Московский авиационный институт (национальный исследовательский университет)

Институт №8 «Информационные технологии и прикладная математика»

Кафедра 806 «Вычислительная математика и программирование»

Лабораторные работы по курсу «Численные методы»

Студент: Г. С. Будайчиев Преподаватель: Д. Е. Пивоваров

Группа: М8О-303Б-21

Дата: Оценка: Подпись:

4.1 Методы Эйлера, Рунге-Кутты и Адамса

1 Постановка задачи

Реализовать методы Эйлера, Рунге-Кутты и Адамса 4-го порядка в виде программ, задавая в качестве входных данных шаг сетки . С использованием разработанного программного обеспечения решить задачу Коши для ОДУ 2-го порядка на указанном отрезке. Оценить погрешность численного решения с использованием метода Рунге — Ромберга и путем сравнения с точным решением.

Вариант: 3

$$y''-2y-4x^{2}e^{x^{2}}=0,$$

$$y(0) = 3,$$

$$y'(0) = 0,$$

$$x \in [0,1], h = 0.1$$

$$y = e^{x^{2}} + e^{x\sqrt{2}} + e^{-x\sqrt{2}}$$

Рис. 1: Входные данные

2 Результаты работы

Euler method:								
×	У	Exact y	Error					
i ø	1	3	2					
0.1		3.03008	2.03008					
0.2		3.12135	2.10135					
j 0.3		3.27689	2.21649					
j 0.4	1.12287	3.50214	2.37926					
j 0.5	1.21049	3.80521	2.59472					
j 0.6	1.32807	4.19758	2.86951					
j 0.7	1.48271	4.69501	3.2123					
j 0.8	1.68454	5.31897	3.63443					
j 0.9	1.94803	6.09877	4.15074					
1	2.29375	7.07465	4.7809					
Runge-Kutta method:								
×	у	Exact y	Error					
0	1	3	2					
j 0.1	1.01005	3.03008	2.02003					
j 0.2	1.04081	3.12135	2.08054					
j 0.3		3.27689	2.18272					
0.4		3.50214	2.32863					
0.5	1.28402	3.80521	2.52119					
j 0.6	1.43332	4.19758	2.76426					
j 0.7	1.6323	4.69501	3.06271					
j 0.8	1.89646	5.31897	3.42251					
j 0.9	2.24788	6.09877	3.85089					
j 1	2.71824	7.07465	4.35641					
Adams method:								
! ×	У	Exact y	Error 					
0	1	3	2					
0.1		3.03008	2.02003					
0.2		3.12135						
0.3	1.09417	3.27689	2.18272					
0.4		3.50214	2.32872					
0.5	1.28365	3.80521	2.52156					
0.6	1.43255	4.19758	2.76503					
0.7	1.63085	4.69501	3.06416					
0.8	1.89394	5.31897	3.42504					
0.9	2.24368	6.09877	3.85509					
1	2.71143	7.07465	4.36322					
+			+					

Рис. 2: Вывод программы в консоли

3 Исходный код

Общий файл для всех подзадач 4 лабораторной

```
10
11
   using namespace std;
12
   using namespace numeric;
13
14
   vector<vector<double>>
15
    eulerMethod(const std::function<double(double, double, double)> &f, double x0, double
       y1_0, double y2_0, double h,
16
               int n) {
17
       vector<double> x(n), y1(n), y2(n);
18
       x[0] = x0;
19
       y1[0] = y1_0;
20
       y2[0] = y2_0;
21
22
       for (int i = 1; i < n; ++i) {
23
           x[i] = x[i - 1] + h;
24
           y1[i] = y1[i - 1] + h * y2[i - 1];
25
           y2[i] = y2[i - 1] + h * f(x[i - 1], y1[i - 1], y2[i - 1]);
26
27
28
       return vector<vector<double>>{x, y1, y2};
29
30
   }
31
32
33
   vector<vector<double>>
   rungeKutta4(const std::function<double(double, double, double)> &f, double x0, double
        y1_0, double y2_0, double h,
35
               int n) {
36
       vector<double> x(n), y1(n), y2(n);
37
       x[0] = x0;
38
       y1[0] = y1_0;
39
       y2[0] = y2_0;
40
41
       for (int i = 1; i < n; ++i) {
42
           x[i] = x[i - 1] + h;
43
           double k1_y1 = h * y2[i - 1];
44
45
           double k1_y2 = h * f(x[i - 1], y1[i - 1], y2[i - 1]);
46
47
           double k2_y1 = h * (y2[i - 1] + 0.5 * k1_y2);
48
           double k2_y2 = h * f(x[i - 1] + 0.5 * h, y1[i - 1] + 0.5 * k1_y1, y2[i - 1] +
               0.5 * k1_y2);
49
50
           double k3_y1 = h * (y2[i - 1] + 0.5 * k2_y2);
51
           double k3_y2 = h * f(x[i - 1] + 0.5 * h, y1[i - 1] + 0.5 * k2_y1, y2[i - 1] +
               0.5 * k2_y2);
52
53
           double k4_y1 = h * (y2[i - 1] + k3_y2);
54
           double k4_y2 = h * f(x[i - 1] + h, y1[i - 1] + k3_y1, y2[i - 1] + k3_y2);
```

```
55
56
           y1[i] = y1[i - 1] + (k1_y1 + 2 * k2_y1 + 2 * k3_y1 + k4_y1) / 6;
57
           y2[i] = y2[i - 1] + (k1_y2 + 2 * k2_y2 + 2 * k3_y2 + k4_y2) / 6;
58
59
       return vector<vector<double>>{x, y1, y2};
60
   }
61
62
   vector<vector<double>>
   adams4(const std::function<double(double, double, double) &f, double x0, double y1_0,
63
        double y2_0, double h, int n) {
64
       vector<double> x(n), y1(n), y2(n);
65
       x[0] = x0;
       y1[0] = y1_0;
66
67
       y2[0] = y2_0;
68
69
       for (int i = 1; i < 4; ++i) {
70
           x[i] = x[i - 1] + h;
71
72
           double k1_y1 = h * y2[i - 1];
73
           double k1_y2 = h * f(x[i - 1], y1[i - 1], y2[i - 1]);
74
75
           double k2_y1 = h * (y2[i - 1] + 0.5 * k1_y2);
76
           double k2_y2 = h * f(x[i - 1] + 0.5 * h, y1[i - 1] + 0.5 * k1_y1, y2[i - 1] +
               0.5 * k1_y2);
77
78
           double k3_y1 = h * (y2[i - 1] + 0.5 * k2_y2);
79
           double k3_y2 = h * f(x[i - 1] + 0.5 * h, y1[i - 1] + 0.5 * k2_y1, y2[i - 1] +
               0.5 * k2_y2);
80
81
           double k4_y1 = h * (y2[i - 1] + k3_y2);
82
           double k4_y2 = h * f(x[i - 1] + h, y1[i - 1] + k3_y1, y2[i - 1] + k3_y2);
83
84
           y1[i] = y1[i - 1] + (k1_y1 + 2 * k2_y1 + 2 * k3_y1 + k4_y1) / 6;
85
           y2[i] = y2[i - 1] + (k1_y2 + 2 * k2_y2 + 2 * k3_y2 + k4_y2) / 6;
86
       }
87
88
       for (int i = 4; i < n; ++i) {
89
           x[i] = x[i - 1] + h;
90
91
           y1[i] = y1[i - 1] + h / 24 * (55 * y2[i - 1] - 59 * y2[i - 2] + 37 * y2[i - 3]
               -9 * y2[i - 4]);
92
           y2[i] = y2[i - 1] + h / 24 * (55 * f(x[i - 1], y1[i - 1], y2[i - 1]) - 59 * f(x[i - 1], y2[i - 1])
               [i - 2], y1[i - 2], y2[i - 2]) +
                                       37 * f(x[i - 3], y1[i - 3], y2[i - 3]) - 9 * f(x[i -
93
                                            4], y1[i - 4], y2[i - 4]));
94
       }
95
96
       return vector<vector<double>>{x, y1, y2};
97 || }
```

```
98
99
    void rungeRomberg(
100
           const std::function<vector<vector<double>>(const std::function<double(double,</pre>
              double, double)> &, double,
101
                                               double, double, int)> &method,
102
           const std::function<double(double, double, double)> &f, double x0, double y1_0,
               double y2_0, double h, int n) {
103
       vector<double> y1_h, y2_h, y1_h2, y2_h2;
104
105
       auto res1 = method(f, x0, y1_0, y2_0, h, n);
106
       auto res2 = method(f, x0, y1_0, y2_0, h / 2, 2 * n);
107
       y1_h = res1[1];
108
       y2_h = res1[2];
109
       y1_h2 = res2[1];
       y2_h2 = res2[2];
110
111
112
       const int width = 15;
113
       const int precision = 6;
114
       cout << "+-----" << endl;
115
       cout << "| x | Error y | Error y' |" << endl;</pre>
116
       cout << "+-----" << endl;
117
118
       for (int i = 0; i < n; ++i) {
119
           double x_i = x0 + i * h;
120
           double error_y1 = (y1_h2[2 * i] - y1_h[i]) / (pow(2, 4) - 1);
           double error_y2 = (y2_h2[2 * i] - y2_h[i]) / (pow(2, 4) - 1);
121
           cout << "| " << setw(width - 2) << setprecision(precision) << x_i << " | "
122
123
               << setw(width - 2) << setprecision(precision) << error_y1 << " | "
               << setw(width - 2) << setprecision(precision) << error_y2 << " |" << endl;
124
125
126
127
       cout << "+-----" << endl;
128
    }
129
130
    void shootingMethod(const std::function<double(double, double, double)>& f, double a,
       double b, double alpha, double beta, double eps, double h, int n) {
131
       vector<vector<double>> result;
132
       vector<double> y_trial(n);
133
       vector<double> s_values;
134
       double s0 = 0;
135
       double s1 = 1.0;
136
       double y_b0, y_b1, s_new;
137
138
       auto result0 = rungeKutta4(f, a, alpha, s0, h, n);
139
       y_b0 = result0[1].back();
140
       auto result1 = rungeKutta4(f, a, alpha, s1, h, n);
141
       y_b1 = result1[1].back();
142
143
       cout << "+-----" << endl;
```

```
144
       cout << "| s | f(b, y, s) | |(s)| |" << endl;
145
       cout << "+-----+" << endl;
146
147
       while (abs(y_b1 - beta) > eps) {
148
           s_new = s1 - (y_b1 - beta) * (s1 - s0) / (y_b1 - y_b0);
149
           s_values.push_back(s_new);
150
           cout << "| " << setw(13) << setprecision(6) << s1 << " | "
151
               << setw(13) << setprecision(6) << y_b1 << " | "
               << setw(13) << setprecision(6) << abs(y_b1 - beta) << " |" << endl;
152
153
           s0 = s1;
154
           y_b0 = y_b1;
155
           s1 = s_new;
156
           result = rungeKutta4(f, a, alpha, s1, h, n);
157
           y_b1 = result[1].back();
158
159
       cout << "| " << setw(13) << setprecision(6) << s1 << " | "
160
            << setw(13) << setprecision(6) << y_b1 << " | "
161
            << setw(13) << setprecision(6) << abs(y_b1 - beta) << " |" << endl;
       cout << "+-----" << endl;
162
163
       cout << "+----+" << endl;
164
165
       cout << "| x | y |" << endl;</pre>
       cout << "+-----+" << endl;
166
167
168
       for (int i = 0; i < n; ++i) {
169
           cout << "| " << setw(13) << setprecision(6) << result[0][i] << " | "</pre>
170
               << setw(13) << setprecision(6) << result[1][i] << " |" << endl;</pre>
171
       cout << "+-----+" << endl;
172
173
    }
174
175
    void finiteDifferenceMethod(double a, double b, double y0, double y1, double h,
176
                            const std::function<double(double)>& p,
177
                            const std::function<double(double)>& q,
178
                            const std::function<double(double)>& f,
179
                            vector<double>& x, vector<double>& y) {
180
       int n = \text{static\_cast} < \text{int} > ((b - a) / h) + 1;
181
       x.resize(n);
182
       y.resize(n);
183
       vector<double> rhs(n);
184
185
       for (int i = 0; i < n; ++i) {
186
           x[i] = a + i * h;
187
188
       rhs[0] = h * h * f(x[0]) - (1 - p(x[0]) * h / 2) * y0;
189
       rhs[n-1] = h * h * f(x[n-1]) - (1 + p(x[n-1]) * h / 2) * y1;
190
       for (int i = 1; i < n - 1; ++i) {
191
           rhs[i] = h * h * f(x[i]);
192
```

```
193
       Matrix<double> A(n, n);
194
       for (int i = 0; i < n; ++i) {
195
          A[i][i] = -2 + h * h * q(x[i]);
          if (i > 0) A[i][i - 1] = 1 - p(x[i]) * h / 2;
196
197
          if (i < n - 1) A[i][i + 1] = (1 + p(x[i]) * h / 2);
198
199
200
       y = tridiagonalSolve(A, rhs);
201
       cout << "+-----+" << endl;
202
203
       cout << "| x | y |" << endl;</pre>
204
       cout << "+-----+" << endl;
       cout << "| " << setw(13) << setprecision(6) << a << " | "</pre>
205
206
           << setw(13) << setprecision(6) << y0 << " |" << endl;
207
       for (int i = 0; i < n; ++i) {
208
          cout << "| " << setw(13) << setprecision(6) << x[i] << " | "
209
              << setw(13) << setprecision(6) << y[i] << " |" << endl;
210
       cout << "+-----+" << endl;
211
212
   }
213
214
215
    void printTable(double a, double b, double h, std::function<double(double)> yFunc) {
216
       vector<double> x, y;
217
       for (double xi = a; xi \le b; xi += h) {
218
          x.push_back(xi);
219
          y.push_back(yFunc(xi));
220
221
222
       223
       cout << "| x | y |" << endl;</pre>
224
       cout << "+----+" << endl;
225
226
       for (size_t i = 0; i < x.size(); ++i) {</pre>
227
          cout << "| " << setw(13) << setprecision(6) << x[i] << " | "
228
              << setw(13) << setprecision(6) << y[i] << " |" << endl;</pre>
229
       cout << "+-----+" << endl;
230
231
   }
232
233
    void printResult(const vector<vector<double>> &res) {
234
       const int width = 15;
235
       const int precision = 6;
236
       cout << "+-----" << endl;
237
       cout << "| x | y | y' |" << endl;
238
239
       cout << "+------" << endl;
240
241
       for (int i = 0; i < res[0].size(); ++i) {</pre>
```

```
242
          cout << "| " << setw(width - 2) << setprecision(precision) << res[0][i] << " |
243
              << setw(width - 2) << setprecision(precision) << res[1][i] << " | "
244
              << setw(width - 2) << setprecision(precision) << res[2][i] << " |" << endl;</pre>
245
246
247
       cout << "+-----" << endl;
248
   }
249
250 #endif //LAB4_DERIVATIVEMETHODS_H
 1
    #include <iostream>
   #include "derivativeMethods.h"
 3
   using namespace std;
 4
 5
   double f(double x, double y1, double y2) {
 6
       return 2 * y1 + 4 * pow(x, 2) * pow(M_E, pow(x, 2));
 7
   }
 8
 9
   double fExact(double x) {
10
       return pow(M_E, pow(x, 2)) + pow(M_E, x * pow(2, 0.5)) + pow(M_E, x * pow(2, 0.5) *
           (-1));
11
   }
12
13
   void compareWithExact(const vector<vector<double>>& result, double (*exactFunc)(double
       )) {
14
       const int width = 15;
15
       const int precision = 6;
16
       17
       cout << "| x | y | Exact y | Error |" << endl;</pre>
18
       19
20
21
       for (size_t i = 0; i < result[0].size(); ++i) {</pre>
22
          double exact_y = exactFunc(result[0][i]);
23
          double error = abs(result[1][i] - exact_y);
          cout << "| " << setw(width - 2) << setprecision(precision) << result[0][i] << "</pre>
24
             1 "
25
             << setw(width - 2) << setprecision(precision) << result[1][i] << " | "
26
             << setw(width - 2) << setprecision(precision) << exact_y << " | "
27
             << setw(width - 2) << setprecision(precision) << error << " |" << endl;
28
       29
30 || }
31
32
   int main() {
33
       double x0 = 0, y1_0 = 1, y2_0 = 0, h = 0.1;
```

```
34
        int n = 11;
35
36
        cout << "Euler method:" << "\n";</pre>
37
        auto eulerRes = eulerMethod(f, x0, y1_0, y2_0, h, n);
38
        compareWithExact(eulerRes, fExact);
39
        cout << "\nRunge-Kutta method:" << "\n";</pre>
40
41
        auto rungeKuttaRes = rungeKutta4(f, x0, y1_0, y2_0, h, n);
42
        compareWithExact(rungeKuttaRes, fExact);
43
44
        cout << "\nAdams method:" << "\n";</pre>
45
        auto adamsRes = adams4(f, x0, y1_0, y2_0, h, n);
46
        compareWithExact(adamsRes, fExact);
47
48
        cout << "\nEuler method error by Runge Romberg:" << "\n";</pre>
49
        rungeRomberg(eulerMethod, f, x0, y1_0, y2_0, h, n);
50
51
        cout << "\nRunge-Kutta method error by Runge Romberg:" << "\n";</pre>
52
        rungeRomberg(rungeKutta4, f, x0, y1_0, y2_0, h, n);
53
54
        cout << "\nAdams method error by Runge Romberg:" << "\n";</pre>
55
        rungeRomberg(adams4, f, x0, y1_0, y2_0, h, n);
56
57
        return 0;
58 || }
```

4.2 Метод стрельбы и конечно-разностный метод

4 Постановка задачи

Реализовать метод стрельбы и конечно-разностный метод решения краевой задачи для ОДУ в виде программ. С использованием разработанного программного обеспечения решить краевую задачу для обыкновенного дифференциального уравнения 2-го порядка на указанном отрезке. Оценить погрешность численного решения с использованием метода Рунге – Ромберга и путем сравнения с точным решением.

Вариант: 3

_	, -	
	$x^{2}(x+1) y''-2y=0,$ y'(1)=-1, 2y(2) = 4 y'(2) = 4	$y(x) = \frac{1}{x} + 1$
	y(1)=1, 2y(2)-4y'(2)=4	X

Рис. 3: Входные данные

5 Результаты работы

X						
X	Real value:			Finite difference	Method:	
1	+	·	+	tilite difference method.		
1	×	l y l		i x i	v i	
1.2	+		-	<u> </u>		
1.4		2		1 1 1	2	
1.4				i īi	1.80724	
1.6				i 1.2 i		
1.8	1.6	1.625			<u> </u>	
1.5 1.5	1.8	1.55556				
Shooting method:	2	1.5				
S f(b, y, s)	+		-			
S f(b, y, s)				+		
S f(b, y, s)	Shooting method:					
S f(b, y, s)	+	+ -		Finite difference	Method with h/2:	
1 3.63451 2.13451	s	f(b, y, s)	[⊥] д(s)	+		
1 3.63451 2.13451 1 2 1 1.90281 1 1 1.90281 1 1 1.90281 1 1 1.90281 1 1 1.90281 1 1 1.90281 1 1 1.90281 1 1 1.90281 1 1 1.90281 1 1 1.90281 1 1 1.90281 1 1 1.90281 1 1 1.90281 1 1 1.90281 1 1 1.90281 1 1 1.90281 1 1 1.90281 1 1 1 1 1 1 1 1 1	+			1 x 1	v I	
1 1.90281 1.1 1.82466 1.2 1.76086 1.2 1.76086 1.2 1.76086 1.3 1.70818 1.4 1.66429 1.5 1.5 1.62748 1.4 1.62501 1.5 1.6 1.59645 1.6 1.59645 1.7 1.57022 1.8 1.55556 1.8 1.55556 1.8 1.54801 2 1.5 1.9 1.52922 2 1.51335				+	-	
X	-1.00014	1.5	2.22045e-16	1 1 1	2	
1.2 1.76086 1.3 1.70818 1.4 1.66429 1.2 1.83335 1.4 1.66429 1.5 1.6 1.62748 1.5 1.6 1.59045 1.7 1.57022 1.8 1.55556 1.7 1.57022 1.8 1.54801 1.9 1.52922 2 1.51335	+			i īi	1.90281	
1.76818 1.70818 1.4 1.66429 1.5 1.5 1.62748 1.4 1.62748 1.6 1.5 1.62748 1.6 1.55556 1.7 1.57022 1.8 1.55556 1.8 1.55556 1.8 1.54801 2 1.5 1.9 1.52922 2 1.5 1.9 1.52922 2 1.51335	÷		-	i 1.ī i		
1	×	l y l		i 1.2 i	1.76086	
1	+	+ -	-			
1.4				i 1.4 i		
1.4 1.7143 1.6 1.59645 1.6 1.62501 1.7 1.57022 1.8 1.55556 1.8 1.55556 1.8 1.54801 1.9 1.54801 1.9 1.52922 2 1.51335				i 1.5 i	1.62748	
1.6 1.62501 1.7 1.57022 1.8 1.54801 2 1.5 1.9 1.52922 2 1.51335	1.4	1.7143		1.6		
1.5 1.54801 1.52922 1.51335	1.6					
1.5 1.5 1.52922 2 1.51335 Runge-Romberg error estimate for Shooting Method:	1.8	1.55556		1.8	1.54801	
Runge-Romberg error estimate for Shooting Method: X	2	1.5		i 1.9 i		
X	+	+ -	-	j 2 j		
X				+		
X	Runge-Romberg err	ror estimate for	Shooting Method:			
1	+			Error Finite Diff	erence Method:	
1	×	Error y	Error y'	+		
1	+	+ -		1 x 1	Error v	
1.4 -3.65202e-06 -4.42292e-06 1.2 0.146567 1.6 -4.89303e-06 -5.06652e-06 1.4 0.105396 1.8 -6.08797e-06 -5.48978e-06 1.6 0.0666257 2 -7.29077e-06 -5.81095e-06 1.8 0.0289657				+		
1.4 -3.65202e-06 -4.42292e-06 1.2 0.146567 1.6 -4.89303e-06 -5.06652e-06 1.4 0.105396 1.8 -6.08797e-06 -5.48978e-06 1.6 0.0666257 2 -7.29077e-06 -5.81095e-06 1.8 0.0289657				1 1	0.192762	
1.6 -4.89303e-06 -5.06652e-06 1.4 0.105396 1.8 -6.08797e-06 5.48978e-06 1.6 0.0666257 1.7.29077e-06 -5.81095e-06 1.8 0.0289657	1.4	-3.65202e-06	-4.42292e-06			
1.8 -6.08797e-06 -5.48978e-06 1.6 0.0666257 2 -7.29077e-06 -5.81095e-06 1.8 0.0289657						
2 -7.29077e-06 -5.81095e-06 1.8 0.0289657	1.8					
	2	-7.29077e-06	-5.81095e-06			
+	+					
				+		

Рис. 4: Вывод программы в консоли

6 Исходный код

```
1 | #include <iostream>
2
   #include "derivativeMethods.h"
3
   using namespace std;
4
5
   double f_m(double x, double y1, double y2) {
      return (2 * y1) / (x * x * (x + 1));
6
7
   }
8
9
   double exactSolution(double x) {
10
      return 1.0 / x + 1.0;
   }
11
12
13
   double rungeRombergError(const vector<double>& y_h, const vector<double>& y_h2, double
       r) {
      double error = 0.0;
14
      for (size_t i = 0; i < y_h.size(); ++i) {</pre>
15
16
         error = \max(error, abs(y_h2[2 * i] - y_h[i]) / (pow(2, r) - 1));
17
18
      return error;
  }
19
20
21
   void rungeRombergErrorShooting(const vector<vector<double>>& res_h, const vector
      vector<double>>& res_h2) {
22
      const int width = 15;
23
      const int precision = 6;
24
25
      cout << "+-----" << endl;
26
      cout << "| x | Error y | Error y' |" << endl;</pre>
      cout << "+-----+" << endl;
27
28
      for (int i = 0; i < res_h[0].size(); ++i) {</pre>
29
         double error_y1 = (res_h2[1][2 * i] - res_h[1][i]) / (pow(2, 4) - 1);
30
         double error_y2 = (res_h2[2][2 * i] - res_h[2][i]) / (pow(2, 4) - 1);
31
         32
             << setw(width - 2) << setprecision(precision) << error_y1 << " | "
33
             << setw(width - 2) << setprecision(precision) << error_y2 << " |" << endl;
34
      cout << "+-----+" << endl;
35
   }
36
37
38
   int main() {
39
      cout << "Real value:" << "\n";</pre>
40
      printTable(1, 2, 0.2, exactSolution);
41
42
      double a = 1, b = 2;
      double alpha = 2, beta = 1.5;
43
44
      double h = 0.2;
```

```
45
       double eps = 0.0001;
46
       cout << "\nShooting method:" << "\n";</pre>
47
48
       shootingMethod(f_m, a, b, alpha, beta, eps, h, 6);
       cout << "\nRunge-Romberg error estimate for Shooting Method:" << "\n";</pre>
49
50
       rungeRomberg(rungeKutta4, f_m, a, alpha, 0, h, 6);
51
52
       std::function<double(double)> p = [](double x) {
53
          return 0;
54
       std::function < double(double) > q = [](double x) {
55
56
           return -2 / (x * x * (x + 1));
57
       };
58
       std::function<double(double)> f = [](double x) {
59
           return 0.0;
60
       };
61
62
       double y0 = 2.0;
63
       double y1 = 1.5;
64
       vector<double> x_h, y_h, x_h2, y_h2;
65
66
67
       cout << "\nFinite difference Method:" << "\n";</pre>
68
       finiteDifferenceMethod(a, b, y0, y1, h, p, q, f, x_h, y_h);
69
70
       cout << "\nFinite difference Method with h/2:" << "\n";</pre>
71
       finiteDifferenceMethod(a, b, y0, y1, h / 2, p, q, f, x_h2, y_h2);
72
73
       double error = rungeRombergError(y_h, y_h2, 2);
74
75
       cout << "\nError Finite Difference Method:" << endl;</pre>
       cout << "+-----+" << endl;
76
77
       cout << "| x | Error y |" << endl;</pre>
78
       cout << "+----+" << endl;
79
80
       double maxError = 0.0;
81
       for (size_t i = 0; i < x_h.size(); ++i) {
82
           double exact = exactSolution(x_h[i]);
83
           double error = abs(y_h[i] - exact);
84
           maxError = max(maxError, error);
85
           cout << "| " << setw(13) << setprecision(6) << x_h[i] << " | "</pre>
              << setw(13) << setprecision(6) << error << " |" << endl;
86
87
       }
       cout << "+-----+" << endl;
88
89
90
       return 0;
91 || }
```