CS F364 Design & Analysis of Algorithms

COMPLEXITY — OPTIMIZATION PROBLEMS

Intractable Optimization Problems

- Complexity Classes and Reduction
- Hardness of Optimization Problems
 - Examples
- -Versions of Optimization Problems
 - Relative Complexity

CLASSES PO AND NPO

- o PO
 - An optimization problem π is in PO if there exists an algorithm that solves π in polynomial time

• NPO:

- An optimization problem $\pi = (I, F, m, goal)$ belongs to the class NPO if
 - omembership in I is <u>decidable in polynomial time</u>
 - othere exists a polynomial q such that
 - given x in I and for all y in F(x):
 - \circ |y| <= q(|x|) and
 - y in F(x) is <u>decidable in polynomial time</u>.
 - om is *computable in poly time*.
- Example:
 - Vertex Cover is in NPO

RECALL: REDUCTIONS

- o Recall:
 - We say π_1 (polynomially) reduces to π_2

```
oif there is a polynomial-time computable function
```

 $f: I(\pi_1) --> I(\pi_2)$ such that

- o for every $x \in I(\pi_1)$,
- We use $\pi_1 \preceq \pi_2$
 - to denote that π_1 (polynomially) reduces to π_2

RECALL: REDUCTIONS AND ORACLES

- Another way of understanding $\pi_1 \preceq \pi_2$
 - If there is an algorithm A_2 to (efficiently) solve π_2
 - then one can use A₂ construct an (efficient) algorithm A₁ to solve π₁
- Alternatively,
 - If we can use a poly-time algorithm A_2 that solves π_2 to construct a poly-time algorithm A_1 that solves π_1 ,
 - then $\pi_1 \preceq \pi_2$
- Question: Can we quantify "use"?
 - Karp Reduction: Single query to Oracle
 - Turing Reduction: Polynomial Number of queries to Oracle

5/4/2016 Su

Sundar B.

CSIS, BITS, Pilani

TURING REDUCTION

HARDNESS OF OPTIMIZATION PROBLEMS

- An optimization problem π in NPO is said to be NP-hard if for all problems π' in NP:
 - π' ≾ π

o Note on reduction:

 We will typically assume Turing reductions as a Karp reduction is a special case of a Turing reduction.

OPTIMIZATION PROBLEMS - FORMULATIONS

- An optimization problem $\pi = \langle I, F, m, goal \rangle$ can be formulated in different ways:
 - Construction Version (π_c) :
 - Given an input instance x, find the optimal solutionOPT(x)
 - Evaluation Version (π_e) :
 - o Given an input instance x, find the optimal measure i.e. measure of the optimal solution $m^*(x) = m(x,OPT(x))$
 - Decision Version (π_d) :
 - o Given an input instance **x**, and a threshold value **k** decide whether **the optimal measure is bounded by k**
 - o i.e. Is $m^*(x) \le k$? (if goal is min)
 - o Is $m^*(x) >= k$? (if goal is max)

OPTIMIZATION PROBLEMS - FORMULATIONS: EXAMPLE

- Example: TSP
 - TSP_c:
 - o Given a weighted, complete graph G, find a minimum weight tour.
 - TSP_e:
 - o Given a weighted, complete graph G, find the weight of a minimum weight tour.
 - TSP_d:
 - o Given a weighted, complete graph G, and a number k, find whether the weight of a minimum weight tour is less than k.

OPTIMIZATION PROBLEMS — FORMULATIONS — RELATIVE COMPLEXITIES

o Claim:

- Given an optimization problem π
 - o the construction version (π_c) is at least as hard as the evaluation Version (π_e)
 - o which in turn is at least as hard as the decision version $(\pi_{\mbox{\scriptsize d}})$
- i.e.

$$\circ \pi_{d} \preceq \pi_{e} \preceq \pi_{c}$$

Observation:

 If the decision version of a problem is NP-hard, then so is the construction version!

- o Theorem 1: For any problem π in NPO, $\pi_e \lesssim_{poly} \pi_d$
- Proof:
 - By definition of NPO: for any x in I_{π} , and for any y in F(x): $m(x,y) <= 2^{p(|x|)}$ for some polynomial p
 - Using bisection (i.e. binary search over the range of m): π_e can be solved by at most p(|x|) queries to the oracle for π_d .

o Theorem 2: For any problem π in NPO, if π_d is NP-complete, then $\pi_c \precsim_{poly} \pi_d$

• Proof:

• We construct (see Lemma in next slide) a NPO problem π' such that

$$\circ \pi_c \preceq_{poly} \pi'_c$$
 and $\circ \pi'_c \preceq_{poly} \pi'_e$

and we know

$$\circ \pi'_{e} \lesssim_{poly} \pi'_{d}$$
 (by Theorem 1 – see previous slide) and $\circ \pi'_{d} \lesssim_{poly} \pi_{d}$ (since π_{d} is NP-complete)

Thus we can conclude

```
\circ \pi_c \preceq_{poly} \pi_d (by transitivity of reduction)
```

- o Lemma: For any problem π in NPO, there exists a problem π' in NPO such that $\pi_c \preceq_{poly} \pi'_e$
- Proof: (assume π is a max. problem).
 - Let p be a polynomial such that, for any x in I_{π} and for any y in SOL(x), $|y| \le p(|x|)$; and let $\lambda(y)$ be the rank of y in SOL(x), assuming lexicographic ordering.
 - Define a problem π' s.t. π' is the same as π (i.e. $I_{\pi}=I_{\pi'}$ and $SOL_{\pi}=SOL_{\pi'}$) except for the measure:
 - o $m_{\pi'}(x) = 2^{p(|x|)+1} * m_{\pi}(x) + \lambda(y)$
 - o This implies that
 - all feasible solutions for an instance of π' have unique measures and therefore the optimal solution for a given instance is unique.
 - and that given an instance if the solution is optimal for π' it is also optimal for π (i.e. $\pi_c \preceq_{poly} \pi'_c$).
 - o The optimal solution for an instance x of π'_c can be constructed given the optimal measure:
 - Because $m^*_{\pi'}(x) \mod 2^{p(|x|)+1}$ is $\lambda(y)$, the position in lexicographic order of the optimal solution in $SOL_{\pi}(x)$ (i.e. $\pi'_{c} \preceq_{poly} \pi'_{e}$).

- o Theorem 3:
 - For any problem π in NPO, $\pi_c \lesssim_{poly} \pi_e$
- Proof:
 - $\pi_c \preceq_{poly} \pi_d$ by Theorem 2, and
 - $\pi_d \preceq_{poly} \pi_e$ by definition.
 - So,
 - \circ $\pi_c \preceq_{poly} \pi_e$ (by transitivity of reduction)

OPTIMIZATION PROBLEMS — DECISION VERSIONS - FORMULATIONS

- Given an optimization problem $\pi = \langle I, F, m, goal \rangle$ its decision Version (π_d) can be formulated in two ways :
 - Formulation 1:
 - o Given an input instance **x**, and a threshold value **k** decide whether the optimal measure is bounded by **k**
 - o i.e. Is $m^*(x) \le k$? (if goal is min)
 - Formulation 2:
 - o Given an input instance **x**, and a threshold value **k**, <u>decide</u> whether there exists a feasible solution whose measure is bounded by **k**
 - o i.e. Is there a $y \in F(x)$ s.t. $m(x,y) \le k$? (if goal is min)
- Exercise:
 - Prove that both these formulations are equivalent!

OPTIMIZATION PROBLEMS — FORMULATIONS

[5]

- Example: TSP_d
 - Formulation 1 :
 - o Given a weighted, complete graph G, and a number k, find whether the weight of a minimum weight tour is less than k.
 - Formulation 2:
 - o Given a weighted, complete graph G, a number k, find whether there is a tour of weight less than k.

NP-HARD OPTIMIZATION PROBLEMS - EXAMPLES

- The following optimization problems are NP-hard:
 - Min Vertex Cover
 - TSP
 - 0,1 Knapsack
- o because their decision versions are NP-hard.