下面分四个部分来分析: virtio device 注册 virtio driver 注册 前端发送 前端接受

virtio 规范:

https://docs.oasis-open.org/virtio/virtio/v1.1/virtio-v1.1.pdf 内核中 virtio 子系统(前端)与后端的交互都遵守这个协议。

下面以 mmio 类型的 virtio 为例进行分析。

下面是协议中规定的后端 virtio 设备的寄存器布局信息 (4.2.2):

名称	偏移	读写	功能	备注
Magic Value(幻 数)	0x0	只读	固定为 0x74726976,小端格式存储,等价于"virt"字符串	前端代码初 始化时回检 查该值
Version(版本)	0x4	只读	设备版本号,最新的是 2,老的设备是 1	
Device ID (设备 ID)	0x8	只读	Virtio 子系统设备 ID,表示不同类型的 virtio 设备,比如 network card, block device, console, rpmsg, SCSI host 等,参考	
Vendor IDI (厂商 ID)	0xC	只读	Virtio 子系统厂商 ID	
DeviceFeatures (设备特性)	0x10	只读	返回一个 32 位的 flag 标志位,可以通过 DeviceFeaturesSel 控制输出哪一组特性集: DeviceFeaturesSel*32~ DeviceFeaturesSel*32+31	
DeviceFeaturesSel (设备特性选择)	0x14	只写	设备(宿主机)特性集选择	
DriverFeatures (驱动特性)	0x20	只写	能够被前端驱动支持并激活的设备 特性,通过 DriverFeaturesSel 可以 控制当前配置的是那一组特性集	
DriverFeaturesSel (驱动特性选择)	0x24	只写	激活的(客户机)特性集选择	
QueueSel (队列选择)	0x30	只写	虚拟队列索引,从0开始	
QueueNumMax	0x34	只读	被 QueueSel 选中的虚拟队列中元素的最大个数	
QueueNum	0x38	只写	驱动实际使用的虚拟队列 (QueueSel)中元素的个数	

QueueReady	0x44	读写	驱动向这个 bit 写 1 来通知设备它可以从这个虚拟队列(QueueSel) 上执行请求	
QueueNotify	0x50	只写	驱动向这个寄存器写值表示虚拟队列有新的 buffer 需要处理。如果还没有协商VIRTIO_F_NOTIFICATION_DATA,那么需要写入虚拟队列的编号,否则需要写入如下的数据结构:le32 { vqn:16; // 虚拟队列的编号next_off:15; next_wrap:1; },这个结构中包含的信息使得后端代码不需要查询内存中的virtqueue就可以知道虚拟队列中可用的数据,使效率得到提升	
InterruptStatus	0x60	只读	驱动读写这个寄存器来获得设备中断状态,bit0表示设备使用了虚拟队列中的一个 bufer, bit1表示设备的配置发生变化	
InterruptACK	0x64	只写	写入 InterruptStatus 定义的值来通 知设备对应的中断已经处理完毕	
Status	0x70	读写	获取或者设置当前设备的状态,写 入 0 会触发设备复位	
QueueDescLow	0x80	只写	Vring 中 desc 的起始物理地址的低32 位	Payload
QueueDescHigh	0x84	只写	Vring 中 desc 的起始物理地址的高 32 位	
QueueDriverLow	0x90	只写	Vring 中 avail 的起始物理地址的低 32 位	前端->后端
QueueDriverHigh	0x94	只写	Vring 中 avail 的起始物理地址的高 32 位	
QueueDeviceLow	0xa0	只写	Vring 中 used 的起始物理地址的低32 位	后端->前端
QueueDeviceHigh	0xa4	只写	Vring 中 used 的起始物理地址的高 32 位	
ConfigGeneration	0xfc	只读	用于获取判断设备的 config 是否在 driver 配置期间发生变化,具体是驱动先读取该值,然后根据 config 的内容开始配置,配置结束后,再读写该值,如果两次读到的值相同的,配置完毕,否则还还需要从新读取 config 进行配置,知道配置前	

			后从这个寄存器读到两个相同的值	
Config	0.400 i	读写	字节对齐, 存放设备特定的配置,	
Config	0×100+		空间大小取决于设备和驱动	

virtio device 创建的创建