

GenCore version 5.1.7
 Copyright (c) 1993 - 2006 Biocceleration Ltd.

Om nucleic - protein search, using frame_plus_n2p model
 Run on: February 1, 2006, 13:19:05 ; Search time 53.4986 Seconds
 (without alignments)
 2961.978 Million cell updates/sec

Title: US-09-888-264-1

Perfect score: 2181

Sequence: 1 ccggggccattgtggcg.....ctcatggagactcaataaa 1123

Scoring table: BL0SUM62

Xgapop 10.0 , Xgapext 0.5

Xgapop 10.0 , Xgapext 0.5

Xgapop 6.0 , Xgapext 7.0

Delop 6.0 , Delext 7.0

2166443 seqs., 705528306 residues

Total number of hits satisfying chosen parameters: 4332886

Minimum DB seq length: 0

Maximum DB seq length: 200000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Command line parameters:

```
-MODEL=frame+n2p model -DEV=x1P
-Q /abs/ABSWEB/epool/US0988264/runat_01022006_131938_14779/app_query.fasta_1
-D=DUniProt -QFMT=Fastast -SUFFIX=x1P -MINMATCH=0.1 -LOOPC=0 -LOOPLEN=0
-UNITS=bits -START=1 -END=1 -MATRIX=blosum62 -TRANS=human40.cdt -LIST=45
-DOCALIGN=200 -THR_SCORE=0.5 -THR_MAX=100 -THR_MIN=0 -ALIGEN=15 -MOD=LOCAL
-OUTFILE=pto -NORMEXT -HEAPSIZE=500 -MINLEN=0 -MAXLEN=200000000 -HOST=abbs02p
-USER=US0988264 @CCN 1 2006 @runat 01022006_131938_14779 -NCPU=6 -ICPU=3
-NO_MMAP -NEG SCORES=0 -WAIT -DSPLOTC=100 -LONGLOG -DEV TIMEOUT=120
-WARN TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7
-YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7
```

Database : UniProt 05.80;*

1: uniprot_sprot:*

2: uniprot_trembl:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

ALIGNMENTS

RESULT	1
ID	06IBHO_HUMAN PRELIMINARY;
AC	06IBHO;
DT	05-JUL-2004 (TREMBUREL, 27, Created)
DT	05-JUL-2004 (TREMBUREL, 27, Last sequence update)
DT	05-JUL-2004 (TREMBUREL, 27, Last annotation update)
DE	SLC25A1 protein.
GN	Name=SLC25A1;
OS	Homo sapiens (Human).
OC	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC	Mammalia; Eutheria; Euarchontoglires; Primates; Catarrhini; Hominidae; Homo;
OX	NCBI_TaxID=9606;
RN	[1]
RP	NUCLEOTIDE SEQUENCE.
RA	Ebert L.; Schick M.; Neubert P.; Schatten R.; Henze S.; Korn B.;
RL	Submitted (JUN-2004) to the EMBL/CenBank/DBJ databases.
DR	EMBL: CR56834; CAC3315.1; -; mRNA.
DR	GO: GO:0016020; C:membrane; IEA.
DR	GO: GO:0005743; C:mitochondrial inner membrane; IEA.
DR	GO; GO:0005488; F:binding; IEA.
DR	GO; GO:0005215; F:transporter; IEA.
DR	GO; GO:0006810; P:transport; IEA.
DR	SEQUENCE 314 AA; 34061 MW; 9d61f817089ff5aa CRC64;
SQ	Alignment Scores:
	Score: 1.68e-106
	Length: 314
	Matches: 313
	Percent Similarity: 100.0%
	Conservative: 1
	Mismatches: 0
	Best Local Similarity: 99.7%
	Query Match: 73.4%
	DB: 2 Gaps: 0

Result No.	Score	Query Match	Length	DB ID	Description
1	1600	73.4	314	2 06IBHO_HUMAN	O6ibho homo sapien
2	1600	73.4	314	2 O5RJ5_PONPY	O5rj5 pongo pygma
3	1595	73.1	313	1 M2OM_HUMAN	Q02918 homo sapien
4	1588	71.4	314	2 O5SX53_MOUSE	O5sx53 mus musculus
5	1553	71.2	313	1 M2OM_MOUSE	Q9cr62 mu musculus
6	1549	71.0	314	2 Q5E9W4_BOVIN	Q5e9w4 bos taurus
7	1544	70.8	313	1 M2OM_BOVIN	P22292 bovis taurus
8	1535	70.4	313	1 M2OM_RAT	P97700 ratus norvegicus
9	1418	65.0	305	2 Q566L1_XENTR	Q566l1 xenopus laevis
10	1407	64.5	305	2 Q5INH3_XENLA	Q5inh3 xenopus laevis
11	1382	63.4	308	2 Q5IQB9_BRACHD	Q5iqb9 brachydanio
12	1363	62.5	313	2 Q5TA26_TETRAD	Q5ta26 tetradon
13	1258	57.7	252	2 Q5CTC7_MOUSE	Q5ctc7 mus musculus
14	1064	48.8	307	2 Q5IQH3_CAEFR	Q5iqh3 caenorhabditis
15	1052	48.2	306	2 P0992_CAEFR	P0992 caenorhabditis
16	43.9	2	193	2 Q5SX46_MOUSE	Q5sx46 mus musculus

Copyright (c) 1993 - 2006 Biocceleration Ltd.

Gencore version 5.1.7

OM nucleic - protein search, using frame_plus_n2p model

Run on: February 1, 2006, 13:33:41 (without alignments)

Search time 8.25358 Second

2618.292 Million cell updates/sec

Title: Perfect score: US-09-888-264-1

Sequence: 1 ccgaggccattgagtggcg. ctcattggagactcaataaa 1123

Scoring table: BLOSUM62

Xgapop	10.0	xgapext	0.5
Ygapop	10.0	Ygapext	0.5
Rgapop	6.0	Rgapext	7.0
Delop	6.0	Delext	7.0

Searched: 283416 seqs, 96216763 residues

Total number of hits satisfying chosen parameters: 566832

Minimum DB seq length: 0

Maximum DB seq length: 200000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Command line parameters:

```
-MODEL=frame_n2p.model -DEV=xlp
-O=/abs/ABSSWEB/spool/US09888264/runat_01022006_131840_14810/app/query.fasta_1
-DB=IR_QFMT=fasta -SUFFIX=xlp -MINMATCH=0.1 -ILOOPEXT=0
-UNITS=bits -START=1 -END=-1 -MATRIX=BLOSUM62 -TRANS=human4.0.cdi -LIST=45
-DOCALLIGN=200 -THR SCORE=PCT -THR MAX=100 -THR MIN=0 -ALIGN=15 -MODE=LOCAL
-OUTFMT=PL -NORM=EXT -HEAPSIZE=500 -MINLEN=200000000 -HOST=abs02p
-USER=US-09888264 @CGN_1_1_77 @runat_01022006_131840_14810 -NCPU=6 -ICPU=3
-NO_MMW -NBB SCORES=0 -WAIT -DSBLOCK=1100 -LONGLOG -DEV TIMEOUT=120
-WARN TIMEOUT=3 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7
-YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7
```

Database : PIR_80:*

- 1: piri:*
- 2: pi2:*
- 3: pi3:*
- 4: pi4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match	Length	DB ID	Description
1	1604	73.5	314	2	A56650 2-oxoglutarate carrier protein - human
2	1549	71.0	314	2	A336305 hypothetical protein
3	1052	48.2	323	2	T25459 2-oxoglutarate/mal
4	602.5	27.6	302	2	S65040 2-oxoglutarate/mal
5	598	27.4	302	2	S65042 2-oxoglutarate/mal
6	583	26.7	297	2	T07405 oxoglutarate/mal
7	583	26.7	313	2	D84613 hypothetical protein
8	554	25.4	313	2	T05577 uncoupling protein
9	527.5	24.2	331	2	T51899 probable 2-oxoglutarate/mal
10	510	23.4	290	2	S44091 oxoglutarate/mal
11	498	22.8	325	2	JCT7553 brain mitochondria
12	468	21.5	305	2	H86274 FA19_22 Protein -
13	459.5	21.1	2	S51351 hypothetical protein	
14	445.5	20.4	282	2	I49628 probable dicarboxy

ALIGNMENTS

RESULT 1

A56650

C;Species: Homo sapiens (man)

C;Date: 21-Jul-1995 #sequence_revision 21-Jul-1995 #text_change 09-Jul-2004

C;Accession: A56650; S25998

R;Iacobazzi, V.; Palmieri, F.; Runswick, M.J.; Walker, J.E.

DNA Seq. 3, 79-88, 1992

A;Title: Sequences of the human and bovine genes for the mitochondrial 2-oxoglutarate c

A;Reference number: A56650; MUID:93091249; PMID:1457818

A;Accession: A56650

A;Status: preliminary

A;Molecule type: DNA

A;Residues: 1-314 <IAC>

A;Cross-references: UNIPROT:Q02978; UNIPARC:UPI00016A206; EMBL:X66114; PID:923843; RIBBLE

A;Note: sequence extracted from NCBI backbone (NCBIP:120085)

C;Genetics:

C;Intron(s): 32/2; 83/2; 152/2; 182/3; 246/2; 263/3

C;Superfamily: ADP-ATP carrier protein; ADP-ATP carrier protein repeat homology

C;Keywords: duplication; mitochondrial; transmembrane protein

F;18-109/Domain: ADP-ATP carrier protein repeat homology <ACP1>

F;116-209/Domain: ADP-ATP carrier protein repeat homology <ACP2>

F;216-307/Domain: ADP-ATP carrier protein repeat homology <ACP3>

Alignment Scores:

Pred. No. :	3.72e-113	Length:	314
Score:	1604.00	Matches:	314
Percent Similarity:	100.0%	Conservative:	0
Best Local Similarity:	100.0%	Mismatches:	0
Query Match:	73.5%	Indels:	0
DB:	2	Gaps:	0

US-09-888-264-1 (1-1123) x A56650 (1-314)

Qy 21 ATGGCCGGAGGGAGTGGCGGGGGGGATGACGGAAGCCCCGACTCTCCCT 80

Db 1 MetalalathrAlaserAlaglyAlaglyMetAsglyLysProArgThrSerPro 20

QY	81	AAGTCCCTCAAGTCCTGTTGGGGCGCTGGGGAGGGCAGTGAGCTACAGTTTGTCAG	140
Db	201	TACAACACCAGCTCCATGCCCTAACAGATCTGAAAGCCAGGGCTGAGCTGAGGGCATT	260
21	lys	TerValysIpheLeuPhaHeuPheGlyDleuAlaGlyMetGlyLysMetGlyLysAlaThrValPhaValGln	40
QY	141	CCCTGGACTGGTAGAGACCGTGCGTGGGGAGGGCAAGACTCGAGAG	200
Db	61	TyrLysTerSerPheHisAlaLeuThrSerIleLeuLysAlaGluGlyLeuArgLysIle	80
Db	41	ProLeuAspLeuValAlaAsnArgMetGinLeuSerGlyLysGluIaLysThaArgLysGlu	60
QY	261	TACATGGCTGCGCTGGCTGAGCTGGCTGATGATGTTCCCCCTGGCTTCG	320
Db	81	TyrThrGlyLeuSerAlaGlyLeuLeuArgInAlaThrTyrrInThrThrArgLeuGly	100
Db	321	ATCTATACCGTGCTGTTAGGCCCTGACTGGGGCTGATGATGTTCCCCCTGGCTTCG	380
QY	381	CYGAAGCTGTGATGGCATGACGCCAGGGCCAGTGCCACTGGCTGCCTGTTGCGAACCCAGCC	440
Db	101	IleTerThrValLeuPheGluArgLeutnglyIvalAspGlyLysTerProProGlyPheLeu	120
QY	121	IeulysAlaValIleLeuGlyMetThrIaIgIyAlaTerGlyAlaPheValGlyIthProAla	140
QY	441	GAAGTGCTCTATCCGATGACTGCCATGGGGCTCCAGTGACCTGACCGCCTGGCTGC	500
Db	141	GluValAlaLeuIleArgMetThrIaIaPheGlyArgLeuProAlaAspGinArgArgGly	160
QY	501	TACAAAATGTGTTAACGCCCTAATCGATCACCCGGAGGGCTGAGGGTGCTCAC TG	560
Db	161	TyrLysAlaValPheAspAlaLeuIleArgIleThrArgGluGlyIleLeu	180
QY	561	TGGCGGGCTGCTCCATCCATGCTCGGCCCTGCTCAVGTGCCAGCTGCC	620
Db	181	TerParglyCysIleProThrMetAlaIaGalaValValValAlaIaGinIeuAla	200
QY	621	TCCTACTCCCAATCCAACAGTTTACTGACTCAGGCTACTCTGACAACTCTG	680
Db	201	SerTerSerGlnSerIleArgInPheIleLeuAspSerGlyTerPheSerAspAsnIleu	220
QY	681	TGCACTCTGTGCCAGATGATGATGAGGGCTTGTACCACTGTGCTCATGCTGTG	740
Db	221	CysHisPheCysAlaSerMetIleSerGlyLeuIalThrAlaAlaSerMetIleVal	240
QY	741	GACATGCCAAGACCCGATCACAACATGCCATGATGATGCTGAGCGGAATAAG	800
Db	241	AspIleAlaLysThrArgIleGlnAlaMetArgMetIleAspGlyLysProGlyTerIle	260
QY	801	AACGGGCTGACCTGCTGCTCAAGTGTGCGCTGAGGGCTTTCACCTCTGGAAG	860
Db	261	AsnGlyLeuAspIleLeuPhyLeuValValArgTerGlyLeuTerPheSerLeuTerPhe	280
QY	861	GGCTTCAGGCCGACTATGCCGCCACACCGCTCACCTCATCTCTG	920
Db	281	GlyPheTerProThrTerIaIaArgLeuGlyProIstThrValLeuThrPheIleLeu	300
QY	921	GAGCAGATGAAACAGGCCATACAAAGGTCTTCTCAGTGGC	962
Db	301	GludIleMetAsnLysAlaTerIleLeuBargLeuPheLeuSerGly	314
RESULT 2			
A36305		2-oxoglutarate/malate carrier protein, inner mitochondrial membrane - bovine	
C;Species:	Bos Primigenius taurus (cow)		
C;Date:	28-Mar-1991 #sequence revision 28-Mar-1991 #text change 09-Jul-2004		
C;Accession:	A36305; 56650; 56731; A54249; S29597		
R;Runswick, M.J.; Walker, J.B.; Bisaccia, F.; Iacobazzi, V.; Palmieri, F.			
Biochemistry 29, 1103-1106, 1990			
A;Title:	Sequence of the bovine 2-oxoglutarate/malate carrier protein: structural relation		
A;Reference number:	A36305; MUID:91105033; PMID:2271695		
A;Accession:	A36305		
A;Status:	preliminary		
A;Molecule type:	mRNA		

A;Residues: 1-314 <RUN>
 A;Cross-references: UNIPROT:P22292; UNIPARC:UPI000167C3C; GB:M60662; GB:J05296; NID:916;
 R;Iacobazzi, V.; Palmieri, F.; Runswick, M.J.; Walker, J.E.
 DNA Seq. 3, 79-88, 1992.
 A;Title: Sequences of the human and bovine genes for the mitochondrial 2-oxoglutarate carboxylase.
 A;Reference number: AS6650; MUID:93091249; PMID:1457818
 A;Accession: B56650
 A;Status: preliminary
 A;Molecule type: DNA
 A;Residues: 1-314 <IA2>
 A;Cross-references: UNIPARC:UPI000167C3C; EMBL:X66115; NID:931; PIDN:CAA46906_1; PID:93;
 A;Note: Sequence extracted from NCBI backbone (NCBIn:120086, NCBIP:120087)
 R;Bisaccia, F.; Zara, V.; Capobianco, L.; Iacobazzi, V.; Mazzeo, M.; Palmieri, F.
 Biochim. Biophys. Acta 1292, 281-288, 1995.
 A;Title: The formation of a disulfide cross-link between the two subunits demonstrates the
 A;Reference number: S65731; MUID:96176856; PMID:8597574
 A;Accession: S65731
 A;Status: preliminary
 A;Molecule type: protein
 A;Residues: 14-160 <B1S>
 A;Cross-references: UNIPARC:UPI000177A24
 R;Bisaccia, F.; Capobianco, L.; Brandolin, G.; Palmieri, F.
 Biochemistry 33, 3705-3713, 1994.
 A;Title: Transmembrane topography of the mitochondrial oxoglutarate carrier assessed by immunoprecipitation
 A;Reference number: A54249; MUID:94190892; PMID:8142370
 A;Accession: A54249
 A;Status: preliminary
 A;Molecule type: protein
 A;Residues: 6-15;23-32;40-49;62-71;104-113;170-179;183-192 <BI2>
 A;Cross-references: UNIPARC:UPI000177A25; UNIPARC:UPI000177A26; UNIPARC:UPI000177A27;
 R;Bisaccia, F.; Capobianco, L.; Mazzeo, M.; Palmieri, F.
 FEBS Lett. 392, 54-58, 1996.
 A;Title: The mitochondrial oxoglutarate carrier protein contains a disulfide bridge between
 A;Reference number: S71377; MUID:96354876; PMID:8769314
 A;Accession: S71377
 A;Molecule type: protein
 A;Residues: 148-160;189-200 <BIW>
 A;Cross-references: UNIPARC:UPI000177A24; UNIPARC:UPI000177A2C
 A;Experimental source: heart
 C;Genetics:
 A;Introns: 32/2, 83/2, 246/2, 263/3
 C;Superfamily: ADP,ATP carrier protein; transmembrane protein repeat homology
 C;Keywords: duplication; mitochondrion; ADP,ATP carrier protein repeat homology <ACP2>
 F;18-109/Domain: ADP,ATP carrier protein repeat homology <ACP2>
 F;116-205/Domain: ADP,ATP carrier protein repeat homology <ACP3>
 F;216-307/Domain: ADP,ATP carrier protein repeat homology <ACP3>
 F;221-224/Disulfide bonds: #status experimental

PI Ghosh SS, Fahy ED, Zhang B, Gibson BW, Taylor SW, Glenn GM;
 PI Warnock DE;
 XX WPI; 2003-845369/78.

XX PT Identifying a mitochondrial target for drug screening assays and for
 PT treating diseases associated with altered mitochondrial function,
 PT comprises detecting a modified polypeptide in a sample and correlating
 PT with the disease.

XX PS Claim 1; SEQ ID NO 498; 180pp; English.

CC This invention relates to novel mitochondrial targets that can be used
 CC for therapeutic intervention in treating a disease associated with
 altered mitochondrial function. Specifically, it refers to a method for
 identifying proteins of the human heart mitochondrial proteome that are
 useful for drug screening assays, as well as therapeutic targets. The
 present invention describes a method for identifying such proteins that
 CC can be used in the treatment of various diseases associated with altered
 mitochondrial function including diabetic neuropathy, Huntington's disease,
 osteoarthritis, Leber's hereditary optic neuropathy (LHON), mitochondrial
 encephalopathy, lactic acidosis and stroke (MELAS), myoclonic epilepsy
 CC raged red fibre syndrome (MERRF) or cancer. Accordingly, these
 compositions have neuroprotective, osteopathic, ophthalmological and
 CC anticonvulant, antirhythmic, cytosolic activities. This polypeptide sequence is a human heart
 CC mitochondrial protein of the invention.

XX SQ Sequence 314 AA;

Alignment Scores:
 Pred. No.: 4.93e-133 Length: 314
 Score: 100.00 Matches: 314
 Percent Similarity: 100.0% Conservative: 0
 Best Local Similarity: 100.0% Mismatches: 0
 Query Match: 73.5% Indels: 0
 DB: Gaps: 0

US-09-888-264-1 (1-1123) x ADJ58692 (1-314)

QY 21 ATGGCGGGGACCGCGAGTGCCGAGGAGATGAGCGGGAGGCCGCGCTACTCCCT 80
 Db 1 MetAlaIaThrAlaLeuAlaIaIgIyAlaIgIyMetAspGlySpaArgIhrSipPro 20
 QY 81 AAGTCGGTCAAGTCCTCTTGGGGCTGGGGAGGGCTACAGTTGTGCG 140
 Db 21 LysSerValLysPheLeuHeGlyGlyLeuAlaIgIyMetGlyAlaThrValPheAlgIn 40
 QY 141 CCGCTGACCTGTGAGAACCGATCAGTGAGCGGGGGCAAGCTCGAG 200
 Db 41 ProLeuAspLeuVallyBAsnArqMetGlnLeuSerGlyGluValAlaThrArgGlu 60
 QY 201 TACAAACCGAGCTCCATGCCCTCACCAAGTATCTGAAGGAGAACGCTGGGGATT 260
 Db 61 TyrLysThrSerHeHsAlaLeuThrSerIleIeuIysAlaIgIuglyLeuArgDylle 80
 QY 261 TACACTGGCTGGGGCTGGCTCTGGCCACCTAACCAACTGGCCCTTGCG 320
 Db 81 TyrThrGlyLeuSerAlaIgIyeLeuLeuArgGlnAlaThrTyThrThrThrArgLeuGly 100
 QY 321 ACTATACCGTGTGAGGCGCTGACTGGGCTGATGGACTCCCCGCTTG 380
 Db 101 IleTyrrThrValLeuIpheGluArgLeuThrGlyAlaAspGlyThrProDyPhleu 120
 QY 381 CTGAAAGGTGTGATGGATGACGGCAGGTGCACTGGCTGCTTGTGGAAACCAAGCC 440
 Db 121 IeIuIysAlaAvailIedIyMetIraIaIcIyAthrGlyAlaIpheAlgIyIhrProAla 140
 QY 441 GAAGTGCTCTATCCGATGATGCGCATGCGGCTCCGGCTGACCAAGGCCGRCG 500
 Db 141 GluValAlaLeuIleArgmetThrAlaAspGlyArgLeuProAlaAspGlnIargArgGly 160
 QY 501 TACAAAATGTGTTAACGCCCTGATTGAAATCACCCGGANGAGGGTGCTCACAG 560

XX RESULT 2
 ABG75060
 ID ABG75060 standard; protein; 314 AA.
 XX AC ABG75060;
 XX DT 12-FEB-2004 (first entry)
 XX DE Human solute carrier family 25 member 11 protein.
 XX KW Energy homeostasis; mouse; metabolism; triglyceride; metabolic disease;
 KW gene therapy; anorectic; immunomodulator; antidiabetic; hypotensive;
 KW cardiant; osteopathic; antilipemic.
 XX OS Homo sapiens.
 XX PN WO2003075945-A2.
 XX PD 18-SEP-2003.
 XX PF 14-MAR-2003; 2003WO-EP002714.
 XX PR 14-MAR-2002; 2002EP-00005882.
 PR 15-MAR-2002; 2002EP-00005012.
 PR 20-MAR-2002; 2002EP-00006271.
 PR 25-MAR-2002; 2002EP-00006810.
 XX PA (DEVE-) DEVELOGEN ENTwicklungsbiologische FORsch.
 XX PI Eulenberg K, Steuernagel A, Haeder T, Broenner G;
 XX DR WPI; 2003-748334/70.
 DR N-P5DB; ACH00820.
 XX PT New pharmaceutical composition comprising a nucleic acid molecule
 PT encoding proteins regulating the energy homeostasis and metabolism of
 PT triglycerides useful for detecting or preventing metabolic diseases, e.g.
 PT obesity.
 XX PS Claim 3; FIG 11C; 140pp; English.
 XX CC The present invention relates to pharmaceutical compositions comprising

Gencore version 5.1.7
Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM nucleic - nucleic search, using SW model

Run on: February 2, 2006, 15:49:36 ; Search time 574.757 Seconds
(w/out alignments)
1637.486 Million cell updates/sec

Title: US-09-888-264-1

Perfect score: 1123

Sequence: 1 ccgagggccattgtgggg... ctcattggggactaataaa 1123

Scoring table: IDENTITY_NUC

Gapext 1.0

Searched: 6068529 seqs, 419036697 residues

Total number of hits satisfying chosen parameters: 12137058

Minimum DB seq length: 0

Maximum DB seq length: 200000000

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 45 summaries

Database : Published Applications NA_New:^{*}

1: /cgn2_6/ptodata/1/pubpna/us08_NEW_PUB.seq: *
2: /cgn2_6/ptodata/1/pubpna/us06_NEW_PUB.seq: *
3: /cgn2_6/ptodata/1/pubpna/us07_NEW_PUB.seq: *
4: /cgn2_6/ptodata/1/pubpna/PCT_NEW_PUB.seq: *
5: /cgn2_6/ptodata/1/pubpna/us09_NEW_PUB.seq: *
6: /cgn2_6/ptodata/1/pubpna/us10_NEW_PUB.seq: *
7: /cgn2_6/ptodata/1/pubpna/us11_NEW_PUB.seq: *
8: /cgn2_6/ptodata/1/pubpna/us11_NEW_PUB.seq: *
9: /cgn2_6/ptodata/1/pubpna/us11_NEW_PUB.seq: *
10: /cgn2_6/ptodata/1/pubpna/us60_NEW_PUB.seq: *
11: /cgn2_6/ptodata/1/pubpna/us60_NEW_PUB.seq: *

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No. Score % Query Match length DB ID Description

Result No.	Score	%	Query	Match length	DB	ID	Description
C 1	136.2	12.1	987	7	US-10-750-185-57090		Sequence 57090, A
C 2	136.2	12.1	987	7	US-10-750-623-57090		Sequence 57090, A
C 3	120	10.7	1339	8	US-11-136-527-3307		Sequence 3307, App
C 4	102.4	9.1	107	1339	8	US-11-136-527-3307	Sequence 3307, App
C 5	102.2	9.1	1646	8	US-11-136-527-3307	Sequence 3307, App	
C 6	92.4	8.2	1575	8	US-11-136-527-3307	Sequence 3307, App	
C 7	86	7.7	948	8	US-11-128-061-446	Sequence 446, App	
C 8	86	7.7	948	8	US-11-128-061-446	Sequence 446, App	
C 9	80.8	7.2	1194	8	US-11-136-527-3307	Sequence 3307, App	
C 10	80.8	7.2	1194	8	US-11-136-527-3307	Sequence 3307, App	
C 11	79.8	7.1	935	8	US-11-128-061-446	Sequence 446, App	
C 12	79.8	7.1	935	8	US-11-128-061-446	Sequence 446, App	
C 13	78.8	7.0	924	8	US-11-128-061-446	Sequence 446, App	
C 14	78.8	7.0	924	8	US-11-128-061-446	Sequence 446, App	
C 15	73.4	6.5	600	8	US-11-128-061-4388	Sequence 4388, App	
C 16	73.4	6.5	600	8	US-11-128-061-4388	Sequence 4388, App	
C 17	66.8	5.9	816	8	US-11-019-11-25	Sequence 25, App	
C 18	64.8	5.8	1572	8	US-11-136-527-160	Sequence 160, App	
C 19	47.4	4.2	1455	7	US-10-947-249-147	Sequence 147, App	
C 20	47.4	4.2	1455	7	US-10-947-249-147	Sequence 147, App	
C 21	47.2	4.2	600	8	US-11-128-061-4389	Sequence 4389, App	
C 22	47.2	4.2	600	8	US-11-128-061-4389	Sequence 4389, App	

RESULT 2

US-10-750-185-57090/c

; Sequence 57090, Application US/10750185
; Publication No. US201050260603A1

; GENERAL INFORMATION:
; APPLICANT: MMJ GENOMICS, INC.
; APPLICANT: DENISE, SUE K.
; APPLICANT: KERR, RICHARD
; APPLICANT: ROSENFIELD, DAVID
; APPLICANT: HOLM, TOM
; APPLICANT: BATES, STEPHEN
; APPLICANT: FANTIN, DENNIS

; TITLE OF INVENTION: COMPOSITIONS FOR INFERRING BOVINE TRAITS

; FILE REFERENCE: MMJ100-2

; CURRENT APPLICATION NUMBER: US/10/750,185
; CURRENT FILING DATE: 2003-12-31
; PRIORITY APPLICATION NUMBER: US 60/437,482
; PRIORITY FILING DATE: 2002-12-31

; NUMBER OF SEQ ID NOS: 64922
; SOFTWARE: PatentIN version 3.1

; SEQ ID NO: 57090
; LENGTH: 987
; TYPE: DNA
; ORGANISM: Bovine 19866880933603
; US-10-750-185-57090
Query Match 12.1%; Score 136.2; DB 7; Length 987;
Best Local Similarity 89.1%; Pred. No. 1.9e-28;
Matches 147; Conservative 0; Mismatches 18; Indels 0; Gaps 0;

Qy 112 CCGGATGAGTACAGTTTGCTGGCCCTGGACCTGGTGAAGAACCGGTGAGT 171
Db 117 CCAGGATGGAGTCAGTTTGCTGGACCTGGTGAAGAACCGGTGAGT 118
Qy 172 TGAAGGGAGGGCCAGACTCGAGTACAAACAGCTCCATGCCCTACCAAGTA 231
Db 57 TCCGAGGGAGGAGCAGACACAGAGTACACAGAACCTGCCTCATCGCA 58
Qy 232 TCTCTGGAGGAGGCCCTACCTGGCTGCTGG 276
Db 57 TCCGAGGGAGGAGCAGACACAGAGTACACAGAACCTGCCTCATCGCA 13

; Sequence 57090, Application US/10750623
; Publication No. US20050287531A1
; GENERAL INFORMATION:
; APPLICANT: MM GENOMICS, INC.
; APPLICANT: DENISE, Sue K.
; APPLICANT: ROSENFIELD, David
; APPLICANT: HOLM, Tom
; APPLICANT: FANTIN, Dennis
; APPLICANT: KERR, Richard
; TITLE OF INVENTION: METHODS AND SYSTEMS FOR INFERRING BOVINE TRAITS
; CURRENT APPLICATION NUMBER: US/10/750,623
; CURRENT FILING DATE: 2003-12-31
; PRIORITY NUMBER: US 60/437,482
; NUMBER OF SEQ ID NOS: 64922
; SOFTWARE: PatentIN version 3.1
; SEQ ID NO: 57090
; LENGTH: 987
; TYPE: DNA
; ORGANISM: Bovine 19866880933603
; US-10-750-623-57090

Query Match 12.1% Score 136.2; DB 7; Length 987;
Best Local Similarity 89.1%; Pred. No. 1.9e-28; Mismatches 0; Indels 0; Gaps 0;
Matches 147; Conservative 0;

Qy 112 CCGGGATGGAGGCTACAGTTTGTCAGGCCCTGAGCTGAGTGAAGAACCGATGAGT 171
Db 177 CGGGATGGAGGCTACAGTTTGTCAGGCCCTGAGCTGAGTGAAGAACCGATGAGC 118
Qy 172 TTAGCCGGAAACGGCCAGACTGAGAGTACAAACCAACCGCTTACAGTA 231
Db 117 TGTGTGGGAAGAGCCAGACAGAGATCACAAACCAACCGCTTACAGTA 58

Qy 232 TCTGTGAGGCAAGGGCTGAGGGCATTAACCTGGCTCGG 276
Db 57 TCTGTGAGGCAAGGGCTTACAGCAATTACACGGGTACTGG 13

RESULT 3
US-11-136-527-3107
; Sequence 3307, Application US/11136527
; Publication No. US20050287570A1
; GENERAL INFORMATION:
; APPLICANT: WETCH
; APPLICANT: Mounts, William M
; TITLE OF INVENTION: Probe Arrays For Expression Profiling of Rat Genes
; FILE REFERENCE: 031896-041000 (AM101086)
; CURRENT APPLICATION NUMBER: US/11/136,527
; CURRENT FILING DATE: 2005-05-25
; PRIORITY NUMBER: US 60/574,294
; PRIORITY FILING DATE: 2005-05-26
; NUMBER OF SEQ ID NOS: 362830
; SOFTWARE: PatentIn version 3.2
; SEQ ID NO: 3307
; LENGTH: 1339
; TYPE: DNA
; ORGANISM: Rattus norvegicus
; US-11-136-527-3107

Query Match 10.7% Score 120; DB 8; Length 1339;
Best Local Similarity 48.1%; Pred. No. 8.1e-24; Mismatches 430; Indels 18; Gaps 2;
Matches 416; Conservative 0;

Qy 87 GCGAAGTTCCTGTTGAGGGCTGGCGGAGGATGAGTGTGTCAGGCCCTG 146
Db 178 GTAAAGTTCCTGGGGCGGCGACTGCAACCTGTTGCTGATCTCTCACCTCCCTG 237
Qy 147 GACCTGGTGAAGAACCGGATGAGTGGCTGAGGCGAGA-----AGGGCCAGAGTCGAGAG 200
Db 238 GACACGCCAACGTCGCCTGAGATCCAAGGGAGAACCCAGGAGTCAGGCCTGAG 297

RESULT 4
US-11-010-239-108
; Sequence 108, Application US/11010239
; Publication No. US20060015970A1
; GENERAL INFORMATION:
; APPLICANT: PENNELL
; APPLICANT: Jack OKAMURO
; APPLICANT: Richard SCHNEEBERGER
; APPLICANT: Yiwen FANG
; APPLICANT: Shing KWOK
; APPLICANT: Diane JOFUKU
; APPLICANT: Roger PENNELL
; APPLICANT: Edward A. KIEGL
; APPLICANT: Jonathan DONSON
; APPLICANT: Nestor APUTA
; TITLE OF INVENTION: NUCLEOTIDE SEQUENCES AND POLYPEPTIDES ENCODED THEREBY USEFUL FOR
; MODIFYING PLANT CHARACTERISTICS
; FILE REFERENCE: 21700-1585PUS2
; CURRENT APPLICATION NUMBER: US/11/010 239
; CURRENT FILING DATE: 2004-12-09

Qy 201 TACAAAACAGCTCCATGCCCTCACCGATACTCTGAGGGCAAGACCCCTGAGGGCAT 260
Db 298 TACCGCGCGTCTCGTACCATCTCTGAGCTATGGTGCAGAGGGCTCCCGCAGCCC 357
Db 261 TACACTGGCTGCGGCTGGCTGCGTGGCTAGGCCACTCACCCACTTACCCGCTTG 320
Db 358 TACAGCGGCTGCTGCTGGCTGCTGCGATGAGTGGTTTGCCCTGAATTGAG 417
Qy 321 ATCTATACCGCTGTTGAGGCCCTGAGGGCTGAGTGGTACTCCCCCTGGTTTG 380
Db 418 CTCTACCATCTGTCAGAGCTTACACCCAAAGGAACGGACATCCAGCGRGCC 477
Qy 381 CTGAAGGCTGATGGCATGACCGAGGTGCACTGGCTTGGGGACACAGCC 440
Db 478 ATCAGGATCTGGCAGGCTGGACCACTGGAGGACCATGAGCTGACCTGCTCAACCACG 537
Qy 441 GAGTGTGCTPATCGGATGACTGGCGATGCCGAGCTTCACTGGTACGGTAC 500
Db 538 GATGTGGTGAAGGTCCGATTCAGGATGATAGCCAGGACCTCCAGCGRGCC 560
Qy 501 TACAATATGTTAACGCCCTGATGAGTCAACCGGGAGGGTGTCTCACATG 597
Db 598 TACAGGAGACTATGGTGTGCAAGAACCTGAGGAGGAACTGGGAGAGGAA 597
Db 561 TGGCGGAGCTGATCCCTACATGGCTGGGGCGTGTGCAATGTGCCCAGCTGCC 620
Db 658 TGGAAAGGACTGTGGCCACATCAGAAACGGCATGTCATWTGCTGAGATGTG 717
Qy 621 TCCTACTCCCAATCCAGAACGAGCTTCTACTGGACTCAGGACTACTCTCTGACACATCTG 680
Db 718 ACCTATGACATCATCAGGAGAGCTGCTGGACTCAGGACTACTCTCTGACACATCTG 777
Qy 681 TGCCTACTCTGCGCAAGCATGATCACCGCTGCTGACCACTGCTCCATGCTG 740
Db 778 TGTCACTTGTGCTCTACCTTGAGCTGTTCTGAGCTGCTGAGGAGGCTG 837
Qy 741 GACATGCCAAGACCCGATCCAGAACATGGCGATGATGATGGAGGCCGATACAG 800
Db 838 GATGTGCTAACAGCCGATAC-----ATGAGCTCCCGAGGAGTACGA 885
Qy 801 AACGGGGTGGAGCTGCTGTCAGGTGTCCTGAGGAGCTCTCTGAGCTGTGAG 860
Db 886 AGCCCTTACACTGTGTTGAGGATGTGGCCAGGAGGGCCCCACAGCCCTCTACAA 945
Qy 861 GCCTTCAGGCTACTATGCGCCGCTGGCCCCACACGCTCTCACCTCATCTCTG 920
Db 946 GATTCATGCGCTCTCTGAGCTGAGTCTGGAGACGAGATGATGTTGTAACCTAC 1005
Qy 921 GAGCAGATGAAACAGGCCAACAG 944
Db 1006 GAGCAGGTGAAACAGGCCCTGATG 1029


```

Db 2702 CTGATGGCAGACCGAGGAGGCTGCGTCCCTTGCGGCAC 2643
Qy 552 CTCAGACTGTGCGGCTACAAAAATGTTAACGCCCTGATTGATCACCCGGAAAGGGGTC 207
Db 206 CTCACTGTGGCGGGCTCATCCTACATGGCTCGGGCTGTC 147
Qy 612 CAGCTGGCCCTACTCCCATCCAGCAGCTTCTTACTGGA-CTCAGCTACTTCTGA 670
Db 146 CAGCTGGCCCTACTCCCATCCAGCAGCTTACTGACCCAGGCTACTTCTGA 87
Qy 671 CAACATCTGTGCACTCTGTGCAAGCTGAGCTGATGAGGGCTGCTGCT 730
Db 86 CAACATCTGTGCACTCTGTGCAAGCTGAGCTGATGAGGGCTGCTGCT 27
Qy 731 CATSCTGTGACATGCCCAGACCC 756
Db 26 CATGCTGTGACATGCCAGACCC 1

RESULT 2
US-09-949-016-15809/c
; Sequence 15809, Application US/094949016
; Patent No. 6812339
; GENERAL INFORMATION:
; APPLICANT: VENTER, J. Craig et al.
; TITLE OF INVENTION: POLYMORPHISMS IN KNOWN GENES ASSOCIATED WITH HUMAN DISEASE, METHODS OF DETECTION AND USES THEREOF
; FILE REFERENCE: CL001307
; CURRENT APPLICATION NUMBER: US/09/49,016
; CURRENT FILING DATE: 2000-04-14
; PRIOR APPLICATION NUMBER: 60/241,755
; PRIOR FILING DATE: 2000-10-20
; PRIOR APPLICATION NUMBER: 60/237,768
; PRIOR FILING DATE: 2000-10-03
; PRIOR APPLICATION NUMBER: 60/231,498
; PRIOR FILING DATE: 2000-09-08
; NUMBER OF SEQ ID NOS: 207012
; SOFTWARE: PastSeq for Windows Version 4.0
; SEQ ID NO: 15809
; LENGTH: 11073
; TYPE: DNA
; ORGANISM: Human
; US-09-949-016-15809

Query Match 24.0%; Score 269.4; DB 3; Length 11073;
Best Local Similarity 81.1%; Pred. No. 4e-60; Matches 364; Conservative 0; Mismatches 1; Indels 84; Gaps 1;
Qy 112 CCGGGATGGAGCTACAGTTTGTGAGGACCTGGACTGGTGAAGAACGGATGCACT 171
Db 3062 CCAGATGGAGCTACAGTTTGTGAGGACCTGGACTGGTGAAGAACGGATGCACT 3003
Qy 172 TGACGGGGAGGCCAAGACTCGAGAATACAAACAGCTCCATGCCCTACAGTA 231
Db 3002 TGAGGGGGAGGCCAAGACTCGAGAATACAAACAGCTCCATGCCCTACAGTA 2943
Qy 232 TCCCTGAGGAGGCCAAGACTCGAGAATACAAACAGCTCCATGCCCTACAGTA 267
Db 2942 TCCCTGAGGAGGCCAAGACTCGAGAATACAAACAGCTCCATGCCCTACAGTA 2883
Qy 268 -----
Db 2882 GTAGACTGTGGTGGAGCTCTAGACCTTGCCATATGTCGACCCCTCTGCTCTCA 2823
Qy 268 GGCTCTGCTGAGCTGGCTGCTGGCTGGCCACCTACCCGCTTGGCTATA 327
Db 2822 GGCTCTGCTGAGCTGGCTGCTGGCTGGCCACCTACCCGCTTGGCTATA 2763
Qy 328 CGCTCTGTTGAGGCCCTACTGGGCTATGTTACTCCCTGGCTTGTGAAG 387
Db 2762 CGCTCTGTTGAGGCCCTACTGGGCTATGTTACTCCCTGGCTTGTGAAG 2703
Qy 388 CTGATGGCAGACCGAGGAGGCTGCGTCCCTTGCGGCAC 447

RESULT 3
US-09-620-312D-874
; Sequence 874, Application US/09620312D
; Patent No. 656662
; GENERAL INFORMATION:
; APPLICANT: Tang, Y. Tom
; APPLICANT: Liu, Chenghua
; APPLICANT: Asundi, Vinod
; APPLICANT: Zhang, Jie
; APPLICANT: Ren, Feiyun
; APPLICANT: Chen, Rui-hong
; APPLICANT: Zhao, Qing A.
; APPLICANT: Weirman, Tom
; APPLICANT: Xue, Aidong J.
; APPLICANT: Yang, Yonghong
; APPLICANT: Wang, Jian-Rui
; APPLICANT: Ma, Yuning
; APPLICANT: Wang, Dunrui
; APPLICANT: John Tillingsast
; APPLICANT: Demanac, Radose T.
; TITLE OF INVENTION: N. 656662e1 Nucleic Acids and Polypeptides
; FILE REFERENCE: 78CIP2B
; CURRENT APPLICATION NUMBER: US/09/620,312D
; CURRENT FILING DATE: 2000-07-19
; PRIOR APPLICATION NUMBER: 09/552,317
; PRIOR FILING DATE: 2000-04-25
; PRIOR APPLICATION NUMBER: 09/488,725
; PRIOR FILING DATE: 2000-01-21
; NUMBER OF SEQ ID NOS: 1105
; SOFTWARE: pt_FL_genes Version 1.0
; SEQ ID NO: 874
; LENGTH: 2003
; TYPE: DNA
; ORGANISM: Homo sapiens
; FEATURE: CDS
; NAME/KEY: CDS
; LOCATION: (1094)..(1057)
; US-09-620-312D-874

Query Match 11.5%; Score 128.6; DB 3; Length 2003;
Best Local Similarity 52.8%; Pred. No. 1e-23; Matches 278; Conservative 0; Mismatches 249; Indels 0; Gaps 0;
Qy 241 CAGAGGCCATTACTGAGGCTGAGGACCT 300
Db 354 CGAGGGCATCTGGCACTCTACGGCCCTAGGCCCTGGCTCGCTGGCTGGCTGGCCACT 413
Qy 301 ACACCACTTACCCGCTTGGCACTATACCGTGTGGCTGAGGCCCTGACTGGCTGATG 360
Db 414 ATCCCTGACTCTGGCACTTACCGAGACTGTGGGACCCCTGGCCCAAGGCGGCC 473
Qy 361 GATCTCCCTGGCTTCTGGAGGCTGATGGCATGCCAGCTGGACTG 420
Db 474 AGGGCCCTCCCTTCACGAGAAGGGTTGGCTCTGGCTGGCTGGCTGGAGATGACT 533
Qy 421 CTTTGTGGAGAACCCAGCGGAGTGGCTCTTACCGATGCGCATGGCGCTC 480
Db 534 GCTCTGTTGGAGGCCGGAGCTGGTCAACCTCAGGATGAGACAGCTGAGCTC 593
Qy 481 CAGCTGACCGAGGCCGGCTGGCTAGAAAATGTTTAAGCCCTGATGCAATACCCGG 540
Db 594 CCCGGGTGAGGCCGGAGCTAACGCCCTGGCTGGATGGCTGAGCTGCTGGCTGG 653

```

GenCore - version 5.1.7
 Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM nucleic - nucleic search, using sw model
 Run on: February 2, 2006, 00:52:24 ; Search time 4960.27 Seconds
 Sequence: (without alignments)
 10592.541 Million cell updates/sec

Title: US-09-888-264-1
 Perfect score: 1123
 Sequence: 1 ccggggccatgtgatggcg.....ctatggggactaataaa 1123
 Scoring table: IDENTITY_NUC
 Gapop 10.0 , Gapext 1.0

Searched: 41078325 seqs, 23393541228 residues
 Total number of hits satisfying chosen parameters: 82156650

Minimum DB seq length: 0
 Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
 Maximum Match 100%
 Listing first 45 summaries

Database : EST:
 1: gb_est1:
 2: gb_est2:
 3: gb_est3:
 4: gb_htc:
 5: gb_est4:
 6: gb_est5:
 7: gb_est6:
 8: gb_est7:
 9: gb_gsb1:
 10: gb_gsb2:
 11: gb_gsb3:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

ALIGNMENTS

Result No.	Score	Query Match Length	DB ID	Description	REFERENCE
1	968.6	86.3	1369	4 CR590793	RESULT 1 CR590793 LOCUS CR590793 full-length cDNA clone CS0DC05YC08 of Neuroblastoma Cot 1369 bp mRNA linear HTC 21-JUL-2004
2	968.6	86.3	1386	4 CR606322	DEFINITION full-length cDNA clone CS0DC05YC08 of Homo sapiens (human).
3	968.6	86.3	1429	4 CR620583	ACCESSION CR590793.1 GI:50471600
4	968.6	86.3	1429	4 CR620583	VERSION HTC, CNSI, CDNA, HTC, CNSI_CDNA,
5	968.6	86.3	1477	4 CR617034	KEYWORDS SOURCE Homo sapiens (human)
6	968.6	86.3	1479	4 CR595953	ORGANISM Bukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Catarrhini; Hominoidea; Homo.
7	968.6	86.3	1488	4 CR591200	REFERENCE Li, W.B., Gruber,C., Jesse,J. and Polayes,D.
8	968.6	86.3	1515	4 CR617848	AUTHORS Full-length cDNA libraries and normalization
9	968.6	86.3	1529	4 CR598117	JOURNAL Unpublished
10	968.6	86.3	1532	4 CR609603	REMARK Contact : Feng Liang Email : fliang@lifetech.com URL : http://fulllength.invitrogen.com/ Invitrogen Corporation 1600 Parady Avenue 2 (bases 1 to 1369)
11	964.6	85.9	1051	4 CR616117	COMMENT - Web : www.genoscope.cns.fr 1st strand cDNA was primed with a NotI-oligo(dT) primer. Five prime end enriched, double-strand cDNA was digested with Not I and cloned into the Not I and EcoR V sites of the pNWSport 6 vector. Library was normalized. Library was constructed by Life Technologies, a division of Invitrogen.
12	964.6	85.9	1369	4 CR590943	FEATURES Location, Qualifiers 1..1369
13	954.6	85.0	1345	4 CR615026	SOURCE /organism="Homo sapiens"
14	952.6	84.8	1432	4 CR857161	/mol_type="mRNA" /db_xref="taxon:9606" /clone="CSOPC025YC08" /issue_type="Neuroblastoma Cot 25-normalized" /plasmid="pCMVSPORT_6"
15	947.6	84.4	1147	5 BX395987	ORIGIN
16	944.6	84.1	1302	4 CR613107	Query Match Similarity 86.3%; Score 968.6; DB 4; Length 1369;
17	944.6	84.1	1358	4 CR625556	Best Local Similarity 99.1%; Pred. No. 1e-240; Matches 974; Conservative 0; Mismatches 9; Indels 0; Gaps 0;
18	942.6	83.9	1354	4 CR613104	Matches 974; Conservative 0; Mismatches 9; Indels 0; Gaps 0;
19	941.8	83.9	1058	5 BX333400	AY115734 Homo sapi
20	941.4	83.8	1058	5 BX333400	BX333400 BX333400
21	915.2	81.5	1159	1 AU529560	AU529560 AU529560
22	908.6	80.9	1090	5 BX363653	BX363653 BX363653

	REFERENCE	ORGANISM	COMMENT	FEATURES	ORIGIN
Qy	1 CGAGGGCCATTGATGTCGGATGGCGGACCGCGAGTGCCGGGGGGGGGGATGGACG 60		Cot 25-normalized of <i>Homo sapiens</i> (human).		ACCESSION CR06322
Db	8 CGAGGGCCATTGATGTCGGATGGCGGACCGCGAGTGCCGGGGGGGGGGATGGACG 67				VERSION CR06322.1
Qy	61 GAAAGCCGTAACCTCCCTAATCCTCCGTCGAAGTCCGTGTTGGGGCTGGGGATGG 120				KEYWORDS Homo sapiens (human)
Db	68 GAAAGCCGTAACCTCCCTAATCCTCCGTCGAAGTCCGTGTTGGGGCTGGGGATGG 127				SOURCE Bukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Catarrhini; Homo sapiens (human)
Qy	121 GAGCTACAGTTTGTCAAGGCCCTGGACCTGGTGAAGAACGGATOCAGTTAGCGGG 180				REFERENCE 1 (bases 1 to 136)
Db	128 GAGCTACAGTTTGTCAAGGCCCTGGACCTGGTGAAGAACGGATOCAGTTAGCGGG 187				AUTHORS Li, W.B., Gruber,C., Jesse,J. and Polayes,D.
Qy	181 AAGGGGCRAAGCTCGAGTCAAACCGAGCTCCATGGGGCTGGGGCTGGGGATGG 240				JOURNAL Unpublished
Db	188 AAGGGGCRAAGCTCGAGTCAAACCGAGCTCCATGGGGCTGGGGCTGGGGATGG 247				REMARK Full-length cDNA libraries and normalization
Qy	241 CAGAGGCTGAGGGCATTAAGCTGGCTGGGGCTGGGGCTGGGGCTGGGGATGG 300				Full-length cDNA libraries and normalization
Db	248 CAGAGGCTGAGGGCATTAAGCTGGCTGGGGCTGGGGCTGGGGCTGGGGATGG 307				Fareday Avenue
Qy	301 AAGCAACTACCCGCCCTGGCATATAACCGTCTGTGAGGGCTGGGGCTGGGGATGG 360				2 (bases 1 to 136)
Db	308 AAGCAACTACCCGCCCTGGCATATAACCGTCTGTGAGGGCTGGGGCTGGGGATGG 367				Genoscope
Qy	361 GRACTCCCTGCTGGCATATAACCGTCTGTGAGGGCTGGGGCTGGGGATGG 420				Direct Submission
Db	368 GRACTCCCTGCTGGCATATAACCGTCTGTGAGGGCTGGGGATGG 427				Submitted (20-JUL-2004) Genoscope - Centre National de Séquenceage :
Qy	421 CTTTGTGGAAACACCGGAAGTGGCTTATCCGGATGACTGGGATGGGGCTTC 480				BP 191 91006 EVRY cedex - FRANCE (E-mail : seqref@genoscope.cns.fr)
Db	428 CTTTGTGGAAACACCGGAAGTGGCTTATCCGGATGACTGGGATGGGGCTTC 487				- Web : www.genoscope.cns.fr
Qy	481 CAGCTGACCAGGCCAGCTGGCTTACAAATGTTAACGCCCTGATGAAACCGGG 540				1st strand cDNA was primed with a NotI-oligo(dT) primer. Five prime
Db	488 CAGCTGACCAGGCCAGCTGGCTTACAAATGTTAACGCCCTGATGAAACCGGG 547				end enriched, double-strand cDNA was digested with Not I and cloned
Qy	541 AGAGGGTGTCTCACACTGTCGGGACTGATCCPACCTGGCTGGGGCGCTGG 600				into the Not I and BCR V sites of the PCMVSPORT 6 vector. Library
Db	548 AGAGGGTGTCTCACACTGTCGGGACTGATCCPACCTGGCTGGGGCGCTGG 607				was normalized. Library was constructed by Life Technologies, a
Qy	601 TGAATGCTGCCAGCTGGCTTACTCCAAATCCAAGCAGTCTACTGGATCAGCT 660				division of Invitrogen.
Db	608 TGAATGCTGCCAGCTGGCTTACTCCAAATCCAAGCAGTCTACTGGATCAGCT 667				Location/Qualifiers
Qy	661 ACTTCTCTGACACATCTGTGCTGGCTTACTCCAAATCCAAGCAGTCTACTGGATCAGCT 670				1..1386
Db	668 ACTTCTCTGACACATCTGTGCTGGCTTACTCCAAATCCAAGCAGTCTACTGGATCAGCT 677				/mol_type="mRNA"
Qy	721 CTGCTGCTCCATGCCCTGGGACATCCAGAACACCCATTCAGAACATGGGATCTGG 780				/db_xref="SGDID:003YLL2"
Db	728 CTGCTGCTCCATGCCCTGGGACATCCAGAACACCCATTCAGAACATGGGATCTGG 787				/clone="SGDID:003YLL2"
Qy	781 ATGGAAACCGGATAACAGAACGGGCTGGAGTGTCTGGCTTCAAGTGTCCCTACAGG 840				/tissue_type="B cells" (Ramos cell line) cot 25-normalized"
Db	788 ATGGAAACCGGATAACAGAACGGGCTGGAGTGTCTGGCTTCAAGTGTCCCTACAGG 847				/plasmid="PCMVSPORT_6"
Qy	841 GCTCTCTCAGCTGTGGAGGGCTTCAAGGCCCTACTAATGCCCTGGGGCCACACGG 900				
Db	848 GCTCTCTCAGCTGTGGAGGGCTTCAAGGCCCTACTAATGCCCTGGGGCCACACGG 907				
Qy	901 TCTTACACCTCATCTCTGTGGAGGGCTTCAAGGCCCTACTAATGCCCTGGGGCT 960				
Db	908 TCTTACACCTCATCTCTGTGGAGGGCTTCAAGGCCCTACTAATGCCCTGGGGCT 967				
Qy	961 GCTGAAGGGTTTCAAGGCCACACA 983				
Db	968 GCTGAAGGGTTTCAAGGCCACACA 990				
RESULT 2					
CR606322 DEFINITION full-length cDNA clone CS001003YL12 of B cells (Ramos cell line)					
CR606322					


```

RESULT 2
; Sequence 57090, Application US/10750623
; Publication No. US20050287531A1
; GENERAL INFORMATION:
; APPLICANT: MMI GENOMICS, INC.
; APPLICANT: DENISE, Sue K.
; APPLICANT: KERR, Richard
; APPLICANT: ROSENFIELD, David
; APPLICANT: HOLM, Tom
; APPLICANT: BATES, Stephen
; APPLICANT: FANTIN, Dennis
; TITLE OF INVENTION: METHODS AND SYSTEMS FOR INFERRING BOVINE TRAITS
; FILE REFERENCE: MMIL100-1
; CURRENT APPLICATION NUMBER: US/10/550,623
; PRIORITY APPLICATION NUMBER: US 60/437,482
; PRIORITY FILING DATE: 2002-12-31
; NUMBER OF SEQ ID NOS: 64922
; SOFTWARE: PatentIN version 3.1
; SEQ ID NO 57090
; LENGTH: 987
; TYPE: DNA
; ORGANISM: Bovine 19866800933603
; US-10-750-623-57090

Query Match          11.0%; Score 165.8; DB 7; Length 987;
Best Local Similarity 93.4%; Pred. No. 1.5e-32;
Matches 194; Conservative 0; Mismatches 12; Indels 1; Gaps 1;
Qy   12 GCGGCGGCGACGGCTTG-CCTCTG-GTGTGTTGCGCCGCGCTG-TACCTTGCGCGAGGGGGCC 70
Db   964 GTGCGCGCGCGCCCTGCGCCCTGTTGCGCGCGCTG-TACCTTGCGCGAGGGGGCC 905
Qy   71 GTGCGCGACAGGACGCCGGAGGGCGATGGTGGGATGGCGGGACGGGAGTC 130
Db   904 GCGCGCGACAGGACGCCGGAGGGCGATGGTGGGATGGCGGGACGCCGGAGTC 845
Qy   131 CCGCGCGCGCGGGGTAGACGGGAAGCCCCGTACTCCCTAAGTCCGTCAGTTCTGT 190
Db   844 CGCGCGCTTCTGGGATGGCGGGAAAGCCCGTACCTCCCTAAGTCCGTCAGTTCTGT 785
Qy   191 TTGGGGGCGCGCGCGCG 207
Db   784 TTGGGGGCGCGCGCG 768

RESULT 3
US-11-136-527-3307
; Sequence 3307, Application US/11136527
; Publication No. US20050287570A1
; GENERAL INFORMATION:
; APPLICANT: Wyeth
; APPLICANT: Mounts, William M
; TITLE OF INVENTION: Probe Arrays For Expression Profiling of Rat Genes
; FILE REFERENCE: 031886-010100 (AM101086)
; CURRENT APPLICATION NUMBER: US/11/136,527
; PRIORITY APPLICATION NUMBER: US 60/574,294
; PRIORITY FILING DATE: 2005-05-26
; NUMBER OF SEQ ID NOS: 362830
; SOFTWARE: PatentIn version 3.2
; SEQ ID NO 3307
; LENGTH: 1339
; TYPE: DNA
; ORGANISM: Rattus norvegicus
; US-11-136-527-3307

Query Match          7.9%; Score 118.4; DB 8; Length 1339;
Best Local Similarity 48.0%; Pred. No. 2e-20;
Matches 415; Conservative 0; Mismatches 431; Indels 18; Gaps 2;
Qy   238 GACACGCCGAGGCGCTCAGATCCAAAGGGAAACCCAGGAGTCACAGTTTGTGCAAGCCGCTTC 237
Db   292 TACAAGAACAGCTTCATGCCCTACCAAGCTATCTGAAAGCGAGAGGCTGAGGGCATT 351
Qy   298 TACCCGGCGCTCGTGGTACCATCTGTACTATGGTGGCGACAGAGGGTCCCAGAGCCC 357
Db   352 TACACTGGGCTGCTACTGACTCTGTGCTGCGTGGGACCTTACACACTACCGCTTG 411
Qy   358 TACAGGGGGTGGCTGCTGCTGATCGCCAGATGAGTTTGCTCCATTGGAATTGGC 417
Db   412 ATCTATACCTGCTGTTGGTACGCTGTACTCTGGGGCTGATGTGACTCTCCCTGGCTTCTG 471
Qy   418 CTCTAGACTCTGTCAAGCAGTCACACCCCAAAGGAAGGACACTCCAGCTGAGTC 477
Db   472 CTGAAGGCTGTTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG 531
Qy   478 ATCAGGATTCCTGGCGGGTGCACCAACGGGAGGCACTGAGTGAATGCTGCTGCTG 537
Db   532 GAAGTGGCTTATCGCATGACTCCGATGGCGCGCTTCAGCTGACCGCGCTGGC 591
Db   538 GATGTGTTGAGGTCGATTTAAGCCATGATACTGGGACTTGAGGGAGGAGAAA 597
Qy   592 TACAAAATGTGTTAACGCCCTGTTGCGCATCCATGCGCTCGGGCGTGTCTCAAATGTCGCCAGCTCGCC 651
Db   598 TACAGAGGACTATGGATGCTTACGAAACCCTGCGAGAGGGGGTGTCTCACACTG 657
Db   652 TGGCGGGCTCATCCCTACCATGCTCTGGGGAGAGGGGGTGTCTCACACTG 711
Db   658 TUGAAGAGGACTTGGCCACACTACAAGAAGAACCCGATGTCATAATGTCGTAATGTTG 717
Qy   712 TCTTACTCCATCAAGCAGTCTACTGGACTCTAGGACTCTGAGCTTCTGAGAACACTTG 771
Db   718 ACCTATGACATCATCAAGGAGGCTGCTGGACTCTCACCTGTAATGAACTTCCC 777
Qy   772 TGCCACTTCCTGGCGAGCATGATAGCGGGTGTGACTCTGCGTCAATGCTCTG 831
Db   778 TGTCACTTGTCTCTGGACTCTGGTGTGACTCTGCGTCAATGCTCTG 837
Qy   832 GACATGCGAAAGCCGAATCCAGACATCGGAATGTTGGAAAGGGAAATACAG 891
Db   838 GATGCGTAAGACCGATAC-----ATGAGGCTCCCAAGCGAGTACGA 885
Qy   892 AACGGGCTGAGCGTGTGCTAAAGTGTGGCGCTTGAGGGCTTCTCAGCTGROGAAG 951
Db   886 AGCCCCCTAGACTGTGAGGATGGTGGGCCAGAGGGGGCACAGCTTCTCAA 945
Qy   952 GCCTTCACCGCTACTATGCCGCTGGCCCAACACGGTCTCACCTCTCTG 1011
Db   946 GGATTCATGCCCTCTTCTGGTGGGATCTGAAACGCTGATGATGTTGTAACCTAC 1005
Qy   1012 GAGCGAGTGAACAGCGGCTTGATG 1035
Db   1006 GAGCGAGTGAACAGCGGCTTGATG 1029

RESULT 4
US-11-010-239-108
; Sequence 108, Application US/11010239
; Publication No. US2006015970A1
; GENERAL INFORMATION:
; APPLICANT: Roger PENNELL
; APPLICANT: Richard OKAMURO
; APPLICANT: Yiven FANG
; APPLICANT: Shing KNOX
; APPLICANT: Diane JORUKU

```

GenCore version 5.1.7
Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM nucleic - protein search, using blastp+modell
Run on: February 1, 2006, 13:19:02 ; Search time 47.9632 Seconds
(w/o alignment) 2753.720 Million cell updates/sec

Title: US-09-888-264-2

perfect score: 2847

Sequence: 1 cctcggtccaggctgcgccccaaaaaaa 1503

Scoring table:

BLOSUM62

Xgapop 10.0 , Xgapext 0.5
Ygapop 10.0 , Ygapext 0.5
Fgapop 6.0 , Fgapext 7.0
Delop 6.0 , Delex 7.0

Searched:

2443163 seqs, 439378781 residues

Total number of hits satisfying chosen parameters:

4886326

Minimum DB seq length: 0
Maximum DB seq length: 200000000

Post-processing:

Minimum Match 0‡

Maximum Match 100‡

Listing first 45 summaries

Command line parameters:

```
-Q=abes/ABSSIEB_spool/US09888264/runat_01022005_131837_14767/app_query.fasta_1
-DB=Geneseq -QFMT=factan -SUFFIX=frag -MINMATCH=0.1 -LOCFCI=0 -LOCPEXT=0
-UNITS=5bits -START=1 -END=1 -MATRIXX=blosum62 -TRANS=human40.cdi -LIST=45
-DOGALIGN=200 -THR_SCORPCT=THR_MAX=100 -THR_MIN=0 -ALIGN=15 -MOD=LOCAL
-OUTFMT=DTO -NORMEXT -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000 -NCPU=6 -HOST=abs02p
-USER=US09888264 @CCN 1 1 4767 -runat 01022006 131837 14767 -NCPU=6 -ICPU=3
-NO_MMAPP -NEG_SCORES=0 -WAIT -DSBLOCK=100 -LONGLOG -DEV TIMEOUT=120
-WARN TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7
-YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEX=7
```

Database :

A_Geneseq 21.*

- 1: geneseqp1980s:*
- 2: geneseqp1990s:*
- 3: geneseqp2000s:*
- 4: geneseqp2001s:*
- 5: geneseqp2002s:*
- 6: geneseqp2003as:*
- 7: geneseqp2003bs:*
- 8: geneseqp2004s:*
- 9: geneseqp2005s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match Length	DB ID	Description
1	1603	56.3	314	PR Abg75060 Human sol
2	1603	56.3	314	PR Abg75060 Human apo
3	1603	56.3	314	PR Adj71209 Human hea
4	1603	56.3	314	PR Adj7039 Human hea
5	1603	56.3	314	PR Adj89940 Antagonis
6	1600	56.2	314	PR Adj68692 Human hea
7	1579	55.5	342	PR Adj031772 Human nov
8	1579	55.5	342	PR Adj27213 Human TRI
9	1311.5	46.1	263	PR Adj27204 Human TRI

RESULT 1
ID ABG75060
ABG75060 standard; protein; 314 AA.
XX

AC ABG75060;
DT 12-FEB-2004 (first entry)
XX Human solute carrier family 25 member 11 protein.

DE Energy homeostasis; mouse; metabolism; triglyceride; metabolic disease;

KW gene therapy; anorectic; immunomodulator; antidiabetic; hypotensive;

KW cardiot; osteopathic; antilipemic.

XX Homo sapiens.

OS WO2003075945-A2.

PN XX

PD 18-SEP-2003.

XX PR 14-MAR-2003; 2003WO-EP002714.

XX PR 14-MAR-2002; 2002EP-00005892.

PR 15-MAR-2002; 2002EP-00006012.

PR 20-MAR-2002; 2002EP-00006271.

PR 25-MAR-2002; 2002EP-00006810.

PA (DEVE-) DEVELOGEN ENTwicklungsbiologische FORsch.

XX FI Eulenberg K, Steuernagel A, Haeder T, Broenner G;

XX DR WPI; 2003-748334/70.

DR N-PSDB; ACH00820.

10	1060	37.2	312	PR ADX97090 Plant ful
11	1058.5	37.2	323	PR Adn22668 Bacterial
12	946	33.2	314	PR Ady64720 S. mansoni
13	919.5	32.3	317	PR Abb58008 Drosophili
14	840.5	29.5	311	PR Abb66966 Drosophili
15	781	27.4	301	PR Abb57921 Drosophili
16	781	27.4	301	PR Adq89738 Antagonis
17	776.5	27.3	178	PR Adn33130 Human tra
18	605	21.3	306	PR Abm73602 DNA clone
19	603.5	21.2	344	PR Adx77350 Plant ful
20	602.5	21.2	349	PR Adx78463 Plant ful
21	592.5	20.8	305	PR Ady07225 Plant ful
22	591	20.8	298	PR Aga09948 Arabidops
23	589	20.7	341	PR Adx89570 Plant ful
24	585	20.6	285	PR Adx72228 Plant ful
25	583	20.5	313	PR Ags50517 Arabidops
26	579	20.3	313	PR Agd19643 Arabidops
27	568.5	20.0	273	PR Aga09949 Arabidops
28	554	19.5	313	PR Aga9736 Arabidops
29	554	19.5	313	PR Agd29874 Arabidops
30	554	19.5	341	PR Aga9735 Arabidops
31	554	19.5	342	PR Aga09520 Arabidops
32	533.5	18.9	262	PR Ags50518 Arabidops
33	533	18.8	284	PR Aga19644 Arabidops
34	531	18.7	284	PR Adb23506 Bacterial
35	525	18.4	276	PR Adn20798 Bacterial
36	515.5	18.1	322	PR Ags50519 Arabidops
37	515.5	18.0	237	PR Adn24153 Bacterial
38	510	17.9	290	PR Agd19645 Arabidops
39	508.5	17.9	237	PR Aga19645 Arabidops
40	507.5	17.8	302	PR AAM41612 Human pol
41	506	17.8	325	PR AAY94669 Murine un
42	505	17.7	322	PR AAY94668 Murine un
43	504.5	17.7	280	PR Abb65868 Drosophili
44	504.5	17.7	280	PR ABBY1693 Drosophili
45	503.5	17.7	287	PR AAM93644 Human pol

XX AAM93644 Human pol
XX Ray94659 Murine un
XX Ray94668 Murine un
XX Abb65868 Drosophili
XX Abb1693 Drosophili
XX Aam93644 Human pol

Copyright (c) 1993 - 2006 Biocceleration Ltd.

GenCore version 5.1.7

OM nucleic - protein search, using frame_plus_n2p model

Run on: February 1, 2006, 13:33:41 ; Search time 11.9464 Seconds
 (without alignments)
 2618.292 Million cell updates/sec

Title: US-09-888-264-2

Sequence: 1 ctcgtggcaggcgctgcgccc.....ccaaaaaaaaaaaaaaa 1503

Scoring table: BLOSUM62

Xgapop	10.0	Xgapext	0.5
Ygapop	10.0	Ygapext	0.5
Fgapop	6.0	Rapext	7.0
Delop	6.0	Deletxt	7.0

Searched: 283416 seqs, 96216763 residues

Total number of hits satisfying chosen parameters: 566832

Minimum DB seq length: 0

Maximum DB seq length: 200000000

Post-processing: Minimum Match 0%
 Maximum Match 100%
 Listing first 45 summaries

Command line parameters:

```
-NMODEL=frame+ n2p.n2p -DEV=x1P
-O-/abs/ABSWEB.spool/US09808264/runat_01022006_131840_14810/app_query.fasta_1
-DB=PIR -QFMT=f6Gan -SUFFIX=rpr -MINMATCH=0 -LOOPCII=0 -LOOPEXT=0
-UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi -LIST=45
-DOCALIGN=200 -SCORE=PCT -THR MAX=100 -THR MIN=0 -ALIGN=15 -NMODEL=LOCAL
-OUTFMT=F -NORM=EXT -HEAPSZ=500 -MAXLEN=0 -MAXLEN=200000000 -HOST=tabs802p
-USER=US09808264 @GN_1_I_77 @runat_01022006_131840_14810 -NCPU=6 -ICPU=3
-NO MMAP -NEG SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG -DEV TIMEOUT=120
-WARN TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7
-YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELET=7
```

Database : PIR_80:*

- 1: pir1:*
- 2: pir2:*
- 3: pir3:*
- 4: pir4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match	Length	DB ID	Description
1	1600	56.2	314	2	A56650
2	1545	54.3	314	2	A56305
3	1058.5	37.2	323	2	T25459
4	602.5	21.2	302	2	S65042
5	598	21.0	302	2	S65042
6	584.5	20.5	297	2	T07405
7	583	20.5	313	2	D84613
8	554	19.5	313	2	T05577
9	527.5	18.5	331	2	T1899
10	510	17.5	290	2	S4409
11	498	17.5	325	2	JCT553
12	468	16.4	305	2	H66274
13	459.5	16.1	298	2	S11351
14	459.5	15.6	282	2	T49628

ALIGNMENTS

RESULT 1

A56650

2-oxoglutarate carrier protein - human

C:Species: Homo sapiens (man)

C:Date: 21-Jul-1995 #sequence_revision 21-Jul-1995 #text_change 09-Jul-2004

C:Accession: A56650; S29398

R:Iacobazzi, V.; Palmieri, F.; Runswick, M.J.; Walker, J.E.

DNA Seq. 3, 79-88, 1992

Title: Sequences of the human and bovine genes for the mitochondrial 2-oxoglutarate c

A;Cross-references: UNIPROT:Q02978; UNIPARC:UPI00016A206; EMBL:X66114; NID:923843; PIR

A;Note: sequence extracted from NCBI backbone (NCBIP:120085)

C;Genetics: Score: 1600.00

A;Introns: 32/2; 83/2; 152/2; 182/3; 246/2; 263/3

C;Superfamily: ADP-ATP carrier protein; ADP-ATP carrier protein repeat homology

C;Keywords: duplication; mitochondrion; transmembrane protein

A;Molecule type: DNA

A;Residues: 1-314 <TAC>

A;Accession: A56650; MUID:93091249; PMID:1457818

A;Status: preliminary

A;Reference number: A56650

A;Accession: A56650

A;Type: protein

A;Source: Human

A;Organism: Homo sapiens

A;Protein ID: A56650

A;Protein name: 2-oxoglutarate carrier protein

A;Protein type: membrane protein

A;Protein class: transporter

A;Protein function: transport

A;Protein domain: ADP-ATP carrier protein repeat homology <ACP1>

A;Protein domain: ADP-ATP carrier protein repeat homology <ACP2>

A;Protein domain: ADP-ATP carrier protein repeat homology <ACP3>

A;Protein domain: ADP-ATP carrier protein repeat homology <ACP4>

A;Protein domain: ADP-ATP carrier protein repeat homology <ACP5>

A;Protein domain: ADP-ATP carrier protein repeat homology <ACP6>

A;Protein domain: ADP-ATP carrier protein repeat homology <ACP7>

A;Protein domain: ADP-ATP carrier protein repeat homology <ACP8>

A;Protein domain: ADP-ATP carrier protein repeat homology <ACP9>

A;Protein domain: ADP-ATP carrier protein repeat homology <ACP10>

A;Protein domain: ADP-ATP carrier protein repeat homology <ACP11>

A;Protein domain: ADP-ATP carrier protein repeat homology <ACP12>

A;Protein domain: ADP-ATP carrier protein repeat homology <ACP13>

A;Protein domain: ADP-ATP carrier protein repeat homology <ACP14>

A;Protein domain: ADP-ATP carrier protein repeat homology <ACP15>

A;Protein domain: ADP-ATP carrier protein repeat homology <ACP16>

A;Protein domain: ADP-ATP carrier protein repeat homology <ACP17>

A;Protein domain: ADP-ATP carrier protein repeat homology <ACP18>

A;Protein domain: ADP-ATP carrier protein repeat homology <ACP19>

A;Protein domain: ADP-ATP carrier protein repeat homology <ACP20>

Alignment Scores:

Pred. No.:	Score:	Length:	Matches:	Conservative:	Mismatches:	Indels:	Gaps:
1	1600.00	314	313	1	0	0	0
2	100.0%	313	313	1	0	0	0
3	99.7%	313	313	1	0	0	0
4	56.2%	313	313	1	0	0	0
5	56.2%	313	313	1	0	0	0
6	56.2%	313	313	1	0	0	0
7	56.2%	313	313	1	0	0	0
8	56.2%	313	313	1	0	0	0
9	56.2%	313	313	1	0	0	0
10	56.2%	313	313	1	0	0	0
11	56.2%	313	313	1	0	0	0
12	56.2%	313	313	1	0	0	0
13	56.2%	313	313	1	0	0	0
14	56.2%	313	313	1	0	0	0

US-09-888-264-2 (1-1503) x A56650 (1-314)

Qy 112 ARGGCGCGAGCGCGAGTGCGCGGGCGCGGATAGACGCGAGGCCGTACCTCCCT 171

Db 1 MetAlaAlaThrAlaSerAlaGlyAlaGlyIleMetAspGlyLysProArgThrSerPro 20

Copyright (c) 1993 - 2006 Bioceleration Ltd.

Om nucleic - protein search, using frame_plus_n2p model

Run on: February 1, 2006, 13:19:06 (without alignment)

Search time 71.6014 Seconds
2961.978 Million cell updates/sec

Title: US-09-888-264-2

Perfect score: 2847

Sequence: I ctctcggtccaggcgctgcg... ccaaaaaaaaaaaaaaaa 1503

Scoring table: BLOSUM62

Xgapop	Xgapext	Ygapext	Ygapop	Rgapext	Rgapop	Delop	Delett
10.0	0.5	0.5	10.0	7.0	6.0	6.0	7.0

Searched: 2166443 seqs, 705528306 residues

Total number of hits satisfying chosen parameters: 4332886

Minimum DB seq length: 0

Maximum DB seq length: 200000000

Post-processing: Maximum Match 0%

Listing first 45 summaries

Command line parameters:

```
MODEL=frame_n2p.n2p -DEV=x1P
-Q=/absse/ABSSWEB_spool/US0988264/runat_01022006_131838_14779/app_query.fasta_1
-DB=UniProt -QFMT=tup -NMATCH=0 -LLOOPCL=0 -LLOOPEXT=0
-UNITS=bits -START=1 -END=-1 -MATRIX=BLOSUM62 -TRANS=human&0_cdi -LIST=45
-DOCALLIN=200 -THR SCORE=pcpt -THR MAX=100 -ITHR MIN=0 -ALIGN=15 -MODE=LOCAL
-OUTFILE=PRO -NORMEXT =HEAPSZ=500 -MNLLEN=500 -MAXLEN=2000000000 -HOST=absse20p
-USER=US0988264 @CGN_1_1580 @_runat_01022006_131838_14779 -NCPU=6 -ICPU=3
-NO MMAP -NEG SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG -DEV TIMEOUT=120
-WARN TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7
-YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7
```

Database : UniProt_05_80;*

- 1: uniprot_sprot:*
- 2: uniprot_trembl:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query	Match Length	DB ID	Description
1	1603	55.3	314	2	Q6IBH0_HUMAN
2	1598	55.1	313	1	M2OM_HUMAN
3	1595	55.1	314	2	Q5RF57_PONPY
4	1554	54.6	314	2	Q5SX53_MOUSE
5	1549	54.4	313	1	M2OM_MOUSE
6	1545	54.3	314	2	Q5B9W4_BOVIN
7	1540	54.1	313	1	N2OM_BOVIN
8	1531	53.8	313	1	M2OM_RAT
9	1418	49.9	305	2	Q5661L_XENTR
10	1407	49.4	305	2	Q1NH3_XENLA
11	1382	48.5	308	2	Q51Q89_BRARE
12	1363	47.9	313	2	Q4Ta26_TETRAODIN
13	1258	44.2	252	2	Q8CTC7_MOUSE
14	1060	37.2	307	2	Q61QH3_CAEVR
15	1053	37.0	306	2	P90992_CAEEL
16	957	33.6	193	2	Q5SX46_MOUSE

RESULT 1

06IBH0_HUMAN

ID Q6IBH0_HUMAN PRELIMINARY; PRT; 314 AA.

AC Q6IBH0;

DT 05-JUL-2004 (TREMBBLE; 27, Last sequence update)

DT 05-JUL-2004 (TREMBBLE; 27, Last annotation update)

DR SLC25A11_protein.

Name=SLC25A11;

OS Homo sapiens (Human).

OC Burkitt; Metazoa; Chordata; Craniata; Vertebrata; Rutelostomi; Mammalia; Butheria; Euarchontoglires; Primates; Catarrhini; Hominidae; Homo; Mammalia; Buterria; Euarchontoglires; Primates; Catarrhini; Hominidae;

OC

OC

OC

OC

OX

RN [1]

RP NUCLEOTIDE SEQUENCE.

RA Ebert L., Schick M., Neubert P., Schatten R., Henze S., Korn B., Submitted (JUN 2004) to the EMBL/Genbank/DDBJ databases.

DR EMBL; CR456834; CAG33115.1; ; mRNA.

DR GO; GO:0156020; C:membrane; IEA.

DR GO; GO:0005743; C:mitochondrial inner membrane; IEA.

DR GO; GO:0005488; F:binding; IEA.

DR GO; GO:00215; F:transporter activity; IEA.

DR GO; GO:000810; F:transport; IEA.

KW Transmembrane; Transport.

SQ SEQUENCE 314 AA; 34061 MW; 9D61F817089FF5AA CRC64;

Alignment Scores:

Pred. No.:	Score:	Length:	Matches:	Conservative:	Mismatches:	Indels:	Gaps:
3	1603.00	314	314	0	0	0	0

Pred. No.: 3. 1603.00

Score: 1603.00

Percent Similarity: 100.0%

Best Local Similarity: 100.0%

Query Match: 56.3%

DB: 2

US-09-888-264-2 (1-1503) x Q6IBH0_HUMAN (1-314)

QY 112 ATGGCGGCGAGCGCGAGGCCGCGCCGCGCATAGAGGGAGGCCGTACCTCCCT 171

Db 1 MetAlaAlaThrAlaSerAlaGlyAlaGlyIleAspGlyLysProArgThrSerPro 20

QY	172	AGTCCCTGAACTCTTTGGGCTTGCGGAGTACAGTTTTCAG	231	OC	Mammalia; Eutheria; Euarchontoglires; Primates; Catarrhini; Hominidae;	
Db				OC	Homo.	
Db	NCBI_TaxID=9606;			RN	[1]	
21	Lys	TerVallysLeuPheGlyLeuLysAlaGlyLeuLysAlaValI	40	RN		
				RN	NUCLEOTIDE SEQUENCE.	
232	CCTCTGACCTGCTGAGAACCGGA	TGCAGTGAGGCCAAGGGCAAGACTGGAGAG	291	RX	MEILINB-93031249; PubMed=1457818;	
41	ProleuAspLeuVallysAsnArgMetGlnLeuSerGlyGlyLeuL	ArgIvaI	40	RA	"Sequences of the human and bovine genes for the mitochondrial 2-	
				RT	oxoglutarate carrier."	
				RL	DNA Seq. 3:79-88(1992).	
QY	292	TCAAACCGCTTCAGGCCCTACCGATCCTGAAGGAGAACG	351	RA	[2]	
61	TyRThrSerPheHisAlaLeuThrSerIleIleLysAlaGlyL	Ile	80	RN	NUCLEOTIDE SEQUENCE [LARGE SCALE mRNA].	
				RP	TISSUE-Brain;	
QY	352	TGACTGGCTGTGCCGCTGCTGCTGACCTACACACTACCC	411	RA	Yu W.; Gibbs R.A.;	
81	TyrThrGlyLeuSerAlaGlyLeuLysArgIvaI	GlyIvaI	100	RL	Submitted (JUN-1998) to the EMBL/GenBank/DDBJ databases.	
				RN	[3]	
412	ATCTTACCGCTGTGCTGCTGAGGCCCTGACTGGGGCTGAT	GCTCCCTGCTCTTG	471	RX	NUCLEOTIDE SEQUENCE [LARGE SCALE mRNA].	
101	IETYRThValIleuPheGluIleuGlyLeuLysArgIvaI	AlaGlyIvaI	120	RA	TISSUE-Muscle, and Uterus;	
				RA	MEILINB-2238257; PubMed=12477932; DOI=10.1073/pnas.242603899;	
472	CTGAAAGCTGTGATTGCGATGACCGAGCTGCGACTG	TGCGGACACGCC	531	RA	Strausberg R.L.; Feingold E.A.; Grouse L.H.; Derge J.G.;	
121	LauIysAlaValIleGlyMetThrAlaIgylAlaIgylAla	IgylAlaIgylAla	140	RA	Klausner R.D., Collins F.S., Wagner L., Shemmen C.M., Schuler G.D.,	
				RA	Altschul S.F., Zerbry B., Butow K.H., Schaefer C.F., Bhat N.K.,	
532	GAAGTGGCTTATCCGATGATGCCGATGGCGTCCACG	GGCGGAC	591	RA	Hopkins R.F., Jordan H., Moore T., Max S.I., Wang J., Heise F.,	
141	GlutIleuAlaLeuIleArgMetThrIleAspGlyArgLeuProla	IleAspGlyArgIvaI	160	RA	Diatchenko L.; Marusina K.; Farmer A.A.; Rubin G.M.; Hong L.,	
				RA	Stapleton M.; Soares M.B.; Bonaldo M.F.; Casavant T.L.; Scheetz T.E.,	
592	TACAAAMATGTTAACGCCCTGATGGAATCACCGGAGG	GCGCTTCACG	651	RA	Brownstein M.J.; Usdin T.B.; Tohnyuki S.; Carninci P.; Prange C.,	
QY	592	GGCTGGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG	CTGCTGCTGCTG	651	RA	Raha S.S.; Loquellano N.A.; Peters G.J.; Abramson R.D.; Mullany S.J.,
QY	652	TGCGGAGCTGATCCTTACCATGGCTGGGGCTCGCGCAT	GCTGCC	711	RA	Boak S.A.; McEwan P.J.; McKenna K.J.; Malek J.A.; Gunaratne P.H.,
181	TGArgGlyIleProIleAlaArgIvaIvalValAlaAsnAla	IleAla	200	RA	Richards S., Worley K.C., Hale S., Garcia A.M., Gay L.J., Hulyk S.W.,	
				RA	Villalon D.K.; Muzny D.M.; Sodergren E.J.; Lu X.; Gibbs R.A.,	
712	TCTTACTCCGATCCAGCAGCTTATGGCTAGCTACTCTG	ACAGCTG	771	RA	Pahay J.; Helton E.; Ketteman M.; Madan A.; Rodriguez S.; Sanchez A.,	
QY	772	TGCACTCTGCGCCAGCATGATGAGCGCTGCTGCTG	TGCTG	831	RA	Whiting M.; Madan A.; Young A.C.; Shavchenko Y.; Bouffard G.G.,
Db	201	SePtySerIleIleSerLysIleGlyIleLeuIleuAspGlyT	Y-PheSerAspAlaIleu	220	RA	Blakesley R.W.; Touchman J.W.; Green E.D.; Dickson M.C.,
				RA	Rodriguez A.C.; Grimwood J.; Schmutz J.; Myers R.M.,	
QY	772	TGCACTCTGCGCCAGCATGATGAGCGCTGCTGCTG	TGCTG	831	RA	Butterfield Y.S.N.; Kitzmiller M.I.; Skalska U.; Smilus D.E.,
Db	221	CysHisPheCysAlaSerMetIleSerGlyIleLeuValI	AlaIleuAlaIleuSerMetIleProVal	240	RA	Schnerr A.; Schein J.E.; Jones S.J.M.; Marra M.A.; Smilus D.E.,
				RT	"Generation and initial analysis of more than 15,000 full-length human	
QY	832	GACATGCCAAGGCCGATCCGAGACATGCGATGATGATG	GGCGGATCAAG	891	RT	RT and mouse cDNA sequences.";
Db	241	AstePheIleAlaLeuIlePheIleArgMetIleAspGlyIle	AspGlyIle	260	RL	Proc. Natl. Acad. Sci. U.S.A. 99:16899-16903 (2002).
				RN	[4]	
QY	892	ACGGGCTGGAGCTGCTGCTGCTGCTGCTGCTG	GGAG	951	RX	PROTEIN SEQUENCE OF 1-16, CLEAVAGE OF INITIATOR METIONINE,
Db	261	ArgIlyLeuAspValIlePheIleAlaValIleArgTyrGlyIle	PheIle	280	RP	ACETYLIATION SITE ALA-1, AND MASS SPECTROMETRY.
				RC	TISSUE-B-cell lymphoma;	
QY	952	GCCTTACGCCGCTACTTGGCCCTGGCCCCAACAGCTCT	CTGCTG	1011	RA	Bienvenut W.V.;
Db	281	GlyPheIleProIleIleAlaArgIleGlyIleProIleIle	AlaValIle	300	RL	Unpublished observations (JUN-2005).
QY	1012	GAGCAGATGAACTAGGCCATACAGGCTCTCTCTGTC	AGTGGC	1053	CC	-I- FUNCTION: Catalyzes the transport of 2-oxoglutarate across the
Db	301	GlugIleMetAsnLysIleTyryIleArgLeuGlyLeuIle	GlyIle	314	CC	inner mitochondrial membrane in an electroneutral exchange for
				CC	malate or other dicarboxylic acids, and plays an important role in	
				CC	several metabolic processes, including the malate-aspartate	
				CC	shuttle, the oxoglutarate/succinate shuttle, in gluconeogenesis	
				CC	from lactate, and in nitrogen metabolism.	
				CC	-I- SUBCELLULAR LOCATION: Integral membrane protein. Mitochondrial	
				CC	inner membrane.	
				CC	-I- SIMILARITY: Belongs to the mitochondrial carrier family.	
				CC	-I- SIMILARITY: Contains 3 Solcar repeats.	
				CC	This Swiss-Prot entry is copyright. It is produced through a collaboration	
				CC	between the Swiss Institute of Bioinformatics and the EMBL outstation -	
				CC	the European Bioinformatics Institute. There are no restrictions on its	
				CC	use as long as its content is in no way modified and this statement is not	
				CC	removed.	
RESULT 2						
M2OM_HUMAN						
ID						
N2OM_HUMAN						
STANDARD						
PRT						
M2OM_HUMAN						
STANDARD						
PRT						
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
26						
27						
28						
29						
30						
31						
32						
33						
34						
35						
36						
37						
38						
39						
40						
41						
42						
43						
44						
45						
46						
47						
48						
49						
50						
51						
52						
53						
54						
55						
56						
57						
58						
59						
60						
61						
62						
63						
64						
65						
66						
67						
68						
69						
70						
71						
72						
73						
74						
75						
76						
77						
78						
79						
80						
81						
82						
83						
84						
85						
86						
87						
88						
89						
90						
91						
92						
93						
94						
95						
96						
97						
98						
99						
100						
101						
102						
103						
104						
105						
106						
107						
108						
109						
110						
111						
112						
113						
114						
115						
116						
117						
118						
119						
120						
121						
122						
123						
124						
125						
126						
127						
128						
129						
130						
131						
132						
133						
134						
135						
136						
137						
138						
139						
140						
141						
142						
143						
144						
145						
146						
147						
148						
149						
150						
151						
152						
153						
154						
155						
156						
157						
158						
159						
160						
161						
162						
163						
164						
165						
166						
167						
168						
169						
170						
171						
172						
173						
174						
175						
176						
177						
178						
179						
180						
181						
182						
183						
184						
185						
186						
187						
188						
189						
190						
191						
192						
193						
194						
195						
196						
197						
198						
199						
200						
201						
202						
203						
204						
205						
206						
207						
208						
209						
210						
211						
212						
213						
214						
215						
216						
217						
218						
219						
220						
221						
222						
223						
224						
225						
226						
227						
228						
229						
230						
231						
232						
233						
234						
235						
236						
237						
238						
239						
240						
241						
242						
243						
244						
245						
246						
247						

GenCore version 5.1.7
 Copyright (c) 1993 - 2006 Biocceleration Ltd.

Om nucleic - protein search, using fframe_plus_n2p model
 Run on: February 1, 2006, 13:54:36 ; Search time 10.0162 Seconds
 (without alignments)
 2481.215 Million cell updates/sec

Title: US-09-888-264-2

Perfect score: 2847

Sequence: 1 cctcggtccaggcggtgcgccccaaaaaaaaaaaaaa 1503

Scoring table: BLASTN62

Xgapop 10.0 , Xgapext 0.5

Ygapop 10.0 , Ygapext 0.5

Fgapop 6.0 , Fgapext 7.0

Delop 6.0 , Delext 7.0

Searched: 572060 seqs, 82675679 residues

Total number of hits satisfying chosen parameters: 1144120

Minimum DB seq length: 0

Maximum DB seq length: 200000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Command line parameters:

```
-MODEL=fframe+n2p.model -DEV=xlp
-Q /abs/ABSSIEB_spool/US9888264/runat_01022006_131842_14853/app_query.fasta_1
-DI=ISSUED_Patents_AA -QFM=FastaN -SDF=FixFastaN -MINMATCH=0.1 -LOOPCII=0
-LOOPCII=0 -INTS=5nts -START=1 -END=1 -MATRIX=BLASTN62 -TRANS=human40.cdi
-LIST=45 -DOCALLIGN=200 -THR SCORE=PCT -THR MAX=100 -THR MIN=0 -ALIGN=15
-MODEL=LOCAL -OUTFORMAT=pfo -NORM=ext -HEAHSIZE=5000 -MINLEN=0 -MAXLEN=200000000
-HOST=abs20p -USER=US9888264 @CCN 1-101 @runat 01022006_131842_14853
-NCPU=6 -ICPU=3 -NO MMAD -NEG SCORES=0 -WAIT -DBPBLOCK=100 -LONGLOG
-DEV TIMEOUT=120 -WARN TIMEOUT=30 -THREADS=1 -XGAPOP=0 -XGAPEXT=0.5 -FGAPOP=6
-FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7
```

Database : Issued Patents AA:*

```
1: /cgn2_6/podata/1/iaa/5_COMB.pep:*
2: /cgn2_6/podata/1/iaa/6_COMB.pep:*
3: /cgn2_6/podata/1/iaa/H_COMB.pep:*
4: /cgn2_6/podata/1/iaa/PETRUS_COMB.pep:*
5: /cgn2_6/podata/1/iaa/RB_COMB.pep:*
6: /cgn2_6/podata/1/iaa/backfiles1.pep:*
```

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query	Match Length	DB ID	Description
1	586	20.6	299	2 US-09-463-239-35	Sequence 35, Appl
2	513	18.0	313	2 US-09-248-796A-17621	Sequence 17621, A
3	509.5	17.9	355	2 US-09-463-239-30	Sequence 30, Appl
4	500	17.6	322	2 US-09-949-016-8722	Sequence 8722, Ap
5	500	17.6	322	2 US-09-949-016-8723	Sequence 8723, Ap
6	500	17.6	335	2 US-09-949-016-8723	Sequence 118, Appl
7	495	17.4	290	2 US-09-743-847-2	Sequence 2, Appl
8	468.5	16.5	300	2 US-09-463-239-34	Sequence 34, Appl
9	450	15.8	432	1 US-08-937-466-4	Sequence 4, Appl
10	450	15.8	432	1 US-09-172-528-4	Sequence 4, Appl
11	450	15.8	432	2 US-09-18-19-4	Sequence 4, Appl
12	450	15.8	432	2 US-09-503-579-4	Sequence 4, Appl

ALIGNMENTS					
RESULT 1					
US-09-463-239-35					
; Sequence	35, Application US/09463239				
; Patent No. 6700039					
; GENERAL INFORMATION:					
; APPLICANT: Jepson, Ian					
; APPLICANT: Ebeth, Marcus					
; APPLICANT: Sonnewald, Uwe					
; TITLE OF INVENTION: Genetic Method for Controlling Sprouting					
; CURRENT APPLICATION NUMBER: US/09463,239					
; CURRENT FILING DATE: 2000-01-21					
; PRIOR APPLICATION NUMBER: PCT/GB98/02023					
; PRIOR FILING DATE: 1998-07-10					
; PRIOR APPLICATION NUMBER: EP 97113118.0					
; PRIOR FILING DATE: 1997-07-30					
; NUMBER OF SEQ ID NOS: 39					
; SOFTWARE: PatentIn version 3.0					
; SEQ ID NO: 35					
; LENGTH: 299					
; TYPE: PRT					
; ORGANISM: Panicum miliaceum					
; US-09-463-239-35					

Alignment Scores:	1.568-42	Length:	299
Pred. No.:	586.00	Matches:	137
Score:	586.00	Conservative:	40
Percent Similarity:	61.2%	Mismatches:	94
Best Local Similarity:	47.4%	Indels:	18
Query Match:	20.6%	Gaps:	7

OY 184 TTCCGTGTTGGGGCTGGAGCTACAGTTTGTCAAGGCCCTGGACCTG 243

Copyright (c) 1993 - 2006 Biocceleration Ltd.

Om nucleic - protein search, using frame_plus_n2p model

Run on: February 1, 2006, 14:41:42 ; Search time 45.3876 Seconds

(without alignments) 2767.263 Million cell updates/sec

Title: US-09-888-264-2

Perfect score: 2847

Sequence: 1 cctcggtccaggcggtggcg..... caaaaaaaaaaaaaaa 1503

Scoring table: BLOSUM62

Xgapop 10.0 , Xgapext 0.5

Ygapop 10.0 , Ygapext 0.5

Fgapop 6.0 , Fgapext 7.0

Delop 6.0 , Delext 7.0

Searched: 1867569 seqs, 417829326 residues

Total number of hits satisfying chosen parameters: 3735138

Minimum DB seq length: 0

Maximum DB seq length: 200000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Command line parameters:

-NDBL=frame+ n2p .model -DEV=xlp

-Q-/abs/ABSSWEB_spool/US0988264/runat_01022006_131847_14955/app_query.fasta_1

-DB=Published Applications AA Main -QRTF=fastaN -SUFFIX=rdbm -MINMATCH=0.1

-LOOPCL=0 -LOCPEXN=0 -INTTSBITS=1 -START=1 -END=1 -MATRIX=blosum62

-TRANS=human&0.cdi -LIST=45 -DOALIGN=200 -THR_SCORE=PCT -THR_MAX=100

-THR_MIN=0 -ALIGN=15 -MODE=LOCAL -OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0

-MAXLEN=2000000 -HOST=abs02p2

-USER=US0988264 @CGN 1_1405 @runat 01022006_131847_14955 -NCPU=6 -ICPU=3

-NO_MMAP -NEG_SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG -DEV TIMEOUT=120

-WARN_TIMEOUT=30 -THREADS=1 -XGAPOP=1 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7

-YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7

Database : Published_Applications_AA_Main:*

1: /cgn2_6/podata/1/pubpaas/us07_pubcomb.pep:*

2: /cgn2_6/podata/1/pubpaas/us08_pubcomb.pep:*

3: /cgn2_6/podata/1/pubpaas/us09_pubcomb.pep:*

4: /cgn2_6/podata/1/pubpaas/us10_pubcomb.pep:*

5: /cgn2_6/podata/1/pubpaas/us10_pubcomb.pep:*

6: /cgn2_6/podata/1/pubpaas/us11_pubcomb.pep:*

SUMMARIES

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

ALIGNMENTS

RESULT 1

US-10-408-765A-2204

; Sequence 2204, Application US/10408765A

; Publication No. US20040101874A1

GENERAL INFORMATION:

; APPLICANT: Ghosh, Sounmitra S.

; APPLICANT: Fahy, Eoin D.

; APPLICANT: Zhang, Bing

; APPLICANT: Gibson, Bradford W.

; APPLICANT: Taylor, Steven W.

; APPLICANT: Glenn, Gary M.

; APPLICANT: Warnock, Dale E.

; TITLE OF INVENTION: TARGETS FOR THERAPEUTIC INTERVENTION

; TITLE OF INVENTION: IDENTIFIED IN THE MITOCHONDRIAL PROTEOME

; FILE REFERENCE: 660088-465

; CURRENT APPLICATION NUMBER: US10/1408765A

; CURRENT FILING DATE: 2003-04-04

; NUMBER OF SEQ ID NOS: 3077

; SOFTWARE: FastSEQ for Windows Version 4.0

; SEQ ID NO: 2204

; LENGTH: 314

; TYPE: PRT

; ORGANISM: Homo sapiens

; US-10-408-765A-2204

; Sequence 2204, AP

; Sequence 3015, AP

; Sequence 13, AP

; Sequence 370, AP

; Sequence 498, AP

; Sequence 57, AP

; Sequence 56, AP

; Sequence 211622, AP

; Sequence 59754, AP

; Sequence 5321, AP

; Sequence 19208, AP

Sequence 19321, A
Sequence 816, APP
Sequence 19320, A
Sequence 58, APP
Sequence 27690, A
Sequence 55, APP
Sequence 19319, A
Sequence 19326, A
Sequence 47829, A
Sequence 220995, A
Sequence 19555, A
Sequence 220998, A
Sequence 47724, A
Sequence 19256, A
Sequence 264201, A
Sequence 215452, A
Sequence 19341, A
Sequence 276095, A
Sequence 522334, A
Sequence 276094, A
Sequence 41194, A
Sequence 19344, A
Sequence 19342, A
Sequence 19343, A
Sequence 125993, A
Sequence 1947, A
Sequence 211619, A
Sequence 19283, A
Sequence 302750,

12 919.5 32.3 317 5 US-10-732-923-19321
13 919.5 32.3 317 6 US-11-097-143-816
14 840.5 29.5 311 5 US-10-507-617-58
15 840.5 29.5 311 6 US-11-097-143-27690
16 840.5 29.5 311 6 US-10-507-617-55
17 839.5 29.5 311 5 US-10-732-923-19319
18 839.5 29.5 301 5 US-10-732-923-19326
19 781 27.4 301 5 US-10-745-237-168
20 781 27.4 301 6 US-11-097-143-555
21 781 27.4 302 5 US-10-732-923-19285
22 608 21.4 309 4 US-10-437-963-15439
23 607 21.3 308 4 US-10-757-701-45989
24 603.5 21.2 304 4 US-10-425-114-47724
25 602.5 21.2 302 5 US-10-732-923-19286
26 602.5 21.1 301 4 US-10-425-114-47829
27 599 21.0 301 4 US-10-424-599-220995
28 598 21.0 302 5 US-10-732-923-19285
29 596 20.9 301 4 US-10-424-599-220998
30 592.5 20.8 305 4 US-10-423-114-63040
31 592.5 20.8 311 4 US-10-425-115-264201
32 592 20.8 302 5 US-10-425-115-215452
33 590 20.7 300 5 US-10-732-923-19242
34 589 20.7 317 4 US-10-424-599-27605
35 589 20.7 314 4 US-10-425-114-52234
36 586 20.6 317 4 US-10-424-599-27604
37 585.5 20.6 285 4 US-10-425-114-41594
38 585 20.5 295 4 US-10-732-923-19244
39 585 20.5 297 5 US-10-732-923-19242
40 585 20.5 297 5 US-10-732-923-19243
41 585 20.5 327 4 US-10-424-599-12593
42 584.5 20.5 297 5 US-10-732-923-19247
43 580.5 20.4 300 4 US-10-424-599-21763
44 581.5 19.0 1796 4 US-10-732-923-19283
45 529 18.6 290 4 US-10-425-115-302750

Alignment Scores:
 Pred. No.: 9 87e-33
 Score: 554.00
 Percent Similarity: 55.7%
 Best Local Similarity: 40.4%
 Query Match: 19.5%
 Db: 7

US-09-888-264-2 (1-1503) x US-11-010-239-109 (1-313)

QY 184 TCTCTGTTGGGGCTGGCGGTAGGGAGTACAGTTTGTCAGCCCCGGACT 243
 Db 6 PheValGluGlyIleAlaSerValLeuAlaGlyCysSerThrHisProLeuAspIle 25
 QY 244 GCGAAGAACCGGATGCAAGTGCGGAGGGCCAGACT 285
 Db 26 IleLysValArgLeuGlnLeuIleGlyGluAlaProSerThrThrValThrLeu 45
 QY 286 -- CAGAGTACACAACACCAGCTTCATGCCCTCCAGT-- 321
 Db 46 ArgProAlaLeuAlaPheProAsnSerSerProAlaAlaPheLeu 65
 QY 322 -- ATCCCTAGGGAGAACGCTGAG 345
 Db 66 ValProIysValGlyProIleSerLeuGlyIleAsnIleValLySergIluIyaala 85
 QY 346 GCGATTAACACTGGCTGCCTGGCTGCTGGCGACCTCACCTACCCG 405
 Db 86 AlaLeuPheSerGlyValSerIaLathLeuLeuArgGlnIntrLeuTyrsThrSer 105
 QY 406 CTGGCATCTATAACGGCTGTGAGCGCCACTGGGCTGATGGTACTCCCTGGC 465
 Db 106 MetGlyLeuTyroGluValLeuIysAsnIstPheAppGluLysLeuAsn 125
 QY 466 TTCTGCTGAAGCTGTGATGGCATGGCAGGGTGCCTGGCTTGAAACA 525
 Db 126 LeuSerArgLysIleGlyIleLeuValAlaGlyIleGlyIleGlyIyaalaValGyaasn 145
 QY 526 CGAGCCGAGTGCCTCTATCCGATGACTGGGATGCCGCTTCAGCTGACAGCGC 585
 Db 146 ProAlaAspValAlaMetValArgMetGlnIaAspGlyArgLeuProLeuAlaGinArg 165
 QY 586 CCTGGCTACAAATGTTAACGCCCTGATTCGAACTACCGGAGAGGGCTGC 645
 Db 166 ArgAsnTyraLysAlaIysGlyAspAlaIleArgSerMetValIysGlyIluValThr 185
 QY 646 AACTGTGGGGGGCTGCATCCTACATGGCTGGGGACCGTGTGTCATCTGGCCAG 705
 Db 186 SerLeuIrpArgIysLeuAlaIutIleAnargAlaMetIleLeuIalAgin 205
 QY 706 CTCGCCTCTACTCCCATCCAGCAGCTCTRACTGAACTCTGGCTACTCTGACAAAC 765
 Db 206 LeuIaLasrTyraSpGlyIphelysGluGlyIleLeuGluAsnGlyValMetAspGly 225
 QY 766 ATCTTGCGGACACTCTCTGCGGACATCACGGGTTGACACTGCTCTCCATG 825
 Db 226 IleGlyIluIrpIluValAlaIaIysGlyHevalAlaSerValIaLasrAsn 245
 QY 826 CCTGTGGACATGCCAACGACCGAATCCAGAACATGGGATGATGGAGCCGAA 885
 Db 246 ProValAspValIleIutIphargValMetAsnMetIysVal-----GlyAla 261
 QY 886 TCAAGAACGGCTTGAGCTGCTGTCAGGAGGCTCTCACCTG 945
 Db 262 TyrAspGlyIaItrPabPcysAlaValIySthValIaIysGlyAlaMetAlaLeu 281
 QY 946 TCGAAGGGCTTGAGCTGACTATGCCGCTGGCCACACCGCTCTCACCTG 1005
 Db 282 TyrIysGlyPhevalProThrValCyArgGlyIlyProphetHrValLeuPheVal 301
 QY 1006 TTCTGGAGGAGATGAAAG 1026
 Db 302 ThrIeuGluGlnValArgLys 308

length: 313
 matches: 124
 conservative: 47
 mismatches: 106
 indels: 30
 gaps: 3

RESULT 2
 US-11-019-711-87
 Sequence 87, Application US/11019711
 Publication No. US20060009634A1
 GENERAL INFORMATION:
 APPLICANT: Kekuda, Ramesh
 APPLICANT: Alsobrook II, John P
 APPLICANT: Tchernov, Velizar T
 APPLICANT: Liu, Xiaohong
 APPLICANT: Spytek, Kimberly A
 APPLICANT: Gross, William M
 APPLICANT: Lepley, Denise M
 APPLICANT: Burgess, Catherine E
 APPLICANT: Vernet, Corine A.M.
 APPLICANT: Li, Li
 APPLICANT: Gorman, Linda
 APPLICANT: Edinger, Shlomit R
 APPLICANT: Scioe, Paul
 APPLICANT: Ellerman, Karen
 APPLICANT: Malvankar, Uriel M
 APPLICANT: Rothenberg, Mark
 APPLICANT: Stone, David J
 APPLICANT: Boldog, Ferenc L
 APPLICANT: Guo, Xiaolia
 APPLICANT: Shenoy, Suresh G
 APPLICANT: Anderson, David W
 APPLICANT: Padmaru, Muralidhara
 APPLICANT: Taupier Jr, Raymond J
 APPLICANT: Miller, Charles E
 APPLICANT: Eisen, Andrew J
 TITLE OF INVENTION: Proteins and Nucleic Acids Encoding Same
 FILE REFERENCE: 214-02-235
 CURRENT APPLICATION NUMBER: US/11/019.711
 PRIOR APPLICATION NUMBER: US/10/037,417
 PRIOR FILING DATE: 2002-09-20
 PRIOR APPLICATION NUMBER: 60/272,817
 PRIOR FILING DATE: 2001-01-05
 PRIOR APPLICATION NUMBER: 60/260,360
 PRIOR FILING DATE: 2001-01-08
 PRIOR APPLICATION NUMBER: 60/272,411
 PRIOR FILING DATE: 2001-02-28
 PRIOR APPLICATION NUMBER: 60/305,060
 PRIOR FILING DATE: 2001-03-02
 PRIOR APPLICATION NUMBER: 60/291,186
 PRIOR FILING DATE: 2001-05-15
 PRIOR APPLICATION NUMBER: 60/303,231
 PRIOR FILING DATE: 2001-07-05
 PRIOR APPLICATION NUMBER: 60/318,700
 PRIOR FILING DATE: 2001-09-12
 NUMBER OF SEQ ID NOS: 227
 SOFTWARE: Patentin ver. 2.1
 SEQ ID NO: 87
 LENGTH: 307
 TYPE: PRT
 ORGANISM: Homo sapiens
 US-11-019-711-87

Alignment Scores:
 Pred. No.: 1.78e-24
 score: 438.50
 Percent Similarity: 50.8%
 Best Local Similarity: 32.8%
 Query Match: 15.4%
 Db: 4

length: 307
 matches: 98
 conservative: 54
 mismatches: 138
 indels: 9
 gaps: 4

US-09-888-264-2 (1-1503) x US-11-019-711-87 (1-307)

Copyright (c) 1993 - 2006 Biocceleration Ltd.

GanCore version 5.1.7

Run on: February 2, 2006, 00:52:24 ; Search time 6638.73 Seconds

(without alignments)

10592.541 Million cell updates/sec

OM nucleic - nucleic search, using sw model

c

27

990.2

65.9

1201

1

AL563855

AK09824

Mus muscu

AL529560

AL529

QY	11	GGCGTGTGCGCCGCGCTTCGCTCTGTCGCGCCGCGCGCGCTGCACTTGCGCGCGAGGGGCC	70	QY
Db	19	GCGCTGCAGCGCCCTTCGCTCTGTCGCGCCGCGCGCGCTGCACTTGCGCGCGAGGGGCC	78	Db
QY	71	GTGCAGCGACGGGACCCGGGGCATGGGGCATGGGGCATGGGGCATGGGGCATGGGG	130	QY
Db	79	GCGCGCGACGGGACCCGGGGCATGGGGCATGGGGCATGGGGCATGGGG	138	Db
QY	131	CCGGGGCCGGGGTAGACCGGAAGGGGAGGGGATGGGAGGTACAGTTTGTCAGTCTGT	190	QY
Db	139	CCGGGGCCGGGGATAGACGGGAAGGGGAGGGGATGGGAGGTACAGTTTGTCAGTCTGT	198	Db
QY	191	TTGGGGCCCTGGCCGGATGGGAGGTACAGTTTGTCAGTCTGT	250	QY
QY	199	TTGGGGCCCTGGCCGGATGGGAGGTACAGTTTGTCAGTCTGT	258	QY
QY	251	ACCAGATGAGTGGGGGGAGGGCCAGACTGAGAGTACAAACAGCTCCATG	310	QY
Db	259	ACCGATGAGTGGGGGGAGGGCCAGACTGAGAGTACAAACAGCTCCATG	318	Db
QY	311	CCCTTACCAAGTATCTGAAAGGGAGGGCTGAGGGCATTAACCTGAGGTGAGCTG	370	QY
Db	319	CCCTTACCAAGTATCTGAAAGGGAGGGCTGAGGGCATTAACCTGAGGTGAGCTG	378	Db
QY	371	GCCTCTGCGTCAGGCCACCTAACCAACTACCGCCTGGCATATAACGGTGTGTTG	430	QY
Db	379	GCCTCTGCGTCAGGCCACCTAACCAACTACCGCCTGGCATATAACGGTGTGTTG	438	Db
QY	431	AGCGCTGACTGGGGCTGATGATGATCCCTGAGCTTCTGAGGCTGGCA	490	QY
Db	439	AGCGCTGACTGGGGCTGATGATGATCCCTGAGGCTGGCA	498	Db
QY	491	TGACCCAGGTGCCATGGGGCTTGTGGACACCAGCGGAGGGCTTATCCGA	550	QY
Db	499	TGACCCAGGTGCCATGGGGCTTGTGGACACCAGCGGAGGGCTTATCCGA	558	Db
QY	551	TGACTGGCGATGGCGCTCCAGGTGACCGAGGGCTGCTGAGTAAATGTGTTAACG	610	QY
Db	559	TGACTGGCGATGGCGCTCCAGGTGACCGAGGGCTGCTGAGTAAATGTGTTAACG	618	Db
QY	611	CCCTATTCGATCCCCSGAAGGGGCTCTACACTGTGGGGGCTGCTCCCTA	670	QY
Db	619	CCCTATTCGATCCCCSGAAGGGGCTCTACACTGTGGGGGCTGCTCCCTA	678	Db
QY	671	CCATGGCTGGGCTCTGCTCAATGCTGCCAACCTCGCTCTACTCCAAATCAGC	730	QY
Db	679	CCATGGCTGGGCTCTGCTCAATGCTGCCAACCTCGCTCTACTCCAAATCAGC	738	Db
QY	731	AGTTCTACTGGACTCAGGGTACTTCTGACAACATCTGCGCACTTGCGACCA	790	QY
Db	739	AGTTCTACTGGACTCAGGGTACTTCTGACAACATCTGCGCACTTGCGACCA	798	Db
QY	791	TGATCAGCGCTCTGCTCACCACTGCTGCTCCATGCCCTGGACATGGCAAGGCCGA	850	QY
Db	799	TGATCAGCGCTCTGCTCACCACTGCTGCTCCATGCCCTGGACATGGCAAGGCCGA	858	Db
QY	851	TCCAGAACATGGGGATGGGGAGGGGATACAGAAGGGCTGAGCTGCTGT	910	QY
Db	859	TCCAGAACATGGGGATGGGGAGGGGATACAGAAGGGCTGAGCTGCTGT	918	Db
QY	911	TCAAGTGTGGCTTCAAGGGCTTCTCAGCGCTGTGGAGGGCTTCAGCGCTACTATG	970	QY
Db	919	TCAAGTGTGGCTTCAAGGGCTTCTCAGCGCTGTGGAGGGCTTCAGCGCTACTATG	978	Db
QY	971	CCCGCTGGGGCCACACCGCTCTCACCTTCATGCTGGAGGGCTGAGCTGCTGT	1030	QY
Db	979	CCCGCTGGGGCCACACCGCTCTCACCTTCATGCTGGAGGGCTGAGCTGCTGT	1038	Db
1031	ACAGCGCTCTTCAGGGCTTCAAGGGCTTCTCAGCGCTTCAAGGGCTTCTCAGCGCT	1090		
1039	ACAGCGCTCTTCAGGGCTTCAAGGGCTTCTCAGCGCTTCAAGGGCTTCTCAGCGCT	1098		
COMMENT				
The web : www.genoscope.cns.fr				
BP_191_9106_EUVE codex - FRANCE (E-mail : seqref@genoscope.cns.fr				
Submitted (20-JUL-2004) Genoscope - Centre National de Séquençage :				
1st strand cDNA was primed with a NotI-oligo(dT) primer. Five prime end enriched, double-strand cDNA was digested with Not I and cloned into the Not I and EcoR V sites of the pCMVSPORT 6 vector. Library was normalized. Library was constructed by Life Technologies, a division of Invitrogen.				
REFERENCE				
AUTHORS				
TITLE				
JOURNAL				
REMARK				
http://fulllength.invitrogen.com/ Invitrogen Corporation 1600 Faraday Avenue (bases 1 to 1532)				
REFERENCE				
AUTHORS				
TITLE				
JOURNAL				
COMMENT				
The web : www.genoscope.cns.fr				
BP_191_9106_EUVE codex - FRANCE (E-mail : seqref@genoscope.cns.fr				
Submitted (20-JUL-2004) Genoscope - Centre National de Séquençage :				
1st strand cDNA was primed with a NotI-oligo(dT) primer. Five prime end enriched, double-strand cDNA was digested with Not I and cloned into the Not I and EcoR V sites of the pCMVSPORT 6 vector. Library was normalized. Library was constructed by Life Technologies, a division of Invitrogen.				
FEATURES				
source				
/organism="Homo sapiens"				
/mol_type="mRNA"				
/db_xref="taxon:9606"				
/clone="CSOP010Y007"				
/tissue_type="Neuroblastoma Cot 25-normalized"				
/plasmid="pCMVSPORT_6"				
ORIGIN				
Query Match				
Best local similarity 99.9%; Pred. No. 0;				
Version 1.4.0.0 Date 2004-07-14 14:15:00 User Gao				

QY	181	AAGTTTCCCTGTTGGGGCTTGAGCGAGTAGGAGCTAACAGTTTGTGTCAGGCCCTGAC	240
Db	181	AAGTTTCCCTGTTGGGGCTTGAGCGAGTAGGAGCTAACAGTTTGTGTCAGGCCCTGAC	240
Db	181	AAGTTTCCCTGTTGGGGCTTGAGCGAGTAGGAGCTAACAGTTTGTGTCAGGCCCTGAC	240
QY	241	CTGGTGAQACCAGATGGAGTGGAGTGGAGCTGGGGAAAGGGCCAAAGCTGAGAGAACAA	300
Db	241	CTGGTGAQACCAGATGGAGTGGAGTGGAGCTGGGGAAAGGGCCAAAGCTGAGAGAACAA	300
QY	301	AGCTTCCATGCCCTCACCAAGTATCTGAGGAGAGGCTGAGGGATTACATCGG	360
Db	301	AGCTTCCATGCCCTCACCAAGTATCTGAGGAGAGGCTGAGGGATTACATCGG	360
QY	361	CCTGGGCTGGCCCTGCTCGCTGAGGAGGACCTACGGCCAACTACACACTACCGCCTG	420
Db	361	CCTGGGCTGGCCCTGCTCGCTGAGGAGGACCTACGGCCAACTACACACTACCGCCTG	420
QY	421	GTCGTTGTTGAGCCCTGACTGGGGTGTGAGGACTCCCGCTGGTTCTGTAAGGCT	480
Db	421	GTCGTTGTTGAGCCCTGACTGGGGTGTGAGGACTCCCGCTGGTTCTGTAAGGCT	480
QY	481	GTCGTTGAGCCCTGACTGGGGTGTGAGGACTCCCGCTGGTTCTGTAAGGCT	540
Db	481	GTCGTTGAGCCCTGACTGGGGTGTGAGGACTCCCGCTGGTTCTGTAAGGCT	540
QY	541	CTTATCCCATGACTGGCATGCCGTTCAAGTGGACAGCCGCTGCTAACAAAT	600
Db	541	CTTATCCCATGACTGGCATGCCGTTCAAGTGGACAGCCGCTGCTAACAAAT	600
QY	601	GTGTTAACGCCCTGATTGAACTACCCCGAAGGGGTCCTCACACTGTGGGGGC	660
Db	601	GTGTTAACGCCCTGATTGAACTACCCCGAAGGGGTCCTCACACTGTGGGGGC	660
QY	661	TGCATCCCTACCATGCTGGGCCGCTCGTGCATACTGCCCCAGCTGCCCTCTACCC	720
Db	661	TGCATCCCTACCATGCTGGGCCGCTCGTGCATACTGCCCCAGCTGCCCTCTACCC	720
QY	721	CAATCAGCAGTCTACTGGACTCAGGGTACTTCTGACAACTGTGCCACTTC	780
Db	721	CAATCAGCAGTCTACTGGACTCAGGGTACTTCTGACAACTGTGCCACTTC	780
QY	781	TGTCGCAAGCATGATGAGGGCTGTCACCACTGCTGCTCCATGCCCTGGACATGCC	840
Db	781	TGTCGCAAGCATGATGAGGGCTGTCACCACTGCTGCTCCATGCCCTGGACATGCC	840
QY	841	AAGACCCGATCCAGAACATGCGGATGTTGATGGGAAGCCGAATACAGACGGCTG	900
Db	841	AAGACCCGATCCAGAACATGCGGATGTTGATGGGAAGCCGAATACAGACGGCTG	900
QY	901	GACGGCTGTTCAAGTGGCCGATCAGGGGTTCTCAGCCTGGAAAGGCTTACG	960
Db	901	GACGGCTGTTCAAGTGGCTACGGGGTTCTCAGCCTGGAAAGGCTTACG	960
QY	961	CCCTATGCCCTGGGCCAACCCACCGCTCTACCTCATCTTGGAGGAGCTACG	1020
Db	961	CCCTATGCCCTGGGCCAACCCACCGCTCTACCTCATCTTGGAGGAGCTACG	1020
QY	1021	ACAAAGCCTACAGCGCTCTCAGTGGCTGAAAGGGGGGGCTCCACTCCC	1080
Db	1021	ACAAAGCCTACAGCGCTCTCAGTGGCTGAAAGGGGGGGCTCCACTCCC	1080
QY	1081	TGCTGCCTATAGCCACTGCGCCCTGGGGCTGGGCTCTGCTGCTGGCCCTCA	1140
Db	1081	TGCTGCCTATAGCCACTGCGCCCTGGGGCTGGGCTCTGCTGCTGGCCCTCA	1140
QY	1141	TCTATTCCTCCACAGCTGGCTCTCTGCGTAAGGAGCTGGCTCTGCTAC	1200
Db	1141	TCTATTCCTCCACAGCTGGCTCTCTGCGTAAGGAGCTGGCTCTGCTAC	1200
QY	1201	CCCTGCTCCAGCTGGCTCTGCTGCTGCTGCTGCTGCTGCTGCTGCTAC	1260
Db	1201	CCCTGCTCCAGCTGGCTCTGCTGCTGCTGCTGCTGCTGCTGCTAC	1260
QY	1261	TTCGAGGAGCTGAGAACATTCTGAGGATTTGCTCCCTGGTTTGTTCAG	1320
Db	1261	TTCGAGGAGCTGAGAACATTCTGAGGATTTGCTCCCTGGTTTGTTCAG	1320
QY	1321	GCCACACGGAGCAGAGATGCCCTTGTCAGTGGGAACCAAGCAGACTGAGG	1380
Db	1321	GCCACACGGAGCAGAGATGCCCTTGTCAGTGGGAACCAAGCAGACTGAGG	1380
QY	1381	GACAGGGAGGAGAGGCTGAGATGGCTGAGGGAGAGTGGCC	1440
Db	1381	GACAGGGAGGAGAGGCTGAGATGGCTGAGGGAGAGTGGCC	1440
QY	1441	TCTCTCCCTCATGAGCTTATAATTGATGACACCAAAAAAAA	1500
Db	1441	TCTCTCCCTCATGAGCTTATAATTGATGACACCAAAAAAAA	1500
QY	1501	AAA 1503	
Db	1501	AAA 1503	

GenCore version 5.1.7
Copyright (c) 1993 - 2006 Biocceleration Ltd.

Run on: February 1, 2006, 20:32:32 ; Search time 980.441 Seconds
(without alignments)
10216.861 Million cell updates/sec

Title: US-09-888-264-2

Perfect score: 1503

Sequence: 1 cctcggtgcaggcgctgcgcg.....ccaaaaaaaaaaaaaa 1503

Scoring table: IDENTITY_NUC

Gapext 1.0 , Gapext 1.0

Searched: 4996997 seqs, 3332346308 residues

Total number of hits satisfying chosen parameters: 9993994

Minimum DB seq length: 0

Maximum DB seq length: 200000000

Post-processing: Minimum Match 0%
Maximum Match 100%

Listing first 45 summaries

Database :

N_Geneseq 21:
1: geneseqn1980s: *
2: geneseqn1990s: *
3: geneseqn2000s: *
4: geneseqn2001as: *
5: geneseqn2001bs: *
6: geneseqn2002as: *
7: geneseqn2002bs: *
8: geneseqn2003as: *
9: geneseqn2003bs: *
10: geneseqn2003cs: *
11: geneseqn2003ds: *
12: geneseqn2004as: *
13: geneseqn2004bs: *
14: geneseqn2005bs: *

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

ALIGNMENTS

RESULT 1

ABR93092
ID ABR93092 standard; cDNA; 1503 BP.
XX
AC ABR93092;
XX
DT 12-APR-2002 (first entry)

XX
DE Human 2-oxoglutarate carrier (OGC) cDNA sequence AF070548 SEQ ID NO:2.

XX
Human; 2-oxoglutarate carrier; OGC; uncoupling protein; UCP; gene; KW immunosuppressive; immunomodulator; vulnerability; cerebroprotective; KW anorectic; obesity; cachexia; metabolic disorder; stroke; trauma; sepsis; KW infection; ss.
KW
OS Homo sapiens.
XX
PN WO200198512-A2.

XX
PD 27-DEC-2001.

XX
PF 22-JUN-2001; 2001WO-US0202020.

XX
PR 22-JUN-2000; 2000US-0213307P.

XX
PA (GETH) GENENTECH INC.

XX
PI Adams S, Yu XX;

XX
WPI; 2002-130794/17.

XX
Example 1; Page 26; 53pp; English.
The present invention describes a method of screening for compounds that affect uncoupling useful for identifying human 2-oxoglutarate carrier (OGC) agonists or antagonists for treating obesity or cachexia, respectively, by analyzing the expression of human OGC within the sample.

XX
XX
PT Screening for compounds that affect uncoupling useful for identifying human 2-oxoglutarate carrier (OGC) agonists or antagonists for treating obesity or cachexia, respectively, by analyzing the expression of human OGC within the sample.
XX
PS Example 1; Page 26; 53pp; English.
The present invention describes a method of screening for compounds that affect uncoupling. The method comprises analysing the expression of a human 2-oxoglutarate carrier (OGC) protein within the sample. OGC has anorectic, immunomodulator, vulnerary, cerebroprotective and

C	20	418.4	27.8	2122	13	ACN43708	Actn43708 Human dia
C	21	418.4	27.8	2268	13	ACN43706	Actn43706 Human dia
C	22	368.8	24.5	688	13	ADQ51456	Novel can
C	23	362	24.1	418	9	ACH1341	Ach1341 Human adu
C	24	359	23.9	454	9	ACH14565	Ach14565 Human adu
C	25	356.6	23.7	1654	4	ABL02383	Drosophili
C	26	353.4	23.5	366	10	ADD33132	Add33132 Human mit
C	27	353.4	23.5	366	10	ADK61375	Adk61375 Ovarian c
C	28	337.6	22.5	458	4	ADL17748	Aad17748 Human mac
C	29	314.6	20.9	3725	4	ABL02382	Abl02382 Drosophili
C	30	308.6	20.5	1205	13	ADX51274	Adx51274 Plant ful
C	31	274.6	18.3	24127	11	ACN44540	Actn44540 Mouse gen
C	32	260	17.3	469	13	ADU18167	Adu18167 periphera
C	33	260	17.3	469	13	ADU11195	Adu11195 Solid tum
C	34	260	17.3	469	13	ADU48191	Adu48191 Human SIC
C	35	257.2	17.1	1398	14	ADY64719	Ady64719 S. mansoni
C	36	253	16.8	1017	4	ABL02299	Abl02299 Drosophili
C	37	253	16.8	3017	4	ABL20298	Abl02299 Drosophili
C	38	249.8	16.6	906	13	ADQ89737	Adq89737 Antagonis
C	39	249.8	16.6	2906	4	ABL02088	Abl02088 Drosophili
C	40	249.8	16.6	1736	13	ACN43711	Actn43711 Human dia
C	41	194.4	12.9	2028	13	ACN43710	Actn43710 Human dia
C	42	194.4	12.9	194.4	12.9	ACN43707	Actf79982 leukaemia
C	43	194.4	12.9	1714	13	ACN43708	Actf79982 leukaemia
C	44	188	10	188	10	ADB55381	Adb55381 Toxicity-
C	45	177	11.8	506	10	ADB55381	Adb55381 Toxicity-

CC immunosuppressive activities. The method is useful for screening compounds that affect uncoupling, particularly OGC antagonists or agonists. The OGC agonist is particularly useful for increasing the metabolic rate in a mammal to treat obesity. The OGC antagonist is useful for treating cachexia. The method is also useful for detecting and treating metabolic disorders. Modulating the metabolic rate in a mammal has a variety of therapeutic applications, including treatment of obesity and the symptoms associated with stroke, trauma (e.g. burn trauma), sepsis or infection. OGC is an uncoupling protein. The present sequence represents a human OGC cDNA sequence used in the exemplification of the present invention, which is that of the GenBank accession number AF070548.

Sequence 1503 BP: 285 A: 451 C: 437 G: 330 T: 0 U: 0 Other: 0

Query	Match	Score	Length	Start	End
Qy	Best Local Similarity	100.0%	Score	1503	DB 6; Length 1503;
	Matches	1503;	Score	100.0%	Precl. No. 0;
	Conservative	0;	Mismatches	0;	Indels 0;
			Gaps	0	
Qy	1	CCTCGTGCCAGGCTGCGCGGCCCTCGCTGCGCGCGCGCTGACCTTGCGC	60	60	60
Db	1	CCCTGTGCGAGGCTGCGCGGCCCTCGCTGCGCGCGCTGACCTTGCGC	60	60	60
Qy	61	GAAGGGGGCGTGGCGGAAGGGAAACGGGAGCGCGAAGGGCGATTGAGTGGGATGAGGGG	120	120	120
Db	61	GAAGGGGGCGTGGCGGAAGGGAAACGGGAGCGCGAAGGGCGATTGAGTGGGATGAGGGG	120	120	120
Qy	121	ACGGGAGTGCCCGGGCCAGCGGGATAGAGGGAGGCCCGTACTCCCTAAGTCGTC	180	180	180
Db	121	ACGGGAGTGCCCGGGCCAGCGGGATAGAGGGAGGCCCGTACTCCCTAAGTCGTC	180	180	180
Qy	181	AACTTCCCTGGTGGGGCTGGGGGGATGGGAGTACAGTTTGTCCAGCCCCGGAC	240	240	240
Db	181	AACGTTCCCTGGTGGGGCTGGGGGGATGGGAGTACAGTTTGTCCAGCCCCGGAC	240	240	240
Qy	241	CTGGTGAAGACCGATGAGTGGGGGGAAAGGGCCAGACTCGAGAGTACAAACC	300	300	300
Db	241	CTGGTGAAGACCGATGAGTGGGGGGAAAGGGCCAGACTCGAGAGTACAAACC	300	300	300
Qy	301	AGCTTCCATGCCCTAACCAAGTATCTGAAAGCCAGAGGCTTGAGGGCATTTACGTGG	360	360	360
Db	301	AGCTTCCATGCCCTAACCAAGTATCTGAAAGCCAGAGGCTTGAGGGCATTTACGTGG	360	360	360
Qy	361	CTCTCGAACTGGCTCTGCTGCTGCGCAACTACACACTACCCACTACCCSCTTGCACTATACC	420	420	420
Db	361	CTCTCGAACTGGCTCTGCTGCTGCGCAACTACACACTACCCSCTTGCACTATACC	420	420	420
Qy	421	GTCCTGTTGAGGCCCTGACTGGGCTGATGGTACTCCCTGGTTCTGTGAGGCT	480	480	480
Db	421	GTCCTGTTGAGGCCCTGACTGGGCTGATGGTACTCCCTGGTTCTGTGAGGCT	480	480	480
Qy	481	GTGATTGCGATGACCGCAGTGGCACTGGCGCTTGTGGGAACCCAGCGGAAGTGCT	540	540	540
Db	481	GTGATTGCGATGACCGCAGTGGCACTGGCGCTTGTGGGAACCCAGCGGAAGTGCT	540	540	540
Qy	541	CTTATCCGATGACTGCCATGGCGCTTCCAGGTGACCGAGGCCGCGTGTGCTACAAAT	600	600	600
Db	541	CTTATCCGATGACTGCCATGGCGCTTCCAGGTGACCGAGGCCGCGTGTGCTACAAAT	600	600	600
Qy	601	GTGTTTAACGCCCTGATTCGAATCACCCGGGAAGGGGGTCTCACTGTGGGGG	660	660	660
Db	601	GTGTTTAACGCCCTGATTCGAATCACCCGGGAAGGGGGTCTCACTGTGGGGG	660	660	660
Qy	661	TCCATCCCTACCATGCGCTGGCGCTCGTGTCAATGCTGCCACTCGCTCCACTCC	720	720	720
Db	661	TCCATCCCTACCATGCGCTGGCGCTCGTGTCAATGCTGCCACTCGCTCCACTCC	720	720	720
Qy	721	CTATCAGGAGTCTTACTGGACTCAGGACTCTCTCACACATCTGTGCACTTC	780	780	780
Db	721	CTATCAGGAGTCTTACTGGACTCAGGACTCTCTCACACATCTGTGCACTTC	780	780	780
Qy	781	TGTCGCAAGCATGATGAGCGCTCTGTCACTGTGCTCCATCCTGTGACATGTC	840	840	840
Db	781	TGTCGCAAGCATGATGAGCGCTCTGTCACTGTGCTCCATCCTGTGACATGTC	840	840	840

Copyright (c) 1993 - 2006 Biocceleration Ltd.

GenFore version 5.1.7

OM nucleic - nucleic search, using SW model

Run on: February 2, 2006, 14:46:55 ; Search time 1355.33 Seconds (without alignments)

9170.349 Million cell updates/sec

Title: US-09-888-264-2

Perfect score: 1503

Sequence: 1 cctcggtgcaggcgtgcgca caaaaaaaaaaaaaaaaaaa 1503

Scoring table: IDENTITY_NUC

Gapext 10.0 , Gapext 1.0

Searched: 9793542 seqs, 413468905 residues

Total number of hits satisfying chosen parameters: 19587084

Minimum DB seq length: 0

Maximum DB seq length: 0

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : Published Applications NA_Main:*

1: /cgn2_6/podata/1/pubpna/US09_PUBCOMB.seq:*

2: /cgn2_6/podata/1/pubpna/US09_PUBCOMB.seq:*

3: /cgn2_6/podata/1/pubpna/US09_PUBCOMB.seq:*

4: /cgn2_6/podata/1/pubpna/US09_PUBCOMB.seq:*

5: /cgn2_6/podata/1/pubpna/US09_PUBCOMB.seq:*

6: /cgn2_6/podata/1/pubpna/US09_PUBCOMB.seq:*

7: /cgn2_6/podata/1/pubpna/US09_PUBCOMB.seq:*

8: /cgn2_6/podata/1/pubpna/US10_PUBCOMB.seq:*

9: /cgn2_6/podata/1/pubpna/US11_PUBCOMB.seq:*

10: /cgn2_6/podata/1/pubpna/US11_PUBCOMB.seq:*

pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match Length	DB ID	Description
1	1503	100.0	1503	US-09-888-264-2
2	1488.2	99.0	1570	US-10-507-617-12
3	968.6	64.4	1123	US-09-888-264-1
4	941.8	62.7	945	US-10-745-237-369
5	824.2	54.8	1091	US-10-261-175A-5
6	784	52.2	946	US-10-191-893-147
7	784	51.2	946	US-10-764-420-92
8	600.4	39.9	14661	US-10-741-600-17748
9	600.4	39.9	17149	US-10-741-600-17980
10	600.4	39.9	24741	US-10-087-192-1042
11	600	39.9	14943	US-10-741-600-17979
12	588.4	39.1	8098	US-10-264-237-2856
13	449.6	29.9	473	US-09-918-995-20014
14	441.8	29.4	552	US-09-918-995-20779
15	362	24.1	418	US-09-918-995-953
16	359	23.9	454	US-09-918-995-1777
17	356.6	23.7	1654	US-11-097-143-815
18	353.4	23.5	366	US-10-095-680-545
19	314.6	20.9	475	US-11-097-143-814
20	308.6	20.5	1205	US-10-425-114-6014
21	308.6	20.5	1207	US-10-425-115-126999
22	274.6	18.3	24127	US-10-087-192-1039
23	274.6	17.3	469	US-10-733-032-14

SUMMARIES

Result No.	Score	Query Match Length	DB ID	Description
1	1503	100.0	1503	US-09-888-264-2
2	1488.2	99.0	1570	US-10-507-617-12
3	968.6	64.4	1123	US-09-888-264-1
4	941.8	62.7	945	US-10-745-237-369
5	824.2	54.8	1091	US-10-261-175A-5
6	784	52.2	946	US-10-191-893-147
7	784	51.2	946	US-10-764-420-92
8	600.4	39.9	14661	US-10-741-600-17748
9	600.4	39.9	17149	US-10-741-600-17980
10	600.4	39.9	24741	US-10-087-192-1042
11	600	39.9	14943	US-10-741-600-17979
12	588.4	39.1	8098	US-10-264-237-2856
13	449.6	29.9	473	US-09-918-995-20014
14	441.8	29.4	552	US-09-918-995-20779
15	362	24.1	418	US-09-918-995-953
16	359	23.9	454	US-09-918-995-1777
17	356.6	23.7	1654	US-11-097-143-815
18	353.4	23.5	366	US-10-095-680-545
19	314.6	20.9	475	US-11-097-143-814
20	308.6	20.5	1205	US-10-425-114-6014
21	308.6	20.5	1207	US-10-425-115-126999
22	274.6	18.3	24127	US-10-087-192-1039
23	274.6	17.3	469	US-10-733-032-14

ALIGMENTS

Result No.	Score	Query Match Length	DB ID	Description
1	1503	100.0	1503	US-09-888-264-2
2	1488.2	99.0	1570	US-10-507-617-12
3	968.6	64.4	1123	US-09-888-264-1
4	941.8	62.7	945	US-10-745-237-369
5	824.2	54.8	1091	US-10-261-175A-5
6	784	52.2	946	US-10-191-893-147
7	784	51.2	946	US-10-764-420-92
8	600.4	39.9	14661	US-10-741-600-17748
9	600.4	39.9	17149	US-10-741-600-17980
10	600.4	39.9	24741	US-10-087-192-1042
11	600	39.9	14943	US-10-741-600-17979
12	588.4	39.1	8098	US-10-264-237-2856
13	449.6	29.9	473	US-09-918-995-20014
14	441.8	29.4	552	US-09-918-995-20779
15	362	24.1	418	US-09-918-995-953
16	359	23.9	454	US-09-918-995-1777
17	356.6	23.7	1654	US-11-097-143-815
18	353.4	23.5	366	US-10-095-680-545
19	314.6	20.9	475	US-11-097-143-814
20	308.6	20.5	1205	US-10-425-114-6014
21	308.6	20.5	1207	US-10-425-115-126999
22	274.6	18.3	24127	US-10-087-192-1039
23	274.6	17.3	469	US-10-733-032-14

SEQUENCES

Result No.	Score	Query Match Length	DB ID	Description
1	1503	100.0	1503	US-09-888-264-2
2	1488.2	99.0	1570	US-10-507-617-12
3	968.6	64.4	1123	US-09-888-264-1
4	941.8	62.7	945	US-10-745-237-369
5	824.2	54.8	1091	US-10-261-175A-5
6	784	52.2	946	US-10-191-893-147
7	784	51.2	946	US-10-764-420-92
8	600.4	39.9	14661	US-10-741-600-17748
9	600.4	39.9	17149	US-10-741-600-17980
10	600.4	39.9	24741	US-10-087-192-1042
11	600	39.9	14943	US-10-741-600-17979
12	588.4	39.1	8098	US-10-264-237-2856
13	449.6	29.9	473	US-09-918-995-20014
14	441.8	29.4	552	US-09-918-995-20779
15	362	24.1	418	US-09-918-995-953
16	359	23.9	454	US-09-918-995-1777
17	356.6	23.7	1654	US-11-097-143-815
18	353.4	23.5	366	US-10-095-680-545
19	314.6	20.9	475	US-11-097-143-814
20	308.6	20.5	1205	US-10-425-114-6014
21	308.6	20.5	1207	US-10-425-115-126999
22	274.6	18.3	24127	US-10-087-192-1039
23	274.6	17.3	469	US-10-733-032-14

us-09-888-264-1.rng

GenCore - version 5.1.7
 Copyright (c) 1993 - 2006 Biocceleration Ltd.

Om nucleic - nucleic search, using sw model

Run on: February 1, 2006, 20:32:32 ; Search time 732.559 Seconds
 (without alignments)
 1.0216.861 Million cell updates/sec

Title: US-09-888-264-1

perfect score: 1123

Sequence: 1 ccggggccatgtgatcg...cttattggggactaataaa 1123

Scoring table: IDENTITY_NUC Gapext 10.0 , Gapext 1.0

Searched: 4996997 seqs, 3332346308 residues
 Total number of hits satisfying chosen parameters: 9993994
 Minimum DB seq length: 0
 Maximum DB seq length: 0
 Post-processing: Minimum Match 0%
 Maximum Match 100%
 Listing first 45 summaries

Database :

N_Geneseq 21: *
 1: geneseq1980s: *
 2: geneseq1990s: *
 3: geneseq2000s: *
 4: geneseq2001as: *
 5: geneseq2001bs: *
 6: geneseq2002ab: *
 7: geneseq2002bs: *
 8: geneseq2003ab: *
 9: geneseq2003bs: *
 10: geneseq2003cs: *
 11: geneseq2003ds: *
 12: geneseq2004as: *
 13: geneseq2004bs: *
 14: geneseq2005s: *

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

ALIGNMENTS

RESULT 1

ABA93091 ABA93091 standard; cDNA; 1123 BP.

XX ABA93091;

XX DT 12-APR-2002 (first entry)

XX DE Human 2-oxoglutarate carrier (OGC) cDNA sequence NM_003562 SEQ ID NO:1.

XX Human; 2-oxoglutarate carrier; OGC; uncoupling protein; uncoupling protein; gene; KW immunosuppressive; immunomodulator; vulnerability; cerebroprotective; KW anorectic; obesity; cachexia; metabolic disorder; stroke; trauma; sepsis; KW infection; ss.
 XX Homo sapiens.
 XX OS Homo sapiens.
 XX PN WO200198512-A2.

XX PD 27-DEC-2001.

XX PP 22-JUN-2001; 2001WO-US020020.

XX PR 22-JUN-2000; 2000US-0213307P.

XX (GETH) GENENTECH INC.

XX PI Adams S, Yu XX;

XX DR WPI; 2002-130794/17.

XX PS Example 1; Page 26; 53pp;

XX English.

Accr43709 Human dia
 Accn43706 Human dia
 Abi02382 Drosophil
 Adx51274 Plant ful
 Acc41542 Human gen
 Ady64719 S. manson
 Adq51456 Novel can
 Abi20299 Drosophil
 Abi20298 Drosophil
 Abi2209 Drosophil
 Adq89737 Antagonis
 Abi02208 Drosophil
 Acc44540 Mouse gen
 Add32591 Human mit
 Acc43719 Zea maya
 Adk1666 Plant ful
 Acc134053 Rice abio
 Adx08672 Plant ful
 Adx36229 Plant ful
 Add33132 Human mit
 Adk61375 Ovarian c
 Adl1748 Human mac
 Adx35348 Plant ful
 Ado81584 Plant ful
 Adx36567 Plant ful
 Adq48708 Bacterial

CC immunosuppressive activities. The method is useful for screening compounds that affect uncoupling, particularly OGC antagonists or agonists. The OGC agonist is particularly useful for increasing the metabolic rate in a mammal to treat obesity. The OGC antagonist is useful for treating cachexia. The method is also useful for detecting and treating metabolic disorders. Modulating the metabolic rate in a mammal has a variety of therapeutic applications, including treatment of obesity and the symptoms associated with stroke, trauma (e.g. burn trauma), sepsis or infection. OGC is an uncoupling protein. The present sequence represents a human OGC cDNA sequence used in the exemplification of the present invention, which is that of the GenBank accession number NM_003562

XX Sequence 1123 BP; 229 A; 330 C; 332 G; 232 T; 0 U; 0 Other;

Query Match 100.0%; Score 1123; DB 6; Length 1123;
Best Local Similarity 100.0%; Pred. No. 3.1e-283; Mismatches 0; Indels 0; Gaps 0;

QY 1 CGAGGGCCATGTGACTGGGATGCCGGGACCGGAGTGGCCGGGGCGGGATGGACG 60
1 CGAGGGCCATGTGACTGGGATGCCGGGACCGGAGTGGCCGGGGCGGGATGGACG 60

Db 61 GAGAGCCCGTAGCTCCCTAATCCGTCAGTCAGCTGGACCTGGAGCTGGAGGG 120
1 CGAGGGCCATGTGACTGGGATGCCGGGACCGGAGTGGCCGGGGCGGGATGGACG 60

QY 121 GAGCTACAGTTTGTCAGCCCTGGACCTGGAGCTGGAGGG 180
1 GAGCTACAGTTTGTCAGCCCTGGACCTGGAGCTGGAGGG 180

Db 181 AAGGGCCAAAGTCTGAGTCAAACCAAGCTTCCATGCCCTCACCGATTCCTGAGG 240
181 AAGGGCCAAAGACTCTGAGTCAAACCAACCGCTCCATGCCCTCACCGATTCCTGAGG 240

QY 241 CAGAAGGCTGAGGGCATTTAACCTGGCTGGGCTGGCTGGCTGGCTGGCTGGC 300
241 CAGAAGGCTGAGGGCATTTAACCTGGCTGGGCTGGCTGGCTGGCTGGCTGGC 300

Db 301 ACCACCACTACCCGCTTGATATACCGTGTGGAGGCTTACCTGGGCTGATG 360
301 ACCACCACTACCCGCTTGATATACCGTGTGGAGGCTTACCTGGGCTGATG 360

Db 361 GRACTCCCTGCTTCTGCGAGGCTGTGGATGCCGGAGGTGCACTGGT 420
361 GRACTCCCTGCTTCTGCGAGGCTGTGGATGCCGGAGGTGCACTGGT 420

QY 421 CTITGTGGAAACACCGCGGAAGTGGCTCTATCCGGATGATGCCGATGCCGGCTC 480
421 CTITGTGGAAACACCGCGGAAGTGGCTCTATCCGGATGATGCCGATGCCGGCTC 480

Db 481 CAGCTGACCAGCGCCGCTGGCTAACAAATGTGTTAACGCCCTGATGCGATGCCGG 540
481 CAGCTGACCAGCGCCGCTGGCTAACAAATGTGTTAACGCCCTGATGCGATGCCGG 540

Db 541 AGAGGGCTCTCACGTGCGGGACTGATCCATTGGCTGGGGCGTGTG 600
541 AGAGGGCTCTCACGTGCGGGACTGATCCATTGGCTGGGGCGTGTG 600

QY 601 TCTATGCTGCCAGCTGGCTTACTCCATCAAGAAGTCTACTGGCTGGCT 660
601 TCTATGCTGCCAGCTGGCTTACTCCATCAAGAAGTCTACTGGCTGGCT 660

Db 661 ATCTCTCTGACACATCTGTGGCTGGCTTCTGAGCTTCTGAGCT 720
661 ATCTCTCTGACACATCTGTGGCTGGCTTCTGAGCTTCTGAGCT 720

Db 721 CAGCTGCTCCCTGGGATGCCAAACCCGATCCAGACATGGCGATGATG 780
721 CAGCTGCTCCCTGGGATGCCAAACCCGATCCAGACATGGCGATGATG 780

QY 781 ATGGGAGCCGAATCAAGAACGGGCTGGAGCTGCTGCGCTAGAGG 840
781 ATGGGAGCCGAATCAAGAACGGGCTGGAGCTGCTGCGCTAGAGG 840

Db 781 ATGGGAGCCGAATCAAGAACGGGCTGGAGCTGCTGCGCTAGAGG 840

QY 841 GCTCTCTTCAAGCTGTGAGGGCTTCAGGCCCTACTATGCCGCGCTGGGCCAACACCG 900
841 GCTCTCTTCAAGCTGTGAGGGCTTCAGGCCCTACTATGCCGCGCTGGGCCAACACCG 900

Db 901 TCCTCACTTCATCTCTTGGAGCATGACAAGGCCTACAGCTCTCTCAGTG 960
901 TCCTCACTTCATCTCTTGGAGCATGACAAGGCCTACAGCTCTCTCAGTG 960

Db 961 GTGAGGGTTTCAAGGACACAGGACAGGAGATCCCCTTGTGAGTGGGAACCA 1020
961 GTGAGGGTTTCAAGGACACAGGACAGGAGATCCCCTTGTGAGTGGGAACCA 1020

Db 961 AGGAGATGTCGCTTCCCTCATGTAGGACTCAATAA 1123
961 AGGAGATGTCGCTTCCCTCATGTAGGACTCAATAA 1123

RESULT 2
AD162922 standard; cDNA; 1434 BP.

Db 701 AGGAGATGTCGCTTCCCTCATGTAGGACTCAATAA 1080
701 AGGAGATGTCGCTTCCCTCATGTAGGACTCAATAA 1080

Db 1081 AGGAGATGTCGCTTCCCTCATGTAGGACTCAATAA 1123
1081 AGGAGATGTCGCTTCCCTCATGTAGGACTCAATAA 1123

XX Human apoptosis-associated cDNA SEQ ID 365.
XX
KW apoptosis; cell death; cytostatic; neuroprotective; immunosuppressive;
KW antirheumatic; antiarthritic; dermatologic; antiinflammatory;
KW hepatotropic; virucide; nootropic; anticonvulsant; antiparkinsonian;
KW vasoconstrictive; cerebroprotective; antialcoholic; gene therapy; tumour;
KW autoimmune disease; degenerative disease; viral infection; leukemia;
KW carcinoma; sarcoma; multiple sclerosis; rheumatoid arthritis; diabetes;
KW lupus; hepatitis; influenza viruses; Alzheimer's disease;
KW Huntington's disease; Parkinson's disease; reperfusion injury; stroke;
KW alcoholic liver disease; human; gene; ss;
XX
OS Homo sapiens.
XX
PN WO2003058021-A2.

XX
PD 17-JUL-2003.
XX
PF 13-JAN-2003; 2003WO-EP000270.

XX
PR 11-JAN-2002; 2002DE-01000856.

XX
PA (XANT-) XANTOS BIOMEDICINE AG.

XX
PI Koenig-Hoffman K, Kazinski M, Schaefer R, Kasper B;
XX
DR WPI; 2003-542134/51.

XX
PT New nucleic acids involved in apoptosis, useful for diagnosis and treatment of e.g. tumors and degenerative disease, also related proteins, PT antibodies and modulators.

XX
PS Claim 1b; SEQ ID NO 365; 517pp; German.

XX
CC This invention describes novel nucleic acid molecules that are associated with apoptosis and encode a polypeptide and are derived from a normalised gene library (embryonic or liver) or cDNA collections, and the extent of apoptosis measured by cell death detection assay or the CPTG assay (measuring loss of membrane integrity). The products of the invention have cytostatic, neuroprotective, immunosuppressive, antiarthritic, antiasthmatic, dermato logical, anticonvulsant, antiparkinsonian, vasoconstrictive, virucide,

CC nootropics, anticonvulsant, antiparkinsonian, vasoconstrictive, virucide,

Copyright (c) 1993 - 2006 Biocceleration Ltd.

GenCore version 5.1.7

Run on: February 1, 2006, 21:01:47 ; Search time 5902.81 Seconds

(without alignment) 10814.381 Million cell updates/sec

OM nucleic - nucleic search, using sw model

Title:

US-09-888-264-1
Perfect score:
Sequence:

1 ccgaggccatggatggcg.....ctcatggggactcaataaa 1123

Scoring table:

IDENTITY_NIC
Gapext 1.0
Gap 10.0 , Gapext 1.0

Searched:

5883141 seqs, 28421725653 residues

Total number of hits satisfying chosen parameters:

11766282

Minimum DB seq length: 0

Maximum DB seq length: 0

Post-processing: Minimum Match 0%
Maximum Match 100%

Listing first 45 summaries

Database :

GenEmbl:
1: gb_ba:
2: gb_in:
3: gb_env:
4: gb_om:
5: gb_ov:
6: gb_pat:
7: gb_ph:
8: gb_pr:
9: gb_rn:
10: gb_st:
11: gb_sy:
12: gb_un:
13: gb_vn:
14: gb_htg:
15: gb_pl:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query	Match Length	DB ID	Description
1	1123	100.0	1123	6 CQ904291	CQ904291 Sequence
2	1107.2	98.6	1124	6 CQ725283	CQ725283 Sequence
3	968.6	86.3	1422	8 BC016294	BC016294 Homo sapi
4	968.6	86.3	1434	6 CQ769539	CQ769539 Sequence
5	968.6	86.3	1503	6 CQ904292	CQ904292 Sequence
6	968.6	86.3	1503	8 AF070548	AF070548 Homo sapi
7	968.6	86.3	1561	8 BC017170	BC017170 Homo sapi
8	968.6	86.3	1562	8 BC006519	BC006519 Homo sapi
9	968.6	86.3	1562	8 BC006519	BC006519 Homo sapi
10	968.6	86.3	1570	6 AX840916	AX840916 Sequence
11	945	84.1	6 CQ848064	CQ848064 Sequence	
12	938.6	83.6	945	8 CR456334	CR456334 Homo sapi
13	924.4	82.3	1183	4 BOVOMCPA	MS8703 Bovine 2-ox
14	857	76.3	1454	4 BOVOMCPB	M60622 Bovine 2-ox
15	840.6	74.9	1403	4 BT020506	BT020506
16	816.2	72.7	1555	9 BC003455	BC003455 Mus muscu
17	816.2	72.7	1555	9 BC019631	BC019631 Mus muscu
18	787.2	70.1	9 RN019631	U84727 Rattus norv	

ALIGMENTS

ORIGIN	Query	Match	Length	DB	ID	Description
1	100.0	1123	6	CQ904291	CQ904291 Sequence	100.0%; Score 1123; DB 6; Length 1123; Best Local Similarity 100.0%; Pred. No. 20-223; Matches 1123; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
2	98.6	1124	6	CQ725283	CQ725283 Sequence	100.0%; Score 1124; DB 6; Length 1124; Best Local Similarity 100.0%; Pred. No. 20-223; Matches 1124; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
3	968.6	1422	8	BC016294	BC016294 Homo sapi	99.9%; Score 1422; DB 8; Length 1422; Best Local Similarity 99.9%; Pred. No. 20-223; Matches 1422; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
4	968.6	1434	6	CQ769539	CQ769539 Sequence	99.9%; Score 1434; DB 6; Length 1434; Best Local Similarity 99.9%; Pred. No. 20-223; Matches 1434; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
5	968.6	1503	6	CQ904292	CQ904292 Sequence	99.9%; Score 1503; DB 6; Length 1503; Best Local Similarity 99.9%; Pred. No. 20-223; Matches 1503; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
6	968.6	1503	8	AF070548	AF070548 Homo sapi	99.9%; Score 1503; DB 8; Length 1503; Best Local Similarity 99.9%; Pred. No. 20-223; Matches 1503; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
7	968.6	1561	8	BC017170	BC017170 Homo sapi	99.9%; Score 1561; DB 8; Length 1561; Best Local Similarity 99.9%; Pred. No. 20-223; Matches 1561; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
8	968.6	1562	8	BC006519	BC006519 Homo sapi	99.9%; Score 1562; DB 8; Length 1562; Best Local Similarity 99.9%; Pred. No. 20-223; Matches 1562; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
9	968.6	1562	8	BC006519	BC006519 Homo sapi	99.9%; Score 1562; DB 8; Length 1562; Best Local Similarity 99.9%; Pred. No. 20-223; Matches 1562; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
10	968.6	1570	6	AX840916	AX840916 Sequence	99.9%; Score 1570; DB 6; Length 1570; Best Local Similarity 99.9%; Pred. No. 20-223; Matches 1570; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
11	945	84.1	6	CQ848064	CQ848064 Sequence	99.9%; Score 84.1; DB 6; Length 84.1; Best Local Similarity 99.9%; Pred. No. 20-223; Matches 84.1; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
12	938.6	83.6	945	8 CR456334	CR456334 Homo sapi	99.9%; Score 938.6; DB 8; Length 938.6; Best Local Similarity 99.9%; Pred. No. 20-223; Matches 938.6; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
13	924.4	82.3	1183	4 BOVOMCPA	MS8703 Bovine 2-ox	99.9%; Score 924.4; DB 4; Length 1183; Best Local Similarity 99.9%; Pred. No. 20-223; Matches 1183; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
14	857	76.3	1454	4 BOVOMCPB	M60622 Bovine 2-ox	99.9%; Score 857; DB 4; Length 1454; Best Local Similarity 99.9%; Pred. No. 20-223; Matches 1454; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
15	840.6	74.9	1403	4 BT020506	BT020506	99.9%; Score 840.6; DB 4; Length 1403; Best Local Similarity 99.9%; Pred. No. 20-223; Matches 1403; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
16	816.2	72.7	1555	9 BC003455	BC003455 Mus muscu	99.9%; Score 816.2; DB 9; Length 1555; Best Local Similarity 99.9%; Pred. No. 20-223; Matches 1555; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
17	816.2	72.7	1555	9 BC019631	BC019631 Mus muscu	99.9%; Score 816.2; DB 9; Length 1555; Best Local Similarity 99.9%; Pred. No. 20-223; Matches 1555; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
18	787.2	70.1	9 RN019631	U84727 Rattus norv	99.9%; Score 787.2; DB 9; Length 70.1; Best Local Similarity 99.9%; Pred. No. 20-223; Matches 70.1; Conservative 0; Mismatches 0; Indels 0; Gaps 0;	

RESULT 2		ORGANISM	
REFERENCE	SEQUENCE	ORGANISM	SEQUENCE
CQ725283	C0725283	Homo sapiens	Bufo bufo
LOCUS	1124 bp	DNA	1124 bp
DEFINITION	sequence 11217 from Patent WO2002068579.	linear	linear
ACCESSION	CQ725283	PAT 03-FEB-2004	PAT 03-FEB-2004
VERSION	CQ725283.1	GI:42286140	GI:42286140
KEYWORDS	source		
181 AAGGGCCCAAGACTGAGAGTACAAACCGCTTCATGCCAACAGTATCTGAGG 240		Homo sapiens	
AAGGGCCCAAGACTGAGAGTACAAACCGCTTCATGCCAACAGTATCTGAGG 240		Bukarvota; Metacoda; Chordata; Craniata; Vertebrata; Buteleostomi;	
Mammalia; Eutheria; Euarchontoglires; Primates; Catarrhini;		Homidae; Homo.	
241 CAGAAGGCTGAGGGCATTACATGAGGTGAGTACAACACCCTCATCCCTGAGG 300		REFERENCE	
CAGAAGGCTGAGGGCATTACATGAGGTGAGTACAACACCCTCATCCCTGAGG 300		AUTHORS	
301 ACACCAACTACCGCCCTTGGATCTTACCGTGTGTTGAGCCCTGCTCAGGACCT 300		TITLE	
301 ACACCAACTACCGCCCTTGGATCTTACCGTGTGTTGAGCCCTGCTCAGGACCT 300		Kits, such as nucleic acid arrays, comprising a majority of	
360 human mRNAs or transcripts, for detecting expression and other uses		thereof.	
360 human mRNAs or transcripts, for detecting expression and other uses		Patent: WO 02068579-A 11217 06-SEP-2002;	
360 human mRNAs or transcripts, for detecting expression and other uses		PE Corporation (NY) (US)	
360 human mRNAs or transcripts, for detecting expression and other uses		Location/Qualifiers	
360 human mRNAs or transcripts, for detecting expression and other uses		1 .. 1124	
360 human mRNAs or transcripts, for detecting expression and other uses		/organism="Homo sapiens"	
360 human mRNAs or transcripts, for detecting expression and other uses		/mol_type="unassigned DNA"	
360 human mRNAs or transcripts, for detecting expression and other uses		/ab_xref="Taxon:9606"	
420		FEATURES	
420		Source	
420		1 .. 1124	
420		/organism="Homo sapiens"	
420		/mol_type="unassigned DNA"	
420		/ab_xref="Taxon:9606"	
480		ORIGIN	
480		Query Match	
480		Best Local Similarity	
480		99.6%	
480		Score	
480		1107.2	
480		DB	
480		6	
480		length	
480		1124	
540		Best Local Similarity	
540		99.6%	
540		Score	
540		1107.2	
540		DB	
540		6	
540		length	
540		1124	
600		Best Local Similarity	
600		99.6%	
600		Score	
600		1107.2	
600		DB	
600		6	
600		length	
600		1124	
660		Best Local Similarity	
660		99.6%	
660		Score	
660		1107.2	
660		DB	
660		6	
660		length	
660		1124	
720		Best Local Similarity	
720		99.6%	
720		Score	
720		1107.2	
720		DB	
720		6	
720		length	
720		1124	
780		Best Local Similarity	
780		99.6%	
780		Score	
780		1107.2	
780		DB	
780		6	
780		length	
780		1124	
840		Best Local Similarity	
840		99.6%	
840		Score	
840		1107.2	
840		DB	
840		6	
840		length	
840		1124	
840		Best Local Similarity	
840		99.6%	
840		Score	
840		1107.2	
840		DB	
840		6	
840		length	
840		1124	
900		Best Local Similarity	
900		99.6%	
900		Score	
900		1107.2	
900		DB	
900		6	
900		length	
900		1124	
960		Best Local Similarity	
960		99.6%	
960		Score	
960		1107.2	
960		DB	
960		6	
960		length	
960		1124	
960		Best Local Similarity	
960		99.6%	
960		Score	
960		1107.2	
960		DB	
960		6	
960		length	
960		1124	
960		Best Local Similarity	
960		99.6%	
960		Score	
960		1107.2	
960		DB	
960		6	
960		length	
960		1124	
960		Best Local Similarity	
960		99.6%	
960		Score	
960		1107.2	
960		DB	
960		6	
960		length	
960		1124	
960		Best Local Similarity	
960		99.6%	
960		Score	
960		1107.2	
960		DB	
960		6	
960		length	
960		1124	
960		Best Local Similarity	
960		99.6%	
960		Score	
960		1107.2	
960		DB	
960		6	
960		length	
960		1124	
960		Best Local Similarity	
960		99.6%	
960		Score	
960		1107.2	
960		DB	
960		6	
960		length	
960		1124	
960		Best Local Similarity	
960		99.6%	
960		Score	
960		1107.2	
960		DB	
960		6	
960		length	
960		1124	
960		Best Local Similarity	
960		99.6%	
960		Score	
960		1107.2	
960		DB	
960		6	
960		length	
960		1124	
960		Best Local Similarity	
960		99.6%	
960		Score	
960		1107.2	
960		DB	
960		6	
960		length	
960		1124	
960		Best Local Similarity	
960		99.6%	
960		Score	
960		1107.2	
960		DB	
960		6	
960		length	
960		1124	
960		Best Local Similarity	
960		99.6%	
960		Score	
960		1107.2	
960		DB	
960		6	
960		length	
960		1124	
960		Best Local Similarity	
960		99.6%	
960		Score	
960		1107.2	
960		DB	
960		6	
960		length	
960		1124	
960		Best Local Similarity	
960		99.6%	
960		Score	
960		1107.2	

GenCore version 5.1.7
Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM nucleic - nucleic search, using sw model

Run on: February 2, 2006, 14:46:55 ; Search time 1012.67 Seconds
(wthout alignments)
9170.349 Million cell updates/sec

Title: US-09-888-264-1
Perfect score: 1123
Sequence: 1 ccgagggccatggatgtgcg.....cttattggggactaataaa 1123

Scoring table: IDENTITY_NUC
Gapext 1.0 , Gapext 1.0

Searched: 9793542 seqs, 413468905 residues

Total number of hits satisfying chosen parameters: 19587084

Minimum DB seq length: 0

Maximum DB seq length: 0

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 45 summaries

Database : Published Applications NA Main.*

1: /cgn2_6/ptodata/1/pubpna/us07_pubcomb.seq:*

2: /cn2_6/ptodata/1/pubpna/us08_pubcomb.seq:*

3: /cgn2_6/ptodata/1/pubpna/us09_pubcomb.seq:*

4: /cgn2_6/ptodata/1/pubpna/us09b_pubcomb.seq:*

5: /cn2_6/ptodata/1/pubpna/us10a_pubcomb.seq:*

6: /cn2_6/ptodata/1/pubpna/us10b_pubcomb.seq:*

7: /cgn2_6/ptodata/1/pubpna/us10c_pubcomb.seq:*

8: /cgn2_6/ptodata/1/pubpna/us10d_pubcomb.seq:*

9: /cn2_6/ptodata/1/pubpna/us10e_pubcomb.seq:*

10: /cgn2_6/ptodata/1/pubpna/us11_pubcomb.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match length	DB ID	Description
1	1123	100.0	1123	US-09-888-264-1
2	968.6	86.3	1503	Sequence 1, App
3	968.6	86.3	1570	Sequence 2, App
4	945	84.1	1945	Sequence 12, App
5	802.6	71.5	1091	Sequence 3,69, App
6	787.2	70.1	946	Sequence 5, App
7	787.2	70.1	946	Sequence 147, App
8	440.2	39.2	552	Sequence 492, App
9	359	32.2	418	Sequence 1079, App
10	356.6	31.8	1654	Sequence 953, App
11	356.6	31.8	1661	Sequence 1777, App
12	314.6	28.0	3725	Sequence 815, App
13	308.6	27.5	1205	Sequence 814, App
14	27.5	1207	US-10-425-114-26994	Sequence 26014, App
15	269.4	24.0	8098	Sequence 26939, App
16	269.4	24.0	14943	Sequence 2856, App
17	269.4	24.0	17149	Sequence 1774, App
18	269.4	24.0	24741	Sequence 17979, App
19	269.4	24.0	24741	Sequence 17980, App
20	254.6	22.7	10	Sequence 1042, App
21	254.6	22.7	3017	Sequence 27659, App
22	248.2	22.1	9	Sequence 27688, App
23	248.2	22.1	906	Sequence 167, App
24	248.2	22.1	US-11-097-143-27688	Sequence 554, App

ALIGNMENTS

RESULT 1
US-09-888-264-1

Sequence 1, Application US/09888264
Patent No. US20020103150A1

GENERAL INFORMATION:

APPLICANT: Adams, Sean

APPLICANT: Yu, Xiang Xian

TITLE OF INVENTION: CONTROL OF METABOLISM WITH COMPOSITIONS OF THE HUMAN 2-OXOGLUTARA...

TITLE OF INVENTION: CARRIER

FILE REFERENCE: 10466/35

CURRENT APPLICATION NUMBER: US/09/888,264

CURRENT FILING DATE: 2001-03-17

PRIOR APPLICATION NUMBER: 60/213,307

PRIOR FILING DATE: 2000-06-22

NUMBER OF SEQ ID NOS: 2

SOFTWARE: Patentin version 3.1

SEQ ID NO: 1

LENGTH: 1123

TYPE: DNA

ORGANISM: Homo sapiens; Genbank NM_003562

US-09-888-264-1

Query Match 100.0%; Score 1123; DB 3 ; Length 1123;

Best Local Similarity 100.0%; Pred. No. 0; Mismatches 0; Indels 0; Gaps 0;

Matches 1123; Conservative

Qry	1	CCGAGGGCCATTGAGTGCAGATGGCGAGATGGCGAGCGCGAGCGCGAGCGCGAGCGCGAGCGCGATGGCG
OY	1	CCGAGGGCCATTGAGTGCAGATGGCGAGATGGCGAGCGCGAGCGCGAGCGCGAGCGCGATGGCG
Db	1	CCGAGGGCCATTGAGTGCAGATGGCGAGATGGCGAGCGCGAGCGCGAGCGCGATGGCG
OY	61	GGAAGCCCGTACCTCCCTAGTCGGTCAAGTCTCTGTGGGGCCCTGGCGGATGG 120
Db	61	GGAAGCCCGTACCTCCCTAGTCGGTCAAGTCTCTGTGGGGCCCTGGCGGATGG 120
OY	61	GGAAGCCCGTACCTCCCTAGTCGGTCAAGTCTCTGTGGGGCCCTGGCGGATGG 120
Db	61	GGAAGCCCGTACCTCCCTAGTCGGTCAAGTCTCTGTGGGGCCCTGGCGGATGG 120
OY	121	GAGCTTACGTTTGTCAGCCCTGGACTGAGAAACCGGATGAGCTTGTGGGG 180
Db	121	GAGCTTACGTTTGTCAGCCCTGGACTGAGAAACCGGATGAGCTTGTGGGG 180
OY	181	AAGGGCCAGACGGGATTAATCTGGGTGCGCTGGCTGGCTGGCTGGCTGGCC 300
Db	181	AAGGGCCAGACGGGATTAATCTGGGTGCGCTGGCTGGCTGGCTGGCTGGCC 300
OY	241	CAGAAGGCCCTGAGGGGATTAATCTGGGTGCGCTGGCTGGCTGGCTGGCC 300
Db	241	CAGAAGGCCCTGAGGGGATTAATCTGGGTGCGCTGGCTGGCTGGCTGGCC 300

GenCore version 5.1.7
 Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM nucleic - protein search, using frame_plus_n2p model

Run on: February 1, 2006, 14:41:42 ; Search time 33.9124 seconds
 (without alignments)
 2767.263 Million cell updates/sec

Title: US-09-888-264-1

Perfect score: 2181

Sequence: 1 ccggaggccattgatgtgcg.....cttcatggagactaataaa 1123

Scoring table: BLOSUM62

Xgapop 10.0 , Xgapext 0.5

Ygapop 10.0 , Ygapext 0.5

Fgapop 6.0 , Fgapext 7.0

Delop 6.0 , Delext 7.0

Searched: 1867569 seqs, 417829326 residues

Total number of hits satisfying chosen parameters: 3735138

Minimum DB seq length: 0

Maximum DB seq length: 200000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Command line parameters:
 -MODEL=frame+ n2p.model -DEV=xlp
 -O/abs/ABSSTEB_spool/US09888264/runat_01022006_131847_14955/app_query.fasta_1

-DB=Published_Applications_AA_Main -QFM=fastrbm -SUFFIX=rapbm -MINMATCH=0.1

-LOOPCL=0 -LOOPEXT=0 -UNITS=BITS -START=1 -END=-1 -MATTRX=BLOSUM62

-TRANS=human40_cdi -LIST=45 -DOCALIGN=200 -THR_SCORE=PCT -THR_MAX=100

-THR_MIN=0 -ALIGN=15 -MODE=LOCAL -OUTFMT=pfo -NORM=ext -HEAPSIZE=B500 -MINLEN=0

-MAXLEN=20000000 -HOST=abs0202p

-USER=US09888264@GEN1_1_405 @runat 01022006_131847_14955 -NCPU=6 -ICPU=3

-NO_MMAP -NEG_SCORES=0 -WAIT -DSBLOCK=100 -LONGLOG -DEV_TIMEOUT=120

-WARM_TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7

-YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7

Database : Published_Applications_AA_Main:

1: /cgns2_6/ptodata/1/pubpaas/US07_PUBCOMB.pep:*

2: /cgns2_6/ptodata/1/pubpaas/US08_PUBCOMB.pep:*

3: /cgns2_6/ptodata/1/pubpaas/US09_PUBCOMB.pep:*

4: /cgns2_6/ptodata/1/pubpaas/US10_PUBCOMB.pep:*

5: /cgns2_6/ptodata/1/pubpaas/US10B_PUBCOMB.pep:*

6: /cgns2_6/ptodata/1/pubpaas/US11_PUBCOMB.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

ALIGNMENTS					
RESULT 1					
US-10-408-765A-498					
; Sequence 498 Application US/10408765A					
Publication No. US20040101874A1					
GENERAL INFORMATION:					
APPLICANT: Ghosh, Sounitra S.					
APPLICANT: Fahy, Eoin D.					
APPLICANT: Gibson, Bradford W.					
APPLICANT: Taylor, Steven W.					
APPLICANT: Glenn, Gary M.					
APPLICANT: Warnock, Dale E.					
TITLE OF INVENTION: TARGETS FOR THERAPEUTIC INTERVENTION					
TITLE OF INVENTION: IDENTIFIED IN THE MITOCHONDRIAL PROTEOME					
FILE REFERENCE: 660088-465					
CURRENT APPLICATION NUMBER: US10/408,765A					
CURRENT FILING DATE: 2003-04-04					
NUMBER OF SEQ ID NOS: 3077					
SOFTWARE: FASTSEQ for Windows Version 4.0					
SEQ ID NO 498					
LENGTH: 314					
TYPE: PRT					
ORGANISM: Homo sapiens					
US-10-408-765A-498					
Alignment Scores:					
Pred. No.: 5.32e-120					
Score: 1604.00					
Percent Similarity: 100.0%					
Best Local Similarity: 100.0%					
Query Match: 73.5%					
Gaps: 0					
Length: 314					
Matches: 314					
Conservative: 0					
Mismatches: 0					
Indels: 0					
Sequence 19319, A					
Sequence 836, App					
Sequence 55, App					
Sequence 19320, A					
Sequence 58, App					
Sequence 27690, A					
Sequence 19319, A					
Sequence 19326, A					
Sequence 168, App					
Sequence 555, App					
Sequence 14439, A					
Sequence 45989, A					
Sequence 18256, A					
Sequence 47224, A					
Sequence 22095, A					
Sequence 215452, A					
Sequence 63340, A					
Sequence 26201, A					
Sequence 19341, A					
Sequence 276095, A					
Sequence 52334, A					
Sequence 1942, A					
Sequence 276094, A					
Sequence 4194, A					
Sequence 1944, A					
Sequence 19393, A					
Sequence 1947, A					
Sequence 21619, A					
Sequence 1983, A					
Sequence 302750, A					

21 ATGGCGGGGAGCAGGGAGGCCGGGGCTGGGGCCCTGGGGGATGGAGGTACAGTTTGCCAG 80
 Db APPLICANT: Taylor, Steven W.
 Qy APPLICANT: Glenn, Gary M.
 1 MetalAlaIthrAlaSerAlaLaglyIylaglyMetAspGlyLysProArgThrSerPro 20
 ; APPLICANT: Warmock, Dale E.
 ; TITLE OF INVENTION: TARGETS FOR THERAPEUTIC INTERVENTION
 ; TITLE OF INVENTION: IDENTIFIED IN THE MITOCHONDRIAL PROTEOME
 ; FILE REFERENCE: 660088.465
 ; CURRENT FILING DATE: 2003-04-04
 ; NUMBER OF SEQ ID NOS: 3077
 ; SOFTWARE: FastSSQ for Windows Version 4.0
 ; SEQ ID NO 2204
 ; LENGTH: 314
 ; TYPE: PRT
 ; ORGANISM: Homo sapiens
 ; US-10-408-765A-2204
 Alignment score: 1.11e-119 Length: 314
 Pred. No.: 1.160.00 Matches: 313
 Score: 100.0% Conservative: 1
 Percent Similarity: 99.7% Mismatch: 0
 Best Local Similarity: 73.4% Indels: 0
 Query Match: 4 Gaps:
 Db:
 US-09-888-264-1 (1-1123) x US-10-408-765A-2204 (1-314)
 Qy 21 ATGCGCGGAGGGCACTGCCTGGGGCGCGGGATGACCGCGAGGGTACCTCCCT 80
 Db 1 MetalAlaIthrAlaSerAlaLaglyIylaglyMetAspGlyLysProArgThrSerPro 20
 Qy 81 AGTCGTCAGTCTGTTGGGGCTGGCGGATGGAGTACATTGGCCAG 140
 Db 21 LysSerValYsPheLeuPheGluLeuArgIylalaspGlyLysThrValPheLeu 120
 Qy 441 GAAGTGGCTCTATCCGATGACTGCCGATGGCGCTCCAGTGACCGAGCGCGTGC 500
 Db 141 GluValAlaLeuIleArgMetThrAlaAspGlyLysAspGlyLysThrArgGly 160
 Qy 501 TACRAAAATGTTAACCCCTGATCAAATCACCGCGAAGGGGTCTCACACTG 560
 Db 161 TyrIylasNvaPheAsnAlaLeuIleArgIleThrArgIluGluglyValLeu 180
 Qy 561 TGGGGGGTGCATCCATCACCGCTGGGCTCTGCTGAATGCTGCCAACCTCGC 620
 Db 181 TriArgGlyCysIleProThrMetAlaArgAlaValValAlaLaglyIala 200
 Qy 621 TCCCTACTCCAACTCAGGAGTCTACTGGACTCAGGACTACTTCTGACAACATCCG 680
 Db 201 SerItyrSerGlnSerIlySerGlnPheLeuLeuAspSerGlyTyrPheserAspAsnIleu 220
 Qy 681 TGGCACTCTGTCGCCAGCATGATCAGCGCTCTCACACTGCTGCCCATGCCG 740
 Db 221 CysHisIspHeCysAlaSerMetIleSerGlyIleValIthrThraAlaIserMetProVal 240
 Qy 741 GACATTGCCAAGACCGGATCCAGACATGCCGATGATGGAAAGCGGATACAG 800
 Db 241 AspIleAlaLysIthrArgIleGlnAsnMetArgMetIleAspGlyIlyProGlyIys 260
 Qy 801 AACGGGCGAGCAGCGCTGCTGTCAGCGCTCTTGGCGCTGAGCAGGCTCTTGGAG 860
 Db 261 AspGlyIleAspAlaLeuIleIlyValValArgIlyGluGlyPhePheSerLeuIrpIys 280
 Qy 861 GGCTTCACCCGTAATGCCGCTGGGGCCACACGCTCTCACCTCATCTCTG 920
 Db 281 GlyPheIleProTyryIylalargleIlyProIlyIleValLeuIthrPheLeu 300
 Qy 921 GAGCAGATGAGCAGGCCATAACAGCTCTTCTCAGTGGC 962
 Db 301 GluGlnMetAsnIlySalItyrIlyBargIlePheLeuUserGly 314
 RESULT 2
 US-10-408-765A-2204
 ; Sequence 2204, Application US/10408765A
 ; Publication No. US20040101874A1
 ; GENERAL INFORMATION:
 ; APPLICANT: Ghosh, Soumitra S.
 ; APPLICANT: Fahy, Eoin D.
 ; APPLICANT: Zhang, Bing
 ; APPLICANT: Gibson, Bradford W.

Copyright (c) 1993 - 2006 Biocceleration Ltd.
Om nucleic - protein search, using frame_plus_n2p model
Run on: February 1, 2006, 13:54:36 (without alignments)
Scoring table: BLOSUM62

