Геодезические на римановом многообразии

Пусть M – риманово многообразие о связностью Леви-Чивита ∇ .

Определение

Гладкая кривая $\gamma\colon I o M$ называется геодезической (в точке или на $[a,b]\subseteq I$), если $\frac{\nabla}{dt}\gamma'=0$.

Замечание

Это определение зависит от параметризации.

Лемма (простейшие свойства геодезических)

Пусть $\gamma(t)$ – геодезическая на M. Тогда

- $|\gamma'(t)| = const.$
- $oldsymbol{oldsymbol{arphi}}$ $a,b\in\mathbb{R}$ кривая $\widetilde{\gamma}(t)=\gamma(at+b)$ будет геодезической.

Док-во:

npoundar netypul

$$\frac{d}{dt}\langle \gamma', \gamma' \rangle \stackrel{\checkmark}{=} 2\langle \frac{\nabla}{dt} \gamma', \gamma' \rangle = 0 \implies |\gamma'|^2 = \langle \gamma', \gamma' \rangle = \text{const}$$

$$\frac{d}{dt}\langle\gamma',\gamma'\rangle \stackrel{\checkmark}{=} 2\langle\frac{\nabla}{dt}\gamma',\gamma'\rangle = 0 \implies |\gamma'|^2 = \langle\gamma',\gamma'\rangle = \text{const}$$

$$\frac{\nabla}{dt}\widetilde{\gamma}' = \nabla_{\widetilde{\gamma}'}\widetilde{\gamma}' = \nabla_{a\gamma'}a\gamma' = a^2\nabla_{\gamma'}\gamma' = \frac{\nabla}{dt}\gamma' = 0.$$

$$CO \sim C_{0} O \stackrel{?}{>} O \qquad \text{Temy appear} \qquad \text{Polymetry} \qquad \text{$$

Ynp: feny 9- jamena Mapamet pa le 7 > 7(9) - 205ez, 70 9- rune ét mo

Геодезические на римановом многообразии

Замечание

Из этой леммы можно сделать 2 вывода.

- Там где это удобно можно рассматривать натурально параметризованные геодезические.
- ② Постоянный путь $\gamma(t) = p = const$ при всех $t \in I$ всегда является геодезической. Такие геодезические называют вырожденными. Если на геодезической γ хотя бы в одной точке $\gamma'(t_0) = 0$, то и во всех точках $\gamma'(t) = 0$ и геодезическая вырожденная. Поэтому невырожденная геодезическая всегда является регулярным путем.

Теорема (существование и единственность геодезической)

Пусть M — риманово многообразие со связностью Леви-Чивита ∇ , p — произвольная точка из M, и $v \in T_p M$ — произвольный касательный вектор. Тогда существует геодезическая γ_v , такая, что $\gamma_v(0) = p, \gamma_v'(0) = v$. Более того, такая геодезическая единственна в том смысле, что любые две такие геодезические совпадают в пересечении областей определения.

M

Геодезические на римановом многообразии

Док-во (теоремы о существовании и единственности геодезической):

Теорема

Для любой гладкой кривой γ на M, любой точки $t_0 \in I$ и любого вектора $V^0 \in T_{\gamma(t_0)}M$ существует единственное параллельное векторное поле V вдоль γ такое, что $V(t_0) = V^0$.

Здесь кривая $\gamma(t)$ была задана изначально. Мы фиксировали карту и обозначали через $(x_1(t),\dots,x_n(t))$ локальное представление $\gamma(t)$. Поле $V(t)=\sum v_i(t)E_i(t)$ возникало как решение системы дифференциальных (линейных) уравнений на $v_k(t)$

$$\frac{dv_k}{dt} + \sum_{ij} v_j \frac{dx_i}{dt} \Gamma_{ij}^k = 0$$

с начальным условием $v_k(t_0) = v_k^0$. Заменим v_k на x_k'

$$\frac{d^2x_k}{dt^2} + \sum_{ii} \Gamma^k_{ij} \frac{dx_j}{dt} \frac{dx_i}{dt} = 0.$$

Задача Коши для последней системы при любых начальных условиях

$$x_i(0) = a_i, \ x_i'(0) = b_i$$

имеет единственное решение в некоторой окрестности точки 0.

Экспоненциальное отображение (экспонента)

Определение

Для фиксированной точки p риманова многообразия M отображение $\exp_p:T_pM\to M$, действующее по правилу

$$\exp_{p} v := \gamma_{v}(1),$$

где $v \in T_p M$ и γ_v — такая геодезическая, что $\gamma_v(0) = p, \gamma_v'(0) = v$, называется экспоненциальным отображением.

Проблема: Хотя геодезическая γ_{ν} существует, она может быть не продолжима до значения параметра t=1.

Экспоненциальное отображение

Лемма

Пусть $v \in T_p M$ — произвольный ненулевой вектор.

- **1** Если $\exp_{p} v$ неопределено, то $\exists c \in (0,1)$ такое, что $\exp_{p}(cv)$ определено.
- ullet Если $\exp_{\mathbf{n}}\mathbf{v}$ определено, то геодезическая $\gamma_{\mathbf{v}}(au)$ на участке $au \in [0,1]$ имеет длину |v|.

Док-во:

 $1) \; \exists \; c \in (0,1)$ такое, что $\gamma_{\nu}(c)$ определена. Тогда $\widetilde{\gamma}(t) = \gamma_{\nu}(ct)$ – геодезическая (получается из γ линейной заменой), $\widetilde{\gamma}(0) = p$ и $\widetilde{\gamma}'(0)=c\gamma_{v}'(0)=cv$. Поэтому $\widetilde{\gamma}(t)=\gamma_{cv}(t)$. Следовательно, равенство

$$\gamma_{v}(ct) = \gamma_{cv}(t)$$

справедливо $\forall t \in [0,1] \implies \exp_p(cv) = \gamma_{cv}(1)$ определено.

2) $\exp_{n} v = \gamma_{v}(1)$ определено $\implies \exp_{n}(cv) = \gamma_{cv}(1) = \gamma_{v}(c)$ определено, поскольку $c \leq 1$.

3)

$$\int_0^1 |\gamma_{
u}'(au)| d au = \int_0^1 |\gamma_{
u}'(0)| d au = |\gamma_{
u}'(0)| = |
u|.$$

Экспоненциальное отображение

Теорема

Для любой точки $p \in M$ существует такая окрестность V нуля в пространстве T_pM , что экспоненциальное отображение \exp_p определено для всех $v \in V$ и является диффеоморфизмом окрестности V на ее образ $\exp_p V$ в M.

Док-во:

1) Докажем, что \exp_p определена в некоторой окрестности нуля и является гладкой.

В силу леммы, для каждого направления $v\in T_pM$, |v|=1, существует такое число c>0, что отображение \exp_p определено на отрезке $[0,cv]\subset T_pM$.

Теперь возьмем самое маленькое такое λ_0 при движении вектора v по окружности. Конечно для такого выбора λ_0 нужно еще применять компактность окружности и теорему о гладкой зависимости от начальных данных решения системы из диффуров. Тогда отображение \exp_p определено в шаре $B_{\lambda_0}(0)$ пространства T_pM .

f(v)=c & c ~ 777

Продолжаем доказательство теоремы

2) Докажем, что $d_0 \exp_p = id_{T_pM}$.

 $d_0 \exp_p : T_0(T_pM) = T_pM \to T_pM$. Здесь касательное пространство $T_0(T_pM)$ пространства T_pM канонически отождествлено с самим T_pM .

Пусть $v \in T_p M$ и $\alpha(t) = tv$ – кривая в $T_p M$. Тогда $v = [\alpha]$.

$$\bigvee d_0 \exp_p(v) = (\exp_p \circ \alpha)'(0) = \gamma_v'(0) = v.$$

Применяем теорему об обратной функции и теорема доказана.

Определение

Радиусом инъективности многообразия M в точке p называется

$$\rho_{inj} = \sup \{ \rho > 0 : \exp_{\rho} |_{B_{\rho}(0)} - \text{диффеоморфизм} \}.$$

Радиус инъективности может быть бесконечным.

Теорема (ρ_{ini} локально отделен от 0)

Для любой точки $p \in M$ существует такая окрестность $U \ni p$, что

$$\inf_{x \in U} \rho_{inj}(x) > 0.$$

Пока без доказательства.

