Defina el siguiente lenguaje:

```
COUNT-CNF-SAT^{\leq}=\{(\varphi,k)\mid \varphi \text{ es una fórmula en CNF y } el número de valuaciones que satisface a \varphi es menor o igual a k\}
```

Defina el siguiente lenguaje:

COUNT-CNF-SAT
$$= \{(\varphi, k) \mid \varphi \text{ es una fórmula en CNF y}$$

el número de valuaciones que satisface a φ es menor o igual a $k\}$

Y además considere la siguiente función que recibe como entrada a una fórmula φ en CNF:

$$\#\mathsf{CNF}\text{-}\mathsf{SAT}(\varphi) = |\{\sigma \mid \sigma(\varphi) = 1\}|$$

Defina el siguiente lenguaje:

COUNT-CNF-SAT
$$= \{(\varphi, k) \mid \varphi \text{ es una fórmula en CNF y}$$

el número de valuaciones que satisface a φ es menor o igual a $k\}$

Y además considere la siguiente función que recibe como entrada a una fórmula φ en CNF:

$$\#\mathsf{CNF}\text{-}\mathsf{SAT}(\varphi) = |\{\sigma \mid \sigma(\varphi) = 1\}|$$

COUNT-CNF-SAT ≤ y #CNF-SAT son polinomialmente equivalentes

 Si uno de los problemas se puede solucionar en tiempo polinomial, entonces el otro problema también

Teorema

COUNT-CNF- $SAT \le IP[2n]$

Teorema

COUNT-CNF- $SAT \le IP[2n]$

Ejercicio

Demuestre el teorema

La probabilidad de que el verificador sea engañado

En los protocolos aleatorizados anteriores, la probabilidad de que ${f V}$ sea engañado puede ser reducida a

$$\left(\frac{1}{4}\right)^{\ell}$$

para una constante ℓ arbitraria

La probabilidad de que el verificador sea engañado

En los protocolos aleatorizados anteriores, la probabilidad de que ${f V}$ sea engañado puede ser reducida a

$$\left(\frac{1}{4}\right)^{\ell}$$

para una constante ℓ arbitraria

Vamos a mostrar que esto se puede generalizar a cualquier lenguaje en IP

Un lema de amplificación para IP

Lema

Suponga que $\ell > 0$ y $L \in IP$. Entonces existe un verificador \mathbf{V} que funciona en tiempo polinomial (MT aleatorizada de tiempo polinomial) tal que para cada $w \in \Sigma^*$:

ightharpoonup Si $w \in L$, entonces existe demostrador D tal que

$$Pr((\mathbf{V}, \mathbf{D}) \ acepte \ w) \geq 1 - \left(\frac{1}{4}\right)^{\ell}$$

ightharpoonup Si $w \notin L$, entonces para todo demostrador D' se tiene que

$$Pr((\mathbf{V}, \mathbf{D'}) \ acepte \ w) \leq \left(\frac{1}{4}\right)^{\ell}$$

Un lema de amplificación para IP

Lema

Suponga que $\ell > 0$ y $L \in IP$. Entonces existe un verificador \mathbf{V} que funciona en tiempo polinomial (MT aleatorizada de tiempo polinomial) tal que para cada $w \in \Sigma^*$:

ightharpoonup Si $w \in L$, entonces existe demostrador D tal que

$$Pr((\mathbf{V}, \mathbf{D}) \ acepte \ w) \geq 1 - \left(\frac{1}{4}\right)^{\ell}$$

ightharpoonup Si $w \notin L$, entonces para todo demostrador D' se tiene que

$$Pr((\mathbf{V}, \mathbf{D'}) \ acepte \ w) \leq \left(\frac{1}{4}\right)^{\ell}$$

Ejercicio

Demuestre el lema

Ya sabemos que $NP \subseteq IP$ y co- $NP \subseteq IP$

ightharpoonup Por que se tiene que NP \subseteq IP?

Ya sabemos que $\mathsf{NP} \subseteq \mathsf{IP}$ y $\mathsf{co}\text{-}\mathsf{NP} \subseteq \mathsf{IP}$

ightharpoonup Por que se tiene que NP \subseteq IP?

Además tenemos que $\mathsf{BPP} \subseteq \mathsf{IP}$

Ya sabemos que $NP \subseteq IP$ y co- $NP \subseteq IP$

ightharpoonup Por que se tiene que NP \subseteq IP?

Además tenemos que $\mathsf{BPP} \subseteq \mathsf{IP}$

¿Cómo se demuestra esto?

¿Hay problemas en cada nivel de la jerarquía polinomial en IP? ¿Es cierto que PSPACE \subseteq IP? ¿En qué clase está contenido IP?

¿Hay problemas en cada nivel de la jerarquía polinomial en IP? ¿Es cierto que PSPACE \subseteq IP? ¿En qué clase está contenido IP?

En las siguientes láminas vamos a caracterizar de manera precisa el poder de los protocolos interactivos.

Una caracterización de IP

Teorema (Shamir)

IP = PSPACE

Una caracterización de IP

Teorema (Shamir)

IP = PSPACE

Ejercicio

Demuestre que $IP \subseteq PSPACE$

Para hacer esto, piense primero como demuestra directamente que BPP ⊆ PSPACE, sin utilizar el teorema de Gács-Sipser-Lautemann

Una caracterización de IP

Teorema (Shamir)

IP = PSPACE

Ejercicio

Demuestre que $IP \subseteq PSPACE$

Para hacer esto, piense primero como demuestra directamente que BPP ⊆ PSPACE, sin utilizar el teorema de Gács-Sipser-Lautemann

A continuación vamos a demostrar que $PSPACE \subseteq IP$

Recuerde que una formula proposicional cuantificada es de la forma:

$$Q_1x_1\cdots Q_nx_n \psi(x_1,\ldots,x_n),$$

donde cada $Q_i \in \{\exists, \forall\}$ y $\psi(x_1, \dots, x_n)$ es una fórmula proposicional cuyas variables son x_1, \dots, x_n

Recuerde que una formula proposicional cuantificada es de la forma:

$$Q_1x_1\cdots Q_nx_n \psi(x_1,\ldots,x_n),$$

donde cada $Q_i \in \{\exists, \forall\}$ y $\psi(x_1, \dots, x_n)$ es una fórmula proposicional cuyas variables son x_1, \dots, x_n

Por ejemplo, las siguientes son fórmulas proposicionales cuantificadas:

$$\forall x \exists y \ x \land y$$

$$\forall x \exists y \ x \lor y$$

El problema QBF recibe como entrada una fórmula proposicional cuantificada, y verifica si esta fórmula es cierta

El problema QBF recibe como entrada una fórmula proposicional cuantificada, y verifica si esta fórmula es cierta

 \triangleright ¿Es $\forall x \exists y \ x \land y$ cierta?

El problema QBF recibe como entrada una fórmula proposicional cuantificada, y verifica si esta fórmula es cierta

ightharpoonup ¿Es $\forall x \exists y \ x \land y$ cierta? No

El problema QBF recibe como entrada una fórmula proposicional cuantificada, y verifica si esta fórmula es cierta

- \triangleright ¿Es $\forall x \exists y \ x \land y$ cierta? No
- ightharpoonup ¿Es $\forall x \exists y \ x \lor y$ cierta?

El problema QBF recibe como entrada una fórmula proposicional cuantificada, y verifica si esta fórmula es cierta

- \triangleright ¿Es $\forall x \exists y \ x \land y$ cierta? No
- ightharpoonup ¿Es $\forall x \exists y \ x \lor y$ cierta? Sí

El problema QBF recibe como entrada una fórmula proposicional cuantificada, y verifica si esta fórmula es cierta

- ightharpoonup ¿Es $\forall x \exists y \ x \land y$ cierta? No
- ightharpoonup ¿Es $\forall x \exists y \ x \lor y$ cierta? Sí

QBF restringido al cuantificador ∃ corresponde a SAT

El problema QBF recibe como entrada una fórmula proposicional cuantificada, y verifica si esta fórmula es cierta

- ightharpoonup ¿Es $\forall x \exists y \ x \land y$ cierta? No
- ightharpoonup ¿Es $\forall x \exists y \ x \lor y$ cierta? Sí

QBF restringido al cuantificador \(\extstyle \) corresponde a SAT

Y además vimos que para cada nivel Σ_k^P $(k \ge 1)$ de la jerarquía polinomial, hay una restricción de QBF que es Σ_k^P -completo

Teorema

QBF es PSPACE-completo

Teorema

QBF es PSPACE-completo

Definimos CNF-QBF como el problema QBF restringido a las fórmulas

$$Q_1x_1\cdots Q_nx_n \psi(x_1,\ldots,x_n)$$

donde $\psi(x_1,\ldots,x_n)$ está en CNF

Teorema

QBF es PSPACE-completo

Definimos CNF-QBF como el problema QBF restringido a las fórmulas

$$Q_1x_1\cdots Q_nx_n \psi(x_1,\ldots,x_n)$$

donde $\psi(x_1,\ldots,x_n)$ está en CNF

Teorema

CNF-QBF es PSPACE-completo

$\mathsf{PSPACE} \subseteq \mathsf{IP}$

Teorema

CNF-QBF está en $IP[n^2 + n]$

$\mathsf{PSPACE} \subseteq \mathsf{IP}$

Teorema

CNF-QBF está en $IP[n^2 + n]$

Corolario

 $PSPACE \subseteq IP$

Sea φ la siguiente fórmula en CNF-QBF:

$$Q_1x_1\cdots Q_nx_n \psi(x_1,\ldots,x_n),$$

donde $\psi(x_1,\ldots,x_n)=C_1\wedge\cdots\wedge C_m$ es una fórmula en CNF cuyas variables son x_1,\ldots,x_n

Sea φ la siguiente fórmula en CNF-QBF:

$$Q_1x_1\cdots Q_nx_n \psi(x_1,\ldots,x_n),$$

donde $\psi(x_1, \ldots, x_n) = C_1 \wedge \cdots \wedge C_m$ es una fórmula en CNF cuyas variables son x_1, \ldots, x_n

Suponemos que:

- Cada cláusula en $\psi(x_1, \ldots, x_n)$ no tiene literales complementarios ni repetidos
- $ightharpoonup m \geq 2$

Sea φ la siguiente fórmula en CNF-QBF:

$$Q_1x_1\cdots Q_nx_n \psi(x_1,\ldots,x_n),$$

donde $\psi(x_1, \ldots, x_n) = C_1 \wedge \cdots \wedge C_m$ es una fórmula en CNF cuyas variables son x_1, \ldots, x_n

Suponemos que:

- Cada cláusula en $\psi(x_1,\ldots,x_n)$ no tiene literales complementarios ni repetidos
- $ightharpoonup m \geq 2$
 - ightharpoonup Si m=1 simplemente repetimos la cláusula para obtener m=2

Al igual que para la demostración de que COUNT-CNF-SAT está en IP[2n]:

Al igual que para la demostración de que COUNT-CNF-SAT está en IP[2n]:

Para cada literal ℓ , defina

$$au_{\ell} = egin{cases} (1-x_i) & \ell = x_i \ x_i & \ell = \neg x_i \end{cases}$$

Al igual que para la demostración de que COUNT-CNF-SAT está en IP[2n]:

Para cada literal ℓ , defina

$$au_{\ell} = \begin{cases} (1-x_i) & \ell=x_i \\ x_i & \ell=\neg x_i \end{cases}$$

Para cada cláusula $C = (\ell_1 \lor \cdots \lor \ell_k)$, defina

$$au_{\mathcal{C}} = 1 - \prod_{i=1}^k au_{\ell_i}$$

Al igual que para la demostración de que COUNT-CNF-SAT está en IP[2n]:

Para cada literal ℓ , defina

$$au_{\ell} = egin{cases} (1-x_i) & \ell = x_i \ x_i & \ell = \neg x_i \end{cases}$$

Para cada cláusula $C = (\ell_1 \lor \cdots \lor \ell_k)$, defina

$$au_{\mathcal{C}} = 1 - \prod_{i=1}^k au_{\ell_i}$$

Y defina

$$g(x_1,\ldots,x_n) = \prod_{i=1}^m \tau_{C_i}$$

Recuerde que para cada valuación $\sigma:\{x_1,\ldots,x_n\}\to\{0,1\}$, tenemos que:

- ▶ Si $\sigma(\varphi) = 1$, entonces $g(\sigma(x_1), \ldots, \sigma(x_n)) = 1$
- ► Si $\sigma(\varphi) = 0$, entonces $g(\sigma(x_1), \dots, \sigma(x_n)) = 0$

Recuerde que para cada valuación $\sigma: \{x_1, \ldots, x_n\} \to \{0, 1\}$, tenemos que:

- ightharpoonup Si $\sigma(\varphi)=1$, entonces $g(\sigma(x_1),\ldots,\sigma(x_n))=1$
- ightharpoonup Si $\sigma(\varphi)=0$, entonces $g(\sigma(x_1),\ldots,\sigma(x_n))=0$

En el caso de la demostración de que COUNT-CNF-SAT está en IP[2n] usamos la siguiente condición:

$$\sum_{(a_1,\ldots,a_n)\in\{0,1\}^n}g(a_1,\ldots,a_n) = k$$

Recuerde que para cada valuación $\sigma: \{x_1, \ldots, x_n\} \to \{0, 1\}$, tenemos que:

- ightharpoonup Si $\sigma(\varphi)=1$, entonces $g(\sigma(x_1),\ldots,\sigma(x_n))=1$
- ightharpoonup Si $\sigma(\varphi)=0$, entonces $g(\sigma(x_1),\ldots,\sigma(x_n))=0$

En el caso de la demostración de que COUNT-CNF-SAT está en IP[2n] usamos la siguiente condición:

$$\sum_{(a_1,\ldots,a_n)\in\{0,1\}^n}g(a_1,\ldots,a_n) = k$$

Para CNF-QBF nos gustaría usar una condición similar donde $\exists x_i$ corresponde a una suma y $\forall x_i$ corresponde a una multiplicación

Recuerde que para cada valuación $\sigma: \{x_1, \dots, x_n\} \to \{0, 1\}$, tenemos que:

- ightharpoonup Si $\sigma(\varphi)=1$, entonces $g(\sigma(x_1),\ldots,\sigma(x_n))=1$
- ▶ Si $\sigma(\varphi) = 0$, entonces $g(\sigma(x_1), \ldots, \sigma(x_n)) = 0$

En el caso de la demostración de que COUNT-CNF-SAT está en IP[2n] usamos la siguiente condición:

$$\sum_{(a_1,\ldots,a_n)\in\{0,1\}^n}g(a_1,\ldots,a_n) = k$$

Para CNF-QBF nos gustaría usar una condición similar donde $\exists x_i$ corresponde a una suma y $\forall x_i$ corresponde a una multiplicación

¿Pero cómo se interpreta la salida de la expresión?

Ejemplo

Considere la fórmula $\forall x \exists y \ x \land y$. En este caso tenemos que:

$$g(x,y) = x \cdot y$$

Ejemplo

Considere la fórmula $\forall x \exists y \ x \land y$. En este caso tenemos que:

$$g(x,y) = x \cdot y$$

Tenemos entonces que:

$$\prod_{a \in \{0,1\}} \sum_{b \in \{0,1\}} g(a,b) = (g(0,0) + g(0,1)) \cdot (g(1,0) + g(1,1))$$

$$= (0+0) \cdot (0+1)$$

$$= 0$$

Ejemplo

Considere la fórmula $\forall x \exists y \ x \land y$. En este caso tenemos que:

$$g(x,y) = x \cdot y$$

Tenemos entonces que:

$$\prod_{a \in \{0,1\}} \sum_{b \in \{0,1\}} g(a,b) = (g(0,0) + g(0,1)) \cdot (g(1,0) + g(1,1))$$

$$= (0+0) \cdot (0+1)$$

$$= 0$$

Obtenemos el valor 0 que representa que la fórmula no es cierta

Ejemplo

Considere la fórmula $\forall x \exists y \ x \lor y$. En este caso tenemos que:

$$g(x,y) = 1 - (1-x) \cdot (1-y)$$

Ejemplo

Considere la fórmula $\forall x \exists y \ x \lor y$. En este caso tenemos que:

$$g(x,y) = 1 - (1-x) \cdot (1-y)$$

Tenemos entonces que:

$$\prod_{a \in \{0,1\}} \sum_{b \in \{0,1\}} g(a,b) = (g(0,0) + g(0,1)) \cdot (g(1,0) + g(1,1))$$

$$= (0+1) \cdot (1+1)$$

$$= 2$$

Ejemplo

Considere la fórmula $\forall x \exists y \ x \lor y$. En este caso tenemos que:

$$g(x,y) = 1 - (1-x) \cdot (1-y)$$

Tenemos entonces que:

$$\prod_{a \in \{0,1\}} \sum_{b \in \{0,1\}} g(a,b) = (g(0,0) + g(0,1)) \cdot (g(1,0) + g(1,1))$$

$$= (0+1) \cdot (1+1)$$

$$= 2$$

Obtenemos el valor 2 que representa que la fórmula es cierta

Ejemplo

Considere la fórmula $\forall x \exists y \ x \lor y$. En este caso tenemos que:

$$g(x,y) = 1 - (1-x) \cdot (1-y)$$

Tenemos entonces que:

$$\prod_{a \in \{0,1\}} \sum_{b \in \{0,1\}} g(a,b) = (g(0,0) + g(0,1)) \cdot (g(1,0) + g(1,1))$$

$$= (0+1) \cdot (1+1)$$

$$= 2$$

Obtenemos el valor 2 que representa que la fórmula es cierta

► El valor es mayor que 0. ¿Pero que representa?

Ejemplo

Considere la fórmula $\forall x_1 \cdots \forall x_n \exists x_{n+1} x_1 \lor \cdots \lor x_n \lor x_{n+1}$. En este caso tenemos que:

$$g(x_1,\ldots,x_n,x_{n+1}) = 1-(1-x_1)\cdot\ldots\cdot(1-x_n)\cdot(1-x_{n+1})$$

Ejemplo

Considere la fórmula $\forall x_1 \cdots \forall x_n \exists x_{n+1} x_1 \lor \cdots \lor x_n \lor x_{n+1}$. En este caso tenemos que:

$$g(x_1,\ldots,x_n,x_{n+1}) = 1-(1-x_1)\cdot\ldots\cdot(1-x_n)\cdot(1-x_{n+1})$$

Es posible demostrar que:

$$\prod_{a_1 \in \{0,1\}} \cdots \prod_{a_n \in \{0,1\}} \sum_{a_{n+1} \in \{0,1\}} g(a_1, \ldots, a_n, a_{n+1}) = 2^{2^n-1}$$

Ejemplo

Considere la fórmula $\forall x_1 \cdots \forall x_n \exists x_{n+1} x_1 \lor \cdots \lor x_n \lor x_{n+1}$. En este caso tenemos que:

$$g(x_1,\ldots,x_n,x_{n+1}) = 1-(1-x_1)\cdot\ldots\cdot(1-x_n)\cdot(1-x_{n+1})$$

Es posible demostrar que:

$$\prod_{a_1 \in \{0,1\}} \cdots \prod_{a_n \in \{0,1\}} \sum_{a_{n+1} \in \{0,1\}} g(a_1, \ldots, a_n, a_{n+1}) = 2^{2^n-1}$$

Obtenemos un valor mayor que 0 que representa que la fórmula es cierta

Ejemplo

Considere la fórmula $\forall x_1 \cdots \forall x_n \exists x_{n+1} x_1 \lor \cdots \lor x_n \lor x_{n+1}$. En este caso tenemos que:

$$g(x_1,\ldots,x_n,x_{n+1}) = 1-(1-x_1)\cdot\ldots\cdot(1-x_n)\cdot(1-x_{n+1})$$

Es posible demostrar que:

$$\prod_{a_1 \in \{0,1\}} \cdots \prod_{a_n \in \{0,1\}} \sum_{a_{n+1} \in \{0,1\}} g(a_1, \ldots, a_n, a_{n+1}) = 2^{2^n-1}$$

Obtenemos un valor mayor que 0 que representa que la fórmula es cierta

Pero este número tiene 2ⁿ dígitos en binario, por lo que el demostrador no se lo puede enviar al verificador

CNF-QBF está en IP[$n^2 + n$]: operadores $\exists x_i \ y \ \forall x_i$

La solución al primer problema:

CNF-QBF está en IP[$n^2 + n$]: operadores $\exists x_i$ y $\forall x_i$

La solución al primer problema:

 $\ni x_i$ es considerado un operador que elimina la variable x_i a través del siguiente cálculo:

$$\exists x_i \, g(x_1, \dots, x_n) = g(x_1, \dots, x_{i-1}, 0, x_{i+1}, \dots, x_n) + g(x_1, \dots, x_{i-1}, 1, x_{i+1}, \dots, x_n) - g(x_1, \dots, x_{i-1}, 0, x_{i+1}, \dots, x_n) \cdot g(x_1, \dots, x_{i-1}, 1, x_{i+1}, \dots, x_n)$$

CNF-QBF está en $IP[n^2 + n]$: operadores $\exists x_i \ y \ \forall x_i$

La solución al primer problema:

 $\exists x_i$ es considerado un operador que elimina la variable x_i a través del siguiente cálculo:

$$\exists x_{i} g(x_{1},...,x_{n}) = g(x_{1},...,x_{i-1},0,x_{i+1},...,x_{n}) + g(x_{1},...,x_{i-1},1,x_{i+1},...,x_{n}) - g(x_{1},...,x_{i-1},0,x_{i+1},...,x_{n}) \cdot g(x_{1},...,x_{i-1},1,x_{i+1},...,x_{n})$$

 $\forall x_i$ es considerado un operador que elimina la variable x_i a través del siguiente cálculo:

$$\forall x_i \, g(x_1, \dots, x_n) = g(x_1, \dots, x_{i-1}, 0, x_{i+1}, \dots, x_n) \cdot g(x_1, \dots, x_{i-1}, 1, x_{i+1}, \dots, x_n)$$

Tenemos entonces que la expresión

$$Q_1x_1\cdots Q_nx_n g(x_1,\ldots,x_n)$$

es igual a 0 o 1

Tenemos entonces que la expresión

$$Q_1x_1\cdots Q_nx_n g(x_1,\ldots,x_n)$$

es igual a 0 o 1

El valor 0 significa que la fórmula $Q_1x_1\cdots Q_nx_n \psi(x_1,\ldots,x_n)$ no es cierta, y el valor 1 que $Q_1x_1\cdots Q_nx_n \psi(x_1,\ldots,x_n)$ es cierta

Ejemplo

Considere la fórmula $\forall x \exists y \ x \land y$. En este caso tenemos que:

$$g(x,y) = x \cdot y$$

Ejemplo

Considere la fórmula $\forall x \exists y \ x \land y$. En este caso tenemos que:

$$g(x,y) = x \cdot y$$

Tenemos entonces que:

$$\forall x \exists y \, g(x,y) = (g(0,0) + g(0,1) - g(0,0) \cdot g(0,1)) \cdot (g(1,0) + g(1,1) - g(1,0) \cdot g(1,1))$$
$$= (0 + 0 - 0) \cdot (0 + 1 - 0)$$
$$= 0$$

Ejemplo

Considere la fórmula $\forall x \exists y \ x \land y$. En este caso tenemos que:

$$g(x,y) = x \cdot y$$

Tenemos entonces que:

$$\forall x \exists y \, g(x,y) = (g(0,0) + g(0,1) - g(0,0) \cdot g(0,1)) \cdot (g(1,0) + g(1,1) - g(1,0) \cdot g(1,1))$$
$$= (0 + 0 - 0) \cdot (0 + 1 - 0)$$
$$= 0$$

Obtenemos el valor 0 que representa que la fórmula no es cierta

Ejemplo

Considere la fórmula $\forall x \exists y \ x \lor y$. En este caso tenemos que:

$$g(x,y) = 1 - (1-x) \cdot (1-y)$$

Ejemplo

Considere la fórmula $\forall x \exists y \ x \lor y$. En este caso tenemos que:

$$g(x,y) = 1 - (1-x) \cdot (1-y)$$

Tenemos entonces que:

$$\forall x \exists y \, g(x,y) = (g(0,0) + g(0,1) - g(0,0) \cdot g(0,1)) \cdot (g(1,0) + g(1,1) - g(1,0) \cdot g(1,1))$$

$$= (0+1-0) \cdot (1+1-1)$$

$$= 1$$

Ejemplo

Considere la fórmula $\forall x \exists y \ x \lor y$. En este caso tenemos que:

$$g(x,y) = 1 - (1-x) \cdot (1-y)$$

Tenemos entonces que:

$$\forall x \exists y \, g(x,y) = (g(0,0) + g(0,1) - g(0,0) \cdot g(0,1)) \cdot (g(1,0) + g(1,1) - g(1,0) \cdot g(1,1))$$

$$= (0+1-0) \cdot (1+1-1)$$

$$= 1$$

Obtenemos el valor 1 que representa que la fórmula es cierta

Ya sabemos cuál es la condición de la cual el demostrador debe convencer al verificador

Ya sabemos cuál es la condición de la cual el demostrador debe convencer al verificador

Pero nos queda un problema por solucionar en la definición del protocolo

Considere la fórmula $\exists x_1 \cdots \exists x_n \, \psi(x_1, \dots, x_n)$, y recuerde que $\psi(x_1, \dots, x_n)$ es una fórmula en CNF con m cláusulas

Considere la fórmula $\exists x_1 \cdots \exists x_n \ \psi(x_1, \dots, x_n)$, y recuerde que $\psi(x_1, \dots, x_n)$ es una fórmula en CNF con m cláusulas

Además, considere que el polinomio construido desde $\psi(x_1, \ldots, x_n)$ es $g(x_1, \ldots, x_n)$

Considere la fórmula $\exists x_1 \cdots \exists x_n \ \psi(x_1, \dots, x_n)$, y recuerde que $\psi(x_1, \dots, x_n)$ es una fórmula en CNF con m cláusulas

Además, considere que el polinomio construido desde $\psi(x_1, \dots, x_n)$ es $g(x_1, \dots, x_n)$

En el protocolo para esta fórmula vamos a usar el siguiente polinomio:

$$h_1(x_1) = \exists x_2 \cdots \exists x_n g(x_1, x_2, \ldots, x_n)$$

Considere la fórmula $\exists x_1 \cdots \exists x_n \ \psi(x_1, \dots, x_n)$, y recuerde que $\psi(x_1, \dots, x_n)$ es una fórmula en CNF con m cláusulas

Además, considere que el polinomio construido desde $\psi(x_1, \dots, x_n)$ es $g(x_1, \dots, x_n)$

En el protocolo para esta fórmula vamos a usar el siguiente polinomio:

$$h_1(x_1) = \exists x_2 \cdots \exists x_n g(x_1, x_2, \ldots, x_n)$$

¿Puede dar una cota para el grado del polinomio $h_1(x_1)$?

Considere la fórmula $\exists x_1 \cdots \exists x_n \ \psi(x_1, \dots, x_n)$, y recuerde que $\psi(x_1, \dots, x_n)$ es una fórmula en CNF con m cláusulas

Además, considere que el polinomio construido desde $\psi(x_1, \dots, x_n)$ es $g(x_1, \dots, x_n)$

En el protocolo para esta fórmula vamos a usar el siguiente polinomio:

$$h_1(x_1) = \exists x_2 \cdots \exists x_n g(x_1, x_2, \ldots, x_n)$$

¿Puede dar una cota para el grado del polinomio $h_1(x_1)$?

► El grado de $h_1(x_1)$ está acotado por $m \cdot 2^n$

El demostrador no puede enviar un polinomio de grado $m \cdot 2^n$

CNF-QBF está en $IP[n^2 + n]$: un segundo problema

El demostrador no puede enviar un polinomio de grado $m \cdot 2^n$

Un polinomio de grado exponencial puede tener un número exponencial de coeficientes

CNF-QBF está en $IP[n^2 + n]$: un segundo problema

El demostrador no puede enviar un polinomio de grado $m \cdot 2^n$

Un polinomio de grado exponencial puede tener un número exponencial de coeficientes

¿Cómo podemos reducir el grado de los polinomios que vamos a construir?

Para solucionar el segundo problema introducimos un operador de linearización

Para solucionar el segundo problema introducimos un operador de linearización

Este operador no elimina una variable

Para solucionar el segundo problema introducimos un operador de linearización

- Este operador no elimina una variable
- El resultado de aplicar el operador sobre una variable x_i es un polinomio lineal en x_i

Para solucionar el segundo problema introducimos un operador de linearización

- Este operador no elimina una variable
- El resultado de aplicar el operador sobre una variable x_i es un polinomio lineal en x_i

El operador Lx_i se define de la siguiente forma:

$$Lx_{i} g(x_{1},...,x_{n}) = (1-x_{i}) \cdot g(x_{1},...,x_{i-1},0,x_{i+1},...,x_{n}) + x_{i} \cdot g(x_{1},...,x_{i-1},1,x_{i+1},...,x_{n})$$

Sea
$$h(x_1,\ldots,x_n)=Lx_i\,g(x_1,\ldots,x_n)$$

Note que $h(x_1, \ldots, x_n)$ tiene las mismas variables que $g(x_1, \ldots, x_n)$

Sea
$$h(x_1,\ldots,x_n)=Lx_i\,g(x_1,\ldots,x_n)$$

Note que $h(x_1, \ldots, x_n)$ tiene las mismas variables que $g(x_1, \ldots, x_n)$

Tenemos que:

$$h(x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_n) = g(x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_n)$$

$$h(x_1, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_n) = g(x_1, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_n)$$

De la propiedad anterior concluimos que:

$$Q_1x_1Q_2x_2\cdots Q_nx_n \psi(x_1,\ldots,x_n)$$
 es cierta

De la propiedad anterior concluimos que:

$$Q_1x_1Q_2x_2\cdots Q_nx_n\,\psi(x_1,\ldots,x_n)$$
 es cierta $\Leftrightarrow Q_1x_1Q_2x_2\cdots Q_nx_n\,g(x_1,\ldots,x_n)=1$

De la propiedad anterior concluimos que:

$$Q_1x_1Q_2x_2\cdots Q_nx_n\,\psi(x_1,\ldots,x_n)$$
 es cierta \Leftrightarrow $Q_1x_1Q_2x_2\cdots Q_nx_n\,g(x_1,\ldots,x_n)=1$ \Leftrightarrow $Q_1x_1Lx_1Q_2x_2Lx_1Lx_2\cdots Q_{n-1}x_{n-1}Lx_1\cdots Lx_{n-1}Q_nx_n\,g(x_1,\ldots,x_n)=1$

De la propiedad anterior concluimos que:

$$Q_1x_1Q_2x_2\cdots Q_nx_n\,\psi(x_1,\ldots,x_n)$$
 es cierta \Leftrightarrow $Q_1x_1Q_2x_2\cdots Q_nx_n\,g(x_1,\ldots,x_n)=1$ \Leftrightarrow $Q_1x_1Lx_1Q_2x_2Lx_1Lx_2\cdots Q_{n-1}x_{n-1}Lx_1\cdots Lx_{n-1}Q_nx_n\,g(x_1,\ldots,x_n)=1$

Por lo tanto, el demostrador debe convencer al verificador que la siguiente propiedad es cierta:

$$Q_1 x_1 L x_1 Q_2 x_2 L x_1 L x_2 \cdots Q_n x_n g(x_1, \dots, x_n) = 1$$

La entrada del protocolo es $\varphi = Q_1 x_1 \cdots Q_n x_n \psi(x_1, \dots, x_n)$, el cual es transformado en la siguiente expresión:

$$Q_1x_1Lx_1Q_2x_2Lx_1Lx_2\cdots Q_nx_n g(x_1,\ldots,x_n)$$

La entrada del protocolo es $\varphi = Q_1 x_1 \cdots Q_n x_n \psi(x_1, \dots, x_n)$, el cual es transformado en la siguiente expresión:

$$Q_1x_1Lx_1Q_2x_2Lx_1Lx_2\cdots Q_nx_n g(x_1,\ldots,x_n)$$

Tenemos $n + \frac{n(n-1)}{2}$ operadores en la expresión, a la cual denotamos como

$$O_1 O_2 \cdots O_{n+\frac{n(n-1)}{2}} g(x_1,\ldots,x_n),$$

donde cada O_i representa a $Q_i x_i$ o $L x_k$

El protocolo funciona de la siguiente forma:

1. V le indica a D que el protocolo ha comenzado

- 1. V le indica a D que el protocolo ha comenzado
- 2. **D** le devuelve a **V** un polinomio $h_1(x_1)$ tal que

$$h_1(x_1) = O_2 \cdots O_{n+\frac{n(n-1)}{2}} g(x_1, \ldots, x_n)$$

El protocolo funciona de la siguiente forma:

- 1. V le indica a D que el protocolo ha comenzado
- 2. **D** le devuelve a **V** un polinomio $h_1(x_1)$ tal que

$$h_1(x_1) = O_2 \cdots O_{n+\frac{n(n-1)}{2}} g(x_1, \ldots, x_n)$$

3. Si el grado de $h_1(x_1)$ es mayor que 2m entonces V rechaza

- 1. V le indica a D que el protocolo ha comenzado
- 2. **D** le devuelve a **V** un polinomio $h_1(x_1)$ tal que

$$h_1(x_1) = O_2 \cdots O_{n+\frac{n(n-1)}{2}} g(x_1, \ldots, x_n)$$

- 3. Si el grado de $h_1(x_1)$ es mayor que 2m entonces V rechaza
- 4. **V** verifica si uno de los siguientes casos se cumple, y si no es así entonces rechaza

- 1. V le indica a D que el protocolo ha comenzado
- 2. **D** le devuelve a **V** un polinomio $h_1(x_1)$ tal que

$$h_1(x_1) = O_2 \cdots O_{n+\frac{n(n-1)}{2}} g(x_1, \ldots, x_n)$$

- 3. Si el grado de $h_1(x_1)$ es mayor que 2m entonces V rechaza
- 4. **V** verifica si uno de los siguientes casos se cumple, y si no es así entonces rechaza

4.1
$$O_1 = \exists x_1 \ y \ h_1(0) + h_1(1) = 1$$

- 1. V le indica a D que el protocolo ha comenzado
- 2. **D** le devuelve a **V** un polinomio $h_1(x_1)$ tal que

$$h_1(x_1) = O_2 \cdots O_{n+\frac{n(n-1)}{2}} g(x_1, \ldots, x_n)$$

- 3. Si el grado de $h_1(x_1)$ es mayor que 2m entonces \mathbf{V} rechaza
- 4. **V** verifica si uno de los siguientes casos se cumple, y si no es así entonces rechaza

4.1
$$O_1 = \exists x_1 \ y \ h_1(0) + h_1(1) = 1$$

4.2
$$O_1 = \forall x_1 \text{ y } h_1(0) \cdot h_1(1) = 1$$

El protocolo funciona de la siguiente forma:

- 1. V le indica a D que el protocolo ha comenzado
- 2. **D** le devuelve a **V** un polinomio $h_1(x_1)$ tal que

$$h_1(x_1) = O_2 \cdots O_{n+\frac{n(n-1)}{2}} g(x_1, \ldots, x_n)$$

- 3. Si el grado de $h_1(x_1)$ es mayor que 2m entonces V rechaza
- 4. **V** verifica si uno de los siguientes casos se cumple, y si no es así entonces rechaza

4.1
$$O_1 = \exists x_1 \ y \ h_1(0) + h_1(1) = 1$$

4.2
$$O_1 = \forall x_1 \text{ y } h_1(0) \cdot h_1(1) = 1$$

5. **V** define el contador i=1

- 1. V le indica a D que el protocolo ha comenzado
- 2. **D** le devuelve a **V** un polinomio $h_1(x_1)$ tal que

$$h_1(x_1) = O_2 \cdots O_{n+\frac{n(n-1)}{2}} g(x_1, \ldots, x_n)$$

- 3. Si el grado de $h_1(x_1)$ es mayor que 2m entonces \mathbf{V} rechaza
- 4. **V** verifica si uno de los siguientes casos se cumple, y si no es así entonces rechaza

4.1
$$O_1 = \exists x_1 \ y \ h_1(0) + h_1(1) = 1$$

4.2
$$O_1 = \forall x_1 \text{ y } h_1(0) \cdot h_1(1) = 1$$

- 5. **V** define el contador i=1
- 6. **V** genera al azar con distribución uniforme un número entero $s_1 \in \{0, \dots, 2^{(n^2+n)m}-1\}$, y se lo envía a **D**

7. Los siguientes pasos se repiten para $j=2,\ldots,n+\frac{n(n-1)}{2}$

- 7. Los siguientes pasos se repiten para $j=2,\ldots,n+\frac{n(n-1)}{2}$
 - 7.1 **D** le devuelve a **V** un polinomio $h_j(x_i)$ tal que

$$h_j(x_i) = O_{j+1} \cdots O_{n+\frac{n(n-1)}{2}} g(r_1, \ldots, r_{i-1}, x_i, \ldots, x_n)$$

- 7. Los siguientes pasos se repiten para $j=2,\ldots,n+\frac{n(n-1)}{2}$
 - 7.1 **D** le devuelve a **V** un polinomio $h_j(x_i)$ tal que

$$h_j(x_i) = O_{j+1} \cdots O_{n+\frac{n(n-1)}{2}} g(r_1, \ldots, r_{i-1}, x_i, \ldots, x_n)$$

7.2 Si el grado de $h_i(x_i)$ es mayor que 2m entonces V rechaza

- 7. Los siguientes pasos se repiten para $j=2,\ldots,n+\frac{n(n-1)}{2}$
 - 7.1 **D** le devuelve a **V** un polinomio $h_j(x_i)$ tal que

$$h_j(x_i) = O_{j+1} \cdots O_{n+\frac{n(n-1)}{2}} g(r_1, \ldots, r_{i-1}, x_i, \ldots, x_n)$$

- 7.2 Si el grado de $h_i(x_i)$ es mayor que 2m entonces V rechaza
- 7.3 **V** verifica que alguna de las siguientes condiciones es cierta, y si no es así entonces rechaza

- 7. Los siguientes pasos se repiten para $j=2,\ldots,n+\frac{n(n-1)}{2}$
 - 7.1 **D** le devuelve a **V** un polinomio $h_i(x_i)$ tal que

$$h_j(x_i) = O_{j+1} \cdots O_{n+\frac{n(n-1)}{2}} g(r_1, \ldots, r_{i-1}, x_i, \ldots, x_n)$$

- 7.2 Si el grado de $h_i(x_i)$ es mayor que 2m entonces V rechaza
- 7.3 **V** verifica que alguna de las siguientes condiciones es cierta, y si no es así entonces rechaza

7.3.1
$$O_i = \exists x_i \ y \ h_{i-1}(s_{i-1}) = h_i(0) + h_i(1)$$

- 7. Los siguientes pasos se repiten para $j=2,\ldots,n+\frac{n(n-1)}{2}$
 - 7.1 **D** le devuelve a **V** un polinomio $h_i(x_i)$ tal que

$$h_j(x_i) = O_{j+1} \cdots O_{n+\frac{n(n-1)}{2}} g(r_1, \ldots, r_{i-1}, x_i, \ldots, x_n)$$

- 7.2 Si el grado de $h_i(x_i)$ es mayor que 2m entonces V rechaza
- 7.3 **V** verifica que alguna de las siguientes condiciones es cierta, y si no es así entonces rechaza

7.3.1
$$O_j = \exists x_i \ y \ h_{j-1}(s_{j-1}) = h_j(0) + h_j(1)$$

7.3.2
$$O_j = \forall x_i \text{ y } h_{j-1}(s_{j-1}) = h_j(0) \cdot h_j(1)$$

- 7. Los siguientes pasos se repiten para $j=2,\ldots,n+\frac{n(n-1)}{2}$
 - 7.1 **D** le devuelve a **V** un polinomio $h_i(x_i)$ tal que

$$h_j(x_i) = O_{j+1} \cdots O_{n+\frac{n(n-1)}{2}} g(r_1, \ldots, r_{i-1}, x_i, \ldots, x_n)$$

- 7.2 Si el grado de $h_i(x_i)$ es mayor que 2m entonces V rechaza
- 7.3 **V** verifica que alguna de las siguientes condiciones es cierta, y si no es así entonces rechaza

7.3.1
$$O_j = \exists x_i \ y \ h_{j-1}(s_{j-1}) = h_j(0) + h_j(1)$$

7.3.2
$$O_j = \forall x_i \text{ y } h_{j-1}(s_{j-1}) = h_j(0) \cdot h_j(1)$$

7.3.3
$$O_i = Lx_k \text{ y } h_{i-1}(s_{i-1}) = (1 - s_{i-1}) \cdot h_i(0) + s_{i-1} \cdot h_i(1)$$

7.4 **V** genera al azar con distribución uniforme un número entero $s_j \in \{0,\dots,2^{(n^2+n)m}-1\}$

- 7.4 **V** genera al azar con distribución uniforme un número entero $s_j \in \{0, \dots, 2^{(n^2+n)m}-1\}$
- 7.5 Si $O_{j+1} = \exists x_{i+1}$ u $O_{j+1} = \forall x_{i+1}$, entonces **V** define $r_i = s_j$ y se incrementa el contador i en 1

- 7.4 **V** genera al azar con distribución uniforme un número entero $s_j \in \{0,\dots,2^{(n^2+n)m}-1\}$
- 7.5 Si $O_{j+1} = \exists x_{i+1}$ u $O_{j+1} = \forall x_{i+1}$, entonces **V** define $r_i = s_j$ y se incrementa el contador i en 1
- 7.6 Si $j < n + \frac{n(n-1)}{2}$, entonces le envía s_j a **D**

- 7.4 **V** genera al azar con distribución uniforme un número entero $s_j \in \{0, \dots, 2^{(n^2+n)m}-1\}$
- 7.5 Si $O_{j+1} = \exists x_{i+1}$ u $O_{j+1} = \forall x_{i+1}$, entonces **V** define $r_i = s_j$ y se incrementa el contador i en 1
- 7.6 Si $j < n + \frac{n(n-1)}{2}$, entonces le envía s_j a **D**
- 8. **V** verifica si $h_{n+\frac{n(n-1)}{2}}(r_n) = g(r_1, \ldots, r_n)$. Si es así entonces acepta, y en caso contrario rechaza

CNF-QBF está en $IP[n^2 + n]$: la probabilidad de error

El protocolo tiene $n^2 + n$ rondas

CNF-QBF está en $IP[n^2 + n]$: la probabilidad de error

El protocolo tiene $n^2 + n$ rondas

Si φ es cierta, entonces considerando un demostrador **D** que utiliza el polinomio $g(x_1, \ldots, x_n)$ obtenemos que:

$$Pr((V, D) \text{ acepte } \varphi) = 1$$

El protocolo tiene $n^2 + n$ rondas

Si φ es cierta, entonces considerando un demostrador **D** que utiliza el polinomio $g(x_1, \ldots, x_n)$ obtenemos que:

$$Pr((V, D) \text{ acepte } \varphi) = 1$$

Suponga que φ no es cierta.

El protocolo tiene $n^2 + n$ rondas

Si φ es cierta, entonces considerando un demostrador **D** que utiliza el polinomio $g(x_1, \ldots, x_n)$ obtenemos que:

$$Pr((V, D) \text{ acepte } \varphi) = 1$$

Suponga que φ no es cierta. Nos falta demostrar que para cualquier demostrador \mathbf{D}' :

$$\Pr((V, D') \text{ acepte } \varphi) \leq \frac{1}{4}$$

Suponga que **D'** está tratando de engañar a **V**

D' está tratando de que **V** acepte φ , aunque φ no es cierta

Suponga que **D'** está tratando de engañar a **V**

D' está tratando de que **V** acepte φ , aunque φ no es cierta

Sean $h'_i(x_i)$ los polinomios generados por **D'**

Suponga que **D'** está tratando de engañar a **V**

D' está tratando de que **V** acepte φ , aunque φ no es cierta

Sean $h'_i(x_i)$ los polinomios generados por **D'**

Tenemos que $h'_1(x_1) \neq h_1(x_1)$

Suponga que **D**' está tratando de engañar a **V**

D' está tratando de que **V** acepte φ , aunque φ no es cierta

Sean $h'_j(x_i)$ los polinomios generados por **D'**

Tenemos que $h'_1(x_1) \neq h_1(x_1)$

Si $O_1 = \exists x_1$, entonces $h_1'(x_1) \neq h_1(x_1)$ puesto que $h_1(0) + h_1(1) = 0$ y **D'** está tratando de demostrar a **V** que $h_1'(0) + h_1'(1) = 1$

Suponga que D' está tratando de engañar a V

D' está tratando de que **V** acepte φ , aunque φ no es cierta

Sean $h'_i(x_i)$ los polinomios generados por **D'**

Tenemos que $h'_1(x_1) \neq h_1(x_1)$

- Si $O_1 = \exists x_1$, entonces $h_1'(x_1) \neq h_1(x_1)$ puesto que $h_1(0) + h_1(1) = 0$ y **D'** está tratando de demostrar a **V** que $h_1'(0) + h_1'(1) = 1$
- Si $O_1 = \forall x_1$, entonces $h_1'(x_1) \neq h_1(x_1)$ puesto que $h_1(0) \cdot h_1(1) = 0$ y **D'** está tratando de demostrar a **V** que $h_1'(0) \cdot h_1'(1) = 1$

Si $h_1'(s_1) = h_1(s_1)$, entonces \mathbf{D}' puede definir $h_2'(x_1) = h_2(x_1)$, y desde ahí puede engañar a \mathbf{V}

Si $h_1'(s_1) = h_1(s_1)$, entonces \mathbf{D}' puede definir $h_2'(x_1) = h_2(x_1)$, y desde ahí puede engañar a \mathbf{V}

Puesto que

$$(1-s_1)\cdot h_2'(0)+s_1\cdot h_2'(1)=(1-s_1)\cdot h_2(0)+s_1\cdot h_2(1)=h_1(s_1)=h_1'(s_1)$$

Si $h_1'(s_1) = h_1(s_1)$, entonces \mathbf{D}' puede definir $h_2'(x_1) = h_2(x_1)$, y desde ahí puede engañar a \mathbf{V}

Puesto que

$$(1-s_1)\cdot h_2'(0)+s_1\cdot h_2'(1)=(1-s_1)\cdot h_2(0)+s_1\cdot h_2(1)=h_1(s_1)=h_1'(s_1)$$

Pero si $h_1'(s_1) \neq h_1(s_1)$, entonces se debe tener que $h_2'(x_2) \neq h_2(x_2)$

Si $h_1'(s_1)=h_1(s_1)$, entonces \mathbf{D}' puede definir $h_2'(x_1)=h_2(x_1)$, y desde ahí puede engañar a \mathbf{V}

Puesto que

$$(1-s_1)\cdot h_2'(0)+s_1\cdot h_2'(1)=(1-s_1)\cdot h_2(0)+s_1\cdot h_2(1)=h_1(s_1)=h_1'(s_1)$$

Pero si $h_1'(s_1) \neq h_1(s_1)$, entonces se debe tener que $h_2'(x_2) \neq h_2(x_2)$

Puesto que $(1 - s_1) \cdot h_2(0) + s_1 \cdot h_2(1) = h_1(s_1)$ y **D'** está tratando de demostrar que $(1 - s_1) \cdot h_2'(0) + s_1 \cdot h_2'(1) = h_1'(s_1)$

Si continuamos con este razonamiento vemos que ${\bf D}'$ logra engañar a ${\bf V}$ si la siguiente condición es cierta:

$$\bigvee_{i=1}^{n+\frac{n(n-1)}{2}} h_i'(s_i) = h_i(s_i)$$

Si continuamos con este razonamiento vemos que ${\bf D'}$ logra engañar a ${\bf V}$ si la siguiente condición es cierta:

$$\bigvee_{i=1}^{n+\frac{n(n-1)}{2}} h'_i(s_i) = h_i(s_i)$$

En particular, la condición $h'_{n+\frac{n(n-1)}{2}}(r_n)=h_{n+\frac{n(n-1)}{2}}(r_n)$ es equivalente a pedir que $h'_{n+\frac{n(n-1)}{2}}(r_n)=g(r_1,\ldots,r_n)$

Si continuamos con este razonamiento vemos que **D'** logra engañar a **V** si la siguiente condición es cierta:

$$\bigvee_{i=1}^{n+\frac{n(n-1)}{2}} h'_i(s_i) = h_i(s_i)$$

En particular, la condición $h'_{n+\frac{n(n-1)}{2}}(r_n)=h_{n+\frac{n(n-1)}{2}}(r_n)$ es equivalente a pedir que $h'_{n+\frac{n(n-1)}{2}}(r_n)=g(r_1,\ldots,r_n)$

Esta es la última condición que se necesita para que V acepte

Por definición del protocolo y dado que ninguna cláusula de φ tiene literales repetidos o complementarios, el grado de cada $h_i(x_i)$ y $h'_i(x'_i)$ es a lo más 2m

Por definición del protocolo y dado que ninguna cláusula de φ tiene literales repetidos o complementarios, el grado de cada $h_i(x_i)$ y $h'_i(x'_i)$ es a lo más 2m

Por lo tanto tenemos que:

$$\begin{aligned} & \mathsf{Pr}\big((\mathsf{V},\mathsf{D'}) \; \mathsf{acepte} \; \varphi\big) \\ & = \; \mathsf{Pr}\bigg(\bigvee_{i=1}^{n+\frac{n(n-1)}{2}} h_i'(r_i) = h_i(r_i) \bigg) \\ & = \; \mathsf{Pr}\bigg(\bigvee_{i=1}^{n+\frac{n(n-1)}{2}} \left[h_i'(r_i) = h_i(r_i) \land \bigwedge_{j=1}^{i-1} h_j'(r_j) \neq h_j(r_j) \right] \bigg) \\ & = \; \sum_{i=1}^{n+\frac{n(n-1)}{2}} \mathsf{Pr}\bigg(h_i'(r_i) = h_i(r_i) \land \bigwedge_{j=1}^{i-1} h_j'(r_j) \neq h_j(r_j) \bigg) \\ & \leq \; \sum_{i=1}^{n+\frac{n(n-1)}{2}} \mathsf{Pr}\bigg(h_i'(r_i) = h_i(r_i) \ \bigg| \ \bigwedge_{j=1}^{i-1} h_j'(r_j) \neq h_j(r_j) \bigg) \end{aligned}$$

$$\Pr((\mathbf{V}, \mathbf{D'}) \text{ acepte } \varphi)$$

$$\leq \sum_{i=1}^{n+\frac{n(n-1)}{2}} \Pr\left(h'_i(r_i) = h_i(r_i) \mid \bigwedge_{j=1}^{i-1} h'_j(r_j) \neq h_j(r_j)\right)$$

$$\leq \sum_{i=1}^{n+\frac{n(n-1)}{2}} \frac{2m}{2^{(n^2+n)m}}$$

$$= \frac{(n+\frac{n(n-1)}{2})2m}{2^{(n^2+n)m}}$$

$$= \frac{(n^2+n)m}{2^{(n^2+n)m}}$$

$$\leq \frac{1}{4}$$

$$\Pr((\mathbf{V}, \mathbf{D'}) \text{ acepte } \varphi)$$

$$\leq \sum_{i=1}^{n+\frac{n(n-1)}{2}} \Pr\left(h'_i(r_i) = h_i(r_i) \mid \bigwedge_{j=1}^{i-1} h'_j(r_j) \neq h_j(r_j)\right)$$

$$\leq \sum_{i=1}^{n+\frac{n(n-1)}{2}} \frac{2m}{2^{(n^2+n)m}}$$

$$= \frac{(n+\frac{n(n-1)}{2})2m}{2^{(n^2+n)m}}$$

$$= \frac{(n^2+n)m}{2^{(n^2+n)m}}$$

$$\leq \frac{1}{n}$$

Un corolario fundamental

Corolario

$$IP = co-IP$$

Un corolario fundamental

Corolario

IP = co-IP

Ejercicio

Demuestre el corolario

Un corolario fundamental

Corolario

IP = co-IP

Ejercicio

Demuestre el corolario

Dado un protocolo interactivo para un lenguaje L, ¿cómo construye un protocolo interactivo para \overline{L} ?

Definimos la clase AM[k] como IP[k] pero con una restricción adicional:

Cada vez que **V** envía una pregunta a **D** tiene que enviarle adicionalmente los bits aleatorios usados

Definimos la clase AM[k] como IP[k] pero con una restricción adicional:

Cada vez que **V** envía una pregunta a **D** tiene que enviarle adicionalmente los bits aleatorios usados

Hablamos entonces de protocolos interactivos con bits aleatorios públicos

Definimos la clase AM[k] como IP[k] pero con una restricción adicional:

Cada vez que **V** envía una pregunta a **D** tiene que enviarle adicionalmente los bits aleatorios usados

Hablamos entonces de protocolos interactivos con bits aleatorios públicos

Note que D conoce los bits aleatorios usados por V, no conoce los que V podría usar en el futuro

Definimos la clase AM[k] como IP[k] pero con una restricción adicional:

Cada vez que **V** envía una pregunta a **D** tiene que enviarle adicionalmente los bits aleatorios usados

Hablamos entonces de protocolos interactivos con bits aleatorios públicos

Note que D conoce los bits aleatorios usados por V, no conoce los que V podría usar en el futuro

¿Los protocolos interactivos con bit aleatorios públicos son menos poderosos?

Definimos la clase AM[k] como IP[k] pero con una restricción adicional:

Cada vez que **V** envía una pregunta a **D** tiene que enviarle adicionalmente los bits aleatorios usados

Hablamos entonces de protocolos interactivos con bits aleatorios públicos

Note que **D** conoce los bits aleatorios usados por **V**, no conoce los que **V** podría usar en el futuro

¿Los protocolos interactivos con bit aleatorios públicos son menos poderosos?

Funciona el protocolo interactivo estudiado para GRAPH-ISO con bit aleatorios públicos?

Teorema

$$IP = \bigcup_{k \in \mathbb{N}} AM[n^k]$$

Teorema

$$IP = \bigcup_{k \in \mathbb{N}} AM[n^k]$$

Ejercicio

Demuestre el teorema utilizando la demostración de que PSPACE \subseteq IP

Teorema

$$IP = \bigcup_{k \in \mathbb{N}} AM[n^k]$$

Ejercicio

Demuestre el teorema utilizando la demostración de que PSPACE \subseteq IP

Tenemos entonces un protocolo aleatorizado para GRAPH-ISO con bit aleatorios públicos

Teorema

$$IP = \bigcup_{k \in \mathbb{N}} AM[n^k]$$

Ejercicio

Demuestre el teorema utilizando la demostración de que PSPACE \subseteq IP

Tenemos entonces un protocolo aleatorizado para GRAPH-ISO con bit aleatorios públicos

¿Cómo construye este protocolo?

Teorema

$$IP = \bigcup_{k \in \mathbb{N}} AM[n^k]$$

Ejercicio

Demuestre el teorema utilizando la demostración de que PSPACE \subseteq IP

Tenemos entonces un protocolo aleatorizado para GRAPH-ISO con bit aleatorios públicos

¿Cómo construye este protocolo? ¿Tiene un número constante de rondas?

La clase de complejidad AM (Arthur-Merlin)

Para entender la complejidad de GRAPH-ISO necesitamos saber el número exacto de rondas de un protocolo aleatorizado para GRAPH-ISO con bit aleatorios públicos

La clase de complejidad AM (Arthur-Merlin)

Para entender la complejidad de GRAPH-ISO necesitamos saber el número exacto de rondas de un protocolo aleatorizado para GRAPH-ISO con bit aleatorios públicos

La siguiente clase de complejidad juega un papel fundamental en este estudio:

Definición

$$AM = AM[2]$$

La clase de complejidad AM (Arthur-Merlin)

Para entender la complejidad de GRAPH-ISO necesitamos saber el número exacto de rondas de un protocolo aleatorizado para GRAPH-ISO con bit aleatorios públicos

La siguiente clase de complejidad juega un papel fundamental en este estudio:

Definición

AM = AM[2]

Note que AM no es definida de manera análoga a IP

¿Cuál es el poder de AM?

No sabemos si AM = IP

¿Cuál es el poder de AM?

No sabemos si AM = IP

Se sabe que $\mathsf{AM} \subseteq \mathsf{\Pi}_2^P$, así que se cree que no es cierto que $\mathsf{AM} = \mathsf{IP}$

¿Cuál es el poder de AM?

No sabemos si AM = IP

Se sabe que $AM \subseteq \Pi_2^P$, así que se cree que no es cierto que AM = IP

De hecho es un problema abierto si AM = co-AM

¿Cuál es el poder de AM?

No sabemos si AM = IP

Se sabe que $AM \subseteq \Pi_2^P$, así que se cree que no es cierto que AM = IP

De hecho es un problema abierto si AM = co-AM

▶ Pero sabemos que BPP \subseteq AM \cap co-AM \subseteq $\Sigma_2^P \cap \Pi_2^P$

Teorema

 $\overline{\textit{GRAPH-ISO}} \in \textit{AM}$

Teorema

 $\overline{GRAPH-ISO} \in AM$

Este resultado es fundamental para entender la complejidad de GRAPH-ISO

Teorema

 $\overline{GRAPH-ISO} \in AM$

Este resultado es fundamental para entender la complejidad de GRAPH-ISO

Note que de este resultado concluimos que GRAPH-ISO ∈ AM ∩ co-AM

Teorema

 \overline{GRAPH} - $\overline{ISO} \in AM$

Este resultado es fundamental para entender la complejidad de GRAPH-ISO

Note que de este resultado concluimos que GRAPH-ISO ∈ AM ∩ co-AM

Para hacer la demostración primero mostramos que AM es la extensión de BPP cuando consideramos no determinismo

Extendiendo la definición de BPP

Recuerde que un lenguaje L sobre un alfabeto Σ está en BPP si existe una MT probabilística M tal que $t_M(n)$ es $O(n^k)$ y para cada $w \in \Sigma^*$:

- ▶ Si $w \in L$, entonces $\Pr_s(M(w, s) \text{ acepte}) \ge \frac{3}{4}$
- ▶ Si $w \notin L$, entonces $\Pr_s(M(w,s) \text{ acepte}) \leq \frac{1}{4}$

Extendiendo la definición de BPP

Recuerde que un lenguaje L sobre un alfabeto Σ está en BPP si existe una MT probabilística M tal que $t_M(n)$ es $O(n^k)$ y para cada $w \in \Sigma^*$:

- ▶ Si $w \in L$, entonces $\Pr_s(M(w,s) \text{ acepte}) \ge \frac{3}{4}$
- ▶ Si $w \notin L$, entonces $\Pr_s(M(w,s) \text{ acepte}) \leq \frac{1}{4}$

Podemos extender la definición permitiendo a M ser no determinista

M(w,s) acepta si y sólo si existe una ejecución de M con entrada (w,s) que se detiene en un estado final

La clase de complejidad ND-BPP

Definición

Sea L un lenguaje sobre un alfabeto Σ . Entonces L está en ND-BPP si existe una MT probabilística no determinista M tal que $t_M(n)$ es $O(n^k)$ y para cada $w \in \Sigma^*$:

- ▶ Si $w \in L$, entonces $\mathbf{Pr}_s(M(w,s) \text{ acepte}) \geq \frac{3}{4}$
- ► Si $w \notin L$, entonces $\mathbf{Pr}_s(M(w,s) \text{ acepte}) \leq \frac{1}{4}$

AM y ND-BPP son la misma clase

Teorema

AM = ND-BPP

AM y ND-BPP son la misma clase

Teorema

AM = ND-BPP

Ejercicio

Demuestre el teorema

AM y ND-BPP son la misma clase

Teorema

AM = ND-BPP

Ejercicio

Demuestre el teorema

Vamos a utilizar la caracterización de AM dada por ND-BPP en la demostración de que $\overline{\mathsf{GRAPH}\text{-}\mathsf{ISO}} \in \mathsf{AM}$

Un poco de notación para grafos

Sin perdida de generalidad, suponemos desde ahora en adelante que si un grafo G=(N,A) tiene n nodos, entonces $N=\{1,\ldots,n\}$

► Tenemos entonces 2^{n^2} grafos con n nodos

Un poco de notación para grafos

Sin perdida de generalidad, suponemos desde ahora en adelante que si un grafo G = (N, A) tiene n nodos, entonces $N = \{1, \ldots, n\}$

Tenemos entonces 2^{n^2} grafos con n nodos

Notación

Dado un grafo G = (N, A) y una biyección $f : N \to N$, definimos f(G) como un grafo (N, A') tal que para cada $(a, b) \in N \times N$:

$$(a,b) \in A$$
 si y sólo si $(f(a),f(b)) \in A'$

Un poco de notación para grafos

Sin perdida de generalidad, suponemos desde ahora en adelante que si un grafo G = (N, A) tiene n nodos, entonces $N = \{1, \ldots, n\}$

Tenemos entonces 2^{n^2} grafos con n nodos

Notación

Dado un grafo G = (N, A) y una biyección $f : N \to N$, definimos f(G) como un grafo (N, A') tal que para cada $(a, b) \in N \times N$:

$$(a,b) \in A$$
 si y sólo si $(f(a),f(b)) \in A'$

Note que G y f(G) son grafos isomorfos en la definición anterior.

ightharpoonup De hecho f es un isomorfismo de G en f(G)

Los automorfismos de un grafo

Definición

Dado un grafo G=(N,A) y una biyección $f:N\to N$, decimos que f es un automorfismo para G si f(G)=G

El conjunto de los automorfismos de un grafo G es denotado como Aut(G)

Note que si G tiene n nodos, entonces $|Aut(G)| \le n!$

Los automorfismos de un grafo

Definición

Dado un grafo G = (N, A) y una biyección $f : N \to N$, decimos que f es un automorfismo para G si f(G) = G

El conjunto de los automorfismos de un grafo G es denotado como Aut(G)

Note que si G tiene n nodos, entonces $|Aut(G)| \le n!$

Ejercicio

Sea *n* un número natural arbitrario.

- 1. Construya un grafo G_1 con n nodos tal que $|\operatorname{Aut}(G_1)| = n!$
- 2. Construya un grafo G_2 con n nodos tal que $|\operatorname{Aut}(G_2)|=1$

Considere el siguiente grafo G = (N, A):

En este caso tenemos que $N = \{1, 2, 3\}$ y $A = \{(1, 2), (2, 1), (2, 3), (3, 2)\}$

Considere la biyección $f_1(1) = 3$, $f_1(2) = 2$ y $f_1(3) = 1$:

Considere la biyección $f_1(1) = 3$, $f_1(2) = 2$ y $f_1(3) = 1$:

Considere la biyección $f_1(1) = 3$, $f_1(2) = 2$ y $f_1(3) = 1$:

 f_1 es un automorfismo para G ya que $f_1(G) = G$

▶ En particular, si $f_1(G) = (N, A')$ entonces A = A'

Considere ahora la biyección $f_2(1) = 2$, $f_2(2) = 3$ y $f_2(3) = 1$:

Considere ahora la biyección $f_2(1) = 2$, $f_2(2) = 3$ y $f_2(3) = 1$:

Considere ahora la biyección $f_2(1) = 2$, $f_2(2) = 3$ y $f_2(3) = 1$:

 f_2 no es un automorfismo para G ya que $f_2(G) \neq G$

En particular, el arco (1,2) está G pero no en $f_2(G)$

Para el caso de G tenemos seis biyecciones posibles que generan tres grafos distintos:

Para el caso de G tenemos seis biyecciones posibles que generan tres grafos distintos:

Tenemos entonces tres grafos distintos que son isomorfos a G

Para el caso de G tenemos seis biyecciones posibles que generan tres grafos distintos:

Tenemos entonces tres grafos distintos que son isomorfos a G

► Esto corresponde al número de biyecciones de tres elementos dividido por el número de automorfismo de *G*. ¿Tiene sentido esta interpretación? ¿Puede ser generalizada?

El número de grafos isomorfos a un grafo

Recuerde que estamos suponiendo que si un grafo tiene n nodos, entonces sus nodos son $1,\ldots,n$

El número de grafos isomorfos a un grafo

Recuerde que estamos suponiendo que si un grafo tiene n nodos, entonces sus nodos son $1,\ldots,n$

Lema

Sea G es un grafo con n nodos. El número de grafos isomorfos a G es:

 $\frac{n!}{|Aut(G)|}$

El número de grafos isomorfos a un grafo

Recuerde que estamos suponiendo que si un grafo tiene n nodos, entonces sus nodos son $1, \ldots, n$

Lema

Sea G es un grafo con n nodos. El número de grafos isomorfos a G es:

$$\frac{n!}{|Aut(G)|}$$

Demostración: Sea $B = \{f : \{1, \dots, n\} \rightarrow \{1, \dots, n\} \mid f \text{ es una biyección}\}$

Defina \sim como la siguiente relación sobre B. Para cada $f_1, f_2 \in B$:

$$f_1 \sim f_2$$
 si y sólo si $f_1(G) = f_2(G)$

 \sim es una relación de equivalencia sobre B

► ¿Por qué?

 \sim es una relación de equivalencia sobre B

► ¿Por qué?

Sea $[f]_{\sim}$ la clase de equivalencia de $f \in B$

 \sim es una relación de equivalencia sobre B

► ¿Por qué?

Sea $[f]_{\sim}$ la clase de equivalencia de $f \in B$

El número de clases de equivalencia de \sim corresponde al número de grafos isomorfos a G

► ¿Por qué?

Vamos a demostrar las siguientes propiedades:

- 1. Si id es la función identidad sobre $\{1,\ldots,n\}$: $[id]_{\sim} = Aut(G)$
- 2. Para cada $f_1, f_2 \in B$: $|[f_1]_{\sim}| = |[f_2]_{\sim}|$

Vamos a demostrar las siguientes propiedades:

- 1. Si id es la función identidad sobre $\{1,\ldots,n\}$: $[id]_{\sim} = Aut(G)$
- 2. Para cada $f_1, f_2 \in B$: $|[f_1]_{\sim}| = |[f_2]_{\sim}|$

De esto concluimos que el número de clases de equivalencia de \sim es $\frac{n!}{|\operatorname{Aut}(G)|}$, que es lo que teníamos que demostrar.

► ¿Por qué?

En primer lugar tenemos que:

$$[id]_{\sim} = \{ f \in B \mid id \sim f \}$$

$$= \{ f \in B \mid id(G) = f(G) \}$$

$$= \{ f \in B \mid G = f(G) \}$$

$$= Aut(G)$$

Sean $f_1, f_2 \in B$

Sean $f_1, f_2 \in B$

En segundo lugar tenemos que demostrar que $|[f_1]_{\sim}|=|[f_2]_{\sim}|$

Sean $f_1, f_2 \in B$

En segundo lugar tenemos que demostrar que $|[f_1]_{\sim}|=|[f_2]_{\sim}|$

Para hacer esto vamos a construir una biyección $\mathcal{T}:[f_1]_\sim \to [f_2]_\sim$

Sean $f_1, f_2 \in B$

En segundo lugar tenemos que demostrar que $|[f_1]_{\sim}|=|[f_2]_{\sim}|$

Para hacer esto vamos a construir una biyección $\mathcal{T}:[f_1]_{\sim} \to [f_2]_{\sim}$

Para cada $f \in [f_1]_{\sim}$, se define $\mathcal{T}(f)$ de la siguiente forma:

$$\mathcal{T}(f) = (f_2 \circ f_1^{-1} \circ f)$$

Primero tenemos que demostrar que $\mathcal T$ está bien definida.

▶ Vale decir, si $f \in [f_1]_{\sim}$, entonces $\mathcal{T}(f) \in [f_2]_{\sim}$

Primero tenemos que demostrar que \mathcal{T} está bien definida.

▶ Vale decir, si $f \in [f_1]_{\sim}$, entonces $\mathcal{T}(f) \in [f_2]_{\sim}$

Si $f \in [f_1]_{\sim}$ tenemos que $f(G) = f_1(G)$. De esto concluimos que:

$$f_2(f_1^{-1}(f(G))) = f_2(f_1^{-1}(f_1(G)))$$

= $f_2(G)$

Primero tenemos que demostrar que \mathcal{T} está bien definida.

▶ Vale decir, si $f \in [f_1]_{\sim}$, entonces $\mathcal{T}(f) \in [f_2]_{\sim}$

Si $f \in [f_1]_{\sim}$ tenemos que $f(G) = f_1(G)$. De esto concluimos que:

$$f_2(f_1^{-1}(f(G))) = f_2(f_1^{-1}(f_1(G)))$$

= $f_2(G)$

Tenemos entonces que $\mathcal{T}(f)(G) = f_2(G)$

▶ Vale decir $f_2 \sim \mathcal{T}(f)$, de lo que concluimos que $\mathcal{T}(f) \in [f_2]_{\sim}$

Vamos a demostrar ahora que ${\mathcal T}$ es una función 1-1

Vamos a demostrar ahora que \mathcal{T} es una función 1-1

Utilizando la asociatividad de la composición de funciones obtenemos:

$$\mathcal{T}(f) = \mathcal{T}(g) \implies (f_{2} \circ f_{1}^{-1} \circ f) = (f_{2} \circ f_{1}^{-1} \circ g)$$

$$\Rightarrow (f_{1} \circ f_{2}^{-1}) \circ (f_{2} \circ f_{1}^{-1} \circ f) = (f_{1} \circ f_{2}^{-1}) \circ (f_{2} \circ f_{1}^{-1} \circ g)$$

$$\Rightarrow (f_{1} \circ (f_{2}^{-1} \circ f_{2}) \circ f_{1}^{-1} \circ f) = (f_{1} \circ (f_{2}^{-1} \circ f_{2}) \circ f_{1}^{-1} \circ g)$$

$$\Rightarrow (f_{1} \circ \mathsf{id} \circ f_{1}^{-1} \circ f) = (f_{1} \circ \mathsf{id} \circ f_{1}^{-1} \circ g)$$

$$\Rightarrow ((f_{1} \circ f_{1}^{-1}) \circ f) = ((f_{1} \circ f_{1}^{-1}) \circ g)$$

$$\Rightarrow (\mathsf{id} \circ f) = (\mathsf{id} \circ g)$$

$$\Rightarrow f = g$$

Finalmente vamos a demostrar que ${\mathcal T}$ es sobre.

Finalmente vamos a demostrar que ${\mathcal T}$ es sobre.

Sea $g \in [f_2]_{\sim}$ y defina f como $(f_1 \circ f_2^{-1} \circ g)$

Finalmente vamos a demostrar que \mathcal{T} es sobre.

Sea
$$g \in [f_2]_{\sim}$$
 y defina f como $(f_1 \circ f_2^{-1} \circ g)$

Tenemos que $f \in [f_1]_{\sim}$ ya que:

$$f(G) = (f_1 \circ f_2^{-1} \circ g)(G)$$

$$= f_1(f_2^{-1}(g(G)))$$

$$= f_1(f_2^{-1}(f_2(G)))$$

$$= f_1(G)$$

Además, tenemos que:

$$\mathcal{T}(f) = (f_2 \circ f_1^{-1} \circ f)$$

$$= (f_2 \circ f_1^{-1} \circ (f_1 \circ f_2^{-1} \circ g))$$

$$= (f_2 \circ (f_1^{-1} \circ f_1) \circ f_2^{-1} \circ g)$$

$$= (f_2 \circ id \circ f_2^{-1} \circ g)$$

$$= ((f_2 \circ f_2^{-1}) \circ g)$$

$$= (id \circ g)$$

$$= g$$

Además, tenemos que:

$$\mathcal{T}(f) = (f_2 \circ f_1^{-1} \circ f)$$

$$= (f_2 \circ f_1^{-1} \circ (f_1 \circ f_2^{-1} \circ g))$$

$$= (f_2 \circ (f_1^{-1} \circ f_1) \circ f_2^{-1} \circ g)$$

$$= (f_2 \circ id \circ f_2^{-1} \circ g)$$

$$= ((f_2 \circ f_2^{-1}) \circ g)$$

$$= (id \circ g)$$

$$= g$$

Concluimos entonces que T(f) = g

Dado un par de grafos (G_1, G_2) , queremos definir un conjunto num (G_1, G_2) con las siguientes propiedades:

- 1. Cada elemento de num (G_1, G_2) es de tamaño polinomial en el tamaño de (G_1, G_2)
- 2. Cada elemento de num (G_1, G_2) tiene un testigo de tamaño polinomial de su pertenencia al conjunto
- 3. Para grafos con n nodos, la cantidad de elementos de num (G_1, G_2) es necesariamente mayor si G_1 y G_2 no son isomorfos.

Ejemplo

Podríamos intentar definir num (G_1, G_2) de la siguiente forma:

 $\operatorname{num}(G_1, G_2) = \{f \mid f \text{ es un isomorfismo de } G_1 \text{ a } G_2\}$

Ejemplo

Podríamos intentar definir num (G_1, G_2) de la siguiente forma:

 $\operatorname{num}(G_1, G_2) = \{f \mid f \text{ es un isomorfismo de } G_1 \text{ a } G_2\}$

Esta función satisface 1 y 2, pero no 3

Vamos a considerar la siguiente definición del conjunto num (G_1, G_2) :

```
\mathsf{num}(G_1,G_2) = \{(H,i,f) \mid H \text{ es un grafo isomorfo a } G_1 \text{ o } G_2, \ i \in \{1,2\} \text{ y } f \in \mathsf{Aut}(G_i)\}
```

Vamos a considerar la siguiente definición del conjunto num (G_1, G_2) :

```
\mathsf{num}(G_1,G_2) = \{(H,i,f) \mid H \text{ es un grafo isomorfo a } G_1 \text{ o } G_2, \\ i \in \{1,2\} \text{ y } f \in \mathsf{Aut}(G_i)\}
```

 $num(G_1, G_2)$ satisface las condiciones 1 y 2

¿Cómo se demuestra que satisface la condición 2?

Vamos a considerar la siguiente definición del conjunto num (G_1, G_2) :

$$\mathsf{num}(G_1,G_2) = \{(H,i,f) \mid H \text{ es un grafo isomorfo a } G_1 \text{ o } G_2, \\ i \in \{1,2\} \text{ y } f \in \mathsf{Aut}(G_i)\}$$

 $num(G_1, G_2)$ satisface las condiciones 1 y 2

¿Cómo se demuestra que satisface la condición 2?

Vamos a demostrar que num (G_1, G_2) además satisface la condición 3

El conjunto num (G_1, G_2) nos ayuda a distinguir

Lema

Sean G_1 y G_2 dos grafos con n nodos cada uno. Si G_1 es isomorfo a G_2 , entonces se tiene que $|num(G_1, G_2)| = 2 \cdot n!$, si no se tiene que $|num(G_1, G_2)| \ge 4 \cdot n!$

El conjunto num (G_1, G_2) nos ayuda a distinguir

Lema

Sean G_1 y G_2 dos grafos con n nodos cada uno. Si G_1 es isomorfo a G_2 , entonces se tiene que $|num(G_1, G_2)| = 2 \cdot n!$, si no se tiene que $|num(G_1, G_2)| \ge 4 \cdot n!$

¿Por qué en el lema sólo consideramos grafos con el mismo número de nodos?

¿Cómo manejamos el caso en el que los grafos tienen distinto número de nodos?

Primero suponemos que G_1 y G_2 son grafos isomorfos

Recuerde que el número de grafos isomorfos a un grafo G con n nodos es $\frac{n!}{|\operatorname{Aut}(G)|}$

Primero suponemos que G_1 y G_2 son grafos isomorfos

Recuerde que el número de grafos isomorfos a un grafo G con n nodos es $\frac{n!}{|\operatorname{Aut}(G)|}$

Tenemos que:

$$|\mathsf{num}(G_1,G_2)| = |\{(H,i,f) \mid H \text{ es un grafo isomorfo a } G_1 \text{ o } G_2,$$

$$i \in \{1,2\} \text{ y } f \in \mathsf{Aut}(G_i)\}|$$

$$= |\{H \mid H \text{ es un grafo isomorfo a } G_1 \text{ o } G_2\}| \cdot (|\mathsf{Aut}(G_1)| + |\mathsf{Aut}(G_2)|)$$

$$= |\{H \mid H \text{ es un grafo isomorfo a } G_1\}| \cdot 2|\mathsf{Aut}(G_1)|$$

$$= \frac{n!}{|\mathsf{Aut}(G_1)|} \cdot 2|\mathsf{Aut}(G_1)|$$

$$= 2 \cdot n!$$

Suponemos ahora que G_1 y G_2 no son grafos isomorfos

Suponemos ahora que G_1 y G_2 no son grafos isomorfos

Tenemos que:

$$|\mathsf{num}(G_1,G_2)| = |\{(H,i,f) \mid H \text{ es un grafo isomorfo a } G_1 \text{ o } G_2, \\ i \in \{1,2\} \text{ y } f \in \mathsf{Aut}(G_i)\}| \\ = (|\{H_1 \mid H_1 \text{ es un grafo isomorfo a } G_1\}| + \\ |\{H_2 \mid H_2 \text{ es un grafo isomorfo a } G_2\}|) \cdot \\ (|\mathsf{Aut}(G_1)| + |\mathsf{Aut}(G_2)|) \\ = (\frac{n!}{|\mathsf{Aut}(G_1)|} + \frac{n!}{|\mathsf{Aut}(G_2)|}) \cdot (|\mathsf{Aut}(G_1)| + |\mathsf{Aut}(G_2)|) \\ = n! \frac{(|\mathsf{Aut}(G_1)| + |\mathsf{Aut}(G_2)|)^2}{|\mathsf{Aut}(G_1)| \cdot |\mathsf{Aut}(G_2)|}$$

Para terminar la demostración usamos la siguiente observación:

Observación

Para cada $a, b \in \mathbb{R}$ se tiene que $(a+b)^2 \ge 4ab$, puesto que:

$$(a-b)^{2} \ge 0 \quad \Rightarrow \quad a^{2} - 2ab + b^{2} \ge 0$$

$$\Rightarrow \quad a^{2} + b^{2} \ge 2ab$$

$$\Rightarrow \quad a^{2} + 2ab + b^{2} \ge 4ab$$

$$\Rightarrow \quad (a+b)^{2} \ge 4ab$$

Para terminar la demostración usamos la siguiente observación:

Observación

Para cada $a, b \in \mathbb{R}$ se tiene que $(a+b)^2 \ge 4ab$, puesto que:

$$(a-b)^{2} \ge 0 \quad \Rightarrow \quad a^{2} - 2ab + b^{2} \ge 0$$

$$\Rightarrow \quad a^{2} + b^{2} \ge 2ab$$

$$\Rightarrow \quad a^{2} + 2ab + b^{2} \ge 4ab$$

$$\Rightarrow \quad (a+b)^{2} \ge 4ab$$

Concluimos que
$$\frac{(|\operatorname{Aut}(G_1)|+|\operatorname{Aut}(G_2)|)^2}{|\operatorname{Aut}(G_1)|\cdot|\operatorname{Aut}(G_2)|} \geq 4$$
, de lo que obtenemos que $|\operatorname{num}(G_1,G_2)| \geq 4 \cdot n!$