Report esercitazione in C W5D4

In questa esercitazione vedremo come scrivere ed eseguire un codice in linguaggio C utilizzando Kali Linux.

Step 1 Per prima cosa assicuriamoci di aver installato le librerie necessarie al funzionamento del linguaggio mediante il comando *sudo apt-get install gcc*. Ricordiamoci di impostare la macchina virtuale in *scheda con bridge* e di avere il servizio *dhcp* attivo nella configurazione del network.

```
[sudo] password for kali:

Reading package lists ... Done

Building dependency tree ... Done

Reading state information ... Done

gcc is already the newest version (4:14.2.0-1).

The following packages were automatically installed and are no longer required:

crackmapexec firebird3.0-common firebird3.0-common-doc imagemagick-6.q16 libbfiol libc++1-19

libc++abi1-19 libcapstone4 libconfig++9v5 libconfig9 libdirectfb-1.7-7t64 libegl-dev libflac12t64

libfmt9 libgdal35 libgeos3.13.0 libgl1-mesa-dev libglapi-mesa libgles-dev libgles1 libglvnd-core-dev

libglvnd-dev libgtksourceview-3.0-1 libgtksourceview-3.0-common libgtksourceviewm-3.0-0v5 libgumbo2

libhdf5-103-1t64 libhdf5-hl-100t64 libjxl0.9 libldap-2.5-0 libmagickcore-6.q16-7-extra

libmagickcore-6.q16-7t64 libmagickwand-6.q16-7t64 libmbedcrypto7t64 libmsgraph-0-1 libnetcdf19t64

libpaper1 libpoppler140 libpython3.12-dev libqt5sensors5 libqt5webkit5 libqt5x11extras5 libsuperlu6

libtag1v5 libtag1v5-vanilla libtagc0 libunwind-19 libwebrtc-audio-processing1 libx265-209

openjdk-23-jre openjdk-23-jre-headless python3-appdirs python3-ntlm-auth python3-setproctitle

python3.12 python3.12-dev python3.12-minimal python3.12-venv ruby-zeitwerk ruby3.1 ruby3.1-dev

ruby3.1-doc

Use 'sudo apt autoremove' to remove and 0 not upgraded.
```

Step 2 Per nostra comodità creeremo una cartella sul Desktop che conterrà tutti i nostri programmi in C. Procederemo poi a creare un file .*c* che conterrà il nostro codice.

```
(kali@kali)-[~]
$ cd Desktop/

(kali@kali)-[~/Desktop]
$ cd Cprograms/

(kali@kali)-[~/Desktop/Cprograms]
$ sudo nano aree.c
```

Step 3 Scriviamo il codice richiesto dall'esercizio: data una variabile d (numero reale) immessa da tastiera, calcolare le aree di un quadrato, un cerchio e un triangolo equilatero.

```
include <stdio.h>
#include <stdlib.h>
#include <math.h>
int main(void)
float d ;
float aq, ac, at ;
float r ;
printf("calcolo delle aree\n") ;
printf("immetti il valore di D") ;
scanf("%f", &d);
aq= d * d;
r= d/2 ;
            * (r*r);
at= ( sqrt (3) / 4 ) * pow ( d, 2 );
printf("\n");
printf("le aree calcolate sono:\n");
printf("area del quadrato %f = %f\n", d, aq);
printf("area del cerchio %f = %f\n", d, ac);
printf("area del triangolo %f = %f\n", d, at);
return (0);
```

Step 4 Nel codice sovrastate abbiamo usato diverse librerie, tra cui *math.h.*Per creare un eseguibile del programma ed includere le librerie necessarie useremo il comando sudo *gcc aree.c -o aree -lm* (in questo modo stiamo anche nominando l'eseguibile in modo che sia facilmente trovabile).

```
(kali@kali)-[~/Desktop/Cprograms]
sudo gcc aree.c -o aree -lm
```

Step 5 Eseguiamo infine il programma tramite il comando ./aree.

Facoltativo

Aggiungere al codice scritto in precedenza delle variabili inseribili da tastiera (almeno 3), calcolare la media aritmetica ed usare il risultato per calcolare l'area di un quadrato, di un cerchio e di un triangolo equilatero. Il risultato dovrà mostrare 0 cifre decimali (arrotondando quindi la cifra) e 2 cifre decimali.

Step 1 Creare il codice richiesto mediante gli step visti in precedenza.

```
File Actions Edit View Help

GNU nano 8.3

include <stdio.h>
include <stdib.h>
iinclude <math.h>
iint main(void)

{

float n1,n2,n3;
float d;
float aq,ac,at;
float r;

printf("immetti il valore di n1: ");
scanf("%f", 6n1);
printf("immetti il valore di n2: ");
scanf("%f", 6n2);
printf("immetti il valore di n3: ");
scanf("%f", 6n3);

d = (n1+n2+n3)/3;
aq= d*d;
r= d/2;
ac= M PI*(r*r);
printf("la media è= %.0lf e %.2lf\n", d, d);
printf("la media è= %.0lf e %.2lf\n", aq, aq);
printf("area del quadrato= %.0lf e %.2lf\n", ac, ac);
printf("area del triangolo= %.0lf e %.2lf\n", at, at);
return (0);
}
```

Step 2 Eseguire il programma.

```
(kali⊗ kali)-[~/Desktop/Cprograms]
$ ./facoltativo
calcolo di aree

immetti il valore di n1: 5
immetti il valore di n2: 6
immetti il valore di n3: 4

la media è= 5 e 5.00
le aree calcolate sono:
area del quadrato= 25 e 25.00
area del cerchio= 20 e 19.63
area del triangolo= 11 e 10.83
```