SUMATORY WIELOARGUMENTOWE

Prawa łączności i przemienności dodawania

$$a+b+c+d+e+f+g+h+i+...=\{[(a+b)+(g+h)]+[(e+f)+(c+d)]\}+\{[(i+...+b+c+d+e=(((a+b)+c)+d)+e=(((c+e)+b)+d)+a=...$$

Prawo łączności dodawania w systemie pozycyjnym

$$A + B + C + \dots = \sum_{i=-m}^{k-1} a_i \beta^i + \sum_{i=-m}^{k-1} b_i \beta^i + \sum_{i=-m}^{k-1} c_i \beta^i + \dots = \sum_{i=-m}^{k-1} (a_i + b_i + c_i + \dots) \beta^i$$

Suma argumentów jednocyfrowych jest wielocyfrowa (w zapisie pozycyjnym):

$$a_i + b_i + c_i + \dots = u_i^{(m)} \beta^m + \dots + u_i^{(2)} \beta^2 + u_i^{(1)} \beta + u_i^{(0)}$$

• suma **wielocyfrowa** $\{u_i^{(m-1)},...,u_i^{(2)},u_i^{(1)},u_i^{(0)}\}$ w kolumnie cyfr o ustalonej wadze ma wagę taką jak waga pozycji (kolumny), a jej rozmiar jest logarytmicznie zależny od liczby argumentów n ($m = \lfloor \log_{\beta} n \rfloor$)

Łączność i przemienność dodawania w systemie pozycyjnym

$$X^{(1)} + X^{(2)} + \dots + X^{(k)} = \sum_{p=1}^{k} \sum_{i=-q}^{n-1} x_i^{(p)} \beta^i = \sum_{i=-q}^{n-1} \beta^i \sum_{p=1}^{k} x_i^{(p)} = \sum_{i=-q}^{n-1} \beta^i (\sum_{r=0}^{m} u_{i-r}^{(r)} \beta^r)$$

Dodawanie wieloargumentowe jednopozycyjne w systemach naturalnych

$$x_i^{(1)} + x_i^{(2)} + x_i^{(3)} + ... + x_i^{(n)} = u_i^{(m)} \beta^m + ... + u_i^{(2)} \beta^2 + u_i^{(1)} \beta + u_i^{(0)}, \text{ gdzie } x_i^{(j)}, u_i^{(j)} \in \{0, 1, ..., \beta - 1\}$$

Aby suma była najwyżej *m*-cyfrowa liczba składników *k* musi spełniać warunek:

$$\sum_{j=1}^{k} x_i^{(j)} \le \sum_{j=1}^{k} (\beta - 1) = k(\beta - 1) \le \beta^m - 1, \text{ gdzie } 0 \le x_i^{(j)} \le \beta - 1$$

czyli
$$k \le (\beta^m - 1)/(\beta - 1) = \beta^{m-1} + \beta^{m-2} + ... + \beta + 1 = 11...11_{\beta}$$

dodawanie można wykonać dwuetapowo:

- obliczyć wielopozycyjne sumy przejściowe (w dowolnej kolejności)
- dodać liczby wielocyfrowe skomponowane z sum przejściowych
- \rightarrow jeśli liczba składników jest $\leq \beta+1$, to suma jest dwucyfrowa i wynosi

$$\{v_{i+1}, u_i\} = \{r, x_i^{(1)} + x_i^{(2)} + \dots + x_i^{(\beta+1)} - r\beta\} \text{ gdy } 0 \le x_i^{(1)} + x_i^{(2)} + \dots + x_i^{(\beta+1)} - r\beta < \beta\}$$

Dodawanie wieloargumentowe w systemach naturalnych

 \rightarrow jeśli liczba argumentów $k>\beta+1$, to dodawanie można wykonać etapami

>		(0)	(0)	a k–1	<i>ak</i> -2		<i>a</i> -m+3	<i>a</i> –m+2	a -m+1	а-т
ntóv		(0)	(0)	b_{k-1}	b_{k-2}		<i>b</i> -m+3	<i>b</i> -m+2	<i>b</i> -m+1	b_{-m}
argumentów		(0)	(0)	<i>Ck</i> –1	<i>Ck</i> –2		<i>C</i> – <i>m</i> +3	<i>C</i> – <i>m</i> +2	<i>C</i> – <i>m</i> +1	С-т
l arg		(0)	(0)	d_{k-1}	d_{k-2}	•••	<i>d</i> -m+3	d_{-m+2}	d_{-m+1}	d_{-m}
>\beta+1		•••	•••	•••	•••		• • •	•••	•••	•••
, ,	+	(0)	(0)	p_{k-1}	<i>p</i> _{k-2}		р_т+3	р-m+2	<i>p</i> -m+1	р_т
		•••	•••	•••	•••	•••	• • •	•••	•••	•••
		• • •	•••	•••	•••	•••	•••	•••	•••	•••
. .		(0)	(0)	$^{(0)}\chi_{k-1}$	$^{(0)}\chi_{k-2}$		$(0)_{X-m+3}$	$(0)_{X-m+2}$	$(0)_{X-m+1}$	$^{(0)}\chi_{-m}$
l arg.		(0)	$(1)\chi_{k-1}$	$(1)\chi_{k-2}$		$(1)_{\chi-m+3}$	$(1)_{\chi-m+2}$	$(1)_{\chi-m+1}$	$(1)\chi_{-m}$	(0)
$\leq \beta + 1$		$(2)\chi_{k-1}$	$(2)\chi_{k-2}$		$(2)\chi_{-m+3}$	$(2)_{\chi_{-m+2}}$	$(2)\chi_{-m+1}$	$(2)\chi_{-m}$	(0)	(0)
	+	• • •	• • •	• • •	•••	• • •	• • •	• • •	• • •	•••
arg		$^{(0)}u_{k+1}$	$^{(0)}u_k$	$^{(0)}u_{k-1}$	$^{(0)}u_{k-2}$		$^{(0)}u_{-m+3}$	$^{(0)}u_{-m+2}$	$^{(0)}u_{-m+1}$	$(0)\chi_{-m}$
2 a	• • •	$^{(1)}u_k$	$^{(1)}u_{k-1}$	$^{(1)}u_{k-2}$		$^{(1)}u_{-m+3}$	$^{(1)}u_{-m+2}$	$(1)_{u-m+1}$		
•	•••	Sk	Sk	Sk-1	Sk-2		S-m+3	S-m+2	$^{(0)}u_{-m+1}$	$(0)_{\chi_{-m}}$

Redukcja argumentów w drzewie CSA

sumator (k,m) – układ obliczający m-pozycyjną sumę k liczb jednocyfrowych

$$m = \left| \log_{\beta} \left[k(\beta - 1) + 1 \right] \right|$$

Struktura redukcji argumentów w drzewie CSA zbudowanym z modułów (*k,m*)

$$X^{(1)} + X^{(2)} + \dots + X^{(k)} = \sum_{p=1}^{k} \sum_{i=-q}^{n-1} x_i^{(p)} \beta^i = \sum_{i=-q}^{n-1} \beta^i \sum_{p=1}^{k} x_i^{(p)} = \sum_{i=-q}^{n-1} \beta^i (\sum_{r=0}^{m} u_{i-r}^{(r)} \beta^r)$$

Redukcja argumentów w dwójkowym drzewie CSA

Skala redukcji operandów w wielopoziomowym dwójkowym drzewie CSA

Dwójkowe sumatory wieloargumentowe (CSA)

Czteropozycyjny sumator czterooperandowy CSA czas dodawania = czas redukcji + czas dodawania końcowego

Redukcja k dwójkowych operandów n-pozycyjnych (CSA)

Pojedynczy układ (3,2) redukuje dokładnie jeden operand 1-bitowy

- \rightarrow do redukcji k operandów n-bitowych potrzeba n(k-2) układów (3,2)
- \rightarrow k_L operandów na poziomie $L \Rightarrow k_{L+1} \le k_L + \lfloor k_L/2 \rfloor$ na poziomie L+1
- jeden poziom CSA redukuje 3 operandy do 2 skala redukcji 3/2
- dwa poziomy CSA redukują 4 operandy do 2 skala redukcji $\sqrt{2}$
- trzy poziomy CSA redukują 6 operandów do 2 skala redukcji $\sqrt[3]{3}$

$$2(\sqrt{2})^L \le k_L \le 2(\frac{3}{2})^L$$
 (lepsza ocena)
$$2(\sqrt[3]{3})^L \le k_L \le 2(\frac{3}{2})^L \qquad (L \ge 3)$$
 (niezłe oszacowanie)
$$k_L \cong (\frac{3}{2})^L + (\sqrt[3]{3})^L$$

Redukcja liczby operandów w wielopoziomowej strukturze CSA

liczba poziomów L	1	2	3	4	5	6	7	8	9	10
$2(\frac{3}{2})^L$	3	4	6	10	15	22	34	51	76	115
maksymalna liczba operandów		4	6	9	13	19	28	42	63	94
$2(\sqrt[3]{3})^L \cong 2 \cdot 1,44224957^L$	3	5	6	9	13	18	26	38	54	78
$2(\sqrt{2})^L \cong 2 \cdot 1,41421356^L$	3	4	6	8	12	16	23	32	46	65

Konstrukcja wieloargumentowego sumatora CSA (1)

- poprawna reprezentacja sumy k argumentów n-bitowych $0 \le X_1, X_2, ..., X_k \le 2^n 1 \Rightarrow 0 \le X_1 + X_2 + ... + X_k \le k(2^n 1) < 2^{n + \log k} 1$ wymaga wytworzenia $\log k$ dodatkowych pozycji
- reduktor CSA zawiera nk-2n=n(k-2) elementów (3,2)
- reduktor ma głębokość $L = O(\log k)$:

$$1,7095\log \frac{k}{2} = (\log 1,5)^{-1}\log \frac{k}{2} \le L \le 3(\log 3)^{-1}(\log \frac{k}{2}) = 1,8928(\log \frac{k}{2})$$

sumator wieloargumentowy CSA

Konstrukcja wieloargumentowego sumatora CSA (2)

Konstrukcja jest rekurencyjna typu top-down

- 1. każde 3 sygnały wejściowe o tej samej wadze przyłącz do wejść modułu (3,2)
- 2. sygnał nieprzyłączony przekaż na niższy poziom CSA lub opcjonalnie parę sygnałów o tej samej wadze przekształć przez półsumator HA (układ (2,2))
- 3. wytwórz wyjścia wszystkich modułów (3,2) (lub (2,2))
 - pamiętaj, że wyjścia s (sumy) i c (przeniesienia) mają **różne wagi!**
- 4. w poszczególnych kolumnach zbierz sygnały o jednakowych wagach
- 5. powtarzaj 1–4 dopóki w jakiejś kolumnie pozostało więcej niż 2 sygnały
- 6. dołącz sumator końcowy (najlepiej szybki: CLA, PPA, COSA)

Konstrukcja typu *bottom-up* (*drzewo Wallace'a*) jest trudniejsza, bo w skrajnych kolumnach jest mniej argumentów do redukcji

UWAGA:

Zwrotne przekazywanie sygnału na poprzedni poziom redukcji jest **poważnym błędem** (sprzeczne z ideą szybkiej redukcji argumentów)

Schemat konstrukcji wielopoziomowego reduktora CSA (1)

przykład – 7 argumentów 4-bitowych (w=3+3, L=4)

Schemat konstrukcji wielopoziomowego reduktora CSA (2)

Dwójkowe sumatory wieloargumentowe kodu U2 (1)

Wymagany zakres końcowej sumy jest o $m = \lceil \log_2 k \rceil$ bitów większy, bo

$$-2^{n-1} \le X_1, X_2, ..., X_k \le 2^{n-1} - 1 \Rightarrow -2^{n+\log k - 1} \le X_1 + X_2 + ... + X_k < 2^{n+\log k - 1}$$

Podstawowy algorytm dodawania w kodzie U2 wymaga użycia $m = \lceil \log_2 k \rceil$ bitów rozszerzenia lewostronnego dla każdego z k argumentów, a w konsekwencji:

- drzewo CSA zawierałoby $k \cdot (n+m)$ argumentów bitowych
- $k \cdot \lceil \log_2 k \rceil$ wejść stanowiłyby powielone bity rozszerzenia lewostronnego
- konieczne rozgałęzienie bitu wiodącego każdego spośród *k* argumentów

Alternatywa: przekodowanie argumentów

każdy argument *n*-bitowy w kodzie U2 można zapisać jako sumę liczby dodatniej (w kodzie NB) i stałej ujemnej

$$-x_{n-1}2^{n-1} + \sum_{i=0}^{k-2} x_i 2^i = -2^{n-1} + \overline{x}_{n-1}2^{n-1} + \sum_{i=0}^{n-2} x_i 2^i$$

gdzie $\overline{x}_{n-1} = 1 - x_{n-1}$ – dopełnienie (negacja) bitu wiodącego

Dwójkowe sumatory wieloargumentowe kodu U2 (2)

Przekodowanie każdego argumentu $\{x_{n-1}, x_{n-2}, ..., x_1, x_0\}$ danego w kodzie U2 na sumę liczby naturalnej o reprezentacji $\{\overline{x}_{n-1}, x_{n-2}, ..., x_1, x_0\}$ i ujemnej stałej -2^n pozwala zastąpić użycie rozszerzeń lewostronnych przez dopełnianie (negację) wiodących bitów argumentów i dodanie stałej korekcyjnej $-k \cdot 2^{n-1}$:

Modyfikacja drzewa CSA do dodawania k=7 liczb n=4-bitowych w kodzie U2

UWAGA: Ponieważ ...01...11 + ...00 $x = ... x \overline{x} ... \overline{x} \overline{x}$, więc schemat można uprościć:

Uproszczone drzewo CSA do dodawania *k*=7 liczb *n*=4-bitowych w kodzie U2

Zliczanie jedynek (lub zer) w słowie n-bitowym

(prawie) trzykrotna redukcja na I poziomie sumatora

- jeśli n=3k, to na II poziomie jest k operandów 2-bitowych
- jeśli $n \neq 3k$, to na II poziomie jest $\lceil n/3 \rceil$ operandów 2-bitowych

Parametry układu (bez 2-bitowego sumatora wyjściowego)

- liczba modułów CSA *n*–2
- liczba poziomów CSA 1+ liczba poziomów redukcji $\lceil n/3 \rceil$ operandów, czyli $\frac{\log \lceil n/3 \rceil 1}{\log 3 1} + 1 \le L \le \frac{3(\log \lceil n/3 \rceil 1)}{\log 3} + 1$
- liczba bitów wyniku log₂n
- zliczanie zer liczba jedynek w słowie zanegowanym jest równa liczbie zer w słowie oryginalnym

Alternatywne konstrukcje wielopoziomowego drzewa CSA*)

od góry (top-down)

liczba operandów	struktura
$N=N_0$	$(N_0/3)*(3,2)$
$(N_0/3)*2+ N_0 _3=N_1$	$(N_1/3)*(3,2)$
•••	
(6/3)*2+0=4	1+1*(3,2)
(4/3)*2+1=3	1*(3,2)
	<u> </u>

redukcja od poziomu *L,* łatwiejsza konstrukcja drzewa od dołu (bottom-up) – drzewo Wallace'a

liczba operandów	struktura
$k_{L-1} < N < k_L$	$(N-k_{L-1})*(3,2)+$
$k_{L-2}+\lfloor k_{L-2}/2\rfloor=k_{L-1}$	$\lfloor k_{L-1}/3 \rfloor * (3,2) + \lfloor k_{L-1} \rfloor_3$
•••	•••
$3+\lfloor 3/2\rfloor=4=k_2$	L3/2 J*(3,2)+1
$2+\lfloor 3/2\rfloor=3=k_1$	L2/2 J*(3,2)

kumulacja operandów od poziomu 1 $k_{L+1} = k_L + \lfloor k_L / 2 \rfloor$, $k_0 = 2$

L	operandy	struktura	operandy	struktura
7	21	7*(3,2)	27	9*(3,2)
6	7*2=14	2+4*(3,2)	9*2=18	6*(3,2)
5	4*2+2=10	1+3*(3,2)	6*2=12	4*(3,2)
4	3*2+1=7	1+2*(3,2)	4*2=8	2+2*(3,2)
3	2*2+1=5	2+1*(3,2)	2*2+2=6	2*(3,2)
2	1*2+2=4	1+1*(3,2)	2*2=4	1+1*(3,2)
1	1*2+1=3	1*(3,2)	1*2+1=3	1*(3,2)

	operandy	struktura
	2027	18*(3,2)+
	8*2+3=19	6*(3,2)+1
	6*2+1=13	4*(3,2)+1
	4*2+1=9	3*(3,2)
	2*3=6	2*(3,2)
	2*2=4	1*(3,2)+1
ı	1*2+1=3	1*(3,2)

Konwertery (k, m) w systemach dwójkowych*

$$\beta=2 \Rightarrow k \leq 2^m - 1, m = \lceil \log_2(k+1) \rceil$$

- elementarny reduktor (3,2) jednopozycyjny sumator binarny (FA)
- *konwerter* (*k*,*m*) (*licznik jedynek*)
 - o − koduje liczbę jedynek z *k* wejść na *m* wyjściach
 - o drzewo (3,2) lub projekt indywidualny, np. licznik (4,3)

$$u^{(0)} = (x \oplus y) \oplus (z \oplus v)$$
$$u^{(1)} = (x \oplus y)(z+v) + (y \oplus z)(x+v) + (z \oplus v)(x+y)$$
$$u^{(2)} = xyzv$$

• *reduktor* (*k*,2) – koduje liczbę jedynek z *k* wejść na 2 wyjściach sumy i pewnej liczbie wyjść przeniesień (kumulacja przeniesień)

Konwertery (k, m) i reduktory $(k, 2)^*$

Reduktory wielokolumnowe $(k_{s-1},...,k_1,k_0,m)^*$

Dodawanie operandów o rosnących wagach (k_i o wadze β^i , i=0,1,...,s) suma na *m* pozycjach – wektor o *l* składowych:

- jednooperandowa s-pozycyjna suma o wadze 2^{0} ,
- wielooperandowe przeniesienie wektorowe o wagach operandów (2^s)ⁱ

Warunek zakodowania wyniku na *m* pozycjach

$$\beta^{m} - 1 \ge \sum_{i=0}^{s-1} k_{i} (\beta - 1) \beta^{i}$$

w systemie dwójkowym $2^m - 1 \ge \sum_{i=0}^{s-1} k_i 2^i$

warunek realizowalności licznika (k, k, ..., k, m)

$$2^m - 1 \ge k(2^s - 1)$$

 $m \le 2s \Rightarrow$ suma k operandów s-pozycyjnych jest najwyżej 2-operandowa

$$2^{2s} - 1 \ge 2^m - 1 \ge k(2^s - 1) \implies k \le 2^s + 1$$

27 lutego 2018

Parametry optymalnych reduktorów s-kolumnowych*

S	1	2	3	4	5	6	7
m=2s	2	4	6	8	10	12	14
k	3	5	9	17	33	65	129

Schemat dodawania w układach: a) (7,7,5), b) (7,7,7,5)

UKŁADY MNOŻĄCE

Podstawowy schemat mnożenia (dodaj-przesuń)

Krok 1. C | | S/P \leftarrow (S/P) + x_i (A)

Krok 2. C | |S/P | |X/P ← 2⁻¹(C | |S/P | |X/P) = ShR(C | |S/P | |X/P)

Krok 3. i=i+1. Jeśli i < k+m, wróć do kroku 1.

Wynik:
$$A \cdot X = (S/P \mid |X/P)$$

Schemat blokowy układu mnożącego: S/P – rejestr sum częściowych, X/P – rejestr mnożnika, A – rejestr mnożnej, C – rejestr przeniesienia

Schematy szybkiego mnożenia

- akumulacja równoległa drzewiasta struktura CSA,
- akumulacja sekwencyjna liniowa struktura CSA, matryca mnożąca

Akumulacja iloczynów częściowych

• sumatory wielooperandowe CSA

różne wagi iloczynów częściowych

różna liczba operandów jednej wagi

drzewo CSA

- szybka redukcja operandów w najdłuższej kolumnie
- redukcja do 1 operandów najniższych wag (krótsze końcowe dodawanie)

Optymalizacja struktury CSA (1)

drzewo Wallace'a

CSA, poziom 3 – wejścia układów (3,2) lub (2,2)

CSA, poziom 3 – wynik redukcji: wyjścia układów (3,2) lub (2,2)

Optymalizacja struktury CSA (1)

CSA, poziom 2

Matrycowe układy mnożące - schemat mnożenia

 s_{ji} oraz c_{ji} – sumy i przeniesienia na pozycji j w i-tym kroku akumulacji

Matryca mnożąca kodu naturalnego (Brauna)

Multiplikator Brauna (Braun multiplier)

Konstrukcja matrycy mnożącej kodu uzupełnieniowego

realizacja algorytmu mnożenia "bez rozszerzeń":

(♦ – negacja najbardziej znaczącego bitu operandu, • – negacja bitu)

dodawanie stałych korygujących 2^{k-1} i -2^{k+m-1} oraz 2^{m-1} (uzupełnianie mnożnej):

- korygująca "1" na pozycji k–1 (2 $^{k-1}$) \Rightarrow $s+1=2c_++s^*$ \Rightarrow $s^*=1\oplus s$, $c_+=s$
- dodanie 2^{*m*-1} modyfikacja półsumatora pozycji *m*-1 w pierwszej linii $x+y+1=2c_++s \implies s=\overline{x\oplus y},\ c_+=x+y\ \text{lub}\ s=\overline{\overline{x}\oplus \overline{y}},\ c_+=\overline{\overline{x}\cdot \overline{y}}$
- dodanie -2^{n+l-1} korekcja przeniesienia z najwyższej pozycji iloczynu , zgodnie z zależnością $c_-+1=2c_++s$, czyli $c_+=c_-$ oraz $s=1\oplus c_-$
- matryca kwadratowa $(k=m) (2^{k-1}+2^{k-1}=2^k) \Rightarrow$ jedna korekcja na pozycji k

Matryca mnożąca kodu uzupełnieniowego (Baugh'a-Wooley'a)

(ostatni iloczyn częściowy: negacja bitów mnożnej i korekcja)

Alternatywny układ mnożący kodu U2

iloczyny częściowe lub iloczyny elementarne mogą być liczbami ujemnymi

$$\left(-a_{k-1}2^{k-1} + \sum_{i=0}^{k-2}a_{i}2^{i}\right) \cdot \left(-x_{m-1}2^{m-1} + \sum_{j=0}^{m-2}x_{j}2^{j}\right) =
= x_{m-1}a_{k-1}2^{m+k-2} + \sum_{j=0}^{m-2}\sum_{i=0}^{k-2}x_{j}a_{i}2^{i+j} + \left(-a_{k-1}2^{k-1}\sum_{j=0}^{m-2}x_{j}2^{j}\right) + \left(-x_{m-1}2^{m-1}\sum_{i=0}^{k-2}a_{i}2^{i}\right).$$

- wagi operandów (1-bitowych iloczynów) mogą być ujemne
 → wystarczy zmienić znaki wag wejść i wyjść niektórych sumatorów
- zastąpienie sumatorów FA ((3,2)) realizujących dodawanie x+y+z=2c+s układami odejmującymi FS (x-y-z=-2c+s) lub FS^D (x+y-z=2c-s)
- struktura logiczna FS i FS^D identyczna
- przeciwne wagi wejść i wyjść, bo

$$x-y-z=-(z+y-x)$$
 oraz $-(2c-s)=-2c+s$

Alternatywna matryca mnożąca kodu uzupełnieniowego

(• – wejścia o ujemnej wadze)

Charakterystyki matryc mnożących

złożoność (mnożnik *m*-bitowy, mnożna *k*-bitowa)

- A=8(m-1)k (dodatkowa bramka AND na każdy akumulowany bit)
- $T=3(m-1)+T_{CPA(k)} \ge 3m+2\log k-1$ (odpowiednie łączenie poziomów daje opóźnienie 6 na dwóch poziomach)

podatność na przetwarzanie potokowe (pipelining)

- dla danej pary operandów w danej chwili jest wykonywane dodawanie tylko na jednym poziomie układu matrycowego,
- na innych poziomach można *w tym samym czasie* wykonać wcześniejsze lub późniejsze fazy mnożenia innych par operandów
- niezbędne rozbudowanie o dodatkowe układy transmitujące wyniki dodawania na mniej znaczących pozycjach oraz układ synchronizacji.
- przepustowość układu zależy od szybkości końcowego dodawania w seryjnym mnożeniu końcowy CPA jako kaskada CSA szybkość bliska szybkości dodawania 1-bitowego!

Optymalne łączenie poziomów CSA w matrycy mnożącej*

maksymalne opóźnienie przez 2 poziomy – (2+4) lub (4+2), czyli zawsze 6

Realizacja przekodowania Bootha-McSorleya w matrycy*

• możliwe zastosowanie algorytmu Bootha/McSorleya

- "brak podwojenia" = $x_r \oplus x_{r-1}$,
- "odejmowanie" = x_{r+1} ,
- "brak zerowania" = $(x_r \oplus x_{r+1}) + (x_r \oplus x_{r-1})$,

Strukturalizacja układów mnożących

• układ mnożący $kn \times kn$ – złożenie układów mnożących $n \times n$:

$$AX = \left(\sum_{s=0}^{k-1} A_s 2^{sn}\right) \left(\sum_{s=0}^{k-1} X_s 2^{sn}\right) = \sum_{j=0}^{k-1} 2^{jn} \sum_{i=0}^{j} A_i X_{j-i} + \sum_{j=k}^{2k-2} 2^{jn} \sum_{i=j-k+1}^{k-1} A_i X_{j-i},$$

albo w postaci skróconej

$$AX = \sum_{j=0}^{2k-2} 2^{jn} \sum_{i=\max(0,j-k+1)}^{\min(j,k-1)} A_i X_{j-i}$$

gdzie
$$A_i = \sum_{j=0}^{n-1} a_{ni+j} 2^j$$
, $X_i = \sum_{j=0}^{n-1} x_{ni+j} 2^j$.

wyrównywanie (alignment)

• każdy 2n-pozycyjny iloczyn $A_i X_{s-i}$ ma wagę 2^{ns}

$$(\mathbf{AX})_s = [A_s X_0, A_{s-1} X_1, ..., A_1 X_{s-1}, A_0 X_s]$$

• efekt – akumulacja 2k-1 wielooperandów różnego rozmiaru zamiast k^2 operandów o identycznej wielkości

Wyrównanie operandów

Wyrównanie operandów w układzie mnożącym $4n\times4n$

- w kodzie U2 niezbędne uwzględnienie rozszerzenia znakowego
- efekt liczba operandów w j-ej grupie wynosi 2j+1 osiągając maksimum 4k-3, \rightarrow niweczy to zysk wynikający ze strukturalizacji.
- → przekonstruowanie sumatora wielooperandowego CSA.

Mnożenie wielokrotnej precyzji

W mnożeniu liczb rozszerzonej precyzji, $(A_{k-1}A_{k-2}...A_1A_0)\cdot(X_{k-1}X_{k-2}...X_1X_0)$:

- wszystkie iloczyny A_iX_j takie, że i < k-1, j < k-1, są dodatnie i mogą być realizowane jako mnożenie naturalne ("mul" w architekturze IA-32)
- pozostałe iloczyny są iloczynami liczb znakowanych i muszą być realizowane jako mnożenie całkowite ("imul" w architekturze IA-32).

Mnożenie długich liczb znakowanych (U2)

- najwyższe iloczyny (... AHX# oraz A#XH)
 - mnożenie liczby dodatniej przez znakowaną!
 - dodawanie dodatniej i znakowanej !

Rozwiązanie 1:

- przekodowanie na dodatnie (podobnie jak w mnożeniu bez rozszerzeń)
- korekcja (podobnie jak w mnożeniu bez rozszerzeń)

Rozwiązanie 2:

- przekodowanie na wartości bezwzględne
- mnożenie dodatnich i wytworzenie znaku
- przekodowanie iloczynu na kod uzupełnieniowy