

고기4조 남태우.이수정.이정훈.정은정.정재석

팀원소개

남태우

데이터분석

이수정

데이터분석 모델링 구현 이정훈

데이터분석

모델링 구현

정은정

발표자료제작

정재석

발표자료제작

목차

- 1. 개요
- 2. 데이터 탐색 및 전처리
- 3. 모델링
- 4. 결과 및 해석
- 5. 의의 및 시사점
- 6. 한계점 및 향후 연구 방향

01. 프로젝트 개요 - 목표

2023년 3월	23일 13:00	15:00	18:00	21:00	09:00	12:00	15:00
데이터 탐색							
데이터 전처리 및 분석							
모델링							
PPT 제작							

- 1. Kaagle: 데이터 과학 및 대신러닝을 학습 하고 데이터 분석을 위한 데이터 셋을 제공하는 플랫폼
- 2. EDA(Exploratory Data Analysis): 시각한 및 통계 도구를 사용하여 데이터를 이해하기 위한 탐색적 데이터 분석
- 3. R-squared(결정계수): 목표 분산과 목표분산에 대한 예측 오차 분산간의 차의 비율

 $BMI = \frac{\text{BPM}(KG)}{\mathfrak{I}(M) \times \mathfrak{I}(M)}$

출처 : 미국 질병 통제 예방센터(CDC) (https://www.cdc.gov)

01. 프로젝트 개요 - 목표

고객정보를 바탕의 보험료 예측

개인입장에서는 본인의 의료비를 직접 예측하여 과납을 막고. 그에 상응하는 보험금을 납부하도록 함

보험회사입장에서는 보험료 변화 추세를 파악하여, 그에 따른 맞춤형 상품을 기획할 수 있도록 함

01. 프로젝트 개요 - 데이터 소개

데이터셋: Medical Cost Personal Datasets (Kaggle)

Insurance Forecast by using Linear Regression

Data Card Code (1063)

Discussion (10)

About Dataset

Context

Machine Learning with R by Brett Lantz is a book that provides an introduction to machine learning using R. As far as I can tell, Packt Publishing does not make its datasets available online unless you buy the book and create a user account which can be a problem if you are checking the book out from the library or borrowing the book from a friend. All of these datasets are in the public domain but simply needed some cleaning up and recoding to match the format in the book.

Usability ①

8.82

License

Database: Open Database, Cont...

Expected update frequency

Not specified

Cambons

01. 프로젝트 개요 - 데이터 소개

데이터셋 컬럼 체크

About this file

This dataset consists of 1338 rows.

Age - 보험 계약자(User)의 LtOI

Sex - 보험 계약자(User) 성별(여성, 남성)

Bmi - 체질량지수

Children - 건강보험 적용 자녀 수/ 피부양자 수

Smoker - 흡연 여부

Region - 미국 수혜자(User) 주거 지역 (북동쪽, 남동쪽, 남서쪽, 북서쪽)

Charges - 건강보험에서 청구하는 개별 의료비

02. 데이터 탐색 및 전처리 - 히트맵

Missing values

02. 데이터 탐색 및 전처리 - EDA 성별 기준

02. 데이터 탐색 및 전처리 - 복합적 EDA (bmi, age 기준)

02. 데이터 탐색 및 전처리 - 기초통계량

02. 데이터 탐색 및 전처리 - EDA 흡연 기준

02. 데이터 탐색 및 전처리 - EDA - 지역별

02. 데이터 탐색 및 전처리 - EDA - 지역별

미국 각 주별 비만율 (1990 - 2007)

미국 각 주별 빈곤율 (2009년 기준)

주: CDC Behavioral Risk Factor Surveillance System.

출처: 김은정, "액티브 리빙 리서치(Active Living Research) - 미국의 비만억제 노력과 우리나라에 대한 시사점",국토정책 Brief, 2008-09-22

02. 데이터 탐색 및 전처리 - 왜도, 첨도

02. 데이터 탐색 및 전처리 - 데이터 전처리

```
data.isnull().sum()
    0.0s
age
sex
bmi
             0
children
             0
smoker
             0
region
             0
charges
             0
dtype: int64
```

```
data.info()
 ✓ 0.0s
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):
    Column
             Non-Null Count Dtype
    age 1338 non-null int64
    sex 1338 non-null object
    bmi 1338 non-null float64
    children 1338 non-null int64
    smoker 1338 non-null object
    region 1338 non-null object
    charges 1338 non-null float64
dtypes: float64(2), int64(2), object(3)
memory usage: 73.3+ KB
```

```
['sex':{'female':0, 'male':1},
'smoker': {'no': 0, 'yes':1},
'region':{'northeast':1, 'southeast':2, 'southwest':3, 'northwest':4}}
'object' -> 'int64'

X_train, X_test, y_train, y_test
= train_test_split(X, y, test_size=0.2, random_state=2023)
```

```
# object 형태의 타입을 수치형 데이터로 치환
   data = data.replace({'sex':{'female':0, 'male':1},
                       'smoker': {'no': 0, 'yes':1},
                       'region':{'northeast':1, 'southeast':2, 'southwest':3, 'northwest':4}})
   data.info()

√ 0.0s

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):
    Column
             Non-Null Count Dtype
            1338 non-null int64
    age
    sex 1338 non-null int64
    bmi
             1338 non-null float64
   children 1338 non-null int64
    smoker 1338 non-null int64
    region 1338 non-null int64
    charges 1338 non-null float64
dtypes: float64(2), int64(5)
memory usage: 73.3 KB
```

03. 모델링 - 선형회귀분석

03. 모델링

선택된 변수들을 바탕으로 다중 선형 회귀 모델을 구축

이 모델은 나이, 성별, 흡연 여부, BMI 등의 변수를 입력받아 의료비용을 예측

결과적으로 모델의 R-squared 값은 0.75로 LIEI남

OLS Regression Results									
Dep. Varia	able:	charges	R	-squared:	0.750				
Mo	odel:	OLS	Adj. R-squared:		0.749				
Meth	hod: Le	east Squares	F-statistic:		998.1				
D	ate: Fri, 2	24 Mar 2023	Prob (F	-statistic):	0.00				
T	ime:	13:02:27	Log-Li	kelihood:	-13551.				
No. Observati	ons:	1338		AIC:	2.711e+04				
Df Residu	uals:	1333		BIC:	2.714e+04				
Df Mo	odel:	4							
Covariance T	ype:	nonrobust							
	coef	std err	t P	> t [0	.025 0.	975]			
const -1.	21e+04 9	941.984 -12			+04 -1.03e				
age 2	57.8495	11.896 21	.675 0.0	000 234	.512 281	.187			
	21.8514					.559			
					+04 2.46e				
						.814			
Omnibu			.430 o Watson:	2.087		.014			
Prob(Omnibu:				722.157					
Ske				1.53e-157					
Kurtos	is: 5.65	54 Cc	ond. No.	292					

04. 결과 및 해석

우리가 구축한 모델은 Medical Cost Personal Datasets을 기반으로 보험 비용을 예측하는 데 있어서 높은 정확도를 보임

특히나 나이, BMI, 흡연 여부 등의 변수는 의료비용 예측에 큰 영향을 미치는 것으로 나타남

				100					
OLS Regression Results									
Dep. Variable	e:	charges		R-squ	ared:	0.750			
Model	Ŀ	OLS	Adj	j. R-squ	ared:	0.749			
Method	l: Leas	t Squares		F-sta	tistic:	998.1			
Date	: Fri, 24	Mar 2023	Prob	(F-stat	istic):	0.00			
Time	:	13:02:27	Log	g-Likelih	ood:	-13551.			
No. Observations	:	1338			AIC:	2.711e+04			
Df Residuals	:	1333			BIC:	2.714e+04			
Df Model	l:	4							
Covariance Type	: r	nonrobust							
	coef st	d err	t	P> t	[0.0	025 ().975]		
const -1.21e	+04 94	1.984 -12	2.848	0.000	-1.4e-	+04 -1.03	e+04		
age 257.8	3495 1°	1.896 2°	1.675	0.000	234.	512 28	1.187		
	3514 27	7.378 1	1.756	0.000	268.	143 37	5.559		
smoker 2.381e	+04 41	1.220 57	7.904	0.000	2.3e-	+04 2.46	e+04		
children 473.5	5023 137	7.792	3.436	0.001	203.	190 74	3.814		
Omnibus:	301.480	Durbin-	Watso	n:	2.087				
Prob(Omnibus):	0.000	Jarque-E	Bera (JE	3): 7	22.157				
Skew:	1.215): 1.5					
Kurtosis:	5.654		ond. N		292.				
110110513.	5,051	, ,			-7-				

05. 일일 및 시사접

이번 연구는 Medical Cost Personal Datasets을 활용하여 보험 비용을 예측하는 데 있어서 유용한 정보를 제공함

보험사는 이러한 예측 모델을 활용하여 보다 정확한 보험료를 책정할 수 있으며, 보험 계약자는 자신의 위험도를 파악하여 적절한 보험 상품을 선택할 수 있음

		01.0	ъ.	n le	250				
OLS Regression Results									
Dep.	Variable:		charge	s l	R-square	ed:	0.	750	
	Model:		OL:	S Adj. I	R-square	ed:	0.7	749	
	Method:	Leas	t Square	s	F-statist	ic:	66	4.8	
	Date:	Fri, 24	Mar 202	B Prob (F-statisti	c):	C	0.00	
	Time:		11:47:28	B Log-l	Likelihoo	d:	-135	51.	
No. Obse	rvations:		1338	В	Al	C: 2	2.712e+	+04	
Df R	esiduals:		133 ⁻	1	ВІ	C: 2	2.715e+	+04	
D	f Model:		(6					
Covarian	ce Type:	r	onrobus	t					
	(coef	std err	t	P> t	[0.025		0.975]
const	-1.178e	+04 10	38.851	-11.340	0.000	-1.38	8e+04	-97	42.634
age	257.7	804	11.907	21.650	0.000	23	4.423	2	281.138
sex	-129.5	026 3	33.435	-0.38	0.698	-78	3.618	5	24.613
bmi	321.3	813	27.466	11.701	0.000	26	7.500	3	375.263
children	477.7	866 1	37.983	3.463	0.001	20	7.099	7	48.474
smoker	2.381e	+04 4	13.007	57.654	0.000	2.3	e+04	2.4	16e+04
region	-98.2	718 1	50.749	-0.652	0.515	-39	4.003	1	97.459
Om	nibus:	301.228	Durbir	n-Watson:	2	.084			
Prob(Om	nibus):	0.000	Jarque-	-Bera (JB):	722	.385			
	Skew:	1.214		Prob(JB):	1.37e-	157			
Κι	ırtosis:	5.658	(Cond. No.		322.			

06. 한계점 및 향후 발전 방향 - 한계점

자녀수에 따른 보험료 경향성

Figure 1.

Percentage of People by Type of Health Insurance Coverage: 2019
(Population as of March 2020)

보험 플랜	Bronze	Silver	Gold	Platinum
보험사가 내는 의료비 비율	60%	70%	80%	90%
보험 가입자가 내는 의료비 비율	40%	30%	20%	10%

(그림 2) 국가별 GDP 대비 의료비 비중

자료: OECD Health Expenditure,

출처:https://medicalhani.com/2021/04

출처 : http://www.dailypharm.com/Users/ News/NewsView

06. 한계점 및 향후 발전 방향 - 향후 발전 방향 및 보완점

이상치 제거

출처 : https://sosal.kr/840

이상치(이상점, outlier)란, 관측된 데이터의 범위에서 많이 벗어난 아주 작은 값이나 아주 큰 값을 말하는데, 어떤 의사결정을 하는데 필요한 데이터를 분석할 경우 이렇게 이상한 값들에 의해서 의사결정에 영향을 미칠 수 있으므로 제거하는 것이 좋음

06. 한계점 및 향후 발전 방향 - 향후 발전 방향 및 보완점

K-fold 교차검증

k-fold cross-validation (k-겹 교차 검증)은 가장 널리 사용되는 교차 검증 방법의 하나로.

데이터를 k개로 분할한 뒤. k-1개를 학습용(train) 데이터 세트로. 1개를 평가용(test) 데이터 세트로 사용하는데,

이 방법을 k번 반복하여 k개의 성능 지표를 얻어내는 방법

출처: https://nonmeyet.tistory.com/entry/KFold-Cross-Validation

고기4조 남태우.이수정.이정훈.정은정.정재석

고기4조 남태우.이수정<u>.이정훈.정은정,정재석</u>