Equiangular lines in \mathbb{R}^{17} and the characteristic polynomial of a Seidel matrix

Gary Greaves

Division of Mathematical Sciences, Nanyang Technological University

12th July 2019

Equiangular line systems

- Let \mathcal{L} be a system of n lines spanned by $\mathbf{v}_1, \ldots, \mathbf{v}_n \in \mathbb{R}^d$ with $\langle \mathbf{v}_i, \mathbf{v}_i \rangle = 1$.
- $ightharpoonup \mathcal{L}$ is equiangular if $|\langle \mathbf{v}_i, \mathbf{v}_j \rangle| = \alpha$; ("common angle α ").
- **Problem:** given d, what is the largest possible size N(d) of an Equiangular Line System (ELS) in \mathbb{R}^d ?

Estimates for N(d)

- Real ETFs give $N(d) = \Omega(d\sqrt{d})$.
- ▶ MUB construction gives $N(d) = \Theta(d^2)$.

Upper bounds

- ► Gerzon (1976): $N(d) \leq d(d+1)/2$;
- $ightharpoonup N_lpha(d):=$ largest cardinality ELS with common angle lpha.
- ► For $\alpha^2 \le 1/(d+2)$: $N_{\alpha}(d) \le d(1-\alpha^2)/(1-\alpha^2 d)$.
- ▶ Barg and Yu (2014), Okuda and Yu (2016), King and Tang (2016), Glazyrin and Yu (2018), De Laat et al. (2018): SDP upper bounds;
- ▶ Bukh (2016), Jiang and Polyanski (2017), Balla, Dräxler, Keevash, Sudakov (2018): for fixed α , $N_{\alpha}(d) = O(d)$.

Bounds for small dimensions

- ▶ GG, Koolen, Munemasa, Szöllősi (2016): $N(14) \le 29$ and $N(16) \le 41$;
- ► GG and Yatsyna (2019): $N(17) \le 49$;
- ► Szöllősi (2017): $N(18) \ge 54$;
- ► GG (2018): $N(18) \le 60$;
- ► Lin and Yu (2019+): $N(18) \ge 56$;
- ► Azarija and Marc (2018): $N(19) \le 75$ and $N(20) \le 95$;
- ▶ GG, Syatriadi, and Yatsyna (2020+): $N(19) \le 74$ and $N(20) \le 94$;

Below is a table with bounds for N(d) for $d \leq 20$.

						7 – 13							
M(A)	2	6	6	10	16	၁၀	28	26	40	48	56	72	90
1V(u)	٥	U	U	10	10	28	29	30	41	49	60	74	94

Seidel matrices

Equiangular lines l_1, \ldots, l_n

common angle $\alpha > 0$

Unit spanning vectors $\mathbf{v}_i: l_i = \langle \mathbf{v}_i \rangle \mid \langle \mathbf{v}_i, \mathbf{v}_i \rangle = \pm \alpha$

Gram matrix $M=(\langle \mathbf{v}_i, \mathbf{v}_j
angle)_{ij}$

 $\left(\begin{array}{ccc}
1 & \pm \alpha & \pm \alpha \\
\pm \alpha & 1 & \pm \alpha \\
+ \alpha & \pm \alpha & 1
\end{array}\right)$

Seidel matrix $S = \frac{(M-I)}{\alpha}$

 $\left(\begin{array}{ccc} 0 & \pm 1 & \pm 1 \\ \pm 1 & 0 & \pm 1 \\ + 1 & + 1 & 0 \end{array}\right)$

Multiplicity of the smallest eigenvalue

Unit vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ in \mathbb{R}^d

$$B = \begin{pmatrix} | & \updownarrow & & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \\ | & | & & | \end{pmatrix}$$

$$rank = d$$

Gram matrix
$$M = B^{\top}B$$

smallest eigenvalue $[0]^{n-d}$

smallest eigenvalue
$$\left[\frac{-1}{\alpha}\right]^{n-d}$$

Seidel matrix $S = \frac{(M-I)}{\alpha}$

Theorem (Relative bound)

Let \mathcal{L} be an equiangular line system of n lines in \mathbb{R}^d whose Seidel matrix has smallest eigenvalue λ_0 and suppose $\lambda_0^2 \geqslant d+2$.

$$n \leqslant \frac{d(\lambda_0^2 - 1)}{\lambda_0^2 - d}.$$

Equality implies that S has 2 distinct eigenvalues.

GG, Koolen, Munemasa, Szöllősi (2016): "Spectrum is determined for systems close to the relative bound"

d	λ_0	$\frac{d(\lambda_0^2-1)}{\lambda_0^2-d}$	$\left\lfloor \frac{d(\lambda_0^2 - 1)}{\lambda_0^2 - d} \right\rfloor$	Spectrum
14	-5	≈ 30	30	$\{[-5]^{16}, [5]^9, [7]^5\}$
15	-5	36	36	$\{[-5]^{21}, [7]^{15}\}$
16	-5	pprox 42	42	$\{[-5]^{26}, [7]^7, [9]^9\}$
17	-5	51	51	$\{[-5]^{34}, [10]^{17}\}$
18	-5	≈ 61	61	$\{[-5]^{43}, [11]^9, [12]^1, [13]^8\}$
19	-5	76	76	$\{[-5]^{57}, [15]^{19}\}$
20	-5	96	96	$\{[-5]^{76}, [19]^{20}\}$

GG, Koolen, Munemasa, Szöllősi (2016): "Spectrum is determined for systems close to the relative bound"

d	λ_0	$\frac{d(\lambda_0^2 - 1)}{\lambda_0^2 - d}$	$\left\lfloor \frac{d(\lambda_0^2 - 1)}{\lambda_0^2 - d} \right\rfloor$	Spectrum
14	-5	≈ 30	30	$\{[-5]^{16}, [5]^9, [7]^5\}$
15	-5	36	36	$\{[-5]^{21}, [7]^{15}\}$
16	-5	≈ 42	42	$\{[-5]^{26}, [7]^7, [9]^9\}$
17	-5	51	51	$\{[-5]^{34}, [10]^{17}\}$
18	-5	≈ 61	61	$\{[-5]^{43}, [11]^9, [12]^1, [13]^8\}$
19	-5	76	76	$\{[-5]^{57}, [15]^{19}\}$
20	-5	96	96	$\{[-5]^{76}, [19]^{20}\}$

GG, Koolen, Munemasa, Szöllősi (2016): "Spectrum is determined for systems close to the relative bound"

d	λ_0	$\frac{d(\lambda_0^2 - 1)}{\lambda_0^2 - d}$	$\left\lfloor \frac{d(\lambda_0^2 - 1)}{\lambda_0^2 - d} \right\rfloor$	Spectrum
14	-5	≈ 30	30	$\{[-5]^{16}, [5]^9, [7]^5\}$
15	-5	36	36	$\{[-5]^{21}, [7]^{15}\}$
16	-5	pprox 42	42	$\{[-5]^{26}, [7]^7, [9]^9\}$
17	-5	51	51	$\{[-5]^{34}, [10]^{17}\}$
18	-5	≈ 61	61	$\{[-5]^{43}, [11]^9, [12]^1, [13]^8\}$
19	-5	76	76	$\{[-5]^{57}, [15]^{19}\}$
20	-5	96	96	$\{[-5]^{76}, [19]^{20}\}$

Note: even eigenvalues *cannot* have multiplicity greater than 1.

GG, Koolen, Munemasa, Szöllősi (2016): "Spectrum is determined for systems close to the relative bound"

d	λ_0	$\frac{d(\lambda_0^2-1)}{\lambda_0^2-d}$	$\left\lfloor \frac{d(\lambda_0^2 - 1)}{\lambda_0^2 - d} \right\rfloor$	Spectrum
14	-5	≈ 30	30	$\{[-5]^{16}, [5]^9, [7]^5\}$
15	-5	36	36	$\{[-5]^{21}, [7]^{15}\}$
16	-5	pprox 42	42	$\{[-5]^{26}, [7]^7, [9]^9\}$
17	-5	51	51	$\{[-5]^{34}, [10]^{17}\}$
18	-5	≈ 61	61	$\{[-5]^{43}, [11]^9, [12]^1, [13]^8\}$
19	-5	76	76	$\{[-5]^{57}, [15]^{19}\}$
20	-5	96	96	$\{[-5]^{76}, [19]^{20}\}$

Note: even eigenvalues *cannot* have multiplicity greater than 1.

Equiangular lines in \mathbb{R}^{14}

- ▶ Suppose there are $n > 2 \cdot 14$ equiangular lines in \mathbb{R}^{14} .
- ▶ Lemmens and Seidel (1973): $\implies \lambda_0 = -5$.
- ▶ Relative bound: $n \leq 30.54 \cdots \notin \mathbb{N}$.
- Suppose we have 30 lines in \mathbb{R}^{14} , with corresponding Seidel matrix S having eigenvalues

$$-5 = \lambda_0 < \lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_{14}.$$

$$14 = \sum_{i=1}^{14} (\lambda_i - 6)^2$$

Equiangular lines in \mathbb{R}^{14}

- ▶ Suppose there are $n > 2 \cdot 14$ equiangular lines in \mathbb{R}^{14} .
- ▶ Lemmens and Seidel (1973): $\implies \lambda_0 = -5$.
- ▶ Relative bound: $n \leq 30.54 \cdots \notin \mathbb{N}$.
- Suppose we have 30 lines in \mathbb{R}^{14} , with corresponding Seidel matrix S having eigenvalues

$$-5 = \lambda_0 < \lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_{14}.$$

$$14 = \sum_{i=1}^{14} (\lambda_i - 6)^2 \geqslant 14 \sqrt[14]{\prod (\lambda_i - 6)^2} \geqslant 14$$

Equiangular lines in \mathbb{R}^{14}

- ▶ Suppose there are $n > 2 \cdot 14$ equiangular lines in \mathbb{R}^{14} .
- ▶ Lemmens and Seidel (1973): $\implies \lambda_0 = -5$.
- ▶ Relative bound: $n \leq 30.54 \cdots \notin \mathbb{N}$.
- Suppose we have 30 lines in \mathbb{R}^{14} , with corresponding Seidel matrix S having eigenvalues

$$-5 = \lambda_0 < \lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_{14}.$$

$$14 = \sum_{i=1}^{14} (\lambda_i - 6)^2 \geqslant 14 \sqrt[14]{\prod (\lambda_i - 6)^2} \geqslant 14$$

$$\implies \lambda_i \in \{5, 7\}.$$

Equiangular lines in \mathbb{R}^{17}

- Suppose there are $n > 2 \cdot 17$ equiangular lines in \mathbb{R}^{17} .
- ▶ Lemmens and Seidel (1973): $\implies \lambda_0 = -5$.
- ▶ Relative bound: $n \le 51$ (but equality is not possible).
- Suppose we have 50 lines in \mathbb{R}^{17} , with corresponding Seidel matrix S having eigenvalues

$$-5 = \lambda_0 < \lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_{17}.$$

$$25 = \sum_{i=1}^{17} (\lambda_i - 10)^2.$$

Equiangular lines in \mathbb{R}^{17}

- Suppose there are $n > 2 \cdot 17$ equiangular lines in \mathbb{R}^{17} .
- ▶ Lemmens and Seidel (1973): $\implies \lambda_0 = -5$.
- ▶ Relative bound: $n \le 51$ (but equality is not possible).
- Suppose we have 50 lines in \mathbb{R}^{17} , with corresponding Seidel matrix S having eigenvalues

$$-5 = \lambda_0 < \lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_{17}.$$

It follows that

$$25 = \sum_{i=1}^{17} (\lambda_i - 10)^2.$$

Note: $(\lambda_i - 10)^2$ are +ve algebraic integers with sum 25.

Characteristic polynomial modulo 2^k

Let S be a Seidel matrix of order n.

- ► GG and Yatsyna (2019):
 - for n even, there are $\leq 2^{\binom{k-2}{2}}$ congruence classes for $\chi_S(x)$ modulo $2^k \mathbb{Z}[x]$.
 - ▶ for n odd, there are $\leq 2 \cdot 2^{\binom{k-2}{2}}$ congruence classes for $\chi_S(x)$ modulo $2^k \mathbb{Z}[x]$.
- \triangleright Conjecture: These upper bounds are sharp for large n.

Characteristic polynomial modulo 2^k

Let S be a Seidel matrix of order n.

- ► GG and Yatsyna (2019):
 - for n even, there are $\leq 2^{\binom{k-2}{2}}$ congruence classes for $\chi_S(x)$ modulo $2^k \mathbb{Z}[x]$.
 - ▶ for n odd, there are $\leq 2 \cdot 2^{\binom{k-2}{2}}$ congruence classes for $\chi_S(x)$ modulo $2^k \mathbb{Z}[x]$.
- ightharpoonup Conjecture: These upper bounds are sharp for large n.

A key lemma

- \triangleright Let Γ be a graph.
- ▶ $D_N = \langle r, s \mid r^N, s^2, (rs)^2 \rangle$ acts on the set of closed N-walks.
- $\operatorname{fix}_{\Gamma}(g)$ denotes the set of closed N-walks fixed by $g \in D_N$.

Burnside: $|D_N|$ divides $\sum_{g \in D_N} |\operatorname{fix}_{\Gamma}(g)|$.

Key Lemma (GG and Yatsyna 2019)

Let A be a graph-adjacency matrix. For $l \geqslant 2$, we have

$$\sum_{d \mid 2l} \varphi(2l/d) \operatorname{tr}(A^d) + l \mathbf{1}^{\top} A^l \mathbf{1} \equiv 0 \pmod{4l}.$$

The candidate characteristic polynomials

Theorem (GG and Yatsyna 2019)

Let S be a Seidel matrix corresponding to 50 equiangular lines in \mathbb{R}^{17} . Then

$$\chi_S(x) = (x+5)^{33}(x-9)^{10}(x-11)^5(x^2-20x+95),$$
 $\chi_S(x) = (x+5)^{33}(x-7)(x-9)^9(x-11)^7, \text{ or }$
 $\chi_S(x) = (x+5)^{33}(x-9)^{12}(x-11)^4(x-13).$

However, there does not exist a Seidel matrix having any of these characteristic polynomials.

I.e., \nexists a system of 50 equiangular lines in \mathbb{R}^{17} .

Idea of the Seidel matrix nonexistence proof

- ▶ Let S be an $n \times n$ Seidel matrix with spectrum $\{[\lambda_1]^{e_1}, \ldots, [\lambda_m]^{e_m}\}$.
- Let S[r] denote the principal submatrix of S obtained by deleting the r-th row and column of S.

Proposition (Graph angle theory)

$$\chi_{S[j]}(x) = \chi_S(x) \sum_{i=1}^m \frac{\alpha_{ij}^2}{x - \lambda_i}, \qquad \forall j \in \{1, \dots, n\};$$

$$e_i = \sum_{i=1}^n \alpha_{ij}^2, \qquad \forall i \in \{1, \dots, m\}.$$

Idea of the Seidel matrix nonexistence proof

Lemma

There does not exist a Seidel matrix with characteristic polynomial

$$f(x) = (x+5)^{33}(x-9)^{12}(x-11)^4(x-13).$$

Proof.

- ▶ Suppose S is a Seidel matrix with $\chi_S(x) = f(x)$;
- $\chi_{S[j]}(x) = (x+5)^{32}(x-9)^{11}(x-11)^3(x^3-28x^2+243x-r);$
- ▶ By interlacing, $r \in \{616, \ldots, 624\}$;
- ▶ Using modular restriction, we find r = 616;
- ► Then $(\alpha_{1j}^2, \alpha_{2j}^2, \alpha_{3j}^2, \alpha_{4j}^2) = (83/126, 2/7, 0, 1/18);$
- ▶ But $50 \cdot 83/126 = 32.93 \cdots \neq 33$.

Thanks for listening!

arXiv:1806.08323