THE UNIVERSITY OF MELBOURNE SCHOOL OF COMPUTING AND INFORMATION SYSTEMS

MID-SEMESTER TEST SAMPLE COMP10002 FOUNDATIONS OF ALGORITHMS

Total marks for this Exam: 10

Reading Time: 5 minutes Writing Time: 40 minutes

This exam has 4 pages.

Identical Examination Papers: None Common Content Papers: None

Authorised Materials:

Writing materials, e.g., pens, pencils, are allowed. Books, calculators, and dictionaries are not allowed.

Instructions to Students:

- Attempt all questions.
- Clearly write your answers. Any unreadable answer will be considered wrong.

1. [3 marks] Consider the following program execution:
mac:./starTriangle
Enter an integer: 5
*
** ***

mac:
This program reads an integer n, and then prints a triangle with n rows of '*' characters. Complete the following program to implement the above process. You can declare more variables if necessary.
/* Program to print a '*' triangle */ #include <stdio.h> #include <stdlib.h></stdlib.h></stdio.h>
#IIIClude \Stalib.ii>
int
main(int argc, char **argv) {
int n;
return 0;
}

For example, the call count_factors(15) should return 4 (factors of 15 being 1, 3, 5, 15). You may assume n > 0.

3.	[3 marks] The algorithms:	he following	functions	describe	the	computation	behavior	of a	number	of
	(a) $f_1(n) = 3n$	- 2								

(b)
$$f_2(n) = n - 4logn + 5$$

(c) $f_3(n) = f_1(n) + f_2(n)$
(d) $f_4(n) = f_1(n) - f_2(n)$
(e) $f_5(n) = f_1(n) \times f_2(n)$
(f) $f_6(n) = f_1(n) / f_2(n)$

Using the "big-Oh" notation, what is the *best description* of the asymptotic growth rate of each of the functions $f_1()$ to $f_6()$?

(a)		
(b)		
(c)		
(d)		
(e)		
(f)		

End of sample exam