2024 IEEE 3rd Real-Time and Intelligent Edge Computing Workshop (RAGE) RAGE 2024

Table of Contents

Message from the RAGE 2024 Organizers viii
RAGE 2024 Committee Members ix
RAGE 2024 Technical Program Committee
Invited Talk
Ensuring Cyber-Physical System Stability in the Presence of Deadline Misses
Session 1: Edge-based Perception
3D Point Cloud Object Detection on Edge Devices for Split Computing
Towards a Real-Time and Energy-Efficient Edge AI Camera Architecture in Mega Warehouse Environment
Yusuke Asai (Nagoya University, Japan), Yuki Mori (Nagoya University,
Japan), Keisuke Higashiura (Nagoya University, Japan), Kodai Yokoyama (Nagoya University, Japan), Shin Katayama (Nagoya University, Japan),
Kenta Urano (Nagoya University, Japan), Takuro Yonezawa (Nagoya
University, Japan), and Nobuo Kawaguchi (Nagoya University, Japan)
Invited Talk
Understanding and Mitigating Hardware Interference Channels on Heterogeneous Multicore 18 Heechul Yun (University of Kansas)
Session 2: Model-based and Virtualized Edge Computing
Energy Consumption Prediction Framework in Model-based Development for Edge Devices 21 Yue Hou (Saitama University) and Takuya Azumi (Saitama University)

Period Estimation for Linux-based Edge Computing Virtualization with Strong Temporal Isolation
Invited Talk
Towards Zero-Trust Hardware Architectures in Safety and Security Critical System-on-Chips 33 Francesco Restuccia (University of California San Diego) and Ryan Kastner (University of California San Diego)
Session 3: Learning at the Edge
Federated Learning Platform on Embedded Many-core Processor with Flower
Evaluating the Energy Efficiency of Few-Shot Learning for Object Detection in Industrial Settings
Georgios Tsoumplekas (MetaMind Innovations P.C.), Vladislav Li
(Kingston University), Ilias Siniosoglou (University of Western
Macedonia, MetaMind Innovations P.C.), Vasileios Argyriou (Kingston
University), Sotirios Goudos (Aristotle University of Thessaloniki), Ioannis Moscholios (University of Peloponnese), Panagiotis
Radoglou-Grammatikis (University of Western Macedonia, K3Y Ltd.), and
Panagiotis Sarigiannidis (University of Western Macedonia, MetaMind
Innovations P.C.)
Author Index 0