FICHES D'AIDE POUR L'UTILISATION DU LOGICIEL

MECA 3D

- Travailler avec Méca 3D
- Effectuer un calcul mécanique
- Simuler le mouvement d'un mécanisme
- Afficher une courbe de résultats
- Ajouter un effort (force ou moment) dans un mécanisme
- Ajouter une liaison dans un mécanisme
- Isoler une pièce

Travailler avec Méca 3D

Méca 3D est un logiciel de calcul fonctionnant à partir du logiciel de DAO Solid Works. Dans un assemblage Solid Works, il est possible de réaliser une étude mécanique avec Méca 3D en cliquant sur l'icône suivant :

Effectuer un calcul mécanique

Si la structure de fonctionnement du mécanisme est définie (en particulier les pièces et les liaisons), on peut effectuer un calcul mécanique. Pour cela :

• cliquer avec <u>le bouton de droite de la souris</u> sur :

Analyse -> calcul mécanique

• Une fenêtre résumant les caractéristiques mécaniques et la possibilité de calcul apparaît. Cliquer sur *suivant* pour faire apparaître la fenêtre de choix des paramètres d'étude :

Simuler le mouvement d'un mécanisme

Une fois le calcul effectué, on peut visualiser le mouvement d'un mécanisme en fonctions des paramètres indiqués lors du paramétrage du calcul. Pour cela :

• cliquer avec le bouton de droite de la souris sur :

Résultats → simulation

• La fenêtre de simulation apparaît :

• Si on veut augmenter/diminuer la vitesse ou faire fonctionner le mécanisme en sens inverse, il faut utiliser la fenêtre des options, puis modifier le mouvement :

Afficher une courbe de résultats

Une fois que le calcul a été effectué, on peut demander d'afficher les courbes permettant de visualiser l'évolution de différents paramètres (position, vitesse, effort) en fonction du temps. Pour cela :

• cliquer avec le bouton de droite de la souris sur :

courbes → ajouter → simple

La fenêtre de consultation de résultats apparaît :

- Il est donc possible d'obtenir des résultats :
 - Concernant une pièce
 - Concernant une liaison
 - Concernant un effort

Pour afficher la courbe indiquée, cliquer sur

consulter

Ajouter un effort (force ou moment) dans un mécanisme

Pour ajouter un effort au mécanisme étudié :

Cliquer avec le <u>bouton de droite de la souris</u> sur :

Efforts -> Ajouter

• La fenêtre de sélection du type d'effort apparaît :

 En fonction de l'effort sélectionné, il faut préciser ensuite les paramètres permettant de définir entièrement cet effort.

Ajouter une liaison dans un mécanisme

Pour ajouter une liaison dans le mécanisme étudié :

Cliquer avec le <u>bouton de droite de la souris</u> sur :

Liaison → Ajouter

La fenêtre de sélection du type de liaison apparaît :

 Choisir le type de liaison et cliquer sur suivant. Indiquer les deux pièces en contact. La fenêtre de définition de données géométriques apparaît (légèrement différente suivant les liaisons):

Mode de définition :

- Par contraintes : la liaison est définie grâce à des contraintes mises en place avec Solid Works.
- Par objets: la liaison est définie grâce à des cylindres, des cercles, etc...
- Saisie au clavier : la liaison est définie grâce à des données rentrée au clavier.

Contraintes de références pouvant éventuellement définir les caractéristiques de la liaison.

L'icône suivant apparaît lorsque les données sont définies correctement :

• Choisir les éléments permettant de définir la liaison. Cliquer sur terminer.

Isoler une pièce

Afin d'étudier l'équilibre d'une pièce dans un mécanisme, on peut isoler cette pièce en suivant la méthode suivante :

• Cliquer avec le bouton de droite de la souris sur la pièce à isoler puis choisir *isolement* :

La fenêtre suivante apparaît :

• En choisissant une taille convenable pour les vecteurs forces ou moments, on peut visualiser ces actions mécaniques pour n'importe quelle position d'étude.