$$X(t) = A\cos(\omega t + \phi)$$

MON , APPLYING INMAY CONDITIONS ..

1)
$$x(t=0) = 4\cos(\phi) = 5.5 \times 10^{-2} \text{m}$$

THE VOLOTHY IS GHON ST ...

$$\chi(t=0) = -\omega A sin \phi = +0.45 m/s$$

NOW DIVIDING THE SECOND BY THE FLET YIEDDS ..

$$\frac{+0.45m/s}{5.5\times10^{-2}M} = \frac{-\omega A sn \phi}{A \cos \phi} = -\omega t an \phi = 8.185^{-1}$$

$$4 = ton \left(\frac{8.18 \, s^{-1}}{-9.15 \, RAD/s}\right) = -41.8° = -0.729 \, ray$$

PURGRING 1795 BACK INTO THE FAST IN MAY CONDITION YIELDS ..

$$A = \frac{5.5 \times 10^{-2} M}{\cos(-41.8^{\circ})} = 7.4 \times 10^{-2} M$$

50, 12 5mmm.

b) NOW
$$T = \frac{2\pi}{\omega} = \frac{2\pi}{9.15 \, \text{RAD/S}} = 0.695$$

$$E = \frac{1}{2} h A^{2} = \frac{1}{2} \left(\frac{4cNm}{m} \right) \left(\frac{7.4 \times 10^{-2}m}{m} \right)^{2} = 0.1265$$

$$\left[E = 0.1265 \right]$$

d) Since
$$x(t) = -\omega A \sin(\omega t + \phi)$$
 reaches a maximum size when $\sin(\omega t' + \phi) = -1$

0.074 m

٩

3. NOW

$$(4) = Acos(\omega t + \phi)$$

NOW APPLYING ININA CONDINONS

THEN THE THE PORIVANCE YIELDS THE KEWCHY,,

$$A = + \frac{1.1m/5}{\omega} = + \frac{1.1m/5}{9.15 \text{ RAO/5}} = 0.12 \text{ M}$$

20

$$X(t) = A\cos(\omega t + \phi)$$
 where $A = 0.12m$, $\omega = 9.15 \text{ mas/s}$, $A = T/2 \text{ RMS}$

0.12 m 9.15 1/s 1.57

3 9

t(s)

4. a)
$$V(t) = \frac{1}{2} k x^2 = \frac{1}{2} k A^2 \cos^2(\omega t + \phi)$$

	U(t) +K(t) 0.12601 0.12599 0.12598 0.12596 0.12596 0.12595 0.12595 0.12595 0.12596 0.12596 0.12596 0.12598 0.12599 0.12601 0.12603 0.12604 0.12604
	K(t)=mv²(t)/2 U 0.055943373 0.044662924 0.03399615 0.024299276 0.024299276 0.00567357 0.009067357 0.009067357 0.004440991 0.004311716 0.004311716 0.004462105 0.016401723 0.016401723 0.024898819 0.034669627 0.045387842 0.045387842 0.056695525 0.068215048 0.068215048 0.090356577 0.090356577
	U(t)=kx²(t)/2 b 0.070062183 0.081331027 0.091986826 0.101673724 0.110068219 0.116889972 0.124964116 0.124964116 0.124826597 0.124826597 0.124826597 0.124826597 0.124826597 0.109563151 0.101074797 0.091314043 0.080606854 0.069310805 0.069310805 0.069310805 0.069310805 0.069310805
s E	v(t)=-wAsin(wt+\phi) 1 0.451032647 0.403002024 0.35159972 0.297255789 0.240424894 0.181582506 0.121220924 0.059845158 -0.063890757 -0.063890757 -0.185493 -0.185493 -0.244218408 -0.300900584 -0.355065303 -0.454054563 -0.454054563 -0.454054563 -0.454054563 -0.454054332 -0.573209709
0.074 m 9.15 1/s -0.729 0.55 kg 46 N/m	x(t)=Acos(wt+\phi) v(t) 0.055192227 0.059465382 0.063241025 0.069177849 0.071289359 0.072804433 0.073710396 0.073710396 0.073999667 0.073669827 0.073669827 0.073669827 0.073669827 0.073669827 0.073669827 0.073669827 0.073669827 0.073669827 0.073669827 0.073669827 0.073669827 0.073669827 0.07369827 0.063009331 0.06309331 0.059200049 0.0644948351 0.033500147 0.033500147
Α= Φ = κ = κ = κ = κ = κ = κ = κ =	x(s) x(s) 0 0.01 0.02 0.03 0.03 0.04 0.05 0.06 0.07 0.09 0.11 0.11 0.13 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

$$\Theta(t) = \Theta_0 \cos(\omega t + \phi)$$

a)
$$\omega = \sqrt{\frac{9.8 \text{m/s}^2}{1/32}} = 0.783 \text{ RAN/s}$$

DU MANNING IN HAR COMPINOS...

1)
$$O(t: Φ) = O_0 cos(Φ) = 0.0873 π.40$$

Mso

50

DIVIDING THE 200 BY THE 1st 410.15.

$$\frac{0.0625800/5}{0.0873840} = -\omega \frac{0.59(\phi)}{0.08(\phi)} = -\omega \frac{1}{100} = 0.7165^{-1}$$

$$ton \phi = 0.7145^{-1} = -0.914$$

V: lw; = 1.0m/s so

 $W_{i} = \frac{V_{i}}{2} = \frac{1.0 \, \text{m/s}}{11. \, \text{m}} = 0.0025 \, \text{m}$

[= -42.4° = -0.74 RAD] PWGGING THS BACK INTO THE 1st WITH CONDITION "HADS..

$$\Theta_{0} = \frac{0.0873 \, \text{RAD}}{\cos{(\dot{\phi})}} = \frac{0.0873 \, \text{RAD}}{\cos{(-42.4^{\circ})}} = 0.118 \, \text{KAD} \times \frac{360^{\circ}}{2\pi \text{RAD}} = 0.78^{\circ}$$

b)
$$T = \frac{2\pi}{\omega} = \frac{2\pi}{0.783} = 8.05$$

NOW
$$i = 0 = -\omega O_0 \sin (\omega t + \phi)$$
 which is A MAXIMAM WHOM $\sin (\omega t + \phi) = -1$

d)
$$\Theta_i(t)$$
: $\Theta_0 \cos(\omega t + \phi)$ so Θ_{mx} when $\cos(\omega t' + \phi) = 1$