Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2010

Klausur- nummer							
Name:							
Vorname:							
MatrNr.:							
Aufgabe	1	2	3	4	5	6	
max. Punkte	6	6	7	7	8	11	
tats. Punkte							
Gesamtpunktz		Note:					

Aufgabe 1 (2+2+2=6 Punkte)

In dieser Aufgabe geht es um Abbildungen; für $n \in \mathbb{N}_+$ gelte wie in der Vorlesung: $\mathbb{G}_n = \{0, 1, \dots, n-1\}.$

- a) Sei $n \ge 1$. Wie viele Abbildungen gibt es von einer n-elementigen Menge in eine 2-elementige Menge, die **nicht** surjektiv sind?
 - 2 (Eine Abbildung auf eine 2-elementige Menge $\{a,b\}$ kann nur dann surjektiv sein, falls alle Elemente auf a oder alle Elemente auf b abgebildet werden.)
- b) Geben Sie zwei Zahlen $n, m \in \mathbb{N}_+$ an, für die gilt: Es gibt mehr injektive Abbildungen von \mathbb{G}_n nach \mathbb{G}_m als surjektive Abbildungen von \mathbb{G}_m nach \mathbb{G}_n .

Beispiel: $n = 1, m \in \{2, 3, ...\}$:

Hinweis: Achten Sie auf die Indizes!

Es gibt dann m injektive Abbildungen von \mathbb{G}_n nach \mathbb{G}_m , aber nur eine surjektive Abbildung von \mathbb{G}_m nach \mathbb{G}_n .

c) Geben Sie zwei Zahlen $n, m \in \mathbb{N}_+$ an, für die gilt: Es gibt mehr surjektive Abbildungen von \mathbb{G}_n nach \mathbb{G}_m als injektive Abbildungen von \mathbb{G}_m nach \mathbb{G}_n .

Hinweis: Achten Sie auf die Indizes!

Beispiel: $m = 2, n \in \{4, 5...\}$:

Es gibt dann n(n-1) injektive Abbildungen von \mathbb{G}_m nach \mathbb{G}_n und 2^n-2 surjektive Abbildungen von \mathbb{G}_n nach \mathbb{G}_m . (siehe Teilaufgabe a))

Aufgabe 2 (2+2+2=6 Punkte)

In dieser Aufgabe geht es um Huffman-Codierungen.

Gegeben sei ein Wort über dem Alphabet $A = \{a, b, c, d\}$ mit folgenden **relativen** Häufigkeiten:

wobei $0 \le x \le \frac{1}{4}$ gilt.

a) Erstellen Sie den Huffman-Baum für $x = \frac{1}{16}$.

b) Welche Struktur muss der Huffman-Baum haben, damit die Huffman-Codierung eines Wortes $w \in A^+$ mit den in der Tabelle angegebenen relativen Häufigkeiten echt kürzer als 2|w| sein kann?

c) Für welche $x \in \mathbb{R}$ mit $0 \le x \le \frac{1}{4}$ werden Wörter mit den angegebenen relativen Häufigkeiten auf genau doppelt so lange Wörter über $\{0,1\}$ abgebildet?

Dies gilt für alle $x \in \mathbb{R} : \frac{1}{8} \le x \le \frac{1}{4}$.

 $We iterer\ Platz\ f\"ur\ Antworten\ zu\ Aufgabe\ 2:$

Aufgabe 3 (2+2+3 = 7 Punkte)

In dieser Aufgabe geht es um Mealy-Automaten.

a) Geben Sie ein Wort $w' \in \{0,1\}^*$ an, so dass $Num_2(w') = Num_4(w)$ gilt.

 $Num_4(w) = Num_2(10010011)$, also w' = 10010011.

Geben Sie ein Wort $w' \in \{0,1\}^*$ an, so dass $Num_2(w') = Num_4(w)$ gilt.

b) Geben Sie einen Mealy-Automaten $A=(Z,z_0,X,f,Y,g)$ mit $|Z|\leq 3,X=\{0,1,2,3\}$ und $Y=\{0,1\}$ an, so dass für alle Wörter $w\in X^*$ gilt: $Num_4(w)=Num_2(g^{**}(z_0,w)).$

0|00, 1|01, 2|10, 3|11

c) Geben Sie einen Mealy-Automaten $A=(Z,z_0,X,f,Y,g)$ mit $|Z|<4,X=\{0,1\}$ und $Y=\{0,1,2,3\}$ an, so dass für alle Wörter $w\in X^*$ mit gerader Länge gilt: $Num_2(w)=Num_4(g^{**}(z_0,w))$.

Hinweis: $g^{**}(z_0, w)$ ist die Konkatenation aller Ausgaben, die A bei Eingabe von w erzeugt.

 $We iterer\ Platz\ f\"ur\ Antworten\ zu\ Aufgabe\ 3:$

Aufgabe 4 (4+2+1 = 7 Punkte)

Es sei die kontextfreie Grammatik $G=(\{S\},\{\mathtt{a},\mathtt{b}\},S,\{S\to\mathtt{a}S\mathtt{a}\mid\mathtt{a}S\mid\mathtt{b}\})$ gegeben.

a) Zeigen Sie durch vollständige Induktion:

 $\forall k \in \mathbb{N}_0 : \text{Wenn } S \Rightarrow^k w \text{ gilt, gilt auch } \exists n, m \in \mathbb{N}_0 : n \geq m \land w \in \{a^n S a^m, a^n b a^m\}.$

Induktionsanfang: k = 0: $S \Rightarrow^0 w$ bedeutet $w = S = a^0 S a^0 \Rightarrow \exists n, m \in \mathbb{N}_0 : n \geq m \land w \in \{a^n S a^m, a^n b a^m\}$. \checkmark

Induktionsvoraussetzung: Für ein beliebiges, aber festes $k \in \mathbb{N}_0$ gelte: Wenn $S \Rightarrow^k w$ gilt, gilt auch $\exists n, m \in \mathbb{N}_0 : n \geq m \land w \in \{a^n S a^m, a^n b a^m\}.$

Induktionsschluss: Es gelte $S \Rightarrow^{k+1} w'$.

Dann gibt es ein $w \in \{S, a, b\}^*$ mit $S \Rightarrow^k w \Rightarrow w'$.

Nach Induktionsvoraussetzung gibt es $n, m \in \mathbb{N}_0$, so dass gilt: $n \ge m \land w \in \{a^n S a^m, a^n b a^m\}$

Da $w \Rightarrow w'$ gilt, muss $w = a^n S a^m$ gelten.

Wendet man die möglichen Produktionen an, erhält man $w' \in \{a^{n+1}Sa^{m+1}, a^{n+1}Sa^m, a^nba^m\}$.

Da $n+1 \ge m+1$ und $n+1 \ge m$ gilt, falls $n \ge m$ gilt, gibt es in jedem der Fälle $n', m' \in \mathbb{N}_0 : n' \ge m' \land w' \in \{\mathbf{a}^{n'} S \mathbf{a}^{m'}, \mathbf{a}^{n'} \mathbf{b} \mathbf{a}^{m'}\}.$

Damit ist die Behauptung gezeigt.

b) Seien $n, m \in \mathbb{N}_0$ mit $n \geq m$ gegeben.

Erklären Sie, wie man das Wort $\mathtt{a}^n\mathtt{b}\mathtt{a}^m$ aus S ableiten kann.

Man ersetzt m mal das Nichtterminal S durch das Wort $\mathtt{a} S\mathtt{a}$; danach ersetzt man n-m mal das Nichtterminal S durch das Wort $\mathtt{a} S$; schließlich ersetzt man S durch das Wort \mathtt{b} .

c) Geben Sie eine mathematische Beschreibung von L(G) an.

Hinweis: Abwandlungen von $L(G) = \{ w \in X^* \mid S \Rightarrow^* w \}$ geben **keine** Punkte!

$$L(G) = \{\mathbf{a}^n \mathbf{b} \mathbf{a}^m \mid n \ge m\}$$

 $We iterer\ Platz\ f\"ur\ Antworten\ zu\ Aufgabe\ 4:$

Aufgabe 5 (2+3+1+2=8 Punkte)Sei G=(V,E) ein gerichteter Graph.

Die Relation $S \subseteq V \times V$ sei gegeben durch $\forall x, y \in V : xSy \iff$ es gibt in G einen Pfad von x nach y und es gibt in G einen Pfad von y nach x.

Die Relation $R \subseteq V \times V$ sei gegeben durch $\forall x, y \in V : xRy \iff$ es gibt in G einen Pfad von x nach y.

a) Geben Sie die Relation S für folgenden Graphen G an:

Lösung:

b) Zeigen Sie, dass S für beliebige gerichtete Graphen G eine Äquivalenzrelation ist.

Reflexivität: Da es für alle $x \in V$ einen Pfad der Länge 0 von x nach x gibt, (sowie einen Pfad der Länge 0 von x nach x), gilt: $\forall x \in V : xSx$.

Symmetrie: $\forall x,y \in V: xSy \land ySx \Rightarrow$ es gibt einen Pfad von x nach y und es gibt einen Pfad von y nach x

 \Rightarrow es gibt einen Pfad von y nach x und es gibt einen Pfad von x nach $y \Rightarrow ySx$.

Transitivität: $\forall x,y,z\in V:xSy\wedge ySz\Rightarrow$ es gibt einen Pfad von x nach y und es gibt einen Pfad von y nach x und es gibt einen Pfad von y nach z und es gibt einen Pfad von z nach y

 \Rightarrow es gibt einen Pfad von x nach z über y und es gibt einen Pfad von z nach x über $y \Rightarrow xSz$.

c) Für welche Graphen G gibt es nur eine Äquivalenzklasse bezüglich S?

Für streng zusammenhängende Graphen sind alle Knoten zu einander äquivalent.

d) Zeigen Sie: Für alle $x_1, x_2, y_1, y_2 \in V$ gilt: $x_1Sx_2 \wedge y_1Sy_2 \wedge x_1Ry_1 \Rightarrow x_2Ry_2$.

 $x_1Sx_2 \wedge y_1Sy_2 \wedge x_1Ry_1 \Rightarrow$ es gibt einen Pfad von x_1 nach x_2 und es gibt einen Pfad von x_2 nach x_1 und es gibt einen Pfad von y_1 nach y_2 und es gibt einen Pfad von y_2 nach y_1 und es gibt einen Pfad von y_1 nach y_2

- \Rightarrow es gibt einen Pfad von x_2 nach x_1 und es gibt einen Pfad von x_1 nach y_1 und es gibt einen Pfad von y_1 nach y_2
- \Rightarrow es gibt einen Pfad von x_2 nach y_2 über x_1 und $y_1 \Rightarrow x_2 R y_2$.

 $Weiterer\ Platz\ f\"ur\ Antworten\ zu\ Aufgabe\ 5:$

Aufgabe 6 (1+1+1+2+2+2+2=11 Punkte)

Gegeben sei die folgende Turingmaschine T:

- Zustandsmenge ist $Z = \{z_0, z_1, z_2, z_3, z_4, z_5\}.$
- Anfangszustand ist z_0 .
- Bandalphabet ist $X = \{\Box, a, b\}$.
- Die Arbeitsweise ist wie folgt festgelegt:

	z_0	z_1	z_2	z_3	z_4	z_5
a	$(z_1,\square,1)$	$(z_1, a, 1)$	$(z_3,\mathtt{a},-1)\\(z_2,\mathtt{b},1)$	-	$(z_4, a, -1)$	$(z_5, b, 1)$
b	$(z_5, a, 1)$	$(z_2, \mathtt{b}, 1)$	$(z_2,\mathtt{b},1)$	$(z_4,\mathtt{a},-1)$	$(z_4, b, -1)$	$(z_5,\mathtt{a},1)$
			$(z_3,\square,-1)$			

(Darstellung als Graph auf der nächsten Seite)

Die Turingmaschine wird im folgenden für Eingaben $w \in \{a^n b^m \mid n, m \in \mathbb{N}_0\}$ verwendet, wobei der Kopf der Turingmaschine anfangs auf dem ersten Zeichen von w stehe (sofern w nicht das leere Wort ist).

a) Geben Sie die Endkonfiguration der Turingmaschine für die Eingabe w=aaabb an.

Die Bandbeschriftung ist aa, der Kopf steht im Zustand z_1 auf dem ersten Bandsymbol hinter dem Wort.

b) Die Eingabe sei w = aaabbbbb. Geben Sie die Bandbeschriftung an, wenn T das erste Mal von Zustand z_5 in den Zustand z_4 übergeht.

aabbb

c) Beschreiben Sie, was T macht, wenn T sich im Zustand z_4 befindet (bis sich der Zustand von T ändert).

T fährt an das erste Bandsymbol vor der Bandbeschriftung(, ohne etwas an der Beschriftung zu ändern).

d) Sei $n \ge m$ und die Eingabe $w = \mathbf{a}^n \mathbf{b}^m$. Welches Wort steht am Ende der Berechnung auf dem Band?

$$a^{n-1}$$

e) Sei n < m und die Eingabe $w = \mathbf{a}^n \mathbf{b}^m$. Welches Wort steht auf dem Band zu dem Zeitpunkt, an dem T zum ersten Mal von Zustand z_5 in den Zustand z_4 wechselt?

$$a^{m-n}b^n$$

f) Seien $n, m \in \mathbb{N}_+$ mit n < m. Geben Sie Zahlen $n', m' \in \mathbb{N}_0$ mit n' + m' < n + m an, so dass gilt:

Bei Eingabe von $\mathtt{a}^n\mathtt{b}^m$ ist am Ende der Berechnung das Band leer \iff Bei Eingabe von $\mathtt{a}^{n'}\mathtt{b}^{m'}$ ist am Ende der Berechnung das Band leer.

$$n' = m - n, m' = n$$

g) Geben Sie vier verschiedene Paare $(n, m) \in \mathbb{N}_+ \times \mathbb{N}_+$ an, für die gilt: Bei Eingabe von $\mathbf{a}^n \mathbf{b}^m$ ist am Ende der Berechnung das Band leer.

$$(n,m) \in \{(1,1), (1,2), (2,3), (3,5), (5,8), (8,13), \ldots\}.$$

 $Weiterer\ Platz\ f\"{u}r\ Antworten\ zu\ Aufgabe\ 6:$

Darstellung der Turingmaschine als Graph:

 $Weiterer\ Platz\ f\"ur\ Antworten\ zu\ Aufgabe\ 6:$