This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims

LEST AVAILABLE CCTT

- 1. (canceled)
- 2. (currently amended) The glass composition of claim [[1]] 5 having a liquidus temperature of 1100°C or less.
- 3. (currently amended) The glass composition of claim [[1]] $\underline{5}$ having a viscosity at a liquidus temperature of at least 10^5 poise.
- 4. (currently amended) The glass composition of claim [[1]] $\underline{5}$ having a viscosity at a liquidus temperature in excess of 4×10^5 poise.
- 5. (currently amended) [The glass composition of claim 1] A glass composition comprising 59-66 mol % SiO_2 , 15.0-18.0 mol % Al_2O_3 , 8.5-12.0 mol % Na_2O , 2.5-6.5 mol % K_2O , 2.5-9.0 mol % CaO, 0.0-3.0 mol % MgO, 0.0-3.0 mol % SrO, 0.0-3.0 mol % BaO, 0.0-5.0 mol % MgO+SrO+BaO, and 0.0-0.45 mol % B_2O_3 , the glass composition having a linear coefficient of thermal expansion of 80 to 95 x 10^{-7} /°C over a temperature range of 25 to 300°C.
- 6. (original) The glass composition of claim 5 having a linear coefficient of thermal expansion of 87 to 92×10^{-7} /°C over a temperature range of 25 to 300°C.
- 7. (currently amended) The glass composition of claim [[1]] $\underline{5}$ having a strain point greater than 580°C.
- 8. (original) The glass composition of claim 7 having a strain point of at least 640°C.
- 9. (currently amended) The glass composition of claim [[1]] 5 further comprising at least one oxide selected from the group consisting of P₂O₅, Li₂O, Y₂O₃, La₂O₃, and ZnO in a total amount not exceeding 5 mol %.

- 10. (currently amended) The glass composition of claim [[1]] $\underline{5}$ wherein a molar ratio of Na₂O to K₂O is approximately 1.0.
- 11. (currently amended) The glass composition of claim [[1]] 5 wherein a molar ratio of Na₂O to K₂O is in a range from 1.2 to 3.0.
- 12. (currently amended) The glass composition of claim [[1]] $\underline{5}$ comprising 60-65 mol % SiO₂, 15.5-17.0 mol % Al₂O₃, 9.5-11.0 mol % Na₂O, 3.5-5.5 mol % K₂O, 3.5-8.0 mol % CaO, 0.0-2.0 mol % MgO, 0.0-2.0 mol % SrO, 0.0-2.0 mol % BaO, and 0.0-3.0 mol % MgO+SrO+BaO.
- 13. (currently amended) The glass composition of claim [[1]] 5 further comprising at least one oxide selected from the group consisting of P₂O₅, Li₂O, Y₂O₃, La₂O₃, and ZnO in a total amount not exceeding 3 mol %.
- 14. (currently amended) A glass composition comprising 59-66 mol % SiO₂, 15.0-18.0 % Al₂O₃, 8.5-12.0 mol % Na₂O, 2.5-6.5 mol % K₂O, 2.5-9.0 mol % CaO, 0.0-3.0 mol % MgO, 0.0-3.0 mol % SrO, 0.0-3.0 mol % BaO, and 0.0-0.45 mol % B₂O₃, the glass composition exhibiting a linear coefficient of thermal expansion of 80 to 95 x 10^{-7} /°C over a temperature range of 25 to 300°C.
- 15. (original) The glass composition of claim 14, wherein MgO+SrO+BaO are present in a total amount of 0-5 mol %.
- 16. (original) The glass composition of claim 14, comprising 60-65 mol % SiO_2 , 15.5-17.0 mol % Al_2O_3 , 9.5-11.0 mol % Na_2O , 3.5-5.5 mol % K_2O , 3.5-8.0 mol % CaO, 0.0-2.0 mol % MgO, 0.0-2.0 mol % SrO, and 0.0-2.0 mol % BaO.
- 17. (original) The glass composition of claim 16, wherein MgO+SrO+BaO are present in a total amount of 0-3 mol %.

- 18. (previously presented) A glass composition comprising 59-66 mol % SiO_2 , 14.5-18.0 mol % Al_2O_3 , 8.5-12.0 mol % Na_2O , 2.5-6.5 mol % K_2O , 2.5-9.0 mol % CaO, 0.0-3.0 mol % MgO, 0.0-3.0 mol % CaO, 0.0
- 19. (original) The glass composition of claim 18 having a liquidus temperature of 1100°C or less.
- 20. (original) The glass composition of claim 18 having a viscosity at a liquidus temperature of at least 10⁵ poise.
- 21. (original) The glass composition of claim 18 having a viscosity at a liquidus temperature in excess of 4×10^5 poise.
- 22. (original) The glass composition of claim 18 comprising 60-65 mol % SiO_2 , 15.5-17.0 mol % Al_2O_3 , 9.5-11.0 mol % Na_2O_3 , 3.5-5.5 mol % K_2O_3 , 3.5-8.0 mol % CaO_3 , 0.0-2.0 mol % CaO_3 , 0
- 23. (currently amended) A glass substrate for an electronic display device, comprising 59-66 mol % SiO₂, 15.0-18.0 mol % Al₂O₃, 8.5-12.0 mol % Na₂O, 2.5-6.5 mol % K₂O, 2.5-9.0 mol % CaO, 0.0-3.0 mol % MgO, 0.0-3.0 mol % SrO, 0.0-3.0 mol % BaO, 0.0-5.0 mol % MgO+SrO+BaO, and 0.0-0.45 mol % B₂O₃, the glass composition exhibiting a linear coefficient of thermal expansion of 80 to 95 x 10^{-7} /°C over a temperature range of 25 to 300°C.
- 24. (previously presented) A glass substrate for an electronic display device, comprising:
- a flat, transparent glass exhibiting a strain point of at least 640°C and a linear coefficient of thermal expansion of 80 to 95 x 10^{-7} /°C over a temperature range of 25 to 300°C, the glass comprising 59-66 mol % SiO₂, 14.5-18.0 mol % Al₂O₃, 8.5-12.0 mol % Na₂O, 2.5-6.5 mol % K₂O, 2.5-9.0 mol % CaO, 0.0-3.0 mol % MgO, 0.0-0.3 mol % SrO, 0.0-3.0 mol % BaO, 0.0-5.0 mol % MgO+SrO+BaO, and 0.0-0.45 mol % B₂O₃.

25. (currently amended) A method of producing a glass panel for an electronic device, comprising:

melting a glass batch comprising 59-66 mol % SiO_2 , 15.0-18.0 mol % Al_2O_3 , 8.5-12.0 mol % Na_2O , 2.5-6.5 mol % K_2O , 2.5-9.0 mol % CaO, 0.0-3.0 mol % MgO, 0.0-3.0 mol % SrO, 0.0-3.0 mol % BaO, 0.0-5.0 mol % MgO+SrO+BaO, and 0.0-0.45 mol % B_2O_3 ; and

drawing a thin sheet of molten glass from the melt, the thin sheet exhibiting a linear coefficient of thermal expansion of 80 to 95 x 10⁻⁷/°C over a temperature range of 25 to 300°C.

26. (original) The method of claim 25, wherein the glass sheet is drawn by the fusion draw process.

