Задача 12.1. Нека a,b са реални параметри. Да се намери минималната стойност на функцията

$$f(x) = \sqrt{(x+a)^2 + 1} + \sqrt{(x+1-a)^2 + 1} + \sqrt{(x+b)^2 + 1} + \sqrt{(x+1-b)^2 + 1}$$

и да се определи за кои стойности на x се достига.

Задача 12.2. Една редица $(a_n)_{n=0}^{\infty}$ се нарича nepuoduчнa, ако съществува естествено число t, за което $a_{n+t}=a_n$ при всяко цяло $n\geq 0$. Да се намерят всички стойности на реалното число c, за които редицата $(a_n)_{n=0}^{\infty}$, зададена чрез $a_0=c$ и $a_{n+1}=3a_n-4a_n^3$, е периодична.

Задача 12.3. Дадени са естествени числа $m,n\geq 2$. Точките A_1,A_2,\ldots,A_n са избрани случайно, независимо и равномерно по окръжност с обиколка 1 (т.е. за всяко $i=1,\ldots,n$, за всяко $x\in (0,1)$ и за всяка дъга $\mathcal C$ с дължина x от окръжността е в сила $\mathbb P(A_i\in \mathcal C)=x$.)

Каква е вероятността да съществува дъга от окръжността с дължина 1/m, която съдържа всяка от точките A_1, A_2, \ldots, A_n ?

Задача 12.4. Даден е остроъгълен триъгълник ABC с AC > BC и център I на вписаната окръжност. Нека ω е полувписаната окръжност в триъгълник ABC срещу върха C (това е окръжността, допираща се вътрешно до описаната около $\triangle ABC$ окръжност, както и до правите AC и BC). Окръжността Γ минава през точките A, B и се допира до ω в точка T, като $C \notin \Gamma$ и точка I е в $\triangle ATB$. Да се докаже, че $\angle CTB + \angle ATI = 180^\circ + \angle BAI - \angle ABI$.