GRUPO DE ESTUDIOS PREUNIVERSITARIO

Av. Gerardo Unger 261-B Urb. Ingeniería S.M.P.(Frente puerta # 3 UNI) **?**: 481-3444 / 796-0992 / 9728-2459 Sétima Práctica Dirigida de Trigonometría

TEMA: Identidades Trigonométricas para los ángulos compuestos

- 1.- Sabiendo que: $sen\alpha = \frac{3}{5} (\alpha \in IIC)$ y
 - $tg\beta = \frac{5}{12} (\beta \in IIIC)$. Calcular:

 $\cos(\alpha + \beta)$

- A) $\frac{59}{65}$ B) $\frac{61}{65}$ C) $\frac{63}{65}$ D) $\frac{57}{65}$
- 2.- Reducir:

 $\frac{sen(\alpha+\beta)-2\cos\alpha.sen\beta}{2}-2\cos\alpha.\cos\beta$

- A) $\cos(\alpha + \beta)$ B) $\cos(\alpha \beta)$
- C) $-\cos(\alpha + \beta)$ D) $-\cos(\alpha \beta)$
- E) $sen(\alpha \beta)$
- 3.- Simplificar:

 $E = \frac{sen46^{\circ} + \cos 56^{\circ}.sen10^{\circ}}{sen56^{\circ}} + sen10^{\circ}$

- A) cos55° B) $\sqrt{2}$ sen35° C) $\sqrt{2}$ cos35° D) sen55° E) 2sen35°
- 4.- Si : $ctg\alpha = \frac{3}{2} + tg\beta$. Calcular:

$$E = \frac{2\cos(\alpha + \beta)}{\sin(\alpha + \beta) + \sin(\alpha - \beta)}$$

- A) 1.00 B) 1.25 C) 1.50 D) 1.75 E) 2.00
- 5.- Sabiendo que a y b son arcos del primer cuadrante, calcule "x" a partir de :

$x.\sec(a+b) = \frac{\sqrt{(1+tg^2a)(1-tg^2a)(1-tg^2a)}}{1-tgatg}$ A) 1 B) $\sqrt{2}$ C) $\sqrt{2}/2$ E) $3\sqrt{2}/2$ 6.- Si: $a-b=\frac{\pi}{12}$. Calcular: $N = (sena + \cos a)(senb + \cos a)$ A) $\frac{\sqrt{6}-\sqrt{2}}{2}$ B) $\frac{\sqrt{6}+\sqrt{2}}{2}$ C) $\frac{\sqrt{6}-\sqrt{2}}{4}$ D) $\frac{\sqrt{6}+\sqrt{2}}{4}$ E) $\frac{\sqrt{6}+\sqrt{2}}{6}$ 7.- Si: $\cos \alpha + sen\beta = \cos(\alpha + \cos \alpha)$ $x.\sec(a+b) = \frac{\sqrt{1+tg^2a}\left(1+tg^2b\right)}{1-t\sigma a t\sigma b}$

- A) 1 B) $\sqrt{2}$ C) $\sqrt{2}/2$ D) $2\sqrt{2}$

 $N = (sena + \cos a)(senb + \cos b) - sen(a + b)$

- A) $\frac{\sqrt{6} \sqrt{2}}{2}$ B) $\frac{\sqrt{6} + \sqrt{2}}{2}$
- C) $\frac{\sqrt{6} \sqrt{2}}{4}$ D) $\frac{\sqrt{6} + \sqrt{2}}{4}$
- 7.- Si: $\cos \alpha + sen \beta = \cos(\alpha \beta)$

Calcular: $N = \frac{\cos \alpha . sen \beta}{(1 - sen \alpha)(1 + \cos \beta)}$

- A) -2 B) -1 C) 0 D) 1 E9 2
- 8.- Calcular:

 $N = \sec 28^{\circ} \cdot \sec 17^{\circ} + \sqrt{2}tg \cdot 28^{\circ} \cdot tg \cdot 17^{\circ}$

- A) $\sqrt{2}$ B) $2\sqrt{2}$ C) $3\sqrt{2}$ D) $4\sqrt{2}$ E) 5 $\sqrt{2}$
- 9.- Dado un triángulo ABC, cuyos ángulos cumplen:

senA = tsenB.senC

 $\cos A = t \cos B \cdot \cos C$

Halle : taA

A) 1 - t B) t C) 2t - 1 D) 2t + 1

E) 1 + t

Grupo .

EL NÚCLEO: ¡La manera más inteligente de estudiar!

10.- Si : a-b=x; cosa = k.senb .Reducir :

 $P = \frac{\cos x}{k + senx} + \frac{k \cdot \cos x}{1 + k \cdot senx} - ctga$

A) tgb B) tga C) ctga D) ctgb E) sena

11.- Simplificar la expresión:

 $Q = (ctg\alpha - ctg2\alpha)^{-1} - (tg - tg2\alpha)^{-1}$

- A) $\csc \alpha$ B) $tg\alpha$ C) $ctg\alpha$
- D) $\cos \alpha$ E) $sen \alpha$
- 12.- Sea $tg(\alpha \beta) = \frac{a-1}{a+1}$, a > 0 y

 $\beta = \theta + \frac{\pi}{4}$; calcular $ctg(\alpha - \theta)$.

- A) 1 B) 1/a C) a D) -1 E) -1/a
- 13.- Si: tg4a = 0.1 ; calcular:

 $N = \frac{1}{tg3a + tga} - \frac{1}{ctg3a + ctga}$

A) 6 B) 8 C) 10 D) 12 E) 14

14.- Si a > b; calcular: $\frac{\cos(\alpha - \beta)}{\cos(\alpha + \beta)}$

- A) $\frac{a+b}{2a}$ B) $\frac{a+b}{2b}$ C) $\frac{a-b}{a+b}$
- D) $\frac{a+b}{a-b}$ E) $\frac{a+b}{2}$
- 15.- Del gráfico siguiente, halle tgθ

- A) $5\sqrt{3} + 8$ B) $5\sqrt{3} 4$ C) $5\sqrt{3} 8$ D) $5\sqrt{3} + 4$ E) $5\sqrt{3} 10$
 - 16.- Del gráfico, calcular $tg\theta$ siendo ABCD un rectángulo. ADE es un cuadrante.

- A) $\sqrt{5}/3$ B) $\sqrt{5}/4$ C) $\sqrt{5}/5$
- D) $\sqrt{5}/6$ E) $\sqrt{5}/7$
- 17.- Dada la figura, halle "tgx" si: AB = 3, $AE = 2 \times ED = 5$: **UNGER 261-B.**

- A) -20 B) -21 C) 20 D) 21 E) 19
- 18.- Del gráfico, calcular tgθ

ĕ.

NÚCLEO":

- D) $\sqrt{3}/6$ E) $\sqrt{3}/8$

grupo el nucleo@hotmail.com

EL NÚCLEO: ¡La manera más inteligente de estudiar!

481-3444 / 796-0992

18.- Del gráfico mostrado, halle : 9tgθ.ctgα

A) 8 B) 10 C) 12 D) 16 E) 14

19.- De la figura, hallar x sabiendo que $tg(\phi - \theta) = 0.2$

A) 9 B) 11 C) 13 D) 15 E) 18

20.- Del gráfico, hallar el mayor valor de x si $ctg\phi = 2$

A) 3 B) 3.1 C) 3.2 D) 3.3 E) 3.4

21.- De la figura, hallar el máximo valor de "θ"

A) 53° B) 37° C) 30° D) 60° E) 45°

22.- De la figura : hallar el valor mínimo de "ctaa"

23.- Indicar el máximo valor de :

$$Y = \frac{senx + \cos x}{3} + \frac{senx - \cos x}{4}$$

A)
$$\frac{5\sqrt{2}}{12}$$
 B) $\frac{5\sqrt{12}}{2}$ C) $\frac{5\sqrt{2}}{6}$

D)
$$\frac{5\sqrt{12}}{6}$$
 E) $\frac{5\sqrt{12}}{3}$

24.- Calcular:
$$\frac{\sqrt{3}\cos 70^{\circ}}{\cos 25^{\circ} - sen25^{\circ}}$$

A)
$$\sqrt{3}$$
 B) $\sqrt{6}$ C) $\sqrt{6}$ / 2 D) cos50° E) sen50°

25.- Calcular el máximo valor de:

$$N = 4\cos x + 6sen\left(\frac{\pi}{6} - x\right)$$

A)
$$\sqrt{19}$$
 B) $2\sqrt{19}$ C) $3\sqrt{19}$

D)
$$4\sqrt{19}$$
 E) $\sqrt{19}/3$

26.- Si:
$$tg50^{\circ} - tg10^{\circ} = k$$

Halle: $sen 20^{\circ} + \sqrt{3} \cos 20^{\circ}$

En términos de "k"

A) 1/k B) 2/k C) k D) k/2 E) 2k

27.- Reduce la siguiente expresión :

$$E = \cos^2(a+b) + \cos^2 b - 2\cos(a+b)\cos a \cdot \cos b$$

A)
$$sen^2b$$
 B) $cos^2 a$ C) sen^2a

D)
$$\cos^2 b$$
 E) $\csc^2 a$

grupo el nucleo@hotmail.com

EL NÚCLEO: ¡La manera más inteligente de estudiar!

28.- Simplificar:

 $A = sen^{2}(a+b) - 2sen(a+b) \cdot cos a \cdot senb + sen^{2}$

A) $\cos^2 a$ B) $sen^2 a$ C) $\cos^2 b$

D) sen^2b E) $sec^2 a$

29.- Simplifique:

$$M = \frac{1}{ctg20^{\circ}} + \frac{1}{ctg25^{\circ}} + \frac{sen25^{\circ}.\cos 70^{\circ}}{sen65^{\circ}.\cos 20^{\circ}}$$

30.- Calcular:

$$P = \frac{tg20^{\circ} + tg40^{\circ} + \sqrt{3}tg20^{\circ}.tg40^{\circ}}{tg10^{\circ} + tg20^{\circ} + \frac{\sqrt{3}}{3}tg10^{\circ}.tg20^{\circ}}$$

31.- Si:
$$V = tg21^{\circ} + tg24^{\circ} + tg21^{\circ} \cdot tg24^{\circ}$$

 $I = tg63^{\circ} - tg3^{\circ} - \sqrt{3}tg63^{\circ} \cdot tg3^{\circ}$

Hallar el valor de: $V.I^2$

A)
$$\sqrt{3}$$
 B) $1 + \sqrt{3}$ C) 3 D) 2
E) $2 + \sqrt{3}$

32.- Si :
$$x - y = \frac{\pi}{4}$$

Hallar el valor de :

$$E = \frac{(ctgx + 1)(ctgy - 1)}{ctgx.ctgy}$$

33.- Si se cumple:

$$\cos 77^{\circ} + \cos 13^{\circ} . tg1^{\circ} = m. \csc 17^{\circ}$$

Halle tg62° en términos de "m"

A)
$$\frac{1+m}{1-m}$$
 B) $\frac{1-m}{1+m}$ C) $\frac{1-2m}{1+2m}$

D)
$$\frac{1+2m}{1-2m}$$
 E) $\frac{2+m}{1-m}$

34.- Al simplificar la expresión :

$E = \frac{tg50^{\circ} - tg10^{\circ} - tg40^{\circ}}{ctg260^{\circ}}$ se obtiene

35.- Dado la figura, donde I es el incentro:

$$tg(45^{\circ} + w) = \frac{tgx.tgy + tgx.tgz + tgy.tgz + \sqrt{2}}{1 - \sec\left(\frac{x + y + z}{2}\right)}$$

Halle: tgw

A)
$$\sqrt{3}$$
 B) $\sqrt{2}$ C) - $\sqrt{2}$ D) 1

E)
$$1 + \sqrt{2}$$

36.- Si:
$$x + y + z = \pi / 2$$

Hallar una relación entre a, b y c sabiendo

$$a.ctgx = ctgy + ctgz$$

$$b.ctgy = ctgx + ctgz$$

$$c.ctgz = ctgx + ctgy$$

A)
$$a^{-1} + b^{-1} + c^{-1} = 1$$

B)
$$a+b+c=abc$$

C)
$$(a+1)^{-1} + (b+1)^{-1} + (c+1)^{-1} = 1$$

D)
$$a^{-1} + b^{-1} + c^{-1} = abc$$

E)
$$a+b+c=1$$

37.- Si : $x + y + z = \pi$ y además :

$$ctgx + ctgy + ctgz = 3$$

Calcular: $E = \csc^2 x + \csc^2 y + \csc^2 z$

38.-Si : $\frac{tg(x+22)=5}{tg(y+23)=2}$, calcular tg (x + y)

grupo_el_nucleo@hotmail.com