

EXPERIMENT NUMBER -10

STUDENT'S NAME – YANA SRIVASTAVA

STUDENT'S UID – 20BCS2279

CLASS AND GROUP - 23 B

SEMESTER -1st

AIM OF THE EXPERIMENT -

Practical 10.1:

WAP to store a character string in block of memory space created by malloc and then modify the same to store a large string.

ALGORITHM

STEP 1:- START

STEP 2:- Print RUNTIME MEMORY ALLOCATION

STEP 4:-Enter max number of characters you want to input

STEP 3:- By using char *p = (char*)malloc(n*sizeof(char));

STEP 4:- if(p==NULL)

Memory allocation fails..

STEP 5:-Now terminate string with NULL character

STEP 6:-Print Enter new size

STEP 7:-If p=(char*)realloc(p,n*sizeof(char)); Enter new string please

STEP 8:-Display the new string you wrote

STEP 9:- END


```
#include<stdio.h>
#include<stdlib.h>
int main()
{
int n,i;
printf("\tRUNTIME MEMORY ALLOCATION\n");
printf("Enter max number of characters you want to input\n");
scanf("%d",&n);
char *p = (char*)malloc(n*sizeof(char));
if(p==NULL)
{
printf("Memory allocation fails..");
exit(0);
}
puts("Enter string please");
for(i=0;i<n;i++)
{
scanf("%c",p+i);
}
//Now terminate string with NULL character
*(p+i)= '\0';
printf("You wrote %s",p);
```



```
fflush(stdin);
```

```
printf("\nEnter new size\n");
scanf("%d",&n);
p=(char*)realloc(p,n*sizeof(char));
puts("\nEnter new string please");
scanf("%d",&n);
for(i=0;i<n;i++)
{
scanf("%c",p+i);
}
//Now terminate string with NULL character
*(p+i)= '\0';
printf("You wrote %s\n",p);
free(p);
return 0;
}
```

ERRORS ENCOUNTERED DURING PROGRAM'S EXECUTION

NO ERROR

PROGRAMS' EXPLANATION (in brief)

In this program to store a character string in block of memory space created by malloc and then modify the same to store a large string.

OUTPUT

AIM OF THE EXPERIMENT -

Practical 10.2:

At the start of your class lecture, n students were present. You declare array dynamically to store roll numbers of these students after 5 Mins m

more students join the class now you will reallocate memory space to store n + m roll numbers .Write a program by using functions malloc(), realloc() and free().

ALGORITHM

```
STEP 1:- START

STEP 2:- Take int *ptr; int n,m,i;
STEP 3:-Enter the no. of students

STEP 4:-Enter the roll no. ofstudents

STEP 5:-Enter the no. of new students entered after 5 mins.

STEP 6:-Enter the roll no. of new students

STEP 7:-Display the Roll no.of all the students are

STEP 8:-END
```

```
#include <stdio.h>
#include <stdlib.h>
int main()
{
   int *ptr; int n,m,i;
   printf("Enter the no. of students :-");
   scanf("%d",&n);
   ptr=(int*) malloc(n*sizeof(int));

printf("Enter the roll no. of %d students :-\n",n);
   for(i=0;i<n;i++)
{
   scanf("%d",&ptr[i]);
}</pre>
```



```
printf("Enter the no. of new students entered after 5 mins. :- ");
scanf("%d",&m);
ptr=(int*)realloc(ptr,(n+m)*sizeof(int));
printf("Enter the roll no. of new students :-\n");
for(i=n;i<n+m;i++)
{
scanf("%d",&ptr[i]);
}
printf("Roll no.of all the students are:-");
for(i=0;i<(n+m);i++)
{
printf("\n%d",ptr[i]);
}
free(ptr);
return 0;
}
```

ERRORS ENCOUNTERED DURING PROGRAM'S EXECUTION

NO ERROR

PROGRAMS' EXPLANATION (in brief)

In this program At the start of your class lecture, n students were present. You declare array dynamically to store roll numbers of these students after 5 Mins m more students join the class now you will reallocate memory space to store n + m roll numbers a program by using functions malloc(), realloc() and free()

OUTPUT

```
Enter the no. of students :-4
Enter the roll no. of 4 students :-

12
14
25
37
Enter the no. of new students entered after 5 mins. :- 2
Enter the roll no. of new students :-
23
13
Roll no. of all the students are:-
12
14
25
37
Process exited after 56.39 seconds with return value 0
Press any key to continue . . .
```

AIM OF THE EXPERIMENT -

Practical 10.3:

Sort the list of N elements where memory is allocated dynamically using pointers.

ALGORITHM

STEP 1:- START


```
STEP 2:- Take int *a,n,i,j,t;

STEP 3:- How many numbers you want to be sorted

STEP 4:- a=(int *)malloc(n *sizeof(int));

STEP 5:-EnterNumbers

STEP 6:-After Sorting in Ascending Order

STEP 7:- END
```

```
#include<stdio.h>
#include<stdlib.h>
int main()
{
 int *a,n,i,j,t;
 printf("How many numbers you want to be sorted: ");
 scanf("%d",&n);
 a=(int *)malloc(n *sizeof(int));
 printf("\nEnter %d Numbers: \n\n",n);
 for(i=0;i<=n-1;i++)
 {
   scanf("%d", (a+i));
 }
 for(i=0;i<n;i++)
   for(j=0;j<=i;j++)
   {
     if(*(a+i)<*(a+j)
    {
      t=*(a+i);
      *(a+i)=*(a+j);
      *(a+j)=t;
    }
   }
 }
```



```
printf("\nAfter Sorting in Ascending Order: \n");
for(i=0;i<n;i++)
printf("\n%d",*(a+i));
return 0;
}</pre>
```

ERRORS ENCOUNTERED DURING PROGRAM'S EXECUTION

NO ERROR

PROGRAMS' EXPLANATION (in brief)

In this program to Sort the list of N elements where memory is allocated dynamically using pointers.

OUTPUT


```
D:\PROBLEM SOLVING WITH PROGRAMMING\C PROGRAMING\PRATICAL 10.3.exe
How many numbers you want to be sorted: 6
Enter 6 Numbers:
After Sorting in Ascending Order:
13
26
34
66
Process exited after 48.77 seconds with return value 0
Press any key to continue \dots
```


AIM OF THE EXPERIMENT -

Practical 10.4:

Marks of group A having m students and group B having n students have stored in two dynamically allocated arrays. Find the average aggregate marks of the whole class.

ALGORITHM

STEP 1:- START

STEP 2:-Take int n,m;

STEP 3:-Enter number of students in group A

STEP 4:-Enter number of students in group B

STEP 5:-int *arr1=(int*)malloc(n*sizeof(int));

int *arr2=(int*)malloc(m*sizeof(int));

STEP 6:-Enter marks for Group A Students

STEP 7:-Enter marks for Group B Students

STEP 8:-avg=sum/(n+m)

STEP 9:-Aggregate marks

STEP 10:-END


```
#include<stdio.h>
   #include <stdlib.h>
   int main()
   {
   int n,m;
   printf("\n enter number of students in group A\n");
   scanf("%d",&n);
   printf("\n enter number of students in group B\n");
   scanf("%d",&m);
   int *arr1=(int*)malloc(n*sizeof(int));
   int *arr2=(int*)malloc(m*sizeof(int));
   printf("\nenter marks for Group A Students\n");
   for(int i=0;i<n;i++)
   scanf("%d",&arr1[i]);
   }
   printf("\n enter marks for Group B Students\n");
   for(int i=0;i<m;i++)
   {
   scanf("%d",&arr2[i]);
float sum=0;
for(inti=0;i<n;i++)</pre>
   sum=sum+arr1[i];
   for(int i=0;i<m;i++)
   sum=sum+arr2[i];
   float avg=sum/(n+m);
   printf("\n Aggregate marks=%f",avg);
    return 0;
   }
```


ERRORS ENCOUNTERED DURING PROGRAM'S EXECUTION NO ERROR PROGRAMS' EXPLANATION (in brief)

In this program Marks of group A having m students and group B having n students have stored in two dynamically allocated arrays. Find the average aggregate marks of the whole class.

OUTPUT

```
D:\PROBLEM SOLVING WITH PROGRAMMING\C PROGRAMING\PRATICAL10.4.exe
                                                                                                               enter number of students in group A
enter number of students in group B
enter marks for Group A Students
enter marks for Group B Students
82
Aggregate marks=86.599998
Process exited after 53.36 seconds with return value 0
Press any key to continue . . .
```


LEARNING OUTCOMES

- Identify situations where computational methods would beuseful.
- Approach the programming tasks using techniques learnt and writepseudo-code.
- Choose the right data representation formats based on the requirements of the problem.
- Use the comparisons and limitations of the various programming constructs and choose the right one for the task.

EVALUATION COLUMN (To be filled by concerned faculty only)

Sr. No.	Parameters	Maximum Marks	Marks Obtained
1.	Worksheet Completion including writing learning objective/ Outcome	10	
2.	Post Lab Quiz Result	5	
3.	Student engagement in Simulation/ Performance/ Pre Lab Questions	5	
4.	Total Marks	20	