CSE 1003 Digital Logic and Design Module 4 Combinational Circuits II L4

Dr. S.Hemamalini
Professor
School of Electrical Engineering
VIT Chennai

Contents

6 hrs

- Binary Parallel Adder Look ahead carry
- Magnitude Comparator
- Decoders
- Encoders
- Multiplexers
- Demultiplexers

• CO4: Analyze the operation of medium complexity standard combinational circuits like the encoder, decoder, multiplexer, demultiplexer.

Encoders

- An encoder is a combinational logic circuit that performs the inverse operation of a decoder.
- The process of converting various numbers (numerals, alphabets, special characters) into a binary format is called encoding.
- An encoder has 2^n (or fewer) input lines and n output lines.
- The opposite of the decoding process is called encoding, i.e. encoding is a process of converting familiar numbers or symbols into a coded format.
- Binary encoders
 - Converts one of 2ⁿ inputs to an n-bit binary output
 - Useful for compressing data
 - Can be developed using AND/OR gates
- The simplest encoder is a 2ⁿ-to-n binary encoder
 - One of 2ⁿ inputs = 1
 - Output is an n-bit binary number
- Commonly used encoders
 - Octal-to-binary encoder
 - Decimal-to-BCD encoder
 - Hexadecimal-to-binary encoder

Block diagram of encoder

8-to-3 Binary Encoder or Octal-to-Binary Encoder

- Have eight input lines, each representing an octal digit, and three output lines representing the three-bit binary equivalent.
- At any one time, only one input line has a value of 1.

Block diagram of an octal to binary encoder

$$Y_{2} = I_{7} + I_{6} + I_{5} + I_{4}$$

$$Y_{1} = I_{7} + I_{6} + I_{3} + I_{2}$$

$$Y_{0} = I_{7} + I_{5} + I_{3} + I_{1}$$

Truth Table of an Octal to Binary Encoder

		Outputs						
I_0	I 1	I 2	I 3	Ι 4	I 5	Ι 6	I 7	$\overline{Y_2 Y_1 Y_0}$
1	0	0	0	0	0	0	0	0 0 0
0	1	0	0	0	0	0	0	0 0 1
0	0	1	0	0	0	0	0	0 1 0
0	0	0	1	0	0	0	0	0 1 1
0	0	0	0	1	0	0	0	1 0 0
0	0	0	0	0	1	0	0	1 0 1
0	0	0	0	0	0	1	0	1 1 0
0	0	0	0	0	0	0	_1	1 1 1

Decimal-to-BCD Encoder

	INPUTS											PUTS	
Y ₉	Y ₈	Y ₇	Y ₆	Y ₅	Y ₄	Y ₃	Y ₂	Y ₁	Y ₀	A ₃	A ₂	A ₁	A ₀
0	0	0	0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	1
0	0	0	0	0	0	0	1	0	0	0	0	1	0
0	0	0	0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	0	1	0	0	0	0	0	1	0	0
0	0	0	0	1	0	0	0	0	0	0	1	0	1
0	0	0	1	0	0	0	0	0	0	0	1	1	0
0	0	1	0	0	0	0	0	0	0	0	1	1	1
0	(1)	0	0	0	0	0	0	0	0	1	0	0	0
(1)	0	0	0	0	0	0	0	0	0	1	0	0	1

Logic diagram of decimal-to-BCD encoder

$$A_{3} = Y_{8} + Y_{9}$$

$$A_{2} = Y_{4} + Y_{5} + Y_{6} + Y_{7}$$

$$A_{1} = Y_{2} + Y_{3} + Y_{6} + Y_{7}$$

$$A_{0} = Y_{1} + Y_{3} + Y_{5} + Y_{7} + Y_{9}$$

Priority Encoders

- A priority encoder generates a binary code corresponding to the number of the active input with highest priority (or, most often, the highest number).
- It can be used in the following applications:
 - keyboard encoder: when several keys are pressed simultaneously, only the key with the highest number is taken into consideration;
 - unit processing interrupt requests in a microprocessor: in case of simultaneous interrupt requests, only the request with the highest priority is accepted.

Priority Encoders

4-to-2 line Priority Encoder

• the higher the subscript number, the higher the priority of the input.

	IN	PUTS	OUTPUTS				
Υ ₃	Y ₂	Y ₁	Υ ₀	A ₁	A ₀	V	
0	0	0	0	Х	х	0 _	
0	0	0	1	0	0	/ 1	
0	0	1	Х	0	1	1	
0	1	х	Х	1	0	1	
1	X	х	Х	1	1	1	

8-to-3 Priority Encoder

- What if more than one input line has a value of 1?
- Ignore "lower priority" inputs.

74148, 74LS148, and 74HC148 are all octal-to-binary priority encoders.

FUNCTION TABLE

	INPUTS									C	UTPUT	S	
EI	0	1	2	3	4	5	6	7	A2	A1	A0	GS	EO
Н	Х	X	X	X	Х	X	X	X	н	Н	н	Н	Н
L	Н	Н	н	Н	Н	Н	Н	н	н	Н	н	Н	L
L	Х	X	X	X	X	X	X	L	L	L	L	L	н
L	Х	X	X	X	X	X	L	н	L	L	н	L	н
L	Х	X	X	X	X	L	Н	Н	L	Н	L	L	н
L	Х	X	X	X	L	Н	Н	Н	L	Н	Н	L	н
L	Х	X	X	L	Н	Н	Н	Н	н	L	L	L	н
L	Х	X	L	Н	Н	Н	Н	Н	н	L	Н	L	н
L	Х	L	Н	Н	Н	Н	Н	Н	н	Н	L	L	н
L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н

8-to-3 priority encoder IC 74148

Decimal-to-BCD Encoder

$\overline{\mathbf{A}}_{1}$	Ā ₂	Ā 3	\bar{A}_4	Ā 5	Ā 6	Ā 7	Ā 8	- A ₉	\overline{O}_3	$\mathbf{\bar{O}_2}$	$\overline{\mathbf{o}}_{\mathbf{i}}$	$\overline{\mathbf{O}}_{0}$
1	1	1	1	1	1	1	1	1	1	1	1	1
X	X	X	X	X	X	X	X	0	0	1	1	0
X	X	X	X	X	X	X	0	1	0	1	1	1
X	X	X	X	X	X	0	1	1	1	0	0	0
X	X	X	X	X	0	1	1	1	1	0	0	1
X	X	X	X	0	1	1	1	1	1	0	1	0
X	X	X	0	1	1	1	1	1	1	0	1	1
X	X	0	1	1	1	1	1	1	1	1	0	0
X	0	1	1	1	1	1	1	1	1	1	0	1
0	1	1	1	1	1	1	1	1	1	1	1	0

Encoder Application (Monitoring Unit)

Encoder identifies the requester and encodes the value

Controller accepts digital inputs.

Encoder Applications

- 1. Keyboard encoder for computers
- 2. Optical encoders –linear or rotary
- 3. Interfacing peripherals to microprocessors
- 4. Audio/video coding and transmission