Machine Learning, 2021 Fall Assignment 1

Notice

Due 23:59 (CST), Oct. 23, 2021

Plagiarizer will get 0 points.

LATEX is highly recommended. Otherwise you should write as legibly as possible.

1 Gradient Descent

In order to minimize f(x) where $x \in \mathbb{R}^n$, we takes iteration:

$$\boldsymbol{x}^{k+1} = \boldsymbol{x}^k + \alpha_k \boldsymbol{p}^k$$

where $p^k = H^k \nabla f(x^k)$ and $\alpha^k \to 0^+$. What kind of H^k can guarantee that p^k is a descent direction? Give a detailed proof.[1pts]

2 Convex

- (1) Prove that $f: R^n \to R$ is a convex function if and only if $epif = \{(x,t) \in R^{n+1} | x \in dom(f), f(x) \le t\}$ is a convex set. [0.5pts]
- (2) Let $f_1, f_2, ..., f_k$ be convex functions on R^n , prove that $f(x) = max\{f_1(x), f_2(x), ..., f_k(x)\}$ is also a convex function. [0.5pts]
- (3) Prove that $f: \mathbb{R}^n \to \mathbb{R}$ is a convex function if and only if $g: \mathbb{R} \to \mathbb{R}$

$$g(t) = f(x+tv) \quad dom(g) = \{t|x+tv \in dom(f)\}$$

is convex for any $x \in dom(f)$ and $v \in \mathbb{R}^n$. [0.5pts]

(4) Prove that $f(x) = log(det(x)) \quad dom(f) = S_{++}^n$ is a concave function. [0.5pts]

3 Learning

Assume that $\mathcal{X}=\{\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_N,\mathbf{x}_{N+1},\ldots,\mathbf{x}_{N+M}\},\,N,M\in\mathbb{N}^+$ and $\mathcal{Y}=\{-1,+1\}$ with an unknown target function $f:\mathcal{X}\to\mathcal{Y}$. The training data set \mathcal{D} is $(\mathbf{x}_1,y_1),\cdots,(\mathbf{x}_N,y_N)$. Define the off-training-set error of a hypothesis h with respect to f by

$$E_{\text{off}}(h, f) = \frac{1}{M} \sum_{m=1}^{M} \left[h\left(\mathbf{x}_{N+m}\right) \neq f\left(\mathbf{x}_{N+m}\right) \right]$$

(a) Say f(x) = +1 for all x and

$$h(\mathbf{x}) = \left\{ \begin{array}{ll} +1, & \text{for } \mathbf{x} = \mathbf{x}_k \text{ and } k \text{ is odd and } 1 \leq k \leq M+N \\ -1, & \text{otherwise} \end{array} \right.$$

Machine Learning (2021 Fall), ShanghaiTech.

What is $E_{\text{off}}(h, f)$? [0.5pts]

- (b) We say that a target function f can 'generate' $\mathcal D$ in a noiseless setting if $y_n=f(\mathbf x_n)$ for all $(\mathbf x_n,y_n)\in\mathcal D$. For a fixed $\mathcal D$ of size N, how many possible $f:\mathcal X\to\mathcal Y$ can generate $\mathcal D$ in a noiseless setting? [0.25pts]
- (c) For a given hypothesis h and an integer k between 0 and M, how many of those f in (b) satisfy $E_{\rm off}(h,f)=\frac{k}{M}$? [0.25pts]
- (d) For a given hypothesis h, if all those f that generate \mathcal{D} in a noiseless setting are equally likely in probability, what is the expected off trainingset error $\mathbb{E}_f\left[E_{\mathrm{off}}(h,f)\right]$? [0.5pts]
- (e) A deterministic algorithm A is defined as a procedure that takes \mathcal{D} as an input, and outputs a hypothesis $h = A(\mathcal{D})$. Argue that for any two deterministic algorithms A_1 and A_2 . [0.5pts]

$$\mathbb{E}_f \left[E_{\text{off}} \left(A_1(\mathcal{D}), f \right) \right] = \mathbb{E}_f \left[E_{\text{off}} \left(A_2(\mathcal{D}), f \right) \right]$$

4 MAE

The Empirical risk minimization(ERM) principle is meant to choose a hypothesis \hat{h} which minimizes the empirical risk $\hat{R}_{\mathcal{D}}[h]$.

(a) Consider the following hypothesis and loss function

$$\mathcal{H} = \{ h_{\theta}(x) = \theta_1 x : \theta_1 \in \mathbb{R} \},$$

$$\mathcal{L}(\theta_1) = \frac{1}{N} \sum_{i=1}^{N} \left| h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right|$$

Assume we already have a dataset $\mathcal{D} = \{(1,3), (-1,-2), (2,4)\}$. Derive the value of θ_1 which minimizes the empirical risk. [0.5pts]

(b) Assume we have a dataset $\mathcal{D} = \{x_1, x_2, \cdots, x_n\}$ where $x_i \in \mathcal{R}$. Consider the hypothesis \mathcal{H} to be

$$\mathcal{H} = \{ h_{\theta} = \theta_0 : \theta_0 \in \mathbb{R} \}$$

Derive the hypothesis h^* which minimizes the empirical risk. [0.5pts]

$$h^* = \arg\min_{h} \frac{1}{N} \sum_{i=1}^{N} \left| h - x^{(i)} \right|$$
 s.t. $h \in \mathcal{H}$