Final project

ORB-SLAM & COLMAP

作業內容

錄製自己的影片,使用兩種不同的視覺定位方法(ORB-slam & COLMAP) 建立相機軌跡並比較。

繳交檔案:將以下檔案包成zip檔, group_0.zip

- 1. 一組一份10頁以內的報告, 轉成pdf檔
- 2. code
- 3. 實驗過程影片

繳交期限:6/21(一) 晚上 23:59前

ORB-SLAM2

Windows

- https://github.com/phdsky/ORBSLAM24Windows?fbclid=IwAR2Q3DCAgMn-gzNp_E_5fMk1a
 Bld_rPPW99qojWJm62c7fSUdPfT6IEpmaY
- Prerequisite from github
 - OpenCV: newer than 2.4.13
 - Cmake: at least be 2.8
 - Visual Studio VS2013 (corresponding to opency's vc12)
- Prerequisite from TAs
 - OpenCV: 3.4.6-vc14_vc15
 - Cmake: newest
 - Visual Studio VS2017 (corresponding to opency's vc15)
 - Git: newest

Prerequisite

- OpenCV: newer than 2.4.13
 - https://sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.13/opencv-2.4.13.exe/downl
 oad
 - Add environment variable "PATH"
 - YOUR_OWN_PATH\opencv\build
 - YOUR_OWN_PATH\opencv\build\x64\vc12\bin

D:\opencv\build\x64\vc15\bin
D:\opencv\build

- Cmake: at least be 2.8
 - https://cmake.org/download/
- Git
 - https://git-scm.com/downloads

Prerequisite

- Visual Studio 2013
 - 可以從交大的filezilla載
 - o 官網: https://docs.microsoft.com/en-us/visualstudio/releases/2019/release-notes-preview

Steps

- Compile the projects in Thirdparty folder
 - o DBoW2
 - eigen(not need to build)
 - o g2o
 - o Pangolin
- Build ORBSLAM24Windows

- 新增folder "build"
- Cmake
 - Browse Source.. 選*DBoW2*
 - Browse Build.. 選*DBoW2/build*

- 1. 把Grouped和Advanced勾起來
- 2. 點configure
- 3. 依自己的VS選版本
- 4. 選x64版本
- 5. 點Finish

- 1. 把opencv的lib path填上去
- 2. 再Configure一次
- 3. Generate
- 4. Open Project

- 1. 選Release模式
- 2. 在ALL_BUILD項目點右鍵選擇"建置"
- 3. DBoW2 build完成!

======= 建置: 3 成功、0 失敗、0 最新、0 略過 ========

● Cmake和DBoW2一樣

(不用理中間的紅框)

- 1. 點g2o項目右鍵
- 2. 選屬性

- 1. C/C++
- 2. 前置處理器
- 3. 編輯

- 1. 加WINDOWS在最下層
- 2. 選Release模式
- 3. 在ALL BUILD項目點右鍵選擇"建置"

▼ 本機 Windows 偵錯工具 ▼ 第 =

- 4. 會有一個失敗
- 5. 一樣的動作再加WINDOWS, 再建置一次
- 6. g2o build完成!

Release

x64

======= 建置: 1 成功、0 失敗、2 最新、0 略過 =========

前置處理器定義

CMAKE INTDIR="Debug"

WIN32 WINDOWS

WINDOWS

Steps - Pangolin

- 1. Cmake同上
- 2. 有很多紅框不理他→

Steps - Pangolin

- 1. 選Release模式
- 2. 在ALL BUILD項目點右鍵選擇"建置"
- 3. pthread.lib的失敗不用理他
- 4. Pangolin build完成!

======= 建置: 18 成功、1 失敗、0 最新、0 略過 ========

- Cmake同上
 - 會報錯
- 填上opencv的lib path 3.
- Configure
- Generate
- Open project

- 1. 選Release模式
- 2. 在ORB_SLAM2項目點右鍵
- 3. 屬性

- 1. C/C++ → 一般
- 2. 其他include目錄
- 3. 編輯

- 1. 把缺的include path補上
- 2. 總共12個

- 1. 選Release模式
- 2. 在ORB_SLAM2項目點右鍵選擇"建置"

======= 建置: 2 成功、0 失敗、0 最新、0 略過 =========

1. 在mono_tum項目同上再做一次

(補include)

(建置)

Test

- 1. 開啟ORBSLAM24Windows/build/ORB_SLAM2.sln
- 2. 選Release模式
- 4. 右鍵mono_tum項目 → 屬性

Test

5. 組態屬性 → 偵錯 → 命令引數 → 編輯

Test

- 6. 輸入三個parameters, 用空格隔開:
 - path_to_vocabulary: ORBSLAM24Windows/Vocabulary/ROBvoc.txt
 - path_to_settings: ORBSLAM24Windows/Examples/Monocular/TUM2.yaml, 包含相機參數和orb slam的參數
 - path_to_sequence: rgbd_dataset_freiburg2_desk資料夾的path
- 7. 右鍵mono_tum項目 → 偵錯 → 開始執行個體

ORB-SLAM2

- Linux
 - https://github.com/raulmur/ORB_SLAM2
 - Prerequisite from github
 - C++11 or C++0x Compiler
 - Pangolin
 - Opency: Required at leat 2.4.3.
 - Eigen3: at least 3.1.0.
 - DBoW2 & g2o in the Thirdparty folder

ORB-slam的Output

在 build 資料夾中 KeyFrameTrajectory.txt

KeyFrameTrajectory.txt - 記事本

```
檔案(F) 編輯(E) 格式(O) 檢視(V) 說明
-0.0743130 0.0263749 -0.0152438 -0.0002343
                  68 0 0843805 -0 0521409
                            -0.0585713
                            -0.0666148 -0.0202414
             -0.1335778 0.0963561
                            -0.0768819
             -0.1568367 0.0973371
```

依序為 timestamp, 相機(x, y, z), 相機旋轉(q_x, q_y, q_z, q_w)

- https://github.com/colmap/colmap/releases?fbclid=lwAR38THauVythCkkbdUs 4fcjv85muGyr34wHMIUqREK9v5dZrSsEKMHZbinQ
- COLMAP-3.6-windows-no-cuda.zip即為windows免安裝版
- 先建模型,再用測試影片重建相機位置

1. new project

2. Database

在要存的資料夾打一個名稱,會存成.db檔

3. Image

選擇輸入圖片資 料夾

然後按Save

4. Feature Extraction

4. Feature Extraction

5. FeatureMatching

6. Start Reconstruction

6. Start Reconstruction

7. Export model

8. 把測試影像丟到原始影像資料夾裡

可以分成兩個資料夾

9. Import model

把剛剛Export的 模型讀入

10. 重複4~6步驟

COLMAP會自動找還沒處理過的影像,也就是第8步新增的那些測試影像

11. Export model as

存成.nvm檔

COLMAP的output

.nvm file

<Camera> = <File name> <focal length> <quaternion WXYZ> <camera center>

<radial distortion> 0

```
C\Users\user\Desktop\NCTU\TA\110\final\ORBSLAM24Windows-master\Examples\data\rqbd_dataset_freiburg2_desk\desk.nvm • - Sublime Text (UNREGISTERED)
        NVM_V3
        1311868169.031214.png 531.094 0.986827 0.0576251 -0.137746 -0.0622797 -2.18207 0.252496 -0.389707 -0.014 878 0
        1311868170.431288.png 527.524 0.999955 -0.00543622 -0.00675414 -0.00393139 -0.653596 -0.307051 -0.444098 -0.0103062 0
        1311868170.399421.png 529.171 0.999922 -0.00704078 -0.00783119 -0.00665692 -0.655537 -0.321939 -0.440383 -0.00438816 0
        1311868170.099394.png 528.03 0.99992 -0.00467634 -0.0110574 -0.00397677 -0.8536 -0.418527 -0.0999644 -0.00791426 0
        1311868170.263521.png 529.361 0.9998 -0.011284 -0.00783121 -0.014565 -0.712557 -0.381867 -0.278093 0.000149736 0
        1311868170.231467.png 529.851 0.999829 -0.0118302 -0.00798112 -0.0117462 -0.724943 -0.393592 -0.239921 0.00304498 0
        1311868170.463383.png 527.739 0.99998 -0.00426464 -0.00453742 -0.00103384 -0.638948 -0.27567 -0.489258 -0.00862912 0
       1311868170.363400.png 529.259 0.999888 -0.00882829 -0.00768005 -0.0093235 -0.659355 -0.339968 -0.395356 -0.0025404 0
        1311868170.299432.png 529.244 0.999839 -0.00965026 -0.00708172 -0.0134018 -0.694568 -0.386899 -0.32149
        1311868169.931272.png 529.235 0.999854 0.00143813 -0.0126167 0.0114112 -0.999652 -0.336388 -0.0684517 -0.000579004 0
        1311868170.199317.png 529.111 0.999873 -0.0111222 -0.00779241 -0.00834823 -0.747295 -0.405858 -0.212966 -0.0012112 0
        1311868170.163416.png 529.341 0.999894 -0.0103956 -0.00789295 -0.00646928 -0.776802 -0.409114 -0.188796 -0.00117719 0
        1311868170.031274.png 528.799 0.999884 -0.00337732 -0.0147975 0.00127623 -0.89746 -0.376621 -0.0748301 -0.00168253 0
        1311868170.063469.png 529.017 0.9999 -0.0034675 -0.0136141 -0.00143549 -0.882449 -0.385081 -0.10135 -0.0040826 0
        1311868169.963415.png 528.844 0.999861 0.00196838 -0.0131933 0.00995818 -0.959749 -0.371208 -0.0661133 -0.00240519 0
        1311868169.999399.png 529.599 0.999873 -0.000821997 -0.014506 0.00653502 -0.924302 -0.385203 -0.078333 -0.00171877 0
        1311868169.863396.png 528.688 0.999797 0.00140817 -0.0152008 0.013183 -1.08394 -0.315716 -0.0595321 -0.00516485 0
        1311868169.831415.png 528.403 0.999765 0.00161789 -0.0174746 0.0127479 -1.12379 -0.307379 -0.0534917 -0.00677958 0
        1311868170.331325.png 529.507 0.999867 -0.00965927 -0.00712583 -0.0110375 -0.673867 -0.364266 -0.361849 -0.0019651 0
        1311868169.899390.png 529.463 0.999832 0.00114452 -0.0133912 0.0124637 -1.04627 -0.333028 -0.0757587 -0.00480268 0
    27 1311868169.731279.png 528.473 0.999625 0.00670929 -0.0231532 0.0129704 -1.24966 -0.276945 -0.0819793 -0.0109087 0
        1311868169.763417.png 528.52 0.999681 0.00574511 -0.0205937 0.0134169 -1.19361 -0.292043 -0.0693573 -0.00782886 @
        1311868170.499476.png 529.006 0.999989 -0.00284383 -0.00349047 0.00118509 -0.626175 -0.258315 -0.548649 -0.00508815 0
        1311868169.699466.png 526.579 0.999485 0.0083293 -0.0289608 0.0109884 -1.31046 -0.262238 -0.0466404 -0.01806 0
        1311868170.631485.png 528.672 0.999998 0.000979129 -0.00102279 0.00171956 -0.562436 -0.174332 -0.687017 -0.00313857 0
```

Evaluation

- 把COLMAP重建的相機軌道當作Ground truth
- ORB-SLAM的坐標系和COLMAP的坐標系不一樣
- 把ORB-SLAM重建的相機軌道轉換到COLMAP的坐標系,和Ground truth計算 誤差
- 把兩個相機軌道plot出來

報告內容

- 比較兩種方法之間的差異
- 比較建出來的模型還有各自的相機定位
- 兩個相機軌道的圖
- ORB-SLAM實驗過程影片