Electronic Systems

ZyBo Development Board Xilinx VIVADO

Ing. Luca Zulberti – luca.zulberti@phd.unipi.it Prof. Massimiliano Donati – massimiliano.donati@unipi.it Prof. Luca Fanucci – luca.fanucci@unipi.it

Agenda

- 1) ZyBo Development Board
- 2) Zynq 7000 APSoC
- 3) DDFS Implementation on ZyBo
- 4) Xilinx VIVADO Design Suite
- 5) Vivado Design Flow

Agenda

- 1) ZyBo Development Board
- 2) Zynq 7000 APSoC
- 3) DDFS Implementation on ZyBo
- 4) Xilinx VIVADO Design Suite
- 5) Vivado Design Flow

The ZYBO (ZYnq BOard) is a feature-rich, ready-to-use, entry-level embedded software and digital circuit development platform built around the smallest member of the Xilinx Zynq-7000 family, the Z-7010.

The Z-7010 is based on the Xilinx All Programmable System-on-Chip (AP SoC) architecture, which tightly integrates a dual-core ARM Cortex-A9 processor with Xilinx 7-series Field Programmable Gate Array (FPGA) logic.

- ZYNQ XC7Z010-1CLG400C
- Others: ZyBo datasheet

https://www.xilinx.com/support/documentation/university/XUP%20Boards/XUPZYBO/documentation/ZYBO_RM_B_V6.pdf

- ZYNQ XC7Z010-1CLG400C
- 16-bits VGA port

The VGA Port:

6 bits DAC on GRN channel

• R-2R ladder soldered on board

ZYNQ I/O pin VIO = 3.3 V

If GRN[5:0] = "1111111"

 $V_{DAC}(63) \approx 3.2 \ V$

- ZYNQ XC7Z010-1CLG400C
- 16-bits VGA port
- GPIO:
 - 4 pushbuttons
 - 4 slide switches
 - 4 LEDs

Push Buttons

Switches

• The ZyBo provides a **125 MHz clock** to the PL (Programmable Logic) on L16 pin.

Supply by USB

Programming Mode QSPI

USB: host

Agenda

- 1) ZyBo Development Board
- 2) Zynq 7000 APSoC
- 3) DDFS Implementation on ZyBo
- 4) Xilinx VIVADO Design Suite
- 5) Vivado Design Flow

Microelectronic Scopes:

- Medical
- Military and Avionics
- Industrial
- Consumer
- Transport and Mobility
- Telecommunication
- Sensors Interface and IoT

functions

Zynq 7000 APSoC

SoC integrates in a single chip:

- Processor/s
- DSPs
- PLDs
- FPGAs
- Interfaces
- Memories
- IPs

From discrete component to SoC

Xilinx APSoC (All Programmable SoC)

- Single chip as HW/SW design platform
 - PS: Processing System (2x ARM Cortex A-9)
 - PL: Programmable Logic (FPGA 7-series 28nm)

Discrete component Architecture

ZINQ APSoC Architecture

ZYNQ XC7Z010-1CLG400C

- 650Mhz dual-core Cortex-A9 processor
- DDR3 memory controller with 8 DMA channels
- High-bandwidth peripheral controllers: 1G Eth, USB 2.0, SDI
- · Low-bandwidth peripheral controller: SPI, UART, CAN, I2C
- Reprogrammable logic equivalent to Artix-7 FPGA
 - 4,400 logic slices, each with four 6-input LUTs and 8 flip-flops
 - 240 KB of fast block RAM
 - Two clock management tiles,
 - each with a phase-locked loop (PLL)
 - and mixed-mode clock manager (MMCM)
 - 80 DSP slices
 - Internal clock speeds exceeding 450MHz
 - On-chip analog-to-digital converter (XADC)

PL resources:

- Configurable Logic Block (CLB)
 - Slice (x2)
 - LUT (x4)
 - FF (x8)
- Switch Matrix
- Carry Logic
- Input/Output Blocks (IOBs)
- Block RAM
- DSP48E1

Column of Block RAMs Column of DSP48E1s

PL resources:

- Configurable Logic Block (CLB)
 - · Slice (x2)
 - LUT (x4)
 - FF (x8)
- Switch Matrix
- · Carry Logic
- Input/Output Blocks (IOBs)
- Block RAM
- DSP48E1

PL resources:

- Configurable Logic Block (CLB)
 - Slice (x2)
 - LUT (x4)
 - FF (x8)
- Switch Matrix
- Carry Logic
- Input/Output Blocks (IOBs)
- Block RAM
- DSP48E1

Figure 2-4: Diagram of SLICEL

PL resources:

- Configurable Logic Block (CLB)
 - Slice (x2)
 - LUT (x4)
 - FF (x8)
- Switch Matrix
- Carry Logic
- Input/Output Blocks (IOBs)
- Block RAM
- DSP48E1

programmable

Agenda

- 1) ZyBo Development Board
- 2) Zynq 7000 APSoC
- 3) DDFS Implementation on ZyBo
- 4) Xilinx VIVADO Design Suite
- 5) Vivado Design Flow

DDFS Wrapper for ZyBo

We need to remap our system into the I/O resources of ZyBo

yq[5:0] **to unsigned**. On GRN channel

reset (active high)

fw[3:0]

fw[3:0] led

feedback

DDFS Wrapper for ZyBo

Write the wrapper for implementation

The DAC converts only to positive values!

The negation of the MSB is equivalent to add

 2^{N-1}

If N = 4, 2^{N-1} is equivalent to 0b1000 (unsigned binary representation) and we have that:

- \bullet 0b0000 + 0b1000 = 0b1000
- \cdot 0b0111 + 0b1000 = 0b1111

Same consideration for negative values:

 \bullet 0b1001 + 0b1000 = 0b0001

TRANSLATION!

For the DDFS (6 bits):

• Max sample: 31 => 0x1F

• Min sample: -31 => 0x21

Remind: -31 in C2:

• Starting form 31: 0b011111

• Invert all bits: 0b100000

• Add 1: 0b100001

• For the DDFS: (N = 6), 2^{N-1} is equivalent to 0b100000 and we have:

Max sample:

- 0x1F => 0b0111111
- 0b0111111 + 0b1000000 = 0b1111111

Min sample:

- $0x21 \Rightarrow 0b100001$
- 0b100001 + 0b100000 = 0b000001

Agenda

- 1) ZyBo Development Board
- 2) Zynq 7000 APSoC
- 3) DDFS Implementation on ZyBo
- 4) Xilinx VIVADO Design Suite
- 5) Vivado Design Flow

Xilinx VIVADO Design Suite

FPGA Design Flow

- VHDL
- Verilog
- SV

RTL elaboration

- Compiling
- Design Exploration
- RTL schematic

Synthesis

- Strategies
- Design Constraints
- I/O Pin assignment
- Reports Analysis

Implementation

- Strategies
- Design Constraints
- Timing Analysis
- Power Analysis
- Reports Analysis

Generate Bitstream

• Programming the Device

Post-Synthesis Simulation

Post-P&R
Timing
Simulation

Xilinx VIVADO Design Suite

- 1. Menu Bar
- 2. Main Toolbar
- 3. Flow Navigator
- 4. Layout Selector
- 5 Data Windows Area
- 6. Workspace
- 7. Menu Command Search
- 8. Project Status Bar
- 9. Status Bar
- 10. Result Windows Area

Agenda

- 1) ZyBo Development Board
- 2) Zynq 7000 APSoC
- 3) DDFS Implementation on ZyBo
- 4) Xilinx VIVADO Design Suite
- 5) Vivado Design Flow

RTL Elaboration Synthesis Implement. Bitstream

When loading src files, select the «work» library if you have packages to include

RTL Elaboration

Synthesis

Implement.

Bitstream

Hierarchy is automatically resolved

Open Elaborated Design:

- Checks VHDL consistency
- Allows RTL analysis

RTL ANALYSIS → Open Elaborated Design → Schematic

RTL Elaboration Synthesis Implement. Bitstream

- Close the Elaborated Design
- Run a first Synthesis (without constraints)
- ...
- ...
- At the end Open Synthesized Design
- Open Project Summary
- Check any messages

RTL Elaboration Synthesis Implement. Bitstream

Save and look the xdc file

RTL Elaboration Synthesis Implement. Bitstream

- Re-Run the synthesis
- Check the Slack (Report Timing Summary)
 - Slack: "Arrival Required" Time
 - Positive OK
 - Negative BAD

WNS: Worst Negative Slack (CRITICAL PATH)

TNS: Total Negative Slack (sum of negative slacks)

Design Timing Summary

Setup		Hold	Pulse Width		
Worst Negative Slack (WNS):	3,196 ns	Worst Hold Slack (WHS):	0,170 ns	Worst Pulse Width Slack (WPWS):	3,500 ns
Total Negative Slack (TNS):	0,000 ns	Total Hold Slack (THS):	0,000 ns	Total Pulse Width Negative Slack (TPWS):	0,000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	18	Total Number of Endpoints:	18	Total Number of Endpoints:	19
All user specified timing constrai	ints are met.				

It is possible to assign I/O pin before Implementation. (Physical Constraints)

It is possible to assign I/O pin before Implementation. (Physical Constraints)

> $\frac{\mathrm{RTL}}{\mathrm{Elaboration}}$

Synthesis

Implement.

Bitstream

Run an Implementation (with constraints)

. . .

At the end Open Implemented Design:

- Project Summary
 - Check errors/warnings/messages
- Report timing
 - Check the slack

Design Timing Summary

Setup		Hold		Pulse Width		
Worst Negative Slack (WNS):	3,194 ns	Worst Hold Slack (WHS):	0,228 ns	Worst Pulse Width Slack (WPWS):	3,500 ns	
Total Negative Slack (TNS):	0,000 ns	Total Hold Slack (THS):	0,000 ns	Total Pulse Width Negative Slack (TPWS):	0,000 ns	
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	
Total Number of Endpoints:	18	Total Number of Endpoints:	18	Total Number of Endpoints:	19	

After implementation it is possible to check results in the Project Summary:

- Errors and warnings
- Resources Utilization (Graph or Table)
- Timing analysis
- Power consumption estimation

RTL Elaboration Synthesis Implement. Bitstream

Open Implemented Design → «Device» window

Slice

RTL Elaboration

Synthesis

Implement.

Bitstream

- Generate the bitstream file (*.bit)
- Connect the Device (ZyBo Board)
- Open Hardware Manager
- Program the Device
- Evaluate your DDFS

End, Questions?

- 1) ZyBo Development Board
- 2) Zynq 7000 APSoC
- 3) DDFS Implementation on ZyBo
- 4) Xilinx VIVADO Design Suite
- 5) Vivado Design Flow

