Tiesė plokštumoje

Paulius Drungilas

Vilniaus universitetas Matematikos ir informatikos fakultetas

2014 m. rugsėjo 24 d.

Tiesė plokštumoje

Nagrinėkime tiesę t, kuri eina per tašką $A(x_0, y_0)$ ir yra statmena nenuliniam vektoriui $\vec{n}(a, b)$.

$$M(x,y) \in t \iff \vec{n} \perp A\vec{M} \iff \vec{n}(a,b) \cdot A\vec{M}(x-x_0,y-y_0) = 0$$

Taigi tiesė t – tai aibė plokštumos taškų M(x,y), tenkinančių lygybę

$$a(x-x_0)+b(y-y_0)=0.$$

 \vec{n} – tiesės t normalės vektorius.

Bendroji tiesės lygtis

Teiginys 1

Tiesės, einančios per tašką $A(x_0, y_0)$ ir statmenos nenuliniam vektoriui $\vec{n}(a, b)$, lygtis yra

$$a(x-x_0)+b(y-y_0)=0.$$
 (1)

Pažymėję

$$ax + by \underbrace{-ax_0 - by_0}_{C} = 0,$$

(1) lygtį galime perrašyti:

$$ax + by + c = 0$$
, $a^2 + b^2 \neq 0$.

Tai bendroji tiesės lygtis.

Atskiri atvejai

$$a = 0, b \neq 0$$

Tiesės lygtis: $y = c_1$.

Ši tiesė $|| \mathcal{O} x$ ašiai.

$$b = 0, a \neq 0$$

Tiesės lygtis: $x = c_1$.

Ši tiesė $|| \mathcal{O}y$ ašiai.

Kryptinė tiesės lygtis

Teiginys 2

Tarkime, kad tiesė t eina per tašką $M(x_0, y_0)$ ir su $\mathcal{O}x$ ašimi sudaro kampą, kurio tangentas lygus m. Tada tiesės t lygtis yra:

$$y-y_0=m(x-x_0).$$

Tai kryptinė tiesės lygtis.

Įrodymas.

Vektorius $\vec{s}(1,m)$ su $\mathcal{O}x$ ašimi sudaro kampą, kurio tangentas lygus m. Todėl $\vec{s} \mid\mid t$. Tada $\vec{n}(m,-1) \perp t$, nes $\vec{s} \cdot \vec{n} = 0$. Remiantis (1), tiesės t lygtis yra:

$$m(x - x_0) + (-1) \cdot (y - y_0) = 0,$$

 $y - y_0 = m(x - x_0).$

Kryptinė tiesės lygtis

Kryptinė tiesės lygtis

Tiesė, lygiagreti vektoriui

Teiginys 3

Tarkime, kad tiesė t yra lygiagreti nenuliniam vektoriui $\vec{s}(a_1, a_2)$ ir eina per tašką $A(x_0, y_0)$. Tada tiesės t lygtis yra:

$$\frac{x-x_0}{a_1}=\frac{y-y_0}{a_2}.$$

Irodymas.

Vektorius $\vec{n}(a_2, -a_1) \perp t$, nes $\vec{s} \cdot \vec{n} = 0$. Remiantis (1), tiesės t lygtis yra:

$$a_2(x - x_0) - a_1 \cdot (y - y_0) = 0,$$

 $\frac{x - x_0}{a_1} = \frac{y - y_0}{a_2}.$

Tiesė, lygiagreti vektoriui

Tiesė, lygiagreti vektoriui

Tarkime, kad tiesė $T \parallel \vec{s}(a_1, a_2) \neq \vec{0}$ ir $A(x_0, y_0) \in T$. Sakykime, kad $M(x, y) \in T$. Tada

$$\vec{AM}(x - x_0, y - y_0) \parallel \vec{s}(a_1, a_2),$$

todėl $\exists t \in \mathbb{R}$:

$$\vec{AM} = t \cdot \vec{s},$$
 $(x - x_0, y - y_0) = (a_1 t, a_2 t),$

$$\begin{cases} x - x_0 = a_1 t \\ y - y_0 = a_2 t \end{cases}$$

$$\begin{cases} x = x_0 + a_1 t \\ y = y_0 + a_2 t \end{cases}$$

Kita vertus, su kiekvienu $t \in \mathbb{R}$ taškas $M(x_0 + a_1t, y_0 + a_2t) \in T$.

$$M(t) = (x_0 + a_1 t, y_0 + a_2 t), t \in \mathbb{R}$$

$$M(4)$$

$$M(t) = (x_0 + a_1 t, y_0 + a_2 t), t \in \mathbb{R}$$

$$M(2)$$

$$M(t) = (x_0 + a_1 t, y_0 + a_2 t), t \in \mathbb{R}$$

$$M(3)$$

$$M(t) = (x_0 + a_1 t, y_0 + a_2 t), t \in \mathbb{R}$$

$$M(4)$$

$$M(t) = (x_0 + a_1 t, y_0 + a_2 t), t \in \mathbb{R}$$
 $M(5)$

Tiesė, einanti per du duotuosius taškus

Teiginys 4

Tarkime, kad tiesė t eina per du skirtingus taškus $A(x_0, y_0)$ ir $B(x_1, y_1)$. Tada tiesės t lygtis yra:

$$\frac{x-x_0}{x_1-x_0}=\frac{y-y_0}{y_1-y_0}.$$

Irodymas.

Vektorius $\vec{AB}(x_1-x_0,y_1-y_0) \mid\mid t$. Todėl $\vec{n}(y_1-y_0,-(x_1-x_0)) \perp t$, nes $\vec{AB} \cdot \vec{n} = 0$. Remiantis (1), tiesės t lygtis yra:

$$(y_1 - y_0)(x - x_0) - (x_1 - x_0) \cdot (y - y_0) = 0,$$

$$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0}.$$

Tiesė, einanti per du duotuosius taškus

Tiesė, einanti per du duotuosius taškus

Ašinė tiesės lygtis

Išvada 5

Tarkime, kad tiesė t neina per koordinačių pradžios tašką \mathcal{O} . Be to, tarkime, kad tiesė t kerta $\mathcal{O}x$ ašį taške (a,0), o ašį $\mathcal{O}y$ – taške (0,b). Tada tiesės t lygtis yra:

$$\frac{x}{a} + \frac{y}{b} = 1.$$

Normalinė tiesės lygtis

Teiginys 6

Tarkime, kad statmuo, nuleistas iš koordinačių pradžios taško į tiesę t, su $\mathcal{O} \times$ ašimi sudaro kampą α , o šio statmens ilgis lygus p>0. Tada tiesės t lygtis yra:

$$x\cos\alpha+y\sin\alpha-p=0.$$

Normalinė tiesės lygtis

Įrodymas.

Vektorius $\vec{n}(p\cos\alpha, p\sin\alpha) \perp t$, o taškas $A(p\cos\alpha, p\sin\alpha) \in t$. Remiantis (1), tiesės t lygtis yra:

$$p\cos\alpha\cdot(x-p\cos\alpha)+p\sin\alpha\cdot(y-p\sin\alpha)=0,$$

$$px\cos\alpha+py\sin\alpha-p^2=0,$$

$$x\cos\alpha+y\sin\alpha-p=0.$$
(2)

- Vektorius $\vec{n}(\cos \alpha, \sin \alpha)$ yra tiesės t vienetinis normalės vektorius
- (2) normalinės lygties laisvasis narys yra atstumas nuo koordinačių pradžios taško iki tiesės, paimtas su minuso ženklu

Bendrosios lygties suvedimas į nomalinę

Tiesė t: ax + by + c = 0, $c \neq 0$.

Normalės vektorių $\vec{n}(a,b)$ reikia padaryti vienetiniu, todėl šį vektorių padalijame iš jo ilgio $\sqrt{a^2+b^2}$:

$$\frac{a}{\sqrt{a^2 + b^2}} x + \frac{b}{\sqrt{a^2 + b^2}} y + \frac{c}{\sqrt{a^2 + b^2}} = 0 \quad \text{arba}$$
$$\frac{-a}{\sqrt{a^2 + b^2}} x + \frac{-b}{\sqrt{a^2 + b^2}} y + \frac{-c}{\sqrt{a^2 + b^2}} = 0.$$

Ženklą pasirenkame taip, kad laisvasis narys $\frac{\pm c}{\sqrt{a^2+b^2}}$ būtų neigiamas.

Išvada 7

Atstumas nuo koordinačių pradžios taško iki tiesės ax + by + c = 0 lygus $\frac{|c|}{\sqrt{a^2+b^2}}$.

Atstumas nuo taško iki tiesės

Teiginys 8

Taško $A(x_0, y_0)$ atstumas d iki tiesės t : ax + by + c = 0 lygus

$$d=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}}.$$

Atstumas nuo taško iki tiesės

Įrodymas

leškome tokio tiesės t taško $M(x_1, y_1)$, kad $\overrightarrow{AM} \perp t$, t.y.

$$\vec{AM} \parallel \vec{n}(a,b) \iff \frac{x_1 - x_0}{a} = \frac{y_1 - y_0}{b}.$$
 (3)

 $M(x_1, y_1) \in t$, todėl

$$ax_1 + by_1 + c = 0,$$
 (4)

$$d = |\vec{AM}| = \sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2} \stackrel{\text{(3)}}{=} \frac{|x_1 - x_0|}{|a|} \sqrt{a^2 + b^2}.$$
(5)

lš (3) gauname išraišką $y_1=y_0+\frac{b}{a}(x_1-x_0)$, kurią statome į (4):

$$ax_1 + b(y_0 + \frac{b}{a}(x_1 - x_0)) + c = 0,$$

Atstumas nuo taško iki tiesės

$$ax_1 + by_0 + \frac{b^2}{a}(x_1 - x_0) + c = 0.$$

lš čia išreiškiame $\frac{x_1-x_0}{a}$:

$$\frac{x_1 - x_0}{a} = -\frac{ax_0 + by_0 + c}{a^2 + b^2}.$$

Šią išraišką įstatę į (5), gauname:

$$d = \frac{|x_1 - x_0|}{|a|} \sqrt{a^2 + b^2} = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}.$$

Kampas tarp tiesių

Tegul t_1 ir t_2 – tiesės,

$$t_1: a_1x + b_1y + c_1 = 0,$$

$$t_2: a_2x + b_2y + c_2 = 0,$$

 $\vec{n_1}(a_1,b_1) \perp t_1$ ir $\vec{n_2}(a_2,b_2) \perp t_2$ – normalės vektoriai.

Apibrėžimas 9

Kampu tarp tiesių t_1 ir t_2 vadinamas kampas tarp jų normalės vektorių $\vec{n_1}$ ir $\vec{n_2}$.

Kampas tarp tiesių

Pastaba 10

Kampas tarp tiesių apibrėžiamas nevienareikšmiškai (išskyrus atvejį, kai tiesės yra statmenos): jei α – kampas tarp tiesių t_1 ir t_2 , tai $\pi - \alpha$ – taip pat kampas tarp šių tiesių.

Taigi kampą lpha tarp tiesių \emph{t}_1 ir \emph{t}_2 galima rasti pagal formulę

$$\cos \alpha = \frac{a_1 a_2 + b_1 b_2}{\sqrt{a_1^2 + b_1^2} \sqrt{a_2^2 + b_2^2}}$$

Tiesių lygiagretumo ir statmenumo sąlygos

Teiginys 11

Tiesės

$$t_1: a_1x + b_1y + c_1 = 0$$
 ir
 $t_2: a_2x + b_2y + c_2 = 0$

yra lygiagrečios tada ir tik tada, kai jų normalės vektoriai yra kolinearūs, t.y.

$$t_1 \parallel t_2 \iff \frac{a_1}{a_2} = \frac{b_1}{b_2} \iff \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = 0.$$

Tiesės t_1 ir t_2 yra statmenos tada ir tik tada, kai jų normalės vektoriai yra statmeni, t.y.

$$t_1 \perp t_2 \iff a_1 \cdot a_2 + b_1 \cdot b_2 = 0.$$