Program Analysis

14. Static Analysis by Equations

Kihong Heo

Specialized Frameworks

- Practical alternatives to the aforementioned general abstract interpretation framework
 - For simple languages and properties
 - Simple yet powerful enough
- Three specialized frameworks
 - Static analysis by equations (data-flow analysis)
 - Static analysis by monotonic closure (constraint-based analysis)
 - Static analysis by proof construction (type-based analysis)

Dataflow Analysis

- A specialized framework: static analysis by equations
- Static analysis = equations setup + equations resolution
- Assumption: Program = control-flow graph (CFG)
 - Nodes: semantic functions (statements)
 - Edges: control flows
 - That is why this approach is called "data-flow" analysis
- Not true for modern languages (e.g., higher order functions, exceptions, etc)

Program as a Graph

- Control-flow graph: a directed graph $G = (Node, \rightarrow)$
 - Nodes: atomic statements or conditions
 - Edges: execution order between the statements

```
x = input();
while (x < 0) {
    x++;
}</pre>
```


Equations

Describe the abstract states that flow at each edge of the CFG

- ullet : a state transfer function for the corresponding statement (i.e., abstract semantics)
- x_i : incoming pre-states to the node (elements of an abstract domain)
- y_i : post-states flowing out along the edges (elements of an abstract domain)

Transfer Function

- A monotonic function that describes the behavior of each statement
 - Defined on abstract domain: $f \in D \to D$
 - Monotonic: $\forall x, y \in D . x \sqsubseteq y \implies f(x) \sqsubseteq f(y)$
- Larger (less precise) inputs will result in larger outputs
 - Larger = more information merged = less precise

f: "increase by 1"

 x_1 : Pos x_2 : Neg y_1, y_2 : Unknown

Example: Transfer Functions

- Consider a simple grammar with only one variable x
- Goal: estimate the value of x with the sign abstract domain

 $f_n(x) = \begin{cases} N & \text{if } n < 0 \\ Z & \text{if } n = 0 \\ P & \text{if } n > 0 \end{cases}$ $f_x(x) = x$ $f_{E_1 + E_2}(x) = f_{E_1}(x) \oplus f_{E_2}(x)$ $f_{\text{input}()}(x) = \top$

 $f_{\text{nop}}(x) = x$ $f_{x:=E}(x) = f_E(x)$ $f_{x < E}(x) = \begin{cases} x \sqcap N & \text{if } f_E(x) = N, Z \text{ or } ZN \\ x & \text{otherwise} \end{cases}$

Grammar

Abstract Domain

Transfer functions for ${\cal E}$

Transfer functions for *C*

Static Analysis by Equation

- Static analysis = equation setup + equations resolution
- Semantics = solution of the equation = fixed point of the transfer function

Program

CFG

Equation

 x_i : abstract value of x after program point i

$$x_0 = T$$

$$x_1 = x_0 \sqcup x_3$$

$$x_2 = x_1 \sqcap N$$

$$x_3 = x_2 + P$$

$$x_4 = x_1 \sqcap ZP$$

Solution (Fixed point)

$$(x_0, x_1, x_2, x_3, x_4) = F(x_0, x_1, x_2, x_3, x_4)$$
 $= fixF$

$$x_0 = T$$

$$x_1 = T$$

$$x_2 = N$$

$$x_3 = T$$

$$x_4 = ZP$$

Equations Resolution

$$F: (Node \to Z^{\sharp}) \to (Node \to Z^{\sharp})$$

$$F(X) = \lambda c \in Node. f_c(\bigsqcup_{c' \to c} (X(c'))$$

- Static analysis result = a solution of the equations = a fixed point of ${\cal F}$
- Q: How to solve the equations?
- A: A generic iterative algorithm!

Fixed-point Iteration

- 1. Start from the bottom element
- 2. Apply the transfer function
- 3. If the result is stable, return, otherwise goto 2 with the result

$$(x_0, x_1, x_2, x_3, x_4) = F(x_0, x_1, x_2, x_3, x_4)$$
 $x_0 = T$
 $x_1 = x_0 \sqcup x_3$
 $x_2 = x_1 \sqcap N$
 $x_3 = x_2 +^{\sharp} P$
 $x_4 = x_1 \sqcap ZP$

X	Iter 0	lter 1	lter 2	Iter 3	Iter 4	lter 5
0	Т	Т	Т	Т	Т	Т
1	Т	Т	Т	Т	Т	Т
2	上	Т	Т	N	N	Ν
3	Т	上	Т	工	Т	Т
4	Т	Т	Т		ZP	ZP

Termination

- Q: Does the fix-point iteration algorithm always terminate?
 - Static analysis must terminate even though the target program does not
- A: Yes! because,
 - Abstract domains have finite height + transfer functions are monotone

$$\forall x, y \in D . x \sqsubseteq y \implies f(x) \sqsubseteq f(y)$$

Extension to Handle Memory

- How to analyze memory state?
 - Abstract memory: a mapping from variables to abstract values
 - E.g., $Mem^{\sharp} = Var \rightarrow Z^{\sharp}$
- How to make a CPO for abstract memory?

Constructions on CPOs

- If S is a set, and D_1 and D_2 are CPOs, then the followings are CPOs
 - Lifted set : $D=S_{\perp}$
 - Cartesian product : $oldsymbol{D} = oldsymbol{D}_1 imes oldsymbol{D}_2$
 - Separated sum : $oldsymbol{D} = oldsymbol{D}_1 + oldsymbol{D}_2$
 - ullet Function : $oldsymbol{D} = oldsymbol{D}_1 o oldsymbol{D}_2$

Abstract Semantics with Memory

- Abstract domain: $Mem^{\sharp} = Var_{\perp} \rightarrow Z^{\sharp}$
 - Order: $m_1^{\sharp} \sqsubseteq m_2^{\sharp} \iff \forall x \in Var_{\perp} . m_1^{\sharp}(x) \sqsubseteq m_2^{\sharp}(x)$
 - Join: $m_1^{\sharp} \sqcup m_2^{\sharp} = \lambda x \cdot m_1^{\sharp}(x) \sqcup m_2^{\sharp}(x)$
- Abstract semantics

$$F: (Node \to Mem^{\sharp}) \to (Node \to Mem^{\sharp})$$
$$F(X) = \lambda c. f_n \Big(\bigsqcup_{c' \to c} (X(c')) \Big)$$

Example

Program

x = input();sum = 0;while (x < 0) { sum += x;X++;

CFG

Equation

$$\begin{array}{lll} \textit{m}_i \text{ : abstract memory} & (m_0, m_1, m_2, m_3, m_4, m_5) = F(m_0, m_1, m_2, m_3, m_4, m_5) \\ & \text{after program point } i & = \text{fix} F \\ \\ \textit{m}_0 = \{x \mapsto \top \} & m_0 = \{x \mapsto \top \} \\ \textit{m}_1 = \{x \mapsto \top, sum \mapsto Z\} & m_1 = \{x \mapsto \top, sum \mapsto Z\} \\ \textit{m}_2 = \textit{m}_1 \sqcup \textit{m}_5 & m_2 = \{x \mapsto \top, sum \mapsto ZP\} \\ \textit{m}_3 = \textit{m}_2 \sqcap \top \{x \mapsto N\} & m_3 = \{x \mapsto N, sum \mapsto ZP\} \\ \textit{m}_4 = \textit{m}_3 \{sum \mapsto \textit{m}_3 (sum) +^{\sharp} \textit{m}_3 (x)\} & m_4 = \{x \mapsto N, sum \mapsto ZP\} \\ \textit{m}_5 = \textit{m}_4 \{x \mapsto \textit{m}_4 (x) +^{\sharp} P\} & m_5 = \{x \mapsto \top, sum \mapsto ZP\} \\ \textit{m}_6 = \textit{m}_2 \sqcap \top \{x \mapsto ZP\} & m_6 = \{x \mapsto P, sum \mapsto ZP\} \\ \end{array}$$

Solution (Fixed point)

= fixF

Conclusion

- Data-flow analysis: a specialized framework of static analysis
- Static analysis by equation
 - Static analysis = equations setup + equations resolution
- Limited but powerful enough for simple properties
- Limitations:
 - Control-flow before analysis?
 - Sound transfer function?
 - Systematic approaches to prove the correctness or vary the accuracy?