Proyecto

Detección de patrones maliciosos dentro de la red

0

0

0

Start!

Algunos usuarios son precavidos y se cuestionan sobre la integridad de su información. Mientras otros, asumen que sus datos serán protegidos mientras el uso de la red. ¿Cómo podemos asegurar la seguridad del usuario?

Q Objetivo

Entrenar un modelo para que detecte **patrones** dentro de la red haciendo uso de la **actividad** (logs) registrados en la nube y así identificar posibles ataques. El propósito es **mantener segura la información de los usuarios conectados** a la red, **alertar** a los administradores en caso de encontrar una actividad sospechosa y **bloquear** al usuario detectado como malicioso.

2

3

1

Preguntas clave

¿Qué variables son las más importantes al momento de detectar a un intruso dentro de la red?

¿Qué servicios o recursos de la información son más propensos a ser más accedidos durante un ataque?

¿Será prudente tener tres modelos diferentes para poder reducir los errores de falso negativo?

Q Investigaciones previas

 Android malware detection using network traffic based on sequential deep learning models

Debido a que las capacidades de un smartphone son cada vez más, cada día hay más usuarios preocupados por la seguridad y privacidad de sus datos. Este artículo habla sobre la detección de anomalías mediante la información básica del tráfico generado, el momento, el tipo de conexión y el tipo de contenido.

2. Machine Learning-Based Network Vulnerability Analysis of Industrial Internet of Things

Este paper presenta el análisis y enfoque que se puede dar con respecto a los modelos de Machine Learning para prevenir ciberataques. Se detalla cómo el campo es enorme, explica sobre el internet de las cosas y todos los riesgos a los que está expuesto el usuario tomando en cuenta la posición del programador.

Q Investigaciones previas

3. Detection of Man In The Middle Attacks in Wi-Fi networks by IP Spoofing

Este paper explica cómo se puede identificar un man in the middle haciendo uso de un segundo router y comparando los tiempos de llegada del cliente hacia el router 1 y router 2. Explicando que si el tiempo de llegada del router 1 es mayor al del router 2, es porque hay alguien en medio robando la información del usuario.

4. Machine Learning aplicado en Sistemas de Detección de Intrusos

En este paper se presenta cómo es que se utilizan los Sistemas de Detección de Intrusos (SDI) para detectar a los intrusos en una red con base en logs. Menciona cómo es que estos sistemas se mantienen mediante configuraciones estáticas y el administrador debe de velar por la actualización de las mismas para que no se vea comprometida la información valiosa.

Q Recolección de datos inicial

- Recolección del dataset inicial
- Explicación del dataset inicial
- Limpieza de datos

Veamos el código

2

_

Q Referencias Bibliográficas

- Anand, Gokul & Prathiba, Sahaya Beni & Gunasekaran, & Ponmani,. (2018). Detection of Man In The Middle Attacks in Wi-Fi networks by IP Spoofing. 319-322. 10.1109/ICoAC44903.2018.8939063.
- Fallah, S, Bidgoly, AJ. (2022) Android malware detection using network traffic based on sequential deep learning models. Softw Pract Exper. 52(9): 1987–2004. doi:10.1002/spe.3112
- M. Zolanvari, M. A. Teixeira, L. Gupta, K. M. Khan and R. Jain. (Aug. 2019). *Machine Learning-Based Network Vulnerability Analysis of Industrial Internet of Things.* IEEE Internet of Things Journal, vol. 6, no. 4, pp. 6822-6834., doi: 10.1109/JIOT.2019.2912022.
- I. Peluffo, M. Capobianco & J. Echaiz. (2014). *Machine Learning aplicado en Sistemas de Detección de Intrusos*.