Dedekind zeta

@unaoya

2018年7月12日

参考文献小野孝 Weil

1 代数体

代数体 k とは有理数体 ② の有限次拡大のことをいう。

例。二次体、円分体 d を平方数でない整数とする。 \sqrt{d} は $x^2-d=0$ を満たし、 $\sqrt{d}\notin\mathbb{Q}$ である。 $k=\mathbb{Q}(\sqrt{d})$ は \mathbb{Q} 上二次拡大であり、代数体である。

n を正の整数とし、 ζ_n を 1 の原始 n 乗根、つまり n 乗して初めて 1 になる数とする。これは $x^n-1=0$ の根で、したがって $\mathbb{Q}(\zeta_n)/\mathbb{Q}$ は高々 n 次拡大である。

k の整数環を k の元であって $\mathbb Z$ 上整であるもの、つまり $\mathbb Q$ 上の最小多項式の係数が $\mathbb Z$ であるもの。

2 類数

k を代数体とする。

定義 1. k の分数イデアルとは、k の部分 O_k 加群で有限性生であり、 $\otimes_{O_k} k$ すると k に一致するものをいう。

例 1. $k = \mathbb{Q}$ の場合、

k が二次体の場合、

k が円分体の場合、

定義 2. 分数イデアルの積を、と定義する。

これは可換。生成元で書けば、

逆元の存在。双対を用いた表示

分数イデアル全体は群になる。これを I(k) と書く。

k の主イデアルとは、k の元 x が生成するイデアル $O_k x \subset k$ のことをいう。

主イデアル全体 P(k) は分数イデアル全体の部分群

定義 3. この商群 I(k)/P(k) を k のイデアル類群という。

これは有限群になる。

k の類数とは k のイデアル類群の大きさ。

3 基本単数

定義 4 (Definition 7, p.94). $n^{-1}\delta, l(\epsilon_1), \dots, l(\epsilon_r)$ を行べクトルに持つ行列を L とし、 $R = |\det(L)|$ を k の regulator と呼ぶ。

命題 1 (Proposition 9, p.95). $\gamma=\prod_v\gamma_v$ で有限素点では $\gamma_v(O_v^\times)=1$ で、実では $d\gamma_v(x)=|x|^{-1}dx$ で、複素では $d\gamma_v(x)=(x\bar x)^{-1}|dx\wedge d\bar x|$ で定まる $\mathbb A_k^\times$ の Haar 測度とする。

 $m>1\in\mathbb{R}$ にたいし、 $C(m)\subset\mathbb{A}_k^{\times}/k^{\times}$ における $1\leq |z|\leq m$ の像とする。

$$\gamma(C(m)) = \log(m)2^{r_1}(2\pi)^{r_2}hR/e$$

となる。

4 類数公式

Dedekind zeta の s=1 での留数の計算

4.1 BNT

Weil の本に沿った証明。

定理 $\mathbf{1}$ (Theoerm 3, p.129). k を代数体とし、 r_1 を実素点の個数、 r_2 を複素素点の個数とする。

$$Z_k(s) = G_1(s)^{r_1} G_2(s)^{r_2} \zeta_k(s)$$

とすると、これは x=0,1 で一位の極を持つ有理型関数で、関数等式

$$Z_k(s) = |D|^{1/2-s} Z_k(1-s)$$

をみたす。ここで D は k の discriminant である。s=1 での留数は

$$|D|^{-1/2}2^{r_1}(2\pi)^{r_2}hR/e$$

である。ここで h は k の類数、R は regulator で e は k における 1 の冪根の個数。

 Φ' を Φ の Fourier 変換とし、a を χ の differential idele とすると、

$$\Phi'(y) = |a|_{\mathbb{A}}^{1/2} \Phi(ay)$$

となる。

特に $\omega_s(s) = |x|^s_{\mathbb{A}}$ とすると、

$$Z(\omega_s, \Phi') = |a|_{\mathbb{A}}^{1/2 - s} Z(\omega_s, \Phi) \tag{1}$$

$$Z(\omega_s, \Phi) = c_k^{-1} \prod_{w \in P_\infty} G_w(s) \prod_{v \notin P_\infty} (1 - q_v^{-s})^{-1}$$
 (2)

命題 2 (Proposition 12, p.128). k を代数体とし、 μ,γ を \mathbb{A}_k^{\times} の適切な測度とした時、 $\gamma=c_k\mu$ となる。 $\gamma=\prod_v\gamma_v$ で有限素点では $\gamma_v(O_v^{\times})=1$ で、実では $d\gamma_v(x)=|x|^{-1}dx$ で、複素では $d\gamma_v(x)=(x\bar{x})^{-1}|dx\wedge d\bar{x}|$ で定める。

次はいわゆる differnt-discriminant formula である。

命題 3 (Proposition 6, p.113). k を代数体とし、a を differential idele とすると、 $|a|_{\mathbb{A}} = |D|^{-1}$ である。ここで D は k の discriminant である。

補題 1 (Lemma 6, p.121). $F_1:N\to [0,1]$ を可測関数とする。 $[t_0,t_1]\subset \mathbb{R}_+^{\times}$ であって、 $n< t_0$ について $F_1(n)=1$ であり、 $n>t_1$ について $F_1(n)=0$ とする。このとき

$$\lambda(s) = \int_{N} n^{s} F_{1}(n) d\nu(n)$$

は Re(s)>0 で絶対収束し、 $s\in\mathbb{C}$ に解析接続され s=0 での留数は

定理 2 (Theorem 2, p.121). Φ を \mathbb{A}_k の standard function とする。

$$\omega\mapsto Z(\omega,\Phi)=\int_{\mathbb{A}_b^\times}\Phi(j(z))\omega(z)d\mu(z)$$

は $\Omega(G_k)$ 上の有理型関数に解析接続され、関数等式

$$Z(\omega, \Phi) = Z(\omega_1 \omega^{-1}, \Phi')$$

を満たし、 ω_0, ω_1 で留数 $-\rho\Phi(0), \rho\Phi'(0)$ をそれぞれ持つ。

証明、 \mathbb{R}_+^{\times} 上の関数 F_0, F_1 を次をみたすようにとる。

- 1. $F_0 \ge 0, F_1 \ge 0, F_0 + F_1 = 1$
- 2. ある $[t_0,t_1] \subset \mathbb{R}_+^ imes$ が存在して、 $F_0(t)=0,0 < t < t_0,F_1(t)=0,t > t_1$ をみたす

4.2 Tauberian theorem

数論序説はこっち?