Academy of Technology

Department of CSE and IT(6th SEM)

DIGITAL IMAGE PROCESSING (PEC-IT601D)

1 mark question

- 1. To convert a continuous sensed data into Digital form, which of the following is required?
 - a) Sampling
 - b) Quantization
 - c) Both Sampling and Quantization
 - d) Neither Sampling nor Quantization
- 2. To convert a continuous image f(x, y) to digital form, we have to sample the function in
 - a) Coordinates
 - b) Amplitude`
 - c) All of the mentioned
 - d) None of the mentioned
- 3. For a continuous image f(x, y), how could be Sampling defined?
 - a) Digitizing the coordinate values
 - b) Digitizing the amplitude values
 - c) All of the mentioned
 - d) None of the mentioned
- 4. For a continuous image f(x, y), Quantization is defined as
 - a) Digitizing the coordinate values
 - b) Digitizing the amplitude values
 - c) All of the mentioned
 - d) None of the mentioned
- 5. Validate the statement:
 - "For a given image in one-dimension given by function f(x, y), to sample the function we take equally spaced samples, superimposed on the function, along a horizontal line. However, the sample values still span (vertically) a continuous range of gray-level values. So, to convert the given function into a digital function, the gray-level values must be divided into various discrete levels."
 - a) True
 - b) False
- 6. How is sampling been done when an image is generated by a single sensing element combined with mechanical motion?
 - a) The number of sensors in the strip defines the sampling limitations in one direction and Mechanical motion in the other direction.
 - b) The number of sensors in the sensing array establishes the limits of sampling in both directions.
 - c) The number of mechanical increments when the sensor is activated to collect data.
 - d) None of the mentioned.
- 7. How does sampling gets accomplished with a sensing strip being used for image acquisition?

 a) The number of sensors in the strip establishes the sampling limitations in one image direction and Mechanical motion in the other direction
 - b) The number of sensors in the sensing array establishes the limits of sampling in both directions

- c) The number of mechanical increments when the sensor is activated to collect data d) None of the mentioned
 8. How is sampling accomplished when a sensing array is used for image acquisition?
 a) The number of sensors in the strip establishes the sampling limitations in one image direction and Mechanical motion in the other direction
 - b) The number of sensors in the sensing array defines the limits of sampling in both directions
 - c) The number of mechanical increments at which we activate the sensor to collect data
 - d) None of the mentioned
- 9. The quality of a digital image is well determined by _____
 - a) The number of samples
 - b) The discrete gray levels
 - c) All of the mentioned
 - d) None of the mentioned
- 10. What is the first and foremost step in Image Processing?
 - a) Image restoration
 - b) Image enhancement
 - c) Image acquisition
 - d) Segmentation
- 11. In which step of processing, the images are subdivided successively into smaller regions?
 - a) Image enhancement
 - b) Image acquisition
 - c) Segmentation
 - d) Wavelets
- 12. What is the next step in image processing after compression?
 - a) Wavelets
 - b) Segmentation
 - c) Representation and description
 - d) Morphological processing
- 13. What is the step that is performed before color image processing in image processing?
 - a) Wavelets and multi resolution processing
 - b) Image enhancement
 - c) Image restoration
 - d) Image acquisition
- 14. How many number of steps are involved in image processing?
 - a) 10
 - b) 9
 - c) 11
 - d) 12
- 15. What is the expanded form of JPEG?
 - a) Joint Photographic Expansion Group
 - b) Joint Photographic Experts Group
 - c) Joint Photographs Expansion Group
 - d) Joint Photographic Expanded Group
- 16. Which of the following step deals with tools for extracting image components those are useful in the representation and description of shape?
 - a) Segmentation
 - b) Representation & description
 - c) Compression
 - d) Morphological processing
- 17. In which step of the processing, assigning a label (e.g., "vehicle") to an object based on its descriptors is done?

- a) Object recognition
- b) Morphological processing
- c) Segmentation
- d) Representation & description
- 18. What role does the segmentation play in image processing?
 - a) Deals with extracting attributes that result in some quantitative information of interest
 - b) Deals with techniques for reducing the storage required saving an image, or the bandwidth required transmitting it
 - c) Deals with partitioning an image into its constituent parts or objects
 - d) Deals with property in which images are subdivided successively into smaller regions
- 19. The spatial coordinates of a digital image (x,y) are proportional to:
 - a) Position
 - b) Brightness
 - c) Contrast
 - d) Noise
- 20. Among the following image processing techniques which is fast, precise and flexible.
 - a) Optical
 - b) Digital
 - c) Electronic
 - d) Photographic
- 21. An image is considered to be a function of a(x,y), where a represents:
 - a) Height of image
 - b) Width of image
 - c) Amplitude of image
 - d) Resolution of image
- 22. What is pixel?
 - a) Pixel is the elements of a digital image
 - b) Pixel is the elements of an analog image
 - c) Pixel is the cluster of a digital image
 - d) Pixel is the cluster of an analog image
- 23. The range of values spanned by the gray scale is called:
 - a) Dynamic range
 - b) Band range
 - c) Peak range
 - d) Resolution range
- 24. Which is a colour attribute that describes a pure colour?
 - a) Saturation
 - b) Hue
 - c) Brightness
 - d) Intensity
- 25. Which gives a measure of the degree to which a pure colour is diluted by white light?
 - a) Saturation
 - b) Hue
 - c) Intensity
 - d) Brightness
- 26. Which means the assigning meaning to a recognized object.
 - a) Interpretation
 - b) Recognition
 - c) Acquisition
 - d) Segmentation

27.	A typical size comparable in quality to monochromatic TV image is of size. a) 256 X 256
	b) 512 X 512
	c) 1920 X 1080
	d) 1080 X 1080
28	The number of grey values are integer powers of:
20.	a) 4
	b) 2
	c) 8
	d) 1
20	A continuous image is digitised at points.
۷).	a) random
	b) vertex
	c) contour
	d) sampling
30	The transition between continuous values of the image function and its digital equivalent is
50.	called
	a) Quantisation
	b) Sampling
	c) Rasterisation
	d) None of the Mentioned
31.	Images quantised with insufficient brightness levels will lead to the occurrence of
	8 1
	a) Pixillation
	b) Blurring
	c) False Contours
	d) None of the Mentioned
32.	The smallest discernible change in intensity level is called
	a) Intensity Resolution
	b) Contour
	c) Saturation
	d) Contrast
33.	What is the tool used in tasks such as zooming, shrinking, rotating, etc.?
	a) Sampling
	b) Interpolation
	c) Filters
	d) None of the Mentioned
34.	The type of Interpolation where for each new location the intensity of the immediate pixel is
	assigned is
	a) bicubic interpolation
	b) cubic interpolation
	c) bilinear interpolation
	d) nearest neighbour interpolation
35.	The type of Interpolation where the intensity of the FOUR neighbouring pixels is used to
	obtain intensity a new location is called
	a) cubic interpolation
	b) nearest neighbour interpolation
	c) bilinear interpolation
	d) bicubic interpolation
36.	Dynamic range of imaging system is a ratio where the upper limit is determined by

a) Saturation

	b) Noise c) Brightness
	d) Contrast
37.	For Dynamic range ratio the lower limit is determined by
	a) Saturation
	b) Brightness
	c) Noise
	d) Contrast
38.	Quantitatively, spatial resolution cannot be represented in which of the following ways
	a) line pairs
	b) pixels
	c) dots
	d) none of the Mentioned
39.	At what points, a continuous image is digitized?
	a)Sampling
	b) Vertex
	c) Contour
	d) Random
40.	represents the transition between image function's continuous values and its digital
	equivalent.
	•
	equivalent. a) Rasterization
	•
	a) Rasterization b) Quantization
	a) Rasterization
	a) Rasterization b) Quantization
(a) Rasterizationb) Quantizationc) Sampling
	a) Rasterizationb) Quantizationc) Sampling
41.	a) Rasterization b) Quantization c) Sampling d) None of the above The dynamic range of the imaging system is a quantitative relation where the upper limit can
41.	a) Rasterization b) Quantization c) Sampling d) None of the above
41.	a) Rasterization b) Quantization c) Sampling d) None of the above The dynamic range of the imaging system is a quantitative relation where the upper limit can determined by
41.	a) Rasterization b) Quantization c) Sampling d) None of the above The dynamic range of the imaging system is a quantitative relation where the upper limit can
41.	a) Rasterization b) Quantization c) Sampling d) None of the above The dynamic range of the imaging system is a quantitative relation where the upper limit can determined by
41.	a) Rasterization b) Quantization c) Sampling d) None of the above The dynamic range of the imaging system is a quantitative relation where the upper limit can determined by a)Brightness
41.	a) Rasterization b) Quantization c) Sampling d) None of the above The dynamic range of the imaging system is a quantitative relation where the upper limit can determined by a)Brightness
41.	a) Rasterization b) Quantization c) Sampling d) None of the above The dynamic range of the imaging system is a quantitative relation where the upper limit can determined by a)Brightness b)Contrast
41.	a) Rasterization b) Quantization c) Sampling d) None of the above The dynamic range of the imaging system is a quantitative relation where the upper limit can determined by a)Brightness b)Contrast

42.	The	e lower limit of the dynamic range ratio can be determined by
a.		Brightness
	b.	Contrast
	c.	Saturation
	d.	Noise
43.	Wh	at is meant by the section of the real plane that the image coordinates have spanned?
a.		Coordinate Axis
	b.	Plane of Symmetry
	c.	Spatial Domain
	d.	None of the above
44	. At	what points, a continuous image is digitized?
a.		Sampling
	b.	Vertex
	c.	Contour
	d.	Random
		represents the transition between image function's continuous values and its digital ent.
a.		Rasterization
	b.	Quantization
	c.	Sampling
	d.	None of the above
		e dynamic range of the imaging system is a quantitative relation where the upper limit can be ined by
a.		Brightness
	b.	Contrast
	c.	Saturation
	d.	Noise
47.	Th	e lower limit of the dynamic range ratio can be determined by
a.		Brightness

b. Contrast
c. Saturation
d. Noise
48. The most familiar single sensor used for Image Acquisition is
a) Microdensitometer
b) Photodiode
c) CMOS
d) None of the Mentioned
49. A geometry consisting of in-line arrangement of sensors for image acquisition
a) A photodiode
b) Sensor strips
c) Sensor arrays
d) CMOS
50. The section of the real plane spanned by the coordinates of an image is called the
a) Spacial Domain
b) Coordinate Axes
c) Plane of Symmetry
d) None of the Mentioned
51. The difference is intensity between the highest and the lowest intensity levels in an image is
a) Noise
b) Saturation
c) Contrast
d) Brightness
52 is the effect caused by the use of an insufficient number of intensity levels in
smooth areas of a digital image.
a) Gaussian smooth
b) Contouring
c) False Contouring
d) Interpolation
53. The process of using known data to estimate values at unknown locations is called
a) Acquisition

- c) Pixelation
- d) None of the Mentioned
- 54. Which of the following is NOT an application of Image Multiplication?
- a) Shading Correction
- b) Masking
- c) Pixelation
- d) Region of Interest operations
- 55. The procedure done on a digital image to alter the values of its individual pixels is
- a) Neighbourhood Operations
- b) Image Registration
- c) Geometric Spacial Transformation
- d) Single Pixel Operation
- 56. The histogram of a digital image with gray levels in the range [0, L-1] is represented by a discrete function:
- a) $h(r_k)=n_k$
- b) $h(r_k)=n/n_k$
- $c) \ p(r_k) = n_k$
- d) $h(r_k)=n_k/n$
- 57. How is the expression represented for the normalized histogram?
- a) $p(r_{k}) = n_{k}$
- b) $p(r_k)=n_k/n$
- c) p(r_k)=nn_k
- d) $p(r_k)=n/n_k$
- 58. The inverse transformation from s back to r is denoted as:
- a) $s=T^{-1}(r)$ for $0 \le s \le 1$
- b) $r=T^{-1}(s)$ for $0 \le r \le 1$
- c) $r=T^{-1}(s)$ for $0 \le s \le 1$
- d) $r=T^{-1}(s)$ for $0 \ge s \ge 1$
- 59. The probability density function p_s (s) of the transformed variable s can be obtained by using which of the following formula?
- a) $p_s(s)=p_r(r)|dr/ds|$

- b) $p_s(s)=p_r(r)|ds/dr|$
- c) $p_r(r)=p_s(s)|dr/ds|$
- d) $p_s(s)=p_r(r)|dr/dr|$
- 60. A transformation function of particular importance in image processing is represented in which of the following form?
- a) $s=T(r)=\int_0^{(2r)}p_r(\omega)d\omega$
- b) $s=T(r)=\int_0^{(r-1)}p_r(\omega)d\omega$
- c) $s=T(r)=\int_0^{(r/2)}p_r(\omega)d\omega$
- d) $s=T(r)=\int_{0} p_{r}(\omega)d\omega$

MCQ(2 marks question)

- 1. Histogram equalization or Histogram linearization is represented by of the following equation:
 - a) $s_k = \sum_{j=1}^{k} n_j / n \ k = 0, 1, 2, \dots, L-1$
 - b) $s_k = \sum_{j=0}^{k} s_j = 0$ n_j/n k=0,1,2,...,L-1
 - c) $s_k = \sum_{j=0}^{k} s_j = 0 \text{ n/n}_j \text{ k=0,1,2,....,L-1}$
 - d) $s_k = \sum_{j=1}^{k} s_j = n \ n_j / n \ k = 0, 1, 2, \dots, L-1$
- 2. What is the method that is used to generate a processed image that have a specified histogram?
 - a) Histogram linearization
 - b) Histogram equalization
 - c) Histogram matching
 - d) Histogram processing
- 3. In a dark image, the components of histogram are concentrated on which side of the grey scale?
 - a) High
 - b) Medium
 - c) Low
 - d) Evenly distributed
- 4. In uniform PDF, the expansion of PDF is _____
 - a) Portable Document Format
 - b) Post Derivation Function
 - c) Previously Derived Function
 - d) Probability Density Function

5.	Which expression is obtained by performing the negative transformation on the
	negative of an image with gray levels in the range[0,L-1]?
	a) $s=L+1-r$
	b) $s=L+1+r$
	c) $s=L-1-r$
	d) $s=L-1+r$
6.	What is the general form of representation of log transformation?
	a) $s=clog_{10}(1/r)$
	b) $s=clog_{10}(1+r)$
	c) $s=clog_{10}(1*r)$
	d) $s = clog_{10}(1-r)$
7.	What is the general form of representation of power transformation?
	a) $s=cr^{\gamma}$
	b) $c=sr^{\gamma}$
	c) s=rc
	d) $s=rc^{\gamma}$
8.	What is the name of process used to correct the power-law response phenomena?
	a) Beta correction
	b) Alpha correction
	c) Gamma correction
	d) Pie correction
9.	Which of the following transformation function requires much information to be
	specified at the time of input?
	a) Log transformation
	b) Power transformation
	c) Piece-wise transformation
	d) Linear transformation
10.	In contrast stretching, if $r_1=s_1$ and $r_2=s_2$ then which of the following is true?
	a) The transformation is not a linear function that produces no changes in gray level
	b) The transformation is a linear function that produces no changes in gray levels
	c) The transformation is a linear function that produces changes in gray levels
	d) The transformation is not a linear function that produces changes in gray levels
11.	In contrast stretching, if $r_1=r_2$, $s_1=0$ and $s_2=L-1$ then which of the following is true?
	a) The transformation becomes a thresholding function that creates an octal image

b) The transformation becomes a override function that creates an octal image

c) The transformation becomes a thresholding function that creates a binary image

- d) The transformation becomes a thresholding function that do not create an octal image
- 12. In which type of slicing, highlighting a specific range of gray levels in an image often is desired?
 - a) Gray-level slicing
 - b) Bit-plane slicing
 - c) Contrast stretching
 - d) Byte-level slicing
- 13. Which of the following depicts the main functionality of the Bit-plane slicing?
 - a) Highlighting a specific range of gray levels in an image
 - b) Highlighting the contribution made to total image appearance by specific bits
 - c) Highlighting the contribution made to total image appearance by specific byte
 - d) Highlighting the contribution made to total image appearance by specific pixels
- 14. The two-dimensional translation equation in the matrix form is
 - a) P'=P+T
 - b) P'=P-T
 - c) P'=P*T
 - d) P'=p
- 15. ______ is a rigid body transformation that moves objects without deformation.
 - a) Rotation
 - b) Scaling
 - c) Translation
 - d) All of the mentioned
- 16. To change the position of a circle or ellipse we translate
 - a) Center coordinates
 - b) Center coordinates and redraw the figure in new location
 - c) Outline coordinates
 - d) All of the mentioned
- 17. Positive values for the rotation angle Θ defines
 - a) Counterclockwise rotations about the end points
 - b) Counterclockwise translation about the pivot point
 - c) Counterclockwise rotations about the pivot point
 - d) Negative direction
- 18. The original coordinates of the point in polor coordinates are
 - a) X'= $r cos (\Phi + \Theta)$ and Y'= $r cos (\Phi + \Theta)$
 - b) X'= $r cos (\Phi + \Theta)$ and Y'= $r sin (\Phi + \Theta)$

	d) $X'=r \cos(\Phi + \Theta)$ and $Y'=r \sin(\Phi - \Theta)$
19.	is the rigid body transformation that moves object without deformation.
	a) Translation
	b) Scaling
	c) Rotation
	d) Shearing
20.	If the scaling factors values sx and sy are assigned to the same value then
	a) Uniform rotation is produced
	b) Uniform scaling is produced
	c) Scaling cannot be done
	d) Scaling can be done or cannot be done
21.	Find the Fourier transform of 1a+jt.
	a) $2\pi e^{a\omega} u(\omega)$
	b) $2\pi e^{a\omega} u(-\omega)$
	c) $2\pi e^{-a\omega} u(\omega)$
	d) $2\pi e^{-a\omega} u(-\omega)$
22.	Find the inverse Fourier transform of e ^{j2t} .
	a) $2\pi\delta(\omega-2)$
	b) πδ(ω-2)
	c) πδ(ω+2)
	d) $2\pi\delta(\omega+2)$
23.	Find the inverse Fourier transform of $j\omega$.
	a) $\delta(t)$
	b) ddt $\delta(t)$
	c) 1δ(t)
	d) $\delta(t)$
24.	Find the convolution of the signals $x_1(t) = e^{-2t} u(t)$ and $x_2(t) = e^{-3t} u(t)$.
	a) $e^{-2t} u(t) - e^{-3t} u(t)$
	b) $e^{-2t} u(t) + e^{-3t} u(t)$
	c) $e^{2t} u(t) - e^{3t} u(t)$
	d) $e^{2t} u(t) - e^{-3t} u(t)$
25.	Find the inverse Fourier transform of $f(t)=1$.
	a) u(t)
	b) $\delta(t)$
	c) e ^{-t}
	d) 1jω

c) X'=r cos (Φ - Θ) and Y'=r cos (Φ - Θ)

26.	Find the inverse Fourier transform of $sgn(\omega)$.
	a) 1πt
	b) jπt
	c) jt
	d) 1t
27.	Given that S_1 and S_2 are two discrete time systems. Consider the following
	statements:
	i) If S_1 and S_2 are linear, then S is linear
	ii) If S_1 and S_2 are non-linear, then S is non-linear
	iii) If S_1 and S_2 are causal, then S is causal
	iv) If S_1 and S_2 are time invariant, then S is time invariant
	The true statements from the above are
	a) i, ii, iii
	b) ii, iii, iv
	c) I, iii, iv
	d) I, ii, iii, iv
28.	For two discrete time systems, consider the following statements:
	i) If S_1 and S_2 are linear and time invariant, then interchanging their order does not
	change the system.
	ii) If S_1 and S_2 are linear and time variant, then interchanging their order does not
	change the system
	The correct statement from the above is
	a) Both i & ii
	b) Only i
	c) Only ii
	d) Neither i, nor ii
29.	The following input-output pairs have been observed during the operation of a time
	invariant system
	i) $x_1[n] = \{1, 0, 2\}$ (Laplace transform) $y_1[n] = \{0, 1, 2\}$
	ii) $x_2[n] = \{0,0,3\}$ (Laplace transform) $y_2[n] = \{0,1,0,2\}$
	iii) $x_3[n] = \{0,0,0,1\}$ (Laplace transform) $y_3[n] = \{1,2,1\}$
	The conclusion regarding the linearity of the system is
	a) Linear
	b) Non-linear
	c) One more observation is required
	d) Conclusion cannot be drawn from observation

30	. S_1 and S_2 are two DT systems which are connected together to form a new system.
	Consider the following statements:
	i) If S_1 and S_2 are non-causal, then S is non-causal
	ii) If S_1 and/or S_2 are unstable, then S is unstable
	The correct statement from the above is
	a) Both i and ii
	b) Only i
	c) Only ii
	d) Neither i nor ii
31	. The Z transform of δ (n – m) is
	a) z ⁻ⁿ
	b) z ^{-m}
	c) 1/z-n
	d) 1/z-m