4

Some Basic Statistical Theorems

Given a probability space (Ω, \mathcal{F}, P) , and a measurable space (E, \mathcal{E}) , an E-valued random variable is a measurable function $X:\Omega\to E$.

2.1

Given a **probability space** (Ω, \mathcal{F}, P) , and a **measurable space** (E, \mathcal{E}) , an E-valued **random variable is a measurable function** $X : \Omega \to E$.

$$\omega\in\Omega$$

Given a **probability space** (Ω, \mathcal{F}, P) , and a **measurable space** (E, \mathcal{E}) , an E-valued **random variable is a measurable function** $X : \Omega \to E$.

Given a **probability space** (Ω, \mathcal{F}, P) , and a **measurable space** (E, \mathcal{E}) , an E-valued **random variable is a measurable function** $X : \Omega \to E$.

Given a probability space (Ω, \mathcal{F}, P) , and a measurable space (E, \mathcal{E}) , an E-valued random variable is a measurable function $X: \Omega \to E$.

$$\mathcal{F} = \sigma(\{ \ \ \ \)) = \{\Omega, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \}$$

Given a **probability space** (Ω, \mathcal{F}, P) , and a **measurable space** (E, \mathcal{E}) , an E-valued **random variable is a measurable function** $X: \Omega \to E$.

Convergence:

- Sure ("pointwise")
- Almost Sure
- In Probability
- Weak ("in distribution"/"in law")

Convergence:

• Sure ("pointwise")

 $X_n(\omega) o X(\omega) \quad orall\,\omega\in\Omega$

- Almost Sure
- In Probability
- Weak ("in distribution"/"in law")

Convergence:

• Sure ("pointwise")

$$X_n(\omega) o X(\omega) \quad orall\, \omega\in\Omega$$

• Almost Sure

$$P(\{\omega: X_n(\omega) o X\}) = 1$$

- In Probability
- Weak ("in distribution"/"in law")

Convergence:

• Sure ("pointwise")

$$X_n(\omega) o X(\omega) \quad orall\,\omega\in\Omega$$

• Almost Sure

$$P(\{\omega:X_n(\omega) o X\})=1$$

• In Probability

$$P(\{\omega: |X_n(\omega)-X(\omega)|>\epsilon\}) o 0 \quad orall \epsilon>0$$

Weak ("in distribution"/"in law")

Convergence:

• Sure ("pointwise")

$$X_n(\omega) o X(\omega) \quad orall\,\omega\in\Omega$$

Almost Sure

$$P(\{\omega: X_n(\omega) o X\})=1$$

• In Probability

$$P(\{\omega: |X_n(\omega)-X(\omega)|>\epsilon\}) o 0 \quad orall \epsilon>0$$

Weak ("in distribution"/"in law")

 $F_{X_n}(\alpha) o F_X(\alpha)$ for each continuity point.

1. Concentration Inequalities

- 1. Concentration Inequalities
- 2. Proof of the weak law of large numbers and $\frac{1}{\sqrt{N}}$ convergence rates

1. Concentration Inequalities

Break

2. Proof of the weak law of large numbers and $\frac{1}{\sqrt{N}}$ convergence rates

1. Concentration Inequalities

Break

- 2. Proof of the weak law of large numbers and $\frac{1}{\sqrt{N}}$ convergence rates
- 3. Central limit theorem
- 4. Importance sampling

Intuition: If an r.v. has a finite variance, the probability that a random variable takes a value far from its mean should be small

Intuition: If an r.v. has a finite variance, the probability that a random variable takes a value far from its mean should be small

Intuition: If an r.v. has a finite variance, the probability that a random variable takes a value far from its mean should be small

Concentration inequalities take the form

$$P(X \ge t) \le \phi(t)$$

where ϕ goes to zero (quickly) as $t \to \infty$

Markov's Inequality:

If
$$X \geq 0$$
, then

$$P(X \ge t) \le \frac{E[X]}{t} \quad \forall t \ge 0$$

$$P(X \ge t) \le \frac{\sum_{x \in X} |x|}{t} \quad \forall t \ge 0$$

$$= \int_{-\infty}^{\infty} |x| |x| dx$$

$$= \int_{0}^{\infty} |x| |x| dx + \int_{0}^{\infty} |x| |x| dx$$

$$= \int_{0}^{\infty} |x| |x| dx + \int_{0}^{\infty} |x| |x| dx$$

$$\geq \int_{0}^{\infty} |x| |x| dx + \int_{0}^{\infty} |x| |x| dx$$

$$\geq \int_{0}^{\infty} |x| |x| dx + \int_{0}^{\infty} |x| |x| dx$$

$$= a P(X \ge a)$$

Chebyshev's Inequality:

Let X be <u>any</u> real-valued random variable with $\underline{\mathrm{Var}(X)} < \infty$. Then

Chebyshev's Inequality:

Let X be *any* real-valued random variable with $\mathrm{Var}(X) < \infty$. Then

$$P(|X - E[X]| \ge t) \le \frac{\operatorname{Var}(X)}{t^{2}}.$$

$$P(\operatorname{roof:} \ \operatorname{Recall} \ \ \operatorname{Var}(X) = E[(X - E[X])^{2}]$$

$$U \le \operatorname{Markov's inequality on} \ (X - E[X])^{2}$$

$$P((X - E[X])^{2} \ge t^{2}) \le \frac{E[X - E[X])^{2}}{t^{2}} = \frac{E[X]}{t^{2}}$$

$$P(|X - E[X]| \ge t) \le \frac{\operatorname{Var}(X)}{t^{2}}$$

$$P(|X - E[X]| \ge t) \le \frac{\operatorname{Var}(X)}{t^{2}}$$

Chebyshev's Inequality:

Let X be *any* real-valued random variable with $\mathrm{Var}(X) < \infty$. Then

$$P(|X-E[X]| \geq t) \leq rac{\mathrm{Var}(X)}{t^2}.$$

k	Min. % within <i>k</i> standard deviations of mean	Max. % beyond k standard deviations from mean
1	0%	100%
√2	50%	50%
1.5	55.56%	44.44%
2	75%	25%
2√2	87.5%	12.5%
3	88.8889%	11.1111%
4	93.75%	6.25%
5	96%	4%
6	97.2222%	2.7778%
7	97.9592%	2.0408%
8	98.4375%	1.5625%
9	98.7654%	1.2346%
10	99%	1%

k	Min. % within <i>k</i> standard deviations of mean	Max. % beyond k standard deviations from mean
1	0%	100%
√2	50%	50%
1.5	55.56%	44.44%
2	75%	25%
2√2	87.5%	12.5%
3	88.8889%	11.1111%
4	93.75%	6.25%
5	96%	4%
6	97.2222%	2.7778%
7	97.9592%	2.0408%
8	98.4375%	1.5625%
9	98.7654%	1.2346%
10	99%	1%

k	Min. % within <i>k</i> standard deviations of mean	Max. % beyond <i>k</i> standard deviations from mean
1	0%	100%
√2	50%	50%
1.5	55.56%	44.44%
2	75%	25%
2√2	87.5%	12.5%
3	88.8889%	11.1111%
4	93.75%	6.25%
5	96%	4%
6	97.2222%	2.7778%
7	97.9592%	2.0408%
8	98.4375%	1.5625%
9	98.7654%	1.2346%
10	99%	1%

68% For Normal Distribution

9590

99%

Moment generating function: $M_X(t) \equiv E[e^{tX}]$

Moment generating function: $M_X(t) \equiv E[e^{tX}]$

Chernoff Bound: If the moment-generating function M_X exists, then

$$P(X \ge a) \le \frac{E[e^{tX}]}{e^{ta}} \quad \forall \, t > 0$$
 infinite number of bounds, one for each t

and

$$P(X \le a) \le rac{E[e^{tX}]}{e^{ta}} \quad orall \, t < 0$$

Proof: Apply Markov's inequality to etx
$$P(X \ge a) = P(e^{tX} \le e^{ta}) \le \frac{E[e^{tX}]}{e^{ta}}$$

Moment generating function: $M_X(t) \equiv E[e^{tX}]$

Chernoff Bound: If the moment-generating function M_X exists, then

$$P(X \geq a) \leq rac{E[e^{tX}]}{e^{ta}} \quad orall \, t > 0$$

and

$$P(X \leq a) \leq rac{E[e^{tX}]}{e^{ta}} \quad orall \, t < 0$$

Name	Requirements	Bound

Name	Requirements	Bound
Markov	$X \geq 0$, $\mathrm{E}[X]$ exists	$P(X \geq t) \leq rac{E[X]}{t} orall t \geq 0$

Name	Requirements	Bound
Markov	$X \geq 0$, $\mathrm{E}[X]$ exists	$P(X \geq t) \leq rac{E[X]}{t} orall t \geq 0$
Chebyshev	$\mathrm{Var}(X) < \infty$	$P(X-E[X] \geq t) \leq rac{\mathrm{Var}(X)}{t^2}$

Name	Requirements	Bound
Markov	$X \geq 0$, $\mathrm{E}[X]$ exists	$P(X \geq t) \leq rac{E[X]}{t} orall t \geq 0$
Chebyshev	$\mathrm{Var}(X) < \infty$	$P(X-E[X] \geq t) \leq rac{\mathrm{Var}(X)}{t^2}$
Chernoff	M_X exists	$P(X \geq a) \leq rac{E[e^{tX}]}{e^{ta}} orall t > 0$
		$P(X \leq a) \leq rac{E[e^{tX}]}{e^{ta}} orall t < 0$

Name	Requirements	Bound
Markov	$X \geq 0$, $\mathrm{E}[X]$ exists	$P(X \geq t) \leq rac{E[X]}{t} orall t \geq 0$
Chebyshev	$\mathrm{Var}(X) < \infty$	$P(X-E[X] \geq t) \leq rac{\mathrm{Var}(X)}{t^2}$
Chernoff	M_X exists	$P(X \geq a) \leq rac{E[e^{tX}]}{e^{ta}} orall t > 0$ $P(X \leq a) \leq rac{E[e^{tX}]}{e^{ta}} orall t < 0$
	More	$P(X \leq a) \leq rac{E[e^{t}]}{e^{ta}} orall t < 0$

Name	Requirements	Bound
Markov	$X \geq 0$, $\mathrm{E}[X]$ exists	$P(X \geq t) \leq rac{E[X]}{t} orall t \geq 0$
Chebyshev	$\mathrm{Var}(X)<\infty$	$P(X-E[X] \geq t) \leq rac{\mathrm{Var}(X)}{t^2}$
Chernoff	M_X exists	$P(X \geq a) \leq rac{E[e^{tX}]}{e^{ta}} orall t > 0$
	More	$P(X \leq a) \leq rac{E[e^{tX}]}{e^{ta}} orall t < 0$

Break

Name	Requirements	Bound
Markov	$X \geq 0$, $\mathrm{E}[X]$ exists	$P(X \geq t) \leq rac{E[X]}{t} orall t \geq 0$
Chebyshev	$\mathrm{Var}(X) < \infty$	$P(X-E[X] \geq t) \leq rac{\mathrm{Var}(X)}{t^2}$
Chernoff	M_X exists	$P(X \geq a) \leq rac{E[e^{tX}]}{e^{ta}} orall t > 0$ $P(X \leq a) \leq rac{E[e^{tX}]}{e^{ta}} orall t < 0$
		$P(X \le a) \le \frac{1}{e^{ta}} \forall \ t < 0$

Let Y be a r.v. that takes values in [-1,1] with mean -0.5. Give an upper bound on the probability that $Y \ge 0.5$.

Let
$$Z=Y+1$$
 $P(Y\geq 0.5)=P(Z\geq 1.5)\leq \frac{0.5}{1.5}=\frac{1}{3}$

(Weak) Law of large numbers

(Weak) Law of large numbers

Let X_i be independent identically distributed r.v.s with mean μ and variance σ^2 . If $Q_N \equiv \frac{1}{N} \sum_{i=1}^N X_i$, then $Q_N \to_p \mu$.

(Weak) Law of large numbers

Let X_i be independent identically distributed r.v.s with mean μ and variance σ^2 . If $Q_N \equiv \frac{1}{N} \sum_{i=1}^N X_i$, then $Q_N \to_p \mu$.

Proof:
$$V_{ar}(Q_N) = V_{ar}(\frac{1}{N} \gtrsim X_i)$$

$$= \frac{1}{N^2} V_{ar}(\stackrel{>}{\geq} X_i)$$

$$= \frac{1}{N^2} \sum_{i=1}^{N} V_{ar}(x_i) \qquad (Bienaymé)$$

$$= \frac{1}{N^2} N \sigma^2 = (\frac{\sigma^2}{N})$$

$$P(|Q_N - M| \geq E) \leq \frac{V_{ar}(Q_N)}{E^2} \qquad (Chebyshev)$$

$$= \frac{\sigma^2}{N\epsilon^2}$$

$$P(|Q_N - M| \geq E) \rightarrow 0 \quad \text{as } N \rightarrow \infty \quad \forall E \neq 0 \quad (Chebyshev)$$

Two somewhat astounding takeaways:

Two somewhat astounding takeaways:

Two somewhat astounding takeaways:

1. Standard deviation decays at $\frac{1}{\sqrt{N}}$ regardless of dimension.

Two somewhat astounding takeaways:

1. Standard deviation decays at $\frac{1}{\sqrt{N}}$ regardless of dimension.

2. You can estimate the "standard error" with

$$SE = \frac{s}{\sqrt{N}}$$
 empirical estimate of Xi of standard deviation of Xi

where s is the sample standard deviation.

How do you estimate $|Q_N - \mu|$?

How do you estimate $|Q_N - \mu|$?

Given a random variable Q, a γ Confidence Interval, [u(Q), v(Q)], is a random interval that contains μ with probability γ , i.e.

$$P(u(Q) \le \mu \le v(Q)) = \gamma$$

How do you estimate $|Q_N - \mu|$?

Given a random variable Q, a γ Confidence Interval, [u(Q),v(Q)], is a random interval that contains μ with probability γ , i.e.

$$P(u(Q) \le \mu \le v(Q)) = \gamma$$

Example: $Q_N \equiv \frac{1}{N} \sum_{i=1}^N X_i$

How do you estimate $|Q_N - \mu|$?

Given a random variable Q, a γ Confidence Interval, [u(Q), v(Q)], is a random interval that contains μ with probability γ , i.e.

$$P(u(Q) \le \mu \le v(Q)) = \gamma$$

Example: $Q_N \equiv rac{1}{N} \sum_{i=1}^N X_i$

Use
$$\gamma=0.95$$

$$P(|X-E[X]| \geq t) \leq rac{\mathrm{Var}(X)}{t^2} = 1-\gamma = 0.05$$

Use
$$\gamma=0.95$$
 $P(|X-E[X]|\geq t)\leq rac{ ext{Var}(X)}{t^2}=1-\gamma=0.05$ $t=\sqrt{rac{ ext{Var}(X)}{0.05}}$

Use
$$\gamma=0.95$$

$$P(|X-E[X]|\geq t)\leq \frac{\mathrm{Var}(X)}{t^2}=1-\gamma=0.05$$

$$t=\sqrt{\frac{\mathrm{Var}(X)}{0.05}}$$

$$tpprox \frac{SE}{\sqrt{0.05}} pprox 4.47SE$$

Idea for approximate confidence interval: estimate ${
m Var}(Q_N)$ with $SE^2=rac{s^2}{N}$ and use Chebyshev.

Use
$$\gamma=0.95$$

$$P(|X-E[X]|\geq t)\leq \frac{\mathrm{Var}(X)}{t^2}=1-\gamma=0.05$$

$$t=\sqrt{\frac{\mathrm{Var}(X)}{0.05}}$$
 $tpprox \frac{SE}{\sqrt{0.05}}pprox 4.47SE$

Approximate 95% CI: $[Q_N-4.47\,SE,Q_N+4.47\,SE]$

Idea for approximate confidence interval: estimate ${
m Var}(Q_N)$ with $SE^2=rac{s^2}{N}$ and use Chebyshev.

Use
$$\gamma=0.95$$
 $P(|X-E[X]|\geq t)\leq rac{ ext{Var}(X)}{t^2}=1-\gamma=0.05$ $t=\sqrt{rac{ ext{Var}(X)}{0.05}}$ $tpprox rac{SE}{\sqrt{0.05}}pprox 4.47SE$

Approximate 95% CI: $[Q_N - 4.47\,SE, Q_N + 4.47\,SE]$

We can do much better if we know something about the distribution of Q_N !

Lindeberg-Levy CLT: If
$${
m Var}[X_i]=\sigma^2<\infty$$
, then $\sqrt{N}(Q_N-\mu)\stackrel{D}{
ightarrow}\mathcal{N}(0,\sigma)$

Lindeberg-Levy CLT: If
$${
m Var}[X_i]=\sigma^2<\infty$$
, then $\sqrt{N}(Q_N-\mu)\stackrel{D}{
ightarrow}\mathcal{N}(0,\sigma)$

Lindeberg-Levy CLT: If
$$\mathrm{Var}[X_i]=\sigma^2<\infty$$
, then $\sqrt{N}(Q_N-\mu)\stackrel{D}{
ightarrow}\mathcal{N}(0,\sigma)$

$$Q_1 \stackrel{D}{=} X_i$$

Lindeberg-Levy CLT: If
$$\mathrm{Var}[X_i] = \sigma^2 < \infty$$
, then $\sqrt{N}(Q_N - \mu) \stackrel{D}{
ightarrow} \mathcal{N}(0,\sigma)$

Lindeberg-Levy CLT: If $\mathrm{Var}[X_i] = \sigma^2 < \infty$, then $\sqrt{N}(Q_N - \mu) \stackrel{D}{ o} \mathcal{N}(0,\sigma)$

Idea for approximate confidence interval: estimate ${
m Var}(Q_N)$ with $SE^2=\frac{s^2}{N}$ and use Chebyshev the central limit theorem.

Idea for approximate confidence interval: estimate ${
m Var}(Q_N)$ with $SE^2=\frac{s^2}{N}$ and use Chebyshev the central limit theorem. Use $\gamma=0.95$

Idea for approximate confidence interval: estimate ${
m Var}(Q_N)$ with $SE^2=\frac{s^2}{N}$ and use Chebyshev the central limit theorem. Use $\gamma=0.95$

For a normal distribution,

$$|P(|X-\mu| \geq t) = 1 + ext{erf}\left(rac{t-\mu}{\sqrt{2}\sigma}
ight)$$

Idea for approximate confidence interval: estimate ${
m Var}(Q_N)$ with $SE^2=\frac{s^2}{N}$ and use Chebyshev the central limit theorem. Use $\gamma=0.95$

For a normal distribution,

$$|P(|X-\mu| \geq t) = 1 + ext{erf}\left(rac{t-\mu}{\sqrt{2}\sigma}
ight)$$

Idea for approximate confidence interval: estimate ${
m Var}(Q_N)$ with $SE^2=\frac{s^2}{N}$ and use Chebyshev the central limit theorem. Use $\gamma=0.95$

For a normal distribution,

$$|P(|X-\mu| \geq t) = 1 + ext{erf}\left(rac{t-\mu}{\sqrt{2}\sigma}
ight)$$

 $t \approx 1.96SE$

Idea for approximate confidence interval: estimate ${
m Var}(Q_N)$ with $SE^2=\frac{s^2}{N}$ and use Chebyshev the central limit theorem. Use $\gamma=0.95$

For a normal distribution,

$$|P(|X-\mu| \geq t) = 1 + ext{erf}\left(rac{t-\mu}{\sqrt{2}\sigma}
ight)$$

 $t \approx 1.96SE$

Approximate 95% CI: $[Q_N-1.96\,SE,Q_N+1.96\,SE]$

Idea for approximate confidence interval: estimate ${
m Var}(Q_N)$ with $SE^2=\frac{s^2}{N}$ and use Chebyshev the central limit theorem. Use $\gamma=0.95$

For a normal distribution,

$$|P(|X-\mu| \geq t) = 1 + ext{erf}\left(rac{t-\mu}{\sqrt{2}\sigma}
ight)$$

 $t \approx 1.96SE$

Approximate 95% CI: $[Q_N-1.96\,SE,Q_N+1.96\,SE]$

(Chebyshev gave 4.47)

$$E[X] = \int x \, p(x) \, dx$$

$$egin{aligned} E[X] &= \int x \, p(x) \, dx \ &= \int x \, rac{p(x)}{q(x)} q(x) \, dx \end{aligned}$$

$$egin{align} E[X] &= \int x \, p(x) \, dx \ &= \int x \Big(\!rac{p(x)}{q(x)}\!\!\Big) \! q(x) \, dx \ &pprox rac{1}{N} \sum Y_i rac{p(Y_i)}{q(Y_i)} \end{split}$$

$$E[X] = \int x \, p(x) \, dx$$
 P a bada $= \int x \, rac{p(x)}{q(x)} q(x) \, dx$ $pprox rac{1}{N} \sum Y_i rac{p(Y_i)}{q(Y_i)}$ $pprox rac{1}{N} \sum Y_i w_i$ where $w_i = rac{p(Y_i)}{q(Y_i)}$

Summary

- 1. Concentration Inequalities
- 2. Law of large numbers
- 3. Central Limit Theorem
- 4. Importance Sampling

$$P(X \ge t) \le \phi(t)$$

$$Q_N o_p \mu$$

$$Q_N \stackrel{D}{ o} \mathcal{N}(\mu, rac{\sigma}{\sqrt{N}})$$

$$E[X]pprox rac{1}{N}\sum Y_i w_i$$
 where $w_i=rac{p(Y_i)}{q(Y_i)}$