Matemática Discreta l Clase 22 - Árboles / Coloreo de vértices

FAMAF / UNC

8 de junio de 2021

Árboles

Definición

Diremos que un grafo T es un $\acute{a}rbol$ si cumple que es conexo y no hay ciclos en T.

Figura: Algunos árboles

A causa de su particular estructura y propiedades, los árboles aparecen en diversas aplicaciones de la matemática, especialmente en investigación operativa y ciencias de la computación.

El siguiente lema nos resultará útil para probar una parte del teorema fundamental de esta sección.

Lema

Sea G = (V, E) un grafo conexo, entonces $|E| \ge |V| - 1$.

Demostración

Como G es conexo existe una caminata que recorre todos los vértices de G:

$$v_1, v_2, \ldots, v_r$$
.

Renombremos los vértices de G con números naturales de tal forma que el primer vértice de la caminata sea 1, el segundo 2 y cada vez que aparece un vértice que no ha sido renombrado se le asigna el número siguiente.

Luego la caminata comienza en 1 y termina en n, donde n = |V|.

Observar: si i tal que $1 < i \le n$ tenemos que la caminata tiene la forma

$$1,\ldots,j_i,i,\ldots,j_n,n$$

donde $j_i < i$, luego es claro que

$$\{j_2,2\},\{j_3,3\},\ldots,\{j_n,n\}$$

forman un conjunto de n-1 aristas distintas en G.

El siguiente teorema nos da 4 nociones equivalente a la definición de árbol.

Teorema

Si T=(V,E) es un grafo conexo con al menos dos vértices, entonces son equivalentes las siguientes propiedades

- T1) T es un árbol.
- **T2)** Para cada par x, y de vértices existe un único camino en T de x a y.
- **T3)** El grafo obtenido de T removiendo alguna arista tiene dos componentes, cada una de las cuales es un árbol.
- **T4)** |E| = |V| 1.

Este teorema se demuestra haciendo las pruebas:

$$\mathsf{T}1 \quad \Rightarrow \quad \mathsf{T}2 \quad \Rightarrow \quad \mathsf{T}3 \quad \Rightarrow \quad \mathsf{T}4 \quad \Rightarrow \quad \mathsf{T}1.$$

Luego, toda equivalencia se deduce de estas implicaciones.

Por ejemplo,

Idea de la demostración

 $(T1 \Rightarrow T2)$ Si hubiera dos caminos podríamos formar un ciclo.

(T2 \Rightarrow T3) Sea G' = T - uv. Como hay un único camino de u a v, G' tiene dos componentes conexas: T_1 la componente conexa de u y T_2 la componente conexa de v.

Cada componente es conexa (por definición), y no contiene ciclos, pues sino habría ciclos en T. Es decir que las dos componentes T_1 y T_2 son árboles.

 $(T3 \Rightarrow T4)$ Se hace por inducción completa sobre el número de vértices y usando la porpiedad T3.

(T4 \Rightarrow T1) |E| = |V| - 1 y supongamos que T no es árbol \Rightarrow hay un ciclo \Rightarrow podemos sacar una arista uv y sigue siendo conexo \Rightarrow |E - uv| = |V| - 2 y conexo. Absurdo por el lema.

Coloreo de los vértices de un grafo

Problema

¿Cómo hacer un horario de actividades sin interferencias?.

Ejemplo

Supongamos que deseamos hacer un horario con seis cursos de una hora, $v_1, v_2, v_3, v_4, v_5, v_6$. Entre la audiencia potencial hay gente que desea asistir simultáneamente a

$$\{v_1,v_2\},\quad \{v_1,v_4\},\quad \{v_3,v_5\},\quad \{v_2,v_6\},\quad \{v_4,v_5\},\quad \{v_5,v_6\},\quad \{v_1,v_6\}.$$

¿Cuántas horas son necesarias para poder confeccionar un horario en el cual no haya interferencias?

Solución

Podemos representar la situación con el grafo:

Los vértices corresponden a las seis clases, y las aristas indican las interferencias potenciales.

Un horario el cual cumple con la condición de evitar interferencias es el siguiente:

Hora 1 Hora 2 Hora 3 Hora 4
$$v_1$$
 y v_3 v_2 y v_4 v_5 v_6

Es una partición del conjuntos de vértices en cuatro partes, con la propiedad que ninguna parte contiene un par de vértices adyacentes del grafo. Claramente, le corresponde una función:

$$c: \{v_1, v_2, v_3, v_4, v_5, v_6\} \rightarrow \{1, 2, 3, 4\},$$

donde

$$c(v_1) = c(v_2) = 1$$

 $c(v_2) = c(v_4) = 2$
 $c(v_5) = 3$
 $c(v_6) = 4$.

También podemos representar esta función como un *coloreo de vértices* donde dos vértices adyacentes tienen distintos colores:

Cualquiera de las tres formas de presentar el resultado nos daría una solución (quizás no la mejor).

Definición

Una coloración de vértices de un grafo G = (V, E) es una función $c : V \to \mathbb{N}$ con la siguiente propiedad:

$$c(x) \neq c(y)$$
 si $\{x, y\} \in E$.

El número cromático de G, denotado $\chi(G)$, se define como el mínimo entero k para el cual existe una coloración de vértices de G usando k-colores.

En otra palabras, $\chi(G) = k$ si y sólo si existe una coloración de vértices c la cual es una función de V a \mathbb{N}_k , y k es el mínimo entero con esta propiedad.

Volviendo al ejemplo de los horarios, nuestro primer intento fue de 4 colores.

Un rápido intento con tres colores nos da la solución de este problema:

Color 1 Color 2 Color 3
$$v_1$$
 v_2 y v_5 v_3 , v_4 y v_6 .

Más aún, hacen falta por lo menos tres colores, puesto que v_1 , v_2 , y v_6 son mutuamente adyacentes y por lo tanto deben tener diferentes colores.

Luego concluimos que el número cromático del grafo es 3.

Podemos representar en el grafo la coloración:

En general, para probar que el número cromático de un grafo dado es k, debemos hacer dos cosas:

- a) encontrar una coloración de vértices usando k colores;
- b) probar que ninguna coloración de vértices usa menos de k colores.

¿Existe algún algoritmo general eficiente para encontrar el número cromático?

Respuesta: No.

Veremos la clase que viene un algoritmo para encontrar una coloración de vértices que aunque no es óptima nos da un resultado satisfactorio.