MLS	Dataset	RBST(AIC) I	RBST(AICc)	RBST(BIC) R	BST(HQIC) RI	BST(GMDL)
	abalone	47.50(3)	47.50(3)	47.50(3)	47.50(3)	47.50(3)
	airfoil_self_noise	48.90(3)	48.90(3)	48.90(3)	48.90(3)	48.90(3)
	auto_mpg	18.43(3)	18.43(3)	18.43(3)	18.43(3)	18.43(3)
	automobile	18.05(2)	18.05(2)	18.88(5)	18.05(2)	18.81(4)
	concrete_data	39.16(3)	39.16(3)	39.16(3)	39.16(3)	39.16(3)
	crime	34.64 (3)	34.64(3)	34.64 (3)	34.64 (3)	34.64(3)
	fertility	102.78(3)	102.78(3)	102.78(3)	102.78(3)	102.78(3)
Ridge	flow	63.78(3)	63.78(3)	63.78(3)	63.78 (3)	63.78(3)
	forest	100.75(3)	100.75(3)	100.75(3)	100.75(3)	100.75(3)
	qsar	43.05(3)	43.05(3)	43.05(3)	43.05(3)	43.05(3)
	servo	60.26(3)	60.26(3)	60.26(3)	60.26(3)	60.26(3)
	slump	85.69(3)	85.69(3)	85.69(3)	85.69(3)	85.69(3)
	traffic	45.06(3)	45.06(3)	45.06(3)	45.06(3)	45.06(3)
	wine_red	64.92(3)	64.92(3)	64.92(3)	64.92(3)	64.92(3)
	wine_white	72.97(3)	72.97(3)	72.97(3)	72.97(3)	72.97(3)
Avg. Ran	k	(2.93)	(2.93)	(3.13)	(2.93)	(3.07)
	abalone	42.99(3)	42.99(3)	42.99(3)	42.99(3)	42.99(3)
SVR	airfoil_self_noise	73.78(3)	73.78(3)	73.78(3)	73.78(3)	73.78(3)
	auto_mpg	37.33(3)	37.33(3)	37.33(3)	37.33(3)	37.33(3)
	automobile	100.17(3)	100.17(3)	100.17(3)	100.17(3)	100.17(3)
	concrete_data	53.86 (3)	53.86(3)	53.86(3)	53.86(3)	53.86(3)
	crime	42.49(3)	42.49(3)	42.49(3)	42.49(3)	42.49(3)
	fertility	114.09(3)	114.09(3)	114.09(3)	114.09(3)	114.09(3)
	flow	76.51(3)	76.51(3)	76.51(3)	76.51(3)	76.51(3)
	forest	100.80(3)	100.80(3)	100.80(3)	100.80(3)	100.80(3)
	qsar	38.28(1)	39.75(4)	39.34(2)	39.75(4)	39.34(2)
	servo	15.89(2)	15.89(2)	15.89(2)	15.89(2)	17.35(5)
	slump	74.36(5)	74.23(4)	74.17(2)	74.17(2)	74.17(2)
	traffic	39.35(3)	39.35(3)	39.35(3)	39.35(3)	39.35(3)
	wine_red	65.39(3)	65.39(3)	65.39(3)	65.39(3)	65.39(3)
	wine_white	58.79(1)	59.86(2)	61.12(3)	61.12(3)	73.37(5)
Avg. Rank		(2.83)	(3.07)	(2.90)	(3.03)	(3.17)
	abalone	44.95(3)	44.95(3)	44.95(3)	44.95(3)	44.95(3)
RFR	airfoil_self_noise	23.43(3)	23.43(3)	23.43(3)	23.43(3)	23.43(3)
	auto_mpg	14.62(3)	14.62(3)	14.62(3)	14.62(3)	14.62(3)
	automobile	14.93(3)	14.93(3)	14.93(3)	14.93(3)	14.93(3)
	concrete_data	17.40(2)	17.40(2)	17.40(2)	17.40(2)	22.79(5)
	crime	36.13(3)	36.13(3)	36.13(3)	36.13(3)	36.13(3)
	fertility	99.66(3)	99.66(3)	99.66(3)	99.66(3)	99.66(3)
	flow	66.93(3)	66.93(3)	66.93(3)	66.93(3)	66.93(3)
	forest	105.26(3)	105.26(3)	105.26(3)	105.26(3)	105.26(3)
	qsar	39.17(3)	39.17(3)	39.17(3)	39.17(3)	39.17(3)
	servo	13.73(1)	13.73(1)	14.06(4)	14.06(4)	14.06(4)
	slump	73.55(3)	73.55(3)	73.55(3)	73.55(3)	73.55(3)
	traffic	47.56(3)	47.56(3)	47.56(3)	47.56(3)	47.56(3)
	wine_red	57.64(3)	57.64(3)	57.64(3)	57.64(3)	57.64(3)
	wine_white	60.32(3)	60.32(3)	60.32(3)	60.32(3)	60.32(3)
Avg. Ran		(2.87)	(2.87)	(3.03)	(3.03)	(3.20)
Mean Ran		(2.88)	(2.96)			

Table 15: The 3-fold cross validation relative mean squared error and Friedman ranks for all the datasets when RBST, using several stop criteria (AIC, AICc, BIC, HQIC and GMDL), taking into account some baseline systems (Ridge, SVR and RFR) and the BO sampling strategy.