Nature of Invention: Process design

Applicant: ChemEverse

Inventors: Armaan Pratik Pasayat, Pratyush Biswal

Chemical Formula: C₁₂H₂₅NaO₄S

Chemical Name: Sodium Laureth 2-Sulfate (SLES)

Process Title: Production of Sodium Laureth 2-Sulfate (SLES) from Lauryl Alcohol

Process Description:

a. Give the block diagram for the feasible process (as determined in the market analysis report). List all unit operations and process conditions.

b. Give the material balance for a scaled-up process plant with capacity of 1000 kg/day. (If needed, simplify the calculations by stating assumptions)

Balance for SLES-6 1000 kg I day caporety Step 1: Hydrogenation of Palm Oil to Laryl · Gude sites : 1860 rd Idas Palmoil + Ha -> Lauryl Alechol. Ipput Spreams: · Palm 021: 1200 kg /day) 2112 harding . · Hydrogen Gan (H2): 30 kg/day · CotalysockoH) = Skg/day Output Streams. · Journey Alushol: 980 Kg/day · Glycerin & light Byproducts: 180 kg/day · Unreacted Hydrogen & Losses: 75 kg/day Step 2: Ethonylorision of Lauryl Alechol Reaction: G2H260+n(62H40) -> G2H26 (OCH2CH2)nOH Input Streoms; · Jaunyl Alushol: 980 10/day · Ethylene Onide (EO): 490 kg/day · Catalyst: 2 kg/day Ocetput Streams; · Lauryl Ether Aleshal: 1440 Kg lolay · Unneaited EO & Losses: 32kg/day

:3: Sulfation of Loury Ether Duchol-Reaction. Reaction: C121426 (OCH2CH2) 30H + SOB -> C12426 (OCH2CH) OSO34 Input Streams: · January Ether Aliohal: 1440 kg / day · SO3 gas 360 kg/day · Solvent Medium: 50 kg/day Output Streams. · Sulfated Product (SLES Acid Form): 1740 kg/day Unreacted Soz & Menon Lorser: 110 kg/day Step-4: Neutralisation with NaOH -Reaction: C12+26(OCH 2CH2)30SO3H+NaOH > G2H26(CCH2 I nput Stroms; 1740 Kg/day · North Solution (30% w/w): 150 Kg/olay Output Stroms: · Crude SLES: 1860 Kg/day

Pringlestion through voucen strupping, fillration Input Streams -· Crude SCES: 1860 kg (day)
· Water & Rnocessing Adolitines: 300kg (day) Oulput Streams. Toput Shroms: · funified SLES (70% soen): 1700 kg/day · Processing Cosser & Degraded Components. Hodge : (460 rolday · downey Auchal: 980 Kglday . Afterno & light Byproducts: 180 kg I den Step 2: Ethonylodian of lowery Heshal (12H260+ N(E2H40) -> G2H26 (OCH2CH2) NOT I piped Streoms: of the land of the land · Ethylene Buile (EO): 490 Holday · Catalyst: 2403 Iday · fourth Ether Alcohol: 1440 · Unawarded FO & Losses; 82

150 kg/day = 3750 mol/day
Total Heat Released: Py = 3750x-57 KJ/mel = 213,780 KJ/day wall Heat Renoval & Deither Temperature. Cp of SCES = 2.6 KJ/Kg °C DTy = -213, 750 =-443 december 1860 x76 Outlet Tenperature 7300 lapler cooling) G of Sulfated Maduel = 7-8 K 5 Kg° C D. 69- = 3:691 (88- = 810 Outles Temp = 40°C (after controlled cooling) Sep-4 Neutralisation with No.4 1, H, (OCH, CH), OSUZH 1 NOOH -> (, 2H), (CCH, CH)

SIES Energy Balance SLES Line Of Palm Oil to toward Aliohal Ginen data. Reachant mass flow rate = 1200 kg/day Hydrogen consemption = 30kg/olay

Typical hydrogenation reac enthalpy = -55kJ/m faury alichal molar mars = 186.349 [not Catalyst: KO+1 20 1 Don 2 - 251/11 = -Moles of Lauryl Aleshal Produced: 186.34g/nol = 5760.7 mol/day Total Heat Released letter & howard faut 9=5760.7 x-55 KJ/nol = -789,338.5 KJ/day Heat Removal & Dutlet Temperature: 4 of facury Alcohol = 2.1kJ/kg°C. DT, = -289,338,5 980x7,1 = -141,9°C. direce its enothermie, the revetor would require cooling to maintoin reaction stability ablet Temperature = 30°C Caffer Cooling

Reaction: Aleshor C12 H200+ n(c2H40) -> C12 H26(OCH2CH2)m0 H : mandred Given Dala -Reactant man flow role = 920 kg/day

Shylene onide consemption = 490 kg/day Typical ethonylation reaction enthalpy = -170 K5/nol Initial demperature = 50°C. Moles of Bhylene Oriole Conxemed: 490 kg Jolan = 11,125-5 null olary Total Heat Released. Landel Jurual to salary az=11;125.5 x-120KJ/mel = -1,335,060 KJ/olay Heart Removal & Dutlet Temperature: Cp of Laury Ether Aleshol = 2-5 KJ/kg oc. DT22-1;335,000000 2-3700 & lovemen toot This when requires agressive cooling Cjacked reactor with chilled water) Outlet Temperature x50° (Maentained by cooling Step-3: Suffortion of Lauryl Ether Akahal Reaction - 10 100 000 marker G2 476 (OCH2 (HZ) 30H +503 -> G2HZ6 (OCH2 CHZ) 3US O3 H

Realont mass flow rate = 1440 kg Iday ymen Data: Typewal sulfortion rave" otherlay =-75 kJ/nol Iritial Temp. = 40°C. Seconder toot lotel Moler of 503 consumed: 360 kg / bay way 5,5 mol folding Joverner tot do of 250 = 5-175 ho c 80,06 glade Total Heat Released. 93=4495.5 x-75 KJ/nel = -337,162-5 KJ/day Heard Removal & Outlet Temperature. Cp of Sulfaded Product=2-8KJ/kg°C. DT3 = -337, 167.5 = -69°C Outlet Temp. = 40°C (after controlled cooling) Slep-4 Neutralisation with NhOH Reaction: C12 H26 (OCHZ CH2) 3 OSO3H + NOOH -> (12H260CH2 CH2)3 0503 Na +470 Ginen Dator: Revelont mon flow rate = 1740 kg lolay Nort consemption = 150 kg lolary Typical neutrolization etholog =-57 x5/nol_ Drietal Tenp. = 350 C.

<u>Unit Operation</u>	<u>Heat Load</u> (kJ/day)	Temp Change (ΔT, °C)	Outlet Temperature
Hydrogenation	-289,338.5	-141.9	30°C (controlled)
Ethoxylation	-1,335,060	-370	50°C (controlled)
Sulfation	-337,162.5	-69	40°C (controlled)
Neutralization	-213,750	-44.5	35°C (controlled)

(c) Evaluating capacity of reactors assuming only 70% of the total volume can be filled. For example, a 1000 L reactor can only fill 700 L reaction mixture.

Typical Density for reaction mixtures = 1.05 kg/L

(a) Hydrogenation

From the mass balance,

· Daily output = 980 kg/day (Lauryl Alcohol)

· Volume req. per day = $\frac{980 \, kg/d}{1.05 \, kg/L} \approx 933.33 \, L/day$ Since the reactor is used at 70% of total volume, Volume of reactor = $\frac{933.33}{0.70} \approx 1,333.33 \, L$

So, reactor capacity for hydrogenation = 1,500 L

(b) Ethyoxylation

From the mass balance,

· Daily output = 1440 kg/day (Lauryl Ethen Alcohol)

· Volume req. per day = 1490 kg/day ~ 1371.43 L/day

Since the reactor is used at 70% of total volume:

Volume of reactor = 1371.43 ~ 1959.18 L So, reactor capacity for ethonylation = 2,000 L

(C) Sulfation From the mass balance: · Daily output = 1740 kg/day (SLES Add Form) · Volume req. per day = 1740kg/day \$\approx 1657-14 L/day Since the reactor is used at 70% of total volume, Volume of reactor € 1657.14 ≈ 2,367.34 L So, reactor size for sulfation = 2500L. (d) Neutralization From the mass balance: · Daily output = 1860kg/day (Crude SLES) · Volume required/day = 1860 kg/day = 1771.43 L/day Since the reactor is used at 70% of total volume, Volume of reactor = 1771.43 = 2,530-61 L So, reactor size for neutralization = 2,600 L

Types of reactors and why we used them in the process.

Autoclave Reactor:

- Advantages/reasons:
 - High-pressure reaction (hydrogen gas involved)
 - Exothermic reaction → Requires cooling jacket or coil
 - Catalyst-based reaction → Requires agitation for uniform mixing

Jacketed Agitated Reactor:

- Advantages/reasons:
 - Strong exothermic reaction → Efficient heat removal needed
 - o Requires continuous mixing to prevent localized overheating
 - Jacketed design allows precise temperature control

Jacketed Non-agitated Reactor:

- Advantages/reason:
 - Sulfation reaction generates moderate heat
 - No agitation required since SO₃ diffuses easily
 - Jacketed design for temperature control

Mixer/Settler:

- Advantages/reason:
 - Mild exothermic reaction
 - o Requires simple mixing and cooling
 - o No strong pressure or temperature swings

Capital cost (for the reactors):

	Type of	Material of	No.	Design	Internal	Cost/unit	Total Cost
Step	Reactor	Reactor	of units	Capacity (L)	Pressure (in psi)	(in US\$ for year 2014)	(in US\$ for year 2014)
Hydrogenation	Autoclave	Glass-lined CS	1	1500	450 (high)	185,000	185,000
Ethoxylation	Jacketed, Agitated	Glass-lined CS	1	2000	100 (moderate)	46,200	46,200
Sulfation	Jacketed, Non-Agitated	Glass-lined CS	1	2500	75 (low)	9,300	9,300
Neutralization	Mixer/Settler	Glass-lined CS	1	2600	15 (atmospheric)	143,000	143,000

References:

- 1. "Perry's Chemical Engineers' Handbook" (7th ed.) by R.H. Perry & D.W. Green. McGraw-Hill. Available online
- 2. "Shreve's Chemical Process Industries" (4th ed.) by R.N. Shreve & J.A. Brink. McGraw-Hill. Available on Archive.org
- 3. Cost Estimation for Reactors http://www.matche.com/equipcost/Reactor.html
- 4. SLES Production Process Design "Production of Sodium Lauryl Ether Sulfate (SLES) via Ethoxylation and Sulfation." Industrial Process Journal, 2023.
- 5. Environmental Clearance for a SLES Plant (18,000 T/Y) Link
- US Patent on Ethoxylation and Sulfation for SLES Production Patent US5674938A on Google patents. https://patents.google.com/patent/US5674938A

List the contributions of each author:

- → Pratyush Biswal
 - ★ Performed the mass and energy balance for the process.
 - ★ Researched and determined the most feasible Process Flow Diagram (PFD) based on previous studies and market analysis.
 - ★ Gave the block diagram for the feasible process (as determined in the market analysis report). Listed all unit operations and process conditions.
 - ★ Gave the material balance for a scaled-up process plant with capacity of 1000 kg/day. (If needed, simplified the calculations by stating assumptions).

→ Armaan Pratik Pasayat

- ◆ Estimated the Volume requirements and capacity of each Reactor.
- ◆ Researched and compared the uses of different types of reactors to decide the best suited ones for each step.
- ◆ Calculated the capital cost for each reactor from the link provided.
- ◆ Studied the exact reactions involved based on previous reports and verified the PFD from the references.

Name	Roll No	Signature
Anshika Agrawal	230160	Anshika
Pratyush Biswal	230783	Prakyush
Armaan Pratik Pasayat	230195	Pasayet