Voronoi Diagrams

http://public.tableau.com/profile/graeme.taylor http://maths.straylight.co.uk graeme.taylor@ovoenergy.com
https://github.com/GrayTaylor

Motivation: Visualising air quality in Bristol

Voronoi diagrams are everywhere!

DISCRETE AND COMPUTATIONAL GEOMETRY

SATYAN L. DEVADOSS JOSEPH O'ROURKE

The Voronoi Library

from scipy.spatial import Voronoi

In [53]: air_quality_locations=np.array([[air_quality_data['long'][k],air_quality_data['lat'][k]] for k in range(len(air_quality_data))])
 vor = Voronoi(air_quality_locations)
 voronoi_plot_2d(vor)
 plt.draw()

Obtaining finite versions of every cell

Obtaining finite versions of every cell

O'REILLY®

The Practical Developer

@ThePracticalDev

Obtaining finite versions of every cell

From points to polygons: shapely and geopandas

Shape 1 ID geometry 0 Lower Red POLYGON ((0 0, 2 0, 2 2, 0 2, 0 0))

1 Upper Red POLYGON ((2 2, 4 2, 4 4, 2 4, 2 2))

Shape 2 ID geometry

0 Lower Green POLYGON ((1 1, 3 1, 3 3, 1 3, 1 1))

1 Upper Green POLYGON ((3 3, 5 3, 5 5, 3 5, 3 3))

```
res_union = gpd.overlay(df1, df2, how='union')
res_union
```

Shape 1 ID	Shape 2 ID	geometry
Lower Red	None	POLYGON ((2 1, 2 0, 0 0, 0 2, 1 2, 1 1, 2 1))
Lower Red	Lower Green	POLYGON ((2 1, 1 1, 1 2, 2 2, 2 1))
None	Lower Green	POLYGON ((2 1, 2 2, 3 2, 3 1, 2 1))
None	Lower Green	POLYGON ((2 2, 1 2, 1 3, 2 3, 2 2))
Upper Red	None	POLYGON ((3 2, 3 3, 4 3, 4 2, 3 2))
Upper Red	Lower Green	POLYGON ((3 3, 3 2, 2 2, 2 3, 3 3))
Upper Red	None	POLYGON ((3 3, 2 3, 2 4, 3 4, 3 3))
None	Upper Green	POLYGON ((4 3, 4 4, 3 4, 3 5, 5 5, 5 3, 4 3))
Upper Red	Upper Green	POLYGON ((3 4, 4 4, 4 3, 3 3, 3 4))
	Lower Red Lower Red None None Upper Red Upper Red Upper Red None	Lower Red None Lower Green None Lower Green None Lower Green Upper Red None Upper Red Lower Green Upper Red None None Upper Green

Obtaining bounded cells

Obtaining bounded cells

Issue: the world is not flat

Moala Island

Fiji

http://public.tableau.com/profile/graeme.taylor http://maths.straylight.co.uk graeme.taylor@ovoenergy.com
https://github.com/GrayTaylor