Topics in Differentiation

Exercise Set 3.1

1. (a)
$$1+y+x\frac{dy}{dx}-6x^2=0, \frac{dy}{dx}=\frac{6x^2-y-1}{x}.$$

(b)
$$y = \frac{2+2x^3-x}{x} = \frac{2}{x} + 2x^2 - 1, \frac{dy}{dx} = -\frac{2}{x^2} + 4x.$$

(c) From part (a),
$$\frac{dy}{dx} = 6x - \frac{1}{x} - \frac{1}{x}y = 6x - \frac{1}{x} - \frac{1}{x}\left(\frac{2}{x} + 2x^2 - 1\right) = 4x - \frac{2}{x^2}$$
.

3.
$$2x + 2y \frac{dy}{dx} = 0$$
 so $\frac{dy}{dx} = -\frac{x}{y}$

5.
$$x^2 \frac{dy}{dx} + 2xy + 3x(3y^2) \frac{dy}{dx} + 3y^3 - 1 = 0$$
, $(x^2 + 9xy^2) \frac{dy}{dx} = 1 - 2xy - 3y^3$, so $\frac{dy}{dx} = \frac{1 - 2xy - 3y^3}{x^2 + 9xy^2}$.

7.
$$-\frac{1}{2x^{3/2}} - \frac{\frac{dy}{dx}}{2y^{3/2}} = 0$$
, so $\frac{dy}{dx} = -\frac{y^{3/2}}{x^{3/2}}$.

9.
$$\cos(x^2y^2)\left[x^2(2y)\frac{dy}{dx} + 2xy^2\right] = 1$$
, so $\frac{dy}{dx} = \frac{1 - 2xy^2\cos(x^2y^2)}{2x^2y\cos(x^2y^2)}$.

11.
$$3\tan^2(xy^2+y)\sec^2(xy^2+y)\left(2xy\frac{dy}{dx}+y^2+\frac{dy}{dx}\right)=1$$
, so $\frac{dy}{dx}=\frac{1-3y^2\tan^2(xy^2+y)\sec^2(xy^2+y)}{3(2xy+1)\tan^2(xy^2+y)\sec^2(xy^2+y)}$.

13.
$$4x - 6y \frac{dy}{dx} = 0$$
, $\frac{dy}{dx} = \frac{2x}{3y}$, $4 - 6\left(\frac{dy}{dx}\right)^2 - 6y \frac{d^2y}{dx^2} = 0$, so $\frac{d^2y}{dx^2} = -\frac{3\left(\frac{dy}{dx}\right)^2 - 2}{3y} = \frac{2(3y^2 - 2x^2)}{9y^3} = -\frac{8}{9y^3}$.

15.
$$\frac{dy}{dx} = -\frac{y}{x}$$
, $\frac{d^2y}{dx^2} = -\frac{x(dy/dx) - y(1)}{x^2} = -\frac{x(-y/x) - y}{x^2} = \frac{2y}{x^2}$.

17.
$$\frac{dy}{dx} = (1 + \cos y)^{-1}, \ \frac{d^2y}{dx^2} = -(1 + \cos y)^{-2}(-\sin y)\frac{dy}{dx} = \frac{\sin y}{(1 + \cos y)^3}.$$

19. By implicit differentiation,
$$2x + 2y(dy/dx) = 0$$
, $\frac{dy}{dx} = -\frac{x}{y}$; at $(1/2, \sqrt{3}/2)$, $\frac{dy}{dx} = -\sqrt{3}/3$; at $(1/2, -\sqrt{3}/2)$, $\frac{dy}{dx} = +\sqrt{3}/3$. Directly, at the upper point $y = \sqrt{1-x^2}$, $\frac{dy}{dx} = \frac{-x}{\sqrt{1-x^2}} = -\frac{1/2}{\sqrt{3/4}} = -1/\sqrt{3}$ and at the lower point $y = -\sqrt{1-x^2}$, $\frac{dy}{dx} = \frac{x}{\sqrt{1-x^2}} = +1/\sqrt{3}$.

21. False; $x = y^2$ defines two functions $y = \pm \sqrt{x}$. See Definition 3.1.1.

23. False; the equation is equivalent to $x^2 = y^2$ which is satisfied by y = |x|.

25.
$$4x^3 + 4y^3 \frac{dy}{dx} = 0$$
, so $\frac{dy}{dx} = -\frac{x^3}{y^3} = -\frac{1}{15^{3/4}} \approx -0.1312$.

27.
$$4(x^2+y^2)\left(2x+2y\frac{dy}{dx}\right)=25\left(2x-2y\frac{dy}{dx}\right), \ \frac{dy}{dx}=\frac{x[25-4(x^2+y^2)]}{y[25+4(x^2+y^2)]}; \ \text{at} \ (3,1) \ \frac{dy}{dx}=-9/13.$$

29.
$$4a^3 \frac{da}{dt} - 4t^3 = 6\left(a^2 + 2at\frac{da}{dt}\right)$$
, solve for $\frac{da}{dt}$ to get $\frac{da}{dt} = \frac{2t^3 + 3a^2}{2a^3 - 6at}$.

31.
$$2a^2\omega \frac{d\omega}{d\lambda} + 2b^2\lambda = 0$$
, so $\frac{d\omega}{d\lambda} = -\frac{b^2\lambda}{a^2\omega}$

33. $2x + x\frac{dy}{dx} + y + 2y\frac{dy}{dx} = 0$. Substitute y = -2x to obtain $-3x\frac{dy}{dx} = 0$. Since $x = \pm 1$ at the indicated points, $\frac{dy}{dx} = 0$ there.

35. (a)

- (b) Implicit differentiation of the curve yields $(4y^3 + 2y)\frac{dy}{dx} = 2x 1$, so $\frac{dy}{dx} = 0$ only if x = 1/2 but $y^4 + y^2 \ge 0$ so x = 1/2 is impossible.
- (c) $x^2 x (y^4 + y^2) = 0$, so by the Quadratic Formula, $x = \frac{-1 \pm \sqrt{(2y^2 + 1)^2}}{2} = 1 + y^2$ or $-y^2$, and we have the two parabolas $x = -y^2$, $x = 1 + y^2$.
- **37.** The point (1,1) is on the graph, so 1+a=b. The slope of the tangent line at (1,1) is -4/3; use implicit differentiation to get $\frac{dy}{dx}=-\frac{2xy}{x^2+2ay}$ so at (1,1), $-\frac{2}{1+2a}=-\frac{4}{3}$, 1+2a=3/2, a=1/4 and hence b=1+1/4=5/4.
- **39.** We shall find when the curves intersect and check that the slopes are negative reciprocals. For the intersection solve the simultaneous equations $x^2 + (y c)^2 = c^2$ and $(x k)^2 + y^2 = k^2$ to obtain $cy = kx = \frac{1}{2}(x^2 + y^2)$. Thus $x^2 + y^2 = cy + kx$, or $y^2 cy = -x^2 + kx$, and $\frac{y c}{x} = -\frac{x k}{y}$. Differentiating the two families yields (black) $\frac{dy}{dx} = -\frac{x}{y c}$, and (gray) $\frac{dy}{dx} = -\frac{x k}{y}$. But it was proven that these quantities are negative reciprocals of each other.

Exercise Set 3.2 45

- 41. (a)
 - **(b)** $x \approx 0.84$
 - (c) Use implicit differentiation to get $dy/dx = (2y 3x^2)/(3y^2 2x)$, so dy/dx = 0 if $y = (3/2)x^2$. Substitute this into $x^3 2xy + y^3 = 0$ to obtain $27x^6 16x^3 = 0$, $x^3 = 16/27$, $x = 2^{4/3}/3$ and hence $y = 2^{5/3}/3$.
- **43.** By the chain rule, $\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx}$. Using implicit differentiation for $2y^3t + t^3y = 1$ we get $\frac{dy}{dt} = -\frac{2y^3 + 3t^2y}{6ty^2 + t^3}$, but $\frac{dt}{dx} = \frac{1}{\cos t}$, so $\frac{dy}{dx} = -\frac{2y^3 + 3t^2y}{(6ty^2 + t^3)\cos t}$.

- 1. $\frac{1}{5x}(5) = \frac{1}{x}$.
- 3. $\frac{1}{1+x}$.
- 5. $\frac{1}{x^2-1}(2x) = \frac{2x}{x^2-1}$.
- 7. $\frac{d}{dx} \ln x \frac{d}{dx} \ln(1+x^2) = \frac{1}{x} \frac{2x}{1+x^2} = \frac{1-x^2}{x(1+x^2)}$.
- **9.** $\frac{d}{dx}(2\ln x) = 2\frac{d}{dx}\ln x = \frac{2}{x}$.
- 11. $\frac{1}{2}(\ln x)^{-1/2}\left(\frac{1}{x}\right) = \frac{1}{2x\sqrt{\ln x}}$.
- **13.** $\ln x + x \frac{1}{x} = 1 + \ln x$.
- **15.** $2x \log_2(3-2x) + \frac{-2x^2}{(\ln 2)(3-2x)}$.
- 17. $\frac{2x(1+\log x)-x/(\ln 10)}{(1+\log x)^2}$.
- $19. \ \frac{1}{\ln x} \left(\frac{1}{x} \right) = \frac{1}{x \ln x}.$
- 21. $\frac{1}{\tan x}(\sec^2 x) = \sec x \csc x.$
- **23.** $-\sin(\ln x)\frac{1}{x}$.

25.
$$\frac{1}{\ln 10 \sin^2 x} (2 \sin x \cos x) = 2 \frac{\cot x}{\ln 10}$$

27.
$$\frac{d}{dx} \left[3\ln(x-1) + 4\ln(x^2+1) \right] = \frac{3}{x-1} + \frac{8x}{x^2+1} = \frac{11x^2 - 8x + 3}{(x-1)(x^2+1)}.$$

29.
$$\frac{d}{dx} \left[\ln \cos x - \frac{1}{2} \ln(4 - 3x^2) \right] = -\tan x + \frac{3x}{4 - 3x^2}$$

- **31.** True, because $\frac{dy}{dx} = \frac{1}{x}$, so as $x = a \to 0^+$, the slope approaches infinity.
- **33.** True; if x > 0 then $\frac{d}{dx} \ln |x| = 1/x$; if x < 0 then $\frac{d}{dx} \ln |x| = 1/x$.

35.
$$\ln|y| = \ln|x| + \frac{1}{3}\ln|1 + x^2|$$
, so $\frac{dy}{dx} = x\sqrt[3]{1 + x^2} \left[\frac{1}{x} + \frac{2x}{3(1 + x^2)} \right]$.

37.
$$\ln|y| = \frac{1}{3} \ln|x^2 - 8| + \frac{1}{2} \ln|x^3 + 1| - \ln|x^6 - 7x + 5|$$
, so
$$\frac{dy}{dx} = \frac{(x^2 - 8)^{1/3} \sqrt{x^3 + 1}}{x^6 - 7x + 5} \left[\frac{2x}{3(x^2 - 8)} + \frac{3x^2}{2(x^3 + 1)} - \frac{6x^5 - 7}{x^6 - 7x + 5} \right].$$

39. (a)
$$\log_x e = \frac{\ln e}{\ln x} = \frac{1}{\ln x}$$
, so $\frac{d}{dx}[\log_x e] = -\frac{1}{x(\ln x)^2}$.

(b)
$$\log_x 2 = \frac{\ln 2}{\ln x}$$
, so $\frac{d}{dx}[\log_x 2] = -\frac{\ln 2}{x(\ln x)^2}$.

41.
$$f'(x_0) = \frac{1}{x_0} = e$$
, $y - (-1) = e(x - x_0) = ex - 1$, $y = ex - 2$.

43.
$$f(x_0) = f(-e) = 1$$
, $f'(x)|_{x=-e} = -\frac{1}{e}$, $y - 1 = -\frac{1}{e}(x+e)$, $y = -\frac{1}{e}x$.

- **45.** (a) Let the equation of the tangent line be y=mx and suppose that it meets the curve at (x_0,y_0) . Then $m=\frac{1}{x}\Big|_{x=x_0}=\frac{1}{x_0}$ and $y_0=mx_0+b=\ln x_0$. So $m=\frac{1}{x_0}=\frac{\ln x_0}{x_0}$ and $\ln x_0=1, x_0=e, m=\frac{1}{e}$ and the equation of the tangent line is $y=\frac{1}{e}x$.
 - (b) Let y = mx + b be a line tangent to the curve at (x_0, y_0) . Then b is the y-intercept and the slope of the tangent line is $m = \frac{1}{x_0}$. Moreover, at the point of tangency, $mx_0 + b = \ln x_0$ or $\frac{1}{x_0}x_0 + b = \ln x_0$, $b = \ln x_0 1$, as required.
- **47.** The area of the triangle PQR is given by the formula |PQ||QR|/2. |PQ|=w, and, by Exercise 45 part (b), |QR|=1, so the area is w/2.

Exercise Set 3.3 47

49. If
$$x = 0$$
 then $y = \ln e = 1$, and $\frac{dy}{dx} = \frac{1}{x+e}$. But $e^y = x + e$, so $\frac{dy}{dx} = \frac{1}{e^y} = e^{-y}$.

- **51.** Let $y = \ln(x+a)$. Following Exercise 49 we get $\frac{dy}{dx} = \frac{1}{x+a} = e^{-y}$, and when $x = 0, y = \ln(a) = 0$ if a = 1, so let a = 1, then $y = \ln(x+1)$.
- **53.** (a) Set $f(x) = \ln(1+3x)$. Then $f'(x) = \frac{3}{1+3x}$, f'(0) = 3. But $f'(0) = \lim_{x \to 0} \frac{f(x) f(0)}{x} = \lim_{x \to 0} \frac{\ln(1+3x)}{x}$.
 - **(b)** Set $f(x) = \ln(1 5x)$. Then $f'(x) = \frac{-5}{1 5x}$, f'(0) = -5. But $f'(0) = \lim_{x \to 0} \frac{f(x) f(0)}{x} = \lim_{x \to 0} \frac{\ln(1 5x)}{x}$.
- **55.** (a) Let $f(x) = \ln(\cos x)$, then $f(0) = \ln(\cos 0) = \ln 1 = 0$, so $f'(0) = \lim_{x \to 0} \frac{f(x) f(0)}{x} = \lim_{x \to 0} \frac{\ln(\cos x)}{x}$, and $f'(0) = -\tan 0 = 0$.
 - (b) Let $f(x) = x^{\sqrt{2}}$, then f(1) = 1, so $f'(1) = \lim_{h \to 0} \frac{f(1+h) f(1)}{h} = \lim_{h \to 0} \frac{(1+h)^{\sqrt{2}} 1}{h}$, and $f'(x) = \sqrt{2}x^{\sqrt{2}-1}$, $f'(1) = \sqrt{2}$.
- **57.** Differentiating implicitly gives $0 = \frac{1}{p} \frac{dp}{dt} \frac{1}{2.3 0.0046p} (-0.0046) \frac{dp}{dt} 2.3$, from which $\frac{dp}{dt} = 0.0046p(500 p)$ as claimed.

- 1. (a) $f'(x) = 5x^4 + 3x^2 + 1 \ge 1$ so f is increasing and one-to-one on $-\infty < x < +\infty$.
 - **(b)** f(1) = 3 so $1 = f^{-1}(3)$; $\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$, $(f^{-1})'(3) = \frac{1}{f'(1)} = \frac{1}{9}$.
- 3. $f^{-1}(x) = \frac{2}{x} 3$, so directly $\frac{d}{dx}f^{-1}(x) = -\frac{2}{x^2}$. Using Formula (2), $f'(x) = \frac{-2}{(x+3)^2}$, so $\frac{1}{f'(f^{-1}(x))} = -(1/2)(f^{-1}(x) + 3)^2$, and $\frac{d}{dx}f^{-1}(x) = -(1/2)\left(\frac{2}{x}\right)^2 = -\frac{2}{x^2}$.
- **5.** (a) f'(x) = 2x + 8; f' < 0 on $(-\infty, -4)$ and f' > 0 on $(-4, +\infty)$; not enough information. By inspection, f(1) = 10 = f(-9), so not one-to-one.
 - (b) $f'(x) = 10x^4 + 3x^2 + 3 \ge 3 > 0$; f'(x) is positive for all x, so f is one-to-one.
 - (c) $f'(x) = 2 + \cos x \ge 1 > 0$ for all x, so f is one-to-one.
 - (d) $f'(x) = -(\ln 2) \left(\frac{1}{2}\right)^x < 0$ because $\ln 2 > 0$, so f is one-to-one for all x.
- 7. $y = f^{-1}(x)$, $x = f(y) = 5y^3 + y 7$, $\frac{dx}{dy} = 15y^2 + 1$, $\frac{dy}{dx} = \frac{1}{15y^2 + 1}$; check: $1 = 15y^2 \frac{dy}{dx} + \frac{dy}{dx}$, $\frac{dy}{dx} = \frac{1}{15y^2 + 1}$.
- **9.** $y = f^{-1}(x)$, $x = f(y) = 2y^5 + y^3 + 1$, $\frac{dx}{dy} = 10y^4 + 3y^2$, $\frac{dy}{dx} = \frac{1}{10y^4 + 3y^2}$; check: $1 = 10y^4 \frac{dy}{dx} + 3y^2 \frac{dy}{dx}$, $\frac{dy}{dx} = \frac{1}{10y^4 + 3y^2}$.
- 11. Let P(a, b) be given, not on the line y = x. Let Q_1 be its reflection across the line y = x, yet to be determined. Let Q have coordinates (b, a).

(a) Since P does not lie on y=x, we have $a \neq b$, i.e. $P \neq Q$ since they have different abscissas. The line \overrightarrow{PQ} has slope (b-a)/(a-b)=-1 which is the negative reciprocal of m=1 and so the two lines are perpendicular.

- (b) Let (c,d) be the midpoint of the segment PQ. Then c=(a+b)/2 and d=(b+a)/2 so c=d and the midpoint is on y=x.
- (c) Let Q(c,d) be the reflection of P through y=x. By definition this means P and Q lie on a line perpendicular to the line y=x and the midpoint of P and Q lies on y=x.
- (d) Since the line through P and Q is perpendicular to the line y = x it is parallel to the line through P and Q_1 ; since both pass through P they are the same line. Finally, since the midpoints of P and Q_1 and of P and Q both lie on y = x, they are the same point, and consequently $Q = Q_1$.
- 13. If x < y then $f(x) \le f(y)$ and $g(x) \le g(y)$; thus $f(x) + g(x) \le f(y) + g(y)$. Moreover, $g(x) \le g(y)$, so $f(g(x)) \le f(g(y))$. Note that f(x)g(x) need not be increasing, e.g. f(x) = g(x) = x, both increasing for all x, yet $f(x)g(x) = x^2$, not an increasing function.
- 15. $\frac{dy}{dx} = 7e^{7x}$.
- 17. $\frac{dy}{dx} = x^3 e^x + 3x^2 e^x = x^2 e^x (x+3).$
- $\mathbf{19.} \ \frac{dy}{dx} = \frac{(e^x + e^{-x})(e^x + e^{-x}) (e^x e^{-x})(e^x e^{-x})}{(e^x + e^{-x})^2} = \frac{(e^{2x} + 2 + e^{-2x}) (e^{2x} 2 + e^{-2x})}{(e^x + e^{-x})^2} = 4/(e^x + e^{-x})^2.$
- 21. $\frac{dy}{dx} = (x \sec^2 x + \tan x)e^{x \tan x}.$
- **23.** $\frac{dy}{dx} = (1 3e^{3x})e^{(x e^{3x})}$.
- **25.** $\frac{dy}{dx} = \frac{(x-1)e^{-x}}{1-xe^{-x}} = \frac{x-1}{e^x-x}.$
- **27.** $f'(x) = 2^x \ln 2$; $y = 2^x$, $\ln y = x \ln 2$, $\frac{1}{y}y' = \ln 2$, $y' = y \ln 2 = 2^x \ln 2$.
- **29.** $f'(x) = \pi^{\sin x} (\ln \pi) \cos x$; $y = \pi^{\sin x}$, $\ln y = (\sin x) \ln \pi$, $\frac{1}{y} y' = (\ln \pi) \cos x$, $y' = \pi^{\sin x} (\ln \pi) \cos x$.
- **31.** $\ln y = (\ln x) \ln(x^3 2x), \ \frac{1}{y} \frac{dy}{dx} = \frac{3x^2 2}{x^3 2x} \ln x + \frac{1}{x} \ln(x^3 2x), \ \frac{dy}{dx} = (x^3 2x)^{\ln x} \left[\frac{3x^2 2}{x^3 2x} \ln x + \frac{1}{x} \ln(x^3 2x) \right].$
- **33.** $\ln y = (\tan x) \ln(\ln x), \ \frac{1}{y} \frac{dy}{dx} = \frac{1}{x \ln x} \tan x + (\sec^2 x) \ln(\ln x), \ \frac{dy}{dx} = (\ln x)^{\tan x} \left[\frac{\tan x}{x \ln x} + (\sec^2 x) \ln(\ln x) \right].$
- $\textbf{35.} \ \ln y = (\ln x)(\ln(\ln x)), \\ \frac{dy/dx}{y} = (1/x)(\ln(\ln x)) + (\ln x)\frac{1/x}{\ln x} = (1/x)(1+\ln(\ln x)), \\ dy/dx = \frac{1}{x}(\ln x)^{\ln x}(1+\ln\ln x).$
- **37.** $\frac{dy}{dx} = (3x^2 4x)e^x + (x^3 2x^2 + 1)e^x = (x^3 + x^2 4x + 1)e^x$.
- **39.** $\frac{dy}{dx} = (2x + \frac{1}{2\sqrt{x}})3^x + (x^2 + \sqrt{x})3^x \ln 3.$

Exercise Set 3.3 49

41.
$$\frac{dy}{dx} = 4^{3\sin x - e^x} \ln 4(3\cos x - e^x).$$

43.
$$\frac{dy}{dx} = \frac{3}{\sqrt{1 - (3x)^2}} = \frac{3}{\sqrt{1 - 9x^2}}.$$

45.
$$\frac{dy}{dx} = \frac{1}{\sqrt{1 - 1/x^2}}(-1/x^2) = -\frac{1}{|x|\sqrt{x^2 - 1}}.$$

47.
$$\frac{dy}{dx} = \frac{3x^2}{1 + (x^3)^2} = \frac{3x^2}{1 + x^6}.$$

49.
$$y = 1/\tan x = \cot x$$
, $dy/dx = -\csc^2 x$.

51.
$$\frac{dy}{dx} = \frac{e^x}{|x|\sqrt{x^2 - 1}} + e^x \sec^{-1} x.$$

53.
$$\frac{dy}{dx} = 0.$$

55.
$$\frac{dy}{dx} = 0.$$

57.
$$\frac{dy}{dx} = -\frac{1}{1+x} \left(\frac{1}{2} x^{-1/2} \right) = -\frac{1}{2(1+x)\sqrt{x}}.$$

59. False;
$$y = Ae^x$$
 also satisfies $\frac{dy}{dx} = y$.

61. True; examine the cases x > 0 and x < 0 separately.

63. (a) Let
$$x = f(y) = \cot y$$
, $0 < y < \pi$, $-\infty < x < +\infty$. Then f is differentiable and one-to-one and $f'(f^{-1}(x)) = -\csc^2(\cot^{-1}x) = -x^2 - 1 \neq 0$, and $\frac{d}{dx}[\cot^{-1}x]\Big|_{x=0} = \lim_{x\to 0} \frac{1}{f'(f^{-1}(x))} = -\lim_{x\to 0} \frac{1}{x^2 + 1} = -1$.

(b) If $x \neq 0$ then, from Exercise 48(a) of Section 0.4, $\frac{d}{dx} \cot^{-1} x = \frac{d}{dx} \tan^{-1} \frac{1}{x} = -\frac{1}{x^2} \frac{1}{1 + (1/x)^2} = -\frac{1}{x^2 + 1}$. For x = 0, part (a) shows the same; thus for $-\infty < x < +\infty$, $\frac{d}{dx} [\cot^{-1} x] = -\frac{1}{x^2 + 1}$.

(c) For
$$-\infty < u < +\infty$$
, by the chain rule it follows that $\frac{d}{dx}[\cot^{-1}u] = -\frac{1}{u^2+1}\frac{du}{dx}$.

65.
$$x^3 + x \tan^{-1} y = e^y$$
, $3x^2 + \frac{x}{1+y^2}y' + \tan^{-1} y = e^y y'$, $y' = \frac{(3x^2 + \tan^{-1} y)(1+y^2)}{(1+y^2)e^y - x}$.

67. (a)
$$f(x) = x^3 - 3x^2 + 2x = x(x-1)(x-2)$$
 so $f(0) = f(1) = f(2) = 0$ thus f is not one-to-one.

(b) $f'(x) = 3x^2 - 6x + 2$, f'(x) = 0 when $x = \frac{6 \pm \sqrt{36 - 24}}{6} = 1 \pm \sqrt{3}/3$. f'(x) > 0 (f is increasing) if $x < 1 - \sqrt{3}/3$, f'(x) < 0 (f is decreasing) if $1 - \sqrt{3}/3 < x < 1 + \sqrt{3}/3$, so f(x) takes on values less than $f(1 - \sqrt{3}/3)$ on both sides of $1 - \sqrt{3}/3$ thus $1 - \sqrt{3}/3$ is the largest value of k.

69. (a)
$$f'(x) = 4x^3 + 3x^2 = (4x + 3)x^2 = 0$$
 only at $x = 0$. But on $[0, 2]$, f' has no sign change, so f is one-to-one.

(b)
$$F'(x) = 2f'(2g(x))g'(x)$$
 so $F'(3) = 2f'(2g(3))g'(3)$. By inspection $f(1) = 3$, so $g(3) = f^{-1}(3) = 1$ and $g'(3) = (f^{-1})'(3) = 1/f'(f^{-1}(3)) = 1/f'(1) = 1/7$ because $f'(x) = 4x^3 + 3x^2$. Thus $F'(3) = 2f'(2)(1/7) = 1/3$

2(44)(1/7) = 88/7. $F(3) = f(2g(3)) = f(2 \cdot 1) = f(2) = 25$, so the line tangent to F(x) at (3, 25) has the equation y - 25 = (88/7)(x - 3), y = (88/7)x - 89/7.

- **71.** $y = Ae^{kt}$, $dy/dt = kAe^{kt} = k(Ae^{kt}) = ky$
- 73. (a) $y' = -xe^{-x} + e^{-x} = e^{-x}(1-x), xy' = xe^{-x}(1-x) = y(1-x).$
 - (b) $y' = -x^2 e^{-x^2/2} + e^{-x^2/2} = e^{-x^2/2} (1 x^2)$, $xy' = x e^{-x^2/2} (1 x^2) = y(1 x^2)$.

- 75. (a)
 - (b) The percentage converges to 100%, full coverage of broadband internet access. The limit of the expression in the denominator is clearly 53 as $t \to \infty$.

- (c) The rate converges to 0 according to the graph.
- 77. $f(x) = e^{3x}, f'(0) = \lim_{x \to 0} \frac{f(x) f(0)}{x 0} = 3e^{3x} \big|_{x = 0} = 3.$
- **79.** $\lim_{h \to 0} \frac{10^h 1}{h} = \frac{d}{dx} 10^x \bigg|_{x=0} = \frac{d}{dx} e^{x \ln 10} \bigg|_{x=0} = \ln 10.$
- **81.** $\lim_{\Delta x \to 0} \frac{9[\sin^{-1}(\frac{\sqrt{3}}{2} + \Delta x)]^2 \pi^2}{\Delta x} = \frac{d}{dx}(3\sin^{-1}x)^2 \bigg|_{x = \frac{\sqrt{3}}{2}} = 2(3\sin^{-1}x)\frac{3}{\sqrt{1 x^2}}\bigg|_{x = \frac{\sqrt{3}}{2}} = 2(3\frac{\pi}{3})\frac{3}{\sqrt{1 (3/4)}} = 12\pi.$
- 83. $\lim_{k \to 0^+} 9.8 \frac{1 e^{-kt}}{k} = 9.8 \lim_{k \to 0^+} \frac{1 e^{-kt}}{k} = 9.8 \frac{d}{dk} (-e^{-kt}) \Big|_{k=0} = 9.8 t$, so if the fluid offers no resistance, then the speed will increase at a constant rate of 9.8 m/s²

$$1. \ \frac{dy}{dt} = 3\frac{dx}{dt}$$

(a)
$$\frac{dy}{dt} = 3(2) = 6.$$
 (b)

(a)
$$\frac{dy}{dt} = 3(2) = 6$$
. (b) $-1 = 3\frac{dx}{dt}, \frac{dx}{dt} = -\frac{1}{3}$.

$$3. 8x\frac{dx}{dt} + 18y\frac{dy}{dt} = 0$$

(a)
$$8\frac{1}{2\sqrt{2}} \cdot 3 + 18\frac{1}{3\sqrt{2}}\frac{dy}{dt} = 0, \frac{dy}{dt} = -2$$

(a)
$$8\frac{1}{2\sqrt{2}} \cdot 3 + 18\frac{1}{3\sqrt{2}}\frac{dy}{dt} = 0$$
, $\frac{dy}{dt} = -2$. (b) $8\left(\frac{1}{3}\right)\frac{dx}{dt} - 18\frac{\sqrt{5}}{9} \cdot 8 = 0$, $\frac{dx}{dt} = 6\sqrt{5}$.

Exercise Set 3.4 51

- 5. (b) $A = x^2$.
 - (c) $\frac{dA}{dt} = 2x\frac{dx}{dt}$.
 - (d) Find $\frac{dA}{dt}\Big|_{x=3}$ given that $\frac{dx}{dt}\Big|_{x=3} = 2$. From part (c), $\frac{dA}{dt}\Big|_{x=3} = 2(3)(2) = 12$ ft²/min.
- 7. (a) $V = \pi r^2 h$, so $\frac{dV}{dt} = \pi \left(r^2 \frac{dh}{dt} + 2rh \frac{dr}{dt} \right)$.
 - (b) Find $\frac{dV}{dt}\Big|_{\substack{h=6, \\ r=10}}$ given that $\frac{dh}{dt}\Big|_{\substack{h=6, \\ r=10}} = 1$ and $\frac{dr}{dt}\Big|_{\substack{h=6, \\ r=10}} = -1$. From part (a), $\frac{dV}{dt}\Big|_{\substack{h=6, \\ r=10}} = \pi[10^2(1) + 2(10)(6)(-1)] = -20\pi$ in³/s; the volume is decreasing.
- **9.** (a) $\tan \theta = \frac{y}{x}$, so $\sec^2 \theta \frac{d\theta}{dt} = \frac{x \frac{dy}{dt} y \frac{dx}{dt}}{x^2}$, $\frac{d\theta}{dt} = \frac{\cos^2 \theta}{x^2} \left(x \frac{dy}{dt} y \frac{dx}{dt} \right)$
 - (b) Find $\frac{d\theta}{dt}\Big|_{\substack{x=2, \ y=2}}$ given that $\frac{dx}{dt}\Big|_{\substack{x=2, \ y=2}} = 1$ and $\frac{dy}{dt}\Big|_{\substack{x=2, \ y=2}} = -\frac{1}{4}$. When x=2 and y=2, $\tan\theta = 2/2 = 1$ so $\theta = \frac{\pi}{4}$ and $\cos\theta = \cos\frac{\pi}{4} = \frac{1}{\sqrt{2}}$. Thus from part (a), $\frac{d\theta}{dt}\Big|_{\substack{x=2, \ y=2}} = \frac{(1/\sqrt{2})^2}{2^2} \left[2\left(-\frac{1}{4}\right) 2(1)\right] = -\frac{5}{16}$ rad/s; θ is decreasing.
- 11. Let A be the area swept out, and θ the angle through which the minute hand has rotated. Find $\frac{dA}{dt}$ given that $\frac{d\theta}{dt} = \frac{\pi}{30}$ rad/min; $A = \frac{1}{2}r^2\theta = 8\theta$, so $\frac{dA}{dt} = 8\frac{d\theta}{dt} = \frac{4\pi}{15}$ in²/min.
- 13. Find $\frac{dr}{dt}\Big|_{A=9}$ given that $\frac{dA}{dt}=6$. From $A=\pi r^2$ we get $\frac{dA}{dt}=2\pi r\frac{dr}{dt}$ so $\frac{dr}{dt}=\frac{1}{2\pi r}\frac{dA}{dt}$. If A=9 then $\pi r^2=9$, $r=3/\sqrt{\pi}$ so $\frac{dr}{dt}\Big|_{A=9}=\frac{1}{2\pi(3/\sqrt{\pi})}(6)=1/\sqrt{\pi}$ mi/h.
- **15.** Find $\frac{dV}{dt}\Big|_{r=9}$ given that $\frac{dr}{dt} = -15$. From $V = \frac{4}{3}\pi r^3$ we get $\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}$ so $\frac{dV}{dt}\Big|_{r=9} = 4\pi (9)^2 (-15) = -4860\pi$. Air must be removed at the rate of 4860π cm³/min.
- 17. Find $\frac{dx}{dt}\Big|_{y=5}$ given that $\frac{dy}{dt} = -2$. From $x^2 + y^2 = 13^2$ we get $2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 0$ so $\frac{dx}{dt} = -\frac{y}{x}\frac{dy}{dt}$. Use $x^2 + y^2 = 169$ to find that x = 12 when y = 5 so $\frac{dx}{dt}\Big|_{y=5} = -\frac{5}{12}(-2) = \frac{5}{6}$ ft/s.

19. Let x denote the distance from first base and y the distance from home plate. Then $x^2 + 60^2 = y^2$ and $2x \frac{dx}{dt} = 2y \frac{dy}{dt}$.

When x = 50 then $y = 10\sqrt{61}$ so $\frac{dy}{dt} = \frac{x}{y}\frac{dx}{dt} = \frac{50}{10\sqrt{61}}(25) = \frac{125}{\sqrt{61}}$ ft/s.

21. Find $\frac{dy}{dt}\Big|_{x=4000}$ given that $\frac{dx}{dt}\Big|_{x=4000} = 880$. From $y^2 = x^2 + 3000^2$ we get $2y\frac{dy}{dt} = 2x\frac{dx}{dt}$ so $\frac{dy}{dt} = \frac{x}{y}\frac{dx}{dt}$. If x = 4000, then y = 5000 so $\frac{dy}{dt}\Big|_{x=4000} = \frac{4000}{5000}(880) = 704$ ft/s.

- **23.** (a) If x denotes the altitude, then r-x=3960, the radius of the Earth. $\theta=0$ at perigee, so $r=4995/1.12\approx4460$; the altitude is x=4460-3960=500 miles. $\theta=\pi$ at apogee, so $r=4995/0.88\approx5676$; the altitude is x=5676-3960=1716 miles.
 - (b) If $\theta = 120^{\circ}$, then $r = 4995/0.94 \approx 5314$; the altitude is 5314 3960 = 1354 miles. The rate of change of the altitude is given by $\frac{dx}{dt} = \frac{dr}{dt} = \frac{dr}{d\theta} \frac{d\theta}{dt} = \frac{4995(0.12 \sin \theta)}{(1 + 0.12 \cos \theta)^2} \frac{d\theta}{dt}$. Use $\theta = 120^{\circ}$ and $d\theta/dt = 2.7^{\circ}/\min = (2.7)(\pi/180)$ rad/min to get $dr/dt \approx 27.7$ mi/min.
- **25.** Find $\frac{dh}{dt}\Big|_{h=16}$ given that $\frac{dV}{dt} = 20$. The volume of water in the tank at a depth h is $V = \frac{1}{3}\pi r^2 h$. Use similar triangles (see figure) to get $\frac{r}{h} = \frac{10}{24}$ so $r = \frac{5}{12}h$ thus $V = \frac{1}{3}\pi \left(\frac{5}{12}h\right)^2 h = \frac{25}{432}\pi h^3$, $\frac{dV}{dt} = \frac{25}{144}\pi h^2 \frac{dh}{dt}$; $\frac{dh}{dt} = \frac{144}{25\pi h^2} \frac{dV}{dt}$, $\frac{dh}{dt}\Big|_{h=16} = \frac{144}{25\pi (16)^2} (20) = \frac{9}{20\pi}$ ft/min.

27. Find $\frac{dV}{dt}\Big|_{h=10}$ given that $\frac{dh}{dt} = 5$. $V = \frac{1}{3}\pi r^2 h$, but $r = \frac{1}{2}h$ so $V = \frac{1}{3}\pi \left(\frac{h}{2}\right)^2 h = \frac{1}{12}\pi h^3$, $\frac{dV}{dt} = \frac{1}{4}\pi h^2 \frac{dh}{dt}$, $\frac{dV}{dt}\Big|_{h=10} = \frac{1}{4}\pi (10)^2 (5) = 125\pi$ ft³/min.

Exercise Set 3.4 53

29. With s and h as shown in the figure, we want to find $\frac{dh}{dt}$ given that $\frac{ds}{dt} = 500$. From the figure, $h = s \sin 30^{\circ} = \frac{1}{2}s \sin 30^{\circ} = \frac{1}{2}s$

31. Find $\frac{dy}{dt}$ given that $\frac{dx}{dt}\Big|_{y=125} = -12$. From $x^2 + 10^2 = y^2$ we get $2x\frac{dx}{dt} = 2y\frac{dy}{dt}$ so $\frac{dy}{dt} = \frac{x}{y}\frac{dx}{dt}$. Use $x^2 + 100 = y^2$ to find that $x = \sqrt{15,525} = 15\sqrt{69}$ when y = 125 so $\frac{dy}{dt} = \frac{15\sqrt{69}}{125}(-12) = -\frac{36\sqrt{69}}{25}$. The rope must be pulled at the rate of $\frac{36\sqrt{69}}{25}$ ft/min.

33. Find $\frac{dx}{dt}\Big|_{\theta=\pi/4}$ given that $\frac{d\theta}{dt} = \frac{2\pi}{10} = \frac{\pi}{5}$ rad/s. Then $x = 4\tan\theta$ (see figure) so $\frac{dx}{dt} = 4\sec^2\theta \frac{d\theta}{dt}$, $\frac{dx}{dt}\Big|_{\theta=\pi/4} = 4\sec^2\frac{\pi}{4}\left(\sec^2\frac{\pi}{4}\right)\left(\frac{\pi}{5}\right) = 8\pi/5$ km/s.

35. We wish to find $\frac{dz}{dt}\Big|_{\substack{x=2,\y=4}}$ given $\frac{dx}{dt} = -600$ and $\frac{dy}{dt}\Big|_{\substack{x=2,\y=4}} = -1200$ (see figure). From the law of cosines, $z^2 = x^2 + y^2 - 2xy \cos 120^\circ = x^2 + y^2 - 2xy(-1/2) = x^2 + y^2 + xy$, so $2z\frac{dz}{dt} = 2x\frac{dx}{dt} + 2y\frac{dy}{dt} + x\frac{dy}{dt} + y\frac{dx}{dt}$, $\frac{dz}{dt} = \frac{1}{2z}\left[(2x+y)\frac{dx}{dt} + (2y+x)\frac{dy}{dt}\right]$. When x = 2 and y = 4, $z^2 = 2^2 + 4^2 + (2)(4) = 28$, so $z = \sqrt{28} = 2\sqrt{7}$, thus $\frac{dz}{dt}\Big|_{\substack{x=2,\y=4}} = \frac{1}{2(2\sqrt{7})}[(2(2)+4)(-600)+(2(4)+2)(-1200)] = -\frac{4200}{\sqrt{7}} = -600\sqrt{7}$ mi/h; the distance between missile

and aircraft is decreasing at the rate of $600\sqrt{7}$ mi/h.

- 37. (a) We want $\frac{dy}{dt}\Big|_{\substack{x=1, \ y=2}}$ given that $\frac{dx}{dt}\Big|_{\substack{x=1, \ y=2}} = 6$. For convenience, first rewrite the equation as $xy^3 = \frac{8}{5} + \frac{8}{5}y^2$ then $3xy^2\frac{dy}{dt} + y^3\frac{dx}{dt} = \frac{16}{5}y\frac{dy}{dt}$, $\frac{dy}{dt} = \frac{y^3}{\frac{16}{5}y 3xy^2}\frac{dx}{dt}$, so $\frac{dy}{dt}\Big|_{\substack{x=1, \ y=2}} = \frac{2^3}{\frac{16}{5}(2) 3(1)2^2}$ (6) = -60/7 units/s.
 - **(b)** Falling, because $\frac{dy}{dt} < 0$.
- **39.** The coordinates of P are (x, 2x), so the distance between P and the point (3, 0) is $D = \sqrt{(x-3)^2 + (2x-0)^2} = \sqrt{5x^2 6x + 9}$. Find $\frac{dD}{dt}\Big|_{x=3}$ given that $\frac{dx}{dt}\Big|_{x=3} = -2$. $\frac{dD}{dt} = \frac{5x-3}{\sqrt{5x^2 6x + 9}} \frac{dx}{dt}$, so $\frac{dD}{dt}\Big|_{x=3} = \frac{12}{\sqrt{36}}(-2) = -4$ units/s.
- **41.** Solve $\frac{dx}{dt} = 3\frac{dy}{dt}$ given $y = x/(x^2+1)$. Then $y(x^2+1) = x$. Differentiating with respect to x, $(x^2+1)\frac{dy}{dx} + y(2x) = 1$. But $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{1}{3}$ so $(x^2+1)\frac{1}{3} + 2xy = 1$, $x^2+1+6xy = 3$, $x^2+1+6x^2/(x^2+1) = 3$, $(x^2+1)^2+6x^2-3x^2-3 = 0$, $x^4+5x^2-2=0$. By the quadratic formula applied to x^2 we obtain $x^2 = (-5 \pm \sqrt{25+8})/2$. The minus sign is spurious since x^2 cannot be negative, so $x^2 = (-5 + \sqrt{33})/2$, and $x = \pm \sqrt{(-5 + \sqrt{33})/2}$.
- **43.** Find $\frac{dS}{dt}\Big|_{s=10}$ given that $\frac{ds}{dt}\Big|_{s=10} = -2$. From $\frac{1}{s} + \frac{1}{S} = \frac{1}{6}$ we get $-\frac{1}{s^2}\frac{ds}{dt} \frac{1}{S^2}\frac{dS}{dt} = 0$, so $\frac{dS}{dt} = -\frac{S^2}{s^2}\frac{ds}{dt}$. If s=10, then $\frac{1}{10} + \frac{1}{S} = \frac{1}{6}$ which gives S=15. So $\frac{dS}{dt}\Big|_{s=10} = -\frac{225}{100}(-2) = 4.5$ cm/s. The image is moving away from the lens.
- 45. Let r be the radius, V the volume, and A the surface area of a sphere. Show that $\frac{dr}{dt}$ is a constant given that $\frac{dV}{dt} = -kA$, where k is a positive constant. Because $V = \frac{4}{3}\pi r^3$, $\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}$. But it is given that $\frac{dV}{dt} = -kA$ or, because $A = 4\pi r^2$, $\frac{dV}{dt} = -4\pi r^2 k$ which when substituted into the previous equation for $\frac{dV}{dt}$ gives $-4\pi r^2 k = 4\pi r^2 \frac{dr}{dt}$, and $\frac{dr}{dt} = -k$.
- 47. Extend sides of cup to complete the cone and let V_0 be the volume of the portion added, then (see figure) $V = \frac{1}{3}\pi r^2 h V_0 \text{ where } \frac{r}{h} = \frac{4}{12} = \frac{1}{3} \text{ so } r = \frac{1}{3}h \text{ and } V = \frac{1}{3}\pi \left(\frac{h}{3}\right)^2 h V_0 = \frac{1}{27}\pi h^3 V_0, \frac{dV}{dt} = \frac{1}{9}\pi h^2 \frac{dh}{dt},$ $\frac{dh}{dt} = \frac{9}{\pi h^2} \frac{dV}{dt}, \frac{dh}{dt}\Big|_{h=9} = \frac{9}{\pi (9)^2} (20) = \frac{20}{9\pi} \text{ cm/s}.$

Exercise Set 3.5 55

- 1. (a) $f(x) \approx f(1) + f'(1)(x-1) = 1 + 3(x-1)$.
 - **(b)** $f(1 + \Delta x) \approx f(1) + f'(1)\Delta x = 1 + 3\Delta x$.
 - (c) From part (a), $(1.02)^3 \approx 1 + 3(0.02) = 1.06$. From part (b), $(1.02)^3 \approx 1 + 3(0.02) = 1.06$.
- 3. (a) $f(x) \approx f(x_0) + f'(x_0)(x x_0) = 1 + (1/(2\sqrt{1})(x 0)) = 1 + (1/2)x$, so with $x_0 = 0$ and x = -0.1, we have $\sqrt{0.9} = f(-0.1) \approx 1 + (1/2)(-0.1) = 1 0.05 = 0.95$. With x = 0.1 we have $\sqrt{1.1} = f(0.1) \approx 1 + (1/2)(0.1) = 1.05$.

- **5.** $f(x) = (1+x)^{15}$ and $x_0 = 0$. Thus $(1+x)^{15} \approx f(x_0) + f'(x_0)(x-x_0) = 1 + 15(1)^{14}(x-0) = 1 + 15x$.
- 7. $\tan x \approx \tan(0) + \sec^2(0)(x-0) = x$.
- **9.** $x_0 = 0, f(x) = e^x, f'(x) = e^x, f'(x_0) = 1$, hence $e^x \approx 1 + 1 \cdot x = 1 + x$.
- **11.** $x^4 \approx (1)^4 + 4(1)^3(x-1)$. Set $\Delta x = x-1$; then $x = \Delta x + 1$ and $(1 + \Delta x)^4 = 1 + 4\Delta x$.
- **13.** $\frac{1}{2+x} \approx \frac{1}{2+1} \frac{1}{(2+1)^2}(x-1)$, and $2+x=3+\Delta x$, so $\frac{1}{3+\Delta x} \approx \frac{1}{3} \frac{1}{9}\Delta x$.
- **15.** Let $f(x) = \tan^{-1} x$, $f(1) = \pi/4$, f'(1) = 1/2, $\tan^{-1}(1 + \Delta x) \approx \frac{\pi}{4} + \frac{1}{2}\Delta x$.
- 17. $f(x) = \sqrt{x+3}$ and $x_0 = 0$, so $\sqrt{x+3} \approx \sqrt{3} + \frac{1}{2\sqrt{3}}(x-0) = \sqrt{3} + \frac{1}{2\sqrt{3}}x$, and $\left| f(x) \left(\sqrt{3} + \frac{1}{2\sqrt{3}}x\right) \right| < 0.1$ if |x| < 1.692.

$$-2 \frac{0}{\left| \int_{-\infty}^{\infty} f(x) - \left(\sqrt{3} + \frac{1}{2\sqrt{3}}x\right) \right|}$$

19. $\tan 2x \approx \tan 0 + (\sec^2 0)(2x - 0) = 2x$, and $|\tan 2x - 2x| < 0.1$ if |x| < 0.3158.

- **21.** (a) The local linear approximation $\sin x \approx x$ gives $\sin 1^{\circ} = \sin(\pi/180) \approx \pi/180 = 0.0174533$ and a calculator gives $\sin 1^{\circ} = 0.0174524$. The relative error $|\sin(\pi/180) (\pi/180)|/(\sin \pi/180) = 0.000051$ is very small, so for such a small value of x the approximation is very good.
 - (b) Use $x_0 = 45^{\circ}$ (this assumes you know, or can approximate, $\sqrt{2}/2$).

(c)
$$44^{\circ} = \frac{44\pi}{180}$$
 radians, and $45^{\circ} = \frac{45\pi}{180} = \frac{\pi}{4}$ radians. With $x = \frac{44\pi}{180}$ and $x_0 = \frac{\pi}{4}$ we obtain $\sin 44^{\circ} = \sin \frac{44\pi}{180} \approx \sin \frac{\pi}{4} + \left(\cos \frac{\pi}{4}\right) \left(\frac{44\pi}{180} - \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \left(\frac{-\pi}{180}\right) = 0.694765$. With a calculator, $\sin 44^{\circ} = 0.694658$.

23.
$$f(x) = x^4$$
, $f'(x) = 4x^3$, $x_0 = 3$, $\Delta x = 0.02$; $(3.02)^4 \approx 3^4 + (108)(0.02) = 81 + 2.16 = 83.16$.

25.
$$f(x) = \sqrt{x}$$
, $f'(x) = \frac{1}{2\sqrt{x}}$, $x_0 = 64$, $\Delta x = 1$; $\sqrt{65} \approx \sqrt{64} + \frac{1}{16}(1) = 8 + \frac{1}{16} = 8.0625$.

27.
$$f(x) = \sqrt{x}$$
, $f'(x) = \frac{1}{2\sqrt{x}}$, $x_0 = 81$, $\Delta x = -0.1$; $\sqrt{80.9} \approx \sqrt{81} + \frac{1}{18}(-0.1) \approx 8.9944$.

29.
$$f(x) = \sin x$$
, $f'(x) = \cos x$, $x_0 = 0$, $\Delta x = 0.1$; $\sin 0.1 \approx \sin 0 + (\cos 0)(0.1) = 0.1$.

31.
$$f(x) = \cos x$$
, $f'(x) = -\sin x$, $x_0 = \pi/6$, $\Delta x = \pi/180$; $\cos 31^\circ \approx \cos 30^\circ + \left(-\frac{1}{2}\right)\left(\frac{\pi}{180}\right) = \frac{\sqrt{3}}{2} - \frac{\pi}{360} \approx 0.8573$.

33.
$$\tan^{-1}(1+\Delta x) \approx \frac{\pi}{4} + \frac{1}{2}\Delta x, \Delta x = -0.01, \tan^{-1}0.99 \approx \frac{\pi}{4} - 0.005 \approx 0.780398.$$

35.
$$\sqrt[3]{8.24} = 8^{1/3} \sqrt[3]{1.03} \approx 2(1 + \frac{1}{3}0.03) \approx 2.02$$
, and $4.08^{3/2} = 4^{3/2}1.02^{3/2} = 8(1 + 0.02(3/2)) = 8.24$.

37. (a)
$$dy = (-1/x^2)dx = (-1)(-0.5) = 0.5$$
 and $\Delta y = 1/(x + \Delta x) - 1/x = 1/(1 - 0.5) - 1/1 = 2 - 1 = 1$.

39.
$$dy = 3x^2 dx$$
; $\Delta y = (x + \Delta x)^3 - x^3 = x^3 + 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3 - x^3 = 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3$.

41.
$$dy = (2x-2)dx$$
; $\Delta y = [(x+\Delta x)^2 - 2(x+\Delta x) + 1] - [x^2 - 2x + 1] = x^2 + 2x \Delta x + (\Delta x)^2 - 2x - 2\Delta x + 1 - x^2 + 2x - 1 = 2x \Delta x + (\Delta x)^2 - 2\Delta x.$

- **43.** (a) $dy = (12x^2 14x)dx$.
 - (b) $dy = x d(\cos x) + \cos x dx = x(-\sin x)dx + \cos x dx = (-x\sin x + \cos x)dx$.

45. (a)
$$dy = \left(\sqrt{1-x} - \frac{x}{2\sqrt{1-x}}\right) dx = \frac{2-3x}{2\sqrt{1-x}} dx$$
.

- **(b)** $dy = -17(1+x)^{-18}dx$.
- **47.** False; dy = (dy/dx)dx.
- 49. False; they are equal whenever the function is linear.

51.
$$dy = \frac{3}{2\sqrt{3x-2}}dx$$
, $x = 2$, $dx = 0.03$; $\Delta y \approx dy = \frac{3}{4}(0.03) = 0.0225$.

53.
$$dy = \frac{1 - x^2}{(x^2 + 1)^2} dx$$
, $x = 2$, $dx = -0.04$; $\Delta y \approx dy = \left(-\frac{3}{25}\right) (-0.04) = 0.0048$.

- **55.** (a) $A = x^2$ where x is the length of a side; $dA = 2x dx = 2(10)(\pm 0.1) = \pm 2$ ft².
 - (b) Relative error in x is within $\frac{dx}{x} = \frac{\pm 0.1}{10} = \pm 0.01$ so percentage error in x is $\pm 1\%$; relative error in A is within $\frac{dA}{A} = \frac{2x \, dx}{x^2} = 2\frac{dx}{x} = 2(\pm 0.01) = \pm 0.02$ so percentage error in A is $\pm 2\%$.
- **57.** (a) $x = 10 \sin \theta$, $y = 10 \cos \theta$ (see figure), $dx = 10 \cos \theta d\theta = 10 \left(\cos \frac{\pi}{6}\right) \left(\pm \frac{\pi}{180}\right) = 10 \left(\frac{\sqrt{3}}{2}\right) \left(\pm \frac{\pi}{180}\right) \approx \pm 0.151 \text{ in, } dy = -10(\sin \theta) d\theta = -10 \left(\sin \frac{\pi}{6}\right) \left(\pm \frac{\pi}{180}\right) = -10 \left(\frac{1}{2}\right) \left(\pm \frac{\pi}{180}\right) \approx \pm 0.087 \text{ in.}$

- (b) Relative error in x is within $\frac{dx}{x} = (\cot \theta)d\theta = \left(\cot \frac{\pi}{6}\right)\left(\pm \frac{\pi}{180}\right) = \sqrt{3}\left(\pm \frac{\pi}{180}\right) \approx \pm 0.030$, so percentage error in x is $\approx \pm 3.0\%$; relative error in y is within $\frac{dy}{y} = -\tan \theta d\theta = -\left(\tan \frac{\pi}{6}\right)\left(\pm \frac{\pi}{180}\right) = -\frac{1}{\sqrt{3}}\left(\pm \frac{\pi}{180}\right) \approx \pm 0.010$, so percentage error in y is $\approx \pm 1.0\%$.
- **59.** $\frac{dR}{R} = \frac{(-2k/r^3)dr}{(k/r^2)} = -2\frac{dr}{r}$, but $\frac{dr}{r} = \pm 0.05$ so $\frac{dR}{R} = -2(\pm 0.05) = \pm 0.10$; percentage error in R is $\pm 10\%$.
- **61.** $A = \frac{1}{4}(4)^2 \sin 2\theta = 4 \sin 2\theta$ thus $dA = 8 \cos 2\theta d\theta$ so, with $\theta = 30^\circ = \pi/6$ radians and $d\theta = \pm 15' = \pm 1/4^\circ = \pm \pi/720$ radians, $dA = 8 \cos(\pi/3)(\pm \pi/720) = \pm \pi/180 \approx \pm 0.017$ cm².
- **63.** $V=x^3$ where x is the length of a side; $\frac{dV}{V}=\frac{3x^2dx}{x^3}=3\frac{dx}{x}$, but $\frac{dx}{x}=\pm0.02$, so $\frac{dV}{V}=3(\pm0.02)=\pm0.06$; percentage error in V is $\pm6\%$.
- **65.** $A = \frac{1}{4}\pi D^2$ where D is the diameter of the circle; $\frac{dA}{A} = \frac{(\pi D/2)dD}{\pi D^2/4} = 2\frac{dD}{D}$, but $\frac{dA}{A} = \pm 0.01$ so $2\frac{dD}{D} = \pm 0.01$, $\frac{dD}{D} = \pm 0.005$; maximum permissible percentage error in D is $\pm 0.5\%$.

67. $V = \text{volume of cylindrical rod} = \pi r^2 h = \pi r^2 (15) = 15\pi r^2$; approximate ΔV by dV if r = 2.5 and $dr = \Delta r = 0.1$. $dV = 30\pi r dr = 30\pi (2.5)(0.1) \approx 23.5619 \text{ cm}^3$.

69. Differentiating
$$R = \log_{10}(A/A_0)$$
, we obtain $\frac{dR}{dA} = \frac{1}{A \ln 10}$. Thus $dR = \frac{1}{\ln 10} \frac{dA}{A}$, and $\Delta R \approx dR \approx 0.4343 \frac{dA}{A}$.

1. (a)
$$\lim_{x \to 2} \frac{x^2 - 4}{x^2 + 2x - 8} = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{(x + 4)(x - 2)} = \lim_{x \to 2} \frac{x + 2}{x + 4} = \frac{2}{3}$$
 or, using L'Hôpital's rule, $\lim_{x \to 2} \frac{x^2 - 4}{x^2 + 2x - 8} = \lim_{x \to 2} \frac{2x}{2x + 2} = \frac{2}{3}$.

(b)
$$\lim_{x \to +\infty} \frac{2x-5}{3x+7} = \frac{2 - \lim_{x \to +\infty} \frac{5}{x}}{3 + \lim_{x \to +\infty} \frac{7}{x}} = \frac{2}{3}$$
 or, using L'Hôpital's rule, $\lim_{x \to +\infty} \frac{2x-5}{3x+7} = \lim_{x \to +\infty} \frac{2}{3} = \frac{2}{3}$.

- **3.** True; $\ln x$ is not defined for negative x.
- **5.** False; apply L'Hôpital's rule n times.

7.
$$\lim_{x\to 0} \frac{e^x}{\cos x} = 1$$
.

9.
$$\lim_{\theta \to 0} \frac{\sec^2 \theta}{1} = 1.$$

11.
$$\lim_{x \to \pi^+} \frac{\cos x}{1} = -1.$$

13.
$$\lim_{x \to +\infty} \frac{1/x}{1} = 0.$$

15.
$$\lim_{x \to 0^+} \frac{-\csc^2 x}{1/x} = \lim_{x \to 0^+} \frac{-x}{\sin^2 x} = \lim_{x \to 0^+} \frac{-1}{2\sin x \cos x} = -\infty.$$

17.
$$\lim_{x \to +\infty} \frac{100x^{99}}{e^x} = \lim_{x \to +\infty} \frac{(100)(99)x^{98}}{e^x} = \dots = \lim_{x \to +\infty} \frac{(100)(99)(98)\cdots(1)}{e^x} = 0.$$

19.
$$\lim_{x\to 0} \frac{2/\sqrt{1-4x^2}}{1} = 2.$$

21.
$$\lim_{x \to +\infty} x e^{-x} = \lim_{x \to +\infty} \frac{x}{e^x} = \lim_{x \to +\infty} \frac{1}{e^x} = 0.$$

23.
$$\lim_{x \to +\infty} x \sin(\pi/x) = \lim_{x \to +\infty} \frac{\sin(\pi/x)}{1/x} = \lim_{x \to +\infty} \frac{(-\pi/x^2)\cos(\pi/x)}{-1/x^2} = \lim_{x \to +\infty} \pi \cos(\pi/x) = \pi.$$

25.
$$\lim_{x \to (\pi/2)^{-}} \sec 3x \cos 5x = \lim_{x \to (\pi/2)^{-}} \frac{\cos 5x}{\cos 3x} = \lim_{x \to (\pi/2)^{-}} \frac{-5\sin 5x}{-3\sin 3x} = \frac{-5(+1)}{(-3)(-1)} = -\frac{5}{3}$$

27.
$$y = (1 - 3/x)^x$$
, $\lim_{x \to +\infty} \ln y = \lim_{x \to +\infty} \frac{\ln(1 - 3/x)}{1/x} = \lim_{x \to +\infty} \frac{-3}{1 - 3/x} = -3$, $\lim_{x \to +\infty} y = e^{-3}$.

29.
$$y = (e^x + x)^{1/x}$$
, $\lim_{x \to 0} \ln y = \lim_{x \to 0} \frac{\ln(e^x + x)}{x} = \lim_{x \to 0} \frac{e^x + 1}{e^x + x} = 2$, $\lim_{x \to 0} y = e^2$.

Exercise Set 3.6 59

31.
$$y = (2-x)^{\tan(\pi x/2)}$$
, $\lim_{x \to 1} \ln y = \lim_{x \to 1} \frac{\ln(2-x)}{\cot(\pi x/2)} = \lim_{x \to 1} \frac{2\sin^2(\pi x/2)}{\pi(2-x)} = 2/\pi$, $\lim_{x \to 1} y = e^{2/\pi}$.

33.
$$\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right) = \lim_{x \to 0} \frac{x - \sin x}{x \sin x} = \lim_{x \to 0} \frac{1 - \cos x}{x \cos x + \sin x} = \lim_{x \to 0} \frac{\sin x}{2 \cos x - x \sin x} = 0.$$

35.
$$\lim_{x \to +\infty} \frac{(x^2 + x) - x^2}{\sqrt{x^2 + x} + x} = \lim_{x \to +\infty} \frac{x}{\sqrt{x^2 + x} + x} = \lim_{x \to +\infty} \frac{1}{\sqrt{1 + 1/x} + 1} = 1/2.$$

37.
$$\lim_{x \to +\infty} [x - \ln(x^2 + 1)] = \lim_{x \to +\infty} [\ln e^x - \ln(x^2 + 1)] = \lim_{x \to +\infty} \ln \frac{e^x}{x^2 + 1}, \\ \lim_{x \to +\infty} \frac{e^x}{x^2 + 1} = \lim_{x \to +\infty} \frac{e^x}{2x} = \lim_{x \to +\infty} \frac{e^x}{2} = +\infty,$$
 so
$$\lim_{x \to +\infty} [x - \ln(x^2 + 1)] = +\infty$$

39.
$$y = x^{\sin x}$$
, $\ln y = \sin x \ln x$, $\lim_{x \to 0^+} \ln y = \lim_{x \to 0^+} \frac{\ln x}{\csc x} = \lim_{x \to 0^+} \frac{1/x}{-\csc x \cot x} = \lim_{x \to 0^+} \left(\frac{\sin x}{x}\right) (-\tan x) = 1(-0) = 0$, so $\lim_{x \to 0^+} x^{\sin x} = \lim_{x \to 0^+} y = e^0 = 1$.

41.
$$y = \left[-\frac{1}{\ln x} \right]^x$$
, $\ln y = x \ln \left[-\frac{1}{\ln x} \right]$, $\lim_{x \to 0^+} \ln y = \lim_{x \to 0^+} \frac{\ln \left[-\frac{1}{\ln x} \right]}{1/x} = \lim_{x \to 0^+} \left(-\frac{1}{x \ln x} \right) (-x^2) = -\lim_{x \to 0^+} \frac{x}{\ln x} = 0$, so $\lim_{x \to 0^+} y = e^0 = 1$.

43.
$$y = (\ln x)^{1/x}, \ln y = (1/x) \ln \ln x, \lim_{x \to +\infty} \ln y = \lim_{x \to +\infty} \frac{\ln \ln x}{x} = \lim_{x \to +\infty} \frac{1/(x \ln x)}{1} = 0, \text{ so } \lim_{x \to +\infty} y = 1.$$

45.
$$y = (\tan x)^{\pi/2 - x}, \ln y = (\pi/2 - x) \ln \tan x, \lim_{x \to (\pi/2)^{-}} \ln y = \lim_{x \to (\pi/2)^{-}} \frac{\ln \tan x}{1/(\pi/2 - x)} = \lim_{x \to (\pi/2)^{-}} \frac{(\sec^2 x/\tan x)}{1/(\pi/2 - x)^2} = \lim_{x \to (\pi/2)^{-}} \frac{(\pi/2 - x)}{\cos x} = \lim_{x \to (\pi/2)^{-}} \frac{(\pi/2 - x)}{\cos x} \lim_{x \to (\pi/2)^{-}} \frac{(\pi/2 - x)}{\sin x} = 1 \cdot 0 = 0, \text{ so } \lim_{x \to (\pi/2)^{-}} y = 1.$$

- **47.** (a) L'Hôpital's rule does not apply to the problem $\lim_{x\to 1} \frac{3x^2 2x + 1}{3x^2 2x}$ because it is not an indeterminate form.
 - (b) $\lim_{x \to 1} \frac{3x^2 2x + 1}{3x^2 2x} = 2.$

49. $\lim_{x \to +\infty} \frac{1/(x \ln x)}{1/(2\sqrt{x})} = \lim_{x \to +\infty} \frac{2}{\sqrt{x \ln x}} = 0.$

51.
$$y = (\sin x)^{3/\ln x}$$
, $\lim_{x \to 0^+} \ln y = \lim_{x \to 0^+} \frac{3 \ln \sin x}{\ln x} = \lim_{x \to 0^+} (3 \cos x) \frac{x}{\sin x} = 3$, $\lim_{x \to 0^+} y = e^3$.

53. $\ln x - e^x = \ln x - \frac{1}{e^{-x}} = \frac{e^{-x} \ln x - 1}{e^{-x}}; \lim_{x \to +\infty} e^{-x} \ln x = \lim_{x \to +\infty} \frac{\ln x}{e^x} = \lim_{x \to +\infty} \frac{1/x}{e^x} = 0$ by L'Hôpital's rule, so $\lim_{x \to +\infty} [\ln x - e^x] = \lim_{x \to +\infty} \frac{e^{-x} \ln x - 1}{e^{-x}} = -\infty; \text{ no horizontal asymptote.}$

55. $y = (\ln x)^{1/x}$, $\lim_{x \to +\infty} \ln y = \lim_{x \to +\infty} \frac{\ln(\ln x)}{x} = \lim_{x \to +\infty} \frac{1}{x \ln x} = 0$; $\lim_{x \to +\infty} y = 1$, y = 1 is the horizontal asymptote.

- **57.** (a) 0 **(c)** 0 (b) $+\infty$
- (d) $-\infty$ (e) $+\infty$ (f) $-\infty$
- **59.** $\lim_{x \to +\infty} \frac{1 + 2\cos 2x}{1}$ does not exist, nor is it $\pm \infty$; $\lim_{x \to +\infty} \frac{x + \sin 2x}{x} = \lim_{x \to +\infty} \left(1 + \frac{\sin 2x}{x}\right) = 1$.
- **61.** $\lim_{x \to +\infty} (2 + x \cos 2x + \sin 2x) \text{ does not exist, nor is it } \pm \infty; \lim_{x \to +\infty} \frac{x(2 + \sin 2x)}{x + 1} = \lim_{x \to +\infty} \frac{2 + \sin 2x}{1 + 1/x}, \text{ which does not exist, nor is it } \pm \infty; \lim_{x \to +\infty} \frac{x(2 + \sin 2x)}{x + 1} = \lim_{x \to +\infty} \frac{2 + \sin 2x}{1 + 1/x}, \text{ which does not exist, nor is it } \pm \infty; \lim_{x \to +\infty} \frac{x(2 + \sin 2x)}{x + 1} = \lim_{x \to +\infty} \frac{2 + \sin 2x}{1 + 1/x}, \text{ which does not exist, nor is it } \pm \infty; \lim_{x \to +\infty} \frac{x(2 + \sin 2x)}{x + 1} = \lim_{x \to +\infty} \frac{2 + \sin 2x}{1 + 1/x}, \text{ which does not exist, nor is it } \pm \infty; \lim_{x \to +\infty} \frac{x(2 + \sin 2x)}{x + 1} = \lim_{x \to +\infty} \frac{2 + \sin 2x}{1 + 1/x}.$ exist because $\sin 2x$ oscillates between -1 and 1 as $x \to +\infty$
- **63.** $\lim_{R\to 0^+} \frac{\frac{Vt}{L}e^{-Rt/L}}{1} = \frac{Vt}{I}$.
- **65.** (b) $\lim_{x \to +\infty} x(k^{1/x} 1) = \lim_{t \to 0^+} \frac{k^t 1}{t} = \lim_{t \to 0^+} \frac{(\ln k)k^t}{1} = \ln k.$
 - (c) $\ln 0.3 = -1.20397$, $1024 \left(\sqrt[1024]{0.3} 1 \right) = -1.20327$; $\ln 2 = 0.69315$, $1024 \left(\sqrt[1024]{2} 1 \right) = 0.69338$.
- **67.** (a) No; $\sin(1/x)$ oscillates as $x \to 0$.

(c) For the limit as $x \to 0^+$ use the Squeezing Theorem together with the inequalities $-x^2 \le x^2 \sin(1/x) \le x^2$. For $x \to 0^-$ do the same; thus $\lim_{x \to 0} f(x) = 0$.

69. $\lim_{x\to 0^+} \frac{\sin(1/x)}{(\sin x)/x}$, $\lim_{x\to 0^+} \frac{\sin x}{x} = 1$ but $\lim_{x\to 0^+} \sin(1/x)$ does not exist because $\sin(1/x)$ oscillates between -1 and 1 as $x\to +\infty$, so $\lim_{x\to 0^+} \frac{x\sin(1/x)}{\sin x}$ does not exist.

Chapter 3 Review Exercises

1. (a)
$$3x^2 + x\frac{dy}{dx} + y - 2 = 0, \frac{dy}{dx} = \frac{2 - y - 3x^2}{x}.$$

(b)
$$y = (1 + 2x - x^3)/x = 1/x + 2 - x^2, dy/dx = -1/x^2 - 2x.$$

(c)
$$\frac{dy}{dx} = \frac{2 - (1/x + 2 - x^2) - 3x^2}{x} = -1/x^2 - 2x$$
.

3.
$$-\frac{1}{y^2}\frac{dy}{dx} - \frac{1}{x^2} = 0$$
 so $\frac{dy}{dx} = -\frac{y^2}{x^2}$.

5.
$$\left(x\frac{dy}{dx} + y\right)\sec(xy)\tan(xy) = \frac{dy}{dx}, \frac{dy}{dx} = \frac{y\sec(xy)\tan(xy)}{1 - x\sec(xy)\tan(xy)}$$

7.
$$\frac{dy}{dx} = \frac{3x}{4y}$$
, $\frac{d^2y}{dx^2} = \frac{(4y)(3) - (3x)(4dy/dx)}{16y^2} = \frac{12y - 12x(3x/(4y))}{16y^2} = \frac{12y^2 - 9x^2}{16y^3} = \frac{-3(3x^2 - 4y^2)}{16y^3}$, but $3x^2 - 4y^2 = 7$ so $\frac{d^2y}{dx^2} = \frac{-3(7)}{16y^3} = -\frac{21}{16y^3}$.

9.
$$\frac{dy}{dx} = \tan(\pi y/2) + x(\pi/2) \frac{dy}{dx} \sec^2(\pi y/2), \frac{dy}{dx}\Big|_{y=1/2} = 1 + (\pi/4) \frac{dy}{dx}\Big|_{y=1/2} (2), \frac{dy}{dx}\Big|_{y=1/2} = \frac{2}{2-\pi}.$$

- 11. Substitute y = mx into $x^2 + xy + y^2 = 4$ to get $x^2 + mx^2 + m^2x^2 = 4$, which has distinct solutions $x = \pm 2/\sqrt{m^2 + m + 1}$. They are distinct because $m^2 + m + 1 = (m + 1/2)^2 + 3/4 \ge 3/4$, so $m^2 + m + 1$ is never zero. Note that the points of intersection occur in pairs (x_0, y_0) and $(-x_0, -y_0)$. By implicit differentiation, the slope of the tangent line to the ellipse is given by dy/dx = -(2x + y)/(x + 2y). Since the slope is unchanged if we replace (x, y) with (-x, -y), it follows that the slopes are equal at the two point of intersection. Finally we must examine the special case x = 0 which cannot be written in the form y = mx. If x = 0 then $y = \pm 2$, and the formula for dy/dx gives dy/dx = -1/2, so the slopes are equal.
- 13. By implicit differentiation, $3x^2 y xy' + 3y^2y' = 0$, so $y' = (3x^2 y)/(x 3y^2)$. This derivative exists except when $x = 3y^2$. Substituting this into the original equation $x^3 xy + y^3 = 0$, one has $27y^6 3y^3 + y^3 = 0$, $y^3(27y^3 2) = 0$. The unique solution in the first quadrant is $y = 2^{1/3}/3$, $x = 3y^2 = 2^{2/3}/3$

15.
$$y = \ln(x+1) + 2\ln(x+2) - 3\ln(x+3) - 4\ln(x+4), dy/dx = \frac{1}{x+1} + \frac{2}{x+2} - \frac{3}{x+3} - \frac{4}{x+4}.$$

17.
$$\frac{dy}{dx} = \frac{1}{2x}(2) = 1/x$$
.

19.
$$\frac{dy}{dx} = \frac{1}{3x(\ln x + 1)^{2/3}}$$
.

21.
$$\frac{dy}{dx} = \log_{10} \ln x = \frac{\ln \ln x}{\ln 10}, y' = \frac{1}{(\ln 10)(x \ln x)}.$$

23.
$$y = \frac{3}{2} \ln x + \frac{1}{2} \ln(1+x^4), y' = \frac{3}{2x} + \frac{2x^3}{(1+x^4)}.$$

25.
$$y = x^2 + 1$$
 so $y' = 2x$.

27.
$$y' = 2e^{\sqrt{x}} + 2xe^{\sqrt{x}}\frac{d}{dx}\sqrt{x} = 2e^{\sqrt{x}} + \sqrt{x}e^{\sqrt{x}}$$
.

29.
$$y' = \frac{2}{\pi(1+4x^2)}$$
.

31.
$$\ln y = e^x \ln x$$
, $\frac{y'}{y} = e^x \left(\frac{1}{x} + \ln x\right)$, $\frac{dy}{dx} = x^{e^x} e^x \left(\frac{1}{x} + \ln x\right) = e^x \left[x^{e^x - 1} + x^{e^x} \ln x\right]$.

33.
$$y' = \frac{2}{|2x+1|\sqrt{(2x+1)^2-1}}$$
.

35.
$$\ln y = 3 \ln x - \frac{1}{2} \ln(x^2 + 1), \ y'/y = \frac{3}{x} - \frac{x}{x^2 + 1}, \ y' = \frac{3x^2}{\sqrt{x^2 + 1}} - \frac{x^4}{(x^2 + 1)^{3/2}}.$$

(c)
$$\frac{dy}{dx} = \frac{1}{2} - \frac{1}{x}$$
, so $\frac{dy}{dx} < 0$ at $x = 1$ and $\frac{dy}{dx} > 0$ at $x = e$.

(d) The slope is a continuous function which goes from a negative value to a positive value; therefore it must take the value zero between, by the Intermediate Value Theorem.

(e)
$$\frac{dy}{dx} = 0$$
 when $x = 2$.

- **39.** Solve $\frac{dy}{dt} = 3\frac{dx}{dt}$ given $y = x \ln x$. Then $\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt} = (1 + \ln x)\frac{dx}{dt}$, so $1 + \ln x = 3$, $\ln x = 2$, $x = e^2$.
- **41.** Set $y = \log_b x$ and solve y' = 1: $y' = \frac{1}{x \ln b} = 1$ so $x = \frac{1}{\ln b}$. The curves intersect when (x, x) lies on the graph of $y = \log_b x$, so $x = \log_b x$. From Formula (8), Section 1.6, $\log_b x = \frac{\ln x}{\ln b}$ from which $\ln x = 1$, x = e, $\ln b = 1/e$, $b = e^{1/e} \approx 1.4447.$

43. As long as $f' \neq 0$, g must be differentiable; this can be inferred from the graphs. Note that if f' = 0 at a point then g' cannot exist (infinite slope). (For example, $f(x) = x^3$ at x = 0).

- **45.** Let $P(x_0, y_0)$ be a point on $y = e^{3x}$ then $y_0 = e^{3x_0}$. $dy/dx = 3e^{3x}$ so $m_{tan} = 3e^{3x_0}$ at P and an equation of the tangent line at P is $y y_0 = 3e^{3x_0}(x x_0)$, $y e^{3x_0} = 3e^{3x_0}(x x_0)$. If the line passes through the origin then (0,0) must satisfy the equation so $-e^{3x_0} = -3x_0e^{3x_0}$ which gives $x_0 = 1/3$ and thus $y_0 = e$. The point is (1/3, e).
- **47.** $\ln y = 2x \ln 3 + 7x \ln 5$; $\frac{dy/dx}{y} = 2 \ln 3 + 7 \ln 5$, or $\frac{dy}{dx} = (2 \ln 3 + 7 \ln 5)y$.
- **49.** $y' = ae^{ax} \sin bx + be^{ax} \cos bx$, and $y'' = (a^2 b^2)e^{ax} \sin bx + 2abe^{ax} \cos bx$, so $y'' 2ay' + (a^2 + b^2)y = (a^2 b^2)e^{ax} \sin bx + 2abe^{ax} \cos bx 2a(ae^{ax} \sin bx + be^{ax} \cos bx) + (a^2 + b^2)e^{ax} \sin bx = 0$.

- **51.** (a) 20
 - (b) As t tends to $+\infty$, the population tends to 19: $\lim_{t \to +\infty} P(t) = \lim_{t \to +\infty} \frac{95}{5 4e^{-t/4}} = \frac{95}{5 4\lim_{t \to +\infty} e^{-t/4}} = \frac{95}{5} = 19$.
 - (c) The rate of population growth tends to zero.

- **53.** In the case $+\infty (-\infty)$ the limit is $+\infty$; in the case $-\infty (+\infty)$ the limit is $-\infty$, because large positive (negative) quantities are added to large positive (negative) quantities. The cases $+\infty (+\infty)$ and $-\infty (-\infty)$ are indeterminate; large numbers of opposite sign are subtracted, and more information about the sizes is needed.
- **55.** $\lim_{x \to +\infty} (e^x x^2) = \lim_{x \to +\infty} x^2 (e^x/x^2 1)$, but $\lim_{x \to +\infty} \frac{e^x}{x^2} = \lim_{x \to +\infty} \frac{e^x}{2x} = \lim_{x \to +\infty} \frac{e^x}{2} = +\infty$, so $\lim_{x \to +\infty} (e^x/x^2 1) = +\infty$ and thus $\lim_{x \to +\infty} x^2 (e^x/x^2 1) = +\infty$.
- **57.** $\lim_{x \to 0} \frac{x^2 e^x}{\sin^2 3x} = \left[\lim_{x \to 0} \frac{3x}{\sin 3x} \right]^2 \left[\lim_{x \to 0} \frac{e^x}{9} \right] = \frac{1}{9}.$
- **59.** The boom is pulled in at the rate of 5 m/min, so the circumference $C = 2r\pi$ is changing at this rate, which means that $\frac{dr}{dt} = \frac{dC}{dt} \cdot \frac{1}{2\pi} = -5/(2\pi)$. $A = \pi r^2$ and $\frac{dr}{dt} = -5/(2\pi)$, so $\frac{dA}{dt} = \frac{dA}{dr} \frac{dr}{dt} = 2\pi r(-5/2\pi) = -250$, so the area is shrinking at a rate of 250 m²/min.
- **61.** (a) $\Delta x = 1.5 2 = -0.5$; $dy = \frac{-1}{(x-1)^2} \Delta x = \frac{-1}{(2-1)^2} (-0.5) = 0.5$; and $\Delta y = \frac{1}{(1.5-1)} \frac{1}{(2-1)} = 2 1 = 1$.
 - **(b)** $\Delta x = 0 (-\pi/4) = \pi/4$; $dy = (\sec^2(-\pi/4))(\pi/4) = \pi/2$; and $\Delta y = \tan 0 \tan(-\pi/4) = 1$.

(c)
$$\Delta x = 3 - 0 = 3$$
; $dy = \frac{-x}{\sqrt{25 - x^2}} = \frac{-0}{\sqrt{25 - (0)^2}}(3) = 0$; and $\Delta y = \sqrt{25 - 3^2} - \sqrt{25 - 0^2} = 4 - 5 = -1$.

- **63.** (a) $h = 115 \tan \phi$, $dh = 115 \sec^2 \phi \, d\phi$; with $\phi = 51^\circ = \frac{51}{180} \pi$ radians and $d\phi = \pm 0.5^\circ = \pm 0.5 \left(\frac{\pi}{180}\right)$ radians, $h \pm dh = 115(1.2349) \pm 2.5340 = 142.0135 \pm 2.5340$, so the height lies between 139.48 m and 144.55 m.
 - **(b)** If $|dh| \le 5$ then $|d\phi| \le \frac{5}{115} \cos^2 \frac{51}{180} \pi \approx 0.017$ radian, or $|d\phi| \le 0.98^\circ$.

Chapter 3 Making Connections

- **1.** (a) If t > 0 then A(-t) is the amount K there was t time-units ago in order that there be 1 unit now, i.e. $K \cdot A(t) = 1$, so $K = \frac{1}{A(t)}$. But, as said above, K = A(-t). So $A(-t) = \frac{1}{A(t)}$.
 - (b) If s and t are positive, then the amount 1 becomes A(s) after s seconds, and that in turn is A(s)A(t) after another t seconds, i.e. 1 becomes A(s)A(t) after s+t seconds. But this amount is also A(s+t), so A(s)A(t)=A(s+t). Now if $0 \le -s \le t$ then A(-s)A(s+t)=A(t). From the first case, we get A(s+t)=A(s)A(t). If $0 \le t \le -s$ then $A(s+t)=\frac{1}{A(-s-t)}=\frac{1}{A(-s)A(-t)}=A(s)A(t)$ by the previous cases. If s and t are both negative then by the first case, $A(s+t)=\frac{1}{A(-s-t)}=\frac{1}{A(-s)A(-t)}=A(s)A(t)$.
 - (c) If n > 0 then $A\left(\frac{1}{n}\right)A\left(\frac{1}{n}\right)\dots A\left(\frac{1}{n}\right) = A\left(n\frac{1}{n}\right) = A(1)$, so $A\left(\frac{1}{n}\right) = A(1)^{1/n} = b^{1/n}$ from part (b). If n < 0 then by part (a), $A\left(\frac{1}{n}\right) = \frac{1}{A\left(-\frac{1}{n}\right)} = \frac{1}{A(1)^{-1/n}} = A(1)^{1/n} = b^{1/n}$.
 - (d) Let m, n be integers. Assume $n \neq 0$ and m > 0. Then $A\left(\frac{m}{n}\right) = A\left(\frac{1}{n}\right)^m = A(1)^{m/n} = b^{m/n}$.
 - (e) If f,g are continuous functions of t and f and g are equal on the rational numbers $\left\{\frac{m}{n}: n \neq 0\right\}$, then f(t) = g(t) for all t. Because if x is irrational, then let t_n be a sequence of rational numbers which converges to x. Then for all $n > 0, f(t_n) = g(t_n)$ and thus $f(x) = \lim_{n \to +\infty} f(t_n) = \lim_{n \to +\infty} g(t_n) = g(x)$.