This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

BUNDES EPUBLIK DEUTS HLAND

PRIORITY
DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

REC'D 26 JUL 2000
WIPO PCT
10/009979

12 W/1754

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

199 27 301.4

Anmeldetag:

15. Juni 1999

Anmelder/Inhaber:

Siemens Aktiengesellschaft,

München/DE

Bezeichnung:

Rechnergestütztes Verfahren zur parallelen Berech-

nung des Arbeitspunktes elektrischer Schaltungen

IPC:

G 06 F 17/50

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Anmeldung.

München, den 06. Juli 2000

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

MOUTKS

10/009979

THIS PAGE BLANK (USPER)

Beschreibung

Rechnergestütztes Verfahren zur parallelen Berechnung des Arbeitspunktes elektrischer Schaltungen

5

10

30

Die rechnergestützte Simulation elektrischer Schaltungen hat bei der Entwicklung sehr großer Schaltungen, also Schaltungen mit einer sehr großen Anzahl von Elementen, eine immer größere Bedeutung erlangt. Insbesondere bei der Entwicklung von Computerchips mit einer Vielzahl, beispielsweise mehrere hunderttausend Transistoren, erweist sich eine serielle Bearbeitung für die Ermittlung der Schaltungsgrößen durch einen Rechner wegen des zu großen Zeitaufwands als unbrauchbar.

15 In der WO 98/24039 wird deshalb vorgeschlagen, eine große Schaltung zu partitionieren und die Partitionen jeweils von verschiedenen Rechnern bearbeiten zu lassen.

Üblicherweise werden bei der Berechnung zuerst der Arbeitspunkt, das heißt die Potenziale aller Knoten als Grundlage
für weitere Analysen, wie beispielsweise Transienten- oder
Wechselstromanalysen, ermittelt.

Zur parallelen Berechnung wird in U. Wever, Q. Zheng et al.:
"Domain Decomposition Methods for Circuit Simulation"
(Proceedings of the 8th Workshop on Parallel and Distributed Simulation, PADS '94 Edinburgh, Scotland, UK, S. 183-186, Juli 1994) und in U. Wever, Q. Zheng: "Parallel Transient Analysis for Circuit Simulation" (Proceedings of the 29th Annual Hawaii International Conference on System Sciences, S. 442-447, 1996) eine Implementierung des Newton-Verfahrens vorgeschlagen. Nachteiligerweise kann hier, aufgrund schlechter Konvergenzeigenschaften, nur bei Vorliegen hinreichend guter Schätzungen des Arbeitspunktes Konvergenz erzielt werden.

Derartige gute Schätzungen sind in der Regel jedoch bei großen Schaltungen schwer oder nicht zu bewerkstelligen.

Der vorliegenden Erfindung liegt deshalb die Aufgabe zugrunde, ein rechnergestütztes Verfahren zur parallelen Berechnung des Arbeitspunktes elektrischer Schaltungen zu schaffen, das eine einfache, sichere und schnelle Berechnung des Arbeitspunktes der Schaltung gewährleistet.

Diese Aufgabe wird erfindungsgemäß durch das Verfahren gemäß Patentanspruch 1 gelöst.

10 Bei dem Verfahren wird zur parallelen Berechnung des Arbeitspunktes das Aufladeverfahren verwendet, welches sehr gute Konvergenzeigenschaften aufweist.

Durch das Aufladeverfahren werden, wie beispielsweise in H.

Spiro: "Simulation integrierter Schaltungen" (2. Auflage, R.
Oldenbourg Verlag München, Wien 1990) beschrieben, die in einer elektrischen Schaltung vorhandenen dynamischen Elemente, wie Kapazitäten und/oder Induktivitäten, dazu verwendet, um über eine Pseudo-Transientenanalyse den Arbeitspunkt zu berechnen. Die dynamischen Elemente werden dabei schrittweise, von einem Wert Null ausgehend, auf einen im Prinzip beliebig hohen Wert, insbesondere auf den Wert "1" hochgefahren.

In einer Ausführungsform nach der Erfindung können zusätzlich an geeigneten Stellen, beispielsweise an oder zwischen mehre ren Knoten dynamische Elemente, wie beispielsweise Kapazitäten oder Induktivitäten, mit vorbestimmten bekannten Werten zusätzlich eingebaut werden. Hierdurch können Schwierigkeiten bei der Berechnung aufgrund einer zu geringen Anzahl von dynamischen Elementen vermieden werden.

Hierzu können die zusätzlich in die Schaltung eingebrachten dynamischen Elemente von einem Anfangswert, beispielsweise gegen Unendlich, für den die Arbeitspunktberechnung trivial ist, schrittweise auf Null verringert werden, so dass wiederum die ursprüngliche Schaltung simuliert wird.

10

15

20

30

In einer bevorzugten Ausführungsform der Erfindung wird wenigstens ein Knotenpunkt, also ein Verbindungspunkt von wenigstens zwei Strompfaden, der Schaltung mittels einer Kapazität mit einem vorbestimmten Wert mit einem vorbestimmten Potenzial verbunden.

In weiterer Ausgestaltung der Erfindung kann aber auch an jeden Knoten über alle Partitionen eine Kapazität angeschlossen werden, deren zweiter Anschluss jeweils an einem vorbestimmten Potenzial, beispielsweise an Masse liegt. Diese Vorgehensweise hat den Vorteil, dass der Arbeitspunkt, also die jeweiligen Potenziale der einzelnen Knotenpunkte, für einen gegen Unendlich gehenden Anfangswert für die Kapazitäten, aufgrund einer Lösung der dann expliziten Gleichung, für die Schaltung trivial zu berechnen ist. Über eine schrittweise Veränderung des Wertes für die Kapazitäten kann dann durch geeignete Neuwahl des Wertes für die Kapazitäten die Schaltungssimulation verändert werden, bis sich eine Berechnung des Arbeitspunktes der Schaltung für einen Wert der Kapazitäten gegen Null oder nahezu gegen Null ergibt.

Durch diese Implementierung des Aufladeverfahrens auch für parallele Berechnung einer elektrischen Schaltung kann vorteilhafterweise eine sehr große Schaltung mit einer Vielzahl von Transistoren selbst bei einer geringeren Zahl von dynamischen Elementen auf schnelle und einfache Weise berechnet werden. Für die jeweilige Neufestlegung des Wertes für die Kapazität mit dem Ziel, diesen gegen Null gehen zu lassen, sind verschiedene Vorgehensweisen denkbar, wobei als Entscheidungskriterium der Schwierigkeitsgrad der Berechnung des Arbeitspunktes des jeweiligen vorhergehenden Schrittes in Frage kommt.

Der Arbeitspunkt, der sich durch Lösung einer nicht-linearen Gleichung für jeweils einen bestimmten Wert der Kapazitäten ergibt, kann beispielsweise iterativ mit dem Newton-Verfahren gelöst werden. Für die Wahl des nächsten Wertes für "C" kön-

nen dann die Anzahl der zur Lösung notwendigen Iterationsschritte verwendet werden, bis ein vorbestimmter Wert für "C" unterschritten wird.

5 Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.

Die Erfindung wird nachfolgend anhand eines in der Zeichnung dargestellten Ausführungsbeispiels erläuter. In der Zeichnung zeigt die einzige Figur ein Ablaufdiagramm, in dem die einzelnen Verfahrensschritte des Verfahrens dargestellt sind.

Nach der Zeichnung liegt als Ausgangspunkt 1 eine Simulatio einer elektrischen Schaltung, beispielsweise in der Schaltungsbeschreibungssprache SPICE vor. Diese wird in einem ersten Verarbeitungsprozess 2, wie beispielsweise in WO 98/24039 als "Clustering-Verfahren" beschrieben, partitioniert, so dass sich einzelne Partitionen beziehungsweise Teile der Schaltungen, die möglichst mit gleichem Schwierigkeitsgrad berechenbar sind, ergeben.

Selbstverständlich sind auch andere anwendbare Partitionie-rungsvarianten, wie beispielsweise die in N. Fröhlich, B. Riess, U. Wever, Q. Zheng: "A new approach for parallel simulation of VLSI circuits on a transistor level" (IEEE Transation on Circuits and Systems - I: Fundamental Theory and Applications, Vol. 45, No. 6, June 1998, Seiten 601 bis 613) beschriebene "Ratio-Cut-Methode" oder selbst eine willkürliche Aufteilung "per Hand" denkbar.

30

35

25

10

In einem weiteren Arbeitsschritt 3 wird nun jedem Knotenpunkt der Schaltung, also einem Verbindungspunkt von wenigstens zwei Leitern beziehungsweise Strompfaden eine geerdete Kapazität hinzugefügt. Selbstverständlich ist es auch denkbar, eine Kapazität, deren zweiter Anschluss an einem vorbestimmten Potenzial liegt, hinzuzufügen, wobei sich sowohl Potenziale als auch die Werte für die Kapazitäten jedes Knoten un-

10

terscheiden können. Aus Effizienz-, Stabilitäts- und berechnungsökonomischen Gründen liegt jede Kapazität mit ihrem zweiten Anschluss an dem gleichen Potenzial, beispielsweise Masse, wobei zudem aus denselben Gründen für alle Kapazitäten in Schritt 4 ein identischer hoher Wert CO gewählt wird.

Für diesen Wert CO wird nun in einem weiteren Schritt 6 für jede Partition beziehungsweise Teilschaltung der Arbeitspunkt berechnet, wobei die erforderlichen Kopplungswerte, also die Werte für die Kopplungspunkte beziehungsweise Schnittstellen benachbarter Partitionen, für die Berechnung der Arbeitspunkte benachbarter Partitionen ausgetauscht und einberechnet werden.

Hierbei kann aus Effizienzgründen vorteilhafterweise eine Partition, welche im Folgenden als "Master" bezeichnet wird, die Steuerung des Aufladeverfahrens übernehmen. Der Master bestimmt dann den Anfangswert CO für die Kapazitäten, wobei es auch denkbar ist, den Anfangswert extern, beispielsweise vom Benutzer, vorzugeben. Dieser Wert CO wird dann an alle übrigen Partitionen, im Folgenden als Slaves bezeichnet, übergeben. Nachfolgend wird sowohl in der Master-Partition als auch in allen Slave-Partitionen der Arbeitspunkt berechnet, wobei selbstverständlich der volle Quellenvektor, der die in der Schaltung vorhandenen Energiequellen darstellt, an der Schaltung anliegt.

Ausgehend von einem zu lösenden Gesamtproblem

$$x = (m, s_1, ..., s_p)$$

30 wobei m die Unbekannten des Masters, p die Anzahl der Partitionen, si die Unbekannten der Partition i

bezeichnet, führt das Aufladeverfahren hierbei auf das Differentialgleichungssystem,

$$f(x,t) + D\frac{dx}{dt} = 0$$

wobei

D=diag(C,...C,0,...,0) und t die Zeit bezeichnet.

Dieses Differenzialgleichungssystem kann beispielsweise mit dem impliziten Euler-Verfahren gelöst werden, was auf die nicht-lineare Gleichung

10

15

$$f(x^{k+1}, t^{k+1}) + \frac{1}{h}D(x^{k+1} - x^k) = 0$$

führt. Dabei ist x^k die Lösung zum Zeitpunkt t^k für k=0, 1, usw. und h die Schrittweite $t^{k+1}-t^k$. Diese nicht-lineare Gleichung kann beispielsweise iterativ mit dem Newton-Verfahren

$$x_{n+1}^{k+1} = x_n^{k+1} - \left(f_x(x_n^{k+1}, t^{k+1}) + \frac{1}{h} D \right)^{-1} \cdot \left(f(x_n^{k+1}, t^{k+1}) + \frac{1}{h} D(x_n^{k+1} - x^k) \right)$$

für n = 0, 1, usw. gelöst werden.

Bei der parallelen Berechnung werden dann vom Master nur die Unbekannten "m" berechnet, wobei die Unbekannten " s_i " für den Master Festwerte darstellen. Damit eine Lösung dieses berechnet werden kann, werden von den Slaves bzw. Slave-Partitionen in jedem Iterationsschritt des Masters die korrigierten Werte s_i^{k+1} berechnet und dem Master mitgeteilt. Hierzu muss von den Slaves das nicht-lineare Gleichungssystem

$$f_i(s_i^{k+1}, m_n^{k+1}, t^{k+1}) + \frac{1}{h} D_i((s_i^{k+1}, m_n^{k+1}) - (s_i^k, m^k)) = 0$$

gelöst werden, wobei fi und Di die entsprechenden Gleichungen und Matrizen für den Slave "i" bezeichnen. Diese nichtlineare Gleichung kann ebenfalls mit dem Newton-Verfahren berechnet werden, wobei nicht notwendigerweise alle Iterationsschritte bis zur Konvergenz durchgeführt werden müssen.

Die Ergebnisse der Slaves werden daraufhin in das Gleichungssystem des Masters eingesetzt, woraufhin der Master den Ausdruck m_{n+1}^{k+1} berechnen kann.

15 In einem nächsten Schritt 7 wird ein neuer Wert "Cneu" für "C" vom Master bestimmt, wobei auch die Slaves Vorschläge machen können. Um das Ziel, nämlich einen Wert für "C" gegen Null beziehungsweise kleiner als einen vorbestimmten Wert e und damit eine Berechnung der ursprünglichen Schaltung zu erreichen, wird die Wahl des neuen Wertes "Cneu" für "C" in Abhängigkeit von der Schwierigkeit der Berechnung des vorhergehenden Schrittes mit dem Wert "Calt" für "C" getroffen.

Hierbei sind verschiedene Vorgehensweisen denkbar, beispielsweise die Wahl von " $C_{\rm neu}$ " in Abhängigkeit einer Analyse der Anzahl der Iterationsschritte, die der Master zur Berechnung des nicht-linearen Gleichungssystems für den vorhergehenden Wert " $C_{\rm alt}$ " für "C" benötigt hat:

30

$$C_{neu} = \begin{cases} C_{alt} / 2 & \text{für n} < n_1 \\ C_{alt} & \text{für n}_1 \le n \le n_2 \\ C_{alt} \cdot 2 & \text{für n}_2 > n \end{cases}$$

35

Wobei "n" die Anzahl der Iterationen des Masters und " n_1 ", " n_2 " vom Benutzer vorgegebene Parameter sind. Anstelle der Halbierung beziehungsweise Verdopplung von " C_{alt} " sind selbstverständlich auch andere Strategien zur Verkleinerung beziehungsweise Vergrößerung von " C_{alt} " möglich. Zusätzlich kann auch die Anzahl der Iterationsschritte, die die Slaves bzw. Slave-Partitionen zur Lösung ihres nicht linaren Gleichungssystems benötigt haben, berücksichtigt werden, beispielsweise durch die Wahl von

10

$$n = \max\left(n, \sum_{i=1}^{n} n_i, slave1, \dots, \sum_{i=1}^{n} n_i, slavep\right)$$

wobei n_i , s_{lavej} die Anzahl der Iterationsschritte des Slaves j, während der i-ten Iteration des Masters bezeichnet. Hierbei ist anzumerken, dass die Wahl eines Wertes für "C" nur einen Einfluss auf die Effizienz des Verfahrens, nicht jedoch auf den Arbeitspunkt selbst hat.

20

25

Nach Erreichen eines Wertes von für "C" kleiner oder gleich einem vorgegebenen Wert e wird die Berechnung an der Verzweigung 5 abgebrochen, wobei in einem letzten Schritt der Wert für C auf "0" gesetzt werden kann. Hierdurch steht als Ergebnis 8 der Arbeitspunkt der ursprünglichen Schaltung fest und kann über Ausgabeeinheiten, wie beispielsweise Bildschirm, Drucker oder ähnlichem, ausgegeben und/oder in einem Speicher als Grundlage für weitere Analysen der Schaltung zwischengespeichert werden.

30

35

Durch das erfindungsgemäße Verfahren kann ein Arbeitspunkt einer sehr große elektrische Schaltung vorteilhafterweise von einer Vielzahl von Rechnern oder Prozessoren parallel berechnet werden, wobei der Nachteil bekannter paralleler Berechnungsarten, nämlich fehlende Konvergenz bei ungünstigen Anfangswerten, vermieden werden kann. Der Aufwand für die Berechnung hinsichtlich Iterationsschritten und schrittweisem

Setzen eines Wertes für "C" wird durch die parallele Berechnung aufgrund der Verteilung auf mehrere Prozessoren in einem vertretbaren Rahmen gehalten.

5 Der so berechnete Arbeitspunkt dient dann als Grundlage für weitere Analysen, beispielseise der Wechselstromanalyse einer Schaltung.

Patentansprüche

- Rechnergestütztes Verfahren zur parallelen Berechnung des Arbeitspunktes elektrischer Schaltungen,
- bei dem die Schaltung in einem ersten Schritt in mehre-5 re Partitionen partitioniert wird,
 - dadurch gekennzeichnet, dass
 - zur parallelen Berechnung der einzelnen Partitionen das Aufladerverfahren angewendet wird.

10

2. Rechnergestütztes Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass an wenigsten einem Knotenpunkt der Schaltung ein dynamischess Element (C, L) vorgesehen wird.

15

Rechnergestütztes Verfahren nach Anspruch 2, 3. dadurch gekennzeichnet, dass an jedem Knotenpunkt der Schaltung ein dynamisches Element (C, L) vorgesehen wird.

20

25

30

Rechnergestütztes Verfahren nach Anspruch 2 oder 3, 4. dadurch gekennzeichnet, dass jeder Knotenpunkt der Schaltung mittels jeweils einer Kapazität mit jeweils einem vorbestimmten Wert mit jeweils einem Potenzial verbunden wird, so dass ein Arbeitspunkt der modifizierten Schaltung berechnet werden kann,

5.

- Rechnergestütztes Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass an jedem Knoten einer Partition eine Kapazität mit demselben Wert (CO) vorgesehen wird.
- 6. Rechnergestütztes Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass 35 jeder Knoten einer Partition mittels einer Kapazität mit demselben Potenzial verbunden wird.

10

- 7. Rechnergestütztes Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass an jedem Knoten aller Partition eine Kapazität mit demselben Wert (CO) vorgesehen wird.
- 8. Rechnergestütztes Verfahren nach Anspruch 4 oder 7, dad urch gekennzeichne tohnet, dass jeder Knoten aller Partitionen mittels einer Kapazität mit demselben Potenzial verbunden wird.
- 9. Rechnergestütztes Verfahren nach einem der Ansprüche 4 bis 7, d a d u r c h g e k e n n z e i c h n e t, dass das Potenzial auf Masse liegt.
- 15 10. Rechnergestütztes Verfahren nach einem der Ansprüche 4 bis 8, d a d u r c h g e k e n n z e i c h n e t, dass bei geeigneter schrittweiser Veränderung des Wertes (C) der Kapazität jeweils der Arbeitspunkt der Schaltung berechnet wird und
- 20 dieser Schritt solange wiederholt wird bis die Werte der Kapazitäten nahezu Null sind.
 - 11. Computerprogrammprodukt, welches in einen Arbeitsspeicher einer Rechenanlage geladen werden kann, mit einem Softwarecode für das Durchführen des Verfahrens nach einem der vorhergehenden Ansprüche, wenn das Computerprogrammprodukt auf einer Rechenanlage läuft.
- 12. Datenträger mit einem Computerprogrammprodukt nach An-30 spruch 11.

Zusammenfassung

Rechnergestütztes Verfahren zur parallelen Berechnung des Arbeitspunktes elektrischer Schaltungen

5

10

Die Erfindung betrifft ein rechnergestütztes Verfahren zur parallelen Berechnung des Arbeitspunktes elektrischer Schaltungen, bei dem die Schaltung in einem ersten Schritt in mehrere Partitionen partitioniert wird, bei dem zur parallelen Berechnung der einzelnen Partitionen das Aufladerverfahren angewendet wird.

15 Hauptzeichnung ist die einzige Figur.

GR 98 E 6823 DE

THIS PAGE BLAND

THIS PAGE BLANK (USPTO)