

universitet

MA0001 Brukerkurs i matematikk A Høst 2017

Norges teknisk–naturvitenskapelige

Institutt for matematiske fag

Øving 1

Første øving er en liten repetisjon av eksponensregning og ligningsløsning.

1 Heltallseksponenter

1 Positive heltallseksponenter

For alle reelle tall a og alle positive heltall n, defineres tallet a^n som

$$a^n = \underbrace{a \cdot a \cdot \cdots a}_{n \text{ faktorer}}.$$

Skriv de følgende tallene uten eksponenter.

- a) 4^3
- **b)** $(-2)^4$
- c) -2^4
- **d**) $(\frac{1}{2})^3$

2 Negative heltallseksponenter

For alle reelle tall a forskjellig fra 0, defineres $a^0 = 1$. (Uttrykket 0^0 er ikke definert.) For alle reelle tall a forskjellig fra 0 og alle positive heltall n, defineres tallet a^{-n} som

$$a^{-n} = \frac{1}{a^n}.$$

Skriv de følgende tallene uten negative eksponenter.

- a) 2^{-5}
- **b**) $(\frac{1}{4})^{-2}$
- c) e^{-k}
- **d**) t^{-1}

Teorem 1. For alle reelle tall a forskjellig fra 0 og alle heltall n og m, er

$$a^n a^m = a^{n+m}$$

og

$$\frac{a^n}{a^m} = a^{n-m}.$$

Teorem 2. For alle reelle tall a og b forskjellig fra 0 og alle heltall n og m, er

$$(a^n)^m = a^{nm},$$

$$(ab)^n = a^n b^n$$

og

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}.$$

- 3 Forenkel uttrykkene.
 - a) $x^{-5}x^6$
 - b) $\frac{e^{-4}}{e^{-1}}$
 - c) $(2x^4y^{-5}z^3)^{-3}$

2 Ligningsløsning

Når vi løser ligninger, benyttes ofte disse to teoremene.

Teorem 3 (Addisjon- og multiplikasjonsprinsippet). For alle reelle tall a,b og c, så medfører a=b at

$$a + c = b + c$$

og

$$ac = bc$$
.

Teorem 4. Hvis a og b er to reelle tall, så er

$$ab = 0$$
 \iff $a = 0$ eller $b = 0$.

Symbolet " \iff " leses som "hvis og bare hvis". Dvs. påstanden på den ene siden medfører påstanden på den andre siden.

Husk at kvadratroten av et positivt tall a er definert som det positive tallet b som ganget med seg selv er a. Dvs.

$$\sqrt{a} = b \qquad \iff \qquad b \ge 0 \quad \text{og} \quad b^2 = a.$$

- 4 Løs ligningene for x. (Dvs. Finn alle tall x slik at påstandene er sanne.)
 - a) $-\frac{5}{6}x + 10 = \frac{1}{2}x + 2$
 - **b)** 3x(x-2)(5x+4) = 0
 - c) $\frac{1-x}{x+1} = -2$
 - d) $\frac{2/5-x}{12\sqrt{(1/8)^2+(2/5-x)^2}} = \frac{1}{13}$