Examenul de bacalaureat național 2018

Proba E. c)

Matematică M_mate-info

Clasa a XII-a

Simulare

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Calculați partea întreagă a numărului real $a = \sqrt[3]{125} + \sqrt{5}$.
- **5p** 2. Se consideră funcția $f : \mathbb{R} \to \mathbb{R}$, f(x) = x + m, unde m este număr real. Determinați numărul real m, știind că $(f \circ f)(x) = f(x+1)$, pentru orice număr real x.
- **5p** 3. Rezolvați în mulțimea numerelor reale inecuația $\left(\frac{2}{3}\right)^{4x+1} \le \left(\frac{2}{3}\right)^{3x+5}$.
- **5p 4.** Determinați numărul de submulțimi cu cel puțin trei elemente ale mulțimii $A = \{0,1,2,\ldots,9\}$.
- **5p** | **5.** Se consideră triunghiul MNP cu MN = 6, MP = 8 și $m(M) = 90^{\circ}$. Calculați lungimea vectorului $\vec{u} = \overrightarrow{MN} + \overrightarrow{MP}$.
- **5p 6.** Determinați numărul real x, știind că $\operatorname{tg} x + \operatorname{ctg} x + 2 = 0$ și $x \in \left(\frac{\pi}{2}, \pi\right)$.

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră matricea $A(x) = \begin{pmatrix} x & 0 & 2x-1 \\ 0 & \frac{1}{2} & 0 \\ 2x-1 & 0 & x \end{pmatrix}$, unde x este număr real.
- **5p** a) Determinați numerele reale x pentru care $\det(A(x)) = 0$.
- **5p b)** Demonstrați că $A(x) + A(1-x) = 2A(\frac{1}{2})$, pentru orice număr real x.
- **5p** c) Determinați numărul real x pentru care $A(x) \cdot A(1-x) = \frac{1}{2}A(\frac{1}{2})$.
 - **2.** Pe mulțimea $\mathbb{Z}_{20} = \{\hat{0}, \hat{1}, \hat{2}, ..., \hat{19}\}$ se definește legea de compoziție $x \circ y = xy + \hat{3}x + \hat{3}y + \hat{9}$.
- **5p** a) Demonstrați că $x \circ y = (x + \hat{3})(y + \hat{3})$, pentru orice $x, y \in \mathbb{Z}_{20}$.
- **5p b)** Determinați $a \in \mathbb{Z}_{20}$, știind că $a \circ x = \hat{0}$ pentru orice $x \in \mathbb{Z}_{20}$.
- **5p** c) Dați exemplu de $a,b \in \mathbb{Z}_{20} \setminus \{\widehat{17}\}$ pentru care $a \circ b = \widehat{0}$.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x)=2x^2-\sqrt{x}$
- **5p a)** Arătați că $\lim_{x \to 1} \frac{f(x) 1}{x 1} = \frac{7}{2}$.
- **5p b**) Determinați imaginea funcției f.
- **5p** c) Demonstrați că $2e^{2x} e^{\frac{x}{2}} + \frac{3}{8} \ge 0$, pentru orice număr real x.

- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \operatorname{arctg} x$.
- $\mathbf{5p} \quad \mathbf{a)} \text{ Arătați că } \int_{0}^{1} f(\operatorname{tg} x) dx = \frac{1}{2}.$
- **5p b)** Calculați $\int_{0}^{1} \frac{f(x)}{x^2 + 1} dx$.
- **5p** c) Demonstrați că $\frac{\pi}{4} \frac{1}{n+2} \le (n+1) \int_0^1 x^n f(x) dx \le \frac{\pi}{4} \frac{1}{2(n+2)}$, pentru orice număr natural nenul n.