LU_dAREdevils

Leading University

SQUARE

s = sideArea: $A = s^2$ Perimeter: P = 4s

CIRCLE

r = radius, d = diameterDiameter: d = 2r

Area: $A = \pi r^2$

Circumference: $C = 2\pi r = \pi d$

RECTANGLE

l = length, w = width

Area: A = lw

Perimeter: P = 2l + 2w

SECTOR OF CIRCLE

r= radius, $\theta=$ angle in radians

Area: $A = \frac{1}{2}\theta r^2$ Arc Length: $s = \theta r$

TRIANGLE

b = base, h = height

Area: $A = \frac{1}{2}bh$

Perimeter: P = a + b + c

ELLIPSE

a = semimajor axisb = semiminor axis

b = semiminor asArea: $A = \pi ab$

Circumference:

$$C \approx \pi \left(3(a+b) - \sqrt{(a+3b)(b+3a)}\right)$$

EQUILATERAL TRIANGLE

s = side

Height: $h = \frac{\sqrt{3}}{2}s$

Area: $A = \frac{\sqrt{3}}{4}s^2$

ANNULUS

r = inner radius,

R = outer radiusAverage Radius: $\rho = \frac{1}{2}(r+R)$

Width: w = R - r

Area: $A = \pi (R^2 - r^2)$

or $A = 2\pi \rho w$

PARALLELOGRAM

b =base, h =height, a =side

Area: A = bh

Perimeter: P = 2a + 2b

TRAPEZOID

a, b = bases; h = height;

c, d = sides

Area: $A = \frac{1}{2}(a+b)h$

Perimeter:

Kite:

P = a + b + c + d

REGULAR POLYGON

s = side length,

n = number of sides

Circumradius: $R = \frac{1}{2}s\csc(\frac{\pi}{n})$

Area: $A = \frac{1}{4}ns^2 \cot(\frac{\pi}{n})$

or $A = \frac{1}{2}nR^2\sin(\frac{2\pi}{n})$

Rhombus: Area = $(d1 * d2) / 2 = s^2 * sin(C)$;

Perimeter = 4*s;

Area = (d1 * d2) / 2; **Perimeter** = 2(s1 + s2);

d1 and d2= lengths of the diagonals, s = s1 = s2 = length of side, C = interior angle;