UK Road Safety Intelligence Dashboard ₩ 2017–2020 Insights for Predictive Policy and Prevention

This advanced analytics project applies clustering, forecasting (SARIMA), association rule mining, and network analysis to uncover key patterns in UK road traffic accidents and recommend data-driven safety interventions.

Q

What's Inside This Project

Time Patterns

Technique: Peak-hour & weekday visuals *Purpose:* Identify high-risk periods for road accidents.

Geographic Clustering

Technique: K-Means, KDE heatmaps *Purpose*: Map local hotspots to prioritize urban safety interventions.

Motorcycle Safety Focus

Technique: Engine size × crash timing analysis *Purpose*: Target high-risk rider groups with tailored interventions.

Severity Rules Mining

Technique: Apriori association rule mining *Purpose:* Trigger context-aware alerts (e.g., snow + darkness).

Forecasting

Technique: SARIMA, ARIMA, Prophet

Purpose: Predict future risks for proactive resource planning.

Social Network Analysis

Technique: SNA using centrality and modularity (Leiden)

Purpose: Identify key influencers and community structures.

Model Performance Evaluation

Technique: RMSE & Interval Coverage metrics *Purpose*: Inform strategic model adoption (e.g., SARIMA for accuracy).

Explore Dashboards

Introduction

Overview

Time Analysis

Safety Patterns

Safety Insights

Forecasting...

Forecasting...

Policy...

Project by Joseph Yusuff | MSc Artificial Intelligence & Data Science | 2025 Built with Python (Jupyter), Power BI, and advanced data mining techniques

inkedIn

UK Road Traffic Overview & Severity Analysis (2017-2020)

396K
Total Accidents

When Do Road Accidents Happen? A Time-Based Analysis

Peak Casualty Hour	Had		f Canadai					
17:00	Heatmap of Casualties by hour + weekday							
Hour of the day	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Total
00:00	1221	1023	1069	1045	1266	1871	2044	9539
01:00	817	734	659	783	818	1355	1560	6726
02:00	635	517	563	589	574	994	1228	5100
03:00	498	473	428	461	544	835	1016	4255
04:00	461	435	477	448	450	750	790	3811
05:00	837	698	815	807	817	770	890	5634
06:00	1792	1921	1763	1856	1712	1245	1148	11437
07:00	4149	4074	4292	4154	3808	2310	2124	24911
08:00	6000	6278	6632	6610	6112	3527	3185	38344
09:00	3982	4234	4086	4239	4136	3350	2857	26884
10:00	3656	3795	3755	3980	4045	4158	3631	27020
11:00	4203	4250	4253	4263	4677	4828	4267	30741
12:00	4890	4689	4665	4722	5222	5542	5167	34897
13:00	5077	4828	4877	4876	5619	5559	5400	36236
14:00	5230	5234	5239	5311	6016	5467	5265	37762
15:00	6880	6659	6932	6893	7753	5964	6058	47139
16:00	7173	7031	7240	7595	7729	6111	5822	48701
17:00	7597	8165	7787	8038	8059	6310	5992	51948
18:00	6072	6420	6288	6694	6712	5669	5025	42880
19:00	4252	4564	4554	4913	5066	4776	4116	32241
20:00	3110	3306	3303	3530	3779	3692	3211	23931
21:00	2516	2617	2670	2743	3135	3059	2640	19380
22:00	2137	2336	2310	2536	2864	2903	2238	17324
23:00	1465	1614	1684	1719	2573	2575	1687	13317
Total	84650	85895	86341	88805	93486	83620	77361	600158

Motorcycle Safety Patterns: Time and Engine Size Insights (2017–2020)

Total Motorcycle Accidents

53K

Rider Demographics and Crash Conditions: Motorcycle Safety Insights

Forecasting Future Collisions: Monthly Risk Projections (2020–2021)

Trends modeled from 2017–2020 data using 12-month seasonal patterns. Forecasts guide proactive safety planning for local districts.

Note: Forecast based on monthly trend patterns from 2017–2020. Seasonality assumes 12-month cycles. Accuracy decreases beyond 6–12 months.

Filter: Local Authority

All

Insight Summary: In the UK, the peak monthly accident count was 9,756, with an average of 8,252 accidents per month from 2017 to 2020.

9756
Peak Monthly Accidents

cidents Monthly Minimum Recorded

4812

8252

Average Monthly Volume (Historic)

Which Forecasting Model Performs Best for Road Safety?

Regional Model Forecast Accuracy Evaluation for 2020 UK Traffic Incidents using RMSE and Coverage – ARIMA vs SARIMA vs Prophet

Note: Forecasts are weekly predictions for 2020 only, based on 2017–2019 data. Accuracy may vary by region.

Strategic Road Safety Policy Recommendations (2020+)

Targeted Actionable Insights from Forecasting, Clustering, and Network Analysis of the UK Road Traffic Study (2017–2020)

TEMPORAL INTERVENTION SECTION

Insight:

Accidents peak at 8:00 AM and 5:00 PM, aligning with rush hours. There is also an unexpected rise in weekend accidents, particularly Sunday evenings.

Recommendation:

- Deploy targeted police patrols and public awareness campaigns during weekday rush hours and Sunday evenings.
- Consider variable signage or speed enforcement for commuter windows.

GEOGRAPHIC CLUSTERS SECTION

Insight:

Cluster analysis (K Means/Q5) revealed dense accident zones in Kingston upon Hull's urban center (e.g., Cluster 0), forming consistent spatial patterns.

Recommendation:

- Allocate funding for road safety upgrades, speed calming, and zoning redesign in high-risk local authority districts.
- Prioritize **Cluster 0** zones for infrastructure audits.

SEVERITY-AWARE RULES SECTION

Insight:

Association rule mining shows that **accident severity increases sharply** in combinations such as: **Darkness + Snow + Evening** → **Serious/Fatal**

Recommendation:

- · Implement real-time contextual warnings on digital signs.
- Trigger dynamic alerts during adverse combinations (e.g., snowy nights).

MOTORCYCLE SAFETY PROFILE

Insight:

Motorcycles with engines >500cc show higher crash risk at peak traffic hours and poor light conditions. Age groups 21–35 dominate rider crashes.

Recommendation:

- Tighten licensing/training for higher-cc bikes.
- · Deploy demographic-specific safety campaigns (e.g., targeted ads to 21–35 age range).
- Improve visibility infrastructure (painted lanes, adaptive lighting).

EVIDENCE-BASED MODEL CHOICE

Insight:

SARIMA yielded **best overall performance** in both RMSE and interval coverage across 3 regions. Prophet was less reliable in metro areas (e.g., London).

Recommendation:

- Adopt SARIMA as the preferred forecasting model for national road safety systems.
- · Continue monitoring emerging models, but prioritize reliability over novelty.

FORECASTING & LOGISTICS PLANNING

Insight:

SARIMA models accurately forecast weekly road accidents per region, with over 90% interval coverage. Weekly forecast trends aligned with actuals in Greater Manchester, West Yorkshire, and London.

Recommendation:

- Integrate SARIMA forecasts into emergency services planning.
- Use weekly accident projections to optimize:
- Ambulance deployment
- Traffic officer shifts
- Emergency response unit readiness

Data-Driven Safety Policy Summary

Use clustering to **localize interventions**, forecasting to **plan response**, and severity rule mining to **prevent high-impact crashes**.