| Simply Supported Beam Slopes and Deflections           |                                                                        |                                                                                                         |                                                                                                                                          |  |  |
|--------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Beam                                                   | Slope                                                                  | Deflection                                                                                              | Elastic Curve                                                                                                                            |  |  |
| $v$ $L$ $w$ $\theta_{\text{max}}$ $v_{\text{max}}$     | $\theta_{\rm max} = \frac{-wL^3}{24EI}$                                | $v_{\text{max}} = \frac{-5wL^4}{384EI}$                                                                 | $v = \frac{-wx}{24EI} (x^3 - 2Lx^2 + L^3)$                                                                                               |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\theta_1 = \frac{-3wL^3}{128EI}$ $\theta_2 = \frac{7wL^3}{384EI}$     | $v \bigg _{x=L/2} = \frac{-5wL^4}{768EI}$ $v_{\text{max}} = -0.006563 \frac{wL^4}{EI}$ at $x = 0.4598L$ | $v = \frac{-wx}{384EI} (16x^3 - 24Lx^2 + 9L^3)$ $0 \le x \le L/2$ $v = \frac{-wL}{384EI} (8x^3 - 24Lx^2 + 17L^2x - L^3)$ $L/2 \le x < L$ |  |  |
| $v$ $w_0$ $v$ $\theta_1$ $L$ $\theta_2$                | $\theta_1 = \frac{-7w_0 L^3}{360EI}$ $\theta_2 = \frac{w_0 L^3}{45EI}$ | $v_{\text{max}} = -0.00652 \frac{w_0 L^4}{EI}$ $\text{at } x = 0.5193L$                                 | $v = \frac{-w_0 x}{360EIL} (3x^4 - 10L^2 x^2 + 7L^4)$                                                                                    |  |  |

Copyright ©2017 Pearson Education, All Rights Reserved

| Simply Supported Beam Slopes and Deflections                                                                                                                      |                                                                        |                                                                   |                                                           |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------|--|--|
| Beam                                                                                                                                                              | Slope                                                                  | Deflection                                                        | Elastic Curve                                             |  |  |
| $ \begin{array}{c c} v & \mathbf{P} \\ \hline L & \frac{L}{2} & \frac{L}{2} \end{array} $ $ \begin{array}{c c} \theta_{\text{max}} & v_{\text{max}} \end{array} $ | $\theta_{\text{max}} = \frac{-PL^2}{16EI}$                             | $v_{ m max} = rac{-PL^3}{48EI}$                                  | $v = \frac{-Px}{48EI} (3L^2 - 4x^2)$ $0 \le x \le L/2$    |  |  |
| $\theta_1$ $\theta_2$ $x$                                                                                                                                         | $\theta_1 = \frac{-Pab(L+b)}{6EIL}$ $\theta_2 = \frac{Pab(L+a)}{6EIL}$ | $v \bigg _{x=a} = \frac{-Pba}{6EIL}(L^2 - b^2 - a^2)$             | $v = \frac{-Pbx}{6EIL} (L^2 - b^2 - x^2)$ $0 \le x \le a$ |  |  |
| $ \begin{array}{c c} v \\ \hline \theta_1 \\ \hline \end{array} $ $ \begin{array}{c c} h_0 \\ x \end{array} $                                                     | $\theta_1 = \frac{-M_0 L}{6EI}$ $\theta_2 = \frac{M_0 L}{3EI}$         | $v_{\text{max}} = \frac{-M_0 L^2}{9\sqrt{3} EI}$ at $x = 0.5774L$ | $v = \frac{-M_0 x}{6EIL} \left( L^2 - x^2 \right)$        |  |  |

Copyright ©2017 Pearson Education, All Rights Reserved



Copyright ©2017 Pearson Education, All Rights Reserved



Copyright ©2017 Pearson Education, All Rights Reserved

| Cantilevered Beam Slopes and Deflections                         |                                               |                                          |                                                                                                                                                        |  |  |  |
|------------------------------------------------------------------|-----------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Beam                                                             | Slope                                         | Deflection                               | Elastic Curve                                                                                                                                          |  |  |  |
| $v$ $v_{\text{max}}$ $v$ $t$ | $\theta_{\text{max}} = \frac{-wL^3}{48EI}$    | $v_{\text{max}} = \frac{-7wL^4}{384EI}$  | $v = \frac{-wx^2}{24EI} \left( x^2 - 2Lx + \frac{3}{2}L^2 \right)$ $0 \le x \le L/2$ $v = \frac{-wL^3}{384EI} \left( 8x - L \right)$ $L/2 \le x \le L$ |  |  |  |
| v $v$ $v$ $v$ $v$ $v$ $v$ $v$ $v$ $v$                            | $\theta_{\text{max}} = \frac{-w_0 L^3}{24EI}$ | $v_{\text{max}} = \frac{-w_0 L^4}{30EI}$ | $v = \frac{-w_0 x^2}{120EIL} (10L^3 - 10L^2 x + 5Lx^2 - x^3)$                                                                                          |  |  |  |

Copyright ©2017 Pearson Education, All Rights Reserved