

FACULTY OF ELECTRICAL ENGINEERING

DEPARTMENT OF TELECOMMUNICATION ENGINEERING

B(E)2M32BTS - Wireless Technologies

IoT in Mobile Networks

Cellular IoT

Zdeněk Bečvář

Czech Technical University in Prague Faculty of Electrical Engineering Department of Telecommunication Engineering

Outline

Internet of Things (IoT) in mobile networks

- Overview
- ► Basic features of individual solutions
 - Long-Term Evolution for Machine-Type Communications
 - > Extended Coverage Global System for Mobile Communications Internet of Things
 - Narrowband Internet of Things
- Services and applications
- Architecture
- ▶ Communication
- Energy and coverage

Cellular Internet of Things

Technologies for Cellular IoT (C-IoT)

- ► Long-Term Evolution for Machine-Type Communications (LTE-M(TC) or (f)eMTC)
 - Enhancement of LTE for support of machine type communication and IoT
- ► Narrowband Internet of Things (NB-IoT)
 - New radio interface for IoT
- Extended Coverage Global System for Mobile Communications Internet of Things (EC-GSM-IoT)
 - Enhancements and optimizations of GSM for IoT

https://blog.mobile-network-testing.com/market-technology-trends/evolving-technologies/overview-internet-of-things-technologies/

Protocol architecture

EC-GSM-IoT

Objectives

- ► ~10 years of operation (5 Wh battery, depends on traffic pattern and coverage)
- ► Low device cost compared to GPRS/GSM devices
- ► Extended coverage (154 dB max coupling loss, 23 dBm UE)
- Variable rates
 - > GMSK: 350 bps to 70 kbps (depends on coverage level)
 - > 8PSK: up to 240 kbps
- ► ~50.000 devices per cell

Main features

- ► Narrowband channels (200 kHz)
- New control channels
 - Extended coverage and low energy consumption
- ► **Repetitions** to increase coverage
- ► TDMA/FDMA
- ► Extended discontinuous reception to save energy (up to ~52 min)
- Optimized system information (i.e. no inter-RAT support)
- Relaxed idle mode behavior (e.g. reduced monitoring of neighbor cells)

LTE-M / eMTC

Objectives

- ► ~10 years of operation, but rather much less (5 Wh battery, traffic pattern and coverage)
- ► Low device cost (similar to GPRS/GSM devices)
- ► Extended coverage (155.7 dB maximum coupling loss)
- ► Variable rates: ~10 kbps to 1 Mbps

Main features

- ► Narrowband channels (1.08/1.4 MHz channel bandwidth)
- ► Repetition to extend coverage
- ► Reuse existing LTE base stations with software update
- Can be deployed in any LTE spectrum
- ► UE power class of 20 dBm
- Simplified control and management
 - No wideband control channel, reduced support of transmission modes, limited number of antennas, reduced support of hybrid automatic repeat request (HARQ)...
- ▶ OFDMA/SC-FDMA
- ► FDD/TDD

QPSK, 16QAM modulations

Devices Cat-M1

Release 13 (March 2016)

further enhanced MTC (feMTC)

Devices Cat-M2

► Release 14 by 3GPP (June 2017)

New features

- ► Support for **positioning**
 - Observed Time Difference of Arrival (OTDoA)
 - Special reference signal (Positioning reference signal, QPSK)
 - Enhanced Cell ID
 - Reporting time Rx and Tx difference (timing advance) of reference signals together with cell ID
 - ➤ UL: Base stations (eNBs) measure signal level from UE (Rel. 9)
 - ➤ DL: Device (User Equipment UE) measures signal level from eNBs (Rel. 11)
- ▶ Voice over LTE (VoLTE)
- Multicast transmission
- Higher bit rates
 - Larger transport block size and 5 MHz bandwidth → ~4 Mbps (in UL and DL)
- ► Increased number of HARQ processes
 - Up to ten for lower coverage (Cell enhancement mode A)
- Enhanced mobility support (seamless mobility)

NB-IoT

Objectives

- ► ~10 years of operation (5 Wh battery, depends on traffic pattern and coverage)
- ► Lower cost than eMTC (<5 USD)
- ► Extended coverage (164 dB maximum coupling loss)
- ► ~50.000 devices per cell

Main features

- ► Narrowband (180 kHz) → low data rates
- ► Two modes for uplink
 - Single tone with 15 kHz and/or 3.75 kHz tone spacing
 - Multiple tone transmissions with 15 kHz tone spacing
- ► Simplifications of control and management
 - > Single HARQ process, RLC Acknowledged mode with simplified status reporting,...
 - Significantly reduced broadcast system information
- ► OFDMA/SC-FDMA
- ► FDD
- \blacktriangleright $\pi/2$ BPSK, $(\pi/4)$ QPSK modulations

Devices Cat-NB1
Release 13 (March 2016)

NB-IoT enhancement

Devices Cat-NB2

► Release 14 by 3GPP (June 2017)

New features

- Positioning of devices
 - ➢ OTDoA
 - Similar to LTE-M, Narrowband Positioning Reference Signal (NPRS)
- ► Mobility enhancement from seamless cell re-selection
- ► Push to talk voice messaging
- ► New power class 14 dBm
 - Low power applications
 - Lower range
- ► Multicast transmission
- ► Larger **Transport Blocks**
 - > 2536 bits instead of 680 bits in Cat-NB1
 - More efficient transmission of larger blocks

Summary of technologies

	eMTC (LTE Cat M1)	NB-IOT	EC-GSM-loT
Deployment	In-band LTE	In-band & Guard-band LTE, standalone	In-band GSM
Coverage*	155.7 dB	164 dB for standalone, FFS others	164 dB, with 33dBm power class 154 dB, with 23dBm power class
Downlink	OFDMA, 15 KHz tone spacing, Turbo Code, 16 QAM, 1 Rx	OFDMA, 15 KHz tone spacing, TBCC, 1 Rx	TDMA/FDMA, GMSK and 8PSK (optional), 1 Rx
Uplink	SC-FDMA, 15 KHz tone spacing Turbo code, 16 QAM	Single tone, 15 KHz and 3.75 KHz spacing SC-FDMA, 15 KHz tone spacing, Turbo code	TDMA/FDMA, GMSK and 8PSK (optional)
Bandwidth	1.08 MHz	180 KHz	200kHz per channel. Typical system bandwidth of 2.4MHz [smaller bandwidth down to 600 kHz being studied within Rel-13]
Peak rate (DL/UL)	1 Mbps for DL and UL	DL: ~250 kbps UL: ~250 for multi-tone, ~20 kbps for single tone	For DL and UL (using 4 timeslots): ~70 kbps (GMSK), ~240kbps (8PSK)
Duplexing	FD & HD (type B), FDD & TDD	HD (type B), FDD	HD, FDD
Power saving	PSM, ext. I-DRX, C-DRX	PSM, ext. I-DRX, C-DRX	PSM, ext. I-DRX
Power class	23 dBm, 20 dBm	23 dBm, 20 dBm, 14 dBm (Cat NB2, Rel 14)	33 dBm, 23 dBm

^{*} In terms of MCL target. Targets for different technologies are based on somewhat different link budget assumptions (see TR 36.888/45.820 for more information).

Requirements and servivces

Architecture

Service Capability Exposure Function (SCEF)

- ► Rel. 13 (2016)
- Securely expose services and capabilities of mobile network
 - > Set QoS, group messaging, network parameters configuration (e.g., energy saving modes), device triggering, change billing party of a session
- ► Interface for small data and control msgs between third parties and core network
 - > **Application programing interface** (API) for third parties (enterprises, service providers)
 - Obtain info about devices and send instructions (e.g., UE available?)
 - External ID <LocalID>@<DomainID>
 - No need to know ID of UE defined by mobile network
 - Non-IP Data delivery
 - IP protocol is complex and energy hungry \rightarrow small amounts of data over control plane
 - Data buffering if device is in energy saving mode

Duplexing and bands for CloT

subframe #2

subframe #3

Frequency division duplex (FDD)

► Low complexity (NB-IoT & (fe)MTC)

UL: f _{UL}	subframe #0	subframe #1	subframe #2	subframe #3	subframe #4	subframe #5	subframe #6	subframe #7	subframe #8	subframe #9
DL: f _{DL}	subframe #0	subframe #1	subframe #2	subframe #3	subframe #4	subframe #5	subframe #6	subframe #7	subframe #8	subframe #9

Time division duplex (**TDD**)

► More complex (in (fe)MTC, not in NB-IoT)

- ► Europe: B3 (1800), B8 (900) and B20 (800)
- ► North America: B4 (1700), B12 (700), B66 (1700), B71 (600), B26 (850)
- ► Latin America: B2(1900), B3(1800), B5(850), B28(700)
- ► **Asia Pacific:** B1(2100), B3(1800), B5(850), B8(900), B18(850), B20(800), B26(850), B28(700)
- ► Approx. 25+ bands defined by 3GPP
 - > Rel. 13, Rel. 14, Rel. 15

Modes of operation

Modes of operation

- ▶ In-band: utilizing resource blocks within normal LTE carrier
 - ➤ NB-IoT and (fe)MTC
- ► Standalone: utilizing standalone carrier, e.g. spectrum currently used in GSM and replace one or more GSM carriers
 - ➤ NB-IoT
- ► Guard band: utilizing unused resource blocks within LTE carrier's guard-band
 - ➤ NB-IoT

LTE carrier In-band

GSM carrier
Standalone

LTE carrier
Guard-band

NOKIA, "LTE evolution for IoT connectivity", whitepaper, 2017.

Physical layer - Downlink

Similar as physical layer in LTE(-A-Pro,...)

OFDMA multiplex

Frame structure

- ▶ 10 ms frame
 - > 10 subframes
 - > 20 slots
- ► Resource Unit (RU)
 - ➤ 180 kHz
 - 12 subcarriers with spacing of 15 kHz
 - > 7 symbols
 - 500/7 μs per symbol
 - \rightarrow eMTC: up to six RU for communication \rightarrow 1.08 MHz
 - In theory: 14 000 (symbols/s) x 12 (subcarriers/RU) x 6 (RUs) x 4 (bits/symbols) = 4 Mbps
 - In practice: reference signals, signaling, not always 16 QAM, errors, ...
 - ➤ NB-IoT: single RU for communication → 180 kHz
 - In theory: 14 000 (symbols/s) x 12 (subcarriers/RU) x 1 (RUs) x 2 (bits/symbols) = 336 kbps
 - In practice: reference signals, signaling, not always QPSK, errors, ...

Physical layer - Uplink

SC-FDMA to reduce energy consumption

Frame of 10 ms as in LTE

- ► (fe)MTC same format as in DL
- ▶ NB-IoT different numerology of RU
 - > Single-tone higher power spectral density
 - Subcarrier spacing: 15 kHz and 3.75 kHz single subcarrier
 - Slot duration: 0.5 ms and 2 ms 8/32 ms per RU
 - Multi-tone compatible with LTE
 - Subcarrier spacing: 15 kHz
 - 3, 6, 12 subcarriers over 4, 2, 1 ms, respectively, per RU

Subcarrier spacing	N _{sc} per RU	Duration		
$\Delta f = 3.75 \text{kHz}$	48 🔺	▲ 2 ms		
$\Delta f = 15 \text{ kHz}$	12 ▼ 4 X	▼ 0.5 ms		

Single-tone vs Multi-tone

Multi-tone (vs Single-tone)

- ► Higher bitrates
- ► Lower energy consumption
 - Shorter transmission time
- ► Limited coverage
 - Power spread over wider band

Suitable scenarios

- ► Single-tone scenarios with large coverage and low bitrates
- ► Multi-tone higher capacity many devices in good coverage, but shorter range

Repetition of transmissions

Each transmission (transport block) repeated 2^N times

- Coherent transmissions
 - Same phase of Tx signal
- ▶ Each transmission self-decodable
 - > Independent transmissions
- Higher probability of decoding
- One ACK for all repetitions

Uplink: up to 128 repetitions (N = 7)

Downlink: up to 2048 repetitions (N = 11)

Double number of TXs \rightarrow approx. +3 dB gain

Coverage extension

Energy saving

- ► Energy consumption depends on device type (~ tens/hundreds mW to W)
- ► Full activity incl. data transmission

Energy saving in Idle state (@ RRC layer)

- Energy consumption ~ mW
- ▶ Detect incoming connections and broadcasts/multicasts, update system information

Further possibilities to save energy:

- ► Discontinuous reception (DRX)
 - > enhanced DRX (eDRX) for IoT
 - > Allowed for Connected as well as Idle states
- ► Power saving mode (PSM)
 - Max energy saving (~μW)

enhanced DRX

Normal operation (Connected state)

▶ Device monitors control channels every subframe in normal operation

Discontinuous reception (DRX)

Control channels monitored at predefined periods (up to 2.56 s interval)

enhanced DRX (eDRX)

- ► Longer periods between monitoring of control channels
- ► Connected state DRX (C-eDRX)
 - extended DRX for IoT prolonged to 10.24 s (hyperframe)

- ▶ Idle state DRX (I-eDRX):
 - > up to ~43.7 minutes for MTC (up to 28 hyperframes)
 - Hyperframe duration 10.24s (2¹⁰ frames)
 - ➤ up to ~3 hours for NB-IoT (up to 2¹⁰ hyperframes)

Power Saving Mode (PSM)

Dormant state

- ► All circuitry turned off
- ► Device **remains registered** with network
 - ➤ No need to re-attach or re-establish connection

Device is NOT reachable by network

PSM initiation and activation

- > Tracking Area Update (TAU) period (Timer T3412) max 413 days
- Page monitoring window (Timer T3324) max 186 minutes
 - Device remains active/reachable (acc. to eDRX setting) after data transmission

Network congestion avoidance via PSM

- Manage timers of all the devices
- Adjust wake-up periods to be offset
- Devices do not wake at the same time

FACULTY OF ELECTRICAL ENGINEERING

DEPARTMENT OF TELECOMMUNICATION ENGINEERING

Questions?

zdenek.becvar@fel.cvut.cz

