

心状至善

第四篇同步电机之

第十五章 同步电机的突然短路与振荡

第十五章

同步电机的突然短路与振荡

- > 突然短路的物理过程 (掌握)
- > 瞬态电抗和超瞬态电抗 (掌握)
- > 三相突然短路电流 (了解)
- ▶ 同步电机振荡的物理概念 (了解)

什么是突然短路?

突然短路是一个暂态过程:

从正常运行到稳定短路的过渡阶段。

(时间很短)

南京 四牌楼2号 http://ee.seu.edu.cn

1.同步电机突然短路的物理过程

突然短路的影响

- ▶各绕组出现很大的冲击电流,峰值可达10 倍以上额定电流
- ▶在电机内产生很大的电磁力和电磁转矩
- ▶可能损坏绕组端部,或使转轴发生有害变形,破坏电网的稳定运行

突然短路物理过程复杂

- 电枢 (定子) 电流和相应的电枢磁场幅值发生突 然变化
- 定、转子绕组间产生变压器感应关系
- 在转子绕组中感应电势和电流,反过来又影响定 子绕组的电流。
- 电流分量

在过渡过程中, 短路电流将包含按某些时间常数自由分量, 当自由分量衰减完毕, 发电机便转入稳态短路运行

東南大學電氣工程學院

1.同步电机突然短路的物理过程

简化分析方法

- 从磁链守恒原理出发,形象化地阐明突然短路时电 机内的电磁过程
- 重点弄清突然短路时的电机参数的变化
 - 瞬态参数、超瞬态参数
- 理解电流中各个分量
 - 自由分量、稳态分量
- 了解各绕组磁链的分量

- **直流分量、交流分量** 東あた學電氣工程學院

超导体闭合回路磁链守恒原理

• 合上开关,使定子绕组1短路,有

$$ir + \frac{d\psi}{dt} = 0$$

• 不计电阻 r_1 , 则 $\frac{d\psi}{dt} = 0$ 有: $\psi = \text{const}$

设 t=0 时磁链为 $\psi_{t=0}$, 则 $\psi = \psi_{t=0}$

在没有电阻的闭合回路中,

磁链不能突变,

在突然短路瞬间,认为磁链保持不变(类似超导体情况)

分析时的假设:

- (1) 不考虑<mark>机械过渡过程</mark>: 在过渡过程期间, 电机的转速保持为同步速不变;
- (2) 利用叠加原理: 电机的磁路不饱和;
- (3) <u>突然短路前为空载运行,突然短路发生在</u> 发电机的出线端;
- (4) 不考虑<mark>强励</mark>的情况:发生短路后,励磁系统的励磁电流 /₀ 始终保持不变。

東南大學電氣工程學院

南京 四牌楼2号 http://ee.seu.edu.cn

1.同步电机突然短路的物理过程

三相突然短路时的磁链

> 空载时:

- 转子旋转磁场将在各定子绕组中形成磁链 ψ_{fA} 、 ψ_{fB} 和 ψ_{fC} ,随时间按正弦变化
- 因定子绕组开路,不受磁链不变原则的制约, 所以定子绕组中没有电流,不产生定子磁场

t > 0时的磁链守恒 (短路以后)

- ightharpoonup 转子继续以同步转速旋转,转子磁场对定子绕组形成的磁链 ψ_{fA} 、 ψ_{fB} 和 ψ_{fC} 始终按正弦规律变化
- ▶ 定子各绕组的磁链要保持不变,需由已闭合的定子 绕组中产生感应电流,由该电流分别在各相绕组中 建立磁链 ¥AA 、 ¥BB 和 ¥CC 以克服磁链的变化
- ho 磁链 ψ_{AA} 、 ψ_{BB} 和 ψ_{CC} 的大小和随时间变化的规律取决于能分别和 ψ_{fA} 、 ψ_{fB} 和 ψ_{fC} 共同合成相应的 ψ_{0A} 、 ψ_{0B} 、 ψ_{0C}

南京 四牌楼2号 http://ee.seu.edu.cn

1.同步电机突然短路的物理过程

t > 0 时的磁链守恒 (短路以后)

 ψ_{AA} 、 ψ_{BB} 和 ψ_{CC} 的大小和随时间变化的规律取决于能分别和 ψ_{fA} 、 ψ_{fB} 和 ψ_{fC} 共同合成相应的 ψ_{0A} 、 ψ_{0B} 、 ψ_{0C}

東南大學電氣工程學院

定子电流分量

ightharpoonup 交流分量 $i_{A\sim}$ 、 $i_{B\sim}$ 、 $i_{C\sim}$

在定子各相绕组中产生磁链 $-\psi_{fA}$ 、 $-\psi_{fB}$ 和 $-\psi_{fC}$,以抵消转子磁场的作用,使定子绕组的磁链为零

ightharpoonup 直流分量 i_{A-} i_{B-} i_{C-} 产生不变的磁链

 $\psi_{AA} = \psi_{A^{\sim}} + \psi_{A}$ -

 ψ_{0A} $\psi_{A-} = \psi_{0A}$ $\psi_{A-} = \psi_{0A}$ $\psi_{A} = \psi_{A-} + \psi_{A-}$ $\psi_{A} = \psi_{A} + \psi_{A} + \psi_{A-}$ $\psi_{A} = \psi_{A} + \psi_{A} + \psi_{A-}$ $\psi_{A} = \psi_{A} + \psi_{$

南 東南大學電氣工程學院

1.同步电机突然短路的物理过程

转子绕组中的磁链

- ightarrow转子励磁电流建立匝链转子绕组的磁链用 ψ_{ff} 表示
 - 不计转子回路电阻,转子磁链也将保持短路发生 时的数值即保持 ψ_{ff}不变
 - 转子电路中,必将引起感应电流以建立恰能抵消 定子电流产生的旋转磁场和直流磁场在转子绕组 中形成的磁链

東南大學電氣工程學院 school of Electrical Engineering, SEU:

转子电流分量

直流分量

- 》由定子电流中的交流分量(亦常称周期性分量)产生的 ψ_{A} 、 ψ_{B} 和 ψ_{C} 。合成一圆形旋转磁场,和转子同步旋转,在转子绕组中产生不变磁链为 ψ_{A}
- ightarrow 为抵消定子磁链 ψ_{\sim} ,转子绕组将感应一个直流分量电流产生一个 ψ_{\sim} ,使

$$\psi_{f-} = -\psi_{\sim}$$

東南大學電氣工程學院

南京 四牌楼2号 http://ee.seu.edu.cn

1.同步电机突然短路的物理过程

转子电流分量

交流分量

- 定子电流直流分量产生磁场 (静止) , 与转子相对转速为同步速, 转子中产生的交变磁链
- ightharpoonup 为抵消 ψ_{\perp} ,转子绕组中感应出工频交流电势和交流电流分量 $I_{\epsilon_{+}}$ 产生 $\psi_{\epsilon_{+}}$

$$\psi_{f_{\sim}} = -\psi_{-}$$

東南大學電氣工程學院

转子电流和磁链

定子电流在转子中产生的磁链

南京 四牌楼2号 http://ee.seu.edu.cn

1.同步电机突然短路的物理过程

考虑绕组电阻后的影响

- > 实际情况下,定子、转子回路均有电阻存在,所以各瞬态电流分量均将按一定时间常数衰减,并最后消失
- > 这时定子电流将是稳态短路电流
- > 转子回路将是正常外施的励磁电流

2. 瞬态电抗和超瞬态电抗

电抗的概念

- ► 任一线圈产生一定数量磁通所需的<mark>电流</mark>大小,将因<mark>磁</mark>通所走的路径不同而不相同。
- ≻电抗的大小
 - -大小与磁通所经过路径的磁阻有关

如磁阻较小,所需电流较小,即有较大的电抗如磁阻较大,所需电流较大,即有较小的电抗

-与频率成正比:

$$X=\omega L=\omega \Lambda N^2$$

南京 四牌楼2号 http://ee.seu.edu.cn

直轴电抗

 x_d

▶ 稳定短路时

端电压等于零,电枢反应为纯去磁作用。

不计电枢电阻和漏磁通的影响,由定子电流所产生的电枢 反应磁通与由转子电流所产生的磁通,大小相等,方向相

反, 电枢反应磁通所经的路线如图所示

电枢反应磁通将穿过转子铁芯而闭合,磁阻较小

定子电流所遇到的电抗等于同步电抗 x_d (数值较大)

東南大學電氣工程學院

>突然短路初瞬:

转子磁链不能突变

转子中产生一磁化方向与电枢磁 场方向相反的感应电流, 其磁通抵消 要穿过转子绕组的电枢磁通。

等效: 电枢磁通从转子绕组外侧 的漏磁路通过

电枢反应磁通将从转子绕组 外漏磁路而闭合,所遇到的 磁阻较大

定子电流所遇到的电抗为直轴瞬态电抗 x_a (数值较小)

无阻尼绕组同步发电机短 路时,电枢磁通的路径

東南大學電氣工程學院

南京 四牌楼2号 http://ee.seu.edu.cn

Ⅱ 直轴超瞬态电抗 x_d

> 突然短路初瞬

转子磁链不能突变

如转子上有阻尼绕组,其磁链也不能突变。

等效: 电枢磁通从阻尼绕组和转子绕组外侧的漏磁路通过

电枢反应磁通将从转子外漏 磁路而闭合,所遇到的磁阻 更大

定子电流所遇到的电抗为直轴超瞬态电抗 x_d (数值更小)

東南大學電氣工程學院

13

• 电流变化过程

- 在短路初瞬,定子绕组中的短路电流产生的磁通为 $\phi_{ud}^{\ \prime\prime}$
- 阻尼绕组中的感应电流先衰减完,电枢磁通即可穿过阻尼绕组,定子电流的磁通为 **d**
- 当激磁绕组中感应电流再衰减完,即达到稳态时,定子电流得磁通为

III x d 和 x d 的表示式

超瞬态电枢反应磁通所遇磁导:

$$\Lambda_{ad}^{"} = \frac{1}{\frac{1}{\Lambda_{ad}} + \frac{1}{\Lambda_{f}} + \frac{1}{\Lambda_{1d}}}$$

△△代表空气隙的磁导

△,代表励磁绕组旁的漏磁路的磁导

△1, 代表阻尼绕组旁的漏磁路的磁导

考虑漏磁后, 电枢电流遇到的总磁导:

$$\Lambda_{d}^{"} = \Lambda_{\sigma} + \Lambda_{ad}^{"} = \Lambda_{\sigma} + \frac{1}{\frac{1}{\Lambda_{ad}} + \frac{1}{\Lambda_{f}} + \frac{1}{\Lambda_{1d}}}$$

東南大學電氣工程學院

Ⅲ x ⊓ 和 x d 的表示式

电抗与磁导成正比

 $\mathbf{y}: \qquad x_{d}^{"} = x_{\sigma} + x_{ad}^{"} = x_{\sigma} + \frac{1}{\frac{1}{x_{ad}} + \frac{1}{x_{f}} + \frac{1}{x_{1d}}}$

x _{ad}—直轴电枢反应电抗; x _f —激磁绕组的漏抗; x _{1d}—阻尼绕组在直轴的漏抗

東南大學電氣工程學院

Ⅲ x ⊓ 和 x □ 的表示式

如在转子上没有阻尼绕组或者是当阻尼绕组中的感应电流衰减完毕

电枢反应磁通可以穿过阻尼绕组时, 总磁导为

$$\Lambda_{d}^{'} = \Lambda_{\sigma} + \Lambda_{ad}^{'} = \Lambda_{\sigma} + \frac{1}{\frac{1}{\Lambda_{ad}} + \frac{1}{\Lambda_{f}}}$$

直轴瞬态电抗x'd

$$x'_{d} = x_{\sigma} + x'_{ad} = x_{\sigma} + \frac{1}{\frac{1}{x_{ad}} + \frac{1}{x_{f}}}$$

東南大學電氣工程學院 SCHOOL OF ELECTRICAL ENGINEERING, SEU:

Ⅳ 交轴瞬态电抗 x 及其表示式

- 》如短路不是发生在出线端而是经过负载阻抗 短路,则短路电流中有交轴分量,产生交轴 电枢磁场
- 由于交轴方向无励磁绕组,交轴瞬态电抗和 交轴同步电抗相等

$$x_q' = x_q$$

東南大學電氣工程學院

南京 四牌楼2号 http://ee.seu.edu.cn

V 交轴超瞬态电抗x A 及其表示式

由于阻尼绕组的不对称性,在交轴方向有阻尼绕组作用(且与直轴方向作用不等)

 $x_{q}'' = x_{\sigma} + \frac{x_{aq} x_{1q}}{x_{aq} + x_{1q}}$

V 交轴超瞬态电抗 x q 及其表示式

- x"a 与x"d 大小比较
 - 阻尼绕组在直轴所起的作用比在交轴所起的作用为大,故x"_q 较x"_d 略大
 - -在由整块铁芯起阻尼作用的<mark>隐极式电机</mark>中,便 x''_d 和 x''_q 近似相等

東南大學電氣工程學院

南京 四牌楼2号 http://ee.seu.edu.cn

VL超瞬态电抗与负序电抗间的关系

对于负序电流,其电枢磁场与转子绕组有2n₁的相对 运动,在转子绕组中感应电势产生电流。由于磁链不能突变,即类似短路时情况

1. 直接外施负序电压

$$\frac{1}{x_{-}} = \frac{1}{2} \left(\frac{1}{x_{d}^{"}} + \frac{1}{x_{q}^{"}} \right), \qquad x_{-} = \frac{2x_{d}^{"}x_{q}^{"}}{x_{d}^{"} + x_{q}^{"}}$$

- 可以这样理解
 - 当电枢磁场掠过直轴时,定子电流将受x "d 的限制
 - 当电枢磁场掠过交轴时,定子电流便由x "q 所限制
 - · 实有的定子电流可以认为受x"d和x"q的平均值所限制

東南大學電氣工程學院

VI超瞬态电抗与负序电抗间的关系

2. 经外接电抗 Xe (很大) 施加负序电压

$$\frac{1}{x_{-} + x_{e}} = \frac{1}{2} \left(\frac{1}{x_{d}^{"} + x_{e}} + \frac{1}{x_{q}^{"} + x_{e}} \right), \qquad x_{-} \approx \frac{1}{2} (x_{d}^{"} + x_{q}^{"})$$

3. 外接电抗 x_e 与负序电抗相当时 $x_- = \sqrt{x_d^* x_q^*}$ 如两相短路时

南京 四牌楼2号 http://ee.seu.edu.cn

VII 静止法测定瞬态电抗

> 试验方法:

 定子绕组的一相开路,另两相串联并外施一单相 低压交流电源(两相短路),使定子电流不大于 额定值;转子励磁绕组由电流表短接。

定子磁场为脉振磁场

转动转子,定子电流和转子电流均将变化,记下 定子外施电压和定子电流的最大值Imax和最小值 Imin

$$x_d'' = \frac{U}{2I_{\text{max}}}$$

如转子无阻尼绕组, 则测出的是瞬态电抗 $x_d^{'}$ 和 $x_q^{'}$

VII 静止法测定瞬态电抗

当转到转子直轴时,转子绕组中的感应电流最大, 定子电流最大;当转至转子交轴时,转子绕组中的 感应电流最小,定子电流最小

> 如转子无阻尼绕组, 则测出的是瞬态电抗 x_a 和 x_a

$$x''_{d} = \frac{U}{2I_{\text{max}}}$$
$$x''_{q} = \frac{U}{2I_{\text{min}}}$$

南京 四牌楼2号 http://ee.seu.edu.cn

3. 三相突然短路电流

- > 短路初瞬,定子电流中的<mark>直流分量</mark>与短路时的<mark>磁</mark>链有关(保持短路后磁链守恒)
- 短路时,短路绕组与交轴重合,则磁链 $\psi_0 = 0$
- 短路时,短路绕组与直轴重合,则磁链 $\psi_0 = \psi_{\text{max}}$

相应的短路电流中直流分类不相同,短路电流也不同。

\mathbf{I} 当 ψ_0 = $\mathbf{0}$ 时的突然短路

周期性短路电流变化分为三个阶段

- 第一阶段: 以时间常数 T_{d3}" 衰减
- 第二阶段: 以时间常数 T_{d3}'衰减
- 第三阶段: 稳定短路电流

$$i_{k} = \left[\left(I_{dm}^{"} - I_{dm}^{'} \right) e^{-\frac{t}{T_{d3}^{"}}} + \left(I_{dm}^{'} - I_{dm} \right) e^{-\frac{t}{T_{d3}^{'}}} + I_{dm} \right] \sin \omega t$$

東南大學電氣工程學院

\coprod 当 $\psi_0 = \psi_{max}$ 时的突然短路

• 初始条件: 当*t=*0时,绕组电流必须保持为零

- 当 t=0 时, $\psi=\psi_0=\psi_{\max}$, $E_0=0$, I_k 滞后 E_0 90°, $I_{\sim 0}=-I_{\max}$
- 短路电流中有非周期性的直流分量 /-, 且 /- = /_{max}, 使总电流的初值为零

\parallel 当 ψ_0 = ψ_{max} 时的突然短路

- -短路电流中除了交流分量以外,还需有一直流分量,即非周期性分量
- 非周期性分量的初始值应恰好和周期性分量的初始值相抵消,而使总电流的初值为零
- 由于存在电阻, 非周期性电流将逐渐衰减

4. 同步电机振荡的物理概念

- ▶ 当同步电机运行时,合成磁场和转子磁场间可看着弹性关系:当负载增大时,位移角δ增大,相当于将磁力线拉长;当负载减小时,位移角δ减小,磁力线缩短:
- 当负载突然变化时,由于弹性作用,转子位移角不能立刻达到新的稳定值,即引起振荡:转子转速在同步速上下晃动。如振幅过大,则位移角变化角大,超过弹性极限,将与电网失步;
- 当同步发电机由不均匀的原动机拖动时,将发生强制振荡:
- ▶ 如相近容量的两台发电机并列运行,一台发电机的振荡。
 荡将引起另一台发电机的振荡,即电网电压的振荡。

作业

▶思考题: *p.* 314: 15-3,15-4

