https://warp.ndl.go.jp/info:ndljp/pid/259094/www.math.sci.kobe-u.ac.jp/home-j/index9-4.html

0.1 H6 数学必修

$$\left\{ \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix} \right\}$$
 \mathcal{C} \mathcal{S} \mathcal{S} .

$$(2)$$
 \mathbb{R}^3 の基底として, $\left\{ \begin{pmatrix} -1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix} \right\}$ を選ぶと, F の表現行列は $\begin{pmatrix} -1 & 0 & 0\\0 & 2 & 0\\0 & 0 & 2 \end{pmatrix}$ となる.

(3) 異なる固有値の固有空間のベクトルは直交するから,
$$\left\{v_1=\begin{pmatrix}1\\1\\0\end{pmatrix},v_2=\begin{pmatrix}1\\0\\1\end{pmatrix}\right\}$$
 を直交化する.

$$v_2'=v_2-rac{(v_2,v_1)}{|v_1|}rac{v_1}{|v_1|}=rac{1}{2}egin{pmatrix}1\\-1\\2\end{pmatrix}$$
は v_1 と直交する固有ベクトルである.正規化すると求める基底は

$$\left\{\frac{1}{\sqrt{3}}\begin{pmatrix} -1\\1\\1\\1\end{pmatrix}, \frac{1}{\sqrt{2}}\begin{pmatrix} 1\\1\\0\end{pmatrix}, \frac{1}{\sqrt{6}}\begin{pmatrix} 1\\-1\\2\end{pmatrix}\right\}$$
 ావరి.

$$\boxed{2} (1) \frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \alpha x (x^2 + y^2 + z^2)^{\frac{\alpha}{2} - 1} = \alpha (x^2 + y^2 + z^2)^{\frac{\alpha}{2} - 1} + \alpha (\alpha - 2) x^2 (x^2 + y^2 + z^2)^{\frac{\alpha}{2} - 2}$$

(2) 存在しないと仮定する. ある $\varepsilon>0,R>0$ が存在して、 $^\forall x>R,xf'(x)>\varepsilon$ である. $f(x)-f(R)=\int_R^x f'(t)dt>\int_R^x \frac{\varepsilon}{t}dt=\varepsilon\log\frac{x}{R}\to\infty\quad (x\to\infty)$ となり矛盾.

 $\boxed{3}$ (1) $ab=ba\Leftrightarrow aba^{-1}b^{-1}=e\Leftrightarrow abab=e\Leftrightarrow (ab)^2=e$ 一番右の式は成立するから、G はアーベル群である.

(2) $a\in G, h\in H$ を任意に取る. $H\ni (ah)^2=ahah=aha^{-1}h^{-1}$ より、 $aha^{-1}\in H$ である. よって H は G の正規部分群

 $[a] \in G/H$ に対して $[a]^2 = [a^2] = H$ であるから、(1) より G/H はアーベル群である.

 $\boxed{4}$ (1) $d(x,y) \geq 0, d(x,y) = 0 \Leftrightarrow x = y, d(x,y) = d(y,x)$ は明らかである. $x,y,z \in \mathbb{R}^n$ に対して、 $|x_i-z_i| \leq |x_i-y_i| + |y_i-z_i|$ より $d(x,z) = \max_{1 \leq i \leq n} |x_i-z_i| \leq \max_{1 \leq i \leq n} (|x_i-y_i| + |y_i-z_i|) < d(x,y) + d(y,z)$ よって d は三角不等式を満たす.

 $(2) \ d(x,y) \leq \delta \ \text{ta S任意の} \ x,y \in \mathbb{R}^n \ \text{に対して}, \ d(p,x) - d(p,y) \leq d(p,y) + d(y,x) - d(p,y) = d(y,x) \leq \delta \ \text{である}.$ ある. x,y を入れ替えても同様にして $d(p,y) - d(p,x) \leq \delta$ であるから, $|d(p,x) - d(p,y)| \leq \delta$ である.

すなわち任意の ε に対して $\delta=\varepsilon$ と定めれば, $d(x,y)\leq \delta$ ならば $|f(x)-f(y)|\leq \varepsilon$ より f は連続.

 $(3)\ a\in A\ に対して\ d(a,y)\leq d(a,x)+d(x,y)\ \text{である}.\ a\in A\ についての下限をとれば\ g(y)=\inf_{a\in A}d(a,y)\leq \inf_{a\in A}d(a,x)+d(x,y)=g(x)+d(x,y)\ \text{を得る}.\ \ \text{これは}\ x,y\ \text{を入れ替えても成り立つから},\ |g(x)-g(y)|\leq d(x,y)\ \text{である}.$

したがって任意の ε に対して $\delta=\varepsilon$ と定めれば, $d(x,y)\leq \delta$ ならば $|g(x)-g(y)|\leq \varepsilon$ より g は連続.