Automata Exercises

Tasks for 17.11.2015

- **Task 1** Convert the following regular expressions to NFA's, using the closure properties results:
 - (a) $a(abb)^* \cup b$,
 - (b) $a^+ \cup (ab)^+$,
 - (c) $(a \cup b^+)a^+b^+$.
- **Task 2** For each of the following regular languages, give two strings that are members and two strings that are *not* members—a total of four strings for each part. Assume the alphabet $\Sigma = \{a, b\}$ in all parts.
 - (a) a^*b^* ,
 - (b) a(ba)*b,
 - (c) $a^* \cup b^*$.
 - (d) $(aaa)^*$
 - (e) $\Sigma^* a \Sigma^* b \Sigma^* a \Sigma^*$.
 - (f) $(\varepsilon \cup a)b$
- **Task 3** Give an NFA that recognizes the language $(01 \cup 001 \cup 010)^*$. Convert this NFA to an equivalent DFA. Give only the portion of the DFA that is reachable from the start state.
- **Task 4** Give state diagrams of NFAs with the specified number of states recognizing each of the following languages. In all parts the alphabet is $\{0,1\}$.
 - (a) The language {0} with two states.
 - (b) The language 0^* with one state.
 - (c) The language $\{w \mid w \text{ ends with a } 00\}$ with three states,
 - (d) The language $1^*(001^+)^*$ with three states.
- **Task 5** Convert the NFAs from Task 4 (c) and Task 4 (d) to DFAs. Give only the portion of the DFAs that is reachable from the start state.

Task 6 Let $\Sigma = \{0,1\}$ and let

$$D = \{ w \in \{0, 1\}^* \mid \#_{01}(w) = \#_{10}(w) \}.$$

Thus $101 \in D$ because 101 contains a single 10 and a single 01, but $1010 \notin D$ because $\#_{01}(1010) = 1$ but $\#_{10}(1010) = 2$.

Show that D is a regular language.