

Appendix for the Report

Dosimetric Assessment of the Portable Device CE5240 from DAP Technologies (FCC ID: T5M5000B8)

According to the FCC Requirements

SAR Distribution Plots

February 02, 2010

IMST GmbH

Carl-Friedrich-Gauß-Str. 2

D-47475 Kamp-Lintfort

Customer Nemko Canada Inc. 303 River Road Ottawa, ON K1V 1H2 Canada

Table of Contents

1	SAR DISTRIBUTION PLOTS, GPRS 850 BODY	3
2	SAR DISTRIBUTION PLOTS, GPRS 1900 BODY	8
3	SAR DISTRIBUTION PLOTS, IEEE 802.11 B BODY	13
4	SAR Z-AXIS SCANS (VALIDATION)	18
5	SAR 7-AXIS SCANS (MEASUREMENTS)	20

1 SAR Distribution Plots, GPRS 850 Body

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: 446_bahm_1.da4

DUT: DAP; Type: CE5240; Serial: 352678015275446

Program Name: GPRS 850

Communication System: GPRS 850; Frequency: 836.6 MHz; Duty Cycle: 1:2

Medium parameters used: f = 836.6 MHz; σ = 0.98 mho/m; ε_r = 57.6; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6R - SN1669; ConvF(5.89, 5.89, 5.89); Calibrated: 10.02.2009

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn335; Calibrated: 09.02.2009
- Phantom: SAM Sugar 1059; Type: Speag; Serial: 1059
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn/Area Scan (10x10x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.127 mW/g

Body Worn/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.66 V/m; Power Drift = -0.120 dB

Peak SAR (extrapolated) = 0.238 W/kg

SAR(1 g) = 0.120 mW/g; SAR(10 g) = 0.069 mW/g Maximum value of SAR (measured) = 0.134 mW/g

Fig. 1: SAR distribution for GPRS 850 (Class 12), channel 190, Position 1 (December 14, 2009; Ambient Temperature: 20.8°C; Liquid Temperature: 20.5°C).

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: 446 bahm 2.da4

DUT: DAP; Type: CE5240; Serial: 352678015275446

Program Name: GPRS 850

Communication System: GPRS 850; Frequency: 836.6 MHz; Duty Cycle: 1:2

Medium parameters used: f = 836.6 MHz; σ = 0.98 mho/m; ε_r = 57.6; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6R - SN1669; ConvF(5.89, 5.89, 5.89); Calibrated: 10.02.2009

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn335; Calibrated: 09.02.2009
- Phantom: SAM Sugar 1059; Type: Speag; Serial: 1059
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn/Area Scan (10x10x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.019 mW/g

Body Worn/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.02 V/m; Power Drift = -0.191 dB

Peak SAR (extrapolated) = 0.021 W/kg

SAR(1 g) = 0.017 mW/g; SAR(10 g) = 0.013 mW/g

Fig. 2: SAR distribution for GPRS 850 (Class 12), channel 190, Position 2 (December 14, 2009; Ambient Temperature: 20.8°C; Liquid Temperature: 20.5°C).

Program Name: GPRS 850

Communication System: GPRS 850; Frequency: 836.6 MHz;Duty Cycle: 1:2 Medium parameters used: f = 836.6 MHz; $\sigma = 0.98$ mho/m; $\epsilon_r = 57.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6R SN1669; ConvF(5.89, 5.89, 5.89); Calibrated: 10.02.2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn335; Calibrated: 09.02.2009
- Phantom: SAM Sugar 1059; Type: Speag; Serial: 1059
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn/Area Scan (11x10x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.016 mW/g

Body Worn/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.14 V/m: Power Drift = -0.106 dB

Peak SAR (extrapolated) = 0.022 W/kg

SAR(1 g) = 0.015 mW/g; SAR(10 g) = 0.010 mW/g Maximum value of SAR (measured) = 0.017 mW/g

Body Worn/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.14 V/m; Power Drift = -0.106 dB

Peak SAR (extrapolated) = 0.015 W/kg

SAR(1 g) = 0.012 mW/g; SAR(10 g) = 0.00864 mW/gMaximum value of SAR (measured) = 0.012 mW/g

Fig. 3: SAR distribution for GPRS 850 (Class 12), channel 190, Position 3 (December 14, 2009; Ambient Temperature: 20.8°C; Liquid Temperature: 20.5°C).

Program Name: GPRS 850

Communication System: GPRS 850; Frequency: 836.6 MHz; Duty Cycle: 1:2

Medium parameters used: f = 836.6 MHz; σ = 0.98 mho/m; ε_r = 57.6; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6R - SN1669; ConvF(5.89, 5.89, 5.89); Calibrated: 10.02.2009

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn335; Calibrated: 09.02.2009

- Phantom: SAM Sugar 1059; Type: Speag; Serial: 1059

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn/Area Scan (10x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.008 mW/g

Body Worn/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.65 V/m; Power Drift = -0.084 dB

Peak SAR (extrapolated) = 0.010 W/kg

SAR(1 g) = 0.008 mW/g; SAR(10 g) = 0.0056 mW/g

Fig. 4: SAR distribution for GPRS 850 (Class 12), channel 190, Position 4 (December 14, 2009; Ambient Temperature: 20.8°C; Liquid Temperature: 20.5°C).

Program Name: GPRS 850

Communication System: GPRS 850; Frequency: 836.6 MHz; Duty Cycle: 1:2

Medium parameters used: f = 836.6 MHz; σ = 0.98 mho/m; ε_r = 57.6; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6R - SN1669; ConvF(5.89, 5.89, 5.89); Calibrated: 10.02.2009

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn335; Calibrated: 09.02.2009

- Phantom: SAM Sugar 1059; Type: Speag; Serial: 1059

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn/Area Scan (11x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.001 mW/g

Body Worn/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.854 V/m; Power Drift = -0.071 dB

Peak SAR (extrapolated) = 0.002 W/kg

SAR(1 g) = 0.001 mW/g; SAR(10 g) = 0.001 mW/g

Fig. 5: SAR distribution for GPRS 850 (Class 12), channel 190, Position 5 (December 14, 2009; Ambient Temperature: 20.8°C; Liquid Temperature: 20.5°C).

2 SAR Distribution Plots, GPRS 1900 Body

Test Laboratory: Imst GmbH, DASY Yellow (II); File Name: 446_yphm_1.da4

DUT: DAP; Type: CE5240; Serial: 352678015275446

Program Name: GPRS 1900

Communication System: GPRS 1900; Frequency: 1880 MHz;Duty Cycle: 1:2 Medium parameters used: f = 1880 MHz; $\sigma = 1.52$ mho/m; $\varepsilon_r = 54$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(8.11, 8.11, 8.11); Calibrated: 18.09.2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 14.09.2009
- Phantom: SAM Glycol 1340; Type: QD 000 P40 CB; Serial: TP-1340
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn/Area Scan (10x10x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.162 mW/g

Body Worn/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.61 V/m; Power Drift = -0.181 dB

Peak SAR (extrapolated) = 0.296 W/kg

SAR(1 g) = 0.166 mW/g; SAR(10 g) = 0.084 mW/g

Maximum value of SAR (measured) = 0.183 mW/g

Fig. 6: SAR distribution for GPRS 1900 (Class 12), channel 661, Position 1 (December 11, 2009; Ambient Temperature: 21.3°C; Liquid Temperature: 20.9°C).

Program Name: GPRS 1900

Communication System: GPRS 1900; Frequency: 1880 MHz; Duty Cycle: 1:2 Medium parameters used: f = 1880 MHz; $\sigma = 1.52$ mho/m; $\epsilon_r = 54$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(8.11, 8.11, 8.11); Calibrated: 18.09.2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 14.09.2009
- Phantom: SAM Glycol 1340; Type: QD 000 P40 CB; Serial: TP-1340
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn/Area Scan (10x10x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.001 mW/g

0.001 0.001 0.001 0.000

Fig. 7: SAR distribution for GPRS 1900 (Class 12), channel 661, Position 2 (December 11, 2009; Ambient Temperature: 21.3°C; Liquid Temperature: 20.9°C).

0.000

Test Laboratory: Imst GmbH, DASY Yellow (II); File Name: 446_yphm_3.da4

DUT: DAP; Type: CE5240; Serial: 352678015275446

Program Name: GPRS 1900

Communication System: GPRS 1900; Frequency: 1880 MHz; Duty Cycle: 1:2 Medium parameters used: f = 1880 MHz; σ = 1.52 mho/m; ε_r = 54; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(8.11, 8.11, 8.11); Calibrated: 18.09.2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 14.09.2009
- Phantom: SAM Glycol 1340; Type: QD 000 P40 CB; Serial: TP-1340
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn/Area Scan (11x10x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.002 mW/g

Body Worn/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.876 V/m: Power Drift = 0.121 dB

Peak SAR (extrapolated) = 0.009 W/kg

SAR(1 g) = 0.00219 mW/g; SAR(10 g) = 0.00106 mW/g

Maximum value of SAR (measured) = 0.003 mW/g

Body Worn/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.876 V/m; Power Drift = 0.121 dB

Peak SAR (extrapolated) = 0.004 W/kg

SAR(1 g) = 0.002 mW/g; SAR(10 g) = 0.001 mW/g

Fig. 8: SAR distribution for GPRS 1900 (Class 12), channel 661, Position 3 (December 11, 2009; Ambient Temperature: 21.3°C; Liquid Temperature: 20.9°C).

Test Laboratory: Imst GmbH, DASY Yellow (II); File Name: 446 yphm 4.da4

DUT: DAP; Type: CE5240; Serial: 352678015275446

Program Name: GPRS 1900

Communication System: GPRS 1900; Frequency: 1880 MHz; Duty Cycle: 1:2 Medium parameters used: f = 1880 MHz; $\sigma = 1.52$ mho/m; $\epsilon_r = 54$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(8.11, 8.11, 8.11); Calibrated: 18.09.2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 14.09.2009
- Phantom: SAM Glycol 1340; Type: QD 000 P40 CB; Serial: TP-1340
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn/Area Scan (11x10x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.004 mW/g

Body Worn/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.937 V/m; Power Drift = 0.191 dB

Peak SAR (extrapolated) = 0.010 W/kg

SAR(1 g) = 0.004 mW/g; SAR(10 g) = 0.002 mW/g Maximum value of SAR (measured) = 0.006 mW/g

Fig. 9: SAR distribution for GPRS 1900 (Class 12), channel 661, Position 4 (December 11, 2009; Ambient Temperature: 21.3°C; Liquid Temperature: 20.9°C).

Test Laboratory: Imst GmbH, DASY Yellow (II); File Name: 446 yphm 5.da4

DUT: DAP; Type: CE5240; Serial: 352678015275446

Program Name: GPRS 1900

Communication System: GPRS 1900; Frequency: 1880 MHz; Duty Cycle: 1:2 Medium parameters used: f = 1880 MHz; σ = 1.52 mho/m; ϵ_r = 54; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(8.11, 8.11, 8.11); Calibrated: 18.09.2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 14.09.2009
- Phantom: SAM Glycol 1340; Type: QD 000 P40 CB; Serial: TP-1340
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn/Area Scan (11x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.001 mW/g

Fig. 10: SAR distribution for GPRS 1900 (Class 12), channel 661, Position 5 (December 11, 2009; Ambient Temperature: 21.3°C; Liquid Temperature: 20.9°C).

Test Laboratory: Imst GmbH, DASY Yellow (II); File Name: 446_ywhm_b_CH6_1.da4

DUT: DAP; Type: CE5240; Serial: 352678015275446

Program Name: WLAN

Communication System: WLAN 2450; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.96$ mho/m; $\varepsilon_r = 53.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(7.57, 7.57, 7.57); Calibrated: 18.09.2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 14.09.2009
- Phantom: SAM Glycol 1340; Type: QD 000 P40 CB; Serial: TP-1340
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn/Area Scan (13x13x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.002 mW/g

Fig. 11: SAR distribution for IEEE 802.11 b, channel 6, Position 1 (December 23, 2009; Ambient Temperature: 20.7°C; Liquid Temperature: 20.2°C).

Program Name: WLAN

Communication System: WLAN 2450; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; σ = 1.96 mho/m; ϵ_r = 53.5; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(7.57, 7.57, 7.57); Calibrated: 18.09.2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 14.09.2009
- Phantom: SAM Glycol 1340; Type: QD 000 P40 CB; Serial: TP-1340
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn/Area Scan (15x13x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.035 mW/g

Body Worn/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.552 V/m: Power Drift = 0.085 dB

Peak SAR (extrapolated) = 0.072 W/kg

SAR(1 g) = 0.035 mW/g; SAR(10 g) = 0.018 mW/gMaximum value of SAR (measured) = 0.039 mW/g

Body Worn/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.552 V/m; Power Drift = 0.085 dB

Peak SAR (extrapolated) = 0.062 W/kg

SAR(1 g) = 0.034 mW/g; SAR(10 g) = 0.017 mW/g

Fig. 12: SAR distribution for IEEE 802.11 b, channel 6, Position 2 (December 23, 2009; Ambient Temperature: 20.7°C; Liquid Temperature: 20.2°C).

Program Name: WLAN

Communication System: WLAN 2450; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; σ = 1.96 mho/m; ε_r = 53.5; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(7.57, 7.57, 7.57); Calibrated: 18.09.2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 14.09.2009
- Phantom: SAM Glycol 1340; Type: QD 000 P40 CB; Serial: TP-1340
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn/Area Scan (15x15x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.006 mW/g

Body Worn/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.935 V/m; Power Drift = 0.119 dB

Peak SAR (extrapolated) = 0.015 W/kg

SAR(1 g) = 0.007 mW/g; SAR(10 g) = 0.002 mW/g

Maximum value of SAR (measured) = 0.008 mW/g

Fig. 13: SAR distribution for IEEE 802.11 b, channel 6, Position 3 (December 23, 2009; Ambient Temperature: 20.7°C; Liquid Temperature: 20.2°C).

Test Laboratory: Imst GmbH, DASY Yellow (II); File Name: 446_ywhm_b_CH6_4.da4

DUT: DAP; Type: CE5240; Serial: 352678015275446

Program Name: WLAN

Communication System: WLAN 2450; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; σ = 1.96 mho/m; ϵ_r = 53.5; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(7.57, 7.57, 7.57); Calibrated: 18.09.2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 14.09.2009
- Phantom: SAM Glycol 1340; Type: QD 000 P40 CB; Serial: TP-1340
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn/Area Scan (11x16x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.091 mW/g

Body Worn/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.78 V/m; Power Drift = 0.042 dB

Peak SAR (extrapolated) = 0.176 W/kg

SAR(1 g) = 0.078 mW/g; SAR(10 g) = 0.034 mW/gMaximum value of SAR (measured) = 0.093 mW/g

Fig. 14: SAR distribution for IEEE 802.11 b, channel 6, Position 4 (December 23, 2009; Ambient Temperature: 20.7°C; Liquid Temperature: 20.2°C).

Program Name: WLAN

Communication System: WLAN 2450; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.96$ mho/m; $\epsilon_r = 53.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(7.57, 7.57, 7.57); Calibrated: 18.09.2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn631; Calibrated: 14.09.2009
- Phantom: SAM Glycol 1340; Type: QD 000 P40 CB; Serial: TP-1340
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Worn/Area Scan (15x19x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.002 mW/g

Fig. 15: SAR distribution for IEEE 802.11 b, channel 6, Position 5 (December 23, 2009; Ambient Temperature: 20.7°C; Liquid Temperature: 20.2°C).

4 SAR z-axis scans (Validation)

Fig. 16: SAR versus liquid depth, 835 MHz, body (December 14, 2009; Ambient Temperature: 20.6°C; Liquid Temperature: 20.4°C).

Fig. 17: SAR versus liquid depth, 1900 MHz, body (December 11, 2009; Ambient Temperature: 21.3°C; Liquid Temperature: 20.9°C).

Fig. 18: SAR versus liquid depth, 2450 MHz, body (December 23, 2010; Ambient Temperature: 20.6°C; Liquid Temperature: 20.2°C).

5 SAR z-axis scans (Measurements)

The following pictures show the plots of SAR versus liquid depth for the worst case values.

Fig. 19: SAR versus liquid depth, body: GPRS 850 (Class 12), channel 190, Position 1 (December 14, 2009; Ambient Temperature: 20.8°C; Liquid Temperature: 20.5°C).

Fig. 20: SAR versus liquid depth, body: GPRS 1900 (Class 12), channel 661, Position 1 (December 11, 2009; Ambient Temperature: 21.3°C; Liquid Temperature: 20.9°C).

Fig. 21: SAR versus liquid depth, body: IEEE 802.11 b, channel 6, Position 2 (December 23, 2009; Ambient Temperature: 20.7°C; Liquid Temperature: 20.2°C).