Real Numbers

Many real numbers cannot be represented exactly.

```
In [1]: 1./49*49
0.999999999999999
```

- The result should be 1.0
- Don't expect real numbers used in Python to be an exact representation of the number, it may be exact or it may be very close.
- The integer part will be exact but the fractional part may not be exact.

- Quite often a real number will be accurate to a certain number of decimal places.
- A temperature reading from a sensor may be accurate to 2 decimal places. (accuracy)
- Such a number should only be displayed with two decimal places, any more decimal places is misleading. (precision)
- In pure math, values may have many more digits of accuracy than can be stored in a real number in a program.
- The value of such a number stored in a real number is an approximation to the actual number and should be displayed with as many digits as possible.

Complex Numbers

- A complex number arises from trying to take the square root of a negative number.
- e.g. $\sqrt{-2}$ =?
- In math i represents -1 Therefore -2= 2_{i^2} = ± 2i A complex number has a real part and an imaginary part typically written as $\mathbf{a} + \mathbf{ib}$ or $\mathbf{a} + \mathbf{bi}$
- Suppose u = a + bi and v = c +di Then u == v if and only if a == c and b == d • -u = -a - bi

- u* = a bi (complex conjugate)
- $u + v = \sqrt{(a + c)} + (b + d)i \cdot u v = (a c) + (b d)i$
- uv = (ac bd) + (bc + ad)i u/v = (ac + bd)/(c² + d²) + (bc ad) /(c² + d²) i |u| = $a_2 + b_2$ (magnitude) which is abs(u)
- Solving a quadratic equation often leads to roots that are complex numbers.
- $ax^2 + bx + c = 0$ The roots are: $x = -b \pm b2 4ac$
- If b²-4ac < 0 then the roots are complex numbers.

 Python supports arithmetic computations with complex numbers but uses 1j (or j) instead of i

```
for -1
In [1]: a = 3 + 2j
In [2]: print(a)
(3+2j)
In [3]: print(type(a))
<class 'complex'>
In [4]: b = 4
In [5]: c = 3 + bj
NameError: name 'bj' is not defined
In [6]: c = 3 + b * j
NameError: name 'j' is not defined
In [7]: c = 3 + b * 1j
In [8]: print(c)
(3+4j)
```

```
In [9]: c = complex(3, b)
In [10]: print(c)
(3+4j)
In [1]: a = -2 + 3j
In [2]: b = 4.5 - 1.2j
In [3]: print(a * b)
(-5.4+15.9j)
• Real part is -2\times4.5 + 3j\times-1.2j = -9.0 + -3.6j^2
  = -9.0 + -3.6 \times -1 = -9.0 + 3.6 = -5.4
• Imaginary part is -2 \times -1.2 + 3 \times 4.5 = 2.4 +
  13.5
  = 15.9
In [4]: print(a/b)
(-0.5809128630705394+0.5117565698478561j)
In [5]: print(a.real)
```

```
-2.0
In [6]: print(a.imag)
3.0
In [1]: a = -2 + 3j
In [2]: from math import sin
In [3]: s = sin(a)
TypeError: can't convert complex to float
In [4]: from cmath import sin, asin
In [5]: c1 = sin(8j)
In [6]: print(c1)
1490.4788257895502j
In [7]: c2 = asin(c1)
In [8]: print(c2)
8 j
```

cmath functions always return complex numbers

 Would like functions that return a real number when the result is a real number and return a complex number when the result is a complex number.

```
In [1]: from numpy.lib.scimath import sqrt
In [2]: print(sqrt(4))
2.0
In [3]: print(sqrt(-4))
2j
In [4]: from numpy import sin
In [5]: print(sin(1.57))
0.99999968293183461
In [6]: print(sin(1.57j))
```

2.2993015057090789j

NumPy is the fundamental package for scientific computing with **Python**.

- Find the roots of the equation $f(x) = ax^2 + bx + c$, where a = 3, b = 5, c = 10.
- For this example b² 4ac is negative and the roots will be complex numbers.

- Find the roots of the equation where $f(x) = ax^2 + bx + c$, where a = 1, b = 6, c = 5.
- For this example b² 4ac is positive and the roots will be real numbers.

```
In [1]: from numpy.lib.scimath import sqrt
In [2]: a = 1; b = 6; c = 5
In [3]: r1 = (-b + sqrt(b**2 - 4*a*c)) / (2*a)
In [4]: print(r1)
-1.0
In [5]: r2 = (-b - sqrt(b**2 - 4*a*c)) / (2*a)
In [6]: print(r2)
-5.0
```

Is there a better way to find the two roots?

- If you multiply the expressions for the two roots you get: r1 * r2 = c / a
- Let r1 be the root with the larger magnitude, i.e. abs(r1) > abs(r2), then r2 = (c / a) / r1
- NOTE: the absolute value of the complex number is the same as the magnitude of that number.
- If the smaller magnitude of the two roots is very small the error in computing it using floating point numbers may make this root very inaccurate.
- Dividing c / a by the larger (in magnitude) of the two roots involves fewer operations and is more accurate.

Trajectory of a Ball

 Compute the position of a ball thrown forward at an angle, using the formula:

- $y(x) = x \tan(\theta) 1/(2v_0^2)gx^2/\cos^2(\theta) + y_0$ where x is the horizontal position, g is the force of gravity, v_0 is the initial velocity, θ is the angle relative to the x axis and y_0 is the initial height of the ball when x = 0.
- As we are implementing a solution to a formula we should use the names used in the formula as variable names.
- The solution is in the script named trajectory.py

In class demo

```
""" % (G, v0, y0, theta, x)) theta = theta * pi /
180 # convert theta to radians

# calculate the vertical position of the ball and display the
result y = x * tan(theta) - 1 / (2 * v0**2) * G * x**2 /
cos(theta)**2 + y0 print('The position of the ball is (%.2f,%.4f)'
% (x, y)) print("""
Programmed by Stew Dent.
Date: %s.
End of processing.""" % ctime())
```

The output from the program is:

```
Enter the inital velocity in m/s: 5
Enter the initial height in m: 1
Enter the initial angle in degrees: 60
Enter the distance x in m: .5

gravity = 9.81 m/s^2
v0 = 5.0 m/s
y0 = 1.0 m
theta = 60
```

```
degrees x =
0.5 m
```

The position of the ball is (0.50, 1.6698)

```
Programmed by Stew Dent.
Date: Wed Apr 25 07:45:41 2012.
End of processing.
```

 Suppose we wish to display a conversion table showing temperatures in degrees Celsius and Fahrenheit as shown below.

CelsiusFahrenheit

-40	-40
-35	-31
-30	-22
-25	-13
-20	-4
-15	5
-10	14
-5	23
0	32
5	41

10	50
15	59
20	68
25	77
30	86
35	95
40	104

- You don't want to have to type in separate statements to compute and display the values in each line of the output.
- We want to have the same statements in the program executed over and over again until every line in the table has been displayed.
- To do this we need to have a loop in the program.
- A while loop is of the form: while condition:
 - one or more indented statements

- Notice the colon after the condition, this is required.
- The solution is in the script named toFahrenheitLoop.py (In class demo)

```
from time import ctime
print('----
celsius = float(input(
          'Enter the first celsius temperature: '))
stop = float(input(
       'Enter the last celsius temperature: '))
step = float(input()
       'Enter the difference between temperatures: '))
print("Celsius\tFahrenheit") # display a heading
while celsius <= stop:
    fahrenheit = (9/5)*celsius + 32
    print("%7.2f\t%10.2f" % (celsius, fahrenheit))
    celsius += step
print("""
```

```
Programmed by Stew Dent.
Date: %s.
End of processing.""" % ctime())
```

- celsius <= stop is the condition or relational expression, where <= is a relational operator that means less than or equal to.
- The condition celsius <= stop is either True or False
- Consider the following statements:

```
celsius = -40
DELTA_T = 5 while
celsius <= 40:
    fahrenheit = (9/5)*celsius + 32 print("%
        7g\t% 10g" % (celsius, fahrenheit)) celsius
    += DELTA_T
print('first statement after the loop')</pre>
```

The indented statements form the body of the loop.

- As long as the the value of celsius is less than or equal to 40, the condition celsius <= 40 is True, and the statements in the body of the loop are executed.
- When **celsius** becomes greater than 40 the condition is no longer **True** (it becomes **False**) and the first statement following the loop is executed, which is the print statement that is NOT indented.
- Consider the following statements:

```
celsius = 50
DELTA_T = 5 while
celsius <= 40:
    fahrenheit = (9/5)*celsius + 32
    print("% 7g\t% 10g" % (celsius,
fahrenheit)) celsius
    += DELTA_T
print('first statement after the loop')</pre>
```

- The value of celsius is 50 before the while statement.
- As 50 is greater than 40 (not less than or equal to 40) the condition celsius <= 40 is False and the statements in the body of the loop are <u>never</u> executed.
- The statements in the body of a while loop are executed only if the condition is True.

Relational Operators

Operator	Meaning	Example
==	equals	a == b
!=	not equals	a != b
<	less than	a < b
<=	less than or equal to	a <= b
>	greater than	a >b

- Each relational operator requires two operands to form a relational expression.
- The value of a relational expression such as a==b is a boolean value, either True or False

```
In [1]: a = 10
```

In
$$[2]$$
: b = 20

```
In [3]: print(a == b)
```

False

```
In [4]: print(a != b)
```

True

```
In [5]: print(a < b)
```

True

True

```
In [7]: print(a > b)
```

False

```
In [8]: print(a >= b)
```

False

Boolean Operators

Operator	Example
and	e1 and e2
or	e1 or e2
not	not e1

- e1 and e2 must evaluate to either True or False
- e1 and e2 are often relational expressions

 e1 or e2 may be a variable holding a boolean value, that is either True or False

Truth Table For and

A	В	A and B
False	False	False
False	True	False
True	False	False
True	True	True

The value of A and B is True if and only if both
 A = True and B = True

Truth Table For or

Α	В	A or B
False	False	False
False	True	True
True	False	True
True	True	True

The value of A or B is False if and only if both
 A = False and B = False.

Truth Table For **not**

Α	not A
False	True

True False

```
In [1]: a = 10
In [2]: b = 20
In [3]: e1 = a == b
In [4]: print(e1)
False
In [5]: e2 = a != b
In [6]: print(e2)
True
In [7]: print(e1 and e2)
False
In [8]: print(e1 or e2)
True
In [1]: a = 10
In [2]: b = 20
In [3]: e1 = a == b
In [4]: e2 = a != b
In [5]: print(e1)
False
In [6]: print(e2)
```

```
True
In [7]: print(not e1)
True
In [8]: print(not e2)
False
In [9]: print(a <= b and a == 10)
True
In [10]: print(a <= b and b <= 10)
False
In [11]: print(0 <= a <= 25) # same as 0<=a and a<=25
True</pre>
```

Summing a Series

$$\sin(x) = x - \underline{x_3} + \underline{x_5} - \underline{x_7} + \dots$$
3! 5! 7!

- $n! = 1 \times 2 \times 3 \times ... \times n-1 \times n$
- $X = X^{1}/1!$

- term₀ = $X^{1}/1!$
- term₁ = -1 × term₀ × $X^2 / (3 \times 2) = -X^3 / 3!$
- term₂ = -1 x term₁ × $X^2/(5 \times 4) = +X^5/5!$
- etc.
- Notice that the divisors increase by 2 for each successive term.
- X must be expressed in radians not degrees.
- In class demo (script sinSumLoop.py)
 from math import pi, sin
 print('-----\n')
 TOLERANCE = 1.0e-17 degrees = float(input("Enter an angle in degrees: ")) x = degrees * pi / 180 factor = 2
 sine = 0.0 term = x xSquared = x * x while abs(term) >
 TOLERANCE:
 sine += term term = -term * xSquared / (factor *
 (factor + 1)) factor += 2 # end while print("""

```
Angle in radians = %g, angle in degrees = %.2f
    Python's value of sin(%.2f) = %.15f
Approximate value of sin(%.2f) = %.15f
Number of terms = %d""" % (x, degrees, degrees, sin(x), degrees, sine, count))
```

Representing Real Numbers Using Integers

- Some computers do not have real numbers.
- Real numbers can be represented using large integers.
- For example suppose 10000000000 is used to represent 1.0 to 10 decimal places.

Number	Representation
1.0	1000000000
0.5	5000000000
0.25	2500000000
0.125	1250000000
0.0625	625000000

 Fractions are represented by integers smaller than the integer that represents 1.

Displaying Integers That Represent Real Numbers

- Suppose we have the number 120987654321 that represents a real number to 10 decimals places.
- To get the integer part of the number divide by 10^{10} . 120987654321 // 10000000000 = 12
- To get the **fractional** part take the **remainder** when dividing by 10^{10} .

```
120987654321 \% 10000000000 = 0987654321
```

- To display the number as a real number print the integer part a decimal point and then the fractional part.
- If we do this in python we get:

12.987654321

- Notice that the leading zero of the fractional part is missing.
- How do we get the leading zero of the fractional part to print?
- We have to compute the number of digits in the fractional part and subtract it from the number of decimal places.
- In our example 987654321 contains 9 digits. To determine this we need to use the *log10* function.

```
In [1]: from math import log10
In [2]: print(log10(987654321))
8.994604968118722
In [3]: print(int(log10(987654321)) + 1)
9  # number of digits in 987654321
In [4]: print(10 - (int(log10(987654321)) + 1))
1  # number of missing leading zeros
```

```
In [5]: print('0' * (10 - (int(log10(987654321)) + 1)))
```

- 0 # the missing zero
- Using variables this is done as follows:

```
In [1]: places = 10
In [2]: num = 120987654321
In [3]: intPart = 120987654321 // 10**places
In [4]: fractPart = 120987654321 %
10**places
In [5]: result = str(intPart) + '.' + '0' *\
   (places - (int(log10(fractPart)) + 1)) +\
   str(fractPart)
In [6]: print(result)
```

Compute the value of e

Compute the value of e to any number of decimal places.

- $term_0 = 1$
- $term_1 = term_0 / 1 = 1 / 1 = 1 / 1!$
- $term_2 = term_1/2 = 1/(1*2) = 1/2!$
- $term_3 = term_2/3 = 1/(1*2*3) = 1/3!$
- The divisor is incremented by 1 for each new term.
- In class demo of computeE.py

```
from time import ctime from math import log10, exp
print('\n-----\n')
places = int(input(
         'Enter the number of decimal places: '))
one = 10**places
extra = 10**4 n =
1 \text{ term} = \text{one } *
extra eee = 0
count = 0
while term > 0: eee
   += term count +=
   1 term = term //
   n n += 1
eee = eee // extra
intPart = eee // one
fracPart = eee % one
```

```
eee = str(intPart) + '.' + '0' * \
     (places - (int(log10(fracPart)) + 1)) \
     + str(fracPart)
print("""
Python's value of e is:\n%.15f\n
e to %d decimal places is:\n%s\n
The number of terms in the series is %d""" \
    % (exp(1), places, eee, count))
Output from the program:
       the number of decimal places: 50
Python's value of e is:
2.718281828459045
e to 50 decimal places is:
```

2.71828182845904523536028747135266249775724709369995

The number of terms in the series is 44

Programmed by Stew Dent Date: Wed May 2 21:38:12 2018 End of processing.

Demo remaining programs.