CS1231 Part 1 - Introduction to Proofs

Based on lectures by Terence Sim and Aaron Tan Notes taken by Andrew Tan AY18/19 Semester 1

These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures. They are nowhere near accurate representations of what was actually lectured, and in particular, all errors are almost surely mine.

1 Proof Techniques

A proof is a concise, polished argument explaining the validity of a statement.

1.1 Proof by Construction

A proof by construction demonstrates the existence of a mathematical object by creating the object.

1.2 Proof by Counterexample

Conversely, a proof by counterexample provides a mathematical object that disproves a given statement.

1.3 Proof by Contraposition

The contraposition of

if P then Q

is

if
$$\sim P \ then \sim Q$$

Both statements are logically equivalent, and hence you can prove one by proving the other.

1.4 Proof by Contradiction

Given a statement S, only one of the following is true:

$$S$$
 is true $\sim S$ is true

Thus to prove a statement S by contradiction, you first assume \sim S is true. Then use facts and theorems to arrive at a contradiction, which then implies that \sim S is false, and hence S is true.

2 Logical Statements

2.1 If-then

Many statements in proofs have the following structure:

$$if\ P\ then\ Q$$

We can use direct proofs to prove statements of this form: We first assume P is true, then work forwards by combining P with other facts and theorems to conclude that Q is true.

2.2 For-all

The for-all statement, $\forall x \ P(x)$, essentially states that P(x) is true for all x in a given set. To prove statements of this form, we prove that P(x) is true for a particular but arbitrary x. Since x is arbitrary (that is, x is no different to the other elements of the set it was taken from), we can conclude that P(x) is true for all x.

A Definitions

Definition 1.3.1 (Divisibility) - if n and d are integers and $d \neq 0$, then n is divisible by d if, and only if, n equals d times some integer.

$$d|n \iff \exists k \in \mathbb{Z}, n = dk$$

Definition 1.6.1 - An integer n is even if, and only if, n equals twice some integer. An integer n is odd if, and only if, n equals twice some integer plus 1.

n is even $\iff \exists$ an integer k such that n=2kn is odd $\iff \exists$ an integer k such that n=2k+1

B Theorems

Theorem 4.3.1 (Epp) $\forall a, b \in \mathbb{Z}_+$, if a|b then $a \leq b$ Theorem 4.3.3 (Epp) - Transitivity of Divisibility

 $\forall a, b, c \in Z$ if a|b and b|c, then a|c

C Notation

C.1 Set Notation

 \mathbb{R} - the set of real numbers

 \mathbb{Z} - the set of all integers

 $\mathbb Q$ - the set of all rational numbers

C.2 Logic Notation

 \exists - there exists at least one

 $\exists ! |$ - there exists one and only one

 \forall - for all

 \in - is a member of

 \notin - is not a member of

 \ni - such that

D Properties of the Real Numbers

1. Closure: Integers are closed under addition and multiplication. $\forall x,y\in\mathbb{Z},\,x+y\in\mathbb{Z},\,$ and $xy\in Z$

For all real numbers a,b, and c,

2. Commutativity: a + b = b + a and ab = ba

3. Distributivity: a(b+c) = ab + ac

4. Trichotomy: exactly one of the following is true: a < b, a > b, or a = b