Relations and Their Properties

Course Code: 00090 Course Title: Discrete Mathematics

Dept. of Computer Science Faculty of Science and Technology

Lecturer No:	13	Week No:	8	Semester:	Summer 21-22
Lecturer:	Md. Mahmudur Rahman (<u>mahmudur@aiub.edu</u>)				

Lecture Outline

7.1 Relations and Their Properties

- Relations and Functions
- Properties of Relations
 - Reflexive Relations
 - Symmetric Relations
 - Antisymmetric Relations
 - Transitive Relations
- Combining Relations
- Composite of Relations

Objectives and Outcomes

- Objectives: To understand the Relations and the difference between function and relation, to analyze a relation to determine whether it contains certain property, how to combine two relations, how to find the composite of two relations.
- Outcomes: The students are expected to be able to explain relation and how it is differs from function; be able to determine whether a relation is reflexive, whether it symmetric, whether it is antisymmetric and/or whether it is antisymmetric; be able to combine two relations; be able to find out the composite relations of two relations.

Introduction

- The most direct way to express a relationship between elements of two sets is to use ordered pairs made up of two related elements. For this reason, sets of ordered pairs are called binary relations.
- In this section, we introduce the basic terminology used to describe *binary relations*.
- We can use relations to solve problems involving communications networks, project scheduling, and identifying elements in sets with common properties.

Binary Relations

<u>Definition:</u> Let A and B be sets. A **binary relation** from A to B is a subset of $A \times B$.

- In other words, a binary relation from **A** to **B** is a set **R** of ordered pairs where the <u>first element of each ordered pair</u> comes from **A** and the <u>second element comes</u> from **B**.
- We use the notation a R b to denote that (a, b)∈R
 When (a, b) belongs to R, a is said to be related to b by R.

Note: $a \not R b$ means a is **not** related to b by R, i.e., $(a, b) \not \in R$

THE SHATION A SHATE OF THE SHAT

Example 3

• Let $A = \{0,1,2\}$ and $B = \{a, b\}$.

Then $\{(0, a), (0, b), (1,a), (2, b)\}$ is a **relation** from A to B.

This means, for instance, 0 R a, but that 1 R b

Relations can be represented graphically or using a table:

Note: If a relation is given as a table, the **domain** consists of the members of the <u>first column</u> and the **range** consists of the members of the <u>second column</u>.

Functions as Relations

- Recall that A function f from a set A to a set B assigns exactly one element of B to each element of A. The graph of f is the set of ordered pairs (a, b) such that b = f(a).
- Because the graph of f is a subset of A X B, it is a relation from A to B.
 Moreover, the graph of a function has the property that every element of A is the first element of exactly one ordered pair of the graph.
- Conversely, if R is a relation from A to B such that every element in A is the first element of exactly one ordered pair of R, then a function can be defined with R as its graph. This can be done by assigning to an element a of A the unique element b ∈ B such that (a, b) ∈ R.

Functions VS Relations

- A <u>relation</u> can be used to express a <u>one-to-many</u>
 relationship between the elements of the sets *A* and
 B, where an element of *A* may be related to more than one element of *B*.
- A <u>function</u> represents a relation where exactly one element of B is related to each element of A.
- Relations are more general than functions. A function
 is a relation where exactly one element of B is related
 to each element of A.

Relations on a Set

Relations from a set A to itself are of special interest.

<u>Definition 2</u>: A relation on a set A is a relation from A to A.

In other words, a relation on a set A is a subset of $A \times A$.

Example: Suppose that $A = \{a, b, c\}$.

Then $R = \{(a, a), (a, b), (a, c)\}$ is a relation on A.

Relations on a Set(cont.)

Example 4: Let A be the set {1, 2, 3, 4}.
 Which ordered pairs are in the relation
 R = {(a, b) | a divides b}?

Solution: Because (a, b) is in R if and only if a and b
are positive integers not exceeding 4 such that a
divides b, we see that

 $R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$

Relations on a Set (cont.)

- Example 6: How many relations are there on a set with n elements?
- Solution: A relation on a set A is a subset of A X A.
 Because A X A has n² elements when A has n elements and a set with m elements has 2^m subsets, there are 2ⁿ² subsets of A X A.

Thus, there are 2^{n^2} relations on a set with n elements.

For example, there are $2^{3^2} = 2^9 = 512$ relations on the set $\{a, b, c\}$

Relations on a Set (cont.)

Example 5: Consider these relations on the set of integers:

$$R_1 = \{(a,b) \mid a \le b\},$$
 $R_4 = \{(a,b) \mid a = b\},$ $R_2 = \{(a,b) \mid a > b\},$ $R_5 = \{(a,b) \mid a = b + 1\},$ $R_3 = \{(a,b) \mid a = b \text{ or } a = -b\},$ $R_6 = \{(a,b) \mid a + b \le 3\}.$

Which of these relations contain each of the pairs (1,1), (1, 2), (2, 1), (1, -1), and (2, 2)?

Solution: Checking the conditions that define each relation, we see that the pair (1,1) is in R_1 , R_3 , R_4 , and R_6 ; (1,2) is in R_1 and R_6 ; (2,1) is in R_2 , R_5 , and R_6 ; (1,-1) is in R_2 , R_3 , and R_6 ; (2,2) is in R_1 , R_3 , and R_4 .

Properties of Relations

- There are several properties that are used to classify relations on a set. We will introduce the most important of these here.
 - Reflexive
 - Symmetric
 - antisymmetric
 - Transitive

MACLADEN MACHINE

Reflexive Relation

- <u>Definition</u>: A relation *R* on a set *A* is called reflexive if (a, a) ∈ R for every element a ∈ A.
- Using quantifiers, a relation on the set A is reflexive
 if ∀a ((a, a) ∈ R), where universe of discourse is the set of ALL elements in A.
- In a reflexive relation, every element is related to itself.
 i.e. a R a for all a ∈ A
- <u>Example:</u> The relation $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)\}$ on the set $\{1, 2, 3\}$, is reflexive.

Determining whether a Relation is Reflexive

Example7: Consider the following relations on {1, 2, 3, 4}:

$$\begin{split} R_1 &= \{(1,1),\, (1,2),\, (2,1),\, (2,2),\, (3,4),\, (4,1),\, (4,4)\} \\ R_2 &= \{(1,1),\, (1,2),\, (2,1)\} \\ R_3 &= \{(1,1),\, (1,2),\, (1,4),\, (2,1),\, (2,2),\, (3,3),\, (4,1),\, (4,4)\} \\ R_4 &= \{(2,1),\, (3,1),\, (3,2),\, (4,1),\, (4,2),\, (4,3)\} \\ R_5 &= \{(1,1),\, (1,2),\, (1,3),\, (1,4),\, (2,2),\, (2,3),\, (2,4),\, (3,3),\, (3,4),\, (4,4)\}, \\ R_6 &= \{(3,4)\}. \end{split}$$

Which of these relations are reflexive?

Solution: The relations R_3 and R_5 are reflexive because they both contain ALL pairs of the form (a, a), namely (1,1) (2,2), (3,3) and (4,4).

Reflexive Relation: Another Example

 Example 8 (modified): The following relations on the set of integers are reflexive:

$$R_1 = \{(a, b) \mid a \le b\},\$$

 $R_3 = \{(a, b) \mid a = b \text{ or } a = -b\},\$
 $R_4 = \{(a, b) \mid a = b\}.$

The following relations are NOT reflexive:

$$R_2 = \{(a, b) \mid a > b\}$$
 (note that $3 \not \ge 3$),
 $R_5 = \{(a, b) \mid a = b + 1\}$ (note that $3 \not \ge 3 + 1$),
 $R_6 = \{(a, b) \mid a + b \le 3\}$ (note that $4 + 4 \not \le 3$).

Reflexive Relation: More Examples

- Example 9: Is the "divides" relation on the set of positive integers reflexive?
- Solution: Yes. Because a | a whenever a is a positive integer, the "divides" relation is reflexive.

- Question: Is the "divides" relation on the set of integers reflexive?
- Solution: No. Because 0 1 0 (0 does not divide 0)

Symmetric Relation

Definition: A relation R on a set A is called symmetric if (b, a) ∈ R whenever (a, b) ∈ R, for all a, b ∈ A.

• Example: The relation $R = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,3), (1,4)\}$ on the set $\{1, 2, 3, 4\}$ is symmetric.

Antisymmetric Relation

Definition: A relation R on a set A such that for all $a, b \in A$ if $(a, b) \in R$ and $(b, a) \in R$, then a = b is called *antisymmetric*.

- In other words, R is **antisymmetric** if whenever a = b, then $a \not R b$ or $b \not R a$.
- It follows that R is not antisymmetric if we have a and b in A,
 a ≠ b, and both a R b or b R a.
- Note: The terms symmetric and antisymmetric are NOT opposite, because a relation can have both of these properties or may lack both of them.

 $\{(1,1), (2,2)\} \rightarrow$ the relation is both symmetric & antisymmetric $\{(0,1), (1,2), (2,1)\} \rightarrow$ the relation is neither symmetric nor antisymmetric

Symmetric & Antisymmetric Relation: Example

Example 10 : Consider the following relations on {1, 2, 3, 4}:

$$\begin{split} R_1 &= \{(1,1),\, (1,2),\, (2,1),\, (2,2),\, (3,4),\, (4,1),\, (4,4)\} \\ R_2 &= \{(1,1),\, (1,2),\, (2,1)\} \\ R_3 &= \{(1,1),\, (1,2),\, (1,4),\, (2,1),\, (2,2),\, (3,3),\, (4,1),\, (4,4)\} \\ R_4 &= \{(2,1),\, (3,1),\, (3,2),\, (4,1),\, (4,2),\, (4,3)\} \\ R_5 &= \{(1,1),\, (1,2),\, (1,3),\, (1,4),\, (2,2),\, (2,3),\, (2,4),\, (3,3),\, (3,4),\, (4,4)\}, \\ R_6 &= \{(3,4)\}. \end{split}$$

Which of the relations are *symmetric* and which are *antisymmetric*?

Solution:

The relations R_2 and R_3 are symmetric.

The relations R_4 , R_5 , and R_6 are antisymmetric.

Question: What about R_1 ? Neither symmetric nor antisymmetric

THE PRACTICAL OF THE PR

Transitive Relation

• **Definition**: A relation R on a set A is called **transitive** if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$.

Example: The relation R = {(1,1), (1,2),(1, 3), (1, 4), (2,2), (2,3), (2, 4), (3, 3), (3,4), (4, 4)} on the set {1, 2, 3, 4} is transitive.

Transitive Relation: Example 13

Consider the following relations on {1, 2, 3, 4}:

```
\begin{split} R_1 &= \{(1,1),\, (1,2),\, (2,1),\, (2,2),\, (3,4),\, (4,1),\, (4,4)\} \\ R_2 &= \{(1,1),\, (1,2),\, (2,1)\} \\ R_3 &= \{(1,1),\, (1,2),\, (1,4),\, (2,1),\, (2,2),\, (3,3),\, (4,1),\, (4,4)\} \\ R_4 &= \{(2,1),\, (3,1),\, (3,2),\, (4,1),\, (4,2),\, (4,3)\} \\ R_5 &= \{(1,1),\, (1,2),\, (1,3),\, (1,4),\, (2,2),\, (2,3),\, (2,4),\, (3,3),\, (3,4),\, (4,4)\}, \\ R_6 &= \{(3,4)\}. \end{split}
```

Which of the relations are *transitive*?

• Solution: R_4 , R_5 & R_6 : transitive \leftarrow verify that if (a, b) and (b, c) belong to this relation then (a, c) belongs also to the relation. R_4 transitive since (3,2) and (2,1), (4,2) and (2,1), (4,3) and (3,1), and (4,3) and (3,2) are the only such sets of pairs, and (3,1), (4,1) and (4,2) belong to R_4 .

Same reasoning for R_5 and R_6 .

- R_1 : not transitive \Leftarrow (3,4) and (4,1) belong to R_1 , but (3,1) does not.
- R_2 : not transitive \Leftarrow (2,1) and (1,2) belong to R_2 , but (2,2) does not.
- R_3 : not transitive \Leftarrow (4,1) and (1,2) belong to R_3 , but (4,2) does not.

Transitive Relation: Another Example

• Is the relation $R = \{ (a, a), (b, c), (c, b), (d, d) \}$ on the set $X = \{a, b, c, d\}$ is **transitive**?

Solution:

No.

Because (b, c) and (c, b) are in R, but (b, b) is not in R

Combining Relations

 Because relations from A to B are subsets of A X B, two relations from A to B can be combined in any way two sets can be combined.

• Given two relations R_1 and R_2 , we can combine them using basic set operations to form new relations such as $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 - R_2$, and $R_2 - R_1$.

Combining Relations: Example

• **Example**: Let $A = \{1,2,3\}$ and $B = \{1,2,3,4\}$. The relations $R_1 = \{(1,1),(2,2),(3,3)\}$ and $R_2 = \{(1,1),(1,2),(1,3),(1,4)\}$ can be combined using basic set operations to form new relations:

$$R_1 \cup R_2 = \{(1,1),(1,2),(1,3),(1,4),(2,2),(3,3)\}$$

 $R_1 \cap R_2 = \{(1,1)\}$
 $R_1 - R_2 = \{(2,2),(3,3)\}$
 $R_2 - R_1 = \{(1,2),(1,3),(1,4)\}$

PRAESIDIUS DINAMENTO DE LA COMPANSIONA DEL COMPANSIONA DE LA COMPANSIONA DEL COMPANSIONA DE LA COMPANSIONA DE LA COMPANSIONA DE LA COMPANS

Composite of Relations

- Let R be a relation from A to B and S a relation from B to a set C. The composite of R and S is the relation consisting of ordered pairs (a, c), where $a \in A$, $c \in C$, and for which there exists an element $b \in B$ such that $(a,b) \in R$ and $(b,c) \in S$.
- We denote the composite of R and S by S o R
- <u>Note</u>: Computing the composite of two relations requires that we find elements that are the
 - second elements of ordered pairs in the first relation, and
 - first element of ordered pairs in the second relation

Composite of Relations : Example

- Example 20: What is the composite of the relations R and S, where R is the relation from {1, 2, 3} to {1, 2, 3, 4} with
 R = {(1,1), (1,4), (2,3), (3,1), (3,4)} and S is the relation from {1, 2, 3, 4} to {0, 1, 2} with S = {(1,0), (2,0), (3,1), (3,2), (4,1)}?
- <u>Solution</u>: $S \circ R$ is constructed using all ordered pairs in R and ordered pairs in S, where the second element of the ordered pair in R agrees with the first element of the ordered pair in S. For example, the ordered pairs (2,3) in R and (3,1) in S produce the ordered pair (2,1) in $S \circ R$. Computing all the ordered pairs in the composite, we find

$$S \circ R = \{(1,0), (1,1), (2,1), (2,2), (3,0), (3,1)\}$$

Exercise 30

Let R be the relation {(1,2), (1,3),(2,3), (2,4),(3,1)}, and let S be the relation {(2,1), (3,1),(3,2), (4,2)}.
 Find S • R

Solution: Try out yourself!

• Answer: $S \circ R = \{(1,1), (1,2), (2,1), (2,2)\}$

Books

- Rosen, K. H., & Krithivasan, K. (2012). Discrete mathematics and its applications: with combinatorics and graph theory. Tata McGraw-Hill Education. (7th Edition)
- Discrete Mathematics, Richard Johnsonbaugh, Pearson education, Inc.

References

- 1. Discrete Mathematics, Richard Johnsonbaugh, Pearson education, Inc.
- 2. Discrete Mathematical Structures, *Bernard Kolman*, *Robert C. Busby*, *Sharon Ross*, Prentice-Hall, Inc.
- 3. SCHAUM'S outlines Discrete Mathematics(2nd edition), by Seymour Lipschutz, Marc Lipson
- Online tutorial

https://www.tutorialspoint.com/discrete mathematics/discrete mathematics relations.htm

University of Pittsburgh

https://people.cs.pitt.edu/~milos/courses/cs441/lectures/Class21b.pdf