Target 7 Register Map 1/29/2014

1 Memory Map:

1.1 Target 5 Memory Map

Registers:

- 1. Channel 0 Trigger configuration register A
- 2. Channel 0 Trigger configuration register B
- 3. Channel 1 Trigger configuration register A
- 4. Channel 1 Trigger configuration register B
- 5. Channel 2 Trigger configuration register A
- 6. Channel 2 Trigger configuration register B
- 7. Channel 3 Trigger configuration register A
- 8. Channel 3 Trigger configuration register B
- 9. Channel 4 Trigger configuration register A
- 10. Channel 4 Trigger configuration register B
- 11. Channel 5 Trigger configuration register A
- 12. Channel 5 Trigger configuration register B
- 13. Channel 6 Trigger configuration register A
- 14. Channel 6 Trigger configuration register B
- 15. Channel 7 Trigger configuration register A
- 16. Channel 7 Trigger configuration register B
- 17. Channel 8 Trigger configuration register A
- 18. Channel 8 Trigger configuration register B
- 19. Channel 9 Trigger configuration register A
- 20. Channel 9 Trigger configuration register B
- 21. Channel 10 Trigger configuration register A
- 22. Channel 10 Trigger configuration register B
- 23. Channel 11 Trigger configuration register A
- 24. Channel 11 Trigger configuration register B
- 25. Channel 12 Trigger configuration register A
- 26. Channel 12 Trigger configuration register B
- 27. Channel 13 Trigger configuration register A
- 28. Channel 13 Trigger configuration register B
- 29. Channel 14 Trigger configuration register A
- 30. Channel 14 Trigger configuration register B
- 31. Channel 15 Trigger configuration register A
- 32. Channel 15 Trigger configuration register B

- 33. TTbias_0, control supply
- 34. PMTref4_0, reference voltage
- 35. Thresh_0, reference voltage
- 36. Wbias_0, reference voltage
- 37. TTbias_1, control supply
- 38. PMTref4_1, reference voltage
- 39. Thresh_1, reference voltage
- 40. Wbias_1, reference voltage
- 41. TTbias_2, control supply
- 42. PMTref4_2, reference voltage
- 43. Thresh_2, reference voltage
- 44. Wbias_2, reference voltage
- 45. TTbias_3, control supply
- 46. PMTref4_3, reference voltage
- 47. Thresh_3, reference voltage
- 48. Wbias_3, reference voltage
- 49. SBbias, ,control supply
- 50. Vdischarge, reference voltage
- 51. Isel, control ramp current
- 52. DBbias, control supply
- 53. Qbias
- 54. Vqbuff
- 55. VtrimT
- 56. Random bit register 0
- 57. VadjP
- 58. VAPbuff
- 59. VadjN
- 60. VANbuff
- 61. TRGsumbias
- 62. Vbias
- 63. TRGGbias
- 64. ITbias
- 65. SSP Leding Edge Timing bit register
- 66. SSP Trailing Edge Timing bit register
- 67. WR_ADDR_INC1 Leding Edge Timing bit register
- 68. WR_ADDR_INC1 Trailing Edge Timing bit register
- 69. WR_STRB1 Leding Edge Timing bit register

- 70. WR_STRB1 Trailing Edge Timing bit register
- 71. WR_ADDR_INC2 Leding Edge Timing bit register
- 72. WR_ADDR_INC2 Trailing Edge Timing bit register
- 73. WR_STRB2 Leding Edge Timing bit register
- 74. WR_STRB2 Trailing Edge Timing bit register
- 75. Random bit register 1
- 76. SST_FB Timing bit register
- 77. CMPbias
- 78. PUbias
- 79. CMPbias
- 80. Test Output register
- 81. 81 to 128 unused

To store data in preliminary buffer register Sin = 0 and PCLK pulse.

To store data in destination register Sin = 1 and PCLK pulse.

Channel 0(1,2,..15) Trigger configuration register A: Address 0x0 (0x2, 0x4, .. 0x1e)

Bits	Function	R/W	Default
11-0	DAC value, reference voltage to control Vofs1 value of selected channel to compensate the first stage amplifier offset	RW	0

Figure 1: Channel 0(1,2,..15) Trigger configuration register A: Address 0x0 (0x2, 0x4, .. 0x1e)

Channel 0(1,2,..15) Trigger configuration register B: Address 0x1 (0x3, 0x5, .. 0x1f)

Bits	Function	R/W	Default
11-0	DAC value, reference voltage to control Vofs2 value of selected channel to compensate the second stage amplifier offset	RW	0

Figure 2: Channel 0(1,2,..15) Trigger configuration register B: Address 0x1 (0x3, 0x5, .. 0x1f)

TTbias_0, control supply bias: Address 0x20

Bits	Function	R/W	Default
11-0	DAC value, , control supply bias for the 3 voltages related to the FIRST group (channels0-3) of four: PMTref4, Thresh, and Wbias	RW	0

Figure 3: TTbias_0, control supply bias, 0x20

PMTref4_0, control supply bias: Address 0x21

Bits	Function	R/W	Default
11-0	DAC value, reference voltage for summing amp supplied by TTbias_0, FIRST group (channels 0-3)	RW	0

Figure 4: PMTref4_0, control supply bias: Address 0x21

Thresh_0, control supply bias: Address 0x22

Bits	Function	R/W	Default
11-0	DAC value, reference voltage for activating digital one-shot, supplied by TTbias_0, FIRST group(channels 0-3)	RW	0

Figure 5: Thresh_0, control supply bias: Address 0x22

Wbias_0, control supply bias: Address 0x23

Bits	Function	R/W	Default
11-0	DAC value, control width of digital trigger output, supplied by TTbias_0, FIRST group(channels 0-3)	RW	0

Figure 6: Wbias_0, control supply bias: Address 0x23

TTbias_1, control supply bias: Address 0x24

Bits	Function	R/W	Default
11-0	DAC value, , control supply bias for the 3 voltages related to the Second group (channels4-7) of four: PMTref4, Thresh, and Wbias	RW	0

Figure 7: TTbias_1, control supply bias, 0x24

PMTref4_1, control supply bias: Address 0x25

Bits	Function	R/W	Default
11-0	DAC value, reference voltage for summing amp supplied by TTbias_1, Second group (channels4-7)	RW	0

Figure 8: PMTref4_1, control supply bias: Address 0x25

Thresh_1, control supply bias: Address 0x26

Bits	Function	R/W	Default
11-0	DAC value, reference voltage for activating digital one-shot, supplied by TTbias_1, Second group (channels4-7)	RW	0

Figure 9: Thresh_1, control supply bias: Address 0x26

Wbias_1, control supply bias: Address 0x27

Bits	Function	R/W	Default
11-0	DAC value, control width of digital trigger output, supplied by TTbias_1, Second group (channels4-7)	RW	0

Figure 10: Wbias_1, control supply bias: Address 0x27

TTbias_2, control supply bias: Address 0x28

Bits	Function	R/W	Default
11-0	DAC value, , control supply bias for the 3 voltages related to the Third group (channels8-11) of four: PMTref4, Thresh, and Wbias	RW	0

Figure 11: TTbias_2, control supply bias, 0x28

PMTref4_2, control supply bias: Address 0x29

Bits	Function	R/W	Default
11-0	DAC value, reference voltage for summing amp supplied by TTbias_2, Third group (channels8-11)	RW	0

Figure 12: PMTref4_2, control supply bias: Address 0x29

Thresh_2, control supply bias: Address 0x2A

Bits	Function	R/W	Default
11-0	DAC value, reference voltage for activating digital one-shot, supplied by TTbias_2, Third group (channels8-11)	RW	0

Figure 13: Thresh_2, control supply bias: Address 0x2A

Wbias_2, control supply bias: Address 0x2B

Bits	Function	R/W	Default
11-0	DAC value, control width of digital trigger output, supplied by TTbias_2, Third group (channels8-11)	RW	0

Figure 14: Wbias_2, control supply bias: Address 0x2B

TTbias_3, control supply bias: Address 0x2C

Bits	Function	R/W	Default
11-0	DAC value, , control supply bias for the 3 voltages related to the Fourth group (channels12-15) of four: PMTref4, Thresh, and Wbias	RW	0

Figure 15: TTbias_3, control supply bias, 0x2C

PMTref4_3, control supply bias: Address 0x2D

Bits	Function	R/W	Default
11-0	DAC value, reference voltage for summing amp supplied by TTbias_3, Fourth group (channels12-15)	RW	0

Figure 16: PMTref4_3, control supply bias: Address 0x2D

Thresh_3, control supply bias: Address 0x2E

Bits	Function	R/W	Default
11-0	DAC value, reference voltage for activating digital one-shot, supplied by TTbias_3, Fourth group (channels12-15)	RW	0

Figure 17: Thresh_3, control supply bias: Address 0x2E

Wbias_3, control supply bias: Address 0x2F

Bits	Function	R/W	Default
11-0	DAC value, control width of digital trigger output, supplied by TTbias_3, Fourth group (channels12-15)	RW	0

Figure 18: Wbias_3, control supply bias: Address 0x2F

SBbias, control supply bias: Address 0x30

Bits	Function	R/W	Default
11-0	DAC value, control supply bias for ramp buffer and all compactor biases CMPbias, CMPbias2 and PUbias, supplied by DBbias	RW	0

Figure 19: SBbias, control supply bias: Address 0x30

Vdischarge, control supply bias: Address 0x31

Bits	Function	R/W	Default
11-0	DAC value, control starting voltage of ramp, supplied by DBbias	RW	0

Figure 20: Vdischarge, control supply bias: Address 0x31

Isel, control supply bias: Address 0x32

Bits	Function	R/W	Default
11-0	DAC value, control current to ramp slope circuit, supplied by DBbias	RW	0

Figure 21: Isel, control supply bias: Address 0x32

DBbias, control supply bias: Address 0x33

Bits	Function	R/W	Default
11-0	DAC value, , control supply bias for the 3 : SBbias, Isel, and Vdischarge	RW	0

Figure 22: DBbias, control supply bias: Address 0x33

Qbias, control supply bias: Address 0x34

Bits	Function	R/W	Default
11-0	DAC value, control supply for charge pump of DLL, supplied by Vqbuff. Generate VadjN	RW	0

Figure 23: Qbias, control supply bias: Address 0x34

Vqbuff, control supply bias: Address 0x35

Bits	Function	R/W	Default
11-0	DAC value, control supply bias for the 2: Qbias and VtrimT. If	RW	0
	external source of VadjN or external FB for VadjN source selected disable Vqbuff supply by setting to 0		

Figure 24: Vqbuff, control supply bias: Address 0x35

VtrimT, control supply bias: Address 0x36

Bits	Function	R/W	Default
11-0	DAC value, control N-side of buffer in SST_FB pass, supplied by Vqbuff	RW	0

Figure 25: VtrimT, control supply bias: Address 0x36

Random bit register 0: Address 0x37

Bits	Function	R/W	Default
11-10	Unused	RW	0
9- 4	Analog Mux Select bits (VS5-VS0):	RW	0
	000000 - Channel 0, Trigger Pass First Amp Output		
	000001 - Channel 0, Trigger Pass Second Amp Output		
	000010 - Channel 1, Trigger Pass First Amp Output		
	000011 - Channel 1, Trigger Pass Second Amp Output		
	000100 - Channel 2, Trigger Pass First Amp Output		
	000101 - Channel 2, Trigger Pass Second Amp Output		
	000110 - Channel 3, Trigger Pass First Amp Output		
	000111 - Channel 3, Trigger Pass Second Amp Output		
	001000 - Channel 4, Trigger Pass First Amp Output		
	001001 - Channel 4, Trigger Pass Second Amp Output		
	001010 - Channel 5, Trigger Pass First Amp Output		
	001011 - Channel 5, Trigger Pass Second Amp Output		
	001100 - Channel 6, Trigger Pass First Amp Output		
	001101 - Channel 6, Trigger Pass Second Amp Output		
	001110 - Channel 7, Trigger Pass First Amp Output		
	001111 - Channel 7, Trigger Pass Second Amp Output		
	010000 - Channel 8, Trigger Pass First Amp Output		
	010001 - Channel 8, Trigger Pass Second Amp Output		
	010010 - Channel 9, Trigger Pass First Amp Output		
	010011 - Channel 9, Trigger Pass Second Amp Output		
	010100 - Channel 10, Trigger Pass First Amp Output		
	010101 - Channel 10, Trigger Pass Second Amp Output		
	010110 - Channel 11, Trigger Pass First Amp Output		
	010111 - Channel 11, Trigger Pass Second Amp Output		
	011000 - Channel 12, Trigger Pass First Amp Output		
	011001 - Channel 12, Trigger Pass Second Amp Output		
	011010 - Channel 13, Trigger Pass First Amp Output		
	011011 - Channel 13, Trigger Pass Second Amp Output		
	011100 - Channel 14, Trigger Pass First Amp Output		
	011101 - Channel 14, Trigger Pass Second Amp Output		
	011110 - Channel 15, Trigger Pass First Amp Output		
	011111 - Channel 15, Trigger Pass Second Amp Output		
	100000 - Channel 0-3, Trigger Pass Summing Amp Output		
	100001 - Channel 4-7, Trigger Pass Summing Amp Output		
	100010 - Channel 8-11, Trigger Pass Summing Amp Output		

Target based AGIS Electronic Systems - Conceptual Design

Page	9	of	14
1 agc	_	$\mathbf{o}_{\mathbf{I}}$	17

	100011 - Channel 12-15, Trigger Pass Summing Amp Output 100100 – 111111 - unused		
3-1	Unused	RW	0
0	SGN bit, select sign bit of trigger edge, 0 – rising edge, 1 - falling	RW	0

Figure 26: Random bit register 0: Address 0x37

VadjP, control supply bias: Address 0x38

Bits	Function	R/W	Default
11-0	DAC value, control delay on high to low transition of sampling delay	RW	0
	circuit comparator logic, and as result control relative voltage switch point, Supplied by VAPbuff		

Figure 27: VadjP, control supply bias: Address 0x38

VAPbuff, control supply bias: Address 0x39

Bits	Function	R/W	Default
11-0	DAC value, , control supply bias for VadjP, If external source of VadjP selected disable VAPbuff supply by setting to 0	RW	0

Figure 28: VAPbuff, control supply bias: Address 0x39

VadjN, control supply bias: Address 0x3A

Bits	Function	R/W	Default
11-0	DAC value, control delay on low to high transition of sampling delay circuit, Supplied by VANbuff	RW	0

Figure 29: VadjN, control supply bias: Address 0x3A

VANbuff, control supply bias: Address 0x3B

Bits	Function	R/W	Default
11-0	DAC value, , control supply bias for VadjN, , If external source of VadjN or internal DLL source selected disable VANbuff supply by setting to 0	RW	0

Figure 30: VANbuff, control supply bias: Address 0x3B

TRGsumBias, control supply bias: Address 0x3C

Bits	Function	R/W	Default
11-0	DAC value, control supply bias for the summing amp of the 4 Trigger	RW	0
	inputs and for the monitoring buffer of the summing amp output of the 4 Trigger inputs, Supplied by ITbias		

Figure 31: TRGsumBias, control supply bias: Address 0x3C

Vbias, control supply bias: Address 0x3D

Bits	Function	R/W	Default
11-0	DAC value, control supply bias for the first preamp of the Data input,	RW	0

Figure 32: Vbias, control supply bias: Address 0x3D

TRGGbias, control supply bias: Address 0x3E

Bits	Function	R/W	Default
11-0	DAC value, supply voltage for the comparator between amplified signal and trigger threshold value, Supplied by ITbias	RW	0

Figure 33: TRGGbias, control supply bias: Address 0x3E

ITbias, control supply bias: Address 0x3F

Bits	Function	R/W	Default
11-0	DAC value, supply voltage for TRGGbias, Vbias, for TRGsumBias buffers	RW	0

Figure 34: ITbias, control supply bias, 0x3F

SSP Leading Edge Timing bit register: Address 0x40

Bits	Function	R/W	Default
11-8	Unused	RW	0
7	Select leading rising edge (0) or falling edge(1)	RW	0
6	Unused	RW	0
5-0	Timing Mux Select bits (LE_nTS5- LE_nTS0):	RW	0
	000000 – minimum delay		
	111111 – maximum delay		

Figure 35: SSP Leading Edge Timing bit register: Address 0x40

SSP Trailing Edge Timing bit register: Address 0x41

Bits	Function	R/W	Default
11-8	Unused	RW	0
7	Select Trailing rising edge (0) or falling edge(1)	RW	0
6	Unused	RW	0
5-0	Timing Mux Select bits (LE_nTS5- LE_nTS0):	RW	0
	000000 – minimum delay		
	111111 – maximum delay		

Figure 36: SSP Trailing Edge Timing bit register: Address 0x41

WR_ADDR_INCR1 Leading Edge Timing bit register: Address 0x42

Bits	Function	R/W	Default
11-8	Unused	RW	0
7	Select leading rising edge (0) or falling edge(1)	RW	0
6	Unused	RW	0
5-0	Timing Mux Select bits (LE_nTS5- LE_nTS0): 000000 – minimum delay	RW	0

Figure 37: WR_ADDR_INCR1 Leading Edge Timing bit register: Address 0x42

WR_ADDR_INCR1 Trailing Edge Timing bit register: Address 0x43

Bits	Function	R/W	Default
11-8	Unused	RW	0
7	Select Trailing rising edge (0) or falling edge(1)	RW	0
6	Unused	RW	0
5-0	Timing Mux Select bits (LE_nTS5- LE_nTS0):	RW	0
	000000 – minimum delay		
	111111 – maximum delay		

Figure 38: WR_ADDR_INCR1 Trailing Edge Timing bit register: Address 0x43

WR_STRB1 Leading Edge Timing bit register: Address 0x44

Bits	Function	R/W	Default
11-8	Unused	RW	0
7	Select leading rising edge (0) or falling edge(1)	RW	0
6	Unused	RW	0
5-0	Timing Mux Select bits (LE_nTS5- LE_nTS0):	RW	0
	000000 – minimum delay		
	111111 – maximum delay		

Figure 39: WR_STRB1 Leading Edge Timing bit register: Address 0x44

WR_STRB1 Trailing Edge Timing bit register: Address 0x45

Page 12 of 14

Figure 40: WR_ STRB1 Trailing Edge Timing bit register: Address 0x45

WR_ADDR_INCR2 Leading Edge Timing bit register: Address 0x46

Bits	Function	R/W	Default
11-8	Unused	RW	0
7	Select leading rising edge (0) or falling edge(1)	RW	0
6	Unused	RW	0
5-0	Timing Mux Select bits (LE_nTS5- LE_nTS0):	RW	0
	000000 – minimum delay		
	111111 – maximum delay		

Figure 41: WR_ADDR_INCR2 Leading Edge Timing bit register: Address 0x46

WR_ADDR_INCR2 Trailing Edge Timing bit register: Address 0x47

Bits	Function	R/W	Default
11-8	Unused	RW	0
7	Select Trailing rising edge (0) or falling edge(1)	RW	0
6	Unused	RW	0
5-0	Timing Mux Select bits (LE_nTS5- LE_nTS0):	RW	0
	000000 – minimum delay		
	111111 – maximum delay		

Figure 42: WR_ADDR_INCR2 Trailing Edge Timing bit register: Address 0x47

WR_STRB2 Leading Edge Timing bit register: Address 0x48

Bits	Function	R/W	Default
11-8	Unused	RW	0

7	Select leading rising edge (0) or falling edge(1)	RW	0
6	Unused	RW	0
5-0	Timing Mux Select bits (LE_nTS5- LE_nTS0): 000000 - minimum delay	RW	0

Figure 43: WR_STRB2 Leading Edge Timing bit register: Address 0x49

WR_STRB2 Trailing Edge Timing bit register: Address 0x49

Bits	Function	R/W	Default
11-8	Unused	RW	0
7	Select Trailing rising edge (0) or falling edge(1)	RW	0
6	Unused	RW	0
5-0	Timing Mux Select bits (LE_nTS5- LE_nTS0):	RW	0
	000000 – minimum delay		
	111111 – maximum delay		

Figure 44: WR_STRB2 Trailing Edge Timing bit register: Address 0x49

Random bit register 1: Address 0x4a

Bits	Function	R/W	Default
11-8	Unused	RW	0
7-4	Timing Mux Select bits (nSel3- nSel0): 0000 - SSPout 0001 - SSTout 0010 - SSToutFB 0011 - SSPin 0100 - Wr_Strb1 0101 - Wr1_Addr_Incr 0110 - Wr_Strb2 0111 - Wr2_Addr_Incr 1000 - 1111 - RCO	RW	0
3	nRipSST, Disable RCO generation (0) /enable 1	RW	0
2	Select additional load capacitor for sampling logic, 0 – 1GHz sampling, 1 – 500MHz sampling	RW	0

1-0	Unused	RW	0
-----	--------	----	---

Figure 1: Random bit register 1z: Address 0x4a

SST_FB Timing bit register: Address 0x4b

Bits	Function	R/W	Default
11-6	Unused	RW	0
5-0	Timing Mux Select bits (LE_nTS5- LE_nTS0): 000000 – minimum delay	RW	0
	111111 – maximum delay		

Figure 45: SST_FB Timing bit register: Address 0x4b

CMPbias2, control supply bias: Address 0x4c

Bits	Function	R/W	Default
11-0	DAC value, control current through ramp comparator logic, Supplied by SBbias	RW	0

Figure 46: CMPbias2, control supply bias: Address 0x4c

PUbias, control supply bias: Address 0x4d

Bits	Function	R/W	Default
11-0	DAC value, control load of pull-up of ramp comparator logic, and as result control relative voltage switch point, Supplied by SBbias	RW	0

Figure 47: PUbias, control supply bias: Address 0x4d

CMPbias, control supply bias: Address 0x4e

Bits	Function	R/W	Default
11-0	DAC value, control current through ramp comparator logic, Supplied by SBbias	RW	0

Figure 48: CMPbias, control supply bias: Address 0x4e

Address 0x4f

Bits	Function	R/W	Default
11-0	Test output value, sent instead of data if select_any signal is 0	RW	0

Figure 49: Test Output register: Address 0x4f