# 1. Cours : Suites et récurrence

## 1 Démonstration par récurrence

Exemple introductif, tiré de l'épreuve de spécialité de Polynésie 2022 : On considère la suite  $(u_n)$  définie par  $u_0 = 1$  et, pour tout entier naturel n,

$$u_{n+1} = \frac{u_n}{1 + u_n}.$$

A l'aide de cette expression, il est possible de calculer les termes de la suite de proche en proche.

• 
$$u_1 = \frac{u_0}{1 + u_0} = \frac{1}{1 + 1} = \frac{1}{2}$$
.

• 
$$u_2 = \frac{u_1}{1+u_1} = \frac{\frac{1}{2}}{1+\frac{1}{2}} = \frac{\frac{1}{2}}{\frac{3}{2}} = \frac{1}{3}.$$

• 
$$u_3 = \frac{u_2}{1 + u_2} = \frac{\frac{1}{3}}{1 + \frac{1}{3}} = \frac{\frac{1}{3}}{\frac{4}{3}} = \frac{1}{4}.$$

• ...

Toutefois, il n'est pas possible de calculer  $u_{50}$  sans calculer tous les termes précédents... On souhaiterait donc déterminer une expression de  $u_n$  en fonction de n pour tout entier naturel n.

D'après les premiers termes de notre suite, il semblerait que pour tout entier naturel n, on ait  $u_n = \frac{1}{n+1}$ . Cette formule fonctionne pour les rangs 0, 1, 2 et 3 mais qu'en est-il pour le reste ?

Un moyen de s'assurer que cette formule fonctionne pour tous les rangs est de la démontrer par récurrence.

**Définition 1 :** Lorsque l'on souhaite démontrer une proposition mathématique qui dépend d'un entier n, il est parfois possible de démontrer cette proposition par récurrence.

Pour tout entier n, on note  $\mathcal{P}(n)$  la proposition qui nous intéresse. La démonstration par récurrence comporte trois étapes :

- **Initialisation**: On montre qu'il existe un entier  $n_0$  pour lequel  $\mathcal{P}(n_0)$  est vraie;
- **Hérédité**: on montre que, si pour un entier  $n \ge n_0$ ,  $\mathcal{P}(n)$  est vraie, alors  $\mathcal{P}(n+1)$  l'est également;
- Conclusion : on en conclut que pour tout entier  $n \ge n_0$ , la proposition  $\mathcal{P}(n)$  est vraie.



Le principe du raisonnement par récurrence rappelle les dominos que l'on aligne et que l'on fait tomber, les uns à la suite des autres.

On positionne les dominos de telle sorte que, dès que l'un tombe, peu importe lequel, il entraîne le suivant dans sa chute. C'est **l'hérédité**. Seulement, encore faut-il faire effectivement tomber le premier domino, sans quoi rien ne se passe : c'est **l'initialisation**.

Si ces deux conditions sont remplies, on est certain qu'à la fin, tous les dominos seront tombés : c'est notre **conclusion**.

**Exemple 1**: On considère la suite  $(u_n)$  définie par  $u_0 = 1$  et, pour tout entier naturel n,

$$u_{n+1} = \frac{u_n}{1 + u_n}.$$

Pour tout entier naturel n, on note  $\mathcal{P}(n)$  la proposition «  $u_n = \frac{1}{n+1}$  ».

- Initialisation: Pour n=0, on a  $u_0=1$  et  $\frac{1}{0+1}=\frac{1}{1}=1$ . On a donc bien  $u_0=\frac{1}{0+1}$ . La propriété  $\mathcal{P}(0)$  est donc vraie.
- **Hérédité**: Soit  $n \in \mathbb{N}$ . Supposons que  $\mathscr{P}(n)$  est vraie. On a donc  $u_n = \frac{1}{n+1}$ . A partir de ce résultat, on souhaite démontrer que  $\mathcal{P}(n+1)$  est vraie, c'est-à-dire que  $u_{n+1} = \frac{1}{n+1+1} = \frac{1}{n+2}$ . Nous avons donc  $u_n = \frac{1}{n+1}$ . Or,  $u_{n+1} = \frac{u_n}{1+u_n}$ . Ainsi,

$$u_{n+1} = \frac{\frac{1}{n+1}}{\frac{1}{n+1}+1} = \frac{\frac{1}{n+1}}{\frac{1}{n+1}+\frac{n+1}{n+1}} = \frac{\frac{1}{n+1}}{\frac{n+2}{n+1}} = \frac{1}{n+1} \times \frac{n+1}{n+2} = \frac{1}{n+2}.$$

On trouve bien que  $u_{n+1} = \frac{1}{n+1+1}$ :  $\mathcal{P}(n+1)$  est donc vraie. • **Conclusion**: La propriété est vraie au rang 0 et est héréditaire, elle est donc vraie pour tout entier n.

Nous avons montré que pour tout entier naturel n, on a bien  $u_n = \frac{1}{n+1}$ .

Une propriété utile qui peut être démontrée par récurrence est la suivante. Souvenez-vous en, elle reviendra dans un prochain chapitre!

Propriété 1 — Inégalité de Bernoulli : Soit a un réel strictement positif. Pour tout entier naturel n, on a  $(1+a)^n \ge 1 + na$ .

Démonstration 1 : Nous allons démontrer cette propriété par récurrence. Fixons-nous un réel a strictement positif. Pour tout entier naturel n, on note alors  $\mathcal{P}(n)$  la proposition «  $(1+a)^n \ge 1 + na$  ».

- **Initialisation**: Prenons n = 0.
  - D'une part,  $(1+a)^0 = 1$ .
  - D'autre part,  $1+0 \times a = 1$ .

On a bien  $(1+a)^0 \ge 1 + 0 \times a$ .  $\mathscr{P}(0)$  est donc vraie.

• **Hérédité** : Soit  $n \in \mathbb{N}$ . Supposons que  $\mathscr{P}(n)$  est vraie. On a donc  $(1+a)^n \geqslant 1+na$ . En multipliant des deux côtés de l'inégalité par (1+a), qui est strictement positif, on obtient alors que

$$(1+a)^{n+1} \ge (1+na)(1+a).$$

Or,

$$(1+na)(1+a) = 1+na+a+na^2 = 1+(n+1)a+na^2 \ge 1+(n+1)a.$$

Ainsi,  $(1+a)^{n+1} \ge 1 + (n+1)a$ .  $\mathcal{P}(n+1)$  est donc vraie.

• Conclusion :  $\mathcal{P}(0)$  est vraie et, si pour  $n \in \mathbb{N}$ ,  $\mathcal{P}(n)$  est vraie,  $\mathcal{P}(n+1)$ l'est aussi. Ainsi, d'après le principe de récurrence,  $\mathcal{P}(n)$  est vraie pour tout entier naturel n.

On a bien montré que, pour tout entier naturel n,  $(1+a)^n \ge 1 + na$ .

Jason LAPEYRONNIE http://mathoutils.fr



Une interprétation graphique de cette inégalité est possible.

La droite d'équation y = 1 + nx n'est autre que la tangente à la courbe d'équation  $y = (1+x)^n$  à l'abscisse 0. L'inégalité de Bernoulli dit donc que la courbe se trouve au-dessus de la tangente lorsque x > 0.

Nous verrons, lorsque la dérivation n'aura plus de secret pour vous, que cette remarque nous fournira une autre démonstration de l'inégalité de Bernoulli.

## 2 Suites majorées, minorées, bornées

**Définition 2 — Suites majorées, minorées, bornées :** Soit  $(u_n)$  une suite réelle. On dit que...

- ... $(u_n)$  est *majorée* s'il existe un réel M tel que, pour tout entier naturel n,  $u_n \le M$ . Un tel réel M est alors appelé *majorant* de la suite  $(u_n)$ .
- ... $(u_n)$  est *minorée* s'il existe un réel m tel que, pour tout entier naturel  $n, u_n \ge m$ . Un tel réel m est alors appelé *minorant* de la suite  $(u_n)$ .
- ... $(u_n)$  est bornée si  $(u_n)$  est à la fois majorée et minorée.

Les majorants et minorants sont indépendants de n! Bien que pour tout n > 0, on ait  $n \le n^2$ , on ne peut pas dire que la suite  $(u_n)$  définie par  $u_n = n$  est majorée. Cette indépendance se traduit dans l'ordre des quantificateurs employés dans la définition précédente (le majorant y apparaît avant l'entier n).

■ **Exemple 2**: Pour tout n, on pose  $u_n = \cos(n)$ .

La suite  $(u_n)$  est bornée puisque, pour tout entier  $n, -1 \le u_n \le 1$ .

- Exemple 3 : Pour tout entier naturel n, on pose  $v_n = n^2 + 1$ . La suite  $(v_n)$  est minorée puisque pour tout entier naturel n,  $v_n \ge 1$ . En revanche, elle n'est pas majorée.
- **Exemple 4 :** Pour tout entier naturel n, on pose  $w_n = (-1)^n n$ . Cette suite n'est ni majorée, ni minorée.

Lorsqu'une suite est définie par récurrence, une majoration ou une minoration de cette suite peut elle-même être démontrée par récurrence.

- Exemple 5 : On considère la suite  $(u_n)$  définie par  $u_0 = 5$  et pour tout entier naturel n,  $u_{n+1} = 0.5u_n + 2$ . Pour tout entier naturel n, on note  $\mathscr{P}(n)$  la proposition «  $u_n \ge 4$  ».
  - **Initialisation** : On a bien  $u_0 \ge 4$ .  $\mathcal{P}(0)$  est donc vraie.
  - **Hérédité** : Soit  $n \in \mathbb{N}$ . Supposons que  $\mathscr{P}(n)$  est vraie, c'est-à-dire  $u_n \geqslant 4$ . En multipliant cette inégalité par 0,5, on en déduit que  $0,5u_n \geqslant 2$ . En ajoutant 2, on en déduit que  $0,5u_n+2\geqslant 4$ , c'est-à-dire  $u_{n+1}\geqslant 4$ .  $\mathscr{P}(n+1)$  est donc vraie.
  - Conclusion : Ainsi,  $\mathcal{P}(0)$  est vraie et la proposition  $\mathcal{P}$  est héréditaire. D'après le principe de récurrence, on en conclut que pour tout entier naturel n,  $\mathcal{P}(n)$  est vraie.

Jason LAPEYRONNIE http://mathoutils.fr

ı

Si l'on se donne une fonction f définie sur un ensemble I et une suite  $(u_n)$  à valeurs dans I telle que, pour tout entier naturel n,  $u_{n+1} = f(u_n)$ , l'étude de la fonction f pourra également nous fournir des informations sur la suite  $(u_n)$  étudiée.

**Exemple 6 :** On considère une fonction f définie sur  $\mathbb{R}$  et dont le tableau de variations est le suivant.



On considère alors la suite  $(u_n)$  définie par  $u_0 = 1$  et, pour tout entier naturel n,  $u_{n+1} = f(u_n)$ .

Pour tout entier naturel n, on considère la proposition  $\mathcal{P}(n)$  : «  $0 \le u_n \le 3$  ».

- **Initialisation** : On a bien  $0 \le u_0 \le 3$ .  $\mathcal{P}(0)$  est donc vraie.
- Hérédité: Soit n∈ N. Supposons que P(n) est vraie, c'est-à-dire 0 ≤ un ≤ 3.
   La fonction f est décroissante sur l'intervalle [-1;3], lequel contient l'intervalle [0;3]. Il est alors possible d'appliquer cette fonction à notre inégalité (attention, la fonction étant décroissante, l'inégalité sera alors renversée).

Ainsi, on a  $f(0) \ge f(u_n) \ge f(3)$ . On sait par ailleurs que  $f(u_n) = u_{n+1}$  et que f(3) = 0. Enfin, d'après les variations de f, on sait également que  $f(-1) \ge f(0)$ , c'est-à-dire que  $3 \ge f(0)$ . Ainsi,  $3 \ge f(0) \ge f(u_n) \ge f(3)$ , c'est-à-dire  $3 \ge f(0) \ge u_{n+1} \ge 0$ . On en conclut en particulier que  $3 \ge u_{n+1} \ge 0$ .  $\mathscr{P}(n+1)$  est donc vraie.

• Conclusion : Ainsi,  $\mathcal{P}(0)$  est vraie et la proposition  $\mathcal{P}$  est héréditaire. D'après le principe de récurrence, on en conclut que pour tout entier naturel n,  $\mathcal{P}(n)$  est vraie.

## 3 Suites croissantes, suites décroissantes

**Définition 3 — Variations d'une suite :** Soit  $(u_n)$  une suite réelle et  $n_0$  un entier naturel.

- On dit que  $(u_n)$  est *croissante* à partir de  $n_0$  si, pour tout entier naturel  $n \ge n_0$ ,  $u_{n+1} \ge u_n$ .
- On dit que  $(u_n)$  est décroissante à partir de  $n_0$  si, pour tout entier naturel  $n \ge n_0$ ,  $u_{n+1} \le u_n$ .

Étudier la croissance ou la décroissance d'une suite revient donc souvent à étudier le signe de  $u_{n+1} - u_n$ .

**Exemple 7 :** On considère la suite  $(u_n)$  définie pour tout entier naturel n par  $u_n = n^2 - n$ .

Pour tout entier naturel n,

$$u_{n+1} - u_n = (n+1)^2 - (n+1) - (n^2 - n) = n^2 + 2n + 1 - n - 1 - n^2 - 1 = 2n \ge 0.$$

La suite  $(u_n)$  est donc croissante.

Jason LAPEYRONNIE

**Propriété 2 :** Soit  $(u_n)$  une suite **strictement positive** et  $n_0$  un entier naturel.

- $(u_n)$  est croissante à partir de  $n_0$  si, pour tout entier naturel  $n \ge n_0$ ,  $\frac{u_{n+1}}{u_n} \ge 1$ .
- $(u_n)$  est décroissante à partir de  $n_0$  si, pour tout entier naturel  $n \ge n_0$ ,  $\frac{u_{n+1}}{u_n} \le 1$ .
- Exemple 8 : On considère la suite  $(u_n)$  définie pour tout entier naturel non nul n par  $u_n = \frac{2^n}{n}$ .

Pour tout entier naturel non nul n, on a  $u_n > 0$  et

$$\frac{u_{n+1}}{u_n} = \frac{\frac{2^{n+1}}{n+1}}{\frac{2^n}{n}} = \frac{2^{n+1}}{n+1} \times \frac{n}{2^n} = \frac{2n}{n+1}.$$

Or, si  $n \ge 1$ , on a, en ajoutant n aux deux membres de l'inégalité,  $2n \ge n+1$  et donc  $\frac{2n}{n+1} \ge 1$ .

Ainsi, pour tout entier naturel non nul n,  $\frac{u_{n+1}}{u_n} \ge 1$ . La suite  $(u_n)$  est donc croissante.

Encore une fois, lorsqu'une suite est définie par récurrence, ses variations peuvent également être étudiées par récurrence.

■ Exemple 9 : On considère la suite  $(u_n)$  définie par  $u_0 = 4$  et pour tout  $n \in \mathbb{N}$ ,  $u_{n+1} = \sqrt{5 + u_n}$ .

Pour tout entier naturel n, on note  $\mathcal{P}(n)$  la proposition  $0 \le u_{n+1} \le u_n$ . Montrer que  $\mathcal{P}(n)$  est vraie pour tout entier naturel n démontrera que la suite  $(u_n)$  est décroissante et minorée par 0, un résultat qui nous intéressera fortement dans un prochain chapitre...

- Initialisation :  $u_0 = 4$ ,  $u_1 = \sqrt{5+4} = \sqrt{9} = 3$ . On a bien  $0 \le u_1 \le u_0$ .  $\mathcal{P}(0)$  est vraie.
- **Hérédité :** Soit  $n \in \mathbb{N}$ . Supposons que  $\mathscr{P}(n)$  est vraie. On a alors

$$0 \leqslant u_{n+1} \leqslant u_n$$
.

En ajoutant 5 à chaque membre, on obtient

$$5 \le u_{n+1} + 5 \le u_n + 5$$
.

On souhaite "appliquer la racine carrée" à cette inégalité. La fonction  $x \mapsto \sqrt{x}$  étant croissante sur l'intervalle  $[0; +\infty[$ , l'appliquer ne changera pas le sens de l'inégalité. On a donc bien

$$\sqrt{5} \leqslant \sqrt{u_{n+1} + 5} \leqslant \sqrt{u_n + 5}.$$

D'une part,  $\sqrt{5} \ge 0$ . D'autre part,  $\sqrt{u_{n+1}+5} = u_{n+2}$  et  $\sqrt{u_n+5} = u_{n+1}$ . Ainsi,

$$0 \le u_{n+2} \le u_{n+1}$$
.

La proposition  $\mathcal{P}(n+1)$  est donc vraie.

• Conclusion :  $\mathcal{P}(0)$  est vraie et  $\mathcal{P}$  est héréditaire. Par récurrence,  $\mathcal{P}(n)$  est vraie pour tout  $n \in \mathbb{N}$ .

Jason LAPEYRONNIE http://mathoutils.fr

Comme précédemment, si l'on dispose d'une fonction f que l'on sait étudier et d'une suite  $(u_n)$  telle que pour tout entier naturel n,  $u_{n+1} = f(u_n)$ , il est sans doute possible d'utiliser les informations que nous avons sur la fonction pour en déduire des informations sur notre suite.

### Attention! Ce n'est pas parce que la fonction f est croissante que la suite le sera également!

**Exemple 10 :** On considère une fonction f définie sur  $\mathbb{R}$  et dont le tableau de variations est le suivant.



On considère alors la suite  $(u_n)$  définie par  $u_0 = 3$  et, pour tout entier naturel n,  $u_{n+1} = f(u_n)$ .

On souhaite montrer que la suite  $(u_n)$  est décroissante et bornée par -1 et 5. Pour tout entier naturel n, on considère alors la proposition  $\mathscr{P}(n)$ : «  $-1 \le u_{n+1} \le u_n \le 5$  ».

- Initialisation : On a  $u_0 = 3$  et  $u_1 = f(u_0) = f(3) = 2$ . On a bien  $-1 \le u_1 \le u_0 \le 5$ .  $\mathcal{P}(0)$  est donc vraie.
- Hérédité: Soit n∈ N. Supposons que P(n) est vraie, c'est-à-dire -1 ≤ u<sub>n+1</sub> ≤ u<sub>n</sub> ≤ 5.
  La fonction f est croissante sur l'intervalle [-1;5]. Il est alors possible d'appliquer cette fonction à notre inégalité (la fonction étant croissante, le sens de l'inégalité est conservée).
  Ainsi, on a f(-1) ≤ f(u<sub>n+1</sub>) ≤ f(u<sub>n</sub>) ≤ f(5).
  On sait par ailleurs que f(u<sub>n</sub>) = u<sub>n+1</sub>, que f(u<sub>n+1</sub>) = u<sub>n+2</sub>, que f(5) = 5 et enfin que f(-1) = 1 ≥ -1.
  On en conclut donc que -1 ≤ u<sub>n+1</sub> ≤ u<sub>n</sub> ≤ 5. P(n+1) est donc vraie.
- Conclusion : Ainsi,  $\mathcal{P}(0)$  est vraie et la proposition  $\mathcal{P}$  est héréditaire. D'après le principe de récurrence, on en conclut que pour tout entier naturel n,  $\mathcal{P}(n)$  est vraie.