STAT 110: Week 10

University of Otago

Outline

- Contingency table
 - ▶ Looking at the relationship between two categorical variables
 - Investigate approaches to test independence of two categorical variables
 - Compare observed and expected counts
 - ▶ Introduce χ^2 distribution
- Central limit theorem
 - ▶ Investigate the sampling distribution for non-normal data
 - Generalise what was done for binomial data

Data: Passengers on the Titanic

• Data from the adult passengers on the titanic. Two variables:

► Class: 1st, 2nd, 3rd or crew

► Survived: yes or no

		survived		
		no	yes	Total
Class	1st	122	197	319
	2nd	167	94	261
	3rd	476	151	627
	Crew	673	212	885
	Total	1438	654	2092

• Do survival probabilities depend on the class?

Big picture

- We have investigated when both variables have two levels (groups)
- Here one of the variables has four levels
 - ▶ 1st 3rd class, crew
- If the survival probabilities vary by class
 - ► The two variables (class and survival) are related
- If the survival probabilities do not vary by class
 - ► The two variables (class and survival) are independent
 - ▶ Knowing the class of a passenger tells us nothing about their survival probability
 - ▶ Recall: Definition of independence when we looked at probability
- Idea: Compare the observed data to what we would expect if two variables were independent

Expected counts

We can use the margin totals to find the expected counts under independence

$$\mathsf{expected} \; \mathsf{count} = \frac{\mathsf{row} \; \mathsf{total} \times \mathsf{column} \; \mathsf{total}}{\mathsf{table} \; \mathsf{total}}$$

• Work through the Titanic table to understand this

Expected counts: Titanic

expected count =
$$\frac{\text{row total} \times \text{column total}}{\text{table total}} = \frac{319 \times 654}{2092} = 99.73$$

		survived		
		no	yes	Total
Class	1st		99.73	319
	2nd			261
	3rd			627
	Crew			885
	Total	1438	654	2092

Proportion of passengers who are 1st class

- ▶ 15.25% of passengers are 1st class
- · If survival and class are independent
 - ► Expected number is the total number of passengers who survive × the proportion of passengers who are 1st class

Expected counts: Titanic

expected count =
$$\frac{\text{row total} \times \text{column total}}{\text{table total}} = \frac{627 \times 1438}{2092} = 430.99$$

		survived		
		no	yes	Total
Class	1st		99.73	319
	2nd			261
	3rd	430.99		627
	Crew			885
	Total	1438	654	2092

• Proportion of passengers who are 3rd class

- ▶ 29.97% of passengers are 3rd class
- · If survival and class are independent
 - Expected number is the total number of passengers who died × the proportion of passengers who are 3rd class

 $ightharpoonup Or column total <math>\times \frac{\text{row total}}{\text{table total}}$

Expected counts: Titanic

• Put it all together to give observed (black) and expected (blue)

		survived		
		no	yes	Total
	1st	122 (219.27)	197 (99.73)	319
2nd	2nd	167 (179.41)	94 (81.59)	261
Class	3rd	476 (430.99)	151 (196.01)	627
	Crew	673 (608.33)	212 (276.67)	885
	Total	1438	654	2092

- The observed and expected counts will vary: there is natural variation in the data
 - ▶ Do they vary more than we would expect if variables are truly independent?

Test for independence

- We can look at this with a hypothesis test
 - ► H₀ : the two variables are independent
 - ▶ H_A : the two variables are related
- The test statistic we will use is

$$X^2 = \sum \frac{(\mathsf{observed} - \mathsf{expected})^2}{\mathsf{expected}}$$

 \blacktriangleright For each cell we calculate $\frac{(\text{observed-expected})^2}{\text{expected}}$ and add them up

Test statistic

		surv	ived	
		no	yes	Total
Class 3rd	1st	122 (219.27)	197 (99.73)	319
	2nd	167 (179.41)	94 (81.59)	261
	3rd	476 (430.99)	151 (196.01)	627
	Crew	673 (608.33)	212 (276.67)	885
	Total	1438	654	2092

$$X^{2} = \frac{(122 - 219.27)^{2}}{219.27} + \frac{(197 - 99.73)^{2}}{99.73} + \dots + \frac{(212 - 276.67)^{2}}{276.67}$$
$$= 177.8$$

STAT 110: Week 10

Test statistic

- If the null hypothesis is true
 - ▶ The test statistic, X^2 , will be a realisation from a χ^2 -distribution with $(R-1)\times (C-1)$ degrees of freedom
 - -R is the number of rows; C is the number of columns
- Titanic data: R=4, C=2
 - $df = (4-1) \times (2-1) = 3$

Detour: χ^2 -distribution

• The χ^2 -distribution is a distribution for positive random variables

- ► It is asymmetric (positively skewed)
- ▶ It has one parameters: degrees of freedom

Finding a p-value

- ullet An extreme X^2 -value is one that is as large, or larger, than that observed
 - ▶ Indicative of increased divergence between observed and expected counts

- The p-value (blue area) is given by 1-pchisq(X2, df)
 - ightharpoonup pchisq(X2, df) gives probability of a value less than X^2

3

5

6

• Data: each row is an observation

No

Yes

Yes

No

- ► Titanic data: each row is a passenger
- Import into R

2nd

1st

Crew

3rd

```
titanic = read.csv('titanic.csv')
head(titanic)

## Class Survived
## 1 Crew Yes
## 2 Crew Yes
```

We use the table function to obtain contingency table

```
titan = table(titanic$Class, titanic$Survived)
```

- ► First argument: variable 1 (class of passenger)
- Second argument: variable 2 (survived: yes / no)

```
titan
##
           No Yes
##
           122 197
##
     1st
##
     2nd
           167
               94
     3rd
          476 151
##
     Crew 673 212
##
```

```
addmargins(titan)
##
                 Yes
                       Sum
##
             No
##
            122
                 197
                       319
     1st
##
     2nd
            167
                       261
##
     3rd
            476
                 151
                       627
            673
     Crew
                 212
                      885
           1438
     Sum
                 654 2092
```

The function addmargins includes the margins on the table

• The R function chisq.test evaluates the test

```
out1 = chisq.test(titan)
out1
##
## Pearson's Chi-squared test
##
## data: titan
## X-squared = 177.8, df = 3, p-value <2e-16</pre>
```

- The p-value $< \alpha = 0.05$. Observing a test statistic as large as we did is unusual if the two variables were independent
 - ▶ Evidence in support of H_A: that the variables are not independent

χ^2 -test

- If R=2 and C=2: we have a 2×2 contingency table, e.g. smallpox in Boston
 - ightharpoonup The χ^2 test is identical to test for difference in proportions
 - $ightharpoonup H_0: p_1 p_2 = 0 \text{ and } H_A: p_1 p_2 \neq 0$
- The χ^2 test can also be used if both R>2 and C>2
- The χ^2 test is unreliable if any of the expected counts <5
 - Options for resolving this problem are beyond the scope of course

• The chisq.test function can return the expected counts

- Still important to know:
 - ► How to calculate them
 - ▶ What they represent (expected counts if variables are independent)

Normal approximation

- Binomial: The sampling distribution for \hat{p} was approximated by a normal
 - lacktriangle Provided n is large, and p is not too close to 0 or 1
- This formed the basis for finding confidence intervals (and conducting hypothesis tests)
- Does this result generalise?
 - ▶ Will this also happen for other 'non-normal' distributions?

Central limit theorem

- If we collect a large sample of independent observations from a population with mean μ and standard deviation σ , the sampling distribution of \bar{y} will be approximately normal
 - \blacktriangleright Mean μ
 - Standard error $\frac{\sigma}{\sqrt{n}}$
- This is known as the central limit theorem

Central limit theorem: notes

- The distribution of y need not be normal
- What is a large sample?
 - ▶ A standard rule of thumb is n > 30
 - Lots of exceptions to this rule, e.g.
 - If the data are highly skewed, we likely need more than 30
 - If there are (extreme) outliers, we likely need more than 30

Central limit theorem: Example

- If data come from a non-normal distribution (an exponential distribution)
- Simulate one data set to see what the data looks like

```
### Single sample
n = 75 # sample size of 75
y = rexp(n,1) # generate the data
hist(y) # look at histogram
```


Central limit theorem: Example

- Generate lots of datasets and visualize the sampling distribution
 - ► See that it is approximately normal

```
### Taking 10000 samples
m = 10000; ybar = rep(NA, m)
for(i in 1:m) { # repeat m times
    y = rexp(n,1) # simulate data
    ybar[i] = mean(y) # find the sample mean
}
hist(ybar)
```


STAT 110: Week 10

Central limit theorem: implications

- The approaches we worked through for normal models
 - ► Can also be used for non-normal models
 - ▶ Need to ensure a large sample (usually n > 30)
- This list includes confidence intervals and hypothesis tests for:
 - ▶ Population mean μ with one sample: use t.test
 - ▶ Difference in two means $\mu_1 \mu_2$: use t.test
 - ► ANOVA: use aov
 - ► Linear regression: use 1m

Central limit theorem: implications

- Model checking: this is why we were only concerned about major departures from normality when the sample size was large
 - Linear regression
 - ► Normal models
- The central limit theorem underpins a lot of statistical practice

Often in the background

Summary

- χ^2 test for independence of contingency table
 - ▶ Idea: compare observed counts with those expected under independence
- Central limit theorem
 - Sampling distribution is normal
 - ▶ The approaches we have already developed can be used for non-normal data
- CLT holds if sample size is large
 - Usually n>30

Outline

- Explore some non-parametric methods
- Focus on two examples:
 - ► Data from two independent groups
 - ► Relationship between two ordinal variables
- Outline other approaches

Data: Hawks

- 100 measurements from two species of hawk
 - ▶ Red-tailed (RT), and Sharp-shinned (SS)
- Hallux measurement (mm): length of the killing talon
- Import the data into R

```
hawk = read.csv('hawk.csv')
```

Look at the first few lines

```
head(hawk)
     hallux species
##
## 1
       32.9
                  RT
## 2
       29.9
                  RT
## 3
       11.0
                  SS
       31.2
## 4
                  RT
       33.0
## 5
                  R.T
## 6
       30.5
                  R.T
```

Data: Hawks

STAT 110: Week 10

What is the state of play?

- We have developed a variety of statistical models for data
 - Normal models
 - Binomial models
 - Central limit theorem
 - We can use difference in two means, ANOVA, linear regression, etc, even if data are non-normal
 - Require a large sample
- There may be situations where these methods may be inappropriate
 - ▶ We may be unwilling to assume the data is normal
 - ▶ We may be unwilling to rely on the CLT
 - e.g. outliers or skew
- Introduce non-parametric methods

Idea: look at ranks

- We rank the observations
 - From 1 to n, smallest to largest (or vice versa)
- Work with the ranks rather than the actual observations
- It can be useful with (extreme) outliers
 - ► Same rank irrespective of whether the largest observation is 0.1 units larger than 2nd biggest observation, or 10000 units larger
- It can be useful if there is a lot of skew
 - All ranks are equally far apart from each other

Example: ranking data

• Suppose that we had the following data

Group A	Group B
1.2	5.5
4.3	1.7
3.1	2.9

• The ranks are given alongside (in blue)

Group A	Group B
1.2 (1)	5.5 (6)
4.3 (5)	1.7 (2)
3.1 (4)	2.9 (3)

• The R function rank will rank data

```
hawk$rank = rank(hawk$hallux)
```

- This code: ranks the hallux measurements
 - ▶ Inserts a new variable (rank) into the hawk data frame

```
head(hawk)
##
     hallux species rank
## 1
      32.9
                 RT
                    92
## 2
      29.9
                RT
                      55
## 3
     11.0
                 SS
## 4
      31.2
                 RT
                      75
## 5
      33.0
                 RT
                      93
## 6
      30.5
                 RT
                      66
```

What now?

- We can compare the ranks of the two groups
- Hypothesis test
 - ▶ H₀: the distribution for the two groups are the same
 - \blacktriangleright H_A: the distribution for the two groups differ
- Sum up the ranks in the two groups
 - ► The specific form of the test statistic isn't important (for this course)
 - ▶ We can find a *p*-value
 - Tells us the probability of observing sum of ranks as extreme or more extreme than that observed if the distribution for the two groups are identical
- ullet This is called the Mann-Whitney U test
 - ▶ It has many other names, such as the Mann–Whitney–Wilcoxon test

- The test can be performed using the wilcox.test function in R
- Like when using t.test we separate data into two groups

```
rt = subset(hawk, species == "RT") # same function as we used for t.test
ss = subset(hawk, species == "SS")
wilcox.test(rt$hallux, ss$hallux)
##
   Wilcoxon rank sum test with continuity correction
##
## data: rt$hallux and ss$hallux
## W = 2275, p-value <2e-16
## alternative hypothesis: true location shift is not equal to 0
```

Interpretation

- ullet As usual, the p-value is quantifying the incompatibility between the null hypothesis and the data
- Since the p-value $< \alpha = 0.05$, the data are unusual if the null hypothesis were true
 - ► The data we have observed would be unusual if there were the distribution of hallux length were the same for the two species

Parametric vs non-parametric

- · Most of the models and methods we have seen so far are referred to as parametric
 - ▶ Specify the distribution of the observations: normal, binomial, etc
 - ▶ These models are defined in terms of parameters: μ , p, etc
 - We find confidence intervals for the parameters
 - We specify hypothesis tests about the parameters
- With non-parametric models, we make fewer assumptions
 - ▶ We assume the observations come from an unknown distribution
 - There are not specific parameters as above (hence non-parametric)
 - We can specify hypothesis tests
 - Confidence intervals are more challenging
- A common misconception is that non-parametric approaches make no assumptions

Non-parametric approaches

- The principle of converting data to ranks can also be used for other cases we have considered
- Single sample (or paired data) \rightarrow Wilcoxon signed-rank test
- ullet Two samples (independent groups) o Mann-Whitney test
- $\bullet \ \mathsf{ANOVA} \ (\mathsf{multiple} \ \mathsf{independent} \ \mathsf{groups}) \to \mathsf{Kruskal\text{-}Wallis} \ \mathsf{test}$
- Remembering the names isn't important
- The concepts are more important: converting data to ranks
 - ▶ Note: not all non-parametric approaches use ranks
- We won't look at any details regarding the methods in blue above

▶ It is worth knowing that the approaches exist

In R

- Seen wilcox.test
 - Used for single sample or paired data
 - Can be used for two independent groups
- The function kruskal.test can be used for:
 - Multiple independent groups
 - ► Can be used for two independent groups
- When using kruskal.test we need to use formula: as in lm or aov

```
kruskal.test(hallux ~ species, data = hawk)
##
## Kruskal-Wallis rank sum test
##
## data: hallux by species
## Kruskal-Wallis chi-squared = 68, df = 1, p-value <2e-16</pre>
```

Comparing the two tests

- If we have two independent groups, we have a choice
 - ▶ Use wilcox.test
 - ▶ Use kruskal.test
- These have different test statistics
 - ▶ Give the same *p*-values
- Note: wilcox.test includes a continuity correction when calculating the p-value
 - ► The two approaches give the same *p*-value when this is turned off with correct = FALSE

Data: hawk tail measurements

- Look at data from 43 red-tailed hawks
- Data comparing two tail measurements
 - tail_std: Standard approach for measuring the tail length (mm)
 - ▶ tail: Approach invented by those involved in collecting data (mm)
- Import and view the data

```
hawk_tail = read.csv('hawk_tail.csv')
head(hawk_tail)
##
     tail tail_std
## 1
      222
                229
## 2
      215
                217
## 3
      235
                236
## 4
      215
                215
## 5
      212
                221
                217
      206
```

Hawk tail measurements: correlation

- How 'consistent' are the two measurement approaches?
 - We could assess with correlation

```
cor(hawk_tail$tail, hawk_tail$tail_std)
## [1] 0.326
```

- That does not seem very high
- Look at the data to see what may be going on

Hawk tail measurements

- Seems like a reasonably strong linear relationship
 - ► With a large outlier

Back to ranks

- We can again work with ranks
 - ► Rank *x* (new tail measurements)
 - Rank y (standard tail measurements)
- Find the correlation of the ranks

```
hawk_tail$rank_tail = rank(hawk_tail$tail)
hawk_tail$rank_std = rank(hawk_tail$tail_std)
cor(hawk_tail$rank_tail, hawk_tail$rank_std)
## [1] 0.777
```

Correlation (sorry more names!)

- The correlation based on ranks: Spearman correlation
- The correlation based on data: Pearson correlation
 - ▶ What we looked at when we covered linear regression
- Need not calculate the ranks in R to calculate Spearman correlation:

```
cor(hawk_tail$tail, hawk_tail$tail_std, method = "pearson") # this is the default
## [1] 0.326
cor(hawk_tail$tail, hawk_tail$tail_std, method = "spearman")
## [1] 0.777
```

Spearman correlation

- Spearman correlation measures the strength of an increasing or decreasing relationship
 - ▶ It need not be a linear relationship
- Spearman correlation is robust to outliers: using ranks
 - ▶ Spearman correlation an alternative to throwing away outliers without justification
- Spearman correlation can be used with ordinal data
 - Categorical data where the values have an order
 - e.g. survey response: 'Excellent', 'Good', 'OK', 'Poor', 'Terrible'
- Spearman and Pearson correlation are often similar
 - ▶ Relationship is approximately linear
 - Minimal effect of outliers
- Look at some examples

Examples

Big picture

- Seen an introduction to non-parametric methods
- Focused on conceptual understanding
 - Assuming the data come from an unknown distribution
 - ▶ For the methods we have seen: working with ranks
 - Skipped over the details
- Advantages of parametric models
 - ▶ More powerful when assumptions hold
 - Interpret parameter (estimates)
 - Straightforward confidence intervals
- Advantages of non-parametric methods
 - ► Fewer assumptions
 - More robust to outliers and skewed data

Summary

- Looked at non-parameteric approaches
- Work with ranks
- Two independent groups
 - Mann-Whitney
- Correlation
 - ► Spearman correlation
- Outlined other approaches
 - ► Wilcoxon rank-sum (one sample / paired data)
 - Kruskal-Wallis (multiple independent groups)

STAT 110: Week 10