Take-home Exam 1

- Exam questions are made available on CANVAS on February 17, 2023 (Friday).
- Please "type" answers and submit a PDF file by 11:59pm on March 3, 2023 (Friday).
- Late submission suffers from 20% reduction from the total score.
- Open book. No discussion or collaboration is allowed.
- Any clarification question should be posted on CANVAS Forum for the sake of sharing (and fairness). No private inquiry is answered.

CS5321 Network Security Week6: Honeypot and Threat Intelligence

Daisuke MASHIMA

http://www.mashima.us/daisuke/index.html 2022/23 Sem 2

Agenda

- What is Honeypot?
 - How would they help us?
 - Types of honeypots
- Threat Intelligence Analysis Using Low-interaction Honeypot Data
- Automated Utilization of Honeypot Data for Securing Largescale System

What is Honeypot?

According to Google:

honeypot

/'h∧nippt/ •0

noun

noun: honeypot; plural noun: honeypots; noun: honey-pot; plural noun: honey-pots

a container for honey.

"an earthenware honeypot"

- an enticing source of pleasure or reward.
 - "massive increases in government purchases became a honeypot for the unscrupulous"
- a place to which many people are attracted.
- "the tourist honeypot of St Ives"

In cyber security domain, "honeypot" is a dummy system or device for attracting cyber attackers

- Should look like a valuable, real system
- Intentionally exposed to attackers and made vulnerable

How Honeypots help us

- Mislead and trap attackers to detect indication of upcoming attacks and buy time before they mount real attacks
- Collect data (e.g., system logs and network traces) while attackers are scanning and attacking the system
 - Derive intelligence about attackers
 - Where are they coming from?
 - What tool / artifact they are using?
 - How the attacks progress?
 - Any pattern / trend?
 - Collected data can be used to evaluate the security
- Help us defend the system
 - E.g., Tuning firewall and intrusion detection systems

Types of Honeypot

- Low-interaction
 - Produce minimal responses for some protocols/services
 - Mainly used for statistical evaluation
 - Easy to implement and deploy
 - Less resource demanding
- High-interaction
 - Emulate realistic system to attack
 - Consisting of dummy/decoy devices as well as topology
 - Can collect more data, and enables observation for longer time period because of better realism
 - Difficult to implement
 - Requires more resource

Example of Low-interaction Honeypot

- Industrial Control Systems (ICS) honeypot discussed in IEEE Globecom 2019 paper
 - TCP listeners for popular smart grid related ports and dummy servers
 - Open popular ICS protocol ports
 - IEC 61850 MMS or Siemens S7 (port 102), Modbus TCP (port 502), Niagara Fox (port 1911 and 4911), ENIP (port 2222 and 44818), IEC 60870-5-104 (port 2404), DNP3 (port 19999 and 20000), and BACnet (port 47808)
 - Runs simple server modules for IEC 104 and IEC 61850 MMS
 - Also opens SSH port

Example of High-interaction Honeypot

- Honeypot emulating whole smart grid monitoring and control infrastructure
 - Including virtualized workstations, servers, and standardcompliant industrial control system devices
 - VPN interface as an entry point for attackers
 - Deception by emulating device behaviours and characteristics
 - Secure logging
 - Can be used as cyber range

(URL: https://www.illinois.adsc.com.sg/spotify/index.html)

Open-source implementations

- Cowrie
 - High-interaction, SSH honeypot
- CONPOT
 - Low-interaction industrial control systems honeypot
- Honeyd
 - Framework to creates virtual honeypots
 - Can spoof OS fingerprinting
- Many others!
 - https://github.com/paralax/a wesome-honeypots

Figure 1: Honeyd receives traffic for its virtual honeypots via a router or Proxy ARP. For each honeypot, Honeyd can simulate the network stack behavior of a different operating system.

Honeypot vs Decoy / Deception Network

- Deploy indentically-looking "decoy" (virtual) devices to confuse attackers
- Unlike honeypot, decoy network is deployed in the real system
- Works as "smoke screen" and "tripwire"
- Example: "DecIED: Scalable decoy network technology for IEC 61850 based substations" in Proc. of ACM CPSS 2020

Threat intelligence analysis using low-interaction honeypot data (IEEE Globecom 2019)

Industrial Control Systems Honeypot

- TCP listeners for popular smart grid related ports and dummy servers that are deployed on Amazon Cloud.
- Simple smart grid honeypot instances are deployed in multiple geographic locations
 - Singapore, US (Ohio), Canada, Germany, and Brazil
- Shodan.io indexed our honeypots as ICS devices, not as honeypot.

Frequently Asked Questions

1. How does it work?

The defining characteristics of known honeypots were extracted and used to create a tool to let you identify honeypots! The probability that an IP is a honeypot is captured in a "Honeyscore" value that can range from 0.0 to 1.0. This is still a prototype/ work-in-progress so if you find some problems please email me at jmath@shodan.io

Shodan.io

Network Traces Collected

- Runs Wireshark for capturing network traffic
- Collection period so far is 6+ months
 - Sep., 2017 Mar., 2018
 - Total file size: 6GB
- For each source IP address, Maxmind's GeoLite library is used for deriving country and (if available) city names.

Findings from Collected Data

Protocol specific accesses: Siemens S7

No.	Time	Source	Destination	Protocol	Length Info
	48 239.86918	32425 118.193.31.181	172.31.13.26	TCP	66 52484 → 102 [RST, ACK] Seq=1 Ack=1 Win=29312 Len=0 TSval=2359811058 TSecr=2242123772
	49 239.89380	33719 118.193.31.181	172.31.13.26	TCP	74 53155 → 102 [SYN] Seq=0 Win=29200 Len=0 MSS=1460 SACK_PERM=1 TSval=2359811064 TSecr=0 WS=128
	50 239.89382	25945 172.31.13.26	118.193.31.181	TCP	74 102 → 53155 [SYN, ACK] Seq=0 Ack=1 Win=26847 Len=0 MSS=8961 SACK_PERM=1 TSval=2242124598 TSec
	51 240.16808	82090 118.193.31.181	172.31.13.26	TCP	66 53155 → 102 [ACK] Seq=1 Ack=1 Win=29312 Len=0 TSval=2359811132 TSecr=2242124598
	52 240.17484	14196 118.193.31.181	172.31.13.26	COTP	88 CR TPDU src-ref: 0x0004 dst-ref: 0x0000
	53 240.17485	58058 172.31.13.26	118.193.31.181	TCP	66 102 → 53155 [ACK] Seq=1 Ack=23 Win=26880 Len=0 TSval=2242124668 TSecr=2359811134
	54 240.17491	11550 172.31.13.26	118.193.31.181	COTP	88 CC TPDU src-ref: 0x0025 dst-ref: 0x0004
	55 240.44925	59779 118.193.31.181	172.31.13.26	TCP	66 53155 → 102 [ACK] Seq=23 Ack=23 Win=29312 Len=0 TSval=2359811203 TSecr=2242124668
	56 240.45298	86825 118.193.31.181	172.31.13.26	S7COMM	91 ROSCTR:[Job] Function:[Setup communication]
	57 240.45310	07000 172.31.13.26	118.193.31.181	TCP	66 102 → 53155 [FIN, ACK] Seq=23 Ack=48 Win=26880 Len=0 TSval=2242124737 TSecr=2359811204
	58 240.73722	21375 118.193.31.181	172.31.13.26	S7COMM	99 ROSCTR:[Userdata] Function:[Request] -> [CPU functions] -> [Read SZL] ID=0x0011 Index=0x0001
	59 240.7372	52152 172.31.13.26	118.193.31.181	TCP	54 102 → 53155 [RST] Seq=24 Win=0 Len=0
	60 240.73726	54498 118.193.31.181	172.31.13.26	S7COMM	99 ROSCTR:[Userdata] Function:[Request] -> [CPU functions] -> [Read SZL] ID=0x001c Index=0x0001
L	61 240.73726	58782 172.31.13.26	118.193.31.181	TCP	54 102 → 53155 [RST] Seq=24 Win=0 Len=0
	62 240.76453	32932 118.193.31.181	172.31.13.26	TCP	74 36017 → 102 [SYN] Seq=0 Win=29200 Len=0 MSS=1460 SACK_PERM=1 TSval=2359811280 TSecr=0 WS=128
	63 240.76455	50531 172.31.13.26	118.193.31.181	TCP	74 102 → 36017 [SYN, ACK] Seq=0 Ack=1 Win=26847 Len=0 MSS=8961 SACK_PERM=1 TSval=2242124815 TSec
	C4 044 0343		470 34 43 06	TCD	CC 30047 400 E46W3 C 4 4 1 4 W 00340 : 0 TC 1 0350044340 TC 004040404

- Frame 56: 91 bytes on wire (728 bits), 91 bytes captured (728 bits) on interface 0
- ▶ Ethernet II, Src: 02:85:b5:68:62:bf (02:85:b5:68:62:bf), Dst: 02:d0:76:89:ba:1b (02:d0:76:89:ba:1b)
- ▶ Internet Protocol Version 4, Src: 118.193.31.181, Dst: 172.31.13.26
- ▶ Transmission Control Protocol, Src Port: 53155, Dst Port: 102, Seq: 23, Ack: 23, Len: 25
- ▶ TPKT, Version: 3, Length: 25
- ▶ ISO 8073/X.224 COTP Connection-Oriented Transport Protocol
- S7 Communication
 - ◆ Header: (Job)

 Protocol Id: 0x32

ROSCTR: Job (1)

Redundancy Identification (Reserved): 0x0000

Protocol Data Unit Reference: 0

Parameter length: 8 Data length: 0

■ Parameter: (Setup communication)

Function: Setup communication (0xf0)

Reserved: 0x00

Max AmQ (parallel jobs with ack) calling: 1 Max AmQ (parallel jobs with ack) called: 1

PDU length: 480

Findings from Collected Data

Protocol specific accesses: IEC 60870-5-104

No.	Time Source	Destination	Protocol	Length Info
	430 2649.5953792 125.212.217.21		TCP	54 24366 → 2404 [SYN] Seq=0 Win=28460 Len=0
	431 2649.5954113 172.31.27.32	125.212.217.214	TCP	58 2404 → 24366 [SYN, ACK] Seq=0 Ack=1 Win=26883 Len=0 MSS=8961
	432 2649.8392873 125.212.217.21	4 172.31.27.32	TCP	54 24366 → 2404 [RST] Seg=1 Win=0 Len=0
Г	433 2651.2909413 125.212.217.21	4 172.31.27.32	TCP	74 60446 → 2404 [SYN] Seq=0 Win=29200 Len=0 MSS=1460 SACK PERM=1 TSval=93908726 TSec
	434 2651.2909821 172.31.27.32	125.212.217.214	TCP	74 2404 → 60446 [SYN, ACK] Seq=0 Ack=1 Win=26847 Len=0 MSS=8961 SACK PERM=1 TSval=36
	435 2651.5405742 125.212.217.21	4 172.31.27.32	TCP	66 60446 → 2404 [ACK] Seq=1 Ack=1 Win=29312 Len=0 TSval=93908788 TSecr=3646049877
	436 2651.7401186 125.212.217.21	4 172.31.27.32	104apci	72 <- U (TESTFR act)
	437 2651.7401567 172.31.27.32	125.212.217.214	TCP	66 2404 → 60446 [ACK] Seq=1 Ack=7 Win=26880 Len=0 TSval=3646049989 TSecr=93908838
	438 2651.7402785 172.31.27.32	125.212.217.214	104apci	72 -> U (TESTFR con)
	439 2651.9908703 125.212.217.21	4 172.31.27.32	TCP	66 60446 → 2404 [ACK] Seq=7 Ack=7 Win=29312 Len=0 TSval=93908901 TSecr=3646049989
	443 2655.2901590 125.212.217.21	4 172.31.27.32	104apci	72 <- U (STARTDT act)
	444 2655.2905703 172.31.27.32	125.212.217.214	104apci	72 -> U (STARTDT con)
	445 2655.5388083 125.212.217.21	4 172.31.27.32	TCP	66 60446 → 2404 [ACK] Seq=13 Ack=13 Win=29312 Len=0 TSval=93909788 TSecr=3646050877
	446 2659.1600522 125.212.217.21	4 172.31.27.32	104asdu	82 <- I (0,0) ASDU=65535 C_IC_NA_1 Act IOA=0
	447 2659.1632676 172.31.27.32	125.212.217.214	104asdu	82 -> I (0,1) ASDU=65535 C IC NA 1 ActCon IOA=0
	448 2659.4132175 125.212.217.21	4 172.31.27.32	TCP	66 60446 → 2404 [ACK] Seq=29 Ack=29 Win=29312 Len=0 TSval=93910757 TSecr=3646051845
	449 2659.4132515 172.31.27.32	125.212.217.214	104asdu	90 -> I (1,1) ASDU=65535 M_ME_NB_1 Spont IOA[3]=1-3
	450 2659.6622959 125.212.217.21	4 172.31.27.32	TCP	66 60446 → 2404 [ACK] Seq=29 Ack=53 Win=29312 Len=0 TSval=93910819 TSecr=3646051908
	464 0674 4644606 470 04 07 00	105 010 017 014	TCD	CC 0404 - C0446 [ETH ACH2 C E2 4-6 00 14- 00000 1 0 TC1 20400EEEEE TC 0204

Activate connection and send interrogation, then close.

```
▶ Frame 449: 90 bytes on wire (720 bits), 90 bytes captured (720 bits) on interface 0
▶ Ethernet II, Src: 02:cf:4e:7b:d8:47 (02:cf:4e:7b:d8:47), Dst: 02:87:35:92:69:b9 (02:87:35:92:69:b9)
▶ Internet Protocol Version 4, Src: 172.31.27.32, Dst: 125.212.217.214
Darransmission Control Protocol, Src Port: 2404, Dst Port: 60446, Seq: 29, Ack: 29, Len: 24
▷ IEC 60870-5-104-Apci: -> I (1,1)
■ IEC 60870-5-104-Asdu: ASDU=65535 M_ME_NB_1 Spont IOA[3]=1-3 'measured value, scaled value'
     TypeId: M ME NB 1 (11)
    1... = SQ: True
     .000 0011 = NumIx: 3
     ..00 0011 = CauseTx: Spont (3)
     .0.. .... = Negative: False
    0... = Test: False
    OA: 0
     Addr: 65535
  △ IOA: 1
       IOA: 1
       Value: -32768
```

Observed Attack Attempts

Modbus scanning

m	nodbus										
lo.	Time	Source	Destination	Protocol L	ength Inf	fo					
	813 3255.5487985	. 80.82.77.33	172.31.27.32	Modbus/TCP	74	Query: Trans:	0; Unit:	0, Fin	c: 17	: Report S	lave ID
	822 3257.2705397	. 80.82.77.33	172.31.27.32	Modbus/TCP	74	Query: Trans:	0; Unit:	1, Fin	c: 17	Report S	lave ID
	829 3259.3186702	. 80.82.77.33	172.31.27.32	Modbus/TCP	74	Query: Trans:	0; Unit:	2, Fin	c: 17	: Report S	lave ID
	838 3259.8358055	. 80.82.77.33	172.31.27.32	Modbus/TCP	74	Query: Trans:	0; Unit:	3, Fin	c: 17	: Report S	lave ID
	845 3260.3358514	. 80.82.77.33	172.31.27.32	Modbus/TCP	74	Query: Trans:	0; Unit:	4, Fin	c: 17	: Report S	lave ID
	858 3261.8684841	. 80.82.77.33	172.31.27.32	Modbus/TCP	74	Query: Trans:	0; Unit:	5, Fin	c: 17	: Report S	lave ID
	865 3262.2046933	. 80.82.77.33	172.31.27.32	Modbus/TCP	74	Query: Trans:	0; Unit:	6, Fin	c: 17	: Report S	lave ID
	872 3262.4927479	. 80.82.77.33	172.31.27.32	Modbus/TCP	74	Query: Trans:	0; Unit:	7, Fin	c: 17	: Report S	lave ID
	881 3262.6866683	. 80.82.77.33	172.31.27.32	Modbus/TCP	74	Query: Trans:	0; Unit:	8, Fin	c: 17	: Report S	lave ID
	889 3262.8781531	. 80.82.77.33	172.31.27.32	Modbus/TCP	74	Query: Trans:	0; Unit:	9, Fin	c: 17	: Report S	lave ID
	896 3263.2850778	. 80.82.77.33	172.31.27.32	Modbus/TCP	74	Query: Trans:	0; Unit:	10, F	c: 17	: Report S	lave ID
	905 3263.6244282	. 80.82.77.33	172.31.27.32	Modbus/TCP	74	Query: Trans:	0; Unit:	11, F	c: 17	Report S	lave ID
	916 3264.1816419	. 80.82.77.33	172.31.27.32	Modbus/TCP	74	Query: Trans:	0; Unit:	12, F	c: 17	: Report S	lave ID
	924 3264.3790454	. 80.82.77.33	172.31.27.32	Modbus/TCP	74	Query: Trans:	0; Unit:	13, F	c: 17	: Report S	lave ID
	932 3264.5555804	. 80.82.77.33	172.31.27.32	Modbus/TCP	74	Query: Trans:	0; Unit:	14, F	c: 17	: Report S	lave ID
	940 3264.7493250	. 80.82.77.33	172.31.27.32	Modbus/TCP	74	Query: Trans:	0; Unit:	15, F	c: 17	Report S	lave ID
	948 3264.9451120	. 80.82.77.33	172.31.27.32	Modbus/TCP	74	Query: Trans:	0; Unit:	16, F	c: 17	: Report S	lave ID
	958 3265.2351353	. 80.82.77.33	172.31.27.32	Modbus/TCP	74	Query: Trans:	0; Unit:	17, F	c: 17	: Report S	lave ID
	967 3265.9503253	. 80.82.77.33	172.31.27.32	Modbus/TCP	74	Query: Trans:	0; Unit:	18, F	c: 17	: Report S	lave ID
	976 3266.3125343	. 80.82.77.33	172.31.27.32	Modbus/TCP	74	Query: Trans:	0; Unit:	19, F	c: 17	: Report S	lave ID
	983 3266.5718321	. 80.82.77.33	172.31.27.32	Modbus/TCP	74	Query: Trans:	0; Unit:	20, F	c: 17	: Report S	lave ID
	994 3266.7485506	. 80.82.77.33	172.31.27.32	Modbus/TCP	74	Query: Trans:	0; Unit:	21, F	c: 17	: Report S	lave ID
	1001 3266.9329093	. 80.82.77.33	172.31.27.32	Modbus/TCP	74	Query: Trans:	0; Unit:	22, F	c: 17	: Report S	lave ID
	1013 3267.1272940	. 80.82.77.33	172.31.27.32	Modbus/TCP	74	Query: Trans:	0; Unit:	23, F	c: 17	: Report S	lave ID
	1022 3267.3356327	. 80.82.77.33	172.31.27.32	Modbus/TCP	74	Query: Trans:	0; Unit:	24, F	c: 17	: Report S	lave ID

Observed Attack Attempts

DNP3 scanning

No.		Time	Source	Destination	Protocol	Length	Info
Г	142	351.298393454	123.59.78.122	172.31.1.17	TCP	74	55744 → 20000 [SYN] Seq=0 Win=29200 Len=0 MSS
	143	351.298459947	172.31.1.17	123.59.78.122	TCP	74	
	144	351.536824224	123.59.78.122	172.31.1.17	TCP	66	55744 - 20000 [ACK] Seq=1 Ack=1 Win=29312 Len
	145	351.541803621	123.59.78.122	172.31.1.17	DNP 3.0	1076	from 0 to 100, len=5, Request Link Status
	146	351.541830111	172.31.1.17	123.59.78.122	TCP	66	20000 → 5744 [ACK] Seq=1 Ack=1011 Win=28928
	147	351.541873462	172.31.1.17	123.59.78.122	TCP	-	→ 55744 [FIN, ACK] Seq=1 Ack=1011 Win=2
	148	351.780693639	123.59.78.122	172.31.1.17	TCP	66	55744 → 20000 [ACK] Seq=1011 Ack=2 Win=29312
	149	351.782912996	123.59.78.122	172.31.1.17	TCP	66	55744 → 20000 [FIN, ACK] Seq=1011 Ack=2 Win=2
	150	351.782941628	172.31.1.17	123.59.78.122	TCP	66	20000 → 55744 [ACK] Seq=2 Ack=1012 Win=28928

```
▶ Frame 145: 1076 bytes on wire (8608 bits), 1076 bytes captured (8608 bits) on interface 0
```

```
Data Link Layer, Len: 5, From: 0, To: 0, DIR, PRM, Request Link Status
   Start Bytes: 0x0564
   Length: 5
   Control: 0xc9 (DIR, PRM, Request Link Status)
   1...... = Direction: Set
   .1..... = Primary: Set
   .0.... = Frame Count Bit: Not set
   .0.... = Frame Count Valid: Not set
```

.... 1001 = Control Function Code: Request Link Status (9)
Destination: 0

Destination: 0 Source: 0

CRC: 0x4c36 [correct]

■ Distributed Network Protocol 3.0

■ Data Link Layer, Len: 5, From: 0, To: 1, DIR, PRM, Request Link Status Start Bytes: 0x0564

Length: 5

■ Control: 0xc9 (DIR, PRM, Request Link Status)

1... ... = Direction: Set
.1.. ... = Primary: Set

..0. = Frame Count Bit: Not set

...0 = Frame Count Valid: Not set

.... 1001 = Control Function Code: Request Link Status (9)

Destination: 1

Source: 0

CRC: 0x8ede [correct]

Distributed Network Protocol 3.0

Multiple query requests in a single message

[▶] Ethernet II, Src: 02:9e:f5:4d:10:dd (02:9e:f5:4d:10:dd), Dst: 02:9b:b3:7d:e7:4e (02:9b:b3:7d:e7:4e)

[▶] Internet Protocol Version 4, Src: 123.59.78.122, Dst: 172.31.1.17

Darransmission Control Protocol, Src Port: 55744, Dst Port: 20000, Seq: 1, Ack: 1, Len: 1010

[■] Distributed Network Protocol 3.0

Distributed Network Protocol 3.0

Observed Attack Attempts

TCP SYN flooding attack against port 102

tcp.por	tcp.port == 102							
No.	Time	Source	Destination	Protocol Ler	ngth Info	_		
_ 499	2934.4668082	185.165.120.1	172.31.20.47	TCP	54 4045	57 → 102	[SYN] Seq=	0 Win=17602 Len=0
500	2934.4668383	172.31.20.47	185.165.120.1	TCP	58 102	. → 40457	[SYN, ACK]	Seq=0 Ack=1 Win=26883 Len=0 MSS=8961
501	2934.8696289	185.165.120.35	172.31.20.47	TCP	54 5228	80 → 102	[SYN] Seq=	0 Win=259 Len=0
502	2934.8696576	172.31.20.47	185.165.120.35	TCP	58 102	. → 52280	[SYN, ACK]	Seq=0 Ack=1 Win=26883 Len=0 MSS=8961
503	2935.4641479	172.31.20.47	185.165.120.1	TCP	58 [TCF	P Retrar si	mission] 1	02 → 40457 [SYN, ACK] Seq=0 Ack=1 Win=268
504	2935.8681077	172.31.20.47	185.165.120.35	TCP				02 → 52280 [SYN, ACK] Seq=0 Ack=1 Win=268
509	2935.9618430	185.165.120.36	172.31.20.47	TCP	54 5495	55 → 102	[SYN] Seq=	0 Win=6520 Len=0
506	2935.9618745	172.31.20.47	185.165.120.36	TCP	58 102	. → 54955	[SYN, ACK]	Seq=0 Ack=1 Win=26883 Len=0 MSS=8961
510	2936.4465638	185.165.120.1	172.31.20.47	TCP	54 6148	87 → 102	[SYN] Seq=	0 Win=91 Len=0
511	2936.4465921	172.31.20.47	185.165.120.1	TCP	58 102	. → 61487	[SYN, ACK]	Seq=0 Ack=1 Win=26883 Len=0 MSS=8961
514	2936.5786590	185.165.120.40	172.31.20.47	TCP	54 3731	12 → 102	[SYN] Seq=	0 Win=4140 Len=0
519	2936.5787018	172.31.20.47	185.165.120.40	TCP	58 102	. → 37312	[SYN, ACK]	Seq=0 Ack=1 Win=26883 Len=0 MSS=8961
518	2936.9601382	172.31.20.47	185.165.120.36	TCP	58 [TCF	P Retrar sı	mission] 1	02 → 54955 [SYN, ACK] Seq=0 Ack=1 Win=268
525	2937.2320695	185.165.120.42	172.31.20.47	TCP	54 702	. → 102 [<mark>5</mark>	YN] Seq=0	Win=365 Len=0
526	2937.2320925	172.31.20.47	185.165.120.42	TCP	58 102	. → 702 [<mark>5</mark> 1	YN, ACK] S	eq=0 Ack=1 Win=26883 Len=0 MSS=8961
527	2937.3438967	185.165.120.41	172.31.20.47	TCP	54 2883	39 → 102	[SYN] Seq=	0 Win=5544 Len=0
528	2937.3439210	172.31.20.47	185.165.120.41	TCP	58 102	. → 28839	[SYN, ACK]	Seq=0 Ack=1 Win=26883 Len=0 MSS=8961
531	. 2937.4441273	172.31.20.47	185.165.120.1	TCP	58 [TCF	P Retrar si	mission] 1	02 → 61487 [SYN, ACK] Seq=0 Ack=1 Win=268
532	2937.4641164	172.31.20.47	185.165.120.1	TCP	58 [TCF	P Retrar <mark>s</mark> i	mission] 1	02 → 40457 [SYN, ACK] Seq=0 Ack=1 Win=268
533	2937.5761374	172.31.20.47	185.165.120.40	TCP	58 [TCF	P Retrar <mark>s</mark> i	mission] 1	02 → 37312 [SYN, ACK] Seq=0 Ack=1 Win=268
536	2937.8681228	172.31.20.47	185.165.120.35	TCP	58 [TCF	P Retrar <mark>s</mark> i	mission] 1	02 → 52280 [SYN, ACK] Seq=0 Ack=1 Win=268
540	2938.1785063	185.165.120.36	172.31.20.47	TCP	54 4526	.67 → 102	[SYN] Seq=	0 Win=46 Len=0
541	2938.1785376	172.31.20.47	185.165.120.36	TCP	58 102	45267	[SYN, ACK]	Seq=0 Ack=1 Win=26883 Len=0 MSS=8961
544	2938.2321224	172.31.20.47	185.165.120.42	TCP	58 [TCF	P Retrar <mark>s</mark> i	mission] 1	02 → 702 [SYN, ACK] Seq=0 Ack=1 Win=26883
545	2938.2968816	185.165.120.1	172.31.20.47	TCP	54 4919	.90 → 102	[SYN] Seq=	0 Win=16652 Len=0
546	2938.2969072	172.31.20.47	185.165.120.1	TCP	58 102	. → 49190	[SYN, ACK]	Seq=0 Ack=1 Win=26883 Len=0 MSS=8961

Correlation among Honeypots

Germany honeypot and Brazil honeypot have strong correlation.

	Daily1	Daily2	Daily3	Daily4	Daily5
Daily1	1.000000000	0.008163411	0.57858745	0.04998651	0.01576193
_		1.000000000			
Daily3	0.578587449	-0.021304271	1.00000000	-0.04991620	-0.01918324
Daily4	0.049986508	-0.042244716	-0.04991620	1.00000000	-0.05519358
Daily5	0.015761928	0.967798589	-0.01918324	-0.05519358	1.00000000

Source IP Address	Country	Туре
88.198.50.113	Germany	Web hosting
217.20.112.139	Germany	Web hosting
212.22.93.83	Russia	rental server
78.46.247.60	Germany	???
179.188.38.251	Brazil	Cloud hosting
210.245.90.23	Vietnam	ISP?
80.82.77.33	Netherlands	Server hosting
71.6.146.185	USA	Cloud
80.82.77.139	Netherlands	Server hosting
122.114.160.220	China	Server hosting

Majority of access sources are shared between the two.

Fig. 7. Correlation in Packet Counts (Germany and Brazil)

Correlation among Honeypots

 For some pairs of honeypots, correlation can be observed with lag (Brazil and Canada)

Fig. 8. Correlation in Weekly Packet Counts with Lag (Brazil and Canada)

- No significant auto-correlation is found.
 - I.e., no periodic pattern is found

Dynamics of Sources

- Difference/Similarity over time
 - Some source IP addresses are observed throughout the data collection period

Access from Japan (Linode LLC), attempting port 102 (IEC 61850 MMS or Siemens S7) and 47808 (BACnet)

Dynamics of Sources

- Difference/Similarity among honeypots
 - Some IP addresses are observed by multiple honeypot instances

Automated utilization of Honeypot data

https://www.usenix.org/conference/nsdi19/presentation/cao

CAUDIT: Continuous Auditing of SSH Servers at Large Scale

 Addresses challenge in auditing and monitoring of SSH access to super computer center

Security for NCSA

Problem Statement

- NCSA observes 10 million SSH brute-force attack a day!
- How could we avoid overwhelming network monitors / intrusion detection systems?
 - How could we do traffic shaping?
- How could we audit internal hosts against SSH brute-force attacks?
 - What are the attack vectors?
 - Can we automate the audit in a non-intrusive way?
- Honeypot!

NCSA

netflows 💥 osquery

Implement traffic shaping for SSH traffic to real nodes

Blue Waters Science/Industry Data

Blue Waters Science/Industry Data

Blue Waters Science/Industry Data

Blue Waters Science/Industry Data

Auditor Honeypot Auditor

Continuous Auditing (CAUDIT)

SSH

database

Honeypot at Scale

Resource consumption is an issue. Could be used as stepping stone!

Number of concurrent SSH connections

Honeypot at Scale

- Use low-interaction honeypot
 - Reject all login attempt by default, and thus, attackers cannot access to NCSA via honeypot

Attack Sources

Top 5 ISP	%	Top 5 Cloud/VPN	%
China Telecom	22.36	Microsoft Azure	4.60
Indonesia Comnets	5.85	OVH	0.28
China Unicom	3.19	Linode	0.20
MCI Comm	0.13	21vianet	0.12
Infonet Comm	0.12	FrootVPN	0.03
Others: 63.12%			

China owns 7.7% of IPv4, but China ISPs are conduits for one fourth of attack attempts Particular cloud providers are conduits for a high percentage of attacks

SSH Client Tools

CVE-

2018-10933 (auth bypass)

Client	Version	Count	Release Year	<u> </u>
sshlib	0.1	76.7M	2010	Old
SSHIID	0.5.2	1.8M	2011	routers or loT devices
libssh2	1.7.0	26.8M	2016	101 devices
paramiko	2.4.0	25.1K	2017	
Go	N/A	19.4M	_	
PUTTY	N/A	20.4M		

Top 5 SSH client libraries

47% attack attempts used outdated SSH libraries released in 2010–2011.

Password Attempted

Leaked passwords are 3X more frequent than default/dictionary-based passwords

Keys Attempted

Key Fingerprint (SHA256) (Top 5)	Count
oHhjwxYH9v+ChV4VrPk6KHla6P7g443w	20,307
qOd/Gr8bWftEu8HDUaNCXA3Q/OzWMCdo	17,026
YEYlq2G0CueBnJRoSf7KzN5meQVVQFmA	9,542
+UJNI1XcTgv4BLeaZQH//L2cG5GRQJUE	8,199
oU4y6kZLH2kAdhwWU1eBJCButjeEhIwo	7,870

None of the 159 observed keys belongs to known leaked SSH key db

May have come from underground market, data breaches that were not reported.

Continuous, Non-intrusive Auditing

- Traditional auditing method is not feasible for large-scale system.
 - Utilize alert feed of IDS to identify SSH services
 - (e.g., Bro/Zeek IDS can detect SSH handshake activities)
 - Prioritize new attack vectors observed

Traffic Shaping using Black Hole Router

- Malicious IP that are aggressively generating traffic is provided to Black Hole Router
 - Avoid false positive while preventing IDS from being overwhelmed.

Benefit of Black Hole Router

Summary

- Honeypot is a tool for knowing attackers.
 - Where are they coming from?
 - How are they attacking the target?
 - Etc.
- Threat intelligence collected by honeypot can be used for fine-tuning our defence mechanisms
 - Firewall / IDS rules
 - Cybersecurity auditing
 - Traffic shaping mechanisms
- Analysis and utilization of high-interaction honeypot data is still in early stage
- Sharing of alerts and intelligence is still an open issue.

Questions?

NEXT LECTURE (WEEK 7): DNS SECURITY

Two papers

- The Hitchhiker's Guide to DNS Cache Poisoning (2010)
 - Read <u>page 1—7</u>
- An End-to-End, Large-Scale Measurement of DNS-over-Encryption: How Far Have We Come? (IMC 2019)