Section 6.2- Inverse Functions and Their Derivatives

Name/ Uid: Date:	
------------------	--

Definition. A function f is **one-to-one** if $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$. In other words, f is one-to-one if no two distinct inputs give the same output.

The graph of a one-to-one function passes the **horizontal line test**: every horizontal line intersects the graph at most once.

Theorem 1. If f is strictly monotonic on its domain (either strictly decreasing or strictly increasing), then f is one-to-one.

Example 1. Determine whether or not the following functions are one-to-one:

(a)
$$f(x) = x^2$$

(b)
$$f(x) = x^3 + x - 1$$
.

(c)
$$f(x) = \sqrt{\frac{1}{x-3}}, \quad x > 3.$$

Definition. If f is one-to-one with domain D and range R, the **inverse** of f (or f-inverse) is the function with domain R and range D, denoted f^{-1} , which satisfies

$$f^{-1}(f(x)) = x$$
 and $f(f^{-1}(y)) = y$

whenever $x \in D$ and $y \in R$.

Example 2. Use the definition above to show that the function $g(x) = \frac{1}{3}x - 6$ is the inverse to f(x) = 3x + 18.

Finding A Formula for the Inverse

It is not always possible to find a formula for the inverse of a given one-to-one function f, but in simple cases you can use the following procedure:

- 1. Write y = f(x).
- 2. Switch x and y to make the equation x = f(y).

3. Solve for y. The resulting function is f-inverse, i.e. $y = f^{-1}(x)$.

Example 3. Use the procedure above to find $f^{-1}(x)$ for the given f(x).

(a)
$$f(x) = 5x - 3$$
.

(b)
$$f(x) = x^2 - 2x + 9$$
, $x > 1$ Hint: Complete the square!

(c)
$$f(x) = \sqrt{x}$$
 (Be careful!)

The Derivative of the Inverse

Theorem 2 (Inverse Function Theorem). Suppose f is differentiable and strictly monotonic on the interval I. Suppose that x is a point in the range of f such that $f'(f^{-1}(x)) \neq 0$. Then f^{-1} is differentiable at x and

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}.$$

Note: This formula is particularly useful when you can't explicitly solve for $f^{-1}(x)$.

Example 4. Use the Inverse Function Theorem to find $(f^{-1})'(1)$ for

(a)
$$f(x) = x^3 + x - 1$$
.

(b)
$$f(x) = \tan x$$
, $-\frac{\pi}{2} < x < \frac{\pi}{2}$.