

Санкт-Петербургский национальный исследовательский Академический университет имени Ж.И. Алфёрова Российской академии наук

Рабочий протокол и отчёт по лабораторной работе № 5 Свиридов Фёдор, Александр Слободнюк, Владимир Попов

«Проверка закона Шарля»

Цель работы. Исследование изохорного процесса

Задачи, решаемые при выполении работы.

- 1. Нагреть газ до 50 градусов цельсия
- 2. Начать охлаждение газа
- 3. Уменьшать объем, занимаемый газом, после понижения давления на определенную величину
- 4. Измерять температуру и давление при этой температуре
- 5. Сделать выводы

Объект исследования. Модель идеального газа

Метод экспериментального исследования. Поэтапное измерение температуры

Исходные данные. Будем считать воздух идеальным газом, тогда:

$$PV = \nu RT$$

$$P = \frac{\nu R}{V} T$$

В нашем опыте количество вещества ν оставалось примерно постоянным, а вот объём V нам приходилось немного изменять. Опишем несколько последовательных состояний нашей системы. Пусть в самом начале опыта

система находилась в состоянии $F(P_0, V_0, T_0)$

$$P_0 = \frac{\nu R}{V_0} T_0 \xrightarrow{(1)} P_1 = \frac{\nu R}{V_0} T_1 \xrightarrow{(2)} P_0 = \frac{\nu R}{V_0 + dV} T_1 \xrightarrow{(3)} P_1 = \frac{\nu R}{V_0 + dV} T_2$$

- (1) изохорный процесс с коэффициентом $\frac{\nu R}{V_0}$
- (2) возврат к давлению P_0 с помощью изменения объёма (3) изохорный процесс с коэффициентом $\frac{\nu R}{V_0 + dV}$

Таким образом, $\Delta P = C(V)\Delta T$, где C(V) - некоторый коэффициент пропорциональности, который зависит от объёма. Но если пренебречь величиной dV, то можно считать, что $\Delta P \sim \Delta T$

Результаты прямых измерений и их обработки.

			Остывание воздуха	
Нагревание воздуха		ΔP , к Π а	ΔT , °C	
ΔP , κ Π a	ΔT , °C	_	0,2	2,0
0,2	5,6		0,2	1,7
0,2	3,7		0,2	1,5
0,2	2,4		0,2	1,0
0,2	2,7		0,2	1,0
0,2	3,0		0,2	1,1
0,2	2,9		0,2	1,2
	•		0,2	1,0

Выводы и анализ результатов. Мы провели измерения изменения давления ΔP и температуры ΔT , чтобы проверить закон Шарля. На основе полученных данных можно не строго говорить о линейной зависимости $\Delta P \sim \Delta T$. Полученные результаты не очень убедительны, потому что опыт обладает рядом недостатков. Существенной проблемой является то, что установка при повышенном давление пропускает воздух, таким образом, невозможно качественно провести проверку закона Шарля: при постоянном объёме и количестве вещества нагревать (охлаждать) газ и следить за повышением (понижением) давления. Следующим недостатком опыта является малая точность манометра, из-за чего возникают трудности при выравнивание давления до начального состояния P_0 . Из несущественных недостатков можно отметить, что воздух является не идеальным газом и то, что нам приходилось менять объём на небольшую величину, которой мы пренебрегли.