

Illustrative Visualization: Photic Extremum Lines

Markus Pawellek

January 10, 2022

Outline

Related Work

Mathematical Preliminaries

Photic Extremum Lines

Algorithm

Results

Conclusions

Tools

Tools

2003 Isenberg et al. "A Developer's Guide to Silhouette Algorithms for Polygonal Models"

Tools

- 2003 Isenberg et al. "A Developer's Guide to Silhouette Algorithms for Polygonal Models"
- 2004 Rusinkiewicz "Estimating Curvatures and Their Derivatives on Triangle Meshes"

Tools

- 2003 Isenberg et al. "A Developer's Guide to Silhouette Algorithms for Polygonal Models"
- 2004 Rusinkiewicz "Estimating Curvatures and Their Derivatives on Triangle Meshes"

Algorithm

Tools

- 2003 Isenberg et al. "A Developer's Guide to Silhouette Algorithms for Polygonal Models"
- 2004 Rusinkiewicz "Estimating Curvatures and Their Derivatives on Triangle Meshes"

Algorithm

2007 Xie et al. "An Effective Illustrative Visualization Framework Based on Photic Extremum Lines (PELs)"

Tools

- 2003 Isenberg et al. "A Developer's Guide to Silhouette Algorithms for Polygonal Models"
- 2004 Rusinkiewicz "Estimating Curvatures and Their Derivatives on Triangle Meshes"

Algorithm

- 2007 Xie et al. "An Effective Illustrative Visualization Framework Based on Photic Extremum Lines (PELs)"
- 2010 Zhang, He, and Seah "Real-Time Computation of Photic Extremum Lines (PELs)"

Mathematical Preliminaries

 $lackbox{}{} f\colon S o \mathbb{R}$ on mesh S characterized by its values at vertices

- $lackbox{} f\colon S o\mathbb{R}$ on mesh S characterized by its values at vertices
- ► For interiors of faces, use barycentric interpolation

ightharpoonup Compute ∇f for each face

- ightharpoonup Compute ∇f for each face
- ► For each vertex, accumulate weighted gradients for adjacent faces

$$I_{uv} := \begin{pmatrix} \|u\|^2 & \langle u, v \rangle \\ \langle u, v \rangle & \|v\|^2 \end{pmatrix} \qquad \nabla f = \begin{pmatrix} u & v \end{pmatrix} I_{uv}^{-1} \begin{pmatrix} f(B) - f(A) \\ f(C) - f(A) \end{pmatrix}$$

Mathematical Preliminaries: Directional Derivatives

$$\partial_w f(x) = \langle \nabla f(x), w \rangle$$
 $\mathcal{D}_f g(x) := \left\langle \nabla g(x), \frac{\nabla f(x)}{\|\nabla f(x)\|} \right\rangle$

Photic Extremum Lines

Scalar illumination function

 $\varphi \colon S \to \mathbb{R}$ on mesh S (e.g. directional light source)

- Scalar illumination function $\varphi\colon S \to \mathbb{R}$ on mesh S (e.g. directional light source)
- ▶ Variation of illumination $\|\nabla \varphi\|$

- Scalar illumination function $\varphi \colon S \to \mathbb{R}$ on mesh S
- ▶ Variation of illumination $\|\nabla \varphi\|$

(e.g. directional light source)

Photic Extremum

- Scalar illumination function $\varphi \colon S \to \mathbb{R}$ on mesh S (e.g. directional light source)
- ▶ Variation of illumination $\|\nabla \varphi\|$

Photic Extremum

$$\mathfrak{D}_{\varphi} \left\| \nabla \varphi \right\| (x) = 0 \qquad \mathfrak{D}_{\varphi}^{2} \left\| \nabla \varphi \right\| (x) < 0$$

- Scalar illumination function
 - $arphi\colon S o \mathbb{R}$ on mesh S (e.g. directional light source)
- ▶ Variation of illumination $\|\nabla \varphi\|$

Photic Extremum

$$\mathfrak{D}_{\varphi} \left\| \nabla \varphi \right\| (x) = 0 \qquad \mathfrak{D}_{\varphi}^{2} \left\| \nabla \varphi \right\| (x) < 0$$

- Scalar illumination function
 - $arphi\colon S o \mathbb{R}$ on mesh S (e.g. directional light source)
- ▶ Variation of illumination $\|\nabla \varphi\|$

Photic Extremum

$$\mathfrak{D}_{\varphi} \left\| \nabla \varphi \right\|(x) = 0 \qquad \mathfrak{D}_{\varphi}^{2} \left\| \nabla \varphi \right\|(x) < 0$$

- Scalar illumination function
 - $arphi\colon S o \mathbb{R}$ on mesh S (e.g. directional light source)
- ▶ Variation of illumination $\|\nabla \varphi\|$

Photic Extremum

$$\mathfrak{D}_{\varphi} \left\| \nabla \varphi \right\| (x) = 0 \qquad \mathfrak{D}_{\varphi}^{2} \left\| \nabla \varphi \right\| (x) < 0$$

Algorithm

1. Compute φ

- 1. Compute φ
- 2. Compute $\frac{\nabla \varphi}{\|\nabla \varphi\|}$ and $\|\nabla \varphi\|$

- 1. Compute φ
- 2. Compute $\frac{\nabla \varphi}{\|\nabla \varphi\|}$ and $\|\nabla \varphi\|$
- 3. Compute $\mathfrak{D}_{\varphi} \| \nabla \varphi \|$

- 1. Compute φ
- 2. Compute $\frac{\nabla \varphi}{\|\nabla \varphi\|}$ and $\|\nabla \varphi\|$
- 3. Compute $\mathfrak{D}_{\varphi} \| \nabla \varphi \|$
- 4. Compute $\mathfrak{D}_{\varphi}^2 \| \nabla \varphi \|$

- 1. Compute φ
- 2. Compute $\frac{\nabla \varphi}{\|\nabla \varphi\|}$ and $\|\nabla \varphi\|$
- 3. Compute $\mathfrak{D}_{\varphi} \| \nabla \varphi \|$
- 4. Compute $\mathcal{D}^2_{\varphi} \| \nabla \varphi \|$
- 5. Detect line vertices on edges by testing for photic extremums

- 1. Compute φ
- 2. Compute $\frac{\nabla \varphi}{\|\nabla \varphi\|}$ and $\|\nabla \varphi\|$
- 3. Compute $\mathcal{D}_{\varphi} \| \nabla \varphi \|$
- 4. Compute $\mathcal{D}^2_{\varphi} \| \nabla \varphi \|$
- 5. Detect line vertices on edges by testing for photic extremums
- 6. Trace and filter out lines by using a threshold

- 1. Compute φ
- 2. Compute $\frac{\nabla \varphi}{\|\nabla \varphi\|}$ and $\|\nabla \varphi\|$
- 3. Compute $\mathcal{D}_{\varphi} \| \nabla \varphi \|$
- 4. Compute $\mathcal{D}^2_{\varphi} \| \nabla \varphi \|$
- 5. Detect line vertices on edges by testing for photic extremums
- 6. Trace and filter out lines by using a threshold
- 7. Render visible lines

Algorithm: Line Detection and Tracing

▶ For each edge $[v, w] \subset S$, check zero-crossing:

$$h(x) := \mathcal{D}_{\varphi} \|\nabla \varphi\|(x)$$
$$h(v)h(w) < 0$$

Algorithm: Line Detection and Tracing

▶ For each edge $[v, w] \subset S$, check zero-crossing:

$$h(x) \coloneqq \mathfrak{D}_{\varphi} \left\| \nabla \varphi \right\|(x)$$

Approximate zero-crossing:

$$p := \frac{|h(w)| v + |h(v)| w}{|h(v)| + |h(w)|}$$

Algorithm: Line Detection and Tracing

Check maximum condition:

$$\mathcal{D}_{\varphi}^{2} \left\| \nabla \varphi \right\| (p) < 0$$

Algorithm: Line Detection and Tracing

Check maximum condition:

$$\mathcal{D}_{\varphi}^{2} \|\nabla \varphi\| (p) < 0$$

 For each triangle, connect valid zero-crossings of adjacent edges to segments

Algorithm: Threshold Filter

Algorithm: Threshold Filter

Strength S of photic extremum or strength S of photic extremum line L:

$$S(x) = \|\nabla \varphi(x)\| > T$$
 or $S(L) := \int_L \|\nabla \varphi(s)\| \, \mathrm{d}s > T$

$$S(L) := \int_{\mathbb{R}} \|\nabla \varphi(s)\| \, \mathrm{d}s > T$$

Results

Photic Extremum Lines: Properties

- Object-space method
- View- and light-dependent
- ► Third- and fourth-order derivatives

Problems

preprocessing and good meshes

Conclusions

Thank you for Your Attention!

References

(1)	Tobias Isenberg et al. "A Developer's Guide to Silhouette Algorithms for Polygonal Models". In: <i>Computer</i> <i>Graphics and Applications, IEEE</i> 23 (August 2003), pp. 28 –37. DOI: 10.1109/MCG.2003.1210862.	(8)	Long Zhang et al. "Real-Time Shape Illustration Using Laplacian Lines". In: IEEE transactions on Visualization and Computer Graphics 17 (July 2011). DOI: 10.1109/TVCG.2010.118.
(2)	Szymon Rusinkiewicz. "Estimating Curvatures and Their Derivatives on Triangle Meshes". In: October 2004, pp. 486–493. ISBN: 0-7695-2223-8. DOI: 10.1109/TDPVT.2004.1335277.	(9)	Michael Kolomenkin, Ilan Shimshoni, and Ayellet Tal. "Demarcating Curves for Shape Illustration". In: ACM Trans. Graph. 27 (December 2008), p. 157. DOI: 10.1145/1457515.1409110.
(3)	Xuexiang Xie et al. "An Effective Illustrative Visualization Framework Based on Photic Extremum Lines (PELs)". In: IEEE transactions on visualization and computer graphics 13 (November 2007), pp. 1328–1335. DOI: 10.1109/TVCG.2007.70538.	(10)	Szymon Rusinkiewicz, Michael Burns, and Douglas DeCarlo. "Exaggerated Shading for Depicting Shape and Detail". In: ACM Trans. Graph. 25 (July 2006), pp. 1199–1205. DOI: 10.1145/1179352.1142015.
(4)	Long Zhang, Ying He, and Hock Seah. "Real-Time Computation of Photic Extremum Lines (PELs)". In: The Visual Computer 26 (June 2010), pp. 399–407. DOI: 10.1007/s00371-010-0454-x.	(11)	Gordon Kindlmann et al. "Curvature-Based Transfer Functions for Direct Volume Rendering: Methods and Applications". In: vol. 2003. November 2003, pp. 513-520 ISBN: 0-7803-8120-3. DOI: 10.1109/VISUAL.2003.1250414.
(5)	Douglas DeCarlo et al. "Suggestive Contours for Conveying Shape". In: ACM Trans. Graph. 22 (July 2003), pp. 848-855. DOI: 10.1145/1201775.882354.	(12)	Aaron Hertzmann and Denis Zorin. "Illustrating Smooth Surfaces". In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive.
(6)	Nelson Max. "Weights for Computing Vertex Normals		Techniques. SIGGRAPH '00, ACM Press/Addison-Wesley

Previous Work

