Université Abdelmalek Essaadi Ecole Nationale des Sciences Appliquées Al Hoceima

Chapitre 3

Suites et séries de fonctions

Analyse II

Année 2018-2019

Enseignant: Y. Abouelhanoune

Table des matières

I- Suites de fonctions

- 1- Convergence simple, convergence uniforme des suites de fonctions
 - 1.1- Convergence simple
 - 1.2- Convergence uniforme
- 2- Théorèmes fondamentaux sur les suites de fonctions
 - 2.1- Continuité
 - 2.2- Intégration
 - 2.3- Dérivation

II – Séries de fonctions

- 1- Définition
- 2- Convergence simple, convergence uniforme des séries de fonctions
 - 2.1- Critère de Cauchy de convergence uniforme
 - 2.2- Convergence normale
 - 2.3- Condition suffisante de convergence uniforme
- 3- Théorèmes fondamentaux sur les séries de fonctions
 - 3.1- Théorème de continuité
 - 3.2- Théorème d'intégration
 - 3.3- Théorème de dérivation

SUITES ET SÉRIES DE FONCTIONS

Première partie

Suites de fonctions

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonction d'un ensemble Δ non vide vers un corps \mathbb{K} ($\mathbb{K}=\mathbb{R}$ ou \mathbb{C})

$$\forall n \in \mathbb{N} , \quad f_n : \Delta \longrightarrow \mathbb{K}$$
 $x \longmapsto f_n(x)$

1 Convergence simple, convergence uniforme des suites de fonctions

1.1 Convergence simple

Définition

On dira que la suite de fonctions (f_n) converge simplement sur Δ s'il existe $f \in \mathcal{F}(\Delta, \mathbb{K})$ (appelée limite simple de la suite (f_n)) telle que :

$$\forall x \in \Delta; \quad \lim_{n \to +\infty} f_n(x) = f(x)$$

qui s'écrit aussi :

$$(\forall x \in \Delta) \ (\forall \varepsilon > 0) \ (\exists N \in \mathbb{N}) \ (\forall n \ge N); \ |f_n(x) - f(x)| < \varepsilon$$

Exemples

1. Soit $f_n: \mathbb{R} \longrightarrow \mathbb{R}$ $x \longmapsto f_n(x) = \frac{nx^2}{1 + nx^2} \quad n \in \mathbb{N}$

Pour $x \neq 0$; $\lim_{n \to +\infty} f_n(x) = 1$.

Pour x = 0; $\forall n \in \mathbb{N}$, $f_n(0) = 0$ donc $\lim_{n \to +\infty} f_n(0) = 0$.

La suite de fonctions (f_n) converge donc simplement sur \mathbb{R} vers la fonction f définie par :

$$f: x \longmapsto f(x) = \begin{cases} 1 & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

2. Soit la suite de fonctions $f_n: \mathbb{R} \longrightarrow \mathbb{R}$ $x \longmapsto f_n(x) = nxe^{-nx^2} + x$

 $\forall x \in \mathbb{R}, \text{ on a } \lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} nxe^{-nx^2} + x = x.$

Donc la suite de fonctions (f_n) converge simplement sur \mathbb{R} vers la fonction f définie par : $\forall x \in \mathbb{R}$; f(x) = x.

1.2 Convergence uniforme

Définition

On dira que la suite de fonctions (f_n) converge uniformément sur Δ s'il existe $f \in \mathcal{F}(\Delta, \mathbb{K})$ (appelée limite uniforme de la suite (f_n)) telle que :

$$(\forall \varepsilon > 0); \ (\exists N \in \mathbb{N}) \ (\forall n \ge N) \ (\forall x \in \Delta); \ |f_n(x) - f(x)| < \varepsilon$$

Remarques importantes

- 1. A la différence de la convergence simple, remarquons que dans la convergence uniforme, le rang de convergence N est indépendant des $x \in \mathbb{R}$. La convergence uniforme entraîne donc la convergence simple (la réciproque est fausse).
- 2. La convergence uniforme de (f_n) vers f peut s'écrire aussi :

$$\lim_{n \to +\infty} \left(\sup_{x \in \Delta} |f_n(x) - f(x)| \right) = 0$$

Critère de Cauchy de convergence uniforme

Comme $\mathbb K$ est complet on a alors :

La suite (f_n) converge uniformément vers f sur Δ si et seulement si :

$$\forall \varepsilon > 0; \ \exists N \in \mathbb{N}; \ \forall x \in \Delta; \ \forall n \ge N; \ \forall p \in \mathbb{N}^*; \ |f_{n+p}(x) - f_n(x)| < \varepsilon$$

Exemples

Reprenons la suite $f_n(x) = \frac{nx^2}{1 + nx^2}$.

1. Nous avons vu que (f_n) converge simplement sur \mathbb{R} vers $f: x \longmapsto f(x) = \begin{cases} 1 & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$.

On a de plus la convergence uniforme de (f_n) sur tout l'intervalle $[\omega, +\infty[$. En effet :

2

$$|f_n(x) - f(x)| = \left| \frac{nx^2}{1 + nx^2} - 1 \right| = \frac{1}{1 + nx^2}$$

$$\lim_{n \to +\infty} \left[\sup_{x \in [\omega, +\infty[} |f_n(x) - f(x)| \right] = \lim_{n \to +\infty} \frac{1}{1 + n\omega^2} = 0$$

2. A-t-on convergence uniforme sur $[0, \omega]$?

$$\sup_{x \in [0, \omega[} |f_n(x) - f(x)| = \sup_{x \in [0, \omega[} \frac{1}{1 + nx^2} = 1 \neq 0 \quad \text{sup atteind par limite en } 0.$$

Donc (f_n) ne converge pas uniformément vers f sur $[0, \omega]$.

2 Théorèmes fondamentaux sur les suites de fonctions

Les théorèmes que nous allons établir donnent une réponse au problème suivant :

Problème

Etant donné une suite de fonctions (f_n) dont on connaît les propriétés : (f_n) continue, intégrable ou dérivable, pour tout n, peut-on affirmer que la fonction limite f de (f_n) est elle même continue, intégrable ou dérivable?

2.1 Continuité

Théorème

Soit (f_n) une suite de fonctions définies sur Δ telle que :

- 1. $\forall n \in \mathbb{N}, f_n \text{ est continue sur } \Delta.$
- 2. La suite (f_n) converge uniformément sur Δ vers f.

Alors

f est aussi continue sur Δ .

Remarque

Ce théorème se traduit en disant que "la limite uniforme d'une suite de fonctions continues est continue".

Preuve

Soit (f_n) une suite de fonctions qui converge uniformément sur [a,b] vers f. Alors :

(1)
$$\forall \varepsilon > 0; \ \exists N \in \mathbb{N}; \ \forall n \ge N; \ \forall x \in [a, b]; \ |f_n(x) - f(x)| \le \frac{\varepsilon}{3}$$

Considérons la fonction $f_N: x \longmapsto f_N(x)$. On a f_N est continue sur [a,b]. Donc $: \forall x_0 \in [a,b]$ fixé on a :

(2)
$$\forall \varepsilon > 0; \ \exists \eta > 0; \ |x - x_0| < \eta \Rightarrow |f_N(x) - f_N(x_0)| < \frac{\varepsilon}{3}$$

(Pour montrer la continuité de f, il faut montrer que $|f(x) - f(x_0)| < \varepsilon$). On a :

$$|f(x) - f(x_0)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(x_0)| + |f_N(x_0) - f(x_0)|$$

Or d'après (1) on a : $|f_N(x) - f(x)| < \frac{\varepsilon}{3}$ et $|f_N(x_0) - f(x_0)| < \frac{\varepsilon}{3}$. D'après (2) on a : $|f_N(x) - f_N(x_0)| < \frac{\varepsilon}{3}$. Par conséquent on a :

$$\forall \varepsilon > 0; \ \exists \eta > 0; \ |x - x_0| < \eta \Rightarrow |f(x) - f(x_0)| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

Donc f est continue en tout point x_0 de [a, b]. f est donc continue sur [a, b].

Remarque (Importante)

$$\forall x \in [0, 1[; \lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} x^n = 0$$

x = 1; $f_n(1) = 1$ donc $\lim_{n \to +\infty} f_n(1) = 1$.

Donc (f_n) converge simplement dans [0,1] vers la fonction $: f: x \mapsto f(x) = \begin{cases} 0 & \text{si } x \neq 1 \\ 1 & \text{si } x = 1 \end{cases}$. On voit bien que f n'est pas continue dans [0,1] (elle n'est pas continue en 1). D'ailleur, la convergence de (f_n) vers f n'est pas uniforme; en effet :

$$\sup_{x \in [0,1]} |f_n(x) - f(x)| = \sup_{x \in [0,1]} |x^n - f(x)| = 1$$

ne tend pas vers 0.

2.2 Intégration

Théorème

Soit (f_n) une suite de fonctions définies sur [a,b] telle que :

- 1. $\forall n \in \mathbb{N}, f_n \text{ est intégrable sur } [a, b].$
- 2. La suite (f_n) converge uniformément sur [a, b] vers f.

Alors

- 1. f est intégrable sur [a,b].
- 2.

$$\lim_{n \to +\infty} \int_a^b f_n(x) \, dx = \int_a^b \lim_{n \to +\infty} f_n(x) \, dx = \int_a^b f(x) \, dx$$

3. La suite $g_n(x) = \int_a^b f_n(t) dt$ converge uniformément sur [a,b] vers $\int_a^x f(t) dt$.

Remarque

Ce théorème montre qu'on peut échanger l'intégration et le passage à la limite, lorsque la suite de fonctions intégrables (f_n) convergent uniformément vers f.

Preuve

On va montrer 3., les propriétés 1. et 2. sont laissées en exercice. comme la suite (f_n) converge uniformément vers f sur [a,b], alors :

$$\forall \varepsilon > 0; \ \exists N \in \mathbb{N}; \ \forall n \ge N, \ \forall x \in [a, b], \ |f_n(x) - f(x)| < \frac{\varepsilon}{(b - a)}$$

Comme $|f_n(x) - f(x)|$ et $\frac{\varepsilon}{(b-a)}$ sont positifs, alors :

$$\int_{a}^{b} |f_{n}(x) - f(x)| dt < \int_{a}^{b} \frac{\varepsilon}{(b-a)} = \varepsilon$$

Or on a:

$$\left| \int_a^x (f_n(t) - f(t))dt \right| \le \int_a^x |f_n(t) - f(t)|dx \le \int_a^b |f_n(t) - f(t)|dt$$

Donc
$$\forall \varepsilon > 0; \ \exists N \in \mathbb{N}; \ \forall x \in [a,b]; \ \left| \int_a^x f_n(t)dt - \int_a^x f(t)dt \right| < \varepsilon$$

Donc la suite de fonctions $g_n(x) = \int_a^b f_n(x) dx$ converge uniformément vers $g(x) = \int_a^x f(x) dx$.

Exemple

Soit $I = [0, \pi]$ et (f_n) la suite de fonctions définie sur I par :

$$\forall n \in \mathbb{N}; \ f_n(x) = \sin^n(x)(1 - \sin^n(x))$$

- Il est clair que $\forall n \in \mathbb{N}$; f_n est continue sur $[0, \pi]$ donc intégrable.
- Convergence uniforme

 $\forall x \in [0, \pi] \text{ on a} :$

Si $x \neq \frac{\pi}{2}$: Comme $0 \leq \sin x < 1$ donc $0 \leq \sin^n x < 1$.

D'où : $\lim_{n \to +\infty} \sin^n(x) = 0$ et $\lim_{n \to +\infty} f_n(x) = 0$.

Si $x = \frac{\pi}{2}$:

$$f_n(\frac{\pi}{2}) = \sin^n(\frac{\pi}{2})(1 - \sin^n(\frac{\pi}{2})) = 0$$

Donc la suite (f_n) converge simplement vers la fonction nulle : $f: I \longrightarrow \mathbb{R}$ De plus, si l'on pose $u = \sin x$, on a : $f: I \longrightarrow \mathbb{R}$

$$\sup_{x \in [0,\pi]} |f_n(x) - f(x)| = \sup_{x \in [0,\pi]} \sin^n(x) (1 - \sin^n(x))$$

On a
$$\sup_{x \in [0,\pi]} u(1-u) = \frac{1}{4}$$

Donc
$$\sup_{x \in [0,\pi]} |f_n(x) - f(x)| = \frac{1}{4^n} \xrightarrow[n \to +\infty]{} 0$$

D'où la suite (f_n) converge uniformément vers la fonction nulle f(x) = 0. En appliquant le théorème précédent :

$$\lim_{n \to +\infty} \int_0^{\pi} \sin^n(x) (1 - \sin^n(x)) dx = \int_0^{\pi} \lim_{n \to +\infty} \sin^n(x) (1 - \sin^n(x)) dx = \int_0^{\pi} 0 dx = 0$$

2.3 Dérivation

Théorème

Soit (f_n) une suite de fonctions sur [a,b] telle que :

- 1. $\forall n \in \mathbb{N}, f_n \text{ est de classe } C^1 \text{ sur } [a, b].$
- 2. $\exists x_0 \in [a, b] / \text{la suite } (f_n(x_0)) \text{ converge } (\lim_{n \to +\infty} f_n(x_0) = l).$
- 3. La suite (f'_n) converge uniformément sur [a,b] vers une fonction g.

Alors

1. La suite (f_n) converge uniformément sur [a,b] vers la fonction f définie par :

$$f(x) = l + \int_{x_0}^x g(t) dt$$

2. f est dérivable sur [a,b] et l'on a : f'=g

Remarque (f' = g)

Ce résultat s'écrit aussi :

$$\left(\lim_{n \to +\infty} f_n(x)\right)' = \lim_{n \to +\infty} f'_n(x)$$

c.a.d qu'on peut échanger la dérivation et le passage à la limite.

Preuve

On a la suite (f'_n) de fonctions converge uniformément vers g. De plus comme (f'_n) est intégrable car f_n est de classe C^1 , d'après le théorème d'intégration, la suite de fonctions $\int_{x_0}^x f'_n(x)dt$ converge uniformément vers $\int_{x_0}^x g(x)dx$.

Or on a $\lim_{n\to+\infty} f_n(x_0) = l$. On montre que la suite (f_n) converge uniformément sur [a,b] vers $l + \int_{x_0}^x g(x) dx$.

En effet : $\forall x \in [a, b]$;

$$\left| f_n(x) - \left(l + \int_{x_0}^x g(t)dt \right) \right| = \left| \int_{x_0}^x f_n'(t)dt + f_n(x_0) - l - \int_{x_0}^x g(t)dt \right|$$

$$\leq |f_n(x_0) - l| + \left| \int_{x_0}^x f_n'(t)dt - \int_{x_0}^x g(t)dt \right|$$

Lorsque $n \to +\infty$, les deux modules du second membre tendent chacune vers 0. Donc le premier membre tend aussi vers 0. La suite (f_n) converge donc uniformément vers $f(x) = l + \int_{x_0}^x g(t) dt$. Il est clair aussi que f est dérivable sur [a,b] et on a : $f'(x) = g(x) \forall x \in [a,b]$.

Deuxième partie

Séries de fonctions

1 Définition

Soit $U_n(x)$ une suite de fonctions définies d'un ensemble Δ vers un corps \mathbb{K} .

 $\forall n \in \mathbb{N}$ $\begin{matrix} U_n : \Delta \longrightarrow \mathbb{K} \\ x \longmapsto U_n(x) \end{matrix}$. A partir de cette suite de fonctions, on peut définir une nouvelle suite de fonctions $(S_n(x))$ par :

$$S_0(x) = U_0(x)$$

 $S_1(x) = U_0(x) + U_1(x)$
 \vdots
 $S_n(x) = U_0(x) + \dots + U_n(x) = \sum_{k=0}^n U_k(x)$

On apelle série de fonctions la suite de fonctions $(S_n(x))$.

On note en général la série par $\sum U_n(x)$.

 $U_n(x)$ est le terme général de la série.

 $S_n(x)$ est la suite des sommes partielles.

2 Convergence simple, convergence uniforme de séries de fonctions

Définition 1

On dit que la série de fonctions $\sum U_n(x)$ converge simplement sur Δ si la suite des sommes partielles $(S_n(x))$ converge simplement sur Δ . Si on appelle S(x) la limite simple de $S_n(x)$, alors on a :

$$\forall x \in \Delta; \ \forall \varepsilon > 0; \ \exists N \in \mathbb{N}; \ \forall n \ge N; \ |S_n(x) - S(x)| < \varepsilon$$

 $S(x) = \lim_{n \to +\infty} S_n(x)$ est appelée somme de la série $\sum U_n(x)$

Définition 2

On dit que la série de fonctions $\sum U_n(x)$ converge uniformément sur Δ si la suite des sommes partielles $(S_n(x))$ converge uniformément sur Δ . Autrement dit :

$$\forall \varepsilon > 0; \ \exists N \in \mathbb{N}; \ \forall n \geq N; \ \forall x \in \Delta; \ |S_n(x) - S(x)| < \varepsilon$$

La convergence uniforme sur Δ s'écrit aussi :

$$\lim_{n \to +\infty} \sup_{x \in \Delta} |S_n(x) - S(x)| = 0$$

2.1 Critère de Cauchy de convergence uniforme dans un espace complet

La série de fonctions $\sum U_n(x)$ converge uniformément sur Δ si et seulement si :

$$\forall \varepsilon > 0; \ \exists N \in \mathbb{N}; \ \forall n \ge N; \ \forall p \in \mathbb{N}^*; \ \forall x \in \Delta; \quad \left| \sum_{k=n+1}^{n+p} U_k(x) \right| < \varepsilon$$

7

Exemple

Considérons la série de fonctions $\sum U_n(x)$ définie sur \mathbb{R} par :

$$\forall n \in \mathbb{N}; \quad U_n(x) = \frac{x}{(1+|x|)^n}$$

• Convergence simple de $\sum U_n(x)$ sur \mathbb{R} : La suite des sommes partielles:

$$S_n(x) = \sum_{k=0}^n \frac{x}{(1+|x|)^k}$$

$$S_n(x) = x + \frac{x}{1+|x|} + \frac{x}{(1+|x|)^2} + \dots + \frac{x}{(1+|x|)^n}$$

$$= x \left[1 + \frac{1}{1+|x|} + \left(\frac{1}{1+|x|} \right)^2 + \dots + \left(\frac{1}{1+|x|} \right)^n \right]$$

Si x = 0, alors $\forall n \in \mathbb{N}$; $U_n(0) = 0$. Donc $S_n(0) = 0$. c.a.d $\lim_{n \to +\infty} S_n(0) = 0$.

Si $x \neq 0$,

$$S_n(x) = x \left[\frac{1 - \left(\frac{1}{1+|x|}\right)^{n+1}}{1 - \frac{1}{1+|x|}} \right]$$

Or $0 < \frac{1}{1+|x|} < 1$ donc $\lim_{n \to +\infty} \left(\frac{1}{1+|x|} \right)^{n+1} = 0$. D'où :

$$\lim_{n \to +\infty} S_n(x) = \frac{x}{1 - \frac{1}{1 + |x|}} = \frac{x(1 + |x|)}{|x|}$$

La série de fonctions $\sum U_n(x)$ converge simplement sur $\mathbb R$ vers sa somme S(x) définie par :

$$S: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} 0 & \text{si } x = 0 \\ \frac{x(1+|x|)}{|x|} & \text{si } x \neq 0 \end{cases}$$

 \bullet Convergence uniforme sur \mathbb{R} :

$$\sup_{x \in \mathbb{R}} |S_n(x) - S(x)| = \sup_{x \in \mathbb{R}^*} \left| x \left(\frac{1 - \left(\frac{1}{1+|x|} \right)^{n+1}}{1 - \frac{1}{1+|x|}} \right) - \frac{x}{1 - \frac{1}{1+|x|}} \right| \\
= \sup_{x \in \mathbb{R}^*} \left| \frac{-x \left(\frac{1}{1+|x|} \right)^{n+1}}{1 - \frac{1}{1+|x|}} \right| \\
= \sup_{x \in \mathbb{R}^*} \left(\frac{1}{1+|x|} \right)^n = 1 \neq 0$$

Il n'y a pas de convergence uniforme sur \mathbb{R} de la série $\sum U_n(x)$, par contre on peut montrer qu'il y a convergence uniforme sur $[a, +\infty[; a > 0]]$.

2.2 Convergence normale

On dit qu'une série de fonctions $\sum U_n(x)$ converge normalement sur Δ s'il existe une série numérique $\sum V_n$ convergente telle que l'on ait :

$$\forall x \in \Delta; \quad |U_n(x)| \le V_n$$

Exemples

1.
$$\Delta = [0, 1]; \quad U_n(x) = \frac{x}{(n+1)^2}$$
. On a :

$$\forall x \in \Delta; \quad |U_n(x)| = \left| \frac{x}{(n+1)^2} \right| \le \frac{1}{(n+1)^2} \le \frac{1}{n^2}$$

Or la série de Riemann $\sum \frac{1}{n^2}$ converge. Donc $\sum U_n(x)$ converge normalement sur Δ .

2.
$$\Delta = \mathbb{R}$$
; $U_n(x) = \frac{\sin(nx)}{n^2}$.

$$\forall x \in \Delta; \quad \left| \frac{\sin(nx)}{n^2} \right| \le \frac{1}{n^2}$$

Or $\sum \frac{1}{n^2}$ converge. Donc $\sum U_n(x)$ converge normalement \mathbb{R} .

3.
$$\Delta = \mathbb{R}_+$$
; $U_n(x) = x^n e^{-nx}$. Calculons $\sup_{x \in \mathbb{R}_+} |U_n(x)| = \sup_{x \in \mathbb{R}_+} x^n e^{-nx}$.

Etudions sur \mathbb{R}_+ la fonctions $f(x) = x^n e^{-nx}$.

$$\forall x \in \mathbb{R}_+; \quad f'(x) = nx^{n-1}e^{-nx} - ne^{-nx}x^n = x^{n-1}ne^{-nx}(1-x)$$

$$f'(x) = 0 \iff x = 0 \text{ ou } x = 1$$

x	0	1	$+\infty$
f'(x)	+		
f	0 >	e^{-n}	0

$$\sup_{x \in \mathbb{R}_+} |U_n(x)| = e^{-n} = V_n. \text{ Or } \sum e^{-n} \text{ converge car } \sqrt[n]{e^{-n}} = e^{-1} < 1 \text{ (critère de Cauchy)}.$$

D'où $\sum U_n(x)$ converge normalement sur \mathbb{R}_+ .

2.3 Condition suffisante de convergence uniforme

Théorème (important)

Si $\sum U_n(x)$ converge normalement sur Δ alors elle converge uniformément sur Δ .

Preuve

 $\sum U_n(x)$ converge normalement sur $\Delta \iff \forall x \in \Delta; \quad |U_n(x)| \leq V_n$ avec $\sum V_n$ série numérique convergente.

Utilisons le critère de Cauchy de convergence uniforme dans un espace complet :

$$\left| \sum_{k=n+1}^{n+p} U_k(x) \right| = |U_{n+1}(x) + \dots + U_{n+p}(x)|$$

$$\leq |U_{n+1}| + \dots + |U_{n+p}(x)|$$

$$\leq V_{n+1} + V_{n+2} + \dots + V_{n+p}$$

Comme $\sum U_n$ converge, alors elle vérifie le critère de Cauchy dans un espace complet. C'est à dire $\left|\sum_{n+1}^{n+p} V_k\right| < \varepsilon$. D'où $\left|\sum_{n+1}^{n+p} U_k(x)\right| < \varepsilon$.

Exemple

$$U_n(x) = \frac{\sin(nx)}{n^3 + x^2} \qquad \Delta = \mathbb{R}$$

$$\forall x \in \mathbb{R}; \quad |U_n(x)| \le \frac{1}{n^3 + x^2} \le \frac{1}{n^3}$$

La série $\sum \frac{1}{n^3}$ converge donc la série de fonctions $\sum U_n(x)$ converge uniformément sur \mathbb{R} .

3 Théorèmes fondamentaux sur les séries de fonctions

3.1 Théorème de continuité

Soit $\sum U_n(x)$ une série de fonctions définies sur Δ et telle que :

- 1. $\forall n \in \mathbb{N}, U_n(x)$ est continue sur Δ .
- 2. $\sum U_n(x)$ converge uniformément sur Δ vers sa somme S(x).

Alors

S(x) est aussi continue sur Δ .

Preuve

 $\sum U_n(x)$ converge uniformément sur Δ vers $S(x) \iff$ la suite de fonctions $(S_n(x))$ converge uniformément sur Δ vers S(x).

De plus, comme $\forall n \in \mathbb{N}, U_n(x)$ est continue sur Δ , alors $\forall n \in \mathbb{N}, S_n(x)$ est aussi continue sur Δ . D'après le théorème de continuité des suites de fonctions, S(x) est continue sur Δ .

Remarque

Le théorème de continuité a comme résultat :

$$\lim_{x \to x_0} \left(\sum_{n=0}^{+\infty} U_n(x) \right) = \sum_{n=0}^{+\infty} \left(\lim_{x \to x_0} U_n(x) \right)$$

3.2 Théorème d'intégration

Soit $\sum U_n(x)$ une série de fonctions définies sur [a,b] et vérifiant :

- 1. $\forall n \in \mathbb{N}, U_n(x)$ est intégrable sur [a, b].
- 2. $\sum U_n(x)$ converge uniformément sur [a,b] vers sa somme S(x).

Alors

- 1. S(x) est aussi intégrable sur [a, b].
- 2.

$$\sum_{n=0}^{+\infty} \left(\int_a^b U_n(t) dt \right) = \int_a^b \left(\sum_{n=0}^{+\infty} U_n(t) \right) dt = \int_a^b S(t) dt$$

3. La série de fonctions $\sum V_n(x)$ avec $V_n(x) = \int_a^x U_n(t) dt$ converge uniformément sur [a,b] vers $\int_a^x S(t) dt$.

Preuve

Résulte facilement du théorème d'intégration de suites de fonctions.

3.3 Théorème de dérivation

Soit $\sum U_n(x)$ une série de fonctions définies sur Δ et telles que :

- 1. $\forall n \in \mathbb{N}, \ U_n(x) \in C^1(\Delta)$.
- 2. $\exists x_0 \in \Delta$ tel que la série numérique $\sum U_n(x_0)$ converge.
- 3. La série de fonctions $\sum U'_n(x)$ converge uniformément sur Δ .

Alors:

- 1. La série de fonctions $\sum U_n(x)$ converge uniformément sur Δ .
- 2. Sa somme S(x) est de classe C^1 sur Δ et on a :

$$\forall x \in \Delta, \quad S'(x) = \left(\sum_{n=0}^{+\infty} U_n(x)\right)' = \sum_{n=0}^{+\infty} U'_n(x)$$

Preuve

Utiliser le théorème de dérivation des suites de fonctions.

Variante du théorème de dérivation

Soit $\sum U_n(x)$ une série de fonctions définies sur Δ et telles que :

- 1. $\forall n \in \mathbb{N}, \ U_n(x) \in C^1(\Delta)$.
- 2. $\exists x_0 \in \Delta$ tel que la série numérique $\sum U_n(x_0)$ converge.
- 3. La série $\sum U'_n(x)$ converge uniformément sur tout ségment [c,d] de Δ .

Alors:

- 1. $\sum U_n(x)$ converge uniformément sur tout ségment [c,d] de Δ .
- 2. S(x) est de classe C^1 sur Δ et on a :

$$\forall x \in \Delta, \quad S'(x) = \left(\sum_{n=0}^{+\infty} U_n(x)\right)' = \sum_{n=0}^{+\infty} U'_n(x)$$