Homework 2 of Introduction to Analysis(II)

AM15 黃琦翔 111652028

March 1, 2024

1. Suppose $f_k(x) = \sum_{n=1}^k \frac{x}{n^{\alpha}(1+nx^2)}$. Then, we want to proof that for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ s.t. $|f_k(x) - f_l(x)| < \varepsilon$ for all k, l > N and all $k \in I$ where $k \in I$ is a finite interval in \mathbb{R} .

First, we observe at the function f_k , a single term of f_k we call $f_{k,n} = \frac{x}{n^{\alpha}(1+nx^2)}$.

$$f_{k,n}'(x) = \frac{n^{\alpha}(1+nx^2) - xn^{\alpha}(2nx)}{n^{2\alpha}(1+nx^2)^2} = \frac{1-nx^2}{n^{\alpha}(1+nx^2)^2} \text{ would equal to 0 at } x = \frac{1}{\sqrt{n}}. \text{ Thus,}$$

2. Since $f_k \to f$ uniformly and f_k are continuous, f is continuous. Then, for any $\varepsilon > 0$, we have $\delta > 0$ s.t. if $|y - y'| < \delta$ then $|f(y) - f(y')| < \frac{\varepsilon}{2}$ for all $y, y' \in \mathbb{R}$. Since $x_k \to x$, there exists $N_1 \in \mathbb{N}$ s.t. $|x_k - x| < \delta$ for all $k > N_1$. Also we have $N_2 \in \mathbb{N}$ s.t. $|f_k(x) - f(x)| < \frac{\varepsilon}{2}$ for all $k > N_2$.

Then, take $N = \max\{N_1, N_2\}$, we can get $|f_k(x_k) - f(x)| \le |f_k(x_k) - f(x_k)| + |f(x_k) - f(x)| = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$ for all k > N. Thus, $\lim_{k \to \infty} f_k(x_k) = f(x)$.

3. Since f_n are continuous and converges uniformly, f is continuous(also integrable on [0,1]). And since f is continuous, we can find the maximum of |f| on [0,1] which is called as M. For any $\varepsilon > 0$, there exists $N_1 \in \mathbb{N}$ s.t. $|f_k(x) - f(x)| < \frac{\varepsilon}{4}$ for all $k > N_1$. And there exists $N_2 \in \mathbb{N}$ s.t. $N_2 > \frac{M}{2\varepsilon}$. Then, take

$$n > N = \max\{N_1, N_2\}$$

$$\left| \int_0^{1-\frac{1}{n}} f_n(x) dx - \int_0^1 f(x) dx \right| \le \left| \int_0^{1-\frac{1}{n}} f_n(x) - f(x) dx \right| + \left| \int_{1-\frac{1}{n}}^1 f(x) dx \right|$$

$$\le \int_0^1 |f_k(x) - f(x)| dx + \frac{1}{n} \cdot M$$

$$\le 1 \cdot 2\frac{\varepsilon}{4} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

Thus,
$$\lim_{n \to \infty} \int_0^{1 - \frac{1}{n}} f_n(x) dx = \int_0^1 f(x) dx$$
.

4.