вариант	ф. номер	група	вариант	курс	специалност
KP2.1	0MI0600041	1	1	I	Софтуерно инженерство
Име: Филип Красимиров Филчев					Красимиров Филчев

Контролна работа № 2.1

Задача 1. (4 т.) Нека

$$f_1 = x^3 + 3x^2 - 2x - 3, \ f_2 = x^3 + x^2 - x - 2, \\ f_3 = -x^3 - x^2 + (\lambda - 2)x + 2 \ \text{if} \ f = -2x^3 + (\mu + 5)x^2 + (\mu + 3)x + 2$$

са полиноми над полето на рационалните числа Q. Да се определи за кои стойности на параметрите λ и μ полиномът f може да се представи по повече от един начин като линейна комбинация на полиномите f_1, f_2 и f_3 . Да се намерят две различни такива представяния.

Задача 2. Нека V е множеството от всички полиноми с реални коефициенти и от степен не поголяма от 3.

- а) (1,25т.) Да се докаже, че полиномите 1, x-5, $\frac{(x-5)^2}{2!}$ и $\frac{(x-5)^3}{3!}$ образуват базис на $\mathbb V$. б) (1,25т.) Да се намерят координатите на полинома $g=x^3-2x^2+x+3$ спрямо базиса от
- подточка а).
- в) (1,5т.) Да се докаже, че множеството от полиномите $\mathbb{U} = \{f \in \mathbb{V} \mid f(5) = 0\}$ е линейно подпространство на V. Да се определи размерността на U и да се намери негов базис.

Journ Kpacerempob Joursel, Joh: Olt I 06 00041

Контролна работа №22

072-) Inpegerabane nou $3 \neq 3$ u M = 3 = (2, -4, 0)Descripoù npegerabanus nou 3 = 3; 2M = 3 = (2, p - 4, p)O npegera sanus nou $3 \neq 3$; $M \neq 3$ u 3 = 3; $M \neq 3$

(a)
$$V = u_1 - b_0$$
 or moluvolum $-\frac{1}{2}(c_1 c_1 c_2)$ be $v_1 = v_2 c_1 c_2 c_3 c_4$. So $v_2 = v_1 c_2 c_2 c_4$ by $v_3 = v_2 c_4$ by $v_4 = v_4$ by v_4

H)
$$\frac{2}{8}$$
 - 30 $\frac{2}{8}$ + 75 $\frac{2}{8}$ + 125 $\frac{2}{9}$ = 18
6 $\frac{2}{8}$ - 1680 + 1950 - 750 = 18
 $\frac{2}{8}$ = 83
 $\frac{2}{8}$ = 83
 $\frac{2}{8}$ = 83
 $\frac{2}{8}$ + 56.(x5) + 26.((x5)²) + 6.((x5)³)
6) $\frac{2}{8}$ = $\frac{2}{8}$ = $\frac{2}{8}$ = $\frac{2}{3}$ = $\frac{2}$