definitions

goal: define different concepts for stability of linear systems ref: Hespanha Ch &

consider LTV DE $x/x^{+} = A(t)x + B(t)u$ $x \in \mathbb{R}^{n}$, $u \in \mathbb{R}^{k}$ y = C(t)x + D(t)u $y \in \mathbb{R}^{m}$ def: the (LTV-DE) is said to be:

O: unstable if it is not marginally stable

1: marginally (or internally) stable if, for every initial condition $x(t_{0}) = x_{0}$, the signal $x(t) = \overline{D}(t,t_{0})x_{0}$, $t > t_{0}$, is uniformly bounded by an increasing function of $||x_{0}||$ $||x_{0}|| = x_{0}$, start close, stay close"

stability Page

-> "start close, stay close"

2° asymptotically stable if in addition to (1°),

 $X(t) \rightarrow 0$ as $t \rightarrow \infty$ for all X_0

-> "goes to the origin"

" goes to the origin exponentially fast"

3°. exponentially stable if, in addition to (1°.), in there are constants $c, \lambda > 0$ such that $\|x(t)\| \le c e^{-\lambda(t-t_0)} \|x(t_0)\|$ for x (CT) $\le c e^{-\lambda(t-t_0)} \|x(t_0)\|$ for x^+ (DT) $\times \lambda < 1$

onote: these conditions only depend on $A(\cdot)$, so we'll use the same terms when referring to $\dot{x}/x^t = A(t)x$

Ls in LTI case, we'll refer to matrix A as _ stable