Technische Universität Berlin

Fakultät II – Institut für Mathematik Gündel vom Hofe, Lutz WS 02/03 17.2.03

Februar – Klausur (Rechenteil) Analysis II für Ingenieure

Analysis II ful Ingelile	
$\dot{ ext{U}}$ bitte ankreuzen	P
Name: Vorname: MatrNr.: Studiengang:	
Ich wünsche den Aushang des Klausurergebnisses unter Angabe meiner Matr.–Nr. (ohne Namen) am	
Schwarzen Brett und im WWW.	Unterschrift
Neben einem handbeschriebenen A4 Blatt mit Noti zugelassen.	zen sind keine Hilfsmittel
Es sind keine Taschenrechner und Handys zugelass	sen.
Die Lösungen sind in Reinschrift auf A4 Blättern geschriebene Klausuren können nicht gewertet werde	· ·
Dieser Teil der Klausur umfasst die Rechenaufgaber vollständigen Rechenweg an.	n. Geben Sie immer den
Die Bearbeitungszeit beträgt eine Stunde.	
Die Gesamtklausur ist mit 32 von 80 Punkten besta beiden Teile der Klausur mindestens 10 von 40 Punkt	

1	2	3	4	5	$\Sigma_{ m R}$	$\Sigma_{ m V}$	$\Sigma_{\rm ges}$

1. Aufgabe

7 Punkte

Stellen Sie die 2π -Fourierreihe der folgenden Funktion $f: [-\pi, \pi] \to \mathbb{R}$ auf:

$$f(x) = \begin{cases} -1 & \text{für} & -2 \le x < 0, \\ 1 & \text{für} & 0 < x \le 2, \\ 0 & \text{sonst.} \end{cases}$$

2. Aufgabe

8 Punkte

Gegeben sind die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f(x,y) = x^3 - 2xy^2 + y - 7$ und der Punkt P(1,0).

- a) Bestimmen Sie die Tangentialebene zur Fläche z = f(x, y) im Punkt P.
- b) Bestimmen Sie die Richtungsableitung von f in Richtung $\vec{a}=(1,2)$ im Punkt P.
- c) Bestimmen Sie div grad f(x, y).

3. Aufgabe

10 Punkte

- a) Wo nimmt die Funktion $f(x,y) = x^2 + y$ im Bereich $D = \{(x,y) : x^2 + y^2 \le 1\}$ ihre minimalen und maximalen Werte an?
- b) Skizzieren Sie die Niveaulinien von f zu den Werten -1, 0, 2 und den Bereich D.

4. Aufgabe

8 Punkte

Bestimmen Sie den Flächeninhalt des Flächenstücks

$$F := \{(x, y, z) \in \mathbb{R}^3 : z = 4x - 3y, \frac{x}{2} \le y \le 2x, \ 0 \le x \le 2\}.$$

5. Aufgabe

7 Punkte

Die Rotationsfläche F entstehe, indem man die in der xz-Ebene liegende Kurve $x=1-z^2, -1 \le z \le 1$ um die z-Achse rotieren lässt. Bestimmen Sie das Volumen der innerhalb von F eingeschlossenen Menge.