Transformer

Efficient Transformers

Learning goals

- Understand the efficiency problems and shortcomings of transformer-based models
- Learn about some strategies to alleviate them

THE $\mathcal{O}(N^2)$ PROBLEM

Quadratic time & memory complexity of Self-Attention

- Inductive bias of Transformer models:
 Connect all tokens in a sequence to each other
- Pro: Can (theoretically) learn contexts of arbitrary length
- Con: Bad scalability limiting (feasible) context size

Resulting Problems:

- Several tasks require models to consume longer sequences
- Efficiency: Are there more efficient modifications which achieve similar or even better performance?

EFFICIENT TRANSFORMERS

Broad overview on so-called "X-formers" Tay et al., 2020a

- Efficient & fast Transformer-based models
 - \rightarrow Reduce complexity from $\mathcal{O}(n^2)$ to (up to) $\mathcal{O}(n)$
- Claim on-par (or even) superior performance
- Different techniques used:
 - Fixed/Factorized/Random Patterns
 - Learnable Patterns (extension of the above)
 - Low-Rank approximations or Kernels
 - Recurrence (see e.g. Dai et al., 2019)
 - Memory modules

Side note:

- Most Benchmark data sets not explicitly designed for evaluating long-range abilities of the models.
- Recently proposed: Longe Range Arena: A benchmark for efficient transformers → Tay et al., 2020b

EFFICIENT TRANSFORMERS

EFFICIENT TRANSFORMERS - EXAMPLE

Reasoning:

- Making every token attend to every other token might be unnecessary
- Introduce sparsity in the commonly dense attention matrix

Example:

Figure 1: Building blocks of the attention mechanism used in BIGBIRD. White color indicates absence of attention. (a) random attention with r=2, (b) sliding window attention with w=3 (c) global attention with q=2. (d) the combined BIGBIRD model.

➤ Source: Zaheer et al., 2020

EFFICIENT TRANSFORMERS - TRADEOFF

- Quality: How well can we approximate the results we would get when applying full attention?
- Speed: Can we reduce the computational complexity from quadratic to (nearly) linear?

A PRIMER ON FLASH ATTENTION

Compute-bound vs. Memory-bound operations:

- Wall-clock time not (necessarily) a function of FLOPs
- Most of these "Efficient Transformers" focus on FLOP reduction
 - → This ignores existing memory overheads
- Compute-bound operations: (≈ FLOPs)
 - Matrix Multiplication
- Memory-bound operations: (≈ data transfer)
 - Attention

A PRIMER ON FLASH ATTENTION

©

A PRIMER ON FLASH ATTENTION

- Compute-bound operations:
 - Matmul
- Memory-bound operations:
 - Mask
 - Dropout
 - Softmax
 - → Reducing memory-bound operations most effective for reducing wall-clock time

TBD

