Newton step: $\Delta X_{nt} = - (\nabla^2 f x) \nabla f (x)$ 所 √fx1>0, $\nabla f(x)^{T} \cdot \Delta X_{nt} = - \nabla f(x)^{T} \left(\nabla^{2} f(x)^{T} \right) \cdot \nabla f(x) \cdot \langle 0 \rangle$ XTAX > 0 YX * IF A>0. unless of x = 0. or x is optimal. Thus the Newton step is a decent direction. - DXnt minimizes the <u>second-order</u>. Taylor approximation of f at X: f(x+v) = f(x) + \partial f(x) V + \frac{1}{2} V^T \partial f(x) V. $D = \frac{\partial f(x+v)}{\partial v} \Rightarrow v^* = \Delta X_{nt}$. (check this) - If f is quadratic, then X+ SXnt is the exact minimizer of f.

For f twice differentiable, the quadrathe model of f will very occurate when x is near X*. X+DXnt is a good estimate of x*.

The Newton decrement $\lambda(x) = \left(\nabla f(x) \nabla f(x) \nabla f(x) \right)^{2} - \nabla f(x) \cdot \Delta X_{nt}$ The Kenton decrement is an estimate of based on the quadratic approximator $f(x) - f(y) = f(x) - f(x + \Delta x_{nt}) = \frac{1}{2} \lambda x_{nt}^{2}$ $\lambda(x) = \left(\Delta \times_{nt} \nabla^2 f(x) \Delta \times_{nt} \right)^{1/2}.$ $\Delta \times_{nt} = -\nabla^2 f(x) \nabla f(x).$

Nanton's mothed

Given a starting point $x \in dom f$.
and $\epsilon > 0$.

2. Stopping criterion. guit it is $\leq \epsilon$.

3. Line search. Choose Step size to by backtracking line search.

4. Update X := X + t DXnt.

If t=1 75 fixed, it is call the pure Newton method. C no line search). Otherwise it is called the damped Newton method. Equality constrained minimization problems. minimize f(x) dual problem is unconstrained, subject to Ax = b. where $f(x): \mathbb{R}^n \to \mathbb{R}$ is convex and twice pxn continuously differentiable and $A \in \mathbb{R}$ with rank(A) = p < n. - Optimately condition (KKT condition) x* is optimal if there exists a v* such that $\nabla f(x') + A^T v^* = 0$, $Ax^* = b$. $L(x, v) = f(x) + v^T (Ax - b)$. The primal problem $0 = \sqrt{x} L(x^*, v^*)$ Newton's method with equality constraints. - The initial point must be faisible. (i.e. $x \in dom f$, and $Ax^{(0)} = b$). - The definition of the Newton step is modified to take the equality constraints into account. The Nenton step DXnt is a fersible direction, i.e. ADXnt = 0. $X^{t} := X + t \triangle X nt.$ Need $Ax^{\dagger}=b$. $Ax+t\triangle Xnt)=Ax+t(A \triangle Xnt)$ = b

called

KKI matrix. A V = 0