If g,f are injections then (g o f) is an injection.

Let x, y and z be such that g(f(x)) = z and g(f(y)) = z. Then, since g is an injection, we have that f(x) = f(y). Therefore, since f is an injection, x = y if f(y) = f(y). Since g is an injection and g(f(y)) = z, f(y) = f(y) if g(f(y)) = z. But this is clearly the case, so we are done.

Prove that
$$f(A \cap B) \subset f(A) \cap f(B)$$

By definition, since $y \in f(A \cap B)$, there exists $z \in A \cap B$ such that f(z) = y. Since $z \in A \cap B$, $z \in A$ and $z \in B$. We would like to show that $y \in f(A) \cap f(B)$, i.e. that $y \in f(A)$ and $y \in f(B)$. We would like to show that $y \in f(A)$. But this is clearly the case, so we are done. Thus $y \in f(B)$ and we are done.

Prove that
$$f^{-1}(A \cap B) \subset f^{-1}(A) \cap f^{-1}(B)$$

Since $x\in f^{-1}(A\cap B)$, we have that $f(x)\in A\cap B$. Then $f(x)\in A$ and $f(x)\in B$. We would like to show that $x\in f^{-1}(A)\cap f^{-1}(B)$, i.e. that $x\in f^{-1}(A)$ and $x\in f^{-1}(B)$. We would like to show that $x\in f^{-1}(A)$, i.e. that $f(x)\in A$. We would like to show that $x\in f^{-1}(B)$, i.e. that $f(x)\in B$. But this is clearly the case, so we are done.

Prove that
$$f^{-1}(A) \cap f^{-1}(B) \subset f^{-1}(A \cap B)$$

Let x be an element of $f^{-1}(A) \cap f^{-1}(B)$. Then $x \in f^{-1}(A)$ and $x \in f^{-1}(B)$. Then $f(x) \in A$ and $f(x) \in B$. We would like to show that $x \in f^{-1}(A \cap B)$, i.e. that $f(x) \in A \cap B$. We would like to show that $f(x) \in A \cap B$, i.e. that $f(x) \in A$ and $f(x) \in B$. But this is clearly the case, so we are done.

Prove that
$$f^{-1}(A \cup B) \subset f^{-1}(A) \cup f^{-1}(B)$$

Let x be an element of $f^{-1}(A \cup B)$. Then $f(x) \in A \cup B$. Then $f(x) \in A$ or $f(x) \in B$. We would like to show that $x \in f^{-1}(A) \cup f^{-1}(B)$, i.e. that $x \in f^{-1}(A)$ or $x \in f^{-1}(B)$. We would like to show that $x \in f^{-1}(A)$, i.e. that $f(x) \in A$. But this is clearly the case, so we are done. We would like to show that $x \in f^{-1}(A) \cup f^{-1}(B)$, i.e. that $x \in f^{-1}(A)$ or $x \in f^{-1}(B)$. We would like to show that $x \in f^{-1}(A)$, i.e. that $f(x) \in A$. We would like to show that $x \in f^{-1}(B)$, i.e. that $f(x) \in B$. But this is clearly the case, so we are done.

Prove that
$$f^{-1}(A) \cup f^{-1}(B) \subset f^{-1}(A \cup B)$$

Let x be an element of $f^{-1}(A) \cup f^{-1}(B)$. Then $x \in f^{-1}(A)$ or $x \in f^{-1}(B)$. Since $x \in f^{-1}(A)$, we have that $f(x) \in A$. Since $x \in f^{-1}(B)$, we have that $f(x) \in B$. We would like to show that $x \in f^{-1}(A \cup B)$, i.e. that $f(x) \in A \cup B$. We would like to show that $f(x) \in A \cup B$, i.e. that $f(x) \in A$ or $f(x) \in B$. But this is clearly the case, so we are done. We would like to show that $x \in f^{-1}(A \cup B)$, i.e. that $f(x) \in A \cup B$. We would like to show that $f(x) \in A \cup B$, i.e. that $f(x) \in A \cup B$. But this is clearly the case, so we are done.