SNE3002 Linear Algebra – 2025 Spring

Vector Dot Cross Products & Inverse Matrix

March 12, 2025

Unit Vector

Def. Length of a Vector

Let $\boldsymbol{u} = [u_1, u_2, ..., u_n]^{\mathsf{T}}$ be a vector in \mathbb{R}^n .

The length of \boldsymbol{u} is given by

$$\|\boldsymbol{u}\| = \sqrt{u_1^2 + \dots + u_n^2}.$$

The length of a vector is also sometimes called its **magnitude** or its **norm**.

- > If ||u|| = 1, vector ||u|| is called a unit vector.
- > Normalization: obtain a unit vector $m{u}$ that points in the same direction as $m{v}$.

$$u = \frac{1}{\|v\|}v$$

Def. Dot Product

Let $\boldsymbol{u}=[u_1,u_2,\ldots,u_n]^{\sf T}$, $\boldsymbol{v}=[v_1,v_2,\ldots,v_n]^{\sf T}$ be two vectors in \mathbb{R}^n . We define their dot product as

$$\boldsymbol{u} \cdot \boldsymbol{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n.$$

> Q.
$$u = [1, 2, 0, -1]^T$$
, $v = [0, 1, 2, 3]^T$, compute $u \cdot v$

Remark. Properties of the Dot Product

Let u, v, w are vectors and k, l are scalars.

- 1) $u \cdot v = v \cdot u$
- 2) $\mathbf{u} \cdot \mathbf{u} \ge 0$, and $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = 0$
- 3) $(k\mathbf{u} + l\mathbf{v}) \cdot \mathbf{w} = k(\mathbf{u} \cdot \mathbf{w}) + l(\mathbf{v} \cdot \mathbf{w})$
- 4) $\mathbf{u} \cdot (k\mathbf{v} + l\mathbf{w}) = k(\mathbf{u} \cdot \mathbf{v}) + l(\mathbf{u} \cdot \mathbf{w})$
- $5) \quad \boldsymbol{u} \cdot \boldsymbol{u} = \|\boldsymbol{u}\|^2$

- > Cauchy-Schwarz inequality
 - The dot product satisfies the inequality

$$|u\cdot v|\leq ||u||||v||$$

> Proof.

> Triangle inequality

$$||u+v|| \le ||u|| + ||v||$$

> Proof.

> The included angle of two vectors $m{u}$ and $m{v}$ is the angle heta

$$\boldsymbol{u} \cdot \boldsymbol{v} = \|\boldsymbol{u}\| \|\boldsymbol{v}\| \cos(\theta)$$

- $m{v} = 0$, then, $m{u}$ and $m{v}$ are orthogonal
- > Q. Find the angle between $u = [2,2]^T$ and $v = [0,3]^T$
- > Q. Find the angle between $\boldsymbol{u} = [4,8]^{\mathsf{T}}$ and $\boldsymbol{v} = [-10,5]^{\mathsf{T}}$

Def. Cross Product

Let ${\pmb u}$ and ${\pmb v}$ be two vectors in ${\mathbb R}^3$. Their cross product ${\pmb u} \times {\pmb v}$ is

- 1) Its length is $\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin(\theta)$
- 2) It is orthogonal to both $oldsymbol{u}$ and $oldsymbol{v}$
- 3) The vectors u, v, $u \times v$ form a right-handed system.

Remark. Properties of the Cross Product

Let u, v, w are vectors in \mathbb{R}^3 , k a scalar.

- 1) $u \times v = -(v \times u)$
- 2) $\mathbf{u} \times \mathbf{u} = 0$
- 3) $(k\mathbf{u}) \times \mathbf{v} = k(\mathbf{u} \times \mathbf{w}) = \mathbf{u} \times (k\mathbf{v})$
- 4) $u \times (v + w) = u \times v + u \times w$
- 5) $(v + w) \times u = v \times u + w \times u$

> Cross product can be computed by

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \times \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} u_2v_3 - u_3v_2 \\ u_3v_1 - u_1v_3 \\ u_1v_2 - u_2v_1 \end{bmatrix}$$

- > Q. $u = [1, -1, 2]^T$, $v = [3, -2, 1]^T$, compute $u \times v$
- > Q. Find the area of the triangle determined by the points (1, 2, 3), (0, 2, 5), and (5, 1, 2).

Remark. The Box Product

Let u, v, w are vectors in \mathbb{R}^3 that define a parallelepiped. The box product $(u \times v) \cdot w$ is equal to the volume of the parallelepiped, if vectors form a right-handed system.

Note that,

$$(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} = (\mathbf{v} \times \mathbf{w}) \cdot \mathbf{u} = (\mathbf{w} \times \mathbf{u}) \cdot \mathbf{v}$$

Def. Inverse of a Matrix

Let A and B be $n \times n$ -matrices. We say that B is an inverse of A if

$$BA = I$$
 and $AB = I$

In this case, $B = A^{-1}$

Remark. Uniqueness

Both B and C are inverses of A, then B = C

$$B = BI = B(AC) = (BA)C = IC = C$$

- > How to find the inverse of a matrix
 - From [A | I], do row operations until you get [I | B]

> Q. Find
$$A^{-1}$$
, $A = \begin{bmatrix} 1 & 2 & 2 \\ 1 & 0 & 2 \\ 3 & 1 & -1 \end{bmatrix}$

> Check $AA^{-1} = A^{-1}A = I$

Remark. Inverse of Matrix Product

The inverse of 'put on your socks, then put on your shoes' is 'first take off your shoes, then take off your socks'.

$$(AB)^{-1} = B^{-1}A^{-1}$$

$$AB(B^{-1}A^{-1}) = A(BB^{-1}A^{-1}) = AIA^{-1} = I$$

Remark. Properties of the Inverse

Let A and B be $n \times n$ -matrices, I the identity matrix.

- 1) I is invertible and $I^{-1} = I$
- 2) If *A* and *B* are invertible then *AB* is invertible
- 3) If A is invertible then so is A^{-1} , and $(A^{-1})^{-1} = A$
- 4) If A is invertible then so is A^k , and $\left(A^{-k}\right)^{-1}=(A^{-1})^k$
- 5) If A is invertible and p is a non-zero scalar, then pA is invertible and $(pA)^{-1} = \frac{1}{p}A^{-1}$

- > Fact: $det(AB) = det(A) \cdot det(B)$
- > 1 = $det(I_n) = det(A \cdot A^{-1}) = det(A) \cdot det(A^{-1})$ $det(A^{-1}) = \frac{1}{det(A)}$
- > If and only if $det(A) \neq 0$, A is invertible

Remark. Invertibility

An $n \times n$ matrix A is invertible if and only if $det(A) \neq 0$

We call a matrix that is not invertible a singular matrix

> Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbb{R}^{2 \times 2}$$
,
$$A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

> Let
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \in \mathbb{R}^{2 \times 2}$$
,

$$A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33} \end{bmatrix}$$

where
$$det(A) = a(ei - fh) - b(di - fg) + c(dh - eg)$$

Remark. Inverse Matrix using the Determinant

The inverse of a matrix A can be expressed using its determinant

$$A^{-1} = \frac{1}{\det(A)} \cdot adj(A)$$

where adj(A) is the transpose of the cofactor matrix $adj(A) = C^{T}$

- > Inverse of a matrix is useful to find the solution of a system of linear equations.
- > When we solve $A\mathbf{x} = \mathbf{b}$, we can easily get $\mathbf{x} = A^{-1}\mathbf{b}$

> Q. Wanda the witch owns three types of pets – cats, ravens, and snakes. She has 10 pets in total, with a total of 16 legs and 4 wings. How many of each type of pet does she own?

$$x = \begin{bmatrix} 1 & 1 & 1 \\ 4 & 2 & 0 \\ 0 & 2 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 10 \\ 16 \\ 4 \end{bmatrix}$$

- > Note.
 - It is much better to solve $A\mathbf{x} = \mathbf{b}$ using LU decomposition or QR decomposition, which we will study later
 - Explicitly computing A^{-1} can lead to numerical instability
 - If A has any special structure such as sparsity, A^{-1} in general will not preserve it.