Численные методы анализа ИИИ, 2025

Университет ИТМО Лектор: Хитров Е.Г.

Содержание

1	Фег	враль		
	1.1 Формула интерполяции Лагранжа			ула интерполяции Лагранжа
		1.1.1	Вывод и объяснение	
		1.1.2	Пример	
		1.1.3	Ошибки вычисления и функция ψ	

1 Февраль

1.1 Формула интерполяции Лагранжа

Пусть заданы n+1 различных точек данных

$$(x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n).$$

Интерполяционный полином Лагранжа P(x) определяется как

$$P(x) = \sum_{i=0}^{n} y_i L_i(x),$$

где базисные полиномы Лагранжа $L_i(x)$ определяются следующим образом:

$$L_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x - x_j}{x_i - x_j}.$$

Каждый базисный полином $L_i(x)$ удовлетворяет свойству

$$L_i(x_j) = \begin{cases} 1 & \text{если } i = j, \\ 0 & \text{если } i \neq j. \end{cases}$$

Это свойство гарантирует, что при $x = x_i$ единственный ненулевой член в сумме — $y_i L_i(x_i) = y_i$, то есть $P(x_i) = y_i$.

1.1.1 Вывод и объяснение

Основная идея интерполяции Лагранжа заключается в построении базисных полиномов $L_i(x)$, которые действуют как «переключатели». Для заданного x_i имеем:

$$L_i(x_j) = \begin{cases} 1, & \text{если } j = i, \\ 0, & \text{если } j \neq i. \end{cases}$$

Таким образом, для любого x_k

$$P(x_k) = \sum_{i=0}^{n} y_i L_i(x_k) = y_k.$$

Это подтверждает, что полином P(x) точно интерполирует заданные точки данных.

1.1.2 Пример

Рассмотрим следующий набор точек:

Author: Vadim Tiganov

Для этих трёх точек интерполяционный полином будет иметь степень не более 2. Базисные полиномы Лагранжа имеют вид:

$$L_0(x) = \frac{(x-3)(x-5)}{(1-3)(1-5)} = \frac{(x-3)(x-5)}{8},$$

$$L_1(x) = \frac{(x-1)(x-5)}{(3-1)(3-5)} = \frac{(x-1)(x-5)}{-4},$$

$$L_2(x) = \frac{(x-1)(x-3)}{(5-1)(5-3)} = \frac{(x-1)(x-3)}{8}.$$

Таким образом, интерполяционный полином имеет вид:

$$P(x) = 2 \cdot L_0(x) + 4 \cdot L_1(x) + 6 \cdot L_2(x).$$

Раскрытие скобок и упрощение этого выражения даст явную форму полинома, проходящего через заданные точки.

1.1.3 Ошибки вычисления и функция ψ

В полиномиальной интерполяции ошибка (или остаток) при приближении функции f(x) её интерполяционным полиномом P(x) может быть выражена следующим образом:

$$f(x) - P(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \psi(x),$$

где ξ — некоторая точка на отрезке, содержащем x и узлы интерполяции, а

$$\psi(x) = \prod_{i=0}^{n} (x - x_i)$$

является *полиномом узлов* (иногда его также обозначают $\omega(x)$). Функция $\psi(x)$ играет ключевую роль в оценке ошибок:

- Малое значение $\psi(x)$: Когда x близко к одному из узлов x_i , один или несколько множителей $(x-x_i)$ малы, что приводит к малому значению $\psi(x)$ и, соответственно, к низкой ошибке интерполяции.
- Большое значение $\psi(x)$: Когда x далеко от узлов интерполяции, $\psi(x)$ может становиться большим, усиливая ошибку.

Численные ошибки при вычислении

При реализации интерполяционного полинома Лагранжа на практике необходимо учитывать возможные численные проблемы:

• Округлительные ошибки: Вычисление произведений и делений — особенно при построении базисных полиномов $L_i(x)$ или функции $\psi(x)$ — может приводить к накоплению ошибок округления, особенно для полиномов высокой степени.

Author: Vadim Tiganov

• **Явление Рунге:** При использовании равномерно распределённых узлов интерполяционный полином может демонстрировать сильные колебания около концов отрезка, что приводит к значительным ошибкам вычисления.

 $Author:\ Vadim\ Tiganov$