2. p-4 импульс, x-4 - координата, u-4 - скорость, w - 4-ускорение. Сопоставьте представленные скалярные произведения ответам. Здесь скалярные произведения записаны в форме (a,b)

3. Какие из перечисленных величин не являются абсолютными

Напряженность магнитного поля, Плотность заряда (точно, проверено методичкой)

(Скрин из Файла Анатолия)

Вопрос 13	Какие из перечисленных величин <mark>не являются абсолютными</mark>
Пока нет ответа Балл: 1,00 Р Отметить	плотность заряда
вопрос	квадрат 4-ускорения В Квадрат скалярного произведения напряженности электрического поля и вектора индукции (Е ⋅ В) 4-скорость
	Напряженность магнитного поля

(Из большого файла)

док-ва из методички

ренца. Квадрат 4-ускорения и произведения 4- ускорения на 4-координату или <mark>4-скорость</mark> - инвариантные величины в Лоренцевских системах отсчета.

5. Какие величины являются инвариантами в СТО?

Точно скалярное произведение 4-векторов, $2(B^2 - E^2)$, $(E^*B)^2$

Вопрос 5 Ответ сохранен Баля: 1,00	Какие величины являются инвариантами в СТО? скалярное произведение 4-векторов (${f B}\cdot{f E}$)
вопрос	□ 4 - потенциал □ (В · Е)² □ интервал
	$2(B^2 + E^2)$ $(2(B^2 - E^2))$ $4 - TOK$

(Скрин из Файла Анатолия)

Док-ва из методички

что выполняется равенство (13.24). ◀

Пример [13] § 2]. 2 Доказать, что для любых 4-векторов их скалярное произведение является <mark>инвариан</mark>том при преобразованиях Лоренца,

Несмотря на относительный характер электромагнитного поля из компонент поля можно составить две инвариантные величины:

$$J_1 = 2(B^2 - E^2); J_2 = (\mathbf{E} \cdot \mathbf{B})^2.$$
 (13.56)

(Из большого файла)

6) Во сколько раз амплитуда прошедшей волны на границе раздела двух сред при нормальном падении волны (при n=1,5) меньше амплитуды падающей волны. Допустимая погрешность ответа 0.01

Ответ:0,8

Вопрос 6 Ответ сохранен		о раз амплитуда прошедшей волны на границе раздела двух сред при нормальном падении волны (при n=1,5) меньше амплитуды падающей воль сть ответа 0.01	ны
Балл: 2,00 № Отметить вопрос	Ответ:	98	

7) Чему равна критическая частота волновода ТМ11 моды, деленная на скорость света, если в прямоугольном волноводе стороны равны a = b = Pi. Ответ представьте с точностью 0,001 (0,072?)

ФОРМУЛА: частота/с = sqrt((n^2*pi^2/a^2) + (m^2*pi^2/b^2)) где n и m это индексы у ТМ (в данном случае 11) и так ответ для этой задачи !!! 2,507 !!!

Чему р 0,001	авна критическая частота волновода	${ m M}_{11}$ моды, деленная на скорость света, если в прямоугольном волноводе стороны равны ${ m a}=b=$
Ответ:	0,113	

(Скрин из Файла Анатолия)

		волновода ТМ $_{11}$ моды, деленная на скорость света, если в прямоугольном волноводе стороны равнь
a = b =	$=\pi$. Ответ представьте с	точностью 0,001
-		
A CONTRACTOR OF THE PARTY OF TH		

(Из большого файла)

8) у линии передач энергия вытекает из проводника (Да)

Вопрос 12	у линии передач энергия вытекает из проводника
Ответ	
сохранен	Выберите один ответ:
Балл: 1,00	• Верно
∜ Отметить вопрос	О Неверно

9) Если источник колебаний движется на наблюдателя, то возникает фиолетовое смещение частоты

(Верно)

ДОК-ВО ИЗ МЕТОДИЧКИ

называемый *продольный эффект Доплера*. В частном случае $\theta=0$, волновой вектор совпадает с направлением скорости движения источника, источник движется на наблюдателя и возникает фиолетовое смещение. При

(В контексте света это означает, что волны сжимаются, длина волны уменьшается, а частота увеличивается, что соответствует смещ, при котором наблюдаемая частота увеличивается. эффект ДоплераКогда источник колебаний (например, света) движется к наблюдателю, происходит конца спектра (короткие длины волн).

Если источник света движется **от** наблюдателя, возникает **красное смещение** (увеличение длины волны и уменьшение частоты).)

Если источник колебаний движется на набл	пюдателя, то возника	ет фиолетовое смеш	ение частоты
Выберите один ответ:			
Верно			
Неверно			

10) Какой гейт изображен на рисунке

11) Какой максимальный процент от массы частицы можно перевести в энергию? В ответ введите целое число без знака процента.

(Верно)

	one on the contract of the con	nomic repetition to the	В ответ введите целое число без знака процента
Ответ:	100		

12) В контуре с током сила тока сдвинута по фазе относительно фазы индуктивности (Неверно)

В контуре с током сила тока сдвинута по ф	азе относитель	но фазы и	ндуктив	вности
Выберите один ответ:				
Верно				
Неверно				

(Скрин из Файла Анатолия)

Выберите один ответ:	
Верно	
• Неверно	

(Из большого файла)

13) Линейка длины l = 1 метр (в собственной системе координат) движется относительно покоящегося наблюдателя со скоростью v = 0.9c (c- скорость света). Какова длина данной линейки в сантиметрах, измеренная неподвижным наблюдателем? В качестве ответа введите число с точностью 0.001 см.

		нной системе координат) движется относительно покоящегося наблюдателя со скоростью $v=0.9c$ (с- скорость света). Какова длина данноеподвижным наблюдателем? В качестве ответа введите число с точностью 0.001 см.
Ответ:	43,589	
ФОР	JEHИЕ ИЗ МЕТ РМУЛА: l=lo*s	··
ОТВ		нейки, v - скорость ЮЙ ЗАДАЧИ !!!43,589!!!
ОТВ (Скр	БЕТ ДЛЯ ДАНІ рин из Файла А	нейки, v - скорость ЮЙ ЗАДАЧИ !!!43,589!!!

(Из большого файла)

14) Отметьте верные названия объектов

Отм	иетьте верные названия объектов
	$F_{lpha,eta}$ -Контравариантный тензор второго ранга
	$F^{lpha,eta}$ -Ковариантный тензор второго ранга
	$F^{lpha,eta}$ -Контравариантный тензор второго ранга
	$F_{lpha,eta}$ -Ковариантный тензор второго ранга
	$F^{\alpha}_{\ eta}$ -Смешанный тензор второго ранга

ИЗ МЕТОДИЧКИ

то $F^{\alpha\beta}$ образуют компоненты контравариантного тензора второго ранга.

то $F_{\alpha\beta}$ образуют компоненты ковариантного тензора второго ранга. Наконец,если N^2 величин $F^{\alpha}_{\ \beta}$ в системе многомерных коорди-

то $F^{\alpha}_{\ \beta}$ образуют компоненты смешанного тензора второго ранга.

15) Чему равно булевское выражение на линии Out при заданных входных булевских переменных A,B,C,D. Ответ в алгебраическом виде запишите заглавными латинскими буквами без пробелов. Например так (A+CB)D или ABCD или (A+B)(C+D)... Знак умножения в произведении не использовать

(AB)+(CD)

16) Система координат S' движется относительно покоящейся системы координат S со скоростью v = 0.99c (c - скорость света). В системе S' скалярный потенциал ф'. Во сколько раз скалярный потенциал в системе S отличается от ф? Ответ можно записать с точностью 0.001. В ответе (в результате округления результата) надо записать не менее трех значащих цифр после запятой

(Верно)

скаляр	ординат S' движется относительно покоящейся системы координат S со скоростью $v=0.99c$ (с - скорость света). В систег потенциал в системе S отличается от ϕ' ? Ответ можно записать с точностью 0.001. В ответе (в результате округления резуль е запятой	
Ответ:	089	

17) релятивистский импульс частицы массы m всегда больше нерелятивистского импульса при заданной скорости

(Верно?)

релятивистский импульс частицы массы m всегда больше нерелятивистского импульса при заданной скорости
Выберите один ответ:
• Неверно

ИЗ МЕТОДИЧКИ

ну хз тут пишут, что если v сильно меньше скорости света, то они совпадают

Релятиви стские определения энергии и импульса в ([13.31]) отличаются от определений энергии и импульса используемых в механике Ньютона и только в предельном случае $v \ll c$ релятиви стские и нерелятиви стские выражения совпадают. Для практических нужд уравнения ([13.29]) удобнее писать в

18) В каких опытах демонстрируются противоречия для понятия «эфир»? Опыты Физо Абберация звезд

МЕТОДИЧКА ПОДТВЕРЖДАЕТ, ЧТО ОПЫТЫ ФИЗО И АББЕРАЦИЯ ЗВЁЗД

Вка	ких опытах демонстрируются противоречия для поняти	я "эфир"?
	опыты Физо	
	аберрация звезд	
	опыты Милликена	
	опыты Фарадея	

(В большом файле мелькает дважды с разными вариантами ответа, но один из них сходится с файлом Анатолия)