Bachelorarbeit

mein thema

vorgelegt von

Maximilian Huber

am

Institut für Mathematik der Universität Augsburg

betreut durch

Prof. Dr. Marco Hien

abgegeben am noch nicht

Inhaltsverzeichnis

1	Mat	thematische Grundlagen	1
2	Der 2.1 2.2 2.3 2.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 6
3	Der Meromorphe Zusammenhang		8
	3.1	Systeme von ODEs und Meromorphe Zusammenhänge	8
	3.2	Eigenschaften	
	3.3	Newton Polygon	11
	3.4	Formale Meromorphe Zusammenhänge	12
	3.5	pull-back und push-forward	13
	3.6	Elementare Meromorphe Zusammenhänge	17
4	Levelt-Turrittin-Theorem		18
	4.1	Klassische Definition	18
	4.2	Sabbah's Refined version	18
Ar	nhang	g	21
Α	Auf	teilung von	22

1 Mathematische Grundlagen

Wir betrachten \mathbb{C} hier als Complexe Mannigfaltigkeit mit der Klassischen Topologie. In dieser Arbeit spielen die folgenden Ringe eine große Rolle:

- $\mathbb{C}[x] := \{\sum_{i=1}^N a_i x^i | N \in \mathbb{N} \}$ die einfachen Potenzreihen
- $\mathbb{C}\{x\} := \{\sum_{i=1}^{\infty} a_i x^i | \text{pos. Konvergenz radius}\} = (\mathcal{O}_{\mathbb{C}})_0$ die formalen Potenzreihen mit positivem Konvergenz radius ([HTT07, Chap 5.1.1])
- $\mathbb{C}[x] := \{\sum_{i=1}^{\infty} a_i x^i\}$ die formalen Potenzreihen
- $K := \mathbb{C}(\{x\}) := \mathbb{C}\{x\}[x^{-1}]$ der Ring der Laurent Reihen.
- $\hat{K} := \mathbb{C}((x)) := \mathbb{C}[x][x^{-1}]$ der Ring der formalen Laurent Reihen.

Wobei offensichtlich die Inclulsionen $\mathbb{C}[x] \subseteq \mathbb{C}\{x\} \subseteq \mathbb{C}[x]$ und $K \subseteq \hat{K}$ gelten.

Für $v = (v_1, \dots, v_n)$ ein Vektor, bezeichnet

$${}^tv := \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

den Transponierten Vektor.

Definition 1.1 (Direkte Summe). [Sta12, 4(Categories).5.1] Seien $x, y \in \text{Ob}(\mathcal{C})$, eine *Direkte Summe* oder das *coprodukt* von x und y ist ein Objekt $x \oplus y \in \text{Ob}(\mathcal{C})$ zusammen mit Morphismen $i \in \text{Mor}_{\mathcal{C}}(x, x \oplus y)$ und $j \in \text{Mor}_{\mathcal{C}}(y, x \oplus y)$ so dass die folgende universelle Eigenschaft gilt: für jedes $w \in Ob(\mathcal{C})$ mit Morphismen $\alpha \in \text{Mor}_{\mathcal{C}}(x, w)$ und $\beta \in \text{Mor}_{\mathcal{C}}(y, w)$ existiert ein eindeutiges $\gamma \in \text{Mor}_{\mathcal{C}}(x \oplus y, w)$ so dass das Diagram

kommutiert.

Definition 1.2 (Tensorprodukt). [Sta12, 3(Algebra).11.21]

$$M \times N \longrightarrow M \otimes_R N$$

$$\downarrow \exists ! \gamma$$

$$T$$

Definition 1.3 (Exacte Sequenz). Eine Sequenz

$$\cdots \longrightarrow M_{i-1} \xrightarrow{f_{i-1}} M_i \xrightarrow{f_i} M_{i+1} \longrightarrow \cdots$$

heißt exact, wenn für alle i gilt, dass $\operatorname{im}(f_{i-1}) = \ker f_i$.

Definition 1.4 (Kurze exacte Sequenz). Eine kurze exacte Sequenz ist eine Sequenz

$$0 \longrightarrow M' \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} M'' \longrightarrow 0$$

welche exact ist.

Definition 1.5 (Filtrierung). [Sta12, Def 10.13.1.] [Ell10, Rem 2.5.] Eine aufsteigende Filtrierung F von einem Objekt (Ring) A ist eine Familie von $(F_iA)_{i\in\mathbb{Z}}$ von Unterobjekten (Unterring), so dass

$$0 \subset \cdots \subset F_i \subset F_{i+1} \subset \cdots \subset A$$

und definiere weiter $gr_i^FA:=F_iA/F_{k-1}A$ und damit das zu A mit Filtrierung F assoziierte graduierte Modul

$$gr^F A := \bigoplus_{k \in \mathbb{Z}} gr_i^F A$$
.

Definition 1.6. [Ayo09] [Sab90, Def 3.2.1] Eine Filtrierung heißt *gut*, falls ...

Definition 1.7 (Kommutator). Sei R ein Ring. Für $a, b \in R$ wird

$$[a, b] = a \cdot b - b \cdot a$$

als der Kommutator von a und b definiert.

Proposition 1.8. Sei $k \in \{\mathbb{C}[x], \mathbb{C}\{x\}, \mathbb{C}[x], K, \hat{K}\}$. Sei $\partial_x : k \to k$ der gewohnte Ableitungs-operator nach x, so gilt

1.
$$[\partial_x, x] = \partial_x x - x \partial_x = 1$$

2. $f\ddot{u}r \ f \in k \ ist$

$$[\partial_x, f] = \frac{\partial f}{\partial x}.$$

3. Es gelten die Formeln

$$\begin{split} [\partial_x, x^k] &= kx^{k-1} \\ [\partial_x^j, x] &= j\partial_x^{j-1} \\ [\partial_x^j, x^k] &= \sum_{i \geq 1} \frac{k(k-1)\cdots(k-i+1)\cdot j(j-1)\cdots(j-i+1)}{i!} x^{k-i} \partial_x^{j-i} \end{split}$$

Beweis. 1. Klar.

2. Für ein Testobjekt $g \in k$ ist

$$[\partial_x, f] \cdot g = \partial_x (fg) - f \partial_x g = (\partial_x f)g + \underbrace{f(\partial_x g) - f(\partial_x g)}_{=0} = (\partial_x f)g$$

3. Siehe [AV09, ???]

2 Der Ring \mathcal{D}

Ich werde hier die Weyl Algebra, wie in [Sab90, Chapter 1], in einer Veränderlichen einführen. Ab hier sei $k \in \{\mathbb{C}[x], \mathbb{C}\{x\}, \mathbb{C}[x], K, \hat{K}\}.$

2.1 Weyl-Algebra und der Ring \mathcal{D}

Sei dazu $\frac{\partial}{\partial x} = \partial_x$ der Ableitungsoperator nach x und sei $f \in k$. Man hat die folgende Kommutations-Relation zwischen dem Ableitungsoperator und dem Multiplikations Operator f:

$$\left[\frac{\partial}{\partial x}, f\right] = \frac{\partial f}{\partial x} \tag{2.1}$$

wobei die Rechte Seite die Multiplikation mit $\frac{\partial f}{\partial x}$ darstellt. Dies bedeutet, für alle $g \in \mathbb{C}[x]$ hat man

$$\left[\frac{\partial}{\partial x}, f\right] \cdot g = \frac{\partial fg}{\partial x} - f\frac{\partial g}{\partial x} = \frac{\partial f}{\partial x} \cdot g.$$

Definition 2.1. Definiere nun den Ring \mathcal{D}_k als die Quotientenalgebra der freien Algebra, welche von dem Koeffizientenring in k zusammen mit dem Element ∂_x , erzeugt wird, Modulo der Relation (2.1). Wir schreiben diesen Ring als

- $A_1(\mathbb{C}):=\mathbb{C}[x]<\partial_x>$ falls $k=\mathbb{C}[x],$ und nennen ihn die Weyl Algebra
- $\mathcal{D} := \mathbb{C}\{x\} < \partial_x > \text{falls } k = \mathbb{C}\{x\}$
- $\hat{\mathcal{D}} := \mathbb{C}[x] < \partial_x > \text{falls } k = \mathbb{C}[x]$
- $\mathcal{D}_K := \mathbb{C}(\{x\}) < \partial_x > \text{falls } k = K \stackrel{\text{def}}{=} \mathbb{C}\{x\}[x^{-1}]$
- $\mathcal{D}_{\hat{K}} := \mathbb{C}((x)) < \partial_x > \text{falls } k = \hat{K} \stackrel{\text{def}}{=} \mathbb{C}[x][x^{-1}]$

Bemerkung 2.2. Es gilt $\hat{\mathcal{D}}[x^{-1}] = \mathcal{D}_{\hat{K}}$

Proposition 2.3. [Sab90, Proposition 1.2.3] Jedes Element in \mathcal{D}_k kann auf eindeutige weiße als $P = \sum_{i=0}^n a_i(x) \partial_x^i$, mit $a_i(x) \in k$, geschrieben werden.

Beweis. Siehe [Sab90, Proposition 1.2.3]

Definition 2.4. Sei $P = \sum_{i=0}^{n} a_i(x) \partial_x^i$, wie in Proposition 2.3, gegeben, so definiere

$$\deg P := \max\{i | a_i \neq 0\}$$

als den Grad von P.

In natürlicher Weise erhält man die aufsteigende Filtrierung $F_N \mathcal{D} := \{P \in \mathcal{D} | \deg P \leq N\}$ mit

$$\cdots \subset F_{-1}\mathcal{D} \subset F_0\mathcal{D} \subset F_1\mathcal{D} \subset \cdots \subset \mathcal{D}$$

und erhalte
$$gr_k^F \mathcal{D} = F_N \mathcal{D}/F_{N-1} \mathcal{D} = \{P \in \mathcal{D} | \deg P = N\} \cong \mathbb{C}\{x\}.$$

Beweis. Sei $P \in F_N \mathcal{D}$ so betrachte den Isomorphismus:

$$F_N \mathcal{D}/F_{N-1} \mathcal{D} \to \mathbb{C}\{x\}; [P] = P + F_{N-1} \mathcal{D} \mapsto a_n(x)$$

Proposition 2.5. Es gilt:

$$gr^F \mathcal{D} := \bigoplus_{N \in \mathbb{Z}} gr_N^F \mathcal{D} = \bigoplus_{N \in \mathbb{N}_0} gr_N^F \mathcal{D} \cong \bigoplus_{N \in \mathbb{N}_0} \mathbb{C}\{x\} \cong \mathbb{C}\{x\}[\xi] = \bigoplus_{N \in \mathbb{N}_0} \mathbb{C}\{x\} \cdot \xi^N$$

$$isomorph \ als \$$

also $gr^F \mathcal{D} \cong \bigoplus_{N \in \mathbb{N}_0} \mathbb{C}\{x\} \cdot \xi^N$ als graduierte Ringe.

Beweis.
$$TODO$$

2.2 Alternative Definition / Herangehensweise

[Kas03, Chap 1.1.] Sei X eine 1-Dimensionale Complexe Mannigfaltigkeit und \mathcal{O}_X die Garbe der holomorphen Funktionen auf X. Ein (holomorpher) differential Operator auf X ist ein Garben-Morphismus $P: \mathcal{O}_X \to \mathcal{O}_X$, lokal in der Koordinate x und mit holomorphen Funktionen $a_n(x)$ als

$$(Pu)(x) = \sum_{n \ge 0} a_n(x) \partial_x^n u(x)$$

geschrieben (für $u \in \mathcal{O}_X$). Zusätzlich nehmen wir an, dass $a_n(x) \equiv 0$ für fast alle $n \in \mathbb{N}$ gilt. Wir setzten $\partial_x^n u(x) = \frac{\partial^n u}{\partial x^n}(x)$. Wir sagen ein Operator hat Ordnung m, falls $\forall n \geq m : \alpha_n(x) \equiv 0$. Mit \mathcal{D}_X bezeichnen wir die Garbe von Differentialoperatoren auf X. Die Garbe \mathcal{D}_X hat eine Ring Struktur mittels der Komposition als Multiplikation und \mathcal{O}_X ist ein Unterring von \mathcal{D}_X . Sei Θ_X die Garbe der Vektorfelder über über X. Es gilt, dass Θ_X in \mathcal{D}_X enthalten ist. Bemerke auch, dass Θ_X ein links \mathcal{O}_X -Untermodul, aber kein rechts \mathcal{O}_X -Untermodul ist.

Proposition 2.6. [Ark12, Exmp 1.1] Sei $X = \mathbb{A}^1 = \mathbb{C}$, $\mathcal{O}_X = \mathbb{C}[t]$ und $\Theta_X = \mathbb{C}[t]\partial$. Wobei ∂ als $\partial(t^n) = nt^{n-1}$ wirkt. Dann sind die Differentialoperatoren

$$\mathcal{D}_X = \mathbb{C}[t, \partial], \qquad mit \qquad \partial t - t\partial = 1.$$

Somit stimmt die Alternative Definition schon mal mit der Einfachen überein.

2.3 (Links) \mathcal{D} -Moduln

Da \mathcal{D} ein nichtkommutativer Ring ist, muss man vorsichtig sein und zwischen links unr rechts \mathcal{D} -Moduln unterschiden. Wenn ich im folgendem von \mathcal{D} -Moduln rede, werde ich mich immer, wie auch [Ara, Chapter 1.6.], auf links \mathcal{D} -Moduln beziehen.

Beispiel 2.7 (Einfachste links D-Moduln). [Ark12, Exmp 2.2]

- 1. \mathcal{D} ist ein links und rechts \mathcal{D} -Modul
- 2. $\mathcal{M} = \mathbb{C}[t]$ durch
 - $\partial(f(t)) = \frac{\partial f}{\partial t}$ und $t \cdot f(t) = tf$
 - oder [Gin98, Exmp 3.1.2] $\mathbb{C}[t] = \mathcal{D} \cdot 1 = \mathcal{D}/\mathcal{D} \cdot \partial$.
- 3. $\mathcal{M} = \mathbb{C}[t, t^{-1}]$ mit $t \cdot t^m = t^{m+1}$ und $\partial(t^m) = mt^{m-1}$
- **Beispiel 2.8** (Weiter \mathcal{D} -Moduln). 1. [Ark12, Exmp 2.2] Führe formal, also ohne jeglichen analytischen Hintergurnd, ein Symbol $\exp(\lambda t)$ ein, mit $\partial(f(t)\exp(\lambda t)) = \frac{\partial f}{\partial t}\exp(\lambda t) + f\lambda\exp(\lambda t)$. So ist $\mathcal{M} = \mathcal{O}_X\exp(\lambda t)$ ein \mathcal{D} -Modul.
 - 2. [Gin98, Exmp 3.1.4] Führe formal ein Symbol $\log(x)$ mit den Eigenschaften $\partial \cdot \log(x) = \frac{1}{x}$ ein. Erhalte nun das \mathcal{D} -Modul $\mathbb{C}[x] \log(x) + \mathbb{C}[x, x^{-1}]$. Dieses Modul ist über \mathcal{D} erzeugt durch $\log(x)$ und man hat

$$\mathbb{C}[x]\log(x) + \mathbb{C}[x, x^{-1}] = \mathcal{D} \cdot \log(x) = \mathcal{D}/\mathcal{D}(\partial x \partial).$$

2.4 Lokalisierung eines (holonomen) \mathcal{D} -Moduls

[Sab90, Chap 4.2.] Sei \mathcal{M} ein links \mathcal{D} -Modul. Betrachte \mathcal{M} als $\mathbb{C}\{x\}$ -Modul und definiere darauf

$$\mathcal{M}[x^{-1}] := \mathcal{M} \otimes_{\mathbb{C}\{x\}} K$$

als die Lokalisierung von \mathcal{M} .

Proposition 2.9. [Sab90, Prop 4.2.1.] $\mathcal{M}[x^{-1}]$ bekommt in natürlicher weiße eine \mathcal{D} -Modul Struktur.

Beweis. [Sab90, Prop 4.2.1.] mit:

$$\partial_x(m \otimes x^{-k}) = ((\partial_x m) \otimes x^{-k}) - km \otimes x^{-k-1}$$

3 Der Meromorphe Zusammenhang

3.1 Systeme von ODEs und Meromorphe Zusammenhänge

[HTT07, Chap 5.1.1] Für eine Matrix $A(x) = (a_{ij}(x))_{ij} \in M(K, n \times n)$ betrachte des System von gewöhnlichen Differentialgleichungen (kurz ODEs)

$$\frac{d}{dx}u(x) = A(x)u(x) \tag{3.1}$$

wobei $u(x) = {}^t(u_1(x), \ldots, u_n(x))$ ein Spaltenvektor von unbekannten Funktionen. Wir werden dieses Problem immer in einer Umgebung um $x = 0 \in \mathbb{C}$ betrachten. Als Lösungen von (3.1) betrachten wir holomorphe (but possibly multivalued) auf der punktierten Scheibe $B_{\varepsilon}^* = x \in \mathbb{C} |0 < |x| < \varepsilon$, wobei $\varepsilon > 0$ klein genug sei. Wir sagen $v(x) = {}^t(v_1(x), \ldots, v_n(x))$ ist eine Lösung von (3.1), falls für alle $i \in \{1, \ldots, n\}$ gilt v_i eine holomorphe aber möglicherweise multivalued Funktion von B_{ε}^* nach \mathbb{C} ist (diese Menge werde ich im folgendem wie [HTT07] mit \tilde{K} bezeichnen) und es (3.1) erfüllt.

Bemerkung 3.1. Die Menge der holomorphen aber möglicherweise multivalued Funktionen von B_{ε}^* nach \mathbb{C} werde ich im folgendem, wie auch [HTT07], mit \tilde{K} bezeichnen.

Nun wollen wir dieses Klasische Gebilde in die moderne Sprache der Meromorphen Zusammenhänge übersetzen.

Definition 3.2 (Meromorpher Zusammenhang). Ein Meromorpher Zusammenhang (bei x = 0) ist ein Tuppel $(\mathcal{M}_K, \partial)$ und besteht aus folgenden Daten:

- \mathcal{M}_K , ein endlich dimensionaler K-Vektor Raum
- einer C-linearen Abbildung $\partial: \mathcal{M}_K \to \mathcal{M}_K$, genannt Derivation oder Zusammenhang, welche für alle $f \in K$ und $u \in \mathcal{M}_K$ die Leibnitzregel

$$\partial(fu) = f'u + f\partial u \tag{3.2}$$

erfüllen soll.

Definition 3.3. Seien $(\mathcal{M}_K, \partial_{\mathcal{M}})$ und $(\mathcal{N}_K, \partial_{\mathcal{N}})$ zwei Meromorphe Zusammenhänge. Eine Klineare Abbildung $\varphi : \mathcal{M} \to \mathcal{N}$ heißt Morphismus von Meromorphen Zusammenhängen, falls
sie $\varphi \circ \partial_{\mathcal{M}} = \varphi \circ \partial_{\mathcal{N}}$ erfüllt. In diesem Fall schreiben wir auch $\varphi : (\mathcal{M}_K, \partial_{\mathcal{M}}) \to (\mathcal{N}_K, \partial_{\mathcal{N}})$.

Bemerkung 3.4. 1. Später wird man auf die Angabe von ∂ verichten und einfach \mathcal{M}_K als den Meromorphen Zusammenhang bezeichnen, auch wird manchmal auf die Angabe von K verzichtet.

2. [HTT07, Rem 5.1.2.] Die Bedingung (3.2) ist zur schwächeren Bedingung

$$\partial(fu) = f'u + f\partial u,$$

welche für alle $f \in K$ aber nur für alle $u \in \mathbb{C}\{x\}$ erfüllt sein muss, äquivalent.

Definition 3.5 (Zusammenhangsmatrix). [HTT07, Seite 129] Sei $(\mathcal{M}_K, \partial)$ ein Meromorpher Zusammenhang so wähle eine K-Basis $\{e_i\}_{i\in\{1,\ldots,n\}}$ von \mathcal{M} . Dann ist die $Zusammenhangsmatrix\ bzgl.\ der\ Basis\ \{e_i\}_{i\in\{1,\ldots,n\}}$ die Matrix $A(x)=(a_{ij}(x))\in M(K,n\times n)$ definiert durch

$$a_{ij}(x) = -^t e_i \partial e_j .$$

Also ist, bezüglich der Basis $\{e_i\}_{i\in\{1,\dots,n\}}$, die Wirkung von ∂ beschrieben durch

$$\partial(u) = \partial\Big(\sum_{i=1}^{n} u_i(x)e_i\Big) = \sum_{i=1}^{n} \Big(u'_i(x) - \sum_{j=1}^{n} a_{ij}u_j(x)\Big)e_i.$$

Also ist die Bedingung $\partial u(x) = 0$, für $u(x) \in \sum_{i=1}^n u_i e_i \in \tilde{K} \otimes_K \mathcal{M}$, äquivalent zu der Gleichung

$$u'(x) = A(x)u(x) \tag{3.3}$$

für $u(x) = {}^t(u_1(x), \dots, u_n(x)) \in \tilde{K}^n$. Damit haben wir gesehen, dass jeder Meromorphe Zusammanhang (\mathcal{M}, ∂) ausgestattet mit einer K-Basis $\{e_i\}_{i \in \{1, \dots, n\}}$ von \mathcal{M} zu einem ODE zugeordnet werden kann. Umgekehrt können wir für jede Matrix $A(x) = (a_{ij}(x))$ den assoziierten Meromorphen Zusammenhang $(\mathcal{M}_A, \partial_A)$ angeben, durch

$$\mathcal{M}_A := \bigoplus_{i=1}^n Ke_i$$
, $\partial_A e_i := -\sum_{i=1}^n a_{ij}(x)e_i$.

3.2 Eigenschaften

Lemma 3.6 (Lemma vom zyklischen Vektor). [Sab90, Thm 4.3.3] [AV09, Satz 4.8] Sei \mathcal{M}_K ein Meromorpher Zusammenhang. Es Existiert ein Element $m \in \mathcal{M}_K$ und eine ganze Zahl d so dass $m, \partial_t m, \ldots, \partial_t^{d-1} m$ eine K-Basis von \mathcal{M}_K ist.

Beweis. [AV09, Satz 4.8]
$$\Box$$

Satz 3.7. [Sab90, Thm 4.3.2] Ein Meromorpher Zusammenhang bestimmt ein \mathcal{D}_K -Modul und andersherum.

Beweis. [Sab90, Thm
$$4.3.2$$
]

Lemma 3.8. [AV09, Satz 4.12] [Sab90, Thm 4.3.2] Ist \mathcal{M}_K ein Meromorpher Zusammenhang, dann existiert ein $P \in \mathcal{D}_K$ so dass $\mathcal{M}_K \cong \mathcal{D}_K/\mathcal{D}_K \cdot P$.

Beweis. [AV09, Satz 4.12]

Lemma 3.9. Sei $(\mathcal{M}_K, \partial)$ ein gegebener Meromorpher Zusammenhang, und φ ein Basisisomorphismus von K^r nach \mathcal{M}_K , also in der Situation

$$\mathcal{M}_{K} \xrightarrow{\partial} \mathcal{M}_{K}
\uparrow \qquad \uparrow \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

gilt: $(K^r, \varphi^{-1} \circ \partial \circ \varphi)$ ist ebenfalls ein Meromorpher Zusammenhang.

Beweis. TODO, (3. Treffen)

Lemma 3.10. Sei $\mathcal{M}_K \cong K^r$ ein endlich dimensionaler K-Vektor Raum mit ∂_1 und ∂_2 zwei darauf definierte Derivationen. So gilt, die differenz zweier Derivationen ist K-linear.

Beweis. Seien ∂_1 und ∂_2 zwei Derivationen auf \mathcal{M}_K . Da ∂_1 und ∂_2 \mathbb{C} -linear, ist $\partial_1 - \partial_2$ \mathbb{C} -linear, also muss nur noch gezeigt werden, dass $(\partial_1 - \partial_2)(fu) = f \cdot (\partial_1 - \partial_2)(u) \ \forall f \in K$ und $u \in \mathcal{M}_K$ gilt.

$$(\partial_1 - \partial_2)(fu) = \partial_1(fu) - \partial_2(fu)$$

$$= f'u + f\partial_1 u - f'u - f\partial_2 u$$

$$= \underbrace{f'u - f'u}_{=0} + f \cdot (\partial_1 u - \partial_2 u)$$

$$= f \cdot (\partial_1 - \partial_2)(u)$$

Korollar 3.11. Es sei (K^r, ∂) ein Meromorpher Zusammenhang. So ist $\frac{d}{dz} - \partial : K^r \to K^r$ K-linear, also es existiert eine Matrix $A \in M(r \times r, K)$ mit $\frac{d}{dz} - \partial = A$, also ist $\partial = \frac{d}{dz} - A$.

Definition 3.12 (Transformationsformel). [HTT07, Chap 5.1.1] In der Situation

mit φ, ψ und T K-Linear und $\partial, (\frac{d}{dz} + A)$ und $(\frac{d}{dz} + B)$ \mathbb{C} -Linear, gilt: Der Merom. Zush. $\frac{d}{dz} + A$ auf K^r wird durch Basiswechsel $T \in GL(r, K)$ zu

$$\frac{d}{dz} + (T^{-1} \cdot T' + T^{-1}AT) = \frac{d}{dz} + B$$

Definition 3.13 (Differenziell Äquivalent). Man nennt A und B differenziell Äquivalent $(A \sim B)$ genau dann, wenn es ein $T \in GL(r, K)$ gibt, mit $B = T^{-1} \cdot T' + T^{-1}AT$.

Proposition 3.14. [Sch, Prop 4.1.1] Seien $(\mathcal{M}, \partial_{\mathcal{M}})$ und $(\mathcal{N}, \partial_{\mathcal{N}})$ Meromorphe Zusammenhänge. Durch setzten von

$$\partial(m\otimes n) = \partial_{\mathcal{M}}(m)\otimes n + m\otimes\partial_{\mathcal{N}}(n)$$

als die Wirkung von ∂ auf das K-Modul $\mathcal{M} \otimes_K \mathcal{N}$, wird $(\mathcal{M} \otimes_K \mathcal{N}, \partial)$ zu einem Meromorphen Zusammenhang.

3.3 Newton Polygon

Jedes $P \in \mathcal{D}$ lässt sich eindeutig als

$$P = \sum_{k=0}^{n} \sum_{l=-N}^{\infty} \alpha_{kl} t^{l} \partial_{t}^{k}$$

mit $\alpha_{kl} \in \mathbb{C}$ schreiben. Betrachte das zu P dazugehörige

$$H(P) := \bigcup_{k,l \text{ mit } \alpha_{kl} \neq 0} \left((k, l - k) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) \subset \mathbb{R}^2.$$

Definition 3.15. Das Randpolygon der konvexen Hülle conv(H(P)) von H(P) heißt das Newton Polygon von P und wird als N(P) geschrieben.

Definition 3.16. Die Menge slopes(P) sind die nicht-vertikalen Steigungen von N(P), die sich echt rechts von $\{0\} \times \mathbb{R}$ befinden.

- P heißt regulär singulär : \Leftrightarrow slopes $(P) = \{0\}$, sonst irregulär singulär.
- Schreibe $\mathcal{P}(\mathcal{M}_K)$ für die Menge der zu \mathcal{M}_K gehörigen slopes
- Ein meromorpher Zusammenhang \mathcal{M}_K heißt regulär singulär, falls es ein regulär singuläres P gibt, mit $\mathcal{M}_K \cong \mathcal{D}/\mathcal{D} \cdot P$

Beispiel 3.17. 1. Ein besonders einfaches Beispiel ist $P_1 = t^1 \partial_t^2$. Es ist leicht abzulesen, dass

$$k=2$$
 $l=1$

so dass

$$H(P_1) = \left((2, 1 - 2) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) = \left\{ (u, v) \in \mathbb{R}^2 | u \leq 2, v \geq -1 \right\}.$$

In Abbildung 3.2a ist $H(P_1)$ (blau) sowie das Newton Polygon eingezeichnet. Offensichtlich ist slopes $(P_1) = \{0\}$ und damit ist P_1 regulär singulär.

2. [AV09, Bsp 5.3. 2.] Sei $P_2 = t^4(t+1)\partial_t^4 + t\partial_t^2 + \frac{1}{t}\partial_t + 1$ so kann man daraus das entsprechende Newton Polygon konstruieren. Das Newton Polygon wurde in Abbildung 3.2b visualisiert.

Abbildung 3.1: Zu Beispiel 3.17

Lemma 3.18. [Sab90, 5.1]

- 1. $\mathcal{P}(\mathcal{M}_K)$ ist nicht Leer, wenn $\mathcal{M}_K \neq \{0\}$
- 2. Wenn man eine exacte Sequenz $0 \to \mathcal{M}'_K \to \mathcal{M}_K \to \mathcal{M}''_K \to 0$ hat, so gilt $\mathcal{P}(\mathcal{M}_K) = \mathcal{P}(\mathcal{M}'_K) \cup \mathcal{P}(\mathcal{M}''_K)$.

3.4 Formale Meromorphe Zusammenhänge

Definition 3.19 (Formaler Meromorpher Zusammenhang). Ein formaler Meromorpher Zusammenhang $(\mathcal{M}_{\hat{K}}, \partial)$ besteht, analog wie in Definition 3.2, aus folgenden Daten:

- $\mathcal{M}_{\hat{K}}$, ein endlich dimensionaler \hat{K} -Vektor Raum
- einer \mathbb{C} -linearen Derivation $\partial: \mathcal{M}_{\hat{K}} \to \mathcal{M}_{\hat{K}}$, welche die Leibnitzregel (3.2) erfüllen soll.

Bemerkung 3.20. Alle bisher getroffene Aussagen stimmen auch für formale Meromorphe Zusammenhänge. Im besonderen existiert für jedes $\mathcal{M}_{\hat{K}}$ ein ein $P \in \mathcal{D}_{\hat{K}}$ mit $\mathcal{M}_{\hat{K}} = \mathcal{D}_{\hat{K}}/\mathcal{D}_{\hat{K}} \cdot P$.

Definition 3.21. [Sab07, 1.a] Sei $\varphi \in \mathbb{C}((u))$. Wir schreiben \mathscr{E}^{φ} für den (formalen) Rang 1 Vektorraum $\mathbb{C}((u))$ ausgestattet mit dem Zusammenhang $\nabla = \partial_u + \partial_u \varphi$, im speziellen also $\nabla_{\partial_u} 1 = \partial_u 1 = \varphi'$.

Bemerkung 3.22. [Sab07, 1.a] Es gilt $\mathscr{E}^{\varphi} \cong \mathscr{E}^{\psi}$ genau dann wenn $\varphi \equiv \psi \mod \mathbb{C}[\![u]\!]$.

3.5 pull-back und push-forward

Nach [Sab07, 1.a]. Sei $(\rho : \mathbb{C} \to \mathbb{C}, u \mapsto t := \rho(u)) \in u\mathbb{C}[\![u]\!]$ mit Bewertung $p \geq 1$ und sei \mathcal{M} ein endlich dimensionaler $\mathbb{C}(\!(t)\!)$ Vektorraum ausgestattet mit einem Zusammenhang ∇ .

Definition 3.23 (pull-back). [Sab07, 1.a] Der pull-back (Inverses Bild) $\rho^+\mathcal{M}$ ist der Vektorraum $\rho^*\mathcal{M} = \mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{M}$ mit dem pull-back Zusammenhang $\rho^*\nabla$ definiert durch

$$\partial_u(1\otimes m) := \rho'(u)\otimes\partial_t m. \tag{3.4}$$

Lemma 3.24. Es gilt $\rho^* \mathcal{D}_{\mathbb{C}((t))} = \mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{D}_{\mathbb{C}((t))} \cong \mathcal{D}_{\mathbb{C}((u))}$ mittels

$$\Phi: \mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{D}_{\mathbb{C}((t))} \longrightarrow \bigoplus_{i \in \mathcal{D}_{\mathbb{C}((u))}} \mathcal{D}_{\mathbb{C}((u))}$$
$$f(u) \otimes m(t, \partial_t) \longmapsto f(u) m(\rho(u), \rho'(u)^{-1} \partial_u)$$

Beweis. \Box

Bemerkung 3.25. Das soeben, in Lemma 3.24, definierte Φ erfüllt für $1 \otimes m \in \mathbb{C}(u) \otimes_{\mathbb{C}(t)}$

$$\partial_{u}(1 \otimes m) \stackrel{\text{def}}{=} \rho'(u) \otimes \partial_{t}m$$

$$\stackrel{\Phi}{\mapsto} \underbrace{\rho'(u)\rho'(u)^{-1}}_{=1} \partial_{u}m(\rho(u), \rho'(u)^{-1}\partial_{u})$$

$$= \partial_{u}m(\rho(u), \rho'(u)^{-1}\partial_{u})$$

und somit (3.4) wie gewollt.

Lemma 3.26. In der Situation

$$\mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{D}_{\mathbb{C}((t))} \xrightarrow{\mathrm{id} \otimes_{-} \cdot P(t, \partial_{t})} \mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{D}_{\mathbb{C}((t))}$$

$$\cong \downarrow \Phi$$

$$\mathcal{D}_{\mathbb{C}((u))} \xrightarrow{\alpha} \mathcal{D}_{\mathbb{C}((u))}$$

mit Φ wie in Lemma 3.24 macht $\alpha := \underline{} \cdot P(\rho(u), \rho'(u)^{-1} \partial_u)$ das Diagram kommutativ.

Beweis.
$$\Box$$

Lemma 3.27. Sie $Q \in \mathcal{D}_{\mathbb{C}((u))} \setminus \{0\}$. Eine Abbildung der Form $\mathcal{D}_{\mathbb{C}((u))} \stackrel{\cdot Q}{\Longrightarrow} \mathcal{D}_{\mathbb{C}((u))}$ ist immer surjectiv.

Beweis.
$$\Box$$

Lemma 3.28. In der Situation von Lemma 3.23, mit $\mathcal{M} = \mathcal{D}_{\mathbb{C}((t))}/\mathcal{D}_{\mathbb{C}((t))} \cdot P(t, \partial_t)$ für ein $P(t, \partial_t) \in \mathcal{D}_{\mathbb{C}((t))}$, gilt

$$\rho^* \mathcal{M} \cong \mathcal{D}_{\mathbb{C}((u))} / \mathcal{D}_{\mathbb{C}((u))} \cdot P(\rho(u), \rho'(u)^{-1} \partial_u)$$

also wird der Übergang beschrieben durch

$$t \to \rho(t)$$

 $\partial_t \to \rho'(t)^{-1} \partial_u$

Beweis. Sei $P \in \mathcal{D}_{\mathbb{C}((t))}$ und $\mathcal{M} := \mathcal{D}_{\mathbb{C}((t))}/\mathcal{D}_{\mathbb{C}((t))} \cdot P$. Es ist

$$0 \longrightarrow \mathcal{D}_{\mathbb{C}(\!(t)\!)} \stackrel{-\cdot P}{\longrightarrow} \mathcal{D}_{\mathbb{C}(\!(t)\!)} \longrightarrow \mathcal{M} \longrightarrow 0$$

exact und flach, da über Körper. Deshalb ist auch

$$0 \longrightarrow \mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{D}_{\mathbb{C}((t))} \xrightarrow{\mathrm{id} \otimes_{-} \cdot P} \mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{D}_{\mathbb{C}((t))} \longrightarrow \rho^{*} \mathcal{M} \longrightarrow 0$$

exact. Also mit Φ wie in Lemma 3.24 und $Q(u, \partial_u) := \rho^+ P(t, \partial_t) := P(\rho(u), \rho'(u)^{-1} \partial_u)$ nach Lemma 3.26 ergibt sich

$$0 \longrightarrow \mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{D}_{\mathbb{C}((t))} \xrightarrow{\mathrm{id} \otimes_{-} \cdot P} \mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{D}_{\mathbb{C}((t))} \longrightarrow \rho^{*} \mathcal{M} \longrightarrow 0$$

$$\cong \downarrow \Phi \qquad \qquad \cong \downarrow \Phi$$

$$\mathcal{D}_{\mathbb{C}((u))} \xrightarrow{-\cdot Q} \mathcal{D}_{\mathbb{C}((u))}$$

wobei das Diagram kommutiert. Nun lässt sich die untere Zeile zu einer exacten Sequenz fortsetzen (weil $_\cdot Q$ surjectiv, nach Lemma 3.27)

$$0 \longrightarrow \mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{D}_{\mathbb{C}((t))} \xrightarrow{\mathrm{id} \otimes_{-} \cdot P} \mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{D}_{\mathbb{C}((t))} \longrightarrow \rho^{*}\mathcal{M} \longrightarrow 0$$

$$\cong \downarrow^{\Phi} \qquad \cong \downarrow^{\Phi} \qquad \cong \downarrow^{\varphi} \qquad \qquad \cong \downarrow^{\varphi} \qquad \qquad 0$$

$$0 \longrightarrow \mathcal{D}_{\mathbb{C}((u))} \xrightarrow{-\cdot Q} \mathcal{D}_{\mathbb{C}((u))} \longrightarrow \mathcal{D}_{\mathbb{C}((u))} / \mathcal{D}_{\mathbb{C}((u))} \cdot Q \longrightarrow 0$$

und damit gilt dann

$$\rho^* \mathcal{M} \stackrel{\varphi}{\cong} \mathcal{D}_{\mathbb{C}((u))} / \mathcal{D}_{\mathbb{C}((u))} \cdot Q$$
$$= \mathcal{D}_{\mathbb{C}((u))} / \mathcal{D}_{\mathbb{C}((u))} \cdot P(\rho(u), \rho'(u)^{-1} \partial_u) .$$

Lemma 3.29. Ein pull-back mit $u \mapsto u^p$ multipliziert alle slopes mit p.

Beweis.
$$\Box$$

Beispiel 3.30 (pull-back). Hier nun ein explizit berechneter pull-back.

Wir wollen $\mathcal{M}:=\mathcal{D}/\mathcal{D}\cdot P$ bzgl. $P:=t^3\partial_t^2-4t^2\partial_t-1$ betrachten. Unser Ziel ist es hier ganzzahlige slopes erhalte Es gilt slopes $(P)=\{\frac{1}{2}\}$ (siehe Abbildung 3.3a) und es ist 2 der Hauptnenner aller Slopes. Wende den pull-back $\rho:t\to u^2$, welcher alle slopes mit 2 Multipliziert, an. Zunächst ein paar Nebenrechnungen, damit wir Lemma 3.28 anwenden können.

$$\begin{split} \partial_t &\to \frac{1}{\rho'} \partial_u = \frac{1}{2u} \partial_u \\ \partial_t^2 &\to (\frac{1}{2u} \partial_u)^2 \\ &= \frac{1}{2u} \partial_u (\frac{1}{2u} \partial_u) \\ &= \frac{1}{2u} (-\frac{1}{2u^2} \partial_u + \frac{1}{2u} \partial_u^2) \\ &= \frac{1}{4u^2} \partial_u^2 - \frac{1}{4u^3} \partial_u \end{split}$$

also ergibt einsetzen

$$\rho^{+}P = u^{6}(\frac{1}{4u^{2}}\partial_{u}^{2} - \frac{1}{4u^{3}}\partial_{u}) - 4u^{4}\frac{1}{2u}\partial_{u} - 1$$

$$= \frac{1}{4}u^{4}\partial_{u}^{2} - u^{3}\frac{1}{4u^{3}}\partial_{u} - 4u^{3}\frac{1}{2}\partial_{u} - 1$$

$$= \frac{1}{4}u^{4}\partial_{u}^{2} - 2\frac{1}{4}u^{3}\partial_{u} - 1$$

Also ist $\rho^+P=\frac{1}{4}u^4\partial_u^2-\frac{1}{2}u^3\partial_u-1$ mit slopes $(\rho^+P)=\{1\}$ (siehe Abbildung 3.3b) und somit $\rho^*\mathcal{M}=\mathcal{D}/\mathcal{D}\cdot(\frac{1}{4}u^4\partial_u^2-\frac{1}{2}u^3\partial_u-1)$.

Abbildung 3.2: Zu Beispiel 3.30

Sei \mathcal{N} ein $\mathbb{C}((u))$ -VR mit Verknüpfung, so definiere den push-forward wie folgt.

Definition 3.31 (push-forward). [Sab07, 1.a] Der push-forward (Direktes Bild) $\rho_+\mathcal{N}$ ist

- der $\mathbb{C}((t))$ -VR $\rho_*\mathcal{N}$ ist der \mathbb{C} -Vektor Raum \mathcal{N} mit der $\mathbb{C}((t))$ -Vektor Raum Struktur durch $f(t)\cdot m:=f(\rho(t))m$
- mit der Wirkung ∂_t beschrieben durch $\rho'(u)^{-1}\partial_u$.

Satz 3.32. [Sab07, 1.a] Es gilt die Projektionsformel

$$\rho_{+}(\mathcal{N} \otimes_{\mathbb{C}((u))} \rho^{+} \mathcal{M}) \cong \rho_{+} \mathcal{N} \otimes_{\mathbb{C}((t))} \mathcal{M}. \tag{3.5}$$

Beweis.

$$\rho_{+}(\mathcal{N} \otimes_{\mathbb{C}((u))} \rho^{+}\mathcal{M}) = \rho_{+}(\mathcal{N} \otimes_{\mathbb{C}((u))} (\mathbb{C}((u)) \otimes_{\mathbb{C}((t))} \mathcal{M}))$$

$$\cong \rho_{+}((\mathcal{N} \otimes_{\mathbb{C}((u))} \mathbb{C}((u))) \otimes_{\mathbb{C}((t))} \mathcal{M})$$

$$\cong \rho_{+}(\mathcal{N} \otimes_{\mathbb{C}((t))} \mathcal{M})$$

$$= \rho_{+}\mathcal{N} \otimes_{\mathbb{C}((t))} \mathcal{M}$$

3.6 Elementare Meromorphe Zusammenhänge

Definition 3.33 (Elementarer formaler Zusammenhang). [Sab07, Def 2.1] Zu einem gegebenen $\rho \in u\mathbb{C}[\![u]\!], \varphi \in \mathbb{C}(\!(u)\!)$ und einem endlich dimensionalen $\mathbb{C}(\!(u)\!)$ -Vektorraum R mit regulärem Zusammenhang ∇ , definieren wir den assoziierten Elementaren endlich dimensionalen $\mathbb{C}(\!(t)\!)$ -Vektorraum mit Zusammenhang, durch:

$$El(\rho, \varphi, R) = \rho_{+}(\mathscr{E}^{\varphi} \otimes R)$$

[Sab07, nach Def 2.1] Bis auf isomorphismus hängt $El(\rho, \varphi, R)$ nur von $\varphi \mod \mathbb{C}[\![u]\!]$ ab.

Lemma 3.34. [Sab07, Lem 2.2]

4 Levelt-Turrittin-Theorem

Ab hier werden wir nur noch formale Meromorphe Zusammenhänge betrachten.

4.1 Klassische Definition

Satz 4.1. [Sab90, Thm 5.3.1] Sei $\mathcal{M}_{\hat{K}}$ ein formaler Meromorpher Zusammenhang und sei $\mathcal{P}(\mathcal{M}_{\hat{K}}) = \{L^{(1)}, \ldots, L^{(r)}\}$ die Menge seiner slopes. Es exisitiert eine (bis auf Permutation) eindutige Aufteilung $\mathcal{M}_{\hat{K}} = \bigoplus_{i=1}^r \mathcal{M}_{\hat{K}}^{(i)}$ in formale Meromorphe Zusammenhänge mit $\mathcal{P}(\mathcal{M}_{\hat{K}}^{(i)}) = \{L^{(i)}\}.$

Beweis. [Sab90, Thm 5.3.1]

Satz 4.2. [Sab90, Thm 5.4.7] Sie $\mathcal{M}_{\hat{K}}$ ein formaler Meromorpher Zusammenhang. So gibt es eine ganze Zahl q so dass der Zusammenhang $\pi^*\mathcal{M}_{\hat{K}}=\mathcal{M}_{\hat{L}}$ isomorph zu einer direkten Summe von elementaren Meromorphen Zusammenhänge ist.

Beispiel 4.3. Sei hier $P = \frac{1}{4}u^4\partial_u^2 - \frac{1}{2}u^3\partial_u - 1$, wie in Beispiel ??. Wir wollen $\mathcal{D}/\mathcal{D} \cdot P$ mittels des Levelt-Turrittin-Theorems Zerlegen.

4.2 Sabbah's Refined version

Sei $\rho: u \mapsto u^p$ und $\mu_{\xi}: u \mapsto \xi u$.

Lemma 4.4. [Sab07, Lem 2.4] Für alle $\varphi \in \mathbb{C}((u))$ gilt

$$\rho^+\rho_+\mathscr{E}^\varphi = \bigoplus_{\xi^p=1} \mathscr{E}^{\varphi\circ\mu_\xi} \ .$$

Beweis. Wir wählen eine $\mathbb{C}((u))$ Basis $\{e\}$ von \mathscr{E}^{φ} und zur vereinfachung nehmen wir an, dass $\varphi \in u^{-1}\mathbb{C}[u^{-1}]$ [1].

Dann ist die Familie $e, ue, ..., u^{p-1}e$ eine $\mathbb{C}((t))$ -Basis von $\rho_+\mathscr{E}^{\varphi}$.

Setze $e_k = u^{-k} \otimes_{\mathbb{C}((t))} u^k e$. Dann ist die Familie $\mathbf{e} = (e_0, ..., e_{p-1})$ eine $\mathbb{C}((u))$ -Basis von $\rho^+ \rho_+ \mathscr{E}^{\varphi}$. Zerlege nun $u\varphi'(u) = \sum_{j=0}^{p-1} u^j \psi_j(u^p) \in u^{-2}\mathbb{C}[u^{-1}]$ mit $\psi_j \in \mathbb{C}[t^{-1}]$ für alle j > 0 und $\psi_0 \in t^{-1}\mathbb{C}[u^{-1}]$ (siehe: Anhang A).

 $[\]overline{[1]}\mathscr{E}^{\varphi} = \mathscr{E}^{\psi} \Leftrightarrow \varphi \equiv \psi \mod \mathbb{C}[[u]]$

Sei P die Permutationsmatrix, definiert durch $\mathbf{e} \cdot P = (e_1, ..., e_{p-1}, e_0)^{[2]}$. Es gilt:

$$u\partial_u e_k = \sum_{i=0}^{p-1-k} u^i \psi_i(u^p) e_{k+1} + \sum_{i=p-k}^{p-1} u^i \psi_i(u^p) e_{k+i-p}$$

denn:

$$u\partial_{u}e_{k} = u\partial_{u}(u^{-k} \otimes_{\mathbb{C}((t))} u^{k}e)$$

$$= u(-ku^{-k-1} \otimes_{\mathbb{C}((t))} u^{k}e + pu^{p-1}u^{-k} \otimes_{\mathbb{C}((t))} \partial_{t}(\underbrace{u^{k}e}))$$

$$= -ku^{-k} \otimes_{\mathbb{C}((t))} u^{k}e + pu^{p-1}u^{-k+1} \otimes_{\mathbb{C}((t))} (pu^{p-1})^{-1}(ku^{k-1}e + u^{k}\varphi'(u)e)$$

$$= -ku^{-k} \otimes_{\mathbb{C}((t))} u^{k}e + u^{-k+1} \otimes_{\mathbb{C}((t))} (ku^{k-1}e + u^{k}\varphi'(u)e)$$

$$= -ku^{-k} \otimes_{\mathbb{C}((t))} u^{k}e + u^{-k+1} \otimes_{\mathbb{C}((t))} ku^{k-1}e + u^{-k+1} \otimes_{\mathbb{C}((t))} u^{k}\varphi'(u)e$$

$$= u^{-k} \otimes_{\mathbb{C}((t))} u^{k+1}\varphi'(u)e$$

$$= \sum_{i=0}^{p-1} u^{-k} \otimes_{\mathbb{C}((t))} u^{k}u^{i}\underbrace{\psi_{i}(u^{p})e}_{\in\mathbb{C}((t))}$$

$$= \sum_{i=0}^{p-1} u^{i}\psi_{i}(u^{p})(u^{-k} \otimes_{\mathbb{C}((t))} u^{k}e)$$

$$= \sum_{i=0}^{p-1-k} u^{i}\psi_{i}(u^{p})e_{k+1} + \sum_{i=p-k}^{p-1} u^{i}\psi_{i}(u^{p})e_{k+i-p}$$

so dass gilt:

$$u\partial_u \mathbf{e} = \mathbf{e} \left[\sum_{j=0}^{p-1} u^j \psi_j P^j \right]$$

denn:

$$u\partial_{u}\mathbf{e} = (u\partial_{u}e_{0}, ..., u\partial_{u}e_{p-1})$$

$$= \left(\sum_{i=0}^{p-1-k} u^{i}\psi_{i}(u^{p})e_{k+1} + \sum_{i=p-k}^{p-1} u^{i}\psi_{i}(u^{p})e_{k+i-p}\right)_{k\in\{0,..,p-1\}}$$

$$\frac{1}{[2]}P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ & \ddots & \ddots \\ & & 1 & 0 \end{pmatrix}$$

$$=\mathbf{e}\begin{pmatrix} u^{p-1}\psi_{p-1}(u^p) & \cdots & u^3\psi_3(u^p) & u^2\psi_2(u^p) & u^1\psi_1(u^p) \\ u^1\psi_1(u^p) & u^{p-1}\psi_{p-1}(u^p) & \ddots & u^2\psi_2(u^p) \\ u^2\psi_2(u^p) & u^1\psi_1(u^p) & \ddots & u^3\psi_3(u^p) \\ u^3\psi_3(u^p) & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & u^1\psi_1(u^p) & u^{p-1}\psi_{p-1}(u^p) & \vdots \\ u^{p-2}\psi_{p-2}(u^p) & \cdots & u^3\psi_3(u^p) & u^2\psi_2(u^p) & u^1\psi_1(u^p) & u^{p-1}\psi_{p-1}(u^p) \end{pmatrix}$$

$$=\mathbf{e}[\sum_{j=0}^{p-1}u^j\psi_j(u^p)P^j]$$

Die Wirkung von ∂_u auf die Basis von $\rho^+\rho_+\mathscr{E}^{\varphi(u)}$ ist also Beschrieben durch:

$$\partial_u \mathbf{e} = \mathbf{e} \left[\sum_{j=0}^{p-1} u^{j-1} \psi_j P^j \right]$$

Diagonalisiere nun
$$TPT^{-1} = D = \begin{pmatrix} \xi^0 & & & \\ & \xi^1 & & \\ & & \ddots & \\ & & & \xi^{p-1} \end{pmatrix}^{[3]}$$
, mit $\xi^p = 1$ und $T \in Gl_p(\mathbb{C})$.

So dass gilt:

$$T[\sum_{j=0}^{p-1} u^{j-1} \psi_{j}(u^{p}) P^{j}] T^{-1} = [\sum_{j=0}^{p-1} u^{j-1} \psi_{j}(u^{p}) (TPT^{-1})^{j}]$$

$$= [\sum_{j=0}^{p-1} u^{j-1} \psi_{j}(u^{p}) D^{j}]$$

$$= \begin{pmatrix} \sum_{j=0}^{p-1} u^{j-1} \psi_{j} \\ & \sum_{j=0}^{p-1} u^{j-1} \psi_{j} (\xi^{1})^{j} \\ & & \ddots \\ & & \sum_{j=0}^{p-1} u^{j-1} \psi_{j} (\xi^{p-1})^{j} \end{pmatrix}$$

$$= \begin{pmatrix} \sum_{j=0}^{p-1} u^{j-1} \psi_{j} \\ & & \ddots \\ & & \sum_{j=0}^{p-1} (u\xi^{1})^{j-1} \psi_{j} \xi^{1} \\ & & \ddots \\ & & \sum_{j=0}^{p-1} (u\xi^{p-1})^{j-1} \psi_{j} \xi^{p-1} \end{pmatrix}$$

$$= \begin{pmatrix} \varphi'(u) \\ & & \varphi'(\xi u) \xi^{1} \\ & & \ddots \\ & & & \varphi'(\xi^{p-1} u) \xi^{p-1} \end{pmatrix}$$

 $^{^{[3]}}$ Klar, da mipo X^p-1

Wie sieht denn die Wirkung auf die Basis von $\bigoplus_{\xi^p=1} \mathscr{E}^{\varphi\circ\mu_\xi} \stackrel{\Phi}{\cong} \mathbb{C}((u))^p$ aus?

$$\partial_{u} \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} \partial_{u} 1 \\ \partial_{u} 0 \\ \vdots \\ \partial_{u} 0 \end{pmatrix} = \begin{pmatrix} \varphi'(u) \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\partial_{u} \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} \partial_{u} 0 \\ \partial_{u} 1 \\ \partial_{u} 0 \\ \vdots \\ \partial_{u} 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \varphi'(u) \\ 0 \\ \vdots \\ 0 \end{pmatrix} \xrightarrow{\Phi} \begin{pmatrix} 0 \\ \varphi'(u)\xi \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Also kommutiert das Diagram:

Und deshalb ist klar ersichtlich das auf $\rho^+\rho_+\mathscr{E}^{\varphi(u)}$ und $\sum_{j=0}^{p-1}u^{j-1}\psi_jD^j$ ein Äquivalenter Meromorpher Zusammenhang definiert ist.

Proposition 4.5. [Sab07, Prop 3.1] Jeder irreduzible endlich dimensionale formale Meromorphe Zusammenhang $\mathcal{M}_{\hat{K}}$ ist isomorph zu $\rho_+(\mathscr{E}^{\varphi}\otimes L)$, wobei $\varphi\in u^{-1}\mathbb{C}[u^-1]$, $\rho: u\mapsto t=u^p$ mit grad $p\geq 1$ minimal bzgl. φ (siehe [Sab07, Rem 2.8]), und L ist ein Rang 1 $\mathbb{C}((u))$ -Vektor Raum mit regulärem Zusammenhang.

Beweis. [Sab07, Prop
$$3.1$$
]

Satz 4.6 (Refined Turrittin-Levelt). [Sab07, Cor 3.3] Jeder endlich dimensionale Meromorphe Zusammenhang $\mathcal{M}_{\hat{K}}$ kann in eindutiger weiße geschrieben werden als direkte Summe $\bigoplus El(\rho, \varphi, R) = \rho_+(\mathscr{E}^{\varphi}) \otimes R$, so dass jedes $\rho_+\mathscr{E}^{\varphi}$ irreduzibel ist und keine zwei $\rho_+\mathscr{E}^{\varphi}$ isomorph sind.

Beweis. [Sab07, Cor 3.3]
$$\Box$$

A Aufteilung von ...

Sei $\varphi \in u^{-1}\mathbb{C}[u^{-1}]$, so ist $\varphi' \coloneqq \sum_{i=2}^N a_{-i}u^{-i} \in u^{-2}\mathbb{C}[u^{-1}]$ also $u\varphi'(u) = \sum_{i=1}^N a_{-i-1}u^{-i} \in u^{-1}\mathbb{C}[u^{-1}]$, welches wir zerlegen wollen. Zerlege also $u\varphi'(u) = \sum_{j=0}^{p-1} u^j \psi_j(u^p)$ mit $\psi_j \in \mathbb{C}[t^{-1}]$ für alle j > 0 und $\psi_0 \in t^{-1}\mathbb{C}[t^{-1}]$:

 $u\varphi'(u) = a_{-2}u^{-1} + \dots + a_{-p}u^{-(p-1)} + a_{-(p+1)}u^{-\tilde{p}} + a_{-(p+2)}u^{-(p+1)} + \dots + a_{-2p}u^{-(2p-1)} + a_{-(2p+1)}u^{-2p} + a_{-(2p+3)}u^{-(2p+1)} + \dots$ $-\psi_0(u^p)$ $u_{p-1}\psi_{p-1}(u^p) = 1$

also:

$$\psi_0(u^p) = a_{-(p+1)}u^{-p} + a_{-(2p+1)}u^{-2p} + \dots$$

$$\psi_1(u^p) = a_{-p}u^{-p} + a_{-2p}u^{2p} + \dots$$

$$\vdots$$

$$\psi_{p-1}(u^p) = a_{-2}u^p + a_{-(p+2)}u^{2p} + \dots$$

Literaturverzeichnis

- [Ara] D. Arapura, Notes on d-modules and connections with hodge theory, Notizen?
- [Ark12] S. Arkhipov, *D-modules*, unpublished lecture notes available online, May 2012.
- [AV09] B. Alkofer and F. Vogl, Lineare differentialgleichungen und deren fouriertransformierte aus algebraischer sicht / lineare differentialgleichungen aus algebraischer sicht, 2009.
- [Ayo09] J. Ayoub, Introduction to algebraic d-modules, Vorlesungsskript, 2009.
- [BD04] A. Beilinson and V.G. Drinfeld, *Chiral algebras*, Colloquium Publications American Mathematical Society, no. Bd. 51, American Mathematical Society, 2004.
- [Cou95] S.C. Coutinho, A primer of algebraic d-modules, London Mathematical Society Student Texts, Cambridge University Press, 1995.
- [Ell10] C. Elliott, *D-modules*, unpublished notes available online, April 2010.
- [Gin98] V. Ginzburg, Lectures on d-modules, Vorlesungsskript, 1998.
- [Har77] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, Springer, 1977.
- [HTT07] R. Hotta, K. Takeuchi, and T. Tanisaki, *D-modules, perverse sheaves, and representation theory*, Progress in Mathematics, Birkhäuser Boston, 2007.
- [Kas03] M. Kashiwara, D-modules and microlocal calculus, Translations of Mathematical Monographs, American Mathematical Society, 2003.
- [MR89] H. Matsumura and M. Reid, *Commutative ring theory*, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1989.
- [Sab90] C. Sabbah, Introduction to algebraic theory of linear systems of differential equations, Vorlesungsskript, 1990.
- [Sab07] ______, An explicit stationary phase formula for the local formal Fourier-Laplace transform, June 2007.
 - [Sch] J.P. Schneiders, An introduction to d-modules.
- [Sta12] The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu, December 2012.