

Modellalapú szoftverfejlesztés

IX. előadás

Object Constraint Language

Dr. Semeráth Oszkár

Object Constraint Language (OCL)

- Lehetővé teszi precíz UML/metamodellek definiálását
- OMG szabvány
- Tulajdonságai
 - > Az OCL kényszerek deklaratívak: azt adják meg mi helyes és nem azt, hogy mit kell tenni
 - > Az OCL kényszereknek nincs mellékhatásuk: az OCL kifejezések kiértékelése nem változtatja meg a rendszer állapotát
 - > Az OCL kényszerek formális szintaxissal és szemantikával rendelkeznek: értelmezésük egyértelmű és automatizálható
- Metamodell bővítése = több lehetőség
- Kényszerek bővítése = kevesebb lehetőség

Kontextus

- Kontextus: Az a modell elem, amire az OCL kifejezést definiálták
 - > osztály, interfész, adattípus, komponens, művelet, példány
- Kontextus típusa: annak az modellelemnek a típusa, amire a kifejezést kiértékelik
- Ha a kontextus egy típus, akkor a kontextus típusával megegyezik
- Kontextus példány: a konkrét modellelem, amire kiértékeljük a kifejezést
 - > "self" kulcsszóval hivatkozzuk

context Customer
inv: self.name = 'Edward'

Kifejezéstípusok kontextus szerint

- Invariáns
 - > "Minden diáknak van Neptun kódja"
- Elő- és utófeltétel
 - > "Sötét van, mielőtt/miután felkel/lenyugszik a nap"
- Kezdeti érték
 - > "Az autó gyártásakor 0 km-t futott"
- Származtatott érték
 - > "A végső érdemjegy a ZH és a vizsga átlaga"
- Metódustörzs
 - > "A könyvtárban lévő könyvek száma a polcokon lévő könyvek számának összege"

Invariánsok

- Metamodellelemre definiált kényszer
- Egy logikai kifejezés, aminek a metamodellelem minden példányára, minden időpillanatban igaznak kell lennie

```
context <metaelem>
inv [<kényszernév>]: <logikai kifejezés>
```

Invariáns példák

context Customer

inv: self.name = 'Edward'

context Customer

inv: age >= 18

context CustomerCard

inv checkDates:

validFrom.isBefore(goodThru)

Date

+isBefore() : bool

Customer

-name : string

-age : int

-isMale : bool

-dateOfBirth : Date

1 -owner

* -cards

CustomerCard

-valid: bool

-validFrom : Date

-goodThru : Date

-printedName : string

Elő- és utófeltételek

- Műveletre definiált kényszer
- A művelet hatására koncentrál algoritmustól vagy implementációtól függetlenül
 - > Előfeltétel: egy adott művelet elvégzése előtti utolsó időpillanatban igaz feltétel
 - > Utófeltétel: egy adott művelet elvégzése utáni első időpillanatban igaz feltétel

```
context <metaelem>::<művelet> (<paraméterek>)
pre[<kényszernév>]: <logikai kifejezés>

context <metaelem>::<művelet> (<paraméterek>)
post[<kényszernév>]: <logikai kifejezés>
```

Elő- és utófeltétel példák

```
context LoyaltyAccount::
             isEmpty(): Boolean
post: result = (points = 0)
context Customer::birthdayHappens()
post: age = age@pre + 1
context Service::
upgradePointsEarned(amount: Integer)
post: calcPoints() = calcPoints@pre()
+ amount
context LoyaltyProgram::
             enroll(c : Customer)
pre: c.name <> ' '
post: participants =
participants@pre->
 including(c)
```


Kezdeti érték

- Attribútumra vagy asszociációra definiált kényszer
- Egy érték, amit az attribútum vagy asszociáció vesz fel a kontextus példány létrejöttének pillanatában

Származtatott érték

Attribútumra vagy asszociációra definiált kényszer

A származtatott elem nem önmagában létező érték, mindig más alamek

segítségével definiálják

Date

+isBefore() : bool +addYears() : Date Customer

-name : string
-age : int
-isMale : bool
-dateOfBirth : Date
-title : string
+birthdayHappens()

1 -owner
* -cards

CustomerCard

-valid : bool -validFrom : Date -goodThru : Date

-printedName : string

Lekérdező műveletek törzse

- Műveletre definiált kényszer
- Vannak olyan műveletek, melyek egy adott értéket kérdeznek le, nincs egyéb mellékhatásuk
- Kényszerben rögzíthetjük, hogy pontosan mit is kell visszaadniuk

Kényszerek és öröklés

- A kényszerek is öröklődnek
- Az invariánst a származott osztály örökli. A származott osztály szigoríthatja a kényszert, de nem enyhítheti.
- Az előfeltételt lehet enyhíteni a származott osztály újradefiniált műveletében.
 Szigorítani nem lehet.
- Az utófeltételt lehet szigorítani a származott osztály újradefiniált műveletében. Enyhíteni nem lehet.

Modellalapú szoftverfejlesztés

IX. előadás

Szintaxis és Szemantika

Dr. Semeráth Oszkár

Szintaxis és Szemantika

I. Konkrét és Absztrakt szintaxis

II. Szerkesztők

III. Szemantika

Konkrét szintaxis

Hogyan néz ki?

Honeywell keverőcsap DN50 K_{vs} 40 Spirovent típusú iszapleválasztó BE 065L

Remeha Quinta kaszkád rendszer hidrauliku

Konkrét szintaxis

Absztrakt szintaxis: modell

Hogyan reprezentáljuk a modellt?

Absztrakt szintaxis: a modell leírása

Hogyan írjuk le az adatmodellt? sz4: Beszabályzószelep sziv1 : Ikerszivattyú bi2 : Bővítő idom cs6 : Egyenes sz3 : Keverőcsap cs3 : Egyenes cs4: T-elem «enumeration» «enumeration» csatlakozás = Elem 🕮 Anyag Csőrendszer cs2 : Egyenes cs5 : Egyenes gyártó : String 😑 gáz ■ Alu típus : String = füst PPs ឴ ... szellőző cs7 : T-elem fűtés ■ Csővezeték Berendezés Szerelvény T-elem külső: Anyag belső: Anyag rendszer : Csőrendszer vastagság : Integer Egyenes Melegvíztermelő Hőleadó Kazán Csap Tágulási tartály Leválasztó Szivattyú Ikerszivattyú Golyós csap Elzáró Pillangószelep Keverőcsap Levegőleválasztó Iszapleválasztó Visszacsapó szelep Beszabályzószelep motoros : Boolean Metamodell

Definíciók áttekintése

Cél: válasszuk szét a reprezentációtól független és függő részeit.

- Definíció [Absztrakt szintaxis]: Olyan (absztrakt) adatstruktúra, amely a modell reprezentációtól független részét írja le.
- **Definíció [Konkrét szintaxis]:** A modell reprezentáció-specifikus része.

Használják modellekre és modellező nyelvekre (modellezőeszközökre) is.

"A Yakindu modellezési nyelv konkrét szintaxisában lekerekített téglalapok jelölik az állapotokat."

Konkrét szintaxis

Mi része a konkrét szintaxisnak?

Szöveges szintaxis

Absztrakt szintaxis

Hogyan reprezentáljuk a modellek absztrakt szintaxisát?

Absztrakt szintaxis: tipikusan egy gráf alapú struktúra.

Hogyan válasszuk szét a konkrét és absztrakt szintaxist?

Változtatunk a konkrét szintaxisban, de nem az absztraktban

Változtatunk az absztraktban

Cél: úgy szétválasztani a konkrét és absztrakt szintaxist, hogy a modellezési szolgáltatások ne interferáljanak

Szintaxisok multiplicitása

- 1 absztrakt szintaxis → sok szöveges és grafikus jelölés
 - > Emberi szemmel olvasható és írható szöveges vagy grafikus szintaxis
 - > Szöveges szintaxis továbbításhoz vagy tároláshoz (tipikusan XML)
 - > UML esetében minden diagramm csak egy parciális nézet
- 1 absztrakt modell → sok konkrét szintaxis!
 - > Whitespace, diagramm elrendezés
 - > Kommentek
 - > Szintaktikus cukor
- 1 szemantikus interpretáció → sok absztrakt modell
 - > p.l. UML2 Attribútum vs. egyirányú Asszociáció

Szöveges + Grafikus

Ugyanaz a modell, kettő szintaxis

- Szöveges szerkesztő + grafikus nézet ©
- Xtext Generic Viewer

test.socialnetwork 🔬 test.socialnetwork diagram 🛭 SocialNetwork { Person Ujhelyi { memberships BME, VVEC Person Horvath { memberships FTSRG Community BME { Community FTSRG { Community test 📤 WEC 📤 BME Person Test { female memberships test 📤 FTSRG Community VVEC 📤 test Person Proba { valaki 🧸 Community Pr2 Person valaki { Ujhelyi is friend of Horvath Nincs sok értelme, Test is married to Ujhelyi ne csináljátok! MODELLALAPÚ SZOFTVERFEJLESZTÉS

Modell különböző aspektusai

- Diagramm szöveges mezőkkel
- Beágyazott Xtext támogatás

Szintaxis és Szemantika

I. Konkrét és Absztrakt szintaxis

II. Szerkesztők

III. Szemantika

1. Munkafolyamat: projekciós szerkesztés

> Más néven szintaxis vezérelt szerkesztés Absztrakt reprezentáció strukturális szerkesztés szerkesztése Modell elem beillesztése Modell elem törlés A WEC Referencia beillesztés Horvath 🔼 Referencia törlése A FTSRC Attribútum szerkesztése test.socialnetwork 🕱 number SocialNetwork Person Ujhelyi { custs memberships BME, VVEC Person Horvath 1 Konkrét Modell **Szintaxis** Konkrét reprezentáció Community test levezetése / projekciója

Formázás (szöveges)

 Vizualizálás / elrendezés (grafikus)

- 2. Munkafolyamat: nyers szerkesztés (szöveges szintaxissal)
 - > Más néven forrás szerkesztés

2. Munkafolyamat: nyers szerkesztés (grafikus szintaxissal)

"Tulajdonság mátrix" + példák

Vegyes munkafolyamat

Tranzakciók a projekciós szerkesztésben

Komplex manipulációs szekvencia egyetlen műveletként

> "Extract subprocess", "Drag&drop attribute" stb. Tranzakció inicializálva Egyidejű írási vagy olvasási Transaction Tranzakció kezdete tranzakciók ellenőrzése **START** Reverzibilitás Hogyan biztosítható? Visszaállítás Deklaratív parancsok Change notification Manuális Manipulációs lépés 1 rögzítése visszavonás Manipulációs lépés 2… DO Opcionális: helyesség ellenőrzése Elutasít és visszaállít ha hibás Precommit Tranzakció véglegesítve Postcommit **FINISH** Change notification kiadása (ha nem korábban)

Projekciók frissítése

Felesleges jelölési paraméterek

1. Munkafolyamat: projekciós szerkesztés

- Szóközök és megjegyzések stb. (szöveges)
- Elrendezés, élirányítás, méret, forma stb. (grafikus)

...annak ellenére, hogy nem lényeges információ

Jelölési paraméterek levezetése

- Jelölési paraméterek lehetnek...
 - > ... "beégetve" a projekció kódjába
 - p.l. minden vonal fekete, minden betűméret 10pt (grafikus)
 - p.l. alkalmazza ezt a kód formázási sablont (szöveges)
 - > ...levezetve domain információból
 - p.l. forma a típus alapján, szín a láthatóság alapján meghatározva

1. Probléma:

Szerkeszthető paraméterek nem lehetnek a domain modell függvényei, tárolni kell

2. Probléma:

Néhány paraméternél nehéz lehet értelmes értéket adni p.l. pozíció a diagrammon

> ...modellben tárolva

Jelölés/nézet modellek

- Modell szétválasztása:
 - > Szakterületi / Szemantikai modell (absztrakt szintaxis)
 - > Jelölés modell (nézet modell): prezentációs állapot
 - Felhasználó lehet, hogy szerkesztheti
 - még mindig szükség van levezethető alapértékekre → lásd elrendezés
- Általános implementáció GMF-ben és Graphiti-ben
 - > Valójában EMF-en alapul
- Gyakran külső fájlokban tárolva
 - > Felelősségi körök szétválasztása
 - > P.I. kódgenerátort nem érdekli a nézeti információ

Szerkesztési folyamat jelölési modellekkel

1. Munkafolyamat: projekciós szerkesztés

> "A" Szituáció: domain és jelölési modellek együttes szerkesztése

Szerkesztési folyamat jelölési modellekkel

1. Munkafolyamat: projekciós szerkesztés

Szintaxis és Szemantika

I. Konkrét és Absztrakt szintaxis

II. Szerkesztők

III. Szemantika

Szemantika

- Sokat beszéltünk a szintaxisról.
- Szemantika: a fogalmak jelentése egy nyelvben
 - > Statikus: mit jelent egy modell pillanatképe?
 - > Dinamikus: hogyan változik/fejlődik/viselkedik a modell?

Definíció

A modellező nyelv szemantikája a modelleket leképezi egy valóélet-beli vagy egy matematikai szemantikai domain-re.

Szemantika típusai

- Statikus Szemantika
 - > A metamodell elemeinek értelmezése: fogalmak jelentése az absztrakt szintaxisban
 - > Axiomatikus: matematikai állítások az értelmezésről
- Dinamikus Szemantika
 - > Operációs
 - A nyelvi fogalmak operációs viselkedésének modellezése
 - "Interpretáció"
 - P.I. a véges automata hogyan változhat állapotot futás közben
 - Néha dinamikus funkciókat csak dinamikus szemantika formalizálására vezetnek be

> Denotációs

- fogalmak fordítása egyik nyelvből a másikba (szemantikai domain-nek hívják)
- "Fordítás"
- P.I. állapotgépek magyarázata Petri-hálóként

Példa: Jelölési szemantika

MODELLALAPÚ SZOFTVERFEJLESZTÉS

41

Példa: Működési szemantika

Köszönöm a figyelmet!