Университет ИТМО

Отчёт по лабораторной работа №3 «Исследование характеристик источника тока»

Выполнил: Федюкович С. А.

Факультет: МТУ "Академия ЛИМТУ"

Группа: S3100

Проверил: Пшеничнов В. Е.

Санкт-Петербург

Цель работы

Исследовать зависимость полной мощности, полезной мощности, мощности потерь, падения напряжения во внешеней цепи и КПД источника от силы тока в цепи.

Краткое теоретическое описание

Если к источнику тока, обладающим внутренним сопротивлением r подключить внешнее сопротивление R, то напряжение на зажимах источника U, согласно закону Ома для неоднородного учатска цеи можно представить в виде:

$$U = \varepsilon - Ir, \tag{1}$$

где ε — электродвижущая сила источника (ЭДС); I — сила тока, текущего через источник.

Из уравнения (1) получаем следующее:

$$I\varepsilon = I^2 R + I^2 R,\tag{2}$$

которое можно представить в виде:

$$P = P_1 + P_2. (3)$$

Здесь $P=I\varepsilon$ — полная мощность, развиваемая источником; $P_1=IU$ — полезная мощность; $P_2=I^2r$ — потери мощности во внутри источника (на сопротивлние r).

Коэффициентом полезного действия (КПД) η источника тока называется величина, равная отношению полезной мощности к полной мощности затрачиваемой источником:

$$\eta = \frac{P_1}{P_2} = \frac{IU}{I\varepsilon} = 1 - I\frac{r}{\varepsilon} \tag{4}$$

Экспериментальные данные

Зависимость силы тока I от напряжения U

I, MA	U, B	R, Om
82,40	8,79	100
56,50	10,58	200
40,70	11,68	300
30,40	12,37	400
25,70	12,69	500
20,60	13,04	600
17,80	13,24	700
15,50	13,39	800
13,80	13,50	900
12,70	13,60	1000
11,40	13,70	1100
10,50	13,75	1200
9,80	13,79	1300
9,10	13,85	1400
9,10	13,85	1500

Обработка экспериментальных данных

1. Построим график зависимости силы тока в цепи от напряжения и экстраполируем его, определив ЭДС источника $\varepsilon\approx 14,49$ и силу тока короткого замыкаия $I_{\kappa}\approx 0,18$:

- 2. Рассчитаем внутреннее сопротивление источника $r = \frac{\varepsilon}{I_{\rm K}} = \frac{14,49}{0,18} \approx 78,35$ и $I_m = \frac{\varepsilon}{2r} = \frac{14,49}{156,7} \approx 0,09$.
- 3. Рассчитаем полезную мощность $P_1=I^2R$, потери мощности $P_2=I^2r$, полную мощность $P=I\varepsilon$ и КПД $\eta=1-II^{-1}{}_{\rm K}$ для каждого значения силы тока. Полученные данные представим в виде таблицы:

<i>I</i> , A	<i>P</i> , Вт	P_1 , Вт	P_2 , Вт	η , %
82,40	1,19	0,67	0,53	0,55
56,50	0,82	0,64	0,25	0,69
40,70	0,59	0,50	0,13	0,78
30,40	0,44	0,37	0,07	0,84
25,70	0,37	0,33	0,05	0,86
20,60	0,30	0,25	0,03	0,89
17,80	0,25	0,22	0,02	0,90
15,50	0,22	0,19	0,01	0,91
13,80	0,20	0,17	0,01	0,92
12,70	0,18	0,16	0,01	0,94
11,40	0,17	0,14	0,01	0,95
10,50	0,15	0,13	0,00	0,95
9,80	0,14	0,12	0,00	0,95
9,10	0,13	0,12	0,00	0,95
9,10	0,13	0,12	0,00	0,95

4. Построим график зависимости мощностей от силы тока:

Полученные значения сходятся. Построим график зависимости ЭДС от силы тока:

Полученные значения сходятся.

Вывод

Экспериментальным путем был подтвержден закон Ома.

Помимо этого мы рассчитали силу тока короткого замыкания разными способами $I_{\kappa 1}\approx 0,18,I_{\kappa 2}\approx 0,19$ и $I_{\kappa 3}\approx 0,19$. Также рассчитали $I_{m1}\approx 0,09,I_{m2}\approx 0,10$ и $I_{m3}\approx 0,10$.

Тот факт, что полученные значения достаточно близки, подтверждает правильность расчетов и рассуждений, на основе которых были произведены расчеты.