16. Markovprocesser

- Definition
- Sætning 6.3.3
- · Dominerende egeværdi
- Sætning 6.3.4

Definition: En stokastisk proces en sekvens af eksperimenter, hvor udfaldet afhænger af sandsynlighed. En **Markovproces** er en stokastisk proces, der opfylder følgende:

- I. Mængden af mulige udfald er endelig.
- II. Sandsynligheden for næste udfald afhænger udelukkende af det foregående.
- III. Sandsynlighederne er konstante over tid.

En **Markovkæde** består af en række tilstandsvektorer $x_0, ..., x_n$ som også er sandsynlighedsvektorer, hvor x_0 kaldes startvektoren. A er en $n \times n$ -matrix, som vi kalder transitionsmatrixen (stokastisk matrix) for Markovprocessen. Vi har så

$$x_0$$
 , $x_1 = Ax_0$, $x_2 = Ax_1$, ...

Dvs. mere generelt: $x_n = Ax_{n-1}$

En matrix er stokastisk, hvis indgangene er ikke-negative og summen af søjlerne er 1. Så er søjlerne også sandsynlighedsvektorer.

Sætning 6.3.3: Hvis A er en stokastisk matrix, $x_0 \in \mathbb{R}^n$ er en sandsynlighedsvektor. Vi definerer $x_k = A^k x_0$, k = 1, ..., og vi antager $x_k \xrightarrow{k \to \infty} x$ (Markovkæden konvergerer mod x). Så gælder der om den stabile tilstandsvektor x:

- (i) *x* er en sandsynlighedsvektor (ikke-negative indgange, som summer op til 1).
- (ii) $\lambda_1 = 1$ er en egenværdi til A og x er en egenværdi tilhørende λ_1 .

Bevis for (i): Da x_k er en sandsynlighedsvektor gælder det følgende:

Hvis $(x)_i$ er i te indgang i x og $(x_k)_i$ er i te indgang i x_k , så har vi: $(x)_i = \lim_k (x_k)_i$. Da $(x_k)_i \ge 0$ er $(x)_i \ge 0$, og x har altså ikke-negative indgange. Vi kontrollere om indgangene for x summer op til 1:

$$e^{T}x = e^{T} \left(\lim_{k \to \infty} x_{k} \right) = \lim_{k \to \infty} e^{T}x_{k} = \lim_{k \to \infty} e^{T} \left(A^{k}x_{0} \right)$$

$$= \lim_{k \to \infty} \left(e^{T}A^{k} \right) x_{0} \stackrel{da \ A^{k} \ består \ af \ ss-vektorer}{=} \lim_{k \to \infty} e^{T}x_{0} = \lim_{k \to \infty} 1 = 1$$

Hvor $e^T = (1, ..., 1)$.

Bevis for (ii):
$$Ax = A(\lim_{k \to \infty} x_k) = \lim_{k \to \infty} Ax_k \stackrel{def}{=} \lim_{k \to \infty} x_{k+1} \stackrel{sætn}{=} x$$

Der eksisterer altid en stabil tilstandsvektor, hvis $\lambda_1 = 1$ er en **dominerende egenværdi** til A. Den er dominerende, hvis $|\lambda_i| < |\lambda_1|$, i = 2, ..., n. Vi husker på at alle indgange i A er positive.

Sætning 6.3.4: Hvis $\lambda_1 = 1$ er en dominerende egenværdi til A, så vil Markovkæden med transitionen A konvergere mod en stabil tilstandsvektor.

Bevis: Når A er diagonaliserbar, så er y_1 en egenvektor tilhørende $\lambda_1=1$ og lad $Y=(y_1,\ldots,y_n)$ være

den matrix, der diagonaliserer A. Vi definerer $E = \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix} \in Mat_{n,n}$

$$D^{k} = \begin{pmatrix} \lambda_{1}^{k} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{n}^{k} \end{pmatrix} \xrightarrow{k \to \infty} E$$

Hvis så x_0 er startsandsynlighedsvektoren og $c = Y^{-1}x_0$, så er:

$$x_k = A^k x_0 = Y D^k Y^{-1} x_0 = Y D^k c \xrightarrow{k \to \infty} Y E c = Y(c_1 e_1) = c_1 y_1$$

Så c_1y_1 er den stabile tilstandsvektor til Markovkæden. Dette passer jo også fint med, at y_1 er en egenvektor tilhørende λ_1 (c_1 er jo bare en skalar).