Formula Sheet

Jeff Nguyen

01/03/2020

Gauss-Markov Theorem

6th Assumptions: Stationarity

A variable if overtime, the mean μ_X , variance σ_X and covariance $Cov(Y_t, Y_{t-5})$ stays the same.

- If the mean changes: it's a "mean non-stationary" variable.
- If the variance changes: it's a "variance non-stationary" variable.

Review the regression equation:

$$Y_t = \beta_0 + \beta_1 X_t + \epsilon_t \tag{1}$$

\overline{Y}	X	ϵ	Regression OK?	Note
Stationary	Stationary	Stationary	Yes	
Non-Stationary	Non-Stationary	Stationary	Yes	Cointegration, needs more data
Non-Stationary	Non-Stationary	Non-Stationary	No	Spurious Regression

Time Trend

Every time series variable can be decomposed to the following trend:

- Time
- Seasonal
- Cyclical
- Autocorrelation
- Randomness

Note: Recession is usually an economic variable.

How to measure time trend?

Step 1:

Run Regression:

$$Y = \beta_0 + \beta_1 T + \beta_2 T^2 + \beta T^3 + \epsilon$$
Note: Nothing beyond T^3 (2)

If T^3 is insignificant, drop it and so on. The trend estimated equation is:

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 T + \hat{\beta}_2 T^2 + \hat{\beta}_3 T^3
Y = \hat{Y} + \epsilon$$
(3)

 $\hat{\epsilon}$ represents seasonality, cyclicality, autocorrelation, and randomness.

Step 2:

Use $\hat{\epsilon_t}$ to estimate autocorrelation:

$$\hat{\epsilon_t} = \alpha_0 + \alpha_1 \hat{\epsilon_{t-1}} \tag{4}$$

What to do when you have spurious regression, i.e. ϵ is non-stationary?

In this case, ϵ shows as not scattered on a scatterplot. We have to de-trend the variable.

Two type of trend:

- Deterministic: when variable explicitly driven by trend (saving account balance).
- Stochastic: random variable (S&P 500 price movement).

Important

- If the variable is Tr

De-trend Deterministic Trend Variable:

- Run a regression on time: $Y = \beta_0 + \beta_1 T + \beta_2 T^2 + \beta T^3 + \epsilon$.
- The estimated \hat{Y} is

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 T + \hat{\beta}_2 T^2 + \hat{\beta}_3 T^3 \tag{5}$$

- The equation is then $Y = \hat{Y} + \hat{\epsilon}$.
- Take the error of regression $\hat{\epsilon}$ as "de-trended" Y.

De-trend Stochastic Trend Variable:

• Differencing Y:

$$\Delta Y = Y_t - Y_{t-1} \tag{6}$$

For example, stock price model:

$$Y_t = Y_{t-1} + \epsilon_t$$
 via inspection:
$$Y_t = Y_0 + \sum_{i=0}^t \epsilon_i$$
 thus:
$$E[Y_t] = Y_0 \quad \text{The model is mean-stationary.}$$

$$Var[Y_t] = t\sigma_\epsilon^2 \quad \text{Variance non-stationary}$$

Note that the random-walk hypothesis is variance-non-stationary.

Removing "wrong" Nonstationarity:

- If the variable is Trend Stationary (TS) and was treated as Difference Stationary (DS), the estimated $\hat{\beta}$ will be unbiased, inefficient and consistent. Use more data to fix the problem.
- If the variable is DS and was treated as TS, $\hat{\beta}$ will be biased, inefficient and inconsistent.