Descriptive statistics

Graph your estimates

hist(age)

► Central tendency / location

- ► Central tendency / location
 - mean: $\frac{a_1 + a_2 + a_3}{n}$

- ► Central tendency / location

 - ► mean: $\frac{a_1 + a_2 + a_3}{n}$ ► median (50% percentile)

- ► Central tendency / location

 - ► mean: $\frac{a_1 + a_2 + a_3}{n}$ ► median (50% percentile)
 - mode (most frequent value)

- ► Central tendency / location

 - ► mean: $\frac{a_1 + a_2 + a_3}{n}$ ► median (50% percentile)
 - mode (most frequent value)
- ► Variation / Spread

- Central tendency / location

 - ► mean: $\frac{a_1 + a_2 + a_3}{n}$ ► median (50% percentile)
 - mode (most frequent value)
- ► Variation / Spread
 - min, max, range

- Central tendency / location

 - ► mean: $\frac{a_1 + a_2 + a_3}{n}$ ► median (50% percentile)
 - mode (most frequent value)
- Variation / Spread
 - min, max, range
 - quantiles (quartiles, percentiles...)

- Central tendency / location

 - ▶ mean: $\frac{a_1 + a_2 + a_3}{n}$ ▶ median (50% percentile)
 - mode (most frequent value)
- Variation / Spread
 - min, max, range
 - quantiles (quartiles, percentiles...)
 - standard deviation: $SD = \sqrt{\frac{\sum (x \mu)^2}{n}}$

Central tendency / location

- ▶ mean: $\frac{a_1 + a_2 + a_3}{n}$ ▶ median (50% percentile)
- mode (most frequent value)

Variation / Spread

- min, max, range
- quantiles (quartiles, percentiles...)
- standard deviation: $SD = \sqrt{\frac{\sum (x \mu)^2}{n 1}}$ standard error: $SEM = \frac{SD}{\sqrt{n}}$

Central tendency / location

- ▶ mean: $\frac{a_1 + a_2 + a_3}{n}$ ▶ median (50% percentile)
- mode (most frequent value)

Variation / Spread

- min, max, range
- quantiles (quartiles, percentiles...)
- ► standard deviation: $SD = \sqrt{\frac{\sum (x \mu)^2}{n 1}}$ ► standard error: $SEM = \frac{SD}{\sqrt{n}}$
- coefficient of variation (CV = SD / mean)

Central tendency / location

- ▶ mean: $\frac{a_1 + a_2 + a_3}{n}$ ▶ median (50% percentile)
- mode (most frequent value)

Variation / Spread

- min, max, range
- quantiles (quartiles, percentiles...)
- ► standard deviation: $SD = \sqrt{\frac{\sum (x \mu)^2}{n 1}}$ ► standard error: $SEM = \frac{SD}{\sqrt{n}}$
- coefficient of variation (CV = SD / mean)
- confidence intervals

- SD quantifies scatter in population
- SEM quantifies uncertainty in parameter estimate (population mean)
- ► SEM = SD/sqrt(n)

- SD quantifies scatter in population
- SEM quantifies uncertainty in parameter estimate (population mean)
- ightharpoonup SEM = SD/sqrt(n)
- SEM decreases with sample size (mean better known), SD does not.

- SD quantifies scatter in population
- SEM quantifies uncertainty in parameter estimate (population mean)
- ➤ SEM = SD/sqrt(n)
- SEM decreases with sample size (mean better known), SD does not.
- https://gallery.shinyapps.io/ sampling_and_stderr/

In a Normal distribution

What statistical descriptors are best? (and why)

https://pollev.com/franciscorod726

