

One-chip multi-tuner car radio and audio system

Rev. 1.0 — 30 October 2017

Objective data sheet

1. General description

The SAF400x family of multi standard multi tuner Car DSPs offers software defined radio capabilities through monolithic integration of up to four tuners including the analog and digital radio processing and a multichannel audio processing. The innovative wideband tuner-concept allows for exceptional performance compared to conventional narrowband tuners. Very fast and flexible Turbo Tuners operating in the digital domain ensure high speed band scans for analog and digital radio in AM/FM and DAB 3 bands.

The integrated high-performance DSP cores in combination with NXPs unique radio software algorithms deliver optimal reception, demodulation, decoding and audio processing for various analog and digital radio standards (AM/FM/weatherband/HD Radio/DAB/DAB+/T-DMB/DRM) using the integrated memory.

The 46 MHz wideband-ADC converters digitize the full AM or FM band or half DAB band for use with the four software definable turbo tuners enabling new use cases like dual phase diversity with a single chip.

High performance audio processing up to 1000 MIPS is performed by the integrated set of specialized audio DSPs with a powerful set of full parameterized audio functions and filters including a customer programmable 32-bit Cadence/Tensilica Hifi3 core.

Full cost scalability is ensured via software definable feature and function sets and a scalable product family from pure analog radio variants to full blown analog and digital radio + audio processing.

2. Features and benefits

2.1 AM/FM features

The list describes the maximum hardware configuration

- High dynamic range Sigma-Delta (SD) IF Analog-to-Digital Converter (ADC) with an absolute bandwidth of 46 MHz, covering full FM band, full AM band and half DAB3 band.
- Digital IF signal processing including decimation, shift to baseband, AGC control, I/Q
- Alignment free digital receiver including tuner and software-defined radio processing
- FM receiver with a tuning range from 65 MHz to 108 MHz covering Eastern European (OIRT), Japan, Europe and US bands
- AM receiver covering Long Wave (LW), Medium Wave (MW) and full Short Wave (SW) bands
- WX receiver with a tuning range from 162.4 MHz to 162.55 MHz

One-chip multi-tuner car radio and audio system

- Fully integrated tuning system with digital tuning using up to four turbo tuners
- Hybrid DAB / FM Low-Noise Amplifier (LNA) with Automatic Gain Control (AGC)
- FM Stereo Improvement algorithm (FMSI)
- FM iPD innovative higher performance phase diversity algorithm
- FM improved multipath suppression
- FM channel equalization
- Soft mute on modulation
- Stereo high blend
- AM LNA with AGC, matching active and passive antenna applications
- AM and FM noise blanking, Signal quality detection and weak signal processing correction, variable IF bandwidth filtering (PACS) and demodulation
- Advanced RDS and RBDS demodulation and decoding
- MPX output supporting DARC demodulator
- Signal reconstruction after impulsive noise with INCA

2.2 HD radio features

- HD Radio signal decoding for AM and FM digital audio
- Supports HD Radio single, dual and triple tuner use cases
- HD all-digital mode support
- Meta data support for HD Radio reception
- Data services support for HD Radio reception
- Advanced HD Radio feature support for Apple ID3 tag and multicasting
- Electronic Program Guide (EPG)
- Off-chip LOT processing
- Reception improvement (Maximum Ratio Combining (MRC))

2.3 DRM

- DRM signal decoding for AM and FM digital audio
- Support of second station for background scanning and data services
- Channel decoder reception improvements
- Supports xHE-AAC codec
- Prepared for DRM+

2.4 DAB, DAB+, and T-DMB radio technology

- Data service reception and filtering
- Dual reception processing with on-chip dual DAB front-end, ADC, memory and source decoding
- DAB3 receiver with a tuning range from 167 MHz to 240 MHz
- Full dual ensemble processing (2 × 1.8 Mbit/s)
- Integrated DAB-FM/DAB-DAB time alignment and seamless blending Integrated support for all actual audio codecs (AAC, HE-AAC, MP2, and BSAC)
- Reception improvement algorithms for single antenna systems delivering additionally improved BER

- Diversity reception improvement through advanced Maximum Ratio Combining (MRC) algorithms
- External tuner interface to enable background service scan or data services
- Third tuner support using wideband ADC or via serial I²S-bus type interface
- Integrated antenna splitter enabling antenna diversity

2.5 Audio features

The list describes the maximum hardware configuration

- Four mono Analog-to-Digital Converters (ADC) multiplexed on seven analog input pins
- Audio Inter-IC Sound bus (I²S-bus) input/output (I/O) port with 14 inputs or outputs with an option to use an external audio master sample rate
- Sony/Philips Digital Interface (S/PDIF): one input or one output
- Time Division Multiplex (TDM) with optional two separate clock domains: eight inputs or eight outputs
- Pulse Code Modulation (PCM) interface
- 32-bit fixed point Cadence/Tensilica HiFi3 DSP for advanced audio or radio processing
- Blending function for HD Radio reception
- NXP advanced seamless blending system for FM/DAB

2.6 System control

- Software defined radio capability with free definable feature sets
- API for radio and audio control, combining flexibility with ease of programming
- Two fast mode Inter-IC buses (I2C)
- Two SPI buses
- Quad-SPI bus for fast boot
- Up to 16 general-purpose I/O for applications and diagnostics
- JTAG interface for diagnostics
- Secure booting
- Stand-alone booting from external flash device within 250 ms.
- Alternatively booting supported by host controller
- Hardware Advanced Encryption Standard (AES) accelerator
- Qualified in accordance with AEC-Q100
- In field software upgrade
- Single system XTAL with optional clock reference output capabilities
- Small PCB footprint using state-of-the-art BGA package

3. Applications

- Global car radio and audio Original Equipment Manufacturer (OEM) platforms
- High-end aftermarket car radios

4. Ordering information

Table 1. Ordering information

Type number	Package							
	Name	Description	Version					
SAF4000EL/101	LFBGA364	plastic low profile fine-pitch ball grid array package; 364 balls	SOT1457-1					
SAF4001EL/101								
SAF7770EL/201								
SAF7771EL/201								

4.1 Ordering options

Table 2. Ordering options

Туре	HD	DAB	DRM	Audio	AM/FM
SAF4000EL/101	X	Х	X	Х	X
SAF4001EL/101	-	X	-	X	-
SAF7770EL/201	tuning only	tuning only	tuning only	X	Х
SAF7771EL/201	tuning only	tuning only	tuning only	X	X

Block diagram SAF400X_101_SAF777X_201

All information provided in this document is subject to legal disclaimers

Rev. 1.0 —

30 October 2017

Objective data sheet

6. Pinning information

6.1 Pinning

Table 3. Pin allocation table

Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol
Row A							
A1	VSSA_VREG	A2	VDDA_VREG_3V3	A3	VREG_1V8_CTRL	A4	VSSA_LOFACT
A5	VDDA_ADC1_1V8	A6	VDDA_ADC0_1V8	A7	XTAL_OUT	A8	XTAL_IN
A9	VDDA_ADPLL_1V8	A10	VDDD_ADPLL_1V8	A11	VDDD_DMUX_1V8	A13	VDDA_PLL_1V2
A14	SPI0_SCK	A15	SPI0_MOSI	A16	TRSTN	A17	TCK
A18	AIN0	A19	AIN1	A20	CODEC_VREFNEG	A21	CODEC_VREF
Row E	3					'	
B1	VDDA_AM	B2	VSSA_AM	В3	VREG_1V8_SENSE	B4	VDDA_LOFACT_1V8
B5	VSSA_ADC1	B6	VSSA_ADC0	В7	VSSA_XTAL_PLL	B8	VDDA_XTAL_1V8
В9	VDDA_ADPLL_DC O_1V8	B10	VSSA_ADPLL	B11	VSSD_DMUX	B13	VSSA_PLL
B14	SPI0_MISO	B15	VSSIO	B16	TDI	B17	TDO
B18	AIN0_REF	B19	AIN1_REF	B20	CODEC_VREFNE G_AD	B22	VDDA_CODEC_3 V3
Row C							'
C1	AM_IN	C2	AM_CM	C21	AIN2_REF	C22	AIN2
Row D)						
D1	VSSA_AM	D2	VSSA_AM	D4	VDDA_AM	D5	VSSA_VREG
D6	VSSA_VREG	D7	XTAL_BUF_M	D8	XTAL_BUF_P	D9	VSSA_VREG
D10	VSSD_ADPLL	D11	VSSA_SEALRING	D13	VDDD_QPS_2V5	D14	VDDIO_3V3

Table 3. Pin allocation table ...continued

				AF4)ne-chin multi-tunei	car ra	dio and audio system
					me-emp maia-tanei	cai ra	F777X_20′
Гable 3.	Pin allocation tab	oleco	ontinued				Ch Ch
Pin S	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol
D15 S	SPI0_CS_N	D16	TMS	D17	IC	D18	VSSA_SUBA_CO DEC
D21 A	N3_REF	D22	AIN3				
Row E				·			
E1 F	FM0_IN_P	E2	FM0_IN_M	E4	VREF_AM	E19	VSSA_CODEC
E21 A	NIN4_REF	E22	AIN4				
Row F				·			
F1 [DAB1_IN_M	F2	FM0_DAB1_CM	F4	VSSA_FMDAB	F21	AIN5_REF
F22 A	AIN5						
Row G							
G1 [DAB1_IN_P	G2	VSSA_FMDAB	G4	VSSA_FMDAB	G21	AIN6_REF
G22 A	AIN6						
Row H							
H1 \	/DDA_FMDAB	H2	VDDA_MIX0	H4	VSSA_FMDAB	H19	VSSC
H21 \	VDDC_1V2	H22	GPIO_10	1			
Row J							
J1 \	VDDA_MIX1	J2	FM1_IN_P	J4	VSSA_MIX0	J19	VSSC
J21 I	IS5_SD0	J22	IIS5_SD1				
Row K						'	
K1 F	M1_IN_M	K2	FM1_DAB0_CM	K4	VSSA_MIX1	K19	VSSM
K21 \	VDDC_1V2	K22	IIS5_SCK				
Row L						'	
L1 [DAB0_IN_M	L2	IC	L4	IC	L19	VSSC
L21 \	VDDM_1V2	L22	IIS5_WS				
Row M		1		<u> </u>	1	-	1
M1 [DAB0_IN_P	M2	VSSA_FMDAB	M4	VSSA_SEALRING	M19	VSSCWT
M21 I	IS4_SD2	M22	IIS4_SD0				
Row N				1	1	-	
N19 \	VDDIO_3V3	N21	VDDC_1V2	N22	IIS4_SCK		
Row P				<u> </u>	-1		
P1 F	RESET_N	P2	GPIO_15	P4	GPIO_0	P19	VSS_VREG
	VDDCWT_1V2	P22	IIS4_SD1				
Row R		1				1	
	GPIO_1	R2	NC	R4	NC	R19	IIS2_SCK
	/SSIO	R22	I2C0_SCL				_
Row T							
	BBIIS0_WS	T2	BBIIS0_I_SD	T4	BBIIS0_Q_SD	T19	VSSC
	VREG_1V2_SENS E	T22	I2C0_SDA			1.0	
· - · · · · ·							
Row U							

Table 3. Pin allocation table ...continued

				0	.00X_101_	r car rac	lio and audio syster
							F777X_201
Table 3		oleco					Op. Op.
Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol
U21	IIS4_SD3	U22	VREG_1V2_CONT ROL				RAN
Row V	,						
V1	RFE_GPO_7	V2	VSSIO	V4	RFE_GPI_3	V19	IIS0_SD0
V21	VDDC_1V2	V22	IIS4_WS				
Row V	V						
W1	RFE_GPI_7	W2	RFE_GPO_3	W5	RFE_GPI_0	W6	VSSM
W7	VSSC	W8	SPIFI_MOSI_SIO_ 0	W9	VDDIO_3V3	W10	VSSM
W12	VSSC	W13	VSSCWT	W14	SPI1_SCK	W15	IIS1_WS
W16	IIS6_SD1	W17	VSSC	W18	VDDIO_3V3	W21	IIS3_SD0
W22	IIS2_SD0						
Row Y	,						
Y1	RFE_GPO_2	Y2	RFE_GPI_2	Y21	IIS3_WS	Y22	IIS3_SCK
Row A	Ā						
AA1	RFE_GPO_1	AA3	RFE_GPI_1	AA4	RFE_GPO_5	AA5	RFE_GPO_4
AA6	VDDM_1V2	AA7	VDDC_1V2	AA8	SPIFI_SIO_2	AA9	VSSIO
AA10	SPIFI_CS_N	AA11	VDDM_1V2	AA13	VDDC_1V2	AA14	VDDCWT_1V2
AA15	SPI1_MOSI	AA16	IIS1_SD0	AA17	IIS6_SCK	AA18	VDDC_1V2
AA19	IIS0_SCK	AA20	VSSIO	AA22	IIS2_WS		
Row A	ΛB					'	
AB2	RFE_GPO_0	AB3	RFE_GPI_4	AB4	RFE_GPO_6	AB5	RFE_GPI_5
AB6	SPIFI_MISO_SIO_ 1	AB7	SPIFI_SCK	AB8	I2C1_SDA	AB9	I2C1_SCL
AB10	SPIFI_SIO_3	AB11	GPIO_9	AB14	GPIO_2	AB15	SPI1_MISO
AB16	SPI1_CS_N	AB17	IIS1_SCK	AB18	IIS6_WS	AB19	IIS6_SD0
AB20	IIS0_WS	AB21	IIS0_SD1				

6.2 Pin description

Table 4. Pin description overview

Pin category	Table number
Secondary function	Table 5
Tertiary function	Table 6
Power supply	Table 7
Analog pins	Table 8
TDM interface pins	Table 9
Baseband interface pins	Table 10
Reset and general purpose	Table 11
SPI interface	Table 12
S/PDIF interface	Table 13
RFE general purpose pins	Table 14
I ² S-bus interface pins	Table 15
I ² C-bus interface pins	Table 16

Table 4. Pin description overview ...continued

ors	SAF400X_101_	SAF777X_201
	One-chip multi-tuner	car radio and audio system
<u> </u>	overviewcontinued	100 100 100 100 100 100 100 100 100 100
Pin category	Tak	ble number
Oscillator and clock	Tab	ble 17
JTAG pins	Tab	ble 18
Thermal pins	Tab	ble 19
Internal connected	Tab	ble 20

Table 5. Pin description - Secondary function of pins

Symbol	Pin	Description
BBIIS0_WS_IN	T1	baseband word select 0
BBIIS0_I_SD_IN	T2	baseband I-data 0
BBIIS1_I_SD_OUT	U1	baseband I-data 1
BBIIS0_Q_SD_IN	T4	baseband Q-data 0
BBIIS0_SCK_IN	U2	baseband serial clock 0
BBIIS1_Q_SD_OUT	V1	baseband Q-data 1
PWM_1	AB3	pulse width modulation input 1
PWM_0	AB4	pulse width modulation input 0
FS_SYS_OUT	AA4	system output clock
TDM0_SD_IN3	AA16	data input 0 TDM input 3
PCM_FSYNC	AB18	synchronous data frame sync
PCM_SCK	AA17	synchronous data serial clock
PCM_SD_1	W16	synchronous data input/output 1
PCM_SD_0	AB19	synchronous data input/output 0
TDM0_FSYNC	AB20	data output TDM output 0
TDM0_SCK	AA19	clock input TDM input
TDM0_SD_IN5	AB21	data input 0 TDM input 5
TDM0_SD_IN4	V19	data input 0 TDM input 4
TDM1_FSYNC	AA22	sync input TDM input 1
TDM0_SD_IN2	U19	data input 0 TDM input 2
TDM0_SD_IN1	W21	data input 0 TDM input 1
TDM0_SD_OUT5	W22	data output 0 TDM output 5
TDM1_SCK	R19	clock input TDM input
TDM0_SD_OUT4	U21	data output 0 TDM output 4
TDM1_SD_IN1	V22	data input 1 TDM input 1
TDM0_SD_OUT2	P22	data output TDM output 2
TDM1_SD_OUT1	N22	data output 1 TDM output 1
TDM0_SD_OUT3	M21	data output 0 TDM output 3
TDM0_SD_OUT1	M22	data output 0 TDM output 1
TDM0_SD_IN0	L22	data input 0 TDM input 0
TDM0_SD_OUT0	K22	data output 0 TDM output 0
TDM1_SD_OUT0	J22	data output 1 TDM output 0
TDM1_SD_IN0	J21	data input 1 TDM input 0

Table 6. Pin description - Tertiary function of pins

tors		SA	F400X_101_SAF777X_201 One-chip multi-tuner car radio and audio system
			OPAN, OPAN, OPAN,
Table 6.	Pin description	n - Tertiar	ry function of pins
Symbol		Pin	Description
GPIO_3		AA5	general-purpose input output 3
GPIO_4		AB3	general-purpose input output 4
GPIO_5		AA4	general-purpose input output 5
GPIO_6		AB4	general-purpose input output 6
GPIO_7		U1	general-purpose input output 7
GPIO_8		AB5	general-purpose input output 8
GPIO_9		AB11	general-purpose input output 9
GPIO_10		H22	general-purpose input output 19
GPIO_11		V1	general-purpose input output 11
GPIO_12		W1	general-purpose input output 12
GPIO_13		T4	general-purpose input output 13
GPIO_14		T2	general-purpose input output 14

Table 7. Pin description - Power supplies

See Table 22 for limiting values

Symbol	Pin	Type[1]	Description
NC.	R2, R4	-	not connected
Digital supply pins			
VDDM_1V2	L21, AA6, AA11	P	supply voltage
VDDD_QPS_2V5	D13	Р	QPS supply voltage
VDDD_DMUX_1V8	A11	P	DMUX supply voltage
VDDD_ADPLL_1V8	A10	Р	PLL supply voltage
VDDIO_3V3	U4, W9, W18, D14, N19	Р	I/O supply voltage
VDDC_1V2	N21, H21, AA7, AA13, AA18, V21, K21	P	core ground supply voltage
VDDCWT_1V2	P21, AA14	Р	supply voltage
Digital ground pins			
VSSM	K19, W10, W6	G	ground supply
VSSIO	B15, R21, AA20, AA9, V2	G	I/O ground supply voltage

Table 7. Pin description - Power supplies ...continued

		One-c	hip multi-tuner car radio and audio system
			OR OR
Table 7. Pin description	ı - Power s	supplies	continued Description ground supply
See <u>Table 22</u> for limiting val			AV AV
Symbol	Pin	Type ^[1]	Description
VSSC	J19, L19, T19, W17, W12, W7, H19	G	ground supply
VSSCWT	M19, W13	G	ground supply
VSS_VREG	P19	G	regulator ground supply
VSSD_DMUX	B11	G	DMUX ground supply
VSSD_ADPLL	D10	G	PLL ground supply
Analog supply pins			
VDDA_AM	B1, D4	Р	AM analog supply voltage
VDDA_MIX0	H2	P	MIX0 analog supply voltage
VDDA_FMDAB	H1	Р	FM DAB analog supply voltage
VDDA_MIX1	J1	Р	MIX1 analog supply voltage
VDDA_CODEC_3V3	B22	Р	CODEC analog supply voltage
VDDA_PLL_1V2	A13	Р	PLL analog supply voltage
VDDA_ADPLL_DCO_1V8	B9	P	ADPLL analog supply voltage
VDDA_XTAL_1V8	B8	Р	XTAL PLL analog supply voltage
VDDA_ADC0_1V8	A6	Р	ADC 0 analog supply voltage
VDDA_ADC1_1V8	A5	Р	ADC 1 analog supply voltage
VDDA_ADPLL_1V8	A9	Р	ADPLL analog supply voltage
VDDA_LOFACT_1V 8	B4	Р	LOFACT analog supply voltage
VDDA_VREG_3V3	A2	Р	analog voltage regulator supply
VREF_AM	E4	Р	analog supply voltage
CODEC_VREFNEG_AD	B20	Р	analog supply voltage
CODEC_VREFNEG	A20	Р	analog supply voltage
CODEC_VREF	A21	Р	analog supply voltage
Analog ground pins			
VSSA_VREG	D5, D6, A1, D9	G	analog ground supply
VSSA_AM	B2, D1, D2	G	analog ground supply
VSSA_FMDAB	M2, H4, G2, F4, G4	G	analog ground supply
VSSA_MIX0	J4	G	analog ground supply
VSSA_MIX1	K4	G	analog ground supply
VSSA_CODEC	E19	G	CODEC analog ground supply
VSSA_SUBA_COD EC	D18	G	analog ground supply
VSSA_PLL	B13	G	analog ground supply

One-chip multi-tuner car radio and audio system

 Table 7.
 Pin description - Power supplies ...continued

See Table 22 for limiting values

Symbol	Pin	Type[1]	Description
VSSA_SEALRING	D11, M4	G	analog ground supply
VSSA_ADPLL	B10	G	analog ground supply
VSSA_XTAL_PLL	B7	G	analog ground supply
VSSA_ADC0	B6	G	analog ground supply
VSSA_ADC1	B5	G	analog ground supply
VSSA_LOFACT	A4	G	analog ground supply
Regulator pins			
VREG_1V2_SENSE	T21	А	external sense pin
VREG_1V2_CONTR OL	U22	Α	external supply control/status
VREG_1V8_SENSE	B3	Α	external sense pin
VREG_1V8_CTRL	A3	A	external supply control/status

^[1] Table 21 defines the pin type.

Table 8. Pin description - analog pins
See Table 11 for interface characteristics

Symbol	Pin	Type ^[1]	Description
ADC input			
AIN5_REF	F21	A	analog audio input 5 reference
AIN5	F22	A	analog input 5
AIN4_REF	E21	А	analog audio input 4 reference
AIN4	E22	А	analog input 4
AIN6_REF	G21	Α	analog audio input 6 reference
AIN6	G22	А	analog input 6
AIN3_REF	D21	А	analog audio input 3 reference
AIN3	D22	А	analog input 3
AIN2	C22	A	analog input 2
AIN2_REF	C21	А	analog audio input 2 reference
AIN1_REF	B19	А	analog audio input 1 reference
AIN1	A19	А	analog input 1
AIN0	A18	А	analog input 0
AIN0_REF	B18	А	analog audio input 0 reference
AM section			
AM_IN	C1	А	AM tuner input
AM_CM	C2	А	AM external attenuation capacitance
DAB section			
FM0_DAB1_CM	F2	А	FM and DAB common mode
FM1_DAB0_CM	K2	A	FM and DAB common mode
DAB1_IN_M	F1	A	negative DAB1 tuner input
DAB1_IN_P	G1	А	positive DAB1 tuner input
DAB0_IN_M	L1	А	negative DAB0 tuner input

Pin description - analog pins ...continued Table 8.

tors SAF400X_101_SAF777X_20							
		One-	-chip multi-tuner car radio and audio system				
			RALL RALL RALL				
Table 8.Pin descriptionSee Table 11 for interference	ription - analo	0.	ontinued Page 1				
Symbol	Pin	Type ^[1]	Description				
DAB0_IN_P	M1	А	positive DAB0 tuner input				
FM section	-		Eg				
FM0_IN_M	E2	А	negative FM tuner input				
FM0_IN_P	E1	А	positive FM tuner input				
FM1_IN_P	J2	А	positive FM tuner input				
FM1_IN_M	K1	А	negative FM tuner input				
Analog test pins							
IC	L2	А	analog test bus 0				
IC	L4	А	analog test bus 1				

^[1] Table 21 defines the pin type.

Table 9. Pin description - Time division multiplex interface See Table 36 for interface characteristics

Symbol	Pin	Type[1]	Description
TDM0_SD_IN3	AA16	1	data input 0 TDM input 3[2]
TDM0_FSYNC	AB19	I/O	data output TDM output 0[2]
TDM0_SCK	AA19	I/O	clock input TDM input
TDM0_SD_IN5	AB21	1	data input 0 TDM input 5
TDM0_SD_IN4	V19		data input 0 TDM input 4
TDM1_FSYNC	AA22	I/O	sync input TDM input 1
TDM0_SD_IN2	U19	1	data input 0 TDM input 2
TDM0_SD_IN1	W21	ŀ	data input 0 TDM input 1
TDM0_SD_OUT5	W22	0	data output 0 TDM output 5
TDM1_SCK	R19	I/O	clock input TDM input
TDM0_SD_OUT4	U21	0	data output 0 TDM output 4
TDM1_SD_IN1	V22	I	data input 1 TDM input 1
TDM0_SD_OUT2	P22	0	data output 0 TDM output 2
TDM1_SD_OUT1	N22	0	data output 1 TDM output 1
TDM0_SD_OUT3	M21	0	data output 0 TDM output 3
TDM0_SD_OUT1	M22	0	data output 0 TDM output 1
TDM0_SD_IN0	L22, W16	I	data input 0 TDM input 0
TDM0_SD_OUT0	AB19, K22	0	data output 0 TDM output 0
TDM1_SD_OUT0	J22	0	data output 1 TDM output 0
TDM1_SD_IN0	J21	I	data input 1 TDM input 0

^[1] Table 21 defines the pin type.

^[2] Secondary function.

Table 10. Pin description - Baseband interface

Cons SAF400X_101_SAF777X_201 One-chip multi-tuner car radio and audio system Table 10. Pin description - Baseband interface See Table 37 for interface characteristics						
Symbol	Pin	Type[1]	Description			
BBIIS0_WS	T1	0	baseband word select input/output			
BBIIS0_I_SD	T2	0	baseband I-data input/output			
BBIIS0_Q_SD	T4	0	baseband I-data input/output			
BBIIS0_SCK	U2	0	baseband Q-data input/output			
BBIIS1_Q_SD	V1, Y2	0	baseband Q-data input/output			
BBIIS1_I_SD	U1, Y1	I	baseband I-data input/output			
BBIIS1_WS	W2	0	baseband word select input/output			
BBIIS1_SCK	V4	0	baseband serial clock input/output			

Table 21 defines the pin type.

Table 11. Pin description - Reset and general-purpose pins See Table 41 for interface characteristics

Type[1] **Symbol** Pin Description **RESET** RESET N P1 master reset input from host micro controller (active LOW) RESET N OUT P2 0 reset output (active LOW) **GPIO** interface GPIO 0 P4 I/O general-purpose input output 0 I/O GPIO 1 R1 general-purpose input output 1 GPIO₂ I/O **AB14** general-purpose input output 2 1/0 GPIO 3 AA5 general-purpose input output 3 GPIO 4 I/O AB3 general-purpose input output 4 GPIO 5 I/O AA4 general-purpose input output 5 GPIO 6 AB4 I/O general-purpose input output 6 GPIO 7 U1 I/O general-purpose input output 7 GPIO 8 AB5 I/O general-purpose input output 8 GPIO 9 **AB11** I/O general-purpose input output 9 GPIO 10 H22 I/O general-purpose input output 10 GPIO 11 V1 I/O general-purpose input output 11 GPIO 12 W1 I/O general-purpose input output 12 GPIO 13 T4 I/O general-purpose input output 13 GPIO 14 T2 I/O general-purpose input output 14 GPIO 15 P2 I/O general-purpose input output 15

^[1] Table 21 defines the pin type.

Table 12. Pin description - Serial peripheral interface

tors	SA	F40	0X_101_SAF777X_201
			chip multi-tuner car radio and audio system
Table 12. Pin descript	ion - Seria	l periphera	al interface
Symbol	Pin	Type ^[1]	Description
SPIFI_MISO_SIO_ 1	AB6	I/O	quad SPI data output 1/master input
SPIFI_SCK	AB7	I/O	quad SPI serial clock output
SPIFI_SIO_2	AA8	I/O	quad SPI data output 2
SPIFI_MOSI_SIO_0	W8	I/O	quad SPI data output 0/master output
SPIFI_CS_N	AA10	I/O	quad SPI chip select 0
SPIFI_SIO_3	AB10	I/O	quad SPI data output 3
GPIO_9	AB11	I/O	general-purpose input output 9
SPI1_MISO	AB15	I/O	master input of SPI1 interface
SPI1_CS_N	AB16	I/O	chip select of SPI1 interface
SPI1_MOSI	AA15	I/O	master output of SPI interface
SPI1_SCK	W14	I/O	serial clock input of SPI1 interface
SPI0_CS_N	D15	I/O	chip select of SPI0 interface
SPI0_MOSI	A15	I/O	master output of SPI0 interface
SPI0_SCK	A14	I/O	serial clock input of SPI0 interface
SPI0_MISO	B14	I/O	master input of SPI0 interface

^[1] Table 21 defines the pin type.

Table 13. Pin description - S/PDIF interface

See Table 44 for interface characteristics

Symbol	Pin	Type ^[1]	Description[2]
SPDIF_DIGITAL_IN	U19, L22	1	S/PDIF digital data input
SPDIF_DIGITAL_OUT	W22, K22	P	S/PDIF digital data output

^[1] Table 21 defines the pin types.

Table 14. Pin description - RFE general-purpose pins

Symbol	Pin	Type ^[1]	Description ^[2]
RFE_GPI_0	W5	I	RFE general-purpose input pin
RFE_GPI_1	AA3	I	RFE general-purpose input pin
RFE_GPI_2	Y2	I	RFE general purpose input pin
RFE_GPI_3	V4	I	RFE general-purpose input pin
RFE_GPI_4	AB3	I	RFE general-purpose input pin
RFE_GPI_5	AB5	I	RFE general-purpose input pin
RFE_GPI_6	U1	I	RFE general-purpose input pin
RFE_GPI_7	W1	I	RFE general-purpose input pin
RFE_GPO_0	AB2	0	RFE general-purpose output pin
RFE_GPO_1	AA1	0	RFE general-purpose output pin
RFE_GPO_2	Y1	0	RFE general-purpose output pin
RFE_GPO_3	W2	0	RFE general-purpose output pin

^[2] Tertiary function.

One-chip multi-tuner car radio and audio system

Table 14. Pin description - RFE general-purpose pins ...continued

ors	3/	4F40	0X_101_SAF777X_201
		One-	chip multi-tuner car radio and audio system
			Par Par Par
Гable 14. Pin desc	ription - RFE	general-pu	rpose pinscontinued
Symbol	Pin	Type[1]	Description ^[2]
	AA5	0	RFE general-purpose output pin
RFE_GPO_4	AAS		
RFE_GPO_4 RFE_GPO_5	AA4	0	RFE general-purpose output pin
		0	

^[1] Table 21 defines the pin type.

Table 15. Pin description - I²S-bus interface

See Table 34 for interface characteristics

Symbol	Pin	Type[1]	Description[2]
IIS1_SCK	AB17	I/O	serial clock input/output of I ² S-bus 1
IIS1_SD0	AB16	1/0	data input/output 0 of I ² S-bus 1
IIS1_WS	W15	I/O	word select input/output of I ² S-bus 1
IIS6_WS	AB18	I/O	word select input/output of I ² S-bus 6
IIS6_SCK	AA17	I/O	serial clock input/output of I ² S-bus 6
IIS6_SD1	W16	I/O	data input/output 1 of I ² S-bus 6
IIS6_SD0	AB19	1/0	data input/output 0 of I2S-bus 6
IIS0_WS	AB20	I/O	word select input/output of I ² S-bus 0
IIS0_SCK	AA19	I/O	serial clock input/output of I ² S-bus 0
IIS0_SD1	AB21	I/O	data input/output 1 of I ² S-bus 0
IIS0_SD0	V19	I/O	data input/output 0 of I ² S-bus 0
IIS3_WS	Y21	1/0	word select input/output of I ² S-bus 3
IIS2_WS	AA22	I/O	word select input/output of I ² S-bus 2
IIS2_SD1	U19	I/O	data input/output 1 of I ² S-bus 2
IIS3_SD0	W21	I/O	data input/output 0 of I ² S-bus s 3
IIS3_SCK	Y22	I/O	serial clock input/output of I ² S-bus 3
IIS2_SD0	W22	I/O	data input/output 0 of I ² S-bus 2
IIS2_SCK	R19	I/O	serial clock input/output of I ² S-bus 2
IIS4_SD3	U21	I/O	data input/output 3 of I ² S-bus 4
IIS4_WS	V22	I/O	word select input/output of I ² S-bus 4
IIS4_SD1	P22	I/O	data input/output 1 of I ² S-bus 4
IIS4_SCK	N22	I/O	serial clock input/output of I ² S-bus 4
IIS4_SD2	M21	I/O	data input/output 2 of I ² S-bus 4
IIS4_SD0	M22	I/O	data input/output 0 of I ² S-bus 4
IIS5_WS	L22	I/O	word select input/output of I ² S-bus 5
IIS5_SCK	K22	I/O	serial clock input/output of I ² S-bus 5
IIS5_SD1	J22	I/O	data input/output 1 of I ² S-bus 5
IIS5_SD0	J21	I/O	data input/output 0 of I ² S-bus 5

^[1] Table 21 defines the pin type.

^[2] Primary function.

^[2] Primary function.

Table 16. Pin description - I²C-bus interface

stors SAF400X_101_SAF777X_201							
		One-	chip multi-tuner car radio and audio system				
Table 16. Pin description - I ² C-bus interface See Table 40 for interface characteristics							
Symbol	Pin	Type[1]	Description				
I ² C-bus interface (m	naster and slav	ve)	```_\``\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
I2C1_SDA	AB8	I ² C	serial data of I ² C-bus 1				
I2C1_SCL	AB9	I ² C	serial clock of I ² C-bus 1				
I2C0_SDA	T22	I ² C	serial data of I ² C-bus 0				

^[1] Table 21 defines the pin type.

Table 17. Pin description - oscillator and clock

See Table 42 for interface characteristics

Symbol	Pin	Type ^[1]	Description
Oscillator	1		
XTAL_IN	A8	A	positive crystal buffered[2]
XTAL_OUT	A7	A	negative crystal buffered[2]
XTAL_BUF_P	D8	A	positive crystal buffered output[2]
XTAL_BUF_M	D7	Α	negative crystal buffered output[2]
Clocks			
FS_SYS_OUT	AA4	I/O	audio clock output[3]

- [1] Table 21 defines the pin type.
- [2] Primary function.
- [3] Secondary function.

Table 18. Pin description - JTAG

See Table 44 for interface characteristics

Symbol	Pin	Type[1]	Description
TDI	B16	I/O	JTAG test data input
TDO	B17	I/O	JTAG test data output
TRSTN	A16	I/O	JTAG test reset input (active LOW)
TMS	D16	I/O	JTAG test mode selection input
TCK	A17	I/O	JTAG test clock input

^[1] Table 21 defines the pin type.

Table 19. Pin description - thermal pins

Symbol	Pin	Туре	Description
Thermal	A12, A22, B12, B21, D12, D19, F6 to F17, F19, G6 to G17, G19, H6 to H17, J6 to J17, K6 to K17, L6 to L17, M6 to M17, N1, N2, N4, N6 to N17, P6 to P17, R6 to R17, T6 to T17, U6 to U17, W4, W11, W19, AA2, AA12, AA21, AB1, AB12, AB13, AB22	-	thermal connection

Table 20. Pin description - internal connected

See Table 37 for interface characteristics

Symbol	Pin	Туре	Description	
IC	L2, L4,	-	internally connected; leave open	·/>_
	and D17			1

Table 21. Pin type description

Туре	Description
A	analog
Al	analog input pin
AG	analog ground pin
AO	analog output pin
AP	analog power pin
AR	analog reference pin
G	ground pin
I	input
I/O	input or output
I ² C	I ² C-bus pin; 3.3 V tolerant
0	output
Р	power supply pin

7. Functional description

7.1 Tuner description

The SAF400X tuner block diagram is given in Figure 3. Two IF data paths are supported consisting of an IF trans-impedance amplifier, wideband IF AD converter and primary decimation chain. The 2 IF data paths operate independent from each other. Both IF data paths can receive AM, FM, DAB Band III or weather band signals.

The SAF400X contains one AM RF input, two FM RF inputs and two DAB Band III / Weather band inputs.

The AM RF input is signal is processed by the AM LNA and provided to one of the two IF signal paths. The wideband ADC digitizes the complete AM band. After the first decimation stages in the primary decimation chain, a maximum number of three AM channels are selected in the narrowband tuner.

One FM RF input and one DAB RF input are connected to a combined FM/DAB LNA. This FM/DAB LNA processes either the FM or the DAB RF input signal.

In case of FM reception, a fixed LO frequency is used to convert one of the FM reception bands EU/US band, Japan band or OIRT band to the IF frequency range. This IF signal is provided to one of the two IF signal paths. With a second LO signal, another FM reception band can be converted to IF and provided to the other IF signal path. The wideband IF ADC digitizes the selected FM reception band. After the primary decimation chain, a maximum number of three FM channels within the selected FM reception band can be selected in the narrowband tuner.

In case of DAB reception, two different LO frequencies are used to cover the DAB Band III. One LO frequency is used to convert the lower part of the DAB Band III to the IF frequency range, the other LO frequency is used to convert the upper part of the DAB Band III. After frequency conversion, the IF signal is provided to one of the two IF signal paths for digitization, decimation and channel selection.

For analog AM/FM radio broadcasting, the selected AM or FM channels are demodulated for reception of audio signals, RDS (FM only), and signal quality information. In case of AM-HD, FM-HD, DRM or DAB digital radio reception, the baseband signal of the selected channel is provided to the digital radio processor for demodulation and decoding.

7.2 FM tuner to IF ADC input

An external wideband RF band pass filter is used to filter the RF antenna signal. It passes the complete FM band of interest and provides impedance transformation realizing the antenna impedance matching.

The output signal of the RF bandpass filter is provided to the FM AGC and the high dynamic range FM LNA of the SAF400X. The integrated AGC loop controls the attenuation of the FM AGC. The AGC range is 48 dB. The IC input impedance remains constant over the first 24 dB AGC range and is reduced for an AGC between 24 dB and 48 dB.

The signal from the LNA is converted to an IF signal using a complex mixer including image and harmonic LO rejection. The reception of the FM bands EU/US, Japan or OIRT each uses a different LO frequency. However within a reception band, the LO frequency is fixed. The IF frequency is in the range between 300 kHz and 23 MHz. The IF signal is amplified and digitized by the wideband IF ADC.

7.3 AM tuner to IF ADC input

An external high pass filter and an FM frequency band reject filter are used to filter the RF antenna signal. The high pass filter attenuates the 50 Hz/60 Hz signals from power supply lines. The band reject filter or FM intrusion filter attenuates the FM signals before entering the AM LNA, preventing inter modulation from two FM signals degrading AM reception.

After the external filtering, the RF signal is applied to the AM AGC and AM LNA of the SAF400X. The attenuation of the AM AGC and the gain of the AM LNA is controlled by the integrated AGC loop. The IC input impedance is constant over the first 39 dB of the AGC range and is reduced for higher AGC values.

The LNA output signal is amplified and digitized by the wideband ADC. As no frequency conversion is applied for AM-LW, MW, and SW reception, performance limitations due to reception of image and harmonic LO frequencies are avoided.

7.4 DAB tuner to IF ADC input

An external band pass filter selects the DAB Band III frequencies from the antenna signal and provides antenna impedance matching. After filtering, the RF signal is applied to the AGC and LNA. The integrated AGC loop controls the attenuation of the AGC. The IC input impedance is constant over the first 24dB of the AGC range and is reduced for AGC values between 24 dB and 36 dB.

A complex mixer converts the lower or the upper part of the DAB Band III to an IF signal. The IF signal is amplified and digitized by the wideband IF ADC.

7.5 WX tuner to IF ADC input

The DAB Band III tuner section can be used to receive weather band. The external band pass filter in application has to be extended below the DAB Band III frequencies in order to pass the weather band frequencies. After the AGC and LNA, a fixed LO signal is used to convert the weather band to IF. The IF signal is amplified and digitized by the IF ADC.

7.6 Tuning system

The tuning system provides a number of fixed LO frequencies for reception of the FM EU/US band, FM Japan band, FM OIRT band, the upper or lower part of the DAB Band III or the weather band. The LO signal from the tuning system is used to convert the selected RF frequency band to an IF signal fitting in the bandwidth of the wideband IF ADC. The LO signals are derived from a single fixed frequency oscillator by means of selecting a proper divider setting. The tuning PLL uses a 55.46667 MHz reference clock signal to generate this high frequency oscillator signal. The reference clock signal is generated by the crystal oscillator or provided by an external device.

7.7 Wideband IF ADC

The high dynamic range sigma-delta wideband IF ADC digitizes the RF frequencies from the AM-LW/MW/SW bands or the IF signals from the down converted FM bands, Weather band or DAB Band III. The bandwidth of the wideband IF ADC ranges from –23 MHz to +23 MHz and is extended to ±30 MHz for AM-SW. The bandwidth is wide enough to convert the complete AM band, the FM EU/US band, the FM Japan band, the FM OIRT band, weather band or half the DAB Band III. The wideband IF ADC provides I and Q bit streams which are decimated in the primary decimation chain.

7.8 Narrowband tuner

From the wideband signal provided by the IF ADC and Primary Decimation Chain, the narrow band tuner selects a single AM, FM, WX or DAB channel. A maximum of four narrow band channels can be selected. IQ correction is applied to optimize image rejection for FM, WX and DAB. The narrow band tuner applies filtering and decimation to appropriate bandwidths and sample rates for AM, FM, WX and DAB radio signal processing.

The FM Intermodulation Cancellation algorithm can be optionally applied. This algorithm cancels intermodulation components created by non-linearity of the wideband FM tuner, improving signal reception in strong signal conditions. The FM Intermodulation Cancellation algorithm is available for reception of analog FM and FM HD.

The AM Wideband Noise Cancellation (AM WNC) algorithm can be optionally applied to remove wideband noise components generated by electrical or hybrid cars from the desired signal. This algorithm uses the signal from a noise probe antenna connected to a separate receiver which is provided to the SAF400X by the IIPD interface. The AM Wideband Noise Cancellation algorithm is available for reception of analog AM as well as AM HD and DRM.

7.8.1 AM radio processing

The signal provided by the narrowband tuner is filtered to reject adjacent channels. The bandwidth of the channel filter can be programmed or controlled by an automatic bandwidth control algorithm (AM PACS). After this channel filtering, the signal is demodulated.

The AM noise blanker suppresses ignition noise pulses. It consists of an IF noise blanker in front of the channel filter and an audio noise blanker after AM demodulation. The device offers an optional feature, Impulsive Noise Concealment Algorithm (INCA) which can be

One-chip multi-tuner car radio and audio system

selected instead of the AM audio noise blanker. The INCA algorithm reconstructs the original waveform instead of blanking out the noise pulses. It improves the noise suppression performance and reduces the audio distortion.

Quality detectors are available to provide information about the quality of the signal reception:

- Radio Signal Strength Indication (RSSI) or field strength indication (level)
- · Frequency offset detection
- AM modulation detection
- · Adjacent channel or noise detection
- · Co-channel detection
- · Signal to Noise detection

The presence of a DRM signal can be detected by the DRM detector.

The AM weak signal handling improves the audio quality in weak or disturbed reception conditions by:

- Soft mute controlled by level and modulation
- · High cut and Low cut controlled by level and modulation

7.8.2 FM radio processing

Phase diversity combines the signals provided by two narrowband tuners, each connected to a different wideband tuner and antenna input, achieving the best possible reception performance for different signal conditions. Phase diversity can also make use of one signal from an internal SAF400X narrowband tuner and one signal provided by an external tuner via the IIPD interface.

For single tuner reception, the adaptive filtering by the Channel Equalizer improves the reception performance in multipath, adjacent channel and weak signal conditions.

Before FM demodulation, the signal is filtered to reject adjacent channels. The bandwidth of the channel filter is controlled by an automatic bandwidth control algorithm (FM PACS). The selected bandwidth depends on the adjacent channel conditions and properties of the desired signal as modulation and field strength.

The improved multipath suppression algorithm reduces the audibility of multipath distortions by removing noise and distortion from the demodulated MPX output signal.

The FM noise blanker detects and blanks the ignition noise pulses. Instead of just blanking the ignition pulses, the Impulsive Noise Concealment Algorithm (INCA) can be selected for reconstructing the original waveform. This optional feature improves the noise suppression performance and reduces the audio distortion.

The FM Stereo Improvement (FMSI) is an advanced algorithm improving FM stereo reception. It improves stereo noise reduction and maintains stereo reception in signal conditions where conventional mono-stereo blend algorithms have blended over to mono.

Quality detectors are available to provide information about the quality of the signal reception:

Radio Signal Strength Indication (RSSI) or field strength indication (Level)

One-chip multi-tuner car radio and audio system

- Frequency offset detection
- Multipath and adjacent channel detection by Ultrasonic Noise Detection (USN)
- Multipath detection by Wideband AM (WAM) detection
- FM frequency deviation detection
- Stereo pilot detection
- · Fast quality change detection

The FM weak signal handling improves the audio quality in weak or disturbed reception conditions:

- · Soft mute controlled by level, USN and WAM
- High cut and Low cut controlled by level, USN, WAM and modulation
- Stereo blend controlled by level, USN, WAM and modulation
- Stereo high blend controlled by level, USN, WAM and modulation

7.8.3 RDS/RBDS

An RDS demodulator and RDS decoder processes the data received from RDS and RBDS transmissions with excellent RDS sensitivity. RDS can be received simultaneous from three narrowband tuner signals.

7.8.4 RDS demodulator

The RDS demodulator includes optimized filtering and linear signal processing that allows very good RDS sensitivity. The MPX signal is filtered for selection of the 57 kHz RDS signal and data shaping. The RDS demodulator data is provided to the RDS decoder for further processing. To support available software stacks, the RDS demodulator data can also be read directly via the SPI bus.

7.8.5 RDS decoder

The RDS decoder provides synchronization to the block and group structure of the demodulated RDS data stream. When synchronized, the decoder delivers data in a fixed ABCD group order for easy software handling. In the background, synchronization search continues for fast correction on bit slip or other synchronization errors. Extended error detection and correction are included.

An SPI register indicates the availability of a new group. An interrupt signal 'data available' can be provided on a GPIO pin.

Data available is indicated whenever a new group is received, that is at reception of block D. For fast PI code reception, at synchronization start 'data available' is flagged on reception of the first PI code, such as block A or block C.

7.8.6 RDS full search

The SAF400X includes the special FULL SEARCH feature for improved RDS sensitivity reception. FULL SEARCH is an optimized RDS channel demodulation and decoder system. It uses soft decision and soft error detection techniques to achieve an improvement of RDS sensitivity at equal or better quality of output data compared to conventional RDS decoder systems.

7.8.7 Weather band radio processing

In weather band mode, the signal from the narrowband tuner is filtered and demodulated The demodulated audio signal is filtered and the signal level is scaled.

Quality detectors are available to provide information about the quality of the signal reception:

- Radio Signal Strength Indication (RSSI) or field strength indication (Level)
- · Frequency offset detection

The level information is used to control the soft mute in very weak reception conditions.

7.9 IIPD interface

The IIPD interface is a dedicated interface between NXP devices like e.g. SAF400X, SAF7770 or TEF7100. The IIPD interface is used to transfer a narrowband AM or FM baseband signal from one device (slave) to the other device (master). Example use cases are FM phase diversity with two tuners from different devices or AM wideband noise cancellation with one tuner connected to the main reception antenna and one tuner connected to the noise probe.

The IIPD interface between the SAF400X and/or SAF7770 devices can be configured as bi-directional interface with baseband signal transfer from slave to master device and tuner status information from the master to the slave device. For an IIPD interface between the SAF400X/SAF7770 and the TEF7100, the TEF7100 only provides data to the SAF400X/SAF7770.

7.10 Digital radio features

7.10.1 Baseband interfaces

In order to support tuner signal routing between different NXP car radio ICs, two I²C-bus input interfaces are included to cope with down-mixed (I, Q) baseband signal pair streams. The two interfaces implement the following features:

- Split I/Q I²S-bus signal-based input 24-bit I and Q data word serialized, word select, bit clock)
- Interface speed from 325 kS/s up to 2.6 MS/s to serve. For example:
 - 650 kS/s for HD Radio AM/FM Mode
 - 2.6 MS/s for additional DAB signal stream input
- · Input and output using current mode

The interfaces can be used to implement AM and high performance FM-based digital radio transmission standards such as DRM and HD Radio, as well as DAB tuner signal transmission. The interface is typically used to connect to a TEF7100, SAF770X or SAF400X chip.

7.10.2 Digital front-end

The digital radio processing front end is used to convert the digitized radio frequency data streams and baseband I²C-bus interface data streams into data packages. The data conversion suites distribution via the chips main control and data communication fabric.

One-chip multi-tuner car radio and audio system

- Channel filtering
- Sample rate conversion with bypass option
- Support for three parallel tuner (I, Q) paired data streams
- Direct memory access master capability into the chips main communication fabric

Next to data packaging a bypass-able sample rate conversion unit is implemented per data stream. In total, three parallel data streams are supported and packed into one time-multiplex data stream. The data stream is transmitted into the main processing system via direct memory access streaming interface with master capability.

7.10.3 Digital radio DSP for baseband processing

Any main baseband processing is designated to be done in software, enabling a flexible software defined radio approach to serve various digital radio standards. The main backbone for any processing is a vector DSP core. It includes infrastructure components such as tightly coupled memories, caches and user-defined instruction extensions suited to support digital radio reception algorithms.

The basic processor IO for any data stream can be done via an internal on chip bus. It is suited to consume processing data from the main memory or any other DMA client and to produce processed data into the next system unit.

A hardware accelerator is used to off-load basic stream decoding capabilities from the main radio processing system DSP. It includes the following functions:

- De-puncture unit
- Viterbi decoder
- De-scrambler unit
- Flexible / programmable de-interleaver data flow and control processor
- · Multiple stream processing at small granularity
- Two direct memory access master units connected to the chips main communication fabric

7.10.4 Source decoding and control DSP

Any data/audio stream or any basic control processing is designated to perform in software. The main backbone for these tasks is a standard DSP core. It includes infra-structure components such as tightly coupled memories, caches and user-defined instruction extensions, especially suited to support audio processing and decoding algorithms.

The basic processor IO for any data stream can be done via an internal on-chip bus. It is suited to consume processing data from the main memory or any other DMA client and to produce processed data into the next system unit.

7.11 IC control unit

7.11.1 VREG 1V2

This voltage regulator generates the 1.2 V supply voltage used in SAF400x. The regulator circuitry consists of an internal control loop and an external NPN power transistor. Using this voltage regulator, the SAF400x requires just a single 3.3 V power supply.

7.11.2 VREG_1V8

This voltage regulator generates the 1.8 V supply voltage used in SAF400x. The regulator circuitry consists of an internal control loop and an external NPN power transistor. Using this voltage regulator, the SAF400x requires just a single 3.3 V power supply.

7.11.3 **RESET**

The reset generator controls the start-up sequence of all units. The generator takes care that all processing units will be set in a defined state during and after the reset phase.

POR (power-on reset) — also called cold boot.

Reset via RESET N pin — an active low on RESET N pin starts the sequence.

Watchdog reset — internally initiated reset on certain error conditions. During the watchdog reset, the boot process is halted. A reset via RESET_N pin or a power-on reset initiates the boot process. During a watchdog reset, the host can read the cause of reset via the SPI interface.

7.11.4 Security

The security module is used to manage key code and password storage and related security features including decryption to run protected audio codecs. It also includes the non-volatile storage for all related secure information.

- One device internal non-volatile memory for NXP-related information
- Programmable AES decryption engine
- Internal DMA flow control capability

Due to its independent DMA capabilities, the security engine does not require any data management support other than setting up the desired operation modes.

The following security mechanisms are supported in SAF400x:

- Secure boot
- · Secure keycodes
- JTAG password protection

The secure boot mechanism of the SAF400x enables the different processor images to be encrypted. The encryption of the images is, typically, done offline, while the decryption is done during the SAF400x boot process, using an AES hardware accelerator. The image decryption process uses decryption keys that are programmed in OTP memory. The OTP memory is programmed by NXP and contains the NXP decryption keys for images provided by NXP, keycodes and JTAG password.

Several features of the SAF400x are protected by keycodes. The keycodes are subject to a commercial agreement and must be obtained via the NXP commercial department. The keycode is a bit-sequence, transferred via an SPI interface during the boot procedure and is, typically, sent by the host controller.

The JTAG interface of the SAF400x can be used to debug a program running on the Tensilica processors. However, the JTAG interface to the Tensilica processors is locked by default and a password is required to unlock it. The JTAG password can be obtained from the NXP commercial department.

7.11.5 I²C-bus

The I²C-bus is a communication interface between the SAF400x and other on-board devices (as example SAF7771). The I²C-bus interface can handle both data and control.

Switching between the different operational modes is handled internally.

- The I²C-bus interface (slave) can be used to control the device
- The I²C-bus interface (master) is available for control of other devices

The I²C-bus interface supports 400 kbit/s (fast mode) according to Ref. 3.

Exception to the I²C-bus specification: When SDA remains HIGH during this 9th clock pulse, this is defined as the Not Acknowledge signal. The master can then generate either a STOP condition to abort the transfer, or a repeated START condition to start a new transfer. There are five conditions that lead to the generation of a NACK:

- 1. No receiver is present on the bus with the transmitted address so there is no device to respond with an acknowledge.
- 2. The receiver is unable to receive or transmit because it's performing some real-time function and is not ready to start communication with the master.
- 3. During the transfer the receiver gets data or commands that it does not understand.
- 4. During the transfer, the receiver cannot receive any more data bytes.
- 5. A master-receiver needs to signal the end of the transfer to the slave transmitter SAF400X does not support condition 4 from the spec by generating a NACK and to avoid data loss, clock stretching mechanism is used.

The two embedded I²C-bus communication units have the following features:

- Two standard I²C-bus units suited to run in fast mode at up to 400 kHz
- Master and slave operation capable
- Software configurable I²C-bus addresses
- Integrated FIFO to decouple incoming and outgoing data rates

These units are typically used to communicate to external tuner devices and system hosts. Both units require software support to run the required protocol or link layer services on the integrated I²C-bus units to allow full-blown communication.

7.11.6 Quad SPI

The SAF400X has one quad SPI interface. This interface is a master interface and is used to connect to flash with a maximum data rate of 400 Mbit per sec.

One-chip multi-tuner car radio and audio system

The embedded quad SPI communication interface support the following SPI formats:

- Motorola Serial Peripheral Interface (SPI)
- Texas Instruments Serial Protocol (SSP)
- National Semiconductor Microwire

This unit is used to communicate to on-board flash memories for fast download of main software image during boot. The unit require software support to run the required protocol or link layer services on the integrated SPI bus units to allow full-blown communication.

7.11.7 SPI

The SAF400X has two SPI interfaces. The SPI1 interface is used for control of the device. The SPI0 interface can be used for other control, like open core software control.

The two embedded SPI communication interfaces support the following SPI formats:

- Motorola Serial Peripheral Interface (SPI)
- Texas Instruments Serial Protocol (SSP)
- National Semiconductor Microwire

The following configurations and features are available in these systems:

- two master or slave unit combination for standard speed SPI traffic
- Full duplex protocol support
- Integrated FIFO to decouple incoming and outgoing data rates

These units are typically used to communicate to system host. They are also used to download the main software image during boot in a host controlled system. All units require software support to run the required protocol or link layer services on the integrated SPI bus units to allow full-blown communication.

7.11.8 **GPIO MUX**

A specific feature can be assigned to a GPIO. The features cover three different domains:

- Radio
- Audio
- Control

The following radio features use a GPIO pin:

- RDS data available indicator for the primary and secondary path (output)
- Quality status interrupt for the primary and secondary path (output)
- Fast quality change for the primary and secondary path (output)
- Scanning antenna control signal (output)
- DAB tuner control (input/output)

The following audio features use a GPIO pin:

- Click-clack (input)
- Clip connect limiters (input)

One-chip multi-tuner car radio and audio system

- De-emphasis (input)
- Fast mute (input)
- · Digital radio blend (input)

The generic features include reading a specific GPI or writing to a specific GPO

7.11.9 JTAG

The JTAG interface of the SAF400x can be used to debug a program running on the Tensilica processors. However, the JTAG interface to the Tensilica processors is locked by default and a password is required to unlock it. The JTAG password can be obtained from the NXP commercial department.

7.11.10 System booting

The SAF400X supports the following boot modes:

- Booting the firmware images from a serial flash connected to the quad SPI port
- Booting the firmware images from an external host processor via SPI 0 or SPI 1 port

The boot mode selection is possible via the GPIO-0 pin which is configured as a boot strap pin during power-on/reset. When GPIO-0 is driven active LOW, SAF400x loads the firmware from the external serial flash. Otherwise, it waits for the firmware to be loaded via the SPI port.

The boot process requires a secondary boot loader image to be loaded prior to any other firmware images. The firmware images including the secondary boot loader are based on a custom file format and is protected by means of encryption and signature. The flash file system is also proprietary.

During booting, the SPI slave interface is configured in Motorola format mode 1 (clock polarity low with clock phase on second edge) and supports a speed range of 100 KHz to 20 MHz with a recommended speed of 10 MHz.

The flash boot supports both quad mode SPI flashes and standard SPI flashes. The supported flash sizes are 8 Mbit to 128 Mbit. The initial flash read out happens with a clock speed of 2 MHz in standard SPI mode even if the flash supports quad mode. After identifying a secondary boot loader image in the flash, the flash read out switches to a configured speed in the flash image. The supported speeds for secondary boot loader image loading from flash are 22 MHz, 18.33 MHz, 15.7 MHz, 10 MHz, 5 MHz and 2 MHz. The secondary boot loader image loading always happens in standard mode. Further firmware image loading can happen in quad mode depending on the flash capability. With quad mode, higher clock speeds are configurable and the supported speeds are 110 MHz, 55 MHz and 22 MHz.

Limiting values

Table 22. Limiting values

	conductors	SAF400X	_ 10		I PI	Nozu
		One-chip	multi-tu	ıner car radi	o and au	dio syste
8. Limit	ing values				RALLON	RALLOR
Table 22. Lin	miting values with the Absolute Maximum Rating Sy	vstem (IEC 60134).		1_SAF		ORAN,
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Analog suppl	ies	'			'	<u> </u>
V _{DDA3V3}	analog supply voltage (3.3 V)	audio codec	-0.5	-	+3.9	V
V _{DDA1V8}	analog supply voltage (1.8 V)	RF	-0.5	-	+2.4	V
V_{DDA1V2}	analog supply voltage (1.2 V)	PLL	-0.5	-	+1.6	V
Digital suppli	es					
V _{DDD3V3}	digital supply voltage (3.3 V)	I/O	-0.5	-	+3.9	V
V _{DDD2V5}	digital supply voltage (2.5 V)	polyfuse	-0.5	-	+2.7	V
V _{DDA1V2}	digital supply voltage (1.2 V)	core and memory	-0.5	-	+1.6	V
Input voltages	s/current					
Vi	input voltage		-0.5	6-1	+3.9	V
V_{ESD}	electrostatic discharge voltage	human body model pas	ss voltage	e level[1]		
		all pins	2000) -		V
		charge device model p	ass volta	ge level ^[2]		
		corner pins	750	-	-	V
		all other pins	500	-	-	V
Temperature						
T _{stg}	storage temperature		[3] –55	-	+150	°C
T _{amb}	ambient temperature		-40	+25	+85	°C
T _j	junction temperature		[<u>4]</u> -40	+25	+125	°C
Dissipation						
P _{tot}	total power dissipation		-	-	2500	mW
Thermal char	acteristics					
R _{th(j-a)}	thermal resistance from junction to ambient		-	<tbd></tbd>	-	K/W

- [1] Class 2 according to AEC-Q100-002 Rev-E.
- Class C4B according to AEC-Q100-011 Rev-C.
- Exposure for long time to very low or high temperature may affect product reliability.
- Range for correct functional behavior of product.

Recommended operating conditions 9.

Table 23. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Temperature						
T _{amb}	ambient temperature		_	25	-	°C
Power dissipation						
P _{tot}	total power dissipation	[1]	-	-	<tbd></tbd>	W

[1] Software release R<x>.

10. Thermal characteristics

Table 24. Thermal characteristics

40		One-chip multi-t	tuner car radi	o and au	idio systei	m ^V A
	nal characteristics			7	PAN PA	PAR
Symbol	Parameter	Conditions		Тур	Unit	
R _{th(j-a)}	thermal resistance from junction to ambient	four-layer board	[1][2][3] [4]	<tbd></tbd>	K/W	77

- The overall Rth(j-a) is based on JEDEC conditions and can vary depending on the board layout. To minimize the effective Rth(j-a) all power and ground pins must be connected to the power and ground layers directly, and all NC pins must be connected to the ground layer. An ample amount of copper area directly under the device with a number of through-hole plating, which connect to the ground layer (multiple-layer board: second layer), can also reduce the effective R_{th(i-a)}. In addition, the use of soldering glue with a high thermal conductance after curing is recommended.
- Since a BGA package has different heat transfer coefficients in either direction, it is not recommended to use the above thermal resistance as an input to any thermal simulation but use a compact model instead. A model is available at NXP application and design in
- Simulation results assuming a four-layer board with a copper layer thickness of approximately 35 mm; size: <tbd> mm × <tbd> mm; thermal landing pattern connected to a large ground plane on the lower layers by multiple thermal vias; copper coverages approximately 90 % per layer.
- [4] The number of thermal vias is thermal with <d> mm diameter.

11. Characteristics

11.1 Static characteristics

Table 25. Current for each supply pin

Recommended operating conditions. Typ: T_{amb} = 25 °C; typical silicon, typical use case per pin. Max: T_{amb} = 85 °C; worst case silicon, worst case use case per pin

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Supply voltage						
V _{DDA(RF)(3V3)}	RF analog supply voltage (3.3 V)		1.7	1.8	1.89	V
V _{DDA(IF)(3V3)}	IF analog supply voltage (3.3 V)		1.7	1.8	1.89	V
V _{DDD(IO)(3V3)}	input/output digital supply voltage (3.3 V)		3.0	3.3	3.5	V
V _{DDA(CODEC)(3V3)}	CODEC analog supply voltage (3.3 V)		3.0	3.3	3.5	V
V _{DDA(PLL)(1V2)}	PLL analog supply voltage (1.2 V)		1.14	1.2	1.26	V
V _{DDD(C)(1V2)}	core digital supply voltage (1.2 V)		1.14	1.2	1.26	V
V _{DDD(MEM)(1V2)}	memory digital supply voltage (1.2 V)		1.14	1.2	1.26	V
V _{QPS}	OTP programming voltage (2.5 V)		2.25	2.5	2.75	V
V _{SSD}	common ground		-0.5	0	0.5	V
Supply current						
I _{DDA(RF)}	RF analog supply current		-	-	<tbd></tbd>	mA
I _{DDA(IF)}	IF analog supply current		-	-	<tbd></tbd>	mA
I _{DDD(IO)}	input/output digital supply current		-	-	<tbd></tbd>	mA
I _{DDA(CODEC)}	CODEC analog supply current		-	-	<tbd></tbd>	mA
I _{DDA(SPDIF)}	S/PDIF analog supply current		-	-	<tbd></tbd>	mA
I _{DDD}	digital supply current		-	-	<tbd></tbd>	mA

One-chip multi-tuner car radio and audio system

Table 25. Current for each supply pin ...continued

Recommended operating conditions. Typ: T_{amb} = 25 °C; typical silicon, typical use case per pin. Max: T_{amb} = 85 °C; worst case silicon, worst case use case per pin

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DDA(PLL)}	PLL analog supply current		-	-	<tbd></tbd>	mA 🔍
I _{DDD(C)}	core digital supply current		-	-	<tbd></tbd>	mA
I _{DDD(MEM)}	memory digital supply current		-	-	<tbd></tbd>	mA

11.2 Radio characteristics

Table 26. FM radio characteristics

Recommended operating conditions: f_{RF} = 98.1 MHz; Δf = 22.5 kHz; f_{AF} = 1 kHz; 50 μ s de-emphasis; IEC tuner filter 50 Ω / –6 dB dummy antenna. All signals in RMS at input dummy; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{RF}	RF frequency	FM (OIRT) tuning range	64	-	74	MHz
		FM (US, Japan, EU) tuning range	76	-/	108	MHz
V _{i(sens)}	input sensitivity voltage	V _{i(RF)} for (S+N) / N = 26 dB; weak signal handling ON; channel equalizer ON		-4	-	dBμV
(S+N)/N	signal plus noise-to-noise ratio	mono; $V_{i(RF)} = 60 \text{ dB}\mu\text{V}$	65	70	-	dB
		stereo; $V_{i(RF)}$ = 60 dB μ V	60	65	-	dB
$\alpha_{\sf sup(AM)}$	AM suppression	$V_{i(RF)}$ = 60 dB μ V; f _{AF} = 1 kHz; m = 30 %	65	70	-	dB
THD	total harmonic distortion	$V_{i(RF)} = 60 \text{ dB}_{\mu}V;$ $f_{AF} = 1 \text{ kHz}; \text{ mono};$ $\Delta f = 75 \text{ kHz}$	-	0.01	0.1	%
		stereo L-only; Δf = 67.5 kHz	-	0.1	0.3	%
$lpha_{ ext{image}}$	image rejection	$f_{RF(image)} = f_{RF(wanted)} \pm 2 \times f_{IF}$	80	-	-	dB
S	selectivity	$\begin{split} &V_{RF(wanted)} = 20 \text{ dB}\mu\text{V}; \ \Delta f_{(wanted)} \\ &f_{AF(wanted)} = 1 \text{ kHz}; \ f_{RF(unwanted)} \\ &\Delta f_{(unwanted)} = 22.5 \text{ kHz}; \ f_{AF(unwanted)} \\ &\text{increase } V_{RF(unwanted)} \text{ until SNI} \end{split}$	= f _{RF(want} inted) = 1 k	_{ted)} ± δf _{RF} :Hz;		nce;
		$S = V_{RF(unwanted)} / V_{RF(wanted)};$	channel e	qualizer (NC	
		δf_{RF} = 100 kHz	60	70	-	dB
		δf_{RF} = 200 kHz	68	74	-	dB
		δf_{RF} = 300 kHz	74	78	-	dB
IP3	third-order intercept point	$f_{RF} = 98.1 \text{ MHz};$ $f_{RF(unwanted)1} = 98.5 \text{ MHz};$ $f_{RF(unwanted)2} = 98.9 \text{ MHz}$	122	127	-	dBμV
V _{i(RF)AGC(start)}	start AGC RF input voltage	df = ±400 kHz	82	-	92	dBμV
		df = ±4 MHz	82	-	92	dBμV
$\alpha_{\text{cr}(AGC)}$	AGC control range		46	-	-	dB

One-chip multi-tuner car radio and audio system

Table 26. FM radio characteristics ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	ter Unit
$\alpha_{ t CS}$	channel separation	$\Delta f = 67.5 \text{ kHz}; f_{AF} = 1 \text{ kHz}; \Delta f$	_{pilot} = 7.5 k	Hz; stere	L-only	4
		$V_{i(RF)}$ = 20 dB μ V; FMSI enabled	20	30	-	dB
		$V_{i(RF)} = 60 \text{ dB}\mu\text{V}$	50	-	-	dB
S _{RDS}	RDS sensitivity	$\Delta f_{RDS} = 2 \text{ kHz}; \Delta f_{FM} = 22.5 \text{ kHz}$	Hz; f _{AF} = 1 l	kHz; stere	eo; L = R	
		50% correct blocks without error correction	-	14	17	dBμV
		95% correct blocks without error correction	-	17.5	21	dBμV
N _{LEV}	LEV value	$V_{i(RF)}$ = 60 dB μ V	57	60	63	dBμV
Dev	frequency deviation handling	THD = 3 %; f_{AF} = 1 kHz; Vdes = 80 dB μ V	250	-	-	kHz
V_{FM_IN}	voltage	voltage on pin FM_IN	>	600	-	mV
R _i	input resistance	differential on FM_IN_P to FM_IN_M; f _{RF} = 100 MHz; AGC = 3	-	235	-	Ω
C _i	input capacitance	differential on FM_IN_P to FM_IN_M; f _{RF} = 100 MHz; AGC = 3	-	6.4	-	pF

Table 27. AM radio characteristics

Recommended operating conditions: m = 30 %; $f_{AF} = 1 \text{ kHz}$; IEC tuner filter 15 pF / 60 pF dummy antenna. All signal in RMS at input dummy; unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
f _{RF}	RF frequency	AM (LW) tuning range	144	-	288	kHz		
		AM (MW) tuning range	522	-	1710	kHz		
		AM (SW) tuning range	2300	-	27000	kHz		
V _{i(sens)}	input sensitivity voltage	$S/N = 26 dB$; $B_{audio} = 2 kHz$; n	n = 30 %; v	weak sig	nal handlir	ng on		
		AM (LW); f _{RF} = 207 kHz	-	39	-	dBμV		
		AM (MW); f _{RF} = 990 kHz	-	33	-	dBμV		
		AM (SW); f _{RF} = 6100 kHz	-	33	-	dBμV		
(S+N)/N	signal plus noise-to-noise ratio	o $V_{i(RF)} = 74 \text{ dB}\mu\text{V}$						
		AM (LW); f _{RF} = 207 kHz	57	60	-	dB		
		AM (MW); f _{RF} = 990 kHz	62	65	-	dB		
		AM (SW); f _{RF} = 6100 kHz	62	65	-	dB		
THD	total harmonic distortion	$V_{i(RF)}$ = 60 dB μ V	·	·				
		$f_{AF} = 1 \text{ kHz; } m = 80 \text{ %;}$ $f_{RF} = 207 \text{ kHz}$	-	0.1	0.3	%		
		f _{AF} = 400 Hz; m = 80 %; f _{RF} = 990 kHz	-	0.1	0.3	%		
		f _{AF} = 100 Hz; m = 80 %; f _{RF} = 6100 kHz	-	0.1	0.3	%		

One-chip multi-tuner car radio and audio system

Table 27. AM radio characteristics ...continued

Recommended operating conditions: m = 30 %; $f_{AF} = 1 \text{ kHz}$; IEC tuner filter 15 pF / 60 pF dummy antenna. All signal in RMS at input dummy; unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
S _{stat}	static selectivity	single signal; δf _{RF} = 10 kHz; f _{tune} ± 10 kHz	80	90	-	dB
		single signal; δf_{RF} = 20 kHz; f_{tune} ± 20 kHz	90	-	-	dB
IP3	third-order intercept point	f_{RF} = 990 kHz; $f_{RF1(unwanted)}$ = 1030 kHz; $f_{RF2(unwanted)}$ = 1070 kHz	133	136	-	dΒμV
		f_{RF} = 990 kHz; $f_{RF1(unwanted)}$ = 1290 kHz; $f_{RF2(unwanted)}$ = 1590 kHz;	133	136	-	dBμV
V _{i(RF)AGC(start)}	start AGC RF input voltage		90		103	dBμV
α _{cr(AGC)}	AGC control range		54	60	-	dB
N _{LEV}	LEV value	f_{RF} = 1 MHz; m = 0 %; $V_{i(RF)}$ = 60 dB μ V	57	60	63	dBμV
V _{FM_IN}	voltage	voltage on pin AM_IN	-	600	-	mV
R _i	input resistance	on pin AM_IN	-	2	-	ΜΩ
C _i	input capacitance	on pin AM_IN	-	150	-	pF

Table 28. Weather band

Recommended operating conditions; $f_{RF} = 162.500 \text{ MHz}$; $\Delta f = 1.5 \text{ kHz}$; $f_{AF} = 400 \text{ Hz}$; 110 µs de-emphasis; IEC tuner filter 75 Ω /–6 dB dummy antenna. All signals in RMS at input dummy; unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{RF}	RF frequency		162.4	-	162.55	MHz
V _{i(sens)}	input sensitivity voltage	(S+N)/N = 26 dB	-	5	-	dBμV
(S+N)/N	signal plus noise-to-noise ratio	$V_{i(RF)}$ = 20 dB μ V	-	41	-	dB
THD	total harmonic distortion	$V_{i(RF)}$ = 60 dB μ V; Δ f = 5 kHz; f_{AF} = 400 Hz	-	-	0.2	%
lphaimage	image rejection	$f_{RF(image)} = f_{RF(wanted)} \pm 2 \times f_{IF}$	80	-	-	dB
S	selectivity	$\delta f_{RF} = 25 \text{ kHz}$	50	65	-	dB
		$\delta f_{RF} = 50 \text{ kHz}$	60	70	-	dB

Table 29. DAB VHF band III characteristics

EEP3A protection profile.

Parameter	Conditions	Min	Тур	Max	Unit
RF frequency		167.392	-	239.968	MHz
input sensitivity voltage	R = 1/2; BER = 10 ⁻⁴	-	-102	-100	dBm
,		45	55	-	dB
	RF frequency input sensitivity voltage adjacent channel rejection	RF frequency input sensitivity voltage $R = 1/2$; BER = 10^{-4}	RF frequency 167.392 input sensitivity voltage $R = 1/2$; BER = 10^{-4} - adjacent channel rejection $R = 1/2$; BER = 10^{-4} ; 45	RF frequency 167.392 - input sensitivity voltage $R = 1/2$; BER = 10^{-4} - -102 adjacent channel rejection $R = 1/2$; BER = 10^{-4} ; 45 55	RF frequency

One-chip multi-tuner car radio and audio system

Table 29. DAB VHF band III characteristics ...continued

EEP3A protection profile.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
S _{fo}	far-off selectivity	$R = 1/2; BER = 10^{-4};$ $V_{i(RF,wanted)} = -70 \text{ dBm};$ $\Delta f_{RF} = 5 \text{ MHz}$	65	70	-	dB
A _{i(max)}	maximum input voltage	R = 1/2; BER = 10 ⁻⁴	-	-	10	dBm
V _{FM_IN}	voltage	voltage on pin DAB_IN	-	600	-	mV
R _i	input resistance	differential on DAB_IN_P to DAB_IN_M; f _{RF} = 200 MHz; AGC = 0	-	235	-	Ω
Ci	input capacitance	differential on DAB_IN_P to DAB_IN_M; f _{RF} = 200 MHz; AGC = 0	-	4	-	pF

Table 30. HD radio characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{RF}	RF frequency	FM band tuning range	87.9	-	107.9	MHz
		AM band tuning range	530	-	1710	MHz
V _{i(sens)}	input sensitivity voltage	FM band; P1BER ≤ 5e ⁻⁵ ; FM hybrid signal with a total band power of the specified level, single tuner	-	-	-92	dBm
		FM band; P1BER ≤ 5e-5; FM all digital signal with a total band power of the specified level, single tuner	-	-	-113	dBm
		AM hybrid clean signal, P1BER ≤ 1e ⁻⁴	-	-	-98.5	dBm
		AM all digital signal, P1 BER ≤ 1e ⁻⁴	-	-	-108.5	dBm
ACR	adjacent channel rejection	P1BER ≤ 5e ⁻⁵ ; desired: FM hybrid signal; interferers: 15 th and 30 th adjacent (both–20 dBm), <tbd> FM source</tbd>	50	-	-	dB
		P1BER ≤ 5e ⁻⁵ ; desired: FM all digital signal; interferers: 15 th and 30 th adjacent (both–20 dBm), <tbd> FM source</tbd>	<tbd></tbd>	-	-	dB
		P3BER ≤ 1e ⁻⁴ ; desired: AM hybrid signal; peak power –62 dBm; interferer: upper 1 st adjacent; hybrid signal	20	-	-	dB
		P3BER ≤ $1e^{-4}$; desired: AM all digital signal; peak power -70 dBm; interferer: lower 2^{nd} adjacent; hybrid signal	20	-	-	dB

Table 30. HD radio characteristics ...continued

NXP Semi	conductors	SAF400X_10 One-chip multi-t		1-7	107	
Table 30. HD	O radio characteristicscontinued				AND OR	AND A
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
P _{i(max)}	maximum input power	P1BER and PIDS block errors 0 for a hybrid FM HD signal with a total band power of specified maximum level	-2	-	-	dBm
		P1BER and PIDS block errors 0 for all digital FM HD signal with a total band power of specified maximum level	-12	-	-	dBm
		hybrid HD AM signal; P1BER = 0, P3BER = 0, PIDS BLKER \leq 5e ⁻²	-26	-	-	dBm
		all digital HD AM signal; P1BER = 0, P3BER = 0, PIDS BLKER \leq 5e ⁻²	-26	-	-	dBm

Table 31. DRM characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
f _{RF}	RF frequency	category LF tuning range	148.5	-	283.5	kHz		
		category MF tuning range	525	-	1710	kHz		
		category HF1 tuning range	2300	-	6200	kHz		
		category HF2 tuning range	6200	-	30000	MHz		
V _{i(sens)}	input sensitivity voltage	$R = 1/2$; BER = 10^{-4}						
		category LF; f _{RF} = 216 kHz	-	-	2	dBμV		
		category MF; f _{RF} = 999 kHz	-	-	2	dBμV		
		category HF1; f _{RF} = 4000 kHz	-	-	2	dBμV		
		category HF2; f _{RF} = 19000 kHz	-	-	2	dBμV		
ACR	adjacent channel rejection	desired signal at 18 dB _μ V; undesired first adjacent at 28 dB _μ V above desired signal level	35	-	-	dB		
		desired signal at 18 dBμV; undesired second adjacent at 38 dBμV above desired signal level	44	-	-	dB		
		desired signal at 18 dB _µ V; undesired third adjacent at 48 dB _µ V above desired signal level	53	-	-	dB		
S _{fo}	far-off selectivity	R = 1/2; BER = 10^{-4} ; $V_{i(RF,wanted)} = -80 \text{ dBm}$; $\Delta f_{RF} = 400 \text{ kHz}$	70	-	-	dB		
A _{i(max)}	maximum input voltage	reference at 8 dB _μ V; LW band, MW-band, SW1-band, SW2-band	100	-	-	dBm		

Table 31. DRM characteristics ... continued

NXP Semi	conductors	SAF400X_10 One-chip multi-t		157	- 57	- [
Table 31. Di	RM characteristicscontinued			O	AA, OR	PART ORA
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
<tbd></tbd>	blocker desensitization	desired signal at 11 dB _µ V; LW Band, MW-band, SW1-band; SW2-band	66	-	-	dB
<tbd></tbd>	receiver linearity	desired signal at 28 dBμV; LW Band, MW-band, SW1-band; SW2-band	60	-	-	dB
<tbd></tbd>	co-channel selectivity	desired signal at 28 dBµV; co-channel selectivity frequency offset in range of –5 kHz to +5 kHz	-5	-	-	dB

11.3 ADC characteristics

Table 32. Audio ADC characteristics (differential mode)

Recommended operating conditions: $V_{DDA(3V3)} = 3.3 \text{ V}$, $V_{DDD(3V3)} = 3.3 \text{ V}$, $V_{DDD(1V2)} = 1.2 \text{ V}$, $f_s = 44.1 \text{ kHz}$ in audio master mode and differential mode, $T_{amb} = 25 \,^{\circ}\text{C}$. AC values are given in RMS; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Ri	input resistance		15	-	27	kW
Vi	input voltage	2 V mode; (THD+N)/S = -40 dB	-	-	2.2	V
		1 V mode; (THD+N)/S = -40 dB	-	-	1.1	V
N _O	output value	f _i = 1 kHz; V _i = 2 V for 2 volt mode	-4.9	-	-1.9	dBFS
		$f_i = 1 \text{ kHz}$; $V_i = 1 \text{ V for 1 volt}$ mode	-4.9	-	-1.9	dBFS
N _{O(unb)}	unbalance output value	f _i = 1 kHz; V _i = 2 V for 2 volt mode or V _i = 1 V for 1 volt mode	-0.2	-	0.2	dB
CMRR	common-mode rejection ratio	f_i = 1 kHz; V_i = 35 mV; $R_{source} \le 20 \Omega$	55	-	-	dB
PSRR	power supply rejection ratio	f _{ripple} = 1 kHz; V _{ripple} = 35 mV	60	-	-	dB
(THD+N)/S	total harmonic distortion plus noise-to-signal ratio	$f_i = 1 \text{ kHz}$; $V_i = 2 \text{ V for 2 volt}$ mode	-	-	-80	dB
		$f_i = 1 \text{ kHz}$; $V_i = 1 \text{ V for 1 volt}$ mode	-	-	-80	dB
		$f_i = 1 \text{ kHz}$; $V_i = 2 \text{ mV}$ for 2 volt mode; A-weighted	-	-	-32	dB(A)
		f_i = 1 kHz; V_i = 1 mV for 1 volt mode; A-weighted	-	-	-32	dB(A)
$\alpha_{ ext{ct(ch)}}$	channel crosstalk	f _i = 1 kHz; V _i = 2 V for 2 volt mode	-	-	-85	dB

SAF400X 101 SAF777X 201

One-chip multi-tuner car radio and audio system

Table 33. Audio ADC characteristics (pseudo differential and single ended mode)

Recommended operating conditions: $V_{DDA(3V3)} = 3.3 \text{ V}$, $V_{DDD(3V3)} = 3.3 \text{ V}$, $V_{DDD(1V2)} = 1.2 \text{ V}$, $f_s = 44.1 \text{ kHz}$ in audio master mode and pseudo differential and single ended mode, $T_{amb} = 25 \text{ °C}$. AC values are given in RMS; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _i	input resistance		15	-	27	kΩ
Vi	input voltage	2 V mode; (THD+N)/S = -40 dB	-	-	2	V
		1 V mode; (THD+N)/S = -40 dB	-	-	1.1	V
		0.5 V mode; (THD+N)/S = -40 dB	-	-	0.55	V
N _O	output value	f _i = 1 kHz; V _i = 2 V for 2 volt mode	-4.9	-	-1.9	dBFS
		$f_i = 1 \text{ kHz}$; $V_i = 1 \text{ V for 1 volt}$ mode	-4.9	-	-1.9	dBFS
		f_i = 1 kHz; V_i = 0.5 V for 0.5 volt mode	-4.9	\	-1.9	dBFS
N _{O(unb)}	unbalance output value	stereo	-0.2	-	0.2	dBFS
CMRR	common-mode rejection ratio	f_i = 1 kHz; V_i = 35 mV; $R_{source} \le$ 20 Ω ; pseudo differential mode	55	-	-	dBFS
PSRR	power supply rejection ratio	f _{ripple} = 1 kHz; V _{ripple} = 35 mV	60	-	-	dB
(THD+N)/S	total harmonic distortion plus noise-to-signal ratio	f _i = 1 kHz; V _i = 2 V in 2 volt mode	-	-	-80	dB
		f_i = 1 kHz; V_i = 1 V in 1 volt mode	-	-	-80	dB
		f _i = 1 kHz; V _i = 2 mV in 2 volt mode; A-weighted	-	-	-35	dB(A)
		f _i = 1 kHz; V _i = 1 mV in 1 volt mode; A-weighted	-	-	-35	dB(A)
	60,	$f_i = 1 \text{ kHz};$ $V_i = 0.5 \text{ mV} \text{ in } 0.5 \text{ volt}$ mode	-	-	-80	dB
	U	f_i = 1 kHz; V_i = 0.5 mV in 0.5 volt mode; A-weighted	-	-	-29	dB(A)
αct(ch)	channel crosstalk	f _i = 1 kHz; V _i = 2 V for 2 volt mode	-	-	-85	dB

11.4 I²S-bus timing specification

Table 34. I²S-bus timing specification

Recommended operating conditions; I²S pins can be configured as 3.3 V pins or as low-voltage pins; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{cy(clk)}	clock time cycle	$f_s = 8 - 96 \text{ kHz};$ asynchronous IIS	162.76	-	1953.13	ns
		f _s = 44.1 kHz; synchronous IIS	-	354.31	-	ns
		f _s = 48 kHz; synchronous IIS	-	325.52	-	ns
		f _s = 96 kHz; synchronous IIS	-	162.76	-	ns
δ	duty cycle		45	50	55	%
Output sig	naling (3V3)		1			•
V _{OH}	HIGH-level output voltage	I _{OH} = 3 mA	V _{DDD(IO)3V3} – 0.4	-	V _{DDD(IO)3V3}	V
V _{OL}	LOW-level output voltage	I _{OL} = 3 mA	V _{SSD}	-	V _{SSD} + 0.4	V
C _L	load capacitance		-	50	-	pF
t _r	rise time	$I_{OL} = 3 \text{ mA}; C_L = 50 \text{ pF};$ $f_s = 96 \text{ kHz}$	10	-	20	ns
		I_{OL} = 3 mA; C_L = 50 pF; f_s = 48 kHz or lower	25	-	46	ns
t _f	fall time	$I_{OL} = 3 \text{ mA}; C_L = 50 \text{ pF};$ $f_s = 96 \text{ kHz}$	10	-	20	ns
		I_{OL} = 3 mA; C_L = 50 pF; f_s = 48 kHz or lower	25	-	46	ns
t _{d(clk-WS)}	clock to Word Select delay time	IIS master; V_{IL} = 0.8 V and V_{IH} = 2.0 V	0	-	10	ns
t _{d(clk-data)}	clock to data delay time	IIS master	0	-	10	ns
		IIS slave; f _s = 96 kHz	3	-	40	ns
		IIS slave; f _s = 48 kHz or lower	3	-	60	ns
Input signa	lling (3V3)		'			
V _{IH}	HIGH-level input voltage		2.0	-	V _{DDD(IO)3V3} + 0.5	V
V _{IL}	LOW-level input voltage		-0.5	-	+0.8	V
V _{hys}	hysteresis voltage		0.1 × V _{DDD(IO)3V3}	-	-	V
t _{su(WS)}	Word Select set-up time	$V_{\rm IL}$ = 0.8 V and $V_{\rm IH}$ = 2.0 V	2	-	-	ns
t _{h(WS)}	Word Select hold time	V _{IL} = 0.8 V and V _{IH} = 2.0 V	8	-	-	ns
t _{su(data)}	data set-up time	V _{IL} = 0.8 V and V _{IH} = 2.0 V	2	-	-	ns
t _{h(data)}	data hold time	V _{IL} = 0.8 V and V _{IH} = 2.0 V	8	-	-	ns
R _{pd(weak)}	weak pull-down resistance		40	50	57	kΩ
C _i	input capacitance		-	8	10	pF

Table 34. I²S-bus timing specification ...continued

NXP Sem	niconductors	SAF400	X_10 ²	I_SA	F1617	(<u>~</u> 201
	² S-bus timing specifications; I ² S		hip multi-tu		dio and au	Op
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Output sign	naling (current mode)					0,
I _{OH}	HIGH-level output current		-235	-360	-500	mA
I _{OL}	LOW-level output current		215	320	465	mA
t _{d(clk-WS)}	clock to Word Select delay time	IIS master; delay is measured at 50% point	0	-	10	ns
t _{d(clk-data)}	clock to data delay time	IIS master; delay is measured at 50% point	0	-	10	ns
		IIS slave; delay is measured at 50% point	12	-	30	ns
V _{o(dc)}	operating DC voltage		0.85	1.3	2.3	mV
Input signa	ling (current mode)					
I _{IH}	HIGH-level input current	input current to switch from LOW to HIGH (sourcing current)	80		1000	μΑ
I _{IL}	LOW-level input current	input current to switch from HIGH to LOW (sourcing current)	-20	-	-1000	μΑ
t _{su(data)}	data set-up time		2	-	-	ns
t _{h(data)}	data hold time		8	-	-	ns
V _{i(dc)}	operating DC voltage		0.85	1.3	1.5	V

11.5 PCM timing specification

Table 35. PCM characteristics

Recommended operating conditions; PCM pins can be configured as 3.3 V pins or as low-voltage pins; unless otherwise specified

Symbol	Parameter	Conditions Min	Min	Тур	Max	Unit
t _{cy(clk)}	clock time cycle	f _s = 8 kHz to 16 kHz	976.56	-	7812.5	ns
δ	duty cycle		45	50	55	%
Output signa	ling (3V3)				,	
V _{OH}	HIGH-level output voltage	I _{OH} = 3 mA	V _{DDD(IO)3V3} – 0.4	-	V _{DDD(IO)3V3}	V
V _{OL}	LOW-level output voltage	I _{OL} = 3 mA	V _{SSD}	-	V _{SSD} + 0.4	V
C _L	load capacitance	-		50	-	pF
t _r	rise time	I _{OL} = 3 mA; C _L = 50 pF;	-	-	46	ns
t _f	fall time	I _{OL} = 3 mA; C _L = 50 pF;	-	-	46	ns
t _{d(clk-framesync)}	clock to frame sync delay time	V_{IL} = 0.8 V and V_{IH} = 2.0 V	0	-	10	ns
t _{d(clk-data)}	clock to data delay time	PCM slave; V _{IL} = 0.8 V and V _{IH} = 2.0 V	3	-	60	ns
Input signalir	ng (3V3)			<u> </u>	'	
V _{IH}	HIGH-level input voltage		2.0	-	V _{DDD(IO)3V3} + 0.5	V
V _{IL}	LOW-level input voltage		-0.5	-	+0.8	V
V _{hys}	hysteresis voltage		0.1 × V _{DDD(IO)3V3}	-	-	V
t _{su(framesync)}	frame sync set-up time	V_{IL} = 0.8 V and V_{IH} = 2.0 V	5	-	-	ns
t _{h(framesync)}	frame sync hold time	V_{IL} = 0.8 V and V_{IH} = 2.0 V	20	-	-	ns
t _{su(data)}	data set-up time	V_{IL} = 0.8 V and V_{IH} = 2.0 V	5	-	-	ns

Table 35. PCM characteristics ...continued

Symbol	Parameter	Conditions Min	Min	Тур	Max	herwise Unit
t _{h(data)}	data hold time	V_{IL} = 0.8 V and V_{IH} = 2.0 V	20	-	-	ns
$R_{pd(weak)}$	weak pull-down resistance		40	50	57	kΩ
C _i	input capacitance	-	-	8	10	pF
Output sigi	naling (current mode)		'	'	'	,
I _{OH}	HIGH-level output current		-235	-360	-500	μА
I _{OL}	LOW-level output current		235	330	465	μА
t _{d(clk-data)}	clock to data delay time	PCM slave; delay is measured at 50% point	10	-	30	ns
V _{o(dc)}	operating DC voltage		0.85	1.3	2.3	V
Input signa	ling (current mode)					'
I _{IH}	input current to switch from LOW to HIGH (sourcing current)		80		1000	μА
I _{IL}	input current to switch from HIGH to LOW (sourcing current)		-20	-	-1000	μА
t _{su(data)}	data set-up time	V_{IL} = 0.8 V and V_{IH} = 2.0 V	5	-	-	ns
t _{h(data)}	data hold time	V_{IL} = 0.8 V and V_{IH} = 2.0 V	20	-	-	ns
V _{i(dc)}	operating DC voltage		0.85	1.3	1.5	V

11.6 TDM timing specification

Table 36. TDM characteristics

Recommended operating conditions; TDM pins can be configured as 3.3 V pins or as low-voltage pins; unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{cy(clk)}	clock time cycle	$f_s = 9 \text{ kHz} - 96 \text{ kHz};$ asynchronous TDM		40.69	-	ns
		f_s = 44.1 kHz; synchronous TDM	-	88.58	-	ns
		f _s = 48 kHz; synchronous TDM	-	81.38	-	ns
δ	duty cycle		45	50	55	%
Output sign	naling (3V3)					
V _{OH}	HIGH-level output voltage	I _{OH} = 3 mA	V _{DDD(IO)3V3} – 0.4	-	V _{DDD(IO)3V3}	V
V _{OL}	LOW-level output voltage	I _{OL} = 3 mA	V _{SSD}	-	V _{SSD} + 0.4	V
C _L	load capacitance		-	50	-	pF

One-chip multi-tuner car radio and audio system

Table 36. TDM characteristics ...continued

Recommended operating conditions; TDM pins can be configured as 3.3 V pins or as low-voltage pins; unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _r	rise time	$I_{OL} = 3 \text{ mA}; C_L = 50 \text{ pF};$ $f_s = 96 \text{ kHz}$	2	-	6	ns 🦠
		IOL = 3 mA; C_L = 50 pF; f_s = 48 kHz or lower	2	-	15	ns
t _f	fall time	I_{OL} = 3 mA; C_L = 50 pF; f_s = 96 kHz	2	-	6	ns
		I_{OL} = 3 mA; C_L = 50 pF; f_s = 48 kHz or lower	2	-	15	ns
t _{d(clk-framesync)}	clock to frame sync delay time		0	-	4	ns
t _{d(clk-data)}	clock to data delay time	TDM master; $V_{IL} = 0.8 \text{ V}$ and $V_{IH} = 2.0 \text{ V}$	0	-	4	ns
		TDM slave; f _s = 96 kHz (rising edge); levels V _{IL} = 0.8 V and V _{IH} = 2.0 V;	6		17	ns
		TDM slave; f _s = 48 kHz or lower (rising edge); V _{IL} = 0.8 V and V _{IH} = 2.0 V;	11	-	26	ns
Input signalir	ng (3V3)					
V _{IH}	HIGH-level input voltage		2	-	V _{DDD(IO)3V3} + 0.5	V
V _{IL}	LOW-level input voltage		-0.5	-	+0.8	V
V _{hys}	hysteresis voltage		$0.1 \times V_{DDD(IO)3V3}$	-	-	V
t _{su(framesync)}	frame sync set-up time	V_{IL} = 0.8 V and V_{IH} = 2.0 V	6	-	-	ns
t _{h(framesync)}	frame sync hold time	V_{IL} = 0.8 V and V_{IH} = 2.0 V	0	-	-	ns
t _{h(data)}	data hold time	V_{IL} = 0.8 V and V_{IH} = 2.0 V	0	-	-	ns
t _{su(data)}	data set-up time	$V_{\rm IL}$ = 0.8 V and $V_{\rm IH}$ = 2.0 V	6	-	-	ns
R _{pd(weak)}	weak pull-down resistance		40	50	57	kΩ
Ci	input capacitance		-	8	10	pF
Output signa	ling (current mode)		'			
I _{OH}	HIGH-level output current	f _s = 48 kHz or lower	-360	-550	-775	μΑ
I _{OL}	LOW-level output current	f _s = 48 kHz or lower	355	510	710	μА
t _{d(clk-framesync)}	clock to frame sync delay time	TDM master; delay is measured at 50% point	0	-	4	ns
t _{d(clk-data)}	clock to data delay time	TDM master; delay is measured at 50% point	0	-	4	ns
		TDM slave; delay is measured at 50% point (rising edge)	10	-	24	ns
V _{i(dc)}	operating DC voltage		0.85	1.3	2.3	V

Table 36. TDM characteristics ...continued

	TDM characteristicscontin ded operating conditions; TDM	ued I pins can be configured as 3.3 \	/ pins or as lo	ow-voltage p	ins; unless oti	herwise
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Input signa	lling (current mode)			<u> </u>		<
I _{IH}	HIGH-level input current	input current to switch from LOW to HIGH (sourcing current)	80	-	1000	μΑ
I _{IL}	LOW-level input current	input current to switch from HIGH to LOW (sourcing current)	-20	-	-1000	μΑ
t _{su(data)}	data set-up time	V_{IL} = 0.8 V and V_{IH} = 2.0 V	6	-	-	ns
t _{h(data)}	data hold time	V_{IL} = 0.8 V and V_{IH} = 2.0 V	0	-	-	ns
V _{i(dc)}	operating DC voltage		0.85	1.3	1.5	V

11.7 Baseband interface

Table 37. Baseband interface (4-wires) characteristics

Recommended operating conditions. Pins can be configured as 3.3 V pins or as low-voltage pins; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{cy(clk)}	clock cycle time	$f_{(Clk)} = 1/t_{Cy(Clk)}$ [1]	16.03	-	96.15	ns
t _{r(clk)}	rise time	I _{OL} = 3 mA; C _L = 50 pF	-	0.15 ×	-	ns
,				t _{cy(CLK)}		
$t_{f(clk)}$	fall time	$I_{OL} = 3 \text{ mA}; C_L = 50 \text{ pF}$	-	0.15 ×	-	ns
				t _{cy(CLK)}		
t _{BCLKH}	bit clock HIGH time		-	0.35 ×	-	ns
				t _{cy(CLK)}		
t _{BCLKL}	bit clock LOW time		-	0.35 ×	-	ns
				t _{cy(CLK)}		
δ	duty cycle		-	50	-	%
t _{su(WS)}	Word Select set-up time		$0.2 \times t_{cy(clk)}$	-	-	ns
t _{h(WS)}	Word Select hold time		$0.2 \times t_{\text{cy(clk)}}$	-	-	ns
t _{S(data)}	data set-up time		$0.2 \times t_{\text{cy(clk)}}$	-	-	ns
t _{h(data)}	data hold time		$0.2 \times t_{\text{cy(clk)}}$	-	-	ns
Output sign	aling (3V3)					
V _{OH}	HIGH-level output voltage	I _{OH} = 3 mA	V _{DDD(IO)3V3} - 0.4	-	V _{DDD(IO)3V3}	V
V _{OL}	LOW-level output voltage	I _{OL} = 3 mA	V _{SSD}	-	$V_{SSD} + 0.4$	V
C _L	load capacitance		-	50	-	pF
t _{d(clk-WS)}	clock to Word Select delay time		-	-	$0.15 \times t_{cy(clk)}$	ns
t _{d(clk-data)}	clock to data delay time		-	-	$0.15 \times t_{cy(clk)}$	ns
t _{f(0)}	output fall time	I_{OL} = 3 mA; C_L = 50 pF	-	0.15 ×	-	ns
				t _{cy(BCLK)}		

One-chip multi-tuner car radio and audio system

Table 37. Baseband interface (4-wires) characteristics ...continued

Recommended operating conditions. Pins can be configured as 3.3 V pins or as low-voltage pins; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Input signal	ing (3V3)					\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
V _{IH}	HIGH-level input voltage		2	-	V _{DDD(IO)3V3}	V
V _{IL}	LOW-level input voltage		-0.3	-	0.8	V
V _{hys}	hysteresis voltage		$0.1 \times V_{DDD(IO)3V3}$	-	-	V
$V_{i(p-p)}$	peak-to-peak input voltage		-	50	-	mV
R _{pu(weak)}	weak pull-up resistance		40	50	57	kΩ
$R_{pd(weak)}$	weak pull-down resistance		40	50	57	kΩ
C _i	input capacitance		-	8	-	pF
Output sign	aling (current mode)					
I _{OH}	HIGH-level output current	V _{OH} = 1 V	+100	-	-	μА
I _{OL}	LOW-level output current	V _{OL} = 1 V	-100	-	-	mA
V _{i(dc)}	operating DC voltage		0.85	1.3	2.3	V
Input signal	ing (current mode)				,	
I _{IH}	HIGH-level input current		100	-	-	μА
I _{IL}	LOW-level input current		-100	-	-	μА
V _{o(dc)}	operating DC voltage		0.85	1.3	1.5	V

- [1] HD Radio
- [1] DRM.
- [1] DAB.

11.8 SPI interface

Table 38. SPI interface characteristics

Recommended operating conditions; clock frequency of 10 MHz. Pins can be configured as 3.3 V pins or as low-voltage pins; unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Input signal	ing (3V3)					
V _{IH}	HIGH-level input voltage		2	-	V _{DDD(IO)3V3} + 0.3	V
V_{IL}	LOW-level input voltage		-0.3	-	+0.8	V
V _{hys}	hysteresis voltage		$0.1 \times V_{DDD(IO)3V3}$	-	-	V
R _{pu(weak)}	weak pull-up resistance		40	50	57	kΩ
R _{pd(weak)}	weak pull-down resistance		40	50	57	kΩ
Ci	input capacitance		-	8	-	pF

		CAE40	0X_101	CAI	E 777V	204
NXP Semi	conductors				7 67	100
		One	e-chip multi-tun	er car ra	dio and audio	system
					Pys. P	Va.
Table 38. SF	PI interface characteristics	continued			00	100
Recommende	d operating conditions; clock fre	equency of 10 MHz. Pins ca	an be configured a	s 3.3 V pin	s or as low-volta	age pins;
unless otherwi	<u>'</u>	ı				00
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _(clk)	SCL clock frequency	slave mode	0	-	20	MHz
δ	duty cycle		45	50	55	%
t _{su(data)}	data set-up time	slave mode	10	-	-	ns
t _{hd(data)}	data hold time	slave mode	0.5/f _(clk)	-	-	ns
t _{SPILAG}	SPI enable lag time		0.5/f _(clk)	-	-	ns
t _{SPILEAD}	SPI enable lead time	non-delayed mode	0.5/f _(clk)	-	-	ns
t _{WH(S)}	chip select pulse width HIGH		0.5/f _(clk)	-	-	ns
Output signa	ling (3V3)				,	
V _{OH}	HIGH-level output voltage	I _{OH} = 3 mA	0.9 × V _{DDD(IO)3V3}	-	-	V
V _{OL}	LOW-level output voltage	I _{OL} = 3 mA	-		0.1 × V _{DDD(IO)3V3}	V
C _L	load capacitance		-	15	-	pF
t _{v(Q)}	data output valid time	slave mode	-	-	20	ns
t _{h(Q)}	data output hold time	slave mode	1/f _(Clk)	-	-	ns
t _{r(o)}	output rise time	slave mode		1.4	-	ns
t _{f(O)}	output fall time	slave mode		1.4		ns

11.9 Quad SPI interface

Table 39. Quad SPI interface characteristics

Recommended operating conditions; clock frequency of 10 MHz. Pins can be configured as 3.3 V pins or as low-voltage pins; unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Input signal	ing (3V3)					
V _{IH}	HIGH-level input voltage		2	-	V _{DDD(IO)3V3} + 0.3	V
V _{IL}	LOW-level input voltage		-0.3	-	+0.8	V
V _{hys}	hysteresis voltage		0.1 × V _{DDD(IO)3V3}	-	-	V
R _{pu(weak)}	weak pull-up resistance		40	50	57	kΩ
R _{pd(weak)}	weak pull-down resistance		40	50	57	kΩ
Ci	input capacitance		-	8	-	pF
Output sign	aling (3V3)		1	'		
V _{OH}	HIGH-level output voltage	I _{OH} = 3 mA	$0.9 \times V_{DDD(IO)3V3}$	-	-	V
V _{OL}	LOW-level output voltage	I _{OL} = 3 mA	-	-	$0.1 \times V_{DDD(IO)3V3}$	V
C _L	load capacitance		-	15	-	pF
f _(clk)	SCL clock frequency		-	-	110	MHz
δ	duty cycle		45	50	55	%
t _{SPILAG}	SPI enable lag time		$1.5 \times T_{cyc}$	-	-	ns
t _{SPILEAD}	SPI enable lead time		$0.5 \times T_{cyc}$	-	-	ns

Table 39. Quad SPI interface characteristics ... continued

Recommended operating conditions; clock frequency of 10 MHz. Pins can be configured as 3.3 V pins or as low-voltage pins; unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{v(SSN-Q)}	SSN to data output		-	-	T _{cyc}	ns
$t_{V(Q)}$	data output valid time		0	-	1	ns
t _{h(Q)}	data output hold time		T _{cyc}	-	-	ns
t _{su(D)}	data input setup time		1	-	-	ns
t _{h(D)}	data input hold time		$0.5 \times T_{cyc}$	-	-	ns

11.10 I²C-bus interfaces

Table 40. I²C-bus interface characteristics

The I²C-bus is 3.3 V tolerant; Recommended operating conditions; unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Output sign	naling (3V3)					
V _{OH}	HIGH-level output voltage	I _{OH} = 3 mA	-	-	V _{DDD(IO)3V3} + 0.5	V
V _{OL}	LOW-level output voltage	I_{OL} = 3 mA; $V_{DDD(IO)}$ > 2 V	V_{SSD}	-	V _{SSD} + 0.4	V
I _{OL}	LOW-level output current	$V_{OL} = 0.4 \text{ V};$ $f_{(scl)} = 400 \text{ kHz}$	3	-	-	mA
		$V_{OL} = 0.6 \text{ V};$ $f_{(scl)} = 400 \text{ kHz}$	6	-	-	mA
C _b	capacitive load for each bus line		-	-	400	pF

Table 40. I²C-bus interface characteristics ...continued

		One-c	hip multi-tune	er car rac	lio and audio	syster
					lio and audio	·
Table 40. l ² 0	C-bus interface characteristic	cscontinued			Op	Op
The I ² C-bus is	3.3 V tolerant; Recommended		otherwise specif	fied	4/2>	- YK
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$f_{(SCI)}$	SCL clock frequency	[1	0	-	400	kHz
		[2	0	-	100	kHz
t _{HIGH}	HIGH period of the SCL	$f_{(SCI)} = 400 \text{ kHz}$	0.6	-	-	μS
	clock	$f_{(SCI)} = 100 \text{ kHz}$	4	-	-	μS
t_{LOW}	LOW period of the SCL	f _(scl) = 400 kHz	1.3	-	-	μS
	clock	f _(scl) = 100 kHz	4.7	-	-	μS
t _r	rise time of both SDA and SCL signals	$f_{(scl)}$ = 400 kHz; application dependent	20	-	300	ns
		f _(scl) = 100 kHz; application dependent	-	-	1000	ns
t _f	fall time of both SDA and SCL signals	$C_b = 400 \text{ pF};$ $f_{(scl)} = 400 \text{ kHz};$ application dependent	20 × V _{DDD(IO)3V3}	-	300	ns
		C_b = 100 pF; $f_{(scl)}$ = 400 kHz; application dependent	-		300	ns
t _{v(data)}	data valid time	$f_{(SCI)} = 400 \text{ kHz}$	1 -	-	0.9	ns
		$f_{(scl)} = 100 \text{ kHz}$	<u>l</u> -	-	3.45	ns
t _{v(data)} ACK	data valid acknowledge	$f_{(scl)} = 400 \text{ kHz}$	<u> </u>	-	0.9	ns
	time	$f_{(scl)} = 100 \text{ kHz}$	<u>l</u> -	-	3.45	ns
V _{nL}	noise margin at LOW level	$f_{(scl)} = 400 \text{ kHz}$	$V_{DDD(IO)3V3}$	-	-	V
V_{nH}	noise margin at HIGH level	$f_{(scl)} = 400 \text{ kHz}$ [4]		-	-	V
Input signali	ng (3V3)					
V _{IH}	HIGH-level input voltage		$0.7 \times V_{DDD(IO)3V3}$	-	V _{DDD(IO)3V3} + 0.5	V
V_{IL}	LOW-level input voltage		-0.5	-	$0.3 \times V_{DDD(IO)3V3}$	V
V_{hys}	hysteresis voltage		0.1 × V _{DDD(IO)3V3}	-	-	V
l _l	input current each I/O pin	$0.1 \times V_{DDD(IO)3V3} < Vi < 0.9 \times V_{DDD(IO)3V3}$	-10	-	+10	μΑ
C _i	input capacitance		-	-	10	pF
su(data)	data set-up time	f _(scl) = 400 kHz	100	-	-	ns
		f _(scl) = 100 kHz	250	-	-	ns
t _{hd(data)}	data hold time	f _(scl) = 400 kHz	0	-	0.9	μS
		f _(scl) = 100 kHz	0	-	3.45	μS
t _{hd(sta)}	hold time (repeated)	f _(scl) = 100 kHz	0.6	-	-	μS
	START condition	f _(scl) = 100 kHz	4	-	-	μS
t _{su(sta)}	set-up time for a repeated	f _(scl) = 400 kHz	0.6	-	-	μS
. ,	START condition	f _(scl) = 100 kHz	4.7	_	_	μS

Table 40. I²C-bus interface characteristics ...continued

			00X_101			
	C-bus interface characteristic s 3.3 V tolerant; Recommended		nless otherwise speci	fied	ORA	Charles Control
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{su(sto)}	set-up time for STOP	f _(scl) = 400 kHz	0.6	-	-	μS
	condition	f _(scl) = 100 kHz	4	-	-	μS
-(bui)	bus free time between a	f _(scl) = 400 kHz	1.3	-	-	μS
	STOP and START condition	f _(scl) = 100 kHz	4.7	-	-	μS
t _{of}	output fall time from V_{IH} to V_{IL}	f _(scl) = 400 kHz	$\begin{array}{c} 20 \times \\ V_{DDD(IO)3V3} \end{array}$	-	250	ns
		f _(scl) = 100 kHz	20 × V _{DDD(IO)3V3}	-	250	ns
t _{sp}	pulse width of spikes	f _(scl) = 400 kHz	0	-	50	ns
		f _(scl) = 100 kHz	1	-	<tbd></tbd>	ns
I _{OL}	LOW-level output current	$V_{OL} = 0.4 \text{ V};$ $f_{(scl)} = 400 \text{ kHz}$	3	-	-	
		$V_{OL} = 0.6 \text{ V};$ $f_{(scl)} = 400 \text{ kHz}$	6	-	-	

- [1] Fast mode.
- [2] Standard mode.
- The maximum must be less than the maximum of $t_{vd(acta)}$ or $t_{vd(actk)}$ by a transition time. This maximum is only be met if the device does not stretch the LOW period (t_{LOW}) of the SCL signal. If the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock.
- [4] For each connected device included hysteresis

11.11 General purpose I/Os

Table 41. General purpose I/Os characteristics

Recommended operating conditions; unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Output sign	aling (3V3)			<u>'</u>		
V _{OH}	HIGH-level output voltage	I _{OH} = 3 mA	2.4	-	V _{DDD(IO)3V3}	V
V _{OL}	LOW-level output voltage	I _{OL} = 3 mA	V_{SSD}	-	V _{SSD} + 0.4	V
I _{OSH}	HIGH-level short-circuit output current	output connected to ground	-	-	90	mA
I _{OSL}	LOW-level short-circuit output current	output connected to V _{DDD(IO)3V3}	-	-	87	mA
C _L	load capacitance		-	-	15	pF
t _r	rise time	$I_{OL} = 3 \text{ mA}; C_L = 15 \text{ pF}$	<tbd></tbd>	<tbd></tbd>	1.4	ns
t _f	fall time	$C_L = 50 \text{ pF}; V_{DDD(IO)3V3}$	<tbd></tbd>	<tbd></tbd>	1.4	ns
Input signal	ing (3V3)		'			
V _{IH}	HIGH-level input voltage		2.0	-	V _{DDD(IO)3V3}	V
V _{IL}	LOW-level input voltage		-0.3	-	+0.8	V
V_{hys}	hysteresis voltage		$0.1 \times V_{DDD(IO)3V3}$	-	-	V

Table 41. General purpose I/Os characteristics ...continued

NXP Sem	iconductors	SAF40	00X_10)1_SA	F777	X_201
		On	e-chip multi-	tuner car ra	adio and au	idio system
	General purpose I/Os charact ed operating conditions; unless Parameter		Min	Тур	Max	Unit
R _{pu(weak)}	weak pull-up resistance	I/O configured with pull-up	40	50	57	kΩ
R _{pd(weak)}	weak pull-down resistance	I/O configured with pull-down	40	50	57	kΩ

11.12 Crystal oscillator

Table 42. Crystal oscillator characteristics

Recommended operating conditions; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{i(osc)}	oscillator input frequency		-	55.46667	-	MHz
δ_{fi}	input frequency deviation		-	100	-	ppm
V _{i(osc)p-p}	oscillator input voltage peak-to-peak	slave mode	<tbd></tbd>	<tbd></tbd>	<tbd></tbd>	mV
f _{o(osc)}	oscillator output frequency		-	55.46667	-	MHz
δ_{fo}	output frequency deviation			100	-	ppm
V _{o(osc)p-p}	oscillator output voltage peak-to-peak	master mode	<tbd></tbd>	<tbd></tbd>	<tbd></tbd>	mV
t _{jitter(osc)}	jitter		<tbd></tbd>	<tbd></tbd>	<tbd></tbd>	ps

11.13 Reset input - RESET N

Table 43. Reset interface characteristics

Recommended operating conditions; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	HIGH-level input voltage		2.0	-	V _{DDD(IO)3V3}	V
V _{IL}	LOW-level input voltage		-0.3	-	+0.8	V
V _{hys}	hysteresis voltage		0.1 × V _{DDD(IO)3V3}	-	-	V
R _{pu(weak)}	weak pull-up resistance		40	50	57	kΩ
t _{w(rst)}	reset pulse width		10	-	-	μS

11.14 S/PDIF timing specification

Table 44. Digital S/PDIF input and output characteristics

Recommended operating conditions; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
Output signaling (3V3)									
V _{OH}	HIGH-level output voltage	I _{OH} = 3 mA	V _{DDD(IO)3V3} - 0.4	-	V _{DDD(IO)3V3}	V			
V _{OL}	LOW-level output voltage	I _{OL} = 3 mA	V_{SDD}	-	V _{SDD} - 0.4	V			
C _L	load capacitance		-	50	-	pF			

Table 44. Digital S/PDIF input and output characteristics ...continued

	niconductors	SAF400				-5
		One-ch	nip multi-tun	er car radi	o and audio	system
					ORAN OR	1/2 5
	Digital S/PDIF input and outputed operating conditions; unless				OP AV	OPA,
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _r	rise time	C _L = 50 pF	15	-	30	ns
t _f	fall time	C _L = 50 pF	15	-	30	ns
Output sign	naling (IEC60958)					
$V_{o(p-p)}$	peak-to-peak output voltage	SPDIF sink impedance is 75 Ω. SPDIF output external circuitry presented in Figure 3	200	-	600	mV
t _r	rise time	C _L = 50 pF	15	-	30	ns
t _f	fall time	C _L = 50 pF	15	-	30	ns
Input signal	ling (3V3)					
V _{IH}	HIGH-level input voltage	[1]	2.0	-	V _{DDD(IO)3V3} + 0.8	V
V _{IL}	LOW-level input voltage		-0.5		+0.8	V
V _{hys}	hysteresis voltage		0.1 × V _{DDD(IO)3V3}	-	-	V
$R_{pd(weak)}$	weak pull-down resistance		40	50	57	kΩ
Ci	input capacitance			8	10	pF
Input signal	ling (IEC60958)			'	1	
$V_{i(p-p)}$	peak-to-peak input voltage	SPDIF sink impedance is 75 Ω. SPDIF output external circuitry presented in Figure 4	200	-	1000	mV

- [1] In this context V_{DDDIO} abbreviates V_{DDD(IO)(3V3)}.
- [2] Configured as 3.3 V pin.

Fig 14. SPDIF digital input - IEC60958 mode

11.15 JTAG

Table 45. JTAG interface characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Output sign	aling (3V3)					
V _{OH}	HIGH-level output voltage	I _{OH} = 3 mA	$0.9 \times V_{DDD(IO)3V3}$	-	V _{DDD(IO)3V3}	V
V _{OL}	LOW-level output voltage	I _{OL} = 3 mA	-0.3	-	$0.1 \times V_{DDD(IO)3V3}$	V
C _L	load capacitance		-	50	-	pF
t _r	rise time	$I_{OL} = 3 \text{ mA}; C_L = 50 \text{ pF}$	-	5	-	ns
t _f	fall time	$I_{OL} = 3 \text{ mA}; C_L = 50 \text{ pF}$	-	5	-	ns
Input signal	ing (3V3)			'		
V _{IH}	HIGH-level input voltage		2	-	V _{DDD(IO)3V3}	V
V _{IL}	LOW-level input voltage		-0.3	-	+0.8	V
V _{hys}	hysteresis voltage		0.25	-	-	V
R _{pu(weak)}	weak pull-up resistance		40	50	57	kΩ
R _{pd(weak)}	weak pull-down resistance		40	50	57	kΩ
C _i	input capacitance		-	8	-	pF
t _{cy(clk)}	clock cycle time		50	-	-	ns

Table 45. JTAG interface characteristics ...continued

NXP Sem	iconductors		400X_10		10 to	
Table 45. J	TAG interface characteristic	cscontinued	Min	Тур	Max	Unit
t _{WH}	pulse width HIGH	Conditions	20	-	-	ns
t _{WL}	pulse width LOW		20	-	-	ns
t _{su(data)}	data input set-up time		-	5	-	ns
t _{h(data)}	data input hold time		-	5	-	ns
t _{rst(L)}	LOW-level reset time		500	-	-	ns
$t_{d(o)}$	output delay time		15	-	-	ns
t _{PHZ}	HIGH to OFF-state propagation delay		-	-	40	ns

11.16 FS_SYS_OUT characteristics

Table 46. FS_SYS_OUT characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{clk}	clock frequency	f _s = 44.1 kHz or 48 kHz		$256 \times f_s$		kHz
δ	duty cycle			50		%
output signa	ling (3V3)					
V _{OH}	HIGH-level output voltage	I _{OH} = 3 mA	V _{DDD(IO)3V3} - 0.4		V _{DDD(IO)3V3}	V
V _{OL}	LOW-level output voltage	I _{OL} = 3 mA	V _{SSD}		V _{SSD} + 0.4	V
C _L	load capacitance			50		pF
t _r	rise time	$I_{OL} = 3 \text{ mA}; C_L = 50 \text{ pF};$ $f_s = 44.1 \text{ kHz or } 48 \text{ kHz}$		5		ns
t _f	fall time	$I_{OL} = 3 \text{ mA}; C_L = 50 \text{ pF};$ $f_s = 44.1 \text{ kHz or } 48 \text{ kHz}$		5		ns
output signa	ling (current mode)					
I _{OH}	HIGH-level output current	f _s = 44.1 kHz or 48 kHz	-360	-550	-775	μА
I _{OL}	LOW-level output current	f _s = 44.1 kHz or 48 kHz	355	510	710	μА
V _{i(dc)}	operating DC voltage		0.85	1.3	2.3	V

11.17 I2PD characteristics

Table 47. I2PD characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{cy(clk)}	clock cycle time	f _{clk} = 10.4 kHz		96.15		ns
t _{cy(clk)}	clock cycle time	f _{clk} = 20.8 kHz		48.08		ns
output signa	aling (current mode)		,			
I _{OH}	HIGH-level output current		-360	-550	-775	μΑ
I _{OL}	LOW-level output current		355	510	710	μΑ
V _{i(dc)}	operating DC voltage		0.85	1.3	2.3	V
nput signal	ing (current mode)		1	'	'	

Table 47. I2PD characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{IH}	HIGH-level output current		80		1000	μΑ
I _{OL}	LOW-level output current		-20		-1000	μА
V _{o(dc)}	operating DC voltage		0.85	1.3	2.3	V

12. Test information

12.1 Quality information

This product has been qualified in accordance with the Automotive Electronics Council (AEC) standard *Q100 - Failure mechanism based stress test qualification for integrated circuits*, and is suitable for use in automotive applications.

13. Package outline

Fig 15. Package outline SOT1457-1 (LFBGA364)

14. Soldering

Fig 16. Soldering footprint SOT1457-1 (LFBGA364)

15. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow soldering description"*.

15.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

15.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- · Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- · Board specifications, including the board finish, solder masks and vias
- Package footprints, including solder thieves and orientation
- The moisture sensitivity level of the packages
- · Package placement
- · Inspection and repair
- Lead-free soldering versus SnPb soldering

15.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- · Solder bath specifications, including temperature and impurities

15.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 17</u>) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 48 and 49

Table 48. SnPb eutectic process (from J-STD-020D)

Package thickness (mm)	Package reflow temperature (°C)			
	Volume (mm³)			
	< 350	≥ 350		
< 2.5	235	220		
≥ 2.5	220	220		

Table 49. Lead-free process (from J-STD-020D)

Package thickness (mm)	Package reflow temperature (°C)				
	Volume (mm³)				
	< 350	350 to 2000	> 2000		
< 1.6	260	260	260		
1.6 to 2.5	260	250	245		
> 2.5	250	245	245		

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 17.

For further information on temperature profiles, refer to Application Note *AN10365* "Surface mount reflow soldering description".

16. Abbreviations

Table 50. Abbreviations

Acronym	Description
ADC	Analog-to-Digital Converter
ADPLL	All Digital Phase-Locked Loop
AES	Advanced Encryption Standard
AGC	Automatic Gain Control
AM	Amplitude Modulation
API	Application Programmers Interface
APP	Audio Post Processing
AUX	Auxiliary
BBI	BaseBand Interface
BBP	BaseBand Processor
BPF	Band-Pass Filter
CD	Compact Disc
DAB	Digital Audio Broadcasting
DAC	Digital-to-Analog Converter
DCO	Digital Controlled Oscillator
DRM	Digital Radio Mondiale
DSP	Digital Signal Processor
FFS	Flash File System
FM	Frequency Modulation

Table 50. Abbreviations ...continued

ors	SAF400X_101_SAF777X_201
	SAF400X_101_SAF777X_201 One-chip multi-tuner car radio and audio system reviationscontinued
	\$20 PA PA
Table 50. Abb	reviationscontinued
Acronym	Description
FS	Frame Sync
GPIO	General-Purpose Input Output
1/0	Input/Output
I/Q	In-phase/Quadrature-phase
I2C-bus	Inter-IC bus
I2S-bus	Inter-IC Sound bus
IC	Integrated Circuit
IF	Intermediate Frequency
IIR	Infinite Impulse Response
JTAG	Joint Test Action Group
LNA	Low-Noise Amplifier
LO	Local Oscillator
LW	Long Wave
MPX	Multiplex
MSB	Most Significant Bit
MUX	Multiplexer
MW	Medium Wave
OEM	Original Equipment Manufacturer
osc	Oscillator
OTP	One Time Programmable
PACS	Precision Adjacent Channel Suppression
PDC	Park Distance Control
PI	Program Identification
PLL	Phase-Locked Loop
RBDS	Radio Broadcast Data System
RDS	Radio Data System
RF	Radio Frequency
RFE	Radio Front End
RMS	Root Mean Square
RSSI	Received Signal Strength Indicator
SD	Sigma-Delta
S/PDIF	Sony/Philips Digital Interface
SPI	Serial Peripheral Interface
SRC	Sample Rate Converter
SW	Short Wave
TDM	Time Division Multiplex
USN	UltraSonic Noise
WAM	Wideband AM
WX	Weather Band

17. Glossary

FLASH memory — Non-volatile memory that can be electrically erased and programmed

Glue logic — Simple logic circuits used to connect together more complex circuits which are not perfectly compatible

HD Radio — Brand name of a digital transmission of audio on the FM and AM radio bands

Transceiver — An interface which transmits and receives data

18. References

- [1] IEC60958-1 Edition 2, Part 1: General Part Digital Audio Interface specification
- [2] IEC60958-3 Edition 2, Part 3: Consumer Applications Digital Audio Interface specification
- [3] UM10204: I2C-bus specification and user manual v.5 Official I2C standard Document (available from NXP semiconductors, International Marketing and sales)
- [4] IEC61000-4-2 Electromagnetic compatibility (EMC) Part 4-3: Testing and measurement techniques Electrostatic discharge immunity test
- [5] AEC Q100-Rev-H Automotive Electronics Council (AEC) Failure mechanism-based stress test qualification for integrated circuits
- [6] AEC Q100-004D Automotive Electronics Council (AEC) IC Latch Up Test
- [7] AEC Q100-002E Automotive Electronics Council (AEC) Human Body Model (HBM) Electrostatic Discharge (ESD) Test
- [8] AEC Q100-011C1 Automotive Electronics Council (AEC) Charged Device Model (CDM) Electrostatic Discharge (ESD) Test
- [9] AN10365 Surface mount reflow soldering description
- [10] AN AN SAF400xHV/N101

19. Revision history

Table 51. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
SAF400x_FAM v.1.0	<tbd></tbd>	Objective data sheet	-	-

20. Legal information

20.1 Data sheet status

NXP Semiconduc	tors	SAF400X_101_SAF777X_201
		One-chip multi-tuner car radio and audio system
20. Legal information		TORAL ORAL
20.1 Data sheet	status	DRAKT DRAKT D
Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status [3] information is available on the Internet at URL http://www.nxp.com.

20.2 **Definitions**

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

20.3 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This NXP

Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

One-chip multi-tuner car radio and audio system

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

20.4 Licenses

ICs with MPEG-2 AAC, MPEG-4 AAC or MPEG-4 BSAC functionality

Use of this product in any manner that complies with the MPEG-2 AAC, MPEG-4 AAC or MPEG-4 BSAC audio compression standards requires a license under applicable patents in the MPEG-2 AAC and MPEG-4 AAC patent portfolio, which license is available from Via Licensing Corporation, 100 Potrero Avenue, San Francisco, CA 94103, USA...

ICs with T-DMB functionality

Use of this product in any manner that complies with the T-DMB standard, which includes an MPEG-2 transport stream, is expressly prohibited without a license under applicable patents in the MPEG-2 patent portfolio, which license is available from MPEG-LA, L.L.C., 250 Steele Street, Suite 300, Denver, Colorado 80206.

ICs with Digital Radio Mondiale (DRM) functionality

Use of this product in any manner that complies with the Digital Radio Mondiale (DRM) digital radio standard requires a license under applicable patents in the Digital Radio Mondiale (DRM) patent portfolio, which license is available from Via Licensing Corporation, 100 Potrero Avenue, San Francisco, CA 94103, USA.

HD Radio software

Sale or distribution of this device with HD Radio software requires a license from iBiquity Digital Corporation. (Contact: info@ibiquity.com).

20.5 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of NXP B.V.

HD Radio — is a trademark of iBiquity Digital Corporation.

HD Radio — logo is a registered trademark of iBiquity Digital Corporation.

Tensilica — is a registered trademarks of Tensilica, Inc.

21. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

One-chip multi-tuner car radio and audio system

22. Tables

Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9.	Ordering information Ordering options Pin allocation table Pin description overview Pin description - Secondary function of pins Pin description - Tertiary function of pins Pin description - Power supplies Pin description - analog pins Pin description - Time division multiplex interface	4 6 9 .10 .10 .12
Table 10.	Pin description - Baseband interface	.13
Table 11.	Pin description - Reset and general-purpose p	
Table 12.	Pin description - Serial peripheral interface	
Table 13.	Pin description - S/PDIF interface	
Table 14.	Pin description - RFE general-purpose pins .	
Table 15.	Pin description - I ² S-bus interface	
Table 16.	Pin description - I ² C-bus interface	
Table 17.	Pin description - oscillator and clock	
Table 18.	Pin description - JTAG	
Table 19.	Pin description - thermal pins	
Table 20.	Pin description - internal connected	.18
Table 21.	Pin type description	.18
Table 22.	Limiting values	
Table 23. Table 24.	Recommended operating conditions Thermal characteristics	
Table 25.	Current for each supply pin	
Table 26.	FM radio characteristics	
Table 27.	AM radio characteristics	
Table 28.	Weather band	
Table 29.	DAB VHF band III characteristics	
Table 30.	HD radio characteristics	35
Table 31.	DRM characteristics	
Table 32.	Audio ADC characteristics (differential mode)	
Table 33.	Audio ADC characteristics (pseudo differential	
	and single ended mode)	
Table 34.	I ² S-bus timing specification	
Table 35.	PCM characteristics	
Table 36.	TDM characteristics	.42
Table 37.	Baseband interface (4-wires) characteristics .	
Table 38.	SPI interface characteristics	.46
Table 39.		.48
Table 40.	I ² C-bus interface characteristics	
Table 41.	General purpose I/Os characteristics	
Table 42.	Crystal oscillator characteristics	
Table 43.	Reset interface characteristics	
Table 44.	Digital S/PDIF input and output characteristics	
Table 45.	JTAG interface characteristics	
Table 46.	FS_SYS_OUT characteristics	
Table 47.	I2PD characteristics	
Table 48.	SnPb eutectic process (from J-STD-020D)	
Table 49.	Lead-free process (from J-STD-020D)	
Table 50.		
Table 51.	Revision history	.04

One-chip multi-tuner car radio and audio system

23. Figures

Fig 1. Fig 2. Fig 3. Fig 4. Fig 5. Fig 6.	Block diagram
Fig 7.	TDM slave: Transmits on falling edge of the SCK44
Fig 8.	TDM receiver timing45
Fig 9.	SPI master timing diagram (CPHA = 0)47
U	
Fig 10.	SPI slave timing (CPHA = 0)
Fig 11.	QuadSPI master timing diagram (CPHA = 0)49
Fig 12.	SPDIF rise and fall53
Fig 13.	SPDIF digital output - IEC60958 mode 54
Fig 14.	SPDIF digital input - IEC60958 mode 54
Fig 15.	Package outline SOT1457-1 (LFBGA364)57
Fig 16.	Soldering footprint SOT1457-1 (LFBGA364)58
Fig 17.	Temperature profiles for large and small
	components

One-chip multi-tuner car radio and audio system

24. Contents

1	General description	1
-	Features and benefits	
2		
2.1	AM/FM features	
2.2	HD radio features	
2.3	DRM	
2.4	DAB, DAB+, and T-DMB radio technology	
2.5	Audio features	
2.6	System control	
3	Applications	
4	Ordering information	. 4
4.1	Ordering options	. 4
5	Block diagram	. 5
6	Pinning information	. 6
6.1	Pinning	. 6
6.2	Pin description	. 8
7	Functional description	18
7.1	Tuner description	18
7.2	FM tuner to IF ADC input	20
7.3	AM tuner to IF ADC input	
7.4	DAB tuner to IF ADC input	20
7.5	WX tuner to IF ADC input	20
7.6	Tuning system	21
7.7	Wideband IF ADC	21
7.8	Narrowband tuner	21
7.9	IIPD interface	24
7.10	Digital radio features	24
7.11	IC control unit	26
8	Limiting values	30
9	Recommended operating conditions	30
10	Thermal characteristics	31
11	Characteristics	31
11.1	Static characteristics	
11.2	Radio characteristics	
11.3	ADC characteristics	37
11.4	I ² S-bus timing specification	39
11.5	PCM timing specification	
11.6	TDM timing specification	
11.7	Baseband interface	45
11.8	SPI interface	46
11.9	Quad SPI interface	48
11.10	I ² C-bus interfaces	49
11.11	General purpose I/Os	
11.12	Crystal oscillator	
11.13	Reset input - RESET_N	
11.14	S/PDIF timing specification	52 54
11 16	1141	n/I

	Par Par Par Par
F400	OX 101 SAF777X 201
	chip multi-tuner car radio and audio system
	AND AND AND
	Op Op Op
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11.16	FS_SYS_OUT characteristics 55
11.17	I2PD characteristics
12	Test information
12.1	Quality information
13	Package outline
14	Soldering
15	Soldering of SMD packages 59
15.1	Introduction to soldering 59
15.2	Wave and reflow soldering
15.3 15.4	Wave soldering
15.4 <b>16</b>	Reflow soldering
17	
• •	Glossary 63
18	References
19	Revision history
20	Legal information
20.1	Data sheet status
20.2	Disclaimers
20.4	Licenses
20.5	Trademarks
21	Contact information 66
22	Tables
23	Figures
24	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

One-chip multi-tuner car radio and audio system



Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

 $\ensuremath{\texttt{©}}$  NXP B.V. 2017. All rights reserved.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 30 October 2017
Document identifier: SAF400X_101_SAF777X_201