Álgebra lineal

Trabajo práctico $N^{\circ}9$ - 2022

Espacios vectoriales con producto interno I

- 1. Determinar en cada caso si $(V, \langle \cdot, \cdot \rangle)$ es un espacio vectorial con producto interno.
 - a) $V = \mathbb{R}^2$; $\langle (x_1, y_1), (x_2, y_2) \rangle = x_1 x_2 x_1 y_2 y_1 x_2 + 3y_1 y_2$.
 - b) $V = \mathbb{R}^{2 \times 2}$; $\langle A, B \rangle = a_{11}b_{11} + a_{12}b_{12} + a_{21}b_{21} + a_{22}b_{22}$.
 - c) $V = \mathbb{C}^2$; $T \in L(\mathbb{C}^2, \mathbb{C})$; $\langle (x_1, y_1), (x_2, y_2) \rangle = T(x_1, y_1) \overline{T(x_2, y_2)}$.
 - d) $V = \mathbb{C}[x]; \langle p, q \rangle = \int_0^1 p(t) \overline{q(t)} dt.$
- 2. Sean V y W dos \mathbb{K} -EV y sea $\langle \cdot, \cdot \rangle$ un producto interno sobre W. Probar que si $T \in L(V, W)$ es un monomorfismo de espacios vectoriales, entonces $\langle \cdot, \cdot \rangle_T$ dado por

$$\langle v_1, v_2 \rangle_T = \langle Tv_1, Tv_2 \rangle$$
 para $v_1, v_2 \in V$,

es un producto interno sobre V.

- 3. a) Consideremos el operador rotación en \mathbb{R}^2 dado por $R_{\frac{\pi}{2}}$. Probar que para todo $x \in \mathbb{R}^2$, la norma de x con respecto al producto interno usual de \mathbb{R}^2 , coincide con la norma de x con respecto al producto $\langle \cdot, \cdot \rangle_{R_{\frac{\pi}{4}}}$ definido en el ejercicio anterior.
 - b) Probar que si $(V,\langle\cdot,\cdot\rangle)$ es un espacio con producto interno y $T\in L(V)$ es una isometría, entonces

$$\langle v, v \rangle = \langle v, v \rangle_T$$
 para todo $v \in V$.

Comparar con el ejercicio 8 del TP 2.

- 4. Consideremos \mathbb{R}^2 con el producto interno usual y sean $v_1=(1,2)$ y $v_2=(-1,1)$.
 - a) Probar que existe $w \in \mathbb{R}^2$ tal que $\langle v_1, w \rangle = -1$ y $\langle v_2, w \rangle = 3$. ¿Es único?
 - b) Si $\mathcal{E} = \{e_1, e_2\}$ es la base canónica de \mathbb{R}^2 , probar que

$$v = \langle v, e_1 \rangle e_1 + \langle v, e_2 \rangle e_2$$
 para todo $v \in \mathbb{R}^2$.

5. a) Consideremos el \mathbb{R} -EV, $\mathbb{R}^{n \times m}$. Probar que la aplicación

$$\langle A,B\rangle=\operatorname{tr}(B^tA)\quad \text{para }A,B\in\mathbb{R}^{n\times m}\,,$$

es un producto interno para $\mathbb{R}^{n \times m}$.

Álgebra lineal 2022 Página 1 de 3

b) Consideremos ahora a $\mathbb{C}^{n\times m}$ como \mathbb{C} -EV y la aplicación

$$\langle A, B \rangle = \operatorname{tr}(B^t A)$$
 para $A, B \in \mathbb{C}^{n \times m}$,

; es un producto interno para $\mathbb{C}^{n\times m}$? ¿De qué manera se puede arreglar para que lo sea?

6. Sea $(V,\langle\cdot,\cdot\rangle)$ un espacio con producto interno y sea S un subconjunto de V, probar que S^\perp es un subespacio de V y que

$$(S^{\perp})^{\perp} = \overline{S} .$$

- 7. ¿Qué dimensión tiene el subespacio de \mathbb{R}^6 que es ortogonal a los vectores (1, 1, -2, 3, 4, 5) y (0, 0, 1, 1, 0, 7)?
- 8. Consideremos \mathbb{R}^3 con el producto interno usual.
 - a) Hallar el subespacio ortogonal de $W = \{(x, y, z) : 3x y + 2z = 0\}.$
 - b) Hallar una base ortogonal de \mathbb{R}^3 que contenga al vector (1,-1,2).
 - c) Sea $B = \{(1,0,1), (2,0,1), (1,1,0)\}$ una base de \mathbb{R}^3 . Hallar a partir de B, una base B' que sea ortonormal y calcular las coordenadas de (2,-1,3) en esta nueva base.
- 9. Sea $V = \mathbb{R}_3[x]$ dotado con el producto interno

$$\langle p, q \rangle = \int_0^1 p(t)q(t) dt$$
 para $p, q \in V$.

- a) Sean $p(x) = x + 2 y q(x) = x^2 2x 3$. Calcular (p, q), ||p|| y ||q||.
- b) Aplicar el proceso de ortogonalización de Gram-Schmidt a $B = \{1, x, x^2, x^3\}$, para obtener una base ortonormal de V.
- c) ¿Qué sucede si hacemos lo mismo para la base B ordenada de la siguiente manera, $B' = \{x, 1, x^2, x^3\}$?
- 10. Hallar una base ortonormal de \mathbb{C}^3 formada por autovectores de

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{pmatrix} .$$

11. Consideremos $\mathbb{C}^{2\times 2}$ como \mathbb{C} -EV dotado con el producto interno

$$\langle A, B \rangle = \operatorname{tr}(\overline{B}^t A) \quad \text{para } A, B \in \mathbb{C}^{2 \times 2},$$

a) Hallar la distancia entre

$$A = \begin{pmatrix} i & 1 \\ 0 & 1+i \end{pmatrix} \quad \text{y} \quad B = \begin{pmatrix} 0 & -i \\ 2i & 3 \end{pmatrix}.$$

Algebra lineal 2022

- b) Hallar el complemento ortogonal del subespacio de $\mathbb{C}^{2\times 2}$ generado por A y B.
- 12. Se
aVun $\mathbb{C}\text{-EV}$ dotado con un producto interno. Probar que la norma determinada por el producto interno cumple la llamada "ley del paralelogramo"

$$||v + w||^2 + ||v - w||^2 = 2(||v||^2 + ||w||^2)$$
 para todo $v, w \in V$.

13. **Optativo.** Determinar qué condiciones debe cumplir una matriz $B \in \mathbb{R}^{n \times n}$ para que

$$\langle x, y \rangle = x^t B y \,,$$

sea un producto interno sobre \mathbb{R}^n .

Sugerencia. Hacerlo primero para un n chico, por ejemplo 3.

Álgebra lineal 2022