Spazi compatti

Def. Un ricoprimento aperto di uno spazio topologico X è una famiglia $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in A}$ di aperti di X, con A insieme arbitrario, t.c.

$$\bigcup_{\alpha\in A}U_{\alpha}=X.$$

Un sottoricoprimento di \mathcal{U} per X è una sottofamiglia $\mathcal{U}' = \{U_{\alpha}\}_{{\alpha} \in \mathcal{A}'}$, con $\mathcal{A}' \subset \mathcal{A}$, che sia a sua volta un ricoprimento aperto, ossia

$$\bigcup_{\alpha\in A'}U_{\alpha}=X.$$

Un sottoricoprimento $\mathcal{U}' = \{U_{\alpha}\}_{{\alpha} \in A'}$ è finito se A' è un insieme finito.

Def. Uno spazio topologico X è *compatto* se ogni ricoprimento aperto di X ammette un *sottoricoprimento finito*.

N.B. Si chiama anche *compattezza per ricoprimenti*, in contrasto con la *compattezza per successioni* usata in Analisi che richiameremo più avanti.

Oss. X compatto $\Leftrightarrow \forall \mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in A}$ ricoprimento aperto di X, $\exists n \in \mathbb{N}, \exists \alpha_1, \ldots, \alpha_n \in A$ t.c.

$$\bigcup_{i=1}^n U_{\alpha_i} = X.$$

Oss. X non compatto $\Leftrightarrow \exists \mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in A}$ ricoprimento aperto di X t.c. $\forall n \in \mathbb{N}, \forall \alpha_1, \ldots, \alpha_n \in A$ si ha

$$\bigcup_{i=1}^n U_{\alpha_i} \subsetneq X.$$

Oss.

 X_{ban} compatto $\forall X$.

X finito $\Rightarrow X$ compatto.

 X_{dis} compatto $\Leftrightarrow X_{\text{dis}}$ finito: $\{\{x\}\}_{x\in X_{\text{dis}}}$ ricoprimento aperto di X_{dis} .

 \mathbb{R}^n non compatto $\forall n \geqslant 1$: $\{B(0,k)\}_{k \in \mathbb{N}}$ non ha sottoricoprimenti finiti.

 \mathbb{R}_{ℓ} non compatto: $\{[k, k+1]\}_{k\in\mathbb{Z}}$ non ha sottoricoprimenti finiti.

La dimostrazione della Proposizione seguente è lasciata per **Esercizio**.

Prop. La compattezza è una proprietà topologica.

Def. Sia \mathcal{B} base per X. Un ricoprimento aperto $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in A}$ di X è basico se $U_{\alpha} \in \mathcal{B} \ \forall \ {\alpha} \in A$.

Prop. Sia \mathcal{B} base per X. Allora X è compatto \Leftrightarrow ogni ricoprimento basico di X ammette un sottoricoprimento finito.

 $Dim. \implies Evidente.$

 $\leftarrow \forall \mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in \mathcal{A}} \text{ ricoprimento aperto di } X \rightsquigarrow$

$$\mathcal{V} = \{ B \in \mathcal{B} \mid \exists \alpha \in A \text{ t.c. } B \subset U_{\alpha} \}$$

ricoprimento basico di $X \rightsquigarrow \{B_1, \ldots, B_n\}$ sottoricoprimento finito di $\mathcal{V} \Rightarrow \forall i \in \{1, \ldots, n\}, \exists \alpha_i \in A \text{ t.c. } B_i \subset U_{\alpha_i} \Rightarrow \{U_{\alpha_1}, \ldots, U_{\alpha_n}\}$ sottoricoprimento finito di \mathcal{U} .