

TOP PREDICTION ALGORITHMS

	TYPE	NAME	DESCRIPTION	ADVANTAGES	DISADVANTAGES
Linear		Linear regression	The "best fit" line through all data points. Predictions are numerical.	Easy to understand you clearly see what the biggest drivers of the model are.	 X Sometimes too simple to capture complex relationships between variables. X Tendency for the model to "overfit".
		Logistic regression	The adaptation of linear regression to problems of classification (e.g., yes/no questions, groups, etc.)	Also easy to understand.	 X Sometimes too simple to capture complex relationships between variables. X Tendency for the model to "overfit".
Tree-based	* .*	Decision tree	A graph that uses a branching method to match all possible outcomes of a decision.	Easy to understand and implement.	X Not often used on its own for prediction because it's also often too simple and not powerful enough for complex data.
		Random Forest	Takes the average of many decision trees, each of which is made with a sample of the data. Each tree is weaker than a full decision tree, but by combining them we get better overall performance.	A sort of "wisdom of the crowd". Tends to result in very high quality models. Fast to train.	 Can be slow to output predictions relative to other algorithms. Not easy to understand predictions.
		Gradient Boosting	Uses even weaker decision trees, that are increasingly focused on "hard" examples.	High-performing.	 X A small change in the feature set or training set can create radical changes in the model. X Not easy to understand predictions.
tworks	4.7	Nouval	Mimics the behavior of the brain. Neural networks are interconnected	Can handle extremely complex tasks - no other	X Very, very slow to train, because they have so many

Neural

networks

neurons that pass messages to each

other. Deep learning uses several

after the other.

layers of neural networks put one

complex tasks - no other

algorithm comes close in

image recognition.

layers. Require a lot of power.

Almost impossible to

understand predictions.