

Pengembangan Sistem Deteksi Dini Gempa menggunakan Metode Convolutional Neural Network (CNN) dan eXtreme Gradient Boosting (XGBoost)

Samatha Marhaendra Putra Rizky Alif Ramadhan Daffa Bil Nadzary

TheLastDance

Poin Bahasan

01

Latar Belakang dan Tujuan

Gempa, gelombang, dan tujuan penelitian

03

Hasil dan Analisis

Preprocessing, EDA, validation

02

Metode

Dataset, skema sistem, feature extraction, model

04

Kesimpulan dan Saran

Latar Belakang

- Gempa merupakan fenomena pergeseran lempeng bumi yang mengakibatkan terjadinya pelepasan energi secara spontan dan menghasilkan gelombang seismik
- Sinyal yang dapat ditangkap pada saat terjadinya gelombang seismik terdiri dari: **Primary Wave (P-wave)**, **Secondary Wave (S-wave)**, **dan Surface Wave**.

Contoh pengamatan 1 sinyal gempa selama 60 detik

Tujuan

Deteksi Dini

Membuat model klasifikasi dan regresi berbasis machine learning dan deep learning untuk melakukan deteksi dini secara real time.

Komparasi Performa

Melakukan komparasi performa antara model klasifikasi dan regresi dalam mendeteksi dini terjadinya gempa

Simulasi

Melakukan simulasi sistem deteksi gempa dini menggunakan model yang dibuat

02 Metode

Dataset

1.200.000
Data Pengamatan
240.000
Noise

Dataset

back_azimuth_deg 280.5 coda end sample 3114.0 network code TA p arrival sample 500.0 p_status manual p_travel_sec 17.26 p weight 0.5 receiver code 109C receiver elevation m 150.0 receiver_latitude 32.8889 receiver_longitude -117.1051 receiver_type BH s arrival sample 1678.0 s_status manual s weight 0.5 38.59999847] snr db [37.20000076 42. source depth km 12.66 source depth uncertainty km None source_distance_deg 0.92 source_distance_km 101.87 source error sec 0.8127 source_gap_deg 48.096 source horizontal uncertainty km 3.0397 source_id 8940123 source latitude 32,7253 source longitude -116.0348 source magnitude 3.6 source_magnitude_author None source_magnitude_type ml source mechanism strike dip rake None source origin time 2006-11-03 16:12:12.44 source origin uncertainty sec 0.27 trace_category earthquake_local trace_name 109C.TA_20061103161223_EV trace_start_time 2006-11-03 16:12:24.700000

Gelombang Gempa

Dataset

2 kategori pengamatan: Gempa dan *Noise* (Plot *Waveform* dan *Spectrogram*)

Gelombang Gempa

Noise

Skala Gempa

Magnitudo (SR)	Tingkatan	Level MMI	Efek	
1.0 - 1.9	Mikro	I	Tidak terasa, namun tercatat oleh seismograf	
2.0 - 2.9	Minor	I	Sedikit terasa, tidak ada dampak terhadap bangunan	
3.0 - 3.9	Minor	II s.d. III	Getaran dapat dirasakan dan diamati	
4.0 - 4.9	Kecil	IV s.d. V	Pergerakan objek-objek di dalam bangunan yang dapat dirasakan	
5.0 - 5.9	Sedang	VI s.d. VII Dapat mengakibatkan kerusakan pada bangunan yang		
6.0 - 6.9	Kuat	VII s.d. IX	Kerusakan pada kebanyakan bangunan. Dapat dirasakan hingga ratusan km dari pusat gempa	
7.0 - 7.9	Major	VIII atau lebih tinggi	Kerusakan yang dapat menghancurkan bangunan dengan jarak yang lebih jauh	

Skema Sistem

Model Klasifikasi: CNN

Model Regresi: CNN

Waveform Feature Extraction

Mean	Max	Peak	Peak to Peak
$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$	$\max(x_i)$	$P_m = \max\left(x_i \right)$	$P_k = \max(x_i) - \min(x_i)$

RMS	Variance	Standard Deviation	Power
$\sqrt{\frac{1}{N} \sum_{i=1}^{N} x_i^2}$	$\sum_{i=1}^{N} (x_i - \bar{x})^2 / N - 1$	$\sigma = \sqrt{\sum_{i=1}^{n} (x_i - \mu)^2 / (n-1)}$	$\frac{1}{N} \sum_{i=1}^{N} x_i^2$

Crest Factor	Form Factor	Pulse Indicator	Margin	Kurtosis	Skewness
$\frac{P_m}{RMS}$	$\frac{RMS}{\bar{x}}$	$\frac{P_m}{\bar{x}}$	$\frac{P_m}{ \frac{1}{N}\sum_{i=1}^N \sqrt{ x_i } ^2}$	$\frac{1}{N} \sum_{i=1}^{N} \left(\frac{x_i - \bar{x}}{\sigma} \right)^4$	$\frac{N\sum(x_i-\bar{x})^3}{(N-1)(N-2)\sigma^3}$

Waveform Feature Extraction

Skewness of Band Power	Kurtosis of Band Power	Relative Spectral Peak per Band
$S_s = \frac{1}{n} \frac{\sum_{i=1}^{n} (S(f)_i - S_{\mu})^3}{S_V^{3/2}}$	$S_K = \frac{1}{n} \frac{\sum_{i=1}^{n} (S(f)_i - S_{\mu})^4}{S_V^{4/2}}$	$S_{RSPPB} = \frac{\max(S(f)_i)}{\frac{1}{n} \sum_{i=1}^{n} S(f)_i}$

Domain Frekuensi

Model Regresi + Klasifikasi: XGBoost + Bayesian Opt

Cara kerja XGBoost

- **XGBoost** adalah *library* peningkatan gradien terdistribusi yang teroptimalisasi dengan tujuan untuk pelatihan model *machine learning* yang lebih efisien dan bersifat *scalable*.
- XGBoost banyak digunakan dikarenakan kemampuannya untuk menangani kumpulan data besar dengan kinerja yang baik.
- Bayesian Optimization sering digunakan dalam applied machine learning untuk menyetel hyperparameter dari model berperforma baik tertentu pada kumpulan data validasi.

Preprocessing: Undersample

240.000 _____ 24.000 Noise

Penentuan nilai *threshold* magnitudo untuk sampling didasarkan pada skala MMI.

Exploratory Data Analysis

Sebaran waktu interval antar jenis gelombang

Time Interval Between Coda-end and S-wave

Interval antara P-wave dengan S-wave (rata-rata: 6.7 detik) Interval antara awal S-wave hingga akhir gelombang (rata-rata: 11.8 detik)

Interval antara P-wave hingga akhir gelombang (rata-rata: 18.6 detik)

Exploratory Data Analysis

Sebaran waktu interval antar jenis gelombang

Interval antara P-wave dengan S-wave (rata-rata: 6.7 detik) Interval antara awal S-wave hingga akhir gelombang (rata-rata: 11.8 detik)

Interval antara P-wave hingga akhir gelombang (rata-rata: 18.6 detik)

Preprocessing (cont.): Capturing Sample

- Memfokuskan pengolahan data hanya pada **bagian P-wave saja**
- Diambil data dalam interval waktu sejak P-wave arrival time hingga 10 detik setelahnya.

Contoh cuplikan P-wave pada gelombang gempa

Feature Engineering

- Pada pemodelan menggunakan **CNN**, **data gelombang gempa akan diubah menjadi plot spectrogram**. Selanjutnya, dengan memasukkan sekumpulan gambar tersebut, proses ekstraksi fitur akan dilakukan oleh CNN dengan sendirinya.
- Pada pemodelan menggunakan **XGBoost**, setiap kanal gelombang akan dilakukan **ekstraksi fitur** menggunakan sekumpulan rumus perhitungan yang telah ditunjukkan sebelumnya. Lalu, dilakukan **merge kolom** sehingga menjadi satu set data baru yang kemudian dipakai di tahap pemodelan.

Validation: XGBoost

5-fold Cross Validation

Validation: XGBoost

Confusion Matrix Model Klasifikasi

Prediction vs Actual Plot Model Regresi

Validation: Model Klasifikasi CNN

Model Performance

Confusion Matrix

Validation: Model Regresi CNN

Model Performance

Prediction vs Actual
Plot Results

Skor RMSE Model Regresi:

Validation: Tabel Perbandingan

Model	Jenis	F1 Score	RMSE
CNN	Klasifikasi Gempa	0.999	
	Regresi Estimasi Magnitudo	2	0.83
XGBoost	Klasifikasi Gempa	0.951	
	Regresi Estimasi Magnitudo	-	0.368

Tabel Performa Hasil Prediksi Model
CNN dan XGBoost

Simulation

- Dilakukan simulasi terhadap 1000 sampel data untuk melihat *running time*.
- Simulasi bekerja dengan waktu iterasi setiap 0.01 detik.
- Didapat bahwa sistem membutuhkan waktu rata-rata 3.5 detik untuk mendeteksi gempa magnitudo ≥ 4 setelah P-wave pertama.
- Dengan memperhitungkan *delay*, sistem dapat benar-benar mendeteksi gempa setelah **7 detik dari P-wave pertama.**

04 Kesimpulan dan Saran

Kesimpulan dan Saran

Pemodelan sistem *early warning*bagi gempa dapat dilakukan dengan
mendeteksi adanya P-wave yang
dapat terdeteksi oleh sensor terlebih
dahulu.

Jarak rata-rata antara
P-wave dengan S-wave adalah
6.7 detik. Pemilihan jumlah
index cuplikan didasari untuk
memaksimalkan antara
performa dengan ukuran
dataset.

Model **klasifikasi CNN** mampu menghasilkan **skor F1** yang lebih tinggi. Sebaliknya, model **regresi XGBoost** mampu menghasilkan skor **RMSE** yang lebih kecil. Saran ke depan adalah penerapan teknik **ensembling**.

3

Sistem yang dibuat dianggap baik karena mampu mendeteksi gempa < 18.6 detik yang merupakan rata-rata waktu interval antara P-wave pertama sampai akhir S-wave.

4

