Applied Stochastic Processes

Exercise sheet 1

Exercise 1.1

- (a) Let T_1, \ldots, T_k be i.i.d. random variables with $T_1 \sim \text{Exp}(\lambda)$ and $S_k = \sum_{i=1}^k T_i$. Show that $S_k \sim \text{Gamma}(k, \lambda)$.
- (b) A real and positive random variable X is said to have the memoryless property if $P[X \ge x] > 0$ for all x > 0 and

$$P(X \ge x + y \mid X \ge x) = P(X \ge y)$$
 for all $x, y > 0$.

Prove that a continuous and positive random variable X has the memoryless property if and only if $X \sim \text{Exp}(\lambda)$ for some $\lambda > 0$.

Exercise 1.2 Wald's Equation.

Let $(X_i)_{i\in\mathbb{N}}$ be a sequence of i.i.d. random variables with $\mathrm{E}[X_i]=\mu$ and $\mathrm{Var}(X_i)=\sigma^2<\infty$ and $(S_n)_{n\in\mathbb{N}}$ the sequence of partial sums defined by $S_0:=0$ and $S_n:=\sum_{i=1}^n X_i$.

For a non-negative, integer-valued random variable N, which is independent of $(X_i)_{i\in\mathbb{N}}$, let S_N denote the random sum defined by $S_N := \sum_{i=1}^N X_i$.

(a) Suppose that $\mathrm{E}[N] < \infty$. Prove

$$E[S_N|N] = \mu N$$

and

$$E[S_N] = \mu E[N].$$

Hint: Do not forget to argue that S_N is integrable.

(b) Suppose that $E[N^2] < \infty$. Show that

$$E[S_N^2|N] = \sigma^2 N + \mu^2 N^2$$

and

$$Var(S_N) = \sigma^2 E[N] + \mu^2 Var(N).$$

Exercise 1.3 Spatial Poisson process.

Let countably many points be distributed in \mathbb{R}^2 according to the following rule:

- 1. For a bounded set $A \in \mathcal{B}(\mathbb{R}^2)$ the number of points N(A) lying in the set A is Poisson-distributed with parameter $\mu(A)$ where $\mu(A) := \lambda |A|$ with $\lambda > 0$ and $|\cdot|$ denotes the Lebesgue measure on \mathbb{R}^2 .
- 2. $N(A_1), \ldots, N(A_k)$ are independent for disjoint bounded sets $A_1, \ldots, A_k \in \mathcal{B}(\mathbb{R}^2)$.
- (a) For fixed r > 0 we define $B_r := \{x \in \mathbb{R}^2 : ||x|| \le r\}$ (where $||\cdot||$ denotes the Euclidean norm on \mathbb{R}^2) and $D := \inf\{r > 0 \mid N(B_r) > 0\}$. Determine the distribution function and the density of D.
- (b) Compute for u > r the limit $\lim_{r\to 0} P[N(B_u) = 1 \mid N(B_r) = 1]$.

Submission deadline: 13:15, Feb. 28.

Location: During exercise class or in the tray outside of HG E 65.

Class assignment:

Students	Time & Date	Room	Assistant
A-K	Thu 09-10	HG D 7.2	Maximilian Nitzschner
L-Z	Thu 12-13	HG D 7.2	Daniel Contreras

Office hours (Präsenz): Mon. and Thu., 12:00-13:00 in HG G 32.6.

Exercise sheets and further information are also available on: http://metaphor.ethz.ch/x/2019/fs/401-3602-00L/