Examenul de bacalaureat național 2020 Proba E. c)

Matematică M_mate-info BAREM DE EVALUARE ȘI DE NOTARE

Test 19

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$b_4 = b_1 q^3 = 2 \cdot \sqrt{5}^3 = 10\sqrt{5} = \sqrt{500}$	2 p
	$484 < 500 < 529 \Longrightarrow 22 < \sqrt{500} < 23$, deci partea întreagă a lui b_4 este egală cu 22	3 p
2.	$f(x) = f^{-1}(x) \Leftrightarrow f(f(x)) = x \Leftrightarrow 2f(x) - 3 = x \Leftrightarrow 2(2x - 3) - 3 = x$	3p
	x = 3	2 p
3.	$\log_2 \frac{2x^2 + x + 1}{x^2 - x + 2} = 1 \Rightarrow \frac{2x^2 + x + 1}{x^2 - x + 2} = 2 \Rightarrow 2x^2 + x + 1 = 2x^2 - 2x + 4$	3 p
	x = 1, care convine	2 p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	Numerele naturale de două cifre care au suma cifrelor un număr divizibil cu 11 sunt 29, 38, 47, 56, 65, 74, 83 și 92, deci sunt 8 cazuri favorabile	2 p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{8}{90} = \frac{4}{45}$	1p
5.	$\vec{u} + \vec{v} = (1+a)\vec{i} - \vec{j} \Rightarrow \vec{u} + \vec{v} ^2 = (1+a)^2 + 1$	2p
	Cum $ \vec{u} ^2 = 2$ și $ \vec{v} ^2 = a^2 + 4$, obținem $a^2 + 2a + 2 = 2 + a^2 + 4$, deci $a = 2$	3 p
6.	$(\sin x + \cos x)^2 = 2\cos^2 x \Leftrightarrow \sin^2 x + 2\sin x \cos x + \cos^2 x = 2\cos^2 x \Leftrightarrow \sin 2x = \cos 2x$	2p
	$\operatorname{tg} 2x = 1$ și, cum $x \in \left(0, \frac{\pi}{2}\right)$, obținem $2x = \frac{\pi}{4}$, deci $x = \frac{\pi}{8}$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(0) = \begin{pmatrix} 0 & 1 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 0 & 1 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = $	2p
	=0+2+1-1-0-2=0	3 p
b)	Dacă $m = -3$ și (x_0, y_0, z_0) este soluție a sistemului de ecuații, atunci $\begin{cases} -3x_0 + y_0 + z_0 = 1 \\ 2x_0 - 2y_0 + z_0 = 2 \\ x_0 + y_0 - 2z_0 = -2 \end{cases}$	2p
	Prin adunarea celor trei relații, obținem $0=1$, ceea ce este imposibil, deci, pentru $m=-3$, sistemul de ecuații nu are soluții	3 p
c)	$\det(A(m)) = m^3 + 2m^2 - 3m = m(m-1)(m+3), \text{ pentru orice număr real } m$	1p
	Dacă $m = 0$, atunci $\begin{cases} y + z = 1 \\ 2x + y + z = 2, \text{ care nu are soluții, dacă } m = 1, \text{ atunci } \begin{cases} x + y + z = 1 \\ 2x + 2y + z = 2, \\ x + y + 2z = 2 \end{cases}$ care nu are soluții	2 p

Probă scrisă la matematică *M_mate-info*

Barem de evaluare și de notare

	$m \in \mathbb{R} \setminus \{-3,0,1\} \Rightarrow \det(A(m)) \neq 0$, deci sistemul de ecuații are soluție unică și, cum pentru $m = -3$, sistemul nu are soluții, obținem că sistemul de ecuații are cel mult o soluție	2p
2.a)	$(1+i) \circ (1-i) = 1+i+1-i-\frac{1}{2}(1-i)-\frac{1}{2}(1+i) =$	3 p
	$=2-\frac{1}{2}+\frac{1}{2}i-\frac{1}{2}-\frac{1}{2}i=1$	2p
b)	$z_1, z_2 \in H \Rightarrow z_1 = 2 + bi \text{ și } z_2 = 2 + ci, b, c \in \mathbb{R} \Rightarrow z_1 \circ z_2 = 2 + bi + 2 + ci - \frac{1}{2}(2 - bi) - \frac{1}{2}(2 - ci) = 2 + bi + 2 + ci - \frac{1}{2}(2 - bi) - \frac{1}{2}(2 - ci) = 2 + bi + 2 + ci - \frac{1}{2}(2 - bi) - \frac{1}{2}(2 - ci) = 2 + bi + 2 + ci - \frac{1}{2}(2 - bi) - \frac{1}{2}(2 - ci) = 2 + bi + 2 + ci - \frac{1}{2}(2 - bi) - \frac{1}{2}(2 - ci) = 2 + bi + 2 + ci - \frac{1}{2}(2 - bi) - \frac{1}{2}(2 - ci) = 2 + bi + 2 + ci - \frac{1}{2}(2 - bi) - \frac{1}{2}(2 - ci) = 2 + bi + 2 + ci - \frac{1}{2}(2 - bi) - \frac{1}{2}(2 - ci) = 2 + bi + 2 + ci - \frac{1}{2}(2 - bi) - \frac{1}{2}(2 - ci) = 2 + bi + 2 + ci - \frac{1}{2}(2 - bi) - \frac{1}{2}(2 - ci) = 2 + bi + 2 + ci - \frac{1}{2}(2 - bi) - \frac{1}{2}(2 - ci) = 2 + bi + 2 + ci - \frac{1}{2}(2 - bi) - \frac{1}{2}(2 - ci) = 2 + bi + 2 + ci - \frac{1}{2}(2 - bi) - \frac{1}{2}(2 - ci) = 2 + bi + 2 + ci - \frac{1}{2}(2 - bi) - \frac{1}{2}(2 - ci) = 2 + bi + 2 + ci - \frac{1}{2}(2 - bi) - \frac{1}{2$	3р
	$=4+bi+ci-1+\frac{1}{2}bi-1+\frac{1}{2}ci=2+\frac{3}{2}(b+c)i\in H$, deci H este parte stabilă a lui $\mathbb C$ în raport cu legea de compoziție " \circ "	2p
c)	Dacă $z_0 = a + ib$, cu $a, b \in \mathbb{R}$, pentru $z = x - ib$, unde x este număr real oarecare, obținem $z_0 \circ z = a + ib + x - ib - \frac{1}{2}(a - ib) - \frac{1}{2}(x + ib) =$	3p
	$=\frac{1}{2}a+\frac{1}{2}x\in\mathbb{R}$, deci există o infinitate de numere complexe z cu proprietatea că numărul $z_0\circ z$ este real	2 p

SUBIECTUL al III-lea

(30 de puncte)

БСБП	COUL al III-lea (50 de pl	incic)
1.a)	$f'(x) = \left(\left(x^3 - 3x + 2 \right)^{\frac{1}{3}} \right)' = \frac{1}{3} \left(x^3 - 3x + 2 \right)^{-\frac{2}{3}} \left(3x^2 - 3 \right) =$	3p
	$= \frac{1}{3} \frac{3(x^2 - 1)}{\sqrt[3]{(x^3 - 3x + 2)^2}} = \frac{(x - 1)(x + 1)}{\sqrt[3]{(x^3 - 3x + 2)^2}}, \ x \in (1, +\infty)$	2 p
b)	$\lim_{x \to 1} \frac{f(x)}{x - 1} = \lim_{\substack{x \to 1 \\ x > 1}} \frac{\sqrt[3]{x^3 - 3x + 2}}{x - 1} = \lim_{\substack{x \to 1 \\ x > 1}} \sqrt[3]{\frac{(x - 1)^2(x + 2)}{(x - 1)^3}} =$	3 p
	$= \lim_{\substack{x \to 1 \\ x > 1}} \sqrt[3]{\frac{x+2}{x-1}} = +\infty$	2 p
c)	$f'(x) > 0$, pentru orice $x \in (1, +\infty) \Rightarrow f$ este strict crescătoare, deci injectivă	2p
	$\lim_{x\to 1} f(x) = 0$, $\lim_{x\to +\infty} f(x) = +\infty$ și f este continuă, deci pentru orice $a \in (0,+\infty)$, ecuația $f(x) = a$ are soluție unică	3 p
2.a)	$\int_{1}^{4} e^{x} f(x) dx = \int_{1}^{4} \left(x^{2} + 2\right) dx = \left(\frac{x^{3}}{3} + 2x\right) \Big _{1}^{4} =$	3 p
	$= \frac{4^3}{3} + 8 - \frac{1}{3} - 2 = 21 + 6 = 27$	2 p
b)	$\int_{1}^{e} f(\ln x) dx = \int_{1}^{e} \frac{\ln^{2} x + 2}{e^{\ln x}} dx = \int_{1}^{e} \frac{1}{x} (\ln^{2} x + 2) dx = \left(\frac{1}{3} \ln^{3} x + 2 \ln x\right) \Big _{1}^{e} =$	3 p
	$= \frac{1}{3}\ln^3 e + 2\ln e - \frac{1}{3}\ln^3 1 - 2\ln 1 = \frac{1}{3} + 2 = \frac{7}{3}$	2p
c)	Dacă F este o primitivă a lui f , atunci $\lim_{x\to 0} \frac{1}{x} \int_{0}^{x} f(t)dt = \lim_{x\to 0} \frac{F(x)-F(0)}{x} = \lim_{x\to 0} f(x) = \lim_{x\to 0} f(x)$	2p
	$= \lim_{x \to 0} \frac{x^2 + 2}{e^x} = 2$	3 p