LEAD UNIVERSITY COMPUTACION PARALELA Y DISTRIBUIDA

TAREA 3: MEDICION DE LATENCIA Y COMUNICACIÓN COLECTIVA

II CUATRIMESTRE 2024

PROFESOR: JOHANSELL VILLALOBOS CUBILLO

ESTUDIANTE: WALTER BONILLA CAMACHO

1. Descripción

Programa A: estadisticas_mpi.py

Objetivo: Calcular estadísticas globales (mínimo, máximo y promedio) de un arreglo de números distribuido entre múltiples procesos usando MPI.

Funcionamiento:

El proceso raíz (rank=0) genera un arreglo de 1,000,000 números aleatorios (entre 0 y 100).

Divide el arreglo en 4 partes iguales (250,000 elementos por proceso).

Cada proceso calcula sus estadísticas locales.

Usando operaciones MPI_Reduce, se obtienen los resultados globales.

Finalmente, se reconstruye el arreglo original con MPI_Gather y se verifica su precisión.

Programa B: latencia_p2p_mpi.py

Objetivo: Medir la latencia (tiempo de comunicación) entre dos procesos usando operaciones punto a punto (MPI_Send y MPI_Recv).

Funcionamiento:

Proceso 0 envía un mensaje de 1 byte al Proceso 1, que lo devuelve inmediatamente.

Este ciclo se repite 10,000 veces para obtener un promedio preciso.

Se calcula la latencia de ida y vuelta y se estima la unidireccional.

2. Análisis de Resultados

Resultados del Programa 1 (Estadísticas MPI)

Métrica	Valor MPI	Valor NumPy (Verificación)
Mínimo	0.0000	0.0000
Máximo	99.9998	99.9998
Promedio	49.9243	49.9243

Interpretación:

Los resultados de MPI coinciden exactamente con los de NumPy, lo que confirma que la distribución y reducción de datos funcionan correctamente.

El arreglo se reconstruyó sin errores (Gather exitoso), validando la integridad de los datos.

El uso de 4 procesos permitió paralelizar el cálculo eficientemente.

Resultados del Programa 2 (Latencia Punto a Punto)

Métrica Valor

Latencia (ida y vuelta) 5.45 μs

Latencia estimada (unidireccional) 2.73 µs

Interpretación:

La latencia de 5.45 µs (ida y vuelta) es típica para comunicaciones MPI en una misma máquina.

La latencia unidireccional estimada ($2.73 \, \mu s$) es consistente con el rendimiento esperado en sistemas modernos.

Este tiempo incluye:

Overhead de MPI (gestión de mensajes).

Tiempo de envío/recibo entre procesos.

3. Conclusiones

Paralelización efectiva:

El primer programa demostró que MPI puede distribuir cálculos estadísticos sin pérdida de precisión.

La reconstrucción del arreglo (Gather) garantiza que los datos no se corrompen durante la comunicación.

Baja latencia en comunicaciones:

El segundo programa confirmó que MPI es eficiente para operaciones punto a punto, con latencias en el rango de microsegundos.

Esto es crucial para aplicaciones que requieren sincronización frecuente entre procesos (ej: simulaciones en tiempo real).

Recomendaciones:

Para problemas más grandes, aumentar el número de procesos (-np 8 o más) podría mejorar el rendimiento.

En redes distribuidas (varias computadoras), la latencia sería mayor debido al hardware de red.