ME5751 Robotics Motion Planning

Yizhe Chang chang@cpp.edu

Project Kickoff

Outline

- Basic Idea
- Deliverable

Car simulator!

Car simulator! – No trailer

• We will navigate our car autonomously in a "given" map

- Your task
 - Process the given map
 - Plan a path
 - Navigate to the goal!

R.O.B.O.T. Comics

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

- Rubric 1: Potential map generation
 - At least you should have the inflation layer done
- Rubric 2: Path planner any path planner will work
 - Efficiency
 - Creativity can you make your own planner?
- Rubric 3: Execution of the plan! Frankly, P controller is bad.
 - Any other way to convert the path to motor control?
- Rubric 4: The execution fits the wheel dynamics of the car
 - We cannot turn-in-place anymore

- Rubric 1: Map generation
 - You must modify from a given map to a "navigation map" with at least inflation

- Rubric 2: Path
 - You should show your path on GUI
 - How fast you generate the path?
 - How long the path is?
 - Is there any "counter-intuitive" planning that shows the stupidity of AI?

- Rubric 3: Point tracking
 - We discretize the paths into a set of poses
 - Then, we track the points
 - The P controller is not really great
- Density of Poses?

- Rubric 4: Dynamics of a truck!
 - Truck is different than our robot
 - Show that you have an understanding that how truck (or actual car) wheel works
 - Your simulator should reflect how does the truck move
 - Car width 2L = 16, car axle distance d = 20, wheel diameter r = 3
 - Front-right wheel steering angle $\beta < 40^{\circ}$, no wheel speed should be above 20rad/s (in your program, leave these parameters as constants)

Outline

- Basic Idea
- Deliverable

Report and presentation

- Introduction: Background, extra-curriculum research, etc.
- Detailed methods
 - Do include analysis of truck wheel dynamics
- Performance analysis (not limited to the following)
 - Map processing efficiency, path planning efficiency
 - Robot execution efficiency
 - How your parameters affect the behavior of the robot(such as heuristic function, cost function)
- Discussion
 - Anytime your car fails?
 - Does it perform better/worse than your thoughts
- Tentative time: Dec 05/07, 2022

Competition

- The instructor will prepare 3 maps
- Crashed program will be eliminated directly
- First round: 2 maps will be used. Winners should have:
 - Minimum time (stop watch time) to reach the goal
 - Impossible frames has a penalty (let's discuss the rule later)
 - Visual inspection on the collision
- Second round: devil map for the first 4 groups
 - Same rubrics above
- 5% global bonus for the competition