

Verschiedene Polynomgrade im Ansatz- und Testraum

Zwischenpräsentation

Enrico Bergmann, Leonard Richter-Matthies, Maximilian Schade Humboldt-Universität zu Berlin

3. Januar 2021

Wir suchen $(u,t)\in \mathrm{H}^1_0(\Omega) imes \mathrm{H}^{-1/2}(\partial\mathcal{T})=:X$, sodass

$$b((u,t),v) := \int\limits_{\Omega} \nabla u \cdot \nabla_{NC} v \, \mathrm{d}x - \sum_{T \in \mathcal{T}} \int\limits_{\partial T} v \, t_T \, \mathrm{d}s = \int\limits_{\Omega} f \, v \, \mathrm{d}x =: F(v)$$

für alle $v \in \mathrm{H}^1(\mathcal{T}) =: Y$ erfüllt ist.

Dafür betrachten wir für die Diskretisierung die Unterräume $S^{k_u}(\mathcal{T}) \subset \mathrm{H}^1(\mathcal{T}), \ P_{k_q}(\mathcal{E}) \subset \mathrm{H}^{-1/2}(\partial \mathcal{T})$ und $P_{k_v}(\mathcal{T}) \subset \mathrm{H}^1(\mathcal{T})$ auf einer regulären Triangulierung \mathcal{T} von Ω in abgeschlossene Dreiecke. Speziell werden wir dafür die drei Fälle

für $k_u, k_q, k_v = 1, 2, 3$ betrachten.

- ✓ P_1 implementieren. ✓ P_2 implementieren.

- $\checkmark P_1$ implementieren.
- ✓ P_2 implementieren.
- □ P₃ implementieren.
- Implementation des eingebauten Fehlerschätzers.
- Nachstellen der Experimente aus dem Paper.

- $\checkmark P_1 \text{ implementieren.}$
- $\checkmark P_2$ implementieren.
- \square P_3 implementieren.
- Implementation des eingebauten Fehlerschätzers.
- Nachstellen der Experimente aus dem Paper.
- Optimierung des Codes.
- ✗ Durchführung weiterer Experimente.
- ✗ Auswertung und Dokumentation.

Approximation von u für $-\Delta u=1$, $u_{|\partial\Omega}=0$

Fall 1: 1 0 2

Fall 1: 2 1 3

Fall 2: 1 1 2

Fall 2: 2 2 3

Fall 3: 1 0 1

Fall 3: 2 1 2

Fall 3: 3 2 3

Vergleich 1 0 1 und 3 2 3 - "Höhenuntererschied"

Problem aus dem Paper

Die Funktion f für das Poisson-Problem $-\Delta u = f$ wird so gewählt, dass die exakte Lösung $u = \sin(\pi x)\sin(\pi y) \text{ ist,}$ also gilt $f = 2\pi^2\sin(\pi x)\sin(\pi y)$ und $u_{|\partial\Omega} = 0$

Vergleich 1 0 1 und 3 2 3 für $f = 2\pi^2 \sin(\pi x) \sin(\pi y)$

Triangulierung kein- und einmal rotverfeinert.

H_1 -Konvergenzrate

$$\log_2 \left(\frac{\|u - u_h\|_{H^1(\Omega)}}{\|u - u_{h/2}\|_{H^1(\Omega)}} \right)$$

- ✓ P_1 implementieren. ✓ P_2 implementieren.

- $\bullet P_1$ implementieren.
- $\checkmark P_2$ implementieren.
- ✓ P_3 implementieren.
- ✓ Implementation des eingebauten Fehlerschätzers.

- $\checkmark P_1$ implementieren.
- $\checkmark P_2$ implementieren.
- ✓ P_3 implementieren.
- ✓ Implementation des eingebauten Fehlerschätzers.
- Nachstellen der Experimente aus dem Paper.

- $\checkmark P_1$ implementieren.
- $\checkmark P_2$ implementieren.
- $\checkmark P_3$ implementieren.
- ✓ Implementation des eingebauten Fehlerschätzers.
- Nachstellen der Experimente aus dem Paper.
- Optimierung des Codes.
- Durchführung weiterer Experimente.
- ✗ Auswertung und Dokumentation.

