CS 5000: Theory of Computability Assignment 11

Vladimir Kulyukin Department of Computer Science Utah State University

November 18, 2017

1 Learning Objectives

- 1. Primitive recursive functions
- 2. Computable functions
- 3. Gödel numbers

Problem 1 (1 point)

Let h(x) be the integer n such that $n \leq \sqrt{2} < n+1$. Show that h(x) is primitive recursive.

Problem 2 (1 point)

Let gcd(x, y) and lcm(x, y) be the greatest common divisor and least common multiple of x and y, respectively. Show that both are primitive recursive.

Problem 3 (1 point)

Is there a computable predicate $P(x_1,...,x_n,y)$ such that the function $min_yP(x_1,...,x_n,y)$ is not computable? If not, explain why not. If yes, give such a predicate.

Problem 4 (1 point)

Let $f(x_1,...,x_n)$ be a function of n variables. Let f'(x) be defined as follows: $f'([x_1,...,x_n]) = f(x_1,...,x_n)$ for all $x_1,...,x_n$. Show that f' is partially computable if and only if f is partially computable.

Problem 5 (1 point)

Let $Sort([x_1,...,x_n]) = [y_1,...,y_n]$, where $y_1,...,y_n$ is a permutation of $x_1,...,x_n$ such that $y_1 \le y_2 \le ... \le y_n$. Show that Sort(x) is primitive recursive.

What to Submit?

Save your solutions in hw11.pdf and submit it in Canvas.