Oblig 1

Thobias Høivik

Problem: Oppgave 1.4.2

Vis at standardbasisen $(e_1, ..., e_n)$ er en basis for \mathbb{K}^n .

Bevis. La \mathbb{K} være en kropp og la $E = (e_1, ..., e_n)$ hvor

$$e_1 = \begin{pmatrix} 1 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{pmatrix}, e_i = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}, e_n = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

For å vise at E utgjør en basis for \mathbb{K}^n må vi vise at E er lineært uavhengig og spenner \mathbb{K}^n .

Lineær uavhengighet.

Vi ønsker å vise at det ikke finnes en ikke-triviel løsning til

$$\sum_{i=1}^{n} k_i e_i = \vec{0}$$

hvor $k_i \in \mathbb{K}$. Summen av alle $k_i e_i$ er

$$\sum_{i=1}^{n} k_i e_i = \begin{pmatrix} k_1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ k_2 \\ \vdots \\ 0 \end{pmatrix} + \dots + \begin{pmatrix} 0 \\ 0 \\ \vdots \\ k_n \end{pmatrix} = \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{pmatrix}$$

Vi ser at eneste måten

$$\begin{pmatrix} k_1 \\ \vdots \\ k_n \end{pmatrix} = \vec{0} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

er den trivielle løsningen $k_1 = k_2 = \cdots = k_n = 0$. Dette betyr at E er lineært uavhengig.

Utspenning av rommet.

Vi ønsker å vise at span $(E) = \mathbb{K}^n$. Husk at

$$\mathbb{K}^{n} = \left\{ \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{pmatrix} \middle| k_i \in \mathbb{K}, i \in \{1, 2, \dots, n\} \right\}$$

Spennrommet span(*E*) er underrommet av alle vektorer av formen

$$k_1e_1 + k_2e_2 + \dots + k_ne_n = \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{pmatrix}$$

hvor $k_i \in \mathbb{K}$. Med andre ord:

$$\operatorname{span} E = \left\{ \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{pmatrix} \middle| k_i \in \mathbb{K}, i \in \{1, 2, \dots, n\} \right\} = \mathbb{K}^n$$

som ønsket. Med dette har vi vist at ${\cal E}$ spenner ut hele rommet.
Siden vi har vist at E er lineært uavhengig og spenner ut \mathbb{K}^n konkluderer vi med at E utgjør en basis
for \mathbb{K}^n .

Problem: Oppgave 1.4.6

(a) La $\mathscr{C} = (e_1, \dots, e_n)$ være standardbasisen i \mathbb{K}^n . Vis at

$$[x]_{\mathscr{C}} = x \quad \forall x \in \mathbb{K}^n$$

(b) La U være et vektorrom over \mathbb{K} med en basis $\mathscr{B} = (u_1, \dots, u_n)$. Vis at

$$[u_j]_{\mathscr{B}} = e_j \quad \forall j = 1, ..., n$$

Bevis av (a). La \mathbb{K} være en kropp og la $\mathscr{C} = (e_1, \dots, e_n)$ være standardbasisen i \mathbb{K}^n .

Vi ønsker å vise at basisrepresentasjonen av x i basisen \mathscr{C} , $[x]_{\mathscr{C}} = x$ for alle $x \in \mathbb{K}^n$.

La $x \in \mathbb{K}^n$. Da har vi at det finnes en unik n-tuppel $(b_1, b_2, ..., b_n) \in \mathbb{K}^n$ slik at $x = b_1 e_1 + b_2 e_2 + \cdots + b_n e_n$. Denne tuppelen er basisrepresentasjonen $[x]_{\mathscr{C}} = (b_1, b_2, ..., b_n)$. Med standardbasisen har vi at

$$x = b_{1}e_{1} + b_{2}e_{2} + \dots + b_{n}e_{n}$$

$$= \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} b_{1} + \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} b_{2} + \dots + \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} b_{n}$$

$$= \begin{pmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{pmatrix} = (b_{1}, b_{2}, \dots, b_{n}) = [x]_{\mathscr{C}}$$

som er det vi ønsket å vise.

Bevis av (b). La *U* være et vektorrom over kroppen \mathbb{K} med en basis $\mathscr{B} = (u_1, \dots, u_n)$.

Vi ønsker å vise at basisrepresentasjonen, $[u_j]_{\mathscr{B}} = e_j$ hvor e_j refererer til den j-ende vektoren i standard basisen (vektoren med 0 i alle index-er utenom j, hvor vi har 1) og $j \in \{1, 2, ..., n\}$. La u_j være en vilkårlig vektor i basisen. Da er u_j også en vektor i U, næmlig vektoren

$$0 \cdot u_1 + \cdots + 1 \cdot u_i + \cdots + 0 \cdot u_n$$

Da finens det en n-tuppel $(k_1, k_2, ..., k_n) \in \mathbb{K}^n$ slik at

$$k_1u_1 + \cdots + k_iu_i + \cdots + k_ni_n = u_i$$

Dette er basisrepresentasjonen av u_j i basisen. Spesifikt, er det tuppelen (0,...,1,...,0), hvor alle oppføringer er 0 utenom den j-ende index-en, som er 1. Dette er $e_j = (0,...,1,...,0)$. Med andre ord,

$$[u_i]_{\infty} = e_i$$

som ønsket.

Problem: Oppgave 1.5.2

Vis at

- (a) $\dim \mathcal{P}^n = n+1$
- (b) $\dim \mathcal{P} = \infty$
- (c) $\dim C^0(\mathbb{R}, \mathbb{R}) = \infty$

Bevis av (a). La \mathscr{P}^n være rommet av polynomer med koeffisienter i \mathbb{R} .

Vi ønsker å vise at $\dim \mathcal{P}^n = n+1$. Vi vet at, viss et vektorrom har en basis $(b_1, b_2, ..., b_n)$, så er rommet et endelig-dimensjonelt rom med dimensjon n. La oss se på den kanoniske basisen til \mathcal{P}^n , altså $(1, x, x^2, ..., x^n)$. Denne basisen består av alle x^i hvor i = 0, 1, ..., n. Med andre ord består den av $|\{0, 1, 2, ..., n\}| = n+1$ elementer. Derfor kan vi konkludere at dim $\mathcal{P}^n = n+1$.

Bevis av (b). La \mathscr{P} være rommet av alle polynomer med koeffisienter i \mathbb{R} .

Vi ønsker å vise at dim $\mathscr{P} = \infty$. Vi gjør dette ved å vise at det ikke finnes en endelig basis for \mathscr{P} .

Anta, i søk om kontradiksjon, at det finnes en endelig basis $B = \{p_1, p_2, ..., p_n\}$ for \mathscr{P} , med n elementer. La d_i være graden av polynomet p_i for i = 1, ..., n. La $d = \max\{d_1, ..., d_n\}$. Da er graden av hver p_i mindre enn eller lik d. Hvis vi nå ser på den lineære kombinasjonen

$$q(x) = \sum_{i=1}^{n} k_i p_i(x), k_i \in \mathbb{K}$$

så får vi at graden av q er mindre enn eller lik d. Så for hvert polynom i spennrommet til B har grad høyst d, men $x^{d+1} \in \mathcal{P}$, som motsier antagelsen vår at det finnes en endelig basis for rommet.

Med det kan vi konkludere at dim $\mathcal{P} = \infty$.

Bevis av (c). La $C^0(\mathbb{R},\mathbb{R})$ være rommet av kontinuerlige $f:\mathbb{R}\to\mathbb{R}$.

Hvert polynom er kontinuerlig, så $\mathscr{P} \subset C^0(\mathbb{R}, \mathbb{R})$.

Siden $C^0(\mathbb{R}, \mathbb{R})$ har et uendelig-dimensjonelt underrom, kan ikke $C^0(\mathbb{R}, \mathbb{R})$ være endelig-dimensjonelt. Som sagt i Proposisjon 1.4.11 fra boken, for et underrom V av rommet U har vi at $\dim(V) \leq \dim(U)$.

Konklusjon: $\dim(C^0(\mathbb{R}, \mathbb{R})) = \infty$.

Problem: Oppgave 1.6.5

- (a) Vis at $V \oplus W$ er et vektorrom.
- (b) Vis at dersom $(v_1, ..., v_n)$ er en basis for V og $(w_1, ..., w_n)$ er en basis for W, er

$$\mathscr{B} := ((v_1, 0_W), \dots, (v_n, 0_W), (0_V, w_1), \dots, (0_V, w_m))$$

en basis for $V \oplus W$.

(c) Vis at $\dim(V \oplus W) = \dim V + \dim W$.

Bevis av (a). La \mathbb{K} være en kropp og V, W rom over \mathbb{K} .

Vi ønsker å vise at $V \oplus W = \{(v, w) : v \in V, w \in W\}$ er et vektorrom med

Null element: $(0_V, 0_W)$

og

$$(u, v) + (u', v') = (u + u', v + v')$$

og

$$k(u, w) = (ku, kw)$$

for $v, v' \in V, w, w' \in W$ og $k \in \mathbb{K}$.

Vi begynner med å vise at $(V \oplus W, +)$ er en abelsk gruppe. Da må vi vise følgende

- 1. Assosiativitet av addisjon
- 2. Identitetselement
- 3. Inverser
- 4. Kommutativitet

Merk først at addisjonen, som vi har definert komponentvis, er lukket, siden addisjonsoperasjonene for V og W er lukket.

Assosiativitet.

La $v_1, v_2, v_3 \in V$ og $w_1, w_2, w_3 \in W$.

$$((v_1, w_1) + (v_2, w_2)) + (v_3, w_3) = (v_1 + v_2, w_1 + w_2) + (v_3, w_3)$$

$$= (v_1 + v_2 + v_3, w_1 + w_2 + w_3)$$

$$= (v_1, w_1) + (v_2 + v_3, w_2 + w_3)$$

$$= (v_1, w_1) + ((v_2, w_2) + (v_3, w_3))$$

Identitetselement.

Vi viser at null-elementet utgjør en identitet for denne gruppen. Vi har, for en vilkårlig $(v, w) \in V \oplus W$

$$(v, w) + (0_V, 0_W) = (0_V, 0_W) + (v, w) = (v + 0_V, w + 0_W) = (v, w)$$

Inverser. For en vilkårlig $(v, w) \in V \oplus W$ har vi inversen

$$(-\nu, -w) \in V \oplus W$$

$$(v, w) + (-v, -w) = (v - v, w - w) = (0_V, 0_W) = (-v, -w) + (v, w)$$

Kommutativitet.

Addisjonsoperasjonene til V og W er kommutative, så siden addisjon i $V \oplus W$ er komponentvis er addisjonen kommutativ.

$$(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2) = (v_2 + v_1, w_2, +w_1) = (v_2, w_2) + (v_1, w_1)$$

Deretter viser vi egenskapene til multiplikasjon, næmlig følgende

- 1. $0(v, w) = (0_V, 0_W)$
- 2. 1(v, w) = (v, w)

Den første egenskapen følger fra hvordan multiplikasjon er definert med $k \in \mathbb{K}$. Det samme gjelder for den andre egenskapen.

Til slutt har vi di distributative egenskapene.

For $k \in \mathbb{K}$ og $(v_1, w_1), (v_2, w_2) \in V \oplus W$ så har vi

$$k((v_1, w_1) + (v_2, w_2)) = k(v_1 + v_2, w_1 + w_2) = (k(v_1 + v_2), k(w_1, w_2))$$
$$= (kv_1 + kv_2, kw_1 + kw_2) = (kv_1, kw_1) + (kv_2, kw_2)$$
$$= k(v_1, w_1) + k(v_2, w_2)$$

Med det har vi vist at multiplikasjon er distributativt over vektor-addisjon.

For $k_1, k_2 \in \mathbb{K}$ og $(v, w) \in V \oplus W$ så har vi

$$(k_1 + k_2)(v, w) = ((k_1 + k_2)v, (k_1 + k_2)w) = (k_1v + k_2v, k_1w + k_2w)$$
$$= (k_1v, k_1w) + (k_2v, k_2w) = k_1(v, w) + k_2(v, w)$$

Med dette kan vi konludere at multiplikasjon er distributativt over skalar-addisjon.

Da har vi vist at $V \oplus W$ oppfølger alle kravene for å være et vektorrom.

Bevis av (b). La $(v_1, ..., v_n)$ være en basis for V og $(w_1, ..., w_m)$ være en basis for W.

Vi ønsker å vise at

$$\mathscr{B} := ((v_1, 0_W), \dots, (v_n, 0_W), (0_V, w_1), \dots, (0_V, w_m))$$

er en basis for $V \oplus W$. Vi må da vise at \mathscr{B} er lineært uavhengig og spenner ut $V \oplus W$.

Lineær uavhengighet.

Vi må vise at den eneste løsningen til

$$\sum_{s=1}^{|\mathscr{B}|} k_s b_s = (0_V, 0_W)$$
 , $k_s \in \mathbb{K}$, $b_s \in \mathscr{B}$

er den trivielle løsningen.

Summen over blir

$$\begin{split} k_1(v_1,0_W) + \cdots + k_n(v_n,0_W) + k_{n+1}(0_V,w_1) + \cdots + k_{m+n}(0_V,w_m) \\ &= (k_1v_1 + \ldots k_nv_n + k_{n+1}0_V + \cdots + k_{m+n}0_V, k_10_W + \cdots + k_n0_W + k_{n+1}w_1 + \cdots + k_{m+n}w_m) \\ &= (k_1v_1 + \cdots + k_nv_n, k_{n+1}w_1 + \cdots + k_{m+n}w_m) \\ &= \left(\sum_{i=1}^n k_iv_i, \sum_{j=1}^m k_jw_j\right) \end{split}$$

Nå sitter vi igjen med en 2-tuppel der første er summen av alle v_i i basisen til V, ganget med koeffisient, og andre er summen av alle w_j i basisen til W, ganget med koeffisient. Siden v_i, w_j er elementer av basisen til sine rom, vet vi at den eneste måten

$$\sum_{i=1}^{n} k_i \nu_i = 0_V \text{ og } \sum_{j=1}^{m} k_j w_j = 0_W$$

er når alle koeffisientene er 0; Den trivielle løsningen.

Spenner hele rommet.

Vi vet at for en vilkårlig $v \in V$ så har vi at v er en lineær kombinasjon av $(v_1, ..., v_n)$ hvor v_i er multiplisert med en $k_i \in \mathbb{K}$ og det samme gjelder for en $w \in W$ med W sin basis og koeffisienter i \mathbb{K} .

Viss
$$v = \sum_{i=1}^{n} k_i v_i$$
 og $w = \sum_{j=1}^{m} k_j w_j$, så er

$$(v, w) = \sum_{i=1}^{n} k_i (v_i, 0_W) + \sum_{j=1}^{m} k_j (0_V, w_j)$$
$$= \sum_{s=1}^{n+m=|\mathcal{B}|} k_s b_s$$

hvor $k_s \in \{k_1, ..., k_n, k_{n+1}, ..., k_m\}$ og $b_s = (v_s, 0_W)$ for s = 1, 2, ..., n og $b_s = (0_V, w_{s-n})$

for
$$s = n + 1, n + 2, ..., n + m$$
.

Så vi kan, for en vilkårlig $(v, w) \in V \oplus W$, lage (v, w) med en lineær kombinasjon av vektorer i basisen \mathcal{B} . Med andre ord har vi at span $(\mathcal{B}) = V \oplus W$.

Siden \mathcal{B} er lineært uavhengig og spenner ut $V \oplus W$ så har vi at \mathcal{B} utgjør en basis til dette rommet. \Box

Bevis av (*c*). Som vi peket til i *Bevis av* (*b*), så har vi at $|\mathcal{B}| = n + m$. Siden \mathcal{B} utgjør en basis for $V \oplus W$, har vi at $\dim V \oplus W = n + m = \dim V + \dim W$ på grunn av at det er antatt at basisen til V har V0 elementer og basisen til V1.

Problem: Oppgave 1.8.2

- (a) Vis at vektorrommet \mathbb{K}^n har dimensjon n.
- (b) Vis at vektorrommet $M_{m \times n}(\mathbb{K})$ har dimensjon mn.

Bevis av (a). La \mathbb{K} være en kropp.

Vi ønsker å vise at dim(\mathbb{K}^n) = n.

Betrakt basisen

$$E = (e_1, e_2, ..., e_n)$$

hvor e_i er tuppelen med 0 alle steder utenom den i-ende index hvor det er en 1. I Oppgave 1.4.2 viste vi at dette utgjør en basis for \mathbb{K}^n . Siden E har n elementer og utgjør en basis for \mathbb{K}^n så har \mathbb{K}^n dimensjon n.

Bevis av (b). La \mathbb{K} være en kropp og $M_{m \times n}(\mathbb{K})$ være rommet av $m \times n$ matriser med koeffisienter i \mathbb{K} .

Vi ønsker å vise at $\dim(M_{m \times n}(\mathbb{K})) = mn$.

La $\mathcal B$ være den kanoniske basisen

$$\mathcal{B} = \{E_{ij} : 1 \le i \le m, 1 \le j \le n\}$$

hvor E_{ij} er matrisen hvor med 1 i posisjon (i, j) og 0 i alle de andre. Det er tydlig at $|\mathscr{B}| = m \cdot n$, så hvis den utgjør en basis for $M_{m \times n}(\mathbb{K})$ kan vi konkludere at rommet er mn-dimensjonelt.

Lineær uavhengighet.

La $c_{ij} \in \mathbb{K}$, for alle $1 \le i \le m$ og $1 \le j \le n$.

$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} E_{ij} = \begin{pmatrix} c_{11} & \dots & c_{1n} \\ \vdots & \ddots & \vdots \\ c_{m1} & \dots & c_{mn} \end{pmatrix} = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}$$

$$c_{11}=\cdots=c_{mn}=0$$

Spenner rommet.

La $A = (a_{ij}) \in M_{m \times n}(\mathbb{K})$.

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} E_{ij}$$

 \mathscr{B} utgjør en basis for rommet og inneholder $m \cdot n$ elementer, derfor er $M_{m \times n}(\mathbb{K})$ mn-dimensjonelt.

Problem: Oppgave 1.8.3

La U være et vektorrom. Bevis at følgende utsagn er ekvivalente:

- (a) $\dim U = \infty$
- (b) for enhver $n \in \mathbb{N}$ finnes et underrom U_n av U med dimensjon n

Bevis. La U være et vektorrom over \mathbb{K} .

Vi ønsker å vise at

$$\dim(U) = \infty \Leftrightarrow \exists U_n \text{ underrom av } U, \quad \dim(U_n) = n$$

 \Rightarrow

Basistilfelle: Velg $u_1 \in U$, $u_1 \neq 0$.

Anta at det er valgt $u_1, ..., u_n$ lineært uavhengige. $u_1, ..., u_n$ kan ikke spenne U siden da ville ikke $\dim U = \infty$.

Velg så $u_{n+1} \in U \setminus \{\{\vec{0}\} \cup \text{span}(u_1, \dots, u_n)\} \neq \emptyset$. Da er (u_1, \dots, u_{n+1}) lineært uavhengig.

Det finnes da, for hver $n \in \mathbb{N}$ en lineært uavhengig (u_1, \dots, u_n) .

La $U_n = \operatorname{span}(u_1, \dots, u_n)$. U_n er et n-dimensjonelt underrom av U.

 \Leftarrow

Anta at for enhver $n \in \mathbb{N}$, så finnes det et underrom $U_n \subset U$ hvor $\dim(U_n) = n$. La oss anta, for en kontradiksjon, at det finnes en endelig basis (b_1, \ldots, b_m) . Betrakt underrommet U_{m+1} som nødvendighvis har en basis B' med m+1 elementer. B' er, per definisjon, lineært uavhengig, men vi vet at i et m-dimensjonelt vektorrom kan det ikke eksistere en samling med vektorer på størrelse mer en m, lineært uavhengig. Så B kan ikke utgjøre en basis for U. Vår antagelse at det finnes en endelig basis for U var feil og derfor har vi at $\dim(U) = \infty$.

Siden vi har vist implikasjonen begge veier har vi at de to utsagnene er ekvivalente.