Problem Set #4

$\begin{array}{c} {\rm Danny~Edgel} \\ {\rm Econ~709:~Economic~Statistics~and~Econometrics~I} \\ {\rm Fall~2020} \end{array}$

December 8, 2020

 ${\it Collaborated with Sarah \ Bass, \ Emily \ Case, \ Michael \ Nattinger, \ and \ Alex \ Von \ Hafften}$

Question 1

(a) The table below displays the coefficient estimates, alongside robust standard errors.

VARIABLES	$ \begin{array}{c} (1) \\ \log(\text{wage}) \end{array} $
VIIIIIIDEES	log(wage)
Education	0.144***
	(0.0118)
Experience	0.0426***
	(0.0125)
Experience ²	-0.0951***
	(0.0341)
Constant	0.531***
	(0.202)
Observations	267
R-squared	0.389
*	
1	
Sum-of-squared Errors	82.50

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

(b) In terms of the model parameters, with experience = 10,

$$\theta = \frac{\beta_1}{\beta_2 + \frac{1}{5}\beta_3}$$

Using the parameter estimates from the model,

$$\hat{\theta} \approx 6.109$$

(c) The asymptotic standard error of $\hat{\theta}$ is the square root of its asymptotic variance. Since θ is a function of β , we can use the delta method to solve for the variance of $\hat{\theta}$ as a function of the variance-covariance matrix of $\hat{\beta}$:

$$\sqrt{n}\left(\hat{\theta}-\theta\right) \to_d f'(\hat{\beta})\mathcal{N}\left(0,V\right) \equiv \mathcal{N}\left(0,f'(\hat{\beta})'Vf'(\hat{\beta})\right)$$

Where V is the variance-covariance matric of $\hat{\beta}$ and

$$f'(\hat{\beta}) = \begin{pmatrix} \frac{\partial f(\hat{\beta})}{\partial \hat{\beta}_1} \\ \frac{\partial f(\hat{\beta})}{\partial \hat{\beta}_2} \\ \frac{\partial f(\hat{\beta})}{\partial \hat{\beta}_3} \\ \frac{\partial f(\hat{\beta})}{\partial \hat{\beta}_4} \end{pmatrix} = \begin{pmatrix} \frac{1}{\hat{\beta}_2 + \frac{1}{5}\hat{\beta}_3} \\ -\frac{\beta_1}{\left(\hat{\beta}_2 + \frac{1}{5}\hat{\beta}_3\right)^2} \\ -\frac{\hat{\beta}_1}{5\left(\hat{\beta}_2 + \frac{1}{5}\hat{\beta}_3\right)^2} \\ 0 \end{pmatrix}$$

(d) Using the results from the regression summarized in part (a),

$$s(\hat{\theta}) \approx 1.63$$

 $90\% \text{ c.i.} = [\hat{\theta} - 1.645s(\hat{\theta}), \hat{\theta} + 1.645s(\hat{\theta})] \approx [3.428, 8.790]$

Question 2

According to equation (8.3),

$$\widetilde{\beta}_{CLS} = \underset{R'\beta=c}{\operatorname{arg \, min}} \operatorname{SSE}(\beta)$$

Where $R = \begin{pmatrix} 0 \\ I_{k_2} \end{pmatrix}$ and c = 0. Then, (8.3) can be simplified as the following unconstrained optimization problem:

$$\widetilde{\beta}_{CLS} = \operatorname{argmin} \operatorname{SSE} \begin{pmatrix} \beta_1 \\ 0 \end{pmatrix}$$

WAnd where $\hat{\beta}_{OLS}$ from the regression of Y on X_1 is defined as:

$$\hat{\beta}_{OLS} = \operatorname{argmin} \, SSE(\beta_1)$$

Question 3

By equation (8.3),

$$\widetilde{\beta}_{CLS} = \underset{R'\beta=c}{\operatorname{arg\,min}} \operatorname{SSE}(\beta)$$

Where,
$$SSE(\beta) = (Y - X\beta)'(Y - X\beta) = (Y - X_1\beta_1 - X_2\beta_2)'(Y - X_1\beta_1 - X_2\beta_2)$$
 and, in this case, $R = \begin{pmatrix} I_k \\ I_k \end{pmatrix}$ and $c = 0$. Then,
$$\widetilde{\beta}_{CLS} = \arg\min_{R'\beta = c} (Y - X\beta)'(Y - X\beta)$$

$$\mathcal{L} = (Y - X_1\beta_1 - X_2\beta_2)'(Y - X_1\beta_1 - X_2\beta_2) - \lambda(\beta_1 + \beta_2)$$

$$\frac{\partial \mathcal{L}}{\partial \beta_1} = -2X_1'(Y - X_1\beta_1 - X_2\beta_2) - \lambda = 0$$

$$\frac{\partial \mathcal{L}}{\partial \beta_2} = -2X_2'(Y - X_1\beta_1 - X_2\beta_2) - \lambda = 0$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = \beta_1 + \beta_2 = 0$$

$$\beta_1 = -\beta_2$$

$$-2X_1'(Y - X_1\beta_1 - X_2\beta_2) = -2X_2'(Y - X_1\beta_1 - X_2\beta_2)$$

$$-2X_1'(Y + X_1\beta_2 - X_2\beta_2) = -2X_2'(Y + X_1\beta_2 - X_2\beta_2)$$

$$-2X_1'(Y + X_1\beta_2 - X_2\beta_2) = -2X_2'(Y + X_1\beta_2 - X_2\beta_2)$$

$$-2X_1'(Y - X_1'(X_1 - X_2)\beta_2 = -2X_2'(Y - X_1'(X_1 - X_2)\beta_2)$$

$$2(X_2 - X_1)'(X_1 - X_2)\beta_2 = 2(X_1 - X_2)'Y$$

$$\beta_2 = [(X_2 - X_1)'(X_1 - X_2)](X_1 - X_2)'Y$$

Thus,

$$\widetilde{\beta}_{CLS} = \begin{pmatrix} [(X_2 - X_1)'(X_2 - X_1)] (X_2 - X_1)'Y \\ [(X_2 - X_1)'(X_1 - X_2)] (X_1 - X_2)'Y \end{pmatrix}$$

 $\beta_1 = [(X_2 - X_1)'(X_2 - X_1)](X_2 - X_1)'Y$

Question 4

The linear projection model $Y = \alpha + X\beta + \varepsilon$ can be written as $Y = X_1\beta_1 + X_2\beta_2 + \varepsilon$, where X_1 is a vector of ones. We showed in question 1 that the CLS estimate of this specification with $\beta_2 = 0$ is simply the OLS estimate of Y on X_1 . We've shown in prior problem sets that the OLS estimate of Y on a constant is $\mathbb{E} Y$, So the $\widetilde{\alpha}_{CLS} = \mathbb{E} Y$.

Question 5

8.22 The proposed restriction on β can be written as $r(\beta) = 0$, where $r(\beta) = \frac{\beta_1}{\beta_2} - 2$.

(a) The CLS estimator for this restriction is defined as:

$$\widetilde{\beta}_{CLS} = \underset{r(\beta)=0}{\operatorname{arg \, min}} \operatorname{SSE}(\beta)$$

There is no closed-form solution for this estimator, but we can rewrite this specific restriction as $\beta_1 = 2\beta_2$, which gives us the specification $Y = (2X_1 + X_2)\beta_2 + \varepsilon$.

The estimator for this specification is:

$$\widetilde{\beta}_2 = \frac{\sum_{i=1}^n (2x_{1i} + x_{2i})y_i}{\sum_{i=1}^n (2x_{1i} + x_{2i})^2}$$

Which can be plugged back into the constraint to retrieve $\widetilde{\beta}_1$, ultimately yielding the estimator:

$$\widetilde{\beta}_{CLS} = \begin{pmatrix} 2 \frac{\sum_{i=1}^{n} (2x_{1i} + x_{2i}) y_i}{\sum_{i=1}^{n} (2x_{1i} + x_{2i})^2} \\ \frac{\sum_{i=1}^{n} (2x_{1i} + x_{2i}) y_i}{\sum_{i=1}^{n} (2x_{1i} + x_{2i})^2} \end{pmatrix}$$

(b) If this restriction is true, then $\widetilde{\beta}_1 \to_p \beta_1$, and, by the CLT,

$$\sqrt{n}(\widetilde{\beta}_1 - \beta_1) = 2 \frac{\frac{1}{\sqrt{n}} \sum_{i=1}^n (2x_{1i} + x_{2i}) \varepsilon_i}{\frac{1}{n} \sum_{i=1}^n (2x_{1i} + x_{2i})^2} \to_d \mathcal{N}(0, V)$$

Where

$$V = \frac{\mathbb{E}(2x_{1i} + x_{2i})^2 \varepsilon_i^2}{(\mathbb{E}(2x_{1i} + x_{2i})^2)^2} = \frac{\mathbb{E}(2x_{1i} + x_{2i})^2}{(\mathbb{E}(2x_{1i} + x_{2i})^2)^2} \sigma^2$$

Question 6

9.1 Let $\beta = [\phi \ \beta_{k+1}]$ represent the OLS coefficients from a partitioned regression of Y on $Z = [X \ X_{k+1}]$. Then,

$$\hat{\beta} = (Z'Z)^{-1}Z'Y$$

Now, let RZ = c represent a restriction on β where $R = \begin{pmatrix} 0_k \\ 1 \end{pmatrix}$ and c = 0. Then, by equation (8.8),

$$\widetilde{\beta} = \hat{\beta} - (Z'Z)^{-1}R \left[R'(Z'Z)^{-1}R \right]^{-1} R' \hat{\beta}$$

$$= \hat{\beta} - (Z'Z)^{-1} \begin{pmatrix} 0_k \\ 1 \end{pmatrix} \left([(Z'Z)^{-1}]_{k+1,k+1} \right)^{-1} \hat{\beta}_{k+1}$$

Where $\widetilde{\beta}$ has the residual

$$\widetilde{\varepsilon} = Y - Z\widetilde{\beta} = Y - Z\widehat{\beta} + Z(Z'Z)^{-1} \begin{pmatrix} 0_k \\ 1 \end{pmatrix} \left([(Z'Z)^{-1}]_{k+1,k+1} \right)^{-1} \widehat{\beta}_{k+1} = Y - Z\widehat{\beta} - Z(\widetilde{\beta} - \widehat{\beta})$$
$$= \widehat{\varepsilon} - Z(\widetilde{\beta} - \widehat{\beta})$$

Then, we can calculate:

$$\begin{split} \widetilde{\varepsilon}'\widetilde{\varepsilon} &= (\hat{\varepsilon} - Z(\widetilde{\beta} - \hat{\beta}))'(\hat{\varepsilon} - Z(\widetilde{\beta} - \hat{\beta})) \\ &= \hat{\varepsilon}'\hat{\varepsilon} + (\widetilde{\beta} - \hat{\beta})'(Z'Z)(\widetilde{\beta} - \hat{\beta}) \\ &= \hat{\varepsilon}'\hat{\varepsilon} + (\widetilde{\beta} - \hat{\beta})'(Z'Z)(\widetilde{\beta} - \hat{\beta}) \\ &= \hat{\varepsilon}'\hat{\varepsilon} + \hat{\beta}_{k+1} \left([(Z'Z)^{-1}]_{k+1,k+1} \right)^{-1} \begin{pmatrix} 0_k \\ 1 \end{pmatrix} (Z'Z)^{-1} (Z'Z)(Z'Z)^{-1} \begin{pmatrix} 0_k \\ 1 \end{pmatrix} \left([(Z'Z)^{-1}]_{k+1,k+1} \right)^{-1} \hat{\beta}_{k+1} \\ &= \hat{\varepsilon}'\hat{\varepsilon} + \hat{\beta}_{k+1} \left([(Z'Z)^{-1}]_{k+1,k+1} \right)^{-1} \left((Z'Z)^{-1} \right) (Z'Z)^{-1} \begin{pmatrix} 0_k \\ 1 \end{pmatrix} \left([(Z'Z)^{-1}]_{k+1,k+1} \right)^{-1} \hat{\beta}_{k+1} \\ &= \hat{\varepsilon}'\hat{\varepsilon} + \hat{\beta}_{k+1} \left([(Z'Z)^{-1}]_{k+1,k+1} \right)^{-1} \hat{\beta}_{k+1} \\ &= \hat{\varepsilon}'\hat{\varepsilon} + \hat{\beta}_{k+1} \left([(Z'Z)^{-1}]_{k+1,k+1} \right)^{-1} \hat{\beta}_{k+1} \end{split}$$

Since $\hat{\beta}_{k+1}$ and $[(Z'Z)^{-1}]_{k+1,k+1}$ are scalars.

$$\widetilde{\varepsilon}'\widetilde{\varepsilon} = \widehat{\varepsilon}'\widehat{\varepsilon} + \frac{\widehat{\beta}_{k+1}^2}{[(Z'Z)^{-1}]_{k+1,k+1}}$$

Then, letting $s^2 = \frac{1}{n-k-1} \hat{\varepsilon}' \hat{\varepsilon}$, we can identify the condition for the adjusted R^2 of the unrestricted model being higher than that of the restricted model and solve:

$$1 - \frac{\frac{1}{n-k-1}\hat{\varepsilon}'\hat{\varepsilon}}{\frac{1}{n-1}\sum_{i=1}^{n}(y_{i}-\overline{y})^{2}} > 1 - \frac{\frac{1}{n-k}\widetilde{\varepsilon}'\widetilde{\varepsilon}}{\frac{1}{n-1}\sum_{i=1}^{n}(y_{i}-\overline{y})^{2}} - (n-k)\hat{\varepsilon}'\hat{\varepsilon} > -(n-k-1)\widetilde{\varepsilon}'\widetilde{\varepsilon}$$

$$(n-k)\hat{\varepsilon}'\hat{\varepsilon} < (n-k-1)\left(\hat{\varepsilon}'\hat{\varepsilon} + \frac{\hat{\beta}_{k+1}^{2}}{[(Z'Z)^{-1}]_{k+1,k+1}}\right)$$

$$\hat{\varepsilon}'\hat{\varepsilon} < (n-k-1)\frac{\hat{\beta}_{k+1}^{2}}{[(Z'Z)^{-1}]_{k+1,k+1}}$$

$$\frac{\hat{\beta}_{k+1}^{2}}{s^{2}[(Z'Z)^{-1}]_{k+1,k+1}} = \left|\frac{\hat{\beta}_{k+1}}{s\left(\hat{\beta}_{k+1}\right)}\right| > 1$$

$$|T_{k+1}| > 1 \blacksquare$$

9.2 (a) Since $\mathbb{E} X_1 e_1 = \mathbb{E} X_2 e_2 = 0$, we know

$$\sqrt{n}(\hat{\beta}_j - \beta_j) \to_d \mathcal{N}\left(0, \mathbb{E} \, x'_{ji} x_{ji}^{-1} \, \mathbb{E} \, x'_{ji} x_{ji} e_{ji}^2 \, \mathbb{E} \, x'_{ji} x_{ji}^{-1}\right)$$

For j = 1, 2. Since the two samples are independent, $Cov(x_{1i}, x_{2i}) = Cov(e_{1i}, e_{2i}) = 0$, so

$$\begin{split} \sqrt{n} \begin{pmatrix} \hat{\beta}_{1} - \beta_{1} \\ \hat{\beta}_{2} - \beta_{2} \end{pmatrix} &= \begin{pmatrix} \mathbb{E} \, x_{1i}' x_{1i}^{-1} & 0 \\ 0 & \mathbb{E} \, x_{2i}' x_{2i}^{-1} \end{pmatrix} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \begin{pmatrix} x_{1i} \\ x_{2i} \end{pmatrix} \\ &\to_{d} \, \mathcal{N} \left(0, \begin{pmatrix} \mathbb{E} \, x_{1i}' x_{1i}^{-1} \, \mathbb{E} \, x_{1i}' x_{1i} e_{1i}^{2} \, \mathbb{E} \, x_{1i}' x_{1i}^{-1} & 0 \\ 0 & \mathbb{E} \, x_{2i}' x_{2i}^{-1} \, \mathbb{E} \, x_{2i}' x_{2i} e_{2i}^{2} \, \mathbb{E} \, x_{2i}' x_{2i}^{-1} \end{pmatrix} \right) \end{split}$$

Then, we can solve,

$$\sqrt{n} \left((\hat{\beta}_2 - \hat{\beta}_1) - (\beta_2 - \beta_1) \right) = \sqrt{n} \left((\hat{\beta}_2 - \beta_2) - (\hat{\beta}_1 - \beta_1) \right)
\rightarrow_d \mathcal{N} \left(0, \mathbb{E} x'_{1i} x_{1i}^{-1} \mathbb{E} x'_{1i} x_{1i} e_{1i}^2 \mathbb{E} x'_{1i} x_{1i}^{-1} + \mathbb{E} x'_{2i} x_{2i}^{-1} \mathbb{E} x'_{2i} x_{2i} e_{2i}^2 \mathbb{E} x'_{2i} \right)$$

(b) Let $\theta = \beta_2 - \beta_1$. By equation (9.6), an appropriate Wald statistic is

$$W = \hat{\theta}' \hat{V} \theta^{-1} \hat{\theta}$$

Then, given our result from (a),

$$W = (\hat{\beta}_2 - \hat{\beta}_1)' \left(\hat{V}_1 + \hat{V}_2 \right) (\hat{\beta}_2 - \hat{\beta}_1)$$

Where \hat{V}_i is a consistent estimator for $\mathbb{E} x'_{ii} x_{ji}^{-1} \mathbb{E} x'_{ii} x_{ji} e^2_{ji} \mathbb{E} x'_{ii} x_{ji}^{-1}$.

(c) Since $\hat{\beta}_2 - \hat{\beta}_1 \rightarrow_p \beta_2 - \beta_1$ and $\hat{V}_1 + \hat{V}_2 \rightarrow_p V_1 + V_2$, under our null hypothesis,

$$W \to_d \chi_k^2$$

Question 7

9.4

(a) The size of a test is equal to the probability of rejection. Then,

$$Pr(Reject|H_0) = Pr(W < c_1|H_0) + Pr(W > C_2|H_0) \rightarrow_p \frac{\alpha}{2} + (1 - (1 - \frac{\alpha}{2})) = \frac{\alpha}{2} + \frac{\alpha}{2} = \alpha$$

(b) This is not at all a good test of the null hypothesis, beacuse the lower-tail rejection standard, $W < c_1$, includes both the true value of the estimator under the null hypothesis and a fat section of the χ^2 distribution. As a result, this test is extremely weak and will result in many rejections of true null hypotheses.

Question 8

Our null hypothesis is $H_0: 40\beta_1 + 40^2\beta_2 = 20$, so to test this hypothesis, we would acquire estimator $\hat{\beta} = \begin{pmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{pmatrix}$, then construct a consistent estimator for

its asymptotic variance, $\hat{V}_{\hat{\beta}}$ to acquire a test statistic: $t = \frac{\hat{\theta}}{se(\hat{\theta})}$, where:

$$\hat{\theta} = 40\hat{\beta}_1 + 40^2 \hat{\beta}_2 - 20$$
Under $H_0: \sqrt{n}(\hat{\theta} - 0) \rightarrow_d \mathcal{N}\left(0, \begin{pmatrix} 40\\40^2 \end{pmatrix}' V_{\hat{\beta}} \begin{pmatrix} 40\\40^2 \end{pmatrix}\right)$

$$se(\hat{\theta}) = \frac{1}{\sqrt{n}} \sqrt{\hat{V}\theta}$$

$$V_{\hat{\theta}} = \begin{pmatrix} 40\\40^2 \end{pmatrix}' V_{\hat{\beta}} \begin{pmatrix} 40\\40^2 \end{pmatrix}$$

Finally, once $t \to_d \mathcal{N}(0,1)$ is acquired, we would choose some threshold, α , such that if |t| is greater than the $\frac{\alpha}{2}$ th quantile of its distribution, then we reject the null hypothesis, that a 40-year-old worker has an expected wage of \$40 per hour.