Creating an HPC (High-Performance Computing) cluster involves setting up multiple computers (nodes) to work together as a single cohesive system to perform computationally intensive tasks. Below is an explanation of the architecture, an example configuration, and a simple diagram.

HPC Cluster Architecture Master Node

An HPC cluster typically consists of the following components:

1. Master Node (Head Node):

- o Manages the cluster, scheduling, and resource allocation.
- o Runs job scheduling software (e.g., Slurm, PBS, Torque).
- Stores the centralized file system (NFS).

2. Compute Nodes:

- Perform the actual computations.
- Connected to the master node via high-speed interconnects (e.g., InfiniBand, Ethernet).

3. Shared Storage:

o Centralized storage accessible by all nodes (e.g., NFS, Lustre, BeeGFS).

4. Interconnect Network:

- o High-speed network for communication between nodes.
- Examples: Ethernet (1/10/40/100 Gbps) or InfiniBand.

5. Scheduler/Resource Manager:

o Allocates jobs to nodes and ensures efficient use of resources.

Diagram

Let's create a visual description:

plaintext

CopyEdit

+-	+		
l	Master Node	l	
	- Job Scheduler (e.g.,	١	
I	SLURM, PBS, etc.)	١	
	- Resource Manager		١
	- Shared Storage (NFS))	١

Example Configuration

For a small cluster with a master node and two compute nodes:

Master Node Setup

1. Install essential packages:

bash

CopyEdit

sudo apt update

sudo apt install -y slurm-wlm nfs-kernel-server openssh-server

- 2. Configure NFS (shared storage):
 - Add /shared to /etc/exports:

plaintext

CopyEdit

/shared *(rw,sync,no_subtree_check)

Restart NFS:

bash

CopyEdit

sudo systemctl restart nfs-kernel-server

- 3. Configure SLURM:
 - o Edit /etc/slurm/slurm.conf with:

plaintext

CopyEdit

ControlMachine=master-node

NodeName=node[01-02] CPUs=4 State=UNKNOWN PartitionName=debug Nodes=node[01-02] Default=YES MaxTime=INFINITE State=UP 4. Start SLURM: bash CopyEdit sudo systemctl start slurmctld **Compute Node Setup** 1. Install required packages: bash CopyEdit sudo apt update sudo apt install -y slurm-wlm openssh-server nfs-common 2. Mount shared storage: Add to /etc/fstab: plaintext CopyEdit master-node:/shared /shared nfs defaults 0 0 Mount the shared directory: bash CopyEdit sudo mount -a 3. Start SLURM daemons: bash CopyEdit sudo systemctl start slurmd

Testing the Cluster

Submit a test job from the master node:

1. Create a sample job script test_job.sh:

bash

CopyEdit	
#!/bin/bash	
#SBATCHjob-name=test_job	
#SBATCHoutput=output.txt	
#SBATCHntasks=1	
#SBATCHtime=00:01:00	
#SBATCHpartition=debug	
echo "Hello from \$(hostname)"	
2. Submit the job:	
bash	
bash CopyEdit	
CopyEdit	
CopyEdit sbatch test_job.sh	
CopyEdit sbatch test_job.sh 3. Check the job status:	
CopyEdit sbatch test_job.sh 3. Check the job status: bash	

Would you like me to generate a detailed diagram image or provide further information on scaling this cluster?