Projet Coq

David Delahaye

Faculté des Sciences David.Delahaye@lirmm.fr

Master M1 2019-2020

Logique propositionnelle

Travail à faire

Toutes les tâches suivantes sont à effectuer en Coq :

- Oéfinir la syntaxe (abstraite) des formules :
 - Donner quelques exemples de formules.
- Définir la sémantique des formules (logique classique);
 - Définir la notion de satisfiabilité, validité, insatisfiabilité, etc.
 - Donner quelques exemples de calcul de la sémantique de formules.
- Oéfinir les règles de preuve du système LK₀;
 - Donner quelques exemples de preuves.
- Démontrer que le système LK₀ est correct;
- Oémontrer que le système LK₀ est complet.

Pour (1), (2) et (3), voir les pages suivantes.

Pour (4) et (5), voir la littérature pour les preuves.

Modalités du projet

Consignes

- Le travail est à effectuer en binôme ou en monôme (pas de trinôme);
- Le travail est à rendre sous le Moodle de HMIN229;
- Le rendu sera constitué d'un seul fichier Coq;
- Le fichier rendu devra être convenablement commenté;
- La date limite pour le rendu du projet est le 3 mai 2020.

D. Delahaye Projet Coq Master M1 2019-2020 3 / 15

Logique propositionnelle

Définition préliminaire

• $V \equiv$ ensemble de variables de propositions A, B, etc.

Formules

- ullet Plus petit ensemble ${\mathcal F}$ t.q. :
 - ▶ Si $A \in \mathcal{V}$ alors $A \in \mathcal{F}$:
 - \bot , $\top \in \mathcal{F}$;
 - ▶ Si $\Phi \in \mathcal{F}$ alors $\neg \Phi \in \mathcal{F}$;
 - ▶ Si $\Phi, \Phi' \in \mathcal{F}$ alors $\Phi \land \Phi', \Phi \lor \Phi', \Phi \Rightarrow \Phi', \Phi \Leftrightarrow \Phi' \in \mathcal{F}$.

Logique propositionnelle

Associativité des connecteurs

- ∧, ∨, et ⇔ associent à gauche :
 - $A \wedge B \wedge C \equiv (A \wedge B) \wedge C.$
- ⇒ associe à droite :
 - $A \Rightarrow B \Rightarrow C \equiv A \Rightarrow (B \Rightarrow C).$

Précédence des connecteurs

- On a la précédence suivante : ¬ ≻ ∧ ≻ ∨ ≻ ⇒ ≻ ⇔;
- Exemples :
 - $A \wedge B \Rightarrow C \equiv (A \wedge B) \Rightarrow C;$
 - $A \wedge \neg B \vee C \Rightarrow D \equiv ((A \wedge \neg B) \vee C) \Rightarrow D;$
 - $A \Rightarrow B \Leftrightarrow C \land D \equiv (A \Rightarrow B) \Leftrightarrow (C \land D).$

Sémantique

Logique propositionnelle classique

- Chaque formule est censée être soit vraie, soit fausse;
- Ensemble des valeurs de vérité : $\mathcal{B} = \{T, F\}$ (booléens), où $T \neq F$;
- Tables de vérité :

Α	В	$\neg_{\mathcal{B}}A$	$A \wedge_{\mathcal{B}} B$	$A \vee_{\mathcal{B}} B$	$A \Rightarrow_{\mathcal{B}} B$	$A \Leftrightarrow_{\mathcal{B}} B$
F	F	T	F	F	T	T
F	T	T	F	T	T	F
T	F	F	F	T	F	F
T	T	F	T	T	T	T

- $\wedge_{\mathcal{B}}$, $\vee_{\mathcal{B}}$, $\Rightarrow_{\mathcal{B}}$, et $\Leftrightarrow_{\mathcal{B}}$: fonctions de $\mathcal{B} \times \mathcal{B}$ vers \mathcal{B} ;
- $\neg_{\mathcal{B}}$: fonction de \mathcal{B} vers \mathcal{B} .

Définition

- Affectation (ou interprétation) ρ : application de l'ensemble $\mathcal V$ des variables de propositions vers $\mathcal B$;
- La sémantique $[\![\Phi]\!]_{\rho}$ d'une formule Φ dans l'affectation ρ est définie par récurrence structurelle sur Φ par :

```
Si A \in \mathcal{V} alors [\![A]\!]_{\rho} = \rho(A);

[\![\top]\!]_{\rho} = T, [\![\bot]\!]_{\rho} = F;

Si \Phi \in \mathcal{F} alors [\![\neg\Phi]\!]_{\rho} = \neg_{\mathcal{B}}[\![\Phi]\!]_{\rho};

Si \Phi, \Phi' \in \mathcal{F} alors :

[\![\Phi \land \Phi']\!]_{\rho} = [\![\Phi]\!]_{\rho} \land_{\mathcal{B}} [\![\Phi']\!]_{\rho};
[\![\Phi \lor \Phi']\!]_{\rho} = [\![\Phi]\!]_{\rho} \lor_{\mathcal{B}} [\![\Phi']\!]_{\rho};
[\![\Phi \Leftrightarrow \Phi']\!]_{\rho} = [\![\Phi]\!]_{\rho} \Leftrightarrow_{\mathcal{B}} [\![\Phi']\!]_{\rho};
[\![\Phi \Leftrightarrow \Phi']\!]_{\rho} = [\![\Phi]\!]_{\rho} \Leftrightarrow_{\mathcal{B}} [\![\Phi']\!]_{\rho}.
```

Vocabulaire

- Soit Φ une formule et ρ une affectation;
- ρ est un modèle de Φ ou ρ satisfait Φ , noté $\rho \models \Phi$, ssi $\llbracket \Phi \rrbracket_{\rho} = T$;
- Un ensemble G de formules entraîne Φ, noté G ⊨ Φ, ssi toutes les affectations satisfaisant toutes les formules de G en même temps (les modèles de G) sont aussi des modèles de Φ, c'est-à-dire quand ρ ⊨ Φ' pour tout Φ' ∈ G implique ρ ⊨ Φ;
- Φ est valide ssi Φ est vraie dans toute affectation ($\llbracket \Phi \rrbracket_{\rho} = T$ pour tout ρ , noté $\models \Phi$), et est invalide sinon;
- Une formule valide est aussi appelée une tautologie;
- Φ est satisfiable ssi elle est vraie dans au moins une affectation ($\llbracket \Phi \rrbracket_{\rho} = T$ pour un certain ρ , c'est-à-dire elle a un modèle), et est insatisfiable sinon.

Sémantique

Vocabulaire

- Toutes les formules valides sont satisfiables, et toutes les formules insatisfiables sont invalides;
- Ceci divise l'espace des formules en trois catégories :
 - Les valides (toujours vraies);
 - Les insatisfiables (toujours fausses);
 - Les formules contingentes (parfois vraies, parfois fausses).
- La validité et l'insatisfiabilité se correspondent via négation : Φ est valide ssi ¬Φ est insatisfiable, Φ est insatisfiable ssi ¬Φ est valide.

Sémantique

Exemples

- $A \wedge B \Rightarrow A$ est valide, c'est-à-dire $\models A \wedge B \Rightarrow A$;
- On a : $A \wedge B \models A$;
- $A \wedge B \Rightarrow C$ est contingent;
- $A \land \neg A$ est insatisfiable.

Preuves

Séquents

• Un séquent de Gentzen est un couple Γ, Δ d'ensembles finis de formules, noté $\Gamma \vdash \Delta$.

Système de preuve

- Calcul des séquents de Gentzen;
- Version propositionnelle : LK₀.

11 / 15

Calcul des séquents propositionnel (LK₀)

Calcul des séquents propositionnel (LK₀)

Règles

$$\frac{\Gamma \vdash \Delta, A \qquad \Gamma, B \vdash \Delta}{\Gamma, A \Rightarrow B \vdash \Delta} \Rightarrow_{\mathsf{left}} \qquad \frac{\Gamma, A \vdash \Delta, B}{\Gamma \vdash \Delta, A \Rightarrow B} \Rightarrow_{\mathsf{right}}$$

$$\frac{\Gamma \vdash \Delta, A \qquad \Gamma, B \vdash \Delta}{\Gamma, A \Leftrightarrow B \vdash \Delta} \Leftrightarrow_{\mathsf{left1}}$$

$$\frac{\Gamma \vdash \Delta, B \qquad \Gamma, A \vdash \Delta}{\Gamma, A \Leftrightarrow B \vdash \Delta} \Leftrightarrow_{\mathsf{left2}}$$

$$\frac{\Gamma, A \vdash \Delta, B \qquad \Gamma, B \vdash \Delta, A}{\Gamma \vdash \Delta, A \Leftrightarrow B} \Leftrightarrow_{\mathsf{right}}$$

Calcul des séquents propositionnel (LK₀)

Règles

$$\frac{\Gamma, A, B \vdash \Delta}{\Gamma, A \land B \vdash \Delta} \land_{\mathsf{left}} \frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta, A \land B} \land_{\mathsf{right}}$$

$$\frac{\Gamma, A \vdash \Delta}{\Gamma, A \lor B \vdash \Delta} \lor_{\mathsf{left}} \frac{\Gamma \vdash \Delta, A, B}{\Gamma \vdash \Delta, A \lor B} \lor_{\mathsf{right}}$$

$$\frac{\Gamma \vdash \Delta, A}{\Gamma, \neg A \vdash \Delta} \lnot_{\mathsf{left}} \frac{\Gamma, A \vdash \Delta}{\Gamma \vdash \Delta, \neg A} \lnot_{\mathsf{right}}$$

$$\frac{\Gamma, A \vdash \Delta}{\Gamma, \neg A \vdash \Delta} \vdash_{\mathsf{left}} \frac{\Gamma, A \vdash \Delta}{\Gamma \vdash \Delta, \neg A} \lnot_{\mathsf{right}}$$

Exemple de preuve

Une preuve simple

$$\frac{ A, B \vdash A \text{ ax} \atop A \land B \vdash A \text{ } \wedge_{\text{left}} \atop \vdash A \land B \Rightarrow A \text{ } \rightarrow_{\text{right}}$$

13 / 15

Exemple de preuve

Une autre preuve

$$\frac{ \overline{A, B \vdash A} \text{ ax } \overline{A, B \vdash B} \text{ ax} }{ \overline{A, B \vdash B} \text{ } \wedge_{\text{right}} }$$

$$\frac{A, B \vdash A \wedge B}{\overline{A \vdash B} \Rightarrow \overline{A \wedge B}} \Rightarrow_{\text{right}}$$

$$\overline{A \vdash B \Rightarrow \overline{A \wedge B}} \Rightarrow_{\text{right}}$$

14 / 15

Propriétés

Prouvabilité

• $\Gamma \vdash \Delta$ est prouvable dans LK_0 , noté $\Gamma \vdash_{\mathsf{LK}_0} \Delta$, ssi il existe une dérivation dans LK_0 se terminant sur $\Gamma \vdash \Delta$.

Correction

- Notation : $\Gamma \models \Delta \equiv \Gamma \models \bigvee_{\Phi \in \Delta} \Phi$;
- Si $\Gamma \vdash_{\mathsf{LK}_0} \Delta$ alors $\Gamma \models \Delta$.

Complétude

• Si $\Gamma \models \Delta$ alors $\Gamma \vdash_{\mathsf{LK}_0} \Delta$.

Élimination des coupures

• Il existe un algorithme qui prend une preuve dans LK₀ et la transforme en une preuve sans coupure du même séquent.