

Simulation of XXZ Spin Models using Sideband Transitions in Trapped Bosonic Gases

Anjun Chu (JILA)

Johannes Will (Leibniz University Hannover)

Carsten Klempt (Leibniz University Hannover)

DAMOP, June 4th, 2020

Jan Arlt (Aarhus University)

Ana Maria Rey (JILA)

Simulation of long-range spin models

• Trapped ions Nature 551, 601 (2017)

• Cavity QED Science 361, 259 (2018)

A $_{3P_{0}} | \uparrow \rangle$ $_{1S_{0}} | \downarrow \rangle$

Spin models in trapped atomic gases

Previous Literature:

- Emulation of long-range spin model via purely contact interaction using carrier transition
- Many-body gap protection in isotropic Heisenberg models

This Research:

- The role of motional sidebands: adding anisotropy to Heisenberg models
- Applications in quantum simulation and metrology since coherence time is not affected by the sideband protocol

Experimental setup

87Rb atomic gases

$$|\downarrow\rangle \equiv |F = 1, m_F = 0\rangle$$

 $|\uparrow\rangle \equiv |F = 2, m_F = 0\rangle$

- Drive motional sidebands via Raman beams
- Gas temperature:

Trapping frequency:

Atom density:

$$0.46 \text{ to } 4.8 \times 10^{12} \text{cm}^{-3}$$

Collisionless regime: trapping frequency >> interaction

Harmonic trap as mode-space lattice

Blue sideband transition

$$|\uparrow\uparrow_i\rangle = |\uparrow; n_i^X, n_i^Y, n_i^Z + 1\rangle$$

$$|\downarrow\downarrow_i\rangle = |\downarrow; n_i^X, n_i^Y, n_i^Z\rangle$$

 Similar definitions can apply to carrier and red sideband transitions

$$H_{\text{int}} = \sum_{ij} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j + \sum_{ij} \chi_{ij} S_i^z S_j^z + \sum_i B_i S_i^z$$

Long-range XXZ models in mode-space lattice

$$H_{\text{int}} = \sum_{ij} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j + \sum_{ij} \chi_{ij} S_i^z S_j^z + \sum_i B_i S_i^z$$

$$J_{ij} = \frac{4\pi\hbar^2 a_{\uparrow\downarrow} V_{ij}^{\text{ex}}}{m} \qquad \chi_{ij} = \frac{4\pi\hbar^2 (V_{ij}^{\uparrow\uparrow\uparrow} a_{\uparrow\uparrow} + V_{ij}^{\downarrow\downarrow\downarrow} a_{\downarrow\downarrow} - V_{ij}^{\uparrow\uparrow\downarrow} a_{\uparrow\downarrow} - V_{ij}^{\text{ex}} a_{\uparrow\downarrow})}{m}$$

$$V_{ij}^{\text{ex}} = \int d^3 \mathbf{R} \phi_i^{\uparrow}(\mathbf{R}) \phi_i^{\downarrow}(\mathbf{R}) \phi_j^{\uparrow}(\mathbf{R}) \phi_j^{\downarrow}(\mathbf{R}) \qquad V_{ij}^{\sigma\sigma'} = \int d^3 \mathbf{R} [\phi_i^{\sigma}(\mathbf{R})]^2 [\phi_j^{\sigma'}(\mathbf{R})]^2$$

- Carrier transition $\longrightarrow \phi_i^{\uparrow}(\mathbf{R}) = \phi_i^{\downarrow}(\mathbf{R}) \longrightarrow XXX$ models
- Sideband transition $\longrightarrow \phi_i^{\uparrow}(\mathbf{R}) \neq \phi_i^{\downarrow}(\mathbf{R}) \longrightarrow XXZ$ models

Dynamical phase transition (DPT) in LMG model

$$H_{\rm LMG} = \chi S^z S^z + \Omega S^x - \tilde{\delta} S^z$$

- Initialization: all spins in $|\downarrow\rangle$ state
- Order parameter: Long-time average of excitation fraction

$$\overline{N_{\uparrow}}/N = \lim_{T \to \infty} \frac{1}{T} \int_0^T N_{\uparrow}(t)/N$$

 Phase diagram: Detuning and interaction vary with a fixed Rabi frequency

Experimental probe of DPT with inhomogeneity

Theoretical prediction of spin squeezing

Ramsey spin squeezing parameter

$$\xi^2 = \min_{\theta} N(\Delta S_{\theta}^{\perp})^2 / |\langle \mathbf{S} \rangle|^2$$

Discrete truncated Wigner approximation (DTWA)

Phys. Rev. X 5, 011022 (2015)

6dB squeezing for N=1000 atoms, limited by the inhomogeneities in Ising couplings

This sideband protocol can apply to a wide range of systems

Conclusion

 Simulate long-range XXZ model via motional sidebands

 Potential of motional sidebands in spin squeezing generation

 Experimental demonstration via a probe of DPT

Thank you for your attention!

Anjun Chu, Johannes Will, Jan Arlt, Carsten Klempt, and Ana Maria Rey, arXiv:2004.01282