Exercice 14.4-1

$$T(n) = 1 + \sum_{i=0}^{n-1} T(i) = T(n-1) + 1 + \sum_{i=0}^{n-2} T(i) = T(n-1) + T(n-1) = 2 * T(n-1), \forall n > 0 (1)$$

$$T(0) = 1(2)$$

Apply product from both sides:

$$(1) \Rightarrow \prod_{i=1}^{n} T(i) = \prod_{i=1}^{n} [2 * T(i-1)] = 2^{n} \prod_{i=1}^{n} T(i-1), \forall n > 0$$
(3)

$$(3) \Rightarrow T(n) = 2^n * T(0) = 2^n, \forall n > 0$$

$$(2) \Rightarrow T(n) = 2^n, \forall n \ge 0$$

Exercice 14.4-1

- a. For any given year i, let j_0 be the investment with max return.
- \rightarrow Its obvious that placing all the money in that year on investment j_0 will exceed any other split.
 - b. Once the year i investment is made and maximized, the investment choice for next year doesnt depend on the previous because the transition and staying costs dont depend on the investment but are fixed $(f_1 \text{ and } f_2)$.
- → Therefore, the algorithm exhibits optimal substructure
 - c. Let:
 - i. K_i be the capital realized at the end of year i
 - ii. r_i be the maximum return for the year i

Then we have for the first year i=0: $K_0 = 10K$ * r_0

any consecutive year i: $K_{i+1} = K_i + max\{(K_i - f_1) * r_{i'} (K_i - f_2) * r_{i+1}\}$