#### • Queries

1. Information about all the couriers sent more than 500km away.

## **SQL Code:**

SELECT \* FROM COURIER AS C JOIN RATE AS R ON (C.RATE\_ID=R.RATE\_ID) WHERE R.C\_DISTANCE>500;

#### **Relational Algebra:**

 $\pi_{(c.c\_id)}(\rho(r,\sigma_{< r.c\_distance > 500 > } rate) \bowtie_{< c.rate\_id=d.rate\_id > } \rho(c,courier))$ 





2. Name of the branch which sent the maximum number of couriers in month of August.

# **SQL Code:**

SELECT B\_NAME FROM COURIER JOIN BRANCH ON COURIER.B\_ID=BRANCH.B\_ID WHERE C\_DISPATCH\_DATE=(SELECT MAX(C\_DISPATCH\_DATE) FROM COURIER WHERE C\_DISPATCH\_DATE BETWEEN '#2020-08-01#' AND '#2020-08-19#');

#### **Relational Algebra:**

r1 
$$\leftarrow \sigma_{< c\_dispatch\_date > 2020-08-01 \ AND \ c\_dispatch\_date < 2020-08-31>}$$
 (courier)  
r2  $\leftarrow \mathscr{F}_{max < c\_dispatch\_date>}$  (r1)  
r3  $\leftarrow \sigma_{< c\_dispatch\_date = r2>}$  Courier  $\bowtie_{< c\_dispatch\_B\_ID=Branch.B\_ID>}$  Branch  
result  $\leftarrow \Pi_{B\ Name}$  (r3)

# **Output:**



3. The average cost of courier in September.

## **SQL Code:**

SELECT AVG(C\_RATE) FROM RATE AS R JOIN COURIER AS C ON (R.RATE\_ID = C.RATE\_ID) WHERE C.C\_STATUS='DELIVERED' AND C\_DELIVERY\_DATE BETWEEN '#2020-09-01#' AND '#2020-09-30#';

# **Relational Algebra:**

$$r1 \leftarrow \rho(c, \sigma_{< c\_delivery\_date > 2020-09-01~AND~< c\_delivery~\_date < 2020-09-31~AND~c\_status='deliverd'> courier)}$$
 
$$r2 \leftarrow \rho(r, rate)$$



4. To retrieve the status of couriers that are delivered.

# **SQL Code:**

SELECT \* FROM COURIER WHERE C\_STATUS='DELIVERED';

## **Relational Algebra:**

 $\Pi_{< c.c id>}(\rho(c,\sigma_{< c.c status="delivered">}courier))$ 





5. To retrieve the couriers which have been dispatched.

# **SQL Code:**

SELECT \* FROM COURIER WHERE C\_STATUS='DISPATCHED';

## **Relational Algebra:**

 $\Pi_{< c.c\_id>}(\rho(c,\sigma_{< c.c\_status="dispatched">}courier))$ 





6. To retrieve the Employee's name and his/her Designation.

## **SQL Code:**

SELECT (E\_NAME, DESIGNATION\_NAME) FROM EMPLOYEE AS E JOIN DESIGNATION D ON (E.E\_ID=D.E\_ID);

## **Relational Algebra:**

 $\Pi_{\text{e_name,designation\_name}}(\text{employee})\bowtie_{\text{employee.eid=designation.did}}(\text{designation}))$ 

## **Output:**



7. To Retrieve payment mode and Transaction Details.

# **SQL Code:**

SELECT PAYMENT.TX\_ID, PAYMENT.P\_MODE FROM PAYMENT;

# Relational Algebra:

 $\Pi_{< p\_mode, tx\_id>}(payment)$ 

#### **Output:**



8. To retrieve info about courier id no C005 (Weight, Distance and type)

# **SQL Code:**

select C.C\_ID,R.c\_weight ,R.c\_distance,R.c\_type from rate AS R JOIN COURIER AS C ON(R.RATE\_ID=C.RATE\_ID) WHERE C.C\_ID='C005';

## **Relational Algebra:**

 $\Pi_{\text{c.c.id,r.c\_weight,r.c\_didtance,r.c\_type>}}\rho(c,(\sigma_{\text{c.c\_id=C005>}}courier))\bowtie_{\text{c.r.rate\_id=c.rate\_id>}}\rho(r,rate))$ 



#### 9. Total no. of fragile products sent for each of the year from 2016 to 2020

## **SQL Code:**

SELECT COUNT (\*) FROM COURIER AS C JOIN RATE AS R ON (C.RATE\_ID=R.RATE\_ID) WHERE R.C\_TYPE='FRAGILE' AND C.C\_DISPATCH\_DATE BETWEEN '#2016-01-01#' AND '#2020-12-01#';

## **Relational Algebra:**

r1  $\leftarrow \rho(c, \sigma_{< c\_dispatch\_date > 2016-01-01} \text{ AND } < c\_dispatch\_date < 2016-12-31 > curier)$ 

$$r2 \leftarrow \rho(r, \sigma_{< c \text{ type} = 'Fragile'>} rate)$$

result  $\leftarrow \mathscr{F}_{\text{COUNT (*)}} r1 \bowtie_{\text{c.rate id=r.rate id>}} r2$ 

## **Output:**



## 10. To find payable amount of courier which has 10 kg or less weight.

#### **SQL Code:**

SELECT C.C\_ID,R.C\_RATE,R.C\_WEIGHT from courier as c join rate as r on (c.rate\_id=r.rate\_id) where r.c\_weight<= '10';

# Relational Algebra:

 $\Pi_{c.c\_id, R.c\_rate, R.cweight}$  (( $\sigma_{< R.cweight <=10>}$  ( $\rho(c, couriers)$ )  $\bowtie_{< c.rate\_id=R.rate\_id>} \rho(r, rate)$ )



#### 11. Total no. of Employee working in Ahmedabad branch.

## **SQL Code:**

SELECT COUNT(\*) FROM EMPLOYEE AS E JOIN BRANCH AS B ON(E.B\_ID=B.B\_ID) WHERE B\_NAME='AMD';

#### **Relational Algebra:**

 $\mathscr{F}_{COUNT}$  (\*) (( $\sigma_{B_{name=AMD}}$ ) ( $\rho(E, Employee)$ )  $\bowtie_{E.b_{id}=B.b_{id}} \rho(B, Branch)$ )

## **Output:**



12. To retrieve name of employees who are male and working in branch Mumbai.

## **SQL Code:**

SELECT E\_NAME,E\_GENDER FROM EMPLOYEE AS E JOIN BRANCH AS B ON (B.B\_ID= E.B\_ID) WHERE B.B\_NAME='MUM' AND E.E\_GENDER='M';

#### **Relational Algebra:**

 $\Pi_{e\_name,\ e\_gender} \ ((\sigma_{< B.b\_name=mum\ AND\ E.e\_gender=m>} \ (\rho(e,employee)) \bowtie <_{B.bid=E.bid>} \\ \rho(B,Branch))$ 



13. To select name of customer who has sent courier between 1st August 2020 to 30 September 2020.

## **SQL Code:**

SELECT FIRST\_NAME, LAST\_NAME FROM SENDER AS S JOIN COURIER AS C ON(S.S\_ID=C.S\_ID) WHERE C.C\_DISPATCH\_DATE BETWEEN '#2020-08-01#' AND '#2020-08-30#';

#### **Relational Algebra:**

#### **Output:**



14. To retrieve name of branch manager of Ahmedabad branch

## **SQL Code:**

SELECT E\_NAME FROM EMPLOYEE AS E JOIN DESIGNATION AS D ON(E.E\_ID=D.E\_ID) WHERE D.DESIGNATION\_NAME='Manager' AND E.B\_ID='B101';

#### Relational Algebra:

 $\Pi_{e\_name}$  (( $\sigma_{D.designation\_name=Manager}$  AND E.bid=B101> ( $\rho(e, employee)$ )  $\bowtie \langle EE.e\_id=D.e\_id \rangle \rho(D,Designation)$ )



15. Retrieve the name of the employee who have salary more than  $20,\!000$  but less than  $70,\!000$ 

## **SQL Code:**

SELECT E\_NAME, SALARY FROM EMPLOYEE AS E JOIN DESIGNATION AS D ON(E.E\_ID=D.E\_ID) WHERE D.SALARY > 20000 AND D.SALARY < 70000;

## **Relational Algebra:**

 $\Pi_{e\_name, salary}$  (( $\sigma_{D.salary > 20000 \text{ AND D.salary } < 70000>}$  ( $\rho(e, employee)$ )  $\bowtie_{E.E.e\_id=D.e\_id>} \rho(D,Designation)$ )



#### 16. Find the courier ID whose Delivery status is FAILED.

# **SQL Code:**

SELECT C\_ID FROM COURIER WHERE C\_STATUS='FAILED';

#### **Relational Algebra:**

 $\Pi_{\text{c id}}(\sigma_{\text{c status}=\text{"failed"}}(\text{courier}))$ 

#### **Output:**



#### 17. Total number of couriers delivered in Maharashtra In Year 2020.

## **SQL Code:**

SELECT COUNT(\*) FROM COURIER AS C JOIN RECEIVER AS R ON(R.R\_ID=C.R\_ID) WHERE R.R\_STATE='MAHARASHTRA' AND C.C\_STATUS='DELIVERED' AND C\_DELIVERY\_DATE BETWEEN '#2020-01-01#' AND '#2020-12-31#';

## **Relational Algebra:**

 $r1 \leftarrow \rho(c, \sigma_{< c\_delivery\_date > 2020-01-01} \text{ AND } < c\_delivery\_date < 2020-12-31 > curier)$ 

 $r2 \leftarrow \rho(r, \sigma_{< r \text{ state} = \text{`Maharashtra'}>} \text{ receiver})$ 

result  $\leftarrow \mathscr{F}_{\text{COUNT (*)}} r1 \bowtie_{<\text{c.c\_id=r.c\_id>}} r2$ 



18. Retrieve courier's sender and receiver name whose STATUS is SUCCESSFUL.

## **SQL Code:**

SELECT DISTINCT
S.FIRST\_NAME,S.LAST\_NAME,R.FIRST\_NAME,R.LAST\_NAME FROM
(SENDER AS S JOIN SENDTO AS SE ON(S.S\_ID=SE.S\_ID) JOIN RECEIVER AS
R ON(SE.R\_ID=R.R\_ID) join courier as c on(c.s\_id=s.s\_id)) WHERE
c.c\_status='DELIVERED'

#### **Relational Algebra:**

- $r1 \leftarrow \rho(c, \sigma_{< c.c \text{ status='delivered>}} \text{ curier})$
- r2  $\leftarrow \rho(r,receiver)$
- r3  $\leftarrow \rho(\text{se,sendto})$
- r4  $\leftarrow \rho(s, sender)$

 $result \leftarrow \Pi_{<s.first\_name,\ s.last\_name,\ r.first\_name,\ r.last\_name} > r1 \bowtie {}_{<c.c\_id=s.c\_id>} r4 \bowtie {}_{<s.s\_id=se.s\_id>}$ 

 $r3\bowtie_{< se.r\_id = r.r\_id >} r2$ 



19. Select name of customers whose mode of payment is offline and courier status is in transit

#### **SQL Code:**

SELECT FIRST\_NAME,LAST\_NAME FROM SENDER AS S JOIN COURIER AS C ON(S.S\_ID=C.S\_ID) JOIN PAYMENT AS P ON(C.P\_ID=P.P\_ID) WHERE P.P MODE='OFFLINE' AND C.C STATUS='DISPATCHED';

#### **Relational Algebra:**

 $\Pi_{<s.first\_name,\ s.last\_name>} \rho(s, (\sigma_{< p.p\_mode="offline", c.c\_status="dispatched">} sender) \bowtie_{<s.sid=c.sid>} \rho(c, courier) \bowtie_{< c.p\_id=p.p\_id>} \rho(p, payment))$ 

#### **Output:**



20. Select all the courier whose cost is greater than Rs 200 and less than Rs 500 & mode of payment is online.

#### **SQL Code:**

SELECT C\_ID, P.P\_AMOUNT FROM COURIER AS C JOIN PAYMENT AS P ON(C.P\_ID=P.P\_ID) WHERE P.P\_AMOUNT<'500' AND P.P\_AMOUNT >'100' AND P.P MODE='ONLINE';

# Relational Algebra:

$$\begin{split} &\Pi_{<.c\_id,p.p\_id>}(p,\!(\sigma_{< p,p\_amount>200~AND~p.p\_amount<500}\\ &_{p.p\_mode="online">payment)}\bowtie_{< c.p\_id=p.p\_id>}(c,courier)) \end{split}$$

