```
import os
import numpy as np
import pandas as pd
from scipy.stats import skew, kurtosis
from sklearn.datasets import load_diabetes
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import r2_score, mean_squared_error, accuracy_score, roc_auc_score,
confusion_matrix, classification_report
import statsmodels.api as sm
uci = load_diabetes()
df_uci = pd.DataFrame(uci.data, columns=uci.feature_names)
df_uci["target"] = uci.target
pima_path = "diabetes.csv"
if not os.path.exists(pima_path):
  raise FileNotFoundError("Please place 'diabetes.csv' in the same folder as this script.")
df pima = pd.read csv(pima path)
if "Outcome" not in df pima.columns:
  df_pima.rename(columns={df_pima.columns[-1]: "Outcome"}, inplace=True)
def univariate_analysis(df, name):
  print(f"\n===== Univariate Analysis: {name} =====")
  results = []
  for col in df.select_dtypes(include=[np.number]).columns:
    data = df[col].dropna()
    results.append({
      "Feature": col,
```

```
"Count": len(data),
      "Mean": data.mean(),
      "Median": data.median(),
      "Mode": data.mode().iloc[0] if not data.mode().empty else np.nan,
      "Variance": data.var(),
      "Std Dev": data.std(),
      "Skewness": skew(data),
      "Kurtosis": kurtosis(data)
    })
  return pd.DataFrame(results)
uni_uci = univariate_analysis(df_uci, "UCI Diabetes")
uni_pima = univariate_analysis(df_pima, "Pima Indians Diabetes")
print("\n===== Bivariate Analysis: UCI Diabetes (Linear Regression) =====")
X = df_uci[["bmi"]] # using 'bmi' as strongest predictor
y = df_uci["target"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
lin_reg = LinearRegression().fit(X_train, y_train)
y_pred = lin_reg.predict(X_test)
print(f"R2: {r2_score(y_test, y_pred):.3f}")
print(f"RMSE: {np.sqrt(mean_squared_error(y_test, y_pred)):.3f}")
print("\n===== Bivariate Analysis: Pima (Logistic Regression) =====")
X_pima = df_pima[["Glucose"]] # using Glucose as single predictor
y_pima = df_pima["Outcome"]
Xp_train, Xp_test, yp_train, yp_test = train_test_split(X_pima, y_pima, test_size=0.2,
random state=42, stratify=y pima)
log_reg = LogisticRegression(max_iter=1000).fit(Xp_train, yp_train)
yp_pred = log_reg.predict(Xp_test)
yp_prob = log_reg.predict_proba(Xp_test)[:, 1]
```

```
print(f"Accuracy: {accuracy_score(yp_test, yp_pred):.3f}")
print(f"AUC: {roc_auc_score(yp_test, yp_prob):.3f}")
print("\n===== Multiple Regression: UCI Diabetes =====")
X_all = sm.add_constant(df_uci.drop(columns=["target"]))
model = sm.OLS(df_uci["target"], X_all).fit()
print(model.summary())
print("\n===== Multiple Logistic Regression: Pima =====")
X_pima_all = df_pima.drop(columns=["Outcome"])
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X_pima_all)
Xp_train, Xp_test, yp_train, yp_test = train_test_split(X_scaled, y_pima, test_size=0.2,
random_state=42, stratify=y_pima)
log_reg_full = LogisticRegression(max_iter=2000).fit(Xp_train, yp_train)
yp_pred_full = log_reg_full.predict(Xp_test)
yp_prob_full = log_reg_full.predict_proba(Xp_test)[:, 1]
print(f"Accuracy: {accuracy_score(yp_test, yp_pred_full):.3f}")
print(f"AUC: {roc_auc_score(yp_test, yp_prob_full):.3f}")
print(confusion_matrix(yp_test, yp_pred_full))
print(classification_report(yp_test, yp_pred_full))
print("\n===== COMPARISON =====")
print(f"UCI R² (Multiple Regression): {model.rsquared:.3f}")
print(f"Pima Accuracy (Multiple Logistic): {accuracy_score(yp_test, yp_pred_full):.3f}, AUC:
{roc_auc_score(yp_test, yp_prob_full):.3f}")
Output:-
==== Bivariate Analysis: UCI Diabetes (Linear Regression) =====
R<sup>2</sup>: 0.233
RMSE: 63.732
==== Bivariate Analysis: Pima (Logistic Regression) =====
```

Accuracy: 0.708

AUC: 0.767

==== Multiple Regression: UCI Diabetes =====
OLS Regression Results

Dep. Variable:	target	R-squared:	0.518					
Model:	OLS	Adj. R-squared:	0.507					
Method:	Least Squares	F-statistic:	46.27					
Date:	Thu, 11 Sep 2025	Prob (F-statistic):	3.83e-62					
Time:	14:14:01	Log-Likelihood:	-2386.0					
No. Observations:	442	AIC:	4794.					
Df Residuals:	431	BIC:	4839.					
Df Model:	10							
Covariance Type:	nonrobust							
		4 5.141						

	coef	std err	t	P> t	[0.025	0.975]		
const	152.1335	2.576	59.061	0.000	147.071	157.196		
age	-10.0099	59.749	-0.168	0.867	-127.446	107.426		
sex	-239.8156	61.222	-3.917	0.000	-360.147	-119.484		
bmi	519.8459	66.533	7.813	0.000	389.076	650.616		
bp	324.3846	65.422	4.958	0.000	195.799	452.970		
S1	-792.1756	416.680	-1.901	0.058	-1611.153	26.802		
s2	476.7390	339.030	1.406	0.160	-189.620	1143.098		
s3	101.0433	212.531	0.475	0.635	-316.684	518.770		
54	177.0632	161.476	1.097	0.273	-140.315	494.441		
s5	751.2737	171.900	4.370	0.000	413.407	1089.140		
s6	67.6267	65.984	1.025	0.306	-62.064	197.318		
Omnibus:		1.9	506 Durbin	-Watson:		2.029		
Prob(Omni	.bus):	0.4	471 Jarque	-Bera (JB)	:	1.404		
Skew:		0.0	917 Prob(J	B):		0.496		
Kurtosis:		2.7	726 Cond.	No.		227.		

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

===== Multiple Logistic Regression: Pima ===== Accuracy: 0.714 AUC: 0.823 [[82 18] [26 28]]

	precision	recall	f1-score	support
0	0.76	0.82	0.79	100
	0.70	0.02	0.75	100
1	0.61	0.52	0.56	54
accuracy			0.71	154
macro avg	0.68	0.67	0.67	154
weighted avg	0.71	0.71	0.71	154

==== COMPARISON =====

UCI R² (Multiple Regression): 0.518

Pima Accuracy (Multiple Logistic): 0.714, AUC: 0.823