E1 215-O: Tutorial Questions

Linear and Non-linear Optimization

January 22, 2022

- 1. Find the largest open subset $E \in \mathbb{R}^2$ in which following functions are continuously differentiable, and write down the derivatives of these functions.
 - (a) $f: \mathbb{R}^2 \setminus \{\underline{0}\} \to \mathbb{R}, f(x) = \frac{-x_1}{\|x\|^3}$
 - (b) $f: [-1, \infty) \times [-1, \infty) \to \mathbb{R}, f(x) = \sqrt{x_1 + 1} \sqrt{x_2 + 1}$
- 2. Let $f : \mathbb{R} \setminus \{3\} \to \mathbb{R}$, $f(x) = (x-3)^{-2}$.
 - (a) Find a $c \in (4,5)$ such that $f'(c) = \frac{f(4) f(5)}{4 5}$.
 - (b) Find a $c \in (2,4)$ such that $f'(c) = \frac{f(4) f(2)}{4 2}$. Does it contradict mean value theorem?
- 3. Compute the gradient for the following functions $f: \mathbb{R}^n \to \mathbb{R}$
 - (a) $f(x) = a^T x$
 - (b) $f(x) = ||x||^2$
 - (c) $f(x) = x^T A x$, when A is symmetric
 - (d) $f(x) = x^T A x$, when A is not symmetric
- 4. Consider the function $f: \mathbb{R}^5 \to \mathbb{R}$, $f(x) = e^{\sum_{i=1}^5 ix_i}$
 - (a) Calculate the total derivative and Hessian of f at x = 0
 - (b) Determine the first and second order Taylor polynomials of f at x = 0
 - (c) Optional: Evaluate the second order Taylor polynomial at (0.1,0,0,0,0) and compare it with the actual value, do the same for $\mathbf{x} = (10,0,0,0,0)$, comment.
- 5. Calculate the Hessian for the following functions at the indicated point a
 - (a) $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x) = \frac{1}{x_1^2 + x_2^2 + 1}$ at $a = \underline{0}$
 - (b) $f: \mathbb{R}^2 \to \mathbb{R}, f(x) = \cos(x_1)\sin(x_2)$ at $a = (\pi/4, \pi/3)$
 - (c) $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x) = e^{2x_1 3x_2} \sin(5x_3)$ at a = 0
- 6. Consider a function $h: \mathbb{R}^n \to \mathbb{R}^n$, where $h = \begin{bmatrix} h_1(x) \\ h_2(x) \\ \vdots \\ h_n(x) \end{bmatrix}$. Compute the total derivative of the function
 - $f(x) = h(x)^T h(x)$. Assume that f is continuously differentiable.

- 7. If $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x, y) = \sin(xy)$ and x = s + t, $y = s^2 + t^2$
 - (a) Find $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial x}{\partial s}$, $\frac{\partial x}{\partial t}$, $\frac{\partial y}{\partial s}$ and $\frac{\partial y}{\partial t}$.
 - (b) Find the partial derivatives $\frac{\partial f}{\partial s}$ and $\frac{\partial f}{\partial t}$. Do you see a relation between them? state the relation.
- 8. Monty, the housefly, finds himself caught in the oven at point (0,0,1). The temperature at the points in the oven is given by the function, $T: \mathbb{R}^3 \to \mathbb{R}$.

$$T(x) = 10(x_1e^{-x_2^2} + x_3e^{-x_1^2})$$

Where the units are in Celsius. If Monty begins to move towards the point (2,3,1) at what rate (in deg/cm) does he find the temperature changing?

- 9. Find the lim inf and lim sup for the following sequences.
 - (a) $x_n = (-1)^n \times \frac{(n+5)}{n}$.
 - (b) $x_n = 1^n + (-1)^n$.
- 10. Find limit infimum for the following functions.
 - (a) $f: \mathbb{R} \to [-1, 1], f(t) = \sin(t)$ for $t \to \infty$
 - (b) $f: \mathbb{R} \to [-1, 1], f(t) = -\sin(t)$ for $t \to \infty$
 - (c) $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$, $f(t) = \frac{\log(|c|)}{t}$ for $t \to \infty$ and c is a constant.
- 11. Find limit supremum for the following functions.
 - (a) $f: \mathbb{R}\setminus\{0\} \to [-1,1], f(t) = \cos(\frac{1}{t})$ for $t \to \infty$
 - (b) $f: \mathbb{R} \to \mathbb{R}$, $f(t) = e^{\sin(t)}$ for $t \to \infty$.