Analyzing Flow-Cytometry Count Data with Regression Mixtures

Amit Meir University of Washington

Joint work with

Raphael Gottardo and Greg Finak

Fred Hutchinson Cancer Research Center

June 24, 2017

The RV144 HIV Vaccine Trial

The RV144 HIV Vaccine Trial

PTID	Subset	stim	count	parentcount
P1003	CD154	stim	38	23524
P1003	CD154	${\tt nonstim}$	31	28099
P1003	CD154,IL17a	stim	23	23524
P1003	CD154,IL17a	${\tt nonstim}$	30	28099
P1003	IFNg	stim	1	23524
P1003	IFNg	${\tt nonstim}$	0	28099
P1003	IFNg,CD154	stim	1	23524
P1003	IFNg,CD154	${\tt nonstim}$	0	28099
P1003	IFNg,IL2	stim	2	23524
P1003	IFNg,IL2	${\tt nonstim}$	0	28099
P1003	IFNg,IL2,CD154	stim	0	23524

IFNg, IL2, CD154 nonstim

IFNg, IL4, IL2, CD154 nonstim

IFNg, IL4, IL2, CD154

0

0

0

stim

28099

23524

28099

P1003

P1003

P1003

Analysis Goals

- Identify cell-subset that exhibit vaccine specific response
- Identify correlates for successful immunization
- Infer dependence structures

Why a Regression Framework?

Current solutions are all based on comparing a single control sample to a stimulated sample.

Beyond baseline/stimulation

- Longitudinal data
- Multiple stimulations per subject

Covariates

- Batch effects
- Demographic/background information

• Explicit Dependence Model

Challenges

- Overdispersion (compared to Binomial)
- Subject specific baseline response
- Different response patterns
- **Dependence** across sub-samples AND cell-subsets
- Dimensionality: 100+ cell-subsets.

A Regression Model

Indexing: i-subject, t- subsample, j- subset.

Over-dispersion ⇒ Beta-Binomial model:

$$ext{logit}(\mu_{ijt}) = X_{ijt}\beta + T_{ijt}z_{ij} + \nu_{ij} \ y_{ijt} \sim ext{Beta-Binom}(N_{it}, \mu_{ijt}, M_j)$$

- X- Covariates, β Regression Coefficients, T- Treatment Effects.
- Baseline response $\Rightarrow \nu_i \sim N(0, \Sigma)$
- Differential response $\Rightarrow z_i \in \{0,1\}^J \sim Ising(\theta)$.
- Estimation via a Stochastic-EM algorithm.

A Regression Model

Indexing: i-subject, t- subsample, i- subset.

Over-dispersion ⇒ Beta-Binomial model:

$$ext{logit}(\mu_{ijt}) = X_{ijt}\beta + T_{ijt}z_{ij} + \nu_{ij} \ y_{ijt} \sim ext{Beta-Binom}(N_{it}, \mu_{ijt}, M_j)$$

- X- Covariates, β- Regression Coefficients, T- Treatment Effects.
- Baseline response $\Rightarrow \nu_i \sim N(0, \Sigma)$
- Differential response $\Rightarrow z_i \in \{0, 1\}^J \sim Ising(\theta)$.
- Estimation via a Stochastic-EM algorithm.

The RV144 HIV Vaccine Trial

- 262 Subjects
 - 226 Cases
 - 36 Controls
- 2 Types of stimulus
 - HIV protein
 - Negative control
- Demographic Information
 - Age
 - Gender
- 23 CD4 Cell-Subsets.

The Plan

Fit the model based on count data:

$$logit(\mu_{ijt}) = \beta_0 + \beta_1 age_i + \beta_2 gender_i + z_{ij}\tau_j stimulation_{ijt} + \nu_{ij}$$

Outputs:

- Regression coefficient estimates
- Posterior response probabilities
- Covariance for random effects
- Estimated graphical model
- Validate inferred quantities using vaccination data.
- Formulate hypothesis and test using infection data.

The Plan

Fit the model based on count data:

$$logit(\mu_{ijt}) = \beta_0 + \beta_1 age_i + \beta_2 gender_i + z_{ij}\tau_j stimulation_{ijt} + \nu_{ij}$$

Outputs:

- Regression coefficient estimates
- Posterior response probabilities
- Covariance for random effects
- Estimated graphical model
- Validate inferred quantities using vaccination data.
- Formulate hypothesis and test using infection data.

RV144 - Booleans Dataset

RV144 - Booleans Dataset

An Informative Graphical Model

ROC for Vaccination/Placebo

ROC(vaccine
$$\sim s_j$$
),

$$s_{ij} = \frac{1}{|C_j|} \sum_{i \in C_j} \mathsf{post}_{ij}$$

ROC for Infection Status

AUC of $0.625 \Rightarrow p$ -value of 0.007.

The HVTN 505 Vaccine Trial

238 Subjects

- 189 Cases
- 49 Controls

5 Types of stimulus

- 4 types of HIV proteins (ENV, GAG, POL, NEF).
- · Negative control.
- Multiple samples per stimulation.

52 Cell Subsets

- 25 CD4 cells.
- 27 CD8 cells.

Inferred Graph for HVTN505

Color Coded by AUCs for Vaccination/Placebo

Color Coded by AUCs for Infection Status

ROC for Vaccination/Placebo

ROC for Infection Status

AUC of 0.76 \Rightarrow p-value of $\approx 10^{-8}$.

Conclusion

- We developed a regression model which allows for the analysis of complex cell-count datasets.
 - Multiple time-points/observations per subject.
 - Batch effects
 - Demographic Information
- We model the dependence structure explicitly via a sparse graphical model.
 - Identified subsets predictive of vaccination or immunization.
- What else?
 - Longitudinal data
 - Enrichment Analysis
 - Aggregate measures of response

Thank you!

Questions?

AmitMeir@uw.edu

Analysis Goals

- Problem: We are interested in identifying response in Subsets X Protein pairs.
- Solution: Treat each combination of Subset X Protein as a cell-subset.
 - Overall 120 subsets with non-negligible counts.

 Dependence structures should (and do!) sort themselves out.

RV144 - Booleans Dataset

