I. FRODLEM SEI 2

0.1 Problem Set 2

Suppose $(a_n)_{n\in\mathbb{N}}, (b_n)_{n\in\mathbb{N}}, (c_n)_{n\in\mathbb{N}}\in\mathfrak{c}(\mathbb{R})$ and $\lim_{n\to\infty}(c_n)\neq 0$ and for any $n\in\mathbb{N}, c_n\neq 0$.

1.) Prove $\lim_{n\to\infty} (c) = c$: Observe that $(c)_{n\in\mathbb{N}} = c(1)_{n\in\mathbb{N}}$. By Theorem 4, $\lim_{n\to\infty} (c) = \lim_{n\to\infty} (c*1) = c \lim_{n\to\infty} (1)$. Since $\lim_{n\to\infty} (1) = 1$, $\lim_{n\to\infty} (c) = c*1 = c$.

2.) Prove $\lim_{n\to\infty} (|a_n|) = |\lim_{n\to\infty} (a_n)|$: Let $\lim_{n\to\infty} (a_n) = a$ and let $\epsilon > 0$. There exists an $N \in \mathbb{N}$ such that for any $n \ge N$, $|a_n - a| < \epsilon$. By the reverse triangle inequality, $||a_n| - |a|| \le |a_n - a|$. Furthermore $||a_n| - |a|| < \epsilon$, $n \ge N$. Thus $\lim_{n\to\infty} (|a_n|) = |a| = |\lim_{n\to\infty} (a_n)|$.

1.) Prove Proposition 6: For any $a, b \in \mathbb{R}$, $\left(\begin{array}{c} a \lor b = \frac{1}{2}(a+b+|a-b|) \\ a \land b = \frac{1}{2}(a+b-|a-b|) \end{array} \right).$

Let $a, b \in \mathbb{R}$. Suppose $a \ge b$. Clearly, $a \lor b = a$ and $a \land b = b$. Furthermore, |a - b| = a - b since $a - b \ge 0$. Thus,

$$a \lor b = a = \frac{1}{2}(a+b+(a-b)) = \frac{1}{2}(a+b+|a-b|) \tag{1}$$

$$a \wedge b = b = \frac{1}{2}(a+b-(a-b)) = \frac{1}{2}(a+b-|a-b|). \tag{2}$$

Suppose a < b. Clearly, $a \lor b = b$ and $a \land b = a$. Furthermore, |a - b| = -(a - b) since a - b < 0. Thus,

$$a \lor b = b = \frac{1}{2}(a+b+(-(a-b))) = \frac{1}{2}(a+b+|a-b|) \tag{3}$$

$$a \wedge b = a = \frac{1}{2}(a + b - (-(a - b))) = \frac{1}{2}(a + b - |a - b|). \tag{4}$$

In either case, $a \lor b = \frac{1}{2}(a+b+|a-b|)$ and $a \land b = \frac{1}{2}(a+b-|a-b|)$ holds.

2.) Prove Proposition 7: For any $a, b, r \in \mathbb{R}$, $\begin{pmatrix} a \lor b = b \lor a \\ a \land b = b \land a \\ (a \land b \le r \le a \lor b) \implies ((|r-a| \le |a-b|) \land (r-b \le |a-b|)) \end{pmatrix}.$

Let $a, b, r \in \mathbb{R}$. The first two statements immediately follow by applying the commutativity of real numbers and |a - b| = |-(a - b)| = |b - a| to Proposition 6.

Suppose $a \land b \le r \le a \lor b$. Without loss of generality, let $a \ge b$. Thus,

$$b \le r \le a \tag{5}$$

$$r - a \le 0 \tag{6}$$

$$b - r \le 0 \tag{7}$$

$$b - a \le 0 \tag{8}$$

From (5), $r - a \ge b - a$. This along with (6) and (8) implies $|r - a| = -(r - a) \le -(b - a) = |b - a|$.

From (5), $r - b \le a - b$. This along with (7) and (8) implies $|r - b| = r - b \le a - b = |a - b|$.