10.569 Synthesis of Polymers Prof. Paula Hammond

Lecture 16: Ziegler-Natta, Stereochemistry of Polymers

"Precipitation Polymerization"

polymer: -semicrystalline

-semicrystalline polymer not soluble in monomer

⇒ crystalline regions insoluble

⇒ amorphous regions remain soluble

Polymerization in bulk monomer

As # of high MW chains ↑, precipitation occurs

also:

occur in polymer chains with enough irregularity to form short chains

polymer flakes, particles, etc.

are porous

-some active sites remain accessible via diffusion through pores

monomer can still diffuse to active sites

Kinetics

- ill-defined and complex
- similar to emulsion polymerization
- can have red light/green light effect with free radicals
- \Rightarrow gain advantages
 - → more temp/heat control
 - \rightarrow low η (can dilute slurry)
 - \rightarrow no surfactant

Common Monomers	$T_{m,crys}$
Vinyl chloride	140 - 200°C
Vinyl fluoride	200 – 230°C
Vinylidene fluoride	200°C
Acrylonitrile	317°C
Tetrafluoroethylene (Teflon)	327°C

Dispersion Polymerization

- monomer
- organic solvent (good for monomer, bad for polymer)
- initiator
- particle stabilizer: repel sticky polymers, avoid coalescence

As polymerization occurs, form large solid/semisolid particles of polymer

Random copolymers

Incorporating 2 or more different monomer units in chain growth process (radical, cationic, or anionic polymerizations)

Consider 2 different monomers: 1 and 2

$$M_{1}^{*} + M_{1} \xrightarrow{k_{11}} M_{1}^{*}$$

$$M_{1}^{*} + M_{2} \xrightarrow{k_{12}} M_{2}^{*}$$

$$M_{2}^{*} + M_{1} \xrightarrow{k_{21}} M_{1}^{*}$$

$$M_{2}^{*} + M_{2} \xrightarrow{k_{22}} M_{2}^{*}$$

$$-\frac{d[M_{1}]}{dt} = k_{11}[M_{1}^{*}]M_{1}] + k_{21}[M_{2}^{*}]M_{1}$$

$$-\frac{d[M_{2}]}{dt} = k_{12}[M_{1}^{*}]M_{2}] + k_{22}[M_{2}^{*}]M_{2}$$

The ratio of rates of monomers entering polymer chains

$$\frac{d[M_1]}{d[M_2]} = \frac{k_{11}[M_1^*][M_1] + k_{21}[M_2^*][M_1]}{k_{12}[M_1^*][M_2] + k_{22}[M_2^*][M_2]}$$
 (relative rates)

Assume steady state concentration of both $[{M_1}^*]$ and $[{M_2}^*]$ \Rightarrow Rate of ${M_2}^* \to {M_1}^* = \text{rate of } {M_1}^* \to {M_2}^*$

$$k_{21}[M_2^*][M_1] = k_{12}[M_1^*][M_2]$$

Simplify and combine with $\frac{d[M_1]}{d[M_2]}$:

$$\frac{d[M_1]}{d[M_2]} = \frac{[M_1](r_1[M_1] + [M_2])}{[M_2]([M_1] + r_2[M_2])}$$

where
$$r_1 \equiv \frac{k_{11}}{k_{12}}$$
 and $r_2 \equiv \frac{k_{22}}{k_{21}}$

(reactivity rates)

$$\begin{array}{c} \text{reactivity of } \mathsf{M_1}^* \text{ with } \mathsf{M_1} \\ \text{versus } \mathsf{M_1}^* \text{ with } \mathsf{M_2} \end{array} \right\} \begin{array}{c} \mathsf{r_1} \\ \text{reactivity of } \mathsf{M_2}^* \text{ with } \mathsf{M_2} \\ \text{versus } \mathsf{M_2}^* \text{ with } \mathsf{M_1} \end{array} \right\} \ \, \mathsf{r_2}$$

Fraction of each monomer:

$$f_1 = \frac{[M_1]}{[M_1] + [M_2]}$$
 $f_2 = \frac{[M_2]}{[M_1] + [M_2]}$

⇒ expressions for monomer composition

Define:

$$F_1 = 1 - F_2 \equiv \frac{d[M_1]}{d[M_1] + d[M_2]}$$
 instantaneous polymer composition

Combine expressions and definitions:

$$F_1 = \frac{r_1 f_1^2 + f_1 f_2}{r_1 f_1^2 + 2f_1 f_2 + r_2 f_2^2}$$
 copolymer composition equation

Special Cases:

1. "Ideal" copolymerization:

$$\Rightarrow \frac{r_1 \cdot r_2 = 1.0}{\frac{k_{22}}{k_{21}} = \frac{k_{12}}{k_{11}}}$$

$$r_2 = \frac{1}{r_1}$$
probability of M_1^* or M_2^*
react with M_1 vs M_2 is equal

Simplified expression for ideal copolymerizations:

2. $r_1 = r_2 = 0$

neither M_1 nor M_2 react with themselves

$$\left. \begin{array}{c} M_1 \to M_{2^*} \\ \\ M_2 \to M_{1^*} \end{array} \right\} \begin{array}{c} \text{Perfectly alternating composition:} \\ \\ M_1 M_2 M_1 M_2 ... \text{ (not random at all)} \end{array}$$

Regardless of f_1 : $F_1 = 0.5$

2 extremes:

• perfect Bernoullian (random) case: $r_1 = r_2 = 1$

$$r_1r_2 = 1$$

• perfect alternating case: $r_1 = r_2 = 0$

As r_1r_2 product goes from $0 \rightarrow 1.0$, move from random to alternating sequencing:

If $r_1 < 1.0$ and $r_2 < 1.0$ Then induce inflection \Rightarrow form an azeotrope:

at the azeotrope:

$$F_1 = f_1$$

If you can maintain f1

→ copolymer comp will not change throughout polymer

Find azeotrope condition:

$$f_1 = \frac{(1-r_2)}{(2-r_1-r_2)}$$
 azeotrope exists at this monomer composition

- Block polymer: If $r_1 > 1$, $r_2 > 1$

$$M_1M_1M_1M_1M_2M_2M_2M_2$$

10.569, Synthesis of Polymers, Fall 2006 Prof. Paula Hammond

Lecture 16 Page 5 of 6 - Consecutive homopolymer if $r_1 >> r_2$

 M_1 homopolymerizes $r_1 >> 1$

Then

 M_2 homopolymerizes $r_2 \ll 1$