

Al Detecting Retina Symptom

•AI 檢測視網膜症狀

利用AI 檢測影像

有三種人一定要了解我們的專案

1.醫生:減少誤判,提升效能

2.經理人:AI用於產品檢測提升效能

3.工程師:AI影像辦識專案實作技巧

問題描述

醫生在做視網膜影像檢測的兩大困擾:

本專案期望以AI技術輔助檢測,降低醫生診斷時負擔

案例解題過程與分享大綱

• 解題技術分析

解題思維

- 物件分類
- 物件偵測
- 語意分析

問題定義

● 視網膜介紹 與症狀

解題技巧

- 資料切分技巧
- Transfer Learning
- Bias & Variance
- Error Analysis

結語

- 視網模檢測現況 與未來
- 對業界的影響

問題定義

• 視網膜介紹 與症狀

問題定義-視網膜介紹與症狀

案例解題過程與分享大綱

• 看診流程與解 題技術分析

解題思維

問題定義

• 視網膜介紹與症狀

醫生看診流程攻堅

有沒有症狀?

發生在那?

多大?

物件分類 Classification

物件偵測 Object Detection

語意分析 Instance Segmentation

本專案以AI電腦視覺三大方法做為主要攻堅計劃

案例解題過程與分享大綱

• 看診流程與解題技術分析

解題思維

問題定義

• 視網膜介紹與症狀

解題技巧

- 資料切分技巧
- Transfer Learning
- Bias & Variance
- Error Analysis

技巧

- 資料拆成 Training / Validation / Test
- Transfer Learning (Weights: ImageNet · COCO)
- 注意 High Bias and High Variance
- 注意 Validation set and Test Set same distribution
- Error Analysis (找出分類錯誤的原因並改善)

資料拆成 TRAINING / VAL / TEST

Idea #1: Choose hyperparameters that work best on the data

BAD: Easy works perfectly on training data

Your Dataset

Idea #2: Split data into **train** and **test**, choose hyperparameters that work best on test data

BAD: No idea how algorithm will perform on new data

train

test

Idea #3: Split data into **train**, **val**, and **test**; choose hyperparameters on val and evaluate on test

Better!

train	validation	est
Irain Data ≈ 70%	Validation Data ≈ 15%	Test Data ≈ 15%
CNV 484	CNV 121	CNV 100
DME 400	DME 100	DME 100
DRUSEN 464	DRUSEN 116	DRUSEN 100
Normal 412	Normal 104	Normal 100

TRANSFER LEARNING

Transfer Learning with CNNs

本例 C = 4 Weights : ImageNet Weights : COCO

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

1. Train on Imagenet

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image

2. Small Dataset (C classes)

	,
FC-C	X
FC-4096	Reinitialize
FC-4096	
MaxPool	this and train
Conv-512	
Conv-512	
MaxPool	
Conv-512	
Conv-512	
MaxPool	Freeze these
Conv-256	
Conv-256	
MaxPool	
Conv-128	
Conv-128	
MaxPool	
Conv-64	
Conv-64	J
Image	

3. Bigger dataset

流程

Andrew Ng

✓ 注意 **HIG**H BIAS AND HIGH VARIANCE

本例 human-level performance ≈ 1

流程 資料拆解 Transfer Learning 訓練 錯誤分析 資料來源: Coursera, Deep Learning, Structuring Machine Learning Projects, Andrew Ng

✓ 注意 VAL SET AND TEST SET SAME DISTRIBUTION

Same Distribution

Guideline:
Choose a val set and test set to reflect data you expect to get in the future and consider important to do well on.

流程 資料拆解 Transfer Learning 訓練 預測 錯誤分析 資料來源: Coursera, Deep Learning, Structuring Machine Learning Projects, Andrew Ng

✓ ERROR ANALYSIS

➤ 針對分類錯誤的 Image 下 Comments

Image	Dog	Great Cat	Blurry	Incorrectly labeled	Comments
1				1	Labeler missed cat in background
2		✓			
3				1	Drawing of a cat; Not a real cat.

針對分類錯誤的 image, 找出並分析

有了執行 Al Project Knowledge 後

實作開始!!

案例解題過程與分享大綱

看診流程與解題技術分析

- 物件分類
- 物件偵測
- 語意分析

實做驗證

問題定義

• 視網膜介紹 與症狀

解題技巧

- 資料切分技巧
- Transfer Learning
- Bias & Variance
- Error Analysis

攻堅計劃一:影像分類判定症狀

• Basic Information

Method		Transfer Learning	
Weights		ImageNet	
Model		Xception	
Hyperparameter	optimizer	Adam(lr=10e-6)	
	epochs	100	
Data Augmentation		ImageDataGenerator rotation_range=10, width_shift_range=0.1, height_shift_range=0.1, shear_range=0.1, zoom_range=0.1, horizontal_flip=True, fill_mode='nearest')	
Earlystop		val_loss 連續 5 epoch 無下降	
Data		CNV 705 DME 600 DRUSEN 680 Normal 616	
Train_Test_Split		0.7/0.15/0.15	

- Training/Validation Accuracy/Loss
 - -Model 無 bias, variance 問題

● 錯誤分析: 模型預測 Validation Set 結果 正常照片 recall 0.99/異常照片 recall 1 => Model 無漏篩問題

predict	CNV	DME	DRUSEN	NORMAL
label				
CNV	117	0	0	0
DME	0	87	0	0
DRUSEN	0	0	112	0
NORMAL	0	0	1	124

Validation loss: 0.011931998532713135 Validation accuracy: 0.9977324

	precision	recall	f1-score	support	
CNV DME DRUSEN NORMAL	1.00 1.00 0.99 1.00	1.00 1.00 1.00 0.99	1.00 1.00 1.00	0 index=139', 'label' 50 . 100 . 200 - 250 -	=NORMAL', 'predict=DRUSEN'
accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	441 441 441	150 260 Z50

攻堅計劃一:影像分類成效驗證

● Test set 預測 (每類各 100 張)

正常照片 recall 為 1 (100/100) 異常照片 recall 為 0.987 (4/300)

=> Model 無漏篩問題

predict CNV DME DRUSEN NORMAL

label				
CNV	98	2	0	0
DME	0	100	0	0
DRUSEN	2	0	98	0
NORMAL	0	0	0	100

	precision	recall	f1-score	support
CNV	0.98	0.98	0.98	100
DME	0.98	1.00	0.99	100
DRUSEN	1.00	0.98	0.99	100
NORMAL	1.00	1.00	1.00	100
accuracy			0.99	400
macro avg	0.99	0.99	0.99	400
weighted avg	0.99	0.99	0.99	400

● 失效影像驗證:

複合型異常,導致分類錯誤。解法: Object Detection

攻堅計劃二:物件偵測解決複合型異常

Basic Information

Object Detection M	YOLOv3	
Method		Transfer Learning
Weights		ImageNet
Weights		сосо
Model		VGG
Hyperparameter	epochs	30
Number of label		CNV 252 DME 146 DRUSEN 183

準確度

CNV: 0.9020 DME: 0.9540 DRUSEN: 0.9279

mAP: 0.9280

平均準確度

結果: mAP: 0.928

● 成效驗證:平均準確度mAP達92.8%

後續問題: 偵測的 Box 集中不美觀。解法: Segmentation

CNV

DRUSEN

DME

攻堅計劃三:語意分析解決偵測BOC集中問題

Basic Information

Segmentation Method	Mask R-CNN	
Method		Transfer Learning
Weights		ImageNet
Weights		COCO
Model		ResNet101
Hyperparameter	epochs	10
STEPS_PER_EPOCH		100
Detection min confidence		0.9
Number of label		CNV 90 DME 90 DRUSEN 90

● 成效驗證:有效解決物件偵測BOS 集中,不美觀問題 並與物件偵測手法比較

案例解題過程與分享大綱

看診流程與解題技術分析

- 物件分類
- 物件偵測
- 語意分析

實做驗證

解題思維

問題定義

• 視網膜介紹 與症狀

解題技巧

- 資料切分技巧
- Transfer Learning
- Bias & Variance
- Error Analysis

結語

- 視網模檢測現況 與未來
- AI 上線注意事項

AI檢測視網膜症狀現況與未來

AI 導入前

醫生盯著螢幕看症狀

資料來源: 高雄榮總台南分院眼科李尹暘醫師

AI 導入後

分類與偵測顯示於螢幕輔助判斷

只要有一個模型說異常

則醫生需特別注意

語意分析

AI模型上線注意事項

1. 上線前 2 周: 醫生紀錄每次看診紀錄。並 Comment 模型是否有幫助

AI 模型上線確認表						
	分類	物件偵測	語意分析	醫生判斷	Gap	
Image 1	正常	正常	正常	正常	N	
Image 2	正常	正常	正常	正常	N	
Image 3	CNV	CNV	正常	CNV	Υ	
Image 4	DRUSEN	DRUSEN	DRUSEN	DRUSEN	N	
Image 5	CNV	CNV	CNV	CNV	N	
Image 6	DME	正常	DME	DME	Υ	
Image 7	DME	DME	DME	DME	N	
Image 8	正常	正常	正常	正常	N	
Image 9						
lmage 10						
模型是否對醫師有幫助: Y[] , N[]						

填單者: 王大明 醫師

2. AI 工程師每半年定時檢討模型有無異常

	分類	物件偵測	語意分析	Gap
lmage 1	正常	正常	正常	N
Image 2	正常	正常	正常	N
Image 3	CNV	CNV	正常	Υ
Image 4	DRUSEN	DRUSEN	DRUSEN	N
Image 5	CNV	CNV	CNV	N
Image 6	DME	正常	DME	Υ
Image 666	CNV	CNV	CNV	N

結論

本報告三大亮點

1. 介紹電腦視覺專案的流程與需注意事項

2. 電腦視覺主要方法皆有介紹

3. 介紹如何正確上線與 Model 持續改善

參考資料

- Coursera, Deep Learning, Structuring Machine Learning Projects, Andrew Ng
- Stanford University CS231n
- AI 學校技術班 YOLOv3 教材
- ORAI Mask R-CNN
- 高雄榮總台南分院眼科李尹暘醫師:視網膜眼斷層掃描 Retina OCT https://www.youtube.com/watch?v=T2kuA5ZfKL4