Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Лабораторная работа №5

По дисциплине

"Основы профессиональной деятельности"

Вариант: 78234

Выполнил: Голиков Денис Игоревич

Группа: Р3110

Преподаватель: Ларочкин Глеб Игоревич

Оглавление

Задание	2
Вариант	2
Текст программы	
Описание программы	
Результат работы программы:	
Вывод:	

Задание

По выданному преподавателем варианту разработать программу асинхронного обмена данными с внешним устройством. При помощи программы осуществить ввод или вывод информации, используя в качестве подтверждения данных сигнал (кнопку) готовности ВУ.

Вариант

- 1. Программа осуществляет асинхронный ввод данных с ВУ-3
- 2. Программа начинается с адреса $3B5_{16}$. Размещаемая строка находится по адресу $5F5_{16}$.
- 3. Строка должна быть представлена в кодировке Windows-1251.
- 4. Формат представления строки в памяти: АДР0: ДЛИНА АДР1: СИМВ1 СИМВ2 АДР2: СИМВ3 СИМВ4 ..., где ДЛИНА 16 разрядное слово, где значащими являются 8 младших бит.
- 5. Ввод строки начинается со ввода количества символов (1 байт), и должен быть завершен по вводу их необходимого количества.

Текст программы

Метка	Мнемоника	Параметр	Описание					
	ORG	0x3B5						
ADR:	WORD	\$RES	Переменная, хранящая адрес 1 ячейки					
MASK:	WORD	0x00FF	Маска для выделения младшего байта					
BIG:	WORD	0x0000	Старший байт текущего элемента					
LITTLE:	WORD	0x0000	Младший байт текущего элемента					
DLIN:	WORD	0x0000	Количество доступных для ввода символов					
CONST:	WORD	0x0000	Нулевая константа					
BEGIN:	CLA		начало программы					
	IN	7	Ожидание нажатие кнопки «ГОТОВ»					
	AND	#0x40	на ВУ-3					
	BEQ	BEGIN	7					
	IN	6	Считывание введённого значения					
	AND	MASK	Маска, для выделения младшего байта					
	ST	(ADR)+	Запись длины в начало массива					
	INC		Инкремент, запись в переменную					
	ST DLIN		DLIN, очистка аккумулятора.					
	CLA		7					
PROVERKA1:	LD	DLIN	Если Длина == 0, то переход на FINISH					
	DEC							
	ST	DLIN						
	CMP	CONST	7					
	BEQ	FINISH						
FIRST_IN:	IN	7	Ожидание нажатие кнопки «ГОТОВ»					
	AND	#0x40	на ВУ-3					
	BEQ	FIRST_IN						
	IN	6	Считывание введённого значения					
	ST	BIG	Запись значения в переменную BIG					
	IN	0xF	Вывод ВІG в ВУ-5					
	LD	BIG						
	OUT 0xC							
PROVERKA2:	LD	DLIN	Если Длина == 0, то переход на					
	DEC		SAVE_BIG					
	ST	DLIN	1 -					
	CMP	CONST						
	BEQ	SAVE_BIG	<u></u>					
SECOND IN:	IN	7						

	AND	#0x40	Ожидание нажатие кнопки «ГОТОВ» на ВУ-3					
	BEQ	SECOND_IN						
	IN	6	Считывание введённого значения					
	ST	LITTLE	Запись значения в LITTLE					
	IN	0xF	Вывод LITTLE в ВУ-5					
	LD	LITTLE						
	OUT	0xC						
SAVE:	LD	BIG	Запись двух символов в одну ячейку					
	SWAB		массива.					
	ADD	LITTLE						
	ST (ADR)+							
	JUMP	PROVERKA1	Переход на PROVERKA1					
SAVE_BIG:	LD	BIG	Запись BIG в массив					
	SWAB							
	ST	(ADR)+						
FINISH:	HLT		Остановка программы					
	ORG	0x5F5						
RES:	WORD	?	Массив					

Описание программы

Назначение программы:

Программа осуществляет асинхронный ввод с ВУ-3 в кодировке Windows-1251 и вывод в ВУ-5. В 16-битной ячейке памяти БЭВМ размещается два 8-битных символа. Ввод строки начинается со ввода количества символов (1 байт), и должен быть завершен по вводу их необходимого количества.

Расположение в памяти сходных данных и результатов (назначение ячеек):

Переменная, хранящая адрес 1 ячейки: 3B5 (ADR)

Маска (константа для отбрасывания первого байта) : 3B6 (MASK)

Переменная, хранящая старший байт строки: 3B7 (BIG)

Переменная, хранящая младший байт строки: 3B8 (LITTLE)

Переменная, хранящая количество доступных для ввода символов: 3B9 (DLIN)

Константа нулевого значения: 3BA (CONST)

Программа: 3ВВ...3Е7

Начало массива – количество введённых символов: 5F5

Выведенная строка: $5F5...5F5 + \left[\frac{N-1}{2}\right]$ где N- длина строки

Адреса первой и последней выполняемой процессором команд:

Первая команда: 3ВВ, последняя 3Е7.

Область представления:

 $-2^{15} \le$ ADR, MASK, BIG, LITTLE, DLIN, CONST, RES*(N+1) $\le 2^{15-1}$, Где N — количество желаемых к вводу символов.

Область допустимых значений:

Длина вводимой строки:

Строка может лежать в ячейках с 000 до 3B5, с 5F5 до 7FF, то есть всего ячеек памяти может быть: 949+522=1471 и 2942 символов.

Строка:

Пятерку бы

Трассировка с выданной строкой:

Кириллица	Windows-1251	Кириллица	Windows-1251
П	CF	К	EA
Я	FF	у	F3
T	F2	б	E1
e	E5	Ы	FB
p	F0		A0

Таблица (первые 60 строк):

Адр	Знчн	IP	CR	AR	DR	SP	BR	AC	PS	NZVC	Адр	Знчн
3BB	0200	3BB	0000	000	0000	000	0000	0000	004	0100		
3BB	0200	3BC	0200	3BB	0200	000	03BB	0000	004	0100		
3ВС	1207	3BD	1207	3BC	1207	000	03BC	0000	004	0100		
3BD	2F40	3BE	2F40	3BD	0040	000	0040	0000	004	0100		
3BE	F0FC	3BB	F0FC	3BE	F0FC	000	FFFC	0000	004	0100		
3BF	1206	3C0	1206	3BF	1206	000	03BF	000A	000	0000		
3C0	2EF5	3C1	2EF5	3B6	00FF	000	FFF5	000A	000	0000		
3C1	EAF3	3C2	EAF3	5F5	000A	000	FFF3	000A	000	0000	3B5	05F6
		5F5	000A									
3C2	0700	3C3	0700	3C2	0700	000	03C2	000B	000	0000		

3C3	EEF5	3C4	EEF5	3B9	000B	000	FFF5	000B	000	0000	3B9	000B
3C4	0200	3C5	0200	3C4	0200	000	03C4	0000	004	0100	303	ОООВ
3C5	AEF3	3C6	AEF3	3B9	000B	000	FFF3	000B	000	0000		
3C6	0740	3C7	0740	3C6	0740	000	03C6	000B	001	0001		
3C7	EEF1	3C8	EEF1	3B9	000A	000	FFF1	000A	001	0001	3B9	000A
3C8	7EF1	3C9	7EF1	3BA	0000	000	FFF1	000A	001	0001	303	UUUA
3C9	F01D	3CA	F01D	3C9	F01D	000	03C9	000A	001	0001		
3CA	1207	3CB	1207	3CA	1207	000	03CA	0000	001	0001		
3CB	2F40	3CC	2F40	3CB	0040	000	0040	0000	005	0101		
3CC	FOFD	3CD	FOFD	3CC	F0FD	000	03CC	0040	001	0001		
3CD	1206	3CE	1206	3CD	1206	000	03CD	0040	001	0001		
3CE	EEE8	3CF	EEE8	3B7	00CF	000	FFE8	00CF	001	0001	3B7	00CF
3CF	120F	3D0	120F	3CF	120F	000	03CF	00CF	001	0001	307	OOCI
3D0	AEE6	3D1	AEE6	3B7	00CF	000	FFE6	00CF	001	0001		
3D1	130C	3D1	130C	3D1	130C	000	03D1	00CF	001	0001		
3D1	AEE6	3D2	AEE6	3B9	000A	000	FFE6	000A	001	0001		
3D3	0740	3D3	0740	3D3	0740	000	03D3	0009	001	0001		
3D3	EEE4	3D5	EEE4	3B9	0009	000	FFE4	0009	001	0001	3B9	0009
3D5	7EE4	3D6	7EE4	3BA	0009	000	FFE4	0009	001	0001	303	0009
3D6	F00D	3D7	F00D	3DA	F00D	000	03D6	0009	001	0001		
3D7	1207	3D8	1207	3D7	1207	000	03D0	0040	001	0001		
3D8	2F40	3D9	2F40	3D7	0040	000	0040	0040	001	0001		
3D9	F0FD	3D9	F0FD	3D9	F0FD	000	03D9	0040	001	0001		
3DA	1206	3DB	1206	3DA 3B8	1206	000	03DA	00FF	001	0001	200	OOEE
3DB 3DC	EEDC 120F	3DC 3DD	EEDC 120F	3DC	00FF	000	FFDC 03DC	00FF	001	0001	3B8	00FF
3DD		3DE		3B8	120F 00FF	000	FFDA	00FF	001	0001		
	AEDA		AEDA		130C					0001		
3DE 3DF	130C AED7	3DF 3E0	130C AED7	3DE 3B7	00CF	000	03DE FFD7	00FF 00CF	001	0001		
3E0	0680	3E1	0680	3E0	0680	000	03E0	CF00	001	1001		
3E1	4ED6	3E2	4ED6	3B8	0080 00FF	000	FFD6	CFFF	003	1001		
3E2	EAD2	3E3	EAD2	5F6	CFFF	000	FFD2	CFFF	008	1000	3B5	05F7
JLZ	LADZ	5F6	CFFF	310	CITI	000	1102	CITI	008	1000	303	0317
3E3	CEE1	3C5	CEE1	3E3	03C5	000	FFE1	CFFF	008	1000		
3C5	AEF3	3C6	AEF3	3B9	0009	000	FFF3	0009	000	0000		
3C6	0740	3C7	0740	3C6	0740	000	03C6	0003	000	0001		
3C7	EEF1	3C8	EEF1	3B9	0008	000	FFF1	0008	001	0001	3B9	0008
3C8	7EF1	3C9	7EF1	3BA	0000	000	FFF1	0008	001	0001	303	0008
3C9	F01D	3CA	F01D	3C9	F01D	000	03C9	0008	001	0001		
3CA	1207	3CB	1207	3CA	1207	000	03CA	0040	001	0001		
3CB	2F40	3CC	2F40	3CB	0040	000	0040	0040	001	0001		
3CC	FOFD	3CD	FOFD	3CC	F0FD	000	03CC	0040	001	0001		
3CD	1206	3CE	1206	3CD	1206	000	03CD	0040 00F2	001	0001		
3CE	EEE8	3CF	EEE8	3B7	00F2	000	FFE8	00F2	001	0001	3B7	00F2
3CF	120F	3D0	120F	3CF	120F	000	03CF	00F2	001	0001	557	551 2
3D0	AEE6	3D1	AEE6	3B7	00F2	000	FFE6	00F2	001	0001		
3D1	130C	3D1	130C	3D1	130C	000	03D1	00F2	001	0001		
3D1	AEE6	3D2	AEE6	3B9	0008	000	FFE6	0008	001	0001		
3D3	0740	3D3	0740	3D3	0740	000	03D3	0008	001	0001		
3D3	EEE4	3D4 3D5	EEE4	3B9	0007	000	FFE4	0007	001	0001	3B9	0007
3D5	7EE4	3D6	7EE4	3BA	0007	000	FFE4	0007	001	0001	303	0007
203	/ [[4	סטכ	/ [[4	SDA	0000	000	ггс4	0007	001	0001		

Результат работы программы:

Вывод:

В ходе выполнения этой лабораторной работы была изучена работа устройств ввода-вывода в БЭВМ и организация асинхронного ввода-вывода.