

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

BASELINE TESTS OF THE GE-100 CENTENNIAL ELECTRIC PASSENGER VEHICLE

by

Edward J. Dowgiallo, Jr. Ivan R. Snellings and William H. Blake

September 1980

Approved for public release; distribution unlimited.

U.S. ARMY MOBILITY EQUIPMENT
RESEARCH AND DEVELOPMENT COMMAND
FORT BELVOIR, VIRGINIA

81 1 1 1 3 004

Destroy this report when no longer needed. Do not return it to the originator.

SECURITY CLASSIFICATION OF THIS PAGE (Phon Data Enforce)	RADCOM-230
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2308 2. GOVT ACCESSION NO. 2308	3. RECIPIENT'S CATALOG NUMBER
BASELINE TESTS OF THE GE-100 CENTENNIAL 9 ELECTRIC PASSENGER VEHICLE	5. TYPE OF REPORT & PERIOD COVERE Final Technical Memorendum 6. PERFORMING ORG. REPORT NUMBER
Edward J./Dowgiallo, Jr. Ivan R./Snellings and William H./Blake	Interagency Agreement EC-77-A-31-1042
9. PERFORMING ORGANIZATION NAME AND ADDRESS US Army Mobility Equipment Research And Development Command Fort Belvoir, Virginia 22060	TD. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Department of Energy Division of Transportation Energy Conservation Washington, DC 20545	September 1980 13. NUMBER OF PAGES 105 15. SECURITY CLASS. (of this report)
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	UNCLASSIFIED
16. DISTRIBUTION STATEMENT (of this Report)	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from	n Report)
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side it necessary and identity by block number) Electric Vehicle Traction Battery Charger	
The GE-100 Centennial electric vehicle is a one-of-a-kin formance tests, speed, acceleration, gradeability, range, and The GE-100 is powered by eighteen 6-volt lead-acid batteries motor through an EV-1C controller. The motor drives the to the differential. No regenerative braking was provided.	d efficiencies are presented. driving a 16.3-kW d.c. series
DO FORM 1472 EDITION OF LINOVAS IS ORGALITY	

1473 EDITION OF 1 NOV 68 IS OBSOLETE UNCLASSIFIED

403160 Fine Date Entered)

UNCLASSIFIED	
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)	
1	
1	
}	
	,
i	
	ļ
<u> </u>	1
	j
	}
	ì
	j
	I
	į
	j
	}
	}

PREFACE

The Electric and Hybrid Vehicle Test was conducted by the US Army Mobility Equipment Research and Development Command (MERADCOM) under the guidance of the US Department of Energy (DOE).

Michael E. Johnson, P.E. of VSE Corporation was responsible for aspects of calibration of the signal conditioning circuits and recording instruments as well as data tabulations, plotting, and preparation of the report. Richard Boyd of VSE Corporation was responsible for aspects of the report and data analysis.

Computer programming and some data tabulations and plots were made by David Scott and Arthur Nickless of the Systems Technology & Management Division, Management Information Systems Directorate, MERADCOM.

James A. Queen and Calvin T. Bushrod of the Environmental & Field Division, Product Assurance & Testing Directorate, assisted in vehicle operation and data collection.

Accession Fo	or
NTIS GRA&I	X
DTIC TAB	
Unapper mond	
Just 1	, ij
B** .	
Line and the	:/
A Hall	? Codes
_	mi/or
I 1. 5	al
A	

CONTENTS

Section	Title				
	PREFACE	iii			
	ILLUSTRATIONS	vi			
	TABLES	viii			
I	SUMMARY	1			
II	INTRODUCTION	3			
Ш	OBJECTIVES	3			
IV	TEST VEHICLE DESCRIPTION				
	1. Description	5			
	2. Operating Characteristics	5			
V	INSTRUMENTATION	5			
VI	TEST PROCEDURES				
	1. Maximum Cruise Speed	12			
	2. Range Tests – Constant Speed	12			
	3. Range When Operated in a Selected Driving Pattern	12			
	4. Maximum Acceleration	13			
	5. Coast-Down Tests	13			
	6. Tractive Force Tests	13			
	7. Charger Efficiency Tests	13			
VII	TEST RESULTS AND DISCUSSION				
	1. Maximum Speed	14			
	2. Range	14			
	3. Maximum Acceleration	14			
	4. Gradeability	14			
	5. Gradeability Limit	31			
	6. Road Energy Consumption	35			
	7. Road Power Requirements	35			
	8. Indicated Energy Economy	40			

CONTENTS (CONT'D)

Section	n Title		
, VIII	COMPONENT PERFORMANCE AND EFFICIENCY		
	1. Battery Charger	40	
	2. Battery Characteristics	40	
	3. Controller	44	
	4. Motor	44	
	5. Drive Train	44	
IX	RELIABILITY	44	
	APPENDICES		
	A. VEHICLE SUMMARY DATA SHEET	45	
	B. TABULATIONS OF GRAPHED DATA	50	
	C DERIVATION OF ROAD LOAD POWER	87	

ILLUSTRATIONS

Figure	Title	Page
1	Side View of GE-100 Centennial Vehicle	6
2	Front/Left Side View of GE-100 with All Doors Open	7
3	Front View of GE-100 Showing SCR Controller and Gasoline- Fired Heater and Motor	8
4	Rear View of GE-100 Showing Battery Removal Apparatus	9
5	Inside View from Driver's Seat of GE-100	10
6	Block Diagram of Propulsion System and Instrumentation	11
7	"B" Cycle, Velocity vs Time	15
8	"B" Cycle, Battery Voltage vs Time	16
9	"B" Cycle, Battery Current vs Time	17
10	"B" Cycle, Battery Power vs Time	18
11	"C" Cycle, Velocity vs Time	19
12	"C" Cycle, Battery Voltage vs Time	20
13	"C" Cycle, Battery Current vs Time	21
14	"C" Cycle, Battery Power vs Time	22
15	"D" Cycle, Velocity vs Time	23
16	"D" Cycle, Battery Voltage vs Time	24
17	"D" Cycle, Battery Current vs Time	25
18	"D" Cycle, Battery Power vs Time	26

ILLUSTRATIONS (CONT'D)

Figure	Title	Page
19	Acceleration vs Velocity	27
20	0% Depth of Discharge, Velocity vs Time	28
21	40% Depth of Discharge, Velocity vs Time	29
22	80% Depth of Discharge, Velocity vs Time	30
23	0% Depth of Discharge, Percent Gradeability vs Velocity	32
24	40% Depth of Discharge, Percent Gradeability vs Velocity	33
25	80% Depth of Discharge, Percent Gradeability vs Velocity	34
26	Coast-Down Cycle 1, Velocity vs Time	36
27	Coast-Down Cycle 4, Velocity vs Time	37
28	Coast-Down Cycle 7, Velocity vs Time	38
29	Road Energy vs Velocity	39
30	Road Power vs Velocity	41
31	Constant Speed Battery Performance, First 25% of Range	42
32	Constant Speed Battery Performance, Last 25% of Range	43

TABLES

Γable	Title	Page
1	Summary of Test Results for GE-100 Centennial Electric Vehicle	2
2	Conversion Factors	4

BASELINE TESTS OF THE GE-100 CENTENNIAL

ELECTRIC PASSENGER VEHICLE

I. SUMMARY

The GE-100 Centennial Electric, an electric vehicle manufactured by General Electric and Triad Services, Inc., was tested under the direction of the U.S. Army Mobility Equipment Research and Development Command (MERADCOM) from 4 June to 20 June and from 2 July to 27 July 1979. The tests are part of a Department of Energy (DOE) project to access advances in electric vehicle design. This report presents the performance test results on the GE-100 Centennial Electric.

The GE-100 Centennial Vehicle is a one-of-a-kind experimental prototype. The concept was developed by GE and Triad Services, Inc., under DOE contract EY-76-C-03-1294, phase one of the Near-Term Electric Vehicle Program. The conceptual study explored electric vehicle performance available with standard production components. The vehicle was built and funded by General Electric, using available hardware, i.e., standard production components. It is powered by eighteen 6-volt lead-acid traction batteries driving a 16.3-kW (21.8-hp) (3200-r/min) motor through an EV-1C armature chopper and control. All items are 1978 or earlier technology. Front brakes are inboard Chevelle with copper drums; rear brakes are Subaru drums. The vehicle did not employ regenerative braking.

The vehicle was provided by General Electric. The intent of testing was not to verify vehicle performance, as this prototype is not a candidate for the DOE demonstration programs. However, the available standard production components used in this vehicle will be used in prospective vehicles. The testing was performed to expose the electric-hybrid-vehicle (EHV) community to the results available with 1978 electrical technology.

The results of the tests are shown in Table 1.

Table 1. Summary of Test Results for

						Table 1. Summary of Test Re	Suits 101
Date (July)	Test Speed or Driving Pattern	Range	Number of Cycles	Fnergy Out of Battery	Battery Energy Economy*	Fnergy Out of Charger (Into Battery)	Batti Efficie
13	40 km/h (25 mi/h)	112 km (70 mi)		15.5 kWh	$ \frac{138 \frac{\text{kWh}}{\text{km}}}{\left(221 \frac{\text{kWh}}{\text{mi}}\right)} $	27.8 KWh	55.8
18	56 km/h (35 mi/h)	96 km (60 mi)		15.3 kWh	$ \frac{\text{kWh}}{\text{km}} $ $ \left(255 \frac{\text{kWh}}{\text{mi}}\right) $	26,0 kWh	56.3
12	80 km/h (50 mi/h)	69 km (43 mi)	-	12.9 kWh	$ \frac{187 \frac{\text{kWh}}{\text{km}}}{\left(300 \frac{\text{kWh}}{\text{mi}}\right)} $	21.6 kWh	59.79
6	SAE J227a B	80 km (50 mi)	227	16.3 kWh	$ \frac{.204 \frac{\text{kWh}}{\text{km}}}{\left(326 \frac{\text{kWh}}{\text{mi}}\right)} $	29.7 kWh	54.99
10	SAE J227a C	67 km (42 mi)	122	14.4 kWh	$ \frac{.215 \frac{\text{kWh}}{\text{km}}}{\left(343 \frac{\text{kWh}}{\text{mi}}\right)} $	25.0 kWh	57.60
24	SAE J227a D	62 km (39 mi)	42	14.1 kWh	$ \frac{.227 \frac{\text{kWh}}{\text{km}}}{\left(.362 \frac{\text{kWh}}{\text{mi}}\right)} $	20.5 kWh	68.84

^{*} Battery Energy Economy = Energy out of battery per mile of range.

ults for GE Centennial Electric Vehicle

Battery Efficiency	Energy into Charger	Charger Efficiency	Vehicle Energy Economy	Wind Start of Test	Wind End of Test	Temperature Start of Test	Temperature End of Test
55.8%	33 kWh	84.3%	$ \frac{.295 \frac{\text{kWh}}{\text{km}}}{\left(.471 \frac{\text{kWh}}{\text{mi}}\right)} $	Calm	South 7.4 km/h (4.6 mi/h)	23°C (74°F)	30°C (86°F)
56.3%	31 kWh	83.4%	$ \frac{.517 \frac{\text{kWh}}{\text{km}}}{\left(323 \frac{\text{kWh}}{\text{mi}}\right)} $	Calm	NW 9.3 km/h (5.8 mi/h)	26°C (79°F)	27°C (81°F)
59.7%	27 kWh	80.2%	$ \begin{pmatrix} .391 & \frac{kWh}{km} \\ (628 & \frac{kWh}{mi} \end{pmatrix} $	Calm	Calm	22°C (72°F)	26°C (78°F)
54.9%	37 kWh	80.3%	$ \begin{pmatrix} .463 \frac{\text{kWh}}{\text{km}} \\ \left(740 \frac{\text{kWh}}{\text{mi}}\right) \end{pmatrix} $	Calm	NW 3.7 km/h (2.3 mi/h)	16°C (61°F)	27°C (80°F)
57.6 %	30 kWh	83.3%	$ \begin{pmatrix} .448 & \frac{kWh}{km} \\ \left(714 & \frac{kWh}{mi}\right) \end{pmatrix} $	NW 3.7 km/h (2.3 mi/h)	South 7.4 km/h (4.6 mi/h)	26°C (78°F)	25°C (77°F)
68.8%	25 kWh	82.0%	$ \frac{.403 \frac{\text{kWh}}{\text{km}}}{\left(.641 \frac{\text{kWh}}{\text{mi}}\right)} $	Calm	SW 4.8 km/h -(3 mi/h)	26°C (78°F)	29°C (85°F)

H. INTRODUCTION

The vehicle tested and the data presented in this report are in support of Public Law 94-413 enacted by Congress on 17 September 1976. The law requires the Department of Energy (DOE) to develop data characterizing the state-of-the-art with respect to electric and hybrid vehicles. The data so developed are to serve as a baseline to compare improvements in electric and hybrid-vehicle technologies, to assist in establishing performance standards for electric and hybrid vehicles, and to help guide future research and development activities.

The U.S. Army Mobility Equipment Research and Development Command (MERAD-COM) under the direction of the Electric and Hybrid Research, Development, and Demonstration Office; Division of Transportation Energy Conservation; DOE, has conducted track tests of electric vehicles to measure their performance characteristics and vehicle component efficiencies. The tests were conducted using a DOE test procedure "ERDA-EHV-TEP," described in Appendix A of MERADCOM Report 2244. This procedure uses the "Electric Vehicle Test Procedure SAE J227a," revised February 1976. U.S. customary units were used in the collection and reduction of data. The units were converted to the International System of Units for presentation in this report. U.S. customary units are presented in parentheses. Number values are truncated to reflect nominal values except where precision is required. Conversion factors are shown in Table 2.

The assistance and cooperation of General Electric Industrial Control Division and Corporate Research and Development were greatly appreciated. The Department of Energy supplied funding support and guidance during this project.

III. OBJECTIVES

The characteristics of interest for the GE-100 Centennial Vehicle are vehicle speed, range at constant speed, range when operated in a selected driving pattern, maximum acceleration, gradeability, gradeability limit, road energy consumption, road power, and vehicle energy economy.

E. J. Dowgiałło, Jr.; C. E. Bailey, Jr.; I. R. Suellings; and W. H. Blake; "Baseline Tests of the EVA Metro Electric Passenger Vehicle," MERADCOM Report 2244 (July 1978).

Table 2. Conversion Factors

	To Convert			
Quantity	from	to	Multiply by	
Acceleration	ft/s ²	m/s²	3.048 x 10 ⁻¹	
	mi/h.s	m/s ²	$4.470 4 \times 10^{-1}$	
Energy (work)	ft • lbf	J	1.355 818	
	Wh	Btu	3.412 141 x 10 ³	
	Wh	J	3.600×10^3	
	Btu (IT)	J	1.055 056	
Force	lbf	N	4.448 222	
Length	ft	m	3.048 x 10 ⁻¹	
· ·	mi	km	1.609 344	
Mass	lb	kg	4.535 924 x 10 ⁻¹	
Power	hp (550 ft • lbf/s)	w	7.456 999 x 10 ²	
Velocity	mi/h	km/h	1.609 344	
Pressure	lbf/in²	kPa	6.895	

IV. TEST VEHICLE DESCRIPTION

- 1. Description. The GE-100 Centennial Vehicle is the Near-Term Reference Electric Vehicle. It is a 3-door, 4-passenger commuter car driven by 18 6-volt lead-acid batteries. It was designed from the ground up as an electric vehicle. Design features worthy of noting are the reduced aerodynamic drag, rear facing passenger seats, mechanical transmission replaced by electrical controls, batteries removable as a single unit from the ventilated tunnel, side doors open parallel to the body, and the use of selected materials for weight reduction. The vehicle is shown in Figures 1 through 5. The vehicle is described in Appendix A.
- 2. Operating Characteristics. The vehicle is similar to a comparable-size internal-combustion vehicle. Controls are located in similar positions and the driving characteristics are similar. A key switch is required to activate the vehicle. The "accelerator" pedal controls a signal voltage to the EV-IC controller which, in turn, programs the pulse width (on time) and pulse frequency of battery voltage connected to the 16.2-kW (21.8-hp) (3200-r/min) motor. The controller reacts to the "accelerator" position to control the vehicle speed and acceleration as controlled by the driver. A relay bypasses the controller for high-power or high-speed conditions. The controller employs field weakening to increase top speed. Reversing is accomplished electrically, but the operator actions are similar to those for a vehicle with an automatic transmission. No regenerative braking is provided on this vehicle. A block diagram is shown in Figure 6.

V. INSTRUMENTATION

The GE Centennial was instrumented to measure vehicle speed and range, battery voltage, current, averaged current, instantaneous power and averaged power, motor voltage, the temperature of the motor frame, and the battery charger power. Battery electrolyte temperatures were measured with thermometers. A brief description of the instrumentation system is given in the following paragraphs. Details of the recorder are given in Appendix D of MERADCOM Report 2244.²

Instrumentation consisted of signal-conditioning circuits and a magnetic tape recorder for recording analog signals of electrical parameters. The magnetic tape recorder was operated in the frequency modulation mode at 4.763 cm (1-7/8 in.) per second. The signal-conditioning circuitry to the recorder consisted of a main battery voltage divider, a shunt-voltage amplifier for current monitor, an analog multiplier, and circuits for averaging power and current.

² E. J. Dowgiallo, Jr.; C. E. Bailey, Jr.; I. R. Snellings; and W. H. Blake; "Baseline Tests of the EVA Metro Electric Passenger Vehicle," MERADIOM Report 2234 (July 1978).

Figure 1. Side view of GE-100 Centennial Vehicle.

Figure 2. Front/left side view of GE-100 with all doors open.

Figure 3. Front view of GE-100 showing SCR controller and gasoline-fired heater and motor.

Figure 4. Rear view of GE-100 showing battery removal apparatus.

Figure 5. Inside view from driver's seat of GE-100.

Figure 6. Block diagram of propulsion system and instrumentation.

12.

A voltage proportional to power was produced by the instantaneous multiplication of voltage and current. Current and power were recorded both raw and electronically averaged. The raw values include the rapid switching transients associated with the solid-state controller.

VI. TEST PROCEDURES

The tests were performed at the MERADCOM test facility. Fort Belvoir, and at the Aberdeen Proving Ground (APG) test facility at Aberdeen, Maryland. When the vehicle was delivered to MERADCOM, the pretest checks described in Appendix F of MERADCOM Report 22443 were conducted. A shakedown run was performed to familiarize the driver with the operating characteristics of the vehicle and to verify proper operation of all instrumentation systems, All tests were run in accordance with the DOE Electric and Hybrid Vehicle Test and Evaluation procedure, Appendix A of MERADCOM Report 2244.4 All tests were performed with a full load of 227 kg (500 lb).

- 1. Maximum Cruise Speed. The vehicle was capable of sustaining 88 km/h (55 mi/h) on level straightaway. The MERADCOM facility has a 2.0-km (1¼-mi) loop with a 3-percent and a 5-percent grade. The vehicle could sustain 80 km/h (50 mi/h) but not 88 km/h on this course. The highest speed used for the constant-speed range test was 80 km/h. The vehicle was operated to a maximum speed of 97 km/h (60.3 mi/h) on a level track (± 1-percent grade) at Aberdeen Proving Ground.
- 2. Range Tests Constant Speed. Range tests at constant speed were carried out at 40 km/h (25 mi/h), 56 km/h (35 mi/h), and 80 km/h (50 mi/h); speeds were held constant within 1.6 km/h (1 mi/h), and the test was terminated when the vehicle could no longer maintain 95 percent of the designated test speed. Range at 40 km/h was 112 km (70 mi). Range at 56 km/h was 96 km (60 mi). Range at 80 km/h was 69 km (43 mi).
- 3. Range When Operated in a Selected Driving Pattern. Test Schedules "B." 32 km/h (20 mi/h); "C." 48 km/h (30 mi/h); and "D." 72 km/h (45 mi/h) of SAE J227a were run. Range on the "B" schedule was 80 km (50 mi). Range on the "C" schedule was 67 km (42 mi). Range on the "D" schedule was 62 km (39 mi).

³ E. J. Dowgiallo, Jr.: C. E. Bailey, Jr.: L. R. Snellings; and W. H. Blake: "Baseline Tests of the EVA Metro Electric Passenger Vehicle," MERADCOM Report 2244 (July 1978).

¹ Ibid.

- 4. Maximum Acceleration. Maximum acceleration was calculated from the recorded time and velocity data. The tests were conducted on the 3-mile straightaway at APG. Time to accelerate to 32 km/h (20 mi/h) was 4.5 s and to 50 km/h (31 mi/h) was 8.5 s. Gradeability at speed was calculated from the acceleration data and from draw-bar tests. To ensure the passenger comfort with a smooth start, the controller delays maximum torque until the vehicle begins to roll.
- 5. Coast-Down Tests. The vehicle coasted to a stop from the maximum speed reached during the acceleration test. The velocity was recorded on an analog recorder. The analog recording was analyzed for the SAE J227a vehicle road energy consumption and vehicle road load power. The unique design feature of coupling the motor directly to the drive train did not allow mechanical isolation.
- 6. Tractive Force Tests. The maximum-grade capability of the test vehicle was determined from tractive force tests by towing a field dynamometer at approximately 1.6 km/h (1 mi/h) while the test vehicle was being driven with wide-open throttle. The force was measured by the dynamometer instrumentation from a load cell attached between the vehicles. The test was run with the batteries 0 percent, 40 percent, and 80 percent discharged. This test was used to compute the gradeability limit. Gradeability was a function of controller action rather than battery discharge, at least up to 80-percent depth of discharge (DOD). Tractive tests were terminated at 80-percent DOD as determined by measurement of energy with a Hall-effect watt-hour meter. A DOD was achieved by operating the vehicle at 56 km/h (35 mi/h).
- 7. Charger Efficiency Tests. A residential kilowatt-hour meter was used to measure input energy to the charger. The charger output power and energy were measured with a Hall-effect watt-hour meter which responds to inputs from d.c. to considerably higher than 5 kHz. Charger efficiency was calculated as the ratio of energy to the battery, as measured by a Hall sensor, to the energy to the charger as measured by a rotating watt-hour meter. The efficiency was calculated to be in the range of 80 percent to 84.3 percent. The ferro-resonant transformer corrected for changes in the line voltage and was programmed for 27.5-amp peak current demand, with the charge rate tapering off based on battery voltage. A complete test was not performed on the charger characteristics. The auxiliary battery was charged from the on board charger by a d.c. to d.c. converter from the propulsion batteries during vehicle operation.

VII. TEST RESULTS AND DISCUSSION

The data collected from all range tests are summarized in Table 1. The table shows the test data, type of test, environmental conditions, the range test results, energy into and out of the battery, and the energy into the charger. These data are used to determine vehicle range, energy economy, and efficiencies.

- 1. Maximum Speed. The maximum speed of the vehicle was measured during the acceleration coast down tests. It is defined as the maximum speed that could be reached on the track under full power. The measured maximum speed was 97 km/h (60.3 mi/h) for this vehicle.
- 2. Range. The following range tests were run: 40-km/h (25-mi/h), 56-km/h (35-mi/h), 70-km/h (44-mi/h), 80-km/h (50-mi/h). B-cycle, C-cycle, and D-cycle. The test results are shown in Table 1. These tests were run one time each due to the limited availability of the vehicle. The speed, velocity, current, and power profiles for the third cycle and next to the last cycle for each "B," "C," and "D" driving schedule are presented in Figures 7 through 18. The data for these figures are shown in Appendix B.
- 3. Maximum Acceleration. The average maximum acceleration of the vehicle was measured with the batteries fully charged, 40 percent discharged, and 80 percent discharged. The results of the tests are shown in Figure 19 and Appendix B. Maximum observed acceleration was 10.14 km/h.s (6.3 mi/h.s) at 4.8 km/h (3.0 mi/h). Velocity as a function of time is shown in Figures 20, 21, and 22 for the 0-percent, 40-percent, and 80-percent depths of discharge of the battery, respectively. Note that the first-cycle (0 percent DOD) acceleration has some initial anomolous behavior which is reflected in the other derived graphs of road energy and road power. This initial cycle problem probably arises from vehicle lubricant stiffness and controller considerations. The jagged appearance of the graphs is due to road and vehicle irregularities; the impact becomes pronounced as velocity and acceleration flatten. Selection of the cycles representing 40-percent and 80-percent DOD was affected by track considerations.
- 4. Gradeability. The grade in percent which the vehicle is able to traverse at any selected speed is calculated from maximum acceleration tests by using the equation:

$$G = 100 \tan (\sin^4 0.0455 \, \tilde{a}_a) \%$$

where:

 $a_n =$ acceleration in miles per hour per second at speed n.

Figure 7. "B" Cycle, velocity vs time.

ELAPSED CYCLE TIME(SECS)

Figure 8. "B" Cycle, battery voltage vs time.

ELAPSED CYCLE TIME(SECS)

20-

30 -

ELAPSED CYCLE TIME(SECS)
Figure 9. "B" Cycle, battery current vs time.

COBMRIEC!

Figure 10. "B" Cycle, battery power vs time.

ELAPSED CYCLE TIME(SECS)

Figure 11. "C" Cycle, velocity vs time.

ELAPSED CYCLE TIME(SECS)

ELAPSED CYCLE TIME(SECS)

Figure 12. "C" Cycle, battery voltage vs time.

20-

Figure 13. "C" Cycle, battery current vs time.

ELAPSED CYCLE TIME(SECS)

ELAPSED CYCLE TIME(SECS)

Figure 14. "C" Cycle, battery power vs time.

ELAPSED CYCLE TIME(SECS) Figure 15. "D" Cycle, velocity vs time.

Figure 16. "D" Cycle, battery voltage vs time.

ELAPSED CYCLE TIME(SECS)

ソウィトら

ELAPSED CYCLE TIME(SECS) (INSET: 1ST TEN SECONDS OF RUN)

Figure 17. "D" Cycle, battery current vs time.

ELAPSED CYCLE TIME(SECS)

Figure 18. "D" Cycle, battery power vs time.

(INSET: 1ST TEN SECONDS OF RUN)

DMUOCHEY HZ EH/ID

Figure 20. 0% depth of discharge, velocity vs time.

DULIOUNEY HZ EHITE

Figure 21. 40% depth of discharge, velocity vs time.

Figure 22. 80% depth of discharge, velocity vs time.

ドドノゴの

The controller limited the acceleration at low speeds to minimize jerk; therefore, gradeability at low speeds was calculated from draw-bar forces. The gradeability versus velocity results are graphed in Figures 23, 24, and 25; the tabulated results are shown in Appendix B.

5. Gradeability Limit. Gradeability limit is defined by the SAE J227a procedure as the maximum grade on which the vehicle can just move forward. The limit is determined by measuring the tractive force with a load cell while towing a dynamometer at about 1.6 km/h (1 mi/h). It is calculated from:

Gradeability limit in percent =
$$100 \tan \left(\sin^{-1} \frac{P}{W} \right)$$

where:

The tractive forces that the GE-100 Centennial was capable of exerting for three states of battery discharge were:

At a vehicle test weight of 1778 kg (3920 lb), the resulting gradeability limits were:

$$0\%$$
 Discharged and cold -18.1% 40% Discharged -26.4% 80% Discharged and hot -28.1%

The values at the 40-percent and 80-percent discharged state were greater than at the 0-percent discharged state for the tractive force measurements. The cause was a combination of controller action and an increase in battery temperature. Lower tire and bearing friction with a warmed-up vehicle also decreased the propulsion forces required.

Figure 23. 0% depth of discharge, percent gradeability vs velocity.

Figure 25. 80% depth of discharge, percent gradeability vs velocity.

The depth of discharge was determined by measuring the energy drawn from the battery using a Hall-effect meter. The battery was discharged by accelerating the vehicle for coast-down tests. This procedure raised the electrolyte temperature from 27°C to 52°C (80°F to 125°F) or, in effect, increased the battery capacity by 31 percent (0.7 percent capacity increase per degree Fahrenheit change). Acceleration runs also changed the drive train friction. This testing was not intended to investigate drive train friction or temperature effects on battery capacity, hence the greatest value of draw-bar force was used to calculate greadeability limit.

6. Road Energy Consumption. Road energy is a measure of the energy consumed in overcoming the vehicle's aerodynamic and rolling resistance.

The road energy for the vehicle at various speeds and the losses in the drive train were determined from coast-down tests (Figures 26, 27, and 28). Road energy $E_{\rm n}$ is calculated from the following equation:

$$E_n = 7.72 \times 10^{-5} \text{ W} \frac{V_{n-1} - V_n}{t_n - t_{n-1}} \frac{kWh}{km} - E_d$$

where:

7

V = vehicle speed, km/h

W = gross vehicle weight, kg

t = time, s

 $E_a = drive train energy$

$$\frac{V_{n-1} - V_n}{t_n - t_{n-1}} = a, km/h.s$$

The results of the road energy determination are shown in Figure 29 and Appendix B.

7. Road Power Requirements. Road power is a measure of vehicle aerodynamic and rolling resistance. The road power, P_n , required to propel a vehicle at speed n is determined from coast-down tests. The following equation was used:

$$P_n = 6.08 \times 10^{-5} \text{ W } \frac{V_{n-1}^2 - V_n^2}{t_n - t_{n-1}}$$

DULIOUNEY HE EHLER

Figure 26. Coast-down cycle 1, velocity vs time.

DELLHS NY EH/IR

Figure 28. Coast-down cycle 7, velocity vs time.

Because there is no way to disengage the motor, these calculations include motor windage losses. The results of road power calculations are shown in Figure 30 and Appendix B. Appendix C shows a calculation approach to take windage losses into account.

8. Indicated Energy Economy. SAE J227a defines energy economy as "the vehicle range in various operating modes divided into the AC energy required to return the battery to its original state of charge. The test procedure monitored electrical power transfer at three points. A rotating watt-hour meter measured the 60-Hz a.c. input to the charger. A Hall-effect device measured the d.c. energy into the battery. A Hall-effect device also measured the d.c. energy out of the battery. The efficiency of the charger, the battery, and the overall system were then calculated as the ratio of energy out to energy in.

The Vehicle Energy Economy column of Table 1 is the system economy, which is the a.c. energy into the charger divided by the distance covered at the test speed or over the driving pattern. The Battery Energy Economy column is the d.c. energy out of the battery divided by the distance covered during the test.

Charger efficiency is the ratio of output d.c. energy to input a.c. energy expressed as a percentage. The Hall-effect devices responded from d.c. to frequencies beyond 5 kHz.

VIII. COMPONENT PERFORMANCE AND EFFICIENCY

- 1. Battery Charger. The GE CRD Ferro-Resonant laboratory model battery charger and the on-board accessory battery charger are described in Appendix A. The Ferro-Resonant unit charges the main propulsion batteries during a non-operating period. The auxiliary battery was charged from the propulsion batteries during operation of the vehicle. Charger efficiency was calculated to be as high as 84.3 percent. During portions of the test the auxiliary battery was charged with a separate charger at the same time the propulsion batteries were being charged.
- 2. Battery Characteristics. The GE-100 Centennial used the Globe-Union GC-419 lead-acid batteries for propulsion. Eighteen modules of 6 volts each were connected in series to provide a nominal operating level of 108 volts. The propulsion batteries are rated at 132.5 Ah on a discharge current of 75 A for 106 min. Figures 31 and 32 display the battery characteristics for the first 25 percent and the last 25 percent of operating range, respectively. The reduced power at speed for the last 25 percent of range reflects the reduced chassis forces due to warmed-up tires, etc. The roll-off of voltage with increasing range is a characteristic of the battery, but control of current and power is due to the motor controller.

Figure 30. Road power vs velocity.

Figure 31. Constant-speed battery performance, first 25% of range.

Figure 32. Constant-speed battery performance, last 25 percent of range.

3. Controller. The General Electric EV-1 Silicon Control Rectifier (SCR), model C, with current limiting and demand pickup of a contractor to bypass the controller was used. The controller has two adjustable features — creep speed and controlled acceleration — and one fixed feature — top speed. The SCR is switched on and off by an oscillator card at a rate of 50 Hz to 300 Hz with duty cycle varying from 5 percent at 50 Hz to 50 percent at 300 Hz. When the oscillator reaches approximately 95 percent at 50 Hz, the bypass relay is energized to provide uninterrupted battery voltage directly to the motor. The oscillator is controlled by the position of the accelerator pedal.

Wave form analysis of the controller for harmonic content was calculated by Fourier Transformation. The analysis indicates that 98 percent of the energy is transferred at frequencies below 5 kHz in all modes.

- 4. Motor. The d.c. series 5BT2364 Cll (S/N J1.42-99) motor is described in Appendix A. The significant design feature of this vehicle is that the motor is connected directly to the drive train, without clutch or transmission. This feature not only allows lower weight, but optimizes the electro-mechanical characteristics of a d.c. series motor for starting torque, speed regulation, and reversing. The vehicle did not have regeneration or plugging in the tested configuration. Having the motor connected directly to the drive train required a correction to the coast-down tests to develop the aerodynamic drag plus rolling resistance. See Appendix C for procedure.
- 5. Drive Train. The vehicle employed a chain drive with a 1.36:1 ratio and a differential with 4.135:1 ratio for an overall drive line ratio of 5.62:1. Motor/vehicle speed ratio is 80.5 r/min/mi/h. Tires, brakes, etc., are described in Appendix A. Manufacturer's figure of 98-percent drive train mechanical efficiency was provided.

1X. RELIABILITY

The vehicle was not available long enough to conduct an evaluation of reliability. However, there was an interruption in the testing to allow the car to be demonstrated to the public. When the car was returned, it required 2.5 gal of water to service the battery and one module had to be replaced because of a burned post. These problems are associated with training the operators concerning routine maintenance.

The on-board auxiliary charger was hypassed in favor of charging from a MERAD-COM charger because of excessive draw from the on-board charger.

APPENDIX A

VEHICLE SUMMARY DATA SHEET

1. Vehicle Manufacturer:

General Electric Co. Corporate Research and Development 1 River Road Bldg K-1 Schenectady, NY 12345

Triad Associates 32049 Howard Madison Heights, MI 48071

2. Vehicle Description:

Name: Centennial Electric

Model: GE-100

Availability: One-of-a-kind experimental prototype

Price: Estimated replacement value \$250K

3. Vehicle Weight:

Curb weight: 1551 kg (3420 lb) Driver weight: 68 kg (150 lb)

Passenger weight (3): 159 kg (350 lb) Gross weight: 1778 kg (3920 lb)

4. Vehicle Size:

Wheelbase: 2.34 m (92 in.)

Length: 4.06 m (160 in.)

Width: 1.68 m (66.1 in.)

Height: 1.36 m (53.6 in.)

Headroom: 0.97 m (38.3 in.)

Leg room: 1.06 m (41.9 in.)

Frontal area: 1.77 m² (19 ft²)

Road clearance: 0.15 m (6 in.)

Number of seats: 4

Wheel track: 1.38 m (54.5 in.) front: 1.47 m (58.0 in.) rear

5. Auxiliaries and Options:

Lights: Headlights (4), front parking and direction, front side markers (parking and direction), rear lamp assembly (backup, taillight, directional, stop), rear license plate lamp, rear side markers, dome light, 2 courtesy lamps, dash cluster illumination lamps.

Windshield wipers: Yes

Radio: Yes CB transceiver, Am/Fm stereo

Ampmeter: Yes Speedometer: Yes Left-hand drive: Yes Regenerative braking: No

Power steering: No Windshield washers: Yes

Heater: Yes (gas)

Fuel gage: Yes (state of charge)

Tachometer: No Odometer: Yes

Direct-drive transmission

Mirrors: Yes (3) Power brakes: No

6. Propulsion Batteries:

Types: Lead-acid (motive GC-419)

Modules: 18 (6 volts)
Battery voltage: 108 volts

Size: 0.26L x 0.18W x 0.29H; 0.014 m³ each 0.252 m³ total (10.2L x 7.1W x 11.4 H:

826 in³ each, 14859 in³, 8.6 ft³ total)

Manufacturer: Globe Union Cells: 3 per module 54 total

Capacity: 132.5 Ah (75 A for 106 min)

Weight: 30.9 kg each, 556.2 kg total (68.1 lb ea, 1226 lb total)

7. Auxiliary Battery:

Type: Lead-acid (SCI) Manufacturer: Globe Union

Cells: 6

Voltage: 12 volts

Capacity: 30 Ah @ 20-h rate

Size: 0.197L x 0.130W x 0.187H m, (7.75L x 5.13W x 7.38H in.)

Weight: 10 kg (21.8 lb)

8. Controller:

Type: SCR EV-1C

Manufacturer: General Electric Voltage rating: 84 to 144 volts

Current rating: 850A peak 375 max avg batt.

Size: 0.356L x 0.205W x 0.177H m (14L x 8W x 7H in.)

Weight: 23.1 kg (51 lb)

9. Propulsion Motor:

Type: d.c. series 5BT 2364 Cll S/N JL 42-99 blower vent

Manufacturer: General Electric Voltage: 109 V at rated power Power: 16.26 kW (21.8 hp)

Insulation class: F

Current: 170A at rated power

Size: 0.29 m dia. (11.38 in.), 0.51 mL (20.0 in.)

Weight: 104.4 kg (230 lb) Rated speed: 3270 r/min Maximum speed: 6800 r/min

10. Battery Charger (Propulsion):

Manufacturer: General Electric Input voltage: 220 V single-phase

Recharge time: 6 to 8 h

Type: Laboratory Model Ferro-Resonant

Off board

Peak current demand: 27.5 A

Automatic turn off: Adj. time 12 h max

Weight: 43 kg (95 lb)

11. Battery Charger (On Board):

Type: d.c.-d.c. transformer isolated

Manufacturer: EVA Peak current: 2.5 A

Size: 0.32L x 0.010W x 0.08H m (12.5L x 4.0W x 3.0H in.)

Weight: 2.7 kg (6 lb)

Automatic turn off: Yes, regulated Input voltage: 85- to 125-V d.c.

Recharge time: 4 to 6 h

12. Body:

Manufacturer: GE/Triad

Type: Hatchback

Materials: Stainless steel under body; steel and fiberglass body Doors: 3, 2 parallelogram linkage side, 1 gull-wing rear hatch

Windows: Glass windshield: Lexan® -2 fixed-in side doors, 2 sliding-in doors, 2 fixed-in rear quarters, 1 fixed-in rear door

Seats: 2 full bucket in front - 2 removable rear facing jump seats.

Cargo space volume: 1.36 m³ (48 ft³) to window level

Cargo space dimension: 1.83L x 1.22W x 0.61 H m (6.0L x 4.0W x 2.0H ft)

13. Chassis:

Type: Unibody

Manufacturer: Triad Services

Material: Stainless steel backbone, fiberglass panels

Modification: None - original design

Springs and shocks: Coil, Monroe take-aparts

Axles: Audi Fox Front; Subaru hubs, no axle-rear Morse Hyvo chain, Chrysler parking pawl, BW differential 1.36: 1 chain, 4.135: 1 differential, 5.620:1 driveline ratio (80.5 r/min/mi/h)

Steering: Triad Services, new design, 18.5: 1 turning ratio, 9.75 m (32 ft) turning diameter

Brakes: Front, inboard Chevelle, copper drums; rear, subaru drums

Parking: Vega coupled to front Chevelle

Regenerative: No

Tires: Michelin B78-13 radial 165 to 179 K Pa (24 to 26 lb/in.²)* 0.30 m (11.8 in.) rolling radius

Wheel track: 1.38 m (54.5 in.) front; 1.47 m (58.0 in.) rear

This pressure range is the normal manufacturer's recommended operating band; however, with permission of the tire manufacturer GE increased the pressure to 283 kPa (41 lb/in.*). The pressure of 283 kPa was maintained for the tests in this report.

Motor Characteristics Data

IBATT	IARM	VM	TORQUE	RPM	НР	LOSSES WATTS	EFF.
177.	560.	27.2	166.5	0.	0	15012.	0
171.	459.	34.9	129.5	312.	7.68	10299.	35.8
221.	377.	59.5	101.8	1046.	20.27	7306.	67.4
280.	309.	96.2	78.7	2164.	32.45	5494.	81.5
245.	253	105.4	60.8	2620.	30.33	4075.	84.7
201.	208.	107.5	46.6	2916.	25.88	3023.	86.5
165.	170.	109.2	35.0	3272.	21.82	2325.	87.5
135.	140.	110.6	25.4	3750.	18.17	1899.	87.7
111.	114.	111.8	17.8	4404.	14.90	1688.	86.8
91.	94.	112.8	11.6	5372.	11.87	1732.	83.6
74.	77.	113.5	6.8	6778.	8.80	2178.	75.1

APPENDIX B. TABULATIONS OF GRAPHED DATA.

CYCLE TIME (SECS)	BAT. CURRENT(AMPS)	BAT. VOLTAGE (VOLTS)	AUG. POUER(WATTS)	UELOCITY (MP)
9266666				
		0001001001	7674 64466444	00000000000000000000000000000000000000
		000 - 400 CM - VOT		4. VAN SESSON
	00000000000000000000000000000000000000	00000000000000000000000000000000000000	12759.46400000	A. M. W.
		164.73484466	10994.157200000	6.905445656
7000088	45.00.40000	105.296543000	10285.126300000	7.869200000
A	80.834486308	106.236801000	9590.636570000	8.65360000
8.0000000. R	77,372882500	105.340094000	8821.114046080	9.204700000
600000000000000000000000000000000000000	87,565972000	106.150815000	8617.536660000	9.628606666
7.28686888	82.666082600	108.168585600	9057.263810000	16.176606666
7.799999760	78.342203000	105.642718000	7678.172430000	10.651000000
8.399999880	76.111751000	166.568643686	7700.275120000	11.86900000
9.000000000	71.234698900	107.925245000	8057.989670000	11.451000000
9.599999768	73.457538500	105.636018000	7689.54295666	11.831000000
16.19999886	97.662636900	105.752155000	9365.538140000	12.148000000
10.80000000	90.471395800	106.030212000	9430.101260868	12.761600600
11.39999760	88.162281700	196.491407666	9134.041576660	13.21888888
11.999999880	91.110842800	166.718280000	9177.665300000	13.55600000
12.600000000	93,52399390	106.033562000	9293.995230666	14.645000000
13.199999760	92.613035700	106.365221000	9478.378186666	14.431000000
13.79999880	100.032651000	105.227307000	10037.343500000	14.85000000
14.46666666	105.511087800	105.509831600	16703.914166666	15.381000000
PAUSE				
14.999999760	112.169456000	103.948690000	10701.005800600	15.96600000
15.599999880	135.405234000	162.107258600	10735.984860666	16.53900000
16.20000000	116.523786000	105.819156000	12908.366300000	16.77400000
16.799999760	194.584530000	103.615915000	17934.982800000	17.20300000
17.399999880	227.688599000	162.508152000	24411.652000000	18.32400000
13.00000000	158.255314000	102.582971000	15527.534800000	19.33680880
18.599999760	160.838477000	162.511562086	15201.811000000	19.9150000
19.193939880	151.419321000	162.789569099	14751.032500000	20.58106600
19.8000000	105.008665000	164.894532000	11782.874280808	
20.339993760	76.078763600	166.475774666	7588.598386666	
00000000000000000000000000000000000000	63.844385266		684V. 361640666	21.531606666
		167.731641066	55 / 15333888	
22.19999760	53.195696486	167.69272060	5427.188186666	21.586888888
	53.67581600	100.30103.001		
	74.456136746 77.4769769		14V5.V88148088 1043 CEQUEAGA	21.50166666
	C7 C627-16			21.624000000000000000000000000000000000000
		187.491967888	5828.324420000	21.53300000
25.7999976	57.33826.600	187.32669688	5968.12238000	21.58200000
26. 39999998	52.514271460	167.623.37666	5000 BS845000	21.44000000
)) · · · · · · · · · · · · · · · · · ·	•		

CYCLE 3, B CYCLE START/STOP

UELOCITY(MPH) 21.39166666 21.57466666 21.555666666 21.555666666	21.700000000 21.7300000000 21.680000000	21.25.25.25.25.25.25.25.25.25.25.25.25.25.	21.55526 21.5526 21.5526 21.57666666	21.72266666 21.7638666666 21.772866666		21.63299999 21.63299999 26.987999999 29.35299999	20.12469600 19.467896000 17.84966606 15.211666600	9.376540000 6.46660000 3.58260000 1.58260000 1.00154000 1.062300000
AUG. POMER(MATTS) 6114.116450000 7413.821820000 5751.7487000000 5527.8135700000	5553,449900000 5399,850640000 5811,076960000 5718,013020000	5817.475116666 5895.269476966 5472.994396666	5986.918676666 5872.156186666 5916.937266666	5877,385030000 5729,064360000 5775,596330000 5899,4877,4000	55951.1427.15556 55961.14258656 6015.817650606 5716.2686766060	11124 1124 143860666 559.362625066 943.802462666 918.2038476666	693.141451666 929.291228666 576.229866660 725.113833900	821.164380600 758.286215606 658.68620808 1534.788538080 728.046432808 777.486654080
8AT. UOLTAGE (UOLTS) 166.811899866 166.727616666 167.268628668 167.496434666	107.392581000 106.790682800 107.571253800 107.399281000	167.459583088 167.471867868 169.364667668	167.763324060 167.568718060 167.589126060	167.591353686 167.218377666 167.266395066	107.1934600 107.761091000 107.761091000 107.423849000	111.05.428000 110.030218000 110.030218000 110.863273000	110.515986666 111.107829666 110.318325666 110.71251966	110.961542060 110.837589060 113.74267060 113.67548060 111.062856060
### CURRENT(PRFS) 64.358166300 75.882247300 71.716346900 56.46681850	56.354869666 57.841837666 55.136874866 58.5583183766	56.149332566 58.756257766 57.689587766	12: 12: 12: 13: 13: 13: 13: 13: 13: 13: 13: 13: 13	58.955794300 59.562553900 57.542413400	59.699278300 59.699278300 56.469956000 55.56198400	0.000 0.0000 0.00000 0.0000 0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000		00000 00000 00000 00000 00000 00000 0000
CVCLE TIME(SECS) 27.0000000000 27.50000000000 28.100000000	29.299999760 29.99999888 30.66666668 20.5666666	31.199999999999999999999999999999999999	14. 2466666666666666666666666666666666666	36.59999986 37.19999889	37. 8666666 38. 396969756 39. 666666666 313. 666666666	46.1999994444444444444444444444444444444	43.799999766 44.399999886 44.39999886 45.599999886	10000000000000000000000000000000000000

CYCLE 3, B CYCLE START/STOP

START/STOP CYCLE N-1, B CYCLE

-

Ŋ

CYCLE N-1, B CYCLE START/STOP

CFLOCYTY (TPL)	118. 118. 118. 118. 118. 118. 118. 118.	31.263000000/
ACG. POLER (LATTS) 967-39647-1000 998.37125600 2656.58596000 17889.1350000 14393.031700000 13053.01700000	13238.81.25.26.000000000000000000000000000000000	11478.460500000
### . UOLTAGE (UOLTS) 118 482781888 118 48978388 192 17487388 193 17487788 184 18386888 184 83386888 184 83388888	1001 1001	104.51490000
1.000 HPS)	236. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20	106.280535000
CVCLE TIME (SECS)	7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	26.39999889

CYCLE 3, C CYCLE START/STOP

CYCLE 3, C CYCLE START/STOP

2.67-20-20-20-20-20-20-20-20-20-20-20-20-20-	
AUG. POUER(UATTS) 920.052593000 1035.192720000 969.732342000 1035.192720000 1025.256770000 1021.165490000	
###	
8175 8175 8175 8175 8175 8175 8175 8175	
CVCLE TIME(SECS) BAT. CURREN 54.598989766 .9897886 55.19999886 1.248829 55.399999886 1.368479 56.99999888 1.368479 51.99999888 1.368479 51.99999888	THE SECONDS OF THE SECONDS

CYCLE 3, C CYCLE START/STOP

UELOCITY(APH) . 1927390000 . 7927300000 1.061900000 8.1537800000 6.317800000	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	31. PRRSABBOOD 31. ARRAGOODO 31. GREGOODOO 37. GREGOODOO 37. JIJOOOGOO
AUG. POUER(UATTS) 2474.736518000 2532.014348000 8643.5722440000 17585.56290000 16502.016100000 1600000	17129.69366666 15278.51678.69666 15365.194486666 19991.151566666 19762.19436666 19762.152966666 17296.4067.698 17296.4067.698 17296.4067.698 17296.4067.698 15151.89366666 1739.13566666 17736.51866666 17736.51866666 16735.76966666 16735.76966666 16735.76966666 16735.76966666 16735.76966666 17736.518466666 17736.5184666666 17736.518466666	12934,365466888 12786,499186808 12581,93546688 12483,168488888888888888888888888888888888888
8A7. UOLTAGE (UOLTS) 104.086044000 103.452877000 95.126233600 84.163067500 85.196571200 84.3761000	85, 83,9228500 87, 6918278500 887, 679540900 881,4648000 881,57680244900 881,57680244900 881,139932000 881,139932000 881,0720000 881,0720000 881,0720000 881,0720000 881,0720000 881,2590000 881,259000000000000000000000000000000000000	86.540513700 86.540513700 86.5936613700 86.460111500 86.566197700
341 CURRENT(AMPS) -2.351865720 5.334185570 85.68374600 240.759789000 250.257607000 178.2837417000	198.348214666 169.1532276000 169.153276000 241.42508666666666666666666666666666666666666	132.617123866 131.82547866 136.82658666 136.821273886 123.43288666
CYCLE TIME(SECS) . \$99976000 1.199988000 1.880000000 2.399976000 2.509980000000000000000000000000000000000	7.11999 7.12999 7.12999 7.129999885 7.129999885 7.129999885 7.1299999885 7.1299999885 7.1299999885 7.1299999885 7.1299999885 7.129999985 7.129999985 7.129999985 7.129999885 7.1299999885 7.1299999885 7.12999999999999999999999999999999999999	23.999976666 24.599988666 25.789988666 25.789976666 26.399988666

CYCLE N-1, C CYCLE START/STOP

UELOCITY(MPH) 6.37269698 4.85789698 4.85789698 4.1887389898 3.285186988 AUG. POUFR(UNTTS) 2396.417850000 2398.17125000 2273.695180000 2248.435470000 2318.899190000 2442.606330000 9AT. VOLTAGE (VOLTS) 102.819710900 102.82757000 102.82757000 102.8213800 102.824177000 103.029649000 DAT. CURRENT(AMPS) -2.280816060 -2.136179240 -1.971242510 -2.22242383 -1.84242383 -2.214841370

1

CYCLE N-1, C CYCLE START/STOP

UELOCITY(MPH) 2.7017466666 5.005466666 14.4016666666666666666666666666666666666	100 100 100 100 100 100 100 100 100 100	31.353888888 31.353888888 33.358888888 33.358888888 33.35888888 33.35888888 33.35888888	34.80980000000000000000000000000000000000
POUR R (LATTS) 29765.26730000 34636.56440000 34628.76440000 34621.19800000 68436.197800000 44187.90340000 15591.47230000	19414.2256 18486.2356666 18486.23566666 17366.4256666 38998.8936666 38998.73566666 25586.735366666 25586.735366666 25612.926.88888	2675.1899888 26874.752888888 2542.47132888 9511.18598888 11428.518186888	22785, 4712000000 33081, 833800000 31411, 917500000 30850, 1517500000 20886, 8321000000 27951, 415600000 27961, 8717600000 27528, 846700000 25793, 1817000000 25793, 1817000000 25793, 1817000000 25793, 1817000000 25793, 181700000000000000000000000000000000000
9A1. UOLTAGE (UOLTS) 100.027970000 56.38587500 96.343089300 97.16364300 99.122329400 91.221712590	162. Szeküsébe 162. hősséküsébe 162. hősséküsébe 168. 312728666 92. 38264888 99. 37916986 166. 13629666	161.514293086 161.705248066 166.84548066 165.754388066 165.532165066	100 - 445614000 900 900 900 900 900 900 900 900 900
### CURRENT (##PS) 319. #7471900 401. #74081000 422. #74081000 422. #74081000 422. #740810000 422. #760800 42	1001 1001	219.098817000 210.5888817000 80.475844700 93.691082400 129.325027000	25.4
CVCLE TIME (SECS) . SUBUSUS RES 1. 1804000000 1. 180400000000000000000000000000000000000	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18.86966666 11.39595988 12.59595988 13.195959588 13.195959768 13.79595888	PAUSE 14.299999366 16.200009986 16.200009986 17.39999986 17.39999986 19.1999999766 19.1999999766 20.3999999766 20.399999886 21.399999886 23.4000000000000000000000000000000000000

CYCLE 3, D CYCLE START/STOP

CYCLE 3, D CYCLE START/STOP

UELOCITY(RPH) 47.923000000 47.859000000 47.735000000 47.754000000 47.754000000	47.5959 47.15959 47.15959 47.159599999 46.1750808999 46.9750808999 45.9750808999 45.973089899 45.12699899 45.12698899 45.12698899 45.12698899	44.65978 44.46698 44.466888 44.7668888 44.76688888 41.2567688888 41.2567688888 41.2567688888 41.2567688888 48.7777888888888 48.87778888888888	
AUG. POWER(UNITS) 10886.683708000 11691.986100000 11691.236100000 11176.966900000 10977.9827000000	6.352.3 6.352.3 6.352.3 6.352.1 6.352.1 6.352.3 6.352.	6749 9962	1
105.73000 105.730037000 105.886884000 105.68520300 105.948633000 105.948652000 105.948652000	168.241276666 168.243564666 167.641568666 167.314196666 167.85256666 167.951262666 167.931945666 167.931945666 167.862293666 167.862293666 167.86226966	167.928595660 1693.64546660 1693.64546660 1110.9456660 1111.94519595660 1111.94519595660 1111.94519595960 1111.8451959600 1111.8451959600 1111.8451959600 1111.8451959600 1111.8451959600 1111.8451959600 1111.865196000 1111.8651960000 1111.86519600000000000000000000000000000000000	
110 . JGR. 170 . JGR.	4.6. 1.00 to 0.00 to 0	63.556799466 47.3793881888 35.73793881888 6.31379138881888 6.31379138881888 6.3488853668 6.368853668 6.368853668 6.368853668 6.368853668 6.37733368888 6.37733368888888888888888888888888888888	
CVCLE TIME (SECS) 54.00000000 54.50000000 55.100000000000000000000000000	5.5. 1990 999 999 999 999 999 999 999 999 99	66.60000000000000000000000000000000000	

CYCLE 3, D CYCLE START/STOP

UME 1997 1997 1997 1997 1997 1997 1997 199	10.12596666 10.125966666 10.125966666 10.125666666666666666666666666666666666666
ANC. 50 DEER (WATTS) 612. 46386299999999999999999999999999999999999	632.179912800 632.776625800 639.651274000 624.6351274000 624.636816000 649.392886000 651.9586000
111. 758216696 111. 782342696 111. 583342696 111. 583342696 111. 585888696 111. 585888696 111. 58388996 111. 789388996 111. 789388996 111. 789334996 111. 789378996 111. 789378996 111. 789378996 111. 758163996 111. 758163996	111.76447999 111.8158999 111.9579999 111.9579999 111.78673999 111.786731999 111.907836999
CCCRRCATE 1	1.372192346 .994196517 .8123196947 1.2123396947 1.242780450 1.268152330 1.382342290
CYCLE TIME (SECS) 81. STORMEN SECS 82. STORMEN SECS 83. STORMEN SECS 84. STORMEN SECS 85. STORMEN SECS 85. STORMEN SECS 86. STORMEN	92.399999766 92.999999766 93.69999766 1.212339 94.799999886 1.212339 95.399999766 1.262786 1.262786 95.59999886 1.382345 56.599998886 1.382345 56.59999888

CYCLE 3, D CYCLE START/STOP

CYCLE N-1, D CYCLE START/STOP

A THE

CFLOCTTY (TPL) (TP	44.158884 45.1588864 45.2886664 45.3886664 45.3886664 47.8766464 47.47664664 47.68166664 47.68166664 47.681666664 47.681666664 47.681666664 47.681666664 47.681666664 47.681666664 47.6816666664 47.6816666664	4
AUG. POUER (UATTS) 20051. 136000000 19835. 344000000 19656. 814000000 19653. 685200000 19653. 685200000 1881. 1789000000 18717. 285200000000000000000000000000000000000	18359.1371.0999666666 18195.9019966666 18196.998566666 17953.67396666 1779.79.799.96666 17434.673966666 17434.673966666 17434.673966666 17434.673966666 17434.673966666 17437.573966666 9262.727196666 9194.644816666	9213.839250000 92338.2500000 92138.25000000 9316.7037600000 9318.47660000 9318.47660000 9318.47660000 9366.68577600000 9366.68577600000 9366.68577600000 9366.68577600000 9368.6960000000000000000000000000000000000
##1. UOLTAGE (UOLTS) ##2. UOLTAGE (UOLTS) ##2. 133864 ##2. 133864 ##2. 136864 ##2. 136864 ##2. 136864 ##2. 136864 ##2. 136864 ##2. 136864 ##2. 136864 ##2. 136864	90 - (258 783 90 90 90 90 90 90 90 90 90 90 90 90 90	97,835545300 97,153594000 97,3554600 97,567274300 97,667274300 97,446785000 97,740976200 97,892846300 97,892846300 97,894627900 97,884627900 97,874627500 97,770127000 97,770127000
DAT. CURRENT(AMPS) 221.925578000 216.789243000 216.789243000 213.445293900 201.55465800 201.294422000 204.26979980	201.777223000 199.66073300 197.99199900 193.59959900 191.945157000 191.945157000 191.945157000 190.914970000 161.52575000 161.52575000 89.93479190 89.93479190 89.93479190	889.857167700 899.25882408889 899.346993819990 888.9180672400 889.37989925900 889.37989925900 889.57819989 899.5781989 899.5781989 899.5781989 899.5781989 899.5781989 899.5781989 899.5781989 899.5781989 899.5781989 899.578199
CVCLE TIME (SECS) 27. 8666666666681 1999886666666666666666666	12. 14 6 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

CFLOCITY (AFL) 47.461.000 (AFL) 47.1880 (AFL) 47.1880 (AFL) 47.1880 (AFL) 47.1880 (AFL) 46.60 (AFL) 46	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
ACCC. POURR (LATTS) SIAR. 178198668 SIAR. 19813668 9147-19812688 9147-1981268 9148-1981268 9185-91868	90.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
WAT. UOLTAGE (UOLTS) W7.852688 W7.746559788 W7.381488188 W7.56565498 W7.26565498	997. 997.	
### CURRENT (AMPS) 80.285373500 81.23731500 81.447843000 81.44784000	2002 2002 2002 2002 2003	
CVCLE 71ME (SECS) 54.898978888 55.18988888 55.189888888 55.398976888 56.399988888	538.1399888888888888888888888888888888888	

CYCLE N-1, D CYCLE START/STOP

CYCLE N-1, D CYCLE START/STOP

Maximum Acceleration Data

Acceleration to 24 km/h (15 mi/h) for GE-100 (Same for 0%, 40% and 80% discharge)

Time	Vel	ocity	Accele	eration
Seconds	km/h	mi/h	km/h sec	mi/h •sec
0.00	0.0	0.00	3.86	2.40
0.42	1.6	1.00	4.78	2.97
0.76	3.2	2.00	8.69	5.40
0.94	4.8	3.00	10.14	6.3
1.10	6.4	4.00	7.72	4.8
1.31	8.0	5.00	7.72	4.8
1.52	9.6	6.00	7.72	4.8
1.73	11.2	7.00	8.69	5.4
1.91	12.8	8.00	8.69	5.4
2.09	14.4	9.00	7.64	4.75
2.31	16.0	10.00	7.40	4.6
2.52	17.6	11.00	7.40	4.6
2.75	19.2	12.00	6.95	4.32
2.99	20.8	13.00	6.76	4.20
3.24	22.4	14.00	6.44	4.0
3.49	24.00	15.00	6.44	4.0

Maximum Acceleration Data

Acceleration from 24 km/h at Various States of Discharge for the GE-100

Velo	city	0% Dis	charge	40% Di	ischarge	80% Di	scharge
km/h	mi/h	km/h sec	mi/h sec	km/h sec	mi/h sec	km/h sec	mi/h sec
24.0	15.0	6.44	4.00	6.44	4.00	6.44	4.00
32.2	20.0	5.89	3.66	4.88	3.03	3.86	2.40
40.2	25.0	5.02	3.12	4.26	2.65	2.19	1.36
48.3	30.0	4.35	2.70	3.89	2.42	1.85	1.15
56,3	35.0	2.80	1.74	2.95	1.83	1.61	1.00
64.4	40.0	2.03	1.26	2.11	1.31	0.85	0.53
72.4	45.0	1.26	0.78	1.59	0.99	0.74	0.46
80.5	50.0	0.77	0.48	0.74	0.46	0.64	0.40
88.5	55.0	0.31	0.19	0.18	0.11	0.0	0.0

07 Dishcarge Gradeability at Speed

	•	
Elapsed	Velocity	Grade (%)
Time (Sec)	(km/hr)	
1.20	3.50	0.00
1.80	5.26	8.38
2.40	6.42	5.53
3.00	7.27	4.03
3.60	7.41	.68
4.20	7.48	.33
4.80	7.67	.90
5.40	7.99	1.51
6.00	9.96	9.39
6.60	11,23	6.04
7.20	12.58	6.42
7.80	14.56	9.45
8.40	17.19	12.61
9.00	18.95	8.39
9.60	19.20	1.17
10.20	19.80	2.85
10.80	22.49	12.90
11.40	25.17	12.83
12.00	28.14	14.28
12.60	30.80	12,71
13.20	33,59	13.36
13.80	36.09	11.96
14.40	38.07	9,48
15.00	39.91	8.75
15.60	41.57	7,89
16.20	43.27	8.14
16.80	45.64	11.31
17.40	47.55	9,12
18.00	49.36	8.62
18.60	51.25	9,03
19.20	53.73	11.84
19.80	55.61	8.98
20.40	57.37	8.39
21.00	59.26	9.00
21.60	60.98	8,21
22.20	62.81	8,71
22.80	63.88	5.07
23.40	65.18	6.20
24.00	66.68	7.15
24.60	67.53	4.04
25.20	68.87	6,34
25.80	70.03	5,55
26.40	71.15	5,30
27.00	72.28	5.41
27.60	73.14	4,05
28.20	74.25	5.30
28.80	74.85	2.85
29.40	75.65	3.81
30.00	76.68	4.87

0% Dishearge Gradeability at Speed

Elapsed Time (Sec)	Velocity (km/hr)	Grade (*/)
30.60	77,11	2.05
31.20	77.86	3.58
31.80	78,56	3.30
32.40	79.16	2.88
33.00	79.73	2.68
33.60	80.11	1.81
34.20	80.40	1.40
34.80	80.86	2.19
35.40	81.23	1.72
36.00	81.58	1.70
36.60	81,84	1.22
37.20	82.30	2.18
37.80	82.93	3.01
38.40	83.02	.39
39.00	82.25	-3.63
39.60	82.93	3.22
40.20	84.00	5.08
40.80	84.17	.81
41.40	84.95	1.82
42.00	84.75	.92
42.60	84.08	-3.16
43.20	85.4i	6.31
43.80	85.40	04
44.40	86.11	3.40
45.00	86.00	52
45.60	86.10	.47
46.20	86.48	1.79
46.80	87.07	2.74
47.40	87.10	.15
48.00	87.49	1.87
48.60	87.78	1.36
49.20	88.58	3.81
49.80	89.60	4.85
50.40	89.41	88
51.00	89.46	.21
51.60	89.61	.73
52.20	89.91	1.39
52.80	90.31	1.93
53.40	89.57	-3.54
54.00	89.21	-1.70
54.60	89.29	.37
55.20	89.43	.67
55.80	89.92	2.36
56.40	89.86	-,29
57.00	89.60	-1.25
57.60	89.89	1.35
58.20	90.41	2.49
58.80	90.73	1.52
59.40	90.92	.90
60.00	90.91	-, 06

0% Dishearge Gradeability at Speed

Elapsed	Transfer tradeating at Speec	
Time (Sec)	Velocity	Grade (%)
· init (Bet)	(km/hr)	
60.60	90.60	-1.48
61.20	90.91	1.51
61.80	90.92	.04
62.40	91.28	1.70
63.00	91.24	21
63.60	91.12	-,54
64.20	92.38	5.98
64.80	93.07	3.31
65.40	93.02	-, 27
66.00	93.69	3.21
66.60	92.99	-3.35
67.20	93.23	1.16
67.80	93.13	-,50
68.40	93.86	3.49
69.00	93.59	-1.27
69.60	93.03	-2.70
70.20	93.96	4.46
70.80	93.67	-1.38
71.40	93.70	.14
72.00	93.49	-1.03
72.60	93,43	-,27
73.20	93.27	74
73.80	93.85	2.75
74.40	94.01	.72
75.00	93.68	-1.54
75.60	93.25	-2.03
76.20	93.95	3.33
76.80	93.78	80
77.40	93.69	46
78.00	93.76	.35
78.60 79.20	94.33	2,71
79.80	94.13	97
80.40	94.60	2.24
81.00	94.53	33
81.60	93.92	-2.89
82.20	94.17	1.18
82.80	93.66 93.88	-2.43
83.40		1.05
84.00	94.41 94.38	2.51
84.60	95.08	11
85.20	95.90	3.33
85.80	96.15	3.86
86.40	96.35	1.20
87.00	96.70	.95
87.60	96.70 96.79	1.66
88.20	95.79 95.84	.44
88.80	97.26	-4.52
89.40	96.08	6.80
90.00	97.45	-5.65
	71.13	6.54

0% Dishearge Gradeability at Speed

Elapsed	Velocity	Grade (%)
Time (Sec)	(km/hr)	
90.60	97.28	84
91.20	97.20	38
91.80	96.11	-5.15
92.40	96.68	2.68
93.00	96.49	88
93.60	96.72	1.07
94.20	97.17	2.17
94.80	96.73	-2.11
95.40	97.55	3.88
96.00	96.38	-5.53
96.60	97.15	3.64
97.20	97.91	3.63
97.80	97.94	.11
98.40	98.52	2.76
99.00	97.03	-7.07
99.60	97.99	4.56
100.20	97.64	-1.65
100.80	98.54	4.25
101.40	98.71	.82
102.00	99.32	2.89
102.60	97.86	-6.95
103.20	98.03	.83
103.80	98.60	2.71
104.40	98.23	-1.77
105.00	99.63	6.69
105.60	98.62	-4.80
106.20	99.51	4.21
106.80	99.68	.79
107.40	98.62	-5.05
108.00	99.30	3.27
108.60	98.79	-2.43
109.20	98.27	-2.50
109.80	98.67	1.91
110.40	98.54	59
111.00	98.22	-1.52
111.60	98.21	08
112.20	98.74	2.55
112.80	97.86	-4.21
113.40	98.94	5.16
114.00	98.68	-1.26
114.60	99.56	4.20

40% Dishcarge Gradeability at Speed

	at Spec	ea
Elapsed	Velocity	
Time (Sec)	(km/hr)	Grade (%)
	(,	
1.20	3.50	0.00
1.80	8.20	0.00
2.40	13.44	22.93
3.00	18.56	25.67
3.60	22.98	25.09
4.20 4.80	27.07	21.49
5.40	30.16	19.77
6.00	33.28	14.87 14.95
6.60	35.82	12.16
7.20	38.96	15.08
7.80	42.49	17.03
8.40	46.01	16.92
9.00	48.26	10.77
9.60	50,70	11.68
10.20	52.83	10.17
10.80	54.73	9.06
11.40	56.76	9.69
12.00	58.36	7.62
12.60	59.70	6.38
13.20	61.29	7.58
13.80	62.70	6.70
14.40	64.43	8.26
15.00	65.56	5.34
15.60	66.78	5.83
16.20	67.75	4.62
16.80	68.76	4.82
17.40	69.55	3.73
18.00	70.36	3.87
18.60	71.37	4.79
19.20	72.06	3.26
19.80	72.70	3.04
20.40	73.33	2.99
21.00	74.25	4.37
21.60	74.71	2.20
22.20	75.36 75.44	3.10
22.80	75.71	.40
23.40	· -	1.25
24.00	76.87 77.75	5.52
24.60	77.73 78.39	4.16
25.20	78.73	3.05
25.80	79.14	1,64
26.40	79.14 79.44	1.92
27.00	80.02	1.45
27.60	80.44	2.73
28.20	80.95	2.03
28.80	81.16	2,40
29.40	81.67	1.01
30.00	82.20	2.42
	~=·e4	2.52

40% Dishcarge Gradeability at Speed

Elapsed	Velocity	Grade (%)
Time (Sec)	(km/hr)	
30.60	82.41	1.00
31.20	82.85	2.09
31.80	83.33	2.29
32.40	84.01	3.21
33.00	84.20	.93
33.60	84.75	2.59
34.20	84.74	-,04
34.80	85.51	3.68
35.40	86.02	2.42
36.00	86.30	1.32
36.60	86.32	.09
37.20	86.14	-,82
37.80	86.52	1.78
38.40	87.99	7.01
39.00	87.82	80
39.60	88,05	1,10
40.20	89.07	4.82
40.80	90.04	4.60
41.40	89.91	-,58
42.00	90.71	3.77
42.60	89.91	-3.80
43.20	90.04	.64
43.80	89.25	-3.76
44.40	89.83	2.73
45.00	90.12	1,39
45.60	90.89	3.68
46.20	91.23	1.60
46.80	91.38	.73
47.40	91.48	.45
48.00	91.75	1.28
48.60	92.31	2.68
49.20	92.26	21
49.80	92.62	1,69
50.40	92.57	25
51.00	92.73	.77
51.60	92.76	.17
52.20	92.95	.88.
52.80	92.69	-1.21
53.40	93.34	3.08
54.00	93.11	-1.11
54.60	93.72	2.93
55.20	93.42	-1.47
55.80	93.09	-1.56
56.40	94.24	5,48
57.00	94.35	.51
57.60	93.88	-2.23
58.20	94.41	2,53
58.80	94.34	31
59.40	93.76	-2.77
60.00	94.30	2,57

40% Dishcarge Gradeability at Speed

Elapsed	Velocity	Grade (%)
Time (Sec)	(km/hr)	
60.60	04.50	02
61.20	94.50	.93
61.80	94.21	-1.39
62.40	94.42	1.00
£3.00	94.79	1.75
	95.02	1.09
63.60 64.20	94.70	-1.48
64.80	95.46	3.59
65.40	94.92 94.73	-2.55
66.00	94.73 96.33	90
66.60	96.18	7.62
67.20	95.49	74 -3.25
67.80	95.92	-3.23 2.03
68,40	95.26	-3.15
69.00	95.80	2.56
69.60	96.17	2.36 1.77
70.20	96.18	.07
70.80	96.80	2.94
71.40	95.89	-4.34
72.00	96.65	3.64
72.60	97.33	3.22
73.20	96.38	-4.50
73.80	96.32	28
74.40	96.83	2.42
75.00	96.39	-2.10
75.60	97.14	3.55
76.20	96.98	77
76.80	96,90	39
77.40	97.20	1.45
78.00	97.75	2.60
78.60	97.02	-3.45
79.20	97.98	4.58
79.80	97.32	-3.17
80,40	98.42	5.26
81.00	98.23	92
81.60	99.10	4.13
82.20	97.61	-7.09
82.80	98.47	4.10
83.40	98.24	-1.11
84.00	98.08	75
84.60	98.17	.44
85.20	97.72	-2,12
85.80	98.58	4.08
86.40	98.28	-1.45
87.00	98.47	.94
87.60	97.82	-3.12
88.20	98.46	3,07
88.80	98.35	-,51
89.40	99.51	5.51
90.00	99.19	-1.53

40% Dishcarge Gradeability at Speed

Elapsed	Velocity	Grade (%)
Time (Sec)	(km/hr)	Grade (#)
90.60	99.39	.95
91.20	98,65	-3.51
91.80	98.76	.51
92.40	97.69	-5.}}
93.00	98.11	2.01
93.60	98.10	
94.20	98.92	03
94.80	97.72	3.87
95.40	97.92	-5.69
96.00	97.80	.92
96.60	98.00	56
97.20	97.94	.97
97.80	97.25	32
98.40		-3.26
99.00	97.53	1.32
99.60	97.08	-2.12
100.20	97.17	.41
100.20	97.43	1.24

Elapsed	Velocity	Grade (%)
Time (Sec)	(km/hr)	,. ,
1.20		
1.80	3.50	0.00
2.40	3.87	1.73
3.00	7.60	18.04
3.60	12.74	25.18
3.60 4.20	17.61	23.75
4.80	22.38	23.27
5.40	26.65	20.72
	31.30	22.65
6.00	35.53	20.53
6.60	38.72	15.32
7.20	42.00	15.76
7.80	45.09	14.82
8.40	48.07	14.33
9.00	50.85	13.31
9.60	53.32	11.83
10.20	55.76	11.67
10.80	57.90	10.21
11.40	59.34	6.84
12.00	61.13	8.56
12.60	62.78	7.85
13.20	64.11	6.31
13.80	65.68	7.49
14.40	67.14	6.97
15.00	68.16	4.82
15.60	69.34	5.64
16.20	70.27	4.42
16.80	71.30	4.87
17.40	72.26	4.58
18.00	73.38	5.32
18.60	74.40	4.83
19.20	75.46	5.04
19.80	76.31	4.04
20.40	76.47	.77
21.00	77.86	6.64
21.60	78.70	3.97
22.20	79.37	3.19
22.80	79.96	2.82
23.40	80.57	2.88
24.00	81.06	2.32
24.60	81.59	2.54
25.20	81.83	1.15
25.80	82.28	2,14
26.40	82.91	3.01
27.00	83.46	2.59
27.60	83.06	-1.88
28.20	84.09	4.86
28.80	84.68	2,84
29.40	84.37	-1,49
30.00	85.27	4.27

	•	
Elapsed	Velocity	Grade (%)
Time (Sec)	(km/hr)	
30.60	85.08	87
31.20	86.06	4.62
31.80	85,56	-2.35
32.40	85.95	1.85
33.00	86.99	4.96
33.60	87.22	1.07
34.20	86.93	-1.36
34.80	88.09	5.54
35.40	87.83	-1.27
36.00	88.08	1.21
36.60	88.54	2.18
37.20	88.21	-1.56
37.80	88.06	71
38.40	89.02	4.56
39.00	89.30	1.32
39.60	89.29	02
40.20	89.43	.63
40.80	89.78	1.69
41.40	90.22	2.08
42.00	90.02	94
42.60	90.09	.33
43.20	90.58	2.31
43.80	90.77	.92
44.40	90.06	-3.38
45.00	91.07	4.78
45.60	91.43	1.74
46.20	91.71	1.31
46.80	91.60	50
47.40	91.88	1.32
48.00	92.11	1.08
48.60	91.96	70
49.20	92.19	1.07
49.80	92.22	.15
50.40	92.93	3.40
51.00	93.11	.83
51.60	92.97	65
52.20	93.15	.84
52.80	93.49	1.63
53.40	93.74	1.16
54.00	93.74	0.00
54.60	93.80	.28
55.20	93.75	21
55.80	95.43	8.01
56.40	95.03	-1.90
57.00	94.17	-4.10
57.60	95.20	4.88
58.20	94.89	-1.43
58.80	94.30	-2.82
59.40	94.67	1.76
60.00	94.69	.10

80% Dishcarge Gradeability at Speed

Elapsed	Velocity	Grade (%)
Time (Sec)	(km/hr)	
60.60	95.78	5.15
61.20	95.58	91
61.80	95.40	86
62.40	95.35	23
63.00	97.09	8.28
63.60	95.88	6.26 -5.75
64.20	96.81	4.43
64.80	97.02	.99
65.40	95.68	-6.39
66.00	95.45	-1.09
66.60	96.16	3.38
67.20	95,77	-1.86
67.80	96.02	1.18
68.40	95.67	-1.65
69.00	96.24	2.71
69.60	95.43	-3.88
70.20	95.21	-1.03
70.80	96.03	3.92
71.40	95,94	42
72.00	95,44	-2,41
72.60	95,99	2,65
73.20	96,25	1.20
73.80	97.23	4.69
74.40	97.12	54
75.00	97.58	2.15
75.60	97.62	.23
76.20	97.22	-1.93
76.80	96.43	-3.73
77.40	97.20	3.66
78.00	97.66	2.15
78.60	96.96	-3.29
79.20	97.95	4.69
79.80	97.59	-1.70
80.40	97.63	.20
81.00	98.36	3.47
81.60	97.80	-2.68
82.20	99.68	8.98
82.80	98.11	-7.46
83.40	98.93	3.90
84.00	98.91	11
84.60	99.66	3.59
85.20	99.90	1.13
85.80	98.72	-5.41
86.40	99.66	4.45
87.00	99.36	-1.42
87.60	99.04	-1.54
88.20	98.82	-1.05
88.80	99.24	2.03
89.40	98.90	-1.62
90.00	99.53	3.00

80% Dishcarge Gradeability at Speed

Elapsed	Velocity	Grade (%)
Time (Sec)	(km/hr)	
90.60	99.20	-1.60
91.20	99.67	2,23
91.80	99.89	1.06
92.40	99.72	79
93.00	100,14	2.00
93.60	100,42	1.33
94.20	100.10	-1.52
94.80	100.30	.95
95.40	100.51	.97
96.00	100.12	-1.85
96.60	100.64	2.49
97.20	100.87	1.11
97.80	100.46	-1.98
98.40	100.12	-1.62
99.00	99.57	-2.61
99.60	99.84	1.30
100.20	99.21	-3.01
100.80	99.63	2.01

Cycle 1, Coast Down

ELAPSED TIME (SEC)	UELOCITY (KM/HR)	ROAD ENERGY (KUH/KH)	ROAD POUER (KU)	AUG. VEL. (KM/HR)
9.60	98.22	.0028	.2721	98.22
3.00	93.49	.2124	20.3609	95.85
6.00	90.57	.1315	12.1006	92.03
9.00	88.48	.0938	8.3987	89.52
12.00	84.04	.1997	17.2277	86.26
15.00	81.25	.1253	10.3530	82.64
18.00	78.09	.1421	11.3236	79.67
21.00	77.41	.0306	2.3783	77.75
24.00	74.50	.1305	9.9123	75.96
27.00	71.08	.1539 .0925	11.2037	72.79 70.05
30.00	69.02 66.18	.1279	8.6444	67.60
33.00	63.86	.1043	6.7795	65.02
36.00 39.00	61.53	.1048	6.5673	62.69
	59.28	.1009	6.0964	69.41
42.00 45.00	57.16	.0957	5.5728	58.22
48.00	54.85	.1038	5.8149	56.60
51.00	52.61	.1007	5,4104	53.73
54.00	49.76	.1278	6.5398	51.18
57.00	47.48	.1027	4,9913	48.68
60.00	45.28	. 6996	4.5935	46.38
63.00	43.15	.0954	4.2195	44.22
66.00	41.33	. 0821	3.4694	42.24
69.00	39.64	. 0758	3.0696	40.48
72.00	38.21	.0643	2.5033	38.93
75.00	37.26	.0425	1.6034	37.74
78.00	35.90	. 9616	2.2521	36.58
81.00	34.85	.8468	1.6572	35.37
84.00	33.55	.0585	1.9994	34.20
87.00 90.00	32.49 31.67	.0420	1.5851 1.1782	33.02 32.08
93.00	30.51	.0367 .0519	1.6138	31.09
96.00	29.34	.6539	1.5850	29.92
39.00	28.37	.0432	1.2468	28.85
102.00	27.29	.0487	1.3542	27.83
105.00	26.32	.6439	1.1763	26.80
103.00	25.32	.0448	1.1579	25.82
111.00	24.16	.0520	1.2854	24.74
114.00	23.30	.0386	.9163	23.73
117.00	22.23	.0483	1.0989	22.77
120.00	21.37	.0387	.8428	21.80
123.00	20.30	.0481	1.0017	20.84
126.00	19.29	.0456	.9034	19.79
129.00 132. 00	17.93	.06∂9 .∂493	1.1339 .8562	18.61 17.38
135.00	16.83 15.69	.0515	.8566 .8370	16.26
138.00	14.57	.0515	.7599	15.13
141.00	13.44	.8507	.7106	14.01
144.00	12.49	.6427	.5535	12.97
	3	• • • • •		

ELAPSED TIME (SEC)	UELOCITY (KH/HR)	ROAD ENERGY (KUH/KM)	ROAD POUER	AUG. UEL.
147.00	11.17	. 0594	.7026	11.83
150.00	10.28	.0401	.4300	10.73
153.00	9.09	.8535	.5187	9.69
156.00	8.33	.0342	.2979	8.71
159.00	7.21	.0502	.3903	7.77
162.00	5.97	.0559	.3686	6.59
165.00	5.13	.0379	.2101	5.55

Cycle 4, Coast Down

ELAPSED TIME (SEC)	VELOCITY (KM/HR)	ROAD ENERGY (KWH/KM)	ROAD POWER	AUG. VEL. (KM/HR)
0.66	96.63	.1503	14.5732	96.96
3.00	92.07	. 2050	19.3433	94.35
6.00	88.17	. 1751	15.7784	96.12
9.00	85.12	.1373	11.8936 13.6292	86.65 83.30
12.00	81.48	.1636 .1050	8.4302	80.31
15.00	79.14 76.66	.1118	8.7118	77.90
18.00	74.24	.1087	8.1977	75.45
21.60	72.27	.0887	6.5000	73.25
24.00 27.00	68.88	.1520	10.7264	70.58
30.00	67.06	.0818	5.5618	67.97
33.00	64.16	.1306	8.5703	65.61
36.00	62.19	.0886	5.5951	63.17
39.00	60.06	.0050	4.2298	61.42
42.0J	58.79	.0543	5.0147	59.72
45.00	56.94	.0832	4.8167	57.86
48.00	54.46	.1112	6.1957	55.70
51.00	52.80	.0749	4.0149	53.63
54.00	50.54	.1014	5,2408	51.67
57	49.13	.0634	3.1618	49.84
60.00	47.74	. 0628	3.0401	48.43
63.00	45,70	.0913	4.2671	46.72
66.00	44.13	.0707	3.1764	44.92
69.00	42.63	. 0675	2.9267	43.38
72.00	41.30	. 0596	2.4998	41.97
75.00	39.75	.0697	2.8261	40.53
73.60	38.11	. 3738	2.8742	38.93
81.38	36.98	.0508	1.9055	37.55
64.00	35.32	.0750	2.7696	36.15
57. vo	34.18	.0508	1.7663	34.75
90.00	32.80	. 1623	2.0865	33.49
93.00	31.37	. 0644	2.005	52.08
96.00	30.15	.0548	1.6501	₹0.76
ون، يار	28.60	• ୬၉၇5	2.0405	29.37
102.00	26.75	.0834	2.3077	27.67
105.00	24.60	.0963	2.4731 2.4069	25.68 23.46
108.00 111.00	22.32 19.95	.1026	2.2528	21.14
114.60	18.01	.0873	1.6572	18.98
117.00	15.94	.0336	1.5782	16.98
120.00	13.88	.0927	1.3823	14.91
123.00	11.87	. 8984	1.1637	12.87
126.00	10.13	. 3779	.8575	11.00
129.00	8.01	. 0953	.8647	9.07
136.00	6.20	.0815	.5794	7.11

Cycle 7, Coast Down

	` ,	reie i, Coast De	JWH	
ELAPSED TIME (SEC)	UELOCITY (KM/HR)	ROAD ENERGY (Kuh/km)	ROAD POUER	AUG. VEL. (KM/HR)
9.00 3.00	98.27 94.10	.1191	11.7368 18.0616	98.54 96.19
6.00 9.00	91.62 87.84	.1112	10.3290 15.2505	92.86 89.73
12.00 15.00	84.64 83.02	.1441	12.4280	86.24
18.00	80.05	.0726 .1338	6.0877 10.9054	83.83 81.53
21.00 24.00	77.42 78.03	.1180	9.2887	78.73
27.00	72.43	.1075 .1168	8.1942 8.6098	76.23 73.73
30.00 33.00	69.92 67.99	.1131	8.0490	71.18
36.00	68.35	.0865 .1189	5.9643 7.9283	68.96 66.67
39.00 42.00	63.24 60.83	.0948 .1085	6.0924	64.30
45.00	58.07	.1242	6.7299 7.3841	62.03 59.45
48.00 51.00	5\$,71 54.04	.1057 .0751	6.0154	56.89
54.00	51.87	.0979	4.1201 5.1848	54.88 52.95
57.00 60.00	49.75 47.49	.0952 .1016	4.8375 4.9394	50.81
63.00 66.00	45.41	.0934	4.3375	48.62 46.45
69.00	43.56 41.60	.0830 .0885	3.6915 3.7681	44,49 42,58
72.00 75.00	40.19 38.96	.0632	2.5836	40.89
78.30	37.85	.0552 .0501	2.1858 1.9259	39.58 38.40
81.80 84.00	36.63 35.70	.0548 .0418	2.0396	37.24
87.00	34,43	.0571	1.5130 2.0007	36.16 35.06
90.00 93.00	33.77 32.83	.0294 .0423	1.0029 1.4086	34.10
96.30 99.00	31.59	.0561	1.8069	33.30 32.21
102.50	30.69 29.82	.0403 .0389	1.2555 1.1769	31.14 30.26
195.00 198.00	28.90 27.87	.0414	1.2158	29.36
111.06	26.99	.0463 .0397	1.3135	28.39 27.43
114.30 117.00	25.88 24.90	.0498 .0441	1.3168	26.44
120.00 123.00	24.17	.0330	1.1204 .8090	25.39 24.53
126.00	23.02 21.73	.0516 .0581	1.2172 1.2993	23.59
189.00 198.00	21.02 1 9. 92	.0319 .0495	.6826	21.37
135.00	18.06	• ៥៦គំ	1.0126 1.0917	20.47 19.29
158.ου 141.ού	17.72 16.60	.0420 .0503	.7645 .8628	18.19
144.00	15.56	. 3469	.7538	17.16 16.08

ELAPSED TIME (SEC)	UELOCITY (KM/HR)	ROAD ENERGY (KUH/KM)	ROAD POUER	AUG. UEL. (KM/HR)
147.00	14.50	. 0476	.7151	15.03
150.00	13.41	.0489	.6832	13.96
153.0v	12.31	.0497	.6397	12.86
156.00	11.51	.0361	.4299	11.91
159.00	10.39	. 650 3	.5470	10.95
162.00	9,02	519	.6006	9.71
165.60	7.89	. 0535	.4271	8.46
168.00	6.39	.0676	.4830	7.14
171.00	4.86	.0689	.3876	5.62

APPENDIX C

GRAPHICAL DERIVATION OF ROAD LOAD POWER

General

The acceleration and deceleration of the GE-100 electric vehicle can be determined using graphical methods. A Soltec model 3312 chart recorder was used to play back the velocity as a function of time. Tangents to the velocity curve were selected at increments of speed to reflect significant changes in acceleration. There is slow acceleration at zero speed with an increase in acceleration for about the first second. This can be attributed to the design characteristics of the controller which insure a smooth start, rather than a jerk, which might otherwise be associated with the maximum torque of a locked-rotor series d.c. motor.

Controller Effect

At about 4 seconds, under maximum acceleration, the vehicle has achieved sufficient speed for a bypass relay to shunt out the controller. Acceleration to about 24 km/h (15 mi/h) was independent of battery charge. The vehicle was accelerated under various states of battery charge, the effect of thermal cut back was noted on several runs. This is a controller feature which compensates for the temperature of the SCR. When the SCR warms up, it has a tendency to allow more current, a thermal sensor cuts back the condition time to retain the smooth starting characteristics. This test was run on a hot day 29°C (84°F) under stringent conditions (Electrolyte temperature reached 44°C (112°F)). The thermal sensor prevented operation of the bypass relay on several runs. If the thermal cut back had not operated, there would have been a noticeable jerk due to "torque jump."

Data Reduction

Newton's F = ma was used to determine the coast-down forces. Acceleration, a, was graphically determined by $\Delta V/\Delta t$ methods. The vehicle weight was taken as 1747 kg (3850 lb)* and the conversion factors were determined from:

The original design weight of the vehicle was 1747 kg (3850 lb).

$$P = maV$$

$$m = W/g$$

W in pounds force

g in ft/s2

a in mi/h.s

V in mi/h

P in horsepower

$$P = \frac{W}{32.17} \times a \frac{5280}{3600} \times V \frac{5280}{3600} \times \frac{1}{550} \left[\frac{lb \cdot s^2}{ft} \cdot \frac{ft}{s^2} \cdot \frac{ft}{s} \cdot \frac{hp}{ft \, lb} \right]$$

$$P = W \times a \times V \times 1.216 \times 10^{-1}$$

The motor windage and friction were subtracted from the observed coast-down power to arrive at the vehicle external forces. The power was plotted as a function of velocity on log - log paper. Curve fitting resulted in the following empirical equation for vehicle power on zero grade:

$$P = 5.95 \times 10^{-2} \text{ V} + 6.06 \times 10^{-1} \text{ V}^2 + 1.05 \times 10^{-5} \text{ V}^3$$

P in hp

V in km/h

Corrections

Motor windage losses were calculated from:

$$P_{windage} = 4.02 \times 10^{-3} \left(\frac{r/min}{1000} \right)^{-3}$$

P in hp

r/min from mi/h x 80.5 motor/vehicle speed ratio.

Motor friction losses were calculated from:

$$P_{\text{friction}} = 1.327 \times 10^{-1} \left(\frac{\text{r/min}}{1000} \right)$$

and then corrected by 98 percent for drive train efficiency. Corrections to the power train loads for motor windage and friction were provided by the manufacturer.

Vehicle Road Energy

The energy consumption per unit distance as a function of speed was determined by converting the road load power from hp to kW and dividing by the velocity. This is the ERDA-EHV-TEP formula:

$$E = 9.07 \times 10^{-5} \text{ W} \left(\frac{\Delta V}{\Delta t}\right) \frac{\text{kWh}}{\text{mi}}$$

Where
$$\frac{\Delta V}{\Delta t} = a$$
 in mi/h·s.

DISTRIBUTION FOR MERADCOM REPORT 2308

No. Copies	Address.≠	No. Copies	Addressee
•	Department of Defense	1	Director US Army Materiel Systems
1	Director, Technical Information Defense Advanced Research Projects Agency 1400 Wilson Blvd		Analysis Agency ATTN: DRXSY-MP Aberdeen Proving Ground, MD 21005
1	Arlington, VA 22209 Director Defense Nuclear Agency	1	Commander US Army Troop Support and Aviation Materiel Readiness Command
1	ATTN: TITL Washington, DC 20305 Defense Technical Information		ATTN: DRSTS-MES (1) 4300 Goodfellow Blvd St. Louis, MO 63120
	Center Cameron Station Alexandria, VA 22314	1	Director Petrol & Field Svc Dept US Army Quartermaster School Fort Lee, VA 23801
	Department of the Army		
1	Commander, HQ TRADOC ATTN: ATEN-ME Fort Monroe, VA 23651	1	Commander US Army Electronics Research and Development Command Technical Library Division ATTN: DELSD-L
1	Technical Library Chemical Systems Laboratory Aberdeen Proving Ground, MD 21010	1	Fort Monmouth, NJ 07703 HQ, 193D Infantry Brigade (Pan) ATTN: AFZU-FE APO Miami 34004
ί	Commander US Army Aberdeen Proving Groun ATTN: STEAP-MT-U (GE Branch Aberdeen Proving Ground, MD 21005	nd) 1	Special Forces Detachment, Europe ATTN: PBO APO New York 09050
1	Director US Army Materiel Systems Analysis Agency ATTN: DRXSY-CM Aberdeen Proving Ground, MD	1	Commander Rock Island Arsenal ATTN: SARRI-LPL Rock Island, IL 61201

		No. Copies	Addressee
1	HQDA	1	C, Ctrmine Lab, DRDME-N
	ODCSLOG		C, Engy & Wtr Res Lab, DRDME-G
	DALO-TSE		C, Elec Pwr Lab, DRDME-E
	Room 1E588		C, Camo & Topo Lab, DRDME-R
	Pentagon, Washington, DC 20310		C, Mar & Br Lab, DRDME-M
			C, Mech & Constr Eqpt Lab, DRDME-H
1	Commander		C, Ctr Intrus Lab, DRDME-X
	Headquarters, 39th Engineer		C, Matl Tech Lab, DRDME-V
	Battalion (Cbt)		Dir, Prod A&T Directorate, DRDME-T
	Fort Devens, MA 01433		CIRCULATE
1	Commander and Director	200	Electrochemical Div, DRDME-EC
	USA FESA	3	Tech Reports Ofc, DRDME-WP
	ATTN: FESA-TS	3	Security Ofc (for liaison officers),
	Fort Belvoir, VA 22060		DRDME-S
		2	Tech Library, DRDME-WC
1	Director	1	Programs & Anal Dir, DRDME-U
	US Army TRADOC	3	Pub Affairs Ofc, DRDME-I
	Systems Analysis Activity	1	Ofc of Chief Counsel, DRDME-L
	ATTN: ATAA-SL (Tech Lib)		
	White Sands Missile Range, NM 88002		Department of the Navy
		2	Commander, Naval Facilities
1	HQ, USAEUR & Seventh Army		Engineering Command
	Deputy Chief of Staff, Engineer		Department of the Navy
	ATTN: AEAEN-MT-P		ATTN: Code 032-B
	APO New York 09403		062
			200 Stovall St
1	HQ, USAEUR & Seventh Army		Alexandria, VA 22332
	Deputy Chief of Staff, Operations		
	ATTN: AEAGC-FMD	1	US Naval Oceanographic Office
	APO New York 09403		Navy Library/NSTL Station
			Bay St. Louis, MS 39522
2	District Engineer		
	ATTN: SWFED-MF	1	Library (Code LO8A)
	FWD Corps of Engineers		Civil Engineering Laboratory
	P.O. 17300		Naval Construction Battalion Center
	Fort Worth, TX 76102		Port Hueneme, CA 93043
	MERADCOM	1	Naval Training Equipment Center
	0 1 55555		ATTN: Technical Library
1	Commander, DRDME-Z		Orlando, FL 32813
	Tech Dir, DRDME-ZT	2	N-19/ A - (A
	Assoc Tech Dir/R&D, DRDME-ZN	3	Naval Weapons Center (Code 2605)
	Assoc Tech Dir/Engrg & Acq,		China Lake, CA 93555
	DRDME-ZE Spec Asst/Matl Asmt, DRDME-ZG		
	Spec Asst/Matt Asmt, DRDME-ZG Spec Asst/Scs & Tech, DRDME-ZK CIRCULATE		

No. Copies	Addressee	No. Copies	Addressee
	Department of the Air Force	1	Albert Cook
			International Lead Zinc Research
1	HQ USAF/RDPT		Organization, Inc.
	ATTN: Mr. Allan Eaffy		292 Madison Ave
	Washington, DC 20330		New York, NY 10017
1	Mr. William J. Engle	ī	Bernie Wachter
	Chief, Utilities Branch	-	OAO Corp.
	HQ USAF/PREEU		2101 L Street, NW
	Washington, DC 20332		Washington, DC 20037
1	US Air Force	1	
	HQ Air Force Engineering and	1	C. Joseph Venuto
	Services Center		3403 Walton Road
	Technical Library FL 7050		Plymouth Meeting, PA 19462
	Tyndall AFB, FL 32403		
	Tyndan AFB, FL 32403	3	J. Hampton Barnett
t	Donardment of T		Energy Demonstration and Technology
•	Department of Transportation		109 United Bank Building
	Library, FOB 10A, M494-6		Chattanooga, TN 37401
	800 Independence Ave, SW		
	Washington, DC 20591	1	Joel Sanburg
1	М о		Mail Stop 506-316
1	Mr. Carl Anderson		Jet Propulsion Laboratory
	Energy Technology Demonstration		4800 Oak Grove Dr
	SM-ALC/XAE		Pasadena, CA 91103
	McClellen AFB, CA 95652		
		1	A. D. Little
	Others		ATTN: Brad Underhill
			15 Acorn Park
j	Professor Raymond R. Fox		Cambridge, MA 01240
	School of Engineering and		01210
	Applied Science	1	Advanced Ground Systems Eng
	George Washington University		ATTN: Dr. George Gelb
	Washington, DC 20052		3270 E. 70th Street
1	Jet Industries, Inc.		Long Beach, CA 90805
	2327 East Ben White Blvd	1	Airesearch Manufactus : O
	Austin, TX 78741	•	Airesearch Manufacturing Co. ATTN: Bob Rowlett
	• • • • • • • • • • • • • • • • • • • •		
200	Department of Energy		Program Manager
	ATTN: Walter J. Dippold		2525 W. 190th Street
	1000 Independence Ave		Torrance, CA 90509
	Mail Stop 5H044	1	Account Not to the s
	Room 5H063	1	Argonne National Labs
	Forrestal Bldg		ATTN: Al Chilenskas
	Washington, DC 20585		9700 South Cass Avenue
	··· washington, DC 20303		Argonne, IL 60439

No. Copies	Addressee	No. Copies	Addressee
1	Billings Energy Corporation ATTN: Mr. Hadden P. O. Box 555 Provo, UT 84601	1	Energy Research and Development Corporation ATTN: R. Childs, President 9135 Fernwood Drive Olmsted Falls, OH 44138
1	Booz, Allen & Hamilton, Inc. John F. Wing Transportation Consulting Div 4330 East West Highway Bethesda, MD 20014	1	ESB, Inc. 5 Penn Center Plaza Philadelphia, PA 19103
1	Borisoff Engineering Co. 7726 Burnet Ave Van Nuys, CA 91405 Cooper Development Association	10	General Electric Corporate Research and Development ATTN: Gene Rowland Program Manager P.O. Box 8 Schenectady, NY 12301
	ATTN: Donald K. Miner, Manager 430 N. Woodward Ave Birmingham, MI 48011	1	General Research Corporation ATTN: John Brennand 5383 Hollister Avenue
ī l	Cornell University Joe Rosson, Associate Director School of Engineering Phillips Hall Ithaca, NY 14853	1	Santa Barbara, CA 93105 General Services Administration Federal Supply Service ATTN: Mel Globerman Washington, DC 20406
·	Department of Industry, Trade and Commerce Fred Johnson, Special Vehicle Div Transportation Industries Branch Ottawa, Canada, KIA 085	1	General Services Administration Federal Supply Service ATTN: R. L. Ullrich Washington, DC 20406
1	Department of Transportation Transportation Systems Center ATTN: Dr. Norman Rosenburg Cambridge, MA 02142	2	Jet Propulsion Laboratory ATTN: T. Barber 4800 Oak Grove Drive Pasadena, CA 91103
2	Electric Power Research Institute ATTN: Dr. Fritz R. Kalhammer Ralph Ferrard 3412 Hillview Avenue P. O. Box 10412	1	Lawrence Livermore Laboratory ATTN: Douglas Davis-MS-L-216 P.O. Box 808 Livermore, CA 94550
	Palo Alto, CA 94304	2	Los Alamos Scientific Labs Byron McCormick P.O. Box 1663 Los Alamos, New Mexico 87545

No. Copies	Addressee	No. Copies	Addressee
1	NASA – Lewis Research Center ATTN: J. S. Fordyce MS: 309-1 21000 Brookpark Road Cleveland, OH 44135	1	United States Postal Service ATTN: Thomas W. Martin, Mgr Vehicle Services Branch Western Region San Bruno, CA 94099
2	NASA – Lewis Research Center ATTN: H. J. Schwartz MS: 500-215 21000 Brookpark Road Cleveland, OH 44135	1	University of California Jack Bolger Lawrence Berkeley Labs Berkeley, CA 94720
1	Petro-Electric Motors, Ltd ATTN: Victor Wouk, Consultant 342 Madison Avenue, Suite 831 New York, NY 10017	1	Westinghouse R&D Center ATTN: G. Frank Pittman, Jr. 1310 Beulah Road Pittsburgh, PA 15235
1	Purdue University IIES A. A. Potter Engineering Center ATTN: Dr. R. E. Goodson W. Lafayette, 1N 47907	1	Marjorie L. McClanahan Chemical Process Unit Materials Technology Aeronutronic Division Ford Aerospace & Communications Corporation Ford Road
1	Society of Automotive Engineers, Inc. William Toth, Staff Engineer 400 Commonwealth Warrendale, PA 15096	1	Newport Beach, CA 92663 Clinton Christianson Argonne National Laboratory 9700 South Cass Avenue
1	United States Postal Service ATTN: Dick Bowman Office of Fleet Mgmt Delivery Services Dept Washington, DC 20260	1	F. J. Liles 705 Buffalo Drive Arlington, TX 76013
1	United States Postal Service ATTN: Donn Crane, Director Office of Fleet Mgmt Delivery Services Dept	1	C. Grandy Union Electric Co. P.O. Box 149 St. Louis, MO 63166
1	Washington, DC 20260 United States Postal Service Research & Development Lab ATTN: Lewis J. Gerlach, Prog Mgr 11711 Park Lawn Drive Rockville, MD 20852	1	Department of Transportation Library, FOB 10A, TAD – 494.6 800 Independence Ave., SW Washington, DC 20591