A Platform for Classifying Melanoma

Wilber Eduardo Bermeo Quito

Master in Data Science

Higher Polytechnic School

University of Girona

August 3, 2023

Summery

- Introduction
- 2 Domains
- 3 Data
- 4 Modeling
- 6 Results
- 6 Conclusion and Perspectives

Introduction

- Enhance Al¹ knowledge.
- Automation as way to democratize access to research and Al solutions.
- ◆ CAD² system are promising path towards medical automation.

¹Artificial Intelligence.

²Computer-Aided Diagnosis.

Introduction

Gain expertise in deep learning theory and its real-world applications.

- Explore and study the optimal approach for utilizing the distribution of dermoscopy images from the dataset during the training process.
- Propose and train deep learning models using transfer learning on ISIC³ Challenge melanoma images.
- Create a CAD infrastructure with trained models, a user-friendly web UI⁴, a HTTP API⁵, and Docker support for easy deployment on Linux systems.

³Skin Imaging Collaboration.

⁴User Interface.

⁵Application Programming Interface.

Problem:

Ethical Concern:

Regulatory Framework:

Solution:

Tools:

ntroduction	Domains	Data	Modeling	Results	Conclusion and Perspectives
	00000	·		000000	

- ◀ Its simplicity
- Uncertainties
- ◀ Its acceptable accuracy
- ◀

The TS fuzzy model can be justified by:

- ◀ Its simplicity
- Uncertainties
- ◀ Its acceptable accuracy

The system can be modeled as:

$$\left\{ \begin{array}{l} ^{C}D^{\alpha}x(t)=f(x(t),x(t-\tau(t)),u(t)),\,t\geq0,\\ x(s)=\varphi(s),\,s\in[-\tau,0] \end{array} \right.$$

 $x(t) \in \Re^n$ the system state $u(t) \in \Re^m$ the control vector τ : the delay

System behavior without controller

Figure 1: System state

System behavior with controller

Figure 2: Control signal

System behavior with controller

Figure 3: System state

The system is stable but it needs more enhancement

System behavior with the proposed controller

Figure 4: Proposed controller signal

System behavior with the proposed controller

Figure 5: System state with the proposed controller

Quantification of the comparative study

	Classical controller	Proposed controller	Enhancement rate
Settling time	26	20	23 %
Pic to pic x_3	1.36	1.16	15 %
$\int_{0}^{ts} (x_3^2) dt$	2.5540	0.7771	70 %
$\int_{0}^{ts} (u^2)dt$	12.8476	7.1868	40 %

Table 1: Quantification of the comparative study

We remark that

- **Enhancement of the settling time of** 23%
- \blacksquare Reduction of the control energy by 40%
- **◆** Overall enhancement by 70%
- \blacksquare Pic to pic reduction by 15%

We conclude that:

Conclusion

- Lyapunov method efficiency.
- **◄** Proposed controller leads to better performance.
- **■** Delayed controller enhances the performance.
- Proposed approach allows reduction of the control energy.

As perspectives we propose:

perspectives

- Perspective 1.
- ◆ Perspective 2.
- ◆ Perspective 3.