Esame di Calcolo delle probabilità e statistica (per studenti di Informatica) corso A

Università degli studi di Bari Aldo Moro

17-07-2020

Esercizio 1.

Si lancia una moneta equilibrata N volte, dove N è una variabile aleatoria di Poisson di parametro $\lambda = 2$.

- (1) Calcolare la probabilità che esca almeno una testa.
- (2) Calcolare la probabilità che N sia pari a n sapendo che non è mai uscita testa verificando che è pari a $\frac{1}{(e-1)n!}$. (3) Calcolare il limite per $n\to\infty$ della probabilità determinata al punto precedente.

(Per svolgere i calcoli è utile ricordare che $\sum_{k=0}^{\infty} \frac{1}{k!} = e$ e quindi $\sum_{k=1}^{\infty} \frac{1}{k!} = e - 1$)

Esercizio 2. Verificare che per ogni $\theta > 0$ la funzione $f(x) := 2\theta x e^{-\theta x^2}$ per $x \ge 0$ e nulla altrimenti è la densità di probabilità di una certa variabile aleatoria X.

- (1) Determinare lo stimatore di massima verosimiglianza per θ corrispondente a un campione (X_1, X_2, \dots, X_n) di rango n distribuito come X.
- (2) Esibire una statistica sufficiente per il campione $(X_1, X_2, ..., X_n)$ (sfruttando il teorema di fattorizzazione di Fisher).

Esercizio 3.

Un primo campione di rango $n_1 = 9$ segue legge gaussiana con varianza nota pari a $\sigma_1^2 = 1.32$ e media μ_1 incognita; un secondo campione di rango $n_2=16$ segue anch'esso legge gaussiana con varianza nota pari a $\sigma_2^2=2.15$ e media μ_2 incognita. Si osservano medie campionarie date rispettivamente da $\overline{\mu_1} = 10.20$ e $\overline{\mu_2} = 11.15$.

- (1) Condurre un test di verifica dell'ipotesi $\mu_1 = \mu_2$ a un livello di significatività del 10% e del 5%.
- (2) Calcolare il p-value del test considerato sopra.