# Corporate Valuation, Restructuring and M&A's

Returns to Mergers

Gazi Kabas Tilburg University Fall 2024

### What are the Returns to Mergers?

We can use this table to separate between the theories

| Theory                         | Combined Gains | Gains to Target | Gains to Bidder |
|--------------------------------|----------------|-----------------|-----------------|
| Economies of Scale / Synergies | positive       | positive        | nonnegative     |
| Transaction Cost Efficiency    | positive       | positive        | nonnegative     |
| Disciplinary Effects           | positive       | positive        | nonnegative     |
| Agency Costs                   | negative       | positive        | more negative   |
| Managerial Entrenchment        | negative       | positive        | more negative   |
| Hubris                         | zero           | positive        | negative        |
| Breach of Trust                | positive       | positive        | nonnegative     |

But... How do we measure abnormal returns?

### Measuring Abnormal Returns-Summary

- 0. Determine the event announcement date
- 1. Choose an event window to examine the effect
- 2. Calculate normal returns for each day and each firm
- 3. Calculate the abnormal return (residual return)
  - Take the average of residuals if there are multiple firms
- 4. Calculate the cumulative abnormal return (CAR)
- 5. Test whether the CAR is statistically significant

- 1. The announcement date is defined as date 0
  - Should be the first release of public information not easily obtainable
  - Business press is a good source of information (Wall Street Journal Index, Financial Times)
  - Read newspaper articles and identify the date
- 2. Determining the announcement date can be tricky
  - $\rightarrow$  Ex: Twitter

#### **Twitter Timeline**



- 2. Choose an event window to examine the effect
  - Studies normally select a window like -40, 40
  - 40 days before announcement until 40 days after announcement
  - A longer window may capture more of the event
    - $\rightarrow$  E.g., insiders may have been trading before date -40 and the event may not have ended at +40
  - A longer window may entail statistical problems
    - $\rightarrow$  Essentially we are comparing the returns of the company to "normal" returns. Are they higher than normal (i.e., abnormal)?
    - ightarrow If "normal" returns are measured with error then a longer window will compound this error
  - The chosen window needs to strike a balance between these two issues

- 3. Calculate normal returns,  $\hat{R}_{jt}$ , for each day t and for each firm j
- What is a normal return?
  - $\rightarrow$  The return if the event did not happen
- Three methods for calculating normal returns
  - 1. Mean-adjusted return
  - 2. Market model method
  - 3. Market-adjusted return

- Mean-adjusted return
- 1. Choose a "clean" period. Should be before the event. It cannot include the event period. For example (if event period is -40 to +40) then the clean period could be -240 to -41.
- 2. The predicted return for a firm in the event period is the average of return in the clean period

$$\hat{R}_{jt} = \overline{R}_j = \frac{\sum_{t=-240}^{-41} R_{jt}}{200} \tag{1}$$

3. The residual return is the difference between the realized return and  $\overline{R}_j$ 

$$r_{jt} = R_{jt} - \hat{R}_{jt} \tag{2}$$

4. Abnormal return is the average of residuals (if there are several events/firms)

$$AR_t = \frac{\sum_j r_{jt}}{N} \tag{3}$$

- Market model method
- 1. Choose a "clean" period
- 2. Estimate the market model using ordinary least squares (OLS):

$$\hat{R}_{jt} = \alpha_j + \beta_j R_{mt} + \varepsilon_{jt} \tag{4}$$

where  $R_{mt}$  is the return on a market index for day t

 $\beta$  measures the sensitivity of firm j to the market

 $\alpha$  measures the mean return over the period not explained by the market

 $\varepsilon_{it}$  is the error term

- 3. Estimate the regression and obtain  $\hat{\alpha}$  and  $\hat{\beta}$ 
  - ightarrow We may want to improve estimates of  $\hat{eta}$  by shrinking the estimate towards 1 (the average)
  - $\rightarrow$  Example of adjustment: adjusted beta = unadjusted beta  $\times \mu + (1 \mu)$ . Bloomberg adjustment  $\mu = 0.66$

- Market model method contd
- 3. Use  $\hat{\alpha}$  and  $\hat{\beta}$  to estimate the normal return

$$\hat{R}_{jt} = \hat{\alpha} + \hat{\beta} \times R_{mt} \tag{5}$$

4. Then calculate the residual

$$r_{jt} = R_{jt} - \hat{R}_{jt} \tag{6}$$

- 5. Again, abnormal return is the average of residuals
- The market model has the advantage that it takes into account the risk associated with the market and mean returns
- Most widely used method of calculating normal returns

- Market adjusted return
- 1. The predicted return on a stock is the return on the market that day
- 2. That is

$$\hat{R}_{jt} = R_{mt} \tag{7}$$

- Note that this is like using the market model but assuming that  $\hat{\alpha}=0$  and  $\hat{\beta}=1$  for all firms.
- This is a quick and dirty approximation that works fairly well

Choose the event: ASML acquired Cymer in 2013

- What is ASML?
- It is arguably the one of the most important companies for the current human civilization
- Why? Because ASML produces a crucial product
- We all know that chips matter for our technology
  - ightarrow You may have heard global shortage in chips and how this distorts the overall economy
- Chip production is a difficult process, which entails the highest rigor and care
- When we think about chip producers, a few companies come to our minds: Intel, Samsung, TSMC, etc.

- ASML produces machines that chip manufacturers use to produces chips
- These machines use light to engrave integrated circuits onto silicon wafers
- ASML has the largest market share (62%)
- In addition, it has the developed a new state-of-the-art technology (EUV lithography), which makes ASML a monopoly
- ASML's market capitalization has grown tenfold in the last decade, reflecting its success

- Its recent success does not mean that there are no challenges
- As many other firms, ASML relies on numerous suppliers
  - → Approximately 5000 suppliers
  - $\rightarrow$  Carl Zeiss-optics
  - $\rightarrow$  VDL-robotic arms
  - → Cymer-light source
- Due to its dominance in the market, it is not easy to convince the suppliers to make the investment for a new technology
- If ASML changes its mind and decides not to use the new technology, there is no other possible buyers in the market
- What are the possible options for ASML?

- Cymer is headquartered in San Diego, CA and produces light sources, which is crucial for the EUV lithography that ASML is working on
- The problem with EUV lithography was that the process was slower than expectations of the market and investors
- As Cymer produces a vital component for the new technology, acquiring it may facilitate the development
  - $\rightarrow$  "The purpose of the acquisition of Cymer is to accelerate the development of EUV semiconductor lithography technology... Combining Cymer's expertise in EUV light sources with ASML's expertise in lithography systems design and integration will reduce the risk and accelerate the introduction of this extremely complex technology."
- ASML made the announcement on 17 October 2012

#### Details of the Deal: Cash-and-shares acquisition

- 2.5bil $\$ \rightarrow$  630mil\$ cash & 1890mil\$ worth of ASML shares
  - 25% cash, 75% shares
  - Each Cymer share gets 20\$ in cash and 1.1502 ASML shares
- The deal's value creates a 61% premium on Cymer's market value.
- Is it a bad deal?
  - EUV was risky-nobody knows whether it is possible to develop this tech
  - A big premium
  - It could enable ASML to produce the new technology
- Now, we look at the effect of this announcement on ASML's and Cymer's stock returns

- The event date is 17 October 2012
- We need to choose event window and estimation window
- Event window: [-40, 40]
   Estimation window: [-240, -41]
- Prepare the data
- We have the all ingredients, now we can dive into calculations
- 3 methods to calculate residual return: Mean-adjusted return, Market model method, and market-adjusted return
- Residual return:  $r_{jt} = R_{jt} \hat{R}_{jt}$  (actual stock return- benchmark return)
- Let's start with mean-adjusted return

#### Mean-adjusted return

- Estimation window: [-240, -41]
- Calculate the mean returns over estimation window

$$\hat{R}_{jt} = \overline{R}_j = \frac{\sum_{t=-240}^{-41} R_{jt}}{200} \tag{8}$$

|   |                 | ASML (Acquirer) | Cymer (Target) |
|---|-----------------|-----------------|----------------|
| • | Mean return (%) | 0,207           | 0,208          |

- Mean-adjusted return method takes the return mean over the estimation period as the benchmark return
- Therefore, residual return is the difference between the realized return and the mean
- Calculate residual return for each day

| Date | ASML   | Residual return    | Cymer  | Residual return    |
|------|--------|--------------------|--------|--------------------|
| -40  | 0,93%  | 0,93-0,207=0,725   | -2,51% | -2,51-0.28=-2.717  |
| -39  | 0,62%  | 0,62-0,207=0,409   | -0,68% | -0.68-0.208=0.885  |
|      |        |                    |        |                    |
| 39   | 1,50%  | 1,50-0,207=1,293   | 0,74%  | 0.74-0.208=0.530   |
| 40   | -0,06% | -0.06-0.207=-0,267 | -0,23% | -0.23-0.208=-0.433 |

• Then, we calculate the cumulative abnormal returns (in the coming slides)

#### Market Model

- Estimation window: [-240, -41]
- Estimate the market sensitivity of ASML/Cymer with OLS

$$R_{jt} = \alpha_j + \beta_j R_{mt} + \varepsilon_{jt} \tag{9}$$

$$\hat{lpha}_{ASML}=0.0011$$
,  $\hat{eta}_{ASML}=1.37$ ,  $\hat{lpha}_{Cymer}=0.0010$ ,  $\hat{eta}_{Cymer}=1.43$ 

Calculate the residual return

$$r_{jt} = R_{jt} - (\hat{\alpha}_j + \hat{\beta}_j R_{mt}) \tag{10}$$

| Date | ASML   | Residual return                                      | Cymer  | Residual return                      |
|------|--------|------------------------------------------------------|--------|--------------------------------------|
| -40  | 0,93%  | $0.93\% - (0.0011 + (1.37 \times -0.23\%)) = 1.14\%$ | -2,51% | -2,51%-(0.0010+(1.43×-0.23%))=-2.28% |
| -39  | 0,62%  | $0.62\% - (0.0011 + (1.37 \times -0.01\%)) = 0.52\%$ | -0,68% | -0.68%-(0.0010+(1.43×-0.01%))=-0.76% |
|      |        |                                                      |        |                                      |
| 39   | 1,50%  | 1.50%-(0.0011+(1.37×-0.31%))=1.81%                   | 0,74%  | 0.74%-(0.0010+(1.43×-0.31%))=1.08%   |
| 40   | -0,06% | -0.06%-(0.0011+(1.37×1.02%))=-1.57%                  | -0,23% | -0.23%-(0.0010+(1.43×1.02%))=-1.78%  |

• Again, we calculate the cumulative abnormal returns in the next step (in the coming slides)

### Market adjusted model

- Estimation window: [-240, -41]
- ullet This method uses the market return as the benchmark ullet Like using the market model but assuming that  $\hat{lpha}=0$ ,  $\hat{eta}=1$
- The residual return is  $r_{jt} = R_{jt} R_{mt}$

| Date | ASML   | Residual return       | Cymer  | Residual return        |
|------|--------|-----------------------|--------|------------------------|
| -40  | 0,93%  | 0,93%-(-0.23%)=1.16%  | -2,51% | -2,51%-(-0.23%)=-2.28% |
| -39  | 0,62%  | 0,62%-(-0.01%)=0.63%  | -0,68% | -0.68%-(-0.01%)=-0.67% |
|      |        |                       |        |                        |
| 39   | 1,50%  | 1.50%-(-0.31%)=1.81%  | 0,74%  | 0.74%-(-0.31%)=1.05%   |
| 40   | -0,06% | -0.06%-(1.02%)=-1.08% | -0,23% | -0.23%(-1.02%)=-1.25%  |

• Then, cumulative abnormal returns (in the next slide)

#### Cumulative abnormal returns

- CARs are the sum of the residuals over the event window (ie: [-40, 40])
- Below we have CAR for ASML-Market model

| Date | Residual | CAR    |
|------|----------|--------|
| -40  | 1,14%    | 1,14%  |
| -39  | 0,52%    | 1,66%  |
| -38  | -1,21%   | 0,45%  |
|      |          |        |
| 39   | 1,81%    | -4,42% |
| 40   | -1,57%   | -5,99% |

• Good place to plot graphs

#### ASML CARs-3 methods



### Cymer CARs-3 methods



### ASML and Cymer CARs-Market model



### **Testing for Statistical Significance**

- Can we infer with a certain level of confidence that the residuals are significantly different from zero?
- If returns are normally, identically and independently distributed, then

$$\frac{r_{jt}}{\hat{S}_j} \tag{11}$$

has a t-distribution, where r is the residual and s is the standard error, t is a time index and j is a firm index

We see that ASML's CAR is statistically insignificant and Cymer's CAR is significant at 1
percent (except Mean Adjusted method)

### What are the Returns to Mergers?

- In this example, we see that the bidder does not have positive CAR but the target has
- This is only one example
- Let's look at the literature to see the systematic findings