



# **MULTIMEDIA UNIVERSITY**

## FINAL EXAMINATION

TRIMESTER 2, 2018/2019

## TSW 3241 – SEMANTIC WEB TECHNOLOGY

(All sections / Groups)

5 March 2019 2:30pm – 4:30pm (2 Hours)

#### INSTRUCTIONS TO STUDENT

- 1. This Question paper consists of **TEN pages**, which includes the front cover, with **FIVE Questions** only.
- 2. Attempt ALL questions. All questions carry equal marks and the distribution of the marks for each question is given.
- 3. Please print all your answers in the answer booklet provided, and start each question on a new page.

### Question 1 [10 marks]

- (a) Explain the following terminologies:
  - (i) Semantic technology

[2 marks]

(ii) Resource Description Framework (RDF)

[2 marks]

(iii) Resource Description Framework Schema (RDFS)

[2 marks]

(b) The World Wide Web (WWW) is penetrating various aspects of human daily activities. List and explain TWO limitations of WWW.

[2 marks]

(c) A schema knowledge can be represented as either a taxonomy or a partonomy. State an example of taxonomy and an example of partonomy.

[2 marks]

#### Question 2 [10 marks]

(a) A claim is made that "XML revolutionises software development". List THREE advantages of using Extensible Markup Language (XML).

[3 marks]

(b) Given the following information of a person:

The staff\_ID is 109332287

The first\_name of a person is Jayden, and his last name is Choo

His address is composed of city (Bukit Beruang), postcode (75250), and street (Jalan Ayer Keroh)

His telephone numbers are 2523002 and 2523445

- (i) Write an XML-document (by not using attributes) to include information above.

  [4 marks]
- (ii) Draw a tree diagram for (i).

[I mark]

(c) The following XML document records some entries of a library.

```
library>
 <book id=TK5105.88815>
   <title>Developing Semantic Web Services</title>
   <editor>H. Peter Alesso</editor>
   <publisher>A.K. Peters Ltd.</PUBLISHER>
 </book>
 <journal id="APS_007 publ_year="2003">
   <title>Applied Soft Computing</title>
   <volume>41<number>2</number></volume>
 </iournal>
 <misc id="AES-3002" id="SD2017-12-05">
   <author>Jordan Smith</author>
   <title>Web Primer
   <year>2017</year>
   <pages>0</pages>
 </misc>
</library>
```

Check if the XML document is well-formed. If it is not, change it so that it becomes well-formed, making as little changes as possible. Write a well-formed XML document.

[2 marks]

## Question 3 [10 marks]

(a) A document in a Resource Description Framework (RDF) is written as follows:

Describe in natural language the content of this document.

[1.5 marks]

(b) Given a record from an album list, as follows:

| title      | studio     | genre | length | singer       |
|------------|------------|-------|--------|--------------|
| Reputation | MMX Studio | Pop   | 55:38  | Taylor Swift |

The Uniform Resource Identifier (URI) of the album is http://www.recshop/album#" Write RDF/XML statements to represent the record.

[2.5 marks]

#### Question 3 (continued...)

(c) Five Turtle statements without using prefixes are given below:

```
<http://dbpedia.org/resource/Massachusets>
<http://example.org/terms/capital>
<http://dbpedia.org/resource/Boston>.

<http://dbpedia.org/resource/Massachusets>
<http://example.org/terms/nickname>
"The Bay State".

<http://dbpedia.org/resource/Boston>
<http://example.org/terms/inState>
<http://dbpedia.org/resource/Massachusets>.

<http://dbpedia.org/resource/Boston>
<http://example.org/terms/nickname>
"Beantown".

<http://example.org/terms/nickname>
"Beantown".

<http://dbpedia.org/resource/Boston>
<http://example.org/terms/population>
"642,109"^^xsd:integer.
```

(i) Convert all statements above into another Turtle version using the following prefixes:

```
@prefix db: <http://dbpedia.org/resource/>
@prefix dbo: <http://example.org/terms/>
```

[5 marks]

(ii) Draw a graph to represent all statements.

[1 mark]

#### Question 4 [10 marks]

(a) One of the species of Web Ontology Language (OWL) is OWL Lite. What are the TWO advantages of OWL Lite?

[1 mark]

(b) The richer the ontology language is, the more inefficient the reasoning support becomes. Discuss a compromise between efficiency power and efficient reasoning power of an ontology language.

[1 mark]

(c) Explain TWO limitations of Resource Description Framework Schema (RDFS).

[2 marks]

(d) Another species of OWL is OWL Description Logic (OWL DL). Use OWL DL to model the following sentences.

(i) The class peacock is a subclass of bird.

[2 marks]

(ii) Each pancake has chocolate as topping.

[2.5 marks]

(iii) Pencil, mouse and rose are not of the same class.

[1.5 marks]

#### Question 5 [10 marks]

- (a) Translate the following sentences into description logic.
  - (i) A human who has a child that is human
  - (ii) A human who has a grandchild

[1 mark]

- (b) Use SROIQ to model the following sentences.
  - (i) James reports Robert
  - (ii) Robert has committed more than 10 crimes

[1 mark]

(c) Compute the most specific concept names to which Superhero(Spiderman) belongs.

```
Heroine ≡ Hero ∩ Female

MaleHero ≡ Hero ∩ ¬Female

MutantHeroine ≡ Heroine ∩ Mutant

Elite ≡ Rich ∪ ¬Human

Superhero ≡ Hero ∩ Elite
```

[1 mark]

(d) Given the following knowledgebase:

```
Student ⊆∃attends.Seminar

Seminar ⊆∃attendedBy.(Student ∩ Excited)

Student(aStudent)

¬Excited(aStudent)
```

Translate the knowledgebase above into a datalog program.

[2 marks]

#### Question 5 (continued...)

## (e) Given a database as follows:

@prefix swp:

<a href="http://www.semanticwebprimer.org/ontology/apartments.ttl#">.</a>,

@prefix dbpedia: <a href="http://dbpedia.org/resource/">http://dbpedia.org/resource/>.</a>

@prefix dbpedia-owl: <a href="http://dbpedia.org/ontology/">http://dbpedia.org/ontology/> .

swp:BaronWayApartment swp:hasNumberOfBedrooms 3.

swp:BaronWayApartment dbpedia-owl:location dbpedia:Amsterdam.

swp:BaronWayApartment rdfs:label "Baron Way Apartment for Rent".

swp:FloridaAveStudio swp:hasNumberOfBedrooms 1.

swp:FloridaAveStudio dbpedia-owl:locationCity dbpedia:Amsterdam.

swp:SorrentoBungalow swp:hasNumberOfBedroom 4.

swp:SorrentoBungalow dbpedia-owl:locationCity dbpedia: Amsterdam.

(i) Write an SPARQL query to sort, in an ascending way, the number of bedrooms available in all housetypes.

[3 marks]

(ii) Write the results from the SPARQL query in (i).

[2 marks]

#### **APPENDIX**

#### 1. Overview of OWL 1 Language Constructs

#### 1.1 Header

| rdfs:comment    | owl:versionInfo            | owl:DeprecatedClass    |
|-----------------|----------------------------|------------------------|
| rdfs:seeAlso    | owl:priorversion           | owl:DeprecatedProperty |
| rdfs:label      | owl:backwardCompatibleWith | owl:imports            |
| rdfs:isDefineBy | owl:incompatibleWith       | -                      |

#### 1.2 Relations Between Individuals

| owl:sameAs       | owl:differentFrom |                     |
|------------------|-------------------|---------------------|
| owl:AllDifferent | together with     | owl:distinctMembers |

## 1.3 Class Constructs and Relationships

| owl:Class           | owl:Thing         | owl:Nothing          |
|---------------------|-------------------|----------------------|
|                     | •                 | 0 11 11 10 times     |
| rdfs:subClassOf     | owl:disjointWith* | owl:equivalentClass  |
| 1013.3000103301     | Ownaisjoint white | OWI.cquivatetticiass |
| owl:intersectionOf  | owl:unionOf*      | owl:complementOf*    |
| OWI.IIITEISECTIONOI | OWI.diffolio1     | owncomplementor.     |

## 1.4 Role Constructors, Relationships and Characteristics

| owl:ObjectProperty    | owl:FunctionalProperty | rdfs:range                    |
|-----------------------|------------------------|-------------------------------|
| rdfs:subPropertyOf    | owl:inverseOf          | owl:SymmetricProperty         |
| rdfs:domain           | owl:DatatypeProperty   | owl:InverseFunctionalProperty |
| owl:TranstiveProperty | owl:equivalentProperty |                               |

## 1.5 Allowed Datatypes

## The standard only requires the support of xsd:string and xsd:integer

| xsd:string       | xsd:boolean     | xsd:decimal            |
|------------------|-----------------|------------------------|
| xsd:float        | xsd:double      | xsd:dateTime           |
| xsd:time         | xsd:date        | xsd:gYearMonth         |
| xsd:gYear        | xsd:gMonthDay   | xsd:gDay               |
| xsd:gMonth       | xsd:hexBinary   | xsd:base64Binary       |
| xsd:anyURI       | xsd:token       | xsd:normalizedString   |
| xsd:language     | xsd:NMTOKEN     | xsd:positiveInteger    |
| xsd:NCName       | xsd:Name        | xsd:nonPositiveInteger |
| xsd:long         | xsd:int         | xsd:negativeInteger    |
| xsd:short        | xsd:byte        | xsd:nonNegativeInteger |
| xsd:unsignedLong | xsd:unsignedInt | xsd:unsignedShort      |
| xsd:unsignedByte | xsd:integer     |                        |

Continued...

TSC

## 2. Overview of Additional OWL 2 Language Constructs

## 2.1 Declaring Individuals

## owl:NamedIndividual

## 2.2 Class Relationships

| owl:disjointUnionOf | owl:AllDisjointClasses | owl:members |  |
|---------------------|------------------------|-------------|--|

## 2.3 Role Characteristics and Relationships

| owl:AsymmetricProperty   | owl:ReflexiveProperty   |
|--------------------------|-------------------------|
| owl:IrreflextiveProperty | owl:topDataProperty     |
| owl:topObjectProperty    | owl:bottomDataProperty  |
| owl:bottomObjectProperty | owl:AllDisjointProperty |
| owl:propertyDisjointWith | owl:hasKey              |
| owl:propertyChainAxiom   | owl:inverseOf           |
| owi:propertyChainAxiom   | owi:inverseOi           |

## 2.4 Role Restrictions

| owl:maxQualifiedCardinality | owl: minQualifiedCardinality |
|-----------------------------|------------------------------|
| owl:qualifiedCardinality    | owl:onClass                  |
| owl:onDataRange             | owl:hasSelf                  |
|                             |                              |

## 2.5 Role Assignments

| owl:NegativePropertyAssertion | owl: sourceIndividual |  |
|-------------------------------|-----------------------|--|
| owl:assertionProperty         | owl:targetIndividual  |  |
| owl:targetValue               |                       |  |

## 2.6 Datatype Restrictions

| owl:onDataType           | owl: withRestrictions |
|--------------------------|-----------------------|
| owl:datatypeComplementOf |                       |

#### 2.7 Additional Datatypes

| radional Samo, peo |                   |                  |  |
|--------------------|-------------------|------------------|--|
| owl:real           | owl:rational      | rdf:PlainLiteral |  |
| rdf:XMLLiteral     | xsd:dateTimeStamp |                  |  |

**End of Paper**