

Agenda The Data Science Process Intro to data engineering Scalers Statistics

Session goals

- · Gain an understanding of the Data Science Process
- · Understand the need for data engineering
- · Understand a few basic statistical methods

5

The Data Science Process – CRISP-DM Cross Industry Standard for Data Mining

Business Understanding Understanding Preparation Modeling Evaluation Deployment Identify project Objectives Collect and review Select and cleanse data Manipulate data and draw conclusions and conclusions to business 20%

Start with Data

- · Where did the data come from?
- \cdot Is this all the data or a sample of the data?
- \cdot Is the sample representative of the population?
- \cdot Is the data representative of the Business Question?
- · How much engineering is required?

8

Why data engineering?

- · Where is the data coming from?
- · How many sources of data do you have?
- · Is the data denormalized?
- · Will it be streaming data?
- · Is the data time sensitive, does a prediction need to be made now?
- · Online predictions vs batch predictions?
- · Data cannot be passed into a model as is in most cases
- · String data must be converted to numeric data
- · Categorical data must be one hot encoded
- ¿ Image data may be processed as a numpy array

9

The EPA Notebook

The business problem?

Can we predicate the MPG of a vehicle with the data submitted to the EPA?

05-Linear Regression.ipynb

10

		1 3110	did k	<i>(</i>	emoved?	
Represented.Test.Veh.Make	Model	Vehicle.Type	HorsePower	Cylinders	Tested.Transmission.Type.Code	Tested.Transmission.Type
Aston Martin	Rapide S	Car	552	12	SA	Semi-Automatic
Aston Martin	Vanquish	Car	568	12	SA	Semi-Automatic
BENTLEY	Continental GT	Car	616	12	SA	Semi-Automatic
BENTLEY	Continental GT	Car	616	12	SA	Semi-Automatic
вмм	230i Convertible	Car	248	4	SA	Semi-Automatic
вмм	230i Coupe	Car	248	4	М	Manual
BMW	230i Coupe	Car	248	4	SA	Semi-Automatic
BMW	230i xDrive Convertible	Car	248	4	SA	Semi-Automatic
BMW	230i xDrive Coupe	Car	248	4	SA	Semi-Automatic
BMW	320i	Both	181	4	А	Automatic

Scalers?

- · In general, learning algorithms benefit from standardization of the data set
- Standardization of datasets is a common requirement for many machine learning estimators
- Models might behave badly if the individual features do not more or less look like standard normally distributed data

17

17

sklearn.preprocessing.MaxAbsScaler

- · Scale each feature by its maximum absolute value
- This estimator scales and translates each feature individually such that the maximal absolute value of each feature in the training set will be 1.0.
- · It does not shift/center the data, and thus does not destroy any sparsity

sklearn.preprocessing.StandardScaler

· Standardize features by removing the mean and scaling to unit variance.

19

19

sklearn.preprocessing.normalize

 Normalization is the process of scaling individual samples to have unit norm

```
from sklearn.preprocessing import normalize

X = [[ 10., -10., 200.],
      [ 30., 40., 50.],
      [ 0., 1., -1.]]
X_normalized = normalize(X, norm='12')

X_normalized

array([[ 0.04987547, -0.04987547, 0.99750934],
      [ 0.42426407, 0.56568542, 0.70710678],
      [ 0. , 0.70710678, -0.70710678]])
```


	RowNumber	HorsePower	Cylinders	Gears	Weight	AxleRatio	Test.Procedure.Cd	Test.Fuel.Type.Cd	FuelEcon				
count	1034.000000	1034.000000	1034.000000	1034.000000	1034.000000	1034.000000	1034.000000	1034.000000	1034.000000				
mean	521.361702	291.824952	5.431335	6.509671	4191.852031	3.411064	24.993230	56.366538	28.216538				
std	300.241933	144.294932	1.905214	1.992824	787.821434	0.586484	22.078601	11.633650	9.496233				
min	1.000000	72.000000	3.000000	1.000000	2375.000000	1.560000	2.000000	19.000000	9.200000				
25%	262.250000	181.000000	4.000000	6.000000	3625.000000	3.070000	11.000000	61.000000	21.525000				
50%	520.500000	271.500000	4.000000	7.000000	4000.000000	3.360000	21.000000	61.000000	26.800000				
75%	781.750000	355.000000	6.000000	8.000000	4750.000000	3.700000	31.000000	61.000000	33.400000				
max	1040.000000	1500.000000	16.000000	10.000000	6500.000000	5.440000	95.000000	61.000000	71.600000				
22													

Other data issues

- · Do you need to deal with dates? Time Series
- · Do you have location data, lat/long zip code / FIPS code
- · Image data has its own techniques and processes
- · Down sampling the image?
- · Convert it to black and white image?
- · Don't underestimate how long the data engineering may take
- · Will the prediction need to be correlated to a datapoint later

23

23

Thank you for attending the MLADS Conference and helping to build a strong community

To find recordings, presentations, and other resources from the event, go to: http://aka.ms/november2022mlads

More information about the AI & ML Connected Community: http://aka.ms/aiml-cc

We want your feedback!

We read each evaluation and incorporate your comments into future MLADS events. Both sessions and event evaluations will be available within the MyMLADS event portal during the conference dates—to access them, navigate to the **Evaluations tab**.

We request that session evaluations are submitted following each day of programming.

