ALGEBRA LINEARE E GEOMETRIA

4º appello — 4 febbraio 2025

Esercizio 1. In \mathbb{R}^4 sia V il sottospazio vettoriale di equazione $x_1 - 2x_3 = 0$ e sia U il sottospazio generato dai vettori $u_1 = (2, -1, 1, 2), u_2 = (-4, 4, -2, -3), u_3 = (2, 1, 1, 3).$

- (a) Determinare la dimensione e una base di V.
- (b) Determinare la dimensione e una base di U e verificare che $U \subset V$.
- (c) Trovare un sottospazio $L \subset \mathbb{R}^4$ tale che $U \oplus L = V$. Tale L è unico?
- (d) Sia $W \subset \mathbb{R}^4$ il sottospazio di equazioni $x_1 x_2 + x_3 = 0$ e $x_2 + x_3 x_4 = 0$. Trovare la dimensione e una base di $U \cap W$ e di U + W.

Soluzione. (a) Dall'equazione $x_1 - 2x_3 = 0$ si ricava $x_1 = 2x_3$, quindi x_2 , x_3 e x_4 sono liberi di variare. Pertanto V ha dimensione 3 e una sua base è formata dai vettori (0, 1, 0, 0), (2, 0, 1, 0) e (0, 0, 0, 1).

- (b) Bisogna verificare se i vettori u_1 , u_2 , u_3 sono linearmente indipendenti. Si trova invece che essi sono linearmente dipendenti (infatti $u_3 = 3u_1 + u_2$). Pertanto dimU = 2 e una base di U è formata dai vettori u_1 e u_2 . Per verificare che $U \subset V$ basta verificare che i vettori di base u_1 e u_2 verificano l'equazione di V.
- (c) Dato che dim U=2 e dim V=3, deve essere dim L=1. Come base di L bisogna prendere un vettore ℓ che appartenga a V ma non appartenga a U. Ci sono infinite scelte possibili di tale vettore, quindi L non è unico. Una possibile scelta è $\ell=(0,0,0,1)$.
- (d) Sia $u = a_1u_1 + a_2u_2 = (2a_1 4a_2, -a_1 + 4a_2, a_1 2a_2, 2a_1 3a_2)$ un generico vettore di U. Richiediamo che $u \in W$, quindi sostituiamo le coordinate di u nelle equazioni di W. Risolvendo queste equazioni si trova $a_1 = \frac{5}{2}a_2$, quindi possiamo porre $a_2 = 2$ e ottenere $a_1 = 5$. Usando questi valori di a_1 e a_2 si ottiene u = (2, 3, 1, 4). Questo è un vettore di base di $U \cap W$, quindi dim $(U \cap W) = 1$. Dalla formula di Grassmann si ricava dim(U + W) = 3, quindi come base di U + W possiamo prendere due vettori della base di U e uno dei vettori della base di U, oppure due vettori della base di U e uno dei vettori della base di U.

Esercizio 2. Sia $f: \mathbb{R}^3 \to \mathbb{R}^4$ una funzione lineare tale che

$$f(1,-1,0) = (1,-1,0,-1), \quad f(0,-1,1) = (0,-6,4,-4), \quad f(1,1,0) = (3,3,-4,1).$$

- (a) Scrivere la matrice di f nelle basi canoniche del dominio e del codominio.
- (b) Trovare la dimensione e una base di $\operatorname{Im} f$ e di $\operatorname{Ker} f$.
- (c) Dire per quale valore di α si ha $(6, -3, -2, \alpha) \in \text{Im } f$.
- (d) Sia V lo spazio vettoriale delle funzioni lineari da \mathbb{R}^3 in \mathbb{R}^3 e sia U il sottospazio vettoriale di V definito da

$$U = \{ g \colon \mathbb{R}^3 \to \mathbb{R}^3 \mid f \circ g = 0 \}.$$

Trovare la dimensione e una base di U.

Soluzione. (a) Sommando f(1,-1,0) = (1,-1,0,-1) con f(1,1,0) = (3,3,-4,1) si ottiene f(2,0,0) = (4,2,-4,0), quindi f(1,0,0) = (2,1,-2,0). Questa è la prima colonna della matrice di f. Sottraendo f(1,0,0) = (2,1,-2,0) da f(1,1,0) = (3,3,-4,1) si ottiene f(0,1,0) = (1,2,-2,1). Questa è la seconda colonna della matrice di f. Sommando f(0,-1,1) = (0,-6,4,-4) con f(0,1,0) = (1,2,-2,1) si ottiene f(0,0,1) = (1,-4,2,-3). Questa è la terza colonna della matrice di f. Quindi la matrice è

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & -4 \\ -2 & -2 & 2 \\ 0 & 1 & -3 \end{pmatrix}$$

(b) Riducendo A in forma a scala si trova la matrice

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 3 & -9 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

quindi A ha rango 2 e quindi una base di $\mathrm{Im}\, f$ è formata da due colonne di A. Il nucleo di f si trova risolvendo il sistema

$$\begin{cases} 2x_1 + x_2 + x_3 = 0\\ 3x_2 - 9x_3 = 0 \end{cases}$$

da cui si ricava

$$\begin{cases} x_1 = -2x_3 \\ x_2 = 3x_3 \end{cases}$$

Pertanto Ker f ha dimensione 1 e una sua base è formata dal vettore (-2,3,1).

- (c) Si ha $(6, -3, -2, \alpha) \in \text{Im } f$ se e solo se il vettore $(6, -3, -2, \alpha)$ è combinazione lineare dei vettori di una base di Im f, ad esempio delle prime due colonne di A. Da ciò si ricava $\alpha = -4$.
- (d) $f \circ g = 0$ significa che f(g(v)) = 0 per ogni $v \in \mathbb{R}^3$. Pertanto si deve avere $g(v) \in \operatorname{Ker} f$, per ogni $v \in \mathbb{R}^3$, quindi $\operatorname{Im} g$ deve essere contenuta in $\operatorname{Ker} f$. Ora basta ricordare che $\operatorname{Im} g$ è generata dalle colonne della matrice di g, mentre $\operatorname{Ker} f$ è generato dal vettore (-2,3,1). La conclusione di questo ragionamento è che le matrici di queste funzioni g devono avere sulle colonne dei multipli del vettore (-2,3,1), quindi sono tutte le matrici del tipo

$$\begin{pmatrix}
-2a & -2b & -2c \\
3a & 3b & 3c \\
a & b & c
\end{pmatrix}$$

Dato che ci sono 3 parametri a,b,c, la dimensione di U è 3 e una base di U è formata dalle matrici

$$\begin{pmatrix} -2 & 0 & 0 \\ 3 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 0 & -2 & 0 \\ 0 & 3 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 0 & 0 & -2 \\ 0 & 0 & 3 \\ 0 & 0 & 1 \end{pmatrix}.$$

Esercizio 3. Consideriamo la matrice

$$A = \begin{pmatrix} 1 & -1 & -1 \\ \alpha & 1 - \alpha & -\alpha \\ -\alpha & \alpha - 1 & \alpha \end{pmatrix}$$

- (a) Dire se esistono valori di α tali che la matrice A sia invertibile.
- (b) Determinare il polinomio caratteristico e gli autovalori di A.
- (c) Determinare una base degli autospazi e dire se la matrice A è diagonalizzabile.
- (d) Ora poniamo $\alpha = 0$. Dire se, per tale valore di α , la matrice A è simile alla sua trasposta A^T (la risposta deve essere giustificata).

Soluzione. (a) Calcolando il determinante di A si trova det A = 0 per ogni α (infatti la terza colonna è l'opposto della prima), quindi la matrice non è invertibile per nessun valore di α .

- (b) Calcolando il polinomio caratteristico si trova che esso non dipende da α (tutti gli α si semplificano), quindi anche gli autovalori non dipendono da α . Gli autovalori sono 0 (con molteplicità 1) e 1 (con molteplicità 2).
- (c) Per quanto riguarda l'autospazio associato all'autovalore 0 non ci sono problemi: esso ha dimensione 1 ed è generato dal vettore $v_1=(1,0,1)$. I problemi riguardano solo l'autospazio associato all'autovalore 1, che ha molteplicità algebrica 2. Infatti calcolando gli autovettori per l'autovalore 1 si trova che se $\alpha \neq 0$ tale autospazio ha dimensione 1 ed è generato dal vettore $v_2=(0,-1,1)$. In questo caso la matrice A non è diagonalizzabile perché la dimensione dell'autospazio non è uguale alla molteplicità algebrica dell'autovalore 1.
- (d) Rimane quindi solo da vedere cosa succede se $\alpha=0$. In tal caso si trova che l'autospazio associato all'autovalore 1 ha dimensione 2, uguale alla molteplicità algebrica dell'autovalore 1. Pertanto se $\alpha=0$ la matrice A è diagonalizzabile ed è simile alla matrice diagonale

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Quindi la matrice A^T è simile a D^T . Ma $D^T = D$, quindi A^T è simile a D che, a sua volta è simile ad A. Per la proprietà transitiva si conclude che A^T è simile ad A.

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ sono dati il punto P=(3,-3,0) e la retta r di equazioni

$$r: \begin{cases} 2x + y = 2\\ x - y + z = 3 \end{cases}$$

- (a) Scrivere l'equazione cartesiana del piano π passante per il punto P e perpendicolare alla retta r.
- (b) Determinare la proiezione ortogonale di P sulla retta r e la distanza di P da r.
- (c) Sia s la retta di equazioni parametriche x = 2 + 2t, y = -3t, z = 1 t. Determinare se le rette r e s sono incidenti, parallele o sghembe.
- (d) Scrivere le equazioni parametriche della retta ℓ passante per il punto A=(1,2,-4) che interseca entrambe le rette r e s. Trovare le coordinate dei punti $\ell \cap r$ e $\ell \cap s$.

Soluzione. (a) Due punti della retta r sono $R_1=(1,0,2)$ e $R_2=(0,2,5)$, pertanto il vettore di r è $v_r=R_2-R_1=(-1,2,3)$. Dato che il piano π deve essere perpendicolare alla retta r, la sua equazione deve essere del tipo -x+2y+3z+d=0. Per trovare il valore di d basta imporre la condizione di passaggio per il punto P. Si trova d=9, quindi l'equazione di π è -x+2y+3z+9=0.

- (b) La proiezione ortogonale di P sulla retta r è il punto H di intersezione tra la retta r e il piano π . Mettendo a sistema le equazioni di r e di π si trova H=(2,-2,-1). La distanza di P da r è la norma del vettore HP=(1,-1,1), quindi dist $(P,r)=\sqrt{3}$.
- (c) Il vettore della retta $s \in v_s = (2, -3, -1)$. Dato che $v_s \in v_r$ non sono proporzionali, le rette $s \in r$ non sono parallele. Mettendo a sistema le equazioni di s con quelle di r si ottiene un sistema che non ha soluzione, quindi $s \in r$ non sono incidenti. Pertanto sono due rette sghembe.
- (d) Iniziamo trovando l'equazione del piano che contiene la retta r e passa per il punto A. A tal fine consideriamo il fascio di piani di asse r:

$$\lambda(2x + y - 2) + \mu(x - y + z - 3) = 0.$$

Imponendo il passaggio per A si ottiene $\lambda=4\mu$, quindi possiamo porre $\mu=1$ e $\lambda=4$. In questo modo si ottiene il piano di equazione 9x+3y+z-11=0. Per trovare il punto $\ell\cap s$ basta mettere a sistema l'equazione del piano appena trovato con l'equazione della retta s: in questo modo si trova $\ell\cap s=(0,3,2)$. A questo punto possiamo trovare il vettore v_ℓ della retta ℓ come differenza tra il punto A=(1,2,-4) e il punto $\ell\cap s=(0,3,2)$: si trova $v_\ell=(1,-1,-6)$. Possiamo quindi scrivere le equazioni parametriche della retta ℓ :

$$\ell: \begin{cases} x = t \\ y = 3 - t \\ z = 2 - 6t \end{cases}$$

Il punto $\ell \cap r$ si può ora trovare mettendo a sistema le equazioni di ℓ con le equazioni di r. Si trova $\ell \cap r = (-1, 4, 8)$.