HAI722I — **DM**

Ivan Lejeune

 $10 \ {\rm octobre} \ 2025$

Table des matières

1	Partie théorique													2
2	Partie pratique.													Ę

Instructions

Ce devoir est à rendre avant le 12 décembre 2025 à 12h, soit par mail à l'adresse : rodolphe.giroudeau@lirmm.fr, soit en déposant votre devoir durant le cours

1 Partie théorique

Exercice 1 Algorithmes pour la programmation linéaire. Considérons la formulation suivante :

$$P_{\beta} = \begin{cases} \max z = 5x_1 + 2x_2 \\ 6x_1 + x_2 \ge 6 \\ 4x_1 + 4x_2 \ge 12 \\ x_1 + 2x_2 \ge 4 \\ x_i \ge 0, \quad \forall i \in \{1, 2\} \end{cases}$$

- 1. Résoudre le problème P_{β} par la méthode du big M.
- 2. Résoudre le problème P_{β} par la méthode à deux phases.
- 3. Difficile:
 - (a) Résoudre le problème P_β par la méthode dual-simplexe.
 - (b) Soit le programme linéaire P_{θ}

$$P_{\theta} = \begin{cases} \max z = x_1 + 3x_2 \\ x_1 + x_2 \ge 3 \\ x_1 - 2x_2 \ge 5 \\ -2x_1 + x_2 \le 5 \\ x_i \ge 0, \quad \forall i \in \{1, 2\} \end{cases}$$

Résoudre le problème P_{θ} par la méthode dual-simplexe.

Solution.

1. Commençons par poser le problème sous forme standard :

$$P_{\beta} = \begin{cases} \max z = 5x_1 + 2x_2 + 0x_3 + 0x_4 + 0x_5 - M \cdot (y_1 + y_2 + y_3) \\ 6x_1 + x_2 - x_3 + y_1 = 6 \\ 4x_1 + 4x_2 - x_4 + y_2 = 12 \\ x_1 + 2x_2 - x_5 + y_3 = 4 \\ x_i \ge 0, y_j \ge 0, \quad \forall i \in \{1, \dots, 5\}, \forall j \in \{1, 2, 3\}. \end{cases}$$

Ensuite on construit notre tableau du simplexe :

		c	5	2	0	0	0	-M	-M	-M
c^J	variables	s de base	x_1	x_2	x_3	x_4	x_5	y_1	y_2	y_3
-M	$x_1^1 = y_1$	6	6	1	-1	0	0	1	0	0
-M	$x_2^1 = y_2$	12	4	4	0	-1	0	0	1	0
-M	$x_3^1 = y_3$	4	1	2	0	0	-1	0	0	1
	z(x)	-22M	-11M - 5	-7M - 2	M	M	M	0	0	0

et on déroule l'algorithme :

- on rentre x_1 ,
- on sort y_1 car 1 < 3 < 4,

		c	5	2	0	0	0	-M	-M	-M
c^{J}	variable	es de base	x_1	x_2	x_3	x_4	x_5	y_1	y_2	y_3
5	$x_1^2 = x_1$	1	1	$\frac{1}{6}$	$-\frac{1}{6}$	0	0	$\frac{1}{6}$	0	0
-M	$x_2^2 = y_2$	8	0	$\frac{10}{3}$	$\frac{4}{6}$	-1	0	$-\frac{4}{6}$	1	0
-M	$x_3^2 = y_3$	3	0	$\frac{11}{6}$	$\frac{1}{6}$	0	-1	$-\frac{1}{6}$	0	1
	z(x)	-11M + 5	0	$-\frac{31}{6}M - \frac{7}{12}$	$-\frac{5}{6}M-\frac{5}{6}$	M	M	$\frac{11}{6}M + \frac{5}{6}$	0	0

- on rentre x_2 ,
- on sort y_3 car $\frac{11}{2} < 6 < \frac{80}{3}$,

		c	5	2	0	0	0	-M	-M	-M
c^J	variab	les de base	x_1	x_2	x_3	x_4	x_5	y_1	y_2	y_3
5	$x_1^3 = x_1$	$\frac{8}{11}$	1	0	$-\frac{2}{11}$	0	$\frac{1}{11}$	$\frac{2}{11}$	0	$-\frac{1}{11}$
-M	$x_2^3 = y_2$	$\frac{28}{11}$	0	0	$\frac{4}{11}$	-1	$\frac{20}{11}$	$-\frac{4}{11}$	1	$-\frac{20}{11}$
2	$x_3^3 = x_2$	$\frac{18}{11}$	0	1	$\frac{1}{11}$	0	$-\frac{6}{11}$	$-\frac{1}{11}$	0	$\frac{6}{11}$
	z(x)	$-\frac{28}{11}M + \frac{76}{11}$	0	0	$-\frac{4}{11}M - \frac{8}{11}$	-M	$-\frac{20}{11}M - \frac{7}{11}$	$\frac{15}{11}M + \frac{8}{11}$	0	$\frac{31}{11}M + \frac{7}{11}$

- on rentre x_5 , on sort y_2 car $\frac{7}{5} < 8$ (l'autre rapport étant négatif on le compte pas),

		c	5	2	0	0	0	-M	-M	-M
c^J	variables	de base	x_1	x_2	x_3	x_4	x_5	y_1	y_2	y_3
5	$x_1^4 = x_1$	<u>3</u> 5	1	0	$-\frac{1}{5}$	$\frac{1}{20}$	0	$\frac{1}{5}$	$-\frac{1}{20}$	0
0	$x_2^4 = x_5$	$\frac{7}{5}$	0	0	$\frac{1}{5}$	$-\frac{11}{20}$	1	$-\frac{1}{5}$	$\frac{11}{20}$	-1
2	$x_3^4 = x_2$	$\frac{12}{5}$	0	1	$\frac{1}{5}$	$-\frac{3}{10}$	0	$-\frac{1}{5}$	$\frac{3}{10}$	0
	z(x)	39 5	0	0	$-\frac{3}{5}$	$-\frac{7}{20}$	0	$M + \frac{3}{5}$	$M + \frac{7}{20}$	M

A ce stade, il est clair que les variables artificielles ne pourront plus entrer en base. On peut donc les retirer et procéder sur le tableau réduit suivant :

		c	5	2	0	0	0
c^J	variables	de base	x_1	x_2	x_3	x_4	x_5
5	$x_1^4 = x_1$	3 5	1	0	$-\frac{1}{5}$	$\frac{1}{20}$	0
0	$x_2^4 = x_5$	$\frac{7}{5}$	0	0	$\frac{1}{5}$	$-\frac{11}{20}$	1
2	$x_3^4 = x_2$	$\frac{12}{5}$	0	1	$\frac{1}{5}$	$-\frac{3}{10}$	0
	z(x)	$\frac{39}{5}$	0	0	$-\frac{3}{5}$	$-\frac{7}{20}$	0

- on rentre x_3 ,
- on sort x_5 ,

,

		c	5	2	0	0	0
c^J	variables	de base	x_1	x_2	x_3	x_4	x_5
5	$x_1^5 = x_1$	2	1	0	0	$-\frac{1}{2}$	1
0	$x_2^5 = x_3$	7	0	0	1	$-\frac{11}{4}$	5
2	$x_3^5 = x_2$	1	0	1	0	$\frac{1}{4}$	-1
	z(x)	12	0	0	0	-2	3

Il ne reste probablement qu'une étape, faisons-la :

- on rentre x_4 ,
- on sort x_2 , c'est la seule valeur positive,

 \downarrow

		c	5	2	0	0	0
c^J	variables	de base	x_1	x_2	x_3	x_4	x_5
5	$x_1^6 = x_1$	4	1	2	0	0	-1
0	$x_2^6 = x_3$	18	0	11	1	0	-6
0	$x_3^6 = x_4$	4	0	4	0	1	-4
	z(x)	20	0	8	0	0	-5

Dommage, on a encore un point pivot à faire rentrer (x_5 a valeur négative) donc on aimerait continuer de dérouler l'algorithme mais on a pas de critère pour trouver quelle variable sortir de base (en effet, toutes les valeurs dans la colonne du pivot sont négatives). On conclut donc que l'espace des solutions est non borné. C'est-à-dire qu'il n'existe pas « un couple maximum » car on peut toujours en trouver un plus grand. Donc il n'y a pas un unique couple (x_1, x_2) qui maximise z.

Exercice 2 Dualité. Considérez le programme linéaire le plus général envisageable donné cidessous :

$$\begin{cases} \min z = c_1x_1 + c_2x_2 \\ A_{11}x_1 + A_{12}x_2 \le b_1 \\ A_{21}x_1 + A_{22}x_2 = b_2 \\ x_i \ge 0, \quad \forall i \in \{1,2\} \end{cases}$$

où A est une matrice $(m_1 + m_2) \times (n_1 + n_2)$ et $c, x \in \mathbb{R}^{n_1 + n_2}$ et $b \in \mathbb{R}^{m_1 + m_2}$. Caractériser le dual.

Solution.

Exercice 3 Ensemble convexe. Soit C_1 et C_2 deux convexes de \mathbb{R}^{m+n} . Montrer que l'ensemble

$$C = \{(x, y_1 + y_2) \mid x \in \mathbb{R}^m, y_1 \in \mathbb{R}^n, y_2 \in \mathbb{R}^n, (x, y_1) \in C_1, (x, y_2) \in C_2\}$$

est également convexe.

Solution.

Exercice 4 Modélisation et dualité. Considérons un problème d'affectation avec m jobs et n travailleurs $(n \ge m)$. Chaque job doit être affecté à exactement un travailleur. Soit p_{ij} le rendement obtenu si on affecte le job i au travailleur j, où $i \in \{1, \ldots, m\}$ et $j \in \{1, \ldots, n\}$. On cherche une affectation qui maximise le rendement total.

- 1. Donner le programme linéaire.
- 2. Donner la formulation du dual de ce problème.

Solution.

Exercice 5 Programmation linéaire : Farkas. Considérons le programme linéaire suivant, qui dépend de $\varepsilon \in \mathbb{R}$:

$$\begin{cases} \min z = 4x_1 - 2x_2 \\ x_2 \le 3 \\ \varepsilon x_1 + (2 - \varepsilon)x_2 \le 4 \\ x_i \ge 0, \quad \forall i \in \{1, 2\} \end{cases}$$

- 1. Montrer que le problème est réalisable $\forall \varepsilon \in \mathbb{R}$.
- 2. Pour quelles valeurs de ε la valeur optimale est-elle non bornée ?

Solution.

Exercice 6 Résolution numérique. Résoudre le programme linéaire suivant par la méthode Primal-Dual :

$$Primal = \begin{cases} \min z(x_1, x_2, x_3) = 2x_1 + x_2 + 2x_3 + 8x_4 \\ 2x_1 - x_2 + 3x_3 - 2x_4 = 3 \\ -x_1 + 3x_2 - 4x_3 = 1 \\ x_i \ge 0, \quad \forall i \in \{1, 2, 3, 4\} \end{cases}$$

Solution.

2 Partie pratique

Exercice 7.

Solution.

Exercice 8.

Solution.

Exercice 9.

Solution.