

Batch: A-4 **Roll No.:** 16010122151

Experiment No. 7

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date

Title: Write a program to apply the global processing technique: Histogram equalization.on a digital image

Objective: To learn and understand the concept of histogram stretching and equalization in image enhancement operations.

Expected Outcome of Experiment:

СО	Outcome
CO4	Design & implement algorithms for digital image enhancement, segmentation & restoration.

Books/ Journals/ Websites referred:

- 1. http://www.mathworks.com/support/
- 2. www.math.mtu.edu/~msgocken/intro/intro.html.
- 3. R. C.Gonsales R.E.Woods, "Digital Image Processing", Second edition, Pearson Education
- 4. S.Jayaraman, S Esakkirajan, T Veerakumar "Digital Image Processing "Mc Graw Hill.
- 5. S.Sridhar,"Digital Image processing", oxford university press, 1st edition."

Pre Lab/ Prior Concepts: Image histogram

In an image processing context, the histogram of an image normally refers to a histogram of the pixel intensity values. This histogram is a graph showing the number of pixels in an image at each different intensity value found in that image. For an 8-bit greyscale image there are 256 different possible intensities, and so the histogram will graphically display 256 numbers showing the distribution of pixels amongst those greyscale values. Histograms can also be taken of color images either individual histogram of red, green and blue channels can be taken, or a 3-D histogram can be produced, with the three axes representing the red, blue and green channels, and brightness at each point representing the pixel count. The exact output from the operation depends upon the implementation it may simply be a picture of the required histogram in a suitable image format, or it may be a data file of some sort representing the histogram statistics.

Fig. 1 An image and its histogram Histogram Equalization:

A perfect image is one which has equal number of pixels in all its grey levels. hence our objective is not only to spread the dynamic range, but also to have equal pixels in all the grey levels. This technique is known as histogram equalization.

Basically the histogram equalization spreads out intensity values along the total range of values in order to achieve higher contrast. This method is especially useful when an image is represented by close contrast values, such as images in which both the background and foreground are bright at the same time, or else both are dark at the same time. For example, the result of applying histogram equalization to the image in figure 1 is presented in figure 2.

Fig. 2 New image and its equalized histogram

Description of cumulative histogram equalization:

Here are the steps for implementing this algorithm.

- 1. Create the histogram for the image.
- 2. Calculate the cumulative distribution function histogram.
- 3. Calculate the new values through the general histogram equalization formula.
- 4. Assign new values for each gray value in the image.

Thus processed image is obtained by mapping each pixel with level rk into a corresponding pixel with level sk in o/p image. This transformation is called Histogram equalization

Resources Used: Matlab

Implementation Details:

Write Algorithm and Matlab commands used

ALGORITHM:

- 1. **Read the Image**: Load the input image.
- 2. **Convert to Grayscale (if necessary)**: If the image is in RGB format, convert it to grayscale.
- 3. **Compute Histogram**: Calculate the frequency of each intensity level (0–255).
- 4. **Compute Probability Distribution**: Normalize the histogram by dividing by the total number of pixels.
- 5. **Compute Cumulative Distribution Function (CDF)**: Compute the cumulative sum of the probability distribution.
- 6. **Equalize Intensities**: Map the original pixel intensities to new intensities using the CDF.
- 7. **Construct the Equalized Image**: Replace each pixel intensity in the original image with the corresponding intensity from the equalized mapping.
- 8. Compute Histogram of Equalized Image: Verify the contrast enhancement.
- 9. **Display Results**: Show the original grayscale image, histogram, equalized image, and its histogram.

CODE:

```
img = imread('cosmos.jpg');
if ndims(img) == 3
   gray img = rgb2gray(img);
else
   gray img = img;
end
[num rows, num cols] = size(gray img);
hist vals = zeros(1, 256);
prob dist = zeros(1, 256);
for row = 1:num rows
   for col = 1:num cols
       pixel intensity = gray_img(row, col);
       hist_vals(pixel_intensity + 1) = hist_vals(pixel intensity + 1) + 1;
   end
   end
prob dist = hist vals / (num rows * num cols);
cum dist = zeros(1, 256);
cum sum = 0;
for intensity = 1:256
   cum sum = cum sum + prob dist(intensity);
   cum_dist(intensity) = round(cum_sum * 255);
```



```
end
 equalized_image = uint8(zeros(num_rows, num_cols));
 for row = 1:num_rows
 for col = 1:num_cols
        pixel_intensity = gray_img(row, col);
         equalized image(row, col) = cum dist(pixel intensity + 1);
    end
     end
 equalized_hist_vals = zeros(1, 256);
 for row = 1:num rows
    for col = 1:num cols
        pixel intensity = equalized image(row, col);
equalized_hist_vals(pixel_intensity+1) = equalized_hist_vals(pixel_intensity
+ 1) + 1;
    end end
 figure;
 subplot(2, 2, 1);
 imshow(gray_img);
 title('Original Image');
 subplot(2, 2, 2);
 bar(hist vals);
 xlabel('Pixel Intensity');
 ylabel('Number of Pixels');
 title('Histogram of Original Image');
 subplot(2, 2, 3);
 imshow(equalized image);
 title('Equalized Image');
 subplot(2, 2, 4);
 bar(equalized hist vals);
 xlabel('Pixel Intensity');
 ylabel('Number of Pixels');
 title('Histogram of Equalized Image');
 disp('Histogram Values of Original Image:');
 disp(hist vals);
 disp('Probability Distribution Function:');
 disp(prob_dist);
 disp('Cumulative Distribution Function:');
 disp(cum dist);
 disp('Histogram Values of Equalized Image:');
```


$\textbf{K. J. Somaiya College of Engineering, Mumbai-77} \\ \texttt{disp(equalized_hist_vals);}$

OUTPUT:

Image:

Command Window: Tabulation of Numerical Computations used in code:

mmand Wind	ow																
ew to MATLA	3? See	resources	for <u>Gettir</u>	ng Started	<u>i</u> .												
>> untitl Histogram Columns	n Va	lues of through		nal Ima	age:												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Columns	s 18	through	n 34														
0	0	0	0	0	0	0	0	2	0	0	0	1	0	3	2	5	
Columns	s 35	through	n 51														
3	3	6	3	6	7	8	11	13	13	15	22	16	36	25	35	48	
Columns	5 52	through	n 68														
52	34	44	54	63	58	54	64	56	66	49	51	45	49	53	64	67	
Columns	5 69	through	n 85														
76	68	83	70	91	63	80	76	75	64	68	70	60	72	80	79	63	
Columns	s 86	through	102														
106	93	87	111	85	69	102	89	116	108	108	99	85	101	89	88	83	
Columns	s 10:	3 throug	gh 119														
96	83	66	84	91	114	102	86	113	116	140	122	150	150	193	173	231	
Columns	5 12	0 throug	gh 136														
236	290	255	248	267	310	317	260	282	286	313	261	293	237	238	233	206	

			N	. J. 50	maiya C	oneg	ge or i	engu	ieerii	ng, Mu	ımb	ai-//		
Columns	137	through	153											
153	193	172	164	134	123 101	87	103	97	89	71	58	79	56 70	66
Columns	154	through	170											
59	52	51	54	40	44 43	41	46	44	39	41	32	45	51 30	29
Columns	171	through	187											
37	42	42	49	29	41 39	38	33	34	38	32	33	27	28 35	38
Columns	188	through	204											
33	30	30	34	32	31 30	40	30	31	39	40	32	30	23 25	22
Columns	205	through	221											
39	40	30	37	38	41 39	39	42	36	35	30	42	31	28 33	34
Columns	222	through	238											
29	30	40	35	40	46 45	38	38	32	33	29	43	40	33 32	44
Columns	239	through	255											
51	47	35	44	57	41 68	76	102	85	47	30	14	19	8 5	5
Column	256													
COLUMN	256													
0														
Probabil	ity 1	Distrib	ution	n Functi	ion:									
Column	s 1 t	through	10											
	0	(0	0	0		0		0		0	0	0	0
Column	s 11	through	h 20											
	0	(D	0	0		0		0		0	0	0	0
Column	s 21	through	h 30											
	0	(0	0	0		0	0.0	0001		0	0	0	0.0001
Column	s 31	through	h 40											
	0	0.0002	2	0.0001	0.0003	0	.0002	0.0	0002	0.000)4	0.0002	0.0004	0.0004
Column	s 4 1	through	h 50											
0.00	05	0.000	7	0.0008	0.0008	0	.0009	0.0	0013	0.001	LO	0.0022	0.0015	0.0021
Column	s 51	through	h 60											
0.00	29	0.003	2	0.0021	0.0027	0	.0033	0.0	0038	0.003	35	0.0033	0.0039	0.0034
Columns	61	through	70											
0.004	10	0.0030		0.0031	0.0027	0.	0030	0.00	32	0.0039		0.0041	0.0046	0.0042
Columns	71	through	80											
0.005	51	0.0043		0.0056	0.0038	0.	0049	0.00	46	0.0046		0.0039	0.0042	0.0043

0.0037 0.0044 0.0049 0.0048 0.0038 0.0065 0.0057 0.0053 0.0068 0.0052

Columns 81 through 90

Columns 91	through 100)							
0.0042	0.0062	0.0054	0.0071	0.0066	0.0066	0.0060	0.0052	0.0062	0.0054
Columns 101	through 11	10							
0.0054	0.0051	0.0059	0.0051	0.0040	0.0051	0.0056	0.0070	0.0062	0.0052
Columns 111	through 12	20							
0.0069	0.0071	0.0085	0.0074	0.0092	0.0092	0.0118	0.0106	0.0141	0.0144
Columns 121	through 1	.30							
0.0177	0.0156	0.0151	0.0163	0.0189	0.0193	0.0159	0.0172	0.0175	0.0191
Columns 131	through 1	.40							
0.0159	0.0179	0.0145	0.0145	0.0142	0.0126	0.0093	0.0118	0.0105	0.0100
Columns 141	through 1	.50							
0.0082	0.0075	0.0062	0.0053	0.0063	0.0059	0.0054	0.0043	0.0035	0.0048
Columns 151	l through 1	.60							
0.0034	0.0043	0.0040	0.0036	0.0032	0.0031	0.0033	0.0024	0.0027	0.0026
Columns 161	l through 1	.70							
0.0025	0.0028	0.0027	0.0024	0.0025	0.0020	0.0027	0.0031	0.0018	0.0018
Columns 171	l through 1	.80							
0.0023	0.0026	0.0026	0.0030	0.0018	0.0025	0.0024	0.0023	0.0020	0.0021
Columns 181	through 1	.90							
0.0023	0.0020	0.0020	0.0016	0.0017	0.0021	0.0023	0.0020	0.0018	0.0018
Columns 191			0.0010	0.0017	0.0021	0.0023	0.0020	0.0010	0.0010
0.0021	0.0020	0.0019	0.0018	0.0024	0.0018	0.0019	0.0024	0.0024	0.0020
Columns 201									
	0.0014		0.0013	0.0024	0.0024	0.0018	0.0023	0.0023	0.0025
Columns 211	through 2	20							
0.0024	0.0024	0.0026	0.0022	0.0021	0.0018	0.0026	0.0019	0.0017	0.0020
Columns 221	through 2	30							
0.0021	0.0018	0.0018	0.0024	0.0021	0.0024	0.0028	0.0027	0.0023	0.0023
Columns 231	through 2	40							
0.0020	0.0020	0.0018	0.0026	0.0024	0.0020	0.0020	0.0027	0.0031	0.0029
Columns 241	through 2	50							
0.0021	0.0027	0.0035	0.0025	0.0042	0.0046	0.0062	0.0052	0.0029	0.0018
Columns 251	through 2	56							
0.0009	0.0012	0.0005	0.0003	0.0003	0				

Column 256

255

Histogram Columns		lues of :		ized I	mage:													
28	58	53	61	83	52	78	54	63	į	58	54	64	56	6	56	100	45	49
Columns	18	through	34															
53	64	67	76	68	83	70	0	91	(63	80	76	75	6	54	68	0	130
Columns	35	through	51															
0	72	80	79	63	0	106	93	87		0 1	111	0	85	6	59	102	0	89
Columns	52	through	68															
116	0	108	0	108	99	0	85	101		0	89	88	83		0	96	83	66
Columns	69	through	85															
84	0	91	0	114	102	86	0	113		0 1	116	0	140		0	122	0	150
Columns	86	through	102															
0	0	150	0	0	193	0	173	0		0	0	231	0		0	0	236	0
Columns	103	through	119															
0	0	290	0	0	0	255	0	0	0	248	C)	0	0	267		0	0
Columns	120	through	136															
0	0	310	0	0	0	0	317	0	0	0	260)	0	0	0	28	2	0
Columns	137	through	153															
0	0	0	286	0	0	0	0	313	0	0	C	2	61	0	0		0 29	93
Columns	154	through	170															
0	0	0	237	0	0	0	238	0	0	233	C)	0	0	206		0 15	53
Columns	171	through	187															
0	0	193	0	0	172	0	164	0	134	0	123	3	0 1	101	87		0 10)3
Columns	188	through	204															
97	0	89	71	58	79	56	70	66	59	103	54	ł	40	87	41	9	0 8	30
Columns	205	through	221															
32	96	59	37	84	49	70	77	67	70	60	63	3	71	60	66	6	1 7	70
Columns	222	through	238															

31	79	62	70	79	30	75	80	39	78	65	73	61	63	70	35	86
Column	s 239	throug	n 255													
45	76	65	72	73	32	95	47	79	57	41	68	76	0	102	85	128
Column	256															
0																

Conclusion:- In this experiment, we first learnt what a histogram for an image refers to, then histogram equalization, got a demonstration of a live problem-solving for the same using an example, and finally implemented the concept for a given image using MATLAB.

Date: _02/04/2025 Signature of faculty in-charge

Post Lab Descriptive Questions

Compare between contrast stretching and histogram equalization.

ANS.:

Feature	Contrast Stretching	Histogram Equalization				
Definition	Expands the range of pixel intensities by stretching them linearly across the available dynamic range.	Redistributes pixel intensities based on the cumulative distribution function (CDF) to achieve a more uniform histogram.				
Method	Uses a piecewise linear function to adjust pixel intensities.	Uses cumulative probability distribution to remap intensity values.				
Effect on Image	Enhances contrast by making dark regions darker and bright regions brighter.	Enhances contrast adaptively by redistributing pixel intensities.				
Mathematical Approach	$I_{new} = \frac{(I-Imin)}{Imax-Imin} \chi (L-I)$	$I_{new} = \text{CDF}(I) \times (L-I)$				
Preservation of Image Details	Preserves relative intensity differences but may not enhance all details.	Can lose some details in highly concentrated intensity ranges.				

Computational Complexity	Low (simple linear transformation).	Higher (requires computing histogram, PDF, and CDF).
Best Used When	The image has well-defined minimum and maximum intensity values but lacks contrast.	The image has an uneven distribution of intensities,leading to poor visibility of details.
Visual Effect	Improves global contrast without drastically altering the appearance	Can introduce excessive contrast in some areas, leading to unnatural effects
Example Use Cases	Medical imaging, satellite images, and low-contrast photos with known intensity limits.	X-rays, remote sensing images, and images with non-uniform illumination.