TABLE 4.5: Two models based on Brownian subordination: variance gamma process and normal inverse Gaussian process

Nr. 1.1	T 7.	N 1: C :
Model name	Variance gamma	Normal inverse Gaussian
Model type	Finite variation process with in-	Infinite variation process with
	finite but relatively low activity	stable-like ($\alpha = 1$) behavior
	of small jumps	of small jumps
Parameters	3 parameters: σ and θ — volatility and drift of Brownian	
(excluding drift)	motion and κ — variance of the subordinator	
Lévy measure	$\nu(x) = \frac{1}{\kappa x } e^{Ax - B x }$ with	$\nu(x) = \frac{C}{ x } e^{Ax} K_1(B x)$ with
	$A = \frac{\theta}{\sigma^2}$ and $B = \frac{\sqrt{\theta^2 + 2\sigma^2/\kappa}}{\sigma^2}$	$C = \frac{\sqrt{\theta^2 + \sigma^2/\kappa}}{2\pi\sigma\sqrt{\kappa}}$ and denoting
		$A = \frac{\theta}{\sigma^2}$ and $B = \frac{\sqrt{\theta^2 + \sigma^2/\kappa}}{\sigma^2}$
Characteristic	$\Psi(u) = -\frac{1}{\kappa}\log(1 + \frac{u^2\sigma^2\kappa}{2} - i\theta\kappa u)$	$\Psi(u) = \frac{1}{\kappa}$
exponent		$ \begin{aligned} \Psi(u) &= \frac{1}{\kappa} \\ -\frac{1}{\kappa} \sqrt{1 + u^2 \sigma^2 \kappa - 2i\theta u \kappa} \end{aligned} $
Probability	$p_t(x) = C x ^{\frac{t}{\kappa} - \frac{1}{2}} e^{Ax} K_{\frac{t}{\kappa} - \frac{1}{2}}(B x)$	$p_t(x) = Ce^{Ax} \frac{K_1(B\sqrt{x^2 + t^2\sigma^2/\kappa})}{\sqrt{x^2 + t^2\sigma^2/\kappa}}$
density	$\begin{aligned} p_t(x) &= C x ^{\frac{t}{\kappa} - \frac{1}{2}} e^{Ax} K_{\frac{t}{\kappa} - \frac{1}{2}}(B x) \\ \text{with } C &= \sqrt{\frac{\sigma^2 \kappa}{2\pi}} \frac{(\theta^2 \kappa + 2\sigma^2)^{\frac{1}{4} - \frac{\theta}{2\kappa}}}{\Gamma(t/\kappa)} \end{aligned}$	with $C = \frac{t}{\pi} e^{t/\kappa} \sqrt{\frac{\theta^2}{\kappa \sigma^2} + \frac{1}{\kappa^2}}$
Cumulants:		,
$E[X_t]$	θt	θt
$\operatorname{Var} X_t$	$\sigma^2 t + \theta^2 \kappa t$	$ \begin{aligned} \sigma^2 t + \theta^2 \kappa t \\ 3\sigma^2 \theta \kappa t + 3\theta^3 \kappa^2 t \end{aligned} $
c_3	$3\sigma^2\theta\kappa t + 2\theta^3\kappa^2 t$	$3\sigma^2\theta\kappa t + 3\theta^3\kappa^2 t$
c_4	$3\sigma^4\kappa t + 6\theta^4\kappa^3 t + 12\sigma^2\theta^2\kappa^2 t$	$3\sigma^4\kappa t + 15\theta^4\kappa^3 t + 18\sigma^2\theta^2\kappa^2$
Tail behavior	Both Lévy density and probability density have exponential tails with decay rates $\lambda_{+} = B - A$ and $\lambda_{-} = B + A$.	

resulting from Brownian subordination by adding the word "normal" to the name of subordinator). Its characteristic exponent is

$$\Psi(u) = \frac{1 - \alpha}{\kappa \alpha} \left\{ 1 - \left(1 + \frac{\kappa (u^2 \sigma^2 / 2 - i\theta u)}{1 - \alpha} \right)^{\alpha} \right\}$$
(4.22)

in the general case and

$$\Psi(u) = -\frac{1}{\kappa} \log\{1 + \frac{u^2 \sigma^2 \kappa}{2} - i\theta \kappa u\}$$
 (4.23)

in the variance gamma case ($\alpha = 0$).

The Lévy measure of a normal tempered stable process can be computed