MPG consumption analysis between automatic and manual transmissions

Ridzuan Mohamad 3/19/2017

Introduction

The Motor Trend, a magazine about the automobile industry are interested in exploring the relationship between a set of variables and miles per gallon (MPG) (outcome). The data set of collection of cars (**mtcars**) is used for this study, The focus are particularly interested in the following two questions:

- 1. Is an automatic or manual transmission better for MPG
- 2. Quantify the MPG difference between automatic and manual transmissions

Data Analysis & Exploratory

The dataset consist of 11 and 32 observation data. The detail description for each variable as per *Appendix A*. Now, let look on the dataset structure.

```
# Display Structure
str(mtcars)
```

```
'data.frame':
                   32 obs. of 11 variables:
                21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
   $ mpg : num
   $ cyl : num
                6 6 4 6 8 6 8 4 4 6 ...
               160 160 108 258 360 ...
   $ disp: num
  $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
   $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##
                2.62 2.88 2.32 3.21 3.44 ...
   $ wt : num
##
   $ qsec: num 16.5 17 18.6 19.4 17 ...
         : num 0 0 1 1 0 1 0 1 1 1 ...
   $ am : num 1 1 1 0 0 0 0 0 0 0 ...
                4 4 4 3 3 3 3 4 4 4 ...
   $ gear: num
   $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
```

Than, calculate the mean for both transmission type and plot the boxplot to visualized the pattern for both transmission types. $(refer\ Appendix\ B)$

```
# Calculate mean for both transmission type
c(automatic = mean(mtcars[mtcars$am==0,]$mpg), manual = mean(mtcars[mtcars$am==1,]$mpg))
## automatic manual
## 17.14737 24.39231
```

The result from mean calculation and boxplot shows that the automatic transmission is better than manual transmission in mpg consumption. Let take that as our Null Hypothesis (H_0). Now we test the H_0 with T-Test and the probability of Type 1 error is ($\alpha = 0.05$)

```
# Hypothesis Test
hypo.result <- t.test(mtcars[mtcars$am==0,]$mpg, mtcars[mtcars$am==1,]$mpg)
hypo.result$p.value</pre>
```

```
## [1] 0.001373638
```

However the hypothesis testing show that the p-value $< \alpha$ which force us to reject the H_0 .

Regression Model

Firstly, let look at the linear model that corespond to our H_0 . (Appendix D)

```
# factor variable am
mtcars$am <- as.factor(mtcars$am)

#create a simple model
model.0 <- lm(mpg ~ am, mtcars)
result.0 <- summary(model.0)</pre>
```

The Adjusted R-squared = 0.3384589. It shows that the model only able to explain 34% of the variance.

So, we have to include other variable to our model by using R step() function.

```
# Selecting the best multi variable model
best.model <- step(lm(mpg ~ ., data = mtcars), trace=0)</pre>
result.1 <- summary(best.model)
result.1
##
## Call:
## lm(formula = mpg ~ wt + qsec + am, data = mtcars)
##
## Residuals:
##
                1Q Median
                                3Q
      Min
                                       Max
## -3.4811 -1.5555 -0.7257 1.4110 4.6610
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                            6.9596
                                     1.382 0.177915
## (Intercept)
                9.6178
                            0.7112 -5.507 6.95e-06 ***
## wt
                -3.9165
## qsec
                 1.2259
                            0.2887
                                     4.247 0.000216 ***
## am1
                 2.9358
                            1.4109
                                     2.081 0.046716 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.459 on 28 degrees of freedom
## Multiple R-squared: 0.8497, Adjusted R-squared: 0.8336
## F-statistic: 52.75 on 3 and 28 DF, p-value: 1.21e-11
```

The Adjusted R-squared = 0.8335561 shows that 83% of the variance of the MPG variable. Which mean the variable wt, qsec and am have a correlation affect on mpg.

Summary

Based on the Coefficients table for best.model and looking at categorical variables am1, we can assumed that the manual transmission is 2.9358372 mpg better than automatic transmission.

Appendix

Appendix A - Selected Variable and Description

No.	Variable	Description
1.	mpg	Miles/(US) gallon
2.	cyl	Number of cylinders
3.	disp	Displacement (cu.in.)
4.	hp	Gross horsepower
5.	drat	Rear axle ratio
6.	wt	Weight (1000 lbs)
7.	qsec	1/4 mile time
8.	vs	V/S
9.	am	Transmission ($0 = \text{automatic}, 1 = \text{manual}$
10.	gear	Number of forward gears
11.	carb	Number of carburetors

Appendix B - Boxplot MPG vs. Transmission Type

MPG vs. Transmission Type

Appendix D - Model's Summary

```
# Summary of simple model
summary(model.0)
##
## Call:
## lm(formula = mpg ~ am, data = mtcars)
##
## Residuals:
##
      Min
               1Q Median
                               ЗQ
                                      Max
## -9.3923 -3.0923 -0.2974 3.2439 9.5077
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 17.147
                            1.125 15.247 1.13e-15 ***
                 7.245
                            1.764 4.106 0.000285 ***
## am1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.902 on 30 degrees of freedom
## Multiple R-squared: 0.3598, Adjusted R-squared: 0.3385
## F-statistic: 16.86 on 1 and 30 DF, p-value: 0.000285
# Summary of multi variable model
summary(best.model)
```

```
##
## Call:
  lm(formula = mpg ~ wt + qsec + am, data = mtcars)
##
##
  Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
   -3.4811 -1.5555 -0.7257
                           1.4110
##
##
  Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
##
   (Intercept)
                 9.6178
                            6.9596
                                     1.382 0.177915
                -3.9165
                            0.7112
                                    -5.507 6.95e-06 ***
##
                 1.2259
                            0.2887
                                     4.247 0.000216 ***
##
  qsec
                 2.9358
                            1.4109
                                     2.081 0.046716 *
##
   am1
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.459 on 28 degrees of freedom
## Multiple R-squared: 0.8497, Adjusted R-squared: 0.8336
## F-statistic: 52.75 on 3 and 28 DF, p-value: 1.21e-11
```

Appendix E - Residuals

10

15

20

Fitted values

25

30

```
par(mfrow = c(2,2))
plot(best.model)
```


0.00

0.10

Leverage

0.20

0.30