Ch 9.4 正态总体抽样分布定理

统计量: 次序统计量、及其分布函数、密度函数

$$\Gamma$$
 - 函 数 $\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha-1} e^{-x} dx$, $\Gamma(1) = 1$ 和 $\Gamma(1/2) = \sqrt{\pi}$, 以及 $\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$

 $\Gamma(\alpha,\lambda)$ 分布:

$$f(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x} & x > 0\\ 0 & x \le 0 \end{cases}$$

若随机变量 $X \sim \Gamma(\alpha, \lambda)$,则有 $E(X) = \alpha/\lambda$ 和 $Var(X) = \alpha/\lambda^2$

独立随机变量 $X \sim \Gamma(\alpha_1, \lambda)$ 和 $Y \sim \Gamma(\alpha_2, \lambda)$,则 $X + Y \sim \Gamma(\alpha_1 + \alpha_2, \lambda)$

若随机变量 $X \sim N(0,1)$,则有 $X^2 \sim \Gamma(1/2,1/2)$

$$\chi^2(n)$$
分布: $Y = X_1^2 + X_2^2 + \dots + X_n^2$

随机变量 $X \sim \chi^2(n)$, 则E(X) = n和Var(X) = 2n;

随机变量 $X \sim \chi^2(m)$ 和 $Y \sim \chi^2(n)$ 相互独立,则 $X + Y \sim \chi^2(m+n)$

t(n)分布: $T = X/\sqrt{Y/n}$; 当 $n \to \infty$ 时t(n)近似于N(0,1)

$$F(m,n)$$
分布: $F = \frac{X/m}{Y/n}$

若随机变量 $F \sim F(m,n)$, 则1/F = F(n,m).

分布可加性

- > 如果 $X \sim N(\mu_1, \sigma_1^2)$ 和 $Y \sim N(\mu_2, \sigma_2^2)$,且X与Y独立,那么 $X \pm Y \sim N(\mu_1 \pm \mu_2, \sigma_1^2 + \sigma_2^2)$;
- ▶ 如果 $X \sim B(n_1, p)$ 和 $Y \sim B(n_2, p)$, 且 X 与 Y 独立,那么 $X + Y \sim B(n_1 + n_2, p)$;
- ▶ 如果 $X \sim P(\lambda_1)$ 和 $Y \sim P(\lambda_2)$,且X = Y独立,那么 $X + Y \sim P(\lambda_1 + \lambda_2)$;
- ightharpoonup 如果 $X \sim \Gamma(\alpha_1, \lambda)$ 和 $Y \sim \Gamma(\alpha_2, \lambda)$,且X与Y独立,那么 $X + Y \sim \Gamma(\alpha_1 + \alpha_2, \lambda)$;
- \blacktriangleright 如果 $X \sim \chi^2(m)$ 和 $Y \sim \chi^2(n)$,且X与Y独立,那么 $X + Y \sim \chi^2(m+n)$.

正态分布的抽样分布定理一

定理: 设 X_1, X_2, \cdots, X_n 是来自总体 $N(\mu, \sigma^2)$ 的样本,则有

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N(\mu, \sigma^2/n) \qquad \qquad \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1).$$

正态分布的抽样分布定理二

定理: 设 X_1, X_2, \dots, X_n 是来自总体 $N(\mu, \sigma^2)$ 的样本,其样本均值和修正样本方差分别为

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$

则有 \overline{X} 和 S^2 相互独立,且

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

正态分布的抽样分布定理三

定理: 设 X_1, X_2, \dots, X_m 是来自总体 $N(\mu, \sigma^2)$ 的样本,其样本均值和修正样本方差分别为

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$

则

$$\frac{\bar{X} - \mu}{\sqrt{S^2/n}} \sim t(n-1)$$

正态分布的抽样分布定理四

定理: 设 X_1, X_2, \dots, X_m 和 Y_1, Y_2, \dots, Y_n 分别来自总体 $N(\mu_X, \sigma_X^2)$ 和 $N(\mu_Y, \sigma_Y^2)$ 的两个独立样本,其修正样本方差分别为 S_X^2 和 S_Y^2 ,则

$$\frac{S_X^2/\sigma_X^2}{S_Y^2/\sigma_Y^2} \sim F(m-1, n-1).$$

定理: 设 X_1, X_2, \dots, X_m 和 Y_1, Y_2, \dots, Y_n 分别来自总体 $N(\mu_X, \sigma^2)$ 和 $N(\mu_Y, \sigma^2)$ 的两个独立样本,令其样本均值分别 \bar{X} 和 \bar{Y} ,修正样本方差分别为 S_X^2 和 S_Y^2 ,则

$$\frac{\bar{X} - \bar{Y} - (\mu_X - \mu_Y)}{\sqrt{\frac{(m-1)S_X^2 + (n-1)S_Y^2}{m+n-2}}} \sim t(m+n-2).$$

设 X_1, X_2, \cdots, X_{10} 是总体 $N(\mu, 1/4)$ 的样本

- ii) 若 μ 未知, 求 $P(\sum_{i=1}^{10}(X_i \bar{X})^2 \ge 1)$.

设 X_1, X_2, \cdots, X_{25} 是总体 $N(12, \sigma^2)$ 的样本

- i) 若 $\sigma = 2$, 求 $P(\sum_{i=1}^{25} X_i/25 \ge 12.5)$;
- ii) 若 σ 未知但知道修正样本方差为 $S^2 = 5.57$,求 $P(\sum_{i=1}^{25} X_i/25 \ge 12.5)$.

分位数(点)

对给定 $\alpha \in (0,1)$ 和随机变量X, 称满足

$$P(X > \lambda_{\alpha}) = \alpha$$

的实数 λ_{α} 为上侧 α 分位数(点)

对称分布的分位数

随机变量X的概率密度函数关于y轴对称,则有

$$\lambda_{1-\alpha} = -\lambda_{\alpha}$$

正态分布的分位数

对正态分布 $X \sim N(0,1)$, 给定 $\alpha \in (0,1)$, 满足

$$P(X > \mu_{\alpha}) = \int_{\mu_{\alpha}}^{\infty} f(x) dx = \alpha$$

的点 μ_{α} 称为正态分布上侧 α 分位点

性质:

$$\triangleright \mu_{1-\alpha} = -\mu_{\alpha}$$

$$\blacktriangleright \Phi(\mu_{\alpha}) = 1 - \alpha$$

χ^2 分布的分位数

的点 $\chi^2_{\alpha}(n)$ 称为 $\chi^2(n)$ 分布上侧 α 分位点

t-分布的分位数

对t-分布 $X \sim t(n)$, 给定 $\alpha \in (0,1)$, 满足 $P(X > t_{\alpha}(n)) = \alpha$

的点 $t_{\alpha}(n)$ 称为t(n)-分布上侧 α 分位点

由对称性可知 $t_{1-\alpha}(n) = -t_{\alpha}(n)$

F-分布的分位数

对F-分布 $X \sim F(m,n)$, 给定 $\alpha \in (0,1)$, 满足

$$P[X > F_{\alpha}(m, n)] = \alpha$$

的点 $F_{\alpha}(m,n)$ 称为F(m,n) 分布上侧 α 分位点

定理:对F-分布的分位点有

$$F_{1-\alpha}(m,n) = \frac{1}{F_{\alpha}(n,m)}.$$

Ch 10 参数估计

总体X的分布/密度函数为 $F(X,\theta)$, θ 为未知参数(或未知向量) 现从总体中抽取一样本 X_1, X_2, \cdots, X_n

问题:如何依据样本 X_1, X_2, \cdots, X_n 估计参数 θ ,或 θ 的函数 $g(\theta)$,此类问题称为 **参数估计问题**

研究内容包括:点估计,估计量标准,区间估计

点估计包括:矩估计法、极大似然估计法

总体X的k阶矩: $a_k = E[X^k]$ 样本k阶矩: $A_k = \sum_{i=1}^n X_i^k$

用样本矩去估计总体矩求参数6的方法称为 矩估计法

理论基础【辛钦大数定理】 X_1, X_2, \dots, X_n 为独立同分布的随机变量, 若 $E(X) = \mu$, 则有

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{p} \mu.$$

推论: 若 $E[X^k] = a_k$ 存在,则有

$$\frac{1}{n} \sum_{i=1}^{n} X_i^k \xrightarrow{p} a_k = E[X^k].$$

总体X的k阶中心矩: $b_k = E[(X - E(X))^k]$

样本k阶中心矩: $B_k = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^k$

用样本中心矩去估计总体中心矩求参数的方法亦称为 矩估计法

总体X的分布函数F包含m个未知参数 θ_1 , θ_2 ,…, θ_m

- 计算总体X的k阶矩: $a_k = a_k(\theta_1, \theta_2, \cdots, \theta_m) = E[X^k] \ k \in [m]$ $(a_k \text{般为}\theta_1, \theta_2, \cdots, \theta_m)$ 的函数)
- 计算样本的k阶矩: $A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$
- 令样本矩等于总体矩:

$$A_k = a_k = a_k(\theta_1, \theta_2, \cdots, \theta_m) \ k \in [m]$$

得到m个关于 θ_1 , θ_2 , ..., θ_m 的方程组

• 求解方程组得到估计量 $\hat{\theta}_1$, $\hat{\theta}_2$,…, $\hat{\theta}_m$

设总体X的概率密度函数

$$f(x) = \begin{cases} (\alpha + 1)x^{\alpha} & x \in (0,1) \\ 0 & \text{!!} \\ \end{aligned}$$

设 X_1, X_2, \cdots, X_n 是来自总体X的样本, 求参数 α 的矩估计.

设 X_1, X_2, \cdots, X_n 是来自总体X的样本,以及总体X的密度函数为

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-(x-\mu)/\theta} & x \ge \mu \\ 0 & \text{#} \end{aligned}$$

其中 $\theta > 0$, 求 μ 和 θ 的矩估计.

求正态总体 $N(\mu, \sigma^2)$ 的 μ, σ^2 的矩估计法.

求总体 $X \sim U(a,b)$ 中a,b的矩估计法.