JUNE 27, 2020 Hrant P. Hratchian

Useful Integrals and Identities

1. INTEGRALS

Indefinite Integrals

Note that in this section, constants of integration are taken to be equal to zero. Therefore, if taking indefinite integrals one must add constants of integration to the provided expressions.

$$\int \sin(ax)dx = -\frac{1}{a}\cos(ax) \tag{1.1}$$

$$\int \cos(ax)dx = -\frac{1}{a}\sin(ax) \tag{1.2}$$

$$\int x \sin(x) dx = \sin(x) - x \cos(x)$$
 (1.3)

$$\int \sin(x)\cos(x)dx = \frac{\sin^2(x)}{2} = -\frac{\cos^2(x)}{2}$$
 (1.4)

$$\int \sin^2(x) dx = \frac{x}{2} - \frac{\sin(2x)}{4} = \frac{x}{2} - \frac{\sin(x)\cos(x)}{2}$$
 (1.5)

$$\int \sin^2(ax) dx = \frac{x}{2} - \frac{\sin(2ax)}{4a} = \frac{x}{2} - \frac{\sin(ax)\cos(ax)}{2a}$$
 (1.6)

$$\int x \sin^2(ax) dx = \frac{x^2}{4} - \frac{x \sin(2ax)}{4a} - \frac{\cos(2ax)}{8a^2}$$
 (1.7)

$$\int x \sin(ax) \sin(bx) dx = \frac{1}{2} \left\{ \frac{\cos[(a-b)x]}{(a-b)^2} - \frac{\cos[(a+b)x]}{(a+b)^2} \right\} \qquad a \neq b$$
 (1.8)

$$\int x^2 \sin^2(ax) dx = \frac{x^3}{6} - \left(\frac{x^2}{4a} - \frac{1}{8a^3}\right) \sin(2ax) - \frac{x \cos(2ax)}{4a^2}$$
 (1.9)

$$\int xe^{ax}dx = e^{ax}\left(\frac{x}{a} - \frac{1}{a^2}\right) \tag{1.10}$$

$$\int x^2 e^{ax} dx = e^{ax} \left[\frac{x^2}{a} - \frac{2x}{a^2} + \frac{2}{a^3} \right]$$
 (1.11)

Integrals & Identities Hrant P. Hratchian

Definite Integrals

$$\int_0^\infty x^n e^{-ax} dx = \frac{n!}{a^{n+1}} \qquad (n \text{ is a positive integer.})$$
 (1.12)

$$\int_0^\infty e^{-ax^2} dx = \left(\frac{\pi}{4a}\right)^{1/2} \tag{1.13}$$

$$\int_0^\infty x^{2n} e^{-ax^2} dx = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2^{n+1} a^n} \left(\frac{\pi}{a}\right)^{1/2} \qquad (n \text{ is a positive integer.})$$
 (1.14)

$$\int_0^\infty x^{2n+1} e^{-ax^2} dx = \frac{n!}{2a^{n+1}} \qquad (n \text{ is zero or any positive integer.})$$
 (1.15)

2. TRIG IDENTITIES

General Identities

$$1 = \cos^2 \theta + \sin^2 \theta \tag{2.16}$$

$$e^{\pm i\theta} = \cos\theta \pm i\sin\theta \tag{2.17}$$

Double- and Half-Angle Trig Identities

$$cos(2\theta) = cos^{2} \theta - sin^{2} \theta$$

$$= 2 cos^{2} \theta - 1$$

$$= 1 - 2 sin^{2} \theta$$

$$= \frac{1 - tan^{2} \theta}{1 + tan^{2} \theta}$$
(2.18)

$$\sin(2\theta) = 2\cos\theta\sin\theta\tag{2.19}$$

$$\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta} \tag{2.20}$$

$$\cot(2\theta) = \frac{\cot^2 \theta - 1}{2 \cot \theta} \tag{2.21}$$

Integrals & Identities Hrant P. Hratchian

$$\cos\left(\frac{\theta}{2}\right) = \operatorname{sgn}\left(\pi + \theta + 4\pi \left\lfloor \frac{\pi - \theta}{4\pi} \right\rfloor\right) \sqrt{\frac{1 + \cos \theta}{2}}$$

$$\sin\left(\frac{\theta}{2}\right) = \operatorname{sgn}\left(2\pi - \theta + 4\pi \left\lfloor \frac{\theta}{4\pi} \right\rfloor\right) \sqrt{\frac{1 - \cos \theta}{2}}$$

$$\tan\left(\frac{\theta}{2}\right) = \csc \theta - \cot \theta$$

$$= \pm \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}}$$

$$= \frac{\sin \theta}{1 + \cos \theta}$$

$$= \frac{1 - \cos \theta}{\sin \theta}$$

$$= -1 \pm \sqrt{\frac{1 + \tan^2 \theta}{\tan \theta}}$$

$$= \frac{\tan \theta}{1 + \cos \theta}$$

$$= \frac{\tan \theta}{1 + \cos \theta}$$

$$= (2.24)$$

Product-Addition/Subtraction Trig Identities

$$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha - \beta) + \cos(\alpha + \beta)]$$
 (2.25)

$$\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$$
 (2.26)

$$\tan \alpha \tan \beta = \frac{\cos(\alpha - \beta) - \cos(\alpha + \beta)}{\cos(\alpha - \beta) + \cos(\alpha + \beta)}$$
 (2.27)

$$\cos \alpha \sin \beta = \frac{1}{2} [\sin(\alpha + \beta) - \sin(\alpha - \beta)]$$
 (2.28)

$$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$$
 (2.29)