

Aprendizagem de Máquina

César Lincoln Cavalcante Mattos

2020

Agenda

- Aprendizagem não-supervisionada
- 2 Agrupamento (clustering) de dados
- 3 Algoritmo K-Médias
- 4 Exemplo de aplicação: Redes RBF
- **5** Tópicos adicionais
- 6 Referências

- Não há uma relação entre entradas e saídas observadas.
- Descobrimento de estruturas/padrões nos dados disponíveis.

- Não há uma relação entre entradas e saídas observadas.
- Descobrimento de estruturas/padrões nos dados disponíveis.
- Exemplos de tarefas não-supervisionadas:
 - → Agrupamento (*clustering*) de dados.
 - → Redução de dimensionalidade.
 - → Modelar a densidade de probabilidade dos dados.
 - → Obter causas ocultas (não disponíveis) para os dados.

- Não há uma relação entre entradas e saídas observadas.
- Descobrimento de estruturas/padrões nos dados disponíveis.
- Exemplos de tarefas não-supervisionadas:
 - → Agrupamento (clustering) de dados.
 - → Redução de dimensionalidade.
 - → Modelar a densidade de probabilidade dos dados.
 - ightarrow Obter causas ocultas (não disponíveis) para os dados.
- Exemplos de aplicações:
 - ightarrow Compressão de dados.
 - → Detecção de dados discrepantes (*outliers*).
 - → Auxiliar outros algoritmos de aprendizagem.

Principais abordagens:

- → Agrupamento (clustering): Cada padrão de entrada é representado por um protótipo (algoritmo k-médias, modelos de misturas...)
- → Redução de dimensionalidade: Representa os padrões de entrada com uma menor quantidade de atributos (PCA, factor analysis, ICA...)
- → Modelar densidades de probabilidade: Estimar distribuições de probabilidade no espaço de dados disponíveis.

Agenda

- Aprendizagem não-supervisionada
- Agrupamento (clustering) de dados
- Algoritmo K-Médias
- 4 Exemplo de aplicação: Redes RBF
- **5** Tópicos adicionais
- 6 Referências

- **Problema**: Como agrupar N exemplos em K grupos (*clusters*)?
- Motivação: Realizar predições, compressão com perdas, detecção de outliers.
- **Suposição**: Os dados foram gerados por *K* fontes/classes diferentes.

• **Problemas**: Quantos grupos existem? Quais padrões pertencem a cada grupo? Como escolher um agrupamento adequado?

- Problemas: Quantos grupos existem? Quais padrões pertencem a cada grupo? Como escolher um agrupamento adequado?
- Agrupamento hierárquico:
 - → **Aglomerativo** (bottom-up): Grupos semelhantes são reunidos em grupos de mais alta hierarquia.

- Problemas: Quantos grupos existem? Quais padrões pertencem a cada grupo? Como escolher um agrupamento adequado?
- Agrupamento hierárquico:
 - → **Aglomerativo** (bottom-up): Grupos semelhantes são reunidos em grupos de mais alta hierarquia.
 - → **Divisivo** (*top-down*): Particionamento recursivo, de grupos maiores para menores.

- Problemas: Quantos grupos existem? Quais padrões pertencem a cada grupo? Como escolher um agrupamento adequado?
- Agrupamento hierárquico:
 - → **Aglomerativo** (bottom-up): Grupos semelhantes são reunidos em grupos de mais alta hierarquia.
 - → **Divisivo** (*top-down*): Particionamento recursivo, de grupos maiores para menores.
 - → Constrói um dendrograma (árvore de grupos) com o agrupamento dos padrões.

- Problemas: Quantos grupos existem? Quais padrões pertencem a cada grupo? Como escolher um agrupamento adequado?
- Agrupamento hierárquico:
 - → **Aglomerativo** (bottom-up): Grupos semelhantes são reunidos em grupos de mais alta hierarquia.
 - → **Divisivo** (*top-down*): Particionamento recursivo, de grupos maiores para menores.
 - → Constrói um dendrograma (árvore de grupos) com o agrupamento dos padrões.
- Agrupamento não-hierárquico:
 - → Particionamento rígido: Cada ponto pertence a um grupo.

- Problemas: Quantos grupos existem? Quais padrões pertencem a cada grupo? Como escolher um agrupamento adequado?
- Agrupamento hierárquico:
 - → **Aglomerativo** (bottom-up): Grupos semelhantes são reunidos em grupos de mais alta hierarquia.
 - → **Divisivo** (*top-down*): Particionamento recursivo, de grupos maiores para menores.
 - → Constrói um dendrograma (árvore de grupos) com o agrupamento dos padrões.
- Agrupamento não-hierárquico:
 - → Particionamento rígido: Cada ponto pertence a um grupo.
 - → Particionamento suave: Cada ponto pode pertencer parcialmente a múltiplos grupos.

- Problemas: Quantos grupos existem? Quais padrões pertencem a cada grupo? Como escolher um agrupamento adequado?
- Agrupamento hierárquico:
 - → **Aglomerativo** (bottom-up): Grupos semelhantes são reunidos em grupos de mais alta hierarquia.
 - → **Divisivo** (*top-down*): Particionamento recursivo, de grupos maiores para menores.
 - → Constrói um dendrograma (árvore de grupos) com o agrupamento dos padrões.
- Agrupamento não-hierárquico:
 - → Particionamento rígido: Cada ponto pertence a um grupo.
 - → Particionamento suave: Cada ponto pode pertencer parcialmente a múltiplos grupos.
 - → Realocação de padrões em grupos específicos de acordo com algum critério.

Critérios de dissimilaridade

Distância Euclidiana:

$$\|\boldsymbol{x}_i - \boldsymbol{x}_j\|_2 = \sqrt{\sum_{d=1}^D (x_{id} - x_{jd})^2}.$$

Distância de Manhattan:

$$\|\boldsymbol{x}_i - \boldsymbol{x}_j\|_1 = \sum_{d=1}^D |x_{id} - x_{jd}|.$$

Distância de Mahalanobis:

$$d_M(\boldsymbol{x}_i, \boldsymbol{x}_j) = \sqrt{(\boldsymbol{x}_i - \boldsymbol{x}_j)^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_i - \boldsymbol{x}_j)},$$

em que Σ é matriz de covariância dos dados de treinamento.

- Dados: $1:[1 \ 2], 2:[1 \ 1], 3:[3 \ 3], 4:[4 \ 3]$
- Matriz de distâncias:

_		1	2	3	4
	1	0	1	5	10
	2	1	0	8	13
	3	5	8	0	1
	4	10	13	1	0

- Dados: $1 : [1 \ 2], 2 : [1 \ 1], 3 : [3 \ 3], 4 : [4 \ 3]$
- Matriz de distâncias:

a5.	1	2	3	4
1	0	1	5	10
2	1	0	8	13
3	5	8	0	1
4	10	13	1	0

$$c_{1,2} = [1 \ 1.5]$$

- Dados: $1, 2 : [1 \ 1.5], 3 : [3 \ 3], 4 : [4 \ 3]$
- Matriz de distâncias:

cius.	1,2	3	4
1,2	0	6.25	11.25
3	6.25	0	1
4	11.25	1	0
		•	'

- **Dados**: **1,2**: [1 1.5], **3**: [3 3], **4**: [4 3]
- Matriz de distâncias:

icias.	1,2	3	4
1,2	0	6.25	11.25
3	6.25	0	1
4	11.25	1	0

$$c_{3,4} = [3.5 \ 3]$$

- **Dados**: **1,2**: [1 1.5], **3,4**: [3.5 3]
- Matriz de distâncias:

Э.		1,2	3,4
	1,2	0	8
	3,4	8	0
] [
1		2 3	3 4

- **Dados**: **1,2**: [1 1.5], **3,4**: [3.5 3]
- Matriz de distâncias:

•	1,2	3,4
1,2	0	8
3,4	8	0
	Į.	

Agenda

- Aprendizagem não-supervisionada
- Agrupamento (clustering) de dados
- 3 Algoritmo K-Médias
- 4 Exemplo de aplicação: Redes RBF
- **5** Tópicos adicionais
- 6 Referências

- Seja o conjunto de dados $\mathcal{X} = \{m{x}_i\}_{i=1}^N, m{x}_i \in \mathbb{R}^D$.
- Devemos particionar o conjunto \mathcal{X} em K clusters $\mathcal{C} = \{C_k\}_{k=1}^K$.

- Seja o conjunto de dados $\mathcal{X} = \{m{x}_i\}_{i=1}^N, m{x}_i \in \mathbb{R}^D.$
- Devemos particionar o conjunto \mathcal{X} em K clusters $\mathcal{C} = \{C_k\}_{k=1}^K$.
- Padrões em um mesmo cluster devem ter alta similaridade.
- Padrões em clusters diferentes devem ter baixa similaridade.

- Seja o conjunto de dados $\mathcal{X} = \{m{x}_i\}_{i=1}^N, m{x}_i \in \mathbb{R}^D.$
- Devemos particionar o conjunto \mathcal{X} em K clusters $\mathcal{C} = \{C_k\}_{k=1}^K$.
- Padrões em um mesmo cluster devem ter alta similaridade.
- Padrões em clusters diferentes devem ter baixa similaridade.
- Agrupamento como um problema de otimização:

Otimize
$$f(\mathcal{X}, \mathcal{C}),$$

s.a. $C_k \neq \emptyset, \quad \forall k,$
 $C_k \cap C_{k'} = \emptyset, \quad \forall k \neq k',$
 $\bigcup_{k=1}^K C_k = \mathcal{X},$

em que $f(\cdot)$ é uma função de similaridade ou dissimilaridade.

Algoritmo de Lloyd

Defina o erro de quantização ou erro de reconstrução por:

$$\mathcal{J}(\mathcal{C}) = \sum_{k=1}^K \sum_{oldsymbol{x}_i \in C_k} \lVert oldsymbol{x}_i - oldsymbol{m}_k
Vert^2.$$

- Escolha um particionamento inicial definido pelos centróides $m_k \in \mathbb{R}^D, 1 \leq k \leq K.$
- Execute os seguintes passos abaixo iterativamente:
 - **1** Encontre todas as partições C_k , k = 1, ..., K:

$$C_k = \{ \boldsymbol{x}_i \in \mathbb{R}^D \mid \|\boldsymbol{x}_i - \boldsymbol{m}_k\|^2 < \|\boldsymbol{x}_i - \boldsymbol{m}_j\|^2, \forall j \neq k \}.$$

- 2 Recalcule os centróides dos clusters: $m{m}_k = \frac{1}{N_k} \sum_{m{x}_i \in C_k} m{x}_i, \, orall k.$
- Repita até os centróides não apresentarem grandes modificações.

- Note que as posições dos centróides são ajustadas ao longo das iterações visando a redução do erro de reconstrução.
- Otimização coordenada:
 - → Fixe os centróides, ajuste a designação de cada padrão.
 - → Fixe as designações, ajuste as posições dos centróides.
- Caso particular do algoritmo *Expectation-Maximization* (EM).

Algoritmo K-Médias generalizado

- Uso de funções de dissimilaridade ou similaridade diferentes.
 - → Distância de Manhattan (menos sensível a *outliers*).
 - → Distância de Mahalanobis (obtém clusters elípticos).
 - → Similaridade por funções de kernel (dados não numéricos).
- O algoritmo de obtenção dos centróides é semelhante ao K-Médias convencional.
 - → A métrica alternativa influencia somente a etapa de localização das partições.

 Problema: O algoritmo K-médias resolve uma otimização não-convexa (presença de mínimos locais).

- Problema: O algoritmo K-médias resolve uma otimização não-convexa (presença de mínimos locais).
- Ideias: Múltiplas inicializações, inicialização cuidadosa.

- Problema: O algoritmo K-médias resolve uma otimização não-convexa (presença de mínimos locais).
- Ideias: Múltiplas inicializações, inicialização cuidadosa.
- **Problema**: Como escolher um valor de *K* adequado?

- Problema: O algoritmo K-médias resolve uma otimização não-convexa (presença de mínimos locais).
- Ideias: Múltiplas inicializações, inicialização cuidadosa.
- **Problema**: Como escolher um valor de K adequado?
- Ideia: Usar métricas de qualidade do particionamento.

Métricas de qualidade do particionamento

• Índice Davies-Bouldin (DB)

$$DB(C) = \frac{1}{K} \sum_{k=1}^{K} \max_{k \neq k'} \left(\frac{\delta_k + \delta_{k'}}{\Delta_{kk'}} \right).$$

- \rightarrow δ_k : espalhamento intra-agrupamento (within cluster scatter)
- $ightarrow \Delta_{kk'}$: espalhamento entre grupos (between cluster distance)

$$egin{aligned} \delta_k = & rac{1}{N_k} \sum_{oldsymbol{x}_n \in C_k} \lVert oldsymbol{x}_n - oldsymbol{m}_k
Vert, \ \Delta_{kk'} = & \lVert oldsymbol{m}_k - oldsymbol{m}_{k'}
Vert, \ oldsymbol{m}_k = & rac{1}{N_k} \sum_{oldsymbol{x}_i \in C_k} oldsymbol{x}_i. \end{aligned}$$

- → Equilibra soluções com clusters compactos e separados entre si.
- → Quanto menor seu valor, melhor a solução.

Exemplo de aplicação do algoritmo K-Means

Exemplo de aplicação do algoritmo K-Means

Agenda

- Aprendizagem não-supervisionada
- Agrupamento (clustering) de dados
- Algoritmo K-Médias
- 4 Exemplo de aplicação: Redes RBF
- **5** Tópicos adicionais
- 6 Referências

Redes Neurais Radial Basis Function

Redes RBF

Uma camada oculta com função de ativação radial:

$$z_0 = 1, \quad z_j = \phi_1(\mathbf{w}_j, \mathbf{x}_i) = \rho(\|\mathbf{x}_i - \mathbf{w}_j\|), \quad 1 \le j \le N_H$$

• Exemplo: função de base Gaussiana com hiperparâmetro $\gamma>0$:

$$\rho(\|\boldsymbol{x}_i - \boldsymbol{w}_j\|) = \exp(-\gamma \|\boldsymbol{x}_i - \boldsymbol{w}_j\|^2)$$

• A saída do modelo é dada por:

$$\hat{y}_i = \phi_2(\boldsymbol{Mz})$$

- Vantagem: Somente os pesos da camada de saída M são atualizados, por exemplo, via SGD.
- Os vetores $oldsymbol{w}_j|_{j=1}^{N_H}$ podem ser obtidos via clustering de $oldsymbol{x}_i|_{i=1}^{N}$.

Agenda

- Aprendizagem não-supervisionada
- Agrupamento (clustering) de dados
- Algoritmo K-Médias
- 4 Exemplo de aplicação: Redes RBF
- 5 Tópicos adicionais
- 6 Referências

Tópicos adicionais

- Algoritmo Expectation-Maximization (EM).
 - → Permite inferência em modelos com variáveis não-observadas.
- GMM (Gaussian Mixture Model):

$$p(\boldsymbol{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$$

- Quantização vetorial.
- Mapas de Kohonen (Self-Organizing Maps SOM).

Agenda

- Aprendizagem não-supervisionada
- Agrupamento (clustering) de dados
- Algoritmo K-Médias
- 4 Exemplo de aplicação: Redes RBF
- **5** Tópicos adicionais
- 6 Referências

Referências bibliográficas

- Cap. 11 MURPHY, Kevin P. Machine learning: a probabilistic perspective, 2012.
- Cap. 9 BISHOP, C. Pattern recognition and machine learning, 2006.