# PROJECT NO. – 4

<u>AIM</u>: To design a full adder using half adder.

<u>APPARATUS</u>: Input and output switches; wires for connection; OR, AND, NOR Gates; DEEDS simulator

## TRUTH TABLE FOR FULL ADDER

| INPUT |   |   | OUTPUT  |       |  |
|-------|---|---|---------|-------|--|
| Α     | В | С | SUM     | CARRY |  |
|       |   |   | (A+B+C) |       |  |
| 0     | 0 | 0 | 0       | 0     |  |
| 0     | 0 | 1 | 1       | 0     |  |
| 0     | 1 | 0 | 1       | 0     |  |
| 0     | 1 | 1 | 0       | 1     |  |

| 1 | 0 | 0 | 1 | 0 |
|---|---|---|---|---|
| 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 |

SCA

# KMAP FOR FULL ADDER (SUM)

|    | B'*(C)' | B'*(C) | B*(C) | B*(C)' |  |
|----|---------|--------|-------|--------|--|
|    |         |        |       |        |  |
| A' | 0       | 1      | 0     | 1      |  |
| A  | 1       | 0      | 1     | 0      |  |

#### SIMPLIFING K MAP

SUM = 
$$(A')*(B'*(C)+B*(C)')+A*(B'*(C)'+B*(C))$$
.  
= $A \oplus B \oplus C$ 

# KMAP FOR FULL ADDER (CARRY)

|    | B'*(C)' | B'*C | B*C | B*(C)' |  |
|----|---------|------|-----|--------|--|
|    |         |      |     |        |  |
| A' | 0       | 0    | 1   | 0      |  |
|    |         |      |     |        |  |
| A  | 0       | 1    | 1   | 1      |  |



### **Verilog Code:**

### Full adder from Half Adder

```
//Developed by: Aashi Srivastava
 / TITLE: Full adder from Half Adder
// Date: 10.10.23, 9:44 IST
module full_from_half (sum,carry_out,in1,in2,carry_in);
    input in1,in2,carry_in;
    output sum, carry_out;
    wire wire1,wire2,wire3;
    half_adder_CA h1(wire1,wire2,in1,in2);
    half_adder_CA h2(sum,wire3,wire1,carry_in);
    or o1(carry_out,wire2,wire3);
endmodule
module half_adder_CA(
    sum,carry,in1,in2
input in1,in2;
output sum, carry;
assign sum=in1^in2; //Sum of half adder is given by xor of the two inputs
assign carry=in1 & in2; // carry of the two half adder is given by the and of
the two inputs
endmodule
```

#### **Test-Bench:**

```
//Developed by: Aashi Srivastava
// TITLE: Full adder test bench
module full_adder_tb (
);
    reg in1,in2,carry_in;
    wire sum, carry_out;
    full_from_half s(sum,carry_out,in1,in2,carry_in);
    initial begin
        $dumpfile("full from half.vcd");
        $dumpvars(0,full_adder_tb);
        $monitor($time, "sum=%b carry_out=%b in1=%b in2=%b
carry_in=%b", sum, carry_out, in1, in2, carry_in);
        #40 $finish;
    initial begin
        in1=0;
        #20 in1=~in1;
    initial begin
        in2=0;
        repeat(3)
        #10 in2=~in2;
    initial begin
        carry_in=0;
        repeat(7)
        #5 carry_in=~carry_in;
endmodule
```