

Curso de Jogos Digitais Disciplina de Computação Gráfica Fundamentos Matemáticos – Vetores Aula 01

Professor: André Flores dos Santos

Professor André:

- ❖ Degree in Computer Science (Franciscan University UFN).
- **❖** Msc in Microeletronics (Federal University of Rio Grande do Sul UFRGS).
- ❖ PhD in Nanosciences (Franciscan University UFN).

APRESENTAÇÃO DOS ALUNOS

- > Cada um falar o seu nome, cidade, se já tem experiência na área de computação, etc.
- > Quais os planos para o seu futuro, se pretende ser programador, desenvolvedor de jogos, etc.
- > E o que acha sobre computação gráfica, onde é aplicado e de que forma?

SUMÁRIO

Computação Gráfica: Uma Introdução

Desde os primeiros experimentos em 1950 até os modernos gráficos foto realistas, a evolução da computação gráfica foi marcada por avanços como a criação do OpenGL e a popularização de GPUs.

O Que é Computação Gráfica?

É a criação de imagens usando computadores. Envolve modelagem, renderização e exibição. Transforma dados em representações visuais.

Visualização

Exibe dados de forma gráfica.

Modelagem

Cria representações 3D

Renderização

Gera imagens realistas.

Introdução

- Definição da área e suas correlações com outras ciências:
- A Computação Gráfica é um campo interdisciplinar que combina conhecimentos de diversas áreas, como Ciência da Computação, Matemática, Física, Engenharia e Design. Em sua essência, a Computação Gráfica trata da geração, manipulação e interpretação de imagens visuais por meio de computadores.

https://www.cpet.com.br/conheca-a-historia-da-computacao-grafica

Computação Gráfica

Visão geral

A computação gráfica é um campo empolgante e dinâmico que combina tecnologia e criatividade. Envolve a criação, manipulação e representação de imagens visuais usando computadores. De gráficos impressionantes de videogame a simulações realistas em filmes, a computação gráfica desempenha um papel crucial em vários setores.

Por que explorar computação gráfica?

Expressão criativa: Permite que artistas e designers deem vida às suas visões.

Inovação tecnológica: Os avanços na computação gráfica impulsionam a inovação em áreas como realidade virtual e inteligência artificial.

Oportunidades de carreira: A demanda por profissionais qualificados em computação gráfica continua a crescer em vários setores.

Definição de Computação Gráfica

O que é computação gráfica?: A computação gráfica refere-se à criação e manipulação de conteúdo visual usando computadores. Abrange uma ampla gama de técnicas e tecnologias que permitem a geração de imagens, animações e efeitos visuais.

- Matemática: Essencial para algoritmos e cálculos em renderização e modelagem.
- Arte: Fornece a base estética para o design e a narrativa visual.
- Ciência da Computação: Envolve programação e desenvolvimento de software para aplicativos gráficos.

Relação com a Visão Computacional

Visão computacional é o inverso da computação gráfica. Ela tenta entender imagens. A computação gráfica cria as imagens.

1

Computação Gráfica

Cria imagens.

Visão Computacional

Analisa imagens.

Correlações com outras ciências

Física

A computação gráfica geralmente se baseia em princípios da física para criar simulações realistas. Por exemplo, os mecanismos de física simulam comportamentos do mundo real, como gravidade, colisão e dinâmica de fluidos em videogames e animações.

Psicologia

Compreender a experiência do usuário (UX) é crucial em computação gráfica. Os designers usam princípios psicológicos para criar interfaces intuitivas e experiências visuais envolventes que ressoam com os usuários.

Engenharia

Na engenharia, a computação gráfica é usada para visualização de projetos, permitindo que os engenheiros criem modelos detalhados de estruturas, máquinas e sistemas antes de serem construídos.

Aplicações da Computação Gráfica

Aplicações são vastas e diversas. Incluem design, entretenimento e ciência. Impacta nossa vida diária de muitas maneiras.

Design

Criação de produtos e interfaces.

Entretenimento

Filmes, jogos digitais e animações.

Ciência

Visualização de dados e simulações.

Medicina

Imagens para diagnóstico.

Áreas de aplicação

Aplicações diversas

Principais áreas de aplicação

A computação gráfica tem uma ampla gama de aplicações em vários setores, incluindo videogames, onde ambientes imersivos aprimoram a jogabilidade; Filmes, que utilizam efeitos visuais e CGI (Computer-Generated Imagery) para dar vida às histórias; Realidade Virtual, desenvolvendo experiências interativas; e Visualização Científica, representando dados complexos de forma visualmente compreensível.

As principais áreas incluem videogames, criando ambientes imersivos; Filmes, usando CGI para contar histórias; Realidade Virtual, para experiências interativas; e Visualização Científica, para representação de dados complexos.

Ferramentas de Computação gráfica

As principais ferramentas incluem:

- Blender Modelagem, animação e renderização 3D.
- Unity e Unreal Engine Desenvolvimento de jogos e aplicações interativas.
- AutoCAD Design técnico e engenharia assistida por computador (CAD).
- Adobe Photoshop Edição de imagens e texturização.
- OpenGL Biblioteca gráfica usada para renderização
 2D e 3D em tempo real.

Avanços como Inteligência Artificial, computação quântica e GPUs mais poderosas transformarão a indústria nos próximos anos.

Áreas de estudo em computação gráfica

Principais áreas de foco

Várias áreas-chave de estudo em computação gráfica incluem modelagem 2D e 3D, técnicas para criar representações de objetos; Animação, o processo de dar vida às imagens; Técnicas de renderização, métodos para geração de imagens; e Processamento de Imagens, técnicas de aprimoramento de imagens.

Áreas de Foco em Computação Gráfica

As principais áreas incluem modelagem 2D e 3D para representação de objetos; Animação para movimento; Técnicas de renderização como ray tracing; e Processamento de Imagem para aprimorar imagens.

Áreas de estudo em computação gráfica

Áreas de Foco em Computação Gráfica

A renderização por **Ray Tracing** é uma técnica avançada de computação gráfica usada para criar imagens realistas ao simular o comportamento da luz no mundo real. O método funciona ao traçar o caminho de raios de luz que partem da câmera e interagem com os objetos da cena, calculando efeitos como:

Sombras realistas – Cada objeto bloqueia a luz de maneira precisa, criando sombras suaves e naturais.

Reflexos precisos – Superfícies espelhadas e reflexivas exibem reflexos exatos de outros objetos.

Refração – Materiais como vidro e água distorcem a luz corretamente.

Iluminação Global – A luz pode se espalhar e ser refletida por múltiplas superfícies, criando um ambiente mais realista.

Design e Modelagem 3D

Criação de modelos tridimensionais. Essencial para arquitetura e design de produtos. Permite visualizar objetos antes de sua criação física.

O ciclo garante a criação de produtos visualmente atraentes.

Animação e Efeitos Visuais

Dá vida a personagens e mundos. Cria efeitos especiais em filmes. Jogos se tornam imersivos com gráficos avançados.

Simulações e Visualizações Científicas

Visualiza fenômenos complexos. Simula eventos para pesquisa. Permite entender dados de forma intuitiva.

Interfaces Gráficas de Usuário (GUIs)

Facilitam a interação com computadores. Tornam softwares intuitivos. Essenciais a experiência do usuário.

1

2

Simplicidade

Intuitividade

3

Acessibilidade

Dispositivos gráficos de entrada

Tipos de dispositivos de entrada: Os dispositivos de entrada são ferramentas essenciais para a criação de gráficos. Alguns tipos comuns incluem:

- Tablets gráficos: Permita que os artistas desenhem diretamente em uma superfície digital, proporcionando uma experiência de desenho natural.
- Scanners: Converta imagens e documentos físicos em formato digital para manipulação posterior.

Câmeras: Capture imagens e vídeos do mundo real, que podem ser usados em projetos gráficos.

Papel na criação: Esses dispositivos permitem que artistas e designers insiram suas ideias e conceitos no mundo digital, facilitando o processo criativo.

Dispositivos Gráficos

 Os dispositivos gráficos são componentes essenciais para a interação entre o usuário e o sistema de computação gráfica. Eles podem ser divididos em duas categorias principais:

Dispositivos Gráficos de Entrada:

Estes dispositivos são utilizados para capturar informações do ambiente externo e fornecê-las ao sistema de computação gráfica. Exemplos incluem:

- > Teclados
- Mouse
- > Tablets gráficos
- Digitalizadores
- Sensores de movimento

Dispositivos gráficos de saída

Tipos de dispositivos de saída: Os dispositivos de saída são cruciais para exibir os gráficos criados. Os principais exemplos incluem:

- Monitores: Exibe imagens e vídeos digitais, fornecendo uma interface visual para os usuários.
- Impressoras: Produza cópias físicas de gráficos digitais, permitindo representações tangíveis de designs.

Projetores: Exiba imagens em superfícies maiores, tornando-os ideais para apresentações e exposições.

Importância na experiência visual: Os dispositivos de saída desempenham um papel vital na forma como os gráficos são percebidos e experimentados, influenciando o impacto geral do conteúdo visual.

Dispositivos Gráficos

Dispositivos Gráficos de Saída:

Estes dispositivos são responsáveis por exibir as imagens geradas pelo sistema de computação gráfica para os usuários. Exemplos incluem:

- Monitores de computador
- Projetores
- Impressoras 3D
- > Dispositivos de realidade virtual e aumentada
- Displays holográficos

Áreas de Aplicação e Estudo

- A Computação Gráfica encontra aplicação em uma ampla gama de campos, incluindo:
- Entretenimento: Desenvolvimento de jogos, animações, filmes e efeitos visuais.
- Design e Arquitetura: Modelagem e visualização de projetos arquitetônicos, design de produtos e criação de ambientes virtuais.
- Medicina e Ciências: Simulação de procedimentos médicos, visualização de dados científicos e modelagem de órgãos e sistemas biológicos.
- * Educação: Criação de materiais educacionais interativos, simulações e ambientes de aprendizagem imersivos.
- * Etc...

Pontos

- Todo objeto, dentro de um ambiente, possui uma localização;
- Essa localização é dada por um ponto no espaço, que pode ser em duas dimensões (x,y) ou três dimensões (x,y,z);
- □ Desta forma, um ponto P pode ser representado por P = (x,y) ou P = (x,y,z).

Pontos

□ Ponto P no plano 2D:

Pontos

□ Ponto P no espaço 3D:

Vetores

- Um vetor é um segmento de reta que possui um tamanho (ou módulo, comprimento, magnitude) e uma direção;
- Além disso, possui também um ponto de origem e um ponto de destino;
- Para simplificar a representação de vetores, geralmente considera-se que o ponto de origem de um vetor é a origem de um sistema de coordenadas;
- Um vetor também pode ser definido pela diferença entre dois pontos.

- Para representar simbolicamente um vetor, geralmente utilizamos uma letra com uma seta em cima vou simplesmente v, em negrito;
- Para especificar um vetor \vec{v} , em duas dimensões, basta definirmos o mesmo através do quanto ele se desloca em x e em y.
- Neste caso, o vetor v da figura ao lado pode ser especificado por <x2-x1,y2-y1>

$$\vec{a} = <4,1>$$

$$\overrightarrow{b} = <-3,4>$$

Exercício de aula:

Exercício 01)

Utilizando a linguagem python e a biblioteca matplotlib tente replicar o gráfico com os vetores 'a' e 'b'. O professor utiliza a ferramenta google colaboratory para programação na linguagem python, vamos fazer um breve tutorial durante a aula para quem nunca utilizou.

Observações:

- a) Durante as nossas aulas vai ser necessário que o aluno domine os princípios básicos da programação na linguagem python, quem tiver dificuldade por favor conversar com o professor no final da aula.
- b) Toda aula teremos exercícios para serem realizados e entregues até o final da mesma. Não teremos prazos estendidos para entregar depois. Cuidado para não faltar as aulas. Os exercícios durante as aulas tem peso 2,0. O total é somado e realizada a média pelo número de atividades. Resumindo se entregar todos terá a nota próxima de 2,0 pontos.
- c) O restante será um trabalho com peso 3,0 e uma prova com peso 5,0 , todos esses detalhes foram explicados no plano de ensino.

$$\overrightarrow{a} = <4,1>$$

Note que o a especificação do vetor **a** define somente sua magnitude e direção, ou seja, todos os vetores ao lado representam o vetor \vec{a} , pois todos tem a mesma direção e magnitude;

Uma outra notação de vetores em Álgebra Linear é através de um vetorcoluna, tal como:

$$\rightarrow \vec{a} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

$$\vec{b} = \begin{bmatrix} -3 \\ 4 \end{bmatrix}$$

O mesmo vale para 3 dimensões:

$$\overrightarrow{a} = <4,1,0>ou\begin{bmatrix}4\\1\\0\end{bmatrix}$$

- A adição de dois vetores tem como resposta um novo vetor;
- ▶ Dados os seguintes vetores: $\vec{a} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ e $\vec{b} = \begin{bmatrix} -3 \\ 3 \end{bmatrix}$
- Para realizar a soma de dois vetores, basta somarmos as mesmas partes/componentes de cada um:

$$\vec{a} + \vec{b} = \begin{bmatrix} 2 + (-3) \\ 1 + 3 \end{bmatrix} = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$$

Representação gráfica:

$$\vec{a} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\vec{b} = \begin{bmatrix} -3 \\ 3 \end{bmatrix}$$

$$\vec{a} + \vec{b} = \begin{bmatrix} 2 + (-3) \\ 1 + 3 \end{bmatrix} = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$$

Significado:

- A soma de vetores significa o deslocamento ocorrido ao "percorrer" ambos os vetores;
- Se colocarmos a cauda do vetor \vec{b} no final do vetor \vec{a} , qual será o vetor resultante?

Significado:

- A soma de vetores significa o deslocamento ocorrido ao "percorrer" ambos os vetores;
- Se colocarmos a cauda do vetor \vec{b} no final do vetor \vec{a} , qual será o vetor resultante?
 - R: o vetor resultante da soma dos de \vec{a} e \vec{b}

Significado:

• E se colocarmos o vetor \vec{a} no final do vetor \vec{b} , qual será o vetor resultante?

Significado:

- E se colocarmos o vetor \vec{a} no final do vetor \vec{b} , qual será o vetor resultante?
 - R: o mesmo vetor resultante da soma de \vec{a} e \vec{b} !
- Isso significa que:

$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$

Também podemos obter a soma de dois vetores pela regra do paralelogramo:

Para realizar a multiplicação de um vetor por um escalar, basta multiplicarmos todos os elementos do vetor pelo escalar;

Dado o vetor: $\vec{a} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ e x = 3, qual o resultado de x. \vec{a} ?

Para realizar a multiplicação de um vetor por um escalar, basta multiplicarmos todos os elementos do vetor pelo escalar;

Dado o vetor: $\vec{a} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ e x = 3, qual o resultado de x. \vec{a} ?

$$x. \vec{a} = 3. \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \end{bmatrix}$$

Significado:

$$\vec{a} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\vec{a} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\vec{a} \cdot \vec{a} = \begin{bmatrix} 6 \\ 3 \end{bmatrix}$$

Significado:

$$\vec{a} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\vec{a} \cdot \vec{a} = \begin{bmatrix} 6 \\ 3 \end{bmatrix}$$

Ou seja, o vetor teve sua magnitude multiplicada por 3, mas manteve sua direção!

▶ Mas e se multiplicarmos \vec{a} por -2?

$$-2.\begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -4 \\ -2 \end{bmatrix}$$

Significado:

$$\vec{a} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\vec{a} = \begin{bmatrix} -4 \\ -2 \end{bmatrix}$$

Ou seja, o vetor teve sua magnitude multiplicada por 2, e como o escalar era negativo, inverteu sua direção!

Magnitude de um vetor

A magnitude de um vetor \vec{v} (módulo, norma ou comprimento), definido por $||\vec{v}||$ ou $|\vec{v}|$, é definida pela seguinte equação:

$$|\vec{v}| = \sqrt{\sum_{i=1}^{n} V_i^2}$$

 A magnitude define a distância desde a origem do vetor até sua extremidade;

Magnitude de um vetor

A origem da equação vem do teorema de Pitágoras.

$$|\vec{a}|^2 = 3^2 + 2^2$$

$$|\vec{a}| = \sqrt{9+4}$$

$$|\vec{a}| = \sqrt{13}$$

Magnitude de um vetor

Ex.1: Calcular a magnitude do vetor bidimensional $\vec{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$:

$$|\vec{v}| = \sqrt{2^2 + 1^2} = \sqrt{5} = 2.23$$

Ex.2: Calcular a magnitude do vetor tridimensional $\vec{u} = \begin{bmatrix} 3 \\ 7 \\ 2 \end{bmatrix}$:

$$|\vec{\boldsymbol{u}}| = \sqrt{3^2 + 7^2 + 2^2} = \sqrt{62} = 7.89$$

Vetor unitário/normalizado

- Um vetor é dito unitário ou normalizado quando sua magnitude é unitária, ou seja, é igual a 1.
- Para muitas transformações gráficas, precisaremos transformar nossos vetores em vetores unitários/normalizados;
- Para transformar um vetor em unitário, basta dividir cada componente pela sua magnitude:

$$\widehat{v} = \frac{\overrightarrow{v}}{|\overrightarrow{v}|} = <\frac{V_x}{|\overrightarrow{v}|}, \frac{V_y}{|\overrightarrow{v}|}, \frac{V_z}{|\overrightarrow{v}|} >$$

Vetor unitário/normalizado

Por que Normalizar um Vetor?

A normalização de um vetor consiste em converter um vetor qualquer em um vetor unitário (com comprimento igual a 1). Isso é essencial em computação gráfica para:

- Manter a escala consistente: Evita distorções ao aplicar transformações.
- Facilitar cálculos: Em iluminação, colisão e movimentação, cálculos com vetores unitários são mais eficientes.
- **Direção sem impacto no tamanho:** Permite representar direções sem alterar a magnitude dos efeitos gráficos.

Aplicações:

- ✓ Iluminação e shading
- ✓ Física de jogos
- Cálculo de colisões
- ✓ Movimentação de câmeras

Vetor unitário/normalizado

Ex.1: Transformar o vetor $\vec{v} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ em unitário:

$$|\vec{v}| = \sqrt{3^2 + 4^2} = \sqrt{25} = 5$$

$$\hat{v} = <\frac{3}{5}, \frac{4}{5}>$$

$$\hat{v} = < 0.6, 0.8 >$$

Produto Escalar/Dot Product

O produto escalar entre dois vetores P e Q é definido pela soma dos produtos de cada componente destes vetores:

$$P.Q = \sum_{i=1}^{n} P_i Q_i$$

Em 3 dimensões, o produto escalar é:

$$P. Q = P_x Q_x + P_y Q_y + P_z Q_z$$

E também pode ser expresso como produto de duas matrizes:

$$P^{T}. Q = \begin{bmatrix} P_{x} & P_{y} & P_{z} \end{bmatrix} \begin{bmatrix} Q_{x} \\ Q_{y} \\ Q_{z} \end{bmatrix}$$

Produto Escalar/Dot Product

Uma das propriedades mais importantes do produto escalar é:

$$P \cdot Q = |P| \cdot |Q| \cdot \cos \alpha \ (0 \le \alpha \le \pi)$$

Logo, o cosseno ângulo entre dois vetores é dado por:

$$\cos\alpha = \frac{P \cdot Q}{|P| \cdot |Q|}$$

Caso P e Q sejam unitários, |P| e |Q| valem 1, logo:

$$\cos\alpha = \frac{P \cdot Q}{1 \cdot 1} = P \cdot Q$$

$$\alpha = \cos^{-1}(P \cdot Q)$$

- •P e Q são os vetores.
- | P | e | Q | são os módulos (ou magnitudes) dos vetores.
- $\bullet \alpha$ é o ângulo entre os vetores.
- • $\cos(\alpha)$ determina o grau de alinhamento entre os vetores.

Isso será muito importante quanto trabalharmos com modelos de iluminação!

Conclusão e perguntas e respostas

Resumo dos pontos-chave

Nesta apresentação, exploramos o fascinante mundo da computação gráfica, incluindo sua definição, conexões interdisciplinares, áreas de aplicação e os dispositivos usados na criação e exibição de gráficos.

Convite para Discussão

Convido todos vocês a compartilhar seus pensamentos, fazer perguntas ou discutir suas experiências com computação gráfica. Vamos mergulhar mais fundo neste campo emocionante juntos!

Exercícios para fazer em aula

Descrição na atividade da aula de hoje na ferramenta 'minha ufn'. Peso 2,0.

Referências e material de apoio

GOMES, Jonas; VELHO, Luiz. Computação gráfica. Rio de Janeiro: Impa, 1998. HEARN, Donald; Baker, M. Pauline. Computer grafhics: C version. London: Prentice Hall, 1997.

HETEM JUNIOR, Annibal. Computação gráfica. Rio de Janeiro, RJ: LTC, 2006. 161 p. (Coleção Fundamentos de Informática).

HILL Jr, Francis S. Computer graphics using open GL. New Jersey: Prentice Hall, 2001.

WATT, Alan. 3D computer graphics. Harlow: Addison-Wesley, 2000 Material adaptado do Professor Guilherme Chagas Kurtz, 2023. Material adaptado por gamma.app

Material adaptado por SlidesAl.io

Thank you for your attention!!

Email: andre.flores@ufn.edu.br