

Systemy Analagowe i Cyfrowe

LAB nr 5

Przetwornica DC/DC

Autorzy:	Aleksander Łyskawa 275462 Kacper Karkosz 275495
Wydział i kierunek studiów:	W12N, Automatyka i Robotyka
Termin zajęć:	pon 13:15-15:30
Prowadzący:	dr inż. Marek Kukawczyński
Data:	25.04.2024

1 Temat ćwiczenia

Zadaniem do wykonania było zaprojektowanie układu i dobór właściwych wartości elementów RLC przetwornicy DC/DC podwyższającej napięcie dla zadanych wartości:

- napięcia wejściowego $U_1 = 5[V]$
- napięcia wyjściowego $U_2 = 8 [V]$
- maksymalnego prądu wyjściowego $I_2 = 0, 3 [A]$

Następnie przeprowadzono pomiary na zmontowanym układzie, aby zbadać jego:

- parametry wyjściowe:
 - charakterystykę wyjściową $U_2 = f(I_2)$
 - sprawność $\eta = f(I_2)$
 - rezystancję wyjściową $r_{wy} = f(I_2)$
- parametry przejściowe:
 - charakterystykę przejściową $U_2 = f(U_1)$
 - współczynnik stabilizacji $S_u = f(U_1)$

Charakterystyki zostały wyznaczone na podstawie pomiarów na fizycznym układzie.

1.1 Symulacja w LTSpice

Na Rysunku 1 przedstawiono schemat rzeczywistego układu, zaprojektowany w programie LTSpice. Na Rysunku 2 przedstawiono przebieg czasowy napięcia wyjściowego, wygenerowany symulacyjnie w tym samym programie.

Rys. 1: Schemat układu w programie LTSpice

Rys. 2: Przebieg czasowy w LTSpice

2 Dobór elementów RLC

2.1 Obliczenia

Dobieram kondensator $C_T = 560pF$, $T = 20\mu s$

Czas gromadzenia energii:

$$t_{ON} = \frac{C_T}{40} = \frac{560}{40} = 14 \left[\mu s \right]$$

Maksymalna wartość pradu szczytowego:

$$I_{Lpk} = 2 \cdot I_{wy} \cdot \frac{U_{wy}}{U_{we}} = 0,96 [A] = I_{pk}$$

Rezystor próbkujący:

$$R_{sc} = \frac{0,3}{I_{nk}} = 0,3125 \approx 0,33 \, [\Omega]$$

Dobieram rezystor $R_1 = 1, 2 [k\Omega]$

$$R_{2} = \left(\frac{U_{wy}}{1,25} - 1\right) \cdot R_{1} = \left(\frac{8}{1,25} - 1\right) \cdot 1200 = 6,48 \approx 6,5 \left[k\Omega\right]$$

$$T = \frac{t}{1 - \frac{U_{we}}{U_{wy}}} = \frac{14}{\frac{5}{8}} = 23,3 \left[\mu s\right]$$

$$L_{min} = \left(\frac{U_{we} - 1}{I_{pk}}\right) \cdot \left(1 - \frac{U_{we}}{U_{wy}}\right) \cdot T = 38,83 \left[\mu H\right]$$

$$L_{1min} \leq L_{1} \implies L_{1} = 100 \left[\mu H\right]$$

$$C_{0} \geq \frac{9 \cdot I_{wymax}}{U_{tpp}} \cdot t_{ON} = \frac{9 \cdot 300 \cdot 10^{-3}}{100 \cdot 10^{-3}} \cdot 14 \cdot 10^{-6} = 378 \left[\mu F\right]$$

$$C_{0} = 680 \mu F \geq 378 \mu F$$

$$C_{0} = 100 \left[nF\right]$$

2.2 Rzeczywiste wartości elementów RLC

Rzeczywiste wartości elementów RLC zostały zmierzone przy użyciu multimetru, i wynosiły odpowiednio:

- $R_1 = 1.19 [k\Omega]$
- $R_2 = 6,07 [k\Omega]$
- $R_{SC} = 0.41 [\Omega]$
- $L_1 = 99, 8 [\mu H]$
- $C_T = 0.63 \, [\mu F]$
- $C_o = 97, 5 [\mu F]$
- $C_0 = 728 [nF]$

3 Badanie parametrów wyjściowych układu

W Tabeli 1 przedstawiono pomiary i obliczenia niezbędne do wyznaczenia charakterystyk dla parametrów wyjściowych badanego układu. Na Rysunkach 3, 4, oraz 5 przedstawiono parametry wyjściowe układu jako funkcje prądu wyjściowego I_2 , odpowiednio: napięcia wyjściowego U_2 , sprawności η , oraz rezystancji wyjściowej r_{wy}

Tab. 1: Pomiary i obliczenia do wykresów na rysunkach 3, 4 i 5

U_1	U_2	I_1	I_2	ΔI_2	ΔU_2	r_{wy}	η
[V]	[V]	[A]	[mA]	[A]	[V]	$[\Omega]$	[%]
5	7.607	0.072	36.18	0.04	7.607	-	76.45
5	7.607	0.083	41.11	0.00	0.000	0.000	75.36
5	7.606	0.093	47.51	0.01	-0.001	0.156	77.71
5	7.606	0.099	51.23	0.00	0.000	0.000	78.72
5	7.606	0.114	59.35	0.01	0.000	0.000	79.20
5	7.606	0.135	70.37	0.01	0.000	0.000	79.29
5	7.606	0.141	73.85	0.00	0.000	0.000	79.67
5	7.607	0.153	80.63	0.01	0.001	-0.147	80.18
5	7.605	0.172	90.72	0.01	-0.002	0.198	80.22
5	7.605	0.182	96.13	0.01	0.000	0.000	80.34
5	7.606	0.193	102.63	0.01	0.001	-0.154	80.89
5	7.606	0.207	110.52	0.01	0.000	0.000	81.22
5	7.604	0.223	119.14	0.01	-0.002	0.232	81.25
5	7.604	0.240	128.68	0.01	0.000	0.000	81.54
5	7.604	0.262	140.30	0.01	0.000	0.000	81.44
5	7.604	0.293	158.62	0.02	0.000	0.000	82.33
5	7.601	0.326	176.58	0.02	-0.003	0.167	82.34
5	7.603	0.374	202.27	0.03	0.002	-0.078	82.24
5	7.598	0.430	232.77	0.03	-0.005	0.164	82.26
5	7.582	0.501	271.90	0.04	-0.016	0.409	82.30
5	7.570	0.609	331.09	0.06	-0.012	0.203	82.31
5	7.550	0.811	429.80	0.10	-0.020	0.203	80.02
5	6.499	0.842	517.68	0.09	-1.051	11.959	79.91
5	5.194	0.870	740.00	0.22	-1.305	5.870	88.36

3.1 Charakterystyka wyjściowa

Rys. 3: Wykres zależności napięcia wyjściowego od prądu wyjściowego wyznaczony na podstawie pomiarów

3.2 Sprawność układu

Rys. 4: Wykres zależności sprawności układu od prądu wyjściowego wyznaczony na podstawie pomiarów

3.3 Rezystancja wyjściowa układu

Rys. 5: Wykres zależności rezystancji wyjściowej układu od prądu wyjściowego wyznaczony na podstawie pomiarów

4 Badanie parametrów przejściowych układu

W Tabeli 2 przedstawiono pomiary i obliczenia niezbędne do wyznaczenia charakterystyk dla parametrów przejściowych badanego układu. Na Rysunkach 6 oraz 7 przedstawiono parametry przejściowe układu jako funkcje napięcia wejściowego U_1 , odpowiednio: napięcia wyjściowego U_2 , oraz współczynnika stabilizacji S_u

Tab. 2: Pomiary i obliczenia do wykresów na rysunkach.

U_1	U_2	ΔU_1	ΔU_2	S_u
[V]	[V]	[V]	[V]	$\left[\frac{V}{V}\right]$
0.497	0.266	0.497	0.266	0.535
0.997	0.733	0.500	0.467	0.933
1.497	1.212	0.500	0.480	0.960
1.996	3.208	0.499	1.996	3.999
2.497	7.167	0.501	3.959	7.902
2.997	7.574	0.500	0.407	0.814
3.497	7.581	0.500	0.007	0.014
3.997	7.586	0.500	0.005	0.010
4.497	7.594	0.500	0.008	0.016
4.997	7.603	0.500	0.009	0.018
5.496	7.603	0.499	0.000	0.000
5.997	7.605	0.501	0.002	0.004
6.497	7.611	0.500	0.006	0.012
6.997	7.614	0.500	0.003	0.006
7.500	7.624	0.503	0.010	0.020
8.000	7.631	0.500	0.007	0.014
8.498	8.073	0.498	0.442	0.888
9.000	8.566	0.502	0.493	0.982
9.499	9.058	0.499	0.492	0.986
9.999	9.548	0.500	0.490	0.980
10.497	10.040	0.498	0.492	0.988
10.998	10.532	0.501	0.492	0.982
11.495	11.023	0.497	0.491	0.988
12.000	11.514	0.505	0.491	0.972
12.497	12.010	0.497	0.496	0.998
13.001	12.507	0.504	0.497	0.986
13.499	12.997	0.498	0.490	0.984
13.998	13.489	0.499	0.492	0.986
14.497	13.981	0.499	0.492	0.986
14.998	14.475	0.501	0.494	0.986

4.1 Charakterystyka przejściowa

Rys. 6: Wykres zależności napięcia wyjściowego układu od napięcia wejściowego wyznaczony na podstawie pomiarów

4.2 Współczynnik stabilizacji układu

Rys. 7: Wykres zależności współczynnika stabilizacji układu od napięcia wejściowego wyznaczony na podstawie pomiarów

5 Obliczenia

5.1 Rezystancja wyjściowa

Rezystancję wyjściową obliczamy ze wzoru:

$$r_{wy} = \frac{\Delta U_2}{\Delta I_2}$$

gdzie:

- ΔU_2 różnica pomiędzy n,a n-1 próbką napięcia wyjściowego
- ΔI_2 różnica pomiędzy n, a n-1 próbką prądu wyjściowego

Obliczone wartości rezystancji dla wszystkich zmierzonych wartości napięć wyjściowych przedstawia Tabela 1. Przykładowe obliczenia dla $I_2=517.68mA$ i $U_2=6,499V$:

$$r_{wy} = -\frac{6,499 - 7,55}{(517.68 - 429,8) \cdot 10^{-3}} = \frac{1,051}{87,88 \cdot 10^{-3}} \approx 11,959 \, [\Omega]$$

5.2 Sprawność

Sprawność przetwornicy obliczamy ze wzoru:

$$\eta = \frac{P_2}{P_1} = \frac{U_2 \cdot I_2}{U_{1nom} \cdot I_1} \cdot 100\% \tag{1}$$

gdzie:

- P_2 moc tracona w obciążeniu
- P_1 moc wejściowa
- U_2 napięcie wyjściowe
- I_2 prąd wyjściowy
- U_{1nom} napięcie wejściowe nominalne
- I_1 prąd wejściowy

Obliczone wartości sprawności dla wszystkich zmierzonych wartości napięć wyjściowych przedstawia Tabela 1. Przykładowe obliczenia dla $U_2=6,499V$:

$$\eta = \frac{6,499 \cdot 517,68 \cdot 10^{-3}}{5 \cdot 0.842} \cdot 100\% \approx 79,91\%$$

5.3 Współczynnik stabilizacji

Współczynnik stabilizacji obliczamy ze wzoru:

$$S_u = \frac{\Delta U_2}{\Delta U_1} \cdot 100\%$$

gdzie:

- ΔU_2 przyrost napięcia wyjściowego
- ΔU_1 przyrost napięcia wejściowego

Obliczone wartości współczynnika dla wszystkich zmierzonych wartości napięć wyjściowych przedstawia Tabela 2. Przykładowe obliczenia dla $U_2=7,611$:

$$S_u = \frac{7,611 - 7,605}{6,497 - 5,997} = \frac{0,006}{0,5} = 0,012 \left[\frac{V}{V} \right]$$

6 Wnioski

- Symulacja czasowa w programie LTSpice pokazuje, że układ przetwarza napięcie wejściowe 5V na napięcie wyjściowe 8V, co jest zgodne z założeniami projektowymi, i świadczy o poprawnym zaprojektowaniu układu.
- Rysunek 3 pokazuje, że napięcie na wyjściu układu stabilizuje się na poziomie około 7,6V, co z rozsądną dokładnością spełnia założenia projektowe.
- Rysunek 3 pokazuje, że przetwornica pracuje prawidłowo w zakresie prądów od około 36,18mA do około 428,8mA .
- Rysunek 4 pokazuje, że sprawność układu rośnie wraz ze wzrostem prądu wyjściowego. Nasza przetwornica uzyskuje największą sprawność dla prądu $I_2 = 740mA$, i wynosi wtedy $\eta = 88,35\%$.
- Rysunek 5 pokazuje, że rezystancja wyjściowa układu gwałtownie wzrasta dla prądu wyjściowego $I_2 = 429, 8mA$. Jest to górna granica zakresu prądów wyjściowych dla której układ pracuje prawidłowo. Wartość ta z rozsądną dokładnością spełnia założenia projektowe.
- Rysunek 6 pokazuje, że przetwornica działa prawidłowo w przedziałe napięć wejściowych od około 3V do 8V. Napięcie wyjściowe utrzymuje się wtedy na względnie stałym poziomie około 7,6V
- Rysunek 7 pokazuje,że współczynnik stabilizacji jest największy dla napięcia wejściowego równego około $U_1 = 2,5V$. Jest to początek przedziału wartości napięć wejściowych, dla których układ działa poprawnie.