Hausdorff dimension of clusters at T_c generated by the Worm algorithm

Simon Rydell

Royal Institute of Technology, Stockholm

Table of contents

- 1. Fractals
- 2. Algorithms for Working with Graph Patterns
- 3. Ising Model
- 4. XY Model

Fractals

$$L \rightarrow \frac{1}{2}L$$

$$L o rac{1}{2} L$$

$$L \to \frac{1}{2}L$$

$$\left(\frac{1}{2}\right)^d M = \frac{1}{4}M$$

$$L \to \frac{1}{2}L$$

$$\left(\frac{1}{2}\right)^d M = \frac{1}{3}M$$

$$L \to \frac{1}{2}L$$

$$\left(\frac{1}{2}\right)^d M = \frac{1}{4}M$$

$$d = 2$$

$$L \to \frac{1}{2}L$$

$$\left(\frac{1}{2}\right)^{d} M = \frac{1}{3}M$$

$$d = \log_{2}(3)$$

$$\approx 1.585$$

Box Counting Method

$$N \sim rac{1}{\epsilon^d}$$

Box Counting Method

$$N \sim rac{1}{\epsilon^d}$$

$$d = \lim_{\epsilon o 0^+} rac{\ln N(\epsilon)}{\ln 1/\epsilon}$$

Hausdorff Dimension

$$\mathcal{H}_d(A) = \lim_{\delta \to 0} \inf \left\{ \sum_{B \in \mathcal{B}} (\mathsf{diam}(B))^d \right\}$$

Hausdorff Dimension

$$\mathcal{H}_d(A) = \lim_{\delta \to 0} \inf \left\{ \sum_{B \in \mathcal{B}} (\operatorname{diam}(B))^d \right\}$$
$$\operatorname{dim}_H(A) = \inf \{ d > 0 : \mathcal{H}_d(A) = 0 \}$$

Algorithms for Working with

Graph Patterns

Worm Algorithm

- Graph configurations
- Metropolis Steps

Labeling and Box Dimension

- Hoshen Kopelman Algorithm
- Graph Dividing

Ising Model

Ising Loop Expansion

$$Z \propto \sum_{\{S\}} \left(1 + \mathsf{tanh}(\mathcal{K}) \sum_{l=1} S_i S_j + \mathsf{tanh}^2(\mathcal{K}) \sum_{l=2} (S_i S_j) (S_{i'} S_{j'}) + \ldots \right)$$

Ising Loop Expansion

a:
$$(S_1S_2)$$
, $L=1$

a:
$$(S_1S_2)$$
, $L=1$ **b:** $(S_1S_2)(S_2S_4)$, $L=2$

c:
$$(S_1S_2)(S_2S_4)(S_4S_3)(S_3S_1)$$
, $L=4$

Box Dimension

Scaling Dimension

Comparison of Dimensions 2*D* **Ising**

Largest Ising Loop on a 128² Lattice

2D Ising Animation

XY Model

XY Loop Expansion

$$H = -J \sum_{\langle ij \rangle} \cos(\theta_i - \theta_j)$$
 $Z = \prod_i \int \frac{\mathrm{d}\theta_i}{2\pi} \prod_{\langle ij \rangle} e^{K \cos(\theta_i - \theta_j)}$

XY Loop Expansion

$$Z \sim \int rac{\mathrm{d} heta_i}{2\pi} e^{i\sum_{\langle ij
angle} j_{\langle ij
angle} (heta_i - heta_j)}$$

XY Loop Expansion

$$Z \sim \int \frac{\mathrm{d}\theta_i}{2\pi} e^{i\sum_{\langle ij\rangle} j_{\langle ij\rangle}(\theta_i - \theta_j)}$$
$$\sim \delta_{0,\sum_{\langle ij\rangle} j_{\langle ij\rangle}}$$

XY Loop expansion

Villain Approximation

$$E = \frac{1}{2} \sum_{i} j_i^2$$

Winding Number

$$\rho_{\rm s} = L^{2-d} \, T \langle W_{\mu}^2 \rangle$$

Winding Number

3D XY Model Hausdorff Dimension

• Hove, Mo and Sudbo (2000):
$$D_H = 2.287 \pm 4 \cdot 10^{-3}$$

• Prokof'ev and Svistunov Comment (2005): $D_H = 1.765 \pm 2 \cdot 10^{-3}$

Box Counting Method 3*D* **XY**

Comparison of Dimensions 3*D* **XY**

3D XY Animation - 4³ system

3D XY Animation - Largest cluster

Summary

	D_H
Box	1.35193(5)
Scaling	1.38(2)
D_H^G	1.375
SAW	1.33
Random Walk	2

Table 1: 2D Ising

	D_H
Box	1.77468(4)
Prokof'ev	1.765(2)
Sudbo	2.287(2)

Table 2: 3D XY

Extra slides: Box Dimension 64² Ising

Extra slides: Susceptibility 2D Ising

Extra slides: Graph Dividing Algorithm

Extra slides: Graph Dividing Algorithm

