

Student Name	Pratik Manoj Dharam		
SRN No	31232438		
Roll No	20		
Program	Computer Engg.		
	Third Year		
Division	Н		
Subject	Computer Network Laboratory (BTECCE22506)		
Assignment No	Five		
	Assignment Number - 05		

Title: Configuration of router by using rrip command

Problem Statement Using a Network Simulator (e.g. packet tracer) Configure routers for rip command

Theory:

Router – Router is a network device that allows you to direct data traffic to an appropriate destination. Router maintain routing table that contain IP addresses of computers over the network. A router has different components that enable proper functioning.

Cisco IOS supports various command modes, among those followings are the main command modes.

- User EXEC Mode
- Privileged EXEC Mode
- Global Configuration Mode
- Interface Configuration Mode
- Sub

Interce	Mode	Prompt	Command to enter	Command to exit
	User EXEC	Router >	Default mode after booting. Login	Use exit command
	Privileged EXEC	Router #	with passwoUse enable crommd, if caonnd fifrgoum userred.	Use exit command
	Global Configuration	Router(config)#	Use configure terminal command	Use exit command
1	Interface Configuration	Router(configif)#	frUseom privile interfacgeed exec mode type number command from global configuration mode	Use exit command to return in global configuration
	Sub-Interface Configura*on	Router(configsubif)	/VII.4 X 11 F 11 X 1 F 11 A F 1 I A F	Use exit to return previous mode. Use end command to return in privileged

Configuration Mode • Setup Mode

or interface configure mode exec mode.

Some important router Command

Command	Description	
Router(config)#interface serial 3/0/0	Enter into serial interface 0/0/0	
Router(config- Connecte to	Optional command. It set description on	
interface	interface that is locally significant	
Router(config-if)#ip address 10.0.0.1	Assigns address and subnet mask to	
255.0.0.0		
Router(config-if)#clock rate 64000	DCE side only command. Assigns a clock	
Router(config-if)#bandwidth 64	DCE side only command. Set bandwidth for	
Router(config-if)#no shutdown	Turns interface on	

Configuration of rip command:

Code:

Router 0

Router(config-if)#

%LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up

Router(config-if)#exit

Router(config)#interface FastEthernet0/1

Router(config-if)#ip address 192.168.2.2 255.255.255.0

Router(config-if)#ip address 192.168.2.2 255.255.255.0

Router(config-if)#no shutdown

Router(config-if)#

%LINK-5-CHANGED: Interface FastEthernet0/1, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to up

Router(config-if)#

Router(config-if)#exit

Router(config)#router rip

Router(config-router)#network 192.168.1.0

Router(config-router)#network 192.168.3.0

Router 1

Maximising Human Potential

Router>enable

Router#

Router#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#interface FastEthernet0/0

Router(config-if)#ip address 192.168.2.6 255.255.255.0

Router(config-if)#ip address 192.168.2.6 255.255.255.0

Router(config-if)#

Router(config-if)#exit

Router(config)#interface FastEthernet0/1

Router(config-if)#ip address 192.168.3.3 255.255.255.0

Router(config-if)#ip address 192.168.3.3 255.255.255.0

Computer Network Laboratory

Router(config-if)#no shutdown

Router(config-if)#

%LINK-5-CHANGED: Interface FastEthernet0/1, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to up

Router(config-if)#exit

Router(config)#interface FastEthernet0/0

Router(config-if)#no shutdown

Router(config-if)#

%LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up

Router(config-if)#

Router(config-if)#exit

Router(config)#router rip

Router(config-router)#network 192.168.2.0

Router(config-router)#network 192.168.3.0

Conclusion:

Implementing the Routing Information Protocol (RIP) in Cisco Packet Tracer provides a hands-on experience of how a distance-vector routing protocol functions. Through this activity, key networking concepts like route advertisement, convergence, and autonomous systems are reinforced. Overall, the RIP implementation offers a valuable learning experience. It lays a solid foundation for understanding more advanced protocols and emphasizes the importance of selecting appropriate routing protocols based on network size and requirements.

Maximising Human Potential