Problem

Suppose that A and B are two oracles. One of them is an oracle for *TQBF*, but you don't know which. Give an algorithm that has access to both A and B, and that is guaranteed to solve *TQBF* in polynomial time.

Step-by-step solution

Step 1 of 3

An Oracle Turing machine is a type of Turing machine having many different tapes and these tapes are called oracle tapes. The different states may be represented by q_{states} .

A TQBF is True Qualified Boolean formula. To Show TQBF in polynomial problem which has access to turing machines A and B can be solved by using Baker Gill Solovay Theorem. The problem can be broken up in two parts of algorithm:

Comment

Step 2 of 3

For Oracle A:

- 1. Consider TQBF has access to A then A=TQBF.
- 2. In the given problem it can be proved by showing $P^A = NP^B$.
- 3. As TQBF is PSPACE problem,
- 4. Hence $PSPACE \subseteq P^{TQBF}$ and $PSPACE^{TQBF} \subseteq PSPACE$
- 5. Therefore, combining both result $P^A = NP^B$.

Comments (1)

Step 3 of 3

For Oracle B:

- 1. For oracle B it is required to show that $P^B \neq NP^B$.
- 2. For this define a language L_{B} as: $L_{B} = \left\{0^{n} \mid w \in \left\{0,1\right\}\right\}$ Here, B(w) = 1
- 3. For any oracle B the defined language L_B is NP^B .
- 4. Now the machine's output will be $\ 1$ if x=0'' with $|\mathbf{w}|=|x|$
- 5. Here $TQBF \in NL$ this shows that $PSPACE \in NL$
- 6. By using hierarchy theorems and Baker Gill which states that $\ ^{NL}\varsubsetneq PSPACE$.
- 7. It shows that $P^B \neq NP^B$

Using both two parts of algorithm result it is sure that TQBF is in polynomial time for both oracle A and B .

Comments (1)