Interpretable Machine Learning Global explainability techniques

Vasilis Gkolemis¹²

¹ATHENA Research and Innovation Center

²Harokopio University of Athens

February 2022

Motivation

 The credit assessment system leads to the rejection of an application for a loan - the client suspects racial bias¹

¹https://www.technologyreview.com/2021/06/17/1026519/

racial-bias-noisy-data-credit-scores-mortgage-loans-fairness-machine-l

²https://www.propublica.org/article/

Motivation

- The credit assessment system leads to the rejection of an application for a loan - the client suspects racial bias¹
- A model that assesses the risk of future criminal offenses (and used for decisions on parole sentences) is biased against black prisoners²

¹https://www.technologyreview.com/2021/06/17/1026519/

racial-bias-noisy-data-credit-scores-mortgage-loans-fairness-machine-l

²https://www.propublica.org/article/

Interpretability

Questions:

- Why did a model make a specific decision?
- Can we summarize the model's behavior?

Answer:

- Interpretable Machine Learning (IML)
- "Extraction of relevant knowledge from a machine-learning model concerning relationships either contained in data or learned by the model"³

³Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R. and Yu, B. "Definitions, methods, and applications in interpretable machine learning." Proceedings of the National Academy of Sciences, 116(44), 22071-22080. (2019)

Consider the following mapping $x \to y$

Process unknown \rightarrow we only have samples

Our goal is to model the process using the available samples (regression)

$\mathsf{Linear} \; \mathsf{model} \to \mathsf{Underfiting!}$

$$y = w_1 \cdot x + w_0$$

 2^{nd} degree polynomial \rightarrow Decent Fit!

$$y = w_2 \cdot x^2 + w_1 \cdot x + w_0$$

 3^{rd} degree polynomial \rightarrow Good Fit!

$$y = w_3 \cdot x^3 + w_2 \cdot x^2 + w_1 \cdot x + w_0$$

 9^{th} degree polynomial \rightarrow Overfitting!

$$y = \sum_{i=0}^{9} w_i \cdot x^i$$

Problem diagnosis

- Model behavior is explained by the shape of the function
- Overfitting, Underfitting are easily diagnosed
- If the input has multiple dimensions *D*?
 - We often have tens or hundreds of features
 - Images and signals: Several thousands of input dimensions

Bike Sharing Problem

- Predict Bike rentals per hour in California
- We have 11 features
 - e.g., month, hour, temperature, humidity, windspeed
- We fit a Neural Network $y = \hat{f}(x)$
- How to make a plot like before?
 - Feature Effect methods

Feature effect methods

- ullet High-dimensional input space $oldsymbol{x} \in \mathbb{R}^D$
 - $x_s \rightarrow$ feature of interest
 - ullet ${f x}_c
 ightarrow$ other features
- How do we isolate the effect of x_s ?

Partial Dependence Plots (PDP)

 Proposed by J. Friedman on 2001⁴ and is the marginal effect of a feature to the model output:

$$f_s(x_s) = E_{X_c} \left[\hat{f}(x_s, X_c) \right]$$

Computation:

$$\hat{f}_{s}(x_{s}) = \frac{1}{n} \sum_{i=1}^{n} \hat{f}(x_{s}, \mathbf{x}_{c}^{(i)})$$

⁴J. Friedman. "Greedy function approximation: A gradient boosting machine." Annals of statistics (2001): 1189-1232

Partial Dependence Plots (PDP)

Bike sharing Dataset:

Figure: C. Molnar, IML book

⁴J. Friedman. "Greedy function approximation: A gradient boosting machine." Annals of statistics (2001): 1189-1232

Issues with PDPs

- The marginal distribution ignores correlated features!
- To compute the effect of temperature = 33 degrees it will (also) use an instance with month = January

Figure: C. Molnar, IML book

Accumulated Local Effects (ALE)⁵

- Resolves problems that result from the feature correlation by computing differences over a (small) window
- Definition: $f(x_s) = \int_{x_{min}}^{x_s} \mathbb{E}_{\mathbf{x}_c|z} \left[\frac{\partial f}{\partial x_s}(z, \mathbf{x}_c) \right] \partial z$

⁵D. Apley and J. Zhu. "Visualizing the effects of predictor variables in black box supervised learning models." Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 82.4 (2020): 1059-1086.

ALE approximation

Approximation:
$$f(x_s) = \sum_{k=1}^{k_x} \frac{1}{|\mathcal{S}_k|} \sum_{i: \mathbf{x}^i \in \mathcal{S}_k} \underbrace{[f(z_k, \mathbf{x}^i_c) - f(z_{k-1}, \mathbf{x}^i_c)]}_{\text{point effect}}$$

bin effect

N1(1) N1(2) N1(3) N1(4) N1(5)

Figure: C. Molnar, IML book

Z4.1

z_{3,1}

ALE plots - examples

Figure: C. Molnar, IML book

Our work

- Differential Accumumulated Local Effects (DALE)
 - Asian Conference in Machine Learning (ACML 2022)
 - work done with my supervisors: Christos Diou, Theodore Dalamagas
- More efficient and accurate extension of ALE
- Works only with differential models (like Neural Networks)
- https://arxiv.org/abs/2210.04542