

MULTIPLE CHOICE QUESTIONS

Sem: I	Branch: CSE/AIML
Course code: MAT103	Course Title: CALCULUS AND DIFFERENTIAL EQUATIONS

MAT103

UNIT-I- Differential Calculus				
1.	If φ be the angle between the tangent and radius vector at any point on the curve, $r = f(\theta)$ then $\tan \varphi$ equals to:			
	a) $\frac{dr}{ds}$	b) $r \frac{d\theta}{ds}$		
	c) $r \frac{d\theta}{dr}$	d) $\frac{d\theta}{dr}$		
2.	Curvature of a straight line is:			
	a) ∞	b) 0		
	c) 1	d) none of these		
3.	3. The angle between the radius vector $r = a \sin \theta$ and tangent to the cur			
	a) $\frac{\theta}{2}$	b) θ		
	c) 0	d) $\frac{\pi}{2}$		
4.	The radius of curvature of the curve $y = x^2$ when $x = 0$ is:			
	a) $\frac{1}{\sqrt{2}}$	b) $\sqrt{2}$		
	c) 2	$\frac{1}{2}$		
5.	The polar form of the cartesian equation $x^2 + y^2 = 9$ is:			
	a) $r^2 = 81$	b) $r^2 = 18$		
	c) r = 9	d) r = 3		
6.	The radius of curvature of the curve $y = e^x$ at the point $(0,1)$ is:			
	a) $2\sqrt{2}$	b) $\sqrt{2}$		
	c) 2	$d)\frac{\sqrt{2}}{2}$		
7.	For the polar curve $r = f(\theta)$, the relation between θ and coordinates (x, y) is:			

	a) $tan\theta = \frac{x}{y}$	b) $tan\theta = \frac{y}{x}$	
	c) $x = rcos\theta$	d) $x = r sin\theta$	
8.	The radius of curvature for the curve $y = f(x)$ is $\rho =$		
	a) $\frac{(1+y_2^2)^{3/2}}{y_1}$	b) $\frac{(1+y_1^2)^{3/2}}{y_2}$	
	c) $\frac{(1+y_1^2)^2/3}{y_2}$	d) $\frac{(1-y_1^2)^{3/2}}{y_2}$	
9.	The Maclaurin's series expansion of the function $f(x) = e^x$ is:		
	a) $1-x-\frac{x^2}{2}-\frac{x^3}{6}+\cdots$	b) $1-x+\frac{x^2}{2}-\frac{x^3}{6}+\cdots$	
	a) $1 - x - \frac{x^2}{2} - \frac{x^3}{6} + \cdots$ c) $1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \cdots$	b) $1 - x + \frac{x^2}{2} - \frac{x^3}{6} + \cdots$ d) $-1 + x - \frac{x^2}{2} + \frac{x^3}{6} - \cdots$	
10.	The radius of curvature at any point of the circle $x^2 + y^2 = 16$ is:		
	a) <mark>4</mark>	b) 12	
	c) 16	d) 6	
11.	If φ be the angle between the tangent and radius vector at any point on the curve, $r = f(\theta)$		
	a) $r \frac{dr}{d\theta}$	b) $\frac{1}{r} \frac{dr}{d\theta}$	
	c) $r \frac{d\theta}{dr}$	d) $\frac{1}{r} \frac{d\theta}{dr}$	
12.			
	a) $f(a) + (x - a) \frac{f'(a)}{1!} + (x - a)^2 \frac{f''(a)}{2!} + \cdots$	b) $f(a) - (x - a) \frac{f'(a)}{1!} - (x - a)^2 \frac{f''(a)}{2!} - \cdots$	
		$a)^2 \frac{f''(a)}{2!} - \cdots$	
	c) $f(a) + (x+a)\frac{f'(a)}{1!} + (x+a)^2\frac{f''(a)}{2!} + \cdots$	d) $f(x) + (x + a) \frac{f'(x)}{1!} + (x + a) \frac{f'(x)}{1!}$	
		$a)^2 \frac{f''(x)}{2!} + \cdots$	
13.	If the curvature of a function $f(x)$ is zero, then wh	ich of the following functions could be	
	f(x)?		
	a) $ax + b$	b) $ax^2 + bx + c$	
	c) $\sin x$	d) $\cos x$	
14.	4. The angle between the radius vector and tangent for the vector $r = ae^{\theta cot\alpha}$ is:		
	a) $\tan \alpha$	b) cot α	
	<u>c)</u> α	d) θ	
15.	The angle between the radius vector and tangent for the vector $r = a\theta$ is		

	a) $\tan^{-1}\frac{1}{\theta}$	b) $tan^{-1}\theta$	
	c) <i>r</i>	d) $\frac{a}{\theta}$	
16.	16. The radius of curvature to the curve $x = at^2$, $y = 2at$ when $t = 0$ is		
	a) 2a	b) <i>a</i>	
	c) 2	$d)\frac{a}{2}$	
17.	17. The radius of curvature for the curve $x = f(t)$, $y = g(t)$ is ρ		
	a) $\frac{({x'}^2 + {y'}^2)^{3/2}}{x'y'' + y'x''}$	b) $\frac{(x'^2 - y'^2)^{3/2}}{x'y'' - y'x''}$	
	c) $\frac{(x'^2+y'^2)^{2/3}}{x'y''+y'x''}$	$d) \frac{({x'}^2 + {y'}^2)^{3/2}}{x'y'' - y'x''}$	
18.	The curvature of the function $f(x) = x^3 - x + 1$ at $x = 1$ is		
	a) $\frac{6}{5}$	b) ⁶ / ₅	
	c) $\frac{6}{5^{3/2}}$	$d)\frac{3}{5^{3/2}}$	
19.	The radius of curvature for the curve $r = f(\theta)$ is $\rho =$		
	a) $\frac{(r^2 + r_1^2)^{3/2}}{r^2 + 2r_1^2 - rr_2}$	$b)\frac{(r^2+r_1^2)^{3/2}}{r^2-2r_1^2-rr_2}$	
	c) $\frac{(r^2 - r_1^2)^{3/2}}{r^2 + 2r_1^2 - rr_2}$	$d)\frac{(r^2+r_1^2)^{2/3}}{r^2+2r_1^2-rr_2}$	
20.	If the curvature of a curve increases then, the radius of curvature		
	a) increases	b) decreases	
	c) constant	d) none of these	