Notas - preferências sobre menus

March 25, 2015

Contents

1	Introdução	1
2	Axiomatização da prefrência sobre menus	3
3	Representação funcional de ≿ 3.1 Representação de preferências incompletas sobre menus 3.2 Obtendo a forma funcional de ≿	
4	Observações finais	12

1 Introdução

Como modelar a decisão de um agente cujas alternativas têm resultados que dependem de uma realização futura de estados da natureza e, ao ter que escolher um conjunto dessas alternativas, esse agente o faz sem possuir informação completa a respeito desses estados? Para abordar o problema, utilizaremos o framework de preferência sobre menus e alguns dos principais resultados de representação funcional das preferências encontrados na literatura até o momento.

Para compreender a motivação do nosso trabalho, considere o caso de um gerente de investimentos de uma instituição financeira que deve decidir como alocar os recursos de seus clientes. Cada portfólio escolhido, trará retornos condicionados a contingências (políticas, econômicas, institucionais etc) que caracterizarão a economia em um futuro próximo. Contudo, apesar de conseguir conjecturar acerca dos estados da natureza que se realizarão, o gerente não possui uma descrição completa de cada um deles. Há aspectos sutis de cada uma dessas contingências, suficientemente importantes para influenciar o retorno dos portfólios, mas que o agente os desconhece e tem consciência disso. Isto significa que, para cada estado da natureza, não há uma única crença a respeito dos possíveis retornos associados ao estado.

Uma primeira abordagem à decisão sobre menus com incerteza foi proposta em Kreps (1979) e Kreps (1992). A sugestão do autor foi axiomatizar

a preferência sobre menus de alternativas levando em conta a preferência por flexibilidade, uma hipótese natural a respeito do comportamento de um agente que não tem certeza a respeito dos seus gostos futuros. Na presença de incerteza, os menus, vistos como conjuntos de oportunidades, são tão preferíveis quanto maiores as possibilidades oferecidas por eles. A representação de Kreps (1979), todavia, não capta integralmente nossa motivação, pois, nela, o tomador de decisão age como se houvesse um espaço subjetivo de estados da natureza completamente conhecidos pelo agente, no sentido de não haver ambiguidade dos payoffs associados a eles¹.

De fato, a imprecisão que caracteriza as contingências antecipadas pelo tomador de decisão está associada à ambiguidade presente em modelos de preferência com múltiplas priors, como é o caso de Gilboa and Schmeidler (1989). Veremos que a representação da preferência sobre menus com contingências imprecisas tem um formato semelhante àquele encontrado na modelagem de decisão sobre atos com ambiguidade.

Modelaremos nosso problema baseando-nos no trabalho de Epstein et al. (2007) - EMS, daqui por diante - que, por sua vez, generalizaram o arcabouço DLR ², no qual os agentes possuem uma preferência sobre menus de loterias derivadas de um espaço de alternativas finito. EMS estendem esse modelo ao incorporar a imprecisão das contingências que se realizarão após a escolha dos menus.

Observe que a utilidade dos menus encontrada em DLR, dada por,

$$W^{DLR}(x) = \int \max_{\beta \in x} u(\beta) d\mu(u)$$

toma uma única crença μ a respeito do conjunto de estados da natureza como suficiente para a tomada de decisão do agente. Isso não é por acaso, pois eles modelam um tomador de decisão que possui uma descrição completa a respeito dos estados, de modo que o retorno de cada loteria para um certo estado é único. EMS incorporam a imprecisão das contingências ao modelar um agente com múltiplas crenças a respeito do retorno das loterias em cada estado e, como em Gilboa and Schmeidler (1989), o agente toma sua decisão com "cautela", visto que a representação de sua preferências sobre menus é do tipo min-max:

$$W^{EMS}(x) = \min_{\pi \in \Pi} \int \max_{\beta \in x} u(\beta) d\pi(u)$$

onde Π é o conjunto de medidas de probabilidade sobre o espaço subjetivo de estados.

¹Uma abordagem do tipo Savage também seria inadequada pela mesma razão. Ademais, interessa ao pesquisador obter um espaço de estados da natureza subjetivo, observável pelo próprio comportamento do agente *ex post*, quando realizadas as contingências.

 $^{^2}$ Dekel et al. (2001)

Um característica comum aos modelos apresentados acima é a de que a preferência sobre menus é completa e, portanto, mesmo no caso de não possuir uma descrição exaustiva das contingências futuras, o agente é capaz de comparar quaisquer dois menus que lhe são oferecidos. Nós construiremos uma demonstração alternativa ao modelo EMS que leva em conta a representação obtida em Kochov (2007) para preferências incompletas sobre menus. À semelhança da decisão sobre atos com múltiplas priors modelada por Gilboa et al. (2010), o trabalho de Kochov (2007) nos fornece uma regra de decisão unânime para os menus. Na sua representação, um menu x é preferível a outro menu y se, e somente se, a utilidade em x é maior ou igual à de y para todas as crenças formadas a respeito do espaço subjetivo de estados. Adicionalmente, faremos a hipótese de que, ao observar um menu de loterias, nosso agente necessita de apenas um número finito delas para avaliar o menu. O axioma de Finitiness nos permitirá concluir que o espaço subjetivo de estados é finito, como veremos adiante.

O restante do trabalho dispõe-se da seguinte forma: na seção 2 descrevemos as primitivas do nosso modelo e, na 3, derivamos o principal resultado a partir da representação de Kochov (2007). Na seção 4, sugerimos caminhos pelos quais nosso resultado pode ser estendido.

2 Axiomatização da prefrência sobre menus

Modelamos um agente que toma sua decisão sobre menus em dois estágios... Seja B um conjunto finito de alternativas e $\Delta(B)$ o conjunto das medidas de probabilidade sobre B. \mathbb{X} é a coleção de subconjuntos fechados de $\Delta(B)$, os menus, e \succeq denotará a preferência sobre \mathbb{X} . Os axiomas a seguir caracterizam essa relação.

 $Order \gtrsim$ é completa e transitiva

Continuity Para todo $x, \{y \in \mathbb{X} : y \succsim x\}$ e $\{y \in \mathbb{X} : x \succsim y\}$ são fechados

Monotonicity Para quaisquer $x, x' \in \mathbb{X}$ com $x \supseteq x'$, temos $x \succsim x'$.

Indifference to Randomization $x \sim co(x)$, o fecho convexo de x.

Nondegeneracy Existem menus $x, x' \in \mathbb{X}$ tais que $x \succ x'$.

Preference Convexity $x \succsim x' \Rightarrow \lambda x + (1 - \lambda)x' \succsim x'$.

Finiteness Para todo x, existe um menu finito x^f tal que, para todo $\lambda \in (0,1)$ e qualquer menu x', $\lambda x + (1-\lambda)x' \sim \lambda x^f + (1-\lambda)x'$.

Adicionalmente, suponha que o tomador de decisão tenha certeza ex ante de que há uma alternativa b_* que é o pior resultado ex post - o mesmo vale para a loteria degenerada δ_{b_*} . Assumiremos também que o agente saiba ex

ante que o menu $\Delta(B)$ lhe trará o melhor resultado ex post ainda que não conheça qual loteria maximizará sua utilidade após a realização do estado.

Worst Para a pior alternativa b_* , temos $\lambda(x \cup \{b_*\}) + (1 - \lambda)y \sim \lambda x + (1 - \lambda)y$ para quaisquer menus $x, y \in \mathbb{X}$ e $\lambda \in (0, 1)$.

Worst formaliza a idéia de que o agente não experimenta ganhos de flexibilidade ao incluir em qualquer menu x a loteria degenerada da pior alternativa b_* . Um raciocínio rápido nos garante que

$$\Delta(B) \sim B \succsim x \succsim \{b_*\} \in B \succ \{b_*\}$$

para todo x. Por Indifference to Randomization e Monotonicity, $\Delta(B) \sim B \succeq x$. Além disso, dado que o agente está certo de que b_* é o pior resultado, $x \succeq \{b_*\}$ vale para todo x. Por fim, Monotonicity garante que $B \succeq \{b_*\}$. Caso $B \sim \{b_*\}$, contrariamos Nondegeneracy.

Tendo conhecido o comportamento do agente face aos menus $\Delta(B)$ e $\{b_*\}$, podemos definir o menu certo x_p como $x_p := p\Delta(B) + (1-p)\{b_*\}$, i.e. a composição do melhor e pior menu com peso $p \in [0,1]$. Como misturá-los a um menu qualquer não traz ganhos de hedging, assumiremos o seguinte axioma.

Certainty Independence Para $\lambda \in (0,1)$ e $x_p = p\Delta(B) + (1-p)b_*$, temos

$$x \succsim x' \Leftrightarrow \lambda x + (1 - \lambda)x_p \succsim \lambda x' + (1 - \lambda)x_p$$

O principal resultado do nosso trabalho é a construção da representação funcional da preferência sobre menus satisfazendo os axiomas acima, baseada em Epstein et al. (2007), conforme o teorema abaixo.

Teorema 1 A preferência \geq sobre o espaço de menus \mathbb{X} satisfaz Order, Continuity, Monotonicity, Indifference to Randomization, Nondegeneracy, Preference Convexity, Finiteness, Worst e Certainty Independence se, e somente se, existe um conjunto de utilidades $N = \{u \in \mathbb{R}_+^B : u(b_*) = 0 \text{ e } \max_B u(b) = 1\}$ e um conjunto fechado e convexo Π de medidas de probabilidade sobre N tais que

$$x \succsim y \; \Leftrightarrow \; \min_{\pi \in \Pi} \sum_{u \in N} \pi(u) \max_{\beta \in x} u(\beta) \geq \min_{\pi \in \Pi} \sum_{u \in N} \pi(u) \max_{\beta \in y} u(\beta)$$

Um resultado importante para a demonstração do Teorema 1 é o de que todo menu x possui um menu certo $x_p \succsim$ -indiferente a ele, o que traduz a idéia de que existe um peso p na mistura entre o pior e melhor resultados suficiente para que o tomador de decisão conjecture receber o mesmo payoff de um menu com menor nível de certeza.

Afirmação 1 Para todo menu x, existe $p \in [0,1]$ tal que $x \sim x_p = p\Delta(B) + (1-p)b_*$.

Dem.: Para um menu qualquer x, defina $S:=\{p\in[0,1]:x_p\succsim x\}$, $I:=\{p\in[0,1]:x\succsim x_p\}$ e note que $1\in S$ e $0\in I$. Como \succsim é contínua e completa, podemos afirmar que S e I são fechados e $S\cup I=[0,1]$. Dada a conexidade de [0,1], sabemos que $S\cap I\neq\emptyset$. Portanto, para $p\in S\cap I$, temos que $x\sim x_p$.

Na próxima seção, construiremos a representação funcional de ≿ sobre o espaço de menus X a partir da maior restrição dessa relação invariante com respeito a misturas entre menus, isto é, a maior restrição que satisfaz o axioma da Independência, tradicional na literatura de decisão sob incerteza.

3 Representação funcional de ≿

Suponha que \succeq satisfaz Order, Nondegeneracy, Indifference to randomization, Preference Convexity, Certainty Independence, Continuity, Monotonicity, Worst e Finiteness. Considere agora seu maior subconjunto que satisfaça também o axioma tradicional de independência. Para isso, defina a relação \succeq^* sobre $\mathbb X$ por

$$x \succeq^* x' \Leftrightarrow \lambda x + (1-\lambda)y \succeq \lambda x' + (1-\lambda)y$$

para todo $y \in \mathbb{X}$ e $\lambda \in (0,1)$.

Naturalmente, algumas das propriedades de \succeq serão herdadas por sua restrição \succeq^* . Finitiness e Worst, em especial, assumirão formatos mais intuitivos, como veremos em seguida. Contudo, observe que, como a relação primitiva satisfaz independência apenas com relação aos menus certos x_p , a relação induzida \succeq^* não é completa sobre o espaço de menus. Exploramos essas constatações na sequência de afirmações abaixo.

Afirmação 2 \succsim^* é uma pré-ordem.

Dem.: Pela reflexividade de \succsim , é claro que $x \succsim^* x$ para todo $x \in \mathbb{X}$. Suponha x,y e z tais que $x \succsim^* y$ e $y \succsim^* z$. Então, para um menu x' qualquer e $\lambda \in (0,1)$, temos $\lambda x + (1-\lambda)x' \succsim \lambda y + (1-\lambda)x' \succsim \lambda z + (1-\lambda)x'$. Para concluir, basta usar a transitividade de \succsim .

Afirmação 3 ≿* satisfaz Monotonicity.

Dem.: Suponha $x \in x'$ tais que $x \supseteq x'$, mas não vale que $x \succsim^* x'$. Temos dois casos, (i) existe um menu y tal que $\lambda x + (1 - \lambda)y \succsim \lambda x' + (1 - \lambda)y$ não \acute{e} verdade para todo $\lambda \in (0,1)$ ou (ii) para algum $\lambda \in (0,1)$, o mesmo ocorre para qualquer menu y. Em ambos os casos, Monotonicity em \succsim implica que $\lambda x + (1 - \lambda)y \not\supseteq \lambda x' + (1 - \lambda)y$, uma contradição.

Afirmação 4 Sejam $\{x^m\}_{m\in\mathbb{N}}$ e $\{y^m\}_{m\in\mathbb{N}}$ sequências em \mathbb{X} convergentes para x e y, respectivamente, tais que $x^m \succeq^* y^m \ \forall m \in \mathbb{N}$. Então $x \succeq^* y$.

Dem.: Pela definição de \succsim^* , temos que para todo $\lambda \in (0,1)$ e qualquer menu z, temos

$$\lambda x^m + (1 - \lambda)z \succeq \lambda y^m + (1 - \lambda)z$$

 $Como \succeq satisfaz \ Order \ e \ Continuity, \ concluímos \ que \ \lambda x + (1-\lambda)z \succsim \lambda y + (1-\lambda)z \ e, \ portanto, \ x \succsim^* y.$

Afirmação 5 ≿* satisfaz Nondegeneracy

Dem.: Suponha que $\Delta(B) \sim^* b_*$. Isto implica, pela definição de \succsim^* , que $\lambda\Delta(B) + (1-\lambda)y \sim \lambda b_* + (1-\lambda)y$ para todo $y \in \mathbb{X}$ e $\lambda \in (0,1)$. Seja, então, $y = x_p$ e, por Certainty Independence, temos que $Delta(B) \sim b_*$, o que viola Nondegeneracy em \succsim .

Afirmação 6 \succsim^* satisfaz Indifference to randomization.

Dem.: Suponha que, para um menu x, não seja verdade que $x \sim^* co(x)$. Como \succeq^* satisfaz Monotonicity, isto implica que $co(x) \succ^* x$ e, por conseguinte, que $\lambda co(x) + (1-\lambda)y \succ \lambda x + (1-\lambda)y$ para todo $y \in \mathbb{X}$ e $\lambda \in (0,1)$. Fazendo $y = x_p$, Certainty Independence nos permite afirmar que $co(x) \succ x$, o que viola Indifference to Randomization em \succeq .

Afirmação 7 (Finitiness*) Para todo menu x, existe um subconjunto finito x^f tal que $x \sim^* x'$.

Dem.: Basta utilizar Finitiness de \succsim e a definição de \succsim^* .

Afirmação 8 (Worst*) Para a pior alternativa b_* , temos $x \cup \{b_*\} \sim^* x$.

Dem.: Implicação de Worst em \succeq e da definição de \succeq^* .

Repare que a Afirmação 3 nos ensina que, se dois menus são ⊆-comparáveis, então também serão ≿*-comparáveis. Além disso, a Afirmação 4 nos mostra que a continuidade de ≿ é preservada em ≿*. Novamente, um raciocínio análogo ao feito para a relação ≿ nos mostra que

$$B \sim^* \Delta(B) \succsim^* x \succsim^* b_* \in B \succ^* b_*$$

Vamos, por fim, demonstrar que ≿* satisfaz o axioma da Independência.

Afirmação 9 (Independence) $x \succsim^* x'$ se, e somente se, $\lambda x + (1-\lambda)y \succsim^* \lambda x' + (1-\lambda)y$ para quaisquer menus $x, x', y \in \mathbb{X}$ e para todo $\lambda \in [0, 1]$.

Dem.: Considere menus x e x' tais que $x \succeq^* x'$. Então, para quaisquer $\lambda, \theta \in (0,1)$ e $y,z \in \mathbb{X}$, temos

$$\theta(\lambda x + (1 - \lambda)y) + (1 - \theta)z = \theta\lambda x + (1 - \theta\lambda) \left(\frac{\theta(1 - \lambda)}{1 - \theta\lambda}y + \frac{1 - \theta}{1 - \theta\lambda}z\right)$$

$$\gtrsim \theta\lambda x' + (1 - \theta\lambda) \left(\frac{\theta(1 - \lambda)}{1 - \theta\lambda}y + \frac{1 - \theta}{1 - \theta\lambda}z\right)$$

$$= \theta(\lambda x' + (1 - \lambda)y) + (1 - \theta)z$$

Pela definição de \succsim^* , concluímos que $\lambda x + (1-\lambda)y \succsim^* \lambda x' + (1-\lambda)y$. Agora, suponha que $\lambda x + (1-\lambda)y \succsim^* \lambda x' + (1-\lambda)y$ para $\lambda \in (0,1)$ e um menu y qualquer. Pela Afirmação 5, o conjunto $\{\lambda \in [0,1] : \lambda x + (1-\lambda)y \succsim^* \lambda x' + (1-\lambda)y\}$ é um conjunto fechado e, portanto,

$$\hat{\lambda} := \max \left\{ \lambda \in [0, 1] : \lambda x + (1 - \lambda)y \succsim^* \lambda x' + (1 - \lambda)y \right\}$$

está bem definido. Defina ainda $\theta := \frac{1}{1+\hat{\lambda}}$. Então,

$$\theta(\hat{\lambda}x + (1 - \hat{\lambda})y) + (1 - \theta)x \gtrsim^* \theta(\hat{\lambda}x' + (1 - \hat{\lambda})y) + (1 - \theta)x$$
$$= \theta(\hat{\lambda}x + (1 - \hat{\lambda})y) + (1 - \theta)x'$$
$$\gtrsim^* \theta(\hat{\lambda}x' + (1 - \hat{\lambda})y) + (1 - \theta)x'$$

pela primeira parte desta demonstração. Usando a transitividade de \succsim^* e reescrevendo os coeficientes da expressão acima, temos

$$\frac{2\hat{\lambda}}{1+\hat{\lambda}}x + \frac{1-\hat{\lambda}}{1+\hat{\lambda}}y \gtrsim^* \frac{2\hat{\lambda}}{1+\hat{\lambda}}x' + \frac{1-\hat{\lambda}}{1+\hat{\lambda}}y \qquad (\star)$$

Como $\hat{\lambda}$ é máximo, $\hat{\lambda} \geq \frac{2\hat{\lambda}}{1+\hat{\lambda}}$ e, consequentemente, $\hat{\lambda}(\hat{\lambda}) \geq 0$. Isto implica que $\hat{\lambda} = 1$ e, por (\star) , $x \gtrsim^* x'$.

3.1 Representação de preferências incompletas sobre menus

Inserir uma discussão sobre o resultado do Kochov e enunciá-lo como está no paper. No lema, adaptaríamos para os menus fechados e finitude do espaço subjetivo.

Teorema 2 (Kochov (2007)) A preordem \succeq^* satisfaz Continuity, Non-degeneracy, Independence e Monotonicity se, e somente se, existe um conjunto S, uma função utilidade dependente de estado $U: \Delta(B) \times S \to R$ e um conjunto fechado e convexo Δ de medidas de probabilidade sobre S tais que

(i) $x \gtrsim^* y$ se, e somente se,

$$\int_{S} \sup_{\beta \in x} U(\beta, s) d\mu \ge \int_{S} \max_{\beta \in y} U(\beta, s) d\mu \quad \forall \mu \in \Delta;$$

(ii) cada $U(\cdot,s)$ é uma função utilidade esperada, i.e.

$$U(\beta, s) = \sum_{b \in B} \beta(b)U(b, s)$$

Colocar o comentário de que não é necessário indexar as utilidades no estado da natureza etc.

Lema 1 A preordem \succsim^* satisfaz Continuity, Nondegeneracy, Independence, Monotonicity e Finitiness* se, e somente se, existe um conjunto finito de funções $N = \{u \in \mathbb{R}_+^B : u(b_*) = 0 \text{ e } \max_B u(b) = 1\}$ e um conjunto fechado e convexo Π de medidas de probabilidade sobre N tal que:

(i) $x \succeq^* y$ se, e somente se,

$$\sum_{u \in N} \pi(u) \max_{\beta \in x} u(\beta) \geq \sum_{u \in N} \pi(u) \max_{\beta \in y} u(\beta) \quad \forall \pi \in \Pi$$

(ii) $cada \ u \in N \ \acute{e} \ uma \ função \ utilidade \ esperada, i.e.$

$$u(\beta) = \sum_{b \in B} \beta(b)u(b)$$

Dem.: Prosseguiremos a demonstração do lema em dois passos.

<u>Passo 1</u> Vamos mostrar que Finitiness é condição suficiente para que o conjunto S de estados da natureza seja finito³. Seja x^* o menu que é uma esfera contida em $\Delta(B)$ e σ_{x^*} sua função suporte definida por:

$$\sigma_{x^*}(\beta) = \max_{\beta \in x^*} U(\beta)$$

Como x^* é um menu fechado e $U \in S$ é contínua, σ_{x^*} está bem definida. Logo, existe um mapa biunívoco $g(\beta)$ da fronteira de x^* no conjunto S de maneira que

$$g(\beta) = U \ tal \ que \ \beta = \operatorname*{argmax}_{\alpha} U(\alpha)$$

com α na fronteira de x^* , ou seja $g(\beta)$ é o estado da natureza no qual β é a loteria que maximiza a utilidade esperada, nesse estado. Se, portanto, S é um conjunto com infinitos estados da natureza, o menu x^* não poderia

³Baseado na demonstração do Teorema 6 em Dekel et al. (2009)

conter um subconjnto finito que o fosse ≿*-indiferente, violando Finitiness*. Logo, podemos reescrever o resultado do Teorema 2 da seguinte maneira

$$x \succsim^* y \ se, \ e \ somente \ se, \ \sum_{U \in S} \mu(U) \max_{\beta \in x} U(\beta) \geq \sum_{U \in S} \mu(U) \max_{\beta \in y} U(\beta)$$

mantendo o formato de utilidade esperada para $U \in S$. Novamente, como os menus em nosso modelo são subconjuntos fechados de $\Delta(B)$ e as utilidades vNM são contínuas, $\max_{\beta \in x} U(\beta)$ está bem definido para qualquer menu x.

 $\underline{Passo\ 2}$ Mas agora note que podemos normalizar os estados da natureza de modo a obter o conjunto N utilizado na representação do Teorema 1. Para isso, escreva:

$$u(b) = \frac{U(b) - U(b_*)}{\max_b U(b) - U(b_*)}$$

e veja que, de fato, $u(b_*) = 0$ e $\max_B u(b) = 1$. Todavia, isso não necessariamente preserva o ordenamento dos menus e, para corrigir esse problema, teremos de normalizar as medidas de probabilidade em Δ da seguinte maneira:

$$\hat{\pi}(u) = \mu(U) \left[max_B U(b) - U(b_*) \right]$$

Finalmente, para que as medidas normalizadas somem a unidade, precisamos reescrevê-las como abaixo:

$$\pi(u) = \frac{\hat{\pi}(u)}{\sum_{u \in N} \hat{\pi}(u)}$$

3.2 Obtendo a forma funcional de \geq

Seja $w: \mathbb{X} \times \Pi \to \mathbb{R}$ a função caracterizada por

$$w(x,\pi) = \sum_{u \in N} \pi(u) \max_{\beta \in x} u(\beta)$$

i.e. a função que representa a preferência \succsim^* sobre menus, obtida na subseção anterior. Vamos examinar o valor que ela assume nos menus certos x_p :

$$\begin{split} w(x_p, \pi) &= \sum_{u \in N} \pi(u) \max_{\beta \in x_p} u(\beta) \\ &= \sum_{u \in N} \pi(u) \max_{\beta \in x_p} u(p\beta' + (1-p)\delta_{b_*}), \quad \beta' \in \Delta(B) \\ &= \sum_{u \in N} \pi(u) \max_{\beta \in x_p} \left\{ p \sum_{b \in B} \beta'(b) u(b) + (1-p) \sum_{b \in B} \delta_{b_*}(b) u(b) \right\} \\ &= \sum_{u \in N} \pi(u) p \max_{\beta' \in \Delta(B)} \sum_{b \in B} \beta'(b) u(b), \quad pois \ u(b_*) = 0 \ e \ \delta_{b_*}(b) = 0 \ \forall b \neq b_* \\ &= \sum_{u \in N} \pi(u) p \max_{\beta' \in \Delta(B)} u(\beta') \\ &= p \sum_{u \in N} \pi(u) \cdot 1 \\ &= p \end{split}$$

donde a penúltima igualdade é consequência do fato de que o elemento que maximiza $u(\beta')$ é a loteria degenerada $\delta_{\bar{b}}$ na qual $\bar{b} := \operatorname{argmax} u(b)$, ou seja, $u(\bar{b}) = 1$. É importante notar ainda que $w(x_p, \pi) = p$ para qualquer prior $\pi \in \Pi$. Portanto, podemos afirmar que para dois menus certos x_p e $x_{p'}$, temos que $x_p \succsim^* x_{p'}$ se, e somente se, $p \ge p'$.

Tendo estudado o valor que w assume sobre os menus certos x_p , precisamos ainda de uma propriedade da relação primitiva \succeq referente a misturas convexas entre menus. Mais precisamente, mostramos abaixo que o Lema 1, Preference Convexity e Certainty Independence são suficientes para afirmar que se um menu é \succeq -preferido a um menu certo, misturá-los a um terceiro menu com pesos iguais mantém a relação invariante.

Lema 2 A relação \succeq satisfaz Negative Certainty Independence (NCI), i.e. se $x \succeq x_p$, então $\lambda x + (1-\lambda)y \succeq \lambda x_p + (1-\lambda)y$ para todo $\lambda \in (0,1)$ e $y \in \mathbb{X}$.

Dem.: Tome x e x_p em \mathbb{X} , com um p qualquer no intervalo [0,1], tais que $x \succeq x_p$. Pela Afirmação 1, sabemos que existe $\bar{p} \in [0,1]$ tal que $x \sim x_{\bar{p}}$. Logo, $x \sim x_{\bar{p}} \succeq x_p$. Afirmamos que

$$\lambda x_{\bar{p}} + (1 - \lambda)y \succsim \lambda x_p + (1 - \lambda)y$$

para qualquer menu y e todo $\lambda \in (0,1)$, pois, caso contrário, não seria verdade que $x_{\bar{p}} \succsim^* x_p$. Pelo Lema 1 e a discussão sobre o valor da utilidade nos menus certos, isto implica que $p > \bar{p}$ e, consequentemente, $x_p \succ^* x_{\bar{p}}$. Aplicando a definição de \succsim^* , isto significa que $\theta x_p + (1-\theta)z \succ \theta x_{\bar{p}} + (1-\theta)z$ para todo menu z e $\theta \in (0,1)$. Agora veja que para $z := x_p$, temos $x_p \succ \theta x_{\bar{p}} + (1-\theta)x_p$, o que viola Preference Convexity.

Se $y \sim x \sim x_{\bar{p}}$, então $x_{\bar{p}} = \lambda x_{\bar{p}} + (1-\lambda)x_{\bar{p}} \sim \lambda x_{\bar{p}} + (1-\lambda)y$, por Certainty Independence. Preference Convexity nos permite afirmar que $\lambda x + (1-\lambda)y \gtrsim x \sim x_{\bar{p}} \sim \lambda x_{\bar{p}} + (1-\lambda)y$. Usando transitividade e a discussão no parágrafo anterior, chegamos em $\lambda x + (1-\lambda)y \gtrsim \lambda x_{\bar{p}} + (1-\lambda)y$.

Contudo, se não vale que $y \sim x$, então considere o ato simples $x_{p'} := \left(\frac{\theta}{1-\theta}\right) x_{\hat{p}} + \left(\frac{1-2\theta}{1-\theta}\right) x_{\bar{p}}$, com $\theta \in \left(0,\frac{1}{2}\right)$ e $x_{\hat{p}}$ o menu simples tal que $y \sim x_{\hat{p}}$. Observe que

$$\theta x_{\bar{p}} + (1 - \theta) x_{p'} = \theta x_{\bar{p}} + (1 - \theta) \left[\left(\frac{\theta}{1 - \theta} \right) x_{\hat{p}} + \left(\frac{1 - 2\theta}{1 - \theta} \right) x_{\bar{p}} \right]$$

$$= \theta x_{\bar{p}} + \theta x_{\hat{p}} + (1 - 2\theta) x_{\bar{p}}$$

$$= \theta x_{\hat{p}} + (1 - \theta) x_{\bar{p}}$$

$$\sim \theta y + (1 - \theta) x_{\bar{p}}, \text{ por Certainty Independence}$$

Aplicando Certainty Independence mais uma vez, temos

$$\theta x + (1 - \theta)x_{p'} \sim \theta x_{\bar{p}} + (1 - \theta)x_{p'} \sim \theta y + (1 - \theta)x_{\bar{p}}$$

Ao aplicarmos Preference Convexity na expressão acima, obtemos

$$\lambda(\theta x + (1 - \theta)x_{p'}) + (1 - \lambda)(\theta y + (1 - \theta)x_{\bar{p}}) \gtrsim \theta x_{\bar{p}} + (1 - \theta)x_{p'}$$

$$= \lambda(\theta x_{\bar{p}} + (1 - \theta)x_{p'}) + (1 - \lambda)(\theta x_{\bar{p}} + (1 - \theta)x_{p'})$$

$$\sim \lambda(\theta x_{\bar{p}} + (1 - \theta)x_{p'}) + (1 - \lambda)(\theta y + (1 - \theta)x_{\bar{p}})$$

cuja última linha é consequência de Certainty Independence. Podemos reescrever a expressão acima da seguinte forma

$$\theta(\lambda x + (1-\lambda)y) + (1-\theta)(\lambda x_{p'} + (1-\lambda)x_{\bar{p}}) \gtrsim \theta(\lambda x_{\bar{p}} + (1-\lambda)y) + (1-\theta)(\lambda x_{p'} + (1-\lambda)x_{\bar{p}})$$

donde Certainty Independence nos permite afirmar que $\lambda x + (1 - \lambda)y \gtrsim \lambda x_{\bar{p}} + (1 - \lambda)y$. Rocorde-se que $\lambda x_{\bar{p}} + (1 - \lambda)y \gtrsim \lambda x_p + (1 - \lambda)y$, do início da demonstração. Como \gtrsim é transitiva, concluímos que $\lambda x + (1 - \lambda)y \gtrsim \lambda x_p + (1 - \lambda)y$ para todo $\lambda \in (0, 1)$ e $y \in \mathbb{X}$.

Munidos do Lema 1 e Lema 2, podemos, por fim, estabelecer a forma funcional descrita no Teorema 1 para a representação de \succsim .

Demonstração do Teorema 1:Vamos agora estabelecer a representação da relação \succsim original a partir dos resultados do Lema 1 e Lema 2. Recorde que, de NCI, aprendemos que as relações \succsim e \succsim * coincidem para os menus certos, ou seja

$$x_{p} \sim x \succsim y \sim x_{\bar{p}} \Leftrightarrow x_{p} \succsim^{*} x_{\bar{p}}$$
$$\Leftrightarrow w(x_{p}, \pi) \ge w(x_{\bar{p}}, \pi) \ \forall \pi \in \Pi$$
$$\Leftrightarrow p \ge \bar{p}$$

Ainda em consequência do Lema 2, sabemos que $x \succsim^* x_p$. Logo,

$$w(x,\pi) \ge w(x_p,\pi) = p \quad \forall \pi \in \Pi$$

e, consequentemente, $\min_{\pi \in \Pi} w(x, \pi) \geq p$. Mas, agora, suponha que

$$\min_{\pi \in \Pi} w(x, \pi) > p$$

Então, para qualquer $p' \in (p, \min_{\pi \in \Pi} w(x, \pi))$, temos que $x_{p'} \succ^* x_p \sim^* x$, uma contradição. Portanto,

$$\min_{\pi \in \Pi} \sum_{u \in N} \pi(u) \max_{\beta \in x} u(\beta) = p$$

Argumentos usuais da literatura de menus garantem que a forma funcional acima implica na axiomatização de ≿.

4 Observações finais

References

Dekel, E., B. Lipman, and A. Rustichini (2001). Representing preferences with a unique subjective state space. *Econometrica* 69(4), 891–934.

Dekel, E., B. L. Lipman, and A. Rustichini (2009). Temptation-driven preferences. *Review of Economic Studies* 76, 937–971.

Epstein, L. G., M. Marinacci, and K. Seo (2007). Coarse contingencies and ambiguity. *Theoretical Economics* 2, 355–394.

Gilboa, I., F. Maccheroni, M. Marinacci, and D. Schmeidler (2010). Objective and Subjective Rationality in a Multiple Prior Model. *Econometrica* 78(2), 755–770.

Gilboa, I. and D. Schmeidler (1989). Maxmin expected utility with non-unique prior. *Journal of mathematical economics* (December).

Kochov, A. S. (2007). Subjective States without the Completeness Axiom.

Kreps, D. M. (1979). A Representation Theorem for 'Preference for Flexibility'. *Econometrica* 47(3), 565–577.

Kreps, D. M. (1992). Static choice in the presence of unforeseen contingencies. In Economic Analysis of Markets and Games: Essays in Honor of Frank Hahn, pp. 258–281. MIT Press.