

Department of Electrical and Electronic Engineering

MODULE HANDBOOK

EEE109 Electronic Circuits

Bing Han, Yuqing Chen

Semester 1

2020/2021

SECTION A: Basic Information

Brief Introduction to the Module

EEE109 (Electronic Circuits) is a 5 credit module. It is one of the most fundamental

modules in electronic engineering. The module introduces students to the science of

the motion of changes in a semiconductor, the mechanism of different diodes and

transistors, and how an amplifier is designed and analysed. As a year-2 module in

semester 1, EEE109 is considered a challenging module conventionally. For most of the students who encounter the concepts of electronics for the first time, the module

may be fascinating yet students may be overwhelmed by the abstruse physical

mechanism and technical terms, i.e., when trying to relate the knowledge in both micro

and macro electronic worlds.

To achieve the best result and most rewarding experience in EEE109, the module

leaders would suggest students to be persist. Students are advised to prepare well

before the lecture (read the lecture notes and related book chapters), and make good

use of the supports available during the semester, e.g., tutorials/recitation sessions,

TAs and teachers' office hours.

There are four assessment items in EEE109 including:

1) Final Exam (60%);

2) Midterm Exam (15%);

3) Assignments (10%);

4) Lab Reports (15%).

The modes of delivery cover lectures, tutorials, casual class assignments (no credit

attached), and labs. The resit exam is arranged at the end of Semester 2. It is weighted

as 100% of the final module mark. It means that other components (Midterm Exam,

Assignments or Lab Reports) assessed in Semester 1, regardless of whether or not the student passed or failed, will not be included in the calculation of the final module

mark after resit.

Key Module Information

Module name: Electronic Circuits

Module code:

EEE109

Credit value:

5

Page 2 of 9

Semester in which the module is taught: S1

<u>Pre-requisites needed for the module</u>: None

Programmes on which the module is shared:

BEng Computer Science and Technology

BEng Digital Media Technology

BEng Electrical Engineering

BEng Electronic Science and Technology

BEng Telecommunications Engineering

BEng Mechatronics and Robotic Systems

Delivery Schedule

Lecture room:

Online

Lecture time:

Group 1: Tuesday: 09:00-11:00; Group 2: Wednesday: 09:00-11:00;

Tutorial time:

Group 1: Friday: 11:00-12:00, Group 2: Friday: 16:00-117:00,

Lab room:

EE205 EE211 EE213 EE215

EE305 EE309 EE311 EB369 EB447

Lab time:

Tuesday: 11:00-13:00, 14:00-18:00, Week 7, 9-13.

Module Leader and Contact Details

Name: Bing Han

Brief Biography: XJTLU Website

Email address: bing.han@xjtlu.edu.cn

Office telephone number: +86 (0)512 8816

Room number and office hours: *EE220; 14:00-16:00* every *Monday and Thursday*

Preferred means of contact: bing.han@xjtlu.edu.cn

Additional Teaching Staff and Contact Details

Name: Yuqing Chen

Brief Biography:

Email address: yuqing.chen@xjtlu.edu.cn

Office telephone number: +86 (0) 512-8785

Room number and office hours: EB330; Thursday 13:00-17:00

<u>Preferred means of contact</u>: <u>Yuqing.chen@xjtlu.edu.cn</u>

SECTION B: What you can expect from the module

Educational Aims of the Module

To introduce students to fundamental electronic devices - diodes and transistors.

To show how transistors are used in amplifiers.

To introduce students to fundamental amplifiers.

To show how the electronic devices are used in amplifier and switching circuits.

□ Learning Outcomes

A Knowledge and Understanding

On successful completion of this module, the student should;

- Understand the behaviour, important properties, equivalent circuit representations and applications of diodes and transistors;
- Understand circuit biasing, the role of decoupling capacitors and the performance of some commonly used circuit configurations and their practical significance;

Understand amplifier circuit design and circuit analysis;

B Intellectual Abilities

On successful completion of this module the student should have be able to:

- Analyse simple transistor circuits
- Determine components to meet a specification
- Design various types of amplifiers

C Practical Skills

On successful completion of this module the student should have be able to:

- Determine device properties from characteristics
- Calculate the output voltage and regulation of simple rectifier and stabilizer circuits
- Perform simple analysis of circuits containing bipolar and MOS transistors
- · Construct and test simple transistor circuits and amplifiers
- Perform simple analysis of circuits containing MOS transistors
- Construct and test simple amplifiers
- Simulate frequency response of amplifiers using LTspice.

D General Transferable Skills

On successful completion of the module, students should be able to show experience and enhancement of the following key skills:

- Independent learning
- Problem solving
- Circuit design and analysis

Assessment Details

Initial Assessment

Sequence	Method	Assessment Type(EXAM or CW) ²	Learning outcomes assessed(use codes under Learning Outcomes)	Duration	Week	% of Final Mark	Resit(Y/N/S) ³
001	Assignment	CW	A-B,D			10	S
002	Laboratory	CW	C-D			15	S
003	Mid-Term Test	EXAM	A-B,D	1 hours		15	S
004	Final Exam	EXAM	A-B,D	3 hours		60	S

Resit Assessment

Sequence	• •	Learning outcomes assessed (use codes under Learning Outcomes)	Duration	Week	% of Final Mark
R001	EXAM		3 hours		100

The resit exam will assess all of the learning outcomes of the module, and will be weighted as 100% of the final module mark. Other components of the assessment, regardless of whether or not the student passed or failed, will not be included in the calculation of the final module mark, following resit examinations.

Methods of Learning and Teaching

This module will be delivered by a combination of formal lectures, problem classes, class demonstrations, and case studies.

□ Syllabus & Teaching Plan

Week number	Lecture/Se	Topic/Theme/Title	Pre-reading
and/or date minar/Fiel			
	d trip/other		
		Semiconductor Materials and Properties The pn	Chapter
Week 1	Lecture	Junction Diode Circuits: DC Analysis and Models	1
	Tutorial	Diode Circuits: AC Equivalent Circuit Other Diode	
		Types Design Application: Diode Thermometer	
		Diode Circuits Rectifier Circuits Zener Diode	Chapter
14/2 2/2 2	Lecture	Circuits Clipper and Clamper Circuits Photodiode	2
Week 2, 3	Tutorial	and LED Circuits Design Application: DC Power	
		Supply	
		Basic FET Amplifiers The MOSFET Amplifier Basic	Chapter
		Transistor Amplifier Configurations The Common-	2, 3
14/2 2/2 2 4	Lecture	Source Amplifier The Common-Drain (Source-	
Week 3, 4	Tutorial	Follower) Amplifier The Common-Gate	
		Configuration The Three Basic Amplifier	
		Configurations: Summary and Comparison	
		Transistor Amplifiers Basic concepts - amplifier as	Chapter
	Lecture Tutorial	a system, matching Transistor as an amplifier	5
		Small signal equivalent circuit representation of a	
Week 5, 6		transistor Common emitter amplifier Amplifier	
		biasing, DC operating point AC behaviour,	
		equivalent circuit Circuit Input/Output resistances	
		and gain	
\\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Lecture	Midterm review	Chapter
Week 7	Tutorial		1-3, 5
		The Bipolar Junction Transistor Basic Bipolar	Chapter
	Lecture	Junction Transistor DC Analysis of Transistor	4
Week 9		Circuits Basic Transistor Applications Bipolar	
	Tutorial	Transistor Biasing	
Week 10, 11	Lecture	The Field-Effect Transistor MOS Field-Effect	Chapter
		Transistor MOSFET DC Circuit Analysis Basic	6
		MOSFET Applications: Switch, Digital Logic Gate,	
	Tutorial	and Amplifier Constant-Current Biasing Multistage	
		MOSFET Circuits Design Application: Diode	
		Thermometer with an MOS Transistor	
		Frequency Response Amplifier frequency response	Chapter
Wook 12, 12	Lecture	System transfer functions Bipolar transistor	7
Week 12, 13	Tutorial	frequency resonance Transistor circuits frequency	
		response	

	Lecture Tutorial	Output Stages and Power Amplifiers Power	Chapter
Week 13		Amplifiers Power Transistors Classes of amplifiers	8
		Class-A power amplifiers	
14/22/24/2 44	Lecture	Final review	Chapter
Week 13, 14	Tutorial		1-8

Reading Materials

Required (Essential) Textbook: (eBook@XJTLU)

Title	Author	ISBN/Publisher	
MICROELECTRONICS - CIRCUIT ANALYSIS AND	DONALD A.	079 007 12904	
DESIGN (4TH EDITION)	NEAMEN	978-007-12894	

Recommended Texts:

Title	Author	ISBN/Publisher
FUNDAMENTALS OF ELECTRONIC CIRCUIT DESIGN	DAVID COMER AND DONALD COMER	JOHN WILEY
MICROELECTRONIC CIRCUITS	ADEL S. DEDRA AND KENNETH C. SMITH	OXFORD
ELECTRICAL ENGINEERING PRINCIPLES AND APPLICATIONS	ALLAN R. HAMBLEY	MCGRAWHILL
CIRCUITS DEVICES AND SYSTEMS	R J SMITH (WILEY)	MCGRAWHILL
ELECTRONIC AND ELECTRICAL ENGINEERING PRINCIPLES AND PRACTICE	LIONEL WARNES	OXFORD
FUNDAMENTALS OF ELECTRONIC CIRCUIT DESIGN	DAVID COMER AND DONALD COMER	OXFORD

Additional Readings:

SECTION C: Additional Information

□ Student Feedback

The University is keen to elicit student feedback to make improvements for each module in every session. It is the University policy that the preferred way of achieving this is by means of an Online Module Evaluation Questionnaire Survey. Students will be invited to complete the questionnaire survey for this module at the end of the semester.

You are strongly advised to read the policies mentioned below very carefully, which will help you better perform in your academic studies. All the policies

and regulations related to your academic study can be found in 'Student Academic Services' section under the heading "Policies and Regulations" on <u>E-bridge</u>.

Plagiarism, Cheating, and Fabrication of Data.

Offences of this type can result in attendance at a University-level committee and penalties being imposed. You need to be familiar with the rules. Please see the "Academic Integrity Policy" available on e-Bridge in the 'Student Academic Services' section under the heading 'Policies and Regulations'.

□ Rules of submission for assessed coursework

The University has detailed rules and procedures governing the submission of assessed coursework. You need to be familiar with them. Details can be found in the "Code of Practice for Assessment" available on e-Bridge in the 'Student Academic Services' section under the heading 'Policies and Regulations'.

Late Submission of Assessed Coursework

The University attaches penalties to the late submission of assessed coursework. You need to be familiar with the University's rules. Details can be found in the "Code of Practice for Assessment" available on e-Bridge in the 'Student Academic Services' section under the heading 'Policies and Regulations'.

□ Mitigating Circumstances

The University is able to take into account mitigating circumstances, such as illness or personal circumstances which may have adversely affected student performance on a module. It is the student's responsibility to keep their Academic Advisor, Programme Director, or Head of Department informed of illness and other factors affecting their progress during the year and especially during the examination period. Students who believe that their performance on an examination or assessed coursework may have been impaired by illness, or other exceptional circumstances should follow the procedures set out in the "Mitigating Circumstances Policy", which can be found on e-Bridge in the 'Student Academic Services' section under the heading 'Policies and Regulations'.

□ ICE

Copies of lecture notes and other materials are available electronically through ICE, the University's virtual learning environment at: ICE@XJTLU.