# AD 688 582

Reproduced by the CLEARINGHOUSE for Federal Scientific & Technical Information Springfield Va. 22151

This document has been approved

AD\_\_\_\_

THE COLUMN HAS DEEN APPROVED FOR PUBLIC RELEASE AND SALE; ITS DISTRIBUTION IS UNLIMITED.

TECHNICAL REPORT

69 - 63 - AD

## MODULAR HONEYCOMB CONCEPT FOR PREPARATION OF LOADS FOR DELIVERY BY AIRDROP

bу

James F. Falcone

Project Reference: 1F162203D195

March 1969

Airdrop Engineering Laboratory U. S. ARMY NATICK LABORATORIES Natick, Massachusetts 01760

### FOREWORD

A study is currently being conducted as Task 08, "System for Rapid Preparation of Airdrop Loads" under DA Project No. 1F162203D195. The purpose of this study is to evaluate the basic functions and equipment for preparation of airdrop loads from an overall point of view with particular emphasis on simplification, and time and cost reduction. The initial general analysis identified a number of problem areas requiring detailed studies. One of these studies resulted in the modular honeycomb concept for energy dissipating which is described in this report.

### CONTENTS

|                                                | Page |
|------------------------------------------------|------|
| List of Figures                                | v    |
| List of Tables                                 | v    |
| Abstract                                       | vi   |
| Introduction                                   | 1    |
| Selection of Modular Sizes                     | 1    |
| Detail Stack Construction                      | 4    |
| Area and Volume Considerations                 | 7    |
| Potential of Concept for Universal Application | 8    |
| Conclusions                                    | 8    |
| Recommendations                                | 10   |
| Appendix                                       | 11   |

es e e de desertar a e en esta esta de la definicación de designador de descripción de la constant de la designada de la constant de la const

# BLANK PAGES IN THIS DOCUMENT WERE NOT FILMED

### LIST OF FIGURES

| Figure      |                                                                                                       | Page |
|-------------|-------------------------------------------------------------------------------------------------------|------|
| 1           | Modular Honeycomb Concept                                                                             | 2    |
| 2           | Modular Honeycomb Bridge Construction                                                                 | 5    |
| 3           | Modular and Standard Honeycomb Stacks                                                                 | 6    |
| ·           | LIST OF TABLES                                                                                        |      |
| Table       |                                                                                                       |      |
| I           | Comparison of Honeycomb Requirements of Present, Standard and Proposed Modular Stacks                 | 3    |
| II          | Construction of Modular Honeycomb<br>Stacks for Rigging the Seven Most<br>Common Vehicular Type Loads | 4    |
| III         | Total Area and Volume of Modular<br>Honeycomb Stacks compared to<br>Standard Stacks                   | 7    |
| IV          | Dynamic Crushing Stress of Sample<br>Modular Honeycomb Stacks                                         | 9    |
| A-1         | Detail Stacks Construction for Common Items                                                           | 12   |
| A-2         | Volume of Stacks for Common Items                                                                     | 16   |
| A-3         | Surface Area of Stacks for Common Items                                                               | 20   |
| A-4         | List of Loads                                                                                         | 23   |
| <b>A-</b> 5 | Construction of Modular Stacks for "1 Drop Items                                                      | 24   |
| A-6         | Perimeter to Area Ratio Comparison                                                                    | 30   |

v

Share many the contract of the

### ABSTRACT

Current studies aimed at simplification of the preparation of loads for delivery by airdron have resulted in a concept for a simplified method of preparing the honeycomb cushioning system. This concept employs a small number of standard size honeycomb modules which can be used as "building blocks" to construct the many different sized stacks employed in current rigging procedures. Analysis and limited testing indicate that it would be feasible to use five standard size modules of honeycomb to rig practically all airdrop loads.

### MODULAR HONEYCOMB CONCEPT FOR PREPARATION OF LOADS

### FOR DELIVERY BY AIRDROP

### INTRODUCTION

All aspects of the present system for preparation and retrieval of supplies and equipment delivered by airdrop is being studied currently in an effort to simplify and optimize this phase of an airborne operation. Several specific problem areas have been identified on which derivative studies have been conducted. The study reported here is directed toward simplifying the preparation of honeycomb cushioning for platform loads.

The present system for airdropping heavy equipment (vehicles and weapons) uses paper honeycomb to dissipate energy at ground impact. The honeycomb is placed between the airdrop platform and the item being delivered. This cushioning system is composed of a number of stacks of various sizes positioned at various locations beneath the item being dropped. The stacks are constructed by gluing layers of 3-inch-thick honeycomb cut to the required size. The stack dimensions are tailored to the individual item being dropped, and are built from pieces of honeycomb cut from large sheets (3' x 8').

A modular concept was developed which employs a small number of precut blocks of standard sizes, which are assembled in a fashion similar to laying bricks, to construct stacks having overall dimensions equal to or very close to the current stack dimensions (Fig 1). This eliminates cutting of honeycomb, simplifies the procedures for constructing the cusnioning system, and offers additional potential logistic advantages.

### SELECTION OF MODULAR SIZES

An initial analysis was conducted on the most common airdrop platform loads. Seven items were selected which constitute 80% or more of all vehicle drops. It was found that 25 different sizes of honeycomb were used to rig these seven items. Studies were then conducted to determine the optimum number and size of modules from which the 25 sizes could be constructed. Various combinations of size and number of modules were evaluated considering individual stack dimensions and area, total area of rigged load, total volume of honeycomb, and perimeter to area relationship. Sizes for the honeycomb modules were also selected to insure staggering of seams in successive layers, and for ease of handling. Results of this study indicated that it would be feasible to employ 5 modules (6" x 12", 12" x 12", 12" x 15", 12" x 24", 12" x 36"). The difference in area between the modular stacks and the standard stacks was 5% or less for 80% of the stacks. Since the manufacturing tolerances on paper honeycomb permit a variation of crushing stress of approximately  $\pm$  14%, the difference in area between modular stacks and standard stacks should be acceptable.



Figure 1. Modular Honeycomb Concept

Table I shows the items considered with a breakdown of the number of different sizes of honeycomb used to rig each vehicle and the total number of pieces of honeycomb. The last two columns show the number of different modular sizes and total number of pieces when using the proposed new system.

As shown on Table I, the total number of different sizes of honeycomb can be reduced from 25 to 5 while the total number of pieces employed would be approximately double. Assembly of modular stacks from precut sizes will be simpler and faster than cutting every piece for each stack and then assembling them even though the total number of modules is approximately twice the total number of standard pieces. Alternatively, precutting 25 sizes compared to five sizes would not be as efficient and would not be flexible since the sizes required for any particular vehicle/load are not necessarily the same as those for another item. The five modular sizes are used to construct stacks for all loads.

TABLE I

Comparison of Honeycomb Requirements of Present Standard and Proposed Modular Stacks

|                  | Standar      | d                         | Proposed              | Hodular                   |
|------------------|--------------|---------------------------|-----------------------|---------------------------|
| Item             | No. of Diff. | Fotal Number of<br>Piaces | No. of Diff.<br>Sizes | Total Number of<br>Pieces |
| 1/4 Ton Truck    | 4            | 39                        | 4                     | 57                        |
| 1/4 Ton Trailer  | 1            | 18                        | 2                     | 36                        |
| 3/4 Ton Truck    | 10           | 50                        | 5                     | 105                       |
| 3/4 Ton Trailer  | 6            | 43                        | 4                     | 84                        |
| H274 (Mach Mula) | 10           | 30                        | 3                     | 52                        |
| 105mm Howitzer   | 2            | 14                        | 2                     | 62                        |
| 2 1/2 Ton Truck  | 13           | 77                        | 5                     | 150                       |
| Totale           | 25           | 271                       | 5                     | 546                       |

### DETAIL STACK CONSTRUCTION

The 25 required stack sizes as specified in current Army Technical Manuals for seven townon airdrop items are shown in Table II. The resultant stack size constructed from the tive proposed basic modules is also shown with a detailed breakdown of the modules used. The difference in area (percent) between the two is also shown. Some of the current cushioning systems employ pieces of honeycomb to connect two stacks. These pieces are common to the two stacks and span the gap (distance) between the individual stacks in a bridge-like manner.

The construction of these bridges requires a modification to the basic construction shown in Table II. This is necessary because of the unsupported length of the bridges. However, all of the bridges required for the common airdrop items can be constructed from the same five modules. Figure 2 illustrates the construction of these bridges. The unsupported area is depicted to show that the modules can accommodate the various spans and maintain structural integrity.

Table 1.

Committee of Modular Reneture Stanks for Bigging the
Sound Rost Committee Color Type Code

| 10441704 | Medular<br>flee        | l      | ,       | tedniss  |          |         | Paraens Difference in Arae         |
|----------|------------------------|--------|---------|----------|----------|---------|------------------------------------|
| (per T4) | ( versii<br>resultati) | 4 1 12 | 17 = 11 | 19 + 15  | 94 a 13  | 16 # 11 | Hed. Size : Leg. Size<br>Seq. Size |
| 11 11    | 11 = 12                |        | 1       |          | 1        |         | 0.0                                |
| 17 a 41  | 17 9 47                | ı      |         |          |          | ı       | 0.0                                |
| 4 . 4    | A y 13                 | 1      |         |          |          |         | \$0.0                              |
| 11 + 14  | 12 # 24                | j '    | ,       |          | ] '      | 1       | 0.1                                |
| 17 + 24  | 17 # 24                | [      |         |          | 1 1      |         | a,u                                |
| 12 . 31  | 12 # 55                | 1      |         | 1        | <u> </u> | ł       | 3.1                                |
| 13 a 47  | 17 4 61                | ١,     |         | 1        | ١ ،      | ı       | 1                                  |
| 1. a 34  | 12 # 54                | 1      | )       |          | [        | 1       | 0.0                                |
| 10 . 34  | 18 . 34                | ,      |         | ļ        | į        | 1       | 0.0                                |
| 11 # 40  | 17 . 10                | l      | 1       | ,        | ( ,      |         | 1.9                                |
| 17 6 18  | 12 . 14                | 1      | } ,     | <u> </u> | i        | !       | 0.0                                |
| 3 . 10   | 17 . 47                | ł      | ł       | }        | ,        | ,       | 0.0                                |
| 18 . 29  | 18 8 24                | ,      | 1       | 1        | ,        |         | -4.0                               |
| 13 4 29  | 17 9 74                | ì      |         | (        | 1        | i       | -4.0                               |
| 14 4 43  | 24 4 44                | İ      | 1       |          | 1 1      | ,       | 0.0                                |
| 10 # 30  | 10 9 74                | 1      | i       | i        | 1 1      | Ì       | 10.0                               |
| 12 . 30  | 12 # 10                | 1      | 1       | ]        | ,        |         | 0.0                                |
| T # 14   | 4 . 17                 |        |         |          | ļ        |         | - 47 - 4                           |
| 4 = 31   | 8 . 14                 |        |         | ļ        | 1        |         | -24.4                              |
| 12 m 50  | 17 . 11                |        | 1       | 1        | ,        |         | 1.0                                |
| 12 . 48  | 12 # 46                | ŀ      | 1       | l        | 1        |         | 0.6                                |
| 12 a 14  | 12 7 10                | l      | 1       | ,        | 1        |         | 1.1                                |
| 14 # 15  | 17 4 74                | 1      | 1       | ,        |          | ĺ       | 1.0                                |
| 34 a #4  | 10 . 04                | 1      |         | 1        | •        | ,       | 0,0                                |
| 17 . 53  | 117 34                 | 1 ,    | ,       |          |          | 1       | 1.9                                |



Figure 2
MODULAR HONEYCOMB BRIDGE CONSTRUCTION

Some of the larger size stacks can be constructed in more than one manner from the 5 proposed modules. This is illustrated in Figure 3. The construction of stacks in all of the tables in the report are based on using the largest sizes. This is considered as the preferred method since it results in a minimum number of total pieces. The location of the individual modules is varied in successive layers to stagger the seams as in laying bricks. This provides a more stable construction than laying like modules on top of another.



Figure 3. Modular and Standard Honeycomb Stacks

### AREA AND VOLUME CONSIDERATIONS

The total surface area of the honeycomb used is of equal, or greater importance, than the area of the individual stacks of honeycomb. The individual stack dimensions distribute the total load in varying magnitudes to different points of the structure of the item being dropped. The total area determines the overall deceleration of the item and the total load and energy to be dissipated by the honeycomb stacks. Table III shows the total surface area for the seven considered items using standard stacks and modular stacks. The difference in all cases except one (1/4 ton truck) is less than 5%. The 1/4 ton truck presently uses a number of pieces of small honeycomb (6" x 6") in the uppermost 3 layers of one stack. This piece accounts for the large difference in the total area. However, since the dissipation of energy is not controlled entirely by the uppermost layers, the difference in energy dissipation of the modular stacks will not necessarily be equal to the difference in area. If re-design of the entire cushioning system (based upon the modular sizes) cannot be accomplished, the 6" x 8" size could be cut from a modular piece for this one load.

Table III also shows the total volume of honeycomb used in both the conventional stacks and the modular stacks. The total volume is also an indicator of the energy dissipating characteristics of the cushioning system, as well as a basic factor concerning cost of raw material.

TABLE []]

Total Area and Volume of Modular Honeycomb Stacks Compaind to Standard Stacks

|                  | •        | rocal Surface (in <sup>2</sup> ) | . Area                | Total    | Volume of (in ) | Mensy comb            |
|------------------|----------|----------------------------------|-----------------------|----------|-----------------|-----------------------|
| Item             | Standard | Proposed                         | Percent<br>Difference | Standard | Proposed        | Percent<br>Difference |
| 1/4 Ton Truck    | 888      | 1152                             | 30 - 8*               | 72,896   | 22,560          | 1.47                  |
| 1/4 Ton Trailer  | 1008     | 1008                             | 0.0                   | 27,216   | 27,216          | 0.0                   |
| 3/4 Ton Truck    | 2264     | 2252                             | 0.5                   | 76,476   | 76,224          | 0.33                  |
| 3/4 Ton Trailer  | 1488     | 1512                             | 1.6                   | 44,100   | 44,742          | 1,46                  |
| M274 (Mach Mula) | 1100     | 1152                             | 6.7                   | 28,512   | 27,216          | 4,55                  |
| 105mm Howitzer   | 1296     | 1296                             | 0.0                   | 36,376   | 36 , 5 76       | 0.0                   |
| 2 1/2 Ton Truck  | 5 3 5 2  | 5328                             | 0.5                   | 114,460  | 113,994         | 0.50                  |

ABy cutting one size (6" x 8") instead of using standard modular size of 6" x 12", this difference would be only 8.12.

Construction of large area stacks from smaller unit sizes will result in a large perimeter. The edge effects of built-up staggered stacks have not been evaluated. However, an analysis was conducted to determine the ratio of the perimeter to area for the seven items. The maximum difference per stack between standard and modular stacks was found to be 0.167 (Table A-6, Appendix). Although adequate data are not available to determine whether a critical difference exists between the perimeter/area ratios, the limited testing conducted to date indicates that the magnitude of the differences between conventional and proposed stacks will not be detrimental.

### POTENTIAL OF CONCEPT FOR UNIVERSAL APPLICATION

The most common vehicular type airdrop loads were selected for the initial analysis to determine if the modular concept was feasible. Also, it was felt that if this concept were applied only to these common items, it would still provide a significant improvement in preparation of airdrop loads since the selected items represent more than 80 percent of all vehicle-type airdrops. The favorable results of this analysis prompted a second analysis to determine if the modular concept had potential for more universal application.

This second analysis considered 31 different items selected at random. These items are listed in Table A-4 in the Appendix. This study was limited to the individual stack construction only, and did not include total area, total volume or perimeter/area ratio determinations.

The 31 items selected require 86 different sizes of honeycomb for construction of the stacks. These 86 sizes can be closely approximated by only five modular sizes with 80 percent of the modular stacks within 10 percent of the current stack areas. The detailed construction of the 86 various size stacks considered in the second analysis is shown in Table A-5, Appendix.

This second study resulted in four of the modules identical to those in the initial analysis. The fifth module was changed from 12" x 15" to 6" x 15" to accommodate a greater variety of stack sizes. A more detailed study of the exact requirements for each cushioning system with special attention to possible minor changes in individual stack dimensions together with additional testing will be required for final determination of optimum number and size of modules. Additionally, it is felt that it would be more desirable to first select four or five basic sizes based on this study, and then design cushioning systems utilizing the basic predetermined modular sizes.

### RESULTS OF LABORATORY TEST

Preliminary testing was conducted using a dynamic impact test facility. Only two sizes of stacks were used,  $12'' \times 12''$  and  $16'' \times 18''$ , The capacity of the test equipment limited the maximum size of the test stack. A total of 10 tests were performed with the conventional construction and 15 tests utilizing modular construction. The maximum

difference in crushing stress was five percent. Table IV shows the results of the tests and the perimeter/area ratio for the test stacks. The maximum difference in this ratio (between modular and conventional type stacks) for the test specimens was greater than the maximum difference in any of the proposed modular stacks for the seven common airdrop items investigated.

TABLE 17

Dynamic Grushing Test of Sample Modular Honeycomb Stacks

| Medule<br>Size(m) | Percent Change<br>in Stress *                    | Perimeter to<br>Area Ratio     | Difference                              |
|-------------------|--------------------------------------------------|--------------------------------|-----------------------------------------|
| 12 x 12           |                                                  | 0,333                          |                                         |
| 6 x 12            | 0.7                                              | 0.500                          | 0,167                                   |
| 16 y 16           |                                                  | 0.236                          |                                         |
| 9 x 15/8 x 16 4   | 5.0                                              | 0.347/0.311                    | 0,111/0.075                             |
| 6 x 16/4 x 18 A   | 0.3                                              | 0.456/0.361                    | 0.222/0.125                             |
|                   | Size(n)  12 x 12  6 x 12  16 y 16  9 x 16/h x 1h | Sire(n) (n Streen * )  12 x 12 | Size(R) (n Stream * Area Ratio  12 x 12 |

<sup>\*</sup> Average of 5 tests

All stacks 12" thick

### CONCLUSIONS

Results of studies to date indicate that it is entirely feasible to rig airdrop loads using a small number of precut modular sizes of honeycomb to construct the stacks required for energy dissipation at ground impact. Five modular sizes appear to offer the best potential for minimum number of total pieces, acceptable handling, and structural integrity of stacks.

Re-design of honeycomb cushioning systems based upon the modular concept would optimize this type construction and possibly reduce the number of modular sizes required.

In addition, the smaller size modules offer better potential for development of practical field expansion of honeycomb than the present large species.

A Alternate layers in stack

### RECOMMENDATIONS

- a. Conduct further testing of concept using actual rigged loads. Tests should first be staid drop tests and then actual airdrops.
- b. Evaluate human factors aspects employing Army riggers and standard airdrop loads with modular honeycomb.
- c. Conduct cost analysis considering impact on production, storage and preparation of loads for airdrop.
- d. Investigate feasibility of re-design of present honeycomb configuration to optimize the use of modular construction.
- e. Investigate the feasibility of using 6 inch thick modules in lieu of the present 3 inch thickness honeycomb to further reduce the total number of pieces required for rigging.

APPEND1X

TABLE A-1 DETAIL STACK CONSTRUCTION FOR COMMON ITEMS

|                 | Honeycomb                      |                                 |        | Number of | Modules |         |         |                      |
|-----------------|--------------------------------|---------------------------------|--------|-----------|---------|---------|---------|----------------------|
| Item            | Dimensions<br>(Standard Stack) | Number of<br>Pieces             | 6 x 12 | 12 × 12   | 15 × 12 | 24 x 12 | 36 × 12 | Number of<br>Modules |
| 1/4 Ton Truck   | 16 x 20                        | 9                               | 12     | 0         | 0       | 9       | 0       | 18                   |
|                 | ω<br>w                         | 24<br>(or cut specia)<br>6 x 8) | 24     | O         | C       | 0       | c       | 24                   |
|                 | 24 × 48                        | E                               | 0      | 0         | 0       | ٣       | 9,      | 6                    |
|                 | 12 × 12                        | 9                               | 0      | 9         | 0       | C       | 0       | 9                    |
| Totals          |                                | 39                              | 36     | 6         | 0       | 6       | 9       | 57                   |
| 1/4 Ton Trailer | 12 × 42                        | 18                              | 18     | 0         | C       | 0       | 18      | 36                   |
| Totals          |                                | 18                              | 18     | 0         | 0       | O       | 18      | 36                   |
| 3/4 Ton Truck   | 8th x th2                      | 9                               | С      | 0         | 0       | 9       | 12      | 18                   |
|                 | 12 x 2u                        | ю                               | 0      | 0         | С       | 33      | 0       | е                    |
|                 | 12 x 54                        | 14                              | 14     | 14        | 0       | 0       | 14      | 42                   |
|                 | 12 x 40                        | 2                               | 0      | 0         | С       | 0       | 2       | 2                    |
|                 | 12 × 30                        | 2                               | 2      | С         | 0       | 5       | ٥       | 77                   |

TABLE A-1 (Cont'd)

|                 | Honeycomb                      |                     |        | Number of | Modules |         |         | Total                |
|-----------------|--------------------------------|---------------------|--------|-----------|---------|---------|---------|----------------------|
| Item            | Dimensions<br>(Standard Stack) | Number of<br>Pieces | 6 x 12 | 12 x 12   | 15 x 12 | 24 x 12 | 36 × 12 | Number of<br>Modules |
| 3/4 Ton Truck   | 12 x 12                        | 10                  | 0      | 10        | 0       | 0       | 0       | 10                   |
| (Cont'd)        | 12 × 48                        |                     | 2      | 0         | 0       | 0       | ,       | ٣                    |
|                 | 12 x 40                        | 6                   | 0      | c         | 6       | 6       | 0       | 18                   |
|                 | 12 × 14                        | 2                   | 0      | С         | 2       | 0       | ۰.      | 2                    |
|                 | 12 x 48                        | r=1                 | 2      | 0         | c       | 0       | -       | т                    |
| Totals          |                                | 20                  | 20     | 24        | 11      | 20      | 30      | 105                  |
| 3/4 Ton Trailer | 12 x 36                        | 10                  | 0      | 0         | 0       | 0       | 10      | 10                   |
|                 | 12 × 12                        | 12                  | 0      | 12        | ల       | 0       | 0       | 12                   |
|                 | 12 x 50                        | ı                   | 2      | 0         | 0       | 0       |         | en .                 |
|                 | 12 × 32                        | 18                  | 18     | 18        | 18      | 0       | С       | 54                   |
|                 | 12 × 42                        | -                   | -      | 0         | c       | 0       |         | 2                    |
|                 | 12 x 53                        |                     | 2      | 0         | 0       | 0       | 1       | ю                    |
| Totals          |                                | £4.                 | 23     | 30        | 18      | ζ-      | 13      | 84                   |
|                 |                                |                     |        |           |         |         |         | ١                    |

TABLE A-1 (Cont'd)

|                | Honeycomb                      |                     |        | Number of | Modules |         |         | Total                |
|----------------|--------------------------------|---------------------|--------|-----------|---------|---------|---------|----------------------|
| Item           | Dimensions<br>(Standard Stack) | Number of<br>Pieces | 5 x 12 | 12 × 12   | 15 × 12 | 24 x 12 | 36 × 12 | Number of<br>Modules |
| M274 Mech Mule | 18 x 25                        | 5                   | 10     | 0         | 0       | Ŋ       | 0       | 15                   |
|                | 9 x 14                         | 7                   | c      | 0         | 2       | 0       | 0       | 2                    |
|                | 14 x 25                        | 1                   | 0      | 0         | 0       | 64      | 0       | 2                    |
|                | 18 × 25                        | ī.                  | 0.5    | C         | С       | ٧.      | С       | 15                   |
|                | 9 x 14                         | 2                   | c      | С         | 2       | 0       | ٥.      | 2                    |
|                | 14 × 25                        | .,                  | С      | C         | 0       | 2       | 0       | 2                    |
| 1/1            | 12 x 25                        | \$                  | 0      | С         | 0       | ٧       | 0       | ın                   |
|                | 8 x 25                         | 2                   | 0      | 0         | 0       | 2       | O       | 2                    |
|                | 12 x 25                        | 2                   | 0      | 0         | С       | Ŋ       | С       | Ŋ                    |
|                | 8 x 25                         | C1                  | С      | C         | С       | 2       | С       | 2                    |
| Totals         |                                | 30                  | 20     | 0         | 17      | 28      | Ú       | 52                   |
|                | 40 - 36                        | ٠                   | C      | C         | c       | C       | 77.     | 7.7                  |
| 105mm HOWITZET | #0 × 00                        | 7                   |        | ÷         |         | >       |         | ,                    |
|                | 18 x 36                        | 12                  | 36     | 0         | c       | 0       | 12      | 87                   |
| Totals         |                                | 14                  | 36     | С         | С       | 0       | 26      | 62                   |

TABLE A-1 (Cont'd)

| Stack) Pieces 6 x 12 12 x 12 15 Stack)  13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | Honeycomb                      |                     |    | Number of Modules | Modules  |         |            | Total                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------|---------------------|----|-------------------|----------|---------|------------|----------------------|
| 12 x 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Item            | Dimensions<br>(Standard Stack) | Number of<br>Pieces | ×  | *                 | ×        | 24 x 12 | 36 × 12    | Number of<br>Modules |
| x 12       7       6       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7 | 2 1/2 Ton Truck | <b>×</b>                       | 13                  | 0  | 0                 | 0        | 13      | 0          | 13                   |
| x 18       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       8       8       8       8       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 |                 | ×                              | 7                   | O  | 7                 | 0        | C       | С          | ^                    |
| x 50       1       2       0         x 82       8       8       0         x 30       1       1       0         x 50       5       0       0         x 30       1       1       0         x 50       5       0       0         x 36       13       0       0         x 18       4       4       4         x 24       4       4       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | ×                              | 7                   | 7  | 7                 | C        | С       | С          | 14                   |
| x 82       8       8       0         x 82       6       8       0         x 30       1       1       0         x 50       1       1       0         x 50       5       0       0         x 50       5       0       0         x 36       13       0       0         x 18       4       4       4         x 24       4       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | ×                              | <b>~</b>            | 2  | С                 | 0        | 0       | <b>-</b> . | е                    |
| x 82     8     8     0       x 30     1     1     0       x 60     5     0     0       x 30     1     1     0       x 60     5     0     0       x 36     13     0     0       x 18     4     4     4       x 24     4     0     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 | ×                              | œ                   | œ  | 0                 | <b>x</b> | αυ      | œ          | 32                   |
| x 30     1     1     0       x 60     5     0     0       x 30     1     1     0       x 60     5     0     0       x 36     13     0     0       x 18     4     4     4       x 24     4     0     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | ×                              | w                   | œ  | 0                 | αo       | œ       | œ          | 32                   |
| x 60<br>x 30<br>x 60<br>x 60<br>x 36<br>13<br>0<br>0<br>0<br>0<br>0<br>0<br>x 36<br>13<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | ×                              | 7                   |    | c                 | 0        |         | С          | 2                    |
| x 30<br>x 60<br>x 36<br>x 36<br>x 18<br>x 18<br>x 24<br>x 20<br>1 1 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | ×                              | \$                  | 0  | 0                 | 0        | 5       | 5          | 10                   |
| x 60<br>x 36<br>x 18<br>x 24<br>x 24<br>x 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | ×                              | -                   | -  | 0                 | 0        | -       | 0          | 2                    |
| x 36 13 0 0 0 x 18 x 18 4 4 4 4 x 24 4 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | ×                              | 5                   | 0  | 0                 | 0        | S       | S          | 10                   |
| x 18 4 4 4 4 x 24 x 24 4 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | ×                              | 13                  | 0  | 0                 | 0        | 0       | 13         | 13                   |
| x 24 4 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 | ×                              | 77                  | 7  | 4                 | С        | С       | 0          | œ                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | ×                              | 7                   | 0  | 0                 | 0        | 7       | 0          | 4                    |
| 31 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Totals          |                                | 77                  | 31 | 18                | 16       | 45      | 040        | 150                  |

TABLE A-2 TOUNE OF STACES FOR COSM'N ITEMS

The second secon

| ) t                   | Stack<br>No. | Standard Stack<br>Dimensions               | Volume      | Modular<br>Stack Dimensions         | Volume      |
|-----------------------|--------------|--------------------------------------------|-------------|-------------------------------------|-------------|
| 1.7 Ten Truck         | <b>p-4</b>   | 1. x 20 x 6 x 3                            | 0349        | 6 x 3 x 24 x 18                     | 77719       |
|                       | ~            | 24 x 26 x 3 x 3                            | 36.31       | 3 x 3 x 24 x 46                     | 10,368      |
| erengii ino b         |              | SKEKSKSKS                                  | 3,4,55      | 24 x 3 x 6 y 5                      | 3,4.6       |
|                       | m            | 12 x 12 x 5 x 3                            | 2,522       | 5 x 3 x 12 x 12                     | 2,592       |
| 14<br>00<br>14        |              |                                            | 22,596      |                                     | 22,560      |
| 1/2 Tas T. siler      | 1-1          | CH M CT M E M ST                           | 2~214       | 18 x 3 x 12 x 42                    | 27,216      |
|                       |              |                                            | 7.5         |                                     | 27,216      |
| 100 Tech              |              | (6 x 3 x 2+ x 8)<br>-(9 x 12 x 2)          | 20,736 -324 | (6 x 3 x 24 x 45)<br>-(3 x 9 × 12)  | 20,736 -324 |
| and Sprompering       |              | 3 x 3 x 35 x 5#                            | 265.€       | 3 x 3 x 12 x 24                     | 2,592       |
| 7 Augument and 142 -A | f į          | (48 H C 1 A E H 41) - (52 A H B 44) -      | 27,216 -528 | (14 x 3 x 12 x 54)<br>-(3 x 4 x 22) | 27,216 -528 |
| - 00                  |              | 2 x 3 x 112 x 193                          | 2,560       | 2 x 3 x 12 x 40                     | 2,880       |
| and the second        |              | 6<br>В В В В В В В В В В В В В В В В В В В | 2,160       | 2 x 3 x 12 x 30                     | 2,160       |
| eng dino / Gua        | en en        | CYC H M H OF                               | 926,4       | 10 x 3 x 12 x 12                    | 4,326       |
|                       |              |                                            |             |                                     |             |

TABLE A-2 (Cont. 3)

| ,               | Stack<br>No. | Standard Stack<br>Dimensions | Volum   | No≓ular<br>Stack Dimensions | Volume |
|-----------------|--------------|------------------------------|---------|-----------------------------|--------|
| 3/4 For Truck   |              | 1 x 3 x 12 x 54              | 1,528   | ; x 3 x 12 x 48             | 1,728  |
| (DC04.00)       | d            | 0 x 3 x 15 x 50              | 12.966  | 9 x 3 x 12 x 39             | 12,636 |
|                 |              | 43 × 3 × 6 × 6               | \$CO*!  | 2 x 3 x 12 x 15             | 1,080  |
|                 |              | ] * 3 * 12 * 48              | \$2.7   | 1 x 3 x 12 x 48             | 1,728  |
| To÷a            |              |                              | ٦٢ ۽ ٢٠ |                             | 76,224 |
| 3/4 Ton Trailer |              | 10 x 3 x 12 x 36             | 12.960  | 10 x 3 x 12 x 36            | 12,960 |
|                 | ~ ~          | 12 x 3 x 12 x 12             | 5,184   | 12 x 3 x 12 x 12            | 5.184  |
|                 |              | 1 x 3 x 12 x 50              | 005°1   | 1 x 3 x 12 x 50             | 1,800  |
|                 | <u>س</u>     | 15 x 2 x 12 x 32             | 20,736  | 15 x 3 x 12 x 35            | 21,378 |
|                 |              | 1 x 3 x 12 x 42              | 1,512   | 1 x 3 x 12 x 42             | 1.512  |
|                 |              | 1 x 3 x 12 x 53              | 306°1   | 1 x 3 x 12 x 53             | 1,908  |
| ار<br>د<br>د    |              |                              | 001,44  |                             | 44,742 |
| MOTH With Mile  | pred         | 5 x 3 x 18 x 25              | 052*9   | 5 x 3 x 15 x 24             | 08#*9  |
|                 |              | 2 x 3 x 9 x 14               | 756     | 2 x 3 x 12 x 15             | 0.50.1 |
|                 |              |                              |         |                             |        |

TABLE A-2 (Cont'd)

| ĭtem            | Stack<br>No. | Standard Stack<br>Dimensions | Volume | Modular<br>Stack Dimensions | Vo] ume |
|-----------------|--------------|------------------------------|--------|-----------------------------|---------|
| M274 Mech Mule  |              | 1 x 3 x 4 x 25               | 1,050  | 1 x 3 x 12 x 24             | 864     |
| (cont.d)        | 2            | Same as stack l              |        | Same as stack l             |         |
|                 | e            | 5 x 2 x 12 x 25              | 4,500  | 5 x 3 x 12 x 24             | 4,320   |
|                 |              | 2 x 3 x 8 x 25               | 1,200  | 2 x 3 x 6 x 24              | 198     |
|                 | 77           | Same as stack 3              |        | Same as stack 3             |         |
| Total           |              |                              | 28,512 |                             | 27,216  |
| 105mm Howitzer  | _            | 2 x 3 x 36 x 84              | 18,144 | 2 x 3 x 36 x 84             | 18,144  |
|                 |              | 6 x 3 x 18 x 36              | 9,216  | 6 x 3 x 18 x 36             | 9.216   |
|                 | 2            | 6 x 3 x 18 x 36              | 9,216  | 6 x 3 x 18 x 36             | 9.216   |
| Total           |              |                              | 36,576 |                             | 36,576  |
| 2 1/2 Ton Truck | <b>,</b>     | 13 x 3 x 12 x 24             | 11,232 | 13 x 3 x 12 x 24            | 11,232  |
|                 | 2            | 7 x 3 x 12 x 12              | 3,024  | 7 x 3 x 12 x 12             | 3,024   |
|                 |              | 7 x 3 x 12 x 18              | 4,536  | 7 x 3 x 12 x 18             | 4,536   |
|                 |              | 1 x 3 x 12 x 50              | 7,500  | 1 × 3 × 12 × 50             | 1.500   |

TABLE A-2 (Cont'd)

| Item            | Stack<br>No. | Standard Stack<br>Dimensions | Volume  | Modular<br>Stack Dimensions | Volume  |
|-----------------|--------------|------------------------------|---------|-----------------------------|---------|
| 2 1/2 Ton Truck | m            | 5 x 3 x 12 x 82              | 23,616  | 8 x 3 x 12 x 81             | 23,328  |
| (Cont'd)        | <b>4</b>     | Same as Stack 3              |         | Same as Stack 3             |         |
|                 | س            | 1 x 3 x 12 x 30              | 1,080   | 1 x 3 x 12 x 30             | 1,080   |
|                 |              | 5 x 3 x 12 x 60              | 10,500  | 5 x 3 x 12 x 60             | 16,800  |
|                 | ٠            | Same as Stack 5              |         | Same as Stack 5             |         |
|                 | 7            | 13 x 3 x 12 x 36             | 36,848  | 13 x 3 x 12 x 36            | 16,848  |
|                 | ur)          | 2 x 3 x 12 x 18              | 1,296   | 2 x 3 x 12 x i8             | 1,296   |
|                 | 6            | Same as Stack S              |         | Same as Stack 8             |         |
|                 | 10, 11,      | 4 x 3 x 12 x 24              | 3,456   | 4 × 3 × 32 × 24             | 3,456   |
| Total           |              |                              | 113.450 |                             | 113,904 |

TABLE A-3 SURFACE AREA OF STACKS FOR COMMON ITEMS

| ltem            | Stack No. | Standard Stack<br>Dimensions | Surface Area<br>(in <sup>2</sup> ) | Modular Stack<br>Dimensions | Surfage Area   |
|-----------------|-----------|------------------------------|------------------------------------|-----------------------------|----------------|
| 1/4 Ton Truck   | ,         | 18 x 20                      | 360                                | 15 x 24                     | 432            |
| ·               | 2         | 8 x 6 (8)                    | 354                                | 12 x 6 (8)                  | 576            |
|                 | m         | 12 × 12                      | 144                                | 12 × 12                     | 144            |
| Totals          |           |                              | 888                                |                             | 1152           |
| 1/4 Ton Trailer | -         | 12 x 42                      | 504                                | 12 × 42                     | \$0¢           |
| 20              | 2         | 12 × 42                      | 503                                | 12 × 42                     | 504            |
| Totals          |           |                              | 1008                               |                             | 1008           |
| 3/4 Ton Truck   | 1         | 12 x 24                      | 255                                | 12 x 24                     | 255            |
|                 | 2         | 12 x 54                      | <i>y</i> 7 9                       | 12 × 54                     | £7.9           |
|                 |           | 8 x 22                       | **                                 | 8 x 22                      | 176            |
|                 |           | 12 x 32                      | गुरुद्ध                            | 12 × 32                     | 384            |
|                 | ٣         | i2 × 12                      |                                    | 12 × 12                     | 145            |
|                 |           | 12 x 12                      | 7,7 -                              | 12 x 12                     | न न<br>स       |
|                 | J         | C 0 × C 1                    | , ,                                | 12 x 39                     | y.<br>Ye.<br>1 |
| Totals          |           |                              | 2264                               |                             | 2332           |

TAPLE A-3 (Cont'd)

| Iter            | Stack No. | Standard Stack<br>Dimensions | Surface Area | Modular Stack<br>Dimensions | Surface Area<br>(in <sup>2</sup> ) |
|-----------------|-----------|------------------------------|--------------|-----------------------------|------------------------------------|
| 3/4 Ton Trailer |           | 12 x 36                      | 432          | .2 × 36                     | 432                                |
|                 | CI        | 12 × 12                      | 271          | 12 * 12                     | 77.4                               |
| ,               |           | 12 x 12                      | ## L         | 12 × 32                     | 7<br>2<br>1                        |
|                 | ĸ         | 12 x 32                      | 384          | 12 x 33                     | 396                                |
|                 |           | 12 x 32                      | 384          | 12 × 33                     | 356                                |
| Totals          |           |                              | 1459         |                             | 1512                               |
| M274 Mech Mule  | 1         | 14 x 25                      | 350          | 12 x 24                     | 265                                |
|                 | 2         | 74 × 25                      | 350          | 12 x 24                     | 5 8 E                              |
|                 | n         | S × 25                       | 802          | 12 × 24                     | 25 <u>5</u>                        |
|                 | ರ         | 5 × 25                       | 000          | 12 x 24                     | 256                                |
| Ictals          |           |                              | 1190         |                             | 1152                               |
| 105mm Howitzer  | ~         | ]< x 36                      | 545          | 15 x 36                     | 57.9                               |
|                 | 2         | 28 x 36                      | \$7.9        | 36 × 35                     | \$ <del>19</del>                   |
| Totals          |           |                              | 1206         |                             | ¥67                                |
|                 |           |                              |              |                             |                                    |

TABLE A-3 (Cont. d)

| 1942<br>1942    | Stack No. | Standard Stack<br>Dimensions | Surface Area (in <sup>2</sup> ) | Modular Stack<br>Dimensions | Surface Area<br>(in <sup>2</sup> ) |
|-----------------|-----------|------------------------------|---------------------------------|-----------------------------|------------------------------------|
| 2 :/2 Ten Truck | ~         | 12 x 24                      | 288                             | 12 x 24                     | 255                                |
|                 | CI        | 12 × 12                      | गर्भ ह                          | 12 × 12                     | <b>57</b> C                        |
| •               |           | 12 × 15                      | 216                             | 12 × 15                     | 216                                |
|                 | E         | 12 x 32                      | 755                             | 12 × 81                     | 972                                |
|                 | đ         | 23 × 21                      | 756                             | 12 × 81                     | 972                                |
|                 | v         | 12 x 30                      | 360                             | 12 × 30                     | 360                                |
|                 | ú         | 12 × 30                      | 350                             | 12 × 30                     | 360                                |
|                 | 15        | .2 × 36                      | 284                             | 12 × 36                     | 432                                |
|                 | σ.<br>,   | 22 x 15                      | 2 × 215                         | 12 × 15                     | 2 x 216                            |
|                 | 16.01     | 45 × 5.                      | 7.7.2. X. X.                    | 12 x 24                     | 4 × 255                            |
| retals          |           |                              | 53.25                           |                             | 53.25                              |

### TABLE A-4 LIST OF LOADS

- 1. 1/4 Ton Utility Truck
- 2. M37 Cargo
- 3. MlOl 3/4 Ton Cargo Trailer
- 4. M410 1/4 Ton Cargo Trailer
- 5. 105mm Howitzer
- 6. M34-M35 2 1/2 Ton Truck
- 7. Full Tracked Tractors
- 8. M56 Self Projelled Full Track 90mm Gun
- 9. M22 Road Grader
- 10, AC4 Road Rollers
- 11, 7-35 Ton Road Rollers
- 12, Road Scraper
- 13. 1 1/2 Ton 2 Wheeled Trailers
- 14. M274 1/2 Ton 4 x 4
- 15. 3/4 Ton 4 x 4 Emergency Repair Shop Truck
- 16. Caterpillar 93 Bucket Loader
- 17, 7 Ton Airborne Crane
- 18. Water Purification Trailer Mounted
- 19. 318mm Rocket System
- 20, 2 1/2 Ton Pole Type Utility Trailer
- 21, M220 Road Grader
- 22. Tracked Personnel/Cargo Carrier
- 23, Trailer Mounted Air Commressor
- 24, 7 1/2 Cubic Yard Scraper
- 25. Industrial Wheel Tractor
- 26. M28, M29
- 27, ENTAC MISSILE SYSTEM
- 28, M85, AM Scoop Type Loader
- 29. Mll4 Armored
- 30. Trailer Mounted Generator Set
- 31, A/S 32/H-12

TABLE A-5 Construction of Modular Stacks for 31 Drop Ilems

| Size  | Modular |        | Na     | Number of Medules | es      |                                         | Percent Difference<br>In Area |
|-------|---------|--------|--------|-------------------|---------|-----------------------------------------|-------------------------------|
|       | 227.5   | 6 x 12 | 6 x 15 | 12 x 12           | 12 x 24 | 12 × 36                                 |                               |
|       |         |        |        |                   |         |                                         |                               |
| 10    | 6 × 12  | -      |        | -                 |         |                                         | 0.44                          |
| 12    | 6 x 12  | -      |        |                   |         |                                         | 20.0                          |
| 25    | 6 x 24  | 2      |        |                   |         |                                         | 15.2                          |
| <br>& | 6 x 12  | -      |        |                   |         |                                         | 50.0                          |
| 12    | 6 x 12  | 7      |        |                   |         |                                         | С                             |
| 30    | 6 x 30  |        | 7      |                   |         |                                         | 0                             |
| 12    | 6 x 12  | 1      |        |                   |         |                                         | 14.3                          |
| 12    | 6 x 12  | -      |        |                   |         |                                         | 25.0                          |
| 15    | 6 × 15  |        |        |                   |         |                                         | 25.0                          |
| 18    | 12 x 18 | -      |        | p. 100            |         |                                         | 90.05                         |
| 25    | 45 x 9  | 7      |        |                   |         |                                         | 28.0                          |
| 27    | 6 x 30  |        | 2      |                   |         | *************************************** | 9.91                          |
| 38    | 6 x 42  |        | e.     |                   |         |                                         | 12.1                          |
| 7.    | 6 × 15  |        | _      |                   |         |                                         | 28.5                          |

TABLE A-5 (Cont'd)

| Required | Modular |        | Nur    | Number of Modules | les     |         | Percent Difference |
|----------|---------|--------|--------|-------------------|---------|---------|--------------------|
| Size     | Size    | 6 x 12 | 6 x 15 | 12 x 12           | 12 x 24 | 12 x 36 | In Area            |
|          |         |        |        |                   |         |         | 22.3               |
| 5 × 5¢   | 12 × 24 |        |        |                   | 7       | •       | r. r.              |
| 10 × 12  | 12 x 12 |        |        |                   |         |         | 20.0               |
| 11 × 27  | 12 x 27 |        | 2      | -                 |         | -       | 9.1                |
| 12 × 12  | 12 × 12 |        |        |                   |         |         | 0                  |
| 12 × 16  | 12 × 15 |        | 2      |                   |         |         | 6.2                |
| 12 x 18  | 12 x 18 |        |        | 7                 |         |         | 0                  |
| 12 × 20  | 12 x 21 | -      | 7      |                   |         |         | 5.0                |
| 12 × 22  | 12 x 2i | -      | 2      |                   |         |         | 4.5                |
| 12 x 24  | 12 x 24 |        |        |                   | -       |         | С                  |
| 12 × 25  | 12 x 24 |        |        |                   | ~       |         | 0.4                |
| 12 × 28  | 12 x 27 |        | 2      | 7                 |         |         | 3,5                |
| 12 × 29  | 12 x 30 |        | 3      |                   |         |         | 3.4                |
| 12 x 30  | 12 x 30 |        | #      |                   |         |         | С                  |
| 12 x 32  | 12 × 33 | -      | 2      | -                 |         |         | 3.1                |
| ¥        |         |        |        |                   |         |         |                    |

TABLE A-5 (Cont'd)

| Required | Modular   |        | Nu     | Number of Modules | 6.8     |          | Percent Difference |
|----------|-----------|--------|--------|-------------------|---------|----------|--------------------|
| Size     | Size      | 6 × 12 | 6 x 15 | 12 × 12           | 12 x 24 | 12 x 36  | In Area            |
| 12 x 33  | 12 x 33   | -      | 2      |                   |         |          | 0                  |
| 12 x 36  | 12 × 36   |        |        |                   |         |          | 0                  |
| 12 × 40  | . 12 × 39 |        | 2      |                   | _       |          | 2.5                |
| 12 x 42  | 12 × 42   | 7      |        |                   |         |          | 0                  |
| 12 × 48  | 12 × 48   |        |        | ~                 |         | _        | 0                  |
| 12 × 50  | 12 x 51   | ~      | yç.    |                   |         |          | 2.0                |
| 12 × 53  | 12 x 54   | -      |        |                   |         |          | 6. [               |
| 12 x 54  | 12 x 54   | -      |        |                   |         | _        | 0                  |
| 12 × 58  | 12 x 57   | -      | 2      |                   |         | _        | 1.7                |
| 12 × 60  | 12 × 60   |        |        |                   |         | _        | С                  |
| 12 x 80  | 12 x 81   |        | 2      |                   | -       | -        | 1.2                |
| 12 x 84  | 12 x 84   |        |        | ,                 |         | ~        | C                  |
| 12 × 96  | 12 x 96   |        |        |                   | _       | 2        | 0                  |
| 13 × 22  | 12 × 21   | ~      | 2      |                   |         |          | 0.11               |
| 14 x 25  | 15 x 24   |        | 7      |                   |         |          | 2.5                |
|          |           |        |        |                   |         | <b>†</b> |                    |

TABLE A-5 (Cont'd)

| Required | Modular   |          | n <sub>N</sub> | Number of Modules | les     |           | Percent Difference |
|----------|-----------|----------|----------------|-------------------|---------|-----------|--------------------|
| Size     | Size      | 6 × 12   | 6 x 15         | 12 x 12           | 12 x 24 | 12 x 36   | In Area            |
| 17 × 17  | 18 x 15   |          | 8              |                   |         |           | 6.9                |
| 17 x 33  | 18 x 30   |          | 9              |                   |         |           | 3.7                |
| 17 x 96  | · 18 × 96 | <b>∞</b> |                |                   | ~       | 2         | 6.5                |
| 18 x 18  | 18 × 15   |          | e e            |                   |         |           | 16.6               |
| 18 x 20  | 18 x 24   | 7        |                | , . <u>.</u>      |         |           | 20.0               |
| 18 x 22  | 18 x 24   | 2        |                |                   |         |           | 9.1                |
| 18 × 25  | 18 x 24   | 2        |                |                   | _       |           | 4.0                |
| 18 × 30  | 18 x 30   |          | ç              |                   |         |           | 0                  |
| 18 x 32  | 18 × 30   |          | 9              |                   |         |           | 6.3                |
| 18 x 35  | 18 x 36   | ٤        |                |                   |         | -         | 0                  |
| 18 x 39  | 18 × 39   | 2        | ٣              |                   |         |           | 0                  |
| 18 x 40  | 18 × 42   | 4        | 9              |                   |         |           | 5.0                |
| 18 × 40  | 18 × 48   | #        |                |                   |         |           | 0                  |
| 18 x 52  | 18 x 54   | 2        | 9              |                   |         |           | 3.8                |
| 18 x 56  | 18 x 57   |          | 6              |                   |         |           | 1.9                |
| 18 x 58  | 18 × 60   | 'n       |                |                   |         | , <b></b> | 3.4                |
| 18 x 60  | 18 x 60   | ۷        |                |                   | -       | ~         | 0                  |

TABLE A-7 (Cont. C)

| Sequired                                                                              | Modujar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | Nav                                   | Number of Modules                  | 6.5                                |                | Percent Difference |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------|------------------------------------|------------------------------------|----------------|--------------------|
| Size                                                                                  | Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - x 12                                 | A y 15                                | 12 x 32                            | 12 x 2±                            | 12 x 36        | In Area            |
| 29 × 81                                                                               | 18 7 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ın                                     |                                       |                                    | p                                  | ,.             | 3.2                |
| <b>C</b> D 2: (1)                                                                     | SS H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ırı                                    |                                       | , pag. <sub>g</sub> pag.           | , 4 <b>4</b>                       | p              | ۍ<br>غ             |
| en<br>En<br>En<br>En                                                                  | 20<br>X<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ν.                                     |                                       | - 13.44 amenie - P                 | वे स्वयन्त्रिको अञ्चलको            | C4             | U                  |
| # # # # # # # # # # # # # # # # # # #                                                 | /1<br>//<br>//<br>//<br>//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | f 3                                    |                                       |                                    | ĊI                                 | F              | Ó                  |
| Ch<br>M<br>U)                                                                         | Sec. H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | i/s                                    | <b>V</b> :                            |                                    | 1-4                                |                | ,                  |
| is a si                                                                               | 97<br>84<br>97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>V</u> i                             |                                       | res tu s.                          | ,<br>,                             | ťΨ             | Ġ                  |
| 7<br>(7)<br>(7)<br>(8)<br>(9)                                                         | C)<br>CH<br>rd<br>rd<br>W)<br>rr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ç                                      | سبني همدود                            | a delay t ar-suo es                | ∵ onean                            |                | ς,                 |
| N SI                                                                                  | REAL HOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1' j                                   | ****                                  | nings 4 a dears in                 | i e 1480-a e ba-i                  | n              | 0                  |
| Ci<br>M<br>Ci<br>Ci<br>Ci<br>Ci<br>Ci<br>Ci<br>Ci<br>Ci<br>Ci<br>Ci<br>Ci<br>Ci<br>Ci | C<br>III<br>III<br>III<br>Pri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <del></del> ( <del>) * 11***</del>     | 4                                     | ##### +#• € ##                     | <del>d-U</del> <del>G</del> -dega- | di da salaya k | ė,<br>,,           |
| C) C) K VC C) H PROCES                                                                | f i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (°)                                    | V.                                    | est, per eng                       | <del></del>                        |                | e io               |
| EC # 22                                                                               | y)<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P)                                     |                                       | ao i real ér                       | <del></del>                        | <b>松松 杯 和</b>  | i j                |
| M<br>C1                                                                               | SA H 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | स्थाब हा ह<br>स्                       | y                                     | a <del>a sardanja à</del>          |                                    |                | # O                |
| A Ci                                                                                  | y.<br>A.<br>34<br>24<br>04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ************************************** | ₩₩₩################################## | <b>&amp;</b> ja <b>&amp;</b> i a • | m filotel                          |                | us<br>a            |
| C.<br>G.<br>H.<br>C.                                                                  | J.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ! .                                    | if is manual.                         | •4 s po#8 ∗d ú p                   | ** 43 PM                           |                | Č4                 |
| en e                                              | 74<br>1 ,<br>30<br>4<br>174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        | ** ** * ** *                          | 4 - 200                            | ta, m                              |                | Ċ.                 |
| 4                                                                                     | entre | <del>-7</del> 9#€                      | #4 <b>6</b> -2 41                     | . S                                | <del>g. 4</del> 78 <b>5</b> 44 F   |                | ,-                 |
|                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                       |                                    |                                    |                |                    |

COLORGO KING BILLIE

| 3ecraired                             | THE COLD     |                      | Spm3er              | r of Modules        |                                    |           | Fercent Vifference |
|---------------------------------------|--------------|----------------------|---------------------|---------------------|------------------------------------|-----------|--------------------|
| • • • • • • • • • • • • • • • • • • • | Sire         | ₹ x 12               | ST X Q              | fa<br>rr<br>M<br>tr | 12 x 21                            | 12 x 36   | in Area            |
| 36 x a5                               | 3€ × a€      |                      |                     | r-cmag              |                                    | F∀        | Ç                  |
| g;<br>म<br>H<br>म<br>ए।               | 道・ドラに        | eris ace             | vinite© a           | r 4                 |                                    | ĻĄ        | Ġ.                 |
| di<br>H<br>A                          | A STATE OF   | <del>  ZEG   1</del> | <del></del>         | ( 4                 |                                    | a         | c                  |
| \$5 ¥ ₹2                              | ä<br>n<br>e, |                      | <del>MINERY F</del> | <b></b>             | ey                                 | đ         | ©                  |
| ig x yr                               | A STATE      | <del>ci. orta</del>  | ų <u>c</u>          |                     | . Pr <u>*********</u><br><b>PT</b> | * 454 646 | 2.5                |
| 3,6 × 3,6                             | ž<br>H<br>Š  |                      |                     | n                   |                                    | (° )      | O                  |
| es H                                  | 36 × 51      |                      | ₩.                  |                     |                                    | e n       | Ø.                 |
| 35 H SC                               | JA X Si      | řΊ                   | æ                   |                     | M                                  | fr)       | 1.2                |
| A SE                                  | I.<br>H      |                      | -                   |                     | <b>1</b> 6                         | М         | o                  |
| Či<br>(ři<br>M<br>Ven                 | 36 × 9€      |                      | E .                 |                     | e)                                 | pr)       | <b>5</b> -         |
| y.<br>H                               | 36 H AC      |                      |                     |                     | vo                                 | m.        | Ę                  |
|                                       |              |                      |                     |                     | T                                  |           |                    |

Table A-6. Perimeter to Area Ratio Comparison

|                 |                 |                   | Ratio            |                               |
|-----------------|-----------------|-------------------|------------------|-------------------------------|
| Item            | Stack<br>Number | Standard<br>Stack | Modular<br>Stack | Difference                    |
| 1/4 Ton Truck   | 1               | 0,211             | 0.333            | 0.122                         |
|                 | 2               | 0.583             | 0.583            | 0.000                         |
|                 | 3               | 0.333             | (),333           | 0.000                         |
| 1/4 Ton Trailer | 1               | 0.214             | 0,262            | 0.048                         |
|                 | 2               | 0,214             | 0.262            | 0,048                         |
| 3/4 Ton Truck   |                 | 0,250<br>0,204    | 0,250<br>0,278   | (1,119)<br>(1,119)<br>(1,1)74 |
|                 | 2               | 0,264             | 0.307            | 0.043                         |
| İ               | 3               | 0,333             | 0,250            | 0,053                         |
|                 | 4               | 0,217             | 0.269            | 0.052                         |
| 3/4 Ton Trefler | 1               | 0,222             | 0,222            | (),()()                       |
|                 | 2               | 0,333             | 0,33}            | 0,000                         |
|                 | 3               | 0.229             | 0,348            | 0,119                         |
|                 | 4               | 0.229             | 0,345            | 0,119                         |
| M274 Mech 15(1e | 1               | 0,166             | <b>5,25</b> 0    | (),()%[4                      |
|                 | 2               | 0,166             | 0,250            | 0,084                         |
|                 | 3               | 0,313             | 0,500            | 0,167                         |
|                 | ú               | 0,335             | 0,500            | 0.167                         |

Table A-6 Cont'd)

| Item            | Stack<br>Number | Ratio             |                  |            |  |
|-----------------|-----------------|-------------------|------------------|------------|--|
|                 |                 | Standard<br>Stack | Modular<br>Stack | Difference |  |
| 105mm Howitzer  | 1               | 0.167             | 0.315            | 0.148      |  |
|                 | 2               | 0.167             | 0.315            | 0.148      |  |
| 2 1/2 Ton Truck | 1               | 0.250             | 0.250            | 0.000      |  |
|                 | 2               | 0.333             | 0.333            | 0.600      |  |
|                 | 3               | 0.159             | 0,265            | 0.076      |  |
|                 | 4               | 0.189             | 0.265            | 0.076      |  |
|                 | 5               | 0.233             | 0 <b>.3</b> 00   | 0.06.7     |  |
|                 | 6               | 0.233             | 0.300            | 0.067      |  |
|                 | 7               | 0.222             | 0.222            | 0.000      |  |
|                 | 8               | 0.278             | 0.389            | 0.111      |  |
|                 | 9               | 1.278             | 0.389            | 0.111      |  |
|                 | 10 - 13         | 0.250             | 0.250            | 0.000      |  |

| UNCLASSIFIED                                                            |                                                           |                                    |                              |  |                 |
|-------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------|------------------------------|--|-----------------|
| Security Classification  DOCUMENT CONT                                  | DAL DATA DE                                               | <u> </u>                           |                              |  |                 |
| (Security classification of title, body of "street and indexing a       |                                                           |                                    | merall cancel to classified) |  |                 |
| 1. ORIGINATING ACTIVITY (Compense author)                               |                                                           | 20. REPORT SECURITY CLASSIFICATION |                              |  |                 |
|                                                                         | UNCLASSIFIED                                              |                                    |                              |  |                 |
| U. S. Army Natick Laboratories<br>Natick, Massachusetts 01760           |                                                           | Sb. GROUP                          |                              |  |                 |
|                                                                         |                                                           |                                    |                              |  | 3. REPORT TITLE |
|                                                                         |                                                           |                                    | - D-14mam.                   |  |                 |
| Modular Honeycomb Concept for Prepa                                     | ration of L                                               | oads 10                            | r Delivery                   |  |                 |
| by Afrdrop                                                              |                                                           |                                    |                              |  |                 |
| 4. DESCRIPTIVE NOTES (Type of report and inclusive dates)               |                                                           |                                    | <del></del>                  |  |                 |
|                                                                         |                                                           |                                    |                              |  |                 |
| S. AUTHOR(S) (First name, middle initial, lest name)                    | ····                                                      |                                    |                              |  |                 |
| James F. Falcone                                                        |                                                           |                                    |                              |  |                 |
| Sames r. raicone                                                        |                                                           |                                    |                              |  |                 |
|                                                                         |                                                           |                                    |                              |  |                 |
| 6. REPORT DATE                                                          | 74. TOTAL NO. OF                                          | PAGES                              | 75. NO. OF REFS              |  |                 |
| / March 1969                                                            | 31                                                        |                                    |                              |  |                 |
| M. CONTRACT OR GRANT NO                                                 | Se. ORIGINATOR'S                                          | REPORT NUME                        | ER(\$)                       |  |                 |
|                                                                         |                                                           |                                    |                              |  |                 |
| A PROJECT NO. 1F162203D195                                              | 69-63-AD                                                  |                                    |                              |  |                 |
| 22 20220 35 273                                                         | L                                                         |                                    |                              |  |                 |
| Task 08                                                                 | Sh. OTHER REPORT HO(S) (Any other numbers that may be see |                                    |                              |  |                 |
|                                                                         | 1                                                         |                                    |                              |  |                 |
| 4                                                                       | <u> </u>                                                  |                                    |                              |  |                 |
| 18. DISTRIBUTION STATEMENT                                              |                                                           |                                    |                              |  |                 |
| This document has been approved for                                     | r public rel                                              | ease an                            | d sale; its                  |  |                 |
| distribution is unlimited.                                              |                                                           |                                    |                              |  |                 |
|                                                                         | T                                                         | ·                                  |                              |  |                 |
| 11- SUPPLEMENTARY NOTES                                                 | 12. SPONSORING M                                          |                                    |                              |  |                 |
|                                                                         | US Army Natick Laboratories                               |                                    |                              |  |                 |
|                                                                         | Natick Has                                                | sachuse                            | tts 01760                    |  |                 |
| 13. ABSTRACY                                                            |                                                           |                                    |                              |  |                 |
|                                                                         |                                                           |                                    |                              |  |                 |
| 0                                                                       |                                                           |                                    |                              |  |                 |
| Current studies aimed at simpl                                          |                                                           |                                    |                              |  |                 |
| loads for delivery by airdrop have                                      |                                                           |                                    |                              |  |                 |
| simplified method of preparing the                                      |                                                           |                                    |                              |  |                 |
| This concept employs a small number modules which can be used as "build | r ox standal                                              | 8126                               | noneycomb                    |  |                 |
|                                                                         |                                                           |                                    |                              |  |                 |
| different sized stacks employed in                                      |                                                           |                                    |                              |  |                 |
| and limited testing indicate that i standard size modules of honeycomb  |                                                           |                                    |                              |  |                 |
|                                                                         | to rig prac                                               | cically                            | all allulop                  |  |                 |
| loads. ( V                                                              |                                                           |                                    |                              |  |                 |
|                                                                         |                                                           |                                    |                              |  |                 |
|                                                                         |                                                           |                                    |                              |  |                 |
| i e                                                                     |                                                           |                                    |                              |  |                 |
|                                                                         |                                                           |                                    |                              |  |                 |
| 1                                                                       |                                                           |                                    |                              |  |                 |
|                                                                         |                                                           |                                    |                              |  |                 |
|                                                                         |                                                           |                                    | !                            |  |                 |
|                                                                         |                                                           |                                    |                              |  |                 |
| 1                                                                       |                                                           |                                    |                              |  |                 |

DD . TORM .. 1473 PEPLACES DO PORM 1475 . 1 JAN 44, WHICH IS

UNCLASSIFIED

Security Classification

UNCLASSIFIED

| 14                 | KEY WORDS | LIN      | LINKA |      | K B | LINK |    |
|--------------------|-----------|----------|-------|------|-----|------|----|
|                    | ner wonds | HOLE     | wr    | ROLE | WT  | ROLE | ₩T |
|                    |           |          |       |      |     |      |    |
| •                  |           | 8        |       | 8    |     |      |    |
| esign              |           | ''       |       | ,,   |     |      |    |
| Modular structures |           | 9        | 1     | 2    |     |      |    |
|                    |           | 9        |       | 1    |     |      |    |
| Paper Honeycomb    |           |          |       | 1    |     |      |    |
| dir drup operation | n s       | 4        |       | 4    |     |      |    |
|                    |           |          |       | 8    |     |      |    |
| Construction       |           |          | •     | ı °  |     |      |    |
| Stacking           |           |          | ł     | 8    |     |      |    |
|                    |           |          |       | ļ ,  |     |      |    |
| Honeycomb structu  | ires      |          |       | 1    |     |      |    |
| Size separation    |           | 9        |       | 8    |     |      |    |
| •                  |           |          | ţ     |      |     |      |    |
|                    |           |          | 1     | 1    |     |      |    |
|                    |           |          |       |      |     |      |    |
|                    |           |          |       |      |     |      |    |
|                    |           |          |       |      |     |      |    |
|                    |           |          |       |      |     |      |    |
|                    |           | 1        | i     | 1    |     |      |    |
|                    |           |          |       | 1    |     |      |    |
|                    |           |          |       |      | }   |      |    |
|                    |           |          |       |      |     |      |    |
|                    |           |          |       | 1    |     |      |    |
|                    |           | ļ        |       |      | ļ   | ł    |    |
|                    |           | į        |       |      |     |      |    |
|                    |           |          |       |      |     |      |    |
|                    |           |          |       |      |     |      |    |
|                    |           | <b>,</b> |       |      |     |      |    |
|                    |           | 1        |       |      |     |      |    |
|                    |           |          |       |      |     | 1    |    |
|                    |           | į        |       |      | 1   |      | 1  |
|                    |           |          |       |      |     |      | }  |
|                    |           |          |       |      |     |      |    |
|                    |           |          |       |      |     |      |    |
|                    |           |          |       |      | }   |      |    |
|                    |           |          |       |      |     |      |    |
|                    |           |          |       |      |     |      |    |
|                    |           |          |       |      |     |      |    |
|                    |           |          |       |      |     |      |    |
|                    |           |          |       | 1    |     | 1    |    |
|                    |           |          |       |      |     | ]    |    |
|                    |           | i        |       | ,    | 1   | ì    | I  |

UNCLASSIFIED

Security Classification