21 = 3 \cdot (78 - 3 \cdot 21) - 2 \cdot 21 = \\ 3 \cdot 78 - 11 \cdot 21 = 3 \cdot 78 - 11 \cdot (99 - 1 \cdot 78) = 14 \cdot 78 - 11 \cdot 99 \Rightarrow s = -11 \text{ und } t = 14 \text{ in RSA: } \varphi(n) = (p-1)(q-1) \\ \text{Berechne } d = e^{-1} \mod \varphi(n). \text{ Wir wissen: } ggT(e,\varphi(n)) = 1. \\ \text{Berechne mit euklidschem Algorithmus: } ggT(e,\varphi(n)) = s \cdot \varphi(n) + t \cdot e \\ t \cdot e = 1 - s \cdot \varphi(n) \Rightarrow t \cdot e = 1 \mod \varphi(n) \Rightarrow t \text{ ist Inverses von } e \mod \varphi(n) \end{array}$$

5. Übung $\mathbf{5}$

Satz 5.1. Für $a, b \in \mathbb{N}^+$ liefert der Algorithmus eged(a, b) eine Ausgabe (d, x, y), sodass d = ggT(a, b) und $x, y \in \mathcal{Z}$ und $d = x \cdot a + y \cdot b$. Außerdem besitzt der Algorithmus polynomielle Laufzeit.

Proof.1. Algorithmus terminiert:

$$b = d_1 > \overset{\smile}{d_2} > \dots > d_n = 0$$

 \Rightarrow while-Schleife wird höchstens b-mal durchlaufen.

2. Zeigen d|a und d|b:

$$0 = d_n = d_{n-2} \% d_{n-1} \ (*)$$

Es gilt: $d|d_i, d|d_{i+1}, \dots, d|d_{n-1} \Rightarrow d|d_{i-1}$

Beweis: $d_{i+1}=d_{i-1}\%d$, also $d_{i-1}=k\cdot d_i+d_{i+1}$ für ein $k\in\mathbb{N}\Rightarrow d|d_{i-1}$

Aus (*) folgt $d|d_0 = a$ und $d|d_1 = b$.

3. Jeder Teiler d' von a und b ist auch Teiler von d_i .

$$d'|d_0 = a \text{ und } d'|d_1 = b$$

Es gilt $d'|d_i$ und $d'|d_{i+1} \Rightarrow d'|d_{i+2}$ (**)

Beweis: $d_{i+2} = d_i \% d_{i+1}$, also

$$d_i = k \cdot d + d_{i+2} \text{ für ein } k \in \mathbb{N}$$

$$\Rightarrow d_{i+2} = d_i - k \cdot d_{i+1} \Rightarrow d'|d_{i+2}$$

aus (**) folgt $d'|d_{n-1} = d$

4. zeige $d = x \cdot a + y \cdot b$:

Wir zeigen $d_i = x_i \cdot a + y_i \cdot b$ für $i = 0, \dots, n-1$ mittels Induktion:

(IA)
$$i = 0$$
, $i = 1$: klar \checkmark

(IS)
$$i \to i+1$$
: $x_{i+1} \cdot a + y_{i+1} \cdot b = (x_{i-1} - x_i \left| \frac{d_{i-1}}{d_i} \right|) \cdot a + (y_{i-1} - y_i \left| \frac{d_{i-1}}{d_i} \right|) \cdot b = (x_{i-1} - x_i \left| \frac{d_{i-1}}{d_i} \right|) \cdot a + (y_{i-1} - y_i \left| \frac{d_{i-1}}{d_i} \right|) \cdot b = (x_{i-1} - x_i \left| \frac{d_{i-1}}{d_i} \right|) \cdot a + (y_{i-1} - y_i \left| \frac{d_{i-1}}{d_i} \right|) \cdot b = (x_{i-1} - x_i \left| \frac{d_{i-1}}{d_i} \right|) \cdot a + (y_{i-1} - y_i \left| \frac{$

$$x_{i-1} \cdot a + y_{i-1} \cdot b - \left\lfloor \frac{d_{i-1}}{d_i} \right\rfloor \cdot (x_i \cdot a + y_i \cdot b) \stackrel{\text{IV}}{=} d_{i-1} - \left\lfloor \frac{d_{i-1}}{d_i} \right\rfloor \cdot d_i = d_{i-1} \% d_i = d_{i+1}$$
 Die Aussage folgt wegen $d = d_{n-1} \cdot x = x_{n-1}$ und $y = y_{n-1}$

5. zeigen polynomielle Laufzeit:

Wir zeigen: $d_{i+2} \leq \frac{1}{2}d_i$ für $i \geq 1$ (***)

Fallunterscheidung:

1) $d_{i+1} \leq \frac{1}{2}d_i$: Aussage folgt aus $d_{i+2} < d_{i+1}$

2) $d_{i+1} > \frac{1}{2}d_i$: Aus $d_{i+1} < d_i$ folgt $\frac{1}{2}d_i < d_{i+1} < d_i < 2 \cdot d_{i+1}$

 $\Rightarrow d_{i+2} = d_i \% d_{i+1} = d_i - d_{i+1} < d_i - \frac{1}{2} d_i = \frac{1}{2} d_i$

Aus (***) folgt, dass sich die d_i nach spätestens 2 Iterationen halbiert

 $haben \Rightarrow polynomielle Laufzeit$

Die Anzahl der Iterationen ist logarithmisch in $d_1 = b$ \Rightarrow polynomiell in |b|

Aufgabe 1

$$\varphi(75) = \varphi(3) \cdot \varphi(5^2) = (3^1 - 3^a)(5^2 - 5^1) = 2 \cdot 20 = 40$$

$$\varphi(408783) = \varphi(11) \cdot \varphi(23) \cdot \varphi(2011) = 442200$$

6.2Aufgabe 3

a) \mathbb{Z}_p^* hat genau $\varphi(\varphi(p)) = \varphi(p-1)$ Erzeuger. Habe $\varphi(p-1) = p-1$. Bemerke für $p \neq 2, 3$: $2|p-1 \Rightarrow \varphi(p-1) < p-1 \Rightarrow$ $p \in P \setminus \{2,3\}$ lösen diese Gleichung nicht. $1,\cdots, p-1$ Rechnung für $p\in\{2,3\}$ zeigt, dass nur p=2eine Lösung der

Gleichung ist.

$$\varphi(p-1) = |\{a \in \{1, \cdots, p-1\}| ggT(a, p-1) = 1\}|.$$
 Da $p \in \mathbb{P} \setminus \{2, 3\} \Rightarrow |\{1, \cdots, p-1\}|$ und $2 \in \{1, \cdots, p-1\}$

- b) $\varphi(p-1) = p-2$ Zum einen $\mathbb{N}_+ \ni \varphi(p-1) = p-2 \Rightarrow p \geq 3$.
 - p = 3: $\varphi(p-1) = \varphi(2) = 1 = p-2$

•
$$p > 3$$
: $\varphi(p-1) = |\{i \in \mathbb{N} | 1 \le i \le p-1 \text{ mit } \underbrace{ggT(i, p-1)}_{2, p-1 \notin} = 1\}| \le p-3$

Tipp: p ist Primzahl ungleich $2\Rightarrow$ ungerade $\Rightarrow p-1$ gerade $\Rightarrow 2|p-1$

c) $\varphi(p-1) = \frac{1}{3}(p-1)$ Wegen $\varphi(p-1) \in \mathbb{N}_+$ folgt 3|p-1. Wie in a): 2|p-1Also schreibe: $p-1=2^{n_2}\cdot 3^{n_3}\cdot q \text{ mit } q\in \mathbb{N}_+, 2\nmid q, 3\nmid q \text{ und } n_2, n_3\in \mathbb{N}_+.$ $\varphi(p-1)=\varphi(2^{n_2})\cdot \varphi(3^{n_3})\cdot \varphi(q)=2^{n_2-1}\cdot (2-1)\cdot 3^{n_3-1}\cdot (3-1)\cdot \varphi(q)=2^{n_2}\cdot 3^{n_3-1}\cdot \varphi(q)=\frac{1}{3}(p-1)=2^{n_2}\cdot 3^{n_3-1}\cdot q\Rightarrow \varphi(q)=q\Rightarrow q=1$ $\Rightarrow p = 2^{n_2} \cdot 3^{n_3} + 1$, also gilt die Gleichung für $p \in \{2^k \cdot 3^l + 1 | k, l \in \mathbb{N}_+\}$

Bonusaufgabe 6.3

Für jedes $\varepsilon > 0$ soll ein Algorithmus angegeben werden, der bei Eingabe $x \geq 2$ eine Zahl y berechnet mit $\frac{\varphi(x)-y}{\varphi(x)} \leq \varepsilon$. Eingabe: $x \in \mathbb{N}, n = \log x$

- 1. $Q = \{p | p \le n \text{ und } p \text{ prim}\}$
- 2. Zerlege $x=\underbrace{q_1^{e_1}\cdot q_2^{e_2}\cdots q_k^{e_k}}_{=x_1}\cdot x_2$ mit $q_i\in Q$ und x_2 hat keine Teiler aus Q
- 3. $\varphi(x_1) = (q_1^{e_1} q_1^{e_1-1}) \cdots (q_k^{e_k} q_k^{e_k-1})$
- 4. return $x_2 \cdot \varphi(x_1)$

Sei y die Ausgabe des Algorithmus, d.h. $y = x_2 \cdot \varphi(x_1)$.

Falls $x_2 = 1$ wird korrekter Wert ausgegeben, nehmen im Folgenden also $x_2 > 1$

Aus $ggT(x_1, x_2) = 1$ folgt: $\varphi(x) = \varphi(x_1) \cdot \varphi(x_2) \le x_2 \cdot \varphi(x_16)$, der Algorithmus

liefert also keine zu kleinen Werte aus.

$$\Rightarrow$$
 genügt zu zeigen, dass $\varepsilon \ge \frac{y - \varphi(x)}{\varphi(x)} = \frac{x_2 \cdot \varphi(x_1) \cdot \varphi(x_2)}{\varphi(x_1) \cdot \varphi(x_2)} = \frac{x_2 - \varphi(x_2)}{\varphi(x_2)}$

$$\Leftrightarrow \varepsilon \cdot \varphi(x_2) \ge x_2 \cdot \varphi(x_2)$$

$$\Leftrightarrow (1+\varepsilon) \cdot \varphi(x_2) \leq x_2 \ (*)$$

Sei $x_2=p_1^{d_1}\cdots p_m^{d_m}$ die Primfaktorzerlegung von $x_2\ (m\geq 1),\ p_1\cdots p_m>n$ $\Rightarrow m\leq \frac{\log x_2}{\log n}$ (andernfalls $x_2\geq p_1\cdots p_m>n^m>n^{\log x_2/\log n}=2^{\log n\frac{\log x_2}{\log n}}=x_2$ Wiederspruch

$$\varphi(x_2) = p_1^{d_1} \cdot \underbrace{\left(1 - \frac{1}{p_1}\right) \cdot p_2^{d_2} \cdot \left(1 - \frac{1}{p_2}\right) \cdots p_m^{d_m} \cdot \left(1 - \frac{1}{p_m}\right)}_{> 1 - \frac{1}{n}} > x_2 \cdot \underbrace{\left(1 - \frac{1}{n}\right)}_{< 1}$$

$$\geq x_2 \cdot \left(1 - \frac{1}{n}\right)^{\log x_2 / \log n} > x_2 \cdot \left(1 - \frac{1}{n}\right)^{\log x / \log n}$$

$$= x_2 \cdot \left(1 - \frac{1}{n}\right)^{n / \log n} = \left[\left(1 - \frac{1}{n}\right)^n\right]^{1 / \log n} \cdot x_2 \text{ geht gegen } \frac{1}{e} \text{ für } n \to \infty$$

$$> \left(\frac{1}{4}\right)^{1 / \log n} \cdot x_2 \text{ für genügend große } n > x_2 \cdot \frac{1}{1 + \varepsilon} \text{ für genügend große } n$$

$$\Rightarrow \text{ dies zeigt (*)}$$

$$\geq x_2 \cdot (1 - \frac{1}{\pi})^{\log x_2 / \log n} > x_2 \cdot (1 - \frac{1}{\pi})^{\log x / \log n}$$

$$= x_2 \cdot (1 - \frac{1}{n})^{n/\log n} = [(1 - \frac{1}{n})^n]^{1/\log n} \cdot x_2 \text{ geht gegen } \frac{1}{e} \text{ für } n \to \infty$$

 \Rightarrow dies zeigt (*)

7.1 Aufgabe 1

```
B erzeugt Schlüssel \downarrow sendet p, g, B an A A wählt zufällig a \downarrow Gemeinsamer Schlüssel B^a \mod p \downarrow A sendet A an B
```

7.2 Aufgabe 2

```
Für jedes n \geq 2 enthält\{1, \cdots, 2^n\} mindestens \lfloor \frac{n}{\log_2 n} \rfloor Primzahlen. Angenommen, es gäbe n \geq 2, sodass in \{1, \cdots, 2^n\} genau k < \lfloor \frac{n}{\log_2 n} \rfloor viele Primzahlen p_1 \leq p_2 \leq \cdots \leq p_k \leq liegen. Definiere \varphi: \{1, \cdots, 2^n - 1\} \rightarrow \{0, \cdots, n - 1\}^k mit x \mapsto (e_1, \cdots, e_k) mit x = \prod_{i=1}^k p_i^{e_i}. \varphi ist injektiv, denn aus \varphi(x) = \varphi(y) = (e_1, \cdots, e_k) folgt, y = \prod p_i^{e_i} = x. \Rightarrow \underbrace{\lfloor \{1, \cdots, 2^n - 1\} \rfloor} \leq |\{0, \cdots, n - 1\}^k| = n^k < n^{\lfloor \frac{n}{\log_2 n} \rfloor} \leq n^{\frac{n}{\log_2 n}} = (2^{\log_2 n})^{\frac{n}{\log_2 n}} = 2^n \Rightarrow n^k = 2^n - 1 \Rightarrow \{0, \cdots, n - 1\}^k \text{ und } \{1, \cdots, 2^n - 1\} \text{ sind gleichmächtig } \Rightarrow \varphi \text{ surjektiv.} \Rightarrow \exists x \in \{1, \cdots, 2^n - 1\} : \varphi(x) = (n - 1, n - 1, 0, 0, \cdots, 0). Aus n \geq 2 \Rightarrow \{2, 3\} \subseteq \{1, \cdots, 2^n\} \Rightarrow k \geq 2, \text{ da } 2, 3 \text{ prim.} \Rightarrow x = p_1^{n-1} \cdot p_2^{n-1} \cdot p_3^{n} \cdots p_k^0 = 2^{n-1} \cdot 3^{n-1} \geq 2^n, ein Widerspruch zu x \in \{1, \cdots, 2^n - 1\}
```

7.3 Hinweise zur 8. Übung

$$\log_b a = \frac{\log_x a}{\log_x b}$$

Aufgabe 1

 $B \equiv g^b \equiv g^{p-1-x} \equiv g^{p-1} \cdot g^{-x} \equiv g^{-x} \equiv (g^{-1})^x \mod p$ x hat höchstens 4 Einser in Binärdarstelung. $\begin{array}{l} x = 2^i + 2^j + 2^k + 2^l \\ h^x = h^{2^i + 2^j + 2^k + 2^l} = h^{2^i} \cdot h^{2^j} \cdot h^{2^k} \cdot h^{2^l} \end{array}$

Zusatzaufgabe

 $\log_{q,p}$ konnte man effizient berechnen. Man will: $\log_{h,p}$ berechnen. (p Prim, g, h Erzeuger in \mathbb{Z}_p^*)

Behauptung: $\log_{n,p} x = (\log_{g,p} x \cdot \log_{g,p} h^{-1}) \mod (p-1)$ Beweis: Zeigen, dass $\log_{g,p} h^{-1}$ existiert, d.h.

$$ggT(\log_{g,p} h, p-1) = 1 \stackrel{\text{def}}{\Leftrightarrow} \log_{g,p} h \in \mathbb{Z}_{p-1}^*$$

$$\begin{split} & ggT(\log_{g,p}h,p-1) = 1 (\Leftrightarrow \log_{g,p}h \in \mathbb{Z}_{p-1}^*) \\ & \text{wäre } ggT(\log_{g,p}h,p-1) = d > 1. \text{ Dann gilt: } h^{\frac{p-1}{d}} \equiv (g^{\log_{g,p}h})^{\frac{p-1}{d}} \equiv \underbrace{(g^{\log_{g,p}h})^{\frac{p-1}{d}}} \equiv \underbrace{(g^{\log_{g,p}h})^{p-1}}_{\in \mathbb{Z}_p^*} \equiv \underbrace{(g^{\log_{g,p}h})^{\frac{p-1}{d}}}_{\in \mathbb{Z}_p^*} \end{split}$$

$$x \equiv y \mod p - 1 \Rightarrow z^x \equiv z^y \mod p$$

$$x = y + k(p-1) \Rightarrow z^x = z^y \cdot z^{k(p-1)} = z^y \cdot (z^k)^{p-1} = z^{p-1}$$

$$= z^y \underbrace{(z^k)^{p-1}}_{\equiv 1 \mod p} \equiv z^y \mod p$$

$$1 \mod p \Rightarrow ord_ph \leq \frac{p-1}{d} < p-1 = ord_ph, \text{ Widerspruch.}$$

$$x \equiv y \mod p - 1 \Rightarrow z^x \equiv z^y \mod p$$

$$x = y + k(p-1) \Rightarrow z^x = z^y \cdot z^{k(p-1)} = z^y \underbrace{(z^k)^{p-1}}_{\equiv 1 \mod p} \equiv z^y \mod p$$

$$h^{\log_{g,p} x \cdot \log_{g,p} h^{-1} \mod p - 1} \equiv h^{\log_{g,p} x \cdot \log_{g,p} h^{-1}} \equiv g^{\log_{g,p} h \cdot \log_{g,p} h^{-1} \cdot \log_{g,p} x} \equiv g^{\log_{g,p} h \cdot \log_{g,p} h^{-1}} \equiv g^{\log_{g,p} h \cdot \log_{g,p} h^{-1}} = g^{\log_{g,p} h \cdot \log_{g,p} h^{-1}}$$

8.3 Extra

- Alice entscheidet sich für Kopf oder Zahl
- Bob wirft eine Münze
- \Rightarrow Gewinner steht fest.

Alice wählt Primzahlen p, q mit $p \equiv q \equiv 3 \mod 4$

Rightarrow Alice sendet $n = p \cdot q$

Alice entscheidet sich für Kopf (1) oder Zahl (0) $\rightarrow b$

 \Rightarrow Alice sendet $c = -1^b \cdot r^2 \mod n$ für ein beliebiges $r \in \mathbb{Z}_n^*$

Bob wirft die Münze $\rightarrow x \in \{0, 1\}$

 \Leftarrow Bob sendet Ergebnis x

Alice weiß jetzt, ob sie gewonnen hat.

 \Rightarrow Alice schickt p, q

Bob kann c entschlüsseln und erhält b

⇒ Beide kennen den Gewinner.