Lecture 37: Second Fundamental Theorem of Calculus (SFTOC)

Tae Eun Kim, Ph.D.

Autumn 2021

The Second Fundamental Theorem of Calculus

Here comes the second form of the Fundamental Theorem of

Theorem (Second Fundamental Theorem of Calculus, FTC2)

Let f be continuous on [a, b]. If F is **any** antiderivative of f, then

$$\int_{a}^{b} f(x) dx = F(b) - F(a). \tag{FTC2} \label{eq:FTC2}$$

An alternate interpretation of (FTC2) is to write it as

$$\int_{a}^{b} \frac{d}{dx} f(x) dx = f(b) - f(a).$$

The above reads as

The accumulation of a rate is given by the change in the amount.

Notation

- FTC2 is useful in computing a definite integral:
 - 1 find an antiderivative of the integrand;
 - 2 evaluate it at the limits of integration;
 - 3 take the difference.
- In the differencing process, you may find the following notation convenient:

$$\left[F(x)\right]_a^b = F(x)\Big|_a^b = F(b) - F(a).$$

Proof. Let a < c < b and write

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$
$$= \int_{c}^{b} f(x) dx - \int_{c}^{a} f(x) dx.$$

By the First Fundamental Theorem of Calculus, we have

$$F(b) = \int_{c}^{b} f(x) dx$$
 and $F(a) = \int_{c}^{a} f(x) dx$

for some antiderivative F of f. So

$$\int_a^b f(x) \, dx = F(b) - F(a)$$

for this antiderivative. However, **any** antiderivative could have be chosen, as antiderivatives of a given function differ only by a constant, and this constant always cancels out of the expression when evaluating F(b) - F(a).

Question. Compute:

$$\mathbf{1} \int_{-2}^{2} x^3 dx$$

Question. Compute:

Net Change and Future Value

Displacement and net change

Let's recall that

- The derivative of a position function s is a velocity function v.
- The derivative of a velocity function v is an acceleration function a.

In other words,

- A velocity function v is an antiderivative of an acceleration function a.
- A position function s is an antiderivative of a velocity function v.

In particular, by FTC2,

$$\int_a^b v(t) dt = s(b) - s(a) ,$$

which measures a **change in position**, or **displacement** as already introduced on Monday.

Net change and future value

 In general, FTC2 states that the definite integral of a rate of change of a certain quantity Q is the net change in its amount between two limits of integration:

$$\int_{a}^{b} Q'(s) ds = Q(b) - Q(a).$$
 (Net change)

• If we replace a = 0 and b = t, we have a formula for **future value**:

$$Q(t) = Q(0) + \int_0^t Q'(s) \, ds$$
 (Future value)

Question. A book publisher estimates that the marginal cost of a particular title (in dollars/book) is given by

$$C'(x) = 12 - 0.0002x,$$

where $0 \le x \le 50,000$ is the number of books printed. What is the cost of producing the 12,001st through 15,000th book?

Summary of three different integrals

1 An **indefinite integral**, a.k.a. an antiderivative computes a family of functions:

$$\int f(x) \, dx = F(x) + C$$

where F'(x) = f(x).

2 An accumulation function computes an accumulated area:

$$F(x) = \int_{a}^{x} f(t) dt$$

FTC1 says that F'(x) = f(x).

3 A definite integral computes a signed area:

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$