

Propagation en milieu dispersif : plasmas - paquets d'onde

Irving Langmuir, chimiste et physicien américain, fut le premier à introduire en 1928 le terme de « plasma » pour désigner les gaz ionisés, par analogie structurelle avec le plasma sanguin. Il reçoit le Willard Gibbs Award en 1930. Puis il obtient le prix Nobel de chimie en 1932 pour ses découvertes et ses recherches en chimie des surfaces. Il est également lauréat de la Médaille Franklin en 1934 et du Faraday Lectureship de la Royal society of chemistry en 1939.

IRVING LANGMUIR (1881-1957)

Plan du chapitre

	-		
Ι	Onc	des dans un plasma	3
	I.1	Définition	3
	I.2	Hypothèses «fortes» - modèle retenu	3
	I.3	Equations dynamiques - conductivité complexe	4
		a - Cas général	4
		b - Cadre d'étude : le plasma dilué	6
	I.4	Equations électromagnétiques	7
		a - Conservation de la charge - conséquences	7
		b - Equation de propagation du champ électrique- analyse harmonique	8
		${\bf c}$ - Equations de Maxwell complexes - structure de l'onde - permittivité diélec-	
		trique complexe	8
	I.5	Relation de dispersion - vitesse de phase - propagation ou atténuation	9
		a - Obtention	9

		b - Interpretation physique -vitesse de phase A RETENIR!	10	
	I.6	Structure de l'OEM dans le plasma - cas particulier $\omega=\omega_p$ (résonance du plasma) .	14	
	I.7	Analyse énergétique	15	
		a - Cas de la zone de transparence $\omega > \omega_p$	15	
		b - Cas de la zone d'opacité $\omega < \omega_p$	16	
	I.8	Exemple d'application : transmission par satellite et réflexion ionosphérique	17	
	I.9	Cas général d'un MLHI - indice complexe	18	
II	Paq	Paquets d'ondes et dispersion		
	II.1	L'OPPH : une onde sans réalité physique - approche mécanique	19	
	II.2	Principe de construction d'ondes "réalistes"	19	
		a - Superposition de deux OPPH	20	
		b - Superposition de nombreuses OPPH	21	
		c - Le problème de la localisation : superposition continue d'ondes ou paquet		
		${\it d'ondes} \ \ldots \ $	22	
		d - Vitesse de déplacement du paquet : retour sur la vitesse de groupe	23	
	II.3	Déformation du paquet d'ondes : dispersion	25	
	II.4	Retour sur la relation temps-fréquence (hors programme)	26	

