Formal Languages

Collection of interconnected topics.

Reference

Formal Languages

- IA Discrete Math
 - Regular Languages and finite automata
 - o Pumping Lemma for Regular Languages
- IB Compiler Construction
 - o CFG, PDA
- Formal Model of Language
 - Pumping Lemma for Language of CFG
 - Chomsky hierarchy
- Computation Theory
 - o TM

Notation

Kleene star ★

- the set of all strings that can be written as the concatenation of zero or more strings from A.
- finite set

Optional bracket []

• or write it in case split

Definition

String $\omega \in T^\star$, over alphabet Σ

ullet of length $n\in\mathbb{N}$

Empty string ϵ ,

• the unique string of length 0

Language

Language
$$L = \{\omega | \omega \in T^\star\}$$

Grammar

Grammar $G = \langle T, N, P, S \rangle$

- ullet T is a finite set of terminals/symbols, also known as alphabet Σ
- ullet N is a finite set of Non-terminal/variables. also known as states Q
- ullet Require that T and N disjoints, i.e. $\Sigma \cap Q = \emptyset$
- P is Production rule
 - ullet Regular $P \in N imes T[N]$
 - \circ CFG $P \in N imes (T \cup N)^\star$
 - $\circ \ \operatorname{CSG} P \in (N \cup T)^{\star} N (N \cup T)^{\star} \times (N \cup T)^{\star} (T \cup N)^{\star} (N \cup T)^{\star}$
 - \circ Recursive enumerable $P \in (N \cup T)^\star \times (N \cup T)^\star$
- ullet $S\in N$ is Start symbol

Relationship of Grammar and Language

Grammar	Language
Finite (Kleene star)	∞
Stuctured	Flat lists of w
many Grammars	map to the same language

Automata

Automata $M=(Q,\Sigma,\delta,s,F)$

- Q is a finite set of states
 - corresponds to Non-terminal (Grammar)
 - Σ is the finite set alphabet
 - the same Terminal (Grammar)
 - ullet Require that T and N disjoints, i.e. $\Sigma \cap Q = \emptyset$
 - ullet δ is the transition relation
 - corresponds to Production rule (Grammar)
 - ullet $s\in Q$ is the start state, also known as q_0
 - ullet $F\subset Q$ is the set of accepting states
 - L(M): the language accepted by the automata

(Non)Deterministic Finite Automata

NFA
$$M=(Q,\Sigma,\delta,s,F)$$

 $\begin{array}{ccc} \bullet & \delta \subset Q \times (\Sigma \cup \{\epsilon\}) \to Q \text{ transition relation} \\ & \circ & (q,a,q') \text{ means } q \stackrel{a}{\longrightarrow} q' \end{array}$

DFA
$$M=(Q,\Sigma,\delta,s,F)$$

 $ullet \ \delta \subset Q imes \Sigma o Q$ transition relation $\circ \ (q,a,q')$ means $q \stackrel{a}{\longrightarrow} q'$

•
$$L(M) = \{\omega \in \Sigma^* \mid \exists q \in Q, s \stackrel{\omega}{\Longrightarrow} q\}$$

Regular \leftrightarrow DFA Q= {A,B}

PushDown Automata

PDA $M=(Q,\Sigma,\Gamma,\delta,s,Z,F)$

- $\delta \subset Q imes (\Sigma \cup \{\epsilon\}) imes \Gamma o Q imes \Gamma^{\star}$ transition relation $\circ \ \, \delta(q,a,X) = (q',\beta) \\ \quad \bullet \ \, q \overset{a}{\longrightarrow} q' \text{ and replace top of stack X with β}$
- Γ is a finite set which is called the **stack** alphabet
- ullet $Z\in\Gamma$ is the initial stack symbol
- $\bullet \ \ L(M) = \{\omega \in \Sigma^* \mid \exists q \in Q, ID = \langle s, \omega, Z \rangle \to^+ ID' = \langle q, \epsilon, \epsilon \rangle \}$
 - \circ The initial content ω is said to be accepted by M if it eventually halts in a state from F
 - with Instantaneous Description (ID) above.

Turing Machine

TM
$$M=(Q,\Sigma,\delta,s,F)$$

- $\Sigma = \{\sqcup, \triangleright\} \cup \Sigma'$ is the finite set of **tape** alphabet symbols
 - □ the blank symbol
 - the only symbol allowed to occur on the tape infinitely often at any step during the computation
 - ▷ left endmarker
 - the left end marker > is never overwritten and M always move Right.
 - $\circ \Sigma' = \Sigma \{\sqcup, \triangleright\}$ the finite set of input symbols, to be checked
 - allow to appear in the initial tape contents.
- ullet $\delta\subset Q imes \Sigma o Q imes \Sigma imes \{L,R,S\}$ transition relation
 - $\circ \ \delta(q,a) = (q',b,u)$
 - $q \xrightarrow{a} q'$ and overwrite the current symbol from a to b, update the next head movement.
 - \circ $\delta(q,\triangleright)=(q',\triangleright,R)$
 - the left endmarker > is never overwritten and header always moves Right.
- $\bullet \ \ L(M) = \{\omega \in \Sigma' \mid \exists q \in \{acc, rej\}, c_0 = \langle s, \triangleright, u \rangle \to^+ c' = \langle q, \omega, u' \rangle \}$
 - \circ The initial content ω is said to be accepted by M if it eventually halts in a state from F
 - with configuration above.

C5G
$$\iff$$
 Twing M.
 $\Sigma = \{D, a, b, c, \Box, x, y, z\}$
 $D = \{a, b, b\} C C \Box \Box$
 $C = \{S, D, \Box\} \qquad W = a^nb^nc^n$
 $D = \{A, b, C\} \qquad W = a^nb^nc^n$
 $D = \{A, b, C\} \qquad A = \{A, C\} \qquad A =$

Pumping Lemma

For Regular Language L,

 $\exists k \in \mathbb{Z}^+$, $orall \omega \in L$ with $|\omega| \geq k$, can be written as a concatenation of three strings $\omega = u_1 \mathbf{v} u_2$, satisfying

- $|v| \ge 1 \ (v \ne \epsilon)$
- $|u_1v| \leq k$

 $\forall n \in \mathbb{N}, u_1 \mathbf{v}^{\mathbf{n}} u_2 \in L \square.$

Disproof L is not regular: i.e negation of the above

 $\forall k \geq 1$, $\exists \omega \in L$ with $|\omega| \geq k$, such that no matter how ω is split into three strings $\omega = u_1 \mathbf{v} u_2$, satisfying

- $|v| \ge 1 \ (v \ne \epsilon)$
- $|u_1v| \leq k$

 $\exists n \in \mathbb{N}, u_1 \mathbf{v}^{\mathbf{n}} u_2 \notin L \square.$

Context Free

For Language L of CFG,

 $\exists k \in \mathbb{Z}^+$, $orall \omega \in L$ with $\mid \omega \mid \geq k$ can be written as a concatenation of three strings $\omega = u_1 \mathbf{v_1} u_2 \mathbf{v_2} u_3$, satisfying

- $ullet \mid v_1v_2 \mid \geq 1 \ (v_1
 eq \epsilon \ {\sf and} \ v_2
 eq \epsilon)$
- $ullet \mid v_1u_2v_2\mid \leq k$
- $\forall n \in \mathbb{N}$, $u_1\mathbf{v_1^n}u_2\mathbf{v_2^n}u_3 \in L$.

Disproof L is not CFG: i.e negation of the above

 $orall k\in\mathbb{Z}^+$, $\exists\omega\in L$ with $\mid\omega\mid\geq k$ such that no matter how ω is split into strings $\omega=u_1\mathbf{v_1}u_2\mathbf{v_2}u_3$, satisfying

- $ullet \mid v_1v_2\mid \geq 1$ ($v_1
 eq \epsilon$ and $v_2
 eq \epsilon$)
- $ullet \mid v_1u_2v_2\mid \leq k$
- $\exists n \in \mathbb{N}$, $u_1\mathbf{v_1^n}u_2\mathbf{v_2^n}u_3 \notin L\square$.

Chomsky hierarchy

The lower Automata/Grammar is strictly stronger than all the upper.

Notation:

- $a \in T$
 - o denotes single terminal
- $A \in N$
 - o denotes single Non-terminal

- $\alpha, \beta, \gamma \in (N \cup T)^{\star}$
 - o denotes string of finite terminals and/or Non-terminals

Gra	Languages	Automata	Production rules	Example	Usage
T-3	Regular Language	DFA (Q,Σ,δ,s,F)	$egin{aligned} A ightarrow a \ A ightarrow a B \ ext{(right)} \end{aligned}$	$L = \{a^n \mid n>0\}$	Lexer
T-2	Context-free	∞ -stack PDA $(Q,\Sigma,\Gamma,\delta,s,Z,F)$	A o lpha	$L = \{a^nb^n \mid \ n>0\}$	General Parser
T-1	Context- sensitive	Linear-bounded Turing Machine	$egin{array}{l} lpha Aeta ightarrow \ lpha \gamma eta \end{array}$	$egin{aligned} L = \ \{a^nb^nc^n \mid \ n > 0\} \end{aligned}$	Specific Parser
T-0	Recursively enumerable	Turning Machine (Q,Σ,δ,s,F)	$\gamma ightarrow lpha$	$L=\{\omega\}$ that TM Halt	
Regular \leftrightarrow DFA $Q = \{A,B\}$ $Z = \{a\}$ $Z = \{$					

(Adapted from wiki)