MTH202: Assignment 11

April 5, 2019

- Recall that $E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i].$
- Suppose X_1, X_2, \ldots, X_n are independent random variables then $Var\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n Var(X_i)$.
- ullet Moment generating function of a random variable X

$$M_X(t) = E\left[e^{tX}\right]$$

Then, the n^{th} derivative of M_X evaluated at 0, $M_X^{(n)}(0) = E[X^n]$.

• Markov's Inequality: Let X be a non-negative random variable with finite expectation. Then, for any a > 0

$$P(X \ge a) \le \frac{E[X]}{a}$$

• Chebyshev's Inequality: Late X be a random variable with finite expectation μ and variance σ^2 , then for any value of b > 0,

$$P(|X - \mu| \ge b) \le \frac{\sigma^2}{b^2}$$

• Weak Law of Large Numbers: Let $X_1, X_2, ..., X_n$ be i.i.d random variables with finite expectation $E[X_i] = \mu$. Then, for any $\epsilon > 0$,

$$\lim_{n \to \infty} P\left(\left|\frac{X_1 + X_2 + \ldots + X_n}{n} - \mu\right| \ge \epsilon\right) = 0$$

Exercises

1. Consider a function $h:(a,b)\to\mathbb{R}$ such that for any $x_1,\ldots,x_n\in(a,b)$ and for any $p_1,\ldots,p_n\geq 0$ such that $\sum_{i=1}^n p_i=1$, we have

$$h\left(\sum_{i=1}^{n} p_i x_i\right) \le \sum_{i=1}^{n} p_i h(x_i) \tag{1}$$

Consider a random variable X that takes n different values in (a, b). Show that:

$$h(E[X]) \le E[h(X)] \tag{2}$$

- 2. Verify that $g(x) = x^2$ satisfied (1). Give an alternative proof to show that (2) is satisfied by $g(x) = x^2$.
- 3. Let X, Y be independent random variables such that E[X] = E[Y] = 2, Var(X) = -1 and Var(Y) = 3. Compute the following:
 - E[X+Y]
 - $E[X^2], E[Y^2]$
 - Var(X+Y)
 - $E[(X+Y)^2]$
- 4. A fair coin is tossed repeatedly. Suppose that HEADS appears for the first time after X tosses and TAILS appears first time after Y tosses. Find the joint probability mass function of X and Y. Compute the corresponding marginals.
- 5. Show that $X + Y \sim Poi(\lambda + \mu)$, where $X \sim Poi(\lambda)$ and $Y \sim Poi(\mu)$ are independent random variables, by computing the moment generating function of X and Y and using $M_{X+Y}(t) = M_X(t)M_Y(t)$.
- 6. Let $X \sim Exp(\lambda)$. Compute $M_X(t)$ for $t < \lambda$. Compute $E[X^n] = M_X^{(n)}(0)$, where $M_X^{(n)}$ denotes the n^{th} derivative with respect to t.
- 7. Let $X \sim Exp(\lambda), Y \sim Exp(\mu)$ be independent random variables. Compute the probability density function of:
 - \bullet Z = X + Y
 - $W = \min(X, Y)$
- 8. Let $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$ for 1 = 1, 2, ..., n be independent random variables. Compute the expectation and variance of $\sum_{i=1}^{n} X_i$. What is the probability density function of $\sum_{i=1}^{n} X_i$?
- 9. Let $Y = \sum_{i=1}^{N} X_i$, where X_i , N are independent random variables and X_i are identically distributed. Show that $E[Y] = E[N]E[X_1]$. (Hint: Proceed by computing the moment generating function of Y)
- 10. Consider an unfair coin with probability p of getting HEADS. Let S_n be the number of HEADS obtained when the coin is tossed repeatedly and independently n times. Show that, for any $\epsilon > 0$

$$\lim_{n \to \infty} P\left(\left| \frac{S_n}{n} - p \right| > \epsilon \right) = 0$$

- 11. Suppose X_1, X_2, \ldots, X_n are i.i.d. random variables with expectation μ and variance v. Define $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then, show that:
 - Compute $E\left[\frac{1}{n}\sum_{i=1}^{n}(X_i-\bar{X}_n)^2\right]$
 - Show that $\lim_{n\to\infty} P\left(\left|\frac{1}{n-1}\sum_{i=1}^n (X_i \bar{X}_n)^2 v\right| > \epsilon\right) = 0$ for any $\epsilon > 0$.
- 12. A fair coin is tossed independently n times. Let S_n be the number of HEADS obtained. Use Chebyshev's inequality to find a lower bound of the probability that S_n/n differs from 1/2 by less than 0.1 when n=100 and 10,000 and 100,000.
- 13. Let X be a random variable such that E[X] = 0 and P(-3 < X < 2) = 1/2. Find a lower bound for Var(X).
- 14. Let $X \sim Exp(\lambda)$. Using Markov's inequality find an upper bound for $P(X \ge a)$ for some a > 0. Compare the upper bound with the actual value of $P(X \ge a)$.
- 15. Let X_i be i.i.d. Unif(0,1). We define the sample mean as

$$M_n = \frac{X_1 + X_2 + \ldots + X_n}{n}$$

Then:

- Find $E[M_n]$ and $Var(M_n)$ as a function of n.
- Using Chebyshev's inequality, find an upper bound on $P(|M_n 1/2| \ge 1/100)$.