Lista 6 Zadanie 3, AiSD

9.05.2020

Rozważmy następujący problem. Dla zadanego ciągu wejściowego złożonego z n liczb całkowitych $a[1,\ldots,n]$ należy znaleźć podciąg spójny $a[j,\ldots,j+k]$, którego suma wyrazów jest największa. Poniższy algorytm 1 stanowi rozwiązanie naszego problemu, zwracając na wyjściu szukany podciąg. W konstruowanym algorytmie zakładamy, ze wejście nie może być tablicą długości 0. Przyjmujemy także, że zwrócony ciąg nie może być ciągiem pustym, tzn. musi mieć długość co najmniej 1.

```
Algorytm 1 Wyznaczanie podciągu spójnego o największej sumie
```

```
Input: a[1,\ldots,n] – ciąg wejściowy
Output: a[j, \ldots, j+k] – podciąg spójny ciągu a o największej sumie
                  /* s - maksymalna suma zwróconego podciągu */
 1: c = s = a[1]
 2: cb = ce = 1
           /* sb - początkowy indeks podciągu o maksymalnej sumie */
           /* se - końcowy indeks podciągu o maksymalnej sumie */
 5: for i = 2 to n do
       if c > 0 then
 6:
 7:
          c = c + a[i]
 8:
          ce = i
       else
 9:
          c = a[i]
10:
          cb = ce = i
11:
       if c > s then
12:
          s = c
13:
14:
          se = ce
          sb = cb
15:
16: return a[sb, \ldots, se]
```

Złozoność: T(n) = O(n), ponieważ każdy element tablicy wejściowej przetwarzany jest raz, a w trakcie każdej iteracji pętli **for** wykonywana jest stała ilość operacji o koszcie O(1).

Dowód: Oznaczmy przez c_i wartość zmiennej c po wykonaniu pętli **for** (linie 5–15 w algorytmie 1) dla ustalonej wartości $i \in \{2, ..., n\}$ i niech $c_1 = a[1]$ oznacza wartość c w momencie pierwszego wejścia do pętli **for**. Udowodnimy, że niezmiennikiem pętli jest $c_i = max(S_{1,i}, S_{2,i}, ..., S_{i,i})$ (największa tymczasowa suma dla każdej iteracji pętli), gdzie $S_{k,l} = a[k] + ... + a[l]$ dla danego i. Zauważmy, że $c_1 = a[1] = S_{1,1}$. Ustalmy więc $i \in \{2, ..., n\}$ i zobaczmy, jak modyfikowana jest wartość zmiennej c w trakcie iteracji pętli **for** dla wartości iteratora i.

Jeśli dotychczasowa wartość $c_{i-1}=c>0$, to wykonujemy podstawienie c=c+a[i] (linia 7), wobec czego

$$c_{i} = c_{i-1} + a[i] = \max(S_{1,i-1}, S_{2,i-1}, \dots, S_{i-1,i-1}) + a[i]$$

$$= \max(S_{1,i-1} + a[i], S_{2,i-1} + a[i], \dots, S_{i-1,i-1} + a[i])$$

$$= \max(S_{1,i}, S_{2,i}, \dots, S_{i-1,i}).$$
(1)

Zauważmy także, że warunek $c_{i-1} > 0$ implikuje $c_i = c_{i-1} + a[i] > a[i]$. Jeśli natomiast $c_{i-1} \le 0$, wówczas wykonamy podstawienie c = a[i], a zatem $c_i = a[i] \ge c_{i-1} + a[i]$. Wobec powyższego wnioskujemy, że wartość zmiennej c_i na końcu iteracji pętli **for** wynosi

$$c_i = \max(c_{i-1} + a[i], a[i])$$
.

Wobec faktu, iż $a[i] = S_{i,i}$, ze wzoru (1) otrzymujemy

$$c_i = \max(\max(S_{1,i}, S_{2,i}, \dots, S_{i-1,i}), S_{i,i})$$

= \text{max}(S_{1,i}, S_{2,i}, \dots, S_{i-1,i}, S_{i,i}),

czego należało dowieść. c_i przechowuje zatem wartość maksymalnej sumy podciągów kończących się na elemencie a[i]. Oznaczając przez s_i wartość zmiennej s wyliczanej w liniach 12–13 pętli **for** dla wartości iteratora równej i (dla i=1 mamy $s_1=a[1]$), nietrudno zauważyć, że

$$s_i = \max(c_1, \dots, c_i).$$

Tak więc s_n jest wartością sumy podciągu o maksymalnej sumie, a dzięki aktualizowaniu w pętli indeksów se i sb jesteśmy w stanie odtworzyć na koniec szukany podciąg z tablicy a

Przedstawione rozwiązanie wykorzystuje technikę programowania dynamicznego – w itym kroku wyznaczana jest wartość maksymalnej sumy podciągu spójnego kończącego się na elemencie a[i] na podstawie wcześniej obliczonych rozwiązań dla podproblemów mniejszego rozmiaru.