

Hausaufgaben und Übungen zur Vorlesung

Analysis 2

Stefan Waldmann

Wintersemester 2023/2024

$Hausaufgabenblatt\ Nr.\ 6$ $_{\text{revision: (None)}}$

Last changes by (None) on (None) Git revision of ana2-ws2324: (None) (None)

29.11.2023

(24 Punkte. Abzugeben am 06. 12. 2023)

Hausaufgabe 6-1: Uneigentliche Integrale und Operatoren

Im Folgenden ist $a \in \mathbb{R}$ und $b \in \mathbb{R} \cup \{+\infty\}$. Zeigen oder widerlegen Sie:

i.) Sind
$$f, g : [a, b) \to \mathbb{R}$$
 uneigentlich integrierbar, so auch $f + g$. (1 Punkt)

$$ii.$$
) Sind $f, g : [a, b) \to \mathbb{R}$ uneigentlich integrierbar, so auch $f \cdot g$. (2 Punkte)

iii.) Sind $f:[a,b)\to\mathbb{R}$ uneigentlich integrierbar und $g:\mathbb{R}\to\mathbb{R}$ stetig, so auch $g\circ f$. (2 Punkte)

iv.) Es sei $f:(0,1] \to \mathbb{R}$ stetig, nicht-negativ und uneigentlich integrierbar. Dann konvergiert (2 Punkte)

$$\int_0^1 \sqrt{f(x)} \, \mathrm{d}x.$$

Hausaufgabe 6-2: Konvergenz uneigentlicher Integrale

Untersuchen Sie die folgenden uneigentlichen Riemannintegrale auf Konvergenz bzw. absolute Konvergenz:

$$i.) \int_{-\infty}^{\infty} e^{-x^2} \, \mathrm{d}x, \tag{3 Punkte}$$

$$ii.) \int_{-\infty}^{\infty} \frac{\sin x}{x} \, \mathrm{d}x,$$
 (3 Punkte)

$$iii.$$
) $\int_{-\infty}^{\infty} \sin(x^2) dx$. (3 Punkte)

Hausaufgabe 6-3: Ein Grenzwert

Beweisen Sie (3 Punkte)

$$\lim_{n\to\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n}\right) = \ln 2.$$

Hausaufgabe 6-4: Irrationalität von π

Wir zeigen die Irrationalität von π durch einen Widerspruch. Angenommen, es gälte $\pi = \frac{a}{b}$ für $a, b \in \mathbb{N}$. Außerdem seien $f, F : [0, \pi] \to \mathbb{R}$ definiert durch

$$f(x) = x^n \frac{(a - bx)^n}{n!},$$

$$F(x) = f(x) - f^{(2)}(x) + f^{(4)}(x) - \dots + (-1)^n f^{(2n)}(x).$$

für $n \in \mathbb{N}$.

- i.) Zeigen Sie, dass $f^{(k)}(0), f^{(k)}(\pi) \in \mathbb{N}$ für alle $k \in \mathbb{N}$ gilt. (2 Punkte)
- ii.) Zeigen Sie

$$f(x)\sin(x) = (F'(x)\sin x - F(x)\cos x)'.$$

Folgern sie anschließend, dass $F(\pi) + F(0)$ ebenfalls eine natürliche Zahl ist, was allerdings nicht mit den Eigenschaften von $x \mapsto f(x) \sin x$ für hinreichend großes $n \in \mathbb{N}$ vereinbar ist. (3 Punkte)