# An Introduction to Chaos in Topological Dynamical Systems

Fraser Robert Love

School of Mathematics and Statistics University of St Andrews

March 27, 2023

## Table of Contents

Topological Dynamics

Introduction to Chaos

Topological Characteristics of Chaos

**Devaney Chaos** 

**Concluding Remarks** 

**Bibliography** 

## Definition (Topological Dynamical System).

- Let X be a non-empty compact metric space. A *topological* dynamical system, denoted (X, f), is given by a continuous map  $f: X \to X$ .
- ▶ The system starts at an initial point  $x \in X$  and evolves through successive iterations of the map f.
- After  $k \in \mathbb{N}$  iterations of f, the system can be described by  $f^n := f \circ f \circ \cdots \circ f$ , where x is mapped to the point  $f^n(x)$ .

## Definition (Orbit).

Let (X, f) be a topological dynamical system. The *orbit* of  $x \in X$  under f is the set  $\mathcal{O}_f(x) = \{f^n(x) : n \ge 0\} = \{x, f(x), f^2(x), \dots\}$  of iterates of x under the map f.

## Definition (Periodic Point, Cycle).

- Let (X, f) be a topological dynamical system. A point  $x \in X$  is *periodic* if  $f^n(x) = x$  for some  $n \in \mathbb{N}$ .
- ▶ The *period* of a point x is the least positive integer k such that  $f^k(x) = x$ . If x has a period of k we say that x is a *period-k* point.
- ▶ The orbit  $\mathcal{O}_f(x) = \{x, f(x), \dots, f^{k-1}(x)\}$  of a periodic point is a finite set of unique points, called a *periodic orbit* of period k or simply a k-cycle.

## Example (Logistic Map).

Define  $F_{\mu}:[0,1]\to[0,1]$  to be the *logistic map*, where  $F_{\mu}(x)=\mu x(1-x)$  and  $\mu>0$ .



Figure: Logistic map  $F_{\mu}$  with  $\mu = 3$ .

## Example (Doubling Map).

Define  $\mathcal{D}: S^1 \to S^1$  to be the doubling map on  $S^1$ , where  $\mathcal{D}(z) = z^2$ , or equivalently  $\mathcal{D}(e^{i\theta}) = e^{2i\theta}$  for some  $\theta \in \mathbb{R}$ .



Figure: First ten iterations of the doubling map  $\mathcal{D}$ .

## Definition (Sequence Space).

- ▶ Let  $\Sigma_2 = \{(s_1, s_2, \dots) : s_i \in \{0, 1\}\}$  be the set sequences of zeros and ones.
- ▶ Define  $(\Sigma_2, d)$  to be the sequence space where  $d(s, t) = \sum_{i=1}^{\infty} |s_i t_i| 2^{-i}$  is a metric for  $(s)_{i=1}^{\infty}$ ,  $(t)_{i=1}^{\infty} \in \Sigma_2$ .
- ▶ The sequence space  $(\Sigma_2, d)$  is compact.

## Example (Shift Map).

Let  $(s)_{i=1}^{\infty} \in \Sigma_2$ . The *shift map*  $\sigma : \Sigma_2 \to \Sigma_2$  is given by  $\sigma ((s)_{i=1}^{\infty}) = (s)_{i=2}^{\infty}$ .



## Proposition.

The shift map  $\sigma: \Sigma_2 \to \Sigma_2$  is continuous.

#### Proof.

Let 
$$\varepsilon > 0$$
 and suppose  $\underline{s} = (s_i)_{i=1}^{\infty}$ ,  $\underline{t} = (t_i)_{i=1}^{\infty} \in \Sigma_2$ . Choose  $\delta = \varepsilon$  and suppose  $d(\underline{s},\underline{t}) = \sum_{i=1}^{\infty} |s_i - t_i| 2^{-i} < \delta$ . Then  $d(\sigma(\underline{s}) - \sigma(\underline{t})) = d((s)_{i=2}^{\infty} - (t)_{i=2}^{\infty}) = \sum_{i=2}^{\infty} |s_i - t_i| 2^{-i} \le \sum_{i=1}^{\infty} |s_i - t_i| 2^{-i} < \delta = \varepsilon$ .

Hence  $(\Sigma_2, \sigma)$  defines a topological dynamical system.

## Proposition.

The shift map  $(\Sigma_2, \sigma)$  has a dense orbit. [2]

## Proof.

Consider the sequence  $\underline{s}=(0,1,00,01,10,11,000,001,\dots)$  of 0s and 1s sorted in len-lex order. Let  $\underline{t}=(t)_{i=0}^{\infty}\in\Sigma_2$  be arbitrary. Let  $\varepsilon>0$ . By construction we can perform some k number of iterations of  $\sigma$  such that if  $n>N+k=\frac{1}{\varepsilon}+k$  iterations of  $\sigma$  such that  $d(\underline{s},\underline{t})=\sum_{i=k}^n|s_i-t_i|2^{-i}+\sum_{i=n+1}^\infty|s_i-t_i|2^{-i}\leq\sum_{i=n+1}^\infty|s_i-t_i|2^{-i}=2^{-n}<2^{-N}<\frac{1}{N}=\varepsilon$ . Hence the orbit  $\underline{s}$  is dense in  $\Sigma_2$ .

#### Proposition.

The periodic points of the shift map  $(\Sigma_2, \sigma)$  are dense in  $\Sigma_2$ . [2]

#### Proof.

Let  $\underline{s}=(s)_{i=1}^{\infty}$  be an arbitrary point in  $\Sigma_2$ . Define  $t_n=(s_0,\ldots,s_n,s_0,\ldots,s_n,\ldots)$  to be an infinite repeating sequence where  $t_{n_i}=s_i$  for  $1\leq i\leq n$ . Then  $d(s,t)=\sum_{i=0}^n|s_i-s_i|2^{-i}+\sum_{i=n+1}^\infty|s_i-t_i|2^{-i}\leq\sum_{i=n+1}^\infty2^{-i}=2^{-n}$ . Hence as  $n\to\infty$  we have  $t_n\to\underline{s}$ . Since  $\underline{s}$  was arbitrary, the periodic points of  $\sigma$  are dense.

#### Introduction to Chaos

- Many different definitions of chaos exist for topological dynamical systems.
- Devaney chaos, Li-Yorke chaos, Topological chaos, etc.
- These definitions rely on many different topological characteristics to define chaos in a natural way.
- ▶ Topological transitivity / existence of a dense orbit, sensitive dependence on initial conditions, dense periodic points, existence of an uncountable scrambled-set, and positive topological entropy.

## Definition (Topological Transitivity).

Let (X, f) be a topological dynamical system. The map f is topologically transitive if for every pair of non-empty open sets  $U, V \subseteq X$  there exists k > 0 such that  $f^k(U) \cap V \neq \emptyset$ .

In a topologically transitive mapping, points in an arbitrarily small set can be mapped into any other arbitrary small set under a repeated number of iterations of the map.

## Proposition.

Let (X, f) be a topological dynamical system and suppose X has no isolated points. The map f is topologically transitive if and only if there exists some  $x \in X$  such that  $\mathcal{O}(x)$  is dense in X. [4]

## Example.

Let  $(S^1, \mathcal{D})$  be the doubling map over  $S^1$ , where  $\mathcal{D}(z) = z^2$ . Then  $\mathcal{D}$  is topologically transitive.

#### Proof.

```
Let z_1,z_2\in S^1. Let (z_1,z_2)=U define an arc between z_1 and z_2. Suppose now d(z_1,z_2)>\frac{2\pi}{2^k} for some k\in\mathbb{N}. Then d\left(\mathcal{D}^k(z_1),\mathcal{D}^k(z_2)\right)=d\left(2^kz_1,2^kz_2\right)=2^kd\left(z_1,z_2\right)>2^k\cdot\frac{2\pi}{2^k}=2\pi. Hence \mathcal{D}^k((z_1,z_2)) covers S^1 so for any V\subseteq S^1 we obtain \mathcal{D}^k(U)\cap V\neq\emptyset. Hence \mathcal{D} is topologically transitive. \square
```

## Definition (Sensitive Dependence on Initial Conditions).

Let (X, f) be a topological dynamical system and  $\varepsilon > 0$ . A point  $x \in X$  is  $\varepsilon$ -unstable if, for every neighbourhood U of x, there exists a point  $y \in U$  and  $k \ge 0$  such that  $d\left(f^k(x), f^k(y)\right) \ge \varepsilon$ . The map f has sensitive dependence on initial conditions if for all points  $x \in X$ , x is  $\varepsilon$ -unstable.

In other words, there exist points arbitrary close to x that eventually get mapped at least  $\varepsilon$  far apart under multiple applications of the map.

## Example.

Let  $(S^1, \mathcal{D})$  be the doubling map over the  $S^1$ , where  $\mathcal{D}(z) = z^2$ . Then  $\mathcal{D}$  has sensitive dependence on initial conditions.

#### Proof.

Let 
$$z_1, z_2 \in S^1$$
 and  $\varepsilon < 2^k \delta$  and suppose  $d(z_1, z_2) = \delta$ , then  $d\left(\mathcal{D}^k(z_1), \mathcal{D}^k(z_2)\right) = d\left(2^k z_1, 2^k z_2\right) = 2^k d(z_1, z_2) = 2^k \delta > \varepsilon$ . Hence we can always choose a  $k$  large enough so this holds, and so  $\mathcal{D}$  has sensitive dependence on initial conditions.

# Devaney Chaos

## Definition (Devaney Chaos).

A topological dynamical system (X, f) is chaotic in the sense of Devaney if it is topologically transitive, has sensitive dependence on initial conditions, and if the periodic points of f are dense in X.

### Devaney's definition considers:

- Unpredictability (sensitive dependence on initial conditions).
- Repetitiveness (dense periodic points).
- Indecomposability (topological transitivity).

# Devaney Chaos

It turns out sensitive dependence on initial conditions is a redundant characteristic via the following proposition.

## Proposition.

Let (X, f) be a topological dynamical system. If the map f is topologically transitive and has dense periodic points then f has sensitive dependence on initial conditions. [1] [3]

# Devaney Chaos

#### Proposition.

The shift map  $(\Sigma_2, \sigma)$  is chaotic in the sense of Devaney.

#### Proof.

We previously showed that  $(\Sigma_2, \sigma)$  has a dense orbit and so is topologically transitive. We also showed that the periodic points of the shift map are dense in  $\Sigma_2$ . Hence, by the proposition above, we conclude that  $(\Sigma_2, \sigma)$  is Devaney chaotic.

# Concluding Remarks

- We have defined chaos to be a mixture of unpredictability, repetitiveness and indecomposability.
- This was achieved using the properties of topological transitivity, sensitive dependence on initial conditions and dense periodic points.
- We have shown that the shift map  $(\Sigma_2, \sigma)$  is a Devaney chaotic topological dynamical system.
- ▶ Using symbolic dynamics and topological conjugacy we can also prove that  $(F_{\mu}, [0,1])$ ,  $(\mathcal{D}, S^1)$  and many more systems exhibit Devaney chaos.
- ► Furthermore, some of these systems also exhibit other types of chaos, such as Li-Yorke chaos and Topological chaos.

# Bibliography

J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey. On devaney's definition of chaos.

The American Mathematical Monthly, 99(4):332–334, 1992.

#### R. L. Devaney.

An introduction to Chaotic Dynamical Systems.

Addison-Wesley Publishing Company Advanced Book Program, Redwood City, California, second edition, 1989.

E. Glasner and B. Weiss.

Sensitive dependence on initial conditions.

Nonlinearity, 6(6):1067-1075, 1993.

S. Silverman.

On maps with dense orbits and the definition of chaos.

Rocky Mountain Journal of Mathematics, 22(1):353-375, 1992.