Estruturas Discretas

Relações Relação de ordem

Profa. Helena Caseli helenacaseli@dc.ufscar.br

Relação

- Relação de ordem
- Conjunto parcialmente ordenado
- Ordem total
- Predecessor e sucessor
- Diagrama de Hasse
- Elementos comparáveis e não comparáveis
- Cadeia e anti-cadeia
- Elemento mínimo e elemento máximo
- Elemento minimal e elemento maximal
- Supremo e ínfimo
- Reticulado

Relação de ordem

- Seja R uma relação em um conjunto A
- Dizemos que R é uma relação de ordem parcial (ou apenas ordem parcial) se R é <u>reflexiva</u>, <u>antissimétrica</u> e <u>transitiva</u>
 - → Denotado por ≤
- Em uma ordem parcial é possível estabelecer uma ordenação para os elementos
- Exemplo
 - A relação de inclusão de conjuntos ⊆:
 - é reflexiva (pois $A \subseteq A$ para todo conjunto A)
 - é antissimétrica (pois se $A \subseteq B$ e $B \subseteq A$, então A = B)
 - é transitiva (se $A \subseteq B$ e $B \subseteq C$, então $A \subseteq C$)

Relação de ordem

- Diga quais das relações a seguir são relações de ordem parcial no conjunto A = { 1, 2, 3 }
 - a) $R = \{ (1,1), (2,2), (2,3) \}$
 - b) $S = \{ (1,1), (1,2), (2,2), (2,3), (3,3) \}$
 - c) $T = \{ (1,1), (2,2), (3,3) \}$
 - d) $U = \{ (1,1), (1,2), (2,1), (2,2), (3,3) \}$
 - e) $V = \{ (1,1), (2,2), (3,3), (1,2), (2,3), (1,3) \}$

RESPOSTAS

- a) Não, pois não é reflexiva, falta o par (3,3)
- b) Não, pois não é transitiva, falta o par (1,3)
- c) SIM
- d) Não, pois não é antissimétrica já que há o par (1,2) e o (2,1) e $1 \neq 2$
- e) SIM

Relação de ordem

- Seja R uma relação em um conjunto A
- Dizemos que R é uma relação de ordem parcial estrita (ou apenas ordem parcial estrita) se R é antirreflexiva, antissimétrica e transitiva
 - → Denotado por <</p>
- Em uma ordem parcial é possível estabelecer uma ordenação para os elementos
- Exemplo
 - A relação < (estritamente menor que) sobre os inteiros:</p>
 - é antirreflexiva (por exemplo, 3 < 3 é falso)
 - é transitiva (por exemplo, 3 < 4 e 4 < 5 então 3 < 5)
 - é antissimétrica como consequência

Relação de ordem

 Diga quais das relações a seguir são relações de ordem parcial estrita no conjunto A = { 1, 2, 3 }

```
a) R = \{ (1,1), (2,1), (2,3) \}
```

b)
$$S = \{ (1,2), (2,3) \}$$

c)
$$T = \{ (1,2), (2,3), (1,3) \}$$

d)
$$U = \{ (1,2), (2,1) \}$$

e)
$$V = \{ (1,2), (1,3) \}$$

RESPOSTAS

- a) Não, pois não é antirreflexiva, tem o par (1,1)
- b) Não, pois não é transitiva, falta o par (1,3)
- c) SIM
- d) Não, pois não é antissimétrica já que há o par (1,2) e o (2,1) e $1 \neq 2$
- e) SIM

Relação de ordem

• A relação a divide b no conjunto \mathbb{N}^* (inteiros positivos) é uma relação de ordem parcial?

RESPOSTA

SIM, pois

- é reflexiva (a|a, \forall a \in \mathbb{N}^*)
- é antissimétrica (se a|b e b|a, então a = b)
- é transitiva (se a|b e b|c, então a|c)

Conjunto parcialmente ordenado (PO)

- Um conjunto A juntamente com uma ordem parcial R é dito parcialmente ordenado (poset – partially ordered set)

 - → Denotado por (A, \leq)

Conjunto parcialmente ordenado (PO)

- Exemplo
 - Considerando-se a ordem parcial R

 "a divide b" em A = { 1, 2, 6, 12 }, ou seja,
 - R = { (1, 1), (1, 2), (2, 2), (1, 6), (2, 6), (6, 6), (1, 12), (2, 12), (6, 12), (12, 12) }
 - Como R é reflexiva, antissimétrica e transitiva, P = (A, R) é um conjunto PO

Ordem total (ou ordem linear)

- Os conjuntos parcialmente ordenados podem conter elementos não comparáveis
 - Esta é a característica que torna a relação de ordem algo "parcial"
- Uma ordem total, ou ordem linear é um conjunto parcialmente ordenado no qual <u>não existem</u> elementos <u>não</u> comparáveis
 - Para todos os x e y no conjunto PO, exatamente uma das seguintes possibilidades é verdadeira:
 - x ≤ y,
 - y ≤ x,
 - x = y

Ordem total (ou ordem linear)

- Exemplo
 - Considerando-se a ordem parcial R

 "a divide b" em A = { 1, 2, 6, 12 }, ou seja,
 - R = { (1, 1), (1, 2), (2, 2), (1, 6), (2, 6), (6, 6), (1, 12), (2, 12), (6, 12), (12, 12) }
 - → O conjunto (A, R) é uma ordem total

Predecessor e sucessor

- Seja (X, R) um conjunto parcialmente ordenado
 - Se x R y e x \neq y (x \prec y), dizemos que
 - x é predecessor de y
 - y é sucessor de x
 - Se x é predecessor de y e não existe z com x R z e z R y (não existe x ≺ z ≺ y), dizemos que
 - x é predecessor imediato de y
 - y é sucessor imediato de x

Predecessor e sucessor

- Exemplo
 - Considerando-se a ordem parcial R

 "a divide b" em A = { 1, 2, 6, 12 }, ou seja,
 - R = { (1, 1), (1, 2), (2, 2), (1, 6), (2, 6), (6, 6), (1, 12), (2, 12), (6, 12), (12, 12) }
 - Os predecessores de 6 são: 1, 2
 - Os predecessores imediados de 6 são: 2

Diagrama de Hasse

- É a representação visual de um poset (A, R) na qual
 - Cada elemento de A é representado por um ponto (ou vértice)
 - Se o par (x, y) está em R então o ponto que representa x é colocado abaixo do ponto que representa y e os dois pontos são unidos por um segmento de reta (não necessariamente na vertical)

• Exemplo:

Diagrama de Hasse

- É a representação visual de um poset (A, R) na qual
 - Cada elemento de A é representado por um ponto (ou vértice)
 - Se o par (x, y) está em R então o ponto que representa x é colocado abaixo do ponto que representa y e os dois pontos são unidos por um segmento de reta (não necessariamente na vertical)
- Apesar de serem bastante semelhantes aos grafos, os Diagramas de Hasse têm um significado diferente e são usados especificamente para ilustrar conjuntos parcialmente ordenados, por isso a posição do ponto tem importância

Diagrama de Hasse

- Considerações importantes
 - Não é necessário traçar uma ligação de um ponto com ele mesmo, pois está implícito que ela existe, pois a relação de ordem parcial é reflexiva
 - Não é necessário ligar todos os pares de pontos que estão relacionados por R, pois a relação de ordem parcial é transitiva
 - O diagrama de Hasse nos dá toda a informação que precisamos sobre a ordem parcial:
 - Os nós e segmentos de reta nos dão os pares
 - O resto é completado usando o fato de ser uma relação reflexiva, antissimétrica e transitiva

Diagrama de Hasse

- Considerando-se a ordem parcial R

 "a divide b" em A
 = { 1, 2, 3, 6, 12, 18 }, ou seja,
 - R = { (1, 1), (1, 2), (2, 2), (1, 3), (3, 3), (1, 6), (2, 6), (3, 6), (6, 6), (1, 12), (2, 12), (3, 12), (6, 12), (12, 12), (1, 18), (2, 18), (3, 18), (6, 18), (18, 18) }
 - Diagrama de Hasse para esse PO:

Diagrama de Hasse

Dado o digrama de Hasse abaixo

- Quais são os pares ordenados da ordem parcial por ele representada?
- $\blacksquare R = \{ (1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 3), (3, 4), (1, 4) \}$

Elementos comparáveis e não comparáveis

- Dado um conjunto parcialmente ordenado (A, R) e $x, y \in A$
 - Dizemos que os elementos x e y são comparáveis se e somente se x R y ou y R x
 - Se os elementos x e y não estiverem relacionados por meio da relação de ordem parcial R, então eles são não comparáveis
 - Exemplo
 - Elementos não comparáveis:
 - 2 e 3 e 12 e 18

- Elementos comparáveis e não comparáveis
 - Dado o digrama de Hasse abaixo

- Quais são os
 - Elementos não comparáveis: 2 e 4, 2 e 3
 - Elementos comparáveis: 1 e 4, 1 e 2, 1 e 3, 3 e 4

Cadeia e anticadeia

- Seja P = (X, R) um conjunto PO e seja C $\subseteq X$
 - Dizemos que C é uma cadeia de P se os elementos de todos os pares em C são comparáveis
 - Uma relação de ordem total é uma cadeia
 - Dizemos que C é uma anticadeia de P se, para todos os pares de elementos distintos em C, os elementos são não comparáveis

Cadeia e anticadeia

- Exemplo
 - Dado o digrama de Hasse abaixo

- São exemplos de cadeias: {1, 2}, {1, 4} e {1, 3, 4}
- São exemplos de anticadeias: {2, 3} e {2, 4}

Elemento mínimo e elemento máximo

- Dado um conjunto parcialmente ordenado (A, \leq) e $x, y \in A$
 - Dizemos que x é **elemento mínimo** (ou menor elemento) se <u>para todo</u> $z \in A$, temos $x \leq z$
 - → x é mínimo se todos os outros elementos do conjunto PO estão acima de x
 - Dizemos que y é **elemento máximo** (ou maior elemento) se <u>para todo</u> $z \in A$, temos $z \leq y$
 - y é máximo se todos os outros elementos do conjunto PO estão abaixo de y

Elemento mínimo e elemento máximo

- Exemplos
 - Dado o conjunto PO que consiste dos divisores positivos de 36, ordenados por divisibilidade

- Elemento mínimo = 1 (está abaixo de todos os outros elementos do conjunto PO)
- Elemento máximo = 36 (está acima de todos os outros elementos)

Elemento mínimo e elemento máximo

 Dado o conjunto PO dos inteiros de 1 a 6 ordenados por divisibilidade

- Elemento mínimo = 1
- Elemento máximo = não há

• Elemento minimal e elemento maximal

- Dado um conjunto parcialmente ordenado (A, \leq) e $x, y \in A$
 - Dizemos que x é **elemento minimal** se <u>não existe</u> $z \in A$ tal que $z \leq x$
 - → x é minimal se não existe qualquer elemento estritamente abaixo dele
 - Dizemos que $y \in$ **elemento maximal** se <u>não existe</u> $z \in$ A tal que $y \leq z$
 - → y é maximal se não existe qualquer elemento estritamente acima dele

• Elemento minimal e elemento maximal

 Dado o conjunto PO dos inteiros de 1 a 6 ordenados por divisibilidade

- Elementos minimais = 1 (é mínimo e minimal)
- Elementos maximais = 4, 5 e 6

- Elemento mínimo, máximo, minimal e maximal
 - Mínimo X Minimal e Máximo X Maximal
 - No Diagrama de Hasse
 - O elemento mínimo está abaixo de todos os outros
 - Um elemento minimal não tem elementos abaixo dele
 - O elemento máximo está acima de todos
 - Um elemento maximal não tem elementos acima dele

Supremo e Ínfimo

- Dado um conjunto parcialmente ordenado (A, \leq) e $x, y \in A$
 - O supremo de x e $y \in A$ em (A, \leq) é o menor dos limitantes superiores
 - O **infimo** de x e $y \in A$ em (A, \leq) é o maior dos limitantes inferiores

Supremo e Ínfimo

Dado o poset representado pelo Diarama de Hasse

- Para x = 2 e y = 3
 - Supremo = 6
 - Ínfimo = 1

Reticulado

 Um reticulado é um poset no qual 2 elementos arbitrários x e y têm um supremo e um ínfimo

Exemplos

a)

b) f c

RESPOSTA

São reticulados: a e c

b) não é, pois os elementos b e c não têm supremo. Os elementos d, e e f são lim. sup. de b e c, no entanto não é possível determinar o menor entre eles

Propriedades das relações

	Relação de equivalência	Relação de ordem parcial	Relação de ordem parcial estrita
Reflexiva	✓	✓	
Antirreflexiva			✓
Simétrica	✓		
Antissimétrica		1	✓
Transitiva	✓	✓	✓
Característica	Determina uma partição	Determina uma ordenação (predecessores e sucessores)	