Computability

Mike Antonenko Based on lectures by Svetlana Puzynina

Typeset on March 6, 2021

Contents

Note	3
Partial recursive functions	3
Minimisation and partial recursive functions	6
Bounded minimisation	7
Primitive recursive predicates	8
Applications of minimisation	10
Mutual and complete recursion	11
Computable functions	14
Equivalence of Kleene and Turing computability	15
The Ackermann function	17
Some partial recursive functions	21
Enumerability	21
Projections	23

Universal functions	24
An enumerable non-decidable set	25
Some remarks on this proof	25
Unseparable enumerable sets	26
Properties of enumerable sets	26
Principal universal functions	27
Fixed point theorem	30
m-reducibility	31
m-completeness	33

Here starts the lecture #1, from February 11, Thursday.

Note

For the rest of this course, \mathbb{N} contains zero. For any set S, we think that $S^0 = \{0\} = \{\emptyset\}$.

Partial recursive functions

Definition. Let $f: \subseteq \mathbb{N}^k \to \mathbb{N}$ be a partial function. f is *simplistic*, iff

- 1. f(x) = 0 (zero, f =: 0).
- 2. f(x) = x + 1 (successor, f =: s).
- 3. $f(x_1, \ldots, x_n) = x_m$ (projection, $f =: I_m^n$)

Definition. There are several operations with functions $\mathbb{N}^k \to \mathbb{N}$, each of which we assign a letter.

The *composition operator S*. If we have $h(y_1, ..., y_m)$ and $g_i(x_1, ..., x_n)$, i = 1, ..., n, we define their *composition f* as

$$f = h(g_1(x_1,...,x_n),...,g_m(x_1,...,x_m)).$$

The *primitive recursion* operator R. f of arity n+1 is defined with g and h of arities n and n+2 as

$$f(x_1,...,x_n,0) = g(x_1,...,x_n)$$

$$f(x_1,...,x_n,y+1) = h(x_1,...,x_n,y,f(x_1,...,x_n,y)).$$

f is said to be a *primitive recursive* function, iff there exists f_1, \ldots, f_k — a sequence of functions such that f_i is either simplistic, or gotten from f_1, \ldots, f_{i-1} with the help of S and R; and $f_k = f$.

Example. f(x, y) = x + 1 is primitive recursive:

$$\begin{cases} f(x,0) = x = I_1^1(x), \\ f(x,y+1) = (x+y) + 1 = s\Big(f(x,y)\Big) = s\Big(I_3^3(x,y,f(x,y))\Big), \end{cases}$$

so we can put $g = I_1^1$ and $h = s \circ I_3^3$ in the definition above.

Lemma. The following are primitive recursive:

- 1. Constants.
- 2. Binary sums, products, powers.
- 3. $[x \neq 0]$.
- 4. [x = 0].
- 5. (x-1)[x>0].
- 6. $(x y)[x \ge y]$.
- 7. |x y|.

Proof.

1. Suppose $f: A \to \mathbb{N}$, where $A \subseteq \mathbb{N}^k$, is $c \in \mathbb{N}$ everywhere. If c = 0, then f is simplistic, and is primitive as such. Suppose c > 0. By induction, the function $g: A \to \mathbb{N}^k$ that maps $x \mapsto c - 1$ is primitive. We then have

$$f(x) = s(g(x))$$

for any $x \in A$, so f is primitive by the composition rule.

2. For sums this has been shown in the preceding example. Let f(x, y) = xy.

$$f(x,0) = 0,$$

$$f(x, y + 1) = x(y + 1) = xy + x = f(x, y) + x.$$

Since sums are primitive, f is primitive by the recursion rule.

3. Let $f(x, y) = x^y$.

$$f(x,0) = 1,$$

$$f(x, y + 1) = f(x, y) \cdot y.$$

5

Since products are primitive, f is primitive by the recursion rule.

4. Let $f(x) = [x \neq 0]$. Let $h: A \to \mathbb{N}$ be the constant 1. Then

$$f(0) = 0,$$

 $f(y+1) = 1 = h(y).$

Recursion.

5. Let f(x) = [x = 0]. Then

$$f(x) = 1 - [x \neq 0].$$

The function g(x) = 1 - x, defined on $\{0, 1\}$, is primitive by a trivial application of the recursion rule. Hence f is, by the composition rule.

6. Let f(x) = (x - 1)[x > 0]. We denote f(x) = x - 1.

$$f(0) = 0,$$

$$f(x+1) = x.$$

f is primitive by the recursion rule (the identity function is the projection I_1^1).

7. Let $f(x, y) = (x - y)[x \ge y] = x - y$. Observe that

$$x \dot{-} (y+1) = (x \dot{-} y) \dot{-} 1$$
,

SO

$$f(x,1) = (x-1)[x \ge 1] = (x-1)[x > 0],$$

$$f(x,y+1) = (f(x,y)-1)[f(x,y) > 0].$$

8. Let f(x, y) = |x - y|. Then

$$f(x,y) = \max(0, x - y) - \min(0, x - y)$$
$$= \max(0, x - y) + \max(0, y - x)$$
$$= (x - y) + (y - x).$$

Minimisation and partial recursive functions

Definition (minimisation operator μ). If g is a function of arity n+1, we may construct f of arity n as

$$f(x_1,...,x_n) = \min\{y \mid g(x_1,...,x_n,y) = 0\}.$$

Example.

$$x - y = \min \{ z \mid |(x - y) - z| = 0 \}.$$

Bounded minimisation

Notation. $\overline{x} = (x_1, \dots, x_n)$.

Definition (bounded minimisation operator μ_{\leq}). If g and h are functions of arity n+1 and n, respectively, we may construct partial f as

$$f(\overline{x}) = \min\{y \mid g(\overline{x}, y) = 0, y \le h(\overline{x})\}.$$

Lemma. If $f \in PR$, binary operation $0 \in PR_{n+1}$ is associative, and

$$g(\overline{x}, y) = \bigodot_{i=0}^{y} f(\overline{x}, i),$$

then $g \in PR$.

Proof.

$$g(\overline{x}, 0) = f(\overline{x}, 0),$$

$$g(\overline{x}, y + 1) = g(\overline{x}, y) \odot f(\overline{x}, y).$$

Lemma. If g and h are total and primitive recursive, and f is as in the previous definition, then f is primitive recursive.

Proof.

$$f(\overline{x}) = \sum_{i=0}^{h(\overline{x})} \prod_{j=0}^{i} \left[g(\overline{x}, j) \neq 0 \right].$$

Primitive recursive predicates

Definition. The predicate T is called *primitive recursive*, iff its characteristic function $x \mapsto [T(x)]$ is primitive recursive.

Lemma. If *P* and *Q* are primitive recursive predicates, then $\neg P, P \lor Q, P \land Q, P \Rightarrow Q$ are primitive recursive.

Proof. The last statement is superfluous, but we write the formula, nevertheless:

$$[\neg P] = 1 - [P],$$

$$[P \land Q] = [P][Q],$$

$$[P \lor Q] = [P] + [Q] - [P][Q],$$

$$[P \Rightarrow Q] = [\neg P \lor Q]$$

$$= 1 - [P][\neg Q].$$

Lemma. =, \leq , \geq , <, > are primitive recursive predicates.

Proof.

1.
$$[x = y] = [|x - y| = 0]$$
.

2. Let $f(x, y) = [x \le y]$. Then

$$f(x,0) = 0,$$

$$f(x,y+1) = [x \le y+1]$$

$$= [x \le y] + [x = y+1]$$

$$= f(x,y) + [x = y+1].$$

Now recall the point 1.

3. Composing with projections, we swap arguments of \leq to get \geq .

- 4. $[x < y] = [x \le y] \cdot [x \ne y]$.
- 5. $[x > y] \in PR$ by the same token as with \geq .

Lemma. Let $R \subseteq \mathbb{N}^{n+1}$ be a primitive recursive predicate. Then the predicates

$$\exists i \leq y \colon R(\overline{x}, i),$$

$$\forall i \leq y \colon R(\overline{x}, i),$$

$$\exists i < y \colon R(\overline{x}, i),$$

$$\forall i < y : R(\overline{x}, i)$$

are primitive recursive.

Proof. For the first one, observe that

$$\left[\exists i \leq y \colon R(\overline{x}, i)\right] = \bigvee_{i=0}^{y} \left[R(\overline{x}, i)\right].$$

∨ is an associative operation.

Likewise,

$$[\forall i \leq y : R(\overline{x}, i)] = \bigwedge_{i=0}^{y} [R(\overline{x}, i)].$$

The last two predicates are gotten by composing the first two ones with y - 1.

Applications of minimisation

Lemma. The functions

- 1. $\left\lfloor \frac{x}{y} \right\rfloor$,
- 2. [x + y],
- 3. $[x \in \mathbb{P}]$,
- 4. $p_x =$ (the prime x in order)

are primitive recursive.

Proof.

- 1. $\lfloor x/y \rfloor = \min\{q \mid x < (q+1)y, \ q \le xy\}$ (we need the second condition for the minimisation to be bounded). Since multiplication and comparisons are primitive, the predicate is primitive.
- 2. $[x \mid y] = [x = y \cdot \lfloor x/y \rfloor]$.
- 3. Let f(x) be the minimal divisor of x that differs from 1. Then $[x \in \mathbb{P}] = [f(x) = x]$, and $f(x) = \min\{d \mid d \mid x, \ d \neq 1, \ d \leq x\}.$
- 4. The equations

$$p_0 = 2,$$

$$p_{x+1} = \sum_{i=0}^{p_x!+1} \prod_{j=0}^{i} \left[j \notin \mathbb{P} \lor j \le p_x \right]$$

define p_{\square} , since there is at least one prime in the sum, $p_x! + 1 \in \mathbb{P}$.

Lemma. The function

 $x \mapsto \text{undefined}$

is primitive.

Mutual and complete recursion

Lemma. The function $\binom{x}{2}$ is primitive.

Proof. Indeed,

$$\begin{pmatrix} 0 \\ 2 \end{pmatrix} = 0,$$
$$\begin{pmatrix} x+1 \\ 2 \end{pmatrix} = \begin{pmatrix} x \\ 2 \end{pmatrix} + x.$$

Definition. Call $f: \mathbb{N}^n \to \mathbb{N}$ a *Cantor enumeration*, iff it is bijective, primitive recursive, and has all coordinate functions of the inverse primitive recursive.

Lemma. Define the $f: \mathbb{N}^2 \to \mathbb{N}$ as

$$f(x,y) = \binom{x+y+1}{2} + y.$$

Then f is a Cantor enumeration.

An irrelevant note: $\binom{x+y+1}{2}$ is the number of cells before the diagonal number x+y from the origin. y is the height of the cell (x,y) on this diagonal.

Proof. $\binom{x+y+1}{2}$ is the greatest triangular number not surpassing f(x,y): if the next one, $\binom{x+y+2}{2}$, is $\leq f(x,y)$ (they are monotonous, since there is an injection of pairs), then

$$\sum_{i=0}^{x+y+1} i \le y + \sum_{i=0}^{x+y} i \iff x+y+1 \le y \iff x+1 \le 0,$$

which is hardly true for natural x. Hence x + y is uniquely determined, as is y. This we use to

write down the inverses g_x , g_y . Put

$$g_s(z) = \min\left\{t \mid {t+2 \choose 2} > z, \ t \le z\right\},$$

$$g_y(z) = z - {g_s(z) \choose 2},$$

$$g_x(z) = g_s(z) - g_y(z).$$

 $\binom{z+2}{2} > z$, since each of the z initial elements gives rise to a pair with the element number z+1, and there is a pair which consists of the last two elements. Therefore, g_s is defined everywhere.

Theorem. For each $n \in \mathbb{N}_{\geq 1}$ there exists a Cantor enumeration of \mathbb{N}^n .

(For n = 0, \mathbb{N}^n is finite.)

Proof. By induction over n. In case n = 1, we have $id_{\mathbb{N}}$. Let f and g be Cantor enumerations of \mathbb{N}^n and \mathbb{N}^2 . Define an enumeration h of \mathbb{N}^{n+1} as

$$h(x_1,...,x_{n+1}) = g(f(x_1,...,x_n),x_{n+1}).$$

Since f_i^{-1} are functional and primitive by induction, we see that

$$x_i = f_i^{-1}(g_1^{-1}(h))$$
 for all $i \in \{1, ..., n\}$,
 $x_{n+1} = g_2^{-1}(h)$.

Definition. Denote

$$ex(i, x) = max\{k \mid p_i^k \mid x\}.$$

Lemma. $ex \in PR_2$.

Proof. Since

$$\operatorname{ex}(i,x) = \min \left\{ k \mid p_i^{k+1} \times x, \ k \le x \right\}.$$

 $p_i^{x+1} \times x$, since $b^x > x$ for $b \ge 2$.

Theorem (complete recursion). Let $s \in \mathbb{N}_{\geq 1}$, $g \in PR_n$, $h \in PR_{n+2}$, $t_1, \ldots, t_s \in PR_1$, $t_i(y) \leq y$ for all $i \in \{1, \ldots, s\}$. Define f as

$$f(\overline{x},0) = g(\overline{x}),$$

$$f(\overline{x},y+1) = h(\overline{x},y,f(\overline{x},t_1(y)),\ldots,f(\overline{x},t_s(y))).$$

Then $f \in PR_{n+1}$.

Proof. To simplify notation, we put n = 0 (the proof would be the same anyway). Using primitive recursion, define

$$q(0) = 2^{g},$$

$$q(x+1) = q(x) \cdot p_{x+1}^{h(x,ex(t_{1}(x),q(x)),...,ex(t_{s}(x),q(x)))}.$$

Obviously,

$$f(x) = \exp(x, q(x))$$

for all $x \in \mathbb{N}$ — a primitive function.

Theorem (mutual recursion). For $i \in \{1, ..., k\}$ and some $g_1, ..., g_k, h_1, ..., h_k : \mathbb{N}^n \to \mathbb{N}$, define

$$f_i(\overline{x}, 0) = g_i(\overline{x}),$$

$$f_i(\overline{x}, y + 1) = h_i(\overline{x}, y, f_1(\overline{x}, y), \dots, f_k(\overline{x}, y)).$$

Suppose g_i, h_i for $i \in [1, s]$ are primitive recursive. Then f is primitive recursive.

Proof. Let $c: \mathbb{N}^n \to \mathbb{N}$ be a Cantor enumeration, and, for every $i \in \{1, ..., n\}$, $p_i: \mathbb{N} \to \mathbb{N}$ its ith inverse. Define

$$f(\overline{x}, y) = c(f_1(\overline{x}, y), \dots, f_n(\overline{x}, y)).$$

We assert $f \in PR_{n+1}$: if this is settled, $f_i = p_i \circ f$ are primitive as well. First, define

$$\widehat{h}_i(\overline{x}, y, z) := h_i(\overline{x}, y, p_1(z), \dots, p_n(z)) \text{ for any } i \in \{1, \dots, n\},$$

$$h(\overline{x}, y, z) := c(\widehat{h}_1(\overline{x}, y, z), \dots, \widehat{h}_n(\overline{x}, y, z)).$$

This *h* is a primitive function. And now we have made our way to applying the recursion rule:

$$f(\overline{x},0) = c\Big(g_1(\overline{x}),\ldots,g_n(\overline{x})\Big),$$

$$f(\overline{x},y+1) = h\Big(\overline{x},y,f(\overline{x},y)\Big).$$

Theorem. Let R_0, \ldots, R_k be n-ary relations such that

$$R_0 \sqcup \cdots \sqcup R_k = \mathbb{N}^n$$
.

For some $f_1, \ldots, f_k \colon \mathbb{N}^n \to \mathbb{N}$, define

$$f(\overline{x}) = \begin{cases} f_0(\overline{x}), & R_0(\overline{x}), \\ \vdots \\ f_k(\overline{x}), & R_k(\overline{x}). \end{cases}$$

Suppose f_i and R_i are primitive recursive. Then f is primitive recursive.

Proof. Indeed,

$$f(\overline{x}) = \sum_{i=0}^{k} f_i(\overline{x}) [R_k(\overline{x})].$$

Computable functions

Definition. Let $D \subseteq \mathbb{N}^m$. A function $f: D \to \mathbb{N}^n$ is *computable*, iff there exists a TM that, starting with any $x \in D$ written on its input tape, stops with only f(x) written on the output tape. We denote by R_m the set of all computable partial functions $\subseteq \mathbb{N}^m \to \mathbb{N}$, and by $R_m^* \subseteq R_m$ the set of computable functions $\mathbb{N}^m \to \mathbb{N}$.

Definition. A set $X \subseteq \mathbb{N}^k$ is *decidable*, iff its characteristic function is computable.

Lemma. Let $f: \mathbb{N} \to \mathbb{N}$ be a constant almost everywhere function. Then f is computable.

Proof. Indeed, it is a primitive recursive function: if $f|_{[t,+\infty)}$ is constant, then

$$f(x) = f(x)[x \ge t] + \sum_{i=0}^{t-1} f(i)[x = i].$$

Example. Let $S \subseteq \mathbb{N}$ be the set of such n that the decimal expansion of e contains n consecutive nines. Then S is decidable, since its characteristic function is nondecreasing.

Lemma. An infinite set $A \subseteq \mathbb{N}$ is decidable iff there exists a computable increasing function $f: \mathbb{N} \to \mathbb{N}$ such that $A = \operatorname{im} f$.

Proof. Suppose A is decidable. Define f as

$$f(x) = \begin{cases} \min\{a \mid a \in A, \ a > f(x-1)\}, & x > 0, \\ \min\{a \mid a \in A\}, & x = 0. \end{cases}$$

By what we know about minimisation, this function is indeed computable. By its definition, it is increasing. Its image is the complete A: otherwise take the smallest natural $n \in A \setminus \text{im } f$; all the lesser elements of A are in the image; then there exists x such that f(x-1) is the largest number in the image; but then f(x) = n. Finally, f is defined everywhere, since otherwise A would be finite.

Conversely, suppose that there exists such a function. To compute $[x \in A]$ for any $x \in \mathbb{N}$, check all values of f until we reach one that is at least this x. The definition of f allows us to do that for all x.

Equivalence of Kleene and Turing computability

Theorem. f is computable iff it is partial recursive.

Proof of \supseteq . Suppose the function f is partial recursive. We agree to represent a tuple of arguments \overline{x} to f as

$$0\prod_{i=1}^n 1^{x_i}0.$$

The proof is as follows:

- 1. There is a machine for each of the simplistic functions. Easy to see.
- 2. There is a machine for composition of functions. In terms of the composition operator, copy the input n times; run TMs for the functions g_1, \ldots, g_n ; run the TM for h on the result.
- 3. There is a machine for functions which are constructed by primitive recursion.

$$M_{1}: (\overline{x}, y) \mapsto (\overline{x}, g(\overline{x})),$$

$$M_{2}: (y, \overline{x}, u, z) \mapsto (y, \overline{x}, u + 1, h(\overline{x}, u, z)),$$

$$M_{3}: (y, \overline{x}, u, z) \mapsto (z),$$

$$M_{4}: (y, \overline{x}, u, z) \mapsto ([u \neq y]).$$

Now the wanted machine can be built as

$$M_1$$
; while M_4 do M_2 ; M_3 .

4. There is machine for functions constructed by bounded minimisation. Let

$$N_{1}: (\overline{x}) \mapsto (\overline{x}, 0),$$

$$N_{2}: w \mapsto w \# w,$$

$$N_{3}: (\overline{x}, y) \# (\overline{x}, y) \mapsto (\overline{x}, y) \# (g(\overline{x}, y)),$$

$$N_{4}: w \# v \mapsto [v \neq \epsilon],$$

$$N_{5}: (\overline{x}, y) \# w \mapsto (y),$$

$$N_{6}: (\overline{x}, y) \# w \mapsto (\overline{x}, y + 1).$$

The sought for machine is

$$N_1$$
, N_2 , N_3 ; while N_4 do N_6 , N_2 , N_3 ; N_5 .

Proof of \subseteq . Suppose we have m symbols in the alphabet $\Gamma = \{a_0, \ldots, a_{m-1}\}$. We code configurations as

$$\alpha q a \beta \mapsto (\widehat{\alpha}, q, \widehat{a}, \widetilde{\beta}),$$

where $\widehat{\Box}$ is the number in base *m* which is written as \Box ; $\widetilde{\Box} = \widehat{\Box}^R$.

By a pair $(q, a) \in Q \times \Gamma$ we can determine the action of the machine, and this will be a PR function (since it takes meaningful values on only a finite set).

We can transform a configuration by a PR function. For example, if the head moved right, the number $\widehat{\alpha}$ becomes $m \cdot \widehat{\alpha} + \widehat{a}$. The new symbol \widehat{a} is found, in this case, by computing $\widehat{\beta} \% m$, and the new string $\widehat{\beta}$ as $\left|\widehat{\beta}/m\right|$.

We can encode the work of the complete machine using mutual recursion. Define the functions K, K_{α} , K_{β} , K_{a} , K_{q} that compute the elements of the next configuration, based on the previous one. The last parameter of each is some t, so we compute their values on t+1, referring to the ones on t.

We can now find the first moment t_f , on which a final state is reached, by using minimisation on K_q . Afterwards we compute $K_a(t_f)$ and $K_b(t_f)$ to find the computation result (wlog, the machine stops with $\alpha = \epsilon$).

Corollary. Any partial recursive function can be computed using at most one minimisation.

Corollary. A function, which is computable on a Turing machine in time O(f) where f is primitive recursive, is primitive recursive.

The Ackermann function

In this section, all powers are functional powers.

Definition. Define

$$\alpha_0(x) = x + 1,$$

$$\alpha_i(x) = \alpha_{i-1}^{n+2}(x).$$

The *Ackermann function* $\beta \colon \mathbb{N} \to \mathbb{N}$ is then defined as

$$\beta(x) = \alpha_x(x).$$

We assert that the function β grows faster than any primitive recursive functions. Yet it is computable (so partial recursive).

Lemma. $\alpha_i(x) > x$ for all $i, x \in \mathbb{N}$.

Proof. For i = 0, x + 1 > x. For i > 0,

$$\alpha_{i}(x) = \alpha_{i-1} \left(\alpha_{i-1}^{x+1}(x) \right)$$

$$> \alpha_{i-1}^{x+1}(x)$$

$$\vdots$$

$$> x.$$

Lemma. If x > y, then $\alpha_i(x) > \alpha_i(y)$.

Proof. By induction on i, then by induction on x. If i = 0,

$$x > y \implies x + 1 > y + 1$$
.

If i > 0, then

$$\alpha_{i}(y) = \alpha_{i-1} \left(\alpha_{i-1}^{n+1}(y) \right)$$
$$> \alpha_{i-1} \left(\alpha_{i-1}^{n+1}(x) \right)$$
$$= \alpha_{i}(x).$$

Lemma. For every $x \in \mathbb{N}$, if i > j, then $\alpha_i(x) > \alpha_j(x)$.

Proof. If i = j + 1, then

$$\alpha_{j+1}(x) = \alpha_j^{x+1} \Big(\alpha_j(x) \Big)$$
 $> \alpha_j(x),$

since $\alpha_i(\square) > \square$.

Lemma. $\alpha_i(x) > \alpha_{i-1}(\alpha_{i-1}(x))$.

Proof.

$$\alpha_i(y) = \alpha_{i-1}^{n+1} (\alpha_{i-1}(y))$$
$$> \alpha_{i-1} (\alpha_{i-1}(x)).$$

Lemma. Let $f \in PR_n$. Then exists k such that, for all $x_1, \ldots, x_n \in \mathbb{N}$,

$$f(x_1,\ldots,x_n) \leq \alpha_k (\max(x_1,\ldots,x_n)).$$

Proof. By induction on the structure of primitive functions.

Consider the simplistic functions.

- 1. If f(x) = 0, then k = 0 goes, since x + 1 > 0.
- 2. If f(x) = x + 1, then k = 0 goes, since $\alpha_1(x) \ge \alpha_0(x) = f(x)$.
- 3. If $f(\overline{x}) = x_i$, then k = 0 goes.

Consider the composition operator. Suppose

$$f(\overline{x}) = h(g_1(\overline{x}), \dots, g_m(\overline{x})).$$

By induction there exist k and l such that

$$h(g_1(\overline{x}), \dots, g_m(\overline{x})) \ge \alpha_k(g_i(\overline{x}))$$

$$\ge \alpha_k(\alpha_l(g_i(\max \overline{x})))$$

$$> \alpha_k(\alpha_l(g_i(\max \overline{x})))$$

$$> \alpha_k(\max \overline{x}).$$

Consider the primitive recursion operator. Suppose

$$f(x_1, ..., x_n, 0) = g(x_1, ..., x_n)$$

$$f(x_1, ..., x_n, y + 1) = h(x_1, ..., x_n, y, f(x_1, ..., x_n, y)).$$

There exists *k* such that

$$f(x_1,\ldots,x_n,0) = g(x_1,\ldots,x_n)$$

$$\leq \alpha_k (\max\{x_1,\ldots,x_n\}),$$

$$f(x_1, \dots, x_n, y+1) = h(x_1, \dots, x_n, y, f(x_1, \dots, x_n, y))$$

$$\leq \alpha_k \left(\max\{x_1, \dots, x_n, y, f(x_1, \dots, x_n, y)\} \right)$$

$$\leq \alpha_k \left(\max\{x_1, \dots, x_n, y+1\} \right)$$

Theorem. Let $\beta(x) = \alpha_x(x)$, $f \in PR_n$. There exists $k \in \mathbb{N}$ such that $\beta(x) > f(x)$ for all x > k.

Proof. By the previous lemma, there is *k* such that

$$f(x) \leq \alpha_k(x)$$
.

If x > k, this inequality can be continued to yield

$$f(x) < \alpha_x(x)$$
.

Some partial recursive functions

Lemma. The function

$$f(x,y) = \begin{cases} x/y, & [y \mid x], \\ \text{undefined, otherwise} \end{cases}$$

is partial recursive.

Proof. Indeed,

$$f(x,y) = \min\{q \mid qy = x\}.$$

Enumerability

Definition. A set $S \subseteq \mathbb{N}$ is *enumerable*, iff there exists a TM that outputs all the elements of S and only them, separated by commas.

Example. \varnothing and $\mathbb N$ are enumerable. In general, all decidable sets are enumerable.

It is not long before until we give an example of an enumerable, non-decidable set.

Definition. Let $S \subseteq \mathbb{N}$. Its *semicharacteristic* function is the partial function

$$\exists_{S}(x) := \begin{cases} 1, & x \in S \\ \text{undefined, otherwise.} \end{cases}$$

Lemma. Let $S \subseteq \mathbb{N}$ be nonempty. The following are equivalent:
1. S is enumerable.
2. Its semicharacteristic function is computable.
3. There exists a computable $f: S \to \mathbb{N}$.
4. There exists an initial segment $R \subseteq \mathbb{N}$ and a computable bijective $g: R \to S$.
5. There exists a computable surjective $h: \mathbb{N} \to S$.
$1\Rightarrow 2$. Run the TM until it outputs the element. We are comfortable with the prospect of it never doing that.
$2 \Rightarrow 3$. Obvious.
$3 \Rightarrow 4$. Via minimisation: let $g(0)$ be the smallest member of S , and let $g(x)$ for $x > 0$ be the smallest member of S that is greater than $g(x-1)$. This function is not defined everywhere in case of a finite S .
$4 \Rightarrow 5$. To deal with the case of a finite S , we put $h(x) \coloneqq g(x)$ where g is defined, and $h(x) = \max S$, if $x \ge R $.
$5\Rightarrow 1$. Build a TM that outputs $f(0), f(1), \dots$
Lemma (Post's criterion). Let $S \subseteq \mathbb{N}$. S is decidable iff both S and \overline{S} are enumerable.

⇒. Iterate over naturals and check inclusion for each. Output accordingly.

The first to output x corresponds to the correct answer.

 \Leftarrow . To compute the characteristic function on $x \in \mathbb{N}$, we run machines for S and \overline{S} in parallel.

Projections

Definition. Let $S \subseteq \mathbb{N}^n$. We call the set

$$\operatorname{Proj}_{i} S = \left\{ x_{i} \mid \exists x_{-}, x_{+} \colon (x_{-}, x_{i}, x_{+}) \in S \right\}$$

a projection of S onto the coordinate i.

Lemma (on projections). Let $P \subseteq \mathbb{N}$. The following are equivalent:

- 1. *P* is enumerable.
- 2. There exists a decidable $Q \subseteq \mathbb{N}^2$ such that P is a projection of Q.
- $1 \Rightarrow 2$. Define *Q* to be the set of pairs (n, t) such that the number *n* appears in the output of the enumerating machine of *P* within *t* steps.
- $2 \Rightarrow 1$. Using a Cantor enumeration, iterate over all members of Q, outputting their projections (onto the known coordinate).

Definition. A set $S \subseteq \mathbb{N}^n$ is *enumerable*, iff its image under a Cantor enumeration of \mathbb{N}^n is enumerable.

Lemma (on graphs). Let $f: \mathbb{N} \to \mathbb{N}$. The following are equivalent:

- 1. *f* is computable.
- 2. Its graph is enumerable.
- $1 \Rightarrow 2$. Since f is defined everywhere, we may iterate over the naturals and output for each $x \in \mathbb{N}$ the pair (x, f(x)) (in the guise of its image under a Cantor enumeration).

 $2 \Rightarrow 1$. To compute f(x), run the Turing machine for the graph until arriving at (x, f(x)). This will happen.

Universal functions

Definition. Let $D \subseteq \mathbb{N}^{m+1}$, and let $U \colon D \to \mathbb{N}^n$ be a computable function. The function $U_k \colon \operatorname{Proj}_{1,\dots,m} D \to \mathbb{N}^n$, defined, for $k \in \operatorname{Proj}_0 d$ and $x \in \mathbb{N}^m$ as

$$U_k(x) := U(k, x),$$

we will call a section of U. U itself is said to be universal for the class of functions

$$C = \left\{ U_k \mid k \in \operatorname{Proj}_0 D \right\}.$$

Lemma. There exists a universal function for the class R_m .

Proof. Let $U_k(x)$ be the output of the TM number k on x.

Lemma. There does not exist an everywhere defined universal function $U: \mathbb{N}^2 \to \mathbb{N}$ for the class \mathbb{R}_1^* .

Proof. By diagonal argument. Consider the function $n \mapsto U(n, n) + 1$. It is computable, but differs from any section U_k at k:

$$U_k(k) + 1 \neq U_k(k).$$

A contradiction.

Remark. This proof fails for R_1 , since U(k, k) may not exist.

Lemma. There exists a computable $f: \mathbb{N} \to \mathbb{N}$ such that there does not exist an $F: \mathbb{N} \to \mathbb{N}$ with $F|_{\text{dom } f} = f$.

Proof. Take $f: n \mapsto U(n, n) + 1$, where U is an (existent) universal function for R_1 . Suppose F exists.

- If $n \in \text{dom } f$, then $F(n) \neq U(n, n)$.
- If $n \notin \text{dom } f$, then $n \notin \text{dom } U$ and $n \in \text{dom } F$.

Therefore, $F \neq U_n$ for any $n \in \mathbb{N}$. But $F \in \mathbb{R}_1^* \subseteq \mathbb{R}_1$, and U is universal for \mathbb{R}_1 . A contradiction.

An enumerable non-decidable set

Theorem. There exists an enumerable non-decidable set.

Proof. Let $f: n \mapsto U(n, n) + 1$ be as in the previous lemma. S := dom f is enumerable, as it is the domain of a computable function. We assert that S is undecidable. Suppose otherwise. Put

$$F(x) = [x \in S] f(x).$$

Since the characteristic function $[x \in S]$ is computable, F is computable and defined everywhere. This contradicts the previous lemma.

Some remarks on this proof

• In fact, the set

$$S = \{n \mid U(n, n) \text{ is defined}\}$$

is a guise of the classic diagonal argument on machines that do not accept themselves.

• \overline{S} is not enumerable. If both S and \overline{S} were enumerable, they would be decidable (obvious, but we have met that on page 22).

• The domain of this $U : \subseteq \mathbb{N}^2 \to \mathbb{N}$ is an enumerable, undecidable set itself. It is enumerable, as it is a domain of a computable function, but the diagonal function $n \mapsto U(n,n)$ serves as a counterexample to decidability.

Lemma. There exists a computable $f : \subseteq \mathbb{N} \to 2$ that does not a have an everywhere defined computable continuation $F : \mathbb{N} \to \mathbb{N}$ (so that $F|_{\text{dom } f} = f$).

Proof. Put

$$f(x) = \begin{cases} \left[U(x, x) = 0 \right], & \text{if } U(x, x) \text{ is defined,} \\ \text{undefined} & \text{otherwise.} \end{cases}$$

F differs from any section of U in the diagonal

Unseparable enumerable sets

Lemma. There exist enumerable disjoint *X* and *Y* such that, if *Z* is decidable and $Z \supseteq X$, then

$$Y \cap Z \neq 0$$
.

Thus, X and Y cannot be 'separated' by decidable sets.

Proof. Let f be as in the previous lemma, and put $X = f^{-1}(0)$, $Y = f^{-1}(1)$. Suppose there exists a decidable Z such that $Z \supseteq X$ and $Z \cap Y = \emptyset$. Now let

$$F(x) = \begin{cases} f(x), & x \in \mathbb{Z}, \\ 0 & x \notin \mathbb{Z}. \end{cases}$$

Since Z contains all the xs such that f(x) is nonzero, F continues f. But it is computable, in contradiction with the conclusion.

Properties of enumerable sets

Lemma. There exists an enumerable set with non-enumerable complement.

Proof. Consider the set of numbers of TM that accept themselves (we use a surjective enumeration). Using Levin's optimal algorithm, it is easy to enumerate it; but its complement is the set of all machines that do not accept themselves (it is not enumerable).

Definition. Let $U \subseteq \mathbb{N}^{n+1}$. Define its *sections* as

$$U_k = \big\{ x \mid (k, x) \in S \big\} \subseteq \mathbb{N}^n.$$

We say that *U* is *universal* for the set

$$C = \{U_k \mid k \in \mathbb{N}\}.$$

Lemma. Let *C* be the set of all enumerable sets of \mathbb{N}^k . Then exists a set *U* which is universal for *C*.

Proof. For each $e \in C$, there exists a TM $m \in \mathbb{N}$ that enumerates it. Define

$$U = \{(m, x) \mid x \in \mathbb{N}^n \text{ occurs in the output of } m \in \mathbb{N} \}.$$

Principal universal functions

Definition. Let $U: \subseteq \mathbb{N}^{m+1} \to \mathbb{N}$ be a universal function for R_m . U is *principal*, iff for every $f \in R_{m+1}$ exists $t \in R_1^*$ such that

$$f(n,x) = U(t(n),x) = U_{t(n)}(x)$$

for all $n \in \mathbb{N}$, $x \in \mathbb{N}^m$.

Theorem. There exists such a U.

Proof. Let $V: \mathbb{N}^{m+1} \to \mathbb{N}$ be a universal function for R_{m+1} . f is realised as V_k for some $k \in \mathbb{N}$:

$$f(n,x) = V(k,n,x).$$

Let $c \colon \mathbb{N}^2 \to \mathbb{N}$ be a Cantor enumeration, and $l, r \colon \mathbb{N} \to \mathbb{N}$ its left and right inverses. Then

$$f(n,x) = V(l(c(k,n)), n, x).$$

Here, put

$$U(c(k,n),x) := V(l(c(k,n)),n,x) \iff U(y,x) = V(l(y),r(y),x).$$

U thus defined is (1) computable, since V is; (2) universal for R_m , since for every $g \in R_m$ there is a computable function $(z, x) \mapsto g(x)$, which is realised as $V_{l(y)}$ for some y. Hence t(n) = c(k, n) fits.

Lemma. $U \in \mathbb{R}_2$ is a principal universal function for \mathbb{R}_1 iff there exists $f \in \mathbb{R}_2^*$ such that

$$U_p \circ U_q = U_{f(p,q)}$$

for all $p, q \in \mathbb{N}$.

 \Rightarrow . Unwrap the notation:

$$U(p,U(q,x)) = ^{?} U(f(p,q),x).$$

Consider

$$g:(n,x)\mapsto U\Big(l(n),U\big(r(n),x\big)\Big).$$

Since U is a principal universal function, there exists $t \in \mathbb{R}_1$ such that

$$g(n,x) = U_{t(n)}(x)$$
.

Therefore,

$$U(p, U(q, x)) = g(c(p, q), x)$$
$$= U_{t(c(p,q))}(x).$$

⇐.

GAP

Theorem (Uspensky, Rice). Let $\emptyset \subset A \subset R_1$. Let U be a principal universal function for R_1 . Then the set

$$T = \{ n \mid U_n \in A \}$$

is undecidable.

Proof. Suppose otherwise. Let $X,Y\subseteq \mathbb{N}$ be disjoint enumerable sets. Let $a\in A$ and $b\notin A$. Consider

$$f(w,z) = \begin{cases} a(z), & w \in X, \\ b(z), & w \in Y, \\ \text{undefined, otherwise.} \end{cases}$$

f is computable: run the enumerating algorithms for X and Y in parallel and compute a(z) or b(z), depending on whichever machine outputs z. Since T is decidable, we can check whether $f_w \in A$ and thus separate X from Y:

- If $f_w = U_{t(w)} \in A$, then $f_w = a$, and so $w \in X$.
- Otherwise $f_w = b$, and $w \in Y$.

Corollary. Let $\varphi \in \mathbb{R}_1$ and U as in the theorem. Then the set

$$\{n \mid U_n = \varphi\}$$

is undecidable.

Proof. The case $A = \{\varphi\}$.

Corollary. There exists a function V which is universal for R_1 , but not principal.

Proof. Let U be an arbitrary universal function for R_1 . Let D be the set of U-numbers of computable functions φ with dom $\varphi \neq \emptyset$. D is enumerable, so the range of a computable $f: \mathbb{N} \to D$. Consider

$$V(i,x) = \begin{cases} U(f(i-1),x), & i > 0, \\ \text{undefined,} & \text{otherwise.} \end{cases}$$

V is a R_1 -universal function. But the sole number of the function with empty domain is 0. This contradicts the first corollary, since any finite set is decidable.

Fixed point theorem

Lemma. Let \sim be an equivalence relation on \mathbb{N} . The following conditions cannot hold simultaneously:

- 1. $\forall f \in \mathbb{R}_1 \ \exists g \in \mathbb{R}_1^* \ \forall x \in \text{dom } f \colon x \in \text{dom } g \text{ and } g(x) \sim f(x)$.
- 2. $\exists h \in \mathbb{R}_1^* \ \forall n \in \mathbb{N} \ n \not\sim h(n)$.

Proof. Suppose both conditions hold. Let $f \in R_1$ be such that, if $p \in R_1$, then exists $x \in \mathbb{N}$, for which f(x) = p(x). For example, f(x) := U(x, x).

But consider $p := h \circ g$. It differs from f everywhere:

$$h(g(x)) \neq g(x) \sim f(x)$$

for every $x \in \text{dom } f$, and for every $x \not\sim \text{dom } f$,

h

Theorem (on a fixed point). Let U be a principal universal function for R_1 , and let $h \in R_1^*$. Then exists $n \in \mathbb{N}$ such that

$$U_n = U_{h(n)}$$
.

Proof. Put

$$m \sim n \iff U_m = U_n.$$

The theorem will follow from the previous lemma, if we show that the first condition holds.

Let $f \in R_1$. Let

$$V(n,x) := U(f(n),x).$$

There exists $g \in \mathbb{R}_1^*$ such that

$$V(n,x) = U(g(n),x).$$

This g fits: if $x \in \dim f$, then, trivially, $x \in \dim g$, and

$$U_{g(x)}(y) = U(g(x), y) = V(x, y) = U(f(x), y) = U_{f(x)}(y).$$

Corollary. Let $U: \mathbb{N}^2 \to \mathbb{N}$ be a principal universal function. Then exists $p \in \mathbb{N}$ such that

$$U(p,x)=p$$

for every x such that $(p, x) \in \text{dom } U$.

Proof. Take V(n, x) := n. There exists $s \in \mathbb{R}_1^*$ such that $U_{s(n)} = V_n = n$. Now apply the theorem to h = s.

m-reducibility

Definition. Let $A, B \subseteq \mathbb{N}$. We say that A *m*-reduces to B and write $A \leq_m B$, iff exist $f \in \mathbb{R}_1^*$ such that

$$\forall x \in A : x \in A \Leftrightarrow f(x) \in B.$$

That is,

$$f(A) \subseteq B$$
 and $f^{-1}(B) \subseteq A$.

Though this is not standard notation, we will write

$$A \leq_f B$$
.

Remark. The *m* stands for 'many-to-one'.

Lemma. \leq_m is reflexive and transitive.

Proof. Take id and o.t

Lemma. Suppose $A \leq_f B$.

- 1. If *B* is decidable, then *A* is.
- 2. If *B* is enumerable, then *A* is.
- 3. $\overline{A} \leq_f \overline{B}$.

Proof.

- 1. Because $[x \in A] = [f(x) \in B]$.
- 2. Run the enumerating machine for B and, simultaneously, one for im f. If, for some x, the number f(x) has been output twice, we have $f(x) \in B$. Then $x \in A$. Conversely, if $x \in A$, such a moment is bound to occur.
- 3. Observe that

$$x \in \overline{A} \iff f(x) \in \overline{B}.$$

Example. If $A \subseteq \mathbb{N}$ is decidable and $\emptyset \subset B \subset \mathbb{N}$, then $A \leq B$. Indeed, let

$$f: x \mapsto b[x \in B] + c[x \notin B]$$

for some $b \in B$ and $c \in \overline{B}$.

Example. If $A \leq \emptyset$, then $A = \emptyset$. If $A \leq \mathbb{N}$, then $A = \mathbb{N}$.

m-completeness

Definition. An enumerable set *B* is *m*-complete, iff every enumerable *A m*-reduces to *B*.

Theorem. Such a *B* exists.