R 전문가로 가는 길 -- 빅데이터 활용 바로 보기 --

Heewon Jeon (NexR Corp.)

- Author/Maintainer of KoNLP package.
- Admin of Korea CRAN server

Interactive Data Analysis

레거시 데이터 분석

- 컴퓨팅 리소스가 굉장히 비쌌다.
- 많은 입력 값
- 많은 출력 값
- 부담없이 여러 번 수행하기 힘듦
- 모든 결과를 쓰는 건 아님

현재 데이터 분석

- 컴퓨팅 리소스가 굉장히 싸졌다.
- 어떤 분석을 수행하든 부담이 없어짐
- 데이터 입력, 변환, 무응답 대체, 데이터 핸들링, 시각화, 모델링 등 분석 등 재반의 작업을 반복 수행하면서 알고자 하는 의문을 하나 둘씩 풀어가는 분석이 수행 가능해짐

역동적인 분석에 적합한 언어 R

R is an environment for...

- 데이터 핸들링
 - 데이터 소스에 접근하고
 - 자르고, 붙이고, 변형하고...
- 모델링/시뮬레이션
 - -통계 모델
 - 통계 시뮬레이션
- 데이터 시각화
 - 일반적인 통계 시각화
 - 진보되고, 다양한 시각화를 위한 패키지

Why R?

- R은 공짜다.
- R은 문서화가 잘 되어있다.
- R은 대부분의 플랫폼에서 잘 돌아간다.
- R은 오픈소스이다.
- R은 다양한 통계 패키지를 포함하고 있다.
- R은 시각화에 강하다.
- R은 직관적인 데이터 핸들링을 제공한다.
- R은 복잡한 일을 처리하기 적합하다.
- R은 재현성을 충분히 발현할 환경을 갖추고 있다.
- R은 교과서에 나온 통계적인 용어를 그대로 사용한다.
- R은 학생들로 하여금 프로그래밍을 하도록 유도한다.
- R이 배우는데 많은 시간이 걸리지만, 일단 학습후에는 사용자로 하여금 다양한 분석을 할 수 있는 자유로움을 준다.
- R은 및 데이터용 분석 환경이다.

Really R?

- 개발자도 배우기 쉽지 않은 언어
 - 함수형, 절차형 언어의 혼합
 - -통계용어 난무
- 통계학자도 배우기 쉽지 않은 언어
 - -프로그래밍의 어려움
- 자유로운 분석 추구 🔁 쉽다.

But R!

- 해외 리서치 영역에서는 R이 기본이 되었음
 - Reproducible Research
 - Literate Programming
- 국내 대학에서 R을 가르치기 시작
- 대형 벤더에서 R을 인터페이싱 함
 - Oracle, Teradata, SAS, SPSS ...

R has simple GUI

RStudio is better

<u>Bayesian</u>

ChemPhys

<u>ClinicalTrials</u>

Cluster

DifferentialEquations

Distributions

Econometrics

Environmetrics

ExperimentalDesign

Finance

Genetics

Graphics

HighPerformanceComputing

MachineLearning

Medicallmaging

Multivariate

NaturalLanguageProcessing

OfficialStatistics

Optimization

Pharmacokinetics

Phylogenetics

Psychometrics

ReproducibleResearch

Robust

SocialSciences

Spatial

Survival

TimeSeries

gR

R Package System

Total 3,921 Packages

- 오픈소스 라이선스의 파워
- Fortran, C++, C, Java 등 대부분의 언어와 연동 가능한 R의 유연성
- 리서치 영역에서 활발한 사용

If you want to do twitter analysis.

- Data Source
 - twitteR
- Data Preprocessing
 - KoNLP
- Visualization
 - wordcloud

분석 방법 구상

적은 시간으로 구현 (약 30라인)

평가 or 리포팅

실제 분석가의 상상력의 한계만 있을 뿐이며, 어떤 분석이든지 필요한 것 대부분은 패키지에서 커버하고 있음

R Packaging System 사용 예 - 1

R Packaging System 사용 예 - 2

R data structures for DBA - 1

R data structures for DBA - 2

R data structures for DBA - 3

```
library(sqldf)
   iris3 <- sqldf("select Sepal Length, Sepal Width, Species from iris")</pre>
 5
   head(iris3)
   sqldf("select * from iris3 limit 6")
   # Sepal Length Sepal Width Species
 9
                             3.0 setosa
10
11
                             3.2 setosa
12
13
                             3.6 setosa
14
                             3.9 setosa
15
16
   subset(iris3, Sepal Length > 5)
   sqldf("select * from iris3 where Sepal Length > 5")
19
20
21
   with(iris3.
22
         aggregate(list(Sepal Length, Sepal Width), by=list(Species), mean)
23
24
   sqldf("select Species, avg(Sepal Length), avg(Sepal Width)
25
          from iris3 group by Species")
26
27
   head(iris3[order(iris3$Sepal Length, decreasing = TRUE), ], 3)
   sqldf("select * from iris3 order by Sepal Length desc limit 3")
30
```

Popularity of R

http://flowingdata.com/2010/09/28/poll-results-what-dovou-use-to-analyze-andor-visualize-data/

http://www.kdnuggets.com/polls/2012/analytics-data-mining-big-data-software.html

빅 데이터 분석에서의 R의 문제점/해결책

메모리 한계 이슈

모든 데이터를 메모리에 로딩 후 처리하는 작업 방식

ff, bigmemory, RevoScaleR

10GB 이상 데이터는 처리 가능하나 너무 느리다는 단점

불필요한 데이터 저장으로 인한 메모리 부족 현상

gc(), rm()

32비트에서 표현 가능한 숫자만이 사용, 2^31-1

R 2.15부터 2^51 이상의 벡터 길이 사용 가능

No int64

int64 package from Google

메모리 단편화

64bit 머신 사용

더 많은 메모리

Single Core 이슈

멀티코어 CPU에서 1코어만 사용한다.

R 2.14 부터 parallel 패키지 기본 탑재

TB급 빅 데이터 는 여전히 처리 하기 힘듦

독보적인 Hadoop기반 Big Data 분석 플랫폼

Big Data Big data tools use grew 5-fold, from about 3% to about 15% of respondents. Big Data software you used in the past 12 months Apache Hadoop/Hbase/Pig/Hive (67) Amazon Web Services (AWS) (36) NoSQL databases (33) Other Big Data Data/Cloud analytics software (21) Other Hadoop-based tools (10)

- 세계적인 데이터 분석 커뮤니티인 Kdnugget의 설문조사
- 작년에 비해 5배 이상 빅 데이터 응답자가 늘어났다.
- 작년에 이어 Hadoop 기반의 오픈소스 플랫폼이 1위

RHipe

```
bigmeanmap <- expression({
         y <- do.call("rbind", lapply(map.values, function(r){</pre>
               as.numeric(strsplit(r,",")[[1]])
         summed<- colSums(y, na.rm=T)</pre>
         nr \leftarrow nrow(y)
         nc \leftarrow ncol(y)
 9
         #accumulate # of NAs
10
         for(i in 1:nc){
           nanum <- length(which(is.na(y[,i])))</pre>
12
           if(nanum == nr) next
13
           rhcollect(i, list(val=summed[i], len=(nr-nanum)))
14
15
       1)
16
       bigmeanreduce<-expression(
18
        pre={
          total <- 0
20
          cnt <- 0
21
22
        reduce={
23
          total <- total + sum(sapply(reduce.values, function(x) sum(x$val)))
24
          cnt <- cnt + sum(sapply(reduce.values, function(x) sum(x$len)))</pre>
25
        post={rhcollect(reduce.key,total/cnt)}
27
28
29
       z <- rhmr(map=bigmeanmap, reduce=bigmeanreduce,
30
          ifolder="/rhipe/airline/hl_airline.csv",
31
          ofolder="/rhipe/airline/out5",
32
          inout=c("text", "sequence")
33
34
       jobid <- rhex(z, async=TRUE)</pre>
```

- RHIPE(R and Hadoop Integrated Processing Environment)는 Purdue Univ.의 통계학 박사과정 학생이었던 Saptarshi Guha에 의해 개발된 R라이브러리
- R을 Hadoop 환경에서 MapReduce 개념의 분산처리가 가능하게 해 줌
- Amazon의 EC2에서 사용 가능함 (http://www.stat.purdue.edu/~sguha /rhipe/doc/html/ec2.html)
- 최근에 RHadoop이라는 Revolution Analytics에서 나온 오픈소스 패키지 출시

Facebook에서의 R+RHIPE에 대한 Guha's lecture http://www.lecturemaker.com/2011/02/rhipe/

RHive - Hive

http://hive.apache.org

A data warehouse system for Hadoop

Open Source (Apache License)

ANSI SQL Support

Facebook ≥ Main Data Warehousing System

RHive

- ◆ Language : R or ANSI-SQL
- R-Hive Bridge
- R Export
- ◆ R 기반 분산 처리 Framework

- ◆ 가장 널리 사용하는 Analytic Tool
- CRAN: 4,000+ Rich R library Set
- ◆ 용이한 Library/Procedure 제작
- ◆ 다양한 Visualization, IDE 도구

- ◆ Hadoop 기반 분산 병렬 처리
- ◆ ANSI SQL : Low Leaning Cost
- ◆ 용이한 기능 확장 : UDF, UAF

> install.package("RHive")

RHive - Demo

```
library(RHive)
   rhive.init()
   rhive.connect()
   rhive.hdfs.ls("/")
 6
   rhive.query("SHOW TABLES")
   rhive.desc.table("weights")
   rhive.query("select * from weights limit 10")
10
11
   map <- function(k, vs){</pre>
12
     if(is.null(vs)) {
13
       put("NA", 0)
14
15
     for(n in 1:length(vs)){
16
       put(as.character(n),vs[n])
17
18
19
   reduce <- function(k,v){
20
     put(k,mean(as.double(v)))
21
22
23
24
25
   rhive.mrapply("weights", map, reduce,
26
                  as.character(rhive.desc.table("weights")[,1]),
                  c("rowname", "one"), by="rowname",
27
                  c("rowname","one"), c("rowname","count"))
28
```

HDFS interface
Hive query interface
Map/Reduce
Programming with R

RHive - RHive Analytics

RHive 위에 구현된 대용량 분산 데이터 마이닝 시스템

Clustering

K-means

Prediction

Multi-variate linear regression Classification tree

Sampling

random, stratified, cluster, quota, sampling

Modeling

model parameter tuning feature selection

Data Scientist's way to solve real world problem

Raw포맷은 다양하며, 이들을 효과적으로 처리할 수 있어야 한다.

Hive는 분석 인원이 최적으로 운영할 수 있는 정도의 컴퓨팅 리소스를 가져야 한다.

최대한 많은 양의 메모리를 확보한다.

데이터과학자로서 요구되는 기술

데이터 핸들링 능력(big and small)

통계 분석, 시각화, 모델링

데이터 시스템 활용 능력

경험 컴퓨터 공학 통계, 마이닝, 인지심리 컴퓨터 공학

데이터과학자로서 요구되는 자질

창의력: 분석 스토리를 만드는 능력

적극성: 데이터 그리고 자신에 대한 믿음을 바탕으로...

커뮤니케이션 또는 프리젠테이션 능력

R 데이터 분석가가 되기 위해서는?

R언어 이해

- 학습
- 경험 혹은 연습

통계/마이닝 능력

- 통계학
- 데이터 마이닝, 기계학습

시각화

- 가르쳐 주는 곳 없음
- 책기반으로 독학/실습 혹은 인터넷 참고

경험

- 오픈 데이터를 이용한 분석 실습/해석/호기심 필수
- 데이터 마이닝 대회를 통한 노하우 습득

마지막 한 꼭지! 빅 데이터가 정말 도움이 되는가?

어떤 그래프이길 원하시나요?

Figure 1. Learning Curves for Confusion Set Disambiguation

빅 데이터가 항상 도움이 되는 건 아니다!

빅 데이터 붐을 초래한

"We don't have better algorithms. We just have more data." –Peter Norvig--

왜 그런가?

많은 예측변수는 많은 데이터를 필요로 한다. 변수가 적 다면? 혹은 쓸모없는 변수를 넣는다면?

결론

큰 데이터에 적합한 접근방법을 사용하지 않는다면 그데이터는 쓰레기밖에 되지 못한다.

빅 데이터를 확인하고 접근 방법을 결정하는 데이터과학자 혹은 분석가의 역할이 무엇보다 중요하다.

플랫폼이 대체할 수 없는 데이터과학자

fppt.com

빅 데이터 분석에 있어 데이터과학자의 요구사항

빠르게 눈으로 직접 확인해야 될 것들이 많아졌다.

빠르게 다양한 포맷의 데이터를 병합하고 쪼개보고 꼬 아봐야 된다.

빠르게 최신의 알고리즘부터 오래된 알고리즘까지 적용 가능한지 시도해야 된다.

Q&A

madjakarta@gmail.com http://freesearch.pe.kr