Lecture 14: Hypothesis Testing Part I

Chapter 4.3

Goals for Today

- ▶ Introduce Hypothesis Testing Framework
- ► Testing Hypotheses Using Confidence Intervals
- ► Types of Errors
- ► Testing Hypotheses Using p-Values

Statistical Hypothesis Testing

Example

We flip a coin many times and start to suspect that it is biased:

- ▶ H_0 : the coin is fair. i.e. the probability of heads is p = 0.5
- ▶ H_A : the coin is not fair. i.e. $p \neq 0.5$

	5 / 22
Analogy: US Criminal Justice System	
In the criminal justice system, the jury's verdict does NOT make any statement about the defendant being innocent, rather that there was not enough evidence to prove beyond a reasonable doubt that they were guilty.	

Crucial Concept: Conclusions of Hypothesis Tests

Analogy: US Criminal Justice System

Let's compare criminal trials to hypothesis tests:

Truth:

- ▶ Truth about the defendant: innocent vs guilty
- ► Truth about the hypothesis: H₀ or H_A

Decision:

- Verdict: not guilty vs guilty
- ▶ Test outcome: "Do not reject H₀" vs "Reject H₀"

Testing Hypotheses Using Confidence Intervals

Example on page 173: The average 10 mile run time for the Cherry Blossom Run in 2006 μ_{2006} was 93.29 min. Researchers suspect μ_{2012} was different:

- ▶ H_0 : average time was the same. i.e. $\mu_{2012} = 93.29$
- ▶ H_A : average time was different. i.e. $\mu_{2012} \neq 93.29$

	Testing Hypotheses Using Confidence Intervals	
L	<u> </u>	9/22
L		9 / 22
	Decision Errors	9/22
		9/22
		9/22
		9/22
		99/22
		9/22

Decision Errors

- Trade-off between these two error rates
 - procedures with lower type I error rates typically have higher type II error rates
 - vice-versa
- In other words, there is almost never a procedure that makes no type I errors and no type II errors. Some sort of balance between the two is required

-- --

Example: US Criminal Justice System

Defendants must be proven "guilty beyond a reasonable doubt" i.e. in theory they would rather let a guilty person go free, than put an innocent person in jail. So let:

- ► H₀: the defendant is innocent
- ► H_A: the defendant is guilty

thus "rejecting H_0 " = guilty verdict. i.e. putting them in jail

In this case:

- Type I error is putting an innocent person in jail (considered worse)
- ▶ Type II error is letting a guilty person go free.

Example: Airport Screening

An example of where type II error is much more serious: airport screening. Let:

 H_0 : passenger X does not have a bomb/weapon

H_A: passenger X has a bomb/weapon

Failing to reject H_0 when H_0 is false corresponds to not "patting down" passenger X when they really have a bomb/weapon. This is disastrous.

Hence the long lines at airport security.

12 / 22

Significance Level

Hypothesis testing is built around rejecting or failing to reject the null hypothesis

i.e. we do not reject H_0 unless we have strong evidence.

As a rule of thumb, when H_0 is true, we do not want to incorrectly reject H_0 more than 5% of the time.

i.e. $\alpha=0.05=5\%$ is the significance level.

With 95% confidence intervals from earlier, we expect it to miss the true population parameter 5% of the time. This corresponds to $\alpha=0.05.$

Thought experiment: p-Values

Say you flip a coin you think is fair 1000 times. Thus you expect 500 heads. Say you observe

- ▶ 501 heads? Do you think the coin is biased?
- ▶ 525 heads? Do you think the coin is biased?
- ▶ 900 heads? Do you think the coin is biased?

Intuitively, a p-value quantifies how extreme an observation is given the null hypothesis.

The smaller the p-value, the more extreme the observation, where the meaning of extreme depends on the context.

15 / 22

p-Value Definition

The p-value or observed significance level is the probability of observing a test statistic as extreme or more extreme (in favor of the alternative) as the one observed, assuming H_0 is true.

It is NOT the probability of H_0 being true. This is the most common misinterpretation of the p-value.

Exercise 4.28 on Page 177 on Sleep

A poll found that college students sleep about 7 hours a night. Researchers suspect that Reedies sleep more. They use a sample of n=110 Reedies to investigate this claim at an $\alpha=0.05$ level.

Exercise 4.28 on Page 177 on Sleep

Exercise 4.28 on Page 177 on Sleep	
	19 / 22
Exercise 4.28 on Page 177 on Sleep	
Exercise 1.25 on Fage 177 on Steep	

