EPITA / InfoS1		Janvier 2024
NOM:	Prénom :	Groupe :

Examen Electronique

Études des régimes sinusoïdaux [SI-S1-ELEC-2-ERS]Les calculatrices et les documents ne sont pas autorisés.
Le barème est donné à titre indicatif.

Exercice 1. QCM (4 points – pas de point négatif)

Pour chacune des questions ci-dessous, entourez la ou les bonnes réponses.

1.	Dans un condensateur	, quel est le dé	phasage de la ter	nsion par rapport a	u courant ?

a.
$$+\frac{\pi}{2}$$

b.
$$-\frac{\pi}{2}$$

c.
$$-\pi$$

d.
$$\pm \frac{\pi}{2}$$
 selon la fréquence

2. Quelle est l'unité du produit
$$C\omega$$
 ?

- a. Des Siemens
- b. Des Hertz
- c. Des Ampères
- d. Des Ohms

- a. Le quotient des valeurs max
- c. La valeur efficace du signal
- b. La valeur instantanée du signal
- d. La phase à l'origine

- a. Le quotient des valeurs max
- b. Le déphasage du courant par rapport à la tension.
- c. Le déphasage de la tension par rapport au courant.
- d. La phase à l'origine

Soit un filtre du 1er ordre. On note $\underline{T}(\omega)$ la fonction de transfert d'un filtre, $A(\omega)$, son amplification et $G(\omega)$, son gain en dB.

- 5. Que représente le quotient de l'amplitude complexe de la tension de sortie sur l'amplitude complexe de la tension d'entrée ?
 - a. Le gain $G(\omega)$

c. La fonction de transfert $\underline{T}(\omega)$

b. L'amplification $A(\omega)$

- d. Rien de tout cela
- 6. $arg(\underline{T}(\omega))$ représente le déphasage de la tension de sortie par rapport à la tension d'entrée.
 - a. VRAI

b. FAUX

On considère le circuit de gauche, où $e(t) = E \cdot \sqrt{2} \cdot \sin(\omega t)$. On veut déterminer le générateur de Thévenin vu par la résistance R. En représentation complexe, on obtient alors le schéma de droite (Q7&8)

7. Quelle est l'expression de \underline{E}_{th} ?

a-
$$\underline{E}_{th} = \frac{L}{C(1-LC\omega^2)}E$$

b-
$$\underline{E}_{th} = E$$

c-
$$\underline{E}_{th} = \frac{1}{1 - LC\omega^2} E$$

d-
$$\underline{E}_{th} = -\frac{LC\omega^2}{1-LC\omega^2}E$$

8. Quelle est l'expression de \underline{Z}_{th} ?

a-
$$\underline{Z}_{th} = \frac{LC}{L+C}$$

b-
$$\underline{Z}_{th} = \frac{jL\omega}{1+LC\omega^2}$$

c-
$$\underline{Z}_{th} = \frac{1 - LC\omega^2}{jC\omega}$$

d-
$$\underline{Z}_{th} = \frac{jL\omega}{1-LC\omega^2}$$

Exercice 2. Régime sinusoïdal forcé : Etude d'un filtre (7 points)

Soit le circuit suivant :

- 1. Etude Qualitative:
 - a. Donner un schéma équivalent en très basse fréquence (TBF) de ce filtre. En déduire la limite de l'amplification $A(\omega)$ de ce filtre en TBF.

EPITA / InfoS1 Janvier 2024

	b. 	Donner un schéma équivalent en très haute fréquence (THF) de ce filtre. En déduire la limite de l'amplification $A(\omega)$ de ce filtre en THF.
	c.	Conclure sur la nature de ce filtre.
7	<u>Etuc</u>	le Quantitative :
۷.		
		Déterminer sa fonction de transfert. En déduire la pulsation de coupure.
2.		

EPITA / InfoS1

Exercice 3. Régime sinusoïdal forcé : Etude d'un filtre (9 points)

Soit le circuit suivant :

1. Etude Qualitative:

a.	Donner un schéma équivalent en très basse fréquence (TBF) de ce filtre. En déduire la limite de la tension v_s de ce filtre en TBF.

b.	Donner un schéma équivalent en très haute fréquence (THF) de ce filtre. En déduire la limite
	de la tension v_s de ce filtre en THF.

c. Concluie sur la nature et l'orare de ce mitre.	c.	Conclure sur	la nature e	t l'ordre d	de ce filtre.
---	----	--------------	-------------	-------------	---------------

d.	Quel type de filtre obtient-on si on inverse la bobine et le condensateur ? Justifiez votre réponse.

2. Etude quantitative:

a. Déterminer $\underline{E_{th}}$ et $\underline{Z_{th}}$ pour que le circuit précédent (Figure 1) soit équivalent à celui-ci-contre. Détaillez votre raisonnement.

Figure 2

b		En utilisant le schéma de la figure 2, exprimer l'amplitude complexe $\underline{V_S}$ associée à la tension $v_s(t)$ en fonction de $\underline{E_{th}}$ et de $\underline{Z_{th}}$, puis, en fonction de R , L , C , ω et $\underline{V_E}$.
		En déduire la fonction de transfert du filtre.
	_	
c.		Mettre la fonction de transfert sous sa forme normalisée et en déduire la pulsation propre ω_0 ainsi que le coefficient d'amortissement σ . Vous trouverez en annexe les formes normalisées des fonctions de transfert.

EPITA / InfoS1 Janvier 2024

Fonctions de transfert normalisées

Type de filtre	Ordre 1	Ordre 2
Passe-Bas	$\underline{T}(\omega) = A_{Max} \cdot \frac{1}{1 + j\frac{\omega}{\omega_c}}$ avec : $A_{Max} = A_{TBF}$ $\omega_c = \text{Pulsation de coupure}$	$\underline{T}(\omega) = A_0. \frac{1}{1 + 2j\sigma \frac{\omega}{\omega_0} - \left(\frac{\omega}{\omega_0}\right)^2}$ $\text{avec} : A_0 = A_{TBF}$
Passe-Haut	$\underline{T}(\omega) = A_{Max} \cdot \frac{j \frac{\omega}{\omega_c}}{1 + j \frac{\omega}{\omega_c}}$ avec : $A_{Max} = A_{THF}$ $\omega_c = \text{Pulsation de coupure}$	$\underline{T}(\omega) = A_0 \cdot \frac{-\left(\frac{\omega}{\omega_0}\right)^2}{1 + 2j\sigma\frac{\omega}{\omega_0} - \left(\frac{\omega}{\omega_0}\right)^2}$ $\text{avec} : A_0 = A_{THF}$
Passe-Bande		$\underline{T}(\omega) = A_0. \frac{2j\sigma\frac{\omega}{\omega_0}}{1 + 2j\sigma\frac{\omega}{\omega_0} - \left(\frac{\omega}{\omega_0}\right)^2}$ $\text{avec}: A_0 = A_{Max}$