Разнобой по геометрии

- **1.** В треугольнике ABC(AB > BC) на стороне AB выбрана точка K так, что BK = BC. Биссектриса BL пересекает описанную около треугольника ABC окружность в точке P. Докажите, что $\angle LKP = \frac{1}{2} \angle ABC$.
- **2.** Окружность ω_1 проходит через центр окружности ω_2 . Из точки C, лежащей на ω_1 , проведены касательные к ω_2 , вторично пересекающие ω_1 в точках A и B. Доказать, что отрезок AB перпендикулярен прямой, проходящей через центры окружностей.
- 3. Даны две пересекающиеся окружности ω_1 и ω_2 , с центрами O_1 и O_2 соответственно. Луч O_1O_2 пересекает ω_1 в точке L, а луч O_2O_1 пересекает ω_2 в точке M. Пусть окружность ω_3 касается прямой O_1O_2 и окружностей ω_1, ω_2 внутренним образом в точках K,N соответственно. Прямые MN и LK пересекаются в точке P. Докажите, что центр описанной окружности треугольника KNP лежит на описанной окружности треугольника KO_3N .
- **4.** На сторонах треугольника ABC вовне построены квадраты ABB_1A_2 , BCC_1B_2 и CAA_1C_2 . На отрезках A_1A_2 и B_1B_2 также во внешнюю сторону от $\triangle AA_1A_2$ и $\triangle BB_1B_2$ построены квадраты $A_1A_2A_3A_4$ и $B_1B_2B_3B_4$. Докажите, что $A_3B_4 \parallel AB$.
- **5.** Пусть l_a, l_b и l_c длины биссектрис углов A, B и C треугольника ABC, а m_a, m_b и m_c длины соответствующих медиан. Докажите, что

$$\frac{l_a}{m_a} + \frac{l_b}{m_b} + \frac{l_c}{m_c} > 1$$

6. Радиус описанной окружности треугольника ABC равен радиусу вневписанной окружности, касающейся стороны AB в точке C' и продолжений двух других сторон в точках A' и B'. Докажите, что центр описанной окружности треугольника ABC совпадает с ортоцентром треугольника A'B'C'.