BEST AVAILABLE COPY

(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003年1月3日 (03.01.2003)

PCT

(10) 国際公開番号 WO 03/001858 A1

(51) 国際特許分類?: H01L 21/60, H05K 13/04 H05K 3/34, 3/26.

江一丁目1番45号 東レエンジニアリング株式会 社内 Shiga (JP).

(74) 代理人: 伴俊光 (BAN, Toshimitsu); 〒160-0023 東京都 新宿区 西新宿8丁目1番9号 シンコービル 伴国際

(81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK,

DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU,

LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM,

PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN,

TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(21) 国際出願番号:

PCT/JP02/05829

(22) 国際出願日:

2002年6月12日(12.06.2002)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2001-187164 2001年6月20日(20.06.2001) JP 特願2002-43378 2002年2月20日(20.02.2002) JР 特願2002-122244 2002年4月24日(24.04.2002) JP

- (71) 出願人 (米国を除く全ての指定国について): 東レエ ンジニアリング株式会社 (TORAY ENGINEERING CO., LTD.) [JP/JP]; 〒530-0005 大阪府 大阪市 北区中 之島3丁目4番18号(中之島三井ビルディング) Osaka (JP).
- (84) 指定国 *(*広域): ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

添付公開書類:

国際調査報告書

特許事務所 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 山内 朗 (YA-MAUCHI, Akira) [JP/JP]; 〒520-2141 滋賀県 大津市 大

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: METHOD AND DEVICE FOR INSTALLATION

(54) 発明の名称: 実装方法および装置

(57) Abstract: A method and a device for installation, the method characterized by comprising the steps of forming an energy wave or energy particle flow area (9) in a clearance formed between connected parts with metal connection parts (4) and (5) before connecting the connected parts to each other, substantially washing the surfaces of the metal connection parts (4) and (5) of the connected parts simultaneously by the flowing energy wave or the energy particles, and connecting to each other the metal connection parts (4) and (5) of both connected parts having the surfaces activated by washing, whereby, basically, a chamber can be eliminated, the use of a large amount of special gas can be eliminated, the metal connection parts (4) and (5) can be activated by efficiently washing out the surfaces thereof, and a connection at the ambient temperature or a low temperature is enabled.

(57) 要約:

本発明は、金属接合部(4)(5)を備えた被接合物同士を接合する前に、両被接合物間に形成される間隙内に、エネルギー波もしくはエネルギー粒子の流動領域(9)を形成し、流動するエネルギー波もしくはエネルギー粒子により両被接合物の金属接合部(4)(5)の表面を実質的に同時洗浄し、洗浄により表面が活性化された両被接合物の金属接合部(4)(5)同士を接合することを特徴とする実装方法、および実装装置である。基本的にチャンバが不要となり、かつ、大量の特殊ガスの使用も不要となり、金属接合部(4)(5)の表面を効率よく洗浄して活性化でき、常温接合、あるいは低温での接合が可能になる。

10

15

20

25

明 細 書

実装方法および装置

本発明は、ハンダバンプ等の金属接合部を備えたチップ等からなる被接合物を、基板等の金属接合部を備えた他の被接合物に接合する実装方法および装置に関し、とくに、金属接合部の表面を洗浄して活性化し金属接合部同士を効率よく接合できるようにした実装方法および装置に関する。

<u>背___</u> 景 技 術

ハンダ接合部等の金属接合部を備えた被接合物の実装、たとえば、チップにハンダバンプを形成し、チップをフェイスダウンの形で基板に近づけ、ハンダバンプを基板のパッドに当接させた後、チップのバンプを加熱溶融させて基板のパッドと接合するようにしたチップの実装方法はよく知られている。このようなハンダバンプを使用したフリップチップ工法においては、接合工程に入るまでにハンダバンプが大気等に触れることにより一次酸化したり、表面に有機物や異物が付着したりするおそれがある。このように、酸化膜が金属接合部の表面に形成されていたり、金属接合部の表面に有機物や異物が付着していると、目標とする接合状態が得られないおそれがある。これらに対処するために、従来の大気圧下の実装においては、相当高温下での接合が必要であった。

一方、エネルギー波もしくはエネルギー粒子によって金属接合部の表面を洗浄し活性化することにより、常温あるいはそれに近い温度で接合する方法が知られつつある。たとえば特許第2791429号公報には、両シリコンウエハーの接合面を接合に先立って室温の真空中で不活性ガスイオンビームまたは不活性ガス高速原子ビームで照射してスパッタエッチングする、シリコンウエハー同士の常温接合法が開示されている。この常温接合法では、シリコンウエハーの接合面における酸化物や有機物等が上記のビームで飛ばされて活性化されたシリコンの原子で表面が形成され、その表面同士が、原子間の高い結合力によって接合される。したがって、この方法では、接合のための加熱を不要化でき、常温での接合が可能になる。

また、従来の実装方法において、加熱接合の際およびその直前には、加熱によ

10

15

20

25

り金属接合部の表面が酸化性ガス雰囲気下で二次酸化するおそれがあるので、チャンパ内を大気圧下不活性ガスで置換し、その状態で接合することにより二次酸化を抑制する方法も知られている。

しかしながら、前述の従来一般の方法では、金属接合部の表面同士の接合には、酸化膜や有機物、吸着物等に対処するために高温での拡散等が必要であるという問題があった。また、真空中であれば、特許第2791429号公報に示されているように表面活性化により常温あるいは低温での接合が可能となるが、真空チャンパが必要であり、かつ、高真空状態にするための大がかりな設備も必要になるという問題があった。さらに、大気圧下でも、上述のように不活性ガスで置換すれば、より良好な接合が可能となるが、やはり不活性ガスを閉じ込めるためのチャンパが必要になり、チャンパ内を不活性ガスで置換するために大量の不活性ガスを供給する大がかりな設備も必要になるという問題があった。すなわち、従来方法において、一次酸化による酸化膜が形成されないように不活性ガス雰囲気中や真空下で接合を行うためには、基本的に大がかりなチャンパが必要であった。また、たとえ上記のような表面活性化のための表面洗浄工程を有するとしても、

また、たとえ上記のような表面活性化のための表面洗浄工程を有するとしても、その表面洗浄工程が接合工程の前工程として設けられていると、被接合物が表面洗浄工程から接合工程に搬送される際に大気に触れるため、被接合物の表面に多かれ少なかれ酸化膜が再付着する可能性が高い。酸化膜が再付着すると、再付着しない場合に比べ、接合に要する時間が大幅に長くなり、それだけ、接合工程の効率が低下することになる。

さらに、表面活性化のための表面洗浄工程と、接合工程とをそれぞれ別のチャンバで実施し、洗浄チャンバ内での表面活性化のための表面洗浄状態を維持しつつ、洗浄された被接合物を接合チャンバ内に移送し、接合チャンバ内を不活性ガス雰囲気または真空状態にして接合を行う方法も考えられるが、接合チャンバ内を不活性ガス雰囲気または真空状態にしたとしても、完全に不活性ガスのみの雰囲気あるいは完全な真空状態の形成は現実的には困難である。したがって、このような方法により形成された雰囲気中においても、微量の不純物や水分、ゴミが含まれることになり、被接合物同士の接合状態に影響を及ぼすことになる。また、不活性ガス雰囲気にする場合には大量の置換ガスが必要となるという問題もある。

10

15

20

25

発明の開示

そこで本発明の目的は、基本的に大がかりなチャンパを不要とし、かつ、大量の不活性ガス等の特殊ガスの使用も不要とし、大気中を搬送されてきた被接合物の金属接合部の表面を効率よく洗浄して活性化し、常温接合、あるいは特に高温にしないでも接合できるようにした、効率の良い実装方法および装置を提供することにある。

また、本発明の目的は、洗浄と接合を別チャンパで実施し、両チャンパを接続した形態においても、接合直前の金属接合部の表面を好ましい状態にし、望ましい接合状態を効率よく得ることができるようにした実装方法および装置を提供することにある。

上記目的を達成するために、本発明に係る実装方法は、金属接合部を備えた被接合物同士を接合する実装方法において、被接合物同士を接合する前に、対向する両被接合物間に形成される間隙内に、エネルギー波もしくはエネルギー粒子の流動領域を形成し、流動するエネルギー波もしくはエネルギー粒子により両被接合物の金属接合部の表面を実質的に同時洗浄し、洗浄により表面が活性化された両被接合物の金属接合部同士を接合することを特徴とする方法からなる。

この実装方法においては、大気中を搬送されてきた被接合物同士を接合する前に、両被接合物の金属接合部の表面を実質的に同時洗浄し、洗浄により表面が活性化された両被接合物の金属接合部同士を接合することができる。

すなわち、大気中を搬送されてきた両被接合物の金属接合部の表面を同時洗浄し、両被接合物の金属接合部の表面同士が活性化された状態で接合される。表面の酸化膜や有機物がエネルギー波もしくはエネルギー粒子により除去され、酸化膜等の再付着が防止された状態直後の接合とされるので、大気圧中、とくに実質的に大気圧空気中での接合も可能になる。ここで実質的に大気圧空気中で接合するとしているのは、チャンバを備えた既存装置等を使用する場合には、減圧や不活性ガスへの置換も可能であるため、少なくともいずれかの条件を加えてもよいという意味である。ただし、減圧する場合にも、従来方法で使用されていたような高真空条件は不要であり、不活性ガスに置換する場合にも、従来方法で使用されていたような多量のガス供給は不要で、たとえば、後述の如く、プラズマ発生

5 .

10

15

20

25

用の不活性ガスがプラズマの流動とともに流される程度でよい。また、チャンバを新たに設ける場合には、両被接合物間部分を、部分的にシールできるだけの小型のものでよい。

また、上記実装方法においては、被接合物の金属接合部を洗浄チャンバ内でエネルギー波もしくはエネルギー粒子により洗浄した後、被接合物を接合チャンバ内に移送し、該接合チャンバ内を不活性ガス雰囲気または真空にして被接合物同士を接合する前に、両被接合物の金属接合部の表面を実質的に同時洗浄し、洗浄により表面が活性化された両被接合物の金属接合部同士を接合することもできる。

すなわち、本発明における、接合直前における両被接合物の金属接合部の表面の同時洗浄という技術思想は、被接合物の金属接合部の洗浄と接合とを別チャンバ内で行い、両チャンバを接合した形態の実装にも展開できるものである。この形態においては、接合チャンバ内にたとえ微量の不純物や水分、ゴミが含まれていたとしても、接合直前に、対向する両被接合物間に形成される間隙内に流動されるエネルギー波もしくはエネルギー粒子により両被接合物の金属接合部の表面が実質的に同時洗浄され、不純物や水分、ゴミのない接合にとって望ましい状態とされたのちに接合が実施されることになる。つまり、接合直前に、接合すべき部位が局部的に効率よく洗浄される。したがって、この形態においても、接合チャンバ内全体を大量の不活性ガスを使用して置換したり高真空状態にする必要はない。

さらに、上記実装方法においては、被接合物の金属接合部を洗浄チャンバ内でエネルギー波もしくはエネルギー粒子により洗浄した後、大気中を非酸化性ガスでパージしながら搬送し、搬送した被接合物同士を接合する前に、両被接合物の金属接合部の表面を実質的に同時洗浄し、洗浄により表面が活性化された両被接合物の金属接合部同士を接合することもできる。

すなわち、本発明に係る接合直前における両被接合物の金属接合部の表面の同時洗浄という技術思想は、被接合物の金属接合部の洗浄用のチャンパ内で行い、それを接合部に搬送して実装する場合にもできるものである。この形態においては、大気中を洗浄後の被接合物が搬送される際、非酸化性ガスでパージしながら搬送することにより、清浄な洗浄後の状態に維持することができ、その状態にて、

10

15

20

25

接合直前に、対向する両被接合物間に形成される間隙内に流動されるエネルギー波もしくはエネルギー粒子により両被接合物の金属接合部の表面が実質的に同時洗浄され、不純物やゴミのない接合にとって望ましい状態とされたのちに接合が実施されることになる。つまり、接合直前に、接合すべき部位が局部的に効率よく洗浄される。したがって、この形態においても、酸化膜等の再付着が防止された状態直後の接合とされるので、大気圧中、とくに実質的に大気圧空気中での接合も可能になる。パージ用の非酸化性ガスとしては、たとえば、アルゴンガスや窒素ガスからなる、非酸化ガス、不活性ガス、還元ガスなどを使用できる。

上記接合前同時洗浄用のエネルギー被もしくはエネルギー粒子としては、プラズマ (大気圧プラズマを含む。)、イオンビーム、原子ビーム、ラジカルビーム、レーザのいずれかを用いることができるが、中でも取り扱い易さ、表面洗浄効果の面から、プラズマ (大気圧プラズマを含む。) およびイオンビームを用いることが好ましい。

このエネルギー波もしくはエネルギー粒子により対向している接合前の両被接 合物の金属接合部の表面を同時洗浄するには、対向する両被接合物間に形成され る間隙内に、側方からエネルギー波もしくはエネルギー粒子を流動させることが 好ましい。

側方からエネルギー波もしくはエネルギー粒子を流動させる場合、平行に対向 配置されている両被接合物間の間隙内に、真横から、その間隙延在方向と平行な 方向に流動させてもよいが、エネルギー波もしくはエネルギー粒子が洗浄すべき 面により当たりやすいようにするために、流動方向を洗浄面に対して傾け、所定 の角度をもたせることが好ましい。

この角度をもたせるには大別して2つの方法を採用できる。つまり、同時洗浄時に、両被接合物の少なくとも一方をエネルギー波もしくはエネルギー粒子の流動方向に対して傾ける方法、すなわち、被接合物側を傾ける方法と、エネルギー波もしくはエネルギー粒子の流動方向を複数方向に設定し、両被接合物の少なくとも一方に対して流動方向を傾ける方法、すなわち、流動方向側を傾ける方法の、いずれかを採用できる。

また、本発明に係る実装方法においては、両被接合物の接合前に、周囲に対し

10

15

20

25

少なくとも両被接合物間部分を局部的に真空状態にし、たとえば、小型のチャンバ(ローカルチャンバ)によりこの部分をシールして真空(減圧)状態にし、該両被接合物間部分にエネルギー波もしくはエネルギー粒子を流動させて両被接合物の金属接合部の表面を実質的に同時洗浄するようにしてもよい。

同時洗浄用エネルギー波もしくはエネルギー粒子としてプラズマを用いる場合には、ノズルによりプラズマを供給することもできるし、平行平板電極間にプラズマを発生させることもできる。たとえば、プラズマ供給ノズルを両被接合物間部分に向けて配置することができる。あるいは、対向する被接合物保持手段間の側方に設けた電極間にプラズマを発生させるようにすることができる。また、対向する被接合物保持手段に持たせた電極間にプラズマを発生させるようにすることもできる。さらに、対向する被接合物保持手段間の側方に設けた電極および対向する被接合物保持手段に持たせた電極の両方によりプラズマを発生させるようにすることもできる。さらにまた、このような電極によりプラズマを発生させるに際し、アース側電極を電気的に切り替えながら洗浄するようにすることもできる。プラズマは、流動させることが好ましいが、単に上記洗浄箇所に対してばんやりと発生される場合も、本発明における流動プラズマの概念に含まれる。

また、ローカルチャンバ内で真空状態で洗浄する場合には、たとえば、洗浄後少なくとも被接合物間を一旦非酸化性ガスで置換し、両被接合物を大気圧で接合することも可能である。

さらに、同時洗浄後に両被接合物を接合するとき、少なくとも一方の被接合物 を静電的に保持しつつ加熱することもできる。

前述したようなプラズマ発生用電極の切替技術は、両被接合物の金属接合部を 同時洗浄する場合以外にも展開でき、本発明はその展開技術についても提供する。 すなわち、本発明は、金属接合部を備えた被接合物同士を接合する実装方法にお いて、両被接合物を対向させて保持する手段にそれぞれプラズマ発生用電極を設 け、両電極間にプラズマを発生させて被接合物の金属接合部を洗浄するとともに、 両電極の極性を切り替えることにより発生するプラズマの照射方向を切り替えて 両被接合物の金属接合部を洗浄し、洗浄により表面が活性化された両被接合物の 金属接合部同士を接合することを特徴とする実装方法も提供する。

10

15

20

25

この実装方法においては、アルゴンガスなどの不活性ガス雰囲気にて、または 真空状態にて上記洗浄を行うことが好ましい。

本発明に係る実装装置は、金属接合部を備えた被接合物同士を接合する実装装置であって、接合前に対向する両被接合物間に形成される間隙内に両被接合物の金属接合部の表面を実質的に同時洗浄可能にエネルギー波もしくはエネルギー粒子供給するエネルギー波もしくはエネルギー粒子供給手段を有することを特徴とするものからなる。

この本発明に係る実装装置は、被接合物の金属接合部をエネルギー波もしくは エネルギー粒子により洗浄する洗浄チャンバと、該洗浄チャンバに接続され、移 送されてきた被接合物同士を、不活性ガス雰囲気下または真空下で接合する接合 チャンバと、該接合チャンバ内において、接合前に両被接合物の金属接合部の表 面を実質的に同時洗浄する前記エネルギー波もしくはエネルギー粒子供給手段と を有するものに構成することもできる。

また、本発明に係る実装装置は、被接合物の金属接合部をエネルギー波もしく はエネルギー粒子により洗浄する洗浄チャンパと、洗浄された被接合物を、大気 中を非酸化性ガスでパージしながら搬送する手段と、搬送されてきた被接合物同 士の接合前に両被接合物の金属接合部の表面を実質的に同時洗浄する前記エネル ギー波もしくはエネルギー粒子供給手段とを有するものに構成することもできる。

本発明に係る実装装置においても、流動方向を洗浄面に対して傾け、所定の角度をもたせるために、両被接合物の少なくとも一方の保持手段が、同時洗浄時に、両被接合物の少なくとも一方をエネルギー波もしくはエネルギー粒子の流動方向に対して傾けることが可能な手段からなる構成とすることができる。また、エネルギー波もしくはエネルギー粒子供給ノズルが、エネルギー波もしくはエネルギー粒子の流動方向を複数方向に設定可能で、かつ、両被接合物の少なくとも一方に対して流動方向を傾けることが可能な手段からなる構成とすることもできる。

また、本発明に係る実装装置においては、両被接合物の接合前に、周囲に対し 少なくとも両被接合物間部分を部分的に真空状態にするローカルチャンバを有し、 該ローカルチャンバ内に、エネルギー波もしくはエネルギー粒子供給手段が配設 される構造とすることも可能である。

10

15

25

この構成を採用する場合、上記チャンバの少なくとも一部を、弾性シール材か ら構成しておくと、少なくとも一方の被接合物の姿勢制御が行いやすくなる。

エネルギー波もしくはエネルギー粒子供給手段としては、プラズマ発生装置を使用でき、たとえば大気圧プラズマ発生装置からなるものを使用できる。このようなプラズマ発生装置としては、プラズマ発生部にガス充塡手段を有するものも使用できる。また、プラズマ発生装置としては、プラズマ供給ノズルを含むもの、あるいは、プラズマを発生する平行平板電極を含むもののいずれも使用できる。

たとえば、前記のようなローカルチャンバを有する場合、エネルギー波もしく はエネルギー粒子供給ノズルを、平行平板プラズマ発生装置の一部材として設け ることもできる。

また、プラズマ発生装置としては、対向する被接合物保持手段間の側方に設けられる電極を有するものに構成できる。また、対向する被接合物保持手段にプラズマ発生装置の電極が設けられているものに構成してもよい。あるいは、対向する被接合物保持手段間の側方におよび対向する被接合物保持手段に、プラズマ発生装置の電極が設けられているものに構成してもよい。さらに必要な場所に万遍なくプラズマを発生させるために、アース側電極を電気的に切り替える手段を有するものとしてもよい。

真空中での接合前同時洗浄用のエネルギー波もしくはエネルギー粒子供給手段 はイオンビーム発生装置から構成することもできる。

20 また、本発明に係る実装装置は、洗浄後少なくとも被接合物間を一旦非酸化性 ガスで置換する手段を有するものに構成してもよい。

また、ローカルチャンバを有する場合、ローカルチャンバ内を真空状態にすると、吸引(吸着)方式の被接合物保持手段、とくに吸引(吸着)方式のヒートツールの使用が困難となるので、別方式の保持手段の使用が必要になる。たとえば、接合時に少なくとも一方の被接合物を保持する手段として、基材内に内部配線パターンを備え、通電により真空中においても静電気力により被接合物を保持可能な保持手段を有するものに構成できる。この場合、接合時に少なくとも一方の被接合物を保持する手段として、たとえば、セラミック基材内に内部配線パターンを備え、通電により真空中においても静電気力により被接合物を保持可能な保持

10

15

20

25

ツールを用いることができる。

このような保持ツールは、たとえば、加熱も可能な内部配線パターンを2系統有し、それらが静電気力発生用と加熱用に別駆動可能に構成されているものとすることができる。また、静電気力により被接合物を保持する保持手段がプラズマ発生用電極を兼ね備えた構造に構成されていてもよい。

本発明に係る実装方法および装置においては、両被接合物同士の接合を超音波接合手段により行うこともできる。

また、本発明は、金属接合部を備えた被接合物同士を接合する実装装置であって、両被接合物を対向させて保持する手段に、それぞれ、被接合物の金属接合部を洗浄するためのプラズマ発生用電極が設けられており、かつ、両電極の極性を切り替えることにより発生するプラズマの照射方向を切り替える極性切替手段を有することを特徴とする実装装置も提供する。

この実装装置においては、上記プラズマによる洗浄時に少なくとも前記両電極間を不活性ガス雰囲気または真空状態にする手段を有することが好ましい。

このような本発明に係る実装方法および装置においては、両被接合物の金属接合部の表面が流動するエネルギー波ないしエネルギー粒子により同時洗浄されるので、洗浄が短時間できわめて効率よく行われる。この洗浄は、大気中を搬送されてきた被接合物に対して行うことができ、洗浄は実質的に接合直前に行われ、該洗浄により、両金属接合部の表面から酸化物や有機物等が適切に除去され、両表面がともに活性化されて、この状態のまま、酸化膜等の再付着が防止された状態にて、両表面が互いに押し付けられて効率よく接合される。エネルギー波ないしエネルギー粒子は、両被接合物間の小さな流動領域に流動させればよいから、基本的にはチャンバは不要であり、チャンバがなくても、流動するエネルギー波ないしエネルギー粒子により両金属接合部の表面が効果的に洗浄される。そして、適切に表面が活性化された金属接合部同士の接合となるから、常温あるいは低温での接合が可能になる。また、加熱接合や超音波接合を行う場合にあっても、適切に洗浄、活性化された表面同士の接合であるから、より容易に所望の接合を行うことが可能になり、不純物が表面から除去されているので、接合の信頼性も向上する。

10

15

20

25

また、本発明に係る接合直前の両被接合物の金属接合部の同時洗浄を、被接合物の金属接合部の洗浄と接合とを別チャンバ内で行い、両チャンバを接合した形態の実装に適用する場合においても、接合直前の互いに対向された両被接合物の狭い間隙内に対してエネルギー波ないしエネルギー粒子を流動させることで、効率よくかつ効果的に両金属接合部を同時洗浄でき、不純物等が表面から除去された望ましい状態で接合が開始されることになる。したがって、大量の不活性ガスの使用等を要求することなく、信頼性の高い接合状態が得られる。

さらに、本発明に係る接合直前の両被接合物の金属接合部の同時洗浄を、被接合物の金属接合部の洗浄を洗浄用チャンバ内で行い、大気中を非酸化性ガスでパージしながら搬送し、搬送した被接合物同士を接合に供する形態の実装に適用する場合においても、接合直前の互いに対向された両被接合物の狭い間隙内に対してエネルギー波ないしエネルギー粒子を流動させることで、効率よくかつ効果的に両金属接合部を同時洗浄でき、不純物等が表面から除去された望ましい状態で接合が開始されることになる。したがって、大量の不活性ガスの使用等を要求することなく、信頼性の高い接合状態が得られる。

また、プラズマ発生用電極を切り替えてプラズマ照射方向を切り替えるようにした本発明に係る実装方法および実装装置においては、両被接合物の接合面をともに確実に洗浄できるので、プラズマ洗浄の効果を確実に発揮させて信頼性の高い接合が可能となる。

このように、本発明に係る実装方法および装置によれば、接合すべき両金属接合部の表面を、この両被接合物で形成される間隙内に局部的に流動するエネルギー被もしくはエネルギー粒子により同時洗浄して活性化するので、基本的にチャンバを不要化でき、かつ、大量の不活性ガス等の特殊ガスの使用も不要化しつつ、効率のよい接合が可能となる。また、金属接合部の表面活性化により、常温接合、あるいは特に高温にしないでも接合できるようになり、実装装置、実装工程が大幅に簡素化される。

また、本発明に係る実装方法および装置は、互いに接続された洗浄チャンパと 接合チャンパを備えた装置に対しても、あるいは洗浄チャンパ内で洗浄した被接 合物を非酸化性ガスでパージしながら搬送した後接合する場合に対しても、接合

20

25

直前の同時洗浄方法および装置として実施することができ、信頼性の高い接合状態を達成することができる。

また、接合直前の同時洗浄用にローカルチャンパの構造を採用すれば、より信頼性の高い接合状態を達成することができる。さらに、ローカルチャンパ内を真空状態にする場合には、静電チャックヒータを採用することにより、所望の被接合物の保持と加熱の両方を問題なく行うことができる。また洗浄後、接合時に加熱を併用すれば、更に接合信頼性はアップし、更に加熱プラス超音波を行えば、より一層信頼性は向上する。

この本発明に係る実装方法および装置は、超音波や加熱接合にも適用でき、接 10 合の容易化、不純物除去による接合の信頼性向上に寄与できる。

さらに、本発明は、プラズマ洗浄における電極の切替技術も提供し、これによって同時洗浄の場合に限らず本発明に係る技術を一層広く展開することができる。

図面の簡単な説明

図1は、本発明の第1実施態様に係る実装装置の概略構成図である。

15 図 2 は、図 1 の装置において多数の金属接合部が配置されている場合を示す部 分斜視図である。

図3は、図1の装置の変形例に係る、ガス充塡手段を付加した場合の概略構成 図である。

図4は、本発明の第2実施態様に係る実装装置の概略構成図である。

図5は、本発明の第3実施態様に係る実装装置の部分概略構成図である。

図6は、本発明の第4実施態様に係る実装装置の部分概略構成図である。

図7は、本発明の第5実施態様に係る実装装置の部分概略構成図である。

図8は、本発明の第6実施態様に係る実装装置の部分概略構成図である。

図9は、本発明の第7実施態様に係る実装装置の部分概略構成図である。

図10は、本発明の第8実施態様に係る実装装置の部分概略構成図である。

図11は、本発明の第9実施態様に係る実装装置の部分概略構成図である。

図12は、本発明の第10実施態様に係る実装装置の部分概略構成図である。

図13は、本発明の第11実施態様に係る実装装置の概略構成図である。

図14は、本発明の第12実施態様に係る実装装置の部分概略構成図である。

図15は、図14の装置のヒートツールを下面側からみた概略拡大斜視図である。

- 図16は、本発明の第13実施態様に係る実装装置の概略構成図である。
- 図17は、本発明の第14実施態様に係る実装装置の概略構成図である。
- 5 図18は、本発明の第15実施態様に係る実装装置の概略構成図である。 〔符号の説明〕
 - 1、21 実装装置
 - 2 一方の被接合物としてのチップ
 - 3 他方の被接合物としての基板
- 10 4 バンプ
 - 5 パッド
 - 6 ステージ
 - 7 ツール
 - 8 間隙
- 15 9、29 流動領域
 - 10 エネルギー波もしくはエネルギー粒子供給手段としての大気圧プラズマ発
 - 生装置
 - 11 高電圧印加手段
 - 12 アース側
- 20 13 ノズル部
 - 14 ガス充塡手段
 - 15 吸引管
 - 22 チャンバ
 - 23 減圧手段
- 25 24 大気圧プラズマ発生装置
 - 25 高電圧印加手段
 - 26 電極
 - 27 アース側
 - 28 対向電極

- 30 洗浄チャンバ
- 3 1 パージ手段
- 32 ノズル
- 33 エネルギー波もしくはエネルギー粒子の流動方向
- 5 41、42、51、61 ノズル
 - 71 ローカルチャンパ
 - 72 真空ポンプ
 - 73a、73b 平行平板電極
 - 74 プラズマ発生装置
- 10 75 弾性シール材
 - 81、91 ローカルチャンバ
 - 82、92 弾性シール材
 - 101、101a、101b 被接合物
 - 102 洗浄チャンバ
- 15 103 洗浄チャンバ内でのエネルギー波もしくはエネルギー粒子
 - 104 エネルギー波もしくはエネルギー粒子発生手段
 - 105 接合チャンバ
 - 106 搬送手段
 - 107 シャッター手段
- 20 108 ツール
 - 109 ステージ
 - 110 プラズマ発生ノズル
 - 111 ローカルチャンバ
 - 112 真空ポンプ
- 25 113 ヘッド
 - 114 ヒートツール (静電チャックヒータ)
 - 1.15 チップ
 - 116 ステージ
 - 117 基板

- 118a、118b 平行平板電極
- 119 プラズマ発生装置
- 120 プラズマ
- 121a、121b 内部配線パターン
- 5 131、132 被接合物
 - 133、134 保持手段
 - 135、136 電極
 - 137、141 プラズマ
 - 138 ローカルチャンバ
- 10 1 4 2 、 1 5 0 プラズマ発生用電源
 - 151 不活性ガス供給手段
 - 152 真空ポンプ

発明を実施するための最良の形態

以下に、本発明の望ましい実施の形態を、図面を参照して説明する。

図1は、本発明の第1実施態様に係る実装装置1を示している。図1において 15 は、被接合物として、一方はチップ2で他方は基板3である場合を例示している。 チップ2上には多数のバンプ4(図1には2つのバンプ4を示してある)が設け られており、基板 3 には対応するパッド 5 (たとえば電極など)が設けられてい る。本実施態様では、基板3を保持するステージ6とチップ2を保持するツール 7が設けられ、ステージ6はX、Y方向(水平方向)またはX、Y方向と回転方 20 向(θ方向)に位置調整できるようになっており、ツール7は2方向(上下方 向)または2方向と回転方向に位置調整できるようになっている。ツール7を下 降させることにより、接合前に両被接合物2、3が適当な間隙8をもって対向さ れ、この状態で該間隙8内に後述のようにエネルギー波もしくはエネルギー粒子 の流動領域 9 が形成される。流動するエネルギー波もしくはエネルギー粒子によ 25 り、金属接合部としてのチップ2のバンプ4と基板3のパッド5が同時洗浄され、 洗浄により活性化されたバンプ4とパッド5の表面同士が、適当な加圧手段(図 示略)によりツール7を下降させることにより圧接、接合される。

上記において、チップ2とは、たとえば、ICチップ、半導体チップ、光素子、

10

15

20

25

表面実装部品、ウエハーなど、種類や大きさに関係なく、基板3と接合させる側の全てのものをいう。バンプ4とは、たとえば、ハンダバンプ、メッキバンプ、スタッドバンプなど基板3に設けられたパッド5と接合する全てのものをいう。また、基板3とは、たとえば、樹脂基板、ガラス基板、フィルム基板、チップ、ウエハーなど、種類や大きさに関係なく、チップ2と接合される側の全てのものを指す。パッド5とは、たとえば、電気配線を伴った電極、電気配線につながっていないダミー電極など、チップ2に設けられたバンプ4と接合する全てのものをいう。

また、上記のようなステージ6、ツール7は、一般には、平行移動および/または回転自在に装着されるが、必要に応じて、それらと昇降とを組み合わせた形態に装着してもよい。さらに、チップ2と基板3の位置合わせに関して、チップ2と基板3の位置合わせ後にツール7を下降させる装置形態であってもよい。

なお、図1には、チップ2のバンプ4と基板3のパッド5は2個ずつ示してあるが、現実には、それぞれ多数形成されている場合が多く、たとえば図2に示すような接合形態となる。つまり、多数のチップ2のバンプ4と、それに対応する多数の基板3のパッド5が、同時に接合される形態である。

図1において、対向する接合前のチップ2と基板3の間の間隙8に対し、その側方に、エネルギー波もしくはエネルギー粒子供給手段(エネルギー波もしくはエネルギー粒子供給ノズル)として、大気圧プラズマ発生装置10が配置される。この大気圧プラズマ発生装置10は、必要なときにのみ所定位置に配置されるよう、進退可能に設けてもよい。大気圧プラズマ発生装置10は、たとえば高電圧印加手段11とアース側12との間で大気圧プラズマを発生させ、それをノズル部13を介して上記間隙8内に向けて流し、該間隙8内に所定のプラズマ流動領域9を形成するようになっている。

この大気圧プラズマ発生装置 10には、図3に示すように、ガス充塡手段を 14を付設してもよい。ガス充塡手段を 14は、プラズマ発生部にガスを供給し、プラズマをより発生しやすくするとともに、発生したプラズマをガスの流れにのせて上記間隙 8 内に向けて流動させる。ガスとしては、たとえば、Ar、Na、Heガス等を使用でき、さらには、これら不活性ガスと Ha、Oa、CF4 ある

いは空気との混合ガスを用いることもできる。

5

10

15

20

25

なお、図1、図3における15は、所望のプラズマ流動領域9を効率よく形成するために設けられた吸引管を示している。吸引管15を設けなくても、所望のプラズマ流動領域9が形成される場合には、別段設けなくてもよい。また、図中、高電圧印加手段11は交流式のものに示されているが、直流式であってもよい。

このように構成された実装装置1を用いて、本発明に係る実装方法は次のように実施される。

図1に示したように、大気中を搬送されてきた両被接合物 2、3の接合前に、両被接合物 2、3間に形成された間隙 8に向けて、大気圧プラズマ発生装置 1 0からプラズマが供給され、プラズマの流動領域 9 が形成される。流動するプラズマにより、互いに対向配置されている金属接合部としてのチップ 2 のバンプ 4 と基板 3 のパッド 5 が同時に洗浄され、洗浄によりバンプ 4 とパッド 5 の表面がと もに活性化される。表面が活性化されたバンプ 4 とパッド 5 は、そのまま(つまり、洗浄と同時に、あるいは洗浄直後に)接合に供されるので、たとえば大気圧空気中であっても、常温あるいは低温の条件にて、接合することが可能になる。したがって、従来必要とされていた大がかりなチャンバは不要になる。この状態で、ツール 7 を下降させてバンプ 4 をパッド 5 に適当な加圧力をもって圧着させることにより、バンプ 4 とパッド 5 の表面同士が接合され、所望のチップ 2 と基板 3 の接合が効率よく行われる。

このとき、ツール 7 にヒータを内蔵しておき、上記加圧とともに加熱するようにしてもよい。加熱により、一層容易に接合することが可能になる。ただし、バンプ 4 とパッド 5 の表面が洗浄により活性化されているので、非常に接合しやすい状態になっているから、従来の単なる加熱接合の場合のような高温加熱は不要である。たとえば、金/金接合の場合、従来法の加熱接合によると 4 0 0 ℃程度の高温加熱が必要であったが、本発明の方法を用いると 1 5 0 ℃~ 2 0 0 ℃程度の加熱で接合が可能となる。また、超音波接合に対しても、金属接合部の表面が洗浄により活性化されることにより、接合の容易化がはかられる。

また、図3に示したようにガス充塡手段を14を付設すれば、プラズマをより 発生させやすくなるとともに、プラズマの流動とともに、少量ではあるが供給さ

れたガスが流動領域9に流れ込むので、バンプ4とパッド5との接合部が局部的 にガス雰囲気下におかれ、表面の酸化がより確実に防止された状態にて接合が行 われる。したがって、所望の接合状態が、一層確実に得られることになる。

上記実施態様では、チャンバの不要化が達成できたが、たとえば、チャンバが 既に設けられている実装装置に本発明を適用する場合には、そのチャンバの存在 を利用して、真空下(減圧下)で接合を行うことも可能である。

5

10

15

20

たとえば図4に第2実施態様を示すように、チャンバ22を備え、該チャンバ22に、減圧手段23(たとえば、真空ポンプ)が接続された実装装置21に構成し、エネルギー波もしくはエネルギー粒子供給ノズルとして大気圧プラズマ発生装置24を設けた構造に構成できる。図4に示した態様では、大気圧プラズマ発生装置24として、チップ2と基板3との間隙8の一方の側方に高電圧印加手段25を接続した電極26を配置し、他方の側方にとアース側27に接続した対向電極28を配置し、両電極間に大気圧プラズマの流動領域29を形成する構成としたが、これに限定されるものではない。流動領域29を流動される大気圧プラズマによりチップ2のバンプ4と基板3のパッド5が同時に洗浄され、活性化された後接合に供される。

また、本発明においては、たとえば図5に第3実施態様を示すように、洗浄チャンバ30内で被接合物(たとえば、チップ2と基板3)が洗浄され、それらを搬送して図1に示したのと同様にエネルギー波もしくはエネルギー粒子の流動領域9を形成して接合直前に同時洗浄する場合、大気中を搬送中に非酸化性ガスパージ手段31によりパージしながら搬送し、洗浄チャンバ30内での洗浄による清浄な状態を保ちながら、上記同時洗浄に供することもできる。非酸化性ガスパージ手段31は固定式としてもよく、搬送される被接合物とともに移動される移動式としてもよい。

25 さらに、上記各実施態様においては、エネルギー波もしくはエネルギー粒子を、 側方から、平行に対向配置されている両被接合物間の間隙内に、その間隙延在方 向と平行な方向に流動させるようにしたが、エネルギー波もしくはエネルギー粒 子が洗浄すべき被接合物の接合面により当たりやすいようにするために、流動方 向を洗浄面に対して傾け、所定の角度をもたせることが好ましい。

たとえば図6に第4実施態様を示すように、洗浄時に、チップ2および/または基板3を、それらを保持しているツール7、ステージ6を傾けることにより、 ノズル32からのエネルギー波もしくはエネルギー粒子の流動方向33に対して 所定の角度だけ傾け、流動するエネルギー波もしくはエネルギー粒子が洗浄面に より当たりやすいような状態にすることができる。これには、ツール7、ステージ6自体が有している角度調整機能を利用すればよい。

5

10

15

20

25

また、図7に第5実施態様を示すように、たとえばノズルを複数設け(図示例では2つのノズル41、42)、チップ2や基板3に対して所定の角度をつけてエネルギー波もしくはエネルギー粒子を流動させるようにすることもできる。また、図8に第6実施態様を示すように、単数のノズル51であっても、そのノズル51を所定の角度をもって揺動させ、エネルギー波もしくはエネルギー粒子を、両傾角方向に交互に流動させ、それによって実質的に同時洗浄を行う形態を採ることも可能である。さらに、図9に第7実施態様を示すように、枝分かれした単数ノズル61にてエネルギー波もしくはエネルギー粒子をチップ2や基板3に向けて流動させることもできる。

本発明においては、上記のような大気圧プラズマ方式の洗浄の他、部分真空状態を形成して洗浄する方法も可能である。たとえば図10に第8実施態様の要部の概略構成を示すように、少なくとも、両被接合物としてのチップ2と基板3間部分をシールできるように、部分的に小型のローカルチャンバ71を設け、ローカルチャンバ71内から真空ポンプ72等により吸引してローカルチャンバ71内を真空(減圧)状態にし、ローカルチャンバ71内に対向配置した、たとえば平行平板の電極73a、73bを備えたプラズマ発生装置74により、チップ2と基板3の間にプラズマを流動させ、それによって同時洗浄することができる。ローカルチャンバ71の構成部材の少なくとも一部を弾性シール材75で構成しておけば、所定の真空シール状態を維持しつつ、チップ2や基板3の姿勢や位置制御を容易に行うことができる。

上記弾性シール材は、たとえば図11に第9実施態様を示すように、ローカルチャンバ81の側板部を弾性シール材82で構成するように配置してもよく、たとえば図12に第10実施態様を示すように、ローカルチャンバ91の全体を弾

性シール材92で構成するようにしてもよい。図10~図12に示した形態に限らず、ローカルチャンバ内、とくに洗浄すべき部位周辺を所定の真空状態にできるものであれば、どのような形態であってもよい。

このように、小型のローカルチャンバでシールしてチップ 2 と基板 3 の間を部分的に真空状態とし、その部分にプラズマを流動させるようにすれば、より容易に所望のプラズマを発生させることが可能になるとともに、そのプラズマを必要な部分のみに効率よく流動させて、洗浄効果を向上することが可能になる。本方式は加熱接合以外に超音波接合等あらゆる接合方法においても使用することができ、接合信頼性をアップさせる。

5

10

15

20

25

さらに本発明は、被接合物の金属接合部の洗浄と接合とを別チャンバ内で行い、両チャンバを接合した形態の実装にも展開できる。たとえば図13に第11実施態様を示すように、接合すべき被接合物101の金属接合部を洗浄チャンバ102内で、前記同様のエネルギー被もしくはエネルギー粒子103を発生する手段104で洗浄し、洗浄した被接合物101を接合チャンバ105内に移送する。洗浄チャンバ102と接合チャンバ105は接続されており、被接合物101はロボットアーム等の搬送手段106により移送され、両チャンバ間には必要に応じてシャッター手段107が設けられる。接合チャンバ105内に移送された被接合物101a、101b(たとえば、チップと基板)は、それぞれツール108とステージ109に保持され、位置合わせされた後、接合前に、たとえば前述したのと同様のプラズマ発生ノズル110からのプラズマの流動領域が形成され、両被接合物の金属接合部が同時洗浄され、同時洗浄後の接合される。

このような構成では、既存のチャンバおよびその接続構造をそのまま利用することが可能である。接合チャンバ105内は、不活性ガスに置換されたり、真空状態にされたりすることが多いが、このような状態にしても、微量の不純物やゴミを完全に除去することは困難であるので、接合直前に、本発明に係る技術により両被接合物の金属接合部を同時洗浄し、その状態にて接合することにより、極めて信頼性の高い接合状態が得られる。

さらに、本発明において図10~図12に示したようなローカルチャンバを構成し、そのローカルチャンバ内を真空状態にする場合、基本的に吸引方式の被接

合物保持手段を使用することは難しくなる。そのような場合には、静電方式の保持手段、好ましくは静電方式の保持手段兼加熱手段を用いることができる。

5

10

15

20

25

たとえば図14、図15に第12実施態様を示すように、ローカルチャンバ111内を真空ポンプ112による吸引により真空状態とし、ヘッド113下部のヒートツール114(静電チャックヒータ)に保持されたチップ115とステージ116上に保持された基板117を接合するに際し、たとえば平行平板の電極118a、118bを備えたプラズマ発生装置119により、チップ115と基板117の間にプラズマ120を流動させ、それによって同時洗浄し、同時洗浄後にチップ115と基板117することができる。本実施態様では、ヒートツール114はチップ115を静電気力により保持する機能を有するとともに、保持したチップ115をヒータ加熱する機能を有している。ヒートツール114には、図15に示すように2系統の内部配線パターン121a、121bが設けられており、一方の内部配線パターン121aは静電気力による静電チャック用に、他方の内部配線パターン121aは静電気力による静電チャック用に、他方の内部配線パターン121aは静電気力による静電チャック用に、他方の内部配線パターン121a、121bは、別駆動可能に構成されている。2系統の内部配線パターン121a、121bは、別駆動可能に構成されている。

なお、上記実施態様は、チップ115を保持するヒートツール114側に静電 チャックヒータの構造を採用したが、基板117を保持するステージ116側に ついても同様の構造を採用することができる。

また、本発明においては、前述したように、ローカルチャンバ内を真空状態にして洗浄する場合には、たとえば、同時洗浄後少なくとも被接合物間を一旦非酸化性ガス(たとえば、不活性ガスまたは窒素ガス)で置換し、両被接合物を大気圧で接合することも可能である。そうすることによりチャンバ内圧力は外部と平衡状態となり、適正な加圧力コントロールと、ヘッドが引っ張られることによる偏荷重からの位置ずれも発生しない。

また、同時洗浄用エネルギー波もしくはエネルギー粒子としてプラズマを用いる場合、たとえば図16(第13実施態様)、図17(第14実施態様)に示すような形態を採用することもできる。図16に示した形態では、上下の被接合物131、132を保持する保持手段133、134にプラズマ発生用の電極13

5、136が設けられ、上下方向に、つまり被接合物131、132の面に向かって直接プラズマが流動できるように、プラズマ137がローカルチャンバ138内において被接合物131、132間に発生される。また、図17に示した形態では、図16に示したような形態と図1に示したような側方に平行平板電極139、140(または、外周電極)を設けた形態とが組み合わされ、両被接合物131、132間に同時洗浄用のプラズマ141がより蜜に発生されるようになっている。図16、図17に示すプラズマ発生用電源142は、交流電源とされているが、直流電源の使用も可能である。さらに、アース側電極を切り替え可能な手段を設けておくことで、流動方向を適宜切り替え、より効果的な洗浄を行うことも可能である。

5

10

15

20

25

さらに上記のようなプラズマ発生用電極の切替技術は、同時洗浄を行う場合に限らず、接合前にプラズマにより接合面を洗浄する場合に展開できる。たとえば図18に本発明の第15実施態様に係る実装装置を示すように、上下の被接合物131、132を保持する保持手段133、134にプラズマ発生用の電極135、136が設けられ、ローカルチャンバ138内において被接合物131、132間にプラズマ137が発生される。プラズマ発生用電源150から両電極135、136の極性が切り替えられることにより、発生するプラズマ137の照射方向が切り替えられ、それによって両被接合物131、132の接合面(金属接合部)が交互に洗浄される。プラズマ照射方向の切り替えにより、確実に両被接合物131、132の接合面がともに洗浄されることになる。この洗浄は、Arプラズマの場合、Arプラズマは図18に示したようにマイナス側電極に引き寄せられ、被接合物の表面にぶつかって該表面が洗浄される。このマイナス側電極を電気的に切り替えることにより対向する両面の洗浄が可能となる。この洗浄後に接合されるので、被接合物131、132同士の接合の信頼性が高められる。

図18に示した装置では、さらに洗浄時の雰囲気を、アルゴンガスなどの不活性ガス供給手段151によりローカルチャンバ138内を不活性ガス雰囲気とすることにより、または/および、真空ポンプ152によりローカルチャンバ138内を減圧して所定の真空度の雰囲気とすることにより、プラズマをより容易に

発生できるようになり、より効果的な洗浄を行うことが可能となる。

産業上の利用可能性

本発明に係る実装方法および装置は、金属接合部を備えた被接合物同士を接合するあらゆる実装に適用でき、本発明の適用により、金属接合部の表面を効果的に活性化して金属接合部同士を効率よく接合することができる。また、金属接合部の表面活性化により、常温接合、あるいは特に高温にしないでも接合できるようになり、実装装置、実装工程を大幅に簡素化することもできる。

10

5

15

20

25

15

請求の範囲

- 1. 金属接合部を備えた被接合物同士を接合する実装方法において、被接合物同士を接合する前に、対向する両被接合物間に形成される間隙内に、エネルギー波もしくはエネルギー粒子の流動領域を形成し、流動するエネルギー波もしくはエネルギー粒子により両被接合物の金属接合部の表面を実質的に同時洗浄し、洗浄により表面が活性化された両被接合物の金属接合部同士を接合することを特徴とする実装方法。
- 2. 大気中を搬送されてきた被接合物同士を接合する前に、両被接合物の金属接 10 合部の表面を実質的に同時洗浄し、洗浄により表面が活性化された両被接合物の 金属接合部同士を接合する、請求項1の実装方法。
 - 3. 被接合物の金属接合部を洗浄チャンバ内でエネルギー波もしくはエネルギー 粒子により洗浄した後、被接合物を接合チャンバ内に移送し、該接合チャンバ内 を不活性ガス雰囲気または真空にして被接合物同士を接合する前に、両被接合物 の金属接合部の表面を実質的に同時洗浄し、洗浄により表面が活性化された両被 接合物の金属接合部同士を接合する、請求項1の実装方法。
- 4. 被接合物の金属接合部を洗浄チャンバ内でエネルギー波もしくはエネルギー 20 粒子により洗浄した後、大気中を非酸化性ガスでパージしながら搬送し、搬送し た被接合物同士を接合する前に、両被接合物の金属接合部の表面を実質的に同時 洗浄し、洗浄により表面が活性化された両被接合物の金属接合部同士を接合する、 請求項1の実装方法。
- 25 5. 対向する両被接合物間に形成される間隙内に、側方からエネルギー波もしくはエネルギー粒子を流動させる、請求項1の実装方法。
 - 6. 同時洗浄時に、両被接合物の少なくとも一方をエネルギー波もしくはエネルギー粒子の流動方向に対して傾ける、請求項1の実装方法。

7. 同時洗浄におけるエネルギー波もしくはエネルギー粒子の流動方向を複数方向に設定し、両被接合物の少なくとも一方に対して流動方向を傾ける、請求項1の実装方法。

5

- 8. 両被接合物の接合前に、周囲に対し少なくとも両被接合物間部分を真空状態にし、該両被接合物間部分にエネルギー波もしくはエネルギー粒子を流動させて 両被接合物の金属接合部の表面を実質的に同時洗浄する、請求項1の実装方法。
- 10 9. エネルギー波もしくはエネルギー粒子がプラズマである、請求項1の実装方法。
 - 10. ノズルによりプラズマを供給する、請求項9の実装方法。
- 15 11. 平行平板電極間にプラズマを発生させる、請求項9の実装方法。
 - 12. アース側電極を電気的に切り替えながら洗浄する、請求項11の実装方法。
- 13. エネルギー波もしくはエネルギー粒子がイオンビームである、請求項1の 20 実装方法。
 - 14. 洗浄後少なくとも被接合物間を一旦非酸化性ガスで置換し、両被接合物を 大気圧で接合する、請求項8の実装方法。
- 25 15. 両被接合物を接合するとき、少なくとも一方の被接合物を静電的に保持し つつ加熱する、請求項8の実装方法。
 - 16. 両被接合物同士の接合を超音波接合手段により行う、請求項1の実装方法。

- 17. 金属接合部を備えた被接合物同士を接合する実装方法において、両被接合物を対向させて保持する手段にそれぞれプラズマ発生用電極を設け、両電極間にプラズマを発生させて被接合物の金属接合部を洗浄するとともに、両電極の極性を切り替えることにより、発生するプラズマの照射方向を切り替えて両被接合物の金属接合部を洗浄し、洗浄により表面が活性化された両被接合物の金属接合部同士を接合することを特徴とする実装方法。
- 18. 不活性ガス雰囲気または真空状態にて前記洗浄を行う、請求項17の実装方法。

5

19. 金属接合部を備えた被接合物同士を接合する実装装置であって、接合前に対向する両被接合物間に形成される間隙内に両被接合物の金属接合部の表面を実質的に同時洗浄可能にエネルギー波もしくはエネルギー粒子を供給するエネルギー波もしくはエネルギー粒子供給手段を有することを特徴とする実装装置。

15

20

25

- 20. 被接合物の金属接合部をエネルギー波もしくはエネルギー粒子により洗浄する洗浄チャンバと、該洗浄チャンバに接続され、移送されてきた被接合物同士を、不活性ガス雰囲気下または真空下で接合する接合チャンバと、該接合チャンバ内において、接合前に両被接合物の金属接合部の表面を実質的に同時洗浄する前記エネルギー波もしくはエネルギー粒子供給手段とを有する、請求項19の実装装置。
- 21. 被接合物の金属接合部をエネルギー波もしくはエネルギー粒子により洗浄する洗浄チャンバと、洗浄された被接合物を、大気中を非酸化性ガスでパージしながら搬送する手段と、搬送されてきた被接合物同士の接合前に両被接合物の金属接合部の表面を実質的に同時洗浄する前記エネルギー波もしくはエネルギー粒子供給手段とを有する、請求項19の実装装置。
- 22. 両被接合物の少なくとも一方の保持手段が、同時洗浄時に、両被接合物の

20

25

少なくとも一方をエネルギー波もしくはエネルギー粒子の流動方向に対して傾けることが可能な手段からなる、請求項19の実装装置。

- 23. エネルギー波もしくはエネルギー粒子供給手段が、エネルギー波もしくは 5 エネルギー粒子の流動方向を複数方向に設定可能で、かつ、両被接合物の少なく とも一方に対して流動方向を傾けることが可能な手段からなる、請求項19の実 装装置。
- 24. 両被接合物の接合前に、周囲に対し少なくとも両被接合物間部分を部分的 10 に真空状態にするローカルチャンバを有し、該チャンバ内に、エネルギー波もし くはエネルギー粒子供給手段が配設される、請求項19の実装装置。
 - 25. ローカルチャンパの少なくとも一部が、弾性シール材からなる、請求項24の実装装置。
 - 26. 接合前同時洗浄用のエネルギー波もしくはエネルギー粒子供給手段がプラズマ発生装置からなる、請求項19の実装装置。
 - 27. プラズマ発生装置がプラズマ供給ノズルを含む、請求項26の実装装置。
 - 28. プラズマ発生装置が、プラズマを発生する平行平板電極を含む、請求項26の実装装置。
 - 29. アース側電極を電気的に切り替える手段を有する、請求項28の実装装置。
 - 30. 接合前同時洗浄用のエネルギー波もしくはエネルギー粒子供給手段がイオンビーム発生装置からなる、請求項19の実装装置。
 - 31. 洗浄後少なくとも被接合物間を一旦非酸化性ガスで置換する手段を有する、

10

請求項24の実装装置。

- 32. 接合時に少なくとも一方の被接合物を保持する手段として、基材内に内部 配線パターンを備え、通電により真空中においても静電気力により被接合物を保 持可能な保持手段を有する、請求項24の実装装置。
- 33.接合時に少なくとも一方の被接合物を保持する手段として、セラミック基材内に内部配線パターンを備え、通電により真空中においても静電気力により被接合物を保持可能な保持ツールが用いられている、請求項32の実装装置。
- 34. 前記保持ツールが加熱も可能な内部配線パターンを2系統有し、それらが 静電気力発生用と加熱用に別駆動可能に構成されている、請求項33の実装装置。
- 3 5. 静電気力により被接合物を保持する保持手段がプラズマ発生用電極を兼ね 15 ている、請求項32の実装装置。
 - 36.超音波接合手段を有する、請求項19の実装装置。
- 37. 金属接合部を備えた被接合物同士を接合する実装装置であって、両被接合物を対向させて保持する手段に、それぞれ、被接合物の金属接合部を洗浄するためのプラズマ発生用電極が設けられており、かつ、両電極の極性を切り替えることにより発生するプラズマの照射方向を切り替える極性切替手段を有することを特徴とする実装装置。
- 25 38. 前記プラズマによる洗浄時に少なくとも前記両電極間を不活性ガス雰囲気または真空状態にする手段を有する、請求項37の実装装置。

1/8

FIG. 1

FIG. 2

FIG. 5

FIG. 6

FIG. 7

FIG. 12

F1G.13

FIG. 15

FIG. 16

7/8

FIG. 17

F16. 18

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/05829

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ H05K3/34, H05K3/26, H01L21/60, H05K13/04					
According to International Patent Classification (IPC) or to both national classification and IPC					
	S SEARCHED				
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ H05K3/34, H05K3/26, H01L21/60, H05K13/04					
Jits Koka:	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1926–1996 Toroku Jitsuyo Shinan Koho 1994–2002 Kokai Jitsuyo Shinan Koho 1971–2002 Jitsuyo Shinan Toroku Koho 1996–2002				
	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)				
C. DOCU	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap		Relevant to claim No.		
A	JP 11-26511 A (Matsushita El Co., Ltd.), 29 January, 1999 (29.01.99), (Family: none)	lectric Industrial	1-38		
A	JP 7-96260 A (Omron Corp.), 11 April, 1995 (11.04.95), (Family: none)		1-38		
A	JP 5-235520 A (Matsushita El 10 September, 1993 (10.09.93) (Family: none)		1-38		
A	US 4379218 A (International Corp.), 05 April, 1983 (05.04.83), & EP 69189 A2 & JP	Business Machines	1-38		
× Furth	er documents are listed in the continuation of Box C.	See patent family annex.			
Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance		"T" later document published after the interpriority date and not in conflict with the understand the principle or theory unde document of particular relevance; the considered novel or cannot be considered.	ne application but cited to erlying the invention claimed invention cannot be		
"L" docume cited to special "O" docume means "P" docume	ent which may throw doubts on priority claim(s) or which is o establish the publication date of another citation or other reason (as specified) ent referring to an oral disclosure, use, exhibition or other ent published prior to the international filing date but later	step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family			
than the priority date claimed Date of the actual completion of the international search 28 August, 2002 (28.08.02) Date of mailing of the international search report 10 September, 2002 (10.09.02)					
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer			
Facsimile No.		Telephone No.			

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/05829

A JI 20 (1 A JI A J	Citation of document, with P 11-191576 A 3 July, 1999 (1 Family: none) P 2001-44233 A 5 February, 200 Family: none) P 2001-110825 A 2 April, 2001 (Family: none) P 2001-60602 A 5 March, 2001 (Family: none)	(Seiko Epso 3.07.99), (Sony Cor 1 (16.02.0 (NEC Cor 20.04.01),	on Corp.) p.), 01), ctric Co.	•	1 1	-38 -38
A JI 20 (1 A JI 00	February, 200 Family: none) P 2001-110825 A D April, 2001 (Family: none) P 2001-60602 A March, 2001 ((NEC Cor 20.04.01),	p.), ctric Co.	, Ltd.),	1	-38
A JI	D April, 2001 (Family: none) P 2001-60602 A March, 2001 (20.04.01), (Fuji Ele	ctric Co.	, Ltd.),		
00	March, 2001 (, Ltd.),	1	-38
		•				
		·				

A. 発明の風する分野の分類(国際特許分類(IPC))

Int. Cl' H05K 3/34 H05K 3/26 H01L21/60 H05K13/04

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' H05K 3/34 H05K 3/26 H01L21/60 H05K13/04

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1926-1996年

日本国公開実用新案公報

1971-2002年

日本国登録実用新案公報

1994-2002年

日本国実用新案登録公報

1996-2002年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

O. Mary o closs 34 o 3				
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号		
Α	JP 11-26511 A (松下電器産業株式会社) 1999.01.29. (ファミリーなし)	1-38		
A	JP 7-96260 A (オムロン株式会社) 1995.04.11. (ファミリーなし)	1 – 3 8		
A	JP 5-235520 A(松下電工株式会社) 1993.09.10.(ファミリーなし)	1 - 3 8		
	•			

区欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に含及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

28.08.02

国際調査報告の発送日

10.09.02

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員) 中川隆司

35 | 8509

電話番号 03-3581-1101 内線 3390

C (続き)	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Α	US 4379218 A (INTERNATIONAL BUSINESS MACHINES CORPORATION) 1983.04.05. & EP 69189 A2 & JP 58-3238 A	1-38
A	JP 11-191576 A (セイコーエプソン株式会社) 1999.07.13. (ファミリーなし)	1-38
A	JP 2001-44233 A (ソニー株式会社) 2001.02.16. (ファミリーなし)	1-38
A	JP 2001-110825 A (日本電気株式会社) 2001.04.20. (ファミリーなし)	1-38
A	JP 2001-60602 A (富士電機株式会社) 2001.03.06. (ファミリーなし)	1-38

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.