Devin Jayasinghe UseCase8 LSTM CNN MHEALTH

May 14, 2025

1 Load & Inspect MHEALTH Dataset

Download, unzip, and display basic information about the raw sensor files.

```
[1]: import os
     import requests
     import zipfile
     import pandas as pd
     import numpy as np
     def download_mhealth_dataset(url: str, save_path: str):
         Downloads the MHEALTH dataset from the given URL
         and saves it to `save_path`.
         if not os.path.exists(save_path):
             print(f"Downloading MHEALTH dataset from {url}...")
             r = requests.get(url, stream=True)
             with open(save_path, 'wb') as f:
                 for chunk in r.iter_content(chunk_size=1024):
                     if chunk:
                         f.write(chunk)
             print("Download complete.")
         else:
             print("Dataset zip file already exists. Skipping download.")
     def unzip_dataset(zip_path: str, extract_to: str):
         Unzips the downloaded dataset to the specified folder.
         if not os.path.exists(extract to):
             os.makedirs(extract_to)
         with zipfile.ZipFile(zip_path, 'r') as zip_ref:
             zip_ref.extractall(extract_to)
         print(f"Extracted dataset to: {extract_to}")
     # URL and local paths
```

Dataset zip file already exists. Skipping download. Extracted dataset to: MHEALTHDATASET

```
[2]: import glob
     # Your top-level folder after unzipping
     extract_folder = "MHEALTHDATASET"
     # Path to the second-level folder containing the .log files
     nested_folder = os.path.join(extract_folder, "MHEALTHDATASET")
     # Verify which files/folders exist
     print("Contents of top-level folder:", os.listdir(extract_folder))
     print("Contents of nested folder:", os.listdir(nested_folder))
     # Now collect all .log files
     file_list = sorted(glob.glob(os.path.join(nested_folder, "mHealth_subject*.
      →log")))
     if not file list:
         print("No .log files found. Check that the folder structure is correct.")
     else:
         print("Found log files:", file_list)
     # Define the column names based on the dataset description
     column_names = [
         "chest_acc_x",
         "chest_acc_y",
         "chest_acc_z",
         "ecg_1",
         "ecg_2",
         "ankle_acc_x",
         "ankle_acc_y",
         "ankle_acc_z",
         "ankle_gyro_x",
         "ankle_gyro_y",
```

```
"ankle_gyro_z",
    "ankle_mag_x",
    "ankle_mag_y",
    "ankle_mag_z",
    "arm_acc_x",
    "arm_acc_y",
    "arm_acc_z",
    "arm_gyro_x",
    "arm_gyro_y",
    "arm_gyro_z",
    "arm_mag_x",
    "arm_mag_y",
    "arm_mag_z",
    "activity_label"
]
all_data = []
for log_file in file_list:
    print("Loading file:", log_file)
    df = pd.read_csv(log_file,
                      delim_whitespace=True,
                      names=column_names,
                      header=None)
    # Add a subject column for clarity.
    # e.q. "mHealth subject1.log" => "subject1"
    subject_id = os.path.splitext(os.path.basename(log_file))[0] #_
 → "mHealth_subject1"
    df["subject_id"] = subject_id
    all_data.append(df)
# Concatenate all subject data
if all_data:
    mhealth_df = pd.concat(all_data, ignore_index=True)
    print("Combined DataFrame shape:", mhealth_df.shape)
    print(mhealth_df.head())
    print("No data loaded; all_data is empty.")
Contents of top-level folder: ['MHEALTHDATASET']
Contents of nested folder: ['mHealth_subject1.log', 'mHealth_subject10.log',
'mHealth_subject2.log', 'mHealth_subject3.log', 'mHealth_subject4.log',
'mHealth subject5.log', 'mHealth subject6.log', 'mHealth subject7.log',
'mHealth_subject8.log', 'mHealth_subject9.log', 'README.txt']
Found log files: ['MHEALTHDATASET\\MHEALTHDATASET\\mHealth subject1.log',
'MHEALTHDATASET\\MHEALTHDATASET\\mHealth_subject10.log',
'MHEALTHDATASET\\MHEALTHDATASET\\mHealth_subject2.log',
```

```
'MHEALTHDATASET\\MHEALTHDATASET\\mHealth_subject3.log',
'MHEALTHDATASET\\MHEALTHDATASET\\mHealth_subject4.log',
'MHEALTHDATASET\\MHEALTHDATASET\\mHealth_subject5.log',
'MHEALTHDATASET\\MHEALTHDATASET\\mHealth_subject6.log',
'MHEALTHDATASET\\MHEALTHDATASET\\mHealth subject7.log',
'MHEALTHDATASET\\MHEALTHDATASET\\mHealth_subject8.log',
'MHEALTHDATASET\\MHEALTHDATASET\\mHealth subject9.log']
Loading file: MHEALTHDATASET\MHEALTHDATASET\mHealth_subject1.log
C:\Users\DevinJ\AppData\Local\Temp\ipykernel 33816\2647223428.py:52:
FutureWarning: The 'delim_whitespace' keyword in pd.read_csv is deprecated and
will be removed in a future version. Use ``sep='\s+'`` instead
 df = pd.read_csv(log_file,
Loading file: MHEALTHDATASET\MHEALTHDATASET\mHealth_subject10.log
C:\Users\DevinJ\AppData\Local\Temp\ipykernel_33816\2647223428.py:52:
FutureWarning: The 'delim_whitespace' keyword in pd.read_csv is deprecated and
will be removed in a future version. Use ``sep='\s+'`` instead
  df = pd.read_csv(log_file,
Loading file: MHEALTHDATASET\MHEALTHDATASET\mHealth_subject2.log
C:\Users\DevinJ\AppData\Local\Temp\ipykernel_33816\2647223428.py:52:
FutureWarning: The 'delim_whitespace' keyword in pd.read_csv is deprecated and
will be removed in a future version. Use ``sep='\s+'`` instead
  df = pd.read_csv(log_file,
Loading file: MHEALTHDATASET\MHEALTHDATASET\mHealth_subject3.log
C:\Users\DevinJ\AppData\Local\Temp\ipykernel_33816\2647223428.py:52:
FutureWarning: The 'delim whitespace' keyword in pd.read csv is deprecated and
will be removed in a future version. Use ``sep='\s+'`` instead
  df = pd.read_csv(log_file,
Loading file: MHEALTHDATASET\MHEALTHDATASET\mHealth_subject4.log
C:\Users\DevinJ\AppData\Local\Temp\ipykernel_33816\2647223428.py:52:
FutureWarning: The 'delim_whitespace' keyword in pd.read_csv is deprecated and
will be removed in a future version. Use ``sep='\s+'`` instead
  df = pd.read_csv(log_file,
Loading file: MHEALTHDATASET\MHEALTHDATASET\mHealth subject5.log
C:\Users\DevinJ\AppData\Local\Temp\ipykernel 33816\2647223428.py:52:
FutureWarning: The 'delim_whitespace' keyword in pd.read_csv is deprecated and
will be removed in a future version. Use ``sep='\s+'`` instead
  df = pd.read_csv(log_file,
Loading file: MHEALTHDATASET\MHEALTHDATASET\mHealth_subject6.log
C:\Users\DevinJ\AppData\Local\Temp\ipykernel_33816\2647223428.py:52:
FutureWarning: The 'delim whitespace' keyword in pd.read csv is deprecated and
```

```
will be removed in a future version. Use ``sep='\s+'`` instead
   df = pd.read_csv(log_file,
```

Loading file: MHEALTHDATASET\MHEALTHDATASET\mHealth_subject7.log

C:\Users\DevinJ\AppData\Local\Temp\ipykernel_33816\2647223428.py:52:
FutureWarning: The 'delim_whitespace' keyword in pd.read_csv is deprecated and will be removed in a future version. Use ``sep='\s+'`` instead df = pd.read_csv(log_file,

Loading file: MHEALTHDATASET\MHEALTHDATASET\mHealth_subject8.log

C:\Users\DevinJ\AppData\Local\Temp\ipykernel_33816\2647223428.py:52:
FutureWarning: The 'delim_whitespace' keyword in pd.read_csv is deprecated and will be removed in a future version. Use ``sep='\s+'`` instead df = pd.read_csv(log_file,

Loading file: MHEALTHDATASET\MHEALTHDATASET\mHealth_subject9.log

C:\Users\DevinJ\AppData\Local\Temp\ipykernel_33816\2647223428.py:52:
FutureWarning: The 'delim_whitespace' keyword in pd.read_csv is deprecated and will be removed in a future version. Use ``sep='\s+'`` instead df = pd.read_csv(log_file,

Combined DataFrame shape: (1215745, 25)

	chest_acc_	x chest_acc_	y chest_ac	c_z ec	g_1 ecg_	2 ankle_acc_x	\			
0	-9.8184	4 0.00997	1 0.29	9563 0.004	186 0.00418	6 2.1849				
1	-9.8489	9 0.52404	0 0.37	348 0.004	186 0.01674	5 2.3876				
2	-9.660	0.18185	0 0.43	3742 0.016	745 0.03767	7 2.4086				
3	-9.650	7 0.21422	0 0.24	1033 0.079	540 0.11722	0 2.1814				
4	-9.7030	0.30389	0 0.31	156 0.221	870 0.20513	0 2.4173				
	ankle_acc_y	y ankle_acc_	z ankle gy	ro x ankl	e gyro y	arm_acc_y \				
0	-9.696				-0.84053					
1	-9.5080	0.6838	9 0.08	35343	-0.83865	-4.3198				
2	-9.5674	4 0.6811	3 0.08	35343	-0.83865	-4.2772				
3	-9.430	1 0.5503	1 0.08	35343	-0.83865	-4.3163				
4	-9.3889	9 0.7109	8 0.08	35343	-0.83865	-4.1459				
	arm_acc_z	arm_gyro_x	arm_gyro_y	arm_gyro_	z arm_mag_x	arm_mag_y \				
0	0.187760	-0.44902	-1.0103	0.03448	3 -2.35000	-1.610200				
1	0.023595	-0.44902	-1.0103	0.03448	3 -2.16320	-0.882540				
2	0.275720	-0.44902	-1.0103	0.03448	3 -1.61750	-0.165620				
3	0.367520	-0.45686	-1.0082	0.02586	2 -1.07710	0.006945				
4	0.407290	-0.45686	-1.0082	0.02586	2 -0.53684	0.175900				
	arm_mag_z	activity_lab	el s	subject_id						
0	-0.030899	· -		_subject1						
1	0.326570	- 3								
2	-0.030693	_ 3								
3	-0.382620	•								
	_ 3									

```
4 -1.095500 0 mHealth_subject1
[5 rows x 25 columns]
```

2 Data Cleaning & Standardisation

Handle missing values, and scale all sensor channels to zero-mean/unit-variance.

```
[3]: # Check for missing values
     missing_counts = mhealth_df.isnull().sum()
     print("Missing values per column:\n", missing_counts)
    Missing values per column:
                        0
     chest_acc_x
                       0
    chest_acc_y
                       0
    {\tt chest\_acc\_z}
                       0
    ecg_1
    ecg_2
                       0
    ankle_acc_x
                       0
                       0
    ankle_acc_y
                       0
    ankle_acc_z
    ankle_gyro_x
                       0
    ankle_gyro_y
                       0
    ankle_gyro_z
                       0
    ankle_mag_x
    ankle_mag_y
                       0
                       0
    ankle_mag_z
                       0
    arm_acc_x
                       0
    arm_acc_y
                       0
    arm_acc_z
    arm_gyro_x
                       0
                       0
    arm_gyro_y
                       0
    arm_gyro_z
                       0
    arm_mag_x
                       0
    arm_mag_y
    arm mag z
                       0
    activity_label
                       0
                       0
    subject_id
    dtype: int64
[4]: from sklearn.preprocessing import StandardScaler
     # Columns to scale (exclude label & subject_id)
     feature_cols = [
         col for col in mhealth_df.columns
         if col not in ['activity_label', 'subject_id']
     ]
```

```
scaler = StandardScaler()
mhealth_df[feature_cols] = scaler.fit_transform(mhealth_df[feature_cols])
print("Scaled feature sample:\n", mhealth df[feature_cols].head())
Scaled feature sample:
    chest_acc_x chest_acc_y
                                                       ecg_2 ankle_acc_x \
                             chest_acc_z
                                             ecg_1
0
    -0.318024
                  0.104711
                                0.378153 0.012468 0.011956
                                                                0.180505
                                0.399934 0.012468 0.029230
1
    -0.325508
                  0.345048
                                                                0.233478
2
                               0.417824 0.029289 0.058021
    -0.279204
                  0.185068
                                                                0.238966
3
    -0.276873
                  0.200201
                                0.362681 0.113398
                                                   0.167428
                                                                0.179590
4
    -0.289707
                  0.242124
                                0.382610 0.304036 0.288343
                                                                0.241240
  ankle_acc_y
               ankle_acc_z
                            ankle_gyro_x ankle_gyro_y ...
                                                           ankle_mag_z \
                                 0.214771
                                                               0.065390
0
    -0.000916
                  0.290303
                                              -0.631339
1
     0.044322
                  0.300028
                                 0.176993
                                             -0.626038 ...
                                                               0.081415
2
                  0.299523
      0.030081
                                 0.176993
                                             -0.626038
                                                               0.073245
3
     0.062997
                  0.275571
                                 0.176993
                                             -0.626038 ...
                                                               0.081004
4
      0.072874
                  0.304988
                                 0.176993
                                             -0.626038 ...
                                                               0.073660
  arm_acc_x arm_acc_y arm_acc_z arm_gyro_x arm_gyro_y
                                                           arm_gyro_z \
0 -1.036297
              0.213182 -0.569101
                                                            -0.411337
                                    -0.327682
                                                -0.978967
1 -1.031594
              0.258044 -0.611450
                                    -0.327682
                                                -0.978967
                                                            -0.411337
2 -1.005983
              0.265443 -0.546410
                                    -0.327682
                                                -0.978967
                                                            -0.411337
3 -1.031678
              0.258652
                        -0.522729
                                    -0.342539
                                                            -0.426612
                                                -0.975187
4 -1.046982
              0.288248
                        -0.512470
                                    -0.342539
                                                -0.975187
                                                            -0.426612
  arm_mag_x arm_mag_y
                        arm_mag_z
0 -0.094474
             -0.069508
                        0.004830
1 -0.087472 -0.047751
                         0.009969
2 -0.067015
             -0.026315
                         0.004833
3 -0.046758
            -0.021155
                        -0.000227
4 -0.026505
             -0.016103
                        -0.010477
```

[5 rows x 23 columns]

3 Windowing Sensor Streams

Slice continuous data into fixed-length windows (e.g., 100 samples) and assign a label via majority vote or last sample.

```
[5]: WINDOW_SIZE = 100 # e.g., 2 seconds if data is 50 Hz

def create_windows(df, window_size=100):
    """
    Splits the dataset into consecutive windows of length `window_size`.
    Each window is assigned a single label based on majority labeling.
```

```
# Sort to maintain temporal order within each subject
   df = df.sort_values(by=['subject_id']).reset_index(drop=True)
   feature_cols = [c for c in df.columns if c not in ['activity_label', __
 ⇔'subject_id']]
   data_array = df[feature_cols].values
   labels = df['activity_label'].values
   subjects = df['subject_id'].values
   X_windows = []
   y_windows = []
   subject_windows = []
   start idx = 0
   while start_idx + window_size <= len(df):</pre>
        end_idx = start_idx + window_size
        # Slice data for this window
        window_data = data_array[start_idx:end_idx]
        window labels = labels[start idx:end idx]
        window_subjects = subjects[start_idx:end_idx]
        # Majority vote for the label
       unique_labels, counts = np.unique(window_labels, return_counts=True)
       majority_label = unique_labels[np.argmax(counts)]
       X_windows.append(window_data)
       y_windows.append(majority_label)
        # (Optional) track subject
       unique_subj, subj_counts = np.unique(window_subjects,_
 →return counts=True)
       majority_subj = unique_subj[np.argmax(subj_counts)]
        subject_windows.append(majority_subj)
        start_idx = end_idx # move on (no overlap)
   X_windows = np.array(X_windows) # shape (num_windows, window_size,__
 →num_features)
   y_windows = np.array(y_windows)
   subject_windows = np.array(subject_windows)
   return X_windows, y_windows, subject_windows
X, y, subj ids = create_windows(mhealth_df, window_size=WINDOW_SIZE)
print("X shape:", X.shape) # (num_windows, 100, num_features)
```

4 Train / Validation / Test Split

Create stratified splits to ensure each activity appears in every partition.

Train size: (8509, 100, 23) (8509,) Val size: (1824, 100, 23) (1824,) Test size: (1824, 100, 23) (1824,)

5 PyTorch Dataset & DataLoader

Wrap window arrays in a custom Dataset and initialise DataLoaders for efficient batching.

```
[7]: import torch
from torch.utils.data import Dataset, DataLoader

class SensorWindowDataset(Dataset):
    def __init__(self, X, y):
        # Convert to torch tensors
        self.X = torch.tensor(X, dtype=torch.float32)
        self.y = torch.tensor(y, dtype=torch.long)

def __len__(self):
```

```
return len(self.X)
   def __getitem__(self, idx):
       return self.X[idx], self.y[idx]
# Create Dataset objects
train_dataset = SensorWindowDataset(X_train, y_train)
val_dataset = SensorWindowDataset(X_val, y_val)
test_dataset = SensorWindowDataset(X_test, y_test)
# Dataloaders
BATCH_SIZE = 64
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
val loader = DataLoader(val dataset, batch_size=BATCH_SIZE, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False)
# Quick sanity check
xb, yb = next(iter(train_loader))
print("Batch X shape:", xb.shape)
                                   # (batch_size, window_size, num_features)
print("Batch y shape:", yb.shape)
```

Batch X shape: torch.Size([64, 100, 23])
Batch y shape: torch.Size([64])

6 LSTM Model Definition & Training Loop

Build a sequential LSTM followed by a fully-connected layer for multi-class activity classification. Train the LSTM for n epochs, tracking loss and accuracy on both training and validation sets.

```
[8]: import torch.nn as nn
import torch.nn.functional as F

class LSTMActivityClassifier(nn.Module):
    def __init__(self, input_size, hidden_size, num_classes, num_layers=1):
        super().__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers

# LSTM layer
    self.lstm = nn.LSTM(
        input_size=input_size,
        hidden_size=hidden_size,
        num_layers=num_layers,
        batch_first=True # input shape: (batch, seq, feature)
    )
}
```

```
# Final fully connected for classification
              self.fc = nn.Linear(hidden_size, num_classes)
          def forward(self, x):
              # x shape: (batch, seq_len, input_size)
              # hidden/cell state are automatically initialized to zeros if not_{\sqcup}
       \rightarrowprovided
              lstm_out, (hn, cn) = self.lstm(x) # (batch, seq_len, hidden_size),
       →([num_layers, batch, hidden_size], ...)
              # We can take the last time-step's output
              # lstm_out[:, -1, :] shape = (batch, hidden_size)
              out = lstm_out[:, -1, :]
              # FC layer for classification
              out = self.fc(out) # (batch, num_classes)
              return out
 [9]: num_classes = len(np.unique(y_train)) # number of distinct activity labels
      input_size = X_train.shape[2] # number of sensor features
      hidden_size = 64
      num_layers = 1
      model = LSTMActivityClassifier(input_size, hidden_size, num_classes, num_layers)
      print(model)
     LSTMActivityClassifier(
       (lstm): LSTM(23, 64, batch_first=True)
       (fc): Linear(in_features=64, out_features=13, bias=True)
     )
[10]: import torch.optim as optim
      device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
      print("Using device:", device)
      model.to(device)
      criterion = nn.CrossEntropyLoss()
      optimizer = optim.Adam(model.parameters(), lr=1e-3)
      def train_one_epoch(model, train_loader, optimizer, criterion):
          model.train()
          running loss = 0.0
          correct = 0
          total = 0
```

```
for X_batch, y_batch in train_loader:
        X_batch, y_batch = X_batch.to(device), y_batch.to(device)
        optimizer.zero_grad()
        outputs = model(X_batch)
       loss = criterion(outputs, y_batch)
       loss.backward()
       optimizer.step()
       running_loss += loss.item() * X_batch.size(0)
        _, preds = torch.max(outputs, 1)
        correct += (preds == y_batch).sum().item()
        total += y_batch.size(0)
    epoch_loss = running_loss / total
    epoch_acc = correct / total
   return epoch_loss, epoch_acc
def evaluate(model, val_loader, criterion):
   model.eval()
   running_loss = 0.0
   correct = 0
   total = 0
   with torch.no_grad():
        for X_batch, y_batch in val_loader:
            X_batch, y_batch = X_batch.to(device), y_batch.to(device)
            outputs = model(X_batch)
            loss = criterion(outputs, y_batch)
            running_loss += loss.item() * X_batch.size(0)
            _, preds = torch.max(outputs, 1)
            correct += (preds == y_batch).sum().item()
            total += y_batch.size(0)
    epoch_loss = running_loss / total
   epoch_acc = correct / total
   return epoch_loss, epoch_acc
# -- Main training loop --
EPOCHS = 10
for epoch in range(EPOCHS):
   train_loss, train_acc = train_one_epoch(model, train_loader, optimizer,__
 ⇔criterion)
   val_loss, val_acc = evaluate(model, val_loader, criterion)
```

```
print(f"Epoch [{epoch+1}/{EPOCHS}] "
          f"Train Loss: {train_loss:.4f}, Train Acc: {train_acc:.4f} | "
          f"Val Loss: {val_loss:.4f}, Val Acc: {val_acc:.4f}")
Using device: cuda
Epoch [1/10] Train Loss: 1.4157, Train Acc: 0.6718 | Val Loss: 1.0552, Val Acc:
0.7325
Epoch [2/10] Train Loss: 0.9605, Train Acc: 0.7411 | Val Loss: 0.8699, Val Acc:
Epoch [3/10] Train Loss: 0.8189, Train Acc: 0.7668 | Val Loss: 0.7729, Val Acc:
0.7560
Epoch [4/10] Train Loss: 0.7466, Train Acc: 0.7747 | Val Loss: 0.8015, Val Acc:
0.7725
Epoch [5/10] Train Loss: 0.7073, Train Acc: 0.7772 | Val Loss: 0.6558, Val Acc:
0.7747
Epoch [6/10] Train Loss: 0.6384, Train Acc: 0.7889 | Val Loss: 0.6274, Val Acc:
Epoch [7/10] Train Loss: 0.7588, Train Acc: 0.7497 | Val Loss: 0.7195, Val Acc:
Epoch [8/10] Train Loss: 0.6315, Train Acc: 0.7800 | Val Loss: 0.5921, Val Acc:
```

7 LSTM Evaluation

0.7900

Generate predictions on the test set and print the classification report and raw confusion matrix.

Epoch [9/10] Train Loss: 0.5708, Train Acc: 0.7900 | Val Loss: 0.5561, Val Acc:

Epoch [10/10] Train Loss: 0.5367, Train Acc: 0.8009 | Val Loss: 0.5301, Val Acc:

```
[15]: # -----
     # Activity labels in the order of their numeric IDs
     # (adjust if you excluded the null class or re-indexed)
     # -----
     class_names = [
        "Null / Transition", # 0
        "Standing still",
                             # 1
        "Sitting",
                             # 2
         "Lying down",
                            # 3
        "Walking",
                             # 4
         "Climbing stairs",
                             # 5
         "Waist bends",
                             # 6
                            # 7
         "Arm elevation",
         "Knee bending",
                             # 8
                             # 9
         "Cycling",
         "Jogging",
                             # 10
```

```
"Running", # 11
"Jumping" # 12
]
```

```
[16]: # ==== Enhanced Evaluation for LSTM =====
      import torch, numpy as np, matplotlib.pyplot as plt, torch.nn.functional as F
      from sklearn.metrics import (
         accuracy_score, f1_score, confusion_matrix,
         precision_recall_fscore_support, roc_curve, auc,
         precision_recall_curve, average_precision_score
      from sklearn.preprocessing import label_binarize
      # --- helper (define once; will be reused by CNN) ------
      def evaluate model(net, loader, class names, device, title="Model"):
         net.eval()
         probs_list, preds_list, true_list = [], [], []
         with torch.no_grad():
              for xb, yb in loader:
                  xb = xb.to(device)
                  logits = net(xb)
                  probs = F.softmax(logits, dim=1)
                 preds = logits.argmax(1).cpu()
                  probs list.append(probs.cpu())
                 preds_list.extend(preds.numpy())
                 true list.extend(yb.numpy())
         probs = np.concatenate(probs_list, axis=0)
         true = np.array(true_list)
         preds = np.array(preds_list)
          # Accuracy / Macro-F1
         acc = accuracy_score(true, preds)
         mf1 = f1_score(true, preds, average="macro")
         print(f"{title}: accuracy = {acc:.3f} macro-F1 = {mf1:.3f}")
          # Confusion matrix (row-normalised)
             = confusion_matrix(true, preds, labels=range(len(class_names)))
          cm_n = cm.astype(float) / cm.sum(axis=1, keepdims=True)
         ticks = np.arange(len(class_names))
         plt.figure(figsize=(8,6))
         plt.imshow(cm_n, cmap="Blues"); plt.colorbar(label="Recall %")
         plt.title(f"{title} - Normalised Confusion Matrix")
         plt.xticks(ticks, class_names, rotation=45, ha="right")
         plt.yticks(ticks, class_names)
         for i in range(cm_n.shape[0]):
              for j in range(cm_n.shape[1]):
                  txt = f"{cm_n[i,j]*100:.1f}%"
```

```
clr = "white" if cm_n[i,j] > 0.5 else "black"
            plt.text(j,i,txt,ha="center",va="center",color=clr,fontsize=8)
   plt.xlabel("Predicted"); plt.ylabel("True"); plt.tight_layout(); plt.show()
    # Per-class Precision / Recall / F1
   prec, rec, f1, _ = precision_recall_fscore_support(true, preds,__
 ⇔labels=range(len(class_names)))
   x = np.arange(len(class_names)); w=0.25
   plt.figure(figsize=(12,4))
   plt.bar(x-w, prec, w, label="Precision")
   plt.bar(x, rec, w, label="Recall")
   plt.bar(x+w, f1, w, label="F1")
   plt.xticks(x, class_names, rotation=45, ha="right")
   plt.ylim(0,1); plt.legend(); plt.title(f"{title} - Per-Class Metrics")
   plt.tight_layout(); plt.show()
    # ROC & PR curves (one-vs-rest)
   y_bin = label_binarize(true, classes=range(len(class_names)))
   plt.figure(figsize=(6,5))
   for i, c in enumerate(class_names):
        fpr,tpr,_ = roc_curve(y_bin[:,i], probs[:,i])
       plt.plot(fpr,tpr,label=f"{c} (AUC {auc(fpr,tpr):.2f})", linewidth=1)
   plt.plot([0,1],[0,1],'k--'); plt.xlabel("FPR"); plt.ylabel("TPR")
   plt.title(f"{title} - ROC"); plt.legend(fontsize=6); plt.tight_layout();__
 →plt.show()
   plt.figure(figsize=(6,5))
   for i, c in enumerate(class_names):
       pr,re,_ = precision_recall_curve(y_bin[:,i], probs[:,i])
       ap = average_precision_score(y_bin[:,i], probs[:,i])
       plt.plot(re,pr,label=f"{c} (AP {ap:.2f})", linewidth=1)
   plt.xlabel("Recall"); plt.ylabel("Precision")
   plt.title(f"{title} - PR Curve"); plt.legend(fontsize=6); plt.
 ⇔tight layout(); plt.show()
# --- run helper on the trained LSTM model -----
evaluate_model(model, test_loader, class_names, device, title="LSTM")
```

LSTM: accuracy = 0.782 macro-F1 = 0.436

d:\Users\DevinJ\anaconda3\envs\SIT731_pv1\Lib\sitepackages\sklearn\metrics_classification.py:1531: UndefinedMetricWarning:
Precision is ill-defined and being set to 0.0 in labels with no predicted
samples. Use `zero_division` parameter to control this behavior.
 _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))


```
[20]: test_loss, test_acc = evaluate(model, test_loader, criterion)
print(f"Test Loss: {test_loss:.4f}, Test Accuracy: {test_acc:.4f}")
Test Loss: 0.5643, Test Accuracy: 0.7823
```

```
[65]: class_names = [
          "Null/Transitional",
                                  # label 0
          "Standing still",
                                  # label 1
          "Sitting & relaxing", # label 2
          "Lying down",
                                  # label 3
          "Walking",
                                  # label 4
          "Climbing stairs",
                                  # label 5
          "Waist bends forward", # label 6
          "Frontal elev. arms", # label 7
          "Knees bending",
                                  # label 8
          "Cycling",
                                  # label 9
          "Jogging",
                                  # label 10
          "Running",
                                  # label 11
```

```
"Jump front/back", # label 12

]
from sklearn.metrics import classification_report, confusion_matrix

print("Detailed Classification Report with Activity Names:\n")
print(classification_report(all_labels, all_preds, target_names=class_names))
```

Detailed Classification Report with Activity Names:

	precision	recall	f1-score	support
Null/Transitional	0.82	0.92	0.87	1310
Standing still	0.00	0.00	0.00	45
Sitting & relaxing	0.00	0.00	0.00	46
Lying down	0.69	0.98	0.81	47
Walking	0.92	0.24	0.38	46
Climbing stairs	0.72	0.28	0.41	46
Waist bends forward	0.70	0.55	0.61	42
Frontal elev. arms	0.48	0.45	0.47	44
Knees bending	0.68	0.48	0.56	44
Cycling	0.57	0.63	0.60	46
Jogging	0.73	0.70	0.71	46
Running	0.72	0.96	0.82	46
Jump front/back	0.50	0.06	0.11	16
accuracy			0.79	1824
macro avg	0.58	0.48	0.49	1824
weighted avg	0.75	0.79	0.76	1824

 $\verb|d:\Users\DevinJ\anaconda3\envs\SIT731_pv1\Lib\site-|$

packages\sklearn\metrics_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
d:\Users\DevinJ\anaconda3\envs\SIT731_pv1\Lib\sitepackages\sklearn\metrics_classification.py:1531: UndefinedMetricWarning:
Precision is ill-defined and being set to 0.0 in labels with no predicted

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
d:\Users\DevinJ\anaconda3\envs\SIT731_pv1\Lib\site-

samples. Use `zero_division` parameter to control this behavior.

packages\sklearn\metrics_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

8 CNN Model Definition & Training Loop

Construct a 1-D CNN architecture with three convolutional blocks and global average pooling. Optimise the CNN with class-weighted cross-entropy and monitor epoch-by-epoch performance.

```
[21]: # ---- 1. PyTorch Dataset wrapper ----
     from torch.utils.data import Dataset, DataLoader
     from sklearn.utils.class_weight import compute_class_weight
     from sklearn.metrics import classification report, confusion matrix
     class SensorDataset(Dataset):
         def __init__(self, X, y):
             # CNN expects (batch, channels, length)
             self.X = torch.tensor(np.transpose(X, (0, 2, 1)), dtype=torch.float32)
             self.y = torch.tensor(y, dtype=torch.long)
                            return len(self.X)
         def __len__(self):
         def __getitem__(self, i): return self.X[i], self.y[i]
     train_ds = SensorDataset(X_train, y_train)
     test_ds = SensorDataset(X_test, y_test)
     BATCH = 64
     train_dl = DataLoader(train_ds, batch_size=BATCH, shuffle=True)
     val_dl = DataLoader(val_ds, batch_size=BATCH, shuffle=False)
     test_dl = DataLoader(test_ds, batch_size=BATCH, shuffle=False)
     # ---- 2. 1-D CNN model ----
     import torch.nn as nn, torch.optim as optim
     class CNN1DMHealth(nn.Module):
         def __init__(self, in_ch, n_classes):
             super().__init__()
             self.net = nn.Sequential(
                 nn.Conv1d(in_ch, 64, 3, padding=1), nn.ReLU(), nn.BatchNorm1d(64),
                 nn.Conv1d(64, 128, 3, padding=1), nn.ReLU(), nn.BatchNorm1d(128),
                                                     # L -> L/2
                 nn.MaxPool1d(2),
                 nn.Conv1d(128, 256, 3, padding=1), nn.ReLU(), nn.BatchNorm1d(256),
                 nn.MaxPool1d(2),
                                                    # L/2 -> L/4
                 nn.AdaptiveAvgPool1d(1),
                                                   # -> (B,256,1)
                 nn.Flatten(),
                                                   \# -> (B, 256)
                 nn.Dropout(0.3),
                 nn.Linear(256, n_classes)
         def forward(self, x): return self.net(x)
```

```
n_feat = X_train.shape[2]
n_class = len(np.unique(y_train))
         = CNN1DMHealth(n_feat, n_class)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
# ---- 3. Loss (with class weights) & optimiser ----
weights = compute_class_weight('balanced', classes=np.unique(y_train),_
 →y=y_train)
criterion = nn.CrossEntropyLoss(weight=torch.tensor(weights, dtype=torch.
 →float32).to(device))
optimiser = optim.Adam(model.parameters(), lr=1e-3)
# ---- 4. Train / validate ----
def run_epoch(loader, train=True):
   model.train() if train else model.eval()
   total_loss = correct = total = 0
   for xb, yb in loader:
       xb, yb = xb.to(device), yb.to(device)
        if train: optimiser.zero_grad()
        with torch.set_grad_enabled(train):
            out = model(xb)
            loss = criterion(out, yb)
            if train:
                loss.backward()
                optimiser.step()
        total_loss += loss.item() * xb.size(0)
        correct += (out.argmax(1) == yb).sum().item()
        total
                  += yb.size(0)
   return total_loss/total, correct/total
EPOCHS = 10
for ep in range(1, EPOCHS+1):
   tr_loss, tr_acc = run_epoch(train_dl, True)
   vl_loss, vl_acc = run_epoch(val_dl, False)
   print(f"Ep {ep:02d} | Train {tr_loss:.4f}/{tr_acc:.3f} | Val {vl_loss:.4f}/
 \hookrightarrow{vl_acc:.3f}")
# ---- 5. Test & metrics ----
model.eval()
all_p, all_t = [], []
with torch.no_grad():
   for xb, yb in test_dl:
       p = model(xb.to(device)).argmax(1).cpu()
        all_p.extend(p.numpy()); all_t.extend(yb.numpy())
```

```
print("\nClassification Report:\n", classification_report(all_t, all_p))
print("Confusion Matrix:\n", confusion_matrix(all_t, all_p))
Ep 01 | Train 0.5930/0.381 | Val 0.2504/0.604
Ep 02 | Train 0.2301/0.653 | Val 0.1776/0.733
Ep 03 | Train 0.1743/0.745 | Val 0.1444/0.773
Ep 04 | Train 0.1404/0.781 | Val 0.1232/0.790
Ep 05 | Train 0.1367/0.794 | Val 0.1129/0.794
Ep 06 | Train 0.1171/0.813 | Val 0.1089/0.816
Ep 07 | Train 0.1112/0.824 | Val 0.1014/0.826
Ep 08 | Train 0.0994/0.842 | Val 0.0979/0.839
Ep 09 | Train 0.0996/0.841 | Val 0.0905/0.866
Ep 10 | Train 0.0923/0.848 | Val 0.0979/0.856
Classification Report:
                precision
                              recall f1-score
                                                   support
           0
                    0.99
                               0.78
                                          0.88
                                                     1310
           1
                    0.48
                               1.00
                                          0.65
                                                       45
           2
                    0.67
                               1.00
                                          0.80
                                                       46
           3
                    0.66
                               1.00
                                          0.80
                                                       47
           4
                    0.65
                               0.98
                                          0.78
                                                       46
           5
                    0.60
                               0.96
                                          0.74
                                                       46
           6
                    0.68
                               0.98
                                          0.80
                                                       42
           7
                    0.60
                               1.00
                                          0.75
                                                       44
           8
                    0.56
                               1.00
                                          0.72
                                                       44
           9
                    0.62
                               0.98
                                          0.76
                                                       46
          10
                    0.89
                               0.85
                                          0.87
                                                       46
                    0.73
                               1.00
                                          0.84
                                                       46
          11
          12
                    0.57
                               1.00
                                          0.73
                                                       16
    accuracy
                                          0.84
                                                     1824
                                          0.78
                                                     1824
   macro avg
                    0.67
                               0.96
weighted avg
                    0.90
                               0.84
                                          0.85
                                                     1824
Confusion Matrix:
 [[1024
          48
                23
                     24
                          24
                                29
                                     19
                                           29
                                                34
                                                      27
                                                            5
                                                                 12
                                                                      12]
 0
                0
                     0
                          0
                                0
                                     0
                                                0
                                                           0
                                                                 0
                                                                      0]
         45
                                           0
                                                      0
 0
          0
               46
                     0
                          0
                                0
                                     0
                                           0
                                                0
                                                      0
                                                           0
                                                                 0
                                                                      0]
 0
                                                                      0]
          0
                0
                    47
                          0
                                0
                                     0
                                           0
                                                0
                                                      0
                                                           0
                                                                 0
 1
          0
                0
                     0
                          45
                                0
                                     0
                                           0
                                                0
                                                      0
                                                           0
                                                                      0]
 0
                0
                     0
                          0
                               44
                                     0
                                           0
                                                0
                                                      0
                                                           0
                                                                 0
                                                                      0]
 1
          0
                0
                     0
                          0
                                0
                                           0
                                                0
                                                           0
                                                                 0
                                                                      0]
                                    41
                                                      0
```

0]

0]

0]

0]

0]

```
[ \  \  \, 0 \  \  \, 0 \  \  \, 0 \  \  \, 0 \  \  \, 0 \  \  \, 0 \  \  \, 0 \  \  \, 0 \  \  \, 0 \  \  \, 16]]
```

```
[22]: print("Unique labels (train):", np.unique(y_train, return_counts=True))
     print("Unique labels (val) :", np.unique(y_val, return_counts=True))
     print("Unique labels (test) :", np.unique(y_test, return_counts=True))
     Unique labels (train): (array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
     12], dtype=int64), array([6108, 211, 215, 219, 215, 214, 198, 202,
     216, 214,
            216,
                   74], dtype=int64))
     Unique labels (val) : (array([ 0, 1, 2, 3, 4, 5, 6, 7,
     12], dtype=int64), array([1309, 45,
                                          46, 47,
                                                     46, 46,
                                                                 43,
     46,
          46,
             46,
                   16], dtype=int64))
     Unique labels (test): (array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
     12], dtype=int64), array([1310, 45,
                                          46, 47,
                                                     46, 46,
                                                                42,
     46,
             46,
                   16], dtype=int64))
```

9 CNN Evaluation

Produce test-set metrics (classification report, confusion matrix) for the CNN model.

```
[23]: # ===== Enhanced Evaluation for CNN =====

# 'model' is now the trained CNN; 'test_dl' is the DataLoader; class_names &_
device already defined

evaluate_model(model, test_dl, class_names, device, title="CNN")
```

CNN: accuracy = 0.837 macro-F1 = 0.778


```
[]: from sklearn.manifold import TSNE
     # 1. Capture features from penultimate layer
     model.eval()
     features, labels = [], []
     with torch.no_grad():
         for xb, yb in test_dl:
             xb = xb.to(device)
             feats = model.net[:-2](xb)
                                               # up to AdaptiveAvgPool (B,256,1)
             feats = feats.squeeze(-1).cpu()
                                               \# -> (B, 256)
             features.append(feats)
             labels.extend(yb.numpy())
     features = torch.cat(features).numpy()
     # 2. Run t-SNE on a subset for speed
     sample_idx = np.random.choice(len(features), size=1500, replace=False)
     tsne = TSNE(n_components=2, perplexity=40, random_state=42)
     embed = tsne.fit_transform(features[sample_idx])
```

