Signal Processing Techniques to Improve Feature Space for EEG-based Epileptic Seizure Detection

Project Presentation

BME 1473: Acquisition and Processing of Bioelectrical Signals

Kalana Gayal Abeywardena
M.A.Sc. in Electrical and Computer Engineering
University of Toronto

Content

Problem Statement

Background

Analysis Results

Conclusions

OBJECTIVE

- Analyze the impact of signal processing techniques on <u>Epilepsy Detection Accuracy</u>.
 - i. Data Preprocessing (EEG Sphering + EEG Denoising)
 - ii. Feature Engineering

OBJECTIVE

- Analyze the impact of signal processing techniques on <u>Epilepsy Detection Accuracy</u>.
 - i. Data Preprocessing (EEG Sphering + EEG Denoising)
 - ii. Feature Engineering

OBJECTIVE

- Analyze the impact of signal processing techniques on <u>Epilepsy Detection Accuracy</u>.
 - i. Data Preprocessing (EEG Sphering + EEG Denoising)
 - ii. Feature Engineering

Epilepsy

- A central nervous system (neurological) disorder
- Brain activity becomes abnormal
- Causes seizures or periods of unusual behavior, sensations and sometimes loss of awareness.

Normal Brain Activity

Generalized Epilepsy

Focal Seizure

Epilepsy

- A central nervous system (neurological) disorder
- Brain activity becomes abnormal
- Causes seizures or periods of unusual behavior, sensations and sometimes loss of awareness.

Normal Brain Activity

Generalized Epilepsy

Focal Seizure

Epilepsy

- A central nervous system (neurological) disorder
- Brain activity becomes abnormal
- Causes seizures or periods of unusual behavior, sensations and sometimes loss of awareness.

Normal Brain Activity

Generalized Epilepsy

Focal Seizure

Source: Tamilia, Eleonora, et al.[1]

Source: Epilepsy - Symptoms and causes - Mayo Clinic

Dataset: Epileptogie EEG Data^[2, 3]

A publicly available dataset with 5 data directories

- A. Surface EEG from 5 volunteers in a relaxed state with eyes open
- B. Surface EEG from 5 volunteers in a relaxed state with eyes closed
- C. Intracranial EEG from 5 patients from the hippocampal formation of the opposite hemisphere of the brain Inter-Ictal EEG Signals
- D. Intracranial EEG taken from 5 patients from within the epileptogenic zone Inter-Ictal EEG Signals
- E. Intracranial EEG taken from 5 patients from within the epileptogenic zone Ictal EEG Signals

Dataset: Epileptogie EEG Data^[2, 3]

A publicly available dataset with 5 data directories

- A. Surface EEG from 5 volunteers in a relaxed state with eyes open
- B. Surface EEG from 5 volunteers in a relaxed state with eyes closed
- C. Intracranial EEG from 5 patients from the hippocampal formation of the opposite hemisphere of the brain – Inter-Ictal EEG Signals
- D. Intracranial EEG taken from 5 patients from within the epileptogenic zone - Inter-Ictal EEG Signals
- E. Intracranial EEG taken from 5 patients from within the epileptogenic zone – Ictal EEG Signals

FIG. 2. Scheme of intracranial electrodes implanted for presurgical evaluation of epilepsy patients. Depth electrodes were implanted symmetrically into the hippocampal formations (top). Segments of sets C and D were taken from all contacts of the respective depth electrode. Strip electrodes were implanted onto the lateral and basal regions (middle and bottom) of the neocortex. Segments of set E were taken from contacts of all depicted electrodes.

Dataset: Epileptogie EEG Data^[2, 3]

A publicly available dataset with 5 data directories

- A. Surface EEG from 5 volunteers in a relaxed state with eyes open
- B. Surface EEG from 5 volunteers in a relaxed state with eyes closed
- C. Intracranial EEG from 5 patients from the hippocampal formation of the opposite hemisphere of the brain Inter-Ictal EEG Signals
- D. Intracranial EEG taken from 5 patients from within the epileptogenic zone Inter-Ictal EEG Signals
- E. Intracranial EEG taken from 5 patients from within the epileptogenic zone Ictal EEG Signals

FIG. 2. Scheme of intracranial electrodes implanted for presurgical evaluation of epilepsy patients. Depth electrodes were implanted symmetrically into the hippocampal formations (top). Segments of sets C and D were taken from all contacts of the respective depth electrode. Strip electrodes were implanted onto the lateral and basal regions (middle and bottom) of the neocortex. Segments of set E were taken from contacts of all depicted electrodes.

Dataset: Epileptogie EEG Data^[2, 3]

Figure: Inter-Ictal EEG Signal Sample

Figure: Ictal EEG Signal Sample

Dataset: Epileptogie EEG Data^[2, 3]

Table: Summary of Dataset Used

Sampling Frequency	173.63 Hz
Inter-Ictal EEG Signal dataset (D)	100 segments
Ictal EEG Signal dataset (E)	100 segments
Recording Site	Hippocampus Formation
Reference	Average Common Regerence
Type of Data	Intracranial EEG
Segment Length	23.6s (4097 samples)

Applications of Signal Processing

Data Preprocessing

Step 01

Data Detrending $\bar{x} = x - \bar{x} \in \mathbb{R}^{N \times M}$ $\bar{x} = \frac{1}{N}$

To obtain Weak Stationarity

 $\bar{x} = \frac{1}{M} \sum_{i=1}^{M} x_i$

Data Engineering

Applications of Signal Processing

Data Preprocessing

Data Data Detrending Denoising Data Whitening PCA, ZCA

Data Engineering

Step 01

Data Detrending $\tilde{x} = x - \bar{x} \in \mathbb{R}^{N \times M}$ $\bar{x} = \frac{1}{M} \sum_{i=1}^{M} x_i$

Step 02

Data Whitening $x_w = W\tilde{x}$

 $\Sigma_{Original} = \mathbb{E}[\tilde{x}\tilde{x}^T]$ $\Sigma_{Original} = Q\Lambda Q^T \in \mathbb{R}^{N \times N}$

 $W^{PCA} = \Lambda^{-\frac{1}{2}}Q^T \qquad W^{ZCA} = Q\Lambda^{-\frac{1}{2}}Q^T$

To decorrelate the EEG signals in the dataset

Applications of Signal Processing

Data Preprocessing

Data Engineering

- Attenuate possible artifacts and noise components that result from different sources including the brain rhythms that are caused by other neural activities
- Use attenuating frequencies of interest
- Spectral components above 40 Hz that corresponds to γ brain rhythms are usually irrelevant for seizure

Applications of Signal Processing

Data Preprocessing

Data Engineering

FIR Filtering

Finite length and maintain a linear phase response within the passband

- Filter Window Type:
 - (1) rectangular window
 - (2) Hamming window
 - (3) Blackman-Harris window.
- Filter Order (or window length): $n = \{16, 32, 64, 128\}$.

Applications of Signal Processing

Data Preprocessing

Data Engineering

FIR Filtering

Finite length and maintain a linear phase response within the passband

- Filter Window Type:
 - (1) rectangular window
 - (2) Hamming window
 - (3) Blackman-Harris window.
- Filter Order (or window length): $n = \{16, 32, 64, 128\}$.

Applications of Signal Processing

Data Preprocessing

Data Engineering

FIR Filtering

Finite length and maintain a linear phase response within the passband

- Filter Window Type:
 - (1) rectangular window
 - (2) Hamming window
 - (3) Blackman-Harris window.
- Filter Order (or window length): $n = \{16, 32, 64, 128\}$.

Applications of Signal Processing

Data Preprocessing

Data Engineering

FIR Filtering

Finite length and maintain a linear phase response within the passband

- Filter Window Type:
 - (1) rectangular window
 - (2) Hamming window
 - (3) Blackman-Harris window.
- Filter Order (or window length): $n = \{16, 32, 64, 128\}$.

Applications of Signal Processing

Data Preprocessing

Data Engineering

DWT Denoising

Decompose the signal into multiple bands and attenuate the spectral components in the higher resolutions if the noise operates at the higher resolutions

- Wavelet Function:
 - (1) Daubechies with 2 taps (db2)
 - (2) Daubechies with 6 taps (db6)
 - (3) Daubechies with 8 taps (db8)
 - (4) Haar
- Filter bank levels: n = 6

Applications of Signal Processing

Data Preprocessing

Data Engineering

DWT Denoising

Decompose the signal into multiple bands and attenuate the spectral components in the higher resolutions if the noise operates at the higher resolutions

- Wavelet Function:
 - (1) Daubechies with 2 taps (db2)
 - (2) Daubechies with 6 taps (db6)
 - (3) Daubechies with 8 taps (db8)
 - (4) Haar
- Filter bank levels: n = 6

Applications of Signal Processing

Data Preprocessing

Data Engineering

DWT Denoising

Decompose the signal into multiple bands and attenuate the spectral components in the higher resolutions if the noise operates at the higher resolutions

- Wavelet Function:
 - (1) Daubechies with 2 taps (db2)
 - (2) Daubechies with 6 taps (db6)
 - (3) Daubechies with 8 taps (db8)
 - (4) Haar
- Filter bank levels: n = 6

Applications of Signal Processing

Data Preprocessing

Data Engineering

DWT Denoising

Decompose the signal into multiple bands and attenuate the spectral components in the higher resolutions if the noise operates at the higher resolutions

- Wavelet Function:
 - (1) Daubechies with 2 taps (db2)
 - (2) Daubechies with 6 taps (db6)
 - (3) Daubechies with 8 taps (db8)
 - (4) Haar
- Filter bank levels: n = 6

Applications of Signal Processing

Data Preprocessing

Data
Detrending
Data
Whitening
PCA, ZCA

Data
Denoising
FIR Filtering
DWT Denoising

Data Engineering

Time-Frequency Features Wavelet Transformation

Temporal/
Spectral
Features
Spectral/Tempor
al Entropy etc.

Wavelet Transformation-based Features

Uses discrete wavelet coefficients

- Wavelet Transformation:
 - (1) Discrete Wavelet Transforms (DWT)
 - (2) Undecimated Discrete Wavelet Transform (UDWT)
- Wavelet Function: (1) db2; (2) Daubechies with 4 taps (db4);
 - (3) db6; (4) db8; (5) Haar.
- Filter bank levels: Based on the initial inspection, used 6

Applications of Signal Processing

Data
Detrending
Data
Data
Whitening
PCA, ZCA

Data
Denoising
FIR Filtering
DWT Denoising

Data Engineering

TimeFrequency
Features
Wavelet
Transformation

Temporal/
Spectral
Features
Spectral/Tempor
al Entropy etc.

Wavelet Transformation-based Features

Uses discrete wavelet coefficients

- Wavelet Transformation:
 - (1) Discrete Wavelet Transforms (DWT)
 - (2) Undecimated Discrete Wavelet Transform (UDWT)
- Wavelet Function: (1) db2; (2) Daubechies with 4 taps (db4); (3) db6; (4) db8; (5) Haar.
- Filter bank levels: Based on the initial inspection, used 6

Applications of Signal Processing

Data Engineering

Temporal/
Spectral
Features
Spectral/Tempor
al Entropy etc.

Wavelet Transformation-based Features

Uses discrete wavelet coefficients

- Wavelet Transformation:
 - (1) Discrete Wavelet Transforms (DWT)
 - (2) Undecimated Discrete Wavelet Transform (UDWT)
- Wavelet Function: (1) db2; (2) Daubechies with 4 taps (db4);(3) db6; (4) db8; (5) Haar.
- Filter bank levels: Based on the initial inspection, used 6

Applications of Signal Processing

Data Engineering

Temporal/
Spectral
Features
Spectral/Tempor
al Entropy etc.

Wavelet Transformation-based Features

Uses discrete wavelet coefficients

- Wavelet Transformation:
 - (1) Discrete Wavelet Transforms (DWT)
 - (2) Undecimated Discrete Wavelet Transform (UDWT)
- Wavelet Function: (1) db2; (2) Daubechies with 4 taps (db4);(3) db6; (4) db8; (5) Haar.
- Filter bank levels: Based on the initial inspection, used 6

Applications of Signal Processing

Data Engineering

Time-Frequency Features Wavelet Transformation

Temporal/
Spectral
Features
Spectral/Tempor
al Entropy etc.

Wavelet Transformation-based Features

Features Extracted

Feature	Description
Log-Sum Energy	Log-transformed wavelet coefficients to achieve robustness to noise
Mean of Absolute Value	Average of absolute wavelet coefficients for each sub-band
Average Power	Average of wavelet coefficients for each sub-band
Standard Deviation	Standard deviation (variance) of wavelet coefficients
Ratio of the Absolute	Ratios of mean absolute features of adjacent sub-
Mean values	bands 30

Evaluation Metrics

Metric	Definition
Signal Distortion (dB)	$10\log(P_{filtered,0-40}^2/P_{unfiltered,0-40}^2) dB$
Noise Reduction (dB)	$10 \log(P_{filtered,>40}^2/P_{unfiltered,>40}^2) dB$
Accuracy	(TP+TN)/(TP+TN+FP+FN)%
Precision	TP/(TP + FP) %
Sensitivity/Recall	TP/(TP + FN) %
Specificity	TN/(TN + FP) %
F1 Score	$(2 \times TP)/(2TP + FP + FN) \%$
Area Under the Curve (AUC)	Area of the Receiver Operating Characteristic
	(ROC) curve

$$P_{i,0-40}^2$$
 = Signal Power of interest (within 0 – 40 Hz),

$$P_{i,>40}^2$$
 = Noise Power of interest (above 40 Hz),

$$i \in \{unfiltered, filtered\}$$

TP = # true positive predictions

FP = # false positive predictions

TN = # true negative predictions

FN = # false negatives predictions

Data Preprocessing – Data Detrending and Whitening

Data Preprocessing – Data Detrending and Whitening

Observations:

- Detrending has little effect Dataset has already made weak stationarity
- PCA-whitened signals most of the oscillations within ± 1 from its mean.
- Changed the spectrum of the original signal

Data Preprocessing – Data Detrending and Whitening

Observations:

- Detrending has little effect Dataset has already made weak stationarity
- PCA-whitened signals most of the oscillations within ± 1 from its mean.
- Changed the spectrum of the original signal.

Data Preprocessing – Data Detrending and Whitening

Observations:

- Detrending has little effect Dataset has already made weak stationarity
- PCA-whitened signals most of the oscillations within ± 1 from its mean.
- Changed the spectrum of the original signal.

Data Preprocessing – Data Detrending and Whitening

Using DWT features obtained by db6

Quantitative performance comparison between different data preprocessing techniques

Data Preprocessing – Data Detrending and Whitening

Using DWT features obtained by db6

Observations:

- ZCA has the lowest performance
- PCA has marginally improved over detrended EEG signal classification

Quantitative performance comparison between different data preprocessing techniques

Data Preprocessing – Data Denoising

FIR Filtering – Comparing Filter Type

Comparison of different window types at n = 64 and cut-off frequency = 40 Hz

Data Preprocessing – Data Denoising

FIR Filtering – Comparing Filter Order for Blackman – Harris Window

Comparing different filter orders (n) with Blackman window-based FIR filters

Observations:

- With n=16 the transition band is much wider and causes significant spectral leakage + significant spectral information loss happens in the useful signal band (0-40 Hz).
- Higher the filter order, sharper the transition band

Data Preprocessing – Data Denoising

FIR Filtering – Comparing Filter Order for Blackman – Harris Window

Comparing different filter orders (n) with Blackman window-based FIR filters

Observations:

- With n=16 the transition band is much wider and causes significant spectral leakage + significant spectral information loss happens in the useful signal band (0-40 Hz).
- Higher the filter order, sharper the transition band.

Data Preprocessing – Data Denoising

FIR Filtering – Quantitative Analysis of Filter Type and Filter Order

Evaluation of filter order using quantitative metrics (Blackman Window)

Data Preprocessing – Data Denoising

FIR Filtering – Quantitative Analysis of Filter Type and Filter Order

For better performance:

Signal distortion $\cong 0 \ dB$

Noise Reduction = Higher negative dB

n=64 is the ideal filter order

Evaluation of filter order using quantitative metrics (Blackman Window)

Data Preprocessing – Data Denoising

FIR Filtering – Quantitative Analysis of Filter Type and Filter Order

For better performance:

Signal distortion $\cong 0 dB$

Noise Reduction = Higher negative dB

 $\int_{16}^{16} n = 64$ is the ideal filter order

Evaluation of filter order using quantitative metrics (Blackman Window)

Data Preprocessing – Data Denoising

FIR Filtering

Time domain and Frequency domain comparison of pre-filtered and post-filtered signal sample

Observation: The higher frequency components are sufficiently attenuated.

Data Preprocessing – Data Denoising

DWT Denoising – Quantitative Analysis

db8 is the best at imposing the lowest signal distortion with the highest noise reduction

Signal distortion is still significant compared to FIR-low passing option selected

Different wavelet functions used for denoising EEG signals operating at highest resolution

Evaluation of different wavelet functions at 6-levels

Data Preprocessing – Data Denoising

DWT Denoising – Quantitative Analysis

db8 is the best at imposing the lowest signal distortion with the highest noise reduction

Signal distortion is still significant compared to FIR-low passing option selected

Different wavelet functions used for denoising EEG signals operating at highest resolution

Evaluation of different wavelet functions at 6-levels

Data Preprocessing – Data Denoising

DWT Denoising

Data Preprocessing – Data Denoising

DWT Denoising

Time domain and Frequency domain comparison of pre-filtered and post-filtered signal sample

Observation: The higher frequency components are sufficiently attenuated but certain components are still present compared to FIR filtering.

Feature Engineering – Wavelet Feature Extraction

	Feature Extraction Configurations					Evaluation Metrics					
	Transformation		Wavelet Function								
	DWT	UDWT	db4	db6	Haar	Accuracy	Precision	Specificity	Sensitivity	F1	AUC
PCA EEG signals			$\sqrt{}$			0.849	0.868	0.741	0.849	0.847	0.915
		$\sqrt{}$	\checkmark			0.906	0.906	0.926	0.906	0.906	0.974
				$\sqrt{}$		0.925	0.934	1.000	0.925	0.924	0.980
		$\sqrt{}$		$\sqrt{}$		0.830	0.831	0.852	0.830	0.830	0.929
					$\sqrt{}$	0.830	0.831	0.852	0.830	0.830	0.879
		$\sqrt{}$			V	0.943	0.944	0.963	0.943	0.943	0.944
Original EEG signals			\checkmark			0.943	0.944	0.926	0.943	0.943	0.997
		$\sqrt{}$	\checkmark			0.943	0.944	0.963	0.943	0.943	0.956
				$\sqrt{}$		1.000	1.000	1.000	1.000	1.000	1.000
		$\sqrt{}$		$\sqrt{}$		1.000	1.000	1.000	1.000	1.000	1.000
					$\sqrt{}$	0.925	0.925	0.926	0.925	0.925	0.974
		$\sqrt{}$			$\sqrt{}$	0.962	0.965	1.000	0.962	0.962	% .986

Feature Engineering – Wavelet Feature Extraction

Classification Accuracy: 73.125%

CZ|D6 mean

Figure: Classification using feature pairs extracted by DWT using db6 wavelet functions (with pair-plots)

Observations:

With reduced wavelet features

- Significant reduction in binary classification accuracy.
- Depends on how much overlap

 distributions of two classes for the selected feature pair

Feature Engineering – Wavelet Feature Extraction

Classification Accuracy: 73.125%

Figure: Classification using feature pairs extracted by DWT using db6 wavelet functions (with pair-plots)

Observations:

With reduced wavelet features:

- Significant reduction in binary classification accuracy.
- Depends on how much overlap
 distributions of two classes for the selected
 feature pair

- ❖ Detrending and whitening may improve the results as a preprocessing step

 Data is fairly stationary detrending makes marginal improvement
- PCA whitening causes the final classification results to degrade

 PCA changes the spectral features of an EEG signal that are extracted from wavelet coefficients

 May change the nature of the frequency features extracted compared to the original signals.
- Denoising is important

FIR filtering is best option compared to DWT-based denoising

Should select the correct type of the window and filter order

Higher the filter order, sharper transition band and lesser passband ripples - however, this increases filter complexity unnecessarily

For this dataset Blackman-Harris window with 64 filter order was sufficient

Feature extraction — Best is time-frequency based on literature

- ❖ Detrending and whitening may improve the results as a preprocessing step

 Data is fairly stationary detrending makes marginal improvement
- ❖ PCA whitening causes the final classification results to degrade
 PCA changes the spectral features of an EEG signal that are extracted from wavelet coefficients
 May change the nature of the frequency features extracted compared to the original signals.
- Denoising is important

FIR filtering is best option compared to DWT-based denoising

Should select the correct type of the window and filter order

Higher the filter order, sharper transition band and lesser passband ripples - however, this increases filter complexity unnecessarily

For this dataset Blackman-Harris window with 64 filter order was sufficient

Feature extraction — Best is time-frequency based on literature

- ❖ Detrending and whitening may improve the results as a preprocessing step

 Data is fairly stationary detrending makes marginal improvement
- ❖ PCA whitening causes the final classification results to degrade

PCA changes the spectral features of an EEG signal that are extracted from wavelet coefficients May change the nature of the frequency features extracted compared to the original signals.

❖ Denoising is important

FIR filtering is best option compared to DWT-based denoising

Should select the correct type of the window and filter order

Higher the filter order, sharper transition band and lesser passband ripples - however, this increases filter complexity unnecessarily

For this dataset Blackman-Harris window with 64 filter order was sufficient.

❖ Feature extraction – Best is time-frequency based on literature

- ❖ Detrending and whitening may improve the results as a preprocessing step

 Data is fairly stationary detrending makes marginal improvement
- ❖ PCA whitening causes the final classification results to degrade

PCA changes the spectral features of an EEG signal that are extracted from wavelet coefficients May change the nature of the frequency features extracted compared to the original signals.

❖ Denoising is important

FIR filtering is best option compared to DWT-based denoising

Should select the correct type of the window and filter order

Higher the filter order, sharper transition band and lesser passband ripples - however, this increases filter complexity unnecessarily

For this dataset Blackman-Harris window with 64 filter order was sufficient.

❖ Feature extraction – Best is time-frequency based on literature

UWDT is generally best but there is no conclusive evidence in the dataset to that

Reference

[1] Tamilia, E., Madsen, J. R., Grant, P. E., Pearl, P. L., & Papadelis, C. (2017). Current and emerging potential of magnetoencephalography in the detection and localization of high-frequency oscillations in epilepsy. *Frontiers in neurology*, 8, 14.

[2] Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., & Elger, C. E. (2001). Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. *Physical Review E*, *64*(6), 061907.

[3] https://www.ukbonn.de/epileptologie/arbeitsgruppen/ag-lehnertz-neurophysik/downloads/

Other Materials:

- a. Lecture Slides
- b. Biosignal and Medical Image Processing (Third Edition) Book

Thank You!

