TMA4183 Optimisation II

Spring 2020

Norwegian University of Science and Technology Department of Mathematical Sciences

Exercise set 7

1 Assume that U and V are Hilbert spaces and that $F: U \to V$ is bounded linear and injective. We want to solve the equation

$$Fu = y^{\delta}$$

given noisy data $y^{\delta} = \hat{y} + n^{\delta}$. To that end, we consider constrained regularisation

$$\min_{u} \frac{1}{2} ||u||^2 \qquad \text{subject to } ||Fu - y^{\delta}|| \le \delta. \tag{1}$$

In this exercise, we show that this is a well-posed regularisation method.

Assume in the following that the operator F has dense range. That is, for every $y \in V$ and $\varepsilon > 0$ there exists $u \in U$ with $||Fu - y|| \le \varepsilon$.

- a) Show that the problem (1) admits a unique solution for every $y^{\delta} \in V$ and every $\delta > 0$.
- **b)** Assume that $\hat{u} \in U$ and $\hat{y} = F\hat{u}$. Assume moreover that $||\hat{y} y_k|| \le \delta_k \to 0$ and that u_k solves

$$\min_{u} \frac{1}{2} ||u||^2 \qquad \text{subject to } ||Fu - y_k|| \le \delta_k.$$

Show that $u_k \to \hat{u}$.

Hint: Show that $||u_k|| \le ||\hat{u}||$ for all k and conclude that u_k is weakly convergent. Then show that the weak limit is actually \hat{u} and we have strong convergence.

c) Show that the solution of (1) depends for fixed $\delta > 0$ continuously on y^{δ} . That is: Assume that $y_k \to y^{\delta}$ and denote by u_k the solution of

$$\min_{u} \frac{1}{2} ||u||^2 \qquad \text{subject to } ||Fu - y_k|| \le \delta.$$

Show that the sequence u_k converges to the solution u^{δ} of (1).

Hint:

- Show first that there exists $w \in U$ such that $||Fw y^{\delta}|| \le \delta/2$ and conclude that $||u_k|| \le ||w||$ for all sufficiently large k. Thus u_k converges weakly to some $\tilde{u} \in U$.
- Next show that there exists a sequence $\lambda_k \to 0$ from above such that $||Fw_k y_k|| \le \delta$ where $w_k = \lambda_k w + (1 \lambda_k)\tilde{u}$. Conclude that $||u_k|| \le ||w_k||$ and thus $||u_k|| \to ||\tilde{u}||$, which in turn implies $u_k \to \tilde{u}$.
- Finally show that there exists a sequence $\mu_k \to 0$ from above such that $||Fv_k y_k|| \le \delta$ where $v_k = \mu_k w + (1 \mu_k) u^{\delta}$. Conclude that $||u_k|| \le ||v_k||$ and thus $||\tilde{u}|| \le ||u^{\delta}||$. This shows that, in fact, $\tilde{u} = u^{\delta}$.