Алгебра Линденбаума

Теорема

Пусть $\alpha pprox \beta$, если $\alpha \vdash \beta$ и $\beta \vdash \alpha$. Тогда (pprox) — отношение эквивалентности.

Доказательство.

Надо доказать, что для любых lpha, eta, γ :

- 1. $\alpha \approx \alpha$ (очевидно, $\alpha \vdash \alpha$);
- 2. $\alpha pprox \beta$ влечёт $\beta pprox lpha$ (очевидно из определения);
- 3. $\alpha \approx \beta$ и $\beta \approx \gamma$ влечёт $\alpha \approx \gamma$: из посылок следует $\alpha \vdash \beta$ и $\beta \vdash \gamma$, соединив доказательства, получим $\alpha \vdash \gamma$.

 $\mathscr{L}/_{pprox}$ — частично-упорядоченное множество. Элементы будем обозначать [lpha].

Теорема

 $\alpha \vdash \beta$ тогда и только тогда, когда $[\alpha] \leq [\beta]$.

$$\mathcal{L}$$
 — решётка.

Покажем $[\alpha] \cdot [\beta] = [\alpha \& \beta]$. То есть, $[\alpha \& \beta]$ — наибольшая нижняя грань α и β .

- (... нижняя грань) $[\alpha \& \beta] \le [\alpha]$: заметим, что $\alpha \& \beta \vdash \alpha$.
- lacktriangle (наибольшая ...) Если $[\sigma] \leq [lpha]$ и $[\sigma] \leq [eta]$, то $[\sigma] \leq [lpha \& eta]$:

Рассмотрим вывод в контексте
$$\sigma$$
:

$$\begin{array}{lll} (1..a) & \alpha & & \text{из } [\sigma] \leq [\alpha] \\ (a+1..b) & \beta & & \text{из } [\sigma] \leq [\beta] \end{array}$$

$$(a+1..b) \quad \beta \qquad \text{if } [o] \leq [\beta]$$

$$(b+1)$$
 $\alpha o \beta o \alpha \& \beta$ Cx. akc

$$(b+2)$$
 $\beta \rightarrow \alpha \& \beta$ M.P. $a, b+1$

$$(b+3)$$
 $\alpha \& \beta$ M.P. $b, b+2$

Отсюда $\sigma \vdash \alpha \& \beta$.

Утверждение $[\alpha]+[\beta]=[\alpha\vee\beta]$ показывается аналогично.

\mathcal{L} — импликативная решётка с 0, согласованная с $\mathsf{ИИB}$

- lackbox (импликативная ...) Покажем [lpha] o [eta] = [lpha o eta]: в самом деле, [lpha] o [eta] = наиб $\{[\sigma] \mid [lpha \& \sigma] \leq [eta]\}$. Покажем требуемое двумя включениями:
 - 1. $\alpha \& (\alpha \to \beta) \vdash \beta$ (карринг + транзитивность импликации) $\bowtie \P$.
 - 2. Если lpha & $\sigma dash eta$, то $\sigma dash lpha o eta$ (карринг + теорема о дедукции)
- (... с нулём ...) Покажем, что $0 = [A \& \neg A]$: в самом деле, $A \& \neg A \vdash \sigma$ при любом σ .
- (... согласованная с ИИВ)
 - 1. Из доказательства видно, что $[\alpha \& \beta] = [\alpha] \cdot [\beta], [\alpha \lor \beta] = [\alpha] + [\beta], [\alpha \to \beta] = [\alpha] \to [\beta], [A \& \neg A] = 0.$
 - 2. [A o A]=[A] o [A]=1 по свойствам алгебры Гейтинга
 - 3. $[\neg \alpha] = [\alpha \rightarrow A \& \neg A] = [\alpha] \rightarrow 0 = \sim [\alpha]$

 $\Gamma(\mathcal{L})$ — алгебра Гейтинга, согласованная с ИИВ.

Надо учитывать существование нового элемента ω .

Например, импликация/псевдодополнение: $[\alpha] \to [\beta] = \text{наиб } \{s \mid [\alpha] \cdot s < [\beta]\}.$

- lacktriangle (... нижняя грань) $[\alpha] \cdot [\alpha o \beta] \leq [\beta]$ аналогично случаю для \mathcal{L}
- ightharpoonup (наибольшая ...) Если $[\alpha] \cdot s \leq [\beta]$, то
 - $ightharpoonup s = [\sigma]$, то есть $s \neq \omega$ аналогично случаю для \mathcal{L} ;
 - $ightharpoonup s = \omega$, тогда $[\alpha] \cdot \omega \leq [\beta]$. Но $[\alpha] \neq \omega$ либо $[\alpha] < \omega$, либо $[\alpha] = 1$. В обоих случаях $[\alpha] \cdot 1 \le [\beta]$. Отсюда *s* не наибольший.

Ограничения языка исчисления высказываний

 $\frac{\mathsf{Kаждый}\ \mathsf{человеk}\ \mathsf{смертеh}\ \mathsf{Coкрат}\ \mathsf{есть}\ \mathsf{человеk}}{\mathsf{Coкрат}\ \mathsf{смертeh}}$

Ограничения языка исчисления высказываний

 $\frac{\mathsf{Kаждый}\ \mathsf{человеk}\ \mathsf{смертеh}\ \mathsf{Coкрат}\ \mathsf{eстb}\ \mathsf{человеk}}{\mathsf{Coкрат}\ \mathsf{смертeh}}$

Цель: увеличить формализованную часть метаязыка.

Ограничения языка исчисления высказываний

$$\frac{{\sf Kаждый}\ {\sf человек}\ {\sf смертен}\ {\sf Сократ}\ {\sf есть}\ {\sf человек}\ {\sf Сократ}\ {\sf смертен}}{{\sf Сократ}\ {\sf смертен}}$$

Цель: увеличить формализованную часть метаязыка.

Мы неформально знакомы с предикатами (P:D o V) и кванторами $(\forall x. H(x) o S(x)).$

$$\frac{\forall x. H(x) \to S(x) \qquad H(\mathsf{Cokpat})}{S(\mathsf{Cokpat})}$$

$$\forall x.\sin x = 0 \lor (\sin x)^2 + 1 > 1$$

$$\forall x.\sin x = 0 \lor (\sin x)^2 + 1 > 1$$

- 1. Предметные (здесь: числовые) выражения
 - 1.1 Предметные переменные (x).

$$\forall x.\sin x = 0 \lor (\sin x)^2 + 1 > 1$$

- 1. Предметные (здесь: числовые) выражения
 - 1.1 Предметные переменные (x).
 - 1.2 Одно- и двухместные функциональные символы «синус», «возведение в квадрат» и «сложение».

$$\forall x.\sin x = 0 \lor (\sin x)^2 + 1 > 1$$

- 1. Предметные (здесь: числовые) выражения
 - 1.1 Предметные переменные (x).
 - 1.2 Одно- и двухместные функциональные символы «синус», «возведение в квадрат» и «сложение».
 - 1.3 Нульместные функциональные символы «ноль» (0) и «один» (1).

$$\forall x.\sin x = 0 \lor (\sin x)^2 + 1 > 1$$

- 1. Предметные (здесь: числовые) выражения
 - 1.1 Предметные переменные (x).
 - 1.2 Одно- и двухместные функциональные символы «синус», «возведение в квадрат» и «сложение».
 - 1.3 Нульместные функциональные символы «ноль» (0) и «один» (1).
- 2. Логические выражения
 - 2.1 Предикатные символы «равно» и «больше»

1. Два типа: предметные и логические выражения.

- 1. Два типа: предметные и логические выражения.
- 2. Предметные выражения: метапеременная θ .

- 1. Два типа: предметные и логические выражения.
- 2. Предметные выражения: метапеременная θ .
 - ▶ Предметные переменные: a, b, c, ..., метапеременные x, y.

- 1. Два типа: предметные и логические выражения.
- 2. Предметные выражения: метапеременная θ .
 - ▶ Предметные переменные: a, b, c, ..., метапеременные x, y.
 - lacktriangle Функциональные выражения: $f(heta_1,\ldots, heta_n)$, метапеременные f , g , \ldots

- 1. Два типа: предметные и логические выражения.
- 2. Предметные выражения: метапеременная θ .
 - ightharpoonup Предметные переменные: a, b, c, \ldots , метапеременные x, y.
 - lacktriangle Функциональные выражения: $f(heta_1,\ldots, heta_n)$, метапеременные f, g, \ldots
 - ightharpoonup Примеры: r, q(p(x,s),r).

- 1. Два типа: предметные и логические выражения.
- 2. Предметные выражения: метапеременная θ .
 - ightharpoonup Предметные переменные: a, b, c, \ldots , метапеременные x, y.
 - ightharpoonup Функциональные выражения: $f(\theta_1,\ldots,\theta_n)$, метапеременные f,g,\ldots
 - ightharpoonup Примеры: r, q(p(x,s),r).
- 3. Логические выражения: метапеременные lpha, eta, γ , . . .
 - ightharpoonup Предикатные выражения: $P(\theta_1,\ldots,\theta_n)$, метапеременная P.

- 1. Два типа: предметные и логические выражения.
- 2. Предметные выражения: метапеременная θ .
 - ightharpoonup Предметные переменные: a, b, c, ..., метапеременные x, y.
 - lacktriangle Функциональные выражения: $f(heta_1,\ldots, heta_n)$, метапеременные f, g, \ldots
 - ightharpoonup Примеры: r, q(p(x,s),r).
- 3. Логические выражения: метапеременные lpha, eta, γ , . . .
 - ▶ Предикатные выражения: $P(\theta_1, ..., \theta_n)$, метапеременная P. Имена: A. B. C. . . .

- 1. Два типа: предметные и логические выражения.
- 2. Предметные выражения: метапеременная θ .
 - ightharpoonup Предметные переменные: a, b, c, ..., метапеременные x, y.
 - lacktriangle Функциональные выражения: $f(heta_1,\ldots, heta_n)$, метапеременные f, g, \ldots
 - ightharpoonup Примеры: r, q(p(x,s),r).
- 3. Логические выражения: метапеременные lpha, eta, γ , . . .
 - ▶ Предикатные выражения: $P(\theta_1, ..., \theta_n)$, метапеременная P. Имена: A. B. C. . . .
 - lacktriangle Связки: $(\varphi \lor \psi)$, $(\varphi \& \psi)$, $(\varphi \to \psi)$, $(\neg \varphi)$.

- 1. Два типа: предметные и логические выражения.
- 2. Предметные выражения: метапеременная θ .
 - ightharpoonup Предметные переменные: a, b, c, ..., метапеременные x, y.
 - lacktriangle Функциональные выражения: $f(heta_1,\ldots, heta_n)$, метапеременные f, g, \ldots
 - ightharpoonup Примеры: r, q(p(x,s),r).
- 3. Логические выражения: метапеременные lpha, eta, γ , . . .
 - ▶ Предикатные выражения: $P(\theta_1, ..., \theta_n)$, метапеременная P. Имена: A. B. C. . . .
 - ightharpoonup Связки: $(\varphi \lor \psi)$, $(\varphi \& \psi)$, $(\varphi \to \psi)$, $(\neg \varphi)$.
 - ightharpoons Кванторы: $(\forall x.\varphi)$ и $(\exists x.\varphi)$.

Сокращения записи, метаязык

1. Метапеременные:

- \blacktriangleright ψ , ϕ , π , ... формулы
- ► P, Q, ...— предикатные символы
- **▶** *θ*, . . . термы
- ightharpoonup f, g, ... функциональные символы
- ightharpoonup x, y, ... предметные переменные

Сокращения записи, метаязык

- 1. Метапеременные:
 - \blacktriangleright ψ , ϕ , π , ... формулы
 - **▶** *P*, *Q*, . . . предикатные символы
 - **▶** *θ*, . . . термы
 - $ightharpoonup f, g, \ldots$ функциональные символы
 - ightharpoonup x, y, ... предметные переменные
- 2. Скобки как в И.В.; квантор жадный:

$$(\forall a. A \lor B \lor C \to \exists b. \underbrace{D \& \neg E}_{\exists b...}) \& F$$

Сокращения записи, метаязык

- 1. Метапеременные:
 - \blacktriangleright ψ , ϕ , π , ...— формулы
 - ► *P*, *Q*, . . . предикатные символы
 - ightharpoonup heta, ... термы
 - ightharpoonup f, g, ... функциональные символы
 - ightharpoonup x, y, ... предметные переменные
- 2. Скобки как в И.В.; квантор жадный:

$$(\forall a. A \lor B \lor C \to \exists b. \underbrace{D \& \neg E}_{\exists b...}) \& F$$

- 3. Дополнительные обозначения при необходимости:
 - \blacktriangleright $(\theta_1 = \theta_2)$ вместо $E(\theta_1, \theta_2)$
 - $(\theta_1 + \theta_2)$ вместо $p(\theta_1, \theta_2)$
 - О вместо z
 - **.** . . .

Напомним формулу:

$$\forall x. \sin x = 0 \lor (\sin x)^2 + 1 > 1$$

$$\forall x. E(f(x), z) \lor G(p(q(s(x)), o), o)$$

Напомним формулу:

$$\forall x. \sin x = 0 \lor (\sin x)^2 + 1 > 1$$

$$\forall x. E(f(x), z) \lor G(p(q(s(x)), o), o)$$

- 1. Истинностные (логические) значения:
 - 1.1 предикаты (в том числе пропозициональные переменные = нульместные предикаты);

Напомним формулу:

$$\forall x. \sin x = 0 \lor (\sin x)^2 + 1 > 1$$

$$\forall x. E(f(x), z) \lor G(p(q(s(x)), o), o)$$

- 1. Истинностные (логические) значения:
 - 1.1 предикаты (в том числе пропозициональные переменные = нульместные предикаты);
 - 1.2 логические связки и кванторы.

Напомним формулу:

$$\forall x. \sin x = 0 \lor (\sin x)^2 + 1 > 1$$

$$\forall x. E(f(x), z) \lor G(p(q(s(x)), o), o)$$

- 1. Истинностные (логические) значения:
 - 1.1 предикаты (в том числе пропозициональные переменные = нульместные предикаты);
 - 1.2 логические связки и кванторы.
- 2. Предметные значения:
 - 2.1 предметные переменные;

Напомним формулу:

$$\forall x. \sin x = 0 \lor (\sin x)^2 + 1 > 1$$

$$\forall x. E(f(x), z) \lor G(p(q(s(x)), o), o)$$

- 1. Истинностные (логические) значения:
 - 1.1 предикаты (в том числе пропозициональные переменные = нульместные предикаты);
 - 1.2 логические связки и кванторы.
- 2. Предметные значения:
 - 2.1 предметные переменные;
 - 2.2 функциональные символы (в том числе константы = нульместные функциональные символы)

Определение

Оценка — упорядоченная четвёрка $\langle D, F, P, E \rangle$, где:

Определение

Оценка — упорядоченная четвёрка $\langle D, F, P, E \rangle$, где:

1. D — предметное множество;

Определение

Оценка — упорядоченная четвёрка $\langle D, F, P, E \rangle$, где:

- 1. D предметное множество;
- 2. F оценка для функциональных символов; пусть f_n n-местный функциональный символ:

$$F_{f_n}:D^n\to D$$

Определение

Оценка — упорядоченная четвёрка $\langle D, F, P, E \rangle$, где:

- 1. D предметное множество;
- 2. F оценка для функциональных символов; пусть f_n n-местный функциональный символ:

$$F_{f_n}:D^n\to D$$

3. P — оценка для предикатных символов; пусть T_n — n-местный предикатный символ:

$$P_{T_n}:D^n\to V$$

Определение

Оценка — упорядоченная четвёрка $\langle D, F, P, E \rangle$, где:

- 1. D предметное множество;
- 2. F оценка для функциональных символов; пусть f_n n-местный функциональный символ:

$$F_{f_n}:D^n\to D$$

3. P — оценка для предикатных символов; пусть T_n — n-местный предикатный символ:

$$P_{T_n}: D^n \to V$$
 $V = \{\mathcal{U}, \mathcal{I}\}$

Определение

Оценка — упорядоченная четвёрка $\langle D, F, P, E \rangle$, где:

- 1. D предметное множество;
- 2. F оценка для функциональных символов; пусть f_n n-местный функциональный символ:

$$F_{f_n}:D^n\to D$$

3. P — оценка для предикатных символов; пусть T_n — n-местный предикатный символ:

$$P_{T_n}: D^n \to V \qquad V = \{\mathcal{U}, \mathcal{J}\}$$

4. Е — оценка для предметных переменных.

$$E(x) \in D$$

$$\llbracket \phi \rrbracket \in V, \quad \llbracket Q(x, f(x)) \vee R \rrbracket^{x:=1, f(t):=t^2, R:=\mathsf{N}} = \mathsf{N}$$

Запись и сокращения записи подобны исчислению высказываний:

$$[\![\phi]\!] \in V, \quad [\![Q(x, f(x)) \lor R]\!]^{x:=1, f(t):=t^2, R:=\mathsf{N}} = \mathsf{N}$$

1. Правила для связок \lor , &, \neg , \to остаются прежние;

$$[\![\phi]\!] \in V, \quad [\![Q(x, f(x)) \lor R]\!]^{x:=1, f(t):=t^2, R:=\mathsf{N}} = \mathsf{N}$$

- 1. Правила для связок \vee , &, \neg , \rightarrow остаются прежние;
- 2. $\llbracket f_n(\theta_1, \theta_2, \dots, \theta_n) \rrbracket = F_{f_n}(\llbracket \theta_1 \rrbracket, \llbracket \theta_2 \rrbracket, \dots, \llbracket \theta_n \rrbracket)$

$$[\![\phi]\!] \in V, \quad [\![Q(x, f(x)) \lor R]\!]^{x:=1, f(t):=t^2, R:=\mathsf{N}} = \mathsf{N}$$

- 1. Правила для связок \vee , &, \neg , \rightarrow остаются прежние;
- 2. $\llbracket f_n(\theta_1, \theta_2, \dots, \theta_n) \rrbracket = F_{f_n}(\llbracket \theta_1 \rrbracket, \llbracket \theta_2 \rrbracket, \dots, \llbracket \theta_n \rrbracket)$
- 3. $[P_n(\theta_1, \theta_2, \dots, \theta_n)] = P_{T_n}([\theta_1], [\theta_2], \dots, [\theta_n])$

$$[\![\phi]\!] \in V, \quad [\![Q(x, f(x)) \lor R]\!]^{x:=1, f(t):=t^2, R:=\mathsf{N}} = \mathsf{N}$$

- 1. Правила для связок \lor , &, \lnot , \to остаются прежние;
- 2. $\llbracket f_n(\theta_1, \theta_2, \dots, \theta_n) \rrbracket = F_{f_n}(\llbracket \theta_1 \rrbracket, \llbracket \theta_2 \rrbracket, \dots, \llbracket \theta_n \rrbracket)$
- 3. $\llbracket P_n(\theta_1, \theta_2, \dots, \theta_n) \rrbracket = P_{T_n}(\llbracket \theta_1 \rrbracket, \llbracket \theta_2 \rrbracket, \dots, \llbracket \theta_n \rrbracket)$
- 4.

$$\llbracket \forall x. \phi
rbracket = \begin{cases} \mathsf{V}, & \mathsf{если} \ \llbracket \phi
rbracket^{\mathsf{x}:=t} = \mathsf{V} \ \mathsf{при} \ \mathsf{всеx} \ t \in D \\ \mathsf{Л}, & \mathsf{если} \ \mathsf{найдётся} \ t \in D, \ \mathsf{что} \ \llbracket \phi
rbracket^{\mathsf{x}:=t} = \mathsf{Л} \end{cases}$$

$$[\![\phi]\!] \in V, \quad [\![Q(x, f(x)) \lor R]\!]^{x:=1, f(t):=t^2, R:=M} = M$$

- 1. Правила для связок \lor , &, \lnot , \to остаются прежние;
- 2. $\llbracket f_n(\theta_1, \theta_2, \dots, \theta_n) \rrbracket = F_{f_n}(\llbracket \theta_1 \rrbracket, \llbracket \theta_2 \rrbracket, \dots, \llbracket \theta_n \rrbracket)$
- 3. $\llbracket P_n(\theta_1, \theta_2, \dots, \theta_n) \rrbracket = P_{T_n}(\llbracket \theta_1 \rrbracket, \llbracket \theta_2 \rrbracket, \dots, \llbracket \theta_n \rrbracket)$
- 4.

$$\llbracket \forall x. \phi
rbracket = \left\{egin{array}{ll} \mathsf{И}, & \mathsf{если} \ \llbracket \phi
rbracket^{\mathsf{x}:=t} = \mathsf{И} \ \mathsf{при} \ \mathsf{всеx} \ t \in D \ \mathsf{Л}, & \mathsf{если} \ \mathsf{найдётся} \ t \in D, \ \mathsf{что} \ \llbracket \phi
rbracket^{\mathsf{x}:=t} = \mathsf{Л} \end{array}\right.$$

Оценим:

 $\llbracket \forall a. \exists b. \neg a + 1 = b \rrbracket$

Оценим:

$$\llbracket \forall a. \exists b. \neg a + 1 = b \rrbracket$$

Зададим оценку:

- $ightharpoonup D := \mathbb{N};$
- $ightharpoonup F_1 := 1$, $F_{(+)}$ сложение в \mathbb{N} ;
- $ightharpoonup P_{(=)}$ равенство в \mathbb{N} .

Оценим:

$$\llbracket \forall a. \exists b. \neg a + 1 = b \rrbracket$$

Зададим оценку:

- $ightharpoonup D := \mathbb{N};$
- ▶ $F_1 := 1$, $F_{(+)}$ сложение в \mathbb{N} ;
- $\triangleright P_{(=)}$ равенство в \mathbb{N} .

Фиксируем $a \in \mathbb{N}$. Тогда:

$$[a+1=b]^{b:=a}=Л$$

Оценим:

$$\llbracket \forall a. \exists b. \neg a + 1 = b \rrbracket$$

Зададим оценку:

$$ightharpoonup D := \mathbb{N};$$

$$ightharpoonup F_1 := 1, F_{(+)} -$$
сложение в \mathbb{N} ;

▶
$$P_{(=)}$$
 – равенство в \mathbb{N} .

Фиксируем $a \in \mathbb{N}$. Тогда:

$$\llbracket a+1=b
rbracket^{b:=a}=J$$

поэтому при любом $a \in \mathbb{N}$:

$$\llbracket\exists b. \neg a + 1 = b \rrbracket = \mathsf{V}$$

Оценим:

$$\llbracket \forall a. \exists b. \neg a + 1 = b \rrbracket$$

Зададим оценку:

$$ightharpoonup D := \mathbb{N};$$

$$ightharpoonup F_1 := 1, F_{(+)}$$
 — сложение в \mathbb{N} ;

▶
$$P_{(=)}$$
 – равенство в \mathbb{N} .

Фиксируем $a \in \mathbb{N}$. Тогда:

поэтому при любом $a\in\mathbb{N}$:

$$\llbracket \exists b. \lnot a + 1 = b
rbracket = \mathsf{V}$$

Итого:

$$\llbracket orall a. \exists b. \neg a + 1 = b
rangle = \mathsf{V}$$

 $\llbracket \forall a. \exists b. \neg a + 1 = b \rrbracket$

$$\llbracket \forall a. \exists b. \neg a + 1 = b \rrbracket$$

Зададим интерпретацию:

- $ightharpoonup D := \{\Box\};$
- $ightharpoonup F_{(1)} := \Box, F_{(+)}(a,b) := \Box;$
- $P_{(=)}(a,b) := V$.

$$\llbracket \forall a. \exists b. \neg a + 1 = b \rrbracket$$

Зададим интерпретацию:

▶
$$D := \{ \Box \};$$

$$ightharpoonup F_{(1)} := \Box, F_{(+)}(a,b) := \Box;$$

$$P_{(=)}(a,b) := VI.$$

Тогда:

$$\llbracket a+1=b
rbracket^{a:=\Box,b:=\Box}=V$$

$$\llbracket \forall a. \exists b. \neg a + 1 = b \rrbracket$$

Зададим интерпретацию:

- ▶ $D := \{\Box\};$
- $ightharpoonup F_{(1)} := \Box, F_{(+)}(a, b) := \Box;$
- $P_{(=)}(a,b) := VI.$

Тогда:

$$\llbracket a+1=b
rbracket^{a\in D,b\in D}=V$$

$$\llbracket \forall a. \exists b. \neg a + 1 = b \rrbracket$$

Зададим интерпретацию:

$$ightharpoonup D := \{\Box\};$$

$$ightharpoonup F_{(1)} := \Box, F_{(+)}(a,b) := \Box;$$

$$P_{(=)}(a,b) := VI.$$

Тогда:

$$\llbracket a+1=b
rbracket^{a\in D,b\in D}=V$$

Итого:

$$\llbracket \forall a. \exists b. \neg a + 1 = b \rrbracket = Л$$

Общезначимость

Определение

Формула исчисления предикатов общезначима, если истинна при любой оценке:

$$\models q$$

Общезначимость

Определение

Формула исчисления предикатов общезначима, если истинна при любой оценке:

$$\models \phi$$

То есть истинна при любых D, F, P и E.

Теорема

$$\llbracket \forall x. Q(f(x)) \vee \neg Q(f(x)) \rrbracket$$

Доказательство.

Фиксируем D, F, P, E.

Теорема

$$\llbracket \forall x. Q(f(x)) \vee \neg Q(f(x)) \rrbracket$$

Доказательство.

Фиксируем D, F, P, E. Пусть $x \in D$.

Теорема

$$\llbracket \forall x. Q(f(x)) \vee \neg Q(f(x)) \rrbracket$$

Доказательство.

Фиксируем D, F, P, E. Пусть $x \in D$. Обозначим $P_Q(F_f(E_x))$ за t.

Теорема

$$\llbracket \forall x. Q(f(x)) \vee \neg Q(f(x)) \rrbracket$$

Доказательство.

Фиксируем D, F, P, E. Пусть $x \in D$. Обозначим $P_Q(F_f(E_x))$ за t. Ясно, что $t \in V$. Разберём случаи.

- lacktriangle Если $t=m{\mathsf{U}}$, то $[\![Q(f(x))]\!]^{Q(f(x)):=t}=m{\mathsf{U}}$, потому $[\![Q(f(x))\lor
 eg Q(f(x))]\!]^{Q(f(x)):=t}=m{\mathsf{U}}$
- lacktriangle Если $t=oldsymbol{\Pi}$, то $[\![\neg Q(f(x))]\!]^{Q(f(x)):=t}=oldsymbol{\Pi}$, потому всё равно $[\![Q(f(x)) \lor \neg Q(f(x))]\!]^{Q(f(x)):=t}=oldsymbol{\Pi}$

Свободные вхождения

Определение

Вхождение подформулы в формулу — это позиция первого символа этой подформулы в формуле.

Вхождения
$$x$$
 в формулу: $(\forall x.A(x) \lor \exists x.B(x)) \lor C(x)$ Определение

Рассмотрим формулу $\forall x. \psi$ (или $\exists x. \psi$). Здесь переменная x связана в ψ . Все вхождения переменной x в ψ — связанные.

Определение

Вхождение x в ψ свободное, если не находится в области действия никакого квантора по x. Переменная входит свободно в ψ , если имеет хотя бы одно свободное вхождение. $FV(\psi), FV(\Gamma)$ — множества свободных переменных в ψ , в Γ

Пример
$$\exists y.(\forall x.P(x)) \lor P(x) \lor Q(y)$$

Подстановка, свобода для подстановки

ановка, свобода для подстановки
$$\psi \equiv y, y \not\equiv x \quad \text{Vold } w \text{ (inf } x \text{) } \xi$$

$$\psi \equiv y, y \not\equiv x \quad \text{Vold } w \text{ (inf } x \text{) } \xi$$

$$\psi \equiv \forall x.\pi \text{ или } \psi \equiv \exists x.\pi$$

$$\psi \equiv x \quad \psi \equiv x$$

$$\forall y.\pi[x := \theta], \quad \psi \equiv x \quad \psi \equiv \forall y.\pi \text{ и } y \not\equiv x$$

$$\forall y.\pi[x := \theta], \quad \psi \equiv \exists y.\pi \text{ и } y \not\equiv x$$
 ределение
$$\psi \equiv \exists y.\pi \text{ и } y \not\equiv x \quad \psi \equiv \exists y.\pi \text{ и } y \not\equiv x$$
 ободное вхождение переменных в $\psi \equiv \exists y.\pi \text{ и } y \not\equiv x$ ободное вхождение переменных в $\psi \equiv \exists y.\pi \text{ и } y \not\equiv x$

Определение

Терм θ свободен для подстановки вместо x в ψ ($\psi[x:=\theta]$), если ни одно свободное вхождение переменных в θ не станет связанным после подстановки.

Свобода есть	Свободы нет
$(\forall x.P(y))[y := z]$ $(\forall y.\forall x.P(x))[x := y]$	$(\forall x.P(y))[y := x] (\forall y.\forall x.P(t))[t := y]$

Теория доказательств

Рассмотрим язык исчисления предикатов. Возьмём все схемы аксиом классического исчисления высказываний и добавим ещё две схемы аксиом (здесь везде θ свободен для подстановки вместо x в φ):

- 11. $(\forall x.\varphi) \to \varphi[x := \theta]$
- 12. $\varphi[x := \theta] \to \exists x. \varphi$

Добавим ещё два правила вывода (здесь везде x не входит свободно в φ):

$$\dfrac{arphi o \psi}{arphi o orall x. \psi}$$
 Правило для $orall$ $\dfrac{\psi o arphi}{(\exists x. \psi) o arphi}$ Правило для \exists

Определение

Доказуемость, выводимость, полнота, корректность — аналогично исчислению высказываний.

▶ Рассмотрим формулу $(\forall x.\exists y.\neg x = y) \rightarrow ((\exists y.\neg x = y)[x := y])$

- ▶ Рассмотрим формулу $(\forall x.\exists y.\neg x=y) \rightarrow ((\exists y.\neg x=y)[x:=y])$
- Соответствует 11 схеме

$$(\forall x.\varphi) \to \varphi[x := \theta]$$
 $\varphi \equiv \exists y. \neg x = y$ $\theta \equiv y$

- lackbox Рассмотрим формулу $(\forall x. \exists y. \neg x = y) \rightarrow ((\exists y. \neg x = y)[x := y])$
- **С**оответствует 11 схеме

$$(\forall x.\varphi) \to \varphi[x := \theta]$$
 $\varphi \equiv \exists y. \neg x = y$ $\theta \equiv y$

▶ Но нарушается свобода для подстановки

$$(\exists y. \neg x = y)[x := y] \equiv (\exists y. \neg y = y)$$

- ▶ Рассмотрим формулу $(\forall x. \exists y. \neg x = y) \rightarrow ((\exists y. \neg x = y)[x := y])$
- Соответствует 11 схеме

$$(\forall x.\varphi) \to \varphi[x := \theta]$$
 $\varphi \equiv \exists y. \neg x = y$ $\theta \equiv y$

Но нарушается свобода для подстановки

$$(\exists y. \neg x = y)[x := y] \equiv (\exists y. \neg y = y)$$

lacktriangle Пусть $D=\mathbb{N}$ и (=) есть равенство на \mathbb{N} . Тогда

$$[\exists y. \neg x = y] = \mathsf{N}$$
 $[(\exists y. \neg x = y)[x := y]] = \mathsf{N}$

- ▶ Рассмотрим формулу $(\forall x.\exists y.\neg x = y) \rightarrow ((\exists y.\neg x = y)[x := y])$
- Соответствует 11 схеме

$$(\forall x.\varphi) \to \varphi[x := \theta]$$
 $\varphi \equiv \exists y. \neg x = y$ $\theta \equiv y$

Но нарушается свобода для подстановки

$$(\exists y. \neg x = y)[x := y] \equiv (\exists y. \neg y = y)$$

lacktriangle Пусть $D=\mathbb{N}$ и (=) есть равенство на \mathbb{N} . Тогда

$$[\exists y. \neg x = y] = \mathsf{M}$$
 $[(\exists y. \neg x = y)[x := y]] = \mathsf{M}$

$$\blacktriangleright \not\models (\forall x.\exists y.\neg x = y) \rightarrow ((\exists y.\neg x = y)[x := y])$$

Теорема

Если $\Gamma \vdash \alpha \to \beta$, то $\Gamma, \alpha \vdash \beta$. Если $\Gamma, \alpha \vdash \beta$ и в доказательстве не применяются правила для кванторов по свободным переменным из α , то $\Gamma \vdash \alpha \to \beta$.

Доказательство.

Теорема

Если $\Gamma \vdash \alpha \to \beta$, то $\Gamma, \alpha \vdash \beta$. Если $\Gamma, \alpha \vdash \beta$ и в доказательстве не применяются правила для кванторов по свободным переменным из α , то $\Gamma \vdash \alpha \to \beta$.

Доказательство.

 (\Rightarrow) — как в КИВ (\Leftarrow) — та же схема, два новых случая.

Теорема

Если $\Gamma \vdash \alpha \to \beta$, то $\Gamma, \alpha \vdash \beta$. Если $\Gamma, \alpha \vdash \beta$ и в доказательстве не применяются правила для кванторов по свободным переменным из α , то $\Gamma \vdash \alpha \to \beta$.

Доказательство.

 (\Rightarrow) — как в КИВ (\Leftarrow) — та же схема, два новых случая.

Перестроим: $\delta_1, \delta_2, \dots, \delta_n \equiv \beta$ в $\alpha \to \delta_1, \alpha \to \delta_2, \dots, \alpha \to \delta_n$.

Дополним: обоснуем $lpha o \delta_{\it n}$, если предыдущие уже обоснованы.

Теорема

Если $\Gamma \vdash \alpha \to \beta$, то $\Gamma, \alpha \vdash \beta$. Если $\Gamma, \alpha \vdash \beta$ и в доказательстве не применяются правила для кванторов по свободным переменным из α , то $\Gamma \vdash \alpha \to \beta$.

Доказательство.

 (\Rightarrow) — как в КИВ (\Leftarrow) — та же схема, два новых случая.

Перестроим: $\delta_1, \delta_2, \dots, \delta_n \equiv \beta$ в $\alpha \to \delta_1, \alpha \to \delta_2, \dots, \alpha \to \delta_n$.

Дополним: обоснуем $lpha o \delta_n$, если предыдущие уже обоснованы.

Два новых похожих случая: правила для ∀ и ∃. Рассмотрим ∀.

Доказываем (n) $\alpha \to \psi \to \forall x. \varphi$ (правило для \forall), значит, доказано (k) $\alpha \to \psi \to \varphi$.

Теорема

Если $\Gamma \vdash \alpha \to \beta$, то $\Gamma, \alpha \vdash \beta$. Если $\Gamma, \alpha \vdash \beta$ и в доказательстве не применяются правила для кванторов по свободным переменным из α , то $\Gamma \vdash \alpha \to \beta$.

Доказательство.

$$(\Rightarrow)$$
 — как в КИВ (\Leftarrow) — та же схема, два новых случая.

Перестроим:
$$\delta_1, \delta_2, \dots, \delta_n \equiv \beta$$
 в $\alpha \to \delta_1, \alpha \to \delta_2, \dots, \alpha \to \delta_n$.

Дополним: обоснуем
$$lpha o \delta_n$$
, если предыдущие уже обоснованы.

Два новых похожих случая: правила для \forall и \exists . Рассмотрим \forall .

Доказываем (n)
$$\alpha \to \psi \to \forall x. \varphi$$
 (правило для \forall), значит, доказано (k) $\alpha \to \psi \to \varphi$.

$$(n-0.9)\dots(n-0.8)$$
 $(\alpha\to\psi\to\varphi)\to(\alpha\&\psi)\to\varphi$ Т. о полноте КИВ $(n-0.6)$ $(\alpha\&\psi)\to\varphi$ М.Р. $k,n-0.8$

Теорема

Если $\Gamma \vdash \alpha \to \beta$, то $\Gamma, \alpha \vdash \beta$. Если $\Gamma, \alpha \vdash \beta$ и в доказательстве не применяются правила для кванторов по свободным переменным из α , то $\Gamma \vdash \alpha \to \beta$.

Доказательство.

$$(⇒)$$
 — как в КИВ $(⇐)$ — та же схема, два новых случая.

Перестроим:
$$\delta_1, \delta_2, \dots, \delta_n \equiv \beta$$
 в $\alpha \to \delta_1, \alpha \to \delta_2, \dots, \alpha \to \delta_n$.

Дополним: обоснуем
$$lpha o \delta_n$$
, если предыдущие уже обоснованы.

Два новых похожих случая: правила для \forall и \exists . Рассмотрим \forall .

Доказываем (n)
$$\alpha \to \psi \to \forall x. \varphi$$
 (правило для \forall), значит, доказано (k) $\alpha \to \psi \to \varphi$.

$$(n-0.6)$$
 $(\alpha \& \psi) \rightarrow \varphi$ M.P. $k, n-0.8$

$$(n-0.4)$$
 $(\alpha \& \psi) \to \forall x. \varphi$ Правило для $\forall, n-0.6$

Теорема

Если $\Gamma \vdash \alpha \rightarrow \beta$, то $\Gamma, \alpha \vdash \beta$. Если $\Gamma, \alpha \vdash \beta$ и в доказательстве не применяются правила для кванторов по свободным переменным из α , то $\Gamma \vdash \alpha \rightarrow \beta$.

Доказательство.

$$(⇒)$$
 — как в КИВ $(⇐)$ — та же схема, два новых случая.

Перестроим:
$$\delta_1, \delta_2, \dots, \delta_n \equiv \beta$$
 в $\alpha \to \delta_1, \alpha \to \delta_2, \dots, \alpha \to \delta_n$.

Дополним: обоснуем
$$lpha o \delta_n$$
, если предыдущие уже обоснованы.

Два новых похожих случая: правила для \forall и \exists . Рассмотрим \forall .

Правило для
$$\forall$$
, $n-0.6$

Следование

Определение

 $\gamma_1, \gamma_2, \dots, \gamma_n \models \alpha$, если выполнено два условия:

- 1. α выполнено всегда, когда выполнено $\gamma_1, \gamma_2, \ldots, \gamma_n$;
- 2. α не использует кванторов по переменным, входящим свободно в $\gamma_1, \gamma_2, \dots, \gamma_n$.

Теорема

Если $\Gamma \vdash \alpha$ и в доказательстве не используются кванторы по свободным переменным из Γ , то $\Gamma \models \alpha$

Пример

Покажем, что $\Gamma \models \alpha$ ведёт себя неестественно, если в α используются кванторы по переменным, входящим свободно в Γ .

Пример

Покажем, что $\Gamma \models \alpha$ ведёт себя неестественно, если в α используются кванторы по переменным, входящим свободно в Γ . Легко показать, что $P(x) \vdash \forall x. P(x)$.

Пример

Покажем, что $\Gamma \models \alpha$ ведёт себя неестественно, если в α используются кванторы по переменным, входящим свободно в Γ .

Легко показать, что $P(x) \vdash \forall x. P(x)$.

(1)

$$P(x)$$
 Гипотеза

 (2)
 $P(x) \rightarrow (A \rightarrow A \rightarrow A) \rightarrow P(x)$
 Сх. акс. 1

 (3)
 $(A \rightarrow A \rightarrow A) \rightarrow P(x)$
 M.P. 1, 2

$$(4)$$
 $(A o A o A) o \forall x . P(x)$ Правило для \forall , 3

(5)
$$(A \rightarrow A \rightarrow A)$$
 Cx. arc. 1
(6) $\forall x.P(x)$ M.P. 5, 4

Пример

Покажем, что $\Gamma \models \alpha$ ведёт себя неестественно, если в α используются кванторы по переменным, входящим свободно в Γ .

Легко показать, что $P(x) \vdash \forall x. P(x)$.

$$(1)$$
 $P(x)$ Гипотеза

(2)
$$P(x) \rightarrow (A \rightarrow A \rightarrow A) \rightarrow P(x)$$
 Cx. arc. 1

(3)
$$(A \rightarrow A \rightarrow A) \rightarrow P(x)$$
 M.P. 1, 2

$$(4) \quad (A o A o A) o orall x. P(x) \qquad \qquad$$
 Правило для $orall$, 3

(5)
$$(A \rightarrow A \rightarrow A)$$
 Cx. akc. 1

(6)
$$\forall x.P(x)$$
 M.P. 5, 4

Пусть
$$D=\mathbb{Z}$$
 и $P(x)=x>0$. Тогда не будет выполнено $P(x)\models \forall x.P(x).$

Корректность

Теорема

Если θ свободен для подстановки вместо x в φ , то $\llbracket \varphi \rrbracket^{x:=\llbracket \theta \rrbracket} = \llbracket \varphi \llbracket x := \theta \rrbracket \rrbracket$

Доказательство (индукция по структуре φ).

- ightharpoonup База: arphi не имеет кванторов. Очевидно.
- ightharpoonup Переход: пусть справедливо для ψ . Покажем для $\varphi = \forall y.\psi.$

$$lacktriangledown$$
 $x=y$ либо $x
otin FV(\psi)$. Тогда: $[\![\forall y.\psi]\!]^{x:=[\![\theta]\!]}=[\![\forall y.\psi]\!]=[\![(\forall y.\psi)[\![x:=\theta]]\!]$

Свобода для подстановки:
$$y
otin heta$$
 .

$$\cdots = \llbracket \psi \rrbracket^{\mathsf{x} := \llbracket \theta \rrbracket; \mathsf{y} \in D} = \cdots$$

Индукционное предположение

$$\cdots = \llbracket \psi[\mathsf{x} := \theta] \rrbracket^{\mathsf{y} \in D} = \llbracket \forall \mathsf{y}. (\psi[\mathsf{x} := \theta]) \rrbracket = \cdots$$

Ho
$$\forall y.(\psi[x:=\theta]) \equiv (\forall y.\psi)[x:=\theta]$$
 (как текст). Отсюда:

$$\cdots = \llbracket (\forall y.\psi)[x := \theta] \rrbracket$$

Корректность

Теорема

Если $\Gamma \vdash \alpha$ и в доказательстве не используются кванторы по свободным переменным из $FV(\Gamma)$, то $\Gamma \models \alpha$

Доказательство.

Фиксируем D, F, P. Индукция по длине доказательства α : при любом E выполнено $\Gamma \models \alpha$ при длине доказательства n, покажем для n+1.

- Схемы аксиом (1)..(10), правило М.Р.: аналогично И.В.
- lacktriangle Схемы (11) и (12), например, схема (orall x.arphi) o arphi[x:= heta]:

▶ Правила для кванторов: например, введение \forall : Пусть $[\![\psi \to \varphi]\!] = \mathsf{И}$. Причём $x \notin FV(\Gamma)$ и $x \notin FV(\psi)$. Туручу при любом x выполнено $[\![\psi \to \varphi]\!]^{x:=x} = \mathsf{И}$. Тогда $[\![\psi \to (\forall x.\varphi)]\!] = \mathsf{И}$.