Spur Gearhead GS 38 A \varnothing 38 mm, 0.1-0.6 Nm

Technical Data								
Spur Gearhead		straight teeth						
Output shaft	5	stainless steel						
Bearing at output	S	sleeve bearing						
Radial play, 12 mm f		max. 0.1 mm						
Axial play		0.03-0.2 mm						
Max. axial load (dyn		30 N						
Max. force for press		500 N						
Max. continuous in	put spe	ed		500	0 rpm			
Recommended ten	nperatu	re ran	ge	-5	-80°C			
Number of stages	1	2	3	3 4	5			
Max. radial load, 12	mm							
from flange	50 N	50 N	50 N	J 50 N	50 N			

Standard program		Part Numbers										
	Special program (on request)		110451	110452	110453	110454	110455	110456	110457	110458	110459	
Gea	rhead Data											
1	Reduction		6:1	10:1	18:1	30:1	60:1	100:1	200:1	500:1	900:1	
2	Absolute reduction		6	10	18	30	60	100	200	500	900	
3	Max. motor shaft diameter r	nm	3	3	3	3	3	3	3	3	3	
4	Number of stages		2	2	3	3	4	4	5	6	6	
5	Max. continuous torque	lm	0.1	0.1	0.2	0.2	0.3	0.3	0.6	0.6	0.6	
6	Max. intermittent torque at gear output	lm	0.3	0.3	0.6	0.6	0.9	0.9	1.8	1.8	1.8	
12	Direction of rotation, drive to output		=	=	≠	≠	=	=	≠	=	=	
7	Max. efficiency	%	81	81	73	73	66	66	59	53	53	
8	Weight	g	55	55	60	60	65	65	70	75	75	
9	Average backlash no load	0	1.0	1.0	1.5	1.5	2.0	2.0	2.5	3.0	3.0	
10	Mass inertia gc	m²	0.7	0.6	0.4	0.4	0.3	0.3	0.2	0.2	0.2	
11	Gearhead length L1*	nm	20.6	20.6	23.1	23.1	25.6	25.6	28.1	30.6	30.6	
	*for EC 32 flat L1 is + 2.0 mm											

	-			
overall length	íh _	_	overall I	ength

max 26 171-174 65.4 65.4 67.9 67.9 70.4 70.4 72.9 75.4 75.4 max 26 172-174 MR 478 74.2 74.2 76.7 76.7 79.2 79.2 81.7 84.2 84.2 max 26 172-174 Enc 22 483 79.8 79.8 82.3 82.3 84.8 84.8 87.3 89.8 89.8 max 26 172-174 HED_5540 487/489 83.8 83.8 86.3 86.3 88.8 88.8 91.3 93.8 93.8 max 32 175 83.6 83.6 86.1 86.1 88.6 91.1 93.6 93.6 max 32 176 82.2 82.2 84.7 84.7 87.2 87.2 89.7 92.2 92.2 max 32 176 MR 479 93.4 93.4 95.9 95.9 98.4 98.4 100.9 103.4 103.4	maxon Modular Sy + Motor	Page	+ Sensor/Brake	Page	Overall le	nath [mm]	= Motor ler	nath + aear	head lengtl	ı + (sensor	/brake) + as	ssembly na	rts	·
max 26 172-174 MR 478 74.2 74.2 76.7 76.7 79.2 79.2 81.7 84.2 84.2 max 26 172-174 Enc 22 483 79.8 79.8 82.3 82.3 84.8 84.8 87.3 89.8 89.8 max 26 172-174 HED_5540 487/489 83.8 83.8 86.3 86.3 88.8 88.8 91.3 93.8 93.8 max 32 175 83.6 83.6 86.1 86.1 88.6 88.6 91.1 93.6 93.6 max 32 176 MR 479 93.4 93.4 95.9 95.9 98.4 98.4 100.9 103.4 103.4 max 32 176 HED_5540 487/489 103.0 105.5 105.5 108.0 108.0 110.5 113.0 113.0 C32 flat, 15 W 292 38.6 38.6 41.1 41.1 43.6 43.6 46.1 48.6 C32 flat, IE, IP 00 293 48.7 48.7 51.2 51.2 53.7 53.7 56.2 58.7 58.7		_		i age										
max 26 172-174 Enc 22 483 79.8 79.8 82.3 82.3 84.8 84.8 87.3 89.8 89.8 max 26 172-174 HED_5540 487/489 83.8 83.8 86.3 86.3 88.8 88.8 91.3 93.8 93.8 max 32 175 83.6 83.6 86.1 86.1 88.6 88.6 91.1 93.6 93.6 max 32 176 MR 479 93.4 93.4 95.9 95.9 98.4 98.4 100.9 103.4 103.4 max 32 176 HED_5540 487/489 103.0 105.5 105.5 108.0 108.0 110.5 113.0 13.0 C32 flat, 15 W 292 38.6 38.6 48.7 48.7 51.2 51.2 53.7 53.7 56.2 58.7 58.7				178										
max 26 172-174 HED_ 5540 487/489 83.8 83.8 86.3 86.3 88.8 88.8 91.3 93.8 93.8 max 32 175 83.6 83.6 86.1 86.1 88.6 88.6 91.1 93.6 93.6 max 32 176 MR 479 93.4 93.4 95.9 95.9 98.4 98.4 100.9 103.4 103.4 max 32 176 HED_ 5540 487/489 103.0 103.0 105.5 105.5 108.0 108.0 110.5 113.0 C32 flat, 15 W 292 38.6 38.6 41.1 41.1 43.6 43.6 46.1 48.6 C32 flat, IE, IP 00 293 48.7 48.7 51.2 51.2 53.7 53.7 56.2 58.7 58.7														
max 32 175 83.6 83.6 86.1 86.1 88.6 91.1 93.6 93.6 max 32 176 MR 479 93.4 93.4 95.9 95.9 98.4 98.4 100.9 103.4 103.4 max 32 176 HED_5540 487/489 103.0 103.0 105.5 105.5 108.0 108.0 110.5 113.0 C32 flat, 15 W 292 38.6 38.6 48.7 48.7 51.2 51.2 53.7 53.7 56.2 58.7 58.7														
max 32 176 MR 479 93.4 93.4 95.9 95.9 98.4 98.4 100.9 103.4 103.4 max 32 176 HED_5540 487/489 103.0 103.0 105.5 105.5 108.0 108.0 110.5 113.0 232 flat, 15 W 292 38.6 38.6 41.1 41.1 43.6 43.6 46.1 48.6 48.6 232 flat, IE, IP 00 293 48.7 48.7 51.2 51.2 53.7 53.7 56.2 58.7 58.7			11LD_ 3340	7017703										
max 32 176 MR 479 93.4 93.4 95.9 95.9 98.4 98.4 100.9 103.4 103.4 max 32 176 HED_5540 487/489 103.0 103.0 105.5 105.5 108.0 108.0 110.5 113.0 113.0 232 flat, 15 W 292 38.6 38.6 41.1 41.1 43.6 43.6 46.1 48.6 48.6 232 flat, IE, IP 00 293 48.7 48.7 51.2 51.2 53.7 53.7 56.2 58.7 58.7														
max 32 176 HED_5540 487/489 103.0 103.0 105.5 105.5 108.0 110.5 113.0 113.0 232 flat, 15 W 292 38.6 38.6 41.1 41.1 43.6 43.6 46.1 48.6 48.6 232 flat, IE, IP 00 293 48.7 48.7 51.2 51.2 53.7 53.7 56.2 58.7 58.7			MR	479										
38.6 38.6 41.1 41.1 43.6 43.6 46.1 48.6 48.6 32.9 48.7 48.7 51.2 51.2 53.7 53.7 56.2 58.7 58.7	A-max 32													
232 flat, IE, IP 00 293 48.7 48.7 51.2 51.2 53.7 53.7 56.2 58.7 58.7			55 10	.5.7 100										
	20 02, .2,				00		02.0	02.0	00	00	00			