

Département d'Informatique

Module : Réseaux Informatiques TD3 : Analyse de paquets /Fragmentation / Réassemblage de datagrammes IP

Correction 1:

45 → 4 = protocole IP version 4 ; 5 = longueur de l'en-tête du datagramme = 5*4 = 20 octets = longueur par défaut d'un en-tête sans option.

- CORRECTION -

00→Type Of Service = 0 = pas de service particulier (en fait avec IPv4, il n'y a pas de service particulier. Ce champ est donc toujours nul!).

00 50 \rightarrow longueur totale = $0*16^3 + 0*16^2 + 5*16^1 + 0*16^0 = 80$ octets donc la longueur du contenu du champ de données est de 80 - 20 = 60 octets.

20 61→identificateur du datagramme (ne sera utile que s'il est fragmenté).

00 00→drapeaux et Offset = tout à zéro = datagramme non fragmenté.

80 \rightarrow durée de vie = $80 = 8*16^1 + 0*16^0 = 128$ routeurs que le datagramme pourrait encore traverser.

01→protocole transporté dans le datagramme : 1 = code du protocole ICMP.

C5 64→Bloc de contrôle d'erreur de l'en-tête.

C7 F5 B4 0A→adresse IP émetteur = 199.245.180.10

C7 F5 B4 09→adresse IP destinataire =199.245.180.9

Les deux machines sont dans le même réseau de classe C, le réseau 199.245.180.0

Correction 2:

Pour une MTU de 128 octets (MTU d'un paquet X25 = 576).

1. Donnez l'offset de cette fragmentation

(MTU-20)/8=556/8=69.5.

L'Offset de cette fragmentation est 69

TD=69*8=552

2. Un segment TCP de taille 576 octets est fragmenté ainsi : 576=552+24 => le nombre de fragments est alors 2 :

	Fragment 1	Fragment 2
LT	552+20=572	24+20=44
Offset	0	69
MF	1	0

- La structure du datagramme IP du fragment 1:

HLEN	LT	Proto	Ident	MF	Offset
5	572	06	X	1	0

- La structure du datagramme IP du fragment 1:

HLEN	LT	Proto	Ident	MF	Offset
5	44	06	X	0	69

Correction 3:

Un routeur a reçu des datagrammes avec les informations suivantes :

- (a) Un datagramme a avec un flag 000, offset = 50 et une taille totale égale à 37 octets.
- (b) Un datagramme b avec un offset égal 30 et un flag 001.
- (c) Un datagramme c avec une taille totale de 100 octets et un flag 001.
- 1. Quel est l'offset de cette fragmentation?

Comme le flag pour le fragment « a » est égal à 000, il s'agit alors du dernier fragment du datagramme d'origine.

On suppose que l'ordre des fragment est c-b-a :

	Fragment c	Fragment b	Fragment a
Offset	Off_c	30	50
LT	100	LT_b	37
Flag	001	001	000

Off c=30-(100-20)/8=20

LT_b=(50-30)*8+20=180. Ce n'est pas possible d'avoir une fragmentation avec différentes tailles (100, puis 180 puis 37).

L'ordre des fragments serait plutôt b-c-a :

	Fragment b	Fragment c	Fragment a
Offset	30	Off_c	50
LT	LT_b	100	37
Flag	001	001	000

Offset c=50-(100-20)/8=40

LT b=(Off c-30)*8+20=100

_ ′		Fragment b	Fragment c	Fragment a
Offs	et	30	40	50
LT		100	100	37
Flag		001	001	000

Offset de cette fragmentation est 10.

- 2. Donnez la taille du segment TCP ?
 La taille du segment TCP est : 50*8+17= 417 octets
- 3. Donnez la structure du datagramme IP origine et celle de chaque fragment.

- La structure du datagramme IP du datagramme d'origine:

HLEN	LT	Proto	Ident	MF	Offset
5	437	06	X	0	0

- La structure du datagramme IP du Fragment b:

HLEN	LT	Proto	Ident	MF	Offset
5	100	06	X	0	30

- La structure du datagramme IP du Fragment c:

HLEN	LT	Proto	Ident	MF	Offset
5	100	06	X	0	40

- La structure du datagramme IP du Fragment a:

HLEN	LT	Proto	Ident	MF	Offset
5	37	06	X	1	50

Correction 4:

1.

HLEN=5 - Longueur Totale (LT)= 5 020 - Bit MF=0 - Offset= 0

2. Fragmentation opérée par l'hôte d'origine pour traverser le réseau de MTU 1800 :

Offset1=222, puisque (MTU-20)/8=1780/8=222.5 LD1=offset1*8=222*8=1776

Taille $5000 = 2*1776 + 1*1448 \implies 3$ fragments:

3. Fragmentation opérée par e routeur pour traverser le réseau de MTU 1000 :

Offset2=122, puisque (MTU-20)/8=980/8=122.5

LD1=offset2*8=122*8=976

Taille (frag.1) $1776 = 1*976 + 1*800 \implies 2$ fragments : frag.1-1 et frag.1-2 Taille (frag.3) $1448 = 1*976 + 1*472 \implies 2$ fragments : frag.3-1 et frag.3-2

HLEN= 5 LT: 492 MF: 0 Offset= 566

Correction 5:

Taille du segment TCP=290

MTU1=140 →offset=(MTU1-20)/8=15 et LD=offset*8=120

Taille du segment 290= 2*120+1*50 : 3 fragments

	Fragment 1	Fragment 2	Fragment 3
Offset	0	15	30
LT	140	140	70
Flag	001	001	000

Une fois les 3 fragments sont arrivés à R2 :

- Fragment 1 envoyé directement à R4
- Fragment 2 envoyé à R4 via R3
- Fragment 3 envoyé directement à R4
- **a. Fragment 1**: MTU2=90, offset2=8 puisque (90-20)/8=8.75; LD=offset2*8=64

Taille fragment 1120=1*64+1*56, donc 2 fragments en résultent :

	Fragment 1.1	Fragment 1.2
Offset	0	8
LT	84	76
Flag	001	001

b. Fragment 3: MTU2=90, offset2=8 puisque (90-20)/8=8.75; LD=offset2*8=64

Taille totale du fragment3 =70 <MTU2 → Il n'aura pas de fragmentation

c. Fragment 2: MTU3=52, offset3=4 puisque (52-20)/8=4; LD=offset3*8=32

Taille fragment2 120=3*32+1*24, donc 4 fragments en résultent :

	Fragment 2.1	Fragment 2.2	Fragment 2.3	Fragment 2.4
Offset	15	19	23	27
LT	52	52	52	44
Flag	001	001	001	001

En passant par R2, tous les Fragments sauf 2.4 doivent être fragmentés puisque MTU4=50. Offset4=3 puique (50-20)/8=3.75, et LD=offset3*8=24

Taille du fragment 2.x(x#5) est 32=1*24+1*8. Chaque fragment est alors fragmenté en 2 :

	Fragm	ent 2.1	Fragme	ent 2.2	Fragm	ent 2.3	Emparent 2.4
	2.1.1	2.1.2	2.2.1	2.2.2	2.3.1	2.3.2	Fragment 2.4
Offset	15	18	19	22	23	26	27
LT	44	28	44	28	44	28	44
Flag	001	001	001	001	001	001	001

En conclusion, 10 fragments vont arriver à R4:

	Fragment 1 Fragment 2									
	Eroomont 1 1	Eroomont 1.2	Fragment 2.1		Fragment 2.2		Fragment 2.3		E	Fragment 3
	Fragment 1.1	Fragment 1.2	2.1.1	2.1.2	2.2.1	2.2.2	2.3.1	2.3.2	Fragment 2.4	
Offset	0	8	15	18	19	22	23	26	27	30
LT	84	76	44	28	44	28	44	28	44	70
Flag	001	001	001	001	001	001	001	001	001	000

Correction 6:

- 1. On remarque que les paquets ont tous soit le *bit MF* à 1, soit un champ *Offset* non nul. Il s'agit alors de fragments générés par fragmentation de datagrammes.
- 2. On va regrouper les datagrammes qui possèdent le même quadruplet (*Protocole*, *Identification*, *Adresse IP Source*, *Adresse IP Destination*) : Il y a trois types de datagrammes d'origine :

- Datagramme d'origine 1 :

Protocole: 17

Identification: 12345 @src: 139.134.187.2 @dest: 139.134.187.4

L'ordre des fragments est le suivant :

	Fragment 1	Fragment 2	Fragment 3
Offset	0	300	600
LT	2420	2420	1380
MF	1	1	0

il n'y a pas de trous car 300 = (2420-20)/8 et 600 = 300 + ((2420-20)/8). Tous les fragments de ce datagramme ont donc été reçus et son en-tête est :

HLEN	LT	Proto	Ident	MF	Offset	@src	@dest
5	6180	17	12345	0	0	139.134.187.2	139.134.187.2

LT : *Longueur Totale* est: 2400 + 2400 + 1360 + 20= 6180

- Datagramme d'origine 2 :

Protocole: 6

Identification: 12345 @src: 158.159.160.161 @dest: 139.134.187.4

L'ordre des fragments est le suivant :

	Fragment 1	Fragment 2	Fragment 3	Fragment 4	Fragment 5
Offset	0	300	600	900	1200
LT	2420	2420	2420	2420	90
MF	1	1	1	1	0

Il n'y a pas de trous car 300 = (2420-20)/8; 600 = 300 + (2420-20)/8; 900 = 600 + (2420-20)/8 et 1200 = 900 + (2420-20)/8. L'en-tête de ce datagramme entièrement reconstitué est :

HLEN	LT	Proto	Ident	MF	Offset	@src	@dest
5	9690	6	12345	0	0	158.159.160.161	139.134.187.4

LT : *Longueur Totale* est: 2400 + 2400 + 2400 + 2400 + 70 +20= 9690

- Datagramme d'origine 3 :

Protocole: 17

Identification: 54321 @src: 139.134.187.2 @dest: 139.134.187.4

Les fragments reçus sont les suivants :

	Fragment 1	Fragment 2	Fragment 3	Fragment 4
Offset	0	600	900	1800
LT	4820	2420	2420	844
MF	1	1	1	0

- 600=0+(4820-20)/8 **\rightarrow** pas de trous entre Frag.1 et Frag.2
- 900=600+(2420-20)/8 **>** pas de trous entre Frag.2 et Frag.3
- 900+(2420-20)/8=1200 <> 1800 !!! alors que 1800 est l'offset annoncé par le Fragment 4. →Il manque au moins un fragment entre Frag.3 et Frag.4

On ne peut donc reconstituer ce datagramme.