第六章 立体化学(3)

主要内容

- 描述立体构性的 D / L 体系
- 获得手性化合物的方法,外消旋体的拆分
- 立体化学在研究化学反应和反应机理上的应用

■ 复习 1: 手性碳的绝对构型——R/S 构型

(2S, 3S)-2, 3-丁二醇 (2S, 3R)-2, 3-丁二醇

■描述立体构型的 D/L 体系(相对构型)

原则:一个具有光学活性的化合物在发生反应时,只要不对称中心的键不发生断裂,分子的空间构型就保持不变。

■ 复习 2: 外消旋体和内消旋体

一. 手性分子的获得

- 1. 手性分子的来源
- 自然界: 糖类、氨基酸、生物碱、萜类、甾体化合物
- 外消旋体的拆分
- 不对称有机合成反应
- 2. 获得手性分子的重要意义——药物与人类的关系
- 构成生命体系的生物大分子的主要部分大多数是以一种 对映体形式存在的,故药物与其作用也是以手性的方式 进行的。
- 生物体的酶和细胞表面受体是手性的,故对外消旋药物的识别、消化和降解过程也是不同的。

(R)-天冬酰胺 甜味

(**-**)**-**L**-**DOPA 治疗帕金森氏病

(+)-D-DOPA 在体内集聚,不能被代谢

Thalidomide(反应停) —— 镇静和止吐药物

(R)型,有效,不致畸形

(S)型, 致畸形

二.外消旋体的拆分 (Resolution)

巴斯德, L. Louis Pasteur (1822~1895)

1848年,巴斯德借助放大镜拆分

仪器拆分(GC, HPLC...)

1/4" packed column

GC用手性柱

HPLC用手性柱

• 化学法拆分

常用拆分试剂

天然手性生物碱:(-)-马钱子碱、(-)-奎宁、(-)-番木鳖碱、

(+)- 辛可宁

手性酸:酒石酸、樟脑磺酸

例:外消旋a-苯乙胺的化学拆分

接上页

一个好的拆分剂需要具备的条件:

- •要能与外消旋体进行反应
- •得到的非对映体两者在性质上要有足够的差别便于分离
- •分离后,同拆分剂结合的旋光体要容易分解

• 酶解法拆分(利用酶的选择性反应进行拆分)

例: DL-丙氨酸的酶解拆分

■ 不对称合成(Asymmetric Synthsis) (了解)

—— 选择性地生成立体异构体

• 选择性地生成非对映异构体

衡量标准:非对映体过量,%d.e.(diastereomeric excess)

The Nobel Prize in Chemistry 2001

"for their work on chirally catalysed hydrogenation reactions"

William S. Knowles

Ryoji Noyori

"for his work on chirally catalysed oxidation reactions"

K. Barry Sharpless

三. 反应中的立体化学

• 取代反应的立体化学

•加成和消除反应中的立体化学

$$\frac{d}{x} = \frac{d}{x}$$

$$\frac{d}{d} = \frac{d}{x}$$

$$\frac{d}{d} = \frac{d}{x}$$

$$\frac{d}{d} = \frac{d}{x}$$

$$\frac{d}{d} = \frac{d}{x}$$

四. 立体化学在化学反应和反应机理上的应用

例 1 H. C. Brown对自由基取代机理的证明

$$R-H \xrightarrow{X_2} R-X + X-H$$

两种可能机理 $X_2 \rightarrow X_2$

链增长步骤 (决速步骤)有所区别

步骤 a
$$X \cdot + H - R \longrightarrow X - H + \cdot R$$

$$R \cdot X - X \longrightarrow R - X + X \cdot$$

步骤 b
$$X \cdot + R - H \longrightarrow X - R + \cdot H$$

$$H \cdot X - X \longrightarrow H - X + X \cdot$$

Brown的实验

旋光异构体

外消旋体, 无光学活性

●若为机理 a —— 产物应无旋光性

●若为机理 b —— 产物仍应有旋光性

例2 顺或反式烯烃加卤素的立体化学

Newman投影式和Fischer投影式之间的转化

问题: 推导反-2-丁烯与Br2的加成机理。

■ 关于烯烃加成的立体化学

>顺式加成

▶反式加成

例3 由cis或trans-3-己烯合成(±)-3, 4-己二醇

可用于制备邻二醇的反应:

- ▶ 烯烃 + KMnO₄ (稀,冷) or OsO₄ (顺式加成)
- ▶烯烃+过氧酸,再水解(反式加成)

▶ 考虑用KMnO₄ (稀, 冷) or OsO₄法 (顺式加成)

将两个OH转至同一方向

合成路线

▶考虑用过氧酸氧化、水解方法(反式加成)

将两个OH转至不同方向

中间体可不写出

■ 两种制备邻二醇方法比较

例4 环烯烃加成反应中的立体化学

本次课小结:

- 1. 手性分子的获得方法(重点:化学拆分法)
- 2. 反应中的立体化学(构型转换和保持、消旋化; 顺式加成和反式加成、顺式消除和反式消除)
- 3. 立体化学在研究中的应用

作业: p86 3-6, 3-9(1)(7)(9)(10), 3-14