Certified Robust Models with Slack Control and Large Lipschitz Constant

Max Losch, David Stutz, Bernt Schiele & Mario Fritz

1 Certified Robustness w/ Lipschitzness

Consider differentiable function f.

- ightharpoonup f has Lipschitz constant K^f
- Then input distance bounds output distance:

$$||f(x_1) - f(x_2)||_p \le K^f ||x_1 - x_2||_p$$

► Enables cheap certification for ϵ , e.g.

$$|f_1(x) - f_2(x)| > \epsilon K^f$$

► Generally though, K^f is huge and $|f_1(x) - f_2(x)|$ is small \implies certification infeasible

To achieve certification, existing methods focus on keeping K^f small, e.g. by:

- minimizing it [3]
- ightharpoonup constraining the architecture, such that $K^f=1$ [5, 4, 1, 6]

2 Our Calibrated Lipschitz-Margin Loss (CLL)

- ightharpoonup Existing losses not calibrated to input margin width 2ϵ
- ightharpoonup Calibration of logistic distribution width σ via K^f
- ightharpoonup Results in explicit definition for slack: p
- Slack determines constant of the whole model $K^{(h \circ f)} = 1/\sigma_{\epsilon}(p)$
- Easy to generalize to Cross-entropy-loss

Calibrated logistic $2\epsilon = 0.3$.

Calibrated with margin offset $\pm y\epsilon$

$$\hat{h}(f(x);y) = h\left(-\frac{y\epsilon}{\sigma_{\epsilon}(p)} + \frac{1}{\sigma_{\epsilon}(p)} \frac{f(x)}{K^f}\right)$$

Margin Output offset calibration

In a Nutshell

Existing Lipschitz margin methods control the Lipschitz constant K to be low, yet we observe decision functions becoming overly smooth when K is too low (left) – impairing accuracy.

Our Calibrated Lipschitz-Margin loss (CLL) provides slack control, which we show is inversely proportional to K. We can control K to be high and observe improved clean **and** robust accuracies (right). Incorrect or not robust samples marked red.

Contributions

We propose a new loss with explicit control over slack and show:

- slack is tightly linked to the Lipschitz constant of the model
- \blacktriangleright we can train models with larger Lipschitz constants K
- ightharpoonup models with larger K provide better clean and robust accuracies
- we achieve SOTA performance on CIFAR-100 and Tiny-ImageNet

Paper and Code: github.com/mlosch/CLL

- [1] Alexandre Araujo et al. "A Unified Algebraic Perspective on Lipschitz Neural Networks". In: *ICLR* (2023).
- [2] Yujia Huang et al. "Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds". In: NeurIPS (2021).
- [3] Klas Leino, Zifan Wang, and Matt Fredrikson. "Globally-robust neural networks". In: *ICML* (2021).
- [4] Laurent Meunier et al. "A Dynamical System Perspective for Lipschitz Neural Networks". In: *ICML* (2022). [5] Sahil Singla, Surbhi Singla, and Soheil Feizi. "Improved deterministic I2 robustness on CIFAR-10 and CIFAR-
- 100". In: *ICLR* (2021).

 [6] Ruigang Wang and Ian Manchester. "Direct Parameterization of Lipschitz-Bounded Deep Networks". In: *ICML* (2023).

3 Explicit Slack and Lipschitz Constant Control

Slack control on two moons. High $p\Rightarrow$ high slack \Rightarrow smooth decision boundary. To reach perfect certified robust accuracy (CRA), p needs to be small. Note, that $K^{(h\circ f)}$ is increasing with p.

4 Results

- Integrated CLL with existing methods
- ▶ Consistent certified robust accuracy (CRA) improvements while maintaining clean acc. thereby recording larger $K^{(h \circ f)}$
- ► CLL unlocks SOTA performance on lightweight models. 8C2F: 4M, vs LBDN: 1.1B parameters

On Tiny-ImageNet	Model	Clean (%)	CRA $\frac{36}{255}$ (%)	CRA $\frac{72}{255}$ (%)	CRA $\frac{108}{255}$ (%)	$K^{(h \circ f)}$
GloRo[3]	8C2F	39.5	23.9	14.3	9.0	3.9
Local-Lip-B[2]	8C2F	36.9	23.4	12.7	6.1	_
Ours $\epsilon = 0.5, p = 0.01$	8C2F	39.8 (+0.3)	25.9 (+2.0)	16.5 (+2.2)	10.7 (+1.7)	10.6
SOC[5]	LipConv-10	32.1	21.5	12.4	7.5	6.4
	LipConv-20	31.7	21.0	12.9	7.5	6.4
Ours	LipConv-20	32.6 (+0.5)	26.0 (+3.5)	20.2 (+7.3)	15.5 (+8.0)	11.6
SLL[1]	XL	32.1	23.2	16.8	12.0	_
LBDN[6]	Sandwich	33.4	24.7	18.1	13.4	-
Ours $\epsilon = 1.0, p = 0.025$	8C2F	33.5 (+0.1)	25.3 (+0.6)	19.0 (+0.9)	13.8 (+0.4)	4.4

On CIFAR-100	Model	Clean (%)	CRA $\frac{36}{255}$ (%)	CRA $\frac{72}{255}$ (%)	CRA $\frac{108}{255}$ (%)	$K^{(h \circ f)}$
SOC[5]	LipConv-20	47.8	34.8	23.7	15.8	6.4
Ours	LipConv-20	48.2 (+0.4)	35.1 (+0.3)	25.3 (+1.6)	18.3 (+2.5)	9.2
CPL[4]	XL	47.8	33.4	20.9	12.6	1.6
Ours	XL	47.9 (+0.1)	36.3 (+2.9)	28.1 (+7.2)	21.5 (+8.9)	7.6
SLL[1]	XL	46.5	36.5	29.0	23.3	6.0
Ours	XL	46.9 (+0.4)	36.6 (+0.1)	29.0	23.4 (+0.1)	6.5