Kiến trúc máy tính và hợp ngữ

Đặng Hữu Lộc

KIẾN TRÚC MÁY TÍNH VÀ HỢP NGỮ

Mục lục

1. Hệ thống số đếm

2. Đại số Boole - Cổng Logic

Chương 1. Hệ thống số đếm

Biểu diễn số.

- $\bullet~$ Hệ thống số đếm là tập hợp những ký tự và quan hệ giữa chúng để biểu diễn số.
- Có 2 loại hệ thống số đếm:
 - 1. Loại không có vị trí.
 - 2. Loại có vị trí (có trọng số):
 - Cơ số (radix): r
 - Các chữ số (digits): d có giá trị $0, 1, 2, 3, \ldots, r-1$
 - Trọng số (weight) ở vị trí i: $w_i = r^i$
- Các biểu diễn:
 - Với r là cơ số.
 - Phần nguyên:

$$\overline{d_n d_{n-1} \dots d_1 d_0}_r = \sum_{i=0}^n d_i r^i = d_n r^n + d_{n-1} r^{n-1} + \dots + d_1 r + d_0$$

Phần thập phân:

$$\overline{0.d_1 d_2 \dots d_{m-1} d_m}_r = \sum_{1}^m d_i r^{-i} = d_1 r^{-1} + d_2 r^{-2} + \dots + d_m r^{-m}$$

Ví dụ:

$$1263.456_{10} = 1.10^3 + 2.10^2 + 6.10^1 + 3.10^0 + 4.10^{-1} + 5.10^{-2} + 6.10^{-3}$$

Các hệ thống số đếm

- Hệ nhị phân (binary):
 - Cơ số (r): 2
 - Các chữ số (d): 0.1
 - Mỗi chữ số 1 bit
 - Nếu có k bit thì sẽ có 2^k giá trị
 - Số nguyên k bit (không dấu) có tầm trị là : $0...2^k 1$
 - Số bit cần biểu diễn số nguyên n
: $\lfloor \log_2 k \rfloor + 1$

- Có thể thêm ký tự B (hoặc b) ở cuối để phân biệt.
- Số nhị phân lẻ có LSB=1
- Số nhị phân chẵn LSB = 0 > Kí hiệu $\lfloor x \rfloor$ là max $\{n \in \mathbb{Z} \mid n \leq x\}$ nói chung là làm tròn số x. LSB (Least Significant Bit) là bit có trọng số nhỏ nhất. MSB (Most Significant Bit) là bit có trong số lớn nhất.

Ví dụ

$$11011, 1011_2 = 1.2^4 + 1.2^3 + 0.2^2 + 1.2^1 + 1.2^0 + 1.2^{-1} + 0.2^{-2} + 1.2^{-3} + 1.2^{-4} = 27.6875_{10}$$

Binary number	1	1	0	1	1		1	0	1	1
weight result	2 ⁴ 16	$\frac{2^3}{8}$	$\frac{2^2}{0}$	_	_	•	2^{-1} 0.5	_	2	2^{-4} 0.0625

• Hệ thập phân (decimal)

- $\operatorname{Co} \operatorname{s\acute{o}} r = 10$
- Các chử số d: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
- Có thể thêm ký tự D (hoặc d) ở cuối.

• Hệ bát phân (octal)

- $-\operatorname{Co}\operatorname{s\acute{o}} r = \grave{8}.$
- Các chữ số d: [0, 1, 2, 3, 4, 5, 6, 7].
- Có thể thêm ký tự O (hoặc o) ở cuối.

• Thập lục phân (hexadecimal)

- $\operatorname{Co} \operatorname{s\acute{o}} r = 16.$
- Các chữ số d: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F]
- Có thể thêm ký tự H (hoặc h) ở cuối.

Ví dụ

$$3C7A, 6E05 =$$

Binary number	3	c	7	A	6	Е	0	5
weight result	16^3 12288	$\frac{16^2}{3072}$	16^{1} 112	16 ⁰ 10	$ \begin{array}{c} 16^{-1} \\ 0.375 \end{array} $	$ \begin{array}{c} 16^{-2} \\ 0.0546875 \end{array} $	10	$ \begin{array}{r} 16^{-4} \\ 0.000076293 \end{array} $

Chuẩn IEEE 754/85 - chuẩn mã hóa số dấu chấm động

- Cơ số $r=2 \Rightarrow hệ nhị phân (Binary);$
- Có các dạng cơ bản:
 - 1. Dạng có độ chính xác đơn (32b): 1b s|8b e|23b m;
 - 2. Dạng có độ chính xác kép (64b): 1
b $\,$ s|11b $\,$ e|52b $\,$ m;
 - 3. Dạng có độ chính xác kép mở rộng (80b): 1b s|15b e|64b m; > Trong đó, s là bit dấu (sign), e là bit mã lệch (excess) của phần mũ E (Exponent), m là bit phần lẻ của phần định trị M.
- · Cách xác định:
 - 1. bit dấu:
 - $-0 \Rightarrow s\hat{o} duong;$
 - $-1 \Rightarrow s\hat{o} \hat{a}m;$
 - 2. mã lệch e của phần mũ E: E=e-b Trong đó, b là độ lệch (bias):
 - Dạng 32b: b = 127, hay E = e 127
 - Dạng 64b: b = 1023, hay E = e 1023
 - Dạng 80b: b = 16383, hay E = e 16383
 - 3. phần lẻ m của phần định trị M: M = 1.m (cũng là 1, m)
- Công thức xác định giá trị của số thực X tương ứng là:

$$X = (-1)^s \times 1.m \times 2^{e-b}$$
, với × là dấu nhân

Bài tập chương 1

1. Trong hệ số đếm cơ số r, phương trình $x^2 - 153x + m = 0$ có 2 nghiệm $X_1 = 55$ và $X_2 = 54$. Xác định r (hệ dec) và m (hệ r).

Giải Phương trình $x^2 - 153x + m = 0$ có 2 nghiệm $X_1 = 55$ và $X_2 = 54$ Trong hệ số đếm cơ số r.

Theo Định lí Vi-ét:

$$X_1 + X_2 = \frac{-b}{a} \implies 54_r + 55_r = 153_r(1)$$

$$X_1 X_2 = \frac{c}{a} \Rightarrow 54_r 55_r = m_r(2)$$

$$(1) \Rightarrow 5 + 5r + 4 + 5r = 3 + 5r + r^2 \Rightarrow r^2 - 5r - 6 = 0 \Rightarrow r = 6 \text{ hoăc } r = -1(\text{loai})$$

Vậy đây là hệ số đếm cơ số 6.

- $(2) \Rightarrow 55_6.54_6 = m_6 \Rightarrow (5+5.6)(4+5.6) = m \Rightarrow m = 1190 \Rightarrow m_6 = 5302_6$
 - 2. Trong hệ số đếm cơ số r, phương trình $x^2 + Sx + m = 0$ có 2 nghiệm X_1 và X_2 . Viết chương trình nhập vào S, X_1 và X_2 (kiểu chuỗi), sau đó tính và xuất ra giá trị r (hệ dec) và m (hệ r).
 - 3. Trong hệ số đếm cơ số r, phương trình $x^2 mx + P = 0$ có 2 nghiệm X_1 và X_2 . Viết chương trình nhập vào P, X_1 và X_2 (kiểu chuỗi), sau đó tính và xuất ra giá trị r (hệ dec) và m (hệ r).
 - 4. Cho số thực z kiểu float 32 bit được lưu trữ như sau: 1100 0100 1001 0011 1001 0110 0000 0000. Tính z (hệ dec)

Giải số thực z $32\mathrm{b} \to \mathrm{đ}$ ộ chính xác đơn \to 1b s|8b e| 23b m

- Dấu: $s = 1 \rightarrow z$ là số âm.
- Phần mũ: $e = 10001001_2 = 137$, mà $E = e 127 \rightarrow 137 127 = 10$. Vậy E = 10
- Phần định trị: $M=1.m=1.00100111001011000000000_2=1.15301513671875$

Với: $1.m \times 2^E = 1.15301513671875 \times 2^{10} = 1180.6875$

Và: vì z là số âm nên giá trị thực của z là : -1180.6875.

- 5. Viết chương trình nhập vào chuỗi $32 \ bit (64 \ bit)$ lưu trữ của số thực z, tính và xuất ra giá trị z (hệ dec).
- 6. Cho số thực z=-1400.9375. Xác định biểu diễn nhị phân của z biết z là kiểu float 32 bit (z là kiểu float 64 bit).

Giải

- 1. Kiểu *float* 32 *b*: 1b s|8b e|23b m
 - $z \text{ là số âm} \rightarrow s = 1$
 - phần nguyên: $1400 = 101011111000_2$
 - phần thập phân: $0.9375 = 0.1111_2$

Vậy, 1400.9375 = 10101111000.1111 = 1.01011110001111 × 10_2^{10} = 1.01011110001111 × 2^{10} → m = 010111110001111000000000 (bù vào vài số 0 cho đủ 23b) - phần mũ: E = 10, mà E = e – 127 (do b = 32 bit) → e = 10 + 127 = 137 = 10001001₂

Vì
$$10_2 = 2$$
 nên $10_2^3 = 2_{10}^3$

vây số thực $z = 11000100101111100011111000000000_2$.

- 2. Kiểu *float* 64 b: 1b s|11b e|52b m;
 - z là số âm $\rightarrow s = 1$
 - phần nguyên: $1400 = 101011111000_2$
 - phần thập phân: $0.9375 = 0.1111_2$

 $\text{V\^{a}y, } 1400.9375 = 10101111000.1111 = 1.01011110001111 \times 10_2^{10} = 1.01011110001111 \times 2^{10}$

7. Viết chương trình nhập vào số thực z, tính và in ra chuỗi $32 \ bit(64 \ bit)$ lưu trữ của số thực z.

Đại số Boole - Cổng Logic

• Các tiên đề $K = \{a, b, c, \dots\}$

Trên K, định nghĩa 2 phép toán: + (OR) và .(AND) thỏa các tiên đề.

• Tiên đề 1: Tính đóng (Closure Property)

Nếu $a, b \in K$ thì $a + b \in K$ và $a.b \in K$

• Tiên đề 2: Phần tử đồng nhất (Identity Elements)

Tồn tại phần tử 0 và $1 \in K$ sau cho:

$$a + 0 = a$$
$$a.1 = a$$

• Tiên đề 3: Tính giao hoán (Commutative Property)

$$a+b=b+a$$

a.b = b.a

• Tiên đề 4: Tính phân bố (Distributive Property)

$$a + (b.c) = (a + b).(a + c)$$

 $a.(b + c) = a.b + a.c$

Chú ý: Phép . thực hiện trước phép +

• Tiên đề 5: Phần tử bù (Complement Element)

 $\forall a \in K, \exists \overline{a} \in K$:

$$a + \overline{a} = 1$$
$$a.\overline{a} = 0$$

Lưu ý: phần tử bù \overline{a} có thể được viết là a'

• Nguyên lí đối ngẫu (Duality Principle)

Thay $+ \leftrightarrow$. và $0 \leftrightarrow 1$ ta được 2 biểu thức đối ngẫu.

Các Định lí cơ bản

• Luật phủ định

 $\overline{\overline{a}} = a$

Luật đồng nhất

$$a + a = a$$
$$a.a = a$$

• Quy tắc giữa biến và hằng

$$a+1=1$$
$$a.0=0$$

• Quy tắc tính đối với hằng

$$\overline{\overline{0}} = 0$$

$$\overline{0} = 1$$

Luật hấp thụ

– Luật nuốt
$$a+a.b=a$$

$$a.(a+b)=a$$
 – Luật dán $a+\overline{a}.b=a+b$
$$a.(\overline{a}+b)=a.b$$

• De Morgan

$$\overline{\frac{a+b}{a.b}} = \overline{a}.\overline{b}$$

$$\overline{a.b} = \overline{a} + \overline{b}$$

• Luật kết hợp

$$(a+b)+c=a+(b+c) \\ (a.b).c=a.(b.c)$$

• Luật liên ứng

$$\begin{aligned} a.b + \overline{a}.c + b.c &= a.b + \overline{a}.c \\ (a+b).(\overline{a}+c).(b+c) &= (a+b).(\overline{a}+c) \end{aligned}$$