

Chapter 16 Acids and Bases

Some Definitions

- Arrhenius theory: an acid forms H⁺ in water; and a base forms OH⁻ in water.
- But not all acid—base reactions involve water, and many bases (NH₃, carbonates) do not contain any OH⁻.
- Brønsted–Lowry theory defines acids and bases in terms of proton (H+) transfer.
 - an acid is a proton donor.
 - a base is a proton acceptor.

Limitation of Arrhenius Concept

According to the Arrhenius concept,

- Acids produce hydrogen ion, and bases produce hydroxide ion in aqueous solution.
- Only applys to "aqueous" solution.
- Only allows one kind of base, the hydroxide ion.

A more general definition is required.

BrØnsted-Lowry Acids and Bases

According to the Brønsted-Lowry theory,

- Acids donate a proton (H⁺).
- Bases accept a proton (H⁺).

NH₃, A BrØnsted-Lowry Base

In the reaction of ammonia and water,

- NH₃ is the base that accept H⁺.
- H₂O is the acid that donates H⁺.

Conjugate Acid-Base Pairs

In any acid-base reaction, there are two conjugate acid-base pairs

- Each related by the loss and gain of H⁺.
- One occurs in the forward direction.
- One occurs in the reverse direction.

Conjugate Acid-Base Pairs

In the reaction of HF and H₂O

- One conjugate acid-base pair is HF/F⁻.
- The other conjugate acid-base pair is H₂O/H₃O⁺.
- Each pair is related by a loss and gain of H⁺.

Strengths of Acids

 Strong acids completely ionizes (100%) in aqueous solutions.

$$HCI(g) + H_2O(I) \longrightarrow H_3O^+(aq) + CI^-(aq)$$

 Weak acids dissociate only slightly in water to form a solution of mostly molecules and a few ions.

$$H_2CO_3(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + HCO_3^-(aq)$$

Acid Dissociation Constant

 In most cases, the rate of the dissociation of the acid is similar to the rate of the association.

$$HA + H_2O \stackrel{\longrightarrow}{\longleftarrow} H_3O^+ + A^-$$

The equilibrium expression is

$$K_{eq} = \frac{[H_3O^+][A^-]}{[HA][H_2O]}$$

Because the concentration of H₂O is constant, the K_a expression for a weak acid is

$$K_a = \frac{[H_3O^+][A^-]}{[HA]}$$

Acid Characteristics and K_a

Table 14.1 - Various Ways to Describe Acid Strength					
Property	Strong Acid	Weak Acid			
$K_{\rm a}$ value	$K_{\rm a}$ is large	$K_{\rm a}$ is small			
Position of the dissociation (ionization) equilibrium	Far to the right	Far to the left			
Equilibrium concentration of [H ⁺] compared with original concentration of HA	$[\mathrm{H^+}] \approx [\mathrm{HA}]_0$	$[\mathrm{H^+}] \ll [\mathrm{HA}]_0$			
Strength of conjugate base compared with that of water	A^- much weaker base than H_2O	A^- much stronger base than H_2O			

Base Dissociation Constant, K_b

$$B(aq) + H_2O(I) \implies BH^+(aq) + OH^-(aq)$$

base

conjugate acid

acid

conjugate base

The equilibrium expression is

$$K_{eq} = \frac{[BH^+][OH^-]}{[B][H_2O]}$$

Because the concentration of H₂O is constant, the K_b expression for a weak acid is

$$K_b = \frac{[BH^+][OH^-]}{[B]}$$

$K_{\rm a}$ and $K_{\rm b}$

The equilibrium constant for a Brønsted acid is represented by K_a , and that for a base is represented by K_b .

CH₃COOH(aq) + H₂O(l)
$$\longrightarrow$$
 H₃O⁺(aq) + CH₃COO⁻(aq)
$$K_{a} = \frac{[H_{3}O^{+}][CH_{3}COO^{-}]}{[CH_{3}COOH]}$$

$$NH_{3}(aq) + H_{2}O(I) \longrightarrow NH_{4}^{+}(aq) + OH^{-}(aq)$$

$$K_{b} = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}]}$$

Table 15.1 Relative Strengths of Some Brønsted-Lowry Acids and Their Conjugate Bases

Copyright © 2005 Pearson Prentice Hall, Inc.

Acid/Base Strength and Direction of Equilibrium

• Since HBr is a stronger acid than CH₃COOH, the equilibrium for the reaction:

- We reach the same conclusion by comparing the strengths of the *bases*.
- CH₃COO⁻ lies below Br⁻; CH₃COO⁻ is the stronger base.

Acid/Base Strength and Direction of Equilibrium

The equilibrium lies to

Weaker base
$$\leftarrow$$
 Stronger base $OH^- + CH_3OH \rightleftharpoons CH_3O^- + H_2O$

Weaker acid \leftarrow Stronger acid the *left*.

CH₃CH₂– or CH₃– are typical electron donating groups!

Water Is Amphiprotic

Amphiprotic: Can act as either an acid or as a base

Self-Ionization of Water

 Water conducts some electricity because water selfionizes:

- The equilibrium constant for this process is called the *ion product of water* $(K_{\rm w})$.
- At 25° C, $K_{\text{w}} = 1.0 \times 10^{-14} = [\text{H}_3\text{O}^+][\text{OH}^-]$

Calculating [H₃O⁺]

What is the $[H_3O^+]$ of a solution if $[OH^-]$ is 5.0 x 10⁻⁸ M? STEP 1 Write the K_w for water.

$$K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14}$$

STEP 2 Rearrange the K_w expression.

$$[H_3O^+] = 1.0 \times 10^{-14} / [OH^-]$$

STEP 3 Substitute [OH⁻].

$$[H_3O^+] = 1.0 \times 10^{-14} / 5.0 \times 10^{-8} = 2.0 \times 10^{-7} M$$

The pH Scale

- Concentration of H₃O⁺ can vary from about 10 M to 10⁻¹⁴ M.
- A more convenient expression for H₃O⁺ is pH.
 pH = −log [H₃O⁺]
- The "negative logarithm" function of pH is so useful that it has been applied to other species and constants.

```
pOH = -log [OH^-]

pK_w = -log K_w = 14

at 298 K
```

PH Ph ph

Calculating pH

Mathematically pH

Is the negative log of the hydronium ion concentration,

```
pH = -\log [H_3O^+]
```

• For a solution with $[H_3O^+] = 1 \times 10^{-4}$

```
pH = -\log [1 \times 10^{-4}]
pH = -[-4.0]
pH = 4.0
```

Significant Figures in pH

When expressing log values, the number of decimal places in the pH is equal to the number of significant figures in the coefficient of [H₃O⁺].

```
coefficient decimal places [H_3O^+] = 1 \times 10^{-4} pH = 4.0 [H_3O^+] = 8.0 \times 10^{-6} pH = 5.10 [H_3O^+] = 2.4 \times 10^{-8} pH = 7.62
```

The pH Scale

K_w at Different Temperature

<i>T</i> (°C)	$K_{\rm w}$ (mol ² dm ⁻⁶)	рН
0	1.1×10^{-15}	7.47
10	2.9×10^{-15}	7.27
20	6.8×10^{-15}	7.08
25	1.0×10^{-14}	7.00
30	1.5×10^{-14}	6.92
40	2.9×10^{-14}	6.77
50	5.5×10^{-14}	6.63
100	5.1 × 10 ⁻¹³	6.14

How Do We Measure pH?

Methyl red

Bromthymol blue

pH=

- For less accurate measurements, one can use
 - Litmus paper
 - "Red" paper turns blue above pH ~ 8
 - "Blue" paper turns red below pH ~ 5
 - Or an indicator.

Phenolphthalein

How Do We Measure pH?

Fig. 1.1 Common pH electrodes: (a) glass electrode; (b) combination electrode.

pH meter: based on electromotive force change due to [H+] difference – electrochemistry later

Equilibrium in Solutions of Weak Acids and Weak Bases

, , ,	ido dila ilodit				
Table 15.2 Ionization Constants of Some Weak Acids and Weak Bases in Water at 25 °C					
	Ionization Equilibrium	Ionization Constant, K	p <i>K</i>		
Inorganic Acids		$K_{\mathbf{a}} =$			
Chlorous acid	$HCIO_2 + H_2O \Longrightarrow H_3O^+ + CIO_2^-$	1.1×10^{-2}	1.96		
Nitrous acid	$HNO_2 + H_2O \Longrightarrow H_3O^+ + NO_2^-$	7.2×10^{-4}	3.14		
Hydrofluoric acid	$HF + H_2O \Longrightarrow H_3O^+ + F^-$	6.6×10^{-4}	3.18		
Hypochlorous acid	$HOCI + H_2O \Longrightarrow H_3O^+ + OCI^-$	2.9×10^{-8}	7.54		
Hypobromous acid	$HOBr + H_2O \Longrightarrow H_3O^+ + OBr^-$	2.5×10^{-9}	8.60		
Hydrocyanic acid	$HCN + H_2O \Longrightarrow H_3O^+ + CN^-$	6.2×10^{-10}	9.21		
Carboxylic Acids		$K_{\mathbf{a}} =$			
Chloroacetic acid	$CH_2CICOOH + H_2O \Longrightarrow H_3O^+ + CH_2CICOO^-$	1.4×10^{-3}	2.85		
Formic acid	$HCOOH + H_2O \Longrightarrow H_3O^+ + HCOO^-$	1.8×10^{-4}	3.74		
Benzoic acid	$C_6H_5COOH + H_2O \Longrightarrow H_3O^+ + C_6H_5COO^-$	6.3×10^{-5}	4.20		
Acetic acid	$CH_3COOH + H_2O \Longrightarrow H_3O^+ + CH_3COO^-$	1.8×10^{-5}	4.74		
Inorganic Bases		$K_{\rm b} =$			
Ammonia	$NH_3 + H_2O \Longrightarrow NH_4^+ + OH^-$	1.8×10^{-5}	4.74		
Hydrazine	$H_2NNH_2 + H_2O \Longrightarrow H_2NNH_3^+ + OH^-$	8.5×10^{-7}	6.07		
Hydroxylamine	$HONH_2 + H_2O \Longrightarrow HONH_3^+ + OH^-$	9.1×10^{-9}	8.04		
Amines		$K_{\rm b} =$			
Dimethylamine	$(CH_3)_2NH + H_2O \Longrightarrow (CH_3)_2NH_2^+ + OH^-$	5.9×10^{-4}	3.23		
Ethylamine	$CH_3CH_2NH_2 + H_2O \Longrightarrow CH_3CH_2NH_3^+ + OH^-$	4.3×10^{-4}	3.37		
Methylamine	$CH_3NH_2 + H_2O \Longrightarrow CH_3NH_3^+ + OH^-$	4.2×10^{-4}	3.38		
Pyridine	$C_5H_5N + H_2O \Longrightarrow C_5H_5NH^+ + OH^-$	1.5×10^{-9}	8.82		
Aniline	$C_6H_5NH_2 + H_2O \Longrightarrow C_6H_5NH_3^+ + OH^-$	7.4×10^{-10}	9.13		

pH of Weak Acid Solutions

The organic base aniline ($C_6H_5NH_2$) forms its conjugate acid, the anilinium ion, when treated with HCl.

$$C_6H_5NH_2(aq) + HCl(aq) \rightarrow C_6H_5NH_3^+(aq) + Cl^-(aq)$$

If K_a for the anilinium ion is 2.5 x 10⁻⁵, what is the pH of a 0.080 M solution of anilinium chloride?

$$2.5 \times 10^{-5} = \frac{x^2}{0.08 - x} \implies 2.5 \times 10^{-5} = \frac{x^2}{0.08} \implies x = 1.4 \times 10^{-3}$$

$$pH = 2.85$$

$$\frac{1.4 \times 10^{-3}}{0.08} = 1.75\% < 5\%$$

Percent Dissociation

Percent dissociation =

 $\times 100\%$

Initial concentration (mol/L)

$$HA (aq) + H2O (l) \rightarrow H3O+ (aq) + A- (aq)$$

$$K_a = \frac{\left[A^{-}\right]^2}{\left[HA\right]}$$

$$\begin{bmatrix} A^{-} \end{bmatrix} = \sqrt{K_a \begin{bmatrix} HA \end{bmatrix}} \qquad \Longrightarrow \qquad \frac{\begin{bmatrix} A^{-} \end{bmatrix}}{\begin{bmatrix} HA \end{bmatrix}_0} = \sqrt{\frac{K_a}{[HA]_0}}$$

Acetic Acid

% dissociated = $\sqrt{\frac{K_a}{[\text{HA}]}}$

$$pH = \frac{1}{2} (pK_a - \log[HA])$$

Percent Dissociation

Calculate the percent dissociation of acetic acid in the following solutions $(K_a = 1.8 \times 10^{-5})$.

- (a) $1.00 \text{ M HC}_2\text{H}_3\text{O}_2$
- (b) 0.100 M HC₂H₃O₂

$$HC_2H_3O_2$$
 (aq) <==> $H^+ + C_2H_3O_2^-$
1.00 0 0
(1.00 - x) x x

$$K_a = ([H^+][C_2H_3O_2^-]) / [HC_2H_3O_2] \approx x^2 / 1.00$$

$$x = 4.2 \times 10^{-3} M$$

p. d. = 0.42 %

$$K_a = ([H^+][C_2H_3O_2^-]) / [HC_2H_3O_2] \approx x^2 / 0.100$$

 $x = 1.3 \times 10^{-3} \text{ M}$
p. d. = 1.3 %

The more dilute the weak acid solution, the greater is the percent dissociation.

Polyprotic Acids

- A monoprotic acid has one ionizable H atom per molecule.
- A polyprotic acid has more than one ionizable H atom per molecule.

Sulfuric acid, H₂SO₄
 Diprotic

Carbonic acid, H₂CO₃
 Diprotic

Phosphoric acid, H₃PO₄
 Triprotic

TABLE 7.4 Stepwise Dissociation Constants for Several Common Polyprotic Acids

Name	Formula	K_{a_1}	K_{a_2}	K_{a_3}
Phosphoric acid	H ₃ PO ₄	7.5×10^{-3}	6.2×10^{-8}	4.8×10^{-13}
Arsenic acid	H ₃ AsO ₄	5×10^{-3}	8×10^{-8}	6×10^{-10}
Carbonic acid*	H ₂ CO ₃	4.3×10^{-7}	4.8×10^{-11}	
Sulfuric acid	H_2SO_4	Large	1.2×10^{-2}	
Sulfurous acid	H_2SO_3	1.5×10^{-2}	1.0×10^{-7}	
Hydrosulfuric acid†	H_2S	1.0×10^{-7}	$\approx 10^{-19}$	
Oxalic acid	$H_2C_2O_4$	6.5×10^{-2}	6.1×10^{-5}	
Ascorbic acid (vitamin C)	$H_2C_6H_6O_6$	7.9×10^{-5}	1.6×10^{-12}	

^{*}This is really $CO_2(aq)$.

$$K_{a1} >> K_{a2} >> K_{a3}$$
 ©Houghton Mifflin Company. All rights reserved.

In most cases, the pH of a polyprotic acid is determined by K_{a1} . But for dilute H_2SO_4 solution, K_{a2} has to be considered.

[†]The K_{a_2} value for H_2S is quite uncertain. Its small size makes it very difficult to measure.

Phosphoric Acid

$$H_3PO_4$$
 (aq) $\stackrel{\longrightarrow}{\longleftarrow}$ $H^+(aq) + H_2PO_4^-(aq)$ $K_{a1} = 7.5 \times 10^{-3}$ $H_2PO_4^-(aq)$ $\stackrel{\longrightarrow}{\longleftarrow}$ $H^+(aq) + HPO_4^{-2}(aq)$ $K_{a2} = 6.2 \times 10^{-8}$ $HPO_4^{-2}(aq)$ $\stackrel{\longrightarrow}{\longleftarrow}$ $H^+(aq) + PO_4^{-3}(aq)$ $K_{a3} = 4.3 \times 10^{-13}$

What is the mole fraction of HPO_4^{-2} at pH 9?

Phosphoric Acid

$$\begin{split} f_{\mathrm{HPO}_{4}^{2-}} &\equiv \frac{\left[\mathrm{HPO}_{4}^{2-}\right]}{\left[\mathrm{H}_{3}\mathrm{PO}_{4}\right] + \left[\mathrm{H}_{2}\mathrm{PO}_{4}^{-}\right] + \left[\mathrm{HPO}_{4}^{2-}\right] + \left[\mathrm{PO}_{4}^{3-}\right]} \\ &= \frac{1}{\left[\frac{\mathrm{H}_{3}\mathrm{PO}_{4}}{\left[\mathrm{HPO}_{4}^{2-}\right]} + \frac{\left[\mathrm{H}_{2}\mathrm{PO}_{4}^{-}\right]}{\left[\mathrm{HPO}_{4}^{2-}\right]} + 1 + \frac{\left[\mathrm{PO}_{4}^{3-}\right]}{\left[\mathrm{HPO}_{4}^{2-}\right]} \\ &= \frac{1}{\left[\frac{\mathrm{H}_{3}\mathrm{PO}_{4}}{\left[\mathrm{H}_{2}\mathrm{PO}_{4}^{-}\right]} \left[\frac{\mathrm{H}_{2}\mathrm{PO}_{4}^{-}}{\left[\mathrm{HPO}_{4}^{2-}\right]} + \frac{\left[\mathrm{H}^{+}\right]}{K_{\mathrm{a2}}} + 1 + \frac{K_{\mathrm{a3}}}{\left[\mathrm{H}^{+}\right]} \\ &= \frac{1}{\left[\frac{\mathrm{H}^{+}}{K_{\mathrm{a1}}K_{\mathrm{a2}}} + \frac{\left[\mathrm{H}^{+}\right]}{K_{\mathrm{a2}}} + 1 + \frac{K_{\mathrm{a3}}}{\left[\mathrm{H}^{+}\right]} \right]} \end{split}$$

Phosphoric Acid

$$pK_{a1} = 2.12$$

$$pK_{a2} = 7.21$$

$$pK_{a3} = 12.32$$

Carbonic Acid

$$H_2CO_3$$
 (aq) \rightarrow H^+ (aq) + HCO_3^- (aq) $K_{a1} = 4.3 \times 10^{-7}$

$$K_{\rm a1} = 4.3 \times 10^{-7}$$

$$HCO_3^-(aq) \longrightarrow H^+(aq) + CO_3^{-2}(aq) \qquad K_{a2} = 4.8 \times 10^{-11}$$

$$K_{a2} = 4.8 \times 10^{-11}$$

$$pK_{a1} = 6.37$$

$$pK_{a2} = 10.32$$

@Houghton Mifflin Company. All rights reserved.

Acidity of Carbonic Acid?

$$H_2CO_3$$
 (aq) \rightarrow H^+ (aq) + HCO_3^- (aq) $K_{a1} = 2.5 \times 10^{-4}$ $pK_{a1} = 3.60$ Experimental value

$$CO_2$$
 (aq) + H_2O (I) \rightarrow H_2CO_3 (aq) $K_h = 1.72 \times 10^{-3}$

By convention,

$$K_{a1} = \frac{\left[H^{+}\right]\left[HCO_{3}^{-}\right]}{\left[CO_{2}\right] + \left[H_{2}CO_{3}\right]} = \frac{\left[H^{+}\right]\left[HCO_{3}^{-}\right]}{\left[H_{2}CO_{3}\right]\left(\frac{1}{1.72 \times 10^{-3}} + 1\right)} = 2.5 \times 10^{-4} \times \frac{1.72 \times 10^{-3}}{1 + 1.72 \times 10^{-3}}$$
$$= 4.3 \times 10^{-7}$$

$$H_2CO_3$$
 (aq) \rightarrow H^+ (aq) + HCO_3^- (aq) $pK_{a1} = 6.37$ Textbook value

Acidity of Rain and Soft Drinks

	P _{CO2} (atm)	рН	$[CO_2]$ (mol/L)	$[H_2CO_3]$ (mol/L)	[HCO ₃ ⁻] (mol/L)	[CO ₃ ²⁻] (mol/L)
A.	3.5×10^{-4}	5.65	1.2 × 10 ⁻⁵	2.0×10^{-8}	2.2×10^{-6}	5.6 × 10 ⁻¹¹
B.	2.5	3.72	8.4×10^{-2}	1.4 × 10 ⁻⁴	1.9 × 10 ⁻⁴	5.6 × 10 ⁻¹¹

- A. For normal atmospheric conditions, we get a slightly acid solution (pH = 5.7) and the dissolved carbon is now essentially in the CO_2 form.
- B. For a CO_2 pressure typical of the one in soda drink bottles (~2.5 atm), we get a relatively acid medium (pH = 3.7) with a high concentration of dissolved CO_2 . These features contribute to the sour and sparkling taste of these drinks.

Is Carbonic Acid very Unstable?

$$CO_2$$
 (aq) + H_2O (I) \rightarrow H_2CO_3 (aq) $K_{eq} = 1.7 \times 10^{-3}$

Transition states

$$\begin{array}{c|c} E_{a2} \\ \hline \\ H \\ \hline \\ H \\ \hline \end{array}$$

[Liedl K. and co-workers, *Angew. Chem. Int. Ed.* **2000**, *39(5)*, 891.]

Absolutely water-free carbonic acid is very stable. Liedl calculated a half-life of 180,000 years for it. However, carbonic acid decomposes immediately if it comes in contact with water. A single water molecule is enough to speed up the decomposition of a molecule of carbonic acid a billion times.

Calculating pH for Strong Acid

The pH of 1.0 x 10^{-10} M solution of HCl. => The major component is H_2O

$$[H_3O^+] = (1.0 \times 10^{-10}) + (1.0 \times 10^{-7}) \approx 1.0 \times 10^{-7}$$

pH = 7.00

Calculating pH for Weak Acid

The pH of 1.0 M solution of HF (
$$K_a = 7.2 \times 10^{-4}$$
).
=> Major component in solution: HF, H₂O
H₂O + H₂O <==> H₃O + + OH⁻ $K_w = 1.0 \times 10^{-14}$
HF + H₂O <==> H₃O⁺ + F⁻ $K_a = 7.2 \times 10^{-4}$
1.0 $10^{-7} \approx 0$ 0
1.0 - x

$$K_a = [H_3O^+][F^-]/[HF] = 7.24 \times 10^{-4}$$

= $(x)(x)/(1.0 - x) \approx (x)(x)/(1.0$

$$x = 2.7 \times 10^{-2}$$

pH = 1.57

The 5% rule:

$$[HA]_0 - x \approx [HA]_0$$

x / $[HA]_0 \le 5\%$

$$(2.7 \times 10^{-2})/1.0 = 2.7\%$$

pH of a Mixture of Weak Acids

Calculate the pH and [CN-] of a solution that contains 1.00 M HCN $(K_a = 6.2 \times 10^{-10})$ and 5.00 M HNO₂ $(K_a = 4.0 \times 10^{-4})$.

Major component: HCN, HNO₂, H₂O

$$HCN \le H^+ + CN^- K_a = 6.2 \times 10^{-10}$$

$$HNO_2 <==> H^+ + NO_2^ K_a = 4.0 \times 10^{-4}$$
 $H_2O <==> H^+ + OH^ K_w = 1.0 \times 10^{-14}$

$$K_a = [H^+][NO_2^-]/[HNO_2] = (x)(x)/(5.00 - x) \approx x^2/5.00$$

= 4.0 x 10⁻⁴
x = 4.50 x 10⁻²

Verify with the 5% rule:

$$x / [HNO_2] = 4.50 \times 10^{-2} / 5.00 = 0.90\%$$

$$pH = - log(4.50 \times 10^{-2}) = 1.347$$

pH of a Mixture of Weak Acids

Calculate the pH and [CN-] of a solution that contains 1.00 M HCN $(K_a = 6.2 \text{ x } 10^{-10})$ and 5.00 M HNO₂ $(K_a = 4.0 \text{ x } 10^{-4})$.

Major component: HCN, HNO₂, H₂O

HCN <==> H⁺ + CN⁻ $K_a = 6.2 \text{ x } 10^{-10}$ HNO₂ <==> H⁺ + NO₂⁻ $K_a = 4.0 \text{ x } 10^{-4}$

[H⁺] =
$$4.5 \times 10^{-2}$$

 $K_a = [H^+][CN^-]/[HCN]$
= $(4.5 \times 10^{-2})[CN^-]/(1.00 - [CN^-]) \approx (4.5 \times 10^{-2})[CN^-]/1.00$
= 6.2×10^{-10}

 $H_2O <==> H^+ + OH^- K_w = 1.0 \times 10^{-14}$

 $[CN^{-}] = 1.4 \times 10^{-8}$ {verification: $1.4 \times 10^{-8} / 1.00 = 0.0000014 \%$ }

The pH of a Polyprotic Acid

Calculate the pH of a 5.0 M H₃PO₄ solution, and the equilibrium concentration of H₃PO₄, H₂PO₄-, HPO₄²-, and PO₄³-.

$$\begin{split} &H_{3}PO_{4} <===> H^{+} + H_{2}PO_{4}^{-} & K_{a1} = 7.5 \times 10^{-3} \\ &H_{2}PO_{4}^{-} <===> H^{+} + HPO_{4}^{2-} & K_{a2} = 6.2 \times 10^{-8} \\ &HPO_{4}^{2-} <===> H^{+} + PO_{4}^{3-} & K_{a3} = 4.8 \times 10^{-13} \end{split}$$

$$K_{a1} = 7.5 \times 10^{-3} = [H^{+}][H_{2}PO_{4}^{-}]/[H_{3}PO_{4}] \approx x^{2} / 5.0 \\ & \times = 1.9 \times 10^{-1} \, \text{M} \qquad pH = 0.72 \end{split}$$

$$K_{a2} = 6.2 \times 10^{-8} = [H^{+}][HPO_{4}^{2-}]/[H_{2}PO_{4}^{-}] = (0.19)[HPO_{4}^{2-}] / (0.19) \\ &[HPO_{4}^{2-}] = 6.2 \times 10^{-8} \, \text{M} \end{split}$$

$$K_{a3} = 4.8 \times 10^{-13} = [H^{+}][PO_{4}^{3-}]/[HPO_{4}^{2-}] = (0.19)[PO_{4}^{3-}] / (6.2 \times 10^{-8}) \\ &[PO_{4}^{3-}] = 1.6 \times 10^{-19} \, \text{M} \end{split}$$

The pH of a Polyprotic Acid

Calculate the pH of 1.0 M and 0.01 M H₂SO₄ solution.

$$H_2SO_4$$
 -----> $H^+ + HSO_4^-$ Large HSO_4^- <===> $H^+ + SO_4^{-2}$ $K_{a2} = 1.2 \times 10^{-2}$

For 1.0 M solution

$$HSO_4^- <===> H^+ + SO_4^{2-}$$
Initial 1.0 1.0 0
Change -x +x +x
Equilibrium 1.0-x 1.0+x x

$$K_{a2} = [1.0+x][x]/[1.0-x]$$

 $\approx [1.0][x]/[1.0]$ $[H^+] = 1.0 + 1.2 \times 10^{-2} \approx 1.0$
 $= 1.2 \times 10^{-2}$
 $x = 1.2 \times 10^{-2}$ $pH = -log(1.0) = 0.00$

The pH of a Polyprotic Acid

Calculate the pH of 1.0 M and 1.00x10⁻² M H₂SO₄ solution.

$$H_2SO_4$$
 -----> $H^+ + HSO_4^-$ Large HSO_4^- <===> $H^+ + SO_4^{-2}$ $K_{a2} = 1.2 \times 10^{-2}$

For 0.01 M solution

$$HSO_4^- <===> H^+ + SO_4^{2-}$$
Initial $1.00x10^{-2} 1.00x10^{-2} 0$
Change $-x +x +x$
Equilibrium $1.00x10^{-2}-x 1.00x10^{-2}+x x$

$$K_{a2} = (1.00 \times 10^{-2} + x)(x)/(1.00 \times 10^{-2} - x)$$

= 1.2 x 10⁻² = 1.45 x 10⁻³
 $x = 4.5 \times 10^{-3}$ [H+] = 1.00x10⁻² + 4.5 x 10⁻³
= 1.45 x 10⁻²
pH = -log(1.45 x 10⁻²) = 1.838

$$K_a = 6.2 \times 10^{-10}$$

$$HCN(aq) + H_2O(1) \longrightarrow H_3O^+(aq) + CN^-(aq)$$

 $1.0 \times 10^{-6} \text{ M}$

$$6.2 \times 10^{-10} = \frac{x^2}{1.0 \times 10^{-6} - x} \implies x = 2.5 \times 10^{-8}$$

$$pH = 7.60$$

$$H_2O$$
 + H_2O \rightleftharpoons H_3O^+ + OH^-

Base Acid Acid Base

Copyright © 2005 Pearson Prentice Hall, Inc.

$$HA(aq) + H_2O(1) \longrightarrow H_3O^+(aq) + A^-(aq)$$
 $H_2O + H_2O \longrightarrow H_3O^+ + OH^-$
Base Acid Acid Base

Copyright © 2005 Pearson Prentice Hall, Inc.

$$[HA]_0 = [HA] + [A^-]$$
$$[H^+] = [A^-] + [OH^-]$$

Material Balance

Charge Balance

$$K_{\rm a} = \frac{\left[H^{+}\right]\left[A^{-}\right]}{\left[HA\right]}$$
 $K_{\rm w} = \left[H^{+}\right]\left[OH^{-}\right]$

$$HA(aq) + H_2O(1) \stackrel{\longrightarrow}{\longleftarrow} H_3O^+(aq) + A^-(aq)$$
 $H_2O + H_2O \stackrel{\longrightarrow}{\longleftarrow} H_3O^+ + OH^-$
Base Acid Acid Base

Copyright © 2005 Pearson Prentice Hall, Inc.

$$K_{a} = \frac{\left[H^{+}\right]^{2} - K_{w}}{\left[HA\right]_{0} - \frac{\left[H^{+}\right]^{2} - K_{w}}{\left[H^{+}\right]}}$$

$$\begin{split} & [HA]_{0} = [HA] + [A^{-}] & [H^{+}] = [A^{-}] + [OH^{-}] \\ & K_{w} = [H^{+}][OH^{-}] \\ & K_{a} = \frac{[H^{+}][A^{-}]}{[HA]} = \frac{[H^{+}][A^{-}]}{[HA]_{0} - [A^{-}]} = \frac{[H^{+}]([H^{+}] - [OH^{-}])}{[HA]_{0} - ([H^{+}] - [OH^{-}])} \\ & = \frac{[H^{+}]([H^{+}] - \frac{K_{w}}{[H^{+}]})}{[HA]_{0} - ([H^{+}] - \frac{K_{w}}{[H^{+}]})} \\ & = \frac{[H^{+}]^{2} - K_{w}}{[HA]_{0} - (\frac{[H^{+}]^{2} - K_{w}}{[H^{+}]})} \end{split}$$

$$K_{\rm a} = 6.2 \times 10^{-10}$$

$$HCN(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + CN^-(aq)$$

1.0 × 10⁻⁶ M

$$6.2 \times 10^{-10} = \frac{x^2}{1.0 \times 10^{-6} - x} \implies x = 2.5 \times 10^{-8}$$

$$pH = 7.60$$

$$K_{a} = \frac{\left[H^{+}\right]^{2} - K_{w}}{\left[HA\right]_{0} - \frac{\left[H^{+}\right]^{2} - K_{w}}{\left[H^{+}\right]}} \qquad x = 1.034 \times 10^{-7}$$

$$pH = 6.99$$

http://www2.iq.usp.br/docente/gutz/Curtipot_.html

Percentage Ionization Revisited

$$HA(aq) + H_2O(1) \rightleftharpoons H_3O^+(aq) + A^-(aq)$$
 $H_2O + H_2O \rightleftharpoons H_3O^+ + OH^-$
Base Acid Base

Copyright © 2005 Pearson Prentice Hall, Inc.

% Ionized =
$$\sqrt{\frac{K_a}{[HA]_0}}$$

% Ionized =
$$\frac{\begin{bmatrix} A^{-} \end{bmatrix}}{\begin{bmatrix} HA \end{bmatrix}_{0}} = \frac{\begin{bmatrix} A^{-} \end{bmatrix}}{\begin{bmatrix} HA \end{bmatrix} + \begin{bmatrix} A^{-} \end{bmatrix}} = \frac{1}{\begin{bmatrix} H^{+} \end{bmatrix}} \le 100\%$$

pH of a Mixture of Weak Acids

Calculate the pH of a solution that contains 1.00 M HCN $(K_a = 6.20 \times 10^{-10})$ and 5.00 M HNO₂ $(K_a = 6.20 \times 10^{-4})$. Also calculate the concentration of cyanide ion (CN⁻) in this solution at equilibrium.

$$5.00 - x \qquad x \qquad x + y$$

$$6.20 \times 10^{-4} = \frac{x^2}{5.00 - x} \implies x = 5.57 \times 10^{-2} \qquad 6.20 \times 10^{-10} = \frac{y \times 5.57 \times 10^{-2}}{1.00}$$

$$pH = 1.254 \qquad [CN^-] = 1.11 \times 10^{-8} \text{ M}$$

Is CN⁻ a Weak Base or Strong Base?

$$HCN(aq) + H_2O(l) = H_3O^+(aq) + CN^-(aq)$$

 $K_a = 6.2 \times 10^{-10}$

$$CN^{-}(aq) + H_2O(l) = HCN(aq) + OH^{-}(aq)$$

$$K_{b} = \frac{[\text{HCN}][\text{OH}^{-}]}{[\text{CN}^{-}]} = \frac{[\text{HCN}]K_{w}}{[\text{CN}^{-}][\text{H}^{+}]} = \frac{1.0 \times 10^{-14}}{6.2 \times 10^{-10}} = 1.6 \times 10^{-5}$$

Basicity:
$$OH^- > CN^- > H_2O$$

$K_{\rm a}$ and $K_{\rm b}$

 K_a and K_b of a conjugate pair are related in this $K_a \times K_b = K_w$ way:

$$CH_3COOH(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + CH_3COO^-(aq)$$

Conjugate pair
$$K_a = \frac{[H_3O^+][CH_3COO^-]}{[CH_3COOH]}$$

$$CH_3COO^-(aq) + H_2O(1) \longrightarrow CH_3COOH(aq) + OH^-(aq)$$

$$K_{\rm b} = \frac{[{\rm CH_3COOH}][{\rm OH^-}]}{[{\rm CH_3COO^-}]}$$

$K_{\rm a}$ and $K_{\rm h}$

TABLE 16.5 • Some Conjugate Acid–Base Pairs			
Acid	K_a	Base	K_b
HNO_3	(Strong acid)	NO_3^-	(Negligible basicity)
HF	6.8×10^{-4}	F^-	1.5×10^{-11}
$HC_2H_3O_2$	1.8×10^{-5}	$C_2H_3O_2^-$	5.6×10^{-10}

@ 2012 Pearson Education, Inc.

 OH^{-}

HCO₃

 H_2CO_3 4.3×10^{-7}

 NH_4^+ 5.6 × 10⁻¹⁰

 5.6×10^{-11}

(Negligible acidity)

$$K_a \times K_b = K_w$$

 $pK_a + pK_b = 14$ at 298 K

 HCO_3^-

 CO_3^{2-}

 2.3×10^{-8}

 1.8×10^{-4}

(Strong base)

Therefore, if you know K_a of an acid, you can calculate the K_h of its conjugate base, and vice versa.

pK_a and pK_b of Water

$$H_2O(l) + H_2O(l) = H_3O^+(aq) + OH^-(aq)$$
 $K_a = 10^{-14}$

Conjugate pair

$$OH^{-}(aq) + H_{2}O(l) = H_{2}O(l) + OH^{-}(aq)$$
 $K_{b} = 1$

$$H_2O(l) + H_2O(l) = H_3O^+(aq) + OH^-(aq)$$
 $K_b = 10^{-14}$

Conjugate pair

$$H_3O^+(aq) + H_2O(l) = H_2O(l) + H_3O^+(aq)$$
 $K_a = 1$

pH of base solution

Calculate the pH of a 1.0 M methylamine solution ($K_b = 4.38 \times 10^{-4}$)

$$CH_3NH_2 + H_2O <===> CH_3NH_3^+ + OH^-$$

$$K_b = \frac{x^2}{(1.0 - x)} \approx \frac{x^2}{1.0} = 4.38 \times 10^{-4}$$
 $x = [OH^-] = 2.1 \times 10^{-2}$
 $[OH^-] = 2.1 \times 10^{-2}$
 $[OH^-] = \frac{K_w}{[OH^-]} = 4.8 \times 10^{-13}$
 $pOH = 1.68$
 $pH = 12.32$
 $pH = 14 - 1.68 = 12.32$

Reactions of Anions with Water

- Anions are bases.
- As such, they can react with water in a hydrolysis reaction to form OH⁻ and the conjugate acid:

$$X^{-}(aq) + H_2O(I) \rightarrow HX(aq) + OH^{-}(aq)$$

Acid-Base Properties of Salts

 A solution of sodium acetate (which dissociates completely into sodium and acetate ions in water) is best described by

$$CH_3COO^- + H_2O \rightarrow CH_3COOH + OH^ CH_3COO^- + H_3O^+ \rightarrow CH_3COOH + H_2O$$

Because water is the solvent and is present in large amount!

Reactions of Cations with Water

- Cations with acidic protons (like NH₄+) will lower the pH of a solution.
- Many metal cations that are hydrated in solution also lower the pH of the solution.

Reactions of Cations with Water

- Attraction between nonbonding electrons on oxygen and the metal causes a shift of the electron density in water.
- This makes the O–H bond more polar and the water more acidic.

Reactions of Cations with Water

TABLE 16.6 • Acid-Dissociation Constants for Metal Cations in Aqueous Solution at 25 °C

Cation	K_a	pK_a
Fe ²⁺	3.2×10^{-10}	9.49
Zn^{2+}	2.5×10^{-10}	9.60
Ni^{2+}	2.5×10^{-11}	10.60
Fe ³⁺	6.3×10^{-3}	2.20
Cr ³⁺	1.6×10^{-4}	3.80
Al ³⁺	1.4×10^{-5}	4.85

 Greater charge and smaller size make a cation more acidic.

Acid-Base Properties of Salts

- Salts of strong acids and strong bases form neutral solutions: NaCl, KNO₃
- Salts of weak acids and strong bases form basic solutions: KNO₂, NaClO
- Salts of strong acids and weak bases form acidic solutions: NH₄NO₃
- Salts of weak acids and weak bases form solutions that may be acidic, neutral, or basic; it depends on the K_a and K_b values.

Changes in pH for Salts in Water

Cations and Anions of Salts in Neutral, Basic, and Acidic Salt Solutions

Type of Solution	Cations	Anions	рН
Neutral	From strong bases Group 1A (1): Li ⁺ , Na ⁺ , K ⁺ Group 2A (2): Ca ²⁺ , Mg ²⁺ , Sr ²⁺ , Ba ²⁺ (but not Be ²⁺)	From strong acids Cl ⁻ , Br ⁻ , I ⁻ , NO ₃ ⁻ , ClO ₄ ⁻	7.0
Basic	From strong bases Group 1A (1): Li ⁺ , Na ⁺ , K ⁺ Group 2A (2): Ca ²⁺ , Mg ²⁺ , Sr ²⁺ , Ba ²⁺ (but not Be ²⁺)	From weak acids F ⁻ , NO ₂ ⁻ , CN ⁻ , CO ₃ ²⁻ , SO ₄ ²⁻ , CH ₃ COO ⁻ , S ²⁻ , PO ₄ ³⁻	>7.0
Acidic	From weak bases NH ₄ ⁺ , Be ² +, Al ³⁺ , Zn ²⁺ , Cr ³⁺ , Fe ³⁺ (small, highly charged metal ions)	From strong acids Cl ⁻ , Br ⁻ , I ⁻ , NO ₃ ⁻ , ClO ₄ ⁻	< 7.0

The pH of Salts

Calculate the pH of 0.30 M and NaF solution. (HF: K_a = 7.2 x 10⁻⁴) Major component in solution:

$$K_{b} = \frac{[HF][OH^{-}]}{[F^{-}]}$$

$$K_{a} \times K_{b} = \frac{[HF][OH^{-}]}{[F^{-}]} \times \frac{[F^{-}][H^{+}]}{[HF]} = [H^{+}][OH^{-}] = K_{w}$$

$$K_{a} = \frac{[F^{-}][H^{+}]}{[HF]}$$

$$K_{b} = \frac{[HF][OH^{-}]}{[F^{-}]} = K_{w}/K_{a} = 1.4 \times 10^{-11} = \frac{x^{2}}{0.30-x}$$

$$x = 2.0 \times 10^{-6} \quad \text{pOH} = 5.69$$

$$pH = 14 - 5.69 = 8.31$$

The pH of Salts

Calculate the pH of 0.10 M and NH₄Cl solution. (NH₃: K_b = 1.8 x 10⁻⁵) Major component in solution:

$$NH_4^+$$
 <===> NH_3 + H^+ Initial 0.10 0 0 Change -x +x +x Equilibrium 0.10-x x x

$$K_a = \frac{[NH_3][H^+]}{[NH_4^+]}$$
 $K_a = K_w/K_b = 5.6 \times 10^{-10} = \frac{x^2}{0.10-x}$

$$K_b = \frac{[NH_4^+][OH^-]}{[NH_3]}$$
 $x = 7.5 \times 10^{-6}$
pH = 5.13

Predicte the pH of salts

The K_a value of cation vs.

The K_b value of anion

 $K_{\rm a} > K_{\rm b}$ pH < 7 (acidic) $K_{\rm b} > K_{\rm a}$ pH > 7 (basic) $K_{\rm a} = K_{\rm b}$ pH = 7 (neutral)

(can be obtained frm the K_a of its conjugate acid, K_w/K_b)

Formula	Value of K_a^*	- NH4C2H3O2 pH = 7
HSO ₄ ⁻	1.2×10^{-2}	5.6×10^{-10} vs. $(1 \times 10^{-14}/1.8 \times 10^{-5}) = 5.6 \times 10^{-10}$
HClO ₂	1.2×10^{-2}	$3.0 \times 10^{-6} \text{ Vs.} (1 \times 10^{-6} / 1.8 \times 10^{-6}) = 3.0 \times 10^{-6}$
HC ₂ H ₂ ClO ₂	1.35×10^{-3}	
HF	7.2×10^{-4}	NIII NIG
HNO_2	4.0×10^{-4}	NH_4NO_2 pH < 7
$HC_2H_3O_2$	1.8×10^{-5}	5.6×10^{-10} vs. $(1 \times 10^{-14}/4.0 \times 10^{-4}) = 2.5 \times 10^{-11}$
$[Al(H_2O)_6]^{3+}$	1.4×10^{-5}	0.0 x 10
HOC1	3.5×10^{-8}	
HCN	6.2×10^{-10}	NH ₄ CN pH > 7
$\mathrm{NH_4}^+$	5.6×10^{-10}	5.6×10^{-10} vs. $(1 \times 10^{-14}/6.2 \times 10^{-10}) = 1.6 \times 10^{-5}$
HOC ₆ H ₅	1.6×10^{-10}	3.5 × 15

Learning Check

Calculate the pH for the solution of 0.1 M aqueous solution of $(NH_4)_2CO_3$.

(For H_2CO_3 , $pK_{a1} = 6.367$ and $pK_{a2} = 10.329$; NH_3 , $pK_b = 4.74$)

$$NH_4^+ + H_2O \rightleftharpoons NH_3 + H_3O^+$$
 (1)

$$CO_3^{2-} + H_2O \rightleftharpoons HCO_3^{-} + OH^{-}$$
 (2)

$$HCO_3^- + H_2O \rightleftharpoons H_2CO_3 + OH^-$$
 (3)

$$H_2O \rightleftharpoons H^+ + OH^-$$
 (4)

From the material balance:

$$0.1 = [HCO_3^{-}] + [CO_3^{2-}] + [H_2CO_3]$$
 (5)

$$0.2 = [NH_3] + [NH_4^+]$$
 (6)

From the charge balance:

$$[NH_4^+] + [H^+] = [HCO_3^-] + 2[CO_3^{2-}] + [OH^-]$$
 (7)

pH = 9.229 CurTiPot

Amino Acids

$$H_3C$$
 O
 OH
 OH

Alanine

$$R = CH_3$$

$$H_3N^+$$
-CHR-COOH + $H_2O \leftrightarrow H_3N^+$ -CHR-COO⁻ + H_3O^+ pK₁ =

$$pK_1 = 2.35$$

$$H_3N^+$$
-CHR-COO⁻ + $H_2O \leftrightarrow H_2N$ -CHR-COO⁻ + H_3O^+

$$pK_2 = 9.87$$

Roughly estimate K_c for

$$H_2N$$
-CHR-COOH $\leftrightarrow {}^{+}H_3N$ -CHR-COO $^{-}$

We can imagine that the formation of a zwitterion occurs as a series of steps:

$$K_{c} = \frac{\begin{bmatrix} ^{+} \text{Ala}^{-} \end{bmatrix}}{\begin{bmatrix} \text{Ala} \end{bmatrix}} = \frac{\begin{bmatrix} \text{Ala}^{-} \end{bmatrix} \begin{bmatrix} \text{H}_{3} \text{O}^{+} \end{bmatrix}}{\begin{bmatrix} \text{Ala} \end{bmatrix}} \begin{bmatrix} ^{+} \text{Ala}^{-} \end{bmatrix} \begin{bmatrix} \text{OH}^{-} \end{bmatrix}}{\begin{bmatrix} \text{Ala}^{-} \end{bmatrix}} \times \frac{1}{K_{w}} \approx \frac{4.5 \times 10^{-3} \times 7.4 \times 10^{-5}}{10^{-14}} = 3.3 \times 10^{7}$$

$$p \text{K}_{c} \approx p \text{K}_{1} - p \text{K}_{2} \approx p \text{K}_{3} - p \text{K}_{4} \approx \frac{4.5 \times 10^{-3} \times 7.4 \times 10^{-5}}{10^{-14}} = \frac{1}{10^{-14}}$$

Alanine

What is the pH of a 0.050 M aqueous solution of alanine?

Which of the following reaction we need to consider?

$$^{+}\text{H}_{3}\text{N-CHR-COO}^{-} + \text{H}_{2}\text{O} \leftrightarrow ^{+}\text{H}_{3}\text{N-CHR-COOH} + \text{OH}^{-} \text{ p}K_{b} = 11.65$$

$$+H_3N-CHR-COO^- + H_2O \leftrightarrow H_2N-CHR-COO^- + H_3O^+$$
 $pK_2 = 9.87$ $0.050 - x$ x

$$1.3 \times 10^{-10} = \frac{x^2}{0.05 - x}$$

$$pH = 5.50$$

Periodic Trends in Acid Strength

Copyright © 2005 Pearson Prentice Hall, Inc. 16 - Acids and Bases

When does the H-X bond dissociate?

- For Brønsted-Lowry acid, X-H bond has to be dissociated.
- Two important structural factors
 - Bond Polarity (high is good)
 H-C vs. H-Cl
 neutral vs. strong acid
 - Bond Strength (low is good)
 H-F > HCl > HBr > HI
 Weak acid --> strong acid

Table 14.7 Bond Strengths and Acid Strengths for Hydrogen Halides		
H—X Bond	Bond Strength (kJ/mol)	Acid Strength in Water
H—F H—Cl H—Br H—I	565 427 363 295	Weak Strong Strong Strong

Strength of Oxyacids

Acid strength *increases* with the electronegativity of the central atom, and with the *number* of terminal oxygen atoms.

Oxyacids

- Contains the group H–O–X.
- For a given series the acid strength increases with an increase in the number of oxygen atoms attached to the central atom.
- The greater the ability of X to draw electrons toward itself (electronegative), the greater the acidity of the molecule.

Group Discussion

Select the stronger acid in each pair:

(a) nitrous acid, HNO₂

(c) Give a physical explanation of the keys that govern acid strengths?

(b) Cl₃CCOOH

BrCH₂COOH

If the O–H bond is more ionic, the proton is more acidic.

Strengths of Amines as Bases

- Aromatic amines are much weaker bases than aliphatic amines.
- This is due in part to the fact that the π electrons in the benzene ring of an aromatic molecule are delocalized and can involve the nitrogen atom's lone-pair electrons in the resonance hybrid.
- As a result, the lone-pair electrons are much less likely to accept a proton.

Aliphatic amine

CH₃CH₂—NH₂
(Ethylamine)

Aromatic amine

Lewis Acids and Bases

- There are reactions in nonaqueous solvents, in the gaseous state, and even in the solid state that can be considered acid—base reactions which Brønsted—Lowry theory is not adequate to explain.
- A *Lewis acid* is a species that is an electron-pair acceptor and a *Lewis base* is a species that is an electron-pair donor.

From Proton Transfer to Electron Transfer

$$HO - H + NH_3 \rightarrow OH^- + NH_4^+$$

Acid-Base Reaction without Proton Transfer

$$F \longrightarrow \begin{array}{c} CH_3 \\ \hline \\ -DB \\ \hline \\ -DB \\ \hline \\ -DB \\ \hline \\ -DB \\ -D$$

The Lewis Acid-Base Model

Lewis acids and bases

- Lewis acid: electron pair acceptor
- Lewis base: electron pair donor

► Three Models for Acids and Bases			
Model	Definition of Acid	Definition of Base	
Arrhenius Brønsted–Lowry Lewis	H ⁺ producer H ⁺ donor Electron-pair acceptor	OH ⁻ producer H ⁺ acceptor Electron-pair donor	

Lewis Acids and Bases

Lewis Acids	Lewis Bases	Reactions
BF ₃	OMe ₂	$BF_3 + OMe_2 \rightarrow BF_3OMe_2$
SiF ₄	F-	$SiF_4 + 2 F^- \rightarrow SiF_6^{2-}$
B_2H_6	H-	$B_2H_6 + 2 H^- \rightarrow B_2H_8^- \rightarrow 2 BH_4^-$
AICI ₃	RCI	$RCI + AICI_3 \rightarrow R^+ + AICI_4^-$
SO ₂	CaO	$CaO(s) + SO_2(g) \rightarrow CaSO_3(s)$
CO ₂	H ₂ O	$CO_2 + H_2O \rightarrow H_2CO_3$

Lewis Acids and Bases

$$\begin{array}{c|c} H & H & -H_2O \\ \hline Si & Al & Si & Al & 873 \text{ K, under evac.} \\ \hline O & O & O & O & O & -1000 \\ \hline Brönsted acid sites & Lewis acid sites & Lewis acid sites \\ \end{array}$$

 Common sugars such as glucose (center) can be broken down in the Lewis acid sites of zeotype catalysts into useful lactate esters (right)

M S Holm, S Saravanamurugan, E Taarning, *Science*, 2010, DOI: 10.1126/science.1183990

Learning Check

Arrange the following 1.0 *M* solutions from lowest to highest pH.

HBr NaOH NH₄Cl

NaCN NH₃ HCN

NaCl HF

Justify your answer.

