

Pulse Height Analysis of 3D pCVD Diamond Detectors

RD42 Meeting

Michael Reichmann

10th May 2019

Table of Contents

- Introduction
- 2 3D Pixel Detector
- Setup at PSI
- Pulse Height Calibration
- 6 Analysis
- 6 Results
- Conclusion
- 8 Backup

Introduction

- innermost tracking layers \rightarrow highest radiation damage $\mathcal{O}\left(\mathsf{GHz}/\mathsf{cm}^2\right)$
- ullet ightarrow R&D towards more radiation tolerant detector designs and/or materials

M. Reichmann (FIHzürich) 10th May 2019

- ullet innermost tracking layers o highest radiation damage $\mathcal{O}\left(\mathsf{GHz}/\mathsf{cm}^2\right)$
- ullet ightarrow R&D towards more radiation tolerant detector designs and/or materials

Diamond as Detector Material:

- advantageous properties
- \bullet after $1\cdot 10^{16}\,\text{n/cm}^2$ the mean drift path in diamond larger than in silicon

10th May 2019 2 / 21

- ullet innermost tracking layers o highest radiation damage $\mathcal{O}\left(\mathsf{GHz}/\mathsf{cm}^2\right)$
- → R&D towards more radiation tolerant detector designs and/or materials

Diamond as Detector Material:

- advantageous properties
- \bullet after $1\cdot 10^{16}\,\text{n/cm}^2$ the mean drift path in diamond larger than in silicon

Work at ETH:

- investigate signals and radiation tolerance in various detector designs:
 - ▶ Pad Detectors → whole diamond as single cell readout
 - ▶ Pixel Detectors → diamond sensor on pixel readout chip
 - ightharpoonup 3D Pixel Detectors ightarrow 3D diamond detector on pixel readout chip

M. Reichmann (FIHzürich) 3D Pulse Height 10th May 2019

2 / 21

- ullet innermost tracking layers o highest radiation damage $\mathcal{O}\left(\mathsf{GHz}/\mathsf{cm}^2\right)$
- ightarrow R&D towards more radiation tolerant detector designs and/or materials

Diamond as Detector Material:

- advantageous properties
- \bullet after $1\cdot 10^{16}\,\text{n}/\text{cm}^2$ the mean drift path in diamond larger than in silicon

Work at ETH:

- investigate signals and radiation tolerance in various detector designs:
 - ► Pad Detectors
 - ▶ Pixel Detectors
 - ▶ 3D Pixel Detectors → this talk

M. Reichmann (FIHzürich)

Detectors

	II6-A2	II6-B6	
manufacturer	II-VI Inc.	II-VI Inc.	
diamond type	poly-crystal	poly-crystal	
size	\sim 4 mm $ imes$ 4 mm	\sim 4 mm $ imes$ 4 mm	
thickness	\sim 500 μ m	455 μm	
irradiation	none	none	
construction	summer 2016	summer 2017	
3D drilling	Oxford	Oxford	
3D cell size	$150\mu m imes 100\mu m$	$50\mu m imes 50\mu m$	
columns	20 × 30 (600)	60 × 62 (3720)	
pixel chip	PSI46digV2.1respin (CMS)	PSI46digV2.1respin (CMS)	
pixel pitch	$150\mu extsf{m} imes 100\mu extsf{m}$	$150\mu extsf{m} imes 100\mu extsf{m}$	
ganged cells	none 2 × 3 (6 c		
bump & wire bonding	Princeton	Princeton	

Table: 3D Pixel Detector Properties.

M. Reichmann (FIHzürich) 3D Pulse Height 10th May 2019 3 / 21

Detectors

	II6-A2	II6-B6	
manufacturer	II-VI Inc.	II-VI Inc.	
diamond type	poly-crystal	poly-crystal	
size	\sim 4 mm $ imes$ 4 mm	\sim 4 mm $ imes$ 4 mm	
thickness	\sim 500 μ m	455 μm	
irradiation	none	none	
construction	summer 2016	summer 2017	
3D drilling	Oxford	Oxford	
3D cell size	$150\mu m imes 100\mu m$	$50\mu m imes 50\mu m$	
columns	20 × 30 (600)	60 × 62 (3720)	
pixel chip	PSI46digV2.1respin (CMS)	PSI46digV2.1respin (CMS)	
pixel pitch	$150\mu extsf{m} imes 100\mu extsf{m}$	$150\mu extsf{m} imes 100\mu extsf{m}$	
ganged cells	none	2×3 (6 cells)	
bump & wire bonding	e bonding Princeton Princeton		

Table: 3D Pixel Detector Properties.

- ullet II6-A2 broke in October 2016 (chip malfunctioned) o successful re-bonding
- II6-B6 has long history of breaking ...

M. Reichmann (FIHzürich) 3D Pulse Height 10th May 2019

3 / 21

Measurements

place PSI PSI	PSI	CERN	CERN	PSI
			C=: \(\)	1 31
II6-A2 ✓ ✓	✓	✓	✓	✓
II6-B6 X X	✓	X	✓	✓

Table: 3D Pixel Detector Measurements.

- at PSI: scanning particle rate, bias voltage, rise time and incident angle
- at CERN: high resolution studies at different voltages

Measurements

	Oct 16	May 17	Aug 17	Sep 18	Oct 18	Oct 18
place	PSI	PSI	PSI	CERN	CERN	PSI
116-A2	✓	✓	✓	✓	✓	✓
116-B6	X	X	✓	X	✓	✓

Table: 3D Pixel Detector Measurements.

- at PSI: scanning particle rate, bias voltage, rise time and incident angle
- at CERN: high resolution studies at different voltages

History of II6-B2:

- 06/2017 sensor processing and detector fabrication
- 08/2017 first measurement \rightarrow high efficiency \rightarrow pedestal in pulse height
- 04/2018 several pixels malfunction \rightarrow re-bump-bonding to new chip
- 06/2018 sensor detaches while shipping \rightarrow re-bump-bonding, fixate with silguard
- 10/2018 at PSI: efficiency worsens and sensor detaches again

M. Reichmann (FIHzürich) 10th May 2019 4 / 21

3D Pixel Detector

Working Principle

- after large radiation fluence all detectors become trap limited
- bias and readout electrode inside detector material
- ullet same thickness D o same amount of induced charge o shorter drift distance L
- increase collected charge in detectors with limited mean drift path (Schubweg)

M. Reichmann (FIHzürich) 10th May 2019 5 / 21

Bump Bonding

(b) 3×2 bump pads

6 / 21

- electrodes (columns) drilled with femto-second laser
- connection to bias and readout with surface metallisation
- ganging of cells to match pixel pitch of readout-chip (ROC)
- small gap (\sim 15 µm) to the surface to avoid a high voltage break-through

M. Reichmann (FIHzürich) 10th May 2019

Setup at PSI

Figure: modular ETH beam telescope in pixel configuration

- ullet 4 tracking planes o trigger (fast-OR) o adjustable area (max 8 mm imes 7.8 mm)
- up to 3 DUT planes (any digital pixel detector)
- ullet scintillator for precise trigger timing $o \mathcal{O}\left(1\,\mathrm{ns}
 ight)$

M. Reichmann (All Zürich) 3D Pulse Height 10th May 2019

Schematic Setup

- independent telescope module for DUTs (dark green)
- ullet scintillator o precise trigger timing of $\mathcal{O}\left(1\,\mathsf{ns}
 ight)$
- ullet Trigger Unit (TU) o strongly simplifying setup
- ullet global trigger o (Plane 1 AND Plane 2) AND Scintillator

M. Reichmann (Ellizürich) 3D Pulse Height

10th May 2019

Pulse Height Calibration

Pixel Unit Cell

- ullet inject calibration signal (\sim vcal) through sensor into same circuit as real signals
- shaping, amplification, threshold check
- set amplification offset
- ullet convert to 8 bit adc value with adjustable scale o readout

M. Reichmann (FIHzürich) 10th May 2019

9 / 21

Figure: ADC calibration for single pixel.

- measure adc values for calibration pulses with different vcal
- adc follows error function and saturates for high vcal

M. Reichmann (311 zürich) 3D Pulse Height 10th May 2019 10 / 21

ADC Calibration

Figure: ADC calibration for single pixel with error function fit.

- measure adc values for calibration pulses with different vcal
- adc follows error function and saturates for high vcal
- fit every pixel and save fit parameters
- adjust adc offset and range with DACs of the chip

M. Reichmann (all'zürich) 3D Pulse Height 10th May 2019 10 / 21

Vcal Calibration (Silicon)

(a) Zn target.

(b) Mo target.

(a) Ag target.

(b) Sn target.

 \bullet measure energy spectra of \mathcal{K}_{α} lines of four metal targets using ADC-calibration

M. Reichmann (FIHzürich)

Vcal Calibration (Silicon)

Figure: Vcal Calibration.

- ullet measure energy spectra of \mathcal{K}_lpha lines of four metal targets using ADC-calibration
- linear dependence of energy [e] and vcal
- fit K_{α} points with straight line (similar for each chip)
- impossible to do calibration with diamond (energy too low)

M. Reichmann (Fillzürich) 3D Pulse Height 10th May 2019 11 /

Vcal Calibration (Silicon)

11 / 21

- ullet measure energy spectra of K_{lpha} lines of four metal targets using ADC-calibration
- linear dependence of energy [e] and vcal
- fit K_{α} points with straight line (similar for each chip)
- impossible to do calibration with diamond (energy too low)
 - use general values from silicon: $e = 46.5 \cdot vcal$

M. Reichmann (FILZ zürich) 3D Pulse Height 10th May 2019

Analysis

Cuts

Cut	Excluded Events
event range	first minute of the run due to various beam conditions
beam interruptions	during rate changes of the beam due to beam interruption
aligned	DUT and Telescope are not aligned (event-wise)
trigger phase	Chip trigger timing is incorrect
tracks	not all telescope planes have exactly one cluster
chi2 (x/y)	badly fit tracks (>50 % quantile)
track slope (x/y)	large angles of the tracks (>2 deg)
rhit	large DUT residual (>100 mm)
pixel mask	noisy pixels
fiducial	not in selected (fiducial) area of the DUT

Table: Analysis cut flow.

- cuts applied in order of the table
- largest contribution usually by chi2, tracks and fiducial cuts

Results

- pulse height looks OK, but "pedestal" of unknown origin (cannot be real)
 - cannot be remeasured, since the ROC was exchanged
- Langau MPV: 13500 e
- uniform efficiency

PSI - August 2017

- pulse height looks OK, but "pedestal" of unknown origin (cannot be real)
 - cannot be remeasured, since the ROC was exchanged
- Langau MPV: 13500 e
- uniform efficiency
- high efficiency of $(99.2 \pm 0.1)\%$

- left part of pulse height distribution not understood
- Langau MPV: 8000 e
- ullet efficiency much less uniform o already loose bumps?

- left part of pulse height distribution not understood
- Langau MPV: 8000 e
- efficiency much less uniform → already loose bumps?
- \bullet lower efficiency of (97.3 \pm 0.2) %

- tried different calibrations of the chip
- using the same region as at PSI
- also small region with 3D cells without bump-bonding (rows 76-79)

- calibration on the bench for single plane, operation with three planes
- error fit to demonstrate the calibration for a single pixel
- calibration clearly wrong

- calibration in situ, operation with three planes
- weird low side of the distribution

- re-calibration in situ, operation with three planes
- gives very similar result
- all calibrations in situ very similar.

- calibration in situ, operation with single plane
- distribution looks very well, but still small negative contribution
- $\bullet \to \mathsf{small}/\mathsf{negative} \ \mathsf{signals} \ \mathsf{can} \ \mathsf{be} \ \mathsf{related} \ \mathsf{to} \ \mathsf{small}/\mathsf{degraded} \ \mathsf{analogue} \ \mathsf{signals}...$

(a) Area with 3D columns.

(b) Area without 3D columns.

• comparison between regions with and without 3D columns

Conclusion

Conclusion

- many different measurement of both 3D diamond detectors
 - ► start analyse more data!
- X-ray pulse height calibration can hardly be performed on diamond
 - need to use estimate from silicon
- in situ adc calibration is quite constant
- almost all pulse height distribution show nonphysical low contribution
 - ▶ possible reason: degraded analogue signals from chip to readout

Backup

Diamond as Particle Detector

(a) Detector Schematics

(b) 15 cm ø pCVD Diamond Wafer

- detectors operated as ionisation chambers
- metallisation on both sides
- poly-crystals produced in large wafers