Scilab Textbook Companion for Measurement Systems by E. O. Doebelin And D. N. Manik¹

Created by KRITI SUNEJA B.TECH

August 10, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Measurement Systems

Author: E. O. Doebelin And D. N. Manik

Publisher: Tata McGraw - Hill Education

Edition: 5

Year: 2007

ISBN: 9780070616721

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	t of Scilab Codes	
2	Generalized Configurations and Functional Descriptions of measuring instruments	6
3	Generalized Performance Characteristics Of Instruments	8
4	Motion and Dimensional Measurement	14
5	Force Torque and Shaft power measurement	25
6	Pressure and sound measurement	30
7	Flow measurement	39
8	TEMPRATURE MEASUREMENT	48

List of Scilab Codes

Exa 2.1	Error in measurement
Exa 3.1	Gaussian distribution
Exa 3.2	Combination of component errors in overall system
Exa 3.5	First order instrument
Exa 3.6	Step response of first order instrument
Exa 3.7	Adequate frequency response conditions for first o
Exa 4.1	Resistance strain gage
Exa 4.2	Rosette
Exa 4.3	Strain gage
Exa 4.4	Capacitance pick ups
Exa 4.5	Piezoelectric transducer
Exa 4.7	Seismic vibrations
Exa 4.8	Seismic velocity pick ups
Exa 4.9	Piezoelectric transducer
Exa 4.10	Seismic pick ups
Exa 4.11	Accelerometers
Exa 4.12	Strain gage
Exa 5.1	Load cell
Exa 5.2	Load cell
Exa 5.3	Load cell
Exa 5.4	Piezoelectric transducer
Exa 5.5	Torque measurement on rotating shaft
Exa 6.1	manometers
Exa 6.2	manometers
Exa 6.3	elastic transducers
Exa 6.4	design of pressure transducers
Exa 6.5	pressure gage
Exa 6.6	high pressure measurement

Exa 6.7	Mc Leod gage
Exa 6.8	Knudsen gage
Exa 6.9	sound measurement
Exa 6.10	sound measurement
Exa 7.1	Flow measurement
Exa 7.2	Anemometers
Exa 7.3	Gross volume flow rate
Exa 7.4	Gross volume flow rate
Exa 7.5	Gross volume flow rate
Exa 7.6	sonic nozzle
Exa 7.7	venturi
Exa 7.8	constant pressure drop
Exa 8.1	thermocouple
Exa 8.2	thermocouple and thermopile
Exa 8.3	electrical resistance sensors
Exa 8.4	thermistors
Exa 8.5	pyrometers

Chapter 2

Generalized Configurations and Functional Descriptions of measuring instruments

Scilab code Exa 2.1 Error in measurement

```
1 // Chapter 2_Generalized Configurations and
     Functional Descriptions of measuring instruments
2 // Caption_Error in measurement
3 //Ex_1 part_2 //page 22
4 disp("ts=0.1")
5 disp("ps=2.5")
6 disp("dT=20")
8 ts=0.1 //('enter the temperature sensitivity=:')
9 ps=2.5 //('enter the pressure sensitivity(in units
     /MPa) = : ')
10 dT=20 //('enter the temperature change during
     pressure measurement =: ')
          //('enter the pressure to be measured (in
     MPa) = : ')
12 error = (ts*dT)/(ps*P);
13 printf ('the error in measurement is \%fd percent \n',
```

error)

Chapter 3

Generalized Performance Characteristics Of Instruments

Scilab code Exa 3.1 Gaussian distribution

```
1 // Chapter_3 Generalized Performance Characteristics
      Of Instruments
2 // Caption: Gaussian Distribution
3 // Example 1
4 clc;
5 close;
6 disp("me=7")
7 \operatorname{disp}("\operatorname{stddev} = 0.5")
8 \text{ disp}("x = 6")
9 \text{ disp}("y=7.5")
10 \text{ me=7};
11 stddev=0.5;
12 x = 6 //('enter the lower limit of the range=:')
13 y= 7.5 //('enter the upper limit of the range=:')
14 n= 200 //('enter the number of samples=:')
15 disp("using k = abs((x-me)/((2^0.5)*stddev));")
16 k = abs((x-me)/((2^0.5)*stddev));
17 printf('Value of etal is %1.2 f \n',k)
```

```
19 p=abs((y-me)/((2^0.5)*stddev));
20 printf('Value of eta2 is \%1.2 \,\mathrm{f} \, \backslash \mathrm{n}', \mathrm{p})
21 //Using the gaussian probability error function
      table, find the error function corresponding to
      the value of k and p
22 //LET IT BE s
23 \text{ s} = 0.95
             // ('enter the error function corresponding
       to k value =: ')
24 F(x) = (1/2) + (1/2*s); // Probability of having lengths
      less than x
              // ('enter the error function
25 1= 0.68
      corresponding to p value =: ')
26 F(y) = (1/2) + (1/2*1); // Probability of having lengths
      less than y
27
28 printf ('probability of having length less than 6 cm
      is \%1.3 \, f ', F(x));
  printf('probability of having length less than 67.5
      cm is \%1.3 \, \text{f} ', F(y));
30
31 P(x) = abs(F(y) - F(x));
32 printf ("Number of samples in the given length range=
33 m = (n * P(x));
34 disp(m);
```

Scilab code Exa 3.2 Combination of component errors in overall system

```
rotating sheft
6 disp("R=1202 ")
7 \text{ disp}("F=45")
8 disp("L=0.397")
9 \text{ disp}("t=60")
10 R=1202
          //('Enter the revolutions of shaft during
      time t =: '
11 F=45 //('Enter the force at end oftorque arm=:')
12 L=0.397 //('Enter the length of torque arm=:')
13 t=60 //('Enter the time length of run=:')
14 \ W = (2 * \%pi * R * F * L) / t;
15 //Computing various partial dervatives
16 dWF = (2*\%pi*R*L)/t;
17 disp(dWF)
               //dWF represents dW/dF
18 dWR = (2*\%pi*F*L)/t;
19 dWL = (2*\%pi*F*R)/t;
20 dWt = -(2*\%pi*R*F*L)/(t^2);
21 //Let f, r, l and t represent the uncertainties
22 disp("f=0.18")
23 disp("r=1")
24 disp("l=0.00127")
25 \text{ disp}("t=0.5")
26 disp("Ea=(dWF*f)+(dWR*r)+(dWL*l)+abs(dWt*t);")
27 f=0.18 //('Enter the uncertainty in force =: ')
28 r=1 //('Enter the uncertainty in the no of
      revolutions =: ')
  1=0.00127
               //('Enter the uncertainty in the length
      =: ')
30 t=0.5 //('Enter the uncertainty in the time length
      of run =: ')
31 Ea=(dWF*f)+(dWR*r)+(dWL*1)+abs(dWt*t);
                                                  //
      absolute error
                                    ")
32 printf("The absolute error is
33 disp(Ea);
34 //To find total uncertainty
35 U = (((dWF*f)^2) + (dWR*r)^2 + (dWL*1)^2 + abs(dWt*t)^2)^0.5
36 printf("Total uncertainty is")
37 disp(U)
```

Scilab code Exa 3.5 First order instrument

```
1 // Chapter_3 Generalized Performance Characteristics
      Of Instruments
2 // Caption: First order instrument
3 // Example 5
4 //Page no. 96
5 d=.004 //('Enter the diameter of the diameter of
     the sphere in meters =: ')
6 p=13600 //('Enter the density of the liquid in
     glass bulb =: ')
7 c=150 //('Enter the specific heat of liquid(in j/
     kg degree centigrade) =: ')
8 U=40 //('Enter the heat transfer coefficient in W/m
     ^2-degree centigrade =: ')
9
10 Vb = (\%pi*d*d*d)/6; //Volume of sphere
11 Ab=%pi*d*d; //Surface area of sphere
12 timconstant=(p*c*Vb*1000)/(U*Ab); //time\ constant
13 disp(timconstant)
```

Scilab code Exa 3.6 Step response of first order instrument

```
1 // Caption: Step response of first order systems
2 // Example 6
3 // page 100
4 clc;
5 // Given: In air, probe dry timeconstant(tc)
=30s
6 // In water tc
=5s
```

```
7 //
             In air, probe wet
                                                            tc
      =20\,\mathrm{s}
8 // for t < 0,T=25 degree C(initial temperature)
           0 < t < 7, T=35 degree C(dry probe in air)
9 //
10 //
           7 < t < 15, T = 70 degree C(probe in water)
11 //
           15 < t < 30, T=35 degree C(wet probe in air)
12
13 // \text{case i T(a)} = 25
14 T(7) = 35 + (25 - 35) * %e^{(-(7/30))}
15 printf("Temperature at the end of first interval")
16 disp(T(7));
17 / case ii T(a) = T(7)
18 T(15) = 70 + (T(7) - 70) * %e^{-(-((15-7)/5))}
19 printf ("Temperature at the end of second interval")
20 disp(T(15));
21 / \text{case} iii T(a)=T(15)
22 T(30) = 35 + (T(15) - 35) * %e^(-((30-15)/20))
23 printf("Temperature at the end of third interval")
24 disp(T(30));
```

Scilab code Exa 3.7 Adequate frequency response conditions for first o

```
12 disp(H);
13 disp(phi)
14 printf("sinusoidal transfer function at 20rad/sec is
15 disp(H2)
16 disp(phi2)
17
18 printf("qo/K can be written as")
19
                 qo = 0.93K \sin(2t - 21.8) + (0.24K) 0.3 \sin
20 printf("
      (20 t - 76)")
21 //Suppose we consider use of an instrument with
      timeconstant = 0.002s
22 H=1/((1.6*(10)^{(-5)}+1)^{0.5};
23 phi = ((atan(-2*.002))*180)/\%pi;
24 H2=1/((1.6*(10^-3)+1)^0.5);
25 phi2=((atan(-20*0.002))*180)/\%pi;
26 printf("sinusoidal transfer function at 2 rad/sec is
      ")
27 disp(H);
28 disp(phi)
29 printf ("sinusoidal transfer function at 20rad/sec is
30 disp(H2)
31 disp(phi2)
32 printf("qo/K can be written as")
33
34 printf("
                  qo=K \sin(2t-0.23)+K 0.3\sin(20t-2.3)")
35 printf("Clearly, this instrument measures the given
      qi faithfully")
```

Chapter 4

Motion and Dimensional Measurement

Scilab code Exa 4.1 Resistance strain gage

```
1 //CHAPTER 4 Motion and Dimensional Measurement
2 //Caption : Resistance strain gage
3 // Example 1// Page 163
5 disp("Rg=120")
6 disp("E=200 *10^9")
7 disp("dL=3 ")
8 disp("dp=0.3")
9 \text{ disp}("v=0.3")
10 Rg=120 //('enter the resistance of strain gage=:')
11 E=200 *10^9 // given
12 dL=3 //('enter the percent change in the length of
      nthe rod due to loading =: ')
13 dp=0.3 //('enter the corresponding change in the
      resistivity of strain gage =: ')
14 v = 0.3
          // poissons ratio
15 \text{ e=dL/100};
16 \, dp_p = dp/100
17 disp("dR_R=dp_p+e*(1+2*v)")
```

```
18 dR_R=dp_p+e*(1+2*v)
19 Sg=dR_R/e;
20 printf('So the gage factor is %fd \n',Sg)
21 u_dr=0.02 //('enter the uncertainty in resistance =:')
22 u_sig=E*u_dr/(Rg*Sg)*10^-6;
23 printf('Stress uncertainty is %1.1 f MPa\n',u_sig)
24 // To calculate strain uncertainty
25 u_e=u_dr/(Rg*Sg)
26 printf('Strain uncertainty is %fd\n',u_e)
```

Scilab code Exa 4.2 Rosette

```
1 //CHAPTER 4 Motion and Dimensional Measurement
2 //Caption : Rosette
3 // Example 2// Page 168
4 Eh=625*10^-6 //('enter the circumferential strain
5 Ea= 147*10^-6 //('enter the longitudinal strain
     =: ')
6 E = 200 * 10^9
                 // given
7 v=0.3; // poissons ratio
8 // to calculate circumferential stress
9 sig_h=E/(1-v^2)*(Eh+v*Ea)*10^-6;
10 printf ('Circumferential stress (hoops stress) is %1
      .1 f MPa\n', sig_h);
11 sig_a=E/(1-v^2)*(v*Eh+Ea)*10^-6;
12 printf('Axial stress is %1.2 f M Pa\n', sig_a);
13 // To calculate ratio of stresse
14 disp("Let the ratio be represented by RR")
15 RR=sig_h/sig_a;
16 printf ('Ratio of stresses is %fd\n', RR)
17 disp("Let the ratio of strains be represented by SS"
18 SS=Eh/Ea;
```

Scilab code Exa 4.3 Strain gage

```
1 //CHAPTER 4 Motion and Dimensional Measurement
2 //Caption : Strain gage
3 // Example 3// Page 176
4 disp("Rg=120")
5 disp("Sg=2;")
6 disp("Rs=120000")
7 Rg=120; // given
8 Sg=2; // gage factor
9 Rs=120000 //('enter the value of shunt resistor
      =: ')
10 disp("The input bridge excitation is represented by
     Eex")
        //('enter the amplifier gain =: ')
12 // The shunt resistance has to be very large since
     we intend to measure only very small change in
      resistanc
13 \text{ eo} = 30 * 10^{-3}
                   //('enter the unbalanced bridge
      voltage =: ')
14 dR=Rg/(Rg+Rs);
15 r=1;//ratio of resistances of adjacent arms
16 Eex=eo*(1+r)^2/(r*dR*A);
17 printf ('The input excitation voltage is \%fd V \setminus n', Eex
18 p1=2 *(1+v) // bridge factor
19 Eo=.5 //('enter the voltmeter reading when shunt
      is removed =: ')
20 E_{axial}=Eo*(1+r)^2/(r*Sg*p1*Eex*A);
21 printf(' Axial strain is %fd\n ',E_axial)
22 E_trans=E_axial*v;
23 printf ('The transverse strain is -\%fd', E_trans)
```

Scilab code Exa 4.4 Capacitance pick ups

```
1 //CHAPTER 4 Motion and Dimensional Measurement
2 //Caption : Capacitance pick ups
3 // Example 4// Page 192
4 disp("h=.005")
5 disp("A=200*10^-6")
6 disp("n=0.03")
7 h=.005 //('enter the distance between the
      capacitors =: ')
  A=200*10^-6 //('enter the area of the transducer
      =: ')
          //('enter the non linearity =: ')
9 n = 0.03
10 w=.014 //('enter the side of the square capacitor
      =: ')
11 er=1 // given that air if filled
12 \text{ eo} = 8.85;
13 // to calculate the sensitivity of this transducer,
      let it be represented by c
14 c=eo*er*A/h^2;
15 printf ('sensitivity of the transducer is %1.2 f pF/m
     n',c)
16 // to calculate the sensitivity of the square moving
       plate sensor cl
17 cl=eo*er*w/h;
18 printf('the sensitivity of the square moving plate
      sensor is \%1.2 \,\mathrm{f} pF/m ',cl)
```

Scilab code Exa 4.5 Piezoelectric transducer

```
    1 //CHAPTER 4 Motion and Dimensional Measurement
    2 //Caption : Piezoelectric transducer
```

```
3 // Example 5// Page 207
4 g=15 //('enter the value constant g for the crystal
      =: ')
5 A = \pi ((5*10^-3)^2)/4 //('enter the area of cross
      section of the crystal =: ')
6 f=50 //('enter the frequency of sinusoidally
      varying pressure =: ')
    eoer=15*10^-9 // for the crystal
   E=120 *10^9 // youngs modulus of elasticity
            //('enter the thichness of the crystal =: ')
   Kq=g*eoer*A*E/t;
10
   printf('Charge sensitivity is %fd mC/m \n', Kq)
11
12
   Ccr=eoer*A/t;
13
   Camp = 2000 * 10^{-12};
   Ccable=100*10^-12;
14
15
   C=Ccr+Camp+Ccable;
                  //('enter the input impedance of the
16
    Ramp = 2000000
        amplifier ')
17
    Req=Ramp;
    tou=Req*C; // time constant
18
19
   // Let the amplitude ratio is given by EOP
20
   w = 2 * \%pi * f;
    EOP=Kq*t*w*tou/(C*E*sqrt(1+(w*tou)^2))
21
22
    printf ('The amplitude ratio is \%fd mV/V\n', EOP)
   // let the phase lag be represented by phi
23
24
    phi=360*atan(1/(w*tou))/(2*%pi);
25
    printf(' The phase lag is %fd deg',phi);
```

Scilab code Exa 4.7 Seismic vibrations

```
//CHAPTER 4_ Motion and Dimensional Measurement
//Caption : Seismic vibration
// Example 7// Page 232
disp("ty=0.6")
disp("fn=10")
```

```
6 disp("f=25")
7 \text{ disp}("M=0.15")
8 disp("xo=1.5*10^-3")
9 ty=0.6 //(' enter the damping ratio of seismic
      vibration pickup =: ')
10 fn=10 //('enter the natural frequency =:')
11 f=25 //('enter the frequency at which the table is
      vibrating = '
12 M=0.15 //( 'enter the seismic mass=:')
13 xo=1.5*10^{-3} //('enter the relative amplitude of
      the mass = :'
14 \text{ r=f/fn};
15 disp("xi=xo/((r^2)/sqrt((1-r^2)^2+(2*ty*r)^2));")
16 xi=xo/((r^2)/sqrt((1-r^2)^2+(2*ty*r)^2));
17 error = (xi - xo)/xo;
18 printf ('error in measurement is \%fd\n', error)
19 wn = 2 * \%pi * fn;
20 Ks=wn^2*M;
21 printf ('spring constant is \%fd N/m\n', Ks)
22 B=ty*(2*sqrt(Ks*M));
23 printf ('damping coefficient of pickup is %fdN-s/m\n
      ',B)
```

Scilab code Exa 4.8 Seismic velocity pick ups

```
//CHAPTER 4_ Motion and Dimensional Measurement
//Caption : Seismic velocity pickup
// Example 8// Page 235
disp("fn=4")
disp("S=500")
disp("m=0.2")
disp("v=1.5*10^-2")
fn=4 //('enter the natural frequency=:')
S=500 //('enter the sensitivity=:')
m=0.2 //('enter the mass =:')
```

```
11 v=1.5*10^-2 //('enter the maximum velocity with
      which the surface is vibrating =: ')
12 f=10 //('enter the frequency=:')
13 \text{ r=f/fn};
14 tou=0.2 // given
15 \text{ w}=2*\%\text{pi}*f;
16 eo=(v*S*r^2)/sqrt((1-r^2)^2+(2*tou*r)^2);
17 printf ('The peak voltage corresponding to 10Hz
      frequency is %fd mV\n',eo)
18 phi1=360*atan(2*tou*r/(1-r^2))/(2*%pi);
19 printf ('phase angle corresponding to the 10 Hz
      frequency is %fd deg\n',phi1)
20 f2=20
          //('enter the other frequency =: ')
21 r=f2/fn;
22 eo=(v*S*r^2)/sqrt((1-r^2)^2+(2*tou*r)^2);
23 printf ('The peak voltage corresponding to 20Hz
      frequency is %fd mV n', eo)
24 phi2=360*atan(2*tou*r/(1-r^2))/(2*%pi);
25 printf ('phase angle corresponding to the 20 Hz
      frequency is %fd deg\n',phi2)
```

Scilab code Exa 4.9 Piezoelectric transducer

```
//CHAPTER 4_ Motion and Dimensional Measurement
//Caption : Piezoelectric transducer
// Example 9// Page 237
disp("Ccr=1200")
disp("Kq=100")
disp("Cc=250")
Ccr=1200 //('enter the capacitance of the transducer =: ')
Kq=100 //('enter the charge sensitivity of the transducer =: ')
Cc=250 //('enter the capacitance of the connecting cable =: ')
```

```
10 //to calculate the sensitivity of transducer alone
11 Ktrans=Kq/Ccr;
12 printf ('the sensitivity of the transducer alone is
      \%fd V/micro m\n', Ktrans)
13 Camp=75 //('enter the capacitance of amplifier=:')
14 \quad \text{Ceq=Ccr+Cc+Camp}
15 Ktot=Kq/Ceq;
16 printf ('total sensitivity of the transducer is %fdV/
      micro m\n', Ktot)
17 Ramp=2*10^6 //('enter the resistance of the
      amplifier =: ')
18 \operatorname{disp}("tou=\operatorname{Ramp}*\operatorname{Ceg}*10^-12")
19 tou=Ramp*Ceq*10^-12;
20 e=5 //('enter the error in percent=:')
21 \text{ e1=1-(e/100)};
22 // let tou*w1=1
23 l=sqrt(e1^2/(1-e1^2));
24 f1=1/(2*\%pi*tou);
25 printf('The lowest frequency that can be measured
      with 5 per cent amplitude error by the entire
      system is %fd Hz\n',f1)
26 \text{ tou1=1/(2*\%pi*100)}
27 disp("Ceq1=tou1*10^12/Ramp")
28 Ceq1=tou1*10^12/Ramp
29 Creq=Ceq1-Ceq;
30 printf ('The capacitance that needs to be connected
      in parallel to extend the range of 5 percent error
       to 100 \, \text{hz} is \% \, \text{fd pF} \setminus \text{n',Creq})
31 K_hf=Kq/Ceq1
32 printf ('high frequency sensitivity is %fd V/micro m\
      n', K_hf
```

Scilab code Exa 4.10 Seismic pick ups

1 //CHAPTER 4_ Motion and Dimensional Measurement

```
2 //Caption : Seismic pickup
3 // Example 10// Page 238
4 disp("r1=0.2;")
5 disp("r2=0.6")
6 disp("tou=0.05")
7 r1=0.2;
           // given
8 r2=0.6
                //given
9 tou=0.05;
10 wn=1600 //('enter the natural frequency=:')
11 \operatorname{disp}("H1=1/\operatorname{sqrt}((1-\operatorname{r1}^2)^2+(2*\operatorname{tou}*\operatorname{r1})^2)")
12 H1=1/sqrt((1-r1^2)^2+(2*tou*r1)^2);
13 H1_{phase=-atan}((2*tou*r1)/(1-r1^2))*360/(2*%pi);
14 disp("H1_phase=-atan((2*tou*r1)/(1-r1^2))*360/(2*\%pi
      )")
15 H2=1/sqrt((1-r2^2)^2+(2*tou*r2)^2);
16 H2_{phase=-atan}((2*tou*r2)/(1-r2^2))*360/(2*%pi);
17 //In order to obtain the amplitude of relative
      displacement, transfer function must be
      multiplied by amplitude of the input signal and
      the static sensitivty of the pickup (1/wn^2) for
      each frequency
18 / \text{amp1=H1/wn}^2;
19 / \text{amp2=H2/wn}^2;
20 tou2=0.6; // given
21 H11=1/sqrt((1-r1^2)^2+(2*tou2*r1)^2);
22 H11_{phase=-atan}((2*tou2*r1)/(1-r1^2))*360/(2*%pi);
23 H22=1/sqrt((1-r2^2)^2+(2*tou2*r2)^2);
24 H22_{phase=-atan}((2*tou2*r2)/(1-r2^2))*360/(2*%pi);
25 / \text{amp11=H11/wn}^2;
26 / \text{amp22=H22/wn}^2;
27 printf ('the magnitude of the transfer function will
      be %fd and %fd while the phases will shift by %fd
       and \%fd for tou=0.05\n', H1, H2, H1_phase, H2_phase)
28 printf ('the magnitude of the transfer function will
      be %fd and %fd while the phases will shift by %fd
       and \%fd for tou=0.6\n', H11, H22, H11_phase,
      H22_phase)
```

Scilab code Exa 4.11 Accelerometers

```
1 //CHAPTER 4 Motion and Dimensional Measurement
2 //Caption : Accelerometer
3 // Example 11// Page 240
4 disp("fn=20000")
5 \text{ disp}("tou = 0.6")
6 disp("f=10000")
7 fn=20000 //('enter the natural frequency of the
      accelerometer =: ')
  tou=0.6 //('enter the daping ratio of the
      accelerometer =: ')
9 f=10000 //('enter the frequency at which transfer
      function is to be calculated =: ')
10 r=f/fn;
11 H_mag=1/sqrt((1-r^2)^2+(2*tou*r)^2);
12 H_{phase=atan}((2*tou*r)/(1-r^2))*360/(2*%pi);
13 printf(' The magnitude is %fd and phase is %fd deg\n
      ', H_mag, H_phase)
14 \text{ error} = (H_mag - 1) * 100/1;
15 printf ('Error at %fd Hz is %d percent \n', f, error)
```

Scilab code Exa 4.12 Strain gage

```
//CHAPTER 4_ Motion and Dimensional Measurement
//Caption : Strain gage
// Example 12// Page 172
Rg=120; // given
Sg=2 // gage factor is given
stress=7*10^6; // given
Ia=.03 // ('enter the gage current=:')
//maximum allowable bridge voltage is
```

Chapter 5

Force Torque and Shaft power measurement

Scilab code Exa 5.1 Load cell

```
1 //CHAPTER 5 Force, Torque and Shaft Power
      Measurement
2 //Caption : Load cell
3 // Example 1// Page 294
5 \text{ disp}("Sg=2;")
6 disp("Rg=120;")
7 \text{ disp}("v=0.3")
8 disp("E=210*10^9;")
9 Sg=2; // Strain gage factor
10 Rg=120; // Gage resistance  
11 v=0.3 // poissons ratio
12 E=210*10^9;
                // for steel
        //('enter the power dissipation capacity =: ')
14 // Looking for a suitable voltage measuring system
15 sig_f=700*10^6 //('enter the fatigue strength=:')
16 P_{max}=10000 //('enter the maximum load =: ')
17 // For a load cell of square cross-section d,
18 d=sqrt(P_max/sig_f);
```

Scilab code Exa 5.2 Load cell

```
1 //CHAPTER 5 Force, Torque and Shaft Power
      Measurement
2 //Caption : Load cell
3 // Example 2// Page 295
4 disp("b=.2")
5 \text{ disp}("h=.05")
6 disp("Sg=2")
7 disp("Rg=120")
8 disp(" sig_f = 150*10^6")
9 b=.2 //('enter the width of load cell=:')
         //('enter the thickness of load cell=:')
10 h = .05
11 Sg=2;
12 Rg = 120;
                    //('enter the fatigue strength =: ')
13 sig_f=150*10^6
14 E = 70;
            //(in GPa) for aluminium
15 \quad v = 0.33;
                      //poissons ratio
16 // Let dE/V_max be represented by W
17 W=Sg*sig_f/E;
18 printf('(dE/V)_max= %fd\n',W)
19 P_max=100000 //('enter the value of maximum load
      =: ')
20 l=sig_f*b*h^2/(6*P_max);
21
```

Scilab code Exa 5.3 Load cell

```
1 //CHAPTER 5 Force, Torque and Shaft Power
      Measurement
2 //Caption : Load cell
3 // Example 3// Page 296
4 Sg=2;
           //poissons ratio
5 v = 0.3;
           //('enter the excitation voltage =: ')
7 A=5*10^-4 //('enter the area of load cell=:')
            //(in Gpa) Youngs modulus
8 E = 200;
9 // Let sensitivity Eo/P be represented by Se
10 Se=Sg*(1+v)*Ei/(2*A*E)*.001;
11 printf ('Sensitivity of this load cell is %1.2f micro
       V/N \setminus n', Se)
12 \text{ Rg} = 120
           //given
13 Pd=1 //('enter the power dissipated in each gage=:')
14 Ei_max=sqrt(4*Rg*Pd)
15 Se_max=Sg*(1+v)*Ei_max/(2*A*E)*.001
16 printf ('The maximum density that can be achieved
      without endangering the strain gage sensors is %1
      .2 \, \text{fmicro V/N} \, \text{n', Se_max})
17 // Let (Eo/Ei) max be represented by Em
18 sig_f=600*10^6 //('enter the fatigue strength=:')
19 Em = Sg * sig_f * (1+v)/(2*E) * 10^-6
20 printf ('The voltage ratio is \%1.1 \text{ f mV/V'}, Em)
```

Scilab code Exa 5.4 Piezoelectric transducer

```
1 //CHAPTER 5 Force, Torque and Shaft Power
      Measurement
2 //Caption : Piezoelectric Transducers
3 // Example 4// Page 302
4 mc=0.04 //('enter the connector mass=:')
            //('enter the seismic mass=:')
5 m = 0.01
            //('enter the stiffness of the sensing
6 k = 10^9
      element =: ')
7 \text{ Sf} = .005
            //('enter the sensitivity of the
      transducer =: ')
8 Xi=100*10^--6 // ('enter the displacement amplitude
      of the shaker vibration =: ')
           //('enter the reading of voltage recorder
  Eo = .1
      connected to the transducer =: ')
10 wnc = sqrt(k/(m+mc));
11 R = 20;
           //20N (rms)
12 Z=(1/(m+mc))*(1/wnc^2)*R;
13 printf('Relative displacement is %fd',Z)
14 disp("wnc^2 is approx. 10^9. So,")
15 disp("Z is approx. 20nm(rms)")
16 f=100;
           // given
17
18 F=R-((2*\%pi*f)^2*(m+mc)*Xi);
19 printf ('Actual force transmitted to the plate is %fd
      N', F)
```

Scilab code Exa 5.5 Torque measurement on rotating shaft

Chapter 6

Pressure and sound measurement

Scilab code Exa 6.1 manometers

```
1 //CHAPTER 6 _ PRESSURE AND SOUND MEASUREMENT
2 // Caption : MANOMETERS
3 // Example 1 // Page 329
4 D1=0.1 //('Enter the diameter of well =:')
            //('Enter the diameter of the tube =:')
5 D2 = 0.01
6 g = 9.81;
7 pho_air=1.23 //('Enter the density of air in kg/m
     \hat{3} =: ')
8 pho_liquid=1200 //('Enter the density of liquid in
     manometer =: ')
9 h=1
          //('Enter the height by which liquid
     decreases in smaller area arm when exposed to the
      nominal pressure of p2 =: ')
10 // Let the pressure difference is represented by P=
     p1-p2
11 disp("The pressure difference is given by:")
12 disp("P=h*(1+((D2/D1)^2)*g*(pho_liquid-pho_air))")
13 P=h*(1+((D2/D1)^2)*g*(pho_liquid-pho_air))*10^-3;
14 printf ('So the pressure difference is given by %1.2 f
```

Scilab code Exa 6.2 manometers

```
1 //CHAPTER 6 _ PRESSURE AND SOUND MEASUREMENT
2 // Caption : MANOMETERS
3 // Example 2 // Page 329
4 pho_1=900
5 disp("pho_l=900") //(Enter the density of the
      fluid =: ')
6 Pa= 500000
7 disp("Pa= 500000") //('Enter the air pressure =:')
8 t = 298
                     //('Air is at what temperature(in
9 \text{ disp}("t=298")
      deg cent) =: ')
10 R = 287;
11 disp("R=287;")
12 g=9.81;
13 T=t+273;
14 disp("pho_a=Pa/(R*T);")
15 pho_a=Pa/(R*T);
16 printf ('The density of air is \%fd kg/m<sup>3</sup> \n',pho_a)
            //('Enter the difference in the height of
      the fluid in the manometer =: ')
18 \operatorname{disp}("\operatorname{Pres\_diff} = (g*h)*(\operatorname{pho\_l-pho\_a})")
19 Pres_diff=(g*h)*(pho_l-pho_a)*10^-3
20 printf ('The differential pressure is %1.2 f kPa\n',
      Pres_diff)
```

Scilab code Exa 6.3 elastic transducers

```
1 //CHAPTER 6 _ PRESSURE AND SOUND MEASUREMENT2 //Caption : Elastic Transducers
```

```
3 // Example 3 // Page 337
4 Sa = 1000
5 \text{ disp}("Sa=1000")
                    //('Enter the sensitivity of LVDT
       =: ')
6 // Properties of diaphragm
7 E=200*10^9
                //('Enter the value of modulus of
      elasticity =: ')
8 disp("E=200*10^9")
9 v=0.3 //('Enter the Poissons ratio=:')
10 disp("v=0.3")
           //('Enter the diameter of diaphragm=:')
11 d=0.2
12 disp("d=0.2]
                ")
13 R=d*(1/2);
14 P_{max}=2*10^6 //('What is the maximum pressure?')
15 disp("P_max=2*10^6")
          //('What is the density of steel?')
16 p = 7800
17 disp("Thickness is given by:")
18 disp("t=(3*P_max*R^4*(1-v^4)/(4*E))^(1/4);")
19 t=(3*P_max*R^4*(1-v^4)/(4*E))^(1/4)
20 T=t*1000;
21 printf('Thickness is \%1.1 \text{ f mm} \cdot \text{n'}, T)
22 //To calculate the lowest pressure in kPa which may
      be sensed by this instrument, resolution and the
       natural frequency of the diaphragm
23 y = .001
            //('Enter the l)east value of measurement
      =: ')
24 \text{ p_min} = (y*16*E*t^3)/(3*R^4*(1-v^2)*Sa)
25 printf ('So the minimum pressure and resolution is %d
       Pa \setminus n', p_min)
26 f = (10.21/R^2)*((E*t^2)/(12*(1-v^2)*p))^(1/2)
27 printf ('The natural frequency of diaphragm is %fd Hz
      ',f)
```

Scilab code Exa 6.4 design of pressure transducers

```
1 //CHAPTER 6 _ PRESSURE AND SOUND MEASUREMENT
2 //Caption : Design of Pressure Transducers
3 // Example 4 // Page 338
4 p_max=10*10^6 //('Enter the capacity of the
      transducer =: ')
5 D = .05
           //('Enter the diameter of diaphragm=:')
6 R = D/2;
7 v = 0.3;
          // poissons ratio
8 E=200*10^9;
9 // We know that
10 // y=3pR^4(1-v^2)/16t^3E
11 // if y<t/4, the non linearity is restricted to 0.3\%
12 //So t is given by
13 t=(3*p_max*R^4*(1-v^2)/(4*E))^(1/4)
14 disp(t)
15 printf('thickness comes out to be \%fd m\n',t);
16 Sr_max = (3*p_max*R^2)/(4*t^2)
17 printf('So the max radial stress is %fd Pa\n', Sr_max
18 printf ('The given fatigue strength is 500MPa\n')
19 if Sr_max > 500*10^6 then
         disp("The diaphragm must be redesigned");
20
21
         t1 = ((3*p_max*R^2)/(4*500*10^6))^(1/2);
22 printf ('The required thickness is \%fd m\n',t1)
23
24 else
25
       disp("The design is OK");
26 end
27 // Let the voltage ratio be represented by Err
28 Err = (820*p_max*R^2*(1-v^2))/(E*(t1^2))
29 printf ('The voltage ratio is \%fd\n', Err)
30 // For maximum power dissipation
31 PT=1
32 RT = 120
33 Ei=2*(PT*RT)^{(1/2)};
34 disp("Let the sensitivity of the transducer be
      represented by ss")
35 ss=(820*R^2*(1-v^2)*Ei)/(E*t1^2)
```

```
36 printf('sensitivity is %fd\n', ss)
37 // Part c
38 S_LVDT=(ss*16*t^3*E)/(3*R^4*(1-v^2)*Ei)
39 printf('SENSITIVITY OF LVDT IS %fd \n', S_LVDT)
```

Scilab code Exa 6.5 pressure gage

```
1 //CHAPTER 6 _ PRESSURE AND SOUND MEASUREMENT
2 //Caption : Pressure Gage
3 // Example 5 // Page 347
4 p_max = 10*10^6
                 //('Enter the maximum differential
      pressure ')
5 fn=20000 //(' Enter the frequency')
6 E=200*10^9; // modulus of elasticity
          // poissons ratio
7 v = 0.3;
            // density of steel
8 p = 7800
9 disp("Let t/R be represented by TR")
10 TR = ((3*p_max*(1-v^2))/(4*E))^(1/4)
11 // we know R^2/t = r2t = 10.21(Et^2/12(1-v^2)p)^0.5/R
             using it, we have
12 r2t = (10.21*sqrt(E/(12*(1-v^2)*p)))/fn
13 R=TR*r2t;
14 printf ('value of R is \%fd m\n', R)
15
16 t=R*TR;
17 printf(' value of t is \%fd m \n',t)
18
19 eo=8.85*10^-12
20 \text{ er} = 1.0006;
            //('Enter the distance between the plates
21 d = .001
      of capacitor =: ')
22 S=-(eo*er*\%pi*R^2)/d^2;
23 // variation of capacitor distance with respect to
      pressure is given by
24 q = (3*R^4*(1-v^2))/(16*E*t^3)
```

Scilab code Exa 6.6 high pressure measurement

```
1 //CHAPTER 6 _ PRESSURE AND SOUND MEASUREMENT
2 //Caption : High Pressure Measurement
3 // Example 6 // Page 357
          //('Enter the resistance of Mangnin wire
     =: ')
5 disp("R1=100")
6 b=25*10^-12; // standard for mangnin
7 disp("b=25*10^-12;")
8 disp("u=0.5")
9 u = 0.5
         //(' enter the uncertainty in measuring
      pressure for gage =: ')
10 // to calculate maximum uncertainty in differential
     pressure
11 udp=u*(10-0.1)*10^6/100;
12 \quad uR=R1*b*udp;
13 printf ('So the maximum uncertainty in measuring
      resistance is %fd ohm \n',uR)
14 //to calculate the output bridge voltage for 10 MPa
15 Ei=5 //('enter the input voltage=:')
16 disp("p1=0.1*10^6")
17 disp("R2=R1*(1+b*p1)")
18 disp("p2=10*10^6")
19 p1=0.1*10<sup>6</sup>
                 //('enter the pressure at which
     bridge is assumed to be balanced =: ')
20 R2=R1*(1+b*p1)
21 p2=10*10^6
              //('enter the pressure at which output
```

```
voltage is to be calculated =: ')
22 R3=R1*(1+b*p2);
23 dR=R3-R2;
24 r=1;
25 Eo=(r*dR*Ei)/((1+r)^2*R2)
26 printf(' The output bridge voltage is %fd volt\n', Eo
)
```

Scilab code Exa 6.7 Mc Leod gage

```
1 //CHAPTER 6 _ PRESSURE AND SOUND MEASUREMENT
2 //Caption : McLeod Gage
3 // Example 7 // Page 362
4 disp("Vb=150*10^{-6}")
5 disp("d=1.5*10^-3")
6 disp("a=\%pi*d^2/4;")
7 Vb=150*10^-6 //('enter the volume of the Mc Leod
      gage =: ')
8 d=1.5*10^{-3}
                 //('enter the diameter of capillary
      =: ')
9 a = \%pi * d^2/4;
                 //('enter the pressure for which the
10 p = 40 * 10^{-6}
      gage reading is to be noted =: ')
11 //y = (-p*area_cap + sqrt((p*area_cap)^2 - 4*p*area_cap*Vb)
      )) /(2*area_cap);
12 \ 1=p*a;
13
14 y=(sqrt(1^2+(4*1*Vb))-1)/(2*a)
15 printf ('The gage reading comes out to be %fd mof Hg\
     n',y)
```

Scilab code Exa 6.8 Knudsen gage

```
//CHAPTER 6 _ PRESSURE AND SOUND MEASUREMENT
//Caption : Knudsen Gage
// Example 8 // Page 363

disp("Td=40")
disp("Tv=300")
disp("p=2*10^-6")
Td=40 //('enter the temperature difference=:')
Tv=300 //('enter the gas temperature at which the force has to be calculated=:')
p=2*10^-6 //('enter the pressure(in m of Hg)=:')
pa=p*13600*9.81;
k=4*10^-4; // knudsen constant
F=(pa*Td)/(k*Tv);
printf('So the required force is %1.1f N',F)
```

Scilab code Exa 6.9 sound measurement

```
//CHAPTER 6 _ PRESSURE AND SOUND MEASUREMENT
//Caption : Sound Measurement
//Example 9// Page 369
disp("Lp=104")
Lp=104 //('enter the sound pressure level in decibles =: ')
disp("pa=20*10^-6;")
disp("p=sqrt(10^(Lp/10)*pa^2);")
pa=20*10^-6; // rms pressure threshold of hearing
p=sqrt(10^(Lp/10)*pa^2);
printf('root mean square sound pressure is %1.3fPa\n',p)
```

Scilab code Exa 6.10 sound measurement

```
1 //CHAPTER 6 _ PRESSURE AND SOUND MEASUREMENT
```

```
2 // Caption : Sound Measurement
3 // Example 10// Page 370
4 Lp1=75
           //('enter the sound level first machine =: ')
             //('enter the sound level second machine
5 \text{ Lp2} = 77
      =: ')
            //('enter the sound level third machine=:')
6 \text{ Lp3} = 79
7 disp("Since the noise levels are incoherent, the
      total sound pressure is the sum of the mean
      square value of the individual sound pressures")
8 disp("Lp_total=10*\log 10 (10^{\circ} (Lp1/10) + 10^{\circ} (Lp2/10) + 10^{\circ} (Lp2/10)
      Lp3/10))")
9 Lp_total=10*log10(10^(Lp1/10)+10^(Lp2/10)+10^(Lp3
      /10));
10 printf('The total sound pressure is %ddB', Lp_total)
11 //decibles are normally rounded off to the nearest
      integers
```

Chapter 7

Flow measurement

Scilab code Exa 7.1 Flow measurement

```
1 //CHAPTER 7_ Flow Measurement
2 //Caption : Flow Measurement
3 // Example 1// Page 406
           //('Entering the temperature(in k) of pitot
4 t = 293
      tube =: ')
                //('entering the air pressure in
5 p1=0.1*10<sup>6</sup>
      pitot tube =: ')
            //('entering the velocity of air in pitot
6 v = 10
      tube =: ')
7 R = 287;
8 disp("Density is given by:")
9 disp("pho1=p1/(R*t);")
10 pho1=p1/(R*t);
11 // dynamic pressure
12 Pd=pho1*v^2/2;
13 //we know that v=sqrt(2Pd/pho)
14 // dv/dP = 1/2(2/pho*Pd)^0.5
15 // Let the error or uncertainty in velocity is
      represented by Wv and in pressure by Wp
           //('entering the uncertainty in the
16 \text{ Wp}=1
      measurement of dynamic pressure =: ')
```

```
disp("Uncertainty in velocity is given by ")
disp("Wv=(1/2)*(2/(pho1*Pd))^0.5*Wp;")
Wv=(1/2)*(2/(pho1*Pd))^0.5*Wp;
per_unc=Wv*100/10;
printf('So the percentage uncertainty in the measurement of velocity is %fd %% \n',per_unc)
```

Scilab code Exa 7.2 Anemometers

```
1 //CHAPTER 7_ Flow Measurement
2 // Caption : Anemometers
3 // Example 2// Page 426
4 // To derive an expression for velocity across a hot
         wire anemometer in terms of the wire resistance
       Rw, the current through the wire Iw and the
       empirical constants CO and C1 and the fluid
      temperature.
5 disp("C0+C1(v)^{.}.5)(Tw-Tf)=Iw^{2}Rw")
6 disp("Rw= Rr[1+a(Tw-Tr)]")
7 \operatorname{disp}(\operatorname{"Rw}/\operatorname{Rr}=1+a(\operatorname{Tw-Tr})\operatorname{"})
8 disp("Tw-Tr=1/a[Rw/Rr-1]")
9 disp("Tw=1/a[Rw/Rr-1]+Tr")
10 disp("Co+C1(v)^0.5 = Iw^2Rw/Tw-Tf")
11 disp("so,")
12 \operatorname{disp}("v=1/C1[\{Iw^2Rw/(1/a[Rw/Rr-1]+Tr-Tf)]\}^2-C0")
```

Scilab code Exa 7.3 Gross volume flow rate

```
1 //CHAPTER 7_ Flow Measurement
2 //Caption : Gross volume flow rate(venturi)
3 // Example 3// Page 438
4 dp=0.02 //('entering the diameter of the line in which water is flowing=:')
```

```
//('entering the diameter of venturi =: ')
5 dt = 0.01
6 B = 0.5;
             // given
7 // The discharge coefficients remains in the flat
      portion of the curve for reynolds numbers 10<sup>4</sup> to
       10^6 \text{ Cd} = 0.95
8 u=8.6*10^-4
                 //('entering the viscosity =: ')
9 \text{ Cd} = 0.95;
10 Rn_min=10^4;
11 disp("Minimum flow rate is given by:")
12 \operatorname{disp}(\operatorname{mdot_min}=\operatorname{pi}*\operatorname{dp}*\operatorname{u}*\operatorname{Rn_min}/4")
13 mdot_min=%pi*dp*u*Rn_min/4
14 g=9.81;
15 printf ('Minimum flow rate at 25 deg cent is %1.3 f kg
      / s \ n', mdot_min)
16 pf=1000 // density of water
17 At=78.53*10^-6 //('entering the throat area=:')
                  //('entering the density of manometer
18 \text{ pm} = 13.6
      fluid =: ')
19
20 //h is the height of mercury column due to flow
21 disp("To calculate the mercury reading corresponding
       to minimum flow, using—")
22 disp("h_min = ((mdot_min * sqrt(1-B^4)) / ((sqrt(2*g*(pm-
      pf/pf))*pf*At*Cd)))^2;")
23 h_min=((mdot_min*sqrt(1-B^4))/((sqrt(2*g*(pm-pf/pf)))
      *pf*At*Cd)))^2;
24 //in mm
25 \quad H_min=h_min*1000
26 printf ('So the pressure reading observed for the
      given flow ratre is %1.1f mm of Hg\n', H_min)
                 //('entering the value of h maximum
27 \, h_max = .25
      =: ')
28 m_max = (pf*At*Cd*sqrt(2*g*(pm-pf/pf))*sqrt(h_max))/
      sqrt(1-B^4);
29 printf ('The maximum flow rate is %1.1 f kg/s\n', m_max
      )
```

Scilab code Exa 7.4 Gross volume flow rate

```
1 //CHAPTER 7_ Flow Measurement
2 //Caption : Gross volume flow rate (venturi)
3 // Example 4// Page 439
4 dt=0.15 //('entering the throat diameter=:')
5 \, dp = 0.3
             //('entering the upstream diameter =: ')
6 \text{ Cd=0.95};
7 B = 0.5;
8 \text{ pm} = 13600
                   //('entering the density of manometer
        fluid =: ')
9 At=\%pi*dt^2/4;
10 g=9.81;
11
12 pf=995.8
13 h = 0.2
              //('entering the height of mercury column
        due to flow (in m) =: ')
14 q=pf*At*Cd;
15 w = (1-B^4)^(1/2);
16 e = sqrt(2*g*((pm/pf)-1));
17 mdot_25=q*e*sqrt(h)/w
18 disp("Mass flow is given by:")
19 disp("mdot=pf*At*Cd*(1/(1-B^4)^(1/2))*sqrt(2*g*((pm/
      pf(-1)*sqrt(h)")
20 printf ('So the mass flow at 25 deg cent is %fd kg/
      s \ n', mdot_25)
21
22
23
24 pf=999.8 //('entering density of water at 25 deg
      cent =: ')
            //('entering the height of mercury column
      due to flow (in m) =: ')
26 q=pf*At*Cd;
```

```
27 \quad w = (1 - B^4)^(1/2);
28 = \sqrt{(2*g*((pm/pf)-1))};
29 \text{ mdot=q*e*sqrt(h)/w}
30 // error is mdot(25 deg cent)-mdot(t deg cent)
31 printf(' The mass flow at 0 deg cent is \%fd kg/s\n',
32 error1=abs(((mdot_25-mdot)/mdot_25)*100);
33
34
35
36 printf ('Change in temperature of water introduces
      insignificant error in mass flow measurement i.e.
       \%1.2f\%\% \setminus n', error1)
              //('entering density of water at 25 deg
37 pf=988.8
      cent =: ')
38 h = 0.2
            //('entering the height of mercury column
      due to flow (in m) =: ')
39 q=pf*At*Cd;
40 \quad w = (1-B^4)^(1/2);
41 e = sqrt(2*g*((pm/pf)-1));
42 \text{ mdot=q*e*sqrt(h)/w}
43 // error is mdot(25 \text{ deg cent})-mdot(t \text{ deg cent})
44 printf (' The mass flow at 50 deg cent is %fd kg/s\n
      ', mdot)
45 error2=abs(((mdot_25-mdot)/mdot_25)*100);
46
47
48
49 printf ('Therefore, change in temperature of water
      introduces insignificant error in mass flow
      measurement i.e. \%1.2f\%\% \setminus n', error2)
```

Scilab code Exa 7.5 Gross volume flow rate

1 //CHAPTER 7_ Flow Measurement

```
2 // Caption : Gross volume flow rate (venturi)
3 // Example 5// Page 440
4 dt = .1
             //('entering the throat diameter =: ')
5 \, dp = .2
              //('entering the upstream diameter =: ')
6 \text{ Cd} = 0.95;
7 g = 9.81
8 B=0.5;
9 At=\%pi*dt^2/4;
             //('entering density of oil in the
10 pf = 780
      pipeline =: ')
               //('entering the density of manometer
11 \, pm = 1000
      fluid =: ')
12 w = (1-B^4)^(1/2);
13 e = sqrt(2*g*((pm/pf)-1));
14 S_ideal=At*e/w;
15 printf ('The ideal volume flow rate sensitivity is %1
      .4 f (m^3/s/h^0.5) n', S_ideal)
16 // part b
17 disp("Actual volume rate sensitivity is given by :")
18 disp("S_actual=S_ideal/Cd")
19 S_actual=S_ideal/Cd;
20 printf ('The actual volume rate sensitivity is %1.4 f
      n', S_actual)
           //('entering the manometer reading of water
21 h = .3
      height =: '
22 disp("Actual volume flow rate is given by:")
23 disp("Q_actual=S_actual*sqrt(h)")
24 Q_actual=S_actual*sqrt(h);
25 printf ('The actual volume flow rate is \%1.3 \,\mathrm{f}\,\mathrm{m}^3/\mathrm{s}/\mathrm{n}
      ',Q_actual)
```

Scilab code Exa 7.6 sonic nozzle

```
1 //CHAPTER 7 Flow Measurement
2 //Caption : Sonic nozzle
```

```
3 // Example 6// Page 443
4 disp("Let uncertainty in mass flow rate be
      represented by wm")
5 disp ("Let uncertainty with pressure be represented
      by wp")
6 disp("Let uncertainty with temperature measurement
      be represented by wt")
7 // To calculate the uncertainty in the temperature
      measurement
8 \text{ wm}_{m} = 0.02
                  //('entering the uncertainty in mass
      flow =: ')
9 \text{ wp_p=0.01}
                  //('entering the uncertainty in
      pressure measurement =: ')
10 disp("Uncertainty in temperature is given by:")
11 \operatorname{disp}("wt_t = 2 * \operatorname{sgrt}(wm_m^2 - wp_p^2) * 100")
12 wt_t=2*sqrt(wm_m^2-wp_p^2)*100
13 printf ('uncertainty in the temperature measurement
      is \%1.2 \text{ f } \% \ n', \text{wt_t}
```

Scilab code Exa 7.7 venturi

```
1 //CHAPTER 7_ Flow Measurement
2 // Caption : Venturi
3 // Example 7// Page 446
              //('entering the pressure of air when
4 p1=5*10^6
      venturi is to be used =: ')
             //('entering the temperature of air for
5 t1 = 298
     the same =: ')
           //('entering the maximum flow rate =: ')
6 \text{ m_max}=1
7 m_min=0.3 //('entering the minimum flow rate=:')
               //('entering the throats reynold
8 Re_min=10^5
     number = : ')
9 R=287; // for air
10 pho1=p1/(R*t1);
11 b=0.5;
```

```
12 mu=1.8462*10^{-5} //('enter the absolute viscosity
      =: ')
13 D_{max}=(4*m_{max})/(%pi*Re_{min}*mu);
14 D_min=(4*m_min)/(%pi*Re_min*mu);
15 printf ('So the throat diameters for maximum and
      minimum flows so the reynolds number does not
      exceed 10<sup>5</sup> are %1.4 f m and %1.4 f m respectively
      n', D_max, D_min)
16 // To calculate the differential pressure
17 At=\%pi*D_max^2/4;
         // discharge coefficient
18 C=1;
19 M=1.0328; // Velocity approach coefficient
20 \quad Y = .9912;
             // Expansion factor
21 dP_max = (m_max)^2/(Y^2*M^2*C^2*At^2*2*pho1);
22 printf ('The differential pressure for maximum flow
      rate is \%1.5 f Pa\n',dP_max)
23 dP_min = (m_min)^2/(Y^2*M^2*C^2*At^2*2*pho1)*1000;
24 printf ('The differential pressure for minimum flow
      rate is \%1.2 \text{ f mPa/n', dP_min}
```

Scilab code Exa 7.8 constant pressure drop

```
13 disp("Tube taper is given by:")
14 disp("a=(Qd*2)/(%pi*D*y*j^(1/2))")
15 a=(Qd*2)/(%pi*D*y*j^(1/2));
16 printf('tube taper is %1.4 f m/m(taper)\n',a)
```

Chapter 8

TEMPRATURE MEASUREMENT

Scilab code Exa 8.1 thermocouple

```
1 //CHAPTER 8 _ TEMPERATURE MEASUREMENT
2 // Caption : Thermocouple
3 // Example 1 // Page 500
4 t1 = 100 //('entering the temperature(in deg cent
     =: , )
5 e1 = 5
             // ('entering the emf (in mv) at
      temperature t1 =: ')
             //('entering the second temperature(in deg
6 t2 = 445
       cent = :'
         //('entering the emf(in mv) at temperature
7 e2 = 25
      t2 =: ')
8 // TO CALCULATE CONSTANTS a AND b
9 / e1 = a * (t1) + b * (t1^2);
10 / e2 = a * (t2) + b * (t2^2);
11 A = [t1 \ t1^2; t2 \ t2^2];
12
13 B = [e1 0 ; e2 0]
14 Y=lsq(A,B); //computes the minimum norm least
      square solution of the equation A*Y=B,
```

```
15 \text{ disp}(Y)
16
17 printf ('value of constants a and b are %fd V/deg
      cent and %fd V/deg cent respectively', Y(1,1), Y
      (2,1))
18 //PART B
19 //Let e(0-40) be represented by E1, e(40-t) by E2
      and e(0-t) by E3
20
21 E1 = (Y(1,1)*40) + (Y(2,1)*40^2);
22 disp(E1);
            // given
23 E2 = 2;
24 E3=E1+E2;
25 D=sqrt((Y(1,1)^2)+(4*Y(2,1)*E3));
26 t = (-Y(1,1) + D)/(2*Y(2,1));
27 disp(t)
28 printf ('Hot junction temperature is %1.1f deg cent '
      ,t);
29 // PART C
30 // Let e(0-500) be represented by E4 and e(40-500)
      by E5
31 \quad E4=Y(1,1)*500+Y(2,1)*500^2;
32 E5 = E4 - E1;
33 disp (E5)
34 printf ('emf when the hot junction is at 500 and cold
       at 40 is %1.1 f mV ', E5);
```

Scilab code Exa 8.2 thermocouple and thermopile

```
1 //CHAPTER 8 _ TEMPERATURE MEASUREMENT 2 //Caption : THERMOCOUPLE AND THERMOPILE 3 // Example 2 // Page 511 4 h=(100/5)*10^-3 // in mv 5 printf('emf per thermocouple is %1.2 f mV \n', h); 6 // e(0-100)+e(100-t)=e(0-t)
```

```
7  // Let e(0-100) = E1 and e(100-t) = E2
8  E1 = 5.27  // given
9  E2 = h;
10  E3 = E1 + E2;
11  E4 = 5.325;  // given emf at 101 deg cent
12  c = 100;  // given that cold junction is at 100 deg cent
13  // BT EXTRAPOLATION
14  t = c + ((E3 - E1) / (E4 - E1));
15  printf('Required temperature difference is %1.2 f deg cent', t)
```

Scilab code Exa 8.3 electrical resistance sensors

```
1 //CHAPTER 8 _ TEMPERATURE MEASUREMENT
2 // Caption : ELECTRICAL— RESISTANCE SENSORS
3 // Example 3 // Page 517
               //('enter the sensitivity =:')
4 s = 0.2
5 d=0.4*10^{-3}
6 A = \%pi*(d^2)/4;
7 // R = pho * l/A
8 R = 100
9 pho=0.8*10^-3;
10 1 = (R*A)/pho;
11
12 printf ('Length corresponding to resistance 100 ohm
      and diameter 0.4mm is \%fd m\n',1)
13 d=2*10^{-3}
14 A = \%pi*(d^2)/4;
15 R=100
16 pho=0.8*10^-3;
17 l = (R*A)/pho;
18 printf ('Length corresponding to resistance 100 ohm
      and diameter 2mm is \%1.2 \text{ f m/n',1}
19 // The above lengths of wire indicate that their
```

```
diameters should be very small so reasonable
      lengths can be used in practical applications.
20 // Let resistance at 50\deg cent be R1 and at 100\deg
       cent be R2
21 t = -50
               //('Enter the temperture at which
      resistance has to be calculated = :')
22 R1 = R + s * (t-20);
23 printf ('Resistance at temperature \% d is \% f ohm n', t
      ,R1)
24 t2=100
               //('Enter the temperture at which
      resistance has to be calculated = :')
25 R2 = R + s * (t2 - 20);
26 printf ('Resistance at temperature %d is %f ohm\n',
      t2,R2)
```

Scilab code Exa 8.4 thermistors

```
1 //CHAPTER 8 _ TEMPERATURE MEASUREMENT
2 // Caption : THERMISTOR
3 // Example 4 // Page 521
4 \text{ To} = 293
                //('Enter the temperature in K=:')
                 //('Entering the corresponding
5 \text{ Ro} = 1000
      resistance in ohm =: ')
                  // ('Entering the val) ue of constant
6 B = 3450
      =: ')
7 \text{ Rt} = 2500
                  //(' Entering the resistance at which
      temperature has to be calculated =: ')
8 T=1/((1/T_0)+(1/B)*log(Rt/R_0));
9 disp("Temperature is given by:")
10 \operatorname{disp}("T=1/((1/T_0)+(1/B)*\log(R_t/R_0));")
11 printf ('The temperature corresponding to resistance
      of %d ohm is \%1.3 \text{ f K } \text{ n} ', Rt, T)
             //('Entering the error in Rt resistance
12 Wrt=5
      measurement =: ')
13 \text{ Wro} = 2
             //('Entering the error in Ro temperature
```

Scilab code Exa 8.5 pyrometers

```
1 //CHAPTER 8 _ TEMPERATURE MEASUREMENT
2 // Caption : PYROMETERS
3 // Example 5// Page 545
5 //(i)Optical Pyrometer
  // Ta(K) is the actual temperature and Ti(K) is the
      indicated temperature
                //('Enter the indicated temperature in
      degree centigrade =: ')
8 \text{ Ti}=\text{TI}+273
9 disp("Ti=TI+273")
10 \quad lamda=0.7*10^-6
                          //('Entering the wavelength(in
      meters) at which intensities are compared')
11 \text{ epsilon=0.6}
                          //('Entering the emissivity of
      the body')
                      //('Entering the value of constant')
12 C2=0.014387
13 disp("Actual temperature is given by :")
14 \operatorname{disp}(\mathrm{Ta}=(\mathrm{Ti}*\mathrm{C2})/(\mathrm{C2-lamda}*\mathrm{Ti}*\log(\operatorname{epsilon}));\mathrm{"})
15 Ta=(Ti*C2)/(C2-lamda*Ti*log(epsilon));
```

```
16 ta=Ta-273;
17 printf('Actual temperature of the body is %d \n',ta)
18 //(ii) For radiation pyrometer
19 T=(epsilon*Ta^4)^(1/4);
20 ti=T-273;
21 printf('Indicated temperature in degree celsius of the total radiation pyrometer is %d degree cent \n',ti)
22 //To calculate error
23 Error1=Ta-Ti;
24 printf('Error using Optical Pyrometer is %d K \n', Error1)
25 Error2=Ta-T;
26 printf('Error using Radiation Pyrometer is %d K \n', Error2)
```