addition of claims) are hereby authorized to be charged to our Deposit Account No. 19-0036.

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application.

1. (Currently amended) Compounds of the formula (I)

in which

X is halogen, alkyl, alkoxy, alkenyloxy, alkylthio, alkylsulphinyl, alkylsulphonyl, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, or cyano;

Z is in each case optionally substituted aryl or substituted hetaryl;

W and Y independently of one another are hydrogen, halogen, alkyl, alkoxy, alkenyloxy, haloalkyl, haloalkoxy, haloalkenyloxy, nitro or cyano;

A and D together with the atoms to which they are attached are a saturated or unsaturated 6- or 7-membered ring which optionally contains at least one further heteroatom and which is unsubstituted or substituted in the A,D moiety or represent an optionally substituted 5-membered ring;

G is hydrogen (a) or is selected from the group consisting of:

$$R^{1}_{(b)}$$
, $R^{2}_{(c)}$, $R^{3}_{(c)}$ $R^{4}_{(c)}$ $R^{5}_{(c)}$ $R^{6}_{(c)}$

in which

E is a metal ion or an ammonium;

L is oxygen or sulphur;

M is oxygen or sulphur;

R¹ optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl, alkylthioalkyl, polyalkoxyalkyl or optionally halogen-, alkyl- or alkoxy-substituted cycloalkyl which may be interrupted by at least one heteroatom, is optionally substituted phenyl, phenylalkyl, hetaryl, phenoxyalkyl or hetaryloxyalkyl;

R² is optionally halogen-substituted alkyl, alkenyl is optionally substituted cycloalkyl, phenyl or benzyl;

R³, R⁴ and R⁵ independently of one another are optionally halogen-substituted alkyl, alkoxy, alkylamino, dialkylamino, alkylthio, alkenylthio, cycloalkylthio or is substituted phenyl, benzyl, phenoxy or phenylthio; and

R⁶ and R⁷ independently are hydrogen, optionally halogen-substituted alkyl, cycloalkyl, alkenyl, alkoxy, alkoxyalkyl, optionally substituted phenyl, is optionally substituted benzyl or together with the N atom to which they are attached are a ring which is optionally interrupted by oxygen or sulphur.

2. (Previously Presented) Compounds of the formula (I) according to Claim 1 in which

X is halogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_3 - C_6 -alkenyloxy, C_1 - C_6 -alkylthio, C_1 - C_6 -alkylsulphinyl, C_1 - C_6 -alkylsulphonyl, C_1 - C_6 -haloalkoxy, C_3 - C_6 -haloalkenyloxy, nitro or cyano;

W and Y independently are hydrogen, halogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -haloalkoxy, nitro or cyano;

Z is one of the radicals selected from the group consisting of:

 V^1 is halogen, C_1 - C_{12} -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -alkylsulphinyl, C_1 - C_6 -alkylsulphonyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy, nitro, cyano or represents phenyl, phenoxy, phenoxy- C_1 - C_4 -alkyl, phenyl- C_1 - C_4 -alkoxy, phenylthio- C_1 - C_4 -alkyl or phenyl- C_1 - C_4 -alkylthio, each of which is optionally mono- or polysubstituted by halogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy, nitro or cyano;

 V^2 and V^3 independently are hydrogen, halogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_4 -haloalkyl or C_1 - C_4 -haloalkoxy;

A and D together are optionally substituted C_4 - C_6 -alkanediyl or C_4 - C_6 -alkenediyl in which optionally one methylene group may be replaced by oxygen or sulphur,

wherein possible substituents are:

halogen, hydroxyl, mercapto or optionally halogen-substituted C_1 - C_{10} -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylthio, C_3 - C_7 -cycloalkyl, phenyl, benzyloxy or a further C_1 - C_6 -alkanediyl grouping,

or which optionally contains one of the following groups

or is C_3 -alkanediyl which is optionally mono- to trisubstituted by halogen, C_1 - C_6 -alkyl, C_1 - C_4 -haloalkyl or C_1 - C_6 -alkoxy;

G is hydrogen (a) or selected from the group consisting of:

$$R^1$$
 (b), R^2 (c), $SO_{\overline{2}}R^3$ (d), R^5 (e), R^6 (e), R^7 (g)

in which

E is a metal ion or an ammonium ion;

L is oxygen or sulphur; and

M is oxygen or sulphur;

 R^1 is optionally halogen-substituted C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, C_1 - C_8 -alkylthio- C_1 - C_8 -alkyl, poly- C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl or optionally halogen, C_1 - C_6 -alkyl or C_1 - C_6 -alkoxy-substituiertes C_3 - C_8 -cycloalkyl in which optionally one or more not directly adjacent ring members are replaced by oxygen and/or sulphur,

is optionally halogen-, cyano-, nitro-, C_1 - C_6 -alkyl-, C_1 - C_6 -alkoxy-, C_1 - C_6 -haloalkoxy-, C_1 - C_6 -alkylthio- or C_1 - C_6 -alkylsulphonylsubstituted phenyl,

is optionally halogen-, nitro-, cyano-, C_1 - C_6 -alkyl-, C_1 - C_6 -alkoxy-, C_1 - C_6 -haloalkyl- or C_1 - C_6 -haloalkoxy-substituted phenyl- C_1 - C_6 -alkyl,

is optionally halogen- or C_1 - C_6 -alkyl-substituted 5- or 6-membered hetaryl, is optionally halogen- or C_1 - C_6 -alkyl-substituted phenoxy- C_1 - C_6 -alkyl or

is optionally halogen-, amino- or C₁-C₆-alkyl-substituted 5-or 6-membered hetaryloxy-C₁-C₆-alkyl;

 R^2 is optionally halogen-substituted C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_1 - C_8 -alkoxy- C_2 - C_8 -alkyl, poly- C_1 - C_8 -alkoxy- C_2 - C_8 -alkyl,

is optionally halogen-, C_1 - C_6 -alkyl- or C_1 - C_6 -alkoxy-substituted C_3 - C_8 -cycloalkyl or

is optionally halogen-, cyano-, nitro-, C_1 - C_6 -alkyl-, C_1 - C_6 -alkoxy-, C_1 - C_6 -haloalkyl- or C_1 - C_6 -haloalkoxy-substituted phenyl or benzyl;

 R^3 is optionally halogen-substituted C-C₈-alkyl or is optionally halogen-, C_1 -C₆-alkyl-, C_1 -C₆-alkoxy-, C_1 -C₄-haloalkyl-, C_1 -C₄-haloalkoxy-, cyano- or nitro-substituted phenyl or benzyl;

 R^4 and R^5 independently are optionally halogen-substituted C_1 - C_8 -alkyl, C_1 - C_8 -alkylamino, di- $(C_1$ - C_8 -alkyl)-amino, C_1 - C_8 -alkylthio, C_2 - C_8 -alkenylthio, C_3 - C_7 -cycloalkylthio or are optionally halogen-, nitro-, cyano-, C_1 - C_4 -alkoxy-, C_1 - C_4 -alkylthio-, C_1 - C_4 -alkylthio-, C_1 - C_4 -alkylthio-, C_1 - C_4 -alkyl- or C_1 - C_4 -haloalkylsubstituted phenyl, phenoxy or phenylthio;

 R^6 and R^7 independently are hydrogen, optionally halogen-substituted C_1 - C_8 -alkyl, C_3 - C_8 -cycloalkyl, C_1 - C_8 -alkoxy, C_3 - C_8 -alkenyl, C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, optionally halogen-, C_1 - C_8 -haloalkyl-, C_1 - C_8 -alkyl- or C_1 - C_8 -alkoxy-substituted phenyl, optionally halogen-, C_1 - C_8 -alkyl-, C_1 - C_8 -haloalkyl- or C_1 - C_8 -alkoxy-substituted benzyl or together are an optionally C_1 - C_4 -alkyl-substituted C_3 - C_6 -alkylene radical in which optionally one methylene group is replaced by oxygen or sulphur;

 R^{13} is hydrogen, optionally halogen-substituted C_1 - C_8 -alkyl or C_1 - C_8 -alkoxy, optionally halogen-, C_1 - C_4 -alkyl- or C_1 - C_4 -alkoxy-substituted C_3 - C_8 -cycloalkyl in which optionally one methylene group is replaced by oxygen or sulphur, or halogen-, C_1 - C_6 -alkyl-, C_1 - C_6 -alkoxy-, C_1 - C_4 -haloalkyl-, C_1 - C_4 -haloalkoxy-, nitro- or cyano-substituted phenyl- C_1 - C_4 -alkyl or phenyl- C_1 - C_4 -alkoxy;

R¹⁴ is hydrogen or C₁-C₈-alkyl; or

 R^{13} and R^{14} together are C_4 - C_6 -alkanediyl;

 R^{15} and R^{16} are identical or different and are C_1 - C_6 -alkyl; or

 R^{15} and R^{16} together are a C_2 - C_4 -alkanediyl radical which is optionally substituted by C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl or by optionally halogen-, C_1 - C_6 -alkyl-, C_1 - C_4 -haloalkyl-, C_1 - C_6 -alkoxy-, C_1 - C_4 -haloalkoxy-, nitro- or cyano-substituted phenyl;

 R^{17} and R^{18} independently are hydrogen, optionally halogen-substituted C_1 - C_8 -alkyl or are optionally halogen-, C_1 - C_6 -alkyl-, C_1 - C_6 -alkoxy-, C_1 - C_4 -haloalkoxy-, nitro- or cyano-substituted phenyl; or

 R^{17} and R^{18} together with the carbon atom to which they are attached are a carbonyl group or optionally halogen-, C_1 - C_4 -alkyl- or C_1 - C_4 -alkoxy-substituted C_5 - C_7 -cycloalkyl in which optionally one methylene group is replaced by oxygen or sulphur;

 R^{19} and R^{20} independently are C_1 - C_{10} -alkyl, C_2 - C_{10} -alkenyl, C_1 - C_{10} -alkoxy, C_1 - C_{10} -alkylamino, C_3 - C_{10} -alkenylamino, di- $(C_1$ - C_{10} -alkyl)-amino or di- $(C_3$ - C_{10} -alkenyl)amino.

3. (Previously Presented) Compounds of the formula (I) according to Claim 1 in which

W is hydrogen, fluorine, chlorine, bromine, methyl, ethyl, methoxy or ethoxy;

X is fluorine, chlorine, bromine, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_3 - C_4 -alkenyloxy, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy, C_3 - C_4 -haloalkenyloxy, nitro or cyano;

Y is hydrogen, fluorine, chlorine, bromine, C_1 - C_4 -alkyl, C_1 - C_2 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_2 -haloalkoxy;

Z is one of the radicals selected from the group consisting of:

 V^1 is fluorine, chlorine, bromine, C_1 - C_6 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulphonyl, C_1 - C_2 -haloalkyl, C_1 - C_2 -haloalkoxy, nitro, cyan or is phenyl, phenoxy, phenoxy- C_1 - C_2 -alkyl, phenyl- C_1 - C_2 -alkoxy, phenylthio- C_1 - C_2 -alkyl or phenyl- C_1 - C_2 -alkylthio, each of which is optionally mono- or disubstituted by fluorine, chlorine, bromine, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_2 -haloalkyl, C_1 - C_2 -haloalkoxy, nitro or cyano;

 $V^2 \ and \ V^3 \ independently \ are \ hydrogen, \ fluorine, \ chlorine, \ bromine, \ C_1\text{-}C_4\text{-alkyl},$ $C \ -C_4\text{-alkoxy}, \ C_1\text{-}C_2\text{-haloalkyl} \ or \ C_1\text{-}C_2\text{-haloalkoxy};$

A and D together are optionally substituted C_4 - C_5 -alkanediyl in which optionally one methylene group may be replaced by a carbonyl group, oxygen or sulphur, possible substitutents being hydroxyl, C_1 - C_6 -alkyl, C_1 - C_4 -alkoxy or a further C_1 - C_4 -alkanediyl grouping, or

which optionally contains one of the following groups

or are C₃-alkanediyl which is optionally mono- or disubstituted by fluorine, chlorine, trifluoromethyl, methyl, ethyl or methoxy;

G is hydrogen (a) or selected from the group consisting of:

$$R^1$$
 (b), R^2 (c), $SO_{\overline{q}}R^3$ (d), R^5 (e), R^6 (e), R^7 (g),

in which

E is a metal ion or an ammonium ion;

L is oxygen or sulphur; and

M is oxygen or sulphur;

 R^1 is C_1 - C_8 -alkyl, C_2 - C_8 -alkenyl, C_1 - C_4 -alkoxy- C_1 - C_2 -alkyl, C_1 - C_4 -alkylthio- C_1 - C_2 -alkyl, each of which is optionally mono- to trisubstituted by fluorine or chlorine, or is C_3 - C_6 -cycloalkyl which is optionally mono-or disubstituted by fluorine, chlorine, C_1 - C_2 -alkyl or C_1 - C_2 -alkoxy and in which optionally one or two not directly adjacent ring members are replaced by oxygen,

is phenyl which is optionally mono- or disubstituted by fluorine, chlorine, bromine, cyano, nitro, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_2 -haloalkyl or C_1 - C_2 -haloalkoxy,

 R^2 is C_1 - C_8 -alkyl, C_2 - C_8 -alkenyl or C_1 - C_4 -alkoxy- C_2 - C_4 -alkyl, each of which is optionally mono- to trisubstituted by fluorine,

is C_3 - C_6 -cycloalkyl which is optionally monosubstituted by C_1 - C_2 -alkyl or C_1 - C_2 -alkoxy, or

is phenyl or benzyl, each of which is optionally mono- or disubstituted by fluorine, chlorine, bromine, cyano, nitro, C₁-C₄-alkyl, C₁-C₃-alkoxy, trifluoromethyl or trifluoromethoxy;

 R^3 is C_1 - C_6 -alkyl which is optionally mono- to trisubstituted by fluorine or is phenyl or benzyl, each of which is optionally monosubstituted by fluorine, chlorine, bromine, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, trifluoromethyl, trifluoromethoxy, cyano or nitro;

 R^4 is C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylamino, di- $(C_1$ - C_6 -alkyl)amino, C_1 - C_6 -alkylthio, C_3 - C_4 -alkenylthio, C_3 - C_6 -cycloalkylthio, each of which is optionally monoto trisubstituted by fluorine, or is phenyl, phenoxy or phenylthio, each of which is optionally mono- or disubstituted by fluorine, chlorine, bromine, nitro, cyano, C_1 - C_3 -alkoxy, C_1 - C_3 -haloalkoxy, C_1 - C_3 -alkylthio, C_1 - C_3 -haloalkylthio, C_1 - C_3 -alkyl or trifluoromethyl;

 R^5 is C_1 - C_6 -alkoxy or C_1 - C_6 -alkylthio;

 R^6 is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_1 - C_6 -alkoxy, C_3 - C_6 -alkenyl, C_1 - C_6 -alkoxy- C_1 - C_4 -alkyl, each of which is optionally mono- to trisubstituted by fluorine, is phenyl which is optionally mono- or disubstituted by fluorine, chlorine, bromine, trifluoromethyl, C_1 - C_4 -alkyl or C_1 - C_4 -alkoxy, is benzyl which is optionally monosubstituted by fluorine, chlorine, bromine, C_1 - C_4 -alkyl, trifluoromethyl or C_1 - C_4 -alkoxy;

 R^7 is C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl or C_1 - C_6 -alkoxy- C_1 - C_4 -alkyl;

 R^6 and R^7 together are a C_{4^-5} -alkylene radical which is optionally mono- or disubstituted by methyl or ethyl and in which optionally one methylene group is replaced by oxygen or sulphur;

 R^{15} and R^{16} are identical and areC₁-C₄-alkyl;

R¹⁵ and R¹⁶ together are a C₂-C₃-alkanediyl radical which is optionally mono- or disubstituted by methyl, ethyl, propyl or isopropyl;

R¹⁷ and R¹⁸ independently are hydrogen, represent methyl, ethyl, propyl, isopropyl, butyl, isobutyl or tert-butyl, each of which is optionally mono-to trisubstituted by fluorine and/or chlorine;

 R^{17} and R^{18} together with the carbon to which they are attached are a carbonyl group or are optionally methyl-, ethyl-, methoxy- or ethoxy-substituted C_5 - C_6 -cycloalkyl in which optionally one methylene group is replaced by oxygen.

4. (Previously Presented) Compounds of the formula (I) according to Claim 1 in which

W is hydrogen, methyl, ethyl or chlorine;

X is chlorine, methyl, ethyl, propyl, methoxy, ethoxy, propoxy or trifluoromethyl;

Y is hydrogen, chlorine or methyl;

Z is one of the radicals selected from the group consisting of:

$$V^{1}$$
 V^{2}
 V^{2}
 V^{3}
 V^{3}
 V^{2}
 V^{3}
 V^{3}
 V^{2}
 V^{3}
 V^{3

V¹ is fluorine, chlorine, bromine, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, methoxy, ethoxy, n-propoxy, isopropoxy, trifluoromethyl, trifluoromethoxy; SO₂C₂H₅, SCH₃, phenoxy, nitro or cyano;

 V^2 and V^3 independently are hydrogen, fluorine, chlorine, methyl, methoxy or trifluoromethyl;

A and D together are optionally substituted C_{4^-5} -alkanediyl in which optionally one methylene group is replaced by oxygen or sulphur and which is optionally substituted by hydroxyl, methyl, ethyl, methoxy, ethoxy or by a further C_1 - C_4 -alkanediyl grouping or represent C_3 -alkanediyl which is optionally mono-or disubstituted by fluorine, methyl, trifluoromethyl or methoxy;

G is hydrogen (a) or is selected from the group consisting of:

$$R^{1}$$
 (b), R^{2} (c), $-so_{2}-R^{3}$ (d), R^{5} (e), E (f) or R^{7} (g)

in which

E is a metal ion equivalent or an ammonium ion;

L is oxygen or sulphur; and

M is oxygen or sulphur;

R¹ is C₁-C₆-alkyl, C₂-C₆-alkenyl, C₁-C₂-alkoxy-C₁-alkyl, C₁-C₂-alkylthio-C₁-alkyl, each of which is optionally mono- to trisubstituted by fluorine, or represents cyclopropyl or cyclohexyl, each of which is optionally monosubstituted by fluorine, chorine, methyl or methoxy,

is phenyl which is optionally monosubstituted by fluorine, chlorine, bromine, cyano, nitro, methyl, methoxy, trifluoromethyl or trifluoromethoxy;

 R^2 is C_1 - C_8 -alkyl, C_2 - C_6 -alkenyl or C_1 - C_4 -alkoxy- C_2 - C_3 -alkyl, each of which is optionally monosubstituted by fluorine,

or is phenyl or benzyl, each of which is optionally monosubstituted by fluorine, chlorine, cyano, nitro, methyl, ethyl, n-propyl, i-propyl, methoxy, trifluoromethyl or trifluoromethoxy;

R³ is methyl, ethyl, n-propyl, isopropyl, each of which is optionally monoto trisubstituted by fluorine, or represents phenyl or benzyl, each of which is optionally monosubstituted by fluorine, chlorine, bromine, methyl, tert-butyl, methoxy, trifluoromethyl, trifluoromethoxy, cyano or nitro;

 R^4 is C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylamino, di- $(C_1$ - C_4 -alkyl)amino, C_1 - C_4 -alkylthio, each of which is optionally mono- to trisubstituted by fluorine, or is phenyl, phenoxy or phenylthio, each of which is optionally monosubstituted by fluorine, chlorine, bromine, nitro, cyano, C_1 - C_2 -alkoxy, C_1 - C_2 -fluoroalkoxy, C_1 - C_2 -alkylthio, C_1 - C_2 -fluoroalkylthio or C_1 - C_3 -alkyl;

R⁵ is methoxy, ethoxy, propoxy, butoxy, methylthio, ethylthio, propylthio or butylthio;

R⁶ is hydrogen, represents C₁-C₄-alkyl, C₃-C₆-cycloalkyl, C₁-C₄-alkoxy, C₃-C₄-alkenyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, each of which is optionally mono- to trisubstituted by fluorine, is phenyl which is optionally monosubstituted by fluorine, chlorine, bromine, trifluoromethyl, methyl or methoxy, represents benzyl which is optionally monosubstituted by fluorine, chlorine, bromine, methyl, trifluoromethyl or methoxy;

R⁷ is methyl, ethyl, propyl, isopropyl, butyl, isobutyl or allyl;

 R^6 and R^7 are a C_4 - C_5 -alkylene radical in which optionally one methylene group is replaced by oxygen or sulphur.

5. (Previously Presented) Compounds of the formula (I) according to Claim 1 in which

W is hydrogen or methyl;

X is chlorine or methyl;

Y is hydrogen or methyl;

Z is one of the radicals selected from the group consisting of:

$$V^1$$
 or V^2 ,

V¹ is fluorine, chlorine, methyl, isopropyl, methoxy, trifluoromethyl, trifluoromethoxy, SO₂C₂H₅, SCH₃, phenoxy or nitro;

V² is hydrogen, fluorine, chlorine or trifluoromethyl;

A and D together are optionally substituted C_4 - C_5 -alkanediyl in which optionally one methylene group is replaced by oxygen and which is optionally substituted by a further C_1 - C_2 -alkanediyl grouping, or are C_3 -alkanediyl which is optionally mono- or disubstituted by fluorine, methyl or trifluoromethyl;

G is hydrogen (a) or is selected from the group consisting of:

$$R^{1}$$
 (b), R^{2} (c), $-so_{2}-R^{3}$ (d),

in which

L is oxygen; and

M is oxygen;

R¹ is C₁-C₆-alkyl or cyclopropyl;

 R^2 is C_1 - C_8 -alkyl or C_1 - C_4 -alkoxy- C_2 - C_3 -alkyl;

R³ is methyl, ethyl or isopropyl.

- 6. (Previously Presented) A process for preparing compounds of the formula (I) according to Claim 1, characterized in that, to obtain
 - (A) compounds of the formula (I-a)

in which

A, D, W, X, Y and Z are as defined above,

(α) halochlorocarbonyl ketones of the formula (II)

in which

W, X, Y and Z are as defined above

Hal is halogen, or

(β) malonic acid derivatives of the formula (III)

in which

W, X, Y and Z are as defined above and

U is NH₂ or C₁-C₈-alkoxy

are reacted with hydrazines of the formula (IV)

A-NH-NH-D (IV)

in which

A and D are as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of a base, or

(γ) compounds of the formula (V)

in which

A, D, W, X, Y and Z are as defined above and

 R^8 is C_1 - C_8 -alkyl,

are reacted, if appropriate in the presence of a diluent and if appropriate in thepresence of a base,

compounds of the formulae (I-a) to (I-g) shown above in which A, D, G, W, X, Y and Z are as defined above, compounds of the formulae (I'-a) to (I'-g)

in which

A, D, G, W, X and Y are as defined above and

Z' is chlorine, bromine, iodine,

are reacted with boronic acids of the formula (VI)

in which

Z is as defined above

in the presence of a solvent, a base and a catalyst, suitable catalysts being, in particular, palladium complexes,

- (C) compounds of the formula (I-b) shown above in which A, D, R¹, W, X, Y and Z are as defined above, compounds of the formula (I-a) shown above in which A, D, W, X, Y and Z are as defined above are reacted
 - (α) with acid halides of the formula (VII)

Amdt. Dated April 30, 2010 Reply to Office Action of December 1, 2009

in which

R¹ is as defined above and

Hal is halogen

or

 (β) with carboxylic anhydrides of the formula (VIII)

$$R^1$$
-CO-O-CO- R^1 (VIII)

in which

R¹ is as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder,

(D) compounds of the formula (I-c) shown above in which A, D, R², M, W, X, Y and Z are as defined above and L is oxygen, compounds of the formula (I-a) shown above in which A, D, W, X, Y and Z are as defined above case reacted

with chloroformic esters or chloroformic thioesters of the formula (IX)

$$R^2$$
-M-CO-Cl (IX)

in which

R² and M are as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder;

(E) compounds of the formula (I-c) shown above in which A, D, R², M, W, X, Y and Z are as defined above and L is sulphur, compounds of the formula (I-a) shown above in which A, D, W, X, Y and Z are as defined above are reacted

with chloromonothioformic esters or chlorodithioformic esters of the formula (X)

$$CI \longrightarrow M-R^2$$
 (X)

in which

M and R² are as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder

and

(F) compounds of the formula (I-d) shown above in which A, D, R³, W, X, Y and Z are as defined above, compounds of the formula (I-a) shown above in which A, D, W, X, Y and Z are as defined above are reacted with

sulphonyl chlorides of the formula (XI)

$$R^3$$
-SO₂-C₁ (XI)

in which

R³ is as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder,

(G) compounds of the formula (I-e) shown above in which A, D, L, R⁴, R⁵, W, X, Y and Z are as defined above, compounds of the formula (I-a) shown above in which A, D, W, X, Y and Z are as defined above are reacted

with phosphorus compounds of the formula (XII)

in which

L, R⁴ and R⁵ are as defined above and

Hal is halogen;

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder,

compounds of the formula (I-f) shown above in which A, D, E, W, X, Y and Z are as defined above, compounds of the formula (I-a) in which A, D, W, X, Y and Z are as defined above are reacted

with metal compounds or amines of the formulae (XIII) or (XIV), respectively

$$Me(OR^9)_t$$
 (XIII) $R^{10} N_{12}$ (XIV)

in which

Me is a mono- or divalent metal;

t is the number 1 or 2; and

 R^4 , R^{10} , R^{11} , R^{12} independently of one another represent hydrogen or alkyl, if appropriate in the presence of a diluent;

compounds of the formula (I-g) shown above in which A, D, L, R⁶, R⁷, W, X, Y and Z are as defined above, compounds of the formula (I-a) shown above in which A, D, W, X, Y and Z are as defined above are reacted

(α) with isocyanates or isothiocyanates of the formula (XV)

$$R^6$$
-N=C=L (XV)

in which

R⁶ and L are as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of a catalyst, or

(β) with carbamoyl chlorides or thiocarbamoyl chlorides of the formula(XVI)

in which

L, R⁶ and R⁷ are as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder.

7. (Previously Presented) Compounds of the formula (II)

in which

W, X, Y and Z are as defined above and

Hal is halogen.

8. (Previously Presented) Compounds of the formula (III)

in which

W, X, Y and Z are as defined above and

U is NH_2 or C_1 - C_8 -alkoxy.

9. (Original) Compounds of the formula (V)

$$\begin{array}{c|c}
X & A \\
N - CO_2 R^8 \\
V & D
\end{array}$$

$$(V)$$

in which

A, D, W, X, Y, Z and R⁸ are as defined above.

10. (Original) Compounds of the formula (XVIII)

in which

A, R⁸ and D are as defined above.

11. (Original) Compounds of the formula (XIX)

in which

W, X, Y, Z and T are as defined above, except for the compound

$$\begin{array}{c|c} \text{CH}_3 \\ \\ \text{CH}_3 \\ \\ \text{CH}_3 \\ \end{array} \begin{array}{c} \text{CH}_3 \\ \\ \text{CI} \\ \end{array}.$$

12. (Original) Compounds of the formula (XX)

$$Y \longrightarrow X CO_2H$$
 (XXX)

in which

W, X, Y, Z and T are as defined above, except for the compounds

13. (Original) Compounds of the formula (XXI)

$$Y \longrightarrow CO_2R^8$$
 (XXI)

in which

W, X, Y, Z and R⁸ are as defined above, except for the compounds

$$CI \xrightarrow{CH_3} CH_3$$

$$O$$

$$OCH_3$$

14. (Previously Presented) Compositions for controlling pests, comprising at least one compound of the formula (I) according to Claim 1.

- 15. (Withdrawn) Method for controlling animal pests, unwanted vegetation and/or unwanted microorganisms, characterized in that compounds of the formula (I) according to Claim 1 are allowed to act on pests, unwanted vegetation, unwanted microorganisms and/or their habitat.
- 16. (Withdrawn) Use of compounds of the formula (I) according to Claim 1 for controlling animal pests, unwanted vegetation and/or unwanted microorganisms.
- 17. (Withdrawn) Process for preparing compositions for controlling pests, unwanted vegetation and/or unwanted microorganisms, characterized in that compounds of the formula (I) according to Claim 1 are mixed with extenders and/or surfactants.
- 18. (Withdrawn) Use of compounds of the formula (I) according to Claim 1 for preparing compositions for controlling pests, unwanted vegetation and/or unwanted microorganisms.
- 19. (Previously Presented) Compositions, comprising an effective amount of an active compound combination comprising, as components,
- (a') at least one compound of the formula (I) in which A, D, G, W, X, Y and Z are as defined above

and

(b') at least one crop plant compatibility-improving compound selected from the group consisting of:

4-dichloroacetyl-l-oxa-4-azaspiro[4.5]decane (AD-67,MON-4660), 1hydro-3,3,8a-trimethylpyrrolo[1,2-a]pyrimidin-6(2H)-one dichloroacetylhexa (dicycl6non, BAS-145138), 4-dichloroacetyl-3,4-dihydro-3-methyl-2H-1,4-benzoxazine (benoxacor), 1-methylhexyl 5-chloroquinoline-8-oxyacetate (cloquintocet-mexyl), 3-(2-(cumyluron), chlorobenzyl)-l-(1-methyl-1-phenylethyl)urea α-(cyanomethoximino)phenylacetonitrile (cyometrinil), 2,4-dichlorophenoxyacetic acid (2,4-D), 4-(2,4-dichlorophenoxy)butyric acid (2,4-DB), 1-(1-methyl-l-phenylethyl)-3-(4methylphenyl)urea (daimuron, dymron), 3,6-dichloro-2-methoxybenzoic acid (dicamba), S-1-methyl 1-phenylethyl piperidine-1-thiocarboxylate (dimepiperate), 2,2-dichloro-N-(2-oxo-2-(2-propenylamino)ethyl)-N-(2-propenyl)-acetamide (DKA-24), 2,2-dichloro-N.N-di-2-propenylacetamide (dichlormid), 4,6-dichloro-2-phenylpyrimidine (fenclorim), 1-(2.4-dichlorophenyl)-5-trichloromethyl-iH-1,2,4-triazole-3-carboxylate ethyl (fenchlorazole-ethyl), phenylmethyl 2-chloro-4-trifluoromethylthiazole-5-carboxylate (flurazole), 4-chloro-N-(1,3-dioxolan-2-yl-methoxy)-a-trifluoroacetophenone oxime (fluxofenim), 3-dichloroacetyl-5-(2-furanyl)-2,2-dimethyloxazolidine (furilazole, MON-13900), ethyl 4,5-dihydro-5,5-diphenyl-3-isoxazolecarboxylate 5 (isoxadifen-ethyl), 1-(ethoxycarbonyl)-ethyl 3,6-dichloro-2-methoxybenzoate (lactidichlor), (4-chloro-otolyloxy)acetic acid (MCPA), 2-(4-chloro-o-tolyloxy)propionic acid (mecoprop), diethyl 1-(2,4-dichorophenyl)-4,5-dihydro-5-methyl-lH-pyrazole-3,5-dicarboxylate (mefenpyrdiethyl), 2-dichloromethyl-2-methyl-1,3-dioxolane (MG-191), 2-propenyl-l-oxa-4azaspiro[4.5]decane-4-carbodithioate (MG-838), 1,8-naphthalic anhydride, a-(1,3dioxolan-2-ylmethoximino)phenylacetonitrile (oxabetrinil), 2,2-dichloro-N-(1,3dioxolan-2-yl-methyl)-N-(2-propenyl)acetamide (PPG-1292), 3-dichloroacetyl-2,2dimethyloxazolidine (R-28725), 3-dichloroacetyl 2,2,5-timethyloxazolidine (R-29148), 4-(4-chloro-o-tolyl)butyric acid, 4-(4-chlorophenoxy)butyric acid, acid, methyl diphenylmethoxyacetate, ethyl diphenylmethoxyacetic diphenylmethoxyacetate. 1-(2-chlorophenyl)-5-phenyl-lH-pyrazole-3methyl carboxylate, ethyl 1-(2,4-dichlorophenyl)-5-methyl-lH-pyrazol-3-carboxylate, ethyl 1-(2,4-dichlorophenyl)-5-isopropyl-1H-pyrazole-3-carboxylate, ethyl 1-(2,4dichlorophenyl)-5-(1,1-di methylethyl)-1 H-pyrazole-3-carboxylate, ethyl 1-(2,4dichlorophenyl)-5-phenyl 1H-pyrazole-3-carboxylate, ethyl 5-(2,4-dichlorobenzyl)-2-

isoxazoline-3-carboxylate, ethyl 5-phenyl 2-isoxazoline-3-carboxylate, ethyl 5-(4-1,3-dimethylbut-l-yl fluorophenyl)-5-phenyl-2-isoxazoline 3-carboxylate, 5-5-chloroquinoline-8-oxyacetate, 4-allyloxybutyl 1chloroguinoline-8-oxyacetate, 5-chloroquinoline-8-oxyacetate, methyl 5-chforoquinoxaline-8allyloxyprop-2-yl 5-chloroquinoline-8-oxyacetate, allyl 5-chloroquinoxaline-8oxyacetate, ethyl oxyacetate, 2-oxoprop-1-yl 5-chloroquinoline-8-oxyacetate, diethyl 5-chloroquinoline-8oxymalonate, diallyl 5-chloroquinoxaline-8-oxymalonate, diethyl 5-chloroquinoline-8oxymalonate, 4-carboxychroman-4-ylacetic acid (AC-304415, cf. EP-A-613618), 4-3,3'-dimethyl-4-methoxybenzophenone, 1-bromo-4chlorophenoxyacetic acid, 1-[4-(N-2-methoxybenzoylsulphamoyl)phenyl]-3chloromethylsulphonylbenzene, N-(2-methoxybenzoyl)-4methylurea (also known as 1-[4-(N-2-[(methylaminocarbonyl)amino]benzenesulphonamide), 1-[4-(N-4,5methoxybenzoylsulphamoyl)phenyl]-3,3-dimethylurea, 1-[4-(Ndimethylbenzoylsulphamoyl)phenyl]-3-methylurea, naphthylsulphamoyl)phenyl]-3,3-dimethylurea, N-(2-methoxy-5-methylbenzoyl) (cyclopropylaminocarbonyl)benzenesulphonamide;

and/or one of the following compounds, defined by general formulae, of the general formula (IIa)

$$(X^1)_n$$
 (IIa)

or of the general formula (IIb)

$$\begin{array}{c} X^{3} \\ X^{2} \\ A^{2} \\ R^{22} \end{array} \tag{IIb}$$

or of the formula (IIc)

$$R^{23}$$
 R^{24} (IIc)

where

n is a number between 0 and 5;

A¹ is one of the divalent heterocyclic groupings shown below

$$R^{26}$$
 R^{26}
 R^{26}
 R^{26}
 R^{26}
 R^{28}
 R^{28}
 R^{28}
 R^{28}

n is a number between 0 and 5;

 A^2 is optionally C_1 - C_4 -alkyl- and/or C_1 - C_4 -alkoxy-carbonyl-substituted alkanediyl having 1 or 2 carbon atoms;

 R^{21} is hydroxyl, mercapto, amino, C_1 - C_6 -alkoxy, C_1 - $_6$ -alkylthio, C_1 - $_6$ -alkylamino or di- $(C_1$ - C_4 -alkyl)-amino;

 R^{22} is hydroxyl, mercapto, amino, C_1 - C_6 -alkoxy, C_1 - C_8 -alkenyloxy, C_1 - C_6 -alkylamino or di-(Ci-C4-alkyl)-amino;

R²³ is optionally fluorine-, chlorine- and/or bromine-substituted C₁-C₄-alkyl;

 R^{24} is hydrogen, optionally fluorine-, chlorine- and/or bromine-substituted C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl or C_2 - C_6 -alkynyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, dioxolanyl- C_1 - C_4 -alkyl, fury/, furyl- C_1 - C_4 -alkyl, thienyl, thiazolyl, piperidinyl, or optionally fluorine-, chlorine- and/or bromine- or C_1 - C_4 -alkyl-substituted phenyl;

 R^{25} is hydrogen, optionally fluorine-, chlorine- and/or bromine-substituted C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl or C_2 - C_6 -alkynyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, dioxolanyl- C_1 - C_4 -alkyl, furyl, furyi- C_1 - C_4 -alkyl, thienyl, thiazolyl, piperidinyl, or optionally fluorine-, chlorine- and/or bromine- or C_1 - C_4 -alkyl-substituted phenyl, or together with R^{24} is C_3 - C_6 -alkanediyl or C_2 - C_5 -oxaalkanediyl, each of which is optionally substituted by C_1 - C_4 -alkyl, phenyl, furyl, a fused benzene ring or by two substituents which, together with the C atom to which they are attached, form a 5- or 6-membered carbocycle;

R²⁶ is hydrogen, cyano, halogen, or represents in each case optionally fluorine-, chlorine- and/or bromine-substituted C₁-C₄-alkyl, C₃-C₆-cycloalkyl or phenyl;

 R^{27} is hydrogen, optionally hydroxyl-, cyano-, halogen- or C_1 - C_4 -alkoxy-'substituted C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl or tri- $(C_1$ - C_4 -alkyl)-silyl;

 R^{28} is hydrogen, cyano, halogen, or is optionally fluorine-, chlorine- and/or bromine-substituted C_1 - C_4 -alkyl, C_3 - C_6 -cycloalkyl or phenyl;

 X^1 is nitro, cyano, halogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

 X^2 is hydrogen, cyano, nitro, halogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy;

 X^3 is hydrogen, cyano, nitro, halogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

and/or the following compounds, defined by general formulae,

of the general formula (IId)

$$O = \begin{pmatrix} R^{30} \\ N \\ N \\ SO_2 \end{pmatrix} \begin{pmatrix} (X^5)_n \\ R^{29} \\ (X^4)_n \end{pmatrix}$$
 (IIId)

or the general formula (IIe)

$$R^{32}$$
 R^{33}
 R^{29}
 R

where

n is a number between 0 and 5;

 R^{29} is hydrogen or C_1 - C_4 -alkyl;

 R^{30} is hydrogen or C_1 - C_4 -alkyl;

 R^{31} is hydrogen, in each case optionally cyano-, halogen- or C_1 - C_4 -alkoxysubstituted C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -alkylamino or di- $(C_1$ - C_4 -alkyl)-amino, or is optionally cyano-, halogen- or C_1 - C_4 -alkylsubstituted C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkyloxy, C_3 - C_6 -cycloalkylthio or C_3 - C_6 -cycloalkylamino;

 R^{32} is hydrogen, optionally cyano-, hydroxyl-, halogen- or C_1 - C_4 -alkoxysubstituted C_1 - C_6 -alkyl, optionally cyano-, or halogen-substituted C_3 - C_6 -alkenyl or C_3 - C_6 -alkynyl, or optionally cyano-, halogen- or C_1 - C_4 -alkyl-substituted C_3 - C_6 -cycloalkyl;

 R^{33} is hydrogen, optionally cyano-, hydroxyl-, halogen- or C_1 - C_4 -alkoxy substituted C_1 - C_6 -alkyl, optionally cyano- or halogen-substituted C_3 - C_6 -alkenyl or C_3 - C_6 -alkynyl, optionally cyano-, halogen- or C_1 - C_4 -alkyl-substituted C_3 - C_6 -cycloalkyl, or optionally nitro-, cyano-, halogen-, C_1 - C_4 -alkyl-, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy- or C_1 - C_4 -haloalkoxy-substituted phenyl, or together with R^{32} is optionally C_1 - C_4 -alkyl-substituted C_2 - C_6 -alkanediyl or C_2 - C_5 -oxaalkanediyl;

 X^4 is nitro, cyano, carboxyl, carbamoyl, formyl, sulphamoyl, hydroxyl, amino, halogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy; and

 X^5 is nitro, cyano, carboxyl, carbamoyl, formyl, sulphamoyl, hydroxyl, amino, halogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy.

20. (Previously Presented) Compositions according to Claim 19, where the crop plant compatibility-improving compound is selected from the group consisting of:

cloquintocet-mexyl, fenchlorazole-ethyl, isoxadifen-ethyl, mefenpyr-diethyl, furilazole, fenclorim, cumyluron, dymron or the compounds

and

- 21. (Original) Compositions according to Claim 19 or 20 where the crop plant compatibility-improving compound is cloquintocet-mexyl or mefenpyr-diethyl.
- 22. (Withdrawn) Method for controlling unwanted vegetation, characterized in that a composition according to Claim 19 is allowed to react on the plants or their habitat.

Amdt. Dated April 30, 2010 - 34 - FISCHER *et al.*Reply to Office Action of December 1, 2009 Appl. No. 10/567,788

23. (Withdrawn) Use of a composition according to Claim 19 for controlling unwanted vegetation.

24. (Withdrawn) Method for controlling unwanted vegetation, characterized in that a compound of the formula (I) according to Claim 1 and the crop plant compatibility-improving compound as set forth in Claim 19 are allowed to act on the plants or their habitat separately, one soon after the other.