MATH20212 Cheat Sheet

1 Rings

A ring is a set R and two binary operations, written + and \times , on R which satisfies the following conditions:

- (R1) $\langle R, + \rangle$ is an abelian group with identity 0
- $(R2) \times is associative$
- $(R3) \times is distributive over +$
- (R4) there exists an element $1 \in R$, different from 0, that is an identity for \times

Let R be a ring and $S \subseteq R$. Then S is a subring of R if it is a ring in its own right with respect to the same addition and multiplication as in R and S contains 1_R .

Subring Test: Let R be a ring and $S \subseteq R$, then S is a subring of R, iff:

- (i) $1 \in S$
- (ii) $r + s, r \times s \in S$, for all $r, s \in S$
- $(iii) r \in S$ for all $r \in S$

Let R be a ring. The ring of polynomials R[X] in the indeterminate X is defined as follows:

Elements: formal linear combinations of the form $\sum_{i>0} a_i X^i$ with $a_i \in R$ for $i=0,1,\ldots$

Equality: $\sum_{i\geq 0} a_i X^i = \sum_{i\geq 0} b_i X^i \iff a_i = b_i \text{ for all } i\geq 0$ Addition: $\sum_{i\geq 0} a_i X^i + \sum_{i\geq 0} b_i X^i = \sum_{i\geq 0} (a_i + b_i) X^i$ Multiplication: $(\sum_{i\geq 0} a_i X^i)(\sum_{i\geq 0} b_i X^i) = \sum_{k\geq 0} (\sum_{i+j=k} a_i b_j) X^k$ Zero element is $\sum_{i\geq 0} 0 X^i = 0$ and the one is $1X^0 + \sum_{i\geq 1} 0 X^i = 1$

For a polynomial $f = \sum_{i>0} a_i X^i$, we define the **degree** of f, denoted deg(f), to be the largest i such that $a_i \neq 0$ and we let $deg(f) = -\infty$ if f = 0.

Lemma 1.3 Let R be a ring. Then, for all $a, b \in R$, 0a = a0 = 0, a(-b) = (-a)b = -(ab) and (-a)(-b) = ab.

2 Integral Domains and Fields

The characteristic, char(R), of a ring R is the least positive integer n such that $n \cdot 1 = 0$. If there is no such n, then the characteristic of R is defined to be 0.

A non-zero element $r \in R$ is a **zero-divisor** if there is a non-zero element $s \in R$ with rs = 0 or sr = 0.

The ring R is a **domain** if, for all $r, s \in R$, $rs = 0 \implies r = 0$ or s = 0, so a domain is a ring with **no** zero-divisors. A commutative domain is called an **integral domain**.

A division ring is a ring in which every non-zero element has a right inverse and a left inverse. In this case, these inverses are the same. We write r^{-1} for this inverse of r and say that r is invertible or that r is a unit. A field is a commutative division ring.

An element r of a ring R is **nilpotent** if there is some integer $n \ge 1$ with $r^n = 0$ and the least such n is the **index** of nilpotence of r. An element $r \in R$ is idempotent if $r^2 = r$ - and 0 and 1 are idempotent in any ring.

Lemma 2.2 If char(R) = n > 0, then $n \cdot r = 0$ for every $r \in R$ and if m is a positive integer then $m \cdot 1 = 0 \iff n \mid m$

Proposition 2.7 Suppose that R is a domain, then the polynomial ring R[X] is a domain.

Corollary 2.8 Suppose that R is a domain. Then the ring, $R[X_1, \ldots X_n]$, of polynomials in n indeterminates with coefficients in R, is a domain.

Lemma 2.10 If R is a ring and $r \in R$ has both a right and a left inverse, then these are equal and unique.

Lemma 2.12 For $n \geq 2$: \mathbb{Z}_n is a integral domain $\iff \mathbb{Z}_n$ is a field $\iff n$ is a prime.

Proposition 2.14 Every division ring is a domain. Every field is an integral domain.

Lemma 2.16 In any ring R, the set of units R^* forms a group under multiplication.

3 Isomorphisms, Homomorphisms and Ideals

If R and S are rings then an **isomorphism** from R to S is a **bijection** $\theta: R \to S$ such that, for all $r, r' \in R$:

$$\theta(r+r') = \theta(r) + \theta(r')$$
 and $\theta(r \times r') = \theta(r) \times \theta(r')$

If θ is an isomorphism from R to S, then we write $\theta: R \simeq S$. We say that R and S are **isomorphic**, and write $R \simeq S$, if there is an isomorphism from R to S.

If R and S are rings then a homomorphism from R to S is a map $\theta: R \to S$ such that, for all $r, r' \in R$:

$$\theta(r+r') = \theta(r) + \theta(r')$$
 and $\theta(r \times r') = \theta(r) \times \theta(r')$ and $\theta(1_R) = 1_S$

An embedding, or monomorphism, is an injective homomorphism.

If $\theta: R \to S$ is a homomorphism of rings then the **kernel** of θ , $ker(\theta)$, is the set $\{r \in R \mid \theta(r) = 0\}$.

An automorphism of a ring is an isomorphism from the ring to itself.

An **ideal** of a ring R is a subset $I \subseteq R$ such that:

 $0 \in I$ and $a + b \in I$, for all $a, b \in I$ and $ar \in I$ and $ra \in I$ for all $a \in I$ and for all $r \in R$

We write $I \triangleleft R$ to mean that I is an ideal of R.

If $a \in R$ then $\{r_1as_1 + \cdots + r_nas_n \mid n \geq 1, r_i, s_i \in R\}$ is an ideal which contains a and is the smallest ideal of R containing a. It is called the **principal ideal generated by** a and is denoted $\langle a \rangle$. If R is commutative, then its description simplifies: $\langle a \rangle = \{ar \mid r \in R\}$. A **principal** ideal is one which can be generated by a single element.

In every ring $\langle 0 \rangle = \{0\}$ is the smallest ideal and is called the **trivial ideal**.

In every ring $\langle 1 \rangle = R$ is the largest ideal and every other ideal is referred to as a **proper ideal**.

The more general notion of **right ideal** is defined as for ideal but with the third condition replaced by the weaker condition: $a \in I$ and $r \in R$ implies $ar \in I$. Then, if $a \in R$, the **principal right ideal generated by** $a \in R$ is defined to be the set $\{ar \mid r \in R\}$ and is denoted aR.

Lemma 3.3 Suppose that $\theta: R \to S$ is an isomorphism, then:

- $\theta(1) = 1$ and $\theta(0) = 0$
- $\theta(-r) = -\theta(r)$ for every $r \in R$
- $r \in R$ is invertible $\iff \theta(r) \in S$ is invertible and, in that case, $(\theta(r))^{-1} = \theta(r^{-1})$
- $r \in R$ is nilpotent $\iff \theta(r)$ is nilpotent (and then they have the same index of nilpotence)

Lemma 3.7 Suppose that $\theta: R \to S$ is an homomorphism, then:

- $\theta(0) = 0$
- $\theta(-r) = -\theta(r)$ for every $r \in R$
- $r \in R$ is invertible $\implies \theta(r) \in S$ is invertible and, in that case, $(\theta(r))^{-1} = \theta(r^{-1})$
- $r \in R$ is nilpotent $\implies \theta(r)$ is nilpotent (and the index of nilpotence of $\theta(r) \le \text{that of } r$)
- the image of θ is a subring of S

Lemma 3.10

- If $\theta: R \to S$ and $\beta: S \to T$ are homomorphisms of rings, then so is the composition $\beta\theta: R \to T$
- If $\theta: R \to S$ and $\beta: S \to T$ are embeddings then so is the composition $\beta\theta: R \to T$
- If $\theta: R \to S$ and $\beta: S \to T$ are homomorphisms and if $\beta\theta: R \to T$ is an embedding, then θ is an embedding

Lemma 3.12 If $\theta: R \to S$ is a homomorphism then θ is injective $\iff ker(\theta) = \{0\}$

Lemma 3.17

- Suppose that $\theta: R \to S$ is a homomorphism, then $ker(\theta)$ is a subgroup of (R, +)
- Let $r, r' \in R$, then $\theta(r) = \theta(r') \iff r r' \in ker(\theta) \iff r$ and r' belong to the same coset of $ker(\theta)$ in R.

Proposition 3.22 A commutative ring R is a field \iff the only ideals of R are $\{0\}$ and R.

Proposition 3.24 If $\theta: R \to S$ is a homomorphism of rings then $ker(\theta)$ is an ideal of R.

Corollary 3.25 If $\theta: R \to S$ is a homomorphism of rings and R is a field then θ is a monomorphism.

Proposition 3.26 Suppose that I and J are ideals of the ring R, then:

- $I + J = \{a + b \mid a \in I, b \in J\}$ is an ideal
- $I \cap J$ is an ideal
- if $I_{\lambda\lambda}$ is any collection of ideals of R then their intersection, $\cap_{\lambda}I_{\lambda}$ is an ideal

4 Factor Rings

Let R be a ring and let I be a proper ideal. Let R/I denote the set of cosets of I in the additive group $\langle R, + \rangle$, $R/I = \{r + I \mid r \in R\}$ with operations + and \times defined on R/I as follows:

$$(r+I) + (s+I) = (r+s) + I$$
 and $(r+I) \times (s+I) = (r \times s) + I$

This ring is the factor ring (or quotient ring) of R by I.

Fundamental Isomorphism Theorem Let I be a proper ideal of the ring R.

- (i) the map $\pi: R \to R/I$ defined by $\pi(r) = r + I$ is a surjective ring homomorphism with kernel I. π is called the **canonical surjection** or **canonical projection**.
- (ii) if $\theta: R \to S$ is a homomorphism and $I \subseteq ker(\theta)$ then there is a unique map $\theta': R/I \to S$ with $\theta' \circ \pi = \theta$. This map θ' is a homomorphism.
- (iii) the map θ' is injective iff $ker(\theta) = I$. If θ is surjective and $ker(\theta) = I$ then θ' is a isomorphism.

Some other theorem Let I be an ideal of the ring R, then there is a natural, inclusion-preserving, bijection between the set of ideals of R which contain I and the set of ideals of the factor ring R/I:

- to an ideal $J \ge I$ there corresponds $\pi J = \{r + I \mid r \in J\} = \{\pi(r) \mid r \in J\}$, an ideal in R/I
- to an ideal $K \triangleleft R/I$ there corresponds $\pi^{-1}K = \{r \in R \mid \pi(r) \in K\}$, an ideal in R. The notation J/I is also used instead of πJ for the image of J in R/I.

An ideal I of a ring R is **maximal** if it is proper and for any ideal J with $I \leq J \leq R$, then either J = I or J = R.

Another theorem If $I \leq J$ are ideals of R, so J/I is an ideal of R/I, then $(R/I)/(J/I) \simeq R/J$.

A proper ideal I of a commutative ring R is **prime** if whenever $r, s \in R$ and $rs \in I$ then either $r \in I$ or $s \in I$.

5 Polynomial Rings and Factorisation

Division Theorem for Polynomials Let K be a field and take $f, g \in K[X]$ with $g \neq 0$, then there are (unique) $q, r \in K[X]$ with f = qg + r and deg(r) < deg(g) or r = 0. We say q is the **quotient** and r is the **remainder** when f is divided by g.

An element $a \in K$ is a **root** (or **zero**) of $f \in K[X]$ if f(a) = 0.

The **greatest common divisor** (or **highest common factor**) of polynomials f, g is a polynomial d such that d divides f and g and, if h is any polynomial dividing both f and g, then h divides d. Write $d = \gcd(f, g)$. This polynomial is defined only up to a non-zero scalar multiple so, if we want a unique gcd then we can insist that d has to be **monic** (ie. coefficient of highest power of X is equal to 1).

An element $r \in R$ is **irreducible** if r is not invertible and if, whenever r = st either s or t is invertible.

Elements $r, s \in R$ are associated if s = ur for some invertible element $u \in R$.

A commutative domain R is said to be a **Unique Factorisation Domain (UFD)**, if every non-zero, non-invertible element of R has a unique factorisation as a product of irreducible elements. *Uniqueness* here means up to rearrangement of factors and associated factors.

A Principal Ideal Domain (PID) is a commutative domain in which every ideal is principal.

6 Constructing Roots for Polynomials

Kronecker's Theorem Let K be a field and let $f \in K[X]$ be irreducible of degree n. Define $L = K[X]/\langle f \rangle$, then: (i) L is a field and the canonical homomorphism $\pi : K[X] \to K[X]/\langle f \rangle$ induces an embedding $\theta : K \to L$ (ii) $\alpha = \pi(X) \in L$ is a root of f

(iii) the dimension of L as a vector space over K is n, with $\{1, \alpha, \alpha^2, \ldots, \alpha^{n-1}\}$ being a basis of L over K, so every element of L has a unique representation of the form $a_{n-1}\alpha^{n-1} + \cdots + a_1\alpha + a_0$ with $a_{n-1}, \ldots, a_1, a_0 \in K$ (note that we have identified K with its image $\theta(K)$ in L.)