MT. POINSUR, BORIVALI (W), MUMBAI

# LAB MANUAL

### EXPERIMENT NO. 5

Aim: - Implement SQL operators, Aggregate function, Group by and having clause.

### Theory:-

- Set Operator
- Aggregate function
- 3. Group by clause with having

### Lab Manual:

### 1. SQL Operators:

### 1. Arithmetic Operators:

Arithmetic operators perform mathematical operations on two expressions of one or more of the data types of the numeric data type category.

SELECT <Expression> [arithmetic operator]<expression>... FROM [table\_name] WHERE [expression]; -

| Operator | Description                     | Example                    |
|----------|---------------------------------|----------------------------|
| /        | Division (numbers and dates)    | SELECT SAL / 10 FROM EMP;  |
|          | Multiplication                  | SELECT SAL * 5 FROM EMP;   |
| +        | Addition (numbers and dates)    | SELECT SAL + 200 FROM EMP; |
|          | Subtraction (numbers and dates) | SELECT SAL - 100 FROM EMP; |

### 2. Comparison/Relational Operator:

| Operator | Description                                                                                                                     | Example                          |
|----------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| -        | Checks if the values of two operands are equal or not, if yes then condition becomes true.                                      | (a = b) is not<br>true.          |
| !-       | Checks if the values of two operands are equal or not, if values are not equal then condition becomes true.                     | (a != b) is<br>true.             |
| <        | Checks if the values of two operands are equal or not, if values are not equal then condition becomes true.                     | (a $\diamondsuit$ b) is<br>true. |
| >        | Checks if the value of left operand is greater than the value of right operand, if yes then condition becomes true.             | (a > b) is not<br>true.          |
| <        | Checks if the value of left operand is less than the value of right operand, if yes then condition becomes true.                | (a < b) is true.                 |
| >=       | Checks if the value of left operand is greater than or equal to the value of right operand, if yes then condition becomes true. | (a >= b) is not<br>true.         |

MT. POINSUR, BORIVALI (W), MUMBAI

# LAB MANUAL

| <= | Checks if the value of left operand is less than or equal to the<br>value of right operand, if yes then condition becomes true. | (a <= b) is<br>true.  |
|----|---------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| !< | Checks if the value of left operand is not less than the value of right operand, if yes then condition becomes true.            | (a !< b) is<br>false. |
| !> | Checks if the value of left operand is not greater than the value of right operand, if yes then condition becomes true.         | (a !> b) is<br>true.  |

# 3. Logical/Boolean Operators: (AND, OR, NOT, Between, Exists, IN, NOT IN, Like)

| IN                          | "Equivalent to any member of" test.<br>Equivalent to "= ANY".                                                                                                                    | SELECT * FROM EMP WHERE<br>ENAME IN ('SMITH', 'WARD');                             |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| ANY/ SOME                   | Compares a value to each value in a list or returned by a query. Must be preceded by =, !=, >, <, <=, or >=. Evaluates to FALSE if the query returns no rows.                    | WHERE LOC = SOME ('NEW                                                             |
| [NOT] IN                    | Equivalent to "!= ANY". Evaluates to FALSE if any member of the set is NULL.                                                                                                     |                                                                                    |
| ALL                         | Compares a value with every value in a list or returned by a query. Must be preceded by =, !=, >, <, <=, or >=. Evaluates to TRUE if the query returns no rows.                  | sal >= ALL (1400, 3000);                                                           |
| [NOT]<br>BETWEEN x<br>and y | [Not] greater than or equal to x and less<br>than or equal to y.                                                                                                                 | SELECT ENAME, JOB FROM<br>EMP WHERE SAL BETWEEN<br>3000 AND 5000;                  |
| EXISTS                      | TRUE if a sub-query returns at least one row.                                                                                                                                    | SELECT * FROM EMP WHERE<br>EXISTS (SELECT ENAME<br>FROM EMP WHERE MGR IS<br>NULL); |
| [NOT] LIKE                  | TRUE if x does [not] match the pattern y. Within y, the character "%" matches any string of zero or more characters except null. The character "_" matches any single character. |                                                                                    |
| IS [NOT]<br>NULL            | Tests for nulls. This is the only operator that should be used to test for nulls.                                                                                                | SELECT * FROM EMP WHERE<br>COMM IS NOT NULL AND<br>SAL > 1500;                     |

MT. POINSUR, BORIVALI (W), MUMBAI

### LAB MANUAL

### Exercise 1 on SQL Operator:

 Create table employee with the following structure: (Emp\_id, Ename, Salary, Age, DOJ, DEPT)

create table employee (Emp\_id number(5), Ename varchar2(25), Salary number(7), Age number(3), DOJ varchar(13), DEPT varchar2(20))

Table created.

| Column | Null? | Туре         |
|--------|-------|--------------|
| EMP_ID | -     | NUMBER(5,0)  |
| ENAME  | -     | VARCHAR2(25) |
| SALARY | -     | NUMBER(7,0)  |
| AGE    | -     | NUMBER(3,0)  |
| DOJ    | -     | VARCHAR2(13) |
| DEPT   | -     | VARCHAR2(20) |

Download CSV

6 rows selected.

### 2. INSERT 5 RECORDS

| EMP_ID | ENAME   | SALARY | AGE | DOJ           | DEPT      |
|--------|---------|--------|-----|---------------|-----------|
| 1      | Surai   | 50000  | 27  | 05-April-2012 | Finance   |
| 2      | Bhaviya | 70000  | 29  | 03-Dec-2013   | Finance   |
| 3      | Saijal  | 90000  | 30  | 23-June-2014  | Marketing |
| 4      | Ronak   | 35000  | 42  | 22-Oct-2011   | Marketing |
| 5      | Aniket  | 60000  | 52  | 20-Feb-2011   | HR        |

| EMP_ID | ENAME   | SALARY | AGE | DOJ       | DEPT      |
|--------|---------|--------|-----|-----------|-----------|
| 1      | Suraj   | 50000  | 27  | 05-Apr-12 | Finance   |
| 2      | Bhaviya | 70000  | 29  | 03-Dec-13 | Finance   |
| 3      | Saijal  | 90000  | 30  | 23-Jun-14 | Marketing |
| 4      | Ronak   | 35000  | 42  | 22-Oct-11 | Marketing |
| 5      | Aniket  | 60000  | 52  | 20-Feb-11 | HR        |

### Download CSV

5 rows selected.

# **Queries on SQL Operator:**

1. Find all employee names that have salary greater than 50000.

select \* from employee where salary>50000

| EMP_ID | ENAME   | SALARY | AGE | DOJ       | DEPT      |
|--------|---------|--------|-----|-----------|-----------|
| 2      | Bhaviya | 70000  | 29  | 03-Dec-13 | Finance   |
| 3      | Saijal  | 90000  | 30  | 23-Jun-14 | Marketing |
| 5      | Aniket  | 60000  | 52  | 20-Feb-11 | HR        |

2. Give 10% raise in salary of each employee.

update employee set salary = salary + salary\*0.1

5 row(s) updated.

| EMP_ID | ENAME   | SALARY | AGE | DOJ       | DEPT      |
|--------|---------|--------|-----|-----------|-----------|
| 1      | Suraj   | 55000  | 27  | 05-Apr-12 | Finance   |
| 2      | Bhaviya | 44000  | 29  | 03-Dec-13 | Finance   |
| 3      | Saijal  | 99000  | 30  | 23-Jun-14 | Marketing |
| 4      | Ronak   | 38500  | 42  | 22-Oct-11 | Marketing |
| 5      | Aniket  | 66000  | 52  | 20-Feb-11 | HR        |

**Download CSV** 

5 rows selected.

3. Give the details of employee joined from 05-april-2012 to 23-june-2014.

select \* from employee where doj between '05-Apr-12' and '23-Jun-14'

| EMP_ID | ENAME  | SALARY | AGE | DOJ       | DEPT      |
|--------|--------|--------|-----|-----------|-----------|
| 1      | Suraj  | 55000  | 27  | 05-Apr-12 | Finance   |
| 3      | Saijal | 99000  | 30  | 23-Jun-14 | Marketing |
| 4      | Ronak  | 38500  | 42  | 22-Oct-11 | Marketing |
| 5      | Aniket | 66000  | 52  | 20-Feb-11 | HR        |

4. Find all employees who are having salary greater than 70000 and have joined after 3 dec 2013.

select \* from employee where salary>70000 and doj>'03-dec-13'

| 3 Saijal 99000 30 23-Jun-14 Marketing | EMP_ID   | ENAME  | SALARY | AGE | DOJ | DEPT |
|---------------------------------------|----------|--------|--------|-----|-----|------|
|                                       | EIVIP_ID | Saijal | 99000  | 30  |     |      |

5. Find all employees with name starting with s.

select \* from employee where ename like 'S%'

| EMP_ID | ENAME  | SALARY | AGE | DOJ       | DEPT      |
|--------|--------|--------|-----|-----------|-----------|
| 1      | Suraj  | 55000  | 27  | 05-Apr-12 | Finance   |
| 3      | Saijal | 99000  | 30  | 23-Jun-14 | Marketing |

6. Find all employees who have at least one 'e' in their names.

select \* from employee where ename like '%e%'

| EMP_ID | ENAME  | SALARY | AGE | DOJ       | DEPT |
|--------|--------|--------|-----|-----------|------|
| 5      | Aniket | 66000  | 52  | 20-Feb-11 | HR   |

7. Find all employees with age either 29 or 30.

select \* from employee where age =29 or age = 30

| EMP_ID | ENAME   | SALARY | AGE | DOJ       | DEPT      |
|--------|---------|--------|-----|-----------|-----------|
| 2      | Bhaviya | 77000  | 29  | 03-Dec-13 | Finance   |
| 3      | Saijal  | 99000  | 30  | 23-Jun-14 | Marketing |

8. Find all employees who have not joined on 05-april-2012.

select \* from employee where doj!='05-Apr-12'

| EMP_ID | ENAME   | SALARY | AGE | DOJ       | DEPT      |
|--------|---------|--------|-----|-----------|-----------|
| 2      | Bhaviya | 77000  | 29  | 03-Dec-13 | Finance   |
| 3      | Saijal  | 99000  | 30  | 23-Jun-14 | Marketing |
| 4      | Ronak   | 38500  | 42  | 22-Oct-11 | Marketing |
| 5      | Aniket  | 66000  | 52  | 20-Feb-11 | HR        |

9. Alter the table by adding new column as amount deducted from salary towards tax. Update the value of tax in the table as 20% of salary.

alter table employee add tax number(7)

### Table altered.

### TABLE EMPLOYEE

| Column | Null? | Туре         |
|--------|-------|--------------|
| EMP_ID | -     | NUMBER(5,0)  |
| ENAME  | -     | VARCHAR2(25) |
| SALARY | -     | NUMBER(7,0)  |
| AGE    | -     | NUMBER(3,0)  |
| DOJ    | -     | VARCHAR2(13) |
| DEPT   | -     | VARCHAR2(20) |
| TAX    | -     | NUMBER(7,0)  |

#### Download CSV

7 rows selected.

Update employee set tax = salary\*0.2

5 row(s) updated.

select \* from employee

| EMP_ID | ENAME   | SALARY | AGE | DOJ       | DEPT      | TAX   |
|--------|---------|--------|-----|-----------|-----------|-------|
| 1      | Suraj   | 55000  | 27  | 05-Apr-12 | Finance   | 11000 |
| 2      | Bhaviya | 77000  | 29  | 03-Dec-13 | Finance   | 15400 |
| 3      | Saijal  | 99000  | 30  | 23-Jun-14 | Marketing | 19800 |
| 4      | Ronak   | 38500  | 42  | 22-Oct-11 | Marketing | 7700  |
| 5      | Aniket  | 66000  | 52  | 20-Feb-11 | HR        | 13200 |

10. Calculate the net salary for each employee.

SELECT emp\_id,ename,salary-tax FROM employee

| EMP_ID | ENAME   | SALARY-TAX |
|--------|---------|------------|
| 1      | Suraj   | 44000      |
| 2      | Bhaviya | 61600      |
| 3      | Saijal  | 79200      |
| 4      | Ronak   | 30800      |
| 5      | Aniket  | 52800      |

11. Find all employees whose age is greater than 25 and earns salary. (use exists clause).

SELECT \* FROM Employee WHERE EXISTS (SELECT ENAME FROM Employee WHERE age>25)

| EMP_ID | ENAME   | SALARY | AGE | DOJ       | DEPT      | TAX   |
|--------|---------|--------|-----|-----------|-----------|-------|
| 1      | Suraj   | 55000  | 27  | 05-Apr-12 | Finance   | 11000 |
| 2      | Bhaviya | 77000  | 29  | 03-Dec-13 | Finance   | 15400 |
| 3      | Saijal  | 99000  | 30  | 23-Jun-14 | Marketing | 19800 |
| 4      | Ronak   | 38500  | 42  | 22-Oct-11 | Marketing | 7700  |
| 5      | Aniket  | 66000  | 52  | 20-Feb-11 | HR        | 13200 |

12. Find all employee names whose age is from the list given '25, 30, 24, 29'.

SELECT \* FROM employee WHERE age IN (24,25,29,30)

| EMP_ID | ENAME   | SALARY | AGE | DOJ       | DEPT      | TAX   |
|--------|---------|--------|-----|-----------|-----------|-------|
| 2      | Bhaviya | 77000  | 29  | 03-Dec-13 | Finance   | 15400 |
| 3      | Saijal  | 99000  | 30  | 23-Jun-14 | Marketing | 19800 |

13. Find all employee names who has not joined on these dates {22-oct-201, 20-feb-2011, 03-dec-2013}.

SELECT \* FROM employee WHERE doj NOT IN ('22-Oct-2011', '20-Feb-2011', '03-Dec-2013')

| EMP_ID | ENAME  | SALARY | AGE | DOJ         | DEPT      | TAX   |
|--------|--------|--------|-----|-------------|-----------|-------|
| 1      | Suraj  | 55000  | 27  | 05-Apr-2012 | Finance   | 11000 |
| 3      | Saijal | 99000  | 30  | 23-Jun-2014 | Marketing | 19800 |

#### Download CSV

2 rows selected.

14. List all employees in descending order of their salary.

select \* from employee order by salary desc

| EMP_ID | ENAME   | SALARY | AGE | DOJ       | DEPT      | TAX   |
|--------|---------|--------|-----|-----------|-----------|-------|
| 3      | Saijal  | 99000  | 30  | 23-Jun-14 | Marketing | 19800 |
| 2      | Bhaviya | 77000  | 29  | 03-Dec-13 | Finance   | 15400 |
| 5      | Aniket  | 66000  | 52  | 20-Feb-11 | HR        | 13200 |
| 1      | Suraj   | 55000  | 27  | 05-Apr-12 | Finance   | 11000 |
| 4      | Ronak   | 38500  | 42  | 22-Oct-11 | Marketing | 7700  |

15. List all employees name in ascending order with joining date '05-april-2012' or after this date.

select \* from employee where doj>= '2012-Apr-05' order by ename

| EMP_ID | ENAME   | SALARY | AGE | DOJ         | DEPT    | TAX   |
|--------|---------|--------|-----|-------------|---------|-------|
| 5      | Aniket  | 66000  | 52  | 2014-Jun-23 | HR      | 13200 |
| 2      | Bhaviya | 77000  | 29  | 2013-Dec-03 | Finance | 15400 |
| 1      | Suraj   | 55000  | 27  | 2012-Apr-05 | Finance | 11000 |

### Download CSV

3 rows selected.

16. List the employees whose age is not null.

SELECT \* FROM EMPLOYEE WHERE age IS NOT NULL

| EMP_ID | ENAME   | SALARY | AGE | DOJ       | DEPT      | TAX   |
|--------|---------|--------|-----|-----------|-----------|-------|
| 1      | Suraj   | 55000  | 27  | 05-Apr-12 | Finance   | 11000 |
| 2      | Bhaviya | 77000  | 29  | 03-Dec-13 | Finance   | 15400 |
| 3      | Saijal  | 99000  | 30  | 23-Jun-14 | Marketing | 19800 |
| 4      | Ronak   | 38500  | 42  | 22-Oct-11 | Marketing | 7700  |
| 5      | Aniket  | 66000  | 52  | 20-Feb-11 | HR        | 13200 |

17. List the employees whose age is greater than the age of all the employees having salary greater than 5000.

SELECT \* FROM EMPLOYEE WHERE age=(SELECT MAX(age)From EMPLOYEE WHERE salary>50000)

| EMP_ID | ENAME  | SALARY | AGE | DOJ       | DEPT | TAX   |
|--------|--------|--------|-----|-----------|------|-------|
| 5      | Aniket | 66000  | 52  | 20-Feb-11 | HR   | 13200 |

MT. POINSUR, BORIVALI (W), MUMBAI

### LAB MANUAL

### 2. Aggregate function, group by and having clause:

Aggregate functions take a collection of values i.e. a set or multiple set of values as input and return a single value as output. These are often referred to as Group functions as they operate on groups of rows and return one value for the entire group.

### Different Aggregate Functions are:

- 1. avg: average value- Avg(value)
- 2. min: minimum value- Min(value)
- 3. max: maximum value- Max(value)
- 4. Sum: sum of values- Sum(value)
- **5.** Count: number of values- Count(value)

### SQL GROUP BY Syntax:

SELECT column\_name, aggregate\_function(column\_name)

FROM table name

WHERE column name operator value

GROUP BY column\_name;

### SQL HAVING Syntax:

SELECT column\_name, aggregate\_function(column\_name)

FROM table\_name

WHERE column name operator value

GROUP BY column name

HAVING [conditions]

ORDER BY column;

### Exercise 2 on aggregate function, group by and having clause:

1. Find average salary of all employees for a particular department.

select avg(salary) from employee where dept='Finance'

2. Find the details of that employee who has maximum salary in all departments.

select \* from employee where salary in(select max(salary) from employee group by dept)

| EMP_ID | ENAME   | SALARY | AGE | DOJ         | DEPT      | TAX   |
|--------|---------|--------|-----|-------------|-----------|-------|
| 3      | Saijal  | 99000  | 30  | 23-Jun-2014 | Marketing | 19800 |
| 5      | Aniket  | 66000  | 52  | 20-Feb-2011 | HR        | 13200 |
| 2      | Bhaviya | 77000  | 29  | 03-Dec-2013 | Finance   | 15400 |

3. Find the details of employee who has minimum salary and who has joined after 23-oct-2011.

select \* from employee where salary=(select min(salary) from employee where doj>='2011-Oct-23')

| EMP_ID | ENAME | SALARY | AGE | DOJ         | DEPT    | TAX   |
|--------|-------|--------|-----|-------------|---------|-------|
| 1      | Suraj | 55000  | 27  | 2012-Apr-05 | Finance | 11000 |

4. What are the total numbers of rows in the Employee table?

SELECT count(dept) FROM EMPLOYEE



5. For all of the employees in computer department, what is the joining date of an employee with lowest salary in that department?

SELECT doj FROM EMPLOYEE WHERE salary=(SELECT MIN(salary)From EMPLOYEE WHERE dept='Finance')



6. Display the name of each employee department wise and order it in descending order.

select ename, dept from employee order by dept desc

| ENAME   | DEPT      |
|---------|-----------|
| Saijal  | Marketing |
| Ronak   | Marketing |
| Aniket  | HR        |
| Bhaviya | Finance   |
| Suraj   | Finance   |

7. Find the total salary of all employees for each department.

SELECT sum(salary), dept FROM EMPLOYEE GROUP BY dept

| SUM(SALARY) | DEPT      |
|-------------|-----------|
| 137500      | Marketing |
| 66000       | HR        |
| 132000      | Finance   |

8. Find the names of all departments where the average salary of employee is more than 30,000.

| EMP_ID | ENAME       | SALARY | AGE | DOJ         | DEPT      | TAX   |
|--------|-------------|--------|-----|-------------|-----------|-------|
| 1      | Suraj       | 55000  | 27  | 05-Apr-2012 | Finance   | 11000 |
| 2      | Bhaviya     | 77000  | 29  | 03-Dec-2013 | Finance   | 15400 |
| 3      | Saijal      | 99000  | 30  | 23-Jun-2014 | Marketing | 19800 |
| 4      | Ronak       | 38500  | 42  | 22-0ct-2011 | Marketing | 7700  |
| 5      | Aniket      | 66000  | 52  | 20-Feb-2011 | HR        | 13200 |
| 6      | New User 1  | 10000  | 22  | 2015-Feb-11 | CS        | 2000  |
| 7      | New user 2t | 10000  | 32  | 2015-Feb-11 | CS        | 2000  |
| 8      | New user 3  | 9000   | 43  | 2015-Feb-11 | cs        | 1800  |

select dept from employee where salary in (select salary from employee group by salary having avg(salary)>30000)

| DEPT          |
|---------------|
| Finance       |
| Finance       |
| Marketing     |
| Marketing     |
| HR            |
| Download CS   |
| 5 rows select |

9. Sort Employee name in ascending order, and if Employee name is same, then it is sorted Department wise in descending order.

select \* from employee e order by e.ename asc, e.dept desc

| EMP_ID | ENAME      | SALARY | AGE | DOJ         | DEPT      | TAX   |
|--------|------------|--------|-----|-------------|-----------|-------|
| 5      | Aniket     | 66000  | 52  | 20-Feb-2011 | HR        | 13200 |
| 2      | Bhaviya    | 77000  | 29  | 03-Dec-2013 | Finance   | 15400 |
| 6      | New User 1 | 10000  | 22  | 2015-Feb-11 | cs        | 2000  |
| 8      | New user 1 | 9000   | 43  | 2015-Feb-11 | cs        | 1800  |
| 7      | New user 2 | 10000  | 18  | 2015-Feb-11 | cs        | 2000  |
| 4      | Ronak      | 38500  | 42  | 22-Oct-2011 | Marketing | 7700  |
| 3      | Saijal     | 99000  | 30  | 23-Jun-2014 | Marketing | 19800 |
| 1      | Suraj      | 55000  | 27  | 05-Apr-2012 | Finance   | 11000 |

10. Count the number of Employees in each department.

select count(emp\_id) , dept from employee group by dept order by count(emp\_id)

| COUNT(EMP_ID) | DEPT      |
|---------------|-----------|
| 1             | HR        |
| 2             | Finance   |
| 2             | Marketing |

Download CSV

3 rows selected.

11. Display the name of Employees who have joined on the same date.

select \* from employee

| EMP_ID | ENAME       | SALARY | AGE | DOJ         | DEPT      | TAX   |
|--------|-------------|--------|-----|-------------|-----------|-------|
| 1      | Suraj       | 55000  | 27  | 05-Apr-2012 | Finance   | 11000 |
| 2      | Bhaviya     | 77000  | 29  | 03-Dec-2013 | Finance   | 15400 |
| 3      | Saijal      | 99000  | 30  | 23-Jun-2014 | Marketing | 19800 |
| 4      | Ronak       | 38500  | 42  | 22-Oct-2011 | Marketing | 7700  |
| 5      | Aniket      | 66000  | 52  | 20-Feb-2011 | HR        | 13200 |
| 6      | New User 1  | 40000  | 22  | 2015-Feb-11 | cs        | 8000  |
| 7      | New user 2t | 44000  | 32  | 2015-Feb-11 | CS        | 8800  |
| 8      | New user 3  | 78000  | 43  | 2015-Feb-11 | CS        | 15600 |

8 rows selected.

select ename from employee where doj in (select doj from employee group by doj having count(\*)>1)

| ENAME            |
|------------------|
| New User 1       |
| New user 2       |
| New user 3       |
| Download CSV     |
| 3 rows selected. |

12. Display the name of employees who have less than 2 employees in a particular department.

select dept,ename from employee where dept in (select dept from employee group by dept having count(\*)<2)



Conclusion: From the above experiment we are able to learn about different aggregate functions like HAVING clause and GROUP By clause. We are easily able to learn to find average, minimum, maximum, sum and count functions in SQL. The different set operators can also be learnt easily like arithmetic operators, Comparison/Relational operators, Logical/Boolean operators.