DARTMOUTH COLLEGE DEPARTMENT OF MATHEMATICS

Math 75 Cryptography

Spring 2022

Problem Set # 5 (upload to Canvas by Friday, May 6, 10:10 am EDT)

Problems:

1. Let $k \geq 2$ and $A = (\mathbb{Z}/2\mathbb{Z})^k$. Let $\vec{0}, \vec{1} \in A$ be the vectors of all zeros and all ones, respectively. Define the map $g: A \to A$ by

$$g(y) = \begin{cases} \vec{0} & y \neq \vec{0} \\ \vec{1} & y = \vec{0} \end{cases}$$

Then define

$$s,G:A\times A\to A\times A$$

$$s(x,y)=(y,x)$$

$$G(x,y)=(x+g(y),y)$$

- (a) Prove that s^2 and G^2 are the identity on $A \times A$. [We actually proved this in lecture, so just make sure you understand it here.]
- (b) Prove that $(sG)^4 = sgsgsgsg$ moves only 3 elements of $A \times A$, i.e.

$$\#\{(x,y) \in A \times A : (sG)^4(x,y) \neq (x,y)\} = 3.$$

- (c) Prove that $(sG)^{12}$ is the identity.
- 2. Encrypt the message 001100001010 using two rounds of SDES and (9 bit) key 111000101, as explained in lecture. Show all your steps! [Hint: After one round, the output is 001010010011.]
- **3.** In the Rijndael field $F = \mathbb{F}_2[X]/(X^8 + X^4 + X^3 + X + 1)$, where bytes are associated to polynomials modulo $X^8 + X^4 + X^3 + X + 1$, compute the product $01010010 \cdot 10010010 \in F$.
- 4. Here you will prove something that was claimed in lecture!
 - (a) Find all monic irreducible polynomials of degree ≤ 4 in $\mathbb{F}_2[X]$.
 - (b) Verify that the Rijndael polynomial

$$f(X) = X^8 + X^4 + X^3 + X + 1$$

is irreducible in $\mathbb{F}_2[X]$. [Hint: Any factor must have degree at most 4.]

5. Put $f(X) = X^8 + X^4 + X^3 + X + 1 \in \mathbb{F}_2[X]$, and let

$$a = 00001100 = X^3 + X^2 \in F = \mathbb{F}_2[X]/(f).$$

(a) Compute a^5 .

- (b) Find the inverse $b^{-1} \in F$ of $b = X^2 = 00000100$.
- (c) Compute the product $b^{-1}a$ and verify that $b^{-1}a=X+1$ in F.