

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.

#4

SEQUENCE LISTING

<110> RHODES, Simon J.
BRIDWELL, Jeanne L.
MEIER, Bradley C.
PARKER, Gretchen E.
PRICE, Jeffrey R.
SHOWALTER, Aaron D.
SLOOP, Kyle W.

<120> GENERATION OF DIAGNOSTIC TOOLS TO ASSAY THE HUMAN
LHX3/P-LIM/LIM-3 FACTOR

<130> 053884-5003

<140> 09/932,367
<141> 2001-08-17

<150> PCT/US00/04424
<151> 2000-02-22

<150> US 60/121,110
<151> 1999-02-22

<160> 113

<170> PatentIn Ver. 2.1

<210> 1
<211> 1605
<212> DNA
<213> Sus scrofa

<400> 1
ctgggagggg cggccacagg agctgggagg aaaagagatc ccactgtgtg cccgctgcga 60
ccagcacatc ctggaccgct tcatcctcaa ggctctggac cgccactggc acagcaagtg 120
cctcaagtgc agtactgccc acacgcccgt ggccgagcgc tgcttcagcc gcggagagag 180
cctctactgc aaggacgact tcttcaagcg cttegggacc aagtgcgcgc cgtgccagct 240
gggcattccc cccacgcagg tggtgccgcgc cggccaggac ttctgttacc acctgcactg 300
cttcgcctgc gtcgtgtcga agcggcagct ggccacgggc gacgagttt acctcatgga 360
ggacagccgg ctcgtgtcga aggccgacta cgagaccgca aagcagcggaggc 420
cacggccaag cggccgcgcga cgaccatcac ggccaagcag ctggagacgc tgaagagcgc 480
ctacaacacg tcgccccaaagc cccgcgcgcga cgtgcgcgcag cagctctcct ccgagaccgg 540
cctggacatg cgcgtctgc aggtgtggtt ccagaaccgc cggcccaagg aaaagcggct 600
caagaaggac gcccgcggc agcgtctgggg ccagtacttt cgtaacatga agcgcgcggc 660
cggtggctcc aagtccgaca aggacagcgt ccaggaggag gggcaggaca gtgacgcgc 720
ggtctccccc acagacgagc catccatggc cggaaatgggc cctgccaacg gcctctacgg 780
cggcctgggg gagcctgccc ctgccttggg cggccctcg ggggccccgg gcagcttccc 840
gctggaggac ggaggcctgg cggcccccga gcagtatggc gagctgcgcgc ccagcagccc 900
ctacggtgtc ccctcgctgc cccgcgcctc gcagacgcgc cctggccccc agccctcct 960
ctccagttt gtttacccgg aggctggctt gggcttggc cccgcggggc ccccaagggtgg 1020
gccccccaccc atgagggtgc tggcaggaaa cggacccagc tccgacactat ccacggggag 1080
cagtgggggc taccccgact tccctgcccag tccgcctcc tggctggacg aggtggatca 1140
cgctcaggcc tggactgaggc cccagctccg tggagcacca gacacgagca ctgccccctgg 1200
ctgggtggtc gggagccgcg ctctccttc cccagccct gggcctctaa aggacacagg 1260
gtcaccggcg gggcacagggc tgaggactgt ccagcccgcc gggcctggcc cccggcagag 1320
ggactttctc ccggctctcgaa ggctccttct gggacaaggag gagccacctg gtggctgctc 1380
agcaaggcctt gttttgttaag cagattctc cctttatcaa caaaaattaa ctgagtgtct 1440
gctgctttt cttagaccggaa gtggtcagcc cccgaagccg gggagggggg ctctccccag 1500
cccagagcag cacagccctc agactggaaat atgctttaat tttaaaatt aaaaaataat 1560
acgaactgtg ctccatttc ccagcttctt ctgtcttagtt ctgcc 1605

COPY OF PAPERS
ORIGINALLY FILED

<210> 2
<211> 383
<212> PRT
<213> Sus scrofa

<400> 2

Trp Glu Gly Arg Pro Gln Glu Leu Gly Gly Lys Glu Ile Pro Leu Cys
1 5 10 15

Ala Gly Cys Asp Gln His Ile Leu Asp Arg Phe Ile Leu Lys Ala Leu
20 25 30

Asp Arg His Trp His Ser Lys Cys Leu Lys Cys Ser Asp Cys His Thr
35 40 45

Pro Leu Ala Glu Arg Cys Phe Ser Arg Gly Glu Ser Leu Tyr Cys Lys
50 55 60

Asp Asp Phe Phe Lys Arg Phe Gly Thr Lys Cys Ala Ala Cys Gln Leu
65 70 75 80

Gly Ile Pro Pro Thr Gln Val Val Arg Arg Ala Gln Asp Phe Val Tyr
85 90 95

His Leu His Cys Phe Ala Cys Val Val Cys Lys Arg Gln Leu Ala Thr
100 105 110

Gly Asp Glu Phe Tyr Leu Met Glu Asp Ser Arg Leu Val Cys Lys Ala
115 120 125

Asp Tyr Glu Thr Ala Lys Gln Arg Glu Ala Glu Ala Thr Ala Lys Arg
130 135 140

Pro Arg Thr Thr Ile Thr Ala Lys Gln Leu Glu Thr Leu Lys Ser Ala
145 150 155 160

Tyr Asn Thr Ser Pro Lys Pro Ala Arg His Val Arg Glu Gln Leu Ser
165 170 175

Ser Glu Thr Gly Leu Asp Met Arg Val Val Gln Val Trp Phe Gln Asn
180 185 190

Arg Arg Ala Lys Glu Lys Arg Leu Lys Lys Asp Ala Gly Arg Gln Arg
195 200 205

Trp Gly Gln Tyr Phe Arg Asn Met Lys Arg Ala Arg Gly Gly Ser Lys
210 215 220

Ser Asp Lys Asp Ser Val Gln Glu Glu Gly Gln Asp Ser Asp Ala Glu
225 230 235 240

Val Ser Phe Thr Asp Glu Pro Ser Met Ala Glu Met Gly Pro Ala Asn
245 250 255

Gly Leu Tyr Gly Gly Leu Gly Glu Pro Ala Pro Ala Leu Gly Arg Pro
260 265 270

Ser Gly Ala Pro Gly Ser Phe Pro Leu Glu His Gly Gly Leu Ala Gly
275 280 285

Pro Glu Gln Tyr Gly Glu Leu Arg Pro Ser Ser Pro Tyr Gly Val Pro
 290 295 300

 Ser Ser Pro Ala Ala Leu Gln Ser Leu Pro Gly Pro Gln Pro Leu Leu
 305 310 315 320

 Ser Ser Leu Val Tyr Pro Glu Ala Gly Leu Gly Leu Val Pro Ala Gly
 325 330 335

 Pro Pro Gly Gly Pro Pro Pro Met Arg Val Leu Ala Gly Asn Gly Pro
 340 345 350

 Ser Ser Asp Leu Ser Thr Gly Ser Ser Gly Gly Tyr Pro Asp Phe Pro
 355 360 365

 Ala Ser Pro Ala Ser Trp Leu Asp Glu Val Asp His Ala Gln Phe
 370 375 380

<210> 3
<211> 399
<212> PRT
<213> Mus musculus

<400> 3
Met Leu Leu Glu Ala Glu Leu Asp Cys His Arg Glu Arg Pro Gly Ala
1 5 10 15

Pro Gly Ala Ser Ala Leu Cys Thr Phe Ser Arg Thr Pro Glu Ile Pro
20 25 30

Met Cys Ala Gly Cys Asp Gln His Ile Leu Asp Arg Phe Ile Leu Lys
35 40 45

Ala Leu Asp Arg His Trp His Ser Lys Cys Leu Lys Cys Ser Asp Cys
50 55 60

His Val Pro Leu Ala Glu Arg Cys Phe Ser Arg Gly Glu Ser Val Tyr
65 70 75 80

Cys Lys Asp Asp Phe Phe Lys Arg Phe Gly Thr Lys Cys Ala Ala Cys
85 90 95

Gln Leu Gly Ile Pro Pro Thr Gln Val Val Arg Arg Ala Gln Asp Phe
100 105 110

Val Tyr His Leu His Cys Phe Ala Cys Val Val Cys Lys Arg Gln Leu
115 120 125

Ala Thr Gly Asp Glu Phe Tyr Leu Met Glu Asp Ser Arg Leu Val Cys
130 135 140

Lys Ala Asp Tyr Glu Thr Ala Lys Gln Arg Glu Ala Glu Ala Thr Ala
145 150 155 160

Lys Arg Pro Arg Thr Thr Ile Thr Ala Lys Gln Leu Glu Thr Leu Lys
165 170 175

Ser Ala Tyr Asn Thr Ser Pro Lys Pro Ala Arg His Val Arg Glu Gln
180 185 190

Leu Ser Ser Glu Thr Gly Leu Asp Arg Val Val Gln Val Trp Phe Gln
 195 200 205
 Asn Arg Arg Ala Lys Glu Lys Arg Leu Lys Lys Asp Ala Gly Arg Gln
 210 215 220
 Arg Trp Gly Gln Tyr Phe Arg Asn Met Lys Arg Ser Arg Gly Ser Ser
 225 230 235 240
 Lys Ser Asp Lys Asp Ser Ile Gln Glu Gly Gln Asp Ser Asp Ala Glu
 245 250 255
 Val Ser Phe Thr Asp Glu Pro Ser Met Ala Asp Met Gly Pro Ala Asn
 260 265 270
 Gly Leu Tyr Ser Ser Leu Gly Glu Pro Ala Pro Ala Leu Gly Arg Pro
 275 280 285
 Val Gly Gly Leu Gly Ser Phe Thr Leu Asp His Gly Gly Leu Thr Gly
 290 295 300
 Pro Glu Gln Tyr Arg Glu Leu Arg Pro Gly Ser Pro Tyr Gly Ile Pro
 305 310 315 320
 Pro Ser Pro Ala Ala Pro Gln Ser Leu Pro Gly Pro Gln Pro Leu Leu
 325 330 335
 Ser Ser Leu Val Tyr Pro Asp Thr Asn Leu Ser Leu Val Pro Ser Gly
 340 345 350
 Pro Pro Gly Gly Pro Pro Pro Met Arg Val Leu Ala Gly Asn Gly Pro
 355 360 365
 Ser Ser Asp Leu Ser Thr Glu Ser Ser Ser Gly Tyr Pro Asp Phe Pro
 370 375 380
 Ala Ser Pro Ala Ser Trp Leu Asp Glu Val Asp His Ala Gln Phe
 385 390 395

<210> 4
 <211> 395
 <212> PRT
 <213> Gallus gallus

<400> 4
 Met Leu Leu Glu Arg Val Arg Ala Gly Ser Glu Lys Ala Ala Glu Leu
 1 5 10 15
 Cys Pro Phe Pro Arg Ser Pro Glu Ile Pro Leu Cys Ala Gly Cys Asn
 20 25 30
 Gln His Ile Val Asp Arg Phe Ile Leu Lys Val Leu Asp Arg His Trp
 35 40 45
 His Ser Lys Cys Leu Lys Cys Ser Asp Cys Gln Thr Gln Leu Ala Glu
 50 55 60
 Lys Cys Phe Ser Arg Gly Asp Gly Val Tyr Cys Lys Glu Asp Phe Phe
 65 70 75 80

Lys Arg Phe Gly Thr Lys Cys Ala Ala Cys Gln Gln Gly Ile Pro Pro
 85 90 95
 Thr Gln Val Val Arg Arg Ala Gln Asp Phe Val Tyr His Leu His Cys
 100 105 110
 Phe Ala Cys Ile Val Cys Lys Arg Gln Leu Ala Thr Gly Asp Glu Phe
 115 120 125
 Tyr Leu Met Glu Asp Ser Arg Leu Val Cys Lys Ala Asp Tyr Glu Thr
 130 135 140
 Ala Lys Gln Arg Glu Ala Glu Ser Thr Ala Lys Arg Pro Arg Thr Thr
 145 150 155 160
 Ile Thr Ala Lys Gln Leu Glu Thr Leu Lys Asn Ala Tyr Asn Asn Ser
 165 170 175
 Pro Lys Pro Ala Arg His Val Arg Glu Gln Leu Ser Ser Glu Thr Gly
 180 185 190
 Leu Asp Met Arg Val Val Gln Val Trp Phe Gln Asn Arg Arg Ala Lys
 195 200 205
 Glu Lys Arg Leu Lys Lys Asp Ala Gly Arg Gln Arg Trp Gly Gln Tyr
 210 215 220
 Phe Arg Asn Met Lys Arg Ser Arg Gly Thr Ser Lys Ser Asp Lys Asp
 225 230 235 240
 Ser Ile Gln Glu Glu Gly Pro Asp Ser Asp Ala Glu Val Ser Phe Thr
 245 250 255
 Asp Glu Pro Ser Met Ser Glu Met Ser His Ser Asn Gly Ile Tyr Ser
 260 265 270
 Asn Leu Ser Glu Ala Ser Pro Ala Leu Gly Arg Gln Ala Gly Thr Asn
 275 280 285
 Gly Gly Phe Ser Leu Asp His Ser Gly Ile Pro Ala Gln Asp Gln Tyr
 290 295 300
 His Asp Leu Arg Ser Asn Ser Pro Tyr Gly Ile Pro Gln Ser Pro Ala
 305 310 315 320
 Ser Leu Gln Ala Leu Pro Gly His Gln Pro Leu Ile Ser Ser Leu Val
 325 330 335
 Tyr Pro Asp Ser Gly Leu Gly Ile Met Gly Gln Gly Gly Gln Gly Val
 340 345 350
 Pro Gln Ser Met Arg Val Leu Ala Gly Asn Gly Pro Ser Ser Asp Leu
 355 360 365
 Ser Thr Gly Ser Ser Gly Gly Tyr Pro Asp Phe Pro Ala Ser Pro Ala
 370 375 380
 Ser Trp Leu Asp Glu Val Asp His Ala Gln Phe
 385 390 395

<210> 5
<211> 394
<212> PRT
<213> Xenopus laevis

<400> 5
Met Leu Leu Glu Arg Val Arg Thr Gly Thr Gln Lys Ser Ser Asp Met
1 5 10 15
Cys Gly Tyr Thr Gly Ser Pro Glu Ile Pro Gln Cys Ala Gly Cys Asn
20 25 30
Gln His Ile Val Asp Arg Phe Ile Leu Lys Val Leu Asp Arg His Trp
35 40 45
His Ser Lys Cys Leu Lys Cys Asn Asp Cys Gln Ile Gln Leu Ala Glu
50 55 60
Lys Cys Phe Ser Arg Gly Asp Ser Val Tyr Cys Lys Asp Asp Phe Phe
65 70 75 80
Lys Arg Phe Gly Thr Lys Cys Ala Ala Cys Gln Gln Gly Ile Pro Pro
85 90 95
Thr Gln Val Val Arg Arg Ala Gln Glu Phe Val Tyr His Leu His Cys
100 105 110
Phe Ala Cys Ile Val Cys Lys Arg Gln Leu Ala Thr Gly Asp Glu Phe
115 120 125
Tyr Leu Met Glu Asp Ser Arg Leu Val Cys Lys Ala Asp Tyr Glu Thr
130 135 140
Ala Lys Gln Arg Glu Ala Glu Ser Thr Ala Lys Arg Pro Arg Thr Thr
145 150 155 160
Ile Thr Ala Lys Gln Leu Glu Thr Leu Lys Asn Ala Tyr Asn Asn Ser
165 170 175
Pro Lys Pro Ala Arg His Val Arg Glu Gln Leu Ser Ser Glu Thr Gly
180 185 190
Leu Asp Met Arg Val Val Gln Val Trp Phe Gln Asn Arg Arg Ala Lys
195 200 205
Glu Lys Arg Leu Lys Lys Asp Ala Gly Arg Gln Arg Trp Gly Gln Tyr
210 215 220
Phe Arg Asn Met Lys Arg Ser Arg Gly Asn Ser Lys Ser Asp Lys Asp
225 230 235 240
Ser Ile Gln Glu Glu Gly Pro Asp Ser Asp Ala Glu Val Ser Phe Thr
245 250 255
Asp Glu Pro Ser Met Ser Glu Met Asn His Ser Asn Gly Ile Tyr Asn
260 265 270
Ser Leu Asn Asp Ser Ser Pro Val Leu Gly Arg Gln Ala Gly Ser Asn
275 280 285

Gly Pro Phe Ser Leu Glu His Gly Gly Ile Pro Thr Gln Asp Gln Tyr
 290 295 300
 His Asn Leu Arg Ser Asn Ser Pro Tyr Gly Ile Pro Gln Ser Pro Ala
 305 310 315 320
 Ser Leu Gln Ser Met Pro Gly His Gln Ser Leu Leu Ser Asn Leu Ala
 325 330 335
 Phe Pro Asp Thr Gly Leu Gly Ile Ile Gly Gln Gly Gly Gln Gly Val
 340 345 350
 Ala Pro Thr Met Arg Val Ile Gly Val Asn Gly Pro Ser Ser Asp Leu
 355 360 365
 Ser Thr Gly Ser Ser Gly Gly Tyr Pro Asp Phe Pro Val Ser Pro Ala
 370 375 380
 Ser Leu Asp Glu Val Asp His Thr Gln Phe
 385 390

<210> 6
 <211> 398
 <212> PRT
 <213> Danio rerio

<400> 6
 Met Leu Leu Glu His Pro Gly Ser Ser Cys Gln Asn Ala Gly Asn Tyr
 1 5 10 15
 Thr Arg Tyr Ser Ser Ser Gln Asp Ile Pro Val Cys Ala Gly Cys Asn
 20 25 30
 Gln His Ile Val Asp Arg Phe Ile Leu Lys Val Leu Asp Arg His Trp
 35 40 45
 His Ser Lys Cys Leu Lys Cys Ser Asp Cys Gln Ser Gln Leu Ala Asp
 50 55 60
 Lys Cys Phe Ser Arg Gly Asp Ser Val Tyr Cys Lys Asp Asp Phe Phe
 65 70 75 80
 Lys Arg Phe Gly Thr Lys Cys Ala Ala Cys Gln Gln Gly Ile Pro Pro
 85 90 95
 Thr Gln Val Val Arg Arg Ala Gln Asp Phe Val Tyr His Leu His Cys
 100 105 110
 Phe Ala Cys Ile Val Cys Lys Arg Gln Leu Ala Thr Gly Asp Glu Tyr
 115 120 125
 Tyr Leu Met Glu Asp Ser Arg Leu Val Cys Lys Ala Asp Tyr Glu Thr
 130 135 140
 Ala Lys Gln Arg Glu Ala Asp Ser Thr Ala Lys Arg Pro Arg Thr Thr
 145 150 155 160
 Ile Thr Ala Lys Gln Leu Glu Thr Leu Lys Asn Ala Tyr Asn Asn Ser
 165 170 175

Pro Lys Pro Ala Arg His Val Arg Glu Gln Leu Ser Thr Glu Thr Gly
 180 185 190

 Leu Asp Met Arg Val Val Gln Val Trp Phe Gln Asn Arg Arg Ala Lys
 195 200 205

 Glu Lys Arg Leu Lys Lys Asp Ala Gly Arg Gln Arg Trp Gly Gln Tyr
 210 215 220

 Phe Arg Asn Met Lys Arg Ser Arg Gly Thr Ser Lys Ser Asp Lys Asp
 225 230 235 240

 Ser Thr Gln Glu Asp Gly Met Asp Ser Asp Ala Glu Val Ser Phe Thr
 245 250 255

 Asp Glu Pro Pro Met Ser Asp Leu Gly His Ser Asn Gly Ile Tyr Ser
 260 265 270

 Ser Leu Ser Glu Ser Ser Pro Ala Leu Ser Arg Gln Gly Gly Asn His
 275 280 285

 Pro Ala Phe Pro Leu Glu His Gly Ala Ile Ile Pro Ser Gln Glu Pro
 290 295 300

 Tyr His Asp Ile Gln Ala Ser Ser Pro Tyr Ser Leu Pro Gln Ser Pro
 305 310 315 320

 Gly Pro Leu Gln Pro Leu Pro Arg His Gln Pro Leu Ile Ser Ser Leu
 325 330 335

 Val Tyr Pro Glu Ser Gly Leu Pro Met Ala Gly Gln Ser Gly Gly Gln
 340 345 350

 Asp Met Thr Pro Gly Val Arg Met Met Ala Ala Gly Asn Gly Pro Ser
 355 360 365

 Ser Asp Leu Ser Thr Gly Ser Ser Gly Gly Tyr Pro Asp Phe Pro Ala
 370 375 380

 Ser Pro Ala Ser Trp Leu Asp Glu Val Asp His Ala Gln Phe
 385 390 395

<210> 7
 <400> 7
 000

<210> 8
 <400> 8
 000

<210> 9
 <211> 2160
 <212> DNA
 <213> Homo sapiens

<400> 9
 ggcacgagcc ccgcacgacg cggcgggact tgggagcccc gaaccctcca ggggacgctg 60
 acctcgagg agcgcgtctc gcgccactcg gcctggtggc cgcgatgctg ctggaaacgg 120

ggctcgagcg cgaccgagcg aggccgggg cgcgcgcgt ctgcacccctg ggcgggactc 180
 gggagatccc gctgtgcgt ggctgtgacc agcacatctt ggaccgccttc atcctaagg 240
 ctctggaccg ccactggcac agcaagtgtc tcaagtgcag cgactgccac acgccactgg 300
 ccgagcgtcg cttcagccga ggggagagcg tttaactgc当地 ggacgacttt ttcaagcgct 360
 tcgggaccaa gtgcggcg tgccagctgg gcatcccgcc caccgaggcg gtgcggcg 420
 cccaggactt cgttaccc ctgcactgtt ttgcctgcgt cgtgtgc当地 cggcagctgg 480
 ccacggcga cgaggcttac ctcatggagg acagccggct cgtgtgc当地 gcccggactacg 540
 aaaccggccaa gcagcgagag gccgaggcca cggccaaagcg gccgc当地 caccg accatcaccg 600
 ccaaggactt ggagacgtcg aagagcgctt acaacaccc gcccaagccg gccgc当地 caccg 660
 tgcgc当地 gagca gctctcgcc gagacggcc tggacatgc当地 cgtggc当地 gtttggttcc 720
 agaaccggccg gccaaggagg aagaggtgtc当地 agaaggacgc cggccggc当地 cgctggggc当地 780
 agtatttccg caacatgtc当地 cgctcccgcc gcccgtccaa gtcggacaag gacagcgctc 840
 aggaggggca ggacagcgac gctgaggctt cttccccgta tgagccttcc ttggcggaaa 900
 tggggccggc caatggcctc tacgggagct tgggggaaacc caccaggcc ttgggccc当地 960
 cctcgggagc cttgggcaac ttctccctgg agcatggagg cttggcaggc ccagagca 1020
 accgagact gctcccgcc agcccttacg gtgtcccccc atccccggcc gccccggc当地 1080
 gcctccctgg cccccaggcc ctcccttcc gcttgggtta cccagacacc agcttggggc 1140
 ttgtgc当地 gggagccccc ggccggccccc caccatgc当地 ggtgtggca gggAACGGAC 1200
 ccagtttgc当地 cctatccacg gggagcagcg ggggttaccc cacttccctt gccaggccccc 1260
 cctctggctt ggtgaggta gaccacgtc agttctgacc caggccggc tccacccttc 1320
 acctcacacg agggagctgc ccctgggtgg gcccgtcgcc gctgtgggg tttccgaggaa 1380
 agtggggccg gggcgtcaag ggagggtctgg tgccttc当地 gcctccctt gccgaccgc当地 1440
 cagctccctc tctggggctt gagggaccc cctggccccc cctctgacac agggctggcc 1500
 cggccagggtgg cctcccgagca agccagcctt tttgttaagc aaatttctcc ctttatttgc 1560
 ccaattaact gagaacttgc tgctatttctt agacatgaaa tgtcaccttgc当地 ctgaggccca 1620
 gcccaggccca gcatagcccg agggctggaa aaacgttttcc atctctaaaa ctgagaaatc 1680
 atcataatttgc tgctttact tcccaggctc catgtgttgg ggagccgtca ccccgaggct 1740
 ccctttagt gtcggagatt ggccttgc当地 gtcgaggccaa gaggctgc当地 aggcggggac 1800
 acacgtgtt cctcttccacc ccaccagg cccttgggtt ccaggctgc当地 cccacagatg 1860
 tctgttgc当地 aacagcttc cctccctgcc ggagccggct ctgccc当地 gagattggaa 1920
 agtctccccc ctggagaagg gtggggctcc tctgagcttgc当地 ccctgc当地 tccatcagat 1980
 ccttgggaa gaagtttgc当地 ggagatgccc gcaagctgtgc当地 gtgccc当地 cacaaggct 2040
 ggcctgtgtt taagtcaaag tcaactccgc aaacctgaaat ctcgagctac ctattgggtcc 2100
 tgtgaatgtt ctgtgttcc local tatttatttgc当地 gctcttcc local agctcgcc 2160

<210> 10
 <211> 397
 <212> PRT
 <213> Homo sapiens

<400> 10

Met	Leu	Leu	Glu	Thr	Gly	Leu	Glu	Arg	Asp	Arg	Ala	Arg	Pro	Gly	Ala
1								10							15

Ala	Ala	Val	Cys	Thr	Leu	Gly	Gly	Thr	Arg	Glu	Ile	Pro	Leu	Cys	Ala
								20							30

Gly	Cys	Asp	Gln	His	Ile	Leu	Asp	Arg	Phe	Ile	Leu	Lys	Ala	Leu	Asp
								35							45

Arg	His	Trp	His	Ser	Lys	Cys	Leu	Lys	Cys	Ser	Asp	Cys	His	Thr	Pro
								50							60

Leu	Ala	Glu	Arg	Cys	Phe	Ser	Arg	Gly	Glu	Ser	Val	Tyr	Cys	Lys	Asp
								65							80

Asp	Phe	Phe	Lys	Arg	Phe	Gly	Thr	Lys	Cys	Ala	Ala	Cys	Gln	Leu	Gly
								85							95

Ile Pro Pro Thr Gln Val Val Arg Arg Ala Gln Asp Phe Val Tyr His

100	105	110
Leu His Cys Phe Ala Cys Val Val Cys Lys Arg Gln Leu Ala Thr Gly		
115	120	125
Asp Glu Phe Tyr Leu Met Glu Asp Ser Arg Leu Val Cys Lys Ala Asp		
130	135	140
Tyr Glu Thr Ala Lys Gln Arg Glu Ala Glu Ala Thr Ala Lys Arg Pro		
145	150	155
Arg Thr Thr Ile Thr Ala Lys Gln Leu Glu Thr Leu Lys Ser Ala Tyr		
165	170	175
Asn Thr Ser Pro Lys Pro Ala Arg His Val Arg Glu Gln Leu Ser Ser		
180	185	190
Glu Thr Gly Leu Asp Met Arg Val Val Gln Val Trp Phe Gln Asn Arg		
195	200	205
Arg Ala Lys Glu Lys Arg Leu Lys Lys Asp Ala Gly Arg Gln Arg Trp		
210	215	220
Gly Gln Tyr Phe Arg Asn Met Lys Arg Ser Arg Gly Gly Ser Lys Ser		
225	230	235
Asp Lys Asp Ser Val Gln Glu Gly Gln Asp Ser Asp Ala Glu Val Ser		
245	250	255
Phe Pro Asp Glu Pro Ser Leu Ala Glu Met Gly Pro Ala Asn Gly Leu		
260	265	270
Tyr Gly Ser Leu Gly Glu Pro Thr Gln Ala Leu Gly Arg Pro Ser Gly		
275	280	285
Ala Leu Gly Asn Phe Ser Leu Glu His Gly Gly Leu Ala Gly Pro Glu		
290	295	300
Gln Tyr Arg Glu Leu Arg Pro Gly Ser Pro Tyr Gly Val Pro Pro Ser		
305	310	315
320		
Pro Ala Ala Pro Gln Ser Leu Pro Gly Pro Gln Pro Leu Leu Ser Ser		
325	330	335
Leu Val Tyr Pro Asp Thr Ser Leu Gly Leu Val Pro Ser Gly Ala Pro		
340	345	350
Gly Gly Pro Pro Pro Met Arg Val Leu Ala Gly Asn Gly Pro Ser Ser		
355	360	365
Asp Leu Ser Thr Gly Ser Ser Gly Gly Tyr Pro Asp Phe Pro Ala Ser		
370	375	380
Pro Ala Ser Trp Leu Asp Glu Val Asp His Ala Gln Phe		
385	390	395

<210> 11
<211> 2190
<212> DNA
<213> Homo sapiens

<400> 11

cgcagcgcacc agcagcaccc ggagtgcgtt ggacgcccgg tcggggctat tgcgggggtgg 60
cgtcgctgg cccgggaaag ttccggactg gagagtggcg acgccccggcg gcgggaccga 120
tggaggcgcg cggggagctg gggccggccc gggagtcggc gggagcgac ctgctgtctag 180
caactgctggc gcgaggggca gacctgcgcc gagagatccc gctgtgcgt ggcgtgtgacc 240
agcacatcct ggaccgcctc atcctcaagg ctctggaccg ccactggcac agcaagtgtc 300
tcaagtgcag cgactgcccac acgcccactgg cccagcgctg cttaagccga ggggagagcg 360
tttactgcaa ggacgacttt ttcaagcgct tcgggaccaa gtgcggccgg tgccagctgg 420
gcatacccgcc cacgcagggtg gtgcgcgcgg cccaggact cgtgtaccac ctgcactgt 480
ttgcctgcgt cgtgtgcaga cggcagctgg ccacggggcga cgagttctac ctcattggagg 540
acagccggct cgtgtgcaga cgggactacg aaaccgccaa gcagcgagag gccgaggcca 600
cgcccaagcg gcccgcacg accatcaccc ccaagcagct ggagacgctg aagagcgctt 660
acaacaccc gccaagccg ggcgcacg tgccgcagca gctctcgcc gagacggggcc 720
tggacatgcg cgtgggtcag gtttgggtcc agaaccgcgg ggcacaaggag aagaggctga 780
agaaggacgc cggccggcag cgctggggc agtatttccg caacatgaag cgctcccgcc 840
gcccgtccaa gtccgacaag gacagcgttc aggagggggca ggacagcgac gctgaggct 900
ccttcccgca tgagccttcc ttggcgaaa tggggccggc caatggcctc tacgggagct 960
tgggggaacc caccaggccc ttggggccggc cctcgggagc cctgggcaac ttctccctgg 1020
agcatggagg cctggcaggc ccagagcagt accgagagct gctcccgcc agccctctacg 1080
gtgtcccccc atcccccgcc gccccgcaga gcctccctgg ccccaagccc ctccctctcca 1140
gcctgggtga cccagacacc agcttggcc ttgtgcctc gggagggcccc ggcggggccccc 1200
caccatgag ggtgtcgca gggAACGGAC ccagttctga cctatccacg gggagcagcg 1260
ggggttaccc cgacttccct gccagccccc cctcctggct ggttaggta gaccacgctc 1320
agttctgacc caggccccggc tccaccctgc acctcacacay agggagctgc ccctgggtgg 1380
gcccgtccgg gctgtcgaaa ttcccgagga agtggggcca gggcgtcaag ggagggctgg 1440
tgccttcgga gcctcccaact gccgaccgca cagctccctc tctggggct gagggaccga 1500
cctggccctt cctctgacac agggctggcc cggcagggtgg cctcccaact gaccacgctt 1560
ttttgttaagc aaatttctcc cctttattga ccaattaact gagcacttgc tgctatttct 1620
agacatgaaa tgtcaccttg ctgaggccc gcccagccca gcatacccg agggctggaa 1680
aaacgcttcc atctctaaaa ctgagaaatc atcataattt tgcttcact tcccaggctc 1740
catgtgtctt ggagccgtca ccccgaggct cccttcttag gtcggagatt ggccttgct 1800
gtcgaggcaa gaggtgcag aggcggggac acacctgtgt cctccctcacc ccaccccagg 1860
ccctgggtgt ccaggctgca cccacagatg tctgtgcaca aacagcctgc cctccctgcc 1920
ggagccggct ctggcagccc cagattggaa agtctccccc ctggagaagg gtggggctcc 1980
tctgagcctg ccctgcctcc tccatcagat cccttgggaa gaagttctg ggagatgcc 2040
gcagctgtgc gtcccccaaa cacaaggct ggcctgtgtg taagtcaaag tcaactcccg 2100
aaacctgaat ctcgagctac ctattgttc tgtgaatgtt ctgtgtctt tatttattct 2160
cggtgatca gctttcca agctcgatcc 2190

<210> 12

<211> 402

<212> PRT

<213> Homo sapiens

<400> 12

Met Glu Ala Arg Gly Glu Leu Gly Pro Ala Arg Glu Ser Ala Gly Gly
1 5 10 15

Asp Leu Leu Leu Ala Leu Leu Ala Arg Arg Ala Asp Leu Arg Arg Glu
20 25 30

Ile Pro Leu Cys Ala Gly Cys Asp Gln His Ile Leu Asp Arg Phe Ile
35 40 45

Leu Lys Ala Leu Asp Arg His Trp His Ser Lys Cys Leu Lys Cys Ser
50 55 60

Asp Cys His Thr Pro Leu Ala Glu Arg Cys Phe Ser Arg Gly Glu Ser
65 70 75 80

Val	Tyr	Cys	Lys	Asp	Asp	Phe	Phe	Lys	Arg	Phe	Gly	Thr	Lys	Cys	Ala
				85				90					95		
Ala	Cys	Gln	Leu	Gly	Ile	Pro	Pro	Thr	Gln	Val	Val	Arg	Arg	Ala	Gln
				100				105				110			
Asp	Phe	Val	Tyr	His	Leu	His	Cys	Phe	Ala	Cys	Val	Val	Cys	Lys	Arg
				115			120				125				
Gln	Leu	Ala	Thr	Gly	Asp	Glu	Phe	Tyr	Leu	Met	Glu	Asp	Ser	Arg	Leu
				130		135				140					
Val	Cys	Lys	Ala	Asp	Tyr	Glu	Thr	Ala	Lys	Gln	Arg	Glu	Ala	Glu	Ala
				145		150			155			160			
Thr	Ala	Lys	Arg	Pro	Arg	Thr	Thr	Ile	Thr	Ala	Lys	Gln	Leu	Glu	Thr
				165				170			175				
Leu	Lys	Ser	Ala	Tyr	Asn	Thr	Ser	Pro	Lys	Pro	Ala	Arg	His	Val	Arg
				180				185				190			
Glu	Gln	Leu	Ser	Ser	Glu	Thr	Gly	Leu	Asp	Met	Arg	Val	Val	Gln	Val
				195			200				205				
Trp	Phe	Gln	Asn	Arg	Arg	Ala	Lys	Glu	Lys	Arg	Leu	Lys	Lys	Asp	Ala
				210		215				220					
Gly	Arg	Gln	Arg	Trp	Gly	Gln	Tyr	Phe	Arg	Asn	Met	Lys	Arg	Ser	Arg
				225		230			235			240			
Gly	Gly	Ser	Lys	Ser	Asp	Lys	Asp	Ser	Val	Gln	Glu	Gly	Gln	Asp	Ser
				245				250			255				
Asp	Ala	Glu	Val	Ser	Phe	Pro	Asp	Glu	Pro	Ser	Leu	Ala	Glu	Met	Gly
				260			265				270				
Pro	Ala	Asn	Gly	Leu	Tyr	Gly	Ser	Leu	Gly	Glu	Pro	Thr	Gln	Ala	Leu
				275			280				285				
Gly	Arg	Pro	Ser	Gly	Ala	Leu	Gly	Asn	Phe	Ser	Leu	Glu	His	Gly	Gly
				290		295			300						
Leu	Ala	Gly	Pro	Glu	Gln	Tyr	Arg	Glu	Leu	Arg	Pro	Gly	Ser	Pro	Tyr
				305		310			315			320			
Gly	Val	Pro	Pro	Ser	Pro	Ala	Ala	Pro	Gln	Ser	Leu	Pro	Gly	Pro	Gln
				325				330				335			
Pro	Leu	Leu	Ser	Ser	Leu	Val	Tyr	Pro	Asp	Thr	Ser	Leu	Gly	Leu	Val
				340			345				350				
Pro	Ser	Gly	Ala	Pro	Gly	Gly	Pro	Pro	Pro	Met	Arg	Val	Leu	Ala	Gly
				355			360				365				
Asn	Gly	Pro	Ser	Ser	Asp	Leu	Ser	Thr	Gly	Ser	Ser	Gly	Gly	Tyr	Pro
				370			375				380				
Asp	Phe	Pro	Ala	Ser	Pro	Ala	Ser	Trp	Leu	Asp	Glu	Val	Asp	His	Ala
				385				390			395				

Gln Phe

<210> 13
<211> 1658
<212> DNA
<213> Sus scrofa

<400> 13
atgctgtgg aaacggagct ggcgggcgac cgagatcgcc ccggggcccc cgcagccgcc 60
gctgtctgca ctttaccccg gactcgggag atcccactgt gtgccggctg cgaccagcac 120
atcctggacc gttcatctt caaggctctg gaccggcaact ggcacagcaa gtgcctcaag 180
tgcaaggact gccacacgcg gtcggccgg cgctgttca gccgcggaga gagcctctac 240
tgcaaggact gtcggccgg accaagtgcg ccgcgtgcca gctgggcatc 300
ccgcggccgc aggtggtgcc cgcggcccg gacttcgtgt accacctgca ctgttcgccc 360
tgctgtgtgt gcaaggccga gtcggccacg ggacgactgt tctacccat ggaggacagc 420
cggtcggtgt gcaaggccga ctacgagacc gccaaggcagc gagaggccga ggccacggcc 480
aaggccgcg gcaacgacat cacggccaag cagctggaga cgctgaagag cgccataaac 540
acgtcgccca agcccgccg ccacgtgcgc gacgactct cctccgagac cggcctggac 600
atgcgcgtcg tgcaaggatgt gttccagaac cgccggccca aggaaaagcg gctcaagaag 660
gacggccggcc ggcagcgtg gggccagttac ttctgttaaca tgaagcgcgc cccgcgtggc 720
tccaagtcgg acaaggacag cgtccaggag gagggggcagg acagtgcgc cgaggcttcc 780
ttcacagacg accatccat ggcggaaatgg gcgcctgcca acggcctcta cggcggccctg 840
ggggagccgt cccctgcctt gggccggccc tcgggggccc cggcagctt cccgtggag 900
cacggaggcc tggcgccccc ggacgactat ggagagctgc gcccacgcg cccctacgt 960
gtccccctcg cggccgcgcg cctgcagacg ctccctggcc cccagccct cctctccagc 1020
ttggtgttacc cggaggctgg ctggggctt gtgcggcgg gggcccccagg tggggcccca 1080
cccatgaggg tgctggcagg gaacggaccc agtcccgacc tatccacggg gagcagtg 1140
ggctaccccg acttccctgc cagtcggcc tcctggctgg acgaggtgga tcacgctca 1200
ttctgactga ggccccagct cctggagca ccagacacga gcactgcccc tggctgggtg 1260
gtcggggagcc gcgtctctctt ttcccaagac cctggggcttc taaaggacac agggtcaccg 1320
gcggggcaca ggctgaggac tgccagccccc ggcggccctg gccccggca gagggacttt 1380
ctcccggtct cggggcttcc tctggacaa ggggagccac ctggggctg ctcagcaagc 1440
cttgggttgc aacgagattt ctccctttat caaccaaaat taactgagtg cttgctgctc 1500
tttcttagacc ggagtggtaa gcccccaag cgggggaggg gggctctccc cagcccagag 1560
cagcacagcc ctcagactgg aagatgtttt aatttttaaa attaaaaat aatacgaact 1620
gtgcttccat ttcccaagttt cctctgtcta gttctgccc 1658

<210> 14
<211> 401
<212> PRT
<213> Sus scrofa

<400> 14
Met Leu Leu Glu Thr Glu Leu Ala Gly Asp Arg Asp Arg Pro Gly Ala
1 5 10 15

Pro Ala Ala Ala Ala Val Cys Thr Leu Pro Gly Thr Arg Glu Ile Pro
20 25 30

Leu Cys Ala Gly Cys Asp Gln His Ile Leu Asp Arg Phe Ile Leu Lys
35 40 45

Ala Leu Asp Arg His Trp His Ser Lys Cys Leu Lys Cys Ser Asp Cys
50 55 60

His Thr Pro Leu Ala Glu Arg Cys Phe Ser Arg Gly Glu Ser Leu Tyr
65 70 75 80

Cys Lys Asp Asp Phe Phe Lys Arg Phe Gly Thr Lys Cys Ala Ala Cys
 85 90 95
 Gln Leu Gly Ile Pro Pro Thr Gln Val Val Arg Arg Ala Gln Asp Phe
 100 105 110
 Val Tyr His Leu His Cys Phe Ala Cys Val Val Cys Lys Arg Gln Leu
 115 120 125
 Ala Thr Gly Asp Glu Phe Tyr Leu Met Glu Asp Ser Arg Leu Val Cys
 130 135 140
 Lys Ala Asp Tyr Glu Thr Ala Lys Gln Arg Glu Ala Glu Ala Thr Ala
 145 150 155 160
 Lys Arg Pro Arg Thr Thr Ile Thr Ala Lys Gln Leu Glu Thr Leu Lys
 165 170 175
 Ser Ala Tyr Asn Thr Ser Pro Lys Pro Ala Arg His Val Arg Glu Gln
 180 185 190
 Leu Ser Ser Glu Thr Gly Leu Asp Met Arg Val Val Gln Val Trp Phe
 195 200 205
 Gln Asn Arg Arg Ala Lys Glu Lys Arg Leu Lys Lys Asp Ala Gly Arg
 210 215 220
 Gln Arg Trp Gly Gln Tyr Phe Arg Asn Met Lys Arg Ala Arg Gly Gly
 225 230 235 240
 Ser Lys Ser Asp Lys Asp Ser Val Gln Glu Glu Gly Gln Asp Ser Asp
 245 250 255
 Ala Glu Val Ser Phe Thr Asp Glu Pro Ser Met Ala Glu Met Gly Pro
 260 265 270
 Ala Asn Gly Leu Tyr Gly Leu Gly Glu Pro Ala Pro Ala Leu Gly
 275 280 285
 Arg Pro Ser Gly Ala Pro Gly Ser Phe Pro Leu Glu His Gly Gly Leu
 290 295 300
 Ala Gly Pro Glu Gln Tyr Gly Glu Leu Arg Pro Ser Ser Pro Tyr Gly
 305 310 315 320
 Val Pro Ser Ser Pro Ala Ala Leu Gln Ser Leu Pro Gly Pro Gln Pro
 325 330 335
 Leu Leu Ser Ser Leu Val Tyr Pro Glu Ala Gly Leu Gly Leu Val Pro
 340 345 350
 Ala Gly Pro Pro Gly Gly Pro Pro Pro Met Arg Val Leu Ala Gly Asn
 355 360 365
 Gly Pro Ser Ser Asp Leu Ser Thr Gly Ser Ser Gly Gly Tyr Pro Asp
 370 375 380
 Phe Pro Ala Ser Pro Ala Ser Trp Leu Asp Glu Val Asp His Ala Gln
 385 390 395 400
 Phe

<210> 15
<211> 1664
<212> DNA
<213> Sus scrofa

<400> 15
atggaaagcgc gcggggagct gggcccccgc cgggagtcgg cggggggcgca cctgctgctg 60
gcgtctgg cgccggaggga ggacctgcgc cgagagatcc cacttgtgc cggctgcgc 120
cagcacatcc tggaccgctt catcctcaag gctctggacc gccactggca cagcaagtgc 180
ctcaagtgcgtca gtgactgcca cacgcccgtg gccgagcgct gcttcagccg cggagagagc 240
ctctactgca aggacgactt cttcaagcgc ttccggaccga agtgcggccgc gtgcccagctg 300
ggcatcccgcc cacacgcagggt ggtgcggccgc gcccaggact tcgtgtacca cctgcactgc 360
ttcgccctgcg tcgtgtgcaa gcccgcaggctg gccacgggcg acgaggctta cctcatggag 420
gacagccggc tcgtgtgcaa ggccgactac gagaccgcca agcagcgaga ggccgaggcc 480
acggccaagc ggcgcgcac gaccatcacg gccaaggcgc tggagacgct gaagagcggc 540
tacaacacgt cgcggcaagcc cgcgcgcac gtgcgcgcgc agctctcgc cgagaccggc 600
ctggacatgc gcgtcggtca ggtgtgttgc cagaaccgcg gggccaaaggaa aaagcggc 660
aagaaggacg cggccggca gcccgtgggc cagtactttc gtaacatgaa ggcgcgcgc 720
ggtggtctcca agtccggacaa ggacacgcgc caggaggagg ggcaggacag tgacgcgc 780
gtctccttca cagacgagcc atccatggcc gaaatggcc ctgcacacgg cctctacgc 840
ggcctggggg agcctgcccc tgccttggc cggccctcg gggcccccggg cagttcccg 900
ctggagcaca gggccctggc gggcccccggg cagtatggag agctgcgc cagcagcccc 960
tacgggttcc cctcggtcgcc cggccgcctg cagacgcctcc ctggcccccgc gccccttc 1020
tccagcttgg tgtacccggc ggctggcttgc ggcttgc cgcggggcc cccagggtgg 1080
cccccacca tgagggtgct ggcaggaaac ggacccagct ccgacttatac cacggggagc 1140
agtggggct accccgactt ccctgccttgc cccgccttc ggcgtgacga gttggatcac 1200
gctcgttcttca gactgaggcc ccagctccgt ggacgcaccaac acacgagcac tgccctgc 1260
tgggtgtcg ggagccgcgc tctccttcc cgaaggccctg ggcctctaaa ggacacagg 1320
tcacccggcgg ggcacaggct gaggactgtc cagccggccg gcccctggcc cgggcagagg 1380
gactttctcc cggctcgag gtccttctg ggacaaagggg agccacctgg tggctgtca 1440
gcaaggcttgg tttgttaagc agattcttcc ctttatcaac caaaattaac tgagtgtt 1500
ctgctcttcc tagaccggag tggtcagccc cccaaggccgg ggaggggggc tctcccccagc 1560
ccagagcagc acagccctca gactggaaga tgcttaatt tttaaaaattt aaaaataata 1620
cgaactgtgc ttccatttcc cagcttcctc tgcttagttc tgcc 1664

<210> 16
<211> 403
<212> PRT
<213> Sus scrofa

<400> 16
Met Glu Ala Arg Gly Glu Leu Gly Pro Ser Arg Glu Ser Ala Gly Gly
1 5 10 15

Asp Leu Leu Leu Ala Leu Leu Ala Arg Arg Glu Asp Leu Arg Arg Glu
20 25 30

Ile Pro Leu Cys Ala Gly Cys Asp Gln His Ile Leu Asp Arg Phe Ile
35 40 45

Leu Lys Ala Leu Asp Arg His Trp His Ser Lys Cys Leu Lys Cys Ser
50 55 60

Asp Cys His Thr Pro Leu Ala Glu Arg Cys Phe Ser Arg Gly Glu Ser
65 70 75 80

Leu Tyr Cys Lys Asp Asp Phe Phe Lys Arg Phe Gly Thr Lys Cys Ala

85	90	95
Ala Cys Gln Leu Gly Ile Pro Pro Thr Gln Val Val Arg Arg Ala Gln		
100	105	110
Asp Phe Val Tyr His Leu His Cys Phe Ala Cys Val Val Cys Lys Arg		
115	120	125
Gln Leu Ala Thr Gly Asp Glu Phe Tyr Leu Met Glu Asp Ser Arg Leu		
130	135	140
Val Cys Lys Ala Asp Tyr Glu Thr Ala Lys Gln Arg Glu Ala Glu Ala		
145	150	155
160		
Thr Ala Lys Arg Pro Arg Thr Thr Ile Thr Ala Lys Gln Leu Glu Thr		
165	170	175
Leu Lys Ser Ala Tyr Asn Thr Ser Pro Lys Pro Ala Arg His Val Arg		
180	185	190
Glu Gln Leu Ser Ser Glu Thr Gly Leu Asp Met Arg Val Val Gln Val		
195	200	205
Trp Phe Gln Asn Arg Arg Ala Lys Glu Lys Arg Leu Lys Lys Asp Ala		
210	215	220
Gly Arg Gln Arg Trp Gly Gln Tyr Phe Arg Asn Met Lys Arg Ala Arg		
225	230	235
240		
Gly Gly Ser Lys Ser Asp Lys Asp Ser Val Gln Glu Glu Gly Gln Asp		
245	250	255
Ser Asp Ala Glu Val Ser Phe Thr Asp Glu Pro Ser Met Ala Glu Met		
260	265	270
Gly Pro Ala Asn Gly Leu Tyr Gly Gly Leu Gly Glu Pro Ala Pro Ala		
275	280	285
Leu Gly Arg Pro Ser Gly Ala Pro Gly Ser Phe Pro Leu Glu His Gly		
290	295	300
Gly Leu Ala Gly Pro Glu Gln Tyr Gly Glu Leu Arg Pro Ser Ser Pro		
305	310	315
320		
Tyr Gly Val Pro Ser Ser Pro Ala Ala Leu Gln Ser Leu Pro Gly Pro		
325	330	335
Gln Pro Leu Leu Ser Ser Leu Val Tyr Pro Glu Ala Gly Leu Gly Leu		
340	345	350
Val Pro Ala Gly Pro Pro Gly Gly Pro Pro Pro Met Arg Val Leu Ala		
355	360	365
Gly Asn Gly Pro Ser Ser Asp Leu Ser Thr Gly Ser Ser Gly Gly Tyr		
370	375	380
Pro Asp Phe Pro Ala Ser Pro Ala Ser Trp Leu Asp Glu Val Asp His		
385	390	395
400		
Ala Gln Phe		

<210> 17
 <400> 17
 000

<210> 18
 <400> 18
 000

<210> 19
 <211> 440
 <212> PRT
 <213> Drosophila melanogaster

<400> 19

Met	Glu	Leu	Leu	Lys	Leu	Met	Met	Phe	Lys	Ser	Asp	Phe	Leu	Ser	Asn
1				5					10					15	

Gly Lys Cys Asp Asp Arg Val Pro Pro Ile Asn Leu Ser Gln Leu Pro
 20 25 30

Glu Phe Leu Leu Ser Thr Ile Pro Lys Cys Gly Gly Cys His Glu Leu
 35 40 45

Ile Leu Asp Arg Phe Ile Leu Lys Val Leu Glu Arg Thr Trp His Ala
 50 55 60

Lys Cys Leu Gln Cys Ser Glu Cys His Gly Gln Leu Asn Asp Lys Cys
 65 70 75 80

Phe Ala Arg Asn Gly Gln Leu Phe Cys Lys Glu Asp Phe Phe Lys Arg
 85 90 95

Tyr Gly Thr Lys Cys Ser Ala Cys Asp Met Gly Ile Pro Pro Thr Gln
 100 105 110

Val Val Arg Arg Ala Gln Asp Asn Val Tyr His Leu Gln Cys Phe Leu
 115 120 125

Cys Ala Met Cys Ser Arg Thr Leu Asn Thr Gly Asp Glu Phe Tyr Leu
 130 135 140

Met Glu Asp Arg Lys Leu Ile Cys Lys Arg Asp Tyr Glu Glu Ala Lys
 145 150 155 160

Ala Lys Gly Leu Tyr Leu Asp Gly Ser Leu Asp Gly Asp Gln Pro Asn
 165 170 175

Lys Arg Pro Arg Thr Thr Ile Thr Ala Lys Gln Leu Glu Thr Leu Lys
 180 185 190

Thr Ala Tyr Asn Asn Ser Pro Lys Pro Ala Arg His Val Arg Glu Gln
 195 200 205

Leu Ser Gln Asp Thr Gly Leu Asp Met Arg Val Val Gln Val Trp Phe
 210 215 220

Gln Asn Arg Arg Ala Lys Glu Lys Arg Leu Lys Lys Asp Ala Gly Arg

225	230	235	240
Thr Arg Trp Ser Gln Tyr Phe Arg Ser Met Lys Gly Asn Cys Ser Pro			
245	250	255	
Arg Thr Asp Lys Phe Leu Asp Lys Asp Glu Leu Lys Val Asp Tyr Asp			
260	265	270	
Ser Phe Ser His His Asp Leu Ser Asn Asp Ser Tyr Ser Thr Val Asn			
275	280	285	
Leu Gly Leu Asp Glu Gly Ala Ser Pro His Ser Ile Arg Gly Ser Tyr			
290	295	300	
Met His Gly Ser Ser Ser Pro Ser Gln Tyr Pro Pro Ser Ser Arg Ser			
305	310	315	320
Pro Pro Pro Val Gl: Gln Gly His Thr Phe Gly Ser Tyr Pro Asp Asn			
325	330	335	
Ile Val Tyr Thr Asn Ile Asp Gln Ala Val Gly Ser Ser Leu His Ala			
340	345	350	
Ser Lys Ala His His Arg Leu His Ser Ser Asn Asn Val Ser Asp Leu			
355	360	365	
Ser Asn Asp Ser Ser Pro Asp Gln Gly Tyr Pro Asp Phe Pro Pro Ser			
370	375	380	
Pro Asp Ser Trp Leu Gly Asp Ser Gly Ser Thr Asn Thr Thr Ser Ala			
385	390	395	400
Asn Asn Asn Ala Asn Asn Asn Ser Ser Arg Ser His Asn Asn Asn Asn			
405	410	415	
Ser Ser Gly Gly Ser Gly Gly Val Ser Val Ser Thr Ala Pro Asn			
420	425	430	
Pro Ser Ala Pro Gly Val His Tyr			
435	440		

<210> 20
<211> 367
<212> PRT
<213> Mus musculus

<400> 20
Met Gln Gln Ile Pro Gln Cys Ala Gly Cys Asn Gln His Ile Leu Asp
1 5 10 15

Lys Phe Ile Leu Lys Val Leu Asp Arg His Trp His Ser Ser Cys Leu
20 25 30

Lys Cys Ala Asp Cys Gln Met Gln Leu Ala Asp Arg Cys Phe Ser Arg
35 40 45

Ala Gly Ser Val Tyr Cys Lys Glu Asp Phe Phe Lys Arg Phe Gly Thr
50 55 60

Lys Cys Thr Ala Cys Gln Gln Gly Ile Pro Pro Thr Gln Val Val Arg

65	70	75	80
Lys Ala Gln Asp Phe Val Tyr His Leu His Cys Phe Ala Cys Ile Ile			
85	90	95	
Cys Asn Arg Gln Leu Ala Thr Gly Asp Glu Phe Tyr Leu Met Glu Asp			
100	105	110	
Gly Arg Leu Val Cys Lys Glu Asp Tyr Glu Thr Ala Lys Gln Asn Asp			
115	120	125	
Asp Ser Glu Ala Gly Ala Lys Arg Pro Arg Thr Thr Ile Thr Ala Lys			
130	135	140	
Gln Leu Glu Thr Leu Lys Asn Ala Tyr Lys Asn Ser Pro Lys Pro Ala			
145	150	155	160
Arg His Val Arg Glu Gln Leu Ser Ser Glu Thr Gly Leu Asp Met Arg			
165	170	175	
Val Val Gln Val Trp Phe Gln Asn Arg Arg Ala Lys Glu Lys Arg Leu			
180	185	190	
Lys Lys Asp Ala Gly Arg His Arg Trp Gly Gln Phe Tyr Lys Ser Val			
195	200	205	
Lys Arg Ser Arg Gly Gly Ser Lys Gln Glu Lys Glu Ser Ser Ala Glu			
210	215	220	
Asp Cys Gly Val Ser Asp Ser Glu Leu Ser Phe Arg Glu Asp Gln Ile			
225	230	235	240
Leu Ser Glu Leu Gly His Thr Asn Arg Ile Tyr Gly Asn Val Gly Asp			
245	250	255	
Val Thr Gly Gly Gln Leu Met Asn Gly Ser Phe Ser Met Asp Gly Thr			
260	265	270	
Gly Gln Ser Tyr Gln Asp Leu Arg Asp Gly Ser Pro Tyr Gly Ile Pro			
275	280	285	
Gln Ser Pro Ser Ser Ile Ser Ser Leu Pro Ser His Ala Pro Leu Leu			
290	295	300	
Asn Gly Leu Asp Tyr Thr Val Asp Ser Asn Leu Gly Ile Ile Ala His			
305	310	315	320
Ala Gly Gln Gly Val Ser Gln Thr Leu Arg Ala Met Ala Gly Gly Pro			
325	330	335	
Thr Ser Asp Leu Ser Thr Gly Ser Ser Val Gly Tyr Pro Asp Phe Pro			
340	345	350	
Thr Ser Pro Ala Ser Trp Leu Asp Glu Met Asp His Pro Pro Phe			
355	360	365	

<210> 21
<211> 402
<212> PRT
<213> Mus musculus

<400> 21
 Met Glu Ala Arg Gly Glu Leu Gly Pro Ala Arg Glu Ser Ala Gly Gly
 1 5 10 15
 Asp Leu Leu Leu Ala Leu Leu Ala Arg Arg Ala Asp Leu Arg Arg Glu
 20 25 30
 Ile Pro Met Cys Ala Gly Cys Asp Gln His Ile Leu Asp Arg Phe Ile
 35 40 45
 Leu Lys Ala Leu Asp Arg His Trp His Ser Lys Cys Leu Lys Cys Ser
 50 55 60
 Asp Cys His Val Pro Leu Ala Glu Arg Cys Phe Ser Arg Gly Glu Ser
 65 70 75 80
 Val Tyr Cys Lys Asp Asp Phe Phe Lys Arg Phe Gly Thr Lys Cys Ala
 85 90 95
 Ala Cys Gln Leu Gly Ile Pro Pro Thr Gln Val Val Arg Arg Ala Gln
 100 105 110
 Asp Phe Val Tyr His Leu His Cys Phe Ala Cys Val Val Cys Lys Arg
 115 120 125
 Gln Leu Ala Thr Gly Asp Glu Phe Tyr Leu Met Glu Asp Ser Arg Leu
 130 135 140
 Val Cys Lys Ala Asp Tyr Glu Thr Ala Lys Gln Arg Glu Ala Glu Ala
 145 150 155 160
 Thr Ala Lys Arg Pro Arg Thr Thr Ile Thr Ala Lys Gln Leu Glu Thr
 165 170 175
 Leu Lys Ser Ala Tyr Asn Thr Ser Pro Lys Pro Ala Arg His Val Arg
 180 185 190
 Glu Gln Leu Ser Ser Glu Thr Gly Leu Asp Met Arg Val Val Gln Val
 195 200 205
 Trp Phe Gln Asn Arg Arg Ala Lys Glu Lys Arg Leu Lys Lys Asp Ala
 210 215 220
 Gly Arg Gln Arg Trp Gly Gln Tyr Phe Arg Lys Met Lys Arg Ser Arg
 225 230 235 240
 Gly Ser Ser Lys Ser Asp Lys Asp Ser Ile Gln Glu Gly Gln Asp Ser
 245 250 255
 Asp Ala Glu Val Ser Phe Thr Asp Glu Pro Ser Met Ala Asp Met Gly
 260 265 270
 Pro Ala Asn Gly Leu Tyr Ser Ser Leu Gly Glu Pro Ala Pro Ala Leu
 275 280 285
 Gly Arg Pro Val Gly Gly Leu Gly Ser Phe Thr Leu Asp His Gly Gly
 290 295 300
 Leu Thr Gly Pro Glu Gln Tyr Arg Glu Leu Arg Pro Gly Ser Pro Tyr
 305 310 315 320

Gly Ile Pro Pro Ser Pro Ala Ala Pro Gln Ser Leu Pro Gly Pro Gln
 325 330 335
 Pro Leu Leu Ser Ser Leu Val Tyr Pro Asp Thr Asn Leu Ser Leu Val
 340 345 350
 Pro Ser Gly Pro Pro Gly Gly Pro Pro Pro Met Arg Val Leu Ala Gly
 355 360 365
 Asn Gly Pro Ser Ser Asp Leu Ser Thr Glu Ser Ser Ser Gly Tyr Pro
 370 375 380
 Asp Phe Pro Ala Ser Pro Ala Ser Trp Leu Asp Glu Val Asp His Ala
 385 390 395 400
 Gln Phe

<210> 22
 <211> 8867
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <222> (3725)..(3725)
 <223> n=A,C,T,G

<220>
 <221> misc_feature
 <222> (8848)..(8848)
 <223> n=A,C,T,G

<400> 22

```

ggcacgagcc ccgcacgacg cggcggact tggagcccc gaaccctcca ggggacgctg 60
acctcgagg agcgcgtctc gcccactcg gcctggggc cgcgatgctg ctggaaacgg 120
ggctcgagcg cgaccgagcg aggccccggg ccgcccgggt ctgcacccctg ggcgggactc 180
gggttaagcc ccagcaggac actgaggaca gaaacggcaa gggcggcaga ggcgcgagga 240
aggggggtgcg tgcaggggca gcccggcaggc aaagaaaagtc ccccccgtct gcaggcggga 300
cacagagatg gaaactgcag agagttagtt tccagatccc agggtggcgg ggagggcctg 360
acgctggctt gcaagagtgc gggacagcgg ttggagtggaa gcccctttaga aaaaaagggg 420
gcatcgccagg cacagctggg gggcgatggg gccgaccaag gggtgctagg ttcccccggt 480
gaccagtgcg cgtcagctct tgcacacagc cccggcccgagg tctctggacc ccacagcagg 540
ggacccaagc ctttgttctc cccgcgttgcac caccctcccc aagggccatt ccatcaccac 600
ggacgctggg aaataatggg ggcattgttg gagggctggc cagatgccag caggggtgggc 660
ccgccttcca acctggcgcc gccccttccc cagtcttgc acacacgacc cctgatcgct 720
tcggcagcag ctgacactca gccaccttgc cccagcacag cccgcacaca ctcggctttg 780
caccgcgtgt tccttgcctt ggccttctt gggtaacaag tgctgtgcaa atgtaagggg 840
cagaaagctg gctgcattggg ccactgtctca aaacggacac atcggacactg ctgggagcta 900
ggagggaggg actgtggttt ctgtgttccca tccttctggg cctggggccct taaagctcac 960
agtccagaag ccataggcag atggacaca gtattgtgt gagacccaca gggagaggga 1020
cctgcaggat ggcatttgc ctttgttcccc caacccttcc tgtgtgtttc tgcgcactgc 1080
cagggcaccct ctgttttgc aagtccctgtg ctggcgaggg ccacccactg ctgtgtttctt 1140
ccccgggtgg ctggcccgagg ctggtgcgtgg cccaggggccc tctgggcagg ggtgggtgcg 1200
tccctctgcc tgcaaggaca ggtgggttct ggagagctca cctgtgttgc ctggggcaag 1260
aggctgaaat atcaggtaag ggaccgtgtt ccaatggagc cggagtgcgtg ggggctggaa 1320
atgaaagggtg tgccttgggg ctccccccagc tggcccccctc acgaccccgag gtcttggctg 1380
cgtgtccagg acacagagcc tggatctctca aaggattgc cttccccc ttagccgtcc 1440
ggggcccgag ttccagggggt ggagcccaaga agcctgttag catctggat cgtccggca 1500
  
```

ccttgcgtt ccgttacgca gcccctggcg ccacactcac cccttctgcg tttcgggttg 1560
 agctcccccc gaccatctgc tgctcccgag gccaaacactc agcggcgaaa ggaccctgt 1620
 gccttctcga cccctctccc gggAACCTTA gcccctctgg cgtgtgtctcc agctcaggcc 1680
 tctgcctctg gcccgtccg ggcAGGAAG ctgcggggcc gggACAAACG ctggcgaaa 1740
 gcccgtaccc gggccctccc ttaccgtgc ccccccctcg gcccggcaca cggggcgccc 1800
 tctggcacc gcaaggcccc ggcAAAGGC gtcAGAGTC cgcaGGGCC cgggtggc 1860
 tccgcgaccc ccggcccccc cccggcccg gggcccgccc cccggccgt cccggccctccg 1920
 ctgcggccaga ggctccgggc cccaggccg cccggggccg cagcggccag cagcaccgg 1980
 agtcgttgg acggccgttc gggctattg cgggggtggcg tcgtgggcc cgggaaagt 2040
 cgggacttgg gagtggcgac gcccggccg gggacccatg gaggcgcgcg gggagctgg 2100
 cccggcccg gaggcgaccc gaggcgaccc tgcgttgcg cttgcgttgcg ggaggccaga 2160
 cctgcgcgca ggtgggtgcc cggggccagc ggctgcaccc gggagaccag gagatcctca 2220
 ggccttccg ggcctggccg cggaggctgg caggagcttag aggtatctgg cgggagttgg 2280
 cgcgaggacc cggaaacgtc cgcgccttgg cccctcagcc tgcgttgcg cggggccccc 2340
 tggcctgggt tgcgtgggg ttagtgggt tgcgttgcg cgcgttgcg gccaggggagc 2400
 tctcgggggt ccagggtggg cttaggagac ctctgcaccc cggagccagc tccctggct 2460
 ggaggaggcg caggagacag tggcggggca gtgaccaccc gacaggaggg tccccaagaa 2520
 ggccgccccca gccggactct ttccacgtt cagggaaaca gagtcagatg caggggccaa 2580
 ggtcgagctg aactccgacc gtcggcttcc cccggccac gtttcagcg tgcgcggccac 2640
 agacaccgc tgcgttatac cccgttcagg gcccgttgcg aggaaaaaagc ctcttttctc 2700
 caggcccccc agttccttgg tggcaccact ctgcgttccca gcacttgg tcttagggaa 2760
 cctggggcagt tctcctcgac tcccgggcca gttggagccg caggatgggg aaggaggccc 2820
 cggagccagt gggagtgag agggacccgc cggcgggaaag ggggttatcat ccaggctgtg 2880
 ggggctcgcg gtccctact tatttattt ttttgcac gttccctgggaa ggggttggcc 2940
 gcgggggctg gggggcgag agaggaaggg aggaaggagg actgcgcgccc cggcgtcggg 3000
 agagctggcc ggagcgggccc ggctggcgca caggctccgc cgaccggcc atccctgaca 3060
 caggagcccc cgcacgggct ggagtgcaca tgcacgtaa ggctggggtc gggggcgccg 3120
 cgcgggggtgg gctggggccg cttttggcc acgcggggcgc cggcggcgag ctgcggccga 3180
 ggcgctgtcc ggtcccgccgt gctgaatccg cgcgtgttgcg gcctgtcgcc cggcccccgt 3240
 cgcacgggt cctcgcttgc gatcgctgca cacgatgggg accccggcg cgcagcggt 3300
 cctcgacgt cccacccgg agtcgttgcg tgcgtggatg cggggccat tcatcgccgg 3360
 ttcccggca ctgcgtgggg aggcgcagcc cagtttttc cggccggatgt cgagggagcc 3420
 ccttccttgcgt gtctctcacc cactggaga tggcgtggag cgggggggt ccacagccag 3480
 ggaggcggtt gcaatatgtc agtaaatccc gttcccttca gcgggactc ctctttca 3540
 gagactttt ctaagtgaag agggagtcct cagcccttga cacctggaaa acccgctcac 3600
 agactcgagg ctcccacagg gcacccctgg acctcccaag tgcgttgcg ccaggggggcc 3660
 tgcagtattt aagtgggggtg tggggggcag aagcagcggg aagccagacg tttagtaac 3720
 tctgnctgtg ttgggggcac ccacgttca cacaaggca gtggatgggt ttgtccagtc 3780
 cactcataag taattttgcg gtcgccttca gatggggaaag gcattgtat ttaccccgaa 3840
 ggcctgcaga caggggccacc aggcaggcc gccacatttg cgaggactcc ttagaaagag 3900
 tggccatgac gcttaacatg aaggagacc gatgggggtgc cccagctcca ggtgtatggg 3960
 aagaccgtt tccctatgtt tcctgcggg cttcagagag cagatccc tgggggtgggg 4020
 ttttcatgtt agtcacat gCACCCCTTCTC TGCACTGGC AACATTTGT AATTGAGT 4080
 tcagcctctgt gaaatggcct gggctgttt ctgcgttca cacaattttta gaccgtatgtc 4140
 gtttccct tagtccttca cataggatgc ggtgccttca cactccggaa acttgcgggg 4200
 ccacttaagc tggctggggaa agagggtgtg tagggaaagg aggacccctc ggcagccctg 4260
 agtcctgtgg gcccggagggg aggctgttcc gctgtggggt gggaaagggtgg cttcaactg 4320
 tcctggtcta cgaggtgacc cagaacctcc tcgtgccttcc agagatccc ctgtgcgtc 4380
 gctgtgacca gcacatccgt gaccgttca tctcaaggc tctggaccgc cactggcaca 4440
 gcaagtgtct caagtgcagc gactgcaca cggccactggc cgagcgttc ttcagccgag 4500
 gggagagcgt ttactgcaag gacgacttt tcaagtgtac cccggaaacct cacctcagtg 4560
 tgggagcgga gggcacgcct gccccaggaa ctccctccct cacaatcacc aaggccagcc 4620
 cctcgaagcc tgcgttcttc gcaatcccag cccactctgt tcaccctaggc agggcaccct 4680
 gcgcccttgc caaattaagg gtggggctc tccatgggtt ctccctgggt ggtggccct 4740
 ggctgggaca tcagcaaga ttatttcgaa aaaaaagcaa ttatttaccc aaatcacaaga 4800
 agcagtattt agagaagata caccctatt tgcgttgcg tactgtactt agttcctccg 4860
 aaatttggta tgcgtttagtt cctaattgtc gcaaccctggc gtcgtggccc agtggccctc 4920
 atggctccag ctgtgggggtg tgaggactg gccccagatg ggtcccttcc ctccggatcc 4980
 accttcccttccatc ggtcccttccatc ggtcccttccatc gcaatggccg ctgggttcc 5040
 ctgagatgtt ggtcccttccatc tcaatggggatc tggcgtggcc gccaggctgg 5100
 cgaccaccccttccatc acagaccccttccatc ccccttccatc ggcagccgt 5160

tgccgctctc caaccgcgtc gggcgaaat gagcctcgcg cttccgcgt gagcccggcc 5220
 ctgtgcgtcc cgcaaggcgct tcgggaccaa gtgcgcgcg tgccagctgg gcateccggcc 5280
 cacgcagggtg gtgcgcgcg cccaggactt cgtgtaccac ctgcactgt ttgcctgcgt 5340
 cgtgtcaag cggcagctgg ccacggcgca cgagttctac ctcatggagg acagccggct 5400
 cgtgtcaag gcggactacg aaaccgccaa gcagcgaggt cagccgaggg gacgacgctc 5460
 ccaccttcc tggcttgaaa aaaatggggc tgaggccacg ctcagggggg cgteccccgg 5520
 aattctctcc ccaagcgctc actaaggggg cctgggctag ggcgggttag gcagcaggaa 5580
 gccgaggccg ggaacggccg agtcacggac agaccccggt cccgaaccgc ttcggttcgg 5640
 ccgaagtgtg cggctttcg cccctggctg gaattatcg cctaaattct tggccgcgaa 5700
 ggctgggca tacccacacc cttagaataa aggggagccc gggggaaat cagggtgcgt 5760
 ggagaaggga gccaaggctg aaggcggggg cccgtggag gtgcgatttt agggaaaggcg 5820
 ccgcggccgc ccccgccgca gaaccggcc cccgcggcg cccctccac cccagccccc 5880
 gtgtgcggc ttttgccaa tcgctcccg cggccgcgc ttccgagaag cctgtggggc 5940
 gggatggggg tggcaccctg aggccccgac gtcggccgcg cggccgggt gggaggggtgg 6000
 gggctggcc gggccggag gggctgccgc gcctcaccgc tcgcccgcg cgcagaggcc 6060
 gaggccacgg ccaagcgcc ggcacgacc atcaccgcga agcagctgga gacgctgaag 6120
 agcgcttaca acacctcgcc caagccggcg cggccacgtgc gcgagcagct tcgtccgag 6180
 acgggcctgg acatgcgtgt ggtcaggta agcgctcgcc cctgtttccc tccgcggcc 6240
 ggcctgggg gccccgcag agccggccgg ccgtcaccac cggccgcggc ccagggtttgg 6300
 ttccagaacc gccgggcaaa ggagaagagg ctgaagaagg acgccccggc gacgcttg 6360
 gggcagttt tcccaacat gaagcgttcc cggccggctt ccaagtcgga caaggacac 6420
 gttcaggagg ggcaggacag cgacgttgcg gtctcccttc cccgtggcg gagggtatcgc 6480
 ggagctcggtt ggggggacga ggcgcgtcg ggggggtcg agggttccca gggagccgc 6540
 ggtatctaat ttccatgtt gttatggac tccttaagtt ctacttcaa agcatttca 6600
 ctacagaac ctgtcccccc agcaccctcc cccgcctggg tggccactcc ggaccactgc 6660
 tttccctcg gtggggacac aatccctgtg gcccgcaccc tcccaagct gggcgcttac 6720
 gggctttctc atgggggggtt gggctgtcc agccgttcc tcggcttcc agcccttgc 6780
 gtgattttta ggagaatggg cagtgcattt cggaaagac tgagtcaag tcccaagctgc 6840
 ttggagttgg gggagggggc tacctgggtt cagggagaga agttccata cccttctgt 6900
 ggggctgat tatttatttc attctccggg caccggggat gtcgttcc catctgttga 6960
 tgcccatctt cagaatgtgg acaagacact ctcttttggg ctgcctcgat accccgggtca 7020
 ctcactcagc cactctggaa ctaaatatcc ttgtctgca aatgtgggtg gtggtatctg 7080
 tgcccccttc cttaggtcgat gtgggcttgc tcctgaaagc ctggccctcg gctgggtcg 7140
 tcctgactct gatccacca ggcctgagac acctgggtcg actcagggtt gagggtcg 7200
 gaaaaaggcagg gacagccatg ctccaaacagt agaaggggcc tgcgttgc accgtatgtt 7260
 tgtggggcagg ccacttttc tctgaccctt ggtgcctcc gcctgcagga tggactctg 7320
 agggggccca ggtggaggggc aggctgttgc tgacccctcg tttctgttgc agatgagct 7380
 tccttggcgaa aatggggccc ggcctatggc ctctacggga gcttggggg accccacccag 7440
 gccttggcc ggcctcggtt agccctggc aacttctccc tggagcatgg aggctggca 7500
 ggcccagagc agtaccgaga gctgcgtccc ggcagccccc acgggttccccc 7560
 gccgcggccca agacccctcc tggcccccag ccctcttccctt ccagcttgcgtt gtaaccagac 7620
 accagctgg gccttgcgc ctcggagcc cccggcgccc cccacccat gagggtgtcg 7680
 gcagggaaacg gaccctgtt tgccttatcc acggggagca gctgggttta cccctacttc 7740
 cctgcccggcc ccccttctt gctggatggat gtagaccacg ctcaggatctg acccaggccc 7800
 ggctccaccc tgcacccatc acgaggaggc tgccctggg tggccgttcc ggggtcg 7860
 gggttccga ggaagtgggg ccaggcgctc aagggggggc tgggtccctt gcggctccc 7920
 actgcccacc gcacagctcc ctctctgggg gctgaggggac ccacctggcc cctcctctga 7980
 cacagggtt gcccggccagg tggcccttca gcaaggccagg ctttttgtt agcaaatttc 8040
 tcccctttat tgaccaatta actgagact tgcgttattt tctagacatg aatgtcacc 8100
 ttgtcgaggc ccagcccttgc ccagcatagc ccagggttgc gaaaaacgtt ttcattctcta 8160
 aaactgagaa atcatcataa ttgtgttttcc acttccctgg gtcctatgtt ctggagccg 8220
 tcaccccgag gctcccttgc taggtcgagg attggcccttgc tctgtcgagg caagaggctg 8280
 cagaggccgg gacacacccgt tgccttccgg gagaggcccc ctccctctcc cagaccacag 8340
 ggggccttc tgcctccagg cccacccat cccggagaaag ctttccca tccccagggtc 8400
 tctagatcat tctgttctcg agtacccatgtt ggaggaggca aaaatgcctg ggcggcccttc 8460
 tctccaagct caattctcta agcccttgc ggtctcccttcc tcacccacc ccaggccctt 8520
 ggtgtccagg ctgcacccac agatgttgcgt tgccaaacag cctgcctcc ctgcccggagc 8580
 cggctctgcc agccccagat tggaaatgtt ccccgcttgc gaaagggtgg gctcctctga 8640
 gcctgccttgc cctcccttgc cagatccctt ggaagaagat ttctggaga tggccgcagc 8700
 tggcggttgc ccagacacaa aggctggctt gtgtgttgc taaagtcact cccgcaaaacc 8760
 tgaatctcgat gtcacccat ggttctgttgc atttctgttgc tcttttattt attctcggtt 8820

gatcagctct ttccaaagact tcaaaaaant gtcagttacc tcgtgcc 8867

 <210> 23
 <211> 182
 <212> DNA
 <213> Homo sapiens

 <400> 23
 ggcacgagcc cgcacgacg cggcggaact tggagcccc gaacctcca ggggacgctg 60
 acctcgagg agcgctc gcccactcg gcctgggtgc cgcatgctg ctggaaacgg 120
 ggctcgagcg cgaccgagcg aggccccggg ccgcccgcgt ctgcaccttgc ggcgggactc 180
 gg 182

 <210> 24
 <211> 212
 <212> DNA
 <213> Homo sapiens

 <400> 24
 cgcagcccc agcagcaccc ggagtgcgtt ggacgcccgt tcgggctat tgcggggtgg 60
 cgctcgctgg cccggaaag ttccggactg gagagtggcg acgccccggc gcgggaccca 120
 tggaggcgcg cggggagctg ggcccggccc ggagtcggc gggaggcgc acctgctgtag 180
 cactgctggc gcgaggggca gacctgcgc ga 212

 <210> 25
 <211> 2515
 <212> DNA
 <213> Homo sapiens

 <400> 25
 ttatattatcc cccggaggc ctgcagacag gcccaccagg agggcagcca catttgcgag 60
 gagtccttat aaagagtggc catgacgctt aacatgaagg agacccatg gggtgcccc 120
 gctccagtg atgtgaaga cccgtttccc tatgtttcct gccgggcttc agagagcaga 180
 tccccctggg gtggggtttt catttgcgtt ccacatgcac ctttcttgc actggcaaca 240
 ttttgtaatt gagtatttcg cctcgtgaaa tggcctggc tgcttttttgc ctcacacaca 300
 ttttttagacc gatgtcgtt tccctttagc tcctgacata ggatgcggtg cctgcacact 360
 cccggaaactt gccccggccac ttaagctggc tggggaaagag ggtgtgttagg gaaaggagga 420
 cccctcgccg gcccgtggc ctgtggggcg gaggggagggc tggctcgcgt tgggtggg 480
 aggtggctt actgcctctt ggtctacgag gtgacccaga acttcctcgt gcccacagag 540
 atcccgctgt ggcgtggctg tgaccagcac atccctggacc gtttcatcct caaggctctg 600
 gaccggccact ggcacagcaa gtgtctcaag tgcatgcact gcccacaccc actggccgag 660
 cgctgctca gccgagggggaa gacgtttac tgcaaggacg acttttcaa ggcgttcggg 720
 accaagtgcg cccgtgcca gctgggatc ccccccacgc aggtggcgcg cccgcggcc 780
 gacttcgtgt accacctgca ctgttttgc tcgtcggtgt gcaaggccgc gtcggccacg 840
 ggcgacgagt tctacctcat ggaggacagc cggctcggtgt gcaaggccgc ctacgaaacc 900
 gccaaggcgcg gagaggccga ggccacggcc aagggccgc gcacgaccat caccgccaag 960
 cagctggaga cgctgaagag cgcttacaac acctcgccca agccggcgcg ccacgtgcgc 1020
 gagcagctt cgtccgagac gggcctggac atgcgcgtgg tgcaggtttg gttccagaac 1080
 cggccggccca aggagaagag gctgaagaag gacccggcc ggcagcgcgt gggggcgtat 1140
 ttccgcaaca tgaagcgctc cccggggggc tccaaagtggc acaaggacag cttcgaggag 1200
 gggcaggaca ggcacgctga ggtctccctc cccgatgago ttcccttggc gggaaatgggc 1260
 cccggccaaatg gcctctacgg gagcttgggg gaaacccaccc aggccttggg cccggccctcg 1320
 ggagccctgg gcaacttctc cctggagcat ggaggccctgg caggcccaaga gcaagtaccga 1380
 gagctgcgtc cccggcagccc ctacgggtgc ccccccaccc cccggccccc gcaagagcctc 1440
 cctggccccc agccctctt cttccagccctg gtgtacccag acaccagtt gggccttgg 1500
 ccctcgggag ccccccggcc gccccccaccc atgagggtgc tggcaggaa cggacccagt 1560
 tctgacccat ccacggggag cagcgggggt taccggact tccctggccag ccccgccctcc 1620
 tggctggatg aggttagacca cgctcagttc tgacccagcc cccggctccac cctgcacctc 1680

acacgaggg a gctgcccctg ggtgggcggc tcggggctgc tggggttcc gaggaagtgg 1740
 ggccaggcg tcaaggagg gctgggcct tcggagcc tcactgccga ccgcacagct 1800
 ccctctgg gggctgagg acccacctgg cccctcttc gacacaggc tgcccccca 1860
 ggtggctcc cagcaagcc gcctttttg taagcaaatt tctccctt attgaccaat 1920
 taactgagca cttgtctcta tttctagaca taaaatgtca ctttgctgag gcccagccca 1980
 gcccagata gcccggggc tggaaaaacg ctttcatctc taaaactgag aaatcatcat 2040
 aattgtgtt taacttccca ggtccatgt gtcttggagc cgtcaccccg aggctccctc 2100
 ttttaggtcg agattggcc tgcctgtcga gcagaggc tgcaagaggc gggacacacc 2160
 tgcgtctcc tcaaaaaacc ccagggcctt ggtgtccagg ctgcacccac agatgtctgt 2220
 tgccaaacag cttgtccctc ctgcggagc cggctctgcc agccccagat tggaaagtct 2280
 ccccgtgga gaagggtggg gtcctctga gcctgccctg ctcctccat cagatcctt 2340
 gggagaagg ttctgggaga tgccgcage tgcgtgtgcc ccagacacaa aggctggct 2400
 gtgttaagt caaagtcaact cccgaaaacc tgaatctcga gctacctatt gttctgtga 2460
 atgttctgtg tcttttattt attctcggt gatcagctc ttccaagctc gtgcc 2515

<210> 26
 <211> 2540
 <212> DNA
 <213> Homo sapiens

<400> 26

gatcgcttcg gcagcagctg acactcagcc acctgcaccc agcacagccc gcacacactt 60
 ggcttgcac cccgcgtgtcc ttgcctggc cttcttggg taacaagtgc tggcaaatg 120
 gaagggcag aaagctggct gcatggccca ctgctaaaaa cggacacatc ggacctgtc 180
 ggagcttaga gggagggact gtggtttctt gtgcctatcc ttctggccctt gggcccttaa 240
 agctcacagt ccagaagccca taggcagagt ggacagagta ttgctgtgag acccacagg 300
 agagggacccat gcaggatggc atcagccccctt ggtccccca cccttctgt gtgttctgc 360
 gcactgccag ggcacccctg ctttgccaa gtcctgtgt gccggggcc acccaactgt 420
 gtgttcttcc cccgggtggct gcccagggtt ggtgtgtggcc cagggccctc tggcagggg 480
 tgggtgcgtc cctctgcctg caaggacagg tgggttctgg agagctcacc tgggtggact 540
 ggggcaaaag gctgaaatat cagagatccc gctgtgcgt ggctgtgacc agcacatct 600
 ggaccgcgttcc atcctcaagg ctctggaccg coactggcac agcaagtgtc tcaagtgcag 660
 cgactgccac acggccactgg ccgagcgtg cttcagccga ggggagagcg tttactgcaa 720
 ggacgacttt ttciaagcgct tcgggaccaa gtgcgcgcgc tgccagctgg gcatccgc 780
 cacgcagggtg gtgcgcgcgc cccaggactt cgtgttaccac ctgcactgt ttgcctgcgt 840
 cgtgtcaag cggcagctgg ccacggcga cgagttctac ctcatggagg acagccggct 900
 cgtgtcaag gggactacg aaaccggccaa gcagcgagag gcccggccca cggccaaagcg 960
 gcccgcacg accatcaccc ccaagcagct ggagacgtg aagagcgctt acaacacctc 1020
 gcccaagccg ggcgcacgc tgcgcgagca gctctcgcc gagacggcc tggacatgcg 1080
 cgtgtgcac gtttgttcc agaaccggcc gccaaggag aagaggtga agaaggacgc 1140
 cggccggcag cgctgggggc agtattccg caacatgaag cgctccgcg gggctccaa 1200
 gtcggacaag gacagcgttc aggagggca ggacagcgac gctgaggtct cttcccccga 1260
 tgagccttcc ttggcgaaaa tggcccgcc caatggccct tacggagct tggggaaacc 1320
 caccaggcc ttggccggc ctcgggagc cttgggcaac ttctccctgg agcatggagg 1380
 cttggcaggc ccagagcagt accgagagct gctcccgcc agcccttacg gtgtccccc 1440
 atccccccgc gccccgcaga gctccctgg ccccccagccc ctctctcca gcctgggtgt 1500
 cccagacacc agcttggcc ttgtgcctc ggagcccccc ggcggggcccc caccatgag 1560
 ggtgtggca gggAACGGAC ccagttctga cctatccacg gggagcagcg ggggttaccc 1620
 cgacttccct gccagccccc ctcctggct ggtgaggta gaccacgctc agttctgacc 1680
 caggccggc tcacccctgc acctcacacg aggagctgc ccctgggtgg gggctcgcc 1740
 gctgtgggg tttccgagga agtggggcca gggcgtcaag ggagggctgg tgccttcgg 1800
 gcttccact gccgaccgc cagtcctcc tctggggctt gaggaccca cttggccct 1860
 cctctgacac aggctggcc cgccaggtgg cttcccgac agccagcctt tttttaagc 1920
 aaatttctcc cttttatttg ccaattaact gagcacttgc tgctatttctt agacatgaaa 1980
 tgcacccctg ctgaggccca gcccagccca gcatagcccg aggctggaa aaacgcttcc 2040
 atctctaaaa ctgagaaatc atcataatttgc tgcttctact tcccaggctc catgtgtctt 2100
 ggagccgtca ccccgaggct ccctcttttag gtcggagatt ggccttgcct gtcgaggcaa 2160
 gaggctgcag aggccggggac acacctgtgt ctccttcacc ccacccagg cccttgggtgt 2220
 ccaggctgc cccacagatg tctgttgcca aacagcctgc cttccctgc ggagccggct 2280
 ctggccagcc cagattggga agtctccccc ctggagaagg gtggggttcc ttcgtgcctg 2340

```

ccctgcctcc tccatcagat cctttggaa gaagtttctg ggagatgcc gcagctgtgc 2400
gtgccccaga cacaaggct ggcctgtgt taagtcaaag tcactcccgc aaacctaata 2460
ctcgagctac ctattggttc tgtaatgtt ctgtgtcttt tatttattct cgggtgatca 2520
qcttttcca aqtcqgtgcc                                         2540

```

<210> 27

<211> 2070

<212> DNA

<213> Homo sapiens

<400> 27

ccccccagtga	gccctgggct	ggaggtgatc	acgcattgggg	ctgccccggg	gcacggcctg	60
ggcactgcct	tccagaggct	gcatgccaga	aggagatccc	gctgtgcgct	ggctgtgacc	120
agcacatcct	ggaccgcttc	atcctaagg	ctctggaccc	ccactggcac	agcaagtgtc	180
tcaagtgcag	cgactgcccac	acgccactgg	ccgagcgctg	cttcagccga	ggggagagcg	240
tttactgcaa	ggacgacttt	ttcaagcgct	tcgggaccaa	gtgcggcccg	tgccagctgg	300
gcatcccgcc	cacgcag~tg	gtgcggcccg	cccaggactt	cgtgtaccac	ctgcactgt	360
ttgcctgcgt	cgtgtcaag	cggcagctgg	ccacgggcga	cgagttctac	ctcatggagg	420
acagccggct	cgtgtcaag	gcccggactacg	aaaccgc当地	gcagcgagag	gccgaggcga	480
cggccaagcg	gccgcgc当地	accatcacccg	ccaaggagct	ggagacgctg	aagagcgtt	540
acaacacactc	gcccaagccg	gcccgc当地	tgcgcgagca	gctctcgctt	gagacggggcc	600
tggacatgcg	cgtgggtc当地	gttgggttcc	agaaccgc当地	gccaaggag	aagaggctga	660
agaaggacgc	cggccggc当地	cgctgggggc	atgatattccg	caacatgaag	cgctcccg	720
gcccgtccaa	gtcggacaag	gacagcgctt	aggaggggca	ggacagcgac	gtcgaggctt	780
ccttcccccga	tgagccttcc	ttggcggaaa	ttggccccc当地	caatggc当地	tacgggagct	840
tgggggaacc	caccaggc当地	ttggggccgc	cctcgggagc	cctggcaac	ttctccctgg	900
agcatggagg	ccttggcagc当地	ccagagc当地	accgagagct	gcgtcccg	agccccctacg	960
gtgtcccccc	atccccccgc当地	gccccgc当地	gcctccctgg	cccccagccc	ctctctctca	1020
gcctgggtta	cccaagacacc	agcttggcc	ttgtgc当地	gggagcccc	ggcggggccc	1080
caccatgag	ggtgtctggc当地	gggaacggac	coagttctga	cctatccacg	gggagcagcg	1140
ggggtttaccc	cgacttccct	gccagcccc	cctcctggct	ggatgaggta	gaccacgctc	1200
agttctgacc	caggccccggc	tccaccctgc当地	acctcacac	agggagctgc	ccctgggttgg	1260
gcggctcggg	gctgtgggg	tttccgagga	atgtggggca	gggcgtcaag	ggagggtctt	1320
tgccttc当地	gcctccact	gccgaccgc当地	caagtc当地	tctggggct	gagggacc	1380
cctggccctt	cctctgacac	agggctggcc	ccgc当地	cctccagca	agccagcctt	1440
ttttgttaagc	aaatttctcc	cctttattga	ccaaattaact	gagcacttgc	tgctatttt	1500
agacatgaaa	tgtcaccttgc当地	ctgagggccca	gcccagccca	gcata	agggtggaa	1560
aaacgcttcc	atctctaaaa	ctgagaaaatc当地	atcataatttgc当地	tgcttca	tcccaggctc	1620
catgtgtt	ggagccgtca	ccccgaggct	cccttta	gtcgaggatt	gccttgct	1680
gtcgaggcaa	gaggctgc当地	aggcggggac	acac	cccttc当地	ccacccccagg	1740
cccttgggt	ccaggctgc当地	cccacagatg	tctgttgc当地	aacagcctc	cctccctg	1800
ggagccggct	ctggcagccc	cagattggga	atgttccc当地	ctggagaagg	gtggggctt	1860
tctgagcctg	ccctgc当地	tccatcagat	ccttgggaa	gaagttctg	ggagatgccc	1920
gcagctgtc当地	gtggccc当地	cacaaaggct	ggcctgtgt	taagtcaa	taactcccg	1980
aaacctgaat	ctcgagctac	ctattgg	tgtgaatgtt	ctgtgtctt	tatttattt	2040
cgggtatca	gctttcca	agtcgtg	cc			2070

<210> 28

<211> 26

<212> PRT

<213> Homo sapiens

<400> 28

Met Leu Leu Glu Thr Gly Leu Glu Arg Asp Arg Ala Arg Pro Gly Ala
1 5 10 15

Ala Ala Val Cys Thr Leu Gly Gly Thr Arg
20 25

```

<210> 29
<211> 31
<212> PRT
<213> Homo sapiens

<400> 29
Met Glu Ala Arg Gly Glu Leu Gly Pro Ala Arg Glu Ser Ala Gly Gly
1 5 10 15

Asp Leu Leu Leu Ala Leu Leu Ala Arg Arg Ala Asp Leu Arg Arg
20 25 30

<210> 30
<400> 30
000

<210> 31
<211> 29
<212> PRT
<213> Sus scrofa

<400> 31
Met Leu Leu Glu Thr Glu Leu Ala Gly Asp Arg Asp Arg Pro Gly Ala
1 5 10 15

Pro Ala Ala Ala Ala Val Cys Thr Leu Pro Gly Thr Arg
20 25

<210> 32
<400> 32
000

<210> 33
<211> 31
<212> PRT
<213> Sus scrofa

<400> 33
Met Glu Ala Arg Gly Glu Leu Gly Pro Ser Arg Glu Ser Ala Gly Gly
1 5 10 15

Asp Leu Leu Leu Ala Leu Leu Ala Arg Arg Glu Asp Leu Arg Arg
20 25 30

<210> 34
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR primer

<400> 34
atgctgctgg aaacggggct cg

```

```

<210> 35
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR primer

<400> 35
ccgagtcggc cccaaagggtgc 20

<210> 36
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR primer

<400> 36
atggaggcgcc gcgaaaaatgc 20

<210> 37
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR primer

<400> 37
ctcggcgca gttttttttttt 20

<210> 38
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PCR primer

<400> 38
gcgaccgagc gagggccccggg gccgc 25

<210> 39
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Probe

<400> 39
cccggccccggg gagtcggcgagc gaggc 25

```

<210> 40		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:Probe		
<400> 40		
ttccccgatg agctttcctt ggccggaa		27
<210> 41		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 41		
ggcacgagcc ccgcacgacg		20
<210> 42		
<211> 26		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:alpha-GSU sequence		
<400> 42		
gatccggtagt ttagctaatt aaatga		26
<210> 43		
<211> 26		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:Lhx3 consensus binding sequence		
<400> 43		
gatcccagaaa aatataattaa ttgttaa		26
<210> 44		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 44		
ggcacgagcc ccgcacgacg		20

<210> 45		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 45		
tttgaagtct tgaaaaagtgc		20
<210> 46		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 46		
tgacacctcgga ggagcgcgtc t		21
<210> 47		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 47		
tcgtccttgc agtaaacgct		20
<210> 48		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 48		
agcgtttact gcaaggacga		20
<210> 49		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 49		
cgcacttggc cccgaagcgc		20

<210> 50		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 50		
gcgcttcggg accaagtgcg		20
<210> 51		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 51		
cggggaagga gacctcagcg t		21
<210> 52		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 52		
ggacaaggac agcgttcag		19
<210> 53		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 53		
ctcccgtaga ggccattg		18
<210> 54		
<211> 41		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 54		
cgcaagcttc caccatgtgg gaggggcggc cacaggagct g		41
<210> 55		

<211> 33		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 55		
cgggatccaa gcagcgagag gccgaggcca cgg		33
<210> 56		
<211> 75		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 56		
cgcaagcttc caccatggag cagaagctga tcagcgagga ggacctgtgg gaggggcggc	60	
cacaggagct gggag	75	
<210> 57		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 57		
caatttaaccc tcactaaagg g		21
<210> 58		
<211> 31		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 58		
cggaaattcat gaataatgat gatactaatt c		31
<210> 59		
<211> 34		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 59		
ccgctcgagg gatattagct tgtcttgca tttc		34
<210> 60		

<211> 32		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 60		
cgggatcctg ggaggggcgg ccacaggagc tg		32
<210> 61		
<211> 29		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 61		
cggaattcag tcagaactga gcgtgatcc		29
<210> 62		
<211> 33		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 62		
cgggatccaa gcagcgagag gccgaggcca cgg		33
<210> 63		
<211> 29		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 63		
cggaattcag tcagaactga gcgtgatcc		29
<210> 64		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 64		
acattaggtta ctttagctaata taaatgtg		28
<210> 65		
<211> 28		

<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 65		
cacatttaat tagctaagta cctaatgt		28
<210> 66		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 66		
acat taggttta cttggcgccaaatgtg		28
<210> 67		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 67		
cacatttggc gcgc caaagtta cctaatgt		28
<210> 68		
<211> 34		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 68		
cgggatccat gctggatcg gatgtggcc caac		34
<210> 69		
<211> 32		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 69		
cggaaattccg tcttctgctc cctggagctg tg		32
<210> 70		
<211> 30		
<212> DNA		

<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 70		
cggaattcta caacacctcg cccaaaggccgg		30
<210> 71		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 71		
cggaattcgg aacgaggggc ccttgac		27
<210> 72		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 72		
gatccaaaag gaaatgagag a		21
<210> 73		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 73		
cagtgcaggt ggtacacgaa gtcct		25
<210> 74		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 74		
cagtgcaggt ggtacacgaa gtcct		25
<210> 75		
<211> 19		
<212> DNA		
<213> Artificial Sequence		

<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 75		
ggacaaggac agcgttcag		19
<210> 76		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 76		
ctcccgtaga ggccattg		18
<210> 77		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:Probe		
<400> 77		
ttccccgatg agcttcctt ggcgaa		27
<210> 78		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 78		
cggaaattcta caacacacctcg cccaaaggccgg		30
<210> 79		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 79		
cggaaattccgg aacgaggggc ccttgac		27
<210> 80		
<211> 28		
<212> DNA		
<213> Artificial Sequence		

<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 80		
cgggatccga tcgcttcggc agcagctg		28
<210> 81		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 81		
cgggatcatt gatatttacc ccggaggc		28
<210> 82		
<211> 32		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 82		
gcgaagcttg gaactgagcg tggtctacct ca		32
<210> 83		
<211> 29		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 83		
tacaagcttc gcgatgctgc tggaaacgg		29
<210> 84		
<211> 29		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 84		
tacaagctta ccatggaggc gcgcggga		29
<210> 85		
<211> 29		
<212> DNA		
<213> Artificial Sequence		
<220>		

<223> Description of Artificial Sequence:PCR primer	
<400> 85 cccggtacca actgagcgtg gtctacctc	29
<210> 86	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:PCR primer	
<400> 86 ggacaaggac agcgttcag	19
<210> 87	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:PCR primer	
<400> 87 ctcccgtaga ggccattg	18
<210> 88	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:PCR primer	
<400> 88 cgggatccat gctgctggaa acggggct	28
<210> 89	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:PCR primer	
<400> 89 cgggatccat ggaggcgcgc ggggagct	28
<210> 90	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:PCR primer	

<400> 90	
cggaattctc agaactgagc gtggtcta	28
<210> 91	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:PCR primer	
<400> 91	
tggtcacagc ctgcacacat	20
<210> 92	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:PCR primer	
<400> 92	
aaccactgga ttagtgactg	20
<210> 93	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:PCR primer	
<400> 93	
gaagttcagg gtcggaggg	19
<210> 94	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:PCR primer	
<400> 94	
tggtcacagc ctgcacacat	20
<210> 95	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:PCR primer	

<400> 95
cagaaaat~~tta~~ attaattgt~~a~~ a 21

<210> 96
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR primer

<400> 96
cg~~ggatccat~~ gctgctggaa acggggct 28

<210> 97
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR primer

<400> 97
cggaattctc agaactgagc gtggtcta 28

<210> 98
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR primer

<400> 98
cg~~ggatccat~~ ggaggcg~~gc~~ ggggagct 28

<210> 99
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR primer

<400> 99
cggaattctc agaactgagc gtggtcta 28

<210> 100
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR primer

<400> 100

acatttaggtta cttagctaat taaatgtg

28

<210> 101
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR primer

<400> 101
cacatttaat tagctaaagta cctaatagt

28

<210> 102
<211> 192
<212> DNA
<213> Homo sapiens

<400> 102
tcttcggga gagggccctt cctctccccca gaccacaggg ggcctctctg cctccagccc 60
cacctttccccca gggagaagct ttccccaatc cccaggtctc tagatcattc tgttctcgag 120
tatcctgtgg aggaggcaaa aatgcctggc gcccttctc tccaaagctca attctctaag 180
cccttcaggg tc 192

<210> 103
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR primer

<400> 103
caaccgcgtgt cccgcactct t

21

<210> 104
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR primer

<400> 104
gaaagttcgg gactggagag t

21

<210> 105
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR primer

<400> 105
cagtgccaca acctcactca

20

<210> 106		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 106		
tacgaggtga cccagaactt		20
<210> 107		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 107		
cctggccttg gtgattgtga		20
<210> 108		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 108		
tttcagacca ggaaagggtgg		20
<210> 109		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 109		
cgaaatgagc ctcgcgccttc		20
<210> 110		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:PCR primer		
<400> 110		
gctgccgcgc ctcaccgct		19

```
<210> 111
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR primer

<400> 111
aggagtccac taactccatg 20

<210> 112
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR primer

<400> 112
cgctgactga gcctctgctt 20

<210> 113
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR primer

<400> 113
cctcgtgtga ggtgcagggt 20
```