

MOSFET

600V CoolMOS™ CSFD Power Transistor

CoolMOS™ is a revolutionary technology for high voltage power MOSFETs, designed according to the superjunction (SJ) principle and pioneered by Infineon Technologies. The IPW60R037CSFD is an optimized device tailored to address the off board EV charging market segment.

Thanks to low gate charge (Q_g) and improved switching behavior it offers highest efficiency in the targeted market. In addition to that it comes along with an integrated fast body diode and tremendously reduced reverse recovery charge (Q_{rr}) leading to highest reliability in resonant topologies. Due to these features the IPW60R037CSFD meets the efficiency and reliability standards of the off board EV charging station market and furthermore supports high power density solutions.

Features

- · Fast body diode
- Industry-leading reverse recovery charge (Q_{rr})
- Lowest FOM R_{DS(on)}*Q_q and R_{DS(on)}*E_{oss}
- Cost optimization

Benefits

- Excellent hard commutation ruggedness and reliability in soft switching applications
- · Highest efficiency with outstanding ease-of-use / performance trade-off
- Enabling increased power density solutions
- Balanced price / performance ratio for the EV charging market

Potential applications

Suiteable for Soft & Hard Switching topologies Optimized for phase-shift full-bridge (ZVS), LLC & PFC Applications – EV Charging

Product Validation: Qualified for industrial applications according to the relevant tests of JEDEC47/20/22

Please note: For MOSFET paralleling the use of ferrite beads on the gate or separate totem poles is generally recommended.

Table 1 Key Performance Parameters

Parameter	Value	Unit
V _{DS} @ T _{j,max}	650	V
R _{DS(on),max}	37	mΩ
$Q_{g,typ}$	136	nC
I _{D,pulse}	236	A
E _{oss} @ 400V	15.6	μJ
Body diode di _F /dt	1300	A/µs

Type / Ordering Code	Package	Marking	Related Links
IPW60R037CSFD	PG-TO 247-3	60R037CS	see Appendix A

Table of Contents

escription	ĺ
aximum ratings 3	3
nermal characteristics	ļ
lectrical characteristics 5	5
lectrical characteristics diagrams	7
est Circuits11	l
ackage Outlines	2
ppendix A13	
evision History	ļ
rademarks 14	ļ
isclaimer	ļ

IPW60R037CSFD

1 Maximum ratings at $T_j = 25$ °C, unless otherwise specified

Table 2 **Maximum ratings**

Davamatan	Ols al	Value	Values				
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Continuous drain current ¹⁾	I _D	-	-	54 34	А	T _C =25°C T _C =100°C	
Pulsed drain current ²⁾	I _{D,pulse}	-	-	236	Α	T _C =25°C	
Avalanche energy, single pulse	E _{AS}	-	-	277	mJ	I _D =7.8A; V _{DD} =50V; see table 10	
Avalanche energy, repetitive	E AR	-	-	1.39	mJ	I _D =7.8A; V _{DD} =50V; see table 10	
Avalanche current, single pulse	I _{AS}	-	-	7.8	Α	-	
MOSFET dv/dt ruggedness	dv/dt	-	-	120	V/ns	V _{DS} =0400V	
Gate source voltage (static)	V _{GS}	-20	-	20	V	static;	
Gate source voltage (dynamic)	V _{GS}	-30	-	30	V	AC (f>1 Hz)	
Power dissipation	P _{tot}	-	-	245	W	<i>T</i> _C =25°C	
Storage temperature	$T_{ m stg}$	-55	-	150	°C	-	
Operating junction temperature	T _j	-55	-	150	°C	-	
Mounting torque	-	-	-	60	Ncm	M3 and M3.5 screws	
Continuous diode forward current	I _S	-	-	54	Α	<i>T</i> _C =25°C	
Diode pulse current ²⁾	I _{S,pulse}	-	-	236	Α	<i>T</i> _C =25°C	
Reverse diode dv/dt ³⁾	dv/dt	-	-	70	V/ns	V _{DS} =0400V, I _{SD} <=54A, T _j =25°C see table 8	
Maximum diode commutation speed	di _F /dt	-	-	1300	A/μs	V _{DS} =0400V, I _{SD} <=54A, T _j =25°C see table 8	
Insulation withstand voltage	V _{ISO}	-	-	n.a.	V	V _{rms} , T _C =25°C, t=1min	

 $^{^{1)}}$ Limited by $T_{j,max}.$ $^{2)}$ Pulse width t_p limited by $T_{j,max}$ $^{3)}$ Identical low side and high side switch with identical $R_{\rm G}$

IPW60R037CSFD

2 Thermal characteristics

Table 3 Thermal characteristics

Davamatav	Symbol	Values			I Imit	Nata / Tast Candition
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Thermal resistance, junction - case	R _{thJC}	-	-	0.51	°C/W	-
Thermal resistance, junction - ambient		-	-	62	°C/W	leaded
Thermal resistance, junction - ambient for SMD version	R _{thJA}	-	-	-	°C/W	n.a.
Soldering temperature, wavesoldering only allowed at leads	T _{sold}	-	-	260	°C	1.6mm (0.063 in.) from case for 10s

IPW60R037CSFD

3 Electrical characteristics at T_j =25°C, unless otherwise specified

Table 4 **Static characteristics**

Parameter	Ol	Values				
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Drain-source breakdown voltage	V _{(BR)DSS}	600	-	-	V	V_{GS} =0V, I_D =1mA
Gate threshold voltage	V _{(GS)th}	3.5	4	4.5	V	$V_{DS}=V_{GS}$, $I_{D}=1.63$ mA
Zero gate voltage drain current	I _{DSS}	-	- 38	1 -	μΑ	V _{DS} =600V, V _{GS} =0V, T _i =25°C V _{DS} =600V, V _{GS} =0V, T _j =125°C
Gate-source leakage current	I _{GSS}	-	-	100	nA	V _{GS} =20V, V _{DS} =0V
Drain-source on-state resistance	R _{DS(on)}	-	0.031 0.070	0.037	Ω	V _{GS} =10V, I _D =32.6A, T _j =25°C V _{GS} =10V, I _D =32.6A, T _j =150°C
Gate resistance	R _G	-	3.9	-	Ω	f=1MHz, open drain

Dynamic characteristics Table 5

Parameter	Cumbal		Values			Nata (Tant Oan didina
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Input capacitance	Ciss	-	5623	-	pF	V _{GS} =0V, V _{DS} =400V, f=250kHz
Output capacitance	Coss	-	104	-	pF	V _{GS} =0V, V _{DS} =400V, f=250kHz
Effective output capacitance, energy related ¹⁾	C _{o(er)}	-	195	-	pF	V _{GS} =0V, V _{DS} =0400V
Effective output capacitance, time related ²⁾	C _{o(tr)}	-	2023	-	pF	I_D =constant, V_{GS} =0V, V_{DS} =0400V
Turn-on delay time	t _{d(on)}	-	53	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =10V, $I_{\rm D}$ =16A, $R_{\rm G}$ =5.3 Ω ; see table 9
Rise time	t _r	-	30	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =10V, $I_{\rm D}$ =16A, $R_{\rm G}$ =5.3 Ω ; see table 9
Turn-off delay time	$t_{ m d(off)}$	-	196	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =10V, $I_{\rm D}$ =16A, $R_{\rm G}$ =5.3 Ω ; see table 9
Fall time	t _f	-	6	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =10V, $I_{\rm D}$ =16A, $R_{\rm G}$ =5.3 Ω ; see table 9

Table 6 **Gate charge characteristics**

Parameter	C. mah al		Values			Nata / Tast Candition
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Gate to source charge	Q _{gs}	-	30	-	nC	$V_{\rm DD}$ =400V, $I_{\rm D}$ =16A, $V_{\rm GS}$ =0 to 10V
Gate to drain charge	$Q_{ m gd}$	-	47	-	nC	$V_{\rm DD}$ =400V, $I_{\rm D}$ =16A, $V_{\rm GS}$ =0 to 10V
Gate charge total	Qg	-	136	-	nC	$V_{\rm DD}$ =400V, $I_{\rm D}$ =16A, $V_{\rm GS}$ =0 to 10V
Gate plateau voltage	$V_{ m plateau}$	-	5.4	-	V	$V_{\rm DD}$ =400V, $I_{\rm D}$ =16A, $V_{\rm GS}$ =0 to 10V

 $^{^{1)}}$ $C_{\text{o(er)}}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 400V $^{2)}$ $C_{\text{o(tr)}}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 400V

IPW60R037CSFD

Table 7 Reverse diode characteristics

Parameter	Cumbal	Values			11	Nata / Task Candition
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Diode forward voltage	V _{SD}	-	1.0	-	V	V _{GS} =0V, I _F =32.6A, T _j =25°C
Reverse recovery time	t _{rr}	-	168	-	ns	V_R =400V, I_F =16A, di_F/dt =100A/ μ s; see table 8
Reverse recovery charge	Q _{rr}	-	0.94	-	μC	V_R =400V, I_F =16A, di_F/dt =100A/ μ s; see table 8
Peak reverse recovery current	I _{rrm}	-	8.9	-	А	V_R =400V, I_F =16A, di_F/dt =100A/ μ s; see table 8

4 Electrical characteristics diagrams

IPW60R037CSFD

IPW60R037CSFD

5 Test Circuits

Table 8 Diode characteristics

Table 9 Switching times

Table 10 Unclamped inductive load

6 Package Outlines

Figure 1 Outline PG-TO 247-3, dimensions in mm/inches

IPW60R037CSFD

Appendix A 7

Table 11 **Related Links**

• IFX CoolMOS Webpage: www.infineon.com

• IFX Design tools: www.infineon.com

IPW60R037CSFD

Revision History

IPW60R037CSFD

Revision: 2017-12-11, Rev. 2.0

Previous Revision

Revision	Date	Subjects (major changes since last revision)			
2.0	2017-12-11	Release of final version			

Trademarks of Infineon Technologies AG

 $AURIX^{\intercal}, C166^{\intercal}, CanPAK^{\intercal}, CIPOS^{\intercal}, CoolGaN^{\intercal}, CoolMOS^{\intercal}, CoolSeT^{\intercal}, CoolSeT^{\intercal}, CoolSet^{\intercal}, Corecontrol^{\intercal}, Crossave^{\intercal}, Dave^{\intercal}, DI-POL^{\intercal}, DrBlade^{\intercal}, EasyPIM^{\intercal}, EconoBRIDGE^{\intercal}, EconoDual^{\intercal}, EconoPlack^{\intercal}, EconoPlack^{\intercal},$

Trademarks updated August 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2017 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.