Formation en Bioinformatique

En vue de former une communauté Bioinformatique solide au sénégal Dans le cadre du partage d'expériences et de la mise à niveau en bioinformatique, nous souhaitons vous présenter quelques modules que nous envisageons de développer. Nous restons ouvertes à toutes recommandations et suggestions, dans un cadre professionnel favorisant l'épanouissement intellectuel de chacun.

Objectifs pédagogiques

- 1. Maîtriser l'environnement de travail bioinformatique (Conda, Git)
- 2. Manipuler les formats de fichiers spécifiques et pipelines d'analyse
- 3. Acquérir des compétences en analyse de données de séquençage NGS
- 4. Appliquer les bonnes pratiques de reproductibilité et gestion de code

Module 1: Environnement technique (15h)

1.1 Gestion des environnements avec Conda

- Création d'environnements isolés
- Gestion des dépendances logicielles
- Partage de configurations via environment.yml

1.2 Versioning avec Git

- Workflow basique (add, commit, push)
- Gestion des branches et collaboration
- Intégration avec GitHub/GitLab

1.3 Scripting automatisé

• Bash: piping, job control, scripts batch

• Python: parsing de fichiers biologiques (Biopython)

• Parallelisation basique (GNU Parallel)

Module 2 : Formats de données (10h)

2.1 Formats standards

Format	Structure	Cas d'usage
FASTA/Q GenBank GFF/GTF BED SAM/BAM	En-tête/Sequences Annotations Features génomiques Régions génomiques Alignements	Séquençage brut Banques de données Annotation Analyse ChIP-seq Variants

2.2 Conversion/Validation

• Outils : samtools, bedtools

• Vérification d'intégrité des fichiers

Module 3: Visualisation (8h)

3.1 Genome Browsers

• UCSC Genome Browser : navigation avancée

• IGV : visualisation d'alignements et variants

3.2 Outils spécialisés

• PyMOL/RasMol (structures 3D)

• Circos (représentations circulaires)

Module 4 : Technologies de séquençage (12h)

4.1 Plateformes comparées

Technologie	Longueur reads	Débit	Applications
Illumina	Court (150bp)	Haut	RNA-seq
PacBio	Long (10kb+)	Moyen	Assemblage
Oxford NanoPore	Long (100kb+)	Variable	Métagénomique

4.2 Contrôle qualité

- FastQC/MultiQC
- Filtrage avec Trimmomatic/Cutadapt

Module 5: Analyse RNA-seq (20h)

5.1 Alignement

- BWA/Bowtie2 : paramètres optimaux
- STAR : alignement splice-aware

5.3 Bonnes pratiques

- Documentation avec Jupyter/RMarkdown
- Automatisation via Snakemake/Nextflow

Évaluations

- 1. Projet pratique en binôme: Exemple
 - Analyse complète de données RNA-seq
 - Versionnage sur dépôt Git
 - Rédaction de rapport reproductible
- 2. Quiz techniques:
 - Dépannage de pipeline bash
 - Interprétation de sorties d'alignement