Sets & Quantifiers

CMSC250

What is a set?

- A set is a collection of distinct objects.
- We use the notation $x \in S$ to say that S contains x.
- We'd like to know if $x \in S$ fast!
- Unless explicitly specified otherwise, sets are unordered.

What is a set?

- A set is a collection of distinct objects.
- We use the notation $x \in S$ to say that S contains x.
- We'd like to know if $x \in S$ fast!
- Unless explicitly specified otherwise, sets are unordered.
- Given the last two requirements, what's the best possible data structure to implement a set in memory?

Doubly Linked List

Binary Tree

Stack

Something else (what?)

What is a set?

- A set is a collection of distinct objects.
- We use the notation $x \in S$ to say that S contains x.
- We'd like to know if $x \in S$ fast!
- Unless explicitly specified otherwise, sets are unordered.
- Given the last two requirements, what's the best possible data structure to implement a set in memory?

Doubly Linked List

Binary Tree

Stack

Elementary number sets

- N: the **natural** numbers
 - $\mathbb{N} = \{0, 1, 2, 3,\}$. In our class, $0 \in \mathbb{N}!$
- \mathbb{Z} : the **integers**
 - $\mathbb{Z} = \{... 3, -2, -1, 0, 1, 2, 3, ...\}$
- \mathbb{Q} : the **rationals**
 - $\mathbb{Q} = \{\frac{a}{b}, (a \in \mathbb{Z}) \land (b \in \mathbb{Z}) \land (b \neq 0)\}$
 - Any number that can be written as a ratio of integers!
- \mathbb{R} : the reals
 - This will typically be our "upper limit" in 250.
 - That is, we don't usually care about C, the set of complex numbers

Fill those in!

	N	\mathbb{Z}	Q	\mathbb{R}
0				
-1				
1/2				
-1/2				
0.333333				
0.333333/0.11111111				
π				
i , such that $i^2 = -1$				

Venn Diagrams

Venn Diagrams

- *U* is the *Universal Domain*: a set that we imagine holds every *conceivable* element.
- When talking about sets of numbers, U is usually \mathbb{R} , the reals.

"There exists" (\exists)

- Examples:
 - $(\exists x \in \mathbb{R}) [8x = 1]$

- Examples:
 - $(\exists x \in \mathbb{R}) [8x = 1]$ True

- Examples:
 - $(\exists x \in \mathbb{R}) [8x = 1]$ True
 - $(\exists n \in \mathbb{Z})[n^2 = -1]$

- Examples:
 - $(\exists x \in \mathbb{R}) [8x = 1]$ True
 - $(\exists n \in \mathbb{Z})[n^2 = -1]$ False

- Examples:
 - $(\exists x \in \mathbb{R}) [8x = 1]$ True
 - $(\exists n \in \mathbb{Z})[n^2 = -1]$ False
- Is there a domain D where $(\exists n \in D)[n^2 = -1]$ is true?

Yes No Something else

- Examples:
 - $(\exists x \in \mathbb{R}) [8x = 1]$ True
 - $(\exists n \in \mathbb{Z})[n^2 = -1]$ False
- Is there a domain D where $(\exists n \in D)[n^2 = -1]$ is true?

- The symbol ∀ (LaTeX: \forall) is read "for all".
- Examples:
 - $(\forall x \in \mathbb{N}) [((x > 2) \land (x \text{ is prime})) \Rightarrow (x \text{ is odd})]$

- The symbol ∀ (LaTeX: \forall) is read "for all".
- Examples:
 - $(\forall x \in \mathbb{N}) [((x > 2) \land (x \text{ is prime})) \Rightarrow (x \text{ is odd})]$ True

- The symbol ∀ is read "for all".
- Examples:
 - $(\forall x \in \mathbb{N}) [((x > 2) \land (x \text{ is prime})) \Rightarrow (x \text{ is odd})]$ True
 - $(\forall n \in \mathbb{Z}) [n^2 \ge 0]$

- The symbol ∀ is read "for all".
- Examples:
 - $(\forall x \in \mathbb{N}) [((x > 2) \land (x \text{ is prime})) \Rightarrow (x \text{ is odd})]$ True
 - $(\forall n \in \mathbb{Z}) [n^2 \ge 0]$ True

- Let D be the set of all students in this class who are over 8 feet tall.
- $(\forall x \in D)[x \text{ has perfect attendance so } far!]$

True False Something else

- Let D be the set of all students in this class who are over 8 feet tall.
- $(\forall x \in D)[x \ has \ perfect \ attendance \ so \ far!]$

- If disagree, need to find $x \in D$ who missed a class
- Called vacuously true!

 $\bullet (\exists x \in \mathbb{N})(\exists y \in \mathbb{N})[x + 2y = 3x + y = 4]$

• $(\exists x \in \mathbb{N})(\exists y \in \mathbb{N})[x + 2y = 3x + y = 4]$ False

- $(\exists x \in \mathbb{N})(\exists y \in \mathbb{N})[x + 2y = 3x + y = 4]$ False
- $(\exists x \in \mathbb{Q})(\exists y \in \mathbb{Q})[x + 2y = 3x + y = 4]$

- $(\exists x \in \mathbb{N})(\exists y \in \mathbb{N})[x + 2y = 3x + y = 4]$ False
- $(\exists x \in \mathbb{Q})(\exists y \in \mathbb{Q})[x + 2y = 3x + y = 4]$

True,
$$x = \frac{4}{5}$$
, $y = \frac{8}{5}$

- $(\exists x \in \mathbb{N})(\exists y \in \mathbb{N})[x + 2y = 3x + y = 4]$ False
- $(\exists x \in \mathbb{Q})(\exists y \in \mathbb{Q})[x + 2y = 3x + y = 4]$ True, $x = \frac{4}{5}, y = \frac{8}{5}$

- Common abbreviation: $(\exists x, y \in D)[...]$
- Generally: $(\exists x_1, x_2, ..., x_n \in D)[...]$

Alternating nested quantifiers

- Notice the differences between the following:
 - $(\forall x \in \mathbb{N})(\exists y \in \mathbb{N})[x < y]$
 - $(\exists x \in \mathbb{N})(\forall y \in \mathbb{N})[x < y]$

Alternating nested quantifiers

- Notice the differences between the following:
 - $(\forall x \in \mathbb{N})(\exists y \in \mathbb{N})[x < y]$ True (\mathbb{N} unbounded from above)
 - $(\exists x \in \mathbb{N})(\forall y \in \mathbb{N})[x < y]$ False (\mathbb{N} bounded from below)

• WHEN QUANTIFIERS ARE DIFFERENT, THEIR ORDER MATTERS!!!!!!

Fill this in!

Statement	True	False
$(\exists n \in \mathbb{N})[n+n=0]$	0	0
$(\exists n \in \mathbb{N})[n+n=1]$		
$(\exists n \in \mathbb{Z})[n+n=1]$	0	0
$(\exists x, y \in \mathbb{Z})[x + y = 1]$	0	0
$(\exists x \in \mathbb{R})[x(x+1) = -1]$		0
$(\forall x, y, z \in \mathbb{R})[((x < y < z) \Rightarrow (x^2 < y^2 < z^2)]$		
$(\forall x, y, z \in \mathbb{R})[((x < y < z) \Rightarrow (x^3 < y^3 < z^3)]$		
$(\forall x, y \in \mathbb{N})(\exists z \in \mathbb{Q})[(x < y) \Rightarrow (x < z < y)]$		

- Give infinite sets D such that $(\forall x \in D)(\exists y \in D)[x < y]$
 - 1. Is true

- Give infinite sets D such that $(\forall x \in D)(\exists y \in D)[x < y]$
 - 1. Is true $(D = \mathbb{N}, \text{ select } y = x + 1)$

- Give infinite sets D such that $(\forall x \in D)(\exists y \in D)[x < y]$
 - 1. Is true $(D = \mathbb{N}, \text{ select } y = x + 1)$
 - 2. Is false

- Give infinite sets D such that $(\forall x \in D)(\exists y \in D)[x < y]$
 - 1. Is true $(D = \mathbb{N}, \text{ select } y = x + 1)$
 - 2. Is false $(D = \mathbb{Z}^{\leq 0})$, counter-example is 0)

- Give infinite sets D such that $(\forall x \in D)(\exists y \in D)[x < y]$
 - 1. Is true $(D = \mathbb{N}, \text{ select } y = x + 1)$
 - 2. Is false $(D = \mathbb{Z}^{\leq 0})$, counter-example is 0)
- Do the same thing for

$$(\forall x \in D)[x \le 1] \land (\forall x \in D)(\exists y \in D)[x < y]$$

- Give infinite sets D such that $(\forall x \in D)(\exists y \in D)[x < y]$
 - 1. Is true $(D = \mathbb{N}, \text{ select } y = x + 1)$
 - 2. Is false $(D = \mathbb{Z}^{\leq 0})$, counter-example is 0)
- Do the same thing for

$$(\forall x \in D)[x \le 1] \land (\forall x \in D)(\exists y \in D)[x < y]$$

1. True for $D = (-\infty, 1)$

- Give infinite sets D such that $(\forall x \in D)(\exists y \in D)[x < y]$
 - 1. Is true $(D = \mathbb{N}, \text{ select } y = x + 1)$
 - 2. Is false $(D = \mathbb{Z}^{\leq 0})$, counter-example is 0)
- Do the same thing for

$$(\forall x \in D)[x \le 1] \land (\forall x \in D)(\exists y \in D)[x < y]$$

- 1. True for $D = (-\infty, 1)$
- 2. False for $D = (-\infty, 1]$ (!)

Subset

• We say that A is a subset of B ($A \subseteq B$) iff

$$(\forall x \in A)[x \in B]$$

$$\Leftrightarrow$$

$$(\forall x \in U)[(x \in A) \Rightarrow (x \in B)]$$

Superset and proper subset/superset

- We say that B is a **superset** of A ($B \supseteq A$) iff $A \subseteq B$.
- We say that A is a proper subset of B $(A \subset B)$ iff $(A \subseteq B) \land (A \neq B)$.
- We say that B is a proper superset of A ($B \supset A$) iff $A \subset B$

Union

$$A \cup B = \{(x \in A) \lor (x \in B)\}$$

Union

$$A \cup B = \{(x \in A) \lor (x \in B)\}$$

Connection between union and logical disjunction!

Intersection

$$A \cap B = \{(x \in A) \land (x \in B)\}\$$

Absolute complement

$$A^{c} = \{(x \notin A)\} = \{(x \in U) \land (\sim (x \in A))\}$$

Absolute complement

$$A^{c} = \{(x \notin A)\} = \{(x \in U) \land (\sim (x \in A))\}$$

Connection between absolute complement and logical negation!

Absolute complement

$$A^{c} = \{(x \notin A)\} = \{(x \in U) \land (\sim (x \in A))\}$$

Please use this notation instead of A' or \overline{A} since it's Epp-friendly

Connection between absolute complement and logical negation!

Relative Complement

$$A - B = \{(x \in A) \land (x \notin B)\}$$

Relative Complement

$$A - B = \{(x \in A) \land (x \notin B)\}$$

Please use this notation instead of $A \setminus B$ since it's Epp-friendly!

 Be careful to distinguish between members of a set and subsets of a set...

True

False

 Be careful to distinguish between members of a set and subsets of a set...

False

True

1.
$$1 \in \{-2, 0, 1, 3\}$$

 Be careful to distinguish between members of a set and subsets of a set...

False

True

1.
$$1 \in \{-2, 0, 1, 3\} \mathsf{T}$$

2.
$$1 \in \{-2, 0, \{1\}, 3\}$$

 Be careful to distinguish between members of a set and subsets of a set...

True

False

1.
$$1 \in \{-2, 0, 1, 3\} \mathsf{T}$$

2.
$$1 \in \{-2, 0, \{1\}, 3\}$$
 F

3.
$$1 \subseteq \{-2, 0, \{1\}, 3\}$$

 Be careful to distinguish between members of a set and subsets of a set...

False

True

1.
$$1 \in \{-2, 0, 1, 3\} \mathsf{T}$$

- 2. $1 \in \{-2, 0, \{1\}, 3\}$ F
- 3. $1 \subseteq \{-2, 0, \{1\}, 3\}$ F, in fact, not even mathematically correct syntax
- 4. $\{1\} \subseteq \{-2, 0, \{1\}, 3\}$

 Be careful to distinguish between members of a set and subsets of a set...

- 1. $1 \in \{-2, 0, 1, 3\} \mathsf{T}$
- 2. $1 \in \{-2, 0, \{1\}, 3\}$ F
- 3. $1 \subseteq \{-2, 0, \{1\}, 3\}$ F, in fact, not even mathematically correct syntax
- 4. $\{1\} \subseteq \{-2, 0, \{1\}, 3\}$ F
- 5. $\{1\} \in \{-2, 0, \{1\}, 3\}$

• Be careful to distinguish between members of a set and subsets of a set...

True False

1.
$$1 \in \{-2, 0, 1, 3\} \mathsf{T}$$

2.
$$1 \in \{-2, 0, \{1\}, 3\}$$
 F

3.
$$1 \subseteq \{-2, 0, \{1\}, 3\}$$
 F, in fact, not even mathematically correct syntax

4.
$$\{1\} \subseteq \{-2, 0, \{1\}, 3\}$$
 F

5.
$$\{1\} \in \{-2, 0, \{1\}, 3\} \text{ T}$$

6.
$$\{1\} \subseteq \{-2, 0, 1, 3\}$$

• Be careful to distinguish between members of a set and subsets of a set...

True False

1.
$$1 \in \{-2, 0, 1, 3\} \mathsf{T}$$

2.
$$1 \in \{-2, 0, \{1\}, 3\}$$
 F

- 3. $1 \subseteq \{-2, 0, \{1\}, 3\}$ F, in fact, not even mathematically correct syntax
- 4. $\{1\} \subseteq \{-2, 0, \{1\}, 3\}$ F
- 5. $\{1\} \in \{-2, 0, \{1\}, 3\} T$
- 6. $\{1\} \subseteq \{-2, 0, 1, 3\} \mathsf{T}$

- The empty set, denoted either Ø or { }, is the **unique** set with **no** elements.
 - Uniqueness can be proven, through a proof by contradiction!

- The empty set, denoted either Ø or { }, is the **unique** set with **no** elements.
 - Uniqueness can be proven, through a proof by contradiction!

True False

- The empty set, denoted either Ø or { }, is the **unique** set with **no** elements.
 - Uniqueness can be proven, through a proof by contradiction!

True False

1. $\emptyset \subseteq \mathbb{N}$

- The empty set, denoted either Ø or { }, is the **unique** set with **no** elements.
 - Uniqueness can be proven, through a proof by contradiction!

True False

- 1. $\emptyset \subseteq \mathbb{N}$ T
- 2. $\emptyset \subseteq A$ for any set A

- The empty set, denoted either Ø or { }, is the **unique** set with no elements.
 - Uniqueness can be proven, through a proof by contradiction!

True

False

- 1. $\emptyset \subseteq \mathbb{N}$ T
- 2. $\emptyset \subseteq A$ for any set $A \top$
- 3. $\emptyset \subset A$ for any set A

- The empty set, denoted either Ø or { }, is the **unique** set with no elements.
 - Uniqueness can be proven, through a proof by contradiction!

True

False

1.
$$\emptyset \subseteq \mathbb{N}$$

2.
$$\emptyset \subseteq A$$
 for any set $A \top$

3.
$$\emptyset \subset A$$
 for any set $A \vdash F$

4.
$$\emptyset \subseteq \emptyset$$

- The empty set, denoted either Ø or { }, is the **unique** set with no elements.
 - Uniqueness can be proven, through a proof by contradiction!

True False

- 1. $\emptyset \subseteq \mathbb{N}$ T
- 2. $\emptyset \subseteq A$ for any set $A \top$
- 3. $\emptyset \subset A$ for any set $A \vdash F$
- 4. $\emptyset \subseteq \emptyset \mathsf{T}$

- The empty set, denoted either Ø or { }, is the **unique** set with no elements.
 - Uniqueness can be proven, through a proof by contradiction!

True False

- 1. $\emptyset \subseteq \mathbb{N}\mathsf{T}$
- 2. $\emptyset \subseteq A$ for any set $A \top$
- 3. $\emptyset \subset A$ for any set $A \vdash F$
- 4. $\emptyset \subseteq \emptyset \mathsf{T}$

The powerset

- Given a set A, the powerset $\mathcal{P}(A)$ is the set of all subsets of A.
 - $\mathcal{P}(\{0,1\}) = \{\emptyset, \{0\}, \{1\}, \{0,1\}\}$
 - $\mathcal{P}(\{0, 1, 2\}) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{1, 2\}, \{0, 2\}, \{0, 1, 2\}\}\$
 - \mathbb{N}^{2k} , \mathbb{N}^{2k+1} , **P**, **SQUARES** $\in \mathcal{P}(\mathbb{N})$
 - And lots more...

Facts about the powerset

- The following are **facts** about the powerset:
 - Since $\emptyset \subseteq A$ for all sets A, $\emptyset \in \mathcal{P}(A)$ for all sets A
 - Since $A \subseteq A$ for all sets A, $A \in \mathcal{P}(A)$ for all sets A

- Let $A = \{1, 2, ..., n\}$
- Then, |P(A)|

$$\approx n \cdot logn$$

$$= n^2$$

$$= 2^n$$

$$= n!$$

- Let $A = \{1, 2, ..., n\}$
- Then, |P(A)|

$$\approx n \cdot logn$$

$$= n^2$$

= n!

• $P(\{1\}) =$

- $P(\{1\}) = \{\emptyset, \{1\}\}$
- $P(P(\{1\})) =$

```
P({1}) = {Ø, {1}}
P(P({1})) = {Ø, {Ø}, {{1}}}, {Ø, {1}}}
P(Ø) =
```

```
P({1}) = {Ø, {1}}
P(P({1})) = {Ø, {Ø}, {{1}}}, {Ø, {1}}}
P(Ø) = {Ø}
P({Ø}) =
```

```
P({1}) = {Ø, {1}}
P(P({1})) = {Ø, {Ø}, {{1}}}, {Ø, {1}}}
P(Ø) = {Ø}
P({Ø}) = {Ø, {Ø}}
```