

planetmath.org

Math for the people, by the people.

ring of continuous functions

Canonical name RingOfContinuousFunctions

Date of creation 2013-03-22 16:54:54 Last modified on 2013-03-22 16:54:54

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 14

Author CWoo (3771)
Entry type Definition
Classification msc 54C40
Classification msc 54C35

Let X be a topological space and C(X) be the function space consisting of all continuous functions from X into \mathbb{R} , the reals (with the usual metric topology).

Ring Structure on C(X)

To formally define C(X) as a ring, we take a step backward, and look at \mathbb{R}^X , the set of all functions from X to \mathbb{R} . We will define a ring structure on \mathbb{R}^X so that C(X) inherits that structure and forms a ring itself.

For any $f, g \in \mathbb{R}^X$ and any $r \in \mathbb{R}$, we define the following operations:

- 1. (addition) (f+g)(x) := f(x) + g(x),
- 2. (multiplication) (fg)(x) := f(x)g(x),
- 3. (identities) Define r(x) := r for all $x \in X$. These are the constant functions. The special constant functions 1(x) and 0(x) are the multiplicative and additive identities in \mathbb{R}^X .
- 4. (additive inverse) (-f)(x) := -(f(x)),
- 5. (multiplicative inverse) if $f(x) \neq 0$ for all $x \in X$, then we may define the multiplicative inverse of f, written f^{-1} by

$$f^{-1}(x) := \frac{1}{f(x)}.$$

This is not to be confused with the functional inverse of f.

All the ring axioms are easily verified. So \mathbb{R}^X is a ring, and actually a commutative ring. It is immediate that any constant function other than the additive identity is invertible.

Since C(X) is closed under all of the above operations, and that $0, 1 \in C(X)$, C(X) is a subring of \mathbb{R}^X , and is called the ring of continuous functions over X.

Additional Structures on C(X)

 \mathbb{R}^X becomes an \mathbb{R} -algebra if we define scalar multiplication by (rf)(x) := r(f(x)). As a result, C(X) is a subalgebra of \mathbb{R}^X .

In addition to having a ring structure, \mathbb{R}^X also has a natural order structure, with the partial order defined by $f \leq g$ iff $f(x) \leq g(x)$ for all $x \in X$. The positive cone is the set $\{f \mid 0 \leq f\}$. The absolute value, given by |f|(x) := |f(x)|, is an operator mapping \mathbb{R}^X onto its positive cone. With the absolute value operator defined, we can put a http://planetmath.org/Latticelattice structure on \mathbb{R}^X as well:

- (meet) $f \vee g := 2^{-1}(f+g+|f-g|)$. Here, 2^{-1} is the constant function valued at $\frac{1}{2}$ (also as the multiplicative inverse of the constant function 2).
- (join) $f \wedge g := f + g (f \vee g)$.

Since taking the absolute value of a continuous function is again continuous, C(X) is a sublattice of \mathbb{R}^X . As a result, we may consider C(X) as a lattice-ordered ring of continuous functions.

Remarks. Any subring of C(X) is called a *ring of continuous functions* over X. This subring may or may not be a sublattice of C(X). Other than C(X), the two commonly used lattice-ordered subrings of C(X) are

• $C^*(X)$, the subset of C(X) consisting of all bounded continuous functions. It is easy to see that $C^*(X)$ is closed under all of the algebraic operations (ring-theoretic or lattice-theoretic). So $C^*(X)$ is a lattice-ordered subring of C(X). When X is pseudocompact, and in particular, when X is compact, $C^*(X) = C(X)$.

In this subring, there is a natural norm that can be defined:

$$||f|| := \sup_{x \in X} |f(x)| = \inf\{r \in \mathbb{R} \mid |f| \le r\}.$$

Routine verifications show that $||fg|| \le ||f|| ||g||$, so that $C^*(X)$ becomes a normed ring.

• The subset of $C^*(X)$ consisting of all constant functions. This is isomorphic to \mathbb{R} , and is often identified as such, so that \mathbb{R} is considered as a lattice-ordered subring of C(X).

References

[1] L. Gillman, M. Jerison: Rings of Continuous Functions, Van Nostrand, (1960).