PATTERN FORMING METHOD

Publication number: JP2005005533

Publication date:

2005-01-06

Inventor: Applicant: ENDO MASATAKA; SASAKO MASARU MATSUSHITA ELECTRIC IND CO LTD

Classification:

- international:

G03F7/004; G03F7/038; G03F7/039; G03F7/20; G03F7/38; H01L21/027; G03F7/004; G03F7/038; G03F7/039; G03F7/20; G03F7/38; H01L21/02; (IPC1-

7): H01L21/027; G03F7/004; G03F7/38

- European:

G03F7/038C; G03F7/039C; G03F7/039C1; G03F7/20F;

G03F7/20T16

Application number: JP20030168255 20030612 Priority number(s): JP20030168255 20030612 Also published as: 테 US2004253

図 US2004253547 (A1)

Report a data error here

Abstract of JP2005005533

PROBLEM TO BE SOLVED: To improve a resist pattern profile obtained by an immersion lithography.

SOLUTION: After forming a resist film 101 comprising a chemical amplifying type resist material, a pattern exposure is conducted by selectively irradiating an exposing light 104 to a resist film 102 with a solution 103 supplied on the resist film 102 with its per fluoro polyether added by water and temporarily retained in a solution retaining part as circulating. After applying a post baking to the resist film 102 which is pattern exposured, the film 102 is developed by an alkaline developing solution to be able to obtain a resist pattern 105 comprising an unexposed part 102b of the resist film 102 and having a satisfactory shape.

COPYRIGHT: (C)2005, JPO&NCIPI

102b

1028

Data supplied from the esp@cenet database - Worldwide

(19) 日本国特許庁(JP)

(12)公開特許公報(A)

(11)特許出願公開番号

特開2005-5533 (P2005-5533A)

(43) 公開日 平成17年1月6日(2005.1.6)

(51) Int.C1. ⁷	FI			テーマコード	(参考)
HO1L 21/027	HO1L	21/30 5	16F	2HO25	
GO3F 7/004	GO3F	7/004 5	503A	2H096	
GO3F 7/38	GO3F	7/38 5	01	5F046	İ
	HO1L	21/30 5	65		
	HO1L	21/30 5	575		
		審査請求	未請求 請求項の	D数 25 OL	(全 22 頁)
(21) 出願番号	特願2003-168255 (P2003-168255)	(71) 出願人	000005821		
(22) 出願日	平成15年6月12日 (2003.6.12)	松下電器産業株式会社			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		大阪府門真市大字門真1006番地			
		(74) 代理人	100077931		
			弁理士 前田	弘	
		(74) 代理人	100094134		
			弁理士 小山	廣毅	
		(74) 代理人	100110939		
			弁理士 竹内	宏	
		(74) 代理人	100113262		
			弁理士 竹内	祐二	
		(74) 代理人	100115059		
				克実	
		(74) 代理人			
			弁理士 原田	智雄	
					終頁に続く

(54) 【発明の名称】パターン形成方法

(57)【要約】

【課題】浸漬リソグラフィにより得られるレジストパタ ーン形状を良好にする。

【解決手段】化学増幅型レジスト材料よりなるレジスト膜101を形成した後、パーフルオロポリエーテルに水が添加されており且つ循環しながら溶液貯留部に一時的に貯留されている溶液103をレジスト膜102の上に供給した状態で、露光光104をレジスト膜102に選択的に照射してパターン露光を行なう。パターン露光が行なわれたレジスト膜102に対して、ポストベークを行なった後、アルカリ性現像液により現像を行なうと、レジスト膜102の未露光部102bよりなり良好な形状を持つレジストパターン105が得られる。

【選択図】 図2

【特許請求の範囲】

【請求項1】

レジスト膜を形成する工程と、

前記レジスト膜の上に、非水溶液に水が添加されてなる溶液を供給した状態で、前記レジスト膜に対して露光光を選択的に照射してパターン露光を行なう工程と、

パターン露光が行なわれた前記レジスト膜に対して現像を行なってレジストパターンを形成する工程とを備えていることを特徴とするパターン形成方法。

【請求項2】

光が照射されると酸を発生する酸発生剤を含有する化学増幅型レジスト材料よりなるポジ型のレジスト膜を形成する工程と、

前記レジスト膜の上に、非水溶液に酸により水を発生する化合物が添加されてなる溶液を供給した状態で、前記レジスト膜に対して露光光を選択的に照射してパターン露光を行な う工程と、

パターン露光が行なわれた前記レジスト膜に対して現像を行なってレジストパターンを形成する工程とを備えていることを特徴とするパターン形成方法。

【請求項3】

ポジ型のレジスト膜を形成する工程と、

前記レジスト膜の上に、非水溶液に光が照射されると酸を発生する酸発生剤と酸により水を発生する化合物とが添加されてなる溶液を供給した状態で、前記レジスト膜に対して露 光光を選択的に照射してパターン露光を行なう工程と、

パターン露光が行なわれた前記レジスト膜に対して現像を行なってレジストパターンを形成する工程とを備えていることを特徴とするパターン形成方法。

【請求項4】

光が照射されると酸を発生する酸発生剤を含有する化学増幅型レジスト材料よりなるポジ 型のレジスト膜を形成する工程と、

前記レジスト膜の上に、酸により水を発生する化合物を含有する水溶性膜を形成する工程 と

前記水溶性膜の上に非水溶液よりなる溶液を供給した状態で、前記レジスト膜に対して露光光を選択的に照射してパターン露光を行なう工程と、

パターン露光が行なわれた前記レジスト膜に対して現像を行なってレジストパターンを形成する工程とを備えていることを特徴とするパターン形成方法。

【請求項5】

ポジ型のレジスト膜を形成する工程と、

前記レジスト膜の上に、光が照射されると酸を発生する酸発生剤と酸により水を発生する 化合物とを含有する水溶性膜を形成する工程と、

前記水溶性膜の上に非水溶液よりなる溶液を供給した状態で、前記レジスト膜に対して露光光を選択的に照射してパターン露光を行なう工程と、

パターン露光が行なわれた前記レジスト膜に対して現像を行なってレジストパターンを形成する工程とを備えていることを特徴とするパターン形成方法。

【請求項6】

光が照射されると酸を発生する酸発生剤と酸により水を発生する化合物とを含有する化学 増幅型レジスト材料よりなるポジ型のレジスト膜を形成する工程と、

前記レジスト膜の上に非水溶液よりなる溶液を供給した状態で、前記レジスト膜に対して 露光光を選択的に照射してパターン露光を行なう工程と、

パターン露光が行なわれた前記レジスト膜に対して現像を行なってレジストパターンを形成する工程とを備えていることを特徴とするパターン形成方法。

【請求項7】

前記非水溶液はパーフルオロポリエーテルであることを特徴とする請求項1~6のいずれか1項に記載のパターン形成方法。

【請求項8】

前記露光光は F_2 レーザであることを特徴とする請求項 $1\sim6$ のいずれか1項に記載の パターン形成方法。

【請求項9】

前記溶液は水を含有することを特徴とする請求項 $2\sim6$ のいずれか1項に記載のパターン形成方法。

【請求項10】

前記溶液は、酸により水を発生する化合物を含有することを特徴とする請求項4~6のいずれか1項に記載のパターン形成方法。

【請求項11】

前記化学増幅型レジスト材料は、酸により水を発生する化合物を含有することを特徴とする請求項2又は4に記載のパターン形成方法。

【請求項12】

前記酸発生剤は、オニウム塩、ハロゲン含有化合物、ジアゾケトン化合物、ジアゾメタン 化合物、スルホン化合物、スルホン酸エステル化合物又はスルホンイミド化合物であることを特徴とする請求項2~6のいずれか1項に記載のパターン形成方法。

【請求項13】

前記酸発生剤は、ジフェニルヨードニウムトリフレート、ジフェニルヨードニウムトリフレート、トリフェニルスルホニウムトリフレート又はトリフェニルスルホニウムノナフレートよりなるオニウム塩であることを特徴とする請求項2~6のいずれか1項に記載のパターン形成方法。

【請求項14】

前記酸発生剤は、2-フェニル-4, 6-ビス(トリクロロメチル) -s-トリアジン又は2-ナフチル-4, 6-ビス(トリクロロメチル) -s-トリアジンよりなるハロゲン含有化合物であることを特徴とする請求項2~6のいずれか1項に記載のパターン形成方法。

【請求項15】

前記酸発生剤は、1、3ージフェニルジケトー2ージアゾプロパン、1、3ージシクロヘキシルジケトー2ージアゾプロパン又は1、2ーナフトキノンジアジドー4ースルホン酸と2、2、3、4、4'ーテトラヒドロキシベンゾフェノンとのエステルよりなるジアゾケトン化合物であることを特徴とする請求項2~6のいずれか1項に記載のパターン形成方法。

【請求項16】

前記酸発生剤は、ビス(トリフルオロメチルスルホニル)ジアゾメタン、ビス(シクロへキシルスルホニル)ジアゾメタン、ビス(フェニルスルホニル)ジアゾメタン、ビス(pートリルスルホニル)ジアゾメタン又はビス(pークロロフェニルスルホニル)ジアゾメタンよりなるジアゾメタン化合物であることを特徴とする請求項2~6のいずれか1項に記載のパターン形成方法。

【請求項17】

前記酸発生剤は、4-トリスフェナシルスルホン、メシチルフェナシルスルホン又はビス (フェニルスルホニル)メタンよりなるスルホン化合物であることを特徴とする請求項2 ~6のいずれか1項に記載のパターン形成方法。

【請求項18】

前記酸発生剤は、ベンゾイントシレート、2,6-ジニトロベンジルトシレート、2-ニトロベンジルトシレート、4-ニトロベンジルトシレート又はピロガロールトリメシレートよりなるスルホン酸エステル化合物であることを特徴とする請求項2~6のいずれか1項に記載のパターン形成方法。

【請求項19】

前記酸発生剤は、N-(トリフルオロメチルスルホニルオキシ)スクシンイミド、N-(トリフルオロメチルスルホニルオキシ)フタルイミド、N-(トリフルオロメチルスルホ ニルオキシ) ジフェニルマレイミド、N-(トリフルオロメチルスルホニルオキシ) ビシ クロ[2.2.1] ヘプト-5-エン-2, 3-ジカルボキシルイミド、N-(トリフル オロメチルスルホニルオキシ) -7-オキサビシクロ[2.2.1] ヘプト-5-エンー 2, 3-ジカルボキシルイミド、N-(トリフルオロメチルスルホニルオキシ) ビシクロ 「2.2.1] ヘプタン-5,6-オキシ-2,3-ジカルボキシルイミド、N-(トリ フルオロメチルスルホニルオキシ) ナフチルジカルボキシルイミド、N-(カンファスル ホニルオキシ) スクシンイミド、N-(カンファスルホニルオキシ) フタルイミド、N-(カンファスルホニルオキシ) ジフェニルマレイミド、N-(カンファスルホニルオキシ) ビシクロ[2.2.1] ヘプト-5-エン-2, 3-ジカルボキシルイミド、N-(カ ンファスルホニルオキシ) - 7 - オキサビシクロ[2.2.1] ヘプト-5 - エン-2, 3-ジカルボキシルイミド、N-(カンファスルホニルオキシ) ビシクロ[2.2.1] ヘプタン-5,6-オキシ-2,3-ジカルボキシルイミド、N-(カンファスルホニル オキシ) ナフチルジカルボキシルイミド、N-(4-メチルフェニルスルホニルオキシ) スクシンイミド、N-(4-メチルフェニルスルホニルオキシ) フタルイミド、N-(4 -メチルフェニルスルホニルオキシ) ジフェニルマレイミド、N-(4-メチルフェニル スルホニルオキシ) ビシクロ [2.2.1] ヘプト-5-エン-2, 3-ジカルボキシル イミド、N-(4-メチルフェニルスルホニルオキシ)-7-オキサビシクロ[2.2. 1] ヘプト-5-エン-2, 3-ジカルボキシルイミド、N-(4-メチルフェニルスル ホニルオキシ) ビシクロ[2.2.1] ヘプタン-5,6-オキシ-2,3-ジカルボキ **シルイミド又はN-(4-メチルフェニルスルホニルオキシ)ナフチルジカルボキシルイ** ミドよりなるスルホンイミド化合物であることを特徴とする請求項2~6のいずれか1項 に記載のパターン形成方法。

【請求項20】

前記化合物は、3級アルコール、3級アルコールのジオール、2級アルコール又は2級アルコールのジオールであることを特徴とする請求項2、3、4、5、6、10又は11に 記載のパターン形成方法。

【請求項21】

前記化合物は、ターシャリブタノール又は2-メチル-2-ブタノールよりなる3級アルコールであることを特徴とする請求項2、3、5、6、10又は11に記載のパターン形成方法。

【請求項22】

前記化合物は、3-メチル-1,3-ブタンジオール又はベンゾピナコールよりなる3級アルコールのジオールであることを特徴とする請求項2、3、4、5、6、10又は11に記載のパターン形成方法。

【請求項23】

前記化合物は、2ープロパノール、2ーブタノール又は2ーメチルー3ーブタノールよりなる2級アルコールであることを特徴とする請求項2、3、4、5、6、10又は11に記載のパターン形成方法。

【請求項24】

前記化合物は、3-メチル-1、2-ブタンジオール又は2、4-ペンタンジオールよりなる2級アルコールのジオールであることを特徴とする請求項2、3、4、5、6、10 又は11に記載のパターン形成方法。

【請求項25】

前記水溶性膜は、ポリビニールアルコール膜又はポリビニールピロリドン膜であることを 特徴とする請求項4又は5に記載のパターン形成方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は半導体装置の製造プロセス等において用いられるパターン形成方法に関する。

[0002]

【従来の技術】

半導体集積回路の大集積化及び半導体素子のダウンサイジングに伴って、リソグラフィ技術の開発の加速が望まれている。現在のところ、露光光としては、水銀ランプ、KrFTキシマレーザ又はArFTキシマレーザ等を用いる光リソグラフィによりパターン形成が行われていると共に、より短波長である F_2 レーザの使用も検討されているが、露光装置及びレジスト材料における課題が未だ多く残されているため、より短波長の露光光を用いる光リソグラフィの実用化の時期は未だ先になっている。

[0003]

このような状況から、最近従来の露光光を用いてパターンの一層の微細化を進めるべく、 浸漬リソグラフィ(immersion lithography)(非特許文献1を参 照)が提案されている。

[0004]

この浸漬リソグラフィによれば、露光装置内における集光レンズとウエハー上のレジスト 膜との間の領域が屈折率がnである液体で満たされるため、露光装置のNA(開口数)の値が $n\cdot NA$ となるので、レジスト膜の解像性が向上する。

[0005]

以下、浸漬リソグラフィを用いる従来のパターン形成方法について図9(a) ~(d) を参照しながら説明する。

[0006]

まず、以下の組成を有するポジ型の化学増幅型レジスト材料を準備する。

[0007]

ポリ((ノルボルネン-5-メチレンターシャルプチルカルボキシレート)-(無水マレイン酸))(但し、ノルボルネン-5-メチレンターシャルプチルカルボキシレート:無水マレイン酸=50mo1%:50mo1%)(ペースポリマー)………2g トリフェニルスルフォニウムノナフレート(酸発生剤)…………0.06g プロピレングリコールモノメチルエーテルアセテート(溶媒)………20g

[0008]

次に、図9(a) に示すように、基板1の上に上記の化学増幅型レジスト材料を塗布して、0.20μmの厚さを持つレジスト膜2を形成する。

[0009]

次に、図9(b) に示すように、レジスト膜2の上にパーフルオロポリエーテル3を供給しながら、NAが0.60であるF2 レーザよりなる露光光4をマスク5を介してレジスト膜2に照射してパターン露光を行なう。尚、図9(b) においては、マスク5を通過した露光光4をレジスト膜2の表面に集光する集光レンズの図示は省略しているが、集光レンズとレジスト膜2との間の領域はパーフルオロポリエーテル3で満たされている。このようにすると、レジスト膜2の露光部2aにおいては酸発生剤から酸が発生するので、アルカリ性現像液に対して可溶性に変化する一方、レジスト膜2の未露光部2bにおいては酸発生剤から酸が発生しないので、アルカリ性現像液に対して難溶性のままである

[0010]

次に、図9(c) に示すように、パターン露光が行なわれたレジスト膜2に対して、ホットプレートにより100℃の温度下で60秒間加熱した後、2.38wt%のテトラメチルアンモニウムハイドロキサイド現像液(アルカリ性現像液)により現像を行なうと、図9(d) に示すように、レジスト膜2の未露光部2aよりなるレジストパターン6が得られる。

[0011]

【非特許文献1】

M. Switkes and M. Rothschild, "Immersion lithography at 157 nm", J. Vac. Sci. Technol.

, B19, 2353 (2001)

[0012]

【発明が解決しようとする課題】

ところが、図9(d) に示すように、従来例により得られるレジストパターン6は、ひさし状(T-top 形状)の突出部を有する不良形状であった。

[0013]

尚、従来例は、ポジ型のレジスト材料を用いたため、レジストパターン6の形状はひさし 状になったが、ネガ型のレジスト材料を用いると、レジストパターンの断面は肩だれ状に なった。

[0014]

このような不良形状のレジストパターンを用いて被処理膜に対してエッチングを行なうと、得られるパターンの形状も不良になってしまうので、半導体装置の製造プロセスにおける生産性及び歩留まりが低下してしまうという問題が発生する。

[0015]

前記に鑑み、本発明は、浸漬リソグラフィにより得られるレジストパターン形状を良好に することを目的とする。

[0016]

【課題を解決するための手段】

前記の目的を達成するため、本件発明者らは、浸漬リソグラフィにより得られるレジストパターンの形状が不良になる原因について検討を加えた結果、レジスト膜の上に、例えばパーフルオロボリエーテルよりなり挽水性を有する非水溶液を供給した状態でパターン露光を行なうため、パターン露光後の現像工程においてレジスト膜の表面に挽水性を有する非水溶液が残存し、この非水溶液が現像液のレジスト膜への浸透を阻止しているということを見出した。また、パターン露光後のレジスト膜の表面に水が存在すると、水が有する親和性により、現像液がレジスト膜に浸透し易くなるという現象も見出した。本発明は、前記の知見に基づいてなされたものであり、具体的は以下の方法により実現される。

[0017]

本発明に係る第1のパターン形成方法は、レジスト膜を形成する工程と、レジスト膜の上に、非水溶液に水が添加されてなる溶液を供給した状態で、レジスト膜に対して露光光を選択的に照射してパターン露光を行なう工程と、パターン露光が行なわれたレジスト膜に対して現像を行なってレジストパターンを形成する工程とを備えている。

[0018]

第1のパターン形成方法によると、溶液に水が含まれているため、パターン露光後のレジスト膜の表面が水により親和性を有するので、現像液がレジスト膜に浸透し易くなる。このため、レジストパターンの形状が良好になるので、該レジストパターンを用いてエッチングされた被処理膜よりなるパターンの形状も良好になる。

[0019]

本発明に係る第2のパターン形成方法は、光が照射されると酸を発生する酸発生剤を含有する化学増幅型レジスト材料よりなるポジ型のレジスト膜を形成する工程と、レジスト膜の上に、非水溶液に酸により水を発生する化合物が添加されてなる溶液を供給した状態で、レジスト膜に対して露光光を選択的に照射してパターン露光を行なう工程と、パターン露光が行なわれたレジスト膜に対して現像を行なってレジストパターンを形成する工程とを備えている。

[0020]

第2のパターン形成方法によると、レジスト膜に酸発生剤が含まれていると共に、溶液に酸により水を発生する化合物が含まれているため、パターン露光後のレジスト膜の露光部の表面が水により親和性を有するので、現像液がレジスト膜の露光部に浸透し易くなる。このため、レジストパターンの形状が良好になるので、該レジストパターンを用いてエッチングされた被処理膜よりなるパターンの形状も良好になる。

[0021]

本発明に係る第3のパターン形成方法は、ボジ型のレジスト膜を形成する工程と、レジスト膜の上に、非水溶液に光が照射されると酸を発生する酸発生剤と酸により水を発生する化合物とが添加されてなる溶液を供給した状態で、レジスト膜に対して露光光を選択的に照射してパターン露光を行なう工程と、パターン露光が行なわれたレジスト膜に対して現像を行なってレジストパターンを形成する工程とを備えている。

[0022]

₹.

第3のパターン形成方法によると、溶液に酸発生剤と酸により水を発生する化合物とが含まれているため、パターン露光後のレジスト膜の露光部の表面が水により親和性を有するので、現像液がレジスト膜の露光部に浸透し易くなる。このため、レジストパターンの形状が良好になるので、該レジストパターンを用いてエッチングされた被処理膜よりなるパターンの形状も良好になる。

[0023]

本発明に係る第4のパターン形成方法は、光が照射されると酸を発生する酸発生剤を含有する化学増幅型レジスト材料よりなるボジ型のレジスト膜を形成する工程と、レジスト膜の上に、酸により水を発生する化合物を含有する水溶性膜を形成する工程と、水溶性膜の上に非水溶液よりなる溶液を供給した状態で、レジスト膜に対して露光光を選択的に照射してパターン露光を行なう工程と、パターン露光が行なわれたレジスト膜に対して現像を行なってレジストパターンを形成する工程とを備えている。

[0024]

第4のパターン形成方法によると、レジスト膜に酸発生剤が含まれていると共に、レジスト膜の上に形成されている水溶性膜に酸により水を発生する化合物が含まれているため、パターン露光後の水溶性膜及びレジスト膜の各露光部の表面が水により親和性を有するので、現像液がレジスト膜の露光部に浸透し易くなる。このため、レジストパターンの形状が良好になるので、該レジストパターンを用いてエッチングされた被処理膜よりなるパターンの形状も良好になる。

[0025]

本発明に係る第5のパターン形成方法は、ポジ型のレジスト膜を形成する工程と、レジスト膜の上に、光が照射されると酸を発生する酸発生剤と酸により水を発生する化合物とを含有する水溶性膜を形成する工程と、水溶性膜の上に非水溶液よりなる溶液を供給した状態で、レジスト膜に対して露光光を選択的に照射してパターン露光を行なう工程と、パターン露光が行なわれたレジスト膜に対して現像を行なってレジストパターンを形成する工程とを備えている。

[0026]

第5のパターン形成方法によると、レジスト膜の上に形成されている水溶性膜に、酸発生剤と酸により水を発生する化合物が含まれているため、パターン露光後の水溶性膜及びレジスト膜の各露光部の表面が水により親和性を有するので、現像液がレジスト膜の露光部に浸透し易くなる。このため、レジストパターンの形状が良好になるので、該レジストパターンを用いてエッチングされた被処理膜よりなるパターンの形状も良好になる。

[0027]

本発明に係る第6のパターン形成方法は、光が照射されると酸を発生する酸発生剤と酸により水を発生する化合物とを含有する化学増幅型レジスト材料よりなるポジ型のレジスト膜を形成する工程と、レジスト膜の上に非水溶液よりなる溶液を供給した状態で、レジスト膜に対して露光光を選択的に照射してパターン露光を行なう工程と、パターン露光が行なわれたレジスト膜に対して現像を行なってレジストパターンを形成する工程とを備えている。

[0028]

第6のパターン形成方法によると、レジスト膜に酸発生剤と酸により水を発生する化合物とが含まれているため、パターン露光後のレジスト膜の露光部の表面が水により親和性を有するので、現像液がレジスト膜の露光部に浸透し易くなる。このため、レジストパターンの形状が良好になるので、該レジストパターンを用いてエッチングされた被処理膜より

なるパターンの形状も良好になる。

[0029]

第1~第6のパターン形成方法において、非水溶液としてはパーフルオロポリエーテルを 用いることができる。

[0030]

第1~第6のパターン形成方法において、露光光は F_2 レーザであることが好ましい。 【0031】

第2~第6のパターン形成方法において、溶液は水を含有することが好ましい。

[0032]

このようにすると、レジスト膜の露光部の表面の親和性が一層増加するため、現像液がレジスト膜の露光部に一層浸透し易くなる。

[0033]

第4~第6のパターン形成方法において、溶液は、酸により水を発生する化合物を含有することが好ましい。

[0034]

このようにすると、レジスト膜の露光部の表面の親和性が一層増加するため、現像液がレジスト膜の露光部に一層浸透し易くなる。

[0035]

第2又は第4のパターン形成方法において、化学増幅型レジスト材料は、酸により水を発生する化合物を含有することが好ましい。

[0036]

このようにすると、レジスト膜の露光部の表面の親和性が一層増加するため、現像液がレジスト膜の露光部に一層浸透し易くなる。

[0037]

第2~第6のパターン形成方法において、酸発生剤としては、オニウム塩、ハロゲン含有 化合物、ジアゾケトン化合物、ジアゾメタン化合物、スルホン化合物、スルホン酸エステ ル化合物又はスルホンイミド化合物等を用いることができる。

[0038]

第2〜第6のパターン形成方法において、酸により水を発生する化合物としては、3級アルコール、3級アルコールのジオール、2級アルコール又は2級アルコールのジオール等を用いることができる。

[0039]

第4又は第5のパターン形成方法において、水溶性膜としては、ポリビニールアルコール 膜又はポリビニールピロリドン膜を用いることができる。

[0040]

【発明の実施の形態】

以下、本発明の各実施形態に係るパターン形成方法について説明するが、その前提として、各実施形態に用いられる露光装置について図1を参照しながら説明する。尚、各実施形態に係るパターン形成方法に用いられる露光装置としては、図1に示す構造のものに限られず、浸漬リソグラフィを実現できる装置を広く用いることができる。

[0041]

図1に示すように、半導体基板10の上に形成されたレジスト膜11の上方には露光装置の集光レンズ12が配置され、集光レンズ12とレジスト膜11との間には、溶液(屈折率:n)13を貯留する溶液貯留部14が設けられている。溶液貯留部14には、溶液13が流入する流入口14aと溶液13が流出する流出口14bとが設けられており、流入口14aから溶液貯留部14に流入した溶液13は溶液貯留部14に一時的に貯留された後、流出口14bから外部に流出する。従って、露光光15は所望のパターンが描画されたマスク16を通過した後、集光レンズ12により集光され、その後、溶液13の内部を通過してレジスト膜11の表面に到達する。このため、溶液13中を通過してレジスト膜11の表面に到達する。このため、溶液13が貯留されていない場合に

比べてn倍になる。

[0042]

(第1の実施形態)

以下、本発明の第1の実施形態に係るパターン形成方法について、図 $2(a) \sim (d)$ を参照しながら説明する。

[0043]

まず、以下の組成を有するポジ型の化学増幅型レジスト材料を準備する。【0044】

ポリ((ノルボルネン-5-メチレンt-プチルカルボキシレート)-(無水マレイン酸))(但し、ノルボルネン-5-メチレンt-プチルカルボキシレート:無水マレイン酸=50mo1%:50mo1%)(ベースポリマー)…………2g トリフェニルスルフォニウムノナフレート(酸発生剤)…………0.06g プロピレングリコールモノメチルエーテルアセテート(溶媒)………20g

[0045]

次に、図2(a) に示すように、基板101の上に上記の化学増幅型レジスト材料を塗布して、 0.20μ mの厚さを持つレジスト膜102を形成する。

[0046]

次に、図2(b) に示すように、非水溶液である [化1]に示すパーフルオロボリエーテル(屈折率n:1.37)に8wt%の水が添加されており且つ循環しながら溶液貯留部14(図1を参照)に一時的に貯留されている溶液103をレジスト膜102の上に供給した状態で、NAが0.60であるF2 レーザよりなる露光光104を図示しないマスクを介してレジスト膜102に照射してパターン露光を行なう。尚、図2において、106は露光光104をレジスト膜102の上に集光する集光レンズである。このようにすると、レジスト膜102の露光部102aにおいては酸発生剤から酸が発生するので、アルカリ性現像液に対して可溶性に変化する一方、レジスト膜102の未露光部102bにおいては酸発生剤から酸が発生しないので、アルカリ性現像液に対して難溶性のままである。

【0047】 【化1】

[0048]

次に、図2(c) に示すように、パターン露光が行なわれたレジスト膜102に対して、ホットプレートにより100℃の温度下で60秒間加熱した後、2.38wt%のテトラメチルアンモニウムハイドロキサイド現像液(アルカリ性現像液)により現像を行なうと、図2(d) に示すように、レジスト膜102の未露光部102bよりなり0.06μmのライン幅を有し且つ良好な形状を持つレジストパターン105が得られる。【0049】

第1の実施形態によると、溶液103に水が含まれているため、パターン露光後のレジスト膜102の表面が水により親和性を有するので、現像液がレジスト膜102に浸透し易くなるので、得られるレジストパターン105の形状は良好になる。

[0050]

(第2の実施形態)

以下、本発明の第2の実施形態に係るパターン形成方法について、図3(a) ~(d) を参照しながら説明する。

[0051]

まず、以下の組成を有するネガ型の化学増幅型レジスト材料を準備する。

[0052]

[0053]

次に、図3(a) に示すように、基板201の上に上記の化学増幅型レジスト材料を塗布して、 $0.20\mu m$ の厚さを持つレジスト膜202を形成する。

[0054]

次に、図3(b) に示すように、非水溶液であるパーフルオロポリエーテル(屈折率 n : 1.37)に4 w t %の水が添加されており且つ循環しながら溶液貯留部14(図1を参照)に一時的に貯留されている溶液203をレジスト膜202の上に供給した状態で、NAが0.60であるF2 レーザよりなる露光光204を図示しないマスクを介してレジスト膜202に照射してパターン露光を行なう。このようにすると、レジスト膜202の露光部202aにおいては酸発生剤から酸が発生するので、架橋剤の作用によりアルカリ性現像液に対して難溶性に変化する一方、レジスト膜202の未露光部202bにおいては酸発生剤から酸が発生しないので、アルカリ性現像液に対して可溶性のままである。【0055】

次に、図3(c) に示すように、パターン露光が行なわれたレジスト膜202に対して、ホットプレートにより110℃の温度下で60秒間加熱した後、2.38wt%のテトラメチルアンモニウムハイドロキサイド現像液(アルカリ性現像液)により現像を行なうと、図3(d) に示すように、レジスト膜202の未露光部202bがアルカリ性現像液に溶解するため、レジスト膜202の露光部202aよりなり0.06μmのライン幅を有し且つ良好な形状を持つレジストパターン205が得られる。

[0056]

第2の実施形態によると、溶液203に水が含まれているため、パターン露光後のレジスト膜202の表面が水により親和性を有するので、現像液がレジスト膜202に浸透し易くなるので、得られるレジストパターン205の形状は良好になる。

[0057]

尚、第1の実施形態においては非水溶液に8wt%の水が添加されてなる溶液を用い、第2の実施形態においては非水溶液に5wt%の水が添加されてなる溶液を用いたが、水の添加量は特に限定されない。もっとも、通常は数wt%の添加量でよい。

[0058]

また、第1又は第2の実施形態においては、化学増幅型のレジスト材料を用いたが、これ に代えて、非化学増幅型のレジスト材料を用いてもよい。

[0059]

(第3の実施形態)

以下、本発明の第3の実施形態に係るパターン形成方法について、図4(a) ~(d) を参照しながら説明する。

[0060]

まず、以下の組成を有するポジ型の化学増幅型レジスト材料を準備する。

[0061]

ポリ((ノルボルネン-5-メチレンターシャルプチルカルボキシレート)-(無水マレイン酸))(但し、ノルボルネン-5-メチレンターシャルプチルカルボキシレート:無水マレイン酸=50mo1%:50mo1%)(ペースポリマー)………2g トリフェニルスルフォニウムノナフレート(酸発生剤)…………0.06g プロピレングリコールモノメチルエーテルアセテート(溶媒)………20g

[0062]

次に、図4(a) に示すように、基板301の上に上記の化学増幅型レジスト材料を塗布して、0.20 μ mの厚さを持つレジスト膜302を形成する。

[0063]

次に、図4(b) に示すように、非水溶液であるパーフルオロポリエーテル(屈折率 n:1.37)に、酸により水を発生させる化合物としての6w t%の3 - メチル-1,2 - ブタンジオールが添加されており且つ循環しながら溶液貯留部14(図1を参照)に一時的に貯留されている溶液303をレジスト膜302の上に供給した状態で、NAが0.60であるF2 レーザよりなる露光光304を図示しないマスクを介してレジスト膜302に照射してパターン露光を行なう。このようにすると、レジスト膜302の露光部302に記さいては酸発生剤から酸が発生するので、アルカリ性現像液に対して可溶性に変化する一方、レジスト膜302の未露光部302bにおいては酸発生剤から酸が発生しないので、アルカリ性現像液に対して難溶性のままである。

[0064]

次に、図4(c) に示すように、パターン露光が行なわれたレジスト膜302に対して、ホットプレートにより100℃の温度下で60秒間加熱した後、2.38wt%のテトラメチルアンモニウムハイドロキサイド現像液(アルカリ性現像液)により現像を行なうと、図4(d) に示すように、レジスト膜302の未露光部302bよりなり0.06μmのライン幅を有し且つ良好な形状を持つレジストパターン305が得られる。

[0065]

第3の実施形態によると、レジスト膜302に酸発生剤が含まれていると共に、溶液303に酸により水を発生する化合物が含まれているため、パターン露光後のレジスト膜302の露光部302aの表面が水により親和性を有するので、現像液がレジスト膜302の露光部302aに浸透し易くなるので、レジストパターン305の形状が良好になる。

[0066]

尚、第3の実施形態においては非水溶液に6wt%の酸により水を発生する化合物が添加されてなる溶液403を用いたが、化合物の添加量は限定されない。もっとも、通常は数wt%の添加量でよい。

[0067]

(第4の実施形態)

以下、本発明の第4の実施形態に係るパターン形成方法について、図5(a) ~(d) を参照しながら説明する。

[0068]

まず、以下の組成を有するポジ型の化学増幅型レジスト材料を準備する。

[0069]

ポリ((ノルボルネン-5-メチレンターシャルプチルカルボキシレート)-(無水マレイン酸))(但し、ノルボルネン-5-メチレンターシャルプチルカルボキシレート:無水マレイン酸=50mo1%:50mo1%)(ペースポリマー)………2g トリフェニルスルフォニウムノナフレート(酸発生剤)…………0.04g プロピレングリコールモノメチルエーテルアセテート(溶媒)………20g

[0070]

次に、図5(a) に示すように、基板401の上に上記の化学増幅型レジスト材料を塗布して、0.20 μ mの厚さを持つレジスト膜402を形成する。

[0071]

[0072]

次に、図5(c) に示すように、パターン露光が行なわれたレジスト膜402に対して、ホットプレートにより100℃の温度下で60秒間加熱した後、2.38wt%のテトラメチルアンモニウムハイドロキサイド現像液(アルカリ性現像液)により現像を行なうと、図5(d) に示すように、レジスト膜402の未露光部402bよりなり0.06μmのライン幅を有し且つ良好な形状を持つレジストパターン405が得られる。

[0073]

第4の実施形態によると、溶液403に酸発生剤と酸により水を発生する化合物とが含まれているため、パターン露光後のレジスト膜402の露光部402aの表面が水により親和性を有するので、現像液がレジスト膜402の露光部402aに浸透し易くなるので、レジストパターン405の形状が良好になる。

[0074]

尚、第4の実施形態においては、非水溶液に5wt%の酸発生剤と8wt%の酸により水を発生する化合物とが添加されてなる溶液403を用いたが、酸発生剤及び化合物の添加量は限定されない。もっとも、通常はそれぞれ数wt%の添加量でよい。

[0075]

また、第4の実施形態においては、ポジ型の化学増幅型レジスト材料を用いたが、これに 代えて、ポジ型の非化学増幅型レジスト材料を用いてもよい。

[0076]

(第5の実施形態)

以下、本発明の第5の実施形態に係るパターン形成方法について、図6(a) ~(d) を参照しながら説明する。

[0077]

まず、以下の組成を有するポジ型の化学増幅型レジスト材料を準備する。

[0078]

ポリ((ノルボルネン-5-メチレンt-プチルカルボキシレート)-(無水マレイン酸))(但し、ノルボルネン-5-メチレンt-プチルカルボキシレート:無水マレイン酸=50mo1%:50mo1%)(ベースポリマー)……………2g トリフェニルスルフォニウムノナフレート(酸発生剤)…………0.06g プロピレングリコールモノメチルエーテルアセテート(溶媒)………20g

[0079]

次に、図6(a) に示すように、基板501の上に上記の化学増幅型レジスト材料を塗布して、0.20μmの厚さを持つレジスト膜502を形成した後、該レジスト膜502の上に、酸により水を発生する化合物としての7wt%の2-メチルー2-ブタノールを含有するポリビニールアルコール膜よりなる水溶性膜503を形成する。

[0080]

次に、図6(b) に示すように、循環しながら溶液貯留部14(図1を参照)に一時的に貯留されているパーフルオロボリエーテルよりなる溶液504を水溶性膜503の上に供給した状態で、NAが0.60であるF₂ レーザよりなる露光光505を図示しないマスクを介して水溶性膜503及びレジスト膜502に照射してパターン露光を行なう。このようにすると、レジスト膜502の露光部502aにおいては酸発生剤から酸が発生するので、アルカリ性現像液に対して可溶性に変化すると共に水溶性膜503から水が発生する。一方、レジスト膜502の未露光部502bにおいては酸発生剤から酸が発生しないので、アルカリ性現像液に対して難溶性のままであると共に水溶性膜503から水が発生しない。

[0081]

次に、図6(c) に示すように、パターン露光が行なわれたレジスト膜502に対して、ホットプレートにより100℃の温度下で60秒間加熱した後、2.38wt%のテトラメチルアンモニウムハイドロキサイド現像液(アルカリ性現像液)により現像を行なうと、図6(d) に示すように、水溶性膜503及びレジスト膜502の露光部502aがアルカリ性現像液に溶解するため、レジスト膜502の未露光部502bよりなり0.06μmのライン幅を有し且つ良好な形状を持つレジストパターン505が得られる。【0082】

第5の実施形態によると、レジスト膜502に酸発生剤が含まれていると共に水溶性膜503に酸により水を発生する化合物が含まれているため、パターン露光後のレジスト膜502の露光部502aの表面が水により親和性を有するので、現像液がレジスト膜502の露光部502aに浸透し易くなるので、レジストパターン505の形状が良好になる。【0083】

尚、第5の実施形態においては、7wt%の酸により水を発生する化合物が添加された水溶性膜503を用いたが、化合物の添加量は限定されない。もっとも、通常は数wt%の添加量でよい。

[0084]

(第6の実施形態)

以下、本発明の第6の実施形態に係るパターン形成方法について、図7(a) ~(d) を参照しながら説明する。

[0085]

まず、以下の組成を有するポジ型の化学増幅型レジスト材料を準備する。

[0086]

ポリ((ノルボルネン-5-メチレンターシャルプチルカルボキシレート)-(無水マレイン酸))(但し、ノルボルネン-5-メチレンターシャルプチルカルボキシレート:無水マレイン酸=50mo1%:50mo1%)(ペースポリマー)………2g トリフェニルスルフォニウムノナフレート(酸発生剤)………0.045g プロピレングリコールモノメチルエーテルアセテート(溶媒)………20g

. 0 .

[0087]

次に、図7(a) に示すように、基板601の上に上記の化学増幅型レジスト材料を塗布して、0.20μmの厚さを持つレジスト膜602を形成した後、該レジスト膜602の上に、光により酸を発生する酸発生剤としての4wt%のN-(トリフルオロメチルスルホニルオキシ)スクシンイミドと、酸により水を発生する化合物としての5wt%のベンゾピナコールとを含有するポリビニールピロリドン膜よりなる水溶性膜603を形成する。

[0088]

次に、図7(b) に示すように、循環しながら溶液貯留部14(図1を参照)に一時的に貯留されているパーフルオロポリエーテルよりなる溶液604を水溶性膜603の上に供給した状態で、NAが0.60である F_2 レーザよりなる露光光605を図示しないマスクを介して水溶性膜603及びレジスト膜602に照射してパターン露光を行なう。このようにすると、レジスト膜602の露光部602aにおいては酸発生剤から酸が発生するので、アルカリ性現像液に対して可溶性に変化する一方、レジスト膜602の未露光部602bにおいては酸発生剤から酸が発生しないので、アルカリ性現像液に対して難溶性のままである。また、水溶性膜603の露光部においては、酸発生剤から酸が発生するので、化合物から水が発生する。

[0089]

次に、図7(c) に示すように、パターン露光が行なわれたレジスト膜602に対して、ホットプレートにより100℃の温度下で60秒間加熱した後、2.38wt%のテトラメチルアンモニウムハイドロキサイド現像液(アルカリ性現像液)により現像を行なうと、図7(d) に示すように、水溶性膜603及びレジスト膜602の露光部602aがアルカリ性現像液に溶解するため、レジスト膜602の未露光部602bよりなり0.06μmのライン幅を有し且つ良好な形状を持つレジストパターン605が得られる。【0090】

第6の実施形態によると、水溶性膜603に、酸発生剤と酸により水を発生する化合物が含まれているため、パターン露光後の水溶性膜603及びレジスト膜502の各露光部の表面が水により親和性を有するので、現像液がレジスト膜502の露光部に浸透し易くなるので、レジストパターン605の形状が良好になる。

[0091]

尚、第6の実施形態においては、4wt%の酸発生剤と、5wt%の酸により水を発生する化合物とが添加された水溶性膜603を用いたが、酸発生剤及び化合物の添加量は限定されない。もっとも、通常はそれぞれ数wt%の添加量でよい。

[0092]

また、第6の実施形態においては、ポジ型の化学増幅型レジスト材料を用いたが、これに 代えて、ポジ型の非化学増幅型レジスト材料を用いてもよい。

[0093]

(第7の実施形態)

以下、本発明の第7の実施形態に係るパターン形成方法について、図8(a) \sim (d) を参照しながら説明する。

[0094]

まず、以下の組成を有するポジ型の化学増幅型レジスト材料を準備する。

[0095]

ポリ((ノルボルネン-5-メチレンターシャルプチルカルボキシレート)-(無水マレイン酸))(但し、ノルボルネン-5-メチレンターシャルプチルカルボキシレート:無水マレイン酸=50mo1%:50mo1%)(ペースポリマー)……2gトリフェニルスルフォニウムノナフレート(酸発生剤)………0.06g3-メチル-1,2-プタンジオール(酸により水を発生する化合物)………0.12gプロピレングリコールモノメチルエーテルアセテート(溶媒)……20g

[0096]

次に、図8(a) に示すように、基板701の上に上記の化学増幅型レジスト材料を塗布して、0.20 μ mの厚さを持つレジスト膜702を形成する。

[0097]

次に、図7(b) に示すように、非水溶液であるパーフルオロポリエーテル(屈折率 n : 1.37)よりなり且つ循環しながら溶液貯留部 14(図1を参照)に一時的に貯留されている溶液 703をレジスト膜 702の上に供給した状態で、NAが0.60である F レーザよりなる露光光 704を図示しないマスクを介してレジスト膜 702に照射してパターン露光を行なう。このようにすると、レジスト膜 702の露光部 702 a においては酸発生剤から酸が発生するので、アルカリ性現像液に対して可溶性に変化すると共に水が発生する。一方、レジスト膜 702の未露光部 702 b においては酸発生剤から酸が発生しないので、アルカリ性現像液に対して難溶性のままであると共に水が発生しない。【0098】

次に、図8(c) に示すように、パターン露光が行なわれたレジスト膜702に対して、ホットプレートにより100℃の温度下で60秒間加熱した後、2.38wt%のテトラメチルアンモニウムハイドロキサイド現像液(アルカリ性現像液)により現像を行なうと、図8(d) に示すように、レジスト膜702の未露光部702bよりなり0.06μmのライン幅を有し且つ良好な形状を持つレジストパターン705が得られる。

[0099]

第7の実施形態によると、レジスト膜702に酸発生剤と酸により水を発生する化合物とが含まれているため、パターン露光後のレジスト膜702の露光部702aの表面が水により親和性を有するので、現像液がレジスト膜702の露光部に浸透し易くなるので、レジストパターン705の形状が良好になる。

[0100]

尚、第7の実施形態においては、化学増幅型レジスト材料に添加される、酸により水を発生する化合物の添加量は限定されず、通常は数wt%の添加量でよい。

[0101]

第1~第7の実施形態においては、露光光として、 F_2 レーザを用いたが、これに代えて、他の真空紫外線、g線若しくはi 線等の紫外線、又はKrFレーザ若しくはArFレーザ等の遠紫外線を用いることができる。

[0102]

第3~第7の実施形態においては、溶液に水を添加してもよい。このようにすると、レジスト膜の表面の親和性が向上するため、現像液のレジスト膜への浸透が一層促進される。 【0103】

第5~第7の実施形態においては、溶液に、酸により水を発生する化合物を添加してもよい。このようにすると、レジスト膜の露光部において発生する酸の作用により発生する水の親和性によって、現像液のレジスト膜への浸透が一層促進される。

[0104]

第3又は第5の実施形態においては、化学増幅型レジスト材料に、酸により水を発生する

化合物を添加してもよい。このようにすると、レジスト膜の露光部において発生する酸の 作用により発生する水の親和性によって、現像液のレジスト膜への浸透が一層促進される

[0105]

第1~第7の実施形態において、化学増幅型レジスト材料、溶液又は水溶性膜に添加される酸発生剤としては、オニウム塩、ハロゲン含有化合物、ジアゾケトン化合物、ジアゾメタン化合物、スルホン化合物、スルホン酸エステル化合物又はスルホンイミド化合物を用いることができる。

[0106]

酸発生剤となるオニウム塩の例としては、ジフェニルヨードニウムトリフレート、ジフェニルヨードニウムトリフレート、トリフェニルスルホニウムトリフレート又はトリフェニルスルホニウムノナフレート等が挙げられる。

[0107]

また、酸発生剤となるハロゲン含有化合物の例としては、2-フェニル-4, 6-ビス (トリクロロメチル) -s-トリアジン又は2-ナフチル-4, 6-ビス (トリクロロメチル) -s-トリアジン等が挙げられる。

[0108]

また、酸発生剤となるジアゾケトン化合物の例としては、1, 3 – ジフェニルジケト – 2 – ジアゾプロパン、1, 3 – ジシクロヘキシルジケト – 2 – ジアゾプロパン又は1, 2 – ナフトキノンジアジド – 4 – スルホン酸と2, 2, 3, 4, 4 – テトラヒドロキシベン ゾフェノンとのエステル等が挙げられる。

[0109]

また、酸発生剤となるジアゾメタン化合物の例としては、ビス(トリフルオロメチルスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(フェニルスルホニル)ジアゾメタン、ビス(pートリルスルホニル)ジアゾメタン又はビス(pークロロフェニルスルホニル)ジアゾメタン等が挙げられる。

[0110]

また、酸発生剤となるスルホン化合物としては、4-トリスフェナシルスルホン、メシチルフェナシルスルホン又はビス(フェニルスルホニル)メタン等が挙げられる。

[0111]

また、酸発生剤となるスルホン酸エステル化合物としては、ベンゾイントシレート、2,6-ジニトロベンジルトシレート、2-ニトロベンジルトシレート、4-ニトロベンジルトシレート又はピロガロールトリメシレート等が挙げられる。

[0112]

また、酸発生剤となるスルホンイミド化合物としては、N-(トリフルオロメチルスルホ ニルオキシ) スクシンイミド、N- (トリフルオロメチルスルホニルオキシ) フタルイミ ド、N-(トリフルオロメチルスルホニルオキシ)ジフェニルマレイミド、N-(トリフ ルオロメチルスルホニルオキシ) ビシクロ[2.2.1] ヘプト-5-エン-2, 3-ジ カルボキシルイミド、N-(トリフルオロメチルスルホニルオキシ)-7-オキサビシク ロ[2.2.1] ヘプトー5ーエンー2, 3ージカルボキシルイミド、Nー(トリフルオ ロメチルスルホニルオキシ) ビシクロ[2.2.1] ヘプタン-5,6-オキシ-2,3 ージカルボキシルイミド、N-(トリフルオロメチルスルホニルオキシ)ナフチルジカル ボキシルイミド、N-(カンファスルホニルオキシ)スクシンイミド、N-(カンファス ルホニルオキシ) フタルイミド、N-(カンファスルホニルオキシ) ジフェニルマレイミ ド、N-(カンファスルホニルオキシ) ビシクロ[2.2.1] ヘプト-5-エン-2. 3-ジカルボキシルイミド、N-(カンファスルホニルオキシ)-7-オキサビシクロ[2.2.1] ヘプト-5-エン-2, 3-ジカルボキシルイミド、N-(カンファスルホ ニルオキシ) ビシクロ [2.2.1] ヘプタン-5,6-オキシ-2,3-ジカルボキシ ルイミド、N-(カンファスルホニルオキシ)ナフチルジカルボキシルイミド、N-(4 -メチルフェニルスルホニルオキシ) スクシンイミド、N-(4-メチルフェニルスルホ

ニルオキシ) フタルイミド、N-(4-x+n)ェニルスルホニルオキシ) ジフェニルマレイミド、N-(4-x+n)フェニルスルホニルオキシ) ビシクロ [2.2.1] ヘプトー5ーエンー2、3-ジカルボキシルイミド、N-(4-x+n)フェニルスルホニルオキシ) -7-オキサビシクロ [2.2.1] ヘプトー5ーエンー2、3-ジカルボキシルイミド、N-(4-x+n)フェニルスルホニルオキシ) ビシクロ [2.2.1] ヘプタンー5、6-オキシー2、3-ジカルボキシルイミド又はN-(4-x+n)フェニルスルホニルオキシ) ナフチルジカルボキシルイミド等が挙げられる。

[0113]

第3~第7の実施形態において、化学増幅型レジスト材料、溶液又は水溶性膜に添加される、酸により水を発生する化合物としては、3級アルコール、3級アルコールのジオール、2級アルコール又は2級アルコールのジオール等を用いることができる。

[0114]

また、酸により水を発生する化合物としての3級アルコールの例としては、ターシャリブタノール又は2-メチルー2-ブタノール等が挙げられる。

[0115]

また、酸により水を発生する化合物としての3級アルコールのジオールの例としては、3 ーメチルー1,3ーブタンジオール又はベンゾピナコール等が挙げられる。

[0116]

また、酸により水を発生する化合物としての2級アルコールの例としては、2-プロパノール、2-ブタノール又は2-メチル-3-ブタノール等が挙げられる。

[0117]

また、酸により水を発生する化合物としての2級アルコールのジオールの例としては、3 -メチル-1,2-ブタンジオール又は2,4-ペンタンジオール等が挙げられる。

[0118]

さらに、第5又は第6の実施形態における水溶性膜としては、ポリビニールアルコール膜 又はポリビニールピロリドン膜等を適宜用いることができる。

[0119]

【発明の効果】

本発明に係る第1~第6のパターン形成方法によると、パターン露光後のレジスト膜の表面が水により親和性を有するため、現像液がレジスト膜に浸透し易くなり、これによって、レジストパターンの形状が良好になるので、該レジストパターンを用いてエッチングされた被処理膜よりなるパターンの形状も良好になる。

【図面の簡単な説明】

- 【図1】本発明の各実施形態に共通に用いられる露光装置の部分断面図である。
- 【図2】(a) \sim (d) は第1の実施形態に係るパターン形成方法の各工程を示す断面図である。
- 【図3】(a) \sim (d) は第2の実施形態に係るパターン形成方法の各工程を示す断面図である。
- 【図4】(a) \sim (d) は第3の実施形態に係るパターン形成方法の各工程を示す断面図である。
- 【図5】 (a) \sim (d) は第4の実施形態に係るパターン形成方法の各工程を示す断面図である。
- 【図6】 (a) \sim (d) は第5の実施形態に係るパターン形成方法の各工程を示す断面図である。
- 【図7】(a) \sim (d) は第6の実施形態に係るパターン形成方法の各工程を示す断面図である。
- 【図8】(a) \sim (d) は第7の実施形態に係るパターン形成方法の各工程を示す断面図である。
- 【図9】(a) \sim (d) は従来のパターン形成方法の各工程を示す断面図である。

【符号の説明】

101 基板

:

- 102 レジスト膜
- 102a 露光部
- 102b 未露光部
- 103 溶液
- 104 露光光
- 105 レジストパターン
- 106 集光レンズ
- 201 基板
- 202 レジスト膜
- 202a 露光部
- 202b 未露光部
- 203 溶液
- 204 露光光
- 205 レジストパターン
- 301 基板
- 302 レジスト膜
- 302a 露光部
- 302b 未露光部
- 303 溶液
- 304 露光光
- 305 レジストパターン
- 401 基板
- 402 レジスト膜
- 402a 露光部
- 402b 未露光部
- 403 溶液
- 404 露光光
- 405 レジストパターン
- 501 基板
- 502 レジスト膜
- 502a 露光部
- 502b 未露光部
- 503 水溶性膜
- 504 溶液
- 505 露光光
- 506 レジストパターン
- 601 基板
- 602 レジスト膜
- 602a 露光部
- 602b 未露光部
- 603 水溶性膜
- 604 溶液
- 605 露光光
- 606 レジストパターン
- 701 基板
- 702 レジスト膜
- 702a 露光部
- 702b 未露光部
- 703 溶液

704 露光光705 レジストパターン

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

(72)発明者 遠藤 政孝

大阪府門真市大字門真1006番地 松下電器産業株式会社内

(72)発明者 笹子 勝

大阪府門真市大字門真1006番地 松下電器産業株式会社内

Fターム(参考) 2H025 AA03 AC04 AC08 AD03 BE00 BE07 BE10 BG00 CB08 CB41

CC20 FA01

2H096 AA25 BA11 DA04 DA10 EA03 EA04 EA27

5F046 JA22