

NASA-CR-197811

NASA

CONTINUATION OF SPACE SHUTTLE
PROBABILISTIC RISK ASSESSMENT, PHASE 3
SAIC DOCUMENT NO. SAICNY95-02-25

PROBABILISTIC RISK ASSESSMENT

OF THE

SPACE SHUTTLE

A STUDY OF THE POTENTIAL OF

LOSING THE VEHICLE

DURING NOMINAL OPERATION

VOLUME IV: SYSTEM MODELS AND DATA ANALYSIS

PREPARED FOR
US NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
 HEADQUARTERS OFFICE OF SPACE FLIGHT (CODE M)

WASHINGTON, DC
 BY
SCIENCE APPLICATIONS INTERNATIONAL CORPORATION

ADVANCED TECHNOLOGY DIVISION
 NEW YORK, NY

28 FEBRUARY 1995

PRINCIPAL INVESTIGATOR:
JOSEPH R. FRAGOLA

CHIEF RISK ANALYST:
GASPARE MAGGIO

* SAFETY FACTOR ASSOCIATES, INC.
 ENCINITAS, CA
 +EMPRESARIOS AGRUPADOS,
 MADRID, SPAIN

OTHER PRINCIPAL CONTRIBUTORS:
MICHAEL V. FRANK*
LUIS GEREZ*
RICHARD H. MFADDEN
ERIN P. COLLINS
JORGE BALLESTO
PETER L. APPIGNANI
JAMES J. KARNS

SAIC
*Science Applications
 International Corporation
 An Employee-Owned Company*

ORIGINAL PAGE IS
 OF POOR QUALITY

(NASA-CR-197811) PROBABILISTIC
 RISK ASSESSMENT OF THE SPACE
 SHUTTLE. PHASE 3: A STUDY OF THE
 POTENTIAL OF LOSING THE VEHICLE
 DURING NOMINAL OPERATION. VOLUME 4:
 SYSTEM MODELS AND DATA ANALYSIS
 (Science Applications International G3/16 0049089
 2/25/95)

N95-26401

Unclass

B.1. Space Shuttle Main
Engine

SSME/MPS Initiator Equivalent Flight Occurrences Evaluation

Record Type/ Source Study Identifier	Record/ Source ID	Date	System Element	Failure Description from Record	Analyst Comments	Engine #	Test/Flight#	Routine Activation	Engine Configuration	Event Potentially Applicable	Weighting Factor	Estimated Flight Failures for Total Exposure Time
SMEFO	Loss of MCC Pressure											4.00
UCR	A020848	26-Jun-88	SYSTEM	CROSS FEED GVM BAD AT HIGH VAL POSITIONS	THROTTLE DOWN IN THRUST LIMIT -20%	0211	001.578	DISCHARGE TEMPERATURE	5 FPL/FH2	1	1	
UCR	A018710	25-Apr-91	SYSTEM	HPTIP TURB TEMP EXCD RA	1500° FREL ETOFF RA-CHANGED TO 1400°	0210	750.284	HPTIP TURBINE	5 FPL/FH2	1	1	
UCR	A018621	2-Sep-91	MNU	SEY ENDORSE OF PRIMING FACE PLATES	MNU BURN OUT/REPLACED MNU	0110	750.146	DISCHARGE TEMPERATURE	4 FPL	0.75	1	0.75
UCR	A018706	15-Jun-91	MNU	SEY ENDORSE DAMAGED TO THE PRIMING FACE PLATES	MNU BURN OUT EXIT DAM	2108	001.531	HPTIP TURBINE	4 FPL	0.75	1	0.75
UCR	A017800	23-Jun-90	MNU	RAI CAO - HPTIP TURB DISC TEMP, MAIN RAU	HOLES IN BULKHEAD POST FAIR	2004	802.186	DISCHARGE TEMPERATURE	3 FMOD	0.5	1	0.5
SMEFH	Loss of Ground HS Power											0.50
UCR	A011200	18-Apr-90	HPTIP	HIFUEL TURB DISC TEMP VOT AND LOGIC CAD	TURBARD NMM COLLAPSED	2003	SF0101-8	HPTIP TURBINE DISCHARGE TEMPERATURE	2 MPITA	0.25	1	0.25
UCR	A005293	10-Jun-78	HPTIP	EXTREME BULGING IN TURBARD NMM OLD	BLAAGE IN TURBINE TURN MAIN OLD	0101	802.116	HPTIP TURBINE DISCHARGE TEMPERATURE	2 MPITA	0.25	1	0.25
SMEFO	High Inlet Ratio In Controller Problem											0.25
UCR	A018653	26-Jun-91	SYSTEM	PREMATURE CUTOFF OF PIVOT POSITION	OPIV LIMIT RE SET MCS	0007	750.119	2 MPITA	0.25	1	0.25	
MSFC PRACA	A02827	17-Jun-91	HYDRAULICS	ACT. CHECK OUT MODULE E FAILURE	OPIV POSITION FAILURE	Field				1	0	0
SMEFH	High Inlet Ratio In Fuel Problem											0.25
UCR	A018653	26-Jun-91	SYSTEM	PREMATURE CUTOFF OF PIVOT POSITION	OPIV LIMIT RE SET MCS	0007	750.119	2 MPITA	0.25	1	0.25	
MSFC PRACA	A02827	17-Jun-91	HYDRAULICS	ACT. CHECK OUT MODULE E FAILURE	OPIV POSITION FAILURE	Field				1	0	0
SMEFO	Loss of Fuel to Burnt Problem											0.25
UCR	A021546	2-May-90	FAN/KI	NO PRECONDITION NOT PER WATER FLOW	OFF MODE TO BAD FLOWMETER CONSTANT	2107	802.485	HPTIP TURBINE	5 FPL/FH2	1	1	
UCR	A000610	11-Dec-85	SAW/KI	PREMATURE CO2- OXIDANT TURB TEMP RA	INCORRECT FLOWMETER CONSTANT	2020	802.346	DISCHARGE TEMPERATURE	5 FPL/FH2	1	1	
UCR	A014674	24-Jun-95	SYSTEM	SPHEN CO2- HPTIP TURB DISC TEMP	HIGH EFF HPTIP/2 NOZ TUBE Rupt	2106	801.485	HPTIP TURBINE	5 FPL/FH2	1	1	
UCR	A008846	14-Apr-93	FAN/KI	FAN CALIBRATION CONSTANT ESTIMATE LOW	HIGH MARTLE RATE DUE TO RA	2011	802.309	DISCHARGE TEMPERATURE	4 FPL	0.75	1	0.75
UCR	A015870	3-Nov-90	NOZZLE	TUBES 125 THRU 160 DOWNWARD	NOZZLE TUBE RUPURES	2003	SF1-101-8	HPTIP TURBINE DISCHARGE TEMPERATURE	2 MPITA	0.25	1	0.25
UCR	A018656	22-Sep-79	SYSTEM	CAO OR TURBINE TEMP EXCEEDED REDLINE	OVE RSHOOT AT THROTTLE DOWN	0108	750.047	DISCHARGE TEMPERATURE	3 FMOD	0.5	1	0.5
UCR	A018655	13-May-79	NOZZLE	NOZZLE TUBE RUPURES+HPT IP RA	TUBE RUPTURE (12) DODGY DODORS	2004	802.162	DISCHARGE TEMPERATURE	3 FMOD	0.5	1	0.5
UCR	A009345	22-May-79	NOZZLE	MALEVOUS TIME LEADS	TUBE LEAKS (12)	2004	802.158	DISCHARGE TEMPERATURE	3 FMOD	0.5	1	0.5
UCR	A028468	14-May-79	NOZZLE	4FT+ OVERTEMP FUEL LINE CUTOFF	NOZZLE STEERPROPIR FAILED	0201	750.041	DISCHARGE TEMPERATURE	2 MPITA	0.25	1	0.25
UCR	A008518	10-May-79	NOZZLE	NOZZLE TUBE SPLITS COOLANT LOSS	COLD WALL TIME LEAKS (3)	2004	802.157	DISCHARGE TEMPERATURE	3 FMOD	0.5	1	0.5
SMEFH	Failure to Maintain Proper Propellant Valve Position											0.25
UCR	A018548	26-Jun-91	SYSTEM	PREMATURE CUTOFF OF PIVOT POSITION	OPIV LIMIT RE SET MCS	0007	750.119	2 MPITA	0.25	1	0.25	
MSFC PRACA	A02821	17-Jun-91	HYDRAULICS	ACT. CHECK OUT MODULE E FAILURE	OPIV POSITION FAILURE	Field				1	0	0
SMEFO	HPTIP Coolant Line Overpressure											0.40
MSFC PRACA	A08162	22-Apr-91	TURBOMACHINERY	COOLANT LINE PRESSURE (SMALL)	HPTIP COOLANT LINE OSCILLATIONS (SMALL) OVERPRESSURE - NO EFFECTS ID	Field		HPTIP Coolant Line Pressure		1	0.1	0.1
MSFC PRACA	A0880	18-Oct-91	TURBOMACHINERY	COOLANT LINE PRESSURE INCREASED	COOLANT LINE PRESSURE (LARGE) DELTA) EXCEEDED - 270 PSI (MANIFOLD PIPELINE, 51 PHASE, IF & SUSTAINED)	Field		HPTIP Coolant Line Pressure		1	0.1	0.1
MSFC PRACA	A11870	28-Sep-94	TURBOMACHINERY	SEE FA STS 24 E-4, 180 PSI MANIFOLD PIPELINE, 51 PHASE, IF & SUSTAINED	SEE FA STS 24 E-4, 180 PSI MANIFOLD PIPELINE, 51 PHASE, IF & SUSTAINED	Field		HPTIP Coolant Line Pressure		1	0.1	0.1
MSFC PRACA	A15403	25-Apr-93	TURBOMACHINERY	SEE FA STS 24 E-4, 180 PSI MANIFOLD PIPELINE, 51 PHASE, IF & SUSTAINED	SEE FA STS 24 E-4, 180 PSI MANIFOLD PIPELINE, 51 PHASE, IF & SUSTAINED	Field		HPTIP Coolant Line Pressure		1	0.1	0.1

SSME/MPS Initiator Equivalent Flight Occurrences Evaluation

SMEST Critical Structural Failure of SSME Component

Record Type	Record #	System Element	NCA Nomenclature	NCA Part #	Failure Description from Record	Analyst Comments	Type	Configuration	Event Applicability	Event Potentiality Factor	Weighted Total Time	
ANMIPSFRPMLPOTP	A08739	TURBOMACHINERY	LPOTP UN 1306	RS007801-191	LPOTP UN 4304 HIGH BREAK AWAY IN VIOLATION OF OMBRD. ENRME 6 2012	LPOTP HIGH SHAFT TORQUE, BEARING DAMAGED	Field	1	0.02	0.02	0.06	
MSFC PRACA	A13505	1-Dec-86	TURBOMACHINERY	LPOTP UN 2028	LPOTP UN 2028A HIGH BREAK AWAY TORQUE	LPOTP UN 2030 SHAFT SEIZED	Field	1	0.02	0.02	0.02	
MSFC PRACA	A14010	1-Aug-87	TURBOMACHINERY	LPOTP UN 2030	LPOTP UN 2030 SHAFT SEIZED		Field	1	0.02	0.02	0.02	
MSFC PRACA	A14383	23-Nov-87	TURBOMACHINERY								0.08	
ANMIPSFRPMLPOTP	A14384	HPFTP IMPELLER/DIFFUSER FAILURE				COOLANT LINER PRESSURE INCREASED AT CO 14 SEC. HPFTP SPEED RATE AT CO (DAMAGE TO HPFTP, EXHAUST SHANK TRAVEL, EXCESSIVE WEAR DUE TO IMBALANCE)	Field	1	0.02	0.02	0.02	
MSFC PRACA	A08739	17-Oct-90	TURBOMACHINERY	RING, LOW PR ORIFICE	RS007659-009	EXCESSIVE WEAR, CRACKING, A RAISED MATL. IMPELLER CRACK	HPFTP IMPELLER CRACK - NO EFFECT	Field	1	0.02	0.02	
MSFC PRACA	A08145	11-Apr-90	TURBOMACHINERY	IMPELLER	RS007556-013-25							
MSFC PRACA	A10076	27-May-92	TURBOMACHINERY	DIFFUSER	RS007532-001	IMPACT DAMAGE ON VANES	HPFTP IMPACT DAMAGE ON PLATE BURE. UNKNOWN CONTAMINATION, SEEMED TO HAVE NO EFFECT, BUT SCARRED SERIOUSLY	Field	1	0.02	0.02	
MSFC PRACA	A10203	10-Jul-92	TURBOMACHINERY	DIFFUSER	RS007527-061	DIFFUSER NO. 8 VANE DENTED	HPFTP DIFFUSER NO. 8 VANE DENTED BY IMPACT DAMAGE OF UNKNOWN CONTAMINATION, NO APPARENT EFFECT	Field	1	0.02	0.02	0.1
ANMIBSFPRPMLPOTP	A14130	1-Aug-97	TURBOMACHINERY	HPFTP 1ST STG BLDS	RS007621-005	460VTS HPFTP 1ST STAGE BLADE STOP FAILURE, BEFORE 2012	CRACK IN FIRST STAGE ROOTS, HPFTP DISCH ROOTS	Field	1	0.02	0.02	
MSFC PRACA	A08076	27-Mar-90	TURBOMACHINERY	DISC 1ST STAGE ROTOR	RS007517-026	AU PLATE MISSING, CRACKS IN FIRST STAGE ROTOR	CRACK IN FIRST STAGE ROTOR	Field	1	0.02	0.02	
MSFC PRACA	A09265	26-Jun-91	TURBOMACHINERY	BLADE 1ST STAGE	RS0019821-013	CRACK IN FIRST STAGE BLADE, 1ST STAGE BLADE, INFO ON CRACK FROM '98-'99	CRACK IN FIRST STAGE BLADE, 1ST STAGE BLADE, INFO ON CRACK FROM '98-'99	Field	1	0.02	0.02	
MSFC PRACA	A09461	21-Aug-91	TURBOMACHINERY	BLADE 1ST STAGE HPFTP	RS0019821-025	CRACK IN FIRST STAGE BLADE, 1ST STAGE BLADE, INFO ON CRACK FROM '98-'99	CRACK IN FIRST STAGE BLADE, 1ST STAGE BLADE, INFO ON CRACK FROM '98-'99	Field	1	0.02	0.02	
ANMHODSPRAMPQCD	A10269	4-May-77	TURBOMACHINERY	HPOTP FAILURE DUE TO CAVITATION DAMAGE	RS007501-261	TP SEAL NOZ VANES & SHroud EROSION	CAVITATION OF HPOTP - NO RECLINE, HIGHER THAN NORMAL HEAT LOADS	Field	1	0.02	0.02	0.08
MSFC PRACA	A10082	1-May-82	TURBOMACHINERY	INLET VANE	RS007743-037	CAVITATION DAMAGE, INLET VANE	CAVITATION OF HPOTP - NO RECLINE, HIGHER THAN NORMAL HEAT LOADS	Field	1	0.02	0.02	
MSFC PRACA	A10080	26-May-82	TURBOMACHINERY	SEALS	RS007773-013	CAVITATION DAMAGE	CAVITATION OF HPOTP - NO RECLINE, HIGHER THAN NORMAL HEAT LOADS	Field	1	0.02	0.02	
MSFC PRACA	A10073	29-May-82	TURBOMACHINERY	IMPELLER	RS007716-043	CAVITATION DAMAGE	CAVITATION OF HPOTP - NO RECLINE, HIGHER THAN NORMAL HEAT LOADS	Field	1	0.02	0.02	
MSFC PRACA	A12023	19-Jan-85	TURBOMACHINERY	VANE, R.H.	RS007741-037	CAVITATION DAMAGE ON R.H. VANE, HPOTP	CAVITATION DAMAGE ON R.H. VANE, HPOTP	Field	1	0.02	0.02	0.08
ANMOTLCPRPMLPOTP	A08530	19-Sep-81	TURBOMACHINERY	HPOTP UN 2018R3	RS007701-301	METAL PIECE LOCKED IN 1ST STAGE NOZLE, EWRDED IN	SHEET METAL, SPOT WELD FAILURE, CRACK IN FIRST STAGE SHANK, 1ST STAGE BLADERS HPO	Field	1	0.02	0.02	
MSFC PRACA	A01035				RS007778-021	JET PARTIALLY OBSTRUCTED	JET PARTIALLY OBSTRUCTED - NO EFFECT	Field	1	0.02	0.02	
MSFC PRACA	A12189	14-Apr-95	TURBOMACHINERY	TIP SEAL RETAINER	RS007879-13	TURBINE BLADE TIP SEAL GAP EXCEEDS SPEC, HPOTP UN 5115R1	HPOTP TIP SEAL RETAINER - GAP REQ. EXCEEDED	Field	1	0.02	0.02	0.04
ANMIBSFPRPMLPOTP	A08751	22-Jun-79	TURBOMACHINERY	STRUT TURB DISCHARGE	RS007778-021		HPOTP CONTAMINATION LOSS OF COOLANT, JET PARTIALLY OBSTRUCTED - NO EFFECT	Field	1	0.02	0.02	
MSFC PRACA	A12739	14-Feb-96	TURBOMACHINERY	ECCENTRIC RING	RS007878-006	EOCENTRIC RING FOUND CRUSHED PORT 31-32	HPOTP ECCENTRIC RING FOUND CRUSHED, PORT 31-32 (LOS OF HE COOLANT TO TURBINES POSSIBLE)	Field	1	0.02	0.02	0.02
ANMIBSFPRPMLPOTP	A13928	3-Apr-87	TURBOMACHINERY	RING, ASSY OF NOZZLE STRUCTURAL FAILURE	RS001912-13-001	IF A ST47-E-1, HPOTP 90W THRUST BALL CRACKED PORT 37	IF A ST47-E-1, HPOTP 90W THRUST BALL CRACKED PORT 37 - NO EFFECT	Field	1	0.02	0.02	
ANMIBSFPRPMLPONZ	A11642	29-Jul-84	TURBOMACHINERY	NOZZLE, 2ND STAGE	R0016027-21	2ND STAGE NOZLE CRACKS IN TURNING VANE, HPOTP UN 5002		Field	1	0.02	0.02	
ANMIRSFPRPMLPONR	A10074	29-May-82	TURBOMACHINERY	WASHER	RS007073-003	CRACKED CLIPWASHERS, HPOTP, DISASSEMBLY	HPOTP CRACKED CLIPWASHERS, RECURRING PROBLEM AS PER REPORT, BUT CONSEQUENCES UNKNOWN	Field	1	0.01	0.01	0.06

SSME/MPS Initiator Equivalent Flight Occurrences Evaluation

SMEST Critical Structural Failure of SSME Component

Record Type	Record #	Date	System Element	NCA Nomenclature	NCA Part #	Failure Description from Record	Analytic Comments	Type	Event	
									Configuration	Potential
Cause ID									Fraction	
MSFC PRACA	A10167	2-Jul-82	TURBOMACHINERY	CUPWASHER	RS007704-003	BROKEN CUPWASHER. HPOTP. DISASSEMBLY PLANS THE SURFACE OF THE MAIN IMPELLER OUTER SHROUD RETAINER RING AND SILVER SEAL AT THE PRESSURE SEARING OR FLOW AREA	HPOTP CRACKED CUPWASHERS. DEBRIS IN HPOTP DIFFUSER MATERIAL MISSING AT RADIAL FILLET AREA - NO APPARENT EFFECT	Field	1	0.01
MSFC PRACA	A10167	2-Jul-82	TURBOMACHINERY	CUPWASHER	RS007704-003	BROKEN CUPWASHER. HPOTP. DISASSEMBLY CUPWASHERS (1) ROTATED DURING HOT FIRE. HPOTP UMA 2222R1, ENGINE 2022	HPOTP CUPWASHERS (1) ROTATED DURING HOT FIRE. HPOTP UMA 21, ENGINE 2026	Field	1	0.01
MSFC PRACA	A12196	19-Apr-85	TURBOMACHINERY	CUPWASHERS	RS032220-3	CUPWASHERS (2) ROTATED DURING HOT FIRE. HPOTP 11641, ENGINE 2026	2 ROTATED CUPWASHERS	Field	1	0.01
MSFC PRACA	A12197	19-Apr-85	TURBOMACHINERY	CUPWASHERS	RS032220-3	NO. 1 BEARING INNER RACE CRACK. HPOTP TURBINE END #3	NO. 1 BEARING INNER RACE CRACK. HPOTP UN 8101	Field	1	0.01
ANM088FRPMPHOPR			HPOTP BEARING FAILURE DUE TO SPALLING, PITTING, WEAR OR CORROSION							0.18
MSFC PRACA	A11925	17-Dec-84	TURBOMACHINERY	BRING	RS007055-301	SPALLED BALLS AND SURFACE DISTRESS BRACES	SPALLED BALLS AND SURFACE DISTRESS BRACES (CAUSED SUB SYN VB - MAYBE STRUCTURAL)	Field	1	0.02
MSFC PRACA	A05602	28-Aug-78	TURBOMACHINERY	HPOTP UN 0007R2	RS007701-211	SPALLED BALLS AND SURFACE DISTRESS BRACES	SPALLED BALLS AND SURFACE DISTRESS BRACES (CAUSED SUB SYN VB - MAYBE STRUCTURAL)	Field	1	0.02
MSFC PRACA	A05602	28-Aug-78	TURBOMACHINERY	HPOTP UN 0007R2	RS007701-211	SURFACE DISTRESS ON RACES	SURFACE DISTRESS ON RACES	Field	1	0.02
MSFC PRACA	A05603	28-Aug-78	TURBOMACHINERY	HPOTP UN 0007R2	RS007701-211	SPALLED BALLS AND GAGE DELAMINATION	SPALLED BALLS AND GAGE DELAMINATION	Field	1	0.02
MSFC PRACA	A05644	3-Apr-79	TURBOMACHINERY	HPOTP UN 2404	350DRS007701-171	NO. 3 BEARING INNER RACE CRACK. HPOTP UN 8101	NO. 3 BEARING INNER RACE CRACK. HPOTP UN 8101	Field	1	0.02
MSFC PRACA	A11925	17-Dec-84	TURBOMACHINERY	BRING	RS007055-301	CRACK IN NO. 4 BEARING RACE.	CRACK IN NO. 4 BEARING RACE.	Field	1	0.02
MSFC PRACA	A14156	1-Aug-87	TURBOMACHINERY	HPOTP UN 48562	RS007701-531	HPOTP UN 100001	HPOTP UN 100001	Field	1	0.02
MSFC PRACA	A14792	23-Mar-88	TURBOMACHINERY	HPOTP UN 48562	RS007701-531	HPOTP UN 100002 BEARING CRACK FREQUENCER	HPOTP UN 100002 BEARING CRACK FREQUENCER	Field	1	0.02
ANM088FRPMPHOPEV			HPOTP EXCESSIVE VIBRATION							0.02
MSFC PRACA	A15180	12-Jan-80	TURBOMACHINERY	HPOTP	RS007701-591	HIGH SYNCHRONOUS VIBRATIONS ON HPOTP UN 8101, STS-4	HIGH SYNCHRONOUS VIBRATIONS ON HPOTP UN 8101, STS-4	Field	1	0.02
ANM1088FRPMPHOPM			ANALY LOX POST STRUCTURAL FAILURE							0.08
MSFC PRACA	A05616	16-Dec-78	COMBUSTION	MAIN INJECTOR	RS009122-301	SLIGHT LOX PORT EROSION	SLIGHT LOX PORT EROSION	Field	1	0.02
MSFC PRACA	A09760	22-Oct-80	COMBUSTION	RETAINER	RS009133-011	RETAINER BURN THRU & GALLING	RETAINER BURN THRU & GALLING	Field	1	0.02
MSFC PRACA	A09173	3-May-81	COMBUSTION	MAIN INJECTOR	RS009122-901	HR RETAINER DAMAGE	HR RETAINER DAMAGE	Field	1	0.02
ANM1088FRPMPHOPM			BAFFLE ELEMENT INNER COPPER JACKET BURN THROUGH							0.02
MSFC PRACA	D07071A007C	7-Oct-80	COMBUSTION	BAFFLE ELEMENT	R0019527-001	INNER COPPER JACKET BURN THROUGH	INNER COPPER JACKET BURN THROUGH	Field	1	0.02
ANM1088FRPMPHOPM			EXTERNAL RUTURE OF PFB ASI LOX LINE							0.02
MSFC PRACA	A07144	29-Aug-79	ENGINE	ENGINE SYSTEM	RS007001-061	FB-ASI LOX LINE RUTURED	FB-ASI LOX LINE RUTURED	Field	1	0.02
ANM1088FRPMPHOPP			PFB FACEPLATE FAILURE DUE TO EROSION							0.06
MSFC PRACA	A04677	18-Apr-78	COMBUSTION	PFB INJECTOR	RS009020-501	INJECTOR FACE EROSION	INJECTOR FACE EROSION	Field	1	0.02
MSFC PRACA	A09846	25-Nov-91	COMBUSTION	PFB INJECTOR	RS009020-521	EROSION ON INJECTOR FACEPLATE	EROSION ON INJECTOR FACEPLATE	Field	1	0.02
MSFC PRACA	A09817	26-Jan-92	COMBUSTION	PFB INJECTOR	RS009020-771	EROSION AND SLAG ON INJECTOR FACEPLATE	EROSION AND SLAG ON INJECTOR FACEPLATE	Field	1	0.02

SSME/MPS Initiator Equivalent Flight Occurrences Evaluation			Nominal Operations	
Initiator ID	Cause ID	Description	Source	Equivalent Flight Failures for Total Exposure Time
SMEST		Structural Failure of SSME Components Leading to LOV		0.00
	ANMMWSFPRPMCCMW	MCC MANIFOLD WELD FAILURE	MCC PRA	0.10
	ANMEDDBPRPMDNCO	FAILURE IN EDNI LINER CLOSEOUT STRUCTURE	MCC PRA	0.07
	ANMHHWCRPRPMCCWH	MCC HOT GAS WALL FAILURE DUE TO UNSTABLE CRACK GROWTH	MCC PRA	0.02
	ANMFRBTPRPMFRI	FAILURE OF FLOW RECIRCULATION INHIBITOR	MCC PRA	0.02
	ANMCCCCRPRPMCCCC	FAILURE OF MCC COOLANT CHANNEL DUE TO UNSTABLE CRACK GROWTH	MCC PRA	0.00
	ANMMBSFPRPMCCBP	MCC MULTIPLE BOLT FAILURE DUE TO INADEQUATE PRELOAD	MCC PRA	0.04
	ANMMHMWFPRPMHGWMWF	HGM TRANSFER TUBE WELD FAILURE	WELD STUDY	0.01
SMEHL		Hydraulic Lock-up Required	PRA APU Analysis	1.59
SMELP		Propellant Management System And/Or SSME Combustible Leakage	Lockheed PRA	0.32
SME LH		Helium System Leakage	Lockheed PRA	0.26
SME PG		Failure To Provide Helium Pogo Charge	NPRD-3	0.24
SME PV		Failure To Maintain Propellant Supply System Valve Positions	MPS F.R.D., NPRD91 See Fault Tree in Next Section	
SMEDS		Simultaneous Dual SSME Shutdown	PRA Preliminary Results	
SMECD		Nominal MECO & Dump; No Mainstage Initiators		

SSME/IMPS Initiator Frequency Summary

Initiator ID	Initiator Description	Total Exposure Time		Mean # of Missions Between Occurrences	Percent of Non-nominal Initiators	Development
		Nominal Operation Time	sec			
SMEFO	Loss of MCC Pressure	4.00	3.35E-03	1.00E-02	100	25.87% Event Tree 1
SMEFH	Loss of Gross H2 Flow	0.50	4.18E-04	1.25E-03	797	3.24% Event Tree 2
SMEMO	High Mixture Ratio In Oxidizer Preburner	0.25	2.09E-04	6.27E-04	1594	1.62% Event Tree 3
SMEMF	High Mixture Ratio In Fuel Preburner	0.25	2.09E-04	6.27E-04	1594	1.62% Event Tree 4
SMEPB	Loss of Fuel to Both Preburners	6.25	5.23E-03	1.56E-02	64	40.34% Event Tree 5
SMEVP	Failure to Maintain Proper SSME Propellant Valve Position	0.25	2.09E-04	6.27E-04	1594	1.62% Event Tree 6
SMELO	HPTTP Coolant Liner Overpressure	0.40	3.35E-04	1.00E-03	986	2.58% Event Tree 7
SMEST	Critical Structural Failure of SSME Components	1.13	9.53E-04	2.85E-03	350	7.38% Fault Trees-Page 55
SMEHL	Hydraulic Lock-up Required	1.59	1.33E-03	4.00E-03	250	10.34% Event Tree 8
SMELP	Propellant Management System And/or SSME Combustible Leakage	0.32	2.65E-04	7.96E-04	1256	2.06% Fault Trees-Page 54
SMEHL	Helium System Leakage	0.26	2.15E-04	6.46E-04	1548	1.67% Event Tree 9
SMEPG	Failure To Provide Helium Pogo Charge	0.24	2.02E-04	6.05E-04	1653	1.56% Event Tree 10
SMEPV	Failure To Maintain Propellant Supply System Valve Positions	0.01		1.89E-05	52910	0.05% Fault Trees-Page 65
SMEDS	Simultaneous Dual SSME Shutdown	0.00		1.00E-05	100000	0.03% Fault Trees-Page 53
SMECD	Nominal MEKO & Dump; No Mainstage Initiators	376		9.43E-01	1.060	Event Tree 12

LOSS OF GROSS O2 FLOW EVENT TREE 1 REV. 1

INITIATOR	PROTECTIVE EVENTS				MITIGATING EVENT	SEQ.PROB.	CLASS	SEQUENCE DESCRIPTION	# TRANSFER TO
LOSS OF MCC PRESSURE	Pc PRESSURE DROP DETECTED.	CONTROLLER INCREASES O2 TO OPB	OPOV COMMAND LIMIT ENGAGED	H-POTP TD TEMP REDLINE DETECTED	MCC Pc REDLINE DETECTED	EMERGENCY HYDRAULIC SHUTDOWN			
SMEFO	PD	00	LE	OR	PR	EH			
SMEFO	PAGE 39				PAGE 3	9.97E-03	OK abort		1
SMEFO	PAGE 11				0.0 (PD SUCCESS)	1.16E-08	LOV	FO/EH	2
SMEFO	PAGE 7				PAGE 3	0.00E+00	LOV	FOPR	3
SMEFO					0.0 (PD SUCCESS)	2.30E-05	TRANSFER	FOL	4 SME/MO EVENT TREE
SMEFO					PAGE 3	1.00E-03	OK abort		5
SMEFO					0.0 (PD SUCCESS)	1.16E-12	LOV	FO/OEH	6
SMEFO					PAGE 3	0.00E+00	LOV	FO/OOPR	7
SMEFO					1.50E-08	OK abort		FO/D/EH	8
SMEFO					PAGE 3	1.74E-12	LOV	FO/P/DOR	9
SMEFO					PAGE 13	2.25E-10	LOV	FO/P/DOR	10

TRANSFER	PROTECTIVE EVENT	MITIGATING EVENT	SEQ.PROB.	CLASS	SEQUENCE DESCRIPTION	#
HIGH MIXTURE RATIO IN OPB	HPOTP DT REDLINE DETECTED	EMERGENCY HYDRAULIC SHUTDOWN				
SMEFO/SMEMO	OR	EH				
2.30E-05 SMEFO/SMEMO	1.50E-04 PAGE 13	1.16E-06 PAGE 3	2.30E-05 2.67E-11 3.45E-09	OK abort LOV LOV	MO/EH MO/OR	1 2 3

HIGH MIXTURE RATIO IN OXIDIZER PREBURNER EVENT TREE 1A REV. 1

INITIATOR	PROTECTIVE EVENT	SEQ.PROB.	CLASS	SEQUENCE DESCRIPTION	#	TRANSFER TO
LOSS OF GROSS H2 FLOW	CONTROLLER INCREASES O2 FLOW TO FPB					
SMEFH	OF					
SMEFH	PAGE 9	1.25E-03 1.25E-07	TRANSFER TRANSFER	FH/OF	1 2	SMEMF EVENT TREE SMEPB EVENT TREE

LOSS OF GROSS H2 FLOW EVENT TREE 2 REV. 1

TRANSFER	PROTECTIVE EVENT	MITIGATING EVENT	SEQ.PROB.	CLASS	SEQUENCE DESCRIPTION	#
HIGH MIXTURE RATIO IN FPB	HPFTP DT REDLINE DETECTED	EMERGENCY HYDRAULIC SHUTDOWN				
SMEFH/SMEMF	FR	EH				

1.25E-03
SMEFH/SMEMF
1.50E-04
PAGE 13

1.16E-06
PAGE 3

1.45E-09

1.88E-07

OK abort
LOV
LOV

MF/EH
MF/FR

1
2
3

HIGH MIXTURE RATIO IN FUEL PREBURNER EVENT TREE 2A REV. 1

TRANSFER	PROTECTIVE EVENT	MITIGATING EVENT	SEQ.PROB.	CLASS	SEQUENCE DESCRIPTION	#
LOSS OF FUEL TO BOTH PREBURNERS	HPFTP OR HPOTP DT REDLINE DETECTED	EMERGENCY HYDRAULIC SHUTDOWN				
SMEFH/SMEPB	TR	EH				

1.25E-07
1.16E-06
PAGE 3

2.25E-08
PAGE 13

1.45E-13
2.81E-15

OK abort
LOV
LOV

LOSS OF FUEL TO BOTH PREBURNERS EVENT TREE 2B REV. 1

INITIATOR	PROTECTIVE EVENT	MITIGATING EVENT	SEQ.PROB.	CLASS	SEQUENCE DESCRIPTION	#
HIGH MIXT. RATIO IN OPB	HPOTP DT REDLINE DETECTED	EMERGENCY HYDRAULIC SHUTDOWN				
SMEMO	OR	EH				
6.27E-04			6.27E-04	OK abort		1
SMEMO	1.50E-04 PAGE 13		1.16E-06 PAGE 3	LOV	MO/EH	2
			7.27E-10	LOV	MO/OR	3
			9.41E-08			

HIGH MIXTURE RATIO IN OXIDIZER PREBURNER EVENT TREE 3 REV. 1

INITIATOR	PROTECTIVE EVENT	MITIGATING EVENT	SEQ.PROB.	CLASS	SEQUENCE DESCRIPTION	#
HIGH MIXTURE RATIO IN FPB	HPFTP DT REDLINE DETECTED	EMERGENCY HYDRAULIC SHUTDOWN				
SMEMF	FR	EH	6.27E-04 7.27E-10 9.41E-08	OK abort LOV LOV	MF/EH MF/FR	1 2 3

HIGH MIXTURE RATIO IN FUEL PREBURNER EVENT TREE 4 REV. 1

INITIATOR	PROTECTIVE EVENT	MITIGATING EVENT	SEQ.PROB.	CLASS	SEQUENCE DESCRIPTION	#
LOSS OF FUEL TO BOTH PREBURNERS	HPFTP OR HPOTP DT REDLINE DETECTED	EMERGENCY HYDRAULIC SHUTDOWN				
SMEPB	TR	EH	1.56E-02 PAGE 3	OK abort LOV	PB/EH LOV	1 2 3

LOSS OF FUEL TO BOTH PREBURNERS EVENT TREE 5 REV. 1

INITIATOR	MITIGATING EVENTS		SEQ.PROB.	CLASS	SEQUENCE DESCRIPTION	#	TRANSFER TO
FAILURE TO MAINTAIN SSME VALVE POSITIONS	FAIL-SAFE SERVOSWITCH	EMERGENCY PNEUMATIC SHUTDOWN					
SMEVP	HL	EP					
6.27E-04			6.27E-04	TRANSFER		1	SMEHL EVENT TREE
SMEVP	2.10E-06		1.32E-09	OK abort		2	
	PAGE 8	1.41E-04 PAGE 5	1.86E-13	LOV	VP/HL/EP	3	

FAILURE TO MAINTAIN SSME VALVES POSITION EVENT TREE 6 REV. 1

TRANSFER	PROTECTIVE EVENT		MITIGATING EVENT	SYSTEM EVENTS		SEQ.PROB.	CLASS	SEQUENCE DESCRIPTION	#
	BY-PASS VALVE FAILS TO MOVE	NO VALVE DRIFT	EMERGENCY PNEUMATIC SHUTDOWN	MAIN ENGINE CUT-OFF	PROPELLANT DUMP				
HYDRAULIC LOCK-UP REQUIRED									
SMEVP/SMEHL	BL	ND	EP	ME	PM				
6.27E-04 SMEVP/SMEHL	.20 PAGE 38	1.41E-04 PAGE 5	.20 PAGE 21	1.43E-04 PAGE 40	1.65E-07 PAGE 40	5.02E-04	OK	HL/PM	1
						8.28E-11	LOV	HL/ME	2
						7.17E-08	LOV	HL/NDEP	3
						1.25E-04	OK abort	HL/BL	4
						1.77E-08	LOV		5
						1.45E-09	LOV		

FAILURE TO PERFORM HYDRAULIC LOCK-UP EVENT TREE 6A REV. 1

INITIATOR	PROTECTIVE EVENT	MITIGATING EVENT	SEQ.PROB.	CLASS	SEQUENCE DESCRIPTION #
COOLANT LINER OVERPRESSURE.	REDLINE DETECTED	EMERGENCY HYDRAULIC SHUTDOWN			
SMELO	OP	EH			

PAGE 3

PAGE 18

COOLANT LINER OVERPRESSURE EVENT TREE 7 REV. 1

INITIATOR	PROTECTIVE EVENT		MITIGATING EVENT	SYSTEM EVENTS		SEQ.PROB.	CLASS	SEQUENCE DESCRIPTION	#
HYDRAULIC LOCK-UP REQUIRED	BY-PASS VALVE FAILS TO MOVE	NO VALVE DRIFT	EMERGENCY PNEUMATIC SHUTDOWN	MAIN ENGINE CUT- OFF	PROPELLANT DUMP	3.20E-03	OK	HL/PM	1
SMEHL	BL	ND	EP	ME	PM	5.28E-10	LOV	HL/ME	2
				PAGE 40		4.58E-07	LOV		3
				PAGE 21		8.00E-04	OK abort		4
SMEHL	PAGE 38	PAGE 5				1.13E-07	LOV	HL/ND/EP	5
	PAGE 6					9.28E-09	LOV	HL/BL	

FAILURE TO PERFORM HYDRAULIC LOCKUP EVENT TREE 8 REV. 1

INITIATOR	PROTECTIVE EVENT	MITIGATING EVENTS			SYSTEM EVENTS		SEQ.PROB.	CLASS	SEQUENCE DESCRIPTION #
		HELIUM LEAKAGE ISOLATED	ALTERNATIVE HELIUM SUPPLY AVAILABLE	MANUAL HYDRAULIC SHUTDOWN	MAIN ENGINE CUT-OFF	PROPELLANT DUMP			
FAILURE TO CONTAIN HELIUM PRESSURE BOUNDARY	SMELH	IL	IH	AH	EM	ME	PM		
								3.52E-04	OK
					1.65E-07 PAGE 40			5.81E-11	LH/PM
								8.66E-10	LOV
								1.83E-06	OK abort
								1.85E-07	LH/AH/EM
								1.93E-05	OK abort
								1.86E-07	LH/AH/EM
								2.53E-04	OK abort
								2.56E-06	LH/AH/EM

FAILURE TO CONTAIN HELIUM PRESSURE BOUNDARY EVENT TREE 9 REV. 1

INITIATOR	PROTECTIVE EVENT	MITIGATING EVENT	SEQ.PROB.	CLASS	SEQUENCE DESCRIPTION	#
FAILURE TO PRECHARGE POGO ACC.	LOW POGO PRESSURE DETECTED	EMERGENCY HYDRAULIC SHUTDOWN				
SMEPG	PP	EH				

PAGE 3

BASIC EVENT

FAILURES DURING POGO ACCUMULATOR PRECHARGE EVENT TREE 10 REV. 1

INITIATOR	MITIGATIVE EVENT	SEQ.PROB.	CLASS	SEQUENCE DESCRIPTION #
DUAL SSME PREMATURE SHUTDOWN	DUAL SSME PREMATURE S/D BEFORE LIFT-OFF			
SMEDS	BL AC			

Flowchart details:

- Initiator: DUAL SSME PREMATURE SHUTDOWN
- Mitigative Event: DUAL SSME PREMATURE S/D BEFORE LIFT-OFF
- Sequence Description: #
- SMEDS leads to BL AC.
- BL AC leads to 0.00E+00 (OK abort).
- 0.00E+00 leads to 1.0 (SMEDS).
- 1.0 (SMEDS) leads to .65 (BASIC EVENT).
- .65 (BASIC EVENT) leads to 3.54E-06 (OK abort).
- 3.54E-06 leads to 6.46E-06 (LOV).
- 6.46E-06 leads to DS/BL/AC.

DUAL SSME PREMATURE SHUTDOWN EVENT TREE 11 REV. 1

INITIATOR	SYSTEM EVENT		SEQ.PROB.	CLASS	SEQUENCE DESCRIPTION	#
NOMINAL MECO AND PROPELLANT DUMP REQUIRED	MECO PERFORMED	PROPELLANT DUMP PERFORMED				
SMECD	MN	PD				

.94

1.65E-07 PAGE 40	9.43E-01 OK	1
2.46E-06 PAGE 30	1.56E-07 LOV	2
	2.32E-06 LOV	3

FAILURE TO PERFORM NOMINAL MECO & PROPELLANT DUMP EVENT TREE 12 REV. 1

Page 3
1

1:

PAGE 9

FAILURE TO CONTROL
THE POSITION
(INDEPENDENT
FAILURES)

I1A21111

6.87×10^{-11}

FAILURES ON
TRANSFER TO CHANNEL
B

I1A21112

1.53×10^{-5}

FPOV SERVO-SWITCH A
FAILS TO CHANGE ITS
POSITION (ENGINE 1)

ASMHVFOPFFSWA1

4.02×10^{-6}

NPRD-3

FPOV SERVO-VALVE B
FAILS TO CHANGE ITS
POSITION (ENGINE 1)

ASMHVFPPHFFSVA1

5.58×10^{-6}

NPRD-3

FAILURES ON CHANNEL
A TO CONTROL FPOV
POSITION (ENGINE 1)

ASMCOFFBCFFCHA1

1.00×10^{-7}

HYPOTHESIS

FPOV SERVO-VALVE A
FAILS TO CHANGE ITS
POSITION (ENGINE 1)

ASMHVFPPHFFSVA1

5.58×10^{-6}

NPRD-3

Page 22
Page 33

GHYACTOP2
2.70E-07

1

Page 25

GHYSDW4A
5.60E-06

Page 24

GHYSDW5A
1.53E-05

Page 25

1

Page 30

Page 27

1

Page 40

LH2 SIDE FAILURES
DURING PROPELLANT
DUMP PHASE

[GPMS11]

$4.08E-04$

SSME-1 LH2 PREVALVE
FAILS TO OPEN

[ASMFOMPHPRV1]

$4.07E-05$
MPS R.F.D.

LH2 MANIFOLD
REPRESSURIZATION
VALVES FAIL

[GPMS19]

$1.27E-04$

SSME LH2 MANIFOLD
REPRESSURIZATION
VALVE 2 FAILS TO
OPEN

[ASMFOMPHPR2]

$6.36E-05$
LOCKHEED PRA

SSME LH2 MANIFOLD
REPRESSURIZATION
VALVE 1 FAILS TO
OPEN

[ASMFOMPHPR1]

$6.36E-05$
LOCKHEED PRA

SSME-1 FUEL BLEED
VALVE FAILS TO OPEN

[ASMFOMPHBLE1]

$8.45E-05$
GALILEO RTG PRA

1

Page 40

1)

FUEL TURBINE TEMPERATURE REDLINE
SENSOR RELIABILITY ASSESSMENT

SENSOR FAILURE DATA - FUEL SIDE ONLY

PART NUMBER	7004-91	7013	TOTAL
TOTAL SECONDS	264,000	158,000	422,000
FAILURES	3	2	5

BOTH PART NUMBERS EXHIBIT THE SAME FAILURE RATE

MISSION RELIABILITY VALUES - SINGLE SENSOR (50%CONFIDENCE)

FAILURE (HIGH OR LOW)	0.993104
FAIL HIGH - DISQUALIFY	0.9943159
FAIL HIGH - VOTE FOR CUTOFF	0.9967419
FAIL LOW - DISQUALIFY	0.9979538

HISTORICAL SSME RELIABILITY DATA

SINGLE ENGINE - 104% MISSION	0.9924918
EXCEED FUEL TURBINE REDLINE	0.9984938

ERRONEOUS SHUTDOWN PROBABILITY

FIRST FAILURE HIGH OR LOW (1 OF 2)	0.0137444
SECOND FAILURE HIGH AND VOTE	0.0032581
COMBINED	4.478E-05
THREE ENGINE PROBABILITY	0.0001343
MTBF	7,440

LOSS OF PROTECTION PROBABILITY

FIRST FAILURE HIGH OR LOW (1 OF 2)	0.0137444
SECOND FAILURE - NO VOTE	0.0056841
COMBINED	7.812E-05
THREE ENGINE PROBABILITY	0.0002344
MTBF	4,270

REDLINE EXCEEDED PROBABILITY

SINGLE ENGINE	0.0015062
THREE ENGINE PROBABILITY	0.0045117
MTBF	220

REDLINE PROVIDES NEEDED PROTECTION

SAFE SHUT DOWN FOR 20 PERCENT OF HISTORICAL FAILURES	
EXPECTED NEED	1 IN 220 FLIGHTS
EXPECTED ERRONEOUS	1 IN 7,440 FLIGHTS
RATIO	34 TO 1

SENSOR CATASTROPHIC POTENTIAL

LOSS OF REDLINE	7.812E-05
ENGINE EXCEEDS REDLINE	0.0015062
COMBINED	1.177E-07
THREE ENGINE PROBABILITY	3.53E-07
MTBF	2,832,780
ERRONEOUS SHUTDOWN (3 ENGINES)	0.0001343
SECOND ENGINE SHUTDOWN	0.0075082
COMBINED	1.009E-06
MTBF	991,450

UNABLE TO ASSESS ORBITER ABORT RISK

CUTOFF CODES

CODE	ID	DESCRIPTION
CADS	1	COMMAND AND DATA SIMULATOR COMMAND (SIMULATES ORBITER COMPUTER)
CADS ELU	2	CADS - ELECTRONIC LOCKUP
CADS FTD	3	CADS - HPFTP TURBINE DISCHARGE TEMPERATURE REDLINE LOST
CONT	4	ENGINE CONTROLLER INITIATED
CONT FD	5	CONTROLLER - FUEL DENSITY (OBSOLETE)
CONT IEA	6	CONTROLLER - INPUT ELECTRONICS CHANNEL A
ENG RDY	7	LOSS OF ENGINE READY
F SPD IC	8	HPFTP SPEED IGNITION CONFIRM
F TD T	9	HPFTP TURBINE DISCHARGE TEMPERATURE
F TD T E	10	HPFTP TURBINE DISCHARGE TEMPERATURE - ERRONEOUS
F T I T	11	HPFTP TURBINE INLET TEMPERATURE (OBSOLETE)
FAC	12	FACILITY INITIATED CUTOFF (NOT AN ENGINE PROBLEM)
FAC E	13	FACILITY INITIATED CUTOFF - ERRONEOUS
H2O PR	14	FACILITY WATER PRESSURE
HEX DP	15	HEAT EXCHANGER DELTA PRESSURE (OBSOLETE)
HEX PR	16	HEAT EXCHANGER PRESSURE (OBSOLETE)
HEX PR E	17	HEAT EXCHANGER PRESSURE - ERRONEOUS
HF ACC	18	HPFTP ACCELEROMETERS
HF ACC A	19	HPFTP ACCELEROMETERS - AXIAL (OBSOLETE)
HF ACC E	20	HPFTP ACCELEROMETERS - ERRONEOUS
HF ACC N	21	HPFTP ACCELEROMETERS - NON STANDARD MONITOR (OBSOLETE)
HF SPD	22	HPFTP SPEED (OBSOLETE)
HGM	23	HOT GAS MANIFOLD DELTA PRESSURE
HO ACC	24	HPOTP ACCELEROMETERS
HO ACC A	25	HPOTP ACCELEROMETERS - AXIAL (OBSOLETE)
HO ACC C	26	HPOTP ACCELEROMETERS - CROSSFEED FROM HPFTP
HO ACC E	27	HPOTP ACCELEROMETERS - ERRONEOUS
HO ACC N	28	HPOTP ACCELEROMETERS - NON STANDARD MONITOR (OBSOLETE)
HO BRG T	29	HPOTP BEARING COOLANT TEMPERATURE
HO SPD	30	HPOTP SPEED (OBSOLETE)
HO SPD E	31	HPOTP - ERRONEOUS
INJ ACC	32	MAIN INJECTOR ACCELEROMETERS
LF ACC	33	LPFTP ACCELEROMETERS
LF ACC E	34	LPFTP ACCELEROMETERS - ERRONEOUS
LO ACC E	35	LPOTP ACCELEROMETERS - ERRONEOUS
LOX T E	36	HPOTP LOX DISCHARGE TEMP RISE - ERRONEOUS (OBSOLETE)
LPF TURB	37	LPFTP TURBINE INLET PRESSURE (OBSOLETE)
MCC	38	MCC LINER CAVITY PRESSURE
MCC ACC E	39	MAIN COMBUSTION CHAMBER ACCELEROMETERS - ERRONEOUS
MCC PC	40	MAIN CHAMBER PRESSURE
MCF ACT	41	MAJOR COMPONENT FAIL REPORT - ACTUATOR
MCF CL	42	MCF - COMMAND LIMIT
MCF DCU	43	MCF - DIGITAL COMPUTER UNIT
MCF FD	44	MCF - FUEL DENSITY
MCF FTD	45	MCF - HPFTP TURBINE DISCHARGE TEMPERATURE
MCF F/M	46	MCF - FUEL FLOWMETER
MCF OTD	47	MCF - HPOTP TURBINE DISCHARGE TEMPERATURE
MCF PC	48	MCF - MAIN CHAMBER PRESSURE
MOV ACC	49	MAIN OXIDIZER VALVE ACCELEROMETER (OBSOLETE)
O DR DP	50	HPOTP PRIMARY OXIDIZER SEAL DRAIN DELTA PRESSURE (OBSOLETE)
O DR P	51	HPOTP PRIMARY OXIDIZER SEAL DRAIN PRESSURE (OBSOLETE)
O DR P E	52	HPOTP PRIMARY OXIDIZER SEAL DRAIN PRESSURE - ERRONEOUS
O DR T	53	HPOTP PRIMARY OXIDIZER SEAL DRAIN TEMPERATURE (OBSOLETE)
O IS PRG	54	HPOTP INTERMEDIATE SEAL PURGE PRESSURE
O ISCDP	55	HPOTP INTERMEDIATE SEAL CAVITY DELTA PRESSURE (OBSOLETE)
O ISCP	56	HPOTP INTERMEDIATE SEAL CAVITY PRESSURE (OBSOLETE)
O ISCP E	57	HPOTP INTERMEDIATE SEAL CAVITY PRESSURE ERRONEOUS
O TD T	58	HPOTP TURBINE DISCHARGE TEMPERATURE
O TD T E	59	HPOTP TURBINE DISCHARGE TEMPERATURE - ERRONEOUS
O TI T	60	HPOTP TURBINE INLET TEMPERATURE (OBSOLETE)
O TI T E	61	HPOTP TURBINE INLET TEMPERATURE - ERRONEOUS (OBSOLETE)
OBS	62	MANUAL CUTOFF BY OBSERVER
OBS E	63	ERRONEOUS OBSERVER CUTOFF
OBS FIRE	64	OBSERVER CUTOFF - FIRE
PB PG IC	65	PREBURNER PURGE IGNITION CONFIRM
PB PRG	66	PREBURNER PURGE FAILED ON
PBP PR	67	PREBURNER PUMP DISCHARGE PRESSURE (OBSOLETE)
PC IC H	68	CHAMBER PRESSURE IGNITION CONFIRM - HIGH
PC IC L	69	CHAMBER PRESSURE IGNITION CONFIRM - LOW
PC MS	70	CHAMBER PRESSURE MAINSTAGE
PH/T	71	POWERHEAD AREA ENVIRONMENT TEMPERATURE
PIF	72	LOW FUEL INLET PRESSURE (FACILITY)
PIO	73	LOW OXIDIZER INLET PRESSURE (FACILITY)
SATS	74	SHUTTLE AVIONICS TEST SET (CLUSTER GROUND TEST ORBITER COMPUTER SIMULATOR)
TH BNG	75	HPFTP THRUST BEARING SPEED (OBSOLETE)
TH BNG E	76	HPFTP THRUST BEARING SPEED - SENSOR MALFUNCTION (OBSOLETE)
VEH	77	VEHICLE (ORBITER) COMMAND

TEST	NUMBER	DESCRIPTION	DATE	COMMENT	POINT	DETECTION	LEVEL	FAILURE MODE	TIME TO CR	COMPONENT	ICP ID	CUTOFF ID	DISCOURING RATIONALE
ASTS68-C	2032	MCF O/T SYSTEM	18-Aug-94	CHANNEL A HPOTP TEMP EXCEEDED 1560	4.72	100	FAILED TO INSTALL CCV COUPLING	A033147	5 FP/1PH2	A033147	47	Cases Open	
901-374	2032	MCF FD	06-Nov-91	HIGH DPFT DISCHARGE PRESSURE	3.72	100	KI PREDICTION NOT PER WATER FLOW	A031268	5 FP/1PH2	A031268	44	Random Human Event	
902-245	2107	O/D/T	02-Mar-89	OFF M/RD TO BAD FLOWMETER CONST	447.40	100	CROSS FEED GAIN BAD AT HIGH VLV POSITIONS	A027548	5 FP/1PH2	A027548	58		
901-578	0211	O/D/T	28-Jul-88	THROTTLE DOWN IN THRUST LIMIT +20%	592.40	100		A020245	5 FP/1PH2	A020245	58		
902-328	2106	CADS FD	01-Jul-87	BOTH F/T DISQUAL LOW TEMP-CADS SID	204.12	100	BOTH F/T DISQUAL LOW TEMP-CADS SID	A015718	5 FP/1PH2	A015718	1	Senior Failure	
902-386	2026	O/D/T	25-Jun-87	1540 PRELUFT OF RL - CHANGED TO 1660	4.40	100	HPOTP TURB TEMP EXCD R/L	A015718	5 FP/1PH2	A015718	58		
STS57-F	2023	FID/T	11-Dec-86	INCORRECT FLOWMETER CONSTANT	18.21	100	PREMATURE C/O: ORIG TURB TEMP R/L	A008618	5 FP/1PH2	A008618	58		
901-245	2105	O/D/T	20-Jul-85	BOTH F/T SENSORS FAILED	349.75	100	PREM. C/O: DESQUALIFIED	A007624	5 FP/1PH2	A007624	10	Senior Failure	
901-292	2010	O/D/T	24-Jul-85	HIGH F/T HUMPLER 1/2 NOZ TUBE RIPT	28.53	100	PREM. C/O: HPOTP TURB DISC TEMP	A017674	5 FP/1PH2	A017674	58		
750-245	2308	HF ACC	23-Aug-84	FIRST STAGE IMPELLER FAILED UN 2008R2	25.61	100	PREM C/O BY HF/T RADIAL ACCELS	A017061	5 FP/1PH2	A017061	18	FASCOMS NOT ACTIVE	
901-321	2010	HF ACC	25-Sep-83	CAVITATION/KEEFS RECDN 7350	28.49	100	BT/CUT OFF DUE TO EXCV VIBRATION	A012893	4 FP/1	A012893	18	FASCOMS NOT ACTIVE	
901-412	2018	MCF FD	21-May-83	OFF M/RD HPOTP CHAN B TEMP MCF	5.22	100	F/M CALIBRATION CONSTANT ESTIMATE LOW	A013370	4 FP/1	A013370	47	LOR Cutoff	
902-309	2011	O/D/T	14-Apr-83	HIGH MIXTURE RATIO DUE TO R/N	4.95	100	HPOTP TURB DIS TEMP F/M CONST	A006884	4 FP/1	A006884	58		
901-388	2011	MCF O/T	21-Sep-82	OFF M/RD HPOTP CHAN A TEMP MCF	5.40	100	HPOTP TURB DIS TEMP F/M CONST	A008321	4 FP/1	A008321	47	LOR Cutoff	
902-292	2010	O/D/T	09-Aug-82	OVERSHOOT DURING THROTTLE	126.02	111	C/O BY TURB TEMP OPD DEADBND AT 11%	A015121	4 FP/1	A015121	58	LOR Cutoff	
901-376	2014	MCF CL	10-Jul-82	OPW COMMAND LIMIT / F/M CONST HIGH OPEN	5.12	98	OPW COMMAND LIMIT / F/M CONST HIGH OPEN	A015962	4 FP/1	A015962	42	No Effect SW	
901-353	0107	HF ACC	25-Jun-82	SUB SYNC VIBRATION UN 2011R1	37.16	111	SUB SYNC VIB - 1/2 & 4A BAL/WEAR	A013571	4 FP/1	A013571	24	LOR Cutoff	
750-151	0110	MCF O/T	04-Dec-81	HPOTP/DIV/DELAYED OPB IGN	3.81	20	NON IGT HPOTP TEMP BAL/NOZ CHANGE	A016024	5 FP/1	A016024	47	LOR Cutoff	
901-347	0107	OIS	30-Nov-81	OIS C/O TURBOTEMP F/T-M	95.40	100	QBS C/O TURBOTEMP F/T-M	A017574	4 FP/1	A017574	62	Manual Cutoff	
901-340	0107	FID/T	15-Oct-81	HPOTP/T/A DUCT SIZA BULGED	405.50	100	FAC THRU TURB R/T-TURNAROUND DUCT FAIL	A013035	4 FP/1	A013035	9	Facility R/L	
750-148	0110	MCF O/T	02-Sep-81	MANU BURN OUTPLATE MINU	16.00	100	SIDE EROSION OF PRIM'SE FACE PLATES	A016034	4 FP/1	A016034	58		
901-331	2108	O/D/T	15-Jul-81	MANU BURN OUTPLATE MINU	231.14	100	SEVERE DAMAGE TO THE PRIM'SE PLATES	A013786	4 FP/1	A013786	58		
750-119	0007	MCF CL	28-Jun-81	OPV LIMIT RESET MCF	5.25	100	PRELIMINARY CUT OFF OF PO POSITION	A018553	2 MP/TA	A018553	22		
750-107	0007	MCF O/T	03-Nov-80	LOW LOX TURB TEMP DELAYED OPB	3.84	20	IMPROPER PWR BDW UP DURING START SE Q	A018562	2 MP/TA	A018562	47	Delayed Ignition	
SF101-B	2003	FID/T	03-Nov-80	NOZZLE TUBE RUPURES	19.50	100	TUBES 125 THRU 240 BLOWN INWARD	A015578	2 MP/TA	A015578	9		
902-198	2004	O/D/T	23-Jul-80	HOLE IN INTOTO POST FAIL	8.33	102	R/T C/O - TAPOTURE DISC TEMP. MAIN IN	A017586	3 MP/OF	A017586	58		
SF001-B	2003	FID/T	16-Aug-80	TURNAROUND MAN COLLAPSED	4.72	100	HF TURB TEMP VOTING C/O	A011269	2 MP/TA	A011269	9		
SF001-C	0008	OISCP	01-Feb-80	OPB DELAYED OVERSHOOT	4.41	100	PRELIMINARY C/O HPOTP TEMP EXCEEDED R/L	A011139	2 MP/TA	A011139	58		
SF003-C	0008	OISCP	04-Nov-79	SECONDARY TURBINE SEAL FAILURE	8.89	100	AMCERME T SEALS CHANGED TO CARBON	A010994	2 MP/TA	A010994	58	Obsolete Redline	
750-047	0105	O/D/T	22-Sep-79	OVERSHOOT AT THROTTLE DOWN	10.43	85	C/O LOX/TURBINE TEMP - ICE CRIBBING	A008533	3 MP/OF	A008533	58	Obsolete Redline	
901-225	0007	OISCP	11-Aug-79	HPOTP 2ND ST CAV PR HIGH	6.48	100	FAILED MARTIN RINGS - ICE CRIBBING	A010751	2 MP/TA	A010751	58	Obsolete Redline	
901-246	2007	PCMS	12-Jul-79	MCC PC TOW DELAYED ON RTGN	3.73	20	LOW PIC-PARTIAL IGNITION IN OPB FAC CUT	A018993	3 MP/OF	A018993	70	Delayed Ignition	
902-162	2004	O/D/T	13-Jun-79	TUBE RUPTURE /PROTRIT.	4.45	100	NOZZLE TUBE RUPTURES/PROTRIT.	A018953	3 MP/OF	A018953	58		
902-158	2004	O/D/T	22-May-79	TUBE RUPTURES /TUBE LEAKS	27.57	100	NUMBEROUS TUBE LEAKS	A008345	3 MP/OF	A008345	58		
750-041	0201	FID/T	04-Nov-78	NOZZLE STEERHORN FAILED	4.32	100	HF/T OVERTEMP READING CUTOFF	A008486	2 MP/TA	A008486	9		
902-157	2004	O/D/T	10-May-78	COLD WALL/TUBE LEAKS (3)	90.50	100	NOZZLE TUBE SPLITS COOLANT LOSS	A008316	3 MP/OF	A008316	58		
902-145	2002	HF ACC A	04-Dec-78	HIGH SYN VIB - HFPP IN 2013R2	68.61	100	TEST CUT IN TURBINE RADIAL ACCEL	A017976	2 MP/TA	A017976	18		
902-144	2002	HF ACC C	04-Dec-78	HPF CROSS FEED CHANGED PROFILE	36.29	100	TEST CUT BY HPOTP TURBINE RADIAL ACCEL	A017981	2 MP/TA	A017981	26		
902-143	2002	HF ACC C	03-Dec-78	HPF CROSS FEED CHANGER R/L	2.81	20	TEST CUT BY HPOTP TURBINE RADIAL ACCEL	A017982	2 MP/TA	A017982	58		
901-216	0005	O/D/T	02-Nov-78	WT INCREASED TO 1810	3.57	20	DAMAGED HPOTP TURBINE FROM ENG. 0008 (MOW)	A008296	2 MP/TA	A008296	58	Damaged HPOTP	
901-216	0005	O/D/T	17-Oct-78	LOW TURB TEMP READING N/R	4.88	80	DAMAGED HPOTP TURBINE FROM ENG. 0008 (MOW)	A008316	2 MP/TA	A008316	58	Damaged HPOTP	
902-127	2002	HF ACC A	05-Sep-78	HPB ACCS AXIAL	111.56	100	SHORT DELAY TIME - RADED RECLINE	A019142	2 MP/TA	A019142	25	FASCOMS Not Active	
901-190	0005	HF ACC	26-Aug-78	DELETE FUEL VENT	137.83	100	HGT UPT VIB. (INSE - MISUNDERSTOOD	A019171	2 MP/TA	A019171	33	FASCOMS Not Active	
901-165	0005	LOX/E	13-Aug-78	CHA CONTROLLED OFF - CHB SENSOR RATE	240.39	100	OPEN CIRCUIT BIRS & TUBE RATE REG.	A019136	2 MP/OF	A019136	36	Senior Failure	
902-118	0101	FID/T	10-Jul-78	BUGGE IN TURBINE TURN MANIFOLD	8.84	92	EXTREME BUGGINS IN TURBINE TURN MANIFOLD	A003283	2 MP/TA	A003283	9		
902-116	0101	HF ACC C	29-Jun-78	TURBINE SEA FAILURE HPOTP 0008	10.85	92	TEMP SENSOR SHORT SATURATED MPX SHUTDOWN	A008532	2 MP/TA	A008532	24	FASCOMS Not Active	
902-114	0101	HF ACC C	24-Jun-78	ACTIVATED RASCOMS-CROSSED FROM R/H	281.03	100	RAISED PB/P RECLINE	A019220	2 MP/TA	A019220	26	FASCOMS Not Active	
902-111	0101	HF ACC	08-Jun-78	NOZZLE TUBE SPLITS REPAIRED	4.53	72	6.4 MR CAUSED BY LOX/TM COIL	A019201	2 MP/TA	A019201	9	FASCOMS Not Active	
901-183	0005	HF ACC	05-Jun-78	TURB SE BURNTHROREPLACED P/T	51.00	100	HPOTP RADIAL ACCEL RECLINE CUTOFF	A008850	2 MP/TA	A008850	18	FASCOMS Not Active	
901-182	0005	HF ACC	02-Jun-78	CHB CONNTELL OFF - CHB SENSOR RATE	170.97	100	HPOTP DISCHARGE TEMP 2 RECLINE	A003285	2 MP/TA	A003285	24	FASCOMS Not Active	
901-176	0005	FID/T	13-May-78	PRESS LOX TANK TO 105 PSI	4.27	100	START DAMAGE BY IPDV'S SEAL(BEVILLE)	A018789	2 MP/TA	A018789	9		
901-174	0101	HF ACC	08-May-78	CHB LOX FLOW/DCUA IP EFFECT	32.03	100	TEMP SENSOR SHORT SATURATED MPX SHUTDOWN	A019005	2 MP/TA	A019005	6	Senior Failure	
901-173	0002	FID/T	31-May-78	MIND BURNTHROREPLACED DENG	201.17	92	MANTINJECTOR - HPT/PI	A018770	1 PRE MP/TA	A018770	9		
901-171	0002	FID/T	27-May-78	LOW PER LPFT/CCV TURBINE RECLINE	10.71	100	HPOTP DISCHARGE TEMP RECLINE CUTOFF	A018742	1 PRE MP/TA	A018742	24	FASCOMS Not Active	
901-169	0002	HF ACC	21-May-78	LOW PER LPFT/CCV TURBINE RECLINE	210.97	93	HPOTP RADIAL ACCEL RECLINE CUTOFF	A018688	1 PRE MP/TA	A018688	18		
901-167	0002	FID/T	02-Feb-78	TURB SE BURNTHROREPLACED P/T	3.83	50	HPOTP DISCHARGE TEMP 2 RECLINE	A018686	1 PRE MP/TA	A018686	9		
901-164	0002	O/D/T	08-May-78	NOZZLE TUBE SPLITS COOLANT	6.08	91	HPOTP TURBINE DAMAGED BY START TEMP SPARE	A005176	1 PRE MP/TA	A005176	58		
901-163	0002	HF ACC	15-Feb-78	DELAYED R/L	3.57	50	HPOTP SYNCHRONOUS WITH HOUSING RESONANCE	A005176	1 PRE MP/TA	A005176	24		
901-162	0002	HF ACC	15-Feb-78	MINI BURNTHROREPLACED DENG	11.32	100	HPOTP RADIAL ACCEL RECLINE CUTOFF	A008619	1 PRE MP/TA	A008619	18		
901-161	0002	HF ACC	14-Feb-78	LIMP PI & OPEN FUEL REFL CAV	4.75	100	HPOTP RADIAL ACCEL RECLINE CUTOFF	A008641	1 PRE MP/TA	A008641	18		
901-160	0002	HF ACC	12-Feb-78	TURBINE RADIAL 9% CHANGE RTL	4.04	90	HPOTP SYNCHRONOUS WITH HOUSING RESONANCE	A006637	1 PRE MP/TA	A006637	24		
902-101	2002	CONT	09-Feb-78	PNEUMATIC 3/4 DCUA HALT	26.64	90	PWR OSC. - SINGLE POINT FAILURE	A005167	2 MP/TA	A005167	4	Controlled Initiated	
902-100	2002	HF ACC C	02-Feb-78	CROSS FEED FROM HPOTP	2.89	20	HPF INTER STAGE SEAL RUB	A003271	2 MP/TA	A003271	26	FASCOMS Not Active	

TEST	NUMBER	MATERIAL	COMP.	TEST ID	DATE	COMMENT	POWER LEVEL	FAILURE MODE FROM STA	DURATION	COMMITMENT	# CM	COMMITMENT	CUT-OFF ID	DISCOVERY DAYTONA
901.15	0002	O SCP	HPOTP	15-Dec-77	HPOTP/ISCAV PR>80 PSIG	9.83	90	HPOTP INTER SEAL CAVITY PRESSURE REDLINE	A0086121 PRE MPTA	56	PRE MPTA			
901.147	0103	HO ACC C	HPOTP	01-Dec-77	HAPTURB BL FAILURE	3.136	91	SEVERE EROSION OF TURBINE AREA	A0050941 PRE MPTA	26	PRE MPTA			
902.085	0002	HO ACC C	HPOTP	17-Nov-77	HPT TURBINE BLADE FAILURE-CROSSFEED	51.09	70	HPOTP RADIAL CUT-OFF/HPT UN0101R17	A0086241 PRE MPTA	26	PRE MPTA			
901.139	0103	HO ACC	HPOTP	01-Nov-77	HPT OIL SYSTEM	54.83	94	HPOTP RADIAL ACCELERATOR ROTOR BALANCE	A0086111 PRE MPTA	24	PRE MPTA			
902.059	0002	CONT	HPOTP	01-Nov-77	ICE IN PC PORT - RUNAWAY THROTTLE UP	48.53	70	CONTROLLER CLOTHOLOGY SWITCH AND STD	A00862301 PRE MPTA	4	PRE MPTA			
902.083	0002	O DRP	HPOTP	11-Oct-77	HPOTP PR SL DR PR>8 PSIG	34.94	95	HPOTP PRILLOX SEAL DR PR EXCEEDED R/T	A00860511 PRE MPTA	51	PRE MPTA			
902.080	0002	O DRP	HPOTP	28-Sep-77	HPOTP PR SL DR PR>13 PSIG	9.05	45	HPOTP PRILLOX SEAL DR PR EXCEEDED REDLINE	A008605011 PRE MPTA	51	PRE MPTA			
902.079	0002	O DRP	HPOTP	28-Sep-77	HPOTP PR SL DR PR>8 PSIG	3.05	20	HPOTP PRILLOX SEAL DR PR EXCEEDED REDLINE	A008605011 PRE MPTA	51	PRE MPTA			
902.075	0002	O DR	HPOTP	20-Aug-77	HPOTP SL DR TEMP EXCEEDED R/T	21.71	70	HPOTP PRILLOX SEAL DR TEMP EXCEEDED R/T	A008605011 PRE MPTA	50	PRE MPTA			
902.074	0002	O DTT	HNOZ	18-Aug-77	TUBE SPLITS (31)	7.05	70	NOZZLE TUBE RUPURES HPOTP R/T	A008605061 PRE MPTA	50	PRE MPTA			
902.073	0002	O DTT	HNOZ	10-Aug-77	TUBE SPLITS (62) WATER	4.41	70	NOZZLE TUBE RUPURES HPOTP R/T	A00860711 PRE MPTA	58	PRE MPTA			
902.072	0002	O DTT	HPOTP	04-Aug-77	PA PURGE 200 PSIMAX (TEARY SOV VALUE	257.10	75	ERONEOUS PIC A HE PURGE PR R/T CUT OFF	A008608011 PRE MPTA	60	PRE MPTA			
901.129	0004	PB PRG	PCA	25-Jun-77	HPOTP I/S CAV PR>55 PSIG	6.64	70	HPOTP INTER SEAL CAVITY PRESSURE REDLINE	A00860911 PRE MPTA	58	PRE MPTA			
901.124	0004	O SCP	HPOTP	21-Jun-77	HPOTP PR SL PR-CHACKED BELLOWS	29.31	90	HPOTP PR SL DR LINE	A00860911 PRE MPTA	51	PRE MPTA			
902.070	0002	O DR P	HPOTP	18-Jul-77	HPOTP TURB TEMP-DELAYED OP IGN	5.06	90	HPOTP TURBINE DISCHARGE TEMP R/T CUT OFF	A008609411 PRE MPTA	58	PRE MPTA			
902.068	0002	O DTT	HPOTP	07-Jul-77	FAILED HPOTP BELLOWS	149.48	70	HPOTP PR SL DR PRESS R/C/O	A00863821 PRE MPTA	51	PRE MPTA			
901.123	0004	O DR P	HPOTP	07-Jul-77	DELETE DR PR	6.06	70	HPOTP PR SL DR LINE DELTA PR R/T	A008609411 PRE MPTA	50	PRE MPTA			
901.122	0004	O DR DP	HPOTP	05-Jul-77	HPOTP PR SEAL DRAINTINE DELTA PR R/T	4.05	70	HPOTP PR SEAL DRAINTINE DELTA PR R/T	A00860921 PRE MPTA	50	PRE MPTA			
901.121	0004	O DR DP	HPOTP	07-Jul-77	PR SENSOR FAILED CAUSING HIGH PR-PC	238.70	70	HPOTP TURBINE DISCHARGE TEMP R/T CUT OFF	A008609411 PRE MPTA	58	PRE MPTA			
901.120	0004	F TDY	SENSOR	07-Jul-77	HPOTP BELLOWS FAILED	73.23	90	HPOTP PR SL DR PRESS R/C/O	A008609411 PRE MPTA	51	PRE MPTA			
901.116	0004	O DR P	HPOTP	23-May-77	HPOTP PR SL DR PR 2 PSI	7.70	70	HPOTP PR SL DR LINE PRESS R/C/O	A008609221 PRE MPTA	51	PRE MPTA			
901.114	0004	O DR P	HPOTP	20-May-77	CHANGE R/T	17.34	50	HPOTP PR SL DR LINE DELTA PR R/T	A008609411 PRE MPTA	53	PRE MPTA			
901.113	0004	O DRY	HPOTP	05-May-77	HPOTP I/S CAV PR (2 PSIG MIN)	29.93	70	HPOTP PRIMARY SEAL DRAINTINE CAV PR R/T	A00860911 PRE MPTA	56	PRE MPTA			
902.062	0002	O SCP	HPOTP	27-Aug-77	HPOTP I/S CAV PR	4.13	51	HPOTP INTERMEDIATE SEAL CAV PR R/T C/O	A008609311 PRE MPTA	58	PRE MPTA			
902.059	0002	O SCP	HPOTP	07-Aug-77	CHANGE MOV START SCHEDULE	8.50	65	HPOTP TURBINE DISCHARGE TEMP REDLINE C/T/O	A00324501 PRE MPTA	58	PRE MPTA			
901.107	0003	O DTT	SYSTEM	08-Aug-77	ADD SHM ATG5	35.33	100	HPOTP RADIAL ACCREDLINE C/T/O (CAV)	A00324471 PRE MPTA	18	PRE MPTA			
901.104	0003	OBS	SYSTEM	26-Feb-77	OBSERVER SHM PROPS	10.61	65	OPOV VALVE POSITION REDLINE	A00265021 PRE MPTA	62	PRE MPTA			
901.103	0003	HO ACC	HPOTP	18-Feb-77	HPOTP SEVERE EROSION IN SHUTDOWN	23.01	100	HPOTP SUB SYNC-TORSQUE EXCESSIVE-MLSL RUB	A00860661 PRE MPTA	24	PRE MPTA			
901.101	0003	O DTT	SYSTEM	13-Feb-77	Delayed OP IGN	4.31	70	HPOTP TURBINE DISCHARGE TEMP R/T REDLINE C/T/O	A00324221 PRE MPTA	58	PRE MPTA			
902.049	0002	O ACC	HPOTP	03-Feb-77	OPB OVER TEMP WATER	3.23	51	OPB R/T EDM WATER IN FUEL MANIFOLD	A00860491 PRE MPTA	60	PRE MPTA			
901.049	0003	CONF ID	SENSOR	31-Jan-77	(DTP) DTP DISPEL SENSOR STATED	26.52	75	SENSOR OUTPUT FAILED	A00246811 PRE MPTA	22	PRE MPTA			
901.037	0003	O ACC	HPOTP	20-Sep-76	DELETE TURB INLET TEMP R/T	24.53	75	HPOTP TURBINE INLET TEMP REDLINE EXCEEDED	A00246401 PRE MPTA	11	PRE MPTA			
901.034	0003	F TDY	SYSTEM	16-Sep-76	CHANGED F INTRL	17.15	90	HPOTP TURBINE INLET TEMP REDLINE EXCEEDED	A00246411 PRE MPTA	11	PRE MPTA			
901.033	0003	F TDY	SYSTEM	13-Sep-76	CHANGED F INTRL	17.69	85	HPOTP RADIAL ACCEL RLC/O	A00246811 PRE MPTA	51	PRE MPTA			
901.032	0003	O DR P	HPOTP	27-Oct-76	REPLACE PR1/PR2 S/W & R/T CHANGE	28.09	75	HPOTP RADIAL ACCELEROMETER REDLINE	A00262911 PRE MPTA	18	PRE MPTA			
901.030	0003	H ACC	HPOTP	01-Oct-76	HPT RADIAL VIBRATION SAFETY C/T/O	33.88	90	TEST C/UT BY HPT RAD ACCELY VOTING LOGIC	A00262611 PRE MPTA	18	PRE MPTA			
901.029	0002	H ACC	HPOTP	01-Oct-76	HPT SPD DROP OUT (INST)	26.52	75	SENSOR OUTPUT FAILED	A00246811 PRE MPTA	22	PRE MPTA			
901.027	0003	F TDY	SYSTEM	16-Sep-76	DELETE TURB INLET TEMP R/T	24.53	75	HPOTP TURBINE INLET TEMP REDLINE EXCEEDED	A00246401 PRE MPTA	11	PRE MPTA			
901.026	0003	F TDY	SYSTEM	13-Sep-76	CHANGED F INTRL	17.15	90	HPOTP TURBINE INLET TEMP REDLINE EXCEEDED	A00246411 PRE MPTA	11	PRE MPTA			
901.025	0003	O ACC	HPOTP	01-Sep-76	HPT IN TEMP TRCD	18.30	93	HPOTP PR SEAL CAVITY PR REDLINE EXCEEDED	A00246811 PRE MPTA	51	PRE MPTA			
901.024	0002	O DTT	SYSTEM	24-Aug-76	OPB OVER TEMP	2.76	20	HPOTP OVERTEMP	A00242451 PRE MPTA	60	PRE MPTA			
901.023	0002	O DTT	SYSTEM	21-Aug-76	OPB OVER TEMP	3.77	60	OPB OVER TEMP	A00243811 PRE MPTA	60	PRE MPTA			
901.022	0002	O DTT	SYSTEM	18-Aug-76	OPB OVER TEMP	3.63	50	HPOTP TURBINE INLET TEMP REDLINE EXCEEDED	A00243511 PRE MPTA	11	PRE MPTA			
901.021	0002	O DTT	SYSTEM	17-Aug-76	HPT TURBINE INLET TEMP REDLINE	3.23	50	HPOTP TURBINE INLET TEMP REDLINE EXCEEDED	A0024311 PRE MPTA	60	PRE MPTA			
901.020	0002	O DTT	SYSTEM	11-Aug-76	OPB OVERTEMP - CCV SCHEDULE CHANGED	3.73	50	HPOTP RADIAL VIBRATION SAFETY C/T/O	A00242711 PRE MPTA	18	PRE MPTA			
901.019	0002	O DTT	SYSTEM	26-Jul-76	LAST TEST ON DODDID	41.45	63	HPOTP RADIAL VIBRATION SAFETY C/T/O	A00241911 PRE MPTA	18	PRE MPTA			
901.018	0002	O DTT	SYSTEM	14-Jul-76	HPT RADIAL VIBRATION SAFETY C/T/O	22.07	85	HPOTP RADIAL VIBRATION SAFETY C/T/O	A00241811 PRE MPTA	18	PRE MPTA			
901.017	0002	O DTT	SYSTEM	09-Jul-76	SUB SYNC-VB	4.24	60	HPOTP RADIAL VIBRATION SAFETY C/T/O	A00241711 PRE MPTA	18	PRE MPTA			
901.016	0002	O DTT	SYSTEM	07-Jul-76	NO COMPONENT CHANGE	16.91	75	HPOTP RADIAL VIBRATION SAFETY C/T/O	A00241211 PRE MPTA	18	PRE MPTA			
901.015	0002	O DTT	SYSTEM	05-Jul-76	HPT WHRL	3.97	50	HPOTP RADIAL VIBRATION SAFETY C/T/O	A00240311 PRE MPTA	18	PRE MPTA			
901.014	0002	O DTT	SYSTEM	03-Jul-76	CHANGED RT	12.08	75	HPOTP RADIAL VIBRATION SAFETY C/T/O	A00243811 PRE MPTA	18	PRE MPTA			
901.013	0002	O DTT	SYSTEM	01-Jul-76	HPT RADIAL VIBRATION SAFETY C/T/O	11.10	65	HPOTP RADIAL VIBRATION SAFETY C/T/O	A00243711 PRE MPTA	18	PRE MPTA			
901.012	0002	O DTT	SYSTEM	26-May-76	SEC CHANGE	11.86	74	HPOTP RADIAL VIBRATION SAFETY C/T/O	A00243811 PRE MPTA	19	PRE MPTA			
901.011	0002	O DTT	SYSTEM	21-May-76	CHANGED RT	7.27	65	HPOTP AXIAL VIBRATION SAFETY C/T/O	A00243811 PRE MPTA	19	PRE MPTA			
901.010	0002	O DTT	SYSTEM	18-May-76	FBB ERCSION & HPT CHANGES	6.29	61	HPOTP AXIAL VIBRATION SAFETY C/T/O	A00233791 PRE MPTA	19	PRE MPTA			
901.009	0002	O DTT	SYSTEM	01-May-76	CHANGES TO HPTURB	7.31	62	HPOTP RADIAL VIBRATION SAFETY C/T/O	A00233751 PRE MPTA	18	PRE MPTA			
901.008	0002	O DTT	SYSTEM	08-May-76	CHANGES TO HPTURB	6.52	62	HPOTP RADIAL VIBRATION SAFETY C/T/O	A00233711 PRE MPTA	18	PRE MPTA			
901.007	0002	O DTT	SYSTEM	26-Apr-76	NO PUMP CHANGES	7.34	65	HPOTP RADIAL VIBRATION SAFETY C/T/O	A00233851 PRE MPTA	18	PRE MPTA			

SCENE FRENCHURE CUTOFFS (duration > 2.4 seconds)

TEST	TEST ID	TEST DATE	SYSTEM	COMP	DATE	SYSTEM	COMP	DETECTION LEVEL	PALMATE SENS FROM SCA	COPPER SENSATION	COPPER ID	DISCONTINUING RATCHET
901-051	0001	F111	SYSTEM	HPTFP	22-Apr-76	HPT TURB INTR/L		10.32	7.5	HPT TURB INLET TEMP REDUNE	A0033591 PRE MPA	11
901-026	0001	HF ACC A	HPTFP		07-Apr-76	EXCESSIVE AXIAL VIBRATION		6.27	6.1	EXCESSIVE AXIAL VIBRATION	A0014261 PRE MPA	19
901-024	0001	TH BNG	HPTFP		12-Nov-76	HPTFP BNG SPD		45.18	55	THRUST BEARING WELDED TO HPT SHAFT	A0014221 PRE MPA	75
901-041	0001	OTT	SYSTEM		05-Mar-76	OPB OUT		3.84	50	OPB OVERTEMP	A0014131 PRE MPA	60
901-020	0001	HGM	SYSTEM		07-Mar-76	HGM LINER DELTA P RL		3.30	50	HGM LINER DELTA P RL	A0014101 PRE MPA	23
901-039	0001	OTT	SYSTEM		21-Feb-76	OPB OVERTEMP		2.88	20	OPB OVERTEMP	A0014061 PRE MPA	80
901-035	0001	HGM	SYSTEM		24-Jan-76	HGM DELTA P		3.16	20	HGM LINER DELTA P RL - LATE TOX POWER	A00715971 PRE MPA	23
901-033	0001	TH BNG	HPTFP		18-Jan-76	HPTFP BNG SPEED		2.86	20	HPTFP BNG SPEED	NO UCRI PRE MPA	75
901-032	0001	TH BNG	HPTFP		16-Jan-76	HPTFP BNG SPEED		2.76	20	HPTFP BNG SPEED	NO UCRI PRE MPA	75
901-031	0001	TH BNG	HPTFP		15-Jan-76	HPTFP BNG SPEED		2.73	20	HPTFP BNG SPEED	NO UCRI PRE MPA	75
901-023	0001	HF ACC A	HPTFP		12-Nov-75	HPTP AX & RAD ACCLS		2.99	20	HPTP AX & RAD ACCLS	AD0130551 PRE MPA	19
901-022	0001	HF ACC A	HPTFP		07-Nov-75	EXCESSIVE AXIAL VIBRATION		2.76	20	HPTP AX ACCEL. REDUNE EXCEEDED	A0073521 PRE MPA	19

Catastrophic Failures in Entire SSME History

TEST#	ENGINE	CORE	DATE	COMMENT	DURATION	POWER LEVEL	FAILURE MODE FROM OPERATING TIME	DCR	CONFIGURATION
904.044	02112	HPOTP	23-Jun-89	HPOTP #2 BEARING FAILURE	120/72	96	BEARING WEAR WITH OPERATING TIME	A023129	5 FPL/PH2
902.471	2206	DUCT-LPF	02-Jun-89	LPF DUCT BELLOWS TIE BROKE	147.68	104	FLEX JOINT TRIPOD FATIGUE - SMALL RADIUS	A008935	5 FPL/PH2
750.285	0210	NOZZLE	21-May-87	FEED LINE CRACK AT STOP WELD	224.00	109	LEAK IN NO. 3 DOWNCOMMER	A015716	5 FPL/PH2
750.259	2308	MCC	27-Mar-85	DISCH MAN RUPTURE - EXT DAM	101.56	109	PREM C/O - HPOTP ACCESS	A015713	5 FPL/PH2
901.468	0207	FPB	04-Feb-85	CRACK AT F-13 FLANGE eng retired	203.86	109	CRACK STARTED IN BOSS TO MAN. WELD	A014585	5 FPL/PH2
901.436	0108	HPFTP	14-Feb-84	CINTLN PR MAJOR DAMAGE	611.06	109	EXTENSIVE TURB DAMAGE (RICO)	A013339	5 FPL/PH2
750.175	2208	DUCT	27-Aug-82	HPQ DUCT RUPTURE - ULTRASONIC F/M	116.08	111	PREM C/O P/B BOOST PUMP ACCLES	A011506	4 FPL
750.160	0110	FB-ICE	12-Feb-82	H2O FROM EDM/EXT DAMAGE (CG 1B)	3.16	20	TURB DIS TEMP. WATER IN ENG. EDM OPER	A016046	4 FPL
902.249	0204	HPFTP	21-Sep-81	TURB BL FAIL/VOLUTE RUPTURE/EXT DAM	450.57	109	PREM C/O HPFT TURB BLADE FAILURE	A018288	4 FPL
SF1001-C	0006	FPB	12-Jul-80	HOLE BURNED IN FPB	106.52	102	OBSEVER PREMATURE CUT DUE TO FIRE	A015391	2 MPFA
SF0501-A	2002	MFV	02-Jul-79	MFV BODY FAILURE	18.49	100	VALVE CAP TO BODY BOLTS BROKEN	A009437	2 MPFA
901.225	2001	MOV	27-Dec-78	MOV FRETTING-FIRE-EXT DAM	255.63	100	MOV FIRE - HPFT RL	A010816	2 MPFA
901.136	0004	HPOTP	08-Sep-77	HPOTP BNG FAILURE - EXT DAM	300.22	90	CUTOFF DUE TO HPOT FIRE OPOVA FID 34-0	A006350	1 PRE MFTA
901.133	0004	FPB	27-Aug-77	HOLE IN FPB BODY	48.21	90	HOLE BURNN THRU FPB BODY OF POWERHEAD	A006072	1 PRE MFTA
901.110	0003	HPOTP	24-Mar-77	HPOTP FIRE EXT DAM	74.07	75	SEVERE INTERNAL FIRE DAMAGE	A005353	1 PRE MFTA

B.2. Integrated Solid
Rocket Booster

Initiator ID	Initiator Description	One Motor Initiator Freq (per mission)	Pair Initiator Freq (per mission)	Mean # of Missions Between Occurrences	Percent of Non-nominal Initiations	Development
RSRHGLK	RSRM JOINTS: HOT GAS LEAK	1.99E-04	3.98E-04	2513	31.59%	Fault Trees-Page 1
RSRANZRUP	RSRM NOZZLE RUPTURE	4.45E-05	8.90E-05	11236	7.06%	Fault Trees-Page 64
RSRPVRUP	RSRM PRESSURE VESSEL RUPTURE	3.61E-05	7.22E-05	13950	5.73%	Fault Trees-Page 65
RSFWRTHR	RSRM WRONG THRUST	5.00E-09	1.00E-08	10000000	0.00%	Fault Trees-Page 66
SRBNOHLDN	SRB NO, LATE, OR IMPROPER HOLDDOWN RELEASE	1.29E-04	2.58E-04	3876	20.48%	Fault Trees-Page 68
SRBNOIGN	NO OR LATE IGNITION OF 1 SRB/RSRM	1.11E-04	2.22E-04	4505	17.62%	Fault Trees-Page 82
SRBNOSEP	SRB FAILS TO SEPARATE	6.95E-05	1.39E-04	7194	11.03%	Fault Trees-Page 87
SRBPREMHD	SRB HOLDDOWN: PREMATURE RELEASE	8.00E-07	1.60E-06	625000	0.13%	Fault Trees-Page 190
SRBRECPREM	SRB RECOVERY DEVICE: PREMATURE RELEASE	3.00E-06	6.00E-06	166667	0.48%	Fault Trees-Page 191
SRBSTR	SRB STRUCTURAL FAILURES	5.00E-07	1.00E-06	1000000	0.08%	Fault Trees-Page 192
SRBTY	SRB THRUST VECTOR CONTROL SYSTEM FAILURE	3.57E-05	7.13E-05	14025	5.66%	Fault Trees-Page 193

172

ISRB Hypothesis Descriptions

- Hypothesis-1 The analyst made an educated estimate of the anticipated frequency of the event in question. This was deemed necessary when there was insufficient data to support a statistical analysis. The estimation was made after conferring with experts on reliability of the sub-component based on their respective experience.
- Hypothesis-2 Insufficient data to support a statistical analysis was available for the NASA Standard Initiators (NSIs) and NASA Standard Detonators (NSDs) however the components were found to be similar in both design and function as the Confined Detonating Fuses (CDFs). However due to additional elements in the NSI and NSD assemblies they were assumed to be 2-3 times more prone to fail than the CDF.
- Hypothesis-3 The data available for the Pyrotechnic Initiator Controllers (PICs) indicates that they are extremely reliable components however the fact that no actual failures have occurred makes the estimation of their failure rate difficult. As a conservative assumption, their failure rate was assumed to be on the same order of magnitude as the CDFs.
- Hypothesis-4 The ISRB use pyrogenic igniters for which a limited amount of failure data exists. For this reason the analyst made a conservative assumption based on the data available and conversations with USBI personnel.
- Hypothesis-5 This estimate concerned the possibility of an explosive device detonating without any external influences; an extremely rare event. A conservative estimate was made which considered such an event to be 10 times less likely than an explosive device (CDF) failing to detonate on command.
- Hypothesis-6 The Booster Separation Motors (BSMs) have a limited amount of failure related data however it was agreed (USBI & MSFC) that the failure modes were approximately an order of magnitude (10 times) more likely than an explosive device (CDF) failing to detonate.

Page 7

Page 13

Page 16

ALTFAILPATHKLM3
2.55E-03

FIELD JOINT VPP
SECONDARY O-RING
SEAL FAILURE

FIELD JOINT CLOSURE
VPP SEAL FAILURE

ANRCSVSKOLMSRM
1.53E-03
THIKOL

ANRSVSKOLMSRM
1.02E-03
THIKOL

Page 31

Page 35

Page 43

Page 43

Page 46

Page 43

HOT GAS LEAK AT
NOZZLE CASE

ANRANJTLKRN
3.03E-07

CASE TO NOZZLE
JOINT POLYSULFIDE
LEAK THROUGH

ANRPSSGLLKRN

6.90E-02
THIOKOL

CASE TO NOZZLE
JOINT WIPER O-RING
SEAL FAILURE

ANRWRSFLKRN

4.09E-02
THIOKOL

CASE TO NOZZLE
JOINT VPP PRIMARY O-RING
SEAL FAILURE

ANRPVSPFLKRN
1.63E-06

CASE TO NOZZLE
ALTERNATE FAILURE
PATHS

ALTFAILPATHRN

2.55E-03

CASE TO NOZZLE
JOINT PRIMARY O-RING
FAILURE PATH

RNCJPNMORNGFLPTH
3.64E-05

CASE TO NOZZLE
JOINT CCF OF
PRIMARY AND
SECONDARY O-RING

ANRORCCFLKRN

5.70E-05
THIOKOL

CASE TO NOZZLE
JOINT PRIMARY O-RING
SEAL FAILURE

ANRPSFLKRN

6.39E-03
THIOKOL

CASE TO NOZZLE
ALTERNATE FAILURE
PATHS

ALTFAILPATHRN

6.40E-03
THIOKOL

Page 55

3.41E-06

IGNITER JOINT S&A
PRIMARY GASKET SEAL
FAILURE

ANRPGSFKLUSA
1.05E-03
THIOKOL

IGNITER JOINT S&A
SECONDARY GASKET
SEAL FAILURE

ANRSGSFKLUSA
2.64E-03
THIOKOL

IGNITER JOINT S&A
LEAK CHECK PORT
PLUG SEAL FAILURE

ANRCPSFKLUSA
3.25E-03
THIOKOL

ANRCPSFKLUSA
6.10E-04
THIOKOL

Page 55

IGNITER JOINT ROTOR
FAILURE

RJURTAPMORNGFP
1.38E-05

IGNITER JOINT ROTOR
CCF OF PRIMARY AND
SECONDARY O-RINGS

ANRCCUJKURTR
1.05E-05
THOKOL

IGNITER JOINT ROTOR
INDEPENDENT FAILURE
PATHS

ANNTSFURTR
3.34E-06

IGNITER JOINT ROTOR
PRIMARY O-RING SEAL
LEAKAGE

ANPRSFKURTR
1.05E-03
THOKOL

ALTERNATE FAILURE
PATHS

ALTFAILPHTHURTR
3.18E-03

IGNITER JOINT ROTOR
SECONDARY O-RING
SEAL FAILURE

ANRSRFKURTR
2.57E-03
THOKOL

IGNITER JOINT LEAK
CHECK PORT PLUG
SEAL FAILURE

ANRCPFSFKURTR
6.10E-04
THOKOL

Page 60

Page 68

Page 68

Page 73

Page 68

2 8.85E-05

Page 84

ISRB Initiating Events

LSEPARMA Outputs:
Page 122, Page 107, Page 89, Page 98, Page 101, Page 104

LSEPF1A Outputs:
Page 122, Page 107, Page 89, Page 98, Page 101, Page 104

LSEPF2A Outputs:
Page 122, Page 107, Page 89, Page 98, Page 101, Page 104

LSEPARMB Outputs:
Page 143, Page 108, Page 93, Page 99, Page 102, Page 105

LSEPF1B Outputs:
Page 143, Page 108, Page 93, Page 99, Page 102, Page 105

LSEPF2B Outputs:
Page 143, Page 108, Page 93, Page 99, Page 102, Page 105

Page 87

L AFT SEPARATION
BOLT 3 FAILS TO
SEPARATE

2.42E-05

SEPARATION BOLT
LAS3 FAILS TO
FRACTURE

1.00E-05

HYPOTHESIS-1

L AFT SEPARATION
BOLT 3 NSI PCS FAIL
TO DETONATE

1.01E-05

L SEP BOLT 3A NSI
PC FAILURE TO
DETONATE

2.84E-04

HYPOTHESIS-1

L AFT SEP BOLT 3
PIC A FAILS

2.84E-04

HYPOTHESIS-2

NSI PRESSURE
CARTRIDGE LS3A
FAILS TO DETONATE

3.00E-05

HYPOTHESIS-2

ACRNPFDS3ASRB

ACRNPFDS3BSRB

LS3APIC

LS3BPC

LS3BNPFD

LS3NPSFD

LS3FAIL

CABLE (REPLACEABLE)
CCF (POWER) L SRB
BUS A AND B

ACRICACCLPABSRB

3

4.10E-06

H500

Page 102

Page 87

Page 105

Page 109

Page 109

Page 114

2.00E-05

1.00E-05

1.00E-05

1.00E-05

1.00E-05

Page 114

BSMCDFSL52SRB
2.00E-05

Page 114

CMDNOTRCVD Outputs:
 Page 123, Page 141, Page 142, Page 144, Page 146, Page 147

Page 127

DATA BUS 2 FAILURE

DB2FAIL
2.77E-06

MDM DB02 TRANSMIT FAILURE

ACOMIDXFDB02OV
1.39E-06
PRACA

CABLE DB02 BROKEN/AILS/SHORTS

ACOCADVDB02OV
5.36E-10
IEEE500

MDM MIA2 TRANSMIT FAILURE

ACOMIDXFMA2OV
1.39E-06
PRACA

Page 124

RSEPARMA Outputs:
Page 183, Page 166, Page 149, Page 157, Page 160, Page 163

RSEPFIA Outputs:
Page 183, Page 166, Page 149, Page 157, Page 160, Page 163

RSEPF2A Outputs:
Page 183, Page 166, Page 149, Page 157, Page 160, Page 163

RSEPARMB Outputs:
Page 185, Page 167, Page 153, Page 158, Page 161, Page 164

RSEPF1B Outputs:
Page 185, Page 167, Page 153, Page 158, Page 161, Page 164

RSEPF2B Outputs:
Page 185, Page 167, Page 153, Page 158, Page 161, Page 164

ISRB Initiating Events

Page 168

Page 168

R BSM 4 FAILS TO
IGNITE

Page 168

RBSM4004FI

R BSM 4 CDFS FAIL
TO DETONATE

RBSMACDFFD

ROCKET MOTOR RBS4
FAILS TO IGNITE
(PYROTECHNIC)

ACRMPFRBSASRB

1.00E-04
HYPOTHESIS-6CDF STRING L41
FAILS TO DETONATE
OR PROPAGATE

BSMCDFSR41SRB

2.00E-05

CDF STRING L42
FAILS TO DETONATE
OR PROPAGATE

BSMCDFSR2SRB

2.00E-05

CDF ASS R41 FAILS
TO DETONATE OR
PROPAGATE

ACRCDFDAR41SRB

1.00E-05
USB1CDF INIT R41 FAILS
TO DETONATE OR
PROPAGATE

ACRCDFDIR41SRB

1.00E-05

CDF ASS R42 FAILS
TO DETONATE OR
PROPAGATE

ACRCDFDAR42SRB

1.00E-05
USB1CDF INIT R42 FAILS
TO DETONATE OR
PROPAGATE

ACRCDFDIR42SRB

1.00E-05
USB1

Page 175

ISRB Initiating Events

Page 187

Page 195

Page 198

ISRB Initiating Events

PRA ISRB FAULT TREES

REV. 2

Page 200

Page 200

SRB Component Data

COMPONENT	QTY/FLIGHT	# OF FLIGHTS	GROUND TESTS	TOTAL	FAILURES*
Frangible Nut	8	62	141	637	0
Booster Ctdg (Frangible Nut)	16	62	189	1181	0
NSI Pressure Cartridge	20	62	271	1511	0
CDF Manifold	18	62	292	1408	0
CDF Assembly**	56	62	838	4310	0
CDF Initiator	32	62	409	2393	***1
Booster Separation Bolt	16	62	104	1096	0
Forward Separation Bolt	2	62	77	201	0
Aft Separation Bolt	8	62	141	637	0

* Only failures which could lead to loss of vehicle are included.

** Similar designs (at E.T., Inc.) have had over 75,000 successful firings with no failures

*** Failure successfully screened by LAT, lot rejected at vendor's facility (not counted as flight failure)

Additional CDF related information obtained from Explosive Technologies: 19,460 test firings with no failures

CDF Failure Probability Estimate>1/(3*(19460+2*(4310)+1408+2393))=1.05E-5

RSRM Joint Leak Data

NOZZLE-TO-CASE JOINTS

Joint Component	Source	Hot Firings	Leak Checks	Leak Potentially Factor	Failures
Polysulfide	Flights 1-37,39,41	78			5
	Static Tests	9			1
	Totals:	87			6
Wiper O-Ring	Flights 1-37,39,41	6	78		
	Static Tests	1	9		
	NUES/TPTA,QM6	1			
	Totals:	8	87	0.2	1
Vent Port Plug Primary O-Ring (nozzle and case combined) (47 motors counted as 23 tests)	Flights 1-37,39,41		234		
	Static Tests		30		
	TPTA 1.3,2.1,2.2	7			
	NUES/JES 3C	4			1
	SPC (70lb Motor)	23	23		
	Totals:	34	287	0.9	1
Vent Port Plug Second O-Ring (nozzle and case combined)	Flights 1-37,39,41		312		
	Static Tests		40		
	TPTA 1.3,2.1,2.2	3			
	NUES/JES 3C	3			
	Totals:	6	352	0.9	0
Closure Vent Port Plug (nozzle and case combined)	Flights 1-37,39,41		312		
	Static Tests		40		
	TPTA 1.3,2.1	2			
	NUES/JES 3C	2			
	Totals:	4	352	0.6	0
Primary O-Ring	Flights 1-37,39,41		78		
	Static Tests		9		
	TPTA 1.2,2.1	2			
	NUES 3A,PVM1	2			
	Totals:	4	87	0.6	0
Leak Check Port Plug (case/nozzle/igniter combined)	Flights 1-37,39,41		780		
	Static Tests		100		
	SRM01-51L (fld)	4			
	SRM01-51L (noz)	7			
	Totals:	11	880	0.6	0
Stat-O-Seal	Case	100	9000		
	Igniter		5040		
	Nozzle	100	6776		
	Totals:	200	20816	0.9	0
Secondary O-Ring	Flights 1-37,39,41		78		
	Static Tests		10		
	TPTA 1.3	1			
	NUES 3B	1			
	Totals:	2	88	0.9	0

RSRM Joint Leak Data

IGNITER INTERNAL JOINTS

Joint Component	Source	Hot Firings	Leak Checks	Leak Potentially Factor	Failures
S&A Primary Gasket	Static Tests	12	12		
	SRM, HPM, RSRM	128	128		
	Totals:	140	140	0.6	0
S&A Secondary Gasket	Static Test		12		
	SRM, HPM, RSRM		128		
	Totals:		140	0.9	0
COMMON CAUSE Leak Check Port Plug (case/nozzle/igniter)					
	Flights 1-37,39,41		780		
	Static Tests		100		
	SRM01-51L (fld)	4			
	SRM01-51L (noz)	7			
	Totals:	11	880	0.6	0
OPT Primary O-Ring (3/igniter)	Static Tests	36			
	SRM, HPM, RSRM	384			
	Minuteman	3300			
	Totals:	3720			0
OPT Secondary O-Ring (3/igniter)	TPTA-2.2	3	0		
	JES-3C	3	24		
	TPTA-1.3	3	256		
	Totals:	9	280	0.9	0
COMMON CAUSE Rotor Primary O-Rings	Static Tests	12	12		
	SRM, HPM, RSRM	128	128		
	Totals:	140	140	0.6	0
Rotor Secondary O-Rings	Static Tests	2	12		
	SRM, HPM, RSRM		128		
	Totals:	2	140	0.9	0
COMMON CAUSE SII Primary O-Ring					
	Static Tests	24	24		
	SRM, HPM, RSRM	256	256		
	Totals:	280	280	0.9	0
SII Secondary O-Ring	Static Tests	2	24		
	SRM, HPM, RSRM		256		
	Totals:	2	280	0.9	0

RSRM Joint Leak Data

IGNITER-TO-CASE JOINT

Joint Component	Source	Hot Firings	Leak Checks	Leak Potentially Factor	Failures
INNER J-LEG	FSM-3	1			
	RSRM 23,35-37,39,41	12			
	Totals:	13			0
Special Bolt O-Ring (4/igniter)	Static Test	48	48		
	SRM,HPM,RSRM	512	512		
	Totals:	560	560	0.6	0
Outer J-Leg	FSM-3	1			
	RSRM 23,35-37,39,41	12			
	Totals:	13			0
Inner Gasket/Inner Seal	blow-holes (RSRM)	60			
	Static Tests		12		
	SRM,HPM,RSRM		128		
	Totals:	60	140	0.6	0
Inner Gasket/Outer Seal	blow-hole (RSRM)	60			
	Static Tests		12		
	SRM,HPM,RSRM		128		
	Totals:	60	140	0.9	0
Outer Gasket/Inner Seal	blow-holes (RSRM)	60			
	Static Tests		12		
	SRM,HPM,RSRM		128		
	Totals:	60	140	0.6	0
Outer Gasket/Outer Seal	Static Tests				
	SRM,HPM,RSRM		12		
	Totals:		128		
Stat-O-Seals (36/igniter)	Case	100	9000		
	Igniter		5040		
	Nozzle	100	6776		
	Totals:	200	20816	0.9	0
Leak Check Port Plug (case/nozzle/igniter)	Flights 1-37,39,41		780		
	Static Tests		100		
	SRM01-51L (fld)	4			
	SRM01-51L (noz)	7			
	Totals:	11	880	0.6	0

RSRM Joint Leak Data

CASE FIELD JOINT

Joint Component	Source	Hot Firings	Leak Checks	Leak Potentially Factor	Failures
J-Seal	Flights 1-37,39,41	234			
	Static Tests	15			
	JES 3A	2			
	TPTA 1.1, 2.1	3			
	Totals:	254			0
Capture Feature O-Ring	Flights 1-37,39,41		234		
	Static Tests		24		
	JES 3B	1	0		
	QM-6	1	2		
	PVM-1	1	1		
	Totals:	3	261	0.6	0
Vent Port Plug Primary O-Ring (nozzle and case combined) (47 motors counted as 23 tests)	Flights 1-37,39,41				
	Static Tests				
	TPTA 1.3,2.1,2.2	7			
	NUES/JES 3C	4			1
	SPC(70lb Motor)	23	23		
	Totals:	34	287	0.9	1
Vent Port Plug Second O-Ring (nozzle and case combined)	Flights 1-37,39,41		312		
	Static Tests		40		
	TPTA 1.3,2.1,2.2	3			
	NUES/JES 3C	3			
	Totals:	6	352	0.9	0
Closure Vent Port Plug (nozzle and case combined)	Flights 1-37,39,41		312		
	Static Tests		40		
	TPTA 1.3,2.1	2			
	NUES/JES 3C	2			
	Totals:	4	352	0.5	0
Primary O-Ring	Flights 1-37,39,41		234		
	Static Tests	1	27		
	TPTA 1.3,2.1,2.2	5			
	JES3B/3C	2			
	Totals:	8	261	0.9	0
Outer Gasket/Outer Seal	Static Tests				
	SRM,HPM,RSRM		12		
	Totals:		128		
Leak Check Prot Plug (case/nozzle/igniter combined)	Flights 1-37,39,41		780		
	static Tests		100		
	SRM01-51L (fld)	4			
	SRM01-51L (noz)	7			
	Totals:	11	880	0.5	0
Secondary O-Ring	Flights 1-37,39,41		234		
	Static Tests		27		
	TPTA 2.2	2			
	JES 3C	1			
	Totals:	3	261	0.9	0

RSRM Joint Leak Data

NOZZLE JOINT

Joint Component	Source	Hot Firings	Leak Checks	Leak Potentially Factor	Failures
RTV Backfill	Joint 1	90			5
	Joint 2	18			7
	Joint 3	88			10
	Joint 4	88			10
	Joint 5	88			6
	Totals:	372			38
Primary O-Ring	Flight	24	390		
	Static Tests	14	50		
	Totals:	38	440	0.6	0
Secondary O-Ring	Flight		390		
	Static Tests		50		
	Totals:	0	440	0.9	0
Stat-O-Seals	Case	100	9000		
	Igniter		5040		
	Nozzle	100	6776		
	Totals:	200	20816	0.9	0
Leak Check Port Plug	Flights 1-37,39,41		780		
	Static Tests		100		
	SRM01-51L (fld)	4			
	SRM01-51L (noz)	7			
	Totals:	11	880	0.6	0

B.3. Orbiter Auxiliary Power
Unit/Hydraulics

9.0 DEVELOPMENT OF PROBABILITY DISTRIBUTIONS FOR FAULT TREES

The development of probability distributions for the fault trees is done using Bayesian updating methods. Prior probability distributions for failure rates are taken from the 1987 APU/HPU study, NRPD-95, IREP, IEEE Std. 500, WASH 1400, Shuttle experience and expert judgment. System level priors for the entire APU/HYD/WSB system (failure to start and failure to run distributions) are developed using component data mostly from the 1987 study. Bayesian updating was done at the system level using data found in the in-flight anomaly list (IFAS), PRACA reports, and Post Flight Mission Safety Evaluation Reports.

Data obtained shows that there have been four APU shutdowns on ascent due to the water spray boiler failing to provide adequate cooling, and a near hydraulic system failure due to a massive hydraulic leak during descent.

Due to the fact that the APU/HYD/WSB systems have redundancy, i.e., they are a two-out-of-three or better system, common cause failures become a concern. The fault trees are evaluated using the Multiple Greek Letter (MGL) method to determine the common cause and independent failure rates.

Section 9.1 describes how the MGL method is used to determine the independent failure rates and common cause failure rates from the generic failure rate for each sequence.

Section 9.2 describes the prior distributions used in the study. Fault trees are included in this section to show how prior distributions are calculated for APU/HYD/WSB failure to start, APU/HYD/WSB failure to run, and APU turbine wheel runaway.

9.1 Models/Equations for Fault Tree Basic Events

9.1.1 List of Basic Events

Table 9.1-1 is a complete list of the basic events found in the fault trees, and their two letter identification code used throughout the model.

9.1.2 Assumptions

Several assumptions have been made concerning data input probability distributions. The first is that given a common cause leak, all three APU units leak. The second assumption pertains to the detection/confirmation of the leaks. If all three units leak, and a leak is detected in one unit, then the leaks in all units are assumed to be found. A third assumption concerns the restarts of APU units. All units will have to go through a restart process sometime during the reentry process. Some scenarios have APU hydrazine leaks detected, in which case an APU unit is shutdown during the entry sequence. After an APU unit is shutdown, if another unit fails, then the shutdown unit is restarted. However, in the sequence, only one restart of the shutdown APU is considered. There are several reasons for this simplistic modeling. First, the reentry sequence will not begin until an APU unit is working to perform the flight controls check. Second, leaking APUs are shutdown only when a leak is detected and confirmed, and the probability of a leak being detected is only about one in twenty, so these scenario simplifications will not have a significant impact on the total risk.

Identification	Basic Event
CE	Flight critical equipment damaged given LL or TU
CF	Common cause failure to run
CL	Common cause leak
CO	No containment given turbine overspeed
CS	Common cause failure to start or run
HB	Hub breakup given turbine overspeed
ID	Independent/dependent failure to run (ascent)
IF	Independent failure to run (ascent)
IS	Independent failure to start or run (descent)
LA	Leak detected/confirmed given all three APU units leak
LD	Leak detected/confirmed given that one APU unit leaks
LF	Own leakage induced failure (ascent)
LK	Leak in one APU unit
LL	Large exhaust gas or hydrazine leak
LO	Leakage from another unit induced failure (ascent)
LS	Leakage from other unit induced failure to start or run (descent)
LU	Leak undetected given that one APU unit leaks
LZ	Leak undetected given that all three APU units leak
O1	APU unit okay given that one other APU unit leaks
O3	APU unit okay given that all three APU units leak
OK	APU unit okay
OL	APU unit okay given that it leaks
OS	Own leakage induced failure to start or run (descent)
SI	Structural integrity of aft compartment fails given LL or TU
SR	Successful restart of shutdown APU unit
TU	Turbine overspeed or hub failure at normal speed
UL	Unsuccessful single APU/HYD unit reentry, TAEM and landing

Table 9.1-1: List of Basic Events and Descriptions

9.1.3 Derivation of Common Cause Failure Equations

As components fail, it is not always entirely clear which failures are truly independent and which are common cause. In order to estimate the frequency of common cause failures from the total estimated frequency, several methods, such as the Multiple Greek Letter (MGL) or beta factor

methods, are used. In this analysis, the MGL method was used. The labeling of the APU units is as follows: if a single APU unit is leaking hydrazine, then that unit is labeled as unit 1, or if all three APU units are leaking hydrazine, then the unit that is shutdown (if the leaks are detected/confirmed) is labeled as unit 1.

9.1.3.1 One APU Unit Leaks Hydrazine During Reentry, TAEM and Landing (L0 State)⁽¹⁾

Sequence 4

In this sequence, APU units 1 and 2, or 1 and 3, fail. This is basically a 1 out of 3 system, denoted $Q(1/3)$. There are two ways in which independent failures of this type can occur: $Q_1 Q_2$ and $Q_1 Q_3$. For the common cause failures, there are also two ways that those may occur: Q_{12} and Q_{13} . Rewriting those terms in the MGL format using Q_1 for independent failures and Q_2 for common cause failure of two components yields the following equation for system failures:

$$Q(1/3) = 2Q_2 + 2Q_1^2$$

In this form of the MGL method where we are dealing both with common cause failures for two systems and common cause failures for three systems. The MGL method defines two parameters: β and γ . Beta is the ratio of two and three unit common cause failures of each unit to all failures for each unit. Gamma is the ratio of three unit common cause failures to two and three unit common cause failures. For each unit, beta is thus:

$$\beta = \frac{2Q_2 + Q_3}{Q_1 + 2Q_2 + Q_3}$$

and gamma is:

$$\gamma = \frac{Q_3}{2Q_2 + Q_3}$$

Omitting the algebra, the single system and common cause for two system failures can be written as:

$$Q_1 = (1 - \beta)Q$$

$$Q_2 = \frac{1}{2}(1 - \gamma)\beta Q$$

Since Q represents the failures due to start or run failures, it should be rewritten as:

$$Q = q_s + \lambda t$$

⁽¹⁾The LO descent initiating event state is equivalent to the IL0 ascent end state.

where q_s is the failure to start probability, and λt is the probability of a failure during the run time.^(2,3) If we substitute into $Q(1/3)$ for Q_1 , Q_2 and Q , then the equation for failures becomes:

$$Q(1/3) = [(1 - \gamma_s)\beta_s q_s + (1 - \gamma_r)\beta_r \lambda t] + 2[(1 - \beta_s)q_s + (1 - \beta_r)\lambda t]^2$$

This is the total failure rate. We now need to relate the above equation to the fault tree basic events. The first term in the above equation is the common cause term, and does not need to be changed. The second term in the above equation needs to represent the independent failures as depicted in the fault tree. For example, if we examine the fault tree for the sequence 4 LOV with the initiating L0 state (one APU unit is leaking), then by analysis at the basic event level, the probability of the component failures in the sequence can be expressed as:

$$P(1, 2 \text{ or } 1, 3) = P(1 \text{ IF})P(2 \text{ IF}) + P(1 \text{ IF})P(3 \text{ IF}) + P(CCF) + P(1 \text{ IF})P(3 \text{ LO}) + \dots$$

where IF, CCF and LO where defined previously as independent failures, common cause failure, and own leak induced failure. Since we are only concerned about independent and common cause failures, we will ignore the fourth and remaining terms as being inapplicable to the determination of the common cause failure rate and the independent failure rate. If the independent failure rates are the same for all APU units, then the previous two expressions can be combined as:

$$P(CCF) = [(1 - \gamma_s)\beta_s q_s + (1 - \gamma_r)\beta_r \lambda t]$$

$$2P(IF)^2 = 2[(1 - \beta_s)q_s + (1 - \beta_r)\lambda t]^2$$

If we reduce the independent failure rate probability, we get:

$$P(IF) = \sqrt{[(1 - \beta_s)q_s + (1 - \beta_r)\lambda t]^2}$$

which reduces to:

$$P(IF) = [(1 - \beta_s)q_s + (1 - \beta_r)\lambda t]$$

Sequence 6

In this sequence, both APU units 2 and 3 have failed. This is basically a 1 out of 3 system, denoted $Q(1/3)$. There is one way in which independent failures of this type can occur: $Q_2 Q_3$. For the common cause failures, there is also only one way that this may occur: Q_{23} . Rewriting those terms in the MGL format using Q_1 for independent failures and Q_2 for common cause failure of two components yields the following equation for system failures:

$$Q(1/3) = Q_1^2 + Q_2$$

As before, the single and common cause (for two systems) factors are defined as:

$$Q_1 = (1 - \beta)Q$$

$$Q_2 = \frac{1}{2}(1 - \gamma)\beta Q$$

⁽²⁾ In this analysis the β_s and β_r are given the same numerical value, and γ_s and γ_r are given the same numerical value.

⁽³⁾ For ascent sequences, λt is the probability of basic event ID (or IF) in Table 9.3.1. For descent sequences $q_s + \lambda t$ is the probability of a basic event IS in Table 9.3-1.

Since Q represents the failures due to start or run failures, it should be rewritten as:

$$Q = q_s + \lambda t$$

where q_s is the failure to start probability, and λt is the probability of a failure during the run time. If we substitute into $Q(1/3)$ for Q_1 , Q_2 and Q_3 , then the equation for failures becomes:

$$Q(1/3) = \frac{1}{2}[(1 - \gamma_s)\beta_s q_s + (1 - \gamma_r)\beta_r \lambda t] + [(1 - \beta_s)q_s + (1 - \beta_r)\lambda t]^2$$

As before, we can see that the first term represents the common cause failure rate, and the second term represents the independent failure rate. If we examine the fault tree for the sequence 6 LOV with the initiating L0 state, then by analysis at the basic event level, the probability of the component failures in the sequence can be expressed as:

$$P(2, 3) = P(2 IF)P(3 IF) + P(CCF) + P(2 IF)P(3 LO) + \dots$$

where IF, CCF and LO where defined previously as independent failures, common cause failure, and own leak induced failure. Since we are only concerned about independent and common cause failures, we will ignore the third and remaining terms as being inapplicable to the determination of the common cause failure rate and the independent failure rate. If the independent failure rates are the same for all APU units, then the previous two expressions can be combined as:

$$P(CCF) = \frac{1}{2}[(1 - \gamma_s)\beta_s q_s + (1 - \gamma_r)\beta_r \lambda t]$$

$$P(IF)^2 = [(1 - \beta_s)q_s + (1 - \beta_r)\lambda t]^2$$

If we reduce the independent failure rate probability, we get:

$$P(IF) = \sqrt{[(1 - \beta_s)q_s + (1 - \beta_r)\lambda t]^2}$$

which reduces to:

$$P(IF) = [(1 - \beta_s)q_s + (1 - \beta_r)\lambda t]$$

This is the same expressions as determined in the Sequence 4 LOV.

Sequence 7

In this sequence, since there is no leak detection, no distinction is made between which units fail and which do not. All three units fail, even though 1 out of 3 is needed for survival, so this is denoted $Q(1/3)$. There is one way in which independent failures of this type can occur: $Q_1 Q_2 Q_3$. For the common cause failures, there is also only one common cause for all three, Q_{123} . There are three combinations of pairs of common cause failures for two systems, i.e., Q_{12} and Q_{23} is one pair, and three combinations of an independent failure and a common cause failure for two systems, i.e., Q_1 and Q_{23} and one pair. Rewriting those terms in the MGL format using Q_1 for independent failures, Q_2 for common cause failures of two components and Q_3 for common cause failures of three components yields the following equation for system failures:

$$Q(1/3) = Q_3 + 3Q_1 Q_2 + 3Q_2^2 + Q_1^3$$

Omitting the algebra, the failures can be written as:

$$Q_1 = (1 - \beta)Q$$

$$Q_2 = \frac{1}{2}(1 - \gamma)\beta Q$$

$$Q_3 = \gamma\beta Q$$

Substituting for Q_1 , Q_2 and Q_3 into $Q(1/3)$ yields:

$$Q(1/3) = \gamma\beta Q + \frac{3}{2}(1 - \beta)\beta(1 - \gamma)Q^2 + \frac{1}{2}\frac{(1-\gamma)}{(1-\beta)}\beta\left[\frac{3}{2}(1 - \beta)\beta(1 - \gamma)Q^2\right] + (1 - \beta)^3Q^3$$

If we examine the above expression, we see that there are four terms, which from left to right we'll call one, two, three and four. The third term is negligible because

$$\frac{1}{2}\frac{(1-\gamma)}{(1-\beta)}\beta << 1$$

and is, furthermore, much less than the second term. As before:

$$Q = q_s + \lambda t$$

where q_s is the failure to start probability, and λt is the probability of a failure during the run time. Substitute Q into $Q(1/3)$ with the simplifying assumption yields:

$$Q(1/3) = (\gamma_s\beta_s q_s + \gamma_r\beta_r \lambda t) + \frac{3}{2}\{[(1 - \beta_s)\beta_s(1 - \gamma_s)q_s^2] + [(1 - \beta_s)\beta_r(1 - \gamma_r)q_s\lambda t] + [(1 - \beta_r)\beta_s(1 - \gamma_s)q_s\lambda t] + [(1 - \beta_r)\beta_r(1 - \gamma_r)\lambda^2 t^2]\} + [(1 - \beta_s)q_s + (1 - \beta_r)\lambda t]^3$$

As before, we can see that the first term represents the common cause failure rate, and the second term represents the independent failure rate. If we examine the fault tree for the sequence 7 LOV with the initiating L0 state, then by analysis at the basic event level, the probability of the component failures in the sequence can be expressed as:

$$P(1, 2, 3) = P(1 \text{ IF})P(2 \text{ IF})P(3 \text{ IF}) + P(CCF) + P(1 \text{ LO})P(2 \text{ IF})P(3 \text{ IF}) + \dots$$

where IF, CCF and LO where defined previously as independent failures, common cause failure, and own leak induced failure. Since we are only concerned about independent and common cause failures, we will ignore the third and remaining terms as being inapplicable to the determination of the common cause failure rate and the independent failure rate. If the independent failure rates are the same for all APU units, then the previous two expressions can be combined as:

$$P(CCF) = \gamma_s\beta_s q_s + \gamma_r\beta_r \lambda t + \frac{3}{2}\{[(1 - \beta_s)\beta_s(1 - \gamma_s)q_s^2] + [(1 - \beta_s)\beta_r(1 - \gamma_r)q_s\lambda t] + [(1 - \beta_r)\beta_s(1 - \gamma_s)q_s\lambda t] + [(1 - \beta_r)\beta_r(1 - \gamma_r)\lambda^2 t^2]\}$$

$$P(IF) = [(1 - \beta_s)q_s + (1 - \beta_r)\lambda t]$$

Sequence 11

In this sequence, two APU units fail, and since the event is undetected, no distinction is made as to which two have failed. System failures are thus defined as:

$$Q(1/3) = 3Q_2 + 3Q_1^2$$

As before, the failures are defined as:

$$Q_1 = (1 - \beta)Q$$

$$Q_2 = \frac{1}{2}(1 - \gamma)\beta Q$$

Since Q represents the failures due to start and run failures, it should be rewritten as:

$$Q = q_s + \lambda t$$

where q_s is the failure to start probability, and λt is the probability of a failure during the run time. If we substitute into $Q(1/3)$ for Q_1 , Q_2 and Q , then the equation for failures becomes:

$$Q(1/3) = \frac{3}{2}[(1 - \gamma_s)\beta_s q_s + (1 - \gamma_r)\beta_r \lambda t] + 3[(1 - \beta_s)q_s + (1 - \beta_r)\lambda t]^2$$

As before, we can see that the first term represents the common cause failure rate, and the second term represents the independent failure rate. If we examine the fault tree for the sequence 11 LOV with the initiating L0 state, then by analysis at the basic event level, the probability of the component failures in the sequence can be expressed as:

$$P(2\ fail) = P(1\ IF)P(2\ IF) + P(1\ IF)P(3\ IF) + P(2\ IF)P(3\ IF) + P(CCF) + P(2\ IF)P(3\ LO) + \dots$$

where IF, CCF and LO where defined previously as independent failures, common cause failure, and own leak induced failure. Since we are only concerned about independent and common cause failures, we will ignore the fifth and remaining terms as being inapplicable to the determination of the common cause failure rate and the independent failure rate. If the independent failure rates are the same for all APU units, then the previous two expressions can be combined as:

$$P(CCF) = \frac{3}{2}[(1 - \gamma_s)\beta_s q_s + (1 - \gamma_r)\beta_r \lambda t]$$

$$3P(IF)^2 = 3[(1 - \beta_s)q_s + (1 - \beta_r)\lambda t]^2$$

If we reduce the independent failure rate probability, we get:

$$P(IF) = [(1 - \beta_s)q_s + (1 - \beta_r)\lambda t]$$

Sequence 12

This sequence occurs when all three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for IL0 sequence 7.

Sequence 16

This sequence occurs when APU/HYD systems 1 and 2 or 1 and 3 fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 4.

This sequence also models the remaining two APU units developing a common cause leak, given the initial leak in one unit.⁽¹⁾ As described for OK sequence 21, the formula for common cause leakage is given by:

$$P(CCF) = \gamma_L \beta_L \lambda_{L,t} + \frac{3}{2}(1 - \beta_L)\beta_L(1 - \gamma_L)\lambda_L^2 t^2$$

Here, $\lambda_{L,t}$ is the probability of the initial state, L0. So, since the conditional probability of developing the common cause leak is multiplied against the initial state probability, and given that the first term in the equation is by far the dominant factor, the common cause conditional probability should be entered as:

$$P(CCF) = \gamma_L \beta_L$$

Sequence 18

This sequence occurs when APU/HYD systems 2 and 3 fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 6. The equation for a common cause leak is the same as that described for L0 sequence 16.

Sequence 19

This sequence occurs when all APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 7. The equation for a common cause leak is the same as that described for L0 sequence 16.

Sequence 23

This sequence occurs when any two out of the three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 11. The equation for a common cause leak is the same as that described for L0 sequence 16.

Sequence 24

This sequence occurs when all three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 7. The equation for a common cause leak is the same as that described for L0 sequence 16.

9.1.3.2 All Three APU Units Leak Hydrazine During Reentry, TAEM and Landing (LT State)

Sequence 4

This sequence occurs when APU/HYD systems 1 and 2 or 1 and 3 fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 4.

⁽¹⁾ λ_L is the frequency of event LK in Table 9.3-1.

Sequence 6

This sequence occurs when APU/HYD systems 2 and 3 fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 6.

Sequence 7

This sequence occurs when all three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 7.

Sequence 11

This sequence occurs when any two out of the three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 11.

Sequence 12

This sequence occurs when any two out of the three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 12.

9.1.3.3 All Three APU Units are OK During Reentry, TAEM and Landing (OK State)

Sequence 4

This sequence occurs when any two out of the three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 11.

Sequence 5

This sequence occurs when all three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 7.

Sequence 9

This sequence occurs when APU/HYD systems 1 and 2 or 1 and 3 fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 4.

This sequence also involves a common cause treatment of APU leaks. Here, we are modeling any one of the three APUs develops a leak, which is basically a 1 out of 3 system, denoted as $Q(1/3)$. There are three ways in which independent failures of this type can occur: Q_1 , Q_2 or Q_3 . Rewriting those terms in the MGL format using Q_1 for the independent failures yields the following equation for system failures:

$$Q(1/3) = 3Q_1$$

As before, the failures are identified as:

$$Q_1 = (1 - \beta)Q$$

Since Q in this case represents leakage failures over the exposure time, Q is replaced by:

$$Q = \lambda_L t$$

where λ_L is the leakage failure rate and t is the exposure time of the system. If we substitute into $Q(1/3)$ for Q_1 , then the equation for failures becomes:

$$Q(1/3) = 3(1 - \beta_L)\lambda_L t$$

Since independent failures are the only contributors in this equation, we get:

$$P(IF) = 3(1 - \beta_L)\lambda_L t$$

Sequence 11

This sequence occurs when APU/HYD systems 2 and 3 fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 6. The equation for independent leaks is the same as that described for OK sequence 9.

Sequence 12

This sequence occurs when all three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 7. The equation for independent leaks is the same as that described for OK sequence 9.

Sequence 16

This sequence occurs when any two out of the three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 11. The equation for independent leaks is the same as that described for OK sequence 9.

Sequence 17

This sequence occurs when all three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 7. The equation for independent leaks is the same as that described for OK sequence 9.

Sequence 21

This sequence occurs when APU/HYD systems 1 and 2 or 1 and 3 fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 4.

This sequence also involves a common cause treatment of APU leaks. Here, we are modeling all three APUs develop leaks. The equations for independent and common cause failures are similar to those described for L0 sequence 7, but with Q defined differently as in OK sequence 9. Omitting the algebra, the new independent and common cause failure rates can be determined by the following equations:

$$P(CCF) = \gamma_L \beta_L \lambda_L t + \frac{3}{2}(1 - \beta_L)\beta_L(1 - \gamma_L)\lambda_L^2 t^2$$

$$P(IF) = (1 - \beta_L)\lambda_L t$$

Sequence 23

This sequence occurs when APU/HYD systems 2 and 3 fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 6. The equations for independent and common cause leaks are the same as those described for OK sequence 21.

Sequence 24

This sequence occurs when all three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 7. The equations for independent and common cause leaks are the same as those described for OK sequence 21.

Sequence 28

This sequence occurs when any two out of the three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 11. The equations for independent and common cause leaks are the same as those described for OK sequence 21.

Sequence 29

This sequence occurs when all three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for L0 sequence 7. The equations for independent and common cause leaks are the same as those described for OK sequence 21.

9.1.3.4 All Three APU Units are OK During Ascent (OK State)

For the ascent phase, it is assumed that all APU units are already started, otherwise the launch sequence would not have been completed. Hence, Q is now defined as:

$$Q = \lambda t$$

Sequence 4

This sequence occurs when all three APU/HYD systems fail. The equations for independent system failures and common cause failures are similar to those described for L0 sequence 7, but with Q defined differently. Omitting the algebra, the new independent and common cause failure rates can be determined by the following equations:

$$P(IF) = (1 - \beta_r)\lambda t$$

$$P(CCF) = \gamma_r \beta_r \lambda t + \frac{3}{2}(1 - \beta_r)\beta_r(1 - \gamma_r)\lambda^2 t^2$$

9.1.3.5 At Least One APU Unit is Leaking Hydrazine During Ascent (LK State)

Sequence 6

This sequence occurs when all three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for OK sequence 4. The equation for independent leaks is the same as that described for OK sequence 9.

Sequence 7

This sequence occurs when one APU unit has an undetected leaks. The equation for independent leaks is the same as that described for OK sequence 9.

Sequence 12

This sequence occurs when all three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for OK sequence 4. The equation for independent leaks is the same as that described for OK sequence 9.

Sequence 16

This sequence occurs when all three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for OK sequence 4. The equations for independent and common cause leaks are the same as those described for OK sequence 21.

Sequence 17

This sequence occurs when all three APU units have undetected leaks. The equations for independent and common cause leaks are the same as those described for OK sequence 21.

Sequence 20

This sequence occurs when all three APU/HYD systems fail. The equations for independent system failures and common cause failures are the same as those described for OK sequence 4. The equations for independent and common cause leaks are the same as those described for OK sequence 21.

9.1.3.6 MGL Parameters

The following point estimates are generic over all components and all failure modes. They were developed as part of a recent effort funded by EPRI to completely automate the process of analyzing common cause failures in PRAs. The software is available through Boyer Chu at EPRI. This recent effort was based on previous data development and MGL method development found in EPRI INP 3967 (1985), NUREG/CR-4780 (1988), and NUREG/CR-5801 (1993).

For information on methods and procedures for common cause failure you can refer to NUREG/CR-4780 (1988) and NUREG/CR-5801 (1993).

APU component failure rates are generally within the variability range of the generic database from which the Beta and Gamma factors are derived. We believe, therefore, that these are an indication of future failure rates of the APU, and the generic factors apply to the APUs.

We also used the generic data for common cause hydrazine leakage. We have found six leaks (see Section 9.2.2.6). Two of the leaks happened in the same mission (STS-9) for a common cause (carbonization and stress cracking of the injector). The Beta factor could be estimated as 1/3 (3 of 6). However, we know that the manufacturing process has been altered to reduce the likelihood of this cause. There has also been an effort to reduce the exposure of the nozzles to hydrazine between missions. We have used, therefore, a generic Beta factor of 0.1 instead of the

data driven Beta factor of 1/3. We see no justification to apply a Beta factor less than indicated by the generic level.

9.1.4 Equations Graphed in Fault Tree for Illustration

As an example of how the independent failure rate and common cause failure rate equations developed in the previous section are applied, see Figure 9.1-1. In the figure is a simple fault tree that shows the sequence 4 LOV for the ascent phase in which no hydrazine leaks have occurred.

Figure 9.1-1: Fault Tree for LOV Sequence 4 for an OK State During Ascent

For the LOV to occur, all three APU/HYD systems must fail. System failures can occur independently, or as common cause failures. These failure rates were determined from the total failure rate using the Multiple Greek Letter method previously described, and are shown under the basic events to which they pertain.

From before, we defined P(CCF) and P(IF) as:

$$P(IF) = (1 - \beta_r)\lambda t$$

$$P(CCF) = \gamma_r \beta_r \lambda t + \frac{3}{2}(1 - \beta_r)\beta_r(1 - \gamma_r)\lambda^2 t^2$$

9.2 Prior Distribution for Model

The priors used in the assessment of P(IF) came from a previous study (McDonnell Douglas Astronautics Company Engineering Services, Space Shuttle Probabilistic Risk Assessment Proof-of-Concept Study Volume III: Auxiliary Power Unit and Hydraulic Power Unit Analysis Report, paper WP-VA88004-03, 1987). As described previously, the priors were updated at the system level with observed Shuttle in flight failures.

9.2.1 Inputs Needed to Develop Priors

The study performed in 1987 was done at a component level; i.e., the failure rates of the components in the system were calculated, and no quantification was done on the system level. This study has defined basic events on the system level in order to have such information for future decision-making. Two prior distributions, the failure to start on demand and the run failure rate, were estimated using the component level data.

The fault tree in Figure 9.2-1 depicts the component failures that most contribute to a system failure to run. These components failure rates were agglomerated to obtain a prior distribution for APU system failure to run (events, ID, IF and IS).

Similarly, Figure 9.2-2 depicts a fault tree in which any of the component failures may cause a failure to start condition. These component failure rates were agglomerated for the start contribution of event IS.

The 1987 study performed a detailed fault tree for turbine overspeed. Quantification of that tree showed that four events dominated the failure probability. These are shown in a simplified fault tree in Figure 9.2-3.

Figure 9.2-1: Fault Tree for APU/HYD/WSB Run Failures

Figure 9.2-2: Fault Tree for APU/HYD/WSB Start Failures

Figure 9.2-3: Fault Tree for Turbine Overspeed Failures

9.2.2 Output Distributions for Priors

9.2.2.1 APU Failure to Run

The first prior calculated is that for an APU to fail to run. Table 9.2-1 lists the component failures frequency distributions that were in the model for APU subsystem run failures.

Failure	Mean-Dist	5th percentile	Median	95th percentile	Ref. (1)
Primary Valve Fails Closed When Pulsing	4.481E-03	3.494E-04	2.404E-03	1.225E-02	1
Isol. Valve Plugs (Contamination) When Open	1.086E-06	4.681E-08	4.343E-07	3.875E-06	1
Magnetic Pickup Unit Fails Low	2.240E-03	1.747E-04	1.202E-03	6.127E-03	1
Fuel Pump Fails To Run	7.685E-05	2.791E-06	2.887E-05	2.797E-04	1
Lube Oil Pump Fails To Run	7.685E-05	2.791E-06	2.887E-05	2.797E-04	1
Lube Oil System Loss Of Flow	2.664E-03	9.334E-05	9.698E-04	9.681E-03	1
Gas Generator Fails To Run	1.436E-04	9.020E-07	2.467E-05	4.429E-04	1
Turbine Fails To Run	6.041E-04	2.722E-05	2.350E-04	1.837E-03	1
Gearbox Fails To Run	2.628E-05	9.323E-07	9.672E-06	9.651E-05	1
Fuel Inline Filter Plugs	7.959E-06	2.799E-07	2.907E-06	2.894E-05	1
Fuel Pump Filter Plugs	2.040E-04	2.722E-06	5.002E-05	6.507E-04	1
Failure Of Electric Pwr To Secondary Valves	4.926E-05	9.231E-07	1.357E-05	1.866E-04	1
HYD Accumulator Fails To Run	2.664E-05	1.0E-06	1.0E-05	1.0E-04	2
HYD Reservoir Fails To Run	2.664E-05	1.0E-06	1.0E-05	1.0E-04	2
HYD Line Filter Plugs	7.840E-06	6.0E-06	7.746E-06	1.0E-05	3
HYD Relief Valve Opens Spuriously	1.212E-05	3.0E-06	9.487E-06	3.0E-05	5
HYD Main Pump Fails To Run	4.040E-05	1.0E-05	3.162E-05	1.0E-04	2.5
HYD Circulation Pump Fails To Run	1.127E-04	7.0E-06	5.292E-05	4.0E-04	2.3
HYD Fluid Leak (Catastrophic)	4.332E-04	5.0E-06	5.0E-05	5.0E-04	1,3,4
Water Spray Boiler Fails To Cool	3.385E-05	1.0E-04	2.236E-05	5.0E-06	2.5
Total Fail To Run/Hr	9.150E-03	3.059E-03	6.956E-03	2.174E-02	

(1)

- 1. 1987 APU Study
- 2. NRPD-95
- 3. IEEE-STD-500
- 4. OREDA
- 5. WASH-1400
- 6. Shuttle history of 0 failures is 882 demands in a maximum entropy log normal: $882 = (6 \text{ APU Starts/Missions} + 4 \text{ HPU starts} + 4 \text{ HPU Hot Fire Tests}) \times 63$

Table 9.2-1: Component Failures Leading to APU System Run Failure (Failures/hour)

In order to calculate the distribution of the sum of these failures, an @Risk Monte Carlo simulation (20,000 trials) in a Lotus 1-2-3 spreadsheet was used. A graphical representation of this distribution can be seen in Figure 9.2-4.

9.2.2.2 APU Failure to Start

In Table 9.2-2, various component failures are listed that will lead to a failed-start condition. Once again, to calculate the failed-start distribution based on the sum of the various component failures, an @Risk Monte Carlo simulation (20,000 trials) in a Lotus 1-2-3 spreadsheet was used.

Figure 9.2-4: @Risk Simulation Results for Failure to Run Frequency

Failure	Mean-Dist	5th percentile	Median	95th percentile	Reference
Bypass Valve Fails To Open On Demand	4.689E-04	1.690E-05	1.730E-04	1.276E-03	1
Common Cause Heater Train 13 Failure	6.5E-05	4.6E-006	3.6E-05	1.5E-04	1
Common Cause Lube Oil Heater Train Failure	2.1E-05	5.3E-07	7.8E-06	5.7E-05	1
Fuel Pump Fails To Start	1.278E-05	9.139E-08	2.138E-06	4.702E-05	1
Lube Oil Pump Fails To Start	1.278E-05	9.139E-08	2.138E-06	4.702E-05	1
Turbine Fails To Start	1.278E-05	9.139E-08	2.138E-06	4.702E-05	1
Gearbox Fails To Start	1.278E-05	9.139E-08	2.138E-06	4.702E-05	1
Electric Pwr To Primary Valve Fails	6.2E-04	1.3E-05	2.0E-04	1.9E-03	1
Electric Power To Secondary Valve Fails	6.207E-04	1.329E-05	2.045E-04	1.879E-03	1
MPU Fails Low	7.409E-04	3.447E-05	3.260E-04	2.032E-03	1
HYD Main Pump Fails To Start	4.0E-04	4.683E-05	2.426E-04	1.257E-05	6
HYD Accumulator Has No Pressure At Start	4.475E-03	1.68E-04	1.680E-03	1.68E-02	2 ⁽¹⁾
HYD Reservoir Low/No Fluid At Start	4.475E-03	1.68E-04	1.680E-03	1.68E-02	2 ⁽¹⁾
Total Failures To Start	1.205E-02	3.322E-03	7.949E-03	3.342E-02	

⁽¹⁾ Converted hourly failure rate to a start failure by multiplication by exposure time (168 hours)

- | | | |
|-------------------|--------------|---|
| 1. 1987 APU Study | 4. OREDA | 6. Shuttle history of 0 failures is 882 demands in a maximum entropy log normal: $882 = (6 \text{ APU Starts/Missions} + 4 \text{ HPU Starts} + \text{HPU Hot Fire Tests}) \times 63$ |
| 2. NPPD-95 | 5. WASH-1400 | |
| 3. IEEE-STD-500 | | |

**Table 9.2-2: Component Failures Leading to APU System Start Failure
(Failures/Demand to Start)**

The @Risk Monte Carlo simulation (20,000 trials) for the failure to start probability distribution can be seen in Figure 9.2-5.

Figure 9.2-5: @Risk Simulation Results for Failure to Start Frequency

9.2.2.3 Turbine Overspeed and Hub Failure at Normal Speed

Figure 9.2-3 depicted the fault tree for a turbine overspeed condition which is an initiating event (TU). Prior distributions were obtained from the 1987 APU study. The following Table 9.2-3 provides the priors and the in-flight shuttle data used for the likelihood function. The posterior failure rates of these various components are listed in Table 9.2-5. To calculate the turbine overspeed frequency distribution based on fault tree logic, @Risk Monte Carlo simulation (20,000 trials) in a Lotus 1-2-3 spreadsheet was used.

Event	Prior (Log Normal) 5 Percentile	Prior (Log Normal) 95 Percentile	Shuttle Specific Data
PASVC	$8 \times 10^{-5}/D$	$7 \times 10^{-3}/D$	1/378 Demands ⁽¹⁾
TASVE	$1 \times 10^{-4}/hr$	$1 \times 10^{-2}/hr$	0/0 ⁽²⁾
TAMIL	$5 \times 10^{-5}/hr$	$5 \times 10^{-3}/hr$	1/796 hrs ⁽³⁾
PAPVE	$1 \times 10^{-4}/hr$	$1 \times 10^{-2}/hr$	1/292 hrs ⁽⁴⁾

⁽¹⁾ 2 Demand/APU \times 63 millions \times 3 APUs/Missions = 378 Demands

⁽²⁾ Failure of primary valve in mission SB-31 generated a demand on the secondary valve for a few minutes before the launch was scrubbed. The secondary valve did not fail.

⁽³⁾ 1.33 hours/APU \times 3 APUs/Missions \times 3 HPUs/APUs \times 63 Missions = 796 hours

⁽⁴⁾ 1.33 hours/APU \times 3 APUs/Missions \times 63 Missions = 292

Table 9.2-3: Priors and In-Flight Shuttle Data Used for the Likelihood Function

Shuttle in-flight failures used in the above table are described below in Table 9.2-4:

Car No.	Date	Flight No.	APU No.	Basic Event	Description
AC8511-01	08/06/84	41B	3	PASVC	GGVM Shut off valve leaking at a rate of 248 scim due to a broken poppet valve seat
AC0055-01	07/24/81	1	2	TAMIL	MPU #2 was inopr.; MPU resistance measured open
IFA STS-31-01	04/24/91	STS-31	1	PAPVE	Primary pulse control valve chipped (valve seat failure) allowing hydrazine to continue flowing. Secondary valve took over. Launch scrubbed.

Table 9.2-4: APU Turbine Component Failure Descriptions

The @Risk Monte Carlo simulation (20,000 trials) for the failure to start probability distribution can be seen in Figure 9.2-6.

Failure	Mean-Dist	5th percentile	Median	95th percentile
Primary Valve Fails Open During Pulsing	1.477E-03	6.852E-05	6.500E-04	4.054E-03
Magnetic Pickup Unit Fails Low	2.240E-03	1.747E-04	1.202E-03	6.127E-03
Secondary Valve Fails Open During Pulsing	9.602E-04	5.032E-05	4.484E-04	2.685E-03
Secondary Valve Fails To Close On Demand	2.631E-03	2.305E-04	1.504E-03	7.500E-03
Total Probability For Turbine Overspeed/Flight ⁽¹⁾	2.518E-04	6.733E-06	7.530E-05	9.403E-04

⁽¹⁾ All APUs included

Table 9.2-5: Posterior Failure Rate Data for Component Failures Leading to Turbine Overspeed

Figure 9.2-6: @Risk Simulation Results for Turbine Overspeed Frequency

Turbine hub failure at normal speed is not a significant contributor to the probability of this event. APU hub cracking is mapped and it has been shown by analysis (at JSC) that the likelihood of blade cracking propagating to a hub crack is very small. Furthermore, experiments on hub breakup show that even a notched or drilled hub requires a speed significantly above nominal to induce hub failure. NRPD-95 has a value of turbine failure of about 10⁻⁵/hr. for all modes combined, not just hub failure. Therefore, hub failure at normal speed is at least an order of magnitude less in probability than turbine overspeed.

9.2.2.4 Other Prior Distributions

The remaining prior distributions were taken directly from the 1987 study, were defined by MGL analysis, or were a result of our assessment. All of the prior distributions are in Table 9.2-8. The two letter descriptions were discussed previously in Table 9.1-1.

Some events, such as an APU OK state, are not in this table since they are not incorporated into the quantification of the scenarios. For some inputs only a mean value was estimated.

9.2.2.5 Large Exhaust Gas or Hydrazine Leak (LL)

This prior distribution was generated by breaking the event down into its three major contributors: tank/pipe rupture; hot gas leak; and isolation valve leak/rupture. For both the tank/pipe rupture and hot gas leak modes, a failure rate range based on variability was defined from Nonelectronic Parts Reliability Data 1995 (NPRD-95). The median value from this range was multiplied by the 1.5 hour total APU run time for ascent and descent, and times 3 for the number of APUs, to get a point estimate failure probability for the system per flight.

A failure rate range was also defined for the isolation valve leak from NPRD-95. In this case, the range was treated as defining the 5th and 95th percentiles of a lognormal distribution which was used as the prior in a Bayesian update. The evidence data consisted of two incidents in which cracks were found in APU and HPU isolation valves which did not propagate to a through crack of the valve casing that separates the flow path from the solenoid cavity. The concern here is that when hydrazine comes in contact with the solenoid it could decompose and rupture the isolation valve causing an unisolatable leak. These were not "hard" failures, but are valid evidence of failure potential. They were treated, therefore, by a near miss methodology as follows.

The solution was to treat the data according to the probability that these incidents might propagate into "hard" failures on other flights, where the circumstances might be different. This is a matter of judgment on the part of the analyst. In this case, since these incidents were determined to have a low probability of propagating to "hard" failures, the evidence was treated as having a 5% probability of representing 1 failure in 72000 hours (a lower bounding estimate of the total exposure time for APU and HPU isolation valves), and a 95% chance of representing zero failures in 72000 hours. The overall posterior distribution was then generated by taking a weighted average (according to the previously determined weights) of the two possible posterior distributions.

The following Table 9.2-6 shows the prior distributions.

	5 Percentile	95 Percentile	Exposure Time
Tank/Pipe Replace (prior only)	$10^{-9}/\text{hr.}$	$10^{-7}/\text{hr.}$	$63 \times 3 \times 1.5 \text{ hrs.}$
Hot Gas Leak (prior only)	same	same	same
Isolation Valve (prior)	$1 \times 10^{-7}/\text{hr.}$	$10^{-7}/\text{hr.}$	72000 hrs.
Isolation Valve (updated)	$1.2 \times 10^{-9}/\text{hr.}$	$8 \times 10^{-8}/\text{hr.}$	

Table 9.2-6: Distributions for Large Hydrazine or Exhaust Gas Leak

The data used in the isolation valve analysis is anecdotal. We are aware of a crack discovered in an APU isolation valve before STS-1. We are also aware of a recent crack found in an HPU, that when tested post-flight, leaked hydrazine into the solenoid cavity.

9.2.2.6 Leak in One APU Unit (LK)

A Bayesian analysis was not performed for hydrazine leaks. Shuttle in-flight experience was used to generate a point estimate of the rate at which hydrazine leaks develop. This rate was based on the data in Table 9.2-7, showing 6 leaks in 31752 hours of exposure time (63 flights x 3 APUs x assumed average flight duration of 7 days x 24 hours/day). To generate a probability distribution, the point estimate was assumed to be the mean value of a maximum entropy ($\sigma = 1.0$) lognormal distribution.

This assessment was based on a number of assumptions. We assume that the APUs are leak checked and only launched if found acceptable. Hydrazine leaks may occur at any time during the mission. Exposure to hydrazine may cause leaks even without the system operating. However, the leaks may only be revealed when the system is operating.

CAR	IFAS	Flight	Date	APU #	Description
**		1CR	04/12/81	1	Hyd. leak from fuel pump cover
**		1CR	04/12/81	2	Hyd. leak at fuel pump inlet fitting
09F012-01		STS-9	11/28/83	1	Hyd. leak from cracked fuel injector tube *
09F013-01		STS-9	11/28/83	2	Hyd. leak from cracked fuel injector tube *
	X	STS-51F	07/29/85	1	Hyd. leak into gearbox ***
	X	STS-45	03/24/92	1	Hyd. leak into gearbox ****

* APU failed due to the hydrazine leak

** Data from APU subsystem manager database

*** This leak was detected by increased pressure in the gearbox and the start of APU2 was delayed until $V_{rel}=10k$

**** On this same mission APU2 leaked oil / GN2 from the gearbox to the aft compartment

X	STS-45	03/24/92	2	Lube oil / GN2 leak from gearbox through turbine seal
---	--------	----------	---	---

Table 9.2-7: Hydrazine Leakage History on STS

The APUs contain many potential leakage sites. The data simply indicates that some have already occurred. Others have yet to become active. Because of this, we do not necessarily view corrective actions to individual leakage sites as reducing the predicted frequency of leaks. Rather, we treat past leaks as indicative of future rates.

9.2.2.7 Leak Detected Confirmed (LD and LA)

The first four leaks above were not detected during the mission. The last two leaks were detected by increased pressure in the gearbox. We assess the probability of leak detection, and APU delayed start, as 1 in 6 based on this data. Since no action has ever been taken on leaks during ascent, this indicated zero probability of leak detection on ascent. The use of zero detected and confirmed leaks during ascent avoids the paradox associated with a groundrule of this study. The groundrule is that aborts are assumed to be successful. Therefore, a failure that leads to an APU induced abort actually reduces the calculated risk. Flight rules call for an APU shutdown and an MDF abort if a single hydrazine leak is detected and confirmed. Two such leaks lead to a PLS abort. To avoid having to treat leaks as successes, we assume no detection on ascent.

9.2.2.8 Own Leakage/Other Leakage Induced Failures (LF and LO)

These prior distributions were defined through a data based assessment utilizing the 1987 study, PRACA records, hazards analyses and an understanding of the phenomenology of the failure modes. Specifically, the mean value for own leakage induced failure during descent was defined from the data shown in Table 9.2-7, indicating 2 APU failures in 6 leaks. The mean values for the other three conditional probabilities were then derived by maintaining the ratios between the values from the 1987 study and scaling them to the 0.3 defined for LF (des). This produced values of 0.2 for LO (des), 0.1 for LF (asc) and 0.008 for LO (asc).

An assessment of the applicable distributions was then made for the four probabilities. In the case of LF (des), an upper 4σ bound of 0.5 was defined for the distribution, assuming a normal distribution. For LF (asc), an upper 4σ bound of 0.2 was defined, again assuming a normal distribution. And for LO (asc), given the small value of the mean (0.008), a lognormal distribution was judged to be more applicable, as greater uncertainty is expected for small defined values. For this distribution, an Error Factor of 5 was assumed. For the normal distributions, values below zero should be truncated when using the defined distributions.

In the case of LO (des), data is available for a Bayesian update of the assessed value, so the distribution needs to be defined much broader than for the other cases (where the posterior was being defined directly), in order to overlap the likelihood function of the evidence. The prior distribution was defined using 0.2 as the mean value for a maximum entropy ($\sigma = 1.0$) lognormal distribution. This was updated with evidence of 0 APU failures in 12 APUs exposed to other units leaking. Note the following for each leak: There are 2 opportunities for another APU to fail owing to the leak and 1 opportunity for itself to fail. For 6 leaks, there are $6 \times 2 = 12$ opportunities for failure of another APU owing to the leak. None has occurred. The mean value of LO (des) drops to 0.07 given this evidence. The result of the Bayesian analysis is shown graphically in Figure 9.2-7.

9.2.2.8.1 Sensitivity Treatment of APU 3 Failures

The previous section described the baseline treatment of these conditional probabilities. In the case of APU failure due to another units leakage (LO), it could be argued that APU 3 needs to be treated differently. APU 3 is physically located about 6' (on the starboard side) from the other two units, which are only a few inches apart. Thus, we believe that there is a lesser chance of APU 3 failing due to leakage in unit 1 than an APU 2 failure.

Our fault tree treatment is conservative in that each APU is considered "identical". It does not capture "full credit" for cases in which the actual APU 3 is leaking, which would lead to reduced LO conditional probabilities for both of the other units.

One way of capturing this logic would be to drop the LO conditional probability to a lower value for all of the APU 3 terms. In order to illustrate the affect this would have on the results, two of the most significant leakage fault trees have been quantified, at the mean value, for these two cases. For the baseline case:

- OK Initial State on Entry, Seq. 16 4.159E-04
- OK Initial State on Entry, Seq. 17 1.700E-04

For the sensitivity case, using as an example 0.01 as the unit 3 LO (des) probability:

- OK Initial State on Entry, Seq. 16 2.479E-04
- OK Initial State on Entry, Seq. 17 6.214E-05

Figure 9.2-7: Bayesian Analysis Result for LO (Des)

9.2.2.9 Unsuccessful Single APU/HYD Unit Reentry, TDEM and Landing (UL)

This prior distribution was generated according to judgment weighted by several factors. First, such landings are regularly simulated successfully in training. To the extent that the simulator is successful in characterizing the vehicle response given a single APU/HYD unit, this gives credence to a very high probability of success. However, this is tempered by the fact that a single APU/HYD unit landing is not certified by the program. Unfavorable weather conditions coupled with slower control rates could potentially indicate a much higher probability of a failed landing. The assessment team has translated this into a range of 80% to 100% for a successful landing. It was also determined that the lack of a strong conviction for any values within this range warranted a uniform distribution for this range.

ID	$\beta\delta$ -factor	PRIOR (/hr or /demand)			
		Mean	Median	5th	95th
CE	N/A	0.5 (LL) 0.88 (TU)			
CF	Calculated	using applicable	MGL method	formulas	
CL	Calculated	using applicable	MGL method	formulas	
CO	N/A	1			
CS	Calculated	using applicable	MGL method	formulas	
HB	N/A	0.9			
ID	N/A	9.150E-03/hr	6.956E-03/hr	3.059E-03/hr	2.174E-02/hr
IF	N/A	9.150E-03/hr	6.956E-03/hr	3.059E-03/hr	2.174E-02/hr
IS	N/A	1.205E-02/start 9.150E-03/hr	7.949E-03/start 6.956E-03/hr	3.322E-03/start 3.059E-03/hr	3.342E-02/start 2.174E-02/hr
LA	N/A	0.0 (asc) 0.1667 (des)			
LD	N/A	0.0 (asc) 0.1667 (des)			
LF OS	N/A see posterior	1.0E-01 (asc)	1.0E-01 (asc)	6.0E-02 (asc)	1.4E-01 (asc)
LK	N/A	1.890E-04/hr	1.152E-04/hr	2.224E-05/hr	5.971E-04/hr
LL	N/A	2.8E-05			
LO LS	N/A	8.0E-03 (asc) 2.0E-1 (des)	5.0E-03 (asc) 1.2E -01	9.9E-04 (asc) 2.3E-02	2.5E-02 (asc) 6.36-01
LU	N/A	1.0 (asc) 0.8333 (des)			
LZ	N/A	1.0 (asc) 0.8333 (des)			
SI	N/A	1.0 (LL) 0.88 (TU)			
SR	N/A	0.98795/start	0.99205/start	0.99668/start	.96658/start
TU	N/A	2.518E-04	7.530E-05	6.733E-06	9.403E-04
UL	N/A	0.1	0.1	0.01	0.19

Table 9.2-8: Prior Probability Distributions

9.3 Posterior Distributions for APU/HYD/WSB Failure to Run and Start (Ascent and Descent)

Posterior distributions were determined by updating the prior distributions with available data using Bayes' Theorem. Data points not only include failures of the APU and HYD systems, but also the Water Spray Boiler (WSB). WSB failures, which lead to an APU shutdown and subsequent hydraulic loss, were not examined in the previous 1987 study, so data was extracted for these failures from all Shuttle flights. Other data points pertaining to these failures were taken from post-Challenger flights (1988) to STS-65 (flight 63, 7/8/94).

9.3.1 Water Spray Boiler Failures Used in the Analysis

9.3.1.1 03-23-1982 STS-3

WSB 3 freeze-up during ascent. APU temperature message at lift-off plus 4 minutes 23 seconds reported lube oil temperature climbing. Controller B was then selected, but the temperature continued to rise. APU 3 shutdown at liftoff plus 8 minutes, and the right main engine went into hydraulic lock-up. After ascent, at lift-off plus one hour, controller A was then selected; both controllers appeared to be working properly. The maximum APU 3 lube oil temperature was 330°F, and the maximum bearing temperature was between 355 and 360°F. FCS checkout tested both controllers, and both were 100% nominal. This situation was also seen on STS-1 and 2.

9.3.1.2 08-02-1991 STS-43

WSB 2 failed to provide cooling to the auxiliary power unit 2 lube oil throughout the mission. APU 2 (serial number 208) has been involved in lube oil over temperatures during seven of its eight flights. The WSB did not cool the lube oil on controller A following ascent. The crew switched to controller B when the lube oil return temperature reached approximately 297°F. The APU was operated an additional 1.5 minutes on the B controller, and still no cooling was observed. The APU was shutdown when the lube oil return temperature reached 323°F. The WSB is designed to control the lube oil temperature to 250 ± 2 °F.

An extended flight control system check-out using APU 2 was performed and the WSB was not cooling on either controller. The APU ran for 11 minutes during check-out, then was shutdown and declared lost. During descent, APU 2 was activated at terminal area energy management due to the lack of cooling. The lube oil reached 259°F before shutdown after wheel stop with no evidence of cooling. The spray boiler may not have had the chance to function, however, as this temperature is close to the 250°F control limit.

9.3.1.3 09-12-1992 STS-47

During ascent, WSB 3 (serial number 15) exhibited no cooling until just prior to the early shutdown of APU 3. The lube oil temperature reached approximately 292°F when the controller was switched from A to B. The lube oil temperature continued to rise to 311°F when the decision was made to shut down APU 3 early. Prior to APU 3 deactivation, the WSB GN2 regulator outlet pressure indicated that spraying had begun. WSB 3 continued to spray until the spray logic was turned off (1 minute 43 seconds). Steady-state cooling was never achieved on either controller since the lube oil temperature was not allowed to drop to 250°F prior to boiler spray logic shutdown.

APU 3 was selected to perform FCS checkout. The checkout time frame was extended to verify WSB 3 cooling performance. The extended run time demonstrated satisfactory cooling on both controllers (3 minutes 42 seconds for B, then 1 minute 47 seconds for A). WSB lube oil and hydraulic cooling performance during entry was nominal.

Spray bar freeze up remains the most likely cause of the WSB failure, although it could have resulted from spray valve or controller failures.

9.3.1.4 01-13-1993 STS-54

During ascent, WSB 3 (serial number 15) exhibited no cooling until just after the early shutdown of APU 3. The lube oil return temperature reached approximately 295°F when the WSB was switched from controller A to B. The lube oil return temperature reached 315°F when the decision was made to shut down APU 3 early. After deactivation, the WSB 3 GN2 regulator pressure indicated that spraying had started. WSB 3 continued to spray until the spray logic was turned off (approximately 35 seconds). Steady-state cooling was never achieved on controller A or B.

APU 3 was selected to perform the FCS check-out. The FCS checkout time frame was extended to verify WSB cooling performance. The extended APU 3 run-time demonstrated satisfactory cooling on both controllers, with a minor overcool observed on controller A. APU performance using controller B during entry was nominal.

Spray bar freeze-up remains the most probable cause of this cooling problem. However, data analysis also indicated that the local pressure at the vent nozzle of system 3 during ascent was somewhat higher than the other two systems. This high pressure is due to the location of the system 3 vent nozzle outlet (it is farther forward than the system 1 and 2 vent nozzle outlets). System 3's pressure remains higher than the other systems for the first 80 seconds of ascent, which is believed to be a contributing factor toward the repeated freeze-up anomalies observed in system 3.

Spray bar freeze-up conditions occur when the water triple point condition is met inside the heat exchanger. In the worst case freeze-ups, it is postulated the water triple point was reached prior to MECO. By increasing the water preload, the duration of heat exchanger tube bundle/water preload contact can be increased, which will reduce the likelihood/severity of spray bar freeze-up by maintaining pressure above the water triple point past MECO. The ongoing spray bar freeze-up test analysis indicates that the severity of the bar freeze-up at water triple point conditions may inversely correlate to the amount of water in the boiler. Therefore, KSC has been requested to preload WSB 3 to 5 +/-0.1 lbs. of water (normal is 3.75 +/-0.24 lbs.).

9.3.2 Possible Water Spray Boiler Failure

It is unknown whether or not this reported problem is an actual failure or not. For this analysis, it has not been considered as an actual data point.

9.3.2.1 04-29-1985 STS-51B

Shortly after MECO, the backup flight system indicated an APU 3 lube oil over temperature condition. The crew switched from controller A to B at a lube oil temperature of 320°F. The temperature continued to rise for an additional 20 seconds and reached a peak of 337°F. The crew was instructed to shutdown APU 3 to avoid reaching the lube oil temperature limit of 355°F. The

APU 3 lube oil temperature had decreased to approximately 320°F at shutdown, indicating that water spray boiler controller 3B was properly controlling lube oil cooling. Post flight testing has been unsuccessful in duplicating this problem. The A controller was replaced.

9.3.3 Possible Hydraulic System Failure

9.3.3.1 02-28-1990 STS-36

Appendix C contains descriptions from PRACA records and hazards analyses of a "near-miss" failure involving a flex hose rupture in the hydraulic system.

9.3.4 Updated Posterior Distribution

The four WSB failures in Section 9.3.1 were counted as APU shutdowns. All three of these failures occurred during the ascent phase. One of these failures was permanent and caused a late restart of the APU during the entry phase, but was not counted as a failure during the reentry phase because it successfully completed its mission. For reentry, the hydraulic system rupture is counted as a possible APU/HYD unit failure in the update. The methodology for this type of update is described in section 9.2.2.5, where in this case the weighting uses 50% for 1 failure and 50% for zero failures. In the data column, if no data is available (i.e., no "trials"), an N/A for not applicable is placed in the box.

The common cause failure calculations for the MGL formulas used the ID and IS values, assuming 20 minutes for ascent and 1 hour for descent. The MGL calculations also used generic β and γ values of 0.1 and 0.27, respectively.

Table 9.3-1 lists the data and corresponding posterior probability distributions for the basic events. The means from these data distributions are used as basic event probability distribution inputs for use in SAIC's CAFTA model.

ID	Data	POSTERIOR (/hr or /demand)			
		Mean	Median	5th	95th
CE	N/A	0.5 (LL) 0.88 (TU)			
CF	Calculated	using applicable	MGL method	formulas	
CL	Calculated	using applicable	MGL method	formulas	
CO	N/A	1			
CS	Calculated	using applicable	MGL method	formulas	
HB	N/A	0.9			
ID	4/63 hrs	2.078E-02/hr	1.931E-02/hr	1.030E-02/hr	3.622E-02/hr
IF	4/63 hrs	2.078E-02/hr	1.931E-02/hr	1.030E-02/hr	3.622E-02/hr
IS	0/189 starts 0 to 1/252 hrs	5.677E-03/start 6.479E-03/hr	4.448E-03/start 5.614E-03/hr	1.433E-03/start 2.369E-03/hr	1.194E-02/start 1.219E-02/hr
LA	N/A	0.0 (asc) 0.1667 (des)			
LD	N/A	0.0 (asc) 0.1667 (des)			
LF	N/A	1.0E-01 (asc)	1.0E-01 (asc)	6.0E-02 (asc)	1.4E-01 (asc)
OS	2/6 Leaks	3.0E-01 (des)	3.0E-01 (des)	2.2E-01 (des)	3.8E-01 (des)
LK	N/A	1.890E-04/hr	1.152E-04/hr	2.224E-05/hr	5.971E-04/hr
LL	N/A	2.8E-05			
LO	N/A	8.0E-03 (asc)	5.0E-03 (asc)	9.9E-04 (asc)	2.5E-02 (asc)
LS	0/12 Leaks	7.0E-02 (des)	5.3E-02 (des)	1.4E-02 (des)	1.6E-01 (des)
LU	N/A	1.0 (asc) 0.8333 (des)			
LZ	N/A	1.0 (asc) 0.8333 (des)			
SI	N/A	1.0 (LL) 0.88 (TU)			
SR	N/A	0.99432/start	0.99555/start	0.99857/start	0.98806/start
TU	N/A	6.962E-05	5.501E-05	1.974E-05	1.672E-04
UL	N/A	0.1	0.1	0.01	0.19

Table 9.3-1: Posterior Probability Distributions

9.4 APU/HYD/WSB ANALYSIS FOR SSME MODEL

The APU failure probability assessment for the SSME model being produced at SAIC is somewhat different than that for this APU model. First, the exposure time is at most 520 seconds instead of 20 minutes. Second, only 1 of the WSB failures is relevant (STS-3) for purposes of calculating engine hydraulic lockup probability.

We started with the prior distribution for IF, given in Table 9.2-6, multiplied against the 520 second time period to produce a probability of failure (POF). We updated with 1 failure in 63 missions to produce a posterior. This represents the case in which the WSB failure and APU shutdown continues to be representative of how MCC and crew will react to a WSB failure. Since STS-3, other WSB failures have not resulted in a call for APU shutdown before MECO. Flight Rules indicate that APU shutdowns should occur post-MECO.

We also updated the same prior distribution for IF with 0 failures in 63 missions. This is like saying that STS-3 never happened and gives an overly optimistic assessment. An accurate assessment lies somewhere in between. We used a weighted average of each posterior where each update was given equal probability of being the correct one.

The Bayesian calculation is shown in Figure 9.4.1.

The MGL method was used to calculate the probability of loss of hydraulics for a single engine and for two engines as follows:

1 Engine Goes into Hydraulic Lockup via Hydraulic Failure During Ascent

$$Q = 3(1-\beta)q_{APU} = 3(1-0.1)1.5E-04 = 4E-04$$

2 Engines Go into Hydraulic Lockup via Hydraulic Failure During Ascent (First 5.6 minutes)

$$Q = \frac{3}{2}(1-\gamma)\beta(336/520)q_{APU} + 3(1-\beta)^2(336/520)^2 q_{APU}^2 = \\ \frac{3}{2}(1-0.27)0.1(336/520)1.5E-04 + 3(1-0.1)^2(336/520)^2 1.5E-04 = 1E-04$$

Figure 9.4-1: APU Failures on Ascent Causing SSME Hydraulic Lockup (POF)

Event Sequence Diagram of a Large Gas/Hydrazine Leak

Assumption

Because of the low frequency of severe exhaust gas leak, we have categorized this event with the unisolatable leaks. Separate categorization of the events would insignificantly change the estimated risk.

EVENT TREE OF A LARGE GAS/HYDRAZINE LEAK

LL	CE	SI	SEQUENCE NUMBER	SEQUENCE DESCRIPTION	STATE
			1	LL	OK
			2	LLSI	LOV
			3	LLCE	LOV

/

**Event Sequence Diagram for
APU/HYD Turbine Overspeed
and/or Hub Failure**

Assumption

Other independent APU/HYD unit failures coupled with this initiating event is negligible.

EVENT TREE OF APU/HYD TURBINE OVERSPEED AND/OR BREAKUP

**Event Sequence Diagram for OK Start
Without a Hydrazine Leak During Ascent**

EVENT TREE OF AN OK START WITHOUT A HYDRAZINE LEAK DURING ASCENT

/

**Fault Tree For Sequence 2 MDFU
State From OK Start Without A
Hydrazine Leak During Ascent**

Fault Tree For Sequence 3 PLSR2U State From OK Start Without A Hydrazine Leak During Ascent

**Fault Tree For Sequence 4 LOV
State From OK Start Without A
Hydrazine Leak During Ascent**

EVENT TREE OF APU/HYD HYDRAZINE LEAK STATE DURING ASCENT

LK	3L	LU	1F	2F	3F	SEQUENCE NUMBER	DESCRIPTION	SEQUENCE STATE
						1	LK	MDFR
						2	LK2F	PLSRU
						3	LK2F3F	PLSR2U
						4	LK1F	MDFU
						5	LK1F2F	PLS2U
						6	LK1F2F3F	LOV
						7	LKLU	IL0
						8	LKLU2F	MDFRU
						9	LKLU2F3F	PLSR2U
						10	LKLU1F	MDFU
						11	LK1F2F	PLS2U
						12	LK1F2F3F	LOV
						13	LK3L	PLS3R
						14	LK3L1F	PLS2RU
						15	LK3L1F2F	PLSR2U
						16	LK3L1F2F3F	LOV
						17	LK3LLU	ILT
						18	LK3LLU1F	MDF2RU
						19	LK3LLU1F2F	PLSR2U
						20	LK3LLU1F2F3F	LOV

**Fault Tree for Sequence 1: MDFR State
From a Hydrazine Leak State During Ascent
one APU/HYD Unit has a Detected/Confirmed Leak
and is Recoverable**

**Fault Tree for Sequence z: PLSRU End State
From a Hydrazine Leak During Ascent,
one APU/HYD Unit has a Detected/Confirmed Leak
and is Recoverable, one Other APU/HYD Unit Fails**

**Fault Tree for Sequence 2: PLSRU End State
From a Hydrazine Leak During Ascent,
one APU/HYD Unit has a Detected/Confirmed Leak
and is Recoverable, one Other APU/HYD Unit Fails
(Continued)**

**Fault Tree for Sequence 3: PLSR2U End State
From a Hydrazine Leak During Ascent, one APU/HYD
Unit has a Detected/Confirmed Leak and is Recoverable,
Both Other APU/HYD Units Fail**

**Fault Tree for Sequence 4: MDFU End State
From a Hydrazine Leak During Ascent, one
APU/HYD Unit has a Detected/Confirmed Leak
and Subsequent Failure**

**Fault Tree for Sequence 5: rLS2U End State From
a Hydrazine Leak During Ascent, one APU/HYD Unit
has a Detected/Confirmed Leak and Subsequent Failure,
one Other APU/HYD Unit Also Fails**

Fault Tree for Sequence 5: PLS2U End State From a Hydrazine Leak During Ascent, one APU/HYD Unit has a Detected/Confirmed Leak and Subsequent Failure, one Other APU/HYD Unit Also Fails (Continued)

Fault Tree for Sequence :: LOV End State From a Hydrazine Leak During Ascent, one APU/HYD Unit has a Detected/Confirmed Hydrazine Leak and all Three APU/HYD Units Have Failures

**Fault Tree for Sequence 7: IL0 End State From Hydrazine
Leak During Ascent, one APU/HYD Unit has an Undetected
Leak and no APU/HYD Units Have Failures**

**Fault Tree for Sequence σ: MDFRU End State
From a Hydrazine Leak During Ascent,
one APU/HYD Unit has an Undetected Leak and is
Recoverable, one Other APU/HYD Unit Fails**

**Fault Tree for Sequence δ : MDFRU End State
From a Hydrazine Leak During Ascent,
one APU/HYD Unit has an Undetected Leak and is
Recoverable, one Other APU/HYD Unit Fails**

**Fault Tree for Sequence 8: MDFRU End State
From a Hydrazine Leak During Ascent,
one APU/HYD Unit has an Undetected Leak and is
Recoverable, one Other APU/HYD Unit Fails**
(Continued)

**Fault Tree for Sequence 9: PLSR2U End State
From a Hydrazine Leak During Ascent, one APU/HYD
Unit has an Undetected Leak and is Recoverable, Both Other
APU/HYD Units Fail**

**Fault Tree for Sequence 10: MDFU End State From
a Hydrazine Leak During Ascent, one APU/HYD Unit has
an Undetected Leak and Subsequent Failure, no Other
APU/HYD Units Fail**

**Fault Tree for Sequence 11: PLS2U End State From
a Hydrazine Leak During Ascent, one APU/HYD Unit has an
Undetected Leak and Subsequent Failure, one Other APU/HYD
Unit Also Fails**

**Fault Tree for Sequence 11: PL\\$2U End State From
a Hydrazine Leak During Ascent, one APU/HYD Unit has an
Undetected Leak and Subsequent Failure, one Other APU/HYD
Unit Also Fails (Continued)**

Fault Tree for Sequence 1z. LOV End State From a Hydrazine Leak During Ascent, one APU/HYD Unit has an Undetected Leak and all Three APU/HYD Units Fail

Fault Tree for Sequence 13: PLS3R End State From a Hydrazine Leak During Ascent, all Three APU/HYD Units Have Detected/Confirmed Leaks and no Failures

Fault Tree for Sequence 14: PLS2RU End State From a Hydrazine Leak During Ascent, all Three APU/HYD Units Have Detected/Confirmed Leaks and one APU/HYD Unit Fails

Fault Tree for Sequence 14: PLS2RU End State From a Hydrazine Leak During Ascent, all Three APU/HYD Units Have Detected/Confirmed Leaks and one APU/HYD Unit Fails
(Continued)

Fault Tree for Sequence 15: PLSR2U End State From Hydrazined Leak During Ascent, all Three APU/HYD Units Have Detected/Confirmed Leaks, two APU/HYD Units Fail

Fault Tree for Sequence 12: PLSR2U End State From Hydrazined Leak During Ascent, all Three APU/HYD Units Have Detected/Confirmed Leaks, two APU/HYD Units Fail
(Continued)

Fault Tree for Sequence 15: PLSR2U End State From Hydrazined Leak During Ascent, all Three APU/HYD Units Have Detected/Confirmed Leaks, two APU/HYD Units Fail (Continued)

Fault Tree for Sequence 15: PLSR2U End State From Hydrazined Leak During Ascent, all Three APU/HYD Units Have Detected/Confirmed Leaks, two APU/HYD Units Fail (Continued)

**Fault Tree for Sequence 16: LOV End State From Hydrazine
Leak During Ascent, all Three APU/HYD Units Have Detected/
Confirmed Leaks and all Three APU/HYD Units Fail**

**Fault Tree for Sequence 16: LOV End State From Hydrazine Leak During Ascent, all Three APU/HYD Units Have Detected/Confirmed Leaks and all Three APU/HYD Units Fail
(Continued)**

Fault Tree for Sequence 17: ILT End State From a Hydrazine Leak During Ascent, all Three APU/HYD Units Have Undetected Leaks and no Failures

Fault Tree for Sequence 18: MDF2RU End State From a Hydrazine Leak During Ascent, one APU/HYD Unit Fails

**Fault Tree for Sequence 18: MDF2RU End State
From a Hydrazine Leak During Ascent, one
APU/HYD Unit Fails (Continued)**

Fault Tree for Sequence 19: PLSR2U End State From a Hydrazine Leak During Ascent, all Three APU/HYD Units Have Undetected Leaks, two APU/HYD Units Fail

Fault Tree for Sequence 19: PLSR2U End State From a Hydrazine Leak During Ascent, all Three APU/HYD Units Have Undetected Leaks, two APU/HYD Units Fail (Continued)

Fault Tree for Sequence 19: PLR2U End State From a Hydrazine Leak During Ascent, all Three APU/HYD Units Have Undetected Leaks, two APU/HYD Units Fail (Continued)

Fault Tree for Sequence 19: PLSR2U End State From a Hydrazine Leak During Ascent, all Three APU/HYD Units Have Undetected Leaks, two APU/HYD Units Fail (Continued)

Fault Tree for Sequence 20: LOV End State From a Hydrazine Leak During Ascent, all Three APU/HYD Units Fail

**Fault Tree for Sequence 20: LOV End State From a Hydrazine Leak During Ascent, all Three APU/HYD Units Fail
(Continued)**

**Event Sequence Diagram For
An OK Initiating State During
Reentry, TAE/M and Landing**

EVENT TREE OF OK STATE DURING REENTRY, TAEM AND LANDING

/

Fault Tree for Sequence 4 LOV: Two APU/HYD Units Fail Without Hydrazine Leaks and Single APU/HYD Unit Reentry, TAEM and Landing is Unsuccessful

Fault Tree for Sequence 4 LOV: Two APU/HYD Units Fail Without Hydrazine Leaks and Single APU/HYD Unit Rentry, TAEM and Landing is Unsuccessful
(Continued)

**Fault Tree for Sequence 5 LOV: All Three
APU/HYD Units Fail Without Hydrazine
Leaks During Reentry, TAEM and Landing**

Fault Tree for Sequence 9 LOV: One APU/HYD Unit Leaks and is Shutdown, One Other Unit Fails, Restart of Shutdown APU/HYD Unit is Unsuccessful, and Single APU/HYD Unit Reenty, TAEM and Landing is Unsuccessful

**Fault Tree for Sequence 11 LOV: One APU/HYD
Unit Leaks and is Shutdown, Remaining Units
Both Fail, Restart of Shutdown APU/HYD Unit
is Successful, but Single Unit Reentry, TAEM and
Landing is Unsuccessful**

**Fault Tree for Sequence 12 LOV: One APU/HYD
Unit Leaks and is Shutdown, Both Remaining
APU/HYDs Have Failures, and Restart of APU/HYD
Unit 1 is Unsuccessful**

**Sequence 16 LOV: One APU/HYD Unit
Leaks Undetected, Two APU/HYD
Units Fail and Single APU/HYD Unit
Reentry, TAE/M and Landing is Unsuccessful**

Sequence 16 LOV: One APU/HYD Unit Leaks Undetected, Two APU/HYD Units Fail and Single APU/HYD Unit Reentry, TAEM and Landing is Unsuccessful

(Continued)

**Sequence 17 LOV: One APU/HYD
Unit Leaks Undetected and
all Three APU/HYD Units Fail**

Fault Tree for Sequence 21 LOV: All Three APU/HYD Units Leak, APU/HYD Unit 1 is Shutdown, One Other Unit Fails, Restart of Shutdown Unit is Unsuccessful and Single APU/HYD Unit Loading is Unsuccessful

**Fault Tree for Sequence A, LOV: All Three
APU/HYD Units Leak, APU/HYD Unit 1 is Shutdown, One
Other Unit Fails, Restart of Shutdown Unit is Unsuccessful
and Single APU/HYD Unit Loading is Unsuccessful**
(Continued)

Fault Tree for Sequence 21 LOV: All Three APU/HYD Units Leak, APU/HYD Unit 1 is Shutdown, One Other Unit Fails, Restart of Shutdown Unit is Unsuccessful and Single APU/HYD Unit Loading is Unsuccessful (Continued)

Fault Tree for Sequence 23 LOV: All Three APU/HYD Units Leak, APU/HYD Unit 1 is Shutdown, Both Remaining APU/HYD Units Fail, the Shutdown Unit is Restarted, but the Single APU/HYD Unit Reentry, TAEM and Landing is Unsuccessful

**Fault Tree for Sequence 23 LOV: All Three
APU/HYD Units Leak, APU/HYD Unit 1 Shutdown, Both
Remaining APU/HYD Units Fail and Restart of
Shutdown APU/HYD Unit is Unsuccessful
(Continued)**

Fault Tree for Sequence 24 LOV: All Three APU/HYD Units Leak, APU/HYD Unit 1 is Shutdown, Both Remaining APU/HYD Units Fail and Restart of Shutdown APU/HYD Unit is Unsuccessful

**Fault Tree for Sequence 24 LOV: All Three
APU/HYD Units Leak, APU/HYD Unit 1 is Shutdown, Both
Remaining APU/HYD Units Fail and Restart of
Shutdown APU/HYD Unit is Unsuccessful
(Continued)**

**Fault Tree for Sequence 28 LOV: All Three
APU/HYD Units Leak Undetected,
Two APU/HYD Units Fail, Single APU/HYD
Unit Landing Unsuccessful**

Fault Tree for Sequence 28 LOV: All Three APU/HYD Units Leak Undetected, Two APU/HYD Units Fail, Single APU/HYD Unit Landing Unsuccessful (Continued)

**Fault Tree for Sequence 28 LOV: All Three
APU/HYD Units Leak Undetected,
Two APU/HYD Units Fail, Single APU/HYD
Unit Landing Unsuccessful (Continued)**

**Fault Tree for Sequence 28 LOV: All Three
APU/HYD Units Leak Undetected,
Two APU/HYD Units Fail, Single APU/HYD
Unit Landing Unsuccessful (Continued)**

**Fault Tree for Sequence 29 LOV: All Three
APU/HYD Units Leak Undetected and all Three
APU/HYD Units Fail**

**Fault Tree for Sequence 29 LOV: All Three
APU/HYD Units Leak Undetected and all Three
APU/HYD Units Fail (Continued)**

**Event Sequence Diagram
for a PLRSRU State During
Reentry, TAE_M and Landing**

EVENT TREE OF A PLSRU INITIATING EVENT DURING REENTRY, TAEM AND LANDING

RU	UR	3F	UL	SEQUENCE NUMBER	SEQUENCE DESCRIPTION	STATE
				1	RU	OK
				2	RU3F	OK
				3	RU3FUL	LOV
				4	RUUR	OK
				5	RUURUL	LOV
				6	RUUR3F	LOV

/

**Fault Tree For Sequence 3 LOV
State With PLSRU Initiating Event
During Reentry, TAEM and Landing**

**Fault Tree For Sequence 5 LOV
State With PL SRU Initiating Event
During Reentry, TAEM and Landing**

**Fault Tree For Sequence 6 LOV
State With PL SRU Initiating Event
During Reentry, TAEM and Landing**

Event Sequence Diagram of APU/HYD Hydrazine Leaks During Ascent

**Event Sequence Diagram of APU/HYD
Hydrazine Leaks During Ascent (Continued)**

**Event Sequence Diagram for
a PL5R2U State During Reentry,
TAEM and Landing**

Assumption
Assuming remaining
APU(HY) unit restarted
before reentry

EVENT TREE OF A PLSR2U INITIATING EVENT DURING REENTRY, TAEM AND LANDING

2U	3F	UL	SEQUENCE NUMBER	SEQUENCE DESCRIPTION	STATE
			1	2U	OK
			2	2UUL	LOV
			3	2U3F	LOV

/

**Fault Tree For Sequence 2 MDFU
State From OK Start Without A
Hydrazine Leak During Ascent**

**Fault Tree For Sequence 3 LOV
State With PL SR2U Initiating Event
During Reentry, TAEM and Landing**

**Event Sequence Diagram of a PLS3R
State During Reentry, TAEM and Landing**

EVENT TREE OF A PLS3R INITIATING EVENT DURING REENTRY, TAEM AND LANDING

3L	2F	3F	UR	UL	SEQUENCE NUMBER	SEQUENCE DESCRIPTION	STATE
					1	3L	OK
					2	3L2F	OK
					3	3L2FUR	OK
					4	3L2FURUL	LOV
					5	3L2F3F	OK
					6	3L2F3FUL	LOV
					7	3L2F3FUR	LOV

**Fault Tree For Sequence 4 LOV
State With A PLS3R Initiating Event
During Reentry, TAEM and Landing**

Fault Tree For Sequence 6 LOV State With A PLSSR Initiating Event During Reentry, TAEW and Landing

**Fault Tree For Sequence 7 LOV
State With A PL\\$3R Initiating Event
During Reentry, TAEM and Landing**

**Event Sequence Diagram for an External
Hydrazine or Hydraulic Fluid Leak**

EVENT TREE OF AN EXTERNAL HYDRAZINE OR HYDRAULIC FLUID LEAK

EL	PF	IS	EI	SEQUENCE NUMBER	SEQUENCE DESCRIPTION	STATE
				1	EL	OK
				2	ELPF	OK
				3	ELPFIS	OK
				4	ELPFISEI	LOV

The event tree diagram consists of four vertical lines representing sequential events. Event 1 (EL) is at the top. Event 2 (ELPF) is triggered by a branch from the bottom of Event 1. Event 3 (ELPFIS) is triggered by a branch from the bottom of Event 2. Event 4 (ELPFISEI) is triggered by a branch from the bottom of Event 3.

B.4. Electrical Power System

ORBITER ELECTRIC POWER SYSTEM:
EVALUATION OF FAILURE MODES AND SEQUENCES POTENTIALLY SIGNIFICANT TO LOSS OF VEHICLE.

*See last page for key assumptions and risk classifications.

System failure	Failure sequence	Initiator or cause	Estimated sequence end state conditional probability /mission	Basis of screening conditional probability estimate	Risk class	Comments
ELECTRIC POWER SYSTEM FUNCTIONAL FAILURE SEQUENCES:						
1. No or insufficient dc power to critical systems.	1.1.1. Shrapnel, jet impingement, or pipe whip causes either reactant manifold rupture or multiple reactant system ruptures and suddenly depletes one or both reactants for 2 fuel cells.	Same	2E-06	1.1.1. [1×10^{-6} hr for violent rupture]*[168hrs for typical mission]*[1×10^{-2} for severe consequential damage] = 1.7×10^{-6} /mission	Low	
Same	1.1.2. Shrapnel, jet impingement, or pipe whip disables 2 of 3 main distribution or mid power controller assemblies.	Same	2E-07	1.1.2. [1×10^{-6} hr for violent rupture]*[168hrs for typical mission]*[1×10^{-3} for severe consequential damage] = 1.7×10^{-7} /mission	Very low	
Same	1.2. 2 out of 3 fuel cells fail suddenly and concurrently (complete outage or insufficient voltage).			1.2.1. [1×10^{-2} for processing error]*[1×10^{-3} for failure to detect before launch]*[1×10^{-2} for failure progressing too fast for recovery or abort] = 1×10^{-7} /mission.	Very low	Low P(failure to detect) because FCs run under load and voltage is monitored for considerable period before launch.
Same	1.2.2. Concurrent unrecoverable loss of ECLSS freon loops 1 and 2(disables fuel cell cooling).	Same	1E-07	1.2.2. See note 2.	Low	See note 2.
Same	1.3. Severe sustained overload fails one fuel cell; crew transfers load to another cell, which also fails on overload.		2E-06	1.3. [1×10^{-3} for severe sustained overload]*[1×10^{-2} for crew transferring overload to second cell]*[1×10^{-3} for failing to notice and correct in time] = 1×10^{-8} /mission.	Negligible	Low P(failure to detect overheat) because overload this severe would cause symptoms obvious to crew.
Same	1.4. One (or both) fuel cell reactants is depleted before detection and isolation.		1E-08	1.4.1. [1×10^{-6} hr for severe leak or rupture]* [168hrs for typical mission]* [1×10^{-2} for failure to detect and isolate in time] = 1×10^{-8} /mission.	Negligible	
Same	1.4.2. Relief valve on isolated reactant manifold section spontaneously fails closed, causing overpressure and undetected rupture; isolation valve is then opened.	Same	8E-07	1.4.2. [2×10^{-6} hr for relief valve failure]*[168hrs for typical mission]*[0.5 for leak or rupture on overpressure]*[1×10^{-2} for failure to detect]*[0.5 for opening isolation valve] = 8×10^{-7} /mission.	Very low	

ORBITER ELECTRIC POWER SYSTEM:
EVALUATION OF FAILURE MODES AND SEQUENCES POTENTIALLY SIGNIFICANT TO LOSS OF VEHICLE.

*See last page for key assumptions and risk classifications.

System failure	Failure sequence	Initiator or cause	Estimated sequence end state conditional probability /mission	Basis of screening conditional probability estimate	Comments	Risk class
Same	Same	1.4.3. Multiple reactant tank relief valves fail open due to undetected pre-flight processing or pressure set-point error.	1E-05	1.4.3. [1×10^{-3} for processing or set-point error] [1×10^{-2} for failure to detect before launch] = 1×10^{-5} /mission.	Moderate	Negligible
Same	Same	1.4.4. Severe sustained electrical overload depletes reactants before detection of overload or low reactant level.	1E-10	1.4.4. [1×10^{-3} for severe overload] [1×10^{-4} for failure to detect overload before reactant depletion] [1×10^{-3} for failure to detect depletion in time] = 1×10^{-10} /mission	Low	Negligible
Same	1.5. 2 of 3 fuel cells or main busses turned off and not restored.	1.5. Crew error.	1E-09	1.5. [1×10^{-5} for turning off FCs, main busses, or essential busses] [1×10^{-4} for failing to notice and correct] = 1×10^{-9} /mission.	Low	Negligible
Same	1.6. 2 of 3 dc distribution trains fail open.	1.6.1. Undetected, unrecoverable pre-flight processing error (e.g. failure to restore after testing, RPC setpoint error) in 2	1E-06	1.6.1. [1×10^{-3} for unrecoverable processing error] [1×10^{-3} for failure to detect open before launch] = 1×10^{-6} /mission	Low	Negligible
Same	Same	1.6.2. Short circuit in one train propagates to second before interruption.	1E-11	1.6.2. [4×10^{-4} for short circuit] [1×10^{-2} for vulnerable components of another train being close enough to allow propagation] [5×10^{-6} for failure to trip in time to prevent propagation] = 1×10^{-11} /mission	See note 3 for basis of estimate of short circuit probability. P(failure to trip)=P(CB f.t. open on command)+P(protocol relay f.t. close)	Negligible
Same	Same	1.6.3. Concurrent unrelated spontaneous failures of 2 trains.	6E-07	1.6.3. [8×10^{-4} for failure of 1st train] [8×10^{-4} for failure of 2nd train] = 6×10^{-7} /mission.	Same basis of estimate as 1.5.2 except all failure modes considered.	Very Low
					2.1.1. [1×10^{-2} for processing error] [1×10^{-4} for failure to detect before launch] = 1×10^{-6} /mission.	Low
					2.1.2. of 3 inverter sets fail suddenly (complete outage or unacceptable voltage, frequency, or waveform).	Low
					2. No or insufficient ac power to critical systems.	Low

ORBITER ELECTRIC POWER SYSTEM:
EVALUATION OF FAILURE MODES AND SEQUENCES POTENTIALLY SIGNIFICANT TO LOSS OF VEHICLE.

*See last page for key assumptions and risk classifications.

System failure	Failure sequence	Initiator or cause	Estimated sequence end state conditional probability /mission	Basis of screening conditional probability estimate	Comments	Risk class*
Same	Same	2.1.2. Concurrent unrecoverable loss of ECLSS H ₂ O cooling loops 1 and 2 disables inverter cooling.	2E-06	2.1.2. See note 2.	See note 2.	Low
Same	2.2. Mid-deck power components of 2 or 3 trains overheat and fail.	2.2. Concurrent unrecoverable loss of ECLSS freon cooling loops 1 and 2 disables mid-deck power component cooling.	2E-06	2.1.2. See note 2.	See note 2.	Low
Same	2.3. 2 of 3 inverters or ac busses turned off and not restored.	2.3. Crew error.	1E-09	2.3. [1e-5 for turning off inverters or busses]"[1e-4 for failing to notice and correct] = 1e-9/mission.	Negligible	Very low
Same	2.4. Shrapnel, jet impingement, or pipe whip disables 2 or 3 trains of mid-deck power components.	2.4. Violent rupture of reactant tank, piping, or valve.	2E-07	2.4. [1e-6/hr for violent rupture]"[168hrs for typical mission]"[1e-3 for severe consequential damage] = 1.7e-7/mission	Estimated by analogy to 1.6.1-1 6.3 above. Note: short circuit propagation is impossible because inverters lack necessary short circuit capacity.	Very low
Same	2.5. 2 of 3 ac distribution trains fail open.	2.5.1-2.5.3. Analogous to 1.6.1-1.6.3 above.	2E-07	2.5.1-2.5.3. 1.6e-7/mission.		

EVALUATION OF FAILURE MODES AND SEQUENCES POTENTIALLY SIGNIFICANT TO LOSS OF VEHICLE.						
				Risk class*		
System failure	Failure sequence ^a	Initiator or cause	Estimated sequence end state conditional probability /mission	Basis of screening conditional probability estimate	Comments	
SEQUENCES INITIATED BY ELECTRIC POWER SYSTEM						
3. Electrical fire damage	3. Electrical short circuit or component overheating initiates uncontrolled fire that unrecoverably disables other critical system(s).	3.1. Undetected pre-flight processing error.	5E-12	3.1. [1e-2 for fire-initiating processing error][1e-2 for failure to detect before launch][1e-3 for failure to trip][1e-3 for presence of nearby combustibles when O2 is available][0.1 for ignition][0.1 for failure of fire suppression] = 5e-12/mission	Negligible	
Same	Same	3.2. Spontaneous component failure.	5E-11	3.2. [1e-3 for fire-initiating component failure][1e-3 for failure to trip][1e-3 for presence of nearby combustibles when O2 is available][0.5 for ignition][0.1 for failure of fire suppression] = 5e-11/mission	Negligible	
4. Crew is disabled by fire suppression system response to electrical fire.	4. Electrical short circuit or component overheating initiates Halon flood of crew compartment; Halon exposure disables crew.	4.1. Undetected pre-flight processing error.	1E-12	4.1. [1e-2 for fire-initiating processing error][1e-2 for failure to detect before launch][1e-3 for failure to trip][1e-3 for crew susceptibility to Halon][1e-2 for failure to don breathing apparatus in time] = 1e-12/mission	Negligible	
Same	Same	4.2. Spontaneous component failure.	1E-11	4.2. [1e-3 for fire-initiating component failure][1e-3 for failure to trip][1e-3 for crew susceptibility to Halon][1e-2 for failure to don breathing apparatus in time] = 1e-11/mission	Negligible	
5. Critical systems are disabled by fire suppression system response to electrical fire.	5. Electrical short circuit or component overheating initiates Halon flood of affected compartment; presence of Halon or its decomposition products damages critical components or disables equipment cooling.	5.1. Undetected pre-flight processing error.	1E-12	5.1. [1e-2 for fire-initiating processing error][1e-2 for failure to detect before launch][1e-3 for failure to trip][1e-3 for crew susceptibility to low Halon concentration][1e-2 for failure to don breathing apparatus in time] = 1e-12/mission	Negligible	

*See last page for key assumptions and risk classifications.

ORBITER ELECTRIC POWER SYSTEM:

EVALUATION OF FAILURE MODES AND SEQUENCES POTENTIALLY SIGNIFICANT TO LOSS OF VEHICLE.

*See last page for key assumptions and risk classifications.

System failure	Failure sequence	Initiator or cause	Estimated sequence end state conditional probability /mission	Basis of screening conditional probability estimate	Comments	Risk class*
Same	Same	5.2. Spontaneous component failure.	1E-11	5.2. [1e-3 for fire-initiating component failure]*[1e-3 for failure to trip]*[1e-3 for crew susceptibility to Halon]*[1e-2 for failure to don breathing apparatus in time] = 1e-11/mission	Negligible	Low
6. Orbiter structural failure.	6. Severe leak or rupture of fuel cell reactant tanks or associated piping and valves overpressurizes confined space leading to structural failure.	6. Rupture or severe external leak of tank, piping, or valve.	2E-06	6. [1e-6/hr for violent rupture]*[168hrs for typical mission]*[1e-2 for severe consequential damage] = 1.7e-6/mission		Low
7. Mechanical damage to other	7. Mechanical damage to other	7. Rupture or severe external leak of tank, piping, or valve.	2E-06	7. [1e-6/hr for violent rupture]*[168hrs for typical mission]*[1e-2 for severe consequential damage] = 1.7e-6/mission		Low
Total end-state conditional probabilities of all sequences listed						3E-05

NOTES:

- Key assumptions: (1) probability estimates are based on IEEE Std 500-1984, IEEE Std 493-1990, and conservative (high) SAI/C engineering estimates; (2) typical exposure is one-week (168-hour) mission time; (3) per PRA ground rules, only catastrophic failures leading to loss of vehicle (not abort) are considered; (4) loss of 2 of 3 power trains causes LoV.
- Concurrent ECLSS freon loop failures: zero failures in 55 flights implies mean failure frequency is 3.03e-3 per flight (using 1/3 failure approximation to zero). Assume 50% of failures are common cause/common mode. Double concurrent failure frequency is therefore 4.6e-6 per flight. Assuming 50% are recoverable, unrecoverable rate is 2.3e-6.
- Estimate of probability of short circuit in distribution system: Assume each train comprises 6 equivalent circuit breakers, 1000 circuit feet of wire with 30 connections and splices, bare bars equivalent to 50 CB units. IEEE 493 App. A mean failure rates per unit/year: LV fixed CB=0.0035, LV cable=0.00141/1000ft, LV cable connection=0.000127, LV bus=0.00034 per equiv. CB unit. Assume 50% of failures are short circuits. P(short circuit)=0.50*[168hrs/mission]/(8766hrs/year)]*[6*0.0035+1*0.00141+30*0.000127+50*0.00034]=4e-4 per mission.

DEFINITIONS OF RISK CLASSES:	P(sequence end state equivalent to LoV)
Severe	$P > 1e-2$
Very high	$1e-3 \leq P < 1e-2$
High	$1e-4 \leq P < 1e-3$
Moderate	$1e-5 \leq P < 1e-4$
Low	$1e-6 \leq P < 1e-5$
Very low	$1e-7 \leq P < 1e-6$
Negligible	$P < 1e-7$