Switched Gain Control

John Hung

ELEC-7560

System diagram

Consider the second-order oscillator:

$$\ddot{\theta} + g = 0$$

Block diagram:

Characteristic equation roots: $s=\pm j\sqrt{g}$

Phase portrait

Consider two cases of parameter g:

Natural responses vs. time

Consider a switched parameter g

Define a "switching function" $\sigma = \theta \dot{\theta}$. Choose parameter g as:

$$g = \begin{cases} > 1 &, \sigma > 0 \\ < 1 &, \sigma < 0 \end{cases}$$

Phase portraits with switched parameter g

Simulation outcomes

$$g = \begin{cases} 5, \sigma > 0 \\ 0.5, \sigma < 0 \end{cases}$$

Simulated phase portrait

Some observations

- ▶ Natural responses with fixed gain g are stable, but not asymptotically stable.
- ▶ Responses using switching gain *g* are asympotically stable!
- Switching "surface" is defined by the equation $\sigma = 0$.
- Gain switches when σ changes sign.
- Vector fields near the surface are defined by the process.

Q1: Are other switching surfaces possible?

Q2: Can vector fields near the surface be changed?