Definiciones

Unidades

Q (Carga) [C]

 \vec{E} (Campo eléctrico) $[\frac{N}{C}]$ o $[\frac{V}{m}]$

V (Potencial eléctrico) [V] o $[\frac{J}{C}]$

 Φ (Flujo eléctrico) [V m]

 U_E (Energía potencial eléctrica) [J]

C (Capacidad) [F]

I (Intensidad) [A = C/s]

 \vec{J} (Densidad de corriente) $[A/m^3]$

R (Resistencia) $[\Omega] \rho'$ (Resistividad)

 $[\Omega/m]$

G (Conductancia) $[S = \Omega^{-1}]$

 σ' (Conductividad) $[m/\Omega = S/m]$

 μ (Movilidad el. de portadores)

 $[m^2/V]$

n (Portadores / unidad de volumen)

 Σ (F. Electromotriz) [V]

 $\vec{\rho}$ (Momento dipolar)

 $[D=3.34\cdot 10^{-30}C\cdot m]$

 χ_e (Susceptibilidad eléctrica)

[Adim.]

 α (polarizabilidad/densidad) $[m^3]$

 F_m (Fuerza magnética) [N]

B (Campo magnético)

 $[T = \frac{N}{C \ m/s} = \frac{N}{A \ m}]$

 Φ (Flujo de campo mag.) [Wb]

Geometría

Superficie círculo: πr^2

Circunferencia esfera: $2\pi r$

Superficie esfera: $4\pi r^2$

Volumen esfera: $\frac{4}{3}\pi r^3$

Superficie cilindro: $2\pi rl$ Densidad lineal: $\lambda = \frac{Q}{l} dq = \lambda dl$

Densidad superficie:

 $\sigma = \frac{Q}{A} dq = \sigma dS$ Densidad volumétrica:

 $\rho = \frac{Q}{V} dq = \rho dV$ $\vec{u_r} = \frac{1}{r}\vec{r}$

Trigonometría

 $sen\theta = \frac{cat_o}{L}$

 $sen\theta = \frac{1}{h}$ $cos\theta = \frac{cat_a}{h}$ $tan\theta = \frac{sen\theta}{cos\theta}$ $1 = sen^2\theta + cos^2\theta$

Básico

Coulomb

$$\vec{E} = k \frac{Q}{r^2} \vec{u_r}$$

 $\vec{F} = k \frac{\vec{q}_1 \vec{q}_2}{r^2} \vec{u_r}$ $V = k \frac{Q}{r}$; $k = \frac{1}{4\pi\epsilon_0}$

 $U = k^{\frac{q_1 q_2}{2}}$

 $W_{\infty} = -k \frac{q_1 q_2}{r_{12}}$ $\Delta U = -W_{campo}$

Gauss

 $\begin{aligned} \Phi &= \vec{E} \cdot \vec{S} \rightarrow EScos\theta \\ \Phi &= \frac{Q_{enc}}{\epsilon_o} \end{aligned}$

 $\Phi = \int \vec{E} \cdot d\vec{s}$

Dist. contínuas

Hilo infinito

 $E = \frac{2k\lambda}{d}$ (perpendicular)

(d = distancia hasta "P")

 $\vec{E} = k \frac{Q_{(a)}}{\sqrt{(a^2 + R^2)^3}} \vec{u_a} \xrightarrow{(a \gg R)} \frac{KQ}{a^2}$

 $V = k \frac{Q}{\sqrt{a^2 + R^2}} (\sqrt{a^2 + R^2} = r)$

(a = distancia hasta "a")

Disco

 $\vec{E} = 2\pi k\sigma \left(1 - \frac{a}{\sqrt{a^2 + R^2}}\right) \vec{u_a}$ $\rightarrow \vec{E} = \frac{2kQ}{R^2} (...) \vec{u_a} \begin{cases} (R \gg a) = \text{Plano} \\ (a \gg R) \frac{KQ}{2} \end{cases}$

Plano

$$\vec{E} = \frac{\sigma}{2\epsilon_o}$$

Esfera corteza

r > R

 $\vec{E} = k \frac{Q}{r^2} \vec{u_r}$; $V = K \frac{Q}{r}$

 $\vec{E} = 0 \; ; \; V = k \frac{Q}{R}$

Esfera homogénea

r > R

 $\vec{E} = k \frac{Q}{r^2} \vec{u_r}$; $V = k \frac{Q}{r}$

r < R

 $\vec{E} = k \frac{Qr}{R^3} \vec{u_r}$

 $V = \frac{3}{2}k\frac{Q}{R} - \frac{1}{2}k\frac{Qr^2}{R^3}$

Cilindro

r > R

 $E = \frac{\sigma R}{\epsilon_0 r}$

(r = distancia a "P")

r = R

 $E = \frac{\sigma}{\epsilon}$

$$\begin{array}{|c|c|}
\hline r > R \\
E = 0 \ \mathcal{O} = 0
\end{array}$$

Conductores

 $\vec{E}_{dentro} = 0 \rightarrow Q_{enc} = 0$ $(Toda\ Q\ en\ superficie)$

Lámina

 $(E_{dentro} = 0 ; ES = \frac{\sigma S}{\epsilon})$

Esf. hueca

 $[r > R] \equiv [r < R]$ (continuidad)

Dipolo

$$\vec{p} = q\vec{d}$$

$$V = k \frac{q(r_2 - r_1)}{r_1 r_2}$$

d=distancia entre polos

E sobre eje x:

 $\vec{E_x} = \frac{2xqd}{[x^2 - (d/2)^2]^2} \vec{u_x} \xrightarrow{x \gg \frac{d}{2}} k \frac{2qd}{x^3} \vec{u_x}$ E sobre eje y:

 $\vec{E} = -2k \frac{q \, d/2}{[y^2 + (d/2)^2]^{3/2}} \xrightarrow{y \gg \frac{d}{2}} -k \frac{qd}{y^3} \vec{u_x}$

Campo homogéneo

$$M = \vec{p} \times \vec{E_o}$$
$$U = -pE_o$$

Polarización Macro

 $\vec{P} = \frac{1}{\Delta Vol} \sum_{i} \vec{p_i} \xrightarrow{=dip.} \vec{P} = n\vec{p}$ $\vec{P} = \chi_e \epsilon_o \vec{E} = \epsilon_o (\epsilon_r - 1) E$

Campos

 $\vec{E}_{dentro} = \vec{E}_o - \vec{E}_p$ $E_p = \frac{\sigma_p}{\epsilon_o}$ $\epsilon_r = \frac{E_o}{E} = 1 + \chi_e$

 $Q_P = \sigma_P A$

 $\begin{aligned} p_{tot} &= Q_p L \\ P &= \frac{p_{tot}}{Vol} = \sigma_P \ [C/m^2] \end{aligned}$

 $|\vec{D}| = \epsilon_o E_{int} + P = \epsilon_o \epsilon_r E = \epsilon E$

Gauss

Sustituir ϵ_o en "k" por $\epsilon = \epsilon_o \epsilon_r$.

Polarización Micro

Polarización elec.

$$\begin{split} \vec{p} &= \alpha \epsilon_o \vec{E}_{(local)} \\ \chi_e &= n\alpha = n4\pi R^3 \text{ (átomo)} \\ \vec{E}_{nube} &= \vec{E}_o \rightarrow E_{nube} = k \frac{qd}{R^3} \end{split}$$

 $\left. \begin{array}{l} p = 4\pi\epsilon_o R^3 \vec{E_o} \\ \vec{p} = \alpha\epsilon_o \vec{E_o} \end{array} \right\} \Rightarrow \alpha_e = 4\pi R^3$ $(R \equiv \text{nube } e^-)$

Polarización iónica.

$$\vec{p} = \alpha \epsilon_o \vec{E_o}$$
 $\alpha_{\text{orientación}} = \frac{p_o^2}{3\epsilon_o k_B T} \; ; \; \chi = n \alpha_{ori.}$

Interacc. dip.

Perm. + Perm.

Energía

$$U = -\vec{p_2}\vec{E_1} = -p_2E_{1x}$$

$$U = -k\frac{p_1p_2}{r^3}(3\cos^2\theta - 1)$$

dipolos paralelos

\Rightarrow Mínima E: $\pm K \frac{2p_1p_2}{r^3}$

dependiendo de $\theta = \pi/2$, 0...

$$\frac{dU}{dVol} = \frac{1}{2}\epsilon_r\epsilon_o E^2 = \frac{1}{2}\epsilon E^2 \ [J/m^3]$$

Campo y potencial

$$\begin{split} V &= k \frac{\vec{r} \vec{p_1}}{r^3} = k \frac{p_1}{\cos \theta} \\ E_r &= -\frac{dV}{dr} = k \frac{2p \cos \theta}{r^3} \\ E_\theta &= -\frac{\lambda 2v}{r \ d\theta} = k \frac{p \sin \theta}{r^3} \end{split}$$

Perm. + Ind.

$$\begin{array}{l} (p_1 \equiv perm.\;;\; p_2 \equiv ind.) \\ U = -\vec{p_2}E_1\;;\; E_1 = E_{1x} = -K\frac{2p_1}{r^3} \\ \vec{p_2} = \alpha\epsilon_o\vec{E_1} \\ \Rightarrow U = -\frac{k}{\pi}\frac{\alpha p_1}{r^6} = -\frac{C}{r^6} \end{array}$$

Ind. + Ind.

Circuitos

Ohm

$$I = \frac{V}{R}$$
$$R = \rho' \frac{L}{S}$$

Corriente

$$\begin{split} I &= \frac{\Delta q}{\Delta t} = n \cdot qSv_d \\ \Delta Q &= n \cdot q\Delta Vol = n \cdot qSv_d\Delta t \\ \rightarrow \Delta Vol &= Sv_d\Delta t = S\Delta L \\ (\mathbf{S} = \text{cara sección}) \end{split}$$

Variables

$$\begin{split} \sigma' &= \frac{1}{\rho'} \\ G &= \frac{1}{R} = \sigma' \frac{S}{L} \\ \vec{J} &= n \cdot q \vec{v_d} \rightarrow J = \frac{I}{S} \\ J &= \sigma' E \\ \mu &= \frac{\sigma'}{n \cdot q} \\ v_d &= \frac{\sigma'}{n \cdot q} \vec{E} = \mu \vec{E} \end{split}$$

$(q \text{ suele ser del } e^-)$

Energía

Pérdida E:
$$-\Delta U = \Delta Q(V_B - V_A)$$
Pérdida E:
$$-\Delta U = \Delta QV = Q(V_A - V_B)$$
Variac. temp.:
$$-\frac{\Delta U}{\Delta t} = \frac{\Delta Q}{\Delta t}V = IV$$

Pot disipada:

Pot =
$$I^2R$$

Pot(t) = $\frac{V_o^2}{R}e^{-t/\tau} = \frac{Q_{max}}{R}e^{-t/\tau}$
 $\frac{1}{2}m_ev_e^2 = qV$

Condensadores

$$C = \frac{Q}{V} = \frac{Q}{Q_o/\epsilon_o A} = \epsilon_o \frac{A}{d}$$

$$U = \frac{1}{2}CV^2$$

$$Vacío \rightarrow V_C = \frac{q}{C} = 0$$

Lleno $\rightarrow I_C = 0$ Campo dentro:

$$E = \hat{E}_1 + E_2 = \frac{\sigma}{\epsilon_o} \; ; \; V = E \cdot d$$

Dieléctrico:

$$C = \epsilon \frac{A}{d} \epsilon_r = 1 + \chi_e$$

$$\epsilon_r = \frac{\epsilon}{\epsilon_o}$$

$$C_{\epsilon_r} = C_o \cdot \epsilon_r$$

$$\epsilon_o = \frac{1}{\mu_o c^2}$$
$$k = \frac{1}{4\pi\epsilon_o}$$

Carga condensador

$$\begin{split} V_o &= iR + \frac{q}{C} \\ \tau &= RC \\ q &= V_o C \left(1 - e^{-t/\tau}\right) \ (max = V_o C) \\ i &= \frac{dq}{dt} = \frac{V_o}{B} e^{-t/\tau} \end{split}$$

Balance

\mathbf{E}_{aport} Batería:

$$U_{bat}(t) = V_o^2 C \left(1 - e^{-t/\tau} \right)$$

E_{disip} Resist.:

$$U_R(t) = \frac{V_o^2 C}{2} \left(1 - e^{-2t/\tau} \right)$$

$$E_{almac}$$
 Cond.:
 $U_C(t) = \frac{q^2}{2C} = \frac{V_o^2 C}{2} \left(1 - e^{-t/\tau}\right)^2$
 $\rightarrow U_{bat} = U_R + U_C$

Descarga condensador

$$\begin{array}{l} \left(Q \equiv \ Q_{max^{\rm con \; la \; que \; empezamos}}\right) \\ q(t) = Q E^{-t/\tau} \\ i(t) = \frac{dq}{dt} = -\frac{Q}{\tau} e^{-t/\tau} = -\frac{V_o}{R} e^{-t/\tau} \end{array}$$

Balance

$$\mathbf{E}_{ini}$$
 Cond.: $U_{C\ ini} = \frac{Q^2}{2C}$

E_{disip} Resist.:
$$U_R(t) = \frac{Q^2}{2C} \left(1 - e^{-2t/\tau} \right)$$

E Cond.:
$$U_C(t) = \frac{q^2}{2C} = \frac{Q^2}{2C}e^{-2t/\tau}$$

 $\rightarrow U_{ini} = U_R + U_C$

Asociación

En paralelo

$$Q_1 + Q_2 = Q$$
; $V_1 = V_2 = V_o$
 $C_1 + C_2 = C$

En serie

$$\begin{array}{l} Q_1 = Q_2 = Q \ ; \, V_1 + V_2 = V_o \\ \frac{1}{C_1} + \frac{1}{C_2} = \frac{1}{C} \ \frac{Q}{C_1} + \frac{Q}{C_2} = \frac{Q}{C} \end{array}$$

Inverso para Resistencias.

Kirchhoff

Nodos

$$\sum_{i=0}^{\infty} I_i = 0$$

$$(I_1 - I_2 + I_3 \dots = 0)$$
Entra $\equiv I > 0$, Sale $\equiv I < 0$

Mallas

$$\sum \epsilon_i = \sum V_i$$

$$(-\epsilon_1 + \epsilon_2 \dots = -R_1 I_1 + R_2 I_2 \dots)$$
Borne $\oplus \to \ominus \equiv \epsilon > 0$
Direcc. $I = \text{malla } I > 0$

Magnetismo

(Partícula moviéndose en un B)
$$F_m = q\vec{v} \times \vec{B} \ (\vec{F_m} \perp \vec{B} \& \vec{v})$$

$$\vec{a} = \begin{cases} a_n = v^2/R \\ a_T = \partial v/\partial t = 0 \end{cases}$$

$$m_{R}^{v^2} = qvB \implies R = \frac{mv}{aR}$$

Selector de velocidades

$$F_m = F_e$$

 $qVB = qE \implies v = \frac{E}{B}$ (cruzan)

Espectrómetro

$$\begin{cases} \frac{1}{2}mv^2 = qV \\ R = \frac{mv}{qB} \end{cases} v = \frac{RqB}{m}$$

$$\Longrightarrow \frac{m}{a} = \frac{B^2R^2}{2V}$$

F sobre conductor

Rectilíneo

$$\vec{F} = nq\vec{v}SL \times \vec{B} = I\vec{L} \times \vec{B}$$

Espira cuadrada

$$F(a \parallel B) = 0$$

$$F(b \perp B) \neq 0 \text{ (momento)}$$

$$(b \leadsto \vec{l})$$

Ampère

$$\oint \vec{B} \, \vec{dl} = \mu_o I \xrightarrow{\text{hilo}} B = \frac{\mu_o I}{2\pi R}$$

$$I = \sum_i I_i$$

$$\frac{\partial F}{\partial l} = \frac{\mu_o}{2\pi} \frac{I_1 I_2}{d} \text{ (entre corrientes)}$$

Inducción

$$\begin{split} \Phi_M &= \iint_S \vec{B} \, \vec{dS} \xrightarrow{B = cte} \Phi = BS \\ \Phi_{\text{Solenoide}} &= N \cdot BS \end{split}$$

Faraday-Lenz

Faraday:
$$fem = (N) \frac{\partial \Phi}{\partial t}$$

F-Lenz:
$$fem = -(N) \frac{\partial \Phi}{\partial t} = \frac{-\partial}{\partial t} \int \vec{B} \vec{dS}$$

Efecto Hall

$$F_E = qE_H F_m = qvB$$

$$E_H = vB V_H = E_H a = VBa I = nqvS $\xrightarrow{S=a \cdot d} v = \frac{I}{nqad}$
$$\implies V_H = \frac{IB}{nqd}$$$$