

June 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT: 9709/03, 8719/03

MATHEMATICS AND HIGHER MATHEMATICS Paper 3 (Pure 3)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709/8719	3

1 (i) Use trig formulae to express LHS in terms of sin x and cos x M1 Use $\cos 60^\circ = \sin 30^\circ$ to reduce equation to given form $\cos x = k$ M1

[2]

(ii) State or imply that
$$k = -\frac{1}{\sqrt{3}}$$
 (accept -0.577 or -0.58)

Obtain answer $x = 125.3^{\circ}$ only Α1

[Answer must be in degrees; ignore answers outside the given range.]

[SR: if $k = \frac{1}{\sqrt{3}}$ is followed by $x = 54.7^{\circ}$, give A0A1 $\sqrt{.}$]

[2]

State first step of the form $kxe^{2x} \pm \int ke^{2x} dx$ 2 M1 Complete the first step correctly A1 Substitute limits correctly having attempted the further integration M1 Obtain answer $\frac{1}{4}$ (e² + 1) or exact equivalent of the form $ae^2 + b$, having used e⁰ =1 throughout A1

[4]

State or imply non-modular inequality $(x-2)^2 < (3-2x)^2$, or 3 EITHER corresponding equation B₁ Expand and make a reasonable solution attempt at a 2- or 3-term quadratic, or equivalent M1 Α1 Obtain critical value x = 1State answer x < 1 only

A1

OR State the relevant linear equation for a critical value, i.e. 2 - x = 3 - 2x, or equivalent

B1

Obtain critical value x = 1State answer x < 1

B1 B₁

State or imply by omission that no other answer exists

B₁

OR Obtain the critical value x = 1 from a graphical method, or by inspection, or by solving a linear inequality B2 State answer x < 1

B1 **B1**

State or imply by omission that no other answer exists

[4]

Page 2	Mark Scheme	Syllabus	Paper	
	A AND AS LEVEL – JUNE 2003	9709/8719	3	

B₁ **4 (i)** EITHER State or imply that x - 2 is a factor of f(x)Substitute 2 for x and equate to zero M1 Obtain answer a = 8A1 [The statement $(x-2)^2 = x^2 - 4x + 4$ earns B1.] Commence division by x^2 - 4x + 4 and obtain partial quotient x^2 + 2xOR B1 Complete the division and equate the remainder to zero M1 Obtain answer a = 8A1 Commence inspection and obtain unknown factor $x^2 + 2x + c$ OR **B1** Obtain 4c = a and an equation in cM1 A1 Obtain answer a = 8[3] (ii) EITHER Substitute a = 8 and find other factor $x^2 + 2x + 2$ by inspection B₁ or division State that $x^2 - 4x + 4 \ge 0$ for all x (condone > for \ge) **B1** Attempt to establish sign of the other factor M1 Show that $x^2 + 2x + 2 > 0$ for all x and complete the proof A1 [An attempt to find the zeros of the other factor earns M1.] OR Equate derivative to zero and attempt to solve for x M1 A1 Obtain $x = -\frac{1}{2}$ and 2 Show correctly that f(x) has a minimum at each of these values A1 Having also obtained and considered x = 0, complete the proof A1 [4] State or imply $w = \cos \frac{2}{3} \pi + i \sin \frac{2}{3} \pi$ (allow decimals) 5 (i) **B**1 Obtain answer $uw = -\sqrt{3}$ - i (allow decimals) B1√ Multiply numerator and denominator of $\frac{u}{w}$ by -1 - i $\sqrt{3}$, or equivalent M1 Obtain answer $\frac{u}{w} = \sqrt{3}$ - i (allow decimals) A1 [4] (ii) Show U on an Argand diagram correctly **B1** B1√ Show A and B in relatively correct positions [2] Prove that AB = UA (or UB), or prove that angle AUB =angle ABU(iii)

(iii) Prove that AB = UA (or UB), or prove that angle AUB = angle ABU (or angle BAU) or prove, for example, that AO = OB and angle $AOB = 120^{\circ}$, or prove that one angle of triangle UAB equals 60° B1 Complete a proof that triangle UAB is equilateral

[2]

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709/8719	3

6 (i) EITHER State or imply
$$f(x) \equiv \frac{A}{2x+1} + \frac{B}{x-2} + \frac{C}{(x-2)^2}$$

State or obtain $A = 1$
State or obtain $C = 8$
Use any relevant method to find B
Obtain value $B = 4$

OR State or imply $f(x) \equiv \frac{A}{2x+1} + \frac{Dx+E}{(x-2)^2}$
B1
State or obtain $A = 1$
Use any relevant method to find D or E
Obtain value $D = 4$
Obtain value $E = 0$

A1

(ii) EITHER Use correct method to obtain the first two terms of the expansion of $(1 + 2x)^{-1}$ or $(x - 2)^{-1}$ or $(x - 2)^{-2}$ or $(1 - \frac{1}{2}x)^{-1}$ or $(1 - \frac{1}{2}x)^{-2}$ M1 Obtain any correct sum of unsimplified expansions up to the terms in x^2 (deduct A1 for each incorrect expansion)

Obtain the given answer correctly

A1

[Unexpanded binomial coefficients involving -1 or -2, e.g. $\begin{pmatrix} -2\\1 \end{pmatrix}$ are not

sufficient for the M1.]

[f.t. is on A, B, C, D, E.]

[Apply this scheme to attempts to expand $(9x^2 + 4)(1+2x)^{-1}(x - 2)^{-2}$, giving M1A2 for a correct product of expansions and A1 for multiplying out and reaching the given answer correctly.]

[Allow attempts to multiply out $(1 + 2x)(x - 2)^2 (1 - x + 5x^2)$, giving B1 for reduction to a product of two expressions correct up to their terms in x^2 , M1 for attempting to multiply out as far as terms in x^2 , A1 for a correct expansion, and A1 for obtaining $9x^2 + 4$ correctly.]

[SR: B or C omitted from the form of partial fractions. In part (i) give the first B1, and M1 for the use of a relevant method to obtain A, B, or C, but no further marks. In part (ii) only the M1 and A1 $\sqrt{}$ for an unsimplified sum are available.]

[SR: E omitted from the form of partial fractions. In part (i) give the first B1, and M1 for the use of a relevant method to obtain A or D, but no further marks. In part (ii) award M1A2 $\sqrt{A1}$ as in the scheme.]

OR Differentiate and evaluate
$$f(0)$$
 and $f'(0)$ M1
Obtain $f(0) = 1$ and $f'(0) = -1$ A1
Differentiate and obtain $f''(0) = 10$ A1
Form the Maclaurin expansion and obtain the given answer correctly A1

[4]

[5]

(ii) State or imply that $\frac{dx}{dt} = k (100 - x)$ Justify $k = 0.02$ (ii) Separate variables and attempt to integrate $\frac{1}{100 - x}$	B1
Justify $k = 0.02$ (ii) Separate variables and attempt to integrate $\frac{1}{100-x}$	
(ii) Separate variables and attempt to integrate $\frac{1}{100-x}$	B1
(ii) Separate variables and attempt to integrate $\frac{1}{100-x}$	
(ii) Separate variables and attempt to integrate $\frac{1}{100-x}$	[2
Obtain town In (100 v) or agriculant	M1
Obtain term – In (100 - x), or equivalent	A1
Obtain term 0.02 t , or equivalent Use $x = 5$, $t = 0$ to evaluate a constant, or as limits	A1 M1
Obtain correct answer in any form, e.g. $-\ln(100 - x) = 0.02t - \ln 95$ Rearrange to give x in terms of t in any correct form,	A1
e.g. $x = 100 - 95 \exp(-0.02t)$	A1
	[6
[SR: In (100 - x) for -ln (100 - x). If no other error and x = 100 - 95ex equivalent obtained, give M1A0A1M1A0A1 $$	(p(0.02 <i>t</i>
(iii) State that x tends to 100 as t becomes very large	B1
	[1
(i) State derivative $\frac{1}{x} - \frac{2}{x^2}$, or equivalent	B1
Equate 2-term derivative to zero and attempt to solve for <i>x</i> Obtain coordinates of stationary point (2, ln 2 +1), or equivalent Determine by any method that it is a minimum point,	M1 A1+A
with no incorrect work seen	A1
	[5
(ii) State or imply the equation $\alpha = \frac{2}{3 - \ln \alpha}$	B1
Rearrange this as 3 = $\ln \alpha + \frac{2}{\alpha}$ (or <i>vice versa</i>)	B1
lpha	[2
(iii) Use the iterative formula correctly at least once	M1
Obtain final answer 0.56 Show sufficient iterations to justify its accuracy to 2 d.p., or show	A1
there is a sign change in the interval (0.555, 0.565)	A1
	[3
(i) State or imply a correct normal vector to either plane,e.g. i + 2j - 2k or 2i - 3j + 6k	В1
Carry out correct process for evaluating the scalar product of both the normal vectors	М1
Using the correct process for the moduli, divide the scalar product of the two normals by the product of their moduli and evaluate the	~ 500.0000
	M1
inverse cosine of the result Obtain answer 40.4° (or 40.3°) or 0.705 (or 0.704) radians	A1

Mark Scheme

Syllabus

Paper

[4]

Page 4

Page 5	Mark Scheme	Syllabus	Paper	
	A AND AS LEVEL – JUNE 2003	9709/8719	3	

(ii) EITHER	10500	a complete strategy for finding a point on l uch a point e.g. $(0, 3, 2)$	M1 A1
	EITHER	Set up two equations for a direction vector $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ of l , e.g. $a + 2b - 2c = 0$ and $2a - 3b + 6c = 0$ Solve for one ratio, e.g. $a:b$ Obtain $a:b:c = 6: -10: -7$, or equivalent	B1 M1 A1 A1√
	OR	State a correct answer, e.g. $\mathbf{r} = 3\mathbf{j} + 2\mathbf{k} + \lambda (6\mathbf{i} - 10\mathbf{j} - 7\mathbf{k})$ Obtain a second point on l , e.g. $(6, -7, -5)$ Subtract position vectors to obtain a direction vector for l Obtain $6\mathbf{i} - 10\mathbf{j} - 7\mathbf{k}$, or equivalent State a correct answer, e.g. $\mathbf{r} = 3\mathbf{j} + 2\mathbf{k} + \lambda (6\mathbf{i} - 10\mathbf{j} - 7\mathbf{k})$	A1 M1 A1 A1√
	OR	Attempt to find the vector product of the two normal vectors Obtain two correct components Obtain $6\mathbf{i} - 10\mathbf{j} - 7\mathbf{k}$, or equivalent State a correct answer, e.g. $\mathbf{r} = 3\mathbf{j} + 2\mathbf{k} + \lambda (6\mathbf{i} - 10\mathbf{j} - 7\mathbf{k})$	M1 A1 A1 A1√
OR	Obtain a Express to a three te	cone variable in terms of a second correct simplified expression, e.g. $x = (9 - 3y)/5$ the same variable in terms of the third and form equation	M1 A1 M1
	in this eq Form a v	ector equation for the line	A1 M1
	State a co	orrect answer, e.g. $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ -5/3 \\ -7/6 \end{pmatrix} \lambda$, or equivalent	A1√
OR	Obtain a Express to Obtain a Form a ve	one variable in terms of a second correct simplified expression, e.g. $y = (9 - 5x)/3$ the third variable in terms of the second correct simplified expression, e.g. $z = (12 - 7x)/6$ ector equation for the line $\begin{pmatrix} x \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$	M1 A1 M1 A1 M1
	State a co	orrect answer, e.g. $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -5/3 \\ -7/6 \end{pmatrix}$, or equivalent	A1√ [6]
			[o]
10 (i) EITHER	Make re	elevant use of the correct sin 2A formula elevant use of the correct cos 2A formula the given result correctly	M1 M1 A1
OR	Make re	elevant use of the tan 2A formula elevant use of $1 + \tan^2 A = \sec^2 A$ or $\cos^2 A + \sin^2 A = 1$ the given result correctly	M1 M1 A1

Page 6	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709/8719	3
<i>(</i>)	0.1		54
(ii)	State or imply indefinite integral is In sin x, or equ	uivalent	B1
	Substitute correct limits correctly		M1
	Obtain given exact answer correctly		A1
			[3
(iii) EITHI	ER State indefinite integral of cos 2x is of the form k	In sin 2x	M1
	State correct integral ½ In sin 2x		A1
	Substitute limits correctly throughout		M1
	Obtain answer 1/4 1n 3, or equivalent		A1
OR	State or obtain indefinite integral of cosec 2x is o	of the form k In	tan x.
	or equivalent		M1
	State correct integral ½ In tan x, or equivalent		A1
	Substitute limits correctly		M1
	Obtain answer ¼ In 3, or equivalent		A1
			[4