1.2.2 Экспериментальная проверка закона вращательного движения на крестообразном маятнике

Шляпин Илья Б01-308

1 Теоретические сведения

Закон вращательного движения:

$$I\ddot{\varphi} = M \tag{1}$$

 $\ddot{\varphi} \equiv \dot{\omega} \equiv \beta$

Рис. 1: Крестообразный маятник Обербека

На маятник действуют два момента сил: силы натяжения нити (M_T) и трения $(M_{\rm Tp})$: $M_T=rT$, r - радиус шкива. Для движения платформы с учетом нерастяжимости нити:

$$m_H \beta r = m_H \ddot{y} = m_H g - T$$

Откуда согласно основному уравнению вращательного движения:

$$(I + m_H r^2)\beta = m_H gr - M_{\rm TP} \tag{2}$$

Таблица 1: Характеристики системы в сбалансированном состоянии

№ груза	т, г	R, см			
1	157.8 ± 0.1	16.21 ± 0.05			
2	152.1 ± 0.1	16.45 ± 0.05			
3	153.9 ± 0.1	16.12 ± 0.05			
4	151.9 ± 0.1	17.05 ± 0.05			

Рассмотрим момент силы трения. Его зависимость от скорости не ясна, однако может иметь как составляющую, пропорциональную силе реакции в оси N (сухое трение), так и составляющую, пропорциональную угловой скорости вращения (вязкое трение). Откуда:

$$M_{\rm TP} \simeq (1 + \frac{m_H}{m_M})M_0 + \eta\omega \approx M_0 + \eta\omega$$
 (3)

где M_0 - момент сил трения для покоящегося маятника при нулевой массе подвеса, m_M - масса маятника

Для расчета момента инерции системы, предположим, что грузы m_i имеют форму полых цилиндров, внутренний и внешний радиус которых известен, образующая h

$$I = I_0 + \sum_{i=1}^{4} (I_i + m_i R_i^2) \tag{4}$$

где I_0 - момент инерции системы без грузов, R_i - расстояние от центров масс грузов до оси вращения

$$I_i = \frac{1}{12}m_i h^2 + \frac{1}{4}m_i (a_1^2 + a_2^2)$$
 (5)

- момент инерции груза относительно оси, проходящей через его центр масс

2 Экспериментальная установка

В работе используется крестообразный маятник (рис. 1), состоит из четырех тонкий стержней, перпендикулярных друг другу, укрепленных на втулке. Втулка и два шкива насажены на общую ось, вся система благодаря подшипникам может вращаться вокруг горизонтальной оси. Установка позволяет автоматически фиксировать моменты прохождения концов стержня через датчик.

3 Измерения и обработка данных

3.1 Балансировка

Балансировка системы при помощи добаления грузов на стержни, при движении несбалансированного маятника слышны стуки в подшипниках, график зависимости ускорения от угловой скорости имеет пульсации (рис. 2)

Маятник приходит в движение без добавления перегрузков, поэтому так момент силы трения в подшипниках измерить невозможно. Но можно сделать вывод, что:

$$M_0 < m_{\rm n} g r = 1.5 \cdot 10^{-3} \tag{6}$$

3.2 Измерения с постоянным моментом инерции и разными перегрузками

Построим график $\beta_0(M_T)$ зависимости начального ускорения от момента силы натяжения. Полученная зависимотсь является прямой пропорциональностью, то есть $\beta_0 = a + bM_T$.

Рис. 2: Пульсации при движении недостаточно сбалансированного маятника

Таблица 2: Измерения с постоянным моментом инерции и разными перегрузками

	1 1/	1 1 /	0 / 2	/ 9	D	ח	D	D	
m_{π} , Γ	k, 1/c	σ_k , 1/c	β_0 , рад $/c^2$	$\sigma_{eta_0},~\mathrm{pag}/c^2$	R_1 , cm	R_2 ,cm	R_3 , см	R_4 , cm	r, cm
11,8	-0,001336	0,00027	0,07262	0,00012	16,21	16,45	16,12	17,05	1,75
22	-0,004862	0,00099	0,1588	0,00074	16,21	16,45	16,12	17,05	1,75
52,9	-0,008006	0,00062	0,4047	0,0007	16,21	16,45	16,12	17,05	1,75
70,7	-0,009354	0,00044	0,5459	0,00057	16,21	16,45	16,12	17,05	1,75
80,3	-0,009036	0,00074	0,6187	0,001	16,21	16,45	16,12	17,05	1,75
108,7	-0,01039	0,00091	0,836	0,0014	16,21	16,45	16,12	17,05	1,75
152,9	-0,01292	0,001	1,188	0,002	16,21	16,45	16,12	17,05	1,75
208,7	-0,01521	0,00096	1,631	0,0023	16,21	16,45	16,12	17,05	1,75

Коэффициенты a и b вычислим по МНК.

 $a \approx -0.0158 (\text{рад/c}^2)$

 $b \approx 45,9754(1/\text{kg} \cdot \text{m}^2)$

Пересечение с осью абсцисс при $\beta_0=0 \Rightarrow M_0=-a/b\approx 0.344\cdot 10^{-3} ({\rm H\cdot m})$ – момент сил трения. (Найденный ранее – $1.5\cdot 10^{-3} ({\rm H\cdot m})$).

Вычислим $I = 1/b \approx 0,02175 (\text{кг} \cdot \text{м}^2).$

Оценим погрешность I. Из формулы выше следует, что $\varepsilon_I=\varepsilon_b.$

$$\sigma_b = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle \beta_0^2 \rangle - \langle \beta_0 \rangle^2}{\langle M_{\rm T}^2 \rangle - \langle M_{\rm T} \rangle^2} - b^2} \approx 0,109(1/\text{kg} \cdot \text{m}^2)$$

 $\varepsilon_b = \sigma_b/b \approx 0.0024$

Тогда $\sigma_I = \varepsilon_I I = \varepsilon_b I \approx 0.00005 (\mathrm{kr} \cdot \mathrm{m}^2)$

В итоге имеем:

$$I = (0,02175 \pm 0.00005)$$
кг · м²

Таблица 3: Измерения с одинаковой массой(108,7 г) перегрузка, но разными моментами инерции

k, 1/c	σ_k , 1/c	β_0 , рад/ c^2	$\sigma_{eta_0},~\mathrm{pag}/c^2$	R_1 , cm	R_2 ,cm	R_3 , cm	R_4 , cm	r, cm	I , $K\Gamma \cdot M^2$
-0,01039	0,00091	0,836	0,0014	16,21	16,45	16,12	17,05	1,75	0,02189
-0,01155	0,0011	0,941	0,0018	15,15	15,05	14,73	15,99	1,75	001945
-0,01501	0,0013	1,213	0,0026	12,45	12,53	12,25	13,15	1,75	0,01508
-0,02537	0,0019	1,892	0,0041	7,69	8,74	8,48	8,25	1,75	0,00967
-0,03445	0,003	2,509	0,008	4,95	5,45	5,4	5,33	1,75	0,00729

3.3 Измерения с одинаковой массой перегрузка, но разными моментами инерции

Проведём измерения зависимости углового ускорения от момента инерции ситемы. $m_{\rm r}=108.7({\rm r})$ – масса груза $r=1.75({\rm cm})$ – радиус шкива По формуле (3) имеем:

$$(I+m_{\scriptscriptstyle \rm H}r^2)\beta=m_{\scriptscriptstyle \rm H}gr-M_{\scriptscriptstyle
m TD}$$

$$I \gg m_{\scriptscriptstyle \mathrm{H}} r^2 \Rightarrow I_i pprox rac{m_{\scriptscriptstyle \mathrm{H}} gr - M_{\scriptscriptstyle \mathrm{Tp}}}{eta_i}.$$

Полученные значения I_i занесём в таблицу и построим по ним график $I(R^2)$.

Полученные по МНК коэффициенты прямой $I=a+bR^2$ равны:

$$a\approx 0.00564(\mathrm{kg}\cdot\mathrm{m}^2)$$

 $b \approx 0.448 (\mathrm{kg})$

Вычислим I по формуле:

$$I = I_0 + \sum_{i=1}^{4} (I_i + m_i R_i^2)$$

где I_0 – момент инерции системы без грузов, а $I_i = \frac{1}{12} m_i h^2 + \frac{1}{4} m_i (a_1^2 + a_2^2)$. Поскольку массы грузов и расстояния до центра масс почти не отличаются $\sum_{i=1}^4 (I_i + m_i R_i^2) \approx 4I_1$. Вычислим эту величину и получим, что $4I_1 \approx 10^{-4} (\text{kg} \cdot \text{m}^2) \ll a \Rightarrow I_0 \approx a$.

и получим, что
$$4I_1 \approx 10^{-4} (\mathrm{kr} \cdot \mathrm{m}^2) \ll a \Rightarrow I_0 \approx a.$$

Тогда $\sigma_I = \sigma_a = \sqrt{\frac{\langle I^2 \rangle - \langle I \rangle^2 - b^2 \left(\langle R^4 \rangle - \langle R^2 \rangle^2\right)}{n}} \approx 0.00002 (\mathrm{kr} \cdot \mathrm{m}^2)$
Имеем
$$I_0 = (0.00564 \pm 0.00002) (\mathrm{kr} \cdot \mathrm{m}^2)$$

Определим сумму I_i :

$$\sum_{i} I_{i} = \sum_{i} \left(\frac{1}{12} m_{i} h^{2} + \frac{1}{4} m_{i} (a_{1}^{2} + a_{2}^{2})\right) = 9.5 \cdot 10^{-5} \text{ kg} \cdot \text{m}^{2}$$

Сумма значительно меньше сдвига (а) прямой графике, определенного по МНК, поэтому $I_0 \approx a$ С помощью графиков и формул (4 и 5) определим значение $I_0 = a = (56, 40 \pm 0.19) \cdot 10^{-4} \ \mathrm{kr} \cdot \mathrm{m}^2$

4 Вывод

Экспериментально получена зависимость углового ускорения от момента прикладываемых к маятнику сил, тем самым подтверждено уравнение вращательного движения. Определен момент инерции маятника несколькими способами, приводящими к одному и тому же результату.