Algebraic Topology I PS7

Mathieu Wydra

December 1, 2023

- 1. Let \tilde{x}, \tilde{y} be generators for $H^n(S^n; \mathbb{Z}), H^{2n}(S^{2n}; \mathbb{Z})$, $f: S^{2n-1} \to S^n$ and induced generators $x \in H^n(C(f); \mathbb{Z}), y \in H^{2n}(C(f); \mathbb{Z})$.
 - (a) Let n be odd. The cup product $x \smile x = (-1)^{n^2}(x \smile x)$ hence $x^2 = 0$ so h(f) = 0.
 - (b) Define $h: \pi_{2n-1}(S^n) \to \mathbb{Z}$ as follows: pick representative of some homotopy class $f \in [f] \in \pi_{2n-1}(S^n)$, then $[f] \mapsto h(f)$. This is well defined as the mapping cone C(f) is homotopic to the cone over any other choice of representatives. For homomorphism, pick two representatives $f \in [f], g \in [g]$ then sum of [f], [g] in $\pi_{2n-1}(S^n)$ is represented by the composition

$$f + g: S^{2n-1} \xrightarrow{\alpha} S^{2n-1} \vee S^{2n-1} \xrightarrow{f \wedge g} S^n \vee S^n \xrightarrow{\beta} S^n$$

Consider the map $\phi: C(f\vee g)\circ \alpha)\to C(f+g)$ defined by folding $S^n\vee S^n$ to S^n via β . Take generators $a\in H^n(C(f+g)), b\in H^{2n}(C(f+g)), c\in H^{2n}(C((f\vee g)\circ \alpha))), d,d'\in H^n(S^n\vee S^n)$. Note that $\phi^*(a\smile a)=(\phi^*a)^2=(d+d')^2$ via the action of the folding map on $C((f\vee g)\circ \alpha)).$

Since d,d' corresponding to generators of $H^n(S^n), d^2 = d'^2 = 0$ and the maps of $S^n \to C(f), C(g)$ induce $(d+d')^2 = h(f)y_f + h(g)y_g$ where y_f, y_g are generators of $H^{2n}(C(f)), H^{2n}(C(g))$ respectively. Moreover, y_f, y_g also generate $H^{2n}(C(f) \vee C(g))$ so by collapsing e^{2n} in $C((f \vee g) \circ \alpha)$ we get map $\varphi : C((f \vee g) \circ \alpha) \to C(f) \vee C(g)$ and so looking at d,d' as elements in $H^{2n}(C((f \vee g) \circ \alpha)); (d+d')^2 = h(f)\varphi^*(y_f) + h(g)\varphi^*(y_g)$. Thus

$$h(f+g)\phi^*b = \phi^*a^2 = (d+d')^2 = h(f)\varphi^*y_f + h(g)\varphi^*y_g$$

since $a^2 = h(f+g)b$. Since y_f , y_g , a all map to a generator of $H^{2n}(C((f \vee g) \circ \alpha)))$ we can chose them to map all to c (by sign). Then the result follows.

(c) Let $g: S^n \to S^n$ be a map of degree d, then consider the mapping cone $C(g \circ f)$ and the natural map $\phi: C(f) \to C(g \circ f)$. Then ϕ induces a morphism $\phi^*: H^n(C(g \circ f)) \to H^n(C(f))$ which sends a generator $\sigma \in H^n(C(g \circ f))$ to $d\tau \in H^n(C(f))$ where τ is a generator of $H^n(C(f))$ such that the signs match up. Since

 $H^{2n}(C(f)) \cong H^{2n}(C(g \circ f))$, then pick a generators $H^{2n}(C(f)) \ni y = y' \in H^{2n}(C(g \circ f))$. Thus in $C(g \circ f)$, $h(g \circ f)y' = \sigma^2 = d^2\tau^2 = d^2h(f)y$ the result follows.

(d) Consider the composite map

$$\alpha: S^{2n-1} \to S^n \vee S^n \xrightarrow{f} S^n$$
.

By attaching a e^{2n} cell to S^n along α we can get $\alpha': S^{2n-1} \to S^n \hookrightarrow C(\alpha)$ which is null-homotopic by construction. Pick generators $z, z' \in H^{2n}(S^n \vee S^n) \cong \mathbb{Z} \oplus \mathbb{Z}$ corresponding to the different \mathbb{Z} -parts. The folding map $f: S^n \vee S^n \to S^n$ is such that $f^*(\tilde{x}) = z + z'$. Moreover we can extend f to a map $F: S^n \times S^n \to S^n$. Note that F^* induces an isomorphism $H^{2n}(C(\alpha)) \cong H^{2n}(S^n \times S^n)$. The cup square $z \smile z = z' \smile z' = 0$ in $S^n \times S^n$ and $z \smile z'$ is a generator of $H^{2n}(S^n \times S^n)$. For any generator $\sigma \in H^{2n}(C(\alpha); \mathbb{Z})$ we then have such that $F^*(\sigma) = \pm (z \smile z')$, then the Hopf invariant here is such that $\tilde{x} \smile \tilde{x} = h(\alpha)\sigma$, so $F^*(\tilde{x} \smile \tilde{x}) = h(\alpha)F^*(\sigma) = \pm h(\alpha)(z \smile z')$. Then as $F^*(\tilde{x}) = z + z'$,

$$F^*(\tilde{x}^2) = (F^*\tilde{x})^2 = (f^*\tilde{x})^2 = (z+z')^2 = z \smile z' + z' \smile z = (1+(-1)^{n^2})z \smile z' = 2z \smile z'$$

Then $\pm h(a)z \smile z' = 2z \smile z'$ and the result follows.

- (e) We have that $H^{kn}(\Omega S^{n+1}) = \mathbb{Z}$ for all k. Let $f: S^{2n-1} \to \Omega S^{n+1}$ be that attaching map of the e^2n -cell onto the e^n cell of ΩS^{n+1} (which under attaching with the 0-cell is S^n).
- 2. Consider based CW-pair (X, A) with inclusion map $i: A \to X$ and basepoint *. i is an n-equivalence for some n, so (X, A) is an n-connected pair. By the 'correct' Blakers-Massey theorem, the pushout

$$\begin{array}{ccc} A/X \longleftarrow & X \\ \uparrow & & i \\ * \longleftarrow & A \end{array}$$

where p is obviously a m-equivalence, induces an equivalence of $\pi(X/A) \cong \pi_k(X/A,*) \cong \pi_k(X,A) \cong \pi_k(X,A,*)$ for $k \leq m+n-1$. Then from the exact sequence on relative homotopy

$$\dots \longrightarrow \pi_k(A) \longrightarrow \pi_k(X) \longrightarrow \pi_k(X,A) \longrightarrow \pi_{k-1}(A) \longrightarrow \dots$$

we get

$$\dots \longrightarrow \pi_k(A) \longrightarrow \pi_k(X) \longrightarrow \pi_k(X/A) \longrightarrow \pi_{k-1}(A) \longrightarrow \dots$$

By Freudenthal, $\pi_{k+\ell}(\Sigma^{\ell}X)$, $\pi_{k+\ell}(\Sigma^{\ell}A)$ stabilise for large enough ℓ (as we are doing this on CW-complexs) and then so does $\pi_k(X, A)$, hence passing to the colimit gives us the required exact sequence on stable homotopy groups.