МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Московский Государственный Университет им. М.В.Ломоносова

Факультет вычислительной математики и кибернетики

Кафедра системного анализа

Магистерская программа по направлению

Математические модели сложных систем: теория, алгоритмы, приложения

Магистерская диссертация на тему

Построение множества достижимости для гибридной системы с одним переключением с неопределенностью

Выполнил:

Селиверстов Д.С.

Научный руководитель:

к.ф-м.н. Точилин П.А.

Файл annotation.tex:

Аннотация

Данная магистерская диссертация посвящена решению одной из классических задач теории управления для нового класса сложных, нелинейных систем. А именно, решается задача построения множества достижимости для гибридной системы с одним переключением, с неопределенностью в дифференциальных уравнениях. В работе рассмотрена модель гибридной динамической системы, состоящая из двух систем линейных обыкновенных дифференциальных уравнений и условия переключения между ними. Задача состоит в построении и аппроксимации множества всех траекторий этой гибридной системы в конечный момент времени, в которые гарантированно можно попасть, выбрав соответствующее управление, вне зависимости от реализации помехи.

В диссертации получено решение поставленной задачи с привлечением аппарата выпуклого анализа, при помощи сопряженных функций и функций цены минимаксного типа. Множество достижимости представлено в виде объединения множеств уровня (множеств Лебега) для специальных функций. Рассмотрено решение задачи методами многозначного анализа. Этот подход позволяет явно построить искомое множество достижимости посредством операций над выпуклыми, компактными множествами. В работе 20 страниц, 2 иллюстраций.

Содержание

1.	Вве	дение.	3		
2.	. Постановка задачи				
3. Теоретическая часть					
	3.1	Функция цены	5		
		Рассматриваемые примеры			
		3.2.1 Пример 1	12		
		3.2.2 Пример 2	12		
	3.3	Пример \mathbb{R}^2	14		
	3.4	Пример $1a, \mathbb{R}^1$	15		
		3.4.1 Вычисляем первое множество, до переключения	15		
		3.4.2 Множество $\{\tau, \mathcal{X}_H[\tau]\}$	16		
		3.4.3 Множество достижимости для второй системы			
	Фай	άπ intro tex:			

1. Введение.

В данной работе рассматривается математическая модель гибридной системы, состоящей из двух систем обыкновенных дифференциальных уравнений с управляющими параметрами и помехами, а также из условия замены одной системы на другую. Траектория такой системы развивается в каждый момент времени в силу одной из двух систем дифференциальных уравнений. При достижении определенной гиперплоскости в фазовом пространстве происходит обязательная смена активной системы уравнений — так называемое переключение траектории гибридной системы [3]. Рассматриваемые системы обыкновенных дифференциальных уравнений являются линейными по фазовым переменных, а также по управляющим параметрам и помехам. Однако, в целом система нелинейна. Похожие модели гибридных систем активно исследуются в последние годы (см. например, [6], [11], [10]), для них актуальны многие классические задачи управления, такие как задачи достижимости, верификации, синтеза управления в условиях реально доступной информации и др. Особенно важны задачи, в которых учитываются неопределенности, помехи, которые могут быть связаны как с ошибками математического моделирования, так и с заранее неизвестными воздействиями на систему.

В данной работе для гибридной системы решается задача построения множества достижимости "минимаксного типа" в классе программных управлений. То есть необходимо построить множество всех позиций системы, в которые можно попасть за счет применения программных управлений, несмотря на наличие в системе заранее неизвестных помех. Для действующих в системе помех известны лишь по-точечные ограничения. Решение данной задачи можно рассматривать как первый шаг к построению теории достижимости при неопределенности для гибридных систем с кусочно-линейной структурой в классах программных или позиционных управлений.

Поскольку рассматриваемые дифференциальные уравнения линейны по фазовым переменным, управляениям и помехам, то для решения поставленной задачи целесообразно использовать аппарат сопряженных функций и другие методы выпуклого анализа [4], [5]. Кроме того, для аппроксимации множеств достижимости возможно использование методов эллипсоидального исчисления [9], [8]. В данной работе рассматриваеся два подхода к решению задачи достижимости: 1) при помощи функций цены и методов выпуклого анализа, а также 2) при помощи методов многозначного анализа. В первом случае множества достижимости представлены

в виде множеств уровней (множеств Лебега) для специальных функций, а во втором методе указанные множества построены в явном виде, за счет применения операций с выпуклыми компактами.

Файл postanovka.tex:

2. Постановка задачи

Рассматриваются две взаимосвязанные системы линейных обыкновенных дифференциальных уравнений, описывающих состояние некоторой модели до переключения (смены системы дифференциальных уравнений) и после:

где $\mathcal{P}^{(1,2)}[t_0,t_1], \mathcal{V}^{(1,2)}[t_0,t_1]$ - кусочно-непрерывные эллипсоидальнозначные отображения. В неизвестный заранее момент времени τ , при пересечении наперед известной гиперплоскости $H=\{x\in\mathbb{R}^n\colon \langle x,c\rangle=\gamma\}$, происходит переключение с первой системы на вторую. $v^{(i)}(t)$ - неизвестная функция, неопределенность, область значений которой в каждый момент t ограничена k-мерной эллипсоидальной областью $\mathcal{V}^{(i)}(t)$, и принадлежащая классу интегрируемых функций $L_1[t_0,t_1]$. Управление $(u^{(1)}(\cdot),u^{(2)}(\cdot))$ - интегрируемые в $L_1[t_0,t_2]$ функции, ограниченые в каждый момент t эллипсоидальными областями $u^{(1)}(t)\in\mathcal{P}^{(1)}(t),u^{(2)}(t)\in\mathcal{P}^{(1)}(t)$ Оно выбирается из класса программных управлений то есть так, что оно определяется к начальному моменту t_0 заранее и уже не изменяется в зависимости от поведения системы в дальнейшем, оно также не зависит от времени переключения τ . Для решения задачи важно, чтобы траектория гибридной системы удовлетворяла условию односторонней проницаемости, то есть чтобы при переходе через плоскость H в момент τ всегда выполнялось

$$\begin{cases} \langle x(\tau), c \rangle - \gamma = 0 \\ \langle x(\tau + \epsilon), c \rangle - \gamma > 0; \end{cases}$$
 (2.2)

для любого малого $\epsilon > 0$. Это предположение будем считать выполненным как для первой системы $x(t) = x^{(1)}(t)$, так и для второй $x(t) = x^{(2)}(t)$, где $x^{(1)}(t), x^{(t)}(t)$ – фазовые переменные (траектории) системы соответственно до переключения и после. Это означает, что траектория системы может пересекать гиперплоскость переключения только один раз с переходом к другой системе, что также гарантирует связность множеста $\{(x(\tau),\tau) \mid x(\tau)\cap H\}$. Требуется построить множество достижимости $\mathcal{X}[t,t_0]$ в классе допустимых управлений $\mathcal{P}[t_0,t_1]$, в момент времени $t>t_0$, при известном начальном множестве \mathcal{X}_0 . Таким образом, необходимо найти множество точек $\mathcal{X}[t,t_0,\mathcal{X}_0]=\{x(t)\}$, в которые система может гарантированно

прийти из начального множества \mathcal{X}^0 за счет выбора соответствующего управления $(u^{(1)}(\cdot), u^{(2)}(\cdot))$ вне зависимости от помехи $(v^{(1)}(\cdot), v^{(2)}(\cdot))$.

Определение 1. Множеством достижимости $\mathcal{X}[t_1, t_0, \mathcal{X}_0]$ системы линейных дифференциальных уравнений в момент t_1 называется

$$\mathcal{X}[t_1, t_0, \mathcal{X}_0] = \{x_1 \mid \exists u(\cdot) : \forall v(\cdot), \exists x_0 \in \mathcal{X}_0 : x(t_1, t_0, x_0) = x_1\},\$$

где $x(\cdot,t,x)$ – траектория системы при фиксированных $u(\cdot),v(\cdot)$ и начальном условии x(t)=x. \mathcal{X}_0 – начальное множество в момент времени t_0 .

Определение 2. Множеством достижимости $\mathcal{X}[t_1, t_0, \mathcal{X}_0]$ для гибридной системы (2.1) называется

$$\mathcal{X}[t_{1}, t_{0}, \mathcal{X}_{0}] = \{x_{1} \mid \exists u^{(1)}(\cdot) \in \mathcal{P}^{(1)}, u^{(2)}(\cdot) \in \mathcal{P}^{(2)} : \\ \forall v^{(1)}(\cdot) \in \mathcal{V}^{(1)}, v^{(2)}(\cdot) \in \mathcal{V}^{(2)} : \exists x_{0} \in \mathcal{X}_{0} : \\ x(t_{1}, t_{0}, x_{0}) = x_{1}, \exists \tau : x(\tau, t_{0}, x_{0}) \cap H \neq \emptyset, t_{1} \geq \tau > t_{0} \},$$

где $x(\tau,t,x_0)$ — траектория гибридной системы при фиксированном управлении $u^{(1,2)}$ и помехе $v^{(1,2)}$.

Файл teoriya.tex:

3. Теоретическая часть

Поиск множества достижимости непосредственным расчетом каждой траектории ведет к большим вычислительным издержкам. Поэтому разумно прибегнуть к различным методам, которые позволили бы воспользоваться свойствами данной модели, такими как линейность системы уравнений и выпуклость множеств ограничений и начального множества, что позволит сократить количество вычислений с помощью параметризации множеств с помощью вычисления конечномерных функций. Например, можно использовать множества уровней некоторой специальной функции, и по ним однозначно вычислять искомое множество. Другой подход основывается на применении приемов многзначного анализа. Так, если известна опорная функция к выпуклому компактному множеству, то по этой функции можно восстановить все множество. Рассмотрим сначала первый подход.

3.1 Функция цены

Мы будем искать множество достижимости с использованием функции цены, значениями которой будет расстояние выбранной точки x(t) от искомого множества $\mathcal{X}[t,t_0,\mathcal{X}_0]$. Согласно (Опр.2.) нам необходимо найти наиболее подходящее управление, которое позволит сократить до мининмума это расстояние при любой возможной реализации помехи. Для этого используется минимаксный подход, описанный в [2].

Для поиска множества $\mathcal{X}[t,t_0]$ используется функция цены вида

$$V(t, x) = \min_{u(\cdot)} \max_{v(\cdot)} d^{2}(x_{0}, \mathcal{X}_{0}) \mid_{x(t)=x}$$

где $d(x_0, \mathcal{X}_0)$ - расстояние между точкой x_0 и множеством \mathcal{X}_0 , определяемое метрикой $d(x, \mathcal{X}) = \min_{y \in \mathcal{X}} \|x - y\|$. Поясним наш выбор. Мы ищем множество $\mathcal{X}[t, \mathcal{X}_0]$ всех таких точек, что для $\forall x^*(t) \in \mathcal{X}[t, \mathcal{X}_0]$ можно заранее подобрать некоторое управление $u^*(\cdot)$ и некоторое подмножество $\{x^*(t_0)\} \in \mathcal{X}_0$ так, чтобы при любой помехе $v(\cdot)$ гарантировать вхождение $x^*(t) \in \{x(t, u^*(\cdot), \{x^*(t_0)\})\}_{\forall v(\cdot)}$. В рассматриваемой здесь задаче кроме помехи

 $v(\cdot)$ появляется другой неизвестный параметр $\tau(u,v)$ – момент переключения, в который меняется динамика системы, что приводит к существенному усложениню задачи.

Рассмотрим функцию $\phi(x) = d^2(x, \mathcal{X})$,где \mathcal{X} – выпуклый компакт. Тогда $\phi(x)$) – выпуклая, собственная, замкнутая, и тогда операция двойного сопряжения приводит к тождественному результату [4]. Поэтому удобно выразить V(x,t) через двойное сопряжение функции расстояния $d^2(x,\mathcal{X}_0)$, что позволит заменить вычисление минимума на множестве в функции расстояния на вычисление максимума функции по n-мерному аргументу.

$$\phi^*(\ell^*) = \sup_{x} (\langle x, \ell^* \rangle - d^2(x, \mathcal{X}_0)) = \rho(\ell^* \mid \mathcal{X}_0) + \frac{\|\ell^*\|^2}{4},$$
$$\phi^{**}(\ell^{**}) = \sup_{\ell^*} \left(\langle \ell^*, \ell^{**} \rangle - \rho(\ell^* \mid \mathcal{X}_0) - \frac{\|\ell^*\|^2}{4} \right)$$

Поскольку $\phi(\ell)$ – замкнутая функция, sup достигается и его можно заменить на max , тогда

$$V(t,x) = \min_{u(\cdot)} \max_{v(\cdot)} \max_{\ell} \left(\langle \ell, x_0 \mid_x \rangle - \rho \left(\ell \mid \mathcal{X}_0 \right) - \frac{\|\ell^*\|^2}{4} \right). \tag{3.1}$$

Найдем выражения для поиска $x_0\mid_{x(t_1)=x}$. Пусть траектория точки в момент t_1 известна $x(t_1)=x$. Идя в обратном времени, найдем её значение в момент $\tau\leqslant t\leqslant t_1$ при известных B(s),C(s),u(s),v(s) до переключения:

$$x^{(2)}(t,x,u,v) = G_2(t,t_1)x + \int\limits_{t_1}^t G_2(t,s) \left[B_2(s)u_2(s) + C_2(s)v_2(s)\right] ds, \text{при } \tau \leqslant t \leqslant t_1,$$

и после для $t_0 \leqslant t \leqslant \tau$:

$$x^{(2,1)}(t,\tau,x,u,v) = G_1(t,\tau)G_2(\tau,t_1)x + G_1(t,\tau)\int_{t_1}^{\tau} G_2(t,s) \left[B_2(s)u_2(s) + C_2(s)v_2(s)\right] ds +$$

$$+ \int_{\tau}^{t_0} G_1(t,s) \left[B_1(s)u_1(s) + C_1(s)v_1(s)\right] ds , \text{ при } t_0 \leqslant t \leqslant \tau.$$

$$(3.2)$$

Нам необходимо, чтобы момент τ в этих выражениях удовлетворял условию на переключение, так чтобы $\langle x(\tau),c\rangle=\gamma$. Поскольку $d^2(x,\mathcal{X})\geqslant 0$, то $V(x,t)\geqslant 0$. Тогда если $\mathcal{X}[t,t_0]=\{x\mid V(t,x)\leqslant 0\}, \forall$ то достаточно ввести штрафующий член $(\langle x(\tau),c\rangle-\gamma)^2$ в выражение для V(t,x), тем самым обеспечивая для $\mathcal{X}[t,t_0]$ включение только тех траекторий, которые удовлетворяют нашим двум системам и условию на момент переключения.

Так как мы рассматриваем задачу в классе программных управлений, мы не можем строить управление в зависимости от текущего состояния системы, а должны определять его заранее. Поэтому, в формуле для V(t,x) нельзя искать отдельно $\min_{u^{(i)}} \max_{v^{(i)}}$ для каждой из подсистем "до" и "после", так как момент переключения τ не известен заранее. Это означает, что выбираемое управление не может меняться в зависимости от τ .

$$V(t,x) = \min_{u_1 \in \mathcal{P}^1} \max_{v_1 \in \mathcal{V}^1} \min_{\tau} \left\{ d^2(x_0|_{x(t)=x}, \mathcal{X}_0) + (\langle x(\tau), c \rangle - \gamma)^2 \right\}.$$

$$u_2 \in \mathcal{P}^2 \ v_2 \in \mathcal{V}^2$$

Это значит, что искомое множество $\mathcal{X}[t,\mathcal{X}_0]$ в классе программных управлений содержит только те траектории, которые при любой допустимой помехе $v_1(\cdot), v_2(\cdot)$ и при любом

 $\tau(v,\cdot)$ гарантированно могут попасть на множество $\mathcal{X}[t,\mathcal{X}_0]$ Пока примем $\gamma=0$. Для линеаризации условия на переключение сделаем подстановку

$$\langle x, c \rangle^2 \equiv \max_{\mu} \left\{ \mu \left\langle x, c \right\rangle - \frac{\mu^2}{4} \right\},$$

u, используя (3.1), имеем

$$V(t,x) = \min_{u_1,u_2} \max_{v_1,v_2} \min_{\tau} \left\{ \max_{\ell} \max_{\mu} \left\{ \left\langle \ell, x_0 \mid_{x(t)=x} \right\rangle + \mu \left\langle x(\tau), c \right\rangle - \frac{\mu^2}{4} - \rho(\ell \mid \mathcal{X}_0) - \frac{\|\ell\|^2}{4} \right\} \right\}.$$

Раскрывая (3.2), получим

$$V(t,x) = \min_{u_1,u_2} \max_{v_1,v_2} \min_{\tau \in [t_0,t]} \max_{\mu} \max_{\mu} \left\{ \langle \ell, G_1(t_0,\tau) G_2(\tau,t) x \rangle + \int_t^{\tau} \langle \ell, G_1(t_0,\tau) G_2(\tau,s) \left[B_2(s) u_2(s) + C_2(s) v_2(s) \right] \rangle \right. ds + \\ + \int_{\tau}^{t_0} \langle \ell, G_1(t_0,s) \left[B_1(s) u_1(s) + C_1(s) v_1(s) \right] \rangle \right. ds + \mu \left. \langle c, G_2(\tau,t) x \rangle + \\ + \mu \int_t^{\tau} \langle c, G_2(\tau,s) \left[B_2(s) u_2(s) + C_2(s) v_2(s) \right] \rangle \right. ds - \\ - \frac{\mu^2}{4} - \rho(\ell \mid \mathcal{X}_0) - \frac{\|\ell\|^2}{4} \right\}$$

Сгруппируем слагаемые

$$\tilde{S}(\tau, t) = G_2^T(\tau, t)G_1^T(t_0, \tau)\ell + \mu G_2^T(\tau, t)c,$$

$$\tilde{S}_1(t_0, \tau) = G_1^T(t_0, \tau)\ell,$$

имеем

$$V(t,x) = \min_{u_1,u_2} \max_{v_1,v_2} \min_{\tau \in [t_0,t]} \max_{\ell} \max_{\mu} \{$$

$$\tilde{S}^T(\tau,t)x + \int_t^{\tau} \tilde{S}^T(\tau,s) \left[B_2(s)u_2(s) + C_2(s)v_2(s) \right] ds +$$

$$+ \int_t^{t_0} \tilde{S}_1^T(t_0,s) \left[B_1(s)u_1(s) + C_1(s)v_1(s) \right] ds -$$

$$-\frac{\mu^2}{4} - \rho(\ell \mid \mathcal{X}_0) - \frac{\|\ell\|^2}{4} \}$$

$$(3.3)$$

Чтобы эффективно вычислять множества достижимости используется прием, который позволяет заменить поиск множества допустимых траекторий вычислением опорной функции к этому множетсву. Для перехода к опорным функциям требуется менять местами порядок минимумов и максимумов в (3.3), а для этого необходимо выполнение условий теоремы минимакса. Поэтому дальнейшие преобразования выполняются с целью обеспечения этих условий. Одним из достаточных условий перестановки является линейность по минимизирующему или максимизирующему параметру. Наша цель состоим в том, чтобы перенести операции минимума по u_1, u_2 и максимума по v_1, v_2 внутрь выражения функции цены, тем самым сводя минимизацию/максимизацию на функциональном пространстве \mathcal{P}, \mathcal{V} к поиску экстремумов

для выпуклых (вогнутых) функций. Первыми меняются местами $\max_{v_1,v_2} \min_{\tau}(\cdot) = \min_{\tau} \max_{v_1,v_2}(\cdot)$. Для примера, сначала рассмотрим функционал

$$T(\tau, v(s)) = \int_{t}^{\tau} v(s)ds$$

Легко видеть, что $T(\tau, v(s))$, являясь линейным по v, не является таковым по τ . Тогда вместо τ возьмем функцию ограниченной вариации $\tau(w) = \phi(w)$ и преобразуем

$$T(\phi(w), v(s)) = \int_{t_0}^t d\phi(w) \int_t^w v(s) ds.$$

Мы заменили множество τ более широким множеством функций $\phi(w)$. Условием нормировки для этих функций служит следующее выражение

$$\int_{t_0}^t d\phi(w) = 1.$$

Теперь функционал $T(\phi, v)$ является линейным по всем аргументам. Аналогично поступим с V(t, x):

$$V(t,x) = \min_{u_1,u_2} \max_{v_1,v_2} \min_{\phi(w)} \max_{\ell(w)} \max_{\mu(w)} \int_{t_0}^t d\phi(w) \Big\{$$

$$\tilde{S}^T(w,t)x + \int_t^w \tilde{S}^T(w,s) \left[B_2(s)u_2(s) + C_2(s)v_2(s) \right] ds +$$

$$+ \int_w^{t_0} \tilde{S}_1^T(t_0,s) \left[B_1(s)u_1(s) + C_1(s)v_1(s) \right] ds -$$

$$- \frac{\mu^2}{4} - \rho(\ell \mid \mathcal{X}_0) - \frac{\|\ell\|^2}{4} \Big\},$$

Поскольку мы здесь воспользовались перестановкой

$$\int \max_{\ell,\mu} f(w,\ell,\mu) d\phi(w) = \max_{\ell(w),\mu(w)} \int f(w,\ell(w),\mu(w)) d\phi(w)$$

 ℓ, μ теперь функции от $w, \ell = \ell(w)$ и $\mu = \mu(w)$.

Утверждение 1.

$$\max_{x(\cdot)} \int_{t_0}^t f(x(s))ds = \int_{t_0}^t \max_{x(s)} f(x(s))ds$$

Пусть

$$x^*(\cdot) = \arg\max_{x(\cdot)} \int_{t_0}^t f(x(s))ds$$

$$x^{\circ}(\cdot): \int_{t_0}^t f(x^{\circ}(s)) = \int_{t_0}^t \max_{x(s)} f(x(s)) ds.$$

Предположим, что $x^*(\cdot) \neq x^\circ(\cdot)$ и $\int\limits_{t_0}^t f(x^*(s))ds \neq \int\limits_{t_0}^t f(x^\circ(s))ds$.

Тогда для выражения $m(s) = f(x^*(s)) - f(x^\circ(s))$ можно указать непересекающиеся отрезки $T_<, T_>, T_=,$ на которых выполняются неравенства

$$\forall s \in T_{<}: m(s) < 0, \ \forall s \in T_{>}: m(s) > 0, \ \forall s \in T_{=}: m(s) = 0.$$

Для $T_{>}$ получаем, что

$$\forall s \in T_{>} : f(x^{*}(s)) > f(x^{\circ}(s)) = \max_{x(s)} f(x(s))$$

– противоречие.

Для $T_{<}$ получаем, что

$$\max_{x(\cdot)} \int_{T_{\leftarrow}} f(x(s))ds = \int_{T_{\leftarrow}} f(x^{*}(s))ds < \int_{T_{\leftarrow}} f(x^{\circ}(s))ds$$

– противоречие.

Остается единственный вариант, который и доказывает утверждение.

Можно заметить, что от w зависят только переменные \tilde{S}, \tilde{S}_1 и пределы интегрирования. Поменяем порядок интегрирования, чтобы собрать вместе члены, зависящие от w. Применяя правила замены

$$\int_{t_0}^t d\phi(w) \int_t^w ds(\cdot) = \int_t^{t_0} ds \int_{t_0}^s d\phi(w)(\cdot),$$

$$\int_t^t d\phi(w) \int_{t_0}^{t_0} ds(\cdot) = \int_t^{t_0} ds \int_s^t d\phi(w)(\cdot),$$

и делая замену переменных

$$S(t_0, t_1) = \int_{t_0}^{t_1} \tilde{S}(w, t_1) d\phi(w) = \int_{t_0}^{t_1} \left\{ G_2^T(w, t) G_1^T(t_0, w) \ell(w) + \mu(w) G_2^T(w, t) c \right\} d\phi(w),$$

$$S_1(t_0, t_1) = \int_{t_0}^{t_1} \tilde{S}_1(t_0, w) d\phi(w), = \int_{t_0}^{t_1} \left\{ G_1^T(t_0, w) \ell(w) \right\} d\phi(w),$$

$$K(\ell, \mu, \mathcal{X}_0) = \int_{t_0}^{t} \left[\frac{\mu(w)^2}{4} + \rho(\ell(w) \mid \mathcal{X}_0) + \frac{\|\ell(w)\|^2}{4} \right] d\phi(w)$$

придем к

$$V(t,x) = \min_{u_1,u_2} \max_{v_1,v_2} \min_{\phi(w)} \max_{\ell(w)} \max_{\mu(w)} \left\{ S^T(t_0,t)x + \int_t^{t_0} S^T(t_0,s) \left[B_2(s)u_2(s) + C_2(s)v_2(s) \right] ds + \int_t^{t_0} S_1^T(s,t) \left[B_1(s)u_1(s) + C_1(s)v_1(s) \right] ds - \left[-K(\ell,\mu,\mathcal{X}_0) \right] \right\},$$

$$(3.4)$$

где $K(\ell,\mu,\mathcal{X}_0)$ – выпуклая функция.

Будем искать опорную функцию к множеству достижимости $\mathcal{X}[t,\mathcal{X}_0]$, определяемому по найденному выше выражению (3.4) для V(t,x). Пользуясь линейностью по ϕ , теперь можно переставить

$$\max_{v_1,v_2} \min_{\phi} \max_{\ell} \max_{\mu} (\cdot) = \min_{\phi} \max_{\ell} \max_{\mu} \max_{v_1,v_2} (\cdot),$$

И

$$\max_{v(\cdot)} \int_{t}^{t_0} f(v(s))ds = \max_{v(\cdot)} \int_{t_0}^{t} -f(v(s))ds = \int_{t_0}^{t} \max_{v(s)} [-f(v(s))]ds$$

тогда

$$V(t,x) = \min_{u_1,u_2} \min_{\phi} \max_{\ell} \max_{\mu} \left\{ S^T(t_0, s) B_2(s) u_2(s) ds + \int_{t_0}^t \rho(-S^T(t_0, s) \mid C_2(s) \mathcal{V}_2(s)) ds + \int_{t}^{t_0} S_1^T(s, t) B_1(s) u_1(s) + \int_{t_0}^t \rho(-S_1^T(s, t) \mid C_1(s) \mathcal{V}_1) ds - -K(\ell, \mu, \mathcal{X}_0) \right\}.$$

Далее, мы хотим поменять $\min_{u_1,u_2}(\cdot)$ на опорную функцию, но полученное выше выражение уже не является вогнутым по ℓ,μ . Поэтому, мы прибегаем к овыпуклению нужных членов и приходим к

$$V(t,x) = \min_{\phi} \max_{\mu} \max_{\mu} \left\{ S^{T}(t_{0},t)x - \int_{t_{0}}^{t} \rho(S_{1}(s,t) \mid B_{1}(s)\mathcal{P}_{1}(s)) ds - \int_{t_{0}}^{t} \rho(S(t_{0},s) \mid B_{2}(s)\mathcal{P}_{2}(s)) ds - \int_{t_{0}}^{t} \rho(-S_{1}(s,t) \mid C_{1}(s)\mathcal{V}_{1}(s)) ds - \int_{t_{0}}^{t} \rho(-S(t_{0},s) \mid C_{2}(s)\mathcal{V}_{2}(s)) ds + K(\ell,\mu,\mathcal{X}_{0}) \right\} \right\}.$$

Файл prim2p.tex:

Утверждение 2.

$$\operatorname{conv}_{x(\cdot)} \int_{t_0}^t f(x(t))dt = \int_{t_0}^t \operatorname{conv}_{x(t)} f(x(t))dt$$

Примем

$$conv(f) = f^{**}$$

Тогда

$$\left(\int_{t_0}^t f(x(s))ds\right)^* (\ell(t)) = \max_{x(\cdot)} \left(\langle \ell, x \rangle_{L_2} - \int_{t_0}^t f(x(s))ds\right)$$

$$\left(\int_{t_0}^t f(x(t))dt\right)^{**} (y(t)) = \max_{\ell(\cdot)} \left(\langle y, \ell \rangle_{L_2} - \max_{x(\cdot)} \left(\langle \ell, x \rangle_{L_2} - \int_{t_0}^t f(x(s))ds\right)\right) =$$

$$= \max_{\ell(\cdot)} \min_{x(\cdot)} \left(\langle y, \ell \rangle_{L_2} - \langle \ell, x \rangle_{L_2} + \int_{t_0}^t f(x(s))ds\right) =$$

$$= \max_{\ell(\cdot)} \min_{x(\cdot)} \int_{t_0}^t \left[\langle y(s), \ell(s) \rangle - \langle \ell(s), x(s) \rangle + f(x(s))\right] ds =$$

$$= \int_{t_0}^t \max_{\ell(s)} \min_{x(s)} \left[\langle y(s), \ell(s) \rangle - \langle \ell(s), x(s) \rangle + f(x(s))\right] ds =$$

$$= \int_{t_0}^t \max_{\ell(s)} \left[\langle y(s), \ell(s) \rangle - \max_{x(s)} \left\{\langle \ell(s), x(s) \rangle - f(x(s))\right\}\right] ds =$$

$$= \int_{t_0}^t f^{**}(s) ds$$

Утверждение 3.

$$\min_{\ell} \left[\langle x, \ell \rangle + (\operatorname{conv}(y))(\ell) \right] = \min_{\ell} \left[\langle x, \ell \rangle + y(\ell) \right]$$

$$\min_{\ell} \left[\langle x, \ell \rangle + \max_{p} (\langle p, \ell \rangle - \max_{s} (\langle p, s \rangle - y(s))) \right] =$$

$$= \min_{\ell} \max_{p} \min_{s} \left[\langle x, \ell \rangle + \langle l, p \rangle - \langle p, s \rangle + y(s) \right] = \left\{ \min_{\ell} \max_{p} \max_{p} \min_{p} \right\} =$$

$$= \max_{p} \min_{s} \min_{s} \left[\langle \ell, x + p \rangle - \langle p, s \rangle + y(s) \right] = \max_{p} \left[\left\{ \begin{array}{c} -\inf_{\ell}, \ p \neq -x \\ 0, \ p = -x \end{array} \right. + \min_{s} \left(-\langle p, s \rangle + y(s) \right) \right] =$$

$$= \left\{ \text{из первого min находим} \quad p = -x \right\} = \min_{s} \left(-\langle -x, s \rangle + y(s) \right) =$$

$$= \min_{\ell} \left(\langle x, \ell \rangle + y(\ell) \right)$$

3.2 Рассматриваемые примеры

3.2.1 Пример 1

$$\begin{cases}
\dot{x} = 2u + v; \\
\dot{x} = u; \\
u \in [0, 1]; \\
v \in [0, 1]; \\
\mathcal{X}_0 = \{x \in [-2, -1]\}; \\
t \in [0, 4]; \\
H = \{x = 0\}.
\end{cases}$$
(3.5)

3.2.2 Пример 2

Начальные условия для (3.5) и (3.6) одинаковы. Функция цены для задач (3.5) и (3.6).

$$V(t,x) = \min_{u} \max_{v} \max_{\tau} \max_{\ell} \max_{\mu} \left\{ \left\langle \ell, x_0 \mid_{x(t)=x} \right\rangle - \rho(\ell \mid \mathcal{X}_0) - \frac{\|\ell\|^2}{4} + \mu \left\langle x(\tau), c \right\rangle - \frac{\mu^2}{4} \right\}.$$

В одномерном случае, если рассматривать отрезок $[\alpha,\beta]$ как эллипсоид $\mathcal{E}(q,Q)$, то $q=\frac{\beta+\alpha}{2},\ Q=\left(\frac{\beta-\alpha}{2}\right)^2$. Тогда

$$\rho\left(\ell\mid\mathcal{E}(()q,Q)\right) = \langle\ell,q\rangle + \langle\ell,Q\ell\rangle^{\frac{1}{2}} = \ell\cdot q + \mid\ell\mid\sqrt{Q}.$$

Поскольку в уравнениях примеров (3.5) и (3.6) фундаментальные матрицы $G(t,t_0)\equiv I,$ c=1, то можно написать

$$\begin{split} V(t,x) &= \min_{u} \max_{v} \min_{\tau} \max_{\mu} \max_{\mu} \Big\{ \ell \cdot x + \int_{t}^{\tau} \ell \cdot [B_{2}u_{2} + v_{2}]ds + \int_{\tau}^{t_{0}} \ell \cdot [B_{1}u_{1} + v_{1}]ds - \\ &- (\ell \cdot x_{0} + |\ell| \sqrt{X_{0}}) - \frac{\ell^{2}}{4} + \mu \big[x + \int_{t}^{\tau} [B_{2}u_{2} + v_{2}]ds \big] - \frac{\mu^{2}}{4} \big\}. \end{split}$$

Здесь $\mathcal{X}_0 = \mathcal{E}(x_0, X_0)$, для (3.5) $v_2 \equiv 0$, для (3.6) $v_1 \equiv 0$. Если сократить, то получим для (3.5):

$$V(t,x) = \min_{u} \max_{v} \min_{\tau} \max_{\mu} \max_{\mu} \left\{ (\ell + \mu)x + \int_{t}^{\tau} (\ell + \mu)B_{2}u_{2}ds + \int_{\tau}^{t_{0}} \ell B_{1}u_{1}ds + \int_{\tau}^{t_{0}} \ell v_{1}ds - (\ell \cdot x_{0} + |\ell| \sqrt{X_{0}}) - \frac{\ell^{2}}{4} - \frac{\mu^{2}}{4} \right\}.$$

Для (3.6)

$$V(t,x) = \min_{u} \max_{v} \min_{\tau} \max_{\mu} \max_{\mu} \left\{ (\ell + \mu)x + \int_{t}^{\tau} (\ell + \mu)B_{2}u_{2}ds + \int_{t}^{\tau} (\ell + \mu)v_{2}ds + \int_{\tau}^{t_{0}} \ell B_{1}u_{1}ds - (\ell \cdot x_{0} + |\ell| \sqrt{X_{0}}) - \frac{\ell^{2}}{4} - \frac{\mu^{2}}{4} \right\}.$$

Эти выражения не являются выпуклыми по τ , чтобы можно было переставлять $\max_v \min_{\tau}$. Поэтому прибегаем к функции распределения $\phi(w)$. $\phi(w)$ – функция ограниченной вариации.

$$\int_{t_0}^t d\phi(w) = 1.$$

Обозначим

$$S_2(t_0, s) = \int_{t_0}^{s} \ell(w) + \mu(w) d\phi(w)$$
$$S_1(s, t) = \int_{t_0}^{t} \ell(w) d\phi(w)$$

Тогда приходим к найденному ранее выражению (3.1). Используя формулу вычисления опорной функции для множеств из \mathbb{R}^1 запишем

$$V(t,x) = \min_{\phi} \max_{\ell} \max_{\mu} \left\{ S_2(t_0,t)x - \int_{t_0}^t S_1(s,t)p_1 + |S_1(s,t)| \sqrt{P_1}ds - \int_{t_0}^t S_2(t_0,s)p_2 + |S_2(t_0,s)| \sqrt{P_2}ds - \cos\left\{ \int_{t_0}^t w_1S_1(s,t) - \sqrt{W_1} |S_1(s,t)| + w_2S_2(t_0,s) - \sqrt{W_2} |S_2(t_0,s)| ds + \int_{t_0}^t \frac{\ell^2(w)}{4} + \frac{\mu^2(w)}{4} + \ell(w)x_0 + |\ell(w)| \sqrt{X_0} d\phi(w) \right\} \right\}.$$

3.3 Пример \mathbb{R}^2

Заданы системы дифференциальных уравнений, описывающих состояние некоторой модели до переключения и после:

$$\begin{cases} \begin{cases} \dot{x}_{1}^{(1)} = x_{2}^{(1)} + v^{(1)}(t); \\ \dot{x}_{2}^{(1)} = u^{(1)}(t); \\ x(t_{0}) \in \mathcal{X}_{0} = \{x \in \mathbb{R}^{2} : (x_{1} - 2)^{2} + (x_{2} - 1)^{2} \leqslant 1\}; \end{cases} \\ \begin{cases} \dot{x}_{1}^{(2)} = x_{2}^{(2)} + v^{(2)}(t); \\ \dot{x}_{2}^{(2)} = -\gamma x_{1} - \mu x_{2} + u^{(2)}(t); \\ x(\tau) \in \mathcal{X}^{(1)}[\tau, t_{0}] \cap \mathcal{H}, \tau \leqslant t \leqslant t_{1}; \end{cases} \end{cases}$$

$$\mathcal{H} = \{x \in \mathbb{R}^{2} : x_{1} = 0\} - \text{гиперплоскость};$$

$$u^{(1)} = u^{(2)} = u(\cdot) \in [-\alpha_{1}, \alpha_{2}] = \mathcal{P}[t_{0}, t_{1}];$$

$$v^{(1)} = v^{(2)} = v(\cdot) \in [-\beta_{1}, \beta_{2}] \in \mathcal{W}[t_{0}, t_{1}];$$

$$\gamma, \mu, \alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} > 0 - \text{ некоторые константы};$$

$$\tau - \text{момент переключения, при пересечении гиперплоскости.} \end{cases}$$

Множества $C_1\mathcal{W}_1$ и $C_2\mathcal{W}_2$ принимают вид $\begin{pmatrix} v \\ 0 \end{pmatrix}, v \in [\tilde{\beta_1}, \tilde{\beta_2}] = \mathrm{Comp}(\mathbb{R}^1)$, тогда для некоторого $\tilde{\ell} \in \mathbb{R}^2$

$$\rho(\tilde{\ell}, \begin{pmatrix} v \\ 0 \end{pmatrix}) = \sup_{v \in C_1 \mathcal{W}_1(s)} (\tilde{\ell}_1 v) = \tilde{\ell}_1 \cdot \begin{cases} \tilde{\beta}_1, \ \tilde{\ell}_1 < 0 \\ \tilde{\beta}_2, \ \tilde{\ell}_1 > 0 \end{cases}$$

(Здесь пока не применены результаты для вычисления conv в \mathbb{R}^n , оставлено что есть)

И тогда интегралы от опорных функций вычисляются как

$$\int_{t_0}^{t} \rho(-S_1(s,t) \mid C_1 \mathcal{W}_1(s)) \, ds = -\tilde{\beta}_1^{(1)} \int_{T_>^{(1)}} S_1(t_0,s)_1 \, ds - \tilde{\beta}_2^{(1)} \int_{T_<^{(1)}} S_1(t_0,s)_1 \, ds,$$

$$\int_{t_0}^{t} \rho(-S(t_0,s) \mid C_2 \mathcal{W}_2(s)) \, ds = -\tilde{\beta}_1^{(2)} \int_{T_>^{(2)}} S(t_0,s)_1 \, ds - \tilde{\beta}_2^{(2)} \int_{T_<^{(2)}} S(t_0,s)_1 \, ds,$$

где $T_<^{(1)}, T_<^{(2)}$ – промежутки времени, на которых $S_1(s,t)_1 < 0$, $S(t_0,s)_1 < 0$ соответственно; $T_>^{(1)}, T_>^{(2)}$ – промежутки, где $S_1(s,t)_1 > 0$, $S(t_0,s)_1 > 0$ соответственно. Концы этих отрезков находятся из уравнений

$$S_1(s,t)_1 = \int_s^t \phi(w) \left\{ G_1^T(t_0, w)\ell(w) \right\}_1 dw = 0;$$

$$S(t_0, s)_1 = \int_{t_0}^s \phi(w) \left\{ G_1^T(t_0, w)G_2^T(w, t)\ell(w) + \mu(w)G_2^T(w, t)c \right\}_1 dw = 0,$$

где $t_0 < s < t$. Также из условий задачи $\tilde{\beta_1}^{(2)} = \tilde{\beta_1}^{(1)} = \beta_1$ и $\tilde{\beta_2}^{(1)} = \tilde{\beta_2}^{(2)} = \beta_2$.

Для $s \in [t_0, t]$ множества $B_1 \mathcal{P}_1$ и $B_2 \mathcal{P}_2$ имеют вид $\begin{pmatrix} 0 \\ u \end{pmatrix}$, где $u(s) \in \mathcal{R}^1$ принадлежит первому либо второму семейству управлений. Тогда аналогично

$$\int_{t_0}^{t} \rho\left(S_1(s,t) \mid B_1 \mathcal{P}_1\right) ds = \int_{t_0}^{t} S_1(s,t)_2 \cdot \begin{cases} \alpha_1, S_1(s,t)_2 < 0, \\ \alpha_2, S_1(s,t)_2 > 0 \end{cases} ds =$$

$$= \alpha_1 \int_{T_{<}^{(1)}} S_1(s,t)_2 ds + \alpha_2 \int_{T_{>}^{(1)}} S_1(s,t)_2 ds$$

$$\int_{t_0}^{t} \rho\left(S(t_0,s) \mid B_2 \mathcal{P}_2\right) ds = \int_{t_0}^{t} S(t_0,s)_2 \cdot \begin{cases} \alpha_1, S(t_0,s)_2 < 0, \\ \alpha_2, S(t_0,s)_2 > 0 \end{cases} ds =$$

$$= \alpha_1 \int_{T_{<}^{(2)}} S(t_0,s)_2 ds + \alpha_2 \int_{T_{>}^{(2)}} S(t_0,s)_2 ds,$$

где α_1,α_2 — ограничения на управление, $\alpha_1\leqslant u(s)\leqslant \alpha_2,\,T_<^{(1)},T_<^{(2)}$ — множества отрезков времени, где $S_1(s,t)_2<0,S(t_0,s)_2<0;\,T_>^{(1)},T_>^{(2)}$ — множество отрезков времени, где $S_1(s,t)_2>0,S(t_0,s)_2>0$.

Файл primer1a.tex:

3.4 Пример $1a, \mathbb{R}^1$

$$\begin{cases}
\dot{x} = u + v; \\
\dot{x} = u; \\
u(t) \in [p_1, p_2] = \mathcal{P}; \\
v(t) \in [q_1, q_2] = \mathcal{Q}; \\
\mathcal{X}_0 = [a_1, a_2], a_1 < a_2; \\
t \in [t_0, t_1]; \\
H = \{x = c\}.
\end{cases} (3.8)$$

3.4.1 Вычисляем первое множество, до переключения

Вычислим множество достижимости \mathcal{X}_1 первого уравнения (системы) (3.8) Для \mathcal{X}_1 имеем:

$$\mathcal{X}[t_1] = \left(\mathcal{X}_0 \dot{-} \int_{t_1}^{t_0} \mathcal{Q}(s) ds\right) + \int_{t_0}^{t_1} \mathcal{P}(s) ds$$

Пусть

$$\tilde{p_1} = \int_{t_0}^{t_1} p_1(s)ds; \quad \tilde{p_2} = \int_{t_0}^{t_1} p_2(s)ds;$$

$$\tilde{q_1} = \int_{t_0}^{t_0} q_2(s)ds; \quad \tilde{q_2} = \int_{t_0}^{t_0} q_1(s)ds;$$

$$\mathcal{Q}(\tau_1, \tau_2) = \int_{\tau_1}^{\tau_2} \mathcal{Q}(s) ds$$

$$\mathcal{P}(au_1, au_2) = \int\limits_{ au_1}^{ au_2} \mathcal{P}(s) ds$$

Тогда $\mathcal{P}(t_0,t_1)=[\tilde{p_1},\tilde{p_2}],\ \mathcal{Q}(t_1,t_0)=[\tilde{q_1},\tilde{q_2}]$ Для множества $C=\left(\mathcal{X}_0\dot{-}\mathcal{Q}(t_1,t_0)\right)$ имеем выражение

$$\rho\left(\ell \mid C\right) = \operatorname{conv}\left[\rho\left(\ell \mid \mathcal{X}_{0}\right) - \rho\left(\ell \mid \mathcal{Q}(t_{1}, t_{0})\right)\right](\ell)$$

Геометрическую разность можно еще выразить как

$$A \dot{-} B = \bigcap_{\forall b \in B} (A - b)$$

Множество $C=\mathcal{X}_0\dot{-}\mathcal{Q}(t_1,t_0)$, где $\mathcal{Q}(t_1,t_0)=[\tilde{q}_1,\tilde{q}_2]$, находится как $C=[a_1-\tilde{q}_1,a_2-\tilde{q}_2]$, при условии, что $a_2-a_1\geq \tilde{q}_2-\tilde{q}_1$. Тогда

$$\mathcal{X}[t_1] = [a_1 - \tilde{q}_1 + \tilde{p}_1, a_2 - \tilde{q}_2 + \tilde{p}_2], \forall t_1 : a_2 - a_1 \ge \tilde{q}_2 - \tilde{q}_1$$

Вычислим тоже самое через опорные функции.

$$\rho\left(\ell \mid \mathcal{X}[t_1]\right) = \rho\left(\ell \mid \mathcal{X}_0 \dot{-} \mathcal{Q}(t_1, t_0)\right) + \rho\left(\ell \mid \mathcal{P}(t_0, t_1)\right) \tag{3.9}$$

$$\rho\left(\ell \mid \mathcal{Q}(t_1, t_0)\right) = \rho\left(\ell \mid \int_{t_1}^{t_0} \mathcal{Q}(s) ds\right) = \begin{cases} \ell \tilde{q}_2 = \int_{t_1}^{t_0} \ell q_1(s) ds, \ \ell \ge 0 \\ \ell \tilde{q}_1 = \int_{t_1}^{t_0} \ell q_2(s) ds, \ \ell < 0 \\ t_1 > t_0, \ q_1(s) \le q_2(s), \forall s \end{cases}$$

Здесь всегда выполнено $\tilde{q}_1(t_0) \leq \tilde{q}_2(t_0)$.

Для \mathbb{R}^1 имеем: $\mathcal{X}_1 = [b_1, b_2], \ \mathcal{X}_0 = [a_1, a_2], \ \mathcal{P}(s) = [p_1(s), p_2(s)], \ \mathcal{Q} = [q_1(s), q_2(s), V(\tau) = [\tilde{q}_1(\tau), \tilde{q}_2].$

Выражение (3.9) преобразуется к

$$\ell = 1 : b_2 = a_2 - \tilde{q}_2(t_0) + \tilde{p}_2(t_1)$$

$$\ell = -1 : -b_1 = -a_1 + \tilde{q}_1(t_0) - \tilde{p}_1(t_1)$$

И получаем тоже выражение $\mathcal{X}_1 = [b_1(t_1), b_2(t_2)] = [a_1 - \tilde{q}_1(t_0) + \tilde{p}_1(t_1), a_2 - \tilde{q}_2(t_0) + \tilde{p}_2(t_1)].$ Здесь $\operatorname{conv}(\rho(\ell \mid \mathcal{X}_0) - \mathcal{Q}(t_1, t_0)) \equiv \rho(\ell \mid \mathcal{X}_0) - \rho(\ell \mid \mathcal{Q}(t_1, t_0)).$

Поскольку \mathcal{X}_1 – гарантированная оценка, то она обладает тем свойством, что не зависит от помехи. Это множество позволяет нам не рассматривать зависимость от помехи v_1 .

3.4.2 Множество $\{ au, \mathcal{X}_H[au]\}$

То, что получаем при пересечении гиперплоскости H:

$$\{(\tau, \mathcal{X}_H)\} = \{(\tau, \mathcal{X}_1[\tau] \cap H) \mid \tau : H \cap \mathcal{X}_1(\tau, t_0, \mathcal{X}_0) \neq \emptyset\}$$

Пусть требуется найти $(A+B)\cap H$. Представим $A=\bigcup\limits_{i\in I}(a^i_\perp+A^i_\parallel)$ и $B=\bigcup\limits_{i\in I}(b_\perp+B^i_\parallel)$, где $a^i_\perp\perp H$, $b^i_\perp\perp H$ и справедливо $(a\in A^i_\parallel,a\in H)\Rightarrow A^i_\parallel\subset H$, аналогочно для B^i_\parallel . Тогда

$$(A+B) \cap H = \bigcup (A^{i}_{||} + B^{j}_{||} + a^{i}_{\perp} + b^{j}_{\perp} \mid \forall i \in I, j(i) \in I : a^{i}_{\perp} + b^{j}_{\perp} \in H)$$

Пусть требуется найти множество $B = \{\xi\}$, такое что $\forall \xi \in B : (\xi + A) \cap H \subset \neq \emptyset$, $\subset X_H$. Выполним разложение $B = \bigcup_{\forall i \in I} (\xi^i = \xi^i_\perp + B^i_\parallel,$ и соответственно для A. Найдем $\xi^i_\perp : (\xi^i_\perp + A^i_\parallel) \cap H \neq \emptyset$. $H = x \mid \langle x, c \rangle = q$. Тогда $d^i = \langle \xi^i_\perp, c \rangle = q - \langle a^i_\perp, c \rangle$ и $\xi^i_\perp = \frac{d^i c}{\langle c, c \rangle}$. Теперь найдем $\{B^j_\parallel\}$, $\{\xi^j_\perp\}, j \in \mathcal{J} \subset I$ для которых выполнено вложение

$$\mathcal{J} = \{ i \in I \mid \exists B_{\parallel}^i \neq \emptyset : \xi_{\perp} + B_{\parallel}^i + A_{\parallel}^i \subseteq X_H \}$$

Поскольку $\xi_{\perp}^i + A_{\parallel}^i \subset H$ по построению всегда выполнено, то фактически $B_{\parallel}^i = X_H \dot{-} (A_{\parallel}^i + \xi_{\perp}^i) = (X_H - \xi_{\perp}^i) \dot{-} A_{\parallel}^i.$

Для \mathbb{R}^1 есть особенность, заключающаяся в том, что $X_H \cap H = H = x_H \in \mathbb{R}^1, X_H \cap H \neq \emptyset$.

$$A \cap H \subset X_H \Leftrightarrow A \cap H = H \Leftrightarrow H \subset A$$

Для $\mathcal{X}_1^{(1)}(\tau) = \{x_\perp\} = [b_1, b_2]$ множество моментов времени пересечения гиперплоскости $\{\tau_H\} = \{\tau \mid H = \{c\}, c \in [b_1(\tau), b_2(\tau)]\}$. Множество $\mathcal{T} = \{\tau_H\}$ - это множество моментов времени не зависящее от помех. В силу условия трансверсальности это множество односвязно.

3.4.3 Множество достижимости для второй системы

Дано начальное множество $\mathcal{X}_0 = \{\tau_H^{\alpha}, \mathcal{X}_H^{\alpha}\}$, для этого множества вычислим $\mathcal{X}_1[t_1]$. Здесь, как и прежде, гарантированная оценка множества достижимости выглядит как

$$\mathcal{X}_1[t_1] = (\mathcal{X}_0 \dot{-} \mathcal{Q}(t_1, \tau)) + \mathcal{P}(\tau, t_1)$$

Надо дописать вычисление для второго множества (есть рукописно) И иллюстрации

Рис. 1. Множество достижимости \mathbb{R}^1 наглядно

Рис. 2. Наглядность трансверсальности, если условие не выполнено

$$\begin{cases} \langle x(\tau), c \rangle - \gamma = 0 \\ \langle x(\tau + \epsilon), c \rangle - \gamma > 0; \forall \epsilon > 0 \end{cases}$$

Рис. 3. Множество достижимости \mathbb{R}^1 полное

Файл bibl.tex:

Список литературы

- [1] Курэсанский А.Б., Варайя П. Задачи динамики и управления в гибридных системах // Труды международного семинара "Теория управления и теория обобщенных решений уравнений Гамильтона-Якоби". Екатеринбург: Изд-во Уральского университета, 2005. с.26–33.
- [2] Курэканский А.Б. Управление и наблюдение в условиях неопределенности. М.: Наука, 1977.
- [3] Курэсанский А.Б., Точилин П.А. Слабо инвариантные множества гибридных систем // Дифференциальные уравнения. 2008. т. 44, N11.
- [4] Пшеничный Б.Н. Выпуклый анализ и экстремальные задачи. М.: Наука, 1980.
- [5] Рокафеллар Р. Выпуклый анализ. М.: Мир, 1973.
- [6] Branicky M.S., Borkar V.S., Mitter S.M. A unified framework for hybrid control: model and optimal control theory. // IEEE transactions on automatic control, 43/1 p.31–45, 1998.
- [7] Kurzhanski A.B., Varaiya P. Ellipsoidal techniques for reachability under state constraints.// SIAM Journal on Control. 2003. V.45. N.4. p.1369–1394.
- [8] Kurzhanski A.B., Varaiya P. Ellipsoidal techniques for reachability analysis. Internal approximation // System and Control Letters. 2000. V.41. p.201–211.
- [9] Kurzhanski A.B., Varaiya P. Ellipsoidal techniques for reachability analysis. Part I: External approximations. Part II: Internal approximations. Box-valued constraints // Optimization methods and software. 2002. V.17. p.177–237.
- [10] Liberzon D. Switching in systems and control. Boston: Birkhäuser, 2003.

[11] Va	n der Schaft A., Schr tes in Control and In	umacher H. An intro formation Sciences.	duction to hybrid d N251. Springer, 200	ynamical systems. Lecti 0.	ure