TỔNG KẾT CÔNG THÚC KINH TẾ LƯỢNG

Bài toán	Hai biến	Đa biến		
	$E(Y/X_i) = f(X_i) = \beta_1 + \beta_2 X_i$	$E(Y \mid X_2,X_k) = \beta_1 + \beta_2 X_{2i} + + \beta_k X_{ki}$		
PRF	$Y_i = \beta_1 + \beta_2 X_i + u_i$	$Y_i = \beta_1 + \beta_2 X_{2i} + + \beta_k X_{ki} + U_i$		
Xác định SRF	$\hat{Y_i} = \hat{\beta}_1 + \hat{\beta}_2 X_i$	$\hat{Y}_{i} = \hat{\beta}_{1} + \hat{\beta}_{2} X_{2i} + + \hat{\beta}_{k} X_{ki} + e_{i}$		
Sitt	$\hat{\beta}_2 = \frac{\sum_{i=1}^n Y_i X_i - n.\overline{X}.\overline{Y}}{\sum_{i=1}^n X_i^2 - n.(\overline{X})^2}; \ \hat{\beta}_1 = \overline{Y} - \hat{\beta}_2 \overline{X}$	Các giá trị $\hat{\beta}$ sẽ lấy ở phần Coefficient trong bảng kết quả Eview		
Ý nghĩa các hệ số	$\hat{\beta} > 0$: X tăng 1 đơn vị thì Y tăng $\hat{\beta}$ đơn vị	Nói ý nghĩa biến nào thì cố định các biến còn		
hồi quy	\hat{eta} <0: X tăng 1 đơn vị thì Y giảm \hat{eta} đơn vị	lại. VD: nói ý nghĩa của $\hat{\beta}_1$ thì cố định các biến X_2, X_3 .		
		$\hat{\beta}_1 > 0$: X_2 không đổi, nếu X_1 tăng 1 đvị thì Y tăng $\hat{\beta}_1$ đvị.		
Tổng các bình phương	TSS = $\sum_{i=1}^{n} y_i^2 = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$ ESS= $\hat{\beta}_2^2 \sum_{i=1}^{n} x_i^2$	Giải ma trận, nhưng không cần tính đến. Tra trong bảng kq Eview Sum squared resid: RSS		
	$RSS = \sum_{i=1}^{n} e_i^2 = TSS - RSS$			
Tính hệ số xác định	$R^2 = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS}$	$R^2 = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS}$		
Hệ số tương quan riêng phần và các cthức liên quan	Mô hình hồi quy 3 biến: $ Y_{i} = \beta_{1} + \beta_{2} X_{2i} + \beta_{3} X_{3i} + U_{i} $ $ r_{12,3} = \frac{r_{12} - r_{13} \cdot r_{23}}{\sqrt{(1 - r_{13}^{2})(1 - r_{23}^{2})}}, r_{13,2} = \frac{r_{13} - r_{12} \cdot r_{23}}{\sqrt{(1 - r_{12}^{2})(1 - r_{23}^{2})}}, r_{23,1} = \frac{r_{23} - r_{12} \cdot r_{13}}{\sqrt{(1 - r_{12}^{2})(1 - r_{13}^{2})}} $ $ R^{2} = \frac{r_{12}^{2} + r_{13}^{2} - 2r_{12}r_{13}r_{23}}{1 - r_{23}^{2}}, R^{2} = r_{12}^{2} + (1 - r_{12}^{2}) \cdot r_{13,2}^{2} = r_{13}^{2} + (1 - r_{13}^{2}) \cdot r_{12,3}^{2} $ $ Var(\hat{\beta}_{2}) = \frac{\delta^{2}}{\sum x_{2i}^{2}(1 - r_{23}^{2})} $			
	Trong đó, $r_{12,3}$ là hệ số tương quan giữa biến Y và X_2 trong khi X_3 không đổi. Tương tự ta sẽ có với $r_{13,2}$, $r_{23,1}$			
Hệ số xác định hiệu	$\overline{R}^2 = R^2 + (1 - R^2) \cdot \frac{n-1}{n-2}$	$\overline{R}^2 = R^2 + (1 - R^2) \cdot \frac{n-1}{n-k}$ (k là số tham số của mô		
chỉnh	\overline{R}^2 có thể âm, trong TH này, quy ước \overline{R}^2 =0	hình)		
	$\hat{\delta}^2 = \frac{\sum_{i=1}^{n} e_i^2}{n-2} = \frac{RSS}{n-2}$	$\hat{\delta}^2 = \frac{\sum_{i=1}^n e_i^2}{n-k} = \frac{RSS}{n-k}$		
$\hat{oldsymbol{eta}}$)	$\operatorname{var}(\hat{\beta}_{1}) = \frac{\sum_{i=1}^{n} X_{i}^{2}}{n \sum_{i=1}^{n} x_{i}^{2}} \delta^{2}; \operatorname{var}(\hat{\beta}_{2}) = \frac{\delta^{2}}{\sum_{i=1}^{n} x_{i}^{2}}$	Tra trong bảng Eview: $\hat{\delta}$: dòng S.E of regression		
	$n\sum_{i=1}^{n}x_i^2 \qquad \sum_{i=1}^{n}x_i^2$	$SE(\hat{eta}_1)$: cột Std. Error dòng 1 $SE(\hat{eta}_2)$: cột Std. Error dòng 2		
		DE (P2). Out Dia. Error doing 2		

	$SE(\hat{\beta}_1) = \sqrt{\frac{\sum_{i=1}^{n} X_i^2}{n\sum_{i=1}^{n} x_i^2}} \delta^{\frac{1}{2}} SE(\hat{\beta}_2) = \frac{\delta}{\sqrt{\sum x_i^2}}$	
Kiểm định sự phù hợp SRF, mức ý nghĩa α	PP giá trị tới hạn: B1: Lập giả thiết H_o : β =0 ; H_1 : β ≠0 Tính $Fqs = \frac{R^2}{1-R^2} \cdot \frac{n-2}{1}$ B2: tra bảng F , giá trị tới hạn: F_α (1, n -2) B3: So sánh Fqs với F_α (1, n -2) + $F_{qs} > F_\alpha$ (1, n-2): bác bỏ $H_0 \rightarrow$ hàm SRF phù hợp với mẫu + $F_{qs} < F_\alpha$ (1, n-2): chấp nhận H_0	PP giá trị tới hạn: B1: Lập giả thiết H_o : β =0; H_1 : β ≠0 Tính $Fqs = \frac{R^2}{1-R^2} \cdot \frac{n-k}{k-1}$ B2: tra bảng F , giá trị tới hạn: F_α (k-1, n -k) B3: So sánh Fqs với F_α (k-1, n -k) + $F_{qs} > F_\alpha$ (k-1, n-k): bác bỏ $H_0 \rightarrow$ hàm SRF phù hợp với mẫu + $F_{qs} < F_\alpha$ (k-1,n-k): chấp nhận H_0
	PP giá trị P-value (khi đề cho sẵn trong bảng kết quả) Lấy giá trị p-value ứng với F ₀ (ô cuối cùng góc phải chữ Prod(F-statistic)) Tiến hành so sánh p-value và α: + p-value < α: bác bỏ H ₀ → hàm SRF phù hợp với mẫu + p-value > α: chấp nhận H ₀	PP giá trị P-value (khi đề cho sẵn trong bảng kết quả) Lấy giá trị p-value ứng với F ₀ (ô cuối cùng góc phải chữ Prod(F-statistic)) Tiến hành so sánh p-value và α: + p-value < α: bác bỏ H ₀ → hàm SRF phù hợp với mẫu + p-value > α: chấp nhận H ₀
Kiểm định giả thiết biến độc lập có ảnh hưởng lên biến phụ thuộc không?	Giả thiết: H_0 : $β = 0$ H_1 : $β \neq 0$ PP giá trị tới hạn: B1: Tính $T_{qs} = \frac{\hat{β}}{se(\hat{β})}$ B2: Tra bảng t-student giá trị $t^{n-2}_{\frac{\alpha}{2}}$ B3: so sánh $ T_{qs} $ và $t^{n-2}_{\frac{\alpha}{2}}$ + $ T_{qs} > t^{n-2}_{\frac{\alpha}{2}}$: bác bỏ H_0 => biến độc lập ảnh hưởng lên biến phụ thuộc Y + $ T_{qs} < t^{n-2}_{\frac{\alpha}{2}}$: chấp nhận H_0 PP P-value: Lấy giá trị p-value tương ứng với biến độc lập mình đang xét Tiến hành so sánh p-value và $α$: + p-value < $α$: bác bỏ H_0 \rightarrow biến độc lập (X) ảnh hưởng lên biến phụ thuộc (Y) + p-value > $α$: chấp nhận H_0	Giả thiết: H_0 : $β = 0$ H_1 : $β \neq 0$ PP giá trị tới hạn: B1: Tính $T_{qs} = \frac{\hat{β}}{se(\hat{β})}$ B2: Tra bảng t-student giá trị $t_{\frac{x}{2}}^{n-k}$ B3: so sánh $ T_{qs} $ và $t_{\frac{x}{2}}^{n-k}$ + $ T_{qs} > t_{\frac{x}{2}}^{n-k}$: bác bỏ H_0 => biến độc lập ảnh hưởng lên biến phụ thuộc Y + $ T_{qs} < t_{\frac{x}{2}}^{n-k}$: chấp nhận H_0 PP P-value: Lấy giá trị p-value tương ứng với biến độc lập mình đang xét Tiến hành so sánh p-value và $α$: + p-value < $α$: bác bỏ H_0 \rightarrow biến độc lập (X) ảnh hưởng lên biến phụ thuộc (Y) + p-value > $α$: chấp nhận H_0
Ước lượng khoảng	Dùng công thức cho đa biến với (j =1,2)	Với độ tin cậy ($1-\alpha$), khoảng tin cậy đối xứng, tối đa, tối thiểu của β_j là: $\hat{\beta}_j - Se(\hat{\beta}_j)t_{\alpha/2}^{(n-k)} < \beta_j < \hat{\beta}_j + Se(\hat{\beta}_j)t_{\alpha/2}^{(n-k)}$ $\beta_j < \hat{\beta}_j + Se(\hat{\beta}_j)t_{\alpha}^{(n-k)}$ $\hat{\beta}_j - Se(\hat{\beta}_j)t_{\alpha}^{(n-k)} < \beta_j$ Khoảng tin cậy cho phương sai sai số ngẫu

		nhiên:			
		$\frac{\hat{\sigma}^{2}(n-k)}{\chi_{\alpha/2}^{2(n-k)}} < \sigma^{2} < \frac{\hat{\sigma}^{2}(n-k)}{\chi_{1-\alpha/2}^{2(n-k)}}$			
		$\frac{1}{\gamma^{2(n-k)}} < 0 < \frac{1}{\gamma^{2(n-k)}}$			
D .1.4 1.		$\lambda \alpha/2$ $\lambda_{1-\alpha/2}$			
Dự báo, dự	Cho X=X ₀ mức ý nghĩa α (dùng cả đa biến)				
đoán	Ước lượng điểm:				
	$\hat{Y}_0 = \hat{oldsymbol{eta}}_1 + \hat{oldsymbol{eta}}_2 X_0$				
	Giá trị trung bình:				
	$\hat{Y}_0 - Se(\hat{Y}_0)t_{\alpha/2}^{(n-k)} < E(Y/X_0) < \hat{Y}_0 + Se(\hat{Y}_0)t_{\alpha/2}^{(n-k)}$				
	$\int 1 (X_0 - \overline{X})^2$				
	$Se(\hat{Y}_0) = \hat{\sigma} \sqrt{\frac{1}{n} + \frac{(X_0 - \overline{X})^2}{\sum x_i^2}}$				
	Cá biệt:				
	$\hat{Y}_0 - Se(Y_0)t_{\alpha/2}^{(n-k)} < Y_0 < \hat{Y}_0 + Se(Y_0)t_{\alpha/2}^{(n-k)}$				
	$Se(Y_0) = \hat{\sigma} \sqrt{1 + \frac{1}{n} + \frac{(X_0 - \overline{X})^2}{\sum x^2}}$				
	\sqrt{n} $2x_i$				
So sánh R ²	Chỉ so sánh được khi thỏa 3 điều kiện sau:	Chỉ so sánh được khi thỏa 3 điều kiện sau:			
So saini K	1. Cùng cỡ mẫu <i>n</i> .	1. Cùng cỡ mẫu <i>n</i> .			
	2. Cùng số biến độc lập.(nếu ko cùng số biến	2. Cùng số biến độc lập (nếu ko cùng số			
	độc lập thì dùng \overline{R}^2)	biến độc lập thì dùng \mathbb{R}^2)			
	3. Cùng dạng hàm biến phụ thuộc	3. Cùng dạng hàm biến phụ thuộc			
Kiểm định	Mô hình:				
thu hẹp hồi	$E(Y \mid X_2,X_k) = \beta_1 + \beta_2 X_{2i} + + \beta_k X_{ki}$				
quy	Nghi ngờ m biến $X_{k-m+1},, X_k$ không giải thích ch	o Y			
	B1: Lập cặp giả thiết:				
	$H_0: \beta_{k-m+1} = = \beta_k = 0$:				
	$H_1: \exists \beta_j \neq 0 \ (j = k-m+1 \div k)$				
	B2: Mô hình nhiều hệ số là mô hình lớn (L)				
	Mô hình ít hệ số gọi là mô hình nhỏ (N)				
	Tính $F_{qs} = \frac{RSS_{(L)} - RSS_{(N)}}{RSS_{(L)}} x \frac{n-k}{m} = \frac{R_{(L)}^2 - R_{(N)}^2}{1 - R_{(L)}^2} x \frac{n-k}{m}$				
	B3: so sánh				
	$F_{qs} > F_{\alpha}(m, n-k) => bác bỏ H_o => tồn tại 1 trong các biến nghi ngờ có ý nghĩa$				
9					
Kiểm định	Cặp giả thiết:				
sự đồng					
nhất của	1. 0.0				
hàm hồi					
quy	Hàm 1: kích thước mẫu n ₁ , RSS ₁ ; Hàm 2: kích thước mẫu n ₂ , RSS ₂ Hàm tổng thể: kích thước mẫu n ₁ +n ₂ , RSS				
	Đặt $RSS = RSS_1 + RSS_2$ B2: Tính				
	$F_{qs} = \frac{RSS - \overline{RSS}}{\overline{RSS}} \chi \frac{n_1 + n_2 - 2k}{k}$				
	B3: so sánh				
	$F_{qs} > F_{\alpha} (k, n_1 + n_2 - 2k) = bác bỏ H_o$				

Phát hiện đa cộng tuyến	B1: Hồi quy phụ: hồi quy 1 biến độc lập theo các biến độc lập khác: $X_{si} = \sum_{j \neq s} \propto_j X_{ji} + v_i$ B2: Dùng kiểm định T (kiểm định ý nghĩa thống kê của hệ số) hoặc kiểm định F (sự phù hợp của hàm hồi quy). B3: Nếu thực sự X_s phụ thuộc ít nhất một biến độc lập khác thì mô hình gốc có đa cộng tuyến				
Kiểm định PSSS thay đổi	Dựa trên biến độc lập: từ giả thiết cho, ta lập ra hàm hồi quy phụ. Sau đó tiến hành kiểm định hàm hồi quy phụ đó: • Giả thiết $\sigma_i^2 = Var(u_i) = \sigma^2 X_i$ Hồi qui phụ: $E(e_i^2) = \alpha_1 + \alpha_2 X_i^2$ • Giả thiết $\sigma_i^2 = \sigma^2 X_i^2 \rightarrow E(e_i^2) = \alpha_1 + \alpha_2 X_i^2$ • Giả thiết $\sigma_i^2 = \sigma^2 \sqrt{X_i} \rightarrow E(e_i^2) = \alpha_1 + \alpha_2 \sqrt{X_i}$ • Giả thiết $\sigma_i^2 = \sigma^2 \frac{1}{X_i} \rightarrow E(e_i^2) = \alpha_1 + \alpha_2 \frac{1}{X_i}$ Nếu $\alpha_2 \neq 0$ (hoặc $R_{\text{hồi quy phụ}}^2 > 0$) thì mô hình gốc có phương sai sai số thay đổi • Có thể dùng dạng kiểm định với $ e_i $ Kiểm định Park: Giả thiết: $\sigma_i^2 = \sigma^2 X_i^{\alpha_2}$ Hồi quy phụ: $E(\ln e_i^2) = \alpha_1 + \alpha_2 \ln X_i$ Kiểm định White: hồi qui e_i^2 theo tổ hợp bậc cao dần của các biến độc lập $E(e_i^2) = \alpha_1 + \alpha_2 X_{2i} + \alpha_3 X_{3i} + \alpha_4 X_{2i}^2 + \alpha_5 X_{3i}^2 + \alpha_6 X_{2i} X_{2i} + \dots$ (*) Nếu $\exists \alpha_j \neq 0 \ (j \neq 1) \rightarrow \text{Mô hình} \ (1) \text{ PSSS thay đổi}$ Kiểm định F Kiểm định χ^2 : Tính $\chi_{qi}^2 = nR_i^2$ Nếu $\chi_{qi}^2 > \chi_{\alpha}^{2(k-1)}$ thì bác bỏ H_0	Dựa trên biến phụ thuộc: • Giả thiết: Phương sai sai số thay đổi theo bình phương trung bình biến phụ thuộc $\sigma_i^2 = \sigma^2 \left(E(Y_i) \right)^2$ • Hồi qui phụ $E(e_i^2) = \alpha_1 + \alpha_2 \hat{Y}_i^2 (*)$ • Kiểm định: $\begin{cases} H_0 : \alpha_2 = 0 \\ H_1 : \alpha_2 \neq 0 \end{cases} \Leftrightarrow \begin{cases} H_0 : R_*^2 = 0 \\ H_1 : R_*^2 > 0 \end{cases}$ Dùng kiểm định T, F, χ^2			
Kiểm định hiện tượng tự tương quan	Kiểm định Durbin-Watson Tính $d=2(1-\rho)$. (d chính là số cho trong bảng ở dòng Durbin-Watson) $-1 \le \rho \le 1 \Leftrightarrow 0 \le d \le 4$ $\rho = -1 \Rightarrow d = 4$: tự tương quan hoàn hảo âm $\rho = 0 \Rightarrow d = 2$: không có tự tương quan $\rho = 1 \Rightarrow d = 0$: tự tương quan hoàn hảo dương Với n, k' =k-1, α , tra bảng => d_L và d_U $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Dùng hồi quy phụ: • Kiểm định tự tương quan đến bậc p , hồi qui $e = (\alpha_0) + \alpha_1 e_{i-1} + \dots + \alpha_p e_{i-p} + v_i$ $\begin{cases} H_0: R_*^2 = 0 \\ H_1: R_*^2 \neq 0 \end{cases} \Leftrightarrow \begin{cases} H_0: \alpha_1 = \dots = \alpha_p = 0 \\ H_1: \exists \alpha_j \neq 0: (j \neq 0) \end{cases}$ • Số quan sát là $n - p$ • Nếu bác bỏ H_0 : có tự tương quan ở bậc nào đó • Trường hợp kiểm định tự tương quan bậc 1 và không có hệ số chặn, không thể dùng kiểm định F Kiểm định B - G :			

	• Hồi qui $e_i = [\beta_1 + \beta_2 X_i] + \alpha_1 e_{i-1} + + \alpha_p e_{i-p} + v_i$ (*) $e_i = [\beta_1 + \beta_2 X_i] + v_i$ (**)
	$\begin{cases} \mathbf{H}_0: \alpha_1 = \dots = \alpha_p = 0 \\ \mathbf{H}_1: \exists \alpha_j \neq 0: (j \neq 0) \end{cases}$
	$\chi^2_{qs} = n_* R_*^2 = (n-p) R_*^2; \chi^2_{qs} > \chi^{2(p)}_{\alpha}$ thì bác bỏ ${\cal H}_0$
	$F_{qs} = \frac{R_*^2 - R_{**}^2}{1 - R_*^2} \times \frac{n_* - k_*}{p}$
	$F_{qs} > F_{lpha}^{(p:n_{\!-}-k_{\!-})}$ thì bác bỏ ${ m H}_0$

Ý nghĩa hệ số góc, ảnh hưởng biên, hệ số co giãn:

Tên gọi	Dạng hàm	Ånh hưởng biên	Hệ số co giãn	Ý nghĩa hệ số góc
Tuyến tính	$Y = \alpha + \beta . X$	β	β.(X/Y)	Khi X tăng 1 đv thì Y thay đổi β đv
Tuyến tính Log	$lnY = \alpha + \beta.lnX$	β.(Υ/Χ)	β	Khi X tăng 1% thì Y thay đổi β%
Log –lin	$lnY = \alpha + \beta.X$	β.Υ	β.Χ	Khi X tăng 1 đv thì Y thay đổi 100. B (%)
Lin-log	$Y = \alpha + \beta. lnX$	β.(1/X)	β.(1/Y)	Khi X tăng 1% thì Y thay đổi (β/100) đv
Nghịch đảo	$Y = \alpha + \beta \cdot \frac{1}{X}$	$-\beta.(1/X^2)$	- β.(1/XY)	