

Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

Shayre Zhu

Jeff Sun

Mours ru

TEST REPORT

Report Reference No.....: TRE1612009803 R/C......: 22756

FCC ID.....: 2AKO6ADC01

Applicant's name.....: Shenzhen AlldoCube Technology and Science Co.,Ltd

Address...... Building No.1,Suwang Industrial Park,Xiahenglang Dalang,

Longhua District, Shenzhen, China

Manufacturer...... Shenzhen AlldoCube Technology and Science Co.,Ltd

Address...... Building No.1,Suwang Industrial Park,Xiahenglang Dalang,Longhua

District, Shenzhen, China

Test item description: Tablet PC

Trade Mark ALLDOCUBE, WELLSENSE

Model/Type reference..... i15 TD

Listed Model(s) i15 T、i15 TC、iWork10 ultimate

Standard: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of receipt of test sample............ Dec. 16, 2016

Date of testing...... Dec. 19, 2016- Dec. 29, 2016

Date of issue...... Dec. 30, 2016

Result...... PASS

Compiled by

(position+printedname+signature)...: File administrators Shayne Zhu

Supervised by

(position+printedname+signature)....: Project Engineer Jeff Sun

Approved by

(position+printedname+signature)....: RF Manager Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd.

Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.1.	Applicable Standards	3
1.2.	Report version	3
<u>2.</u>	TEST DESCRIPTION	4
		_
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Operation state	6
3.4.	EUT configuration	6
3.5.	Modifications	6
<u>4.</u>	TEST ENVIRONMENT	7
4.1.	Address of the test laboratory	7
4.2.	Test Facility	7
4.3.	Equipments Used during the Test	8
4.4.	Environmental conditions	9
4.5.	Statement of the measurement uncertainty	9
<u>5.</u>	TEST CONDITIONSAND RESULTS	10
5.1.	Antenna requirement	10
5.2.	Conducted Emission (AC Main)	11
5.3.	Conducted Peak Output Power	14
5.4.	Power Spectral Density	15
5.5.	6dB bandwidthand	17
5.6.	Restricted band	19
5.7.	Band edge and Spurious Emission (conducted)	21
5.8.	Spurious Emission (radiated)	23
<u>6.</u>	TEST SETUP PHOTOS OF THE EUT	28
7.	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	29
<u></u>	<u> </u>	

1. Test standards and Report version

1.1. Applicable Standards

The tests were performed according to following standards: FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

<u>KDB558074 D01 DTS Meas Guidance v03r05:</u>Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating under § 15.247

1.2. Report version

Version No.	Date of issue	Description
00	Dec. 30, 2016	Original

2. Test Description

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
Line Conducted Emission (AC Main)	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
Power Spectral Density	15.247 (e)	Pass
6dB Bandwidth	15.247 (a)(2)	Pass
Restricted band	15.247(d)/15.205	Pass
Spurious Emission	15.247(d)/15.209	Pass

Note: The measurement uncertainty is not included in the test result.

3. **Summary**

3.1. Client Information

Applicant:	Shenzhen AlldoCube Technology and Science Co.,Ltd
Address:	Building No.1,Suwang Industrial Park,Xiahenglang Dalang,Longhua District, Shenzhen,China
Manufacturer:	Shenzhen AlldoCube Technology and Science Co.,Ltd
Address:	Building No.1,Suwang Industrial Park,Xiahenglang Dalang,Longhua District, Shenzhen,China

3.2. Product Description

Name of EUT	Tablet PC
Trade Mark:	ALLDOCUBE,WELLSENSE
Model No.:	i15 TD
Listed Model(s):	i15 T、i15 TC、iWork10 ultimate
Power supply:	AC 120V/60Hz
Adapter information:	Model:FJ-SW1260502000UU
	Input:100-240V~50/60Hz,0.4A Max
	Output:5V,2000mA
Bluetooth	
Version:	Supported BT4.0+BLE
Modulation:	GFSK
Operation frequency:	2402MHz - 2480MHz
Channel number:	40
Channel separation:	2MHz
Antenna type:	Internal Antenna
Antenna gain:	1.8dBi

> Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channel which were tested. the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above gray bottom.

	<u> </u>
Channel	Frequency (MHz)
00	2402
02	2404
i i	:
19	2440
i	:
38	2478
39	2480

Test mode

Fo	r R	F	test	itan	10
		. —	เษรเ	пеп	113

The engineering test program was provided and enabled to make EUT continuous transmit(duty cycle>98%).

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For RF test axis

EUT in each of three orthogonal axis emissions had been tested ,but only the worst case (X axis) data Recorded in the report.

3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- supplied by the lab

	Manufacturer :	1
	Model No.:	1
	Manufacturer:	/
	Model No.:	1

3.5. Modifications

No modifications were implemented to meet testing criteria.

4. Test Environment

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089

4.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: February 28, 2015. Valid time is until February 27, 2018.

A2LA-Lab Cert. No. 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. Valid time is until December 31, 2016.

FCC-Registration No.: 317478

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 317478, Renewal date Jul. 18, 2014, valid time is until Jul. 18, 2017.

IC-Registration No.: 5377A&5377B

The 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A on Dec. 31, 2013, valid time is until Dec. 31, 2016.

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B on Dec.03, 2014, valid time is until Dec.03, 2017.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

4.3. Equipments Used during the Test

Line C	Line Conducted Emission (AC Main)				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	EMI Test Receiver	R&S	ESCI	101247	2016/11/13
2	Artificial Mains	Shwarzbeck	NNLK 8121	573	2016/11/13
3	Pulse Limiter	R&S	ESH3-Z2	101488	2016/11/13
4	Test Software	R&S	ES-K1	N/A	N/A
5	Test cable	ENVIROFLEX	3651	1101902	2016/11/13

Maximum Peak Output Power / Power Spectral Density / 6dB Bandwidth / Band Edge Compliance of RF Emission / Spurious RF Conducted Emission Item Test Equipment Manufacturer Model No. Serial No. Last Cal 1 Rohde&Schwarz **FSP** 1164.4391.40 2016/11/13 Spectrum Analyzer 2 Power Meter Anritsu ML2480B 100798 2016/11/13 3 Power Sensor Anritsu MA2411B 100258 2016/11/13 4 Test cable **FARPU** MCX-J N/A 2016/11/13 Temporary antenna 5 **D-LENP** NJ-SMAK N/A 2016/11/13 connector

NOTE: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

Radia	Radiated Emission				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	EMI Test Receiver	Rohde&Schwarz	ESI 26	100009	2016/11/13
2	RF Test Panel	Rohde&Schwarz	TS / RSP	335015/ 0017	N/A
3	EMI Test Software	Rohde&Schwarz	ESK1	N/A	N/A
4	Loop Antenna	Rohde&Schwarz	HZ-9	838622\013	2016/11/13
5	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	2016/11/13
6	Horn Antenna	ShwarzBeck	9120D	1011	2016/11/13
7	Broadband Horn Antenna	Shwarzbeck	BBHA9170	BBHA917047 2	2016/11/13
8	Preamplifier	Shwarzbeck	BBV9742	9742-196	2016/11/13
9	Broadband Preamplifer	Shwarzbeck	BBV 9721	9721-102	2016/11/13
10	Broadband Preamplifer	Shwarzbeck	BBV 9718	9718-247	2016/11/13
11	Turn Table	MATURO	TT2.0	/	N/A
12	Antenna Mast	MATURO	TAM-4.0-P	/	N/A
13	EMI Test Software	Audix	E3	N/A	N/A
14	Test Software	R&S	ES-K1	N/A	N/A
15	Test cable	Siva Cables Italy	RG 58A/U	W14.02	2016/11/13

The Cal.Interval was one year

4.4. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C	
lative Humidity:	30~60 %	
Air Pressure:	950~1050mba	

4.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01"Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1"and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

Test Items	MeasurementUncertainty	Notes
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	1.60 dB	(1)
Radiated spurious emission 9KHz-40 GHz	2.20 dB	(1)
Conducted Emission 9KHz-30MHz	3.39 dB	(1)
Radiated Emission 30~1000MHz	4.24 dB	(1)
Radiated Emissio 1~18GHz	5.16 dB	(1)
Radiated Emissio 18-40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

5. Test Conditionsand Results

5.1. Antenna requirement

REQUIREMENT:

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

TEST RESULTS

The antenna is integral antenna, the best case gain of the antenna is 1.8dBi, please refer to the below antenna photo.

5.2. Conducted Emission (AC Main)

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207:

Fraguency range (MHz)	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedancestabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for themeasuring equipment.
- 4. The peripheral devices are also connected to the main power through aLISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor,was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were foldedback and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHzusing a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

5.3. Conducted Peak Output Power

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3): 30dBm:

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.10: 2013and KDB 558074 D01 for compliance to FCC 47CFR 15.247requirements.
- 2. The maximum peak conducted output power may be measured using a broadband peak RF power meter.
- 3. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector
- 4. Record the measurement data.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	7.67		
BT-BLE	19	7.54	30.00	Pass
	39	6.79		

5.4. Power Spectral Density

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e):

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input,
- 2. Configurethe spectrum analyzer as shown below:

Center frequency=DTS channel center frequency

Span =1.5 times the DTS bandwidth

 $\overrightarrow{RBW} = 3 \text{ kHz} \le RBW \le 100 \text{ kHz}, VBW \ge 3 \times RBW$

Sweep time = auto couple

Detector = peak

Trace mode = max hold

- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- 4. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 5. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Туре	Channel	Power SpectralDensity(dBm/3KHz)	Limit (dBm/3KHz)	Result	
	00	-9.90		Pass	
BT-BLE	19	-7.47	8.00		
	39	-10.43			

Page 16 of 29

Test plot as follows:

Issued: 2016-12-30

5.5. 6dB bandwidthand

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2):

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- Configure the spectrum analyzer as shown below (enter all losses between the transmitter output andthe spectrum analyzer).

Center Frequency =DTS channel center frequency

Span=2 x DTS bandwidth

RBW = 100 kHz, VBW ≥ 3 × RBW

Sweep time= auto couple

Detector = Peak

Trace mode = max hold

- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission, andrecord the pertinent measurements.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Туре	Channel	6dB Bandwidth (KHz)	Limit (KHz)	Result	
	00	703.30			
BT-BLE	19	706.20	≥500	Pass	
	39	712.00			

Test plot as follows:

5.6. Restricted band

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

- 1) The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2) The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated360 degrees to determine the position of the maximum emission level.
- The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4) The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. Thisis repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow: RBW=1MHz, VBW=3MHz Peak detetor for Peak value RBW=1MHz, VBW=3MHz RMS detetor for Average value.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Note:

1) Final level= Read level + Antenna Factor+ Cable Loss- Preamp Factor

BT-BLE	BT-BLE						CH00			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value	
2310.00	34.89	27.27	6.62	37.65	31.13	74.00	-42.87	Horizontal	Peak	
2390.03	35.30	27.53	6.75	37.87	31.71	74.00	-42.29	Horizontal	Peak	
2399.98	39.82	27.57	6.77	37.90	36.26	-	ı	Horizontal	Peak	
2310.00	36.31	27.27	6.62	37.65	32.55	74.00	-41.45	Vertical	Peak	
2390.03	36.28	27.53	6.75	37.87	32.69	74.00	-41.31	Vertical	Peak	
2399.98	37.92	27.57	6.77	37.90	34.36	-	-	Vertical	Peak	
2310.00	29.19	27.27	6.62	37.65	25.43	54.00	-28.57	Horizontal	Average	
2390.03	27.89	27.53	6.75	37.87	24.30	54.00	-29.70	Horizontal	Average	
2399.98	35.79	27.57	6.77	37.90	32.23	-	-	Horizontal	Average	
2310.00	29.62	27.27	6.62	37.65	25.86	54.00	-28.14	Vertical	Average	
2390.03	28.85	27.53	6.75	37.87	25.26	54.00	-28.74	Vertical	Average	
2399.98	33.76	27.57	6.77	37.90	30.20	-	-	Vertical	Average	

BT-BLE	BT-BLE							CH39			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value		
2483.50	35.93	27.85	6.83	37.87	32.74	74.00	-41.26	Horizontal	Peak		
2500.00	35.57	27.90	6.84	37.87	32.44	74.00	-41.56	Horizontal	Peak		
2483.50	36.36	27.85	6.83	37.87	33.17	74.00	-40.83	Vertical	Peak		
2500.00	35.93	27.90	6.84	37.87	32.80	74.00	-41.20	Vertical	Peak		
2483.50	28.86	27.85	6.83	37.87	25.67	54.00	-28.33	Horizontal	Average		
2500.00	28.81	27.90	6.84	37.87	25.68	54.00	-28.32	Horizontal	Average		
2483.50	29.02	27.85	6.83	37.87	25.83	54.00	-28.17	Vertical	Average		
2500.00	29.40	27.90	6.84	37.87	26.27	54.00	-27.73	Vertical	Average		

5.7. Band edge and Spurious Emission (conducted)

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Establish a reference level by using the following procedure

Center frequency=DTS channel center frequency

The span = 1.5 times the DTS bandwidth.

RBW = 100 kHz, VBW ≥ 3 x RBW

Detector = peak, Sweep time = auto couple, Trace mode = max hold

Allow trace to fully stabilize

Use the peak marker function to determine the maximum PSD level

Note: the channel found to contain the maximum PSD level can be used to establish the reference level.

3. Emission level measurement

Set the center frequency and span to encompass frequency range to be measured

RBW = 100 kHz, VBW \geq 3 x RBW

Detector = peak, Sweep time = auto couple, Trace mode = max hold

Allow trace to fully stabilize

Use the peak marker function to determine the maximum amplitude level.

- 4. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- 5. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band excluding restricted frequency bands) are attenuated by at least the minimum requirements specified (at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz). Report the three highest emissions relative to the limit.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Issued: 2016-12-30

5.8. Spurious Emission (radiated) **LIMIT**

FCC CFR Title 47 Part 15 Subpart C Section 15.209

Frequency	Limit (dBuV/m @3m)	Value	
30MHz-88MHz	40.00	Quasi-peak	
88MHz-216MHz	43.50	Quasi-peak	
216MHz-960MHz	46.00	Quasi-peak	
960MHz-1GHz	54.00	Quasi-peak	
Above 1GHz	54.00	Average	
Above TOTIZ	74.00	Peak	

TEST CONFIGURATION

9KHz ~30MHz

30MHz ~ 1GHz

Above 1GHz

TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna.
- 5. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1GHz, RBW=120KHz, VBW=300KHz, Sweep=auto, Detector function=QP, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, theemission measurement will be repeated using the quasi-peak detector and reported.
 - (3) Above 1GHz, RBW=1MHz, VBW=3MHz Peak detetor for Peak value RBW=1MHz, VBW=3MHz RMS detetor for Average value.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

☐ Not Applicable
• •

Note:

- 1) Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2) "*", means this data is the too weak instrument of signal is unable to test.
- 3) The emission levels of other frequencies are very lower than the limit and not show in test report.

➢ 9kHz ~ 30MHz

The EUT was pre-scanned the frequency band (9KHz~30MHz), found the radiated level lower than the limit, so don't show on the report.

> 30MHz ~ 1GHz

olarization:				Vert	Vertical				
Level [dBµV/m]									
80						!	·		
70			-‡				· 	+	
60		_ ; _ ; _ ;	- 						
			į			į	i i		
50						-		· <u>† </u>	
40		<u> </u>				<u>-</u>	. .		
30	i i		į			į	i i	الملاملين	
X :	/X /\	\	- +		X		الملاسطين أأ	A Company of the State of the S	
20	<i>-</i> /			k-ti	vhish.		Adaba Tari	. ; ; ; ; - ;	
10			_ <u> </u>	~~~~ <u>~~</u> ~~	upporting.	!			
						į			
30M 40M	50M 60M	70M 1	00M	200	DM	300M 4	00M 500M 6	00M 800M 1G	
				Frequency [H	lz]				
x x x MES GM16	12196073 re	d							
Frequency	Level	Transd	Limit	Margin	Det.	Height	Azimuth	Polarizatio	
MHz	dBµV/m	dB	dBµV/m	dB		cm	deg		
			40.0	14.9	OP	100.0	153.00	VERTICAL	
30.000000	25.10	-18.6	40.0	14.5	QF				
30.000000 51.340000	25.10 26.70	-18.6 -16.3	40.0	13.3	QP	100.0	50.00	VERTICAL	
					_		50.00 78.00	VERTICAL VERTICAL	
51.340000 61.040000	26.70	-16.3	40.0	13.3	QP	100.0			
51.340000	26.70 29.30	-16.3 -17.4	40.0	13.3 10.7	QP QP	100.0 100.0	78.00	VERTICAL	

> Above 1GHz

BT-BLE					CH00				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
1998.48	47.80	26.10	6.27	37.30	42.87	74.00	-31.13	Vertical	
3883.62	36.87	29.31	8.62	38.18	36.62	74.00	-37.38	Vertical	
4809.50	35.04	31.09	9.55	36.93	38.75	74.00	-35.25	Vertical	
7209.02	31.48	35.97	11.87	35.07	44.25	74.00	-29.75	Vertical	Peak
1998.48	48.82	26.10	6.27	37.30	43.89	74.00	-30.11	Horizontal	reak
3384.85	37.43	28.66	7.94	38.52	35.51	74.00	-38.49	Horizontal	
4809.50	33.43	31.09	9.55	36.93	37.14	74.00	-36.86	Horizontal	
7209.02	31.23	35.97	11.87	35.07	44.00	74.00	-30.00	Horizontal	

BT-BLE					CH19				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
1998.48	48.71	26.10	6.27	37.30	43.78	74.00	-30.22	Vertical	
3241.50	38.51	28.60	7.77	38.27	36.61	74.00	-37.39	Vertical	
4883.52	33.25	31.14	9.59	36.73	37.25	74.00	-36.75	Vertical	
7319.96	31.79	36.07	11.99	34.92	44.93	74.00	-29.07	Vertical	Peak
1998.48	47.25	26.10	6.27	37.30	42.32	74.00	-31.68	Horizontal	reak
3690.85	37.58	29.02	8.37	38.25	36.72	74.00	-37.28	Horizontal	
4883.52	33.52	31.14	9.59	36.73	37.52	74.00	-36.48	Horizontal	
7319.96	31.57	36.07	11.99	34.92	44.71	74.00	-29.29	Horizontal	

DT DI C					CH30				
BT-BLE	ı	Ī			CH39		1		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
1998.48	48.54	26.10	6.27	37.30	43.61	74.00	-30.39	Vertical	
3719.15	36.81	29.06	8.41	38.25	36.03	74.00	-37.97	Vertical	
4958.68	33.54	31.18	9.64	36.52	37.84	74.00	-36.16	Vertical	
7432.62	32.14	36.15	12.18	34.85	45.62	74.00	-28.38	Vertical	Peak
1998.48	47.99	26.10	6.27	37.30	43.06	74.00	-30.94	Horizontal	reak
3824.76	36.29	29.23	8.53	38.22	35.83	74.00	-38.17	Horizontal	
4958.68	33.39	31.18	9.64	36.52	37.69	74.00	-36.31	Horizontal	
7432.62	31.70	36.15	12.18	34.85	45.18	74.00	-28.82	Horizontal	

Remark^{*}

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

6. Test Setup Photos of the EUT

Conducted Emission(AC Mains)

Radiated Emission

7. External and Internal Photos of the EUT

Reference to Test Report TRE1612009801.

.....End of Report.....