CURVE-Flex COUPLINGS

- Allover machining Inherently balanced
- No Lubrication, Maintenance free Long life
- Compact design, High power to weight ratio
- Fail safe Will perform even if spider fails
- Vibrations Damping, torsionally flexible
- Axial plug-in, easy to assemble

TECHNICAL DATA

RRJ	- /	llun	nini	um	(AL)	4
-----	-----	------	------	----	------	---

Counling	Coupling	KW @ 1	oo rpm	Max.	Finish	Bore - D	_	_	B C DBSE	DBSE	DBSE -			8.0	NI NI	Assembly #		
Size	Туре	Red	Yellow	Speed rpm	Min.	Max.	Α	В	С	min.	F	G	L	M	N	Weight (Kg.)	M.I. (Kg m²)	
19	I	0.17	0.10	14000	6	19	41	32	18	16	12	2	66	20	25	0.11	2.3 x 10 ⁻⁵	
,,,	II	0.17	0.10	14000	19	24		41		10		_		20		0.14	4.3 x 10 ⁻⁵	
24	I	0,60	0.35	10600	9	24	56	40	27	18	14	2	78	24	30	0.24	9 x 10 ⁻⁵	
	II	0.00	0.33	10000	22	28	30	56		10	1-7	_	70	27	00	0.34	19 x 10⁻⁵	
28	I	1.60	0,95	8500	10	28	66	48	30	20	15	2.5	90	28	35	0.39	20 x 10⁻⁵	
	II	1.00	0.95	0300	28	38	- 00	66		20		2.0	50	20		0.54	42 x 10⁻⁵	
								RRJ - C	ast Ir	on (CI) *								
	- 1				12	40		66		24			114	37	45	2.0	1.85 x 10 ³	
38	II	3.25	1.90	7100	38	48	80	78	38		18	3	114	31	45	2.4	2.45 x 10 ⁻³	
	III				12	48		70					164	62	70	3.6	3.72 x 10 ⁻³	
	- 1				14	45			46 26			126	40	50	3.2	4.1 x 10 ⁻³		
42	II	4.50	2.65	6000	42	55	95			26	20	3	120	40	30	3.8	5.90 x 10 ⁻³	
	III				14	55		94					176	65	75	5.5	8.54 x 10 ⁻³	
	- 1				15	52	105 85	85						140	45	56	4.4	6.2 x 10 ⁻³
48	II	5.25	3.10	5600	48	62		51	28 21	21	3.5		45	30	5.2	9.6 x 10 ⁻³		
	III				15	62		104					188	69	80	4.2	13.4 x 10 ³	
	- 1				20	60		98					160	52	65	6.6	12.3 x 10 ⁻³	
55	II	6.85	4.10	4750	55	74	120	118	60	60 30	22	4		32	0.5	7.5	17.3 x 10 ³	
	III				20	74		110					210	77	90	10.2	23.7 x 10 ⁻³	
	- 1				22	70		115					185	C4	7.5	10.1	24.5 x 10 ³	
65	II	9.40	6.25	4250	65	80	135	133	68	35	26	4.5	185	61	75	11.5	27.8 x 10 ⁻³	
	III				22	80		133					235	86	100	15.0	36.3 x 10 ⁻³	
	- 1				30	80		135					210	69	85	16.0	54 x 10 ⁻³	
75	II	19.20	12.80	3550	75	95	160		80	40	30	5		03	00	18.2	61.4 x 10 ⁻³	
	III				30	95		158					260	84	110	21.2	71.5 x 10 ⁻³	
	I				40	97		160					245	0.1	100	27.5	138 x 10 ⁻³	
90	II	36	24	2800	90	110	200	198	100	45	34	5.5	245	81	100	36.3	182 x 10 ⁻³	
	III				40	110		190					295	106	125	44.8	225 x 10 ⁻³	

[#] Weight & Moment of Inertia (M.I.) of coupling assembly refer to maximum finish bore without keyway.

^{*} Alternative hub material available on request - Steel (Sizes 19 to 90) , S. G. Iron (Sizes 38 to 90).

CURVE-Flex COUPLINGS

	Red	(Std.)	Yel	llow		
Spider Size	Tnom (Nm)	T _{max} (Nm)	Tnom (Nm)	T _{max} (Nm)		
19	17	34	10	20		
24	60	120	35	70		
28	160	320	95	190		
38	325	650	190	380		
42	450	900	265	530		
48	525	1050	310	620		
55	685	1370	410	820		
65	940	1880	625	1250		
75	1920	3840	1280	2560		
90	3600	7200	2400	4800		
Hardness	95 SI	95 Shore A 92 Sh				
Temperature		- 40°C to 90°C				

Selection Procedure:

- 1. Determine Application Nominal Torque (Nm) Tnom (Nm) = (kw x 9550/rpm)
- 2. Calculate application service factor using following charts Total service factor (SF) will be SF = SF1 x SF2 x SF3
- 3. Calculate Application Maximum Torque (Tmax)
 Tmax = Tnom X SF (Nm)
- 4. Select the proper spider showing Tnom greater than application nominal torque. Then select spider showing Tmax greater than application maximum torque. Select the higher of two.
- 5. Ensure that application rpm and max. bore requirements are less than or equal to selected coupling max. rpm and max. bore size otherwise select next size coupling.

For SF1, SF2, SF3 refer chart.

		Prime Motor					
Driven Machine / Example	Electric Motors	4 Cylinder or more	Less than 4 Cylinder				
a. Uniform operation, no shocks.	1.5	2.0	2,5				
b. Irregular operation, light shocks.	2.0	2.5	3.0				
C. Irregular operation, medium shocks.	2.5	3.0	3.5				
D. Irregular operation, heavy shocks.	3.0	3.5	4.0				

SF2 - Application Service Factor for Temperature								
Temperature Range °C	< 30°C	30°C - 70°C	> 70°C					
SF2	1.0	1.5	2.0					

SF3 - Application Service Factor for starting frequency								
Starting frequency cycles / hour	< 100	100 - 500	> 500					
SF3	1.0	1.5	2.0					

MISALIGNMENT DATA										
Size	19	24	28	38	42	48	55	65	75	90
Maximum axial displacement (mm)	1.6	1.8	2.0	2.2	2.3	3.0	3.0	3.5	3.5	4.5
Maximum radial misalignment (mm)	0.15	0.20	0.20	0.25	0.30	0.35	0.35	0.40	0.45	0.50
Maximum angular misalignment (Deg.)	0.80	0.80	0.80	0.90	0.90	1.0	1.0	1.0	1.1	1.1

ORDER SEQUENCE	Coupling	Hub Type	Finish Bore	Spider	Hub
	Size	(Driver / Driven)	(Driver / Driven)	Type	Material
Example	RRJ-55	1 / 11	40 / 60	Red	CI

- Coupling with std. Spider is supplied if not specified.
- All dimensions are in mm unless otherwise specified.
- For vertical installation contact RATHI.

In view of our constant endeavour to improve quality of our products, we reserve the right to alter or change specifications without prior notice. This document is the intellectual property of Rathi Transpower Pvt. Ltd. and subject to copyright.

Rathi Transpower Pvt Ltd

Rathi Chambers, 7, Deccan College Road,

Pune 411 006.(INDIA) Phone : 91-20-30517201 Fax : 91-20-30517212

E-mail: enquiry@rathigroup.com Website: www.rathicouplings.com Distributor