Classification so far

First solve the inference problem of determining the posterior class probabilities $p(C_k|\mathbf{x})$, and then subsequently use decision theory to assign each new \mathbf{x} to one of the classes. Approaches that model the posterior probabilities directly are called *discriminative models*.

Find a function $f(\mathbf{x})$, called a discriminant function, which maps each input \mathbf{x} directly onto a class label. For instance, in the case of two-class problems, $f(\cdot)$ might be binary valued and such that f=0 represents class \mathcal{C}_1 and f=1 represents class \mathcal{C}_2 . In this case, probabilities play no role.

Generative classifiers

First solve the inference problem of determining the class-conditional densities $p(\mathbf{x}|\mathcal{C}_k)$ for each class \mathcal{C}_k individually. Also separately infer the prior class probabilities $p(\mathcal{C}_k)$. Then use Bayes' theorem in the form

$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{p(\mathbf{x})}$$

Equivalently, we can model the joint distribution $p(\mathbf{x}, C_k)$ directly and then normalize to obtain the posterior probabilities

Approaches that explicitly or implicitly model the distribution of inputs as well as outputs are known as *generative models*

Approaches that explicitly or implicitly model the distribution of inputs as well as outputs are known as **generative models**, because by sampling from them it is possible to generate synthetic data points in the input space.

Approaches that model the posterior probabilities directly are called **discriminative models**

$$p(C_1|\mathbf{x}) = \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_1)p(C_1) + p(\mathbf{x}|C_2)p(C_2)} \qquad a = \ln \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_2)p(C_2)}$$
$$= \frac{1}{1 + \exp(-a)} = \sigma(a)$$

$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{\sum_j p(\mathbf{x}|C_j)p(C_j)}$$
$$= \frac{\exp(a_k)}{\sum_j \exp(a_j)} \qquad a_k = \ln p(\mathbf{x}|C_k)p(C_k).$$

$$p(C_1|\mathbf{x}) = \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_1)p(C_1) + p(\mathbf{x}|C_2)p(C_2)}$$
$$= \frac{1}{1 + \exp(-a)} = \sigma(a) \qquad a = \ln \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_2)p(C_2)}$$

$$p(\mathbf{x}|\mathcal{C}_k) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\mathbf{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\right\}.$$

$$p(C_1|\mathbf{x}) = \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_1)p(C_1) + p(\mathbf{x}|C_2)p(C_2)}$$
$$= \frac{1}{1 + \exp(-a)} = \sigma(a) \qquad a = \ln \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_2)p(C_2)}$$

$$p(\mathbf{x}|\mathcal{C}_k) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\mathbf{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\right\}.$$

$$p(\mathcal{C}_1|\mathbf{x}) = \sigma(\mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0) \qquad \mathbf{w} = \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)$$

$$w_0 = -\frac{1}{2}\boldsymbol{\mu}_1^{\mathrm{T}}\mathbf{\Sigma}^{-1}\boldsymbol{\mu}_1 + \frac{1}{2}\boldsymbol{\mu}_2^{\mathrm{T}}\mathbf{\Sigma}^{-1}\boldsymbol{\mu}_2 + \ln\frac{p(\mathcal{C}_1)}{p(\mathcal{C}_2)}.$$

$$p(\mathbf{x}|\mathcal{C}_k) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\mathbf{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\right\}.$$

$$p(\mathcal{C}_1|\mathbf{x}) = \sigma(\mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0) \qquad \mathbf{w} = \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)$$
$$w_0 = -\frac{1}{2}\boldsymbol{\mu}_1^{\mathrm{T}}\mathbf{\Sigma}^{-1}\boldsymbol{\mu}_1 + \frac{1}{2}\boldsymbol{\mu}_2^{\mathrm{T}}\mathbf{\Sigma}^{-1}\boldsymbol{\mu}_2 + \ln\frac{p(\mathcal{C}_1)}{p(\mathcal{C}_2)}.$$

$$p(\mathbf{x}|\mathcal{C}_k) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\mathbf{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\right\}.$$

$$p(\mathcal{C}_1|\mathbf{x}) = \sigma(\mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0) \qquad \mathbf{w} = \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)$$

$$w_0 = -\frac{1}{2}\boldsymbol{\mu}_1^{\mathrm{T}}\mathbf{\Sigma}^{-1}\boldsymbol{\mu}_1 + \frac{1}{2}\boldsymbol{\mu}_2^{\mathrm{T}}\mathbf{\Sigma}^{-1}\boldsymbol{\mu}_2 + \ln\frac{p(\mathcal{C}_1)}{p(\mathcal{C}_2)}.$$

$$p(\mathcal{C}_k|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)}{\sum_j p(\mathbf{x}|\mathcal{C}_j)p(\mathcal{C}_j)}$$

$$= \frac{\exp(a_k)}{\sum_j \exp(a_j)}$$

$$a_k = \ln p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k). \qquad a_k(\mathbf{x}) = \mathbf{w}_k^T \mathbf{x} + w_{k0}$$

$$\mathbf{w}_k = \mathbf{\Sigma}^{-1} \mu_k$$

$$w_{k0} = -\frac{1}{2} \mu_k^T \mathbf{\Sigma}^{-1} \mu_k + \ln p(\mathcal{C}_k).$$

model the class-conditional densities $p(x/C_k)$, as well as the class priors $p(C_k)$

$$p(C_1|\mathbf{x}) = \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_1)p(C_1) + p(\mathbf{x}|C_2)p(C_2)}$$

class-conditional densities p(x/C)

$$p(\mathbf{x}|y=c, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c)$$

Quadratic discriminant analysis

$$p(y = c | \mathbf{x}, \boldsymbol{\theta}) = \frac{\pi_c |2\pi \boldsymbol{\Sigma}_c|^{-\frac{1}{2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_c)^T \boldsymbol{\Sigma}_c^{-1} (\mathbf{x} - \boldsymbol{\mu}_c)\right]}{\sum_{c'} \pi_{c'} |2\pi \boldsymbol{\Sigma}_{c'}|^{-\frac{1}{2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_c)^T \boldsymbol{\Sigma}_c^{-1} (\mathbf{x} - \boldsymbol{\mu}_c)\right]}$$

Linear Discriminant Analysis

• covariance matrices are **tied** or **shared** across classes, $\Sigma c = \Sigma$.

$$p(y = c | \mathbf{x}, \boldsymbol{\theta}) \propto \pi_c \exp \left[\boldsymbol{\mu}_c^T \boldsymbol{\Sigma}^{-1} \mathbf{x} - \frac{1}{2} \mathbf{x}^T \boldsymbol{\Sigma}^{-1} \mathbf{x} - \frac{1}{2} \boldsymbol{\mu}_c^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_c \right]$$

$$= \exp \left[\boldsymbol{\mu}_c^T \boldsymbol{\Sigma}^{-1} \mathbf{x} - \frac{1}{2} \boldsymbol{\mu}_c^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_c + \log \pi_c \right] \exp \left[-\frac{1}{2} \mathbf{x}^T \boldsymbol{\Sigma}^{-1} \mathbf{x} \right]$$

$$p(y = c | \mathbf{x}, \boldsymbol{\theta}) = \frac{e^{\boldsymbol{\beta}_c^T \mathbf{x} + \gamma_c}}{\sum_{c'} e^{\boldsymbol{\beta}_{c'}^T \mathbf{x} + \gamma_{c'}}} \qquad \gamma_c = -\frac{1}{2} \boldsymbol{\mu}_c^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_c + \log \pi_c$$

$$\boldsymbol{\beta}_c = \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_c$$

Generative Models: Parameter estimation

Models joint probability of observing input and output

$$p(\mathbf{x}_n, \mathcal{C}_1) = p(\mathcal{C}_1)p(\mathbf{x}_n|\mathcal{C}_1) = \pi \mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_1, \boldsymbol{\Sigma}).$$

$$p(\mathbf{x}_n, \mathcal{C}_2) = p(\mathcal{C}_2)p(\mathbf{x}_n|\mathcal{C}_2) = (1 - \pi)\mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_2, \boldsymbol{\Sigma}).$$

$$p(\mathbf{t}|\pi, \boldsymbol{\mu}_1, \boldsymbol{\mu}_2, \boldsymbol{\Sigma}) = \prod_{n=1}^{N} \left[\pi \mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_1, \boldsymbol{\Sigma})\right]^{t_n} \left[(1 - \pi)\mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_2, \boldsymbol{\Sigma})\right]^{1 - t_n}$$

Generative Models: Parameter estimation

Models joint probability of observing input and output

$$\log p(\mathcal{D}|\boldsymbol{\theta}) = \left[\sum_{i=1}^{N} \sum_{c=1}^{C} \mathbb{I}(y_i = c) \log \pi_c \right] + \sum_{c=1}^{C} \left[\sum_{i:y_i = c} \log \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c) \right]$$

Use Maximum Likelihood Estimation (MLE) to estimate parameters

Generative Models: Parameter estimation

Models joint probability of observing input and output

$$\log p(\mathcal{D}|\boldsymbol{\theta}) = \left[\sum_{i=1}^{N} \sum_{c=1}^{C} \mathbb{I}(y_i = c) \log \pi_c \right] + \sum_{c=1}^{C} \left[\sum_{i:y_i = c} \log \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c) \right]$$

$$\hat{\boldsymbol{\pi}}_c = \frac{N_c}{N}, \qquad \hat{\boldsymbol{\mu}}_c = \frac{1}{N_c} \sum_{i:y_i=c} \mathbf{x}_i, \quad \hat{\boldsymbol{\Sigma}}_c = \frac{1}{N_c} \sum_{i:y_i=c} (\mathbf{x}_i - \hat{\boldsymbol{\mu}}_c) (\mathbf{x}_i - \hat{\boldsymbol{\mu}}_c)^T$$

- MLE can badly overfit in high dimensions.
- Use a diagonal covariance matrix for each class, which assumes the features are conditionally independent; this is equivalent to using a naive Bayes classifier
- Other approaches: Use MAP and Bayesian approaches

Naïve Bayes Classifier

Features are discrete

$$p(C_1|\mathbf{x}) = \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_1)p(C_1) + p(\mathbf{x}|C_2)p(C_2)}$$

- class-conditional density p(x|y)
 - Number of parameters ?

Naïve Bayes Classifier

Features are discrete

$$p(C_1|\mathbf{x}) = \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_1)p(C_1) + p(\mathbf{x}|C_2)p(C_2)}$$

- "naive" since we do not expect the features to be independent, but results in classifiers that work well
 - model is quite simple and hence it is relatively immune to overfitting, as a lower number of parameters need to be estimated due to independence assumption.
- Class-conditional density p(x|y)

$$p(\mathbf{x}|y=c, \boldsymbol{\theta}) = \prod_{j=1}^{D} p(x_j|y=c, \boldsymbol{\theta}_{jc})$$

Naïve Bayes Classifier

• Features are conditionally independent given the class label.

$$p(\mathbf{x}|y=c,\boldsymbol{\theta}) = \prod_{j=1}^{D} p(x_j|y=c,\boldsymbol{\theta}_{jc})$$

- class-conditional density p(x|y)
 - In the case of real-valued features, we can use the Gaussian distribution: $p(\mathbf{x}|y=c,\boldsymbol{\theta}) = \prod_{j=1}^{D} \mathcal{N}(x_j|\mu_{jc},\sigma_{jc}^2)$, where μ_{jc} is the mean of feature j in objects of class c, and σ_{jc}^2 is its variance.
 - In the case of binary features, $x_j \in \{0, 1\}$, we can use the Bernoulli distribution: $p(\mathbf{x}|y = c, \boldsymbol{\theta}) = \prod_{i=1}^{D} \text{Ber}(x_j|\mu_{jc})$, where μ_{jc} is the probability that feature j occurs in class c.
 - In the case of categorical features, $x_j \in \{1, \ldots, K\}$, we can model use the multinoulli distribution: $p(\mathbf{x}|y=c, \boldsymbol{\theta}) = \prod_{j=1}^{D} \mathrm{Cat}(x_j|\boldsymbol{\mu}_{jc})$, where $\boldsymbol{\mu}_{jc}$ is a histogram over the K possible values for x_j in class c.

Training NBC: ML Estimation

 $p(\mathbf{x}_i, y_i | \boldsymbol{\theta}) = p(y_i | \boldsymbol{\pi}) \prod_i p(x_{ij} | \boldsymbol{\theta}_j) = \prod_c \pi_c^{\mathbb{I}(y_i = c)} \prod_i \prod_c p(x_{ij} | \boldsymbol{\theta}_{jc})^{\mathbb{I}(y_i = c)}$

$$\log p(\mathcal{D}|\boldsymbol{\theta}) = \sum_{c=1}^{C} N_c \log \pi_c + \sum_{j=1}^{D} \sum_{c=1}^{C} \sum_{i:y_i=c} \log p(x_{ij}|\boldsymbol{\theta}_{jc})$$

Bernoulli class condiitonal likelihood

$$\hat{\pi}_c = \frac{N_c}{N} \qquad \hat{\theta}_{jc} = \frac{N_{jc}}{N_c}$$

The method is easily generalized to handle features of mixed type.

NBC : Algorithm

Algorithm 3.1: Fitting a naive Bayes classifier to binary features

```
1 N_c = 0, N_{jc} = 0;
2 for i = 1 : N do
       c = y_i // Class label of i'th example;
      N_c := N_c + 1;
      for j = 1 : D do
         6
                                                0.9
                                                8.0
8 \hat{\pi}_c = \frac{N_c}{N}, \hat{\theta}_{jc} = \frac{N_{jc}}{N}
                                                0.7
                                                0.5
                                                0.4
                                                0.3
                                                0.2
```


Spam Classification example

HAM examples

- d1: {good}
- d2: {very good}

```
P(y=ham) = 2/5
```

SPAM examples

- d3: {bad}
- d4: {very bad}
- d5: {very bad very bad}

$$p(y=spam)=3/5$$

- Test data: d6: {good bad very bad} SPAM OR HAM??
- Vocabulary : V={good, bad, very}
- Use Naive Bayes classifier:
- P(ham | d6)= Π P(word | y=ham) P(y=ham) = P(good | ham) * P(bad | ham) * P(very | ham)

Word frequencies wrt class	P(good y)	P(bad y)	P(very y)
Class 0: y = spam	0/3	3/3	2/3
Class 1: y = ham	2/2	0/2	1/2

- Estimate parameters using ML:
- P(ham | d6)= P(good | ham) * P(bad | ham) * P(very | ham)* P(ham)
- P(spam | d6)= P(good | spam) * P(bad | spam) * P(very | spam)*
 P(spam)
- What is the problem with this?

Word frequencies wrt class	P(good y)	P(bad y)	P(very y)
Class 0: y = spam	0/3	3/3	2/3
Class 1: y = ham	2/2	0/2	1/2

Estimate parameters using ML:

P(ham | d6)= P(good | ham) * P(bad | ham) * P(very | ham)* P(ham)

Soln : Bayesian Naïve Bayes

Classifiers!

P(spam | d6)= P(good | spam) * P(bad | spam) * P(very | spam)*
 P(spam)

What is the problem with this?

Discriminative vs Generative

• **Generative Models:** model the joint distribution p(x, Ck) directly and then normalize to obtain the posterior probabilities.

$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{p(\mathbf{x})}$$

 Most demanding because it involves finding the joint distribution over both x and Ck. For many applications, x will have high dimensionality, and consequently we may need a large training set. if we only wish to make classification decisions, then it can be wasteful of computational resources but can be useful for detecting outliers or novel classes.

Discriminative vs Generative

• **Generative Models:** model the joint distribution p(x, Ck) directly and then normalize to obtain the posterior probabilities.

$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{p(\mathbf{x})}$$

- Easy to adapt to new data: Use posterior probabilities as prior
- Multi-Modal Data: combining multiple modalities and domains

$$p(\mathbf{x}_{\mathrm{I}}, \mathbf{x}_{\mathrm{B}} | \mathcal{C}_k) = p(\mathbf{x}_{\mathrm{I}} | \mathcal{C}_k) p(\mathbf{x}_{\mathrm{B}} | \mathcal{C}_k).$$

- Easy to fit? very easy to fit generative classifiers. we can fit a naive Bayes model and an LDA model by simple counting and averaging. logistic regression requires solving a convex optimization problem which is much slower.
- **Fit classes separately?** In a generative classifier, we estimate the parameters of each class conditional density independently, so we do not have to retrain the model when we add more classes.
- Well-calibrated probabilities? Some generative models, such as naive Bayes, make strong independence assumptions which are often not valid
- Generative models can easily handle unlabelled data and missing features

Decision Theory

- Inference stage: Learning joint probability distribution $p(\mathbf{x}, \mathbf{t})$
- Decision stage: Specific prediction for the value of **t**

$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{p(\mathbf{x})}.$$

- If our aim is to minimize the chance of assigning **x** to the wrong class, then we would choose the class having the higher posterior probability
- need a rule that assigns each value of **x** to one of the available classes,
- divide the input space into regions Rk called decision regions -> decision boundaries or decision surfaces.

$$p(\text{mistake}) = p(\mathbf{x} \in \mathcal{R}_1, \mathcal{C}_2) + p(\mathbf{x} \in \mathcal{R}_2, \mathcal{C}_1)$$
$$= \int_{\mathcal{R}_1} p(\mathbf{x}, \mathcal{C}_2) \, d\mathbf{x} + \int_{\mathcal{R}_2} p(\mathbf{x}, \mathcal{C}_1) \, d\mathbf{x}.$$

Decision Theory

• Minimum misclassification rate decision rule, which assigns each value of x to the class having the higher posterior probability p(Ck|x).

$$p(\text{mistake}) = p(\mathbf{x} \in \mathcal{R}_1, \mathcal{C}_2) + p(\mathbf{x} \in \mathcal{R}_2, \mathcal{C}_1)$$
$$= \int_{\mathcal{R}_1} p(\mathbf{x}, \mathcal{C}_2) \, d\mathbf{x} + \int_{\mathcal{R}_2} p(\mathbf{x}, \mathcal{C}_1) \, d\mathbf{x}.$$

$$p(\text{correct}) = \sum_{k=1}^{K} p(\mathbf{x} \in \mathcal{R}_k, \mathcal{C}_k)$$
$$= \sum_{k=1}^{K} \int_{\mathcal{R}_k} p(\mathbf{x}, \mathcal{C}_k) d\mathbf{x}$$

$$p(\mathbf{x}, C_k) = p(C_k|\mathbf{x})p(\mathbf{x}).$$