Université Pierre et Marie Curie 2007–2008

LM110 - Fonctions

Feuille 4-Suppléments

Exercice 1. Soit g la fonction définie sur \mathbf{R} par

$$g(x) = (x - 1)\arctan(x).$$

- 1. Calculer g'(x) et g''(x) pour tout $x \in \mathbf{R}$.
- 2. Étudier les variations de la fonction g' sur \mathbf{R} .
- 3. On note $J = g'(] \infty; -1[)$. Déterminer l'intervalle J.
- 4. Montrer que l'équation g'(x)=0 admet une unique solution c et que l'on a $c\in]0;1[$.
- 5. Montrer que la fonction g admet un minimum en c.

Exercice 2. Soit f la fonction définie sur \mathbf{R} par

$$g(x) = \arctan(e^x).$$

- 1. Montrer que f est strictement croissante sur \mathbf{R} .
- 2. On note $J = f(\mathbf{R})$. Déterminer l'intervalle J.
- 3. Montrer que f est une bijection de \mathbf{R} sur J.
- 4. Soit g l'application réciproque de f. Montrer que g est dérivable en tout point de J.
- 5. Calculer g'(x).

Exercice 3. Montrer les assertions suivantes.

- 1. La fonction réelle définie par $f(x) = e^{\arctan(x)}$ prend la valeur 2 entre 0 et 1.
- 2. On a l'inégalité

$$\frac{\pi}{4} + \frac{3}{25} \le \arctan\left(\frac{4}{3}\right) \le \frac{\pi}{4} + \frac{1}{6}.$$

3. Pour tout réel $x \ge 0$, on a

$$\frac{x}{x+1} \le \ln(x+1) \le x.$$

4. Pour tous réels x et y, on a

$$|\arctan(x) - \arctan(y)| \le |x - y|.$$