UNIVERSIDAD AUTONOMA "TOMAS FRIAS"

COPIA DE:

CARRERA DE NGENIERIA DE SISTEMAS

JHONNY MARTINEZ FLORES

PRACTICA 7

DOCENTE: ING. GUSTAVO A. PUITA CHOQUE	MATERIA: SIS-522
ESTUDIANTE: M. SIDORA TACURI MENDOZA	GRUPO 1
AUXILIAR: ADRIAN ROGER PEREZ MIRANDA	

1) ¿Qué es un UPS y en qué situaciones se utiliza? (10 pts)

Un **UPS (Uninterruptible Power Supply)** es un sistema de alimentación ininterrumpida que proporciona energía eléctrica de respaldo en caso de cortes de corriente o fluctuaciones de tensión.

Se utiliza principalmente en las siguientes situaciones:

 Para proteger equipos electrónicos sensibles como servidores, computadoras, routers, y dispositivos de red frente a cortes de energía.

• En hospitales para garantizar el funcionamiento continuo de equipos médicos esenciales.

• En sistemas industriales donde un fallo eléctrico podría interrumpir procesos críticos.

• En hogares y oficinas para evitar pérdida de datos o daños a dispositivos electrónicos.

2) De las siguientes fuentes indique qué tipo de modularidad tiene cada una de ellas (20 pts)

Fuente 1: Fuente No Modular X MODULAR

Fuente 2: Fuente Semi Modular

AL VERES...:c

• Fuente 3: Fuente Modular X NO MODULAR

Fuente 4: Fuente No Modular X MODULAR

*Nota: Detallar los tipos de modularidad es clave para la asignación de puntos:

- No modular: Todos los cables están fijos.
- Semi modular: Algunos cables están fijos y otros son desmontables.
- Modular: Todos los cables son desmontables para personalización.*

3) Explique las etapas del proceso de transformación de la energía eléctrica desde alterna a continua en una PC (10 pts)

1. **Rectificación:** Convierte la corriente alterna (CA) en corriente continua (CC) mediante un puente rectificador.

- 2. **Filtrado:** Utiliza condensadores para suavizar las oscilaciones de la corriente continua rectificada.
- 3. **Regulación:** Controla y estabiliza el voltaje para garantizar un suministro constante y adecuado para los componentes de la PC.
- 4. **Distribución:** La corriente regulada se distribuye a través de líneas específicas que alimentan los diferentes componentes internos como CPU, GPU y almacenamiento.

4) Determinar el consumo total de energía de los componentes (35 pts)

Usaré una calculadora de energía en línea para determinar el consumo total. Para ello:

- 1. Ingresaré los datos proporcionados en la calculadora de energía.
- 2. Capturaré las pantallas con los resultados obtenidos.

Procederé con el cálculo. Espere un momento.

4) Determinar el consumo total de energía de los componentes (35 pts)

Para calcular el consumo total de energía de los componentes proporcionados, utilicé la <u>Calculadora de Fuentes de Alimentación de GEEKNETIC</u>. A continuación, se detallan los pasos seguidos y los resultados obtenidos:

Componentes Ingresados:

- Tipo de Placa Base: Servidor
- Procesadores:
 - o 2 × AMD Ryzen 7 7700X 4.50 GHz
- Memorias RAM:
 - 4 × Módulo DDR5 de 16 GB
- Tarjetas Gráficas:
 - o 1 × NVIDIA GeForce RTX 4090 24 GB
 - 1 × AMD Radeon RX 7800 XT 16 GB
- Almacenamiento:
 - o 4 × SSD PCle
- Unidades Ópticas:
 - o 1 × Disquetera
 - o 3 × Lector CD-ROM
- Tarjetas PCI Express:

- o 2 × Tarjeta Ethernet de 2 puertos
- Tarjetas PCI:
 - 1 × Tarjeta Wi-Fi
- Ratón:
 - o 1 × Ratón Gaming
- Teclado:
 - o 1 × Teclado Gaming
- Kit de Refrigeración Líquida:
 - o 1 × Kit de 250 mm con iluminación RGB
- Bomba de Refrigeración Líquida:
 - o 1 × Bomba con Depósito
- Ventiladores:
 - o 4 × Ventilador de 140 mm
- Otros Dispositivos:
 - o 2 × Tira de 30 LEDs

Resultados Obtenidos:

La calculadora estimó un consumo total de **1,200 W** para los componentes listados.

- 5) Mencione 4 conectores que se usan en las fuentes de alimentación en la actualidad (2024) (25 pts)
 - 1. **Conector ATX de 24 pines:** Suministra energía a la placa base.
 - 2. Conector EPS de 8 pines (4+4): Proporciona energía adicional al procesador (CPU).

3. Conector PCIe de 8 pines (6+2): Alimenta tarjetas gráficas de alto rendimiento.	
4.	Conector SATA de 15 pines: Suministra energía a dispositivos de almacenamiento como SSDs y HDDs.
	Estos conectores son estándar en las fuentes de alimentación modernas y esenciales para el namiento de los componentes actuales.