Podstawy statystyki praktycznej

laboratorium – lista 3

- 1. Rozważamy standardowy rozkład normalny N(0,1).
 - (a) Wygeneruj 100-elementową próbę z tego rozkładu i skonstruuj przedział ufności dla wartości oczekiwanej na poziomie ufności 95%.
 - (b) Doświadczenie z punktu (a) powtórz 1000 razy i oblicz jak często tak skonstruowane przedziały ufności zawierają rzeczywistą wartość oczekiwaną.
 - (c) Powtórz doświadczenie z punktu (a) dla próby 200-elementowej. Wyznacz prawdopodobieństwa pokrycia rzeczywistej wartości oczekiwanej i porównaj średnią szerokość przedziałów ufności wyznaczonych w oparciu o próby 100- i 200-elementowe.
- 2. Niech D będzie zmienną losową oznaczającą dochód dla populacji zawartej w zbiorze danych income.dat. Narysuj histogram zmiennej D i zbadaj jej normalność zarówno przy pomocy reguły 68%-95%-99.7%, jak i przy pomocy wykresu kwantylowego.
- 3. Niech D będzie zmienną losową oznaczającą dochód dla populacji zawartej w zbiorze danych income.dat.
 - (a) Skonstruuj nową zmienną $U=\sqrt{D}$ (zastanów się jak poradzić sobie z ujemnymi wartościami D). Narysuj histogram tej zmiennej i wyznacz średnią arytmetyczną μ_U tej zmiennej dla całego zbioru danych. Porównaj $(\mu_U)^2$ z μ_D . Wyznacz frakcję osób z wyższym wykształceniem p_W .
 - (b) Pobierz 200-elementową próbę losową z tego zbioru danych i w oparciu o tę próbę wyznacz estymatory dla μ_U , μ_D oraz p_W . Skonstruuj 95% przedziały ufności dla tych parametów i sprawdź, czy zawierają one rzeczywiste wartości.
 - (c) Punkt (b) powtórz 200 razy i narysuj histogramy rozkładów powyższych estymatorów oraz wyznacz jak często przedziały ufności zawierały rzeczywistą wartość estymowanego parametru.
- 4. Korzystając ze zbioru danych grades.txt, zakładając, że zbiór danych jest prostą próbą losową z pewnej populacji, skonstruuj przedziały ufności dla średniego ilorazu inteligencji i średniego wyniku testu psychologicznego w tej populacji, przy $\alpha=0.05$.