Report for Take Home Exam: Silvaco

Yifu Huang

Best design codes:

https://github.com/yifuhhh/EE396V TFT/blob/master/FinalExam/BestDesign/TFT best.in

Data processing codes:

https://github.com/yifuhhh/EE396V TFT/blob/master/DataProcess/FinalExam.py

1. Introduction

In the report, channel length, channel height and dielectric thickness are swept to improve FOMs of TFT. Here, field effect mobility, subthreshold swing and on-current density are all improved to different extends. On-current density has been focused on as a key FOM. Dielectric thickness would be the design parametric sweep to be discussed in this report.

2. Table of Old Device Characteristics

Figures of Merit							
Field Effect Mobility, µ _{FE} [cm ² /V-s]	0.16						
Subthreshold Swing, S [V/dec]	0.48						
On-current Density, J [A/cm ²]	0.12						
Semiconductor Channel							
Channel length, L [um]	50						
Channel width, W [um]	180						
Channel height, H [nm]	200						
Gate Dielectric							
Thickness, t _{di} [nm]	200						
Metal Contact							
Source work function, W _s [eV]	4.33						
Drain work function, \mathbf{W}_{d} [eV]	4.33						

3. Summary of parameter sweep

- a) Channel height (H [nm]): 20, 40, 80, 160, 200, 300.
- b) Channel length (L [um]): 12.5, 25, 37.5, 50, 62.5.
- c) Dielectric thickness (t_{di} [nm]): 100, 150, 200, 250, 300.

4. Reasoning for sweeping parameter

According to square model of TFT in saturation region($I_d = \frac{\mu c}{2} \frac{W}{L} (V_{gs} - V_{th})^2$) in Wager's review, with the decrease of t_{di} , the dielectric capacity would increase, thus I_d will increase in saturation region, so on-current density will increase with same channel width and height. When

channel length is small, the decrease of channel length can lead to small decrease of field effect mobility. When t_{di} and channel length are small, SS will be small. Thus, on-current density enhancement is the focus of t_{di} and channel length sweep.

5. Device analysis

6. Parametric Study Conclusion

From the sweep we can find that when the dielectric thickness decreases, the on-current density will increase rapidly. Also, the subthreshold swing will decrease when the dielectric thickness

decreases, which is desirable. The field effect mobility will increase when the dielectric thickness decreases. In general, dielectric thickness will be a good parameter for tuning.

7. Full Summary of Best Device

7.1 Figure of device

7.2 Design choice

Here I chose to tune L, H and t_{di} in order to get a higher on-current density. The parameters value and outcome of the best design are listed in the following table. Parameters modified are in the color of green. The improvements are in the color of red.

From the plots for sweep of H and L we can get that, to increase the on-current density as well as reduce the subthreshold swing, channel length should decrease. Field effect mobility would increase when channel length decreases. However, when channel height decreases a lot, mobility would decrease dramatically. Taking this information into consideration, I chose to reduce H a little, while channel length and dielectric thickness are both the smallest value in the sweep respectively.

Figures of Merit	Improvement							
Field Effect Mobility, µ _{FE} [cm ² /V-s]	0.44	175%						
Subthreshold Swing, S [V/dec]	0.27	-43.8%						
On-current Density, J [A/cm ²]	14.82	12250%						
Semiconductor Channel								
Channel length, L [um]	12.5							
Channel width, W [um]	180							
Channel height, H [nm]	80							
Gate Dielectric								

Thickness, t _{di} [nm]	100						
Metal Contact							
Source work function, W _s [eV]	4.33						
Drain work function, \mathbf{W}_{d} [eV]	4.33						

7.3 Design summary table

Figures of Merit														
µ ғе [cm²/V- s]	0.16	0.12	0.14	0.15	0.16	0.16	0.16	0.16	0.16	0.16	0.46	0.24	0.08	0.05
S [V/dec]	0.48	0.26	0.43	0.44	0.46	0.46	0.17	0.47	0.48	0.47	0.27	0.37	0.57	0.66
J [A/cm ²]	0.12	0.24	0.23	0.19	0.14	0.09	0.53	0.25	0.12	0.09	1.53	0.37	0.04	0.01
L [um]	50	50	50	50	50	50	12.5	25	37.5	62.5	50	50	50	50
W [um]	180	180	180	180	180	180	180	180	180	180	180	180	180	180
H [nm]	200	20	40	80	160	300	200	200	200	200	200	200	200	200
t _{di} [nm]	200	200	200	200	200	200	200	200	200	200	100	150	250	300
W _s [eV]	4.33	4.33	4.33	4.33	4.33	4.33	4.33	4.33	4.33	4.33	4.33	4.33	4.33	4.33
W _d [eV]	4.33	4.33	4.33	4.33	4.33	4.33	4.33	4.33	4.33	4.33	4.33	4.33	4.33	4.33

7.4 Plots for sweep of H and L $\,$

