Find the Krtio of FE to FG for two electrons placed at some distance apart in air. Charge on electron = -1.6 x 10 °C Mars electron = 9.1 x 10 kg
A find the serio of the total
at some distance apart in cut.
Charge on electron = -1.6 x 10 C
Mars electron = 9.1×10 kg
K= 9x10 Nm/c2
K= 9x10 Nm/c2 G= 6.67 +16" Nm2/kg2
$F_{\epsilon} = \frac{k \pi v_{2}}{k \pi^{2}} \qquad F_{\epsilon} = \frac{G m_{i} m_{2}}{2^{2}}$
E No Bo
FE Z K9,9/2 - K9/2 - K9/2
$\frac{F_{\varepsilon}}{F_{G}} = \frac{k_{\eta}q_{2}}{F_{W}} = \frac{k_{\eta}q_{2}}{Gm_{l}m_{2}} = \frac{k_{\eta}q_{2}}{Gm_{l}m_{2}} = \frac{k_{\eta}q_{2}}{Gm_{l}m_{2}}$
G YII

SUKKUR IBA UNIVERSITY

Student's Name:	Date
Class: CMS ID	Course:
Instructor:	No
Ohmis law	
=> Georg Simon ohm estabili	ished the relation b/w deckie
Ourrent and potiential di	shed the relation b/w deckie
=> Statement: - Electric	Current flowing through a by proportional to the potential
Conductor is direct	by proportional to the potential
différence accross	ct.
- I;	
Z rasistor	
	2 neight difference
-> Battery provide potantia	
Increase potential different also current flow	increase. How also increase
Unit also current flow	increase. How also increase
0*0	
Direct proportion	
It increes potential.	difference the autometically
current flow merech	ortion.
	ut (conductomea)
current Potentia	, ,
current Potential different	conductonceis.
Z= Z= V TRO	opposite of resistance
$I = \frac{V}{R}$ $IR = \frac{V}{R}$	
	partings of current.
VA TA	Concluctomer =
↑ + 4¥	Resistance
K 7 4	K= R
	· K

SUKKUR IBA UNIVERSITY,

Student's Name:		D)ale
Class:	CMS ID	Course:	-
Instructor:			0
/2	Callambis 2		4 . 4 244
0	(2)	Intersetion	of charges
<u></u> ← (+1/17)	1 (+V2)	F + +	repel
F. C	~ 171 tə	1	alsect
	F= F, = F	1 + -	V(II X)
\bigcirc	T a a	Facts a	long live joining.
_	F K:9,9=	Center	of 2 charges.
(2)	Fx 1/2 (Inve	rose/squeri	<i>μ</i>
		medium. estant (depends upon med	2
	F= K9,9	12 K= 9	2x109 Nm²/c² Pree space/vacum
	72		ree space vacum
	K= 1 LIXE	$\xi \rightarrow 1$	permitivity (
	4/YE	1/2 ml	(26.62+
		- Com m.	F
F	= K 2192	T= GM1 M2	
Electro L'	Y2		Y (Capachima)
statio force	Smilarety	re law (Fx1) er jorning	(Sepsation)
<i>O</i>	Inverse Sque	re law (FXI)	
2)	line cente	er Joining	
	Differen	ree	
	47	10. 02	the almed
A T	FE > repulsi	the al	raercie
U F	Got allways	ve cus well as al altractive	
	T Tuckehan	dut of medium	1
(2)	1 1 mix x iii		