Quand est-ce que $\sum e_i f_i = [L:K]$?

0.1 Manipuler

Le point c'est qu'on a toujours

$$\sum e_i f_i \le [L:K]$$

(voir lemme 3.6 vu que dans le cas des dvrs on sait pas si $f = \infty$) avec égalité ssi $\tilde{\mathcal{O}}_K - \mathcal{O}_K$ est finie ssi $L \otimes_K \hat{K}$ est réduite. Un gros détail, les transitions de dimensions se font entre $k_K - k_L$ et K - L. Autrement dit on s'en fout de la finitude de $\tilde{\mathcal{O}}_K$ sur \mathcal{O}_K . Si [L:K] est finie alors f_i aussi pour tout i.

Remarque 1. Cette histoire de B_L réduite vient du fait que

$$B_L \to \prod L_i$$

a un noyau nilpotent vu que c'est $\cap \mathfrak{m}_i$ et qu'on est sur une \hat{K} -algèbre de type fini à gauche (car de dimension finie \rightarrow) et à gauche c'est de dim $\dim_{\hat{K}} B_L = [L:K]$ alors qu'à droite c'est $\sum e_i f_i$.

0.2 Prérequis

Quelques prérequis nécessaire à l'étude : si \mathcal{O}_K est de Dedekind, quand est-ce que

- 1. $\tilde{\mathcal{O}}_K$ est de Dedekind.
- 2. $\tilde{\mathcal{O}}_K$ est fini sur \mathcal{O}_K .

Pour la première question :

- 1. Si \mathcal{O}_K est semi-local ca se fait bien parce que $\tilde{\mathcal{O}}_K$ est noethérien sur \mathcal{O}_K ssi $\tilde{\mathcal{O}}_K \otimes \mathcal{O}_K(\mathcal{O}_K)_{\mathfrak{m}_i}$ est noethérien pour tout les premiers (faut en avoir un nb fini).
- 2. Plus généralement si L/K est finie par Krull-Akizuki.

Pour la deuxième : dès que $\sum e_i f_i = [L:K]$ d'où si

- 1. K est complet, par densité de $\sum_{i,j} e_j \pi_L^i \mathcal{O}_K$ dans $\tilde{\mathcal{O}}_K$. L'idée étant que $M \otimes_{\mathcal{O}_K} K = L$ d'où M est un parallélogramme fermé fondamental de L, vu que $\mathcal{O}_K = \overline{B(0,1)} \cap K$ et $\mathcal{O}_L = \overline{B(0,1)}$ pour la métrique de L. Et M est dense dans \mathcal{O}_L (partie non triviale!)
- 2. L/K est séparable via le disriminant non nul et la trace non dégénérée.
- 3. Évidemment si $\tilde{\mathcal{O}}_K = \mathcal{O}_K[\alpha]$ est monogène.

Chapitre 1

Cadre

1.1 Objets

On se place **toujours** dans le cadre où on a \mathcal{O}_K de valuation **discrète**. Le cadre en gros c'est

$$\mathcal{O}_{K} \longrightarrow \tilde{\mathcal{O}}_{K} \subseteq (\tilde{\mathcal{O}}_{K})_{\mathfrak{m}_{i}} = ? = (\mathcal{O}_{L})$$

$$\downarrow \qquad \qquad \downarrow$$

$$k_{K} \longrightarrow k_{L}$$

C'est à dire qu'on prends la clôture intégrale, on regarde ses idéaux maximaux et on obtient des extensions de d.v.r. Quand K est complet ou quand on fixe une valuation (un premier \mathfrak{m}_i) sur L, \mathcal{O}_L fait sens.

1.2 Les cadres successifs

On regarde d'abord $\mathcal{O}_K - \mathcal{O}_L$ une extension de DVR. De sorte à montrer que

$$e.f = \dim \mathcal{O}_L/\mathfrak{m}_K \mathcal{O}_L$$

à l'aide du module M. Ensuite on regarde $\mathcal{O}_K - \tilde{\mathcal{O}}_K$. Et on montre que

$$\dim_{k_K} \tilde{\mathcal{O}}_K/\mathfrak{m}_K \tilde{\mathcal{O}}_K \le [L:K]$$

enfin on montre que dans le même cas que

$$\dim_{k_K} \tilde{\mathcal{O}}_K/\mathfrak{m}_K \tilde{\mathcal{O}}_K = \sum e_i f_i \le [L:K]$$

avec égalité quand (de manière équivalente)

- 1. $\tilde{\mathcal{O}}_K$ est fini sur \mathcal{O}_K .
- 2. $L \otimes_K \hat{K}$ est réduite.

1.3 Extensions de dvrs.

Étant donné une extension $\mathcal{O}_K - (\tilde{\mathcal{O}}_K)_{\mathfrak{m}} = \mathcal{O}_L$, y'a une inclusion à regarder, si $k_K - k_L$ contient une famille libre et génératrice $(e_i)_i$:

$$\mathcal{O}_L \subset \sum e_i \mathcal{O}_K + \pi_L \mathcal{O}_L$$

puis en itérant

$$\mathcal{O}_L \subset \sum e_i \pi_L^j \mathcal{O}_K + \pi_K \mathcal{O}_L$$

et même pour tout $n \ge 1$

$$\mathcal{O}_L \subset \sum_i \sum_{j=0,\dots,e-1} e_i \pi_L^j \mathcal{O}_K + \pi_K^n \mathcal{O}_L$$

car $\pi_L^e \in \mathcal{O}_K$. Donc une densité de M dans \mathcal{O}_L . Je note

$$M = \sum_{i=1,\dots,f} \sum_{j=0,\dots,e-1} e_i \pi_L^j \mathcal{O}_K.$$

Ça montre que $\mathcal{O}_L/\mathfrak{m}_K\mathcal{O}_L$ est de dimension au plus e.f. L'autre est un peu technique mais pas dur, y s'agit de jouer sur la valuation.

Remarque 2. Là on a juste utilisé que k_L est de dimension finie sur k_K . On peut écrire des doubles inégalités même en général.

On a construit un \mathcal{O}_K -module libre dense dans \mathcal{O}_L .

1.4 Cas canonique

On a directement $\dim_{k_K} \tilde{\mathcal{O}}_K/\mathfrak{m}_K \tilde{\mathcal{O}}_K = \sum e_i f_i$. Par le lemme chinois et le cas des dvrs.

1.5 Cas complet

On se retrouve dans le cas des dvrs. Et on a

$$M\otimes_{\mathcal{O}_K}K=L$$

parce que dense dans $\mathcal{O}_L \otimes_{\mathcal{O}_K} K = L$ et complet donc fermé. Donc on obtient le cas d'égalité $e.f \geq [L:K]$.

Remarque 3. Le fait que $M \otimes_{\mathcal{O}_K} K$ soit un K-e.v dense dans L force pas de même dimension ! Ça peut arriver qu'une ligne soit dense en dimension 2. Par exemple \mathbb{Q} dans $\mathbb{Q}(\sqrt{2})$ avec la norme infinie, ou toutes les v_p avec $p \neq 2$ je crois.

1.6 Équivalences

Seulement de "égalité" équivaut à $\tilde{\mathcal{O}}_K$ fini sur \mathcal{O}_K . De droite à gauche c'est que \mathcal{O}_K est principal donc fini implique libre ici, la dimension se voit bien d'où l'égalité. L'autre côté c'est que on obtient une base de L sur K et on fait redescendre les relations.

1.7 Remarques sur B_L et les \mathfrak{m}_i

Dans $L \otimes_K \hat{K}$ si on note π_i une uniformisante pour \mathfrak{m}_i chaque idéaux de $\tilde{\mathcal{O}}_K$ alors à mon avis $\langle \pi_i, i \neq j \rangle$ est l'idéal maximal de $L \otimes_K \hat{K}$ qui correspond à L_j .