APSC 1001

Introduction to Plotting and Pandas (data frames) in Python

import matplotlib.pyplot as plt
import pandas as pd

Dr. Kartik Bulusu, MAE Dept.

Teaching Assistant: Samantha Racan, MAE Dept.

Learning Assistants:
Olivia Legault, CS Dept.
George Wang, MAE Dept.
Rick Sear, CS Dept.

GW Fall 2020 School of Engineering & Applied Science

THE GEORGE WASHINGTON UNIVERSITY

Plotting data; the very basics

x-values and **y-values** are vectors containing the x- and y coordinates of points on the graph.

```
import numpy as np
import matplotlib.pyplot as plt
plt.plot(x-values, y-values, 'style option')
plt.show()
```

Color Style-option	Line Style-option	Marker Style-option
y yellow	- solid	+ plus sign
m magenta	dashed	o circle
c cyan	: dotted	* asterisk
r red	dash-dot	x x-mark
g green	none no line	. point
b blue		up triangle
w white		square square
k black		diamond diamond

Programming pitfall: The two vector arguments x-values and y-values MUST have the same length.

School of Engineering & Applied Science

Plotting Example with *matplotlib*

I have three functions:

```
y1 = \sin x
y2 = x
y3 = x - \frac{x^3}{3!} + \frac{x^5}{5!}
```

I would like to generate 100 values between 0 and 2π radians.

```
import numpy as np
import matplotlib.pyplot as plt
import math as mt
```

```
x = np.linspace(0,2*np.pi,100)
y1 = np.sin(x)
y2 = x;
y3 = x - (x**3/mt.factorial(3))+(x**5/mt.factorial(5))
```

```
# plt.figure()
plt.plot(p, q1, 'b', label='sin(x)')
plt.plot(p, q2, 'm', label='Linear approximation')
plt.plot(p, q3, 'g--', label='5th order approximation')
```

```
plt.xlabel('Value of x')
plt.ylabel('sin(x)')
plt.title('Fun with sin(x)')
```

plt.legend()
plt.show()

School of Engineering & Applied Science

I would like to plot three curves in one single plot !!

Prof. Kartik Bulusu, MAE Dept.

APSC 1001 (Fall 2020)

Introduction to Engineering for Undeclared Majors

Typical Pandas Data Frame

Column-n

Series

import pandas as pd df = pd.DataFrame(); print(df)

Data Frame

Photo: Kartik Bulusu

Prof. Kartik Bulusu, MAE Dept.

APSC 1001 (Fall 2020) **Introduction to Engineering for Undeclared Majors**

School of Engineering & Applied Science

THE GEORGE WASHINGTON UNIVERSITY