UNIT-1(Partial Differentiation)

Q.1: If the function is given by f(x, y, z) = 2x + 2y + 2z then use Lagrange's multiplier method to find the greatest value if it is related as $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 6$.

Q.2: Find the tangent plane $x^2 + y^2 + z^2 = 30$ at (1,1,1).

Q.3: If $f(x, y) = x^2y + \cos y + y \sin y$ then find all second order partial derivatives.

Q.4: Find the extreme values of $f(x, y, z) = 10x^2 + 8yz - 32z + 1200$ takes on the ellipsoid $g(x, y, z) = 5x^2 + y^2 + 4z^2 - 15 = 0$.

Q.5: Find the shortest distance from the origin to the surface $xyz^2 = 2$.

Q.6: Find the tangent plane $x^2 + 2xy - y^2 + z^2 = 7$ at (1, -1, 3).

Q.7: If $u = \log(x^3 + y^3 + z^3 - 3xyz)$ then prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \frac{3}{x + y + z}$.

Q.8: Expand $e^y \cos x$ in ascending powers of $(x - \frac{\pi}{2})$ and y up to term of third degree.

Q.9: Expand $x^2 + xy + y^2$ in ascending powers of (x - 1) and (y - 2) up to third degree.

Q.10: If $u = (x^2 + y^2 + z^2)^{-1/2}$ the prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial x} + z \frac{\partial u}{\partial x} = -u$.

Q.11: Find the tangent plane $x^2 + y^2 + z = 9$ at (1,2,3).

Q.12: Expand $e^y \log (1 + x)$ about origin up to term of third degree.

UNIT-2 (Multiple Integral)

Q.1: Describe the region of integration and evaluate

$$\int_{0}^{3} \int_{-\gamma}^{\gamma} (x^2 + y^2) dx dy$$

Q.2: Find the volume of the solid that is bounded by the cylinder $z = x^2$ and below by the region enclosed by the parabola $y = 2 - x^2$ and the line y = x.

Q.3: Change the order of integration and evaluate

$$\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dy dx$$

Q.4: Evaluate $\int_0^1 \int_{v^2}^1 \int_0^{1-z} z dv$.

Q.5: Find the volume of the region bounded by the surface $y = x^2$, $x = y^2$ and the planes z = 0 to z = 3.

Q.6: Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} y^2 \sqrt{x^2 + y^2} dy dx$ by changing to polar-coordinates.

Q.7: Change the order of integration and evaluate

$$\int_{0}^{1} \int_{x^{2}}^{2-x} xy dy dx$$

Q.8: Evaluate $\iiint_V (x^2 + y^2 + z^2) dV$ where V is the region bounded by x = 0, y = 0, z = 0 and x + y + z = a.

Q.9: Evaluate

$$\iint_{R} (x^2 + y^2) dx dy$$

throughout the area enclosed by curve y = 4x, x + y = 3, y = 0 and y = 2.

Q.10: Evaluate the integral

$$\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy$$

By changing to polar coordinate.

Q.11: Evaluate $\iint_R x^2 y^2 dx dy$, where R is the region bounded by x = 0, y = 0 and $x^2 + y^2 = 1$, $x \ge 0$, $y \ge 0$.

Q.12: Find the volume of the solid in the first octant bounded by the coordinate planes, the cylinder $x^2 + y^2 = 4$ and the plane y + z = 3.