NYPD Shooting Data

The question of Interests

Can we predict the likelihood of a statistical murder flag being true or false based on the borough and location of occurrence in the NYPD Shooting Incident dataset?

Import Libraries:

In [5]: library(tidyverse)

Load the Dataset:

In [8]: head(NYPD)

INCIDENT_KEY	OCCUR_DATE	OCCUR_TIME	BORO	LOC_OF_OCCUR_DESC	PRECINCT	JURISDICTION_CODE	LOC_CLASSFCTN_DESC	LOC
<int></int>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<int></int>	<int></int>	<chr></chr>	
1 228798151	05/27/2021	21:30:00	QUEENS		105	0		
2 137471050	06/27/2014	17:40:00	BRONX		40	0		
3 147998800	11/21/2015	03:56:00	QUEENS		108	0		
4 146837977	10/09/2015	18:30:00	BRONX		44	0		
5 58921844	02/19/2009	22:58:00	BRONX		47	0		
6 219559682	10/21/2020	21:36:00	BROOKLYN		81	0		
								•

Data Tidying:

In [9]: NYPD <- na.omit(NYPD)
 NYPD <- unique(NYPD)</pre>

Data Exploration:

In [12]: summary(NYPD)

Mode :character

OCCUR_TIME INCIDENT_KEY OCCUR_DATE **BORO** Min. : 9953245 Length:27300 Length: 27300 Length: 27300 Class :character 1st Qu.: 63859933 Class :character Class :character Median : 90340495 Mode :character Mode :character Mode :character Mean :120812778 3rd Qu.:188587325 Max. :261190187 JURISDICTION CODE LOC CLASSFCTN DESC LOC_OF_OCCUR_DESC PRECINCT Min. : 1.00 Length:27300 Length:27300 Min. :0.000 1st Qu.:0.000 Class :character 1st Qu.: 44.00 Class :character Mode :character Median : 68.00 Median :0.000 Mode :character Mean : 65.64 Mean : 0.327 3rd Qu.: 81.00 3rd Qu.:0.000 Max. :123.00 Max. :2.000 LOCATION_DESC STATISTICAL MURDER FLAG PERP AGE GROUP Length:27300 Length:27300 Length:27300 Class :character Class :character Class :character

PERP_SEX VIC_AGE_GROUP PERP_RACE VIC_SEX Length: 27300 Length:27300 Length:27300 Length: 27300 Class :character Class :character Class :character Class :character Mode :character Mode :character Mode :character Mode :character

Mode :character

VIC RACE X_COORD_CD Y_COORD_CD Latitude Min. :125757 Length: 27300 Min. : 914928 Min. :40.51 1st Qu.:40.67 Class :character 1st Qu.:1000033 1st Qu.:182832 Mode :character Median :1007742 Median :194478 Median :40.70 Mean :1009451 Mean :208128 Mean :40.74 3rd Qu.:1016838 3rd Qu.:239518 3rd Qu.:40.82 Max. :1066815 Max. :271128 Max. :40.91

Longitude Lon_Lat
Min. :-74.25 Length:27300
1st Qu.:-73.94 Class :character
Median :-73.92 Mode :character

Mean :-73.91 3rd Qu.:-73.88 Max. :-73.70

Mode :character

In [13]: table(NYPD\$BORO)

BRONX BROOKLYN MANHATTAN QUEENS STATEN ISLAND 7937 10929 3567 4091 776

In [14]: table(NYPD\$LOC_OF_OCCUR_DESC)

INSIDE OUTSIDE 25594 242 1464

Visualization:

Distribution of Incidents in Each Borough

In [15]: # Analyzing incidents by borough and location description

Analysis:

```
analysis_result <- NYPD %>%
          group_by(BORO, LOC_OF_OCCUR_DESC) %>%
          summarise(incident_count = n()) %>%
          arrange(desc(incident_count))
        head(analysis_result)
       `summarise()` has grouped output by 'BORO'. You can override using the `.groups` argument.
                     A grouped_df: 6 \times 3
              BORO LOC_OF_OCCUR_DESC incident_count
              <chr>
                                <chr>
                                             <int>
          BROOKLYN
                                             10365
             BRONX
                                              7402
            QUEENS
                                              3827
         MANHATTAN
                                              3264
       STATEN ISLAND
                                               736
             BRONX
                              OUTSIDE
                                               471
        Modeling:
In [18]: table(NYPD$STATISTICAL_MURDER_FLAG)
       false true
       22034 5266
In [20]: # Assuming 'TRUE' indicates a positive outcome (1), and 'FALSE' indicates a negative outcome (0)
        NYPD$STATISTICAL_MURDER_FLAG <- as.factor(NYPD$STATISTICAL_MURDER_FLAG)
        NYPD$STATISTICAL_MURDER_FLAG <- as.numeric(NYPD$STATISTICAL_MURDER_FLAG) - 1
        table(NYPD$STATISTICAL_MURDER_FLAG)
           0
                1
       22034 5266
In [21]: # Logistic Regression predicting a binary outcome
        model <- glm(STATISTICAL_MURDER_FLAG ~ BORO + LOC_OF_OCCUR_DESC, data = NYPD, family = "binomial")</pre>
        summary(model)
       Call:
       glm(formula = STATISTICAL_MURDER_FLAG ~ BORO + LOC_OF_OCCUR_DESC,
          family = "binomial", data = NYPD)
       Coefficients:
                              Estimate Std. Error z value Pr(>|z|)
                              (Intercept)
                             -0.002753 0.037309 -0.074 0.941
       BOROBROOKLYN
       BOROMANHATTAN
                             -0.116417 0.052304 -2.226
                                                         0.026 *
       BOROQUEENS
                              0.023038 0.048433 0.476 0.634
       BOROSTATEN ISLAND
                              0.086510 0.092821 0.932 0.351
       0.355
       Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
       (Dispersion parameter for binomial family taken to be 1)
          Null deviance: 26775 on 27299 degrees of freedom
       Residual deviance: 26751 on 27293 degrees of freedom
       AIC: 26765
       Number of Fisher Scoring iterations: 4
In [28]: # Visualize the coefficients
        plot_model(model, type = "std", ci_method = "wald")
       Profiled confidence intervals may take longer time to compute.
         Use `ci_method="wald"` for faster computation of CIs.
```


Conclusion

- The model suggests that the borough of Manhattan (BOROMANHATTAN) and incidents occurring inside are significant predictors of a shooting incident being flagged as a statistical murder.
- Other boroughs and incidents occurring outside do not show significant associations.