

Vorlesung Mathematik für Informatiker II

(an der Universität Heidelberg) Dozent: Dr. Martin Rheinländer

Tutoren: Armand Rousselot, Vasil Manev, Max Bréard

10. Mai 2019

Aufgabenserie 3 Stirling Zahlen zweiter Art Potenzsummen & Interpolation

Aufgabe 3.1: Würfeln mit (un)unterscheidbaren Würfeln

(1+1+6=8P)

Diese Aufgabe knüpft an Aufgabe 2.4 d) an. Dort war danach gefragt, wie groß die Wahrscheinlichkeit ist, daß man nach dreimaligem Würfeln die Augensumme 10 erhält.

- a) Macht es Ihrer Meinung nach einen Unterschied, ob man mit einem Würfel dreimal hintereinander würfelt oder mit drei Würfeln gleichzeitig? Wie ist der Ergebnisraum¹ entsprechender Zufallsexperimente mathematisch zu beschreiben?
- b) Angenommen es gäbe drei **un**unterscheidbare Würfel. Wie ist der Ergebnisraum für das gleichzeitige Werfen der Würfel dann mathematisch zu beschreiben.
- c) Wie wahrscheinlich ist es, beim Werfen dreier ununterscheidbarer Würfel die Augensumme 10 zu erhalten. Ist diese Wahrscheinlichkeit größer oder kleiner im Vergleich zu dem analogen Experiment mit drei unterscheidbaren Würfeln?

Aufgabe 3.2: Zu den Stirling-Zahlen 2. Art (Mengenzerlegungskoeff.) (4+4+4+4×3*=12P)

a) Begründen Sie, warum die Mengenzerlegungskoeffizienten $(S(n,k))_{n,k}$ der Rekursionsgleichung

$$S(n+1,k+1) = S(n,k+1) + (k+1) \cdot S(n,k)$$
(1)

genügen.

b) Die Mengenzerlegungskoeffizienten besitzen unter anderem die Darstellung

$$S(n,k) = \sum_{\substack{0 \le e_1, \dots, e_k \\ e_1 + \dots + e_k = n - k}} 1^{e_1} \cdot 2^{e_2} \cdot \dots \cdot k^{e_k} . \tag{2}$$

Rechnen Sie diese durch Einsetzen in die Rekursionsgleichung (4) nach.

- c) Bestimmen Sie die Anzahl der Summanden auf der rechten Seite von (2).
- d) (Zur Diskussion) Gelingt es Ihnen, eine kombinatorische Interpretation für die obige Gleichung zu finden?

Zur Herleitung von (2) betrachtet man zu dem festen zweiten Index $k \in \mathbb{N}$ die Potenzreihen, welche sich ergeben, wenn man S(n,k) mit x^n multipliziert und dann über n summiert. Es sei also

$$F_k(x) \coloneqq \sum_{n=0}^{\infty} S(n,k) x^n \equiv \sum_{n=k}^{\infty} S(n,k) x^n$$
 (3)

die sogenannte erzeugende Funktion der Folge $(S(n,k))_n$ der Stirling-Zahlen, welche sich ergibt, wenn man den ersten Index laufen läßt, während der zweite festgehalten wird.

 $^{^1 \}mathrm{Auch}$ Ergebnismenge, Stichprobenraum oder $\Omega\text{-Menge}$ (Omegamenge) genannt.

e) Zeigen Sie, daß zwischen den Potenzreihen $F_k(x)$ und $F_{k-1}(x)$ die Beziehung

$$F_k(x) = \frac{x}{1 - kx} \cdot F_{k-1}(x) \tag{4}$$

bestehen muß, indem Sie die Rekursionsgleichung der Stirling-Zahlen ins Spiel bringen.

f) Folgern Sie daraus

$$F_k(x) = \frac{x^k}{(1-x)\cdot (1-2x)\cdot \dots \cdot (1-kx)}.$$
 (5)

Beachten Sie, daß $F_0(x) = 1$ und $F_1(x) = \frac{1}{1-x}$ ist.

g) Gewinnen Sie zu guter letzt aus der expliziten Darstellung (4) der erzeugenden Funktion die Darstellung der Stirling-Zahlen in (5).

Aufgabe 3.3: Mengenpartitionen & Stirling-Zahlen zweiter Art (3+3+8*=6P)

- a) Geben Sie alle 3-Partitionen der Menge $A_5 = \{1, 2, 3, 4, 5\}$ an, d.h. alle Elemente von $\mathfrak{Z}(A_5, 3)$. Berechnen Sie anschließend mit der Drei-Term-Rekursionsformel die Stirling-Zahl (zweiter Art) S(5,3), um zu überprüfen, ob Sie bei Ihrer Auflistung auf die richtige Anzahl von Partitionen gekommen sind.
- b) Bestätigen Sie die Gleichung

$$S(6,2) = {6 \choose 1} + {6 \choose 2} + \frac{1}{2} {6 \choose 3}$$

und versuchen Sie, eine Erklärung dafür zu finden.

c) Für die natürlichen Zahlen $r, r_1, ..., r_q$ und $n, n_1, ..., n_q$ gelte

$$r = r_1 + r_2 + ... + r_q$$
 und $n = r_1 \cdot n_1 + r_2 \cdot n_2 + ... + r_q \cdot n_q$.

Wieviele r-Zerlegungen existieren dann, durch welche eine n-Menge in r_1 -viele n_1 -Blöcke, r_2 -viele n_2 -Blöcke, ... und r_q -viele n_q -Blöcke zerlegt wird? (r_i = Anzahl der n_i -Blöcke in der r-Zerlegung)

Aufgabe 3.4: Polynom-Interpolation

$$(4+4+4+6*=12P)$$

Gesucht ist ein Polynom p vierten Grades mit ganzzahligen Koeffizienten, für welches gilt:

$$p(-1) = 7$$
, $p(1) = 5$, $p(3) = 59$, $p(4) = 137$.

- a) Bestimmen Sie die Koeffizienten des Polynoms durch Invertieren der Vandermonde-Matrix.
- b) Geben Sie p in der Lagrangeschen Darstellung an. Multiplizieren Sie die Lagrangeschen Interpolationspolynome aus, um p in der Standarddarstellung zu erhalten.
- c) Geben Sie p auch in der Newtonschen Darstellung an. Multiplizieren Sie die Produkte der Linearfaktoren ebenfalls aus, um p in die Standarddarstellung zu überführen.
- d) (Bonus) Wie lassen sich die Interpolationsverfahren vom Standpunkt der linearen Algebra einordnen? Versuchen Sie die Transformationsmatrizen anzugeben.

Aufgabe 3.5: Summe der ersten n fünften Potenzen

(4+4+4+6*=12P)

Berechnen Sie die Summe $S_5(n) = \sum_{k=1}^n k^5$ auf verschiedene Weisen:

a) mit Hilfe der Rekursionsformel,

- b) mit Hilfe der Darstellungsformel,
- c) mittels Interpolation.

(Bonus) Illustrieren Sie anhand eines einfachen Beispiels (p < 5), daß es bei der Bestimmung eines Interpolationspolynoms für Potenzssummen nicht auf die Wahl der Stützstellen ankommt.

Zusatzaufgabe

Aufgabe 3.6: Partitionszahlen

Es bezeichne p(n,r) die r-Partitionszahl von n, welche der Anzahl an Möglichkeiten entspricht, die natürliche Zahl n als Summe von r natürlichen Zahlen additiv zu zerlegen, wobei die Reihenfolge der Summanden unerheblich sein soll.

- a) Zeigen Sie, daß für die Zahlen p(n,r) folgende **Rekursionsgleichungen** gelten:
 - i) p(n,r) = p(n-r,r) + p(n-1,r-1) (Dreiterm-Rekursionsgleichung),
 - ii) $p(n,r) = \sum_{\ell=1}^{r} p(n-r,\ell)$ (kumulative Rekursionsgleichung).
- b) Es sei $p_n \coloneqq \sum_{r=1}^n p(n,r).$ Begründen Sie die Identität

$$\sum_{n=1}^{\infty} p_n x^n = \prod_{k=1}^{\infty} \frac{1}{1 - x^k}.$$

Die rechte Seite stellt die erzeugende Funktion der Folge der Partitionszahlen $(p_n)_n$ dar.

Bemerkung: Der Wikipedia-Artikel zum Stichwort "Partitionierungsproblem" könnte für Sie ganz anregend sein. Schreiben Sie außerdem bei Gelegenheit ein Programm, daß P(n,r) bestimmt, indem es alle r-Zerlegungen der Zahl n auflistet und die Anzahl dieser Zerlegungen abzählt. Kontrollieren Sie Ihr Ergebnis für P(n,r), indem Sie dieses auch mit der Dreiterm-Rekursionsformel berechnen.

Bitte die Abgaben im Moodle hochladen bis zum 17.05.2018, 17:00 Uhr.