Семинар 12. Равномерная непрерывность.

Скубачевский Антон

21 ноября 2020 г.

Определение. Функцию f называют равномерно непрерывной на множестве X, если:

$$\forall \varepsilon > 0 \exists \delta(\varepsilon) > 0 : \forall x', x'' \in X : |x' - x''| < \delta \Rightarrow |f(x') - f(x'')| < \varepsilon$$

Функция, равномерно непрерывная на множестве X, является непрерывной на этом множестве. Обратное неверно. Однако если множество X - отрезок, то верно, как следует из следующей теоремы:

Теорема Кантора. Функция, непрерывная на отрезке, равномерно непрерывна на нем.

Пример 1. Исследовать функцию f(x) = sinx на равномерную непрерывность на множестве \mathbb{R} .

Покажем, что она равномерно непрерывна на \mathbb{R} . При оценках ниже воспользуемся тем, что $cosx \leq 1$, а также $|sinx| \leq |x|$

$$|f(x')-f(x'')|=|sinx'-sinx''|=|2sin\frac{x'-x''}{2}cos\frac{x'+x''}{2}|\leq 2|sin\frac{x'-x''}{2}|\leq$$

$$\leq |x'-x''|$$
 должно быть $<\varepsilon$

Это выполняется, к примеру, при $\delta = \varepsilon$. Нашли явно $\delta(\varepsilon)$, значит, доказали равномерную непрерывность. Запишем определение:

$$\forall \varepsilon > 0 \exists \delta = \varepsilon : \forall x', x'' \in \mathbb{R} : |x' - x''| < \delta \Rightarrow |f(x') - f(x'')| < \varepsilon$$

Значит, sinx равномерно непрерывен по определению на \mathbb{R} .

Пример 2. Доказать, что $\frac{1}{x}$ равномерно непрерывна на множестве $E = [a; +\infty)$, где a > 0.

Доказательство:

Возьмем $x', x'' \in E$. Для них

$$|f(x') - f(x'')| = |\frac{1}{x'} - \frac{1}{x''}| = \frac{|x' - x''|}{|x'x''|} \le \frac{|x' - x''|}{a^2} < \varepsilon$$

Это выполняется при $\delta=a^2\varepsilon$. Тогда

$$\forall \varepsilon > 0 \exists \delta = a^2 \varepsilon : \forall x', x'' \in E : |x' - x''| < \delta \Rightarrow |f(x') - f(x'')| < \varepsilon$$

Значит, $\frac{1}{x}$ равномерно непрерывна на множестве $E = [a; +\infty)$, ч.т.д. **Пример 3.**Доказать, что $f(x) = \sqrt{x}$ равномерно непрерывна на $E = [0; +\infty)$.

Доказательство:

$$|f(x') - f(x'')| = |\sqrt{x'} - \sqrt{x''}| = \frac{|x' - x''|}{\sqrt{x'} + \sqrt{x''}}$$

Мы не можем так легко это оценить, но если вместо E мы возьмем $E_1=[1;+\infty),$ то сможем. На E_1 :

$$|f(x') - f(x'')| = \frac{|x' - x''|}{\sqrt{x'} + \sqrt{x''}} \le \frac{|x' - x''|}{2}$$

Это $< \varepsilon$ при $\delta = 2\varepsilon$.

$$\forall \varepsilon > 0 \exists \delta = 2\varepsilon : \forall x', x'' \in E_1 : |x' - x''| < \delta \Rightarrow |f(x') - f(x'')| < \varepsilon$$

Значит, \sqrt{x} равномерно непрерывен на E_1 .

Теперь рассмотрим $E_2 = [0, 2]$. \sqrt{x} , очевидно, непрерывен на этом множестве, а значит, равномерно непрерывен на нем по теореме Кантора.

Покажем, что из равномерной непрерывности на E_1 и E_2 следует равномерная непрерывность на E.

Запишем определение равномерной непрерывности на E_1 и E_2 :

$$\forall \varepsilon > 0 \exists \delta_1 : \forall x', x'' \in E_1 : |x' - x''| < \delta \Rightarrow |f(x') - f(x'')| < \varepsilon$$
 (1)

$$\forall \varepsilon > 0 \exists \delta_2 : \forall x', x'' \in E_2 : |x' - x''| < \delta \Rightarrow |f(x') - f(x'')| < \varepsilon$$
 (2)

Тогда если подобрать $\delta = min\{\delta_1, \delta_2, 1\}$, то функция будет равномерно непрерывна на E:

$$\forall \varepsilon > 0 \exists \delta = \min\{\delta_1, \delta_2, 1\} : \forall x', x'' \in E : |x' - x''| < \delta \Rightarrow |f(x') - f(x'')| < \varepsilon$$
Ч.т.л.
(3)

Поясним последнюю строчку, и почему из нее следует чтд. Мы взяли δ таким образом, чтобы расстояние между х' и х" было меньше чем δ_1 и δ_2 , чтобы удовлетворять (1) и (2). Кроме того, δ должно быть меньше, чем 1, чтобы х' и х" не лежали в разных множествах. В самом деле, возьмите, к примеру, $\delta=2$ расстояние между х' и х", и придумайте, как расположить эти точки на координатной прямой, чтобы они лежали в разных множествах. А если х' и х" лежат в одном множестве, и при этом расстояние между ними $<\delta$, то для любого ε и этого $\delta=min\{\delta_1,\delta_2,1\}$ если х' и х" лежат в E_1 , то удовлетворяется (1), т.е. $|f(x')-f(x'')|<\varepsilon$. Если же х' и х" лежат в E_2 , то удовлетворяется (2), т.е. опять же $|f(x')-f(x'')|<\varepsilon$. Но это значит, что удовлетворяется (3), чтд.

Замечание. Нельзя было взять, например, $E_1 = [0,1]$ и $E_2 = (1,+\infty)$, и сделать вывод, что из равномерной непрерывности на каждом из них следует равномерная непрерывность на их объединении. Чтобы показать это, достаточно взять функцию

$$f(x) = \begin{cases} 0, & x \in [0, 1] \\ 1, & x > 1 \end{cases}$$

Пример 4. Доказать, что $f(x) = \sqrt{x} cos x^2$ не равномерно непрерывна на $E = (0, +\infty)$.

Доказательство:

Отрицание определения равномерной непрерывности:

$$\exists \varepsilon > 0 : \forall \delta > 0 : \exists x', x'' \in X : |x' - x''| < \delta; |f(x') - f(x'')| \ge \varepsilon$$

Для того, чтобы понять, как решать задачу, воспользуемся определением равномерной непрерывности "на пальцах":

Функция равномерно непрерывна, если для любых достаточно близких х' и х" расстояние |f(x') - f(x'')| достаточно мало. То есть, грубо говоря:

$$|x' - x''| \to 0 \Rightarrow |f(x') - f(x'')| \to 0$$

Ну а НЕ равномерно непрерывна, если найдутся такие противные x' и x'', что при

$$|x'-x''| \to 0 \Rightarrow |f(x')-f(x'')| \nrightarrow 0$$

Давайте же найдем такие 2 противные точки. Ну а т.к. у нас в условии синус, то будем их вообще искать в виде последовательностей, из которых позже выберем конкретный член.

Когда мы имеем дело с косинусом или синусом, первое, что приходит в голову, это

$$x_n' = 2\pi n$$

$$x_n'' = 2\pi n + \frac{\pi}{2}$$

Но у нас не cosx, а $cosx^2$, поэтому в голову приходят несколько измененные последовательности:

$$x_n' = \sqrt{2\pi n}$$

$$x_n'' = \sqrt{2\pi n + \frac{\pi}{2}}$$

Покажем, что $|x_n' - x_n''| \to 0$. Домножим ниже на сопряженные.

$$|x_n' - x_n''| = |\sqrt{2\pi n} - \sqrt{2\pi n + \frac{\pi}{2}}| = |\frac{\pi/2}{\sqrt{2\pi n} + \sqrt{2\pi n + \frac{\pi}{2}}}| \to 0$$
 (4)

Покажем, что $|f(x_n') - f(x_n'')| \nrightarrow 0$:

$$|f(x_n') - f(x_n'')| = |\sqrt[4]{2\pi n} \cdot 1 - 0| \to +\infty$$
 (5)

Значит, не равномерно непрерывна, вроде бы. Но теперь докажем это четко, в кванторах.

(4) значит, что последовательность $x_n = x_n' - x_n'' \to 0$. Запишем определение предела:

$$\forall \delta > 0 \exists n_0 : \forall n \geq n_0 \Rightarrow |x'_n - x''_n| < \delta$$

Из (5) следует, что $|f(x'_n) - f(x''_n)|$ начиная с некоторого номера будет >, чем, к примеру, 1. Запишем это в кванторах:

$$\exists \varepsilon = 1; \exists n_1 : \forall n \ge n_1 \Rightarrow |f(x'_n) - f(x''_n)| \ge \varepsilon$$

Взяв $n_2 = max(n_0; n_1)$ и склеив (4) и (5), имеем:

$$\exists \varepsilon = 1 : \forall \delta > 0 \exists n_2 = max(n_0; n_1) : |x'_{n_2} - x''_{n_2}| < \delta; |f(x'_{n_2}) - f(x''_{n_2})| \ge \varepsilon$$

Но это и есть, в общем-то, отрицание определения равномерной непрерывности. Значит чтд.

Пример 5. Доказать, что $f(x) = x^2 sin(lnx)$ не равномерно непрерывна на $E = (0, +\infty)$.

Доказательство:

Ну тут сходу так не придумаешь две последовательности. Одна, видимо, чтобы $2\pi n$ было под синусом:

$$x'_n = e^{2\pi n}$$

А вот вторая-хз, но, возможно, что-то вида:

$$x_n'' = e^{2\pi n + f(n)}$$

f(n) будем искать из условия $|x_n'-x_n''|\to 0$ $|x_n'-x_n''|=e^{2\pi n}|1-e^{f(n)}|.$ Это должно стремиться к 0, а значит, $e^{f(n)}$ должно к 1, а значит, $f(n)\to 0$. Значит, мы можем разложить $e^{(f(n))}=$ $1 + f(n) + o(f^2(n))$. Есть такой символ \sim . $f(x) \sim g(x)$ при $x \to x_0$, если $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1.$

Из рассуждений выше $|x_n' - x_n''| \sim e^{2\pi n} |1 - 1 - f(n)| = e^{2\pi n} |f(n)|$. Это $\to 0$ при $f(n) = e^{-4\pi n}$, к примеру. Вот мы и подобрали f(n). Тогда

$$x'' = e^{2\pi n + e^{-4\pi n}}$$

Запишем по определению $|x'_n - x''_n| \to 0$:

$$\forall \delta > 0 \exists n_0 : \forall n \ge n_0 \Rightarrow |x_n' - x_n''| < \delta \tag{6}$$

Убедимся, что при таком выборе $|f(x''_n) - f(x'_n)| \to 0$.

$$|f(x_n'') - f(x_n')| = |(x_n'')^2 \sin(2\pi n + e^{-4\pi n})| = e^{4\pi n + 2e^{-4\pi n}} \sin e^{-4\pi n} \sim$$
$$\sim |\sin x \sim x| \sim e^{4\pi n + 2e^{-4\pi n}} e^{-4\pi n} \sim 1$$

Из этого следует, что

$$\exists \varepsilon = 1/2; \exists n_1 : \forall n \ge n_1 \Rightarrow |f(x_n'') - f(x_n')| \ge \varepsilon \tag{7}$$

Из (6) и (7) следует

$$\exists \varepsilon = 1/2 : \forall \delta > 0 \exists n_2 = \max(n_0; n_1) : |x'_{n_2} - x''_{n_2}| < \delta; |f(x'_{n_2}) - f(x''_{n_2})| \ge \varepsilon$$

Значит, не равномерно непрерывна, чтд.

Далее рассмотрим несколько утверждений, с помощью которых очень легко доказывается равномерная непрерывность или ее отсутствие. Их можно использовать на экзамене.

Утверждение 1. Пусть E = (a, b). Пусть f непрерывна на E. Тогда

f равномерно непрерывна на
$$E \Leftrightarrow \exists$$
 Конечные пределы
$$\begin{cases} \lim_{x\to a+0} f(x) \\ \lim_{x\to b-0} f(x) \end{cases}$$

То есть это утверждение позволяет доказывать как равномерную непрерывность, так и ее отсутствие.

Пример 6. Исследовать $f(x) = x \sin \frac{1}{x^2}$ на равномерную непрерывность на E = (0,1).

- Эта функция непрерывна на Е как композиция элементарных функ-
- $\lim_{x \to 0+0} f(x) = 0$ как произведение бесконечно малой функции на ограниченную. (а значит, существует и конечен)
- $\lim_{x \to 1-0} f(x) = \sin 1$, т.к. в 1 никаких особенностей у функции нет.

Значит, f(x) равномерно непрерывна на E по утверждению 1.

В случае, если $b = +\infty$, то есть промежуток полубесконечный, это утверждение работает только в одну сторону и принимает вид:

Утверждение 2. Пусть f(x) непрерывна на $E = [a, +\infty)$ и существует конечный предел $\lim_{x \to +\infty} f(x)$. Тогда f(x) равномерно непрерывна на E.

Сформулируем теперь пару утверждений, связывающих свойства производных функции с ее равномерной непрерывностью.

Утверждение 3. Пусть f(x) дифференцируема на E, причем f'(x) ограничена на E. Тогда f(x) равномерно непрерывна на E.

Доказывается это утверждение в одну строчку с помощью Теоремы Лагранжа о среднем.

Пример 7. Доказать, что $f(x) = \sqrt{x} ln(1+x^2)$ равномерно непрерывна на $E = (0, +\infty)$.

Доказательство:

$$f'(x) = \frac{2x^{3/2}}{1+x^2} + \frac{\ln(1+x^2)}{2\sqrt{x}}$$

Докажем, что производная ограничена.

- f' непрерывна
- $\lim_{x\to 0} f'(x) = \lim_{x\to +\infty} f'(x) = 0$, то есть конечны. Значит можем продолжить по непрерывности на x=0.

При выполнении этих условий f'(x) будет ограничена. (У нас была задача в 1 семестре в теме про непрерывность, где мы доказывали, что функция, непрерывная на $[a, +\infty)$ и имеющая на бесконечности конечный предел, ограничена. Мы это доказывали с помощью теоремы Вейерштрасса и определения предела). Значит, f(x) равномерно непрерывна на E по утверждению 3.

Утверждение 4. Пусть f(x) дифференцируема на $E=[a;+\infty);$ $\lim_{x\to +\infty} f'(x)=\infty.$ Тогда f(x) не равномерно непрерывна на E.

Пример 8. Доказать, что $f(x) = x^2 arct gx$ не равномерно непрерывна на $E = (0, +\infty)$.

Доказательство:

 $f'(x)=2xarctgx+rac{x^2}{x^2+1} o +\infty \Rightarrow f(x)$ не равномерно непрерывна на E, ч.т.д.

TO SUM UP. Для доказательства наличия равномерной непрерывности используем:

- Определение
- Теорему Кантора
- Утверждения 1,2,3

Для доказательства отсутствия равномерной непрерывности используем:

- Определение
- Утверждения 1,4