Today:

- Gate-level minimization part 2
 - Four variable K-maps
 - POS implementation using K-maps
 - Incompletely specified functions & Don't care
 - Ex-OR being an "Odd function"
 - Application: Parity generator & checker

Four variable K-map

<i>m</i> ₀	<i>m</i> ₁	<i>m</i> ₃	<i>m</i> ₂
^m 4	m ₅	m ₇	<i>m</i> 6
m 12	m ₁₃	m 15	m ₁₄
m 8	m 9	m_{11}	^m 10

(a)

10	/x\	yz 00	01	11	10	
• • • • • • • • • • • • • • • • • • • •	.]	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'	
	01	w'xy'z'	w'xy'z	w'xyz	w'xyz'	X
•••	11	wxy'z'	wxy'z	wxyz	wxyz'	
w	10	wx'y'z'	wx'y'z	wx'yz	wxfyz'	
	`	(b)	<u> </u>	ž	,	

Remarks

One square represents one minterm, giving a term of four literals. Two adjacent squares represent a term of three literals. Four adjacent squares represent a term of two literals. Eight adjacent squares represent a term of one literal. Sixteen adjacent squares represent the function equal to 1.

Example

Given: $F(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

Solution: F = y' + w'z' + xz'

Example

Given: F = A'B'C' + B'CD' + A'BCD' + AB'C'

Solution: F = B'D' + B'C' + A'CD'

Remarks

- Ensure following while choosing adjacent squares in a K-map:
 - 1. All the minterms of the function are covered when we combine the squares.
 - 2. The number of terms in the expression is minimized.
 - 3. There are no redundant terms, i.e., minterms already covered by other terms.

Note: Sometimes there may be two or more expressions that satisfy the simplification criteria.

A more systematic way to combine the squares

 Prime implicant is a product term obtained by combining the maximum possible number of adjacent squares in the K-map.

 If a minterm in a square is covered by only one prime implicant, that prime implicant is said to be essential.

Example

 $F(A, B, C, D) = \Sigma(0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$

(a) Essential prime implicants BD and B'D'

(b) Prime implicants CD, B'C, AD, and AB'

...continued

Four possible ways to express the corresponding function:

$$F = BD + B'D' + CD + AD$$

= $BD + B'D' + CD + AB'$
= $BD + B'D' + B'C + AD$
= $BD + B'D' + B'C + AB'$

Product-of-Sums (POS) Implementation using K-map

Hint:

Use DeMorgan's property in the K-map and we can obtained the POS implementation instead of the SOP form.

Find POS implementation

See that it is SOP equation

$$F(A, B, C, D) = \Sigma(0, 1, 2, 5, 8, 9, 10)$$

$$(A' + B')(C' + D')(B' + D)$$

Find the SOP and POS implementations for given Truth-table

x	у	Z	F			
0	0	0	0			
0	0	1	1			
0	1	0	0			
0	ī	1	1			
1	0	0	1			
1	0	1	0			
1	1	0	1			
1	1	1	0			
			<u></u>			

K-map representation

SOP expression

POS expression

$$F(x, y, z) = \sum (1, 3, 4, 6)$$
 $F(x, y, z) = \Pi(0, 2, 5, 7)$

Incompletely specified functions

 Functions that have unspecified outputs for some input combinations are called incompletely specified functions.

meaning of unspecified:

e.g., in a design for an application, some combinations of the inputs are **not used** and hence considered as **unspecified**.

Don't care conditions

 The unspecified minterms of a function called as don't-care conditions.

meaning:

we simply don't care what value is assumed by such minterms, either 0 or 1.

Symbol in the K-map: "X"

Use in simplifying the Boolean functions.

Ex: function with don't-care conditions

$$F(w, x, y, z) = \sum (1, 3, 7, 11, 15)$$
 with $d(w, x, y, z) = \sum (0, 2, 5)$

(a)
$$F = yz + w'x'$$

(b)
$$F = yz + w'z$$