Refinement Types and Abstract Refinements

Niki Vazou

UC San Diego

Simple Types

```
4 :: Int
"cat" :: String
div :: Int -> Int -> Int
```

Simple Type Errors

```
div :: Int -> Int -> Int
     div 4 "cat"
```

Simple Type Errors

```
div :: Int -> Int -> Int
    div 4 "cat"
```

Type error:

"Couldn't match expected type Int with actual type String"

Run Time Errors

Run Time Errors

an Int value, different than 0

```
div :: Int -> Int -> Int
```

div 4 0

Run time error:

"Exception: divide by zero"

Refinement Types

an Int value, different than 0

Refinement Types

```
div :: Int
    -> { v:Int | v!=0 }
    -> Int
```

Refinement Function Types

```
pred :: Int -> Int
pred n = n - 1
```

Refinement Function Types

```
pred :: n:{v:Int | v >0} -> {v:Int | v = n-1}
pred n = n - 1
```

Refinement Function Types

```
pred :: n:{v:Int | v >0} -> {v:Int | v = n-1}
pred n = n - 1
```

Functional Specifications

Refinement Types as Functional Specifications:

```
pred :: n:{v:Int | v >0} -> {v:Int | v = n-1}
```

```
div :: Int -> {v:Int | v = !0} -> Int
```

Specifications:

Properties that the program should satisfy

Functional Specifications:

Treat the program as collection of functions

Functional Specifications

Refinement Types as Functional Specifications:

Verification

Decidability vs Expressiveness

undecidable verification

Restrict refinement language (decidable logic) less expressive specifications decidable verification

Outline

Introduction

Contracts

Liquid Types

Abstract Refinements

Refinements and Type Classes

Inductive Refinements

Indexed Refinements

Recursive Refinements

Outline

Introduction

Contracts

Liquid Types

Abstract Refinements

Refinements and Type Classes

Inductive Refinements

Indexed Refinements

Recursive Refinements

$$\langle Int \Rightarrow \{v:Int \mid v>0\} \rangle 2$$

assert 2: Int

assume 2:{v:Int | v>0}

```
\langle Int \Rightarrow \{v:Int \mid v>0\} \rangle 2

→ if (v>0)[2/v] then 2

→ if (2>0) then 2

→ 2

Statically: Dynamically:
```

if **check** succeeds

$$\langle Int \Rightarrow \{v:Int \mid v>0\} \rangle 2$$

Statically:

assert 2: Int

assume 2:{v:Int | v>0}

Dynamically:

if check succeeds

$$\langle Int \Rightarrow \{v:Int \mid v>0\} \rangle 0$$

Statically:

assert 0: Int

assume 0: {v:Int | v>0}

Dynamically:

if check succeeds

```
<Int ⇒ {v:Int | v>0}>0

→ if (v>0)[0/v] then 0

→ if (0>0) then 0
```

Statically:

assert 0: Int

assume 0: {v:Int | v>0}

Dynamically:

if check succeeds

```
<Int ⇒ {v:Int | v>0}>¹0

→ if (v>0)[0/v] then 0

→ if (0>0) then 0
```

Statically:

assert 0: Int

assume 0: {v:Int | v>0}

Dynamically:

if check succeeds

```
\langle Int \Rightarrow \{v:Int \mid v>0\} \rangle^1 0

→ if (v>0)[0/v] then 0 else 1

→ if (0>0) then 0 else 1
```

Statically:

assert 0: Int

assume 0: {v:Int | v>0}

Dynamically:

if **check** succeeds then return 0 else blame 1

```
\langle Int \Rightarrow \{v:Int \mid v>0\} \rangle^1 0

→ if (v>0)[0/v] then 0 else 1

→ if (0>0) then 0 else 1

→ 1
```

Statically:

assert 0: Int assume 0: {v:Int | v>0}

Dynamically:

if **check** succeeds then return 0 else blame 1

$$\langle Int \Rightarrow \{v:Int \mid v>0\} \rangle^1 0$$

Statically:

assert 0: Int

assume 0: {v:Int | v>0}

Dynamically:

if **check** succeeds then return 0

else blame 1

$$\langle \{v:b \mid p_s\} \Rightarrow \{v:b \mid p_t\} \rangle^1 e$$

→ if $p_t[e/v]$ then e else $\uparrow 1$

Statically:

assert $e: \{v:b \mid p_s\}$ assume $e: \{v:b \mid p_t\}$

Dynamically:

if **check** succeeds then return e else blame 1

$$\langle s_x - \rangle s \Rightarrow t_x - \rangle t > 1 f$$

Statically:

$$(\langle s_x -\rangle s \Rightarrow t_x -\rangle t \rangle^1 f) v$$

$$\rightarrow \langle s \Rightarrow t \rangle^1 (f (\langle t_x \Rightarrow s_x \rangle^1 v))$$

Statically:

$$(\langle s_x - \rangle s \Rightarrow t_x - \rangle t \rangle^1 f) v$$

$$\rightarrow \langle s \Rightarrow t \rangle^1 (f(\langle t_x \Rightarrow s_x \rangle^1 v))$$

Statically:

$$(\langle s_x - \rangle s \Rightarrow t_x - \rangle t \rangle^1 f) v$$

$$\rightarrow \langle s \Rightarrow t \rangle^1 (f(\langle t_x \Rightarrow s_x \rangle^1 v))$$

Statically:

$$(\langle s_x - \rangle s \Rightarrow t_x - \rangle t \rangle^1 f) v$$

$$\rightarrow \langle s \Rightarrow t \rangle^1 (f (\langle t_x \Rightarrow s_x \rangle^1 v))$$

Statically:

$$(\langle s_x -\rangle s \Rightarrow t_x -\rangle t \rangle^1 f) v$$

$$\rightarrow \langle s \Rightarrow t \rangle^1 (f (\langle t_x \Rightarrow s_x \rangle^1 v))$$

Statically:

Predecessor example

```
f :: Int -> Int
f n = n-1
```

```
pred :: n:{v:Int|v>0}->{v:Int| v=n-1}
pred = < Int -> Int ⇒ n:{v:Int|v>0}->{v:Int| v=n-1}>¹ f
```

Predecessor example

```
f :: Int -> Int
f n = n-1
```

```
pred :: n:{v:Int|v>0}->{v:Int|v=n-1}
pred = { Int -> Int => n:{v:Int|v>0}->{v:Int| v=n-1}>¹ f
```

Predecessor example

```
f :: Int -> Int
f n = n-1
```

```
pred :: n:\{v:Int|v>0\}->\{v:Int|v=n-1\}
pred = < Int -> Int \Rightarrow n:\{v:Int|v>0\}->\{v:Int|v=n-1\}> f
```

```
f :: Int -> Int
f n = n-1
```

```
pred :: n:{v:Int|v>0}->{v:Int|v=n-1}
pred = < Int -> Int ⇒ n:{v:Int|v>0}->{v:Int|v=n-1}>¹ f
```

```
pred 2
= (\langle Int -\rangle Int \Rightarrow n: \{v:Int | v>0\} -\rangle \{v:Int | v=n-1\} \rangle^{1} f) 2
```

```
pred :: n:{v:Int|v>0}->{v:Int|v=n-1}
pred =< Int -> Int ⇒ n:{v:Int|v>0}->{v:Int|v=n-1}>¹ f
```

```
pred 2
= (\langle Int -\rangle Int \Rightarrow n: \{v:Int | v>0\} -\rangle \{v:Int | v=n-1\} \rangle^{1} f) 2
```

$$(\langle s_x -\rangle s \Rightarrow t_x -\rangle t \rangle^1 f) v$$

$$\rightarrow \langle s \Rightarrow t \rangle^1 (f (\langle t_x \Rightarrow s_x \rangle^1 v))$$

```
pred 2
= (<Int -> Int \Rightarrow n:{v:Int|v>0}->{v:Int|v=n-1}>\frac{1}{1}f) 2
\rightarrow <Int \Rightarrow {v:Int|v=2-1}>\frac{1}{1}(f(<{v:Int|v>0} \Rightarrow Int>\frac{1}{2}))
```

$$(\langle s_x -\rangle s \Rightarrow t_x -\rangle t \rangle^1 f) v$$

$$\rightarrow \langle s \Rightarrow t \rangle^1 (f (\langle t_x \Rightarrow s_x \rangle^1 v))$$

```
pred 2
= (\langle Int -\rangle Int \Rightarrow n: \{v: Int | v>0\} -\rangle \{v: Int | v=n-1\} \rangle^{1} f) 2
\rightarrow \langle Int \Rightarrow \{v: Int | v=2-1\} \rangle^{1} (f(\langle \{v: Int | v>0\} \Rightarrow Int \rangle^{1} 2))
\rightarrow \langle Int \Rightarrow \{v: Int | v=2-1\} \rangle^{1} (f(2))
```

```
pred 2
= (\langle Int -\rangle Int \Rightarrow n: \{v:Int | v>0\} -\rangle \{v:Int | v=n-1\} \rangle^{1} f) 2
\rightarrow \langle Int \Rightarrow \{v:Int | v=2-1\} \rangle^{1} (f(\langle \{v:Int | v>0\} \Rightarrow Int \rangle^{1} 2))
\rightarrow \langle Int \Rightarrow \{v:Int | v=2-1\} \rangle^{1} (f 2)
\rightarrow \langle Int \Rightarrow \{v:Int | v=2-1\} \rangle^{1} I
```

```
f :: Int -> Int
f n = n-1
```

```
pred 2
= (\langle Int -\rangle Int \Rightarrow n: \{v: Int | v>0\} -\rangle \{v: Int | v=n-1\} \rangle^{1} f) 2
\rightarrow \langle Int \Rightarrow \{v: Int | v=2-1\} \rangle^{1} (f (\langle \{v: Int | v>0\} \Rightarrow Int \rangle^{1} 2))
\rightarrow \langle Int \Rightarrow \{v: Int | v=2-1\} \rangle^{1} (f 2)
\rightarrow \langle Int \Rightarrow \{v: Int | v=2-1\} \rangle^{1} 1
\rightarrow 1
```

```
f :: Int -> Int
f n = n-1
```

```
pred 2
= (\langle Int -\rangle Int \Rightarrow n: \{v: Int | v>0\} -\rangle \{v: Int | v=n-1\} \rangle^{1} f) 2
\rightarrow \langle Int \Rightarrow \{v: Int | v=2-1\} \rangle^{1} (f (\langle \{v: Int | v>0\} \Rightarrow Int \rangle^{1} 2))
\rightarrow \langle Int \Rightarrow \{v: Int | v=2-1\} \rangle^{1} (f 2)
\rightarrow \langle Int \Rightarrow \{v: Int | v=2-1\} \rangle^{1} 0
\rightarrow \uparrow 1
```

```
f :: Int -> Int
f n = 0
```

pred 0 X

```
pred :: [n:{v:Int|v>0}->{v:Int|v=n-1}
pred = < Int -> Int ⇒ n:{v:Int|v>0}->{v:Int|v=n-1}>¹ f
```

pred (
$$\langle Int \Rightarrow \{v:Int \mid v>0\} \rangle^{zero} 0$$
)

```
pred :: n:\{v:Int|v>0\}->\{v:Int|v=n-1\}
pred =< Int -> Int \Rightarrow n:\{v:Int|v>0\}->\{v:Int|v=n-1\}>^1 f
```

```
pred (< Int ⇒ {v:Int | v>0}>zero 0)
  → ↑zero
```

```
pred :: n:{v:Int|v>0}->{v:Int|v=n-1}
pred =< Int -> Int ⇒ n:{v:Int|v>0}->{v:Int|v=n-1}>¹ f
```

Contracts

1970 Object Oriented Programming Eiffel

2002 Higher Order Programming (Findler, Felleisen)

✓ Expressive (express higher order predicates)

Contracts

```
;; contract for the derivative function
;; for some natural number n and reals \delta, \epsilon:
(->d ([f (0<real<1? . -> . 0<real<1?)])</pre>
     (fp (0<real<1? . -> . real?))
     #:post-cond
     (for/and ([i (in-range 0 n)])
        (define x (random-number))
        (define slope (/ (-(f(-x \epsilon)))
                               (f (+ x \epsilon)))
                           (* 2 E)))
        (<= (abs (- slope (fp x))) \delta)))
```

Contracts

1970 Object Oriented Programming Eiffel

2002 Higher Order Programming (Findler, Felleisen)

- Racket
 - ✓ Expressive (express higher order predicates)
- ✓ Blame assignment (to the supplier of bad value)
- X Run time checks (consume computation cycles)
- X Limited coverage (one execution path is checked)

Outline

Introduction

Contracts

Liquid Types

Abstract Refinements

Refinements and Type Classes

Inductive Refinements

Indexed Refinements

Recursive Refinements

Outline

Introduction

Contracts

Liquid Types

Abstract Refinements

Refinements and Type Classes

Inductive Refinements

Indexed Refinements

Recursive Refinements

Refinement Types

```
2 :: { v:Int | v>0 }
v=2 \Rightarrow v>0
2 :: { v:Int | v=2 }
```

Basic Subtyping

If e::s and s <: t

then e::t

60

Basic Subtyping

$$\Gamma \vdash p_s \Rightarrow p_t$$

$$\Gamma \vdash \{v:b \mid p_s\} \iff \{v:b \mid p_t\}$$

refinement language in decidable theories

Propositional Logic +

Theories (equality, linear arithmetic, unint. functions)

Liquid Types

Propositional Logic +

```
\mathbf{Q}: Logical qualifiers (predicates on \mathbf{v}, \star)
        e.g., \mathbf{Q} = \{v > 0, * > 0, v < *, v = * - 1\}
 Q*: instantiate * with program variables
        e.g., \mathbf{Q}^* = \{v>0, y>0, v< n, v=n+1\}
 Liquid Types: { v:b | p}
         with p=\Lambda q, q \in \mathbb{Q}^*
refinement language in decidable theories
```

Theories (equality, linear arithmetic, unint. functions)

62

Liquid Types

Propositional Logic +

```
\mathbf{Q}: Logical qualifiers (predicates on \mathbf{v}, \star)
        e.g., \mathbf{Q} = \{v > 0, * > 0, v < *, v = * - 1\}
 Q*: instantiate * with program variables
        e.g., \mathbf{Q}^* = \{v>0, y>0, v< n, v=n+1\}
 Liquid Types: { v:b | p}
         with p=\Lambda q, q \in \mathbb{Q}^*
refinement language in decidable theories
```

Theories (equality, linear arithmetic, unint. functions)

63

Basic Subtyping

$$\Gamma \vdash p_s \Rightarrow p_t$$

$$\Gamma \vdash \{v:b \mid p_s\} \iff \{v:b \mid p_t\}$$

refinement language in decidable theories

Propositional Logic +

Theories (equality, linear arithmetic, unint. functions)

Basic Subtyping

SMT solver:

SAT + Theory Solvers

$$\Gamma \vdash p_s \Rightarrow p_t$$

$$\Gamma \vdash \{v:b \mid p_s\} <: \{v:b \mid p_t\}$$

refinement language in decidable theories

Propositional Logic +

Theories (equality, linear arithmetic, unint. functions)

Functional Subtyping

$$\Gamma \vdash t_x <: s_x \qquad \Gamma \vdash s <: t$$

$$\Gamma \vdash s_x -> s <: t_x -> t$$

```
pred :: n:{v:Int|v>0}->{v:Int|v=n-1}
pred n = n - 1
```

Function Typing

$$\Gamma, x:t_x \vdash e :: t$$

$$\Gamma \vdash \x:t_x -> e :: x:t_x -> t$$

```
pred :: n:{v:Int|v>0}->{v:Int|v=n-1}
pred n = n - 1
```

We want

```
pred :: n:{v:Int|v>0}->{v:Int|v=n-1}
pred n = n - 1
```

```
n :: {v:Int|v>0}
(-) :: x:Int -> y:Int -> {v:Int|v=x-y}
```

Application Typing

$$\Gamma \vdash e_f :: (x:t_x->t) \Gamma \vdash e :: t_x$$

$$\Gamma \vdash e_f e :: t [e/x]$$

```
pred :: n:{v:Int | v>0}->{v:Int | v=n-1}
pred n = n - 1
             v>0 ⇒ true
n :: {v:Int | v>0} <: Int
(-)::x:Int -> y:Int -> {v:Int | v=x-y}
```

```
pred :: n:{v:Int|v>0}->{v:Int|v=n-1}
pred n = n - 1
```

```
1 :: {v:Int|v=1} <: Int
n :: {v:Int|v>0} <: Int
(-) :: x:Int -> y:Int -> {v:Int|v=x-y}
```

$$(n-1) :: \{v:Int | v=n-1\}$$


```
pred :: n:{v:Int|v>0}->{v:Int|v=n-1}
pred n = n - 1
```

$$v=2 \Rightarrow v>0$$

pred 2 :: ???

```
pred :: n:{v:Int|v>0}->{v:Int|v=n-1}
pred n = n - 1
```

```
pred :: n:{v:Int|v>0}->{v:Int| v=n-1}
pred n = n - 1
```

Refinement Types

- 1991 Freeman and Pfennning
 Refine specific data types (nil, singleton list)
- 1999 DML(C)
 Refinements from a decidable domain C
- 2008 **Liquid Types** (Rondon *et. al.*) Algorithmic Type Inference
 - Static Verification
- Limited annotations
- X Limited expressiveness

Outline

Introduction

Contracts

Liquid Types

Abstract Refinements

Refinements and Type Classes

Inductive Refinements

Indexed Refinements

Recursive Refinements

Introduction

Contracts

Liquid Types

Abstract Refinements

Refinements and Type Classes

Inductive Refinements

Indexed Refinements

Max example

```
max::Int-> Int -> Int
max x y = if x > y then x else y
```

Max example

```
max::x:Int-> y:Int -> \{v:Int \mid v \ge x \land v \ge y\}
max x y = if x > y then x else y
```

Max example

```
max::x:Int-> y:Int -> \{v:Int \mid v \ge x \land v \ge y\}
max x y = if x > y then x else y
```

x:Int

y:Int

x>y

```
x::\{v:Int | v=x\}

v=x \Rightarrow v \ge x \land v \ge y
```

 $x::\{v:Int \mid v \ge x \land v \ge y\}$

not(x>y)

$$y::\{v:Int | v=y\}$$

 $v=y \Rightarrow v \ge x \land v \ge y$

 $x::\{v:Int | v \ge x \land v \ge y\}$

```
max::x:Int-> y:Int -> \{v:Int \mid v \ge x \land v \ge y\}
max x y = if x > y then x else y
```

```
max::x:Int-> y:Int -> \{v:Int \mid v \ge x \land v \ge y\}
max x y = if x > y then x else y
```

max 8 12 ::
$$\{ v : Int | v > 0 \}$$

```
max::x:Int-> y:Int -> \{v:Int \mid v \ge x \land v \ge y\}
max x y = if x > y then x else y
```

We get

max $3.5 :: \{ v : Int | v \ge 5 \}$

We want

max 3 5 :: { v : Int | $v \ge 5 \land odd \lor$ }₈₅

Problem:

Information of Input Refinements is Lost

```
We get
max 3 5 :: \{ v : Int | v \ge 5 \}
We want
max 3 5 :: \{ v : Int | v \ge 5 \land odd v \}_{86}
```

Our Solution

Problem:

Information of Input Refinements is Lost

Solution:

Parameterize Type Over Input Refinement

Solution:

Parameterize Type Over Input Refinement

```
max::forall <p::Int -> Prop>. refinement

Int -> Int -> Int
max x y = if x > y then x else y
```

```
max::forall <p::Int -> Prop>. refinement

Int -> Int -> Int
max x y = if x > y then x else y
```

```
b = max [(>0)] 8 12 -- assert (b > 0)
c = max [odd] 3 5 -- assert (odd c)
```

```
b = max [(>0)] 8 12 -- assert (b > 0)
c = max [odd] 3 5 -- assert (odd c)
```

```
max :: forall  Prop>.
Int -> Int</p
```

```
b = max [(>0)] 8 12 -- assert (b > 0)
c = max [odd] 3 5 -- assert (odd c)
```

```
max [odd] ::
Int -> Int [odd/p]
```

```
b = max [(>0)] 8 12 -- assert (b > 0)
c = max [odd] 3 5 -- assert (odd c)
```

```
max [odd] ::
{v:Int | odd v} -> {v:Int | odd v} -> {v:Int | odd v}
```

```
b = max [(>0)] 8 12 -- assert (b > 0)
c = max [odd] 3 5 -- assert (odd c)
```

```
max [odd] ::
```

 $\{v:Int \mid odd v\} \rightarrow \{v:Int \mid odd v\} \rightarrow \{v:Int \mid odd v\}$

3 :: { v:**Int** | odd v }

```
c = max [odd] 3 5 -- assert (odd c)

max [odd] 3 ::
{v:Int | odd v } -> {v:Int | odd v}
```

```
b = max [(>0)] 8 12 -- assert (b > 0)
c = max [odd] 3 5 -- assert (odd c)
```

```
max [odd] 3 ::
```

5 :: { v:**Int** | odd v }

 $\{v:Int \mid odd v\} \rightarrow \{v:Int \mid odd v\}$

```
b = max [(>0)] 8 12 -- assert (b > 0)
c = max [odd] 3 5 -- assert (odd c)
```

```
max [odd] 3 5 ::
```

5 :: { v:**Int** | odd v }

{v:Int | odd v}

```
b = max [(>0)] 8 12 -- assert (b > 0)
c = max [odd] 3 5 -- assert (odd c)
```

```
max [odd] 3 5 :: {v:Int | odd v}
```

```
max::forall <p::Int -> Prop>. refinement

Int -> Int -> Int
max x y = if x > y then x else y
```

Introduction

Contracts

Liquid Types

Abstract Refinements

Refinements and Type Classes

Inductive Refinements

Indexed Refinements

Introduction

Contracts

Liquid Types

Abstract Refinements

Inductive Refinements

Indexed Refinements

Introduction

Contracts

Liquid Types

Abstract Refinements

Inductive Refinements

Indexed Refinements

``loop f n z =
$$f^n(z)''$$

"\loop f n z =
$$f^n(z)$$
"

```
incr :: Int -> Int
incr n z = loop f n z
where f i acc = acc + 1
```

```
incr :: Int -> Int -> Int
incr n z = loop f n z
where f i acc = acc + 1
```

Question: Does ``incr n z = n+z`` hold?

Answer: Proof by Induction

Inductive Proof

Loop Invariant: R :: (Int, a)

loop iteration

accumulator

Inductive Proof

Loop Invariant: R :: (Int, a)

Base: R(0, z)

Inductive Step: $R(i, acc) \Rightarrow$

R(i+1, fiacc)

Conclusion: R(n, loop f n z)

```
loop :: (Int -> a -> a) -> Int -> a -> a
loop f n z = go 0 z
 where go i acc | i < n = go (i+1) (f i acc)
                   otherwise = acc
                     R :: (Int, a)
                     R(0, z)
                     R(i, acc) \Rightarrow
                        R(i+1, fiacc)
```

 $\mathbb{R}(n, loop f n z)$

 $\mathbb{R}(n, loop f n z)$

```
loop :: (Int -> a -> a) -> Int -> a -> a
loop f n z = go \theta z
where go i acc i < n = go (i+1) (f i acc)
                  otherwise = acc
                   r :: Int -> a -> Prop
R :: (Int, a)
R(0, z)
                  z ::a<r 0>
R(i, acc) \Rightarrow
   R(i+1, f i acc)
```

```
loop :: (Int -> a -> a) -> Int -> a -> a
loop f n z = go 0 z
where go i acc i < n = go (i+1) (f i acc)
                 otherwise = acc
                  r :: Int -> a -> Prop
R :: (Int, a)
R(0, z)
                 z :: a<r 0>
                 f ::i:Int -> a<r i>
R(i, acc) \Rightarrow
                 -> a<r (i+1)>
   R(i+1, f i acc)
```

R(n, loop f n z)

```
loop :: (Int -> a -> a) -> Int -> a -> a
loop f n z = go 0 z
 where go i acc i < n = go (i+1) (f i acc)
                otherwise = acc
                 r :: Int -> a -> Prop
R :: (Int, a)
R(0, z)
                 z :: a<r 0>
                 f :: i:Int -> a<r i>
R(i, acc) \Rightarrow
   R(i+1, f i acc)
                    -> a<r (i+1)>
R(n, loopfnz) loopfnz::a<r n>
```

```
loop :: (Int -> a -> a) -> Int -> a -> a
loop f n z = go 0 z
where go i acc | i < n = go (i+1) (f i acc)
               otherwise = acc
                 r :: Int -> a -> Prop
                 z :: a<r 0>
                 f :: i:Int -> a<r i>
```

loop f n z :: a<r n>

-> a<r (i+1)>

```
loop
    :: forall <r :: Int -> a -> Prop>.
        f:(i:Int -> a<r i> -> a<r (i+1)>)
    -> n:{ v:Int | v>=0 }
    -> z:a<r 0>
    -> a<r n>
```

```
incr acc
        incr :: Int -> Int -> Int
                                      by 1
        incr n z = loop f n z
          where f i acc = acc + 1'
         R(i, acc) \Leftrightarrow acc = i + z
loop
  :: forall <r :: Int -> a -> Prop>.
      f:(i:Int -> a<r i> -> a<r (i+1)>)
  -> n:{ v:Int | v>=0 }
  -> z:a<r 0>
  -> a<r n>
```

```
incr :: Int -> Int -> Int
       incr n z = loop f n z
         where f i acc = acc + 1
        R(i, acc) \Leftrightarrow acc = i + z
loop [{\i acc -> acc = i + z}]
  :: f:(i:Int -> {v:a  v=i+z}
                -> \{v:a | v=(i+1)+z\}
 -> n:{v:Int | v>=0}
 -> z:Int
 -> {v:Int | v=n+z}
```

```
incr :: Int -> Int -> Int
        incr n z = loop f n z
          where f i acc = acc + 1
         R(i, acc) \Leftrightarrow acc = i + z
loop [\{ i \ acc -> acc = i + z \}]
  :: f:(i:Int -> {v:a | v=i+z}
-> {v:a | v=(i+1)+z})
 -> n:{v:Int | v>=0}
 -> z:Int
 -> {v:Int | v=n+z}
```

```
incr :: Int -> Int -> Int
       incr n z = loop f n z
         where f i acc = acc + 1
         R(i, acc) \Leftrightarrow acc = i + z
loop [{\i acc -> acc = i + z}] f
  :: n:{v:Int | v>=0}
  -> z:Int
  -> {v:Int | v=n+z}
```

```
incr :: Int -> Int -> Int
        incr n z = loop f n z
          where f i acc = acc + 1
         R(i, acc) \Leftrightarrow acc = i + z
loop [{\i acc -> acc = i + z}] f
  :: n:{v:Int | v>=0}
  -> z:Int
  -> {v:Int | v=n+z}
```

```
incr :: Int -> Int -> Int
     incr n z = loop f n z
       where f i acc = acc + 1
       R(i, acc) \Leftrightarrow acc = i + z
:: n:{v:Int | v>=0}
-> z:Int
-> {v:Int | v=n+z}
```

incr

```
incr :: n:{v:Int | v>=0}
    -> z:Int
    -> {v:Int | v=n+z}
incr n z = loop f n z
where f i acc = acc + 1
```

Question: Does ``incr n z = n+z`` hold?

Answer: Yes

Introduction

Contracts

Liquid Types

Abstract Refinements

Inductive Refinements

Indexed Refinements

Recursive Refinements

Introduction

Contracts

Liquid Types

Abstract Refinements

Inductive Refinements

Indexed Refinements

Recursive Refinements

A Vector Data Type

Goal: Encode the domain of Vector

```
Abstract
             refinement
data Vec <d::Int -> Prop> a
  = V {f :: i:Int<d> -> a}
           index
         satisfies d
```

"vector defined on positive integers"

$$Vec < {\{ v -> v > 0 \}} > a$$

"vector defined only on 1"

Vec
$$<\{\v -> v = 1\}> a$$

"vector defined on the range 0 .. n"

Vec
$$<\{\v -> 0 \le v < n\}>$$
 a

Abstract refinement

value satisfies r at i

"vector defined on **positive integers**, with **values equal** to their **index**"

Vec
$$\{ v -> v > 0 \}$$
, $\{ i v -> i = v \} > Int$

"vector defined only on 1, with values equal to 12"

Vec
$$\{ v -> v = 1 \}$$
, $\{ v -> v = 12 \} > Int$

Null Terminating Strings

"vector defined on the range 0 .. n, with its last value equal to `\0`"

Vec
$$\{ v -> 0 \le v < n \}$$
,
 $\{ v -> i = n-1 => v = \0 \} > Char$

Fibonacci Memoization

"vector defined on **positives**, with i-th value equal to **zero or i-th fibonacci**"

Vec
$$\{ \{v \to 0 \le v \}, \{ \{v \to v = 0 = v = fib(i) \} \} \}$$

Using Vectors

• Abstract over d and r in vector op (get, set, ...)

• Specify vector properties (NullTerm, FibV, ...)

Verify that user functions preserve properties

Using Vectors

```
type NullTerm n =
 Vec <{\v -> 0<=v<n},
       \{ i v \rightarrow i=n-1 => v=' (0') \} > Char
upperCase
  :: n:{v: Int | v>0}
  -> NullTerm n
  -> NullTerm n
upperCase n s = ucs ∅ s where
ucs i s =
  case get i s of
  '\0' -> S
  c -> ucs (i + 1) (set i (toUpper c) s)
```

Introduction

Contracts

Liquid Types

Abstract Refinements

Inductive Refinements

Indexed Refinements

Recursive Refinements

Introduction

Contracts

Liquid Types

Abstract Refinements

Inductive Refinements

Indexed Refinements

Recursive Refinements

List Data Type

```
data List a
= N
| C (h :: a) (tl :: List a)
```

Goal: Relate tail elements with the head

Recursive Refinements

Abstract refinement

```
data List a  a -> Prop>
= N
| C (h :: a) (tl :: List  (a))
```

tail elements satisfy p at h

Unfolding Recursive Refinements

```
data List a  a -> Prop>
= N
| C (h :: a) (tl :: List  (a))
```

Unfolding Recursive Refinements

```
data List a  a -> Prop>
= N
| C (h :: a) (tl :: List  (a))
```

Unfolding Recursive Refinements (1/3)

```
data List a  a -> Prop>
= N
| C (h :: a) (tl :: List  (a))
```

```
h<sub>1</sub> :: a
tl<sub>1</sub> :: List  (a1</sub>>)
```

Unfolding Recursive Refinements (2/3)

```
data List a  a -> Prop>
= N
| C (h :: a) (tl :: List  (a))
```

Unfolding Recursive Refinements (3/3)

```
data List a  a -> Prop>
= N
| C (h :: a) (tl :: List  (a))
```

```
h_1 :: a
h_2 :: a 
h_3 :: a 
N :: List  (a )
```

Increasing Lists

```
data List a  a -> Prop>
= N
| C (h :: a) (tl :: List  (a))
```

type IncrLa = List $<{ \mid hd v \rightarrow hd \leq v }> a$

h₁ 'C' h₂ 'C' h₃ 'C' N :: IncrL a

Increasing Lists

```
data List a  a -> Prop>
    = N
     C (h :: a) (tl :: List  (a))
 type IncrLa = List <{ \mid hd v \rightarrow hd \leq v }> a
      h<sub>1</sub> 'C' h<sub>2</sub> 'C' h<sub>3</sub> 'C' N :: IncrL a
h₁ :: a
h_2 :: \{ v:a \mid h_1 \le v \}
h_3 :: \{ v:a \mid h_1 \le v \land h_2 \le v \}
N :: IncrL { v:a | h_1 \le v \land h_2 \le v \land h_3 \le v }
```

Sorting Lists

```
data List a  a -> Prop>
 = N
  C (h :: a) (tl :: List  (a))
type IncrLa = List <\{ hd v -> hd \le v \}> a
insert :: y: List a -> IncrL a -> IncrL a
insert y N = N
insert y(x)^{C}xs y < x = y^{C}x^{C}xs
                   otherwise = y `C` insert y xs
insertSort :: xs:[a] -> IncrL a
insertSort = foldr insert N
```

Introduction

Contracts

Liquid Types

Abstract Refinements

Inductive Refinements

Indexed Refinements

Recursive Refinements

Introduction

Contracts

Liquid Types

Abstract Refinements

Inductive Refinements

Indexed Refinements

Recursive Refinements

Introduction

Contracts

Liquid Types

Abstract Refinements

Abstract Refinements

```
LiquidHaskell = Liquid Types
+ Abstract Refinements
```

Increase expressiveness without complexity

Relate arguments with result, i.e., max
Relate expressions inside a structure, i.e., Vec, List
Express inductive properties, i.e., loop

Conclusion

Refinement Types for Functional Specifications

Verification

At run Time (Contracts)

- Expressive
- X Run time checks

Statically (Liquid Types)

Abstract Refinements

Increase expressiveness without complexity

Thank you!