ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 6

дисциплина: Архитектура компьютера

Лисовская Арина Валерьевна

Содержание

4	Выводы	17
3	Выполнение лабораторной работы 3.1 Символьные и численные данные в NASM	
2	Задание	5
1	Цель работы	4

Список иллюстраций

5.1	создание директории	0
3.2	создания файла	6
3.3	создание копии файла	6
3.4	редактирование файла	7
3.5	запуск исполняемого файла	7
3.6	редактирование файла	8
3.7	запуск иссполняемого файла	8
3.8	редактирование файла	9
3.9	запуск исполняемого файла	9
3.10	редактирование файла	10
3.11	запуск файла	10
3.12	редактирование файла	11
3.13	запуск файла	11
	создание файлов	12
3.15	редактирование файла	12
3.16	запуск файла	12
	изменение программы	13
	запуск файла	13
	создание файлов	13
	редактирование файлов	14
3.21	запуск файла	14
	Редактируем файл	15
	Проверяем правильность	16
	Создаем копию файла	16
	Самостоятельная	16

1 Цель работы

Цель данной лабораторной работы - освоение арифметческих инструкций языка ассемблера NASM.

2 Задание

- 1. Символьные и численные данные в NASM
- 2.Выполнение арифметических операций в NASM
- 3.Выполнение заданий для самостоятельной работы

3 Выполнение лабораторной работы

3.1 Символьные и численные данные в NASM

С помощью утилиты mkdir создаю директорию, в которой буду создавать файлы с программами для лабораторной работы №6 (рис. [3.1]). Перехожу в созданный каталог с помощью утилиты cd.

```
avlisovskaya@avlisovskaya: ~/work/arch-pc/lab06 Q = - \( \times \)

avlisovskaya@avlisovskaya: ~\( \times \) mkdir ~/work/arch-pc/lab06

avlisovskaya@avlisovskaya: ~\( \times \) cd ~/work/arch-pc/lab06

avlisovskaya@avlisovskaya: ~\( \) work/arch-pc/lab06\( \) ouch lab6-1.asm
```

Рис. 3.1: создание директории

С помощью утилиты touch создаю файл lab6-1.asm (рис. [3.2]).

```
avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$ touch lab6-1.asm
avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$ ls
lab6-1.asm
avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$
```

Рис. 3.2: создания файла

Копирую в текущий каталог файл in_out.asm с помощью утилиты ср, т.к. он будет использоваться в других программах (рис. [3.3]).

```
avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$ ср ~/Загруэки/in_out.asm in_out.
asm
avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$ ls
in_out.asm lab6-1.asm
avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$
```

Рис. 3.3: создание копии файла

Открываю созданный файл lab6-1.asm, вставляю в него программу вывода значения регистра eax (рис. [3.4]).

```
GNU nano 6.2 /home/avlisovskaya/work/arch-pc/lab06/lab6-1.asm *

%include 'in_out.asm'
SECTION .bss
buf1: RESB 80
SECTION .text
GLOBAL _start
__start:
mov eax,6
mov ebx,4
add eax,ebx
mov [buf1],eax
mov eax,bf1
call sprintLF
call quit
```

Рис. 3.4: редактирование файла

Создаю исполняемый файл программы и запускаю его (рис. [3.5]). Вывод программы: символ j, потому что программа вывела символ, соответствующий по системе ASCII сумме двоичных кодов символов 4 и 6.

```
avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$ nasm -f elf lab6-1.asm
avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-1 lab6-1.
o
./lab6-1
j
avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$
```

Рис. 3.5: запуск исполняемого файла

Изменяю в тексте программы символы "6" и "4" на цифры 6 и 4 (рис. [3.6]).

```
GNU nano 6.2 /home/avlisovskaya/work/arch-pc/lab06/lab6-1.asm *

%include 'in_out.asm'
sECTION .bss
buf1: RESB 80
SECTION .text
GLOBAL _start
__start:
mov eax,6
mov ebx,4
add eax,ebx
mov [buf1],eax
mov eax,buf1
call sprintLF
call quit
```

Рис. 3.6: редактирование файла

Создаю новый исполняемый файл программы и запускаю его (рис. [3.7]). Теперь вывелся символ с кодом 10, это символ перевода строки, этот символ не отображается при выводе на экран.

```
avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$ nasm -f elf lab6-1.asm
avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-1 lab6-1.

o
./lab6-1
avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$
```

Рис. 3.7: запуск иссполняемого файла

Создаю новый файл lab6-2.asm с помощью утилиты touch (рис. [??]).

Ввожу в файл текст другойпрограммы для вывода значения регистра еах (рис. [3.8]).

```
GNU nano 6.2 /home/avli
%include 'in_out.asm'
SECTION .text
GLOBAL _start
_start:
mov eax,6
mov ebx,4
add eax,ebx
call iprintLF
call quit
```

Рис. 3.8: редактирование файла

Создаю и запускаю исполняемый файл lab6-2 (рис. [3.9]). Теперь вывод число 106, потому что программа позволяет вывести именно число, а не символ, хотя все еще происходит именно сложение кодов символов "6" и "4"

```
avlisovskaya@avlisovskaya:-/work/arch-pc/lab06$ nasm -f elf lab6-2.asm avlisovskaya@avlisovskaya:-/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-2 lab6-2. o ./lab6-2 lab6-2 lab6-2
```

Рис. 3.9: запуск исполняемого файла

Заменяю в тексте программы в файле lab6-2.asm символы "6" и "4" на числа 6 и 4 (рис. [3.10]).

```
start:
nov eax,6
nov ebx,4
add eax,ebx
call iprint
call quit
```

Рис. 3.10: редактирование файла

Создаю и запускаю новый исполняемый файл (рис. [3.11]).. Теперь программа складывает не соответствующие символам коды в системе ASCII, а сами числа, поэтому вывод 10.

```
avlisovskaya@avlisovskaya:-/work/arch-pc/lab06$ nasm -f elf lab6-2.asm
avlisovskaya@avlisovskaya:-/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-2 lab6-2.
o
avlisovskaya@avlisovskaya:-/work/arch-pc/lab06$ ./lab6-2
10avlisovskaya@avlisovskaya:-/work/arch-pc/lab06$
```

Рис. 3.11: запуск файла

Заменяю в тексте программы функцию iprintLF на iprint (рис. [3.12]).

```
start:
nov eax,6
nov ebx,4
add eax,ebx
call iprint
call quit
```

Рис. 3.12: редактирование файла

Создаю и запускаю новый исполняемый файл (рис. [3.13]). Вывод не изменился, потому что символ переноса строки не отображался, когда программа исполнялась с функцией iprintLF, а iprint не добавляет к выводу символ переноса строки, в отличие от iprintLF.

```
avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$ nasm -f elf lab6-2.asm avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-2 lab6-2. o avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$ ./lab6-2 10avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$
```

Рис. 3.13: запуск файла

Выполнение арифметических операций в NASM Создаю файл lab6-3.asm с помощью утилиты touch (рис. [3.14]).

```
avlisovskaya@avlisovskaya:-$ touch ~/work/arch-pc/lab06/lab6-3.asm
avlisovskaya@avlisovskaya:-$ mc
```

Рис. 3.14: создание файлов

Ввожу в созданный файл текст программы для вычисления значения выражения f(x) = (5 * 2 + 3)/3 (рис. [3.15]).

```
avlisovskaya@avlisovskaya: ~/work/arch-pc/lab06
                              /home/avlisovskaya/work/arch-pc/lab06/lab6-3.asm *
%include 'in_out.asm' ; подключение внешнего файла
             'Результат: ',0
'Остаток от деления: ',0
            .text
start
        - Вычисление выражения
 nov eax,4 ;
nov ebx,6 ;
                         (=б
mul ebx; E/
add eax,2;
add eax,2 ; EAX=EAX+2
xor edx,edx ; обнуляем EDX для корректной работы div
mov ebx,5 ; EBX=5
      ebx ;
                            (/5<mark>,</mark>
                                       Х=остаток от деления
nov edi,eax; запись результата вычисления в 'edi'; ---- Вывод результата на экран
mov eax,div; вызов подпрограммы печати
call sprint; сообщения 'Результат: '
mov eax,edi; вызов подпрограммы печати значения
                          Записать ^W Поиск
ЧитФайл ^\ Замена
                                                                                             Выполнить ^С Позиция
     Справка
                                                                       Вырезать
```

Рис. 3.15: редактирование файла

Создаю исполняемый файл и запускаю его (рис. [3.22]).

```
avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$ nasm -f elf lab6-3.asm avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-3 lab6-3. o avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$ ./lab6-3 Результат: 5 Остаток от деления: 1 avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$
```

Рис. 3.16: запуск файла

Изменяю программу так, чтобы она вычисляла значение выражения f(x) = (4*6+2)/5 (рис. [3.23]).

Рис. 3.17: изменение программы

Создаю и запускаю новый исполняемый файл (рис. [3.25]). Я посчитала для проверки правильности работы программы значение выражения самостоятельно, программа отработала верно.

```
avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$ nasm -f elf lab6-3.asm avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-3 lab6-3. o avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$ ./lab6-3
Результат: 5
Остаток от деления: 1
avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$
```

Рис. 3.18: запуск файла

Создаю файл variant.asm с помощью утилиты touch (рис. [3.19]).

```
avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$ touch ~/work/arch-pc/lab06/varia nt.asm avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$ mc
```

Рис. 3.19: создание файлов

Ввожу в файл текст программы для вычисления варианта задания по номеру студенческого билета (рис. [3.20]).

```
avlisovskaya@avlisovskaya: ~/work/arch-pc/lab06
 GNU nano 6.2
                   /home/avlisovskava/work/arch-pc/lab06/variant.asm *
include 'in out.asm
        'Введите № студенческого билета: ',0
        'Ваш вариант:
        .bss
       80
       start
nov eax, msg
all sprintLF
nov ecx, x
nov edx, 80
all sréad
  еах,х ; вызов подпрограммы преобразования
 ll atoi ;
                  кода в число,
   edx,edx
   ebx,20
   ebx
```

Рис. 3.20: редактирование файлов

Создаю и запускаю исполняемый файл (рис. [3.21]). Ввожу номер своего студ. билета с клавиатуры, программа вывела, что мой вариант - 8.

```
avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$ nasm -f elf variant.asm
avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$ ld -m elf_i386 -o variant varian
t.o
avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$ ./variant
Введите № студенческого билета:
1132231434
Ваш вариант: 15
avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$
```

Рис. 3.21: запуск файла

Ответы на вопросы по программе 1. oveax.rem" и строка "call sprint" отвечают за вывод на экран сообщения 'Ваш вариант:'. 2. Эти инструкции используются для чтения строки с вводом данных от пользователя. Начальный адрес строки сохраняется в регистре есх, а количество символов в строке (максимальное количество символов, которое может быть считано) сохраняется в регистре edx. Затем вызывается процедура sread, которая выполняет чтение строки. 3. Инструкция "call atoi" используется для преобразования строки в целое число. Она принимает адрес строки в регистре еах и возвращает полученное число в регистре еах. Строка "хогеdx.edx" обнуляет регистр. edx перед выполнением деления. Строка "movebx,20" загружает значение 20 в регистр ebx. Строка "divebx" выполняет де-

ление регистра еах на значение регистра ebx с сохранением частного в регистре еах и остатка в регистре edx, 5. Остаток от деления записывается в регистр edx. 6. Инструкция "inc edx" используется для увеличения значения в регистре edx на 1. В данном случае, она увеличивает остаток от деления на 1. 1з 7. Строка "moy eax.edx" передает значение остатка от деления в регистр eax. 36 Строка "call iprintLF" вызывает процедуруіргіntLF для вывода значения на экран вместе с переводом строки.

3.2 Задание для самостоятельной работы

Создаю файл lab6-4.asm с помощью утилиты touch (рис. [??]).

```
mc [avlisovskaya@avlisovskaya]:~/work/arch-pc/lab06
                   /home/avlisovskaya/work/arch-pc/lab06/lab6-1.asm *
 GNU nano 6.2
6include
         'in_out.asm
        .bss
           80
nov ebx,
   eax,ebx
nov [buf1],eax
nov eax,buf1
call spri<u>n</u>tLF
                           ^₩ Поиск
                                                        ^Т Выполнить ^С
  Справка
                Записать
                                             Вырезать
```

Рис. 3.22: Редактируем файл

Открываю созданный файл для редактирования, ввожу в него текст программы для вычисления значения выражения (11 + x) * 2 - 6 (рис. [??]). Это выражение было под вариантом 8.

```
octatok of деления: 39/avitsovskayagavitsovskayanasm -1 eti labb-4.asm
avlisovskayagavlisovskaya:~/work/arch-pc/lab06$ nasm -f elf lab6-4.asm
avlisovskayagavlisovskaya:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-4 lab6-4.o
avlisovskayagavlisovskaya:~/work/arch-pc/lab06$ ./lab6-4
Результат: 4
Остаток от деления: 78avlisovskayagavlisovskaya:~/work/arch-pc/lab06$
```

Рис. 3.23: Проверяем правильность

Создаю и запускаю исполняемый файл (рис. [??]).

```
avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$ nasm -f elf lab6-4.asm avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-4 lab6-4.o avlisovskaya@avlisovskaya:~/work/arch-pc/lab06$ ./lab6-4
Результат: 15
Остаток от деления: 397avlisovskaya@avlisovskayanasm -f elf lab6-4.asm
```

Рис. 3.24: Создаем копию файла

Провожу еще один запуск исполняемого файла для проверки работы программы с другим значением на входе (рис. [??]). Программа отработала верно.

Программа для вычисления значения выражения (11 + x) * 2 - 6.

Рис. 3.25: Самостоятельная

4 Выводы

При выполнении данной лабораторной работы я освоила арифметические инструкции языка ассемблера NASM