## Idempotency and Projection Matrices

A square matrix P is idempotent iff PP = P.

A square matrix P is a <u>projection matrix</u> that projects onto the vector space  $S \subseteq \mathbb{R}^n$  iff

- (a) *P* is idempotent,
- (b)  $Px \in \mathcal{S} \ \forall \ x \in \mathbb{R}^n$ , and
- (c)  $Pz = z \ \forall \ z \in \mathcal{S}$ .

### Result P.1:

Suppose P is an idempotent matrix. Prove that P projects onto a vector space S iff S = C(P).

#### Proof of Result P.1:

(⇒) Property (b) of a projection matrix implies that

$$\mathbf{P}\mathbf{x} \in \mathcal{S} \ \forall \ \mathbf{x} \therefore \mathcal{C}(\mathbf{P}) \subseteq \mathcal{S}.$$

By Property (c) of a projection matrix,  $Pz = z \ \forall \ z \in S$ .

Thus, any  $z \in \mathcal{S}$  also in  $\mathcal{C}(\mathbf{P})$ .  $\therefore \mathcal{S} \subseteq \mathcal{C}(\mathbf{P})$ , and we have  $\mathcal{C}(\mathbf{P}) = \mathcal{S}$ .

( $\iff$ ) Need to show that any idempotent P is a projection matrix that projects onto  $\mathcal{C}(P)$  as follows:

- (a) PP = P.
- (b)  $Px \in C(P) \ \forall \ x$ ,
- (c)  $z \in C(P) \Rightarrow \exists x \ni z = Px$ . Therefore, Pz = PPx = Px = z.

## Result A.14:

 $AA^-$  is a projection matrix that projects onto  $\mathcal{C}(A)$ .

#### Proof of Result A.14:

(a) 
$$(AA^-)(AA^-) = (AA^-A)A^- = AA^-$$
. Therefore,  $AA^-$  is idempotent.

(b) 
$$AA^-x = Az \ \forall \ x$$
, where  $z = A^-x$ . Thus  $AA^-x \in \mathcal{C}(A) \ \forall \ x$ .

(c) 
$$\forall z \in \mathcal{C}(A), \exists y \ni z = Ay, \therefore AA^{-}z = AA^{-}Ay = Ay = z.$$



Alternatively, we could have proved idempotency and then shown  $\mathcal{C}(A)=\mathcal{C}(AA^-)$  as below:

$$Ax = (AA^{-}A)x = (AA^{-})Ax \Rightarrow C(A) \subseteq C(AA^{-}).$$

$$AA^-x = A(A^-x) \Rightarrow C(AA^-) \subseteq C(A).$$

$$: \mathcal{C}(A) = \mathcal{C}(AA^{-}).$$

#### Result A.15:

 $I - A^{-}A$  is a projection matrix that projects onto  $\mathcal{N}(A)$ .

#### Proof of Result A.15:

(a)

$$(I - A^{-}A)(I - A^{-}A)$$
  
=  $I - A^{-}A - A^{-}A + A^{-}AA^{-}A$   
=  $I - A^{-}A - A^{-}A + A^{-}A$   
=  $I - A^{-}A$ .

#### (b) Note that

$$A(I - A^{-}A)x = (A - AA^{-}A)x$$

$$= (A - A)x$$

$$= \mathbf{0} \ \forall \ x.$$

$$\therefore (I - A^{-}A)x \in \mathcal{N}(A) \ \forall \ x.$$

(c) If  $z \in \mathcal{N}(A)$ , then

$$(I - A^{-}A)z = z - A^{-}Az$$
$$= z - 0$$
$$= z.$$



Prove that  $C(I - A^{-}A) = \mathcal{N}(A)$ .

#### Proof:

The result follows from Result A.15 and P.1.

An alternative proof is as follows.

## Proof:

#### Suppose $z \in \mathcal{N}(A)$ . Then

$$Az = \mathbf{0} \Rightarrow A^{-}Az = \mathbf{0}$$

$$\Rightarrow z - A^{-}Az = z$$

$$\Rightarrow (I - A^{-}A)z = z$$

$$\Rightarrow z \in \mathcal{C}(I - A^{-}A).$$

$$\therefore \mathcal{N}(A) \subseteq \mathcal{C}(I - A^{-}A).$$

Suppose  $z \in \mathcal{C}(I - A^- A)$ . Then  $\exists \ x \ni z = (I - A^- A)x$ . Thus

$$Az = A(I - A^{-}A)x$$

$$= (A - AA^{-}A)x$$

$$= (A - A)x$$

$$= 0.$$

Thus,  $z \in \mathcal{N}(A)$ . It follows that  $\mathcal{C}(I-A^-A) \subseteq \mathcal{N}(A)$ . Hence,  $\mathcal{C}(I-A^-A) = \mathcal{N}(A)$ .

#### Result A.16:

Any symmetric and idempotent matrix P is the unique symmetric projection matrix that projects onto C(P).

#### Proof of Result A.16:

Suppose Q is a symmetric projection matrix that projects onto  $\mathcal{C}(P)$ . Then

$$Pz = Qz = z \ \forall \ z \in C(P)$$

$$\Rightarrow PPx = QPx \ \forall \ x$$

$$\Rightarrow Px = QPx \ \forall \ x$$

$$\Rightarrow P = QP.$$

Now Q is a projection matrix that projects on C(P), therefore, C(P) = C(Q). Thus

$$Qz = Pz = z \ \forall \ z \in \mathcal{C}(Q)$$

$$\Rightarrow QQx = PQx \ \forall \ x$$

$$\Rightarrow Qx = PQx \ \forall \ x$$

$$\Rightarrow Q = PQ.$$

#### Now note that

$$(P-Q)'(P-Q) = P'P - P'Q - Q'P + Q'Q$$
  
 $= PP - PQ - QP + QQ$   
 $= P - Q - P + Q$   
 $= 0.$ 

$$\therefore P - Q = 0 \Rightarrow P = Q.$$



# Any symmetric, idempotent matrix P is known as an orthogonal projection matrix because $(Px) \perp (x - Px)$ , i.e.,

$$(Px)'(x - Px) = x'Px - x'P'Px$$

$$= x'Px - x'PPx$$

$$= x'Px - x'Px$$

$$= 0.$$

## Corollary A.4:

If P is a symmetric projection matrix, then I - P is a symmetric projection matrix that projects onto  $C(P)^{\perp} = \mathcal{N}(P)$ .

## Proof of Corollary A.4:

First note that  $C(P)^{\perp} = \mathcal{N}(P') = \mathcal{N}(P)$  by the symmetry of P.

We need to show that properties (a-c) of a projection matrix hold for I - P onto  $\mathcal{N}(P)$ .

(a) Is I - P idempotent?

$$(I-P)(I-P) = I-P-P+PP$$
  
=  $I-P-P+P$   
=  $I-P$ .

(b) Is 
$$(I - P)x \in \mathcal{N}(P) \ \forall \ x$$
?

$$P(I - P)x = (P - PP)x$$
$$= (P - P)x$$
$$= 0.$$

$$(I - P)x \in \mathcal{N}(P) \ \forall \ x.$$

(c) Does 
$$(I - P)z = z \ \forall \ z \in \mathcal{N}(P)$$
?

$$\forall z \in \mathcal{N}(P), \ (I - P)z = z - Pz$$

$$= z - 0$$

$$= z.$$

Finally, we should note that (I - P)' = I' - P' = I - P so that I - P is symmetric as claimed in statement of the result.

Suppose 
$$A = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
.

- Find the orthogonal projection matrix that projects onto C(A).
- Find the orthogonal projection matrix that projects onto  $\mathcal{N}(A')$ .
- Find the orthogonal projection of  $x = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$  onto  $\mathcal{C}(A)$  and onto  $\mathcal{N}(A')$ .

Need to find a symmetric, idempotent matrix whose column space is C(A), where

$$C(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^2 : x_1 = x_2 \}.$$

Thus, P must have the form

$$\mathbf{P} = \begin{bmatrix} a & a \\ a & a \end{bmatrix}.$$

Because P must be idempotent,

$$\begin{bmatrix} a & a \\ a & a \end{bmatrix} \begin{bmatrix} a & a \\ a & a \end{bmatrix} = \begin{bmatrix} 2a^2 & 2a^2 \\ 2a^2 & 2a^2 \end{bmatrix} = \begin{bmatrix} a & a \\ a & a \end{bmatrix}.$$

This implies 
$$2a^2 = a \Rightarrow a = 1/2$$
.  $P = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$ .

We know

$$\mathbf{I} - \mathbf{P} = \begin{bmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{bmatrix}$$

is the orthogonal projection matrix that projects onto  $\mathcal{C}(P)^{\perp} = \mathcal{C}(A)^{\perp} = \mathcal{N}(A').$ 

$$P\begin{bmatrix}4\\2\end{bmatrix} = \begin{bmatrix}3\\3\end{bmatrix}, (I - P)\begin{bmatrix}4\\2\end{bmatrix} = \begin{bmatrix}1\\-1\end{bmatrix}.$$

