EVML3

REGRESSION HANDS-ON

JEROEN VEEN

CONTENTS

- Linear regression exercise
- Polynomial regression exercise

SCIKIT LEARN INTERFACE DESIGN

- Estimators
 - estimation performed by the fit() method
 - dataset as a parameter (or two for supervised learning)
 - Any other parameter is considered a hyperparameter
- Transformers
 - performed by the transform() method
 - fit_transform() is equivalent to calling fit() and then transform()
 (but sometimes fit_transform() is optimized and runs much faster
- Predictors
 - prediction method performed by predict() method
 - quality of the predictions measured by score() method

LINEAR REGRESSION EXAMPLE

See Regression_01.py and Regression_04.py

Mean squared error: 0.0405

R-squared score: 0.9268 Model coefficient: 0.4159

Model intercept: -0.3630

Petal length is a good predictor of petal width, explaining about 93% of the variation

POLYNOMIAL REGRESSION EXAMPLE

POLYNOMIAL REGRESSION

- Exercise 1: Can you improve Regression_01.py or Regression_04.py by polynomial regression?
- Try out generating your own regression example: https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html
- See also Géron, page 129 (114 in new ed.)

LOGISTIC REGRESSION

- Estimate the probability that an instance belongs to a particular class
- Binary classifier

 Baseline for evaluating more complex classification methods

Source: Mathworks, Applying Supervised Learning

ESTIMATING PROBABILITY

- Logistic functions maps prediction result to probability
- Sigmoid function

DECISION BOUNDARY

- Aka classification threshold
- Both probabilities are equal to 50%?

LINEAR DECISION BOUNDARY

Logistic Regression models can be regularized

LOGISTIC REGRESSION EXAMPLE

LEANING CURVES IN REGRESSION

- Exercise 02: Plot the learning curves for polynomial regression and experiment with various degrees
- Can you interpret the curves?
- Build on Regression_01.py and see Géron, page 130-134