Assignment-4

Project title	Smart Waste Management System for		
	Metropolitan Cities		
Team ID	PNT2022TMID32675		
Team leader	Sivaram N		
Register number	813819104095		

Write a code and connections in working for the ultrasonic sensor. Whenever the distance is less than 100 cms send an "Alert" to IBM cloud and display in the device recent events.

Code:

```
#include
<WiFi.h>
#include
<PubSubClient.h>
void callback(char* subscribe topic, byte* payload, unsigned int
payloadLength);
//----credentials of IBM Accounts-----
#define ORG "kotoq5"//IBM ORGANIZATION ID
#define DEVICE TYPE "ESP32"//Device type mentioned in ibm watson IOT
Platform #define DEVICE ID "12345"//Device ID mentioned in ibm watson IOT
Platform #define TOKEN \overline{\ }12345678" //Token
String data3;
char server[] = ORG
".messaging.internetofthings.ibmcloud.com"; char
publishTopic[] = "iot-2/evt/Data/fmt/json";
char subscribe topic[]
="iot-2/cmd/test/fmt/String"; char
authMethod[] = "use-token-auth";
char token[] = TOKEN;
char clientId[] = "d:" ORG ":" DEVICE TYPE ":" DEVICE ID;
WiFiClient wifiClient;
PubSubClient client(server, 1883, callback
,wifiClient); const int trigPin = 5;
const int echoPin
= 18; #define
SOUND SPEED 0.034
long duration;
float distance;
```

```
void setup()
Serial.begin (1152
00);
pinMode(trigPin,
OUTPUT);
pinMode (echoPin,
INPUT); wifi
connect(); mqtt
connect();
void loop()
digitalWrite(trigPin, LOW);
delayMicroseconds(2);
digitalWrite(trigPin,
HIGH);
delayMicroseconds(10);
digitalWrite(trigPin, LOW);
duration = pulseIn(echoPin,
HIGH); distance = duration
* SOUND SPEED/2;
Serial.print("Distance
(cm): ");
Serial.println(distance);
if(distance<100)
Serial.println("ALERT!!"
);
delay(1000);
PublishData(di
stance);
delay(1000);
if (!client.loop())
{ mqtt connect();
delay(1000);
void PublishData(float dist)
{ mqtt connect();
String payload =
"{\"Distance\":"; payload
+= dist;
payload += ",\"ALERT!!\":""\"Distance less than
100 cms\""; payload += "}";
Serial.print("Sending
payload: ");
Serial.println(payload);
```

```
if (client.publish(publishTopic, (char*) payload.c str()))
{ Serial.println("Publish ok");
} else {
Serial.println("Publish failed");
void mgtt connect() {
if (!client.connected())
{ Serial.print("Reconnecting
client to ");
Serial.println(server);
while (!!!client.connect(clientId, authMethod, token))
Serial.print
(".");
delay(500);
initManagedD
evice();
Serial.print
ln();
void wifi connect()
Serial.println();
Serial.print("Connecting to
"); WiFi.begin("Wokwi-GUEST",
"", 6); while (WiFi.status()
! = WL CONNECTED)
delay(500)
Serial.pri
nt(".");
Serial.println("");
Serial.println("WiFi
connected");
Serial.println("IP
address: ");
Serial.println(WiFi.local
IP());
void initManagedDevice() {
if (client.subscribe(subscribe topic))
{ Serial.println((subscribe
topic));
Serial.println("subscribe to
cmd OK");
```

```
} else {
Serial.println("subscribe to cmd FAILED");
void callback(char* subscribe topic, byte* payload, unsigned int payloadLength)
Serial.print("callback invoked for topic: ");
Serial.println(subscribetopic);
for (int i = 0; i < payloadLength; i++) {</pre>
//Serial.print((char)payload[i
]); data3 += (char)payload[i];
Serial.println("data: "+ data3);
data3="";
Diagram.json:
  "version": 1,
 "author": "Rithick
 Kumar ", "editor":
 "working", "parts":
    { "type": "wokwi-esp32-devkit-v1", "id": "esp", "top": -4.67, "left": -114.67, "attrs": {} },
   { "type": "wokwi-hc-sr04", "id": "ultrasonic1", "top": 15.96, "left": 89.17, "attrs": {} }
 "connections": [
    [ "esp:TX0", "$serialMonitor:RX", "", [] ],
    [ "esp:RXO", "$serialMonitor:TX",
    "", [] ], [
     "esp:VIN",
      "ultrasoni
     c1:VCC",
      "red",
      [ "h-37.16", "v-178.79", "h200", "v173.33", "h100.67" ]
    [ "esp:GND.1", "ultrasonic1:GND", "black", [ "h39.87", "v44.04", "h170" ] ],
    [ "esp:D5", "ultrasonic1:TRIG", "green", [ "h54.54", "v85.07", "h130.67" ] ],
   [ "esp:D18", "ultrasonic:ECHO", "green", [ "h77.87", "v80.01", "h110" ] ]
```

}

Circuit Diagram:

Output:
Working output: