

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!

登录

输入

Treat acoustic(听觉的) input O as sequence of individual observations

$$O = o_1, o_2, \ldots, o_t$$

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!

ubuntu (linux) 开发者初始化要做的第K件

Linux 设备信息登记

算法学习

Ot 开源版安装与下载

文章分类 IDE使用经验 7篇 反防盗链 2篇 php 1篇 文本编辑器 1篇 工具使用记录 23篇

展开ン

文章存档	
2018年1月	2篇
2017年11月	1篇
2017年9月	2篇
2017年5月	1篇
2017年4月	1篇
2017年3月	2篇
Į.	₹开 ✔

登录

注册

27篇

Define sentence as a sequence of words

$$W=w_1,w_2,\ldots,w_n$$

判断模型

- 最大概率: $W = arg \; max_{W \in L} \; P(W|O)$
- $\mathbb{Q} \stackrel{\frown}{\underset{\mathsf{0}}{ \smile}} W = arg\; max_{W \in L} \; rac{P(O|W)P(W)}{P(O)}$
- 化 $\stackrel{\leftharpoonup}{\cdot}$ ' 由于P(O)对所有W-样 , $W=arg\; max_{W\in L}\;\; P(O|W)P(W)$

html 利用 frameset 进行简单的框架布局

17663

firefox + foxyproxy + shadowsock in ubun

\$\mathref{

算法学习 -- Staple: Complementary Lear ners for Real-Time Tracking

4787

按键精灵自动发QQ消息

4364

Dot 与 GraphViz 经验总结

4329

前景提取--PBAS算法

□ 3206

前景提取--SuBSENSE算法

2878

2016 mingw 5.3.0 + Qt 5.7.0 + opencv 3 under windows7

QQ 2412

opencv simpleBlobDetector入坑

2229

前景提取--color 算法

<u>2192</u>

Speech Architecture meets Noisy Channel

- Feature Extraction: 39 "MFCC" features
- Acoustic Model: Gaussians for computing p(o|q)

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!

• Lexicon(词典)/Pronunciation(发音) Model: HMM, what phones can follow each other

Markov chain for words

ullet Language Model: N-grams for computing $p(w_i|w_{i-1})$

markov chian

- states: $Q=q_1,q_2,\ldots,q_N,q_t$ is the state at time t.
- transition probability: $A = [a_{11}, a_{12}, \dots, a_{NN}]$

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!

登录

- $a_{ij} = P(q_{t-1} = i | q_t = j)$
- $ullet \sum_{j=1}^N a_{ij} = 1$, for $i \in [1,N]$
- markov assumption:
 - $P(q_i|q_1q_2...q_{i-1}) = P(q_i|q_{i-1})$
- ini 🖒 atus
 - $\pi_i^0 = P(q_1 = i)$
 - $dash egin{array}{l} dash egin{array}{l} arNew egin{array}{l}$

hidd □ markov chian

Hidden Markov Models

$Q = q_2 \dots q_N$ $A = q_1 \dots q_{n_1} \dots q_{n_1} \dots q_{n_n}$ $\vdots \equiv Q = Q \dots Q_T$ $Q = Q \dots Q_T$	a set of N states a transition probability matrix A , each a_{ij} representing the probability of moving from state i to state j , s.t. $\sum_{j=1}^{n} a_{ij} = 1 \forall i$ a sequence of T observations, each one drawn from a vocabulary $V = v_1, v_2,, v_V$
$B = \bigoplus_{t \in \mathcal{D}} o_t$	a sequence of observation likelihoods , also called emission probabilities , each expressing the probability of an observation o_t being generated from a state i
q_0, q_F	a special start state and end (final) state that are not associated with observations, together with transition probabilities $a_{01}a_{02}a_{0n}$ out of the start state and $a_{1F}a_{2F}a_{nF}$ into the end state

three problem

The Three Basic Problems for HMMs

Jack Ferguson at IDA in the 1960s

Problem 1 (**Evaluation**): Given the observation sequence $\equiv \exists (o_1 o_2 ... o_T)$, and an HMM model $\Phi = (A,B)$, how do we efficiently compute $P(O \mid \Phi)$, the probability of the observation sequence, given the model?

Jem 2 (**Decoding**): Given the observation sequence $O=(o_1o_2...o_T)$, and an HMM model $\Phi=(A,B)$, how do we choose a corresponding state sequence $Q=(q_1q_2...q_T)$ that is optimal in some sense (i.e., best explains the observations)?

Problem 3 (**Learning**): How do we adjust the model parameters $\Phi = (A,B)$ to maximize $P(O \mid \Phi)$?

thrid problem

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!

登录

Decoding

One possibility:

For each hidden state sequence Q

HHH, HHC, HCH,

• Compute P(O|Q)

Pick the highest one

• Why not?

- Instead:
 - The Viterbi algorithm
 - Is again a dynamic programming algorithm
 - Uses a similar trellis to the Forward algorithm

Viterbi intuition

observation sequence together with the best state sequence

$$v_t(j) = \max_{\substack{q_0, q_1, \dots, q_{t-1} \\ \circ}} P(q_0, q_1 \dots q_{t-1}, o_1, o_2 \dots o_t, q_t = j | \lambda)$$

$$\stackrel{\square}{\equiv} v_t(j) = \max_{\substack{i=1 \\ i=1}}^{N} v_{t-1}(i) \ a_{ij} \ b_j(o_t)$$

Viterbi Recursion

1. Initialization:

$$v_1(j) = a_{0j}b_j(o_1) \ 1 \le j \le N$$

 $bt_1(j) = 0$

2. **Recursion** (recall that states 0 and q_F are non-emitting):

$$v_t(j) = \max_{i=1}^{N} v_{t-1}(i) a_{ij} b_j(o_t); \quad 1 \le j \le N, 1 < t \le T$$

$$v_t(j) = \max_{i=1}^{N} v_{t-1}(i) a_{ij} b_j(o_t); \quad 1 \le j \le N, 1 < t \le T$$

$$bt_t(j) = \underset{i=1}{\operatorname{argmax}} v_{t-1}(i) a_{ij} b_j(o_t); \quad 1 \le j \le N, 1 < t \le T$$

3. Termination:

The best score:
$$P* = v_t(q_F) = \max_{i=1}^N v_T(i) * a_{i,F}$$

The start of backtrace:
$$q_T *= bt_T(q_F) = \underset{i=1}{\operatorname{argmax}} v_T(i) * a_{i,F}$$

以上所有内容从以下附件中抽取

- lec3.pdf
- 斯坦福大学关于语音识别的全部课件

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!

版权声明:本文为博主原创文章,未经博主允许不得转载。 http://blog.csdn.net/u010598445/article/details/51681413

目前您尚未登录,请登录或注册后进行评论

从声学 (大主算法总结 **2016** 年语音识别的重大进步 (charleslei 2017年02月27日 16:57 🕮 5393

从声学模! 🔍 总结 2016 年语音识别的重大进步

quheDiegooo 2017年02月23日 17:49 🔘 3430

语音识别-解码过程

从PHP菜鸟到高手,我是如何脱颖而出的!

从入门到精通,你必须熟练的知识点。

HMM算法在语音识别中的应用——算法学习

齡 u010598445 2016年06月15日 14:04 ♀ 1942

总体框架输入Treat acoustic(听觉的) input O as sequence of individual observations O=o1,o2,...,otO=o_1,o_2,....

DTW算法(语音识别)

fzxy002763 2013年01月25日 01:54 🖺 29005

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!

登录

DTW算法C源码(语音识别算法)

2009年12月31日 10:43 8KB

一个数学公式教你秒懂天下英语

老司机教员个数学公式秒懂天下英语

百度语空门别技术负责人李先刚:如何利用Deep CNN大幅提升识别准确率?

百度语音识别技术负责人李先刚:如何利用Deep CNN大幅提升识别准确率? 机器之心mp 2016-11-04 14:24:34 技术 百度 阅读(440) ••• 0) ...

starzhou 2016年11月24日 13:55 🕮 3604

语音识别的算法实现C++

2012年03月01日 01:01 8.12MB

C++语音识别接口快速入门 (Microsoft Speech SDK)

C++语音识别接口快速入门 (Microsoft Speech SDK)最近毕 👀 MichaelLiang12 2016年05月04日 19:38 🖺 11967 业设计用到了微软的C++语音识别接口,查找了很多资料,也碰 到了很多问题,走了很多弯路。现在把我自己的经验写下来,一是提升自己...

【VS开发】【智能语音处理】特定人语音识别算法—DTW算法

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!

登录

语音识别之HMM算法及其源码

HMM算法用于语言识别,在这里给出源码,供参考

13.4 非元之人语音识别算法-

与DTW相比 UMM一方面用隐含的状态对应于声学层各相对稳定的发音单位,并通过状态转移和状态驻留来描述发音的变 化;另一: 三 它引入了概率统计模型,不再用动态时间对齐的方法求匹配距离,而是用概率密度函数...

在职研元工有用吗

在职研究: [...]

语音识别的基本方法

(加) xiaoding133 2012年03月16日 15:18 (加) 5946

一般来说,语音识别的方法有三种:基于声道模型和语音知识的方法、模板匹配的方法以及利用人工神经网络的方法[1]。 (1)基于语音学和声学的方法 该方法起步较早,在语音识别技术提出的开始,就有了这...

语音识别算法

2013年05月10日 19:01 442KB

语音识别算法matlab 源代码!完整!可运行!

2013年11月14日 16:13 2.05MB

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!

登录

语音识别项目: http://www.oschina.net/project/tag/203/tts-speech sf.net http://www.codes...

走进语音识别中的WFST (一)

本人最近在研究语音识别的生成Graph和Lattice的模块,其中用到了WFST这个概念,惊叹于它的神奇也被它的复杂搞得晕头转向。于是决定静下心来仔细研读了Mohri大牛的Speech Recogni...

教你一招搞定背单词难题!

巧记单i := isy!

FIR数: 波器的设计(三)

复卷积结束(w)带来过冲积波,所以加窗函数后,对滤波器的理想特性的影响有以下几点:1.Hd(w)在截止频率的间断点变成了连续的曲线,使得H(w)出现了一个过渡带,它的宽度等于窗函数的主瓣的宽度。由...

对各位语音识别新手的几句建议

■ u010384318 2016年03月14日 22:55 🕮 6399

对各位语音识别新手的建议由于工作的原因,很长时间不能更新博客和管理kaldi群,每天看着kaldi群的人数不断增长,由衷的为从事语音感到自豪,希望在我博客和群里能得到你们想要的,但我同时拒绝伸手党。这...

一个语音识别的例子

一、提要 昨天搞定了SDK中的那个例子,接着想按照文档自己来写一个,但是.....直接用文档里的代码能调出来东西的话,简直就是奇迹。 所以就花了一些时间,完成了这个语音...

Python3.4 语音控制电脑(基于win10语音识别)

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!

登录

注册

X

