Parallel Programming in C with MPI and OpenMP

Michael J. Quinn

Chapter 7 Performance Analysis

Learning Objectives

- Predict performance of parallel programs
- Understand barriers to higher performance

Outline

- General speedup formula
- Amdahl's Law
- Gustafson-Barsis' Law
- Karp-Flatt metric
- Isoefficiency metric

Speedup Formula

$$Speedup = \frac{Sequential\ execution\ time}{Parallel\ execution\ time}$$

Execution Time Components

- Inherently sequential computations: $\sigma(n)$
- Potentially parallel computations: $\varphi(n)$
- Communication operations: $\kappa(n, p)$

Speedup Expression

 ψ(n, p): speedup achieved solving a problem of size n on p processors.

$$\psi(n,p) \le \frac{\sigma(n) + \varphi(n)}{\sigma(n) + \varphi(n)/p + \kappa(n,p)}$$

Parallel Component: $\varphi(n)/p$

Communication Component: $\kappa(n, p)$

$\varphi(n)/p + \kappa(n,p)$

Speedup Plot

Efficiency

Efficiency =
$$\frac{\text{Sequential execution time}}{\text{Processorsused} \times \text{Parallel execution time}}$$
$$= \frac{\text{Speedup}}{\text{Processorsused}}$$

$0 \le \varepsilon(n,p) \le 1$

$$\varepsilon(n,p) \le \frac{\sigma(n) + \varphi(n)}{p\sigma(n) + \varphi(n) + p\kappa(n,p)}$$

- All terms > $0 \Rightarrow \varepsilon(n, p) > 0$
- Denominator > numerator $\Rightarrow \varepsilon(n, p) < 1$

Amdahl's Law

$$\psi(n,p) \leq \frac{\sigma(n) + \varphi(n)}{\sigma(n) + \varphi(n)/p + \kappa(n,p)}$$
$$\leq \frac{\sigma(n) + \varphi(n)}{\sigma(n) + \varphi(n)/p}$$

Let
$$f = \sigma(n)/(\sigma(n) + \varphi(n))$$

$$\psi \le \frac{1}{f + (1 - f)/p}$$

Example 1

 95% of a program's execution time occurs inside a loop that can be executed in parallel. What is the maximum speedup we should expect from a parallel version of the program executing on 8 CPUs?

$$\psi \le \frac{1}{0.05 + (1 - 0.05)/8} \cong 5.9$$

Example 2

 20% of a program's execution time is spent within inherently sequential code. What is the limit to the speedup achievable by a parallel version of the program?

$$\lim_{p \to \infty} \frac{1}{0.2 + (1 - 0.2)/p} = \frac{1}{0.2} = 5$$

Pop Quiz

 An oceanographer gives you a serial program and asks you how much faster it might run on 8 processors. You can only find one function amenable to a parallel solution.
 Benchmarking on a single processor reveals 80% of the execution time is spent inside this function. What is the best speedup a parallel version is likely to achieve on 8 processors?

Pop Quiz

 A computer animation program generates a feature movie frame-by-frame. Each frame can be generated independently and is output to its own file. If it takes 99 seconds to render a frame and 1 second to output it, how much speedup can be achieved by rendering the movie on 100 processors?

Limitations of Amdahl's Law

- Ignores $\kappa(n, p)$
- Overestimates speedup achievable

Amdahl Effect

- Typically $\kappa(n, p)$ has lower complexity than $\varphi(n)/p$
- As *n* increases, $\varphi(n)/p$ dominates $\kappa(n,p)$
- As n increases, speedup increases

Illustration of Amdahl Effect

Illustration of Amdahl Effect

Review of Amdahl's Law

- Treats problem size as a constant
- Shows how execution time decreases as number of processors increases

Another Perspective

- We often use faster computers to solve larger problem instances
- Let's treat time as a constant and allow problem size to increase with number of processors

Gustafson-Barsis's Law

$$\psi(n,p) \leq \frac{\sigma(n) + \varphi(n)}{\sigma(n) + \varphi(n)/p}$$

• Let
$$s = \sigma(n)/(\sigma(n)+\varphi(n)/p)$$

$$\psi \le p + (1-p)s$$

Gustafson-Barsis's Law

- Begin with parallel execution time
- Estimate sequential execution time to solve same problem
- Problem size is an increasing function of p
- Predicts scaled speedup

Example 1

 An application running on 10 processors spends 3% of its time in serial code. What is the scaled speedup of the application?

$$\psi = 10 + (1 - 10)(0.03) = 10 - 0.27 = 9.73$$

...except 9 do not have to execute serial code

Execution on 1 CPU takes 10 times as long...

Example 2

 What is the maximum fraction of a program's parallel execution time that can be spent in serial code if it is to achieve a scaled speedup of 7 on 8 processors?

$$7 = 8 + (1 - 8)s \Rightarrow s \approx 0.14$$

Pop Quiz

 A parallel program executing on 32 processors spends 5% of its time in sequential code. What is the scaled speedup of this program?

The Karp-Flatt Metric

- Amdahl's Law and Gustafson-Barsis' Law ignore κ(n, p)
- They can overestimate speedup or scaled speedup
- Karp and Flatt proposed another metric

Experimentally Determined Serial Fraction

$$e = \frac{\sigma(n) + \kappa(n, p)}{T(n, 1)}$$

$$e = \frac{(p-1)\sigma(n) + p\kappa(n,p)}{(p-1)T(n,1)} \frac{\text{processor communication and synchronization overhead}}{\text{Single processor execution tim}}$$

Inherently serial component of parallel computation +

Single processor execution time

$$e = \frac{1/\psi - 1/p}{1 - 1/p}$$

Derive the Definition of e

$$T(n,p) = \sigma(n) + \frac{\varphi(n)}{p} + \kappa(n,p) \qquad T(n,1) = \sigma(n) + \varphi(n)$$

$$T(n,p) = T(n,1)e + \frac{T(n,1)(1-e)}{p}$$

$$pT(n,p) = pT(n,1)e + T(n,1) - eT(n,1)$$

$$e = \frac{pT(n,p) - T(n,1)}{(p-1)T(n,1)} = \frac{(p-1)\sigma(n) + p\kappa(n,p)}{(p-1)T(n,1)}$$

Compare e with f

$$T(n,p) = \sigma(n) + \frac{\varphi(n)}{p}$$

Simple model

$$T(n,p) = T(n,1)? + \frac{T(n,1)(1-?)}{p}$$

Complex model

$$T(n,p) = \sigma(n) + \frac{\varphi(n)}{p} + \kappa(n,p)$$

$$? = f = \frac{\sigma(n)}{T(n,1)}$$

$$? = e = \frac{(p-1)\sigma(n) + p\kappa(n,p)}{(p-1)T(n,1)}$$

Derive the Karp-Flatt Metric

$$T(n,p) = T(n,1)e + \frac{T(n,1)(1-e)}{p} \qquad \psi = \frac{T(n,1)}{T(n,p)}$$

$$T(n,p) = T(n,p)\psi e + \frac{T(n,p)\psi(1-e)}{p}$$

$$1 = \psi e + \frac{\psi(1-e)}{p}$$

$$\frac{1}{\psi} = e + \frac{1}{p} - \frac{e}{p}$$

$$e = \frac{1/\psi - 1/p}{1-1/p}$$

Experimentally Determined Serial Fraction

- Takes into account parallel overhead
- Detects other sources of overhead or inefficiency ignored in speedup model
 - Process startup time
 - Process synchronization time
 - Imbalanced workload
 - Architectural overhead

Example 1

 What is the primary reason for speedup of only 4.7 on 8 CPUs?

p	2	3	4	5	6	7	8
Ψ	1.8	2.5	3.1	3.6	4.0	4.4	4.7

 Since e is constant, large serial fraction is the primary reason.

Example 2

 What is the primary reason for speedup of only 4.7 on 8 CPUs?

p	2	3	4	5	6	7	8
Ψ	1.9	2.6	3.2	3.7	4.1	4.5	4.7

 Since e is steadily increasing, overhead is the primary reason.

$e \mid 0.070 \mid 0.075 \mid 0.080 \mid 0.085 \mid 0.090 \mid 0.095 \mid 0.10$

Pop Quiz

 Is this program likely to achieve a speedup of 10 on 12 processors?

p	4	8	12
Ψ	3.9	6.5	?

$$e = \frac{(p-1)\sigma(n) + p\kappa(n,p)}{(p-1)T(n,1)}$$

p	4	8	12
Ψ	3.9	6.5	10
e	0.008547	0.032967	0.018182

e decreasing is impossible.

Isoefficiency Metric

- Parallel system: parallel program executing on a parallel computer
- Scalability of a parallel system: measure of its ability to increase performance as number of processors increases
- A scalable system maintains efficiency as processors are added
- Isoefficiency: way to measure scalability

Isoefficiency Derivation Steps

- Begin with speedup formula
- Compute total amount of overhead
- Assume efficiency remains constant
- Determine relation between sequential execution time and overhead

Deriving Isoefficiency Relation

Determine overhead

$$T_{O}(n,p) = pT(n,p) - T(n,1)$$
$$= (p-1)\sigma(n) + p\kappa(n,p)$$

Substitute overhead into speedup equation

$$\varepsilon(n,p) = \frac{\psi(n,p)}{p} \le \frac{(\sigma(n) + \varphi(n))}{\sigma(n) + \varphi(n) + T_o(n,p)}$$

• Substitute $T(n,1) = \sigma(n) + \varphi(n)$. Assume efficiency is constant.

$$T(n,1) \ge CT_o(n,p)$$
 Isoefficiency Relation

Deriving Isoefficiency Relation (2)

$$\psi(n,p) \leq \frac{\sigma(n) + \varphi(n)}{\sigma(n) + \frac{\varphi(n)}{p} + \kappa(n,p)} = \frac{p(\sigma(n) + \varphi(n))}{p\sigma(n) + \varphi(n) + p\kappa(n,p)}$$

$$= \frac{p(\sigma(n) + \varphi(n))}{\sigma(n) + \varphi(n) + (p-1)\sigma(n) + p\kappa(n,p)} = \frac{p(T(n,1))}{T(n,1) + T_o(n,p)}$$

$$\varepsilon(n,p) = \frac{\psi(n,p)}{p} \leq \frac{T(n,1)}{T(n,1) + T_o(n,p)}$$

$$T(n,1) \geq \frac{\varepsilon(n,p)}{1 - \varepsilon(n,p)} T_o(n,p)$$

Scalability Function

- Suppose the final isoefficiency relation is n ≥ f(p)
- Let M(n) denote memory required for problem of size n
- M(f(p))/p shows how memory usage per processor must increase to maintain same efficiency
- We call M(f(p))/p the scalability function

Meaning of Scalability Function

- To maintain efficiency when increasing p, we must increase n
- Maximum problem size limited by available memory, which is linear in p
- Scalability function shows how memory usage per processor must grow to maintain efficiency
- Scalability function a constant means parallel system is perfectly scalable

Interpreting Scalability Function

Interpreting Scalability Function

Interpreting Scalability Function

Example 1: Reduction

- Sequential algorithm complexity $T(n, 1) = \Theta(n)$
- Parallel algorithm
 - Computational complexity = $\Theta(n/p)$
 - Communication complexity = $\Theta(\log p)$
- Parallel overhead

$$T_O(n, p) = \Theta(p \log p)$$

Reduction (continued)

- Isoefficiency relation: $n \ge Cp \log p$
- We ask: To maintain same level of efficiency, how must n increase when p increases?
- M(n) = n

$$M(Cp \log p)/p = Cp \log p/p = C \log p$$

The system has good scalability

Reduction

Example 2: Floyd's Algorithm

- Sequential time complexity: $\Theta(n^3)$
- Parallel computation time: $\Theta(n^3/p)$
- Parallel communication time: $\Theta(n^2 \log p)$
- Parallel overhead: $T_O(n, p) = \Theta(pn^2 \log p)$

Floyd's Algorithm (continued)

• Isoefficiency relation $n^3 \ge C(p \ n^2 \log p) \Rightarrow n \ge C \ p \log p$

•
$$M(n) = n^2$$

 $M(Cp \log p)/p = C^2 p^2 \log^2 p/p = C^2 p \log^2 p$

The parallel system has poor scalability

Example 3: Finite Difference

- Sequential time complexity per iteration: $\Theta(n^2)$
- Parallel communication complexity per iteration: $\Theta(n/\sqrt{p})$
- Parallel overhead: $\Theta(n \sqrt{p})$

Finite Difference (continued)

• Isoefficiency relation $n^2 \ge Cn\sqrt{p} \Rightarrow n \ge C\sqrt{p}$

$$n^2 \ge Cn \lor p \Rightarrow n \ge C \lor p$$

• $M(n) = n^2$

$$M(C\sqrt{p})/p = C^2 p/p = C^2$$

This algorithm is perfectly scalable

Summary (1/3)

- Performance terms
 - Speedup
 - Efficiency
- Model of speedup
 - Serial component
 - Parallel component
 - Communication component

Summary (2/3)

- What prevents linear speedup?
 - Serial operations
 - Communication operations
 - Process start-up
 - Imbalanced workloads
 - Architectural limitations

Summary (3/3)

- Analyzing parallel performance
 - Amdahl's Law
 - Gustafson-Barsis' Law
 - Karp-Flatt metric
 - Isoefficiency metric

Exercise 7.11

$$f = \frac{\sigma(n)}{\sigma(n) + \varphi(n)} = \frac{1}{1 + \frac{\varphi(n)}{\sigma(n)}} \qquad \psi \le \frac{1}{f + (1 - f)/p}$$

$$\psi \leq \frac{1}{f + (1 - f)/p}$$

$$s = \frac{\sigma(n)}{\sigma(n) + \frac{\varphi(n)}{p}} = \frac{1}{1 + \frac{1}{p} \frac{\varphi(n)}{\sigma(n)}} \qquad \psi \le p + (1 - p)s$$
$$= p(1 - s) + s$$

$$\psi \le p + (1-p)s$$
$$= p(1-s) + s$$

Exercises

- 5.9
- 6.12
- 7.10