

#### **CIBB 2019**



# Modification of Valiant's Parsing Algorithm for String-Searching Problem

Semyon Grigorev, Yuliya Susanina, Anna Yaveyn

JetBrains Research, Programming Languages and Tools Lab Saint Petersburg University

September 6, 2019

#### Formal grammars and languages

- $G = (\Sigma, N, R, S)$  context-free grammar (CFG) in normal Chomsky form
  - ▶  $A \rightarrow BC$ , where  $A, B, C \in N$
  - ▶  $A \rightarrow a$ , where  $A \in N$ ,  $a \in \Sigma$
  - $S \rightarrow \varepsilon$ , where  $\varepsilon$  is an empty string
- $L_G(A) = \{\omega \mid A \Rightarrow^* \omega\}$ , where  $A \in N$ ,  $\omega \in \Sigma^*$
- Parsing does  $\omega$  belong to  $L_G(S)$ ?

### RNA analysis

- RNA sequences are treated as strings over  $\{A, G, C, U\}$
- Formal grammars describe RNA secondary structure features
- Parsing as method to find all strings or substrings with these features
- Applications: RNA secondary structure prediction, classification and recognition problems
  - ► Eddy S. R., Durbin R. "RNA Sequence Analysis Using Covariance Models" 1994
  - Knudsen B., Hein J. "Rna secondary structure prediction using stochastic context-free grammars and evolutionary history" 1999
  - ► Grigorev S., Lunina P. "The composition of dense neural networks and formal grammars for secondary structure analysis" 2019

#### Tabular parsing algorithms

- Input:
  - Grammar  $G = (\Sigma, N, R, S)$  in Chomsky normal form
  - ▶ String  $\omega = a_1 a_2 \dots a_n$ ,  $a_i \in \Sigma$
- Parsing table T:
  - $T_{i,i} = \{A | A \in \mathbb{N}, a_{i+1} \dots a_i \in L_G(A)\} \quad \forall i < i$
  - $\omega \in L_G(S) \iff S \in T_{0,n}$
- Process of filling:
  - $T_{i-1,i} = \{A|A \rightarrow a_i \in R\}$
  - ▶  $T_{i,j} = f(P_{i,j})$ , where  $P_{i,j} = \bigcup_{k=i+1}^{j-1} T_{i,k} \times T_{k,j}$  $f(P_{i,j}) = \{A | \exists A \rightarrow BC \in R : (B,C) \in P_{i,j}\}$

### Computational complexity

- CYK:  $\mathcal{O}(|G|n^3)$ Younger, D. H. "Context-free language processing in time  $n^3$ " 1966
- GFPQ:  $\mathcal{O}(|G|n^2BMM(n))$ Azimov, R. and Grigorev, S. "Context-free path querying by matrix multiplication" 2018

### Computational complexity

- CYK:  $\mathcal{O}(|G|n^3)$ Younger, D. H. "Context-free language processing in time  $n^3$ " 1966
- GFPQ:  $\mathcal{O}(|G|n^2BMM(n))$ Azimov, R. and Grigorev, S. "Context-free path querying by matrix multiplication" 2018
- Valiant: \( \mathcal{O}(|G|BMM(n)log(n)) \)
   Valiant, L. G. "General context-free recognition in less than cubic time" 1975

## Valiant's parsing algorithm

Reduction to matrix multiplication

$$X,Y \in T$$
 $X \times Y = Z$ , where  $Z_{i,j} = \bigcup_{k=1}^{l} X_{i,k} \times Y_{k,j}$ 

• Reduction to Boolean matrix multiplication

$$Z_{i,j}^{(B,C)} = 1 \iff (B,C) \in Z_{i,j}$$
  
 $Z^{(B,C)} = X^B \times Y^C$ 

- Rearranging the order in which submatrices are processed in Valiant's algorithm
- Division the parsing table into layers of disjoint submatrices



- Rearranging the order in which submatrices are processed in Valiant's algorithm
- Division the parsing table into layers of disjoint submatrices



- Rearranging the order in which submatrices are processed in Valiant's algorithm
- Division the parsing table into layers of disjoint submatrices



- Rearranging the order in which submatrices are processed in Valiant's algorithm
- Division the parsing table into layers of disjoint submatrices



- Rearranging the order in which submatrices are processed in Valiant's algorithm
- Division the parsing table into layers of disjoint submatrices



- Each matrix in the layer can be handled independently
- Increasing the lever of parallelism:
  - Matrix multiplication
  - ► Each matrix in layer
  - ► Each pair of nonterminals



- **Problem:** for input string of length  $n = 2^p 1$  find all substrings of length s which belong to  $L_G(S)$
- Valiant's algorithm: it is necessary to calculate at least 2 triangle submatrices of size  $\frac{n}{2}$   $\mathcal{O}(|G|BMM(2^{p-1})(p-2))$



- **Problem:** for input string of length  $n = 2^p 1$  find all substrings of length s which belong to  $L_G(S)$
- Valiant's algorithm: it is necessary to calculate at least 2 triangle submatrices of size  $\frac{n}{2}$   $\mathcal{O}(|G|BMM(2^{p-1})(p-2))$



- **Problem:** for input string of length  $n = 2^p 1$  find all substrings of length s which belong to  $L_G(S)$
- Valiant's algorithm: it is necessary to calculate at least 2 triangle submatrices of size  $\frac{n}{2}$   $\mathcal{O}(|G|BMM(2^{p-1})(p-2))$



- **Problem**: for input string of length  $n = 2^p 1$  find all substrings of length s which belong to  $L_G(S)$
- Valiant's algorithm: it is necessary to calculate at least 2 triangle submatrices of size  $\frac{n}{2}$   $\mathcal{O}(|G|BMM(2^{p-1})(p-2))$



• Modification: it is necessary to compute layers with submatrices of size not greater than  $2^r$ , где  $2^{r-2} < s \le 2^{r-1}$   $\mathcal{O}(|G|2^{2(p-r)-1}BMM(2^r)(r-1))$ 

#### Conclusion

- We present a modification of Valiant's algorithm
  - Layered submatrices processing
  - Effective utilization of parallel techniques and GPGPU
  - Applicability to the string-searching problem
- Future research
  - ▶ High-performance implementation (GPGPU, parallel techniques)
  - Evaluation on real-world data
  - Extension for more expressive classes of formal languages (conjunctive, boolean)

#### Contact Information

- Yuliya Susanina: jsusanina@gmail.com
- Anna Yaveyn: anya.ayveyn@yandex.ru
- Semyon Grigorev: semen.grigorev@jetbrains.com

Thanks!