

Pré-Processamento de Dados: Detecção de Outliers

Luciano Barbosa

Fontes de Erro

- Inserção dos dados
- Coleta dos dados

Tarefa Exploratória

- Ferramentas para limpeza
- Visualização dos dados
- Human in the loop

Tipos de Problemas nos Dados

- Dados faltantes
- Dados duplicados
- Dados irrelevantes
- Dados incorretos

Dados Incorretos (Outliers)

 Observação que não está próxima ao centro

Métodos de Detecção Univariado

- Z-Score robusto
- Tukey

Centro and Dispersão

- Centro
 - Valor médio
 - Ex: média,mediana
- Dispersão
 - Desvio do centro
 - Ex: variância,desvio padrão

Z-Score Robusto

- Distribuição precisa ser simétrica
- Centro: Mediana
 - Metade dos valores são menores e metade são maiores
 - É influenciado pelas posições dos outliers mas não pelos seus valores

Z-Score Robusto

- Dispersão: Median absolute deviation
 - Mediana da distância da diferença de todos valores da mediana

$$MAD = median | x_i - \hat{x} |$$

Z-Score Robusto

$$M_i = \frac{0.6745 (x_i - \bar{x})}{MAD}$$

- Constante b = 0.6745: fator de escala que torna MAD um estimador não-enviesado do desvio padrão: $E(MAD) = 0.675 \sigma$
- M_i > limiar: indica outlier (ex., 3 ou 3.5)

Método de Tukey

- Distribuição precisa ser simétrica
- Baseado em quartis
- Outliers:
 - Valores menores que Q1 1.5 * IQR
 - Valores maiores que Q3 + 1.5 * IQR

Bivariado

• Solução: transformar a relação em univariada (ex.: razão de uma variável pela outra)

Multivariado: Elliptic Envelope

Suposição: atributos seguem gaussiana

Outlier detection via Elliptic Envelope

Multivariado: Elliptic Envelope

- Suposição: atributos seguem gaussiana
- Utiliza distância Mahalanobis

$$d_{L2}(x,y) = \sqrt{(x-y)^T(x-y)}$$
 Euclidiana

$$d_M(x,y) = \sqrt{(x-y)^T S^{-1}(x-y)}$$
 Mahalanobis

Matriz de covariância

Limitação da Distância Euclidiana

Covariância entre as variáveis

Covariância

Remover a Covariância

- Projetar os pontos nos Autovetores
- Rotacionar os pontos
- Novos eixos são os autovetores
- Reescalar os valores dos pontos em cada eixo pela raiz quadrada do auto-valor

Detectando Outliers

- Computar a distância Mahalanobis para cada amostra
- Outliers: amotras com distância maior que um determinado valor crítico da distribuição chi-square

Isolation Forests

- Não-paramétrico
- Suposição: outliers são poucos e diferentes
- Passos:
 - 1. Seleciona aleatoriamente um feature
 - Seleciona um valor aleatório dela entre o máximo e mínimo
 - 3. Repete passos 1 e 2 n vezes

Isolation Forests

Isolation Forests

- Fácil de isolar outliers: poucas condições necessárias para separar dos demais
- Score: profundidade média do ponto na árvore necessária para isolar o ponto
 - Perto de 1 indica outlier