Reti Logiche A - Parte I - Prova di venerdì 2 luglio 2004

Matricola		
Cognome	Nome	

Istruzioni

- Scrivere solo sui fogli distribuiti. Non separare questi fogli.
- È vietato portare all'esame libri, eserciziari, appunti e calcolatrici. Chiunque venga trovato in possesso di documentazione relativa al corso anche se non strettamente attinente alle domande proposte vedrà annullata la propria prova.
- Non è possibile lasciare l'aula conservando il tema della prova in corso.
- Tempo a disposizione: 1h:45m.

Valore indicativo di domande ed esercizi, voti parziali e voto finale:

Esercizio	1	(3	punti)	
Esercizio	2	(3	punti)	
Esercizio	3	(4	punti)	
Esercizio	4	(3	punti)	
Esercizio	5	(3	punti)	
Voto fina	ale: (16	punti)	

Data la seguente espressione logica:

la si semplifichi, utilizzando le proprietà delle algebre di commutazione. Riportare i passaggi e le proprietà utilizzate.

Soluzione:

b' + c

$$a'b'(e'+e) + ab'(f'+1) + cef + bce' + bcef' \qquad (distributiva)$$

$$a'b' 1 + ab'1 + ce(f + bf') + bce' \qquad (e'+e = 1, f'+1=1, distributiva)$$

$$a'b' + ab' + ce(f + b) + bce' \qquad (identità, f + bf'= f+b)$$

$$b'(a' + a) + cef + ceb + bce' \qquad (distributiva, distributiva)$$

$$b'1 + cef + cb(e + e') \qquad (a' + a = 1, distributiva)$$

$$b' + cef + cb1 \qquad (identità, e + e'=1)$$

$$b' + cef + cb \qquad (identità)$$

$$(b' + cb) + cef \qquad (distributiva)$$

$$b' + c + cef \qquad (b'+cb = b'+c, c+cef = c)$$

- Calcolare, con il metodo di quine McCluskey, gli implicanti primi

Soluzione:

		f1f2	
m0	0000	01	V
	I		

m1	0001	11	v
m2	0010	10	v
m8	1000	11	Α

m5	0101	11	V
m6	0110	10	v
m9	1001	10	v

m7	0111	11	V
m13	1101	01	v
m14	1110	11	Solo DC

		f1f2	
m0m1	000-	01	В
m0m8	-000	01	С

m1m5	0-01	11	D
m1m9	-001	10	Е
m2m6	0-10	10	F
m8m9	100-	10	G

m5m7	01-1	11	Н
m5m13	-101	01	I
m6m7	011-	10	L
m6m14	-110	10	M

Data la seguente tabella di copertura:

		F1 F2										
	m0	m1	m2	m3	m4	m5	m6	m7	m8	m9	m10	Costo
Α	Х	Χ										2
В				Х	Х				Х	Х		2
С						Х			Х			2
D		Χ	Χ					Χ			Χ	2
Ε									Х		Χ	3
F			Χ	Х	Х					Х		4
G	Х	Χ	Χ				Х	Χ	Х			4

- Si trovi una copertura minima utilizzando il metodo di Quine McCluskey visto a lezione, considerando con m_{xn} un generico mintermine.
- Descrivere ogni semplificazioni fatta per giungere alla soluzione. (Nel caso di B&B mostrare tutti i passaggi)

Soluzione:

F1=G+B F2=G+C+D+B

Utilizzando il modello algebrico, si consideri la rete logica definita dalle seguenti espressioni:

k=	a'b
q=	kc'e + b'c'a' + cd + de + da'
r=	bc'a' + a'cde' + cb' + d'b'
S=	c + d'
t=	kc'e' + b'c'e + de' + ab + de

dove {a, b, c, d, e} sono gli ingressi e {q, r, s, t} sono le uscite.

- 1. si calcoli il costo in termini di letterali della rete iniziale e se ne disegni il grafo;
- 2. si eseguano in sequenza le trasformazioni sotto elencante, mettendo in evidenza il costo associato. Dopo ogni trasformazione è necessario verificare che il costo associato (letterali) alla rete trasformata non sia peggiore di quello prima della trasformazione. Se il costo risulta peggiore, la trasformazione non viene considerata e si passa alla successiva. In caso contrario la trasformazione viene considerata efficace. Nota: il calcolo del costo ad ogni passo deve essere effettuato con espressioni nella forma SOP.
 - (a) Eliminare il nodo k.
 - (b) Decomporre r tramite fattorizzazione con algoritmo noto <u>ottenendo almeno un</u> <u>vertice già presente nella rete</u>. Le rimanenti sotto-espressioni risultanti dalla decomposizione possono essere dei nuovi vertici.
 - (c) **Estrarre da q e da t <u>due sotto-espressioni comuni ad entrambi</u>**. Le sotto-espressioni risultanti possono essere dei vertici già presenti nella rete o dei nuovi vertici.
- 3. si disegni il grafo associato alla rete finale trasformata, mettendo in evidenza il costo finale.

Soluzione

1.

	espressione	costo
k=	a'b	2
q=	kc'e + b'c'a' + cd + de + da'	12
r=	bc'a' + a'cde' + cb' + d'b'	11
s=	c + d'	2
t=	kc'e' + b'c'e + de' + ab + de	12
	Costo totale	39

2. (a)

	espressione	costo	
k=		0	-2
q=	a'bc'e + b'c'a' + cd + de + da'	13	+1
r=	bc'a' + a'cde' + cb' + d'b'	11	
s=	c + d'	2	
t=	a'bc'e' + b'c'e + de' + ab + de	13	+1
	Costo totale	39	0

accettata

$$r = bc'a' + a'cde' + cb' + d'b'$$

fattorizzazione di r secondo algoritmo noto: per ottenere almeno un vertice già presente nella rete è necessario **NON** fattorizzare rispetto a **c**, ma rispetto a **b**' e quindi rispetto ad **a**. Il risultato è il seguente

$$r = b'(c + d') + a'(bc' + cde')$$

dove
$$(c + d') = s e (bc' + cde') = i nuovo vertice$$

	espressione	costo	
k=		0	
q=	a'bc'e + b'c'a' + cd + de + da'	13	
r=	b's + a'i	4	-7
i=	bc' + cde'	5	+5
S=	c + d'	2	
t=	a'bc'e' + b'c'e + de' + ab + de	13	
	Costo totale	37	-2

Accettata

2. (c)

$$q = a'bc'e + b'c'a' + cd + de + da'$$

$$t = a'bc'e' + b'c'e + de' + ab + de$$

da cui

$$j = a'bc' + d$$

$$I = b'c' + d$$

	espressione	costo	
k=		0	
q=	je + la' + cd	6	-7
j=	a'bc' + d	4	+4
l=	b'c' + d	3	+3
r=	b's + a'i	4	
i=	bc' + cde'	5	
S=	c + d'	2	
t=	je' + le + ab	6	-7
	Costo totale finale	30	-7

Accettata

Dati due numeri decimali A=2.140625 e B=1.703125. Fornire la codifica completa in virgola mobile a singola precisione di A e B ed effettuare la somma A+B secondo il procedimento visto a lezione indicando tutti i passaggi relativi sia alla codifica che alla somma.

Soluzione