Cuestionario Cap. 2:

Cuestionario Cap. 3:

$$\overline{v_2}$$
 $\overline{v_2}$ $\overline{v_2}$ $\overline{v_1}$

$$\bar{r} = x \bar{\iota} + y \bar{\jmath}$$

$$\bar{v} = \frac{d\bar{r}}{dt} = \left(\frac{dx}{dt} \ \bar{t} + \frac{di}{dt} \bar{J}\right)$$

$$\overline{a} = \frac{d\overline{v}}{dt} = \left(\frac{dv_x}{dt} \ \overline{\iota} + \frac{dv_y}{dt} \overline{\jmath}\right)$$

El automóvil aumenta su rapidez en una trayectoria circular

Componente de aceleración paralela a la velocidad: cambia la rapidez del auto.

El automóvil disminuye su rapidez en una trayectoria circular

Movimiento circular uniforme: rapidez constante en una trayectoria circular

$$x(t) = x_0 + v_{0x}t$$

$$x(t) = x_0 + v_{0x}t$$

$$y(t) = y_0 + v_{0y}t + \frac{1}{2}a t^2$$

$$\begin{cases} x(t) = 5t \ [m] \\ y(t) = 20 - \frac{1}{2}9.81 \ t^2 \ [m] \end{cases}$$

https://www.lanacion.com.ar/sociedad/simulacion-asi-se-puede-propagar-el-virus-en-el-transportenid11042021/?fbclid=IwAR1C6i_4Bnvt8VcXbsrAenGZS7HoE5yJPHrrtvFJDmwVFhG-rsdP-2OPiFA

FICH

UNL • FACULTAD **DE INGENIERÍA Y CIENCIAS HÍDRICAS**

Dr. Santiago F. Corzo Cátedra de Física

$$20 - \frac{1}{2}9.81 \ t^2 = 0$$

	20	•		
<u> </u>	15			
[m] 1	10	•		
	5		•	
-5	0	5 V [m]	10	15

Caída libre:

$$x(t) = 0.0 [m]$$

$$y(t) = 20 - \frac{1}{2}9.81 t^{2} [m]$$

t	Pelota			
	X	Υ	V_X	V_Y
0	0	20	5	0
0.2	1	19.8038	5	-1.962
0.4	2	19.2152	5	-3.924
0.6	3	18.2342	5	-5.886
0.8	4	16.8608	5	-7.848
1	5	15.095	5	-9.81
1.2	6	12.9368	5	-11.772
1.4	7	10.3862	5	-13.734
1.6	8	7.4432	5	-15.696
1.8	9	4.1078	5	-17.658
2	10	0.38	5	-19.62

t	Caida libre			
	Χ	Υ	V_X	V_Y
0	0	20	0	0
0.2	0	19.8038	0	-1.962
0.4	0	19.2152	0	-3.924
0.6	0	18.2342	0	-5.886
0.8	0	16.8608	0	-7.848
1	0	15.095	0	-9.81
1.2	0	12.9368	0	-11.772
1.4	0	10.3862	0	-13.734
1.6	0	7.4432	0	-15.696
1.8	0	4.1078	0	-17.658
2	0	0.38	0	-19.62

Tiro parabólico

$$\begin{cases} x(t) = 5t \ [m] \\ y(t) = 20 - \frac{1}{2}9.81 \ t^2 \ [m] \end{cases}$$

Caída libre:

$$\begin{cases} x(t) = 0.0 \ [m] \\ y(t) = 20 - \frac{1}{2}9.81 \ t^2 \ [m] \end{cases}$$

Cap. 4y5: Dinámica

Tiro parabólico

$$\begin{cases} x(t) = 5t \ [m] \\ y(t) = 20 - \frac{1}{2}9.81 \ t^2 \ [m] \end{cases}$$

Caída libre:

$$\begin{cases} x(t) = 0.0 \ [m] \\ y(t) = 20 - \frac{1}{2}9.81 \ t^2 \ [m] \end{cases}$$

$$\bar{r}(t) = (3t)\bar{\iota} + \left(10 - \frac{1}{2}9.81t^2\right)\bar{\jmath} \quad [m]$$

$$\bar{r}(t) = (3t)\bar{\iota} + \left(10 - t - \frac{1}{2}9.81t^2\right)\bar{\jmath} \quad [m]$$

Dado el sistema coordenado, ¿Cuál de las sig. ec. describe el movimiento?

Dado el sistema coordenado, ¿Cuál de las sig. ec. describe el movimiento?

$$\overline{v_0} = 3\overline{\iota} + \overline{\jmath} \left[\frac{m}{s} \right]$$

$$\bar{r}(t) = (3t)\bar{\iota} + \left(10 - \frac{1}{2}9.81t^2\right)\bar{\jmath} \ [m]$$

$$\bar{r}(t) = (3t)\bar{\iota} + \left(10 - t - \frac{1}{2}9.81t^2\right)\bar{\jmath}$$
 [m]

$$\bar{r}(t) = \left(10 - 3t - \frac{1}{2}9.81t^2\right)\bar{j} \ [m]$$

$$\bar{r}(t) = (10+3t)\bar{\iota} + \left(t + \frac{1}{2}9.81t^2\right)\bar{\jmath} \ [m]$$

DE INGENIERÍA Y CIENCIAS HÍDRICAS Dinámica de las partículas al estornudar

Nahuel Castiglioni

FICH

UNL • FACULTAD

Una persona estornuda partículas con una velocica aprox. de 8m/s. Teniendo en cuenta que la boca está a 1.5m de altura. Teniendo en cuenta el distanciamiento social de 2m, ¿a que altura le pegarían las gotitas a la persona que está enfrente?. NO CONSIDERE LA FRICCIÓN CON EL VIENTO.

FICH

DATOS:

En x:

En el tiempo final (tf) x(t) = 2m. Además, se sabe que en tf, $v_x = 8m/s$ porque es constante, entonces:

$$X(t)=x_0+v_{0x}*t \longrightarrow X(tf)=2m=8 \text{ m/s}*tf$$

$$(Despejando tf)$$

$$tf=0.25 \text{ s}$$

Luego, puedo calcular la altura que alcanzarán las gotas (yf) al transcurrir 0,25 segundos (tf)

$$Y(tf) = y_0 + v_{0y}*tf - 0.5g*tf^2$$

(Reemplazando por los datos)

 $Y(0.25s) = 1.5m - 4.9 \text{ m/s}^2*(0.25s)^2$
 $Y(0.25s) = 1.19m$

La altura con a la cual le pegan las gotitas a la persona que está enfrente es de 1,19 metros.

Dr. Santiago F. Corzo Cátedra de Física

https://institucional.us.es/blogimus/2020/04/hasta-donde-llega-un-virus-al-estornudar/

https://www.lanacion.com.ar/sociedad/simulacion-asi-se-puede-propagar-el-virus-en-el-transporte-nid11042021/?fbclid=IwAR1C6i_4Bnvt8VcXbsrAenGZS7HoE5yJPHrrtvFJDmwVFhG-rsdP-2OPiFA

- 1. Un avión bombardero vuela horizontalmente a 900 km/h y altura de 1800 m hacia un barco enemigo que tiene el cañón fijo apuntando a 30° sobre la horizontal. Calcule:
- 1.1 (1.5/10) La distancia a la que el avión debería soltar una bomba para que impacte sobre el barco
- 1.2 (2/10) La distancia y velocidad a la que debería disparar el barco su cañón para impactar en el avión

$$x = x_0 + v_{0x}t$$
 $x(t) = 250t (m)$ $x(t_f) = 250t_f (m)$
 $y = y_0 + v_{0y}t - \frac{1}{2}gt^2$ $y(t) = 1800 - \frac{1}{2}9.81t^2 (m)$ $y(t_f) = 1800 - \frac{1}{2}9.81t_f^2 = 0m$ $t_f = 19.15s$

 $x_f = 4787.5s$

- 1. Un avión bombardero vuela horizontalmente a 900 km/h y altura de 1800 m hacia un barco enemigo que tiene el cañón fijo apuntando a 30° sobre la horizontal. Calcule:
- 1.1 (1.5/10) La distancia a la que el avión debería soltar una bomba para que impacte sobre el barco
- 1.2 (2/10) La distancia y velocidad a la que debería disparar el barco su cañón para impactar en el avión.

$$x_0 = x_0$$

 $y_0 = 0m$
 $v_{0x} = -v_0 \cos(30^\circ)$
 $v_{0y} = v_0 \sin(30^\circ)$
 $v_{yf} = 0m/s$ $y_f = 1800m$

$$x = x_0 + v_{0x}t v_x = -v_0 \cos(30^\circ)$$

$$y = y_0 + v_{0y}t - \frac{1}{2}gt^2 v_y = v_0 \sin(30^\circ) - gt v_y(t_f) = v_0 \sin(30^\circ) - gt_f = 0 t_f = v_0 \sin(30^\circ)/g$$

$$x = x_0 - v_0 \cos(30^\circ) t$$

$$y = v_0 \sin(30^\circ) t - \frac{1}{2}gt^2 y_f = v_0 \sin(30^\circ) \left(v_0 \frac{\sin(30^\circ)}{g}\right) - \frac{1}{2}g(v_0 \sin(30^\circ)/g)^2 = 1800m$$

FICH

$$y_f = v_0 \operatorname{sen}(30^\circ) \left(v_0 - \frac{\operatorname{sen}(30^\circ)}{g} \right) - \frac{1}{2} g (v_0 \operatorname{sen}(30^\circ)/g)^2 = 1800m$$

$$\frac{v_0^2 \operatorname{sen}^2(30^\circ)}{g} - \frac{1}{2}v_0^2 \operatorname{sen}^2(30^\circ) / g = 1800m$$

$$v_0 = \sqrt{\frac{1800}{0.5} \frac{9.81}{sen^2(30)}} = 375.85 \frac{m}{s}$$

1.2 (2/10) La distancia y velocidad a la que debería disparar el barco su cañón para impactar en el avión

$$x_0 - v_0 \cos(30^\circ) t_f = 0$$

$$x_0 = v_0 \cos(30^\circ) t_f = 6232m$$

1. Para atacar una fortaleza medieval se diseña un carro con un cañón montado sobre él. El carro se desplazará a Vc = 10 m/s hacia el blanco y cuando esté lo suficientemente cerca deberá disparar (con el carro

Vc=10m/s

en movimiento), para impactar el proyectil en la ventana de la torre a 30 m de altura. Si el ángulo de disparo es 30° y el módulo de la velocidad relativa de salida del proyectil respecto al cañón es 45 m/s:

1.1 (1/10) calcule para que distancias el proyectil dará en el blanco.

1.2 (1/10) Dibuje los diagramas de posición, velocidad y aceleración para los dos ejes (x e y) en función del tiempo.

Dos ciudades en conflicto bélico tienen cañones iguales. Dispuestos como se observa en el mapa, la ciudad 1 tiene su cañón a 300 m apuntando en dirección vertical, a su vez la distancia al cañón contrario es de 2000m. La rapidez de los proyectiles es la misma(y desconocida). La ciudad 2 dispara su proyectil con intención de impactar en la ciudad 1. A su vez la ciudad 1 tiene un sofisticado sistema de defensa con la capacidad de disparar su cañón vertical e impactar al proyectil contrario en pleno vuelo. RESOLVER: ¿Cómo calcula el sistema de defensa el momento del disparo?

A) Vamos a tener dos proyectiles (p1 y p2) que se disparan con la misma rapidez.

B) El proyectil p2 busca impactar a la ciudad 1.

$$\begin{cases} x_2(0s) = 2000m & v_{x2}(0s) = -v_2m/s \\ y_2(0s) = 200m & v_{y2}(0s) = 0.0 \text{ m/s} \end{cases}$$

Conocemos la posición final de este proyectil:

$$\begin{cases} x_2(t_f) = 0m \\ y_2(t_f) = 0m \end{cases}$$

$$y \uparrow \begin{cases} x_2(0s) = 2000m & v_{x2}(0s) = -v_2m/s \\ y_2(0s) = 200m & v_{y2}(0s) = 0.0 m/s \end{cases}$$

Conocemos la posición final de este proyectil:

$$\begin{cases} x_2(t_f) = 0m \\ y_2(t_f) = 0m \end{cases}$$

Ecuación del movimiento:

$$\begin{cases} x_2(t) = 2000 - v_2 t \\ y_2(t) = 200 - \frac{9.81}{2} t^2 \end{cases}$$

Ecuación del movimiento:

$$\overline{r_2(t)} = x_2(t)\overline{\iota} + y_2(t)\overline{\jmath}[m]$$

$$\begin{cases} x_2(t) = 2000 - 313t \ [m] \\ y_2(t) = 200 - \frac{9.81}{2}t^2 \ [m] \end{cases}$$

$$y_2(t) = 200 - \frac{9.81}{2}t^2 [m]$$

t	Р	2		
	Χ	Υ	V_X	V_Y
0	2000	200	-313	0
0.5	1843.5	198.77375	-313	-4.905
1	1687	195.095	-313	-9.81
1.5	1530.5	188.96375	-313	-14.715
2	1374	180.38	-313	-19.62
2.5	1217.5	169.34375	-313	-24.525
3	1061	155.855	-313	-29.43
3.5	904.5	139.91375	-313	-34.335
4	748	121.52	-313	-39.24
4.5	591.5	100.67375	-313	-44.145
5	435	77.375	-313	-49.05
5.43	300.41	55.3765655	-313	-53.2683

t	P1			
	Χ	Υ	V_X	V_Y
0	300	0	0	313
0.02	300	6.258038	0	312.8038
0.04	300	12.512152	0	312.6076
0.06	300	18.762342	0	312.4114
0.08	300	25.008608	0	312.2152
0.1	300	31.25095	0	312.019
0.12	300	37.489368	0	311.8228
0.14	300	43.723862	0	311.6266
0.16	300	49.954432	0	311.4304
0.17	300	53.0682455	0	311.3323
0.177	300	55.2473313	0	311.26363

Dr. Santiago F. Corzo Cátedra de Física

$$x(t) = 2.4t [m]$$
$$y(t) = 3 - 1.2 t^{2} [m]$$

$$\int v_x(t) = \frac{dx}{dt} = 2.4 \ [m/s]$$

$$v_y(t) = \frac{dy}{dt} = -2.4 \ t \ [m/s]$$

$$v_y(t) = \frac{dy}{dt} = -2.4 \ t \ [m/s]$$

$$a_x(t) = \frac{dv_x}{dt} = 0.0 \ [m/s^2]$$
 $a_y(t) = \frac{dv_y}{dt} = -2.4 \ [m/s^2]$

$$a_y(t) = \frac{dv_y}{dt} = -2.4 \ [m/s^2]$$

t	х	у	V	x	vy	V	ax	ау
	0	0	3	2.4	0	2.4	0	-2.4
	0.1	0.24	2.988	2.4	-0.24	2.41197015	0	-2.4
	0.2	0.48	2.952	2.4	-0.48	2.44752937	0	-2.4
	0.3	0.72	2.892	2.4	-0.72	2.50567356	0	-2.4
	0.4	0.96	2.808	2.4	-0.96	2.58487911	0	-2.4
	0.5	1.2	2.7	2.4	-1.2	2.68328157	0	-2.4
	0.6	1.44	2.568	2.4	-1.44	2.79885691	0	-2.4
	0.7	1.68	2.412	2.4	-1.68	2.92957335	0	-2.4
	0.8	1.92	2.232	2.4	-1.92	3.07349963	0	-2.4
	0.9	2.16	2.028	2.4	-2.16	3.22886977	0	-2.4
	1	2.4	1.8	2.4	-2.4	3.39411255	0	-2.4
	1.1	2.64	1.548	2.4	-2.64	3.5678565	0	-2.4
	1.2	2.88	1.272	2.4	-2.88	3.74891984	0	-2.4
	1.3	3.12	0.972	2.4	-3.12	3.93629267	0	-2.4
	1.4	3.36	0.648	2.4	-3.36	4.12911613	0	-2.4
	1.5	3.6	0.3	2.4	-3.6	4.32666153	0	-2.4
	1.6	3.84	-0.072	2.4	-3.84	4.52831094	0	-2.4
	1.7	4.08	-0.468	2.4	-4.08	4.7335399	0	-2.4
	1.8	4.32	-0.888	2.4	-4.32	4.94190247	0	-2.4
	1.9	4.56	-1.332	2.4	-4.56	5.15301853	0	-2.4
	2	4.8	-1.8	2.4	-4.8	5.36656315	0	-2.4

- 1. Un vehículo se desplaza sobre el plano xy con los siguientes componentes de velocidad: $v_x = 5(m/s^2)t$; $v_y = 1(m/s) + 0.075(m/s^3)t^2$. Indique:
- 1.1 (1,5/10) El vector posición a t = 5s, sabiendo que a t = 0 el vehículo se encontraba en x = 2m; y = 3,5m.
- 1.2 (1/10) El vector aceleración del vehículo a t = 5s.
- 1.3 (1,5/10) La aceleración tangencial y la aceleración normal al movimiento.
- 1.4 (1/10) El radio de la trayectoria que seguirá si, inmediatamente luego de los 5 segundos, la aceleración tangencial se anula.

$$\overline{v(t)} = \frac{d\overline{r}}{dt} = (5t)\overline{\iota} + (1 + 0.075t^2)\overline{\jmath} \ [m/s]$$

$$\overline{r(t)} = (x_o + 2.5t^2)\overline{\iota} + (y_0 + t + 0.025t^3)\overline{\jmath} \ [m]$$

$$\overline{r(0s)} = 2\overline{\iota} + 3.5\overline{j} \ [m]$$
 $x_o = 2m$ $y_o = 3.5m$

$$\overline{r(t)} = (2 + 2.5t^2)\overline{t} + (3.5 + t + 0.025t^3)\overline{j} \ [m]$$

$$\overline{r(5s)} = (2 + 2.5 (5s)^2)\overline{\iota} + (3.5 + 5 + 0.025(5s)^3)\overline{\jmath} [m]$$

$$\overline{r(5s)} = 64.5\overline{\iota} + 11.62\overline{\jmath} \ [m]$$

- 1. Un vehículo se desplaza sobre el plano xy con los siguientes componentes de velocidad: $v_x = 5(m/s^2)t$; $v_y = 1(m/s) + 0.075(m/s^3)t^2$. Indique:
- 1.1 (1,5/10) El vector posición a t = 5s, sabiendo que a t = 0 el vehículo se encontraba en x = 2m; y = 3,5m.
- 1.2 (1/10) El vector aceleración del vehículo a t = 5s.
- 1.3 (1,5/10) La aceleración tangencial y la aceleración normal al movimiento.
- 1.4 (1/10) El radio de la trayectoria que seguirá si, inmediatamente luego de los 5 segundos, la aceleración tangencial se anula.

$$\overline{v(t)} = \frac{d\overline{r}}{dt} = (5t)\overline{\iota} + (1 + 0.075t^2)\overline{\jmath} \ [m/s]$$

$$\overline{a(t)} = \frac{d\overline{v}}{dt} = 5\overline{\iota} + (0.15t)\overline{\jmath} \ [m]$$

$$\overline{a(5s)} = 5\overline{\iota} + 0.75\overline{\jmath} \ [m] \qquad \overline{v(5s)} = 25\overline{\iota} + 2.875\overline{\jmath} \ [m/s]$$

c)

$$\overline{a(5s)} = 5\overline{\iota} + 0.75\overline{\jmath} \ [m/s^2] \longrightarrow \theta_a = \tan^{-1}(0.75/5) = 8.53^{\circ}$$

 $|\overline{a(5s)}| = 5.055 \ [m/s^2]$

$$\alpha = \theta_a$$
- $\theta_v = 1.97^\circ$

$$\overline{v(5s)} = 25\overline{\iota} + 2.875\overline{\jmath} \ [m/s^2] \longrightarrow \theta_v = \tan^{-1}(2.875/25) = 6.56^{\circ}$$

$$|\overline{v(5s)}| = 25.16 \ [m/s^2]$$

$$\gamma$$

$$a_t = |\overline{a(5s)}| \cos(\alpha) = 5.052m/s^2$$

$$a_n = |\overline{a(5s)}| \sin(\alpha) = 0.1737m/s^2$$

VERIFICAMOS:

$$|\overline{a(5s)}| = \sqrt{5.052^2 + 0.1737^2} = 5.055m/s^2$$

$$\overline{a_{rad}} = \frac{v^2}{r}$$

Cuestionario 11)

$$\overline{r_a} = \overline{r_r} + \overline{r_{a/r}}$$

$$\overline{v_a} = \overline{v_r} + \overline{v_{a/r}}$$

$$\overline{v_{a/r}} = \overline{v_a} - \overline{v_r} = (0 - 20)i + (20 - 20)j \left[\frac{m}{s}\right]$$

$$\overline{v_{a/r}} = \overline{v_a} - \overline{v_r} = -20i \left[\frac{m}{s} \right]$$

Cuestionario 11)

 $\overline{r_{r/e}}$

 $\overline{r_{a/e}}$

$$\overline{r_a} = \overline{r_r} + \overline{r_{a/r}}$$

$$\overline{v_a} = \overline{v_r} + \overline{v_{a/r}}$$

Cuestionario 11)

$$\overline{r_a} = \overline{r_r} + \overline{r_{a/r}}$$

$$\overline{v_a} = \overline{v_r} + \overline{v_{a/r}}$$

$$v_T$$
 v_p
 $v_{p/T}$

$$\overline{x_p} = \overline{x_{p/T}} + \overline{x_T}$$

$$\overline{v_p} = \overline{v_{p/T}} + \overline{v_T}$$

$$\overline{v_p} = \overline{v_{p/T}} + \overline{v_T}$$

Imaginemos que el tren tenía una rapidez de 10m/s y comienza a frenar con una aceleración de 5m/s2. Si la persona se encuentra caminando dentro del vagón a una rapidez constante de 1m/s como muestra la fig. defina las ecuaciones de mov. Para una persona que se encuentra en tierra.

p: Pasajero y T: Tren

$$\overline{x_{T_0}} = 0m$$

$$\overline{v_{T_0}} = 10\overline{J} \frac{m}{S}$$

$$\overline{a_T} = -5\overline{J}\frac{m}{S^2}$$

$$\overline{x_{P/T}} = 0m$$

$$\overline{v_{P/T}} = 1\overline{\iota} \frac{m}{s}$$

En el sistema coordenado x'y'

p: Pasajero y

T: Tren

$$\overline{x_{T_0}} = 0m$$

$$\overline{v_{T_0}} = 10\overline{J} \frac{m}{S}$$

$$\overline{a_T} = -5\overline{J}\frac{m}{S^2}$$

$$\overline{x_T} = (10t - 2.5t^2)\overline{\jmath}[m]$$

$$\overline{v_T} = (10 - 5t)\overline{\jmath}[m]$$

$$\overline{x_{P/T}} = 0m$$

$$\overline{v_{P/T}} = 1\overline{\iota} \frac{m}{s}$$

$$\overline{x_{P/T}} = (1t)\overline{\iota}[m]$$
$$\overline{x_{P/T}} = 1\overline{\iota}[m]$$

$$\overline{x_P} = \overline{x_T} + \overline{x_{P/T}}[m]$$

$$\overline{x_P} = (1t)\overline{\iota} + (10t - 2.5t^2)\overline{\jmath}[m]$$

$$\overline{v_P} = 1\overline{\iota} + (10 - 5t)\overline{\jmath}[m]$$

Ej. 3.39 Una canoa tiene una velocidad de 0.40 m/s al sureste, relativa a la Tierra. La canoa está en un río que fluye al este a 0.50 m/s relativa a la Tierra. Calcule la velocidad (magnitud y dirección) de la canoa relativa al río.

Ej 3.39

P3.16. Imagine que está en la ribera oeste de un río que fluye al norte a 1.2 m/s. Usted nada con rapidez de 1.5 m/s relativa al agua, y el río tiene 60 m de ancho. ¿Qué trayectoria relativa a tierra le permitirá cruzar el río en el menor tiempo? Explique su razonamiento.

P3.16. Imagine que está en la ribera oeste de un río que fluye al norte a 1.2 m/s. Usted nada con rapidez de 1.5 m/s relativa al agua, y el río tiene 60 m de ancho. ¿Qué trayectoria relativa a tierra le permitirá cruzar el río en el menor tiempo? Explique su razonamiento.

Dr. Santiago F. Corzo Cátedra de Física

$$\overline{|v_{p/r}|} = 1.5 \frac{m}{s}$$

$$\overline{v_{p/r}} = 1.5 \frac{m}{s} \overline{t} + 0\overline{j}$$

$$\overline{v_r} = 1.2\overline{j}$$

$$\overline{v_p} = \overline{v_r} + \overline{v_{p/r}}$$

$$v_{px} = v_{rx} + v_{p/rx}$$
$$v_{py} = v_{ry} + v_{p/ry}$$

$$v_{px} = 0 + 1.5m/s$$
$$v_{py} = 1.2 \frac{m}{s} + 0$$

 χ

$$\overline{v_p} = 1.5\overline{\iota} + 1.2\overline{\jmath}(\frac{m}{s})$$

- 3. Un hombre puede nadar a razón de 4 km/h en aguas tranquilas. Esta persona desea cruzar un río de 1,8 km de ancho, desde una posición en una orilla hasta otra posición a 800 m aguas abajo en la orilla opuesta. La corriente del río es de 1,5 km/h. Calcule:
- 3.1 (1/10) En qué dirección debe nadar para llegar al punto deseado
- 3.2 (1/10) Cuánto tiempo tardará en cruzarlo tomando la dirección hallada en el inciso anterior