UNIVERSIDADE ESTADUAL DE MARINGÁ CENTRO DE TECNOLOGIA DEPARTAMENTO DE INFORMÁTICA CURSO DE CIÊNCIA DA COMPUTAÇÃO

CÁLCULO DA FUNÇÃO INVERSA DA RAIZ QUADRADA UTILIZANDO O MÉTODO DE NEWTON-RAPSON

Acadêmicos: RA:

Vanessa Yukari Kajihara 78605

Vinícius Menossi 108840

Disciplina: Matemática Computacional

Professor: Airton Marco Polidório

Maringá, 21 de maio de 2021.

OBJETIVO

O objetivo deste trabalho é a utilização do método de Newton-Rapson para o cálculo de $\frac{1}{\sqrt{x}}$, realizando este cálculo de duas formas:

- Cálculo de \sqrt{x} utilizando o método de Newton-Rapson, sucedido do cálculo do inverso deste resultado;
- Cálculo de $\frac{1}{\sqrt{x}}$ diretamente pelo método de Newton-Rapson.

EQUAÇÕES DE RECORRÊNCIA

A equação geral de recorrência de Newton-Rapson é:

$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k)}$$

Fazendo $\sqrt{A}=x$ e após diversas manipulações algébricas, a fórmula de recorrência para o cálculo de \sqrt{x} é:

$$x_{k+1} = \frac{1}{2} \left(x_k + \frac{A}{x_k} \right) \tag{1}$$

A equação de recorrência para o cálculo direto de $\frac{1}{\sqrt{x}}$ é:

$$x_{k+1} = \frac{1}{2}x_k \left(3 - Ax_k^2\right) \tag{2}$$

Chutes iniciais

Para a utilização do método de Newton-Rapson, é necessário um chute incial, x_0 . Para esta função, foi utilizado o seguinte:

$$x_0 = 1 + \frac{f}{2}$$
, para o método indireto (3)

$$x_0 = 1/(1 + \frac{f}{2})$$
, para o método direto

sendo que o valor de f é proveniente do valor de A escrito no padrão da IEEE.

$$\sqrt{(1+f)2^n} = \{2^{n/2}\sqrt{(1+f)}, \ se \ n \in Z \ \'e \ par \ 2^{\frac{n-1}{2}}.\sqrt{2}\sqrt{(1+f)}, \ se \ n \in Z \ \'e \ \'impar$$

RESULTADOS

Tabela 1 – Chutes iniciais para os valores de \sqrt{A} calculados

A	IEEE	x_0	$1/\sqrt{A}$	
1,3	(1+0,300000000000000000000000000000000000	1,15	0,8770580193070292	
9,8	$2\sqrt{2}\sqrt{(1+0,22500000000000001)}$	1,1125	0,31943828249996997	
0,7	$2^{-1}\sqrt{2}(1+0,3999999999999999999999999999999999999$	1,2	1,1952286093343936	
0,005	$2^{-4}\sqrt{(1+0,28)}$	1,14	14,142135623730951	
200	$2^3\sqrt{2}\sqrt{(1+0.5625)}$	1,28125	0,07071067811865475	
6.10^{23}	$2^{39}\sqrt{(1+0.9852334701272665)}$	1,4926167350636332	1,2909944487358056x10 ⁻¹²	

Tabela 2 – Desvio nas iterações para o cálculo indireto de $1/\sqrt{A}$.

	k					
A	0	1	2	3	4	5
1,3	$7.4x10^{-3}$	$3,22x10^{-5}$	$5,94x10^{-10}$	$2.22x10^{-16}$	$2.22x10^{-16}$	2.22x10 ⁻¹⁶
9,8	$1,63x10^{-3}$	$4,21x10^{-6}$	$2,78x10^{-11}$	$5.55x10^{-17}$	$5.55 \text{x} 10^{-17}$	$5.55x10^{-17}$
0,7	$1,67x10^{-2}$	$1,18x10^{-4}$	5.8810^{-9}	0	0	0
0,005	$1,07x10^{-1}$	$4,08x10^{-4}$	5,89x10 ⁻⁹	$3,55x10^{-15}$	$3,55x10^{-15}$	3,55x10 ⁻¹⁵
200	$1,72x10^{-3}$	$2,15x10^{-5}$	3,28x10 ⁻⁹	8,32x10 ⁻¹⁷	0	0
6.10^{23}	$7,23x10^{-14}$	$2,14x10^{-15}$	1,78x10 ⁻¹⁸	1,2310 ⁻²⁴	$2.01 \text{x} 10^{-28}$	$2.01x10^{-28}$

Tabela 3 – Desvio nas iterações para o cálculo direto de $1/\sqrt{A}$.

k	
---	--

A	0	1	2	3	4	5
1,3	$7,4x10^{-3}$	$9,57x10^{-5}$	$1,56x10^{-8}$	$5,55x10^{-16}$	$2.22x10^{-16}$	$2.22x10^{-16}$
9,8	$1,63x10^{-3}$	$1,25x10^{-5}$	$7,4110^{-10}$	$5.55 \text{x} 10^{-17}$	$5.55 \text{x} 10^{-17}$	$5.55x10^{-17}$
0,7	$1,67x10^{-2}$	$3,49x10^{-4}$	$5,88x10^{-7}$	$2,9x10^{-14}$	$2,22x10^{-16}$	2,22x10 ⁻¹⁶
0,005	$1,07x10^{-1}$	$1,21x10^{-3}$	$1,55x10^{-7}$	7.1×10^{-15}	$3,55x10^{-15}$	$3,55x10^{-15}$
200	$1,72x10^{-3}$	$6,25x10^{-5}$	$8,3x10^{-8}$	$1,46x10^{-13}$	0	0
6.10^{23}	$7,23x10^{-14}$	$5,96x10^{-15}$	$4,12x10^{-17}$	1,9810 ⁻²¹	$2.01x10^{-28}$	$2.01x10^{-28}$

CONCLUSÃO

Comparando as tabelas 2 e 3 é notável uma diferença no desvio favorecendo sempre o método **indireto** de se calcular o inverso da raiz quadrada.