Sexta lista de exercícios.

Polinômios. Equações e inequações quadráticas. Função quadrática.

- 1. Efetue os produtos indicados.
 - (a) (x-4)(x+4).
 - (b) $3x^2(4x-1)$.
 - (c) $(x^2-2)(2x+5)$.
 - (d) $(x^2+3)(x^2-2x+4)$.
 - (e) (x-4y)(5y-2x).
 - (f) $(x^2 + 2y)(3x 2xy y)$.
 - (g) $(2x^2 \frac{1}{2})(x^2 + 3)$.
 - (h) $(x^3+1)(x^4-3x^2+2)$.
 - (i) (x+1)(x-4)(x+2).
 - (i) (2w-3)(w-1)(3w+2).
 - (k) $(x^2+3)(x^2-2)(2x^2-5)$.
 - (1) (a+2b)(3a-b)(2a+3b).
- 2. Expanda as expressões.
 - (a) $(x+2)^2$.
 - (b) $(x-3)^2$.
 - (c) $(3x-1)^2$.
 - (d) $(2w+5)^2$.
 - (e) $(3-2y)^2$.
 - (f) $(-2-x)^2$.
 - (g) $(x + \sqrt{3})^2$.
 - (h) $(\frac{x}{2}+2)^2$.
 - (i) $(\frac{2}{x}+1)^2$.
 - (j) $(\sqrt{2}x+1)^2$.
 - (k) $(\sqrt{x}-2)^2$.
 - (1) $(4-x^2)^2$.
 - (m) $(x^2 x)^2$.
 - (n) $(2x^2 y)^2$
 - (o) $(x^2 + \sqrt{x})^2$.
 - (p) $(x-2)^2(3-x)^2$.
 - $(q) \left(\frac{x+3}{1-x}\right)^2.$
- 3. Expanda as expressões.
 - (a) (z-1)(z+1).

- (b) (3x-2)(3x+2).
- (c) $(\frac{3x}{2} \frac{1}{3})(\frac{3x}{2} + \frac{1}{3})$.
- (d) $(x \frac{1}{x})(x + \frac{1}{x})$.
- (e) (2-x)(x+2).
- (f) $(y^2-4)(y^2+4)$.
- (g) (xy z)(xy + z).
- (h) $(z \sqrt{3})(z + \sqrt{3})$
- (i) $(2\sqrt{x} \sqrt{5})(2\sqrt{x} + \sqrt{5})$.
- 4. Fatore as expressões.
 - (a) 3x 6.
 - (b) -4x 10.
 - (c) $5x^2 + 20x$.
 - (d) $3x^2 9x$.
 - (e) $x^5 3x^3$.
 - (f) $xy 2x^2$.
 - (g) $xy + x^2y^2$.
 - (h) xyz + 2xy + 3x.
 - (i) $4xy + 8yz 12w^2y$.
 - (j) $xy^2 + y^5 + 3zy^3$.
 - (k) 3(x-2)-4(x-2).
 - (1) y(x-2) + 2(x-2).
- 5. Fatore o numerador e o denominador. Em seguida, simplifique as expressões.
 - (a) $\frac{3y-12}{6y-18}$
 - (b) $\frac{2x-4}{3x-6}$.
 - (c) $\frac{x^2y-xy^2}{xy}$.
 - $(d) \frac{x^2y xy^2}{x y}.$
- 6. Fatore as expressões.
 - (a) $x^2 9$.
 - (b) $x^2 25$.
 - (c) $4x^2 1$.
 - (d) $36x^2 100$.
 - (e) $16 49x^2$.
 - (f) $x^2 4y^2$.

- (g) $x^4 x^2$.
- (h) $x^2 y^2$.
- (i) $\frac{x^2}{25} \frac{1}{4}$.
- (j) $\frac{9x^2}{4} \frac{1}{9}$.
- (k) $x^2 3$.
- (l) x 16.
- 7. Fatore as expressões.
 - (a) $x^2 + 2x + 1$.
 - (b) $x^2 + 6x + 9$.
 - (c) $x^2 2xy + y^2$.
 - (d) $x^2 8x + 16$.
 - (e) $4x^2 4x + 1$.
 - (f) $9x^2 12x + 4$.
- 8. Fatore as expressões, colocando algum termo em evidência.
 - (a) $3x^2 + 6x + 3$.
 - (b) $2x^2 8x + 8$.
 - (c) $x^3 + 2x^2 + x$.
 - (d) $x^3 4x^2 + 4x$.
- 9. Calcule a área da região destacada na figura abaixo, lembrando que a área de um retângulo de lados b e h é bh.

- 10. Determine as raízes das equações.
 - (a) $x^2 4x = 0$.
 - (b) $5x^2 + x = 0$.
 - (c) $x^2 = 3x$.
 - (d) $2x^2 3x = 0$.
 - (e) $-3x^2 \frac{x}{2} = 0$.
 - (f) $(x-2)^2 = 4^2$.
 - (g) $(2x-1)^2 = 25$.
 - (h) $(x+3)^2 = \frac{1}{9}$.
 - (i) $(\frac{x}{2} + 1)^2 = \frac{9}{4}$.

- 11. Usando a fórmula de Bháskara, determine, quando possível, as raízes reais das equações.
 - (a) $x^2 6x + 8 = 0$.
 - (b) $x^2 2x 15 = 0$.
 - (c) $x^2 + 4 = 0$.
 - (d) $x^2 + 6x + 9 = 0$.
 - (e) $x^2 + 8x + 12 = 0$.
 - (f) $2x^2 + 8x 10 = 0$
 - (g) $x^2 6x + 10 = 0$.
 - (h) $2x^2 7x 4 = 0$.
 - (i) $6x^2 5x + 1 = 0$.
 - (i) $x^2 4x + 13 = 0$.
 - (k) $25x^2 20x + 4 = 0$.
 - (1) $x^2 2\sqrt{5}x + 5 = 0$.
 - (m) $2x^2 2\sqrt{2}x 24 = 0$.
 - (n) $3x^2 0.3x 0.36 = 0.$
 - (o) $x^2 2$, 4x + 1, 44 = 0.
 - (p) $x^2 + 2x + 5 = 0$.
- 12. Dada a função $f(x) = x^2 3x$,
 - (a) determine algebricamente os pontos nos quais f(x) = 0;
 - (b) determine algebricamente os pontos nos quais f(x) = -2;
 - (c) esboçe o gráfico da função no plano coordenado, indicando os pontos que você obteve no item (b);
 - (d) determine graficamente as soluções da inequação $f(x) \ge -2$.
- 13. Dada a função $f(x) = 5x x^2$,
 - (a) determine algebricamente os pontos nos quais f(x) = 0;
 - (b) determine algebricamente os pontos nos quais f(x) = 4;
 - (c) esboçe o gráfico da função no plano coordenado, indique os pontos que você obteve no item (b);
 - (d) determine graficamente as soluções da inequação $f(x) \ge 4$.
- 14. Resolva as desigualdades abaixo.
 - (a) $x^2 + 2x > 3$.
 - (b) $x^2 \le 9$.

- (c) $-x^2 \le -5$.
- (d) $x^2 + x \le 12$.
- (e) $2x^2 \ge 20 6x$.
- (f) $x^2 + 9x + 18 \le 0$.
- (g) $-3x^2 + 16x 5 \le 0$.
- 15. Identifique, no plano coordenado, as regiões definidas pelas desigualdades abaixo.
 - (a) $y \ge x^2$.
 - (b) $y = x^2 4$.
 - (c) $y \le 4 x^2$.
- 16. Um terreno com $64m^2$ de área tem o formato mostrado na figura abaixo. Determine o valor de x. (Lembre-se que a área de um triângulo com base b e altura h é igual a bh/2 e a área de um retângulo de base b e altura h é igual a bh.)

- 17. Quando um paciente ingere comprimidos de um certo remédio, a concentração da droga na corrente sanguínea (em mg/l), após t minutos do momento da ingestão, é aproximada por $C(t)=0,06t-0,0002t^2$, em que $0 \le t \le 240$. Determine o instante em que a concentração é máxima e o valor dessa concentração (Stewart).
- 18. Durante um torneio paraolímpico de arremesso de peso, a altura (em metros) do peso lançado por um atleta seguiu a função $y(x) = -0, 1x^2 + x + 1, 1$, em que x é a distância horizontal percorrida pelo peso.
 - (a) Determine de que altura o peso foi lançado.
 - (b) Determine a altura máxima do peso e a que distância isso ocorreu.
 - (c) Calcule a distância horizontal percorrida pelo peso.

19. Para produzir calhas, um fabricante dobra uma folha de metal com 50 cm de largura, como mostra a figura.

- (a) Determine a função A(x) que fornece a área da seção transversal da calha em relação a x.
- (b) Determine o valor de x que maximiza a área da seção transversal.
- 20. Um promotor de eventos consegue vender 5.000 ingressos para o show da banda Reset se cada ingresso custar R\$ 20,00. A cada R\$ 1,00 de aumento no preço do ingresso, há uma redução de 100 pagantes. Responda às perguntas abaixo, supondo que x é a quantia, em reais, a ser acrescida ao valor do ingresso.
 - (a) Exprima o preço do ingresso em função de x.
 - (b) Exprima a quantidade de ingressos vendidos em função de x.
 - (c) Determine a função R(x) que fornece a receita do show, em relação a x. Lembre-se de que a receita é o produto do preço pela quantidade de ingressos vendidos.
 - (d) Determine o valor do ingresso que maximiza a receita do show. Calcule a receita nesse caso.
 - (e) Determine para quais valores de x a receita é maior ou igual a R\$ 100.000,00.
- 21. Um restaurante a quilo vende 100 kg de comida por dia, a R\$ 15,00 o quilograma. Uma pesquisa de opinião revelou que, a cada real de aumento no preço do quilo, o restaurante deixa de vender o equivalente a 5 kg de comida. Responda às perguntas abaixo, supondo que x é a quantia, em reais, a ser

acrescida ao valor atualmente cobrado pelo quilo da refeição, e definindo a receita do restaurante como o produto do preço pela quantidade de comida vendida.

- (a) Exprima o preço do quilo de comida, em função de x.
- (b) Exprima a quantidade de comida vendida, em função de x.
- (c) Escreva a função R(x) que fornece a receita do restaurante em relação a x.
- (d) Determine o valor de x que maximiza a receita do restaurante.
- 22. Uma pista de atletismo tem 400m de comprimento, e é formada por duas semicircunferências de raio y/2, ligadas por dois trechos retos de comprimento x. Como se observa na figura, no interior da pista há um campo retangular de dimensões x e y. Responda aos itens abaixo, lembrando que o comprimento da semicircunferência de raio r é dado por πr e que a área de um retângulo de lados x e y é xy.

comprimento da pista: 400m

- (a) Usando o comprimento da pista, escreva x em função de y.
- (b) Determine a função A(y) que fornece a área do campo retangular, em relação a y
- (c) Determine analiticamente o valor de y que faz com que a área do campo seja a maior possível. Determine, também, a área para esse valor de y.
- (d) Esboce o gráfico de A(y), exibindo os pontos em que A(y) cruza o eixo-x e o ponto de máximo.
- 23. Um artesão tem um arame com 8cm de comprimento, e pretende cortá-lo em duas partes, para formar dois quadrados (não necessariamente iguais). Suponha que um dos

pedaços tenha comprimento x. Lembre-se que o perímetro de um quadrado de lado y é 4y e que sua área é y^2 .

- (a) Determine o comprimento do outro pedaço de arame, em relação a x.
- (b) Escreva uma função A(x) que forneça a soma das áreas dos quadrados formados pelos dois pedaços de arame, em relação ao comprimento x.
- (c) Determine o menor e o maior valor possível para x.
- (d) Trace um gráfico da função A(x) para x entre os valores que você encontrou no item (c) e determine em que intervalos ela é crescente e em quais é decrescente.
- (e) Determine quanto devem medir os dois pedaços de arame para que a soma das áreas por eles cercadas seja a mínima possível.
- 24. Um fazendeiro pretende usar 500 m de cerca para proteger um bosque retangular às margens de um riacho, como mostra a figura abaixo. Repare que apenas três dos lados da região do bosque precisam ser cercados.

- (a) Usando o comprimento da cerca, escreva o valor de y em função de x.
- (b) Com base na expressão que você encontrou no item (a), escreva a função A(x) que fornece a área cercada, com relação a x.
- (c) Determine o valor de x que maximiza a área cercada. Determine também o valor de y e a área máxima.
- (d) Trace o gráfico de A(x).
- 25. Uma empresa fabricante de aparelhos que tocam músicas no formato MP3 pretende lançar um novo modelo de aparelho. Após uma pesquisa de mercado, ela descobriu que

o número de aparelhos a serem vendidos anualmente e o preço do novo modelo estão relacionados pela expressão n = 115 - 0.25p, em que n é o número de aparelhos (em milhares) e p é o preço de cada aparelho (em reais).

- (a) Escreva uma função R(p) que forneça a renda bruta obtida com a venda dos aparelhos, em relação ao preço p.
- (b) Determine qual deve ser o preço do aparelho para que sejam vendidas, no mínimo, 80 mil unidades desse modelo.
- (c) Determine o valor de p que maximiza a receita bruta da empresa.
- 26. Jogando em seu estádio, um clube de futebol consegue vender 10.000 ingressos por partida, se cobra R\$ 10,00 por ingresso. Uma pesquisa de opinião revelou que, a cada real de redução do preço do ingresso, o clube ganha 2.000 novos espectadores em uma partida. Responda às perguntas abaixo, supondo que x é a quantia, em reais, a ser reduzida do valor atualmente cobrado pelo ingresso.
 - (a) Determine a função R(x) que fornece a receita de uma partida, em relação a x. Lembre-se de que a receita é o produto do preco pela quantidade de ingressos vendidos.
 - (b) Determine o valor de x que maximiza a receita do clube em um jogo. Determine

também o valor ótimo para o ingresso.

27. O Índice de Massa Corporal (IMC) é um indicador (um tanto discutível) da magreza ou obesidade de uma pessoa. O IMC é definido pela fórmula $IMC = p/a^2$ em que p é o peso (em kg) e a é a altura (em metros) da pessoa. A tabela abaixo fornece os intervalos de cada categoria do IMC. Observe que, seguindo a tradição, usamos "peso" em lugar do termo correto, que é "massa".

Classe	IMC
Subnutrido	(0;18,5)
Saudável	[18, 5; 25)
Acima do peso	[25; 30)
Obeso	[30; 35)
Severamente obeso	[35; 40)
Morbidamente obeso	$[40,\infty)$

- (a) Determine as funções $p_1(a)$ e $p_2(a)$ que definem o peso em relação à altura, a, para um IMC de 18,5 e um IMC de 25, respectivamente. Observe que esses são os limites para uma pessoa ser considerada saudável.
- (b) Trace em um gráfico as funções que você obteve no item (a), para $a \in [0; 2, 2]$.
- (c) Determine, analítica e graficamente, o intervalo de peso para que uma pessoa de 1,80 m de altura seja considerada saudável.

Respostas

- 1. a. $x^2 16$:
 - b. $-3x^2 + 12x^3$;
 - c. $-10 4x + 5x^2 + 2x^3$;
 - d. $12 6x + 7x^2 2x^3 + x^4$;
 - e. $-2x^2 + 13xy 20y^2$;
 - f. $3x^3 + 6xy x^2y 2x^3y 2y^2 4xy^2$; g. $-\frac{3}{2} + \frac{11x^2}{2} + 2x^4$; h. $2 3x^2 + 2x^3 + x^4 3x^5 + x^7$;

 - i. $-8 10x x^2 + x^3$:
 - j. $6 w 11w^2 + 6w^3$;
 - k. $30 17x^2 3x^4 + 2x^6$;
 - 1. $6a^3 + 19a^2b + 11ab^2 6b^3$
- 2. a. $4 + 4x + x^2$:

c.
$$1 - 6x + 9x^2$$
;
d. $25 + 20w + 4w^2$;

b. $9 - 6x + x^2$;

e.
$$9 - 12y + 4y^2$$
;

f.
$$4 + 4x + x^2$$
;

g.
$$3 + 2\sqrt{3}x + x^2$$
;

h.
$$4 + 2x + x^2/4$$
;
i. $1 + \frac{4}{x^2} + \frac{4}{x}$;

j.
$$1 + 2\sqrt{2}x + 2x^2$$
;

k.
$$4 - 4\sqrt{x} + x$$
;

1.
$$16 - 8x^2 + x^4$$
;

m.
$$x^2 - 2x^3 + x^4$$
;

n.
$$4x^4 - 4x^2y + y^2$$
;

- o. $x + 2x^{(5/2)} + x^4$; p. $36 - 60x + 37x^2 - 10x^3 + x^4$; q. $\frac{3}{1-x} + \frac{x}{1-x}$.
- 3. a. $-1+z^2$; b. $-4+9x^2$; c. $-\frac{1}{9}+\frac{9x^2}{4}$; d. $-\frac{1}{x^2}+x^2$; e. $4-x^2$; f. $-16+y^4$; g. $x^2y^2-z^2$; h. $-3+z^2$; i. -5+4x.
- 4. a. 3(x-2); b. -2(5+2x); c. 5x(x+4); d. 3x(x-3); e. $x^3(x^2-3)$; f. -x(2x-y); g. xy(1+xy); h. x(3+2y+yz); i. $-4y(3w^2-x-2z)$; j. $y^2(x+y^3+3yz)$; k. 2-x;
- 5. a. $\frac{y-4}{2(y-3)}$; b. $\frac{2}{3}$; c. x-y; d. xy.

1. (x-2)(2+y).

- 6. a. (x-3)(x+3); b. (x-5)(x+5); c. (2x-1)(2x+1); d. 4(3x-5)(3x+5); e. (4-7x)(4+7x); f. (x-2y)(x+2y); g. $(x-1)x^2(x+1)$; h. (x-y)(x+y); i. $\frac{1}{100}(2x-5)(2x+5)$; j. $\frac{1}{36}(9x-2)(9x+2)$; k. $(x-\sqrt{3})(x+\sqrt{3})$; l. $(\sqrt{x}-4)(\sqrt{x}+4)$.
- 7. a. $(x+1)^2$; b. $(x+3)^2$; c. $(x-y)^2$; d. $(x-4)^2$; e. $(2x-1)^2$; f. $(3x-2)^2$.
- 8. a. $3(x+1)^2$; b. $2(x-2)^2$; c. $x(x+1)^2$; d. $x(x-2)^2$.
- 9. 3 + 7x.
- 10. a. x = 0 e x = 4; b. x = 0 e x = -1/5; c. x = 0 e x = 3; d. x = 0 e x = 3/2; e. x = 0 e x = -1/6;

- f. x = -2 e x = 6; g. x = -2 e x = 3; h. x = -10/3 e x = -8/3; i. x = -5 e x = 1.
- 11. a. x = 2 e x = 4; b. x = -3 e x = 5; c. Não há solução real; d. x = -3; e. x = -2 e x = -6; f. x = -5 e x = 1; g. Não há solução real; h. x = -1/2 e x = 4; i. x = 1/2 e x = 1/3; j. Não há solução real; k. x = 2/5; l. $x = \sqrt{5}$; m. $x = -2\sqrt{2}$ e $x = 3\sqrt{2}$; n. x = -0, 3 e x = 0, 4; o. x = 1, 2;
- o. x = 1, 2;p. Não há solução real.
- 12. a. x = 0 e x = 3; b. x = 1 e x = 2; c. $\frac{4}{3}$

d. $\{x \in \mathbb{R} \mid x \le 1 \text{ ou } x \ge 2\}$.

13. a. x = 0 e x = 5; b. x = 1 e x = 4;

- d. $\{x \in \mathbb{R} \mid 1 \le x \le 4\}$.
- 14. a. $\{x \in \mathbb{R} \mid x < -3 \text{ ou } x > 1\}$. b. $\{x \in \mathbb{R} \mid -3 \le x \le 3\}$. c. $\{x \in \mathbb{R} \mid x \le -\sqrt{5} \text{ ou } x \ge \sqrt{5}\}$. d. $\{x \in \mathbb{R} \mid -4 \le x \le 3\}$. e. $\{x \in \mathbb{R} \mid x \le -5 \text{ ou } x \ge 2\}$.

 $\begin{array}{ll} \mathrm{f.} & \{x \in \mathbb{R} \mid -6 \leq x \leq -3\}. \\ \mathrm{g.} & \{x \in \mathbb{R} \mid x \leq 1/3 \text{ ou } x \geq 5\}. \end{array}$

c.

- 16. x = 8.
- 17. t = 150 min. C(150) = 4,5 mg/l.
- 18. a. 1,1 m. b. 5 m. c. 11 m.
- 19. a. A(x) = x(50 2x); b. 12,5 cm.
- 20. a. 20 + x;
 - b. 5000 100x;
 - c. R(x) = (20 + x)(5000 100x);
 - d. R\$ 35,00. Receita: R\$ 122.500,00;
 - e. $\{x \in \mathbb{R} \mid 0 \le x \le 30\}$.
- 21. a. P(x) = 15 + x;
 - b. Q(x) = 100 5x;
 - c. R(x) = (15 + x)(100 5x);
 - d. R\$ 17,50.
- 22. a. $x = 200 \pi y/2$;
 - b. $A(y) = 200y \pi y^2/2;$
 - c. $200/\pi$ m. Área: $20.000/\pi$ m².

- 23. a. 8 x;
 - b. $A(x) = x^2/8 x + 4$;
 - c. $0 \le x \le 8$;

- e. A área é mínima quando os dois pedaços medem $4~\mathrm{cm}.$
- 24. a. y = (500 x)/2;
 - b. $A(x) = -1/2x^2 + 250x$;
 - c. x = 250m, y = 125m, $A(250) = 31250m^2$.

- 25. a. $R(p) = 115p 0.25p^2$;
 - b. $p \leq 140$ reais;
 - c. R\$ 230,00.
- 26. a. $R(x) = -2000x^2 + 10000x + 100000$;
 - b. x = 2, 5. Valor do ingresso R\$ 7,50.
- 27. a. $p_1(a) = 18, 5a; p_2(a) = 25a;$

c. $59,94 \text{ kg} \le p \le 81 \text{ kg}.$