概率论基础讲义

管华

2017-09-02 更新

目录

第一章	随机事件与概率	2
1.1	基本概念	2
1.2	事件的运算与关系	2
1.3	概率的定义与基本性质	2
1.4	概率基本公式	2
	1.4.1 条件概率	2
	1.4.2 乘法公式	2
1.5	事件的独立性	3
1.6	全概率公式与贝叶斯公式	3
	1.6.1 完备事件组	3
	1.6.2 全概率公式	3
	1.6.3 贝叶斯公式	3
1.7	三种常见的概型	4
	1.7.1 古典概型	4
	1.7.2 几何概型	4
	1.7.3 n 重贝努利试验	4
第二章	一维随机变量及其分布	5
2.1	随机变量、分布函数及性质	5

2.2	离散型	5
2.3	连续型	6
2.4	常见的	6
	2.4.1 离散型	6
	2.4.1.1 二项分布	6
	2.4.1.2 Poisson 分布	6
	2.4.1.3 几何分布	6
	2.4.1.4 超几何分布	6
	2.4.2 连续型	7
	$2.4.2.1$ 均匀分布 $X \sim U(a,b)$	7
	$2.4.2.2$ 指数分布 $X \sim E(\lambda)$	7
	$2.4.2.3$ 正态分布 $X \sim N(\mu, \sigma^2)$	7
2.5	函数分布	7
	2.5.1 X 为离散型	8
	2.5.2 X 为连续型	8
	2.5.2.1 Y 为离散型	8
	2.5.2.2 Y 为连续型	8
kk∵ → ⇒k	→ Weth 永 巨 T + 八 大	9
-	二维随机变量及其分布	
3.1	ALEXA DE ALEXANDE	9
3.2		9
	3.2.1 联合分布律	
		10
3.3	· - · ·	10
	· = · · · ·	10
3.4	***************************************	10
3.5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11
3.6		11
3.7	函数分布 1	11

	3.7.1	离散型.											11
	3.7.2	连续型.											11
	3.7.3	常见的.											12
		3.7.3.1	max	/min	١.								12
		3.7.3.2	X +	Y								 •	12
第四章	随机变	量的数字	特征										13
4.1	数学期	望											13
	4.1.1	概念											13
		4.1.1.1	一维										13
		4.1.1.2	二维										13
	4.1.2	性质											14
4.2	方差 .												14
	4.2.1	性质											14
	4.2.2	常见的.											14
4.3	协方差	、相关系	数 .										14
	4.3.1	协方差.											14
		4.3.1.1	定义										14
		4.3.1.2	计算	公式									15
		4.3.1.3	性质										15
	4.3.2	相关系数											16
		4.3.2.1	定义										16
		4.3.2.2	性质										16
第五章	大数定	理与中心	极限是	它理									17
5.1	切比雪	夫不等式											17
5.2	大数定	津											17
5.3	中心极	限定理											18

第六章	数理统计的基本概念与基本原理	19
6.1	基本概念	19
6.2	三个重要的抽样分布	20
	$6.2.1$ χ^2 分布	20
	6.2.2	20
	6.2.3 F 分布	21
6.3	正态总体下常用的抽样分布	21
第七章	参数估计与假设检验	23
7.1	参数估计的种类	23
7.2	点估计	23
	7.2.1 矩估计	23
	7.2.2 极大似然估计	24
7.3	区间估计	24

第一章 随机事件与概率

1.1 基本概念

- 1.2 事件的运算与关系
- 1.3 概率的定义与基本性质
 - 1.4 概率基本公式

1.4.1 条件概率

在事件 A 发生的情况下 B 发生的概率

$$P(B|A) = \frac{P(AB)}{P(A)}$$

1.4.2 乘法公式

$$P(AB) = P(A)P(B|A)$$

$$P(A_1A_2 \cdots A_n) = P(A_1) P(A_2|A_1) P(A_3|A_1A_2) \cdots P(A_n|A_1 \cdots A_{n-1})$$

1.5 事件的独立性

$$P(AB) = P(A)P(B)$$

1.6 全概率公式与贝叶斯公式

1.6.1 完备事件组

$$A_1 + A_2 + \dots + A_n = \Omega$$

1.6.2 全概率公式

$$P(B) = \sum P(A_i)P(B|A_i)$$

1.6.3 贝叶斯公式

$$P(A_k|B) = \frac{P(A_k)P(B|A_k)}{\sum P(A_i)P(B|A_i)}$$

1.7 三种常见的概型

- 1.7.1 古典概型
- 1.7.2 几何概型
- 1.7.3 n 重贝努利试验

 $B_k = \{n次试验中A出现k次\}$

$$P(B_k) = C_n^k p^k (1-p)^{n-k}$$

第二章 一维随机变量及其分布

2.1 随机变量、分布函数及性质

- 1. 随机变量 $X(\omega)$,也就是概率 $p = X(\omega)$
- 2. 分布函数

2.2 离散型

$$P\{X = x_i\} = p_i$$

表 2.1 离散型随机变量 X 的分布律

X	x_1	x_2	 x_n
P	p_1	p_2	 p_n

$$F(x) = P\{X \leqslant x\} = \sum_{x_i \leqslant x} p_i$$

2.3 连续型

$$F(x) = \int_{-\infty}^{x} f(x) \, \mathrm{d}x$$

2.4 常见的

2.4.1 离散型

2.4.1.1 二项分布

定义 2.4.1 $(X \sim B(n, p))$

$$P\{X = k\} = C_n^k p^k (1 - p)^{n-k}$$

2.4.1.2 Poisson 分布

定义 2.4.2 $(X \sim \pi(k))$

$$P\{X = k\} = \frac{\lambda^k}{k!}e^{-\lambda}$$

2.4.1.3 几何分布

定义 2.4.3 $(X \sim G(p))$

$$P\{X = k\} = (1 - p)^{k-1}p$$

2.4.1.4 超几何分布

定义 2.4.4 $(X \sim H(N, M, n)$

$$P\{X = m\} = \frac{C_M^m C_{N-M}^{n-m}}{C_N^n}$$

2.4.2 连续型

2.4.2.1 均匀分布 $X \sim U(a,b)$

$$f(x) = \begin{cases} \frac{1}{b-a} \\ 0, \text{ other} \end{cases} F(x) = \begin{cases} 0 \\ \frac{x-a}{b-a} \\ 1 \end{cases}$$

2.4.2.2 指数分布 $X \sim E(\lambda)$

$$f(x) = \begin{cases} \lambda \exp(-\lambda x) \\ 0 \end{cases} F(x) = \begin{cases} 1 - \exp(-\lambda x) \\ 0 \end{cases}$$

2.4.2.3 正态分布 $X \sim N(\mu, \sigma^2)$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

$$\varphi = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

$$\varphi(x) = \int_{-\infty}^x \varphi(t) dt$$
(2.4.2)

2.5 函数分布

$$Y=\varphi(X)$$

2.5.1 X 为离散型

$$P\{Y = y_j\} = P\{\varphi(X) = y_j\} = \sum_{\varphi(x_i) = y_j} P\{X = x_i\}$$

2.5.2 X 为连续型

2.5.2.1 Y 为离散型

先求出 Y 的可能取值,在通过 X 的概率分布求出 Y 的可能取值对应的概率。

2.5.2.2 Y 为连续型

$$\begin{cases} F_Y(y) = P\{Y \leqslant y\} = P\{\varphi(X) \leqslant y\} = \int_{\varphi(x) \leqslant y} f_X(x) \, \mathrm{d}x, & f_y(y) = F_Y'(y) \\ f_Y(y) = f_X \left[h(y) \right] |h'|, & y = \varphi(x)x = h(y) \end{cases}$$

第三章 二维随机变量及其分布

3.1 联合分布与边缘分布

定义 3.1.1 (二维随机变量)

(X,Y)

定义 3.1.2 (联合分布函数)

$$F(x,y) = P\{X \leqslant x, Y \leqslant y\}$$

定义 3.1.3

$$\begin{cases} F_X(x) = P\{X \leqslant x\} \\ F_Y(y) = P\{Y \leqslant y\} \end{cases}$$

3.2 离散型

3.2.1 联合分布律

$$P\{X = x_i, Y = y_j\} = p_{ij}$$

3.2.2 边缘分布律

$$\begin{cases} P\{X = x_i\} = \sum_{j=1}^{n} p_{ij} = p_{i:} \\ P\{Y = y_i\} = \sum_{i=1}^{m} p_{ij} = p_{:j} \end{cases}$$

3.3 连续型

定义 3.3.1 (联合密度函数 f(x,y))

$$F(x,y) = \int_{-\infty}^{x} dx \int_{-\infty}^{y} f(x,y)dy$$

3.3.1 边缘分布

$$\begin{cases} f_X(x) = \int_{-\infty}^{+\infty} dy, & 边际密度函数 \\ F_X(x) = \int_{-\infty}^{+\infty} f_X(x) dx = \int_{-\infty}^{x} \int_{-\infty}^{+\infty} f(x, y) dy, & 边缘分布函数 \end{cases}$$

3.4 条件分布

$$\begin{cases} P\{Y = y_j | X = x_i\} = \frac{p_{ij}}{p_{i:}} \\ f_{\frac{Y}{X}}(y|x) = \frac{f(x,y)}{f_X(x)} \end{cases}$$

3.5 随机变量的独立性

等价于

$$F(x,y) = F_X(x)F_Y(y)$$

$$\begin{cases} p_{ij} = p_{i:} \times p_{:j} \\ f(x,y) = f_X(x)f_Y(y) \end{cases}$$

3.6 常见的

3.7 函数分布

$$U = \varphi(X, Y)$$
 U 的分布函数为 $F_U(u) = P\{U \leq u\} = P\{\varphi(X, Y) \leq u\}$

3.7.1 离散型

$$P\{U = u_k\} = \sum_{\varphi(x_i, y_j) = u_k} p_{ij}$$

3.7.2 连续型

$$F_U(u) = P\{U \leqslant u\} = P\{\varphi(X,Y) \leqslant u\} = \iint_{\varphi(x,y) \leqslant u} f(x,y) \,\mathrm{d}x \,\mathrm{d}y$$

3.7.3 常见的

$3.7.3.1 \quad \text{max/min}$

$$U = \min\{X, Y\} \tag{3.7.1}$$

$$V = \max\{X, Y\} \tag{3.7.2}$$

$$F_U(u) = 1 - [1 - F_x(u)] \times [1 - F_Y(u)]$$
 (3.7.3)

$$F_V(v) = F_X(v) \times F_Y(v) \tag{3.7.4}$$

3.7.3.2 X + Y

$$U = X + Y$$

$$f_U(u) = \int_{-\infty}^{+\infty} f(x, u - x) dx = \int_{-\infty}^{+\infty} f(u - y, y) dy$$

特别地,

$$X \sim B(m, p), Y \sim B(n, p) \qquad U \sim B(m + n, p)$$
(3.7.5)

$$X \sim P(\lambda_1), Y \sim P(\lambda_2) \qquad U \sim P(\lambda_1 + \lambda_2)$$
 (3.7.6)

$$X \sim P(\lambda_1), Y \sim P(\lambda_2)$$
 $U \sim P(\lambda_1 + \lambda_2)$ (3.7.6)
 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$ $U \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$ (3.7.7)

第四章 随机变量的数字特征

4.1 数学期望

4.1.1 概念

4.1.1.1 一维

$$Y = \phi(X)$$

1. 离散型

$$EX = \sum x_i p_i$$
$$EY = \sum \phi(x_i) p_i$$

2. 连续型

$$EX = \int_{-\infty}^{\infty} x f(x) dx$$
$$EY = \int_{-\infty}^{\infty} \phi(x) f(x) dx$$

 $f(x) dx = x_i$

4.1.1.2 二维

$$Z = \phi(X, Y)$$

$$E Z = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \phi(x_i, y_i) p_{ij}$$
$$E Z = \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} \phi(x, y) f(x, y) dy$$

4.1.2 性质

- 1. $E(aX \pm bY) = aEX \pm bEY$
- 2. 独立 $\Rightarrow EXY = (EX)(EY)$ & uad 反之不对!

4.2 方差

4.2.1 性质

- 1. $D(aX + b) = a^2DX$
- 2. 独立 $\Rightarrow D(aX + bY) = a^2DX + b^2DY$

4.2.2 常见的

常见随机变量的数学期望及方差

4.3 协方差、相关系数

4.3.1 协方差

4.3.1.1 定义

$$cov(X,Y) = E(X - EX)(Y - EY)$$

分布	分布函数/密度函数	期望	方差
$X \sim B(n,p)$	$P\{X = k\} = C_n^k p^k (1 - p)^{n-k}$	np	np(1-p)
$X \sim \pi(\lambda)$	$P\{X = k\} = \frac{\lambda^k i}{k!} \exp(-\lambda)$	λ	λ
$X \sim G(p)$	$P\{X = k\} = p(1-p)^{k-1}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
$X \sim U(a,b)$	$f(x) = \frac{1}{b-a}$ $F(x) = \frac{x-a}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$X \sim E(\lambda)$	$f(x) = \lambda \exp(-\lambda x)$ $F(x) = 1 - \exp(-\lambda x)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
$X \sim N(\mu, \sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp(-\frac{(x-\mu)^2}{2\sigma^2})$	μ	σ^2

表 4.1 常见随机变量的数学期望及方差

4.3.1.2 计算公式

$$cov(X, Y) = EXY - EX \cdot EY$$

4.3.1.3 性质

$$cov(X, X) = DX (4.3.1)$$

$$cov(X,Y) = cov(Y,X) \tag{4.3.2}$$

$$cov(aX + bY, Z) = acov(X, Z)bcov(Y, Z)$$
(4.3.3)

$$cov(aX, bY) = abcov(X, Y)$$
(4.3.4)

承独立
$$\Rightarrow D(aX + bY) = a^2DX + b^2DY + 2abcov(X, Y) \Rightarrow$$
(4.3.5)

4.3.2 相关系数

4.3.2.1 定义

$$\rho_{XY} = \frac{\text{cov}(X, Y)}{\sqrt{DX}\sqrt{DY}}$$

4.3.2.2 性质

 $|\rho_{XY}| \leqslant 1$

$$\rho_{XY} \leqslant 1 \iff EXY = EX \times EY$$
(4.3.6)

$$\rho_{XY} = 1 \quad \Longleftrightarrow \quad Y = aX + b, \ a > 0 \tag{4.3.7}$$

$$\rho_{XY} = -1 \quad \Longleftrightarrow \quad Y = aX + b, \ a < 0 \tag{4.3.8}$$

(4.3.9)

第五章 大数定理与中心极限定理

5.1 切比雪夫不等式

$$P\{|X - \mu| \geqslant \epsilon\} \leqslant \frac{DX}{\epsilon^2} \tag{5.1.1}$$

$$P\{|X - \mu| < \epsilon\} \geqslant 1 - \frac{DX}{\epsilon^2} \tag{5.1.2}$$

5.2 大数定律

- 切比雪夫大数定律
- 独立同分布大数定律
- 辛钦大数定律

定理 5.2.1

所有的大数定律都是指随机变量组在独立的条件下,若干个随笔建立的平均值依概率收敛到其数学期望的平均值,即

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{\underline{\text{Mid}}} E\left(\frac{1}{n} \sum_{i=1}^{n} X_i\right) = \mu \tag{5.2.1}$$

更进一步,

$$\frac{1}{n} \sum_{i=1}^{n} X_i^k \xrightarrow{\underline{\text{Mid}}} E\left(\frac{1}{n} \sum_{i=1}^{n} X_i^k\right) = \mu \tag{5.2.2}$$

5.3 中心极限定理

第六章 数理统计的基本概念与基本原理

6.1 基本概念

定义 6.1.1 (样本均值)

$$\bar{X} = \frac{1}{n} \sum X_i \Rightarrow EX = \mu$$

定义 6.1.2 (样本方差)

$$S^{2} = \frac{1}{n-1} \sum (X_{i} - \bar{X})^{2} \Rightarrow DX = \sigma^{2}$$

定义 6.1.3 (k 阶原点矩)

$$A_k = \frac{1}{n-1} \sum X_i^k \Rightarrow EX^k$$

6.2 三个重要的抽样分布

6.2.1 χ^2 分布

定义 6.2.1 (χ^2 分布)

条件:

- $1. X_1, \cdots, X_n$ 相互独立
- 2. 都服从标准正态分布

$$Z = X_1^2 + \dots + X_n^2$$

称 Z 服从 χ^2 分布, 记为 $X \sim \chi^2(n)$.

定理 6.2.1

$$E\chi^2(n) = n \tag{6.2.1}$$

$$D\chi^2(n) = 2n \tag{6.2.2}$$

若 $X \sim \chi^{(m)}, Y \sim \chi^{2}(n)$, 则

$$X + Y = \chi^2(m+n)$$

6.2.2 t 分布

定义 6.2.2

条件:

- 1. $X \sim N(0,1)$
- 2. $Y \sim \chi^2(n)$
- 3. 独立

$$Z = \frac{X}{\sqrt{Y/n}}$$

称 Z 服从 t 分布, 记为 $Z \sim t(n)$.

定理 6.2.2

- 1. t 分布近似服从于正态分布
- 2. EZ = 0
- 3. $DZ = \frac{n}{n-2}$

6.2.3 F 分布

定义 6.2.3

条件:

- 1. $X \sim \chi^2(m)$
- 2. $Y \sim \chi^2(n)$

$$Z = \frac{X/m}{Y/n}$$

记为 $F \sim (m, n)$.

定理 6.2.3

- 1. $\frac{1}{F} \sim F(n,m)$
- 2. $F_{1-\alpha/2}(m,n) = \frac{1}{F_{\alpha/2}(n,m)}$

6.3 正态总体下常用的抽样分布

 X_1, \ldots, X_n 是来自总体 X 的样本,则

1.
$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right), \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$$

2.
$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

3.
$$\frac{(n-1)S^2}{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 \sim \chi^2(n-1)$$

4.
$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2 \sim \chi^2(n)$$

 $5. \bar{X}$ 和 S^2 相互独立

$$ES^2 = \sigma^2$$

第七章 参数估计与假设检验

7.1 参数估计的种类

- 点估计
- 区间估计

7.2 点估计

7.2.1 矩估计

总体 $X\sim f(x,\theta)$,但参数 θ 未知,需要对参数 θ 进行估计。步骤 1. 取样 X_1,X_2,\cdots,X_n 2. 计算样本均值 $\bar{X}=\frac{1}{n}\sum_{i=1}^nX_i$,根据大数定律有

$$\frac{1}{n}\sum_{i=1}^{n}X_{i} \to \frac{1}{n}\sum_{i=1}^{n}EX_{i} = EX$$

- 3. 令 $\bar{X} = EX$,在 EX 的结果中包含参数 $\theta \Rightarrow \hat{\theta}$ 若含有两个参数 θ_1, θ_2 ,由大数定律知
 - 1. $\bar{X} \to EX, A_2 = \frac{1}{n} \sum X_i^2 \to \frac{1}{n} \sum EX_i^2 = EX^2$
 - 2. \diamondsuit $\bar{X} = EX, A_2 = EX^2$ 或令 $\frac{1}{n} \sum (X_i \bar{X})^2 = DX \Rightarrow \theta_1, \theta_2$ 的估计。

7.2.2 极大似然估计

设 $X \sim f(x, \theta)$ 或 $X \sim f(x, \theta_1, \theta_2)$ 步骤: 1.

1. 对离散型

$$L(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^{n} P\{X = x_i\}$$

2. 对连续型

$$L(x_1, x_2, \cdots, x_n; \theta) = \prod_{i=1}^n f(x_i; \theta)$$

2. 求

$$\ln L(x_1, x_2, \cdots, x_n; \theta)$$

3.

• 对一个参数令

$$\frac{\mathrm{d}}{\mathrm{d}\theta} \ln L = 0$$

• 对两个参数令

$$\frac{\partial}{\partial \theta_i} \ln L = 0, \quad i = 1, 2$$

4. 解似然方程或方程组

7.3 区间估计

- 1. 设 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \cdots, X_n 是来自总体样本 X 的一个样本。若存在两个统计量 $\hat{\theta}_1$, $\hat{\theta}_2$, 使得 $P\{\hat{\theta}_1 < \theta < \hat{\theta}_1\} = 1 \alpha$, 称 $\left(\hat{\theta}_1, \hat{\theta}_2\right)$ 为参数 θ 的置信度为 1α 的置信区间。
 - σ^2 已知, μ 的置信度为 $1-\alpha$ 的置信区间为

$$\left(\bar{X} - \frac{\sigma}{\sqrt{n}} u_{\frac{\alpha}{2}}, \bar{X} + \frac{\sigma}{\sqrt{n}} u_{\frac{\alpha}{2}}\right)$$

区间长度与样本无关

• σ^2 未知, μ 的置信度为 $1-\alpha$ 的置信区间为

$$\left(\bar{X} - \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1), \bar{X} + \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1)\right)$$

区间长度与样本有关

• μ 未知, σ 的置信度为 $1-\alpha$ 的置信区间为

$$\left(\frac{(n-1)S^2}{\chi_{\frac{\alpha}{2}}^2(n-1)}, \frac{(n-1)S^2}{\chi_{\frac{1-\alpha}{2}}^2(n-1)}\right)$$

- μ 已知, σ 的置信度为 $1-\alpha$ 的置信区间
 - 2. 三个评价标准
- 参数估计的无偏性设 $\hat{\theta}$ 为 θ 的一个估计量,若 $E\hat{\theta} = \theta$,称 $\hat{\theta}$ 为 θ 的 无偏估计量
- 参数估计的有效性设 $\hat{\theta}_1, \hat{\theta}_2$ 都是 θ 的无偏估计量,若 $D(\hat{\theta}_1) < D(\hat{\theta}_2)$,称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效
- - $\underline{\text{o}}$ $\underline{\text{o}}$ $\underline{\hat{\theta}}$ $\underline{\hat{\theta}$ $\underline{\hat{\theta}}$ $\underline{\hat{\theta}}$