

UNIVERSITÉ DE SHERBROOKE

Faculté de génie Département de génie électrique et génie informatique

ÉLÉMENTS DE STATIQUE ET DE DYNAMIQUE APP 1

Présenté à :

M. Ahmed Khoumsi et M. Raef Cherif

 $\operatorname{Pr\acute{e}sent\acute{e}}$ par :

Hubert Dubé - dubh3401 Marc Sirois - sirm2508 Gabriel Lavoie - lavg2007

Sherbrooke
4 septembre 2019

Table des matières

1	Introduction					
2	Cinématique					
	2.1	Mouvement de A dans le cas général	1			
	2.2	Mouvement horizontal de A	1			
	2.3	Mouvement vertical de A \dots	2			
	2.4	Analyse avec Matlab	3			
3	Statique et dynamique 3					
	3.1	Statique	3			
	3.2	Dynamique	5			
	3.3	Analyse avec Matlab	7			
4	Cor	nclusion	7			

Table des figures

	\mathbf{a}	Position initiale	1		
	b	Position finale	1		
1	Positio	Position du mouvement horizontale			
2	Comp	osantes en fonction de $ heta$	2		
	a	Position initiale	2		
	b	Position finale	2		
3	Positio	on du mouvement vertical	2		
4	Composantes en fonction de θ				
5	Diagramme des forces en statique pour le calcul de F_b				
6	Diagramme des forces en statique pour le calcul de C_b				
7	couple statique en fonction de $ heta$				
8	Diagramme des forces en dynamique pour le calcul de F_b				
9	Diagramme des forces en dynamique pour le calcul de C_b				
10	couple	e dynamique en fonction de $ heta$	7		

1 Introduction

2 Cinématique

2.1 Mouvement de A dans le cas général

Le positionnement de \overrightarrow{OA} peut être exprimé par l'addition :

$$\overrightarrow{OA} = \overrightarrow{OB} + \overrightarrow{BA}$$

$$\overrightarrow{OA_x} = l_1 cos(\theta) + l_2 cos(\phi)$$

$$\overrightarrow{OA_y} = l_1 sin(\theta) + l_2 sin(\phi)$$
(1)

la vitesse étant la dérivée de la position :

$$\overrightarrow{V_A} = \frac{d\overrightarrow{OA}}{dt} \tag{2}$$

$$\overrightarrow{V_{A}x} = \frac{d(\overrightarrow{OA_x})}{dt} = \frac{d(l_1cos(\theta) + l_2cos(\phi))}{dt}$$

$$\overrightarrow{V_{A}x} = -l_1sin(\theta)\dot{\theta} - l_2sin(\phi)\dot{\phi}$$

$$\overrightarrow{V_{A}y} = \frac{d(\overrightarrow{OA_y})}{dt} = \frac{d(l_1sin(\theta) + l_2sin(\phi))}{dt}$$

$$\overrightarrow{V_{A}x} = l_1cos(\theta)\dot{\theta} - l_2cos(\phi)\dot{\phi}$$

La même stratégie peut être utilisé pour obtenir l'accélération :

$$\overrightarrow{a_A} = \frac{d\overrightarrow{V_A}}{dt}$$

$$\overrightarrow{a_A x} = \frac{d\overrightarrow{OA_x}}{dt} = \frac{d(l_1 cos(\theta) + l_2 cos(\phi))}{dt}$$

$$\overrightarrow{a_A y} = \frac{d\overrightarrow{OA_y}}{dt} = \frac{d(l_1 cos(\theta) + l_2 cos(\phi))}{dt}$$

$$\overrightarrow{a_A y} = \frac{d\overrightarrow{OA_y}}{dt} = \frac{d(l_1 cos(\theta) + l_2 cos(\phi))}{dt}$$
(3)

2.2 Mouvement horizontal de A

Figure 1 – Position du mouvement horizontale

En position initiale, la distance entre le moteur O et le poids est de 2L. En position finale, la distance OA forme un triangle équilatéral avec les deux bras, puisque les trois angles sont de pi/3

Figure 2 – Composantes en fonction de θ

2.3 Mouvement vertical de A

FIGURE 3 – Position du mouvement vertical

FIGURE 4 – Composantes en fonction de θ

2.4 Analyse avec Matlab

3 Statique et dynamique

3.1 Statique

La figure ci-dessous démontre les forces en action qui influencent le calcul de la force F_b lorsque le robot est immobile.

Figure 5 – Diagramme des forces en statique pour le calcul de ${\cal F}_b$

La somme des forces d'un système statique est égale à 0, tel que décrit par :

$$\sum \overrightarrow{F} = \overrightarrow{0} \tag{4}$$

En suivant la formule et faisant la sommation des vecteurs de force, on obtient :

$$\sum \overrightarrow{F} = \overrightarrow{0} = \overrightarrow{F_b} + \overrightarrow{F_{BA}} + \overrightarrow{F_A}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} F_{bx} \\ F_{by} \end{bmatrix} + \begin{bmatrix} 0 \\ -F_{BA} \end{bmatrix} + \begin{bmatrix} 0 \\ -F_{A} \end{bmatrix}$$

On observe rapidement que le valeur de ${\cal F}_{bx}$ est égale à 0 et que la valeur de ${\cal F}_{by}$ correspond :

$$F_{by} = F_{BA} + F_A$$

En utilisant l'equation:

$$F = m * g \tag{5}$$

On obtient:

$$F_{bu} = g * (m_{BA} + m_A)$$

Et donc la valeur de Fb en statique, avec g étant l'accélération gravitationnelle :

$$F_b = \begin{bmatrix} 0 \\ g * (m_{BA} + m_A) \end{bmatrix}$$

La figure ci-dessous démontre les forces en action qui influencent le calcul du moment C_b :

Figure 6 – Diagramme des forces en statique pour le calcul de C_b

La somme des moments à un point (dans notre cas B) d'un système statique est égale à 0, tel que décrit par :

$$\sum M_B = 0 \tag{6}$$

Les forces \overrightarrow{F}_{BA} et \overrightarrow{F}_A ont une influence tangentielle et normale à la tige BA. Pour le calcul des moments, uniquement la partie tangentielle nous intéresse (la normale n'a pas d'impact). La tangentielle se trouve à être la projection des forces $(\cos\varphi)$. On obtient alors :

$$\sum M_B = 0 = C_b - \cos\varphi * F_{BA} * l_2/2 - \cos\varphi * F_A * l_2$$

En isolant C_b et simplifiant l'équation avec les valeurs pour F_{BA} et F_A trouvées ci-haut, on obtient sa valeur pour le cas statique (avec g étant l'accélération gravitationnelle) :

$$C_b = l_2 * g * cos\varphi * (m_{BA}/2 + m_A)$$

FIGURE 7 – couple statique en fonction de θ

3.2 Dynamique

La figure ci-dessous démontre les forces en action qui influencent le calcul de la force F_b lorsque le robot est immobile à l'exception de la tige BA qui a une accélération angulaire constante de α .

Figure 8 – Diagramme des forces en dynamique pour le calcul de F_b

La somme des forces d'un système dynamique est égale à les accélérations fois les masses accélérées, tel que décrit par :

$$\sum \overrightarrow{F}_{ext} = m * \overrightarrow{\gamma_G} \tag{7}$$

L'accélération angulaire α cause des accélérations normale et tangentielle \overrightarrow{a}_n et \overrightarrow{a}_t . Ces accélérations correspondant à :

$$a_n = l_2 * \dot{\varphi}^2 \tag{8}$$

$$a_t = l_2 * \ddot{\varphi} \tag{9}$$

Cependant, afin de tout avoir en termes de l'axe des x et des y, on veut décomposer ces accélérations selon leurs projections sur les deux axes, tout en prenant compte que c'est tournant :

$$\overrightarrow{\gamma_G} = \begin{bmatrix} -\sin\varphi * a_t - \cos\varphi * a_n \\ \cos\varphi * a_t - \sin\varphi * a_n \end{bmatrix}$$

Et en séparant pour la barre BA et pour la masse A, en utilisant le équations pour les accélérations et en appliquant les masses :

$$m * \overrightarrow{\gamma_G} = (l_2 * m_A + l_2/2 * m_{BA}) * \begin{bmatrix} -\ddot{\varphi} * \sin\varphi - \dot{\varphi}^2 * \cos\varphi \\ \ddot{\varphi} * \cos\varphi - \dot{\varphi}^2 * \sin\varphi \end{bmatrix}$$

En suivant l'équation et en faisant la sommation des vecteurs de force, on obtient :

$$\sum \overrightarrow{F}_{ext} = m * \overrightarrow{\gamma_G} = \overrightarrow{F_b} + \overrightarrow{F_{BA}} + \overrightarrow{F_A}$$

$$(l_2 * m_A + l_2/2 * m_{BA}) * \begin{bmatrix} -\ddot{\varphi} * \sin\varphi - \dot{\varphi}^2 * \cos\varphi \\ \ddot{\varphi} * \cos\varphi - \dot{\varphi}^2 * \sin\varphi \end{bmatrix} = \begin{bmatrix} F_{bx} \\ F_{by} \end{bmatrix} + \begin{bmatrix} 0 \\ -F_{BA} \end{bmatrix} + \begin{bmatrix} 0 \\ -F_{A} \end{bmatrix}$$

En utilisant l'equation:

$$F = m * g \tag{10}$$

On obtient pour le cas dynamique, avec g étant l'accélération gravitationelle :

$$\overrightarrow{F_b} = \begin{bmatrix} F_{bx} \\ F_{by} \end{bmatrix} = (l_2 * m_A + l_2/2 * m_{BA}) * \begin{bmatrix} -\ddot{\varphi} * \sin\varphi - \dot{\varphi}^2 * \cos\varphi \\ \ddot{\varphi} * \cos\varphi - \dot{\varphi}^2 * \sin\varphi + g * (m_{BA} + m_A) \end{bmatrix}$$

La figure ci-dessous démontre les forces en action qui influencent le calcul du couple C_b lorsque le robot est immobile à l'exception de la tige BA qui a une accélération angulaire constante de α .

Figure 9 – Diagramme des forces en dynamique pour le calcul de C_b

La somme des moments à un point (dans notre cas B) d'un système dynamique est égale au moment d'inertie multiplié par l'accélération angulaire, tel que décrit par :

$$\sum M_B = I_B * \alpha \tag{11}$$

Le moment d'intertie au point B est composé en trois parties, le moment d'inertie du moteur M_b , le moment d'inertie de la tige BA, et le moment d'inertie de l'objet O_A , tous calculées avec le centre de rotation B :

$$I_B = I_{M_B} + I_B A + I_A$$

Le moment d'inertie des sphères M_B et O_A est négligible par rapport à la tige et la masse, alors le moment d'inertie au point B est :

$$I_B = 0 + m_{BA}/3 * l_2^2 + 0 + m_A * l_2^2 = (m_{BA}/3 + m_A) * l_2^2$$

En utilisant cette information et en procédant à la sommation des moments :

$$\sum M_B = I_B * \alpha = (m_{BA}/3 + m_A) * l_2^2 * \alpha = C_b - \cos\varphi * F_{BA} * l_2/2 - \cos\varphi * F_A * l_2$$

On obtient alors, avec g étant l'accélération gravitationnelle et $\ddot{\varphi} = \alpha$:

$$C_b = (m_{BA}/3 + m_A) * l_2^2 * \ddot{\varphi} + l_2 * g * \cos\varphi * (m_{BA}/2 + m_A)$$

Figure 10 – couple dynamique en fonction de θ

3.3 Analyse avec Matlab

4 Conclusion