- 1. (1. (1. (1. (1.1.1))] 已知方程 $x^2 + px + 4 = 0$ 的所有解组成的集合为 A, 方程 $x^2 + x + q = 0$ 的所有解组成的集合为 B, 且 $A \cap B = \{4\}$. 求集合 $A \cup B$ 的所有子集.
- 2. (000020) 设一元二次方程 $2x^2-6x-3=0$ 的两个实根为 x_1,x_2 , 求下列各式的值:
 - (1) $(x_1+1)(x_2+1)$;
 - (2) $(x_1^2 1)(x_2^2 1)$.
- 3. (000023) 若关于 x 的不等式 (a+1)x-a < 0 的解集为 $(2,+\infty)$, 求实数 a 的值, 并求不等式 (a-1)x+3-a > 0 的解集.
- 4. (000025) 试写出一个二次项系数为 1 的一元二次不等式, 使它的解集分别为:
 - $(1) \ (-\infty, \sqrt{2}) \cup (\sqrt{2}, +\infty);$
 - (2) $[2-\sqrt{3},2+\sqrt{3}].$
- 5. (000028) 设关于 x 的不等式 $a_1x^2 + b_1x + c_1 > 0$ 与 $a_2x^2 + b_2x + c_2 > 0$ 的解集分别为 A、B, 试用集合运算表示下列不等式组的解集:

(1)
$$\begin{cases} a_1x^2 + b_1x + c_1 > 0, \\ a_2x^2 + b_2x + c_2 > 0; \\ a_1x^2 + b_1x + c_1 \le 0, \\ a_2x^2 + b_2x + c_2 > 0; \end{cases}$$
(2)
$$\begin{cases} a_1x^2 + b_1x + c_1 \le 0, \\ a_2x^2 + b_2x + c_2 \le 0, \\ a_2x^2 + b_2x + c_2 \le 0. \end{cases}$$
(3)
$$\begin{cases} a_1x^2 + b_1x + c_1 \le 0, \\ a_2x^2 + b_2x + c_2 \le 0. \end{cases}$$

- 6. (000033) 已知一元二次方程 $x^2+px+p=0$ 的两个实根分别为 α 、 β , 且 $\alpha^2+\beta^2=3$, 求实数 p 的值.
- 7. (000034) 已知一元二次方程 $2x^2 4x + m + 3 = 0$ 有两个同号实根, 求实数 m 的取值范围.
- 8. (000035) 设 $a, b \in \mathbb{R}$, 已知关于 x 的不等式 (a+b)x+(b-2a)<0 的解集为 $(1, +\infty)$, 求不等式 (a-b)x+3b-a>0 的解集.
- 9. (000047) 方程 (x-1)(x-2)(x-3)=0 的三个根 1、2、3 将数轴划分为四个区间,即 $(-\infty,1)$, (1,2), (2,3), $(3,+\infty)$. 试在这四个区间上分别考察 (x-1)(x-2)(x-3) 的符号,从而得出不等式 (x-1)(x-2)(x-3)>0 与 (x-1)(x-2)(x-3)<0 的解集.
 - 一般地, 对 x_1 、 x_2 、 $x_3 \in \mathbb{R}$, 且 $x_1 \le x_2 \le x_3$, 试分别求不等式 $(x x_1)(x x_2)(x x_3) > 0$ 与 $(x x_1)(x x_2)(x x_3) < 0$ 的解集 (提示: x_1 、 x_2 、 x_3 相互之间可能相等, 需要分情况讨论).
- 10. (000378) 不等式 $\frac{x+1}{x+2} < 0$ 的解集为______.
- 11. (000389) 不等式 x|x-1| > 0 的解集为 .
- 12. (000407) 若关于 x 的不等式 $\frac{x-a}{x-b} > 0 (a,b \in \mathbf{R})$ 的解集为 $(-\infty,1) \cup (4,+\infty)$, 则 $a+b = \underline{\hspace{1cm}}$

13.	(000415) 已知 x 、 y 满足曲线方程 $x^2 + \frac{1}{y^2} = 2$,则 $x^2 + y^2$ 的取值范围是		
14.	(000459) 不等式 $\frac{x+2}{x+1} > 1$ 的解集为		
15.	(000540) 不等式 $\frac{1}{ x-1 } \ge 1$ 的解集为		
16.	(000586) 不等式 $\frac{x}{x+1} \le 0$ 的解集为		
17.	(000639) 若方程组 $\begin{cases} ax + 2y = 3, \\ 2x + ay = 2 \end{cases}$ 无解, 则实数 $a = $		
18.	(000647) 若关于 x,y 的方程组 $\begin{cases} ax+y-1=0, \\ 4x+ay-2=0 \end{cases}$ 有无数多组解,则实数 $a=$		
19.	(000757) 不等式 $ 1-x > 1$ 的解集是		
20.	(000797) 不等式 $\frac{x}{x-1} < 0$ 的解集为		
21.	(000816) 不等式 $ x-3 < 2$ 的解集为		
22.	(000976) 在下列各命题的右边写出其否定形式 (否定命题).		
	(1) $2 \times 2 = 5$;		
	(2) √3 - π 有意义;		
	(3) a 不是非负数;		
	(4) \sqrt{a} 不是无理数;		
	(5) $x = 1$ 不是方程 $x(x+1) = 0$ 的根;		
23.	(000977) 下列各组命题是否互为否定形式? (✓ or ×).		
	(1) 所有直角三角形都不是等边三角形; / 所有直角三角形都是等边三角形.		
(2) 对一切实数 $x, x^2 + 1 \neq 0$; / 存在实数 x , 使得 $x^2 + 1 = 0$.			
	(3) 所有一元二次方程都没有实数根; / 有些一元二次方程没有实数根.		
	(4) 所有自然数都不是 0; / 所有自然数都是 0.		
(5) 存在实数 x , 使得 $x^2 - 5x + 6 = 0$; / 所有实数 x , 都使得 $x^2 - 5x + 6 \neq 0$.			
(6) 对于一些实数 $x, x^3 + 1 = 0$; / 对于一些实数 $x, x^3 + 1 \neq 0$.			
	(7) 有些三角形两边的平方和等于第三边的平方; / 所有三角形两边的平方和不等于第三边的平方.		

24. (000987) 已知实数 $t \neq 0$. 证明: "x = t 是方程 $ax^3 + bx^2 + cx + d = 0$ 的根"的充分必要条件是 " $x = \frac{1}{t}$ 是方程 $dx^3 + cx^2 + bx + a = 0$ 的根".

_____(8) 对于某些实数 x, x = x + 1; / 对于任意实数 $x, x \neq x + 1$.

_____(9) 负实数没有平方根; / 负实数有平方根.

- 25. (000990) 用描述法或列举法 (自行择其一种) 表示下列集合.
 - (1) 大于 0 且小于 3 的实数的全体.
 - (2) 方程 $x^3 x = 0$ 的解的全体.
 - (3) 一次函数 y = 2x + 1 图像上所有点的全体.
 - (4)被3除余2的整数的全体.
- 26. (001040) 解方程: $x + \sqrt{2+x} = 0$.

27. (001041) 解方程:
$$\frac{3}{4x^2 + 20x + 25} = \frac{5}{4x^2 + 8x - 5} - \frac{2}{4x^2 - 4x + 1}$$
.

- 28. (001042) 设常数 $b \ge 0$, 求证: 方程 $\sqrt{f(x)} = b$ 与方程 $f(x) = b^2$ 同解.
- 29. (001043) 解方程: $\sqrt{1+x} = \sqrt{2x-5} + 1$.
- 30. (001044)(1) 求证: 方程 " $\sqrt{f(x)}\sqrt{g(x)} = h(x)$ " 与 " $f(x)g(x) = (h(x))^2$ 且 $h(x) \ge 0$ 且 $f(x) \ge 0$ 且 $g(x) \ge 0$ " 同解.
 - (2) 试举一例并分析, 说明: 方程 " $\sqrt{f(x)}\sqrt{g(x)} = h(x)$ " 和 " $f(x)g(x) = (h(x))^2$ 且 $h(x) \ge 0$ 且 $f(x) \ge 0$ " 有时会不同解.
- 31. (001045)(1) 求证: 方程 " $\sqrt{f(x)} + \sqrt{g(x)} = \sqrt{h(x)}$ " 与方程 " $f(x) + g(x) + 2\sqrt{f(x)}\sqrt{g(x)} = h(x)$ " 同解.
 - (2) 试举一例并分析, 说明: 方程 " $\sqrt{f(x)} + \sqrt{g(x)} = \sqrt{h(x)}$ " 与方程 " $f(x) + g(x) + 2\sqrt{f(x)g(x)} = h(x)$ " 有时会不同解.
- 32. (001046) **解方程**: $111x^2 + 83x 28 = 0$.
- 33. (001047) 解方程: $x^2 + x = \sqrt{5} + 5$.
- 34. (001048) 求实数 a, b, 使得关于 x 的方程 $x^2 + 2(1+a)x + (3a^2 + 4ab + 4b^2 + 2) = 0$ 有实根.
- 35. (001049) 解关于 x 的方程: ax 1 = x + ab.
- 36. (001050) 解关于 x 的方程: $m^2(x-1) + m(x+3) = 6x + 2$.
- 37. (001051) 已知实数 $a,b,c \neq 0$. 解关于 x 的方程: $\frac{x-b-c}{a} + \frac{x-c-a}{b} + \frac{x-a-b}{c} = 3$.
- 38. (001052) 若关于 x 的方程 2ax = (a+1)x+6 的解集真包含于 \mathbf{Z}^+ , 求 a.

39. (001053)[选做] 解关于
$$x$$
 的方程: $\frac{(x-a)^2}{(x-b)(x-c)} + \frac{(x-b)^2}{(x-c)(x-a)} + \frac{(x-c)^2}{(x-a)(x-b)} = 3.$

- 40. (001054) **解方程**: $x^4 + x^3 7x^2 x + 6 = 0$.
- 41. (001055) 解方程: $2x^5 x^4 15x^3 + 9x^2 + 16x + 4 = 0$.
- 42. (001056) 解方程: $(9-16x^2)^3 + (16-9x^2)^3 + (25x^2-25)^3 = 0$.
- 43. (001057) 解方程: $2(x^2+6x+1)^2+5(x^2+6x+1)(x^2+1)+2(x^2+1)^2=0$

- 44. (001058) 解方程: (x+1)(x+3)(x+5)(x+7) = -12.
- 45. (001059) 解方程: $6x^4 + 5x^3 38x^2 + 5x + 6 = 0$.
- 46. (001060) 解方程: $6x^4 25x^3 + 12x^2 + 25x + 6 = 0$.
- 47. (001061)[选做] 解方程: $x^4 + 8x^3 + 24x^2 + 32x + 12 = 0$.
- 48. (001062) 已知关于 x 的方程 $x^2 + 2x 1 = 0$ 的两个实根为 $x_1, x_2, \, \mathbb{N}$ $x_1 + x_2 = \underline{\hspace{1cm}}, \, x_1 x_2 = \underline{\hspace{1cm}}$
- 49. (001063) 已知关于 x 的方程 $ax^2 + bx + 1 = 0$ 有两个实根 $\frac{1}{2}, \frac{1}{3}$, 则 $b = _____$.
- 50. (001064) 已知关于 x 的方程 $x^2 + bx 2 = 0$ 的一个实根为 2, 则另一实根为_____
- 51. (001065) 已知关于 x 的方程 $-x^2 3x + 3 = 0$ 的两个实根为 $x_1, x_2,$ 则 $\frac{x_1}{x_2} + \frac{x_2}{x_1} =$ ______.
- 52. (001066) 已知关于 x 的二次方程 $ax^2 + bx + c = 0$ 的两实根为 $x_1, x_2, \, \mathbb{M}$ $|x_1 x_2| =$ _____
- 53. (001067) 已知关于 x 的方程 $x^2 + 2mx + 6 = 0$ 的两实根的倒数之和为 1, 则实数 m =___
- 54. (001068) 关于 y 的方程 $4y^2 + (b^2 3b 10)y + 4b = 0$ 的两个实根互为相反数, 则实数 b =___
- 55. (1001069) 若关于 x 的方程 $x^2 mx + 2m 2 = 0$ 的两实根的平方和为 1, 则实数 m = 1

- 58. (001072) 关于 x 的方程 $x^2 + px + q = 0$ 的两个实根之比为 1:2, 判别式的值为 1, 求实数 p,q.
- 59. (001073) 已知 α, β 是关于 x 的二次方程 $x^2 + (p-2)x + 1 = 0$ 的两根. 试求 $(1 + p\alpha + \alpha^2)(1 + p\beta + \beta^2)$ 的值.
- 60. (1001074) 设 α, β 是方程 $2x^2 + x 7 = 0$ 的两根, 试以 $\frac{1}{\alpha^2 1}, \frac{1}{\beta^2 1}$ 为根作一个新的二次方程.
- 61. (001075) 设常数 $k \in \mathbb{N}$, 若关于 x 的方程 $x^2 = 2(k+1)x (k^2 + 4k 3)$ 的两个实根符号相反, 求 k 的值, 并解 此方程.
- 62. (001076) 设常数 a>0, m>0, 若方程组 $\begin{cases} y^2=4a(x+a), \\ x+y+m=0 \end{cases}$ 有两组不同的解 $(x_1,y_1),(x_2,y_2),$
 - (1) 求 a, m 所满足的条件;
 - (2) 用 a, m 表示 $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$
- 63. (001077)[选做] 解方程组: $\begin{cases} x+y+z=15, \\ x^2+y^2+z^2=83, \\ x^3+y^3+z^3=495. \end{cases}$

64. (001078) 解方程:
$$1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{x}}}} = 2.$$

65. (001079) 解方程:
$$\frac{x^4 - (x-1)^2}{(x^2+1)^2 - x^2} + \frac{x^2 - (x^2-1)^2}{x^2(x+1)^2 - 1} + \frac{x^2(x-1)^2 - 1}{x^4 - (x+1)^2} = x^2.$$

66. (001080)[选做] 解方程:
$$\frac{1}{(x-5)(x-4)} + \frac{1}{(x-4)(x-3)} + \dots + \frac{1}{(x+4)(x+5)} = \frac{10}{11}.$$

- 67. (001081) 解方程: $\sqrt[3]{3-\sqrt{x+1}}+\sqrt[3]{2}=0$.
- 68. (001082) 解方程: $\sqrt{3x+4}+2=3\sqrt[4]{3x+4}$.
- 69. (001083) 已知 a > b, $a, b \in \mathbf{R}$. 解关于 y 的方程: $\sqrt{a-y} + \sqrt{y-b} = \sqrt{a-b}$.
- 70. (001084)[选做] 解方程: $\sqrt[4]{97-x} + \sqrt[4]{x} = 5$.
- 71. (001101) 求不等式 $3x-1>2-\frac{x+1}{3}\geq 1-\frac{2x-3}{2}$ 的解集.
- 72. (001105) 关于 x 的不等式 $ax^2 + bx + c > 0$ 的解集为 $(-\infty, 1) \cup (3, +\infty)$, 求 a : b : c. 在你求出的这个比值下,不等式的解集一定如题中所说吗? 为什么?
- 73. (001106) 解不等式组: $x^2 2x 3 \le 0 < x^2 3x + 2$
- 74. (001115) 设 a, m 是实常数, 且关于 x 的不等式 $\sqrt{x} > ax + \frac{3}{2}$ 的解集为 (4, m), 求 a, m 的值.
- 75. (001117) 已知关于 x 的不等式 $|ax+1| \le b$ 的解集为 [2,3], 求实常数 a,b 的值.
- 76. (001118) 若关于 x 的不等式 |x-1|-|x-2| < a 的解集为 \mathbf{R} , 求实数 a 的取值范围.
- 77. (001122) 在解不等式时,有时我们可以用不等式的性质来求解.例如解不等式 $x^2+x+1\geq 0$,我们可以利用不等式的基本性质,得到 $x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\geq \frac{3}{4}>0$ 恒成立,因此解集为 R.请你用基本不等式的观点解以下两个不等式:

(1)
$$x + \frac{1}{x} > 1$$
;

- 78. (002703) 设全集 $U = \mathbf{R}$, 函数 y = f(x), y = g(x), y = h(x) 的定义域均为 \mathbf{R} . 设集合 $A = \{x | f(x) = 0\}$, $B = \{x | g(x) = 0\}$, $C = \{x | h(x) = 0, \ x \in \mathbf{R}\}$, 则方程 $\frac{f^2(x) + g^2(x)}{h(x)} = 0$ 的解集是_____(用 A, B, C 表示).
- 79. (002739) 填空: (填"充分不必要"、"必要不充分"、"充要"、"既不充分也不必要")

 - (2) 对于实数 $x, y, p: x + y \neq 8$ 是 $q: x \neq 2$ 或 $y \neq 6$ 的 条件;
 - (3) 已知 $x, y \in \mathbb{R}$, $p: (x-1)^2 + (y-2)^2 = 0$ 是 q: (x-1)(y-2) = 0 的_____ 条件;
 - *(4) 设 $x, y \in \mathbb{R}$, 则 " $x^2 + y^2 < 2$ " 是 " $|x| + |y| \le \sqrt{2}$ " 的______ 条件; 又是 "|x| + |y| < 2" 的______ 条件.

- (5) 设 $a_1, b_1, c_1, a_2, b_2, c_2$ 均为非零实数, 方程 $a_1x^2 + b_1x + c_1 = 0$ 和方程 $a_2x^2 + b_2x + c_2 = 0$ 的实数解集分 别为 M 和 N, 则 " $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ " 是 "M = N" 的______条件.
- 80. (002741) 已知关于 x 的实系数二次方程 $ax^2 + bx + c = 0$ (a > 0), 分别求下列命题的一个充要条件:
 - (1) 方程有一正根, 一根是零;
 - (2) 两根都比 2 小.
- 81. (002747) 已知 m 是实常数. 命题甲: 关于 x 的方程 $x^2 + x + m = 0$ 有两个相异的负根; 命题乙: 关于 x 的方程 $4x^2 + x + m = 0$ 无实根, 若这两个命题有且只有一个是真命题, 求实数 m 的取值范围. *

82. (002770) 下列不等式中解集为 R 的是 ().

A.
$$x^2 - 6x + 9 > 0$$

B.
$$4x^2 + 12x + 9 < 0$$

A.
$$x^2 - 6x + 9 > 0$$
 B. $4x^2 + 12x + 9 < 0$ C. $3x^2 - x + 2 > 0$ D. $3x^2 - x + 2 < 0$

D.
$$3x^2 - x + 2 < 0$$

- 83. (002771) 不等式 $(x-1)^2(2-x) \le 0$ 的解集是_______; $(x-1)^2(2-x) > 0$ 的解集是______.
- 84. (002772) 已知关于 x 的不等式 $x^2 + ax + b < 0$ 的解集为 (-1,2), 则 a + b =_____.
- 85. (002773) 不等式 $-1 < x^2 + 2x 1 \le 2$ 的解集是
- 86. (002775) 已知关于 x 的不等式 $ax^2-bx+c>0$ 的解集是 $(-\frac{1}{2},2)$, 对于 a,b,c 有以下结论: ① a>0; ② b>0; ③ c > 0; ④ a + b + c > 0; ⑤ a - b + c > 0. 其中正确的序号有_
- 87. (002777) 已知关于 x 的不等式 (2a-b)x+a-5b>0 的解集是 $(-\infty,\frac{10}{7})$, 则关于 x 的不等式 ax>b 的解集
- 88. (002778) 已知关于 x 的不等式 $ax^2 + bx + c > 0$ 的解集为 $\{x | 2 < x < 4\}$, 求关于 x 的不等式 $cx^2 + bx + a < 0$ 的解集.
- 89. (002781) 不等式 $-6x^2 x + 2 \le 0$ 的解集是 .
- 90. (002784) 若关于 x 的不等式 $ax^2+bx+c>0$ 的解集为 (-1,2), 求关于 x 的不等式 $a(x^2+1)+b(x-1)+c>2ax$ 的解集.
- 91. (002785) 若关于 x 的不等式 $(a^2-4)x^2+(a+2)x-1\geq 0$ 的解集为 \emptyset , 求实数 a 的取值范围.
- 92. (002790) 不等式 $\frac{3x+4}{5} \ge 6$ 的解集是_____.
- 93. (002791) 若不等式 $\frac{2x+a}{x+b} \le 1$ 的解集为 $\{x|1 < x \le 3\}$, 则 a+b 的值是______.
- 94. (002792) 不等式 $(x-1)^2(2-x)(x+1) \le 0$ 的解集是
- 95. (002793) 不等式 2 < |x+1| < 3 的解集是_____.

- 96. (002794) 不等式 |x-2| > 9x 的解集是______.
- 97. (002795) 不等式 $4^{x-\frac{5}{x}+1} \le 2$ 的解集是_____.
- 98. (002796) 不等式 $\log_{\frac{1}{4}} 4x^2 > \log_{\frac{1}{4}} (3-x)$ 的解集是______
- 99. (002798)(1) 关于 x 的不等式 $|x-1|-|x-2|< a^2+a-1$ 的解集是 \mathbf{R} , 求实数 a 取值范围;
 - (2) 关于 x 的不等式 $|x-1| |x-2| < a^2 + a 1$ 有实数解, 求实数 a 的取值范围.
- 100. (002799)* 设全集 $U = \mathbf{R}$, 已知关于 x 的不等式 $|x-1| + a 1 > 0 (a \in \mathbf{R})$ 的解集为 A, 若 $\mathbf{C}_U A \cap \mathbf{Z}$ 恰有 3 个元素, 求 a 的取值范围.
- 101. (002800) 不等式 $\left| \frac{x}{1+x} \right| > \frac{x}{1+x}$ 的解集是______.
- 102. (002801) 不等式 $\frac{2x}{1-x} \le 1$ 的解集是______.
- 103. (002802) 不等式 $\frac{1+|x|}{|x|-1} \ge 3$ 的解集是_____.
- 104. (002804) 已知 a>0 且 $a\neq 1$, 关于 x 的不等式 $a^x>\frac{1}{2}$ 的解集是 $(-\infty,1)$, 则 a=______.
- 105. (002805) 关于 x 的不等式 $\log_{\frac{1}{2}}(x-\frac{1}{x})>0$ 的解集是_____
- 106. (002806) 若不等式 |3x-b|<4 的解集中的整数有且仅有 1, 2, 3, 则 b 的取值范围为______
- 107. (002807) 已知关于 x 的不等式 $\frac{ax-5}{x^2-a} < 0$ 的解集为 M.
 - (1) 当 a = 5 时, 求集合 M;
 - (2) 若 $2 \in M$ 且 $5 \notin M$, 求实数 a 的取值范围.
- 108. (002809)(1) 若关于 x 的不等式 $x^2 kx + 1 > 0$ 的解集为 \mathbf{R} , 求实数 k 的取值范围;
 - (2) * 若关于 x 的不等式 $x^2 kx + 1 > 0$ 在 [1, 2] 上有解, 求实数 k 的取值范围.
- 109. (003675) 不等式 $\frac{x-1}{x} > 1$ 的解集为_____.
- 110. (003716) 若函数 $f(x) = ax^2 + bx + c \ (a > 0)$,不等式 $ax^2 + bx + c < 0$ 的解集为 $\{x | -2 < x < 0\}$,当 0 < n < m 时,f(n),f(m), $f(\sqrt{mn})$, $f\left(\frac{m+n}{2}\right)$ 这四个值中最大的一个是______.
- 111. (003754) 定义区间 (c,d),(c,d],[c,d),[c,d] 的长度均为 d-c (d>c). 若 $a\neq 0$, 关于 x 的不等式 $x^2-\left(2a+\frac{1}{a}\right)x-1<0$ 的非空解集 (用区间表示) 记为 I(a),则当区间 I(a) 的长度取得最小值时,实数 a 的值为_______.
- 112. (003758) 已知 $a \in \mathbb{R}$, 命题 P:"实系数一元二次方程 $x^2 + ax + 2 = 0$ 的两根都是虚数"; 命题 Q:"存在复数 z 同时满足 |z| = 2 且 |z + a| = 1". 是判断命题 P 和命题 Q 之间是否存在推出关系? 说明你的理由.
- 113. (003774) 已知集合 $A = \left\{ x \left| \frac{2x+1}{x+2} < 1, \ x \in \mathbf{R} \right. \right\}$,函数 $f(x) = |mx+1| \ (m \in \mathbf{R})$. 函数 $g(x) = x^2 + ax + b \ (a, b \in \mathbf{R})$ 的值域为 $[0, +\infty)$.

	(1) 若不等式 $f(x) < 3$ 的	解集为 A, 求 m 的值;			
	(2) 在 (1) 的条件下, 若	$f(x) - 2f\left(\frac{x}{2}\right) \le k$ 恒成立	, 求 k 的取值范围;		
	·	x) < c 的解集为 $(m, m + 6)$			
114.	(003777) 若存在实数 a, 使行为	導关于 x 的不等式 $ax + b$	$o > x + 1$ 的解集为 $\{x x\}$: < 1}, 则实数 b 的取值花	題
115.	(003861) 设 $A(-1,0)$, $B(1,0)方程 x^2 + y^2 = 1 的解, 则$		⁷ 为直角顶点的三角形的三	三个顶点; 条件乙: C 的坐椅	徒
	A. 充分非必要条件	B. 必要非充分条件	C. 充要条件	D. 既不充分又不。 件	必要条
116.	$_{\scriptscriptstyle{(004125)}}$ 关于 x 的不等式 $\frac{1}{x}$	> 1 的解集为			
117.	(004249) 不等式 $\frac{1}{x-1} > 1$	的解集为			
118.	$_{(004312)}$ 不等式 $ 1-x >1$	的解集是			
119.	(004409) 不等式 $\frac{1}{x} \le 3$ 的解	集是			
120.	(004422) 已知 a_1 、 a_2 与 b_1 、	b_2 是 4 个不同的实数, 关	于 x 的方程 $ x - a_1 + x - a_2 $	$-a_2 = x - b_1 + x - b_2 $ (1)	角解
	集为 A , 则集合 A 中元素	的个数为 ().			
	A. 1 ↑		B. 0 个或 1 个或 2 个		
	C. 0 个或 1 个或 2 个或	无限个	D. 1 个或无限个		
121.	(004469) 不等式 $\frac{1}{x-1} > 1$	的解集为			
122.	$_{\scriptscriptstyle (004502)}$ 已知两条直线 l_1 、	l_2 的方程分别为 $l_1:ax+$	$y - 1 = 0 \; \text{fill} \; l_2 : x - y - 1 = 0 \; \text{fill} \; l_2 : $	+1=0, 则 " $a=1$ " 是 "直	Ĺ线
	$l_1 \perp l_2$ "的().				
	A. 充分不必要条件	B. 必要不充分条件	C. 充要条件	D. 既不充分也不。 件	必要条

123. (004554) 不等式 |x+1| < 5 的解集为_____.

124. $_{(004557)}$ 已知二元线性方程组 $\begin{cases} 2x+2y=-1, \\ 4x+a^2y=a \end{cases}$ 有无穷多解,则实数 $a=___$

- 125. (004636) 已知 a 是常数, 设函数 $f(x) = (a-2)x^2 + 2(a-2)x 4$.
 - (1) 解不等式: f(x) > -4;
 - (2) 求实数 a 的取值范围, 使得 f(x) < 0 对任意 $x \in [1,3]$ 恒成立;
- 126. $_{(004650)}$ 已知常数 $k,b,t\in\mathbf{R}$ 直线 f(x)=kx+b 与曲线 $g(x)=\frac{t^2}{x}$ 交于点 $M(m,-1),\ N(n,2),\ 则不等式 <math>f^{-1}(x)\geq g^{-1}(x)$ 的解集为______.

127. (004697) 已知非空集合 A,B 满足: $A \cup B = R, \ A \cap B = \varnothing,$ 函数 $f(x) = \begin{cases} x^2, & x \in A, \\ & \text{对于下列两个} \\ 2x-1, & x \in B. \end{cases}$

命题: ① 存在唯一的非空集合对 (A,B), 使得 f(x) 为偶函数; ② 存在无穷多非空集合对 (A,B), 使得方程 f(x) = 2 无解. 下面判断正确的是 ().

- A. ① 正确, ② 错误 B. ① 错误, ② 正确 C. ① 、② 都正确
- D. ① 、② 都错误
- 128. (004772) 在"① 难解的题目、② 方程 $x^2 + 1 = 0$ 在实数集内的解、③ 直角坐标平面内第四象限的一些点、④ 很 多多项式"中,能够组成集合的是().
 - A. (2)

C. (2)(4)

D. (1)(2)(4)

- 129. (004775) 方程组 $\begin{cases} 2x+y=0, & \text{的解集是} \ (&). \end{cases}$

- C. $\{(-1,2)\}$ D. $\{(x,y)|x=-1, y=2\}$

- 130. (004777) 用列举法表示下列各集合.
 - (1) 不大于 6 的非负数整数所组成的集合: ;
 - (2) 方程 $x^3 x^2 x + 1 = 0$ 的解所组成的集合: ;
 - (3) $\{y|y=x^2-1, |x| \le 2, x \in \mathbf{Z}\}:$ _____;
 - (4) $\{(x,y)|y=x^2-1, |x| \le 2, x \in \mathbf{Z}\}$:_____;
 - (5) $\{(x,y)|x+y=5, x \in \mathbb{N}, y \in \mathbb{Z}\}:$ _____.
- 131. (004818) 设集合 $M = \{x|a_1x^2 + b_1x + c_1 = 0\}, N = \{x|a_2x^2 + b_2x + c_2 = 0\},$ 方程 $(a_1x^2 + b_1x + c_1)(a_2x^2 + b_2x + c_2)$ $b_2x + c_2 = 0$ 的解集是 ().
- 132. (004830) 设方程 $x^2 + px 12 = 0$ 的解集为 A, 方程 $x^2 + qx + r = 0$ 的解集为 B, 且 $A \neq B$, $A \cup B = \{-3, 4\}$, $A \cap B = \{-3\}$, 求 p, q, r 的值.
- 133. (004843) 下列语句哪些不是命题? 哪些是命题? 如果是命题, 那么它们是真命题还是假命题? 为什么?
 - (1) 你到过北京吗?
 - (2) 当 x = 4 时, 2x < 0;
 - (3) 若 $x \in \mathbb{R}$, 则方程 $x^2 x + 1 = 0$ 无实数根;
 - (4) 1 + 2 = 5**或** $3 \ge 3$;
 - (5) x < -2**或**x > 2;
- 134. (004848) 已知命题 α : 方程 $x^2 + mx + 1 = 0$ 有两个相异负实数根, 命题 β : $4x^2 + 4(m-2)x + 1 = 0$ 无实数根, 命题 α, β 有且只有一个为真命题, 求实数 m 的取值范围.
- 135. (004865) 已知 $\alpha: |a-1| < 2, \beta:$ 方程 $x^2 + (a+2)x + 1 = 0 (x \in \mathbf{R})$ 没有正根, 求实数 a 的取值范围, 使 α, β 有且只有一个为真命题.

- 136. (004866) 已知关于 x 的方程 $(x^2-1)^2-|x^2-1|+k=0$. 判断下列命题的真假:
 - (1) 存在实数 k, 使得方程恰有 2 个不同的实数根;
 - (2) 存在实数 k, 使得方程恰有 4 个不同的实数根;
 - (3) 存在实数 k, 使得方程恰有 5 个不同的实数根;
 - (4) 存在实数 k, 使得方程恰有 8 个不同的实数根.
- 137. (004867) 如果 a, b, c 都是实数, 那么 "ac < 0" 是 "关于 x 的方程 $ax^2 + bx + c = 0$ 有一个正根和一个负根"的 ().
 - A. 必要不充分条件

B. 充分不必要条件

C. 充要条件

- D. 既不充分也不必要条件
- 138. (004869) 设 α, β 是方程 $x^2 ax + b = 0$ 的两个实数根, 试分析 "a > 2 且 b > 1" 是 "两根 α, β 均大于 1" 的什 么条件.
- 139. (004873) 已知 $\triangle ABC$ 的三边为 a,b,c 求证: 关于 x 的方程 $x^2+2ax+b^2=0$ 与 $x^2+2cx-b^2=0$ 有公共根 的充要条件是 $A = 90^{\circ}$.
- 140. (004880) 方程 $ax^2 + 2x + 1 = 0$ 至少有一个负实数根的充要条件是 ().

A. 0 < a < 1

B. a > 1

C. a < 1

- D. 0 < a < 1 或 a < 0
- 141. (004913) 已知关于 x 的不等式 $ax^2 + bx + c < 0$ 的解集是 $\{x | x < -2$ 或 $x > -\frac{1}{2}\}$, 求 $ax^2 bx + c > 0$ 的解集.
- 142. (004918) 不等式 |x|-3<0 的解集是 ().

A. $\{x | x < \pm 3\}$

B. $\{x | -3 < x < 3\}$ C. $\{x | x > 3\}$

D. $\{x | x < -3\}$

143. (004922) 不等式 $2x + 3 - x^2 > 0$ 的解集是 ().

- A. $\{x | -\frac{3}{2} \le x < 1\}$ B. $\{x | -1 < x < 3\}$ C. $\{x | 1 \le x < 3\}$ D. $\{x | -\frac{3}{2} \le x < 3\}$
- 144. (004923) 不等式 $6x^2 + 5x < 4$ 的解集是 ().

A. $\{x|x<-\frac{4}{3}$ 或 $x>\frac{1}{2}\}$ B. $\{x|-\frac{4}{3}< x<\frac{1}{2}\}$. C. $\{x|-\frac{1}{2}< x<\frac{4}{3}\}$. D. $\{x|x<-\frac{1}{2}$ 或 $x>\frac{4}{3}\}$

145. (004924) 当 a < 0 时, 关于 x 的不等式 $x^2 - 4ax - 5a^2 > 0$ 的解集是 ().

A. $\{x|x > 5a$ 或 $x < -a\}$ B. $\{x|x < 5a$ 或 $x > -a\}$ C. $\{x|-a < x < 5a\}$ D. $\{x|5a < x < -a\}$

146. (004925) 若 x 为实数, 则下列命题正确的是 ().

	A. $x^2 \ge 2$ 的解集是 $\{x x \ge \pm \sqrt{2}\}$				
	B. $(x-1)^2 < 2$ 的解集是 $\{x 1-\sqrt{2} < x < 1+\sqrt{2}\}$				
	C. $x^2 - 9 < 0$ 的解集是 $\{x x < 3\}$				
	D. 设 x_1, x_2 为 $ax^2 + bx + c = 0$ 的两个实	根, 且 $x_1 > x_2$, 则 $ax^2 + bx + c > 0$	的解集是 $\{x x_2 < x < x_1\}$		
147.	(004926) 在① $x^2 - 2x - 3 < 0$ 与 $\frac{x^2 - 2x}{x - 1}$ $\frac{(x + 2)(x^2 - 1)}{x + 2} > 0$ 与 $x^2 - 1 > 0$ " 三组石				
	x + 2 A. 0 B. 1	C. 2	D. 3		
148.	(004928) 直接写出下列不等式的解集:				
	(1) $(x-1)^2 > 0$: ;				
	(2) (2-x)(3x+1) > 0:;				
	(3) $1 - 3x^2 > 2x$:;				
	$(4) 1 - 2x - x^2 \ge 0:;$				
	(5) $x + \sqrt{x} - 6 < 0$:				
149.	(004929) 直接写出下列不等式的解集:				
	(1) $\frac{3x+4}{x-2} \ge 0$:;				
	(2) $\frac{4-2x}{1+3x} > 0$:;				
	$(3) \frac{1}{x} > x$:;				
	(4) $x^2 - 2 x - 3 > 0$:;				
	(5) $x^2 - x - 5 > 2x - 1 $:				
150.	$_{(004933)}$ 不等式 $4 \le x^2 - 3x < 18$ 的整数解	集是			
151.	a > b, 直接写出下列不等式的	解集:			
	(1) $\frac{x-a}{x-b} \ge 0$:;				
	(2) $\frac{x-a}{x-b} < 0$:;				
	(3) $x^2 - (a-b)x + ab > 0$:;				
	(4) $x^2 - (a-b)x + ab < 0$:				
152.	(004936) 若关于 x 的方程 $2kx^2 + (8k+1)x$	+8k=0 有两个不等实根, 则实数	效 k 的取值范围是		
153.	$_{(004938)}$ 不等式 $\frac{x-1}{2x} \le 1$ 的解集是 ().				

A. 1

D. 4

C. 3

154. $_{\scriptscriptstyle{(004939)}}$ 若关于 x 的二次不等式 $mx^2 + 8mx + 21 < 0$ 的解集是 $\{x|-1 < x < -1\}$, 则实数 m 的值等于 ().

B. 2

A. $\{x|x \ge -1\}$ B. $\{x|x \le -1\}$ C. $\{x|-1 \le x < 0\}$ D. $\{x|x \le -1$ 或 $x > 0\}$

155.	(004940) 若关于 x 的不等式 (0	$(x^2 - 3)x^2 + 5x - 2 > 0$ 的解约	集是 $\{x \frac{1}{2} < x < 2\}$, 则实数 $(x,y) = (x,y)$	a 的值等于 ().
	A. 1	B1	C. ±1	D. 0
156.	$56.$ (004941) 若关于 x 的不等式 $ax^2 + bx + c < 0 (a \neq 0)$ 的解集是空集, 则 ().			
	A. $a < 0$ 且 $b^2 - 4ac > 0$	B. $a < 0$ H. $b^2 - 4ac \le 0$	C. $a > 0$ H $b^2 - 4ac \le 0$	D. $a > 0$ <u>H</u> $b^2 - 4ac > 0$
157.	(004944) 若关于 x 的二次方程			
	A. $-2 < k < 1$		3. $-2 \le k < -1$ 或 $\frac{2}{3} < k \le 1$	L
	C. $k < -1$ 或 $k > \frac{2}{3}$	Γ	$02 < k < 1 \ \vec{\mathbf{g}} \ \frac{2}{3} < k < 1$	
158.	(004945) 已知关于 x 的方程 (r m 的取值范围是 ().	$(n+3)x^2 - 4mx + 2m - 1 =$	0 的两根异号, 且负根的绝对	付值比正根大,那么实数
	A. $-3 < m < 0$	B. $0 < m < 3$	C. $m < -3$ 或 $m > 0$	D. $m < 0$ 或 $m > 3$
159.	(004946) 若 α, β 是关于 x 的方等于 $($ $)$.	程 $x^2 - (k-2)x + k^2 + 3k + k^2 + 3k + k^2 + $	+5 = 0(k 为实数) 的两个实机	Q , 则 $\alpha^2 + \beta^2$ 的最大值
	A. 19	B. 18	C. $\frac{50}{9}$	D6
160.	(004948) 在三个关于 x 的方程 有一个方程有实根, 则实数 d		$)x + 16 = 0 \ \text{All} \ x^2 + 2ax + 3a$	+10=0中,已知至少
	A. $-4 \le a \le 4$	B. $-2 < a < 4$	C. $a \le -2$ 或 $a \ge 4$	D. $a < 0$
161.	(004949) 若关于 x 的二次方程:	$x^2 - 2mx + 4x + 2m^2 - 4m - 2 =$	= 0 有实根,则其两根之积的	最大值等于
162.	$_{(004950)}$ 使关于 x 的方程 x^2 –	-kx + 2k - 3 = 0 的两实根的	的平方和取最小值, 实数 k 的	值等于
163.	(004951) 若关于 x 的不等式 n =	$x^2 - mx + n \le 0$ 的解集	是 $\{x -5 \le x \le 1\}$, 则	实数 m =
164.	(004952) 若关于 x 的不等式 ax	$x^2 + bx + 1 \ge 0$ 的解集是 $\{x -$	$5 \le x \le 1$ }, 则实数 $a =$	b =
165.	(004953) 若关于 x 的不等式 ax	$x^2 + bx + 2 > 0$ 的解集是 $\{x -\frac{1}{2}\}$	$\frac{1}{2} < x < \frac{1}{3}$ }, 则实数 $a = $, b =
166.	(004954) 若关于 x 的不等式 ax	$x^2 + bx - 6 > 0$ 的解集是 $\{x x \}$	2 < x < 3}, 则实数 a =	$_{}$, $b=_{}$.
167.	(004955) 若关于 x 的不等式 (a 解集是	(a+b)x + (2a-3b) < 0 的解	集是 {x x > 3}, 则不等式 (a	(-3b)x + b - 2a > 0 的
168.	(004956) 若关于 x 的不等式 ax 的解集是	$x^2 + bx + c < 0$ 的解集是 $\{x x = 0\}$	<-2 或 $x>-rac{1}{2}\}$, 则关于 x 的	不等式 $ax^2 - bx + c > 0$
169.	(004957) 解不等式 $x^4 - 2x^2 +$	$1 > x^2 - 1.$		

- 170. (004958) 已知关于 x 的不等式 $kx^2 2x + 6k < 0 (k \neq 0)$.
 - (1) 若不等式的解集是 $\{x | x < -3\mathbf{u}x > -2\}$, 求实数 k 的值;
 - (2) 若不等式的解集是 $\{x|x\neq \frac{1}{k}\}$, 求实数 k 的值;
 - (3) 若不等式的解集是实数集, 求实数 k 的值.
- 171. (004959) 已知关于 x 的方程 m(x-1) = 3(x+2) 的解是正实数, 求实数 m 的取值范围.
- 172. (004960) 已知关于 x 的方程 $\frac{1}{4}x^2 kx + 5k 6 = 0$ 无实数解, 求实数 k 的取值范围.
- 173. (004961) 已知关于 x 的方程 $kx^2 (3k-1)x + k = 0$ 有两个正实数根, 求实数 k 的取值范围.
- 174. (004968) 已知关于 x 的不等式 $(a^2-4)x^2+(a+2)x-1\geq 0$ 的解集是空集, 求实数 a 的取值范围.
- 175. (004969) 若关于 x 的不等式 $\frac{x^2-8x+20}{mx^2+2(m+1)x+9m+4} < 0$ 的解集为 \mathbf{R} , 求实数 m 的取值范围.
- 176. $_{(004971)}$ 既要使关于 x 的不等式 $x^2+(m-\frac{1}{2})x-\frac{7}{16}\leq 0$ 有实数解, 又要使关于 x 的方程 $(2m+3)x^2+mx+\frac{m-2}{4}=0$ 有实数解, 求实数 m 的取值范围.
- 177. (005079) 己知 $\tan \alpha$, $\tan \beta$ 是关于 x 的方程 $mx^2 + (2m-3)x + (m-2) = 0 (m \neq 0)$ 的两根, 求证: $\tan(\alpha + \beta) \geq -\frac{3}{4}$.
- 178. (005102) 若 a > 0, b > 0, 且 $a^3 + b^3 = 2$, 试分别利用 $x^3 + y^3 + z^3 \ge 3xyz(x, y, z \ge 0)$ 构造方程, 并利用判别式以及反证法证明: $a + b \le 2$.
- 179. (005139) 已知关于 x 的不等式 $ax^2 + bx + c > 0$ 的解集是 $\{x | \alpha < x < \beta\}$, 其中 $0 < \alpha < \beta$, 求 $cx^2 + bx + a < 0$ 的解集.
- 180. (005140) 解不等式 $(x+1)^2(x-1)(x-4)^3 > 0$.
- 181. (005141) 解不等式 $\frac{3x^2 14x + 14}{x^2 6x + 8} \ge 1$.
- 182. (005142) 解不等式 $\sqrt{x^2 3x + 2} > x 3$.
- 183. (005143) 解不等式 $\sqrt{2x-1} < x-2$.
- 184. (005144) 解不等式 $|x^2 4| \le x + 2$.
- 185. (005145) 解不等式 $|x^2 \frac{1}{2}| > 2x$.
- 186. (005147) 若关于 x 的不等式 2x-1>a(x-2) 的解集是 \mathbf{R} , 则实数 a 的取值范围是 ().
 - A. a > 2
- B. a = 2
- C. a < 2
- D. a 不存在
- 187. (005148) 若关于 x 的不等式 $ax^2 + bx 2 > 0$ 的解集是 $(-\infty, -\frac{1}{2}) \cup (\frac{1}{3}, +\infty)$, 则 ab 等于 ().
 - A. -24

B. 24

C. 14

D. -14

- 188. (005150) 若 q < 0 < p, 则不等式 $q < \frac{1}{r} < p$ 的解集为 (
 - A. $\{x | \frac{1}{a} < x < \frac{1}{n}, \ x \neq 0\}$

B. $\{x|x<\frac{1}{q} \mathbf{x} > \frac{1}{p}\}$

- C. $\{x \mid -\frac{1}{n} < x < -\frac{1}{n}, \ x \neq 0\}$
- D. $\{x | \frac{1}{n} < x < -\frac{1}{a} \}$
- 189. (005151) 若关于 x 的不等式 (a+b)x+2a-3b<0 的解集是 $\{x|x<-\frac{1}{3}\}$, 则 (a-3b)x+b-2a>0 的解集
- 190. (005153) 若关于 x 的不等式 $ax^2 + bx + c > 0$ 的解集是 $\{x | 3 < x < 5\}$, 则不等式 $cx^2 + bx + a < 0$ 的解集 是_____.
- 191. (005154) 若关于 x 的不等式 $\frac{x-a}{x^2-3x+2} \ge 0$ 的解集是 $\{x|1 < x \le ax > 2\}$, 则实数 a 的取值范围是______.
- 192. (005155) 不等式 $(x+2)(x+1)^2(x-1)^3(x-3) > 0$ 的解集为:_
- 193. (005156) 不等式 $\frac{(x-1)^2(x+2)}{(x-3)(x-4)} \le 0$ 的解集为:_____.
- 194. (005157) 不等式 $x+1 \le \frac{4}{x+1}$ 的解集为:______.
- 195. (005158) 若不等式 $f(x) \geq 0$ 的解集为 [1,2], 不等式 $g(x) \geq 0$ 的解集为 \varnothing , 则不等式 $\frac{f(x)}{g(x)}$ 的解集是 (
 - $A. \varnothing$

- B. $(-\infty, 1) \cup (2, +\infty)$ C. [1, 2)

- 196. (005159) 若关于 x 的不等式 $ax^2-bx+c<0$ 的解集为 $(-\infty,\alpha)\cup(\beta,+\infty)$, 其中 $\alpha<\beta<0$, 则不等式 $cx^{2} + bx + a > 0$ 的解集为 (

 - A. $(\frac{1}{\beta}, \frac{1}{\alpha})$ B. $(\frac{1}{\alpha}, \frac{1}{\beta})$
- C. $\left(-\frac{1}{\beta}, -\frac{1}{\alpha}\right)$ D. $\left(-\frac{1}{\alpha}, -\frac{1}{\beta}\right)$
- 197. (005162) 已知关于 x 的不等式 $\sqrt{x} > ax + \frac{3}{2}$ 的解集是 $\{x | 4 < x < b\}$, 求 a, b 的值.
- 198. (005163) 已知 x = 3 是不等式 ax > b 解集中的元素, 求实数 a, b 应满足的条件.
- 199. (005168) 已知关于 x 的方程 $3x^2 + x \log_{\frac{1}{2}}^2 a + 2 \log_{\frac{1}{2}} a = 0$ 的两根 x_1, x_2 满足条件 $-1 < x_1 < 0 < x_2 < 1$, 求实 数 a 的取值范围.
- 200. (005169) 已知关于 x 的方程 $x^2 + (m^2 1)x + m 2 = 0$ 的一个根比 -1 小, 另一个根比 1 大, 求参数 m 的取 值范围.
- 201. (005171) 不等式 $\sqrt{x+3} > -1$ 的解集是 (
 - A. $\{x|x > -2\}$ B. $\{x|x \ge -3\}$
- C. \emptyset

D. R

- 202. (005172) 不等式 $(x-1)\sqrt{x+2} \ge 0$ 的解集是 ().
 - A. $\{x | x > 1\}$
- B. $\{x | x > 1\}$
- C. $\{x|x \ge 1$ **D**. $\{x|x > 1$ **d** $x = -2\}$

203. (005174) 解不等式: $\sqrt{x-5} + 4x - 3 > 3x + 1 + \sqrt{x-5}$.

- 204. (005175) 解不等式: $\sqrt{x^2+1} > \sqrt{x^2-x+3}$.
- 205. (005176) 解不等式: $(x-4)\sqrt{x^2-3x-4} \ge 0$.
- 206. (005177) 解不等式: $\frac{x+1}{x+4}\sqrt{\frac{x+3}{1-x}} < 0$.
- 207. (005178) 解不等式: $\sqrt{x+2} + \sqrt{x-5} \ge \sqrt{5-x}$.
- 208. (005179) 解不等式: $\sqrt{x-6} + \sqrt{x-3} \ge \sqrt{3-x}$.
- 209. (005180) 解不等式: $\sqrt{2-x} < x$.
- 210. (005181) 解不等式: $\sqrt{4-x^2} < x+1$.
- 211. (005182) 解不等式: $\sqrt{3-2x} > x$.
- 212. (005183) 解不等式: $\sqrt{(x-1)(2-x)} > 4-3x$.
- 213. (005184) 不等式 $\sqrt{4-x^2} + \frac{|x|}{x} \ge 0$ 的解集是 (

- B. $[-\sqrt{3}, 0) \cup (0, 2]$ C. $[-2, 0] \cup (0, 2]$ D. $[-\sqrt{3}, 0) \cup (0, \sqrt{3}]$
- 214. (005185) 已知关于 x 的不等式 $\sqrt{2x-x^2} > kx$ 的解集是 $\{x|0 < x \le 2\}$, 则实数 k 的取值范围是 (
 - A. k < 0
- B. k > 0
- C. 0 < k < 2 D. $-\frac{1}{2} < k < 0$
- 215. (005186) 解不等式: $\sqrt{2x-4} \sqrt{x+5} < 1$.
- 216. (005187) 解不等式: $\sqrt{x^2 5x 6} < |x 3|$.
- 217. (005188) 解不等式: $|2\sqrt{x+3}-x+1| < 1$.
- 218. $_{(005223)}$ 不等式 $|x|<rac{1}{x}$ 的解集为 ().
 - A. \emptyset

- B. $\{x | x < 0\}$
- C. $\{x | 0 < x < 1\}$ D. $\{x | x < 0$ \mathbf{g} $x \ge 1\}$
- 219. (005226) 不等式 $|\frac{x}{1+x}| > \frac{x}{1+x}$ 的解集是 (
 - A. $\{x | x \neq -1\}$ B. $\{x | x > -1\}$
- C. $\{x | x < 0 \, \exists x \neq -1\}$ D. $\{x | -1 < x < 0\}$

- 220. (005227) 解不等式: $x^2 + |x| 6 < 0$.
- 221. (005228) 解不等式: $x^2 2|x| 15 > 0$.
- 222. (005229) 解不等式: $4 < |1 3x| \le 7$.
- 223. (005230) 解不等式: |x-3| < x-1
- 224. (005233) 解不等式: $|x^2 5x + 10| > x^2 8$.
- 225. (005234) 解不等式: $|x^2 4| \le x + 2$.

- 226. (005235) 解不等式: $|x+1| < \frac{1}{x-1}$.
- 227. (005236) 解不等式: |x+2| |x-3| < 4.
- 228. (005237) 解不等式: $|x+3|-|2x-1|<\frac{x}{2}+1$.
- 229. (005239) 已知关于 x 的不等式 |x-4|+|x-3|< a 在实数集 R 上的解集不是空集, 求正数 a 的取值范围.
- 230. (005266) 解不等式: $\frac{x}{\sqrt{1+x^2}} + \frac{1-x^2}{1+x^2} > 0.$
- 231. (005269) 已知关于 x 的方程 $a\sin^2 x + \frac{1}{2}\cos x + \frac{1}{2} a = 0$ 在 $0 \le x < 2\pi$ 内有两个相异的实根, 求实数 a 的取值范围.
- 232. (007684) 用适当的方法表示下列集合:
 - (1) 方程 $x^2 2 = 0$ 的实数解组成的集合;
 - (2) 两直线 y = 2x + 1 和 y = x 2 的交点组成的集合.
- 233. (007719) 判断下列命题的真假, 并在相应的横线上填入"真命题"或"假命题".
 - (1) **\ddot{A}** $A \cap B \neq \emptyset$, $B \subset C$, M $A \cap C \neq \emptyset$ ____;
 - (2) 方程 (a+1)x+b=0 (a、 $b\in \mathbf{R})$ 的解为 $x=-\frac{b}{a+1}$ ——;
 - (3) 若命题 α 、 β 、 γ 满足 $\alpha \Rightarrow \beta$, $\beta \Rightarrow \gamma$, $\gamma \Rightarrow \alpha$, 则 $\alpha \Leftrightarrow \gamma$ ____.
- 234. (007739) 如果命题 p: m < -3, 命题 q: 方程 $x^2 x m = 0$ 无实数根, 那么 p 是 q 的什么条件?
- 235. (007742) 已知 a 为实数,写出关于 x 的方程 $ax^2+2x+1=0$ 至少有一个实数根的一个充要条件、一个充分条件、一个必要条件。
- 236. (007750) 若方程 $x^2 + px + 4 = 0$ 的解集为 A, 方程 $x^2 + x + q = 0$ 的解集为 B, 且 $A \cap B = \{4\}$, 则集合 $A \cup B$ 的所有子集是______.
- 237. (007762) 解不等式: 2(x+1) 3(x-2) > 8.
- 238. (007763) 解不等式组: $\begin{cases} 3x 2(5 3x) > 8, \\ 2x \le 2(2x + 3). \end{cases}$
- 239. (007774) 已知 a > 2, 解关于 x 的方程 $ax + 4 < 2x + a^2$.
- 240. (007775) 已知 m < 1, 解关于 x 的方程 $mx + 1 < x + m^3$.
- 241. (007776) 已知 $p \neq q$, 解关于 x 的方程 $(p-q)x < p^2 q^2$.
- 242. (007777) 解关于 x 的方程 $mx + 4 < m^2 + 2x$.
- 243. (007782) 解不等式: $2x^2 3x + 1 < 0$.
- 244. (007783) 解不等式: $(x+1)^2 6 > 0$.

- 245. (007784) 解不等式: x(x-1) < x(2x-3) + 1.
- 246. (007785) 解不等式: $-x^2 + 2x + 35 > 0$.
- 247. (007786) 解不等式: $(x-2)(3-x) \le 0$.
- 248. (007787) 解不等式: $2x 1 \ge x^2$.
- 249. (007790) 写出一个解集只含一个元素的一元二次不等式.
- 250. (007791) 解不等式组: $\begin{cases} 6 x x^2 \le 0, \\ x^2 + 3x 4 < 0. \end{cases}$
- 251. (007792) 解不等式组: $\begin{cases} 4x^2 27x + 18 > 0, \\ x^2 6x + 4 < 0. \end{cases}$
- 252. (007794) 已知不等式 $x^2 + ax + b < 0$ 的解集为 (-3, -1), 求实数 a、b 的值.
- 253. (007795) 已知关于 x 的二次方程 $2x^2 + ax + 1 = 0$ 无实数解, 求实数 a 的取值范围.
- 254. (007798) 解不等式组: $\begin{cases} 3x^2 + x 2 \ge 0, \\ 4x^2 15x + 9 > 0. \end{cases}$
- 255. (007801) 已知关于 x 的不等式 $ax^2+bx+c>0$ 的解集是 $\{x|x>2$ 或 $x<\frac{1}{2}\}$, 求关于 x 的不等式 $ax^2-bx+c\leq0$ 的解集.
- 256. (007803) 解不等式: $\frac{1}{x} < 1$.
- 257. (007804) 解不等式: $\frac{4x+3}{x-1} > 5$.
- 258. (007805) 解不等式: $\frac{2}{x} < \frac{2}{x-3}$.
- 259. (007806) 解不等式: $\frac{1}{x-4} \le 1 \frac{x}{4-x}$.
- 260. (007807) 求当 k 为何值时, 关于 x 的方程 $\frac{4k-3x}{k+2}=2x$ 的解分别是:
 - (1) 正数;
 - (2) 负数.
- 261. (007808) 解不等式: $|x^2 3| < 2$.
- 262. (007809) 解不等式: $\left|\frac{1}{2-x}\right| \geq 2$.
- 263. (007810) 解不等式: $|x^2 3x + 2| \le 0$.
- 264. (007811) 解不等式: $\left| \frac{x}{x+1} \right| > \frac{x}{x+1}$.
- 265. (007812) 解不等式: |x-3| < x-1.

- 266. (007813) 若 a < b < 0, 则不等式 $\frac{x+a}{x+b} > 0$ 的解集是
- 267. (007814) 解不等式: $4 \le |x^2 4x| < 5$.
- 268. (007815) 解不等式: $\frac{1}{|x|} > x$.
- 269. (007816) 已知不等式 $|ax+1| \le b$ 的解集是 [-1,3], 求 $a \times b$ 的值.
- 270. (007836) 不等式 1+|x+1|<0 的解集是 (

A.
$$(-\infty, -2)$$

B.
$$(-2,0)$$

- 271. (007840) 解不等式: 2(x+1)(x+2) > (x+3)(x+4).
- 272. (007841) 解不等式: $-3x^25x 4 < 0$.
- 273. (007842) 解不等式: $4x^2 20x + 25 < 0$.
- 274. (007843) 解不等式: $x^2 16x + 64 > 0$.
- 275. (007844) 解不等式组: $\begin{cases} x^2 16 < 0, \\ x^2 4x + 3 \ge 0. \end{cases}$
- 276. (007845) 解不等式组: $4 < x^2 x 2 < 10$.
- 277. (007846) 解不等式: $\left| \frac{3x-9}{2} \right| \le 6$.
- 278. (007847) 解不等式: 3 < |x-2| < 5.
- 279. (007848) 解不等式: $\left|\frac{1}{r}\right| < \frac{4}{5}$.
- 280. (007849) 下列四对不等式 (组) 中, 哪几对具有相同的解集?

(1)
$$-\frac{1}{2}x^2 + 3x + \frac{27}{2} > 0 = x^2 - 6x - 27 > 0;$$

2 2 2
$$\begin{cases} x^2 - x + 2 < 10 \Rightarrow \begin{cases} x^2 - x + 2 < 10, \\ x^2 - x + 2 > 4; \end{cases}$$
 (3) $|2x + 1| < 5 \Rightarrow 2x + 1 < 5 \Rightarrow 2x + 1 > -5;$

- (4) $\frac{x-1}{x+1} < 2 + x 1 < 2(x+1)$.
- 281. (007850) 已知关于 x 的不等式 $2x^2 2(a-1)x + (a+3) > 0$ 的解集是 \mathbf{R} , 求实数 a 的取值范围.
- 282. (007852) 当 k 是什么实数时, 关于 x 的方程 2x + k(x+3) = 4 的解是正数?
- $283._{(007857)}$ 当 k 为什么实数时,方程组 $\begin{cases} 3x-6y=1, \\ 5x-ky=2 \end{cases}$ 的解满足 x<0 且 y<0 的条件? $\begin{cases} 4x+3y=60, \\ kx+(k+2)y=60 \end{cases}$ 的解满足 x>y>0 的条件?

- 285. (007859) 已知 m < n, 试写出一个形如 $ax^2 + bx + c > 0$ 的一元二次不等式, 使它的解集分别为:
 - $(1) (-\infty, m) \cup (n, +\infty);$
 - (2) (m, n).
- 286. (007991) 已知关于 x 的不等式 $ax^2 + 3ax 2 < 0$ 的解集为 \mathbf{R} , 求实数 a 的取值范围.
- 287. (009445) 设 $a \in \mathbb{R}$, 求关于 x 的方程 $ax = a^2 + x 1$ 的解集.
- 288. (009446) 设 $k \in \mathbb{R}$, 求关于 x 与 y 的二元一次方程组 $\begin{cases} y = kx + 1, \\ y = 2kx + 3 \end{cases}$ 的解集.
- 289. (009447) 求一元二次方程 $ax^2 4x + 2 = 0 (a \neq 0)$ 的解集.
- 290. (009448) 已知方程 $2x^2 + 4x 3 = 0$ 的两个根为 x_1 、 x_2 , 求下列各式的值:
 - (1) $x_1^2x_2 + x_2^2x_1$;
 - (2) $\frac{1}{x_1} + \frac{1}{x_2}$;
 - (3) $x_1^2 + x_2^2$;
 - $(4) x_1^3 + x_2^3$.
- 291. (009454) 填空题:
 - (1) (x-2)(x+3) < 0 的解集是______;

 - $(3) (x-2)(x+3) \ge 0$ 的解集是_____
- 292. (009455) 求下列不等式的解集:
 - $(1) -8x \le 3x^2 + 4;$
 - $(2) -x^2 < 2x 4.$
- 293. (009457) 写出一个一元二次不等式, 使它的解集分别为:
 - (1) $(3-\sqrt{2},3+\sqrt{2});$
 - (2) $(-\infty, 3 \sqrt{2}] \cup [3 + \sqrt{2}, +\infty);$
 - (3)**R**;
 - $(4) \varnothing$.
- 294. (009458) 求下列不等式组的解集

(1)
$$\begin{cases} x^2 - 2x - 3 > 0, \\ x - 1 > 0; \end{cases}$$
(2)
$$\begin{cases} x^2 - 2x - 15 \ge 0, \\ x^2 - 4x - 12 < 0. \end{cases}$$

295. (009459) 若关于 x 的不等式 $x^2 - x + m < 0$ 的解集为 \varnothing , 求实数 m 的取值范围.

- 296. (009460) 已知一元二次不等式 $x^2 ax b < 0$ 的解集为 (2,3), 求实数 a、b 的值及不等式 $bx^2 ax 1 > 0$ 的解集.
- 297. (010036) 判断下列命题的真假, 并说明理由:
 - (1) 若 $A \cap B = \emptyset$, $C \subset B$, 则 $A \cap C = \emptyset$;
 - (2) 若 a、 $b \in \mathbf{R}$, 则关于 x 的方程 (a+1)x + b = 0 的解为 $x = -\frac{b}{a+1}$.
- 298. (010037) 已知 a 为实数. 写出关于 x 的方程 $ax^2 + 2x + 1 = 0$ 至少有一个实根的一个充要条件、一个充分非必要条件和一个必要非充分条件.
- 299. (010040) 设 $a \in \mathbb{R}$, 求关于 x 的方程 ax = 2 的解集.
- 300. (010041) 设 $k \in \mathbf{R}$, 求关于 x 与 y 的二元一次方程组 $\begin{cases} y = -2x + 1, \\ y = kx 3 \end{cases}$ 的解集.
- 301. (010042) 设 $a \in \mathbb{R}$, 求一元二次方程 $x^2 2ax + a^2 4 = 0$ 的解集.
- 302. (010044) 已知一元二次方程 $ax^2 + bx + c = 0 (a \neq 0)$ 的两实根为 x_1 、 x_2 ,求证: $|x_2 x_1| = \frac{\sqrt{b^2 4ac}}{|a|}$.
- 303. (010045) 已知一元二次方程 $x^2 + 3x 3 = 0$ 的两个实根分别为 x_1 、 x_2 , 求作二次项系数是 1, 且分别以下列数值为根的一元二次方程:
 - $(1) -x_1, -x_2;$
 - (2) $2x_1 + 1, 2x_2 + 1$;
 - $(3) \ \frac{1}{x_1}, \frac{1}{x_2};$
 - $(4) x_1^2, x_2^2.$
- 304. (010057) 设 a 为实数, 求关于 x 的方程 $2x + a^2 = ax + 4$ 的解集.
- 305. (010058) 设 m 为实数, 求关于 x 的方程 $(m+1)x^2 + 6mx + 9m = 1$ 的解集.
- 306. (010060) 对一元二次方程 $ax^2 + bx + c = 0 (a \neq 0)$, 证明: ac < 0 是该方程有两个异号实根的充要条件.
- 307. (010061) 已知一元二次方程 $2x^2+x-3=0$ 的两个实根分别为 x_1 、 x_2 , 求作二次项系数是 1, 且分别以下列数值为根的一元二次方程:
 - (1) $x_1 + x_2, x_1x_2;$
 - (2) $2x_1^2 + 1, 2x_2^2 + 1;$
 - $(3) \ \frac{x_2}{x_1}, \ \frac{x_1}{x_2};$
 - $(4) x_1^4, x_2^4.$
- 308. (010062) 已知一元二次方程 $x^2-2mx+m-1=0$ 的两实根为 x_1 、 x_2 , 且 $x_1^2+x_2^2=4$. 求实数 m 的值.
- 309. (010070) 已知下列关于 x 的方程有两个不同实根, 求实数 k 的取值范围:
 - (1) $x^2 + (k+3)x + k^2 = 0$;
 - $(2) \ 3x^2 + 2kx + k = 0.$

- 310. (010071) 若下列关于 x 的方程有实数解, 求实数 k 的取值范围:
 - (1) $x^2 + kx k + 3 = 0$;
 - (2) $x^2 + 2\sqrt{2}x + k(k-1) = 0$.
- 311. (010074) 已知关于 x 的一元二次方程 $2x^2 + ax + 1 = 0$ 无实数解, 求实数 a 的取值范围.
- 312. (010075) 已知关于 x 的一元二次不等式 $x^2 + ax + b < 0$ 的解集为 (-3, -1), 求实数 a 及 b 的值.
- 313. (010078) 当关于 x 的方程 4k 3x = 2(k+2)x 的解分别满足以下条件时, 求实数 k 的取值范围.
 - (1) 正数;
 - (2) 负数.
- 314. (010083) 已知关于 x 的不等式 $x^2+bx+c>0$ 的解集是 $(-\infty,\frac{1}{2})\cup(2,+\infty)$, 求实数 b 及 c 的值, 并求 $x^2-bx+c\leq 0$ 的解集.
- 315. (010096) 设 $x \in \mathbf{R}$, 求方程 |x-2| + |2x-3| = |3x-5| 的解集.
- 316. (020001) 判断下列各组对象能否组成集合, 若能组成集合, 指出是有限集还是无限集.
 - (1) 上海市控江中学 2022 年入学的全体高一年级新生;
 - (2) 中国现有各省的名称;
 - (3) 太阳、2、上海市;
 - (4) 大于 10 且小于 15 的有理数;
 - (5) 末位是 3 的自然数;
 - (6) 影响力比较大的中国数学家;
 - (7) 方程 $x^2 + x + 3 = 0$ 的所有实数解;
 - (8) 函数 $y = \frac{1}{x}$ 图像上所有的点;
 - (9) 在平面直角坐标系中, 到定点 (0,0) 的距离等于 1 的所有点;
 - (10) 不等式 3x 10 < 0 的所有正整数解;
 - (11) 所有的平面四边形.
- 317. (020004) 已知关于 x 的方程 $\sqrt{x^2+4x+a}=x+2$, 若以该方程的所有解为元素组成的集合是无限集, 求实数 a 满足的条件.
- 318. (020007) 用区间表示下列集合:
 - (1) $\{x | -2 < x < 7\};$
 - $(2) \{x|-2 \le x \le 7\};$
 - (3) $\{x | -2 \le x < 7\};$
 - (4) 不等式 2x < 5 的解集;
 - (5) 不等式 -x < 5 的解集;
 - (6) 非负实数集.

319. (020008) 用适当的方法表示下列集合:
(1) 能被 10 整除的所有正整数组成的集合;
(2) 能整除 10 的所有正整数组成的集合;
(3) 方程 $x^2 + 2 = 0$ 的实数解组成的集合;
(4) 方程组 $\begin{cases} 2x + y = 0, \\ \mathbf{n} & \mathbf{n} \\ x - y + 3 = 0 \end{cases}$ 的所有解组成的集合;
(5) 两直线 $y = 2x + 1$ 和 $y = x - 2$ 的交点组成的集合.
320. (020071) 判断下列命题的真假, 并在相应的括号内填入"真"或"假".
$(1) \ 2\sqrt{3} > 3\sqrt{2} \ \mathbf{g} \ 1 \le 1;;$
(2) $2\sqrt{3} > 3\sqrt{2}$ H. $1 \le 1$;;
(3) 如果 a、b 都是奇数, 那么 ab 也是奇数;;
(4) {1} 是 {0,1,2} 的真子集;;
(5) 1 是 {0,1,2} 的真子集;;
(6) $ $
(7) 如果 $ a < 2$, 那么 $a < 2$;;
(8) 对任意实数 $a, b,$ 方程 $(a+1)x + b = 0$ 的解为 $x = -\frac{b}{a+1};$;
(9) 若命题 α 、 β 、 γ 满足 $\alpha \Rightarrow \beta$, $\beta \Rightarrow \gamma$, $\gamma \Rightarrow \alpha$, 则 $\alpha \Leftrightarrow \gamma$;;
(10) 若关于 x 的方程 $ax^2 + bx + c = 0 (a \neq 0)$ 的两实数根之积是正数, 则 $ac > 0$;;
(11) 若某个整数不是偶数,则这个数不能被 4 整除;;
(12) 合数一定是偶数;;
(13) 所有的偶数都是素数或合数;;
(14) 所有的偶数都是素数或所有的偶数都是合数;;
(15) 如果 $A \subset B$, $B \supset C$, 那么 $A = C$;;
(16) 空集是任何集合的真子集;;
(17) 若 $x \in \mathbf{R}$, 则方程 $x^2 - x + 1 = 0$ 不成立;;
(18) $\not = A \cap B \neq \emptyset, \ B \subset C, \ \not \mid A \cap C \neq \emptyset; \underline{\qquad};$
(19) 存在一个三角形, 它的任意两边的平方和小于第三边的平方;;
(20) 对于任意一个三角形, 存在一组两边的平方和不等于第三边的平方;

- 321. (020075) 已知 a 是常数, 命题 $\alpha: -1 < a < 3$, $\beta:$ 关于 x 的方程 $x + a = 0 (x \in \mathbf{R})$ 没有正根, 若命题 α 、 β 有且只有一个是真命题, 求实数 a 的取值范围.
- 322. (020080) 关于 x 的方程 $ax^2 = 0$ 至少有一个实数根的一个充要条件是_____.
- 323. (020085) 设 α, β 是方程 $x^2 ax + b = 0$ 的两个实数根. 试分析 a > 2 且 b > 1 是 "两个实数根 α, β 均大于 1" 的什么条件? 并证明你的结论.
- 324. (020088) 在横线上写出下列命题的否定形式, 并判断命题真假, 在相应的位置中填入"真"或"假".

(1) π 是尤埋数;;;;;	
(2) $2 + 1 = 4;$;;;	
(3) 任何实数是正数或负数;;	_;;
(4) 任何实数是正数或任何实数是负数;;	;;
(5) 对一切实数 $x, x^3 + 1 = 0;$;	;;
(6) 存在实数 $x, x^3 + 1 = 0;$;	.;;
(7) 对于任意实数 k , 关于 x 的方程 $x^2+x+k=0$ 都有实数根;; _	
;	
(8) 任何三角形中至多有一个钝角;;	;;
(9) 若 $a > 1$, $b > 1$, 则 $ab > 1$;;	;;
(10) 能被 2 整除的整数是质数;;	;