A Book of Abstract Algebra (2nd Edition)

Chapter 17, Problem 1ED

Bookmark

Show all steps: ON

Problem

If D is a set, then the power set of D is the set P_D of all the subsets of D. Addition and multiplication are defined as follows: If A and B are elements of P_D (that is, subsets of D), then

$$A + B = (A - B) \cup (B - A)$$
 and $AB = A \cap B$

It was shown in Chapter 3, Exercise C, that P_D with addition alone is an abelian group.

Prove: P_D is a commutative ring with unity. (You may assume \cap is associative; for the distributive law, use the same diagram and approach as was used to prove that addition is associative in Chapter 3, Exercise C.)

Step-by-step solution

Step 1 of 4

Consider that P_D is the power set of set D, that is, P_D is set of all subsets of D. Let $A,B\in P_D$, then the addition and multiplication in P_D will be defined as follows:

$$A + B = (A - B) \cup (B - A),$$

$$AB = A \cap B.$$

Objective is to show that P_D is a commutative ring with unity.

It is given that $(P_{D}, +)$ forms an abelian group.

Comment

Step 2 of 4

Now, show that product of elements in P_D is associative. Let $A, B, C \in P_D$. Then

$$(AB)C = (AB) \cap C$$
$$= (A \cap B) \cap C$$
$$= A \cap (B \cap C)$$
$$= A(BC)$$

The third step is obtained from the fact that intersection is associative. Next is distributive law: $A(B+C) = A \cap ((B-C) \cup (C-B))$ $= (A \cap B - A \cap C) \cup (A \cap C - A \cap B)$ $= (A \cap B) + (A \cap C)$ =AB+ACThe third and fourth step is obtained from the given definition of addition and multiplication. Similarly, (B+C)A = BA + CA. Comment Step 3 of 4 Since intersection operation is commutative, $AB = A \cap B$ $= B \cap A$ = BA.Thus, P_D is commutative. The unity in P_D will be: AB = A $A \cap B = A$ The condition $A \cap B = A$ will true for all $A \in P_D$ if B = D because $AD = A \cap D$ = A, $DA = D \cap A$ = A. Thus, D will work as a unity in P_D . Comment

Step 4 of 4

Hence, P_{D} is a commutative ring with unity.

Comment