ALGEBRA Chapter 15

2th
Sessión II

FACTORIZACIÓN II

MOTIVATING STRATEGY

Indicar cuántos factores primos hay

Orgo de Actori (32n-12) (32n-12)

Rpta: 2 factores primos

"NUNCA he encontrado una persona tan ignorante que no se pueda aprender algo de ella"

Galileo Galilei

FACTORIZACIÓN

Es el proceso transformar un polinomio en una multiplicación indicada de dos o más factores primos o irreductibles.

Ejemplo:

$$P(x) = x^2 - 25 = (x+5)(x-5)$$
factorización

Factores primos: x + 5 y x - 5

HELICO | THEORY

CRITERIO DE LAS IDENTIDADES:

a) Trinomio cuadrado perfecto (TCP):

$$A^{2m} \pm 2A^m B^n + B^{2n} = (A^m \pm B^n)^2$$

Ejemplo:

Factorice

$$P(x,y) = 4x^2 + 12xy + 9y^2$$

Resolución:

$$P(x,y) = (2x+3y)^2$$

HELICO | THEORY

b) <u>Diferencia de cuadrados:</u>

Suma de cubos:
$$x^2 - y^2 = (x + y)(x - y)$$

$$x^3 + y^3 = (x + y)(x^2 - xy + y^2)$$

Diferencia de cubos:

$$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$$

$$x^2 - y^2 = (x+y)(x-y)$$

¿Cuántos factores primos lineales se obtiene al factorizar $P(x, y) = 625x^4 - 16y^4$?

Resolución:

$$P(x,y) = 625x^{4} - 16y^{4} = (-)(+)$$

$$\sqrt{625x^{4}} \sqrt{46y^{4}} \sqrt{25x^{2}} - \sqrt{24y^{3}}(25x^{2} + 4y^{2})$$

Rpta: : 2 factores primos lineales

RECHERDA

2

Factorice e indique un factor primo de $R(x, y) = 27x^3 - 125y^3$

 $x^3 - y^3 = (x - y)(x^2 + xy + y^2)$

Resolución:

$$R(x,y) = 27x^{3} - 125y^{3} = (----)((---)^{2} + (3x)(5y) + (---)^{2})$$

$$= \sqrt[3]{27x^{3}} \sqrt[3]{R_{5}(x)^{2}} = (3x - 5y)(9x^{2} + 15xy + 25y^{2})$$

Rpta:

 \therefore factores primos: 3x - 5y; $9x^2 + 15xy + 25y^2$

Factorice y señale un factor primo.

$$P(x,y) = 4x^2 - 28xy + 49y^2$$

Resolución:

Rpta:
$$\therefore 2x - 7y$$

HELICO | PRACTICE

4

Factorice y calcule el número de factores primos $Q(x) = x^{16} - 1$

RECUERDA

$$x^2 - y^2 = (x+y)(x-y)$$

Resolución:

Rpta:

HELICO | PRACTICE

Si M indica el número de factores primos de G(x); además (5M+9) señala la edad del profesor Luis. Sabiendo que: $G(x) = x^6 - 64$ ¿Cuántos años tiene el profesor? Resolución:

$$Q(x) = x^{6} - 64 = (-)(+)$$

$$= \sqrt{x^{8}} \sqrt{84} = (\sqrt[3]{x^{3}} - \sqrt[3]{2})(()^{2} + (2)(x) + ()^{2})(x^{3} + 8)$$

$$(x - 2)(x^{2} + 2x + 4)(()^{2} - (2)(x) + ()^{2})\sqrt[3]{x^{3}} + \sqrt[3]{2})$$

$$(x - 2)(x^{2} + 2x + 4)(x^{2} - 2x + 4)(x + 2) \text{ Rpta}: \frac{\therefore \text{ Luis tiene}}{29 \text{ años}}$$

Factorice y luego indique un factor primo

$$P(x) = (5x + 3)^2 - (3x + 5)^2$$

Resolución:

$$P(x) = (5x + 3)^{2} - (3x + 5)^{2}$$

$$\sqrt{(5x + 3)^{2}} \sqrt{(3x + 5)^{2}}$$

Rpta:
$$\therefore$$
 factores primos $x-1; x+1$

$$P(x) = (\qquad - \qquad)(\underline{} + \underline{})$$

$$P(x) = (5x + 3 - 3x - 5)(8x + 8)$$

$$P(x) = (2x - 2)(8x + 8) = 2(x - 1).8(x + 1) = 16(x - 1)(x + 1)$$

Factorice y señale el factor primo de mayor suma de coeficientes

$$P(m,n) = m^2 - 6m + 9 - 16n^2$$

8

Factorice y calcule el número de factores primos

$$P(x) = x^3 - 4x^2 - 4x + 16$$

Resolución:

FACTOR COMÚN AGRUPACIÓN

$$P(x) = x^2(x-4) - 4(x-4)$$

FACTOR COMÚN POLINOMIO

$$P(x) = (x-4)(x^2-4)$$

$$P(x) = (x-4)(+)(\sqrt{x^2} - \sqrt{2})$$

∴ 3 factores primos