1.10	Table of Laplac	e transform theorem	$\mathcal{L}\left\{\mathbf{F}\left(\mathbf{t}\right)\right\}=\mathbf{f}(\mathbf{s})$
No	Operation		$a_1 \mathcal{L}_{\{F_1(t)\}+a_2} \mathcal{L}_{\{F_2(t)\}}$
1.	Linearity property	$a_iF_i(l) + a_2F_2(l)$ $e^{al}F(l)$	$\frac{a_1 \sim (F_1(t)) + a_2}{f(s-a)}$
	First translation or Shifting property		e ^{-as} ((s)
3.	Second translation or Shifting property	$G(t) = \begin{cases} F(t-a), t > a \\ O, t < a \end{cases}$	
*	Change of scale property	F (at)	$\frac{1}{a}f\left(\frac{s}{a}\right)$
5.	Differentiation theorems	F'(t) F ¹¹ (t)	$s f(s) - F(o)$ $n - 1 n - r - 1$ $S^{n}f(s) - \sum_{r=0}^{\infty} s_{r} F^{r}(o)$
6.1	Multiplication theorems	t F (t) t ^{n F} (t)	$-\frac{\mathrm{d}}{\mathrm{d}\mathbf{s}} \mathbf{f}(\mathbf{s})$ $(-1)^{n} \frac{\mathrm{d}^{n}}{\mathrm{d}\mathbf{s}^{n}} \mathbf{f}(\mathbf{s})$
7. 	Division theorem	$\frac{1}{t}\mathbf{F}(t)$	$\int_{s}^{\infty} f(u) du$
8.	Integral theorem	$\int_{0}^{t} F(u) du$	$\frac{1}{s}f(s)$
9.	Initial-value theorem	$ \begin{array}{c} \text{Lim} \\ t \to 0 \end{array} $	$= \lim_{S \to \infty} s $
10.	Final-value theorem	$\lim_{t\to\infty}F(t)$	$= \lim_{s \to 0} s $
	Fundamental theorem for periodic function	$\int_{e^{-st}}^{T} e^{-st} F(t) dt$ $\int_{1-e^{-sT}}^{e^{-st}} F(t) dt$ $= \int_{1-e^{-sT}}^{e^{-st}} F(t) dt$ $= \int_{1-e^{-sT}}^{e^{-st}} F(t) dt$ $= \int_{1-e^{-sT}}^{e^{-st}} F(t) dt$ $= \int_{1-e^{-sT}}^{e^{-st}} F(t) dt$	

No	TO THE CONTRACT OF THE PARTY OF	$\mathcal{L}\left\{\mathbf{F}\left(\mathbf{t}\right)\right\}=\mathbf{f}\left(\mathbf{s}\right)$
1.	1	$\frac{1}{s}$ s>0
2.	a contraction of the second second	$\frac{1}{s^2}$ s>0
3.	t ⁿ n = 0, 1, 2, 3,	$\frac{n}{s^{n+1}} > 0$
a de la desembración de la desembración de la desembración de la defenda		where $n = 1, 2, 3,, n$ and $0 = 1$.
4.	e ^{a‡}	$\frac{1}{s-a} > a$
5.	sin at	$\frac{a}{s^2 + a^2} > 0$
6.	cos at	$\frac{s}{s^2 + a^2} > 0$
7.	sin h at	$\frac{a}{s^2-a^2} > a $
8.	cos h at	$\frac{s}{s^2-a^2} > a $
9.	t sin at	$\frac{2as}{(s^2 + a^2)^2} > 0$
10.	t cos at	$\frac{s^2 - a^2}{(s^2 + a^2)^2} > 0$
11.	$t^n e^{at} (n = 1, 2, 3,)$	$\frac{n}{(s-a)^{n+1}} > a$
12.	e at sin bt	$\frac{b}{(s-a)^2+b^2}$
3 maring	eat cos bt	$\frac{s-a}{(s-a)^2+b^2}$
14.	e at sinh bt	$\frac{b}{(s-a)^2-b^2}$
	e ^{at} cos h bit	

	and $0 = 1$.
e et	$\frac{1}{s-a}$ s>a
sin at	$\frac{a}{s^2 + a^2} > 0$
cos at	$\frac{s}{s^2 + a^2} > 0$
sin h at	$\frac{a}{s^2-a^2} > a $
cos h at	$\frac{s}{s^2 - a^2} s > a $
t sin at	$\frac{2as}{(s^2 + a^2)^2} > 0$
t cos at	$\frac{s^2 - a^2}{(s^2 + a^2)^2} > 0$
$t^n e^{at} (n = 1, 2, 3,)$	$\frac{n}{(s-a)^{n+1}} > a$
e at sin bt	$\frac{b}{(s-a)^2+b^2}$
e at cos bt	$\frac{s-a}{(s-a)^2+b^2}$
e ^{at} sinh bt	$\frac{b}{(s-a)^2-b^2}$
e at cos h bt	$\frac{s-a}{(s-a)^2-b^2}$

No	F (t)	$\mathcal{L}\left\{\mathbf{F}\left(\mathbf{t}\right)\right\}=\mathbf{f}\left(\mathbf{s}\right)$
	J _o (at)	$\frac{1}{\sqrt{s^2 + a^2}}$
2.	J _n (at)	$\frac{(\sqrt{s^2 + a^2} - s)^n}{a^n \sqrt{s^2 + a^2}}$
3.)	sin√t	$\frac{\sqrt{\pi}}{2s^{3/2}}e^{-\frac{1}{4s}}$
4.	$\frac{\cos \sqrt{t}}{\sqrt{t}}$	$\sqrt{\frac{\pi}{s}} \frac{1}{e^{-4s}}$
5.	$erf(\sqrt{t})$	$\frac{1}{s\sqrt{s+1}}$
6.	erf(t)	$\frac{e^{s^2/4}}{s} \text{ erfc (s/2)}$
7.	Si (t)	$\frac{1}{s} \tan^{-1} \frac{1}{s}$
8.	Ci (t)	log (s ² + 1)
9.	Electric services and the services of the serv	log (s + 1)
10.	U(t-a)	

Scanned by CamScanner

Important higheities of

c.se Linearity property

The Language **Theorem 1.** If $\mathcal{L}\{F_1(t)\} = f_1(s)$ and $\mathcal{L}\{F_2(t)\} = f_2(s)$ and c_1 and c2 are any two constants, then

$$\mathcal{L}^{-1}\{c_1f_1(s) + c_2f_2(s)\} = c_1\mathcal{L}^{-1}\{f_1(s)\} + c_2\mathcal{L}^{-1}\{f_2(s)\}\$$

$$= c_1F_1(t) + c_2F_2(t).$$

Proof: Given $\{F_1(t)\} = f_1(s)$ and $\{F_2(t)\} = f_2(s)$.

by the definition of inverse Laplace transform, we have

$$F_1(t) = \mathcal{L}^{-1}\{f_1(s)\}\$$
and $F_2(t) = \mathcal{L}^{-1}\{f_2(s)\}.$

Now
$$\mathcal{L}\{c_1F_1(t) + c_2F_2(t)\} = c_1\mathcal{L}F(t)\} + c_2\mathcal{L}\{F_2(t)\}\$$

= $c_1f_1(s) + c_2f_2(s)$.

$$\mathcal{L}^{-1}\{c_1f_1(s) + c_2f_2(s)\} = c_1F_1(t) + c_2F_2(t)$$

$$= c_1\mathcal{L}^{-1}\{f_1(s)\} + c_2\mathcal{L}^{-1}\{f_2(s)\}$$

This result can be easily generalised.

The above theorem is illustrated by the following examples:

$$\mathcal{L}^{-1}\left\{\frac{2}{s-a} + \frac{3}{s^2} + \frac{4a}{s^2 + a^2} + \frac{5s}{s^2 - a^2}\right\}$$

$$= 2\mathcal{L}^{-1}\left\{\frac{1}{s-a}\right\} + 3\mathcal{L}^{-1}\left\{\frac{1}{s^2}\right\} + 4\mathcal{L}^{-1}\left\{\frac{a}{s^2 + a^2}\right\} + 5\mathcal{L}^{-1}\left\{\frac{s}{s^2 - a^2}\right\}$$

2eat + 3t + 4 sin at + 5 cosh at.

$$\mathcal{L}^{-1}\left\{\frac{5}{(s-2)^2} + 2\tan^{-1}\frac{1}{s} + \frac{s+2}{s^2+2s+13}\right\}$$

$$= 5\mathcal{L}^{-1}\left\{\frac{1}{(s-2)^2}\right\} + 2\mathcal{L}^{-1}\left\{\tan^{-1}\frac{1}{s}\right\} + \mathcal{L}^{-1}\left\{\frac{s+2}{(s+2)^2+3^2}\right\}$$

$$= 5t e^{2t} + \frac{2\sin t}{t} + e^{-2t} \cos 3t.$$

THE THE PART PART TO TRANSPORT

$$= \mathcal{L}^{-1} \left\{ \frac{3s}{(3s)^2 + 2^2} \right\}$$
$$= \frac{1}{3} \cos \frac{2t}{3}.$$

5. Inverse Laplace transform of derivatives

Theorem 5. If
$$\mathcal{L}^{-1}\{f(s)\} = F(t)$$
 then $\mathcal{L}^{-1}\{f^n(s)\} = \mathcal{L}^{-1}\left\{\frac{d^n}{ds^n}f(s)\right\} = (-1)^n t^n F(t)$.

where $n = 1, 2, 3, \dots$

Proof: From Laplace transform we have

if
$$\mathcal{L}\{F(t)\} = f(s)$$
, then $\mathcal{L}\{t^n F(t)\} = (-1)^n f^n(s)$
where $f^n(s) = \frac{d^n}{ds^n} f(s)$.

:.
$$\mathcal{L}^{-1}\{(-1)^n f^n(s)\} = t^n F(t)$$

Or,
$$(-1)^n \mathcal{L}^{-1}\{f^n(s)\} = t^n F(t)$$
.

Or,
$$\{(-1)^n\}^2 \mathcal{L}^{-1}\{f^n(s)\} = (-1) t^n F(t)$$

Or,
$$(-1)^{2n} \mathcal{L}^{-1}\{f^n(s)\} = (-1)^n t^n F(t)$$

Or,
$$\mathcal{L}^{-1}\{f^n(s)\} = (-1)^n t^n F(t) \text{ since } (-1)^{2n} = 1$$

The above theorem is illustrated by the following examples:

Since
$$\mathcal{L}^{-1}\left\{\frac{s}{s^2+4}\right\} = \mathcal{L}^{-1}\left\{\frac{s}{s^2+2^2}\right\} = \cos 2t$$
.
and $\frac{d}{ds}\left(\frac{s}{s^2+4}\right) = \frac{(s^2+4)-2s^2}{(s^2+4)^2} = \frac{4-s^2}{(s^2+4)^2}$

$$\int_{0}^{-1} \left\{ \frac{4 - s^2}{(s^2 + 4)^2} \right\} = (-1)t \cos 2t = -t \cos 2t$$

COLLEGE MATHEMATICAL METHODS

6. Inverse Laplace transform of integrals

Theorem 6. If $\mathcal{L}^{-1}\{f(s)\} = F(t)$, Then

$$\mathcal{L}^{-1}\left\{\int_{s}^{\infty} f(u) du\right\} = \frac{F(t)}{t}$$

Proof: From Laplace transform, we have

if
$$\mathcal{L}{F(t)} = f(s)$$
, then $\mathcal{L}\left\{\frac{F(t)}{t}\right\} = \int_{s}^{\infty} f(u)du$

$$\therefore \mathcal{L}^{-1}\left\{\int_{s}^{\infty}f(u)du\right\}=\frac{F(t)}{t}.$$

The above theorem is illustrated by the following example:

$$\mathcal{L}^{-1}\left\{\frac{1}{s^{2}(s^{2}+1)}\right\} = \mathcal{L}^{-1}\left\{\frac{1}{s^{2}} - \frac{1}{s^{2}+1}\right\} = t - sint$$

$$\mathcal{L}^{-1}\left\{\int_{s}^{\infty} \left(\frac{1}{u^{2}} - \frac{1}{u^{2}+1}\right) du\right\} = \mathcal{L}^{-1}\left\{\left[-\frac{1}{u} - tan - \frac{1}{u}\right]_{s}^{\infty}\right\}$$

$$= \mathcal{L}^{-1}\left\{\frac{1}{s} - \frac{\pi}{2} + tan^{-1}s\right\}$$