Contents

2장 딥러닝 흐름잡기

2.1. 딥러닝 과정

2.2. 데이터 설계 및 수집

2.3. 문제 분류

2.4. 모델 설정

2.5. 손실 계산

2.6. 최적화

2.7. 예측 및 평가

머신러닝 과정

Contents

2장 딥러닝 흐름잡기

2.1. 딥러닝 과정

2.2. 데이터 설계 및 수집

2.3. 문제 분류

2.4. 모델 설정

2.5. 손실 계산

2.6. 최적화

2.7. 예측 및 평가

이미지 데이터셋: 이미지데이터+레이블

분류 레이블이 주어진 이미지 데이터셋

3채널

Data 1280x800x3 정수 데이터(0~255)

Label 0: dog, 1: cat, 2: truck, 3: plane, ···

→ 1 → Cat

이미지 분류 [Image Classification]

Computer Vision의 핵심 작업

CIFAR10 데이터셋

Class

10

데이터 개수

훈련용: 50000

검증용: 10000

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

데이터 설계 및 수집

데이터 종류

	x 1	x2	х3	х4	У
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0
	***	***	***	***	
145	6.7	3.0	5.2	2.3	2
146	6.3	2.5	5.0	1.9	2
147	6.5	3.0	5.2	2.0	2
148	6.2	3,4	5.4	2.3	2
149	5.9	3.0	5.1	1.8	2

iris dataset

Mnist dataset

Fashion Mnist dataset

CIFAR10

 total data 60000

 training 50000
 test 10000

 training 40000
 validation 10000
 test 10000

Contents

2장 딥러닝 흐름잡기

2.1. 딥러닝 과정

2.2. 데이터 설계 및 수집

2.3. 문제 분류

2.4. 모델 설정

2.5. 손실 계산

2.6. 최적화

2.7. 예측 및 평가

분류 Classification

- 여러 개의 결과값 중에 하나를 선택
- 이미지 분류 등
- Softmax classifier

회귀 Regression

- 결과값 하나를 추론하는 문제
- 실수 값 추정
- 종류 : 선형, 다항식 등
- 규제 회귀 : Ridge, Lasso, Elastic Net

*Logistic Regression

- True/False 확률을 찾는데 사용
- Binary Classification 에 사용

*다항식 회귀 Polynomial regression

- 더 낮은 차수의 오차를 얻기 위해 다항식 사용
- 과도한 피팅 초래 가능

$$f(x) = ax^4 + bx^3 + cx^2 + dx + e$$

Contents

2장 딥러닝 흐름잡기

2.1. 딥러닝 과정

2.2. 데이터 설계 및 수집

2.3. 문제 분류

2.4. 모델 설정

2.5. 손실 계산

2.6. 최적화

2.7. 예측 및 평가

가중치

$$z = ax + by + c$$
 $Z = WX + b$ x, y 입력 변수 X vector z 출력 변수 Z vector a, b Weight 가중치 W matrix c Bias 편향 b vector

머신러닝 모델

결정 트리

Ensemble

RandomForest

Boosting

결정 트리 Decision Tree

- 의사 결정 규칙과 그 결과들을 트리 구조로 도식화한 의사 결정 지원 도구
- flowchart와 같은 구조
- 입력 데이터 포인트를 분류
- 주어진 입력에 대한 출력 값을 예측

Ensemble

예측 통합

여러개의 분류기 생성

예측 결합보다 정확한 최종예측을 도출 대부분의 정형데이터 분류시 뛰어난 성능

예측

여러개의 분류기 생성 기본유형:

보팅, 배깅, 부스팅 의 세가지

+ 스태킹을 포함한 다양한 방법

예: 랜덤포레스트, 그래디언트 부스팅

이미지 분류 모델

Image to vector

Label: 1

선형 분류기: score function

Input image

z: Label

Class: cat

score

36.8

W: weight

b: bias

2-layer 신경망

선형 분류기 Score 함수

$$f = Wx$$

 $x \in \mathbb{R}^D, W \in \mathbb{R}^{C \times D}$

신경망 2-layer

$$f = W_2 \max(W_1 x, 0)$$

 $x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, \\ W_{2} \in \mathbb{R}^{C \times H}$

Fully-connected networks

Multi-layer perceptrons(MLP)

2-layer 신경망

max W_1 W_2 1-은닉층 신경망 입력층 출력층 Fully connected layers 은닉층 Hidden layer

 $f = W_2 \max(W_1 x, 0)$

CNN 모델

자연어처리 모델

Word Embedding

One Hot

CBOW

Model

RNN

LSTM

Word Embedding: CBOW

Simple RNN : 단위 모듈 계산

LSTM 진행과정

Drop 정보 선택 과정

저장 정보 선택 과정

출력 정보 선택 과정

Forget Gate Layer

Drop할 정보를 sigmoid 출력 (0~1사이) **Input Gate Layer**

업데이트 Data 결정 Cell State에 저장 **Output Gate Layer**

출력 Data 결정 다음 노드로 전파

Contents

2장 딥러닝 흐름잡기

2.1. 딥러닝 과정

2.2. 데이터 설계 및 수집

2.3. 문제 분류

2.4. 모델 설정

2.5. 손실 계산

2.6. 최적화

2.7. 예측 및 평가

손실

에러

참값과 근사값의 차이

손실

모델링에서 얻은 값과 참값의 차이

거리 개념

$$|5 - 2| = 3$$

2차원

$$\sqrt{(2-5)^2 + (1-5)^2} = 5$$

거리 정의

$$V$$
: set $P, Q, R \in V$

Function $d: V \times V \rightarrow R^+$ Distance

- 1. Non-negativity
- 2. Symmetry
- 3. Triangular Inequality

$$d(P,Q) \ge 0$$
 and $(P,Q) = 0 \Leftrightarrow P = Q$

$$d(P,Q) = d(Q,P)$$

$$d(P,R) \le d(P,Q) + d(Q,R)$$

거리 종류

$$P = (P_1, P_2, \dots, P_n)Q = (Q_1, Q_2, \dots, Q_n)$$

$$d_1(P,Q) = \sum_{k=1}^{n} |P_i - Q_i|$$

distance
$$d_2(P,Q) = \left(\sum_{k=1}^n (P_i - Q_i)^2\right)^{\overline{2}}$$

Max norm distance

$$d_{\infty}(P,Q) = \max_{i} |P_i - Q_i|$$

$$L_p (p \ge 1)$$
Minkowski
$$d_p(P,Q) = \left(\sum_{k=1}^n |P_i - Q_i|^p\right)^{\frac{1}{p}}$$

L1 L2

L1 distance (Manhattan)

$$d_1(P,Q) = \sum_{k=1}^{n} |P_i - Q_i|$$

L2 distance (Euclidean)

$$d_2(P,Q) = \sqrt{\sum_{i=1}^{n} (P_i - Q_i)^2}$$

손실 함수 종류

손실은 거리(차이)로 측정

회귀용

MAE MSE

분류용

Cross Entropy

손실 함수 종류: 회귀

MAE

$$\frac{1}{m}\sum_{i}|H(x_{i})-y_{i}|$$

MSE

$$\frac{1}{m}\sum_{i}(H(x_i)-y_i)^2$$

H(x)	3	4	
у	2	1	

$$|3-2|+|4-1|=4$$

$$\boxed{1/m} \qquad 4/2 = 2$$

$$|3-2|^2+|4-1|^2=10$$

$$\boxed{1/m} \qquad 10/2 = 5$$

손실 함수 종류 : 분류

Cross Entropy Loss

확률 분포를 활용 확률이 100%면 손실 0

계산값

Softmax

Cross Entropy

$$f_j(z) = \frac{e^{z_j}}{\sum_k e^{z_k}}$$

$$L_i = -\log f_j(z)$$

Contents

2장 딥러닝 흐름잡기

2.1. 딥러닝 과정

2.2. 데이터 설계 및 수집

2.3. 문제 분류

2.4. 모델 설정

2.5. 손실 계산

2.6. 최적화

2.7. 예측 및 평가

함수 최소값 구하기

함수 최소값

1. 함수 구하기 : y = f(x)

2. 미분하기 : f'(x)

3. Critical Point 찾기: $f'(x) = 0 \rightarrow x = a$

4. Minimum 구하기: f(a)

참값 계산 가능 해석적으로 참값을 직접 계산

함수 최소값 예제

1. 함수 구하기
$$y = x^2 + 4x + 2$$

2. 미분하기
$$y' = 2x + 4$$

3. 임계점 찾기
$$2x + 4 = 0 \rightarrow x = -2$$

4. 최소값 구하기
$$y(-2) = -2$$

손실 최소화 하기

손실 최소화

- 1. Loss function 구하기 : y = L(W)
- 2. 미분하기 : $\frac{dL}{dW}$
- 3. 경사 하강 방향으로 업데이트

$$W = W - h \frac{dL}{dW}$$

참값 계산이 어려움 근사적으로 참값에 접근

$$y = x^2$$

$$y = x^2$$

$$x_{n+1} = x_n - h * f'(x_n)$$

h: step size

Iteration (h=0.1)

$$x_1 = 2$$

$$x_2 = x_1 - h * f'(x_1)$$

-3

$$y = x^2$$

$$x_{n+1} = x_n - h * f'(x_n)$$

h: step size

Iteration

$$x_1 = 2$$

 $x_2 = x_1 - h * f'(x_1)$
 $x_3 = x_2 - h * f'(x_2)$
.....

$$y = x^2$$

$$x_{n+1} = x_n - h * f'(x_n)$$

	h=0.1	h=0.2
X1	2	2
X2	1.6	1.2
X3	1.28	
X21		7.31e-5
X50	3.57e-5	

h: learning rate

경사하강 예제

$$f(x,y) = x^2 + y^2$$

$$Df = (f_x, f_y) = (2x, 2y)$$

경사하강 예제

함수

$$f(x,y) = x^2 + y^2$$

미분함수

$$Df = (f_x, f_y) = (2x, 2y)$$

Gradient 변화율이 가장 큰 방향

*해석 미분

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f(x) = x^2 + 2x$$
$$y = 6x - 4$$

*수치 미분

$$\frac{\Delta y}{\Delta x} = \frac{f(b) - f(a)}{b - a}$$
 평균 변화율

$$f'(a) \cong \frac{f(a+h) - f(a-h)}{2h}$$

Contents

2장 딥러닝 흐름잡기

2.1. 딥러닝 과정

2.2. 데이터 설계 및 수집

2.3. 문제 분류

2.4. 모델 설정

2.5. 손실 계산

2.6. 최적화

2.7. 예측 및 평가

예측 및 평가

• 학습시킨 모델로 결과값을 예측

model.predict() 결과값 예측

model.evaluate() 정확도 평가

Contents

2장 딥러닝 흐름잡기

실습예제 선형회귀

주요 명령어 1/3

pandas

```
read_csv() #csv 파일을 읽어 들일 때 사용하는 함수
describe() #기본적인 통계 자료를 출력
isnull() #결측치가 있는지를 출력, 전체 데이터를 개별적으로 일일이 출력
isnull().any() #column별로 결측치 유무 확인
dropna() #결측치가 들어 있는 데이터 raw를 삭제
fillna() #함수는 결측치를 다른 값으로 채울 때 사용
```

주요 명령어 2/3

numpy

np.array() #기존 데이터를 numpy 형식으로 변환할 때 사용

pyplot

```
plt.figure(figsize=(10,8)) #그림의 크기를 설정할 때 사용 plt.plot(x1, y1, 'o') #x축이 x1이고 y축이 y1인 데이터를 점(o) 형태로 그리기
```

주요 명령어 3/3

sklearn

from sklearn.linear_model import LinearRegression
#sklearn 에 내장되어 있는 linear_model 중 LinearRegression 함수 불러오기

LinearRegression()

호출

lr=LinearRegression() #불러온 LinearRegression 함수를 Ir 변수로 호출

학습

lr.fit(x2,y1) #x 데이터 x2, y데이터 y1으로 선형회귀를 학습

계수

 a=lr.coef_ # 선형회귀 결과로 구해진 선형 계수를 변수 a에 저장

 b=lr.intercept_ # 선형회귀 결과로 구해진 편차를 변수 b에 저장

예측

1r.predict([[105]]) # 새로운 값을 학습된 선형회귀 모델로 예측하기