CS3300 : Compiler Design Assignment - 1

By CS15B049 Lokesh Koshale

```
Ans. 1 - a -(i) - Regular expression for C comments - single line comment: "//".*

(ii) string literals: \"(\\. | [^\\"])*\"
\" for (") and \\. to match string like "\a" then [^\\"] matches all char except \ and "

Ans 1- b - .*("abb").* matches all string with abb as substring.

Ans 1- d- regular expression for pascal keywords which are case in sensitive

Begin: [bB][eE][gG][iI][nN];

End: [eE][nN][dD];

Function: [fF][uU][nN][cC][tT][iI][oO][nN];
```

Ans : 2 : Scheme to convert a Grammar ϵ -free is :

Absolute : [Aa][bB][sS][Oo][L1][uU][tT][eE] ;

For all Non- terminal Z which has production like Z -> ϵ , we look for all productions whose right side contains Z and replace each occurrence of Z in each of these productions to obtain the non ϵ -productions.

The resultant non- ϵ production are then added to the grammar to retain the language. If the goal goes to ϵ production we add ϵ production to the goal.

```
Ex: S' \to S; S \to aSbS \mid bSaS \mid \varepsilon. Here S \to s is so we replace all occurrence of right side of S as s is which gives S \to aSb \mid aSb \mid ab for S \to aSbS \mid S \to baS \mid bSa \mid bSa \mid bSa \mid bSa \mid bSaS \mid S' \to s for S' \to s our grammar becomes: S' \to S \mid s \in S' \to s our S' \to S \mid s \in S' \to s is solved as S' \to S \mid s \in S' \to s our S' \to S \mid s \in S' \to s is solved as S' \to s \in S' \to s is solved as S' \to s \to s is solved as
```

Ans:3: c) CFG for palindromes with 0,1 and 2

$$S \rightarrow 0 \ S \ 0$$
| 1 S 1
| 2 S 2
| 1
| 2
| 0
| ϵ

Ans: 3: d) CFG for all strings of 0's and 1's that doesn't contain 011 as substring

$$\begin{array}{c} A \rightarrow 1 \ A \\ \mid B \\ \end{array}$$

$$B \rightarrow 0 \ B \\ \mid C \\ \end{array}$$

$$\begin{array}{c} C \rightarrow 01 \; C \\ \mid 0 \; C \\ \mid \varepsilon \end{array}$$

Ans: 3: b) CFG for java comments allChar belongs to the set of all valid characters except '\n' new-line

$$\begin{array}{c} S \to \textit{II} \ A \\ | \ /^* \ B \end{array}$$

$$\begin{array}{c} A \rightarrow \text{allChar A} \\ \mid \varepsilon \end{array}$$

$$\begin{array}{c} B \to \text{A N B} \\ \mid */ \end{array}$$

$$N \to \text{\ensuremath{\backslash}} n$$

#10-9: (a) S -> 150 101

given String: 110100.

Left-derivation Tree

Right-Derivation Tree:

The gramman is not ambigious as left and right subtree

left derivation tree:

Right derivation: tree

The above grammar is ambiguous left derivation tree is not same as right derivation tree .

9-6) S-1 S S S

String = E (empty stry)

a Left Derivation:

Right Denivation!

The given gramman is ambigious as right-devivation tree is different from left devivation tree.

$$\frac{Ano6!}{T \longrightarrow id \mid num}$$

States.

$$T_2: S \rightarrow T_*$$

$$I_3$$
: $T \rightarrow id$.

$$I_4$$
: $T \longrightarrow nom$.

$$T_s: s' \rightarrow S .$$

Parse Table:

state	Actions					GOTO	
	+	*	ld	num	\$	S	Т
0	-	-	s3	s4	-	1	2
1	-	-	s3	s4	s5	6	2
2	r3	r3	r3	r3	r3	-	-
3	r4	r4	r4	r4	r4	-	-
4	r5	r5	r5	r5	r5	-	-
5	acc	acc	acc	acc	acc	-	-
6	s7	s8	s3	s4	-	6	2
7	r2	r2	r2	r2	r2	-	-
8	r3	r3	r3	r3	r3	-	-

The given grammar is LR(0), as there is no shift reduce conflicts in parse table.

The Sequence of action for String : 2 a * b c + +

ANSWER 7 -- LR(1) Parse Table for the given grammar:

```
Kaa Crowning
         12 Crownoine -1
-4
                          1 Kaa.
L
           add
       we
4. 4. 4.
             o. sl - crownoise $
     Io: s' - Crownise,$
          Crownoine, . Kaa Crownoine, &
          Crownoise - . Kaa , $
             8' - Crownoise.,$
      I1:
             Crownoise - kaa. Crownoise,$
      J 2!
              Crownoise - Kaa. &
               Crownoise - . Kaa (nownoise, $
              Crownoise - . Kaa, &
       I3! Crownois -, kaa Crownise., $
```

Parse Table LR(1)

•	A CHO	NJ	COTO	
	Kaa	\$	Crownoise.	
0	52	_	1	
1	-	acc	_	
2	52	82	3	
3		81		

for string "kaa kaa kaa"

()		
Stade	inpur	hors.
Ó	kaa kaa kaa q	S 2
O 2	kaa kaa \$	\$2
022	Kaa \$	S 2
0 2 2 2	4	82
0223	2	81
023	\$	81.
0 1	\$	accept.

```
Au-5-(a) SLR(1) items and goto functions for
        (1) 44b) S- 3+S
                                   1
                       122
                                   2
                       (2)
                        1 SX
                        1 9
                                  5.
         lue have SI-> S$
 Teno.
         Jo: 8'- . 54
                             I1: S'- S.$
                                  S -> S.+9
             S+2. L3
             82. ←8
                                 S \longrightarrow S \cdot S
                                  S- S. *
             S-> . S*
                                 2+2. -2
             (1), (c)
                                 22.
             S - , a
                                  5 - . Sx
 T 72: S → (.5)
                                  S \longrightarrow .(s)
         9-1.5+5
                                   S -- . a.
          5-1.55
                             Iz! S - a.
          S - . SX
          S - 1 (S)
                             141/ 8/-1 8/1/8
           S - . 9.
                      I: S - St.
  15! S- SS.
                                         (ontinue
                       Ia: C→ (S.) ... (S)
        S + S. +S
        S- S.S
                                              1D. - 2
                            2+12 -2
        S- S. X.
                            5.5
        S-1. S+5
                                 S. *
```

. 5+5

. 22

*2.

S - . SS

5 - · Sx

8-1.(3)

.(2)←2:eI

The grammar is ambigious as it has diff reduce Conflicts.

$$T_{2}$$
' $S \rightarrow C$.
 T_{3} : $S \rightarrow S \cdot S \cdot S$
 $S \rightarrow S \cdot S \cdot S$

The grammar is ambiguous in state 4 we can reduce Using rule 1 1 for e as well as shift to stat 2 so there is a shift reduce Conflict.