

Assignment Project Exam Help

https://tuitougkegom

WeChat: cstutorcs

A Bunch of Keys

ASSI SALUBLE State attributes of Jean Schema Aid Inperkey of puniquely determines all attributes of R.

A superkey K is called a candidate key if no proper subset of K is a superkey.

https://f/tutakten/fothsattlble:pitpf K, then there is not enough to uniquely identify tuples.

 Candidate keys are also called keys, and the primary key is chosen from them.

Finding Keys

Assignment Project Exam Help

• Given a set Σ of FDs on a relation R, the question is:

The property of the property of R?

WeChat: cstutorcs

Implied Functional Dependencies

Assignment Project Exam Help

- To design a good database, we need to consider all possible FDs.
- If each student works on one project and each project has one supervisor, does each student have one project supervisor?

```
\{\{\text{StudentID}\} \rightarrow \{\text{ProjectNo}\}, \models \{\text{StudentID}\} \rightarrow \{\text{Supervisor}\}\} \\ \text{Total. CStutorcS}
```

- We use the notation $\Sigma \models X \to Y$ to denote that $X \to Y$ is **implied** by the set Σ of FDs.
- We write Σ^* for all possible FDs **implied** by Σ .

Equivalence of Functional Dependencies

Assighment Project Exam Help

- Example: $\{\Sigma_1, X, Y, Z, Z, Z\}$ and $\{\Sigma_2, X, Y, Y \to Z, X \to Z\}$. We have $\{\Sigma_1, X, Z\}$ and $\{\Sigma_2, X, Z\}$. Hence, $\{\Sigma_1, X, Z\}$ are equivalent.
- Questions:
 - 1 Is it possible that $\Sigma_1^* = \Sigma_2^*$ but $\Sigma_1 \neq \Sigma_2$? Yes
 - 2 Is it possible that $\Sigma_1^* \neq \Sigma_2^*$ but $\Sigma_1 = \Sigma_2$? **No**

Implied Functional Dependencies

Assignation of the Problem of Examination of the Assignation of the Problem of Examination of the Assignation of the Examination of the Examinatio

- Ompute the set of all attributes that are dependent on X, which is called the closure of X under Σ and is denoted by X^+ .
- apttps://tutores.com
 - $X^+ := X$;
 - Verteat (intil to more change of X^+) for each $Y \to Z \in \Sigma$ with $Y \subseteq X^+$,
 - for each $Y \to Z \in \Sigma$ with $Y \subseteq X^+$, add all the attributes in Z to X^+ , i.e., replace X^+ by $X^+ \cup Z$.

¹ See Algorithm 15.1 on Page 538 in [Elmasri & Navathe, 7th edition] or Algorithm 1 on Page 555 in [Elmasri & Navathe, 6th edition]

Implied Functional Dependencies – Example

Assignment Project, Exams Help $\Sigma = \{AC \rightarrow B, B \rightarrow CD, C \rightarrow E, AF \rightarrow B\}$ on R.

• Decide whether or not $\Sigma \models AC \to ED$ holds . • The property of AC:

• Decide whether or not $\Sigma \models AC \to ED$ holds .
• The property of AC:

- **2** Then we check that $ED \subseteq (AC)^+$. Hence $\Sigma \models AC \rightarrow ED$.
- Can you quickly tell whether or not $\Sigma \models AC \rightarrow EF$ holds?

Finding Keys

Assignment Project Exam Help

• Algorithm²:

Output: trese of all keys of PICS.COM

for every subset X of the relation R, compute its closure X⁺

if $X^+ = B$, then X is a superkey.

In the proper subset Y of X of Y of Y if Y is a key.

 A prime attribute is an attribute occurring in a key, and a non-prime attribute is an attribute that is not a prime attribute.

 $^{^2}$ It extends Algorithm 15.2(a) in [Elmasri & Navathe, 7th edition, pp. 542], or Algorithm 2(a) or in Algorithm 2(a) in [Elmasri & Navathe, 6th edition pp. 558] to finding all keys of R

Exercise – Finding Keys

As Scependancies en a relation scheme = {ABCD} ard a set of function Help

- List all the keys and superkeys of R.
- 2 Find all the prime attributes of *R*.
- Solution: Of the closures for all possible combinations of the attributes
 - $(A)^+ = A, (B)^+ = B, (C)^+ = C, (D)^+ = D;$
 - $W^{\bullet}(\overrightarrow{AB})^{\dagger} = \overrightarrow{ABCD}, (\overrightarrow{AC})^{+} = \overrightarrow{ACD}, (\overrightarrow{AD})^{+} = \overrightarrow{AD}, (BC)^{+} = BC,$ $\overrightarrow{AB})^{\dagger} = \overrightarrow{ABCD}, (\overrightarrow{AC})^{+} = \overrightarrow{ACD}, (\overrightarrow{AD})^{+} = \overrightarrow{AD}, (BC)^{+} = BC,$
 - $(ABC)^+ = ABCD$, $(ABD)^+ = ABCD$, $(ACD)^+ = ACD$, $(BCD)^+ = BCD$
 - Hence, we have
 - AB is the only key of R.
 - AB, ABC, ABD and ABCD are the superkeys of R.
 - A and B are the prime attributes of R.

Exercise – Finding Keys

Assignment Project Exam Help

Example: Still consider a relation schema $R = \{A, B, C, D\}$ and

https://futioncs.com

Some tricks:

If an attribute *never* appears in the dependent of any FD, this attribute

- If an attribute *never* appears in the determinant of any FD but appears in the dependent of any FD, this attribute must **not be part of each key**.
- If a proper subset of X is a key, then X must **not be a key**.

Finding Keys - Example

Assign Fine File Problem Problem Exam Help

- {StudentID, CourseNo, Semester} → {ConfirmedBy, Office};
- $\bullet \ \, \{\text{ConfirmedBy}\} \rightarrow \{\text{Office}\}.$

ł	nttps://tutores.com					
	Name	StudentID	CourseNo	Semester	ConfirmedBy	Office
	Tom	123456	COMP2400	2010 S2	Jane	R301
J	Mike	123458	COMP2400	2008 S2	Linda	R203
N	W/ke_	12:458	- COMR260(-	12008 S2	→ ⊘ Linda	R203

- What are the keys, superkeys and prime attributes of ENROLMENT?
 - {StudentID, CourseNo, Semester} is the only key.
 - Every set that has {StudentID, CourseNo, Semester} as its subset is a superkey.
 - StudentID, CourseNo and Semester are the prime attributes.