Χ

(https://swayam.gov.in)

harshaldharpure9922@gmail.com ~

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Introduction to Large Language Models (LLMs) (course)

Click to register for Certification exam

(https://examform.nptel.a

If already registered, click to check your payment status

Course outline

About NPTEL ()

How does an NPTEL online course work?

()

Week 1 ()

Week 2 ()

Week 3 ()

Week 8: Assignment 8

The due date for submitting this assignment has passed.

Due on 2025-03-19, 23:59 IST.

Assignment submitted on 2025-03-13, 14:46 IST

	0	,	
1)	Which factors influence the effectiveness of instruction tuning?		

- The number of instruction templates used in training.
- The tokenization algorithm used by the model.
- The diversity of tasks in the fine-tuning dataset.
- The order in which tasks are presented during fine-tuning.

Yes, the answer is correct.

Score: 1

Accepted Answers:

The number of instruction templates used in training.

The diversity of tasks in the fine-tuning dataset.

The order in which tasks are presented during fine-tuning.

2) What are key challenges of soft prompts in prompt-based learning?

1 point

1 point

- Forward pass with them is computationally inefficient compared to that with hard prompts.
- They require additional training, unlike discrete prompts.
- They cannot be interpreted or used effectively by non-expert users.
- They require specialized architectures that differ from standard transformers.

Yes, the answer is correct. Week 4 () Score: 1 Accepted Answers: They require additional training, unlike discrete prompts. Week 5 () They cannot be interpreted or used effectively by non-expert users. Week 6 () 3) Which statement best describes the impact of fine-tuning versus prompting in LLMs? 1 point Week 7 () Fine-tuning is always superior to prompting in generalization tasks. Prompting requires gradient updates, while fine-tuning does not. Week 8 () Fine-tuning modifies the model weights permanently, while prompting does not. O Lec 21: Prompting performs better on in-domain tasks compared to fine-tuning. Instruction Yes, the answer is correct. Tuning (unit? Score: 1 unit=70&lesson Accepted Answers: =71) Fine-tuning modifies the model weights permanently, while prompting does not. O Lec 22: Prompt-based 4) Which of the following aspects of the model outputs are captured by POSIX? 1 point Learning (unit? unit=70&lesson Diversity in the responses to intent-preserving prompt variations =72) Entropy of the distribution of response frequencies O Lec 23: Time required to generate responses for intent-preserving prompt variations Advanced ✓ Variance in the log-likelihood of the same response for different input prompt variations Prompting and Partially Correct. Prompt Score: 0.67 Sensitivity Accepted Answers: (unit? Diversity in the responses to intent-preserving prompt variations unit=70&lesson =73) Entropy of the distribution of response frequencies Variance in the log-likelihood of the same response for different input prompt variations O Lec 24: Alignment of 5) Which key mechanism makes Tree-of-Thought (ToT) prompting more effective than 1 point Language Chain-of-Thought (CoT)? Models-I (unit? unit=70&lesson ToT uses reinforcement learning for better generalization. =74) ToT allows backtracking to explore multiple reasoning paths. O Lec 25: ToT reduces hallucination by using domain-specific heuristics. Alignment of Language ToT eliminates the need for manual prompt engineering. Models-II (unit? Yes, the answer is correct. unit=70&lesson Score: 1 =75) Accepted Answers: Lecture ToT allows backtracking to explore multiple reasoning paths. Material (unit? unit=70&lesson 6) What is a key limitation of measuring accuracy alone when evaluating LLMs? 1 point =82) Accuracy is always correlated with model size. Feedback Form Accuracy cannot be measured on open-ended tasks. (unit? Accuracy is independent of the training dataset size.

unit=70&lesson =76) Quiz: Week 8 : Assignment 8 (assessment? name=77) Week 9 () Week 10 () Week 11 () Week 12 () Year 2025 Solutions ()

Yes, the answer is correct. Score: 1	
Accepted Answers: Accuracy does not account for prompt sensitivity.	
7) Why is instruction tuning not sufficient for aligning large language models?	1 point
It does not generalize to unseen tasks.	
It cannot prevent models from generating undesired responses.	
It reduces model performance on downstream tasks.	
It makes models less capable of learning from new data.	
Yes, the answer is correct. Score: 1	
Accepted Answers: It cannot prevent models from generating undesired responses.	
8) Why is KL divergence minimized in regularized reward maximization?	1 point
To maximize the probability of generating high-reward responses.	
○ To make training more computationally efficient.	
○ To prevent the amplification of bias in training data.	
To ensure models do not diverge too far from the reference model.	
Yes, the answer is correct. Score: 1	
Accepted Answers: To ensure models do not diverge too far from the reference model.	
9) What is the primary advantage of using the log-derivative trick in REINFORCE?	1 point
Reducing data requirements	
Reducing data requirementsExpanding the token vocabulary	
Expanding the token vocabulary	
Expanding the token vocabulary Simplifying gradient computation	
Expanding the token vocabulary Simplifying gradient computation Improving sampling diversity Yes, the answer is correct.	
Expanding the token vocabulary Simplifying gradient computation Improving sampling diversity Yes, the answer is correct. Score: 1 Accepted Answers:	1 point
Expanding the token vocabulary Simplifying gradient computation Improving sampling diversity Yes, the answer is correct. Score: 1 Accepted Answers: Simplifying gradient computation	1 point
Expanding the token vocabulary Simplifying gradient computation Improving sampling diversity Yes, the answer is correct. Score: 1 Accepted Answers: Simplifying gradient computation 10) Which method combines reward maximization and minimizing KL divergence?	1 point
Expanding the token vocabulary Simplifying gradient computation Improving sampling diversity Yes, the answer is correct. Score: 1 Accepted Answers: Simplifying gradient computation 10) Which method combines reward maximization and minimizing KL divergence? REINFORCE	1 point
Expanding the token vocabulary Simplifying gradient computation Improving sampling diversity Yes, the answer is correct. Score: 1 Accepted Answers: Simplifying gradient computation 10) Which method combines reward maximization and minimizing KL divergence? REINFORCE Monte Carlo Approximation	1 point

Yes, the answer is correct. Score: 1

Accepted Answers:

Proximal Policy Optimization