Codage de Hamming

n étant un entier supérieur ou égal à 2. Un codage de Hamming $[2^n-1,2^n-1-n]$ prend 2^n-1-n bits d'information et ajoute n bits de parité $p_0, p_1, \ldots, p_{n-1}$ qui sont respectivement aux positions $1,2,2^2,\ldots,2^{n-1}$. Chaque bit numéro $i=a_02^0+a_12^1+\ldots+a_{n-1}2^{n-1}$, $a_j\in\{0,1\}$ est contrôlé par les bits de parité p_j tels que $a_j=1$. Par exemple, le $5=1.2^0+0.2^1+1.2^2$ -ième bit est contrôlé par les bits de parités p_0 et p_2 . Pour p_0 0 et p_0 1 le code de Hamming est p_0 1. En observant le tableau suivant, on peut dire que le bit de parité p_0 1 contrôle les bits aux positions p_0 2 contrôle les bits aux positions p_0 3, p_0 4, p_0 5, p_0 7, p_0 8, p_0 9 et p_0 9 contrôle les bits aux positions p_0 9 contrôle l

Position	En base 2	Contrôlé par
1	100	p_0
2	010	p_1
3	110	p_0, p_1
4	001	p_2
5	101	p_0, p_2
6	011	p_1, p_2
7	111	p_0, p_1, p_2

L'encodage du mot $b_1b_2b_3b_4$ est $p_0p_1b_1p_2b_2b_3b_4$ où $p_0 = b_1 + b_2 + b_4$ (ou $p_0 + b_1 + b_2 + b_4 = 0$), $p_1 = b_1 + b_3 + b_4$ (ou $p_1 + b_1 + b_3 + b_4 = 0$) et $p_2 = b_2 + b_3 + b_4$ (ou $p_2 + b_2 + b_3 + b_4 = 0$). Nous avons donc

$$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix} \mapsto \begin{pmatrix} b_1 + b_2 + b_4 \\ b_1 + b_3 + b_4 \\ b_1 \\ b_2 + b_3 + b_4 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix}$$

La matrice génératrice est alors

$$G = \left(\begin{array}{cccc} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

Ainsi, la matrice de contrôle est

$$H = \left(\begin{array}{ccccccc} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{array}\right)$$

Par exemple, le code du mot 1010 est 1011010. Supposons que nous avons recu le mot c = 1011011. A traver la matrice H, on peut tout de suite constater que ce n'est pas un mot de code. Pour corriger, on peut passer par le tableau suivant

p_0	p_1	b_1	p_2	b_2	b_3	b_4		
1		1		0		1	=	0
	0	1			1	1	=	0
			1	0	1	1	=	0

On observe que l'erreur se trouve à la dernière position. On doit la remplacer par 0. Par conséquent, le mot initial d'origine est 1010.

EXERCICE

Soit un mot de Hamming de longueur 15: 110110111101101

- 1. Quels sont les bits de contrôle de parité?
- 2. Quel est le message recu?
- 3. Est-ce que le message recu correspond au message transmis?
- 4. Quel a été le message transmis?