Intro to Gradient Tree Boosting

Introduction

Goal

- Ensemble model
- Component models are diverse

Previous Strategies

- 1. Pick models that are different from each other in some way:
 - different model structure
 - different training sets (bagging)
 - different use of features
- 2. Estimate the models totally separately from each other
- 3. Put them together by averaging, majority vote, or stacking

Specific example: random forests

- Each tree used a different training set (bootstrap sample)
- Each tree uses a random subset of features in searching for each split.
- The trees are all estimated separately, then predictions are combined later.
- For example, for regression:

$$\hat{f}(x_i) = \frac{1}{B} \sum_b \hat{f}^{(b)}(x_i)$$

 $\hat{f}(x_i)$ is the random forest prediction

 $\hat{f}^{(b)}(x_i)$ represents the prediction from one tree in the forest

New Strategy: Boosting

Boosting takes a sequential approach to estimation:

- 1. Start with a simple initial model (e.g., for regression start by predicting the mean).
- 2. Repeat the following:
 - a. Fit a model that is specifically tuned to training set observations that the current ensemble does not predict well
 - b. Update the ensemble by adding in this new model

Why is this a good idea?

• New component models are specifically different from what's already in the ensemble!

A Specific Example: Gradient Tree Boosting

Let's start with building some intuition for the method, and define it more carefully later.

In this example, our component models will be "stumps": trees with only one split.

Here's a made up regression problem, and an initial prediction for each observation, given by the sample mean for the response variable.

Current Ensemble Predictions

Current Component Model Predictions

Current Ensemble Predictions

Current Component Model Predictions

Current Ensemble Predictions

Current Component Model Predictions

Current Ensemble Predictions

Current Component Model Predictions

Current Ensemble Predictions

Current Component Model Predictions

Current Ensemble Predictions

Current Component Model Predictions

Current Ensemble Predictions

Current Component Model Predictions

Current Ensemble Predictions

Current Component Model Predictions

Current Ensemble Predictions

Current Component Model Predictions

Current Ensemble Predictions

Current Component Model Predictions

Current Ensemble Predictions

Illustration of Learning Rate

• Learning Rate: Multiply predictions from our new component model by a small weight like 0.01. Prevents us from immediately overfitting training data. Comparing step 1 with learning rate 1 and learning rate 0.1:

Estimation with xgboost ("eXtreme Gradient Boosting")

- Data scientists have gotten better at catchy names since the days of Type I/Type II errors.
- One of several commonly used implementations of gradient boosting. Written in C, interfaces to other languages like R and python
- Estimation can be done via the train function in the caret package.

Let's look at the lidar data set:

```
tt_split <- caret::createDataPartition(lidar$logratio, p = 0.8)
lidar_train <- lidar %>% slice(tt_split[[1]])
lidar_test <- lidar %>% slice(-tt_split[[1]])

ggplot(data = lidar_train, mapping = aes(x = range, y = logratio)) +
    geom_point()
```



```
library(caret)
xgb_fit <- train(</pre>
  logratio ~ range,
  data = lidar_train,
  method = "xgbTree",
  trControl = trainControl(method = "cv", number = 10, returnResamp = "all"),
  tuneGrid = expand.grid(
   nrounds = c(10, 50, 100),
    eta = 0.3, # learning rate; 0.3 is the default
    gamma = 0, # minimum loss reduction to make a split; 0 is the default
    max_depth = 1:5, # how deep are our trees?
    subsample = c(0.8, 1), # proportion of observations to use in growing each tree
    colsample_bytree = 1, # proportion of explanatory variables used in each tree
    min_child_weight = 1 # think of this as how many observations must be in each leaf node
  )
)
xgb_fit$results %>% select(nrounds, max_depth, subsample, RMSE)
```

```
##
     nrounds max_depth subsample
                                     RMSE
## 1
          10
                    1
                            0.8 0.08730318
## 4
          10
                    1
                            1.0 0.08668356
                   2
## 7
          10
                            0.8 0.08601407
## 10
                   2
          10
                            1.0 0.08837704
## 13
          10
                    3
                            0.8 0.08885059
                   3
## 16
          10
                           1.0 0.09160769
```

```
## 19
           10
                       4
                                0.8 0.09198080
                                1.0 0.09411309
## 22
                       4
           10
## 25
           10
                       5
                                0.8 0.09230264
## 28
           10
                       5
                                1.0 0.09614579
## 2
           50
                       1
                                0.8 0.09002320
## 5
           50
                       1
                                1.0 0.08884638
## 8
           50
                       2
                                0.8 0.09982263
## 11
                       2
           50
                                1.0 0.10238349
## 14
           50
                       3
                                0.8 0.10497632
                       3
## 17
           50
                                1.0 0.10824797
## 20
           50
                       4
                                0.8 0.11068940
## 23
                       4
           50
                                1.0 0.11058551
## 26
           50
                       5
                                0.8 0.11197533
## 29
           50
                       5
                                1.0 0.11367366
## 3
          100
                       1
                                0.8 0.09282210
## 6
          100
                       1
                                1.0 0.09134740
## 9
          100
                       2
                                0.8 0.10732604
                       2
## 12
          100
                                1.0 0.10824223
## 15
                       3
                                0.8 0.10952251
          100
## 18
                       3
                                1.0 0.11248027
          100
                       4
## 21
                                0.8 0.11385201
          100
## 24
          100
                       4
                                1.0 0.11522892
## 27
                       5
          100
                                0.8 0.11633177
## 30
          100
                       5
                                1.0 0.11669585
```

Looks like we may be overfitting; our best RMSE is with the lowest values of max depth and nrounds. Let's try a lower learning rate. Also, subsample wasn't helpful. Let's just stick with subsample = 1.

```
library(caret)
xgb_fit <- train(</pre>
  logratio ~ range,
  data = lidar_train,
  method = "xgbTree",
  trControl = trainControl(method = "cv", number = 10, returnResamp = "all"),
  tuneGrid = expand.grid(
    nrounds = c(5, 10, 20, 30, 40),
    eta = c(0.1, 0.2, 0.3), # learning rate; 0.3 is the default
    gamma = 0, # minimum loss reduction to make a split; O is the default
    max_depth = 1:2, # how deep are our trees?
    subsample = 1, # proportion of observations to use in growing each tree
    colsample_bytree = 1, # proportion of explanatory variables used in each tree
    min_child_weight = 1 # think of this as how many observations must be in each leaf node
  )
)
xgb_fit$results %>% filter(RMSE == min(RMSE))
```

The best tuning parameter values were the middle of the ranges of values we tried (or at the edge of possible values, in the case of max_depth); seems OK.

Let's look at the predictions:

```
lidar_test <- lidar_test %>%
mutate(
   logratio_hat = predict(xgb_fit, lidar_test)
)
```

```
ggplot() +
  geom_point(data = lidar_train, mapping = aes(x = range, y = logratio)) +
  geom_point(data = lidar_test, mapping = aes(x = range, y = logratio), color = "orange") +
  geom_line(data = lidar_test, mapping = aes(x = range, y = logratio_hat), color = "orange")
```

