SBE459 – Bioinformatics.

Final Project.

Deadline: Sunday – July 11th, 2021.

- You can submit before the deadline. Please arrange with me for that.
- No late submissions.

Group members: Two or three students per group.

Here are two project ideas. Please pick up only **ONE** of them.

Project Idea #1:

You are required to conduct a comparative study related to SARS-Cov-2 (COVID-19).

- Comparison between different COVID-19 sequences.
 - Use the <u>NCBI</u> database to download the sequences below.
 - Compare the DNA sequences of SARS-Cov-2 between:
 - Five sequences from Egypt.
 - Other sequences from USA, Europe, China, and the gulf area.
 - At least two sequences from each geographic region.
- The comparison should be including, but not limited to, the following:
 - Sequence alignments,
 - Phylogenetic trees,
 - The percentage of the chemical constituents (C, G, T, and A) and the CG content,
 - Find the functional products/interpretations of the dissimilar regions among the aligned sequences with reference to the Wuhan city reference sequence.

Project Idea #2:

You are required to conduct a study to analyze gene expression (GE) data for two types of cancer. These types are:

- 1. Lung Squamous Cell Carcinoma (LUSC),
- 2. Kidney Renal Clear Cell Carcinoma (KIRC).

The GE data (sent with this statement) for each cancer type:

- Two GE files for each cancer type:
 - 1. "type-rsem-fpkm-tcga-t_paired.txt", where type ∈ {lusc, kirc}: GE data for tissues with cancer,
 - 2. "type-rsem-fpkm-tcga_paired.txt": GE data for tissues in a healthy case.
- Data are paired: each GE file will have the same number of cases (patients) and in the same order.
- Files are tab-separated.

Requirements:

- For each cancer type, infer the differentially expressed genes (DEGs):
 - Use the following methods to identify DEGs:
 - 1. Hypothesis testing,
 - 2. Fold change,
 - 3. Both of them.
 - Report the set of DEGs from each of the above methods, and report how similar/different the DEGs from the first two methods are.
 - Use the set of DEGs from the third method to perform Gene Set Enrichment Analysis (GSEA) on this set of genes.
 - Suggestion: you can use this <u>GSEA Software</u>.

Submission for both ideas:

- Support your findings/results/conclusions with figures.
- You have to deliver the following:
 - All the code scripts you used for your analysis,
 - Comments are a must.
 - Project report:
 - It should look like a research paper. It should have the following sections:
 - Introduction.
 - Methods: describe all the steps carefully and include all the used software packages,
 - · Results and Discussion: report your results in details and discuss them,
 - You can augment your results with textual files or spreadsheets.
 - Conclusion: list the overall findings of your analysis.
 - Members Contribution: list in details what each member in your group did in this project. Each member in the group may receive a different grade based on the contribution weight.
 - Presentation:
 - You will be given a few minutes to represent your work online.
 - Prepare yourself for discussing your analysis and findings.

Notes:

• The report and the code scripts have to be delivered at least one day before the presentation day.

Good luck!