ICC204 - Aprendizagem de Máquina e Mineração de Dados

Classificação

(parte 2/3)

Prof. Rafael Giusti rgiusti@icomp.ufam.edu.br

Agenda

- Parte 1/3
 - Definições
 - Teoria das probabilidades
 - Aprendizado Bayesiano e modelos probabilísticos
- Parte 2/3
 - Modelos baseados em árvores
 - Modelos baseados em regras
- Parte 3/3
 - Classificação preguiçosa: k-NN
 - Máquina de vetores de suporte

Agenda

- Definições
- Teoria das probabilidades
- Aprendizado Bayesiano e modelos probabilísticos
- Modelos baseados em árvores
- Modelos baseados em regras
- Classificação preguiçosa: k-NN
- Máquina de vetores de suporte

- Uma árvore de decisão é um modelo no qual o conhecimento é representado através de uma árvore n-ária
- Cada nó **interno** da árvore faz uma pergunta sobre um atributo
- Os nós folha estabelecem decisões sobre a qual classe um exemplo pertence

 Árvore de decisão para um pequeno conjunto de bandeiras

 Árvore de decisão de apenas dois níveis para o conjunto "jogar-tênis"

Observe que esta é apenas uma das possíveis árvores para o conjunto. Ela não é necessariamente uma boa árvore e não é a que iremos gerar seguindo o algoritmo.

- A árvore de decisão é uma representação simbólica do conhecimento
 - A palavra "simbólica" em expressões como representação simbólica ou modelo simbólico indica que o conhecimento é representado de forma inteligível

Simbólico vs. não simbólico

Input

outlook

https://medium.com/datadriveninvestor/symbolic-ai-v-s-non-symbolic-ai-and-everything-in-between-ffcc2b03bc2e

Pooling 1

Convolutional

layer 2

Pooling 2

Convolutional

layer 1

Características de árvores

- Podem ser utilizadas para atributos numéricos e categóricos
- As divisões podem ser binárias ou n-árias
- Admitem valores ausentes
 - Mas precisamos tratá-los
 - O valor ausente pode ser um valor próprio ou podemos empregar uma estratégia de substituição

Características de árvores

 As decisões não se restringem a comparações de um atributo contra um valor ou intervalo

Uma árvore pode promover comparações entre atributos

Características de árvores

 As decisões não se restringem a comparações de um atributo contra um valor ou intervalo

A árvore pode utilizar funções sobre os atributos

FT-Tree: os nós podem ser regressores logísticos sobre os atributos

Particionamento

- Vamos tratar de árvores que envolvem apenas um atributo por nó interno
 - Se ele for categórico, a árvore seleciona subconjuntos de exemplos que possuem aquele valor
 - Se ele for numérico, a árvore particiona o espaço fazendo cortes longitudinais sobre algum eixo

 Exemplo de uma árvore que divide os exemplos de acordo com o atributo temperatura

original

D3 sim
D4 sim
D5 sim
D7 sim
D9 sim
D10 sim
D11 sim
D12 sim
D13 sim
D1 não
D2 não
D6 não
D8 não
D14 não

O espaço original possui, no conjunto de treinamento, 14 exemplos; 9 da classe "sim" e 6 da classe "não".

Particionando esse espaço de acordo com o atributo "temperatura", obtemos três sub-espaços. No conjunto de treinamento, esse sub-espaço possui os exemplos ilustrados nas caixas sob a árvore.

• Particionando o espaço temperatura=quente...

Note que aqui chegamos a uma separação exata das classes; poderíamos associar esses dois sub-espaços a nós folhas

Atribuindo os sub-espaços a nós folhas

• Particionando o espaço temperatura=frio...

Atribuindo uma classe para o sub-espaço

• E assim poderíamos seguir dividindo

Ou parar onde estamos

Particionamento (atributo numérico)

Possível árvore: nenhuma decisão; todos os exemplos são classificados como pertencentes à classe majoritária (b)

Possível árvore: um único nó intermediário promovendo um único corte

Possível árvore: o particionamento anterior é refinado por um segundo corte

Como induzir árvores?

- Mesmo para espaços de atributos relativamente pequenos, existe um grande número de árvores no espaço de modelos
 - Por exemplo, para a base tenis, só existem duas árvores com apenas um nó folha...
 - ...mas 16 árvores com apenas um nó interno

Um algoritmo de divisão e conquista

Algoritmo Induz_Árvore(S):

T ← árvore vazia

se todos os exemplos em S são de uma mesma classe c_j : faça a raiz de **T** ser um nó folha associado a c_j

senão:

 X_{best} — selecione o melhor atributo para particionar S faça a raiz de **T** ser um nó interno associado a X_{best} para cada valor x_i do atributo X_{best} :

Ss \leftarrow o sub-espaço de S no qual todos os exemplos têm o valor $X_{best} = x_i$

St ← Induz_Árvore(Ss)

insira **St** na árvore **T** com uma aresta da raiz para **St** associada à decisão $X_{best} = x_i$

retorne T

Um algoritmo de divisão e conquista

- O algoritmo Induz_Árvore é capaz de encontrar uma árvore que generaliza bem o problema
 - Condições
 - Os exemplos do conjunto de treinamento devem representar bem o espaço de atributos S
 - A função de particionamento deve fazer uma boa escolha do melhor atributo X_{best}

- Primeiro, observe que o erro empírico das árvores induzidas por Induz_Árvore será sempre zero
 - Então, todas as hipóteses encontradas por esse algoritmo serão igualmente boas no conjunto de treinamento
 - Pelo princípio da navalha de Occam, se tivermos várias explicações igualmente boas para alguma coisa, em geral preferimos a mais simples

- Queremos, então, árvores com a seguinte característica
 - Altura baixa
 - Folhas homogêneas
- Essa árvore pode ser obtida se fizermos uma decisão gulosa sobre o melhor atributo para a raiz
 - Selecione sempre o atributo que produz os subespaços mais homogêneos em cada particionamento

 O melhor particionamento pode ser encontrado minimizando a entropia e maximizando o ganho de informação

- Entropia: conceito definido por Claude Shannon, "pai" da teoria da informação
 - Um valor que reflete o grau de incerteza de uma variável aleatória

https://plus.maths.org/content/information-surprise

Entropia (termodinâmica)

• Conceito de "desordem" em sistemas físicos

Entropia (teoria da informação)

- No contexto de teoria da informação, entropia ou, mais especificamente, entropia de Shannon é
 - Uma medida da quantidade de informação média produzida por uma fonte aleatória
 - Qual fonte produz mais informação média
 - Um dado de 6 lados ou uma moeda honesta?
 - Um dado viciado ou uma moeda honesta
 - Depende do quão viciado o dado é

- Quanto mais informação uma fonte produz, mais informação é necessária para codificar o seu resultado como uma mensagem
 - O tamanho da mensagem é medido em bits
 - Uma moeda pode ser codificada com mensagens de apenas 1 bit
 - Cara "0"
 - Coroa → "1"

- O resultado de um dado de 4 faces requer pelo menos 2 bits
 - Exemplo de codificação
 - Face 1 → "00"
 - Face 2 → "01"
 - Face 3 → "10"
 - Face 4 → "11"

Mas e se a moeda fosse viciada?

$$-p(H) = 1, p(T) = 0$$

- Precisaríamos codificar alguma coisa?
- E se o dado fosse viciado?

$$-p(1) = \frac{1}{2}$$
, $p(2) = \frac{1}{4}$, $p(3) = \frac{1}{4}$, $p(4) = 0$

 Poderíamos fazer uma codificação mais compacta?

- A informação de que o dado é viciado pode ser utilizada para definir uma codificação que, na média, utiliza menos bits
 - Por exemplo, não precisamos codificar o resultado
 "4" porque sabemos que ele nunca irá ocorrer
 - Além disso, o resultado "1" é mais frequente
 - Podemos usar um código que emprega cadeias menores para os símbolos mais frequentes

- Exemplo de codificação para um dado de 4 lados viciado (com probabilidades ½, ¼, ¼ e 0)
 - Face 1 → "0"
 - Face 2 → "10"
 - Face 3 → "11"
- Embora o código das faces 2 e 3 seja mais longo, eles são menos frequentes, portanto na média as mensagens precisarão de menos que 2 bits por evento

 Qual o tamanho médio das mensagens que codificam o resultado do lançamento de um dado viciado de 4 faces com probabilidades (½, ¼, ¼, 0)?

$$\frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{4} \cdot 2 = 1,5$$
 bits

A face "4" existe, mas não precisa se representada, pois nunca será o resultado do dado – sabemos que essa mensagem nunca será transmitida

Entropia de Shannon

- Quanto menor a entropia de uma variável aleatória, menor precisa ser o tamanho médio da sequência que codifica seus eventos
 - Minimum description length (MDL)
- A entropia de Shannon calcula o **limite inferior** em bits desse tamanho
 - Pode ser, portanto, um valor fracionado
 - Uma unidade alternativa é o *Shannon*

- Seja uma variável aleatória X que tem os eventos associados às possíveis probabilidades
 - E_1 , com probabilidade $p(X = E_1) = p_1$
 - E_2 , com probabilidade $p(X = E_2) = p_2$

 - E_n , com probabilidade $p(X = E_n) = p_n$

• Então a entropia de X é calculada como a esperança da informação própria de X

$$H(X) = \operatorname{E}[I(X)]$$

$$H(X) = \inf(p_1, p_2, \dots, p_n)$$

$$= -p_1 \log p_1 - p_2 \log p_2 - \dots - p_n \log p_n$$

- Exemplo: entropia da moeda honesta
 - Seja X uma V.A. que representa o resultado de uma moeda honesta com p(H) = 0.5 e p(T) = 0.5

info
$$\left(\frac{1}{2}, \frac{1}{2}\right) = -\frac{1}{2}\log\left(\frac{1}{2}\right) - -\frac{1}{2}\log\left(\frac{1}{2}\right)$$

$$=-\log\left(\frac{1}{2}\right)=1$$

- Exemplo: entropia do dado viciado
 - Seja X uma V.A. que representa o resultado do nosso dado viciado com $p(1) = \frac{1}{2}$, $p(2) = p(3) = \frac{1}{4}$ e p(4) = 0

info
$$\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}, 0\right) = -\frac{1}{2}\log\left(\frac{1}{2}\right) - 2 \cdot \frac{1}{4}\log\left(\frac{1}{4}\right) - 0\log 0$$

Atenção: log0 não é definido, mas

$$\lim_{x \to 0!} x \cdot \log(x) = 0$$

- Exemplo: entropia do dado viciado
 - Seja X uma V.A. que representa o resultado do nosso dado viciado com $p(1) = \frac{1}{2}$, $p(2) = p(3) = \frac{1}{4}$ e p(4) = 0

info
$$\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}, 0\right) = -\frac{1}{2}\log\left(\frac{1}{2}\right) - 2 \cdot \frac{1}{4}\log\left(\frac{1}{4}\right) - 0\log 0$$

$$= \frac{1}{2} + 2 \cdot \frac{1}{4} \cdot 2 + 0 = 1,5$$

- A entropia também pode ser vista como uma medida de incerteza ou desordem
 - No conjunto original da classe tênis, temos 9
 exemplos da classe positiva e 5 da classe negativa

sim sim sim sim sim sim sim sim sim não não não não não

$$p(\sin) = \frac{9}{14}$$

$$p(\tilde{\text{nao}}) = \frac{5}{14}$$

info([9, 5]) =
$$\frac{9}{14} \log \left(\frac{9}{14} \right) - \frac{5}{14} \log \left(\frac{5}{14} \right) = 0.94$$

- Se o espaço de classe possuísse apenas exemplos de uma classe, ele seria menos incerto ou desorganizado
 - Teríamos a certeza de que todos os exemplos nesse espaço pertencem a uma classe

sim sim sim sim sim sim sim sim sim

$$p(\sin) = 1$$

$$p(\tilde{\text{nao}}) = 0$$

$$\inf([9,0]) = -\log 1 - 0 \cdot \log 0 = 0$$

 Dizer que um espaço desorganizado possui maior entropia equivale a dizer que selecionar aleatoriamente uma classe para exemplos desse espaço gera maior incerteza

mais desorganizado mais incerto

sim sim sim sim sim sim

mais organizado mais certo

• Dizer que um espaço desorganizado possui maior entropia equivale a dizer que selecionar aleatoriamente uma classe para exemplos desse espaço gera maior incerteza

```
iris setosa versicoloriris setosa versicoloriris setosa versicolor
```

```
iris setosa
iris setosa
iris versicolor
```

```
iris setosa
iris setosa
```

mais desorganizado mais incerto entropia elevada mais organizado mais certo entropia baixa

Entropia de espaço de atributos

 Se o classificador nos "conduz" de um espaço altamente incerto/desordenado para um espaço mais ordenado, então ganhamos informação

Ganho de informação

- Diferença entre informação/desordem do espaço original e a informação/desordem média dos subespaços obtidos pelo particionamento
 - A média dos sub-espaços deve ser ponderada pela probabilidade de encontrarmos um exemplo nele
 - Quanto mais homogêneos são os sub-espaços gerados pelo particionamento, maior é o ganho de informação

Ganho de Informação

- Como encontrar o atributo X_{best} ?
 - Selecione aquele que nos dá o maior ganho de informação!

Árvore para jogar tênis: informação original

dia	aparência	temperatura	umidade	vento	jogar
D1	ensolarado	quente	alta	fraco	não
D2	ensolarado	quente	alta	forte	não
D3	nublado	quente	alta	fraco	sim
D4	chuvoso	moderado	alta	fraco	sim
D5	chuvoso	frio	baixa	fraco	sim
D6	chuvoso	frio	baixa	forte	não
D7	nublado	frio	baixa	forte	sim
D8	ensolarado	moderado	alta	fraco	não
D9	ensolarado	frio	baixa	fraco	sim
D10	chuvoso	moderado	baixa	fraco	sim
D11	ensolarado	moderado	baixa	forte	sim
D12	nublado	moderado	alta	forte	sim
D13	nublado	quente	baixa	fraco	sim
D14	chuvoso	moderado	alta	forte	não

não: 5 exemplos

sim: 9 exemplos

$$\inf([9, 5]) = \frac{9}{14} \log\left(\frac{9}{14}\right) - \frac{5}{14} \log\left(\frac{5}{14}\right) = 0.94$$

Testando aparência como atributo da raiz

dia	aparência	jogar
D1	ensolarado	não
D2	ensolarado	não
D3	nublado	sim
D4	chuvoso	sim
D5	chuvoso	sim
D6	chuvoso	não
D7	nublado	sim
D8	ensolarado	não
D9	ensolarado	sim
D10	chuvoso	sim
D11	ensolarado	sim
D12	nublado	sim
D13	nublado	sim
D14	chuvoso	não

info ([2, 3]) =
$$-\frac{2}{5} \log \left(\frac{2}{5}\right) - \frac{3}{5} \log \left(\frac{3}{5}\right) = 0,97$$

$$\inf(([4,0]) = -\log 1 - 0 \cdot \log 0 = 0$$

$$\inf ([3, 2]) = \inf ([2, 3]) = 0,97$$

Testando aparência como atributo da raiz

• Informação média ponderada de aparência:

$$\inf \left([2,3], [4,0], [3,2] \right) = \frac{5}{14} \cdot \inf \left([2,3] \right) + \frac{4}{14} \cdot \inf \left([4,0] \right) + \frac{5}{14} \cdot \inf \left([3,2] \right) = 0,69$$

Ganho do atributo aparência:

$$GI(aparênca) = info([9, 5]) - info([2, 3], [4, 0], [3, 2])$$

= $0, 94 - 0, 69 = 0, 25$

Testando temperatura como atributo da raiz

dia	temperatura	jogar
D1	quente	não
D2	quente	não
D3	quente	sim
D4	moderado	sim
D5	frio	sim
D6	frio	não
D7	frio	sim
D8	moderado	não
D9	frio	sim
D10	moderado	sim
D11	moderado	sim
D12	moderado	sim
D13	quente	sim
D14	moderado	não

info ([2, 2]) =
$$-\frac{2}{4} \log \left(\frac{2}{4}\right) - \frac{2}{4} \log \left(\frac{2}{4}\right) = 1$$

info ([4, 2]) =
$$-\frac{4}{6} \log \left(\frac{4}{6}\right) - \frac{2}{6} \log \left(\frac{2}{6}\right) = 0,92$$

info ([3, 1]) =
$$-\frac{3}{4}\log\left(\frac{3}{4}\right) - \frac{1}{4}\log\left(\frac{1}{4}\right) = 0,81$$

Testando temperatura como atributo da raiz

• Informação média ponderada de temperatura:

info ([2, 2], [4, 2], [3, 1]) =
$$\frac{4}{14}$$
 · info ([3, 2]) + $\frac{6}{14}$ · info ([4, 2]) + $\frac{4}{14}$ · info ([3, 1)) = 0, 91

Ganho do atributo temperatura:

$$GI(\text{temperatura}) = \inf([9, 5]) - \inf([2, 2], [4, 2], [3, 1])$$

= $0, 94 - 0, 91 = 0, 03$

Testando umidade como atributo da raiz

dia	umidade	jogar
D1	alta	não
D2	alta	não
D3	alta	sim
D4	alta	sim
D5	baixa	sim
D6	baixa	não
D7	baixa	sim
D8	alta	não
D9	baixa	sim
D10	baixa	sim
D11	baixa	sim
D12	alta	sim
D13	baixa	sim
D14	alta	não

info
$$([6,1]) = 0,59$$

info
$$([3, 4]) = 0,98$$

info
$$([6,1],[3,4]) = 0,78$$

$$ganho = 0,94 - 0,78 = 0,16$$

Testando vento como atributo da raiz

dia	vento	jogar
D1	fraco	não
D2	forte	não
D3	fraco	sim
D4	fraco	sim
D5	fraco	sim
D6	forte	não
D7	forte	sim
D8	fraco	não
D9	fraco	sim
D10	fraco	sim
D11	forte	sim
D12	forte	sim
D13	fraco	sim
D14	forte	não

info
$$([6,2]) = 0,81$$

info
$$([3,3]) = 1,00$$

info
$$([6, 2], [3, 3]) = 0,89$$

$$ganho = 0,94 - 0,89 = 0,05$$

Ganhos verificados para a raiz

• ganho(aparência) = 0,25 < melhor opção

- ganho(temperatura) = 0,03
- ganho(umidade) = 0.16
- ganho(vento) = 0.05

Continuando a dividir...

ganho(Temperatura) = 0,57 bits
ganho(Umidade) = 0,97 bits
ganho(Vento) = 0,02 bits
ganho(Aparência) = 0 (por quê?)

Árvore de decisão final

Problema do ganho de informação

- Atributos com muitos valores tendem a dar ganho de informação muito elevado, mas causam *overfitting*
- Caso extremo: identificador
 - O ganho de informação do identificador é máximo

info([0,1], [0,1], [1,0], [1,0], [1,0], ..., [0,1]) = 0

- Embora identificadores sejam um caso extremo, o mesmo problema pode ocorrer em menor grau com atributos válidos
- Uma forma de contornar esse problema é empregar razão de ganho
 - A razão de ganho relativiza o ganho de informação pela informação intrínseca do atributo

- A informação intrínseca do atributo é a quantidade de informação do atributo
 - Quanto informação é necessária para descrever o valor do atributo X_i ?
 - Exemplo: aparência

Ensolarado Nublado Chuvoso
 5 exemplos 4 exemplos 5 exemplos

 $IV(\text{aparência}) = \inf([5, 4, 5])$

- A razão de ganho é a razão entre o ganho de informação e a informação intrínseca do atributo
 - A razão de ganho não tem unidade

$$GR(\text{atributo}) = \frac{GI(\text{atributo})}{IV(\text{atributo})}$$

- Exemplo (id)
 - Ganho:
 - GI(id) = info([9, 5]) info(1, 1, 1, ..., 1]) = 0.94
 - Informação intrínseca:
 - IV(id) = info([1, 1, 1, ..., 1])= $14 \cdot \left[-\frac{1}{14} \log \left(\frac{1}{14} \right) \right] = 3.8$
 - Razão de ganho
 - $GR(id) = \frac{0.94 \text{ bits}}{3.80 \text{ bits}} = 0.25$

	Aparência			Temperatura	
Informação	info([2,3], [4,0], [3,2])	0,69	Informação	info([2,2], [4,2], [3,1])	0,91
Ganho	0,94 - 0,69	0,25	Ganho	0,94 - 0,91	0,03
Info. intrínseca	info([5, 4, 5])	1,58	Info. intrínseca	info([4, 6, 4])	1,56
Razão de ganho	0,25 / 1,57	0,16	Razão de ganho	0,03 / 1,56	0,02
	Temperatura			Vento	
Informação	Temperatura info([6,1], [3,4])	0,78	Informação	Vento info([6,2], [3,3])	089
Informação Ganho	-	0,78 0,16	Informação Ganho		089
,	info([6,1], [3,4])	,	,	info([6,2], [3,3])	

dia	aparencia	temperatura	umidade	vento	jogar
D1	ensolarado	23	58	fraco	nao
D2	ensolarado	24	55	forte	nao
D3	nublado	19	66	fraco	sim
D4	chuvoso	15.1	72	fraco	sim
D5	chuvoso	13.5	65	fraco	sim
D6	chuvoso	9	60	forte	nao
D7	nublado	14.2	45	forte	sim
D8	ensolarado	18	63	fraco	nao
D9	ensolarado	13.2	38	fraco	sim
D10	chuvoso	15.5	50	fraco	sim
D11	ensolarado	15	36	forte	sim
D12	nublado	16.5	68	forte	sim
D13	nublado	20	35	fraco	sim
D14	chuvoso	13	70	forte	nao

- Podemos lidar com atributos numéricos em árvore de duas maneiras
 - Discretizá-los em um certo número de bins. Por exemplo, discretizando o atributo temperatura em cinco bins uniformemente distribuídos...
 - $bin1 = (-\infty; 13,85]$
 - bin2 = (13,85;15,3]
 - bin3 = (15,3; 18,5]
 - $bin4 = (18,5; \infty)$

dia	aparencia	temp_discret	umidade	vento	jogar
D1	ensolarado	temp_4	58	fraco	nao
D2	ensolarado	temp_4	55	forte	nao
D3	nublado	temp_4	66	fraco	sim
D4	chuvoso	temp_2	72	fraco	sim
D5	chuvoso	temp_1	65	fraco	sim
D6	chuvoso	temp_1	60	forte	nao
D7	nublado	temp_2	45	forte	sim
D8	ensolarado	temp_3	63	fraco	nao
D9	ensolarado	temp_1	38	fraco	sim
D10	chuvoso	temp_3	50	fraco	sim
D11	ensolarado	temp_2	36	forte	sim
D12	nublado	temp_3	68	forte	sim
D13	nublado	temp_4	35	fraco	sim
D14	chuvoso	temp_1	70	forte	nao

- Podemos lidar com atributos numéricos em árvore de duas maneiras
 - Estabelecer um ponto de corte $c_{atributo}$ e considerar o particionamento
 - Se = sub-espaço no qual todos os exemplos possuem valor $atributo <= c_{atributo}$
 - Sd = todos os exemplos possuem valor $<math>atributo > c_{atributo}$

dia	temperatura	jogar
D1	23	nao
D2	24	nao
D3	19	sim
D4	15.1	sim
D5	13.5	sim
D6	9	nao
D7	14.2	sim
D8	18	nao
D9	13.2	sim
D10	15.5	sim
D11	15	sim
D12	16.5	sim
D13	20	sim
D14	13	nao

$$\inf ([4,3]) = 0.98$$

$$\inf([5,2]) = 0.86$$

info
$$([4,3],[5,2]) = 0.92$$

$$IG(temp_{15}) = 0,94 - 0,92 = 0,02$$

$$IV(\text{temp}_{15}) = \inf([5, 7]) = 0.98$$

$$GR(\text{temp}_{15}) = \frac{0.02}{0.98} = 0.20$$

- Podemos proceder da seguinte forma:
 - Ordenamos os dados de acordo com o atributo que queremos testar
 - Verificamos os pontos onde há mudança de classe
 - Para cada potencial ponto de corte, calculamos o ganho de informação / a razão de ganho
 - Selecionamos o melhor como o ganho de informação máxima do atributo

Atributos numéricos

dia	temperatura	jogar
D6	9	nao
D14	13	nao
D 9	13.2	sim
D 5	13.5	sim
D 7	14.2	sim
D11	15	sim
D4	15.1	sim
D10	15.5	sim
D12	16.5	sim
D8	18	nao
D3	19	sim
D13	20	sim
D1	23	nao
D2	24	nao

Agenda

- Definições
- Teoria das probabilidades
- Aprendizado Bayesiano e modelos probabilísticos
- Modelos baseados em árvores
- Modelos baseados em regras
- Classificação preguiçosa: k-NN
- Máquina de vetores de suporte

Regra de conhecimento

- Modelo no qual o conhecimento é representado através de conjunções de condições
- São descritas como cláusulas de Horn
 - $p_1 \wedge p_2 \wedge p_3 \wedge ... \wedge p_n \rightarrow u$
 - p_i: condições ou premissas
 - u: fato

Regra de conhecimento

- A regra de conhecimento possui duas partes
 - Corpo (body) ou complexo: condições
 - Cabeça (head): classe associada ao exemplo

$$R: \underline{if} \text{ complexo} \text{ then } \underline{class} = C_v$$
 body ouB head ouH

Regra de conhecimento

- Um exemplo que é compatível com as condições da regra é coberto pelo corpo da regra
- Um exemplo que é compatível com a cabeça é coberto pela cabeça da regra
 - Se a cabeça da regra é compatível com a classe de um exemplo coberto, então ele **pode** ser corretamente classificado

Matriz de contingência

- Matriz de contingência é uma tabela para duas ou mais variáveis aleatórias independentes
 - Matriz de confusão é um caso particular de matriz de contingência
 - Aplica-se especificamente a algoritmos de aprendizado de máquina
 - Matrizes de contingência podem ser utilizadas para contabilizar cobertura e precisão de regras

Matriz de contingência

Matriz de contingência

- Existem quatro eventos
 - HB ou f_{HB}: cobertura do corpo e da cabeça
 - \overline{HB} ou $f_{H\overline{B}}$: cobertura da cabeça, mas não do corpo
 - \overline{HB} ou $f_{\overline{HB}}$: cobertura do corpo, mas não da cabeça
 - $\overline{+}$ \overline{HB} ou $f_{\overline{HB}}$: não cobertura do corpo, nem da cabeça

Zero-rule

- O modelo de regra mais simples é o R₀ (zero-rule)
 - Como cláusula de Horn:
 - $V \rightarrow u$
 - Como classificador
 - Um *baseline* que classifica todos os exemplos como pertencentes a uma mesma classe
 - − Qual seria o R₀ para o conjunto tennis?

Zero-rule

- Indução do R_o
 - Defina o corpo como vazio (cobre todos os exemplos)
 - Associe os exemplos à classe mais frequente c_{moda}

if TRUE then
$$CLASS = c_{moda}$$

Medidas de qualidade de regras (1)

• Precisão:

 Mede o grau de especificidade de uma regra para um problema

$$Pre(R) = \frac{f_{hb}}{f_b}$$

- Acurácia:
 - Mede o desempenho geral de uma regra

$$Acc(R) = f_{hb} + f_{\overline{h}\overline{b}}$$

Regras a partir de árvores

- Podemos converter uma árvore em uma coleção de regras de conhecimento
 - Selecione um caminho da árvore e transforme em uma cláusula de Horn que implica na classe associada ao nó folha

ensolarado chuvoso
nublado
umidade vento
sim fraco forte
sim não sim não

Regras a partir de árvores

IF aparência = ensolarado
 AND umidade = baixa
 THEN class = sim

IF aparência = ensolarado
 AND umidade = alta
 THEN class = não

IF aparência = nublado
 THEN class = sim

IF aparência = chuvoso
 AND vento = fraco
 THEN class = sim

IF aparência = chuvoso AND umidade = forte THEN class = não

Regras a partir de árvores

Vantagem

- Conversão simples e direta
- Utiliza-se do conceito de ganho de informação para construir regras curtas

Problema

- Embora cada regra seja simples, o conjunto de regras é complexo
- Simplificação não é trivial

Construção direta de regras

- Algoritmo de cobertura/precisão
 - Dado um conjunto de exemplos
 - Para cada classe, encontre uma regra com precisão máxima: R_{c1} , R_{c2} , ..., R_{cM}
 - Selecione a regra R_{ci} com maior precisão
 - ullet Descarte os exemplos cobertos por R_{ci}
 - Repita até $Pre(R_{ci}) = 1$ ou não seja mais possível separar os exemplos

Exemplo: Lentes de contato

Age	Specta prescription	Astigmatism	Tear prod. rate	Lenses
Young	Муоре	No	Reduced	None
Young	Myope	No	Normal	Soft
Young	Myope	Yes	Reduced	None
Young	Myope	Yes	Normal	Hard
Young	Hypermetrope	No	Reduced	None
Young	Hypermetrope	No	Normal	Soft
Young	Hypermetrope	Yes	Reduced	None
Young	Hypermetrope	Yes	Normal	hard
Pre-presbyopic	Myope	No	Reduced	None
Pre-presbyopic	Myope	No	Normal	Soft
Pre-presbyopic	Myope	Yes	Reduced	None
Pre-presbyopic	Myope	Yes	Normal	Hard
Pre-presbyopic	Hypermetrope	No	Reduced	None
Pre-presbyopic	Hypermetrope	No	Normal	Soft
Pre-presbyopic	Hypermetrope	Yes	Reduced	None
Pre-presbyopic	Hypermetrope	Yes	Normal	None
Presbyopic	Myope	No	Reduced	None
Presbyopic	Myope	No	Normal	None
Presbyopic	Myope	Yes	Reduced	None
Presbyopic	Myope	Yes	Normal	Hard
Presbyopic	Hypermetrope	No	Reduced	None
Presbyopic	Hypermetrope	No	Normal	Soft
Presbyopic	Hypermetrope	Yes	Reduced	None
Presbyopic	Hypermetrope	Yes	Normal	None

Regra procurada

if ?
 then Lenses = hard

Age	Specta prescription	Astigmatism	Tear prod. rate	Lenses
Young	Муоре	No	Reduced	None
Young	Myope	No	Normal	Soft
Young	Myope	Yes	Reduced	None
Young	Myope	Yes	Normal	Hard
Young	Hypermetrope	No	Reduced	None
Young	Hypermetrope	No	Normal	Soft
Young	Hypermetrope	Yes	Reduced	None
Young	Hypermetrope	Yes	Normal	hard
Pre-presbyopic	Myope	No	Reduced	None
Pre-presbyopic	Myope	No	Normal	Soft
Pre-presbyopic	Myope	Yes	Reduced	None
Pre-presbyopic	Myope	Yes	Normal	Hard
Pre-presbyopic	Hypermetrope	No	Reduced	None
Pre-presbyopic	Hypermetrope	No	Normal	Soft
Pre-presbyopic	Hypermetrope	Yes	Reduced	None
Pre-presbyopic	Hypermetrope	Yes	Normal	None
Presbyopic	Myope	No	Reduced	None
Presbyopic	Myope	No	Normal	None
Presbyopic	Myope	Yes	Reduced	None
Presbyopic	Myope	Yes	Normal	Hard
Presbyopic	Hypermetrope	No	Reduced	None
Presbyopic	Hypermetrope	No	Normal	Soft
Presbyopic	Hypermetrope	Yes	Reduced	None
Presbyopic	Hypermetrope	Yes	Normal	None

Regra procurada if Age = ? then Lenses = hard

Age	Specta prescription	Astigmatism	Tear prod. rate	9	Lenses
Young	Муоре	No	Reduced		None
Young	Myope	No	Normal		Soft
Young	Myope	Yes	Reduced		None
Young	Myope	Yes	Normal		Hard
Young	Hypermetrope	No	Reduced		None
Young	Hypermetrope	No	Normal		Soft
Young	Hypermetrope	Yes	Reduced		None
Young	Hypermetrope	Yes	Normal		hard
Pre-presbyopic	Myope	No	Reduced		None
Pre-presbyopic	Valor do atribu	No.	Normal	Pre(R)	Soft
Pre-presbyopic	valui uu atiibu	110			None
Pre-presbyopic	Age = Young			2/8	Hard
Pre-presbyopic	Age = Pre-pre	sbyopic		1/8	None
Pre-presbyopic	H	<u> </u>		-	Soft
Pre-presbyopic	H Age = Presbyo			1/8	None
Pre-presbyopic	Hypermetrope	Yes	Normal		None
Presbyopic	Myope	No	Reduced		None
Presbyopic	Myope	No	Normal		None
Presbyopic	Myope	Yes	Reduced		None
Presbyopic	Myope	Yes	Normal		Hard
Presbyopic	Hypermetrope	No	Reduced		None
Presbyopic	Hypermetrope	No	Normal		Soft
Presbyopic	Hypermetrope	Yes	Reduced		None
Presbyopic	Hypermetrope	Yes	Normal		None

Exemplo: lentes de contato

• Regra procurada:

```
if Age = ?
  then Lenses = hard
```

Testes possíveis:

```
2/8
Age = Young
Age = Pre-presbyopic
                                           1/8
                                           1/8
Age = Presbyopic
Spectacle prescription = Myope
                                           3/12
Spectacle prescription = Hypermetrope
                                           1/12
Astigmatism = no
                                           0/12
Astigmatism = yes
                                           4/12
Tear production rate = Reduced
                                           0/12
Tear production rate = Normal
                                           4/12
```

Exemplo: lentes de contato

• Regra procurada:

```
if Age = ?
  then Lenses = hard
```

• Testes possíveis:

2/8
1/8
1/8
3/12
1/12
0/12
4/12
0/12
4/12

Regra procurada

if Astigmatism = yes
 and ?
 then Lenses = hard

Age	Specta prescription	Astigmatism	Tear prod. rate	Lenses
Young	Муоре	No	Reduced	None
Young	Myope	No	Normal	Soft
Young	Myope	Yes	Reduced	None
Young	Myope	Yes	Normal	Hard
Young	Hypermetrope	No	Reduced	None
Young	Hypermetrope	No	Normal	Soft
Young	Hypermetrope	Yes	Reduced	None
Young	Hypermetrope	Yes	Normal	hard
Pre-presbyopic	Myope	No	Reduced	None
Pre-presbyopic	Myope	No	Normal	Soft
Pre-presbyopic	Myope	Yes	Reduced	None
Pre-presbyopic	Myope	Yes	Normal	Hard
Pre-presbyopic	Hypermetrope	No	Reduced	None
Pre-presbyopic	Hypermetrope	No	Normal	Soft
Pre-presbyopic	Hypermetrope	Yes	Reduced	None
Pre-presbyopic	Hypermetrope	Yes	Normal	None
Presbyopic	Myope	No	Reduced	None
Presbyopic	Myope	No	Normal	None
Presbyopic	Myope	Yes	Reduced	None
Presbyopic	Myope	Yes	Normal	Hard
Presbyopic	Hypermetrope	No	Reduced	None
Presbyopic	Hypermetrope	No	Normal	Soft
Presbyopic	Hypermetrope	Yes	Reduced	None
Presbyopic	Hypermetrope	Yes	Normal	None

Regra modificada

if Astigmatism = yes
 then Lenses = hard

Exemplos cobertos

Age	Specta prescription	Astigmatism	Tear prod. rate	Lenses
Young	Myope	Yes	Reduced	None
Young	Myope	Yes	Normal	Hard
Young	Hypermetrope	Yes	Reduced	None
Young	Hypermetrope	Yes	Normal	hard
Pre-presbyopic	Myope	Yes	Reduced	None
Pre-presbyopic	Myope	Yes	Normal	Hard
Pre-presbyopic	Hypermetrope	Yes	Reduced	None
Pre-presbyopic	Hypermetrope	Yes	Normal	None
Presbyopic	Myope	Yes	Reduced	None
Presbyopic	Myope	Yes	Normal	Hard
Presbyopic	Hypermetrope	Yes	Reduced	None
Presbyopic	Hypermetrope	Yes	Normal	None

Regra procurada

if Astigmatism = yes
 and ??
 then Lenses = hard

Age	Specta prescription	Astigmatism	Tear prod. rate	Lenses
Young	Myope	Yes	Reduced	None
Young	Myope	Yes	Normal	Hard
Young	Hypermetrope	Yes	Reduced	None
Young	Hypermetrope	Yes	Normal	hard
Pre-presbyopic	Myope	Yes	Reduced	None
Pre-presbyopic	Myope	Yes	Normal	Hard
Pre-presbyopic	Hypermetrope	Yes	Reduced	None
Pre-presbyopic	Hypermetrope	Yes	Normal	None
Presbyopic	Myope	Yes	Reduced	None
Presbyopic	Myope	Yes	Normal	Hard
Presbyopic	Hypermetrope	Yes	Reduced	None
Presbyopic	Hypermetrope	Yes	Normal	None

Exemplo: lentes de contato

• Regra procurada:

if Astigmatism = yes
 and ??
 then Lenses = hard

• Testes possíveis:

Age = Young	2/4
Age = Pre-presbyopic	1/4
Age = Presbyopic	1/4
Spectacle prescription = Myope	3/6
Spectacle prescription = Hypermetrope	1/6
Tear production rate = Reduced	0/6
Tear production rate = Normal	4/6

Regra modificada

if Astigmatism = yes
 and Tear production rate = normal
 then Lenses = hard

Exemplos cobertos

Age	Specta prescription	Astigmatism	Tear prod. rate	Lenses
Young	Myope	Yes	Normal	Hard
Young	Hypermetrope	Yes	Normal	hard
Pre-presbyopic	Myope	Yes	Normal	Hard
Pre-presbyopic	Hypermetrope	Yes	Normal	None
Presbyopic	Myope	Yes	Normal	Hard
Presbyopic	Hypermetrope	Yes	Normal	None

Regra refinada

if Astigmatism = yes
 and Tear production rate = normal
 and ???
 then Lenses = hard

Age	Specta prescription	Astigmatism	Tear prod. rate	Lenses
Young	Myope	Yes	Normal	Hard
Young	Hypermetrope	Yes	Normal	hard
Pre-presbyopic	Myope	Yes	Normal	Hard
Pre-presbyopic	Hypermetrope	Yes	Normal	None
Presbyopic	Myope	Yes	Normal	Hard
Presbyopic	Hypermetrope	Yes	Normal	None

Testes possíveis

Age = Young	2/2
Age = Pre-presbyopic	1/2
Age = Presbyopic	1/2
Spectacle prescription = Myope	3/3
Spectacle prescription = Hypermetrope	1/3

Regra refinada

if Astigmatism = yes
 and Tear production rate = normal
 and ???
 then Lenses = hard

Age	Specta prescription	Astigmatism	Tear prod. rate	Lenses
Young	Myope	Yes	Normal	Hard
Young	Hypermetrope	Yes	Normal	hard
Pre-presbyopic	Myope	Yes	Normal	Hard
Pre-presbyopic	Hypermetrope	Yes	Normal	None
Presbyopic	Myope	Yes	Normal	Hard
Presbyopic	Hypermetrope	Yes	Normal	None

Testes possíveis

Age = Young	2/2	
Age = Pre-presbyopic	1/2	maior
Age = Presbyopic	1/2	
Spectacle prescription = Myope	3/3	cobertura
Spectacle prescription = Hypermetrope	1/3	

Exemplo: lentes de contato

• Regra final:

```
if Astigmatism = yes
  and Tear production rate = normal
  and Spectacle prescription = Myope
  then Lenses = hard
```

 Segunda regra para a classe hard (gerada a partir dos exemplos não cobertos pela primeira)

```
if Age = young
  and Astigmatism = yes
  and Tear production rate = normal
  then Lenses = hard
```

Algoritmo PRISM

```
Algoritmo PRISM(X, y)
    Regras \leftarrow \emptyset
    para cada classe c<sub>i</sub> em y
        X' \leftarrow X
        R \leftarrow (\emptyset \rightarrow c_i)
        enquanto for possível melhorar R com X'
             para cada Xi não incluído em R
                 Ri \leftarrow adicione Xi ao corpo de R
             R \leftarrow a melhor regra Ri
             remova de X' as instâncias cobertas por R
        adicione R ao conjunto Regras
```

Medidas de qualidade de regras (2)

- Cobetura:
 - Mede o grau de cobertura de uma regra

$$Cov(R) = f_b$$

- Sensitividade (também chamada recall)
 - Mede a capacidade de classificar corretamente exemplos de uma classe

$$Sens(R) = \frac{f_{hb}}{f_h}$$

Medidas de qualidade de regras (2)

Novidade:

Mede a independência entre corpo e cabeça;
 quanto maior a novidade, maior a probabilidade
 de existir uma correlação inesperada entre H e B

$$Nov(R) = 16 \times (f_{hb} - f_h \times f_b)^2$$

Medidas de qualidade de regras (2)

• Laplace:

 Uma correção da precisão que considera o número de classes distintas

$$LAcc(R) = \frac{f_{hb} + 1}{f_b + N_{Cl}}$$