

IMAGEBIND: One Embedding Space To Bind Them All

Presenter: Zitao Shuai (ztshuai@umich.edu)

Overview

- Background: towards generalizing to various multi-modality tasks
- Motivation: Binding all to the most informative modality
- Method: Emergent alignment only using image-based pairs
- Experiment
- Quiz

Background

towards generalizing to various multi-modality tasks

Traditional multi-modal learning:

- Often image-text pairs only
- Feed with humorous data
- Large computation cost

Illustration of the Clip: The boring graph that appears everywhere in our daily life.

Ensemble multiple modalities:

Can we learn an MM model performs well on various types of downstream tasks more than image-text?

Using audio to retrieve images

ImageBind can instantly suggest images by using an audio clip as an input. For example, from an audio recording of a bird, the model can generate images of what that bird might look like.

Select an audio clip below and ImageBind will retrieve image options corresponding with the audio prompt.

Challenges

If we align different modalities in traditional ways:

- 1. Given N modalities, we have $O(N^2)$ multi-modal tasks and each task needs corresponding paired data
- 2. Some types of paired data is not sufficient

Does anyone like to record the temperature when there is a piece of music?

Solution: parameters shared across modalities

Problem: Only consider image and text and hard to be scalable

[1] Bao H, Wang W, Dong L, et al. Vlmo: Unified vision-language pre-training with mixture-of-modality-experts[J]. Advances in Neural Information Processing Systems, 2022, 35: 32897-32912.

MoME Transformer with Shared Parameters

Solution: parameters shared across tasks / multi-flow network

Problem: only for generation task, not for pretraining

[2] Xu X, Wang Z, Zhang G, et al. Versatile diffusion: Text, images, and variations all in one diffusion model[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023: 7754-7765.

Motivation

Bind to the most informative modality

Something still remains unsolved:

- Parameter sharing is a good way to fusion modalities but we still need $O(N^2)$ contrastive losses.
- Multi-flow network might reduce the size of model but it requires $O(N^2)$ data-flows and feed-forwards
- Current solutions still need paired data or context models pretrained with the pairs

To unify different modalities, we might expect:

- Each modality is aligned with other modalities
- O(N) Contrastive losses
- Each modality could only appear in one combination of paired modalities

Insight: connected graph

If two modalities are aligned with a loss term, we add an edge between them.

The min number of edges could be N-1.

Which one would be better:

Maybe the right one has a tighter upper bound

$$dis(D., A.) \leq \sum dis_i$$

$$dis(D.,A.) \leq dis_1 + dis_5$$

Remaining question: how to choose the anchor

There should exist correlations between the anchor and other modalities:

- Paired data
- Connection of semantics of different modalities

We don't like the case that we have paired data and true relationships as shown above

In this paper, image is used as anchor

- Each considered modality is closely related to the image(video) modality
- Each modality has paired data with images

Method

Emergent alignment only using image-based pairs

Given a (img, M) pair, we calculate the following InfoNCE: $L_{I,M} + L_{M,I}$

$$L_{\mathcal{I},\mathcal{M}} = -\log \frac{\exp(\mathbf{q}_i^{\mathsf{T}} \mathbf{k}_i / \tau)}{\exp(\mathbf{q}_i^{\mathsf{T}} \mathbf{k}_i / \tau) + \sum_{j \neq i} \exp(\mathbf{q}_i^{\mathsf{T}} \mathbf{k}_j / \tau)}$$

We might be interested in the data:

Inertial Measurement Unit (IMU)

Accelerometers: Measure linear acceleration

Gyroscopes: Measure angular velocity

They are 1-D signals, the paper uses 1-D conv and transformers to encode them.

https://www.advancednavigation.com/tech-articles/inertial-measurement-unit-imu-an-introduction/

We might be interested in the data:

Depth data

- Distance information
- Viewpoint

It is related to some 3-D tasks.

Color

image with similar object semantics to the raw image.

It can be viewed as a 1-channel

Improved depth

https://rgbd.cs.princeton.edu/

We might be interested in the data:

Thermal data

Temperature variations of objects or environments.

It can be viewed as a 1-channel image with similar object semantics to the raw image.

(a) dual-spectrum camera

(b) different field of views

(c) images after registration

https://bupt-ai-cz.github.io/LLVIP/

We might be interested in the data:

Audio data

 A sequential data, this paper converts a 2 second audio sampled at 16kHz into spectrograms

It can be viewed as a 1-channel image when training.

https://towardsdatascience.com/learning-from-audio-spectrograms-37df29dba98c

Backbones

Image-text: Clip-text

Video-audio: Vit-B

Image-depth: Vit-S

Image-thermal: Vit-B

• Image-IMU: 1-D conv +

transformer

Dataset	Task	#cls	Metric	#test
Audioset Audio-only (AS-A) [18]	Audio cls.	527	mAP	19048
ESC 5-folds (ESC) [58]	Audio cls.	50	Acc	400
Clotho (Clotho) [16]	Retrieval	-	Recall	1045
AudioCaps (AudioCaps) [36]	Retrieval	-	Recall	796
VGGSound (VGGS) [8]	Audio cls.	309	Acc	14073
SUN Depth-only (SUN-D) [67]	Scene cls.	19	Acc	4660
NYU-v2 Depth-only (NYU-D) [64]	Scene cls.	10	Acc	653
LLVIP (LLVIP) [31]	Person cls.	2	Acc	15809
Ego4D (Ego4D) [22]	Scenario cls.	108	Acc	68865

Task 1: zero-shot with text embeddings

							1 0)				>>>
	IN1K	P365	K400	MSR-VTT	NYU-D	SUN-D	AS-A	VGGS	ESC	LLVIP	Ego4D
Random	0.1	0.27	0.25	0.1	10.0	5.26	0.62	0.32	2.75	50.0	0.9
IMAGEBIND	77.7	45.4	50.0	36.1	54.0	35.1	17.6	27.8	66.9	63.4	25.0
Text Paired	-	-	-	-	41.9*	25.4*	28.4 [†] [26]	-	68.6 [†] [26]	-	-
Absolute SOTA	91.0 [80]	60.7 [65]	89.9 [78]	57.7 [77]	76.7 [20]	64.9 [20]	49.6 [38]	52.5 [35]	97.0 [9]	-	-

Random < Baseline < ImageBind < Supervised

Conclusion: it transfers the text supervision associated with images to other modalities.

Task 2: zero-shot audio retrieval with text

	Emergent	Clotho		AudioCaps		ESC		
		R@1	R@10	R@1	R@10	Top-1		
Uses audio and text supervision								
AudioCLIP [26]	X	_	_	_	_	68.6		
Uses audio and text loss								
AVFIC [50]	X	3.0	17.5	8.7	37.7	_		
No audio and text supervision								
IMAGEBIND	✓	6.0	28.4	9.3	42.3	66.9		
Supervised								
AVFIC finetuned [50]	X	8.4	38.6	_	72.1	_		
ARNLQ [52]	X	12.6	45.4	24.3	72.1	_		

Table 3. Emergent zero-shot audio retrieval and classification.

Task 3: zero-shot video retrieval with text embeddings

	Modality	Emergent	MSR-VTT			
			R@1	R@5	R@10	
MIL-NCE [48]	V	X	8.6	16.9	25.8	
SupportSet [56]	V	X	10.4	22.2	30.0	
FIT [5]	V	X	15.4	33.6	44.1	
AVFIC [50]	A+V	X	19.4	39.5	50.3	
IMAGEBIND	A	✓	6.8	18.5	27.2	
IMAGEBIND	A+V	X	36.8	61.8	70.0	

Table 4. Zero-shot text based retrieval on MSR-VTT 1K-A.

Task 4: Few-shot classification on audio and depth

Figure 3. Few-shot classification on audio and depth.

Task 4: Few-shot classification on audio and depth

Figure 3. Few-shot classification on audio and depth.

In the appendix of the paper, the proposed model can retrieval images based on IMU signals

Text query: "Cooking a meal"

https://arxiv.org/pdf/2305.05665.pdf

Quiz

Opening questions

Q1: Can biomedical data be bonded to the image?

Open questions

Q2: Can modalities bind to others like sensor data?

I think there is an existing work considering binding modalities to the text side.

Zhu B, Lin B, Ning M, et al. LanguageBind: Extending Video-Language Pretraining to N-modality by Language-based Semantic Alignment[J]. arXiv preprint arXiv:2310.01852, 2023.