# Quick Sort

A Divide & Conquer Method



### Quick Sort

- ▶ Three steps in the divide and conquer strategy
  - Divide Partition the original array A[p....r] into two subarrays A[p.....q-1] and A[q+1.....r] in such a way that each element of A[p.....q-1] is less than or equal to A[q], which in turn is less than or equal to each element of A[q+1.....r]
  - ▶ Conquer The two sub arrays are then sorted by recursive calls
  - Combine- Since the sub arrays are sorted in place we cannot move the elements from the original array to some other array
  - q is the pivot element and the elements in sub array to the left of A[q] are less or equal to A[q] and elements in the sub array to the right of A[q] are equal or greater than A[q]

9 April 2024



### Quick sort

```
Quicksort(A[], lt, rt)
if (lt < rt)
    p = Partition(A[], lt, rt);
    Quicksort(A[], lt, p);
    Quicksort(A[], p+1, rt);
```

## Partitioning (Quick sort)



- A key step in the Quick sort algorithm is partitioning the array
  - We choose some (any) number **p** in the array to use as a pivot
  - We partition the array into three parts:



### Partitioning (Quick sort) – Basic Idea



- Choose an array value (say, the first) to use as the pivot
- Starting from the left end, find the first element that is greater than or equal to the pivot
- Searching backward from the right end, find the first element that is less than the pivot
- Interchange (swap) these two elements
- Repeat, searching from where we left off, until done



### Partitioning

To partition a[left...right]:

- 1. **Set** p = a[left], l = left + 1, r = right;
- 2. **while** I < r, do
  - 2.1. while  $a[l] \le p$ , set l = l + 1
  - 2.2. **while** a[r] >= p, set r = r 1
  - 2.3. **if** I < r, swap a[I] and a[r]
- 3. **Set** a[left] = a[r], a[r] = p
- 4. Return r
- 5. Terminate



### Animation

| 10 | 16 | 8 | 12 | 15 | 6  | 3  | 9  | 5  |
|----|----|---|----|----|----|----|----|----|
| 10 | 16 | 8 | 12 | 15 | 6  | 3  | 9  | 5  |
| 10 | 5  | 8 | 12 | 15 | 6  | 3  | 9  | 16 |
| 10 | 5  | 8 | 12 | 15 | 6  | 3  | 9  | 16 |
| 10 | 5  | 8 | 9  | 15 | 6  | 3  | 12 | 16 |
| 10 | 5  | 8 | 9  | 15 | 6  | 3  | 12 | 16 |
| 10 | 5  | 8 | 9  | 3  | 6  | 15 | 12 | 16 |
| 10 | 5  | 8 | 9  | 3  | 6  | 15 | 12 | 16 |
| 6  | 5  | 8 | 9  | 3  | 10 | 15 | 12 | 16 |
| 6  | 5  | 8 | 9  | 3  | 10 | 15 | 12 | 16 |



| 6 5 8 9 3   6 5 3 9 8   6 5 3 9 8   3 5 6 9 8   3 5 6 9 8   3 5 6 9 8   3 5 6 9 8               |   | 6 | 5 | 8 | 9 | 3 | 10 | 15 | 12 | 16 |
|-------------------------------------------------------------------------------------------------|---|---|---|---|---|---|----|----|----|----|
| 6   5   3   9   8     6   5   3   9   8     3   5   6   9   8     3   5   6   9   8     12   15 |   |   |   |   |   |   |    |    | 15 | 12 |
| 6   5   3   9   8     3   5   6   9   8     3   5   6   9   8     12   15                       | 6 | 5 | 8 | 9 | 3 |   |    |    | 13 | 12 |
| 3 5 6 9 8   3 5 6 9 8     12 15                                                                 | 6 | 5 | 3 | 9 | 8 |   |    |    | 15 | 12 |
| 3 5 6 9 8   3 5 6 9 8     12 15                                                                 | 6 | 5 | 2 | Q | Ω |   |    |    | 15 | 12 |
| 3 5 6 9 8                                                                                       | 0 |   |   | 7 |   |   |    |    | 10 |    |
|                                                                                                 | 3 | 5 | 6 | 9 | 8 |   |    |    | 12 | 15 |
|                                                                                                 | 3 | 5 | 6 | 9 | 8 |   |    |    | 12 | 15 |
|                                                                                                 |   |   |   |   |   |   |    |    |    |    |
|                                                                                                 |   | 5 |   | 9 | 8 |   |    |    |    |    |



## Worst Case Call Tree (N=4)





### Recursion Tree for Best Case

#### Partition Comparisons





## Features -Quick Sort

- Performs very well in virtual memory environment
- Needs fewer resources during execution
- Running time depends on whether the partitioning is balanced or unbalanced
- When the sub list is balanced it is the best case and worst case if it is vice —versa
- If the sub list is balanced then it runs as fast as merge sort
- If the sub list is unbalanced then it runs as slow as insertion sort



### Complexity Analysis- Quick Sort

#### Worst Case

- Partitioning is unbalanced and partition procedure produces two sub arrays, one with n-1 elements and the other containing zero elements.
- The recurrence can be written as
  - $T(n)=T(n-1)+T(0)+\theta(n)$
  - T(n)= $T(n-1)+\theta(n)$  since  $T(0)=\theta(1)$
  - Solving using the iteration method we get
    - $\Box$  T(n)=  $\theta$ (n^2)

### Best Case

- Partitioning is balanced and it produces two sub arrays containing not more than n/2 elements.
- The recurrence for such a case can be written as
  - $\Box$  T(n)=T(n/2)+T(n/2)+ $\theta$ (n)
  - $\Box$  T(n)=2T(n/2)+ $\theta$ (n)
  - □ Applying master theorem we get
    - $\Box$   $T(n) = \theta(n \log n)$



### Contd....

- Average Case
  - $\Box$  T(n)= O(nlogn)
- An algorithm is called stable if it preserves the order of elements in both input and output
- Insertion sort, bubble sort, shell sort, merge sort are stable
- Selection sort and quick sort are unstable algorithms



Thank you

14 4/9/2024