Astronomía General - Curso 2021

Práctica N° 5: Transformaciones de coordenadas locales

- 1. Dibujar un triángulo esférico indicando sus elementos (arcos y ángulos) y escribir las fórmulas de la trigonometría esférica que los relacionan (TEOREMA DEL SENO, TEOREMA DEL COSENO Y FÓRMULA DE LOS CINCO ELEMENTOS).
- 2. Se observaron los siguientes astros desde distintas ubicaciones sobre la superficie terrestre, resultando las coordenadas horizontales que se expresan en la siguiente tabla:

Astro	Latitud (φ)	Acimut (A)	Altura (h)	Distancia Cenital (z)
Estrella 1	-52°	44°23′	35°28′	
Estrella 2	15°	133°28′		30°35′
Estrella 3	-25°	220°10′	53°42′	

- a) Graficar, para cada, caso la esfera celeste correspondiente al observador y la posición del astro en dicha esfera usando las coordenadas horizontales y la latitud de la tabla. Marcar luego, en la misma esfera, sus coordenadas ecuatoriales locales t y δ .
- b) Extraer el triángulo de posición indicando sus elementos (lados y ángulos).
- c) Calcular las coordenadas ecuatoriales locales de cada astro, utilizando el triángulo de posición definido entre el astro, el cenit y el polo celeste elevado.
- 3. En la tabla siguiente se listan las coordenadas ecuatoriales locales de tres astros para distintas ubicaciones del observador.

Astro	Latitud (φ)	Ángulo horario (t)	Declinación δ	Distancia polar norte (P)
Estrella 1	43°	$4^{h}30^{m}$	62°17′	
Estrella 2	-15°	$22^{h}16^{m}$	11°09′	
Estrella 3	-45°	$15^{h}34^{m}$		145°

- a) Graficar, para cada caso, la esfera celeste correspondiente al observador y la posición del astro en dicha esfera, usando las coordenadas ecuatoriales locales de la tabla. Marcar luego, en la misma esfera, sus coordenadas horizontales.
- b) Extraer el triángulo de posición indicando sus elementos (lados y ángulos).
- c) Calcular las coordenadas horizontales del astro, utilizando el triángulo de posición definido entre el astro, el cenit y el polo celeste elevado.
- d) En el caso de la estrella 1, realizar el cálculo inverso. Es decir, con los valores hallados del acimut y la altura, obtener las coordenadas ecuatoriales locales originales, de modo de verificar el resultado obtenido.

Los siguientes problemas se resuelven sin usar triángulo de posición.

- 4. a) Determinar cuál es el rango de declinaciones de los astros que culminan superiormente y tienen un Acimut $A = 0^{\circ}$, en un lugar de latitud φ negativa.
 - b) Determinar cuál es el rango de declinaciones de los astros que culminan superiormente y tienen un Acimut $A = 180^{\circ}$, en un lugar de latitud φ negativa.

Nota: los rangos de δ hay que darlos en función de φ .

5. Conociendo que la distancia polar norte de un astro (distancia angular entre un astro y el Polo Norte celeste) es $P = 20^{\circ}15'43''$, indicar el valor que tomará su distancia cenital en el instante de su culminación inferior, para un observador ubicado a una latitud de $\varphi = +73^{\circ}$.

Respuestas ejercicio 2)

	δ	t
Estrella 1	$-54^{\circ}38'43''$	$06h\ 40m\ 24s$
Estrella 2	34°07′06″	$01h\ 45m\ 58s$
Estrella 3	03°58′49″	$22h\ 29m\ 59s$

Respuestas ejercicio 3)

	Z	A
Estrella 1	42°47′04″	140°45′25″
Estrella 2	36°42′16″	$226^{\circ}01'19''$
Estrella 3	70°14′46″	330°39′57″