

Initial Project Planning Template

Date	15 October 2024
Team ID	739759
Project Name	OptiInsight - Revolutionizing Ophthalmic Care With Deep Learning For Predictive Eye Disease Analysis
Maximum Marks	4 Marks

User Story /	Functional Requirement	User Story Number		Story Points	Priority	Team Members	Sprint Start Date	Sprint End Date
Task	(Epic)	- 1,0						(Planned)
Sprint-1	Initial Model Development	USN-1	The initial model development for Optiinsight focuses on building a deep learning-based system for early detection of eye diseases like diabetic retinopathy and glaucoma using ophthalmic images	2	High	MA RASHEED KHALID, MD SUBHAN.	24/10/2024	28/10/2024
Sprint-1	Model Training	USN-2	The model training process for Optiinsight involves feeding preprocessed ophthalmic image data into the Convolutional Neural Network (CNN). The dataset is split into training, validation, and testing sets to ensure balanced evaluation. Using a transfer learning approach with pre-trained models like ResNet or VGG16, the network learns to extract critical features from images.	1	High	MA RASHEED KHALID, SANGA RAKESH.	29/10/2024	01/11/2024

Sprint-2	Model	USN-3	The trained model for Optiinsight is	2	Low	MA	02/11/2024	09/11/2024
	Evaluation		evaluated using performance metrics			RASHEED		
	and		such as accuracy, precision, recall,			KHALID,		
	Deployment		F1-score, and confusion matrix to			M		
			ensure reliable detection of eye			RITHVIK		
			diseases like diabetic retinopathy and			KUMAR.		
			glaucoma. The model is tested on					
			unseen data to validate its					
			generalization capability and identify					
			any false positives or negatives.					

Sprint-1	Model	USN-4	The deployment of the Optiinsight	2	Medium	MA	10/11/2024	12/11/2024
	Deployment		model involves integrating the			RASHEED		
			trained deep learning system into a			KHALID,		
			real-world application, allowing			M		
			healthcare professionals to access it			RITHVIK		
			for early detection of eye diseases.			KUMAR,		
			This can be achieved through cloud			SANGA		
			deployment on platforms like AWS			RAKESH.		
			or Azure, ensuring scalability and					
			easy accessibility.					

Sprint-1	Explanation	USN-5	The deployment of the Optiinsight	2	High	MA	13/11/2024	15/11/2024
-			model is designed to bring advanced			RASHEED		
			eye disease detection directly into			KHALID,		
			clinical settings, improving			M		
			diagnostic accuracy and efficiency.			RITHVIK		
			By deploying the model on cloud			KUMAR,		
			platforms like AWS or Google Cloud,			MD		
			it ensures that the system can scale			SUBHAN.		
			easily, making it accessible to					
			healthcare professionals across					
			various locations. For areas with					
			limited internet access, edge					
			deployment on devices such as					
			Raspberry Pi provides a reliable					
			alternative for real-time analysis. The					
			model's integration into existing					
			healthcare systems, such as hospital					
			information systems and electronic					
			health records, allows it to interact					
İ			seamlessly with imaging devices,					
İ			simplifying the workflow for doctors.					

Product Backlog, Sprint Schedule, and Estimation (4 Marks)