Package 'amritaPackage'

October 7, 2013

Type Package

Title Quasi-bootstrap association tests

Author Amrita Ray <amray@stanford.edu>

Maintainer Amrita Ray <amray@stanford.edu></amray@stanford.edu>	
Depends R (>= 2.10.0),kinship2,matrixcalc	
Description Provides quasi-bootstrap p-values for provided and user-provided tests.	
License GPL (>= 3)	
Encoding UTF-8	
LazyLoad yes	
<pre>URL http://stanford.edu/~amray/thepackage/index.html</pre>	
Version 0.01-1	
Date 2013-10-07	
Collate 'amritaPackage- package.R''bootstrap_fn.R''burden_statistic_fn.R''C_fn.R''kernel_fn.R''kernel_statistic_fn. R topics documented:	R''kinship_fn.R''mb_st
amritaPackage-package bootstrap_fn burden_statistic_fn C_fn C_fn C_fn kernel_fn kernel_statistic_fn kinship_fn mb_statistic_fn p_hat_fn r_hat_fn weight_fn	2 2 3 4 4 6 7 7 8 9 9
Index	11

2 bootstrap_fn

amritaPackage-package The amritaPackage Package

Description

Quasi-bootstrap association tests.

Details

Package: amritaPackage
Type: Package
Version: 0.01-1
Date: 2013-10-07

Depends: R (>= 2.10.0), kinship2, matrixcalc

Encoding: UTF-8 License: GPL (>= 3)

LazyLoad: yes

URL: http://stanford.edu/~amray/thepackage/index.html

Provides quasi-bootstrap p-values for provided and user-provided tests.

Author(s)

Amrita Ray <amray@stanford.edu>

bootstrap_fn Quasi-Bootstrap

Description

Compute quasi-bootstrap pvalues for association statistics

Usage

```
bootstrap_fn(N_bootstrap_reps, genotype, ped_object,
  test_statistic_fns, ...)
```

Arguments

N_bootstrap_reps

is the number of bootstrap replications

genotype is the genotype matrix

ped_object is the user input pedigree data

test_statistic_fns

is a list of test statistics. This includes the default list of three statistics (Burden,

Kernel and Madsen-Browning), and any user specified statistic.

map_object is the user input mapfile of the markers

burden_statistic_fn 3

Details

This function returns a list of the observed statistics, number of bootstrap replications and the quasi-bootstrap pvalues. The quasi-bootstrap method can be applied to any genetic data with design (case control, pedigree) to compute association statistics and corresponding pvalues. The idea is to bootstrap from the decorrelated genotype matrix to circumvent the problem that subjects' genotypes at any marker may be correlated.

Author(s)

Ray and Gong

Examples

```
data(example_data)
  genotype = geno_object[,2:ncol(geno_object)]
  test_statistic_fns = list(
    burden = burden_statistic_fn,
    kernel = kernel_statistic_fn,
    mb = mb_statistic_fn)
print(bootstrap_fn(100, genotype, ped_object, test_statistic_fns, map_object))
```

burden_statistic_fn

Multi-locus Burden statistic

Description

This function returns the multi-locus burden statistic

Usage

```
burden_statistic_fn(genotype, ped_object, Psi, p_hat,
    r_hat, map_object)
```

Arguments

genotype is the genotype matrix
ped_object is the user input pedigree data

Psi is the matrix of twice kinship coefficients between a pair of individuals

p_hat is the vector of estimated minor allele frequency per marker r_hat is the matrix of estimated inter-marker correlation coefficients

map_object is the user input mapfile of the markers

Burden

pvalue

Author(s)

Ray and Gong

 C_{fn}

Examples

```
data(example_data)
  genotype = geno_object[,2:ncol(geno_object)]
Psi = 2*kinship_fn(ped_object)
p_hat = p_hat_fn(genotype)
r_hat=r_hat_fn(genotype)
print(burden_statistic_fn(genotype,ped_object, Psi, p_hat, r_hat, map_object))
```

C_fn

Denominator term for two default statistics: Multi-locus Burden and Linear Kernel. This function returns the value of c_s term that is part of the denominator for Burden and Kernel statistics.

Description

Denominator term for two default statistics: Multi-locus Burden and Linear Kernel. This function returns the value of c_s term that is part of the denominator for Burden and Kernel statistics.

Usage

```
C_fn(map_object, p_hat, r_hat)
```

Arguments

map_object is the user input map file of all the markers

p_hat is the estimated minor allele frequency per marker

r_hat is the estimated inter-marker correlation coefficient matrix

Examples

```
x <- c(2,4,3,2,4)
doughnut(x)
## Add lables
doughnut(x, labels=LETTERS[1:5])</pre>
```

 C_fn

Denominator term for two default statistics: Multi-locus Burden and Linear Kernel.

Description

This function returns the value of c_s term that is part of the denominator for Burden and Kernel statistics.

This function returns the linear Kernel statistic (Schaid et al.)

This function returns the multi-locus burden statistic

C_fn 5

Usage

```
C_fn(map_object, p_hat, r_hat)
kernel_fn(genotype, ped_object, Psi, p_hat, r_hat,
    map_object)
kernel_statistic_fn(genotype, ped_object, Psi, p_hat,
    r_hat, map_object)
```

Arguments

map_object is the user input map file of all the markers

p_hat is the estimated minor allele frequency per marker

r_hat is the estimated inter-marker correlation coefficient matrix

genotype is the genotype matrix

ped_object is the user input pedigree data

Psi is the matrix of twice kinship coefficients between a pair of individuals

p_hat is the vector of estimated minor allele frequency per marker r_hat is the matrix of estimated inter-marker correlation coefficients

map_object is the user input mapfile of the markers

genotype is the genotype matrix

ped_object is the user input pedigree data

Psi is the matrix of twice kinship coefficients between a pair of individuals

p_hat is the vector of estimated minor allele frequency per marker r_hat is the matrix of estimated inter-marker correlation coefficients

map_object is the user input mapfile of the markers

Kernel

Linear

Author(s)

Ray and Gong Ray and Gong

Amrita and Gail (emails)

References

Schaid

```
data(example_data)
  genotype = geno_object[,2:ncol(geno_object)]
  p_hat = p_hat_fn(genotype)
  r_hat=r_hat_fn(genotype)
  print(C_fn(map_object,p_hat,r_hat))
  data(example_data)
```

6 kernel_fn

```
genotype = geno_object[,2:ncol(geno_object)]
Psi = 2*kinship_fn(ped_object)
p_hat = p_hat_fn(genotype)
r_hat=r_hat_fn(genotype)
print(kernel_fn(genotype,ped_object, Psi, p_hat, r_hat, map_object))
data(example_data)
genotype = geno_object[,2:ncol(geno_object)]
Psi = 2*kinship(ped_object)
p_hat = p_hat_fn(genotype)
r_hat=r_hat_fn(genotype)
print(burden_statistic_fn(genotype,ped_object, Psi, p_hat, r_hat, map_object))
```

kernel_fn

Linear Kernel statistic

Description

This function returns the linear Kernel statistic (Schaid et al.)

Usage

```
kernel_fn(genotype, ped_object, Psi, p_hat, r_hat,
  map_object)
```

Arguments

genotype is the genotype matrix

ped_object is the user input pedigree data

Psi is the matrix of twice kinship coefficients between a pair of individuals

p_hat is the vector of estimated minor allele frequency per marker r_hat is the matrix of estimated inter-marker correlation coefficients

map_object is the user input mapfile of the markers

Kernel

Linear

Author(s)

Ray and Gong

```
data(example_data)
  genotype = geno_object[,2:ncol(geno_object)]
Psi = 2*kinship_fn(ped_object)
p_hat = p_hat_fn(genotype)
r_hat=r_hat_fn(genotype)
print(kernel_fn(genotype,ped_object, Psi, p_hat, r_hat, map_object))
```

kernel_statistic_fn 7

kernel_statistic_fn	Multi-locus Burden statistic This function returns the multi-locus bur-
	den statistic

Description

Multi-locus Burden statistic This function returns the multi-locus burden statistic

Usage

```
kernel_statistic_fn(genotype, ped_object, Psi, p_hat,
  r_hat, map_object)
```

Arguments

genotype is the genotype matrix

ped_object is the user input pedigree data

Psi is the matrix of twice kinship coefficients between a pair of individuals

p_hat is the vector of estimated minor allele frequency per marker

r_hat is the matrix of estimated inter-marker correlation coefficients

map_object is the user input mapfile of the markers

Author(s)

Amrita and Gail (emails)

Examples

```
data(example_data)
genotype = geno_object[,2:ncol(geno_object)]
Psi = 2*kinship(ped_object)
p_hat = p_hat_fn(genotype)
r_hat=r_hat_fn(genotype)
print(burden_statistic_fn(genotype,ped_object, Psi, p_hat, r_hat, map_object))
```

kinship_fn

Kinship matrix

Description

This function returns a matrix of the kinship coefficients of a pair of individuals

Usage

```
kinship_fn(ped_object)
```

Arguments

ped_object is the user input pedigree file.

mb_statistic_fn

Examples

```
data(example_data)
  kinship_object=kinship_fn(ped_object)
head(kinship_object)
```

 $mb_statistic_fn$

Madsen-Browning statistic

Description

This function returns the multi-locus burden statistic

Usage

```
mb_statistic_fn(genotype, ped_object, Psi, p_hat, r_hat,
    map_object)
```

Arguments

genotype is the genotype matrix

ped_object is the user input pedigree data

Psi is the matrix of twice kinship coefficients between a pair of individuals

p_hat is the vector of estimated minor allele frequency per marker

r_hat is the matrix of estimated inter-marker correlation coefficients

map_object is the user input mapfile of the markers

Author(s)

Ray and Gail

```
data(example_data)
genotype = geno_object[,2:ncol(geno_object)]
Psi = 2*kinship(ped_object)
p_hat = p_hat_fn(genotype)
r_hat=r_hat_fn(genotype)
print(mb_statistic_fn(genotype,ped_object, Psi, p_hat, r_hat, map_object))
```

p_hat_fn

Description

This function returns the estimate of minor allele frequency for each marker.

Usage

```
p_hat_fn(genotype, epsilon = 1e-04)
```

Arguments

Genotype is the user input genotype data with rows as individuals and columns as markers.

epsilon is a small quantity, if the estimate is less or equal to 0 the function returns ep-

silon; if the estimate is greater or equal to 1 the function #'returns 1-epsilon.

Examples

```
data(example_data)
genotype=geno_object[,2:ncol(geno_object)]
p_hat_fn(genotype,epsilon)
```

r_hat_fn Marker correlation

Description

This function returns estimate of inter-marker correlation matrix.

Usage

```
r_hat_fn(genotype, epsilon = 1e-04)
```

Arguments

Genotype is the user input genotype matrix.

epsilon is a small quantity that is added or or subtracted from genotype depending on the

number of minor alleles per marker. This adjustment #'is done so the genotypic

variance at a marker is non-zero.

10 weight_fn

|--|--|--|

Description

This function assigns weights per marker. Weight = user specified weight in the map file, else function of estimated minor allele frequency

Usage

```
weight_fn(map_object, p_hat)
```

Arguments

map_object Data frame of marker information that user inputs.

p_hat Estimate of minor allele frequency from the input genotype file.

```
data(example_data)
genotype = geno_object[,2:ncol(geno_object)]
p_hat = p_hat_fn(genotype)
print(weight_fn(map_object, p_hat))
```

Index

```
*Topic package
    \verb"amritaPackage-package", 2"
amritaPackage (amritaPackage-package), 2
{\tt amritaPackage-package}, 2
bootstrap_fn, 2
burden\_statistic\_fn, \\ 3
C_fn, 4
kernel_fn, 6
kernel_fn(C_fn), 4
kernel_statistic_fn, 7
kernel_statistic_fn(C_fn), 4
kinship_fn, 7
mb\_statistic\_fn, 8
p_hat_fn, 9
r_hat_fn, 9
weight\_fn, \\ 10
```