المادة: الرياضيات الشهادة: المتوسطة نموذج رقم -١-المدة: ساعتان

الهيئة الأكاديميّة المشتركة قسم: الرياضيات

نموذج مسابقة (يراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٠-٢٠١ وحتى صدور المناهج المطوّرة)

ارشادات عامة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشح الإجابة بالترتيب الذي يناسبه دون الالتزام بترتيب المسائل الوارد في المسابقة.

I- (2 points)

On considère les trois nombres A, B et C.

A=
$$\frac{33 \times 10^{-4} \times 30 \times 10^{2}}{36 \times 10^{-2} \times 22 \times 10}$$
; B= $\frac{7 - \frac{11}{3}}{1 - \frac{1}{6}}$; C= $(\sqrt{2} - 1)^{2} + (\sqrt{2} + 1)^{2}$

En détaillant les étapes de calcul,

- 1) Ecrire A sous forme d'une fraction irréductible.
- 2) Montrer que B est un entier.
- 3) Vérifier que C = B + 16A.

II- (3 points)

Le périmètre d'un rectangle vaut 28cm. Si on subit une réduction de 10% sur sa longueur et une augmentation de 20% sur sa largeur, le périmètre sera 28,8cm.

- a) Ecrire un système de 2 équations à 2 inconnues traduisant les informations précédentes.
- b) Vérifier que la longueur initiale de ce rectangle est de 8cm et calculer sa largeur.
- c) Déterminer la nature du quadrilatère après changement des dimensions.

III- (4 points) Dans la figure ci-contre :

- x est une longueur exprimée en cm telle que 0 < x < 4.
- ABCD est un rectangle tel que AB=6cm et AD=4cm.
- BE = DF = x

On désigne par Y l'aire de la partie hachurée.

- 1) Montrer que $Y = -\frac{1}{2}(x^2 10x 24)$.
- 2) a. Vérifier que $Y = -\frac{1}{2}((x-5)^2 49)$.
 - **b.** Déterminer x dans le cas où Y = 20.
- 3) On désigne par Z l'aire d'un carré de côté (x+2).
 - a. Exprimer Z en fonction de x.
 - **b.** Simplifier $\frac{Y}{7}$.
 - **c.** Peut-on calculer x pour que Y = Z?

IV- (5.5 points)

Dans un repère orthonormé d'axes (x'Ox, y'Oy), on considère les points A(3; 0) et B(-1; 2). Soit (d) la droite d'équation y = 2x + 4.

- 1) a. Placer les points A et B.
 - b. La droite (d) coupe x'Ox en E et y'Oy en F.

Déterminer les coordonnées des points E et F, puis tracer (d).

- c. Vérifier que B est le milieu de [EF].
- 2) a. Déterminer l'équation de la droite (AB).
 - b. Vérifier que (AB) est la médiatrice de [EF].
- 3) On considère le point $H(0; \frac{3}{2})$
 - a. Vérifier que H est un point de la droite (AB).
 - b. Montrer que H est l'orthocentre du triangle AEF.
- 4) Soit (C) le cercle de diamètre [AF] et (Δ) la droite qui passe par A et parallèle à (EH).
 - a. Vérifier que O et B sont deux points du cercle (C).
 - b. Ecrire une équation de la droite (Δ).
 - c. Montrer que (Δ) est tangente à (C).

V- (5.5 points) Dans la figure ci-contre:

- AB = 5 cm.
- (C) est le cercle de diamètre [AB] de centre O.
- E est un point de (C) tel que AE = 3cm.
- La tangente à (C) en B coupe (AE) en F.
- 1) Reproduire cette figure.
- 2) a. Calculer BE.
 - b. Montrer que les deux triangles AEB et ABF sont semblables.
 - c. En déduire BF et EF.
- 3) L est un point de (FB) tel que BL = $\frac{15}{4}$, et **B** entre L et F.
 - a. Comparer les deux rapports $\frac{FE}{EA}$ et $\frac{FB}{BL}$.
 - b. Déduire que (BE) est parallèle à (AL).
 - c. Montrer que AL = $\frac{25}{4}$.
- 4) La droite (EO) coupe le cercle (C) en H. Soit G le milieu de [BL].
 - a. Montrer que le quadrilatère EAHB est un rectangle. En déduire que H est sur la droite (AL).
 - b. Montrer que (GH) est tangente à (C).
 - c. Calculer, arrondie au degré près, la mesure de l'angle \widehat{GBH} .

المادة: الرياضيات الشهادة: المتوسطة

> نموذج رقم - ١ -المدة: ساعتان

الهيئة الأكاديمية المشتركة قسم: الرياضيات

أسس التصحيح (تراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٧-٢٠١٧ وحتى صدور المناهج المطوّرة)

Question I			
	Réponses	note	
1	$A = \frac{33 \times 10^{-4} \times 30 \times 10^{2}}{36 \times 10^{-2} \times 22 \times 10} = \frac{9 \times 10^{-1}}{72 \times 10^{-1}} = \frac{1}{8} \frac{1}{4} + \frac{1}{4}$ $B = \frac{\frac{10}{3}}{\frac{5}{6}} = 4 , \frac{1}{4} + \frac{1}{4}$	13/4	
	$C = (\sqrt{2} - 1)^2 + (\sqrt{2} + 1)^2 = 2 - 2\sqrt{2} + 1 + 2 + 2\sqrt{2} + 1 = 6$ $\frac{1}{4} + \frac{1}{4} + \frac{1}{4}$		
2	16A + B = 2 + 4 = 6 C = 6, donc $C = B + 16A$.	1/4	
Question II			
a	2x +2y=28cm 2(1-0,1)x+2(1+0.2)y=28,8cm	11/4	
b	x=8, y=6	1	
С	1,2y=7.2 et 0,9x =7.2 donc le quadrilatère est un carré.	3/4	
Question III			
1	Aire de la partie hachurée $Y = 24 - \frac{(4-x)(6-x)}{2} = \frac{-x^2+10x+24}{2} = -\frac{1}{2}(x^2-10x-24).$	1	
2.b	$20 = -\frac{1}{2}((x-5)^2 - 49) \text{ alors}(x-5)^2 - 49 = -40, (x-5)^2 = 9$ $x-5=3 \text{ ou } x-5=-3 \text{ alors } x=8 \text{(inacceptable) ou } x=2. \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4}$	11/4	
3.a	$Z = (x+2)^2$	1/4	
3.b	$\frac{Y}{Z} = \frac{-\frac{1}{2}(x-12)(x+2)}{(x+2)^2} = \frac{-\frac{1}{2}(x-12)}{(x+2)} = \frac{-(x-12)}{2(x+2)} \text{ (avec } x \neq -2)$	1/2	
3.c	Y= Z donc $\frac{-(x-12)}{2(x+2)}$ = 1 alors $-(x-12) = 2(x+2)$ donc $x = \frac{8}{3}$ acceptable.	1	

	Question IV				
	B 2 H d d 3 4 5 6				
1.a		1/2			
1.b	E(0; -2) et F(0; 4)	1/2			
1.c	$x_B = \frac{(xE+xF)}{2}$ $y_B = \frac{(yE+yF)}{2}$	1/2			
2.a	L'équation de (AB) : $y = a x+b$ $a(AB) = \frac{(yB-yA)}{(xB-xA)} = \frac{-1}{2}$ et $y_B = \frac{-1}{2} x_B + b$ donc $b = \frac{3}{2}$.	3/4			
2.b	pente(AB) \times pente(d) = -1 et (AB) passe par B milieu de [EF] donc (AB) est la médiatrice de [EF].	1/2			
3.a	$y_H = \frac{-1}{2} x_H + \frac{3}{2}$. donc H est un point de (AB)	1/4			
3.b	(FH) ⊥ à (EA) et (AB) ⊥ à (EF), (AB) et (FH) se rencontrent en H alors H est l'orthocentre du triangle AEF.	3/4			
4.a	$\widehat{ABF} = 90^{\circ}$ (ABF triangle inscrit dans un demi-cercle de diamètre [AF]) $\widehat{AOF} = 90^{\circ}$ (AOF triangle inscrit dans un demi-cercle de diamètre [AF]) donc B et O sont deux points du cercle.	1/2			
4.b	L'équation de (Δ): $y = a x+b$ $a(\Delta) = a(EH) = \frac{(yE-yH)}{(xE-xH)} = \frac{3}{4}$ et $y_A = \frac{3}{4} x_A + b$ donc $b = \frac{9}{4}$.	3/4			

4.c	(EH) \perp à (FA) et (Δ)//à (EH) donc (Δ) \perp à (FA) en A donc (Δ) est tangente au cercle (C) en A.	1/2
	Question V	
1	E G L	1/2
2.a	Dans le triangle AEB rectangle en E. D'après Pythagore $BE^2 = AB^2 - AE^2, BE = 4.$	1/2
2.b	Les 2 triangles BDE et BAD sont semblables car : $ \hat{A} \text{ angle commun} $ $ \widehat{AEB} = \widehat{ABF} = 90 $	1/2
2.c	Rapport de similitude : $\frac{AE}{AB} = \frac{AB}{AF} = \frac{EB}{BF}$ 1/4 $\frac{3}{5} = \frac{5}{AF} = \frac{4}{BF}$ donc BF= $\frac{20}{3}$ et AF= $\frac{25}{3}$ donc EF= $\frac{25}{3}$ -3= $\frac{16}{3}$.	1/2
3.a	$\frac{EF}{EA} = \frac{16}{9} \text{ et } \frac{FB}{BL} = \frac{16}{9}.$	1/2
3.b	$\frac{EF}{EA} = \frac{FB}{BL}$, alors les deux droites (EB) et (AL) sont parallèles d'après la réciproque de Thalès.	1/2
3.c	$\frac{EF}{FA} = \frac{EB}{AL}$ donc $AL = \frac{15}{4}$.	1/2

4.a	Le quadrilatère est un rectangle car ses diagonales se coupent en leur milieu O et l'angle AEB est rectangle. Les deux droites (AH) et (AL) sont confondues (deux parallèle à une même troisième (EB) et passant par un même point A).Donc H est sur (AL).	1
4.b	Dans le triangle BHL rectangle en H on HG= GB= GL (la médiane vaut la moitié de l'hypoténuse) Alors les deux triangles OBG et OHG sont isométriques. $\widehat{GHO} = \widehat{OBL} = 90$ alors BH tangent à (C).	1/2
4.c	$\cos \widehat{GBH} = \frac{BH}{BL} = \frac{3}{\frac{15}{4}} = \frac{4}{5}$ Alors $\widehat{GBH} = \cos^{-1}\left(\frac{4}{5}\right) = 36.8^{\circ} \approx 37^{\circ}$	1/2