Раздел 3. Матрицы

3.1 Основные понятия

Матрицей называется прямоугольная таблица чисел, содержащая тетрок одинаковой длины (или *п* столбцов одинаковой длины). Матрица записывается в виде:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

или, сокращенно, $A = (a_{ij})$, где $i = \overline{1,m}$ (т.е. i = 1,2,3,...,m) — номер строки, $j = \overline{1,n}$ (т.е. j = 1,2,3,...,n) — номер столбца.

Матрицу A называют матрицей pазмера $m \times n$ и пишут $A_{m \times n}$. Числа a_{ij} , составляющие матрицу, называются ее элементами. Элементы, стоящие на диагонали, идущей из верхнего левого угла, образуют главную диагональ.

Пример 1. Элемент a_{12} расположен в 1-й строке и 2-м столбце, а элемент a_{31} находится в 3-й строке и 1-м столбце.

Пример 2. Матрица $A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 5 & 0 & 2 \end{pmatrix}$ имеет размер 2×4 , так как она содержит 2 строки и 4 столбца. Матрица $B = \begin{pmatrix} 4 & 7 \\ 3 & -1 \\ 0.5 & 8 \end{pmatrix}$ имеет размер 3×2 , так как она содержит 3

строки и 2 столбца.

Матрицы равны между собой, если равны все соответствующие элементы этих матриц, т.е. A=B, если $a_{ij}=b_{ij}$, где $i=\overline{1,m}$, $j=\overline{1,n}$.

Матрица, у которой число сток равно числу столбцов, называется квадратной. Квадратную матрицу размера $n \times n$ называют матрицей n-го порядка.

Пример 3. Матрицы A и B из примера 2 называются прямоугольными.

Матрица
$$C = \begin{pmatrix} 2 & 3 & -1 \\ 0 & 1 & 2 \\ 4 & 5 & 6 \end{pmatrix}$$
 — это квадратная матрица 3-го порядка. Она содержит 3

строки и 3 столбца.

Квадратная матрица, у которой все элементы, кроме элементов главной диагонали, равны нулю, называется диагональной. Диагональная матрица, у которой каждый элемент главной диагонали равен единице, называется единичной. Обозначается буквой E.

Пример 4.
$$E_{3\times 3}=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 — единичная матрица 3-го порядка.

Квадратная матрица называется треугольной, если все элементы, расположенные по одну сторону от главной диагонали, равны нулю. Матрица, все элементы которой равны нулю, называется нулевой. Обозначается буквой О.

В матричном исчислении матрицы O и E играют роль 0 и 1 в арифметике.

Матрица, содержащая один столбец или одну строку, называется *вектором* (или вектор-столбец, или вектор-строка соответственно). Их вид:

$$A = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix}, B = \begin{pmatrix} b_1 & b_2 & \dots & b_m \end{pmatrix}.$$

Матрица размера 1×1 , состоящая из одного числа, отождествляется с этим числом, т.е. $(5)_{1\times1}$ есть 5.

Матрица, полученная из данной, заменой каждой ее строки столбцом с тем же номером, называется матрицей, *танспонированной* к данной. Обозначается A^T . Так, если $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, то $A^T = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$ если $A = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, то $A^T = \begin{pmatrix} 1 & 0 \\ 0 \end{pmatrix}$. Транспонированная

 $(3 \ 4)^T$ $(2 \ 4)$ $(0)^T$ матрица обладает следующим свойством: $(A^T)^T = A$.

3.2 Операции над матрицами

Сложение

Операция сложения матриц вводится только для матриц одинаковых размеров. Cуммой двух матриц $A_{m \times n} = (a_{ij})$ и $B_{m \times n} = (b_{ij})$ называется матрица $C_{m \times n} = (c_{ij})$ такая, что $c_{ij} = a_{ij} + b_{ij}$ $(i = \overline{1,m} \ , \ j = \overline{1,n})$.

Пример 5.
$$\begin{pmatrix} 2 & -3 & 0 \\ 4 & 5 & 6 \end{pmatrix} + \begin{pmatrix} 3 & 3 & -1 \\ -2 & -5 & 4 \end{pmatrix} = \begin{pmatrix} 2+3 & -3+3 & 0+(-1) \\ 4+(-2) & 5+(-5) & 6+4 \end{pmatrix} = \begin{pmatrix} 5 & 0 & -1 \\ 2 & 0 & 10 \end{pmatrix}.$$

Аналогично определяется разность матриц.

Умножение на число

 $\overline{\Pi poизведением матрицы}$ $A_{m\times n}=\left(a_{ij}\right)$ на число k называется матрица $B_{m\times n}=\left(b_{ij}\right)$ такая, что $b_{ij}=ka_{ij}$ $(i=\overline{1,m},\ j=\overline{1,n})$.

Пример 6.
$$A = \begin{pmatrix} 0 & -1 & 2 \\ 3 & 4 & 5 \end{pmatrix}$$
, $k = 2$, $2A = \begin{pmatrix} 2 \cdot 0 & 2 \cdot (-1) & 2 \cdot 2 \\ 2 \cdot 3 & 2 \cdot 4 & 2 \cdot 5 \end{pmatrix} = \begin{pmatrix} 0 & -2 & 4 \\ 6 & 8 & 10 \end{pmatrix}$.

Матрица $-A = (-1) \cdot A$ называется противоположной матрице A.

Разность матриц A - B можно определить так: A - B = A + (-B).

Операции сложения матриц и умножение матрицы на число обладают следующими *свойствами*:

1. A + B = B + A;

5. $1 \cdot A = A$:

2. A + (B + C) = (A + B) + C;

6. $\alpha \cdot (A+B) = \alpha A + \alpha B$;

3. A + O = A;

7. $(\alpha + \beta) \cdot A = \alpha A + \beta A$;

4. A - A = 0;

8. $\alpha \cdot (\beta A) = (\alpha \beta) \cdot A$.

где A, B, C – матрицы, α и β – числа.

Элементарные преобразования матриц

Элементарными преобразованиями матриц являются:

- перестановка местами двух параллельных рядов матрицы;
- ♦ умножение всех элементов ряда матрицы на число, отличное от нуля;
- прибавление ко всем элементам ряда матрицы соответствующих элементов параллельного ряда, умноженных на одно и то же число.

Две матрицы A и B называются эквивалентными, если одна из них получается из другой с помощью элементарных преобразований. Записывается $A \sim B$.

При помощи элементарных преобразований любую матрицу можно привести к матрице, у которой в начале главной диагонали стоят подряд несколько единиц, а все остальные элементы равны нулю. Такую матрицу называют *канонической*,

например
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Пример 7. Привести к каноническому виду матрицу $A = \begin{pmatrix} 2 & 3 & 1 & 2 \\ 0 & 2 & -1 & 1 \\ 4 & 0 & 5 & 1 \end{pmatrix}$.

Решение: Выполняя элементарные преобразования, получаем

$$\begin{pmatrix} 2 & 3 & 1 & 2 \\ 0 & 2 & -1 & 1 \\ 4 & 0 & 5 & 1 \end{pmatrix}$$
 (поменяли местами I и III столбцы) ~ $\begin{pmatrix} 1 & 3 & 2 & 2 \\ -1 & 2 & 0 & 1 \\ 5 & 0 & 4 & 1 \end{pmatrix}$ (I строку

сложили со II строкой и результат записали во вторую строку; после этого I строку

сложили с III строкой и результат записали в третью строку)
$$\sim \begin{pmatrix} 1 & 3 & 2 & 2 \\ 0 & 5 & 2 & 3 \\ 0 & -15 & -6 & -9 \end{pmatrix}$$
 (I

столбец умножили на (-3), сложили со II столбцом и результат записали во II столбец; затем I столбец умножили на (-2), сложили с III столбцом и результат записали в III столбец; после этого I столбец снова умножили на (-2) и сложили с IV

столбцом, а результат записали в IV столбец)
$$\sim \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 5 & 2 & 3 \\ 0 & -15 & -6 & -9 \end{pmatrix}$$
 (III столбец

умножили на (-2), сложили со II столбцом и результат записали во II столбец; III столбец разделили на 2 и результат записали в III столбец; III столбец умножили на

(-1), сложили с IV столбцом и результат записали в IV столбец)
$$\sim \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & -3 & -3 & -3 \end{pmatrix}$$

(II строку умножили на 3, сложили с III строкой и результат записали в III строку) ~

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 (II столбец умножили на (-1), сложили последовательно с III и IV

столбцами и результат записали соответственно в III и IV столбец)
$$\sim \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
.

Получили матрицу канонического вида.

Произведение матриц

Операция умножения двух матриц вводится только для случая, когда число столбцов первой матрицы равно числу строк второй матрицы.

Произведением матрицы $A_{m \times n} = (a_{ij})$ на матрицу $B_{n \times p} = (b_{jk})$ называется матрица $C_{m \times p} = (c_{ik})$ такая, что

$$c_{ik}=a_{il}\cdot b_{1k}+a_{i2}\cdot b_{2k}+\cdots+a_{in}\cdot b_{nk}$$
, где $i=\overline{1,m}$, $k=\overline{1,p}$,

т.е. элемент i-ой строки и k-го столбца матрицы произведения C равен сумме произведений элементов i-ой строки матрицы A на соответствующие элементы k-го столбца матрицы B.

Если матрицы A и B квадратные одного размера, то произведения AB и BA всегда существуют. Легко показать, что $A \cdot E = E \cdot A = A$, где A — квадратная матрица, E — единичная матрица того же размера.

Пример 4.

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}_{2\times 3} \times \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix}_{3\times 2} = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} \\ a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} \end{pmatrix}_{2\times 2} .$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & -1 \end{pmatrix} \times \begin{pmatrix} 3 & 4 \\ 6 & 0 \\ 7 & 1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 3 + 2 \cdot 6 + 3 \cdot 7 & 1 \cdot 4 + 2 \cdot 0 + 3 \cdot 1 \\ 1 \cdot 3 + 0 \cdot 6 + (-1) \cdot 7 & 1 \cdot 4 + 0 \cdot 0 + (-1) \cdot 1 \end{pmatrix} = \begin{pmatrix} 36 & 7 \\ -4 & 3 \end{pmatrix} .$$

Матрицы A и B называются перестановочными (коммутирующими), если AB=BA.

Умножение матриц обладает следующими свойствами:

1.
$$A \cdot (B \cdot C) = (A \cdot B) \cdot C$$
;

3.
$$(A + B) \cdot C = AC + BC$$
;

$$2. \quad A \cdot (B+C) = AB + AC;$$

4.
$$\alpha(AB) = (\alpha A)B$$
,

если, конечно, написанные суммы и произведения матриц имеют смысл.

Для операции транспонирования верны свойства:

1.
$$(A + B)^{T} = A^{T} + B^{T}$$
; 2. $(AB)^{T} = B^{T} \cdot A^{T}$.

Если задан многочлен $f(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + ... + a_2 \cdot x^2 + a_1 \cdot x + a_0$, то матричным многочленом f(A) называется выражение вида $a_n \cdot A^n + a_{n-1} \cdot A^{n-1} + ... + a_2 \cdot A^2 + a_1 \cdot A + a_0 \cdot E$, где $A^n = \underbrace{A \cdot A \cdot ... \cdot A}_{n \ \partial a_{\mathcal{C}}}$ для любого натурального n. Значением матричного многочлена

f(A) при заданной матрице A является матрица.

Элемент строки назовем *крайним*, если он отличен от нуля, а все элементы этой строки, находящиеся левее его, равны нулю. Матрица называется *ступенчатой*, если крайний элемент каждой строки находится правее крайнего элемента предыдущей строки.

Пример 5. В матрицах A и B отмечены крайние элементы каждой строки:

$$A = \begin{pmatrix} 1 & 2 & 4 & -7 \\ 0 & 0 & -1 & 2 \\ 0 & 3 & 2 & -1 \end{pmatrix} - \text{не ступенчатая}$$

$$B = \begin{pmatrix} 1 & 2 & 4 & 7 \\ 0 & 3 & 1 & 2 \\ 0 & 0 & 2 & 1 \end{pmatrix} - \text{ступенчатая}$$