PHYSICS

An alternating voltage given as $V = 100\sqrt{2} \sin 100t$ volt is applied to a capacitor of 1 µF. The current reading of the ammeter will be equal to

A. T2100 (pr) 10 V20052

The distance of the closest approach of an alpha particle fired at a nucleus with kinetic energy K is r_{α} . The distance of the closest approach when the α particle is fired at the same nucleus with kinetic energy 2K will be

(A) $2r_0$

180.
$$\xrightarrow{\text{180}} X_1 \xrightarrow{\alpha} X_2 \xrightarrow{\beta} X_3 \xrightarrow{\alpha} X_4$$

If atomic number and atomic mass number of X are respectively 72 and

180, what are the corresponding values for X₄?

200 mov 6.48 (C) 71, 176 Q X Q X Q Q X Q Q X Q Q X Q Q X Q Q X Q Q X Q Q X Q Q X Q Q X Q Q X Q

 $_{82}\text{Pb}^{206}$, then how many number of α and β particles are emitted?

(A) (8) and 12

(B) 6 and 8

(C) 12 and 6

(D) (8 and 6

& VBe	20.04
D ARG	

A change of 0.04 V takes place between the base and the emitter when an change take place in the base current and a change of 2 mA takes place in the collector current. Find the input resistant

vectors make an angle of 60° with the optic axis of the plate. Find the percentage difference between initial and final intensities.

(A) 90%

14) Light of wave length λ is incident on slit of width d. The resulting diffraction pattern is observed on a screen placed at distance D. The linear width of central maximum is equal to width of the slit, then D =

(Space for Rough Work)

12) In a N-P-N transistor about 10¹⁰ electrons enter the emitter in 2μs, when it is connected to a battery. Then $I_p =$

1600

(B) 400

(C) 800

 $\frac{\sqrt{1600} \times 10^{-3}}{1600 \times 10^{-3}} = \frac{10^{10} \times 1.6 \times 10^{10}}{2 \times 10^{-6}}$

13) The effective length of a magnet is 31.4 cm and its pole strength is 0.8 Am. The magnetic moment, if it is bent in the form of a semicircle is

@11 82 B1.4.

(C) 0.16 (D) 1.6 00 2 PQ

14) Equal currents are passing through two very long and straight parallel wires in the same direction. They will _

(A) neither attract nor repel each other

(B) attract each other

(C) lean towards each other

(D) repel each other

(Space for Rough Work)

GUICET-E-2015 BOOKLET B

22)	process, the charge on it be (A) 10 ⁻¹⁹ C (C) 10 ¹⁹ C	(B) 40 (D) 90 moved from a neutral metal plate thro ecomes (D) +1.6 C (D) -1.6 C	ugh some
22)	(C) 160 When 10 ¹⁹ electrons are reprocess, the charge on it be (A) 10 ⁻¹⁹ C	moved from a neutral metal plate thro	ugh some
22)	(C) 160 When 10 ¹⁹ electrons are reprocess, the charge on it be	moved from a neutral metal plate thro	ugh some
22)	(C) 160 When 10 ¹⁹ electrons are rea	moved from a neutral metal plate thro	ugh some
	(C) 160		
₹ ^{(†} 		(B) 40 (D) 90	
**		(B) 40	N _K = 3
	A A CAN COLUMN A COLUMN A COLUMN A CAN CAN CAN CAN CAN CAN CAN CAN CAN		*
21)	potential of 10 Volt. Assur	cury are charged simultaneously with ming the drop to be spherical, if all th to form one large drop, then its potent	e charged
	(C) 50 ×2 8	$\frac{108}{25} \frac{108}{100} \frac{25}{100} \times 100$	->2 34
	$\frac{\text{All }}{\text{(A) } 75} \qquad \qquad 2 > 2$	Ja. 18/25 108	3,00
20)		Hz frequency, the minimum length of	
	· Andrew Commence		
	(C) 750 MHz	(D) 100 MHz	
	(A) 250 MHz	(B) 100 GHz	
19)	An optical fiber can offer	a band width of	
		4	
	(C) AND	(b) NOT (D) OR	
		(b) NOT	المر ا
	(A) NAND	W NOT	

18) Which gate can be obtained by shorting both the input terminals of a NOR

	23)	One moving electron when comes closer to other stationary electron, then its kinetic energy and potential energy respectively and	
		(A) decreases, decreases (B) increases, increases	
		(C) decreases, increases) (D) increases, decreases	(2v, 1)
		(b) mercuses, decreases	
	24)	De in die de la confession de 5 (O constituto de 15 (S) inide de la missantial	The state of the s
`	24)	An inclined plane of length 5.60 m making an angle of 45° with the horizontal is placed in an uniform electric field $E = 100 \text{ Vm}^{-1}$. A particle of mass 1 kg	and the same
- (201		and charge 10^{-2} C is allowed to slide down from rest position from maximum	Control of the Contro
100		height of slope. If the co-efficient of friction is 0.1, the time taken by the	and the same of th
1	O W	particle to reach the bottom is	
Ci	C/	(A) 1s (A) 1.41s	
OV	$\mathbf{\hat{\lambda}} \cdot \mathbf{\mathcal{Y}}$	(C) 2s C 2 By (O. (D) None of these	
West	\mathcal{L}	(A) 1s (C) 2s C 2 BV 90.1X 1X (B) 1.41s (D) None of these use	
	25)	Charges 1 µc are placed at each of the four corners of a square of side 2.	
•	(")/		The state of the s
		$2\sqrt{2}$ m. The potential at the point of intersection of the diagonals is	The second secon
	***	$(K = 9 \times 10^9 \text{ SI unit})$	
	50.00	(A) $18 \times 10^{3} \text{ V}$ (B) 1800 V	
	775	(C) $18\sqrt{2} \times 10^3 \text{ V}$ 2. 2. (D) None of these	
	e/	(A) 18×10^3 V (B) 1800 V (C) $18\sqrt{2} \times 10^3$ V (D) None of these $1 \times 9 \times 10^9 \times 1 \times 10^9$	The state of the s
	20	A point charge q is situated at a distance r on axis from one end of a thin	Significant of the second of t
	20)	conducting rod of length L having a charge Q[Uniformly distributed along	
		its length]. The magnitude of electric force between the two is	
•			
		(A) $\frac{KQq}{r(r+L)}$ (B) $\frac{KQq}{r^2}$ $\frac{36\times10^3}{515}$	
		$r(r+L)$ r^2	
		KOa 2KO	
	((C) $\frac{\log q}{r(r+1)}$ (D) $\frac{2\log q}{r(r+1)}$	
		7(7 + L)	-
		(Space for Rough Work)	
			-
	•		

GUJCET-E-2015 BOOKLET $\overset{\circ}{B}$

ratio of their de - Broglie wave length will be				
(A) $\sqrt{2}:1$ (B) $2:1$				
$\begin{array}{c} (C) \ 1:1 \\ \hline \end{array}$				
28) de - Broglie wave length of atom at TK absolute temperature will be				
(A) $\sqrt{2mKT}$ (B) $\frac{h}{\sqrt{3mKT}}$ $\frac{2}{\sqrt{2}}$				
(C) $\frac{\sqrt{2mKT}}{h}$ (D) $\frac{h}{mKT}$				
29) If the wave length of light is 4000A°, then the number of waves in 1 mm length will be				
(C) 2500 (D) 250 (D) 250				
30) The frequencies of X rays, γ rays and Ultra violet rays are respectively p, q				
and r then (A) $p > q, q < r$ (B) $p > q, q > r$ (C) thigh				
(A) $p > q, q < r$ (B) $p > q, q > r$ (c) $p < q, q < r$ (d) $p < q, q > r$ (e) $p < q, q > r$ (f) $q $				
31) Photons having energy 1eV and 2.5 eV successively incident on a metal, having work function is 0.5 eV. The ratio of maximum speed of emitted				
electrons is				
(A) 1:3 (C) 3:1 (B) 2:1 $1-0.5$ (D) 1:2 $2.5-0.0$				
(Space for Rough Work)				
Vmax 2 1				
Vmax121				

32) A and B are two points on a uniform ring of radius r) The resistance of the ring is R. $\angle AOB = \theta$ as shown in the figure. The equivalent resistance between points A & B is

RO(211-0)

(C)
$$R\left(1-\frac{\theta}{2\pi}\right)$$

33) Two wires of equal length and equal diameter and having resistivities ρ_1 and p, are connected in series. The equivalent resistivity of the combination

(C)
$$\frac{\rho_1 \rho_2}{\rho_1 + \rho_2}$$

(Space for Rough Work)

GUICET-E-2015 BOOKLET B

[11]

(P.T.O.)

34) Match the following two columns.

Column I		Column II	
a)	Electrical resistance	p)	ML ³ T ⁻³ A ⁻²
b)	Electrical potential	q) [']	$ML^2T^{-3}A^{-2}$
c)	Specific resistance	4	$ML^2T^{-3}A^{-1}$
d)	Specific conductance	s)	None of these

(A)
$$a-p, b-r, c-q, d-s$$

(B)
$$a-q, b-r, c-1, d-s$$

(C) $a-p, b-q, c-s, d-r$

(D)
$$a-q, b-s, c-r, d-p$$

- Angle of prinimum deviation for a prism of refractive index 1.5 is equal to the angle of prism of given prism. Then the angle of prism is ____
- 36) A ray of light passes from a rhedium A having refractive index 1.6 to the medium B having refractive index 1.5. The value of critical angle of medium

Medium B naving refractive index 7.5. As is
$$\frac{1}{16}$$
 $\frac{15}{16}$ $\frac{15}{16}$ $\frac{15}{16}$ $\frac{15}{16}$ $\frac{15}{16}$ $\frac{15}{16}$ $\frac{15}{16}$ $\frac{15}{16}$ $\frac{15}{16}$ $\frac{15}{16}$

(Space for Rough Work)

GUICET-E-2015 BOOKLET B

CHEMISTRY

- 41) What is IUPAC name for isophthalic acid?
 - (A) Benzene 1, 5 dicarboxylic acid

- (C) Benzene 1, 4 dicarboxylic acid
- (D) Benzene 1, 3 dicarboxylic acid
- 42) What is the name for red azo dye
 - (A) p N, N dimethyl amino azo benzene
 - (B) β napthyl azo benzene
 - (C) p amino azo benzene
 - (D) p hydroxy azo benzene
- 43) Which of the following is not formed by Sandmayer reaction?
 - (A) C_6H_5CN

(B) C₆H₅I

(C) C_6H_5Br

(D) C_6H_5Cl

For which vitamin liver is not the source?

(A) Vitamin - H)

(B) Vitamin - B₂

(C) Vitamin B₁₂

(D) Vitamin - B

(Space for Rough Work)

GUJCET-E-2015 BOOKLET ${f B}$

[18]

(A) Amylopectin	(B) Lactose
(C) Cellulose	(D) Maltose
Which of the following populymerisation reaction?	lymer is formed by cationic addition
(A) PVC	(B) Poly styrene
(C) Teflon	(D) Butyl rubber
Which of the following polyme	er is used in pigment?
(A) Orlon	Neoprene.
(C) Teflon	Buna - S
To provent food from ancilors b	y microorganism, which substance is used?
(A) Tetrazine	(B) Ameto
(C) Salt of sorbic acid	(D) Aspartame
	Rough Work)

[19]

GUJCET-E-2015 BOOKLET B GUJCET-E-2015 BOOKLET **B**

(P.T.O.)

49) Which of the following defect is seen in FeO?

50) Which of the following substance possess antiferromagnetic property?

51) The boiling points for aqueous solutions of sucrose and urea are same at constant temperature. If 3 gm of urea is dissolved in its 1 litre solution,

(D) Volume of liquid solvent + volume of liquid solute = volume of

(Space for Rough Work)

what is the weight of sucrose dissolved in its 1 litre solution?

[Urea - 60 gm/mole, sucrose = 342 gm/mole]

52) Which option is inconsistant for Raoult's law?
(A) Solute undergoes dissociation in solution
(B) The change in heat of dilution for solution = 0
(C) Solute does not undergo association in solution

(D) Fe₃O₄

(A) Impurity defect

(A) MnO (C) H,O

(A) 34.2 gram(C) 6.0 gram

solution.

(C) Metal deficiency defect
(D) Metal excess defect

of the substances like proteins and polymers?
\(\(\(\lambda\)\) Osmotic pressure
(B) Elevation in boiling point
(C) Depression of freezing point
(D) Lowering of vapour pressure
The resulting solution obtained at the end of electrolysis of concentrated aqueous solution of NaCl
(A) the colour of red or blue litmus does not change
(B) turns blue litmus into red
(C) remains colourless with phenolphthalein
(D) turns red litmus into blue
The value of E _{red} for metal A, B and C are 0.34 Volt, -0.80 Volt and -0.46 Volt respectively. State the correct order for their ability to act as reducing agent. (A) C > A > B (B) A > B > C (C) B > C > A
Aluminium chloride are connected in series. If same amount of electric current is passed through them, what will be the weight of Nickel obtained when 18 gm of Aluminium is obtained? (Al - 27 gm/mole, Ni - 58.5 gm/mole ⁻¹)
(A) 5.85 gm (B) 117 gm
(C) 29.25 gm (D) 58.5 gm
25 (Space for Rough Work) 25 (1800) 20.66. 26 (1800) 199 (20.66. 20.66. 0.66 mole 85 - 1 mole W & Colorest Cujcet-e-2015 BOOKLET B 198 [21]
and the same of th

- 57) Which method is used to get very pure germanium used in semiconductor? (A) zone - refining (B) vapour - phase refining (C) liquation (D) electrolysis 58) Which product will be obtained in the following reaction? Reaction: $P_{4_{(s)}} + 3NaOH_{(aq)} + 3H_2O_{(l)} \rightarrow 2PH_3 + 3 \text{ rate PO}_2$ (A) 2PH_{3(s)} + 3NaH₂PO_{2(aq)} (B) PH_{3(s)} + 3NaH₂PO_{2(aq)} (C) $2PH_{3(x)} + 3Na_2HPO_{2(ax)}$ (D) $PH_{3(x)} + 3Na_2HPO_{2(ax)}$ The molecular formulae for phosgene and tear gas are respectively. (B) COCI, and CCI, NO, (A) SOCl, and CCl, NO, (C) COCI, and CCI, NO, (D) SOCl, and CCl, NO,
- (A) Three parts of conc. HCl and 1 part of conc. HNO₃

 (B) Three parts of dil. HCl and 1 part of conc. HNO₃

 (C) Three parts of conc. HCl and 1 part of dil. HNO₃
 - (D) Two parts of conc. HCl and two parts of conc. HNO,

(Space for Rough Work)

GUJCET-E-2015 BOOKLET ${\bf B}$

- 61) Which of the following is allylic halide?
 - (A) 3 chloro cyclo hex-1-ene
 - (B) (1 bromo ethyl) benzene
 - (C) 1 bromo benzene
 - (D) Benzyl chloride

50% of the reagent is used for dehydrohalogenation of 6.45 gn(CH,CH,Cl) What will be the weight of the main product obtained?

[At, mass of H, C and Cl are 1, 12 & 35.5 gm/mole-1 respectively]

- (A) 5.6 gm (B) (C) 2.8 gm Cn H_{2D} (D) 0.7 gm
- 64.5 82.25.
- 63) Name the following reaction CH, CH, Cl + NaI __acetone \ CH, CH, I + NaCl
 - (A) Hell-Volhard Zelinsky reaction

Con Hon 2 64.5

Frinkel-stein reaction

- (C) Wurtz reaction
- -6.45gm n281.75
- (D) Swartz reaction

OHO TOHO

64) Which reagent is used for bromination of methyl phenyl ether?

CaHy

(A) HBr / Δ

(B) Br, / CH, COOH)

6.45-28.

(2) Br, / FeBr,

64.5 - 2

(D) Br_a / Red P

misole

(Space for Rough Work)

- (B) Picric acid (STO) TO 20 TO NOTE OF THE PORT OF THE 65) Which of the following acid does not have -COOH group?
 - (A) Salicylic acid

(C) Benzoic acid

- (D) Ethanoic acid
- 66) Which of the following statement is not correct?

Boiling point of o-nitrophenol is lower than that of p-nitrophenol

- Phenol is neutralised by sodium carbonate
- (C) Solubility of phenol in water is more than that of chlorobenzene
- (D) Phenol is used to prepare analgesic drugs
- 67) Total order of reaction $X + Y \rightarrow XY$ is 3. The order of reaction with respect to X is 2. State the differential rate equation for the reaction.

(A)
$$-\frac{d[X]}{dt} = K[X][Y]^2$$

(A)
$$-\frac{d[X]}{dt} = K[X][Y]^2$$
 (B) $-\frac{d[X]}{dt} = K[X]^0[Y]^3$

$$(\mathcal{O}) - \frac{d[X]}{dt} = K[X]^{2}[Y] \qquad (D) - \frac{d[X]}{dt} = K[X]^{3}[Y]^{0}$$

68) $X \xrightarrow{\text{Step-II}} Y \xrightarrow{\text{Step-II}} Z$ is a complex reaction. Total order of reaction is

2 and Step - II is slow step. What is molecularity of Step-II?

(A) 4

\ (B) 2

(D) 1

Reaction $3C10^- \rightarrow C10^-_3 + 2C1^-$ occurs in following two steps.

- (i) $ClO^- + ClO^- \xrightarrow{K_1} ClO_2^- + Cl^- (Slow step)$
- (ii) $ClO_2 + ClO \xrightarrow{K_2} ClO_3 + Cl \text{ (Fast step)}$

then the rate of given reaction = ____

(A) $K_{2}[ClO^{-}]^{3}$

- (B) $K_1[CIO^-]$
- (C) $K_{2}[ClO_{2}^{-}][ClO^{-}]$
- (D) $K_1 [ClO^-]^2$
- 70) At given temperature and pressure adsorption of which gas of the following will take place the most?
 - (A) Di nitrogen 2
- (B) Di oxygen 2

C) Ammonia NHZ

- (D) Di hydrogen H2
- 71) Which type of colloid is the dissolution of sulphur (S_o)?
 - (A) Macromolecular colloid
- (B) Micelle
- Multimolegular colloid
- (D) Associated colloid
- 72) For Adsorption phenomenon,
 - (A) $\Delta H = +ve$, $\Delta S = +ve$
- (B) $\Delta H = -ve$, $\Delta S = +ve$
- (C) $\Delta H = -ve$, $\Delta S = -ve$
- (D) $\Delta H = +ve$, $\Delta S = -ve$

(Space for Rough Work)

(P.T.O.)

- 73) Which of the following statement is incorrect for KMnO₄?
 - (A) It is dark purple coloured amorphous substance. X
 - (B) It is used as antiseptic.
 - (C) It is used as bleaching agent in textile industries.
 - (D) It is an oxidising agent.

- Which of the following ion has the maximum theoretical magnetic moment?

- 75) Which of the following oxide has the maximum basicity?
- 5 unp

- (A) Gd₂O₃
- (B) Pr₂O₃
 - (D) La₂O₃
- CQ
- **76)** Which of the following spectrochemical series is true?
 - (A) $SCN^- < F^- < en < CO < NH$
 - (B) SCN $^- < F^- < NH_3 < en < CO$
 - (C) $SCN^- < F^- < en < NH_3 < CO$
 - (D) $SCN^- < NH_3 < F^- < en < \underline{CO}$

77) Which of the following of	omplex is paramagnetic? -22442 2
(A) [NiCl ₄] ²⁻	omplex is paramagnetic? $-2+42$ (B) $\{Co(NH_3)_6\}^{3+}$
(C) [Ni (CN) ₄] ²⁻	(D) [Ni (CO)] 268) 45°
78) Both (Ni (CO), and (Ni (CO)) and (Ni (CO))	(N) ₄) are diamagnetic. The types of hybridisation are & respectively.
(A) dsp^2 , $d\underline{sp^2}$	(B) sp3, dsp2 Satus1
(C) dsp ² , sp ³	(D) sp ³ , sp ³
Which of the following o	rder of acidic strength is not correct?
CH, COOH > CH, COOH > CH, CO	CH2COOH CH32-CH-COOH
CH3 CH, CH, CH.COOK	I>CH ₂ ·CH ₂ ·COOH>CH ₂ ·CH ₂ ·CH ₂ ·COOH
Cl Cl	Cl Cl
(C) $H \cdot COOH > CH_3 \cdot CO$	
(D) $Cl_3 \cdot C \cdot COOH > Cl_2 \cdot COOH = Cl_2 \cdot$	CH-COOH > Cl-CH ₂ -COOH
	10280280.
80) What is the formula of Ac	rolein?)
(A) $CH_2 = CH - CONH$	CH2CICOOH CHC12 CC13
$CH_2 = CH - CN$	
(C) $CH_2 = CH - COOH$	
(D) $CH_2 = CH - CHO$	
(Spac	e for Rough Work)
\ F	•

GUJCET-E-2015 BOOKLET B

[27]

(P.T.O.)

BIOLOGY

- 81) A The DNA fingerprint is the same for every cell, tissue and organ of a person.
 - R DNA fingerprint is used for treatment of inherited disorders like Huntigton's disease, Alzheimer's and Sickle cell anemia. —
 - (A) A is wrong and R is correct
 - (B) A and R both are correct but R is not explanation of A
 - (C) A is correct and R is wrong
 - (D) A and R both are correct. R is explanation of A
- 82) Which part is not included in Coehlear duct?
 - (A) Tectorial membrane
- (B) Macula of Utricle

(C) Scala Media

- (D) Reissner's membrane
- 83) Which is Gynandromorph type of animal?
 - (A) Drossophilla

(B) Beetles

(C) Silk worms

- (D) All of the above
- 84) DNA polymerase enzyme is isolated from which bacteria?
 - (A) Agro bacterium
- (B) Thermus aquaticus
- (C) Bacillus thrunegenesis
- (D) E.Coli

85) Match the column I, II and III

Column I

Column II

Column III

- P) (Trichomoniasis)
- i) Herpes Simplex
- x) Pain in lower abdom en

- Q) Syphilis
- ii) Neisseria gonorrhoeae
- y) Inflammation and itching in and around vagina

- R) Gonorrhoea
- iii), Treponema Pallidium
- z) Patchy hair loss

- S) Genital herpes
- iv) Trichomonas Vaginalis
- w) Feeling of uneasiness
- (A) (P i z) (Q ii y) (R iv w) (S iii x)
- (P iv y) (Q i z) (R ii x) (S iii w)
- (C) (P iv x) (Q i w) (R ii y) (S iii z)
- (P iv y) (Q iii z) (R ii x) (S i w)
- What is the height and weight of twelve weeks old human embryo?
 - (A) 32 cm, 650 gram
- 7.5 cm, 14 gram
- (C) 42 cm, 1800 gram
- (D) 7.5 cm, 650 gram

(Space for Rough Work)

. [35]

- 87) Assertion A: Restriction endonuclease recognize short palindromic sequence and cut at specific sites.
 - Reason R: When a restriction endonuclease acts on Palindrome, it cleaves both the strands of DNA molecule.
 - (A) A is wrong and R is correct
 - A and R are both correct but R is not explanation of A
 - (C) A is correct and R is wrong
 - (D) A and R are both correct. R is explanation of A.
- Write proper option by matching column I, II and III.

Column I (Name) (Enzyme)

Column II

Column III (Function)

Gastric Juice

- P) Chymo-
- trypsinogen

R) Renin

- A) Dipeptide convert into amino acid
- ii) / Intestinal Juice) Q) Ptylin

iii) Saliva

- B) Proteoses convert into small polypeptides C) Casein convert into
- Pancreatic juice S) Erepsin
- paracasein D) Conversion of starch into maltose
- (A) (i Q A) (ii P C) (iii R B) (iv S D)
- (B) (i R C) (ii S A) (iii Q D) (iv P B)
- (C) (i S D)(ii R C)(iii P B)(iv O A)
- (D) (i R C)(ii S A)(iii Q B)(iv P D)

89) Write the correct sequence of genetic diversity.

(A) Kingdom \rightarrow Species \rightarrow Chromosomes \rightarrow Genes \rightarrow Nucleotides

(B) Population \rightarrow Species \rightarrow Chromosomes \rightarrow Genes \rightarrow Nucleotides

(C) Species \rightarrow Genes \rightarrow Population \rightarrow Chromosomes \rightarrow Nucleotides

(D) Kingdom \rightarrow Population \rightarrow Species \rightarrow Genes \rightarrow Chromosome → Nucleotides

Match the column I and II and select the correct option.

C

Column I

Column II (concentration of DDT in ppm)

A) ¿Zooto Plankton

0.003 ppm

B) Small fishes

Q) 2 ppm

C) Water ·

25 ppm

D) (Fish eating birds)

S) 0.04 ppm

Big fishes

0.5 ppm

 \mathbf{B}

D E

R

R

Q

(Space for Rough Work)

GUICET-E-2015 BOOKLET B

. [35]

(P.T.O.)

- 91) Which of the following disease shows the blockage of kidney tubules and causes severe back pain?
 - (A) Nephritis
 - (B) Kidney failure
 - (C) Uremia
 - (D) Renal calculi
- During photorespiration which compounds are formed having 2C and 3C respectively in Peroxisome?
 - (A) Phosphoglycerate, Glycolate
 - (B) Glycine, Glycerate
 - (C) Serine, Glycine 2 C
 - (D) (Glycolate, Glycine
- 93) During rainy season wooden doors and windows are not properly closed. Why?
 - (A) Imbibition
 - (B) Diffusion
 - (C) Osmosis
 - (D) Plasmolysis

(Space for Rough Work)

GUJCET-E-2015 BOOKLET B

[36]

94) Match the column I, II and III

Column I

Column II

Column III

- A) Sickle Cell Anaemia
- i) Due to recessive PP genes
- Arrangement of Valine in place of Glutamic acid

- B) Phenyl Ketonuria
- ii) Due to absence of homogentisic oxidase enzyme
- O) Inborn error of metabolism

- C) Alkaptonuria
- iii) Follows Mendelian R) Urine turns black Principles
- when exposed to air

- D) Thalassaemia
- iv) Characters caused S) by homozygous recessive genes
- The required haemoglobin is not generated in the blood
- (A) (A iii R)(B i Q)(C iv P)(D ii S)
- (B) (A iv P) (B i Q) (C ii R) (D iii S)
- (C) (A iv P) (B iii R) (C i S) (D ii R)
- (D) (A ii S) (B iii R) (C i Q) (D iv P)
- 95) Which of the following is the symptom of Ulcerative colitis?
 - (A) Eyes turn yellow
 - (B) Difficulty in swallowing
 - (C) Loss of appetite
 - Watery stools containing blood and mucus

(Space for Rough Work)

GUJCET-E-2015 BOOKLET B

[37]

(P.T.O.)

- Which one is not cranial bone?
 - (A) Sphenoid

Zygometic

(C) Temporal

(D) Frontal

97)

In this process which of the following play important role?

(A) Chlorophyll

(B) Light energy

(C) Ca++, Mn++, Cl-

- (D) All of the above
- Which of the following is correct trend of succession in Hydroseric succession?
 - (A) Rooted submerged \rightarrow Phytoplankton \rightarrow Reed swamp \rightarrow Sedge
 - (B) Phytoplankton → Reed swamp → Rooted submerged → Sedge medow
 - (C) Phytoplankton → Sedge medow → Reed swamp → Root submerged
 - (D) Phytoplankton \rightarrow Rooted submerged \rightarrow Reed swamp \rightarrow Sedge mcdow

99

On which surface of cell Donnan equilibrium occur?

- (A) Nuclear membrane
- (B) Tonoplast
- (C) Plasma membrane

(D) Cell wall

100) Which type of gene regulate sex-determination in Spinach plant?

(A) Multiple genes

(B) Heterozygous genes

(C) Single gene

(D) Homozygous genes

101) When the respiratory substances are more than one then which respiratory substrates are not used?

(B) Lipid

(C) Carbohydrate

(D) (A) and (B) both

102) State the condition of muscle contraction in following diagram.

- (A) Resting potential
- (B) Contraction
- (C) Maximally contracted
- (D) None

(Space for Rough Work)

 $\begin{array}{c} \text{GUJCET-E-2015} \\ \text{BOOKLET} \end{array}$

[39]

(P.T.O.)

103) How many years are considered in one minute in Geological clock?

(A) 1,90,000 years

(B) 1,87,500,000 years

(Ø) 3,25,000 years

(D) 52000 years

104) Which structure is formed at the time of exchange of gamete nuclei in given animal during sexual reproduction.

(A) Cytoplasmic bridge

(B) Cytoplasmic filaments

(C) Internal tubule

(D) Plasmodesmata

105) Name the plant shows adventive embryonic cells.

- (A) Lemon and Palms
- (B) Citrus and Mango
- (C) Lemon and Maize
- (D) Sunflower and Mango

(Space for Rough Work)

GUJCET-E-2015 BOOKLET **B**

[40]

106)	During	respiration	·
		L	

- (A) PGAL is not produced during respiratory events
- (B) 2 PGAL during glycolysis and 4 Pyruvic acid are produced in Kreb's cycle
- (C) 2 PGAL during glycolysis and 2 Pyruvic acid are produced in Kreb's cycle
- 2 PGAL during glycolysis and none of the PGAL produced in Kreb's cycle
- 107) Which of the following function is performed by collecting tubule of kidney?
 - In the maintenance of pH and ionic balance of blood by the secretion of H⁺ and K⁺ ions
 - (B) Maintenance of pH of blood and removal of Na⁺ and K⁺ ions
 - (C) Absorption of glucose and ammonia from the blood
 - (D) None of above
- 108) A Nerve fibre can become excited through touch, smell, pressure and chemical changes and there is a change in polarity.
 - R It is called active potential.
 - (A) A is wrong and R is correct
 - (B) A and R both are correct but A is not correct explanation of R.
 - (C) A is correct and R is wrong
 - (D) A and R both are correct and A is correct explanation of R.

(Space for Rough Work)

109) Select proper option, by matching column I, II and III.

Column II Column III Column I (Common Name) (Roman Numerical (Activation product) Designation) P) (Prothrombin i) Convertin x), I Q) Proconvertin ii) Fibrin R) Fibrinogen iii) Thrombin S) Proaccelerin w) VII iv) Accelerin (A) (P-z-iii) (Q-w-i) (R-x-ii) (S-y-iv)(B) (P-w-ii) (Q-z-iii) (R-y-iv) (S-x-i)(C) (P-z-iii) (Q-w-ii) (R-x-iv) (S-y-i)(D) (P-z-iii) (Q-w-i) (R-y-ii) (S-x-iv)

- 110) What is "A" and "B" in given diagram?
 - (A) A = Lagging strand

B = Movement of Helicase

(B) A = RNA Primer

B = DNA Helicase

(C) A = Single strand Binding Protein

B = DNA Helicase

(D) A = RNA Primer

B = RNA Helicase

111) In	which field application	of biotechnolog	y occurs?	
(A) Bio-medicine		*	
(B) Agriculture			
(C) Environmental field	~		· ·
\(<u>(</u>)	All of the above			
112)	shows anti-allergi	c and anti-inflar	nmatory effect.	•
(A)) Noradrenaline			
(B)	Glucocorticoids	**		
(C)	Sexcorticoids			
(D)	Mineralocorticoids			
	ring the process of decorvert into inorganic ions			nic matter
(A)	Mineralization	(8)	Catabolism	
(C)	Fragmentation	(D)	All of the above	
114) Hov	w much amount of volu	me of air is in l	ings FRC?	
(A)	1600 ml to 2100 ml	(B)	2100 ml to 2500 ml	
(C)	2500 ml to 3000 ml	(D)	1500 ml to 1600 ml	
	(Space	for Rough V	Vork)	B 11
•			2110	TK V
			2110	W ⁺

115) What indicated "A" in given figure?

- (A) Hydrophobic bond
- (B) Glycocidic bond

- (C) Disulfide bond
- (D) Peptide bond
- 116) What is total diastolic time of ventricle in cardiac cycle?
 - ?

(A) 0.10 second

- (B) 0.40 second
- 0.1 0.1

(C) 0.50 second

- (D) 0.30 second
- 4 0.4 205
- 117) Which amino acid determines by four genetic codes?
 - (A) Tyrosine (Tyr)

(B) Proline (Pro)

(C) Serine (Ser)

(D) Leucine (Leu) 6.

(Space for Rough Work)

GUJCET-E-2015 BOOKLET $\overset{\circ}{B}$

118) Which is the inhibitory hormone of GH?

- (A) Testosterone
- (B) Parathormone
- (C) Somatostatin
- (D) Insulin

119) Complete and balanced the following reaction.

$$Na_2HPO_4 + X \rightarrow Y + NaH_2PO_4$$

(A)
$$X = H_2CO_3$$
, $Y = NaHCO_3$

- (B) $X = H_2CO_3^-$, $Y = NaH_2CO_3$
- (C) $X = NaHCO_3$, $Y = H_2CO_3$
- (D) $X = NaHCO_3$, Y = NaCl

120) How many molecules of ATP and NADPH are require in formation of two molecules of glucose) How many Calvin cycles are required?

- (A) 24 ATP, 36 NADPH, 12 Calvin cycles
- (B) 18 ATP, 12 NADPH, 6 Calvin cycles \ SATP 2NAD
- (C) 36 ATP, 24 NADPH, 6 Calvin cycles 1 2 18 FFTP 12 NAD.
- (D) 36 ATP, 24 NADPH, 12 Calvin cycles 2 86 24NAP - 12 Cycles