

2022 캡스톤 디자인 29조

뉴익 뉴스를 익히다

_

01

프로젝트 소개

- 뉴익이란?

02

주요기능 및 구현 방법

- 시스템 구조
- 주요기능 및 구현방법

03

시연영상

04

기대효과 및 발전 방향

- 기대 효과
- 발전 방향

- 뉴익 : 뉴스를 익히다

01 프로젝트 소개

뉴익이란?

검색어에 대한 주요 토픽들의 흐름을 한 눈에 파악할 수 있게 도와주는 앱

시스템 구조

주요 기능

사용자 맞춤 정보 제공

토픽 타임라인

뉴스 기사 요약

코로나19 백신 1차 접종자가 누적 3천만명을 넘어 선 가운데 6일 오전 서울 중랑문화체육관에 마련 된 접종센터에서 백신 접종을 마친 시민들이 이상 반응 모니터링을 기다리고 있다. 연합뉴스 코로나 19 잔여백신 대량 폐기 우려에 당국이 다음주께부 터 2차 접종도 네이버·카카오톡 에스엔에스 (SNS) 당일 예약이 가능하도록 시스템을 변경하 기로 했다. 또한 잔여백신 1차 접종 대상을 늘리기 위해 우선 접종 대상을 희망자 전체로 확대했다.

사용자 맞춤 정보 제공

사용자의 검색어와 횟수를 버블 차트로 보여줌

사용자 맞춤 정보 제공

사용자의 키워드와 관련된 최신 뉴스를 홈에서 보여줌

토픽 타임라인

뉴익은 사용자가 뉴스 검색어에 대한 흐름을 한 눈에 파악할 수 있도록 토픽 타임라인을 제공함

특정 검색어에 대한 주요 사건을 알기 위해 뉴스 포탈에 검색을 할 경우 중복되는 기사와 별로 중요치 않은 기사들이 쏟아져 나온다. 이를 방지하고, 주요 토픽을 한 눈에 볼 수 있게 하기 위하여 토픽 타임라 인을 제작하였다.

Keyword 1

입력 데이터

title, summary, content

Keyword 2

전처리

NLP

Keyword 3

토픽 모델링

LDA

토픽 모델링의 기법 중 하나인 LDA를 이용하여 기사 데이터에 숨어있는 토픽을 추출

토픽 타임라인 - 입력 데이터

_id: ObjectId("62833f378f19a1c477ac33c6")

journal: "한겨레" date: "2022-05-11"

title: "UEFA, 챔스 최종 개편안 승인…참가팀·경기수 모두 늘어난다"

url: "https://www.hani.co.kr/arti/sports/soccer/1042492.html"

"기존 32팀에서 36팀으로, 조별리그 대신 풀리그

content:리그에서 한 팀당 8팀과 8경기 치러 16강 티켓 경쟁

유럽축구연맹(UE..."

summary: "유럽축구연맹(UEFA) 집행위원회 멤버들이 11일(현지시각) 오스트리아 빈에서 열린 46회 유에파 정기총회에 참석해 논의 중이..." ◆

토픽 추출이 가능한 field: title, content, summary => 성능 비교

Keyword 1

Coherence

Keyword 2

Perplexity

Keyword 3

소요 시간

Keyword 4

사용자 시선

입력 데이터 - 성능 비교

Coherence	content	>	summary	>	title
Perplexity	content	>	summary	>	title
소요 시간	title	>	x 7 summary	>	content X 26
사용자 시선	title	>	summary	>	content

토픽 타임라인 - 전처리

전처리 - 성능 개선

품사 필터링 하지 않았을 때

사용자 사전에 **추가하지 않았을** 때

둘다 만족

토픽 타임라인 - 토픽 모델링(LDA)

Step 1	>	Step 2	>	Step 3	>	Step 4
토픽 개수 정하기		iteration 횟수 정하기		θd threshold		num of news threshold
• LDA에서 토픽의 개수는 하이퍼 파라미터	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	• iteration은 학습 반복 횟수	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	• θd threshold는 문서 (기사)가 해당 토픽일 확률		• num of news는 토픽 타임라인에 들어가기 위해 토픽 당 하루에 등장 해야하는 뉴스의 최소 개수
-> perplexity와 coherence를 이용하여 최적의 토픽 개수를 구 함		-> 커질수록 소요시간 증가 perplexity와 coherence 및 소요시간을 고려하여 정함	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-> 이를 이용하여 토픽어 해당하는 기사 중 관련도 가 낮은 기사 필터링		-> 이 값을 조절하여 토픽 타임라인의 자세함 정도를 설정 가능

뉴스 기사 요약

사용자가 뉴스 원문의 중요한 내용을 보다 빠르고 편리하게 읽을 수 있도록 본문 요약 서비스를 제공함

뉴스마다 원문의 길이가 다양해 어떤 기사는 내용이 너무 많고, 또 어떤 기사는 내용이 너무 간결 하다. 뉴익에서는 그러한 점을 보완하고자, 중요한 문장들이 포함된 최대한 비슷한 길이의 기사를 제공하고자 노력하였다.

Keyword 1

추출 요약

KoBertSum

Keyword 2

ROUGE

성능 평가 지표

Keyword 3

문단 단위 요약

추출 요약 모델인 KoBertSum으로 학습하여, ROUGE로 평가

카카오 60대 인터넷이용자 72% '우리도 카톡·페북·라인' 카톡, 대화, 이용자 한겨레 2015-12-30 카카오톡이나 페이스북, 라인 같은 인스턴트 메신 저가 크게 확산하면서 60대 인터넷 이용자 10명 중 7명이 이용하고 있는 것으로 나타났다. 또 쇼핑 과 SNS, 인터넷뱅킹 등의 각종 인터넷 이용은 스 마트폰이 대세로 자리잡은 것으로 나타났다.

요약 모델 프로세스

성능 - ROUGE

ROUGE-1, 2, L

- Rouge: 모델이 자동 요약한 요악문과 모범 답안 요약문이 얼마나 유사한지 비교해 성능을 계산하는 지표
- Rouge-n: 연속된 n개의 단어를 하나의 단위로 보는 것을 기반으로 두 요약문 사이의 유사도를 계산
- Rouge-L: 최장 공통 부분 수열로 평가
- Rouge-R: Recall
- Rouge-P: Precision
- Rouge-F: F1 Score

성능

• F1 Score Pre-trained vs 학습 model

	BERTSUM+Classifier	BERTSUM+Transformer		Fine-tune-Classifier	Fine-tune-Transforme
ROUGE-1	43.23	43.25	ROUGE-1	58.51	63.49
ROUGE-2	20.24	20.24	ROUGE-2	41.77	45.42
ROUGE-L	39.64	39.59	ROUGE-L	58.44	63.43

• Recall Pre-trained vs 학습 model

	BERTSUM+Classifier		Fine-tune-Classifier	Fine-tune-Transformer
ROUGE-1	46.66	ROUGE-1	79.40	75.92
ROUGE-2	26.35	ROUGE-2	56.66	54.52
ROUGE-L	42.62	ROUGE-L	79.33	75.84

뉴스 데이터 요약문 생성

시연 영상

04 기대 효과 및 발전 방향

기대 효과

용이한 자료 조사

빠른 정보 습득

전 연령대 뉴스 구독 장려

04 기대 효과 및 발전 방향

발전 방향

다양한 언론사 추가

유사한 기사 묶기

추천 알고리즘 적용

마스크 대란 조선일보 한국경제 한겨레 유사 기사 1 유사 기사 2 유사 기사 3 유사 기사 4 닫기

Thank you