

Структурное представление результата поиска путей с контекстно-свободными ограничениями

Семён Григорьев

JetBrains Research, лаборатория языковых инструментов Санкт-Петербургский университет

21.10.2017

Поиск путей в графах

- Графовые базы данных
- Статический анализ программ
 - Анализ алиасов
 - Статический анализ динамически формируемого кода
 - **>**
- ..

Поиск путей с контекстно-свободными ограничениями

- ullet $\mathbb{G}=(\Sigma, N, P)$ контекстно-свободная грамматика, $L\subseteq \Sigma$
- ullet $p=(v_0,I_0,v_1),\cdots,(v_{n-1},I_{n-1},v_n)$ путь в графе G
- $w(p) = w((v_0, l_0, v_1), \cdots, (v_{n-1}, l_{n-1}, v_n)) = l_0 l_1 \cdots l_{n-1}$
- ullet G=(V,E,L) ориентированный граф, $E\subseteq V imes L imes V$
- $R = \{p | \exists N_i \in N(w(p) \in L(\mathbb{G}, N_i))\}$
 - Стартовый нетерминал можно зафиксировать заранее
 - ▶ **Проблема**: множество R может быть бесконечным

Существующие решения

Алгоритм выполнения КС запросов к графам

- Основан на обобщённом LL (Generalized GLL, GLL)
 - Scott E., Johnstone A. GLL parsing
- Поддерживает произвольные контекстно-свободные граммтики (неоднозначные, леворекурсивные)
- Не требует преобразования грамматики в нормальную форму Хомсого
- Строит сжатое представление леса разбора (Sharep Packed Parse Forest, SPPF)

Пример

Рис.: Входной граф

 $0: S \rightarrow a S b$

 $1: \ \ S \rightarrow \textit{Middle}$

 $2: Middle \rightarrow a b$

Рис.: Запрос: грамматика G для языка $L = \{a^n b^n; n \geq 1\}$ с явным выделением середины пути

Пример: SPPF

Рис.: Входной граф

Результат

Структура пути1

Структура пути2

Пример: извлечение путей

Путь: (0, a, 1); (1, a, 2); (2, a, 0); (0, b, 3); (3, b, 0); (0, b, 3)

Пример: почему это работает

Замкнутость КС языков относительно пересечения с регуляными

 $0: S \to a S b$

 $1: \ S \rightarrow \textit{Middle}$

 $2: Middle \rightarrow a b$

Регулярный язык

Контекстно-своодный язык

Пример: почему это работает

Замкнутость КС языков относительно пересечения с регуляными

 $0: S \rightarrow a S b$

 $1: S \rightarrow Middle$

2: $Middle \rightarrow ab$

Регулярный язык

Контекстно-своодный язык

$$(0, S, 3) \rightarrow (0, a, 1) (1, S, 0) (0, b, 3)$$

$$(1, S, 0) \rightarrow (1, a, 2) (2, S, 3) (3, b, 0)$$

$$(2, 5, 3) \rightarrow (2, a, 0) (0, 5, 0) (0, b, 3)$$

$$(2, S, 3) \rightarrow (2, Middle, 3)$$

$$(0, S, 0) \rightarrow (0, a, 1) (1, S, 3) (3, b, 0)$$

$$(1, S, 3) \rightarrow (1, a, 2) (2, S, 0) (0, b, 3)$$

$$(2, S, 0) \rightarrow (2, a, 0) (0, S, 3) (3, b, 0)$$

$$(0, Middle, 3) \rightarrow (2, a, 0) (0, b, 3)$$

Характеристики алгоритма

Пусть на входе граф M = (V, E, L), тогда

- Пространственная сложность предложенного алгоритма равна $O(|V|^3 + |E|)$
- ullet Временная сложность предложенного алгоритма равна $O\left(|V|^3*\max_{v\in V}\left(deg^+\left(v
 ight)
 ight)
 ight)$
- ullet Результирующий SPPF имеет размер $O(|V'|^3+|E'|)$ где M'=(V',E',L') это подграф M содержащий только искомые пути

Экспериментальное исследование: запросы

- $0: S \rightarrow subClassOf^{-1} S subClassOf$
- 1: $S \rightarrow type^{-1} S type$
- 2: $S \rightarrow subClassOf^{-1} subClassOf$
- $3: S \rightarrow type^{-1} type$

Рис.: Грамматика для запроса Query 1

- $0: S \rightarrow B \ sub Class Of$
- 1: $S \rightarrow subClassOf$
- 2: $B \rightarrow subClassOf^{-1} B subClassOf$
- $3: B \rightarrow subClassOf^{-1} subClassOf$

Рис.: Грамматика для запроса Query 2

Экспериментальное исследование: результаты

Ontology	#edg	Query 1			Query 2	
		time	time		time	
		CYK (ms)	(ms)	#result	(ms)	#result
skos	252	1044	10	810	1	1
generations	273	6091	19	2164	1	0
travel	277	13971	24	2499	1	63
univ-bench	293	20981	25	2540	11	81
foaf	631	_	39	4118	2	10
people-pets	640	82081	89	9472	3	37
funding	1086	_	212	17634	23	1158
atom-primitive	425	515285	255	15454	66	122
biomedical-						
measure-primitive	459	420604	261	15156	45	2871
pizza	1980	3233587	697	56195	29	1262
wine	1839	4075319	819	66572	8	133

Контакты

- Почта: semen.grigorev@jetbrains.com
- GitHub-сообщество YaccConstructor: https://github.com/YaccConstructor