2008 Physics

AI24BTECH11003 - Badde Vijaya Sreyas

- 18) An O¹⁶ nucleus is spherical and has a charge radius R and a volume $V = \frac{4}{3}\pi R^3$. According to the empirical observations of the charge radii, the volume of the ${}_{54}Xe^{128}$ nucleus, assumed to be spherical, is
 - a) 8V

b) 2V

- c) 6.75*V*
- d) 1.89V
- 19) A common emitter transistor amplifier circuit is operated under a fixed bias. In this circuit, the operating point
 - a) remains fixed with an increase in temperature.
 - b) moves towards cut-off region with an increase in temperature.
 - c) moves towards saturation region with a decrease in temperature.
 - d) moves towards saturation region with an increase in temperature
- 20) Under normal operating conditions, the gate terminal of an *n*-channel junction field effect transistor (JFET) and an n-channel metal oxide semiconductor field effect transistor (MOFSET) are
 - a) both biased with positive potentials
 - b) both biased with negative potentials
 - c) biased with positive and negative potentials, respectively
 - d) biased with negative and positive potentials, respectively
- 21) The eigenvalues of the matrix $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

- a) $\frac{1}{2} \left(\sqrt{3} \pm i \right)$ when $\theta = 45^{\circ}$ c) ± 1 since the matrix is unitary b) $\frac{1}{2} \left(\sqrt{3} \pm i \right)$ when $\theta = 30^{\circ}$ d) $\frac{1}{\sqrt{2}} (1 \pm i)$ when $\theta = 30^{\circ}$
- 22) If the Fourier transform $F[\delta(x-\alpha)] = \exp(-i2\pi va)$, then $F^{-1}(\cos 2\pi av)$ will correspond to
 - a) $\delta(x-\alpha) \delta(x+\alpha)$

c) $\frac{1}{2} [\delta(x-\alpha) + i\delta(x+\alpha)]$ d) $\frac{1}{2} [\delta(x-\alpha) + \delta(x+\alpha)]$

b) a constant

- 23) If $I = \oint_C dz \ln(z)$, where C is the unit circle taken anticlockwise and $\ln(z)$ is the principal branch of the Logarithmic function, which of the following is correct?

- a) I = 0 by residue theorem c) $I \neq 0$ b) I is not defined since $\ln(z)$ has a branch d) $\oint dz \ln(z^2) = 2I$ cut

24) The value of $\int_{z}^{t} \pi (z+1) dz$ is

a) 0

b) $2\pi i$

- c) $-2\pi i$
- d) $(-1 + 2i)\pi$
- 25) Consider the Bessel equation v = 0, $\frac{d^2y}{dz^2} + \frac{1}{z}\frac{dy}{dz} + y = 0$. Which one of the following statements is correct?
 - a) Equation has regular singular points at z = 0 and $z = \infty$
 - b) Equation has 2 linearly independent solutions that are entire
 - c) Equation has an entire solution and a second linearly independent solution singular at z = 0.
 - d) Limit $z \to \infty$, taken along x axis, exists for both the linearly independent solutions.
- 26) Under a certain rotation of coordinate axes, a rank-1 tensor v_a (a = 1, 2, 3) transforms according to the orthogonal transformation defined by the relations $v_1' = \frac{1}{\sqrt{2}} (v_1 + v_2)$; $v_2' =$ $\frac{1}{\sqrt{2}}(-\nu_1+\nu_2)$; $\nu_3'=\nu_3$. Under the same rotation, a rank-2 tensor $T_{a,b}$ would transform such that
 - a) $T'_{1,1} = T_{1,1}T_{1,2}$ b) $T'_{1,3} = T_{1,3}$

c) $T'_{1,1} = T_{1,1} + 2T_{2,2} - T_{2,1}$

- d) $T'_{1,1} = \frac{1}{2} (T_{1,1} + T_{2,2} + T_{1,2} + T_{2,1})$
- 27) The Lagrangian of a system is given by $L = \frac{1}{2}\dot{q}^2 + q\dot{q} \frac{1}{2}q^2$. It describes the motion of
 - a) a harmonic oscillator

- c) an anharmonic oscillator
- b) a damped harmonic oscillator
- d) a system with unbounded motion
- 28) The moment of inertia tensor of a rigid body is given by $I = \begin{pmatrix} 8 & 0 & -4 \\ 0 & 4 & 0 \\ -4 & 0 & 8 \end{pmatrix}$. The magnitude of the moment of inertia about an axis $\hat{n} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}, 0\right)$ is
 - a) 6

- 29) A hoop of radius R is pivoted at a point on the circumference. The period of small oscillations in the plane of the hoop is
 - a) $2\pi \sqrt{\frac{2R}{\sigma}}$
- b) $2\pi \sqrt{\frac{R}{4g}}$ c) $2\pi \sqrt{\frac{R}{g}}$
- d) $2\pi \sqrt{\frac{9R}{7a}}$
- 30) A mass m is constrained to move on a horizontal frictionless surface. It is set in circular motion with radius r_0 and angular speed ω_0 by an applied force \overrightarrow{F} communicated through an inextensible thread that passes through a hole on the surface as shown in the figure. This force is suddenly doubled. The magnitude of radial velocity of the mass

- a) increases till the mass falls into the hole
- b) decreases till the mass falls into the hole
- c) remains constant
- d) becomes zero at a radius r_1 where $0 < r_1 < r_0$
- 31) For a simple harmonic oscillator the Lagrangian is given by $L = \frac{1}{2}\dot{q}^2 \frac{1}{2}q^2$. If A(p,q) = $\frac{p+iq}{\sqrt{2}}$ and H(p,q) is the Hamiltonian of the system, the Poisson bracket $\{\bar{A}(p,q), H(p,q)\}$ is given by
 - a) iA(p,q)
- b) $A^*(p,q)$ c) $-iA^*(p,q)$ d) -iA(p,q)
- 32) A plane electromagnetic wave is given by $E_0(\hat{x} + e^{i\delta}\hat{y}) \exp\{i(kz \omega t)\}$. At a given location, the number of times \hat{E} vanishes in one second is
 - a) An integer near $\frac{\omega}{n}$ when $\delta = n\pi$ and zero when $\delta \neq n\pi$, n is integer

 - b) An integer near $\frac{\pi}{2\pi}$ and is independent of δ c) An integer near $\frac{\omega}{2\pi}$ when $\delta = n\pi$ and zero when $\delta \neq n\pi$, n is integer d) An integer near $\frac{\omega}{2\pi}$ and is independent of δ
- 33) A dielectric sphere is placed in a uniform electrical field directed along the positive y-axis. Which of the following represents correct equipotential surfaces?

34) A rod of length L with uniform charge density λ per unit length is in the xy-plane and rotating about z-axis passing through one of its edge with an angular velocity $\vec{\omega}$ as shown in the figure below. $(\hat{r}, \hat{\phi}, \hat{z})$ refer to the unit vectors at Q, \overrightarrow{A} is the vector potential at a distance d from the origin O along z-axis for d >> L and \overrightarrow{J} is the current density due to the motion of the rod. Which of the following statements is correct?

- a) \overrightarrow{J} along \hat{r} ; \overrightarrow{A} along \hat{z} ; $|\overrightarrow{A}| \propto \frac{1}{d}$ b) \overrightarrow{J} along $\hat{\phi}$; $|\overrightarrow{A}|$ along $\hat{\phi}$; $|\overrightarrow{A}| \propto \frac{1}{d^2}$
- c) \overrightarrow{J} along \hat{r} ; \overrightarrow{A} along \hat{z} ; $|\overrightarrow{A}| \propto \frac{1}{d^2}$ d) \overrightarrow{J} along $\hat{\phi}$; $|\overrightarrow{A}| \propto \frac{1}{d}$