TUTORIAL-6

Q 1. Explain whether the deadlock will occur for this situation? Semaphores A and B, initialized to 1

P_0	P_1
wait (A)	wait(B)
wait (B)	wait(A)
signal(B)	signal(A)
signal(A)	signal(B)

Q 2. Prove that the process/resource configuration below cannot result in a deadlock if the Deadlock prevention method (Hold and Wait) is followed

Q 3. Consider following system(One resource class only)

Process	Holding	Max claims
A	4	6
В	4	11
C	2	7

unallocated: 2

Determine whether it is in safe state or not? If C should have a claim of 9 instead of 7, then is there any safe state?

- Q 4. Deadlock is defined as two or more processes are waiting indefinitely for an event that can be caused by only one of the waiting processes. Give example of deadlock for 2 processes sharing some common semaphore.
- Q 5. Consider the following snapshot of a system:
 - a. What is the content of the matrix *Need*?
 - b. Is the system in a safe state?
 - c. If a request from process P1 arrives for (0,4,2,0), can the request be granted immediately?

	Allocation	Max	Available
	ABCD	ABCD	ABCD
P_0	0012	0012	1520
P_1	1000	1750	
P_2	1354	2356	
P_3	0632	0652	
P_4	0014	0656	

Q 6. There are four processes and two resources in the system. Each resource has two instances.

Furthermore:

- P1 acquires an instance of R2, and requests an instance of R1
- P2 acquires an instance of R1, and doesn't need any other resource
- P3 acquires an instance of R1 and requires an instance of R2
- P4 acquires an instance of R2, and doesn't need any other resource.
- a) Draw the resource allocation graph.
- b) Is there a cycle in the graph? If yes name it.
- c) Whether the system is in deadlock? If yes, explain why. If not, provide sequence of execution of processes.
- Q 7. Show that the four necessary conditions for deadlock indeed hold in this example. State a simple rule for avoiding deadlocks in this system.

- Q 8. A computer has six tape drives, with n processes competing for them. Each process may need two drives. What is the maximum value of n for the system to be deadlock free?
- Q 9. 'm' processes share 'n' resources of the same type. The maximum need of each process doesn't exceed 'n' and the sum of all their maximum needs is always less than m+n. Whether deadlock will occur or not?
- Q 10. Consider a system with 3 processes that share 4 instances of the same resource type. Each process can request a maximum of K instances. Resource instances can be requested and released only one at a time. What will be the largest value of K that will always avoid deadlock?