DLMtool CHEAT SHEET 1

Getting Started

Install package: install.packages('DLMtool')

User Guide: userguide()

Cheat Sheets: cheatsheets()

Website: http://datalimitedtoolkit.org

Report Issues: https://github.com/DLMtool/DLMtool/issues

Acronyms

DLMtool	Data-Limited Methods Toolkit			
MP	Management Procedure			
MSE	Management Strategy Evaluation			
OM	Operating Model			
PM	Performance Metrics			

Main Object Classes

Find Available Objects: avail('Object Class')

e.g. avail('Stock')
avail('Fleet')
avail('Obs') More Objects: DLMextra()
...
avail('MP')

Slot Names: slotNames('Object Class')

e.g. slotNames('Stock')

Create New OM

Blank OM: OM <- new('OM')

New OM from available objects: OM <- new('OM', 'Stock', 'Fleet', 'Obs', 'Imp')

e.g. OM <- new('OM', Albacore, Generic_Fleet, Generic_Obs, Perfect_Imp)

Initialize Excel OM and OM Report: OMinit('myOM')

Import OM from Excel: OM <- XL2OM('myOM')</pre>

Generate OM Report: OMdoc()

Customize OM

Sketch Historical Fishing: Fleet/OM <- ChooseEffort(Fleet/OM)

Sketch Selectivity: Fleet <- ChooseSelect(Fleet, FstYr = ...)

Sketch Age Specific M: OM <- ChooseM(OM)

Sketch Length Specific M: OM <- ChooseM(OM, 'Length')

Predicting Life-History Parameters:

```
e.g. OM <- new('OM')

OM@Species <- 'Scomber japonicus'

OM <- LH2OM(OM)
```

Custom Parameters:

e.g. OM <- new('OM', Albacore, Generic_Fleet, Generic_Obs, Perfect_Imp)

OM@cpars\$M <- rInorm(OM@nsim, log(0.2), 0.05)

Remove Process and Observation Error: OM <- tinyErr(OM)

Replace OM Component: OM <- Replace(OM, Blue_shark)

Examine OM

Plot OM Components:

e.g. plot(Albacore) plot(Generic_Fleet)

Plot OM: plot(OM)

Plot Existing MPA: plotMPA(OM)

Plot M: plotM(OM)

Plot Selectivity: plotSelect(OM)

OM Excel: myOM.xlsx

4	А		В		0	D	
1	Slot						
2	Name						
3	Commo	n_Name	e				
4	Species						
5	maxage						
6	RO						
7	M						
8	M2						
9	Mexp						
10	Msd						
11	Mgrad						
12	h						
13	SRrel						
14	Perr						
15	AC						
16	Period						
17	Amplitu	de					
18	Linf						
19	K						
20	t0						
21	LenCV						
22	Ksd						
23	Kgrad						
24	Linfsd						
25	Linfgrad						
26	L50						
27	L50_95						
28	D						
29	a						
30	b						
31	Size_are	_					
32	Frac_are						
33	Prob_st	aying					
34	Fdisc						
35	Source						
36			EL .	01			
4	>	Stock	Fleet	Obs	Imp	OM	

OM Report: myOM.rmd

Management Procedures

MP Type Returns

Output TAC (total allowable catch)

Input TAE, SL, Spatial (total allowable effort,

size limit, spatial closure)

Mixed Combination of Output and Input

Reference TAC (assuming perfect data)

Find MP type: MPtype()

e.g. MPtype(c('AvC', 'curE', 'matlenlim', 'FMSYref'))

Run MSE

Run MSE: runMSE()

e.g. MSE <- runMSE(OM,

MPs=c('AvC', 'curE', 'matlenlim', 'FMSYref'))

Run MSE in parallel: runMSE(parallel=TRUE)

e.g. MSE <- runMSE(OM,

MPs=c('AvC', 'curE', 'matlenlim', 'FMSYref'),

parallel=TRUE)

Check Convergence: Converge(MSE)

Run Historical Simulations:

Hist <- runMSE(OM, Hist=TRUE)

DLMtool CHEAT SHEET 2

Performance Metrics

Available PM Functions: avail('PM')

Calculate PM:

MSE <- runMSE() e.a. P50(MSE)

Example Custom PM:

Calculate Probability F < 2 x FMSY in first 5 years: myPM <- function(MSEobj=NULL, Ref=2, Yrs=5) { Yrs <- ChkYrs(Yrs, MSEobj) # validate years PMobj <- new('PMobj') # create empty PM object PMobj@Name <- paste0('Probability F/FMSY < ', Ref) # name of PM PMobj@Caption <- paste0('Probability F/FMSY < ', Ref) # caption PMobj@Stat <- MSEobj@F FMSY[,, Yrs[1]:Yrs[2]] # statistic PMobi@Ref <- Ref # save Reference PMobj@Prob <- calcProb(PMobj@Stat < PMobj@Ref, MSEobj) # prob. PMobj@Mean <- calcMean(PMobj@Prob) # average prob. PMobj@MPs <- MSEobj@MPs # record MPs PMobj # return PM object

class(myPM) <- 'PM' # assign to class 'PM' summary(MSE, 'myPM') # calculate performance

TradePlot(MSE, 'myPM', 'P50') # trade-off plot with new PM

Examine MSE Results

Summary Results: summary(MSE) **Value of Information:**

Trade-Off Plots: TradePlot(MSE, PMs) e.g.

TradePlot(MSE, 'P50', 'AAVY')

Tplot(MSE)

Tplot2(MSE)

NOAA_plot(MSE)

Projection Plots:

Pplot(MSE)

Pplot2(MSE)

Kobe Plot: Kplot(MSE)

VOI(MSE)

VOI2(MSE)

VOlplot(MSE)

VOlplot2(MSE)

Other Plots:

COSEWIC_Hplot(MSE)

Cplot(MSE)

DFO_plot(MSE)

DFO_plot2(MSE)

DFO_proj(MSE)

IOTC_plot(MSE)

PWhisker(MSE)

wormplot(MSE)

Subset MSE

Subset by MP: MSE2 <- Sub(MSE, MPs= ...)

MSE <- runMSE()

stats <- summary(MSE)

accept <- which(stats\$P50 > 0.7)

acceptMPs <- stats[accept, 'MP')

subMSE <- Sub(MSE, MPs=acceptMPs)</pre>

Subset by Simulation: MSE2 <- Sub(MSE, sims= ...)

below <- MSE@OM\$M < median(MSE@OM\$M) e.g.

subMSE <- Sub(MSE, sims=below)</pre>

Fishery Data Object

Example Data: avail('Data')

Blank Data: Data <- new('Data')

Initialize Data Excel: DataInit()

Import Data from Excel: Data <- XL2Data()</pre>

Plot Data: summary(Data)

Write Data: Data2csv(Data, 'Data.csv')

Evaluating OM

Compare Simulated and Actual Data:

Turing(OM, Data)

Management Procedures

Available MPs: Can(Data)

Unavailable MPs: Cant(Data)

Feasible MPs: ?Fease

e.g. All Management Options: Fease(Data) = Can(Data)

TAC Only: Fease(Data, TAE=FALSE,

SL=FALSE, Spatial=FALSE)

Size Reg. Only: Fease(Data, TAC=FALSE,

TAE=FALSE, Spatial=FALSE)

Custom MPs

Averaging MPs: myMP <- makeMeanMP(MP Names)

avgMP <- makeMeanMP(c('BK', 'DBSRA', 'Fadapt', 'Rcontrol') MSE <- runMSE(DLMtool::testOM, MPs=c ('BK', 'DBSRA', 'Fadapt', 'Rcontrol', 'avgMP')

Tplot(MSE)

Pseudo-Code to create new MP:

AvCatchMP <- function(x, Data, reps=100, plot=FALSE) { AvC <- Data@AvC[x] # access element x from Data object slot Rec <- new('Rec') # create object of class Rec # slotNames("Rec") Rec@TAC <- AvC # populate one or more Rec slots Rec # return Rec object class('AvCatchMP') <- 'MP'

Apply MPs

Apply MP: runMP(Data, 'MP Name')

All Available MPs: runMP(Atlantic_mackerel) TAC <- runMP(Atlantic_mackerel, 'AvC')@TAC

Plot TACs:

Atlantic_mackerel <- runMP(Atlantic_mackerel) e.g. boxplot(Atlantic_mackerel)

Posterior Predicted Data

Generate Predicted Data from MP application:

MSE <- runMSE(MPs="DCAC", PPD=TRUE) e.g. Predicted_Ind <- MSE@Misc[[1]]@Ind matplot(t(Predicted_Ind), type='l', xlab='Projected Year', ylab='Index value')