Supervised Learning I

Yongjin Park University of British Columbia (with Keegan Korthauer)

01 March, 2022

Learning Objectives

- Introduction to Classification Problems
- ▶ A crash course on supervised learning methods
 - Fundamentls: Machine learning is a statistical inference problem
- ► Applications to real-world biological problems

Today's lecture

General discussions on supervised learning

Classification with a decision rule

Generalized linear mode

Generative Modelling approach

Other Methods

What is Supervised Learning?

Supervised learning (today)

- lacksquare Input: data $\mathcal{X} = \{\mathbf{x}_i, ...\}$
- $\blacktriangleright \text{ Input 2: label } \mathcal{Y} = \{y_i, \ldots\}$
- ightharpoonup Goal: learn $f:\mathcal{X} o\mathcal{Y}$

X: gene expression samples; Y: disease labels

Unsupervised learning (previous)

- ▶ Goal 1: learn $f: \mathcal{Z} \to \mathcal{X}$
- Goal 2: hidden/latent states, $\mathcal{Z} = \{\mathbf{z}_i, ...\}$

X: gene expression matrices

Machine learning vs. Classical statistics

Machine Learning

- "Statistical learning with the help of algorithm"
- Large number of variables (less scrutiny on variable selection)
- Higher model complexity, non-linearity
- Focusing on classification/prediction
- Scalability, computation

Note: We take a bit more statistical stance.

Classical Statistics

- A handful of variables with clear
- Linear models, or generalized linear models
- Data generating process (Bayesian)
- More theory-oriented research
- More focuses on scrutiny (type-l-error, FDR, etc) and variable selection

Four Steps for Supervised Learning

1. Gather some training data (this is a part of research!):

$$\mathcal{X} \equiv \{\mathbf{x}_i: i \in [n]\} \quad \text{predictors/covariates/features}$$

$$\mathcal{Y} \equiv \{\mathbf{y}_i: i \in [n]\} \quad \text{outcome/response}$$

- 2. Write down a model (classifier) $f: \mathcal{X} \to \mathcal{Y}$
 - What is the loss function?
- 3. Fit the model to the training data
- 4. Use the model
 - We can focus on the interpretation of model parameters
 - We can focus on prediction on *new* data points

Discussion

Why do we do supervised learning?

Don't we already know the labels?

Today's lecture

General discussions on supervised learning

Classification with a decision rule

Generalized linear mode

Generative Modelling approach

Other Methods

Both regression and classification is supervised learning

Multivariate Linear Regression

- ightharpoonup X: n imes p design matrix
- ightharpoonup y: $n \times 1$ outcome vector
- β_k : a regression coefficient for a covariate k
- $ightharpoonup \epsilon$: a vector of residual errors
- ► A regression model:

$$Y_i = \sum_k X_{ik} \beta_k + \epsilon_i$$

(or
$$\mathbf{y} = X\beta + \epsilon$$
)

Both regression and classification is supervised learning

Multivariate Linear Regression

- ightharpoonup X: n imes p design matrix
- ightharpoonup y: $n \times 1$ outcome vector
- β_k : a regression coefficient for a covariate k
- ϵ : a vector of residual errors
- ► A regression model:

$$\mathbf{y} = X\beta + \epsilon$$

(A linear) Classifier

- ightharpoonup X: n imes p design matrix
- **y**: $n \times 1$ class label vector, e.g., $\{0,1\}^n$
- $\triangleright \beta_k$: a coefficient for a covariate k
- ► A prediction model:

$$Y_i \leftarrow f\left(\sum_k X_{ik}\beta_k\right)$$

A primer question: Can we simply use regression for classification?

A primer question: Can we simply use regression for classification?

We don't need to cover all the "areas" of ${\cal Y}$

Unlike $X_i \in \mathbb{R}$, we have

$$Y_i \in \{0,1\}$$

Classification = drawing a decision boundary

Classification = drawing a decision boundary

Step-like functions

We will use a step-like function to approximate classification rules

$$f(x) = \begin{cases} 1 & x > 0 \\ 0 & x < 0 \end{cases}, f(x) = \frac{e^x}{1 + e^x}, f(x) = \max\{0, x\xi\}, f(x) = \log(1 + \exp(x\alpha - \beta)) \end{cases}$$

Classification = drawing a decision boundary - 2D

${\sf Classification} = {\sf drawing} \ {\sf a} \ {\sf decision} \ {\sf boundary} \ {\sf -2D}$

```
.glm <- glm(y ~ x, family = "binomial")
y.hat <- fitted(.glm)</pre>
```

Classification = drawing a decision boundary - 2D

Classification = drawing a decision boundary - 2D

Understanding loss functions (regression vs. classification)

Regression loss

$$L_n = n^{-1} \sum_{i=1}^n (y_i - \mathbf{x}_i \boldsymbol{\beta})^2$$
 observed predicted

Average distance between the observed and predicted.

Classification loss

Given a classifier spits out class label, e.g., $\{0,1\},$

$$L_n = n^{-1} \sum_{i=1}^n I \left\{ \begin{aligned} y_i & \neq f\left(\mathbf{x}_i \boldsymbol{\beta}\right) \\ \text{observed} & \text{predicted} \end{aligned} \right\}$$

Average frequency of a wrong answer by the classifier.

Algorithm: Minimize the loss function with respect to free parameters β .

If a classifier $f(\mathbf{x}_i\beta) \in (0,1)$ provides a probability of $Y_i=1$, $\hat{p}(Y_i|\mathbf{x}_i,\beta)$:

Bernoulli likelihood:

$$\prod_{i=1}^{n} f^{Y_i} (1-f)^{1-Y_i}$$

If a classifier $f(\mathbf{x}_i\beta) \in (0,1)$ provides a probability of $Y_i = 1$, $\hat{p}(Y_i|\mathbf{x}_i,\beta)$:

Bernoulli likelihood:

$$\prod_{i=1}^{n} f^{Y_i} (1-f)^{1-Y_i}$$

where for each data point i

$$\mathsf{likelihood}_i = \left\{ \begin{array}{ll} f & \text{if } Y_i = 1 \\ (1-f) & \text{if } Y_i = 0 \end{array} \right.$$

We will use the sigmoid function

$$f(z) = \frac{e^z}{1 + e^z}$$

If a classifier $f(\mathbf{x}_i\beta)\in(0,1)$ provides a probability of $Y_i=1$, $\hat{p}(Y_i|\mathbf{x}_i,\beta)$: Bernoulli likelihood:

$$\prod_{i=1}^{n} f^{Y_i} (1-f)^{1-Y_i}$$

We can use negative log-likelihood as a "softer" version classification loss

$$L = -\log \sum_{i=1}^{n} \left[f(\mathbf{x}_i \beta)^{Y_i} \left[1 - f(\mathbf{x}_i \beta) \right]^{1 - Y_i} \right]$$

If a classifier $f(\mathbf{x}_i\beta)\in(0,1)$ provides a probability of $Y_i=1$, $\hat{p}(Y_i|\mathbf{x}_i,\beta)$: Bernoulli likelihood:

$$\prod_{i=1}^{n} f^{Y_i} (1-f)^{1-Y_i}$$

We can use negative log-likelihood as a "softer" version classification loss

$$L = \sum_{i=1}^n Y_i \log \frac{1 - f(\mathbf{x}_i \boldsymbol{\beta})}{f(\mathbf{x}_i \boldsymbol{\beta})} - \log(1 - f(\mathbf{x}_i \boldsymbol{\beta}))$$
 What if $f \to 1$?

Understanding loss functions (soft vs. hard classification)

Soft classification loss

Given a classifier f outputs out class label probability $\in (0,1)$

$$L_n = \sum_{i=1}^n Y_i \log \frac{\frac{1-f(\mathbf{x}_i\beta)}{f(\mathbf{x}_i\beta)}}{-\log(1-f(\mathbf{x}_i\beta))}$$
 will try to predict f =0

Total "mistake" log-odds ratio

Classification loss

Given a classifier spits out class label, e.g., $\{0,1\},$

$$L_n = \frac{1}{n} \sum_{i=1}^n I \left\{ \begin{aligned} y_i \\ \text{observed} \end{aligned} \neq f\left(\mathbf{x}_i \boldsymbol{\beta}\right) \right\}$$

Average frequency of a wrong answer by the classifier.

Logistic loss function

Minimize this with respect to β :

$$L_n = \sum_{i=1}^n \left[-Y_i \underbrace{\sum_{k=1}^p X_{ik} \beta_k}_{\text{price" for the positive}} + \log \left(1 + e^{\sum_{k=1}^p X_{ik} \beta_k} \right) \right]$$

 \iff

maximize the likelihood

$$\mathcal{L}_n = \sum_{i=1}^n \left[Y_i \sum_{k=1}^p X_{ik} \beta_k - \log \left(1 + e^{\sum_{k=1}^p X_{ik} \beta_k} \right) \right]$$

A classification rule

Classifier

$$\hat{Y}_{i} = \begin{cases} 1 & \sum_{k=1}^{p} X_{ik} \beta_{k} > 0 \\ 0 & \sum_{k=1}^{p} X_{ik} \beta_{k} \le 0 \end{cases}$$

Binary classification in action

Binary classification in action

Binary classification in action

Today's lecture

General discussions on supervised learning

Classification with a decision rule

Generalized linear model

Generative Modelling approach

Other Methods

Revisit logistic regression as a "linear" model

(blurring the distinction between regression and classification)

A linear combination of features:

$$\sum_{k=1}^{p} X_{ik} \beta_k$$

Revisit logistic regression as a "linear" model

(blurring the distinction between regression and classification)

A linear combination of features:

$$\sum_{k=1}^{p} X_{ik} \beta_k$$

Letting $\eta_i = \sum_{k=1}^p X_{ik} \beta_k$, we define log-likelihood as:

$$\mathcal{L} = \sum_{i=1}^{n} \log p(Y_i | \eta_i) = \sum_{i=1}^{n} \sigma(\eta_i) + (1 - Y_i)\sigma(-\eta_i)$$

where $\sigma(z) = 1/(1 + \exp(-z))$.

Many interesting data types can be modelled as a GLM

A linear combination of features

$$\eta_i = \sum_{k=1}^p X_{ik} \beta_k$$

can be morphed to many different types of Y:

$$Y_i \sim p(Y_i|\eta_i)$$

Many interesting data types can be modelled as a GLM

A linear combination of features

$$\eta_i = \sum_{k=1}^p X_{ik} \beta_k$$

can be morphed to many different types of Y:

$$Y_i \sim p(Y_i|\eta_i)$$

Poisson

$$p(Y_i|\lambda_i) = \frac{\lambda_i^{Y_i} e^{-\lambda_i}}{Y_i!}$$
 where $\lambda_i = \exp(\eta_i)$

Many interesting data types can be modelled as a GLM

A linear combination of features

$$\eta_i = \sum_{k=1}^p X_{ik} \beta_k$$

can be morphed to many different types of Y:

$$Y_i \sim p(Y_i|\eta_i)$$

Poisson

$$p(Y_i|\lambda_i) = \frac{\lambda_i^{Y_i} e^{-\lambda_i}}{Y_i!}$$

where $\lambda_i = \exp(\eta_i)$

Gamma

$$p(Y_i | \mu_i, \phi) = \frac{{(\phi \mu_i)}^{-1/\phi}}{\Gamma(1/\phi)} Y_i^{1/\phi - 1} e^{-Y_i/\mu_i \phi}$$

where $\mu_i = \exp(\eta_i)$ and ϕ is an overdispersion parameter

Poisson and Gamma distributions are the building blocks of NB.

$$p(Y_i|\mu_i,\phi) \ = \ \int \underbrace{p(Y_i|\lambda_i)}_{\text{Gamma}} \underbrace{p(\lambda_i|\mu_i,\phi)}_{\text{Gamma}} d\lambda_i$$

where we model

$$\mu_i = \exp\left(\sum_{k=1}^p X_{ik} \beta_k\right).$$

Poisson and Gamma distributions are the building blocks of NB.

$$\begin{split} p(Y_i|\mu_i,\phi) &= \int \underbrace{\widehat{p(Y_i|\lambda_i)}}_{\text{Gamma}} \underbrace{p(\lambda_i|\mu_i,\phi)}_{\text{Gamma}} d\lambda_i \\ &= \underbrace{\frac{\Gamma(Y_i+1/\phi)}{\Gamma(Y_i+1)\Gamma(1/\phi)}}_{\text{negative binomial}} \underbrace{\left(\frac{\mu_i}{1/\phi+\mu_i}\right)^{Y_i}}_{\text{success rate}} \underbrace{\left(\frac{1/\phi}{1/\phi+\mu_i}\right)^{1/\phi}}_{\text{failure rate}} \end{split}$$

where we model

$$\mu_i = \exp\left(\sum_{k=1}^p X_{ik} \beta_k\right).$$

- ightharpoonup Y: number of successfully "observed" reads in RNA-seq (~targeting)
- ightharpoonup r: number of permitted "dropped" reads until Y observed (~budget)
- ρ : success rate

$$p(Y_i|\mu_i,\phi) \ = \ \underbrace{\begin{pmatrix} Y_i+r-1 \\ Y_i \end{pmatrix}}_{\text{negative binomial}} \underbrace{\rho_i^{Y_i}}_{\text{success rate}} \underbrace{(1-\rho_i)^r}_{\text{drop rate}}$$

- ightharpoonup Y: number of successfully "observed" reads in RNA-seq (~targeting)
- ightharpoonup r: number of permitted "dropped" reads until Y observed (~budget)
- ρ : success rate

$$\begin{split} p(Y_i|\mu_i,\phi) &= \underbrace{\binom{Y_i+r-1}{Y_i}}_{\text{negative binomial}}\underbrace{\frac{\rho_i^{Y_i}}{\rho_i^{Y_i}}}_{\text{success rate}}\underbrace{\frac{(1-\rho_i)^r}{\text{drop rate}}}_{\text{drop rate}} \\ &= \mathsf{NB}(Y_i|r=\phi^{-1},\rho_i=\mu_i/(\phi^{-1}+\mu_i)) \end{split}$$

- \triangleright Y: number of successfully "observed" reads in RNA-seq (~targeting)
 - ightharpoonup r: number of permitted "dropped" reads until Y observed (~budget)
 - ρ : success rate

$$\begin{split} p(Y_i|\mu_i,\phi) &= \underbrace{\binom{Y_i+r-1}{Y_i}}_{\substack{\text{negative binomial}}} \underbrace{\rho_i^{Y_i}}_{\substack{\text{success rate}}} \underbrace{(1-\rho_i)^r}_{\substack{\text{drop rate}}} \\ &= \operatorname{NB}(Y_i|r=\phi^{-1},\rho_i=\mu_i/(\phi^{-1}+\mu_i)) \\ \text{or} &= \operatorname{NB}(Y_i|\text{mean}=\mu_i,\text{overdispersion}=\phi) \end{split}$$

- \triangleright Y: number of successfully "observed" reads in RNA-seq (\sim targeting)
 - r: number of permitted "dropped" reads until Y observed (~budget)

$$\begin{array}{ll} p(Y_i|\mu_i,\phi) & = & \underbrace{\binom{Y_i+r-1}{Y_i}}_{\substack{\text{negative binomial}}} \underbrace{\rho_i^{Y_i}}_{\substack{\text{success rate}}} \underbrace{(1-\rho_i)^r}_{\substack{\text{drop rate}}} \\ & = & \mathsf{NB}(Y_i|r=\phi^{-1},\rho_i=\mu_i/(\phi^{-1}+\mu_i)) \\ \mathsf{or} & = & \mathsf{NB}(Y_i|\mathsf{mean}=\mu_i,\mathsf{overdispersion}=\phi) \end{array}$$

We can check:

 ρ : success rate

mean:
$$\mathbb{E}[Y_i|r,\rho]=\rho r/(1-\rho)=\mu_i$$
 variance: $\mathbb{V}[Y_i|r,\rho]=\rho r/(1-\rho)^2=\mu_i+\mu_i^2\phi$ (overdispersed mean-variance)

Four Steps for Supervised Learning

- 1. Gather some training data (this is a part of research!):
- 2. Write down a model (classifier) $f: \mathcal{X} \to \mathcal{Y}$
- 3. Fit the model to the training data
- 4. Use the model

Step 1. Cell type deconvolution data

Data set

- Human pancreatic islet gene expression data: GSE50244
- ➤ Single cell RNA-seq data in the same tissue: E-MTAB-5061
- A processed data set is available here: https://github.com/xuranw/MuSi C/tree/master/vignettes/data

Problem definition

- y: bulk gene expression (gene x sample)
- X: cell-type-specific single-cell expression (gene \times cell type)

Goal

- 1. Fit a model regressing the bulk profile y_i of a sample i on the single-cell-type-specific matrix X.
- 2. What are the estimated cell type fractions in the bulk sample?

Step 1. (show the data)

Step 2. NB GLM for the cell type deconvolution problem

Q: Can we estimate cell type fractions in tissue-level *bulk* data?

$$\mathbf{\dot{y}}_{i}^{\text{bulk}} \sim \text{NB}\left(\text{mean} = s_{i}^{\text{scale factor}} \sum_{t} X_{gt} & \theta_{ti} \\ \text{cell-type-sorted} & \theta_{ti} \\ \end{array}, \text{overdispersion} = \phi \right)$$

▶ We use the same data set used in the vignette of MuSic package (Wang et al., Nature Comm., 2019)

Step 3. Fit the model to the data

Step 4. Show the cell type fraction estimates

Today's lecture

General discussions on supervised learning

Classification with a decision rule

Generalized linear mode

Generative Modelling approach

Other Methods

Discriminative vs. generative approach

Y: class label/outcome, X: covariates/predictor variables

Discriminative learning

lacksquare Directly learn p(Y|X)

Generative learning

- First learn p(X|Y)
- Apply **Bayes** rule: $p(Y|X) \propto p(X|Y)p(Y)$
- If we have domain-specific knowledge, p(X|Y), a generative-modelling approach can be more powerful.
- If our focus is solely on classification, a discriminative learning approach usually outperforms with small to moderate sample size.

Naive Bayes Classifier: How do we estimate P(X|Y)?

If $\mathbf{x}_i=(X_{i1},\dots,X_{ip})$, how do we estimate $p(\mathbf{x}_i|Y_i=1)$ or $p(\mathbf{x}_i|Y_i=0)$?

$$p(X_{i1}, \dots, X_{ip} | Y_i = y_i) \underset{\text{fully-factored}}{\approx} \prod_{k=1} p(X_{ik} | Y_i)$$

- ▶ Is this accurate?
- ▶ What have we missed?

Let's take an example from the pancreatic islet data (GSE50244).

Let's take an example from the pancreatic islet data (GSE50244).

Not every gene can predict well

These genes are very informative

These genes are very informative

Naive Bayes Classifier

$$p(Y_i = 1 | \mathbf{x}_i) \ \approx \ \frac{\overbrace{p(Y_i = 1)}^{\text{prior}} \overbrace{\prod_k \hat{p}(X_{ik} | \theta_{k1})}^{\text{fully-factored}}}{\sum_{c=0}^{1} p(Y_i = c) \prod_k \hat{p}(X_{ik} | \theta_{kc})}$$

Prior can be 1/2 if the class labels are balanced (or 1/K for K classes).

Naive Bayes Classifier

$$\begin{split} p(Y_i = 1 | \mathbf{x}_i) &\approx \frac{\overbrace{p(Y_i = 1)}^{\text{prior}} \overbrace{\prod_k \hat{p}(X_{ik} | \theta_{k1})}^{\text{fully-factored}}}{\sum_{c=0}^{1} p(Y_i = c) \prod_k \hat{p}(X_{ik} | \theta_{kc})} \\ &\approx \frac{p(Y_i = 1) \prod_k \mathcal{N}(X_{ik} | \mu_{k1}, \sigma_{k1}^2)}{\sum_{c=0}^{1} p(Y_i = c) \prod_k \mathcal{N}(X_{ik} | \mu_{kc}, \sigma_{kc}^2)}_{\text{Gaussian approximation}} \end{split}$$

lacktriangle Prior can be 1/2 if the class labels are balanced (or 1/K for K classes).

Can we improve Naive Bayes Classifier?

$$p(Y_i = 1 | \mathbf{x}_i) \approx \frac{\overbrace{p(Y_i = 1)}^{\text{prior}} \overbrace{\prod_k \hat{p}(X_{ik} | \theta_{k1})}^{\text{fully-factored}}}{\sum_{c=0}^{1} p(Y_i = c) \prod_k \hat{p}(X_{ik} | \theta_{kc})}$$

Tree-augmented Naive Bayes Classifier can better approximate P(X|Y)

$$p(Y_i = 1 | \mathbf{x}_i) \approx \frac{\overbrace{p(Y_i = 1)}^{\text{prior}} \overbrace{\prod_k \hat{p}(X_{ik} | X_{i \text{Pa}(k)}, \theta_{k1})}^{\text{tree-structured}}}{\sum_{c=0}^{1} p(Y_i = c) \prod_k \hat{p}(X_{ik} | X_{i \text{Pa}(k)}, \theta_{kc})}$$

Can we use prior knowledge, such as Gene Ontology?

Discussions

- ► Can we include all the genes in a NB classifier?
- ► Can we first try out DEG analysis to select informative features?
- ► How do we deal with high-dimensional classification problems?

Today's lecture

General discussions on supervised learning

Classification with a decision rule

Generalized linear model

Generative Modelling approach

Other Methods

- 1. K-nearest neighbour classifier (will discuss in the single-cell lecture)
- 2. Running average estimator
 - ▶ Local piece-wise regression (loess)
 - Useful for low-dimensional settings
- 3. Ensemble models (previous + next lectures)
 - ► A mixture of (logistic) regression
 - ▶ Boosting/bagging (combining the power of many weak classifiers)
- 4. Deep learning (will discuss in the single-cell lecture)