

Quality Control of Reads Using Trimmomatic (Cyverse) Version 2

Benjamin Bolduc

Abstract

A collection of protocols designed to guide the user in processing a viral metagenome from raw sequence data to assembly, and subsequent analysis. The user uses *actual* reads from <u>Ocean Sampling Day (2014)</u> and processes them entirely within Cyverse, a NSF-supported cyberinfrastructure.

Quality trimming of reads is important!

Citation: Benjamin Bolduc Quality Control of Reads Using Trimmomatic (Cyverse). **protocols.io** https://www.protocols.io/view/Quality-Control-of-Reads-Using-Trimmomatic-Cyverse-eygbftw

Published: 11 May 2016

Guidelines

This is part of a larger protocol *Collection* that involves the end-to-end processing of raw viral metagenomic reads obtained from a sequencing facility to assembly and analysis using Apps (i.e. tools) developed by iVirus and implemented within the Cyverse cyberinfrastructure.

Before start

To run this protocol, users must first <u>register</u> for Cyverse account. All data (both inputs and outputs) are available within Cyverse's data store at /iplant/home/shared/iVirus/ExampleData/

Protocol

Quality control of reads

Step 1.

Open Trimmomatic

Open Trimmomatic 0.35.0 from 'Apps'

Quality control of reads

Step 2.

Select Inputs

Select the 'Inputs tab.

For Reads file (for paired or unpaired):

Navigate to Community Data --> iVirus --> ExampleData --> Trimmomatic --> Inputs --> Reads.
Select OSD46_R1_shotgun_workable.fastq.gz Alternatively, copy-and-paste the location:
/iplant/home/shared/iVirus/ExampleData/Trimmomatic/Inputs/Reads into the navigation bar and select the fastq.gz file.

For **Reads file (ONLY USE FOR PAIRED END)**: Only use this file if it's read pair 2. Don't try to double-up two single-end reads.

Navigate to Community Data --> iVirus --> ExampleData --> Trimmomatic --> Inputs --> Reads.
SelectOSD46_R2_shotgun_workable.fastq.gz Alternatively, copy-and-paste the location:
/iplant/home/shared/iVirus/ExampleData/Trimmomatic/Inputs/Reads into the navigation bar and select the fastq.gz file.

For **Illumina adapter file**:

Navigate to Community Data --> iVirus --> ExampleData --> Trimmomatic --> Inputs -->
 Adapters. Select TruSeq3-PE.fa Alternatively, copy-and-paste the location:
 /iplant/home/shared/iVirus/ExampleData/Trimmomatic/Inputs/Adapters into the navigation bar
 and select the fasta file.

Step 3.

Select Parameters

Select the 'Parameters' tab.

The default options will suffice for this example.

Quality control of reads

Step 4.

Launch Analysis

Run the job!

Trimmomatic can take minutes to hours to complete.

Quality control of reads

Step 5.

Results

Trimmomatic will generate 5 output files. 2 paired files where both forward and reverse survived read trimming, 2 unpaired files where their pair/mate did not survive, and a log file.

Expected results can be found from the 'Outputs' directory of Trimmomatic.

