Modelos de Clasificación / Variable Dependiente Cualitativa Métodos Cuantitativos en Estudios Urbanos II - MEU UTDT

Ricardo Pasquini

4 de julio de 2025

Modelos de Clasificación

- ► Hasta aquí hemos trabajado con variables continuas como variables a explicar/predecir, pero en una gran cantidad de aplicaciones las predicciones son discretas.
- Estos modelos también son conocidos como modelos de clasificación

Modelos de Clasificación Binaria

- Ejemplo: Elección de transporte
- ▶ Variable objetivo: 1 si toma transporte público, 0 de otro modo.

$$P(\mathsf{Transporte\ Publico}) = \beta_0 + \beta_1 \mathsf{Ingreso}_i + \beta_2 \mathsf{Genero}_i + \epsilon_i$$

Modelos de Clasificación Binaria

- ▶ En general la variable $y_i \in \{0,1\}$, representando un resultado "Sí/ "No".
- ► El objetivo es describir $P(y_i = 1|x_i)$ (Notar que esto determinaría la completa distribución condicional)
- ➤ Si proponemos un modelo lineal:

$$P(y_i = 1 | x_i) = x_i' \beta$$

Notemos también que $P(y_i = 1|x_i) = E(Y_i|x_i)$ por lo tanto podríamos estimar

$$y_i = x'\beta + e_i$$

Modelos de Clasificación Binaria

➤ Sin embargo, notemos que en un caso de observaciones binarias tendríamos algo como:

Modelo Lineal para Clasificación

► El resultado devolvería:

Modelos de Clasificación

- ▶ Es deseable imponer una restricción adicional, que $0 \le P(y_i = 1|x_i) \le 1$
- ▶ Por eso la alternativa estándar es proponer un modelo como:

$$y_i = F(x'\beta) + e_i$$

donde $F(\cdot)$ es una función que cumple la restricción, como por ejemplo una Función de Densidad Acumulativa.

- Dos funciones comúnmente utilizadas son:
 - ▶ Logística: $F(u) = \frac{1}{(1+e^{-u})} = \frac{e^u}{1+e^u}$ (resultando en el modelo llamado **Logit**)
 - Normal: $F(u) = \Phi(u)$ (resultando en el modelo llamado **Probit**)

Ejemplo: Logit

Logit

- Logit también es el nombre que toma el logaritmo del ratio de chances entre dos resultados.
- ► En este caso, tal como fue definido, el modelo logit propone que el logaritmo del ratio de chances es la función lineal $\alpha + \beta X$. Esto se puede ver facilmente:

$$\ln \frac{P(y_i = 1|x_i)}{P(y_i = 0|x_i)} = \beta X$$

Efectos marginales

- ► Comúnmente nos interesará conocer $\frac{\partial p}{\partial x}$.
- Notar que debido a la transformación funcional de $F(\cdot)$ el efecto marginal de un incremento en x_i no es constante. Por lo tanto, para conocer el efecto de un incremento marginal en x adicionalmente tendremos que especificar el nivel (de Z) de interés.

Efectos marginales

- Típicamente los paquetes estadísticos devuelven un efecto marginal que:
 - ▶ Podría estar calculado por default en el valor promedio de las variables (esto podria ser de interés o no).
 - Nos permiten determinar los valores de las variables explicativas donde calcular el efecto.
 - Permiten calcular un *Efecto Marginal Promedio* entendido como el promedio de los efectos marginales en los valores definidos por las observaciones en nuestra muestra.

Estimación

- La estimación se realiza mediante Máxima Verosimilitud.
- Recordemos que la estimación mediante Máxima Verosimilitud propone buscar el valor del parámetro que maximiza la probabilidad conjunta de ocurrencia de los datos que sugieron en la muestra.

$$\max_{\beta} \prod_{i=1}^{n} P(Y_i, \beta)$$

donde $p(Y_i, \beta)$ es la probabilidad de la observación i-esima en cuestión.

Notemos en este caso las probabilidades son

$$\begin{cases} P(Y = 0|X) & \text{si } Y_i = 0 \\ P(Y = 1|X) & \text{si } Y_i = 1 \end{cases}$$

Estimación

Es decir los términos de la productoria serán

$$egin{cases} 1-F(x_i'eta) & ext{si } Y_i=0 \ F(x_i'eta) & ext{si } Y_i=1 \end{cases}$$

 Siguiendo el método de máxima verosimilitud, será conveniente maximizar la función en logaritmos

$$\max_{eta} L = \ln(\prod_{i=1}^n P(Y_i, eta)) = \max_{eta} \sum_{i} \ln(P(Y_i, eta))$$

Típicamente se utilizarán algoritmos de maximización para encontrar el máximo.

Ejemplo: Crecimiento urbano

Urban Growth Pattern Modeling Using Logistic Regression

NONG Yu1, DU Qingyun1,2

- 1. School of Resource and Environmental Science, Wuhan University, 129 Luoyu Road, Wuhan 430079, China
- Key Laboratory of Geographic Information System, Ministry of Education, Wuhan University, 129 Luoyu Road, Wuhan 430079, China

Figura: Yu and Qingyun (2011)

Ejemplo: Crecimiento urbano

Table 1 List of variables included in logistic regression model

Variable	Broad definition	Unit	Nature of variable
Dependent	t		
Y	no urban growth; urban growth		Dichotomous
Independe	nt		
X_1	Population density	Population (km ²)	Continuous
X_2	Gross industrial output value	Billion Yuan (town)	Continuous
X_3	Gross agricultural output value	Billion Yuan (town)	Continuous
X_4	Index of distance to economic center	•	Continuous
X_5	Index of distance to the major road		Continuous
X_6	Slope (5 categories) 1. $0^{\circ} \le \text{slope} < 2^{\circ}$ 2. $2^{\circ} \le \text{slope} < 6^{\circ}$ 3. $6^{\circ} \le \text{slope} < 15^{\circ}$ 4. $15^{\circ} \le \text{slope} < 25^{\circ}$ 5. $\text{slope} \ge 25^{\circ}$	Degree	Design

Table 4 Variables in the equation in SPSS 11.5

	Coefficient	Standard error	Wald	Df	Sig.(Pr > chi-square.)
X_1	0.023	0.002	116.928	1	0.000
X_2	0.002	0.000	97.834	1	0.000
X_3	0.001	0.000	1.718	1	0.019
X_4	0.040	0.003	173.902	1	0.000
X_5	0.022	0.001	1074.271	1	0.000
X_6	-0.051	0.018	7.978	1	0.005
Constant	-1.873	0.051	1329.625	1	0.000

Figura: Yu and Qingyun (2011)

- ▶ Un caso de interés es la elección entre alternativas múltiples. Por ejemplo:
 - Elección medio de transporte (auto, colectivo, tren, etc.).
 - Elección residencial (barrio 1, barrio 2,...,barrio n).
- Analizaremos aquí un modelo con alternativas que no tienen un orden implícito. Para alternativas ordenadas, existen otros modelo disponibles.

► El modelo multinomial se puede fundamentar suponiendo que cada individuo tiene una utilidad por la j-esima opcion dada por

$$U_{ij} = \beta' z_{ij} + \epsilon_{i,j}$$

ightharpoonup Si el consumidor elige la j-esima opción sobre las J-1 restantes, es porque esa opción le dió mayor utilidad. La idea de la modelización probabilística es

$$P(Y_i = j) = P(U_{ij} > U_{ik}) \ \forall k \neq j$$

Y se puede obtener que la probabilidad de elegir la categoría j-esima es:

$$P(Y_i = j) = \frac{e^{\beta' z_{ij}}}{\sum_{j=1}^{J} e^{\beta' z_{ij}}}$$

- Un supuesto implícito del modelo es la independencia de alternativas irrelevantes.
- Este supuesto pide que la preferencia por una categoría sobre otra no cambie si se considera una tercera como parte de la comparación.
- ▶ El uso de este supuesto permite que este modelo pueda implementarse como la comparación de K-1 categorías contra una K-esima. Conociendo estas preferencias puedo derivar todas las demás.

Derivación como un conjunto de elecciones binarias

$$\ln \frac{Pr(Y_i = 1)}{Pr(Y_i = K)} = \beta_1 \cdot X_i$$

$$\ln \frac{Pr(Y_i = 2)}{Pr(Y_i = K)} = \beta_2 \cdot X_i$$

$$\vdots$$

$$\ln \frac{Pr(Y_i = K - 1)}{Pr(Y_i = K)} = \beta_{K-1} \cdot X_i$$

$$Pr(Y_{i} = 1) = Pr(Y_{i} = K)e^{\beta_{1} \cdot X_{i}}$$
 $Pr(Y_{i} = 2) = Pr(Y_{i} = K)e^{\beta_{2} \cdot X_{i}}$
 \vdots
 $Pr(Y_{i} = K - 1) = Pr(Y_{i} = K)e^{\beta_{K-1} \cdot X_{i}}$
 $Pr(Y_{i} = K) = 1 - Pr(Y_{i} = K)\sum_{k=1}^{K-1} e^{\beta_{k} \cdot X_{i}}$
 $Pr(Y_{i} = K) = \frac{1}{1 + \sum_{k=1}^{K-1} e^{\beta_{k} \cdot X_{i}}}$

Reemplazando para obtener expresiones para $Pr(Y_i = 1)$, $Pr(Y_i = 2)$...

$$Pr(Y_i = 1) = rac{e^{eta_1 \cdot X_i}}{1 + \sum_{k=1}^{K-1} e^{eta_k \cdot X_i}}$$
 $Pr(Y_i = 2) = rac{e^{eta_2 \cdot X_i}}{1 + \sum_{k=1}^{K-1} e^{eta_k \cdot X_i}}$
 \vdots
 $Pr(Y_i = k) = rac{e^{eta_k \cdot X_i}}{1 + \sum_{k=1}^{K-1} e^{eta_k \cdot X_i}}$

Estimación

Como en el caso del Logit, se aplicará un método similar a Máxima Verosimilitud para identificar las condiciones del óptimo, y se utilizarán algoritmos numéricos iterativos para encontrar la solución.

Ejemplo: Elección Modalidad Transporte

A multinomial logistic regression model for public transportation use in a medium-sized Brazilian city

Marianna Lucinda de Oliveira** (0), Josiane Palma Limaa*** (0)

'Universidade Federal de Itajubá, Itajubá, MG, Brasil

*mariannaoliveira@unifei.edu.br, **jplima@unifei.edu.br

4.3. Defining the dependent and exploratory variables

The independent variables were developed according to relevance in literature, and data availability. Altogether, 34 variables that could influence PT frequency were considered. Frequency-of-use was set as a dependent variable, and classified into three categories: frequent users (from 3 to 7 days a week); occasional users (1 or 2 days a week); and rare users (up to 3 days per month).

Ejemplo: Elección Modalidad Transporte

$$Z = \operatorname{Ln}\left[\frac{Probability(Ocassional\,PT)}{Probability(Frequent\,PT)}\right] = \alpha_{1,0} + \sum_{i=1}^{k} B_{1,i} \cdot X_{i} \tag{1}$$

$$Z = \operatorname{Ln}\left[\frac{Probability(\operatorname{Rare}PT)}{Probability(FrequentPT)}\right] = \alpha_{2,0} + \sum_{i=1}^{k} B_{2,i} \mathcal{X}_{i}$$
(2)

Where:

- a) Xi are the independent variables that predict the frequency of PT use:
- b) Bji are the estimated regression coefficients for category j of the dependent variable; and
- c) $\boldsymbol{\alpha}$ is the intercept.

Ejemplo: Elección Modalidad Transporte

Table 3. Multinomial Logistic Regression - Significant results in bold.

		Occasional				Rare			
	B1	EP B1	Z	p-value	B2	EP B2	Z	p-value	
Constant	-4.21	3.23	1.70	0.19	-10.02	3.78	7.04	0.01	
Female	-0.51	0.75	0.45	0.50	-2.03	0.92	4.88	0.03**	
Age Group (15-19)	3.67	1.71	4.62	0.03**	1.91	1.91	1.01	0.32	
Age Group (20-35)	3.74	1.29	8.44	0.00***	3.43	1.38	6.14	0.01***	
Level of Education (High School)	-1.59	0.94	2.88	0.09*	-0.18	1.09	0.03	0.87	
Household Income (>\$553.00)	-3.24	1.17	7.68	0.01***	-2.07	1.33	2.41	0.12	
Occupation (Retired)	-0.39	1.95	0.04	0.84	-4.55	2.24	4.11	0.04**	
Occupation (Unemployed)	-1.30	1.22	1.13	0.29	-2.43	1.41	2.98	0.08*	
Occupation (Student)	1.48	1.20	1.51	0.22	2.71	1.45	3.51	0.06*	
Payment (Normal)	7.07	1.48	22.78	0.00***	8.17	1.74	21.99	0.00***	
Payment (Free)	7.68	2.36	10.61	0.00***	10.97	2.73	16.19	0.00***	
Automobile/Motorcycle	2.28	0.83	7.59	0.01***	3.57	0.93	14.72	0.00***	
PT to Work	-5.26	1.16	20.65	0.00***	-7.37	1.45	25.68	0.00***	
PT to Study	-6.19	1.45	18.29	0.00***	-10.30	2.56	16.24	0.00***	
Punctuality (Neutral)	2.29	1.10	4.34	0.04**	3.93	1.29	9.27	0.00***	
Fare (Unsatisfied)	5.94	2.06	8.31	0.00***	6.43	2.15	8.93	0.00***	
Fare (Neutral)	7.39	2.29	10.42	0.00***	9.01	2.39	14.22	0.00***	
Accessibility (Good)	-6.07	2.55	5.68	0.02**	-3.78	2.75	1.89	0.17	
Accessibility (Regular)	-8.29	3.01	7.59	0.01***	-6.69	3.27	4.19	0.04**	
Distance to CBD	-0.17	0.22	0.63	0.43	-0.52	0.27	3.62	0.06*	
POI to a Supermarket	2.26	1.36	2.73	0.10	6.02	1.78	11.41	0.00***	

Note: *Significance Level 0.1; ** Significance Level 0.05; *** Significance Level 0.01.

Figura: Oliveira and Lima (2023)

Resumen

- Los modelos de clasificación binaria incorporan una transformación no-lineal que garantizar que las predicciones vivan en el rango apropiado.
- Esto implica que los efectos marginales de un factor explicativo serán especificos a un nivel deseado.

Referencias

- ► Hansen, B. 2018, Econometrics, ch. 21
- ► Greene Análisis Econométrico ch.19