12 May 2020

11.6 Problem set: Exact values of standard trigonometry ratios

1. A right $\triangle ABC$ is shown with side lengths 1, $\sqrt{3}$, and 2, as marked. Identify each true statement

$$\Box$$
 (a) $1^2 + (\sqrt{3})^2 = 2^2$

$$\Box \text{ (b) } \cos A = \frac{1}{2}$$

$$\Box (c) \sin B = \frac{\sqrt{3}}{2}$$

$$\Box$$
 (d) $m\angle A = 60^{\circ}$

$$\Box \text{ (e) } \cos B = \frac{\sqrt{3}}{2}$$

$$\square$$
 (f) $m \angle A = 2 \times m \angle B$

2. Two similar, right isosceles triangles $\triangle HAT \sim \triangle CAB$ have a scale factor k=3. Angles $\angle H$ and $\angle C$ measure 90° and HA=HT=1, as shown.

- (b) Write down the degree measure of $\angle T$
- (c) Find the altitude of $\triangle CAB$, BC
- 3. Using a calculator, find θ and round to the nearest whole degree.

(a)
$$\theta = \sin^{-1} 0.500$$

(c)
$$\tan \theta = 1.000$$

(b)
$$\theta = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

(d)
$$\cos \theta = 0.707$$