Let $S = \{x_1, x_2, x_3, \dots, x_n\}$ To prove:
no- g subsets g S = 2 Basis: $\gamma = 1$. 5= { 243 Subsets of S = \$5, { 24, } $|\mathcal{P}(s)| = 2 = 2^{1}$.

Thowever gs.

Let the given statement be true for n=k Hypothesis: S= { y1, y2, .. yk} ZKM & Q -> no. y Q'S = 2k

Basis:
$$n=2$$

Lus: $A_1 \cap A_2$

Formal: To show $S_1 = S_2$

and if $x \in S_2 \rightarrow x \in S_2$ $(S_1 \in S_2) \Rightarrow S_1 = S_2$

Strong principle of M. I.

- \hat{a} $1 \in S$
- (ii) Whenever $1, 2, 3, \dots k \in S$

then (k+1) ES

Any notional no > 1 can be written as a product of prime numbers. Basis: Which is prime. n= 2 Hypothesis. let 1,2, ... K satisfy this Induction: (k+1) = where 1 < a, b < k

