Comparison of C and Si

Similarities: Due to similar valence shell configuration they have some similarities.

- Both are non-metals.
- Both are abundant in nature.
- Both exhibit tetravalancy.
- Both exhibit common oxidation state of + 4
- Both will exhibit allotropy.
- Both will form many similar compounds.

•

	Carbon	Silicon
Oxides	CO ₂	SiO ₂
Halides	CCI ₄	SiCl ₄
Hydrides	CH ₄ , C ₂ H ₆ , C ₃ H ₈ , etc.	SiH ₄ , Si ₂ H ₆ , Si ₃ H ₈ , etc.
Oxyacids	H ₂ CO ₃	H ₂ SiO ₃
	(Carbonic acid)	(Silicic acid)
	(COOH) ₂	H ₂ Si ₂ O ₄
	(oxalic acid)	(Silico oxalic acid)

Differences: C & Si have some differences due to different (n-1) shell configuration.

$$\begin{aligned} C &\rightarrow (n-1)s^2 & 2e^{\mathbb{P}} \\ Si &\rightarrow (n-1)s^2p^6 & 8e^{\mathbb{P}} \end{aligned}$$

Carbon	Silicon
It is present in living beings.	It is present in minerals, rocks etc.
It is hard.	It is soft.
It has high m.p.	It has low m.p.
Its catenation ability is maximum.	Its catenation ability is limited.
Its maximum valency is 4.	Its maximum valency is 6.
Some allotropes of C are good conductors.	All its allotropes are bad conductors.

Differences in their compounds: Oxides

CO₂ is gas.

CO₂ exist as monomer & only weak Vanderwaal's forces

exists.

In CO₂, C is bonded to two 'O's by double bonds.

O = C = O

CO₂ is solube in water

SiO₂ is solid.

SiO₂ is solid. SiO₂ has giant polymeric structure.

In SiO₂, Si is bonded to four 'O's by single bonds. -O-Si-O-

SiO₂ is insoluble in water.

Halides

It forms CCl₄.

As C does not contain As Si contains vacant vacant d orbitals in its valence shell, it cannot | valence shell it can extend its valency exhibit a valency of 6. beyond 4.

It forms SiCl_{4.}

d-orbitals in its

CCl₄ is saturated.	and it can form two more bonds.
CCl_4 is insoluble in H_2O .	It is soluble in H₂O.
CCl ₄ is not hydrolysed.	SiCl ₄ is hydrolysed .
CCl_4 does not form species like $CCl_4.2H_2O$, CCl_6^{2-} .	It forms species like SiCl ₄ .2H ₂ O, SiCl ₆ ²⁻ .
CCl₄ cannot act as Lewis acid.	SiCl ₄ can act as Lewis acid

Hydrides

It forms large number of hydrides.

Its hydrides are stable because C – H bond is non polar & it doesnot weaken the adjacent

C - C bond.

Hydrides of C are not hydrolysed due to non-polar nature .

These are weak reducing agents.

It forms very few hydrides.

Silanes are unstable because Si – H bond is slightly polar & it weakens the adjacent Si – Si bond.

They are hydrolysed due to polar nature.

These are strong reducing agents.