Máquinas de vetores de suporte (SVM)

Jones Granatyr

SVM – introdução

- Em geral supera outros algoritmos de aprendizagem de máquina
- Tarefas complexas: reconhecimento de caracteres, voz, imagens
- Considerado por vários anos como o mais eficiente algoritmo

SVM – introdução

• Aprende hiperplanos de separação com margem máxima

Qual o melhor hiperplano?

Vetores de suporte

• Reconstrução do hiperplano

Criação do hiperplano — Convex hulls (envoltória convexa)

Criação do hiperplano – abordagem matemática

Erros e custo

$$\frac{1}{2} |w|^2 + c \sum_i a_i$$

c= punição por classificação incorreta

c alto = tenta 100% de separação c baixo = permite mais erros

Linear x Não linear

SVMs não lineares (Kernel Trick)

SVMs não lineares (Kernel Trick)

Kernels

Kernel	Inner Product Kernel
Linear	$K(x,y) = (x \cdot y)$
Gaussian	$K(x,y) = \exp\left(-\frac{\ x-x_i\ ^2}{2\sigma^2}\right)$
Polynomial	$K(x,y) = (x \cdot y)^p$
Tangent Hyperbolic	$K(x,y) = \tanh(x \cdot y - \Theta)$

SVM

Vantagens

- Não é muito influenciado por ruídos nos dados
- Utilizado para classificação e regressão
- Aprende conceitos não presentes nos dados originais
- Mais fácil de usar do que redes neurais

Desvantagens

- Testar várias combinações de parâmetros
- Lento
- Black box

Conclusão

