Notes on the book: $A postol, \ Introduction \ to \ Analytic \\ Number \ Theory$

Meng-Gen Tsai plover@gmail.com

July 21, 2021

Contents

Chapter 1: The Fundamental Theorem of Arithmetic Exercise 1.30	2

Chapter 1: The Fundamental Theorem of Arithmetic

Exercise 1.30.

If n > 1 prove that the sum

$$\sum_{k=1}^{n} \frac{1}{k}$$

is not an integer.

Proof.

(1) (Reductio ad absurdum) Suppose

$$H := \sum_{k=1}^{n} \frac{1}{k}$$

were an integer.

(2) Let s be the largest integer such that $2^s \leq n$. So the integer number

$$2^{s-1}H = \sum_{k=1}^{n} \frac{2^{s-1}}{k}$$
$$= 2^{s-1} + 2^{s-2} + \frac{2^{s-1}}{3} + 2^{s-3} + \frac{2^{s-1}}{5} + \frac{2^{s-2}}{3} + \dots + \frac{1}{2} + \dots$$

has only one term of even denominators (as n > 1) if we write all terms in irreducible fractions. That is,

$$2^{s-1}H = \frac{1}{2} + \frac{c}{d} \in \mathbb{Z}$$

where $\frac{c}{d}$ is an irreducible fraction with odd d. Hence it suffices to show that $2\mid d$ to get a contradiction.

(3) By

$$\frac{1}{2} + \frac{c}{d} = \frac{d+2c}{2d} \in \mathbb{Z}$$

we have d+2c=2dd' for some $d'\in\mathbb{Z}$. Note that 2 is a prime. So $2\mid (d+2c)$ or $2\mid d$, which is absurd.