小论文的题目

作者 2024 年 8 月 22 日

关键词: 关键词 1, 关键词 2, 关键词 3

1 列表的使用

1.1 计数

这是一个计数的列表.

- 1. 第一项
 - (a) 第一项中的第一项
 - (b) 第一项中的第二项
- 2. 第二项
- 3. 第三项

这是一个不计数的列表.

- 第一项
 - 第一项中的第一项
 - 第一项中的第二项
- 第二项
- 第三项

2 文献引用

参考文献可采用 BibTeX 的方式生成 (文献信息写在文件 reference.bib中),参考文献的样式为 thuthesis-numeric (对应的引用格式可选 numbers 或

super) 和 thuthesis-author-year (对应的引用格式 authoryear), 符合国家标准《信息与文献参考文献著录规则》GB/T 7714-2015, 论文中引用和参考的文献必须列出. 参考文献序号按所引文献在论文中出现的先后次序排列. 引用文献应在论文中的引用处加注文献序号, 并加注方括弧.

文献引用示例 [1] 和 [2-4].

文献引用示例 [2] 和 [3, 5].

3 数学公式

3.1 公式

数学公式的使用请参考《一份 (不太) 简短的 IΔTEX 2ε 介绍》(lshort-zh-cn), 更多的数学符号参考 The Comprehensive LaTeX Symbol List (symbols-a4).

自定义命令表示的几个数学符号 \mathbb{R} , \mathbb{C} , A, i, A. 微分符号 d 以及 dx, dt.

在文中行内公式可以这么写: $a^2 + b^2 = c^2$, 这是勾股定理, 它还可以表示为 $c = \sqrt{a^2 + b^2}$, 还可以让公式单独一段并且加上编号

$$\sin^2 \theta + \cos^2 \theta = 1. \tag{1}$$

还可以通过添加标签在正文中引用公式, 如等式 (1) 或者 1.

读者可能阅读过其它手册或者资料,知道 LaTeX 提供了 eqnarray 环境.它 按照等号左边一等号一等号右边呈三列对齐,但等号周围的空隙过大,加上公式编号等一些 bug,目前已不推荐使用. (摘自 lshort-zh-cn)

多行公式常用 align 环境, 公式通过 & 对齐. 分隔符通常放在等号左边:

$$a = b + c \tag{2}$$

$$= d + e. (3)$$

align 环境会给每行公式都编号. 我们仍然可以用 \notag 或 \nonumber 去掉某行的编号. 在以下的例子, 为了对齐等号, 我们将分隔符放在右侧, 并且此时需要在等号后添加一对括号 {} 以产生正常的间距:

$$a = b + c \tag{4}$$

$$= d + e + f + g + h + i + j$$

$$+ m + n + o \tag{5}$$

$$= p + q + r + s. \tag{6}$$

如果不需要按等号对齐, 只需罗列数个公式, gather 将是一个很好用的环境:

$$a = b + c \tag{7}$$

$$d = e + f + g$$

$$h + i = j \tag{8}$$

align 和 gather 有对应不带编号的环境 align*和 gather*. 对于 align, gather, align*与 gather*等环境, 若添加命令 \allowdisplaybreaks 后 (已添加), 公式可以跨页显示.

多个公式组在一起公用一个编号, 编号位于公式的居中位置, amsmath 宏包提供了诸如 aligned、gathered 等环境, 与 equation 环境套用.

这个公式使用 aligned 环境 (推荐使用)

$$\begin{cases}
-\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} + \frac{\mathrm{d}u}{\mathrm{d}x} = \pi^2 \sin(\pi x) + \pi \cos(\pi x), & x \in [0, 1], \\
u(0) = 0, & u(1) = 0.
\end{cases}$$
(9)

其中方程的解析解为 $u = \sin(\pi x)$.

这个公式使用 array 环境

$$\begin{cases}
-\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} + \frac{\mathrm{d}u}{\mathrm{d}x} = \pi^2 \sin(\pi x) + \pi \cos(\pi x), & x \in [0, 1], \\
u(0) = 0, & u(1) = 0.
\end{cases}$$
(10)

aligned 与 equation 环境套用, 公式间距自动调节, 如果有分式, 分式也是行间显示. 如果用 array 与 equation 环境套用, 需要手动调整公式行间距和行间显示.

3.2 定理环境

定义 3.1. 这是一个定义.

命题 3.1. 这是一个命题.

引理 3.1 (Lemma). 这是一个引理.

定理 3.1 (Theorem). 这是一个定理.

证明: 这是证明环境.

推论 3.1. 这是一个推论.

命题 3.2 (Proposition). 这是一个命题.

定理 3.2. 假设单步法具有 p 阶精度, 且增量函数 $\varphi(x_n,u_n,h)$ 关于 u 满足 Lips-chitz 条件

$$|\varphi(x, u, h) - \varphi(x, \bar{u}, h)| \leqslant L_{\varphi}|u - \bar{u}|. \tag{11}$$

证明 由定理 3.1 和 (9) 式可以推出以上结论.

注 3.1. 这是一个 remark.

例 3.1. 这是一个例子.

参考文献

[1] Tadmor E. A review of numerical methods for nonlinear partial differential equations [J]. Bull. Amer. Math. Soc., 2012, 49(4):507-554.

- [2] 李荣华, 刘播. 微分方程数值解法[M]. 第四版. 北京: 高等教育出版社, 2009.
- [3] Adams R A, Fournier J J F. Sobolev spaces[M]. 2nd ed. Amsterdam: Elsevier, 2003.
- [4] Trefethen L N, Weideman J A C. The exponentially convergent trapezoidal rule[J]. SIAM Rev., 2014, 56(3):385-458.
- [5] Shen J. Efficient spectral-Galerkin method I. Direct solvers of second- and fourth-order equations using Legendre polynomials[J]. SIAM J. Sci. Comput., 1994, 15(6): 1489-1505.

MATLAB 源程序

```
clc;clear;
row = size(A)
row = size(A,1)
column = size(A,2)
[row,column] = size(A)
```