COL703 - Assignment 4

Ramneet Singh

$2019\mathrm{CS}50445$

November 2022

Contents

Question 1	2
Question 2	3
Question 3	5
Question 4	6
Question 5	8
Part (a)	8
Part (b)	9

We have the following three first-order logic formulas representing points (a), (b) and (c) given in the question:

$$F_1: \forall x(B(x) \to \forall y(\neg S(y,y) \to S(x,y)))$$

 $F_2: \neg \exists x \exists y(B(x) \land S(x,y) \land S(y,y))$
 $F_3: \neg (\exists x B(x))$

To show $F_1 \wedge F_2 \models F_3$, we will show that the formula $F_1 \wedge F_2 \wedge \neg F_3$ is unsatisfiable. First, we Skolemise each of the conjuncts and convert their matrices into CNF to get the following three formulas:

$$G_1: \forall x \forall y (\neg B(x) \lor S(y,y) \lor S(x,y))$$

 $G_2: \forall x \forall y (\neg B(x) \lor \neg S(x,y) \lor \neg S(y,y))$
 $G_3: B(c)$

where c is a fresh constant symbol.

The formula $F_1 \wedge F_2 \wedge \neg F_3$ is equisatisfiable with $G_1 \wedge G_2 \wedge G_3$. Thus it suffices to give a ground resolution refutation of $G_1 \wedge G_2 \wedge G_3$. Now we derive \square from ground instances of clauses in the respective matrices of the formulas G_1, G_2, G_3 .

1. $\{\neg B(c), S(c,c)\}$ clause of G_1 's matrix with [c/x][c/y]2. $\{\neg B(c), \neg S(c,c)\}$ clause of G_2 's matrix with [c/x][c/y]3. $\{\neg B(c)\}$ 1,2 resolution
4. $\{B(c)\}$ clause of G_3 's matrix
5. \square 3.4 resolution

By the ground resolution theorem, $G_1 \wedge G_2 \wedge G_3$ is unsatisfiable, which implies that $F_1 \wedge \wedge F_2 \wedge \neg F_3$ is unsatisfiable. Therefore, we can conclude that $F_1 \wedge F_2 \models F_3$.

Let σ be a signature and \sim be a relation on σ -assignments which satisfies the following properties:

- 1. If $A \sim B$, then for every atomic formula F we have $A \models F$ iff $B \models F$.
- 2. If $A \sim B$, then for each variable x we have:
 - A. For each $a \in U_A$, there exists $b \in U_B$ such that $A_{[x \mapsto a]} \sim B_{[x \mapsto b]}$.
 - B. For each $b \in U_{\mathcal{B}}$, there exists $a \in U_{\mathcal{A}}$ such that $\mathcal{A}_{[x \mapsto a]} \sim \mathcal{B}_{[x \mapsto b]}$.

We have the following theorem.

Theorem 1. If $A \sim B$, then for every formula F we have $A \models F$ iff $B \models F$.

Proof. Suppose $A \sim \mathcal{B}$. We will show by induction on the structure of F that for every formula F, $A \models F$ iff $\mathcal{B} \models F$.

- Base Case: F is an atomic formula. From property 1, we have $A \vDash F$ iff $B \vDash F$.
- Induction Step: We consider the following three cases:
 - $-F = F_1 \wedge F_2$. We have:

$$\mathcal{A} \vDash F$$
iff $\mathcal{A} \vDash F_1 \land F_2$
iff $\mathcal{A} \vDash F_1$ and $\mathcal{A} \vDash F_2$ (defin. of \vDash)
iff $\mathcal{B} \vDash F_1$ and $\mathcal{B} \vDash F_2$ (induction hypothesis)
iff $\mathcal{B} \vDash F_1 \land F_2$ (defin. of \vDash)
iff $\mathcal{B} \vDash F$

 $-F = \neg F_1$. We have:

$$\mathcal{A} \vDash F$$
iff $\mathcal{A} \vDash \neg F_1$
iff $\mathcal{A} \not\vDash F_1$ (defn. of \vDash)
iff $\mathcal{B} \not\vDash F_1$ (induction hypothesis)
iff $\mathcal{B} \vDash \neg F_1$ (defn. of \vDash)
iff $\mathcal{B} \vDash F$

- $-F = \exists x F_1$. In this case, we show that $\mathcal{A} \models F$ iff $\mathcal{B} \models F$ by showing both the directions separately.
 - * (only if): Suppose $\mathcal{A} \vDash F$. By definition of \vDash , there exists $a \in U_{\mathcal{A}}$ such that $\mathcal{A}_{[x \mapsto a]} \vDash F_1$. From Property 2A, we know that there exists $b \in U_{\mathcal{B}}$ such that $\mathcal{A}_{[x \mapsto a]} \sim \mathcal{B}_{[x \mapsto b]}$. Given this, we can apply the induction hypothesis on F_1 to conclude, from $\mathcal{A}_{[x \mapsto a]} \vDash F_1$, that $\mathcal{B}_{[x \mapsto b]} \vDash F_1$. From the definition of \vDash , this implies that $\mathcal{B} \vDash \exists x F_1$. Thus $\mathcal{B} \vDash F$.

* (if): Suppose $\mathcal{B} \vDash F$. By definition of \vDash , there exists $b \in U_{\mathcal{B}}$ such that $\mathcal{B}_{[x \mapsto b]} \vDash F_1$. From Property 2B, we know that there exists $a \in U_{\mathcal{A}}$ such that $\mathcal{A}_{[x \mapsto a]} \sim \mathcal{B}_{[x \mapsto b]}$. Given this, we can apply the induction hypothesis on F_1 to conclude, from $\mathcal{B}_{[x \mapsto b]} \vDash F_1$, that $\mathcal{A}_{[x \mapsto a]} \vDash F_1$. From the definition of \vDash , this implies that $\mathcal{A} \vDash \exists x F_1$. Thus $\mathcal{A} \vDash F$.

Since we have shown $A \models F$ iff $B \models F$ in all the three cases and they are exhaustive, the induction step is complete.

From the principle of structural induction, we can conclude that for every formula F, $A \models F$ iff $B \models F$.

We have the following four first-order logic formulas representing points (a), (b), (c) and (d) given in the question:

$$F_1: \quad \forall x ((\forall y (C(x,y) \to R(y))) \to H(x))$$

$$F_2: \quad \forall x (G(x) \to R(x))$$

$$F_3: \quad \forall x ((\exists y (G(y) \land C(y,x))) \to G(x))$$

$$F_4: \quad \forall x (G(x) \to H(x))$$

To show $F_1 \wedge F_2 \wedge F_3 \models F_4$, we will show that $F_1 \wedge F_2 \wedge F_3 \wedge \neg F_4$ is unsatisfiable. Skolemising each of the conjuncts and converting their matrices to CNF, we get the following formulas.

$$G_1: \quad \forall x (\ (C(x, f(x)) \lor H(x)) \land (\neg R(f(x)) \lor H(x))\)$$

$$G_2: \quad \forall x (\ \neg G(x) \lor R(x)\)$$

$$G_3: \quad \forall x \forall y (\ \neg G(y) \lor \neg C(y, x) \lor G(x)\)$$

$$G_4: \quad G(c) \land \neg H(c)$$

where f is a fresh function symbol and c is a fresh constant symbol.

The formula $G_1 \wedge G_2 \wedge G_3 \wedge G_4$ is equisatisfiable with $F_1 \wedge F_2 \wedge F_3 \wedge \neg F_4$. Thus it suffices to show a predicate logic resolution refutation of $G_1 \wedge G_2 \wedge G_3 \wedge G_4$. The proof is as follows. Note that we subscript the variables in line k with k to ensure we always resolve clauses with disjoint sets of variables.

```
1. \{G(c)\}
                                              clause of G_4
 2. \{\neg G(y_2), \neg C(y_2, x_2), G(x_2)\}
                                             clause of G_3
 3. \{\neg C(c, x_3), G(x_3)\}
                                             1,2 Res. D_1 = \{G(c)\}, D_2 = \{\neg G(y_2)\}, \theta = [c/y_2].[x_3/x_2]
 4. \{ \neg G(x_4), R(x_4) \}
                                              clause of G_2
    \{\neg C(c, x_5), R(x_5)\}
                                              3.4 Res. D_1 = \{G(x_3)\}, D_2 = \{\neg G(x_4)\}, \theta = [x_3/x_4], [x_5/x_3]
     \{C(x_6, f(x_6)), H(x_6)\}
                                              clause of G_1
 7. \{R(f(c)), H(c)\}
                                              6.5 Res D_1 = \{C(x_6, f(x_6))\}D_2 = \{\neg C(c, x_5)\}\theta = [c/x_6].[f(c)/x_5]
     \{ \neg R(f(x_8)), H(x_8) \}
                                              clause of G_1
 8.
                                              7.8 Res. D_1 = \{R(f(c))\}, D_2 = \{\neg R(f(x_8))\}, \theta = [c/x_8]
 9.
    \{H(c)\}
10. \{ \neg H(c) \}
                                              clause of G_1
                                              9,10 Res. D_1 = \{H(c)\}, D_2 = \{\neg H(c)\}, \theta = \text{Identity}
11.
```

Therefore, $G_1 \wedge G_2 \wedge G_3 \wedge G_4$ is unsatisfiable, which implies that $F_1 \wedge F_2 \wedge F_3 \wedge \neg F_4$ is unsatisfiable. Then we can conclude that $F_1 \wedge F_2 \wedge F_3 \models F_4$.

Let $A(x_1, \ldots, x_n)$ be a formula with no quantifiers and no function symbols. We have the following theorem.

Theorem 2. The formula $F = \forall x_1 ... \forall x_n A(x_1, ..., x_n)$ is satisfiable if and only if it is satisfiable in an interpretation with just one element in the universe.

Proof. (If): If there is a model \mathcal{A} such that $|U_{\mathcal{A}}| = 1$ and $\mathcal{A} \models F$, then F is satisfiable since there exists a satisfying model.

(Only If): Assume that F is satisfiable. Let \mathcal{A} be a model that satisfies F. By definition of satisfaction, we have

$$\mathcal{A}_{[x_1 \mapsto a_1][x_2 \mapsto a_2]...[x_n \mapsto a_n]} \vDash A(x_1, \dots, x_n) \text{ for all } a_1, a_2, \dots, a_n \in U_{\mathcal{A}}$$

Pick any $a \in U_A$. In particular, we have

$$\mathcal{A}_{[x_1 \mapsto a][x_2 \mapsto a] \dots [x_n \mapsto a]} \vDash A(x_1, \dots, x_n)$$
 (1)

We now define a new model \mathcal{B} as follows (note that there are no constants or function symbols in the signature):

- $U_{\mathcal{B}} = \{a\}.$
- For each k-ary predicate symbol P in $A(x_1, \ldots, x_n)$, $(a, \ldots, a) \in P_{\mathcal{B}}$ iff $(a, \ldots, a) \in P_{\mathcal{A}}$.

Claim: $\mathcal{B}_{[x_1 \mapsto a][x_2 \mapsto a]...[x_n \mapsto a]} \vDash A(x_1, ..., x_n).$

Proof: Consider any atomic formula in $A(x_1, \ldots, x_n)$. Since there are no function symbols, it must be of the form $P(x_{i_1}, \ldots, x_{i_k})$ where $i_1, \ldots, i_k \in \{1, \ldots, n\}$. We have

$$\mathcal{B}_{[x_1 \mapsto a][x_2 \mapsto a] \dots [x_n \mapsto a]} \vDash P(x_{i_1}, \dots, x_{i_k})$$
iff $(a, \dots, a) \in P_{\mathcal{B}}$ (defn. of \vDash)
iff $(a, \dots, a) \in P_{\mathcal{A}}$ (defn. of \mathcal{B})
iff $\mathcal{A}_{[x_1 \mapsto a][x_2 \mapsto a] \dots [x_n \mapsto a]} \vDash P(x_{i_1}, \dots, x_{i_k})$ (defn. of \vDash)

So the models $\mathcal{B}_{[x_1 \mapsto a][x_2 \mapsto a]...[x_n \mapsto a]}$ and $\mathcal{A}_{[x_1 \mapsto a][x_2 \mapsto a]...[x_n \mapsto a]}$ assign the same truth value to each atomic formula occurring in $A(x_1,\ldots,x_n)$. Since $A(x_1,\ldots,x_n)$ is formed from atomic formulas using propositional connectives (no quantifiers), this implies that they both assign the same truth value to $A(x_1,\ldots,x_n)$. From equation 1, we know that $\mathcal{A}_{[x_1 \mapsto a][x_2 \mapsto a]...[x_n \mapsto a]} \models A(x_1,\ldots,x_n)$. Thus we get that

$$\mathcal{B}_{[x_1 \mapsto a][x_2 \mapsto a]...[x_n \mapsto a]} \vDash A(x_1, \dots, x_n)$$

This completes the proof of the claim. Since a is the only element in $U_{\mathcal{B}}$, we further get

$$\mathcal{B}_{[x_1 \mapsto a_1][x_2 \mapsto a_2]...[x_n \mapsto a_n]} \vDash A(x_1, \dots, x_n) \text{ for all } a_1, a_2, \dots, a_n \in U_{\mathcal{B}}$$

From the definition of satisfaction, we get

$$\mathcal{B} \vDash \forall x_1 \dots \forall x_n A(x_1, \dots, x_n)$$

Thus \mathcal{B} is a model that satisfies F and has only one element in the universe. We started with a model \mathcal{A} that satisfies F and constructed a model with only one element in the universe which satisfies F. Therefore, F is satisfiable **only if** it is satisfiable in a model with just one element in the universe.

Part (a)

Let σ be a signature with only one binary relation symbol R. Let n be a positive integer. Define the formula F_n as follows:

$$F_n \stackrel{\text{def}}{=} (\forall x (\neg R(x, x)))$$

$$\wedge \forall x \forall y \forall z ((R(x, y) \land R(y, z)) \rightarrow R(x, z))$$

$$\wedge \exists x_1 \exists x_2 \dots \exists x_n (R(x_1, x_2) \land R(x_2, x_3) \land \dots \land R(x_{n-1}, x_n)))$$

We have the following theorem.

Theorem 3. Every model A which satisfies F_n has at least n elements.

Proof. The proof is by contradiction. Assume, if possible, that there is a model \mathcal{A} such that $\mathcal{A} \models F_n$ and $|U_{\mathcal{A}}| < n$. Since \mathcal{A} satisfies the third conjunct of F_n , we know there exist $a_1, \ldots, a_n \in U_{\mathcal{A}}$ such that

$$\mathcal{A}_{[x_1 \mapsto a_1] \dots [x_n \mapsto a_n]} \vDash (R(x_1, x_2) \land \dots \land R(x_{n-1}, x_n))$$

This is true if and only if we have $(a_1, a_2), (a_2, a_3), \ldots, (a_{n-1}, a_n) \in R_A$. Now, we claim that for any $i, j \in \{1, \ldots, n\}$ with $i \neq j$, we have $a_i \neq a_j$.

Proof: W.l.o.g, assume i < j. We know from above that $(a_i, a_{i+1}), (a_{i+1}, a_{i+2}), \ldots, (a_{j-1}, a_j) \in R_{\mathcal{A}}$. Since \mathcal{A} satisfies the second conjunct of F_n , we have for all $a, b, c \in U_{\mathcal{A}}$, if $(a, b), (b, c) \in R_{\mathcal{A}}$, then $(a, c) \in R_{\mathcal{A}}$. We can apply this to the chain from a_i to a_j (j - i - 1) times) to get $(a_i, a_j) \in R_{\mathcal{A}}$. Finally, since \mathcal{A} satisfies the first conjunct of F_n , we have $(a, a) \notin R_{\mathcal{A}}$ for all $a \in U_{\mathcal{A}}$. Therefore, since $(a_i, a_j) \in R_{\mathcal{A}}$, we cannot have $a_i = a_j$. This completes the proof of the claim.

Given the claim, we have shown the existence of n elements (namely a_1, \ldots, a_n) in the universe U_A , none of which are equal to any other among them. This implies that $|U_A| \geq n$, contradicting our assumption that $|U_A| < n$. Therefore, our assumption must be wrong, and every model satisfying F_n has at least n elements.

Part (b)

Theorem 4. Let σ be a signature containing only unary predicate symbols P_1, \ldots, P_k . Let F be any satisfiable σ -formula. F has a model where the universe has at most 2^k elements.

Proof. Let \mathcal{A} be a σ -structure satisfying F (exists since F is satisfiable). For each $a \in U_{\mathcal{A}}$, we define a k-length binary string b_a as:

• For each $1 \leq i \leq k$, $b_a^i = 1$ if and only if $a \in P_{iA}$.

We define a new σ -structure \mathcal{B} as follows:

- $U_{\mathcal{B}} = \{b_a \mid a \in U_{\mathcal{A}}\}$, the set of k-length binary strings corresponding to all elements of \mathcal{A} .
- For each $1 \leq i \leq k$, $P_{i\mathcal{B}} = U_{\mathcal{B}} \cap (\{0,1\}^{i-1} \cdot \{1\} \cdot \{0,1\}^{k-i})$. In other words, $P_{i\mathcal{B}}$ contains exactly those strings of $U_{\mathcal{B}}$ which have 1 at the *i*-th position.
- For each variable x, if $x_A = a$, then $x_B = b_a$.

Claim: The relation \sim between a σ -structure \mathcal{A} and the corresponding σ -structure \mathcal{B} as defined above satisfies the properties mentioned in question 2.

Proof:

- Any atomic formula is of the form $P_i(x)$ for some $i \in \{1, ..., k\}$ and variable x. By definition, we have $\mathcal{A} \models P_i(x)$ iff $x_{\mathcal{A}} \in P_{i\mathcal{A}}$ iff the string $b_{x_{\mathcal{A}}} = x_{\mathcal{B}}$ has a 1 at the i-th position iff $x_{\mathcal{B}} \in P_{i\mathcal{B}}$ iff $\mathcal{B} \models P_i(x)$.
- We have:
 - For any variable x and $a \in U_{\mathcal{A}}$, the σ -structure \mathcal{B}' corresponding to $\mathcal{A}_{[x \mapsto a]}$ will be exactly the same as \mathcal{B} , except that it'll have $x_{\mathcal{B}'} = b_a$. Thus we wil have $\mathcal{B}' = B_{[x \mapsto b_a]}$, or in other words, $\mathcal{A}_{[x \mapsto a]} \sim \mathcal{B}_{[x \mapsto b_a]}$.
 - Similarly, for each variable x and $b_a \in U_{\mathcal{B}}$, the σ -structure \mathcal{A}' which $\mathcal{B}_{[x \mapsto b_a]}$ corresponds to is exactly the same as \mathcal{A} , except that $x_{\mathcal{A}'} = a$. Thus we will have $\mathcal{A}' = A_{[x \mapsto a]}$, or in other words, $\mathcal{A}_{[x \mapsto a]} \sim \mathcal{B}_{[x \mapsto b_a]}$.

This completes the proof of the claim. Now, as we have proved in question 2, this implies that for any formula G, $A \vDash G$ iff $\mathcal{B} \vDash G$. Since we started with the assumption that $A \vDash F$, we get $\mathcal{B} \vDash F$. Finally, note that $U_{\mathcal{B}} \subseteq \{0,1\}^k$, i.e., all elements of $U_{\mathcal{B}}$ are k-length binary strings. Since there are only 2^k such strings, we must have $|U_{\mathcal{B}}| \leq 2^k$. Starting from an arbitrary model \mathcal{A} of F, we have constructed a model \mathcal{B} of F with no more than 2^k elements in its universe. Therefore, any satisfiable σ -formula F has a model with at most 2^k elements.