4th Semester, Academic Year 2020-21

Date:10-4-2021

Name: Achyut Jagini	SRN:PES2UG19CS013	Section:A

Week#____10_____Program Number: ____1__

Given a C- Code convert it in its equivalent ARM Code. These programs need to be executed on ARMSIM Simulator

1)
$$x = (a + b) - c;$$

R0=a

R1=b

R2=c

R3=x

ARM Assembly Language Code

MOV R0,#2

MOV R1,#3

MOV R2,#4

ADD R3,R1,R0

SUB R3,R3,R2

Screenshot showing the value of x, a, b, c in the register window.

$$2)z = (a << 2) | (b & 15);$$

R2=a

R1=b

R4=z

ARM Assembly Language Code

MOV R2,#4 MOV R1,#8 MOV R0, R2, LSL #2 AND R3,R1,#15 ORR R4,R0,R3

Screenshot showing the value of a, b, z in the register window.

4th Semester, Academic Year 2020-21

Date:10-4-2021

Name: Achyut Jagini	SRN:	Section:		
	PES2UG19CS013			
Week#10	Program Number:	_2		
1) Consider the following instructions. Execute these instructions using simulator of 5 stage pipeline of MIPS architecture.				
ADD R0, R1, R2 SUB R3, R0, R4.				
Observe the following and note dov	wn the results.			

a) Check whether there is data dependency for the second instruction?

c) If data forwarding is applied how many stall states have been reduced?

4th Semester, Academic Year 2020-21

Date:10-4-2021

Name: Achyut Jagini	SRN: PES2UG19CS013	Section:
Week#10	Program Number:	3

Consider the following code segment in C.

$$A = B + E;$$

 $C = B + F;$

a) Write the code using MIPS 5 STAGE pipeline architecture.

b) Find the hazards;

c) Reorder the instructions to avoid pipeline stalls.

The solution is No Data dependency is seen in the above instructions.

Hence no stall states.

4th Semester, Academic Year 2020-21

Date:10-4-2021

Name: Achyut Jagini	SRN: PES2UG19CS013	Section:
Week#10	Program Number: _	4
Using MIPS 5 stage pipeline a instructions and avoid stall sta	architecture, execute the followates if any.	wing
LW \$10, 20(\$1)		

LW \$10, 20(\$1) SUB \$11, \$2, \$3 ADD \$12, \$3, \$4 LW \$13, 24(\$1) ADD \$14, \$5, \$6

a) Related Screenshot with stalls

No stalls

b)Related Screenshot without stalls

4th Semester, Academic Year 2020-21

Date:10-4-2021

Name: Achyut Jagini	SRN: PES2UG19CS013	Section: A	
Week#10	Program Number:	5	
This exercise is to understand the relationship between delay slots, control hazards and branch execution in a 5 stage MIPS pipelined processor.			
Label 1: LW \$1, 4	0(\$6)		
BEQ \$2, \$3, Lab	oel2: branch taken		
ADD \$1, \$6, \$4			
Label2: BEQ \$1, SW \$2, ADD \$1,		lken	

Assume full data forwarding and predict- taken branch prediction.

Note the observations.

No hazards found