BIRLA INSTITUTE OF TECHNOLOGY &SCIENCE-PILANI, HYDERABAD CAMPUS

FIRSTSEMESTER 2020-2021

COURSE HANDOUT: PART - II

Date: 14.08. 2020

In addition to Part - I (a general handout for all courses appended to the time-table), this handout provides the specific details of this course.

Course No. : ME G536

Course Title : THERMAL EQUIPMENT DESIGN Instructor-in-charge : SANTANU PRASAD DATTA

1. Course Description

To impart knowledge on theory and constructional details of various types of thermal equipment and their design aspects, this course will be helpful for the students.

2. Scope and Objectives

- Understand the basic concept and design methodology of heat exchangers.
- Select appropriate fin geometry, configuration and density for optimum performance analysis.
- Estimate the overall heat transfer coefficient and the effectiveness of aheat exchanger.
- Consider economic factors and perform cost-effective analysis.
- Acquire knowledge on modern heat transfer equipment like thermoelectric, thermoacoustic, heat pipes, etc.
- Conduct experiment and develop computer programs to perform parametric analysis and optimization of thermal equipment design.

3. Prerequisites

Fundamentals of Thermodynamics, Heat Transferand Fluid Mechanics

4. Text Book (TB)

- a) HoSung Lee, Thermal Design, Wiley, 2015
- b) S. Kakac, Heat Exchangers: Selection, Rating, and Thermal Design, 2nd, CRC Press, 2002

5. Reference Books (RB)

- a) R. K. Shah and D. P. Sekulić, Fundamentals of Heat Exchanger Design, Wiley, 2003
- b) G. F. HeWitt, G. L. Shires, and T. R. Bott, Process Heat Transfer, CRS Press, USA, 1994
- c) Wilbert Stoecker, Design of Thermal Systems, 3rd Edition, Tata McGraw Hill, New Delhi, 2011.
- d) YogeshJaluria, Design and Optimization of Thermal Systems, 2nd Edition, CRC Press, 2007.

6. Course Plan

Lecture	Learning	Topics to be covered				
No.	Objectives					
1-3	Introduction	Basic Concept; Classification of Heat Exchangers-Parallel	TB- b;			
		Flow, Counter Flow and Cross Flow; Shell and Tube and				
		Plate Type; Single-pass and Multi-pass; Selection of Heat				
		Exchangers; Sizing and Rating of Different types of Heat				
		Exchangers				
4-12	Design	General Design Requirements; Heat Transfer Correlations;	TB- a,			
	Methodology	Overall Heat Transfer Coefficient; Heat Exchanger	b; RB-			
		Variables and Thermal Circuit; Temperature Distribution				
		and its Implications; LMTD Method; ε-NTU Method; Fin				
		Performance and Selection; Correction factors				
13-15	Shell and	Tube Layouts, BafflesSpacing, Classification of Shell and	TB- b;			
	Tube Heat	Tube Exchangers; Design Calculation of Shell and Tube				
	Exchanger	Heat Exchangers; Controlling Parameters; Heat Transfer				
		and Pressure Drop Evaluations; Performance and Design				
		Calculations; TEMA Standard				

16-20	Boiling and	Film Condensation on a Single Horizontal Tube, Film	TB- b			
	Condensation Condensation in Tube Bundles, Condensation insi					
	in Heat	Tubes, Flow Boiling				
	Exchanger					
21-22	Fouling and	Fouling Growth Models and its Impact on Heat Exchanger	TB- b			
	Corrosion	Performance and life-cycle Analysis; Testing and				
		Inspection				
23-25	3-25 Pinch Heat Exchanger Networking					
	Analysis					
26-29	26-29 Heat Sinks Longitudinal Fin of Rectangular Profile, Heat					
		from Fin, Fin Effectiveness, Fin Efficiency, Corrected				
		Profile Length, Optimization, Multiple Fin Array				
30-33	Micro-Mini	Introduction to Microchannel and Minichannel, Single	TB- b			
	Channel Heat	Phase Liquid and Gas Flow through Channels,				
	Exchanger	Correlations				
34-38	Heat Pipe	Types and Applications, Operating Principles, Working	TB- a			
	11000 1 170	Fluids, Wick Structures, Loop Heat Pipe, Micro Heat Pipe,	12			
	Design Example					
39-40	š 1					
37 10	ic	Generator, Thermoelectric Coolers	TB- a			
41-42						
-1- -7 2	tic	Application for Cooling and Waste Heat Utilization	Journals			
Lahonst		**				
Laborat	Experiment	Steady State and Dynamic Analysis; Data Processing;	-			
ory	and Simulation*	Error Analysis; Regression Analysis and Curve				
	Fitting; Different Correlations; Use of Software or Coding					
		in Heat Exchanger Design				

7. Evaluation Scheme

Evaluation Component	Duration	Weightage	Date & Time	Nature of
	(min.)	(%)		Component
Test 1	-	12%	To be announced	Open Book
Test 2	-	12%	To be announced	Open Book
Test 3	-	12%	To be announced	Open Book
Term-project/Assignment	-	15%	Continuous	Open Book
Simulation	-	15%	Continuous	Open Book
Comprehensive Exam	120	34%	04/12 AN	Open Book

8. Chamber Consultancy Hour: To be announced in the class.

9. Notices

Students are advised to visit regularly *CMS*(institute's web based Course Management System) for all notices and updates.

10. Make-up Policy

Make-up request for tests shall be granted only for the genuine cases with sufficient evidence. Request letter duly signed by the student should reach the under signed well in advance.

10. Academic Honesty and Integrity Policy:

Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge (I/C) (ME G536)