Universidad del Valle de Guatemala

Departamento de Matemática Licenciatura en Matemática Aplicada

Estudiante: Rudik Roberto Rompich

E-mail: rom19857@uvg.edu.gt

Carné: 19857

MM2036 - Estadística Matemática - Catedrático: Paulo Mejía 23 de mayo de 2021

Parcial 4

Instrucciones: Resuelva los siguientes problema. Favor hacer la solución en latex y cargar el archivo latex y pdf en la tarea de Canvas. Para la resolución de los problemas, se utilizará el libro de Wackerly et al. (2014).

1. Problema 1

Sea Y_1, Y_2, \ldots, Y_n una muestra aleatoria de una distribución normal con media μ y varianza 1.

Definición 4.8 - Distribución Normal

A random variable Y is said to have a normal probability distribution if and only if, for $\sigma > 0$ and $-\infty < \mu < \infty$, the density function of Y is

$$f(y) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(y-\mu)^2/(2\sigma^2)}, \qquad \infty < y < \infty$$

1. a) Demuestre que \overline{Y} es un estimador suficiente para $\mu.$

Solución. Comenzamos definiendo al estimador suficiente como:

Teorema 9.4 - Estimador suficiente

Let U be a statistic based on the random sample $Y_1, Y_2, ..., Y_n$. Then U is a sufficient statistic for the estimation of a parameter θ if and only if the likelihood $L(\theta) = L(y_1, y_2, ..., y_n | \theta)$ can be factored into two nonnegative functions,

$$L(y_1, y_2, ..., y_n | \theta) = g(u, \theta) \times h(y_1, y_2, ..., y_n)$$

where $g(u, \theta)$ is a function only of u and θ and $h(y_1, y_2, ..., y_n)$ is not a function of θ

$$L(y_1, y_2, \dots, y_n | \mu) = L(y_1 | \mu) \times L(y_2 | \mu) \times \dots \times L(y_n | \mu)$$

$$= \frac{1}{\sigma \sqrt{2\pi}} \exp \left[\frac{-(y_1 - \mu)^2}{(2\sigma^2)} \right] \times \frac{1}{\sigma \sqrt{2\pi}} \exp \left[\frac{-(y_2 - \mu)^2}{(2\sigma^2)} \right] \times \dots \times \frac{1}{\sigma \sqrt{2\pi}} \exp \left[\frac{-(y_n - \mu)^2}{(2\sigma^2)} \right]$$

$$= \frac{1}{\sigma^n \left(\sqrt{2\pi} \right)^n} \times \exp \left[-\frac{1}{2\sigma^2} \left(\sum_{i=1}^n (y_i - \mu)^2 \right) \right]$$

$$= \frac{1}{\sigma^n \left(\sqrt{2\pi} \right)^n} \times \exp \left[-\frac{1}{2\sigma^2} \sum_{i=1}^n \left(y_i^2 - 2y_i \mu + \mu^2 \right) \right]$$

$$= \frac{1}{\sigma^n \left(\sqrt{2\pi} \right)^n} \times \exp \left[-\frac{1}{2\sigma^2} \left(\sum_{i=1}^n y_i^2 - 2\sum_{i=1}^n y_i \mu + \sum_{i=1}^n \mu^2 \right) \right]$$

$$= \frac{1}{\sigma^n \left(\sqrt{2\pi} \right)^n} \times \exp \left[-\frac{1}{2\sigma^2} \left(\sum_{i=1}^n y_i^2 - 2n\overline{y}\mu + n\mu^2 \right) \right]$$

Se conocía que $\sigma^2=1$, por lo cual:

$$\begin{split} &= \frac{1}{\left(\sqrt{2\pi}\right)^n} \times \exp\left[-\frac{1}{2}\left(\sum_{i=1}^n y_i^2 - 2n\overline{y}\mu + n\mu^2\right)\right] \\ &= \frac{1}{\left(\sqrt{2\pi}\right)^n} \times \exp\left[-\frac{1}{2}\sum_{i=1}^n y_i^2 + \frac{1}{2}2n\overline{y}\mu - \frac{1}{2}n\mu^2\right] \\ &= \left\{\frac{1}{\left(\sqrt{2\pi}\right)^n} \times \exp\left[-\frac{1}{2}\sum_{i=1}^n y_i^2\right]\right\} \times \exp\left[n\overline{y}\mu - \frac{1}{2}n\mu^2\right] \\ &= h(y) \times g(\overline{y}, \mu) \end{split}$$

Por lo tanto, \overline{y} es un estimador suficiente para μ .

2. b) ¿Cuál es la distribución de \overline{Y} con sus parámetros? (Incluya la justificación).

Solución. Considérese el teorema 4.7:

Teorema 4.7 - Distribución Normal

If Y is a normally distributed random variable with parameters μ and σ , then

$$E(Y) = \mu$$
 y $V(Y) = \sigma^2$.

- 3. c) Encuentre la función generadora de momentos de \overline{Y} (Incluya la justificación).
- 4. d) Calcule $E\left(\overline{Y}^2\right)$ y $E\left(\overline{Y}^4\right)$, utilizando la función generadora de momentos del inciso de \overline{Y} .

2

5. e) Demuestre que el MUEV (estimador insesgado de varianza mínima) de μ^2 es $\widehat{\mu}^2 = \overline{Y}^2 - \frac{1}{n}$.

6. f) Obtenga la $VAR\left(\widehat{\mu^2}\right)$, utilizando el resultado en d).

(Valor 25 puntos).

2. Problema 4

Sea Y una variable aleatoria que representa el número de éxitos en n intentos independientes con probabilidad p de éxito en cada intento. Además,

$$Y = \sum_{i=1}^{n} Y_i$$

donde

$$Y_i = \begin{cases} 1, & \text{si el i-\'esimo intento resulta en \'exito} \\ 0, & \text{en el otro caso} \end{cases}$$

para $i = 1, \dots, n$

1. a) Demuestre que $\widehat{p_n} = \frac{Y}{n}$ es un estimador insesgado de p.

Solución. Tenemos las siguientes denificiones::

Definición 8.2 - Sesgo

Let $\hat{\theta}$ be a point estimator for a parameter θ . Then $\hat{\theta}$ is an unbiased estimator if $E(\hat{\theta}) = \theta$. If $E(\hat{\theta}) \neq \theta$, θ is said to be biased.

Definición 8.3 - Sesgo

The bias of a point estimator $\hat{\theta}$ is given by $B(\hat{\theta}) = E(\hat{\theta}) - \theta$.

A probar: $E(\hat{p}_n) = p$. Entonces:

$$E(\hat{p}_n) = E\left(\frac{Y}{n}\right) = \underbrace{\frac{1}{n}E(Y)}_{\text{Teorema 5.7}} = \frac{1}{n}E\left(\sum_{i=1}^n Y_i\right) = \frac{1}{n}E\left(Y_1 + Y_2 + \dots + Y_n\right) =$$

$$=\frac{1}{n}\left[\underbrace{E(Y_1)+E(Y_2)+\cdots+E(Y_n)}_{E(Y_i)=p, \text{ definición de valor esperado.}}\right]=\frac{1}{n}\left[p+p+\cdots+p\right]=\frac{1}{n}(np)=p$$

2. b) Demuestre que $\widehat{p_n}$ es un estimador consistente de p.

Solución. Procedemos a calcular la varianza del estimador, es decir:

$$VAR(\hat{p}_n) = \frac{pq}{n}, \quad q = (1-p).$$
 (Deducción en el ejercicio 5.28).

⇒ Tomamos como referencia el teorema 9.1:

Teorema 9.1

An unbiased estimator $\hat{\theta}_n$ for θ is a consistent estimator of θ if

$$\lim_{n \to \infty} VAR(\hat{\theta}_n) = 0.$$

$$\implies \lim_{n \to \infty} VAR(\hat{p}_n) = \lim_{n \to \infty} VAR\left(\frac{pq}{n}\right) = VAR(0) = 0.$$

3. c) Cuando n es grande, demuestre que la distribución de $\frac{\widehat{p_n}-p}{\sqrt{p(1-p)/n}}$ converge a una distribución normal estándar.

Solución. Considerando el teorema del límite central:

Teorema 7.4

Let $Y_1, Y_2, ..., Y_n$ be independent and identically distributed random variables with $E(Y_i) = \mu$ and $V(Y_i) = \sigma^2 < \infty$. Define

$$U_n = \frac{\sum_{i=1}^n Y_i - n\mu}{\sigma\sqrt{n}} = \frac{\overline{Y} - \mu}{\sigma/\sqrt{n}}.$$

Then, the distribution function U_n converges to the standard normal distribution function as $n \to \infty$.

Dados los 2 incisos anteriores tenemos $E(Y_i) = p$ y $VAR(Y_i) = p(1-p)$. Por hipótesis, sabemos $Y = \sum_{i=1}^{n} Y_i$. Definimos:

$$U_n = \frac{Y - np}{\sqrt{p(1-p)}\sqrt{n}} = \frac{\frac{Y - np}{n}}{\frac{\sqrt{p(1-p)}\sqrt{n}}{n}} = \frac{\hat{p}_n - p}{\sqrt{\frac{p(1-p)}{n}}}$$

Por lo tanto, la distribución converge a una distribución normal.

4. d) Cuando n es grande, demuestre que la distribución de $\frac{\widehat{p_n}-p}{\sqrt{\widehat{p_n}(1-\widehat{p_n})/n}}$ converge a una distribución normal estándar.

Solución. Sabemos que \hat{p}_n es consistente, por lo que $(1 - \hat{p}_n)$ también debe ser consistente; por el inciso b del teorema 9.2, entonces $\hat{p}_n(1 - \hat{p}_n)$ es consiste para p(1-p).

$$\implies \frac{U_n}{W_n} = \frac{\hat{p}_n - p}{\sqrt{\frac{\hat{p}_n(1-\hat{p}_n)}{n}}} = \frac{\frac{\hat{p}_n - p}{\sqrt{\frac{p(1-p)}{n}}}}{\frac{\sqrt{\frac{\hat{p}_n(1-\hat{p}_n)}{n}}}{\sqrt{\frac{p(1-p)}{n}}}} = \frac{\frac{\hat{p}_n - p}{\sqrt{\frac{p(1-p)}{n}}}}{\sqrt{\frac{\hat{p}_n(1-\hat{p}_n)}{n}}}$$
Su probabilidad converge a 1.

Por lo tanto, U_n converge a una distribución normal y la probabilidad de W_n converge a 1. Considerando:

Teorema 9.3

Suppose that U_n has a distribution function that converges to a standard normal distribution function as $n \to \infty$. If W_n converges in probability to 1, then the distribution function of U_n/W_n converges to a standard normal distribution function.

Se concluye que la distribución U_n/W_n converge a una distribución normal estándar.

(Valor 25 puntos)

Referencias

Wackerly, D., Mendenhall, W., and Scheaffer, R. L. (2014). *Mathematical statistics with applications*. Cengage Learning.