$\tau_{1}^{#2} + \alpha$	$\tau_{1}^{#1} \dagger^{\alpha}$	$\sigma_{1}^{#2} \dagger^{\alpha}$	$\sigma_{1^{-}}^{*1} + ^{lpha}$	$\tau_{1+}^{\#1} + \alpha \beta$	$\sigma_{1+}^{\#2} \dagger^{\alpha\beta}$	$\sigma_{1^+}^{*1} \dagger^{lphaeta}$	
0	0	0	0	$\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{1}{k^2(2r_3+r_5)}$	$\sigma_{1^{+}lphaeta}^{\#1}$
0	0	0	0	$-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\sigma_{1^{+}lphaeta}^{\#2}$
0	0	0	0	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$ au_{1}^{\#1}{}_{lphaeta}$
0	0	0	$\frac{2}{k^2(r_3+2r_5)}$	0	0	0	$\sigma_{1^-lpha}^{\#1}$
0	0	0	0	0	0	0	$\sigma_{1^-\alpha}^{\#^2}$
0	0	0	0	0	0	0	$ au_{1^-lpha}^{\#1}$ $lpha$ $ au_1^7$
0	0	0	0	0	0	0	$t_{1^-\alpha}^{\#2}$

	_								
Added source term: $\int f^{lphaeta} \ au_{lphaeta} + \omega^{lphaeta\chi} \ \sigma_{lphaeta\chi}$	$r_5 \partial_{\alpha} \omega_{\lambda}^{\ \alpha}_{\ \theta} \partial^{\lambda} \omega^{\theta \kappa}_{\ \kappa} + \frac{1}{2} r_3 \partial_{\theta} \omega_{\lambda}^{\ \alpha}_{\ \alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\ \kappa} - r_5 \partial_{\theta} \omega_{\lambda}^{\ \alpha}_{\ \alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\ \kappa}$	$\frac{1}{6} t_2 \partial_{\kappa} f^{\lambda}_{\ \ \theta} \partial^{\kappa} f_{\lambda}^{\ \ \theta} - 4 r_3 \partial^{\beta} \omega_{ \alpha}^{\ \ \lambda \alpha} \partial_{\lambda} \omega_{ \alpha \beta}^{\ \ \prime} - \frac{1}{2} r_3 \partial_{\alpha} \omega_{\lambda}^{\ \ \alpha}_{\ \ \theta} \partial^{\lambda} \omega^{\theta \kappa}_{\ \ \kappa} +$	$\frac{1}{3}t_2\;\omega_{\theta\prime\kappa}\;\partial^\kappa f^{\prime\theta} + \frac{2}{3}t_2\;\omega_{\theta\kappa\prime}\;\partial^\kappa f^{\prime\theta} - \frac{1}{6}t_2\;\partial^\alpha f^\lambda_{\;\;\kappa}\partial^\kappa f_{\lambda\alpha} - \frac{1}{6}t_2\;\partial_\kappa f_{\;\theta}^{\;\;\lambda}\partial^\kappa f_{\;\lambda}^{\;\;\theta} +$	$\frac{1}{6}t_2\partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\ \theta} + \frac{1}{6}t_2\partial^{\alpha}f_{\kappa}^{\lambda}\partial^{\kappa}f_{\alpha\lambda} + \frac{1}{3}t_2\ \omega_{,\theta\kappa}\partial^{\kappa}f^{,\theta} - \frac{2}{3}t_2\ \omega_{,\kappa\theta}\partial^{\kappa}f^{,\theta} - \frac{2}{3}t_2^{-2}\omega_{,\kappa\theta}\partial^{\kappa}f^{,\theta} - \frac{2}{3}t_2^{-2}\omega_{,\kappa\theta}\partial^{\kappa}f$	$r_3 \partial_\theta \omega_{\lambda \alpha}^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} + 2 r_5 \partial_\theta \omega_{\lambda \alpha}^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} + \frac{1}{6} t_2 \partial^\alpha f_{\theta \kappa} \partial^\kappa f_{\alpha}^{\ \theta} -$	$r_5 \partial_{\theta} \omega_{\lambda}^{\ \alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} - \frac{1}{2} r_3 \partial_{\alpha} \omega_{\lambda}^{\ \alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} - r_5 \partial_{\alpha} \omega_{\lambda}^{\ \alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} +$	$\frac{1}{2} r_3 \partial_\alpha \omega_\lambda^{\ \alpha}_{\ \theta} \partial_\kappa \omega^{\theta \kappa \lambda} - r_5 \partial_\alpha \omega_\lambda^{\ \alpha}_{\ \theta} \partial_\kappa \omega^{\theta \kappa \lambda} - \frac{1}{2} r_3 \partial_\theta \omega_\lambda^{\ \alpha}_{\ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda} +$	$\frac{2}{3}t_2\;\omega_{,}^{\;\kappa\lambda}\;\omega_{\kappa\lambda}^{\;\;\prime}+\frac{1}{3}t_2\;\omega_{\kappa\lambda}^{\;\;\prime}\;\omega^{\kappa\lambda}_{\;\;\prime}-\frac{1}{2}r_3\partial_{,}\omega^{\kappa\lambda}_{\;\;\kappa}\partial^{\prime}\omega_{\lambda}^{\;\;\alpha}_{\;\;\alpha}-r_5\partial_{,}\omega^{\kappa\lambda}_{\;\;\kappa}\partial^{\prime}\omega_{\lambda}^{\;\;\alpha}+$	Lagrangian density

$\tau_{2+}^{\#1\text{ cr}} = 0$ Total #:		$\tau_{1+}^{\#1}{}^{\alpha\beta} + ik \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	== 0	$\tau_{1}^{\#1}{}^{\alpha} == 0$	== 0	$\tau_{0+}^{\#2} == 0$	$\tau_{0+}^{\#1} == 0$	$\sigma_{0+}^{\#1} == 0$	SO(3) irreps	Source constraints
25	5	ω	ω	ω	ω	1	1	1	#	

	$\omega_{2}^{\#1}_{\alpha\beta}$	$f_{2}^{\#1}_{\alpha\beta}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	$-\frac{3k^2r_3}{2}$	0	0
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	0	0	0
$\omega_2^{\sharp 1} \dagger^{lphaeta\chi}$	0	0	0

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2^{+}\alpha\beta}^{\#1}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2^{+}}^{\sharp 1}\dagger^{lphaeta}$	_	0	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0
$\sigma_{2}^{\#1}\dagger^{\alpha\beta\chi}$	0	0	0

Unitarity conditions

$$r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$$

(No massive particles)

Quadratic pole
Pole residue: $-\frac{1}{r_3(2r_3+r_5)(r_3+2r_5)p^2} > 0$ Polarisations: 2