國立陽明交通大學

Biological Databases: Theories and Practice

430032

Relational Model

Instructor: Prof. LEE, Tzong-Yi (李宗夷)

Email: leetzongyi@nycu.edu.ctw

Professor
Institute of Bioinformatics and Systems Biology,
National Yang Ming Chiao Tung University

Lecture outline

- 1. Structure of Relational Databases
- 2. Database Schema
- 3. Keys
- 4. Schema Diagrams
- 5. Relational Query Languages
- 6. Relational Operations

Structure of Relational Databases

 A relational database consists of a collection of tables, each of which is assigned a unique name.

• Given the *instructor* table, each **row** (tuple) contains four **columns** (attributes): *ID*, *name*, *dept name*, and *salary*.

 Note that each instructor can be identified by the value of the column ID.

> This indicates that the attribute ID can be used to identify an unique instructor.

-	*			(3. 33.3)
ID	name	dept_name	salary	
10101	Srinivasan	Comp. Sci.	65000	 -
12121	Wu	Finance	90000	← tuples
15151	Mozart	Music	40000	(or rows)
22222	Einstein	Physics	95000	
32343	El Said	History	60000	
33456	Gold	Physics	87000	
45565	Katz	Comp. Sci.	<i>7</i> 5000	
58583	Califieri	History	62000	
76543	Singh	Finance	80000	
76766	Crick	Biology	72000	
83821	Brandt	Comp. Sci.	92000	
98345	Kim	Elec. Eng.	80000	3

attributes

Another example of Relational Tables

Attribute Types

- The set of allowed values for each attribute is called the domain of the attribute.
 - The domain of the *salary* attribute of the *instructor* relation is the set of all possible salary values.
- Attribute values are (normally) required to be atomic; that is, indivisible.
 - Suppose the table *instructor* had an attribute *phone_number*, which contains multiple phone numbers. Then, the domain of *phone_number* is not atomic.
- The null value is a special value that signifies that the value is unknown or does not exist.
 - The special value *null* is a member of every domain
 - The null value causes complications in the definition of many operations

Relation Schema and Instance

- $R = (A_1, A_2, ..., A_n)$ is a relation schema, where $A_1, A_2, ..., A_n$ are attributes
 - Example: instructor = (ID, name, dept_name, salary)
- Formally, given domain sets D_1 , D_2 , D_n , a relation r is a subset of $D_1 \times D_2 \times ... \times D_n$

Thus, a relation r is a set of m-tuples $(a_1, a_2, ..., a_n)$ where each $a_i \in D_i$

- The current values (relation instance) of a relation are specified by a table.
- An element t of r is a tuple, represented by a row in a table.

Data in a Relation are Unordered

- Order of tuples is irrelevant (tuples may be stored in an arbitrary order)
- Example: instructor relation with unordered tuples

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	<i>7</i> 5000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

Database

- A database consists of multiple relations
- Information about an enterprise (ex. an university) is broken up into parts

```
instructor = (ID, name, dept_name, salary)
student = (student_ID, name, dept_name, total_credit)
advisor = (student_ID, instructor_ID)
```

• Bad design:

```
university = (instructor_ID, name, dept_name, salary, student_ID, student_name, ..)
results in
```

- repetition of information (e.g., two students have the same instructor)
- the need for null values (e.g., a student without the information of advisor)
- Normalization theory (Chapter 8) deals with how to design "good" relational schemas
 2023 Fall / Dr. Lee Tzong-Yi / NYCU

A Relation for Describing the Class Information

 Each course in a university may be offered multiple times, across different semesters, or even within a semester.

section = (course_id, sec_id, semester, year, building, room_number, time_slot_id)

course_id	sec_id	semester	year	building	room_number	time_slot_id
BIO-101	1	Summer	2009	Painter	514	В
BIO-301	1	Summer	2010	Painter	514	A
CS-101	1	Fall	2009	Packard	101	Н
CS-101	1	Spring	2010	Packard	101	F
CS-190	1	Spring	2009	Taylor	3128	E
CS-190	2	Spring	2009	Taylor	3128	A
CS-315	1	Spring	2010	Watson	120	D
CS-319	1	Spring	2010	Watson	100	В
CS-319	2	Spring	2010	Taylor	3128	C
CS-347	1	Fall	2009	Taylor	3128	A
EE-181	1	Spring	2009	Taylor	3128	C
FIN-201	1	Spring	2010	Packard	101	В
HIS-351	1	Spring	2010	Painter	514	C
MU-199	1	Spring	2010	Packard	101	D
PHY-101	1	Fall	2009	Watson	100	A

A Relation to Describe the Association between Instructors and Classes They Teach

The relation schema to describe this association is

teaches = (ID, course_id, sec_id, semester, year)

ID	course_id	sec_id	semester	year
10101	CS-101	1	Fall	2009
10101	CS-315	1	Spring	2010
10101	CS-347	1	Fall	2009
12121	FIN-201	1	Spring	2010
15151	MU-199	1	Spring	2010
22222	PHY-101	1	Fall	2009
32343	HIS-351	1	Spring	2010
45565	CS-101	1	Spring	2010
45565	CS-319	1	Spring	2010
76766	BIO-101	1	Summer	2009
76766	BIO-301	1	Summer	2010
83821	CS-190	1	Spring	2009
83821	CS-190	2	Spring	2009
83821	CS-319	2	Spring	2010
98345	EE-181	1	Spring	2009

Keys

- Let **R** denotes the set of attributes and $K \subseteq R$:
 - *K, which is subset of R,* is a **superkey** if values for *K* are sufficient to identify a unique tuple in the relation.

2023 Fall / Dr. Lee Tzong-Yi /

- Example: {ID} and {ID, name} are both superkeys of instructor.
- Superkey K is a candidate key if K is minimal

Example: {ID} is a candidate key for Instructor

 One of the candidate keys is selected to be the primary key.

- Foreign key constraint: value in one relation must appear in another relation
 - Referencing relation
 - Referenced relation

ID	пате	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	<i>7</i> 5000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
NYZ6543	Singh	Finance	80000

Schema Diagram for University Database

Relational Query Languages

- A query language is a language in which a user requests information from the database.
 - **Procedural language**: the user instructs the system to perform a sequence of operations on the database.
 - Non-procedural language (declarative): the user describes the desired information without giving a specific procedure.
- "Pure" languages:
 - Relational algebra
 - Tuple relational calculus
 - Domain relational calculus
- Relational operators

Selection of tuples

■ Relation r:

A	В	C	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

- Select tuples with A=B and D > 5
 - \bullet $\sigma_{A=B \text{ and } D > 5}$ (r)

A	В	C	D
α	α	1	7
β	β	23	10

Selection of Columns (Attributes)

• Relation *r* :

A	В	C
α	10	1
α	20	1
β	30	1
β	40	2

- Select A and C
 - Projection
 - Π_{A, C} (r)

A	C	A	C
α	1	α	1
α	1	β	1
β	1	β	2
ß	2		

Joining two relations – Cartesian Product

■ Relations *r*, *s*:

1
2

C	D	E
α	10	a
β	10	a
β	20	b
γ	10	b

r x s:

A	В	C	D	E
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

Union of two relations

• Relations r, s:

$$egin{array}{c|c} A & B \\ \hline α & 2 \\ β & 3 \\ \hline s \\ \hline \end{array}$$

 \blacksquare r \cup s:

Set difference of two relations

• Relations *r*, *s*:

A	В
α	1
α	2
β	1

\overline{A}	В
α	2
β	3

r - s:

Set Intersection of two relations

• Relation r, s:

A	В
α	1
α	2
β	1
1	,

$$r \cap s$$
 AB α 2

Joining two relations – Natural Join

- Let r and s be relations on schemas R and S respectively.
 Then, the "natural join" of relations R and S is a relation on schema R∪S obtained as follows:
 - Consider each pair of tuples t_r from r and t_s from s.
 - If t_r and t_s have the same value on each of the attributes in $R \cap S$, add a tuple t to the result, where
 - t has the same value as t_r on r
 - t has the same value as t_s on s

Natural Join Example

• Relations r, s:

A	В	C	D	
α	1	α	a	t,
β	2	γ	a	
γ	4	β	b	
α	1	γ	a	
δ	2	β	b	
4.	3	r		

	В	D	Ε
t _s	1	a	α
	3	a	β
	1	a	γ
	2	b	δ
	3	b	3
		s	

$R \cup S = ($	'A, B,	C,	D,	E)
$R \cap S = ($	B, D)			

- Natural Join
 - r ⋈s

A	В	C	D	E
α	1	α	a	α
α	1	α	a	γ
α	1	γ	a	α
α	1	γ	a	γ
δ	2	β	b	δ

If t_r and t_s have the same value on each of the attributes in $R \cap S$

Operators of Relational Algebra

Symbol (Name)	Example of Use
σ (Sologtion)	σ salary>=85000 (instructor)
(Selection)	Return rows of the input relation that satisfy the predicate.
П (Projection)	$\Pi_{ID, \ salary}$ (instructor)
(Projection)	Output specified attributes from all rows of the input relation. Remove duplicate tuples from the output.
\bowtie	instructor ⋈ department
(Natural Join)	Output pairs of rows from the two input relations that have the same value on all attributes that have the same name.
×	$instructor \times department$
(Cartesian Product)	Output all pairs of rows from the two input relations (regardless of whether or not they have the same values on common attributes)
U (Union)	$\Pi_{name}(instructor) \cup \Pi_{name}(student)$
(22.1021)	Output the union of tuples from the two input relations.

