इलेक्ट्रॉनिक्स & संचार अभियांत्रिकी विभाग

Department of Electronics & Communication Engineering

राष्ट्रीय प्रौद्योगिकी संस्थान श्रीनगर NATIONAL INSTITUTE OF TECHNOLOGY SRINAGAR

(An autonomous Institute of National Importance under the aegis of Ministry of Education, Govt. of India)

हजरतबल, श्रीनगर, जम्मू-कश्मीर, 190006, भारत Hazratbal, Srinagar Jammu and Kashmir, 190006, INDIA

Recommendation of Project Title

		ALOK YADAV (2019BELE033)	
1	Name of Students with Enrollment Numbers	SHANT RATHOD - Shall (2019 BECE 049)	
2	Department	ECE	
3	Project Title (Attach abstract)	CIRCULARLY POLARIZED MIC ROSTRIP ANTENNA FOR VARIOUS WIRELESS APPLICATIONS	
4	Broad Area of Project	ANTENNA DESIGN	

Signature of Project Supervisor:

Arit James 27/10/2022

Name of Project Supervisor: Dr AMIT KUMAR

Title of the Project: Design of Circularly Polarized Microstrip Antenna for Various Wireless applications

Abstract:- We wish to design circularly polarized microstrip antenna for various wireless applications like GSM band, ISM band, Wi-Fi, WLAN, WiMAX, LTE Bands, 4G/5G and satellite communications. These antennas are very useful for devices like Mobile (cell phones), Palmtop, Laptops, and many more. A circularly polarized antenna prevents the device from dropout of the signal coming from any direction because of having equal distribution of E-field in the E- and H-plane. The axial ratio (Ex/Ey in dB) required is less than 3 dB for operational purposes. We will be using substrates like FR-4, Rogers, and RT-Duriod for designing the microstrip antenna.

Methodology:-

- 1. First, design the required microstrip antenna using the CST simulation software.
- 2. Axial-ratio bandwidth calculation needs to be validated through simulation.
- 3. Then fabrication will be carried out using PCBMATE/LPKF PCB design tool/machine using the DXF/Gerber file.
- 4. Then the S-parameter measurement will be carried out using the Vectored Network Analyzer (VNA) after soldering the required SMA connector to the antenna.
- 5. Radiation-pattern (E & H-Plane) measurement will be done using the anechoic chamber.
- 6. We will finally validate our simulated results with the measured ones.
- 7. If possible we will go for real-time applications.

S.No	Name of the Student	Enrollment No.	Signature
2.	ALOK YADAV	2019BECE033	0)2
2.	SHANT RATHOD	2019 BECE 049	Ship.

(Dr. Amit Kumar)

Name and Signature of the Project Supervisor