PO Box 518 620 Applegate St. Philomath, OR 97370

(541) 929-5650 Fax (541) 929-5277 www.Seabird.com

NTU Characterization Sheet

Date: 5/21/2024 S/N: BBFL2WB-7201

Nephelometric Turbidity Unit (NTU) Scale Factor

Turbidity units expressed in NTU can be derived using the equation:

NTU = Scale Factor x (Output - Dark Counts)

				Digital		
Dark Counts			74	counts		
NTU Solution Value			2047	counts		
Scale Factor (SF)			0.0062	NTU/count		
Maximum Output			4130	counts		
Resolution			1.0	counts		
Ambient temperature during calibration	21	°C				

Dark Counts: Signal output of the meter in clean water with black tape over detector.

SF: Scale factor is determined using the following equation: $SF = xx \div (Output - Dark Counts)$, where xx is the value of a Formazin concentration. For example: $12.2 \div (2011 - 50) = 0.0062$.

Maximum Output: Maximum signal output the meter is cabable of.

Resolution: standard deviation of 1 minute of collected data.

BBFL2WB-7201.xlsx Revision S 10/4/07

PO Box 518 620 Applegate St. Philomath, OR 97370

(541) 929-5650 Fax (541) 929-5277 www.seabird.com

ECO Chlorophyll Fluorometer Characterization Sheet

Date: 5/21/2024 S/N: BBFL2WB-7201

Chlorophyll concentration expressed in µg/l can be derived using the equation:

CHL (µg/I) = Scale Factor * (Output - Dark counts)

Digital

Dark counts87 countsScale Factor (SF)0.0120 μg/l/countMaximum Output4130 countsResolution1.0 counts

Ambient temperature during characterization 21.0 °C

Dark Counts: Signal output of the meter in clean water with black tape over detector.

SF: Determined using the following equation: $SF = x \div (output - dark counts)$, where x is the concentration of the solution used during instrument characterization. SF is used to derive instrument output concentration from the raw signal output of the fluorometer.

Maximum Output: Maximum signal output the fluorometer is capable of.

Resolution: Standard deviation of 1 minute of collected data.

The relationship between fluorescence and chlorophyll-a concentrations in-situ is highly variable. The scale factor listed on this document was determined using a mono-culture of phytoplankton (Thalassiosira weissflogii). The population was assumed to be reasonably healthy and the concentration was determined by using the absorption method. To accurately determine chlorophyll concentration using a fluorometer, you must perform secondary measurements on the populations of interest. This is typically done using extraction-based measurement techniques on discrete samples. For additional information on determining chlorophyll concentration see "Standard Methods for the Examination of Water and Wastewater" part 10200 H, published jointly by the American Public Health Association, American Water Works Association, and the Water Environment Federation.

BBFL2WB-7201.xlsx Revision S 10/4/07

PO Box 518 620 Applegate St. Philomath, OR 97370

(541) 929-5650 Fax (541) 929-5277 www.Seabird.com

ECO CDOM Fluorometer Characterization Sheet

Date: 5/21/2024 S/N: BBFL2WB-7201

CDOM concentration expressed in ppb can be derived using the equation:

CDOM (ppb) = Scale Factor * (Output - Dark Counts)

Digital
Dark Counts
51 counts
Scale Factor (SF)
0.0912 ppb/count
Maximum Output
4130 counts
Resolution
1.0 counts

Ambient temperature during characterization 21.0 °C

Dark Counts: Signal output of the meter in clean water with black tape over detector.

SF: Determined using the following equation: $SF = x \div (output - dark counts)$, where x is the concentration of the solution used during instrument characterization. SF is used to derive instrument output concentration from the raw signal output of the fluorometer.

Maximum Output: Maximum signal output the fluorometer is capable of.

Resolution: Standard deviation of 1 minute of collected data.

BBFL2WB-7201.xlsx Revision S 10/4/07