Package 'fishdynr'

January 20, 2016

Type Package
Title fishdynr

Index

Version 1.0	
Date 2014-12-26	
Author Marc Taylor	
Maintainer Marc Taylor <ningkiling@gmail.com></ningkiling@gmail.com>	
Description Fisheries science related population dynamics models.	
License MIT + file LICENSE	
<pre>URL https://github.com/marchtaylor/fishdynr</pre>	
RoxygenNote 5.0.1	
NeedsCompilation no	
R topics documented:	
dt_growth_soVB fecW_LM gillnet growth_soVB growth_VB growth_VB2 knife_edge logisticSelect	1 2 3 4

18

2 cohortSim

cohortSim

Simulation of a cohort

Description

cohortSim simulates a single cohort

Usage

```
cohortSim(params, t_incr = 1)
```

Arguments

params List of parameters to use in function
t_incr Value to use a time increment (in years). Defaults to 1.

Details

params list should contain the following parameters:

- species Species name
- growthFun Name of growth function (e.g. "growth_VB" is the von Bertalanffy growth function)
- amax Maximum age
- LWa Length-weight relationship parameter a (weight~a*length^b)
- LWb Length-weight relationship parameter b (weight~a*length^b)
- M Natural mortality
- F Fishing mortality
- No Number of individuals at time 0
- matFun Name of maturity function (e.g. "pmat_w" is a logistic function that includes width, w, of quantiles)
- selectFun Function to use for gear selection. Determines lengths vulnerable to fishing mortality (e.g. "gillnet" and "knife_edge" functions).
- ... Other parameters for growth, maturity, and selectivity functions.

Value

A list

```
data(tilapia)
res <- cohortSim(tilapia, t_incr=.1)
plot(pcap ~ Lt, res, t="1")
plot(Lt ~ t, res, t="1")
plot(Wt ~ t, res, t="1")
plot(Bt ~ t, res, t="1")
lines(SBt ~ t, res, col=2)</pre>
```

dt_growth_soVB 3

```
plot(Bt ~ Lt, res, t="1")
lines(SBt ~ Lt, res, col=2)

plot(Yt ~ t, res, t="1")

plot(Nt ~ t, res, t="1", log="y")
lines(Nt.noF ~ t, res, col=2, lty=2)
```

dt_growth_soVB

Discrete seasonally oscillating von Bertalanffy growth function

Description

dt_growth_soVB calculates length at time 2, given length at time 1 according to the seasonally oscillationg von Bertalanffy growth function

Usage

```
dt_growth_soVB(Linf, K, ts, C, L1, t1, t2)
```

Arguments

Linf	Infinite length
K	growth constant
ts	summer point. Time of year (between 0 and 1) when growth oscillation cycle begins (sine wave term becomes positive)
С	oscillation strength. Varies between 0 and 1.
t1	time 1
t2	time 2
Lt1	Length at t1

References

Somers, I. F. (1988). On a seasonally oscillating growth function. Fishbyte, 6(1), 8-11.

```
# growth parameters
Linf = 100
K = 0.5
ts = 0.5
C = 0.75

# create dataframe
df <- data.frame(t = seq(0,5,0.1), L=NaN)
df$L[1] <- 10 # intial size

# run iterative model
for(i in 2:nrow(df)){</pre>
```

4 fecW_LM

```
df$L[i] <- dt_growth_soVB(
    Linf, K, ts, C,
    L1=df$L[i-1],
    t1=df$t[i-1],
    t2=df$t[i]
)

# plot result
plot(L ~ t, df)
arrows(
    x0 = df$t[-nrow(df)], y0 = df$L[-nrow(df)],
    x1 = df$t[-1], y1 = df$L[-1],
    col = 8, length = 0.15
)</pre>
```

fecW_LM

Fecundity and function of weight

Description

fecW_LM is a linear model describing fecundity (number of eggs) as a function of individual weight

Usage

```
fecW_LM(fec_a = 0, fec_b = 1, Wt = 500)
```

Arguments

```
fec_a intercept
fec_b slope
Wt individual weight (from cohortSim function)
```

Value

Number of eggs per individual

```
data(tilapia)
res <- cohortSim(tilapia, t_incr=0.1)
plot(Neggst ~ Wt, res) # Number of eggs as a function of ind. weight
plot(res$t, res$Neggst*res$pmat*res$Nt) # total population fecundity by age</pre>
```

gillnet 5

gillnet gillnet selection

Description

gillnet describes gillnet selection following Millar and Holst (1997). Possible selectivity distributions include normal (fixed width) and lognormal. [Note: others will be added]

Usage

```
gillnet(Lt, mesh_size, mesh_size1, select_dist, select_p1, select_p2)
```

Arguments

```
Lt body size

mesh_size mesh size

mesh_size1 smallest reference mesh size

select_dist selectivity type ("normal_fixed", "lognormal")

select_p1 selectivity function parameter 1 (see Millar and Holst 1997)

select_p2 selectivity function parameter 2 (see Millar and Holst 1997)
```

References

Millar, R. B., & Holst, R. (1997). Estimation of gillnet and hook selectivity using log-linear models. ICES Journal of Marine Science: Journal du Conseil, 54(3), 471-477.

```
data(tilapia)
tilapia$selectFun="gillnet"
mesh_sizes <- c(60, 80, 100, 120)
for(i in seq(mesh_sizes)){
   tilapia$mesh_size <- mesh_sizes[i]
   res <- cohortSim(tilapia, t_incr=0.01)
   if(i == 1) plot(pcap ~ Lt, res, t="n")
   lines(pcap ~ Lt, res, col=i)
}
legend("topleft", legend=mesh_sizes,
   col=seq(mesh_sizes), lty=1,
   title="mesh size [mm]", bty="n"
)</pre>
```

growth_VB

Description

growth_soVB describes the growth as a function of age (t) using the seasonally oscillating von Bertalanffy growth function (Somers 1988).

Usage

```
growth_soVB(Linf, K, t, t0, ts, C)
```

Arguments

Linf	Infinite length
K	growth constant
t	age
t0	(hypothetical) age at length zero
ts	summer point. Time of year (between 0 and 1) when growth oscillation cycle begins (sine wave term becomes positive)
С	oscillation strength. Varies between 0 and 1.

References

Somers, I. F. (1988). On a seasonally oscillating growth function. Fishbyte, 6(1), 8-11.

Examples

```
t \leftarrow seq(0,5,0.1)
L \leftarrow growth_soVB(Linf=100, K=0.5, t=t, t0=-0.2, ts=0.5, C=0.75)
plot(t, L, t="l")
```

growth_VB

von Bertalanffy growth function

Description

growth_VB describes the growth as a function of age (t) using the von Bertalanffy growth function

Usage

```
growth_VB(Linf, K, t, t0)
```

Arguments

Linf	Infinite length
K	growth constant
t	age
t0	(hypothetical) age at length zero

growth_VB2

Examples

```
t <- seq(0,5,0.1)
L <- growth_VB(Linf=100, K=0.5, t=t, t0=-0.2)
plot(t, L, t="1")
```

growth_VB2

von Bertalanffy growth function (using L0)

Description

growth_VB2 describes the growth as a function of age (t) using the von Bertalanffy growth function. The function differs slightly from growth_VB by using L0 instead of t0 to describe the growth function origin

Usage

```
growth_VB2(Linf, K, t, L0)
```

Arguments

Linf	Infinite length
K	growth constant
t	age
L0	(hypothetical) length at time zero

Examples

```
t <- seq(0,5,0.1)
L <- growth_VB2(Linf=100, K=0.5, t=t, L0=10)
plot(t, L, t="1", ylim=c(0,110), xaxs="i", yaxs="i")
points(0,10); abline(h=100, lty=2, col=8)</pre>
```

knife_edge

knife-edge selection

Description

knife_edge describes knife-edge selection where probability of capture 100% after a minimum defined size. Provides a rough estimate of trawl-type selectivity.

Usage

```
knife_edge(Lt, knife_edge_size)
```

Arguments

```
Lt body size knife_edge_size
```

knife edge size. Minimum size at capture.

8 logisticSelect

Examples

```
data(tilapia)
tilapia$selectFun="knife_edge"
knife_edge_sizes <- c(20, 25, 30, 35)
for(i in seq(knife_edge_sizes)){
   tilapia$knife_edge_size <- knife_edge_sizes[i]
   res <- cohortSim(tilapia, t_incr=0.01)
   if(i == 1) plot(pcap ~ Lt, res, t="n")
   lines(pcap ~ Lt, res, col=i)
}
legend("topleft", legend=knife_edge_sizes,
   col=seq(knife_edge_sizes), lty=1,
   title="min. size", bty="n"
)</pre>
```

logisticSelect

logistic selection

Description

logisticSelect describes knife-edge selection where probability of capture 100% after a minimum defined size. Provides a rough estimate of trawl-type selectivity.

Usage

```
logisticSelect(Lt, L50, wqs)
```

Arguments

```
Lt body size

L50 length at first capture (i.e. where prob. of capture equals 50%)

wqs width of quartiles between 25% and 75% probability of capture
```

```
data(tilapia)
tilapia$selectFun="logisticSelect"
tilapia$L50 <- 20
WQS <- c(0, 3, 6)
COL <- rainbow(3)
for(i in seq(WQS)){
   tilapia$wqs <- WQS[i]
   res <- cohortSim(tilapia, t_incr=0.01)
   if(i == 1) plot(pcap ~ Lt, res, t="n")
   lines(pcap ~ Lt, res, col=COL[i])
}
legend("bottomright",
        legend=paste(WQS, c(" ('knife-edge')", "", ""), sep=""),
        col=COL, lty=1,
        title="Width between 0.25 and 0.75 quantiles", bty="n"
)
lines(c(0,tilapia$L50,tilapia$L50), c(0.5,0.5,0), col=1, lty=2)</pre>
```

optim.stockSim 9

```
text(20,.5,bquote("L"[50]), pos=4, col=1, font=1)
```

optim.stockSim

Optimization of fishing mortality

Description

Sets up an exploration of optimum fishing policy using the function stockSim (i.e. optimal time series of fishing mortalities, Ft, in order to maximize time series yield, Yt). The routine is described in further detail in Walters and Martell (2004).

Usage

```
optim.stockSim(Ft = 0, params, nyears = 100, env_at = 1, env_bt = 1,
  opt = "sum", disc.rate = 0.02)
```

Arguments

Ft	time series vector for fishing mortality. If a single value, then the function assumes a constant fishing mortality for the entire simulation (default=0)
params	List of parameters to for the population. Applies a single cohort simulation for the initial population state using cohortSim function. See stockSim for details.
nyears	number of years in the simulation
env_at	time series vector for environmental effects to maximum recruitment (e.g. srrFecBH_a in srrFecBH) (default=1).
env_bt	time series vector for environmental effects to maximum recruitment (e.g. srrFecBH_b in srrFecBH) (default=1).
opt	what should be optimized ("sum", "sum.log", "sum.disc")
disc.rate	discount rate (default = 0.02)
opt	time series vector for environmental effects to maximum recruitment (e.g. srrFecBH_b in srrFecBH) (default=1). what should be optimized ("sum", "sum.log", "sum.disc")

References

Walters, C. J., Martell, S. J., 2004. Fisheries ecology and management. Princeton University Press.

```
set.seed(1)
data(tilapia)
params <- tilapia
params$knife_edge_size <- 20
params$N0 <- 1e9
nyears <- 50
Ft <- rep(0.5, nyears)
set.seed(1)
env_at <- runif(nyears, min=0.5, max=1.5)
env_bt <- rep(1, nyears); env_bt[20:35] <- 0.5</pre>
```

10 pmat_w

```
# Optimization of Ft (will take some time to reach cost function mimimum)
out <- optim(</pre>
  par = Ft, # initial guess
  fn = optim.stockSim,
  params = params,
  nyears = nyears,
  env_at = env_at,
  env_bt = env_bt,
  opt = "sum.log", # optimize the sum of log yield
  method = "L-BFGS-B",
 lower = 0,
 upper = 2,
  control = list(fnscale=-1, trace=4)
# optimum Ft series
plot(out$par, t="l")
# optimum Yt series
tmp <- stockSim(params, nyears=nyears, Ft=out$par, env_at=env_at, env_bt=env_bt)</pre>
plot(Yt \sim t, tmp, t="l")
sum(tmp$Yt/1e6, na.rm=TRUE)
# optimum yield versus stock biomass
plot(Yt ~ Bt, tmp)
fit <- lm(Yt ~ Bt, tmp)</pre>
abline(fit)
summary(fit)
op <- par(mar=c(4,4,1,4))
plot(Bt ~ t, tmp, t="1", ylim=c(0, max(tmp$Bt)))
par(new=TRUE)
plot(Yt ~ t, tmp, col=2, t="1", axes=FALSE, xlab="", ylab="")
axis(4, col=2)
mtext("Yt", side=4, line=3, col=2)
par(op)
```

pmat_w

Probability of maturity logistic function using quartile width

Description

pmat_w describes the probability of maturity as a function of the size when 50% of the individuals in a population are mature and the width (in size) between 25% and 75% probability of maturity quartiles (after Heino et al. 2002).

Usage

```
pmat_w(Lt, Lmat, wmat)
```

srrBH 11

Arguments

Lt size for probability of maturity calculation

Lmat size at 50% probability of maturity (i.e. "massive maturity")

wmat width (in size) between 25% and 75% probability of maturity quartiles

References

Heino M, Dieckmann U, Godo OR (2002) Measuring probabilistic reaction norms for age and size at maturation. Evolution 56: 669-678.

Examples

```
L <- seq(1,20,0.1)
pmat1 <- pmat_w(L, Lmat=10, wmat=5)
pmat2 <- pmat_w(L, Lmat=10, wmat=2)
plot(L, pmat1, t="1", ylab="prob. of maturity")
lines(L, pmat2, lty=2)
legend("bottomright", legend=c("Lmat=10; wmat=5", "Lmat=10; wmat=2"),
col=1, lty=1:2, bty="n")</pre>
```

srrBH

Stock-recruitment relationship (Beverton-Holt type)

Description

srrBH describes stock-recruitment relationship as the number of recruits resulting from a given spawning biomass.

Usage

```
srrBH(rmax = 1000, beta = 500, SB = 500)
```

Arguments

rmax maximum recruitment level

beta parameter describing steepness of relationship. Specifically, beta describes the

point where the number of spawned eggs results in half the maximum number

of recruits, rmax

SB spawning biomass of the adult population

Value

Number of recruited individuals

References

Beverton, R. J., Holt, S. J., 1957. On the dynamics of exploited fish populations

12 srrFecBH

Examples

```
SB <- seq(0,1e11,,100)
rmax = 2e8
beta = 1e10
Nrecr <- srrBH(rmax, beta, SB)
plot(SB, Nrecr, t="1", ylim=c(0, rmax))
abline(h=rmax, 1ty=2, col=8)
lines(x=c(0, beta, beta), y=c(rmax/2, rmax/2, 0), lty=2, col=8)
text(x=0, y=rmax*0.95, labels="rmax", col=8, pos=4)
text(x=beta, y=rmax/2, labels="rmax/2", pos=4, col=8)
text(x=beta, y=0, labels="beta", pos=4, col=8)</pre>
```

srrFecBH

Stock-recruitment relationship using fecundity (Beverton-Holt type)

Description

srrFecBH describes stock-recruitment relationship as the number of recruits resulting from a given number of eggs produced by the population.

Usage

```
srrFecBH(srrFecBH_a, srrFecBH_b, neggs)
```

Arguments

srrFecBH_a long-term mean survival parameter srrFecBH_b carrying capacity parameter neggs number of eggs spawned

Value

Number of recruited individuals

References

Beverton, R. J., Holt, S. J., 1957. On the dynamics of exploited fish populations

```
n <- 100
neggs <- seq(0,1e8,,n)
srrFecBH_a = 0.2
srrFecBH_b = 1e7/srrFecBH_a
Nrecr <- srrFecBH(srrFecBH_a, srrFecBH_b, neggs)
plot(neggs, Nrecr, t="1", ylim=c(0, srrFecBH_b*srrFecBH_a))
abline(0, srrFecBH_a, col=8, lty=2)
abline(h=srrFecBH_b*srrFecBH_a, lty=2, col=8)</pre>
```

stockSim 13

Description

stockSim simulates a stock using variable fishing mortality and stock recruitment relationship

Usage

```
stockSim(params, nyears = 100, Ft = 0, env_at = 1, env_bt = 1)
```

Arguments

params	List of parameters for the population. Applies a single cohort simulation for the initial population state using cohortSim function
nyears	number of years in the simulation
Ft	time series vector for fishing mortality. If a single value, then the function assumes a constant fishing mortality for the entire simulation (default=0)
env_at	time series vector for environmental effects to maximum recruitment (e.g. srrFecBH_a in srrFecBH) (default=1).
env_bt	time series vector for environmental effects to half maximum recruitment parameter (e.g. srrFecBH_b in srrFecBH) (default=1).

Details

params list should contain the following parameters:

- species Species name
- growthFun Name of growth function (e.g. "growth_VB" is the von Bertalanffy growth function)
- amax Maximum age
- LWa Length-weight relationship parameter a (weight~a*length^b)
- LWb Length-weight relationship parameter b (weight~a*length^b)
- · M Natural mortality
- F Fishing mortality
- No Number of individuals at time 0
- matFun Name of maturity function (e.g. "pmat_w" is a logistic function that includes width, w, of quantiles)
- selectFun Function to use for gear selection. Determines lengths vulnerable to fishing mortality (e.g. "gillnet" and "knife_edge" functions).
- srrFun Stock-recruitment relationship function (e.g. "srrFecBH").
- fec Number of eggs produced per weight [g] of mature female (For use in srrFecFun).
- ... Other parameters for growth, maturity, and selectivity functions.

For fitting an optimal time series of fishing mortalities, Ft, see optim.stockSim (Walters and Martell, 2004).

14 tilapia

Value

A list

- Btc matrix. Stock biomass by time (rows) and cohort (columns).
- Ytc matrix. Fishery yield by time (rows) and cohort (columns).
- Bt vector. Stock biomass by time.
- Yt vector. Fishery yield by time.
- Nt vector. Stock size (in numbers) by time.
- Ct vector. Fishery catch (in numbers) by time.

References

Walters, C. J., Martell, S. J., 2004. Fisheries ecology and management. Princeton University Press.

Examples

```
data(tilapia)
params <- tilapia
params$knife_edge_size <- 20
params$N0 <- 1e9
nyears <- 50
Ft <- rep(0.5, nyears)
set.seed(1)
env_at <- runif(nyears, min=0.5, max=1.5)
env_bt <- rep(1, nyears); env_bt[20:35] <- 0.5
tmp <- stockSim(Ft=Ft, params=params, nyears=nyears, env_at=env_at, env_bt=env_bt)
plot(tmp$Bt, t="l")
plot(tmp$Yt, t="l")
sum(tmp$Yt/1e6, na.rm=TRUE)</pre>
```

tilapia

Parameter list for Oreochromis niloticus (Nile tilapia)

Description

The tilapia data set contains a list of parameters used by other functions in the fishdynr package.

- species. Species name
- growthFun. Name of growth function ("growth_VB" is von Bertalanffy growth function)
- K. Growth constant (for use in von Bertalanffy growth function))
- Linf. Infinite length (for use in von Bertalanffy growth function)
- t0. (hypothetical) time when length equals zero (for use in von Bertalanffy growth function)
- amax. Maximum age
- LWa. Length-weight relationship parameter a (weight~a*length^b)
- LWb. Length-weight relationship parameter b (weight~a*length^b)
- M. Natural mortality
- F. Fishing mortality

ypr 15

- N0. Number of individuals at time 0
- matFun. Name of maturity function ("pmat_w" is a logistic function that includes width, w, of quantiles)
- Lmat. Length at maturity (i.e. where probability of being mature is 50 (for use in "pmat_w" function)
- wmat. Width of length between 25 of transition from immature to mature (for use in "pmat_w" function)
- fec. Number of eggs produced per weight [g] of mature female
- selectFun. Function to use for gear selection. Determines lengths vulnerable to fishing mortality.
- select_p1. Parameter 1 used in "gillnet" selectivity function
- select_p2. Parameter 2 used in "gillnet" selectivity function
- mesh_size. Mesh size [streched length in mm] used in "gillnet" selectivity function
- mesh_size1. Mesh size of smallest reference net used in fitting "gillnet" selectivity function
- select_dist. Distribution type used in "gillnet" selectivity function
- knife_edge_size. Minimum length selected by "knife_edge" selectivity function
- srrFun. Function used for stock-recruitment relationship
- rmax. Maximum recruitment parameter used in "srrBH" stock-recruitment (Beverton-Holt)
- beta. "beta" parameter used in "srrBH" stock-recruitment (Beverton-Holt)

Usage

```
data(tilapia)
```

Format

A list containing parameters used on other fishdynr functions

Examples

```
data(tilapia)
res <- cohortSim(tilapia, t_incr=0.1)
plot(Lt ~ t, res, t="l")</pre>
```

ypr

Yield-per-recruit

Description

Sets up an yield-per-recruit exploration by adjusting fishing mortality and selectivity using the cohortSim function

Usage

```
ypr(params, adj.params)
```

16 ypr

Arguments

params List of parameters for the population. Applies a single cohort simulation for the

initial population state using ${\tt cohortSim}$ function

adj.params List of 2 parameters combinations to use for yield per recruit analysis. In

the case of trawl-type selectivity, these should be levels for F and knife-edge length at capture. For gillnet-type selectivity, these should be levels for F and

mesh_size.

Value

A list of parameter combinations used in the yield-per-recruit exploration, plus matrix output for yield (Y) and spawning stock biomass (SB) given the parameter combinations (adj.params.comb).

```
# Trawl-type
data(tilapia)
n <- 30
adj.params \leftarrow list(F=seq(0,3,,n), knife\_edge\_size=seq(0,tilapia$Linf,,n))
res <- ypr(params=tilapia, adj.params)</pre>
pal <- colorRampPalette(c(</pre>
 rgb(1,0.5,0.5), rgb(1,1,0.5), rgb(0.5,1,1), rgb(0.5,0.5,1)
))
op <- par(mfcol=c(1,2))
# Yield
image(x=res$F, y=res$knife_edge, z=res$Y, col=pal(100))
contour(x=res$F, y=res$knife_edge, z=res$Y, add=TRUE)
mtext("Yield", line=0.5, side=3)
# Relative spawning biomass
SB_F0 <- res$SB[which(res$F==0),1]</pre>
image(x=res$F, y=res$knife_edge, z=res$SB/SB_F0, col=pal(100))
contour(x=res$F, y=res$knife_edge, z=res$SB/SB_F0, add=TRUE)
mtext("Rel. Spawning Biomass", line=0.5, side=3)
par(op)
# Gillnet-type
data(tilapia)
tilapia$selectFun <- "gillnet"</pre>
n <- 30
adj.params <- list(F=seq(0,3,n), mesh_size=seq(60,160,n))
res <- ypr(params=tilapia, adj.params)</pre>
pal <- colorRampPalette(c(</pre>
 rgb(1,0.5,0.5), rgb(1,1,0.5), rgb(0.5,1,1), rgb(0.5,0.5,1)
op <- par(mfcol=c(1,2))</pre>
# Yield
image(x=res$F, y=res$mesh_size, z=res$Y, col=pal(100))
contour(x=res$F, y=res$mesh_size, z=res$Y, add=TRUE)
mtext("Yield", line=0.5, side=3)
# Relative spawning biomass
SB_F0 <- res$SB[which(res$F==0),1]</pre>
image(x=res$F, y=res$mesh_size, z=res$SB/SB_F0, col=pal(100))
contour(x=res$F, y=res$mesh_size, z=res$SB/SB_F0, add=TRUE)
mtext("Rel. Spawning Biomass", line=0.5, side=3)
```

ypr 17

par(op)

Index

```
* \\ Topic \ \boldsymbol{datasets}
     tilapia, <mark>14</mark>
cohortSim, 2, 9, 13, 15, 16
dt_growth_soVB, 3
fecW_LM, 4
gillnet, 5
growth_soVB, 6
growth_VB, 6, 7
growth_VB2, 7
{\tt knife\_edge}, \textcolor{red}{7}
logisticSelect, 8
optim.stockSim, 9, 13
pmat_w, 10
srrBH, 11
srrFecBH, 9, 12, 13
stockSim, 9, 13
tilapia, 14
ypr, 15
```