Geometry of Gaussian Measures

Joseph Anderson

The Ohio State University andejose@cse.ohio-state.edu

24 March 2014

Curves

Let (X, d) be a metric space.

Definition

Let $\gamma:[0,1]\to X$ be continuous. We say that γ is a $\it curve$, and the $\it length$ of γ is

$$L_d(\gamma) = \sup_{0=t_1 < t_2 < \dots < t_N = 1} \sum_{i=1}^N d(\gamma(t_i), \gamma(t_{i+1})).$$

The curve γ is said to be *rectifiable* if its length is finite.

Length Spaces

Definition

Let $x, x' \in X$ and let $\Gamma(x, x')$ be the family of curves joining x and x'. The *intrinsic metric* on X is defined as

$$d^*(x,x') = \inf(L_d(\gamma) \mid \gamma \in \Gamma(x,x')).$$

If $\Gamma(x, x') = \emptyset$, we say that $d^*(x, x') = \infty$.

- If $d = d^*$, then we say that d is intrinsic and we call (X, d^*) a path metric space or length space.
- One calls (X, d^*) geodesic if for any pair of points x, x' there exist $\gamma \in \Gamma(x, x')$ so that $L_d(\gamma) = d(x, x')$.

Space of Measures

Let $\mathcal{P}_2^{ac}(\mathbb{R}^d)$ be the set of all absolutely continuous measures on \mathbb{R}^d with finite second moment.

- Absolutely continuous: $\mu << \lambda$ if $\lambda(A) = 0 \implies \mu(A) = 0$
- Finite second moment: $\int_{\mathbb{R}^d} d(x, x_0) d\mu(x) < \infty$ for all x_0 .

Gaussian Measures

Recall the Gaussian measure on \mathbb{R}^d , $\phi_{\mu,\Sigma}$, where

$$\phi_{\mu,\Sigma}(A) = \frac{1}{\sqrt{\det{(2\pi\Sigma)}^d}} \int_A \exp\left(\frac{-1}{2}\langle x - \mu, \Sigma^{-1}(x - \mu)\rangle\right) d\lambda_n(x).$$

- Let $(\mathcal{N}^d, d_{\mathcal{W},2}^{\mathbb{R}^d})$ be the space of all Gaussian measures on \mathbb{R}^d with the (restriction of the) 2-Wasserstein distance.
- Note: Gaussian measures are square integrable and absolutely continuous with respect to the Lebesgue measure, so $\mathcal{N}^d \subset \mathcal{P}_2^{ac}$

Some Basic Questions about ${\mathcal N}$

Let $\phi_1, \phi_2 \in \mathcal{N}^d$.

- Is it true that we can find a measure $\mu \in \mathcal{M}(\phi_1, \phi_2)$?
- How about $\mathcal{N}^{d^2} \cap \mathcal{M}(\phi_1, \phi_2)$?
- Does \mathcal{N}^d have recognizable structure?

One-Dimensional Warm Up

Let $\phi_1, \phi_2 \in \mathcal{N}_1$ with mean and variance μ_1, σ_1^2 and μ_2, σ_2^2 , respectively.

- lacksquare Couplings exist, and are Gaussian on \mathbb{R}^2
- We can assume that $\mu_1 = \mu_2 = 0$
- We can compute

$$d_{\mathcal{W},2}(\phi_1,\phi_2) = \left(\inf_{\mu \in \mathcal{M}(\phi_1,\phi_2)} \iint |x-y|^2 d\mu(x,y)\right)^{1/2}$$
$$= |\sigma_1 - \sigma_2|.$$

■ Furthermore, this even forms a length space

Known Results

Theorem ([GM96])

Let μ , ν be Borel probability measures on \mathbb{R}^d . Then

- 1 there exists a convex function ψ on \mathbb{R}^d whose gradient $\nabla \psi$ pushes μ forward to ν
- **2** the gradient of ψ is determined up to μ -measure 0
- 3 the measure $\pi = (\mathrm{id} \times \nabla \psi)_{\#} \mu$ is optimal
- 4 π is the only optimal measure in $\mathcal{M}(\mu, \nu)$ unless $d_{\mathcal{W},2}(\mu, \nu) = +\infty$

Theorem ([GS84])

For $\phi_{m,V}, \phi_{n,U} \in \mathcal{N}^d$, we have

$$d_{W,2}^2 = \|m - n\|^2 + \operatorname{tr}(V) + \operatorname{tr}(U) - 2\operatorname{tr}\left(U^{\frac{1}{2}}VU^{\frac{1}{2}}\right)^{\frac{1}{2}}$$

Geometry of \mathcal{N}^d and Applications

- Proved by [GM96] that \mathcal{N}_0^d (mean 0 Gaussian measures) is geometrically convex as a subspace of $\mathcal{P}_2^{ac}(\mathbb{R}^d)$.
- lacktriangle The sectional curvature of \mathcal{N}_0^d can be computed, c.f. [Tak08]
- Known curvature can help learning algorithms which rely on regularization
- Distance between "soft" shapes with Gaussian-like geodesic distances becomes easily computable and interpolated

References

Wilfrid Gangbo and Robert J McCann.

The geometry of optimal transportation.

Acta Mathematica, 177(2):113-161, 1996.

Clark R Givens and Rae Michael Shortt.

A class of wasserstein metrics for probability distributions.

The Michigan Mathematical Journal, 31(2):231–240, 1984.

Asuka Takatsu.

On wasserstein geometry of the space of gaussian measures. 2008.

Harmonic Soft Maps and the Laplace-Beltrami Operator Overview Presentation

Alfred Rossi

The Ohio State University

March 23, 2014

Introduction

- Project goal is to discover and understand the landscape of ideas surrounding harmonic maps and the Laplace-Beltrami operator while exploring related applications.
- In particular
 - The variational formulation of the Laplace-Beltrami operator
 - ► The generalization of Harmonic Maps from functions between manifolds to soft maps
 - The interplay between these ideas

Laplace-Beltrami Operator

Throughout this presentation M_S and M_T will denote two smooth, compact Riemannian manifolds with gradient operators ∇_S , ∇_T , respectively.

Definition

Let g_S denote the metric for M_S , then the Laplace-Beltrami Operator at a point $x \in M_S$ is given by $\Delta_{g_S} u \equiv \text{div} \cdot \text{grad} u$.

- The Laplace-Beltrami Operator on a Riemannian Manifold is determined by the metric.
- The converse direction holds too, by intermediate construction of the heat kernel

The Heat Equation

Consider a heat diffusion process on a manifold. The goal is to find the amount of heat at each location of the manifold $u(x,t): M_S \times \mathbb{R}^+ \to \mathbb{R}$ for all t > 0, given an initial distribution u(x,0).

Definition

$$\Delta_{gs}u(x,t)=-rac{\partial u(x,t)}{\partial t}$$

Solving the Heat Equation

Intuitively, suppose we had a function $K: M_S \times M_S \times \mathbb{R}^+ \to \mathbb{R}$ which given two points $x,y \in M_S$ encodes the proportion of heat at position y from position x after a time Δt . Then,

Fact

$$u(x,t) = \int_{M_{\mathfrak{S}}} K(x,y,t) \, u(y,0) \, dy$$

What would such a K look like?

Alfred Rossi (The Ohio State University)Harmonic Soft Maps and the Laplace-Bel

The Heat Kernel

Definition

Let λ_n, ϕ_n be the eigenvalues and eigenfunctions of Δ_{g_S} . The heat kernel $K(x, y, t) \in C^{\infty}(M_S \times M_S \times \mathbb{R}^+)$ is given by

$$K(x, y, t) = \sum_{n=0}^{\infty} e^{-\lambda_n t} \phi_n(x) \phi_n(y)$$

- Analogous to Fourier analysis on the manifold
- Contains all of the information regarding the structure of the manifold
 - can be used to determine the metric

(ロ) (레) (토) (토) 토 (9QC)

Alfred Rossi (The Ohio State University)Harmonic Soft Maps and the Laplace-Bel

Soft Maps Between Surfaces [SNBBcG]

Definition

A Soft Map from M_S to M_T is a function assigning to each point $x \in M_S$ a probability distribution μ_X over M_T .

- Let $\mathcal{U} \subseteq M_T$ then $\mu_x(\mathcal{U})$ encodes the probability that x maps into \mathcal{U} . In particular it is required that:
 - ▶ $\mu_{x}(\mathcal{U}) \in [0,1]$
 - $\mu_{\times}(M_T) = 1$
- Soft maps generalize point to point maps.

Harmonic Maps [SGB]

Definition

The *Dirichlet Energy* of a map $\phi: M_S \to M_T$ is given by

$$\mathcal{E}_{\mathcal{D}}(\phi) \equiv \int_{M_{\mathcal{S}}} \left\| \nabla_{\mathcal{S}} \phi(x) \right\|^2 dx$$

- ullet Can think of this as a measure of the "intrinsic stretching" of ϕ .
- Maps which extremize this functional are known as harmonic maps.
- Project goal: Investigate and understand how to generalize this notion to soft maps.

One Point Isometric Matching by Heat Kernel [OMMG]

- Gives a method to recover an isometry when given only a single pair of corresponding points between two geodesically identical meshes
- Works by exploiting the invariance of the heat kernel under isometry
 - ▶ Given a pair of isometric manifolds M, N and a pair of points $p \in M$, $q \in M$ such that for some isometry $\psi : M \to N$, $\psi(p) = q$. One can associate to every point on $x \in M$ a signature $k_t^M(p,x)$ and likewise for any $y \in N$ a signature $k_t^N(q,y)$.
 - Related points can be identified by matching signatures
 - ▶ Both the initial correspondence and isometry can be found efficiently in practice
- Very general. That is, it does not depend genus of the surface, or dimension

One Point Isometric Matching by Heat Kernel [OMMG]

Applications of Soft Maps [SNBBcG]

- Models M_1 , M_2 are descritized into patches corresponding to geodesic voroni cells
- A descriptor $\phi_s(U) \in \mathbb{R}^k$ is associated with each patch $U \subset M_s$, $s \in \{1,2\}$ that encodes some information about its geometry.
- A solver numerically finds a soft correspondence A which minimizes the energy $E(A) = E_{\phi}(A) + \lambda E_{cont}(A) + \beta E_{s}(A)$ where
 - \triangleright E_{ϕ} ensures the corresponding patches have similar geometry
 - \blacktriangleright E_{cont} attempts to keep local patches local in the correspondence by applying a cost based on GEMD
 - E_s is a sharpness term that tries to mediate tradeoff between E_{ϕ} and E_{cont} when there is an exact symmetry.

Applications of Soft Maps [SNBBcG]

Bibliography

- Ovansjanikov, Merigot, Mémoli, and Gubias. *One Point Isometric Matching with the Heat Kernel*
- Solomon, Gubias, Butscher. Dirichlet Energy for Analysis and Synthesis of Soft Maps
- Zeng, Guo, Luo, Gu. Discrete Heat Kernel Determines Discrete Riemannian Metric
- 🖬 Crane, Weischedel, and Wardetzky. Geodesics in Heat
- Eells and Sampson. Harmonic Mappings of Riemannian Manifolds
- Mémoli. Spectral Gromov-Wasserstein Distances for Shape Matching
- Solomon, Nguyen, Butscher, Ben-Chen, Gubias. Soft Maps Between Surfaces

Averaging Phylogenetic Trees

Presenter: Suyi Wang

Phylogenetic Tree Space

- A phylogenetic n-tree is:
 - A Tree with n leaves
 - Leaves: represent distinguishable species
 - Interior vertices: #degree >= 3
 - Edges: weighted
 - Max: 2*n − 1 edges

```
'Lemur catta'
                  AAGCTTCATAGG
'Tarsius_syrichta'AAGTTTCATTGG
'Saimiri_sciureus'AAGCTTCACCGG
'Macaca_sylvanus' AAGCTTCTCCGG
'Macaca_fascicul.'AAGCTTCTCCGG
'Macaca_mulatta' AAGCTTTTCTGG
'Macaca_fuscata'
                  AAGCTTTTCCGG
'Hylobates'
                  AAGCTTTACAGG
'Pongo'
                  AAGCTTCACCGG
'Gorilla'
                  AAGCTTCACCGG
'Pan'
                  AAGCTTCACCGG
'Homo_sapiens'
                  AAGCTTCACCGG
```


Phylogenetic Tree Space

• Splits:

- Associates with an edge e
- A partition (Xe, Xe*) of leaves

Phylogenetic Tree Space

- Trees are uniquely defined by compatible set of splits [Semple 03]
 - Suggests a tree space
 - Axis length of edges
 - -2n-1 orthants

Geodesic distance

- Computing geodesic distances in tree space
 [Owen 07]
 - Shortest path from T1 to T2
 - Sum (sub path in each orthant)
 - Unique [Billera 01]

- Same orthant
 - Euclidean distance

Geodesic distance

- Trees share a common edge
 - [Vogtmann 07] [Owen 08]

Geodesic distance

- Trees share no common edge
 - A path space: $K(\Sigma_1, \Sigma_2)$
 - Try all possible orthants series.
 - A dynamic programming

Averaging in tree space

• Tree space T={T1, T2, ..., Tr}

- Variance S(X, T)
 - Sum of squares distances from X to each tree in T

- Mean
 - X that minimize the variance

Averaging in tree space

- Iterative approach [Strum 03]
 - Random sample on T for k times {T1...Tk}
 - Current result u_i, i=[1, k]
 - $u_i+1 = 1/(k+1)$ from u_i to Ti
 - Converge to mean

- A descent method [Millier 12]
 - To be continued...