(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2001-118064 (P2001-118064A)

(43) 公開日 平成13年4月27日(2001.4.27)

(51) Int.Cl.7		徽別記号	FΙ		テーマコード(参考)	
G06T	5/20		H04N	5/208	5 B 0 5 7	
H04N	5/208			5/262	5 C 0 2 1	
	5/262		G06F	15/68	400J 5C023	

審査請求 有 請求項の数4 OL (全 11 頁)

(21)出願番号	特顯平11-298631	(71)出願人 000004352
		日本放送協会
(22)出願日	平成11年10月20日(1999, 10, 20)	東京都渋谷区神南2丁目2番1号
		(72)発明者 吉良 健二
		東京都設谷区神南2丁目2番1号 日本放
		送協会 放送センター内
		(72)発明者 李 建輝
		東京都設谷区神南2丁目2番1号 日本放
		送協会 放送センター内
		(74)代理人 100059258
		弁理士 杉村 暁秀 (外2名)

最終頁に続く

(54) 【発明の名称】 画像処理装置

(57) 【要約】

【課題】 従来、テレビジョンや映画制作においては、 ひとの肌部分の「シワ強調」(老けの表現)はできず、 また、肌の肌理・質感を損うことなく「肌つる」化(若 返りの表現)もできないなどの解決すべき課題があっ

【解決手段】 本発明においては、例えば、肌の肌理・ 質感を保持した自然感のある「肌つる」化や「シワ強 調」を実現するために、新たに特定振幅帯変動成分算出 部4を具備する特定振幅帯変動成分分離型デジタルフィ ルタ(βフィルタ)を構成するとともに、このフィルタに 印加された入力画像信号X(m, n)から上記算出部4 において特定振幅帯変動成分U(m, n)のみを選択的 に分離するとともに、外部からの補正指示に従って入力 画像信号から減算(「肌つる」化)、または入力画像信 号に加算(「シワ強調」) した画像信号 v (m, n) を 出力するように構成した。

【特許請求の範囲】

【請求項1】 入力画像に対し、「肌つる」化または 「シワ」強調を行う画像処理装置であって、

入力画像信号をε-フィルタの入力端子に印加するとと 4.17

当該 ε - フィルタの小振幅変動成分算出部の出力信号を 前記入力画像信号に加算することによって得られる入力 画像信号が「シワ強調」された信号と、

前記ε-フィルタの出力信号である入力画像信号が「肌 つる」化された信号とが二者択一または同時に取り出さ 10 た画像処理装置に関する。 れるような拡張ε-フィルタとして構成したことを特徴 とする画像処理装置。

【請求項2】 入力画像信号を大小異なるε値を有する 2個のε-フィルタの各入力端子に印加するとともに、 大なる ε 値の ε -フィルタの出力信号に、小なる ε 値の ε - フィルタの小振幅変動成分算出部の出力信号を加算 することによって、入力画像信号が肌の肌理・質感を残 して「肌つる」化された信号として取り出されるように 構成したことを特徴とする画像処理装置。

【請求項3】 入力画像信号を大なるε値を有する拡張 20 参照) ことが知られている(以下、「肌つる」化と呼 ε - フィルタと小なる ε 値を有する ε - フィルタの各入 力端子に印加するとともに、

補正指示が「肌つる」化のとき、前記拡張 ϵ - フィルタ の「肌つる」化出力信号に前記 ε - フィルタの小振幅変 動成分質出部の出力信号を加算することによって、入力 画像信号が肌の肌理・質感を残して「肌つる」化された 信号として、そして

補正指示が「シワ強調」のとき、前記拡張ε-フィルタ の「シワ強調」出力信号から前記ε-フィルタの小振幅 変動成分算出部の出力信号を減算することによって、入 30 力画像信号が肌の肌理の元の状態を保ちつつ「シワ強 題」された信号としてそれぞれ取り出されるように構成 したことを特徴とする画像処理装置。

【請求項4】 任意に設定可能な大小2つの振幅値をパ ラメータとして、当該2つの振幅値に挟まれた振幅値を 有する変動成分のみを選択的に分離する特定振幅帯変動 成分分離型デジタルフィルタ (β-フィルタ) を使用す ることによって、

入力画像信号が肌の肌理・質感を残して「肌つる」化さ れた信号と、

入力画像信号が肌の肌理の元の状態を保ちつつ「シワ強*

元 ε - フィルタ (例えば、原島ほか、「 ε - 分離非線形

*淵」された信号とが二者択一または同時に取り出される

【発明の属する技術分野】本発明は、画像処理に係り、

特に、テレビドラマや映画など内容・表現ともに高度な

プ」装置としての利用の観点から、その応用範囲の拡大

とより自然感のある高品質な画像を得ることを目的とし

【従来の技術】人の顔や首・手などを握った画像に2次

作品性が要求される分野でのいわば「電子メイクアッ

ように構成したことを特徴とする画像処理装置。

【発明の詳細な説明】

[0001]

[0002]

ディジタルフィルタとその応用」電子通信学会1982. 4.J65-A.No.4.pp297-304 参照) を適用することで、シ ワやシミが除去或いは軽減された「お肌つるつる」の画 像が得られる(荒川ほか、「ベクトルε-フィルタによ るカラー顔画像処理-皺成分の除去-1998年3月電子 情報通信学会総合大会予稿集、D-11-143 , PP143-

ぶ)。これは、2次元ε-フィルタが有する「画像中の 小振幅の高周波維音成分を分離し抑圧する」機能によっ て、シワやシミなど小振幅の、明暗変化が平滑化される ことに基づいている。

【0003】 ε − フィルタ (ε − 分離非線形デジタルフ ィルタ)は、もともと信号波形に重畳された小振幅の高 周波雑音成分の分離・除去を目的として考案されたもの である。雑音除去に涌常用いられるローパスフィルタ (LPF)は、雑音成分を抑圧するだけでなく信号のエ ッジまで劣化させてしまうため、画像を対象とした場合 には画像全体をぼかしてしまう欠点があったが、 ε -フ ィルタは、その入力信号と出力信号の関係が、図1に示 すように、信号波形中の小振幅のレベル変化のみを平坦 化する特性を有しており、画像に適用した場合にも急峻 なレベル変化を伴うエッジは保存されるため画像全体の キレは殆ど損なわれないという特徴を有している。 【0004】2次元ε-フィルタの出力信号y(m, n) は、入力信号系列をx(m, n) としたとき、

40 【数1】

(1) 式で表される。

 $y(m, n) = x(m, n) - \sum a_{i,j} \cdot F(x(m, n) - x(m+i, n+j))$

ここに、a1.1は重み付け係数で、フィルタ・サイズを (2M+1)×(2N+1)とすると、(2)式を満た すものである.

[% 2] (2) また、(1) 式で表される関数F(x)は、図2のグラ フで示され $|X| > \varepsilon_0$ の場合、F(x) = 0 となる非 線形関数である。本明細書においては、この٤0の値を ε 値と呼ぶことにする。

【0005】図3は、2次元ε-フィルタの基本的な構 成を示している。図3においては、符号1で示す実線枠 50 が小振幅の高周波雑音成分u(m, n)の算出部(小振

幅変動成分算出部とも言う) ((1)式中、右辺第2 項) であり、この算出部からの出力を入力信号系列 x (m, n) から減ずることで小振幅雑音成分を抑圧した

出力信号系列 v (m, n) を得る構成となっている。 【0006】このε-フィルタを人の顔画像に適用する ことで、シワやシミが除去・軽減されて「お肌つるつ る」の美顔化が達成できる。シワやシミは、いわゆる雑 音ではないが、画像中では比較的小振幅の明暗変化とな っており、ε-フィルタの持つ小振幅レベル変化の抑圧 機能により小振幅の明暗変化が平滑化されシワやシミを 10 目立たなくさせることができる。この際、シワやシミな ど小振幅のレベル変化のみが平坦化され、瞳・瞼・眉手 などの境界部分など急峻なレベル変化は保存されるの で、画像全体のキレは殆ど損なわれずに「肌つる」化が 達成される。

【0007】「肌つる」化の対象はあくまでも肌領域で あるが、ε-フィルタで画面全体を一様に処理すると周 辺画像の小振幅レベル変化までも抑圧され、結果として 髪の毛や衣服、背景などが持っている微妙な明暗模様も つぶれてしまい、本来のディテイル、質感が損なわれた 20 画像となってしまう。

【0008】 このことは、テレビジョンや映画など画像 全体に対して高度な品質が求められる利用分野において は致命的なことであるが、 ε -フィルタを画像の肌色領 域のみに選択的に作用させることで周辺画像のディテイ ル、質感を全く損なうことなく「肌つる」化を達成する ことができる。このためには、テレビジョンの技術分野 では、古くから常奪手段となっている「クロマキー」 (画像中の特定の色彩領域を電子的に識別し、その領域 にのみ限定的にフィルタリングなどの画像処理を施す手 30 法)と呼ばれる手法を援用すればよい。

[0009]

【発明が解決しようとする課題】以上説明したように、 ε - フィルタによる「肌つる」化は、テレビドラマや映 画制作などでの「電子メイクアップ」的利用の可能性を 有している。しかし、画像処理に対する多様な要望と画 像全体に高い品質が要求されるこの分野での活用に向け ては、以下のような解決すべき課題があった。

【0010】「肌つる」化は、肌画像をすべすべに見せ は一代記もののドラマなどで年配女優が娘時代を演じる ような場合、次に指摘するような改善すべき点はあるも のの、画像処理により「肌を若返らせる」電子的なメイ クアップ手法として有望である。

【0011】上述したように、「肌つる」化は ε -フィ ルタを使用して実現可能であることが判明したが、一 方、テレビドラマや映画などで、実年齢を大幅に超える 「老け役」を演じる場合には「シワ強調」など「老け」 効果の得られる電子メイクアップ手法も求められる。し かし従来においては、「肌つる」化とは逆の効果とも言 50 入力画像信号が肌の肌理・質感を残して「肌つる」化さ

える「シワ強調」を実現することは不可能であった。

【0012】また、ε−フィルタを使用した「肌つる」 化では、隠したいシワやシミの強さに応じて1つのパラ メータ(図2の ϵ_0)を変えるだけで「肌つる」化の度 合い(強さ)を簡単に調節することが出来る。しかし、 「肌つる」化の度合いを強めるに従って肌全体がつるつ る・すべすべにはなるものの、肌の処理(きめ)・質感

が失われて「人の肌」と言うよりは「プラスチッック 的」な質感になってしまい、真実味の乏しい画像になっ てしまう。これを避けるために「肌つる」化を弱めると 自然感は回復するものの、何より隠したいシワやシミが 現われてしまうというジレンマがある。すなわち、「気

【0013】さらに、上述の「シワ強調」が実現できた と仮定した場合に、単に、「シワ強調」だけでなく、肌 の肌理の元の状態を保ちつつ「シワ強調」された画像を 得たいことは言うまでもない。

になるシワやシミは隠しつつ、肌の肌理・質感を残した

画像を得る」ための解決策が必要になる。

【0014】本発明の目的は、従来実現不可能であった 「シワ強調」を実現するとともに、肌の肌理・質感を損 なうことなく「肌つる」化を行い、さらに、肌の肌理の 元の状態を保ちつつ「シワ強調」を行う画像処理装置を 提供することにある。

[0.0.1.5]

【課題を解決するための手段】上記目的を達成するため に、本発明画像処理装置は、入力画像に対し、「肌つ る」化または「シワ」強調を行う画像処理装置であっ て、入力画像信号をε-フィルタの入力端子に印加する とともに、当該ε-フィルタの小振幅変動成分算出部の 出力信号を前記入力画像信号に加算することによって得 られる入力画像信号が「シワ強調」された信号と、前記 ε - フィルタの出力信号である入力画像信号が「肌つ」 る」化された信号とが二者択一または同時に取り出され るような拡張 ε - フィルタとして構成したことを特徴と するものである。

【0016】また、本発明画像処理装置は、入力画像信 号を大小異なる ϵ 値を有する 2 個の ϵ - フィルタの各入 力端子に印加するとともに、大なる ϵ 値の ϵ -フィルタ の出力信号に、小なる ϵ 値の ϵ -フィルタの小振幅変動 るため、映像表現としての「若返り」効果もある。これ 40 成分算出部の出力信号を加算することによって、入力画 像信号が肌の肌理・質感を残して「肌つる」化された信 号として取り出されるように構成したことを特徴とする ものである。

> 【0017】また、本発明画像処理装置は、入力画像信 号を大なる ε 値を有する拡張 ε 一フィルタと小なる ε 値 を有する ε - フィルタの各入力端子に印加するととも に、補正指示が「肌つる」化のとき、前記拡張ε-フィ ルタの「肌つる」化出力信号に前記 ε - フィルタの小振 幅変動成分算出部の出力信号を加算することによって、

(4)

5

れた信号として、そして補正指示が「シツ強調」のと
ま、前記能選ε・フィルタの「シワ強調」出力信号から前記ε・フィルタの小域編念動成分算出部の出力信号を 減算することによって、入力補償が期の即則の元の状態 を保ちつつ「シワ強調」された信号としてそれぞれ取り 出されるように構成したことを特徴とするものである。 【0018】また、本智申補償処理装置は、任意に設定 可能な大小とつの振幅値をバラメーシとして、当該を入り の振幅値に共れた振幅値をイすっる変動成分のみを選択 的に分離する特定振幅符を動成分分離符ヂジタルフィル が別の間理。電影を残して「即つる」化されに得号と、 入力画像が肌の肌理の元の状態を保ちつつ「シワ強調」 された信号とが二者択一束とは同時に取り出されるよう に構成したことを特徴とするものである。

[0019]

【発明の実施の形態】以下に添付図面を参照し、発明の 実施の形態に基づいて本発明を詳細に説明する。以下に おいては、次の順番で本発明を説明する。

- (1)「シワ強調」の実現
- (2) 肌の肌理・質感を残した「肌つる」化および「シ ワ強調」の実現
- なお、「肌つる」化と「シワ強調」の両機能を実現する ことのできる、本発明によるフィルタを拡張 ε - フィル タと呼ぶ。

【0020】上記(2)に関しては、さらに次のa.からc.の3つの方法によって実現するものとする。
a.(1)式によって表されるεーフィルタを2個組み*

に、25 に関しては、さらに次のa.かである。

で表される ε - フィルタを 2 個組み * y(m, n) = x(m, n) + $\sum \sum_{\mathbf{a}_{i,j}} \cdot \mathbf{F}(\mathbf{x}(\mathbf{a}_i, \mathbf{a}_i) + \mathbf{x}(\mathbf{a}_i, \mathbf{n}_i + \mathbf{i}_i, \mathbf{n}_i + \mathbf{i}_i))$ (3)

【0024】この「シソ強調」を実現する装置として は、従来も実現可能であった「肌つる」化のための装置 と一体化してどちらにでも使用できるようにした方が便 利であり、また、コスト的にも有利である。この一体化 した回路構成としては、

- (ア) 「肌つる」化などの補正出力は1つとし(以下、「1出力型」と呼ぶ)、外部からの補正指示(「肌つる」化と「シワ強調」のどちらを行うかの指示)に従って入力信号に対する小振幅変動成分の算法(減算するかまたは加算するか)を変える機成
- (イ) 「肌つる」化と「シワ強調」の処理結果を常時出 力し(以下、「常時併行出力型」と呼ぶ)、必要に応じ ていずれか一方を選択して使用できるようにする構成 の2通りの形態が考えられる(いずれの構成も、本明細 書では拡張。一フィルタと呼ぶ)。
- 【0025】図4および図5は、「肌つる」化と「シワ 強調」を上記(ゲ)および(イ)に対応した形態で行う 本発明画像処理装置の一構成例をそれぞれ示していて、 両図において、符号1で示す実験枠の部分が小振幅変動 成分U(m,n)の算出部である。また、図4中の符号

*合わせて自然感のある「肌つる」化を行う。

c. 本発明によって提供される新規なデジタルフィルタ を用いて自然感のある「肌つる」化および「シワ強調」 を行う。

可能な大小2つの振幅値をパラメータとして、当該2つ の振幅値に挟まれた振幅値を有する変動成分のみを選択 で説明する。シワの無いところに前たにシワを作ること 的に分離する特定振幅性変動成分分離帯デジタルフィル ϱ (β -フィルタ)を使用することによって、入力画像 か明の則則、質繁を残して「肌つる」化された信号と、 もともとあるシワを連載するようにする。

【0022】従来の肌の「肌つる」化は、εーフィルタ 中の符号1で示される小脈線虚動成分算出部で入力信号 系列の小脈線変動成分を求め、これを入力信号系列から 差し引くことで小脈線を動成分の抑圧を実現している (図3参照)。

【0023】 これとは逆に、(3) 式に示すように、小 振幅変動成分 ((3) 式の右辺第2項)を入力信号系列 (右辺第1項) に加えることにより、シワなどの小振幅 変動成分を強調 (「シワ強調」) することができる。た だし、この加算 (同相加算) 結果はデジタル映像の規定 レベル範囲 (例えば、0~255) を造影する可能性が あるので、加算後のクリップ処理 (の以下されば) に、255以上でおれば255に刺収する処理)が必要

【数3】

2 で示す補正指示部は、当該装置に「肌つる」化および 「シリ強調」のどちらを行わせるかを指示する部である。 念、なは、両数層とも、「シリ強調」のための小弧幅変 動成分の加算(同相加算)結果をデジタル映像の規定レ ベル範囲(例えば、(~255) に抑えるためのクリッ プロ解(CII D)を見まている。

【0026】次に、(2)の側の即理・質感を残した 「関いる』化を、(1)式によって表されるεーフィル タを2側間か合わせて実現する方法(上述の(2)a、 40の方法)について説明する。まず、原理につき説明す る。シワやシミも、間の肌理も共に比較的よ振幅のレベ ル変化(振幅変動)であることに変わりはない。しか し、気になるレベルのシワやシミと側の即理とを比べれ

- し、気になるレベルのシリやシミと肌の肌肥とを比べれ は、一般に肌肥に係わる振磁整動の方が酸小である。肌 明の揺艦を動用だいを動態悪としては、いわめる環像ノ イズ (雑音) が考えられるが、提像ノイズはテレビや映 画での高値質な提像条件の中では無視してよい。すなわ ち、これらの間には次の関係がある。
- 両図において、符号1で示す実線枠の部分が小板幅変動 シワやシミの振幅変動 > 肌理の振幅変動>> 操像ノイズ 成分U (m, n) の算出部である。また、図4中の符号 50 【0027】ところで、シワやシミの除去(「肌つる」

7

化)に妥当な小級幅値 ϵ h ϵ ϵ 値(図 2 参照)として (1) 式で表される ϵ - フィルタによって処理すると、 当然のこととして肌理に関するレベル変化も抑圧されて しまう。

 $\{0.02.8\}$ 一方、肌の肌即の振幅変動に見合った微小振幅値 $et\{et<eh\}$ を。値(同じく、限2参照)として。 つフィルタによって処理して得られる微小振幅変動成分 u.(m,n) は、e-フィルタの動作派則から肌の肌則。質感に係わるレベル変化であるから、本発則では、これを用いて従来手法では失われていた肌の肌則。質感を蘇らせるようにする

【0029】すなわち、「気になるシワやシミを除去 (「肌つる」化)しつつ、より変動幅の小さい肌の肌理

(イ) ε-フィルタIにより原画を小振幅値εhで「肌つる」化する(この際、肌理成分も抑圧される)

(ロ) ε - フィルタ目により原画から微小振幅値 ε Lに より微小振幅のレベル変動成分 (即理成分) を分離する (ハ) (イ) の「則つる」化の処理結果に (ロ) で分離 した微小振幅のレベル変動成分を加算する

ことでこの目的は達成される。図6は、上記信号処理を 行う本発明画像処理装置の一構成例を示している。

【0030】次に、上述の(2) b. の方法である、拡張フィルタIと ε -フィルタIIを組合せて自然感のある「肌つる」化および「シワ強調」を切換可能に実現する

方法について説明する。ここでも、 ε — フィルタ 川にとって得られる微小振鳴変動成分 u (m, n) の扱いについては、、 $\| m$) つる」 (vの場合、上述の(z) α 。 の方法におけると同様、これを拡張 ε — フィルタ z0 回拍 大きにおけると同様、これを拡張 ε — フィルタ z0 回拍 大きになって、従来失われていた肌の肌埋・質繁を移動した。 z0 つ z0 の z0

【0031】これに対し、「シワ強調」の場合には、本 来望ましくない微小振幅変動成分u (m, n) による肌 理の強調を相殺して元の肌理のレベルに戻すようにす る。

【0032】すなわち、「肌の肌理については元の状態を保ちつつ、有意なシワやシミについては強調する」には、

* (イ) 拡張を一フィルタIにより原画を小振幅値を作で 「シソ強調」する(この際、即埋扱分も強調される) (ロ) モーフィルタIIにより原画から微小振幅値を比に より微小振幅のレベル変化成分 (用)型成分) を分離する (ハ) (イ)の「シソ強調」の処理結果から(ロ)で分離した微小振幅のレベル変化成分を演算する アンアでの目的はは微される。

(0033) 関イは、「気になるシワやシミを除去しつ つ、より変動幅のかさい肌の肌剛を残す」ということ と、「肌理についてはた元の状態を保ちつつ、有意なシリ やシミについては強調する」ということを2者択一に行 う本発明画像鬼明装置の一構意成や示している。因7に おいて、符号3で示される微小振幅成分調整部は、微小 振幅変動成分の調整処理を実施する部分であり、「肌つ る」化か「シワ強調」かの植正指示により、拡張モーフ ィルタ1の出力y (m, n)に対するεーフィルタ11 で分離した微小振幅変動成分の2 (m, n)の算法

(「肌つる」化であれば加算、「シワ強調」であれば減 算)を行う部分である。この場合において、拡張 ε −フ 20 ィルタは、補正指示に従って「肌つる」化もしくは

「シワ強調」を行うものであるが、これについては図6 を参照して既に説明した。

【0034】次に、上述した(2) c. の方法である、 本発明によって提供される新規なディジタルフィルタを 用いて自然窓のある「肌つる」(おおよび「2) 少遠親」を 実現する方法について説明する。まず、上述の(2) a. の方法、すなわち、(1) 式によって表される ε フィルタなご側組み合わせて自然窓のある「肌つる」化 を行う場合について復習する。この場合は、上述したよ うに 図6の場所とよって行われる。

$$y(m, n) = \{x(m, n) - \sum_{i} \sum_{j=1}^{n} a_{i,j} \cdot P_{i,b}(x(m, n) - x(m+i, n+j))\}$$

$$+\sum_{i}\sum_{j}a_{i,i}-F_{i,i}(x(n, n)-x(n+i, n+j))$$
 (4)

いま、(4)式を、 【が1】

Σ Σa,,,

に着目して整理すると、(5)式となる。 【数5】

$$y\left(m,\ n\right)=x\left(m,\ n\right)-\sum_{i}\sum_{j}a_{i,j}\cdot\{F_{**}(x\left(m,\ n\right)-x\left(m+i,\,n+j\right))\}$$

$$-F_{\epsilon 1}(x(m, n)-x(m+i, n+j))\}$$
 (5)

【0036】ここでF。(x) (図2参照) は | X | ≤ εなる x に対しては同じ値となり、それ以外では0とな*

*る関数であるから、(5)式のFeh(△x)、FeL (△x) はそれぞれ

 $|\Delta x| \le \epsilon L O \ge \delta$ $F_{\epsilon h}(\Delta x) = \Delta x, F_{\epsilon L}(\Delta x) = \Delta x$

 ϵ L< $|\Delta x| \le \epsilon h$ のとき $F_{\epsilon h}(\Delta x) = \Delta x$, $F_{\epsilon L}(\Delta x) = 0$ $\varepsilon \mathbf{L} < |\Delta \mathbf{x}|$ のとき $F_{\varepsilon h}$ $(\triangle \mathbf{x}) = 0$, $F_{\varepsilon L}$ $(\triangle \mathbf{x}) = 0$

※メータβL,βhによって規定される新規な非線形関数の

となる。従って、(5) 式中の {F ≈ h (△x) - F ≈ L $(\triangle x)$) で表される部分全体は、 $\varepsilon l < |\triangle x| \le \varepsilon$ hとなる振幅帯に含まれる変動成分△xに対してのみ同 じ値を、それ以外では0を出力する特性を有している。 【0037】この特性は、図8に示すような2つのパラ※ 【数6】

特性 (φ β L, β h (X) とする) そのものである。こ の新たな非線形関数φβL, βh(X)を用いること で、(5) 式は、(6) 式のように書き換えられる。

 $y(m, n) = x(n, n) - \sum_{i=1}^{n} \sum_{j=1}^{n} a_{j,i} \cdot \phi_{\beta(i,\beta)}(x(n, n) - x(m+i,n+j))$

【0038】すなわち(6)式は、新規な非線形関数の βL. βh (X) を用いて特定の振幅帯の変動成分のみ

を分離し抑圧することを特徴とする新たな非線形デジタ 20 えられる。 ルフィルタ(以下、特定振幅帯変動成分分離型デジタル フィルタ(またはβ-フィルタ)と呼ぶ)の特性を示し ている。そして、この(6)式が(4)式から導かれた ことからも判るように、その機能は図6に示した ϵ -フ ィルタを2個組合せたものによる機能と全く同一であ る。従って、このβフィルタ1個で、肌の質感を残した 「肌つる」化を一挙に達成することができる。 【0039】なおB-フィルタは、従来のε-フィルタ

画像信号に加算する構成を加えることで拡張ε-フィル 30 えている。 タを実現したのと同様に、分離した特定振幅帯変動成分 の抑圧機能(「肌つる」化)に加えて、その強調機能 (「シワ強調」) も併せもたせることができる。これに より、図9に示すように、β-フィルタは、肌の肌理を考 慮した高品質な「肌つる」化や「シワ強調」に対し1個 で対応可能 (図7の構成では、拡張 ϵ -フィルタ|と ϵ -フィルタ目の2個を必要とした)になり、従って、簡易 な構成で自然な処理結果を生み出す「電子メイクアッ

出力に、ε-フィルタで分離した小振幅変動成分を入力

(B-フィルタ) を用いた本発明画像処理装置の基本的 な構成においても、従来のε-フィルタの構成に小振幅 変動成分を強調する機能を付加した拡張 ε - フィルタの 構成例と同様に、

プレ装置となる。

(ア) 「肌つる」化などの補正出力は1つとし、外部か らの補正指示(「肌つる」化と「シワ強調」のどちらを 行うかの指示) に従って入力信号に対する特定振幅帯変 動成分の算法(減算するかまたは加算するか)を変える 構成「1出力型」

力し、必要に応じていずれか一方を選択して使用できる ようにする構成「常時併行出力型」の2通りの形態が考

【0041】図10および図11は、β-フィルタによ り「肌つる」化と「シワ強調」を上記(ア) および (イ) に対応した形態で行う本発明画像処理装置の一構 成例をそれぞれ示していて、両図において、符号 4 で示 す実線枠の部分が特定振幅帯変動成分算出部である。ま た、これら両装置(図10,図11)においても、「シ ワ強調」のための特定振幅帯変動成分の加算(同相加 算) 結果をデジタル映像の規定レベル範囲 (例えば、0 ~255) に抑えるためのクリップ回路(Clip) を具

【0042】本発明によって提供されるβ-フィルタに ついてさらに説明する。β-フィルタの基盤となる関数 øβL, βh (X) は、2つの振幅値φβL, βh (X) に挟まれた振幅値を有するレベル変動($\sigma BL \le |X| \le \beta$ h) に対してのみ作用するもので、0 近傍の微小振幅変 動については関与しない非線形関数であることを特徴と している。この関数 $\sigma \beta L$ 、 βh (X) も、図2に示し た従来の ε - フィルタの非線形関数F(X) も共にレベ ル変動の振幅領域におけるフィルタ要件を規定するもの 【0040】なお、特定振幅帯変動成分分離型フィルタ 40 であるが、øBL Bh(X)とF(X)の両関数の機 能面での本質的な差異は、周波数領域におけるそれぞれ バンドパスフィルタ (BPF) とローパスフィルタ (L PF) の差異になぞらえることができる。

> 【0043】すなわち、この非線形関数 σ β L. β h (X) の導入により、様々な振幅のレベル変動からなる 入力信号系列中のある特定の振幅帯に含まれるレベル変 動のみを選択的に分離し、抑圧若しくは強調することの できるデジタルフィルタが生み出される。

【0044】従来技術において文献を参照して説明した (イ) 「肌つる」化と「シワ強調」の処理結果を常時出 50 ように、「ε-フィルタはもともと小振幅の雑音除去を 目的に考案されたフィルタである。雑音除去を目的とし た場合、用いる非線形関数の形状を検討するに当たって 図8に示すような形態の関数は考慮の対象外となる。何 故なら、雑音除去においては、ある振幅帯の雑音は除去 対象とするものの、より微小な変化については除去対象 から外し保存するなどということはあり得ないからであ る。従って、この非線形関数およびこの関数により規定 され、本発明により提供されるデジタルフィルタは従来 とは全く異なる目的・発想から生まれたものであり、各 分野における新たな応用を可能にするものである。

【0045】最後に、このβ-フィルタと色領域判定回 路とを組み合わせることで、周辺のディテイル・智感を 保持しつつ、肌の肌理を考慮したより高品質な「肌つ る」化または「シワ強調」を行う画像処理が可能とな り、これは、テレビジョンや映画などの分野における 「電子メイクアップ」装置としての一層の有効性を発揮

【0046】図12は、このような構成からなる「電子 メイクアップ:装置の一構成例を示している。図12に おいては、色領域判定回路5で入力画像信号中のパラメ 20 ィルタ(β-フィルタ)を規定する非線形関数 σβL ータで指定される特定の色質域が判定され、その判定さ れた色領域においてのみ β -フィルタの出力v(m, n) が出力信号として取り出され、そうでない領域では 入力画像信号がそのまま出力されるよう色領域判定回路 5の出力により切換スイッチ6を制御している。

【0047】以上説明したように、本発明画像表示装置 は、ε-フィルタの小振幅変動成分分離機能や本発明に よる 8 - フィルタの特定振幅変動成分分離機能を用いて 2次元画像としての入力画像信号系列を補正することに より、「シワ強調」を行い、また、より自然感のある 「肌つる」化や「シワ強調」を行うものであるが、本発 明の基本原理である入力信号中の小振幅変動成分や特定 振幅帯変動成分を分離するとともにこれを弱め、または 強調するという考え方は、いわゆる時系列信号としての 1次元信号の処理に応用し得ること勿論である。

[0048]

【発明の効果】本発明によれば、テレビジョンや映画に おける映像表現として自然感のある「若返り」や「老 け」の効果がより自然なかたちで画像処理によって可能 になる。

【図面の簡単な説明】

【図1】 ε−フィルタの特性を入力信号と出力信号の

関係で示している。

【図2】 ϵ - フィルタで用いる非線形関数F(X) を グラフで示している。

【図3】 2次元ε-フィルタの基本的な構成を示して いる。

[図4] 「肌つる」化と「シワ強調」を「1出力型」 で行う本発明画像処理装置の一構成例を示している。

[RI5] 「肌つる」化と「シワ強調」を「常時併行出 力型」で行う本発明画像処理装置の一構成例を示してい 10 %...

「気になるシワやシミを除去しつつ、より変 動幅の小さい肌の肌理を残す」ようにした本発明画像処 理装置の一構成例を示している。

【図7】 「気になるシワやシミを除去しつつ、より変 動幅の小さい肌の肌理を残す」ということと、「肌理に ついては元の状態を保ちつつ、有意なシワやシミについ ては強調する」ということを2者択一に行う本発明画像 処理装置の一構成例を示している。

【図8】 本発明によって提供される新規なデジタルフ β h (X) をグラフで示している。

【図9】 β-フィルタを使用することにより、肌の肌理 を考慮した高品質な「肌つる」化や「シワ強調」を行うの に、1個のフィルタ(β-フィルタ)で対応可能になること を示している。

【図10】 「肌つる」化と「シワ強調」を「1出力 型」のβ-フィルタで行う本発明画像処理装置の一構成 例を示している。

【図11】 「肌つる」化と「シワ強調」を「常時併行 30 出力型」の B-フィルタで行う本発明画像処理装置の一 構成例を示している。

【図12】 β−フィルタと色領域判定回路とを組合せ て構成した「電子メイクアップ」装置の一構成例を示し ている.

【符号の説明】

- 1 小振幅変動成分(雑音成分)算出部
- 2 補正指示部
- 3 微小振幅成分調整部
- 4 特定振幅带変動成分算出部
- 40 5 色領域判定部
 - 6 切換スイッチ

【図10】

[図11]

[図12]

フロントベージの続き

(72)発明者 沼田 照芳

東京都渋谷区神南2丁目2番1号 日本放 送協会 放送センター内 F ターム(参考) 58057 AA20 CE06 CH09 5C021 PA17 PA31 PA66 PA67 PA72 RA06 RB03 XA06

> 5C023 AA07 AA08 BA02 BA07 CA02 CA09 DA08 EA03 EA08