ACM TRAINING Greedy, Enumeration and Guess

Outlines

- Enumeration
 - Simplest method
 - OHow to reduce the instances you have to enumerate?
- Greedy
 - Every time pick the current "best" choice
 - Ohow to define best?
 - Ohow to prove that optimal solution can be obtained in this way?

Example 1

- Coin Flipping
 - There are N (N<10000) rows of coins</p>
 - Each row consists of 9 coins
 - They formulate a matrix of size N*9
 - Some coins are heads up and some are tails up
 - We can flip a whole row or a whole column every time
 - Find a flipping method that can make the number of "heads up" coins maximum

Example 2

- Discrete Function
 - A discrete function is defined on {1,2,3,...,N}
 - Function values are between 2⁻³² and 2³²
 - Find two points on the function curve such that
 - Any function point between these two points are below the line connecting these two points
 - The slope of the line connecting these two points are as large as possible
 - $\bigcirc O(n^3) \rightarrow O(n^2)$
 - $O(n^2) \rightarrow O(n)$

Example 3 - Selecting Breakpoints

Selecting breakpoints.

- Road trip from Princeton to Palo Alto along fixed route.
- Refueling stations at certain points along the way.
- Fuel capacity = C.
- Goal: makes as few refueling stops as possible.

Greedy algorithm. Go as far as you can before refueling.

1 2 3 4 5 6 7

Example 4 – Gone Fishing

- There are n fishing lakes on a line
- Labeled 1, 2, 3, ..., n from left to right
- H hours' fishing time
- Start from lake 1
- 5*T_i minutes to reach lake i+1 from lake i
- At the same lake i
 - The first 5 minutes can produce F_i fishes
 - Every 5 minutes more will see a decrease of D_i in the number of fishes produced
- How to get the maximum number of fishes?

Example 5 – Enlightened Landscape

Example 6 – The best way to put rooks (open for your try)

Game of Matches

- There is a pile of n matches
 - Player 1 pick some matches (k matches) from the pile but he cannot take them all
 - OPlayer 2 pick *t* matches (at least 1, at most 2*k*)
 - OPlayer 1 pick s matches (at least 1, at most 2t)
 - O...
- The one who have no match to pick from the pile will lose
- Input: n
- Output: whether the first player can win