Proving Super Square Root Power Bounds on the Parity of the Partition Function:

(Numerical computations verifying some conjectured properties + suggestions on how to proceed with a formal proof of these results ...)

<u>Author:</u> Maxie D. Schmidt (maxieds@gmail.com)

Date: Compiled on 10/3/2017 for Croot and Rolen

Notes: Please do not distribute of share these results. These computations are intended as a preview of the promised write up following the graduate exams this week.

<u>Section 1:</u> Choosing the prime subsets to count (note that choosing all primes $q \le x$ leads to a negative estimate for $N_e(x)$)

We / I conjecture that if we break up $\{1,2,...,x\}$ into floor($x^{0.51}$) subintervals, $I_p(t)$ or $t^p < q$ prime $< (t+1)^p$, for p:=1.96 = 1/0.51 and choose the set

 $Q_x := \{q_t : q \text{ is the last prime in the interval } I_{1.96}(t) \text{ for } 1 \le t \le floor(x^{0.51})\},$ that the following properties hold:

 $\Box |Q_x| = c * x^{0.51}$ for all x sufficiently large

```
\Box I_{e,Q_x}(x) = #(duplicate indices q_1-G_j = q_2 - G_k for q1>q_2 in Q_x and k < j) \approx 0 (for all
cases of x numerically tested below / so far)
```

Thus we have $|Q_x|$ primes satisfying the congruence identity === 0 (mod 2) proved from the identity involving the Mobius function, where we have by our counting argument that:

```
N_e(x) >= |Q_x| - I_{e,Q_x}(x) \approx |Q_x| + o(x^{0.51})
```

The next table(s) compute certificates of the prime subsets $q \le x$ (in the form of the $\mathbf{Q}_{\underline{\mathbf{x}}}$ defined above) that satisfy $|\mathbf{Q}_{\mathbf{x}}| = \mathbf{floor}(\mathbf{x}^{0.51})$ and have $\mathbf{I}_{\mathbf{e},\mathbf{Q}_{\mathbf{x}}}(\mathbf{x}) = \mathbf{o}(\mathbf{x}^{0.51})$ (in particular, = 0 for all computed examples below).

These computations, which I really should replicate in Sage / Python to compile and really check for these certificates when floor(x^{0.51}) is very large, suggest that we have a good method for selecting the prime subsets Q x which make our counting argument show that

N $e(x) >= c * x^{0.51} + o(x^{0.51})$ for x sufficiently large ...

```
ln[655]:= Nex[x_] := Sum[If[Mod[PartitionsP[n], 2, 0] == 0, 1, 0], \{n, 1, x\}]
                PrimeIn[lower_, upper_] :=
                  Select[Table[Prime[m], \{m, 1, upper\}], \# \ge Ceiling[lower] \&\& # \le Floor[upper] \&]
               PrimeIn[lower_, upper_, i_] := Select[Table[Prime[m], {m, 1, Floor[upper]}],
                       # ≥ Ceiling[lower] &&# ≤ Floor[upper] &][[i]]
                s[t_{,eps_{,}}] := PrimeIn[t^{(2/(1+2*eps)), (t+1)^{(2/(1+2*eps))}]
                GetPrimePairs[primes_] := Subsets[primes, {2}]
                IndicatorFunction[PrimesSet_] :=
                  Sum[If[qp[1]] - qp[2]] - (t^2 + (6k + 1)t)/2 = 0, 1, 0] +
                       If [qp[[1]] - qp[[2]] - (t^2 + (6k - 1)t)/2 = 0, 1, 0] +
                       If [qp[[1]] - qp[[2]] - (t^2 + (6k + 1)t + 2k)/2 = 0, 1, 0] +
                       If [qp[[1]] - qp[[2]] - (t^2 + (6k-1)t-2k)/2 = 0, 1, 0],
                      {qp, GetPrimePairs[PrimesSet]}, {t, 1, mu[qp[[1]]]}, {k, 1, t-1}]
               GetPrimeLists[x_, eps_] := Module[{},
                        pints = Map[{Last[s[\#1, eps]]} &, Range[1, Floor[Power[x, (1+2*eps)/2]]]];
                        Return[Tuples[pints]];
                     ];
               Table[\{Idx \rightarrow x, Floor[Sqrt[x]], Floor[Power[x, 0.51]], Ne[x] \rightarrow Nex[x], Certificate[x] \rightarrow Nex[x], Certificate[x] \rightarrow Nex[x], Certificate[x] \rightarrow Nex[x], Certificate[x] \rightarrow Nex[x], Certificate[x], Nex[x], Certificate[x], Nex[x], Certificate[x], Nex[x], N
                          Block[{s = Sort[Map[{IndicatorFunction[#1], #1} &, GetPrimeLists[x, 0.01]]]}},
                             Select[s, \#[[1]] = s[[1]][[1]] \& ]],
                     {x, Table[Floor[Power[m, 1.96]], {m, 1, 75}]}] // TF
Out[662]//TableForm=
                                                                                                                           Certificate[1] \rightarrow {{0, {3}}}
               Idx \to 1
                                                1
                                                               1
                                                                             Ne[1] \rightarrow 0
               \text{Id} x \to 3
                                                1
                                                               1
                                                                             Ne \, \lceil 3 \, \rceil \, \rightarrow 1
                                                                                                                           Certificate[3] \rightarrow {\{0, \{3\}\}\}}
                                                2
                                                               2
                                                                                                                           Certificate[8] \rightarrow {{0, {3, 7}}}
               Idx \rightarrow 8
                                                                            Ne[8] \rightarrow 2
               Idx \rightarrow 15
                                                3
                                                              3
                                                                            Ne[15] \rightarrow 6
                                                                                                                           Certificate[15] \rightarrow {{0, {3, 7, 13}}}
               Idx \rightarrow 23
                                                4
                                                              4
                                                                            Ne[23] \rightarrow 9
                                                                                                                           Certificate[23] \rightarrow {{0, {3, 7, 13, 23}}}
               \text{Id} x \to 33
                                                5
                                                              5
                                                                            Ne[33] \rightarrow 15
                                                                                                                           Certificate[33] \rightarrow {{0, {3, 7, 13, 23, 31}}}
               \text{Id} x \to 45
                                                6
                                                              6
                                                                            Ne[45] \rightarrow 19
                                                                                                                           Certificate [45] \rightarrow {{0, {3, 7, 13, 23, 31, 43}}}
               \text{Id}x \to 58
                                                7
                                                              7
                                                                            Ne[58] \rightarrow 25
                                                                                                                           Certificate [58] \rightarrow {{0, {3, 7, 13, 23, 31, 43, 53}}
               \text{Id} x \to 74
                                                                             Ne \, \lceil 74 \, \rceil \, \rightarrow 32
                                                                                                                           Certificate [74] \rightarrow {{0, {3, 7, 13, 23, 31, 43, 53}}
```

```
Certificate[91] \rightarrow {{0, {3, 7, 13, 23, 31, 43, 53}}
\text{Id}x \to 91
                    9
                             9
                                     Ne[91] \rightarrow 38
\text{Id}x \, \rightarrow \, \text{109}
                                     Ne\,[\,109\,]\,\rightarrow 48
                                                                  Certificate[109] \rightarrow {{0, {3, 7, 13, 23, 31, 43, 5}}
                    10
                             10
Idx \to 130
                                     Ne \, [\, 130 \,] \, \rightarrow 61
                                                                  Certificate[130] \rightarrow {{0, {3, 7, 13, 23, 31, 43, 5}
                    11
                             11
Idx\,\to\,152
                                     Ne \,\lceil\, 152\,\rceil\,\,\rightarrow\,71
                                                                  Certificate[152] \rightarrow {{0, {3, 7, 13, 23, 31, 43, 5}
                    12
                             12
Idx \to 176
                                     Ne \, [\, 176 \,] \, \rightarrow 82
                                                                  Certificate [176] \rightarrow {{0, {3, 7, 13, 23, 31, 43, 5}
                    13
                             13
                                     Ne\,[\,201\,]\,\rightarrow 90
Idx\,\to\,201
                    14
                             14
                                                                  Certificate[201] \rightarrow {{0, {3, 7, 13, 23, 31, 43, 5}}
\text{Id}x \to 229
                                     Ne[229] \rightarrow 98
                    15
                             15
                                                                  Certificate [229] \rightarrow {{0, {3, 7, 13, 23, 31, 43, 5}
\text{Id}x \to 258
                             16
                                     Ne[258] \rightarrow 111
                                                                  Certificate [258] \rightarrow {{0, {3, 7, 13, 23, 31, 43, 5}
                    16
Idx \rightarrow 288
                                     Ne[288] \rightarrow 123
                                                                  Certificate [288] \rightarrow {{0, {3, 7, 13, 23, 31, 43, 5}}
                    16
                             17
\text{Id}x \to 320
                                     Ne[320] \rightarrow 139
                                                                  Certificate[320] \rightarrow {{0, {3, 7, 13, 23, 31, 43, 5}
                    17
                             18
Idx \rightarrow 354
                    18
                             19
                                     Ne[354] \rightarrow 158
                                                                  Certificate [354] \rightarrow {{0, {3, 7, 13, 23, 31, 43, 5}
\text{Id}x \to 390
                                     Ne\,[\,390\,]\,\rightarrow\,175
                                                                  Certificate[390] \rightarrow {{0, {3, 7, 13, 23, 31, 43, 5}}
                    19
                             20
Idx \rightarrow 427
                             21
                                     Ne[427] \rightarrow 194
                                                                  Certificate [427] \rightarrow \{\{0, \{3, 7, 13, 23, 31, 43, 5\}\}\}
                    20
\text{Id}x \to 466
                    21
                             22
                                     Ne[466] \rightarrow 210
                                                                  Certificate [466] \rightarrow {{0, {3, 7, 13, 23, 31, 43, 5}}
                    22
Idx \to 507
                             23
                                     Ne[507] \rightarrow 227
                                                                  Certificate [507] \rightarrow \{\{0, \{3, 7, 13, 23, 31, 43, 5\}\}\}
\text{Id}x \to 549
                             24
                                     Ne[549] \rightarrow 253
                                                                  Certificate [549] \rightarrow {{0, {3, 7, 13, 23, 31, 43, 5}}
                    23
\text{Id}x \to 593
                    24
                             25
                                     Ne[593] \rightarrow 275
                                                                  Certificate [593] \rightarrow {{0, {3, 7, 13, 23, 31, 43, 5}
                                     Ne[638] \rightarrow 295
\text{Id}x \to 638
                    25
                             26
                                                                  Certificate [638] \rightarrow {{0, {3, 7, 13, 23, 31, 43, 5}
                             27
                                     Ne[686] \rightarrow 320
Idx \rightarrow 686
                    26
                                                                  Certificate [686] \rightarrow \{\{0, \{3, 7, 13, 23, 31, 43, 5\}\}\}
\text{Id}x \to 735
                    27
                             28
                                     Ne[735] \rightarrow 342
                                                                  Certificate[735] \rightarrow {{0, {3, 7, 13, 23, 31, 43, 5}
Idx \to 785
                    28
                             29
                                     Ne[785] \rightarrow 370
                                                                  Certificate [785] \rightarrow {{0, {3, 7, 13, 23, 31, 43, 5}
                                     Ne[837] \rightarrow 394
\text{Id}x \to 837
                                                                  Certificate [837] \rightarrow {{0, {3, 7, 13, 23, 31, 43, 5}}
                    28
                             30
Idx \to 891
                    29
                             31
                                     Ne[891] \rightarrow 417
                                                                  Certificate [891] \rightarrow {{0, {3, 7, 13, 23, 31, 43, 5}
Idx \to 946
                    30
                             32
                                     Ne \lceil 946 \rceil \rightarrow 441
                                                                  Certificate [946] \rightarrow { {0, {3, 7, 13, 23, 31, 43, 5}
Idx \, \rightarrow \, 1003
                                     Ne[1003] \rightarrow 473
                    31
                             33
                                                                  Certificate[1003] \rightarrow {{0, {3, 7, 13, 23, 31, 43,
Idx\,\to\,1062
                    32
                             34
                                     Ne\,[\,1062\,]\,\rightarrow 508
                                                                  Certificate[1062] → {
                                                                                                  \{0, \{3, 7, 13, 23, 31, 43,
Idx\,\to\,1122
                             35
                                     Ne[1122] \rightarrow 532
                                                                  Certificate[1122] \rightarrow {{0, {3, 7, 13, 23, 31, 43,
                    33
Idx \to 1184
                                     Ne \, \lceil \, 1184 \, \rceil \, \rightarrow \, 562
                                                                  Certificate[1184] → {
                                                                                                  \{0, \{3, 7, 13, 23, 31, 43, \}\}
                    34
                             36
Idx \rightarrow 1248
                    35
                             37
                                     Ne[1248] \rightarrow 592
                                                                  Certificate[1248] \rightarrow {{0, {3, 7, 13, 23, 31, 43,
                                     Ne\,[\,1313\,]\,\rightarrow 632
Idx \, \rightarrow \, 1313
                    36
                             38
                                                                  Certificate[1313] \rightarrow {{0, {3, 7, 13, 23, 31, 43,
Idx \, \rightarrow \, 1380
                             39
                                     Ne[1380] \rightarrow 663
                    37
                                                                  Certificate [1380] \rightarrow {
                                                                                                  \{0, \{3, 7, 13, 23, 31, 43, \}\}
Idx \to 1448
                    38
                             40
                                     Ne[1448] \rightarrow 699
                                                                  Certificate[1448] \rightarrow {{0, {3, 7, 13, 23, 31, 43,
Idx\,\to\,1519
                                     Ne[1519] \rightarrow 735
                                                                  Certificate [1519] \rightarrow {{0, {3, 7, 13, 23, 31, 43,
                    38
                             41
                                     Ne\,[\,1590\,]\,\rightarrow774
Idx \, \rightarrow \, 1590
                    39
                             42
                                                                  Certificate[1590] \rightarrow {{0, {3, 7, 13, 23, 31, 43,
Idx \to 1664
                    40
                             43
                                     Ne[1664] \rightarrow 810
                                                                  Certificate [1664] \rightarrow {{0, {3, 7, 13, 23, 31, 43,
Idx \to 1738
                                     Ne[1738] \rightarrow 849
                                                                  Certificate[1738] → {
                    41
                             44
                                                                                                  \{0, \{3, 7, 13, 23, 31, 43, \}\}
Idx\,\to\,1815
                    42
                                     Ne[1815] \rightarrow 892
                                                                  Certificate [1815] \rightarrow {{0, {3, 7, 13, 23, 31, 43,
                             45
Idx \to 1893
                    43
                             46
                                     Ne[1893] \rightarrow 929
                                                                  Certificate[1893] → {
                                                                                                  \{0, \{3, 7, 13, 23, 31, 43,
Idx \to 1973
                                     Ne[1973] \rightarrow 975
                                                                  Certificate [1973] \rightarrow {
                                                                                                  \{0, \{3, 7, 13, 23, 31, 43,
                    44
                             47
\text{Id}x \to 2054
                    45
                             48
                                     Ne[2054] \rightarrow 1010
                                                                  Certificate[2054] \rightarrow {{0, {3, 7, 13, 23, 31, 43,
\text{Id}x \to 2137
                    46
                             49
                                     Ne[2137] \rightarrow 1056
                                                                  Certificate[2137] → {
                                                                                                  \{0, \{3, 7, 13, 23, 31, 43,
                                                                  Certificate[2222] \rightarrow {{0, {3, 7, 13, 23, 31, 43,
Idx \to 2222
                    47
                                     Ne[2222] \rightarrow 1100
                             50
Idx \rightarrow 2308
                    48
                             51
                                     Ne[2308] \rightarrow 1139
                                                                  Certificate [2308] \rightarrow { {0, {3, 7, 13, 23, 31, 43,
\text{Id}x \to 2396
                    48
                             52
                                     Ne[2396] \rightarrow 1182
                                                                  Certificate[2396] \rightarrow {{0, {3, 7, 13, 23, 31, 43,
Idx \rightarrow 2485
                    49
                                     Ne[2485] \rightarrow 1226
                                                                  Certificate [2485] \rightarrow {{0, {3, 7, 13, 23, 31, 43,
                             53
                                     Ne[2576] \rightarrow 1268
Idx \to 2576
                    50
                             54
                                                                  Certificate[2576] \rightarrow {{0, {3, 7, 13, 23, 31, 43,
\text{Id}x \to 2669
                    51
                             55
                                     Ne[2669] \rightarrow 1320
                                                                  Certificate [2669] \rightarrow {{0, {3, 7, 13, 23, 31, 43,
```

```
Certificate [2763] \rightarrow \{\{0, \{3, 7, 13, 23, 31, 43, \}\}\}
Idx \to 2763
                    52
                                      Ne[2763] \rightarrow 1369
                             56
\text{Id}x \to 2859
                    53
                             57
                                      Ne\,[\,2859\,]\,\rightarrow\,1419
                                                                   Certificate [2859] \rightarrow {{0, {3, 7, 13, 23, 31, 43,
Idx \to 2957
                    54
                             58
                                      Ne[2957] \rightarrow 1462
                                                                   Certificate [2957] \rightarrow {{0, {3, 7, 13, 23, 31, 43,
                                      Ne \, \lceil \, 3056 \, \rceil \, \rightarrow \, 1513
                                                                   Certificate[3056] \rightarrow {{0, {3, 7, 13, 23, 31, 43,
\text{Id}x \to 3056
                    55
                             59
Idx \rightarrow 3156
                    56
                             60
                                      Ne[3156] \rightarrow 1565
                                                                   Certificate[3156] \rightarrow {{0, {3, 7, 13, 23, 31, 43,
                                      Ne\,[\,3259\,]\,\rightarrow\,1609
                                                                   Certificate[3259] \rightarrow {{0, {3, 7, 13, 23, 31, 43,
Idx \to 3259
                    57
                             61
\text{Id}x \to 3362
                             62
                                      Ne[3362] \rightarrow 1665
                                                                   Certificate [3362] \rightarrow {{0, {3, 7, 13, 23, 31, 43,
                    57
\text{Id}x \to 3468
                    58
                             63
                                      Ne\,[\,3468\,]\,\rightarrow\,1723
                                                                   Certificate [3468] \rightarrow {{0, {3, 7, 13, 23, 31, 43,
                                      Ne[3575] \rightarrow 1768
                                                                   Certificate [3575] \rightarrow \{\{0, \{3, 7, 13, 23, 31, 43, \}\}\}
Idx \to 3575
                             64
                    59
\text{Id}x \to 3683
                    60
                             65
                                      Ne[3683] \rightarrow 1806
                                                                   Certificate [3683] \rightarrow {{0, {3, 7, 13, 23, 31, 43,
\text{Id} x \to 3794
                    61
                             66
                                      Ne[3794] \rightarrow 1858
                                                                   Certificate[3794] \rightarrow {{0, {3, 7, 13, 23, 31, 43,
\text{Id}x \to 3905
                             67
                                      Ne\,[\,3905\,]\,\rightarrow\,1905
                                                                   Certificate[3905] \rightarrow {{0, {3, 7, 13, 23, 31, 43,
                    62
                                      Ne[4019] \rightarrow 1962
                                                                   Certificate [4019] \rightarrow {{0, {3, 7, 13, 23, 31, 43,
Idx \rightarrow 4019
                    63
                             68
                                      Ne \, \lceil \, 4134 \, \rceil \, \rightarrow \, 2024
                                                                   Certificate [4134] \rightarrow {{0, {3, 7, 13, 23, 31, 43,
\text{Id}x \to 4134
                    64
                             69
Idx \rightarrow 4250
                    65
                             70
                                      Ne[4250] \rightarrow 2089
                                                                   Certificate [4250] \rightarrow {{0, {3, 7, 13, 23, 31, 43,
\text{Id} x \to 4368
                    66
                             71
                                      Ne \, \lceil \, 4368 \, \rceil \, \rightarrow 2157
                                                                   Certificate [4368] \rightarrow {{0, {3, 7, 13, 23, 31, 43,
\text{Id}x \to 4488
                    66
                             72
                                      Ne[4488] \rightarrow 2214
                                                                   Certificate [4488] \rightarrow {{0, {3, 7, 13, 23, 31, 43,
                             73
Idx \to 4609
                    67
                                      Ne[4609] \rightarrow 2275
                                                                   Certificate [4609] \rightarrow {{0, {3, 7, 13, 23, 31, 43,
\text{Id}x \to 4732
                             74
                                      Ne[4732] \rightarrow 2340
                                                                   Certificate [4732] \rightarrow \{\{0, \{3, 7, 13, 23, 31, 43, \}\}\}
                    68
```

Section 2: Proving that solutions leading to 1's of our indicator function duplicate index counts satisfy certain particularly "nice" conjectured properties:

Note that we are looking at differences of primes of the form **q_t** := **ceiling(t^p)** + **d_t** where **q_t** is taken to be the last prime in the interval $I_p(t)$ when p:=1.96.

Thus for i>=1 and t-i>=1, we define b := d_t-d_{t-i}. Moreover, if t is sufficiently large and there is a prime at the ends of the intervals I p(t) such that d $\{t+1\} > floor((t+1)^p)$ -ceiling (t^p) , then:

```
\Box d {t+1} > d t => b >= 0 for all t
```

□ **b** != **0,1,2** for large enough t

Why are these properties noteworthy / important?

Well, see the computations below which suggest that any solutions (t, k, b) which make our defined **IndicatorFunction** > 0 appear to require that $b \in \{0,1,2\}$ (or at least so far that b is considerably small relative to the respective interval sizes we are considering). So, it follows that if we can in fact prove that all solutions which contribute non-zero values of the indicator functions must have b := 0,1,2 (or say just sufficiently small relative to the primes we are taking differences of) and we can show that since q_t is the last prime in its respective interval we have that b>2 (say), then our total contribution of I $\{e,Q x\}(x) = 0$ (or is small and nicely bounded as $o(x^{1/p})$ when x is large). In other words, these criteria being satisfied suffices to give a proof of our desired super-square-rootpower bound!

(See the following computations for evidence of this conjectured property of the b:)

```
In[663]:= Table
                                           idx[s, i] \rightarrow Reduce[((Ceiling[s^p] - Ceiling[(s - i)^p] + b - (t^2 + (6k + 1)t)/2 == 0 | |
                                                                                       Ceiling[s^p] - Ceiling[(s-i)^p] + b - (t^2 + (6k-1)t)/2 = 0
                                                                                       Ceiling[s^p] - Ceiling[(s-i)^p] - (t^2 + (6k+1)t+2k)/2 = 0 + Ceiling[s^p] - (t^2 + (6k+1)t+2k)/2 = 0 + Ceiling[s^p] - (t^p) + (t^p) 
                                                                                                     Ceiling [(s-i)^p] - (t^2 + (6k-1)t-2k)/2 = 0) & 1 \le t \le Sqrt[s] & ...
                                                                           1 \le k < t \&\& 0 \le b \le Ceiling[(s+1)^p - s^p] - Ceiling[(s+1-i)^p - (s-i)^p]) /.
                                                               (p \rightarrow 1.96), \{b\}, Integers], \{s, 1, 50\}, \{i, 1, s-1\}] // TF
```

```
idx[2, 1] \rightarrow False
idx[3, 1] \rightarrow False
                                                                                                                                      idx[
idx[4, 1] \rightarrow (k = 1 \&\&t = 2 \&\&b = 0) \mid \mid (k = 1 \&\&t = 2 \&\&b = 2)
                                                                                                                                      idx[
idx\,[\,5\,,\,\,1\,]\,\rightarrow\,t\,=\,2\,\&\&\,k\,=\,1\,\&\&\,b\,=\,1
                                                                                                                                      idx[
idx[6, 1] \rightarrow t = 2 \& k = 1 \& (b = 0 | | b = 1)
                                                                                                                                      idx[
idx[7, 1] \rightarrow False
                                                                                                                                      idx[
idx\,[\,8\,,\,\,1\,]\,\,\rightarrow\,False
                                                                                                                                      idx[
idx[9, 1] \rightarrow (k = 1 \& \& t = 3 \& \& b = 0) \mid \mid (k = 1 \& \& t = 3 \& \& b = 1) \mid \mid (k = 1 \& \& t = 3 \& \& b = 2)
                                                                                                                                      idx[
idx[10, 1] \rightarrow False
                                                                                                                                      idx[
idx[11, 1] \rightarrow False
                                                                                                                                      idx[
idx[12, 1] \rightarrow t = 3 \&\& k = 2 \&\& b = 0
                                                                                                                                      idx[
idx[13, 1] \rightarrow False
                                                                                                                                      idx[
idx\,[\,14\,,\,\,1\,]\,\,\rightarrow\,t\,=\,3\,\&\&\,k\,=\,2\,\&\&\,b\,=\,0
                                                                                                                                      idx[
idx[15, 1] \rightarrow False
                                                                                                                                      idx[
idx[16, 1] \rightarrow (k = 2 \& t = 4 \& b = 0) \mid | (k = 2 \& t = 4 \& b = 1)
                                                                                                                                      idx[
idx\,[\,17\,,\,\,1\,]\,\rightarrow\,t\,=\,4\,\&\&\,k\,=\,2\,\&\&\,b\,=\,1
                                                                                                                                      idx[
idx[18, 1] \rightarrow t = 4 \&\& k = 2 \&\& b = 0
                                                                                                                                     idx[
idx[19, 1] \rightarrow False
                                                                                                                                      idx[
idx[20, 1] \rightarrow t = 4 \&\& k = 2 \&\& b = 0
                                                                                                                                      idx[
idx[21, 1] \rightarrow t = 4 \&\& k = 2 \&\& (b = 0 | | b = 1 | | b = 2)
                                                                                                                                     idx[
idx[22, 1] \rightarrow False
                                                                                                                                      idx[
idx[23, 1] \rightarrow t = 4 \& k = 3 \& (b = 0 | | b = 1 | | b = 2)
                                                                                                                                      idx[
idx[24, 1] \rightarrow t = 4 \&\& k = 3 \&\& b = 1
                                                                                                                                      idx
idx\,[\,25\,,\,\,1\,]\,\,\rightarrow\,k\,=\,3\,\&\&\,t\,=\,4\,\&\&\,b\,=\,0
                                                                                                                                      idx[
idx[26, 1] \rightarrow (t = 4 \& k = 3 \& b = 2) \mid \mid (t = 5 \& k = 2 \& b = 1)
                                                                                                                                      idx[
idx[27, 1] \rightarrow (t = 4 \&\& k = 3 \&\& b = 1) \mid | (t = 5 \&\& k = 2 \&\& b = 0)
                                                                                                                                      idx[
idx[28, 1] \rightarrow False
                                                                                                                                      idx[
idx[29, 1] \rightarrow t = 4 \& k = 3 \& (b = 0 | | b = 1 | | b = 2)
                                                                                                                                      idx[
idx[30, 1] \rightarrow False
                                                                                                                                      idx[
idx[31, 1] \rightarrow t = 5 \&\& k = 3 \&\& (b = 0 | | b = 1)
                                                                                                                                      idx[
idx[32, 1] \rightarrow t = 5 \& k = 3 \& b = 1
                                                                                                                                      idx[
idx[33, 1] \rightarrow t = 5 \&\& k = 3 \&\& b = 0
                                                                                                                                      idx[
idx\,[\,34\,\text{, }1]\,\rightarrow False
                                                                                                                                      idx[
idx [35, 1] \rightarrow t == 5 && k == 3 && b == 1
                                                                                                                                      idx[
idx[36, 1] \rightarrow k = 3 \& t = 5 \& b = 0
                                                                                                                                      idx[
idx[37, 1] \rightarrow False
                                                                                                                                      idx[
idx[38, 1] \rightarrow False
                                                                                                                                      idx[
idx[39, 1] \rightarrow False
                                                                                                                                      idx[
idx[40, 1] \rightarrow t = 6 \&\& k = 3 \&\& b = 2
                                                                                                                                      idx[
idx[41, 1] \rightarrow (t = 5 \&\& k = 4 \&\& b = 2) \mid | (t = 6 \&\& k = 3 \&\& b = 1)
                                                                                                                                      idx[
idx[42, 1] \rightarrow False
                                                                                                                                      idx
idx[43, 1] \rightarrow False
                                                                                                                                      idx[
idx[44, 1] \rightarrow (t = 5 \& k = 4 \& b = 1) \mid (t = 6 \& k = 3 \& b = 1)
                                                                                                                                      idx[
idx[45, 1] \rightarrow (t = 5 \&\& k = 4 \&\& b = 1) \mid | (t = 6 \&\& k = 3 \&\& b = 1)
                                                                                                                                      idx[
idx[46, 1] \rightarrow False
                                                                                                                                      idx[
                                                                                                                                     idx[
idx[47, 1] \rightarrow t = 6 \& k = 3 \& (b = 0 \mid \mid b = 1)
idx[48, 1] \rightarrow False
                                                                                                                                     idx[
idx[49, 1] \rightarrow (k = 3 \& k = 7 \& b = 0) \mid (k = 3 \& k = 7 \& b = 1)
                                                                                                                                      idx[
idx[50, 1] \rightarrow (t = 6 \&\& k = 4 \&\& (b = 0 | | b = 1 | | b = 2)) | | (t = 7 \&\& k = 3 \&\& b = 1)
                                                                                                                                     idx[
```

```
In[670]:= Table
         idx[s, i] \rightarrow Reduce[((Ceiling[s^p] - Ceiling[(s-i)^p] + b - (t^2 + (6k+1)t)/2 = 0 | |
                  Ceiling[s^p] - Ceiling[(s - i)^p] + b - (t^2 + (6 k - 1) t) /2 = 0 | |
                  Ceiling[s^p] - Ceiling[(s-i)^p] - (t^2 + (6 k + 1) t + 2 k) /2 = 0 \mid \mid Ceiling[s^p] - Ceiling[s^p]
                     Ceiling [(s-i)^p] - (t^2 + (6k-1)t-2k)/2 = 0) & 1 \le t \le Sqrt[s] & ...
                1 \le k < t \& 0 \le b \le Ceiling[(s+1)^p - s^p] - Ceiling[(s+1-i)^p - (s-i)^p]) /.
             (p \rightarrow 1.96), \{b\}, Integers, \{s, 51, 150\}, \{i, 1, s-1\} // TF
```

On the other hand, if we instead chose q_t to be smaller than the last prime in the interval, say as in my first attempts which chose q_t to be the first prime in these intervals, then we have the possibility of negative values of b, which needless to say significantly complicates the formal calculations of the limiting behavior of I $\{e,Q x\}(x)$!

(See, for example, below:)

```
In[665]:= Table
       idx[s, i] \rightarrow Reduce[((Ceiling[s^p] - Ceiling[(s-i)^p] + b - (t^2 + (6k+1)t)/2 = 0 | |
                Ceiling[s^p] - Ceiling[(s - i)^p] + b - (t^2 + (6 k - 1) t) /2 = 0 | |
                Ceiling [(s-i)^p] - (t^2 + (6k-1)t-2k)/2 = 0) & 1 \le t \le Sqrt[s] & ...
             1 \le k < t \& - (Ceiling[(s+1)^p - s^p] - Ceiling[(s+1-i)^p - (s-i)^p]) \le ceiling[(s+1-i)^p - (s-i)^p]
              b \le Ceiling[(s+1)^p - s^p] - Ceiling[(s+1-i)^p - (s-i)^p]) /.
           (p \rightarrow 1.96), \{b\}, Integers], \{s, 1, 50\}, \{i, 1, s-1\}] // TF
```

Out[665]//TableForm=

```
idx[2, 1] \rightarrow False
idx\,[\,3\,,\,\,1\,]\,\,\rightarrow\,False
idx[4, 1] \rightarrow (k = 1 \& t = 2 \& b = 0) \mid \mid (k = 1 \& t = 2 \& b = 2)
idx[5, 1] \rightarrow t = 2 \& k = 1 \& (b = -1 | | b = 1)
idx[6, 1] \rightarrow t = 2 \& k = 1 \& (b = -1 | | b = 0 | | b = 1)
idx[7, 1] \rightarrow False
idx[8, 1] \rightarrow False
idx \, [\, 9 \,, \, 1\, ] \, \rightarrow \, \left( \, k \, = \, 1 \, \&\& \, t \, = \, 3 \, \&\& \, b \, = \, -2 \, \right) \, \mid \, \mid \, \left( \, k \, = \, 1 \, \&\& \, t \, = \, 3 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \mid \, \left( \, k \, = \, 1 \, \&\& \, t \, = \, 3 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \mid \, \left( \, k \, = \, 1 \, \&\& \, t \, = \, 3 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \mid \, \left( \, k \, = \, 1 \, \&\& \, t \, = \, 3 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \mid \, \left( \, k \, = \, 1 \, \&\& \, t \, = \, 3 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \mid \, \left( \, k \, = \, 1 \, \&\& \, t \, = \, 3 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \, \&\& \, b \, = \, 0 \, \right) \, \mid \, \left( \, k \, = \, 1 \,
idx[10, 1] \rightarrow False
idx[11, 1] \rightarrow False
idx\,[\,12\,\text{, }1\,]\,\,\rightarrow\,t\,=\,3\,\&\&\,k\,=\,2\,\&\&\,b\,=\,0
idx[13, 1] \rightarrow t = 3 \& k = 2 \& b = -1
idx\,[\,14\,,\,\,1\,]\,\,\rightarrow\,t\,=\,3\,\&\&\,k\,=\,2\,\&\&\,b\,=\,0
idx[15, 1] \rightarrow t = 3 \&\& k = 2 \&\& b = -1
idx[16, 1] \rightarrow (k = 2 \&\& t = 4 \&\& b = -1) \mid | (k = 2 \&\& t = 4 \&\& b = 0) \mid | (k = 2 \&\& t = 4 \&\& b = 1)
 idx[17, 1] \rightarrow t = 4 \&\& k = 2 \&\& b = 1
idx[18, 1] \rightarrow t = 4 \&\& k = 2 \&\& b = 0
idx[19, 1] \rightarrow False
idx[20, 1] \rightarrow t = 4 \&\& k = 2 \&\& b = 0
idx[21, 1] \rightarrow t = 4 \&\& k = 2 \&\& (b = -2 \mid |b = -1| \mid |b = 0| \mid |b = 1| \mid |b = 2)
idx[22, 1] \rightarrow False
idx[23, 1] \rightarrow t = 4 \& k = 3 \& (b = -2 \mid | b = -1 \mid | b = 0 \mid | b = 1 \mid | b = 2)
idx[24, 1] \rightarrow t = 4 \&\& k = 3 \&\& b = 1
idx[25, 1] \rightarrow k = 3 \&\& t = 4 \&\& b = 0
idx[26, 1] \rightarrow (t == 4 \&\& k == 3 \&\& (b == -2 | | b == 2)) | | (t == 5 \&\& k == 2 \&\& b == 1)
idx[27, 1] \rightarrow (t = 4 \&\& k = 3 \&\& b = 1) \mid | (t = 5 \&\& k = 2 \&\& b = 0)
idx[28, 1] \rightarrow False
idx[29, 1] \rightarrow t = 4 \&\& k = 3 \&\& (b = -2 \mid |b = -1| \mid |b = 0| \mid |b = 1| \mid |b = 2)
idx[30, 1] \rightarrow False
 idx[31, 1] \rightarrow t = 5 \& k = 3 \& (b = -1 | | b = 0 | | b = 1)
 idx[32, 1] \rightarrow t = 5 \&\& k = 3 \&\& b = 1
idx\,[\,33\,,\,\,1\,]\,\,\rightarrow\,t\,=\,5\,\&\&\,k\,=\,3\,\&\&\,b\,=\,0
 idx[34, 1] \rightarrow False
 idx[35, 1] \rightarrow t = 5 \&\&k = 3 \&\&b = 1
idx[36, 1] \rightarrow k = 3 \& t = 5 \& b = 0
idx\,[\,37\,,\,\,1\,]\,\,\rightarrow\,t\,=\,5\,\&\&\,k\,=\,3\,\&\&\,b\,=\,-\,2
idx[38, 1] \rightarrow False
idx[39, 1] \rightarrow False
idx[40, 1] \rightarrow t = 6 \&\& k = 3 \&\& b = 2
idx[41, 1] \rightarrow (t = 5 \&\& k = 4 \&\& b = 2) \mid | (t = 6 \&\& k = 3 \&\& b = 1)
idx[42, 1] \rightarrow t = 5 \&\& k = 4 \&\& b = -1
idx[43, 1] \rightarrow (t = 5 \&\& k = 4 \&\& b = -1) \mid \mid (t = 6 \&\& k = 3 \&\& b = -2)
idx[44, 1] \rightarrow (t = 5 \&\& k = 4 \&\& b = 1) \mid \mid (t = 6 \&\& k = 3 \&\& b = 1)
idx[45, 1] \rightarrow (t = 5 \&\& k = 4 \&\& b = 1) \mid \mid (t = 6 \&\& k = 3 \&\& b = 1)
 idx[46, 1] \rightarrow (t = 5 \&\& k = 4 \&\& b = -2) \mid \mid (t = 6 \&\& k = 3 \&\& b = -2)
idx[47, 1] \rightarrow t = 6 \&\& k = 3 \&\& (b = -1 | | b = 0 | | b = 1)
idx[48, 1] \rightarrow False
idx[49, 1] \rightarrow (k = 3 \&\& t = 7 \&\& b = -1) \mid | (k = 3 \&\& t = 7 \&\& b = 0) \mid | (k = 3 \&\& t = 7 \&\& b = 1)
idx[50, 1] \rightarrow (t == 6 \&\& k == 4 \&\& (b == -2 || b == -1 || b == 0 || b == 1 || b == 2)) || (t == 7 \&\& k == 3 \&\& b == -2 || b == -2 |
```

Section 3: The "Analysis" of this data ... Any notable suggestions?

Section 4: Misc relevant calculations to check identities:

```
mu[q_] := Floor[(Sqrt[24q-23]+1)/6]
In[113]:=
                                                                                                                                             Gj[j_] := 1/2 Ceiling[j/2] Ceiling[(3j+1)/2]
                In[666]:= Table G[j] \rightarrow Gj[j], \{j, 0, 21\}
                                                                                                                     Table [G[j] \rightarrow j (3j-1)/2, \{j, 0, 12\}]
                                                                                                                     Table [G[j] \rightarrow j (3j+1)/2, \{j, 0, 12\}]
         \text{Out} [666] = \left\{ \textbf{G} [\textbf{0}] \rightarrow \textbf{0}, \, \textbf{G} [\textbf{1}] \rightarrow \textbf{1}, \, \textbf{G} [\textbf{2}] \rightarrow \textbf{2}, \, \textbf{G} [\textbf{3}] \rightarrow \textbf{5}, \, \textbf{G} [\textbf{4}] \rightarrow \textbf{7}, \, \textbf{G} [\textbf{5}] \rightarrow \textbf{12}, \, \textbf{G} [\textbf{6}] \rightarrow \textbf{15}, \, \textbf{G} [\textbf{7}] \rightarrow \textbf{22}, \, \textbf{G} [\textbf{8}] \rightarrow \textbf{26}, \, \textbf{G} [\textbf{6}] \rightarrow \textbf{15}, \, \textbf{G} [\textbf{7}] \rightarrow \textbf{27}, \, \textbf{G} [\textbf{8}] \rightarrow \textbf{26}, \, \textbf{G} [\textbf{8}] \rightarrow \textbf{15}, \, \textbf{G} [\textbf{7}] \rightarrow \textbf{15}, \, \textbf{G} [\textbf{7}] \rightarrow \textbf{27}, \, \textbf{G} [\textbf{8}] \rightarrow \textbf{28}, \, \textbf{2
                                                                                                                                           \texttt{G} \, [\, 9\, ] \, \rightarrow \, 35 \, , \, \, \texttt{G} \, [\, 10\, ] \, \rightarrow \, 40 \, , \, \, \texttt{G} \, [\, 11\, ] \, \rightarrow \, 51 \, , \, \, \texttt{G} \, [\, 12\, ] \, \rightarrow \, 57 \, , \, \, \texttt{G} \, [\, 13\, ] \, \rightarrow \, 70 \, , \, \, \texttt{G} \, [\, 14\, ] \, \rightarrow \, 77 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 14\, ] \, \rightarrow \, 77 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 14\, ] \, \rightarrow \, 77 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 14\, ] \, \rightarrow \, 77 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \, \texttt{G} \, [\, 15\, ] \, \rightarrow \, 92 \, , \, \texttt
                                                                                                                                           \texttt{G[16]} \rightarrow \texttt{100}, \ \texttt{G[17]} \rightarrow \texttt{117}, \ \texttt{G[18]} \rightarrow \texttt{126}, \ \texttt{G[19]} \rightarrow \texttt{145}, \ \texttt{G[20]} \rightarrow \texttt{155}, \ \texttt{G[21]} \rightarrow \texttt{176} \}
        \texttt{Out} \texttt{[GG7]=} \ \left\{ \texttt{G[0]} \rightarrow \texttt{0, G[1]} \rightarrow \texttt{1, G[2]} \rightarrow \texttt{5, G[3]} \rightarrow \texttt{12, G[4]} \rightarrow \texttt{22, G[5]} \rightarrow \texttt{35, G[6]} \rightarrow \texttt{51, G[6]} \rightarrow
                                                                                                                                           G[7] \rightarrow 70, G[8] \rightarrow 92, G[9] \rightarrow 117, G[10] \rightarrow 145, G[11] \rightarrow 176, G[12] \rightarrow 210
        \mathsf{Out}_{[668]} = \left\{ G[0] \to \mathbf{0}, \ G[1] \to \mathbf{2}, \ G[2] \to \mathbf{7}, \ G[3] \to \mathbf{15}, \ G[4] \to \mathbf{26}, \ G[5] \to \mathbf{40}, \ G[6] \to \mathbf{57}, \right\}
                                                                                                                                           \texttt{G} \lceil 7 \rceil \rightarrow 77 \text{, } \texttt{G} \lceil 8 \rceil \rightarrow 100 \text{, } \texttt{G} \lceil 9 \rceil \rightarrow 126 \text{, } \texttt{G} \lceil 10 \rceil \rightarrow 155 \text{, } \texttt{G} \lceil 11 \rceil \rightarrow 187 \text{, } \texttt{G} \lceil 12 \rceil \rightarrow 222 \}
```

```
ln[669]:= Table [\{Idx \rightarrow q, MoebiusMu[q] + 1, 2 mu[q], PartitionsP[q-1] + 1, 2 mu[q], Part
                                           Sum[PartitionsP[q-1-Gj[k]] Power[-1, Ceiling[k/2]], \{k, 1, 2 mu[q]\}],
                                      PartitionsP[q-1] + Sum[PartitionsP[q-1-Gj[k]], \{k, 1, 2 mu[q]\}],
                                      Mod[PartitionsP[q-1] + Sum[PartitionsP[q-1-Gj[k]], \{k, 1, 2 mu[q]\}], 2, 0]\},
                                   {q, Table[Prime[m], {m, 1, 21}]}] // TF
Out[669]//TableForm=
                                                                                                                                    2
                         \text{Id}x \to 2
                                                                                         2
                                                                                                                0
                         \text{Id}x \to 3
                                                                                         2
                                                                      0
                                                                                                                0
                                                                                                                                    4
                                                                                                                                                                                     0
                                                                                        2
                                                                                                                                                                                     0
                         \text{Id} x \to 5
                                                                      0
                                                                                                                0
                                                                                                                                    10
                          Idx \to 7
                                                                      0
                                                                                        4
                                                                                                                0
                                                                                                                                    24
                                                                                                                                                                                     0
                                                                                        4
                          \text{Id} x \to 11
                                                                                                                                    104
                                                                                                                                                                                    0
                                                                      0
                                                                                                                0
                         \text{Id}x \to 13
                                                                                        6
                                                                                                                                                                                     0
                                                                     0
                                                                                                               0
                                                                                                                                    198
                          \text{Id}x \to 17
                                                                                        6
                                                                                                                                                                                     0
                                                                      0
                                                                                                                0
                                                                                                                                    634
                          \text{Id}x \to 19
                                                                      0
                                                                                        6
                                                                                                               0
                                                                                                                                    1084
                                                                                                                                                                                     0
                          \text{Id}x \to 23
                                                                                        8
                                                                      0
                                                                                                               0
                                                                                                                                    2952
                                                                                                                                                                                     0
                          \text{Id}x \to 29
                                                                                        8
                                                                                                                                                                                      0
                                                                                                                                    11556
                                                                                        8
                                                                                                                                                                                      0
                          Idx \rightarrow 31
                                                                                                                                    17688
                         Idx \rightarrow 37
                                                                      0
                                                                                        10
                                                                                                                                    59 122
                                                                                                                                                                                      0
                          \text{Id} x \to 41
                                                                                        10
                                                                                                                                    125 768
                                                                                                                                                                                      0
                                                                      0
                                                                                                               0
                         \text{Id}x \to 43
                                                                                        10
                                                                                                                                    181 104
                                                                                                                                                                                      0
                                                                      0
                                                                                                               0
                                                                                                                                   367 056
                         \text{Id}x \to 47
                                                                      0
                                                                                        10
                                                                                                               0
                                                                                                                                                                                     0
                          \text{Id}x \to 53
                                                                      0
                                                                                         12
                                                                                                               0
                                                                                                                                    1007036
                                                                                                                                                                                     0
                                                                                                                                   2\,622\,872
                          \text{Id}x \to 59
                                                                                        12
                                                                                                                                                                                     0
                                                                      0
                                                                                                               0
                         \text{Id}x \to 61
                                                                                        12
                                                                                                                                    3572064
                                                                                                                                                                                     0
                                                                      0
                                                                                                               0
                                                                                        12
                         \text{Id}x \to 67
                                                                                                                                    8 779 128
                                                                                                                                                                                     0
                                                                     0
                                                                                                               0
                         \text{Id}x \to 71
                                                                                        14
                                                                                                                                                                                     0
                                                                      0
                                                                                                               0
                                                                                                                                    15 658 128
                                                                                        14
                         \text{Id}x \to 73
                                                                      0
                                                                                                                                    20791564
                                                                                                                                                                                     0
                                                                                                               0
```