Team Info (only fill out for the sheet to be turned in)

Team Name:			
Group members (up to four):	1.	2.	
	3.	4.	
Instructions Only one sheet per team will be turne but then the group as a whole should can take home their own sheets.			-
Goals 1. Be able to convert between no	umber systems		
1. Introductory Practice The set of digits in the base-10 (decir	mal) number system is {0, 1, 2, 3, 4	4, 5, 6, 7, 8, 9}	
a) Write out the set of digits in the oc	ctal (base-8) number system		(/1)
b) Write out the set of digits in the bi	nary (base-2) number system		(/1)
c) Write out the set of digits in the he	exadecimal (base-16) number system	m	(/1)

2. Digits

For the decimal number 2,368, we can extend this as:

Thousands 10 ³	Hundreds 10 ²	Tens 10 ¹	Ones 10 ⁰
2	3	6	8

And then as the mathematical equation $2 \cdot 10^3 + 3 \cdot 10^2 + 6 \cdot 10^1 + 8 \cdot 10^0$

For the binary number 0100 0001, we can write it as:

2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
0	1	0	0	0	0	0	1

And then as: $1 \cdot 2^6 + 1 \cdot 2^0$

a) Write out the number $(19)_{10}$ (19 base-10) as a mathematical equation (__/1)

,	(- /10 (,	1	\ <u> </u>
	10 ¹		10)0

b) Write out the number $(0101101)_2$ (binary) as a mathematical equation (__/1)

2 ⁵	2^4	2 ³	2 ²	2 ¹	2 ⁰

c) Write out the number $(FFAA66)_{16}$ (hexadecimal) as a mathematical equation (__/1)

16 ⁵	16 ⁴	16 ³	16 ²	16 ¹	16°

3. Converting

Algorithm for converting a decimal number to *base b*:

- 1. Input a natural number *n*
- 2. While n > 0, do the following:
 - 1. Divide n by b and get a quotient q and remainder r.
 - 2. Write *r* as the next (right-to-left) digit.
 - 3. Replace the value of n with q, and repeat.
- a) Convert $(35)_{10}$ to binary $(\underline{\hspace{0.4cm}}/1)$

b) Convert $(125)_{10}$ to binary (__/1)

c) Convert $(123)_{10}$ to base-5 (__/1)

Hexadecimal to Binary							
Hex	0	1	2	3			
Binary	0000	0001	0010	0011			
		_	0	_			
Hex	4	5	6	7			
Binary	0100	0101	0110	0111			
Hex	8	9	A (10)	B (11)			
Binary	1000	1001	1010	1011			
Hex	C (12)	D (13)	E (14)	F (15)			
Binary	1100	1101	1110	1111			
Example: Convert	: 11001 from binary	to hex					
1. Write out in chu	1. Write out in chunks of four: 0001 1001						
2. Swap out each '	2. Swap out each "nibble" with hex: 1 9						
$(11001)_2 = (19)_{16}$							
Example: Convert DAD from hex to binary							
1. Convert each di		D = 1101		D = 1101			
	(DA	(10110101010101010101010101010101010101	$(101)_2$				

a) Convert $(1F0B)_{16}$ to binary

b) Convert $(0100\,0110)_2$ to hexadecimal