AS - TP5 - Graphes de calcul

Module Softmax

Le module softmax permet de calculer une distribution de probabilités sur un ensemble discret d'éléments. Soit le vecteur $x_1, ... x_n$ de scores réels (par exemple produits par d'autres modules), la définition du softmax est :

$$softmax(x_i) = \frac{e^{x_i}}{\sum_k = 1^n e^{x_k}} \tag{1}$$

Le module softmax permet de faire du sampling sur des données discrètes.

Réseaux de neurones récurrents pour la génération de séquences

Soit une séquence $w_1, ...w_T$ d'éléments. Nous allons modéliser la probabilité $P(w_1, ..., w_T)$ à l'aide d'un réseau de neurones récurrent. Soit h_t un état cachés à l'instant t, nous avons $P(w_1, ..., w_T) = \prod P(w_t|w_{< t})$ et nous allons supposer que $g_\tau(h_t) = P(w_t|w_{< t})$. La fonction g mapper un état caché vers une distribution de probabilité (en utilisant une fonction softmax).

La récurrence du réseau sera définie par $h_t = f_{\theta}(h_{t-1}, w_{t-1})$ qui correspond au modèle dynamique du réseau de neurone.

1 : Définition de la fonction q

Pour commencer, en considérant un espace latent de dimension N, et un espace d'éntrée de dimension n, définissez sous forme de module (en utilisant nngraph) la fonction g_{τ} sous la forme d'une fonction linéaire suivie d'un softmax.

2 : Définition de la fonction h

Définissez sous forme de module la fonction h_{θ} de la forme

$$h_t = \tanh(\Theta^d h_{t-1} + \Theta^i w_{t-1}) \tag{2}$$

où w_{t-1} est le vecteur zéro, avec une unique valeur 1 correspondant à l'élément lu par le réseau.

3 : Définiton du réseau

Nous allons définir un module correspondant au réseau de neurone "déplié" sur T timesteps. Ce réseau prendra en entrée une séquence de vecteur $w_1, ..., w_{T-1}$ et un étrat initial $h_0 = 0$ et produira la séquence $w_2, ... w_T$.

 $\mathbf{N.B}$: Pour cela, les modules g_{τ} et h_{θ} qui apparaissent plusieurs fois doivent être répliqués à l'aide de la fonction $clone_many_times$ fournie.

4 : Apprentissage

L'apprentissage d'un tel module sera effectué à l'aide d'un critère de type $Negative\ LogLikelihood:\ ClassNLLCriterion\ dans\ torch$

5 : Inférence

Dans le cadre de l'utilisation de ce r"éseau en inférence, la procédure consiste à sampler les entrées à l'aide de la fonction g_{τ} . Ecrire la fonction qui permet de générer une nouvelle séquence à l'aide d'un modèle

6 : Chargement des données

- Les données serone préparées à l'aide du script data-news-20Xx-to-characterl-data.sh
- Les tenseurs seront générées à l'aide du script prepare_data.lua
- Les données seront par la suite chargées comme dans le script load_exemple.lua

Suite... au prochain numéro