Sprawozdanie - Podstawy Robotyki

Grupa 3a	Wtorek 12:45
Data wykonania:	6.11.2018r
Zespół nr 1	Łukasz Leśny Michał Krzyszczuk Szymon Kuczaty

Sprawdzenie działania dla serwomechanizmu zaprojektowane w systemie Matlab/Simulink z wykorzystaniem biblioteki DSpace. Został więc utworzony następujący schemat:

Następnie przystąpiono do generacji kodu i załadowania na kartę systemu czasu rzeczywistego. Następnie utworzono panel w aplikacji ControlDesk.

Następnie wykonano szereg eksperymentów polegających na obserwacji uchybu regulacji dla różnych nastaw regulatorów dla dwóch ramion robota.

Ramię numer dwa, uchyb dla regulatora typu P

Ramię numer jeden, regulator typu P

Działanie regulatora typu P, dla ruchu ramienia numer jeden oraz dwa.

Dla regulatora typu PI, z błędnie dobraną stałą całkowania, ramię numer 2 traci stabilność

Uchyb regulacji, po zmianie nastaw części całkującej

Regulator typu PD dla ramienia numer dwa

Najprostszym i najczęściej używanym regulatorem stosowanym w serwomechanizmach jest regulator typu proporcjonalnego. Ruch ramienia numer jeden nie wpływa na regulację, położenie ramienia numer dwa (w widocznym dla aplikacji czasu rzeczywistego stopniu). Podczas używania w serwomechanizmach regulatora typu PI, należy rozważnie dobierać nastawy regulatora, ponieważ może zdarzyć się sytuacja w której obiekt utraci stabilność.