INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

EE 311: VLSI LAB

July-Nov 2016

Assignment 4

6th September 2016

Name	Roll No.
Aprajit Choubey	140102079

NOTE: IF PICTURE ARE UNCLEAR, SCREENSHOTS ARE THERE IN FOLDER.

Objective:

To design an AND Gate using NAND Gate and NOT Gate with following specification:

- 1. Input Frequency, f = 400 MHz
- 2. Load Capacitance, C_L = 300 fF
- 3. Worst case risetime, falltime = 5 % of input time period

Calculations:

Given input frequencies = 400 MHz. Therefore time period of input T = 2.5ns.

Rise Time,
$$t_r$$
 = Fall Time, t_f = 5 % of T => t_r = t_f = 0.05 * 2.5 ns = 0.125 ns

This is the worst case scenario. We have to keep the risetime and falltime less than this.

We can find charging and discharging of capacitor between 10% to 90% using following equation:

$$t = 2.2 * R_{eq} * C_{L}$$

Since,

$$t \le t_r$$
 => 2.2 * R_{eq} * $C_L \le 0.125$ ns => $R_{eq} \le 189.4 \Omega$ ------(i)

For NMOS,

 R_{NORM} = 3660 Ω , and since R_{eq} = R_{NORM} / m_n where m_n is the multiplicity of NMOS,

$$=> m_n >= 19.32$$

For PMOS,

 R_{NORM} = 10980 Ω , and since R_{eq} = R_{NORM} / m_p where m_p is the multiplicity of PMOS,

$$=> m_p >= 58$$

So for this assigment, I have chosen $\underline{m_n} = 24$ and $\underline{m_p} = 60$.

Therefore expected value of risetime:

$$t = 2.2 * R_{eq} * C_{L}$$

$$=> t_r = 120.78 \text{ ps}$$

Therefore expected value of **falltime**:

$$t = 2.2 * R_{eq} * C_{L}$$

$$=> t_r = 100.65 ps$$

Hence width chosen was for <u>PMOS</u>, with finger = 2:

$$w = (m_p / 2) * 0.36 = 10.8u$$

Hence width chosen was for \underline{NMOS} , with finger = 2:

$$w = (m_n / 2) * 0.36 = 4.32u$$

Schematic:

1. Screenshot:

Observed:

1. Case I: Rise Time = 109.204ps

2. Case II: Rise Time = 114.09ps

Fall Time = 97.283ps

Fall Time = 101.59ps

2. Simulation:

I) A - Pulse, B - High

2. Simulation:

I) A - Pulse, B - High

Layout:

1. Screenshot:

Observed:

1. Rise Time = 118.85ps

Fall Time = 113.33ps

2. Post Layout Simulation:

