Publication and	Technology	Summary
Year		·
Cheng, Z., Yang, Q.,	Deep Colorization	The paper presented
and Sheng, B. (2016)		a fully-automatic col-
		orization method using
		deep neural networks
Dahl, R. (2016)	Automatic Coloriza-	automatically produce
	tion	multiple colorized ver-
		sions of a grayscale im-
		age
Goodfellow, I. J.,	Generative Adversarial	Proposed a novel ap-
Pouget-Abadie, J.,	Networks	proach of implement-
Mirza, M., Xu, B.,		ing Generative Adver-
Warde-Farley, D.,		sarial Networks using
Ozair, S., Courville,		two Neural Networks,
A., and Bengio, Y.		viz Generator and Dis-
(2014)	D .1.1.1	criminator Networks.
He, K., Zhang, X.,	Deep residual learning	Presented 152 layer
Ren, S., and Sun, J.	for image recognition	using residual learning
(2015)		framework for image
		recognition and an
		adaptive edge detec-
		tion based colorization
		algorithm and its
Igolo D 7by I V	Imaga ta imaga trans	applications. Pix2Pix is a
Isola, P., Zhu, JY.,	Image-to-image translation with conditional	Pıx2Pıx ıs a Conditional-GAN
Zhou, T., and Efros, A.	adversarial networks	
A. (2018)	auversariai networks	with images as the conditions for coloriza-
		tion.
		01011.

Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., and Shi, W. (2017)		Photorealistic single image super-resolution using a generative adversarial network.
Levin, A., Lischinski, D., and Weiss, Y. (2004)	Colorization using optimization	Used quadratic cost function and were able to generate high quality colorizations.
Long, J., Shelhamer, E., and Darrell, T. (2015)	Fully convolutional networks for semantic segmentation	Showed that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, improve on the previous best result in semantic segmentation.