

QUAD BUS BUFFERS (3-STATE)

- HIGH SPEED: $t_{PD} = 3.8 \text{ns}$ (TYP.) at $V_{CC} = 5 \text{V}$
- LOW POWER DISSIPATION: $I_{CC} = 4 \mu A \text{ (MAX.)}$ at $T_A = 25 \text{°C}$
- HIGH NOISE IMMUNITY: V_{NIH} = V_{NIL} = 28% V_{CC} (MIN.)
- POWER DOWN PROTECTION ON INPUTS
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 8mA (MIN)
- BALANCED PROPAGATION DELAYS: tpi H ≅ tpHi
- OPERATING VOLTAGE RANGE: V_{CC}(OPR) = 2V to 5.5V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 125
- IMPROVED LATCH-UP IMMUNITY
- LOW NOISE: V_{OLP} = 0.8V (MAX.)

DESCRIPTION

The 74VHC125 is an advanced high-speed CMOS QUAD BUS BUFFERS fabricated with sub-micron silicon gate and double-layer metal wiring C²MOS technology.

The device requires the 3-STATE control input \overline{G} to be set high to place the output in to the high impedance state.

Table 1: Order Codes

PACKAGE	T & R
SOP	74VHC125MTR
TSSOP	74VHC125TTR

Power down protection is provided on all inputs and 0 to 7V can be accepted on inputs with no regard to the supply voltage. This device can be used to interface 5V to 3V.

All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

Figure 1: Pin Connection And IEC Logic Symbols

November 2004 1/12

Figure 2: Input Equivalent Circuit

Table 2: Pin Description

PIN N°	SYMBOL	NAME AND FUNCTION				
1, 4, 10, 13	1G to 4G	Output Enable Inputs				
2, 5, 9, 12	1A to 4A	Data Inputs				
3, 6, 8, 11	1Y to 4Y	Data Outputs				
7	GND	Ground (0V)				
14	V _{CC}	Positive Supply Voltage				

Table 3: Truth Table

Α	G	Y
X	Н	Z
L	L	L
Н	L	Н

X : Don't Care Z : High Impedance

Table 4: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7.0	V
VI	DC Input Voltage	-0.5 to +7.0	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	- 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Io	DC Output Current	± 25	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
T _{stg}	Storage Temperature	-65 to +150	°C
T _L	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied

Table 5: Recommended Operating Conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	2 to 5.5	V
VI	Input Voltage	0 to 5.5	V
Vo	Output Voltage	0 to V _{CC}	V
T _{op}	Operating Temperature	-55 to 125	°C
dt/dv	Input Rise and Fall Time (note 1) ($V_{CC} = 3.3 \pm 0.3V$) ($V_{CC} = 5.0 \pm 0.5V$)	0 to 100 0 to 20	ns/V

1) V_{IN} from 30% to 70% of V_{CC}

47/

Table 6: DC Specifications

		1	est Condition		Value						
Symbol	Parameter	v _{cc}		T	T _A = 25°C		-40 to	85°C	-55 to	125°C	Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input	2.0		1.5			1.5		1.5		
	Voltage	3.0 to 5.5		0.7V _{CC}			0.7V _{CC}		0.7V _{CC}		V
V _{IL}	Low Level Input	2.0				0.5		0.5		0.5	
	Voltage	3.0 to 5.5				0.3V _{CC}		0.3V _{CC}		0.3V _{CC}	V
V _{OH}	High Level Output	2.0	I _O =-50 μA	1.9	2.0		1.9		1.9		
	Voltage	3.0	I _O =-50 μA	2.9	3.0		2.9		2.9		V
		4.5	I _O =-50 μA	4.4	4.5		4.4		4.4		
		3.0	I _O =-4 mA	2.58			2.48		2.4		
		4.5	I _O =-8 mA	3.94			3.8		3.7		
V _{OL}	Low Level Output	2.0	I _O =50 μA		0.0	0.1		0.1		0.1	
	Voltage	3.0	I _O =50 μA		0.0	0.1		0.1		0.1	
		4.5	I _O =50 μA		0.0	0.1		0.1		0.1	V
		3.0	I _O =4 mA			0.36		0.44		0.55	
		4.5	I _O =8 mA			0.36		0.44		0.55	
I _{OZ}	High Impedance Output Leakage Current	5.5	$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = V_{CC} \text{ or GND}$			±0.25		± 2.5		± 2.5	μΑ
I _I	Input Leakage Current	0 to 5.5	V _I = 5.5V or GND			± 0.1		± 1		± 1	μΑ
I _{CC}	Quiescent Supply Current	5.5	$V_I = V_{CC}$ or GND			4		40		40	μΑ

Table 7: AC Electrical Characteristics (Input $t_r = t_f = 3ns$)

		1	Test Co	ondition	Value							
Symbol	Parameter	v _{cc}	CL		Т	T _A = 25°C		-40 to 85°C		-55 to 125°C		Unit
		(V)	(pF)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{PLH}	Propagation Delay	3.3 ^(*)	15			5.6	8.0	1.0	9.5	1.0	9.5	
t _{PHL}	Time	3.3(*)	50			8.1	11.5	1.0	13.0	1.0	13.0	nc
		5.0(**)	15			3.8	5.5	1.0	6.5	1.0	6.5	ns
		5.0(**)	50			5.3	7.5	1.0	8.5	1.0	8.5	
t _{PLZ}	Output Disable	3.3 ^(*)	15	$R_L = 1 K\Omega$		5.4	8.0	1.0	9.5	1.0	9.5	
t _{PHZ}	Time	3.3(*)	50	$R_L = 1 \text{ K}\Omega$		7.9	11.5	1.0	13.0	1.0	13.0	nc
		5.0(**)	15	$R_L = 1 K\Omega$		3.6	5.1	1.0	6.0	1.0	6.0	ns
	5.0(**)	50	$R_L = 1 K\Omega$		5.1	7.1	1.0	8.0	1.0	8.0		
t _{PZL}	t _{PZL} Output Enable	3.3 ^(*)	50	$R_L = 1 K\Omega$		9.5	13.2	1.0	15.0	1.0	15.0	nc
t _{PZH}	Time	5.0 ^(**)	50	$R_L = 1 K\Omega$		6.1	8.8	1.0	10.0	1.0	10.0	ns

^(*) Voltage range is $3.3 \text{V} \pm 0.3 \text{V}$ (**) Voltage range is $5.0 \text{V} \pm 0.5 \text{V}$

Table 8: Capacitive Characteristics

		Test Condition	Value							
Symbol	Parameter		Т	T _A = 25°C			-40 to 85°C		-55 to 125°C	
			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
C _{IN}	Input Capacitance			6	10		10		10	pF
C _{OUT}	Output Capacitance			8						pF
C _{PD}	Power Dissipation Capacitance (note 1)			16						pF

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/4$ (per circuit)

Table 9: Dynamic Switching Characteristics

		1	est Condition	Value							
Symbol	Parameter	V _{CC}		T _A = 25°C			-40 to 85°C		-55 to	125°C	Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{OLP}	Dynamic Low				0.3	8.0					.,
V _{OLV}	Voltage Quiet Output (note 1, 2)	5.0		-0.8	-0.3						V
V _{IHD}	Dynamic High Voltage Input (note 1, 3)	5.0	C _L = 50 pF	3.5							V
V _{ILD}	Dynamic Low Voltage Input (note 1, 3)	5.0				1.5					V

¹⁾ Worst case package.

²⁾ Max number of outputs defined as (n). Data inputs are driven 0V to 5.0V, (n-1) outputs switching and one output at GND.

3) Max number of data inputs (n) switching. (n-1) switching 0V to 5.0V. Inputs under test switching: 5.0V to threshold (V_{ILD}), 0V to threshold (V_{IHD}), f=1MHz.

Figure 3: Test Circuit

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	V _{CC}
t _{PZH} , t _{PHZ}	GND

 C_L =15/50pF or equivalent (includes jig and probe capacitance) R_L = R1 = 1K Ω or equivalent R_T = Z_{OUT} of pulse generator (typically 50 $\Omega)$

Figure 4: Waveform - Propagation Delays (f=1MHz; 50% duty cycle)

Figure 5: Waveform - Output Enable And Disable Time (f=1MHz; 50% duty cycle)

SO-14 MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
А	1.35		1.75	0.053		0.069		
A1	0.1		0.25	0.004		0.010		
A2	1.10		1.65	0.043		0.065		
В	0.33		0.51	0.013		0.020		
С	0.19		0.25	0.007		0.010		
D	8.55		8.75	0.337		0.344		
E	3.8		4.0	0.150		0.157		
е		1.27			0.050			
Н	5.8		6.2	0.228		0.244		
h	0.25		0.50	0.010		0.020		
L	0.4		1.27	0.016		0.050		
k	0°		8°	0°		8°		
ddd			0.100			0.004		

TSSOP14 MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
А			1.2			0.047		
A1	0.05		0.15	0.002	0.004	0.006		
A2	0.8	1	1.05	0.031	0.039	0.041		
b	0.19		0.30	0.007		0.012		
С	0.09		0.20	0.004		0.0089		
D	4.9	5	5.1	0.193	0.197	0.201		
E	6.2	6.4	6.6	0.244	0.252	0.260		
E1	4.3	4.4	4.48	0.169	0.173	0.176		
е		0.65 BSC			0.0256 BSC			
К	0°		8°	0°		8°		
L	0.45	0.60	0.75	0.018	0.024	0.030		

Tape & Reel SO-14 MECHANICAL DATA

mm.			inch		
MIN.	TYP	MAX.	MIN.	TYP.	MAX.
		330			12.992
12.8		13.2	0.504		0.519
20.2			0.795		
60			2.362		
		22.4			0.882
6.4		6.6	0.252		0.260
9		9.2	0.354		0.362
2.1		2.3	0.082		0.090
3.9		4.1	0.153		0.161
7.9		8.1	0.311		0.319
	12.8 20.2 60 6.4 9 2.1 3.9	MIN. TYP 12.8 20.2 60 6.4 9 2.1 3.9	MIN. TYP MAX. 330 12.8 13.2 20.2 60 22.4 6.4 6.6 9 9 9.2 2.1 2.3 3.9 4.1	MIN. TYP MAX. MIN. 330 12.8 13.2 0.504 20.2 0.795 0.795 60 2.362 22.4 6.6 0.252 9 9.2 0.354 2.1 2.3 0.082 3.9 4.1 0.153	MIN. TYP MAX. MIN. TYP. 12.8 13.2 0.504 0.795

Tape & Reel TSSOP14 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	6.7		6.9	0.264		0.272
Во	5.3		5.5	0.209		0.217
Ko	1.6		1.8	0.063		0.071
Po	3.9		4.1	0.153		0.161
Р	7.9		8.1	0.311		0.319

Table 10: Revision History

Date	Revision	Description of Changes
12-Nov-2004	7	Order Codes Revision - pag. 1.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.