CSE 114A: Fall 2021 Introduction to Functional Programming

Lambda Calculus

Owen Arden
UC Santa Cruz

Your favorite language

- Probably has lots of features:
 - Assignment (x = x + 1)
 - Booleans, integers, characters, strings,...
 - Conditionals
 - Loops, return, break, continue
 - Functions
 - Recursion
 - References / pointers
 - Objects and classes
 - Inheritance
 - ... and more

Your favorite language

- Probably has lots of features:
 - Assignment (x = x + 1)
 - Booleans, integers, characters, strings,...
 - Conditionals

 - Which ones can we do without?
 - What is the smallest universal language?
 - References / pointers
 - Objects and classes
 - Inheritance
 - ... and more

What is computable?

- Prior to 1930s
 - Informal notion of an effectively calculable function:

One that can be computed by a human with pen and paper, following an algorithm

What is computable?

• 1936: Formalization

Alan Turing: Turing machines

What is computable?

• 1936: Formalization

Alonzo Church: lambda calculus

The Next 700 Languages

Big impact on language design!

Whatever the next 700 languages turn out to be, they will surely be variants of lambda calculus.

Peter Landin, 1966

Your favorite language

- Probably has lots of features:
 - Assignment (x = x + 1)
 - Booleans, integers, characters, strings,...
 - Conditionals
 - Loops, return, break, continue
 - Functions
 - Recursion
 - References / pointers
 - Objects and classes
 - Inheritance
 - ... and more

The Lambda Calculus

- Features
 - Functions
 - (that's it)

The Lambda Calculus

- Seriously...
 - Assignment (x = x + 1)
 - Booleans, integers, characters, strings,...
 - Conditionals
 - Loops, return, break, continue
 - Functions
 - Recursion
 - References / pointers
 - Objects and classes
 - Inheritance
 - ... and more

The only thing you can do is:

Define a function

Call a function

Describing a Programming Language

- Syntax
 - What do programs *look like*?
- Semantics
 - What do programs *mean*?
 - Operational semantics:
 - How do programs execute step-by-step?

Syntax: What programs look like

```
e ::= x
| \x -> e
| e1 e2
```

- Programs are *expressions* e (also called λ -terms)
- Variable: x, y, z
- Abstraction (aka nameless function definition):
 - $\x -> e$ "for any x, compute e"
 - x is the *formal parameter*, e is the *body*
- Application (aka function call):
 - e1 e2 "apply e1 to e2"
 - e1 is the function, e2 is the argument

```
-- The identity function ("for any x compute x")
\x -> x

-- A function that returns the identity function
\x -> (\y -> y)

-- A function that applies its argument to
-- the identity function
\f -> f (\x -> x)
```

```
-- The identity function ("for any x compute x")
\x -> x

-- A function that returns the identity function
\x -> (\y -> y)

-- A function that applies its argument to
-- the identity function
\f -> f (\x -> x)
```

- How do I define a function with two arguments?
 - e.g. a function that takes x and y and returns y

```
-- A function that returns the identity function
\x -> (\y -> y)
```

OR: a function that takes two arguments and returns the second one!

- How do I define a function with two arguments?
 - e.g. a function that takes x and y and returns y

- How do I apply a function to two arguments?
 - e.g. apply $\x -> (\y -> y)$ to apple and banana?

```
-- first apply to apple, then apply the result to banana (((\x -> (\y -> y)) apple) banana)
```

Syntactic Sugar

Convenient notation used as a shorthand for valid syntax

instead of	we write
$\x -> (\y -> (\z -> e))$	\x -> \y -> \z -> e
\x -> \y -> \z -> e	\x y z -> e
(((e1 e2) e3) e4)	e1 e2 e3 e4

Semantics: What programs mean

- How do I "run" or "execute" a λ -term?
- Think of middle-school algebra:

```
-- Simplify expression:

(x + 2)*(3*x - 1)

=

???
```

• **Execute** = rewrite step-by-step following simple rules until no more rules apply

Rewrite rules of lambda calculus

- 1. α-step (aka renaming formals)
- 2. B-step (aka function call)

But first we have to talk about scope

Semantics: Scope of a Variable

- The part of a program where a variable is visible
- In the expression \x -> e
 - x is the newly introduced variable
 - e is the scope of x
 - any occurrence of x in \x -> e is bound (by the binder \x)

Semantics: Scope of a Variable

• For example, x is **bound** in:

```
\x -> x
\x -> (\y -> x)
```

- An occurrence of x in e is free if it's not bound by an enclosing abstraction
- For example, x is **free** in:

Free Variables

- An variable x is free in e if there exists a free occurrence of x in e
- We can formally define the set of all free variables in a term like so:

```
FV(x) = ???
FV(\x -> e) = ???
FV(e1 e2) = ???
```

Free Variables

- An variable x is free in e if there exists a free occurrence of x in e
- We can formally define the set of all free variables in a term like so:

```
FV(x) = \{x\}
FV(\x -> e) = FV(e) \setminus \{x\}
FV(e1 e2) = FV(e1) \cup FV(e2)
```

Closed Expressions

- If e has no free variables it is said to be closed
- Closed expressions are also called combinators
 - Q: What is the *shortest* closed expression?

Closed Expressions

- If e has no free variables it is said to be closed
- Closed expressions are also called combinators
 - Q: What is the *shortest* closed expression?
 - A: \x -> x

Rewrite rules of lambda calculus

- 1. α-step (aka renaming formals)
- 2. B-step (aka function call)

Semantics: B-Reduction

```
(\x -> e1) e2 =b> e1[x := e2]
where e1[x := e2] means "e1 with all free occurrences
of x replaced with e2"
```

- Computation by search-and-replace:
 - If you see an abstraction applied to an argument, take the body of the abstraction and replace all free occurrences of the formal by that argument
 - We say that $(\x -> e1)$ e2 *B-steps* to e1[x := e2]

```
(\x -> x) apple
=b> apple
```

Is this right? Ask Elsa!

```
(\f -> f (\x -> x)) (give apple)
=b> ???
```

```
(\x -> x) apple
=b> apple
```

Is this right? Ask Elsa!

```
(\f -> f (\x -> x)) (give apple)
=b> give apple (\x -> x)
```

A Tricky One

```
(\x -> (\y -> x)) y
=b> \y -> y
```

Is this right?

Problem: the free y in the argument has been *captured* by \y!

Solution: make sure that all *free variables* of the argument are different from the *binders* in the body.

Capture-Avoiding Substitution

We have to fix our definition of B-reduction:

```
(\x -> e1) e2 =b> e1[x := e2]
where e1[x := e2] means "e1 with all free occurrences
of x replaced with e2"
```

- e1 with all free occurrences of x replaced with e2, as long as no free variables of e2 get captured
- undefined otherwise

Capture-Avoiding Substitution

Formally:

Rewrite rules of lambda calculus

- 1. α-step (aka renaming formals)
- 2. B-step (aka function call)

Semantics: α-Reduction

```
\xspace{0.1cm} \xsp
```

- We can rename a formal parameter and replace all its occurrences in the body
- We say that $(\x -> e)$ a-steps to $(\y -> e[x := y])$

Semantics: α-Reduction

```
\xspace{0.1cm} \xsp
```

• Example:

$$\x -> x = a> \y -> y = a> \z -> z$$

• All these expressions are α -equivalent

What's wrong with these?

```
-- (A)
\f -> f x =a> \x -> x x

-- (B)
(\x -> \y -> y) y =a> (\x -> \z -> z) z

-- (C)
\x -> \y -> x y =a> \apple -> \orange -> apple orange
```

The Tricky One

```
(\x -> (\y -> x)) y
=a> ???
```

To avoid getting confused, you can always rename formals, so that different variables have different names!

The Tricky One

```
(\x -> (\y -> x)) y
=a> (\x -> (\z -> x)) y
=b> \z -> y
```

To avoid getting confused, you can always rename formals, so that different variables have different names!

Normal Forms

A **redex** is a λ -term of the form

$$(\x -> e1) e2$$

A λ -term is in **normal form** if it contains no redexes.

Semantics: Evaluation

- A λ -term e evaluates to e' if
 - 1. There is a sequence of stops

where each =?> is either =a> or =b> and N >= 0

2. e' is in normal form

Example of evaluation

```
(\x -> x) apple
  =b> apple
(\f -> f (\x -> x)) (\x -> x)
  = 5 > 555
(\x -> x x) (\x -> x)
  = 5 > 555
```

Example of evaluation

```
(\x -> x) apple
  =b> apple
(\f -> f (\x -> x)) (\x -> x)
  =b>(\xspace(\xspace) x -> x)(\xspace(\xspace) x -> x)
  =b> \xspace x
(\x -> x x) (\x -> x)
  = 5 > 555
```

Example of evaluation

```
(\x -> x) apple
  =b> apple
(\f -> f (\x -> x)) (\x -> x)
  =b>(\xspace(\xspace) x -> x)(\xspace(\xspace) x -> x)
  =b> \xspace x
(\x -> x x) (\x -> x)
  =b>(\xspace(\xspace) x -> x)(\xspace(\xspace) x -> x)
  =b> \x -> x
```

Elsa shortcuts

Named λ-terms

```
let ID = \x -> x -- abbreviation for <math>\x -> x
```

 To substitute a name with its definition, use a =d> step:

Elsa shortcuts

- Evaluation
 - e1 =*> e2: e1 reduces to e2 in 0 or more steps
 - where each step is =a>, =b>, or =d>
 - e1 =~> e2: e1 evaluates to e2
- What is the difference?

Non-Terminating Evaluation

```
(\x -> x x) (\x -> x x)
= b> (\x -> x x) (\x -> x x)
```

- Oh no... we can write programs that loop back to themselves
- And never reduce to normal form!
- This combinator is called Ω

Non-Terminating Evaluation

• What if we pass Ω as an argument to another function?

```
let OMEGA = (\x -> x x) (\x -> x x)
(\x -> \y -> y) OMEGA
```

• Does this reduce to a normal form? Try it at home!

Programming in λ-calculus

- Real languages have lots of features
 - Booleans
 - Records (structs, tuples)
 - Numbers
 - Functions [we got those]
 - Recursion
- Let's see how to encode all of these features with the λ -calculus.

λ-calculus: Booleans

- How can we encode Boolean values (TRUE and FALSE) as functions?
- Well, what do we **do** with a Boolean **b**?

- We make a *binary choice*

if b then e1 else e2

Booleans: API

We need to define three functions

```
let TRUE = ???
let FALSE = ???
let ITE = \b x y -> ??? -- if b then x else y

such that

ITE TRUE apple banana =~> apple
ITE FALSE apple banana =~> banana

(Here, let NAME = e means NAME is an abbreviation for e)
```

Booleans: Implementation

Example: Branches step-by-step

Example: Branches step-by-step

- Now you try it!
- Can you fill in the blanks to make it happen?
 - http://goto.ucsd.edu:8095/index.html#?demo=ite.lc

```
eval ite_false:
   ITE FALSE e1 e2
   -- fill the steps in!
   =b> e2
```

Example: Branches step-by-step

Boolean operators

 Now that we have ITE it's easy to define other Boolean operators:

```
let NOT = \b -> ???

let AND = \b1 b2 -> ???

let OR = \b1 b2 -> ???
```

Boolean operators

 Now that we have ITE it's easy to define other Boolean operators:

```
let NOT = \b -> ITE b FALSE TRUE

let AND = \b1 b2 -> ITE b1 b2 FALSE

let OR = \b1 b2 -> ITE b1 TRUE b2
```

Boolean operators

 Now that we have ITE it's easy to define other Boolean operators:

```
let NOT = \b -> b FALSE TRUE

let AND = \b1 b2 -> b1 b2 FALSE

let OR = \b1 b2 -> b1 TRUE b2
```

- (since ITE is redundant)
- Which definition to do you prefer and why?

Programming in λ-calculus

- Real languages have lots of features
 - Booleans [done]
 - Records (structs, tuples)
 - Numbers
 - Functions [we got those]
 - Recursion

λ-calculus: Records

- Let's start with records with two fields (aka pairs)?
- Well, what do we **do** with a pair?

- 1. Pack two items into a pair, then
- 2.Get first item, or
- 3.**Get second** item.

Pairs: API

We need to define three functions

such that

```
FST (PAIR apple banana) =~> apple
SND (PAIR apple banana) =~> banana
```

Pairs: Implementation

 A pair of x and y is just something that lets you pick between x and y! (I.e. a function that takes a boolean and returns either x or y)

```
let PAIR = \x y -> (\b -> ITE b x y)
let FST = \p -> p TRUE   -- call w/ TRUE, get 1st value
let SND = \p -> p FALSE   -- call w/ FALSE, get 2nd value
```

Exercise: Triples?

 How can we implement a record that contains three values?

```
let TRIPLE = \x y z -> ???
let FST3 = \t -> ???
let SND3 = \t -> ???
let TRD3 = \t -> ???
```

Exercise: Triples?

 How can we implement a record that contains three values?

```
let TRIPLE = \x y z -> PAIR x (PAIR y z)
let FST3 = \t -> FST t
let SND3 = \t -> FST (SND t)
let TRD3 = \t -> SND (SND t)
```

Programming in λ-calculus

- Real languages have lots of features
 - Booleans [done]
 - Records (structs, tuples) [done]
 - Numbers
 - Functions [we got those]
 - Recursion

λ-calculus: Numbers

- Let's start with natural numbers (0, 1, 2, ...)
- What do we do with natural numbers?

- 1. **Count**: 0, inc
- 2. Arithmetic: dec, +, -, *
- 3. Comparisons: ==, <=, etc

Natural Numbers: API

- We need to define:
 - A family of numerals: ZERO, ONE, TWO, THREE, ...
 - Arithmetic functions: INC, DEC, ADD, SUB, MULT
 - Comparisons: IS ZERO, EQ

Such that they respect all regular laws of arithmetic, e.g.

```
IS_ZERO ZERO =~> TRUE
IS_ZERO (INC ZERO) =~> FALSE
INC ONE =~> TWO
```

Pairs: Implementation

 Church numerals: a number N is encoded as a combinator that calls a function on an argument N times

```
let ONE = \f x -> f x
let TWO = \f x -> f (f x)
let THREE = \f x -> f (f (f x))
let FOUR = \f x -> f (f (f (f x)))
let FIVE = \f x -> f (f (f (f x))))
let SIX = \f x -> f (f (f (f (f x)))))
```

λ-calculus: Increment

```
-- Call \hat{f} on \hat{x} one more time than \hat{n} does let INC = \hat{x} -> (\hat{x} -> ???)
```

Example

```
eval inc_zero :
   INC ZERO
   =d> (\n f x -> f (n f x)) ZERO
   =b> \f x -> f (ZERO f x)
   =*> \f x -> f x
   =d> ONE
```

λ-calculus: Addition

```
-- Call `f` on `x` exactly `n + m` times
let ADD = \n m -> n INC m
```

Example

```
eval add_one_zero :
   ADD ONE ZERO
   =~> ONE
```

λ-calculus: Multiplication

```
-- Call `f` on `x` exactly `n * m` times
let MULT = \n m -> n (ADD m) ZERO
```

• Example

```
eval two_times_one :
    MULT TWO ONE
    =~> TWO
```

Programming in λ-calculus

- Real languages have lots of features
 - Booleans [done]
 - Records (structs, tuples) [done]
 - Numbers [done]
 - Functions [we got those]
 - Recursion

• I want to write a function that sums up natural numbers up to n:

- No! Named terms in Elsa are just syntactic sugar
- To translate an Elsa term to λ -calculus: replace each name with its definition

- Recursion: Inside this function I want to call the same function on DEC n
- Looks like we can't do recursion, because it requires being able to refer to functions by name, but in λ -calculus functions are anonymous.
- Right?

- Think again!
- Recursion: Inside this function I want to call the same function on DEC n
 - Inside this function I want to call a function on DEC n
 - And BTW, I want it to be the same function
- Step 1: Pass in the function to call "recursively"

• Step 1: Pass in the function to call "recursively"

• Step 2: Do something clever to STEP, so that the function passed as rec itself becomes

```
\n -> ITE (ISZ n) ZERO (ADD n (rec (DEC n)))
```

 Wanted: a combinator FIX such that FIX STEP calls STEP with itself as the first argument:

```
FIX STEP

=*> STEP (FIX STEP)

(In math: a fixpoint of a function f(x) is a point x, such that f(x) = x)
```

• Once we have it, we can define:

```
let SUM = FIX STEP
```

Then by property of FIX we have:

```
SUM = * > STEP SUM -- (1)
```

```
eval sum one:
 SUM ONE
 =*> STEP SUM ONE
                  -- (1)
 =d> (\rec n -> ITE (ISZ n) ZERO (ADD n (rec (DEC n)))) SUM ONE
 =b> (n \rightarrow ITE (ISZ n) ZERO (ADD n (SUM (DEC n)))) ONE
                                  -- ^^^ the magic happened!
 =b> ITE (ISZ ONE) ZERO (ADD ONE (SUM (DEC ONE)))
 =*> ADD ONE (SUM ZERO) -- def of ISZ, ITE, DEC, ...
 =*> ADD ONE (STEP SUM ZERO) -- (1)
 =d> ADD ONE
       ((\rc n -> ITE (ISZ n) ZERO (ADD n (rec (DEC n)))) SUM ZERO)
 =b> ADD ONE ((n -> ITE (ISZ n) ZERO (ADD n (SUM (DEC n)))) ZERO)
 =b> ADD ONE (ITE (ISZ ZERO) ZERO (ADD ZERO (SUM (DEC ZERO))))
 =b> ADD ONE ZERO
 =~> ONE
```

- So how do we define FIX?
- Remember Ω ? It *replicates itself!*

```
(\x -> x x) (\x -> x x)
=b> (\x -> x x) (\x -> x x)
```

• We need something similar but more involved.

The Y combinator discovered by Haskell Curry:

```
let FIX = \langle x - x + x \rangle (\langle x - x + x \rangle) (\langle x - x + x \rangle)
```

How does it work?

```
eval fix_step:
    FIX STEP
    =d> (\stp -> (\x -> stp (x x)) (\x -> stp (x x))) STEP
    =b> (\x -> STEP (x x)) (\x -> STEP (x x))
    =b> STEP ((\x -> STEP (x x)) (\x -> STEP (x x)))
    --
```

Programming in λ-calculus

- Real languages have lots of features
 - Booleans [done]
 - Records (structs, tuples) [done]
 - Numbers [done]
 - Functions [we got those]
 - Recursion [done]

Next time: Intro to Haskell

