Single cells (DeLTA)

Scripts

- convert_nd2.py (Python)
- run delta.py (Python)
- SLURM_job_submission.sh (bash)
- SLURM_array_job_submission.ch (bash)
- analyse_delta_results.py (Python)
- tree_plot.R (R)
- process_results.R (R)
- compare_tracking_results.py (Python)

Example

• The example consists of a short time-lapse movie with two channels (phase contrast and fluorescence)

Pre-Processing

For the subsequent steps, images must be converted into individual TIFF files, separated by time-step as well as channels. The images must be named according to the following pattern Name_[position number]_C[channel number]_T[time-point].tif . The convert_nd2.py script can be used to automatically convert Nikon Image Files (.nd2) into the correct format. Usage:

python convert_nd2.py path/to/ND2/file.nd2

Segmentation and Tracking

The segmentation and tracking of individual cells is done by the DeLTA2.0 pipeline. Detailed instructions on installation and usage can be found in the documentation. The run_delta.py script is a short example on how to run the pipeline. The pipeline can also be run in Google Colab for testing or on ScienceCluster for faster speeds. The provided SLURM scripts can be used to submit jobs on ScienceCluster. More detailed instructions can be found in the README_SC_DelTA_setup.md file and the ScienceCluster documentation.

Analysis and Measurements

analyse_delta_results.py: Convert cell data from DeLTAs .pkl file into CSV format and calculates additional metrics.

 ${\bf tree_plot.R}$: Used to plot a lineage tree based on the tracking data from DeLTA

compare_tracking_results.py: Can be used to check how accurate DeLTA tracks individual cells and divisions by comparing it to manually tracked

positions. A more detailed description of the analysis can be found in the ${\tt README_test_DeLTA_tracking.md}$ file.

Further analysis steps can also be found in the supplement of the related paper Space and epigenetic inheritance determine inter-individual differences in siderophore gene expression in bacterial colonies