Announcements

Please sit in the front half

Reading Assignments:Chapter 4 (Textbook: CLRS)

Please turn in the survey form

Asymptotic Notation

- \bullet Θ , O, Ω , o, ω
- Used to describe the running times of algorithms
- Instead of exact running time, say $\Theta(n^2)$
- Defined for functions whose domain is the set of natural numbers
- Determine sets of functions, in practice used to compare two functions

Θ-notation

For a given function g(n), we denote by $\Theta(g(n))$ the set of functions

 $\Theta(g(n)) = \{f(n): \text{ there exist}$ positive constants c_1, c_2 and n_0 such that

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n),$$

for all $n \ge n_0$

We say g(n) is an asymptotically tight bound for f(n)

- $10n^2 3n = \Theta(n^2)$
- What constants for n_0 , c_1 , and c_2 will work?
- Make c_1 a little smaller than leading coefficient, and c_2 a little bigger
- To compare orders of growth, look at leading term

O-notation

For a given function g(n), we denote by O(g(n)) the set of functions

 $O(g(n)) = \{f(n): \text{ there exist}$ positive constants c and n_0 such that

$$0 \le f(n) \le cg(n)$$

for all $n \ge n_0$

We say g(n) is an asymptotic upper bound for f(n)

Ω -notation

For a given function g(n), we denote by $\Omega(g(n))$ the set of functions

 $\Omega(g(n)) = \{f(n): \text{ there}$ exist positive constants $c \text{ and } n_0 \text{ such that}$ $0 \le cg(n) \le f(n)$ for all $n \ge n_0$

We say g(n) is an asymptotic lower bound for f(n)

Relations Between Θ , Ω , O

For any two functions g(n) and f(n), $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

• I.e., $\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$

Running Times

- "The running time is O(f(n))"
 - \Rightarrow Worst case is O(f(n))
- "Running time is $\Omega(f(n))$ " \Rightarrow Best case is $\Omega(f(n))$
- Can still say "Worst case running time is $\Omega(f(n))$ "
 - Means worst case running time is given by some unknown function $g(n) \in \Omega(f(n))$

- Insertion sort takes $\Theta(n^2)$ worst case time, so sorting (as a problem) is $O(n^2)$
- Any sort algorithm must look at each item, so sorting is $\Omega(n)$
- In fact, using (e.g.) merge sort, sorting is $\Theta(n \lg n)$ in the worst case

Asymptotic Notation in Equations

- Used to replace expressions containing lower-order terms
- For example,

$$4n^3 + 3n^2 + 2n + 1 = 4n^3 + 3n^2 + \Theta(n)$$
$$= 4n^3 + \Theta(n^2) = \Theta(n^3)$$

- In equations, $\Theta(f(n))$ always stands for an anonymous function $g(n) \in \Theta(f(n))$
 - In the example above, $\Theta(n^2)$ stands for $3n^2 + 2n + 1$

o-notation

For a given function g(n), we denote by o(g(n)) the set of functions

 $o(g(n)) = \{f(n)\}$: for any positive constant c > 0, there exists a constant $n_0 > 0$ such that $0 \le f(n) < cg(n)$ for all $n \ge n_0$

f(n) becomes insignificant relative to g(n) as n approaches infinity: $\lim_{n\to\infty} [f(n) \mid g(n)] = 0$

We say g(n) is an upper bound for f(n) that is not asymptotically tight.

o-notation

For a given function g(n), we denote by $\omega(g(n))$ the set of functions

 $\omega(g(n)) = \{f(n): \text{ for any positive constant } c > 0, \text{ there}$ exists a constant $n_0 > 0$ such that $0 \le cg(n) < f(n)$ for all $n \ge n_0$

f(n) becomes arbitrarily large relative to g(n) as n approaches infinity: $\lim_{n\to\infty} [f(n)/g(n)] = \infty$

We say g(n) is a *lower bound* for f(n) that is not asymptotically tight.

Limits

- $\lim_{n\to\infty} [f(n) \mid g(n)] = 0 \Rightarrow f(n) \in o(g(n))$
- $\lim_{n\to\infty} [f(n) \mid g(n)] < \infty \Longrightarrow f(n) \in O(g(n))$
- $0 < \lim_{n \to \infty} [f(n) / g(n)] < \infty \Rightarrow f(n) \in \Theta(g(n))$
- $0 < \lim_{n \to \infty} [f(n) \mid g(n)] \Rightarrow f(n) \in \Omega(g(n))$
- $\lim_{n\to\infty} [f(n) \mid g(n)] = \infty \Rightarrow f(n) \in \omega(g(n))$
- $\lim_{n\to\infty} [f(n) \mid g(n)]$ undefined \Rightarrow can't say

Comparison of Functions

$$f \leftrightarrow g \approx a \leftrightarrow b$$

$$f(n) = O(g(n)) \approx a \leq b$$

$$f(n) = \Omega(g(n)) \approx a \geq b$$

$$f(n) = \Theta(g(n)) \approx a = b$$

$$f(n) = o(g(n)) \approx a < b$$

$$f(n) = \omega(g(n)) \approx a > b$$

Properties

Transitivity

$$f(n) = \Theta(g(n)) \& g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$$

$$f(n) = O(g(n)) \& g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$$

$$f(n) = \Omega(g(n)) \& g(n) = \Omega(h(n)) \Rightarrow f(n) = \Omega(h(n))$$

$$f(n) = o(g(n)) \& g(n) = o(h(n)) \Rightarrow f(n) = o(h(n))$$

$$f(n) = \omega(g(n)) \& g(n) = \omega(h(n)) \Rightarrow f(n) = \omega(h(n))$$

Symmetry

$$f(n) = \Theta(g(n))$$
 if and only if $g(n) = \Theta(f(n))$

Transpose Symmetry

$$f(n) = O(g(n))$$
 if and only if $g(n) = \Omega(f(n))$
 $f(n) = o(g(n))$ if and only if $g(n) = \omega((f(n)))$

Useful Facts

- For $a \ge 0$, b > 0, $\lim_{n \to \infty} (\lg^a n / n^b) = 0$, so $\lg^a n = o(n^b)$, and $n^b = \omega(\lg^a n)$
 - Prove using L'Hopital's rule repeatedly

$$5n^2 + 100n$$

 $3n^2 + 2$

B

$$\log_3(n^2)$$

 $\log_2(n^3)$

 $3^{\lg n}$

 $n^{1/2}$

B

 $A \in \Theta(n^2), n^2 \in \Theta(B) \Rightarrow A \in \Theta(B)$

$$5n^2 + 100n$$

$$3n^2 + 2$$

$$A \in \Theta(B)$$

$$\log_3(n^2)$$

$$\log_2(n^3)$$

$$3^{\lg n}$$

•
$$\lg^2 n$$

$$n^{1/2}$$

$$5n^2 + 100n 3n^2 + 2$$

$$3n^2 + 2$$

$$A \in \Theta(B)$$

$$A \in \Theta(n^2), n^2 \in \Theta(B) \Rightarrow A \in \Theta(B)$$

$$\log_2(n^3)$$

$$A \in \Theta(B)$$

$$\log_b a = \log_c a / \log_c b$$
; A = 2lgn / lg3, B = 3lgn, A/B = 2/(3lg3)

$$3^{\lg n}$$

 \bullet lg²n

$$n^{1/2}$$

- $5n^2 + 100n$ $3n^2 + 2$ $A \in \Theta(B)$ $A \in \Theta(n^2), n^2 \in \Theta(B) \Rightarrow A \in \Theta(B)$
- $\log_3(n^2)$ $\log_2(n^3)$ $A \in \Theta(B)$ $\log_b a = \log_c a / \log_c b$; $A = 2\lg n / \lg 3$, $B = 3\lg n$, $A/B = 2/(3\lg 3)$
- $a^{\log b} = b^{\log a}; B = 3^{\lg n} = n^{\lg 3}; A/B = n^{\lg(4/3)} \to \infty \text{ as } n \to \infty$

A B

- $5n^2 + 100n$ $3n^2 + 2$ $A \in \Theta(B)$ $A \in \Theta(n^2), n^2 \in \Theta(B) \Rightarrow A \in \Theta(B)$
- $\log_3(n^2)$ $\log_2(n^3)$ $A \in \Theta(B)$ $\log_b a = \log_c a / \log_c b$; $A = 2\lg n / \lg 3$, $B = 3\lg n$, $A/B = 2/(3\lg 3)$
- $a^{\log b} = b^{\log a}; B = 3^{\lg n} = n^{\lg 3}; A/B = n^{\lg(4/3)} \to \infty \text{ as } n \to \infty$
- $\lg^2 n$ $n^{1/2}$ $A \in o(B)$ $\lim_{n \to \infty} (\lg^a n / n^b) = 0$ (here a = 2 and b = 1/2) $\Rightarrow A \in o(B)$

Review on Summation

Why do we need summation formulas?

We need them for computing the running times of some algorithms. (CLRS/Chapter 3)

Example: Maximum Subvector

Given an array a[1...n] of numeric values (can be positive, zero and negative) determine the subvector a[i...j] ($1 \le i \le j \le n$) whose sum of elements is maximum over all subvectors.

1 -2 2 2	1	-2	2	2
----------------	---	----	---	---

Reviews on Summation


```
\begin{aligned} \text{MaxSubvector}(a, n) \\ & \text{maxsum} \leftarrow 0; \\ & \text{for } i \leftarrow 1 \text{ to } n \\ & \text{for } j = i \text{ to } n \\ & \text{sum} \leftarrow 0; \\ & \text{for } k \leftarrow i \text{ to } j \\ & \text{sum} += a[k] \\ & \text{maxsum} \leftarrow \text{max}(\text{sum, maxsum}); \\ & \text{return maxsum}; \end{aligned}
```

•
$$T(n) = \sum_{i=1}^{n} \sum_{j=i}^{n} \sum_{k=i}^{j} 1$$

NOTE: This is not a simplified solution. What is the final answer?

Reviews on Summation

• Constant Series: For $n \ge 0$,

$$\sum_{i=a}^{b} 1 = b - a + 1$$

• Linear Series: For $n \ge 0$,

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n = n(n+1) / 2$$

Reviews on Summation

• Quadratic Series: For $n \ge 0$,

$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + \dots + n^2 = (2n^3 + 3n^2 + n) / 6$$

• Linear-Geometric Series: For $n \ge 0$,

$$\sum_{i=1}^{n} ic^{i} = c + 2c^{2} + ... + nc^{n} = [(n-1)c^{(n+1)} - nc^{n} + c] / (c-1)^{2}$$