AN EXPLICIT ALGEBRAIC FAMILY OF GENUS-ONE CURVES VIOLATING THE HASSE PRINCIPLE

BJORN POONEN

ABSTRACT. We prove that for any $t \in \mathbf{Q}$, the curve

$$5x^3 + 9y^3 + 10z^3 + 12\left(\frac{t^{12} - t^4 - 1}{t^{12} - t^8 - 1}\right)^3 (x + y + z)^3 = 0$$

in \mathbf{P}^2 is a genus 1 curve violating the Hasse principle. An explicit Weierstrass model for its Jacobian E_t is given. The Shafarevich-Tate group of each E_t contains a subgroup isomorphic to $\mathbf{Z}/3 \times \mathbf{Z}/3$.

1. Introduction

One says that a variety X over \mathbf{Q} violates the Hasse principle if $X(\mathbf{Q}_v) \neq \emptyset$ for all completions \mathbf{Q}_v of \mathbf{Q} (i.e., \mathbf{R} and \mathbf{Q}_p for all primes p) but $X(\mathbf{Q}) = \emptyset$. Hasse proved that degree 2 hypersurfaces in \mathbf{P}^n satisfy the Hasse principle. In particular, if X is a genus 0 curve, then X satisfies the Hasse principle, since the anticanonical embedding of X is a conic in \mathbf{P}^2 .

Around 1940, Lind [Lin] and (independently, but shortly later) Reichardt [Re] discovered examples of genus 1 curves over **Q** that violate the Hasse principle, such as the nonsingular projective model of the affine curve

$$2y^2 = 1 - 17x^4.$$

Later, Selmer [Se] gave examples of diagonal plane cubic curves (also of genus 1) violating the Hasse principle, including

$$3x^3 + 4y^3 + 5z^3 = 0$$

in \mathbf{P}^2 .

O'Neil in [O'N, §6.5] constructs an interesting example of an algebraic family of genus 1 curves each having \mathbf{Q}_p -points for all $p \leq \infty$. Some fibers in her family violate the Hasse principle, by failing to have a \mathbf{Q} -point. In other words, these fibers represent nonzero elements of the Shafarevich-Tate groups of their Jacobians.

In [CP], Colliot-Thélène and the present author prove, among other things, the existence of non-isotrivial families of genus 1 curves over the base \mathbf{P}^1 , smooth over a dense open subset, such that the fiber over *each* rational point of \mathbf{P}^1 is a smooth plane cubic violating the Hasse principle. In more concrete terms, this implies that there exists a family of plane cubics depending on a parameter t, such that the j-invariant is a non-constant function of t, and such that substituting *any* rational number for t results in a smooth plane cubic over \mathbf{Q} violating the Hasse principle.

Date: October 19, 1999.

This research was supported by National Science Foundation grant DMS-9801104, an Alfred P. Sloan Fellowship, and a David and Lucile Packard Fellowship.

The purpose of this paper is to produce an explicit example of such a family. Our example, presented as a family of cubic curves in \mathbf{P}^2 with homogeneous coordinates x, y, z, is

$$5x^3 + 9y^3 + 10z^3 + 12\left(\frac{t^{12} - t^4 - 1}{t^{12} - t^8 - 1}\right)^3 (x + y + z)^3 = 0.$$

2. The cubic surface construction

Let us review briefly the construction in [CP]. Swinnerton-Dyer [SD] proved that there exists a smooth cubic surface V in \mathbf{P}^3 over \mathbf{Q} violating the Hasse principle; choose one. If L is a line in \mathbf{P}^3 meeting V in exactly 3 geometric points, and W denotes the blowup of V along $V \cap L$, then projection from L induces a fibration $W \to \mathbf{P}^1$ whose fibers are hyperplane sections of V. Moreover, if L is sufficiently general, then $W \to \mathbf{P}^1$ will be a Lefschetz pencil, meaning that the only singularities of fibers are nodes. In fact, for most L, all fibers will be either smooth plane cubic curves, or cubic curves with a single node.

For some $N \geq 1$, the above construction can be done with models over Spec $\mathbb{Z}[1/N]$ so that for each prime $p \not| N$, reduction mod p yields a family of plane cubic curves each smooth or with a single node. One then proves that if $p \not| N$, each fiber above an \mathbb{F}_p -point has a smooth \mathbb{F}_p -point, so Hensel's Lemma constructs a \mathbb{Q}_p -point on the fiber W_t of $W \to \mathbb{P}^1$ above any $t \in \mathbb{P}^1(\mathbb{Q})$.

There is no reason that such W_t should have \mathbf{Q}_p -points for p|N, but the existence of \mathbf{Q}_p -points on V implies that at least for t in a nonempty p-adically open subset U_p of $\mathbf{P}^1(\mathbf{Q}_p)$, $W_t(\mathbf{Q}_p)$ will be nonempty. We obtain the desired family by base-extending $W \to \mathbf{P}^1$ by a rational function $f: \mathbf{P}^1 \to \mathbf{P}^1$ such that $f(\mathbf{P}^1(\mathbf{Q}_p)) \subseteq U_p$ for each p|N.

More details of this construction can be found in [CP].

3. Lemmas

Lemma 1. Let V be a smooth cubic surface in \mathbf{P}^3 over an algebraically closed field k. Let L be a line in \mathbf{P}^3 intersecting V in exactly 3 points. Let W be the blowup of V at these points. Let $W \to \mathbf{P}^1$ be the fibration of W by plane cubics induced by the projection $\mathbf{P}^3 \setminus L \to \mathbf{P}^1$ from L. Assume that some fiber of $\pi: W \to \mathbf{P}^1$ is smooth. Then at most 12 fibers are singular, and if there are exactly 12, each is a nodal plane cubic.

Proof. Let p be the characteristic of k, and choose a prime $\ell \neq p$. Let

$$\chi(V) = \sum_{i=0}^{2\dim V} (-1)^i \dim_{\mathbf{F}_{\ell}} \mathrm{H}^i_{\mathrm{\acute{e}t}}(V, \mathbf{F}_{\ell})$$

denote the Euler characteristic. Since V is isomorphic to the blowup of \mathbf{P}^2 at 6 points ([Ma, Theorem 24.4], for example),

$$\chi(V) = \chi(\mathbf{P}^2) + 6 = 3 + 6 = 9.$$

Since W is the blowup of V at 3 points,

$$\chi(W) = \chi(V) + 3 = 9 + 3 = 12.$$

On the other hand, combining the Leray spectral sequence

$$H^p(\mathbf{P}^1, \mathbf{R}^q \pi_* \mathbf{F}_\ell) \implies H^{p+q}(W, \mathbf{F}_\ell)$$

FIGURE 1. Plane cubic curves with their Euler characteristics.

with the Grothendieck-Ogg-Shafarevich formula ([Ra, Théorème 1] or [Mi, Theorem 2.12]) yields

(1)
$$\chi(W) = \chi(W_{\eta}) \; \chi(\mathbf{P}^{1}) + \sum_{t \in \mathbf{P}^{1}(k)} \left[\chi(W_{t}) - \chi(W_{\eta}) - \operatorname{sw}_{t}(\mathbf{H}_{\operatorname{\acute{e}t}}^{*}(W_{\eta}, \mathbf{F}_{\ell})) \right],$$

where W_{η} is the generic fiber, W_t is the fiber above t, and

$$\operatorname{sw}_t(\operatorname{H}^*_{\operatorname{\acute{e}t}}(W_{\eta},\mathbf{F}_{\ell})) := \sum_{i=0}^2 (-1)^i \operatorname{sw}_t(\operatorname{H}^i_{\operatorname{\acute{e}t}}(W_{\eta},\mathbf{F}_{\ell}))$$

is the alternating sum of the Swan conductors of $H^i_{\text{\'et}}(W_{\eta}, \mathbf{F}_{\ell})$ considered as a representation of the inertia group at t of the base \mathbf{P}^1 . Since W_{η} is a smooth curve of genus g=1, $\chi(W_{\eta})=2-2g=0$. If $t\in\mathbf{P}^1(k)$ is such that W_t is smooth, then all terms within the brackets on the right side of (1) are 0, so the sum is finite. The Swan conductor of

$$\mathrm{H}^0_{\mathrm{\acute{e}t}}(W_{\eta},\mathbf{F}_{\ell})\cong\mathrm{H}^2_{\mathrm{\acute{e}t}}(W_{\eta},\mathbf{F}_{\ell})\cong\mathbf{F}_{\ell}$$

is trivial. Hence (1) becomes

$$12 = \sum_{t: W_t \text{ is singular}} \left[\chi(W_t) + \text{sw}_t(H^1_{\text{\'et}}(W_{\eta}, \mathbf{F}_{\ell})) \right],$$

Since $\operatorname{sw}_t(\operatorname{H}^1_{\operatorname{\acute{e}t}}(W_\eta, \mathbf{F}_\ell))$ is a dimension, it is nonnegative, so the lemma will follow from the following claim: if W_t is singular, $\chi(W_t) \geq 1$ with equality if and only if W_t is a nodal cubic. To prove this, we enumerate the combinatorial possibilities for a plane cubic, corresponding to the degrees of the factors of the cubic polynomial: see Figure 1. The Euler characteristic for each, which is unchanged if we pass to the associated reduced scheme C, is computed using the formula

(2)
$$\chi(C) = \sum_{i} (2 - 2g_{\tilde{C}_i}) + \#C_{\text{sing}} - \#\alpha^{-1}(C_{\text{sing}}),$$

where $\alpha: \tilde{C} \to C$ is the normalization of C, $g_{\tilde{C}_i}$ is the genus of the *i*-th component of \tilde{C} , and C_{sing} is the set of singular points of C. For example, for the "conic + tangent," formula (2) gives

$$3 = \sum_{i=1}^{2} (2 - 2 \cdot 0) + 1 - 2.$$

Lemma 2. If $F(x, y, z) \in \mathbf{F}_p[x, y, z]$ is a nonzero homogeneous cubic polynomial such that F does not factor completely into linear factors over $\overline{\mathbf{F}}_p$, then the subscheme X of \mathbf{P}^2 defined by F = 0 has a smooth \mathbf{F}_p -point.

Proof. The polynomial F must be squarefree, since otherwise F would factor completely. Hence X is reduced. If X is a smooth cubic curve, then it is of genus 1, and $X(\mathbf{F}_p) \neq \emptyset$ by the Hasse bound.

Otherwise, enumerating possibilities as in Figure 1 shows that X is a nodal or cuspidal cubic, or a union of a line and a conic. The Galois action on components is trivial, because when there is more than one, the components have different degrees. There is an open subset of X isomorphic over \mathbf{F}_p to \mathbf{P}^1 with at most two geometric points deleted. But $\#\mathbf{P}^1(\mathbf{F}_p) \geq 3$, so there remains a smooth \mathbf{F}_p -point on X.

4. The example

We will carry out the program in Section 2 with the cubic surface

$$V: 5x^3 + 9y^3 + 10z^3 + 12w^3 = 0$$

in \mathbf{P}^3 . Cassels and Guy [CG] proved that V violates the Hasse principle. Let L be the line x+y+z=w=0. The intersection $V\cap L$ as a subscheme of $L\cong \mathbf{P}^1$ with homogeneous coordinates x,y is defined by

$$5x^3 + 9y^3 - 10(x+y)^3,$$

which has discriminant $242325 = 3^3 \cdot 5^2 \cdot 359 \neq 0$, so the intersection consists of three distinct geometric points. This remains true in characteristic p, provided that $p \notin \{3, 5, 359\}$.

The projection $V \dashrightarrow \mathbf{P}^1$ from L is given by the rational function u := w/(x+y+z) on V. Also, W is the surface in $\mathbf{P}^3 \times \mathbf{P}^1$ given by the $((x,y,z,w);(u_0,u_1))$ -bihomogeneous equations

(3)
$$W: 5x^3 + 9y^3 + 10z^3 + 12w^3 = 0$$
$$u_0w = u_1(x+y+z).$$

The morphism $W \to \mathbf{P}^1$ is simply the projection to the second factor, and the fiber W_u above $u \in \mathbf{Q} = \mathbf{A}^1(\mathbf{Q}) \subseteq \mathbf{P}^1(\mathbf{Q})$ can also be written as the plane cubic

(4)
$$W_u: 5x^3 + 9y^3 + 10z^3 + 12u^3(x+y+z)^3 = 0.$$

The dehomogenization

$$h(x,y) = 5x^3 + 9y^3 + 10 + 12u^3(x+y+1)^3,$$

defines an affine open subset in A^2 of W_u . Eliminating x and y from the equations

$$h = \frac{\partial h}{\partial x} = \frac{\partial h}{\partial y} = 0$$

shows that this affine variety is singular when $u \in \overline{\mathbf{Q}}$ satisfies

(5)
$$2062096u^{12} + 6065760u^9 + 4282200u^6 + 999000u^3 + 50625 = 0.$$

The fiber above u = 0 is smooth, so by Lemma 1, the 12 values of u satisfying (5) give the *only* points in $\mathbf{P}^1(\overline{\mathbf{Q}})$ above which the fiber W_u is singular, and moreover each of these singular fibers is a nodal cubic. The polynomial (5) is irreducible over \mathbf{Q} , so W_u is smooth for all $u \in \mathbf{P}^1(\mathbf{Q})$.

The discriminant of (5) is $2^{146} \cdot 3^{92} \cdot 5^{50} \cdot 359^4$. Fix a prime $p \notin \{2, 3, 5, 359\}$, and a place $\overline{\mathbf{Q}} \xrightarrow{} \overline{\mathbf{F}}_p$. The 12 singular u-values in $\mathbf{P}^1(\overline{\mathbf{Q}})$ reduce to 12 distinct singular u-values in $\mathbf{P}^1(\overline{\mathbf{F}}_p)$ for the family $\overline{W} \to \mathbf{P}^1$ defined by the two equations (3) over $\overline{\mathbf{F}}_p$. Moreover, the fiber above u = 0 is smooth in characteristic p. By Lemma 1, all the fibers of $\overline{W} \to \mathbf{P}^1$ in characteristic p are smooth plane cubics or nodal plane cubics. By Lemma 2 and Hensel's Lemma, W_u has a \mathbf{Q}_p -point for all $u \in \mathbf{P}^1(\mathbf{Q}_p)$.

Proposition 3. If $u \in \mathbf{Q}$ satisfies $u \equiv 1 \pmod{p\mathbf{Z}_p}$ for $p \in \{2, 3, 5\}$ and $u \in \mathbf{Z}_{359}$, then the fiber W_u has a \mathbf{Q}_p -point for all completions \mathbf{Q}_p , $p \leq \infty$.

Proof. Existence of real points is automatic, since W_u is a plane curve of odd degree. Existence of \mathbf{Q}_p -points for $p \notin \{2, 3, 5, 359\}$ was proved just above the statement of Proposition 3.

Consider p = 359. A Gröbner basis calculation shows that there do not exist a_1 , a_2 , b_1 , b_2 , c_1 , c_2 , $\overline{u} \in \overline{\mathbf{F}}_{359}$ such that

(6)
$$5x^3 + 9y^3 + 10z^3 + 12\overline{u}^3(x+y+z)^3$$

and

$$(5x + a_1y + a_2z)(x + b_1y + b_2z)(x + c_1y + c_2z)$$

are identical. Hence Lemma 2 applies to show that for any $\overline{u} \in \mathbf{F}_{359}$, the plane cubic defined by (6) over \mathbf{F}_{359} has a smooth \mathbf{F}_{359} -point, and Hensel's Lemma implies that W_u has a \mathbf{Q}_{359} -point at least when $u \in \mathbf{Z}_{359}$.

When $u \equiv 1 \pmod{5\mathbf{Z}_5}$, the curve reduced modulo 5,

$$\overline{W}_{\overline{u}}: 4y^3 + 2(x+y+z)^3 = 0,$$

consists of three lines through $P := (1 : 0 : -1) \in \mathbf{P}^2(\mathbf{F}_5)$, so it does not satisfy the conditions of Lemma 2, but one of the lines, namely y = -2(x + y + z), is defined over \mathbf{F}_5 , and every \mathbf{F}_5 -point on this line except P is smooth on $\overline{W}_{\overline{u}}$. Hence W_u has a \mathbf{Q}_5 -point.

The same argument shows that W_u has a \mathbb{Q}_2 -point whenever $u \equiv 1 \pmod{2\mathbb{Z}_2}$, since the curve reduced modulo 2 is $x^3 + y^3 = 0$, which contains x + y = 0.

Finally, when $u \equiv 1 \pmod{3\mathbf{Z}_3}$, the point (1:2:1) satisfies the equation (4) modulo 3^2 , and Hensel's Lemma gives a point $(x_0:2:1) \in W_u(\mathbf{Q}_3)$ with $x_0 \equiv 1 \pmod{3\mathbf{Z}_3}$. This completes the proof.

We now seek a non-constant rational function $\mathbf{P}^1 \to \mathbf{P}^1$ that maps $\mathbf{P}^1(\mathbf{Q}_p)$ into $1 + p\mathbf{Z}_p$ for $p \in \{2, 3, 5\}$ and into \mathbf{Z}_{359} for p = 359. For $p \in \{2, 3, 5\}$, the rational function $v = t^4$ maps $t \in \mathbf{P}^1(\mathbf{F}_p)$ into $\{0, 1, \infty\}$, and

$$u = \frac{v^3 - v - 1}{v^3 - v^2 - 1}$$

maps any $v \in \{0, 1, \infty\}$ to 1. Moreover $u \neq \infty$ for $v \in \mathbf{P}^1(\mathbf{F}_{359})$. Therefore, for $t \in \mathbf{P}^1(\mathbf{Q})$, the value of

$$u = \frac{t^{12} - t^4 - 1}{t^{12} - t^8 - 1}$$

satisfies the local conditions in Proposition 3.

Substituting into (4), we see that

(7)
$$X_t: 5x^3 + 9y^3 + 10z^3 + 12\left(\frac{t^{12} - t^4 - 1}{t^{12} - t^8 - 1}\right)^3 (x + y + z)^3 = 0$$

has \mathbf{Q}_p -points for all $p \leq \infty$. On the other hand, $X_t(\mathbf{Q}) = \emptyset$, because $V(\mathbf{Q}) = \emptyset$. Finally, the existence of nodal fibers in the family implies as in [CP] that the j-invariant of the family has poles, and hence is non-constant.

5. The Jacobians

For $t \in \mathbf{Q}$, let E_t denote the Jacobian of X_t . Salmon in his work on invariants of a plane cubic developed formulas which were later shown in [AKMMMP] to be coefficients of a Weierstrass model of the Jacobian. We used a GP-PARI implementation of these by Fernando Rodriguez-Villegas, available electronically at ftp://www.ma.utexas.edu/pub/villegas/gp/invcubic.gp to show that our E_t has a Weierstrass model $y^2 = x^3 + Ax + B$ where

$$A = 145800(t^{12} - t^4 - 1)^3(t^{12} - t^8 - 1)$$

and

$$B = -6129675t^{72} + 48660750t^{68} - 72845325t^{64} - 43776450t^{60} - 52032375t^{56}$$

$$+ 392384250t^{52} - 12636000t^{48} - 198105750t^{44} - 604705500t^{40} + 229027500t^{36}$$

$$+ 387518175t^{32} + 384183000t^{28} - 242872425t^{24} - 227776050t^{20} - 110899125t^{16}$$

$$+ 76387050t^{12} + 41735250t^{8} + 11882700t^{4} - 6129675.$$

Because the non-existence of rational points on V is explained by a Brauer-Manin obstruction, Section 3.5 and in particular Proposition 3.5 of [CP] show that there exists a second

family of genus 1 curves Y_t with the same Jacobians such that the Cassels-Tate pairing satisfies $\langle X_t, Y_t \rangle = 1/3$ for all $t \in \mathbf{Q}$. In particular, for all $t \in \mathbf{Q}$, the Shafarevich-Tate group $\mathrm{III}(E_t)$ contains a subgroup isomorphic to $\mathbf{Z}/3 \times \mathbf{Z}/3$.

Acknowledgements

I thank Ahmed Abbes for explaining the formula (1) to me. I thank also Bill McCallum and Fernando Rodriguez-Villegas, for providing Salmon's formulas for invariants of plane cubics in electronic form. The calculations for this paper were mostly done using Mathematica and GP-PARI on a Sun Ultra 2. The values of A and B in Section 5 and their transcription into LaTeX were checked by pasting the LaTeX formulas into Mathematica, plugging them into the formulas for the j-invariant from GP-PARI, and comparing the result against the j-invariant of X_t as computed directly by Mark van Hoeij's Maple package "IntBasis" at http://www.math.fsu.edu~hoeij/compalg/IntBasis/index.html for a few values of $t \in \mathbf{Q}$.

References

- [AKMMMP] S. Y. An, S. Y. Kim, D. Marshall, S. Marshall, W. McCallum, A. Perlis, *Jacobians of genus one curves*, preprint, 1999.
- [CG] J. W. S. Cassels and M. J. T. Guy, On the Hasse principle for cubic surfaces, Mathematika 13 (1966), 111–120.
- [CP] J.-L. Colliot-Thélène and B. Poonen, Algebraic families of nonzero elements of Shafarevich-Tate groups, to appear in J. Amer. Math. Soc.
- [Lin] C.-E. Lind, Untersuchungen über die rationalen Punkte der ebenen kubischen Kurven vom Geschlecht Eins, Thesis, University of Uppsala, 1940.
- [Ma] Yu. I. Manin, *Cubic forms*, Translated from the Russian by M. Hazewinkel, Second edition, North-Holland, Amsterdam, 1974.
- [Mi] J. Milne, Étale cohomology, Princeton Univ. Press, Princeton, N.J., 1980.
- [O'N] C. O'Neil, Jacobians of curves of genus one, Thesis, Harvard University, 1999.
- [Ra] M. Raynaud, Caractéristique d'Euler-Poincaré d'un faisceau et cohomologie des variétés abéliennes, Séminaire Bourbaki, Exposé **286** (1965).
- [Re] H. Reichardt, Einige im Kleinen überall lösbare, im Grossen unlösbare diophantische Gleichungen, J. Reine Angew. Math. **184** (1942), 12–18.
- [Se] E. Selmer, The diophantine equation $ax^3 + by^3 + cz^3 = 0$, Acta Math. **85** (1951), 203–362 and **92** (1954), 191–197.
- [SD] H. P. F. Swinnerton-Dyer, Two special cubic surfaces, Mathematika 9 (1962), 54–56.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CA 94720-3840, USA *E-mail address*: poonen@math.berkeley.edu