Outine

- Rod Cutting
- Matrix-Chain Multiplication
- Elements of Dynamic Programming
- Longest Common Subsequence
- Optimal Binary Search Trees

Matrix-Chain Multiplication (1/4)

We are given a sequence (chain) <A₁, A₂, ..., A_n>
of n matrices to be multiplied, and we wish to
compute the product A₁A₂ ... A_n.

 A product of matrices is fully parenthesized if it is either a single matrix or the product of two fully parenthesized matrix products, surrounded by parentheses.

> $(A_1(A_2(A_3A_4)))$, $(A_1((A_2A_3)A_4))$, $((A_1A_2)(A_3A_4))$, $((A_1(A_2A_3))A_4)$, $(((A_1A_2)A_3)A_4)$.

Matrix multiplication is associative, and so all parenthesizations yield the same product.

26

Matrix-Chain Multiplication (2/4)

- How we parenthesize a chain of matrices can have a dramatic impact on the cost of evaluating the product.
- Consider first the cost of multiplying 2 matrices.
 MATRIX-MULTIPLY (A, B)

```
if A.columns \neq B.rows

error "incompatible dimensions"

else let C be a new A.rows \times B.columns matrix

for i = 1 to A.rows

for j = 1 to B.columns

c_{ij} = 0

for k = 1 to A.columns

c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}

The time to compute C is dominated by the number of scalar multiplications in line 8, which is pqr.

return C
```

Matrix-Chain Multiplication (3/4)

- To illustrate the different costs incurred by different parenthesizations of a matrix product, consider the problem of a chain <A₁, A₂, A₃> of three matrices.
 - Suppose that the dimensions of the matrices are 10 \times 100, 100 \times 5, and 5 \times 50, respectively.
 - $-((A_1 A_2) A_3): 10 \cdot 100 \cdot 5 + 10 \cdot 5 \cdot 50 = 7500$
 - $(A_1 (A_2 A_3)): 100 \cdot 5 \cdot 50 + 10 \cdot 100 \cdot 50 = 75000$

Matrix-Chain Multiplication (4/4)

- We state the matrix-chain multiplication problem as follows: given a chain $<A_1, A_2, ..., A_n>$ of n matrices, where for i=1,2,...,n, matrix A_i has dimension $p_{i-1}\times p_i$, fully parenthesize the product $A_1A_2...A_n$ in a way that minimizes the number of scalar multiplications.
- Our goal is only to determine an order for multiplying matrices that has the lowest cost.

Counting the Number of Parenthesizations

• Denote the number of alternative parenthesizations of a sequence of n matrices by P(n).

$$P(n) = \begin{cases} 1 & \text{if } n = 1, \\ \sum_{k=1}^{n-1} P(k)P(n-k) & \text{if } n \ge 2. \end{cases}$$

- Exercise 15.2-3 shows that the solution to the recurrence is $\Omega(2^n)$.
- → The number of solutions is exponential in n, and the brute-force method of exhaustive search makes for a poor strategy.

30

Applying Dynamic Programming

We shall follow the four-step sequence:

- Characterize the structure of an optimal solution.
- 2. Recursively define the value of an optimal solution.
- 3. Compute the value of an optimal solution.
- 4. Construct an optimal solution from computed information.

31

Step 1: The Structure of an Optimal Parenthesization (1/3)

- For convenience, let us adopt the notation $A_{i..j}$, where $i \le j$, for the matrix that results from evaluating the product $A_i A_{i+1} \dots A_j$.
 - To parenthesize the product A_i A_{i+1} ... A_j , we must split the product between A_k and A_{k+1} for some integer k in the range $i \le k < j$.
 - The cost of parenthesizing this way is the cost of computing the matrix A_{i..k} + the cost of computing A_{k+1..j} + the cost of multiplying them together.

32

Step 1: The Structure of an Optimal Parenthesization (2/3)

- Suppose that to optimally parenthesize $A_i A_{i+1} ... A_j$, we split the product between A_k and A_{k+1} .
- Then the way we parenthesize the "prefix" subchain $A_i A_{i+1} \dots A_k$ within this optimal parenthesization of $A_i A_{i+1} \dots A_j$ must be an optimal parenthesization of $A_i A_{i+1} \dots A_k$. Why?
- A similar observation holds for how we parenthesize the subchain $A_{k+1}A_{k+2}...A_j$ in the optimal parenthesization of $A_iA_{i+1}...A_j$: it must be an optimal parenthesization of $A_{k+1}A_{k+2}...A_j$.

Step 1: The Structure of an Optimal Parenthesization (3/3)

We can build an optimal solution to an instance of the matrix-chain multiplication problem by splitting the problem into two subproblems (optimally parenthesizing A_i A_{i+1} ... A_k and A_{k+1} A_{k+2} ... A_j), finding optimal solutions to subproblem instances, and then combining these optimal subproblem solutions.

33

Step 2: A Recursive Solution

• Let m[i, j] be the minimum number of scalar multiplications needed to compute the matrix $A_{i..j}$; for the full problem, the lowest-cost way to compute $A_{1..n}$ would thus be m[1, n].

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} & \text{if } i < j. \end{cases}$$

- we define s[i, j] to be a value of k at which we split the product $A_i A_{i+1} \dots A_j$ in an optimal parenthesization.
- \Rightarrow s[i,j] = k if $m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$.

Step 3: Computing the Optimal Costs (1/3)

- The recursive algorithm also takes exponential time, which is no better than the brute-force method of checking each way of parenthesizing the product!
- → A recursive algorithm may encounter each subproblem many times in different branches of its recursion tree.
- → Instead of computing the solution to the recurrence recursively, we compute the optimal cost by using a tabular, bottom-up approach.

34

Step 3: Computing the Optimal Costs (2/3)

- We shall implement the tabular, bottom-up method in the procedure MATRIXCHAIN-ORDER.
 - It assumes that matrix A_i has dimensions $p_{i-1} \times p_i$ for i = 1, 2, ..., n.
 - Its input is a sequence $p = \langle p_0, p_1, ..., p_n \rangle$, where p.length = n + 1.
 - The procedure uses an auxiliary table m[1..n, 1..n] for storing the m[i,j] costs and another auxiliary table s[1..n-1, 2..n] that records which index of k achieved the optimal cost in computing m[i,j].
 - We shall use the table s to construct an optimal solution.

37

39

Step 3: Computing the Optimal Costs (3/3)

MATRIX-CHAIN-ORDER(p)

```
1 \quad n = p.length - 1
    let m[1..n, 1..n] and s[1..n-1, 2..n] be new tables
    for i = 1 to n
        m[i,i] = 0
                              // l is the chain length
    for l = 2 to n
        for i = 1 to n - l + 1
            j = i + l - 1
            m[i,j] = \infty
            for k = i to j - 1
                 q = m[i,k] + m[k+1,j] + p_{i-1}p_kp_i
                if q < m[i, j]
11
                     m[i,j] = q
                     s[i, j] = k
14 return m and s
```

Example (1/6)

matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimension	30×35	35×15	15 × 5	5 × 10	10×20	20×25
	•.0	m			S	
<i>m</i> 6∕1					6 1	0
				j	5	$\frac{2}{i}$
	5	2		4/		3
j	4	\times \wedge	3 i	3	\times	4 _
3 /	\times	\times		2 / /	$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	5
		\checkmark	4	$\langle X \rangle$	$\times \times$	
2		\wedge	5			V V
1/	XX	X	X	6		
0	0 0	X 0 X	0		Computes m	
	/		\backslash / \setminus	/ fo	or $i = 1, 2,$., <i>n</i>
Α,	A_{α} A_{α}	Δ	Δ	Δ		

Example (2/6)

