Lecture-05-CMSC351		
Maximum Continuous Sum:		
Given a list of integers, find the continguous sublist with maximum sum and return		
that maximum sum. Note the continguous sublist must be nonempty (length cannot		
be 0) and the maximum contiguous sum may be negative if the list only contains		
negative numbers.		
Brute Force Method:		
Results in theta(n^2) time complexity		
Works for small values of n, but other better solutions exist		
Divide and Conquer:		
Can take a divide-and-conquer approach using a recursive algorithm		
Steps:		
1. Split the list in half, then find the MCS on the left and right sides recursively		
2. Find the MCS straddling the middle (not recursive)		
3. Take the maximum of these three to get the overall maximum		
Time complexity of this approach is theta(n * lg(n))		
Kadane's Algorithm:		
Kadane's algorithm is utilizes dynamic programming to solve the problem in O(n)		
time complexity.		
Steps:		
Iterate over the list of integers keeping track of the overall MCS (M) and MCS		
ending at and including index <i>i</i> (M_i).		

2.	In each step, solve:
	○ M_i = max(element_1 + element_2, element_2), M = (element_1, M_i)
3.	Final MCS (M) is your answer