6651 Comments on lecture 1

Yaqiao Li

January to April, 2023

- 1. computability: a problem is computable means that it can be solved by some algorithm.
- 2. Examples of uncomputable (sometimes people say undecidable):

Halting problem: whether a computer program halts (i.e., stops) on a given input.

Hilbert's 10th problem: whether an equation with integer coefficients has integer solutions.

- 3. we briefly mentioned the important P vs NP problem. We will discuss it a little more later. Here is a good and <u>short video on P vs NP</u> explaining what it is: you should be able to get a rough idea after watching this video.
- 4. In class we saw 4n = O(n+8), this is because $4n \le 4(n+8)$ always holds for $n \ge 1$. So, in this case, we have c = 4 and $n_0 = 1$.

We also mentioned 4n = O(n - 8) holds as well. The reason is as follows:

Proof. We will show $4n \le 5(n-8)$ for "sufficiently large" n. Indeed, if we cancel 4n from both sides, we get $0 \le n-40$, equivalently, $n \ge 40$. So, the inequality holds as long as $n \ge 40$. Hence, we have found $c = 5, n_0 = 40$, so that

$$\forall n \ge n_0 = 40, \quad 4n \le 5(n-8).$$

That is, "eventually", 4n is bounded above by a scaled version of n-8. Hence, we can write 4n = O(n-8).

- 5. Examples of functions f(n) and g(n) satisfying: (1) $f(n) = \Theta(g(n))$, (2) f(n)/g(n) has no limit as $n \to \infty$.
 - In the class we give an example f(n) = n and $g(n) = n \sin n$. A student later pointed out there was a mistake. Indeed, because $\sin n \le 1$, $n \sin n \le n$ always holds, so g(n) = O(f(n)) holds. But on the other hand, $g(n) = \Omega(f(n))$ or equivalently, f(n) = O(g(n)) does not hold, this is because the value of $\sin n$ can be both positive and negative, and sometimes $\sin n$ can get arbitrarily close to 0. So, when $\sin n$ is negative, or when $\sin n$ is extremely close to 0, in both cases f(n) = n cannot be bounded above by a positive constant scaled version of $g(n) = n \sin n$. So, f(n) = O(g(n)) does NOT hold. As a result, $f(n) = \Theta(g(n))$ does not hold.

This bug can be easily fixed as follows: modify the function g(n) as follows:

$$f(n) = n, \qquad g(n) = n(2 + \sin n).$$

Note that

$$1 \le 2 + \sin n \le 3,$$

so,

$$n \le n(2 + \sin n) \le 3n.$$

In other words, $f(n) \leq g(n) \leq 3f(n)$. So, both $g(n) = \Omega(f(n))$ and g(n) = O(f(n)) hold, that is, $g(n) = \Theta(f(n))$ or equivalently $f(n) = \Theta(g(n))$ holds. On the other hand, $g(n)/f(n) = 2 + \sin n$, this function has no limit when $n \to \infty$.

• A student gave the following example in class:

$$f(n) = n,$$
 $g(n) = \begin{cases} n, & n \text{ is odd,} \\ 2, & n \text{ is even.} \end{cases}$

We pointed out in class this example is not correct. But we can also easily modify the functions a little bit to make it work, as follows:

$$f(n) = n,$$
 $g(n) = \begin{cases} n, & n \text{ is odd,} \\ 2n, & n \text{ is even.} \end{cases}$

Make sure you understand why the modified version works!

References