Задание 6

Теорема Майхилла Нероуда

Задача 1. Будут ли регулярным язык L_3 всех слов в алфавите $\{0,1\}$, которые представляют числа в двоичной записи, дающие остаток два при делении на три (слово читается со старших разрядов)? Например, $001010 \notin L_3$ ($1010_2 = 10_{10} = 3 \times 3 + 1$), а $10001 \in L_3$ ($10001_2 = 17_{10} = 5 \times 3 + 2$).

Задача 2. Опишите классы эквивалентности Майхилла–Нероуда для языка L над алфавитом $\Sigma = \{a,b\}$. В случае конечности множества классов постройте минимальный полный ДКА, распознающий L, где L- язык а) $\Sigma^*ab\Sigma^*$; б) PAL = $\{w \mid w=w^R\}^1$; в) $\{w \mid |w|_{ab} = |w|_{ba}\}$.

Задача 3. Язык L состоит из двоичных записей (без ведущих нулей) положительных чисел n, входящих в пару (n,m) некоторого решения уравнения 5n+3m=17 в целых числах. Опишите классы эквивалентности Майхилла-Нероуда языка L. Является ли язык L регулярным?

Задача 4. Являются ли регулярными следующие языки:

а) $\{xy: |x| > |y|, x \text{ содержит букву } a \};$ б) $\{xy: |x| < |y|, x \text{ содержит букву } b \}?$

Задача 5. Левым языком L_q для состояния q автомата $\mathcal A$ назовем множество

$$L_q = \{x|q_0 \xrightarrow{x} q\}$$

Пусть $\mathcal{A}-$ полный ДКА, распознающий язык L. Докажите, что

- а) каждый левый язык L_q является подмножеством некоторого класса L-эквивалентности: $x \in L_q \Rightarrow L_q \subseteq [x]$.
- б) для каждого класса эквивалентности [x] существует такое подмножество состояний $Q_x \subseteq Q_A$, что

$$[x] = \bigcup_{q \in Q_x} L_q.$$

в) если $x\in L_q$, то $L_p\subseteq [x]$ тогда и только тогда, когда $R_q=R_p.$

Задача 6. Язык L распознаётся автоматом, заданным диаграммой:

 $^{^{1}}$ Здесь R — операция обращения; язык PAL — это язык палиндромов, т. е. слов, которые читаются справа налево и слева направо одинаково, например «казак».

Построить минимальный ДКА

Задача 7. Покажите, что следующий язык удовлетворяет лемме о разрастании для регулярных языков, но сам регулярным не является:

$$L = \{ab^{2^i} \mid i \geqslant 0\} \cup \{b^j \mid j \geqslant 0\} \cup \{a^m b^n \mid m > 1, n \geqslant 0\}.$$