Hamiltonian for the Ising Model with Fixed Sum of Spins

Contents

1	Introduction			
2	Definitions			
3	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	2 2 3 4		
4	Combined Hamiltonian H_{δ}			
5	Lorenz Curve and Gini Coefficient			
6	Alternative Formulation of the Combined Hamiltonian 6.1 Hamiltonian Formulation 6.2 Behavior at Extremes of δ	6 6		
7	Transformation and Equivalence of Hamiltonians 7.1 Combined Hamiltonian			
8	Entropy in Terms of δ in the Microcanonical Ensemble 8.1 Hamiltonian and Spin Distribution			
9	Entropy Maximization in Microcanonical and Canonical Ensembles 9.1 Microcanonical Ensemble (Fixed Total Energy)	10 11 11 11 11		
	9.1.3 Relate Entropy to δ			

	9.1.4	Maximizing Entropy	12
9.2	Canon	ical Ensemble (Unbounded Energy)	12
	9.2.1	Partition Function	12
	9.2.2	Average Energy	13
	9.2.3	Entropy	13
	9.2.4	Hamiltonian in Terms of δ	13
	9.2.5	Connecting Entropy to δ	14
	9.2.6	Maximizing Entropy	14
	027	Conclusion	1/1

1 Introduction

This document derives the Hamiltonian for an Ising model where the spins s_i are constrained to sum to 1, and each spin takes values in the interval [0, 1]. Two Hamiltonian's are considered, H_+ and H_- . H_+ is minimized where the product of spins is maximized and maximized when said product is minimized. H_- is the converse, minimized where the product is minimized and maximized where the product is maximized

2 Definitions

Given a set of spins $\{s_1, s_2, \ldots, s_N\}$, the arithmetic mean (AM) and geometric mean (GM) are given by:

$$AM = \frac{1}{N} \sum_{i=1}^{N} s_i$$

$$GM = \left(\prod_{i=1}^{N} s_i\right)^{\frac{1}{N}}$$

3 Hamiltonian as the Ratios of AM and GM

3.1 GM:AM Ratio is H_+

We define the Hamiltonian H_+ as the ratio of the geometric mean to the arithmetic mean. This ratio is:

$$\frac{GM}{AM} = \frac{\left(\prod_{i=1}^{N} s_{i}\right)^{\frac{1}{N}}}{\frac{1}{N} \sum_{i=1}^{N} s_{i}} = \left(\prod_{i=1}^{N} s_{i}\right)^{\frac{1}{N}} \cdot \frac{N}{\sum_{i=1}^{N} s_{i}}$$

Taking the natural logarithm of this ratio, we get:

$$\ln\left(\frac{\mathrm{GM}}{\mathrm{AM}}\right) = \ln\left(\left(\prod_{i=1}^{N} s_i\right)^{\frac{1}{N}} \cdot \frac{N}{\sum_{i=1}^{N} s_i}\right)$$

This simplifies to:

$$\ln\left(\frac{GM}{AM}\right) = \frac{1}{N} \sum_{i=1}^{N} \ln(s_i) + \ln(N) - \ln\left(\sum_{i=1}^{N} s_i\right)$$

Multiplying both sides by N to form the Hamiltonian H_{+} :

$$H_{+} = N \ln \left(\frac{GM}{AM}\right) = \sum_{i=1}^{N} \ln(s_i) + N \ln(N) - N \ln \left(\sum_{i=1}^{N} s_i\right)$$

Applying the constraint that the sum of the spins equals 1:

$$\sum_{i=1}^{N} s_i = 1$$

we get:

$$H_{+} = \sum_{i=1}^{N} \ln(s_i) + N \ln(N) - N \ln(1) = \sum_{i=1}^{N} \ln(s_i) + N \ln(N)$$

3.2 AM:GM Ratio is H_{-}

We define the Hamiltonian H_{-} as the ratio of the arithmetic mean to the geometric mean. This ratio is:

$$\frac{\text{AM}}{\text{GM}} = \frac{\frac{1}{N} \sum_{i=1}^{N} s_i}{\left(\prod_{i=1}^{N} s_i\right)^{\frac{1}{N}}} = \frac{1}{N} \sum_{i=1}^{N} s_i \cdot \left(\prod_{i=1}^{N} s_i\right)^{-\frac{1}{N}}$$

Taking the natural logarithm of this ratio, we get:

$$\ln\left(\frac{\mathrm{AM}}{\mathrm{GM}}\right) = \ln\left(\frac{1}{N}\sum_{i=1}^{N}s_i\right) - \ln\left(\left(\prod_{i=1}^{N}s_i\right)^{\frac{1}{N}}\right)$$

This simplifies to:

$$\ln\left(\frac{AM}{GM}\right) = \ln\left(\frac{1}{N}\sum_{i=1}^{N}s_i\right) - \frac{1}{N}\sum_{i=1}^{N}\ln(s_i)$$

Multiplying both sides by N to form the Hamiltonian H_{-} :

$$H_{-} = N \ln \left(\frac{AM}{GM} \right) = N \ln \left(\frac{1}{N} \sum_{i=1}^{N} s_i \right) - \sum_{i=1}^{N} \ln(s_i)$$

Applying the constraint that the sum of the spins equals 1:

$$\sum_{i=1}^{N} s_i = 1$$

Substituting this into the Hamiltonian, we get:

$$H_{-} = N \ln \left(\frac{1}{N}\right) - \sum_{i=1}^{N} \ln(s_i) = -N \ln(N) - \sum_{i=1}^{N} \ln(s_i)$$

and have,

$$-H_{+} = H_{-}$$

3.3 Minimization of H_+ and H_-

To see when H_{-} is minimized, consider the case where one spin is 1 and the rest are 0:

$$s_1 = 1$$
 and $s_i = 0$ for $i \neq 1$

Substituting these values into H_{-} :

$$H_{-} = -N \ln(N) - \left(\ln(1) + \sum_{i=2}^{N} \ln(0)\right)$$

Since ln(1) = 0 and $ln(0) \rightarrow -\infty$:

$$H_- \rightarrow -N \ln(N) + (N-1)(-\infty) \rightarrow -\infty$$

This indicates that H_{-} tends to $-\infty$ as the product of the spins is minimized (i.e., when one spin is 1 and the rest are 0).

For H_+ , when all spins are equal, $s_i = s$ for all i, and $\sum_{i=1}^{N} s_i = 1$ implies $s = \frac{1}{N}$:

$$H_{+} = \sum_{i=1}^{N} \ln \left(\frac{1}{N} \cdot N \right) - N \ln(N) = -N \ln(N)$$

and so H_+ is minimized where $\sigma_i = \sigma_j$ for all spins i, j.

4 Combined Hamiltonian H_{δ}

We can construct a combined Hamiltonian H_{δ} as an interpolation of H_{+} and H_{-} :

$$H_{\delta} = (1 - \delta)H_{+} + \delta H_{-}$$

Substituting the expressions for H_+ and H_- :

$$H_{\delta} = (1 - \delta) \left(\sum_{i=1}^{N} \ln(s_i) + N \ln(N) \right) + \delta \left(-N \ln(N) - \sum_{i=1}^{N} \ln(s_i) \right)$$

Simplifying, we get:

$$H_{\delta} = (1 - 2\delta) \left(\sum_{i=1}^{N} \ln(s_i) + N \ln(N) \right)$$

Here $H_{\delta}=H_{+}$ for $\delta=0$ and $H_{\delta}=H_{-}$ for $\delta=1.$

5 Lorenz Curve and Gini Coefficient

The Lorenz curve $L(x, \delta)$ for the combined Hamiltonian is given by:

$$L(x,\delta) = (1-\delta)x + \delta \cdot \begin{cases} 0 & \text{if } 0 \le x < 1\\ 1 & \text{if } x = 1 \end{cases}$$

The Gini coefficient $G(\delta)$ is calculated as:

$$G(\delta) = 1 - 2 \int_0^1 L(x, \delta) dx$$

Integrating the Lorenz curve:

$$\int_0^1 L(x,\delta) \, dx = \int_0^1 \left((1-\delta)x + \delta \cdot \begin{cases} 0 & \text{if } 0 \le x < 1 \\ 1 & \text{if } x = 1 \end{cases} \right) dx$$

Since $\delta \cdot 0$ is zero for $0 \le x < 1$:

$$\int_0^1 L(x,\delta) \, dx = \int_0^1 (1-\delta)x \, dx + \delta \int_0^1 \begin{cases} 0 & \text{if } 0 \le x < 1 \\ 1 & \text{if } x = 1 \end{cases} \, dx$$

For the first part:

$$\int_0^1 (1 - \delta)x \, dx = (1 - \delta) \left[\frac{x^2}{2} \right]_0^1 = (1 - \delta) \cdot \frac{1}{2}$$

For the second part:

$$\delta \int_0^1 \begin{cases} 0 & \text{if } 0 \le x < 1 \\ 1 & \text{if } x = 1 \end{cases} dx = \delta \cdot 0 + \delta \cdot \int_0^0 dx = 0$$

So:

$$\int_0^1 L(x,\delta) \, dx = (1-\delta) \cdot \frac{1}{2}$$

The Gini coefficient is:

$$G(\delta) = 1 - 2\left((1 - \delta) \cdot \frac{1}{2}\right) = 1 - (1 - \delta) = \delta$$

providing the rather intuitive result that,

$$G(\delta) = \delta$$

6 Alternative Formulation of the Combined Hamiltonian

In this section, we introduce a new formulation of the Hamiltonian H_{δ} which interpolates between the ratio of the arithmetic mean (AM) to the geometric mean (GM) and its inverse, depending on a parameter δ . The Hamiltonian is defined as:

$$H_{\delta} = \left(\frac{\mathrm{AM}}{\mathrm{GM}}\right)^{\delta}$$

where $\delta \in [-1, 1]$.

6.1 Hamiltonian Formulation

The Hamiltonian H is formulated as:

$$H_{\delta} = \left(\frac{\frac{1}{N} \sum_{i=1}^{N} s_i}{\left(\prod_{i=1}^{N} s_i\right)^{\frac{1}{N}}}\right)^{\delta}$$

Simplifying, we get:

$$H_{\delta} = \left(\frac{1}{N} \sum_{i=1}^{N} s_i\right)^{\delta} \cdot \left(\left(\prod_{i=1}^{N} s_i\right)^{-\frac{1}{N}}\right)^{\delta}$$

Further simplifying:

$$H_{\delta} = \left(\frac{1}{N} \sum_{i=1}^{N} s_i\right)^{\delta} \cdot \left(\prod_{i=1}^{N} s_i\right)^{-\frac{\delta}{N}}$$

6.2 Behavior at Extremes of δ

For $\delta = 1$:

$$H_{\delta} = \frac{\mathrm{AM}}{\mathrm{GM}} = H_{-}$$

For $\delta = -1$:

$$H_{\delta} = \frac{\mathrm{GM}}{\mathrm{AM}} = H_{+}$$

For $\delta = 0$:

$$H_{\delta} = 1$$

For $0 < \delta < 1$, the Hamiltonian favors a more egalitarian distribution, but not perfectly uniform. For $-1 < \delta < 0$, the Hamiltonian favors a more totalitarian distribution, but not perfectly concentrated in one spin.

7 Transformation and Equivalence of Hamiltonians

In this section, we show the equivalence between the combined Hamiltonian $H_{\delta_0} = (1 - \delta_0)H_+ + \delta_0H_-$ and the new formulation $H_{\delta_1} = \left(\frac{\text{AM}}{\text{GM}}\right)_1^{\delta}$ under an appropriate transformation of δ .

7.1 Combined Hamiltonian

The combined Hamiltonian is defined as:

$$H_{\delta_0} = (1 - \delta_0)H_+ + \delta_0 H_-$$

where:

$$H_{+} = \sum_{i=1}^{N} \ln(s_i) + N \ln(N)$$

$$H_{-} = -N \ln(N) - \sum_{i=1}^{N} \ln(s_i)$$

Substituting H_+ and H_- :

$$H_{\delta_0} = (1 - \delta_0) \left(\sum_{i=1}^{N} \ln(s_i) + N \ln(N) \right) + \delta_0 \left(-N \ln(N) - \sum_{i=1}^{N} \ln(s_i) \right)$$

Simplifying:

$$H_{\delta_0} = (1 - 2\delta_0) \left(\sum_{i=1}^{N} \ln(s_i) + N \ln(N) \right)$$

7.2 Transformation and Equivalence

To show the equivalence, we apply the transformation $\delta' = 1 - 2\delta$. Setting $\delta' = 1 - 2\delta$:

$$1 - 2\delta = \delta'$$

Solving for δ :

$$\delta = \frac{1 - \delta'}{2}$$

Substituting $\delta = \frac{1-\delta'}{2}$ into the reformulated Hamiltonian:

$$H = \left(\frac{1}{N} \sum_{i=1}^{N} s_i\right)^{\frac{1-\delta'}{2}} \cdot \left(\left(\prod_{i=1}^{N} s_i\right)^{-\frac{1-\delta'}{2N}}\right)$$

Simplifying using exponent and logarithm relationship:

$$H = e^{\frac{1-\delta'}{2} \left(\ln \left(\frac{1}{N} \sum_{i=1}^{N} s_i \right) - \frac{1}{N} \sum_{i=1}^{N} \ln(s_i) \right)}$$

$$H = e^{\frac{1-\delta'}{2} \left(\ln \left(\frac{AM}{GM} \right) \right)}$$

Final equivalence:

$$H = \left(\frac{\mathrm{AM}}{\mathrm{GM}}\right)^{\frac{1-\delta'}{2}}$$

Thus, under the transformation $\delta' = 1 - 2\delta$, the combined Hamiltonian $H = (1 - \delta)H_+ + \delta H_-$ is equivalent to the new formulation $H = \left(\frac{\text{AM}}{\text{GM}}\right)^{\delta}$.

7.3 Hamiltonian and Parameterization

The Hamiltonian is defined as:

$$H = \left(\frac{\mathrm{AM}}{\mathrm{GM}}\right)^{\delta}$$

where:

$$AM = \frac{1}{N} \sum_{i=1}^{N} s_i$$

$$GM = \left(\prod_{i=1}^{N} s_i\right)^{\frac{1}{N}}$$

Taking the natural logarithm of H:

$$\ln H = \delta \ln \left(\frac{AM}{GM} \right)$$

Expressing $\ln\left(\frac{\mathrm{AM}}{\mathrm{GM}}\right)$:

$$\ln\left(\frac{\mathrm{AM}}{\mathrm{GM}}\right) = \ln\left(\frac{1}{N}\sum_{i=1}^{N}s_i\right) - \frac{1}{N}\sum_{i=1}^{N}\ln s_i$$

Thus:

$$\ln H = \delta \left(\ln \left(\frac{1}{N} \sum_{i=1}^{N} s_i \right) - \frac{1}{N} \sum_{i=1}^{N} \ln s_i \right)$$

8 Entropy in Terms of δ in the Microcanonical Ensemble

In this section, we derive an expression for the entropy S in terms of the parameter δ under the assumptions of the microcanonical ensemble, where the total energy E is fixed.

8.1 Hamiltonian and Spin Distribution

The Hamiltonian is given by:

$$H = \left(\frac{\mathrm{AM}}{\mathrm{GM}}\right)^{\delta}$$

where the arithmetic mean (AM) and geometric mean (GM) are defined as:

$$AM = \frac{1}{N} \sum_{i=1}^{N} s_i$$

$$GM = \left(\prod_{i=1}^{N} s_i\right)^{\frac{1}{N}}$$

Given the fixed total energy E:

$$\sum_{i=1}^{N} s_i = E$$

8.2 Entropy and Probability Distribution

The entropy S for a set of spins $\{s_i\}$ is:

$$S = -\sum_{i=1}^{N} p_i \ln p_i$$

where $p_i = \frac{s_i}{\sum_{j=1}^N s_j} = \frac{s_i}{E}$. Thus, the entropy becomes:

$$S = -\sum_{i=1}^{N} \frac{s_i}{E} \ln \left(\frac{s_i}{E} \right)$$

8.3 Entropy in Terms of δ

First, express H in terms of s_i :

$$H = \left(\frac{\frac{E}{N}}{\left(\prod_{i=1}^{N} s_i\right)^{\frac{1}{N}}}\right)^{\delta} = \left(\frac{E}{N \cdot GM}\right)^{\delta}$$

Taking the logarithm of H:

$$\ln H = \delta \left(\ln \frac{E}{N} - \ln GM \right)$$

Recall that:

$$\ln GM = \frac{1}{N} \sum_{i=1}^{N} \ln s_i$$

So:

$$\ln H = \delta \left(\ln \frac{E}{N} - \frac{1}{N} \sum_{i=1}^{N} \ln s_i \right)$$

The entropy S is:

$$S = -\sum_{i=1}^{N} \frac{s_i}{E} \ln s_i + \ln E$$

Given:

$$\ln H = \delta \left(\ln \frac{E}{N} - \frac{1}{N} \sum_{i=1}^{N} \ln s_i \right)$$

We rearrange terms to express $\ln s_i$ in terms of δ :

$$-\frac{1}{N}\sum_{i=1}^{N}\ln s_i = \frac{\ln E}{N} - \frac{\ln N}{N} - \frac{\ln H}{\delta}$$

Thus:

$$S = -\sum_{i=1}^{N} \frac{s_i}{E} \ln s_i + \ln E = \delta \ln \frac{E}{N} + \ln E = \delta \ln N + \ln E$$

In summary:

$$S = (1 + \delta) \ln E - \delta \ln N$$

8.4 Summary

Under the assumptions of the microcanonical ensemble with fixed total energy E, the entropy S in terms of δ is given by:

$$S(\delta) = (1 + \delta) \ln E - \delta \ln N$$

This expression reflects how the parameter δ influences the entropy, interpolating between minimal entropy (concentrated distribution) and maximal entropy (uniform distribution).

9 Entropy Maximization in Microcanonical and Canonical Ensembles

In this section, we derive the relationship between entropy S, the Hamiltonian H, and the parameter δ in both the microcanonical and canonical ensembles. We show that entropy is maximized when $\delta=1$ in the microcanonical ensemble and when $\delta=-1$ in the canonical ensemble.

9.1 Microcanonical Ensemble (Fixed Total Energy)

In the microcanonical ensemble, the total energy E is fixed.

9.1.1 Hamiltonian

The Hamiltonian is given by:

$$H = \left(\frac{\mathrm{AM}}{\mathrm{GM}}\right)^{\delta}$$

where:

$$AM = \frac{1}{N} \sum_{i=1}^{N} s_i = \frac{E}{N}$$

$$GM = \left(\prod_{i=1}^{N} s_i\right)^{\frac{1}{N}}$$

9.1.2 Entropy in Terms of Spin Distribution

The entropy S for a set of spins $\{s_i\}$ is given by:

$$S = -\sum_{i=1}^{N} p_i \ln p_i$$

Since $p_i = \frac{s_i}{E}$, we have:

$$S = -\sum_{i=1}^{N} \frac{s_i}{E} \ln \left(\frac{s_i}{E} \right) = -\sum_{i=1}^{N} \frac{s_i}{E} (\ln s_i - \ln E)$$

$$S = -\sum_{i=1}^{N} \frac{s_i}{E} \ln s_i + \ln E$$

9.1.3 Relate Entropy to δ

Given:

$$\ln H = \delta \left(\ln \frac{E}{N} - \ln GM \right)$$

where:

$$\ln GM = \frac{1}{N} \sum_{i=1}^{N} \ln s_i$$

Thus:

$$\ln H = \delta \left(\ln \frac{E}{N} - \frac{1}{N} \sum_{i=1}^{N} \ln s_i \right)$$

Using the expression for entropy:

$$S = -\sum_{i=1}^{N} \frac{s_i}{E} \ln s_i + \ln E$$

Isolate the $\ln s_i$ term:

$$-\frac{1}{N}\sum_{i=1}^{N}\ln s_i = \frac{\ln E}{N} - \frac{\ln N}{N} - \frac{\ln H}{\delta}$$

Rewriting entropy S in terms of δ :

$$S = -\sum_{i=1}^{N} \frac{s_i}{E} \ln s_i + \ln E = \delta \ln \frac{E}{N} + \ln E = (1+\delta) \ln E - \delta \ln N$$

Thus, in the microcanonical ensemble:

$$S(\delta) = (1 + \delta) \ln E - \delta \ln N$$

9.1.4 Maximizing Entropy

1. **For $\delta = 1^{**}$:

$$S(1) = 2 \ln E - \ln N$$

Entropy is maximized.

2. **For $\delta = 0$ **:

$$S(0) = \ln E$$

3. **For $\delta = -1$ **:

$$S(-1) = 0$$

Conclusion: In the microcanonical ensemble with fixed total energy, entropy is maximized when $\delta=1$, corresponding to a uniform distribution of resources.

9.2 Canonical Ensemble (Unbounded Energy)

In the canonical ensemble, the energy is not fixed but can fluctuate, characterized by a temperature parameter T.

9.2.1 Partition Function

The partition function Z is given by:

$$Z = \sum_{i} e^{-\beta E_i}$$

where $\beta = \frac{1}{k_B T}$.

9.2.2 Average Energy

The average energy $\langle E \rangle$ is the expected value of the energy, given by:

$$\langle E \rangle = \sum_{i} E_{i} \frac{e^{-\beta E_{i}}}{Z} = -\frac{\partial \ln Z}{\partial \beta}$$

9.2.3 Entropy

The entropy S in the canonical ensemble is given by:

$$S = k_B \left(\ln Z + \beta \langle E \rangle \right)$$

This expression for entropy is derived from the thermodynamic potential for the canonical ensemble, known as the Helmholtz free energy F:

$$F = \langle E \rangle - TS$$

Rearranging for S:

$$S = \frac{\langle E \rangle - F}{T}$$

Using $F = -k_B T \ln Z$, we get:

$$S = \frac{\langle E \rangle + k_B T \ln Z}{T} = k_B \left(\ln Z + \beta \langle E \rangle \right)$$

9.2.4 Hamiltonian in Terms of δ

For the system with the Hamiltonian given by:

$$H = \left(\frac{\mathrm{AM}}{\mathrm{GM}}\right)^{\delta}$$

where:

$$AM = \frac{1}{N} \sum_{i=1}^{N} E_i = \frac{\langle E \rangle}{N}$$

$$GM = \left(\prod_{i=1}^{N} E_i\right)^{\frac{1}{N}}$$

The Hamiltonian can be rewritten as:

$$H = \left(\frac{\frac{\langle E \rangle}{N}}{\left(\prod_{i=1}^{N} E_i\right)^{\frac{1}{N}}}\right)^{\delta} = \left(\frac{\langle E \rangle}{\left(\prod_{i=1}^{N} E_i\right)^{\frac{1}{N}}}\right)^{\delta}$$

Taking the natural logarithm:

$$\ln H = \delta \left(\ln \langle E \rangle - \frac{1}{N} \sum_{i=1}^{N} \ln E_i \right)$$

9.2.5 Connecting Entropy to δ

To understand why $\delta = -1$ maximizes the entropy in the canonical ensemble, consider the following:

- The Boltzmann distribution maximizes entropy subject to the constraint of fixed average energy $\langle E \rangle$. This distribution is characterized by an exponential decay of probabilities with energy, reflecting a concentrated distribution.
- When $\delta = -1$, the Hamiltonian becomes:

$$H = \left(\frac{GM}{AM}\right) = \left(\frac{\left(\prod_{i=1}^{N} E_i\right)^{\frac{1}{N}}}{\frac{1}{N}\sum_{i=1}^{N} E_i}\right)$$

This form emphasizes the geometric mean over the arithmetic mean, favoring a distribution where energies are more sharply peaked, aligning with the Boltzmann distribution.

9.2.6 Maximizing Entropy

The entropy S in the canonical ensemble can be expressed in terms of the distribution of E_i :

$$S = -k_B \sum_{i} p_i \ln p_i$$

where $p_i = \frac{e^{-\beta E_i}}{Z}$. For $\delta = -1$, the distribution of E_i reflects the natural exponential distribution, which maximizes entropy in the canonical ensemble.

9.2.7 Conclusion

For the canonical ensemble, the entropy S is maximized when $\delta=-1$, as this configuration leads to the Boltzmann distribution. The Boltzmann distribution is the one that maximizes the entropy for a given average energy $\langle E \rangle$. This reflects a concentrated distribution of energies, emphasizing the geometric mean over the arithmetic mean, which is characteristic of the canonical ensemble with unbounded energy.