

Document: EVR-TREF-005 Date: 17 November 2005

Issue: 2 **Page:** 1 of 30

Author: Jukka Pietarinen

Event Receiver (VME-EVR and VME-EVR-RF)

Technical Reference

Firmware Version D308

Contents

Introduction	3
Functional Description	3
Event Decoding	3
Event FIFO and Timestamp Events	4
Distributed Bus and Data Transmission	5
Hardware Outputs	5
Prescaler Outputs	8
Configurable Size Data Buffer	8
Interrupt Generation	9
External Event Input	9
Programmable Reference Clock	9
Fractional Synthesiser	9
Jitter Cleaning Circuit	
Non-Volatile Storage for Frequency Configuration	
Connections	
Front Panel Connections	11
VME P2 User I/O Pin Configuration.	12
Programming Details	
CR/CSR Support	
Event Receiver Function 0 Registers	14
Register Map	
Network Interface	
Changing the IP Address of the Module	23
Linux	
Windows	
Using Telnet to Configure Module	
Boot Configuration (command b)	
Configuring Operating Parameters and Tuning Delay Lines (command t)	25
Upgrading IP2022 Microprocessor Software (command u)	25
Upgrading FPGA Configuration File	
Linux	
Windows	
Linux	
Windows	
Event Receiver TTL Transition Board (EVR-TTB)	27

Document: EVR-TREF-005 **Date:** 17 November 2005

Issue: 2 **Page:** 2 of 30

Author: Jukka Pietarinen

Event Receiver Optical Transition Board (EVR-OTB)	28
Event Receiver High-Speed Optical Transition Board (EVR-HTB)	
Event Receiver TTL/NIM Transition Board (EVR-NTB)	

Page: 3 of 30

Introduction

Event Receivers (EVR) recover the clock signal from the event stream transmitted by an Event Generator and generate an event clock that is phase locked to the Event Generator event clock and thus to the RF reference. Event Receivers convert event codes transmitted by an Event Generator to hardware outputs. They can also generate software interrupts and store the event codes with globally distributed timestamps into FIFO memory to be read by a CPU module from the VME bus.

Functional Description

After recovering the event clock the Event Receiver demultiplexes the event stream to 8-bit distributed bus data and 8-bit event codes. Introduced in EVR firmware version D307, the distributed bus may be configured to share its bandwidth with data transmission.

Event Decoding

The Event Receiver provides two mapping RAMs of 8×16 bits. Only one of the RAMs can be active at a time, the other one may be modified from VME. The event code is applied to the address lines of the active mapping RAM. The 16-bit data programmed into a specific memory location pointed to by the event code determines what actions will be taken. In addition to the mapping RAMs each of bit 0 to 6 of the event code may generate a trigger event which is a pulse with the length of a single event cycle. There are also a few special event codes to reset prescaler outputs, control the timestamp event counter and reset the heartbeat timeout counter.

Document: EVR-TREF-005

Page: 4 of 30

Figure 1: Event Stream Decoding

A heartbeat monitor is provided to receive heartbeat events (event code \$7A). The heartbeat counter is reset upon receiving the heartbeat event code. If no heartbeat is received the counter times out (approx. 1.6 s) and a heartbeat flag is set. The Event Receiver may be programmed to generate a heartbeat interrupt.

Event FIFO and Timestamp Events

The Event System provides a global timebase to attach timestamps to collected data and performed actions. The time stamping system consists of a 32-bit timestamp event counter and a 32-bit seconds counter. The timestamp event counter either counts received timestamp counter clock events or runs freely with a clock derived from the event clock. Starting from firmware version D308 the event counter is also able to run on a clock provided on the distributed bus bit 4. The event counter clock source is determined by the prescaler value and distributed bus enable register. When the prescaler value is greater than 0 the prescaler output is used. Otherwise the clock source is defined by the distributed bus enable register. The timestamp event counter is cleared at the next event counter rising clock edge after receiving a timestamp event counter reset event. The seconds counter is updated serially by loading zeros (event code \$70) and ones (event code \$71) into a shift register MSB first. The seconds register is updated from the shift register at the same time the timestamp event counter is cleared.

Document: EVR-TREF-005

Page: 5 of 30

The timestamp event counter and seconds counter contents may be latched into a timestamp latch. Latching is determined by the active event map RAM and may be enabled for any event code.

An event FIFO memory is implemented to store selected event codes with attached timing information. The 80-bit wide FIFO can hold up to 511 events. The recorded event is stored along with 32-bit seconds counter contents and 32-bit timestamp event counter contents at the time of reception. The event FIFO as well as the timestamp counter and latch are accessible from VME.

Figure 2: Event FIFO and Timestamping

Distributed Bus and Data Transmission

The distributed bus is able to carry eight simultaneous signals sampled with the event clock rate over the fibre optic transmission media. The distributed bus signals may be output on shared OTP/DBUS signals via the transition board or programmable front panel outputs.

In latest firmware versions the distributed bus bandwidth may be shared by transmission of a configurable size data buffer to up to 2 kbytes. When data transmission is enabled the distributed bus bandwidth is halved. The remaining bandwidth is reserved for transmitting data with a speed up to 62.5 Mbytes/s (event clock rate divide by two).

Hardware Outputs

The Event Receiver can generate up to 32 simultaneous outputs on the VME P2 connector. Transition modules provide TTL and optical outputs. The outputs may be selected from multiple sources. There are also a few outputs available in the front panel.

Document: EVR-TREF-005

Page: 6 of 30

Figure 3: Event Receiver Hardware Outputs

There are fourteen pulse outputs (called OTP for historical reasons) of programmable delay, width and polarity. For each channel the pulse delay may be adjusted from 0 to 32^2 -1 event clock cycles (up to 34.3 s with event clock of 125 MHz) and the pulse width may be adjusted from 1 to 65535 event clock cycles (8 ns to 524 μ s with event clock of 125 MHz). Eight pulse outputs share the output pin with the distributed bus signals. The mapping (pulse/distributed bus pin) for each of the shared pins may be selected independently.

Document: EVR-TREF-005

Page: 7 of 30

Figure 4: Programmable Width Pulse Outputs

Flip flop outputs may be programmed to change their state on desired event codes.

Figure 5: Level Outputs

Four extended delayed pulse outputs (called DGP for historical reasons) provide programmable delay, width and polarity like the pulse outputs. The delay and width counters share a 16-bit programmable prescaler which generates counting frequencies from event clock/65536 to the event clock rate. The delay and width counters both are 32-bits wide and thus allow maximum delays and pulse widths up to 625 h at event clock rate of 125 MHz.

Document: EVR-TREF-005

Page: 8 of 30

Figure 6: Programmable Delayed Pulse Outputs

Bits 0 to 6 of the received event code may be used to generate trigger event outputs. The width of a trigger event is one event clock cycle.

Prescaler Outputs

The Event Receiver provides three programmable prescaler outputs which may be mapped to front panel outputs. The frequencies are derived from the event clock. A special event code reset prescalers \$7B causes the prescalers to be synchronously reset, so the frequency outputs will be in same phase across all event receivers.

Configurable Size Data Buffer

Starting from EVR firmware version D307 the reception of data over the event system link is possible. The buffer size is configured in the Event Generator to up to 2 kbytes. The Event Receiver is able to receive buffers of any size from 4 bytes to 2 kbytes in four byte (long word) increments.

Data reception is enabled by changing the distributed bus mode for data transmission (mode = 1 in Data Buffer Control Register). This halves the distributed bus update rate. Before a data buffer can be received the data buffer receiver has to be enabled (write enable = 1 in control register). This clears the checksum error flag and sets the rx_enable flag. When a data buffer has been received the rx_enable flag is cleared and rx_complete flag is set. If the received and computed checksums do not match the checksum error flag is set.

Document: EVR-TREF-005

Page: 9 of 30

Figure 7: Data Receive Buffer

The size of the data buffer transfer can be read from the control register. An interrupt may be generated after reception of a data buffer.

Interrupt Generation

The Event Receiver has multiple interrupt sources which all have their own enable and flag bits. The following events may be programmed to generate an interrupt:

- Receiver violation: bit error or the loss of signal.
- Lost heartbeat: heartbeat monitor timeout.
- Write operation of an event to the event FIFO.
- Event FIFO is full.
- Data Buffer receive complete.

In addition to the events listed above a delayed interrupt is provided. The delayed interrupt is triggered by event map RAM bit 13. A 16-bit prescaler running with the event clock frequency and a 16-bit delay counter determine the interrupt delay.

External Event Input

An external hardware input is provided to be able to take an external pulse to generate an internal event. This event will be handled as any other received event.

Programmable Reference Clock

The event receiver requires a reference clock to be able to synchronise on the incoming event stream sent by the event generator. For flexibility a programmable reference clock is provided to allow the use of the equipment in various applications with varying frequency requirements.

Fractional Synthesiser

The clock reference for the event receiver is generated on-board the event receiver using a fractional synthesiser, A Micrel (http://www.micrel.com) SY87739L Protocol Transparent

Page: 10 of 30

Fractional-N Synthesiser with a reference clock of 24 MHz is used. The following table lists programming bit patterns for a few frequencies.

Event Rate	Configuration Bit	Reference Output	Precision
	Pattern		(theoretical)
499.8 MHz/4	0x00FE816D	124.95 MHz	0
= 124.95 MHz			
499.654 MHz/4	0x0C928166	124.907 MHz	-52 ppm
= 124.9135 MHz			
476 MHz/4	0x018741AD	119 MHz	0
= 119 MHz			
106.25 MHz	0x049E81AD	106.25 MHz	0
(fibre channel)			
499.8 MHz/5	0x025B41ED	99.956 MHz	-40 ppm
= 99.96 MHz			
50 MHz	0x009743AD	50.0 MHz	0
499.8 MHz/10	0x025B43AD	49.978 MHz	-40 ppm
= 49.98 MHz			

The event receiver reference clock is required to be in ± 100 ppm range of the event generator event clock.

Jitter Cleaning Circuit

The reference clock is passed on to the FPGA where the RocketIO Multi-Gigabit Transceiver (MGT) locks to the event stream sent by the event generator. Special configuration of the MGT allows the locking to the data stream in always the same phase. Because of the construction of the RocketIO transceiver the recovered bit clock jumps by a maximum of $1/16^{th}$ of a bit period every eight recovered clock cycles. To overcome jitter generated by the RocketIO an external jitter cleaning circuit is introduced.

Document: EVR-TREF-005

Page: 11 of 30

Figure 8: Jitter Cleaning Circuit for Event Clock and RF Recovery

Non-Volatile Storage for Frequency Configuration

The reference clock setting and delay line initialisation values are stored in non-volatile memory inside the IP2022 microcontroller. The part to part differences of the delay lines require tuning of the delays when a new operating frequency is selected.

Connections

Front Panel Connections

The front panel of the Event Receiver is shown in Figure 9.

Figure 9: Event Receiver Front Panel

The front panel of the Event Receiver includes the following connections and status leds:

Connector / Led	Style	Level	Description
FAIL	Red Led		Module Failure
OFF	Blue Led		Module not Configured/Powered Down
RX LINK	Green Led		Receiver Link Signal OK
ENA	Green Led		Event Receiver Enabled

Document: EVR-TREF-005

Page: 12 of 30

EVENT IN	Yellow Led		Incoming Event (RX)
EVENT OUT	Yellow Led		Active HW output
RX FAIL	Red Led		Receiver Violation
ERR	Red Led		SY87739L reference not locked
ETH LINK	Green Led		10baseT Activity Led
ACT	Yellow Led		Ubicom IP2022 Active (Flashing)
10baseT	RJ45	10baseT	10baseT Ethernet Connection
TX	LC	optical	Transmit Optical Output (TX)
RX	LC	optical	Receiver Optical Input (RX)
TTL OUT0	LEMO-EPY	TTL	Programmable TTL Output 0
TTL OUT1	LEMO-EPY	TTL	Programmable TTL Output 1
TTL OUT2	LEMO-EPY	TTL	Programmable TTL Output 2
TTL OUT3	LEMO-EPY	TTL	Programmable TTL Output 3
TTL OUT4	LEMO-EPY	TTL	Programmable TTL Output 4
TTL IN	LEMO-EPY	TTL	External Event Input
LVPECL OUT0±	LEMO-EPY	Diff. LVPECL	Programmable LVPECL Output 0
LVPECL OUT1±	LEMO-EPY	Diff. LVPECL	Programmable LVPECL Output 1
RF OUT±	LEMO-EPY	Diff. LVPECL	Recovered RF Output (VME-EVR-
			RF only)

VME P2 User I/O Pin Configuration

The following table lists the connections to the VME P2 User I/O Pins.

Pin	Signal
A1	Transition board ID0
A2	Transition board ID1
A3-A10	Ground
A11	Transition board ID2
A12	Transition board ID3
A13-A15	Ground
A16	Transition board handle switch
A17-A26	Ground
A27-A31	+5V
A32	Power control for transition board
C1	delayed pulse output 0
C2	delayed pulse output 1
C3	delayed pulse output 2
C4	delayed pulse output 3
C5	trigger event output 0
C6	trigger event output 1
C7	trigger event output 2
C8	trigger event output 3
C9	trigger event output 4
C10	trigger event output 5
C11	trigger event output 6

Micro-Research Finland Oy

Välitalontie 83 C. FI-00660 Helsinki, Finland

C12	programmable width pulse / distributed bus output 0
C13	programmable width pulse / distributed bus output 1
C14	programmable width pulse / distributed bus output 2
C15	programmable width pulse / distributed bus output 3
C16	programmable width pulse / distributed bus output 4
C17	programmable width pulse / distributed bus output 5
C18	programmable width pulse / distributed bus output 6
C19	programmable width pulse / distributed bus output 7
C20	programmable width pulse output 8
C21	programmable width pulse output 9
C22	programmable width pulse output 10
C23	programmable width pulse output 11
C24	programmable width pulse output 12
C25	programmable width pulse output 13
C26	level output 0
C27	level output 1
C28	level output 2
C29	level output 3
C30	level output 4
C31	level output 5
C32	level output 6
C32	level output o

Document: EVR-TREF-005

Page: 13 of 30

Programming Details

CR/CSR Support

The Event Receiver module provides CR/CSR Support as specified in the VME64x specification. The CR/CSR Base Address Register is determined after reset by the inverted state of VME64x P1 connector signal pins GA4*-GA0*. In case the parity signal GAP* does not match the GAx* pins the CR/CSR Base Address Register is loaded with the value 0xf8 which corresponds to slot number 31.

After power up or reset the board responds only to CR/CSR accesses with its geographical address. Prior to accessing Event Receiver functions the board has to be configured by accessing the boards CSR space.

The Configuration ROM (CR) contains information about manufacturer, board ID etc. to identify boards plugged in different VME slots. The following table lists the required field to locate an Event Receiver module.

CR address	Register	VME-EVR	VME-EVR-RF
0x27, 0x2B, 0x2F	Manufacturer's ID (IEEE	0x000EB2	0x000EB2
	OUI)		
0x33, 0x37, 0x3B, 0x3F	Board ID	0x455246C8	0x455246C8

For convenience functions are provided to locate VME64x capable boards in the VME crate.

Page: 14 of 30

```
STATUS vmeCRFindBoard(int slot, UINT32 ieee_oui, UINT32 board_id, int *p_slot);
```

To locate the first Event Receiver in the crate starting from slot 1, the function has to be called following:

```
#include "vme64x_cr.h"
int slot = 1;
int slot_evr;
vmeCRFindBoard(slot, MRF_IEEE_OUI, MRF_EVR200RF_BID, &slot_evr);
```

If this function returns OK, an Event Receiver board was found in slot slot_evr.

Event Receiver Function 0 Registers

The Event Receiver specific register are accessed via Function 0 as specified in the VME64x specification. To enable Function 0, the address decoder compare register for Function 0 in CSR space has to be programmed. For convenience a function to perform this is provided, too:

```
STATUS vmeCSRWriteADER(int slot, int func, UINT32 ader);
```

To configure Function 0 of a Event Receiver board in slot 3 to respond to A16 accesses at the address range 0x1800-0x1FFF the function has to be called with following values:

```
vmeCSRWriteADER(3, 0, 0x18A4);
```

ADER contents are composed of the address mask and address modifier, the above is the same as:

```
vmeCSRWriteADER(3, 0, (slot << 11) | (VME_AM_SUP_SHORT_IO << 2));</pre>
```

To get the memory mapped pointer to the configured Function 0 registers on the Event Receiver board the following VxWorks function has to be called:

Note: using the data transmission capability requires reserving more than 4 kbytes for function 0 i.e. use of addressing mode A24 is suggested, following:

Register Map

Address Offset Regist	er Type	Description
-----------------------	---------	-------------

Document: EVR-TREF-005 **Page:** 15 of 30

0x000	Control	UINT16	Control/Status Register
0x002	MapAddr	UINT16	Mapping RAM Address Register (8 bit)
0x002	MapData	UINT16	Mapping RAM Data Register
0x004	PulseEnable	UINT16	Output Pulse Enable Register
	LevelEnable	-	
0x008		UNIT16	Level Output Enable Register
0x00A	TriggerEnable	UINT16	Trigger Pulse Enable Register
0x00C	EventCounter	UNIT16	Timestamp Event Counter (LSW)
0x00E	EventCounter	UINT16	Timestamp Event Counter (MSW)
0x010	TSLatch	UINT16	Timestamp Latch (LSW)
0x012	TSLatch	UINT16	Timestamp Latch (LSW)
0x014	EventFIFO	UINT16	Series 100 Compatible Event FIFO
			(LSW)
			bits 15 - 8 – LSB of Timestamp Counter
			bits 7 - 0 – Event Code
0x016	EventFIFO	UINT16	Series 100 Compatible Event FIFO
			(MSW)
			bits 23 - 8 of Timestamp Counter
0x018	PDPEnable	UINT16	Delayed Pulse Enable Register
0x01A	PDPSelect	UINT16	Delayed Pulse Select Register
0x01C	PDPDelay	UINT16	Series 100 Compatible Multiplexed
			Delay Register (16 LSB only)
0x01E	PDPWidth	UINT16	Series 100 Compatible Multiplexed
			Width Register (16 LSB only)
0x020	IrqVector	UINT16	VME Interrupt Vector Register
0x022	IrqEnable	UINT16	Interrupt Enable Register
0x024	DBusEnable	UINT16	Distributed Bus Enable Register
0x026	DBusData	UINT16	Distributed Bus Data Register
0x028	PDPPrescaler	UINT16	Multiplexed Prescaler Register
0x02A	EventPrescaler	UINT16	Event Counter Prescaler Register
0x02C	(Reserved)	UINT16	(Reserved)
0x02E	FirmwareVersio	UINT16	Event Receiver Firmware Version
	n		Register
0x030	(Reserved)	UINT32	(Reserved)
0x034	(Reserved)	UINT32	(Reserved)
0x038	(Reserved)	UINT32	(Reserved)
0x03C	(Reserved)	UINT32	(Reserved)
0x040	FPMap0	UINT16	Front Panel TTL Output 0 Map Register
0x042	FPMap1	UINT16	Front Panel TTL Output 1 Map Register
0x044	FPMap2	UINT16	Front Panel TTL Output 2 Map Register
0x046	FPMap3	UINT16	Front Panel TTL Output 3 Map Register
0x048	FPMap4	UINT16	Front Panel TTL Output 4 Map Register
0x04A	FPMap5	UINT16	Front Panel LVPECL Output 0 Map
	Т-		Register
0x04C	FPMap6	UINT16	Front Panel LVPECL Output 1 Map
			1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Document: EVR-TREF-005

Page: 16 of 30

			Register
0x04E	UsecDivider	UINT16	Divider to get from Event Clock to 1
			MHz
0x050	ExtEvent	UINT16	External Event Code Register
0x052	ClockControl	UINT16	Event Clock Control Register
0x054	SecondsSR	UINT32	Seconds Shift Register
0x058	TSSec	UINT32	Timestamp Latch Seconds Register
0x05C	(Reserved)	UINT32	(Reserved)
0x060	EvFIFOSec	UINT32	Event FIFO Seconds Register
0x064	EvFIFOEvCnt	UINT32	Event FIFO Event Counter Register
0x068	OutputPolarity	UINT32	Output Polarity Register (for pulse
			outputs)
0x06C	ExtDelay	UINT32	Multiplexed Delay Register
0x070	ExtWidth	UINT32	Multiplexed Width Register
0x074	Prescaler_0	UINT16	Prescaler 0 divider
0x076	Prescaler_1	UINT16	Prescaler 1 divider
0x078	Prescaler_2	UINT16	Prescaler 2 divider
0x07A	DataBufCtrl	UINT16	Data Buffer Control and Status Register
0x07C	RFPattern	UINT32	RF Pattern Register
0x080	FracDiv	UINT32	SY87739L Fractional Divider
			Configuration Word
0x084	RFDelay	UINT32	RF Recovery Delay
0x088	RxDelay	UINT32	Recovered Event Clock Delay
0x08C - 0x7FF	(Reserved)	UINT32	Reserved
0x800 - 0xFFF	DataBuf		Data Buffer Receive Memory

Control and Status Register

address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
0x000	EVREN	IRQEN	RSTS	HRTBT	IRQFL	LTS	MAPEN	MAPRS

Bit	Function
EVREN	Event Receiver Master enable.
IRQEN	VME irq enable. When 0 all interrupts are disabled.
RSTS	Write 1 to reset timestamp event counter and timestamp latch.
HRTBT	Lost heartbeat flag. Write 1 to reset.
IRQFL	Event FIFO interrupt flag. Write 1 to reset.
LTS	Write 1 to latch timestamp from timestamp event counter to timestamp
	latch.
MAPEN	Event mapping RAM enable.
MAPRS	Mapping RAM select bit for event decoding. 0 - mapping RAM 1, 1 -
	mapping RAM 2.

address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
0x001	NFRAM	VMERS	AUTOI	RSADR	RSFIFO	FF	FNE	RXVIO
				DIRQ			RSDIRQ	

Document: EVR-TREF-005

Page: 17 of 30

Bit Function

NFRAM Write 1 to null fill (clear) mapping RAM selected by VMERS. This bit

changed to 0 when the selected RAM has been cleared.

VMERS Mapping RAM select bit for VME access. 0 - mapping RAM 1, 1 -

mapping RAM 2.

AUTOI Enable mapping RAM auto increment mode. When set the address is

automatically incremented by one upon every access from VME.

RSADR Write 1 to reset mapping RAM address register (write only).

DIRQ Delayed interrupt flag. RSFIFO Write 1 to clear event FIFO.

FF Event FIFO full flag. Write 1 to reset flag.

FNE FIFO not empty flag. Indicated whether there are event in event FIFO.

Mapping RAM address register

address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
0x003			Mapping	RAM comr	non address	s register		

Mapping RAM data register

address	bit 15	bit 0
0x004	Mapping RAM common data register	

Output pulse enable register

address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
0x006			OTP13	OTP12	OTP11	OTP10	OTP9	OTP8
address	L:4 7	1.24 (1 14 5	1 14 4	1 1 4 2	1 1 4	7 1 4	1 14 0
auurcss	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0

Bit Function

OTPx Enable programmable width output pulse x.

Output level enable register

address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
0x009		OLV6	OLV5	OLV4	OLV3	OLV2	OLV1	OLV0	1

Bit Function

OLVx Enable level output pulse x.

Trigger event enable register

address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
0x00B		TEV6	TEV5	TEV4	TEV3	TEV2	TEV1	TEV0	1

Bit Function

TEVx Enable trigger event output pulse x.

Page: 18 of 30

Timestamp event counter register

address	bit 15		bit 0
0x00C		Timestamp event counter (LSW, read only)	
			_
address	bit 15		bit 0
0x00E		Timestamp event counter (MSW, read only)	

Timestamp event latch register

address	bit 15		bit 0
0x010		Timestamp event latch (LSW, read only)	
·			
address	bit 15		bit 0
0x012		Timestamp event latch (MSW, read only)	

Event FIFO data register

address	bit 15		bit 8
0x014		Event FIFO data register, bits $7-0$ of timestamp event counter	
address	bit 7		bit 0
0x015		Event FIFO data register, event code	
address	bit 15		bit 0
0x016		Event FIFO data register, bits 23 – 8 of timestamp event counter	

Programmable delayed pulse output enable register

address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
0x019	POL3	POL2	POL1	POL0	PDP3	PDP2	PDP1	PDP0

Bit	Function
POLx	Delayed pulse output x polarity: 0 - active high, 1 - active low.
PDPx	Delayed pulse output x enable.

Programmable pulse / delay select register

address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
0x01b				DSEL4	DSEL3	DSEL2	DSEL1	DSEL0

DSEL	Register selected
00000	Programmable delayed pulse 0
00001	Programmable delayed pulse 1
00010	Programmable delayed pulse 2
00011	Programmable delayed pulse 3
00100	Delayed interrupt
10000	Programmable width pulse 0
10001	Programmable width pulse 1
10010	Programmable width pulse 2
10011	Programmable width pulse 3

Document: EVR-TREF-005

Page: 19 of 30

10100	Programmable width pulse 4
10101	Programmable width pulse 5
10110	Programmable width pulse 6
10111	Programmable width pulse 7
11000	Programmable width pulse 8
11001	Programmable width pulse 9
11010	Programmable width pulse 10
11011	Programmable width pulse 11
11100	Programmable width pulse 12
11101	Programmable width pulse 13

Programmable Delayed Pulse / Delayed Interrupt Delay Register

address	bit 15		bit 0
0x01C		Programmable Delayed Pulse / Delayed Interrupt Delay Register	

Programmable Width Pulse / Delayed Pulse Width Register

address	bit 15		bit 0
0x01E		Programmable Width Pulse / Delayed Pulse Width Register	

VME Interrupt Vector Register

address	bit 7	bit 0
0x021	VME interrupt vector register	

Interrupt configuration register

address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
0x023			IEDBUF	IEDIRQ	IEEVT	IEHRT	IEFF	IEVIO

BIT	Function
IEDBUF	Data Buffer interrupt enable.
IEDIRQ	Delayed interrupt enable.
IEEVT	Event interrupt enable.
IEHRT	Lost heartbeat interrupt enable.
IEFF	Event FIFO full interrupt enable.
IEVIO	Receiver violation interrupt enable.

Distributed bus enable register

address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
0x024				DBEVC				
address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
0x025	DBEN7	DBEN6	DBEN5	DBEN4	DBEN3	DBEN2	DBEN1	DBEN0

DBEN7	DBEN6	DBEN5	DBEN4	DBEN3	DBEN2	DBEN1	DBEN0
D:4	E4:						
Bit	Function						

DBEVC	Event counter clock source when prescaler = 0
	0 – Event counter is counting increment timestamp event codes 0x7c
	1 – Event counter is running on signal distributed on DBUS bit 4
DBEN x	OTPx output select:

Page: 20 of 30

- 0 programmable width pulse x,
- 1 distributed bus bit x.

Distributed bus data register

address	bit 7	bit 0
0x027	Distributed bus data register (read only)	

Programmable Delayed Pulse / Delayed Interrupt Prescaler Register

address	bit 15	bit 0
0x028	Programmable Delayed Pulse / Delayed Interrupt Prescaler Register	

Timestamp Event Counter Clock Prescaler Register

address	bit 15		bit 0
0x02A		Timestamp Event Counter Clock Prescaler Register	

Front Panel Output Multiplexer Registers

address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
0x040			FP0SEL5	FP0SEL4	FP0SEL3	FP0SEL2	FP0SEL1	FP0SEL0
0x042			FP1SEL5	FP1SEL4	FP1SEL3	FP1SEL2	FP1SEL1	FP1SEL0
0x044			FP2SEL5	FP2SEL4	FP2SEL3	FP2SEL2	FP2SEL1	FP2SEL0
0x046			FP3SEL5	FP3SEL4	FP3SEL3	FP3SEL2	FP3SEL1	FP3SEL0
0x048			FP4SEL5	FP4SEL4	FP4SEL3	FP4SEL2	FP4SEL1	FP4SEL0
0x04A			FP5SEL5	FP5SEL4	FP5SEL3	FP5SEL2	FP5SEL1	FP5SEL0
0x04C			FP6SEL5	FP6SEL4	FP6SEL3	FP6SEL2	FP6SEL1	FP6SEL0

FPxSEL *)	Signal selected
000000	D

000000	Programmable Delayed Pulse Output
000001	Programmable Delayed Pulse Output
000010	Programmable Delayed Pulse Output 2
000011	Programmable Delayed Pulse Output
000100	Trigger Event Output 0
000101	Trigger Event Output 1
000110	Trigger Event Output 2
000111	Trigger Event Output 3
001000	Trigger Event Output 4
001001	Trigger Event Output 5
001010	Trigger Event Output 6
001011	Programmable Width Pulse Output 0
001100	Programmable Width Pulse Output 1
001101	Programmable Width Pulse Output 2
001110	Programmable Width Pulse Output 3
001111	Programmable Width Pulse Output 4
010000	Programmable Width Pulse Output 5
010001	Programmable Width Pulse Output 6
010010	Programmable Width Pulse Output 7
010011	Programmable Width Pulse Output 8
010100	Programmable Width Pulse Output 9

Document: EVR-TREF-005

Page: 21 of 30

010101	Programmable Width Pulse Output 10
010110	Programmable Width Pulse Output 11
010111	Programmable Width Pulse Output 12
011000	Programmable Width Pulse Output 13
011001	Level Output 0
011010	Level Output 1
011011	Level Output 2
011100	Level Output 3
011101	Level Output 4
011110	Level Output 5
011111	Level Output 6
100000	Distributed Bus Data 0
100001	Distributed Bus Data 1
100010	Distributed Bus Data 2
100011	Distributed Bus Data 3
100100	Distributed Bus Data 4
100101	Distributed Bus Data 5
100110	Distributed Bus Data 6
100111	Distributed Bus Data 7
101000	Prescaler 0
101001	Prescaler 1
101010	Prescaler 2

^{*)} FP0 to FP4 are front panel TTL outputs 0 to 4, FP5 and FP6 are front panel LVPECL outputs 0 and 1 $\,$

External Event Code Register

address	bit 7	bit 0
0x051	External Event Code Register	

Clock Control Register

address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
0x053	CGLOCK	PSDONE	RFFB	RXFB/	DCML/	DCMS/	RSDCM	EVSRC
				PSDEC	PSINC	RSSMPL		

Bit	Function
EVSRC	Event Clock Source:
	0 – Use externally resynchronized recovered clock
	1 – Use recovered clock directly from MGT
RSDCM	Reset event DCM (always write 0)
DCMS	Event DCM stopped (read-only)
RSSMPL	Reset (always write 0)
DCML	Event DCM locked (read-only)
PSINC	Event DCM phase-shift increment (always write 0)
RXFB	External recovered clock resynchronization feedback (read-only)
PSDEC	Event DCM phase-shift decrement (always write 0)
RFFB	External RF resynchronization feedback (read-only)
PSDONE	Event DCM phase-shift DONE (read-only)
CGLOCK	Micrel SY87739L locked (read-only)

Document: EVR-TREF-005

Page: 22 of 30

Seconds Shift Register

address	bit 31	bit 0
0x054	Seconds Shift Register (read-only)	

Timestamp Latch Seconds Register

address	bit 31	bit 0
0x058	Timestamp Latch Seconds Register (read-only)	

Event FIFO Extended Timestamp Registers

address	bit 31	bit 0
0x060	Event FIFO Seconds Register (read-only)	
0x064	Event FIFO Event Counter Register (read-only)	

Polarity Register

I Oldille	, 1105100							
address	bit 31	bit 30	bit 29	bit 28	bit 27	bit 26	bit 25	bit 24
0x068								POL24
address	bit 23	bit 22	bit 21	bit 20	bit 19	bit 18	bit 17	bit 16
0x069	POL23	POL22	POL21	POL20	POL19	POL18	POL17	POL16
address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
0x06A	POL15	POL14	POL13	POL12	POL11			
address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
0x068					POL3	POL2	POL1	POL0

Bit	Function
POL0-3	Programma

able Delayed Pulse Output Polarity

0 – normal polarity (pulse active high)

1 – inverted polarity

POL11 Output Pulse 0 (OTP0) Polarity

0 – normal polarity (pulse active high)

1 – inverted polarity

Output Pulse 13 (OTP13) Polarity POL24

0 – normal polarity (pulse active high)

1 – inverted polarity

Data Buffer Control and Status Register

address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
0x07A	DBRX/	DBRDY/	DBCS	DBEN		RXSIZ	E(11:8)	
	DBENA	DBDIS						
address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
0x07B				RXSI7	F(7·0)			

Document: EVR-TREF-005

Page: 23 of 30

Bit	Function					
DBRX	Data Buffer Receiving (read-only)					
DBENA	Set-up for Single Reception (write '1' to set-up)					
DBRDY	Data Buffer Transmit Complete / Interrupt Flag					
DBDIS	Stop Reception (write '1' to stop/disable)					
DBCS	Data Buffer Checksum Error (read-only)					
	Flag is cleared by writing '1' to DBRX or DBRDY or disabling					
	data buffer					
DBEN	Data Buffer Enable Data Buffer Mode					
	'0' – Distributed bus not shared with data transmission, full speed					
	distributed bus					
	'1' - Distributed bus shared with data transmission, half speed					
	distributed bus					
RXSIZE	Data Buffer Received Buffer Size (read-only)					

SY87739L Fractional Divider Configuration Word

address	bit 31		bit 0
0x080		SY87739L Fractional Divider Configuration Word	

Configuration Word Frequency with 24 MHz reference oscillator

0x0C928166 124.907 MHz 0x009743AD 50 MHz 0xC25B43AD 49.978 MHz

Network Interface

A 10baseT network interface is provided to upgrade the FPGA firmware and set up boot options and tune the board for different operating frequencies. It is also possible to control the module over the network interface.

Changing the IP Address of the Module

The IP address of the module may be changed by sending an ICMP echo request packet with the modules MAC (Media Access Control) address and the IP address the module should respond to. This method is called ARP/PING. Both IP addresses have to be on the same subnet with the subnet mask programmed into the module (defaults to 255.255.255.0).

Linux

To set the IP address of an Event Receiver module to 192.168.1.32 on a Linux machine (as root):

```
# /sbin/arp -s 192.168.1.32 00:0E:B2:00:00:16
# ping 192.168.1.32
```

Now the board should respond to the echo request with echo replies.

Windows

To set the IP address of an Event Receiver module to 192.168.1.32 on a Windows machine (in command prompt):

Document: EVR-TREF-005

Page: 24 of 30

C:\> arp -s 192.168.1.32 00-0E-B2-00-00-16

C:\> ping 192.168.1.32

Now the board should respond to the echo request with echo replies.

Using Telnet to Configure Module

To connect to the configuration utility of the module issue the following command:

telnet 192.168.1.32 23

The latter parameter is the telnet port number and is required in Linux to prevent negotiation of telnet parameters which the telnet server of the module is not capable of.

The telnet server responds to the following commands:

Command	Description		
b	Show/change boot parameters, IP address etc.		
h / ?	Show Help		
i	Read & show dynamic configuration values from FPGA		
m <address> [<data>]</data></address>	Read/Write FPGA CR/CSR, Function 0		
r	Reset Board		
S	Save boot configuration & dynamic configuration values into non-		
	volatile memory		
t	Set event clock rate and tune module delay lines		
u	Update IP2022 software		
q	Quit Telnet		

Boot Configuration (command b)

Command b displays the current boot configuration parameters of the module. The parameter may be changed by giving a new parameter value. The following parameters are displayed:

Parameter	Description		
IP address	IP address of module		
Subnet mask	Subnet mask of module		
Default GW	Default gateway		
V2P IP address	(not used)		
FPGA mode	FPGA configuration mode		
	0 – FPGA is not configured after power up		
	1 – FPGA configured from internal Flash memory		
	2 – FPGA is configured from FTP server		
FTP server	FTP server IP address where configuration bit file resides		
Username	FTP server username		
Password FTP server password			
FTP Filename FTP server configuration file name			
Flash Filename	Configuration file name on internal flash		
UDP Port	UDP server port for FPGA data access		

Document: EVR-TREF-005

Page: 25 of 30

Note that after changing parameters the parameters have to be saved to internal flash by issuing the Save boot configuration (s) command. The changes are applied only after resetting the module using the reset command or hardware reset/power sequencing.

Configuring Operating Parameters and Tuning Delay Lines (command t)

The Event Receiver has to be configured for proper event clock rate and the on-board delay lines have to be tuned for the operating conditions. Before setting up the board make sure you have an Event Generator with the correct event clock connected to the Event Receiver. Also, let the EVR reach operating temperature (power on for 10 minutes in crate). The EVR asks for event clock rate, RF pattern which applies only to the RF version and the Micrel SY87739L programming word. The event clock rate is given with 1 MHz precision only, this value is used e.g. for being able to count the heartbeat monitor 1.6 s timeout. The 20 least significant bits of the RF pattern are the bits sent out at the event clock rate through the RF output e.g. 0x000C6318 is in binary 11000110001100011000b which given four clock cycles during one event clock i.e. 500 MHz with an event clock of 125 MHz.

To start configuration and tuning issue command 't' from the telnet prompt:

```
EVR-200 -> t →
Event clock 125 MHz ? →
RF Pattern 000c6318 ? →
SY87739L conf 0c928166 ? →
Starting tuning...
Trying with initial delay value of 0
Found edge at 0
Trying with initial delay value of 16
Found edge at 14
Trying with initial delay value of 32
Found edge at 14
Trying with initial delay value of 48
Found edge at 14
Trying with initial delay value of 64
Found edge at 57
Period limits, min: 36, max: 60, measured period 43
Tuned delay value 35
Tuned RF delay value 34
EVR-200 ->
```

After tuning the tuned values have to be stored in non-volatile memory:

```
EVR-200 -> s →
Confirm save (yes/no) ? yes 🗸
Configuration saved.
EVR-200 ->
```

Upgrading IP2022 Microprocessor Software (command u)

To upgrade the Ubicom IP2022 microprocessor software download the filesystem image containing the upgrade following the instructions in Upgrading FPGA Configuration File below.

Document: EVR-TREF-005

Page: 26 of 30

Verifying the downloaded image is very important as trying to upgrade from a faulty image can make the board unusable and requiring a programming cable to get the board up again.

When the filesystem image has been downloaded and verified, enter at the telnet prompt following:

The Event Receiver starts programming the new software and restarts. To re-connect to the board you probably have to ping the board see Changing the IP Address of the Module above.

Upgrading FPGA Configuration File

When the FPGA configuration file resides in internal flash memory a new file system image has to be downloaded to the module. This is done using TFTP protocol:

Linux

In Linux use e.g. interactive tftp:

```
$ tftp 192.168.1.32
tftp> bin
tftp> put filesystem.bin /
tftp> quit
```

Windows

In Windows command prompt issue the following command:

```
C:\> tftp -i 192.168.1.32 PUT filesystem.bin /
```

Now the FPGA configuration file has been upgraded and the new configuration is loaded after next reset/power sequencing.

Note! Due to the UDP protocol it is recommended to verify (read back and compare) the filesystem image before restarting the module. This is done following:

Linux

In Linux use e.g. interactive tftp:

```
$ tftp 192.168.1.32
tftp> bin
tftp> get / verify.bin
tftp> quit
$ diff filesystem.bin verify.bin
$
```

If files differ you should get following message:

Binary files filesystem.bin and verify.bin differ

Page: 27 of 30

Windows

In Windows command prompt issue the following command:

C:\> tftp -i 192.168.1.32 GET / verify.bin
C:\> fc /b filesystem.bin verify.bin
Comparing files filesystem.bin and verify.bin
FC: no differences encountered

Event Receiver TTL Transition Board (EVR-TTB)

The event receiver TTL transition board delivers fourteen programmable width pulse outputs and two level outputs on LEMO connectors. The drivers are TTL level and capable of driving a ground terminated 50 ohm load. The transition module provides a status led to indicate that the board is in operation.

Figure 10: Event Receiver TTL Transition Board (EVR-TTB) Front Panel

The front panel of the Event Receiver TTL Transition Board includes the following connections and status leds:

Connector / Led	Style	Level	Description
POWER	Green Led		Transition Board Powered Up
OTP/DBUS0	LEMO-EPL	TTL	Programmable width pulse 0 or
			Distributed Bus Bit 0
OTP/DBUS1	LEMO-EPL	TTL	Programmable width pulse 1 or
			Distributed Bus Bit 1
OTP/DBUS2	LEMO-EPL	TTL	Programmable width pulse 2 or
			Distributed Bus Bit 2
OTP/DBUS3	LEMO-EPL	TTL	Programmable width pulse 3 or
			Distributed Bus Bit 3
OTP/DBUS4	LEMO-EPL	TTL	Programmable width pulse 4 or
			Distributed Bus Bit 4
OTP/DBUS5	LEMO-EPL	TTL	Programmable width pulse 5 or
			Distributed Bus Bit 5
OTP/DBUS6	LEMO-EPL	TTL	Programmable width pulse 6 or
			Distributed Bus Bit 6
OTP/DBUS7	LEMO-EPL	TTL	Programmable width pulse 7 or
			Distributed Bus Bit 7
OTP8	LEMO-EPL	TTL	Programmable width pulse 8
OTP9	LEMO-EPL	TTL	Programmable width pulse 9
OTP10	LEMO-EPL	TTL	Programmable width pulse 10
OTP11	LEMO-EPL	TTL	Programmable width pulse 11
OTP12	LEMO-EPL	TTL	Programmable width pulse 12
OTP13	LEMO-EPL	TTL	Programmable width pulse 13
OTL0	LEMO-EPL	TTL	Level output 0
OTL1	LEMO-EPL	TTL	Level output 1

Page: 28 of 30

Event Receiver Optical Transition Board (EVR-OTB)

The Event Receiver Optical Transition Board delivers fourteen programmable width pulse outputs as Agilent HFBR-1528 Versatile Link optical outputs. The transition module provides a status led to indicate that the board is in operation.

Figure 11: Event Receiver Optical Transition Board (EVR-OTB) Front Panel

The front panel of the Event Receiver Optical Transition Board includes the following connections and status leds:

Connector / Led	Style	Level	Description
POWER	Green Led		Transition Board Powered Up
OTP/DBUS0	LEMO-EPL	Optical	Programmable width pulse 0 or
			Distributed Bus Bit 0
OTP/DBUS1	LEMO-EPL	Optical	Programmable width pulse 1 or
			Distributed Bus Bit 1
OTP/DBUS2	LEMO-EPL	Optical	Programmable width pulse 2 or
			Distributed Bus Bit 2
OTP/DBUS3	LEMO-EPL	Optical	Programmable width pulse 3 or
			Distributed Bus Bit 3
OTP/DBUS4	LEMO-EPL	Optical	Programmable width pulse 4 or
			Distributed Bus Bit 4
OTP/DBUS5	LEMO-EPL	Optical	Programmable width pulse 5 or
			Distributed Bus Bit 5
OTP/DBUS6	LEMO-EPL	Optical	Programmable width pulse 6 or
			Distributed Bus Bit 6
OTP/DBUS7	LEMO-EPL	Optical	Programmable width pulse 7 or
			Distributed Bus Bit 7
OTP8	LEMO-EPL	Optical	Programmable width pulse 8
OTP9	LEMO-EPL	Optical	Programmable width pulse 9
OTP10	LEMO-EPL	Optical	Programmable width pulse 10
OTP11	LEMO-EPL	Optical	Programmable width pulse 11
OTP12	LEMO-EPL	Optical	Programmable width pulse 12
OTP13	LEMO-EPL	Optical	Programmable width pulse 13

Event Receiver High-Speed Optical Transition Board (EVR-HTB)

The Event Receiver High-Speed Optical Transition Board delivers fourteen programmable width pulse outputs as four Agilent HFBR-1528 Versatile Link optical outputs and ten Agilent HFBR-1414 Transmitters. The transition module provides a status led to indicate that the board is in operation.

Page: 29 of 30

Figure 12: Event Receiver High-Speed Optical Transition Board (EVR-HTB) Front Panel

The front panel of the Event Receiver High-Speed Optical Transition Board includes the following connections and status leds:

Connector / Led	Style	Level	Description
POWER	Green Led		Transition Board Powered Up
OTP/DBUS0	LEMO-EPL	Optical/	Programmable width pulse 0 or
		Versatile Link	Distributed Bus Bit 0
OTP/DBUS1	LEMO-EPL	Optical/	Programmable width pulse 1 or
		Versatile Link	Distributed Bus Bit 1
OTP/DBUS2	LEMO-EPL	Optical/	Programmable width pulse 2 or
		Versatile Link	Distributed Bus Bit 2
OTP/DBUS3	LEMO-EPL	Optical/	Programmable width pulse 3 or
		Versatile Link	Distributed Bus Bit 3
OTP/DBUS4	LEMO-EPL	Optical/ST	Programmable width pulse 4 or
			Distributed Bus Bit 4
OTP/DBUS5	LEMO-EPL	Optical/ST	Programmable width pulse 5 or
			Distributed Bus Bit 5
OTP/DBUS6	LEMO-EPL	Optical/ST	Programmable width pulse 6 or
			Distributed Bus Bit 6
OTP/DBUS7	LEMO-EPL	Optical/ST	Programmable width pulse 7 or
			Distributed Bus Bit 7
OTP8	LEMO-EPL	Optical/ST	Programmable width pulse 8
OTP9	LEMO-EPL	Optical/ST	Programmable width pulse 9
OTP10	LEMO-EPL	Optical/ST	Programmable width pulse 10
OTP11	LEMO-EPL	Optical/ST	Programmable width pulse 11
OTP12	LEMO-EPL	Optical/ST	Programmable width pulse 12
OTP13	LEMO-EPL	Optical/ST	Programmable width pulse 13

Event Receiver TTL/NIM Transition Board (EVR-NTB)

The event receiver TTL/NIM transition board delivers 32 Event Receiver outputs as 19 TTL and 13 NIM level signals on LEMO connectors. The TTL level drivers are capable of driving a ground terminated 50 ohm load. The transition module provides a status led to indicate that the board is in operation.

Figure 13: Event Receiver TTL/NIM Transition Board (EVR-NTB) Front Panel

The front panel of the Event Receiver TTL/NIM Transition Board includes the following connections and status leds:

Connector / Led	Style	Level	Description

Document: EVR-TREF-005 **Page:** 30 of 30

POWER	Green Led		Transition Board Powered Up
DGP0	LEMO-EPY	NIM	Extended Delayed Pulse 0
			(DGP0)
DGP1	LEMO-EPY	NIM	Extended Delayed Pulse 1
			(DGP1)
DGP2	LEMO-EPY	TTL	Extended Delayed Pulse 2
			(DGP2)
DGP3	LEMO-EPY	TTL	Extended Delayed Pulse 3
			(DGP3)
TEV0	LEMO-EPY	TTL	Trigger Event 0 (TEV0)
TEV1	LEMO-EPY	TTL	Trigger Event 1 (TEV1)
TEV2	LEMO-EPY	TTL	Trigger Event 2 (TEV2)
TEV3	LEMO-EPY	TTL	Trigger Event 3 (TEV3)
TEV4	LEMO-EPY	TTL	Trigger Event 4 (TEV4)
TEV5	LEMO-EPY	TTL	Trigger Event 5 (TEV5)
TEV6	LEMO-EPY	TTL	Trigger Event 6 (TEV6)
OTP/DBUS0	LEMO-EPY	TTL	Programmable width pulse 0 or
			Distributed Bus Bit 0
OTP/DBUS1	LEMO-EPY	TTL	Programmable width pulse 1 or
			Distributed Bus Bit 1
OTP/DBUS2	LEMO-EPY	TTL	Programmable width pulse 2 or
			Distributed Bus Bit 2
OTP/DBUS3	LEMO-EPY	TTL	Programmable width pulse 3 or
			Distributed Bus Bit 3
OTP/DBUS4	LEMO-EPY	NIM	Programmable width pulse 4 or
			Distributed Bus Bit 4
OTP/DBUS5	LEMO-EPY	NIM	Programmable width pulse 5 or
			Distributed Bus Bit 5
OTP/DBUS6	LEMO-EPY	NIM	Programmable width pulse 6 or
			Distributed Bus Bit 6
OTP/DBUS7	LEMO-EPY	NIM	Programmable width pulse 7 or
			Distributed Bus Bit 7
OTP8	LEMO-EPY	NIM	Programmable width pulse 8
OTP9	LEMO-EPY	NIM	Programmable width pulse 9
OTP10	LEMO-EPY	NIM	Programmable width pulse 10
OTP11	LEMO-EPY	TTL	Programmable width pulse 11
OTP12	LEMO-EPY	TTL	Programmable width pulse 12
OTP13	LEMO-EPY	TTL	Programmable width pulse 13
OTL0	LEMO-EPY	TTL	Level output 0
OTL1	LEMO-EPY	TTL	Level output 1
OTL2	LEMO-EPY	TTL	Level output 2
OTL3	LEMO-EPY	NIM	Level output 3
OTL4	LEMO-EPY	NIM	Level output 4
OTL5	LEMO-EPY	NIM	Level output 5