Exact Decoding of Phrase-Based Translation Models through Lagrangian Relaxation

Yin-Wen Chang (Joint work with Michael Collins)

July 27, 2011

Introduction

- ▶ Phrase-based models (e.g. Moses) are very common
- ► The decoding problem for Moses is NP-hard
- ▶ Beam search is the most common approach
 - No guarantee of optimal answer
 - ▶ No way to measure numbers of search errors
- ► This work: a Lagrangian relaxation method for exact decoding

▶ source-language sentence $x_1, x_2, ..., x_N$

 x_1 x_2 x_3 x_4 x_5 x_6 das muss unsere sorge gleichermaßen sein

▶ source-language sentence $x_1, x_2, ..., x_N$

▶ phrase p = (s, t, e)(1, 2, this must)

▶ source-language sentence $x_1, x_2, ..., x_N$

▶ phrase
$$p = (s, t, e)$$

(1, 2, this must) (5, 5, also)

▶ source-language sentence $x_1, x_2, ..., x_N$

▶ phrase p = (s, t, e) (1, 2, this must) (5, 5, also) (6, 6, be)

▶ source-language sentence $x_1, x_2, ..., x_N$

▶ phrase p = (s, t, e) (1, 2, this must) (5, 5, also) (6, 6, be) (3, 4, our concern)

▶ source-language sentence $x_1, x_2, ..., x_N$

- ▶ phrase p = (s, t, e) (1, 2, this must) (5, 5, also) (6, 6, be) (3, 4, our concern)
- derivation

$$y = p_1, p_2, \ldots, p_L$$

▶ source-language sentence $x_1, x_2, ..., x_N$

- ▶ phrase p = (s, t, e)(1, 2, this must) (5, 5, also) (6, 6, be) (3, 4, our concern)
- derivation $y = p_1, p_2, \dots, p_L$

derivation y = (1, 2, this must)(5, 5, also)(6, 6, be)(3, 4, our concern):

score f(y):

$$f(y) = h(e(y)) + \sum_{k=1}^{L} g(p_k) + \sum_{k=1}^{L-1} \eta \times |t(p_k) + 1 - s(p_{k+1})|$$

derivation y = (1, 2, this must)(5, 5, also)(6, 6, be)(3, 4, our concern):

score f(y):

$$f(y) = h(e(y)) + \sum_{k=1}^{L} g(p_k) + \sum_{k=1}^{L-1} \eta \times |t(p_k) + 1 - s(p_{k+1})|$$

Language model score

derivation y = (1, 2, this must)(5, 5, also)(6, 6, be)(3, 4, our concern):

score f(y):

$$f(y) = h(e(y)) + \sum_{k=1}^{L} g(p_k) + \sum_{k=1}^{L-1} \eta \times |t(p_k) + 1 - s(p_{k+1})|$$

Language model score

Phrase translation score g(1, 2, this must)

derivation y = (1, 2, this must)(5, 5, also)(6, 6, be)(3, 4, our concern):

score f(y):

$$f(y) = h(e(y)) + \sum_{k=1}^{L} g(p_k) + \sum_{k=1}^{L-1} \eta \times |t(p_k) + 1 - s(p_{k+1})|$$

 $\begin{array}{ll} \text{Language model score} \\ \text{Phrase translation score} & g(1,2,\textit{this must}) \\ \text{Distortion penalty} & \eta \end{array}$

Decoding of Phrase-based Translation Model

Goal:

$$y^* = \arg\max_{y \in \mathcal{Y}} f(y)$$

 ${\mathcal Y}$ is the set of valid derivations

A derivation is valid if:

Decoding of Phrase-based Translation Model

Goal:

$$y^* = \arg\max_{y \in \mathcal{Y}} f(y)$$

 \mathcal{Y} is the set of valid derivations

A derivation is valid if:

- Each word is translated exactly once
 - y(i) = 1 for i = 1...N
 - ► y(i): the number of times word i is translated

Decoding of Phrase-based Translation Model

Goal:

$$y^* = \arg\max_{y \in \mathcal{Y}} f(y)$$

 \mathcal{Y} is the set of valid derivations

A derivation is valid if:

- Each word is translated exactly once
 - y(i) = 1 for i = 1...N
 - ► y(i): the number of times word i is translated
- ► The distortion limit *d* is satisfied

X₁ X₂ X₃ X₄ X₅ X₆

Exact Dynamic Programming

Use exact dynamic programming to find

$$y^* = \arg\max_{y \in \mathcal{Y}} f(y)$$

Dynamic programming states:

$$(w_1, w_2, b, r)$$

- \triangleright w_1, w_2 : the last two words of the partial translation
- ▶ b: a bit-string of length N, recording which words have been translated
- r: the end-point of the last translated phrase
- ▶ The bit-string b has 2^N possibilities

A Lagrangian Relaxation Algorithm

- Efficient dynamic program for a relaxed problem
- Lagrangian relaxation method to enforce constraints
- ► A subgradient algorithm optimizing the problem
- Tightening the relaxation by adding hard constraints

The Relaxed Problem

 $ightharpoonup \mathcal{Y}'$: only requires the total number of words translated to be N

$$\mathcal{Y}' = \{y : \sum_{i=1}^{N} y(i) = N \text{ and }$$

the distortion limit *d* is satisfied}

- $\mathcal{Y} \subset \mathcal{Y}'$
- ▶ Dropped the y(i) = 1 constraints

An Efficient Dynamic Program

Use efficient dynamic programming to find

$$y^* = \arg\max_{y \in \mathcal{Y}'} f(y)$$

Dynamic programming states:

$$(w_1, w_2, \underline{n}, r)$$

- \triangleright w_1, w_2 : the last two words of the partial translation
- ► *n*: the length of the partial translation
- r: the end-point of the last translated phrase
- ► The length *n* has only *N* possibilities

▶ The original decoding problem is

$$\underset{y \in \mathcal{Y}}{\operatorname{arg\,max}\, f(y)}$$

$$\mathcal{Y} = \{ y : y(i) = 1 \ \forall i = 1 \dots N \}$$

$$1 \ 1 \dots 1$$

▶ The original decoding problem is

$$\underset{y \in \mathcal{Y}}{\operatorname{arg max}} f(y)$$
exact DP is NP-hard

$$\mathcal{Y} = \{ y : y(i) = 1 \ \forall i = 1 \dots N \}$$
 1 1 ... 1

▶ The original decoding problem is

$$\underset{y \in \mathcal{Y}}{\operatorname{arg max}} f(y)$$
exact DP is NP-hard

$$\mathcal{Y} = \{ y : y(i) = 1 \ \forall i = 1 \dots N \}$$

$$1 \ 1 \dots 1$$

▶ We can rewrite this as

$$\arg\max_{y\in\mathcal{Y}'}f(y)\qquad \text{such that}\qquad \underbrace{y(i)=1\ \forall i=1\dots N}$$

$$\mathcal{Y}' = \{ y : \sum_{i=1}^{N} y(i) = N \}$$

▶ The original decoding problem is

$$\underset{y \in \mathcal{Y}}{\operatorname{arg max}} f(y)$$
exact DP is NP-hard

$$\mathcal{Y} = \{ y : y(i) = 1 \ \forall i = 1 \dots N \}$$

▶ We can rewrite this as

$$\underbrace{\arg\max_{y \in \mathcal{Y}'} f(y)}_{\text{such that}} \quad \underbrace{y(i) = 1 \ \forall i = 1 \dots N}_{\text{such that}}$$

can be solved efficiently by DP

$$\mathcal{Y}' = \{ y : \sum_{i=1}^{N} y(i) = N \}$$

$$\underbrace{2 \ 0 \dots 1}_{\text{sum to } N}$$

► The original decoding problem is

$$\underset{y \in \mathcal{Y}}{\operatorname{arg max}} f(y)$$
exact DP is NP-hard

$$\mathcal{Y} = \{ y : y(i) = 1 \ \forall i = 1 \dots N \}$$

We can rewrite this as

$$\mathcal{Y}' = \{ y : \sum_{i=1}^{N} y(i) = N \}$$

$$\underbrace{2 \ 0 \dots 1}_{\text{sum to } N}$$

The Lagrangian Relaxation Algorithm

- ▶ Use Lagrange multipliers u(i) to deal with the y(i) = 1 constraints
- Lagrangian:

$$L(u, y) = f(y) + \sum_{i} u(i)(y(i) - 1)$$

Subgradient method to minimized the dual objective

$$\min_{u} L(u)$$

where
$$L(u) = \max_{y \in \mathcal{Y}'} L(u, y)$$

The Algorithm

```
Initialization: u^0(i) \leftarrow 0 for i = 1 \dots N
for t = 1 \dots T
   y^t = \operatorname{arg\,max}_{v \in \mathcal{Y}'} L(u^{t-1}, y)
   if y^{t}(i) = 1 for i = 1...N
      return y^t
   else
      for i = 1 \dots N
          u^{t}(i) = u^{t-1}(i) - \alpha^{t} (y^{t}(i) - 1)
```

Decoding with Lagrange Multipliers $u(1)u(2) \dots u(N)$

$$y^t = \underset{y \in \mathcal{Y}'}{\operatorname{arg\,max}} f(y) + \sum_i u(i)y(i)$$

- ▶ Phrase scores g(s, t, e)
- Replaced by

$$g'(s, t, e) = g(s, t, e) + \sum_{i=s}^{t} u(i)$$

e.g., g'(3, 4, our concern) = g(3, 4, our concern) + u(3) + u(4)

subgradient method:

Iteration 1:

- Dynamic programming
- ▶ update u(i): $u(i) \leftarrow u(i) \alpha(y(i) 1)$ $\alpha = 1$
 - $u(i) \ 0 \ 0 \ 0 \ 0 \ 0$
 - y(i)

 x_1 x_2 x_3 x_4 x_5 x_6 das muss unsere sorge gleichermaßen sein

subgradient method:

Iteration 1:

- Dynamic programming
- ▶ update u(i): $u(i) \leftarrow u(i) \alpha(y(i) 1)$ $\alpha = 1$

subgradient method:

Iteration 1:

- Dynamic programming
- ▶ update u(i): $u(i) \leftarrow u(i) \alpha(y(i) 1)$ $\alpha = 1$

subgradient method:

Iteration 2:

- Dynamic programming
- ▶ update u(i): $u(i) \leftarrow u(i) \alpha(y(i) 1)$ $\alpha = 0.5$
 - u(i) 1 0 -1 -1 1 0 y(i)
 - x_1 x_2 x_3 x_4 x_5 x_6 das muss unsere sorge gleichermaßen sein

subgradient method:

Iteration 2:

- ► Dynamic programming
- ▶ update u(i): $u(i) \leftarrow u(i) \alpha(y(i) 1)$ $\alpha = 0.5$

subgradient method:

Iteration 2:

- Dynamic programming
- ▶ update u(i): $u(i) \leftarrow u(i) \alpha(y(i) 1)$ $\alpha = 0.5$

subgradient method:

Iteration 3:

- Dynamic programming
- ▶ update u(i): $u(i) \leftarrow u(i) \alpha(y(i) 1)$ $\alpha = 0.5$

$$u(i)$$
 1 -0.5 -0.5 -0.5 0.5 0 $y(i)$

 x_1 x_2 x_3 x_4 x_5 x_6 das muss unsere sorge gleichermaßen sein

subgradient method:

Iteration 3:

- ► Dynamic programming
- ▶ update u(i): $u(i) \leftarrow u(i) \alpha(y(i) 1)$ $\alpha = 0.5$

Theorem

If we find u s.t.

$$y(i) = 1 \forall i = 1 \dots N$$

then y is optimal

 Sometimes we cannot reach a derivation that satisfies all the constraints

Tightening the Relaxation: Algorithm

In some cases, we never reach y(i)=1 for $i=1\dots N$ If dual L(u) is not decreasing fast enough run for 10 more iterations count number of times each constraint is violated add 3 most often violated constraints

subgradient method:

Iteration 41:

subgradient method:

Iteration 42:

subgradient method:

Iteration 43:

subgradient method:

Iteration 44:

subgradient method:

Iteration 50:

subgradient method:

Iteration 51:

Add 2 hard constraints (x_5, x_6) to the dynamic program

subgradient method:

Iteration 51:

Add 2 hard constraints (x_5, x_6) to the dynamic program

Tightening the Relaxation: Dynamic Programming

- Add hard constraints that require certain words to be translated exactly once within the dynamic program
- ▶ Given a set $C \subseteq \{1, 2, ..., N\}$, we define

$$\mathcal{Y}'_{\mathcal{C}} = \{ y : y \in \mathcal{Y}', \text{ and } \forall i \in \mathcal{C}, \ y(i) = 1 \}$$

► Now, find

$$\arg\max_{y\in\mathcal{Y}_{\mathcal{C}}'}f(y)$$

Dynamic programming state

$$(w_1, w_2, n, \underline{b}_{\mathcal{C}}, r)$$

b_C: bit-string of length |C|

Tightening the Relaxation: Dynamic Programming

- (w_1, w_2, n, b_C, r)
- In the worst case, C = {1,2,...,N}, and it becomes the exact dynamic programming
- ► In practice, over 99% sentences can converge with no more than 9 constraints

Experiments: German to English

- ► Europarl data: German to English
- ► Test on 1,824 sentences with length 1-50 words
- Converged: 1,818 sentences (99.67%)

Experiments: Number of Iterations

Experiments: Number of Hard Constraints Required

Experiments: Mean Time in Seconds

# words	1-10	11-20	21-30	31-40	41-50	All
mean	0.8	10.9	57.2	203.4	679.9	120.9
median	0.7	8.9	48.3	169.7	484.0	35.2

Comparison to ILP Decoding

# words	mean time	median time	
# words	(sec.)	(sec.)	
1-10	275.2	132.9	
11-15	2,707.8	1,138.5	
16-20	20,583.1	3,692.6	

Comparison to Moses: Gap Constraints

- $\theta(p_1 \dots p_k)$: the index of the left most source-language word not translated in this sequence
- ▶ Gap constraint: for $p_1 \dots p_L$

$$|t(p_k)+1-\theta(p_1\dots p_k)|\leq d$$
 for $k=2\dots L$

- Additional constraint on distortion
- Without gap constraint, Moses fails on many translations

Comparison to Moses-gc (with Gap Constraints)

- ▶ Total (1-50 words): 1,824 sentences
- ▶ We solved: 1,818 sentences
- Not satisfying gap constraints: 270 sentences
- ► Remaining: 1,548 sentences
 - beam size 100: search error on 2 sentences
 - beam size 200, 1000: no search error
 - time: less than 2 sec.

Comparison to Moses-nogc (without Gap Constraints)

Moses-nogc sometimes fails to give a translation

Beam size	time (sec.)	Fails	# search errors	percentage
100	0.3355	650/1,818	214/1,168	18.32 %
200	0.4477	531/1,818	207/1,287	16.08 %
1,000	4.1055	342/1,818	115/1,476	7.79 %
10,000	42.9423	169/1,818	68/1,649	4.12 %

BLEU score

type of Moses	beam size	# sentences	BLEU score		
type of Moses	Dealli Size	# sentences	Moses	our method	
MOSES-gc	100	1,818	24.4773	24.5395	
	200	1,818	24.4765	24.5395	
	1,000	1,818	24.4765	24.5395	
	10,000	1,818	24.4765	24.5395	
MOSES-nogc	100	1,168	27.3546	27.3249	
	200	1,287	27.0591	26.9907	
	1,000	1,476	26.5734	26.6128	
	10,000	1,649	25.6531	25.6620	

Conclusion

- Decoding of phrase-based translation models is NP-hard Approximation methods are commonly used
- Lagrangian relaxation algorithm that solves the problem exactly