Small generators for Sarthmetic groups IV

Ted Onlyburg and Matthew Stover

 $B_{R} \cong M_{2}(R) \times M_{2}(R)$, Jetup: B=k@B" $B_R^{"} \subseteq M_2(R)$ (*) $Ram_f(B) \neq \phi$ D/HXH 2 D/H => Shimura curves on a Shimura D'(3) = level 3
Congruence subgroup Surface M= forsion-free subgroup of D'CB', M"= MAB". (Borel) Fact: $S = D(H \times H)$ is compact by (*). (Smooth by t.f.) =) base changes $B'' \rightarrow B$ determine: arms on S, possibly with self-intersections. C=p"/H smooth, projective gens = 2.

Question 1: Can we understand D^i by the unit groups of orders of the subalgebras $B'' \subset B$ so $B = k \otimes_Q B''$?

Question 2: Can we understand $S = P(H \times H)$ via the geometry of the Shimura curves on S?

Note: All our results also hold for U(2,1) Shimura varietres containing U(1,1) Shimura ourus.

This is where the Albanese application is most interesting because Alb (MHXH) = **.O.

Theorem There exists a finite collection of Shimora curves $C_{1,--}$ $C_{r} = \Gamma_{1}^{1}H^{2}$ on the surface $S = \Gamma_{1}^{1}H^{2}H^{2}$ or $\Gamma_{1}^{1}H^{2}$ Such that

① if $\pi_j: G \rightarrow S$ is the inclusion, the effective divisor $D = \sum_{i=1}^{l} \pi_i(C_i)$ is connected

MANAMAN PENANTANAN PEN

- (i.e., $\pi_1(U)$) generates a finite etale covering of S).
 - · Proof is by weak Laschetz theory (goes back to Noris resolution of Zariski's conjecture).
- We will see that in the case of H+xHI, the number of curves is explicitly computable!

(This, in a sense, uses the Pact that Alb(s) = 0.)

· Analogy with 2D class field theory, understanding a 2D scheme by Marky Patching 1D De Schemes.

Lemma Shimura curves C that are embedded on S are negative. Idea of proof: Want degree of normal burdle. Can conjugate B" in B so it is Galois Stable (Q =) # B'ooR = M2(R) -> BooR = M2(R) × M2(R) Is the diagonal map => H -> H xH is diagonal => normal burdle is $\frac{3}{(v,-v)}$; $v \in THS = T'' = B'' \cap T'$ water action

on the NHAH (diagonal) = p'-action on THI

=> negative of degree $\chi(c) = 2 - 2g(c)$. \Box

Theorem (Napher-Ramachandran | Campana) Let $\hat{S} \xrightarrow{\hat{T}} S$ be an étale cover. If \hat{S} supports a compact, connected, effective divisor of positive self-intersection, then \hat{T} is finite.

Recall: If C_1, C_2 distinct irreducible, $(C_1, C_2) = \#(C_1, C_2)$ and $\#(C_1, C_2) = \#(C_1, C_2)$ and $\#(C_1, C_2) = \#(C_1, C_2)$. Extend linearly to all divisors.

Fact: (,) only depends on the class in H^(S, Q).

Corollary: Let D be a connected, effective divisor on S of positive self-intersection. Then if U is any neighborhood of D in S, then $\pi_i(S) \to \pi_i(S)$ has finite modex.

Proof: Let $\hat{S} \rightarrow S$ be the Etale cover associated with Proof: Let $\hat{S} \rightarrow S$ be the Etale cover associated with the image of $\pi_1(U)$ in $\pi_1(S)$. Then U lifts to \hat{S} , so D the image of $\pi_1(U)$ in $\pi_1(S)$. Then U lifts to \hat{S} , so D also lifts, and (D,D) is the same. Thus D is a compact, also lifts, and (D,D) is the same. Thus D is a compact, connected, effective divisor on \hat{S} of positive self-intersection. Theorem = $\hat{S} \rightarrow S$ is finite = $\pi_1(U) \rightarrow \pi_1(S)$ finite index. \square

Theorem: Let S be a smooth projective surface, \hat{S} = \hat{S} an étale coverng with \hat{S} noncompact, $\hat{C} = \hat{\Sigma} + \hat{C}$, \hat{C} effective, compact, connected, \hat{C} irreducible. Then either

(ĉ,ĉ)<0

2) There exists \hat{C}_i pricisely supported on \hat{C}_i (=) each \hat{C}_j appears with positive multiplicity) with $(\hat{C}_i)^2 = 0$ and for any other \hat{C}' with support on \hat{C} , $(\hat{C}')^2 \leq 0$, $(\hat{C}',\hat{C}_1) = 0$, and for all compact connected curves \hat{D} on \hat{S} , the distribution $|\hat{D}| \cdot |\hat{c}| \neq \phi$ or $(\hat{D}, \hat{c}) = 0$.

(=> ê îrreducible)

Note! This immediately implies the previous theorem, Since (ĉ,ĉ)>0 is not a possibility.

Divisor connected \Rightarrow (,) restricted to the subspace of $H^2(S, Q)$ generated by the irreducible components is indicomposable.

D is a geometric consequence of a lemma about indefinite indecomposible quadratic forms due to Coxieter.

Proposition: Let I be an ample line bundle on S, f: \$->5

Etale, \$ noncompact. MANNEY. Then for N>0,

 $H_{(2)}^{\circ}(\hat{S}, \mathcal{Y}(K_{S}\otimes \mathcal{I}^{N}))$

((2) => 12-sections) is infinite dimensional.

This is an infinite version of the fact that if f is finite of degree of, dim Hay(3, f*(Ks@ZN)) = d. dim Hay(5, Ks@ZN) by Lodaira Unishing.

Lemma Let $\mathbb{R} V$ be an open neighborhood of a connected compact effective divisor $\widehat{\mathbb{D}}$ on $\widehat{\mathbb{S}}$ and \mathbb{Z} a line bridle on $\mathbb{R} V$. Then $\dim H^0(V,\mathbb{Z}) < \infty$.

To prove the theorem, apply the Prop $^\circ$ Lemma to the inverse image of DCUCS in $\hat{S} =$ the étale Covering of S determined by the image of $T_1(S)$.

Back to Shimura curus.

Infinitely many => can find a relation

 $X = \sum_{i=1}^{n} m_i C_i = Y = \sum_{i=1}^{n} n_i C_i'$ in $H^2(S, Q)$

where $263\sqrt{25} = 0$

 $\Rightarrow (x,x) = (x,y) \ge 0.$

(9)

Prove $\frac{1}{4}$ using Hecke operators that we can find another curve C_0 so $(C_0, X) > 0$, so if (X, X) = 0, then there exists N > 0 so $C_0 + NX$ is a positive effective curve made entirely from Shinura curves.

A BANKA KARAMAN A CANAMAN

The number of curves necessary is computable!

 $\chi(\mathcal{J}^{1}|H\times H) = \frac{\chi(-1)}{2} \frac{1}{V \in Ramp(B)} (N(V)-1)$ (Shimizu)

=2-14h'''(9')+2h'''(9')+h'''

arising from quaternion algebras.

$$\Rightarrow \chi = 2 + 2h^{20} + h^{11}$$

Also
$$\chi(O_s) = 1 - h^{1/0} + h^{2/0} = \frac{1}{12} \left(\frac{C_1^2 + C_2}{C_1^2 + C_2} \right)$$

$$A \times H \Rightarrow C_1^2 = 2C_2 \Rightarrow 1 + h^{2,0} = \frac{3}{12} (2 + 2h^{2,0} + h^{1,1})$$

(Noether)

$$=) 4 + 4h^{2,0} = 2 + 2h^{2,0} + h^{1/1}$$

$$\Rightarrow \lambda''' = 2 + 2\lambda^{2}$$

$$= \lambda'' = \frac{1}{2}\chi$$

arithmetic Fuchsian subgroups. D'IP]

Question: Can we remove the neighborhood assumtion and conclude that D' has a subgroup of finite index generated by D', -, D'm, where $\mathcal{D}'_{i} = \mathcal{D}' \cap \mathcal{B}_{i}, \quad \mathcal{B}_{i}/\Omega, \quad \mathcal{B} \cong \mathbb{R} \otimes_{Q} \mathcal{B}_{i}, \quad \mathbb{R} \otimes_{Q} \mathcal{B}_{i} \cong \mathcal{M}_{2}(\mathbb{R})^{2}$

Final questions.

o Lenstra for algabras over characterístic p fields?

- Can make sense of Minteaustei.

- May be related to questions about FPm for algebraic graps over function fields.

A grap Γ is FP_m/R , R a ring (Z) \Longrightarrow

there exists a projective resolution

Pm -> Pm-> --- -> P. -> Po -> R -> 0

of finitely generated BT-modules.

· FP./7 (=) P finitely generalized.
· FP./7 (=) P finitely presented.

