Pregunta 1 (2 puntos)

Sean \mathcal{H} un espacio de Hilbert real y $x, y \in \mathcal{H}$ tales que ||x|| = ||y|| = 1.

- a) Demuestre que $\|\alpha x + (1 \alpha)y\| \le 1$ para todo $0 \le \alpha \le 1$.
- b) Demuestre que si en la desigualdad de a) se tiene la igualdad, $\|\alpha x + (1-\alpha)y\| = 1$, entonces $\alpha = 0$, $\alpha = 1$ o x = y.

Pregunta 2 (2,5 puntos) (1+1,5)

Considere en el espacio de Hilbert $L^2(0, 2\pi)$ el conjunto,

$$V = \left\{ f \in L^2(0, 2\pi) : \int_0^{2\pi} f(t)dt = 0 \right\}.$$

- a) Demuestre que V es un subespacio vectorial cerrado de $L^2(0,2\pi)$.
- b) Determine la función f de V que está a distancia mínima de g siendo $g(t) = 3\cos^2(5t)$ si $t \in (0, 2\pi)$.

Pregunta 3 (2,5 puntos)

Sean $\mathcal H$ un espacio de Hilbert y $T\colon \mathcal H\to \mathcal H$ un operador lineal acotado. Demuestre que

- a) $\operatorname{Ker}(T^*) = \operatorname{Im}(T)^{\perp}$.
- b) $\operatorname{Im}(T^*) \subset \operatorname{Ker}(T)^{\perp}$.

Pregunta 4 (3 puntos) (1+0,5+1,5)

Sea la función 2π periódica g tal que $g(x) = \frac{x}{2}$ para todo $-\pi < x \le \pi$.

- a) Determine su serie de Fourier en términos de senos y cosenos.
- b) Justifique la igualdad $\frac{x}{2} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \operatorname{sen} nx$ para todo $-\pi < x < \pi$.
- c) Calcule $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \text{ y } \sum_{n=1}^{\infty} \frac{1}{n^2}.$