Ústav fyzikální elektroniky PřF MU

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 1

Zpracoval: Artem Gorodilov Naměřeno: 6. března 2023

Obor: Astrofyzika Skupina: Pa 10:00 Testováno: uznano

Úloha č. 1: Měření hustoty

 $T = 21,5 \, {}^{\circ}\text{C}$

 $p=989~\mathrm{hPa}$

 $\varphi = 23, 3 \%$

1. Zadání

Je dán měděný válec o průměru D, výšce h a hmotnosti m. Válec má průchozí otvor o průměru d. Měření byla provedena pomocí posuvkou s nejmenším dílkem $\sigma_t = 0.02$ mm, mikrometru s nejmenším dílkem $\sigma_m = 0.01$ mm a digitálních vah s přístrojovou chybou $\sigma_v = 0.001$ g.

Úkol: Určete hustotu válce pomocí třmenu, mikrometru a měřítka.

1.1. Podúloha o měření

Hustota se vypočítá podle vzorce:

$$\rho = \frac{4m}{\pi (D^2 - d^2)h} \tag{1}$$

Byly změřeny rozměry válce. Každý rozměr se měřil desetkrát n = 10.

Ze získaných výsledků byl vypočten aritmetický průměr a směrodatná odchylka aritmetického průměru. Výpočty byly provedeny pomocí vzorců:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{2}$$

$$u_A(\bar{x}) = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n(n-1)}}$$
(3)

Na základě chyb výpočetních přístrojů byla poté vypočtena kombinova nejistota. Výpočty byly provedeny podle vzorce:

$$u_C = \sqrt{u_A^2 + u_B^2} \tag{4}$$

Přístrojovou nejistotu typu B u_B lze zjistit pomocí vzorce:

$$u_B = \frac{\sigma_{inst}}{k} \tag{5}$$

kde σ_{inst} je nejmenší dělení nástroje nebo chyba nástroje a k je koeficient, který závisí na typu statistického rozdělení.

Byly získány následující výsledky:

n	h [mm]	D [mm]	d [mm]	m [g]
1	15.26	39.83	10.05	159.062
2	15.28	39.82	10.06	159.069
3	15.27	39.84	10.06	159.064
4	15.26	39.82	10.05	159.071
5	15.24	39.82	10.06	159.065
6	15.22	39.83	10.05	159.062
7	15.23	39.84	10.06	159.069
8	15.24	39.82	10.06	159.070
9	15.26	39.84	10.06	159.068
10	15.24	39.82	10.05	159.065

$u_B(\sigma_t)$ [mm]	$u_B(\sigma_m)$ [mm]	$u_B(\sigma_v)$ [g]	
0.006	0.003	0.0003	

\bar{x},u	h [mm]	D [mm]	d [mm]	m [g]
\bar{x}	15.250	39.828	10.056	159.067
$u_A(\bar{x})$	0.006	0.003	0.002	0.001
u_C	0.008	0.007	0.007	0.001

Poté byla vypočtena chybovost. To bylo provedeno pomocí Pythonu. Kód je uveden níže:

import pandas as pd
import numpy as np

import uncertainties as u

from uncertainties import ufloat

from uncertainties.umath import *

from uncertainties import unumpy

h = ufloat(15.250, 0.008)

D = ufloat(39.828, 0.007)

d = ufloat(10.056, 0.007)

m = ufloat(159.067, 0.001)

h = h * 10**(-3)

D = D * 10**(-3)

d = d * 10**(-3)

m = m * 10**(-3)

rho = (4 * m) / (np.pi * (D**2 - d**2) * h)

print(rho)

Po zaokrouhlení byl získán výsledek:

$$\rho = (8940 \pm 30) \frac{kg}{m^3} \ (p = 99.73\%)$$

2. Závěr

Získaná hodnota $\rho=(8940~\pm~30)\frac{kg}{m^3}$ hustoty je v dobré shodě s tabulkovými údaji $\rho=(8900)\frac{kg}{m^3}$. Chyba může být způsobena nepřesnostmi při měření velikosti a hmotnosti objektu.