CHEMISTRY Chapter 11

5th SECONDARY

GASES

¿Sabes cuáles son los principales gases que provocan el efecto invernadero?

¿Qué entiendes por estado gaseoso?

El estado de agregación gaseoso es el tercer estado de agregación molecular que no presenta forma definida y el volumen es variable

I. Características Generales:

- ✓ Alta entropía.
- ✓ Alta energía cinética.
- ✓ Compresibilidad
- ✓ Expansibilidad.
- ✓ Difusibilidad.
- ✓ Efusibilidad.

II. Variables de estado:

A) Volumen: Capacidad del recipiente que los contiene.

Unidades: m³, L, cm³, mℓ, etc.

1 m³ <> 1000 L 1 L <> 1000 cm³ <> 1000 mℓ

B) Temperatura: Está relacionado con el grado de movimiento molecular.

Unidades: K, °C, °F, R

$$K = {}^{\circ}C + 273$$

C) Presión:

Debido a los choques de las moléculas con la parec del recipiente que los contiene.

Unidades: atm, mmHg, torr, kPa

1 atm <> 760 mmHg <> 760 torr <> 101,3 kPa

III. Gases Ideales

Llamados también "gases perfectos". Difieren de los gases reales. Su comportamiento se explica por la Teoría cinético molecular.

Ecuación universal de los gases ideales (EUGI)

$$P.V = R.T.n$$

P = Presión

V = Volumen

R = Constante universal de los gases

T = Temperatura absoluta

n = Moles de gas

$$= 0.082 \frac{atm x L}{mol x K}$$

$$= 62.4 \frac{mmHg x L}{mol x K}$$

$$= 8.3 \frac{KPa x L}{mol x K}$$

Ecuación general de los gases ideales

Llamados también "gases perfectos".

Difieren de los gases reales.

Ley combinadas de los gases

$$\frac{P.V}{T}$$
 = CTE

$$\begin{array}{ccc} \underline{P_1 \cdot V_1} & = & \underline{P_2 \cdot V_2} \\ T_1 & & T_2 \end{array}$$

CONDICIÓN INICIAL CONDICIÓN FINAL

IV. Procesos restringidos

A) Ley de Boyle - Mariotte

Proceso isotérmico (temperatura constante)

$$P_1$$
. $V_1 = P_2 . V_2$

P₁: Presión inicial

V₁: Volumen inicial

P₂: Presión final

V₂: Volumen final

B) Ley de Charles

Proceso isobárico (presión constante)

$$\frac{\mathbf{V}}{\mathbf{T}} = \mathbf{CTE}$$

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

V₁: Volumen inicial

T₁:Temperatura inicial

V₂: Volumen final

T₂: temperatura final

C) Ley de Gay-Lussac

Proceso isócoro (volumen constante)

$$\frac{P}{T}$$
 =CTE

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

P₁: Presión inicial T₁:Temperatura inicial

P₂: Presión final

T₂: Temperatura final

V. Condiciones Normales (C.N.)

P = 1 atm. = 760 mmHg

 $T = 0 \, ^{\circ}\text{C} = 273 \, \text{K}$

Volumen 1 mol = 22,4 L

1.- El gas lacrimógeno es muy usado para romper manifestaciones. ¿Qué volumen estará ocupado por 4 mol de este gas a 27 °C y a 4,1 atmósferas?

DATOS

$$P = 4,1 atm$$

$$R = 0.082$$

$$n = 4 mol$$

RESOLUCION

$$V = \frac{R.T.n}{P}$$

$$V = \frac{0,082.300}{4,1}.4$$

$$V = 24 L$$

2.- Determine el volumen ocupado por 0,1 mol de gas a 27 °C de temperatura y 8,2 atmósferas de presión.

DATOS

RESOLUCION

$$V = \frac{R.T.n}{P}$$

$$V = \frac{0,082.300.0,1}{8,2}$$

3.- ¿A qué temperatura 8 mol de NH₃ ocuparán 80 litros a 8,2 atm de presión?

DATOS

P= 8,2 atm

V= 80 L

R=0,082

T = ??

n=8 mol

RESOLUCION

$$T = \frac{P.V}{R.n}$$

$$T = \frac{8,2.80}{0,082.8}$$

T = 1000 K

4.-Se calienta cloro en un recipiente de acero hasta 4 atm, variando la temperatura de 42 °C a 127 °C. ¿Cuál fue la presión inicial? Dato: El volumen es constante.

DATOS

$$P_1 = ??$$
 $P_2 = 4$ atm

$$T_1 = 42^{\circ}C + 273 = 315K$$

$$T_2 = 127$$
°C + 273 = 400K

RESOLUCION

Ley de Gay-Lussac

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

$$P_1 = \frac{P_2 \cdot T_1}{T_2}$$

$$P_1 = \frac{4.315}{400}$$

$$P_1 = 3,15 \text{ atm}$$

5.- 30 litros de un gas se encuentran a 27°C. Si la temperatura aumenta isobáricamente a 400K, ¿en cuántos litros variará su volumen?

DATOS

$$V_1 = 30 L$$

$$V_2 = ??$$

$$T_1 = 27^{\circ}C + 273 = 300K$$

$$T_2 = 400K$$

RESOLUCION

Ley de Charles

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

$$\frac{30}{300} = \frac{V_2}{400}$$

$$V_2 = 40 L$$

$$V_2 = 40 L$$
 $\triangle V = V_2 - V_1 = 40 - 30 = 10$

 $\Delta V = 10L$

6.- Se reportaron la composición química del gas natural en

Camisea:

Componente	Fórmula	%
Metano	CH ₄	88.54
Etano	C_2H_6	10.32
Propano	C ₃ H ₈	0.02
Iso-butano	C_4H_{10}	0.00
n-butano	C_4H_{10}	0.00
Nitrógeno	N_2	0.54
Dióxido de carbono	CO_2	0.58
Agua	H_2O	0.00

¿Qué masa de CH_4 existe en 44,8 L de ese gas en condiciones normales? Datos: m.a. (C = 12, H = 1)

DATOS

$$T = 0 °C = 273 K$$

volumen 1 mol = 22,4 L

$$m = ??$$

RESOLUCION

$$M(CH_4) = 12 + 4 = 16$$

$$m = 32 g$$

- **7**.-En la naturaleza y a condiciones ambientales, la materia se encuentra bajo la forma de tres estados de agregación: sólido, líquido o gas; de estos tres, en el estado gaseoso, las partículas se encuentran a grandes distancias intermoleculares y sometidas a fuerzas de atracción muy débiles, condiciones que determinan las principales propiedades de los gases como la expansión, compresibilidad, difusión, entre otras. Con respecto a los gases, es incorrecto (I) decir que
- a. Están constituidos por moléculas monoatómicas y poliatómicas. (C)
- b. Corresponden al estado menos denso y más desordenado de la materia.
 (C)
- c. Se comportan como fluidos y no tienen volumen propio. (C)

MUCHAS GRACIAS

