CSCI 3110 Hash function (2)

• Factors to consider when analyzing hashing methods

• Load factor:
$$\alpha = \frac{N}{table Size}$$

- Size of the hash table
- Successful search or not

• Comparing the four collision resolution approaches:

- o Best case O(1)
- O Worse base O(n)

	Linear Probing	$\alpha=1/2$	$\alpha=2/3$	$\alpha=7/8$	
average case	$\frac{1}{2}\left[1+\frac{1}{1-\alpha}\right]$ for a successful search	1.5	2	4.5	
	$\frac{1}{2}\left[1 + \frac{1}{(1-\alpha)^2}\right]$ for an unsuccessful search	4.5	8	40.5	

Quadratic Probing and Double Hashing	α=1/2	α=2/3	α=7/8	
$\frac{-\log e(1-\alpha)}{\alpha}, \text{ for a successful search}$ $\frac{1}{1-\alpha}, \text{ for an unsuccessful search}$	1.38	1.65	3.1	
Ι ω	2	3	8	

Separate Chaining	α=1/2	α=2/3	α=7/8
$1 + \frac{\alpha}{2}$, for a successful search	1.25	1.33	1.43
α , for an unsuccessful search			
	0.5	0.67	0.875

Conclusions and Discussions:

- Typically, α of a hash table should be kept below 2/3.
- o Empirical comparisons of the four collision resolution methods show When α is 0.5, all four systems are about the same. As α approaches 1, separate

chaining is the clear winner

- o Criteria for good hashing function
 - Easy and fast to compute
 - Scatter the data evenly throughout the hash table
 - The calculation of the hash function should involve the entire search key

- If the hash function uses modulo arithmetic, the base should be prime → the choice of table size as a prime number safeguard against many subtle kinds of patterns in the data.
- o Comparing hashing implementation and balanced tree implementation of table:
 - if α can be kept small, then hashing is a better approach than other methods in terms of insertion/deletion/retrieval operations. Otherwise, a balanced binary tree implementation is more reliable (guaranteed lower bound performance)
 - Operations that make hashing a less efficient implementation than balanced search tree implementation:
 - Traverse in sorted order of search key → hash table does not support ordering at all!
 - Retrieval of record with the largest/smallest search key
 - Range query