# ToothGrowth Project

We analyze the ToothGrowth data in the R datasets package.

## Load the ToothGrowth data and perform some basic exploratory data analyses.

From the R datasets package . . .

"The response is the length of odontoblasts (cells responsible for tooth growth) in 60 guinea pigs. Each animal received one of three dose levels of vitamin C (0.5, 1, and 2 mg/day) by one of two delivery methods, (orange juice or ascorbic acid (a form of vitamin C and coded as VC))."

We load the libraries that we'll use and the ToothGrowth data set.

```
library(datasets)
library(ggplot2)

data(ToothGrowth)
```

Let's look at what's inside.

```
str(ToothGrowth)
```

```
## 'data.frame': 60 obs. of 3 variables:
## $ len : num  4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
## $ supp: Factor w/ 2 levels "OJ","VC": 2 2 2 2 2 2 2 2 2 2 2 ...
## $ dose: num  0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...
```

So we have 60 observations (i.e. rows) of 3 variables (i.e. columns).

#### Provide a basic summary of the data.

Let's take a quick summary of the data.

# summary(ToothGrowth)

```
##
                                  dose
         len
                     supp
          : 4.20
                     OJ:30
                             Min.
                                    :0.500
##
   1st Qu.:13.07
                    VC:30
                             1st Qu.:0.500
##
   Median :19.25
                             Median :1.000
##
   Mean
           :18.81
                             Mean
                                    :1.167
   3rd Qu.:25.27
                             3rd Qu.:2.000
           :33.90
                                     :2.000
   Max.
                             Max.
```

Build a contingency table of the counts at each combination of factor levels.

```
table(ToothGrowth$dose, ToothGrowth$supp)
```

Let's look at box plots for tooth growth as a function of dose and as a function of delivery method.



From the box plot above, it appears that a greater dose a greater effect on tooth length.



From the box plot above, it appears that orange juice might have a slightly greater effect on tooth length, than vitamin C.

Use confidence intervals and/or hypothesis tests to compare tooth growth by supp and dose.

(Only use the techniques from class, even if there's other approaches worth considering)

We use t-tests for doses and for supplements.

First, we look at doses.

```
# t-test for different dosages
dose_0.5 <- subset(ToothGrowth, dose == 0.5)
dose_1 <- subset(ToothGrowth, dose == 1)
dose_2 <- subset(ToothGrowth, dose == 2)</pre>
```

We consider three cases:

```
t.test(dose_0.5$len,dose_2$len)
```

```
##
## Welch Two Sample t-test
##
## data: dose_0.5$len and dose_2$len
## t = -11.799, df = 36.883, p-value = 4.398e-14
## alternative hypothesis: true difference in means is not equal to 0
```

```
## 95 percent confidence interval:
## -18.15617 -12.83383
## sample estimates:
## mean of x mean of y
      10.605
                26.100
t.test(dose_1$len,dose_2$len)
##
##
   Welch Two Sample t-test
##
## data: dose_1$len and dose_2$len
## t = -4.9005, df = 37.101, p-value = 1.906e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -8.996481 -3.733519
## sample estimates:
## mean of x mean of y
##
      19.735
                26.100
t.test(dose_0.5$len,dose_1$len)
##
##
   Welch Two Sample t-test
##
## data: dose_0.5$len and dose_1$len
## t = -6.4766, df = 37.986, p-value = 1.268e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -11.983781 -6.276219
## sample estimates:
## mean of x mean of y
      10.605
                19.735
##
```

Looking at the t-test results for the differing doses, we see small p-values. For the difference between a dosage of 0.5 and 2, we have a p-value < 0.000000000001. The ecidence is strong, that increased doses results in increased tooth length.

Next, we look at supplement type.

```
# t-test for supplement types
supp_OJ <- subset(ToothGrowth, supp == "OJ")
supp_VC <- subset(ToothGrowth, supp == "VC")</pre>
```

There is only one case to consider:

```
t.test(supp_OJ$len,supp_VC$len)
```

```
##
## Welch Two Sample t-test
##
## data: supp_OJ$len and supp_VC$len
```

```
## t = 1.9153, df = 55.309, p-value = 0.06063
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1710156  7.5710156
## sample estimates:
## mean of x mean of y
## 20.66333  16.96333
```

We have a p-value equal to 0.06063 which is greater than the 0.05 significance level. This leads us to conclude that the effect of the supplements is similar.

## State your conclusions and the assumptions needed for your conclusions.

We conclude that supplement types have similar effects on tooth growth. On the other hand, increasing doses leads to a significant increase in tooth length.

The assumptions underlying this analysis are that the guinea pigs were sampled from a normally distributed population. The samples were drawn randomly.