

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Search for the rare electroweak decay $B^+ o K^+ \nu \bar{\nu}$ in the early Belle II dataset

[2104.12624]

Cyrille Praz, on behalf of the Belle II collaboration

Phenomenology Symposium — 2021.05.26, Pittsburgh

Belle II talks at PHENO 2021

- Christoph Schwanda, Beauty physics from Belle II, [link].
- Soumen Halder, Results and Prospects of Radiative and Electroweak Penguin Decays at Belle (II), [link].
- Güney Polat, Tau physics prospects at Belle II, [link].
- Katharina Dort, Dark-sector physics at Belle II, [link].
- Sebastiano Raiz, Charmless B decays at Belle II, [link].
- Chiara La Licata, *The re-discovery of the decays for the CP violation measurements*, [link].
- Cyrille Praz, Search for the rare electroweak decay $B^+ \to K^+ \nu \bar{\nu}$ in the early Belle II dataset, [link].

Outline

- Theoretical motivation
- The Belle II experiment
- lacksquare Search for $B^+ o K^+
 uar
 u$ decays
 - Introduction
 - Binary classification
 - Signal-strength extraction
- Conclusion and outlook

Branching fraction in the Standard Model

• $B^+ \to K^+ \nu \bar{\nu}$ is suppressed in the SM and has never been observed.

• BR($B^+ \to K^+ \nu \overline{\nu}$)_{SM} = $(4.6 \pm 0.5) \times 10^{-6}$

- [1606.00916].
- 10% theoretical uncertainty mainly from $B \to K$ form factors.
- $B \to K$ form factors from [1409.4557] used for signal simulation.

Beyond the Standard Model

- Since ν_e , ν_μ and ν_τ contribute, $B^+ \to K^+ \nu \bar{\nu}$ is sensitive to potential lepton flavour universality violation.
- Complementary probe of BSM physics scenarios proposed to explain anomalies observed in $b \to s \ell^+ \ell^-$ transitions [2005.03734].
- Multiple models beyond the SM constrained by ${\rm BR}(B^+ \to K^+ \nu \overline{\nu})$:
 - La La company de Los
 - dark matter particles [1911.03490].
 - leptoquarks [1806.05689].
 - axions [2002.04623].
 - ...

Outline

- Theoretical motivation
- 2 The Belle II experiment
- 3 Search for $B^+ \to K^+ \nu \bar{\nu}$ decays
 - Introduction
 - Binary classification
 - Signal-strength extraction
- 4 Conclusion and outlook

The SuperKEKB accelerator

- \bullet e^+e^- collider in Tsukuba, Japan.
- $\sqrt{s} = 10.6 \,\text{GeV} = \text{m}(\Upsilon(4S)).$
- BR($\Upsilon(4S) \rightarrow B\overline{B}$) > 96%.
- World highest instant. luminosity.
 - $L = 2.96 \times 10^{34} \, \text{cm}^{-2} \text{s}^{-1}$ achieved in May 2021.

Cyrille Praz

The Belle II detector

- Pixel Detector (PXD).
- Silicon Vertex Detector (SVD).
- Central Drift Chamber (CDC).
- Calorimeter (ECL).
- Aerogel Ring-Imaging Cherenkov (ARICH).
- Time-Of-Propagation (TOP) counter.
- K_I^0 and μ detection (KLM).

Outline

- Theoretical motivation
- 2 The Belle II experiment
- ullet Search for $B^+ o K^+
 uar
 u$ decays
 - Introduction
 - Binary classification
 - Signal-strength extraction
- 4 Conclusion and outlook

Data samples used for this analysis

- 63 fb⁻¹ collected at $\sqrt{s} = m(\Upsilon(4S))$ ("on-resonance").
- 9 fb⁻¹ collected at $\sqrt{s} = m(\Upsilon(4S)) 60 \,\mathrm{MeV}$ ("off-resonance").

Signal and background after high-level trigger

- Signal.
 - $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B^+(\rightarrow K^+\nu\overline{\nu})B^-$.
- Background.
 - ullet Generic B-meson decays: $e^+e^- o \Upsilon(4S) o B^+B^-$ or $B^0\overline{B}{}^0$.
 - Continuum events: $e^+e^- \to q\bar{q}$ or $\tau^+\tau^-$ (q=u,d,s,c quarks).

B-meson tagging

- Previous searches used tagged approaches, where the second B-meson is reconstructed...
 - ...in a hadronic decay: $\varepsilon_{\rm sig} = \mathcal{O}(0.04\%)$ [1303.7465 (Babar)].
 - ...in a semileptonic decay: $\varepsilon_{\mathrm{sig}} = \mathcal{O}(0.2\%)$ [1702.03224 (Belle)].

- In the following, an inclusive tagging approach is used.
 - No explicit reconstruction of the second *B*-meson.
 - Exploitation of the distinctive topological features of $B^+ \to K^+ \nu \bar{\nu}$.

Signal kaon candidate selection

- Highest- p_T track in event as K^+ candidate.
 - Correct candidate in 80% of the cases.
 - PID requirement to suppress pion background.

Outline

- Theoretical motivation
- 2 The Belle II experiment
- f 3 Search for $B^+ o K^+
 uar
 u$ decays
 - Introduction
 - Binary classification
 - Signal-strength extraction
- 4) Conclusion and outlook

Features

- Boosted decision trees (BDT) [1609.06119] trained with 51 features.
 - Event topology (Fox-Wolfram moments, sphericity, ...).
 - Rest-of-event (ROE) variables.
 - Missing energy, momentum.
 - Vertex separation.

αā

Binary classifiers in series

- Train BDT₁ on $\mathcal{O}(10^7)$ simulated events.
- Train BDT $_2$ on $\mathcal{O}(10^7)$ simulated events with BDT $_1>0.9$.
- $\max(S/\sqrt{S+B})$ reached around BDT₂ > 0.95.

Validation channel: $B^+ \to K^+ J/\psi (\to \mu^+ \mu^-)$

- To check the data-simulation agreement, $B^+ \to K^+ J/\psi (\to \mu^+ \mu^-)$ decays are selected.
 - Muons are removed from the reconstruction to mimic the signal.
 - Kaon 3-momentum is sampled from simulated signal events.

Outline

- Theoretical motivation
- 2 The Belle II experiment
- lacksquare Search for $B^+ o K^+
 uar
 u$ decays
 - Introduction
 - Binary classification
 - Signal-strength extraction
- 4 Conclusion and outlook

Statistical model

- Binned likelihood defined in the BDT₂ $\times p_T(K^+) \times \sqrt{s}$ space.
- $4 \times 3 \times 2 = 24$ bins.
 - $\bullet \ \mathsf{BDT}_2 \in [0.93,\, 0.95,\, 0.97,\, 0.99,\, 1.00].$
 - $p_{\rm T}(K^+) \in [0.5, 2.0, 2.4, 3.5] \, {\rm GeV}/c$.
 - $\sqrt{s} \in {\text{m}(\Upsilon(4S)), \text{m}(\Upsilon(4S)) 60 \text{ MeV}/c^2}$.

 $B^+ \rightarrow K^+ \nu \bar{\nu}$ at Belle II [2104.12624]

Statistical model

- Likelihood function = product of Poisson probability density functions combining the information from the 24 bins.
 - Templates for the yields of the signal and background derived from simulation.
 - Implementation in the pyhf package, maximum-likelihood fit using scipy.
- Fit parameters:
 - Signal strength μ (factor w.r.t. SM expectation for signal yield).
 - Nuisance parameters to include the systematic uncertainties via event-count modifiers.
 - Main systematic source: background yield normalisation.

Fit to data

• Maximum-likelihood fit to 24 bins of the BDT $_2 imes p_{\mathrm{T}}(K^+) imes \sqrt{s}$ space.

On-resonance.

Off-resonance.

Result

- $\mu = 4.2^{+3.4}_{-3.2} = 4.2^{+2.9}_{-2.8} (\text{stat})^{+1.8}_{-1.6} (\text{syst}).$
- $\bullet \ \mathrm{BR}(B^+ \to K^+ \nu \bar{\nu}) = \left[1.9^{+1.6}_{-1.5}\right] \times 10^{-5} = \left[1.9^{+1.3}_{-1.3}(\mathrm{stat})^{+0.8}_{-0.7}(\mathrm{syst})\right] \times 10^{-5}.$

• Total uncertainty on μ : profile likelihood scan, fitting the model with fixed values of μ while keeping the other fit parameters free.

Conclusion and outlook

- Search for $B^+ \to K^+ \nu \bar{\nu}$ decays with an inclusive tagging approach was performed at Belle II with $(63+9)\,\mathrm{fb}^{-1}$ of data.
- BR($B^+ \to K^+ \nu \bar{\nu}$) = $\left[1.9^{+1.6}_{-1.5} \right] \times 10^{-5} \ \ (< 4.1 \times 10^{-5} \ \ @ 90\% \ \text{C.L.}).$
- Pre-print available [2104.12624], submitted for publication.
- Next iteration of the analysis will include:
 - More data.
 - More channels $(B^0 \to K^{*0} \nu \overline{\nu}, B^0 \to K^0_S \nu \overline{\nu}, ...)$.
 - More classifiers (neural networks).

Thank you for your attention!

Signal kaon candidate selection and event pre-selection

- Basic track cleanup:
 - $p_T > 0.1 \,\text{GeV}/c$, $\theta \in \text{CDC}$, $|dr| < 0.5 \,\text{cm}$, $|dz| < 3.0 \,\text{cm}$.
- Highest- p_T clean track in event as K^+ candidate.
 - Correct candidate in 80% of the cases.
 - # PXD hits \geq 1.
 - PID requirement to suppress pion background.
- Loose preselection:

Cyrille Praz

- $4 \le N_{\text{tracks}} \le 10$.
- $0.3 < \theta(\mathbf{p_{miss}}) < 2.8 \,\mathrm{rad}$.
- $E_{\text{visible}} > 4 \,\text{GeV}$.

Signal efficiency at $BDT_2 > 0.95$

- At BDT₂ > 0.95, the signal efficiency is 12.5% for $q^2 \approx 0$ and drops to zero for $q^2 > 16 \, {\rm GeV}^2/c^4$.
 - Sensitive to potential light dark matter candidates.

Background composition at $BDT_2 > 0.93$

• At BDT₂ > 0.93, *D*-mesons contribute a lot to the remaining background from *B*-meson decays.

Fit validation

- Toys generated for the simulated data set.
 - Poisson statistical fluctuations.
 - Gaussian systematic fluctuations.
- Signal injection study, $\mu_{sig} \in \{1, 5, 20\}$.

Data-model compatibility.

Limit setting

 Expected and observed upper limits on the branching fraction are determined using the CLs method.

