Universidad Simón Bolívar Departamento de Computación y Tecnología de la Información CI 2611 Algoritmos 1 Abril-Julio 2012

Tarea 1

1. Se puede definir un predicado que diga si un entero es par de la siguiente forma:

$$EsPar(n) \equiv (x \mod 2 = 0)$$

Usando cuantificadores, funciones de agregación, o predicados previamente definidos, proponga expresiones lógicas para los siguientes predicados:

- a) EsMultiplode3(x): "x es múltiplo de 3"
- b) DivideA(n,m): "n divide a m", es decir, existe un entero k que multiplicado por n produce m
- c) EsPrimo(p): "p es primo", es decir, los únicos enteros que dividen a p son 1 y p
- d) SonCoprimos(p,q) : "p y q son coprimos", es decir, no existen números primos que dividan a ambos números
- 2. Escriba expresiones lógicas que representen las siguientes frases
 - a) hay números primos menores que 500
 - b) los números primos son todos positivos
 - c) ningún entero cumple que es mayor que todos los demás enteros
 - d) todos los números primos menores que m son también menores que n
 - e) cada entero positivo es menor que el valor absoluto de algún entero negativo
- 3. Sea S una secuencia de enteros. Sean N y M dos enteros mayores que cero tal que M<N y N es el tamaño de la secuencia S. Use los cuantificadores y/o funciones de agregación adecuados para expresar las siguientes sentencias:
 - a) Todos los valores de S entre M y N son iguales
 - b) El máximo valor de la secuencia se encuentra en la posición p.
 - c) En todas las posiciones pares, el valor de S en esa posición es negativo
 - d) La secuencia S tiene al menos un valor positivo
 - e) Todos los valores de S en el segmento [M..N) son números primos
 - f) La suma de los valores de la secuencia hasta la posición M es menor que la suma de los valores de la secuencia después de la posición M
 - g) El número de veces que un valor de la secuencia es positivo es igual al número de veces que un valor de la secuencia es negativo
 - h) En las posiciones pares el valor de la secuencia S es impar
 - i) Los valores de la secuencia están en orden creciente
 - j) Si la secuencia S tiene una posición con valor 1 entonces también tiene un 0
- 4. Traduzca al español las siguientes expresiones:
 - a) $(\forall i: N \le i < M : (\exists z: z \ge 0: S[i] = z))$
 - b) $(\forall i: 0 \le i < M \land i \mod 2 = 0: S[i] = 0)$
 - c) (Σi : $0 \le i < M \land i \mod 2 = 0$: S[i])
 - d) $(\forall i: j \le i < k+1: S[i] \ne 0)$
 - e) $(\Pi i: j \le i < k+1 \land S[i] \ne 0: S[i])$
 - f) $\neg (\exists i: j \le i < k+1: S[i]=0)$
 - g) $(\#i: j \le i < k+1: S[i] \ne 0)$

- h) $(\forall i: 0 \le i < N: S[i] = 0 \Rightarrow j \le i \le k)$
- i) (max i: $j \le i < k+1$: S[i])
- 5. Dar la especificación (espacio de estados, pre y postcondición) de los siguientes problemas:
 - a) Dado un entero N, calcular la suma de los números primos menores que N.
 - b) Dada una secuencia ordenada de n enteros, determinar si el valor x está en la secuencia.
 - c) Dada una secuencia de n enteros, hallar el segundo menor de la secuencia.
 - d) Dadas tres variables enteras a, b y c con valores diferentes, determinar el valor máximo y almacenarlo en d.
 - e) Dado un número n calcule la suma de los cuadrados entre 0 y n, almacene el resultado en la variable d.
 - f) Dada una secuencia de enteros calcular el número de valores primos almacenados en la secuencia.
 - g) Dada una secuencia de caracteres **sec** devolver en la variable **secInv** la misma secuencia en orden inverso
 - h) Dada una secuencia de caracteres **sec** y un entero r devolver en la variable **secRot** la secuencia rotada r posiciones a la derecha. Ejemplo: si sec="abbcd" y r=3 entonces en secRot="bcdab"