Question Number	Answer		Marl
14(a)	Total momentum before an interaction = total momentum after interaction	(1)	
	If no (external) unbalanced / resultant force acts Or in a closed system	(1)	2
14(b)(i)	Use of $E_{\rm K} = \frac{1}{2} mv^2$	(1)	
	Correct value for one object	(1)	3
	Not elastic collision because total E_k before $\neq E_k$ after Or elastic collision total E_k before is (about) the same as E_k after (all values must have been correctly calculated)	(1)	
	Example of calculation Before $E_{K} = \frac{1}{2} mv^{2}$ $E_{K} = \frac{1}{2} mv^{2}$		
	$= \frac{1}{2} \times 0.85 \text{ kg} \times (1.30 \text{ m s}^{-1})^{2} = 0.72 \text{ J}$ After $E_{K} = \frac{1}{2} mv^{2}$ $= \frac{1}{2} \times 0.85 \text{ kg} \times (0.98 \text{ m s}^{-1})^{2} = 0.41 \text{ J}$		
	$E_{\rm K} = \frac{1}{2} mv^2$ = $\frac{1}{2} \times 1.70 \text{kg} \times (0.54 \text{m s}^{-1})^2 = 0.25 \text{J}$ Total = 0.66J		
14(b)(ii)	Use of $p = mv$	(1)	
	Use of trigonometry to find a component of momentum after collision	(1)	
	Shows momentum before in x direction = momentum after in original direction	(1)	
	Shows perpendicular component of A = perpendicular component of B Or Shows total momentum in perpendicular direction after collision is approximately zero	(1)	
	Conclusion that momentum before = momentum after (in both directions) so conservation of momentum is demonstrated successfully (all values must have been correctly calculated) Or Conclusion that momentum before ≠ momentum after (in either direction) so conservation of momentum is not demonstrated successfully (all values must have been correctly calculated)	(1)	5
	Example of calculation Before $p = mv$		
	= 0.85 kg × 1.30 m s ⁻¹ = 1.11 kg m s ⁻¹ horizontal, 0 vertical After – original direction $p = 0.85 \text{ kg} \times 0.98 \text{ m s}^{-1} \times \cos 54.5^{\circ} = 0.484 \text{ kg m s}^{-1}$ $p = 1.70 \text{ kg} \times 0.54 \text{ m s}^{-1} \times \cos 48.0^{\circ} = 0.614 \text{ kg m s}^{-1}$ Total = 1.11 kg m s ⁻¹		
	After – perpendicular to original direction $p = 0.85 \text{ kg} \times 0.98 \text{ m s}^{-1} \times \sin 54.5^{\circ} = 0.68 \text{ kg m s}^{-1}$ $p = -1.70 \text{ kg} \times 0.54 \text{ m s}^{-1} \times \sin 48.0^{\circ} = -0.68 \text{ kg m s}^{-1}$ Total for question 14		10