Instituto Federal Educação, Ciência e Tecnologia de Goiás

Curso: Bacharelado em Sistemas de Informação

Disciplina: Pesquisa Operacional Professor: Eduardo Noronha

Aluno: Wemerson da Silva Marques

Problema

O problema que aqui será tratado se refere à otimização de gastos de uma pessoa com comidas, baseada em sua necessidade nutricional diária. Com alguns produtos como exemplo, deve-se encontrar o menor valor possível para satisfazer os gastos energéticos diários.

Tabela energética:

Tabela energética de alimentos							
Alimento	Tamanho da porção	Energia (kcal)	Proteina (g)	Cálcio (mg)	Preço p/ porção		
Arroz	100g	128,3	2,5	3,5	R\$ 0,45		
Ovos	1 un	70,875	5,76	10,5	R\$ 0,65		
Leite	237ml	120	3,4	125	R\$ 0,85		
Feijão	100g	76	4,8	29	R\$ 1,49		

Modelagem:

Modelagem		Modelagem no padrão do Simplex		
Minimizar:	Z = 0,45x1 + 0,65x2 + 0,85x3 + 1,49x4	Maximizar:	Z = -0.45x1 - 0.65x2 - 0.85x3 - 1.49x4	
Sujeito a:	128,3x1 + 70,875x2 + 120x3 + 76x4 >= 2000	Sujeito a:	128,3x1 + 70,875x2 + 120x3 + 76x4 <= 2000	
	2,5x1 + 5,76x2 + 3,4x3 + 4,8x4 >= 65		2,5x1 + 5,76x2 + 3,4x3 + 4,8x4 <= 65	
	3,5x1 + 10,5x2 + 125x3 + 29x4 >= 800		3,5x1 + 10,5x2 + 125x3 + 29x4 <= 800	
	x1, x2, x3, x4 >= 0		x1, x2, x3, x4 >= 0	

Aplicação no solver:

1 - OpenSolver (Google Spreadsheet):

Função	Coeficiente das variáveis					
Objetivo	x1	x2	x3	x4		
	R\$ 0,45	R\$ 0,65	R\$ 0,85	R\$ 1,49		
Variáveis	7,65	4,54	5,80	0,00		
Z =	R\$ 11,33					

2 - Projeto em Python:

No projeto em Python não consegui realizar a aplicação do problema real. Por questões de tempo, meu projeto só está aceitando valores, tanto na função objetivo quanto restrições, quando forem positivos.

Exemplo:

Função Objetivo: 10 x1 + 12 x2

Restrição: 1 x1 + 1 x2 <= 100; 1 x1 + 3 x2 <= 270 (onde ";" separa as restrições)

Link do projeto: https://github.com/wemersonmarques/ifg-po-simplex