RavenDB

Vector Search

Evolution of Searching

- Exact matching"Car" == "Car"
- Partial/Wildcard matching "Car*" == "Carpet"
- Full-text matching"My car is red" => ["my", "car", "red"] == "car"
- Semantic matching "Signature red car" => "Ferrari"

Semantic similarity- how?

- Take Phrasel
- Convert it to NumericalRepresentation1
- Take Phrase2
- Convert it to NumericalRepresentation2
- Compute distance between NR1 and NR2
- Distance == Similarity

How to represent words numerically?

	#D I- '	T 111
•	"Beach	Towel

•	beach	0.91	
•	sun	0.87	
	water	0.78	
	sand	0.84	
•	swimwear	0.72	
•	vacation	0.76	
•	sunscreen	0.70	
•	summer	0.86	
	waves	0.75	
•	sunbathing	0.73	
	surf	0.68	
	pool	0.73	
•	heat	0.65	
	resort	0.03	
•	winter	0.77	
	snow	0.24	
Ţ	wind	0.30	
	skiing	0.30	
	Skillig	0.10	

How to represent words numerically?

	45	- 122
	"Beach	
_	DCacii	10000

•	beach sun	0.91 0.87	
	water	0.78	
	sand	0.78	
	swimwear	0.72	
•	vacation	0.76	
•	sunscreen	0.70	
•	summer	0.86	
•	waves	0.75	
•	sunbathing	0.82	
•	surf	0.68	
•	pool	0.73	
•	heat	0.65	
•	resort	0.77	
•	winter	0.24	
•	snow	0.19	
•	wind	0.30	
	skiina	016	

"Sunglasses"

•	beach	0.84	
•	sun	0.93	
• "	water	0.72	
•	sand	0.75	
•	swimwear	0.70	
•	vacation	0.80	
• .	sunscreen	0.78	
• .	summer	0.89	
•	waves	0.70	
•	sunbathing	0.82	
•	surf	0.66	
• "	pool	0.73	
•	heat	0.76	
•	resort	0.78	
•	winter	0.28	
• .	snow	0.34	
•	wind	0.42	
	skiing	0.38	
•	jacket	0.25	

How to compute similarity?

1. Represent numbers as vectors - "vector embeddings"

sunglasses
$$\rightarrow v_1 = [0.84, 0.93, ..., 0.25]$$

beach $\rightarrow v_2 = [0.91, 0.87, ..., 0.22]$

2. Compute "Cosine Similarity"

```
1.0 → perfectly similar (same direction)0.0 → unrelated (orthogonal)
```

$$0.81 = 81\%$$

How to automate this?

- Al, of course!
- "Text Embedding Models" with various "vector dimensionality"

Word2Vec (Google News)	- 300	- one of earliest, not context aware				
FastText (Facebook)		- good for misspelled words				
Universal Sentence Encoder (Google)	- 512	- semantic tasks and question answering				
BERT	- 768					
OpenAl Ada v2	- 1536					

- We have no idea what attributes are :)
- NOT LLMs!

Vector Search in RavenDB

- Available in v7
- Embedded bge-micro-v2 (384) for fast prototyping
- Al Tasks Embeddings Generation support for external models

Secondary aspects

- Caching
 - Reduce latency
 - Reduce cost

OpenAl text-embedding-3-large: \$0.00013 / 1k tokens

Compression

OpenAl text-embedding-3-small - 1536 100M embeddings - 572 GB

250M embeddings - 1.430 GB

OpenAl text-embedding-3-large - 3072

100M embeddings - 1.144 GB 250M embeddings - 2.861 GB

- Ouantization
 - Single (no quantization)
 - Int8 (float32 -> int8, scaling)
 - fast, moderate accuracy loss, 4x smaller
 - Binary (float32 -> 1 binary bit) [0.2, -0.5, 1.3] -> [1, 0, 1] (threshold is 0)
 - exploits overparameterization, use on larger models, e.g. over 1024
 - extremely fast, high accuracy loss, 32x smaller

Not just search!

RavenDB

- Clustering
 - o Group similar items together
 - Detect emerging trends
 - Predict missing relationships
- Recommendation systems
 - Find similar items
- Anomaly detection
 - Vectors far from normal distribution
- Content deduplication
 - o Detect nearly-identical items
- User Profiling / Behavior Modelling

