

(19) RU (11) 2 120 702 (13) C1
(51) Int. Cl. 6 H 04 N 7/24

RUSSIAN AGENCY
FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: 93051542/09, 31.01.1992

(30) Priority: 01.02.1991 GB 910 2220.2

(46) Date of publication: 20.10.1998

(71) Applicant:
British Telekomm'junikejshnz Pablik Limited
Kompani (GB)

(72) Inventor: Mokhammed Chanbari (IR)

(73) Proprietor:
British Telekomm'junikejshnz Pablik Limited
Kompani (GB)

(54) METHOD FOR DECODING OF SINGLE RECEIVED CURRENT SIGNAL FROM SEQUENCE OF TWO-CHANNEL ENCODED VIDEO SIGNALS AND DEVICE WHICH IMPLEMENTS SAID METHOD

(57) Abstract:

FIELD: video equipment. SUBSTANCE: decoder provides base channel and extension channel and has frame loss detector for detection of cell frame from extension. In this case extension data of previous video signal which are shifted by shifter according current movement vectors are used as data for interpolation of lost frames. Interpolation data are added to decoded base channel according to adder. Extension data are produced by subtraction of previous base video signal which is stored in memory unit from previous decoded video signal which is stored in memory unit according to subtracter. EFFECT: increased image quality. 6 cl, 5 dwg.

R
U
2
1
2
0
7
0
2
C
1

1
C
2
1
2
0
7
0
2
C
1

(19) RU (11) 2 120 702 (13) С1
(51) МПК⁶ Н 04 Н 7/24

РОССИЙСКОЕ АГЕНТСТВО
ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

(21), (22) Заявка: 93051542/09, 31.01.1992
(30) Приоритет: 01.02.1991 GB 910 2220.2
(46) Дата публикации: 20.10.1998
(56) Ссылки: 1. US, патент 4933762 A, кл. H 04 N 7/13, 1990. 2. ЕР, патент 0397402, кл. H 04 N 7/13, 1990. 3. FR, патент 2526620, кл. H 04 N 7/13, 1983.

(71) Заявитель:
Бритиш Телекоммюникейшнз Паблик Лимитед
Компани (GB)
(72) Изобретатель: Мохаммед Чанбари (IR)
(73) Патентообладатель:
Бритиш Телекоммюникейшнз Паблик Лимитед
Компани (GB)

(54) СПОСОБ ДЕКОДИРОВАНИЯ ОДНОГО ПОЛУЧЕННОГО ТЕКУЩЕГО СИГНАЛА ИЗ СЕРИИ
ДВУХКАНАЛЬНЫХ КОДИРОВАННЫХ ВИДЕОСИГНАЛОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

(57) Реферат:

Декодер для декодирования кодированных видеосигналов, состоящий из канала базы и канала расширения, включает детектор потери ячейки для выявления потери ячеек из канала расширения. В таком случае данные расширения из непосредственно предшествующего видеосигнала, смещенные вытеснителем согласно текущим векторам движения, представляют данные интерполяции для потерянных ячеек. Данные интерполяции прибавляются к декодированному каналу базы, как указано сумматором. Данные расширения получаются путем вычитания непосредственно предшествующего видеосигнала базы, записанного в запоминающее устройство, из непосредственно предшествующего декодированного видеосигнала, записанного в запоминающее устройство, как указано

вычитателем. Техническим результатом является улучшение качества изображения. 2 с. и 4 з.п. ф.-лы, 4 ил.

Фиг. 1

R
U
N
I
2
0
7
0
2
0
1

1
0
2
0
7
0
2
1
0
2
0
1

(19) RU (11) 2 120 702 (13) C1
(51) Int. Cl. 6 H 04 N 7/24

RUSSIAN AGENCY
FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: 93051542/09, 31.01.1992

(30) Priority: 01.02.1991 GB 910 2220.2

(46) Date of publication: 20.10.1998

(71) Applicant:
British Telekomm'junikejshnz Pablik Limited
Kompani (GB)

(72) Inventor: Mokhammed Chanbari (IR)

(73) Proprietor:
British Telekomm'junikejshnz Pablik Limited
Kompani (GB)

(54) METHOD FOR DECODING OF SINGLE RECEIVED CURRENT SIGNAL FROM SEQUENCE OF TWO-CHANNEL ENCODED VIDEO SIGNALS AND DEVICE WHICH IMPLEMENTS SAID METHOD

(57) Abstract:

FIELD: video equipment. SUBSTANCE: decoder provides base channel and extension channel and has frame loss detector for detection of cell frame from extension. In this case extension data of previous video signal which are shifted by shifter according current movement vectors are used as data for interpolation of lost frames. Interpolation data are added to decoded base channel according to adder. Extension data are produced by subtraction of previous base video signal which is stored in memory unit from previous decoded video signal which is stored in memory unit according to subtracter. EFFECT: increased image quality. 6 cl, 5 dwg.

R
U
2
1
2
0
7
0
2
C
1

1
C
2
1
2
0
7
0
2
C
1

Япония
США
Германия
Франция
Италия
Великобритания
Австралия
Канада
Южная Корея
Китай

Настоящее изобретение относится к способу и прибору для декодирования одного видеосигнала, полученного из текущего потока двухканальных закодированных видеосигналов, каждый из которых включает канал базы закодированных данных канала базы и закодированные данные вектора движения канала расширения закодированных данных канала расширения, представляющих собой разности между некодируемым видеосигналом и восстановлением непосредственно предшествующего базового видеосигнала из канала базы.

В данном применении видеосигналы фразы соотносятся к цифровому представлению видеосистемы.

Такое так называемое двухканальное кодирование видеосигналов было предназначено для использования в схемах торговых автоматов (ATM), эти схемы могли допускать потерю ячейки, которая могла стать причиной значительного разрыва в потоках данных на каналах с переменной скоростью передачи бит (VBR).

Пример двухканальной схемы кодирования описан в патенте США N 4 933762, там передача осуществляется посредством основной дорожки и вспомогательной дорожки схемы переменной скорости цифровой передачи. Когда основная дорожка не способна координировать всю полноту информации изображения, вспомогательная информация координируется посредством вспомогательной дорожки.

Недостаток традиционных систем наполнения, где кодируются и передаются только существенные отличия между последовательными видеосигналами (или кадрами) в то время, когда используются более эффективные межкадровые кодеры, заключается в том, что ошибки передачи не ограничиваются одним единственным декодированным кадром, а распространяются в более поздние кадры.

Масахиро Уада в статье, озаглавленной "Селективное восстановление потери видеопакета с использованием способа скрытия ошибки" IEEE J. on Selected Areas in Communications, v. 7 (1989), June, N 5, N-Y, USA, описывает способ скрытия ошибки для схемы передачи, состоящей из одного единственного канала (т.е. одного слоя) посредством канала скорости передачи бит (VBR). Когда декодер выявляет потерю видеопакета, качество изображения частично восстанавливается способом скрытия ошибки за счет компенсации движения, по этому способу блоки из полученного предыдущего видеокадра сдвигаются векторами движения среднего значения блоков, расположенных рядом с блоками, которые используются для скрытия. Данный способ может оказаться достаточным для одного или двух пропущенных блоков, но для более значительной группы пропущенных блоков он может стать причиной серьезных нарушений. Эксперименты, проведенные заявителем, показали, что в ячейку или пакет могут войти 4 блока, и когда случается потеря ячейки в схеме ATM, она обычно затрагивает пакеты ячеек, возможно, 3 пакета и больше, в результате получается десятки пропущенных блоков.

Желательно, чтобы канал базы содержал данные для основного изображения вместе с важной информацией, такой как данные синхронизации, и, следовательно, он должен передаваться при постоянной скорости бит на "гарантированный" канал постоянной скорости бит.

Канал расширения, кодируя отличия между кодируемым видеосигналом и видеокадром, восстановленным только из канала базы (который будет также называться "данные расширения"), доводит основной режим изображения до конечного требуемого качества. В общих чертах канал расширения будет иметь неустойчивую скорость передачи бит и может быть передан по каналу VBR. Если какая-либо информация будет потеряна, это не затронет движение восстановленных кадров, а приведет к возвращению к качеству основного режима. Случайная потеря разрешающей способности компенсируется за счет преимуществ передачи, например выгодное использование себестоимости каналов схемы.

Такие кодированные видеосигналы могут быть декодированы путем декодирования канала базы для получения базового видеосигнала, декодирования канала расширения для получения данных расширения и комбинирования базового видеосигнала и данных расширения для получения конечного декодированного видеосигнала.

Эта схема двухканального кодирования была проверена моделированием на компьютере на двухканальном присоединении стандартного H.261 CCITT, как было сообщено в IEEE J. on Selected Areas in Commun., v. 7, N 5, June, 1989 в статье М.Ганбари, озаглавленной "Двухслойное кодирование видеосигналов для схем VBR", где говорится о том, что включение компенсации движения для кодирования видеосигнала в канале базы приводит к высокой степени сжатия ширины полосы. Векторы канала движения передаются как часть канала базы в "гарантированный" канал постоянной скорости передачи бит (CBR), так как они необходимы для восстановления основного режима изображения. Так как канал расширения содержит главным образом информацию о деталях изображения и краях, потеря данных из этого канала рассматривается как потеря разрешающей способности в восстановленном изображении, выработанном из декодированного видеосигнала. Данные канала базы представляют допустимое качество изображения для четких областей, но более детальные области могут иметь видимое искажение, несмотря на то, что компьютерное моделирование указывает, что эта специальная схема на основе H.261 устойчива к потере ячейки и при скоростях 1-10 эта потеря незаметна.

Настоящее изобретение имеет целью предложить усовершенствованную систему декодирования видеосигналов, закодированных подобным двухканальным методом, и, согласно первому аспекту, способ декодирования таких кодированных видеосигналов в соответствии с п. 1 формулы изобретения, характеризующийся тем, что он также включает этапы выявления, потеряны

- ли данные расширения из канала расширения и, если это имеет место, интерполяции потерянных данных расширения от данных расширения непосредственно предшествующего полученного кодированного видеосигнала и векторов движения, полученных из канала базы в данный момент.
- Изобретение опирается на тот факт, что канал базы передается по "гарантированному" каналу, тем самым обеспечивая прием декодером векторов движения кодированных сигналов, полученных в данный момент. Эти векторы движения, следовательно, будут необходимы для обеспечения соответствующего сдвига в сторону непосредственно предшествующих данных расширения с целью определения, какие из этих данных расширения следует использовать для интерполяции данных расширения, потерянных из канала расширения текущего кодированного видеосигнала. Способ в соответствии с настоящим изобретением имеет то преимущество, что он обеспечивает хорошее качество восстановленного изображения даже в случае большого числа блоков, потерянных в канале расширения, из-за потери пакетов ячеек.
- Интерполяция данных расширения может быть выполнена в области преобразования на предшествующих полученных ячейках информации канала расширения с использованием линейного кодирования (например, транзисторной схемы с непосредственными связями DCT). Однако, в общих чертах, это будет неприемлемо на практике, так как кодированные части расширения кадров изменяются пространственно между кадрами и ячейки не содержат данных, относящихся к одному и тому же местоположению, а уплотнены в доступном пространстве ячейки. Следовательно, интерполяция должна осуществляться в области элемента изображения (pel), но должно быть ясно, что изобретение в самом широком аспекте не ограничивается этим предпочтительным способом.
- Декодер для декодирования канала базы может иметь запоминающее устройство кадра для запоминания непосредственно предшествующего декодированного канала базы (videосигнала базы или изображения базы) для использования в качестве шаблона при декодировании следующих, текущих видеосигналов. Подходящий способ получения непосредственно предшествующих данных расширения, необходимый для настоящего изобретения, заключается в определении отличий между этим записанным базовым сигналом и непосредственно предшествующим декодируемым видеосигналом. Это может быть достигнуто путем записи непосредственно предшествующего декодированного сигнала во второе запоминающее устройство кадра и получения впоследствии отличий между этими двумя видеосигналами известным способом.
- Альтернативно непосредственно предшествующие декодированные данные расширения сами могут быть записаны в запоминающее устройство кадра с тем, чтобы они могли быть использованы напрямую для декодирования текущего видеосигнала по способу настоящего изобретения.
- Способ, позволяющий обнаружить, пропущены ли какие-либо данные расширения из канала расширения, в деталях будет зависеть от схемы кодирования, применяемой кодером видеосигнала. Обычно канал расширения будет передаваться в пронумерованных ячейках таким образом, что при анализе полученной последовательности ячеек можно определить, которая из них может быть потеряна. Когда обнаруживается, что одна или более ячеек потеряны, данные, которые могут быть потеряны, определяются на основе информации неповрежденных ячеек, граничащих с потерянной ячейкой или ячейками. Затем эти данные интерполируются с использованием векторов движения и данных расширения из непосредственно предшествующего кодированного видеосигнала.
- Согласно другому аспекту изобретения, декодер для реализации настоящего способа в соответствии с первым аспектом изобретения, как отмечено в пункте 5 формулы изобретения, характеризуется тем, что включает средство выявления потери ячейки для определения, потеряны ли какие-либо данные расширения из канала расширения, блок интерполяции для получения данных интерполяции, включающих данные расширения непосредственно предшествующего полученного кодированного видеосигнала, измененного в соответствии с векторами движения канала базы, полученными в данный момент; и средство для замены любых пропущенных данных расширения интерполированными данными.
- Средство интерполяции может включать первое запоминающее устройство кадра для записи первого видеосигнала канала базы, который представляет собой восстановление из канала базы непосредственно предшествующего кодированного видеосигнала, второе запоминающее устройство кадра для записи непосредственно предшествующего декодированного видеосигнала, дифференцирующий блок для получения данных расширения путем вычитания первого кадра из второго и блок сдвига для перемещения данных расширения в соответствии с полученными векторами движения.
- Альтернативно последние декодированные данные расширения могут быть записаны в запоминающее устройство кадра для более позднего применения средством интерполяции.
- Когда не наблюдаются потери ячейки, декодер функционирует как обычные двухканальные декодеры. В случае возможной потери ячейки интерполированные данные используются вместо информации в потерянных ячейках с целью восстановления видеосигнала, тем самым увеличивая разрешающую способность изображения, которое он вырабатывает, по сравнению с известными двухканальными декодерами.
- Теперь будет описан предпочтительный вариант исполнения изобретения только в качестве примера и объяснен принцип действия в деталях со ссылкой на сопровождающие рисунки, где:

- фиг. 1 представляет блок-схему известного двухканального декодера, выходной сигнал которого может быть декодирован с помощью способа и прибора настоящего изобретения;
- фиг. 2 демонстрирует схему декодера согласно настоящему изобретению;
- фиг. 3 показывает диаграмму совершенствования S/V соотношения последовательности видеосигналов, полученных декодером фиг. 2, сравниваемых с тем же декодером, но функционирующим без данных интерполяции для замены потерянных данных расширения; и
- фиг. 4а и 4б представляют копии фотографий, демонстрирующих качество декодированного изображения одной и той же стандартной последовательности видеосигналов для получения результатов фиг. 3, имеющей 10% потери ячеек из канала расширения без применения и с применением соответственно интерполированных данных.
- Обратимся сначала к фиг. 1, где представлен схематично известный кодер видеосигналов, который обеспечивает двухканальное кодирование такого типа, к которому применяются способ и прибор настоящего изобретения и который будет описан более подробно, чтобы понять изобретение. Структура кодера фиг. 1 представляет собой модифицированное выполнение стандартной системы кодирования CCITT H.261. Части, соответствующие схеме H.261, расположены в пределах пунктирной линии.
- Фиг. 1 показывает этапы кодирования видеосигнала. Отдельные элементы диаграммы не обязательно представляют дискретные физические приборы, выполняющие особые этапы процесса.
- Входящий (текущий) видеосигнал, являющийся одним из серий, связывается с входным сигналом 1 и несет вычитанный из него видеосигнал, восстановленный из непосредственно предшествующего кодированного видеосигнала базы после компенсации на любые данные вектора движения, которые будут кодироваться с помощью кода для текущего видеосигнала. Этот восстановленный видеосигнал получается из запоминающего устройства 2 кадра. Вычитание осуществляется вычитателем 4.
- Полученный в результате видеосигнал отличия, который должен быть закодирован для передачи, преобразовывается с помощью DCT 6 и затем квантуется переменным квантизатором 8. Квантизатор 8 контролируется для поддержания выходного буфера 10 (который запоминает данные квантования вместе с другой основной информацией, мультиплексированной с данными квантования с помощью мультиплексора 12) с содержимым в пределах заранее установленных верхних и нижних предельных значений.
- Выходной сигнал из буфера 10 представляет собой выходной сигнал канала базы, на основании которого видеосигнал базы может быть восстановлен декодером известным способом и, как далее будет описано, со ссылкой на фиг. 2.
- Видеосигнал базы также восстанавливается в пределах кодера тила
- Н.261 фиг. 1 обратным квантизатором 12 и обратным DCT 14.
- Восстановленный видеосигнал базы из обратного DCT 14 для непосредственно предшествующего входного видеосигнала сравнивается с текущим входящим видеосигналом с помощью формулы оценки 18, которая определяет векторы движения для этого текущего видеосигнала. Восстановленный видеосигнал базы также прибавляется к уже имеющемуся содержимому запоминающего устройства 2, как показано сумматором 16.
- Устройство 18 оценки движения также соединяется с мультиплексором 12, который вводит векторы движения в канал базы для видеосигнала, который кодируется, и в запоминающее устройство 2 таким образом, что содержимое запоминающего устройства 2 соответствует содержимому, полученному с помощью декодера, декодирующего канала базы.
- Отличия между входящим текущим видеосигналом и видеосигналом, восстановленным из непосредственно предшествующего канала базы, определяются путем вычитания последнего из первого, как показано вычитателем 20, который связан с входящим видеосигналом 1 и сумматором 16. Сигнал отличия затем квантуется с помощью высококачественного квантизатора 22 и выводится через мультиплексор 24 так же, как канал расширения на выходе 25.
- В одном варианте выполнения кодирующего устройства канал расширения получается в области преобразования путем вычитания выходного сигнала обратного квантизатора 12 из выходного сигнала DCT 6 и присоединения разности к высококачественному квантизатору и VLC 22.
- Канал базы передается на гарантированный канал постоянной скорости передачи бит, который обеспечивает минимальное качество изображения, полученного принимающим декодером. Канал расширения может быть передан на канал VBR переменной скорости бит для улучшения качества полученного изображения и извлечения преимуществ от свойства VBR.
- Известный декодер для декодирования двухканального закодированного видеосигнала, представленного кодером фиг. 1, показан схематично частью фиг. 2, которая вместе с фиг. 1 иллюстрирует процесс декодирования, при этом индивидуальные элементы не обязательно должны соответствовать дискретным физическим элементам. Известный декодер фиг. 2 включает процессы, связанные внешним образом с блоками, отмеченными пунктирной линией. Эти декодирующие процессы будут описаны в первую очередь. Элементы внутри отмеченного пунктирной линией блока на фиг. 2 включают дополнительные примерные процессы для демонстрации настоящего изобретения и будут показаны дальше.
- Декодер фиг. 2, связанный внешним образом с блоками, отмеченными пунктирной линией, функционирует следующим образом. Полученный канал базы соединяется с VLC и демультиплексором 40 посредством буфера 42. Выходной сигнал демультиплексора 40 преобразовывается в видеосигнал обратным квантизатором 44 и обратным DCT 46. Этот

декодированный сигнал канала базы используется для получения видеосигнала базы обычным способом путем добавления его к непосредственно предшествующему видеосигналу канала базы, хранящемуся в запоминающем устройстве 50 кадра (модифицированного как и следует посредством векторов движения, соединенных с запоминающим устройством 50 кадра от демультиплексера 40), как указано сумматором 48.

Полученный канал расширения преобразуется в видеосигнал расширения с помощью VLD и демультиплексера 52, обратного квантизатора 54 и обратного DCT 56. Выходной сигнал обратного DCT 56 добавляется (т.е. комбинируется), как указано сумматором 52 (представляющим средство комбинирования), к видеосигналу канала базы для получения расширенного видеосигнала на выходе 58 декодера.

Если из канала расширения потеряны ячейки из-за ограничений скорости передачи бит, вызванных каналом VBR, по которому передаются данные расширения, в таком случае эти элементы конечного видеосигнала будут просто видеосигналом канала базы, т.е. нерасширенным.

Декодер настоящего изобретения, показанный полностью на фиг. 2, может способствовать некоторому сокрытию потерянных ячеек, что вызвано применением средства интерполяции, представленного в блоках, отмеченных пунктирной линией на фиг. 2.

Непосредственно предшествующий сигнал, выходящий из декодера фиг. 2, записывается во втором запоминающем устройстве 60 кадра, из которого вычитается, как показано вычитателем 62, видеосигнал канала базы, составленный из текущего канала базы. Этот видеосигнал разности сдвигается вытеснителем 64 в соответствии с текущими векторами движения, соединенными с вытеснителем 64 от демультиплексера 40.

Поступающие ячейки канала расширения контролируются детектором 66 потери ячейки (содержащим средство выявления потери ячейки). Если обнаружена потеря ячейки, данные расширения из сдвинутого, непосредственно предшествующего каналу расширения, записанные в вытеснитель 64, переводятся на сумматор 52 посредством переключателя 68 под контролем детектора 66 потери ячейки, так что эти данные интерполируются для данных расширения, потерянных из текущего канала расширения.

Детектор 66 потери ячейки функционирует путем осуществления контроля за порядковыми номерами поступающих ячеек канала расширения. В настоящем варианте исполнения он является частью VLD и демультиплексера 52, но показан отдельно от него для ясности.

Фигура 3 показывает относительное улучшение соотношения сигнал - шум (S/V) с использованием способа сокрытия ячейки настоящего изобретения. Необработанное изображение, имеющее потерю ячейки, равную 10%, имеет среднее соотношение сигнал - шум, равное 39 децибелов. Почти постоянное соотношение сигнал - шум является результатом кодирования переменной скорости передачи бит второго

канала, когда изображение кодируется при постоянном шаге квантования, равном 8 (динамический диапазон первоначальных коэффициентов от 2048 до 2047) в настоящем варианте декодера. Более качественное квантование дает лучшее изобретение за счет большего количества данных в канал базы.

Поскольку данные второго канала несут остаточный шум квантования канала базы, их помочь при измерении значения соотношения сигнал - шум кажется незначительной. Это потому, что соотношение сигнал - шум канала базы относительно высокое. Его среднее значение равно почти 34 децибелам, что является переменной величиной из-за изменения шага квантования. Следует также отметить, что не все ячейки второго канала имеют большую амплитуду искажения за счет квантования, поэтому их потеря не способствует высокому значению соотношения сигнал - шум. Однако их влияние на субъективное качество изображений более выражено.

Фигуры 4а и 4б показывают часть изображения в последовательности без сокрытия ячеек и с сокрытием соответственно. Более качественное изображение галстука и левой руки на портрете, полученному с помощью способа и прибора настоящего изобретения, видно на фиг. 4б. Совершенствование качества изображения становится более четким, когда этот процесс затрагивает отдельные неясные участки изображения.

Формула изобретения:

1. Способ декодирования одного полученного текущего сигнала из серии двухканальных кодированных видеосигналов, каждый из которых включает канал базы кодированных данных базы и кодированные данные вектора движения и канал расширения кодированных данных расширения, которые являются разностями между некодированным видеосигналом и восстановленным каналом базы, включающий операции декодирования кодированных данных базы для получения видеосигнала базы, декодирования канала кодированных данных расширения для получения данных расширения и суммируют видеосигнал базы и данных расширения для получения декодированного видеосигнала, отличающийся тем, что выявляют, пропущены ли какие-либо данные расширения из канала расширения, и если это имеет место, интерполируют пропущенные данные расширения из данных расширения непосредственно предшествующего полученного кодированного видеосигнала и векторов движения текущего полученного из базового канала.

2. Способ по п. 1, отличающийся тем, что данные расширения непосредственно предшествующего полученного кодированного видеосигнала получают путем определения разностей между непосредственно декодированным видеосигналом и шаблонным видеосигналом базы, восстановленным из канала базы непосредственно предшествующего кодированного видеосигнала.

3. Способ по п. 2, отличающийся тем, что декодированный видеосигнал записывают в запоминающее устройство кадра.

4. Способ по любому из пп. 1 - 3,

RU
21207020
C1

41207020
C1

отличающийся тем, что выявленные потери данных расширения из канала расширения осуществляют путем анализа полученных кодированных данных расширения.

5. Устройство декодирования одного полученного текущего сигнала из серии двухканальных кодированных видеосигналов, содержащее декодер для декодирования полученного текущего одного видеосигнала из серии двухканальных кодированных видеосигналов, каждый из которых включает канал базы кодированных данных базы и кодированные данные вектора движения, и канал расширения кодированных данных расширения, представляющих разности между некодированным видеосигналом и восстановлением непосредственно предшествующего видеосигнала базы, при этом декодер включает:

первый декодирующий блок для декодирования канала базы для получения видеосигнала базы,

второй декодирующий блок для декодирования канала расширения и для получения данных расширения,

сумматор для суммирования видеосигнала базы и данных расширения и для получения декодированного видеосигнала, к первому и второму выходу которого подключены соответственно первое и второе декодирующее средство, отличающееся тем, что содержит блок

выявления потери каких-либо данных расширения из канала расширения.

блок интерполяции для проведения интерполяции данных, состоящих из данных расширения непосредственно предшествующего полученного кодированного видеосигнала, измененного в соответствии с векторами движения полученного текущего канала базы, и блок для замены пропущенных данных расширения данными интерполяции.

6. Устройство по п. 5, отличающееся тем, что блок интерполяции включает первое запоминающее устройство кадра для записи шаблонного видеосигнала базы, представляющего восстановление из канала базы непосредственно предшествующего полученного кодированного видеосигнала, второе запоминающее устройство кадра для записи второго кадра, представляющего непосредственно предшествующий декодированный

20 видеосигнал, дифференцирующий блок для получения данных расширения путем вычитания шаблонного видеосигнала базы из непосредственного предшествующего декодированного видеосигнала и блок сдвига для вытеснения непосредственно предыдущих данных расширения в соответствии с полученными векторами движения.

25

30

35

40

45

50

55

60

RU 2120702 C1

Фиг. 2

Фиг. 3

RU 2120702 C1

R U 2 1 2 0 7 0 2 C 1

5

2

Ques.4

R U 2 1 2 0 7 0 2 C 1

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 :	A1	(11) International Publication Number: WO 92/14339
H04N 7/13		(43) International Publication Date: 20 August 1992 (20.08.92)

(21) International Application Number: PCT/GB92/00182	(81) Designated States: AT (European patent), AU, BB, BE (European patent), BG, BR, CA, CH (European patent), CS, DE (European patent), DK (European patent), ES (European patent), FI, FR (European patent), GB (European patent), GR (European patent), HU, IT (European patent), JP, KP, KR, LK, LU (European patent), MC (European patent), MG, MW, NL (European patent), NO, PL, RO, RU, SD, SE (European patent), US.
(22) International Filing Date: 31 January 1992 (31.01.92)	
(30) Priority data: 9102220.2 1 February 1991 (01.02.91) GB	
(71) Applicant (for all designated States except US): BRITISH TELECOMMUNICATIONS PUBLIC LIMITED COMPANY [GB/GB]; 81 Newgate Street, London EC1A 7AJ (GB).	Published <i>With international search report.</i>
(72) Inventor; and	
(75) Inventor/Applicant (for US only) : GHANBARI, Mohammed [IR/GB]; 14 Crome Close, Colchester, Essex CO3 4QQ (GB).	
(74) Agent: GREENWOOD, John, David; Intellectual Property Department, British Telecom, 151 Gower Street, London WC1E 6BA (GB).	

(54) Title: METHOD AND APPARATUS FOR DECODING VIDEO SIGNALS

(57) Abstract

A decoder for decoding coded video signals comprising a base layer and an enhancement layer includes a cell loss detector (66) for detecting when cells are missing from the enhancement layer. In such an event the enhancement data from the immediately previous video signal displaced by displacer (64) according to the current motion vectors provides interpolation data for the missing cells. The interpolation data is added to the decoded base layer as indicated by adder (52). The enhancement data is obtained by subtracting the immediately previous base video signal stored in frame store (50) from the immediately previous decoded video signal stored in frame store (60) as indicated by subtracter (62).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FI	Finland	ML	Mali
AU	Australia	FR	France	MN	Mongolia
BB	Barbados	GA	Gabon	MR	Mauritania
BE	Belgium	GB	United Kingdom	MW	Malawi
BF	Burkina Faso	GN	Guinea	NL	Netherlands
BG	Bulgaria	GR	Greece	NO	Norway
BJ	Benin	HU	Hungary	PL	Poland
BR	Brazil	IE	Ireland	RO	Romania
CA	Canada	IT	Italy	RU	Russian Federation
CF	Central African Republic	JP	Japan	SD	Sudan
CG	Congo	KP	Democratic People's Republic of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SN	Senegal
CI	Côte d'Ivoire	LI	Liechtenstein	SU	Soviet Union
CM	Cameroon	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
DE	Germany	MC	Monaco	US	United States of America
DK	Denmark	MG	Madagascar		
ES	Spain				

METHOD AND APPARATUS FOR DECODING VIDEO SIGNALS

This invention relates to a method of and apparatus for decoding a currently received one of a series of two-layer coded video signals each of which includes a base layer 5 of coded base data and coded motion vector data, and an enhancement layer of coded enhancement data being the differences between the uncoded video signal and a reconstruction of the immediately previous base video signal from the base layer.

10 In this application the phrase video signals refers to a digital representation of a video source.

This so called two-layer coding of video signals was devised for use on ATM networks which may suffer cell loss causing large disruption in the transported data streams on 15 variable bit rate (VBR) channels.

An example of a two-layer coding scheme is disclosed in US patent number 4,933,762 in which transmission is via a main path and an auxiliary path of a variable rate digital transmission network. When the main path is not 20 capable of dispatching the totality if the picture information, auxiliary information is dispatched via the auxiliary path.

A drawback of conditional replenishment systems where only the significant differences between successive video signals (or frames) are coded and transmitted when more 25 efficient interframe coders are used is that transmission errors are not confined to a single decoded frame but propagate into later frames.

Masahiro Wada in an article titled "Selective Recovery 30 of Video Packet Loss Using Error Concealment", IEEE Journal on Selected Areas in Communications, Vol 7 (1989) Junek no 5, New York US describes an error concealment method for single channel (i.e. one layer) transmission cheme over a VBR channel. When a decoder detects a video packet loss, 35 picture quality is partially recovered by motion-

compensated error concealment in which blocks from the previously received video frame are shifted by the average motion vectors of the blocks which neighbour those used for concealment. This method may prove adequate for one or two missing blocks but may cause a greater disturbance for a larger group of missing blocks. Experiments by the Applicant have shown that as many as four blocks can be fitted into a cell, or packet, and when cell loss occurs on an ATM network, it usually happens in bursts of cells, perhaps between three and ten, resulting in tens of missing blocks.

Preferably, the base layer carries data for a base mode picture together with vital information such as synchronisation data and should, therefore, be transmitted at a constant bit rate on a "guaranteed" constant bit rate channel.

The enhancement layer coding the differences between the video signal being coded and a video frame reconstructed from the base layer alone (which will also be referred to as "enhancement data"), brings the base mode picture up to the final required quality. The enhancement layer will, in general, have a fluctuating bit rate and can be transmitted via a VBR channel. Should any of this information be lost it will not affect tracking of the reconstructed frames but will only result in a momentary reversion to base mode quality. The occasional loss of resolution is compensated by obtaining the benefits of VBR transmission, for example, cost efficient use of the network channels.

Such coded video signals can be decoded by decoding the base layer to obtain a base video signal, decoding the enhancement layer to obtain enhancement data, and combining the base video signal and the enhancement data to obtain the final decoded video signal.

This two-layer coding scheme has been verified by computer simulation on a two-layer adaption of the CCITT

H. 261 standard as reported in the IEEE Journal on Selected Areas in Communications, Vol 7 No. 5 June 1989 in an article by M. Ghanbari titled "Two-layer Coding of Video Signals for VBR Networks" in which the inclusion of motion compensation to code the video signal in the base layer leads to a high degree of bandwidth compression. The motion vectors are transmitted as part of the base layer in a "guaranteed" constant bit rate (CBR) channel as they are essential for reconstructing the base mode picture. As the enhancement layer mostly carries information about picture details or edges, the loss of data from this layer is seen as loss of resolution in the reconstructed picture generated from the decoded video signal. The base layer data will deliver an acceptable picture quality for plain areas but more detailed areas may suffer visible degradation, although computer simulations indicate this particular H. 261 based scheme is resilient to cell loss with rates as high as 1 in 10 not being readily visible.

The present invention aims to provide improved decoding of video signals encoded by such two-layer techniques and, according to a first aspect, a method of decoding such coded video signals according to the preamble of claim 1 is characterised in that it further includes the steps of detecting whether any enhancement data is missing from the enhancement layer; and, in such a case, interpolating the missing enhancement data from the enhancement data of the immediately previously received coded video signal and the motion vectors of the currently received base layer.

The invention utilises the fact that the base layer is transmitted via a "guaranteed" channel thereby ensuring receipt at the decoder of the motion vectors of the currently received, coded video signal. These motion vectors will therefore be available to provide the appropriate displacement to the immediately previous enhancement data to determine which of those enhancement

data should be used to interpolate the enhancement data missing from the enhancement layer of current coded video signal. The method according to the present invention has the advantage that it provides a good quality reconstructed picture even with a large number of blocks missing in the enhancement layer caused by bursts of lost cells.

The interpolation of the enhancement data could be carried out in the transform domain on the previously received enhancement layer cells of information when linear transform coding (eg. DCT coding) is employed. However this will not, in general, be practicable as the enhancement coded parts of the frames vary spatially between frames and the cells do not carry data related to the same location but are packed into the available cell space. The interpolation is, then, preferably carried out in the picture element (pel) domain but it should be understood that the invention in its broadest aspect is not restricted to this preferred method.

The decoder for decoding the base layer may have a frame store for storing the immediately previous decoded base layer (the base video signal or base picture) to be used as a reference in decoding the following, current, video signal. A convenient method of obtaining the immediately previous enhancement data necessary for the present invention is to determine the differences between that stored base video signal and the immediately previous decoded video signal. This can be achieved by storing the immediately previous decoded video signal in a second frame store and subsequently obtaining the differences between these two video signals in known manner.

Alternatively, the immediately previous decoded enhancement data itself could be stored in a frame store so as to be available directly for decoding the current video signal by the method of the present invention.

The method adopted to detect whether any enhancement data is missing from the enhancement layer will depend in

its details on the coding scheme used by the video signal coder. Usually, the enhancement layer will be transmitted in numbered cells so by inspecting the received cell sequence one can determine which, if any, may have been lost. When one or more cells are found to be missing, the data that may have been lost can be determined from the information of the intact cells bounding the missing cell or cells. This data is then interpolated using the motion vectors and the enhancement data from the immediately previous coded video signal.

According to a further aspect of the invention, a decoder for implementing the method according to the first aspect of the invention as recited in the preamble of claim 5 is characterised in including a cell-loss detection means for detecting whether any enhancement data is missing from the enhancement layer; interpolating means for providing interpolation data comprising the enhancement data of the immediately previous received, coded video signal modified in accordance with the motion vectors of the currently received base layer; and means for replacing any missing enhancement data with interpolated data.

The interpolating means may include a first frame store for storing a first base video signal which is a reconstruction from the base layer of the immediately previous coded video signal, a second frame store for storing the immediately previous decoded video signal, differencing means for obtaining the enhancement data by subtracting the first frame from the second frame, and displacement means for displacing the enhancement data in accordance with the received motion vectors.

Alternatively, the last decoded enhancement data may be stored in a frame store for later use by the interpolating means.

When there is no cell loss the decoder functions as previously known two-layer decoders. In the event of possible lost cells, the interpolated data is used instead

of the information in the missing cells to reconstruct the video signal thereby increasing the resolution of the picture generated by it in comparison to the prior art two-layer decoders.

5 A preferred embodiment of the invention will now be described, by way of example only, and its principle of operation explained in more detail with reference to the accompanying drawings of which:

10 Figure 1 is a schematic block diagram of a prior art, two-layer video decoder the output of which may be decoded by the method and apparatus of the present invention;

Figure 2 is a schematic diagram of a decoder according to the present invention;

15 Figure 3 is a graph of the S/N ratio improvement of a video sequence obtained by the decoder of Figure 2 compared to the same decoder operated without the use of interpolated data to replace missing enhancement data; and

Figures 4a and 4b are copies of photographs showing the quality of the decoded picture of the same standard
20 video sequence used to obtain the results of Figure 3 suffering 10% cell loss from the enhancement layer without and with, respectively, use of interpolated data.

Referring first to Figure 1, a schematic prior art video signal coder is shown which provides two-layer coding of the type to which the method and apparatus of present invention is applicable and which will now be described generally to aid understanding of the invention. The coder structure of Figure 1 is a modification to a coder implementing the CCITT H.261 coding scheme. Those parts corresponding to the H.261 scheme i.e. within the broken lines.

Figure 1 shows the steps of coding a video signal. Separate elements of the diagram do not necessarily represent discrete physical devices carrying out the
35 particular process step.

An incoming (current) video signal, being one of a series, is coupled to an input 1 and has subtracted from it a video signal reconstituted from the immediately previous coded base video signal after compensation for any motion vector data which will be coded along with the code for the current video signal. This reconstituted video signal is obtained from a frame store 2. The subtraction is represented by the subtracter 4.

The resulting difference video signal, which is that to be coded for transmission, is transformed by a DCT 6 and subsequently quantised by a variable quantizer 8. The quantizer 8 is controlled to maintain an output buffer 10 (which stores the quantized data along with other essential information multiplexed with the quantized data by multiplexer and VLC 12) with contents within preset upper and lower limits.

The output from the buffer 10 constitutes the base layer output from which a base video signal can be reconstituted at a decoder in known manner and as will be described with reference to Figure 2.

The base video signal is also reconstituted within the H.261 type coder of Figure 1 by an inverse quantizer 12 and an inverse DCT 14.

The reconstituted base video signal from the inverse DCT 14 for the immediately previous input video signal is compared to the current incoming video signal by a motion estimator 18 which determines the motion vectors for this current video signal. The reconstituted base video signal and is also added to the existing contents of frame store 2 as denoted by adder 16.

The motion estimator 18 is also coupled to the multiplexer 12 which incorporates the motion vectors in the base layer for the video signal being coded and to frame store 2 so that the frame store's 2 contents correspond to that obtained by a decoder decoding the base layer.

The differences between the current incoming video signal and the video signal as would be reconstructed from the immediately previous base layer is derived by subtracting the latter from the former as is denoted by 5 subtracter 20 which is shown coupled to the video signal input 1 and the adder 16. The difference signal is then quantized by a fine quantizer 22 and output via multiplexer 24 as an enhancement layer at output 25.

In one implementation of encoder the enhancement layer 10 is obtained in the transform domain by subtracting the output of the inverse quantizer 12 from the output of DCT 6 and coupling the difference to the fine quantizer and VLC 22.

The base layer is transmitted on a constant bit rate 15 guaranteed channel which ensures a minimum picture quality is obtained by a receiving decoder. The enhancement layer may be transmitted on a variable bit rate VBR channel to improve the received picture quality when received and take advantage of VBR facilities.

20 A known decoder for decoding the two-layer coded video signal provided by the coder of Figure 1 is shown schematically by part of Figure 2 which as with Figure 1, shows the process of decoding, individual elements not necessary corresponding to discrete physical items. The 25 known decoder of Figure 2 comprises those processes outwith the dotted boxes. These decoding processes will be described first. Those elements inside the dotted box of Figure 2 comprise additional, exemplary, processes for carrying out the present invention and will be described 30 later.

The decoder of Figure 2 outwith the dotted boxes operates as follows. A received base layer is coupled to a VLD and demultiplexer 40 via a buffer 42. The output of the demultiplexer 40 is converted to a video signal by 35 inverse quantizer 44 and inverse DCT 46. This decoded base layer signal is used to obtain a base video signal in known

manner by adding it to the immediately previous base video signal stored in a frame store 50 (modified as necessary by the motion vectors coupled to the frame store 50 from the demultiplexer 40) as indicated by adder 48.

5 A received enhancement layer is converted to an enhancement video signal by VLD and demultiplexer 52, inverse quantizer 54, and inverse DCT 56. The output of the inverse DCT 56 is added (i.e. combined), as indicated by adder 52 (constituting combining means), to the base video
10 signal to provide an enhanced video signal at the output 58 of the decoder.

If cells of enhancement data are lost from the enhancement layer because of bit rate limitations imposed by the VBR channel on which the enhancement data is
15 transmitted, then those portions of the final video signal will simply be the base, i.e. unenhanced, video signal.

The decoder of the present invention shown in the entire Figure 2 can provide some concealment of the lost cells as follows by the use of an interpolating means shown
20 in the dotted boxes of Figure 2.

The immediately previous video signal output by the decoder of Figure 2 is stored in a second frame store 60 from which is subtracted, as indicated by a subtracter 62, the base video signal reconstituted from the current
25 base layer. This difference video signal is displaced by a displacer 64 according to the current motion vectors coupled to the displacer 64 from the demultiplexer 40.

The incoming enhancement layer cells are monitored by a cell loss detector 66 (constituting cell loss detection
30 means). If cell loss is detected enhancement data from the displaced, immediately previous enhancement layer stored in the displacer 64 is switched to the adder 52 by switch 68 under the control of the cell loss detector 66 so that this data interpolates for the enhancement data lost from the
35 current enhancement layer.

The cell loss detector 66 operates by inspecting the cell sequence numbers of the incoming enhancement layer cells. In this embodiment it is part of the VLD and demultiplexer 52 but is shown separate from it for clarity.

5 Figure 3 shows the relative improvement in signal-to-noise ratio (S/N) using the cell concealment method of the present invention. The non-processed picture with a 10 per cent cell loss has an average S/N of 39 dB. The almost constant S/N is due to the variable bit rate coding of the
10 second layer, which codes pictures at a constant quantization step size of 8 (dynamic range of original coefficients -2048 to 2047) in this embodiment of decoder. Finer quantization gives a better picture at the expense of more data in the base layer.

15 Since the second layer data carry residual quantization noise of the base layer, their contribution to the measured value of S/N seems to be marginal. This is because the base layer S/N itself is relatively high. It has an average of almost 34 dB, which is variable due to
20 the variation in the quantization step sizes. It should also be noted that not all the second layer cells carry large amplitude quantization distortions so their loss does not contribute a large value to S/N. However, their effect on the subjective quality of the pictures is
25 much more pronounced.

Figures 4a and 4b shows a part of picture in a sequence without and with cell concealment, respectively. Improvements to the tie and the left hand of the portrait obtained by the method and apparatus of the prevent
30 invention can be seen in Figure 4b. The enhancement on the picture quality becomes more distinct when the processing is applied to an isolated blurred area of the picture.

CLAIMS

1. A method of decoding a currently received one of a series of two-layer coded video signals each of which includes a base layer of coded base data and coded motion vector data, and an enhancement layer of coded enhancement data being the differences between the uncoded video signal and a reconstruction of the base layer, the method including the steps of:
 - a) decoding the base layer to obtain a base video signal;
 - b) decoding the enhancement layer to obtain enhancement data; and
 - c) combining the base video signal and the enhancement data to obtain a decoded video signal;and characterised in that the method further includes the steps of:
 - d) detecting whether any enhancement data is missing from the enhancement layer; and, in such a case
 - e) interpolating the missing enhancement data from the enhancement data of the immediately previously received coded video signal and the motion vectors of the currently received base layer.
2. A method as claimed in claim 1 in which the enhancement data of the immediately previous received, coded video signal are obtained by determining the differences between the immediately previous decoded video signal and a reference base video signal reconstructed from the base layer of the immediately previous received, coded video signal.
3. A method as claimed in claim 2 in which the decoded video signal is stored in a frame store (60).
4. A method as claimed in any preceding claim in which the detection of whether any enhancement data are missing from the enhancement layer is carried out by inspecting the received enhancement layer.

5. A decoder for decoding a currently received one of series of two-layer coded video signals each of which includes a base layer of coded base data and coded motion vector data, and an enhancement layer of coded enhancement data being the differences between the uncoded video signal and a reconstruction of the immediately previous base video signal, the decoder including:
- a) a first decoding means (40, 44, 46, 48, 50) for decoding the base layer to obtain a base video signal;
 - 10 b) a second decoding means (52, 54, 56) for decoding the enhancement layer to obtain enhancement data;
 - c) combining means (52) for combining the base video signal and the enhancement data to obtain a decoded video signal; and characterised in that it includes
 - 15 d) a cell-loss detection means (66) for detecting whether any enhancement data is missing from the enhancement layer;
 - e) interpolating means (50, 60, 62, 64) for providing interpolation data comprising the enhancement data of the immediately previous received, coded video signal modified in accordance with the motion vectors of the currently received base layer; and
 - f) means (52, 68) for replacing any missing enhancement data with interpolated data.
- 25 6. A decoder as claimed in claim 5 in which the interpolating means includes a first frame store (50) for storing a reference base video signal which is a reconstruction from the base layer of the immediately previous received coded video signal, a second frame store (60) for storing a second frame which is the immediately previous decoded video signal, differencing means (62) for obtaining the enhancement data by subtracting the reference base video signal from the immediately previous decoded video signal, and displacement means (64) for displacing the immediately previous enhancement data in accordance with the received motion vectors.

1/3

Fig. 1. PRIOR ART CODER

2/3

Fig. 2.

3/3

Fig.3.

Fig.4(a)

Fig.4(b)

INTERNATIONAL SEARCH REPORT

International Application No

PCT/GB 92/00182

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all)⁶

According to International Patent Classification (IPC) or to both National Classification and IPC

Int.C1.5 H 04 N 7/13

II. FIELDS SEARCHED

Minimum Documentation Searched⁷

Classification System	Classification Symbols
Int.C1.5	H 04 N

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched⁸III. DOCUMENTS CONSIDERED TO BE RELEVANT⁹

Category ¹⁰	Citation of Document, ¹¹ with indication, where appropriate, of the relevant passages ¹²	Relevant to Claim No. ¹³
Y	US,A,4933762 (GUICHARD et al.) 12 June 1990, see complete document (cited in the application)	1,4,5
A	---	2,3,6
Y	IEEE Journal on Selected Areas in Communications, vol. 7, no. 5, June 1989, IEEE, (New York, US), M. WADA: "Selective recovery of video packet loss using error concealment", pages 807-814, see abstract; section III A; page 813, right-hand column, lines 5-12 (cited in the application)	1,4,5
A	---	2,3,6
A	EP,A,0397402 (MATSUSHITA ELECTRIC IND. CO.) 14 November 1990, see abstract; figures 3,4; column 7, line 17 - column 8, line 10 ---	1-6
		-/-

¹⁰ Special categories of cited documents :

- ^{*A*} document defining the general state of the art which is not considered to be of particular relevance
- ^{*E*} earlier document but published on or after the international filing date
- ^{*L*} document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- ^{*O*} document referring to an oral disclosure, use, exhibition or other means
- ^{*P*} document published prior to the international filing date but later than the priority date claimed

^{*T*} later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention^{*X*} document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step^{*Y*} document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.^{*&*} document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search

13-04-1992

Date of Mailing of this International Search Report

12.05.92

International Searching Authority

EUROPEAN PATENT OFFICE

Signature of Authorized Officer

III. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)

Category °	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No.
A	US,A,4958226 (HASKELL et al.) 18 September 1990, see abstract; figures 1,2 ---	1-6
A	US,A,4805017 (KANEKO et al.) 14 February 1989, see abstract; figures 1,8 ---	1-6
A	US,A,4723161 (KOGA) 2 February 1988, see abstract; figures 1,3,5; column 6, lines 27-33 ---	1-6
A	IEEE Journal on Selected Areas in Communications, vol. 7, no. 5, June 1989, IEEE, (New York, US), M. GHANBARI: "Two-layer coding of video signals for VBR networks", pages 771-781, see abstract; section V (cited in the application) ---	1-6
A	Proceedings of the International Switching Symposium, Stockholm, 28 May - 1 June 1990, vol. 6, B. VOETEN et al.: "Integrating video codecs in ATM networks", pages 25-28, see abstract; sections 2.3,3.4 -----	1-6

**ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO.**

GB 9200182
SA 55950

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 28/04/92. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US-A- 4933762	12-06-90	FR-A-	2625060	23-06-89
		EP-A-	0321318	21-06-89
		JP-A-	1264324	20-10-89
EP-A- 0397402	14-11-90	JP-A-	2296479	07-12-90
		JP-A-	3029477	07-02-91
		JP-A-	3034691	14-02-91
		AU-B-	612543	11-07-91
		AU-A-	5451690	15-11-90
US-A- 4958226	18-09-90	CA-A-	2024135	28-03-91
		EP-A-	0425089	02-05-91
		JP-A-	3133297	06-06-91
US-A- 4805017	14-02-89	JP-A-	62203496	08-09-87
		CA-A-	1258533	15-08-89
		EP-A,B	0235803	09-09-87
US-A- 4723161	02-02-88	JP-A-	61214883	24-09-86
		JP-A-	61214885	24-09-86
		CA-A-	1251276	14-03-89
		GB-A,B	2173067	01-10-86