Modelling extremes with R

Ilaria Prosdocimi Ca' Foscari University of Venice, Italy

Modelling extremes with R

- 1. Modelling extremes
- 2. with R

R is the language in which the main developments in Statistical modelling of extremes are implemented

Today only a brief introduction: comprehensive list of R package is available at the Extremes taskview

Today: only univariate models

Statistical models for extremes

Statistics mostly focuses on the *typical* behaviour of variables (i.e. *the mean*)

Characterisation of extremes is important for risk quantification and infrastructure design

Extremes behave somewhat differently from the rest of the distribution

 \rightarrow extreme value theory gives theoretical results for extremes

Statistical literature and engineering/earth sciences literature and practice are not always aligned

First question: what is an extreme?

River flow dataset

datRiv <- rnrfa::gdf(3006)</pre>

Extremes: block (annual) maxima

What is an extreme? The largest event in the water year.

Extremes: block (annual) maxima

What is an extreme? The largest event in the water year.

Extremes: theory for annual maxima

If we know that $X\sim f(x)$ - we have that $P(max(X_1,\ldots,X_n)\leq z)=P(X_1\leq z) imes\ldots imes P(X_n\leq z)=\{F(z)\}^n$

But f(x) is unknown (and difficult to estimate).

It can be shown that $M_n = max(X_1, \ldots, X_n)$ has a limiting distribution which is the GEV:

$$F(y) = \exp \left\{ - \left(1 + \xi rac{y - \mu}{\sigma}
ight)^{-1/\xi}
ight\}$$

 $Y \sim GEV(\mu, \sigma, \xi)$ is defined on $y: 1 + \xi(y - \mu)/\sigma > 0$ so the domain changes depending on the sign of ξ .

BUT! In engineering/hydrology $Y\sim GEV(\xi,\alpha,\kappa)$ and $\kappa=-\xi$. Software use different parametrisations - always check!

Extremes: peaks over threshold

What is an extreme? All large events in the record.

Extremes: peaks over threshold

What is an extreme? All large events in the record

Extremes: peaks over threshold

What is an extreme? All (independent) large events in the record

Extremes: theory for peaks over threshold

We define Y = X - u, where u is a given threshold.

The limiting distribution of threshold excesses given they are excesses (Y|X>u) is a GPD:

$$F(y) = 1 - \left(1 + \xi rac{y}{\sigma}
ight)^{-1/\xi}$$

 $Y \sim GP(\sigma, \xi)$ is defined on $y: 1 + \xi(y - \mu)/\sigma > 0$ so the domain changes depending on the sign of ξ .

Number of threshold exceedances follow a Poisson distribution

Elephant in the room: choice of threshold

Extreme values - estimation

POT or AMAX: need to estimate a distribution.

Statistical estimation methods:

- L-moments
- Maximum Likelihood
- Bayesian approaches
- Generalised Maximum Likelihood Penalised Likelihood (implicit priors)

Describing change/non-stationary models: not possible with L-moments.

Distributions which are not GEV or GPD (for example GLO or LP3) are rarely implemented.

Extreme value estimation in R

Some extreme value packages:

Package	L- moments	Bayesian	Max- Likelihood	Gen Max- Likelihood
lmom	V	X	X	X
lmomco	V	X	X	X
ismev	X	X	V	×
evd	X	X	V	×
mev	X	X	V	X
evdbayes	X	V	X	X
texmex	X	V	V	XV
extRemes	V	V	V	V

(Careful when using GMLE in extRemes - the default penalty is defined on (0,0.5))

Extreme value estimation in R

Some general purpose packages:

- evgam: GAM models implements GEV, GPD (and point processes)
- gamlss: GAM models includes several skewed distributions
- mgcv: GAM models implements GEV distribution
- bamlss: Bayesian GAM models includes the GEV
- rstan: general purpose Bayesian modelling implements several distributions including the Gumbel
- brms: Bayesian regression models includes the GEV

Get some annual maxima data:

```
library(dataRetrieval)
# The Aberjona River USGS Gage 01102500
aber <- suppressMessages
(dataRetrieval::readNWISpeak(siteNumber = "01102500"))
names(aber)[names(aber) == "peak_dt"] <- "Date"
aber <- addWaterYear(aber)
### standardise the water year
aber$swy <- scale(aber$waterYear)
## make flow into cubic meters
aber$Flow <- aber$peak_va * 0.028316846711688
with(aber, plot(waterYear, Flow, type="h", bty = "l"))
title(main = "Aberjona at Winchester, MA")</pre>
```


waterYear

Estimates for the GEV parameters:

```
## L-moments
lmom::pelgev(lmom::samlmu(aber$Flow))

## xi alpha k
## 8.5733422 4.6191646 -0.2882667

## Maximum likelihood - notice the sign of the shape parameter
ifit <- ismev::gev.fit(aber$Flow, show=FALSE)
rbind(ifit$mle, ifit$se)

## [,1] [,2] [,3]
## [1,] 8.5170738 4.4605189 0.3411568
## [2,] 0.5739466 0.4980921 0.1016359</pre>
```

```
## Family: GEV
##
## Posterior summary:
## Posterior mean SD
## mu: (Intercept) 8.549590 0.5918967
## phi: (Intercept) 1.525566 0.1138874
## xi: (Intercept) 0.344182 0.1038112
```

Non-stationary models

Can be implemented in ismev, texmex and extRemes...

```
## location parameter changes in time
library(extRemes)
exFit <- fevd(aber$Flow, location.fun = ~aber$swy , method = "MLE")
## the ci for mul does not include 0
ci(exFit, type = "par")
## fevd(x = aber\$Flow, location.fun = \simaber\$swy, method = "MLE")
##
## [1] "Normal Approx."
##
   95% lower CI Estimate 95% upper CI
##
## mu0 7.6355445 8.6740704 9.7125962
## mu1 0.6096182 1.3425945 2.0755709
## scale 3.1641869 4.0861272 5.0080675
## shape 0.1682329 0.3781068 0.5879807
## effective 30 years return level
eff30yrs <- return.level(exFit, return.period=30)
```

Non-stationary models

```
with(aber,plot(waterYear,Flow, pch =16,col = "grey40",bty = "l"))
lines(aber$waterYear, eff30yrs, col = "orange")
```

