# IMPLEMENTAZIONE DI UN ALGORITMO KNN MULTICLASSE SU HARDWARE QUANTISTICO

TESI DI LAUREA SPERIMENTALE IN FISICA

MARIANO MOLLO N85000880 RELATORI: GIOVANNI ACAMPORA AUTILIA VITIELLO



Università degli Studi di Napoli Federico II Scuola Politecnica e delle Scienze di Base

**OTTOBRE 2019** 

### **INTRODUZIONE**

### MACHINE LEARNING



Il machine learning permette ai computer di imparare dai dati Gli algoritmi di ML prevedono spesso di

- risolvere grandi sistemi di equazioni lineari
- invertire grandi matrici
- calcolare distanze

Effettuare questi calcoli su insiemi dati grandi e complessi diventa difficile

### QUANTUM COMPUTING



Il quantum computing studia la costruzione e l'uso di hardware di elaborazione basato sulla meccanica quantistica

- Il quantum computing lavora con vettori in spazi di Hilbert
- I computer quantistici eseguono operazioni lineari sui qubit
- Sistemi a molti qubit sono descritti da grandi vettori che possono essere manipolati in parallelo
- Il machine learning prevede la manipolazione di grandi vettori e matrici

### QUANTUM MACHINE LEARNING



L'uso dei computer quantistici per risolvere problemi classici difficili o classi di problemi completamente nuove è chiamato machine learning quantistico, ovvero permettere ai computer quantistici di imparare dai dati più velocemente dei computer classici

### DOMANDA DI RICERCA

È possibile implementare su un computer quantistico un algoritmo k-nearest neighbours multiclasse, in modo da migliorare le prestazioni ed il numero di problemi risolvibili?

### **OBIETTIVI**

- Riprodurre l'algoritmo di classificazione binaria KNN quantistico proposto da Schuld et al.
- Implementarne una versione multiclasse
- Analizzare le capacità dell'algoritmo usando l'hardware quantistico attualmente disponibile
- Analizzare esperimenti più complessi tramite simulazione

## **MACHINE LEARNING**

### MACHINE LEARNING

Il machine learning è un ramo dell'intelligenza artificiale che permette ai computer di apprendere dai dati. L'apprendimento può formalizzarsi attraverso la definizione di modelli matematici, usati per

- effettuare previsioni (apprendimento supervisionato)
- trovare regolarità in processi complessi (apprendimento non supervisionato)
- effettuare scelte per ottenere un risultato ottimale (apprendimento per rinforzo)

### MACHINE LEARNING SUPERVISIONATO

### Definizione del problema

Dato un insieme dati in input con i corrispondenti output, predire l'output di un nuovo input ignoto.

| Input                  | Output                                 |
|------------------------|----------------------------------------|
| facce                  | emozioni                               |
| battito cardiaco       | stato di salute                        |
| meteo dell'anno scorso | meteo di domani                        |
| messaggio di un utente | intenzione del messaggio               |
| cronologia di ricerca  | probabilità di cliccare su un annuncio |

#### K-NEAREST NEIGHBOURS CLASSICO

L'algoritmo KNN è uno tra i più semplici del ML ed è un lazy learner



k è un numero naturale Dato un insieme di apprendimento  $D = v_0, \dots, v_{M-1}, v_i \in \{\text{classe}_0, \text{classe}_1\}$ Dato un nuovo vettore x:

- considera i k elementi più vicini ad x
- classifica x con un voto a maggioranza

Si assegnano pesi dipendenti da  $\frac{1}{\text{distanza}}$  per aumentare l'influenza dei vettori più vicini

# **QUANTUM COMPUTING**



- Solitamente implementati attraverso MOSFET<sup>a</sup>
- 2 stati definiti (o, 1)
  - Può trovarsi in uno tra gli stati o o 1

<sup>a</sup>MOSFET: Metal Oxide Semiconductor Field Effect Transistor

### QUBIT



- Può essere |O⟩ o |1⟩
- Può anche essere |o⟩ e |1⟩ contemporaneamente (sovrapposizione quantistica)

### QUBIT

Matematicamente, la sovrapposizione di un qubit è espressa come

$$|\psi\rangle = \alpha \, |\mathbf{0}\rangle + \beta \, |\mathbf{1}\rangle = \frac{\mathbf{0}}{\mathbf{1}} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}, \quad \alpha, \beta \in \mathbb{C},$$

dove  $\alpha$  e  $\beta$  sono chimate ampiezze di probabilità. L'ultima espressione è chiamata vettore di probabilità.

### SFERA DI BLOCH



Un qubit si può visualizzare su una 2-sfera parametrizzando  $\alpha$  e  $\beta$  in coordinate polari

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle$$
,

dove 
$$o < \theta < \pi$$
 e  $o < \varphi < 2\pi$ 

### **REGISTRO DI 2 QUBIT**

Un computer quantistico con n qubit ha  $2^n$  ampiezze di probabilità.

Lo stato di un registro a più qubit è rappresentato dal prodotto tensore dello stato dei singoli qubit.

$$|00\rangle = |0\rangle \otimes |0\rangle$$

$$|\psi\rangle = c_0 |00\rangle + c_1 |01\rangle + c_2 |10\rangle + c_3 |11\rangle = \begin{cases} 00 & c_0 \\ 01 & c_1 \\ 10 & c_2 \\ 11 & c_3 \end{cases}$$

### REGISTRO DI *n* QUBIT

Un computer quantistico con n qubit ha  $2^n$  ampiezze di probabilità.

Lo stato di un registro a più qubit è rappresentato dal prodotto tensore dello stato dei singoli qubit.

$$\begin{aligned} |00\ldots00\rangle &= |0\rangle\otimes|0\rangle\otimes\ldots\otimes|0\rangle\otimes|0\rangle \\ |\psi\rangle &= c_0\,|00\ldots00\rangle + c_1\,|00\ldots01\rangle + \ldots + c_{n-2}\,|11\ldots10\rangle + \\ &+ c_{n-1}\,|11\ldots11\rangle = &\vdots & \vdots \\ &11\ldots10 & c_{n-2} \\ &11\ldots11 & c_{n-1} \end{aligned}$$

### PUNTI DI FORZA DEI QUANTUM COMPUTER

Queste *n* ampiezze di probabilità possono essere usate per memorizzare quantità enormi di informazioni

| # di<br>qubit | RAM classica richiesta                       | Tempo di simulazione                    |
|---------------|----------------------------------------------|-----------------------------------------|
| 5             | 256 byte                                     | secondi su uno smart-<br>watch          |
| 25            | 2 gigabyte                                   | secondi su un portatile                 |
| 50            | 8000 terabyte                                | secondi sul prossimo su-<br>percomputer |
| 275           | numero di atomi<br>nell'universo osservabile | età dell'universo                       |

### STATO DELL'ARTE



L'IBM Q System One è il primo computer quantistico a circuiti commerciale al mondo, introdotto dall'IBM nel gennaio 2019. L'IBM Q System One possiede 20 qubit.

# **METODI**

### IBM Q EXPERIENCE



L'IBM Q Experience è un'interfaccia per interagire con le risorse di quantum computing dell'IBM

- accessibile al pubblico
- permette simulazioni con e senza rumore
- fino a 14 qubit superconduttivi
- fino a 32 qubit simulati

### **QISKIT**



Struttura open source di sviluppo software per quantum computing, permette di

- progettare circuiti quantistici
- simularli sul proprio computer personale
- inviare ordini di esecuzione su harware quantistico reale
- visualizzare i risultati

# **QUANTUM MACHINE LEARNING**

### CODIFICARE DATI CLASSICI NELLE AMPIEZZE



Per codificare dati classici nelle ampiezze di probabilità è stata usata la tecnica di costruzione di stati flip-flop QRAM, come proposto da Petruccione et al.

### FF-QRAM

La FF-QRAM è usata per memorizzare un QDB inizializzato in maniera arbitraria.

L'operazione QRAM sui qubit sovrappone un insieme di dati classici  $D = \left\{ \left( \vec{d}^{(l)}, b_l \right) | \text{O} \leq l < \text{M} \right\}$  come

$$\mathsf{QRAM}(\mathsf{D}) \sum_{j} \psi_{j} \, |j\rangle_{\mathsf{B}} \, |\mathsf{O}\rangle_{\mathsf{R}} \equiv \sum_{l} \psi_{l} \, |\vec{\mathbf{d}}^{(l)}\rangle_{\mathsf{B}} \, |b_{l}\rangle_{\mathsf{R}} \, ,$$

### ALGORITMO KNN QUANTISTICO

### Stato quantistico iniziale

$$\ket{\psi_{\mathsf{O}}} = rac{\mathsf{1}}{\sqrt{\mathsf{2M}}} \sum_{m=1}^{\mathsf{M}} (\ket{\mathsf{O}}\ket{\psi_{\mathsf{X}}} + \ket{\mathsf{1}}\ket{\psi_{\mathsf{t}^m}}) \ket{c^m}\ket{m}$$

Calcolo della distanza con interferenza quantistica

$$|\psi_{1}\rangle = rac{1}{2\sqrt{M}}\sum_{m=1}^{M}\left(\left.\left|0
ight\rangle\left(\left|\psi_{\mathsf{X}}
ight
angle + \left|\psi_{\mathsf{t}^{m}}
ight
angle
ight) + \left|1
ight\rangle\left(\left|\psi_{\mathsf{X}}
ight\rangle - \left|\psi_{\mathsf{t}^{m}}
ight
angle
ight)
ight)|c^{m}
angle\left|m
ight\rangle$$

Misura condizionale

$$|\psi_2\rangle = \frac{1}{2\sqrt{M}} \sum_{m=1}^{M} \sum_{i=1}^{N} (x_i + t_i^m) |0\rangle |i\rangle |c^m\rangle |m\rangle$$

### ALGORITMO KNN QUANTISTICO

Probabilità di misurare una data classe

$$P(|c^m\rangle = |s\rangle) = \sum_{m|c^m=s} 1 - \frac{1}{4M}|x - t^m|^2$$

Classificazione

$$c = \begin{cases} o & \text{se P}(|c^{o}\rangle) \text{ maggiore} \\ 1 & \text{se P}(|c^{1}\rangle) \text{ maggiore} \\ \text{etc...} \end{cases}$$

## **RISULTATI**

### **CLASSIFICAZIONE BINARIA**

#### Classificazione setosa vs. versicolor dal data set Iris



Figure: Simulazione su setosa



Figure: Esecuzione reale su setosa

### **CLASSIFICAZIONE MULTICLASSE**

### Classificazione setosa vs. versicolor vs. virginica dal data set Iris



Figure: Simulazione su setosa



Figure: Esecuzione reale su setosa

### **CONCLUSIONE**

### RIASSUNTO

- L'elaborazione quantistica è nella frontiera dei supercomputer e ha il potenziale di accelerare gli algoritmi di machine learning classico
- È stata riprodotta un'implementazione di algoritmo KNN quantistico di classificazione binaria su hardware di piccola scala
- Se ne è esteso il funzionamento in modo da renderlo multiclasse
- Si sono effettuati test su hardware quantistico di media scala

### **PROSPETTIVE**

- Far girare gli algoritmi su computer con maggiori risorse, sia in termini di numero di qubit che di tempi di decoerenza
- A tal proposito, sarebbe interessante l'esecuzione sul computer a 20 qubit annunciato quest'anno
- Si attende lo sviluppo di corrispettivi quantistici per algoritmi di IA più complessi

