1. Model

1.1 Convert AR(2) to VAR(1)

$$y_t = \rho_1 y_{t-1} + \rho_2 y_{t-2} + \varepsilon_t$$

Forecaster correctly knows this structure and models the following state space model using a vector-form Kalman filter:

• State Equation:

$$x_{t+1} = Ax_t + w_t, \quad x_t = egin{bmatrix} y_t \ y_{t-1} \end{bmatrix}, \quad A = egin{bmatrix}
ho_1 &
ho_2 \ 1 & 0 \end{bmatrix}.$$

• Observation Equation:

$$s_t^{(i)} = H x_t + v_t^{(i)}, \quad H = [1 \ 0]$$

1.2 Construct the state space model

linear Gaussian state space model:

• State transition (VAR(1)):

$$x_{t+1} = Ax_t + w_t, \quad w_t \sim \mathcal{N}(0,Q)$$

Observation equation (signal):

$$s_t^{(i)} = Hx_t + v_t^{(i)}, \quad v_t^{(i)} \sim \mathcal{N}(0,R)$$

Where, $H = \begin{bmatrix} 1 & 0 \end{bmatrix}$, represents we observe y_t , rather than the entire state.

So each forecaster receives a noisy signal:

$$s_t^{(i)} = y_t + \mathrm{noise}$$

1.3 Forecaster uses the vector-form Kalman filter

• Prediction:

$$\hat{x}_{t|t-1} = A\hat{x}_{t-1|t-1}$$
 $P_{t|t-1} = AP_{t-1|t-1}A' + Q$

• Update:

$$K_t = P_{t|t-1}H'(HP_{t|t-1}H' + R)^{-1}$$
 $\hat{x}_{t|t} = \hat{x}_{t|t-1} + K_t(s_t - H\hat{x}_{t|t-1})$ $P_{t|t} = (I - K_tH)P_{t|t-1}$

As for:

$$\hat{y}_{t+h|t} = E[y_{t+h} \mid \text{data up to time } t]$$

Since we already have $\hat{x}_{t|t}$, then:

$$\hat{x}_{t+1|t} = A\hat{x}_{t|t}, \quad \hat{x}_{t+2|t} = A^2\hat{x}_{t|t}, \quad \dots, \quad \hat{x}_{t+h|t} = A^h\hat{x}_{t|t}$$

Recall that:

$$y_{t+h} =$$
the first dimension of x_{t+h}

which means:

$$\hat{y}_{t+h|t} = H\hat{x}_{t+h|t} = HA^h\hat{x}_{t|t}, \quad ext{where } H = egin{bmatrix} 1 & 0 \end{bmatrix}$$

Therefore, the final forecast is:

$$\hat{y}_{t+h|t} = \begin{bmatrix} 1 & 0 \end{bmatrix} \cdot A^h \hat{x}_{t|t}$$

1.4 Analyst uses Eq(7) and Eq(8)

Now the analyst gets the forecast from forecaster:

$$\hat{y}_{t+h|t} = ext{from Kalman} + ext{VAR}(1) = HA^h \hat{x}_{t|t}$$

report on stage2

$$\hat{y}_{t|t} = H\hat{x}_{t|t}$$

$$H = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

Then the analyst uses Eq(7) and Eq(8) to test whether the forecast conforms to the structure of an AR(1):

Eq(7):

$$\left(rac{ ilde{
ho}}{
ho}
ight)^h = rac{ ext{Cov}(\hat{y}_{t+h|t}, y_t)}{ ext{Cov}(\hat{y}_{t|t}, y_{t+h})}$$

Eq(8):

$$\mathrm{stat}_8 = rac{\mathrm{Cov}(\hat{y}_{t+h|t}, \hat{y}_{t|t})}{\mathrm{Var}(\hat{y}_{t|t})} \cdot rac{\mathrm{Var}(y_t)}{\mathrm{Cov}(y_{t+h}, y_t)}$$

2. Different Patterns of ρ_1 and ρ_2

As for AR(2) process, which is a **difference equation**:

$$y_t = \rho_1 y_{t-1} + \rho_2 y_{t-2} + \varepsilon_t$$

which has roots:

$$r^2-
ho_1r-
ho_2=0\Rightarrow r=rac{
ho_1\pm\sqrt{
ho_1^2+4
ho_2}}{2}$$

- If roots are real and < 1: monotonic convergence
- If roots are complex: oscillations
- If roots > 1: explosive

		Dynamic Pattern	Econ Intuition
>1	<0	cyclical convergence	unemployment,
		cyclical convergence	output gap
<1	>0	smooth convergence, stable	GDP growth
Small ±	Small ±	rapid mean reversion, rapid	monetary policy
(mix)	(mix)	adjustment	instruments

$ ho_1$	$ ho_2$	Dynamic Pattern	Econ Intuition
Large +	Large –	high oscillatory/overshooting	consumer expectations

3. Some Cases

Economic Variable Example	$ ho_1$	$ ho_2$	Literature	
Unemployment Rate	1.3	-0.4	Stock & Watson (1998)	
GDP Growth	0.8	0.1	Hamilton (1994), Time Series Analysis	
Inflation	1.1	-0.2	Cogley, T., & Sargent, T. J. (2001). Evolving Post-World War II U.S. Inflation Dynamics.	
Interest Rate / Output Gap	0.6	-0.3	Galí (2015), Monetary Policy	
Expectational Errors	1.4	-0.6	Angeletos & La'O (2013); Coibion & Gorodnichenko (2015) (From Chatgpt)	
Price Dynamics under Demand Shocks	0.9	0.3	Bils & Klenow (2004); Nakamura & Steinsson (2008), menu cost literature (From Chatgpt)	

3.1 Unemployment Rate


```
=== AR(2) DGP with Analyst Assuming AR(1) ===
```

Mean of stat(7): 1.0416
Mean of stat(8): 0.8853

Ratio stat(7) / stat(8): 1.1765

3.2 GDP Growth

=== AR(2) DGP with Analyst Assuming AR(1) ===

Mean of stat(7): 1.0771

Mean of stat(8): 0.9764

Ratio stat(7) / stat(8): 1.1031

3.3 Inflation

=== AR(2) DGP with Analyst Assuming AR(1) ===

Mean of stat(7): 1.0543 Mean of stat(8): 0.9106

Ratio stat(7) / stat(8): 1.1578

3.4 Interest Rate / Output Gap


```
=== AR(2) DGP with Analyst Assuming AR(1) ===
```

Mean of stat(7): 1.0894 Mean of stat(8): 1.8396

Ratio stat(7) / stat(8): 0.5922

3.5 Expectational Errors

=== AR(2) DGP with Analyst Assuming AR(1) ===

Mean of stat(7): 1.0281 Mean of stat(8): 0.9290

Ratio stat(7) / stat(8): 1.1067

3.6 Price Dynamics under Demand Shocks


```
=== AR(2) DGP with Analyst Assuming AR(1) ===
Mean of stat(7): 1.0000
Mean of stat(8): 0.6903
Ratio stat(7) / stat(8): 1.4486
```

4. Summary & Further Question

4.1 Summary

Variable Type	Analyst AR(1) Misspec. Bias	stat(8) Behavior	Interpretation
Unemployment	Severe	Large	Analyst is "short-
Rate		deviation	sighted"
GDP Growth	Mild	Small	Close to AR(1)
GDI GIOWIII		deviation	
Inflation	Mild	Small	Close to AR(1)
		deviation	
Interest Rate /	Minimal	near 1	Close to AR(1)
Output Gap			

Variable Type	Analyst AR(1) Misspec. Bias	stat(8) Behavior	Interpretation
Expectations	Severe	Large deviation	Analyst sees too little feedback
Price/Demand Shock	?	?	Feedback loop via lag ignored (?)

4.2 Special Result: $\rho_1=0.9$ and $\rho_2=0.3$

Since $\rho_1 + \rho_2 = 1.2 > 1$, according the roots of the characteristic equation:

$$r^2 - \rho_1 r - \rho_2 = 0$$

Suppose:

$$ho_1 = 0.9, \quad
ho_2 = 0.3$$

 $ho_1+
ho_2>1$ makes the process explosive: variance of y_t grows over time and autocovariances become unreliable

Then the roots are:

$$r=rac{0.9\pm\sqrt{0.9^2+4\cdot0.3}}{2}=rac{0.9\pm\sqrt{2.01}}{2}$$
 $r_1=1.1589>1$ $r_2=-0.2589$

One root is greater than $1 \rightarrow$ indicates **non-stationarity**.

If both roots lie within the unit circle (i.e., $|r_1| < 1, |r_2| < 1$), then the process is stationary, even if $\rho_1 + \rho_2 > 1$.

4.3 Different ω

4.3.1 Mean stat(7) and stat(8) vs. ω

Summary Table of stat(7) and stat(8) === Mean_Stat7 Mean Stat8 Omega 0.88838 0.1 1.0427 0.3 1.0349 0.88226 0.88599 0.5 1.0427 1.0448 0.8851 1 2 0.8875 1.0634

stat (7) remains close to 1.03–1.06 across all values of ω , and even slightly increases as noise grows.

stat(8) is consistently lower, around 0.88-0.89, and essentially flat across the range.

Implication: stat(7) is robust and stat(8) is structurally biased.

4.3.2 Boxplot of stat(7) and stat(8) across ω

Median values remain close to 1.0 at every ω level.

Variance and outliers **slightly increase** as ω increases, for example, extreme outliers (>1.3) become more common at $\omega = 2.0$.

As signal noise increases, the Kalman filter becomes less precise?

All distributions are centered around 0.88. Dispersion slightly increases as $\boldsymbol{\omega}$ grows, but not dramatically.

The bias remains a regardless of signal precision, showing that this is a structural attribution error, not a noise problem.