

NOM: Prénom:

Palier lisse soumis à un moment pur

Ce palier lisse 0 de centre O est soumis à deux forces $\vec{F}_{2\rightarrow 1}$ et $-\vec{F}_{2\rightarrow 1}$ $\left(\vec{F}_{2\rightarrow 1}=-F\vec{y}\right)$ appliquées en A et en B, s'appliquant d'un solide 2 (non représenté) sur l'arbre 1.

L'objectif du travail demandé est de déterminer la pression maximale de contact en vue de dimensionner ce palier.

Q1. Exprimer le torseur des actions mécaniques $\left\{\mathfrak{F}_{2\rightarrow1}\right\}$ relatif à la force $\vec{F}_{2\rightarrow1}=-F\vec{y}$ au point A puis au point O. En déduire Les actions mécaniques exercées par l'arbre 1 sur le palier 0 sous la forme du torseur $\left\{\mathfrak{F}_{1\rightarrow0}\right\}$ exprimé au point O.

Q2. Calculer les éléments de réduction du torseur $\left\{ \Im_{1\to 0} \right\}$ au point O pour F=200 N ; a=50 mm

Les actions mécaniques déterminées précédemment résultent d'une répartition de pression modélisée sur les figures ci-contre.

Le modèle retenu est tel que :

$$d\vec{N}\left(M\right)=-p\left(M\right)\vec{n}dS \quad \text{où}$$

$$p\left(M\right)=p\left(\theta,x\right)=p_{_{0}}.\frac{2x}{L}\cos\theta$$

$$\begin{split} OM &= R\vec{e}_{_{r}} + x\vec{x} \ ; \\ \text{On note} : & -\vec{n} = \vec{e}_{_{r}} = \cos\theta\vec{y} + \sin\theta\vec{z} \ ; \\ \vec{e}_{_{\theta}} &= -\sin\theta\vec{y} + \cos\theta\vec{z} \end{split}$$

TD Noté n°1

XAO2 - ROB3

1/2

NOM: Prénom:

Q3. Écrire les équations qui relient le modèle de répartition de pression défini précédemment et les
éléments de réduction du torseur $\left\{ \Im_{_{1\rightarrow0}}\right\}$ au point O .
Q4. En déduire le coefficient p_{θ} caractérisant la répartition de pression en fonction de F . La clarté du
raisonnement est un critère d'évaluation.
Q5. Calculer p_0 et p_{max} pour les valeurs précédentes de F et de a et pour $R=10$ mm et $L=20$ mm
Q6. L'arbre tourne à 1000 tr·min ⁻¹ pendant 1 heure. Exprimer puis calculer l'énergie dissipée en Joules
(J) si le coefficient de frottement vaut $f = 0,1$.

TD Noté n°1 XAO2 - ROB3 2/2