Introduction to Classification

Omics analysis – cross validation AMED3002

Possible input data?

DNA RNA Protein

Samples (n)

Somatic Change
Binary, continuous
or integer

Samples (n)

Gene expression continuous measurements

Genes (p2)

Samples (n)

Protein
continuous
measurements
~ missing values

Proteins (p3)

Samples (n)

Variables (p4)
Clinical
continuous and
factors

Somatic Change

Gene expression

Protein

Clinical

Gene expression

Protein

Gene expression

Protein

Clustering and discrimination

 Unsupervised: classes unknown, want to discover them from the data (cluster analysis)

 Supervised: classes are predefined, want to use a (training or learning) set of labeled objects to form a classifier for classification of future observations

Classification – supervise learning

History

Time Line of Machine Learning Algorithms

Diagram of performance assessment

Machine learning cures cancer... really?

Supervised learning in practice

How good is my classifier? How good is my model?

Common Splitting Strategies

Using Classification in R Samples

Genes (features) (p)

Genes

Omics Data

Samples (n)

Omics Data

Coding in R

A little bit more on classifier

Maximum likelihood (ML) discriminant rule

Consider the extremely rare situation where the exact distributions of the populations are known.

For known class conditional densities $\mathbf{p_g}(\mathbf{x}) = \mathbf{p}(\mathbf{x} \mid \mathbf{Y} = \mathbf{g})$, the ML rule predicts the class of an observation x by that which gives the largest likelihood to

$$x: \mathbf{C}(x) = \operatorname{argmax}_{\mathbf{g}} \mathbf{p}_{\mathbf{g}}(x).$$

That is, if we write the p.d.f. of the gth population as Lg(x), than the ML rule says that one should allocate x to population g where

$$L_{g}(x) = max_{i}L_{i}(x)$$
:

Special case when features have Gaussian (Normal) distribution.

Special case when G=2 (two classes)

For G = 2 classes, ML discriminant rule becomes:

- allocate x to population 1,C(x) = 1 if log L1(x) > log L2(x) and
- allocate x to population 2,C(x) = 1 if $\log L1(x) < \log L2(x)$.

ML discriminant rules - special cases

Gaussian ML discriminant rules

For multivariate Gaussian (normal) class densities $\mathbf{X}|\mathbf{Y}=\mathbf{k}\sim N(\mu_k,\ \Sigma_k)$, the ML classifier is

$$C(\mathbf{X}) = \operatorname{argmin}_{k} \{ (\mathbf{X} - \mu_{k}) \ \Sigma_{k}^{-1} (\mathbf{X} - \mu_{k})' + \log | \ \Sigma_{k} | \}$$

In general, this is a quadratic rule (Quadratic discriminant analysis, or QDA)

In practice, population mean vectors μ_k and covariance matrices Σ_k are estimated by corresponding sample quantities

[DLDA] Diagonal linear discriminant analysis class densities have the same diagonal covariance matrix ∇ = diag($s_1^2, ..., s_p^2$)

ML discriminant rules - special cases

[DLDA]
Diagonal linear discriminant analysis
class densities have the same diagonal
covariance matrix ∇ = diag($s_1^2, ..., s_p^2$)

[DQDA]
Diagonal quadratic discriminant analysis)
class densities have different diagonal
covariance matrix $\nabla_{\mathbf{k}}$ = diag(\mathbf{s}_{1k}^{2} , ..., \mathbf{s}_{pk}^{2})

ML and LDA

The linear discriminant rules described above are classical and widely used classification tools.

- Simple and intuitive: the predicted class of a test case is the class with the closest mean (using the Mahalanobis metric).
- Easy to implement: the partition has linear boundaries.

However, LDA has a number of obvious limitations:

- Linear or even quadratic discriminant boundaries may not be flexible enough.
- Features may have mixture distributions within classes.
- In the case of too many features, performance may degrade rapidly due to over parameterization and high variance of parameter estimates.

Classification tree

Binary tree structured classifiers are constructed by repeated splits of subsets (nodes) of the measurement space X into two descendant subsets, starting with X itself. Each terminal subset is assigned a class label and the resulting partition of X corresponds to the classier.

Three main aspects of tree construction:

- (i) the selection of the splits;
- (ii) the decision to declare a node terminal or to continue splitting;
- (iii) the assignment of each terminal node to a class.

Different tree classifiers use different approaches to deal with these three issues. Here, we use CART Classification And Regression Trees of Breiman et al. (1984).

Classification trees

1. Splitting rule. At each node, choose the split that maximizes the decrease in impurity.

E.g. of impurity functions: Gini index $\phi(p_1, \ldots, p_G) = \sum_{k \neq l} p_k p_l = 1 - \sum_k p_k^2$, entropy, and twoing rule.

- 2. Split stopping rule. Grow a large tree, selectively **prune** the tree upward, getting a decreasing sequence of subtrees. Use **cross validation** to identify the subtree having the lowest estimated misclassification rate.
- 3. Class assignment rule. For each terminal node, choose the class that minimizes the resubstitution estimate of the misclassification probability, given that a case falls into this node.

Classification tree

Draw your CV loop

Parameter selection

Full CV

