To Do List

This Document describes the planned to-do list items and their locations in the dissertation document.

Tasks	Location in Thesis
1. Explore and run experiments on optimization schemes for MICI,	
MICIR and MR-MICI algorithms. Investigate:	
1.1 sample new measure from top-down for initialization	
1.2 sample new measure from bottom-up for initialization	
1.3 sampling according to the size of the valid intervals in small-scale	
and large-scale mutation	
1.4 sampling according to fitness in small-scale and large-scale muta-	
tion (sampling according to measure element)	
1.5 alternate optimization approaches for speed (<i>Binary FM</i>)	Section 6.4
Evaluate the effects of the optimization schemes on how much objective	
function fitness value changes and speed of convergence.	
2. Evaluate how parameters affect MICI, MICIR and MR-MICI algo-	Sections 6.1.3; 6.3.1; 6.3.2
rithms and if one algorithm is more likely to do better than the other.	
3. Run MICI Regression experiments and present results on HAVIST	Section 6.3.2
crop yield data set. Compare MICIR with linear regression, polynomial	
curve fitting, RVM Regression, MI-ClusterRegress, Aggregated MIR	
and Instance-MIR methods.	
4. MR-MICI experiments:	
4.1 Run on full MUUFL Gulfport image (rather than current sub-image)	
4.2 Generate ground truth map for building, sidewalk and road classes	
4.3 Compare MR-MICI results with CI-QP, MI-SVM, and SVM, GML-	
LOOC and kNN classifier and Multiple Feature Learning based on At-	
tribute Profiles, using HSI and rasterized LiDAR	
4.4 Explore MR-MICI fitness evaluation methods: pick points by sam-	
pling from a multinomial or max-min	
4.5 Run on a new data set	Sections 6.2.3 & 6.2.4
5. Use conflation to obtain labels (rather than current affine transforma-	Section 6.2.3
tion based on manual points).	
6. Investigate how normalization based on distribution in preprocessing	Section 6.1.4
affects the CI performance. Compare to current linear normalization.	

Tasks - continued	Location in Thesis
7. Investigate adding a weight/emphasis to either positive or negative	Section 6.1.3
bags.	
8. Investigate the influence of:	
8.1 number of positive and negative bags	
8.2 number of positive and negative points in each bag	
8.3 how mixed each positive bag is	
8.4 contamination	
on MICI, MICIR and MR-MICI algorithms.	Sections 6.1.3; 6.3.1; 6.3.2
9. Analyze computation complexity.	Sections 6.1.4; 6.4.3
10.Clean up code and post well-commented code on GitHub repository.	On GitHub