Combinational Logic Building Blocks

Instructor: Dr. Vinicius Prado da Fonseca (vpradodafons@online.mun.ca)

Combinational Building Blocks

- Combinational logic is often grouped into larger building blocks to build more complex systems.
- This is an application of the principle of abstraction
 - hiding the unnecessary gate-level details to emphasize the function of the building block.
- Two more commonly used building blocks:
 - multiplexers
 - decoders.

Multiplex (MUX)

- Multiplexers are among the most commonly used combinational circuits.
- They choose an output from among several possible inputs based on the value of a select signal.
- A multiplexer is sometimes affectionately called a mux.

Two to One Multiplexor

- A two-to-one multiplexor (2-1 or 2:1 MUX) used to combine other blocks
 - \circ inputs D_0 and D_1
 - select input S
 - output Y.
- Similar to an if-then-else.
 - \circ When S = 0, Y = d0
 - \circ When S = 1, Y = d1
- The selection circuit can be implemented with a 1-to-2 decoder
- S is also called a control signal

		- 1		
S	D_1	D_0	Y	
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	0	
1	1	0	1	
1	1	1	1	

www.mun.ca

Two to One Multiplexor

		d1,d0				
	10)	00	01	11	10	
S	0	0	1	1	Θ	
•	1	0	0	1	1	

 $Y = \overline{S} \cdot d0 + S \cdot d1$

S	d1	d0	Υ
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Two Variables Boolean Function with 4-1 MUX

- Any two variable Boolean functions can be implemented with a 4-1 MUX. The idea can be extended to more variables.
- The data inputs to the 4-to-1 MUX are set to the truth table entries

Two Variables Boolean Function with 4-1 MUX

- Any two variable Boolean functions can be implemented with a 4-1 MUX. The idea can be extended to more variables.
- The data inputs to the 4-to-1 MUX are set to the truth table entries

Decoders

- A decoder has N inputs and 2^N outputs
- Asserts (set it to true) exactly one of its outputs depending on the input combination.
- Used to select only one component in a set
 - e.g. Access multiple memory modules

Decoders

- A decoder has N inputs and 2^N outputs
- Asserts (set it to true) exactly one of its outputs depending on the input combination.
- Used to select only one component in a set
 - e.g. Access multiple memory modules

https://www.electronics-tutorials.ws/combination/comb 5.html

Address Bus - A₃ to A₁₀

Decoders

- A decoder has N inputs and 2^N outputs
- Asserts (set it to true) exactly one of its outputs depending on the input combination.

A_1	A_0	Y3	Y_2	Y_1	Y_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

One to Two Decoders

- Decoders are used to select one element out of N elements
- A N input decoder can select up to 2^N elements
- Provides all the minterms for the inputs

а	Y0	Y1	
0	1	0	
1	0	1	

Two to Four Decoders

а	b	Y0	Y1	Y2	Y3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	Θ	1

Muxes and Decoders

- Larger and multifunctional designs
- Help group other logic blocs
- Implement functions

Questions?

Next: Bitwise operations

