

Figura 7 La quantità di moto prima dell'urto è uguale a quella dopo l'urto.

GLI URTI SU UNA RETTA

Durante un urto, tra i due oggetti che collidono si generano forze intense che agiscono per un tempo molto breve. Così, nella breve durata di un urto le altre forze presenti (come l'attrito radente o quello con l'aria) risultano trascurabili rispetto a quelle di interazione (che sono forze interne al sistema). Possiamo quindi dire che

durante un urto i due corpi che collidono si comportano come un sistema isolato e, quindi, la loro quantità di moto totale si conserva.

Il caso più semplice di urto è quello in cui due particelle di masse m_1 e m_2 si muovono su una retta (per esempio, come due carrelli su una rotaia diritta). In questo caso possiamo evitare di usare le velocità vettoriali; al loro posto utilizziamo i loro valori scalari (con segno positivo o negativo) come abbiamo fatto nel caso dei moti rettili-

Indichiamo allora con v_1 e v_2 le velocità delle particelle prima dell'urto, mentre V, e V, rappresentano le due velocità dopo l'urto (figura 8); con questa notazione, la conservazione della quantità di moto si esprime con la formula

$$m_1 v_1 + m_2 v_2 = m_1 V_1 + m_2 V_2. (6)$$

Figura 8 Urto tra due masse che si

Dal punto di vista matematico abbiamo due incognite $(V_1 e V_2)$ legate da una sola equazione (la (6)); quindi il problema non è determinato e, per la sua risoluzione, occorrono altre informazioni.

Nel seguito vedremo i due casi più semplici in cui il problema dell'urto risulta determinato: quello dell'urto elastico e quello dell'urto completamente anelastico.

ESPERIMENTO VIRTUALE

o (iniblu le

5)

no

ito

oio

ci-

ı bi-

totale

L'urto elastico L'urto in cui si conserva

l'energia cinetica è detto «elastico» perché in esso i corpi che collidono si

comportano come molle

APPROFONDIMENTO

dissipare energia.

Il pendolo balistico (2 pagine)

che, dopo la deformazione,

riprendono la loro forma senza

Urto elastico

Un urto si dice elastico se in esso si conserva (oltre alla quantità di moto) anche l'energia cinetica totale dei corpi che interagiscono.

Un esempio di urto elastico è il seguente:

- ▶ una pallina si avvicina, con velocità *v*, a un'altra pallina ferma che ha la stessa massa *m*.
- ▶ Dopo l'urto, la prima pallina si ferma e la seconda si muove con la stessa velocità v della prima.

Ur

Infa

con

(7))

che

Con le stesse notazioni usate prima, la conservazione della quantità di moto e dell'energia cinetica permette di scrivere il sistema

$$\begin{cases} m_1 v_1 + m_2 v_2 = m_1 V_1 + m_2 V_2 \\ \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 = \frac{1}{2} m_1 V_1^2 + \frac{1}{2} m_2 V_2^2 \end{cases}$$
 (7)

che è determinato perché contiene due equazioni e due incognite.

Urto completamente anelastico

Un pattinatore si avvicina a una pattinatrice ferma e, dopo l'urto, i due pattinatorisi allontanano insieme (figura 9).

Figura 9 Esempio di urto completamente anelastico.

Urti di questo tipo, in cui i due oggetti che collidono rimangono uniti dopo l'urto, si dicono completamente anelastici.

In un urto completamente anelastico la velocità finale dei due corpi è determinata dalla sola conservazione della quantità di moto.

Infatti, indicando con V la velocità finale dei due corpi, in questo caso l'equazione di conservazione della quantità di moto totale (la prima delle equazioni del sistema (7)) diventa a una singola incognita

$$m_1 v_1 + m_2 v_2 = (m_1 + m_2) V,$$
 (8)

che può essere isolata dando la soluzione

l'e-

ori si

$$V = \frac{m_1 \nu_1 + m_2 \nu_2}{m_1 + m_2}. (9)$$

«Completamente» anelastico

Il nome deriva dal fatto che in questi urti si perde la massima quantità di energia cinetica compatibile con la conservazione della quantità di moto.

L'esempio dei pattinatori

L'esempio precedente, con la pattinatrice inizialmente ferma, è un caso particolare in cui si ha $v_2=0$.

Prima		Dopo		Kiniziale	K _{finale}	Urto
m v	→v m*	m m		mv²	0	anelastico
w w	m .	2m	$\frac{1}{2}\overrightarrow{v}$	$\frac{1}{2}mv^2$	$\frac{1}{4}$ mv ²	anelastico
ŽV m	→ v → m	2m	3 7 V	$\frac{5}{2}mv^2$	$\frac{9}{4}$ mv ²	anelastico
₩ m	m	m	₩ v	$\frac{1}{2}mv^2$	$\frac{1}{2}mv^2$	elastico
v v	3m	$-\frac{1}{2}\overrightarrow{v}$	$\frac{1}{2}\vec{v}$	$\frac{1}{2}mv^2$	$\frac{1}{2}mv^2$	elastico
3m	m		$\frac{3}{2}\overrightarrow{v}$	$\frac{3}{2}mv^2$	$\frac{3}{2}mv^2$	elastico

▶ Quali sono l'intensità, la direzione e il verso della forza media esercitata dall'acqua?

 $[2,7 \times 10^2 \,\mathrm{N}, \mathrm{verso}\,\mathrm{l'alto}]$

- Una palla di massa 1,5 kg, inizialmente ferma, è sottoposta a una forza di direzione e verso costanti, ma di intensità variabile nel tempo, secondo il grafico che segue:
 - ► Calcola la velocità della palla negli istanti di tempo t = 3.0 s e t = 4.0 s.

[10 m/s; 11,7 m/s]

Un'automobile di massa 800 kg percorre un tratto di strada urbana rettilinea ed è soggetta alle forze acceleranti o frenanti riportate nella tabella:

Intensità della forza	Tempo di applicazione		
(N)	(s)		
800	5,0		
-1200	2,0		
200	6,0		
400	3,0		

- ▶ Riporta in un grafico i valori della forza in funzione del tempo.
- ► Quanto vale l'impulso totale della forza applicata all'automobile?
- ▶ Di quanto è cambiata complessivamente la sua velocità?

 $[4.0 \times 10^3 \,\mathrm{N} \cdot \mathrm{s}; 5.0 \,\mathrm{m/s}]$

- Una forza costante viene applicata a un oggetto di massa m=820 g per un intervallo di tempo $\Delta t=1,0\times 10^{-3}$ s. L'oggetto comincia a muoversi lungo un piano orizzontale scabro, con coefficiente di attrito dinamico $\mu_D=0,1$, fino a fermarsi in un intervallo di tempo $\Delta t_f=10$ s.
 - ► Quando vale la forza applicata?

 $[8.0 \times 10^{5} \,\mathrm{N}]$

5 GLI URTI SU UNA RETTA

- 16 In una gara di pattinaggio artistico, due ballerini di

 ★ massa 70 kg (lui) e 50 kg (lei), si corrono incontro
 con la stessa velocità di 4,0 m/s rispetto al suolo.
 Quando si incontrano, lui solleva lei dal suolo.
 - ► Con quale velocità proseguono il moto insieme?

[0,67 m/s nel verso iniziale di lui]

- Tre carrelli di massa *m* che si stanno muovendo, agganciati e in assenza di attrito, su un piano orizzontale liscio alla velocità di 10 m/s urtano in modo anelastico altri due carrelli fermi che hanno la stessa massa.
 - ► Con che velocità procederanno i carrelli dopo l'urto?
 - L'energia cinetica si conserva?

[6 m/s]

18

a su un

o istan-

inch'es-

aattrito

nclinato

vo affin-

103 N · s]

Nel mo-

ocità è di

nato? [8,0 m/s]

PROBLEMA SVOLTO

Due carrelli si muovono su un binario rettilineo e si urtano in modo elastico. Prima dell'urto uno di essi, che ha una massa di 2,0 kg, si muoveva verso destra con una velocità di 5,0 m/s, mentre il secondo (la cui massa è 1,0 kg) si spostava verso sinistra a 4,0 m/s.

▶ Quali sono le velocità dei due carrelli dopo l'urto?

■ Strategia e soluzione

- Se scegliamo come positiva la velocità verso destra (v_1) , quella verso sinistra (v_2) deve essere negativa.
- L'urto di cui si parla nel problema è elastico. Quindi si utilizza il sistema (7), che può essere risolto con i normali metodi della matematica ottenendo la soluzione:

$$\begin{cases} V_1 = \frac{2m_2v_2 + (m_1 - m_2)v_1}{m_1 + m_2} \\ V_2 = \frac{2m_1v_1 + (m_2 - m_1)v_2}{m_1 + m_2} \end{cases}.$$

· Sostituendo i valori numerici nel sistema precedente otteniamo le soluzioni:

$$\begin{cases} V_1 = \frac{2 \times (1,0 \text{ kg}) \times (-4,0 \text{ m/s}) + (2,0 \text{ kg} - 1,0 \text{ kg}) \times (5,0 \text{ m/s})}{2,0 \text{ kg} + 1,0 \text{ kg}} = \frac{-3,0 \text{ kg} \cdot \text{m/s}}{3,0 \text{ kg}} = -1,0 \frac{\text{m}}{\text{s}} \\ V_2 = \frac{2 \times (2,0 \text{ kg}) \times (5,0 \text{ m/s}) + (1,0 \text{ kg} - 2,0 \text{ kg}) \times (-4,0 \text{ m/s})}{2,0 \text{ kg} + 1,0 \text{ kg}} = \frac{24 \text{ kg} \cdot \text{m/s}}{3,0 \text{ kg}} = 8,0 \frac{\text{m}}{\text{s}} \end{cases}$$

■ Discussione

Il sistema (7) è di secondo grado e, quindi, ammette due soluzioni. Quella riportata qui sopra è la soluzione interessante dal punto di vista fisico: dopo l'urto, il carrello di massa m_1 rimbalza verso sinistra con una velocità di modulo 1,0 m/s, mentre quello di massa m_2 inverte il proprio moto viaggiando verso destra a 8,0 m/s.

L'altra soluzione è data da $V_1 = v_1$ e $V_2 = v_2$; si tratta di una soluzione matematica del sistema (6), ma non è interessante perché descrive la situazione in cui entrambi i carrelli si muovono ancora alle loro velocità iniziali, cioè l'urto non è ancora avvenuto.

Un pendolo è formato da un'asticella rigida, di lunghezza l e massa trascurabile, e da una sferetta di massa m=1,0 kg. Il pendolo viene lasciato libero di muoversi partendo dalla posizione $\theta=90^{\circ}$ rispetto alla verticale. Quando arriva alla posizione $\theta=0$ urta elasticamente contro una massa M=2,13 kg posta in quiete su un piano orizzontale. La massa M comincia a muoversi con velocità $v\mu=2,0$ m/s.

► Calcola il valore della lunghezza *l* del pendolo. [0,50 m]

6 GLI URTI OBLIQUI

- In un urto elastico tra due biglie identiche, una biglia colpisce l'altra inizialmente ferma. Dopo l'urto, le due biglie si muovono rispettivamente alle velocità di 2,5 m/s e 4,2 m/s.
 - ► Che angolo formano tra di loro le direzioni delle velocità delle biglie dopo l'urto?
 - Quanto valeva la velocità della biglia in movimento prima dell'urto?

90°; 4,9 m/s

- Una palla da biliardo urta elasticamente una seconda palla identica ferma. Dopo l'urto, le due palle si muovono in direzioni che formano angoli di 45° con la direzione di moto iniziale della prima palla e la velocità di una di esse è di 4,6 m/s.
 - ► Calcola il valore della velocità dell'altra palla dopo l'urto.

