Silnik uniwersalny

Program ćwiczenia

- 1. Oględziny zewnętrzne
- 2. Pomiar charakterystyk mechanicznych przy zasilaniu:
- a napięciem sinusoidalnie zmiennym (z sieci),
- b napięciem dwupołówkowo-wyprostowanym.
- c napięciem z regulatora tyrystorowego.
- 3. Pomiar sprawności silnika przy zasilaniu, jak w p. 2.
- 4. Obserwacja i pomiary silnika zasilanego poprzez regulator tyrystorowy.

Literatura:

R.Sochocki "*Mikromaszyny elektryczne*", wyd.Politechniki Warszawskiej, 1996 r., str.12-23 J.Rusek "*Elektrotechnika z elementami napędów*", Wyd.AGH, 1993 r. str. 161-163 J.Owczarek i in. "*Elektryczne maszynowe elementy automatyki*", WNT, 1983 r., str 424-427 A. M. Plamitzer "*Maszyny elektryczne*" Wyd. Nauk.-Tech., 1986 r. str. 643 – 648

Ćwiczenie EA3 Silnik uniwersalny

1. Cel ćwiczenia

Zapoznanie się z możliwościami pracy i podstawowymi charakterystykami silnika komutatorowego szeregowego małej mocy. Silniki tego typu są powszechnie stosowane do napędów różnych drobnych urządzeń przy zasilaniu z sieci napięcia przemiennego 220 V. W mniejszym stopniu używane są w układach sterowania i regulacji.

2. Program ćwiczenia

- 1. Wyznaczenie charakterystyk mechanicznych **n(T)** przy zasilaniu silnika poprzez autotransformator z sieci 220 V 50 Hz oraz przez prostownik dwudrogowy.
- 2. Wyznaczenia zależności sprawności silnika od mocy oddawanej $\eta(P_{odsil})$ przy zasilaniu jak wyżej.
 - 3. Obserwacja prądu i napięcia silnika zasilanego poprzez regulator tyrystorowy.

3. Wykonanie ćwiczenia

Wszystkie pomiary wykonuje się równocześnie, zmieniając jedynie sposób zasilania silnika

3.1. Zasilanie przez prostownik

Silnik zasila się poprzez autotransformator regulacyjny i prostownik 1-fazowy w układzie mostkowym. Układ pomiarowy stanowi watomierz, amperomierz magnetoelektryczny oraz woltomierz. Jako hamulec służy prądnica magnetoelektryczna obciążona regulowanymi rezystancjami (1000 + 1000 + 230 Ω). Pomiar prędkości wykonywany jest przy pomocy prądniczki tachometrycznej, synchronicznej podłączonej do przyrządu wskazówkowego.

Pomiary należy rozpoczynać od uruchomienia silnika przy obniżonym napięciu i wyregulowaniu prędkości obrotowej przy biegu jałowym na 5000 obr/min. Wymaga to zasilania napięciem ok. 110 V=. Kolejne punkty pomiarowe uzyskuje się po włączeniu rezystancji na zaciski prądnicy hamulcowej. Na zaciskach prądnicy należy mierzyć prąd i napięcie. Pomiary należy wykonywać w zakresie od 5000 do 2500 obr/min.

<u>Uwaga:</u> Po stronie zasilania silnika istotny jest pomiar mocy pobieranej, wskazywanej przez watomierz. Woltomierz i amperomierz służą jako wskaźniki pomocnicze. <u>Nie wolno określać mocy pobieranej jako U*I!</u>

Dla każdego punktu pomiarowego należy odczytywać:

- napięcie zasilania (utrzymywać stałe w czasie pomiarów)
- prąd zasilający silnik (kontrolnie nie powinien przekroczyć 1 A)
- moc pobieraną P_{pob} (z watomierza)
- napięcie i prąd na zaciskach prądnicy hamulcowej
- prędkość obrotową zespołu.

3.2 Zasilanie napięciem przemiennym

W układzie zasilania bez prostownika należy kontrolować przyrządy elektromagnetyczne. Napięcie zmienne należy dobrać podobnie jak poprzednio (na biegu jałowym prędkość powinna wynieść 5000 obr/min). Jest to ok. 130 V.

3.3 Zasilanie z regulatora tyrystorowego

Silnik należy zasilić z regulatora tyrystorowego i tak dobrać kąt wysterowania aby na biegu jałowym silnik uzyskał prędkość 5000 obr/min. Pozostała część pomiarów jak w punkcie 3.1.

3.4 <u>Obserwacja działania silnika (odkurzacza) zasilanego poprzez regulator tyrystorowy</u>

Za pomocą komputera pomiarowego należy pokazać przebiegi prądu i napięcia dla różnych kątów wysterowania regulatora tyrystorowego. Następnie wykonać pomiary prędkości dla różnych kątów wysterowania regulatora. Kąty wysterowania należy określić z zarejestrowanych przebiegów napięcia, a prędkość na podstawie zarejestrowanego sygnału z impulsatora (jeden sygnał na obrót). Zamiast kąta wysterowania można podać wartość napięcia skutecznego (za regulatorem tyrystorowym).

4. Opracowanie wyników i wykonanie sprawozdania

Dla każdego punktu pomiarowego trzeba obliczyć:

- straty w uzwojeniu wirnika prądnicy hamulcowej $P_{cu} = R_a I^2$ [W] $(R_a = 26 \Omega)$
- straty mechaniczne prądnicy hamulcowej i tachoprądnicy oraz straty w żelazie prądnicy na podstawie zależności $P_0 = 1.2*n^2*10^{-6} + 1.1*n*10^{-3}$ [W]
- moc oddawaną przez prądnicę $P_{od} = U*I$ [W]

Moc pobierana przez prądnicę, a oddawana przez silnik jest równa sumie powyżej wyliczonych:

$$P_{pobp} = P_{od} + P_{cu} + P_0 = P_{odsil}$$

Moment na wale wynosi:

$$T=P_{pobp}/\omega$$

$$\omega = \pi * n / 30$$

Sprawność silnika:

$$\eta = P_{odsil} / P_{pobsil}$$

Po wykonaniu obliczeń wykonać należy wykresy:

- rys. 1 n = f(T) dla obu rodzajów zasilania
- rys. 2 $\eta = g(P_{odsil})$ dla obu rodzajów zasilania.

Dla silnika odkurzacza należy wykonać charakterystykę prędkości od kąta wysterowania regulatora tyrystorowego oraz opisać sposób wyznaczania prędkości i kąta wysterowania.

W podsumowaniu sprawozdania można dodać kilka uwag na temat pracy silnika uniwersalnego w różnych warunkach.

Akademia Górniczo-Hutnicza im. S.Staszica w Krakowie KATEDRA MASZYN ELEKTRYCZNYCH LABORATORIUM Elektrotechnika z napędami

,				
Cwiczenie		$\alpha \cdot i \cdot i$	•	1
1 W/1076116	H / \	111111111111111111111111111111111111111	111111111111111111111111111111111111111	7 <i>11</i> 1111
CWICZCIIIC	$\mathbf{L}_{\mathbf{A}}$	Dullun	MILLIVEIN	LLILV

	e wiezemie Eliko Stillio tilli, el Stillio								
Wyc	lz. EAIiE kier. AiR rok II Grupa ćw.	Grupa laborat.							
Lp	Imię i nazwisko	Ocena	Data zaliczenia						
	Data wykonania ćw.	Podpis							

- 2. Pomiar charakterystyk mechanicznych i sprawności a zasilanie napięciem wyprostowanym U =

n [obr/min]	P _{pobsil}	Ip	Up	Pod	Pcu	P ₀	P _{pob}	T	η
	[W]	[A]	[V]	[W]	[W]	[W]	[W]	[Nm]	

b - zasilanie napięciem przemiennym U =

n [obr/min]	P _{pobsil}	I_p	Up	P_{od}	P _{cu}	P_0	P _{pob}	Т	η
	[W]	[A]	[V]	[W]	[W]	[W]	[W]	[Nm]	

c - zasilanie z regulatora tyrystorowego

n [obr/min]	P _{pobsil}	I_p	\mathbf{U}_{p}	Pod	P _{cu}	P ₀	P _{pob}	T	η
	[W]	[A]	[V]	[W]	[W]	[W]	[W]	[Nm]	

Zależność prędkości od kąta wysterowania (lub wartości skutecznej napięcia)

n [obr/min]	kąt α (lub napięcie [V])

Data:	
Podpis:	