Assignment 1

Dishank Jain AI20BTECH11011

1 (4 marks)

In the derivation for the Support vector machine, we assumed that the margin boundaries are given by $\vec{w}.\vec{x}+b=+1$ and $\vec{w}.\vec{x}+b=-1$. Show that, if the +1 and -1 are replaced by some arbitrary constants $+\gamma$ and $-\gamma$ for some $\gamma>0$, the solution for the maximum margin hyperplane is unchanged.

1.1 Solution

In the above situation, for the positive and negative support vectors, we will have,

$$\vec{w}.\vec{x} + b = +\gamma; \ \vec{w}.\vec{x} + b = -\gamma \tag{1}$$

Hence the margin is given by $\frac{2\gamma}{\|\vec{w}\|}$. To maximize the margin, we have to max-

imize $\frac{2\gamma}{\|\vec{w}\|}$ or alternately minimize $\frac{\|\vec{w}\|^2}{2\gamma^2}$ subject to $y_i(\vec{w}.\vec{x}+b) - \gamma \geq 0$. We can use method of Lagrange multipliers and obtain the Karush-Kuhn-Tucker conditions as follows.

$$\vec{w} = \gamma^2 \sum_{j} \eta_j y_j \vec{x}_j \tag{2}$$

$$\sum_{j} \eta_j y_j = 0 \tag{3}$$

We have used η instead of α to keep the notations clear. α is still being used for the solution of the original maximization problem. The dual will be obtained as

$$\gamma \sum_{j} \eta_{j} - \frac{\gamma^{2}}{2} \sum_{i,j} y_{i} y_{j} \eta_{i} \eta_{j} (\vec{x}_{i} \cdot \vec{x}_{j})$$

Originally, the dual was

$$\sum_{j} \alpha_{j} - \frac{1}{2} \sum_{i,j} y_{i} y_{j} \alpha_{i} \alpha_{j} (\vec{x}_{i} \cdot \vec{x}_{j})$$

Therefore, we obtain

$$\eta_i = \frac{\alpha_i}{\gamma} \tag{4}$$

Substituting in equation 2, we obtain

$$\vec{w} = \gamma \sum_{j} \alpha_{j} y_{j} \vec{x}_{j} \tag{5}$$

Now, b is given by

$$b = -y_i(y_i(\vec{x}_i \cdot \vec{w}) - \gamma) = -\gamma y_i(y_i(\vec{x}_i \cdot \sum_j \alpha_j y_j \vec{x}_j) - 1))$$
(6)

Hence we note that if the original equation of the hyperplane was $\vec{W}.\vec{x}+B=0$, then $\vec{w}=\gamma\vec{W}$ and $b=\gamma B$. Therefore the new equation of the hyperplane is $\gamma\vec{W}.\vec{x}+\gamma B=0$. On dividing by γ on both sides, we get $\vec{W}.\vec{x}+B=0$ which is same as original equation. Thus the solution of the maximum margin hyperplane is unchanged.

2 (4 marks)

Consider the half margin of the maximum-margin SVM defined by ρ , i.e. $\rho = \frac{1}{\|\vec{w}\|}$. Show that ρ is given by

$$\frac{1}{\rho^2} = \sum_i \alpha_i \tag{7}$$

2.1 Solution

$$\|\vec{w}\|^2 = \vec{w}.\vec{w} \tag{8}$$

$$= \sum_{j} \alpha_{j} y_{j} \vec{w} \cdot \vec{x}_{j} \tag{9}$$

 α_j will be non-zero only when \vec{x}_j is a support vector. Therefore, in equation 9,

$$y_j \vec{w}_j \cdot \vec{x}_j = 1 - b y_j \tag{10}$$

$$\implies \|\vec{w}\|^2 = \sum_j \alpha_j - \sum_j \alpha_j(by_j) \tag{11}$$

Using second KKT condition

$$\|\vec{w}\|^2 = \sum_j \alpha_j \tag{12}$$

$$\implies \frac{1}{\rho^2} = \sum_i \alpha_i \tag{13}$$

3 (5 marks)

Let k_1 and k_2 be valid kernel functions. Comment about the validity of the following kernel functions.

- (a) $k(\vec{x}, \vec{z}) = k_1(\vec{x}, \vec{z}) + k_2(\vec{x}, \vec{z})$
- (b) $k(\vec{x}, \vec{z}) = k_1(\vec{x}, \vec{z})k_2(\vec{x}, \vec{z})$
- (c) $k(\vec{x}, \vec{z}) = h(k_1(\vec{x}, \vec{z}))$ where h is a polynomial function with positive coefficients.
- (d) $exp(k_1(\vec{x}, \vec{z}))$

(e)
$$exp(\frac{-\|\vec{x} - \vec{z}\|^2}{\sigma^2})$$

3.1 Solution

(a) The kernel $k(\vec{x}, \vec{z}) = k_1(\vec{x}, \vec{z}) + k_2(\vec{x}, \vec{z})$ is a valid kernel. Since $k_1(\vec{x}, \vec{z})$ and $k_2(\vec{x}, \vec{z})$ are valid kernels, Mercer's condition holds for them, i.e. for all square integrable functions $f(\vec{x})$,

$$\int \int K_1(\vec{x}, \vec{z}) f(\vec{x}) f(\vec{z}) dx dy \ge 0 \tag{14}$$

$$\int \int K_2(\vec{x}, \vec{z}) f(\vec{x}) f(\vec{z}) dx dy \ge 0 \tag{15}$$

Using equations 14 and 15, we can say

$$\int \int (K_1(\vec{x}, \vec{z}) + k_2(\vec{x}, \vec{z})) f(\vec{x}) f(\vec{z}) dx dy \ge 0$$

$$\tag{16}$$

$$\implies \int \int K(\vec{x}, \vec{z}) f(\vec{x}) f(\vec{z}) dx dy \ge 0 \tag{17}$$

Therefore the given kernel satisfies Mercer's condition. Thus it is a valid kernel.

(b) The given kernel is a valid kernel. Since $k_1(\vec{x}, \vec{z})$ and $k_2(\vec{x}, \vec{z})$ are valid kernels, there exist some functions $\phi_1(\vec{x})$ and $\phi_2(\vec{x})$ such that

$$k_1(\vec{x}, \vec{z}) = \phi_1(\vec{x}).\phi_1(\vec{z}); \ k_2(\vec{x}, \vec{z}) = \phi_2(\vec{x}).\phi_2(\vec{z})$$
 (18)

$$Let \ \phi_1(\vec{x}) = \begin{pmatrix} a_1(\vec{x}) \\ a_2(\vec{x}) \\ \vdots \\ a_m(\vec{x}) \end{pmatrix}; \ \phi_2(\vec{x}) = \begin{pmatrix} b_1(\vec{x}) \\ b_2(\vec{x}) \\ \vdots \\ b_n(\vec{x}) \end{pmatrix}$$
(19)

$$\implies k_1(\vec{x}, \vec{z}) = \sum_{i=1}^m a_i(\vec{x}) a_i(\vec{z}); \ k_2(\vec{x}, \vec{z}) = \sum_{j=1}^n b_j(\vec{x}) b_j(\vec{z})$$
 (20)

$$\implies k(\vec{x}, \vec{z}) = \left(\sum_{i=1}^{m} a_i(\vec{x}) a_i(\vec{z})\right) \left(\sum_{j=1}^{n} b_j(\vec{x}) b_j(\vec{z})\right) \tag{21}$$

$$\implies k(\vec{x}, \vec{z}) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_i(\vec{x}) a_i(\vec{z}) b_j(\vec{x}) b_j(\vec{z})$$
(22)

$$\implies k(\vec{x}, \vec{z}) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_i(\vec{x}) b_j(\vec{x}) a_i(\vec{z}) b_j(\vec{z})$$
(23)

$$\implies k(\vec{x}, \vec{z}) = \sum_{k=1}^{mn} c_k(\vec{x}) c_k(\vec{z}) \tag{24}$$

where
$$c_k(\vec{x}) = a_p(\vec{x})b_q(\vec{x})$$
 (25)

where
$$p = \left\lceil \frac{k}{n} \right\rceil$$
; $q = k + 1 - \left\lceil \frac{k}{n} \right\rceil$ (26)

Thus the given kernel is a valid kernel

- (c) Note that following the same argument as in option (a), we can conclude that the kernel $k(\vec{x}, \vec{z}) = ak_1(\vec{x}, \vec{z}) + bk_2(\vec{x}, \vec{z})$ is a valid kernel for any a, b > 0. Also, using (b), we can conclude that the kernel $k(\vec{x}, \vec{z}) = k_1^n(\vec{x}, \vec{z})$ is a valid kernel for any $n \in \mathcal{N}$. Using these two conclusions, we can satisfactorily conclude that the kernel $h(k_1(\vec{x}, \vec{z}))$ is a valid kernel.
- (d) The i^{th} co-efficient of the taylor series expansion of e^x is $\frac{1}{i!}$. Thus we observe that $k(\vec{x}, \vec{z}) = e^{k_1(\vec{x}, \vec{z})}$ is nothing but a polynomial in $k_1(\vec{x}, \vec{z})$ with positive co-efficients which extends to infinity. Thus using our result from option (c), we conclude that $e^{k_1(\vec{x}, \vec{z})}$ is a valid kernel.

(e)
$$e^{-\frac{\|\vec{x} - \vec{z}\|^2}{\sigma^2}} = exp\left(-\frac{\|\vec{x}\|^2}{\sigma^2}\right) exp\left(\frac{2\vec{x}.\vec{z}}{\sigma^2}\right) exp\left(-\frac{\|\vec{z}\|^2}{\sigma^2}\right)$$
(27)

We know that $\vec{x}.\vec{z}$ is a valid kernel. $\frac{2}{\sigma^2}$ is greater than 0. Thus using option (c), $\frac{2\vec{x}.\vec{z}}{\sigma^2}$ is a valid kernel. Further, using option (d) $exp\left(\frac{2\vec{x}.\vec{z}}{\sigma^2}\right)$

is a valid kernel. Thus for some $\phi(\vec{x})$, we can write

$$exp\left(\frac{2\vec{x}.\vec{z}}{\sigma^2}\right) = \phi(\vec{x}).\phi(\vec{z}) \tag{28}$$

Substituting this in 27, we get

$$e^{-\frac{\|\vec{x} - \vec{z}\|^2}{\sigma^2}} = exp\left(-\frac{\|\vec{x}\|^2}{\sigma^2}\right)\phi(\vec{x}).\phi(\vec{z})exp\left(-\frac{\|\vec{z}\|^2}{\sigma^2}\right)$$
(29)

We define $\Phi(\vec{x}) = \exp\left(-\frac{\|\vec{x}\|^2}{\sigma^2}\right)\phi(\vec{x})$. Using this, we can write

$$e^{-\frac{\|\vec{x} - \vec{z}\|^2}{\sigma^2}} = \Phi(\vec{x}) \cdot \Phi(\vec{z})$$
 (30)

Thus $e^{-\frac{\|\vec{x} - \vec{z}\|^2}{\sigma^2}}$ is a valid kernel.

4 (10 marks)

4.1 Solution

- (a) Testing Accuracy = 0.9811, Number of support vectors = 36
- (b) For first 50 records, Testing Accuracy = 0.9741, Number of support vectors = 5

 - For first 200 records, Testing Accuracy = 0.9811, Number of support vectors = 12
- (c) False
 - False
 - True
 - True
- (d) For C = 0.01, Training error = 0.0045, Testing error = 0.0165
 - For C = 1, Training error = 0.0032, Testing error = 0.0189
 - For C = 100, Training error = 0.0013, Testing error = 0.04
 - For C = 10000, Training error = 0, Testing error = 0.3656
 - For C = 1000000, Training error = 0, Testing error = 0.3774

5 (7 marks)

5.1 Solution

- (a) For linear kernel, Training error = 0.0, Testing error = 0.0240, Number of support vectors = 1084
- (b) • For rbf kernel, Training error = 0.0, Testing error = 0.5 , Number of support vectors = 6000
 - \bullet For polynomial kernel, Training error = 0.0, Testing error = 0.0210, Number of support vectors = 1755