<i>Cognome</i>	Nome		tricola
· ·	o di esercizi fornendo spiegazioni chiar		
NON SI ACCETTANO RI	SPOSTE SCRITTE SU ALTRI FOGI	LI. 1 Eesrcizio = 4 pr	unti. Tempo previsto: 2 ore. Nessun
domanda durante le prima	ora e durante gli ultimi 20 minuti.		

1	2	3	4	5	6	7	8	9	TOT.

1. Rispondere alle seguenti domande che forniscono una giustificazione di 1 riga:

a. E' vero che l'algoritmo Pohlig-Hellman si applica a qualsiasi gruppo finito ciclico?

b. Quale e la probabilità che dati $(x_1, \dots, x_{100}) \in (\mathbf{Z}/500\mathbf{Z})$ el siano $i \neq j$ tan che $x_i = x_j$:	

c. Che differenza c'è tra polinomi irriducibili e polinomi primitivi?

d. E' vero che in $\mathbf{F}_p[X]$ due polinomi di grado 30 si moltiplicano in $O(\log^2 p)$ operazioni bit?

5.	Descritto l'algoritmo di Miller Rabin per verificare la primalità di un intero, stimarne la probabilità d'errore quando è applicato con 10 iterazioni su interi con 1000 cifre decimali.
6.	Descrivere brevemente tutti gli algoritmi crittografici che basano la propria sicurezza sul problema del logaritmo discreto.
7.	Determinare tutti i sottocampi di ${f F}_{7^{50}}$ che contengono un sottocampo con 49 elementi.

8. Supponiamo $\mathbf{F}_4 = \mathbf{F}_2[\xi], \xi^2 = 1 + \xi$. Determinare il numero di punti su un campo con 2^{12} elementi della curva ellittica su \mathbf{F}_4

$$E: y^2 + \xi y = x^3 + \xi$$

9. Descrivere il gruppo $E(\mathbf{F}_5)$ dove E è la curva ellittica definita da $y^2=x^3-x$.