Total No. of Questions: 6 Total No. of Printed Pages:3

Enrolment No.....

Faculty of Engineering End Sem. (Odd) Examination Dec-2018 EN3BS05 Engineering Physics

Programme: B. Tech. Branch/Specialisation: All

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

Q.1	i.	Ruby laser comes under the ca	•	1		
V .1		•	(b) Liquid laser	-		
		` '	(d) Gas laser			
	ii.	Optical fibers are basically	. ,	1		
		•	(b) Conductors			
		(c) Semiconductors	(d) Superconductors			
	iii.	In case of Newtons ring exper-	riment, on insertion of liquid in the	1		
		film, the diameter of ring:				
		(a) Decreases				
		(b) Increases				
		(c) May decreases or increases	S			
		(d) None of these				
	iv. For Fraunhofer diffraction, the first diffraction minima d single slit diffraction is at $\theta = 30^{\circ}$ for a light of 5000A					
	length. What is the width of the slit?					
		(a) $5x10^{-5}$ cm (b) $10x10^{-5}$ cm	(c) 2.5×10^{-5} cm (d) 1.25×10^{-5} cm			
	v.	De-Broglie waves are associate	ted with	1		
		(a) Moving neutral particles of	nly			
		(b) Moving charged particles	only			
		(c) All moving particles				
		(d) All particles whether in mo	otion or at rest			
	vi.	Which relation between rad represents the FCC structure	ius of atom and lattice constant	1		
		(a) $r = a/2$ (b) $r = a\sqrt{3}/4$	(c) $a\sqrt{2}/4$ (d) r=a			
		(-)	P.T.	O.		

	vii.	 Which of the following statements is correct? For a particle executing simple harmonic motion about the origin (a) The acceleration is maximum when the displacement is maximum. (b) The acceleration is maximum at the origin. (c) The velocity is maximum when the displacement is maximum. (d) The force is maximum at the origin 	1
	viii.	The magnetic susceptibility of a superconducting material is (a) -1 (b) Positive and very large (c) Negative and very large (d) +1	1
	ix.	If two objects of 30kg and 10kg move with equal kinetic energy, then what is the ratio of magnitudes for linear momentum (a) $\sqrt{3}$: 1 (b) 1: $\sqrt{3}$ (c) 1: $3\sqrt{3}$ (d) 1:3	1
	х.	The reduced mass of a system consisting of two masses m_1 and m_2 is: (a) Less than m_1 (b) Less than m_2 (c) Greater than m_1 and m_2 (d) Less than m_1 and m_2	1
Q.2	i. ii. iii.	Why is four level lasers more efficient than three level laser? A Ruby Laser has its metastable state at 1.79eV from which stimulated emission produces laser light. Calculate the wavelength of light. Define Numerical Aperture of an optical fiber. Deduce suitable	2 3
OR	iv.	expression relating numerical aperture and acceptance angle. Explain with diagram any one type of Gas laser.	5
Q.3	i. ii. iii.	Explain Rayleigh criterion of resolution. Explain the phenomenon of double refraction in a calcite crystal. Explain the formation of rings in Newtons ring experiment and prove that diameter of dark ring is proportional to the square root of natural numbers.	2 3 5
OR	iv	Prove that in single slit diffraction pattern, intensity of first secondary maxima is 4.5% of the intensity of principal maxima.	5

Q.4	i.	The De-Broglie wavelength of a proton is 0.8×10^{-10} m. Calculate	2
	ii.	the energy in eV if its mass is 1.67x10 ⁻²⁷ kg. Explain Heisenberg's uncertainty principle with its elementary proof.	3
	iii.	Derive the expression for energy values and wave function for a particle in a box.	5
OR	iv	Write short note on:	5
		(a) Miller Indices (b) Matter waves	
Q.5	i.	Deduce suitable expression for reduced mass of a two particle system.	3
	ii.	Differentiate between elastic and inelastic collision. A car of 500kg travelling at 30m/s rear ends another car of 600kg, travelling at 20m/s in the same direction. The collision is great enough that the two cars stick together after they collide. How fast will both cars be going after the collision.	7
OR	iii.	What is gravitational law? Derive suitable expression for potential due to a spherical shell.	7
Q.6	i.	At zero magnetic field a superconducting tin has a critical temperature of 3.7K. At 0 K, the critical magnetic field is 0.306T. Calculate critical magnetic field at 2.0K	3
	ii.	What is reverberation time? Explain clearly what causes reverberation in a hall and how it can be minimised. Derive Sabine's expression for the reverberation time.	7
OR	iii.	Define superconducting state. Discuss Meissner effect in detail and prove that superconductors are perfectly diamagnetic in nature.	7

Marking Scheme EN3BS05 Engineering Physics

Q.1	i.	Ruby laser comes under the category of:	1
		(c) Solid state laser	
	ii.	Optical fibers are basically (a) Insulators	
	iii.	In case of Newtons ring experiment, on insertion of liquid in the	
		film, the diameter of ring:	
	(a) Decreases		
	iv.	For Fraunhofer diffraction, the first diffraction minima due to a	1
		single slit diffraction is at $\theta = 30^{\circ}$ for a light of $5000A^{\circ}$ wave	
		length. What is the width of the slit?	
		(b) $10x10^{-5}$ cm	
	v.	De-Broglie waves are associated with	1
		(c) All moving particles	
	vi.	Which relation between radius of atom and lattice constant	1
		represents the FCC structure	
		(c) $a\sqrt{2}/4$	
	vii.	Which of the following statements is correct?	1
		For a particle executing simple harmonic motion about the origin	
		(a) The acceleration is maximum when the displacement is maximum.	
	viii.	The magnetic susceptibility of a superconducting material is	1
	, 111.	(a) -1	-
	ix.	If two objects of 30kg and 10kg move with equal kinetic energy,	1
		then what is the ratio of magnitudes for linear momentum	
		(a) $\sqrt{3}$: 1	
	х.	The reduced mass of a system consisting of two masses m_1 and m_2	1
	71.	is:	-
		(d) Less than m ₁ and m ₂	
		(1)	
Q.2	i.	Why is four level lasers more efficient than three level laser?	2
-		As per explanation	

	ii.	A Ruby Laser has its metastable state at 1.79eV from which stimulated emission produces laser light. Calculate the wavelength of light.	3			
		Formula 1 mark				
		Correct answer 2 marks				
	iii.	Numerical Aperture of an optical fiber. Deduce suitable	5			
		expression relating numerical aperture and acceptance angle.				
		Definition 1 mark				
		Diagram 1 mark				
		Derivation 3 marks				
OR	iv.	Any one type of Gas laser.	5			
		Diagram 1 mark				
		Energy level diagram 1 mark				
		Description 3 marks				
Q.3	i.	Rayleigh criterion of resolution.	2			
	ii.	Phenomenon of double refraction in a calcite crystal.	3			
	iii.	. Explain the formation of rings in Newtons ring experiment and				
		prove that diameter of dark ring is proportional to the square root				
		of natural numbers.				
		Diagram 1 mark				
		Rest 4 marks				
OR iv		Prove that in single slit diffraction pattern, intensity of first				
		secondary maxima is 4.5% of the intensity of principal maxima.				
		Diagram 1 mark				
		Intensity Relation 2 marks				
		Complete Result 2 marks				
		•				
Q.4	i.	The De-Broglie wavelength of a proton is 0.8×10^{-10} m. Calculate	2			
		the energy in eV if its mass is 1.67x10 ⁻²⁷ kg.				
		Formula 1 mark				
		Correct Answer 1 mark				
	ii.	Explain Heisenberg's uncertainty principle with its elementary proof.	3			
		Heisenberg's uncertainity principle 1 mark				
		Proof 2 marks				

	iii.	Derive the expression for energy values and wave function for a particle in a box.		
		Diagram & Equation	1 mark	
		Energy value	2 marks	
		Wavelength	2 marks	
OR	iv	Write short note on:		5
		(a) Miller Indices	2.5 marks	
		(b) Matter waves	2.5 marks	
Q.5	i.	Expression for reduced mass of a two particle syste	m.	3
	ii.	Difference b/w elastic and inelastic collision.	3 marks	7
		How fast will both cars be going after the collision.	4 marks	
OR	iii.	Gravitational law	2 marks	7
		Diagram	1 mark	
		Rest	4 marks	
Q.6 i. At zero magnetic field a superconducting tin has temperature of 3.7K. At 0 K, the critical magnetic field			3	
		Calculate critical magnetic field at 2.0K.	1	
		Formula	1 mark	
	::	Calculation Reverberation time	2 marks	7
	ii.		2 marks	/
		Causes reverberation in a hall and how it can be mi	nimised 2 marks	
		Sabine's expression for the reverberation time	3 marks	
ΩD	:::	•		7
OR	iii.	Definition superconducting state Meissner effect	2 marks 2 marks	7
		Proof	2 marks	
		1 1001	3 marks	
