Lecture 15 THREE PHASE TRANSFORMER ADVANCED TOPICS

Agenda

R.D. del Mundo Ivan B.N.C. Cruz Christian. A. Yap

FROM SINGLE PHASE TO THREE PHASE

Lecture Outcomes

at the end of the lecture, the student must be able to ...

- Understand how phase shifts manifests in three-phase transformers
- Derive the models for different types of three-phase transformers

Phase Shifts in Three-Phase Transformers

Phase Shifts in Three-Phase Transformers

(a) Core and coil arrangement

Three-Phase Transformer

Transformer Core

3-Legged Core Type

4-Legged Core Type

Shell Type

Note: Only the X windings are shown.

Three-Phase Transformer

Three-Legged Transformer Core

The 3-legged core type three-phase transformer uses the minimum amount of core material. For balanced three-phase condition, the sum of the fluxes is zero.

Note: For positive- or negativesequence flux,

$$\phi_a + \phi_b + \phi_c = 0$$

The 3-legged core type three-phase transformer does not provide a path for zero-sequence flux. On the other hand, a bank of single-phase units, the 4-legged core type and the shell-type three-phase transformer provide a path for zero-sequence flux.

FIGURE 3.17 Per-unit equivalent circuits of practical Y-Y, Y- Δ , and Δ - Δ transformers for balanced three-phase operation

Positive & Negative Sequence Networks Y-Y and $\Delta-\Delta$ connected transformers (in per unit) Assuming Large power transformer

Zero-Sequence Network

ZERO-SEQUENCE CURRENTS:

The neutral return carries the inphase zero-sequence currents.

Zero-sequence currents circulates in the delta-connected transformers. There is "balancing ampere turns" for the zero-sequence currents.

Zero Sequence Network*

Transformer Connection Zero-Sequence Network

$$Z_0 = Z_1$$

$$V_H \qquad V_X$$

^{*}Excluding 3-phase unit with a 3-legged core.

Zero Sequence Network *

Transformer Connection Zero-Sequence Network

^{*}Excluding 3-phase unit with a 3-legged core.

^{*}Excluding 3-phase unit with a 3-legged core.

A Mnemonic Zero-Sequence Equivalent Circuit of Three-Phase Transformers

Consider a 3-phase wye-connected load, $0.6-\Omega/\text{phase}$. Three single-phase transformers are used, each rated 25 MVA, 38.1/3.81 kV, connected wye-wye, to serve the 3-phase load.

Assuming we have a balanced system, we can consider each 0.6- Ω resistor to be directly connected across 3.81-kV winding, with or without the neutral conductor. On the high-voltage side the impedance measured from line to neutral is:

$$0.6\Omega \cdot \left(\frac{38.1kV}{3.81kV}\right)^2 = 0.6\Omega \cdot \left(\frac{66kV}{6.6kV}\right)^2 = 60\Omega$$

Note: 66-kV line-to-line = 38.1-kV line-to-neutral, and 6.6-kV line-to-line = 3.81-kV line-to-neutral.

Let us consider the same 3-phase wye-connected load, 0.6- Ω /phase, and the same 3 single-phase transformer (25 MVA, 38.1/3.81 kV). If we connect the transformers wye-delta:

With the same assumptions as before, we can convert the low-voltage side of the transformer from delta- to wye-connected; the secondary voltage will change from 3.81 kV_{LL} to 2.2 kV_{LN} = $(3.81 \text{ kV} / \sqrt{3})$.

$$0.6\Omega \cdot \left(\frac{38.1kV}{2.2kV}\right)^2 = 0.6\Omega \cdot \left(\frac{66kV}{3.81kV}\right)^2 = 180\Omega$$

Note: To transfer the ohmic value of impedances from one side of a three-phase transformer to the other side, the multiplying factor is the square of the ratios of the line-to-line voltage, regardless of transformer connection.

Concept Test:

- 1. Draw the positive-sequence impedance diagram for the system shown.
- 2. Draw the zero-sequence impedance diagram for the system shown

Note: we are particularly interested on the generator and transformer models.

END