Calibrating MEMS Accelerometers

Course project of Nikola Totev for Sofia University – Application of mathematics for modelling real processes Introduction to accelerometers

MEMS Accelerometers

Calibration Errors

Solution

• Future project development.

Introduction to accelerometers

- MEMS
- Piezoelectric
- Piezoresistive
- Capacitive

MEMS Accelerometers

Calibration Errors

- Constant Bias
- Scaling Errors
- Errors due to the non-orthogonality of the axes
- Thermo-Mechanical White Noise / Velocity Random Walk
- Flicker Noise / Bias Stability
- Temperature Effects

What do we expect from the sensor?

Uncalibrated						
X	Υ	Z				
0.686143985	9.693013241	0.146230973				
0.307313184	-9.555131822	0.121707371				
10.20588166	0.146627372	0.293913142				
-9.235730337	0.149835656	-0.153514714				

Norms Before Calibration				
9.71837				
9.56085				
10.2112				
9.23822				
9.72837				

Details about data calibration

$$\bullet \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \underbrace{\begin{pmatrix} M_{xx} & M_{xy} & M_{xz} \\ M_{yx} & M_{yy} & M_{yz} \\ M_{zx} & M_{zy} & M_{zz} \end{pmatrix}}_{M} \cdot \begin{pmatrix} \hat{X} \\ \hat{Y} \\ \hat{Z} \end{pmatrix} + \begin{pmatrix} B_{x} \\ B_{y} \\ B_{z} \end{pmatrix}$$

- We can say that the sensor data is calibrated when (the norm of the acceleration vector) $g^2 \approx 0$.
- We need to find for which M_{xx} , M_{xy} , M_{xz} , M_{yx} , M_{yy} , M_{yz} , M_{zx} , M_{zy} , M_{zz} and B_x , B_y , B_z we have the smallest error.

$$Err(M,B) = \sum_{i=1}^{n} (M_{xx}x_i + M_{xy}y_i + M_{xz}z_i + B_x)^2 + (M_{yx}x_i + M_{yy}y_i + M_{yz}z_i + B_y)^2 + (M_{zx}x_i + M_{zy}y_i + M_{xz}z_i + B_z)^2 - g^2$$

Data calibration methods

I use the least squares method in order to find for which M_{xx} , M_{xy} , M_{xz} , M_{yx} , M_{yy} , M_{yy} , M_{yz} , M_{zx} , M_{zy} , M_{zz} and B_x , B_y , B_z . I have the smallest error for the given data.

$$M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Newtons Method

Popular minimization method

Partial Derivatives

Using it for a system of 12 equations

Result Comparison

Uncalibrated		Calibrated			
X	Υ	Z	Х	Υ	Z
0.686143985	9.693013241	0.146230973	-0.21872	9.78756	0.393097
0.307313184	-9.555131822	0.121707371	0.23227	-9.79228	-0.00413996
10.20588166	0.146627372	0.293913142	9.7752	0.458216	0.448614
-9.235730337	0.149835656	-0.153514714	-9.79133	-0.299772	-0.18428

Norms Before Calibration	Norms After Calibration
9.71837	9.79789
9.56085	9.79504
10.2112	9.79621
9.23822	9.79765
9.72837	9.78336

Calibrated Data

Practical Applications

• Sensing applications in industrial settings.

Robotics

Drones/Aircraft

Demo

<Work in progress>

Thank you for the attention!