Assignment - 1

EEC201 - Signals, Systems, and Networks (Monsoon 2024)

Department of Electrical Engineering, IIT (ISM) Dhanbad

Due: 22.08.2024

1. Determine the energy and power for each of the following signals:

(a)
$$x_1(t) = \cos^2(4t)$$

(b)
$$x_2(t) = e^{-2t}u(t)$$

(c)
$$x_3(t) = e^{j(2t+\pi/4)}$$

(d)
$$x_4(t) = \frac{u(t) - u(t-3)}{3}$$

2. Let x(t) represent the signal shown below. Plot the following:

(a)
$$x_1(t) = x(4-t)$$

(b)
$$x_2(t) = x(3t+2)$$

(c)
$$x_3(t) = 2 + x(t/2)$$

(d)
$$x_4(t) = x(t)[\delta(t + 3/2) - \delta(t - 3/2)]$$

(e)
$$x_5(t) = x_e(t) = \frac{x(t) + x(-t)}{2}$$

3. Let x(t) be a signal with x(t) = 0 for t < 3. For each signal given below, determine the values of t for which the signal is guaranteed to be zero:

(a)
$$x_1(t) = x(-t)$$

(b)
$$x_2(t) = x(1-t) + x(2-t)$$

(c)
$$x_3(t) = x(1-t) x(2-t)$$

4. Simplify and/or evaluate the following expressions:

(a)
$$\frac{(x^2+1) \delta(x-1)}{x^2+7}$$

(b)
$$\cos(2\pi t) (\dot{u}(t) + \delta(t + 1/4))$$

(a)
$$\frac{(x^2+1)\delta(x-1)}{x^2+7}$$
 (b) $\cos(2\pi t)(\dot{u}(t)+\delta(t+1/4))$ (c) $\frac{(x^4-x^2+6)\delta(2x+3)}{e^{x^2}+5x}$

(d)
$$\int_{-\infty}^{\infty} (\tau^2 + 1) \, \delta(\tau - 2) \, d\tau$$

(d)
$$\int_{-\infty}^{\infty} (\tau^2 + 1) \, \delta(\tau - 2) \, d\tau$$
 (e)
$$\int_{-\infty}^{\infty} e^{t-1} \cos\left(\frac{\pi(t-5)}{2}\right) \, \delta(t-3) \, dt$$

(f)
$$\int_{-\infty}^{\infty} \sin(\pi t) \ \delta(2t - 3) \ dt$$

(f)
$$\int_{-\infty}^{\infty} \sin(\pi t) \ \delta(2t - 3) \ dt$$
 (g)
$$\int_{-\infty}^{\infty} \sin(2\pi t) \ \delta(4t - 1) \ dt$$

5. Determine if each system given below is linear. Explain your reasoning.

(a)
$$y(t) = tu(t)x(t)$$

(b)
$$y(t) = \frac{x(t) - 2}{3}$$

(c)
$$y(t) = 3[x(4t+3)]$$

(d)
$$y(t) = \frac{x^2(t)}{1 + x(t)}$$

(e)
$$y(t) = x(t - 10)$$

$$(f) y(t) = x(t) + t$$

6. Determine if each system given below is time-invariant. Explain your reasoning.

(a)
$$y(t) = tu(t)x(t)$$

(b)
$$y(t) = \frac{d^5 x(t)}{dt^5}$$

(c)
$$y(t) = x(2t + 5)$$

(d)
$$y(t) = e^{4x(t)}$$

(e)
$$y(t) = \frac{x(t)}{1 + x(t)}$$

$$(f) y(t) = \ln(x(t)) + 4$$

7. Determine if each system given below is memoryless and/or causal. Explain your reasoning.

(a)
$$y(t) = x(t^2)$$

(b)
$$y(t) = 30$$

(c)
$$y(t) = x(u(t))$$

(d)
$$y(t) = \frac{x^7(t) + x^6(t) + x^5(t)}{1 + x^2(t) + x^9(t)}$$
 (e) $y(t) = \frac{dx(t)}{dt} + x^2(t)$

(e)
$$y(t) = \frac{dx(t)}{dt} + x^2(t)$$

8. Determine if each system given below is BIBO stable. Explain your reasoning.

(a)
$$y(t) = u(t)x(t)$$

(b)
$$y(t) = e^{x(t)}$$

(c)
$$y(t) = \frac{x^2(t) + x^4(t)}{1 + x(t)}$$

(d)
$$y(t) = \ln(x(t))$$

(e)
$$y(t) = |x(t) - 4|$$

- 9. Find the zero-input response of the following LTIC systems with their initial conditions described below. Furthermore, investigate the asymptotic (internal) and BIBO (external) stabilities of the systems.
 - (a) (D + 5)y(t) = x(t) with the initial condition y(0) = 5.
 - (b) $(D^2 + 2D)y(t) = (5D + 2)x(t)$ with the initial conditions y(0) = 1 and $\dot{y}(0) = 4$.
 - (c) $(D^2 + 6D + 9)y(t) = (3D + 5)x(t)$ with the initial conditions y(0) = 3 and $\dot{y}(0) = -7$.
 - (d) $(D+1)(D^2+5D+6)y(t) = Dx(t)$ with the initial conditions y(0) = 2, $\dot{y}(0) = -1$, and $\ddot{y}(0) = 5$.
- 10. Find the zero-state response of the following LTIC systems with the unit impulse response and input described below. Essentially, compute the convolution x(t) * h(t).

(a)
$$h(t) = u(t) - u(t-1)$$
 and $x(t) = u(t) - u(t-1)$

(b)
$$h(t) = e^{-3t}u(t)$$
 and $x(t) = (e^{-3t} - e^{-4t})u(t)$

(c)
$$h(t) = -\delta(t) + 2e^{-t}u(t)$$
 and $x(t) = e^{t}u(-t)$

(d)
$$h(t) = e^{-t}u(t)$$
 and $x(t) = \begin{cases} 1 & |t| \le 1 \\ 0 & \text{else} \end{cases}$

(e)
$$h(t) = e^{-t}u(t)$$
 and $x(t) = 4e^{-2t}\cos(3t)u(t)$

(f)
$$h(t) = u(t)$$
 and $x(t) = \begin{cases} 2 - |t| & |t| \le 2\\ 0 & \text{else} \end{cases}$