Name	COMB:
Signature	
P525/1	
CHEMISTRY	
PAPER 1	
2023	
2 ³ / ₄ HRS	

UGANDA ADVANCED CERTIFICATE OF EDUCATION

S.5 END OF TERM ONE 2023

CHEMISTRY EXAMINATION

PAPER 1

2HOURS 45 MINS INSTRUCTIONS:

- ➤ Answer all questions in section A and any six from section B.
- ➤ All answers must be written in the spaces provided.
- ➤ The periodic table with relative atomic masses is supplied.
- ➤ Illustrate your answers with equations where applicable where necessary use the following.
- Molar gas constant $R = 8.31J.K^{-1}mol^{-1}$
- Molar volume gas at s.t.p is 22.4 litres.
- Standard temperature = 273k.
- Standard pressure = 101325Nm⁻²

SECTION A (46 MARKS)

Attempt all questions in this section

1. What is meant by isomerism	(01 mark)
(I.) XX.:: 1	
(b) Write short notes on the following types of structure.	
(i) Position isomerism	(02marks)
••••••	
••••••	
Functional group isomerism	(03 marks)
••••••	
Chain isomerism	(03 marks)

2 (a)(i)	State what is meant by the term first ionization energy	(1mark)
		•••••
		•••••
		•••••
		•••••
(ii)Sta	te two factors that can affect the value of first ionization energy	y and explain how
the fa	ctors affect the value of first ionization energy	
(3mar	ks)	
		•••••
		•••••
		•••••
	••••••	

(b)(i) Define the term first electron affinity	(01mark)
	•••••
	• • • • • • • • • • • • • • • • • • • •
•••••••	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
(i)Write equation to show the first electron affinity of oxygen	(01mar
	• • • • • • • • • • • • • • • • • • • •
	•••••
	• • • • • • • • • • • • • • • • • • • •
(v)Explain why the first electron affinity of oxygen is an exot	thermic process v
the second electron affinity is endothermic	
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
3a) 0.111g of a vaporized sample of an organic compour	nd R occupied
48.0cm ³ of 20°C and 700mmHg pressure. Calculate the	relative molecula
mass of R.	(02marks)
	•••••

b) R con	sists of 59	0.9% carbor	n, 26.6% oxygen and the rest	is hydrogen. Determine
(i) Th	ne empirica	al formula (of R.	(02marks)
, ,		ar formula		$(1^1/_2$ marks)
•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••
•••••	• • • • • • • • • • • • • • • • • • • •	••••		
4a) Writ	e the elect	ronic confi	guration of elements with foll	owing atomic number.
(02marl	cs)			
(i) 17	7			
· /				
				•••••
(ii) 20)	• • • • • • • • • • • • • • • • • • • •		
		•••••		
b) Sta	ate the gro	oup and per	riod of the periodic table in w	hich each of the elements in
(a) al	ove belon	gs.		
				(02marks)
	Group	Period		
(i)			-	
(ii)				
(11)				

5a) Define an ideal gas?	(01mark)
b) Explain any three differences between real gas and ideal (05marks)	gas.
	•••••
c) State the conditions under which the characteristics of a ideal gas.	real gas approximate an
	(02marks)

6. 1.363 g of compound Y containing carbon, hydrogen and bromine on
complete combustion gave 1.10g of carbon dioxide and 0.45g of water. When
0.35g of Y was vapourised, it occupied 39.5cm3 at 20°C and 750mmHg.
Calculate;
(i) the simplest formula of Y (1 ½ marks)
(ii) the molecular formula of Y (2 ½ marks)

7. A g	given volume of alcohol Q $CnH_{2n+1}OH$ diffuses through a porous plug in 1.62
sec	conds. The same volume of oxygen diffuses through a porous plug in 1.18
sec	conds. Calculate
(i)	The molecular mass of C_n H_{2n+1} OH
	(2marks)
•••	
(ii) The molecular formula of the alcohol.
	$(1^1/2 \text{marks})$
•••••	
•••••	
•••	
 (e 8	State any four (4) properties of ionic compounds
0. aj	(02marks)
	(OZIIIAI KS)
•••	
•••	
•••	
•••	

b) Briefly explain why ionic compounds (eg sodium chloride) conduct electricity either
in aqueous or molten states but not in the solid state.
(03marks)
0 (a) Define the term enitical temperature (01 mark)
9 <u>.(</u> a) Define the term critical temperature . (01 mark)
9 <u>.(</u> a) Define the term critical temperature . (01 mark)
9 <u>.(</u> a) Define the term critical temperature . (01 mark)
9 <u>.</u> (a) Define the term critical temperature . (01 mark)
9 <u>.(</u> a) Define the term critical temperature . (01 mark)

	(i)	What is the critical temperature of the gas.	(01 mark)
	(ii)	Which isothermal almost represents an ideal gas.	(01 mark)
	(iii)	What does the region ABC represent.	(01 mark)
(c) State to	wo cond	itions for liquefying a gas. ((01 mark)

SECTION B (54marks)

(Answer any six questions)

formula C ₄ H ₉ Br	
(i) Name the functional group in X. (01mark)	
	•••••
	• • • • • • • • • • • • • • • • • • • •
(ii) Write the IUPAC names and structural formulae of all the isome	ers of X.
	(03 marks)
	• • • • • • • • • • • • • • • • • • • •
Write equations to show how the following conversions can be carried	
(i)propionic acid to ethane	(2marks)
	•••••
(ii)But-1-ene to Butan-1-ol	(03marks)
	•••••
	•••••

11. (a) (i)State Hess's law .	(01 mark)
(ii)The thermochemical data for some reactions at 298K	are given below.
I. $CO(g) + \frac{1}{2}O_2(g)$ $\longrightarrow CO_2(g)$ $\Delta H^{\theta} = -283.0 \text{ kg}$	$Jmol^{-1}$
II. $H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(l)$ $\Delta H^{\theta} = -285$	$.8 \ kJmol^{-1}$
III. $CH_3OH(l) + 1\frac{1}{2}O_2(g) \longrightarrow CO_2(g) + 2H_2O(l) \Delta H^{\theta} = -715$	$.0 \ kJmol^{-1}$
Calculate the enthalpy change for the reaction below at 298K; ((03 marks)
$CO(g) + 2H_2(g) \longrightarrow CH_3OH(l)$	

(a) Use the above to construct a Bo	orn-Haber cycle for formation of tin(I)
chloride.	(03 marks)
b)(ii) Calculate the average bond energ	y of the $Sn = Cl$ bond $(02 marks)$
b)(11) calculate the average bond energ	y of the $3h - Ct$ bond. (02 marks)

12. The table below shows the atomic radii and ionic radii of the elements in Group II of the Periodic Table.

Element	Ве	Mg	Ca	5r	Ва
Atomic radius(nm)	0.089	0.136	0.174	0.191	0.198
Ionic radius(nm)	0.031	0.065	0.099	0.113	0.135

•••••	(a) 	What is meant by the term atomic radius?	(01 mark)
	(b)	State and explain the trend in atomic radius of	the elements. (3 ½ marks)
•••••	•••••		
•••••	••••••		••••••

(c) Explain why the ionic radius is smal	ler than the atomic radius of
corresponding neutral atom for each elem	
d) Briefly explain how atomic radius and nu ffinities of the elements in group II	clear charge affect the electr (4 ½ marks)
0(-)	
(i) Define what is meant by the term primary s	tandard (2 marks)

(ii) State 3 characteristics of a good primary standard
(1 ½ marks)
(b) Explain the following;
(i) Both dilute hydrochloric acid and nitric acid are not used to acidify potassium manganate (vii) solution
(3 ½ marks)
(ii) Potassium dichromate (vi) is preferred to potassium manganate (vii) as a primary
standard (2 marks)

14 (a) Calculate the oxidation state of nitrogen and mang	ganese in the following
compound and ions.	(01mark each)
(i) HNO ₃	
(ii) MnO ₂	
(iii) Mg_3N_2	
(iv) Mn_2O_3	

tate what is observed and write	e the equation for the reaction between;
) Acidified potassium dichrom	ate (vi) solution and potassium iodide solution
2 ½ marks) Observation	
Equation	
ii) Acidified potassium mangan	ate solution was added to a solution of potassiu
odide	(2 ½ marks)
Observation	
Equation	
-	

15. Explain the following observations;	
(a) Aluminium oxide has a higher melting point than sodium oxide	
	(3 marks)
	•••••
Sodium fluoride has a higher melting point than sodium chloride	(3 marks)
	•••••
(b) Beryllium chloride is more soluble in ethanol than in water.	(3 marks)
	•••••

16. Successive ionisation energies ($kJmol^{-1}$) for some elements in Period 3 of the periodic Table are shown in the table below.

Element	Ionisation energy				
	1 _{st}	2 _{nd}	3 rd	4th	5+h
Silicon	787	1577	3230	4355	16090
Phosphorus	1060	1896	2908	4954	6272
Sulphur	1000	2258	3381	4565	6995

(a)Sta	ate and explain the trend in successive ionisc	ation energies.
		(03 marks)
, 		
	olain why the;	
, ,	First ionisation energy of Sulphur is less	than that of phosphorus
(1)	,	(03marks)

(ii) third ionisation energy of phosphorus is less than that of silicon. (O3marks)

.Complete the tollov action in each case.	ving equations and outline a po	ssible mechanism for the
(a) $CH_3CH_2CH_2OH$	conc. H ₂ SO ₄	
	180°c	(04 mar

•••	
•••	
•••	
••••	
•••	
	END
	2140
1	Out of fait to the doubte of the
C	Only a fool tests the depth of the
V	river by both feet
•	0101 by 6601 1 1000

THE PERIODIC TABLE

1	2	"-										3	4	5	6	7	8
1.0 H 1											-					1.0 H 1	4.0 He 2
6.9 Li 3	9.0 Be 4								*			10.8 B 5	12.0 C 6	14.0 N 7	16.0 O 8	19.0 F 9	20.2 Ne 10
23.0 Na 11	24.3 Mg 12											27.0 Al 13	28.1 Si 14	31.0 P 15	32.1 S 16	35.4 Cl 17	40.0 Ar 18
39.1 K 19	40.1 Ca 20	45.0 Sc 21	47.9 Ti 22	50.9 V 23	52.0 Cr 24	P 2 (25 5 6 6 2 1			58.7 Ni 28	63.5 Cu 29	65.7 Zn 30	69.7 Ga 31		74.9 As 33	79.0 Se 34	79.9 Br 35	83.8 Kı 36
85.5 Rb 37		88.9 Y 39	91.2 Zr 40	92.9 Nb 41		100000000000000000000000000000000000000	101 Ru 44	103 Rh 45		108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
133 Cs 55	137 Ba 56	139 La 57	178 Hf 72	181 Ta 73	184 W 74	186 Re 75		192 Ir 77	195 Pt 78	197 Au 79	201 Hg 80	204 TI 81	207 Pb 82	209 Bi 83	209 Po 84	210 At 85	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89				12.			- 11								
			139 La 57	140 Ce 58	141 Pr 59		147 Pm 61	150 Sm 62	1	157 Gd 64		162 Dy 66	77363223	167 Er 68	F. C. C.		71
			227 Ac 89	232 Th 90	231 Pa 91	238 U 92	237 Np 93		243 Am 95	247 Cm 96	247 Bk 97	251 Cf 98	254 Es 99	257 Fn 100	256 Md 101	254 No 102	260 Lw 103

END.