HW2 Recitation

SI120, Spring 2022; TA: 陈昱聪

1. (20 points) Let $x \in \mathbb{R}$ and $n \in \mathbb{Z}^+$. Show that $\left\lfloor \frac{\lfloor x \rfloor}{n} \right\rfloor = \left\lfloor \frac{x}{n} \right\rfloor$. (Hint: division algorithm)

By using Division Algorithm

Proof:

From Division Algorithm,

|x| = qn + r, where $q, r \in \mathbb{Z}$ and $0 \leqslant r < n$. Further, it is $0 \leqslant r \leqslant n - 1$ since r is an integer.

$$rac{\lfloor x
floor}{n} = q + rac{r}{n}$$
, where $0 \leqslant rac{r}{n} < 1$, so we have: $\lfloor rac{\lfloor x
floor}{n}
floor = \lfloor q + rac{r}{n}
floor = q$.

Since $x=\lfloor x\rfloor+o$, where $o\in (0,1)$, so that $0+o\leqslant r+o\leqslant n-1+o$, which is $0\leqslant r+o< n$, that is $0\leqslant \frac{r+o}{n}<1$.

So that
$$\lfloor \frac{x}{n} \rfloor = \lfloor \frac{\lfloor x \rfloor + o}{n} \rfloor = \lfloor \frac{qn + r + o}{n} \rfloor = \lfloor q + \frac{r + o}{n} \rfloor = q$$

Now we have $\lfloor \frac{\lfloor x \rfloor}{n} \rfloor = \lfloor \frac{x}{n} \rfloor = q$.

1. (20 points) Let $x \in \mathbb{R}$ and $n \in \mathbb{Z}^+$. Show that $\left\lfloor \frac{\lfloor x \rfloor}{n} \right\rfloor = \left\lfloor \frac{x}{n} \right\rfloor$. (Hint: division algorithm)

By using Inequalities

- Q2
- 2. (20 points) Let $a, b \in \mathbb{Z}, n \in \mathbb{Z}^+$ and $a \equiv b \pmod{n}$. Let $c_0, c_1, \ldots, c_k \in \mathbb{Z}$, where $k \in \mathbb{Z}^+$. Show that $c_0 + c_1 a + \cdots + c_k a^k \equiv c_0 + c_1 b + \cdots + c_k b^k \pmod{n}$.

(Hint: show that $a^i - b^i$ is a multiple of n)

Proof:

$$a\equiv b\ (\mathrm{mod}\ n)\Rightarrow n|(a-b)\Rightarrow a-b=qn\Rightarrow a=qn+b$$
, where $q\in\mathbb{Z}.$

$$a^i-b^i=(qn+b)^i-b^i=\sum_{r=0}^i\mathcal{C}^r_i(qn)^rb^{i-r}-b^i$$

Since $\mathcal{C}_i^0(qn)^0b^i=b^i$, so we have $a^i-b^i=\sum_{r=1}^i\mathcal{C}_i^r(qn)^rb^{i-r}$.

Then
$$\frac{a^i-b^i}{n}=\frac{\sum_{r=1}^i\mathcal{C}_i^r(qn)^rb^{i-r}}{n}=\sum_{r=1}^i\mathcal{C}_i^rq^rn^{r-1}b^{i-r}$$
 which is an integer.

Then we have $n|(a^i-b^i)$. Further, $n|c_i(a^i-b^i)$ for any $c_i\in\mathbb{Z}$.

So that
$$n|(c_0(a^0-b^0)+c_1(a-b)+c_2(a-b)^2+\dots c^k(a-b)^k)$$
, that is:

$$n|((c_0+c_1a+\ldots+c_ka^k)-(c_0+c_1b+\ldots+c_kb^k))$$

Which is:

$$c_0+c_1a+\ldots+c_ka^k\equiv c_0+c_1b+\ldots+c_kb^k\ (\mathrm{mod}\ n)$$

3. (20 points) Let x, y, z be integers such that $x^2 + y^2 = 3z^2$. Show that x, y, z must be all even. Based on this result, show that the equation $x^2 + y^2 = 3z^2$ has no other integer solutions except (x, y, z) = (0, 0, 0).

Suppose $x=2m_1+n_1,y=2m_2+n_2,z=2m_3+n_3$, where $m_1,m_2,m_3\in\mathbb{Z},\ n_1,n_2,n_3\in\{0,1\}.$ $[x^2]_p+[y^2]_p=[3z^2]_p$ $[4m_1^2+4m_1n_1+n_1^2]_p+[4m_2^2+4m_2n_2+n_2^2]_p=[12m_3^2+12m_3n_3+3n_3^2]$ $[n_1^2+n_2^2]_p=[3n^3]_p$

Since $[n_1^2+n_2^2]_p\in\{[0]_p,[1]_p,[2]_P\}$ while $[3n_3^2]_p\in\{[0]_p,[3]_p\}$, so that we have $[n_1^2+n_2^2]_p=[3n_3^2]_p=[0]_p$ which means $n_1=n_2=n_3=0$. So we have x,y,z are all even.

3. (20 points) Let x, y, z be integers such that $x^2 + y^2 = 3z^2$. Show that x, y, z must be all even. Based on this result, show that the equation $x^2 + y^2 = 3z^2$ has no other integer solutions except (x, y, z) = (0, 0, 0).

(2)

If $x^2+y^2\equiv 3z^2$, then $x^2+y^2\equiv 3z^2\pmod 4$, so that x,y,z are all even. Then let x=2i,y=2j,z=2k , where $i,j,k\in\mathbb{Z}$.

Assume that there is a set of non-0 integer z such that $x^2+y^2\equiv 3z^2$. Then absolutely, among these non-0 z, there is a smallest z^2 called z_0^2 .

$$x^2 + y^2 \equiv 3z_0^2 \Rightarrow 4i^2 + 4j^2 = 3 \cdot 4k^2 \Rightarrow i^2 + j^2 = 3k^2$$

It is clear that $x_1=i,y_1=j,z_1=k$ is set of solutions to this equation. However, $z_1^2< z_0^2$ where both of them are positive. So z_0^2 is not the smallest. **Contradiction!**

So there isn't any non-0 z to the solution. Since we only have x=y=0 for $x^2+y^2\equiv 0$, so there is only one solution, i.e. x=y=z=0.

4. (20 points) Let p be an odd prime and let $\mathbb{Z}_p^* = \{[1]_p, [2]_p, \dots, [p-1]_p\}$.

Q4

- (1) Show that $([a]_p)^2 = [1]_p$ if and only if $[a]_p \in \{[1]_p, [p-1]_p\}$.
- (2) Show that $[1]_p \cdot [2]_p \cdots [p-1]_p = [-1]_p$ and thus conclude that $(p-1)! \equiv -1 \pmod{p}$. (This is called **Wilson's Theorem**.)

(Hint: partition the elements of \mathbb{Z}_p^* as (p+1)/2 subsets of the form $\{\alpha, \alpha^{-1}\}$)

Solution

4.1

 $\Leftarrow: 1^2 \equiv 1 \pmod{p}, (p-1)^2 \equiv (-1)^2 \equiv 1 \pmod{p}$

 \Rightarrow : $p|(a^2-1)=(a+1)(a-1)$, \therefore p prime $\therefore p|a+1$ or p|a-1 $\therefore a=1$ or p-1

4.2

First we prove the uniqueness of inverse.

Assume $\forall a \in \mathbb{Z}_{p'}^*$, $\exists \ m \neq n$ s.t. $am \equiv an \equiv 1 \pmod p$. Then $amn \equiv m \equiv n \pmod p$, so m=n, contradiction.

Next we prove $(p-1)! \equiv -1 \pmod{p}$.

By (1), we know for $a\in\mathbb{Z}_p^*$, if $a^{-1}=a$, a=1 or p-1. Since a's inverse is unique, $\mathbb{Z}_p^*\setminus\{1,p-1\}$

can be partitioned as $\bigcup_{i=1}^{\frac{p-2}{2}}\{a_i,a_i^{-1}\}$ where a_i^{-1} is the inverse of a_i and orall i
eq j, $a_i
eq a_j$.

So
$$(p-1)!\equiv 1\cdot (p-1)\cdot \prod_{i=1}^{rac{p-3}{2}}a_ia_i^{-1}\equiv p-1\equiv -1\pmod p.$$

5. (20 points) Let p be a prime and $p \notin \{2, 5\}$. Show that p divides infinitely many elements of the set $\{9, 99, 999, 9999, 99999, \ldots\}$.

(Hint: consider $([10]_p)^{p-1}$)

Since
$$p
otin \{2,5\}$$
, $gcd(p,10) = 1$.

From **Fermat's Little Theorem**, we know:

$$([10]_p)^p = [10]_p$$
, that is $([10]_p)^{p-1} = [1]_p$

Again, from **Fermat's Little Theorem**, we have:

$$(([10]_p)^p)^p = ([10]_p)^p = [10]_p$$

From induction, for any $n \in \mathbb{Z}^+$ we can say that:

$$([10]_p)^{p^n} = ([10]_p)^p = [10]_p,$$

that is
$$([10]_p)^{p^n-1} = [1]_p$$
,

also shown as
$$[10^{p^n-1}]_p=[1]_p$$

In that case, it is clear that $p|(10^{p^n-1}-1)$.

Let
$$A=\{a_1,a_2,a_3,\dots a_n,\dots\}$$
, where $a_1=10^{p-1}-1,\dots a_n=10^{p^n-1}-1,\dots$

Then for every $n\in \mathbb{Z}^+$, $p|a_n$.

Since all 'a's in A could be written as several 9 (e.g. if p=7, then $a_1=10^6-1=999999$), it is clear that $A\subset\{9,99,999,9999,\dots\}$

Since there are infinite n in \mathbb{Z}^+ , A is an infinite set.

Now we know that for any prime number such that $p \notin \{2,5\}$, p divides infinitely many elements of the set $\{9,99,999,9999,\dots\}$.