Лабораторная работа №5 «Решение задач линейного программирования средствами специальных библиотек языка Python¹»

Порядок выполнения лабораторной работы:

- 1. Изучить сущность, особенности экономико-математической модели² и сферы применения задачи линейного программирования (ЗЛП) с помощью материала лекций или учебных пособий. Ознакомиться с геометрическим методом их решения, а также с применением для этих целей инструмента «Поиск решения MS Excel»³.
- 2. Изучить пример, демонстрирующий процесс решения ЗЛП средствами библиотек SciPy, NumPy и MatplotLib (см. приложени1, 2).
- 3. Решить задачу согласно индивидуальному варианту заданий (см. приложение 3).
- 4. Сравнить результаты решения своей ЗЛП, получение разными способами, и сделать вывод.
- 5. Оформить краткий отчет, содержащий: задание для своего варианта, распечатку программного кода для своей задачи со скриншотами результатов работы программ⁴.

¹ О способах установки библиотек в Microsoft Visual Studio можно прочесть вот здесь: https://docs.microsoft.com/ru-ru/visualstudio/python/tutorial-working-with-python-in-visual-studio-step-05-installing-packages?view=vs-2022

² **Исследование операций в экономике**: Учеб. пособие для И87 вузов /Н.Ш. **Кремер**, БА **Путко**, И.М. **Тришин**, М.Н.Фрид-. ман; Под рея- проф. НЖ **Кремера**. - м: юнити, 2002. - 407 с. ISBN 5-85173-092-7. См. стр. 16-27, 55-62, 59-94.

³ см. приложения к ЛР в отдельных документах.

⁴ Студенты, сдающие практическую работу №2 в обозначенный преподавателем срок в течение занятия, могут не оформлять отчет (при условии, что полученные результаты совпали с результатами ЛР№1).

Приложение 1

Краткие сведения о библиотеке SciPy⁵

SciPy — это библиотека Python с открытым исходным кодом, предназначенная для решения научных и математических проблем. Она построена на базе NumPy и позволяет управлять данными, а также визуализировать их с помощью разных высокоуровневых команд. Если вы импортируете SciPy, то NumPy отдельно импортировать не нужно.

Пакеты в SciPy

В SciPy есть набор пакетов для разных научных вычислений:

Название	Описание
cluster	Алгоритмы кластерного анализа
constants	Физические и математические константы
fftpack	Быстрое преобразование Фурье
integrate	Решения интегральных и обычных дифференциальных уравнений
interpolate	Интерполяция и сглаживание сплайнов
io	Ввод и вывод
linalg	Линейная алгебра

https://pythonru.com/biblioteki/scipy-python

https://ru.wikipedia.org/wiki/SciPy

https://pythonim.ru/libraries/biblioteka-scipy-v-python

⁵ Источники:

Название	Описание
ndimage	N-размерная обработка изображений
odr	Метод ортогональных расстояний
optimize	Оптимизация и численное решение уравнений
signal	Обработка сигналов
sparse	Разреженные матрицы
spatial	Разреженные структуры данных и алгоритмы
special	Специальные функции
stats	Статистические распределения и функции

Для чего нужна SciPy⁶

SciPy используют специалисты по <u>Data Science</u>, <u>Big Data</u>, <u>аналитики данных</u>, а также математики и ученые:

- для сложных математических расчетов, которые тяжело произвести вручную или с помощью калькулятора;
- проведения научных исследований, где требуется использование продвинутой математики;
- глубокого анализа данных, интерполяции и других методов работы с информацией;
- машинного обучения и создания моделей искусственного интеллекта, прогнозирования и построения моделей;

⁶ на всякий случай ссылка на онлайн-компилятор: https://www.tutorialspoint.com/execute_scipy_online.php

• формирования двумерных и трехмерных графиков, которые можно потом визуализировать (уже при помощи других библиотек).

Краткие сведения о библиотеке Matplotlib⁷

Matplotlib — это библиотека на языке Python для визуализации данных. В ней можно построить двумерные (плоские) и трехмерные графики.

Python Matplotlib — альтернатива модуля визуализации программы для технических вычислений MatLab. У Matplotlib объектно-ориентированный интерфейс, то есть пользователь напрямую взаимодействует с каждым объектом. С помощью кода можно задавать любой элемент диаграммы, в том числе ярлыки и отметки на осях.

Matplotlib используют для отрисовки всевозможных видов графиков. Это незаменимая библиотека для любого аналитика данных. Помимо этого, Matplotlib лежит в основе других библиотек, например Seaborn, которая представляет высокоуровневый интерфейс над Matplotlib. В некоторых случаях мы используем Seaborn, например, когда хотим сделать быстро и красиво, но когда хочется большей детализации и проработки, то смело пользуемся Matplotlib.

Matplotlib.pyplot — самый высокоуровневый интерфейс с набором команд и функций. В высокоуровневом интерфейсе все автоматизировано, поэтому его проще всего осваивать новичкам.

https://blog.skillfactory.ru/glossary/matplotlib/

https://pythonim.ru/libraries/biblioteka-matplotlib-v-python

⁷ https://pythonworld.ru/novosti-mira-python/scientific-graphics-in-python.html https://ru.wikipedia.org/wiki/Matplotlib

Приложение 28

Пример решения ЗЛП с помощью модуля optimize библиотеки SciPy⁹.

Рассмотрим ЗЛП со следующей экономико-математической моделью:

$$F = 2x_1 + 3x_2 \rightarrow \max$$

при ограничениях:

$$\begin{cases} x_1 + 3x_2 & \leq 18, \text{(I)} \\ 2x_1 + x_2 & \leq 16, \text{(II)} \\ x_2 & \leq 5, \text{(III)} \\ 3x_1 & \leq 21, \text{(IV)} \\ x_1 \geq 0, x_2 \geq 0. \text{ (V, VI)} \end{cases}$$

Листинг ее решения на Python приведен ниже.

⁸ Источники примеров решения ЗЛП средствами SciPy: https://russianblogs.com/article/83801544870/#4_14 https://habr.com/ru/post/330648/

⁹ Все приведенные примеры выполнены в IDE Microsoft visual studio.

Результат работы программы:

Можно заметить, что полученный результат совпадает с решением из литературного источника¹⁰.

Далее обратимся у описанию процесса геометрического решения рассматриваемой задачи в том же учебном пособии:

Воспользуемся средствами библиотеки Matplotlib для построения графиков прямых, соответствующих неравенствам системы ораничений задачи:

¹⁰ **Исследование операций в экономике**: Учеб. пособие для И87 вузов /Н.Ш. **Кремер**, БА **Путко**, И.М. **Тришин**, М.Н.Фрид-. ман; Под рея- проф. НЖ **Кремера**. - м: юнити, 2002. - 407 с. ISBN 5-85173-092-7. См. стр. 16-27, 55-62, 59-94.

```
⊟import matplotlib.pyplot as plt #подключение бибилиотек
import numpy as np #подключение бибилиотек
x = np.linspace(0, 8.5, 50) #формирование массива x: 50 значений в диапазоне от 0 до 8.5
y1 = (18-x)/3
y2 = 16-2*x
y3=5-x*0 #таким образом пришлось схитрить, чтобы построить линию х2=5
# Построение графика
plt.title('Zavisimosti: y1=(18-x)/3, y2 = 16-2*x, x2=5') #подпись
plt.xlabel('x')
                      # метка оси абсцисс
plt.ylabel('y1, y2') # метка осирlt.ylabel('y1, y2') # metka osi ordinat
ординат
plt.grid()
                      # включение отображение сетки
plt.plot(x, y1, x, y2,x, y3) # построение графика
plt.show()
```


Можно заметить, что полученный результат совпадает с решением из литературного источника и с результатом применения средств библиотеки SciPy, представленными ранее.

Приложение 3

Предположим, что для производства двух видов продукции A и B можно использовать только материал трех сортов. При этом на изготовление единицы изделия вида A расходуется a_1 кг материала первого сорта, a_2 кг материала второго сорта и a_3 кг материала третьего сорта. На изготовление единицы изделия вида B расходуется b_1 кг материала первого сорта, b_2 кг материала второго сорта, b_3 кг материала третьего сорта. На складе фабрики имеется всего материала первого сорта c_1 кг, второго сорта — c_2 кг, третьего сорта — c_3 кг. От реализации единицы готовой продукции вида A фабрика имеет прибыль α тысяч рублей, а от продукции вида B прибыль составляет β тысяч рублей.

Определить максимальную прибыль от реализации всей продукции видов A и B.

1.

$$a_1$$
=4, a_2 =5, a_3 =3; b_1 =3, b_2 =2, b_3 =6; c_1 =60, c_2 =57, c_3 =63; α =1, β =1.

2.

$$a_1=2$$
, $a_2=2$, $a_3=5$; $b_1=4$, $b_2=6$, $b_3=3$; $c_1=30$, $c_2=36$, $c_3=42$; $\alpha=7$, $\beta=9$.

3.

$$a_1=2$$
, $a_2=3$, $a_3=4$; $b_1=3$, $b_2=5$, $b_3=2$; $c_1=35$, $c_2=49$, $c_3=42$; $\alpha=2$, $\beta=2$.

4.

$$a_1$$
=5, a_2 =4, a_3 =2; b_1 =2, b_2 =3, b_3 =4; c_1 =60, c_2 =50, c_3 =40; α =6, β =7.

5.

$$a_1=2$$
, $a_2=4$, $a_3=3$; $b_1=3$, $b_2=2$, $b_3=5$;

$$c_1$$
=35, c_2 =42, c_3 =49; α =3, β =3.

6.

$$a_1$$
=2, a_2 =3, a_3 =4; b_1 =5, b_2 =2, b_3 =3; c_1 =45, c_2 =27, c_3 =38; α =7, β =5.

7.

$$a_1=2$$
, $a_2=4$, $a_3=0$; $b_1=3$, $b_2=2$, $b_3=2$; $c_1=15$, $c_2=18$, $c_3=8$; $\alpha=10$, $\beta=8$.

8.

$$a_1=2$$
, $a_2=4$, $a_3=4$; $b_1=3$, $b_2=2$, $b_3=5$; $c_1=35$, $c_2=38$, $c_3=59$; $\alpha=8$, $\beta=7$.

Варианты 9-16.

Продукция может производиться двумя технологическими способами T_1 и T_2 . На производство продукции затрачиваются ресурсы трех видов R_1 ; R_2 ; R_3 , запасы которых равны: c_1 , c_2 и c_3 . Расход ресурсов на производство всей продукции по первому технологическому способу составляет a_1 ; a_2 ; a_3 , а по второму - b_1 ; b_2 ; b_3 . Выход продукции по способу T_1 равняется α единицам, по T_2 - β . Определить с какой интенсивностью нужно применять каждый тех. способ, чтобы при этих запасах иметь максимум продукции.

9.

$$a_1$$
=3, a_2 =2, a_3 =4; b_1 =4, b_2 =3, b_3 =1; c_1 =40, c_2 =28, c_3 =26; α =3, β =2.

10.

$$a_1$$
=5, a_2 =4, a_3 =3; b_1 =2, b_2 =2, b_3 =3; c_1 =55, c_2 =40, c_3 =42; α =7, β =5.

11.

$$a_1$$
=4, a_2 =3, a_3 =2; b_1 =2, b_2 =4, b_3 =3; c_1 =40, c_2 =36, c_3 =25; α =5, β =7.

12.

$$a_1$$
=4, a_2 =2, a_3 =3; b_1 =3, b_2 =2, b_3 =2; c_1 =55, c_2 =30, c_3 =37; α =5, β =4.

13.

$$a_1$$
=6, a_2 =3, a_3 =4; b_1 =2, b_2 =5, b_3 =2; c_1 =40, c_2 =37, c_3 =26; α =1, β =1.

14.

$$a_1$$
=4, a_2 =2, a_3 =3; b_1 =3, b_2 =5, b_3 =2; c_1 =45, c_2 =45, c_3 =29; α =5, β =9.

15.

$$a_1$$
=3, a_2 =4, a_3 =2; b_1 =2, b_2 =5, b_3 =6; c_1 =30, c_2 =48, c_3 =38; α =6, β =11.

16.

$$a_1$$
=3, a_2 =5, a_3 =2; b_1 =2, b_2 =3, b_3 =4; c_1 =35, c_2 =49, c_3 =42; α =1, β =1.

Варианты 17-22

Предприятие имеет три производственных фактора в количестве c_1 , c_2 и c_3 ыс. единиц и может организовать производство двумя различными способами. Расход производственных факторов по первому способу производства составляет a_1 ; a_2 ; a_3 тыс. единиц, по второму - b_1 ; b_2 ; b_3 тыс. По первому способу предприятие выпускает в месяц α тыс. изделий, в по второму -

 β тыс. изделий. Сколько времени предприятие должно работать каждым способом, чтобы получить максимум продукции?

17.

$$a_1=1$$
, $a_2=1$, $a_3=3$; $b_1=3$, $b_2=1$, $b_3=2$; $c_1=6$ $c_2=5$, $c_3=2$; $\alpha=3$, $\beta=2$.

18.

$$a_1$$
=3, a_2 =5, a_3 =2; b_1 =4, b_2 =2, b_3 =3; c_1 =45, c_2 =45, c_3 =29; α =7, β =5.

19.

$$a_1$$
=2, a_2 =3, a_3 =4; b_1 =3, b_2 =5, b_3 =4; c_1 =30, c_2 =44, c_3 =48; α =7, β =9.

20.

$$a_1=3$$
, $a_2=2$, $a_3=4$; $b_1=4$, $b_2=3$, $b_3=1$; $c_1=36$, $c_2=22$, $c_3=24$; $\alpha=3$, $\beta=2$.