

Kapitola 8: Umělé neuronové sítě

Lidský mozek

Lidský mozek

- Váží přibližně 1300–1400 g.
- Obsahuje asi 50–100 miliard mozkových buněk (neuronů).
- Mezi nervovými buňkami existuje až biliarda (tedy 10¹⁵) spojení.

Nervová buňka (neuron)

Umělá neuronová síť

Umělá neuronová síť

Umělá neuronová síť - perceptron

Umělá neuronová síť - terminologie

Nejčastější aktivační funkce

Dále se často používá:

- lineární funkce f(x) = y
- Softmax zobecnění funkce Sigmoid pro více vstupů

Trénování neuronové sítě

- Trénování modelu spočívá v hledání parametrů všech parametrů sítě tak, aby celková chyba, nazývá se Algoritmus zpětného šíření chyby.
- Používají se stejné chybové funkce jako v případě. jednoduché regrese a klasifikace
- Problémem je velké množství lokálních minim.

Příklad - neuronová síť pro regresi

Příklad - neuronová síť pro klasifikaci do dvou tříd

Příklad - neuronová síť pro klasifikaci do více tříd

Aktivační funkce Softmax

- Softmax převádí vstupní hodnoty na pravděpodobnostní rozdělení.
- Každá výstupní hodnota je reálné číslo mezi 0 a 1.
- Součet výstupních hodnot je 1.

Důležité pojmy v neuronových sítích

Deep Learning - použití tzv. hluboké neuronové sítě. Hluboká neuronová síť je taková, která má více než 2 skryté vrstvy.

Batch - množina trénovacích příkladů, která je zpracována najednou.

Epoch - jedna iterace trénování, při které jsou zpracovány všechny trénovací příklady. Typicky se neuronová síť nad trénovacími příklady trénuje tak dlouho, dokud klesá chyba. Epoch tak bývá více.

GPU (Graphical Processing Unit) - grafická karta. Výkonný hardware, který se často používá pro trénování neuronových sítí.

Machine Learning

Neuronové sítě v knihovně TensorFlow

- <u>TensorFlow</u> je knihovna pro jednoduchou práci s neuronovými sítěmi v jazyce Python.
- <u>Keras</u> je nadstavbou nad TensorFlow a umožňuje ještě jednodušší použití.
- TensorFlow je open source projekt, původně vytvořený v Google AI, se silnou komunitou vývojářů.
- Nejvýznamnější alternativou k TensorFlow je v současnosti PyTorch.

Neural Network Playground

Tipy pro návrh neuronových sítí

- Začínejte vždy jednoduššími architekturami.
- Inspirujte se modely, které už vytvořil někdo jiný pro podobný problém.
- Během experimentů změňte vždy jen jednu část nebo jeden parametr, ověřte výsledky, a teprve potom měňte další.

Model VGG 16 pro klasifikaci obrázků

- Síť se skládá z mnoha konvolučních a max pooling vrstev (architektura vhodná pro zpracování obrazu) a klasifikační části (několika plně propojených vrstev s aktivační funkcí softmax).
- Takovou síť je třeba trénovat velkým data setem (např. ImageNet).

Využití již předtrénovaných sítí (transfer learning)

Vlastní data set

Shrnutí

- Umělé neuronové sítě jsou velmi silný nástroj, ale nejsou vhodné pro všechny typy problémů.
- Pokud máme malé množství atributů (jednotky až desítky), často je vhodnější použít jednodušší modely (např. Random forest).
- Neuronové sítě jsou naopak nezastupitelné u problémů s velkým množstvím vstupních atributů, např. zpracování obrazu, videa nebo zvuku.
- Zkuste sami navrhnout a otestovat modely neuronových sítí pro problémy a data sety, se kterými jsme se setkali.

prg.ai: další možnosti a informace

- prg.ai na sociálních sítích: <u>Facebook</u>, <u>LinkedIn</u>, <u>Twitter</u>, <u>Instagram</u>,
 <u>YouTube</u>
- prg.ai newsletter: Nové poznatky z oboru, pozvánky na události i odkazy na zajímavé zdroje. Dění na české i zahraniční scéně.
 Přihlášení k odběru dole na webu <u>prg.ai</u>, nejnovější číslo <u>zde</u>.
- <u>Elements of AI</u>: série bezplatných online kurzů o umělé inteligenci od společnosti Reaktor a Helsinské univerzity
- <u>prg.ai Minor</u>: nabídka nejlepších předmětů o AI z UK a ČVUT

Děkuji za Vaši účast a zapojení

RNDr. Jiří Materna, Ph.D.

LinkedIn: https://www.linkedin.com/in/jirimaterna/

Twitter: https://twitter.com/JiriMaterna

Facebook: https://www.facebook.com/maternajiri

E-mail: jiri@mlcollege.com

www.mlcollege.com www.mlprague.com www.mlguru.com

