Circuite analogice

Amplificatoare operaţionale Surse de tensiune continuă Oscilatoare

Amplificatoare

- Dispozitiv / circuit electronic folosit pentru a creste amplitudinea semnalului de intrare
- $V_{OUT} = A * V_{IN}$

Amplificatoare operaţionale

- simbol
 - intrari
 - intrarea inversoare (IN-)
 - intrarea neinversoare (IN+)
 - ieşire (OUT)
 - alimentari cu tensiune continuă
 - alimentare pozitiva (V+)
 - alimentare negativa (V-)

Caracteristici

- impedanţa de intrare foarte mare (ideal ∞)
- curenţi de intrare foarte mici (ideal 0)
- amplificarea sau câştigul în tensiune (A_V) foarte mare (ideal ∞)
- tensiunea de ieşire limitată de tensiunile de alimentare
- tensiunea între intrări foarte mică (ideal 0)
- impedanţa de ieşire foarte mica (ideal 0)

Reacţie pozitivă

 o parte din semnalul de ieşire este adus la intrare cu un defazaj total nul producând o creştere a semnalului de ieşire

Reacţia negativă

 o parte din semnalul de ieşire este adus la intrare cu un defazaj de 180º faţă de semnalul de intrare producând o scădere a semnalului de ieşire

Amplificator cu câştig constant

- $V_1 = 0V$
- I_{R1}=I_{R2}

$$I = \frac{V_{IN}}{R_1} = -\frac{V_{OUT}}{R_2}$$

$$V_{OUT} = -\frac{R_2}{R_1}V_{IN}$$

Amplificator neinversor

- $V_{IN}=V_1$
- I_{R1}=I_{R2}

$$V_{IN} = V_1 = \frac{R_1}{R_1 + R_2} V_{OUT}$$

$$V_{OUT} = (1 + \frac{R_2}{R_1})V_{IN}$$

Amplificator sumator

Amplificator cu câştig constant

•
$$I_{R2} = I_{R11} + ... + I_{R1n}$$

$$I_{R2} = -\frac{V_{OUT}}{R_2} = \frac{V_{IN1}}{R_{11}} + ... + \frac{V_{INn}}{R_{1n}}$$

$$V_{OUT} = -(\frac{R_2}{R_{11}}V_{IN1} + ... + \frac{R_2}{R_{1n}}V_{INn})$$

Circuit integrator

$$Z_C = \frac{1}{j\omega C} = \frac{1}{sC}$$

- $V_1 = 0V$
- I_R=I_C

$$I = \frac{V_{IN}}{R_1} = -\frac{V_{OUT}}{Z_C} = -sCV_{OUT}$$

$$V_{OUT} = -\frac{1}{sCR}V_{IN}$$

$$V_{out}(t) = -\frac{1}{RC} \int V_{in}(t) dt$$

Circuit derivator

$$Z_C = \frac{1}{j\omega C} = \frac{1}{sC}$$

- $V_1 = 0V$
- $I_R = I_C$

$$I = -\frac{V_{OUT}}{R} = \frac{V_{IN}}{Z_C} = sCV_{IN}$$

$$V_{OUT} = -sCRV_{IN}$$

$$V_{out}(t) = -RC \frac{d V_{in}(t)}{dt}$$

Surse de tensiune continuă

 transformator: separă aparatul de reţeaua de curent alternativ şi modifică valoarea tensiunii reţelei la valoarea necesară obţinerii tensiunii sursei

 redresor: transformă tensiunea alternativă intr-o formă de undă având componenta continuă diferită de zero

Transformator

- separă aparatul de reţeaua de curent alternativ
- modifică valoarea tensiunii reţelei la valoarea necesară obţinerii tensiunii sursei
- in Romania Uef=230V, f=50Hz

$$rac{U_1}{U_2} \simeq rac{E_1}{E_2} = rac{N_1}{N_2} = k$$

Redresor monoalternanţă

 D₁ este deschisa în alternanţele pozitive şi blocată în alternanţele negative

Redresor dublă alternanță în punte

Redresor cu filtru

- daca tensiunea furnizată de redresor este mai mare decât tensiunea pe condensator, acesta înmagazinează energie
- daca tensiunea furnizată de redresor este mai mica decât tensiunea pe condensator, acesta debiteaza energie

Stabilizator parametric cu diodă Zener

- bazat pe neliniaritatea caracteristicii curenttensiune a diodei Zener
- permite variatii mari de curent la variaţii mici ale tensiunii inverse pe diodă

Stabilizator cu reacţie fără amplificator de eroare

- reacţie negativa
- tensiunea de ieşire (v_{OUT}) comparată cu o tensiune de referinţă (v_Z)
- compararea generează un semnal de eroare care este aplicat unui element de control
- daca v_{OUT} creşte, elementul de control va determina scăderea acestei tensiuni şi invers
- V_{BE}=V_Z-V_{OUT}
- Daca v_{OUT} creşte -> v_{BE} scade -> v_{CE} creşte -> R_{CE} creste -> v_{OUT} scade
- Daca v_{OUT} scade -> v_{BE} creşte -> v_{CE} scade -> R_{CE} scade -> v_{OUT} creşte
- V_{OUT}=V_Z-V_{BE}

- v_{BE} scade -> R_{CE} creste -> v_{CE} creşte
- v_{BE} creşte -> R_{CE} scade -> v_{CE} scade

- V_{BE}=V_Z-V_{OUT}
- v₇ tensiune de referinţă (constantă)
- v_{OUT} tensiune de iesire urmarita (0, 5, 10)
- tranzistorul se afla in regiunea activa normala
- v_{OUT} creşte (1) -> v_{BE} scade (2) -> v_{CE} creşte (3) -> v_{OUT} scade (4)
- v_{OUT} scade (6) -> v_{BE} creşte (7) -> v_{CE} scade (8) -> v_{OUT} creşte (9)
- V_{OUT}=V_Z-V_{BE}

Stabilizator cu reacţie cu amplificator de eroare

$$v_1 = \frac{R_3}{R_2 + R_3} v_{OUT}$$

- Daca v_{OUT} scade -> v₁ scade -> v₂ creste -> v_{BE} creste -> v_{CE} scade -> v_{OUT} creste
- Daca v_{OUT} creste -> v₁ creste -> v₂ scade -> v_{BE} scade -> v_{CE} creste -> v_{OUT} scade

$$v_{OUT} = \left(1 + \frac{R_2}{R_3}\right) v_Z$$

Stabilizatoare de tensiune integrate

- seria 7800 furnizează la ieşire tensiuni stabilizate pozitive
- seria 7900 furnizează la ieşire tensiuni stabilizate negative
- ultimele două cifre indică valoarea tensiunii stabilizate
- condensatorul conectat la intrare are rolul de a împiedica apariţia oscilaţiilor datorate inductanţelor parazite ale liniei de alimentare
- condensatorul conectat la ieşire are rol de filtrare

Oscilatoare

- Formă de undă repetitivă in absenţa unui semnal de intrare
- Amplificator şi circuit de reacţie pozitivă
- Reacţie pozitivă: o parte din semnalul de ieşire este adus la intrare cu un defazaj total nul producând o creştere a semnalului de ieşire
- Condiţii pentru generarea oscilaţiilor
 - Defazajul total trebuie să fie 0º
 - Câştigul în tensiune trebuie să fie mai mare decât 1 pentru a permite apariţia si cresterea amplitudinii oscilatiilor. După atingerea amplitudinii dorite câştigul în tensiune trebuie să fie 1

Are efect doar pentru amplitudini mai mici decât cele dorite, crescand castigul circuitului

Oscilator cu punte Wien

Oscilator cu punte Wien

- Circuitul de reacţie pozitivă
 - punte Wien
 - filtru RC trece-sus si filtru RC trece-jos
 - fiecare filtru atenuează semnalul la frecvenţe mici respectiv mari
 - $R_1 = R_2 = R, C_1 = C_2 = C$
 - atenuarea este minimă pentru frecvenţa de oscilaţie

$$f_{osc} = \frac{1}{2\pi RC}$$

$$\frac{V_{IN}}{V_{OUT}} = 3$$

- filtru RC trece-sus si filtru RC trece-jos
- fiecare filtru atenuează semnalul la frecvenţe mici respectiv mari
- $R_1 = R_2 = R, C_1 = C_2 = C$
- atenuarea este minimă pentru frecvenţa de oscilaţie

Circuitul de bază

- amplificator operaţional cu buclă de reacţie negativă
- pentru ca oscilatorul să prezinte un câştig în tensiune unitar amplificarea circuitului de bază trebuie să fie 3

$$\frac{V_{OUT}}{V_{IN}} = 1 + \frac{R_2}{R_1}$$
 $R_2 = 2R_1$

 pentru amplitudini mai mici decât cele dorite, cele două diode Zener sunt blocate

$$\frac{V_{OUT}}{V_{IN}} = 1 + \frac{R_2 + R_3}{R_1} = 3 + \frac{R_3}{R_1}$$

 la atingerea amplitudinii de oscilaţie diodele Zener intră în conducţie scurtcircuitând R3 si determinând o amplificare a circuitului de bază egală cu 3 şi un câştig in tensiune al oscilatorului egal cu 1

Are efect doar pentru amplitudini mai mici decât cele dorite, crescand castigul circuitului

200u

Oscilator cu punte Wien

Probleme propuse

- Sa se proiecteze o sursa de curent comandata in tensiune
- AO2 repetor
- Pentru calculul tensiunii V₋ se foloseste principiul superpozitiei

$$V_{-} = \frac{R_{2}}{R_{1} + R_{2}} V_{1} + \frac{R_{1}}{R_{1} + R_{2}} V_{2}$$

$$V_{+} = \frac{R_{3}}{R_{3} + R_{4}} V_{3}$$

$$V_{-} = V_{+}$$

$$\frac{R_{2}}{R_{1} + R_{2}} V_{1} + \frac{R_{1}}{R_{1} + R_{2}} V_{2} = \frac{R_{3}}{R_{3} + R_{4}} V_{3}$$

$$I_{S} = I_{5} = \frac{V_{2} - V_{3}}{R_{5}}$$

$$V_{2} = I_{S} R_{5} + V_{3}$$

$$\frac{R_2}{R_1 + R_2} V_1 = \frac{R_3}{R_3 + R_4} V_3 - \frac{R_1}{R_1 + R_2} (I_s R_5 + V_3)$$

$$I_s = -\frac{R_2}{R_5 R_1} V_1 + \frac{R_1 + R_2}{R_5 R_1} (\frac{R_3}{R_3 + R_4} - \frac{R_1}{R_1 + R_2}) V_3$$

- Curentul I_S trebuie sa depinda doar de tensiunea V₁
- Coeficientul tensiunii V₃ trebuie sa fie 0

$$\frac{R_1 + R_2}{R_5 R_1} \left(\frac{R_3}{R_3 + R_4} - \frac{R_1}{R_1 + R_2} \right) = 0$$

$$R_2 R_3 = R_1 R_4$$

$$I_S = -\frac{R_2}{R_5 R_1} V_1$$

- Sa se proiecteze un amplificator avand factorul de amplificare egal cu -10.
- Sa se proiecteze un amplificator avand factorul de amplificare egal cu 5.