Последовательный метод опорных векторов и визуализация классификаторов

Притыковская Наталья Николаевна, группа 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., асс. Коробейников А. И. Рецензент: к.ф.-м.н., доц. Алексеева Н. П.

Санкт-Петербург 2012г

Постановка задачи классического <u>SVM</u>

Рассматривается задача классификации на два непересекающихся класса.

$$X=\mathbb{R}^n$$
 — пространство объектов $Y=\{-1,+1\}$ — метки $f:X o Y$ обучающая выборка $X^l=(\mathbf{x}_i,y_i)_{i=1}^l$, $y_i=f(\mathbf{x}_i)$

Требуется аппроксимировать целевую зависимость f на всем пространстве X.

Линейный пороговый классификатор

$$a(\mathbf{x}) = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x} \rangle - w_0)$$

 $\mathbf{w} = (w_1, \dots, w_n)^{\mathrm{T}} \in \mathbb{R}^n,$

 $w_0 \in \mathbb{R}$ — параметры.

$$\langle \mathbf{w}, \mathbf{x} \rangle = w_0$$
 — гиперплоскость, разделяющая классы в пространстве \mathbb{R}^n .

Линейный SVM

Параметры \mathbf{w} и w_0 получаются из решения:

$$\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{l} \xi_i \to \min_{\mathbf{w}, w_0, \xi}$$
$$y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle - w_0) \ge 1 - \xi_i,$$
$$\xi_i \ge 0, \quad i = 1, \dots, l.$$

Kernel trick

Отображение в расширенное пространство $\phi(\mathbf{x}): \mathbb{R}^n \to H$

- H пространство со скалярным произведением
- ядро $K(\mathbf{x}_i, \mathbf{x}_j) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_H$
- $a(\mathbf{x}) = \operatorname{sign}(K(\mathbf{w}, \phi(\mathbf{x})) w_0)$

Рис. :
$$\phi:(x_1,x_2) \to (x_1^2,x_2^2,\sqrt{2}x_1x_2)$$

Далее все скалярные произведения рассматриваются в H.

Поставленные и достигнутые цели

Проблема:

• мотивация решений, принимаемых классификатором, остается за рамками классического метода.

Способы решения:

- Построить методом SVM несколько классификаторов, ортогональных друг другу.
- Ввести новые признаки расстояния до классификаторов.
- Проинтерпретировать новые признаки.
- Дополнить имеющиеся данные новыми признаками и посмотреть, как это повлияет на качество классификации.

Формальная постановка задачи

- ullet дано $X^l=(\mathbf{x}_i,y_i)_{i=1}^l$ обучающая выборка
- ullet ${f v}_1, \, \dots, \, {f v}_n$ направляющие вектора первых n классификаторов, попарно ортогональных
- ullet требуется найти ${f w}$ и w_0 параметры n+1 классификатора

$$\begin{cases} \frac{1}{2} \langle \mathbf{w}, \mathbf{w} \rangle + C \sum_{i=1}^{l} \xi_i \to \min_{\mathbf{w}, w_0, \xi} \\ y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle - w_0) \ge 1 - \xi_i, & i = 1, \dots, l \\ \xi_i \ge 0, & i = 1, \dots, l \\ \langle \mathbf{w}, \mathbf{v}_i \rangle = 0, & i = 1, \dots, n \end{cases}$$

Двойственная задача

- ullet $\mathbf{v}_1,\ldots,\mathbf{v}_n$ направляющие вектора n классификаторов
- ullet $(\lambda_1,\ldots,\lambda_l)$ вектор двойственных переменных

$$-\frac{1}{2}\langle \sum_{i=1}^{l} \lambda_{i} y_{i} \mathbf{x}_{i}, \sum_{j=1}^{l} \lambda_{j} y_{j} \mathbf{x}_{j} \rangle - \frac{1}{2} \sum_{i=1}^{n} t_{i}^{2} \langle \mathbf{v}_{i}, \mathbf{v}_{i} \rangle - \sum_{i=1}^{n} t_{i} \langle \mathbf{v}_{i}, \sum_{j=1}^{l} \lambda_{j} y_{j} \mathbf{x}_{j} \rangle - \\ -\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} t_{i} t_{j} \langle \mathbf{v}_{i}, \mathbf{v}_{j} \rangle + \sum_{i=1}^{l} \lambda_{i} \to \max_{\mathbf{t}, \lambda} \\ \sum_{i=1}^{l} \lambda_{i} y_{i} = 0 \\ 0 \leq \lambda_{i} \leq C, \quad i = 1, \dots, l$$

•
$$\mathbf{w} = \sum_{i=1}^{l} \lambda_i y_i \mathbf{x}_i + \sum_{i=1}^{n} t_i \mathbf{v}_i$$

Сложности, возникающие при решении

Компактно двойственную задачу можно записать в виде

$$\begin{cases} \frac{1}{2}x^TGx + d^T \to min_x \\ Ax \ge b \end{cases},$$

где G - матрица Грамма, образованная множеством векторов $(\mathbf{x}_1,\ldots,\mathbf{x}_l,\mathbf{v}_1,\ldots,\mathbf{v}_n)$

- при условии, что в выборке есть повторяющиеся или линейно зависимые \mathbf{x}_i матрица G, становится из положительно определенной положительно полуопределенной
- ullet размерность матрицы G равна n+1, в случае больших выборок вычисления становятся очень долгими

Алгоритм SMO [Джон Платт, 1999] используется для решения двойственной задачи классического метода SVM:

$$\begin{cases} -\sum_{i=1}^{n} \lambda_i + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_i \lambda_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle \to \min_{\lambda} \\ \sum_{i=1}^{n} \lambda_i y_i = 0 \\ 0 \le \lambda_i \le C, \quad i = 1, \dots, n \end{cases}$$

Идея:

- Выбираются 2 двойственные переменные
- Одна выражается через другую с помощью линейного ограничения
- Аналитически решается экстремальная задача

Двойственная задача для второго классификатора

Пусть \mathbf{v}_1 - направляющий вектор первого классификатора.

$$\begin{cases} \frac{1}{2} \langle \mathbf{v}_1, \mathbf{v}_1 \rangle t^2 + t \sum_{i=1}^n \lambda_i y_i \langle \mathbf{v}_1, \mathbf{x}_i \rangle + \\ + \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \lambda_i \lambda_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle - \sum_{i=1}^n \lambda_i \to \min_{\lambda, \mathbf{t}} \\ \sum_{i=1}^n \lambda_i y_i = 0 \\ 0 \le \lambda \le C, \quad i = 1, \dots, n \end{cases}$$

Решение:

- ullet Шаг $oldsymbol{1}$: находим λ_i и λ_j при помощи SMO
- Шаг 2: находим минимум квадратично функционала относительно t

Модифицированный метод SMO был реализован на языке R.

Наборы данных

Bce наборы данных были взяты из UC Irvine Machine Learning Repository.

- Данные об использовании контрацептивов в Индонезии, 1473 наблюдения, 9 признаков.
- Наberman's survival данные о выживаемости женщин, перенесших рак груди в 1958-1970 годах, 306 наблюдений, 3 признака.
- Сведения о домах в предместье Бостона, 506 наблюдений, 14 признаков.

Использование контрацептивов

Использование контрацептивов

Значимо различающиеся средние значения в уверенно классифицированных группах:

	use	not use
уровень образования женщины	3.3	2.3
количество детей	3.8	2.6
уровень жизни	3.3	2.7
% исламских семей	0.78	0.91
% работающих женщин	0.76	0.68

Результаты имеют естественную интерпретацию.

Выживаемость после рака груди

Бостон

crim	indus	nox	rm	age	dis	rd	tax	b	lstat	classes
0.05	3.4	0.49	6.42	66.1	3.09	2	270	392	8.8	2
0.04	3.4	0.49	6.41	73.9	3.09	2	270	394	8.2	1
1.19	21.9	0.62	6.33	97.7	2.27	4	437	397	12.3	1
0.59	21.9	0.62	6.37	97.9	2.32	4	437	386	11.1	2
2.30	19.6	0.61	6.32	96.1	2.10	5	403	297	11.1	2
2.45	19.6	0.61	6.40	95.2	2.26	5	403	330	11.3	1
0.06	11.9	0.57	6.98	91.0	2.17	1	273	397	5.6	2
0.11	11.9	0.57	6.79	89.3	2.39	1	273	393	6.5	1

Бостон

- Данные были случайным образом разделены на обучающую и тестовую. выборки, так что обучаюящая составляла 70% от исходных данных, а тестовая — 30%
- На обучающей выборке были построены 2 классификатора.
- Были найдены расстояния до обоих классификаторов, как на тестовой, так и на обучающей выборках.
- На новых координатах обучающей выборки был построен линейный классификатор.

Качество классификации на тестовой выборке улучшилось

	rfb, исходные данные	линейное, новые координаты
test	68%	83%

Итог

- ullet Составлена квадратичная задача для n классификаторов.
- Реализован модифицированный алгоритм SMO на языке
 R.
- Предложен способ визуализации, позволяющий оценить уверенность классификации для каждого наблюдения.
- Работа предложенного метода проверена и исследована на реальных данных, а именно
 - выявлены признаки важные для классификатора, путем оценки средних значений признаков в уверенно классифицированных группах;
 - на некоторых данных увеличено качество классификации.

Теорема Мерсера и примеры ядер

Определение

Функция $K: X \times X \to \mathbb{R}$ называется ядром, если она представима в виде $K(x,y) = \langle \phi(x), \phi(y) \rangle_H$ при некотором отображении $\phi: X \to H$, где H - пространство со скалярным произведением.

Теорема

Функция K(x,x') является ядром тогда и только тогда, когда она симметрична, K(x,x')=K(x',x), непрерывна по обоим аргументам и неотрицательно определена, т.е. для любой конечной выборки $X^p=(x_1,\ldots,x_p)$ из X матрица $K=\|K(x_i,x_j)\|$ неотрицательно определена.

Стандартные ядра:

- полиномиальное $K(x, x') = (\langle x, x' \rangle + 1)^d$;
- RBF $K(x, x') = \exp(-\beta ||x x'||^2)$.