Plano de Testes – Projeto SafeVax V2 1. Introdução

Este documento descreve o plano de testes para o projeto SafeVax V2, visando validar que o sistema atenda aos requisitos funcionais, não funcionais e de integração. O objetivo é garantir que todas as funcionalidades – desde a coleta e transmissão dos dados dos freezers até a visualização e notificação – operem de forma segura, eficiente e integrada.

2. Objetivos dos Testes

- **Verificação Funcional:** Garantir que cada requisito funcional seja implementado corretamente e opere conforme esperado.
- Validação da Integração: Assegurar que os diferentes módulos do sistema (dispositivos IoT, broker MQTT, servidor Flask, banco de dados, dashboard Streamlit e aplicativo Flutter) se comuniquem e interajam corretamente.
- Avaliação da Segurança e Desempenho: Testar a eficácia dos algoritmos de compactação (Huffman) e criptografia, bem como a latência na transmissão dos dados.
- Testes de Usabilidade: Verificar a interface e a experiência do usuário tanto no aplicativo mobile em Flutter quanto no dashboard interativo em Streamlit.
- Testes Manuais e Unitários: Enquanto os módulos do ESP32 serão validados via testes manuais in loco, os testes unitários serão aplicados aos módulos do Flutter e do Streamlit.

3. Escopo dos Testes

Componentes a Serem Testados

- Dispositivos IoT e Comunicação via MQTT:
 - Sensores de temperatura (DHT11).
 - Sensores de estado da porta do container, agora utilizando sensor de luz infravermelho PIR, instalado na parte superior do container e voltado para a parte móvel da porta.
 - Módulo RFID para identificação de acessos.
 - Envio dos dados (compactados e criptografados) via MQTT.
- Servidor Flask e Integração com Banco de Dados:
 - Captação dos dados via MQTT.
 - Processamento: descompactação (Huffman), descriptografia e registro dos dados em banco (SQLite ou PostgreSQL, conforme a versão adotada).
 - Exposição dos dados via API HTTP.
- Interface de Visualização e Notificações:
 - Dashboard interativo desenvolvido com Streamlit.
 - Aplicativo mobile em Flutter para recebimento dos dados, emissão de alertas e notificações.

Componentes Excluídos dos Testes

 Testes unitários e de integração não serão aplicados aos módulos do ESP32, que serão validados via testes manuais in loco.

4. Estratégia de Testes

Tipos de Testes

Testes Funcionais (Manuais)

Serão realizados testes manuais para validar:

- Funcionamento dos sensores (temperatura e sensor PIR para estado da porta).
- Leitura e registro dos acessos via RFID.
- Envio e recepção dos dados via MQTT.
- Processamento no servidor Flask (descompactação, descriptografia e registro dos dados).

Testes de Integração (Manuais)

Validar a comunicação e integração entre os módulos:

- Dispositivos IoT \rightarrow Broker MQTT \rightarrow Servidor Flask \rightarrow API HTTP.
- Integração entre o servidor, o dashboard (Streamlit) e o aplicativo mobile (Flutter).

Testes Unitários (Automatizados)

Serão desenvolvidos para os módulos do aplicativo Flutter e do dashboard em Streamlit, incluindo:

- Validação dos métodos de descriptografia e descompactação.
- Verificação da lógica de exibição e manipulação de dados.
- Testes de notificação e alerta no aplicativo mobile.

Testes de Segurança

Verificar a robustez da criptografia aplicada e a integridade dos dados durante a transmissão.

Testes de Performance

Medir a latência na transmissão dos dados e a eficácia da compactação, garantindo que a comunicação ocorra em tempo real com baixa latência.

Ferramentas de Teste

- Ambiente de Teste Manual:
 - Equipamentos com ESP32, sensores (DHT11 e sensor PIR), módulo RFID e broker MQTT configurado.
- Ambiente de Teste Automatizado:
 - Frameworks de testes para Flutter (ex.: Flutter Test) e para Streamlit (Python unittest/pytest).
- Ferramentas de Monitoramento:
 - Logs e analisadores de pacotes (ex.: Wireshark) para validar a criptografia e a integridade dos dados.

5. Casos de Teste

5.1 Testes Funcionais

TF-01: Monitoramento de Temperatura

- Objetivo: Verificar se o sensor DHT11 coleta e envia a temperatura em tempo real.
- Procedimento:
 - i. Simular variações de temperatura no ambiente do freezer.
 - ii. Verificar a exibição dos dados enviados via MQTT.
- Resultado Esperado: Dados precisos e atualizados em tempo real.

TF-02: Registro de Estado da Porta do Container

- **Objetivo:** Confirmar que o sensor de luz infravermelho PIR registra corretamente o estado (aberto/fechado) da porta do container.
 - i. O sensor deverá detectar a mudança na reflexão da luz infravermelha assim que a porta for aberta ou fechada.
- Procedimento:
 - i. Simular a abertura e fechamento da porta do container.
 - ii. Observar se o sensor PIR detecta a alteração de estado imediatamente e se essa informação é enviada ao sistema.
- Resultado Esperado: Cada mudança de estado é registrada e transmitida instantaneamente.

TF-03: Emissão de Alerta por Ausência de RFID

- **Objetivo:** Validar que, ao abrir a porta do container, se nenhum cartão RFID for identificado em até 10 segundos, o sistema emite um alerta.
- Procedimento:
 - i. Abrir a porta do container.
 - ii. Não apresentar nenhum cartão RFID ao leitor durante 10 segundos.

- iii. Verificar se o sistema emite o alerta conforme especificado.
- Resultado Esperado: Alerta emitido imediatamente após o período de 10 segundos sem identificação de RFID.

TF-04: Identificação via RFID

- Objetivo: Validar o registro de acesso dos usuários por meio do RFID.
- Procedimento:
 - i. Aproximar um cartão RFID do leitor.
 - ii. Verificar se o acesso é registrado com os dados corretos.
- Resultado Esperado: A identificação do usuário é capturada e enviada corretamente.

TF-05: Envio de Dados via MQTT

- Objetivo: Confirmar que os dados são compactados, criptografados e enviados ao broker MQTT.
- Procedimento:
 - i. Verificar os dados enviados a partir dos freezers utilizando um analisador de pacotes.
- **Resultado Esperado:** Dados enviados no formato esperado, compactados e criptografados.

5.2 Testes de Integração

TI-01: Integração do Servidor Flask

- Objetivo: Verificar a recepção dos dados pelo servidor Flask e seu processamento (descompactação e descriptografia).
- Procedimento:
 - i. Enviar dados via MQTT a partir dos dispositivos.
 - ii. Confirmar que o servidor Flask processa e armazena os dados no banco.
- Resultado Esperado: Dados corretamente registrados e disponíveis via API HTTP.

TI-02: Integração do Dashboard (Streamlit)

- Objetivo: Validar a exibição dos dados no dashboard interativo.
- Procedimento:
 - i. Conectar o dashboard à API do servidor Flask.
 - ii. Verificar a atualização em tempo real dos gráficos e tabelas.
- Resultado Esperado: Dados apresentados de forma clara e interativa.

TI-03: Integração do Aplicativo Flutter

- Objetivo: Testar o consumo dos dados (criptografados e compactados) e o envio de alertas.
- Procedimento:
 - i. Simular condições críticas (ex.: temperatura elevada ou porta aberta sem RFID).
 - ii. Verificar a recepção dos dados no aplicativo e a emissão dos alertas.
- Resultado Esperado: Notificações enviadas corretamente aos gestores.

5.3 Testes de Segurança

TS-01: Validação da Criptografia

- Objetivo: Confirmar que os dados são criptografados durante a transmissão.
- Procedimento:
 - i. Utilizar ferramentas de análise de pacotes para interceptar a comunicação.
 - ii. Verificar se os dados estão protegidos.
- Resultado Esperado: Nenhum dado em texto claro é visível.

TS-02: Teste de Integridade dos Dados

- Objetivo: Verificar se os dados mantêm sua integridade após a compactação e descompactação.
- Procedimento:
 - i. Comparar os dados antes e depois do processo.
- Resultado Esperado: Os dados permanecem íntegros e sem perdas.

5.4 Testes de Performance

TP-01: Latência na Transmissão

- Objetivo: Medir o tempo entre a coleta dos dados e sua disponibilidade via API.
- Procedimento:
 - i. Realizar medições em diferentes condições de rede.
- Resultado Esperado: Latência dentro dos parâmetros estabelecidos para atualizações em tempo real.

5.5 Testes Unitários (para módulos Flutter e Streamlit)

TU-01: Testes de Descriptografia e Descompactação (Flutter)

- Objetivo: Validar as funções de descriptografia e descompactação dos dados no aplicativo.
- Procedimento:
 - i. Executar testes automatizados utilizando o framework de testes do Flutter.
- Resultado Esperado: Funções retornam os dados corretamente processados.

TU-02: Testes dos Componentes do Dashboard (Streamlit)

- **Objetivo:** Verificar que os componentes do dashboard (gráficos, tabelas, etc.) processam e exibem os dados conforme esperado.
- Procedimento:
 - i. Utilizar pytest ou outro framework para testar os componentes.
- Resultado Esperado: Componentes apresentam os dados de forma correta e responsiva.

6. Cronograma e Ambiente de Teste

Ambiente de Teste Manual

- Equipamentos com ESP32, sensores (DHT11 e PIR), módulo RFID e freezers em ambiente controlado.
- Broker MQTT configurado para simulação do fluxo completo.

Ambiente de Teste Automatizado

 Configuração de testes unitários para os módulos Flutter e Streamlit em ambiente de desenvolvimento.

Cronograma

- Testes Funcionais e de Integração: Durante a implementação e após a integração de cada módulo.
- Testes Unitários: Após a implementação dos módulos críticos do Flutter e Streamlit.
- Testes de Performance e Segurança: Durante a fase de integração e antes da implantação final.

7. Critérios de Aceitação

- Funcionalidade: Todos os requisitos funcionais e de integração (incluindo os novos testes para o sensor PIR e a verificação do alerta por ausência de RFID) devem ser atendidos conforme os resultados dos testes.
- **Segurança:** A comunicação deve estar criptografada e os dados devem manter sua integridade durante os processos de compactação/descompactação.
- Performance: A latência do sistema deve permitir atualizações em tempo real.
- **Usabilidade:** As interfaces do aplicativo mobile e do dashboard devem ser intuitivas e responsivas, garantindo uma boa experiência ao usuário.

8. Conclusão

Este plano de testes tem o intuito de assegurar que o projeto SafeVax V2 opere de forma integrada, segura e eficiente, cumprindo todos os requisitos definidos – incluindo a nova abordagem para o monitoramento do estado da porta do container via sensor PIR e a emissão de alertas na ausência de identificação RFID dentro de 10 segundos. As etapas de testes manuais, unitários e de integração garantirão a

qualidade e robustez do sistema antes da implantação em ambiente real.

Este documento será atualizado conforme novas funcionalidades e requisitos forem incorporados ao projeto.