Universidade de São Paulo Instituto de Física de São Carlos

Relatório 4 - IntroFisComp

Alexandre de Taunay Voloch

1 Tarefa 1

1.1 a

Aqui fazemos um programa que simplesmente calcula o movimento de um oscilador harmônico utilizando o método de Euler, além de calcular a energia mecânica em cada instante. Também calculamos o que deveria ser a curva de movimento utilizando a resolução da EDO de movimento, que nesse caso é $\theta_0 \cos \omega \tau$. Segue o programa:

```
implicit real*8 (a-h, o-z)
         pi = 4.d0*datan2(1.d0, 1.d0)
         w0 = 0d0
         teta0 = pi*10d0/180d0 ! teta0 = 10 graus
         teta0original = teta0
         total_tau = 100
         dtau = 2d-2
         iteracoes = int(total_tau/dtau)
11
         tetanovo = 0d0
12
         wnovo = 0d0
13
14
         e_mec_anal = 1d0 - dcos(teta0) + 0.5d0*(w0**2d0)
15
16
         open(file='tarefa-1-saida.dat', unit=1)
17
         open(file='saida-analitica.dat', unit=2)
18
         open(file='energia-harm.dat', unit=3)
19
         open(file='energia-anal.dat', unit=4)
20
21
         do i=1,iteracoes
22
            tempo = dble(i)*dtau
23
            write(1,*) tempo, teta0
24
25
             wnovo = w0 - teta0*dtau
             tetanovo = teta0 + w0*dtau
27
28
             ! calcular analitico
            teta_anal = tetaOoriginal*dcos(tempo)
30
            write(2,*) tempo, teta_anal
31
32
             ! calcular energia
33
             e_{mec} = 1d0 - dcos(teta0) + 0.5d0*(w0**2d0)
34
35
```

Graficando os resultados, obtemos:

Oscilador harmônico c/ método de Euler

Figura 1: Gráfico do movimento de um oscilador harmônico com o método de Euler e $\theta_0=10^\circ$.

Percebe-se que o movimento, ao longo do tempo, diverge daquilo que é esperado, e o módulo da oscilação vai aumentando ao longo do tempo. Isso também é notado na

energia mecânica, que aumenta ao longo do tempo ao invés de permanecer constante. Ou seja, o método de Euler não é adequado para calcular este tipo de movimento ao longo do tempo.

1.2 b

Agora apenas substituímos o método de Euler pelo de Euler-Cromer. Segue o programa:

```
implicit real *8 (a-h, o-z)
         pi = 4.d0*datan2(1.d0,1.d0)
         w0 = 0d0
         teta0 = pi*10d0/180d0 ! teta0 = 10 graus
         teta0original = teta0
         total\_tau = 100
         dtau = 2d-2
         iteracoes = int(total_tau/dtau)
10
11
         tetanovo = 0d0
12
         wnovo = 0d0
13
14
         e_mec_anal = 1d0 - dcos(teta0) + 0.5d0*(w0**2d0)
15
16
         open(file='tarefa-1-saida.dat', unit=1)
17
         open(file='saida-analitica.dat', unit=2)
18
         open(file='energia-harm.dat', unit=3)
19
         open(file='energia-anal.dat', unit=4)
21
         do i=1,iteracoes
22
             tempo = dble(i)*dtau
23
             write(1,*) tempo, teta0
24
25
             wnovo = w0 - teta0*dtau
26
             tetanovo = teta0 + wnovo*dtau
27
28
             ! calcular analitico
29
            teta_anal = teta0original*dcos(tempo)
30
            write(2,*) tempo, teta_anal
31
32
             ! calcular energia
             e_{mec} = 1d0 - dcos(teta0) + 0.5d0*(w0**2d0)
34
35
```

```
write(3,*) tempo, e_mec
36
              write(4,*) tempo, e_mec_anal
37
38
              w0 = wnovo
39
              teta0 = tetanovo
40
          end do
41
42
43
          end
44
45
```

Graficando isso, temos agora

Oscilador harmônico com método de Euler-Cromer

Figura 2: Gráfico do movimento e da energia de um oscilador harmônico via Euler-Cromer.

Agora podemos ver que o movimento permanece correto ao longo de toda a simulação, sem divergir, e que a energia mecânica calculada também permanece constante, ou seja, o método de Euler-Cromer parece ser adequado para esse tipo de sistema.

2 Tarefa 2

Eu juntei as duas subtarefas (a) e (b) no mesmo programa para facilitar a organização, já que elas são muito parecidas.

Aqui calculamos o período a partir da simulação do pêndulo verificando a diferença de tempo entre as primeiras duas mudanças de sinal no movimento oscilatório. Depois, para calcular o período "analítico" (usando a integral), utilizamos o método de Simpson para cálculo numérico, com h indo de 10^{-9} a 10^{-7} , dependendo da proximidade ao ponto 0 (quanto mais próximo chegamos do 0, maior o erro, portanto precisamos aumentar h.) Finalmente, calculamos também a "aproximação" do período dado na tarefa 2-b. Segue o programa:

```
implicit real *8 (a-h, o-z)
         pi = 4.d0*datan2(1.d0, 1.d0)
         w0 = 0d0
         write(*,*)"Insira o angulo maximo inicial"
         read(*,*)iangulomax
         open(file='tarefa-2-saida.dat', unit=1)
10
         open(file='periodos-analitico.dat', unit=2)
11
         open(file='periodo_aprox.dat', unit=3)
12
13
         iangulomin = -iangulomax
14
15
         total_tau = 100
16
         dtau = 1d-6
17
         iteracoes = int(total_tau/dtau)
19
         tetanovo = 0d0
20
         wnovo = 0d0
21
22
         do iang=iangulomin,iangulomax
23
            teta0 = pi*dble(iang)/180d0
24
            teta0original = teta0
25
26
             ! Para calcular o período analítico, vamos alterando h
27
             → conforme chegamos próximo de 0
             ! (isso faz com que tenhamos melhor precisão nos resultados,
28
             → pois precisamos de subdivisões menores)
```

```
! E para teta = 0, não teríamos integral nem oscilação, e
29
             → portanto fazemos simplesmente 2pi, para ter continuidade
             \hookrightarrow no gráfico.
             if (abs(iang).lt.10) then
30
                h = 1d-9
31
             else if (abs(iang).lt.20) then
32
                h = 1d-8
33
             else
34
                h = 1d-7
             endif
36
             if (teta0original.eq.0d0) then
37
                t_anal = 2d0*pi
             else
39
                t_anal = periodo_anal(teta0original, h)
40
             endif
41
42
             ! Para checar o periodo, vamos calcular quanto tempo passa
43
             → entre duas mudanças de sinal,
             ! e multiplicar isso por 2
44
45
             t_periodo_inicio = 0d0
46
             t_periodo_fim = 0d0
47
48
             do i=1,iteracoes
49
                tempo = dble(i)*dtau
51
                wnovo = w0 - dsin(teta0)*dtau
52
                tetanovo = teta0 + wnovo*dtau
53
54
                if ((wnovo*w0).lt.0d0) then
55
                   if (t_periodo_inicio.eq.0d0)then
56
                      t_periodo_inicio = tempo
57
                   else if (t_periodo_fim.eq.0d0)then
58
                      t_periodo_fim = tempo
59
                   end if
                end if
61
62
                if ((t_periodo_fim*t_periodo_inicio).ne.0d0) then
                   goto 10
64
                end if
65
                w0 = wnovo
67
                teta0 = tetanovo
68
             end do
```

```
10
             t_periodo = 2d0*(t_periodo_fim - t_periodo_inicio)
70
71
             periodo_aprox = 2d0*pi*(1d0 +
72
             \leftrightarrow (1d0/16d0) * (teta0original * *2d0))
73
             write(*,*)"Angulo:",iang,"graus. Periodo

    calculado:",t_periodo,
             "Periodo analitico:", t_anal, "Periodo aprox:",
75
         → periodo_aprox
             write(1,*)iang,t_periodo
76
             if (t_anal.gt.0d0) then
77
                write(2,*)iang,t_anal
             endif
             write(3,*)iang,periodo_aprox
80
81
          end do
83
          end
84
          function periodo_anal(teta, h)
86
             implicit real *8 (a-h, o-z)
87
             real *8 teta, periodo_anal, h, soma, x, simpson, a, b
             ! vamos utilizar a regra de Simpson mas pular a primeira e a
89
              ! pois lá teríamos divisão por 0
91
             teta = dabs(teta)
92
93
             a = 0d0
94
             b = teta
95
             nparticoes = dint((b-a)/h)
97
98
             soma = 0d0
100
             do i=1, nparticoes-1,2
101
                x = a + dble(i) *h
102
                soma = soma + 4.d0/dsqrt(dcos(x)-dcos(teta))
103
             end do
104
105
             do i=2,nparticoes-1,2
                x = a + dble(i)*h
107
                soma = soma + 2.d0/dsqrt(dcos(x)-dcos(teta))
108
             end do
```

Graficando os resultados da tarefa 2-a, temos

Gráfico do período (T) vs ângulo inicial no pêndulo

Figura 3: Gráfico do período do oscilador harmônico, com θ indo até 50° .

E da 2-b, temos

Gráfico do período x ângulo inicial, incluindo aproximação

Figura 4: Gráfico do período do oscilador harmônico, com θ indo até 100° , incluindo a aproximação polinomial

Percebe-se que a aproximação polinomial tem um fitting bem bom da curva real, até cerca de 50° , depois do qual ela passa a divergir cada vez mais da curva correta.

Tabelando os resultados, temos

Theta (graus)	Período Simulado	Período Analítico (integral)	Período Aproximado (polinômio)
0.0	6.283186	6.283185	6.283185
1.0	6.283304	6.282030	6.283305
2.0	6.283664	6.282846	6.283664
3.0	6.284262	6.283390	6.284262
4.0	6.285100	6.284636	6.285099
5.0	6.286176	6.285582	6.286176
6.0	6.287494	6.286997	6.287492
7.0	6.289052	6.288463	6.289047
8.0	6.290848	6.290496	6.290841
9.0	6.292888	6.292427	6.292875
10.0	6.295168	6.293890	6.295148
11.0	6.297690	6.296129	6.297660
12.0	6.300454	6.299406	6.300411
13.0	6.303460	6.302498	6.303402
14.0	6.306712	6.305446	6.306631
15.0	6.310208	6.309020	6.310100
16.0	6.313946	6.313244	6.313809
17.0	6.317932	6.316901	6.317756
18.0	6.322164	6.321197	6.321943
19.0	6.326642	6.325442	6.326369
20.0	6.331372	6.328516	6.331034
21.0	6.336350	6.333195	6.335939
22.0	6.341576	6.339084	6.341083
23.0	6.347056	6.344244	6.346466
24.0	6.352790	6.350643	6.352088
25.0	6.358776	6.356286	6.357950
26.0	6.365018	6.363212	6.364050
27.0	6.371516	6.368447	6.370390
28.0	6.378272	6.374985	6.376970
29.0	6.385290	6.382488	6.383788
30.0	6.392568	6.389535	6.390846
31.0	6.400108	6.397563	6.398143
32.0	6.407914	6.405124	6.405679
33.0	6.415986	6.413689	6.413455

Tabela 1: Tabela para os períodos com θ indo de 0° a $33^{\circ}.$

Theta (graus)	Período Simulado	Período Analítico (integral)	Período Aproximado (polinômio)
34.0	6.424324	6.421770	6.421469
35.0	6.432936	6.430884	6.429723
36.0	6.441816	6.439492	6.438217
37.0	6.450972	6.449169	6.446949
38.0	6.460404	6.458307	6.455921
39.0	6.470114	6.468565	6.465132
40.0	6.480102	6.478239	6.474582
41.0	6.490376	6.487571	6.484272
42.0	6.500934	6.498523	6.494200
43.0	6.511780	6.509159	6.504368
44.0	6.522916	6.520696	6.514775
45.0	6.534346	6.531904	6.525422
46.0	6.546070	6.544042	6.536308
47.0	6.558094	6.555832	6.547432
48.0	6.570416	6.568584	6.558797
49.0	6.583044	6.580965	6.570400
50.0	6.595982	6.594349	6.582243
51.0	6.609228	6.607332	6.594325
52.0	6.622788	6.621367	6.606646
53.0	6.636666	6.634960	6.619206
54.0	6.650864	6.648316	6.632006
55.0	6.665386	6.663182	6.645045
56.0	6.680238	6.677838	6.658323
57.0	6.695422	6.693375	6.671840
58.0	6.710940	6.708688	6.685597
59.0	6.726798	6.724914	6.699593
60.0	6.743002	6.740900	6.713828
61.0	6.759552	6.757835	6.728302
62.0	6.776458	6.774509	6.743016
63.0	6.793718	6.792176	6.757969
64.0	6.811344	6.809554	6.773161
65.0	6.829336	6.827977	6.788592
66.0	6.847698	6.846075	6.804263
67.0	6.866440	6.864031	6.820173

Tabela 2: Tabela para os períodos com θ indo de 34° a $67^{\circ}.$

Theta (graus)	Período Simulado	Período Analítico (integral)	Período Aproximado (polinômio)
68.0	6.885564	6.883469	6.836322
69.0	6.905074	6.902793	6.852710
70.0	6.924980	6.923024	6.869338
71.0	6.945286	6.943132	6.886205
72.0	6.965996	6.964183	6.903311
73.0	6.987120	6.985097	6.920656
74.0	7.008660	7.006995	6.938241
75.0	7.030628	7.028740	6.956065
76.0	7.053024	7.051516	6.974128
77.0	7.075860	7.074116	6.992430
78.0	7.099144	7.097804	7.010972
79.0	7.122880	7.121285	7.029752
80.0	7.147076	7.145921	7.048772
81.0	7.171744	7.169692	7.068032
82.0	7.196886	7.194650	7.087530
83.0	7.222516	7.220589	7.107268
84.0	7.248638	7.246518	7.127245
85.0	7.275268	7.273470	7.147461
86.0	7.302408	7.300405	7.167917
87.0	7.330070	7.328411	7.188612
88.0	7.358268	7.356388	7.209546
89.0	7.387006	7.385492	7.230719
90.0	7.416298	7.414551	7.252131
91.0	7.446156	7.444801	7.273783
92.0	7.476590	7.474983	7.295674
93.0	7.507612	7.506431	7.317804
94.0	7.539236	7.537173	7.340174
95.0	7.571470	7.569221	7.362783
96.0	7.604332	7.602385	7.385631
97.0	7.637834	7.635690	7.408718
98.0	7.671990	7.670164	7.432044
99.0	7.706816	7.704781	7.455610
100.0	7.742324	7.740627	7.479415

Tabela 3: Tabela para os períodos com θ indo de 68° a $100^{\circ}.$

3 Tarefa 3

Aqui o programa é muito parecido com o da tarefa 1-b. Mudamos apenas a expressão para $\ddot{\theta}$, substituindo isso no método de Euler-Cromer. Segue o programa:

```
implicit real*8 (a-h, o-z)
         pi = 4.d0*datan2(1.d0,1.d0)
         w0 = 0d0
         teta0 = pi *30d0/180d0
         teta0original = teta0
         total_tau = 40
         dtau = 1d-3
         iteracoes = int(total_tau/dtau)
11
12
         gamma = 0.5d0
13
         tetanovo = 0d0
14
         wnovo = 0d0
15
         open(file='tarefa-3-saida.dat', unit=1)
17
18
         do i=1,iteracoes
19
            tempo = dble(i)*dtau
20
            write(1,*) tempo, teta0
21
            wnovo = w0 - (dsin(teta0) + gamma*w0)*dtau
23
             tetanovo = teta0 + wnovo*dtau
24
25
            w0 = wnovo
26
             teta0 = tetanovo
27
         end do
29
         end
30
31
```

Graficando os resultados, temos:

Pêndulo amortecido com gamma = 0.5

Figura 5: Gráfico do pêndulo amortecido.

A partir do gráfico, podemos ver que o movimento é de amortecimento sub-crítico, pois há mais do que uma oscilação ao longo do tempo, até que ela finalmente se aquiete após cerca de quatro oscilações.

4 Tarefa 4

4.1 a

Aqui novamente o programa é muito similar aos anteriores, mudamos apenas a expressão para acomodar a nova força. O programa é:

```
implicit real *8 (a-h, o-z)

pi = 4.d0*datan2(1.d0,1.d0)
```

```
w0 = 0d0
          teta0 = 0d0!pi*30d0/180d0
         tetaOoriginal = tetaO
         total_tau = 10d0*2d0*pi
         dtau = 1d-3
         iteracoes = int(total_tau/dtau)
11
         gamma = 0.5d0
12
         ani = (2d0)/(3d0)
13
14
         tetanovo = 0d0
15
          wnovo = 0d0
17
         open(file='tarefa-4a-theta.dat', unit=1)
18
          open(file='tarefa-4a-w.dat', unit=2)
19
          open(file='tarefa-4a-e.dat', unit=3)
20
21
         write(*,*)"Insira alpha"
22
          read(*,*)alpha
23
24
          do i=1,iteracoes
25
             tempo = dble(i)*dtau
26
27
             write(1,*) tempo, teta0
28
             write (2, *) tempo, w0
30
             ! calcular energia
31
             e_{mec} = 1d0 - dcos(teta0) + 0.5d0*(w0**2d0)
32
33
             write(3,*) tempo, e_mec
34
35
             !write(*,*)alpha*dsin(ani*tempo), alpha, ani, tempo
36
37
             wnovo = w0 -
38
             (dsin(teta0) + gamma*w0 - alpha*dsin(ani*tempo))*dtau
39
40
             tetanovo = teta0 + wnovo*dtau
41
42
             w0 = wnovo
43
             teta0 = tetanovo
44
             teta0 = teta0 - dble(int(teta0/pi))*2d0*pi
46
         end do
47
```

48

49 end

50

Graficando todos os resultados, temos

Figura 6: Gráfico do pêndulo forçado com $\alpha=0.5$.

Figura 7: Gráfico do pêndulo forçado com $\alpha=0.75$.

Figura 8: Gráfico do pêndulo forçado com $\alpha=1.0$.

Figura 9: Gráfico do pêndulo forçado com $\alpha=1.25$.

Figura 10: Gráfico do pêndulo forçado com $\alpha=1.4.$

Figura 11: Gráfico do pêndulo forçado com $\alpha = 1.5$.

Vemos que para $\alpha=0.5,0.75,1.0$ temos um movimento periódico regular. Para $\alpha=1.25,1.5$ temos movimento estritamente não-periódico. E para $\alpha=1.4$, temos movimento "periódico" mas não regular na forma senoidal.

Os tempos τ_{trans} são aproximadamente 20, 50, 30 para os três casos periódicos.

4.2 b

Agora simplesmente mudamos o programa para graficar $\omega(\theta)$.

```
implicit real*8 (a-h, o-z)

pi = 4.d0*datan2(1.d0,1.d0)

w0 = 0d0
teta0 = 0d0!pi*30d0/180d0
teta0original = teta0
total_tau = 50d0*2d0*pi
dtau = 1d-3
iteracoes = int(total_tau/dtau)

gamma = 0.5d0
```

```
ani = (2d0)/(3d0)
13
14
         tetanovo = 0d0
         wnovo = 0d0
16
17
         open(file='tarefa-4b-saida.dat', unit=1)
19
         write(*,*)"Insira alpha"
20
         read(*,*)alpha
21
22
         do i=1,iteracoes
23
             tempo = dble(i)*dtau
25
             write(1,*) teta0, w0
26
27
             ! calcular energia
             e_{mec} = 1d0 - dcos(teta0) + 0.5d0*(w0**2d0)
29
30
             !write(*,*)alpha*dsin(ani*tempo), alpha, ani, tempo
31
32
             wnovo = w0 -
33
            (dsin(teta0) + gamma*w0 - alpha*dsin(ani*tempo))*dtau
35
             tetanovo = teta0 + wnovo*dtau
36
             w0 = wnovo
38
             teta0 = tetanovo
39
             teta0 = teta0 - dble(int(teta0/pi))*2d0*pi
41
         end do
42
         end
44
```

Graficando os resultados, temos:

45

Figura 12: Gráfico de $\omega(\theta)$ com $\alpha=0.5$.

Figura 13: Gráfico de $\omega(\theta)$ com $\alpha=0.75$.

Figura 14: Gráfico de $\omega(\theta)$ com $\alpha=1.0$.

Figura 15: Gráfico de $\omega(\theta)$ com $\alpha=1.25$.

Gráfico de $w(\theta)$ para alpha=1.4 w(θ) para alpha=1.4 1.0 -0.5 -0.0 -≥ -0.5 --1.0 --1.5 --2.0 --2.5 --1 2 3 _ 3 ό Θ i

Figura 16: Gráfico de $\omega(\theta)$ com $\alpha=1.4$.

Figura 17: Gráfico de $\omega(\theta)$ com $\alpha = 1.5$.

Vemos que, para os primeiros três casos, temos a emergência de um "círculo-limite", o que faz sentido devido à sua periodicidade. Enquanto que nos outros casos, o gráfico é bem caótico.

4.3 c

Aqui, fazemos um programa muito parecido ao anterior, mas dessa vez pegamos como input também o τ_{trans} . Variamos o θ_0 e ω_0 , graficando a sobreposição de todos os valores. Segue o programa:

```
implicit real*8 (a-h, o-z)
implicit integer*16 (i-n)

pi = 4.d0*datan2(1.d0,1.d0)

w0 = 0d0
teta0 = 0d0
teta0original = teta0
total_tau = 1000d0*2d0*pi
```

```
!total_tau = 1d4*2d0*pi
10
          dtau = 1d-3
11
         iteracoes = dint(total_tau/dtau)
12
         gamma = 0.15d0
13
          ani = (2d0)/(3d0)
14
         tetanovo = 0d0
16
         wnovo = 0d0
17
         open(file='tarefa-4b-saida.dat', unit=1)
19
20
         write(*,*)"Insira alpha"
21
         read(*,*)alpha
22
23
         write(*,*)"Insira t_trans"
24
          read(*,*)t_trans
25
26
         write(*,*)"Insira teta0"
27
         read(*,*)teta0
28
         write(*,*)"Insira w0"
29
         read(*,*)w0
30
31
         text = 2d0*pi/ani
32
33
         do i=1,iteracoes
             tempo = dble(i)*dtau
35
36
             !write(1,*)tempo, text, mod(tempo,text)
37
38
             if ((( mod(tempo,text)).lt.1d-3).and.(tempo.gt.t_trans))then
39
                write (1, *) teta0, w0
             endif
41
42
             wnovo = w0 -
43
            (dsin(teta0) + gamma*w0 - alpha*dsin(ani*tempo))*dtau
44
45
             tetanovo = teta0 + wnovo*dtau
46
47
             w0 = wnovo
48
             teta0 = tetanovo
49
             teta0 = teta0 - dble(int(teta0/pi))*2d0*pi
51
         end do
52
```

53

```
54 end
```

55

Foi utilizado o seguinte programa em Python para gerar os gráficos:

```
import subprocess
  import matplotlib.pyplot as plt
   import numpy as np
   import itertools
  # Configurar para tema escuro
  plt.style.use('dark_background')
  # Alphas e t_trans
  #alphas = [0.5, 0.75, 1.0, 1.25, 1.4, 1.5, 1.2, 10.0]
10
   #t_trans = [20.0, 50.0, 30.0, 0.0, 0.0, 0.0, 0.0, 0.0]
  alphas = [1.2]
  t_t = [0.0]
13
14
  # Valores iniciais de teta0 e w0
15
  teta0_values = [0, 0.01 * np.pi, 0.02 * np.pi, 0.03 * np.pi]
16
  w0_values = [0, 1e-3, 1e-4, 5e-4, 5e-3, 1e-4]
17
  #teta0_values = [0, 0.5*np.pi]#, 1*np.pi]
  #teta0 values=[0]
19
  \#w0\_values = [1, 1e-3, 1e-4, 1e-1]
20
  # Paleta de cores neon
22
  colors = ['magenta', 'lime', 'cyan', 'yellow', 'orange', 'hotpink',
23
   → 'red', 'violet', 'aqua', 'orangered', 'crimson']
24
   # Compilar o código Fortran
25
   subprocess.run(["gfortran", "-o", "tarefa-4c.exe", "tarefa-4c.f"])
26
27
   for i, (alpha, trans) in enumerate(zip(alphas, t_trans)):
28
       print("plotando i", str(i), alpha)
29
30
       plt.figure(figsize=(12, 8))
31
32
       for (teta0, w0), color in zip(itertools.product(teta0_values,
       → w0_values), itertools.cycle(colors)):
           # Executar o programa Fortran com os valores atuais
34
           input_values =
           \rightarrow f"{alpha:.8f}d0\n{trans:.8f}d0\n{teta0:.8f}d0\n{w0:.8f}d0\n"
           subprocess.run(["./tarefa-4c.exe"],
           → input=input_values.encode())
```

```
37
            # Ler os dados do arquivo
38
           theta, w = np.loadtxt('tarefa-4b-saida.dat', unpack=True)
40
            # Tamanho dos símbolos
41
           marker_size = 1 #if i < 3 else 1</pre>
43
            # Plotar os dados
44
           plt.plot(theta, w, 'o', color=color, markersize=marker_size)
46
       # Ajustar os limites dos eixos para os primeiros três alphas
47
       if i < 3:
           plt.xlim(-np.pi, np.pi)
49
           plt.ylim(-1, 1)
50
51
       plt.xlabel('')
52
       plt.ylabel('w')
53
       plt.title(f'Seção de Poincaré para alpha={alpha}')
54
       plt.tight_layout()
55
       plt.savefig(f'secao_poincare_alpha_{alpha}.png')
56
       plt.close()
57
58
```

Executando tudo isso e graficando, temos:

Figura 18: Seção de poincaré para $\alpha=0.5$.

Figura 19: Seção de poincaré para $\alpha=0.75$.

Figura 20: Seção de poincaré para $\alpha=1.0$.

Figura 21: Seção de poincaré para $\alpha=1.25$.

Figura 22: Seção de poincaré para $\alpha=1.4$.

Figura 23: Seção de poincaré para $\alpha = 1.5$.

Os gráficos são muito bonitos.

Podemos ver que para os osciladores periódicos, todos os pontos estão muito próximos ou até no mesmo ponto, enquanto que para os demais osciladores o gráfico é bem diferente. Vemos que mesmo com condições iniciais diferentes, os pontos vão se juntando para formar um padrão geométrico fractal. Muito lindo!

4.4 d

Aqui modificamos o programa da 4-a para calcular duas trajetórias e graficar δ_{θ} e δ_{ω} . Segue o programa:

```
implicit real*8 (a-h, o-z)

pi = 4.d0*datan2(1.d0,1.d0)

w0 = 0d0
teta0 = 0d0!pi*30d0/180d0
teta0original = teta0
total_tau = 5d0*2d0*pi
```

```
write(*,*)"insira o total tau"
10
          read(*,*)total_tau
11
12
          dtau = 1d-3
13
          iteracoes = int(total_tau/dtau)
15
          gamma = 0.5d0
16
          ani = (2d0)/(3d0)
17
18
         tetanovo = 0d0
19
          wnovo = 0d0
         tetanewnovo = 0d0
21
         wnewnovo = 0d0
22
23
          open(file='tarefa-4d-teta.dat', unit=1)
24
          open(file='tarefa-4d-w.dat', unit=2)
25
         write(*,*)"Insira alpha"
27
         read(*,*)alpha
28
29
         write(*,*)"Insira t_trans"
          read(*,*)t_trans
31
32
          !write(*,*)"Insira teta0new"
          !read(*,*)teta0new
34
         write(*,*)"Insira w0new"
35
          read(*,*)w0new
37
         teta0new=0d0
38
         dteta = 0d0
40
         dw = 0d0
41
          do i=1,iteracoes
43
             tempo = dble(i)*dtau
44
45
             dteta = abs(teta0 - teta0new)
             dw = abs(w0 - w0new)
47
48
             if (tempo.gt.t_trans) then
50
                write(1, *) tempo, dteta
51
                write(2,*) tempo, dw
52
```

```
endif
53
54
             wnovo = w0 -
        æ
             (dsin(teta0) + gamma*w0 - alpha*dsin(ani*tempo))*dtau
56
57
             wnewnovo = w0new -
            (dsin(teta0new) + gamma*w0new - alpha*dsin(ani*tempo))*dtau
        &
59
60
             tetanovo = teta0 + wnovo*dtau
             tetanewnovo = teta0new + wnewnovo*dtau
62
63
             w0 = wnovo
            teta0 = tetanovo
65
66
             w0new = wnewnovo
67
             teta0new = tetanewnovo
69
             !teta0 = teta0 - dble(int(teta0/pi)) *2d0*pi
             !teta0new = teta0new - dble(int(teta0new/pi))*2d0*pi
71
         end do
72
73
         end
74
75
```

Para graficar e calcular o expoente de Lyapunov utilizamos o seguinte programa em Python:

```
import subprocess
2 import matplotlib.pyplot as plt
3 import numpy as np
4 import scipy.optimize as opt
5 from scipy.signal import find_peaks
  # Configurar o estilo do gráfico
  plt.style.use('ggplot')
  # Parâmetros
11 alphas = [0.5, 0.75, 1.0, 1.25, 1.4, 1.5]
total_taus = [100, 100, 500, 50, 200, 200]
  w0news = [1e-2, 1e-2, 1e-2, 1e-5, 1e-5, 1e-5]
  t_{trans} = [20, 50, 30, 0, 0, 0]
14
  # Compilar o código Fortran
  subprocess.run(["gfortran", "-o", "tarefa-4d.exe", "tarefa-4d.f"])
17
18
```

```
def exponential_fit(x, lamb):
19
       return np.exp(lamb * x)
20
21
   for total_tau, alpha, t_tran, w0new in zip(total_taus, alphas,
22

    t_trans, w0news):
       # Executar o programa Fortran com os valores atuais
23
       input_values =
24
        \rightarrow f"{total_tau:.8f}\n{alpha:.8f}\n{t_tran:.8f}\n{w0new:.8f}\n"
       subprocess.run(["./tarefa-4d.exe"], input=input_values.encode())
25
26
       # Ler os dados dos arquivos
27
       tempo, dteta = np.loadtxt('tarefa-4d-teta.dat', unpack=True)
       _, dw = np.loadtxt('tarefa-4d-w.dat', unpack=True)
29
30
       plt.figure(figsize=(10, 5))
31
32
       # Plotar dteta x tempo
33
       plt.subplot(211)
34
       plt.plot(tempo, dteta, label='Diferença em ')
35
36
       # Plotar dw x tempo
37
       plt.subplot(212)
       plt.plot(tempo, dw, label='Diferença em ')
39
40
       # Calcular e plotar a curva exponencial para os primeiros três
41
        \rightarrow alphas
       if alpha in alphas[:3] or alpha==1.5:
42
            # Encontrar picos/máximos locais
            peaks_dteta, _ = find_peaks(dteta)
44
           peaks_dw, _ = find_peaks(dw)
45
            # Ajustar a uma exponencial e plotar
47
            if len(peaks_dteta) > 1 and len(peaks_dw) > 1:
48
                popt_dteta, _ = opt.curve_fit(exponential_fit,
                → tempo[peaks_dteta], dteta[peaks_dteta], p0=[0.1])
                popt_dw, _ = opt.curve_fit(exponential_fit,
50
                \rightarrow tempo[peaks_dw], dw[peaks_dw], p0=[0.1])
51
                lambda_teta = popt_dteta[0]
52
                lambda_w = popt_dw[0]
53
                plt.subplot(211)
55
                plt.plot(tempo, exponential_fit(tempo, lambda_teta),
56
                → label=f'Fit Exponencial (={lambda_teta:.2f})')
```

```
57
                #if alpha != 1.5:
58
               plt.subplot(212)
               plt.plot(tempo, exponential_fit(tempo, lambda_w),
60
                → label=f'Fit Exponencial (={lambda_w:.2f})')
       plt.subplot(211)
62
       plt.xlabel('Tempo')
63
       plt.ylabel('dteta')
       plt.legend()
65
66
       plt.subplot(212)
       plt.xlabel('Tempo')
68
       plt.ylabel('dw')
69
       plt.legend()
70
71
       plt.tight_layout()
72
       plt.savefig(f'diferencas_alpha_{alpha}.png')
73
       plt.close()
74
75
       # Imprimir os expoentes de Lyapunov calculados
76
       if alpha in alphas[:3]:
           print(f"Alpha: {alpha}, Lambda_theta: {lambda_teta:.2f},
78
            → Lambda_omega: {lambda_w:.2f}")
79
```

Os gráficos são:

Figura 24: Gráficos de δ_{θ} e δ_{ω} para $\alpha=0.5$.

Figura 25: Gráficos de δ_{θ} e δ_{ω} para $\alpha=0.75$.

Figura 26: Gráficos de δ_{θ} e δ_{ω} para $\alpha=1.0.$

Figura 27: Gráficos de δ_{θ} e δ_{ω} para $\alpha=1.25$.

Figura 28: Gráficos de δ_{θ} e δ_{ω} para $\alpha=1.4$.

Figura 29: Gráficos de δ_{θ} e δ_{ω} para $\alpha=1.5$.

Nos casos periódicos, é possível ver uma curva exponencial decrescente e calcular assim o expoente. Vemos que os expoentes para θ e ω são aproximadamente equivalentes, mesmo que as curvas não sejam muito bem fitadas por eles. Enquanto que nos casos caóticos, as curvas não se assemelham muito a curvas exponenciais, não sendo possível fazer o fitting (pelo menos não o fitting automático do Python), exceto para o caso do θ

de $\alpha = 1.5$.

Não achamos necessário fazer tabela dos expoentes devido a eles serem facilmente visualizados nos gráficos. Acreditamos que a utilização do expoente de Lyapunov para os casos caóticos não é a mais adequada, ou há instruções faltando sobre como extraí-lo de forma correta, pois os gráficos claramente não são de forma exponencial.