

David Nickerson¹ (with help from Dagmar Waltemath² & Frank Bergmann³)

¹Auckland Bioengineering Institute, University of Auckland

²University of Rostock

³California Institute of Technology

SED-ML Motivation

SED-ML Motivation

First attempt to run the model, measuring the spiking rate *v* over time

- load SBML into the simulation tool COPASI
- use parametrisation as given in the SBML file
- define output variables (v)
- run the time course

Second attempt to run the model, adjusting simulation step size and duration

Fig.: COPASI simulation, duration: 140ms, step size: 0.14

Third attempt to run the model, updating initial model parameters

Fig.: COPASI, adjusted parameter values (a=0.02, b=0.2 **c=-55, d=4**)

Search

Models Home

Exposures

Documentation

You are here: Home > Exposures > The Lorenz Attractor, a classical mathematical model

The Lorenz Attractor, a classical mathematical model

This workspace houses a CellML encoding of the 1963 Lorenz model which became a well-known demonstration of deterministic chaos. The original article DOI is 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. This model was encoded based on the Octave code available in the related Wikipedia article.

An OpenCell 0.8 session file is available. SED-ML can also be used to simulate this model, the simulation description is in Lorenz_1963_sedml.xml, and the simulation experiment can be run using the SED-ML Web Tools. The figures below show the results fro OpenCell and from using SED-ML.

Log in Register

Model Curation

Curation Status: OpenCell:

Source

Derived from workspace

Deterministic Nonperiodic Flow at changeset 1cdf5c612924.

Downloads

Navigation

The Lorenz Attractor, a classical mathematical model

Figure: SED-ML structure (Waltemath et al., 2011)

- Carry out multiple time course simulations
- Collect results from these simulations
- Combine results from these simulations
- Report / Graph the results

Parameter Scan

Pulse Experiments

Repeated Stochastic Traces

Time Course Parameter Scan

12

SED-ML next version

- Focus on the integration of "data" with SED-ML, e.g.,
 - experimental data for use in model fitting, parameter estimation
 - simulation data for testing implementations
- Adoption of NuML as standard data description format
 - https://code.google.com/p/numl/
 - XML description of underlying data (initially CSV).
 - provides a common data abstraction layer for SED-ML to utilise.