UNIVERSITY OF LONDON

[E 2.9 (Maths 4) 2007]

B.ENG. AND M.ENG. EXAMINATIONS 2007

For Internal Students of Imperial College

This paper is also taken for the relevant examination for the Associateship of the City & Guilds of London Institute

PART II: MATHEMATICS 4 (ELECTRICAL ENGINEERING)

Thursday 31st May 2007 2.00 - 4.00 pm

Answer FOUR questions.

Please answer questions from Section A and Section B in separate answerbooks.

A statistics data sheet is provided.

[Before starting, please make sure that the paper is complete; there should be 5 pages, with a total of 6 questions. Ask the invigilator for a replacement if your copy is faulty.]

SECTION A

1. Find the eigenvalues and normalised eigenvectors of the matrix

$$A = \left(\begin{array}{ccc} 3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 5 \end{array}\right) .$$

Using these, or otherwise, show that the matrix

$$P = \frac{1}{\sqrt{2}} \left(\begin{array}{ccc} 0 & 1 & 1 \\ 0 & 1 & -1 \\ \sqrt{2} & 0 & 0 \end{array} \right)$$

diagonalises A such that

$$P^{-1}AP = \left(\begin{array}{ccc} 5 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 2 \end{array}\right) .$$

2. The quadratic form

$$Q = 7x_1^2 + 2\sqrt{7}x_1x_2 + x_2^2 + x_3^2$$

can be written, in matrix notation, as

$$Q = \boldsymbol{x}^T A \boldsymbol{x},$$

where A is a 3×3 symmetric matrix and $\boldsymbol{x} = (x_1, \, x_2, \, x_3)^T$.

- (i) Find the matrix A, and its eigenvalues λ_1 , λ_2 , and λ_3 and normalised eigenvectors a_1 , a_2 and a_3 .
- (ii) Now form the 3×3 matrix $P=(a_1,\ a_2,\ a_3).$ Show that it is orthogonal, i.e. $P^T=P^{-1}$.
- (iii) If new variables $y = (y_1, y_2, y_3)^T$ are chosen such that x = Py, show that Q can be written as

$$Q = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \lambda_3 y_3^2.$$

(iv) Find also the components y_i in terms of x_i .

PLEASE TURN OVER

SECTION B

- (i) Suppose that a system consists of k components in parallel, i.e. it functions
 as long as at least one of the components functions. Suppose that the states
 of the components are independent and that each component functions with
 probability ³/₄.
 - (a) What is the probability that the system functions?
 - (b) It is required that the system will fail with a probability of less than 1/1000. How many components k need to be used?
 - (ii) Consider a system in which there are three components with component 1 parallel to the serial components 2 and 3 as in the sketch.

Suppose that the failure times of the components are independent and follow an exponential distribution with parameters $\lambda_1=3,\ \lambda_2=2$ and $\lambda_3=1$, respectively.

- (a) What is the probability that the system fails before a specified time t?
- (b) What is the median of the failure time distribution of the system?

4. (i) The discrete random variable X has probability mass function

$$p(x) = kx$$
 for $x = 1, 2, 3, 4,$

and p(x) is zero for other values of x.

- (a) Show that $k = \frac{1}{10}$.
- (b) Calculate the mean and the variance of X.
- (c) Find cov(X, -5X).
- (ii) The continuous random variable Y has the probability density function

$$f(y) = \begin{cases} \frac{3}{14}(y^2 + y) & \text{for } y \text{ in } (0, 2) \\ 0 & \text{for } y \text{ outside } (0, 2) \end{cases}$$

- (a) Calculate the mean and the variance of Y.
- (b) Find $E[\{Y(1 + Y)\}^{-1}].$
- 5. At Random University, students have to pass an oral examination. The examinations are spread out over 20 days. On any given day the examiner is one of the Professors A, B and C. Professor A examines on 5 days, Professor B on 8 days and Professor C on 7 days. It is known that 12% of the students fail when the examiner is Professor A, 11% if the examiner is Professor B and 10% if the examiner is Professor C. We observe one of the 20 days. Consider the event D that exactly one of the three candidates examined on that day fails.
 - Compute the conditional probability of D given that Professor A was the examiner.
 - (ii) What is the probability of the event D?
 - (iii) What is the probability that Professor C was the examiner given that D occurred?

PLEASE TURN OVER

- 6. The random variables X_1 and X_2 are independent and each is uniformly distributed on $[0, \theta]$ for some $\theta > 0$.
 - (i) Let $W = \max(X_1, X_2)$.
 - (a) Find the cumulative distribution function F_W of W.
 - (b) Show that for $x\in [0,\, \theta]$ the probability density function of W is $f_W(x)=\frac{2x}{\theta^2}$.
 - (c) Find the expectation E(W) and the variance Var(W) of W.
 - (ii) Consider the two estimators

$$S = \frac{3}{2} \max(X_1, X_2)$$
 and $T = X_1 + X_2$.

- (a) Show that both S and T are unbiased estimators for θ .
- (b) Find the variances of S and T. Which estimator is to be preferred?
- (iii) Find the maximum likelihood estimator of θ .

DEPARTMENT MATHEMATICS

MATHEMATICAL FORMULAE

1. VECTOR ALGEBRA

$$\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k} = (a_1, a_2, a_3)$$

Scalar (dot) product:

 $a.b = a_1b_1 + a_2b_2 + a_3b_3$

Vector (cross) product:

Scalar triple product:

$$[a, b, c] = a.b \times c = b.c \times a = c.a \times b =$$
 $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$

Vector triple product:

 $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{c} \cdot \mathbf{a})\mathbf{b} - (\mathbf{b} \cdot \mathbf{a})\mathbf{c}$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^3 + \dots \quad (\alpha \text{ arbitrary, } |x| < 1)$$

$$e^x = 1 + x + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!} + \ldots,$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \ldots + (-1)^n \frac{x^{2n}}{(2n)!} + \ldots,$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^n \frac{x^{n+1}}{(n+1)} + \dots (-1 < x \le 1)$$

3. TRIGONOMETRIC IDENTITIES AND HYPERBOLIC FUNCTIONS

 $\sin(a+b) = \sin a \cos b + \cos a \sin b$;

 $\cos(a+b) = \cos a \cos b - \sin a \sin b.$

 $\cos iz = \cosh z$; $\cosh iz = \cos z$; $\sin iz = i \sinh z$; $\sinh iz = i \sin z$.

4. DIFFERENTIAL CALCULUS

(a) Leibniz's formula:

$$D^{n}(fg) = f D^{n}g + \binom{n}{1} Df D^{n-1}g + \ldots + \binom{n}{r} D^{r}f D^{n-r}g + \ldots + D^{n}f g.$$

(b) Taylor's expansion of f(x) about x = a:

$$f(a+h) = f(a) + hf'(a) + h^2f''(a)/2! + \ldots + h^nf^{(n)}(a)/n! + \epsilon_n(h),$$

where $\epsilon_n(h) = h^{n+1} f^{(n+1)}(a+\theta h)/(n+1)!$, $0 < \theta < 1$.

(c) Taylor's expansion of f(x, y) about (a, b):

$$f(a+h, b+k) = f(a, b) + [hf_x + kf_y]_{a,b} + 1/2! \left[h^2 f_{xx} + 2hkf_{xy} + k^2 f_{yy} \right]_{a,b} + \dots$$

(d) Partial differentiation of f(x, y):

i. If
$$y = y(x)$$
, then $f = F(x)$, and $\frac{dF}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{dy}{dx}$.

ii. If
$$x = x(t)$$
, $y = y(t)$, then $f = F(t)$, and $\frac{dF}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$.

iii. If x = x(u, v), y = y(u, v), then f = F(u, v), and

$$\frac{\partial F}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u}, \quad \frac{\partial F}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v}$$

(e) Stationary points of f(x, y) occur where $f_x = 0$, $f_y = 0$ simultaneously. Let (a, b) be a stationary point: examine $D = [f_{xx}f_{yy} - (f_{xy})^2]_{a.b}$. If D > 0 and $f_{xx}(a, b) < 0$, then (a, b) is a maximum; If D > 0 and $f_{xx}(a, b) > 0$, then (a, b) is a minimum;

(f) Differential equations:

If D < 0 then (a, b) is a saddle-point.

i. The first order linear equation dy/dx + P(x)y = Q(x) has an integrating factor $I(x) = \exp[\int P(x)(dx]$, so that $\frac{d}{dx}(Iy) = IQ$.

ii. P(x, y)dx + Q(x, y)dy = 0 is exact if $\partial Q/\partial x = \partial P/\partial y$.

5. INTEGRAL CALCULUS

- (a) An important substitution: $\tan(\theta/2) = t$: $\sin \theta = 2t/(1+t^2)$, $\cos \theta = (1-t^2)/(1+t^2)$, $d\theta = 2dt/(1+t^2)$.
- (b) Some indefinite integrals:

$$\int (a^2 - x^2)^{-1/2} dx = \sin^{-1} \left(\frac{x}{a}\right), |x| < a.$$

$$\int (a^2 + x^2)^{-1/2} dx = \sinh^{-1} \left(\frac{x}{a} \right) = \ln \left\{ \frac{x}{a} + \left(1 + \frac{x^2}{a^2} \right)^{1/2} \right\} \,.$$

$$\int (x^2 - a^2)^{-1/2} dx = \cosh^{-1} \left(\frac{x}{a} \right) = \ln \left| \frac{x}{a} + \left(\frac{x^2}{a^2} - 1 \right)^{1/2} \right|.$$

$$\int (a^2 + x^2)^{-1} dx = \left(\frac{1}{a}\right) \tan^{-1} \left(\frac{x}{a}\right).$$

6. NUMERICAL METHODS

(a) Approximate solution of an algebraic equation:

If a root of f(x)=0 occurs near x=a, take $x_0=a$ and $x_{n+1}=x_n-[f\left(x_n\right)/f'\left(x_n\right)], \quad n=0,1,2\ldots$

(Newton Raphson method).

- (b) Formulae for numerical integration: Write $x_n = x_0 + nh$, $y_n = y(x_n)$.
- i. Trapezium rule (1-strip): $\int_{x_0}^{x_1} y(x) dx \approx (h/2) [y_0 + y_1]$.
- ii. Simpson's rule (2-strip): $\int_{x_0}^{x_2} y(x) dx \approx (h/3) [y_0 + 4y_1 + y_2]$.
- (c) Richardson's extrapolation method: Let $I = \int_a^b f(x) dx$ and let I_1 , I_2 be two

estimates of I obtained by using Simpson's rule with intervals h and h/2.

Then, provided h is small enough,

is a better estimate of I.

7. LAPLACE TRANSFORMS

Transform	aF(s) + bG(s)	$s^2F(s) - sf(0) - f'(0)$	-dF(s)/ds	F(s)/s		$n!/s^{n+1}$, $(s>0)$	$\omega/(s^2+\omega^2), \ (s>0)$	$e^{-sT}/s\;,\;(s,T>0)$
Function	af(t)+bg(t)	d^2f/dt^2	tf(t)	$\int_0^t f(t)dt$		$t^n(n=1,2\ldots)$	$\sin \omega t$	$s/(s^2 + \omega^2), \ (s > 0) H(t - T) = \begin{cases} 0, & t < T \\ 1, & t > T \end{cases}$
Γ ransform	$F(s) = \int_0^\infty e^{-st} f(t) dt$	sF(s)-f(0)	F(s-a)	$(\partial/\partial lpha)F(s,lpha)$	F(s)G(s)	1/s	$1/(s-a),\ (s>a)$	$s/(s^2 + \omega^2), (s > 0)$
Function	f(t)	df/dt	$e^{at}f(t)$	$(\partial/\partial\alpha)f(t,\alpha)$	$\int_0^t f(u)g(t-u)du$	1	eat	coswt
					.*	±i.		

8. FOURIER SERIES

If f(x) is periodic of period 2L, then f(x+2L) = f(x), and

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}, \text{ where}$$

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx, \quad n = 0, 1, 2, \dots, \text{ and}$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx, \quad n = 1, 2, 3, \dots$$

Parseval's theorem

$$\frac{1}{L} \int_{-L}^{L} [f(x)]^2 dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right) .$$

1. Probabilities for events

For events
$$A, B,$$
 and C
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
More generally
$$P(\bigcup A_i) = \sum P(A_i) - \sum P(A_i \cap A_j) + \sum P(A_i \cap A_j \cap A_k) - \cdots$$
The odds in favour of A
$$P(A) / P(\overline{A})$$
Conditional probability
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \quad \text{provided that } P(B) > 0$$
Chain rule
$$P(A \cap B \cap C) = P(A) P(B \mid A) P(C \mid A \cap B)$$
Bayes' rule
$$P(A \mid B) = \frac{P(A) P(B \mid A)}{P(A) P(B \mid A) + P(\overline{A}) P(B \mid \overline{A})}$$
A and B are independent if
$$P(B \mid A) = P(B)$$
A, B , and C are independent if
$$P(A \cap B \cap C) = P(A) P(B) P(C), \quad \text{and}$$

$$P(A \cap B) = P(A) P(B), \quad P(B \cap C) = P(B) P(C), \quad P(C \cap A) = P(C) P(A)$$

2. Probability distribution, expectation and variance

The probability distribution for a discrete random variable X is called the probability mass function (pmf) and is the complete set of probabilities $\{p_x\} = \{P(X=x)\}$

Expectation
$$E(X) = \mu = \sum_{x} x p_x$$

For function
$$g(x)$$
 of x , $E\{g(X)\} = \sum_x g(x)p_x$, so $E(X^2) = \sum_x x^2p_x$

Variance
$$var(X) = \sigma^2 = E\{(X - \mu)^2\} = E(X^2) - \mu^2$$

Sample variance
$$s^2 = \frac{1}{n-1} \left\{ \sum_k x_k^2 - \frac{1}{n} \left(\sum_j x_j \right)^2 \right\}$$
 estimates σ^2

Standard deviation
$$\operatorname{sd}(X) = \sigma$$

If value y is observed with frequency n_y

$$n = \sum_y n_y \,, \quad \sum_k x_k = \sum_y y n_y \,, \quad \sum_k x_k^2 = \sum_y y^2 n_y$$

$$\underline{\text{Skewness}} \quad \beta_1 \ = \ E \left(\frac{X - \mu}{\sigma}\right)^3 \qquad \text{is estimated by} \quad \frac{1}{n-1} \ \sum \left(\frac{x_i - \overline{x}}{s}\right)^3$$

$$\underline{\text{Kurtosis}} \quad \beta_2 \ = \ E \left(\frac{X - \mu}{\sigma}\right)^4 - 3 \qquad \text{is estimated by} \quad \frac{1}{n-1} \ \sum \left(\frac{x_i - \overline{x}}{s}\right)^4 - 3$$

Sample median \widetilde{x} or x_{med} . Half the sample values are smaller and half larger lift the sample values x_1,\ldots,x_n are ordered as $x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}$, then $\widetilde{x}=x_{(\frac{n+1}{2})}$ if n is odd, and $\widetilde{x}=\frac{1}{2}\left(x_{(\frac{n}{2})}+x_{(\frac{n+2}{2})}\right)$ if n is even

 α -quantile $Q(\alpha)$ is such that $P(X \leq Q(\alpha)) = \alpha$

Sample lpha-quantile $\widehat{Q}(lpha)$ Proportion lpha of the data values are smaller

Lower quartile $Q1 = \widehat{Q}(0.25)$ one quarter are smaller

Upper quartile Q3 = $\widehat{Q}(0.75)$ three quarters are smaller

Sample median $\widetilde{x}=\widehat{Q}(0.5)$ estimates the population median Q(0.5)

3. Probability distribution for a continuous random variable

The <u>cumulative distribution function</u> (cdf) $F(x) = P(X \le x) = \int_{x_0 = -\infty}^x f(x_0) \mathrm{d}x_0$

The probability density function (pdf) $f(x) = \frac{dF(x)}{dx}$

$$E(X) = \mu = \int_{-\infty}^{\infty} x \, f(x) dx$$
, $var(X) = \sigma^2 = E(X^2) - \mu^2$, where $E(X^2) = \int_{-\infty}^{\infty} x^2 \, f(x) dx$

4. Discrete probability distributions

Discrete Uniform Uniform (n)

$$p_x = \frac{1}{n}$$
 $(x = 1, 2, \dots, n)$

$$\mu = (n+1)/2$$
, $\sigma^2 = (n^2 - 1)/12$

Binomial distribution $Binomial(n, \theta)$

$$p_x = \binom{n}{x} \theta^x (1-\theta)^{n-x} \quad (x=0,1,2,\ldots,n) \qquad \mu = n\theta, \quad \sigma^2 = n\theta(1-\theta)$$

Poisson distribution $Poisson(\lambda)$

$$p_x = \frac{\lambda^x e^{-\lambda}}{x!} \quad (x=0,1,2,\ldots) \quad \text{(with $\lambda>0$)} \qquad \qquad \mu = \lambda \,, \ \sigma^2 = \lambda \,$$

Geometric distribution $Geometric(\theta)$

$$p_x = (1 - \theta)^{x-1}\theta \quad (x = 1, 2, 3, ...)$$
 $\mu = \frac{1}{\theta}, \quad \sigma^2 = \frac{1 - \theta}{\theta^2}$

5. Continuous probability distributions

Uniform distribution $\mathit{Uniform}\left(\alpha,\beta\right)$

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha} & (\alpha < x < \beta), \qquad \mu = (\alpha + \beta)/2, \quad \sigma^2 = (\beta - \alpha)^2/12 \\ 0 & \text{(otherwise)}. \end{cases}$$

Exponential distribution $Exponential(\lambda)$

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & (0 < x < \infty), & \mu = 1/\lambda, \quad \sigma^2 = 1/\lambda^2 \\ 0 & (-\infty < x \le 0). \end{cases}$$

Normal distribution $N\left(\mu,\sigma^2\right)$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right\} \quad (-\infty < x < \infty), \quad E(X) = \mu, \quad \text{var}(X) = \sigma^2$$

Standard normal distribution N(0,1)

If
$$X$$
 is $N(\mu, \sigma^2)$, then $Y = \frac{X - \mu}{\sigma}$ is $N(0,1)$

6. Reliability

For a device in continuous operation with failure time random variable T having pdf $f(t) \ (t>0)$

The reliability function at time t R(t) = P(T > t)

The failure rate or hazard function h(t) = f(t)/R(t)

The cumulative hazard function $H(t) = \int_0^t h(t_0) dt_0 = -\ln\{R(t)\}$

The Weibull (α, β) distribution has $H(t) = \beta t^{\alpha}$

7. System reliability

For a system of k devices, which operate independently, let

$$R_i = P(D_i) = P(\text{"device } i \text{ operates"})$$

The system reliability, R, is the probability of a path of operating devices

A system of devices in series operates only if every device operates

$$R = P(D_1 \cap D_2 \cap \cdots \cap D_k) = R_1 R_2 \cdots R_k$$

A system of devices in parallel operates if any device operates

$$R = P(D_1 \cup D_2 \cup \cdots \cup D_k) = 1 - (1 - R_1)(1 - R_2) \cdots (1 - R_k)$$

8. Covariance and correlation

The covariance of X and Y $\operatorname{cov}(X,Y) = E(XY) - \{E(X)\}\{E(Y)\}$

From pairs of observations $(x_1, y_1), \ldots, (x_n, y_n)$ $S_{xy} = \sum_k x_k y_k - \frac{1}{n} (\sum_i x_i) (\sum_j y_j)$

$$S_{xx} = \sum_{k} x_{k}^{2} - \frac{1}{n} (\sum_{i} x_{i})^{2}, \qquad S_{yy} = \sum_{k} y_{k}^{2} - \frac{1}{n} (\sum_{j} y_{j})^{2}$$

Sample covariance $s_{xy} = \frac{1}{n-1} S_{xy}$ estimates cov(X,Y)

Correlation coefficient $\rho = \operatorname{corr}(X,Y) = \frac{\operatorname{cov}(X,Y)}{\operatorname{sd}(X) \cdot \operatorname{sd}(Y)}$

Sample correlation coefficient $r=\frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$ estimates ho

9. Sums of random variables

$$\begin{split} E(X+Y) &= E(X) + E(Y) \\ \text{var}\,(X+Y) &= \text{var}\,(X) + \text{var}\,(Y) + 2 \cos{(X,Y)} \\ \cos{(aX+bY)} &= (ac) \, \text{var}\,(X) + (bd) \, \text{var}\,(Y) + (ad+bc) \cos{(X,Y)} \\ \text{If}\, X \text{ is } N(\mu_1,\sigma_1^2), \, Y \text{ is } N(\mu_2,\sigma_2^2), \, \text{and } \cos{(X,Y)} = c, \, \text{ then } \, X+Y \text{ is } N(\mu_1+\mu_2,\, \sigma_1^2+\sigma_2^2+2c) \end{split}$$

10. Bias, standard error, mean square error

Standard error of t

If t estimates θ (with random variable T giving t)

$$\underline{\text{Bias of } t} \qquad \qquad \text{bias } (t) = E(T) - \theta$$

Mean square error of
$$t$$
 MSE (t) = $E\{(T-\theta)^2\}$ = $\{\operatorname{se}(t)\}^2 + \{\operatorname{bias}(t)\}^2$

se(t) = sd(T)

If
$$\overline{x}$$
 estimates μ , then bias $(\overline{x})=0$, se $(\overline{x})=\sigma/\sqrt{n}$, MSE $(\overline{x})=\sigma^2/n$, se $(\overline{x})=s/\sqrt{n}$
Central limit property If n is fairly large, \overline{x} is from $N(\mu, \sigma^2/n)$ approximately

11. Likelihood

The likelihood is the joint probability as a function of the unknown parameter θ .

For a random sample x_1, x_2, \ldots, x_n

$$\ell(\theta; x_1, x_2, \dots, x_n) = P(X_1 = x_1 \mid \theta) \cdots P(X_n = x_n \mid \theta)$$
 (discrete distribution)
 $\ell(\theta; x_1, x_2, \dots, x_n) = f(x_1 \mid \theta) f(x_2 \mid \theta) \cdots f(x_n \mid \theta)$ (continuous distribution)

The maximum likelihood estimator (MLE) is $\widehat{ heta}$ for which the likelihood is a maximum

12. Confidence intervals

If x_1, x_2, \ldots, x_n are a random sample from $N(\mu, \sigma^2)$ and σ^2 is known, then the 95% confidence interval for μ is $(\overline{x} - 1.96 \frac{\sigma}{\sqrt{n}}, \ \overline{x} + 1.96 \frac{\sigma}{\sqrt{n}})$

If σ^2 is estimated, then from the Student t table for t_{n-1} we find $t_0=t_{n-1,0.05}$

4

The 95% confidence interval for
$$\mu$$
 is $(\overline{x}-t_0\frac{s}{\sqrt{n}},\ \overline{x}+t_0\frac{s}{\sqrt{n}})$

13. Standard normal table Values of pdf $\phi(y)=f(y)$ and cdf $\Phi(y)=F(y)$

y	$\phi(y)$	$\Phi(y)$	y	$\phi(y)$	$\Phi(y)$	y	$\phi(y)$	$\Phi(y)$	y	$\Phi(y)$
0	.399	.5	.9	.266	.816	1.8	.079	.964	2.8	.997
.1	.397	.540	1.0	.242	.841	1.9	.066	.971	3.0	.999
.2	.391	.579	1.1	.218	.864	2.0	.054	.977	0.841	.8
.3	.381	.618	1.2	.194	.885	2.1	.044	.982	1.282	.9
.4	.368	.655	1.3	.171	.903	2.2	.035	.986	1.645	.95
.5	.352	.691	1.4	.150	.919	2.3	.028	.989	1.96	.975
.6	.333	.726	1.5	.130	.933	2.4	.022	.992	2.326	.99
.7	.312	.758	1.6	.111	.945	2.5	.018	.994	2.576	.995
.8	.290	.788	1.7	.094	.955	2.6	.014	.995	3.09	.999

14. Student t table Values $t_{m,p}$ of x for which P(|X|>x)=p , when X is t_m

_	0.10	0.05	0.02	0.01	m	p= 0.10	0.05	0.02	0.01
m	p = 0.10	0.05	0.02		-		-		
1	6.31	12.71	31.82	63.66	9	1.83	2.26	2.82	3.25
2	2.92	4.30	6.96	9.92	10	1.81	2.23	2.76	3.17
3	2.35	3.18	4.54	5.84	12	1.78	2.18	2.68	3.05
4	2.13	2.78	3.75	4.60	15	1.75	2.13	2.60	2.95
5	2.02	2.57	3.36	4.03	20	1.72	2.09	2.53	2.85
6	1.94	2.45	3.14	3.71	25	1.71	2.06	2.48	2.78
7	1.89	2.36	3.00	3.50	40	1.68	2.02	2.42	2.70
8	1.86	2.31	2.90	3.36	∞	1.645	1.96	2.326	2.576

15. Chi-squared table Values $\chi^2_{k,p}$ of x for which P(X>x)=p, when X is χ^2_k and p=.995, .975, etc

.005 7.88	k 18	.995	.975	.05	.025	.01	.005
7.88	10						
	10	6.26	8.23	28.87	31.53	34.81	37.16
10.60	20	7.43	9.59	31.42	34.17	37.57	40.00
12.84	22	8.64	10.98	33.92	36.78	40.29	42.80
14.86	24	9.89	12.40	36.42	39.36	42.98	45.56
16.75	26	11.16	13.84	38.89	41.92	45.64	48.29
18.55	28	12.46	15.31	41.34	44.46	48.28	50.99
20.28	30	13.79	16.79	43.77	46.98	50.89	53.67
21.95	40	20.71	24.43	55.76	59.34	63.69	66.77
23.59	50	27.99	32.36	67.50	71.41	76.15	79.49
25.19	60	35.53	40.48	79.08	83.30	88.38	91.95
28.30	70	43.28	48.76	90.53	95.02	100.4	104.2
31.32	80	51.17	57.15	101.9	106.6	112.3	116.3
34.27	100	67.33	74.22	124.3	129.6	135.8	140.2
	10.60 12.84 14.86 16.75 18.55 20.28 21.95 23.59 25.19 28.30 31.32	10.60 20 12.84 22 14.86 24 16.75 26 18.55 28 20.28 30 21.95 40 23.59 50 25.19 60 28.30 70 31.32 80	10.60 20 7.43 12.84 22 8.64 14.86 24 9.89 16.75 26 11.16 18.55 28 12.46 20.28 30 13.79 21.95 40 20.71 23.59 50 27.99 25.19 60 35.53 28.30 70 43.28 31.32 80 51.17	10.60 20 7.43 9.59 12.84 22 8.64 10.98 14.86 24 9.89 12.40 16.75 26 11.16 13.84 18.55 28 12.46 15.31 20.28 30 13.79 16.79 21.95 40 20.71 24.43 23.59 50 27.99 32.36 25.19 60 35.53 40.48 28.30 70 43.28 48.76 31.32 80 51.17 57.15	10.60 20 7.43 9.59 31.42 12.84 22 8.64 10.98 33.92 14.86 24 9.89 12.40 36.42 16.75 26 11.16 13.84 38.89 18.55 28 12.46 15.31 41.34 20.28 30 13.79 16.79 43.77 21.95 40 20.71 24.43 55.76 23.59 50 27.99 32.36 67.50 25.19 60 35.53 40.48 79.08 28.30 70 43.28 48.76 90.53 31.32 80 51.17 57.15 101.9	10.60 20 7.43 9.59 31.42 34.17 12.84 22 8.64 10.98 33.92 36.78 14.86 24 9.89 12.40 36.42 39.36 16.75 26 11.16 13.84 38.89 41.92 18.55 28 12.46 15.31 41.34 44.46 20.28 30 13.79 16.79 43.77 46.98 21.95 40 20.71 24.43 55.76 59.34 23.59 50 27.99 32.36 67.50 71.41 25.19 60 35.53 40.48 79.08 83.30 28.30 70 43.28 48.76 90.53 95.02 31.32 80 51.17 57.15 101.9 106.6	10.60 20 7.43 9.59 31.42 34.17 37.57 12.84 22 8.64 10.98 33.92 36.78 40.29 14.86 24 9.89 12.40 36.42 39.36 42.98 16.75 26 11.16 13.84 38.89 41.92 45.64 18.55 28 12.46 15.31 41.34 44.46 48.28 20.28 30 13.79 16.79 43.77 46.98 50.89 21.95 40 20.71 24.43 55.76 59.34 63.69 23.59 50 27.99 32.36 67.50 71.41 76.15 25.19 60 35.53 40.48 79.08 83.30 88.38 28.30 70 43.28 48.76 90.53 95.02 100.4 31.32 80 51.17 57.15 101.9 106.6 112.3

16. The chi-squared goodness-of-fit test

The frequencies n_y are grouped so that the fitted frequency \widehat{n}_y for every group exceeds about 5.

$$X^2 = \sum_y \frac{(n_y - \widehat{n}_y)^2}{\widehat{n}_y}$$
 is referred to the table of χ^2_k with significance point p ,

where k is the number of terms summed, less one for each constraint, eg matching total frequency, and matching \overline{x} with μ

17. Joint probability distributions

Discrete distribution
$$\{p_{xy}\}$$
, where $p_{xy}=P(\{X=x\}\cap\{Y=y\})$.

Let
$$p_{x \bullet} = P(X = x)$$
, and $p_{\bullet y} = P(Y = y)$, then

$$p_{x \bullet} = \sum_{y} p_{xy}$$
 and $P(X = x \mid Y = y) = \frac{p_{xy}}{p_{\bullet y}}$

Continuous distribution

$$\underline{\text{Joint cdf}} \quad F(x,y) = P(\{X \le x\} \cap \{Y \le y\}) = \int_{x_0 = -\infty}^x \int_{y_0 = -\infty}^y f(x_0,y_0) \, \mathrm{d}x_0 \, \mathrm{d}y_0$$

$$f(x,y) = \frac{\mathrm{d}^2 F(x,y)}{\mathrm{d}x\,\mathrm{d}y}$$

Marginal pdf of
$$X$$

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y_0) \, \mathrm{d}y_0$$

Conditional pdf of
$$X$$
 given $Y = y$

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$
 (provided $f_Y(y) > 0$)

18. Linear regression

To fit the linear regression model $y=\alpha+\beta x$ by $\widehat{y}_x=\widehat{\alpha}+\widehat{\beta} x$ from observations

$$(x_1,y_1),\ldots,(x_n,y_n)$$
 , the least squares fit is $\widehat{\alpha}=\overline{y}-\overline{x}\widehat{\beta}$, $\widehat{\beta}=rac{S_{xy}}{S_{xx}}$

The <u>residual sum of squares</u> RSS = $S_{yy} - \frac{S_{xy}^2}{S_{xx}}$

$$\widehat{\sigma^2} = \frac{\text{RSS}}{n-2}$$
 $\frac{n-2}{\sigma^2}$ $\widehat{\sigma^2}$ is from χ^2_{n-2}

$$E(\widehat{\alpha}) = \alpha, \quad E(\widehat{\beta}) = \beta,$$

$$\mathrm{var}\left(\widehat{\alpha}\right) \ = \ \frac{\sum x_i^2}{n \, S_{xx}} \sigma^2 \; , \quad \mathrm{var}\left(\widehat{\beta}\right) \ = \ \frac{\sigma^2}{S_{xx}} \; , \quad \mathrm{cov}\left(\widehat{\alpha}, \widehat{\beta}\right) \ = \ -\frac{\overline{x}}{S_{xx}} \; \sigma^2$$

$$\widehat{y}_x = \widehat{\alpha} + \widehat{\beta} x \; , \qquad E(\widehat{y}_x) = \alpha + \beta x \; , \qquad \mathrm{var}\left(\widehat{y}_x\right) \; = \; \left\{\frac{1}{n} + \frac{(x - \overline{x})^2}{S_{xx}}\right\} \; \sigma^2$$

$$\frac{\widehat{\alpha} - \alpha}{\widehat{\operatorname{se}} \ (\widehat{\alpha})}$$
, $\frac{\widehat{\beta} - \beta}{\widehat{\operatorname{se}} \ (\widehat{\beta})}$, $\frac{\widehat{y}_x - \alpha - \beta \, x}{\widehat{\operatorname{se}} \ (\widehat{y}_x)}$ are each from t_{n-2}

2

3+3

12

4-1

(310)
$$\lambda_1 = 5$$
 $\alpha_1 = (0,0,0)$

$$A = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix} \qquad \lambda_1 = 5 \qquad \alpha_1 = \begin{pmatrix} 0, 0, 1 \end{pmatrix}$$

$$(\lambda - 3)^2 - 1 = 0 \quad ; \quad \lambda^2 - 6\lambda + 8 = 0$$

$$\lambda_2 = 4$$
, $\alpha_2 = \sqrt{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$; $\lambda_3 = 2$, $\alpha_3 = \sqrt{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

Form
$$P = (9, 9293) = \sqrt{2} \begin{pmatrix} \sqrt{2} & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

There are 2 routes:

- i) Direct calculation, which is a cuptable.
- ii) Prove in general that PTP= I haved on the fact that A is symmetrie so gia; = di; $P^{T}P = \begin{pmatrix} \underline{\alpha}_{1}^{T} \\ \underline{\alpha}_{2}^{T} \end{pmatrix} \begin{pmatrix} \underline{\alpha}_{1} \underline{\alpha}_{2} \underline{\alpha}_{3} \end{pmatrix} = \left\{ \underline{\alpha}_{i}^{T} \underline{\alpha}_{i}^{T} \right\} = \underline{T}.$

Moreover,
$$A = 2 = \lambda = 2$$
:

So $A = P = P\Lambda$ $\Lambda = \begin{pmatrix} \lambda_1 & \lambda_2 & \lambda_3 \\ 0 & \lambda_3 \end{pmatrix}$

$$P^{-1}AP = \Lambda,$$

$$= \begin{pmatrix} 5 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

SETTER: JOG

17/11/06

11-2	SOLUTION EEI(4)	2
4-2		MARKI
5)	$A = \begin{pmatrix} 7 & \sqrt{7} & 0 \\ \sqrt{7} & 1 & 0 \end{pmatrix} \qquad \lambda_1 = 8 \qquad \underline{a}_1 = (\sqrt{7}, 1, 0)^T / \sqrt{8}$	
	$ \circ \circ / \lambda_{2} = 0 \underline{\alpha}_{2} = (1, -\sqrt{7}, 0)^{7} / \sqrt{8}$	6
	$\lambda_3 = 1 \underline{a}_3 = (0,0,1)^{T}$	
£;)	$P = \left(\begin{array}{cccc} \underline{a}_1 & \underline{a}_2 & \underline{a}_2 \end{array}\right) = \sqrt{y} \left(\begin{array}{cccc} \sqrt{7} & 1 & 0 \\ 1 & -\sqrt{7} & 0 \\ 0 & 0 & \sqrt{8} \end{array}\right)$	
	In general, if A is symmetrie then a: 2; = dij	
	$P^TP = \begin{pmatrix} \underline{a}_1^T \\ \underline{s}_2^T \end{pmatrix} \begin{pmatrix} \underline{a}_1 \underline{a}_2 \underline{a}_3 \end{pmatrix} = \left\{ \underline{a}_i^T \underline{a}_i^T \right\} = \mathbf{I} \Rightarrow P^T = P^T.$	6
,	Moreover A a; = A; a; can be re-exponented on.	
1	$AP = P\Lambda$ $\Lambda = diag(\lambda, \lambda_2, \lambda_3)$	
	$P^{-1}AP = P^{T}AP = \Lambda$	
iii)	$\mathcal{I} = P \mathcal{I} \Rightarrow Q = \mathcal{I}^{T} A \mathcal{I} = \mathcal{I}^{T} (P^{T} A P) \mathcal{I}$	
	= 97 / 9	4
	Sice 1 = diag(8,0,1)	
	Ce = 8y,2+y32	
(v)	$\underline{y} = P\underline{y} \Rightarrow \underline{y} = P^{-1}\underline{x} = P^{T}\underline{x}$	
	$y = \sqrt{3} \begin{pmatrix} \sqrt{3} & 1 & 0 \\ 1 & -\sqrt{7} & 0 \\ 0 & 0 & \sqrt{8} \end{pmatrix} \begin{pmatrix} x_1 \\ n_2 \\ 713 \end{pmatrix}$	/: 4
	18 y, = 17 x, + x2	
	√8 y = 21, - 17 112	
	the candidate cases a different It the order of the eigenvalues and eigenvectors, then full marks should be given	
	SETTER: JOG CHECKER: ADG 17/11/06	

	EXAMINATION SOLUTIONS 2006-07	Course EE2(4)
Question 3		Marks & seen/unseen
(ii) (a)	$P(\text{system functions}) \ = \ 1 - P(\text{all components fail})$ $= \ 1 - \prod_{i=1}^k P(\text{component } i \text{ fails})$ $= \ 1 - \prod_{i=1}^k (1 - P(\text{component } i \text{ functions}))$ $= \ 1 - \prod_{i=1}^k \left(1 - \frac{3}{4}\right) = 1 - 4^{-k}$ Want: $P(\text{system fails}) = 1 - P(\text{system functions}) = 4^{-k} \le \frac{1}{1000}.$ This is equivalent to $4^k \ge 1000.$ Hence, $k \log_{10} 4 \ge 3 \text{ and } k \ge 3/\log_{10} 4 \approx 4.98.$ Since k needs to be a natural number, at least 5 components are needed. (check: $4^{-5} \approx 0.00098$) Let C_i denote the event "component i fails before time t ". From the formula sheet: $P(C_i) = 1 - \exp(-\lambda_i t).$ Using the system structure and the independence we get $P(\text{system fails before time } t) = P(C_1 \cap (C_2 \cup C_3))$ $= P(C_1)P(C_2 \cup C_3)$ $= P(C_1)(1 - P(\overline{C_2} \cap \overline{C_3}))$ $= P(C_1)(1 - P(\overline{C_2})P(\overline{C_3}))$ $= (1 - \exp(-3t))(1 - \exp(-2t)\exp(-1t))$ $= (1 - \exp(-3t))^2$ Need to solve $(1 - \exp(-3t))^2 = 0.5 \text{ for } t, \text{ where we know that } t \ge 0.$ This results in $t = -\frac{1}{3}\log(1 - \sqrt{0.5}) = \frac{1}{3}\log(2 + \sqrt{2})(\approx 0.409).$	Seen Similarly Seen Similarly Seen Similarly
	Setter's initials Checker's initials RC	Page number

	EXAMINATION SOLUTIONS 2006-07	Course EE2(4)
Question 4		Marks & seen/unseen
	k needs to be chosen such that $\sum_{i=1}^4 p(i) = 1$. Hence, $1 = \sum_{i=1}^4 ki = k(1+2+3+4) = 10k$. Thus $k = \frac{1}{10}$. $\mathrm{E}(X) = \sum_{i=1}^4 ip(i) = \sum_{i=1}^4 i^2/10 = (1+4+9+16)/10 = 3$	1 1 2
	$Var(X) = E(X^{2}) - (E(X))^{2} = \sum_{i=1}^{4} i^{2} p(i) - 3^{2}$ $= \sum_{i=1}^{4} i^{3} / 10 - 9 = (1 + 8 + 27 + 64) / 10 - 9 = 10 - 9 = 1$	Seen Similarly
(c) (ii) (a)	cov(X, -5X) = -5 cov(X, X) = -5 Var(X) = -5.	3
	$E(Y) = \int_{-\infty}^{\infty} y f(y) dy = \int_{0}^{2} y \frac{3}{14} (y^{2} + y) dy = \frac{3}{14} \left[\frac{1}{4} y^{4} + \frac{1}{3} y^{3} \right]_{y=0}^{2}$ $= \frac{3}{14} \left[\frac{16}{4} + \frac{8}{3} \right] = \frac{6}{7} + \frac{4}{7} = \frac{10}{7} (\approx 1.429).$	3
	Using $ \begin{split} \mathrm{E}(Y^2) &= \int_{-\infty}^{\infty} y^2 f(y) dy = \int_0^2 y^2 \frac{3}{14} (y^2 + y) dy = \frac{3}{14} \left[\frac{1}{5} y^5 + \frac{1}{4} y^4 \right]_{y=0}^2 \\ &= \frac{3}{14} \left[\frac{32}{5} + \frac{16}{4} \right] = \frac{48}{35} + \frac{6}{7} = \frac{78}{35} (\approx 2.229) \end{split} $	
(b)	we get $ \begin{aligned} \operatorname{Var}(Y) &= \operatorname{E}(Y^2) - (\operatorname{E}(Y))^2 = 78/35 - 100/49 \\ &= (546 - 500)/245 = 46/245 (\approx 0.188). \end{aligned} $ $ \begin{aligned} \operatorname{E}[\{(Y(1+Y)\}^{-1}] &= \int_0^2 (y(1+y))^{-1} f(y) dy \\ &= \int_0^2 (y(1+y))^{-1} \frac{3}{14} y(1+y) dy = \int_0^2 \frac{3}{14} dy = \frac{3}{7}. \end{aligned} $	4 T Unseen 2
	Setter's initials Checker's initials RC	Page number

	EXAMINATION SOLUTIONS 2006-07	Course EE2(4)
Question 5		Marks & seen/unseen
Parts (i)	Let X denote the number of students that fail on this day. Conditional on Professor A being the examiner, X follows a Binomial distribution with parameters $n=3$ and $p=0.12$. Hence, letting A denote the event that Professor A is the examiner, we get $P(D A) = P(X=1 A) = \binom{3}{1}p(1-p)^2 = 3\cdot 0.12\cdot 0.88^2 \approx 0.279.$	6
(ii)	By the law of total probability,	C 001-
	P(D) = P(D A) P(A) + P(D B) P(B) + P(D C) P(C) = $P(D A) \frac{5}{20} + P(D B) \frac{8}{20} + P(D C) \frac{7}{20}$,	SPEN Similarly
	where B (resp. C) denotes the event that Professor B (resp. C) was the examiner. Similar to the computation of $P(D A)$ we get $P(D B) = 3 \cdot 0.11 \cdot 0.89^2 \approx 0.261$ and $P(D C) = 3 \cdot 0.1 \cdot 0.9^2 \approx 0.243$. Thus $P(D) \approx 0.259$.	8
(iii)	Using Bayes rule,	
	$P(C D) = \frac{P(C \cap D)}{P(D)} = \frac{P(D C) P(C)}{P(D)} \approx \frac{0.085}{0.259} \approx 0.328.$	6
	Ţ	
	Setter's initials A // Checker's initials	Page number
	Setter's initials Checker's initials	}

		EXAMINATION SOLUTIONS 2006-07	Course EE2(4)
Quest	ion		Marks & seen/unseen
Parts (i)	(a)	$F_W(x) = P(W \le x) = P(\max(X_1, X_2) \le x)$	seen
		$= P(X_1 \le x, X_2 \le x) = P(X_1 \le x) P(X_2 \le x)$ $= \left(\frac{x}{\theta}\right)^2.$	Similarly
	(b)	Furthermore, $F_W(x)=0$ for $x<0$ and $F_W(x)=1$ for $x>\theta$. Hence, for x in $[0,\theta]$, $f_W(x)=\frac{\partial}{\partial x}F_W(x)=\frac{2x}{\theta^2}$ and for all other values of x , $f_W(x)=0$.	2
	(c)	(It is irrelevant how $f_W(x)$ is set at $x=0$ and $x=\theta$.) $ E(W) = \int_0^\theta x f_W(x) dx = \int_0^\theta x \frac{2x}{\theta^2} dx = \frac{2}{\theta^2} [\frac{1}{3} x^3]_{x=0}^\theta = \frac{2}{3} \theta. $ $ E(W^2) = \int_0^\theta x^2 f_W(x) dx = \int_0^\theta x^2 \frac{2x}{\theta^2} dx = \frac{2}{\theta^2} [\frac{1}{4} x^4]_{x=0}^\theta = \frac{2}{\theta^2} \frac{1}{4} \theta^4 = \frac{\theta^2}{2} $ and thus	2
		$Var(W) = E(W^2) - (E(W))^2 = \frac{\theta^2}{2} - \left(\frac{2}{3}\theta\right)^2 = \frac{1}{18}\theta^2 (\approx 0.0556\theta^2).$	2
(ii)		$\begin{split} & \mathrm{E}(S) = \mathrm{E}(\frac{3}{2}W) = \frac{3}{2}\mathrm{E}(W) = \frac{3}{2}\frac{2}{3}\theta = \theta \text{ and} \\ & \mathrm{E}(T) = \mathrm{E}(X_1 + X_2) = \mathrm{E}(X_1) + \mathrm{E}(X_2) = \frac{\theta}{2} + \frac{\theta}{2} = \theta. \\ & \mathrm{Var}(S) = \mathrm{Var}(\frac{3}{2}W) = \frac{9}{4}\mathrm{Var}(W) = \frac{9}{4}\frac{1}{18}\theta^2 = \frac{1}{8}\theta^2. \\ & \mathrm{Since}\ X_1 \text{ and } X_2 \text{ are independent } \mathrm{Var}(T) = \mathrm{Var}(X_1) + \mathrm{Var}(X_2). \end{split}$	1 1 1
		$\operatorname{Var}(X_1) = \operatorname{E}(X_1^2) - (\operatorname{E}(X_1))^2 = \int_0^\theta \frac{1}{\theta} x^2 dx - \left(\frac{\theta}{2}\right)^2$ $= \left[x^3/(3\theta)\right]_{x=0}^\theta - \theta^2/4 = \theta^3/(3\theta) - \theta^2/4 = \theta^2/12.$	$ \uparrow $
		As X_1 and X_2 are identically distributed, $\mathrm{Var}(X_2) = \mathrm{Var}(X_1)$. Hence, $\mathrm{Var}(T) = 2\mathrm{Var}(X_1) = \theta^2/6$. Both S and T are unbiased estimator of θ . As S has the smaller variance, S is to be preferred.	3 2
(iii)		The density (likelihood) of the observations x_1 , x_2 is $f_{X_1,X_2}(x_1,x_2)=\frac{1}{\theta^2}$ if both x_1 and x_2 are in $[0,\theta]$. Otherwise, $f_{X_1,X_2}(x_1,x_2)=0$. Hence, f_{X_1,X_2} is maximised if θ is minimal subject to the constraint that $\theta \geq x_1$ and $\theta \geq x_2$. Hence, the maximum likelihood estimator is $\max(X_1,X_2)$.	Unseen 3
		Setter's initials Checker's initials R C	Page number