LUNDS TEKNISKA HÖGSKOLA MATEMATIK

LÖSNINGAR ENDIM ANALYS A2 2015-05-07 kl 08-13

Endast svar och kortare anvisningar för omtentor.

1. a) Se boken, sid 206. $\frac{f(1+h)-f(1)}{h} = \frac{(1+h)^3-1}{h} = 3 + 3h + h^2 \stackrel{h\to 0}{\to} 3 = f'(1)$.

b) Se boken, sid 88–89. $\frac{1-i}{i-2} = \frac{(1-i)(-2-i)}{(-2+i)(-2-i)} = \frac{-3+i}{5} = -\frac{3}{5} + \frac{1}{5}i$.

c) Endast $(f^{-1})'(3) = \frac{1}{f'(0)} = -\frac{1}{2}$ är möjligt att bestämma (ty f(0) = 3).

2. $f'(x) = \frac{x(x^2-2)}{(x^2-1)^{3/2}}$. Den relevanta stationära punkten $x = \sqrt{2}$

(ty 0 och $-\sqrt{2}$ är utanför intervallet) är en lokal minimipunkt.

Linjen y = x är en sned asymptot då $x \to +\infty$ eftersom

$$\frac{f(x)}{x} = \frac{x}{\sqrt{x^2 - 1}} = \frac{1}{\sqrt{1 - 1/x^2}} \to 1 = k,$$

$$f(x) - x = \frac{x(x - \sqrt{x^2 - 1})}{\sqrt{x^2 - 1}} = \frac{x(x^2 - (x^2 - 1))}{\sqrt{x^2 - 1}(x + \sqrt{x^2 - 1})} \to 0 = m.$$

Kompletterande gränsvärdet: $\lim_{x\to 1^+} \frac{x^2}{\sqrt{x^2-1}} = \frac{1}{0^+} = +\infty$.

3. a) $z = \frac{1-i}{2} + \frac{1}{i-1} = -i \Rightarrow z^{19} = (-i)^{19} = i$, dvs Re = 0, Im = 1.

b) Dela med i och kvadratkomplettera: $(z-(2+i))^2=4+3i \Rightarrow z=2+i\pm\left(\frac{3}{\sqrt{2}}+\frac{1}{\sqrt{2}}i\right)$.

4. a) Den första: $1 + 0 + 1 + 0 + 1 + 0 + \dots$ — ej geometrisk.

Den andra: $-\frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \ldots = \sum_{k=1}^{\infty} \left(-\frac{1}{2}\right)^k = -\frac{1}{3}$ — geometrisk, konvergent.

Den tredje: $1+1+1+1+1+\dots=\sum_{k=2}^{\infty}1^k$ — geometrisk, ej konvergent.

b) Deriver implicit: $\frac{p'}{3p^{2/3}} + \frac{h'}{400} = 0$. Sätt in p = 8000 och h' = 2 och får p' = -6.

5. Tangenten i en punkt x=a är $y-e^{-\sqrt{a}}=-\frac{e^{-\sqrt{a}}}{2\sqrt{a}}(x-a)$. Skärningspunkter med axlarna (sätt in y=0 resp. x=0): $X_a=\sqrt{a}(\sqrt{a}+2)$ och $Y_a=e^{-\sqrt{a}\frac{\sqrt{a}+2}{2}}$. Triangelns area $A(a)=\frac{X_aY_a}{2}=e^{-\sqrt{a}\frac{(\sqrt{a}+2)^2\sqrt{a}}{4}}, a>0$. Att minimera A(a) är detsamma som att minimera $F(t)=e^{-t}(t+2)^2t, t>0$ och sedan dela det minsta värdet med 4. Minimipunkten är t=2, min $=\frac{4^2\cdot 2}{e^2}$, dvs den minsta arean är $\frac{8}{e^2}$. (Jämför med Uppg. 10.45 i övningshäftet.)

6. a) $f(x) = 2 - 3x + B(x)x^2$.

b) Kontinuerlig då samma ensidiga gränsvärden från båda håll

$$\lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{-}} (ax + b) = b, \qquad \lim_{x \to 0^{+}} g(x) = \lim_{x \to 0^{+}} (2 - 3x + B(x)x^{2}) = 2,$$
 hence, $b = 2$, alla a .

Deriverbar då kontinuerlig (dvs b=2) samt samma ensidiga gränsvärden för differenskvoten från båda håll

$$\lim_{h \to 0^-} \frac{g(h) - g(0)}{h} = a, \qquad \lim_{h \to 0^+} \frac{g(h) - g(0)}{h} = \lim_{h \to 0^+} \frac{2 - 3h + B(h)h^2 - 2}{h} = -3,$$
 hence, $b = 2, a = -3$.