Transformations of Input or Output

Johanni Brea

Introduction to Machine Learning

EPFL BIO322 2021

Table of Contents

1. Transformations of the Input (also called Feature Engineering)

2. Transformations of the Output

Feature Representation

Idea: Instead of fitting linear regression on p predictors, fit linear regression on q features of the original predicators.

$$\hat{Y} = \theta_0 + \theta_1 H_1 + \theta_2 H_2 + \dots + \theta_q H_q$$

with $H_i = f_i(X)$.

Polynomial Regression

Make a method more flexible by adding features.

With one-dimensional input X (p=1), Polynomial Regression can be written as

$$\hat{Y} = \theta_0 + \theta_1 H_1 + \theta_2 H_2 + \dots + \theta_q H_q$$

where $H_i = f_i(X) = X^i$

Splines

A **degree-**d **spline** is a piecewise degree-d polynomial, with continuity in derivatives up to degree d-1.

$$H_1 = X, H_2 = X^2, \dots, H_d = X^d$$

 $H_{1+d} = h(X, c_1), \dots, H_{K+d} = h(X, c_K)$

with knots c_1, \ldots, c_K and truncated power basis function:

$$h(x,c) = \begin{cases} (x-c)^d & x > c \\ 0 & \text{otherwise} \end{cases}$$

There are also other possibilities for the basis of a degree-d spline. E.g. the B-spline basis (not discussed here) has better numerical properties.

Generalized Additive Model (GAM)

$$\hat{Y} = s_1(X_1) + s_2(X_2) + \ldots + s_p(X_p)$$

with splines $s_i(X_i) = \sum_i \beta_{ij} H_{ij}$.

Categorical Predictors: Dummy Variables/One-Hot-Coding

Chicken weight as a function of time and diet. Encode diet as $X_1 \in \{1, 2, 3, 4\}$? No. $H_i = 1$ if diet $X_1 = i$, otherwise $H_i = 0$. For example, if $x_{11} = 2$

Time	Diet1	Diet2	Diet3	Diet4	Weight
0	1	0	0	Ο	134
2	1	Ο	Ο	Ο	145
4	1	Ο	Ο	Ο	160
0	0	1	Ο	Ο	124
2	0	1	0	0	139

When fitting with an intercept, one level (an arbitrarily selected "standard" level) can be dropped; the coefficients are interpreted as change relative to the standard level.

E.g. gender (female or male), treatment (1, 2 or 3)

/						
Intercept	Female	Treat1	Treat2			
1	1	0	0			
1	1	Ο	1			
1	1	Ο	Ο			
1	0	1	Ο			
1	0	Ο	0			

Respecting Neighbourhood Relationships

Suppose some predictor X_1 is an angle between 0° and 360°. If the values are taken as such, 2° looks more different from 259° than from 90° in the sense that |2 - 259| > |2 - 90|.

Alternative:
$$H_1 = \sin(X_1)$$
, $H_2 = \cos(X_1)$

In this representation 2° is much closer to 259° than to 90° in the sense that $\|(\sin(2),\cos(2)) - (\sin(259),\cos(259))\| < \|(\sin(2),\cos(2)) - (\sin(90),\cos(90))\|$.

Dealing with Missing Data

We can either

- drop all data points that contain missing data. Disadvantage: fewer data points.
- impute missing data with e.g. the mean or the median of that predictor. Disadvantage: "wrong" data points.

Standardization

Standardization is a transformation that shifts the data such that its mean is 0 and scales it such that its standard deviation is 1.

Formally: for data x_1, \ldots, x_n with mean $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$ and standard deviation $\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2}$ the standardized data is given by

$$\tilde{x}_i = \frac{x_i - \bar{x}}{\sigma}$$

Vector-Features

Logistic Regression fails:
There is no linear decision boundary.

Vector-Features

Project data to a higher dimensional space by computing the scalar products between feature vectors w_1, \ldots, w_q and input vectors x_i and thresholding.

For example $h_{21} = \max(0, w_1^T x_2)$.

Logistic Regression on the features works.

Table of Contents

1. Transformations of the Input (also called Feature Engineering)

2. Transformations of the Output

Transformations of the Output: Changing the Noise Model

Applying linear regression to log-transformed outputs is equivalent to assuming a log-normal distribution for the conditional data generator Y|X.

Instead of thinking about suitable transformations of the output, it is preferable to think about which distribution is most reasonable for the conditional data generator Y|X.

