Compito di Architetture degli Elaboratori

Appello del 28 Luglio 2014

Traccia B

Tempo a disposizione: 3 ore

Esercizio 1

Si realizzi una rete sequenziale sincrona R con due linee di ingresso A e B ed una linea di uscita Z. Ad ogni colpo di clock, R riceve un bit sulla linea A e un bit sulla linea B. Il calcolo si ferma quando R avrà ricevuto su B esattamente quattro bit ad 1 e dovrà restituire in uscita 1 solo se la stringa $a_3a_2a_1a_0$ che si forma su A in corrispondenza dei bit a 1 di B soddisfa $a_3=a_0$ e $a_2=a_1$. Segue un esempio di funzionamento di R.

t	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
A	0	1	0	1	0	0	1	0	0	0	0	1	1	1	0
B	0	0	0	1	0	1	1	0	0	1	1	0	1	1	1
Z	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Esercizio 2

Estendere il set di istruzioni della macchina a registri con l'operazione SIGNHSUM R_i , R_j , R_k , X. In particolare, si considerino il vettore V di dimensione pari al valore n contenuto in R_k e memorizzato in RAM a partire dall'indirizzo X ed il valore h contenuto in R_j . Se h è pari, l'operazione restituirà in R_i la somma degli elementi della prima metà di V, mentre se h è dispari l'operazione restituirà in R_i la somma della seconda metà (per metà si intenda la parte intera di n/2).

Esempio: Supponiamo che V = [9, 1, 5, 0, 2, 1, 3, 4, 0] e h = 6. Allora in R_i verrà memorizzato il valore 15. Se invece h = 11 in R_i verrà memorizzato il valore 8.

Esercizio 3

Scrivere una programma in Assembly che, data una matrice quadrata M di interi a 16 bit, restituisca in un registro a scelta il secondo massimo della diagonale secondaria di M.

Esempio: Nell'esempio in figura il programma inserirà nel registro scelto il valore 16.

	4	15	3	31
M =	4	12	16	11
IVI —	7	5	3	56
	2	21	4	9