CSE574 Introduction to Machine Learning Programming Assignment 1

Priya Murthy: 50248887 Shefali Sharma:50247677

Classification and Regression

INTRODUCTION

In this assignment, we have been given two data sets: "sample.pickle" and "diabetes.pickle". We used various Classification and Regression techniques on the data.

Problem 1: Experiment with Gaussian Discriminators

Linear Discriminant Analysis:

Accuracy for LDA: 97%

Observations:

- We observe discriminant boundaries for LDA which differentiate 5 classes.
- In LDA, the covariance for each class is assumed to be the same.
- Boundaries plotted are linear.

Quadratic Discriminant Analysis:

Accuracy for QDA: 96%

Observations:

- We observe discriminant boundaries for QDA which differentiate 5 classes.
- In QDA, the covariance for each class is calculated separately.
- Boundaries plotted are parabolic (quadratic decision boundaries).

Problem 2: Experiment with Linear Regression

REGRESSION METHOD	TRAIN MSE	TEST MSE
Linear Regression (without Intercept)	19099.4468446	106775.361451
Linear Regression (with Intercept)	2187.16029493	3707.84018096

Conclusion:

Looking at the above results, we can conclude that Linear Regression (with intercept) gives much better results for both Training and Test data.

This is because when linear regression line is modeled without an intercept, it has to pass through origin so it is possible that is is not the best model. Whereas if the Linear Regression line accommodates an intercept, the model gets more closely aligned with the actual data thus giving better results.

Improvement in Train error is by 88.5%, Improvement in Test error is by 96.5%.

Problem 3: Experiment with Ridge Regression

a) MSE for training and test data: (for Lambda values 0-1)

Sno.	₩	Lambda 🔻	Train M:	Test MS ▼	Sno.	Lambda	Train MSE	Test MSE	Sno.	Lambda	Train MSE	Test MSE
	0	0	2187.1603	3707.8402	34	0.34	2776.2733	3031.6132	67	0.67	3062.1727	3290.7961
	1	0.01	2306.8322	2982.4461	35	0.35	2786.0267	3039.5453	68	0.68	3069.8156	3298.3415
	2	0.02	2354.0713	2900.9736	36	0.36	2795.7036	3047.4934	69	0.69	3077.4064	3305.8611
	3	0.03	2386.7802	2870.9416	37	0.37	2805.3048	3055.4542	70	0.7	3084.9454	3313.3546
	4	0.04	2412.119	2858.0004	38	0.38	2814.8314	3063.4249	71	0.71	3092.4334	3320.8219
	5	0.05	2433.1744	2852.6657	39	0.39	2824.2842	3071.4028	72	0.72	3099.871	3328.2627
	6	0.06	2451.5285	2851.3302	40	0.4	2833.6641	3079.3852	73	0.73	3107.2586	3335.6767
	7	0.07	2468.0776	2852.35	41	0.41	2842.9719	3087.3699	74	0.74	3114.5969	3343.0639
	8	0.08	2483.3656	2854.8797	42	0.42	2852.2084	3095.3547	75	0.75	3121.8865	3350.4239
	9	0.09	2497.7403	2858.4444	43	0.43	2861.3745	3103.3374	76	0.76	3129.1278	3357.7567
	10	0.1	2511.4323	2862.7579	44	0.44	2870.4709	3111.3162	77	0.77	3136.3215	3365.062
	11	0.11	2524.6	2867.6379	45	0.45	2879.4985	3119.2893	78	0.78	3143.468	3372.3399
	12	0.12	2537.3549	2872.9623	46	0.46	2888.4579	3127.255	79	0.79	3150.568	3379.5901
	13	0.13	2549.7769	2878.6459	47	0.47	2897.3501	3135.2117	80	0.8	3157.6218	3386.8127
	14	0.14	2561.9245	2884.6269	48	0.48	2906.1757	3143.158	81	0.81	3164.6301	3394.0074
	15	0.15	2573.8413	2890.8591	49	0.49	2914.9354	3151.0925	82		3171.5933	
	16	0.16	2585.5599	2897.3067	50	0.5	2923.6301	3159.014	83	0.83	3178.512	
	17	0.17	2597.1052		51	0.51	2932.2604	3166.9213	84	0.84	3185.3866	
	18	0.18	2608.4964	2910.7394	52	0.52	2940.8272	3174.8133	85	0.85	3192.2176	
	19	0.19	2619.7484	2917.6822	53	0.53	2949.3311	3182.6889	86	0.86	3199.0055	
	20	0.2	2630.8728	2924.7532	54	0.54	2957.7728		87	0.87	3205.7508	3436.589
	21	0.21	2641.8789	2931.9385	55	0.55	2966.153	3198.3873	88	0.88	3212.4539	
	22	0.22	2652.7741	2939.2259	56	0.56	2974.4726	3206.2084	89	0.89	3219.1153	3450.5586
	23	0.23	2663.5643	2946.6046	57	0.57	2982.732	3214.0096	90	0.9	3225.7354	3457.5014
	24	0.24	2674.2543	2954.0651	58	0.58	2990.9322	3221.7903	91	0.91	3232.3147	3464.4162
	25	0.25	2684.8481	2961.5986	59	0.59	2999.0736	3229.5499	92		3238.8536	3471.303
	26	0.26	2695.3489	2969.1976	60	0.6	3007.1571	3237.2875	93	0.93	3245.3525	3478.1618
	27	0.27	2705.7596	2976.855	61	0.61	3015.1832	3245.0028	94		3251.8119	3484.9927
	28	0.28	2716.0825	2984.5643	62	0.62	3023.1527	3252.6951	95		3258.2323	3491.7957
	29	0.29	2726.3196	2992.3197	63	0.63	3031.0661	3260.3639	96		3264.6139	3498.5709
	30	0.3	2736.4726	3000.1158	64	0.64	3038.9242		97		3270.9572	
	31	0.31	2746.5432	3007.9476	65	0.65	3046.7276	3275.6295	98	0.98	3277.2626	3512.038
	32	0.32	2756.5327	3015.8106	66	0.66	3054.4769	3283.2254	99	0.99	3283.5305	3518.7301
	33	0.33	2766.4423	3023.7004					100	1	3289.7613	3525.3946

b) Plots for errors on train and test data for different values of lambda.

c) Comparing relative magnitudes of weighs learnt using OLE and Ridge Regression

Table for the above graph values:

Weight Comparison

	w(Ridge	w(Linear		
s.no	Regression)	Regression)		
1	150.4595981	1.48E+02		
2	4.80776899	1.27E+00		
3	-202.906114	-2.93E+02		
5	421.7194576	4.15E+02 2.72E+02		
6	-52.2970823	-8.66E+04		
7	-128.594189	7.59E+04		
8	-167.500570	3.23E+04		
9	145.740681	2.21E+02		
10	496.3060412	2.93E+04		
11	129.9484578	1.25E+02		
12	88.30438076	9.44E+01		
13	11.29067689	-9.39E+01		
14	1.88532531	-3.37E+01		
15	-2.58364157	3.35E+03		
16	-66.8944548	-6.21E+02		
17	-20.6193995	7.92E+02 1.77E+03		
18	113.3930145 17.99086827	1.77E+03 4.19E+03		
20	52.50235963	1.19E+02		
21	109.6876551	7.66E+01		
22	-10.7277962	-1.52E+01		
23	71.67974829	8.22E+01		
24	-69.3090636	-1.46E+03		
25	-124.034372	8.27E+02		
26	102.639818	8.69E+02		
27	72.64220588	5.86E+02		
28	79.24754013	4.27E+02		
29	38.48319215	9.02E+01		
30	32.98009446 92.09539122	-1.79E+01 1.42E+02		
32	68.97936154	5.83E+02		
33	-24.4170091	-2.34E+02		
34	101.8538797	-2.56E+02		
35	1.39122669	-3.85E+02		
36	20.85757155	-3.34E+01		
37	-29.6549013	-1.07E+01		
38	130.4111599	2.57E+02		
39	-16.7510879	6.00E+01		
40	87.51340344	3.84E+02		
41	-45.6423836 -30.9228849	-4.04E+02 -5.14E+02		
43	-10.0713978	-5.14E+02 3.84E+01		
43	31.13334896	-4.46E+01		
45	-89.3352542	-7.30E+02		
46	-22.7305367	3.77E+02		
47	65.41116624	4.40E+02		
48	55.11621318	3.09E+02		
49	19.14925041	1.90E+02		
50	-59.8431584	-1.10E+02		
51	26.64350735	-1.92E+03		
52	108.4050128	-1.92E+03		
53 54	-137.617569 -83.0438356	-3.49E+03 1.18E+04		
55	-20.4021477	5.31E+02		
56	24.9726362	5.43E+02		
57	-0.92451093	1.82E+03		
58	191.9130658	-1.05E+04		
59	34.78309393	-5.17E+02		
60	-43.9039350	2.06E+03		
61	23.2002376	-4.20E+03		
62	20.8504118	-1.40E+02		
63	-117.853228	3.74E+02		
64	75.30611309 60.36839226	5.15E+01 -4.64E+01		
65				

We can see that for Ridge regression the weight values are almost similar. It is because of the regularizat ion factor of the Ridge regression, that allows this to happen.

d) Comparison of two approaches in terms of test and train MSE (Mean square error):

REGRESSION METHOD	TRAIN MSE	TEST MSE	
Linear Regression	19099.4468446	106775.361451	
(without Intercept)			
Linear Regression	2187.16029493	3707.84018096	
(with Intercept)			
Ridge Regression	2451.528490643497	2851.3302134438463	
(for optimal value of λ)			

Looking at the above values, we can conclude that Ridge regression performs much better on Test data than Linear Regression with and without Intercept.

Thus, Ridge regression is better.

e) Optimum value of lambda:

The optimal value of λ obtained is 0.06.

Test error for $\frac{\lambda}{\lambda}$ (0.06) = 2851.3302 Train error for $\frac{\lambda}{\lambda}$ (0.06) = 2451.5258

This value of lambda has been obtained by looking at the minimum Test error in case of Ridge regres sion.

Problem 4: Using Gradient Descent for Ridge Regression Learning

a) Plot the errors on train and test data obtained by using the gradient descent based learning by varying the regularization parameter lambda.

b) Comparing with Results obtained in Problem 3: Conclusion:

Looking at the above two graphs, we can conclude that the training and test error for Ridge regression using Gradient Descent and Ridge regression are almost similar.

But in case of Ridge regression with Gradient descent, for both small values and large values of lambda, we can see that there is distortion in the graph. This is mainly due to the use of minimize and inverse function in case of gradient descent which consumes more time.

	Train MSE	Test MSE
Ridge Regression with Gradient	2451.76715459	2824.06091919
Descent		
(For optimal value of λ (0.06))		

The above figure shows value of Train and Test MSE for optimal value of lambda.

Problem 5: Non-linear Regression

a) Plots for Training and Test error in case of Non-Linear Regression

Inference from the above graphs:

i) MSE for Train Data:

From the above graph we can see that, when we have performed regularization, with increase in p v alues, there is not much difference in the MSE values. Whereas, when we do not have regularization i.e lambda = 0, the MSE values for train data decreases with increase in polynomial degree. This is be cause as the curve becomes non-linear, It tries to reduce the MSE, by adjusting according to the train data.

ii) MSE for Test Data:

From the above graph for Test data, we can see that, In case when there is no regularization, as the p value increases, there is a drastic increase in the MSE for test data. This is because, when regulariz ation was not performed, the model gets adjusted according to the train data and with change in data (i.e with test data), the MSE increases drastically since It was made according to the test data. When regularization is performed, the Test MSE is also consistent.

Thus, we should perform regularization as shown above.

b) Plot the curve for the optimal value of p for both values of lambda and compare.

The graph below for No regularization is for value of lambda = 0 and the graph for Regularization sh own above is for optimal value of lambda = 0.06.

Graph 1(No Regularization):

In this case, optimal value of p obtained for Train MSE is 5 and all the other values are almost similar for different values of p.

But for Test MSE, the optimal value for p = 1.

Graph 2(Regularization):

In this case, optimal value of p obtained for both Train MSE is 5 or 6 and Test MSE is 4,5 or 6. Also all the other values are almost similar for different values of p. This is the benefit of regularization.

Problem 6: Interpreting Results

a) Compare the various approaches in terms of training and testing error.

Approach	Train MSE	Test MSE
Linear Regression	19099.4468446	106775.361451
(Without Intercept)		
Linear Regression	2187.16029493	3707.84018096
(With Intercept)		
Ridge Regression	2451.528490643497	2851.3302134438463
(For optimal value of λ (0.06))		
Ridge Regression with Gradient	2451.76715459	2824.06091919
Descent		
(For optimal value of λ (0.06))		
Non Linear Regression	3866.883449	3845.03473
(No Regularization)		
Non Linear Regression	3950.682335	3895.582669
(Regularization)		

b) What metric should be used to choose the best setting?

To compare all the different approaches, we should look at the Test MSE of the approaches as it shows how good the approach performed on the Test data. Another metric that we should consider is the size of the dataset. We worked on a smaller dataset but as the size of the dataset increases, the running time becomes important. Thus, we should perform regularization on our data while working with large datasets.

Now, looking at the Test MSE, we can see that Linear Regression without Intercept has high values of Mean Squared error, for both Train and Test error.

Best approach for Train data – Linear Regression without intercept.

Best approach for Test data – Ridge regression with Gradient Descent.

Non – linear regression and Linear Regression does not perform well.

We also observed in Problem 5 that, with increase in the polynomial degree, the Train error decreases in case of no regularization but the Test error increases drastically, because of the behavior of the approach as it tries to accommodate the train data causing over fitting.