Тема 3. Средние. Распределения. Выбросы*

Анализ данных 2024 (дааа, простите, лекции уходят вперед 🚀)

ОТ Вспоминаем конструкции

df["столбец"]

df["столбец"].mean()

df["столбец"].value_counts()

```
df[ df["столбец"] == 0 ]
df[ (df["столбец"] == 0) | (df["столбец2"] > 0) ]
```

	имя	должность		
0	Анна	преподаватель		
1	Никита	преподаватель		
2	Илиана	академрук		

С прошлой лекции

Еще не смотрели на практике, но обязательно!

```
df['длина имен'] = df['имя'].apply(len)
df
[23]:
```

	имя	должность	длина имен
0	Анна	преподаватель	4
1	Никита	преподаватель	6
2	Илиана	академрук	6

С прошлой лекции

Еще не смотрели на практике, но обязательно!

```
def position(n):
    if n == 'академрук':
         return 2
    else:
         return 1
df['должность coded'] = df['должность'].apply(position)
df
[25]:
             должность длина имен должность_coded
     имя
0
    Анна
          преподаватель
  Никита
         преподаватель
  Илиана
                                  6
              академрук
```

order_id price

0	1	5
1	1	6
2	1_	1
3	2	20
4	3	2
5	3	5

С прошлой лекции

Еще не смотрели на практике, но обязательно!

O2 Hoboe)

Важная разница (прошлогодний НЭ)

Меры центральной тенденции

типичное, повторяющееся, общее в столбце

Меры вариативности

насколько данные различны, непохожи, отличаются

сатегори- альные

соличественные

Меры центральной тенденции

Меры вариативности

мода

количество уникальных категорий

мода, медиана, среднее стандартное отклонение, дисперсия, квартили

Вопрос из прошлогоднего НЭ

Какие меры ВАРИАТИВНОСТИ применимы к категории машин (зеленая, синяя, желтая)?

- мода
- количество уникальных категорий
- дисперсия
- квартиль

- Мода .mode() наиболее часто встречающееся (число, категория)
- Среднее .mean() sum / len (арифметическое)
- Медиана .median() среднее по порядку (устойчивое, честное)

- минимум, максимум
- размах = макс мин

• Стандартное (среднеквадратичное) отклонение .std()

• Дисперсия .var()

$$.std() **2 == .var()$$

(простыми словами, насколько данные далеко "разбросаны" относительно среднего)

Зайцы, рыси, морковки

- 1. В 1910 году популяция зайцев была больше популяции рысей
- 2. В популяции морковок самая маленькая разница между ее минимальным и максимальным значением
- 3. Максимум за все время принадлежит популяции рысей
- 4. В один из годов все три популяции были одинакового размера

Зайцы, рыси, морковки

- 1. В 1910 году популяция за цев была больше популяции рысей
- 2. В популяции морковок самая маленькая разница между ее минимальным и максимальным значением
- 3. Максимум за все время принадлежит популяции рысей
- 4. В один из годов все три популяции были одинакового размера

Исследователь Иван собрал данные по численности трёх популяций кальмаров в некотором регионе за 12 лет. Эти данные приведены в таблице ниже.

	Популяция 1	Популяция 2	Популяция 3
Среднее	2002	5401	3048
Медиана	2005	3001	4000
Стандартное отклонение	30	402	350

- 1. В какой-то год количество кальмаров из популяции 3 было аномально высоким
- 2. Если рассматривать промежуток в 9 лет, то среднее и медиана численности кальмаров в популяции 1 обязательно совпадут
- 3. Наибольший разброс имеют наблюдения из популяции 1
- 4. В какой-то год количество кальмаров из популяции 2 было аномально высоким

Исследователь Иван собрал данные по численности трёх популяций кальмаров в некотором регионе за 12 лет. Эти данные приведены в таблице ниже.

	Популяция 1	Популяция 2	2 Популяция 3
Среднее	2002	5401	3048
Медиана	2005	3001	4000
Стандартное отклонение	30	402	350

- 1. В какой-то год количество кальмаров из популяции 3 было аномально высоким
- 2. Если рассматривать промежуток в 9 лет, то среднее и медиана численности кальмаров в популяции 1 обязательно совпадут
- 3. Наибольший разброс имеют наблюдения из популяции 1
- 4. В какой-то год количество кальмаров из популяции 2 было аномально высоким

Среди четырех величин, для которых построены гистограммы ниже, выберите величину с наименьшим стандартным отклонением.

Закон нормального распределения + стандартное отклонение

Задача из НЭ, А8

- 1. Примерно 68.2% взрослых собак породы золотистый ретривер имеют рост от 55 до 57 см
- 2. Примерно 0.1% взрослых собак породы золотистый ретривер имеют рост менее 53 см
- 3. 2.1% взрослых собак породы золотистый ретривер имеют рост более 58 см
- 4. Медиана роста взрослой собаки породы золотистый ретривер равна 59 см

Задача из НЭ, А8

- 1. Примерно 68.2% взрослых собак породы золотистый ретривер имеют рост от 55 до 57 см
- 2. Примерно 0.1% взрослых собак породы золотистый ретривер имеют рост менее 53 см
- 3. 2.1% взрослых собак породы золотистый ретривер имеют рост более 58 см
- 4. Медиана роста взрослой собаки породы золотистый ретривер равна 59 см

от гистограмм к ящикам с усами

- квартиль
- межквартильный размах (интервал)

не путаем с просто размахом (макс - мин)

зачем??

• выброс - отличается от распределения, выделяется (*слишком* маленькое / большое значение)

Связь гистограмм и ящиков с усами:

- обычно выброс: межквартильный размах (Q3 - Q1) * 1,5
- но в НЭ компромисс,
 чтобы быстрее
 считалось: n * .std()

Задача из НЭ, А6

Студент Михаил решил записывать, сколько времени (в часах) он тратит на выполнение домашних заданий в месяц в течение учебного года. Выберите тип графика, который меньше всего подойдёт Михаилу для наглядного изображения динамики количества учебных часов по месяцам.

- 1. Столбчатая диаграмма
- 2. Ящик с усами
- 3. Линейный график
- 4. Круговая диаграмма

Задача из НЭ, А6

Выберите тип визуализации из предложенных, с помощью которого можно наиболее корректно визуализировать распределение выживших и погибших пассажиров «Титаника».

- 1. Линейный график (line graph)
- 2. Ящик-с-усами (box plot)
- 3. Столбчатая диаграмма (bar chart)
- 4. График рассеяния (scatter plot)

Наивный гайд на Аб

1 количественная

Категории

столбчатая = круговая динамика -> линейный

распределение -> гистограмма

выбросы -> ящик с усами

2 количественных

связь -> диаграмма рассеяния (точечная)

Задача из НЭ, А6 (более новые)

- 1. Выбросы оказывают сильное влияние на среднее значение переменной 2
- 2.

- 3. В данных, скорее всего, нет выбросов
- 4. Выбросы оказывают сильное влияние на среднее значение переменной 1

Задача из НЭ, А6 (более новые)

- 1. Выбросы оказывают малое влияние на среднее значение переменной 1
- 2.

- 3. В выборке имеется как минимум 1 выброс
- 4. Выбросы оказывают большое влияние на медиану переменной 2

Все на питоне:

df['столбец']

.min()
.max()
.mean()
.mode()
.median()
.std()
.var()

Только для генеральной совокупности! .std(ddof=0)
.var(ddof=0)

Это редкий случай, в условии задачи напишут обязательно, "если вы имеете дело с генеральной совокупностью"....

"игрушечный" датасет

"игрушечный" датасет

"игрушечный" датасет

Palmer Penguins Bill Length

Palmer Archipelago is a group of islands off the northwestern coast of the Antarctic Peninsula. The histograms show that females has shorter bills than males in every species

df.describe()

df.describe()

	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g
count	342.000000	342.000000	342.000000	342.000000
mean	43.921930	17.151170	200.915205	4201.754386
std	5.459584	1.974793	14.061714	801.954536
min	32.100000	13.100000	172.000000	2700.000000
25%	39.225000	15.600000	190.000000	3550.000000
50 %	44.450000	17.300000	197.000000	4050.000000
75 %	48.500000	18.700000	213.000000	4750.000000
max	59.600000	21.500000	231.000000	6300.000000

df.describe()

Какие переменные перед нами (категориальные / количественные, меры среднего / вариативности?)

df.describe()

	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	
count	342.000000	342.000000	342.000000	342.000000	количество
mean	43.921930	17.151170	200.915205	4201.754386	среднее
std	5.459584	1.974793	14.061714	801.954536	станд.отклонение
min	32.100000	13.100000	172.000000	2700.000000	минимум
25%	39.225000	15.600000	190.000000	3550.000000	1 квартиль
50%	44.450000	17.300000	197.000000	4050.000000	медиана (=2 квартиль)
75 %	48.500000	18.700000	213.000000	4750.000000	3 квартиль
max	59.600000	21.500000	231.000000	6300.000000	максимум (=4 квартиль)

df.describe()

СКОРее всего, не понадобится, но в 1 задании демоверсии есть

так ищем квартили (25%, 50%, 75%)

df.describe()['столбец']['25%']

или так (для продвинутых)):

import numpy as np np.quantile(df['столбец'], 0.25)

df[['species', 'island', 'sex']].describe()

	species	island	sex
count	344	344	333
unique	3	3	2
top	Adelie	Biscoe	MALE
freq	152	168	168

меры среднего и вариативности категориальных переменных

df.describe(include='all')

меры среднего И вариативности категориальных И количественных переменных

		species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	sex	
	count	344	344	342.000000	342.000000	342.000000	342.000000	333	
ı	unique	3	3	NaN	NaN	NaN	NaN	2	
ı	top	Adelie	Biscoe	NaN	NaN	NaN	NaN	MALE	
ı	freq	152	168	NaN	NaN	NaN	NaN	168	
	mean	NaN	NaN	43.921930	17.151170	200.915205	4201.754386	NaN	
	std	NaN	NaN	5.459584	1.974793	14.061714	801.954536	NaN	
	min	NaN	NaN	32.100000	13.100000	172.000000	2700.000000	NaN	
	25%	NaN	NaN	39.225000	15.600000	190.000000	3550.000000	NaN	
	50%	NaN	NaN	44.450000	17.300000	197.000000	4050.000000	NaN	
	75%	NaN	NaN	48.500000	18.700000	213.000000	4750.000000	NaN	
	max	NaN	NaN	59.600000	21.500000	231.000000	6300.000000	NaN	

Важные последние замечания:

в describe():

- НЕТ дисперсии, но .std() ** 2
- .std() и .var() считаются к выборке (БЕЗ ddof=0)

