代数结构

Chapter 3: Field Fundamentals

Shengli Liu (刘胜利)

liu-sl@cs.sjtu.edu.cn Lab of Cryptography and Information Security 密码与信息安全实验室 计算机科学与工程系 上海交通大学

- 我们只考虑有1的环,任意的真理想可以构造R/I商环;
- 有1的交换环: R/P得到整环; R/M得到域;
- 整环: 整除, 因子, gcd, lcm, irreducible, prime;
- UFD: gcd, lcm的存在性; irreducible=prime;
- PD: (non-zero)prime ideal=maximal ideal; $\langle a_1, \ldots, a_n \rangle = \langle d \rangle$, 其中 $d = \gcd(a_1, \ldots, a_n)$, 且 $d = \sum_{i=1}^n \mu_i a_i$;
- ED: (Extended) Euclid Algorithm 可以计算出d和 μ_i 使得 $d = \gcd(a_1, ...$ 且 $d = \sum_{i=1}^n \mu_i a_i$ 。Ex: ($\mathbb{Z}, +, \cdot$),($\mathbb{F}[x], +, \cdot$)
- 构造域的方法: ED/(p), 其中p为素元; 设R是整环且 $S = R \setminus \{0\}$, 则R/S是包含R同构环的最小的域,称为R的分式域(商域);

- 我们只考虑有1的环,任意的真理想可以构造R/I商环;
- 有1的交换环: R/P得到整环; R/M得到域;
- 整环:整除,因子,gcd, lcm, irreducible, prime;
- UFD: gcd, lcm的存在性; irreducible=prime;
- PD: (non-zero)prime ideal=maximal ideal; $\langle a_1, \ldots, a_n \rangle = \langle d \rangle$, 其中 $d = \gcd(a_1, \ldots, a_n)$, 且 $d = \sum_{i=1}^n \mu_i a_i$;
- ED: (Extended) Euclid Algorithm 可以计算出 $dn\mu_i$ 使得 $d = \gcd(a_1, \dots$ 且 $d = \sum_{i=1}^n \mu_i a_i$ 。 Ex: ($\mathbb{Z}, +, \cdot$),($\mathbb{F}[x], +, \cdot$)
- 构造域的方法: ED/(p), 其中p为素元; 设R是整环且 $S = R \setminus \{0\}$, 则R/S是包含R同构环的最小的域,称为R的分式域(商域);

- 我们只考虑有1的环,任意的真理想可以构造R/I商环;
- 有1的交换环: R/P得到整环; R/M得到域;
- 整环: 整除, 因子, gcd, lcm, irreducible, prime;
- UFD: gcd, *lcm*的存在性; irreducible=prime;
- PD: (non-zero)prime ideal=maximal ideal; $\langle a_1, \ldots, a_n \rangle = \langle d \rangle$, $\sharp \, \forall d = \gcd(a_1, \ldots, a_n), \quad \mathbb{L}d = \sum_{i=1}^n \mu_i a_i;$
- ED: (Extended) Euclid Algorithm 可以计算出d和 μ_i 使得 $d = \gcd(a_1, ...$ 且 $d = \sum_{i=1}^n \mu_i a_i$ 。 Ex: ($\mathbb{Z}, +, \cdot$),($\mathbb{F}[x], +, \cdot$)
- 构造域的方法: ED/(p), 其中p为素元; 设R是整环且 $S = R \setminus \{0\}$, 则R/S是包含R同构环的最小的域,称为R的分式域(商域);

- 我们只考虑有1的环,任意的真理想可以构造R/I商环;
- 有1的交换环: R/P得到整环; R/M得到域;
- 整环: 整除, 因子, gcd, lcm, irreducible, prime;
- UFD: gcd, lcm的存在性; irreducible=prime;
- PD: (non-zero)prime ideal=maximal ideal; $\langle a_1, \ldots, a_n \rangle = \langle d \rangle$, 其中 $d = \gcd(a_1, \ldots, a_n)$, 且 $d = \sum_{i=1}^n \mu_i a_i$;
- ED: (Extended) Euclid Algorithm 可以计算出d和 μ_i 使得 $d = \gcd(a_1, \mathbb{L}d = \sum_{i=1}^n \mu_i a_i$ 。 Ex: $(\mathbb{Z}, +, \cdot)$, $(\mathbb{F}[x], +, \cdot)$
- 构造域的方法: ED/(p), 其中p为素元; 设R是整环且 $S = R \setminus \{0\}$, 则R/S是包含R同构环的最小的域,称为R的分式域(商域);

- 我们只考虑有1的环, 任意的真理想可以构造R/I商环;
- 有1的交换环: R/P得到整环; R/M得到域;
- 整环: 整除, 因子, gcd, lcm, irreducible, prime;
- UFD: gcd, lcm的存在性; irreducible=prime;
- PD: (non-zero)prime ideal=maximal ideal; $\langle a_1, \ldots, a_n \rangle = \langle d \rangle$, 其中 $d = \gcd(a_1, \ldots, a_n)$, 且 $d = \sum_{i=1}^n \mu_i a_i$;
- ED: (Extended) Euclid Algorithm 可以计算出d和 μ_i 使得 $d = \gcd(a_1, Ld = \sum_{i=1}^n \mu_i a_i$ 。 Ex: ($\mathbb{Z}, +, \cdot$),($\mathbb{F}[x], +, \cdot$)
- 构造域的方法: ED/(p), 其中p为素元; 设R是整环且 $S = R \setminus \{0\}$, 则R/S是包含R同构环的最小的域,称为R的分式域(商域);

- 我们只考虑有1的环, 任意的真理想可以构造R/I商环;
- 有1的交换环: R/P得到整环; R/M得到域;
- 整环: 整除, 因子, gcd, lcm, irreducible, prime;
- UFD: gcd, lcm的存在性; irreducible=prime;
- PD: (non-zero)prime ideal=maximal ideal; $\langle a_1, \ldots, a_n \rangle = \langle d \rangle$, 其中 $d = \gcd(a_1, \ldots, a_n)$, 且 $d = \sum_{i=1}^n \mu_i a_i$;
- ED: (Extended) Euclid Algorithm 可以计算出d和 μ_i 使得 $d = \gcd(a_1, \ldots$ 且 $d = \sum_{i=1}^n \mu_i a_i$ 。 Ex: ($\mathbb{Z}, +, \cdot$),($\mathbb{F}[x], +, \cdot$)
- 构造域的方法: ED/(p), 其中p为素元; 设R是整环且 $S = R \setminus \{0\}$, 则R/S是包含R同构环的最小的域,称为R的分式域(商域);

- 我们只考虑有1的环, 任意的真理想可以构造R/I商环;
- 有1的交换环: R/P得到整环; R/M得到域;
- 整环: 整除, 因子, gcd, lcm, irreducible, prime;
- UFD: gcd, lcm的存在性; irreducible=prime;
- PD: (non-zero)prime ideal=maximal ideal; $\langle a_1, \ldots, a_n \rangle = \langle d \rangle$, 其中 $d = \gcd(a_1, \ldots, a_n)$, 且 $d = \sum_{i=1}^n \mu_i a_i$;
- ED: (Extended) Euclid Algorithm 可以计算出d和 μ_i 使得 $d = \gcd(a_1, \ldots$ 且 $d = \sum_{i=1}^n \mu_i a_i$ 。 Ex: ($\mathbb{Z}, +, \cdot$),($\mathbb{F}[x], +, \cdot$)
- 构造域的方法: ED/(p), 其中p为素元; 设R是整环且 $S = R \setminus \{0\}$, 则R/S是包含R同构环的最小的域,称为R的分式域(商域);

- 我们只考虑有1的环,任意的真理想可以构造R/I商环;
- 有1的交换环: R/P得到整环; R/M得到域;
- 整环: 整除, 因子, gcd, lcm, irreducible, prime;
- UFD: gcd, lcm的存在性; irreducible=prime;
- PD: (non-zero)prime ideal=maximal ideal; $\langle a_1, \ldots, a_n \rangle = \langle d \rangle$, 其中 $d = \gcd(a_1, \ldots, a_n)$, 且 $d = \sum_{i=1}^n \mu_i a_i$;
- ED: (Extended) Euclid Algorithm 可以计算出d和 μ_i 使得 $d = \gcd(a_1, \dots$ 且 $d = \sum_{i=1}^n \mu_i a_i$ 。 Ex: ($\mathbb{Z}, +, \cdot$),($\mathbb{F}[x], +, \cdot$)
- 构造域的方法: ED/(p), 其中p为素元; 设R是整环且 $S = R \setminus \{0\}$, 则R/S是包含R同构环的最小的域,称为R的分式域(商域);

素域

域至少包括两个元素0,1。最小的域为二元域($\mathbb{Z}_2,+,\cdot$)。

Theorem 2.1

设R是一个有单位元e的环,则

$$\phi: \mathbb{Z} \to R$$

$$m \rightarrow me$$

是一个环同态。

- \bigcirc 如果R的特征为 \bigcirc 0,则R中包含一个与 \bigcirc \bigcirc 同构的子环。
- ② 如果R的特征为n(n > 0),则R中包含一个与 \mathbb{Z}_n 同构的子环;

Lemma 2.2

Let $f: \mathbb{F} \mapsto \mathbb{E}$ be a homomorphism of fields, i.e., f(a+b) = f(a) + f(b), f(ab) = f(a)f(b) (all $a,b \in F$), and $f(1_{\mathbb{F}}) = 1_E$. Then f is a monomorphism(单同态).

- First note that a field \mathbb{F} has no ideals except $\{0\}$ and \mathbb{F} . For if a is a nonzero member of the ideal I, then ab = 1 for some $b \in \mathbb{F}$, hence $1 \in I$, and therefore $I = \mathbb{F}$.
- Taking I to be the kernel of f, we see that I cannot be all of \mathbb{F} because f(1) = 0. Thus I must be $\{0\}$, so that f is injective.

Lemma 2.2

Let $f: \mathbb{F} \mapsto \mathbb{E}$ be a homomorphism of fields, i.e., f(a+b) = f(a) + f(b), f(ab) = f(a)f(b) (all $a,b \in F$), and $f(1_{\mathbb{F}}) = 1_E$. Then f is a monomorphism(单同态).

- First note that a field \mathbb{F} has no ideals except $\{0\}$ and \mathbb{F} . For if a is a nonzero member of the ideal I, then ab=1 for some $b\in\mathbb{F}$, hence $1\in I$, and therefore $I=\mathbb{F}$.
- Taking I to be the kernel of f, we see that I cannot be all of \mathbb{F} because f(1) = 0. Thus I must be $\{0\}$, so that f is injective.

Lemma 2.2

Let $f: \mathbb{F} \mapsto \mathbb{E}$ be a homomorphism of fields, i.e., f(a+b) = f(a) + f(b), f(ab) = f(a)f(b) (all $a,b \in F$), and $f(1_{\mathbb{F}}) = 1_E$. Then f is a monomorphism(单同态).

- First note that a field \mathbb{F} has no ideals except $\{0\}$ and \mathbb{F} . For if a is a nonzero member of the ideal I, then ab = 1 for some $b \in \mathbb{F}$, hence $1 \in I$, and therefore $I = \mathbb{F}$.
- Taking I to be the kernel of f, we see that I cannot be all of \mathbb{F} because f(1) = 0. Thus I must be $\{0\}$, so that f is injective.

Definition 2.3

一个域F如果不包含任何真子域,则F是一个素域。

Theorem 2.4

设F是一个域,则

- 如果ℙ的特征为0,则ℙ中包含一个与ℚ同构的(素)子域。
- ② 如果 \mathbb{F} 的特征为素数p,则 \mathbb{F} 中包含一个与($\mathbb{Z}_n,+,\cdot$)同构的(素)域;

Proof.

域同构

$$\phi: \mathbb{Q} \to \mathbb{F}$$

$$n/m \rightarrow (ne)(me)^{-1}$$

环同构 $\phi: \mathbb{Z} \to \mathbb{F}$, 且 $n \to (ne)$ 。

Let \mathbb{F} be a field, then $\mathbb{F}[x]$ is a Euclidean domain, PID, and UFD.

- $\forall f(x) \in \mathbb{F}(x)$ can be factored into a product of irreducible polynomials.
- An irreducible polynomial is a prime element in $\mathbb{F}[x]$.
- Every ideal in $\mathbb{F}[x]$ is generated by a polynomial, i.e. I = (f(x)).

Let \mathbb{F} be a field, then $\mathbb{F}[x]$ is a Euclidean domain, PID, and UFD.

- $\forall f(x) \in \mathbb{F}(x)$ can be factored into a product of irreducible polynomials.
- An irreducible polynomial is a prime element in F[x].
- Every ideal in $\mathbb{F}[x]$ is generated by a polynomial, i.e. I = (f(x)).

Let \mathbb{F} be a field, then $\mathbb{F}[x]$ is a Euclidean domain, PID, and UFD.

- $\forall f(x) \in \mathbb{F}(x)$ can be factored into a product of irreducible polynomials.
- An irreducible polynomial is a prime element in $\mathbb{F}[x]$.
- Every ideal in $\mathbb{F}[x]$ is generated by a polynomial, i.e. I = (f(x)).

Let \mathbb{F} be a field, then $\mathbb{F}[x]$ is a Euclidean domain, PID, and UFD.

- $\forall f(x) \in \mathbb{F}(x)$ can be factored into a product of irreducible polynomials.
- An irreducible polynomial is a prime element in $\mathbb{F}[x]$.
- Every ideal in $\mathbb{F}[x]$ is generated by a polynomial, i.e. I = (f(x)).

Let \mathbb{F} be a field, then $\mathbb{F}[x]$ is a Euclidean domain, PID, and UFD.

- $\forall f(x) \in \mathbb{F}(x)$ can be factored into a product of irreducible polynomials.
- An irreducible polynomial is a prime element in $\mathbb{F}[x]$.
- Every ideal in $\mathbb{F}[x]$ is generated by a polynomial, i.e. I = (f(x)).

Definition 3.1 (Field Extensions)

If $\mathbb F$ and $\mathbb E$ are fields and $\mathbb F\subseteq\mathbb E$, we say that $\mathbb E$ is an extension of $\mathbb F$, and we write $\mathbb F\leq\mathbb E$, or sometimes $\mathbb E/\mathbb F$.

Fact 3.2

If $\mathbb{F} \leq \mathbb{E}$, then \mathbb{E} is a vector space over \mathbb{F} . The dimension of this vector space is called the degree of the extension, written $[\mathbb{E} : \mathbb{F}]$.

- If $[\mathbb{E} : \mathbb{F}] = n < \infty$, we say that \mathbb{E} is a finite extension of \mathbb{F} .
- or that the extension \mathbb{E}/\mathbb{F} is finite, \mathbb{E} is of degree n over \mathbb{F} .

Example 3.3

 $[\mathbb{C}:\mathbb{R}]=2;$

 $[\mathbb{Q}(x):\mathbb{Q}]=\infty$

Definition 3.1 (Field Extensions)

If $\mathbb F$ and $\mathbb E$ are fields and $\mathbb F\subseteq\mathbb E$, we say that $\mathbb E$ is an extension of $\mathbb F$, and we write $\mathbb F\leq\mathbb E$, or sometimes $\mathbb E/\mathbb F$.

Fact 3.2

If $\mathbb{F} \leq \mathbb{E}$, then \mathbb{E} is a vector space over \mathbb{F} . The dimension of this vector space is called the degree of the extension, written $[\mathbb{E} : \mathbb{F}]$.

- If $[\mathbb{E} : \mathbb{F}] = n < \infty$, we say that \mathbb{E} is a finite extension of \mathbb{F} .
- or that the extension \mathbb{E}/\mathbb{F} is finite, \mathbb{E} is of degree n over \mathbb{F} .

Example 3.3

```
[\mathbb{C} : \mathbb{R}] = 2;[\mathbb{O}(x) : \mathbb{O}] = \infty
```

Definition 3.1 (Field Extensions)

If $\mathbb F$ and $\mathbb E$ are fields and $\mathbb F\subseteq\mathbb E$, we say that $\mathbb E$ is an extension of $\mathbb F$, and we write $\mathbb F\leq\mathbb E$, or sometimes $\mathbb E/\mathbb F$.

Fact 3.2

If $\mathbb{F} \leq \mathbb{E}$, then \mathbb{E} is a vector space over \mathbb{F} . The dimension of this vector space is called the degree of the extension, written $[\mathbb{E} : \mathbb{F}]$.

- If $[\mathbb{E} : \mathbb{F}] = n < \infty$, we say that \mathbb{E} is a finite extension of \mathbb{F} .
- or that the extension \mathbb{B}/\mathbb{F} is finite, \mathbb{E} is of degree n over \mathbb{F} .

Example 3.3

 $[\mathbb{C}:\mathbb{R}]=2;$

 $[\mathbb{Q}(x):\mathbb{Q}]=\infty$

Definition 3.1 (Field Extensions)

If $\mathbb F$ and $\mathbb E$ are fields and $\mathbb F\subseteq\mathbb E$, we say that $\mathbb E$ is an extension of $\mathbb F$, and we write $\mathbb F\leq\mathbb E$, or sometimes $\mathbb E/\mathbb F$.

Fact 3.2

If $\mathbb{F} \leq \mathbb{E}$, then \mathbb{E} is a vector space over \mathbb{F} . The dimension of this vector space is called the degree of the extension, written $[\mathbb{E} : \mathbb{F}]$.

- If $[\mathbb{E} : \mathbb{F}] = n < \infty$, we say that \mathbb{E} is a finite extension of \mathbb{F} .
- or that the extension \mathbb{E}/\mathbb{F} is finite, \mathbb{E} is of degree n over \mathbb{F} .

Example 3.3

```
[\mathbb{C}:\mathbb{R}]=2;
```

 $[\mathbb{Q}(x):\mathbb{Q}]=\infty$.

Let f be a nonconstant polynomial over the field \mathbb{F} , i.e., $f(x) \in \mathbb{F}[x]$ and $deg(f) \geq 1$. Then there is an extension \mathbb{E}/\mathbb{F} and an element $\alpha \in \mathbb{E}$ such that $f(\alpha) = 0$.

- Since f can be factored into irreducibles, we may assume that f itself is irreducible. The ideal $I = \langle f(X) \rangle$ in $\mathbb{F}[X]$ is prime, in fact maximal.
- Thus $\mathbb{E} = \mathbb{F}[X]/I$ is a field. We can place an isomorphic copy of \mathbb{F} inside \mathbb{E} via the homomorphism $h: a \mapsto a+I$; h is a monomorphism, we may identify $\mathbb{F} \leq \mathbb{E}$.
- Now let $\alpha = X + I$; if $f(X) = a_0 + a_1X + \ldots + a_nX^n$, then

$$f(\alpha) = (a_0 + I) + \dots + a_n (X + I)^n$$

= $(a_0 + \dots + a_n X^n) + I = f(X) + I$

Let f be a nonconstant polynomial over the field \mathbb{F} , i.e., $f(x) \in \mathbb{F}[x]$ and $deg(f) \geq 1$. Then there is an extension \mathbb{E}/\mathbb{F} and an element $\alpha \in \mathbb{E}$ such that $f(\alpha) = 0$.

- Since f can be factored into irreducibles, we may assume that f itself is irreducible. The ideal $I = \langle f(X) \rangle$ in $\mathbb{F}[X]$ is prime, in fact maximal.
- Thus $\mathbb{E} = \mathbb{F}[X]/I$ is a field. We can place an isomorphic copy of \mathbb{F} inside \mathbb{E} via the homomorphism $h: a \mapsto a+I$; h is a monomorphism, we may identify $\mathbb{F} \leq \mathbb{E}$.
- Now let $\alpha = X + I$; if $f(X) = a_0 + a_1X + \ldots + a_nX^n$, then

$$f(\alpha) = (a_0 + I) + \dots + a_n(X + I)^n$$

= $(a_0 + \dots + a_n X^n) + I = f(X) + I$

Let f be a nonconstant polynomial over the field \mathbb{F} , i.e., $f(x) \in \mathbb{F}[x]$ and $deg(f) \geq 1$. Then there is an extension \mathbb{E}/\mathbb{F} and an element $\alpha \in \mathbb{E}$ such that $f(\alpha) = 0$.

- Since f can be factored into irreducibles, we may assume that f itself is irreducible. The ideal $I = \langle f(X) \rangle$ in $\mathbb{F}[X]$ is prime, in fact maximal.
- Thus $\mathbb{E} = \mathbb{F}[X]/I$ is a field. We can place an isomorphic copy of \mathbb{F} inside \mathbb{E} via the homomorphism $h: a \mapsto a+I$; h is a monomorphism, we may identify $\mathbb{F} \leq \mathbb{E}$.
- Now let $\alpha = X + I$; if $f(X) = a_0 + a_1X + \ldots + a_nX^n$, then

$$f(\alpha) = (a_0 + I) + \dots + a_n(X + I)^n$$

= $(a_0 + \dots + a_n X^n) + I = f(X) + I$

Let f be a nonconstant polynomial over the field \mathbb{F} , i.e., $f(x) \in \mathbb{F}[x]$ and $deg(f) \geq 1$. Then there is an extension \mathbb{E}/\mathbb{F} and an element $\alpha \in \mathbb{E}$ such that $f(\alpha) = 0$.

- Since f can be factored into irreducibles, we may assume that f itself is irreducible. The ideal $I = \langle f(X) \rangle$ in $\mathbb{F}[X]$ is prime, in fact maximal.
- Thus $\mathbb{E} = \mathbb{F}[X]/I$ is a field. We can place an isomorphic copy of \mathbb{F} inside \mathbb{E} via the homomorphism $h: a \mapsto a+I$; h is a monomorphism, we may identify $\mathbb{F} \leq \mathbb{E}$.
- Now let $\alpha = X + I$; if $f(X) = a_0 + a_1X + \ldots + a_nX^n$, then

$$f(\alpha) = (a_0 + I) + \dots + a_n (X + I)^n$$

= $(a_0 + \dots + a_n X^n) + I = f(X) + I$

Let f and g be polynomials over the field F, i.e, $f(x), g(x) \in \mathbb{F}[x]$. Then f and g are relatively prime if and only if f and g have no common root in any extension of \mathbb{F} .

- If f and g are relatively prime, so there are polynomials a(X) and b(X) over F such that a(X)f(X) + b(X)g(X) = 1. If α is a common root of f and g, then the substitution of α for X yields 0 = 1, a contradiction.
- Conversely, if the $\gcd d(X)$ of f(X) and g(X) is nonconstant, let $\mathbb E$ be an extension of $\mathbb F$ in which d(X) has a root α . Since d(X) divides both f(X) and g(X), α is a common root of f and g in $\mathbb E$.

Let f and g be polynomials over the field F, i.e, $f(x), g(x) \in \mathbb{F}[x]$. Then f and g are relatively prime if and only if f and g have no common root in any extension of \mathbb{F} .

- If f and g are relatively prime, so there are polynomials a(X) and b(X) over F such that a(X)f(X) + b(X)g(X) = 1. If α is a common root of f and g, then the substitution of α for X yields 0 = 1, a contradiction.
- Conversely, if the $\gcd d(X)$ of f(X) and g(X) is nonconstant, let $\mathbb E$ be an extension of $\mathbb F$ in which d(X) has a root α . Since d(X) divides both f(X) and g(X), α is a common root of f and g in $\mathbb E$.

Let f and g be polynomials over the field F, i.e, $f(x), g(x) \in \mathbb{F}[x]$. Then f and g are relatively prime if and only if f and g have no common root in any extension of \mathbb{F} .

- If f and g are relatively prime, so there are polynomials a(X) and b(X) over F such that a(X)f(X) + b(X)g(X) = 1. If α is a common root of f and g, then the substitution of α for X yields 0 = 1, a contradiction.
- Conversely, if the $\gcd d(X)$ of f(X) and g(X) is nonconstant, let $\mathbb E$ be an extension of $\mathbb F$ in which d(X) has a root α . Since d(X) divides both f(X) and g(X), α is a common root of f and g in $\mathbb E$.

Corollary 3.6

If f and g are distinct monic irreducible polynomials over \mathbb{F} , then f and g have no common roots in any extension of \mathbb{F} .

Proof

 $\mathbb{F}[X]$ is a Euclidean Domain, so f and g are relatively prime.

Corollary 3.6

If f and g are distinct monic irreducible polynomials over \mathbb{F} , then f and g have no common roots in any extension of \mathbb{F} .

Proof.

 $\mathbb{F}[X]$ is a Euclidean Domain, so f and g are relatively prime.

代数元及代数扩张

设 $\alpha \in \mathbb{E}$ 。那么在 \mathbb{E} 中包括 \mathbb{F} 和元素 α 的最小环为

$$\mathbb{F}[\alpha] = \{a_0 + a_1 \alpha + a_2 \alpha^2 + \dots + a_m \alpha^m, \mid m \in \mathbb{N}, a_i \in \mathbb{F}\}$$
$$\mathbb{F}[\alpha] = \{a(\alpha) \mid a(x) \in \mathbb{F}[x]\}.$$

E中包括F和元素α的最小扩域为

$$\mathbb{F}(\alpha) = \left\{ \frac{a_0 + a_1 \alpha + a_2 \alpha^2 + \dots + a_m \alpha^m}{b_0 + b_1 \alpha + b_2 \alpha^2 + \dots + b_n \alpha^n} \mid m, n \in \mathbb{N}, a_i, b_j \in \mathbb{F}, \sum_{j=0}^n b_j \alpha^j \neq 0 \right\}.$$

$$= \left\{ \frac{a(\alpha)}{b(\alpha)} \mid a(x), b(x) \in \mathbb{F}[x], b(\alpha) \neq 0 \right\}$$

Fact 4.1

 $\mathbb{C} = \mathbb{R}(i) = \mathbb{R}[i];$

 $\mathbb{O}(\pi) \neq \mathbb{O}[\pi].$

代数元及代数扩张

Definition 4.2 (Algebraic Extensions)

- If $\mathbb{F} \leq \mathbb{E}$, the element $\alpha \in \mathbb{E}$ is said to be algebraic(代数元) over F if there is a nonconstant polynomial $f \in \mathbb{F}[X]$ such that $f(\alpha) = 0$;
- if α is not algebraic over \mathbb{F} , it is said to be transcendental(超越元) over \mathbb{F} . If every element of \mathbb{E} is algebraic over \mathbb{F} , then \mathbb{E} is said to be an algebraic extension of \mathbb{F} .

代数元及代数扩张

Definition 4.2 (Algebraic Extensions)

- If $\mathbb{F} \leq \mathbb{E}$, the element $\alpha \in \mathbb{E}$ is said to be algebraic $(\mathcal{K} \otimes \mathcal{T})$ over F if there is a nonconstant polynomial $f \in \mathbb{F}[X]$ such that $f(\alpha) = 0$;
- if α is not algebraic over \mathbb{F} , it is said to be transcendental(超越元) over \mathbb{F} . If every element of \mathbb{E} is algebraic over \mathbb{F} , then \mathbb{E} is said to be an algebraic extension of \mathbb{F} .

极小多项式

- Suppose that $\alpha \in \mathbb{E}$ is algebraic over \mathbb{F} , and let I be the set of all polynomials g over \mathbb{F} such that $g(\alpha) = 0$.
- I is an ideal of $\mathbb{F}[X]$, and since $\mathbb{F}[X]$ is a PID, I consists of all multiples of some $m(X) \in \mathbb{F}[X]$.
- m(X) is monic and unique, which is called the minimal polynomial of α over \mathbb{F} , sometimes written as $min(\alpha, \mathbb{F})$. The polynomial m(X) has the following properties:
- If $g \in \mathbb{F}[X]$, then $g(\alpha) = 0$ if and only if m(X) divides g(X). This follows because $g(\alpha) = 0$ iff $g(X) \in I$, and $I = \langle m(X) \rangle$, the ideal generated by m(X).
- ② m(X) is the monic polynomial of least degree such that $m(\alpha) = 0$. This follows from (1).
- (a) m(X) is the unique monic irreducible polynomial such that $m(\alpha) = 0$. If m(X) = h(X)k(X) with deg h and deg k less than deg m, then either $h(\alpha) = 0$ or $k(\alpha) = 0$, so that by (1), either h(X) or k(X) is a

- Suppose that $\alpha \in \mathbb{E}$ is algebraic over \mathbb{F} , and let I be the set of all polynomials g over \mathbb{F} such that $g(\alpha) = 0$.
- I is an ideal of $\mathbb{F}[X]$, and since $\mathbb{F}[X]$ is a PID, I consists of all multiples of some $m(X) \in \mathbb{F}[X]$.
- m(X) is monic and unique, which is called the minimal polynomial of α over \mathbb{F} , sometimes written as $min(\alpha, \mathbb{F})$. The polynomial m(X) has the following properties:
- If $g \in \mathbb{F}[X]$, then $g(\alpha) = 0$ if and only if m(X) divides g(X). This follows because $g(\alpha) = 0$ iff $g(X) \in I$, and $I = \langle m(X) \rangle$, the ideal generated by m(X).
- ② m(X) is the monic polynomial of least degree such that $m(\alpha) = 0$. This follows from (1).
- (a) m(X) is the unique monic irreducible polynomial such that $m(\alpha) = 0$. If m(X) = h(X)k(X) with deg h and deg k less than deg m, then either $h(\alpha) = 0$ or $k(\alpha) = 0$, so that by (1), either h(X) or k(X) is a

- Suppose that $\alpha \in \mathbb{E}$ is algebraic over \mathbb{F} , and let I be the set of all polynomials g over \mathbb{F} such that $g(\alpha) = 0$.
- I is an ideal of $\mathbb{F}[X]$, and since $\mathbb{F}[X]$ is a PID, I consists of all multiples of some $m(X) \in \mathbb{F}[X]$.
- m(X) is monic and unique, which is called the minimal polynomial of α over \mathbb{F} , sometimes written as $min(\alpha, \mathbb{F})$. The polynomial m(X) has the following properties:
- If $g \in \mathbb{F}[X]$, then $g(\alpha) = 0$ if and only if m(X) divides g(X). This follows because $g(\alpha) = 0$ iff $g(X) \in I$, and $I = \langle m(X) \rangle$, the ideal generated by m(X).
- ② m(X) is the monic polynomial of least degree such that $m(\alpha) = 0$ This follows from (1).
- ③ m(X) is the unique monic irreducible polynomial such that $m(\alpha) = 0$. If m(X) = h(X)k(X) with deg h and deg k less than deg m, then either $h(\alpha) = 0$ or $k(\alpha) = 0$, so that by (1), either h(X) or k(X) is a

- Suppose that $\alpha \in \mathbb{E}$ is algebraic over \mathbb{F} , and let I be the set of all polynomials g over \mathbb{F} such that $g(\alpha) = 0$.
- I is an ideal of $\mathbb{F}[X]$, and since $\mathbb{F}[X]$ is a PID, I consists of all multiples of some $m(X) \in \mathbb{F}[X]$.
- m(X) is monic and unique, which is called the minimal polynomial of α over \mathbb{F} , sometimes written as $min(\alpha, \mathbb{F})$. The polynomial m(X) has the following properties:
- If $g \in \mathbb{F}[X]$, then $g(\alpha) = 0$ if and only if m(X) divides g(X). This follows because $g(\alpha) = 0$ iff $g(X) \in I$, and $I = \langle m(X) \rangle$, the ideal generated by m(X).
- ② m(X) is the monic polynomial of least degree such that $m(\alpha) = 0$. This follows from (1).
- of m(X) is the unique monic irreducible polynomial such that $m(\alpha) = 0$. If m(X) = h(X)k(X) with deg h and deg k less than deg m, then either $h(\alpha) = 0$ or $k(\alpha) = 0$, so that by (1), either h(X) or k(X) is a

- Suppose that $\alpha \in \mathbb{E}$ is algebraic over \mathbb{F} , and let I be the set of all polynomials g over \mathbb{F} such that $g(\alpha) = 0$.
- I is an ideal of $\mathbb{F}[X]$, and since $\mathbb{F}[X]$ is a PID, I consists of all multiples of some $m(X) \in \mathbb{F}[X]$.
- m(X) is monic and unique, which is called the minimal polynomial of α over \mathbb{F} , sometimes written as $min(\alpha, \mathbb{F})$. The polynomial m(X) has the following properties:
- If $g \in \mathbb{F}[X]$, then $g(\alpha) = 0$ if and only if m(X) divides g(X). This follows because $g(\alpha) = 0$ iff $g(X) \in I$, and $I = \langle m(X) \rangle$, the ideal generated by m(X).
- ② m(X) is the monic polynomial of least degree such that $m(\alpha) = 0$. This follows from (1).
- **3** m(X) is the unique monic irreducible polynomial such that $m(\alpha) = 0$. If m(X) = h(X)k(X) with deg h and deg k less than deg m, then either $h(\alpha) = 0$ or $k(\alpha) = 0$, so that by (1), either h(X) or k(X) is a

Theorem 5.1

- If $\alpha \in \mathbb{E}$ is algebraic over \mathbb{F} and the minimal polynomial m(X) of α over \mathbb{F} has degree n, then $\mathbb{F}(\alpha) = \mathbb{F}[\alpha]$, the set of polynomials in α with coefficients in \mathbb{F} .
- In fact, $\mathbb{F}[\alpha]$ is the set $\mathbb{F}_{n-1}[\alpha]$ of all polynomials of degree at most n-1 with coefficients in \mathbb{F} , and $1,\alpha,\ldots,\alpha^{n-1}$ form a basis for the vector space $\mathbb{F}[\alpha]$ over the field \mathbb{F} . Consequently, $[\mathbb{F}(\alpha):\mathbb{F}]=n$.

Proof:

• Let f(X) be any nonzero polynomial over F of degree n-1 or less. Then since m(X) is irreducible and deg $f < \deg m$, f(X) and m(X) are relatively prime, and there are polynomials a(X) and b(X) over \mathbb{F} such that a(X) f(X) + b(X) m(X) = 1.

Theorem 5.1

- If $\alpha \in \mathbb{E}$ is algebraic over \mathbb{F} and the minimal polynomial m(X) of α over \mathbb{F} has degree n, then $\mathbb{F}(\alpha) = \mathbb{F}[\alpha]$, the set of polynomials in α with coefficients in \mathbb{F} .
- In fact, $\mathbb{F}[\alpha]$ is the set $\mathbb{F}_{n-1}[\alpha]$ of all polynomials of degree at most n-1 with coefficients in \mathbb{F} , and $1,\alpha,\ldots,\alpha^{n-1}$ form a basis for the vector space $\mathbb{F}[\alpha]$ over the field \mathbb{F} . Consequently, $[\mathbb{F}(\alpha):\mathbb{F}]=n$.

Proof:

• Let f(X) be any nonzero polynomial over F of degree n-1 or less. Then since m(X) is irreducible and deg $f < \deg m$, f(X) and m(X) are relatively prime, and there are polynomials a(X) and b(X) over \mathbb{F} such that a(X)f(X) + b(X)m(X) = 1.

Theorem 5.1

- If $\alpha \in \mathbb{E}$ is algebraic over \mathbb{F} and the minimal polynomial m(X) of α over \mathbb{F} has degree n, then $\mathbb{F}(\alpha) = \mathbb{F}[\alpha]$, the set of polynomials in α with coefficients in \mathbb{F} .
- In fact, $\mathbb{F}[\alpha]$ is the set $\mathbb{F}_{n-1}[\alpha]$ of all polynomials of degree at most n-1 with coefficients in \mathbb{F} , and $1,\alpha,\ldots,\alpha^{n-1}$ form a basis for the vector space $\mathbb{F}[\alpha]$ over the field \mathbb{F} . Consequently, $[\mathbb{F}(\alpha):\mathbb{F}]=n$.

Proof:

• Let f(X) be any nonzero polynomial over F of degree n-1 or less. Then since m(X) is irreducible and deg $f < \deg m$, f(X) and m(X) are relatively prime, and there are polynomials a(X) and b(X) over \mathbb{F} such that a(X)f(X) + b(X)m(X) = 1.

- But then $a(\alpha)f(\alpha)=1$, so that any nonzero element of $F_{n-1}[\alpha]$ has a multiplicative inverse. It follows that $F_{n-1}[\alpha]$ is a field.
- Now any field containing $\mathbb F$ and α must contain all polynomials in α , in particular all polynomials of degree at most n-1. Therefore $\mathbb F_{n-1}[\alpha] \subseteq F[\alpha] \subseteq \mathbb F(\alpha)$. But $\mathbb F(\alpha)$ is the smallest field containing $\mathbb F$ and α , so $\mathbb F(\alpha) \subseteq \mathbb F_{n-1}[\alpha]$, and we conclude that $\mathbb F_{n-1}[\alpha] = \mathbb F[\alpha] = \mathbb F(\alpha)$.
- Finally, the elements $1, \alpha, \ldots, \alpha_{n-1}$ certainly span $\mathbb{F}_{n-1}[\alpha]$, and they are linearly independent because if a nontrivial linear combination of these elements were zero, we would have a nonzero polynomial of degree less than that of m(X) with α as a root, a contradiction.

- But then $a(\alpha)f(\alpha) = 1$, so that any nonzero element of $F_{n-1}[\alpha]$ has a multiplicative inverse. It follows that $F_{n-1}[\alpha]$ is a field.
- Now any field containing \mathbb{F} and α must contain all polynomials in α , in particular all polynomials of degree at most n-1. Therefore $\mathbb{F}_{n-1}[\alpha] \subseteq F[\alpha] \subseteq \mathbb{F}(\alpha)$. But $\mathbb{F}(\alpha)$ is the smallest field containing \mathbb{F} and α , so $\mathbb{F}(\alpha) \subseteq \mathbb{F}_{n-1}[\alpha]$, and we conclude that $\mathbb{F}_{n-1}[\alpha] = \mathbb{F}[\alpha] = \mathbb{F}(\alpha)$.
- Finally, the elements $1, \alpha, \ldots, \alpha_{n-1}$ certainly span $\mathbb{F}_{n-1}[\alpha]$, and they are linearly independent because if a nontrivial linear combination of these elements were zero, we would have a nonzero polynomial of degree less than that of m(X) with α as a root, a contradiction.

- But then $a(\alpha)f(\alpha) = 1$, so that any nonzero element of $F_{n-1}[\alpha]$ has a multiplicative inverse. It follows that $F_{n-1}[\alpha]$ is a field.
- Now any field containing \mathbb{F} and α must contain all polynomials in α , in particular all polynomials of degree at most n-1. Therefore $\mathbb{F}_{n-1}[\alpha] \subseteq F[\alpha] \subseteq \mathbb{F}(\alpha)$. But $\mathbb{F}(\alpha)$ is the smallest field containing \mathbb{F} and α , so $\mathbb{F}(\alpha) \subseteq \mathbb{F}_{n-1}[\alpha]$, and we conclude that $\mathbb{F}_{n-1}[\alpha] = \mathbb{F}[\alpha] = \mathbb{F}(\alpha)$.
- Finally, the elements $1, \alpha, \dots, \alpha_{n-1}$ certainly span $\mathbb{F}_{n-1}[\alpha]$, and they are linearly independent because if a nontrivial linear combination of these elements were zero, we would have a nonzero polynomial of degree less than that of m(X) with α as a root, a contradiction.

Lemma 5.2

Suppose that $\mathbb{F} \leq K \leq \mathbb{E}$, the elements $\alpha_i, i \in I$, form a basis for \mathbb{E} over K, and the elements $\beta_j, j \in J$, form a basis for K over \mathbb{F} . (I and J need not be finite.) Then the products $\alpha_i\beta_j, i \in I, j \in J$, form a basis for \mathbb{E} over \mathbb{F} .

Proof:

If $\gamma \in \mathbb{E}$, then γ is a linear combination of the α_i with coefficients $a_i \in K$, and each a_i is a linear combination of the β_j with coefficients $b_{ij} \in \mathbb{F}$. It follows that the $\alpha_i\beta_j$ span \mathbb{E} over \mathbb{F} . Now if $\sum_{i,j}\gamma_{ij}\alpha_i\beta_j=0$, then $\sum_i\gamma_{ij}\alpha_i=0$ for all j, and consequently $\gamma_{ij}=0$ for all i,j, and the $\alpha_i\beta_j$ are linearly independent.

Lemma 5.2

Suppose that $\mathbb{F} \leq K \leq \mathbb{E}$, the elements $\alpha_i, i \in I$, form a basis for \mathbb{E} over K, and the elements $\beta_j, j \in J$, form a basis for K over \mathbb{F} . (I and J need not be finite.) Then the products $\alpha_i\beta_j, i \in I, j \in J$, form a basis for \mathbb{E} over \mathbb{F} .

Proof:

If $\gamma \in \mathbb{E}$, then γ is a linear combination of the α_i with coefficients $a_i \in K$, and each a_i is a linear combination of the β_j with coefficients $b_{ij} \in \mathbb{F}$. It follows that the $\alpha_i\beta_j$ span \mathbb{E} over \mathbb{F} . Now if $\sum_{i,j}\gamma_{ij}\alpha_i\beta_j=0$, then $\sum_i\gamma_{ij}\alpha_i=0$ for all j, and consequently $\gamma_{ij}=0$ for all i,j, and the $\alpha_i\beta_j$ are linearly independent.

Corollary 5.3

If $\mathbb{F} \leq K \leq \mathbb{E}$, then $[\mathbb{E} : \mathbb{F}] = [\mathbb{E} : K][K : \mathbb{F}]$.

Theorem 5.4

If \mathbb{E} is a finite extension of \mathbb{F} , then \mathbb{E} is an algebraic extension of \mathbb{F} .

Proof.

Let $\alpha \in \mathbb{E}$, and let $n = [\mathbb{E} : \mathbb{F}]$. Then $1, \alpha, \ldots, \alpha^n$ are n+1 vectors in an n-dimensional vector space, so they must be linearly dependent. Thus α is a root of a nonzero polynomial with coefficients in \mathbb{F} , which means that α is algebraic over \mathbb{F} .

Corollary 5.3

If $\mathbb{F} \leq K \leq \mathbb{E}$, then $[\mathbb{E} : \mathbb{F}] = [\mathbb{E} : K][K : \mathbb{F}]$.

Theorem 5.4

If \mathbb{E} is a finite extension of \mathbb{F} , then \mathbb{E} is an algebraic extension of \mathbb{F} .

Proof.

Let $\alpha \in \mathbb{E}$, and let $n = [\mathbb{E} : \mathbb{F}]$. Then $1, \alpha, \ldots, \alpha^n$ are n+1 vectors in an n-dimensional vector space, so they must be linearly dependent. Thus α is a root of a nonzero polynomial with coefficients in \mathbb{F} , which means that α is algebraic over \mathbb{F} .

Corollary 5.3

If $\mathbb{F} \leq K \leq \mathbb{E}$, then $[\mathbb{E} : \mathbb{F}] = [\mathbb{E} : K][K : \mathbb{F}]$.

Theorem 5.4

If \mathbb{E} is a finite extension of \mathbb{F} , then \mathbb{E} is an algebraic extension of \mathbb{F} .

Proof.

Let $\alpha \in \mathbb{E}$, and let $n = [\mathbb{E} : \mathbb{F}]$. Then $1, \alpha, \ldots, \alpha^n$ are n+1 vectors in an n-dimensional vector space, so they must be linearly dependent. Thus α is a root of a nonzero polynomial with coefficients in \mathbb{F} , which means that α is algebraic over \mathbb{F} .

Theorem 6.1

Let $\mathbb{F} \subseteq K$, and \mathbb{F} , K be fields. Let $S_1 \subseteq K$, $S_2 \subseteq K$. Then

$$\mathbb{F}(S_1 \cup S_2) = \mathbb{F}(S_1)(S_2).$$

Proof.

- Both $\mathbb{F}(S_1 \cup S_2)$ and $\mathbb{F}(S_1)(S_2)$ are extension fields of \mathbb{F} which contain F, S_1 , and S_2 . Hence $\mathbb{F}(S_1 \cup S_2) \subseteq \mathbb{F}(S_1)(S_2)$.
- $\mathbb{F}(S_1)$ is a subfield of $\mathbb{F}(S_1 \cup S_2)$. Then both $\mathbb{F}(S_1)$ and (S_2) are subsets of $\mathbb{F}(S_1 \cup S_2)$, hence $\mathbb{F}(S_1)(S_2) \subseteq \mathbb{F}(S_1 \cup S_2)$.

So
$$\mathbb{F}(S_1 \cup S_2) = \mathbb{F}(S_1)(S_2)$$
.

Theorem 6.1

Let $\mathbb{F} \subseteq K$, and \mathbb{F} , K be fields. Let $S_1 \subseteq K$, $S_2 \subseteq K$. Then

$$\mathbb{F}(S_1 \cup S_2) = \mathbb{F}(S_1)(S_2).$$

Proof.

- Both $\mathbb{F}(S_1 \cup S_2)$ and $\mathbb{F}(S_1)(S_2)$ are extension fields of \mathbb{F} which contain F, S_1 , and S_2 . Hence $\mathbb{F}(S_1 \cup S_2) \subseteq \mathbb{F}(S_1)(S_2)$.
- $\mathbb{F}(S_1)$ is a subfield of $\mathbb{F}(S_1 \cup S_2)$. Then both $\mathbb{F}(S_1)$ and (S_2) are sub sets of $\mathbb{F}(S_1 \cup S_2)$, hence $\mathbb{F}(S_1)(S_2) \subseteq \mathbb{F}(S_1 \cup S_2)$.

So $\mathbb{F}(S_1 \cup S_2) = \mathbb{F}(S_1)(S_2)$.

Theorem 6.1

Let $\mathbb{F} \subseteq K$, and \mathbb{F} , K be fields. Let $S_1 \subseteq K$, $S_2 \subseteq K$. Then

$$\mathbb{F}(S_1 \cup S_2) = \mathbb{F}(S_1)(S_2).$$

Proof.

- Both $\mathbb{F}(S_1 \cup S_2)$ and $\mathbb{F}(S_1)(S_2)$ are extension fields of \mathbb{F} which contain F, S_1 , and S_2 . Hence $\mathbb{F}(S_1 \cup S_2) \subseteq \mathbb{F}(S_1)(S_2)$.
- $\mathbb{F}(S_1)$ is a subfield of $\mathbb{F}(S_1 \cup S_2)$. Then both $\mathbb{F}(S_1)$ and (S_2) are subsets of $\mathbb{F}(S_1 \cup S_2)$, hence $\mathbb{F}(S_1)(S_2) \subseteq \mathbb{F}(S_1 \cup S_2)$.

So $\mathbb{F}(S_1 \cup S_2) = \mathbb{F}(S_1)(S_2)$.

Theorem 6.1

Let $\mathbb{F} \subseteq K$, and \mathbb{F} , K be fields. Let $S_1 \subseteq K$, $S_2 \subseteq K$. Then

$$\mathbb{F}(S_1 \cup S_2) = \mathbb{F}(S_1)(S_2).$$

Proof.

- Both $\mathbb{F}(S_1 \cup S_2)$ and $\mathbb{F}(S_1)(S_2)$ are extension fields of \mathbb{F} which contain F, S_1 , and S_2 . Hence $\mathbb{F}(S_1 \cup S_2) \subseteq \mathbb{F}(S_1)(S_2)$.
- $\mathbb{F}(S_1)$ is a subfield of $\mathbb{F}(S_1 \cup S_2)$. Then both $\mathbb{F}(S_1)$ and (S_2) are subsets of $\mathbb{F}(S_1 \cup S_2)$, hence $\mathbb{F}(S_1)(S_2) \subseteq \mathbb{F}(S_1 \cup S_2)$.

So
$$\mathbb{F}(S_1 \cup S_2) = \mathbb{F}(S_1)(S_2)$$
.

If $\mathbb{F} \leq \mathbb{E}$ and $\alpha_1, \ldots, \alpha_k \in \mathbb{E}$, we will use the notation $\mathbb{F}(\alpha_1, \ldots, \alpha_k)$ for the subfield of \mathbb{E} generated by \mathbb{F} and the α_i . Thus $\mathbb{F}(\alpha_1, \ldots, \alpha_k)$ is the smallest subfield of \mathbb{E} containing all elements of \mathbb{F} along with the α_i .

Definition 6.2

- If $\mathbb{F} \leq \mathbb{E}$ and $f \in \mathbb{F}[X]$, we say that f splits over \mathbb{E} if f can be written as $\lambda(X \alpha_1) \dots (X \alpha_k)$ for some $\alpha_1, \dots, \alpha_k \in \mathbb{E}$ and $\lambda \in \mathbb{F}$.
- If $\mathbb{F} \leq K$ and $f \in \mathbb{F}[X]$, we say that K is a splitting field for f over F if f splits over K but not over any proper subfield of K containing \mathbb{F} .

If $\mathbb{F} \leq \mathbb{E}$ and $\alpha_1, \ldots, \alpha_k \in \mathbb{E}$, we will use the notation $\mathbb{F}(\alpha_1, \ldots, \alpha_k)$ for the subfield of \mathbb{E} generated by \mathbb{F} and the α_i . Thus $\mathbb{F}(\alpha_1, \ldots, \alpha_k)$ is the smallest subfield of \mathbb{E} containing all elements of \mathbb{F} along with the α_i .

Definition 6.2

- If $\mathbb{F} \leq \mathbb{E}$ and $f \in \mathbb{F}[X]$, we say that f splits over \mathbb{E} if f can be written as $\lambda(X \alpha_1) \dots (X \alpha_k)$ for some $\alpha_1, \dots, \alpha_k \in \mathbb{E}$ and $\lambda \in \mathbb{F}$.
- If $\mathbb{F} \leq K$ and $f \in \mathbb{F}[X]$, we say that K is a splitting field for f over F if f splits over K but not over any proper subfield of K containing \mathbb{F} .

If $\mathbb{F} \leq \mathbb{E}$ and $\alpha_1, \ldots, \alpha_k \in \mathbb{E}$, we will use the notation $\mathbb{F}(\alpha_1, \ldots, \alpha_k)$ for the subfield of \mathbb{E} generated by \mathbb{F} and the α_i . Thus $\mathbb{F}(\alpha_1, \ldots, \alpha_k)$ is the smallest subfield of \mathbb{E} containing all elements of \mathbb{F} along with the α_i .

Definition 6.2

- If $\mathbb{F} \leq \mathbb{E}$ and $f \in \mathbb{F}[X]$, we say that f splits over \mathbb{E} if f can be written as $\lambda(X \alpha_1) \dots (X \alpha_k)$ for some $\alpha_1, \dots, \alpha_k \in \mathbb{E}$ and $\lambda \in \mathbb{F}$.
- If $\mathbb{F} \leq K$ and $f \in \mathbb{F}[X]$, we say that K is a splitting field for f over F if f splits over K but not over any proper subfield of K containing \mathbb{F} .

Theorem 6.3

If $f \in \mathbb{F}[X]$ and deg f = n, then f has a splitting field K over \mathbb{F} with $[K : \mathbb{F}] \leq n!$.

Proof.

- \mathbb{F} has an extension \mathbb{E}_1 containing a root α_1 of f, and the extension $\mathbb{F}(\alpha_1)/\mathbb{F}$ has degree at most n.
- We may then write $f(X) = \lambda(X \alpha_1)^{r_1} g(X)$, where α_1 is not a root of g and deg $g \le n-1$. If g is nonconstant, we can find an extension of $\mathbb{F}(\alpha_1)$ containing a root α_2 of g, and the extension $\mathbb{F}(\alpha_1, \alpha_2)$ will have degree at most n-1 over $\mathbb{F}(\alpha_1)$.
- Continue inductively and we can reach an extension of degree at most n! containing all the roots of f.

Theorem 6.3

If $f \in \mathbb{F}[X]$ and deg f = n, then f has a splitting field K over \mathbb{F} with $[K : \mathbb{F}] \leq n!$.

Proof.

- \mathbb{F} has an extension \mathbb{E}_1 containing a root α_1 of f, and the extension $\mathbb{F}(\alpha_1)/\mathbb{F}$ has degree at most n.
- We may then write $f(X) = \lambda (X \alpha_1)^{r_1} g(X)$, where α_1 is not a root of g and deg $g \le n-1$. If g is nonconstant, we can find an extension of $\mathbb{F}(\alpha_1)$ containing a root α_2 of g, and the extension $\mathbb{F}(\alpha_1, \alpha_2)$ will have degree at most n-1 over $\mathbb{F}(\alpha_1)$.
- Continue inductively and we can reach an extension of degree at most n! containing all the roots of f.

Theorem 6.4

Let $f(x) \in \mathbb{F}[x]$. Suppose that f(x) splits over \mathbb{E} , i.e.,

$$f(x) = b(x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n),$$

where $b \neq 0$. \mathbb{E} is the splitting field of f(x) iff $\mathbb{E} = \mathbb{F}(\alpha_1, \dots, \alpha_m)$.

Proof.

Let \mathbb{E} be the splitting field of f(x).

- f(x) splits over $\mathbb{F}(\alpha_1, \dots, \alpha_n)$, so $\mathbb{E} \subseteq \mathbb{F}(\alpha_1, \dots, \alpha_m)$.
- The splitting field \mathbb{E} contains \mathbb{F} , $\alpha_1, \dots, \alpha_n$. $\mathbb{F}(\alpha_1, \dots, \alpha_m)$ is the smallest field containing \mathbb{F} , $\alpha_1, \dots, \alpha_n$. So $\mathbb{F}(\alpha_1, \dots, \alpha_m) \subseteq \mathbb{E}$.

Theorem 6.4

Let $f(x) \in \mathbb{F}[x]$. Suppose that f(x) splits over \mathbb{E} , i.e.,

$$f(x) = b(x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n),$$

where $b \neq 0$. \mathbb{E} is the splitting field of f(x) iff $\mathbb{E} = \mathbb{F}(\alpha_1, \dots, \alpha_m)$.

Proof.

Let \mathbb{E} be the splitting field of f(x).

- f(x) splits over $\mathbb{F}(\alpha_1, \dots, \alpha_n)$, so $\mathbb{E} \subseteq \mathbb{F}(\alpha_1, \dots, \alpha_m)$.
- The splitting field \mathbb{E} contains $\mathbb{F}, \alpha_1, \dots, \alpha_n$. $\mathbb{F}(\alpha_1, \dots, \alpha_m)$ is the smallest field containing $\mathbb{F}, \alpha_1, \dots, \alpha_n$. So $\mathbb{F}(\alpha_1, \dots, \alpha_m) \subseteq \mathbb{E}$.

Theorem 6.4

Let $f(x) \in \mathbb{F}[x]$. Suppose that f(x) splits over \mathbb{E} , i.e.,

$$f(x) = b(x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n),$$

where $b \neq 0$. \mathbb{E} is the splitting field of f(x) iff $\mathbb{E} = \mathbb{F}(\alpha_1, \dots, \alpha_m)$.

Proof.

Let \mathbb{E} be the splitting field of f(x).

- f(x) splits over $\mathbb{F}(\alpha_1, \dots, \alpha_n)$, so $\mathbb{E} \subseteq \mathbb{F}(\alpha_1, \dots, \alpha_m)$.
- The splitting field \mathbb{E} contains \mathbb{F} , $\alpha_1, \dots, \alpha_n$. $\mathbb{F}(\alpha_1, \dots, \alpha_m)$ is the smallest field containing \mathbb{F} , $\alpha_1, \dots, \alpha_n$. So $\mathbb{F}(\alpha_1, \dots, \alpha_m) \subseteq \mathbb{E}$.

Theorem 6.5

If α and β are roots of the irreducible polynomial $f \in \mathbb{F}[X]$ in an extension \mathbb{E} of \mathbb{F} , then $\mathbb{F}(\alpha)$ is isomorphic to $\mathbb{F}(\beta)$ via an isomorphism that carries α into β and is the identity on \mathbb{F} .

Proof

• Without loss of generality we may assume f monic (if not, divide f by its leading coefficient). f is the minimal polynomial of both α and β . The elements of $\mathbb{F}(\alpha)$ can be expressed uniquely as $a_0 + a_1\alpha + \ldots + a_{n-1}\alpha^{n-1}$, where the a_i belong to \mathbb{F} and n is the degree of f. The desired isomorphism is given by:

$$a_0 + a_1 \alpha + \ldots + a_{n-1} \alpha^{n-1} \mapsto a_0 + a_1 \beta + \ldots + a_{n-1} \beta^{n-1}.$$

Theorem 6.5

If α and β are roots of the irreducible polynomial $f \in \mathbb{F}[X]$ in an extension \mathbb{E} of \mathbb{F} , then $\mathbb{F}(\alpha)$ is isomorphic to $\mathbb{F}(\beta)$ via an isomorphism that carries α into β and is the identity on \mathbb{F} .

Proof.

• Without loss of generality we may assume f monic (if not, divide f by its leading coefficient). f is the minimal polynomial of both α and β . The elements of $\mathbb{F}(\alpha)$ can be expressed uniquely as $a_0 + a_1\alpha + \ldots + a_{n-1}\alpha^{n-1}$, where the a_i belong to \mathbb{F} and n is the degree of f. The desired isomorphism is given by:

$$a_0 + a_1\alpha + \ldots + a_{n-1}\alpha^{n-1} \mapsto a_0 + a_1\beta + \ldots + a_{n-1}\beta^{n-1}$$
.

Lemma 6.6

Let $p(x) \in \mathbb{F}[x]$ be an irreducible polynomial. Let α be a root over an extended field \mathbb{E} . Let $\phi : \mathbb{F} \to \mathbb{F}'$ be a field isomorphism. Let α' be $\phi(p(x))$ a root over some extended field E'. Then there exists an isomorphism $i : \mathbb{F}(\alpha) \to \mathbb{F}'(\alpha')$, which, when restricted on \mathbb{F} , results in ϕ .

Proof.

 $\phi(p(x)) \in \mathbb{F}'[x]$ is irreducible since $p(x) \in \mathbb{F}[x]$ is irreducible.

- $\mathbb{F}(\alpha) \cong \mathbb{F}[x]/(p(x));$
- $\mathbb{F}'(\alpha') \cong \mathbb{F}'[x]/(\phi(p(x)));$
- $\mathbb{F}[x]/(p(x)) \cong \mathbb{F}'[x]/(\phi(p(x))).$
- $\mathbb{F}(\alpha) \xrightarrow{\rho} \mathbb{F}[x]/(p(x)) \xrightarrow{\phi} \mathbb{F}'[x]/(\phi(p(x))) \xrightarrow{\sigma} \mathbb{F}'(\alpha')$. So the isomorphism function is $\sigma\phi\rho$.

Definition 6.7

If $\mathbb E$ and $\mathbb E'$ are extensions of $\mathbb F$ and i is an isomorphism of $\mathbb E$ and $\mathbb E'$, we say that i is an $\mathbb F$ -isomorphism if i fixes $\mathbb F$, that is, i(a)=a for every $a\in \mathbb F$. $\mathbb F$ -homomorphisms, $\mathbb F$ -monomorphisms, etc., are defined similarly.

Theorem 6.8

- If K is a splitting field for f over \mathbb{F} and K' is a splitting field for f' over \mathbb{F}' , then i can be extended to an isomorphism of K and K'.
- In particular, if $\mathbb{F} = \mathbb{F}'$ and i is the identity function, we conclude that any two splitting fields of f are \mathbb{F} -isomorphic.

Definition 6.7

If $\mathbb E$ and $\mathbb E'$ are extensions of $\mathbb F$ and i is an isomorphism of $\mathbb E$ and $\mathbb E'$, we say that i is an $\mathbb F$ -isomorphism if i fixes $\mathbb F$, that is, i(a)=a for every $a\in \mathbb F$. $\mathbb F$ -homomorphisms, $\mathbb F$ -monomorphisms, etc., are defined similarly.

Theorem 6.8

- If K is a splitting field for f over \mathbb{F} and K' is a splitting field for f' over \mathbb{F}' , then i can be extended to an isomorphism of K and K'.
- In particular, if $\mathbb{F} = \mathbb{F}'$ and i is the identity function, we conclude that any two splitting fields of f are \mathbb{F} -isomorphic.

Definition 6.7

If $\mathbb E$ and $\mathbb E'$ are extensions of $\mathbb F$ and i is an isomorphism of $\mathbb E$ and $\mathbb E'$, we say that i is an $\mathbb F$ -isomorphism if i fixes $\mathbb F$, that is, i(a)=a for every $a\in \mathbb F$. $\mathbb F$ -homomorphisms, $\mathbb F$ -monomorphisms, etc., are defined similarly.

Theorem 6.8

- If K is a splitting field for f over \mathbb{F} and K' is a splitting field for f' over \mathbb{F}' , then i can be extended to an isomorphism of K and K'.
- In particular, if $\mathbb{F} = \mathbb{F}'$ and i is the identity function, we conclude that any two splitting fields of f are \mathbb{F} -isomorphic.

Definition 6.7

If $\mathbb E$ and $\mathbb E'$ are extensions of $\mathbb F$ and i is an isomorphism of $\mathbb E$ and $\mathbb E'$, we say that i is an $\mathbb F$ -isomorphism if i fixes $\mathbb F$, that is, i(a)=a for every $a\in \mathbb F$. $\mathbb F$ -homomorphisms, $\mathbb F$ -monomorphisms, etc., are defined similarly.

Theorem 6.8

- If K is a splitting field for f over \mathbb{F} and K' is a splitting field for f' over \mathbb{F}' , then i can be extended to an isomorphism of K and K'.
- In particular, if $\mathbb{F} = \mathbb{F}'$ and i is the identity function, we conclude that any two splitting fields of f are \mathbb{F} -isomorphic.

Proof.

- Carry out the construction of a splitting field for f over F, and perform exactly the same steps to construct a splitting field for f' over \mathbb{F}' .
- At every stage, there is only a notational difference between the fields obtained.
- Furthermore, we can do the first construction inside *K* and the second inside *K'*. It shows that the splitting fields that we have constructed coincide with *K* and *K'*.

П

Proof.

- Carry out the construction of a splitting field for f over F, and perform exactly the same steps to construct a splitting field for f' over \(\mathbb{F}' \).
- At every stage, there is only a notational difference between the fields obtained.
- Furthermore, we can do the first construction inside K and the second inside K'. It shows that the splitting fields that we have constructed coincide with K and K'.

П

Proof.

- Carry out the construction of a splitting field for f over F, and perform exactly the same steps to construct a splitting field for f' over F'.
- At every stage, there is only a notational difference between the fields obtained.
- Furthermore, we can do the first construction inside K and the second inside K'. It shows that the splitting fields that we have constructed coincide with K and K'.

多项式 $f(x) \in \mathbb{F}[x]$ 的分裂域是惟一的: f(x)的任意两个分裂域必是 \mathbb{F} -同构的。

Example 6.9

Find a splitting field for $f(X) = X^3 - 2$ over the rationals \mathbb{Q} .

Solution:

- If α is the positive cube root of 2, then the roots of f are α , $\alpha(-1/2+i\frac{1}{2}\sqrt{3})$ and $\alpha(-1/2-i\frac{1}{2}\sqrt{3})$.
- The polynomial f is irreducible, either by Eisenstein's criterion or by the observation that if f were factorable, it would have a linear factor, and there is no rational number whose cube is 2. Thus f is the minimal polynomial of α , so $[Q(\alpha):Q]=3$.

Example 6.9

Find a splitting field for $f(X) = X^3 - 2$ over the rationals \mathbb{Q} .

Solution:

- If α is the positive cube root of 2, then the roots of f are α , $\alpha(-1/2 + i\frac{1}{2}\sqrt{3})$ and $\alpha(-1/2 i\frac{1}{2}\sqrt{3})$.
- The polynomial f is irreducible, either by Eisenstein's criterion or by the observation that if f were factorable, it would have a linear factor, and there is no rational number whose cube is 2. Thus f is the minimal polynomial of α , so $[Q(\alpha):Q]=3$.

Example 6.9

Find a splitting field for $f(X) = X^3 - 2$ over the rationals \mathbb{Q} .

Solution:

- If α is the positive cube root of 2, then the roots of f are α , $\alpha(-1/2 + i\frac{1}{2}\sqrt{3})$ and $\alpha(-1/2 i\frac{1}{2}\sqrt{3})$.
- The polynomial f is irreducible, either by Eisenstein's criterion or by the observation that if f were factorable, it would have a linear factor, and there is no rational number whose cube is 2. Thus f is the minimal polynomial of α , so $[Q(\alpha):Q]=3$.

- Now since α and $i\sqrt{3}$ generate all the roots of f, the splitting field is $K = Q(\alpha, i\sqrt{3})$. Since $i\sqrt{3} \notin Q(\alpha)$, $[Q(\alpha, i\sqrt{3}) : Q(\alpha)]$ is at least 2. But $i\sqrt{3}$ is a root of $X^2 + 3 \in Q(\alpha)[X]$, so the degree of $Q(\alpha, i\sqrt{3})$ over $Q(\alpha)$ is a most 2, and therefore is exactly 2.
- Thus

$$[K:Q] = [Q(\alpha, i\sqrt{3}): Q]$$

$$= [Q(\alpha, i\sqrt{3}): Q(\alpha)][Q(\alpha): Q]$$

$$= 2 \times 3 = 6 \quad \heartsuit$$

- Now since α and $i\sqrt{3}$ generate all the roots of f, the splitting field is $K = Q(\alpha, i\sqrt{3})$. Since $i\sqrt{3} \notin Q(\alpha)$, $[Q(\alpha, i\sqrt{3}) : Q(\alpha)]$ is at least 2. But $i\sqrt{3}$ is a root of $X^2 + 3 \in Q(\alpha)[X]$, so the degree of $Q(\alpha, i\sqrt{3})$ over $Q(\alpha)$ is a most 2, and therefore is exactly 2.
- Thus

$$[K:Q] = [Q(\alpha, i\sqrt{3}): Q]$$

$$= [Q(\alpha, i\sqrt{3}): Q(\alpha)][Q(\alpha): Q]$$

$$= 2 \times 3 = 6 \quad \heartsuit$$

尺规做图问题:给定平面上的一些点,要求用尺规作出另一些点。

- 给定两个点,可以得到过两点的一条直线:
- 给定两个点,可以得到两点间的中点
- 给定一个线段,和线段外的一个点,可以做出过该点并与已知线段垂直(平行)的一条直线。
- ◆ 给定一个单位长度为1的线段,可以做出长度为∀a∈Z的线段;
- 给定三个线段a,b,c, 可以做出线段x, 使得a:b=c:x;
- 给定一个单位长度为1的线段,可以做出长度为∀q∈Q的线段;
- 给定两个线段a,b, 可以做出线段x, 使得 $x^2 = ab$
- 给定一个单位长度为1的线段,可以做出任意长度为 $q \in \mathbb{Q}(\sqrt{b})$ 的线段,其中 $b \in \mathbb{Q}$ 。

尺规做图问题: 给定平面上的一些点, 要求用尺规作出另一些点。

- 给定两个点, 可以得到过两点的一条直线;
- 给定两个点,可以得到两点间的中点
- ◆给定一个线段,和线段外的一个点,可以做出过该点并与已知线段 垂直(平行)的一条直线。
- 给定一个单位长度为1的线段,可以做出长度为 $\forall a \in \mathbb{Z}$ 的线段;
- 给定三个线段a,b,c, 可以做出线段x, 使得a:b=c:x;
- 给定一个单位长度为1的线段,可以做出长度为∀q∈Q的线段;
- 给定两个线段a,b, 可以做出线段x, 使得 $x^2 = ab$;
- 给定一个单位长度为1的线段,可以做出任意长度为 $q \in \mathbb{Q}(\sqrt{b})$ 的线段,其中 $b \in \mathbb{Q}$ 。

尺规做图问题:给定平面上的一些点,要求用尺规作出另一些点。

- 给定两个点,可以得到过两点的一条直线;
- 给定两个点, 可以得到两点间的中点;
- 给定一个线段,和线段外的一个点,可以做出过该点并与已知线段 垂直(平行)的一条直线。
- 给定一个单位长度为1的线段,可以做出长度为 $\forall a \in \mathbb{Z}$ 的线段;
- 给定三个线段a,b,c, 可以做出线段x, 使得a:b=c:x;
- 给定一个单位长度为1的线段,可以做出长度为∀q∈Q的线段;
- 给定两个线段a,b, 可以做出线段x, 使得 $x^2 = ab$
- 给定一个单位长度为1的线段,可以做出任意长度为 $q \in \mathbb{Q}(\sqrt{b})$ 的线段,其中 $b \in \mathbb{Q}$ 。

尺规做图问题: 给定平面上的一些点, 要求用尺规作出另一些点。

- 给定两个点,可以得到过两点的一条直线;
- 给定两个点,可以得到两点间的中点;
- 给定一个线段,和线段外的一个点,可以做出过该点并与已知线段 垂直(平行)的一条直线。
- 给定一个单位长度为1的线段,可以做出长度为 $\forall a \in \mathbb{Z}$ 的线段;
- 给定三个线段a,b,c, 可以做出线段x, 使得a:b=c:x;
- 给定一个单位长度为1的线段,可以做出长度为∀q∈Q的线段;
- 给定两个线段a,b, 可以做出线段x, 使得 $x^2 = ab$;
- 给定一个单位长度为1的线段,可以做出任意长度为 $q \in \mathbb{Q}(\sqrt{b})$ 的线段,其中 $b \in \mathbb{Q}$ 。

尺规做图问题: 给定平面上的一些点, 要求用尺规作出另一些点。

- 给定两个点,可以得到过两点的一条直线;
- 给定两个点, 可以得到两点间的中点;
- ◆ 给定一个线段,和线段外的一个点,可以做出过该点并与已知线段 垂直(平行)的一条直线。
- 给定一个单位长度为1的线段,可以做出长度为 $\forall a \in \mathbb{Z}$ 的线段;
- 给定三个线段a,b,c, 可以做出线段x, 使得a:b=c:x;
- 给定一个单位长度为1的线段,可以做出长度为 $\forall q \in \mathbb{Q}$ 的线段
- 给定两个线段a,b, 可以做出线段x, 使得 $x^2 = ab$;
- 给定一个单位长度为1的线段,可以做出任意长度为 $q \in \mathbb{Q}(\sqrt{b})$ 的线段,其中 $b \in \mathbb{Q}$ 。

尺规做图问题:给定平面上的一些点,要求用尺规作出另一些点。

- 给定两个点,可以得到过两点的一条直线;
- 给定两个点, 可以得到两点间的中点;
- 给定一个线段,和线段外的一个点,可以做出过该点并与已知线段 垂直(平行)的一条直线。
- 给定一个单位长度为1的线段,可以做出长度为 $\forall a \in \mathbb{Z}$ 的线段;
- 给定三个线段a,b,c, 可以做出线段x, 使得a:b=c:x;
- 给定一个单位长度为1的线段,可以做出长度为∀q∈Q的线段;
- 给定两个线段a,b, 可以做出线段x, 使得 $x^2 = ab$;
- 给定一个单位长度为1的线段,可以做出任意长度为 $q \in \mathbb{Q}(\sqrt{b})$ 的线段,其中 $b \in \mathbb{Q}$ 。

尺规做图问题:给定平面上的一些点,要求用尺规作出另一些点。

- 给定两个点,可以得到过两点的一条直线;
- 给定两个点,可以得到两点间的中点;
- 给定一个线段,和线段外的一个点,可以做出过该点并与已知线段 垂直(平行)的一条直线。
- 给定一个单位长度为1的线段,可以做出长度为 $\forall a \in \mathbb{Z}$ 的线段;
- 给定三个线段a,b,c, 可以做出线段x, 使得a:b=c:x;
- 给定一个单位长度为1的线段,可以做出长度为∀q∈Q的线段;
- 给定两个线段a,b, 可以做出线段x, 使得 $x^2 = ab$;
- 给定一个单位长度为1的线段,可以做出任意长度为 $q \in \mathbb{Q}(\sqrt{b})$ 的线段,其中 $b \in \mathbb{Q}$ 。

尺规做图问题: 给定平面上的一些点, 要求用尺规作出另一些点。

- 给定两个点,可以得到过两点的一条直线;
- 给定两个点,可以得到两点间的中点;
- 给定一个线段,和线段外的一个点,可以做出过该点并与已知线段 垂直(平行)的一条直线。
- 给定一个单位长度为1的线段,可以做出长度为∀a∈Z的线段;
- 给定三个线段a,b,c, 可以做出线段x, 使得a:b=c:x;
- 给定一个单位长度为1的线段,可以做出长度为∀q∈Q的线段;
- 给定两个线段a,b, 可以做出线段x, 使得 $x^2 = ab$;
- 给定一个单位长度为1的线段,可以做出任意长度为 $q \in \mathbb{Q}(\sqrt{b})$ 的线段,其中 $b \in \mathbb{Q}$ 。

尺规做图问题:给定平面上的一些点,要求用尺规作出另一些点。

- 给定两个点,可以得到过两点的一条直线;
- 给定两个点,可以得到两点间的中点;
- 给定一个线段,和线段外的一个点,可以做出过该点并与已知线段 垂直(平行)的一条直线。
- 给定一个单位长度为1的线段,可以做出长度为 $\forall a \in \mathbb{Z}$ 的线段;
- 给定三个线段a,b,c, 可以做出线段x, 使得a:b=c:x;
- 给定一个单位长度为1的线段,可以做出长度为∀q∈Q的线段;
- 给定两个线段a,b, 可以做出线段x, 使得 $x^2 = ab$;
- 给定一个单位长度为1的线段,可以做出任意长度为 $q \in \mathbb{Q}(\sqrt{b})$ 的线段,其中 $b \in \mathbb{Q}$ 。

- 已知实数 $1, a_1, a_2, \cdots, a_n$,利用尺规可以做出 $\mathbb{Q}(a_1, \cdots, a_n)$ 中的任意实数。
- 对于任意 $b \in \mathbb{Q}(a_1, \dots, a_n)$,可用尺规做出 $\mathbb{Q}(a_1, \dots, a_n)(\sqrt{b})$ 中的任意实数,其中b > 0。

Definition 6.10

设 $F\subseteq K$,而F,K是 \mathbb{R} 的子域。如果 $K=F(\sqrt{b_1})(\sqrt{b_2})\cdots(\sqrt{b_m})$,其中 $b_i>0,b_1\in F,b_i\in F(\sqrt{b_1})(\sqrt{b_2})\cdots(\sqrt{b_{i-1}})$,其中 $i\geq 2$,则称K为F的Pythagorasf域,称为毕氏f域。

总结:已知实数 $1,a_1,a_2,\cdots,a_n$,利用尺规可以做出 $\mathbb{Q}(a_1,\cdots,a_n)$ 中的任意毕氏扩域中的数。

- 已知实数 $1, a_1, a_2, \cdots, a_n$,利用尺规可以做出 $\mathbb{Q}(a_1, \cdots, a_n)$ 中的任意实数。
- 对于任意 $b \in \mathbb{Q}(a_1, \dots, a_n)$, 可用尺规做出 $\mathbb{Q}(a_1, \dots, a_n)(\sqrt{b})$ 中的任意实数,其中b > 0。

Definition 6.10

设 $F\subseteq K$,而F,K是 \mathbb{R} 的子域。如果 $K=F(\sqrt{b_1})(\sqrt{b_2})\cdots(\sqrt{b_m})$,其中 $b_i>0,b_1\in F,b_i\in F(\sqrt{b_1})(\sqrt{b_2})\cdots(\sqrt{b_{i-1}})$,其中 $i\geq 2$,则称K为F的Pythagorasf域,称为毕氏f域。

总结:已知实数 $1,a_1,a_2,\cdots,a_n$,利用尺规可以做出 $\mathbb{Q}(a_1,\cdots,a_n)$ 中的任意毕氏扩域中的数。

- 已知实数 $1, a_1, a_2, \cdots, a_n$,利用尺规可以做出 $\mathbb{Q}(a_1, \cdots, a_n)$ 中的任意实数。
- 对于任意 $b \in \mathbb{Q}(a_1, \dots, a_n)$,可用尺规做出 $\mathbb{Q}(a_1, \dots, a_n)(\sqrt{b})$ 中的任意实数,其中b > 0。

Definition 6.10

设 $F\subseteq K$,而F,K是 \mathbb{R} 的子域。如果 $K=F(\sqrt{b_1})(\sqrt{b_2})\cdots(\sqrt{b_m})$,其中 $b_i>0,b_1\in F,b_i\in F(\sqrt{b_1})(\sqrt{b_2})\cdots(\sqrt{b_{i-1}})$,其中 $i\geq 2$,则称K为F的Pythagorasi域,称为毕氏i域。

总结: 已知实数 $1, a_1, a_2, \cdots, a_n$,利用尺规可以做出 $\mathbb{Q}(a_1, \cdots, a_n)$ 中的任意毕氏扩域中的数。

- 已知实数 $1, a_1, a_2, \cdots, a_n$,利用尺规可以做出 $\mathbb{Q}(a_1, \cdots, a_n)$ 中的任意实数。
- 对于任意 $b \in \mathbb{Q}(a_1, \dots, a_n)$, 可用尺规做出 $\mathbb{Q}(a_1, \dots, a_n)(\sqrt{b})$ 中的任意实数,其中b > 0。

Definition 6.10

设 $F \subseteq K$,而F,K是 \mathbb{R} 的子域。如果 $K = F(\sqrt{b_1})(\sqrt{b_2})\cdots(\sqrt{b_m})$,其中 $b_i > 0, b_1 \in F, b_i \in F(\sqrt{b_1})(\sqrt{b_2})\cdots(\sqrt{b_{i-1}})$,其中 $i \geq 2$,则称K为F的Pythagorasi对域,称为毕氏i对。

总结: 已知实数 $1, a_1, a_2, \cdots, a_n$,利用尺规可以做出 $\mathbb{Q}(a_1, \cdots, a_n)$ 中的任意毕氏扩域中的数。

尺规做图: 能行的及不能的

Theorem 6.11

初等几何尺规作图的数学模型:由已知数 $1,a_1,a_2,\cdots,a_n$ 出发,利用尺规可以做出数是且仅是 $\mathbb{Q}(a_1,\cdots,a_n)$ 的毕氏扩域中的数。

Theorem 6.12

F的毕氏扩域E的次数 $[E:F]=2^n$, n是非负整数。

如果一个域F的扩域E的次数[E:F]是奇数,则E不是毕氏扩域。

尺规做图: 能行的及不能的

Theorem 6.11

初等几何尺规作图的数学模型:由已知数 $1,a_1,a_2,\cdots,a_n$ 出发,利用尺规可以做出数是且仅是 $\mathbb{Q}(a_1,\cdots,a_n)$ 的毕氏扩域中的数。

Theorem 6.12

F的毕氏扩域E的次数 $[E:F]=2^n$, n是非负整数。

如果一个域F的扩域E的次数[E:F]是奇数,则E不是毕氏扩域。

尺规做图: 能行的及不能的

Theorem 6.11

初等几何尺规作图的数学模型:由已知数 $1,a_1,a_2,\cdots,a_n$ 出发,利用尺规可以做出数是且仅是 $\mathbb{Q}(a_1,\cdots,a_n)$ 的毕氏扩域中的数。

Theorem 6.12

F的毕氏扩域E的次数 $[E:F]=2^n$, n是非负整数。

如果一个域F的扩域E的次数[E:F]是奇数,则E不是毕氏扩域。

尺规做图不能问题: 三等分角

Example 6.13

三等分角问题: 给定任意已知角 α , 试三等分之。即求 $\theta = \alpha/3$ 。

由于 $\cos \alpha = \cos 3\theta = 4\cos^3 \theta - 3\cos \theta$, 故 $\cos \theta$ 是三次多项式 $4x^3 - 3x - \cos \alpha = 0$ 的根。

上述多项式如果是域 $F = \mathbb{Q}(\cos\alpha)$ 上的既约多项式,则 $F(\cos\theta)$ 是F的一个三次扩域,所以不是毕氏扩域,故 $\cos\theta$ 不能用尺规做出。

尺规做图不能问题: 三等分角

Example 6.13

三等分角问题: 给定任意已知角 α , 试三等分之。即求 $\theta = \alpha/3$ 。

由于 $\cos \alpha = \cos 3\theta = 4\cos^3 \theta - 3\cos \theta$, 故 $\cos \theta$ 是三次多项式 $4x^3 - 3x - \cos \alpha = 0$ 的根。

上述多项式如果是域 $F = \mathbb{Q}(\cos\alpha)$ 上的既约多项式,则 $F(\cos\theta)$ 是F的一个三次扩域,所以不是毕氏扩域,故 $\cos\theta$ 不能用尺规做出。

尺规做图不能问题: 三等分角

Example 6.13

三等分角问题: 给定任意已知角 α , 试三等分之。即求 $\theta = \alpha/3$ 。

由于 $\cos \alpha = \cos 3\theta = 4\cos^3 \theta - 3\cos \theta$, 故 $\cos \theta$ 是三次多项式 $4x^3 - 3x - \cos \alpha = 0$ 的根。

上述多项式如果是域 $F=\mathbb{Q}(\cos\alpha)$ 上的既约多项式,则 $F(\cos\theta)$ 是F的一个三次扩域,所以不是毕氏扩域,故 $\cos\theta$ 不能用尺规做出。

尺规做图不能问题: 立方倍积问题

Example 6.14

将已知一边长为a的立方体,求做另一个立方体,便新的立方体是原来的体积的两倍。

设新的立方体的边长为b,则 $b^3=2a^3$,即b是方程 $x^3-2a^3=0$ 的解。如果多项式 x^3-2a^3 在 $F=\mathbb{Q}(a)$ 上既约,则F(b)是F的一个三次扩域,所以不是毕氏扩域,故b不能用尺规做出。

尺规做图不能问题: 立方倍积问题

Example 6.14

将已知一边长为a的立方体,求做另一个立方体,便新的立方体是原来的体积的两倍。

设新的立方体的边长为b,则 $b^3=2a^3$,即b是方程 $x^3-2a^3=0$ 的解。如果多项式 x^3-2a^3 在 $F=\mathbb{Q}(a)$ 上既约,则F(b)是F的一个三次扩域,所以不是毕氏扩域,故b不能用尺规做出。

尺规做图不能问题: 化圆为方问题

Example 6.15

将已知半径为a的圆化成一个等面积的正方形。

设正方形的边长为b,则 $b^2 = \pi a^2$ 。故b是二次多项式 $x^2 - \pi a^2 = 0$ 的根。 为得到 $b = a\sqrt{\pi}$,必须得到 π ,而 π 是超越数。令 $F = \mathbb{Q}(a)$,则 $F(\pi)$ 是F的 ∞ 》 扩域,所以不是毕氏扩域,故b不能用尺规做出。

尺规做图不能问题: 化圆为方问题

Example 6.15

将已知半径为a的圆化成一个等面积的正方形。

设正方形的边长为b,则 $b^2 = \pi a^2$ 。故b是二次多项式 $x^2 - \pi a^2 = 0$ 的根。

扩域,所以不是毕氏扩域,故b不能用尺规做出

尺规做图不能问题: 化圆为方问题

Example 6.15

将已知半径为a的圆化成一个等面积的正方形。

设正方形的边长为b,则 $b^2 = \pi a^2$ 。故b是二次多项式 $x^2 - \pi a^2 = 0$ 的根。为得到 $b = a\sqrt{\pi}$,必须得到 π ,而 π 是超越数。令 $F = \mathbb{Q}(a)$,则 $F(\pi)$ 是F的 ∞ 》扩域,所以不是毕氏扩域,故b不能用尺规做出。

Jacobi symbol

Let $P \in \mathbb{Z}$ be a prime. For $x \in \mathbb{Z}_p^*$, define

$$\mathbb{QR}_P = \{ x^2 \mid x \in \mathbb{Z}_P^* \},$$

$$\mathbb{QNR}_P = \mathbb{Z}_P^* \setminus \mathbb{QR}_P.$$

For $x \in \mathbb{Z}_p^*$, define $\mathcal{J}_P(x)$, the Jacobi symbol of x modulo P, as

$$\mathcal{J}_P(x) = x^{(P-1)/2} = \begin{cases} +1 & \text{if } x \in \mathbb{QR}_P \\ -1 & \text{if } x \in \mathbb{QNR}_P \end{cases}$$

For $x \in \mathbb{Z}_N^*$, where N = PQ, define $\mathcal{J}_N(x)$, the Jacobi symbol of x modulo N, as

$$\mathcal{J}_N(x) = \mathcal{J}_P(x)\mathcal{J}_O(x)$$

The Factoring Assumption and The QR Assumption

For an integer N, consider subsets of \mathbb{Z}_N^* :

let $\mathbb{QR}_N = \{x^2 \mod N \mid x \in \mathbb{Z}_N^*\}$ be the set of quadratic residues modulo N,

let
$$\mathbb{QNR}_N = \mathbb{Z}_N^* \setminus \mathbb{QR}_N$$
,

let
$$\mathbb{Z}_{N}^{*}(+1) = \{x \mid \mathcal{J}_{N}(x) = 1, x \in \mathbb{Z}_{N}^{*}\},\$$

let
$$\mathbb{Z}_N^*(-1) = \{x \mid \mathcal{J}_N(x) = -1, x \in \mathbb{Z}_N^*\}.$$

 $\text{Then } \mathbb{Z}_N^* = \mathbb{Q}\mathbb{R}_N \ \dot{\cup} \ \mathbb{Q}\mathbb{N}\mathbb{R}_N = \mathbb{Z}_N^*(+1) \ \dot{\cup} \ \mathbb{Z}_N^*(-1), \ \ \mathbb{Q}\mathbb{R}_N \subseteq \mathbb{Z}_N^*(+1), \ \ \mathbb{Z}_N^*(-1) \subseteq \mathbb{Q}\mathbb{N}\mathbb{R}_N.$

If
$$N = P \cdot Q$$
 for distinct odd primes P, Q , then $\frac{|\mathbb{Z}_N^*(+1)|}{|\mathbb{Z}_N^*|} = \frac{|\mathbb{Q}\mathbb{R}_N|}{|\mathbb{Z}_N^*(+1)|} = \frac{1}{2}$.

The Factoring Assumption: for \forall PPTA \mathcal{D} , given N, it is hard to reconstruct P, Q.

The Quadratic Residuosity (QR) Assumption: for \forall PPTA \mathcal{D} , $z \overset{\$}{\leftarrow} \mathbb{Z}_N^*(+1)$, given (N, z), it is hard to decide whether $z \in \mathbb{QR}_N$ or $z \in \mathbb{QNR}_N$.

The Goldwasser-Micali Scheme

1. Key Generation: $(pk, sk) \leftarrow \text{Gen}(1^k)$.

Pick an integer $N = P \cdot Q$ randomly. Pick $z \leftarrow \mathbb{QNR}_N \cap \mathbb{Z}_N^*(+1)$.

It outputs pk = (N, z), sk = (P, Q).

2. Encryption: $c \leftarrow \text{Enc}(pk, m)$.

To encrypt $m \in \{0, 1\}$, Choose $x \leftarrow \mathbb{Z}_N^*$ and compute

$$c = z^m \cdot x^2 \mod N.$$

3. Decryption: $m \leftarrow \mathsf{Dec}(sk, c)$.

To decrypt a ciphertext $c \in \mathbb{Z}_N$, compute

$$\mathcal{J}_P(x)$$
, $\mathcal{J}_Q(x)$.

If both of $\mathcal{J}_P(x)$ and $\mathcal{J}_Q(x)$ are 1, output 1, otherwise output 0.

Security Proof of The Goldwasser-Micali Scheme

Let \mathcal{D} be a distinguisher, which is given (N, z) (with $z \in \mathbb{Z}_N^*(+1)$) and going to tell $z \in \mathbb{QR}_N$ or $z \in \mathbb{QNR}_N \cap \mathbb{Z}_N^*(+1)$.

- **1** \mathcal{D} gives (N, z) to \mathcal{A} as the public key.
- ② \mathcal{D} chooses $m \leftarrow \{0,1\}$ and computes $c = z^m \cdot x^2 \mod N$. Then it sends c to \mathcal{A} .
- 3 \mathcal{A} guesses b'. If b = b', \mathcal{A} wins.
- If b = b', \mathcal{D} recognizes $z \in \mathbb{QNR}_N$, otherwise $z \in \mathbb{QR}_N$.
 - If $z \in \mathbb{QNR}_N$, this is exactly IND-CPA game.

$$\Pr[\mathcal{A} wins] = 1/2 + \epsilon.$$

• If $z \in \mathbb{QR}_N$

$$Pr[\mathcal{A} wins] = 1/2.$$

• \mathcal{D} succeeds with $1/2 + \epsilon/2$

Security Proof of The Goldwasser-Micali Scheme

Let \mathcal{D} be a distinguisher, which is given (N, z) (with $z \in \mathbb{Z}_N^*(+1)$) and going to tell $z \in \mathbb{QR}_N$ or $z \in \mathbb{QNR}_N \cap \mathbb{Z}_N^*(+1)$.

- **1** \mathcal{D} gives (N, z) to \mathcal{A} as the public key.
- ② \mathcal{D} chooses $m \leftarrow \{0,1\}$ and computes $c = z^m \cdot x^2 \mod N$. Then it sends c to \mathcal{A} .
- 3 \mathcal{A} guesses b'. If b = b', \mathcal{A} wins.
- If b = b', \mathcal{D} recognizes $z \in \mathbb{QNR}_N$, otherwise $z \in \mathbb{QR}_N$.
 - If $z \in \mathbb{QNR}_N$, this is exactly IND-CPA game.

$$\Pr[\mathcal{A} wins] = 1/2 + \epsilon.$$

• If $z \in \mathbb{QR}_N$,

$$Pr[\mathcal{A} wins] = 1/2.$$

• \mathcal{D} succeeds with $1/2 + \epsilon/2$.

作业

- Find a splitting field for $f(x) = x^2 + 1$ over Z_3 and the corresponding extension degree.
- ② Construct a finite field with 64 elements.(hint: find a splitting field over Z_p .)