

Computer Networks				
Course Code:	EE353	Semester:	Fall 2018	
Credit Hours:	3+1	Prerequisite Codes:		
Instructor:	Dr. Arsalan Ahmad	Discipline:	BSCS6-AB	
Office:	Room#A-206, SEECS	Telephone:	051-9085 2192	
Lecture Days:	Wednesday, Thursday, Friday	E-mail:	arsalan.ahmad@seecs.edu.pk	
Class Room:	As per timetable	Consulting Hours:	Tuesday 1600-1650; also,	
			through appointment via e-mail	
Knowledge Group: Networks Updates on LMS:		Updates on LMS:	After every lecture	

Course Description:

The area of computer networking is undergoing rapid development; it's important to focus not only on what computer networks are today, but also on *why* and *how* they are designed as they are. The aim of this course is to provide a conceptual introduction to fundamentals of computer networks and the design principles. The lab component of this course is aimed at providing the students with an understanding of practical aspects of networking through hands-on labs.

In this course, we will also study the fundamentals of building *scalable* computer networks. We will go through the thought-process that went into designing the Internet---which is the best example of a computer network that has adapted and scaled to the changing user demands.

Course Learning Outcomes (CLOs):		
At the end of the course the students will be able to:		BT Level*
 Understand the fundamental Building blocks of Computer Networks i.e., L approach and protocols that make networking possible 	ayered 1	C-2
Apply the knowledge of Computer networking to understand contemnetworking issues	nporary 2	C-3
3. Investigate and analyze the behavior of network traffic	4	C-4
4. Design and implement solutions to overcome network unreliability (the hands on programming)	hrough 3	P-7
* BT= Bloom's Taxonomy, C=Cognitive domain, P=Psychomotor domain, A= Af domain	ffective	

Mapping of CLOs to Program Learning Outcomes

PLOs/CLOs	CLO1	CLO2	CLO3	CLO4
PLO 1 (Engineering Knowledge)	٧			
PLO 2 (Problem Analysis)		٧		
PLO 3 (Design/Development of Solutions)				٧
PLO 4 (Investigation)			٧	
PLO 5 (Modern tool usage)				
PLO 6 (The Engineer and Society)				
PLO 7 (Environment and Sustainability)				
PLO 8 (Ethics)				
PLO 9 (Individual and Team Work)				
PLO 10 (Communication)				

PLO 11 (Project Management)			
PLO 12 (Lifelong Learning)			

Mapping of CLOs to Assessment Modules and Weightages (In accordance with NUST statutes)

To be filled in at the end of the course.

Assessments/CLOs	CLO1	CLO2	CLO3	CLO4
Quizzes: 7.5%				
Assignments: 7.5%				
OHT-1: 15%				
OHT-2: 15%				
Labs:25% (Lab deliverables 15 marks, Project: 10 marks)				
End Semester Exam:30%				
Total : 100 %				

Books:

Text Book: "Computer Networking, A Top Down Approach" (6th edition) by Kurose and Ross [K&R]

Reference Books:

- 1) "Computer Networks" (5th Edition) by Andrew S. Tenanbaum and David Wetherall [T&W]
- 2) "TCP/IP Protocol Suite" (4th Edition) by Behrouz A. Forouzan [BF]
- 3) Relevant resources/ references will be highlighted (wherever relevant) during the lecture and at the end of lecture slides which will be uploaded to LMS.

Main Topics to be Covered:

The course spans over a number of different topics as under:

Topic 0: Course Introduction; Motivations of studying Computer Networking

Topic 1: Internet as a Black box, Standardization and Layering

- Network Edges and Core
- Why layering?
- TCP/IP Model

Topic 2: Applications

- DNS
- HTTP
- FTP
- SMTP, IMAP & POP3

Topic 3: Transport Layer Protocols

- UDP
- TCP
- Flow Control
- Congestion Control

Topic 4: Network Layer

- Internet Protocol
- IP addressing, CIDR, sub-netting, super-netting
- NAT, VPN

- Routing Algorithms (DV, LS) Routing Protocols (RIP, OSPF)
- Error control with ICMP

Topic 5: Data Link Layer

- Framing
- Error and Flow Control
- Ethernet
- ARP and RARP
- Wireless

Lecture Break	down:		
Week	Topics	Text Book Chapter	Remarks
1	Topic 0 and 1: Introduction	Chapter 1	
2	Topic 1: Standardization and Layering	Chapter 1	Chap.1 [T&W]
3	Topic 2: Application Layer [DNS & HTTP]	Chapter 2	Chap.7 [T&W]
4	Topic 2: Application Layer [HTTP & FTP]	Chapter 2	Chap. 7[T&W]
5	Topic 3: Application Layer [SMTP]	Chapter 2	Chap. 7[T&W]
6	OHT-1		
7	Topic 3: Transport Layer [UDP]	Chapter 3	Chap. 6[T&W]
8	Topic 3: Transport Layer [TCP, Flow Control]	Chapter 3	Chap. 6[T&W]
9	Topic 3: Transport layer [Congestion Control]	Chapter 3	Chap. 6[T&W]
10	Topic 4: Network Layer [IP addressing, Sub-netting, Super-netting, CIDR]	Chapter 4	Chap. 5[T&W]
11	Topic 4: Network Layer [NAT, Routing Algorithms]	Chapter 4	Chap. 5[T&W]
12	OHT-2		
13	Topic 4: Network Layer [Routing Algorithms, Routing Protocols, ICMP]	Chapter 4	Chap. 5[T&W]
14	Topic 5: Data Link Layer [Framing, Addressing, ARP]	Chapter 5	Chap. 3[T&W]
15	Topic 5: Data Link Layer [Error and Flow Control]	Chapter 5	Chap. 3[T&W]
16	Topic 5: Data Link Layer [MAC sub layer]	Chapter 5	Chap. 4[T&W]

Revision 17

18 Final Exam

Lab Experir	Lab Experiments:				
Lab 01:	Intro to Python				
Lab 02:	Network Programming				
Lab 03:	Intro to WireShark				
Lab 04:	DNS				
Lab 05:	HTTP				
Lab 06:	<u>UDP</u>				
Lab 07:	<u>TCP</u>				
Lab 08:	<u>IP</u>				
Lab 09:	<u>ICMP</u>				
Lab 10:	ARP				
Lab 11:	Ethernet & Wireless				
Lab 12:	<u>Lab Exam</u>				
Lab 13:	Project Viva				

Tools / Software Requirement:

Wireshark and TCPDump software

Grading Policy:

Quiz Policy: The quizzes may be announced or unannounced and will normally last for ten minutes. The

questions would test the concepts involved in last few lectures. Number of guizzes that will be used for evaluation is at the instructor's discretion. Grading for quizzes will be on a fixed scale

of 0 to 10. All quizzes will count towards the total (No 'best-of' policy).

Assignment In order to develop comprehensive understanding of the subject, assignments will be given. Policy: Late assignments (by up to 2 days) will be accepted but penalized as per the following formula:

Less than a day late: 15% penalty

More than 1 day late but less than 2 days late: 30% penalty

More than 2 days late: not accepted.

All assignments will count towards the total (No 'best-of' policy). The students are expected to submit assignments that are their own work. Students may collaborate by discussing general concepts and approach but not the specific answer/ technique that is asked for. In no circumstances should a student present someone else's work as their own work. Copying of assignments will be dealt with severely by awarding ZERO marks for the whole evaluation component and referring any occurrences to the disciplinary committee.

SEECS maintains a zero tolerance policy towards plagiarism. While collaboration in this course Plagiarism:

is highly encouraged, you must ensure that you do not claim other people's work/ ideas as your own. Plagiarism occurs when the words, ideas, assertions, theories, figures, images,

programming codes of others are presented as your own work. You must cite and acknowledge all sources of information in your assignments. Failing to comply with the SEECS plagiarism policy will lead to strict penalties including zero marks and referral for disciplinary action.