Sistemas de equações de diferenças

Distribuição de carros entre São Paulo e Rio de Janeiro

Uma locadora de veículos possui filiais em São Paulo e no Rio de Janeiro, e atende agências de turismo cujos clientes frequentemente retiram o carro em uma cidade e o devolvem na outra. Os itinerários podem começar em qualquer uma das cidades, e a empresa deseja determinar quanto cobrar pela conveniência da devolução em local diferente da retirada.

Para isso, é necessário saber se o fluxo natural de devoluções garante um número suficiente de veículos em cada cidade para atender à demanda, ou se será necessário transportar carros entre cidades — o que implica custos adicionais.

Segundo registros históricos, 60% dos carros alugados em São Paulo são devolvidos na mesma cidade, e 40% no Rio. Já dos carros alugados no Rio de Janeiro, 70% retornam ao Rio, e 30% vão para São Paulo.

Essas informações são representadas graficamente na Figura 1.

Figura 1: Transições de devolução de veículos entre São Paulo e Rio de Janeiro

Vamos desenvolver um modelo para o sistema. Seja n o número de dias úteis. Definimos:

 S_n = número de carros em São Paulo no final do dia n,

 R_n = número de carros no Rio de Janeiro no final do dia n.

Assim, os registros históricos revelam o seguinte sistema:

$$S_{n+1} = 0.6S_n + 0.3R_n,$$

$$R_{n+1} = 0.4S_n + 0.7R_n.$$

Valores de Equilíbrio

Os valores de equilíbrio para o sistema são aqueles valores de S_n e R_n para os quais não ocorre mudança no sistema. Vamos chamar os valores de equilíbrio, se existirem, de S e R, respectivamente. Então, temos $S = S_{n+1} = S_n$ e $R = R_{n+1} = R_n$ simultaneamente.

Substituindo no modelo, obtemos:

$$S = 0.6S + 0.3R,$$

 $R = 0.4S + 0.7R.$

Ou, em forma matricial:

$$\begin{bmatrix} 0.4 & -0.3 \\ -0.4 & 0.3 \end{bmatrix} \begin{bmatrix} S \\ R \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Este sistema é satisfeito sempre que $S = \frac{3}{4}R$. Por exemplo, se a empresa possuir 7000 carros e começar com 3000 em São Paulo e 4000 no Rio de Janeiro, então o modelo prevê:

$$S_1 = 0.6 \cdot 3000 + 0.3 \cdot 4000 = 3000,$$

 $R_1 = 0.4 \cdot 3000 + 0.7 \cdot 4000 = 4000.$

Assim, o sistema permanece em (S, R) = (3000, 4000) se iniciarmos com esses valores.

Iterações com Condições Iniciais Diferentes

Vamos agora explorar o que acontece se começarmos com valores diferentes dos de equilíbrio. Iteramos o sistema para os seguintes quatro conjuntos de condições iniciais:

Caso	São Paulo	Rio de Janeiro
1	7000	0
2	5000	2000
3	2000	5000
4	0	7000

Uma solução numérica, ou tabela de valores, para cada conjunto de valores iniciais é mostrada na Figura correspondente (Figura 1.23 no original).

Sensibilidade às Condições Iniciais e Comportamento em Longo Prazo

Em cada um dos quatro casos, dentro de uma semana o sistema está muito próximo do valor de equilíbrio (3000, 4000), mesmo na ausência de qualquer carro em um dos dois locais. Nossos resultados sugerem que o valor de equilíbrio é estável e insensível aos valores iniciais.

Com base nessas explorações, somos levados a prever que o sistema se aproxima do equilíbrio em que $\frac{3}{7}$ da frota acaba em São Paulo e os $\frac{4}{7}$ restantes no Rio de Janeiro. Essa informação é útil para a empresa: conhecendo os padrões de demanda em cada cidade, a empresa pode estimar quantos carros precisa transportar.

Na lista de exercícios, pedimos que você explore o sistema para determinar se ele é sensível aos coeficientes nas equações para S_{n+1} e R_{n+1} .

Tabela 1: Evolução da Frota - Caso 1

\overline{n}	S_n	R_n
0	7000	0
1	4200	2800
2	3360	3640
3	3108	3892
4	3032.4	3967.6
5	3009.72	3990.28
6	3002.916	3997.084
7	3000.875	3999.125

Tabela 2: Evolução da Frota - Caso $2\,$

\overline{n}	S_n	R_n
0	5000	2000
1	3600	3400
2	3180	3820
3	3054	3946
4	3016.2	3983.8
5	3004.86	3995.14
6	3001.458	3998.542
7	3000.437	3999.563

Tabela 3: Evolução da Frota - Caso 3

\overline{n}	S_n	R_n
0	2000	5000
1	2700	4300
2	2910	4090
3	2973	4027
4	2991.9	4008.1
5	2997.57	4002.43
6	2999.271	4000.729
7	2999.781	4000.219

Tabela 4: Evolução da Frota - Caso 4

n	S_n	R_n
0	0	7000
1	2100	4900
2	2730	4270
3	2919	4081
4	2975.7	4024.3
5	2992.71	4007.29
6	2997.813	4002.187
7	2999.344	4000.656

Modelo Discreto de Epidemias

Considere uma doença que está se espalhando, como uma nova gripe. O governo está interessado em estudar e experimentar um modelo para essa nova doença antes que ela se torne de fato uma epidemia. Vamos considerar a população dividida em três categorias: suscetíveis (S), infectados (I) e removidos (R). O modelo considerado é conhecido como SIR¹. Fazemos as seguintes suposições para nosso modelo:

- Ninguém entra ou sai da comunidade e não há contato com o exterior.
- Cada pessoa está em um dos três estados: suscetível S (pode pegar a gripe), infectado I (tem a gripe e pode transmiti-la), ou removido R (já teve a gripe e não pode pegá-la novamente, incluindo os casos de óbito).
- ullet Inicialmente, cada pessoa está em S ou I.
- Uma vez que alguém pega a gripe neste ano, não pode pegá-la novamente.
- A duração média da doença é de 5/3 semanas (1²/₃ semana), durante a qual a pessoa é considerada infectada e pode transmitir a doença.
- O período de tempo do modelo é semanal.

Além disso, a duração da doença é 5/3 semanas.

Definimos as seguintes variáveis:

 S_n = número de suscetíveis após o período n

 I_n = número de infectados após o período n

 R_n = número de removidos após o período n

e começamos modelando R_n . A taxa de remoção γ é a proporção de infetados removidos em um período, $\Delta R = \gamma I_n$, ou seja, é a proporção que indica qual fração das pessoas infectadas sai da categoria "infectado" em um período de tempo,

$$R_{n+1} = R_n + \gamma \cdot I_n$$

e se D é a duração média da infecção então $D\gamma=1$. No nosso exemplo $\gamma=3/5=0.6$, ou seja, 60% dos infectados deixam de ser infectados a cada semana.

A taxa de transmissão β mede a velocidade com que a doença se espalha na população, ela representa a probabilidade de um contato entre um suscetível e um infectado resultar em infecção por unidade de tempo, assim o número esperado de novas infecções

$$\Delta S = -\beta S_n I_n.$$

O termo de novos infectados por semana é ΔI : $\beta S_n I_n$, em cada semana, cada par suscetível—infectado tem uma chance de aproximadamente β de resultar em nova infecção diminuída da remoção dos infectados γI_n

$$\Delta I = (\beta S_n - \gamma) I_n \tag{1}$$

se $\beta S_n > \gamma$ a doença tende a se espalhar e se se $\beta S_n < \gamma$ tende a desaparecer. Assumimos inicialmente que β é constante e pode ser estimada a partir das condições iniciais²

Observação $R_0 = \frac{\beta}{\gamma} S_0$ define o número básico de reprodução, que mede o potencial de disseminação da doença: Se $R_0 > 1$, a doença tende a se espalhar; se $R_0 < 1$, a epidemia tende a desaparecer. No início $R_0 \approx (\beta/\gamma)N$. Nesse caso, o isolamento social (quarentena) diminui o β que, por sua vez, faz diminuir o R_0 .

Nosso modelo é então:

$$\begin{cases} R_{n+1} = R_n + 0.6I_n \\ I_{n+1} = I_n - 0.6I_n + 0.001407I_nS_n \\ S_{n+1} = S_n - 0.001407S_nI_n \end{cases}$$

com condições iniciais: I(0) = 5, S(0) = 995, R(0) = 0.

Esse sistema SIR pode ser resolvido iterativamente e analisado graficamente para compreender o comportamento da epidemia.

 $^{^1}$ os parâmetros do modelo SIR são de difícil obtenção. É necessário equipes interdisciplinares para fazer tratamento de dados.

²Por exemplo, se I(0) = 5 e S(0) = 995, e I(1) = 9, temos: $I(1) = I(0) - 0.6 \cdot I(0) + a \cdot I(0) \cdot S(0) \Rightarrow \beta = 0.001407$

Semana (n)	S_n	I_n	R_n
0	995.000000	5.000000	0.000000
1	988.000175	8.999825	3.000000
2	975.489372	16.110733	8.399895
3	953.377173	28.556492	18.066335
4	915.071446	49.728324	35.200230
5	851.045954	83.916821	65.037225
6	750.562135	134.050548	115.387317
7	608.999271	195.183083	195.817646
8	441.754309	245.318195	312.927496
9	289.277198	250.604389	460.118413
10	187.277950	202.241004	610.481046
11	133.987430	134.186921	731.825649
12	108.690470	78.971729	812.337801
13	96.613521	43.665640	859.720839
14	90.677823	23.401955	885.920223
15	87.692115	12.346490	899.961396
16	86.168770	6.461940	907.369289
17	85.385328	3.368218	911.246454
18	84.980680	1.751936	913.267385
19	84.771205	0.910249	914.318546
20	84.662636	0.472668	914.864696
21	84.606332	0.245372	915.148296
22	84.577123	0.127358	915.295519
23	84.561967	0.066099	915.371934
24	84.554103	0.034304	915.411593
25	84.550022	0.017803	915.432176
26	84.547904	0.009239	915.442857
27	84.546805	0.004795	915.448400
28	84.546235	0.002488	915.451277
29	84.545939	0.001291	915.452770
30	84.545785	0.000670	915.453545
31	84.545705	0.000348	915.453947
32	84.545664	0.000180	915.454156
33	84.545642	0.000094	915.454264
34	84.545631	0.000049	915.454320
35	84.545626	0.000025	915.454349
36	84.545623	0.000013	915.454364
37	84.545621	0.000007	915.454372
38	84.545620	0.000004	915.454376
39	84.545620	0.000002	915.454378
40	84.545620	0.000001	915.454379
41	84.545619	0.0000005	915.454380
42 43	84.545619 84.545619	0.0000003 0.0000001	915.454380 915.454381
	84.545619	0.00000001	
44 45	84.545619	0.00000007	915.454381 915.454381
46	84.545619	0.00000004	915.454381
47	84.545619	0.00000002	915.454381
48	84.545619	0.00000001	915.454381
49	84.545619	0.00000001	915.454381
50	84.545619	0.00000000	915.454381
50	04.040013	0.00000000	910.404001

Tabela 5: Evolução das variáveis do modelo SIR ao longo das semanas

Figura 2: Evolução das populações Suscetível, Infectada e Removida ao longo do tempo.

Figura 3: Evolução temporal de S_n , I_n e R_n com pontos marcados.

Ponto de equilíbrio do modelo SIR discreto

O ponto de equilíbrio é um conjunto de valores (S^*, I^*, R^*) tal que, se o sistema atinge esses valores, ele permanece neles para sempre.

Conservação da população Como ninguém entra ou sai da comunidade (população fechada), temos: $S_n + I_n + R_n = N = \text{constante}$.

Formal mente:

$$S_{n+1} = S_n = S^*, \quad I_{n+1} = I_n = I^*, \quad R_{n+1} = R_n = R^*$$

As equações do sistema SIR discreto são:

$$\begin{cases} S_{n+1} = S_n - aS_nI_n \\ I_{n+1} = I_n - \gamma I_n + aS_nI_n \\ R_{n+1} = R_n + \gamma I_n \end{cases}$$

No equilíbrio, temos:

$$\Delta S = -aS^*I^* = 0$$

$$\Delta I = -\gamma I^* + aS^*I^* = 0$$

$$\Delta R = \gamma I^* = 0$$

Portanto, a única solução é $I^*=0$, ou seja, não há mais infectados. Assim, o ponto de equilíbrio é:

$$(S^*, I^*, R^*) = (S^*, 0, N - S^*)$$

 $\text{com } 0 \le S^* \le N.$

O sistema sempre converge para uma situação em que não há mais infectados e a população se divide entre os que nunca foram infectados (S^*) e os que foram infectados e se recuperaram ou morreram (R^*) O valor exato de S^* depende da dinâmica da epidemia, não necessariamente todos se infectam.

Estimativa de S^* (número de suscetíveis no final)

Queremos estimar S^* , o número final de pessoas que nunca foram infectadas. O número básico de reprodução é

$$R_0 = \frac{\beta}{\gamma} N.$$

Com os valores do exemplo: $\beta = 0.001407$, $\gamma = 0.6$ e N = 1000

$$R_0 = \frac{0,001407 \cdot 1000}{0,6} = \frac{1,407}{0,6} \approx 2,345$$

Vamos relacionar diretamente S e R, eliminando I. Como a população total é constante $\Delta S_n + \Delta I_n + \Delta R_n = 0$ calculamos as variações:

$$\Delta S_n = S_{n+1} - S_n = -\beta S_n I_n$$

$$\Delta R_n = R_{n+1} - R_n = \gamma I_n$$

dividindo as duas expressões:

$$\frac{\Delta S_n}{\Delta R_n} = -\frac{\beta S_n I_n}{\gamma I_n} = -\frac{\beta}{\gamma} S_n$$

portanto

$$\frac{\Delta S_n}{S_n} = -\frac{\beta}{\gamma} R_n$$

somando ao longo do tempo (do estado inicial até o final T):

$$\sum_{n=0}^{T} \frac{\Delta S_n}{S_n} = -\frac{\beta}{\gamma} \sum_{n=0}^{T} \Delta R_n.$$

O lado direito aproximamos por uma integral $\int \frac{1}{S} dS = \ln(S(T)) - \ln(S(0)) = \ln(S^*) - \ln(S_0)$, o lado direito é uma soma telescópica, o que leva a:

$$\ln S^* - \ln S_0 = -\frac{\beta}{\gamma} (R^* - R_0) = -\frac{\beta}{\gamma} (N - S^*)$$

pois $R_0 = 0$ e $R^* = N - S^*$. Concluindo

$$\boxed{\ln S^* = \ln(S_0) - \frac{\beta}{\gamma}(N - S^*)}$$

A equação acima relaciona o número final de suscetíveis S^* ao número inicial S_0 , ela é uma equação implícita – não conseguimos isolar S^* de forma analítica –, por isso, para encontrar S^* , devemos recorrer a métodos num'ericos ou gr'aficos. Contudo, uma boa aproximação prática quando $R_0 > 1$ é:

$$S^*/N \approx e^{-R_0 \cdot (1-S^*/N)}$$

Com $R_0 \approx 2,345$, é esperado que aproximadamente 15% da população permaneça suscetível. No nosso exemplo, com N=1000, temos:

$$\frac{S^*}{N} \approx \frac{84.5}{1000} (8.45\% \text{ da população})$$

permanece suscetível.