ESP32: Detekce objektů v obraze pomocí metod AI - detekce a počítání vajec

Poznámka: Tento repozitář obsahuje *pouze firmware* pro kamerový modul, který slouží jako příslušenství pro **automatický systém pro domácí chov slepic**. Webové rozhraní a firmware hlavní řídicí jednotky (dvířek) jsou v samostatném repozitáři dvířek.

Tento doplňkový modul rozšiřuje funkce *Chytrých kurníkových dvířek* o možnost automatické detekce a počítání vajec ve snášedle. Zařízení využívá ESP32-CAM nebo ESP-EYE, umělou inteligenci natrénovanou pomocí Edge Impulse a bezdrátově komunikuje s dvířky prostřednictvím úsporného protokolu ESP-NOW.

Funguje zcela autonomně – pořizuje snímky, detekuje počet vajec, odesílá výsledky, a následně se přepíná do úsporného režimu. Celý systém funguje zcela bez připojení k Wi-Fi síti a bez nutnosti zásahu uživatele.

Použité technologie a architektura

Komponenta	Technologie / Funkce
HW platforma	ESP32-CAM nebo ESP-EYE (doporučeno s PSRAM ≥ 4 MB), volitelně LED blesk
Firmware	Arduino-ESP32 (PlatformIO), více FreeRTOS tasků (cameraTask, espnowTask,)
Al model	FOMO MobileNetV2 0.35 – kvantizovaný model z Edge Impulse SDK (8bit, grayscale)
Komunikace	ESP-NOW – bezdrátový přenos dat, logů, parametrů i OTA aktualizací
Datové formáty	JSON (ArduinoJson) – parametry, logy; JPEG – obraz se zakreslenými detekcemi
Použité knihovny	esp32-camera, ArduinoJson, lib/Egg-counter_inferencing – vygenerovaná knihovna z Edge Impulse

Hlavní části firmwaru (FreeRTOS tasky)

Firmware je rozdělen do několika paralelních úloh (tasků) běžících pod FreeRTOS. Každý task má definovanou odpovědnost:

Task	Funkce
cameraTask	Pořízení snímku, převod na 180×180 greyscale, inference Al modelu, vyznačení detekcí
espnowTask	Odesílání parametrů, obrázků a logů přes ESP-NOW; příjem příkazů a synchronizace času
loggerTask	Ukládání logů do fronty, odeslání přes ESP-NOW, zápis do souboru v souborovém systému LittleFS
sleepTask	Řízení hlubokého spánku – uspání zařízení po dokončení všech přenosů a úkolů

Struktura projektu

```
cam-egg-counter/
                      # Hlavní firmware - Arduino (C++)
⊢ src/
- lib/
                      # AI model (Edge Impulse - egg counter)
├ data/
                      # Zde lze vložit soubory pro LittleFS (zatím nevyužito)
 - doc/
                      # Dokumentace
    — img/
                      # Ilustrační obrázky (AI výstupy, diagramy...)
                   # Zdrojová verze dokumentace
    — doc.md
    └ doc.pdf
                    # Dokumentace ve formátu PDF
└ platformio.ini
                      # Nastavení buildu PlatformIO
```

ESP-NOW – párování, konfigurace a komunikační cyklus

Kamerový modul komunikuje s hlavní jednotkou (dvířky) **bez nutnosti Wi-Fi sítě**, prostřednictvím protokolu **ESP-NOW**. Celý proces probíhá ve třech hlavních fázích:

Párování zařízení

Párování se spouští automaticky, pokud zařízení zatím není spárovano. Kamera začne vysílat žádost o párování, kterou dvířka zachytí a nabídnou k autorizaci ve webovém rozhraní.

Po schválení si dvířka uloží:

- MAC adresu zařízení (pro identifikaci při dalších spojeních),
- a všechny definice parametrů, které modul podporuje (datový typ, minimální a maximální hodnoty,...).

Periodický komunikační cyklus

Zařízení se typicky každých 10 sekund probudí (interval komunikace lze konfigurovat z webového rozhraní), pořídí a analyzuje snímek a odešle aktuální data. Cyklus zahrnuje:

- 1. Odeslání parametrů a anotovaného snímku pomocí ESP-NOW.
- 2. Přijetí odpovědi (ACK, synchronizace času, případné nové nastavení parametrů).
- 3. Přechod zpět do hlubokého spánku pro úsporu energie.

Dálková změna konfigurace

Jakékoli parametry zařízení lze měnit vzdáleně pomocí webového rozhraní (např. automatické snímaní během dne, aktivace blesku, ...).

Dvířka novou hodnotu odešlou kameře automaticky při nejbližší komunikaci.

Schémata komunikace

Obr. 1 – Sekvence párování zařízení s dvířky

Obr. 2 – Pravidelný cyklus: probuzení → odeslání → odpověď → uspání

Clients (příslušenství) Server (dvířka) Program flash Connected I/O NV Data Server MAC ID values clients MAC ID + PSRAM parameters definitions data definitions I/O device ID values LittleFS I/O data transfer Firmware update Firmware update I/O data

Obr. 3 – Architektura datové výměny mezi příslušenstvím a dvířky. Vlevo klient (kamera), vpravo centrální jednotka (dvířka). Každý modul má vlastní úložiště parametrů, definic a logiky pro přenos a aktualizace.

Trénování a nasazení Al modelu (Edge Impulse)

Model: FOMO MobileNetV2 0.35 **Platforma:** Edge Impulse Studio

Pro detekci vajec byl použit objektový detekční model typu FOMO (Faster Objects, More Objects), natrénovaný a kvantizovaný přímo v Edge Impulse.

- Nasbíráno celkem ~1300 snímků z reálného prostředí kurníku
 z toho cca 200 negativních vzorků (prázdné snášedlo bez vajec).
- Ručně anotováno: každý snímek obsahuje bounding box pro každé vejce.

Obr. 4 – Ukázka ruční anotace dat v Edge Impulse.

- Rozdělení datasetu: 80 % pro trénink, 20 % pro testování.
- **Vstupní rozlišení:** 180×180 px, ve stupních šedi (*greyscale*).
 - o Nižší rozlišení vedlo ke splývání objektů (více vajec detekováno jako jedno),
 - vyšší rozlišení způsobovalo problémy s RAM a překračovalo časový limit (1 h) trénování ve free verzi Edge Impulse.

Hyperparametry:

- o 100 epoch
- learning rate: 0.001
- o aktivováno data augmentation (otáčení, změna jasu atd.)
- Výsledky na validační sadě:

F1-score: ~99%Precision: 100%Recall: 98%

Model byl kvantizován (8bit) a nasazen přímo do ESP32 pomocí Edge Impulse SDK. **Inference trvá přibližně 3–4 sekundy** a probíhá zcela offline na mikrokontroléru.

Obr. 5 – Výsledky tréninku modelu v Edge Impulse (precision, recall, ...)

Ukázka výstupu Al inference

Po zpracování snímku modelem proběhne jednoduchý post-processing, kde firmware:

spočítá počet detekovaných vajec,

• vykreslí barevné obdélníky (bounding boxy) do původního snímku

Každá detekce musí překročit předem definovanou **pravděpodobnostní mez (threshold)**, která je nastavena na 0.6 - tj. pouze objekty, u kterých model vyhodnotí pravděpodobnost detekce vajíčka $\ge 60 \%$, jsou započítány.

Tento anotovaný JPEG se poté odešle přes ESP-NOW do hlavní jednotky (*dvířek*), kde se dále zpracuje nebo zobrazí ve webovém rozhraní.

Obr. 6 – Příklad snímku se čtyřmi vajíčky, které model

rozpoznal a označil modrými rámečky.

Webové rozhraní (na dvířkách)

Veškeré data a možnosti ovládání jsou na webu hostovaném dvířky:

- Aktuální snímek s detekcí
- Graf historie počtu vajec
- Přehled a editace parametrů příslušenství
- Zobrazení posledních logů
- Možnost OTA aktualizace FW kamery

Zkušenosti z provozu: výhody a limity

Výhody

- Autonomní provoz bez Wi-Fi komunikace přes ESP-NOW, bez závislosti na síti nebo cloudu.
- Nízká spotřeba energie zařízení většinu času spí, vhodné pro bateriové napájení.
- **Bezúdržbové přidávání parametrů** dvířka přijímají definice z příslušenství, není třeba aktualizovat jejich firmware.
- Bezdrátová OTA aktualizace přes dvířka.
- Inference přímo na kameře (edge AI) žádný přenos snímků a výpočet na cloudu, vše běží lokálně.

Omezení a poznatky z testování

• **Citlivost na prostředí** – model byl trénován na konkrétní snášedlo; jiné prostředí nebo světlo mohou zhoršit přesnost - nutnost rozšíření datasetu.

• Falešná 0 při zakrytí – slepice může dočasně zakrýt vejce - model vrátí "0". Možné řešení: detekce slepice, nebo softwarová logika - dočasně ignorovat výrazný pokles počtu detekcí (např. z 4 na 0), pokud je následovaný opětovným nárůstem.

• Rychlost zpracování – inference trvá cca 3–4 sekundy; pro tuto úlohu to však není omezující.

Nahrání firmware do zařízení

Nejjednodušší způsob je pomocí VS Code s rozšířením PlatformIO:

- 1. Otevři složku projektu ve VS Code.
- 2. V PlatformIO postranním panelu klikni na tlačítko **Upload**. PlatformIO automaticky přeloží a nahraje firmware na připojené ESP32 zařízení.
- 3. Pro kontrolu výstupu lze otevřít **Serial Monitor** (PlatformIO: Monitor).

Alternativně lze firmware nahrát i přes **Arduino IDE**, ale vyžaduje to ruční přidání knihoven (esp32-camera, ArduinoJson) a úpravu cesty k Edge Impulse knihovně (lib/Egg-counter_...).

Další zdroje a odkazy

- Chytrá kurníková dvířka hlavní projekt
- Edge Impulse dokumentace
- ArduinoJson
- ESP32-camera

Autor: Pavel Kejík, 2025 Projekt vznikl jako příslušenství k systému Chytrá kurníková dvířka. Teoretické pozadí a návrh celého systému je detailně popsán v bakalářské práci.