Indian Institute of Information Technology Ranchi

Department of Mathematics

B. Tech End Semester Examination: Autumn Semester 2022-23

Semester: 1st

Course Instructor: Dr. Shashi Kant and

Course Code: MA1001

Dr. Rishikesh Dutta Tiwary

Course Name: Mathematics-I (Calculus and Differential Equations)

QUESTION PAPER

Duration: 3 hrs.

Max Marks: 100

Instructions:

- (1). Number in [] indicates marks.
- (2). Any missing data can be assumed suitably.
- (3). Symbols have their usual meaning.

Section A: Answer all the questions.

- 1. (a) State the Rolle's theorem. Identify the point(s) at which the tangent is parallel to the x-axis for $f(x) = x^2 6x + 5$ in the interval [1,5].
 - (b) Solve the differential equation $xy'' y' = x^2e^x$. [6]
 - (c) If u = f(r), where $r^2 = x^2 + y^2$, show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(r) + \frac{1}{r}f'(r)$. [4]
 - (d) Evaluate $\int_0^\infty e^{-x^2} dx$. [4]
- 2. (a) Evaluate $\int_0^{4a} \int_{\frac{x^2}{4a}}^{2\sqrt{ax}} dy dx$ by changing the order of integration. [6]
 - (b) Evaluate $\iint_S xy \, dxdy$, where S is the region bounded by the x-axis, ordinate x=2a and [6] the curve $x^2 = 4ay$.
 - (c) Evaluate $J\left(\frac{x, y, z}{(r, \theta, \emptyset)}\right)$, where $x = r \sin \emptyset \cos \theta$, $y = r \sin \emptyset \sin \theta$, $z = r \cos \emptyset$. [4]
 - (d) Find the Laplace transform of $e^{-2t}t^2 + t \sin 3t$. [4]
- 3. (a) A fluid motion given by $\vec{F} = (x^2 y^2 + x)\hat{\imath} (2xy + y)\hat{\jmath}$ is irrotational? If so, find [6] its scalar potential ϕ .
 - (b) The temperature of the points in space is given by $T(x, y, z) = x^2 + y^2 z$. A mosquito located at (1, 1, 2) desires to fly in such a direction that it will get warm as soon as possible. In what direction should it move?
 - (c) Curl of any gradient field is zero? Justify your answer. [4]
 - (d) Find the value of n for which the vector field $r^n \vec{r}$ is solenoidal, where [4] $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$.

- 4. (a) Find the inverse Laplace transform of (i) $\log \frac{s+5}{s+3}$ (ii) $\frac{e^{-\pi s}}{(s+5)(s+3)}$ [6]
 - (b) Solve $y'' + 16y = 16 \tan 4x$, using variation of parameters method. [6]
 - (c) Find the solution of $3e^x \tan y \, dx + (1 e^x) \sec^2 y \, dy = 0$
 - (d) Solve the first order partial differential equation (y-z)p + (z-x)q = x-y. [4]

Section B: Answer only one question.

- 5. (a) Find the Laplace transform of $\frac{\sin t}{t}$. Hence, evaluate $\int_0^\infty \frac{e^{-t} \sin t}{t} dt$. [6]
 - (b) Use Green's theorem to evaluate $\int_C (2y^2 dx + 3x dy)$, where, C is the boundary of closed region bounded by the curves y = x and $y = x^2$.
 - (c) Explain ordinary, regular, and irregular points of a 2^{nd} order linear differential equation. [8] Hence, find the power series solution of y'' + y = 0, about x = 0.
- 6. (a) Form the partial differential equations for the relations given by:
 - (i) $\emptyset(x^2 + y^2 + z^2, x + y + z) = 0$ (ii) $z = f(x^2 y^2)$
 - (b) Show that two Legendre's polynomials of distinct degrees are orthogonal in [-1, 1]. [6]
 - (c) Solve the following partial differential equations: [8]

(i)
$$z = px + qy + p^2 + q^2$$
 (ii) $(D^3 - D'^3)z = x^3v^3$