Composite dark matter from non-abelian gauge theories with real representations

Joachim Pomper

Supervisor: Dr. Suchita Kulkarni

Conference: The Dark Side of the Universe 2022 (Sydney)

06.12.2022

Supported by merit-based scholarship of TU Graz

Review: Strongly interacting dark matter

Dark matter from a SM-extension by a **confining, strongly** interacting sector based on dark **gauge group** G_D .

- Dark matter made of bound states, for example dark pions.
- Accidental symmetries may explain stability of dark matter.
- Self interactions may solve structure formation puzzles.

[Dave et al., The Astrophysical Journal 547 (2001)]

Review: Strongly interacting dark matter

Dark matter from a SM-extension by a **confining, strongly** interacting sector based on dark **gauge group** G_D .

- Dark matter made of bound states, for example dark pions.
- Accidental symmetries may explain stability of dark matter.
- Self interactions may solve structure formation puzzles.

SIMP model: Freeze out via $3 \rightarrow 2$ cannibalization process implemented by anomalous Wess Zumino action.

[Hochberg et al., Physical Review Letters 113 (2014)] [Hochberg et al., Physical Review Letters 115 (2015)]

Aim and scope

Research group on strongly interacting Sp(4) dark matter:

• [Kulkarni et al. (2022), arXiv:hep-ph/2202.05191]

Close collaboration with Sp(4) composite Higgs research group:

• [Bennett et al., Physical Review D 106 (2022)]

"Combining low energy effective studies and lattice field theory in the context of strongly interacting DM."

- Establish a dark matter model in the UV.
- Study the dark matter IR phenomenology via a low energy effective description.
- Connect UV to IR properties and motivate lattice studies from dark matter phenomenology.

Energy Physics (2016)

Continuous symmetries

Isolated strong sector:

Further explicit breaking:

Charge assignment

Action of flavor symmetry $SO(4) \cong SU_L(2) \times SU_R(2)$

$$\left(\begin{array}{cc} u & -d_C \\ d & u_C \end{array}\right) \quad \longmapsto \quad U_L \left(\begin{array}{cc} u & -d_C \\ d & u_C \end{array}\right) U_R^{\dagger}$$

We gauge a 1-parameter subgroup of SO(4) such that:

- $U_D(1)$ gauge theory is consistent
- Pion currents are non anomalous
- Non-abelian flavor symmetry remains

Charge assignment

Action of flavor symmetry $SO(4) \cong SU_1(2) \times SU_R(2)$

$$\left(\begin{array}{cc} u & -d_C \\ d & u_C \end{array}\right) \quad \longmapsto \quad U_L \left(\begin{array}{cc} u & -d_C \\ d & u_C \end{array}\right) U_R^{\dagger}$$

We gauge a 1-parameter subgroup of SO(4) such that:

- Non-abelian flavor symmetry remains

•
$$U_D(1)$$
 gauge theory is consistent
• Pion currents are non anomalous \Rightarrow Anomaly cancellation $\mathcal{Q}^2=\mathbb{1}$

Charge assignment: $Q \propto \sigma_{3,R}$

Explict breaking: $SO(4) \rightarrow SU(2) \times U(1)$

(Relevant) Particle content

Coset representative and non-linear representation

Coset representative of U(4)/O(4)

$$U := \exp\left(-i\frac{\eta'}{\sqrt{8}f_{\eta}}\right) \underbrace{\exp\left(-i\frac{\pi}{f_{\pi}}\right)}_{\in SU(4)/SO(4)}$$

Global $g \in U(4)$ transformation:

$$U\mapsto g\ U\ \underbrace{h[\pi,\eta',g]}_{\in O(4)}$$

Physical interpretation as vacuum fluctuations.

$$\Sigma = U\Sigma_0U^{\top}$$

Figure: Taken from [arXiv:hep-ph/1804.05664]

(Non-anomalous) Low energy effective Lagrangian

$$\mathcal{L}_{eff} = \frac{f_{\pi}^{2}}{4} \operatorname{Tr} \left\{ \left(\partial_{\mu} U^{2} \right)^{\dagger} \partial^{\mu} U^{2} \right\} - \frac{f_{\eta}^{2} - f_{\pi}^{2}}{2f_{\eta}^{2}} \partial_{\mu} \eta' \ \partial^{\mu} \eta'$$

$$+ \frac{\mu^{3} m}{2} \operatorname{Tr} \left\{ U^{2} + \left(U^{2} \right)^{\dagger} \right\} - \frac{\Delta m_{\eta'}^{2}}{2} \eta' \eta'$$

$$\uparrow$$
Contact terms:
$$\pi \dots \eta' \qquad \pi \dots \eta' \qquad \pi \dots \eta'$$

$$\pi_{\pi} = \frac{f_{\pi}^{2}}{2} m_{\eta'}^{2} = m_{\pi}^{2}$$

$$m_{\eta'}^{2} = m_{\pi}^{2}$$

Gell-Mann-Oakes-
Renner:
$$m_{\pi}^2 = \frac{m\mu^3}{2 f_{\pi}^2}$$

$$m_{\eta'}^2 = m_{\pi}^2 + \Delta m_{\eta'}^2$$

Topological terms and coset geometry

The symmetric coset space SU(4)/SO(4) has non vanishing 4th homotopy group:

$$\pi_4(SU(4)/SO(4)) \neq 0$$

Problem:

• The standard construction/classification of topological terms in non-linear sigma model by Witten, Weinberg and d'Hoker requires $\pi_4(G/H) = 0$.

```
[Witten, Nucl. Phys. B 223 (1983)]

[D'Hoker and Weinberg, Physical Review D 50 (1994)]

[Brauner and Kolešová, Nuclear Physics B 945 (2019)]
```

 Modern approaches give more general classification but no practical construction.

```
[Davighi and Gripaios, Journal of High Energy Physics 2018 (2018)]
[Lee, Ohmori, and Tachikawa, SciPost Physics 10 (2021)]
```

't Hooft anomaly matching argument

Using the gauge principle to detect anomalous terms in the effective field theory.

Anomaly equation:
$$\delta S_{eff}^{gauged} = A$$
 and $S_{eff} = \lim_{A \to 0} S_{eff}^{gauged}$

Wess and Zumino derived an effective action that solves the anomaly equation. [Wess and Zumino, Physics Letters B 37 (1971)]

Wess-Zumino effective action

$$S_{WZ}[\xi = (\eta', \pi)] = \frac{D_C}{48\pi^2 f_\pi} \int_0^1 \mathrm{d}t \int_{S^4} \mathrm{Tr} \left\{ \xi \left((U[t\xi])^{-1} \mathrm{d}U[t\xi] \right)^4 \right\}$$

$$\approx \frac{D_C}{250 f_\pi \pi^2} \epsilon^{\mu\nu\sigma\rho} \int_{S^4} {\rm Tr} \left\{ \pi \partial_\mu \pi \partial_\nu \pi \partial_\sigma \pi \partial_\rho \pi \right\}$$

- Does not depend on η' in lowest order χ PT.
- Removes superfluous $\pi(t,x)\mapsto -\pi(t,x)$ symmetry in S_{eff} .
- Incorporates $3 \rightarrow 2$ process.

Inclusion of the dark photon Z'

Non-Anomalous contributions:

Exchange derivatives:

$$\partial_{\mu} \textit{U}^{2} \longmapsto \mathrm{D}_{\mu} \textit{U}^{2} = \partial_{\mu} \textit{U}^{2} + \textit{ie}_{\textit{D}} \textit{A}_{\mu} \left(\mathcal{Q} \textit{U}^{2} + \textit{U}^{2} \Sigma_{0}^{\dagger} \mathcal{Q}^{\top} \Sigma_{0} \right)$$

Anomalous contributions:

Anomaly equation:

$$S_{eff} = \lim_{A \to Z'} S_{eff}^{gauged}$$

$$\propto \begin{cases} Tr \left\{ \pi \ Q^2 \right\} &= 0 \\ Tr \left\{ \eta' \ Q^2 \right\} &\neq 0 \end{cases}$$

Depending on lifetime $\tau_{\eta'}$ (and mass m'_{η}) of the η' the dark matter scenario might be significantly altered or spoiled.

 η' -decay may lower the calculated relic abundance of dark matter significantly.

Limiting cases:

- η' decays almost instantly \Rightarrow NO DARK MATTER
- $au_{\eta'} pprox$ age of universe.
 - \Rightarrow Pion abundance not affected.

Summary

- Investigated a class of models with potential explanation for dark matter, thermally coupled to the standard model.
- Worked out IR description including pions and the pseudo scalar singlet.
- Neutral dark pions provide the dark matter candidates.
- The lifetime and mass of the pseudo scalar singlet η' may substantially influence the relic abundance, once the dark photon is coupled.

Discrete symmetries

Charge conjugation C:

$$\forall \forall q \mapsto \Omega C \bar{q}^{\top}$$

IR
$$\pi \mapsto \pi^{\top}$$

$$\forall \forall q(t,\vec{x}) \mapsto \eta_P \gamma^0 q(t,-\vec{x})$$

$$\mathsf{IR}\ \pi(t,\vec{x})\mapsto -\pi(t,-\vec{x})$$

The choice $\eta_P = \pm i$ is adopted:

- Parity and flavor symmetries commute.
- All (pseudo) Nambu-Goldstone bosons (pNGB) are pseudo scalars.

	$\overline{\Psi_{\mathcal{C}}} \ T_n^{\Psi}\Psi + \left(\overline{\Psi_{\mathcal{C}}} \ T_n^{\Psi}\Psi\right)^*$	JD		$\overline{\Psi_{\mathcal{C}}} \ T_{\mathcal{N}}^{\pi} \Psi + \left(\overline{\Psi_{\mathcal{C}}} \ T_{\mathcal{N}}^{\pi \top} \Psi \right)^*$	<i>I</i> ₃	e_D
π_1	$\frac{1}{\sqrt{2}}\left(\overline{u}\gamma^5d + \overline{d}\gamma^5u\right)$	1-	π^A	$\overline{u}\gamma^5d$	1	0
π_2	$\frac{1}{\sqrt{2}}\left(\overline{u}\gamma^5d-\overline{d}\gamma^5u\right)$	1-	π^B	$\overline{d}\gamma^5 u$	-1	0
π_3	$\frac{1}{\sqrt{2}}\left(\overline{u}\gamma^5u-\overline{d}\gamma^5d\right)$	1-	π^{C}	$\frac{1}{\sqrt{2}}\left(\overline{u}\gamma^5u-\overline{d}\gamma^5d\right)$	0	0
π_4	$\tfrac{1}{2}\left(\overline{u_{\mathcal{C}}}\gamma^5u + \overline{u}\gamma^5u_{\mathcal{C}}\right)$	1-	π^D	$\frac{1}{\sqrt{2}}\overline{u_{\mathcal{C}}}\gamma^5u$	-1	-1
π_5	$rac{1}{2}\left(\overline{d_{\mathcal{C}}}\gamma^{5}d+\overline{d}\gamma^{5}d_{\mathcal{C}}\right)$	1-	π^E	$rac{1}{\sqrt{2}}\overline{d}\gamma^5d_{\mathcal{C}}$	1	-1
π_6	$rac{1}{\sqrt{2}}\left(\overline{u}\gamma^5d_{\mathcal{C}}+\overline{u_{\mathcal{C}}}\gamma^5d ight)$	1-	π^{F}	$\overline{u}\gamma^5 d_{\mathcal{C}}$	0	-1
π_7	$\frac{1}{2}\left(\overline{u_{\mathcal{C}}}\gamma^5u - \overline{u}\gamma^5u_{\mathcal{C}}\right)$	1-	π^G	$rac{1}{\sqrt{2}}\overline{u}\gamma^5 u_{\mathcal{C}}$	1	1
π_8	$rac{1}{2}\left(\overline{d}\gamma^5d_{\mathcal{C}}-\overline{d_{\mathcal{C}}}\gamma^5d ight)$	1-	π^H	$rac{1}{\sqrt{2}}\overline{d}_{\mathcal{C}}\gamma^{5}d$	-1	1
π_9	$\frac{1}{\sqrt{2}}\left(\overline{u}\gamma^5d_{\mathcal{C}}-\overline{u_{\mathcal{C}}}\gamma^5d\right)$	1-	π'	$\overline{u_{\mathcal{C}}}\gamma^5 d$	0	1

4th Homotopy group of SU(4)/SO(4)

Fibration:

$$SO(4) \rightarrow SU(4) \rightarrow SU(4)/SO(4)$$

Long exact sequence:

- $Ker(h_2) = Img(h_1) = 0 \rightarrow h_2$ is injective
- $Ker(h_3) = Img(h_2) \cong \pi_4(SU(4)/SO(4))$

$$\Rightarrow \frac{\pi_4(SU(4)/SO(4))}{\pi_4(SU(4)/SO(4))}$$

cannot be trivial

• $Ker(h_3) \neq 0$ because $\mathbb{Z} \oplus \mathbb{Z} > \mathbb{Z}$

Full UV Lagrangian

Energy Physics (2016)

$$-rac{1}{4}~G^lpha_{\mu
u}~G^{\mu
u}_lpha$$

Yang-Mills term for dark gluons : Based on $G_D = Sp(4)$

$$-rac{1}{4}~F^{\prime}_{\mu
u}~F^{\prime\mu
u}$$

Yang-Mills term for dark photon : Based on $U_D(1)$

$$+ \ \overline{u} \ i \ \gamma^\mu D_\mu \ u \ + \ m \ \overline{u} u$$

Dirac term of dark quarks 2 flavors: u and d quarks Charged under $G_D \times U_D(1)$

$$+ \overline{d} i \gamma^{\mu} D_{\mu} d + m \overline{d} d$$

 $+ \left(D'_{\mu} \phi \right)^{\dagger} D'^{\mu} \phi + V \left[\phi^{\dagger} \phi \right]$

Dark scalar charged under $U_D(1)$

$$+ {\epsilon \over 2\cos(heta_W)} \; F'_{\mu
u} \; B^{\mu
u}$$

Kinetic mixing of $U_D(1)$ with SM hypercharge

Meson spectrum in 2 flavor Sp(4)-fund. gauge theory

Figure: Meson spectrum in *Sp*(4)-fundamental with 2 flavors. Taken from [Zierler et al. (2022), arXiv:hep-lat/2210.11187]