MATH-UA 329: Homework 3a

James Pagan, March 2024

Professor Güntürk

Contents

1	Problem 1	2
2	Problem 2	2

1 Problem 1

Let $\mathbf{v} = (x, y)$ be any vector in \mathbb{R}^2 : it will constitute our direction vector. Hence

$$\lim_{\tau \to 0} \frac{f(\mathbf{0} + \tau \mathbf{v}) - f(\mathbf{0})}{\tau} = \lim_{\tau \to 0} \frac{(\tau x)^3 (\tau y)}{\tau ((\tau x)^6 + (\tau y)^2)}$$
$$= \lim_{\tau \to 0} \frac{\tau x^3 y}{\tau^4 x^6 + y^2}$$
$$= \frac{0}{0 + y^2}$$
$$= 0.$$

Thus the Gateaux derivative of f at $\mathbf{0}$ is 0. To witness the discontinuity of f at $\mathbf{0}$, consider the path $\mathbf{c}(t) = (t, t^3)$ for $t \in \mathbb{R}$. For all nonzero t, we have

$$f(\mathbf{c}(t)) = f(t, t^3) = \frac{(t)^3(t^3)}{(t)^6 + (t^3)^2} = \frac{t^6}{2t^6} = \frac{1}{2}.$$

Nonetheless, the image of the path $\mathbf{d}(t) = (t,0)$ under f equals 0 everywhere. Thus for all $\epsilon > 0$, there exists $\mathbf{x}, \mathbf{y} \in B_{\epsilon}(\mathbf{0})$ such that $f(\mathbf{x}) = \frac{1}{2}$ and $f(\mathbf{y}) = 0$. We conclude that $\lim_{\mathbf{x} \to \mathbf{0}} f(\mathbf{x})$ cannot exist.

2 Problem 2

Let $u \in C[0,1]$ be any function; it will constitute our direction vector. Hence

$$\lim_{\tau \to 0} \frac{F(\phi + \tau u) - F(\phi)}{\tau} = \lim_{\tau \to 0} \frac{\int_0^1 (\phi(x) + \tau u(x))^2 dx - \int_0^1 \phi(x)^2 dx}{\tau}$$

$$= \lim_{\tau \to 0} \frac{\int_0^1 2\tau \phi(x) u(x) dx + \int_0^1 \tau^2 u(x) dx}{\tau}$$

$$= \lim_{\tau \to 0} \int_0^1 2\phi(x) u(x) dx - \int_0^1 \tau u(x) dx$$

$$= \int_0^1 2\phi(x) u(x).$$

Thus F is Gateaux differentiable. As per the mapping $F'_{G}(\phi)$ defined by

$$u(x) \mapsto \int_0^1 2\phi(x)u(x)$$

for each $u(x) \in C[0,1]$, we must compute its Gateaux derivative: for all $v(x) \in C[0,1]$, we have

$$\lim_{\tau \to 0} \frac{F'_G(\phi)(u + \tau v) - F'_G(\phi)(u)}{\tau} = \lim_{\tau \to 0} \frac{\int_0^1 2\phi(x)(u(x) + \tau v(x)) \, \mathrm{d}x - \int_0^1 2\phi(x)u(x) \, \mathrm{d}x}{\tau}$$

$$= \lim_{\tau \to 0} \frac{\int_0^1 2\tau \phi(x)v(x) \, \mathrm{d}x}{\tau}$$

$$= \int_0^1 2\phi(x)v(x).$$

This is the Gateaux derivative of the mapping $F'_{G}(\phi)$. Now, observe that $u, v \in C[0, 1]$ implies

$$F'_{G}(\phi)(u+v) = \int_{0}^{1} 2\phi(x)(u(x)+v(x)) dx$$
$$= \int_{0}^{1} 2\phi(x)u(x) dx + \int_{0}^{1} 2\phi(x)v(x) dx$$
$$= F'_{G}(\phi)(u) + F'_{G}(\phi)(v).$$

For all $u \in \mathcal{C}[0,1]$ and constants $c \in \mathbb{R}$, it is trivial that $F'_G(\phi)(cu) = cF'_G(\phi)(u)$. We deduce that $F'_G(\phi)$ is a linear map. To demonstrate that it is continuous, we need only demonstrate it is bounded: consider the unit ball of all $u \in \mathcal{C}[0,1]$ such that $\sup_{x \in \mathbb{R}} |u(x)| \leq 1$. Then

$$|F'(G)(\phi)(u)| = \left| \int_0^1 \phi(x)u(x) \, \mathrm{d}x \right|$$

$$\leq \sqrt{\int_0^1 \phi(x)^2 \, \mathrm{d}x} \sqrt{\int_0^1 u^2(x) \, \mathrm{d}x}$$

$$\leq \sqrt{\int_0^1 \phi(x)^2 \, \mathrm{d}x}.$$

Since $\phi^2(x) \in C[0,1]$, it is bounded; thus the final term of this inequality. We conclude that $F'_G(\phi)$ is bounded on the image of the unit ball, so it is bounded everywhere — hence it is continuous.