

NOME

Repescagem - 2.º Teste de Introdução à Arquitetura de Computadores

IST – LEIC-T

3 fevereiro 2018

1.º Semestre 2017/2018 Duração: 60 minutos

NÚMERO	

1. (1 + 1 + 3 + 1 valores) Considere o seguinte programa em linguagem *assembly* do PEPE-16, que usa duas interrupções, embora <u>ambas invoquem a mesma rotina (rot_int)</u>. Para facilitar, fornece-se a descrição interna das instruções CALL e RET e uma descrição sumária do mecanismo das interrupções.

CALL Etiqueta	SP ← SP-2 M[SP]←PC PC ← Endereço da Etiqueta
	$PC \leftarrow M[SP]$ $SP \leftarrow SP+2$

Invocação	Guarda endereço de retorno	
de rotina de	Guarda registo de estado (RE)	
interrupção	Salta para rotina de interrupção	
RFE	Repõe registo de estado (RE)	
KFE	Repõe endereço de retorno no PC	

- a) Preencha os <u>endereços que faltam</u> na coluna "Endereços" (preencha apenas as linhas em que tal faça sentido) e <u>as instruções (ou parte delas) que faltam no programa</u>. Considera-se que cada MOV com uma constante <u>ocupa apenas uma palavra</u>;
- b) Na coluna mais à esquerda, "Int", coloque um "X" <u>apenas</u> nas linhas das instruções em que o PEPE, <u>em vez de executar logo</u> essa instrução, <u>pode ir atender primeiro</u> uma interrupção, se esta tiver entretanto sido pedida (num dos pinos relevantes) mas ainda não tiver sido atendida;

c) Acabe de preencher a tabela com informação sobre a sequência de todos os acessos de dados à memória feitos pelo programa, de leitura (L) ou escrita (E) durante a primeira iteração do programa principal (primeira passagem pela etiqueta "mais" e até lá voltar), assumindo que só a interrupção 3 é ativada nesse período, e precisamente durante a instrução com etiqueta "soma1". Ignoram-se os acessos de busca de instrução. Use apenas as linhas que necessitar. Quando o valor lido ou escrito (coluna da direita) for o registo de estado, use apenas RE como valor (uma vez que é difícil determinar o valor de todos os bits de estado).

Endereço da instrução ou n.º da interrupção que causa o acesso	Endereço acedido	L ou E	Valor lido ou escrito

	1 e 3 s "contad	ndo que cada iteração do p ão de 100 ms e 150 ms, i lor" <u>poderá</u> ter no momento e um tempo suficientement	respetivamente, estito em que a rotina de	me o valor míni e interrupção é in	imo e máximo nvocada (med	que a variável
		mínimo	Máxi	mo		
2.		na transmissão de dados por ransmissão de 1000 bits/seg				
			2			

3. (3 valores) Considere o seguinte sistema de descodificação de endereços utilizado por um processador de <u>bus</u> de dados de 8 bits e bus de endereços de 16 bits. Preencha a informação em falta sobre o descodificador e cada dispositivo (<u>bits de endereço</u> a que liga, <u>capacidade</u>, <u>saída do descodificador</u> a que deve ligar e o <u>endereço de fim</u> da gama de endereços em que esse dispositivo está ativo, <u>não considerando endereços de acesso repetido</u> - espelhos).

Bits de endereço a o descodificador deve ligar

Dispositivo	Bits de endereço	Capacidade (bytes) (decimal)	Saída do descodificador	Início (hexadecimal)	Fim (hexadecimal)
Periférico	A0-A6			1800H	
RAM 1	A0-A9			0800Н	
ROM		2 K		2000Н	
RAM 2		512		0000Н	

4. (2 valores) Considere a seguinte a tabela de Karnaugh, relativa a uma função de quatro entradas e uma saída. Preencha a tabela de verdade que lhe deu origem e simplifique a respetiva função, escrevendo no retângulo a expressão algébrica mais simplificada que lhe é equivalente.

A	В	C	D	Z
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

		CD					
		00	01	11	10		
	00	1	1		1		
A.D.	01	1	1	1			
AB	11		1	1			
	10	1			1		

5. (1,5 + 0,5 valores) Pretende-se construir um circuito microprogramado que conte o número de bits a 1 num dado número binário, X. O algoritmo é simples: se o bit 0 (menor peso) do valor X for 1, incrementa-se um contador. Segue-se um deslocamento de um bit à direita, repetindo-se estes dois passos até o valor a testar ser zero. O diagrama seguinte descreve o circuito. O registo R1 recebe o número cujos bits a 1 se devem contar. O registo tem uma saída (Z) que vale 1 quando tem o valor zero e outra (BIT0) que é igual ao bit 0 (o de menor peso) de R1. Quando o algoritmo termina (R1 fica a zero), a saída FEITO deve ficar ativa. A saída NBITS (valor de R2) indica o número de bits a 1 em X e poderá ser lida por um outro circuito.

a) Preencha a tabela seguinte com os valores necessários para implementar a funcionalidade descrita. Indique apenas os sinais ativos em cada ciclo de relógio e deixe em branco as restantes células.

Endereço na ROM	Microinstruções	FEITO	LOAD_R1	SHR_R1	INIT_R2	INC_R2	SEL_MICRO _SALTO	MICRO_ SALTO
	$R1 \leftarrow X$ $R2 \leftarrow 0$							
1	$(R1 == 0): MPC \leftarrow 6$							
2	$(BIT0 == 0): MPC \leftarrow 4$							
3	$R2 \leftarrow R2 + 1$							
4	$R1 \leftarrow R1 >> 1$							
5	$MPC \leftarrow 1$							
6	FEITO ← 1 MPC ← 6							

- b) Quantos bits de largura deve ter no mínimo a ROM de microprograma?
- 6. (1,5 + 1,5 valores) Suponha que a *cache* de um processador com 16 bits de endereço, <u>endereçamento de byte</u>, é de mapeamento direto, com uma capacidade de 512 palavras (blocos de 4 palavras).
 - a) Indique o número de bits de cada um dos campos em que o endereço se divide para acesso à cache.

Etiqueta	
Índice	
Palavra dentro do bloco	
Byte dentro da palavra	

b) Na execução de instruções do tipo MOV R1, [R2] num dado programa, verificou-se que nuns casos o valor de R1 demorava 3 ns a obter, noutros 20 ns, e que em média demorava 6,4 ns. Qual a taxa de sucesso (*hit rate*) da *cache* com este programa?

7. (2 valores) Considere um processador com 24 bits de endereço, endereçamento de byte e suporte para memória virtual com páginas de 4K bytes. Assuma que a memória física tem uma capacidade de 1 Mbyte e que a TLB é uma *cache* totalmente associativa de 4 entradas, cujo conteúdo é numa dada altura o indicado na tabela da esquerda. Acabe de preencher as outras duas tabelas para este exemplo concreto.

Posição da TLB	Bit validade	N° de página virtual	Nº de página física
0	1	23BH	68H
1	0	7BAH	3AH
2	1	158H	3AH
3	1	2B5H	2AH

	Endereço virtual	Endereço físico
Dimensão do espaço virtual		3АВ6СН
Número de páginas virtuais	23BE4AH	
Número de páginas físicas		2A813 H