- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- Choice of True or Inverting Outputs
- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

'365A, '367A, 'LS365A, 'LS367A True Outputs '366A, '368A, 'LS366A, 'LS368A Inverting Outputs

description

These Hex buffers and line drivers are designed specifically to improve both the performance and density of three-state memory address drivers, clock drivers, and bus oriented receivers and transmitters. The designer has choice of selected combinations of inverting and noninverting outputs, symmetrical $\overline{\bf G}$ (active-low control) inputs.

These devices feature high fan-out, improved fan-in, and can be used to drive terminated lines down to 133 ohms.

The SN54365A thru SN54368A and SN54LS365A thru SN54LS368A are characterized for operation over the full military temperature range of $-55\,^{\circ}\text{C}$ to 125 °C. The SN74365A thru SN74368A and SN74LS365A thru SN74LS368A are characterized for operation from 0 °C to 70 °C.

SN54365A, 366A, SN54LS365A, 366A . . . J PACKAGE SN74365A, 366A . . . N PACKAGE SN74LS365A, SN74LS366A . . . D OR N PACKAGE (TOP VIEW)

SN54LS365A, SN54LS366A . . . FK PACKAGE (TOP VIEW)

SN54367A, 368A, SN54LS367A, 368A . . . J PACKAGE SN74367A, 368A . . . N PACKAGE SN74LS367A, SN74LS368A . . . D OR N PACKAGE (TOP VIEW)

SN54LS367A, SN54LS368A . . . FK PACKAGE (TOP VIEW)

TEXAS INSTRUMENTS

'LS365A thru 'LS368A

2

TTL Devices

logic diagrams (positive logic)

'366A, 'LS366A

6A '367*A*

'367A, 'LS367A

'368A, 'LS368A

Pin numbers shown are for D, J, and N packages.

SN54365A THRU SN54368A, SN54LS365A THRU SN54LS368A SN74365A THRU SN74368A, SN74LS365A THRU SN74LS368A HEX BUS DRIVERS WITH 3-STATE OUTPUTS

logic symbols†

[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, and N packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note	1)	., 7 V
Input voltage: '365A, '366A, '3	67A, ′368A	5.5 V
'LS365A, 'LS36	6A, 'LS367A, 'LS368A	7 V
Voltage applied to a disabled 3-	state output	5.5 V
Operating free-air temperature:	SN54'	$ 55^{\circ}$ C to 125° C
	SN74'	0°C to 70°C
Storage temperature range		

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

			SN54365A SN54367A			SN74365A SN74367A			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Vcc :	Supply voltage	4.5	5	5.5	4.75	5	5.25	V	
V _{IH} I	High-level input voltage	2			2			V	
VIL	Low-level input voltage			0.8			0.8	V	
Іон І	High-level output current			– 2			- 5.2	mA	
I _{OL}	Low-level output current			32			32	mA	
T _A	Operating free-air temperature	– 55		125	0		70	°c	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PAR	AMETER		TEST CONDITION	st		N54365 N54367			N74365 N74367		UNIT
					MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIK		V _{CC} = MIN,	I ₁ = - 12 mA				- 1.5			- 1.5	V
 _{VOI}		V _{CC} = MIN,	V _{IH} = 2 V,	V _{IL} = 0.8 V,	24	2.2			2.4		
_ *01	1	I _{OH} = MAX			2.4	3.3		2.4	3.1		V
Voi		V _{CC} = MIN,	V _{IH} = 2 V,	V _{IL} = 0.8 V,			0.4			0.4	,,
V 01	-	I _{OL} = 32 mA					0.4			0.4	V
		V _{CC} = MAX,	V _{IH} = 2 V,	V _{IL} = 0.8 V,			40				
10-		V _O = 2.4 V				40			40		
loz		V _{CC} = MAX,	V _{IH} = 2 V	V _{IL} = 0.8 V,					-		μΑ
		V _O = 0.4 V					- 40			– 40	
i _l		V _{CC} = MAX,	V _I = 5.5 V				1			1	mA
ЧН		V _{CC} = MAX,	V ₁ = 2.4 V				40			40	μА
	A Inputs	V _{CC} = MAX,	V _I = 0.5 V,	Either \overline{G} input at 2 V			- 40			- 40	μА
IIL	Amputs	V _{CC} = MAX,	V _I = 0.4 V,	Both \overline{G} inputs at 0.4 V			- 1.6			- 1.6	
	G Inputs	V _{CC} = MAX,	V1 = 0.4 V				- 1.6			- 1.6	mA
los	§	V _{CC} = MAX			- 40		– 130	40	40 — 130		mA
lcc		V _{CC} = MAX,	Data inputs = 0 V,	Output controls = 4.5 V		65	85		65	85	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

§ Not more than one output should be shorted at a time. switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see note 2)

		. , ,					
PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	DITIONS	MIN TYP	MAX	UNIT
^t PLH						16	ns
^t PHL			D = 400 O	0 50 5		22	ns
^t PZH	Any	Y	$R_L = 400 \Omega$,	C _L = 50 pF		35	ns
^t PZL	Ally	,				37	ns
^t PHZ			$R_L = 400 \Omega$, $C_L = 5 pF$	0 - 5 - 5		11	ns
^t PLZ				CL = 2 bF		27	ns

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

 $[\]ddagger$ All typical values are at V_{CC} = 5 V, T_{A} = 25 $^{o}C.$

recommended operating conditions

		SN54366A SN54368A			SN74366A SN74368A		
-	MIN	NOM	MAX	MIN	NOM	MAX	
V _{CC} Supply voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH} High-level input voltage	2			2			V
V _{IL} Low-level input voltage			0.8			0.8	V
IOH High-level output current			– 2			- 5.2	mΑ
IOL Low-level output current			32			32	mA
TA Operating free-air temperature	- 55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PAR	AMETER		TEST CONDITIONS	s†		N54366 N54368		S	UNIT		
				_	MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIK	<	V _{CC} = MIN,	I _I = - 12 mA				- 1.5			1.5	V
\/_		V _{CC} = MIN,	V _{IH} = 2 V,	V _{IL} = 0.8 V,	2.4	2.2		2.4	2.1		.,
٧o	Н	I _{OH} = MAX			2.4	3.3		2.4	3.1		V
٧o		V _{CC} = MIN,	V _{IH} = 2 V,	V _{IL} = 0.8 V,			0.4			0.4	V
•0	L	I _{OL} = 32 mA					0.4			0.4	
		V _{CC} = MAX,	$V_{1H} = 2 V$,	V _{IL} = 0.8 V,			40			40	
lo-		V _O = 2.4 V					40		40		μA
loz		V _{CC} = MAX,	$V_{IH} = 2 V$	V _{1L} = 0.8 V,			40			40	<i>"</i> ^
	_	V _O = 0.4 V				_	– 40			– 40	
- 11		V _{CC} = MAX,	V _I = 5.5 V				1			1	mA
ΉΗ		V _{CC} = MAX,	V _I = 2.4 V				40			40	μΑ
	A Inputs	V _{CC} = MAX,	V _I = 0.5 V,	Either \overline{G} input at 2 V			- 40			- 40	μΑ
IIL	A Inputs	V _{CC} = MAX,	V _I = 0.4 V,	Both \overline{G} inputs at 0.4 V			- 1.6			- 1.6	.mA
	G Inputs	V _{CC} = MAX,	V ₁ = 0.4 V		:		- 1.6			- 1.6	.111/4
los	§	V _{CC} = MAX			- 40		– 130	- 40		– 130	mA
Icc		V _{CC} = MAX,	Data inputs = 0 V,	Output controls = 4.5 V,		59	77		59	77	mA

- † For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
- ‡ All typical values are at V_{CC} = 5 V, T_A = 25°C.
- § Not more than one output should be shorted at a time.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN TYP MAX	UNIT
^t PLH				17	ns
^t PHL			$R_L = 400 \Omega$, $C_L = 50 pF$	16	ns
^t PZH	Any	Y	11 11 - 400 32, Sc 30 pi	35	ns
^t PZL	Ally	,		37	ns
^t PHZ			D = 400 0	11	ns
tPLZ			$R_L = 400 \Omega$, $C_L = 5 pF$	27	ns

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

		SN54LS365A SN54LS367A			S S	UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.7			0.8	V
Іон	High-level output current			– 1			- 2.6	mA
loL	Low-level output current			12			24	mA
ТД	Operating free-air temperature	55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PAR.	AMETER		TEST CONDITION	ıst		154LS36 154LS36			N74LS3 N74LS3		UNIT
					MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIK	;	V _{CC} = MIN,	I _I = - 18 mA				- 1.5			- 1.5	V
		V _{CC} = MIN,	V _{IH} ≈ 2 V,	VIL = MAX,	2.4	3.3		2.4	3.1		v
۷o	H	IOH = MAX			2.4	3.3		2.4	3.1		v .
		V _{CC} = MIN,	V _{IH} = 2 V,	VIL = MAX,		0.25	0.4		0.25	0.4	
VOL		I _{OL} = 12 mA				0.25	0.4		0.25	0.4	V
٧O	L	V _{CC} = MIN,	V _{IH} = 2 V,	V _{IL} = 0.8 V,					0.35	0.5	ľ
		I _{OL} = 24 mA				_			0.35	0.5	
		V _{CC} = MAX,	V _{IH} = 2 V,	VIL = MAX,			20			20	
10-		V _O = 2.4 V					20			20	μΑ
loz		V _{CC} = MAX,	$V_{1H} = 2 V$,	VIL = MAX,			- 20			– 20	"
_		V _O = 0.4 V					- 20			- 20	
Ч		V _{CC} = MAX,	V ₁ = 7 V				0.1			0.1	mA
ЧН		V _{CC} = MAX,	V ₁ = 2.7 V				20			20	μА
	A Inputs	V _{CC} = MAX,	V ₁ = 0.5 V,	Either \overline{G} input at 2 V			– 20			– 20	μΑ
t _{IL}		V _{CC} = MAX,	V ₁ = 0.4 V,	Both \overline{G} inputs at 0.4 V			- 0.4			- 0.4	mA
	G Inputs	V _{CC} ≈ MAX,	V ₁ = 0.4 V				- 0.2			- 0.2	
los	§	V _{CC} = MAX			- 40		– 225	- 40		– 225	mA
Icc		V _{CC} = MAX,	Data inputs = 0 V,	Output controls = 4.5 V,		14	24		14	24	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at V_{CC} = 5 V, T_A = 25°C.

[§] Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

SN54LS365A, SN54LS367A SN74LS365A, SN74LS367A **HEX BUS DRIVERS WITH 3-STATE OUTPUTS**

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{C}$ (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	DITIONS	MIN TYP	MAX	UNIT
^t PLH			•		10	16	ns
^t PHL			R_L = 667 Ω ,	$R_L = 667 \Omega$, $C_L = 45 pF$	9	22	ns
^t PZH	Any	Υ			19	35	ns
^t PZL	Ally	'			24	40	ns
^t PHZ			D 667.0	0 -5-5		30	ns
^t PLZ		I	$R_L = 667 \Omega$,	C _L = 5 pF		35	ns

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

			SN54LS366A SN54LS368A			SN74LS366A SN74LS368A			
		MIN	NOM	MAX	MIN	NOM	MAX		
Vсс	Supply voltage	4.5	5	5.5	4.75	5	5.25	V	
VIH	High-level input voltage	2			2			V	
VIL	Low-level input voltage			0.7			8.0	V	
ГОН	High-level output current			-1			- 2.6	mA	
loL	Low-level output current			12			24	mA	
ТА	Operating free-air temperature	- 55		125	0		70	°c	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PAR.	AMETER		TEST CONDITION	ıst		N54LS30 N54LS30			174LS36		UNIT
					MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIK	(V _{CC} = MIN,	I _I = - 18 mA				- 1.5			– 1.5	V
٧o	Н	V _{CC} = MIN,	V _{IH} = 2 V,	V _{IL} = MAX,	2.4	3.3		2.4	3.1		V
.,		V _{CC} = MIN, I _{OL} = 12 mA	V _{IH} = 2 V,	V _{IL} = MAX,		0.25	0.4		0.25	0.4	.,
٧ ₀	L	V _{CC} = MIN, I _{OL} = 24 mA	V _{IH} = 2 V,	V _{IL} = 0.8 V,					0.35	0.5	V
1		$V_{CC} = MAX$, $V_{O} = 2.4 V$	V _{IH} = 2 V,	V _{1L} = MAX,			20			20	4
102		$V_{CC} = MAX$, $V_{O} = 0.4 V$	V _{IH} = 2 V,	V _{IL} = MAX,	,		- 20			- 20	μΑ
Ψį		V _{CC} = MAX,	V _I = 7 V	_			0.1			0.1	mA
ЧΗ		V _{CC} = MAX,	V ₁ = 2.7 V				20			20	μA
	A Inputs	V _{CC} = MAX,	V ₁ = 0.5 V,	Either \overline{G} input at 2 V			– 20			- 20	uА
HL	A liiputs;	V _{CC} = MAX,	V ₁ = 0.4 V,	Both G inputs at 0.4 V			- 0.4			- 0.4	mA
	G Inputs	V _{CC} = MAX,	V _I = 0.4 V				- 0.2			- 0.2	
los	§	V _{CC} = MAX			- 40		- 225	- 40	- 40		mA
Icc		V _{CC} = MAX,	Data inputs = 0 V,	Output controls = 4.5 V,		12	21		12	21	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 $[\]ddagger$ All typical values are at V_{CC} = 5 V, T_{A} = 25°C.

[§] Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN TYP	MAX	UNIT
^t PLH	Any	Y		7	15	ns
tPHL			D 007.0	12	18	ns
^t PZH			$R_L = 667 \Omega$, $C_L = 45 pF$	18	35	ns
tPZL				28	45	ns
^t PHZ			D 007.0		32	ns
tPLZ			$R_{\perp} = 667 \Omega$, $C_{\perp} = 5 pF$		35	ns

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated