Food Classification Using CNN

1. Introduction

** Project Objective:

The goal of this project is to build a **deep learning-based food classification system** that can accurately classify food images into **34 categories** using **multiple deep learning models**. The project follows a structured pipeline that includes **dataset preprocessing, model training, evaluation**, **deployment using Flask, and documentation**.

** Key Highlights:

- Dataset balancing and preprocessing.
- Training three different models: Custom CNN, VGG16, and ResNet.
- Model validation using accuracy, precision, recall, and F1-score.
- Flask-based web application for real-time predictions.
- JSON-based nutritional information storage for food items.(Food_data.json)
- Well-structured **GitHub repository** and project documentation.

2. Dataset Details

- **Total Classes:** 34 food categories.
- Dataset Source: [Food Image Classification Dataset] (provide link if available).
- Preprocessing Steps:
 - Balance the dataset by selecting an equal number of images per class.
 - Use 200 images per class to ensure uniform distribution.
 - Upload selected images to Google Drive for easy access.

3. Model Development & Training

We train three different models and evaluate their performance.

A. Custom Deep Learning Model

- Uses pre-trained ResNet architecture to classify food images.
- Fine-tuned to enhance classification accuracy.
- Training Parameters:
- **Epochs:** 30
- Optimizer: Adam
- Performance Metrics:
 - Accuracy, TP, TN, FP, FN
 - o Precision, Recall, F1-Score
 - Validation Report Saved As: CustomModel_validation_report.json

B. VGG16 Model (Transfer Learning)

- Uses pre-trained ResNet architecture to classify food images.
- Fine-tuned to enhance classification accuracy.
- Training Parameters:
- **Epochs:** 30
- Optimizer: Adam
- Performance Metrics:
 - o Accuracy, TP, TN, FP, FN
 - o Precision, Recall, F1-Score
 - Validation Report Saved As: VGG16_validation_report.json

C. ResNet Model (Transfer Learning)

- Uses pre-trained ResNet architecture to classify food images.
- Fine-tuned to enhance classification accuracy.
- Training Parameters:
- **Epochs:** 30
- Optimizer: Adam
- Performance Metrics:
 - o Accuracy, TP, TN, FP, FN
 - o Precision, Recall, F1-Score
 - Validation Report Saved As: ResNet_validation_report.json

4. Coding Standards & Best Practices

- Object-Oriented Programming (OOP):
 - o Implement Classes, Objects, and Constructors for structured code.
 - Exception Handling:
 - Use **try-except** blocks to handle errors smoothly.
 - Code Readability & Efficiency:
- Development Environment:
 - o **PyCharm IDE** for development.

5. Data Collection & JSON Creation

Nutritional Information Extraction

Each food category includes the following nutritional attributes:

- Protein (g)
- Fiber (g)
- Calories (kcal)
- Carbohydrates (g)
- Fat (g)

All data stored in a structured JSON file (Food_data.json).

6. Model Deployment (Flask & Web Interface)

Frontend Features:

- User Input:
 - o **Upload an image** for classification.
 - o Dropdown selection for choosing a trained model (Custom, VGG16, ResNet).

Backend Processing (Flask API):

- Load the selected deep learning model dynamically.
- Process uploaded images and perform classification.
- Return classification results.

Output Display:

- Predicted Food Class based on the input image.
- Nutritional Information:
 - Protein (g)
 - o Fiber (g)
 - Calories (kcal)
 - Carbohydrates (g)
 - Fat (g)

7. Submission

Final Deliverables:

- **Trained Deep Learning Models**: intern_task_CustomModel.ipynb, intern_task_VGG16.ipynb, intern_task_ResNET.ipynb.
- **Validation Reports**: CustomModel_validation_report.json, VGG16_validation_report.json, ResNet_validation_report.json.
- **JSON File**: Nutritional data for all 34 classes(Food_data.json).
- Flask Web Application: User-friendly prediction system.
- **GitHub Repository**: Well-structured project with README.md.
- Documentation & PPT.