```
In [3]: import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   %matplotlib inline
```

```
In [5]: who_df["Country"].value_counts()
```

Out[5]: China 210 Thailand 201 200 Japan Republic of Korea 195 United States of America 194 Saint Pierre and Miquelon 115 Yemen 113 Comoros 92 Tajikistan 92 79 Lesotho

Name: Country, Length: 216, dtype: int64

```
In [4]: who_df = pd.read_csv("who.csv")
who_df["Date_reported"] = pd.to_datetime(who_df['Date_reported'])
who_df
```

| $\sim$ | r# 1 | Γ⁄Ι] | ١. |
|--------|------|------|----|
| υι     | ıu   | 141  |    |

|       | Date_reported | Country                                   | New_cases | Cumulative_cases | New_deaths | Cumulative_deaths |
|-------|---------------|-------------------------------------------|-----------|------------------|------------|-------------------|
| 0     | 2020-04-01    | China                                     | 1         | 1                | 0          | 0                 |
| 1     | 2020-05-01    | China                                     | 0         | 1                | 0          | 0                 |
| 2     | 2020-06-01    | China                                     | 3         | 4                | 0          | 0                 |
| 3     | 2020-07-01    | China                                     | 0         | 4                | 0          | 0                 |
| 4     | 2020-08-01    | China                                     | 0         | 4                | 0          | 0                 |
|       |               |                                           |           |                  |            |                   |
| 31871 | 2020-07-31    | Panama                                    | 1046      | 63269            | 25         | 1374              |
| 31872 | 2020-07-31    | Timor-<br>Leste                           | 0         | 24               | 0          | 0                 |
| 31873 | 2020-07-31    | Guatemala                                 | 1221      | 48826            | 32         | 1867              |
| 31874 | 2020-07-31    | Saint<br>Vincent<br>and the<br>Grenadines | 0         | 52               | 0          | 0                 |
| 31875 | 2020-07-31    | Democratic<br>Republic of<br>the Congo    | 79        | 9009             | 2          | 214               |

31876 rows × 6 columns

```
In [ ]: y = who_df["Country"].value_counts().sort_values(ascending=False).head(10)
y
```

```
In [ ]: date_cum = ["Date_reported", "Cumulative_cases"]
who_df[date_cum].value_counts().sort_values()
```

```
In [6]: italy = who_df["Country"]
   italy_bool = italy == "Italy"
   italia = who_df[italy_bool]
   italia
```

| _ |     |    |    |
|---|-----|----|----|
| n | m±. | 16 | ٠. |
| U | uс  | U  | ٠. |

|       | Date_reported | Country | New_cases | Cumulative_cases | New_deaths | Cumulative_deaths |
|-------|---------------|---------|-----------|------------------|------------|-------------------|
| 123   | 2020-01-29    | Italy   | 6         | 6                | 0          | 0                 |
| 144   | 2020-01-30    | Italy   | 0         | 6                | 0          | 0                 |
| 158   | 2020-01-31    | Italy   | 0         | 6                | 0          | 0                 |
| 187   | 2020-01-02    | Italy   | 0         | 6                | 0          | 0                 |
| 215   | 2020-02-02    | Italy   | 0         | 6                | 0          | 0                 |
|       |               |         |           |                  |            |                   |
| 30870 | 2020-07-27    | Italy   | 254       | 246118           | 5          | 35107             |
| 31097 | 2020-07-28    | Italy   | 168       | 246286           | 5          | 35112             |
| 31333 | 2020-07-29    | Italy   | 202       | 246488           | 11         | 35123             |
| 31629 | 2020-07-30    | Italy   | 288       | 246776           | 6          | 35129             |
| 31686 | 2020-07-31    | Italy   | 382       | 247158           | 3          | 35132             |

185 rows × 6 columns

Out[264]: [<matplotlib.lines.Line2D at 0x249c21c8>]



```
In [11]: india = who_df["Country"]
    india_bool = india == "India"
    indian = who_df[india_bool]
    indian
```

| _            |     |      |     |
|--------------|-----|------|-----|
| m            | 11  | 111  | ١.  |
| $\mathbf{v}$ | a c | 1 44 | 1 . |

|       | Date_reported | Country | New_cases | Cumulative_cases | New_deaths | Cumulative_deaths |
|-------|---------------|---------|-----------|------------------|------------|-------------------|
| 136   | 2020-01-30    | India   | 5         | 5                | 0          | 0                 |
| 160   | 2020-01-31    | India   | 0         | 5                | 0          | 0                 |
| 178   | 2020-01-02    | India   | 0         | 5                | 0          | 0                 |
| 209   | 2020-02-02    | India   | 1         | 6                | 0          | 0                 |
| 243   | 2020-03-02    | India   | 1         | 7                | 0          | 0                 |
|       |               |         |           |                  |            |                   |
| 30900 | 2020-07-27    | India   | 49931     | 1435453          | 708        | 32771             |
| 31200 | 2020-07-28    | India   | 47703     | 1483156          | 654        | 33425             |
| 31441 | 2020-07-29    | India   | 48513     | 1531669          | 768        | 34193             |
| 31624 | 2020-07-30    | India   | 52123     | 1583792          | 775        | 34968             |
| 31812 | 2020-07-31    | India   | 55078     | 1638870          | 779        | 35747             |

184 rows × 6 columns

```
In [13]: ind = indian["Cumulative_cases"]
dtm = pd.date_range(start = '2020-01-30', end = '2020-07-31')
plt.plot(dtm, ind)
```

Out[13]: [<matplotlib.lines.Line2D at 0x1e1ed708>]



```
In [ ]: feb = "2020-02-28"
        march = "2020-03-30"
        april = "2020-04-29"
        may = "2020-05-30"
        june = "2020-06-29"
        july = "2020-07-30"
        feb_july = (italia["Date_reported"] == feb) | (italia["Date_reported"] == march)
        italia.loc[feb july, "Cumulative cases"]
In [ ]: |italy_cum = italia.loc[feb_july]
        italy cum
In [ ]: plt.figure(figsize=(6, 4))
        italian_cases = italy_cum["Cumulative_cases"]
        italian_date = italy_cum["Date_reported"]
        month_number = [1, 2, 3, 4, 5, 6, 7]
        plt.plot(italian date, italian cases);
In [ ]: |italy = who_df["Country"]
        italy bool = italy == "India"
        india = who_df[italy_bool]
        india
In [ ]: feb = "2020-02-29"
        march = "2020-03-31"
        april = "2020-04-30"
        may = "2020-05-31"
        june = "2020-06-30"
        july = "2020-07-31"
        feb_ju = (india["Date_reported"] == feb) | (india["Date_reported"] == march) | (i
        feb ju df = india.loc[feb ju]
In [ ]: plt.figure(figsize=(6, 4))
        indiana_cases = feb_ju_df["Cumulative_cases"]
        indiana_date = feb_ju_df["Date_reported"]
        month number = [1, 2, 3, 4, 5, 6, 7]
        plt.plot(indiana_date, indiana_cases);
In [ ]: | def plot cumulative cases(country name):
            country = italy_cum[italy_cum['Country'] == country_name]
            plt.plot(country['Date_reported'], country['Cumulative_cases'])
            plt.title('{}: Cumulative Reported Cases'.format(country_name))
            plt.xlabel('Date')
            plt.ylabel('Number of Cases')
            plt.show()
        plot_cumulative_cases("Italy")
```

In [ ]: france = who df["Country"]

```
france_bool = france == "France"
        franca = who df[france bool]
        feb = "2020-02-29"
        march = "2020-03-31"
        april = "2020-04-30"
        may = "2020-05-31"
        june = "2020-06-30"
        july = "2020-07-31"
        french = (franca["Date_reported"] == feb) | (franca["Date_reported"] == march) |
        franca df = franca.loc[french]
        plt.figure(figsize=(6, 4))
        french_cases = franca_df["Cumulative_cases"]
        french_date = franca_df["Date_reported"]
        plt.plot(french date, french cases);
In [ ]: | uk = who_df["Country"]
        uk bool = uk == "The United Kingdom"
        England = who_df[uk_bool]
        feb = "2020-02-29"
        march = "2020-03-31"
        april = "2020-04-30"
        may = "2020-05-31"
        june = "2020-06-30"
        july = "2020-07-31"
        Eng = (England["Date_reported"] == feb) | (England["Date_reported"] == march) | (
        England df = England.loc[Eng]
        plt.figure(figsize=(6, 4))
        england_cases = England_df["Cumulative_cases"]
        england date = England df["Date reported"]
        plt.plot(england date, england cases);
In [ ]: plt.figure(figsize=(6, 4))
        england_cases = England_df["Cumulative_cases"]
        england date = England df["Date reported"]
        french_cases = franca_df["Cumulative_cases"]
        french_date = franca_df["Date_reported"]
        plt.plot(england date, england cases)
        plt.plot(french_date, french_cases)
        plt.legend(["England", "France"])
        plt.xlabel("years")
        plt.ylabel("cases")
        plt.title("England vs France cummulative cases");
In [4]: bike_df = pd.read_csv("bike.csv")
        bike_df["dteday"] = pd.to_datetime(bike_df["dteday"])
        d_time = pd.date_range(start = '2011-01-01', end = '2012-12-31')
```

```
In [5]: total = bike_df["cnt"]
    plt.figure(figsize=(8, 6))
    plt.xticks(rotation=45)
    plt.title("Bike Data Set")
    plt.plot(d_time, total)
    plt.xlabel("Date")
    plt.ylabel("total usage")
```

Out[5]: Text(0, 0.5, 'total usage')



```
In [67]: import matplotlib.pyplot as plt
    plt.plot(d_time, bike_df['cnt'])
    plt.xticks(rotation=45);
```



```
In [68]: casual = bike_df["casual"]
    registered = bike_df["registered"]
    date_range = pd.date_range(start="2011-01-01", end="2012-12-31")
    plt.figure(figsize=(12, 8))
    plt.plot(date_range, casual)
    plt.plot(date_range, registered)
    plt.xlabel("Dates")
    plt.title("Graph of bike casual users vs registered users")
    plt.ylabel("Total number of riders")
    plt.legend(["casual", "registered"]);
```



In [69]: bike\_df

Out[69]:

|     | instant | dteday         | season | yr | mnth | holiday | weekday | workingday | weathersit | temp     | at    |
|-----|---------|----------------|--------|----|------|---------|---------|------------|------------|----------|-------|
| 0   | 1       | 2011-<br>01-01 | 1      | 0  | 1    | 0       | 6       | 0          | 2          | 0.344167 | 0.36  |
| 1   | 2       | 2011-<br>02-01 | 1      | 0  | 1    | 0       | 0       | 0          | 2          | 0.363478 | 0.35  |
| 2   | 3       | 2011-<br>03-01 | 1      | 0  | 1    | 0       | 1       | 1          | 1          | 0.196364 | 0.18! |
| 3   | 4       | 2011-<br>04-01 | 1      | 0  | 1    | 0       | 2       | 1          | 1          | 0.200000 | 0.21; |
| 4   | 5       | 2011-<br>05-01 | 1      | 0  | 1    | 0       | 3       | 1          | 1          | 0.226957 | 0.22! |
|     |         |                |        |    |      |         |         |            |            |          |       |
| 726 | 727     | 2012-<br>12-27 | 1      | 1  | 12   | 0       | 4       | 1          | 2          | 0.254167 | 0.220 |
| 727 | 728     | 2012-<br>12-28 | 1      | 1  | 12   | 0       | 5       | 1          | 2          | 0.253333 | 0.25  |
| 728 | 729     | 2012-<br>12-29 | 1      | 1  | 12   | 0       | 6       | 0          | 2          | 0.253333 | 0.24: |
| 729 | 730     | 2012-<br>12-30 | 1      | 1  | 12   | 0       | 0       | 0          | 1          | 0.255833 | 0.23  |
| 730 | 731     | 2012-<br>12-31 | 1      | 1  | 12   | 0       | 1       | 1          | 2          | 0.215833 | 0.22  |

731 rows × 16 columns

localhost:8888/notebooks/exploratory.ipynb

```
In [70]: temp = bike_df["atemp"]
    users = bike_df["cnt"]
    plt.figure(figsize=(12, 8))
    plt.plot(date_range, temp);
```



```
In [71]: temp = bike_df["atemp"]
    users = bike_df["cnt"]
    plt.figure(figsize=(12, 8))
    plt.scatter(temp, users)
    plt.xlabel("temperature")
    plt.ylabel("bike users")
    plt.legend(["temperature", "users"])
```

Out[71]: <matplotlib.legend.Legend at 0x22984588>



```
In [72]: bike_df["workingday"].corr(bike_df["registered"])
```

Out[72]: 0.30390711704591705

```
In [73]: wind = bike_df["windspeed"]
    users = bike_df["cnt"]
    plt.figure(figsize=(12, 8))
    plt.scatter(wind, users)
    plt.xlabel("wind")
    plt.ylabel("bike users")
    plt.legend(["temperature", "users"])
```

Out[73]: <matplotlib.legend.Legend at 0x22da3048>



```
In [74]: atem = bike_df["atemp"]
    users = bike_df["cnt"]
    plt.figure(figsize=(12, 8))
    plt.scatter(atem, users)
    plt.xlabel("atemp")
    plt.ylabel("bike users")
```

Out[74]: Text(0, 0.5, 'bike users')



```
In [75]: pearson = bike_df.corr()
    pearson["temp_atemp"] = pearson["temp"] - pearson["atemp"]
    pearson
```

Out[75]:

|            | instant   | season    | yr        | mnth      | holiday   | weekday   | workingday | weathers |
|------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|----------|
| instant    | 1.000000  | 0.412224  | 0.866025  | 0.496702  | 0.016145  | -0.000016 | -0.004337  | -0.02147 |
| season     | 0.412224  | 1.000000  | -0.001844 | 0.831440  | -0.010537 | -0.003080 | 0.012485   | 0.01921  |
| yr         | 0.866025  | -0.001844 | 1.000000  | -0.001792 | 0.007954  | -0.005461 | -0.002013  | -0.04872 |
| mnth       | 0.496702  | 0.831440  | -0.001792 | 1.000000  | 0.019191  | 0.009509  | -0.005901  | 0.04352  |
| holiday    | 0.016145  | -0.010537 | 0.007954  | 0.019191  | 1.000000  | -0.101960 | -0.253023  | -0.03462 |
| weekday    | -0.000016 | -0.003080 | -0.005461 | 0.009509  | -0.101960 | 1.000000  | 0.035790   | 0.03108  |
| workingday | -0.004337 | 0.012485  | -0.002013 | -0.005901 | -0.253023 | 0.035790  | 1.000000   | 0.06120  |
| weathersit | -0.021477 | 0.019211  | -0.048727 | 0.043528  | -0.034627 | 0.031087  | 0.061200   | 1.00000  |
| temp       | 0.150580  | 0.334315  | 0.047604  | 0.220205  | -0.028556 | -0.000170 | 0.052660   | -0.12060 |
| atemp      | 0.152638  | 0.342876  | 0.046106  | 0.227459  | -0.032507 | -0.007537 | 0.052182   | -0.12158 |
| hum        | 0.016375  | 0.205445  | -0.110651 | 0.222204  | -0.015937 | -0.052232 | 0.024327   | 0.59104  |
| windspeed  | -0.112620 | -0.229046 | -0.011817 | -0.207502 | 0.006292  | 0.014282  | -0.018796  | 0.03951  |
| casual     | 0.275255  | 0.210399  | 0.248546  | 0.123006  | 0.054274  | 0.059923  | -0.518044  | -0.24735 |
| registered | 0.659623  | 0.411623  | 0.594248  | 0.293488  | -0.108745 | 0.057367  | 0.303907   | -0.26038 |
| cnt        | 0.628830  | 0.406100  | 0.566710  | 0.279977  | -0.068348 | 0.067443  | 0.061156   | -0.29739 |

In [76]: bike\_df

Out[76]:

|     | instant | dteday         | season | yr | mnth | holiday | weekday | workingday | weathersit | temp     | at    |
|-----|---------|----------------|--------|----|------|---------|---------|------------|------------|----------|-------|
| 0   | 1       | 2011-<br>01-01 | 1      | 0  | 1    | 0       | 6       | 0          | 2          | 0.344167 | 0.36  |
| 1   | 2       | 2011-<br>02-01 | 1      | 0  | 1    | 0       | 0       | 0          | 2          | 0.363478 | 0.35  |
| 2   | 3       | 2011-<br>03-01 | 1      | 0  | 1    | 0       | 1       | 1          | 1          | 0.196364 | 0.189 |
| 3   | 4       | 2011-<br>04-01 | 1      | 0  | 1    | 0       | 2       | 1          | 1          | 0.200000 | 0.21; |
| 4   | 5       | 2011-<br>05-01 | 1      | 0  | 1    | 0       | 3       | 1          | 1          | 0.226957 | 0.229 |
|     |         |                |        |    |      |         |         |            |            |          |       |
| 726 | 727     | 2012-<br>12-27 | 1      | 1  | 12   | 0       | 4       | 1          | 2          | 0.254167 | 0.220 |
| 727 | 728     | 2012-<br>12-28 | 1      | 1  | 12   | 0       | 5       | 1          | 2          | 0.253333 | 0.25  |
| 728 | 729     | 2012-<br>12-29 | 1      | 1  | 12   | 0       | 6       | 0          | 2          | 0.253333 | 0.24; |
| 729 | 730     | 2012-<br>12-30 | 1      | 1  | 12   | 0       | 0       | 0          | 1          | 0.255833 | 0.23  |
| 730 | 731     | 2012-<br>12-31 | 1      | 1  | 12   | 0       | 1       | 1          | 2          | 0.215833 | 0.22  |

731 rows × 16 columns

localhost:8888/notebooks/exploratory.ipynb

```
In [77]: wd = bike_df["workingday"]
    bk = bike_df["registered"]
    plt.figure(figsize=(12, 8))
    plt.scatter(wd, bk)
    plt.xlabel("working day")
    plt.ylabel("bike users");
```



```
In [78]: |wd_df = bike_df["workingday"]
          cs_df = bike_df["casual"]
          wd_df.corr(cs_df)
Out[78]: -0.5180441913348245
In [79]: |w_df = bike_df["workingday"]
          c_df = bike_df["casual"]
          w_df.corr(c_df)
Out[79]: -0.5180441913348245
In [110]: bike_df['workingday'].replace({0:1, 1:0}, inplace=True)
In [81]: bike_df['workingday'].value_counts()
Out[81]: 0
               500
               231
          Name: workingday, dtype: int64
In [85]: wday = bike df["workingday"]
          casual = bike_df["casual"]
          reg = bike_df["registered"]
          plt.scatter(wday, casual)
```

## Out[85]: <matplotlib.collections.PathCollection at 0x2319d748>



```
In [84]: wday = bike_df["workingday"]
    casual = bike_df["casual"]
    reg = bike_df["registered"]
    plt.scatter(wday, reg)
```

Out[84]: <matplotlib.collections.PathCollection at 0x234fec48>



| In [86]: bike_df | In [8 | 6]: | bike | df |
|------------------|-------|-----|------|----|
|------------------|-------|-----|------|----|

| Out[86]: |     | instant | dteday         | season | yr | mnth | holiday | weekday | workingday | weathersit | temp     | at    |
|----------|-----|---------|----------------|--------|----|------|---------|---------|------------|------------|----------|-------|
|          | 0   | 1       | 2011-<br>01-01 | 1      | 0  | 1    | 0       | 6       | 1          | 2          | 0.344167 | 0.36  |
|          | 1   | 2       | 2011-<br>02-01 | 1      | 0  | 1    | 0       | 0       | 1          | 2          | 0.363478 | 0.35  |
|          | 2   | 3       | 2011-<br>03-01 | 1      | 0  | 1    | 0       | 1       | 0          | 1          | 0.196364 | 0.18! |
|          | 3   | 4       | 2011-<br>04-01 | 1      | 0  | 1    | 0       | 2       | 0          | 1          | 0.200000 | 0.21; |
|          | 4   | 5       | 2011-<br>05-01 | 1      | 0  | 1    | 0       | 3       | 0          | 1          | 0.226957 | 0.229 |
|          |     |         |                |        |    |      |         |         |            |            |          |       |
|          | 726 | 727     | 2012-<br>12-27 | 1      | 1  | 12   | 0       | 4       | 0          | 2          | 0.254167 | 0.220 |
|          | 727 | 728     | 2012-<br>12-28 | 1      | 1  | 12   | 0       | 5       | 0          | 2          | 0.253333 | 0.25  |
|          | 728 | 729     | 2012-<br>12-29 | 1      | 1  | 12   | 0       | 6       | 1          | 2          | 0.253333 | 0.24; |
|          | 729 | 730     | 2012-<br>12-30 | 1      | 1  | 12   | 0       | 0       | 1          | 1          | 0.255833 | 0.23  |
|          | 730 | 731     | 2012-<br>12-31 | 1      | 1  | 12   | 0       | 1       | 0          | 2          | 0.215833 | 0.22  |

731 rows × 16 columns

```
In [89]: lt = bike_df.shape[0]
In [90]: bike_df["casual"].sum() / lt
Out[90]: 848.1764705882352
In [91]: bike_df["registered"].sum() / lt
Out[91]: 3656.172366621067
In [111]: bike_df["workingday"].value_counts()
Out[111]: 1 500
0 231
Name: workingday, dtype: int64
```

```
In [112]: |working days = bike df["workingday"]
           working days bool = working days == 1
           casual sum = bike df.loc[working days bool, "casual"].sum()
           casual avg = casual sum / 500
           casual avg
Out[112]: 606.57
In [122]: | mf = bike_df["weekday"].value_counts().sort_index
           mf
Out[122]: <bound method Series.sort index of 6</pre>
                                                     105
                105
           1
                105
           2
                104
           3
                104
           4
                104
                104
           Name: weekday, dtype: int64>
In [129]: week = bike df["weekday"]
           week bool = week == 0
           week_avg = bike_df.loc[week_bool, "casual"].mean()
           week avg
Out[129]: 1338.2952380952381
In [127]: wee = bike df["weekday"]
           wee bool = wee == 1
           wee_sum = bike_df.loc[wee_bool, "casual"].sum()
           wee avg = wee sum / 105
           wee_avg
Out[127]: 674.1333333333333
  In [8]: weekday averages = bike df.groupby('weekday').mean()[['casual', 'registered']].re
  In [9]: weekday averages
  Out[9]:
              weekday
                            casual
                                    registered
           0
                    0 1338.295238
                                  2890.533333
           1
                    1
                        674.133333
                                  3663.990476
           2
                    2
                        556.182692
                                  3954.480769
            3
                        551.144231
                    3
                                  3997.394231
                        590.961538 4076.298077
                    4
            5
                        752.288462 3938.000000
                    5
                    6 1465.257143 3085.285714
```

```
In [1]: |wd_averages = bike_df.groupby('workingday').mean()[['casual', 'registered']]
                                                       Traceback (most recent call last)
           NameError
           ~\AppData\Local\Temp\ipykernel_8600\4268187822.py in <module>
           ---> 1 wd_averages = bike_df.groupby('workingday').mean()[['casual', 'register
           ed']]
           NameError: name 'bike df' is not defined
In [149]: |wd_averages
Out[149]:
                                   registered
                           casual
           workingday
                      1371.134199 2959.034632
                       606.570000 3978.250000
In [166]: | weekday_averages["casual"].index
Out[166]: RangeIndex(start=0, stop=7, step=1)
In [176]: | axis = (weekday_averages["weekday"])
           axes = (weekday_averages["casual"])
In [189]: plt.bar(axis, axes)
           plt.xticks(ticks=[0, 1, 2, 3, 4, 5, 6], labels=["Sunday", "Monday", "Tuesday",
            1400
            1200
            1000
            800
            600
             400
             200
```

In [172]: list(weekday\_averages["weekday"])

Out[172]: [0, 1, 2, 3, 4, 5, 6]

In [190]: bike\_df

Out[190]:

|     | instant | dteday         | season | yr | mnth | holiday | weekday | workingday | weathersit | temp     | at    |
|-----|---------|----------------|--------|----|------|---------|---------|------------|------------|----------|-------|
| 0   | 1       | 2011-<br>01-01 | 1      | 0  | 1    | 0       | 6       | 0          | 2          | 0.344167 | 0.36  |
| 1   | 2       | 2011-<br>02-01 | 1      | 0  | 1    | 0       | 0       | 0          | 2          | 0.363478 | 0.35  |
| 2   | 3       | 2011-<br>03-01 | 1      | 0  | 1    | 0       | 1       | 1          | 1          | 0.196364 | 0.18! |
| 3   | 4       | 2011-<br>04-01 | 1      | 0  | 1    | 0       | 2       | 1          | 1          | 0.200000 | 0.21; |
| 4   | 5       | 2011-<br>05-01 | 1      | 0  | 1    | 0       | 3       | 1          | 1          | 0.226957 | 0.22! |
|     |         |                |        |    |      |         |         |            |            |          |       |
| 726 | 727     | 2012-<br>12-27 | 1      | 1  | 12   | 0       | 4       | 1          | 2          | 0.254167 | 0.220 |
| 727 | 728     | 2012-<br>12-28 | 1      | 1  | 12   | 0       | 5       | 1          | 2          | 0.253333 | 0.25  |
| 728 | 729     | 2012-<br>12-29 | 1      | 1  | 12   | 0       | 6       | 0          | 2          | 0.253333 | 0.24  |
| 729 | 730     | 2012-<br>12-30 | 1      | 1  | 12   | 0       | 0       | 0          | 1          | 0.255833 | 0.23  |
| 730 | 731     | 2012-<br>12-31 | 1      | 1  | 12   | 0       | 1       | 1          | 2          | 0.215833 | 0.22  |

731 rows × 16 columns

4

```
In [246]: | start_date = '2012-01-01'
          end_date = '2012-12-31'
          # Select DataFrame rows between two dates
          mask = (bike df["dteday"] >= start date) & (bike df['dteday'] <= end date)</pre>
          year = bike_df.loc[mask]
          weather = list(year["weathersit"].value_counts())
          unique = list(year["weathersit"].unique())
          height = year["weathersit"]
          weather
```

Out[246]: [237, 123, 6]

```
In [216]: height
Out[216]: 365
                   1
           366
                   1
           367
                   1
           368
                   2
           369
                   1
           726
                  2
                   2
           727
           728
                   2
           729
                   1
           730
           Name: weathersit, Length: 366, dtype: int64
```

In [233]: plt.bar(unique, weather) plt.xticks(ticks=[1, 2, 3, 4], labels=["clear", "mist", "rain", "heavy rain"], ro



```
In [256]: fre = bike_df["casual"].value_counts(bins=10).sort_index()
Out[256]: (-1.40899999999999, 342.8]
                                            204
           (342.8, 683.6]
                                            144
           (683.6, 1024.4]
                                            165
           (1024.4, 1365.2]
                                             89
           (1365.2, 1706.0]
                                             44
           (1706.0, 2046.8]
                                             23
           (2046.8, 2387.6]
                                             26
           (2387.6, 2728.4]
                                             22
           (2728.4, 3069.2]
                                              9
           (3069.2, 3410.0]
                                              5
          Name: casual, dtype: int64
```

```
In [265]: tot = bike_df["casual"]
    plt.hist(tot);
```



In [ ]: