CSC3631 Cryptography - Key Exchange

Thomas Gross

CSC3631 Cryptography - Key Exchange

.

Quick Review II: gcd

Which statements about the gcd() are false?

- $gcd(a, b) = s \cdot t + a \cdot b$ for some s and t
- gcd(a, b) = 1 if a and b are coprime.
- The running time of computing the **gcd()** with the Euclidian algorithm is **O**(a + b).

CSC3631 Cryptography - Key Exchange

3

Quick Review I: \mathbf{Z}_N

What is Z_N ?

• The numbers {1, N, 2N, 3N, ...}

• The numbers {1, 2, 3, ... *N*}

• The numbers {0, 1, 2,... *N*-1}

CSC3631 Cryptography - Key Exchange

2

Quick Review III: Inverse

How do we find the multiplicative inverse in \mathbf{Z}_{N} ? To compute the inverse of x:

- Compute the $d = \gcd(x, N)$; d is the inverse
- Compute $x^{-1} = (x \cdot N) 1$
- Compute the Extended Euclidian algorithm for gcd(x, N) obtaining (d, s, t) with $d = s \cdot x + t \cdot N$; s is the inverse.

 ${\sf CSC3631\ Cryptography-Key\ Exchange}$

.

5

Roadmap

- 1. The Key Management Problem
- 2. Key Exchange
- 3. Symmetric Approach: Merkle Puzzles
- 4. Asymmetric Approach: Diffie-Hellman
- 5. Establishing Secure Channels

CSC3631 Cryptography - Key Exchange

Big Picture

Merkle Puzzle

Diffie-Hellman

Authenticated Key Exchange

CSC3631 Cryptography – Key Exchange

Key Exchange with TTP
Only secure against eavesdropping.

CSC3631 Cryptography – Key Exchange

Trusted Third Party

Remember: Trusted Third Parties can be a great security risk!

 A Trusted Third Party is a third party that can break your security policy

--- Ross Anderson

• In reality, a totally trustworthy third party doesn't exist.

CSC3631 Cryptography – Protocols based on symmetric crypto

10

10

Roadmap

- 1. The Key Management Problem
- 2. Key Exchange
- 3. Symmetric Approach: Merkle Puzzles
- 4. Asymmetric Approach: Diffie-Hellman
- 5. Establishing Secure Channels

CSC3631 Cryptography - Key Exchange

13

13

Definition of Key Exchange

- Consider two parties Alice and Bob.
- They run a *probabilistic protocol* (a set of instructions) on independent random bits.
- **Input:** security parameter 1^n .
- Output: Session keys k_A and k_B from $\{0, 1\}^n$.
- Correctness: $k_A = k_B = K$ (in an honest execution of the protocol)

CSC3631 Cryptography - Key Exchange

15

14

Security of Key Exchanges

A Game with the Adversary

Given: The parties with security parameter $\mathbf{1}^n$ execute a key exchange protocol and output a transcript **trans** and a key K.

- 1. Flip a fair coin; obtain a uniformly random bit b in {0,1}
 - If b = 0 then set K* := K
 - If b = 1 then choose K^* in $\{0, 1\}^n$ uniformly random.
- 2. Input for Adversary A: trans, K*
 3. Output of Adversary A: a bit b'

Adversary A success: if b' = b.

CSC3631 Cryptography - Key Exchange

Security of Key Exchanges

Informally stated, a key exchange protocol is secure if any adversary can only do negligibly better than throwing a coin to choose b'.

Key Exchange Security:

A key exchange protocol is secure in presence of an eavesdropper, if for all probabilistic polynomial-time* adversaries A their success probability is only negligibly* better than ½.

[*) Lecture 14 will treat polynomial-time and negligible in more detail.]

CSC3631 Cryptography – Key Exchange

17

17

Quick Review

- Static symmetric keys are impractical
- Trusted Third Parties bear a security risk.
- We need ad-hoc key exchange to establish a joint session key.
- Main goal: establish a secure channel

CSC3631 Cryptography - Key Exchange

19

Observations on the Security of Key Exchange

- A key exchange is secure, if the session key K output by Alice and Bob is completely unguessable by an adversary.
- This is defined formally by requiring that an eavesdropping adversary should be unable to distinguish an actual session key K (generated by the protocol) from a uniform random bitstring of length n (independent of transcript trans).
- Indistinguishability is much stronger than requiring that the adversary be unable to *compute* the session key *K*.

CSC3631 Cryptography - Key Exchange

18

18

Roadmap

- 1. The Key Management Problem
- 2. Key Exchange
- 3. Symmetric Approach: Merkle Puzzles
- 4. Asymmetric Approach: Diffie-Hellman
- 5. Establishing Secure Channels

 ${\sf CSC3631\ Cryptography-Key\ Exchange}$

21

Idea: Create a Puzzle, Difficult to Solve

Take a function difficult to solve as basis

• Decrypting AES by brute-force key search

Tailor the difficulty such that it can be solved

• Choose AES key with leading zeros:

$$K \leftarrow \{0\}^{128-I} \{0,1\}^{I}$$

Needs 2¹ brute force decryption attempts to solve

CSC3631 Cryptography - Number Theory

-

25

Roadmap

- 1. The Key Management Problem
- 2. Key Exchange
- 3. Symmetric Approach: Merkle Puzzles
- 4. Asymmetric Approach: Diffie-Hellman
- 5. Establishing Secure Channels

CSC3631 Cryptography - Key Exchange

27

Quick Review

- Idea: Many puzzles to choose from
- Brute-force decryption of block cipher

• Workload Alice and Bob: **O**(*n*), e.g., 2³²

• Workload for Eve: $O(n^2)$, e.g., 2^{64}

 Quadratic gap best known for black-box symmetric block ciphers.

CSC3631 Cryptography - Key Exchange

26

The Structure of $(\mathbf{Z}_p)^*$ Recall: What's our environment for key exchange?

The set of invertible elements of \mathbf{Z}_n is cyclic.

 $(\mathbf{Z}_n)^*$ is a cyclic group

Exists a g in $(\mathbf{Z}_{D})^{*}$ such that

$$\{1, g, g^2, g^3, \dots g^{p-2}\} = (\mathbf{Z}_p)^*$$

We call g a **generator** of $(\mathbf{Z}_n)^*$

Example p=5: {1, 3, 3², 3³} = {1, 3, 4, 2} = (**Z**₅)*

CSC3631 Cryptography - Number Theory

29

Idea: Difficult Algebraic Function

Give adversary Eve

• Group definition:

generator g

(creating prime-order subgroup G of $(\mathbf{Z}_n)^*$)

• Two elements:

 g^a, g^b

(Computational) Diffie-Hellman Problem is said intractable:

 $DH_g(g^a, g^b) = g^{ab}$

in $(\mathbf{Z}_n)^*$

CSC3631 Cryptography - Key Exchange

Given: large prime p=1013; generator g=3Random Random a in {1,..., 1011}

 $A = g^a \pmod{1013} = 872$ $B = g^b \pmod{p} = 580$

Key $k_{AB} = A^b$ (mod p)= 872^268 (mod 1013) = 417

CSC3631 Cryptography - Key Exchange

34

= 417

Quick Review

- Diffie-Hellman is an asymmetric key exchange
- · Based on the hardness of computing and distinguishing $DH_{g}(g^{a}, g^{b}) = g^{ab}$ in $(\mathbf{Z}_n)^*$
- One needs much larger keys for asymmetric algorithms to be secure, than for symmetric ones.
- Use at least 3072-bit keys for DH/RSA.

CSC3631 Cryptography - Key Exchange

36

How hard is Diffie-Hellman?

According to RSA Security:

Symmetric Cipher Key Size	DH/RSA Modulus Size
80 bits	1024 bits
128 bits	3072 bits

Best known algorithm to break DH/RSA:

General Number Field Sieve

Expected running time $O(\exp(\log(n)^{1/3})$

"Are 1024-bit RSA keys are dead?" Arien Lenstra: "The answer to that question is an unqualified yes."

[See Shoup2008, Section 15.5]

35

Roadmap

- 1. The Key Management Problem
- 2. Key Exchange
- 3. Symmetric Approach: Merkle Puzzles
- 4. Asymmetric Approach: Diffie-Hellman
- 5. Establishing Secure Channels

CSC3631 Cryptography - Key Exchange

Quiz

• What are secure channel examples used in daily life?

• What are secure channels good for?

CSC3631 Cryptography – Key Exchange

38

39

Quick Review

- Single session key as input from key exchange.
- Need to get **keys for communication**:
 - Symmetric cipher (confidentiality)
 - Message Authentication Code (Integrity)
- Key Derivation Function (KDF)
- Generate one separate key per use and direction.

CSC3631 Cryptography - Key Exchange

41