McMANUS

Relative Value of Different Sands for Making Mortar

Civil Engineering
B. S.
1 9 0 7

UNIVERSITY OF ILL LIBRARY

Class

Book 55M 5061 Volume

Je 07-10M

RELATIVE VALUE

OF

DIFFERENT SANDS FOR MAKING MORTAR

BY

JAMES WILLIAM McMANIS

THESIS

FOR THE

DEGREE OF BACHELOR OF SCIENCE

IN

CIVIL ENGINEERING

COLLEGE OF ENGINEERING

UNIVERSITY OF ILLINOIS

PRESENTED JUNE, 1907 A.

TOTAL TO ASSESSED TO THE PARTY OF THE PARTY

erecure.

Service of the service of the services.

PRINCIPAL DE MINISTER

supplication for frameworkship

and the second fire

COLLEGE OF ENGINEERING

May 24, 1907.

This is to certify that the following thesis prepared under the immediate direction of Mr. C. C. Wiley, Instructor in Civil Engineering, by

JAMES WILLIAM MCMANIS

entitled RELATIVE VALUE OF DIFFERENT SANDS FOR MAKING MORTAR

is accepted by me as fulfilling this part of the requirements for the Degree of Bachelor of Science in Civil Engineering.

Irab Baker.

Head of Department of Civil Engineering

and the second of the second o the treatment of the state of t a perfect that the text of The said the said and the said the said

Introduction

Of recent years concrete has been recognized as one of the best materials for building purposes. Formerly, and even at the present time, structural steel and natural stone were considered as the standard building materials; but they are bring rapidly replaced by reinforced concrete for many purposes. For example, in Chicago there is a building now under construction which will cost about \$5,000,000 and which is being built almost entirely of reinforced concrete. Owing to this increasing use concrete has come to be studied with a good deal of care in order to determine the fest materials of which to make it and the proportions in which they should be mixed. Concrete, as is well known, consists of an aggregate of crushed rock, gravel, or similar material embedded in cement mortar. The greater amount of study has bean to determine the best material for the aggregate and the proportion of it used with a given amount of mortar but for some reason the study of the mortar itself and its relation to the

UIUC

mass has been neglected. Specifications usually require that concrete shall consist of so many parts of cement to so many farte of "alean sharp sand" and so many parts of "aggregate" whatever it may be and this is about as for as the matter of rand is looked after. Experiments have shown that even "Clean shorp sands" vary in cleanness, and in Rige of grains and that these variations effect the mortar made of them, and of a necessity must effect the concrete in which they are used. However in certain locations only certain sands are available and therefore are in common use. with a view of discovering how the sands used for building surposes in the different cities of Illinois compared in strength, letters of request were sent to the city engineers of about twenty Cities for a fairly representative sample of the sands used. The following cities responded as follows:-Bample no. City obtained from. 1,2,384 Elgen Blowington

8 Rockford Springfield 9,10 & 11 Champaign 12 Galesburg 13 Decatur 14 Freeport 15 & 16 aurora 17 Joliet 18 Moline 19 Champaign all of these samples were sand except samples #4 &# 15 which were crushed limestone screenings and crushed sandstone screenings, respectively. a majority of the sands used in the different tities were local sands, but some cities used sands obtained from a distance; and therefore in the tables showing the results of the tests both the city furnishing the sand and the location from whence the sand was obtained will be given. Tests were made for the tensile strength, fineness, and for cleanness or finding the amount of clay in the sand. The tensile strength of the mortar was found as this is the usual method

for determining the value of cement mortar, and it has been found that the tensile strength of mortar does not vary as much as the compressive strength. The fineness of the sand was determined because experiments show that sand which has a variety of sizes makes the strongest mortar because the grains interlock and the per cent of voids is reduced. It has been shown that when the amount of clay in mortar becomes more than 6% it materially reduces the strength of the mortar (See thesis entitled Effect of Clay on Strength of Concrete" by 13. H. Frater, W. of D. 1903.), and therefore the amount of clay in the sands were determined. Tensile Strength. The tensile strength was first determined. In order that the element of time would not effect the results, it was decided to make a certain number of briquetter and break an equal number in 7 days, 28 days, and 90 days respectively, and in order to reduce the probable error in the results

it was thought best to make 10 briquettes for each age as the more briquettes tested,

the less error there would be in the general result. The cement used was Chicago AA Portland and the mixture was one fart cement to three parts sand by weight. The quantity of water used in every Case was 10% of the dry material. after some preliminary experimenting in order to determine the best method of moulding the briguettes, the method recommended by the am. Doc. C. E., (1904), was adopted. Essentially, it consists of filling the moulds with mortarand troweling on both sides using considerable pressure. The method of procedure was as follows: - The sand was first weighed and then carefully mixed dry on a slate table with the cement which had also been wrighed. The 10% of water was added and the mixture was worked with a trowl until it had the proper consistency. The moulds were then filled completely, pressing in Slightly with the hands and then well troweled using considerable pressure. The moulds were then turned over and the briquettes trouveled in a like manner on the other side. The briquettes

were then allowed to stand in the air covered by a damp cloth for 24 hours when they were removed from the moulde, placed in water which was changed frequently, and left until they were to by tested. The briquetter were broken in a Falkneau-Sinclair automatic Cement Testing Machine, applying the load at the rate of 600 founds for minute as recommended by the report of the am. Doc. 6. E. Committee on Standard Methods for Testing Cement." Twenty samples were tested and thirty briquettes were made for each sample except for the crushed rock samples for which only turnty briquetter were made. On egeral number of briguettes were tested at three different ages, Viz., 7, 28, and 90 days, making in all 60 tests requiring 580 brignettes. The results of teste are shown in the tables on pages 14 to 33 inclusive. Fineness. The fineness of the sand was next determined. The sand was first screened through a 7 sieve to remove the pebbles, this bring the Common practice in making mortar and concrete, and then it was

placed in an oven, where it was left for 24 hours to remove the moisture. The Rievas were arranged in the following order: -The pan was placed first at the bottom, then the #100, #24, #16, #12 #8 sieves were placed in order above it. 1000 grams of the Rand was then placed in the #8 Rieve which was on top, and shook thoroughly for one hour. This caused the finer hand to gradually sift through until it was eaught on the finer sieve or in the Aan. The amount of sand retained on the different sieves and in the fan was carefully wrighed and the per cent of sand retained on each sieve was then determined. The results are shown in the tables, Sagas 14 to 33 inclusive. The object of this test was to discover which is the preferable, coarse or fine sands and whether it is better to have the Rand all of one size or to have a variety of signs. Eighteen samples were tested, The fineness of the crushed rock screenings was not determined. Test For Clay. The Rand was passed through a 4"

sieve and placed in the oven to dry. It was left in the oven for 24 hours. 1000 grams were then weighed out and placed Un a Sail, and water from a fancet was allowed to flow slowly over it. at the same time the sand was washed with the hands. The Road, bring heaver than the water, remained in the bottom of the Sail but the clay which was finely divided was held in ruspension and flowed over the top of the sail with the water. Since some of the fine sand would also be washed over with the Clay, a fon was placed under the fail to catch it. The sand was washed until the water become clear which showed that all the Clay had began removed. This operation required from a half hour to an hour and a half depending on the amount of Clay mixed with the sand. The sand was then placed in an oven and allowed to remain 48 hours or until all the moisture was evaporated. It was then weighed and the difference between this weight and the 1000 grams showed the amount of clay in the sand. From this

data the per cent of clay in each sand was determined. Eighteen sands were tested for Clay. Description of Tables Pages 14 to 33 inclusive show tables giving the results of the various tests, Viz., tensile fineness and cleanness. In the upper right hand corner the place the sand was received from is shown while directly under it, the place where the rand was obtained is given. To the left of this is given the sample no. of the sand. The first test recorded is for the tensile strength. In it is shown the strength of each briquette for the three different ages and also the avarage strength of the briquette for each age. Below the lable for tensile strength is the table for fineness. This shows the quantity passing and retained on each of the sieves and also the per cent retained on each sieve. The total amount of sand used in each Case is given. Beneath the table for fineness the fer cent of clay in each sand is recorded. Tables 34 to 35 inclusive shows the average fineness, the per cent. of Clay contained in the

Sand and the tensile strength of the mortar at the age of 28 days. The average fineness was obtained in the following manner:—
The per cent passing each sieve and retained by the next was multiplied by the Rieve to. and this total divided by 100 yave the average fineness or the weighted meanofthe fineness. Sand one will be taken as an example.

Mo. Sieve To passing sieve $4 \times 0.0 = 0.00$ $8 \times 0.0 = 0.00$ $12 \times 0.01 = 0.12$ $16 \times 0.18 = 2.90$ $24 \times 29.50 = 2388.00$ $24 \times 29.50 = 2388.00$ 2422.02

Plate I shows a curve for which the ser cent of Clay was taken as the ordinates and the tensile strength, at the age of 28 days, as the abscissae. The sands were for strength of Clay varied. Plate II shows a curve for which the average fineness but the ser cent of Clay varied. Plate II shows a curve for which the average fineness was taken as ordinates and the tensile strength, at the age of R8 days, as abscissae.

The per cent of clay in the different sands in this case was constant.

Conclusion.

The curve on Plate I seems to indicate that the tensile strength varies inversely as the ser cent of clay in the sand which agrees with previous experiments (see reference pages 4). The curve on Plate II indicates that the tensile strength varies inversely as the average fineness. When both factors are present the sand is usually unsuitable for construction work.

The two poorest sands were from Joliet and Bloomington. The cause of their waskness was the large per cent of clay each contained and also their extreme fineness. However since The fineness was determined with the clay in the sand the clay also effects the finences. The Chicago, Moline and Galesburg sands were for their low tensile strength. The Chicago limestone screenings had a variety of Right and they were also clean which with irregular shapes caused their high tensile atrength. The sands from aurora, mound city Ind. (used in Champaigne), Elgin, Decatur and Rockford were all practically clean and the tables show

that these sands were fourly coarse Champaign (local) sand was pretty coarse but it has a large amount of clay in it which lowered the tensile strength. The alton, Freeport and Lincoln Randa were fairly clean but they were pretty fine, . Although not as fine as the Chicago Rands. They were therefore stronger. From the results of the tests the different sands are arranged according to their strength as follow: -- name Jensile Strength agr 28 days 2 Chicago Limestone Screenings 273# 2 Aurora sand 270# 261# Stype's Sand Champaign 4 Elgin Sand-Hammond Pit 5 " "-Stimpson " 6 Decatur Sand 240# 222# 221# Rockford " 193# Champaign " 183# 175-# Lincoln " Freeport " 164# 164# " Sandstone Screenings 163# Chicago Sand 13 160# altor 138# moline 16 129# Cohicago 115# 19 Bloomington " 101# 93# 20 Johns

From the above it appears that the sands obtained in Illinois are on the average, suitable for building purposes. In a few cases, Champaign for example, the sand was not considered suitable for use and sand was obtained from other states or cities.

RESULTS OF TESTS

Sample Nal

Received from Chicago

TENSILE STRENGTH

Ref. No.	Breaking Strength pounds per square inch			
	Age Tdays	Age 28 days	Age 90days	
/	90	140	140	
2	80	140	140	
3	80	120	/35	
4	75	140	140	
5	60	140	140	
6	75	/30	125	
7	80	120	130	
8	90	120	150	
9	60	120	130	
10	60	120	/30	
Averag	75	129	136	

FINENESS

Standard	Quantity Retained	Quantity	PerCent	
Mesh	Retained	Passing	Retained	
# 8	0	1000	0	
# 12	0	1000	0	
# 16	./	999.9	.0/	
#24	1.8	998.1	./8	
# 100	995.0	3./	9950	
Pan	3./	0.0	.3/	
Total	1000		100.	

TESTFOR CLAY

2.75 parts clay in 1000 parts = .275 fo Clay

Sample No.2 Received from Chicago Obtained "

TENSILE STRENGTH

Ref No.	BreakingStrength pounds persquare inch Age7days Age28days Age90days		
	Age7day5	Age 28 days	Age 90days
/	//5	140	150
2	80	70	160
3	90	140	170
4	105	120	160
5	90	90	140
6	90	130	110
7	90	/20	150
8	80	100	130
9	90	100	150
10	90	140	120
Average	92	115	144

FINENESS

Standard	Quantity Retained	Quantity	PerCent Retained
Mest	Retained	Passing	Ketained
# 8	13.4	986.6	1.34
# 12	103	976.3	1.03
# 16	16.4	959.9	1.64
# 24	30.1	929.8	3.01
# 100	924.4	5.44	92.44
Pan	5.4	0.0	.54
Total	1000.		100.

TESTFOR CLAY 3 parts clay in 1000 parts = 3 foclay

Sample No.3 Received from Chicago

TENSILESTRENGTH

Ref No.	BreakinaSt	renath bounds	spersavareinch
	BreakingSt.	Age 28days	Age 90 days
1	110	220	200
2	120	160	160
3	140	160	150
4	110	160	140
5	110	180	160
6	110	150	180
7	130	150	180
8	110	150	180
9	130	150	140
10	120	150	150
Average	//9	163	164

FINFNESS

Standard Mesh	Quantity	Quantity	PerCent
Mesh	Retained	Passing	Retained
# 8	80	920	8.0
# 12	33.9	886.1	3.39
# 16	36./	850.0	3.6/
# 24	67.0	783.0	6.7
# 100	780.0	3.0	78.0
Pan	3.	0.0	,3
Total	1000.		100.

TESTFORCLAY 3.1 parts clay in 1000 parts = 31/oclay

Sample No.4 Received from Chicago (Limestone Screenings) Obtained " "

PofNo	BroakingStr	conathoguna	Is nons quane inch
16 67 7 10.	Age Talays	Age 28days	s persquare inch Age 90days
	100	320	250
2	120	220	235
3	80	330	190
4	160	240	230
5	110	255	430
6			290
7			340
8			250
9			190
10			370
Average	114	273	277.5

RESULTS OF TESTS

Sample No.5 Received from Elgin
Obtained "", Hammond Pit

TENSILESTRENGTH

Ref. No. Breaking Strength pounds per Square inch Age Tdoys Age 28 days Age 90 days			
ret. 110.	DreakingStr	ength pounds,	perSquare Inch
	Age Tdoys	Age 28 days	Age 90days
/	170	1.90	280
2	150	250	290
3	190	285	410
4	160	260	360
		200	300
- 5	180	240	260
6	160	2/5	280
7	150	305	260
8	170	260	260
9	160	220	300
10	170	260	260
Average		249	296

FINENESS

Standard	Quantity	Quantity	Per Cent
Mesh	Retained	Passing	Per Cent Retained
#8	124.6	875.4	12.46
#12	99.4	776.0	9.94
# 16	108.6	667.4	10.86
#24	144.1	523.3	14.41
#100	512.9	10.4	51.29
Pan	104	0.0	1.04
Total	1000		100

TESTFOR CLAY
9.7 parts clay in 1000parts=9176Clay

Sample No 6 Received from Elgin Stimpson Pit

TENSILE STRENG

TENOTEE STIELINGTH				
Ref.	Breaking	strength pound	dsper Square inch	
No.	Age 7days	Age 28 days	Age 90days	
	140	205	240	
	150	190	230	
	/30	255	360	
4	120	160	290	
5	140	200	215	
6	120	295	290	
7	110	250	200	
8	130	220	260	
9	170	220	265	
10	160	225	300	
Averag		222	265	

FTINEINESS

		•	
Standard Mesh	Quantity	Quantity	Per Cent Retained
Mesh	Retained	Passing	Retained
#8	35	965	3.5
#12	50	915	5.0
#16	95	820	95
#24	182	638	18.2
#100	623	15	62,3
Pan	15	0	1.5
Total	1000		100.

TEST FORCLAY

8.7 parts clay in 1000 parts = .87/6 Clay

Sample No 7 Received from Bloomington

TENSILE STRENGTH

Ref.	Breaking Strength pounds per Square inch Age 7 days Age 28 days Age 90 days				
No.	Age Idays	Age 28days	Age 90days		
1	80	120	170		
2	80	100	170		
3	80	95	155		
4	120	65	145		
5	120	75	120		
6	110	90	120		
7	90	115	120		
8	120	100	160		
9	60	110	170		
10	60	140	180		
Average	92	101	151		

FINENESS

	1 1 1 1 1 1 1 1		_
Standard	Quantity	Quantity	PerCent
Mesh	Retained		
#8	92	918	9.2
# 12	71	847	7.1
# 16	96	741	9.6
# 24	130	6//	13.0
#100	545	66	54.5
Pan	66	0.0	6.6
Total	1000		100.

TEST FOR CLAY
63.8 parts clay in 1000 parts = 638% clay

RESULTS OF TESTS Sample No8 Received from Rock ford Obtained " " TENSILE STRENGTH

72 6			-
Ket.	Breaking St.	rength pounds	persquare inch
No	Age Tdays	Age 28 days	Age 90 days
/	140	260	200
. 2	140	220	220
3	170	240	220
4	140	190	180
5	200	200	210
6	180	190	220
7	200	200	240
8	140	190	220
9	180	160	220
10	180	260	250
Average	167	211	218

FINENESS

Standard	Quantity	Quantity	Per Cent
Mesh	Retained	Passing	Retained
#8	35	965	3.5
#12	52	9/3	5.2
# 16	104	809	10.4
#24	276	533	27.6
#100	522	11	522
Pan	//		1.1
Total	1000		700.

TEST FOR CLAY 6 parts clay in 1000 parts = .6% Clay

Sample No 9 Received from Springfield Obtained " Lincoln

TENSILE STRENGTH

Ref.	Breaking Strength pounds per square inch Age 7days Age 28days Age 90days			
No.	Age Tdays	Age 28days	Age 90days	
/	/30	180	260	
2	140	180	260	
3	140	170	220	
4	150	220	170	
5	130	195	210	
6	160	195	220	
7	130	180	230	
8	120	170	220	
9	/10	160	240	
10	140	180	260	
Average	132	/83	229	

FINENESS

Standard Mesh	Quantity Retained		Per Cent Retained	
#8	53.0	947	5.3	
#12	96.0	851	9.6	
#16	112.0	739	11.2	
#24	154.0	585	15.4	
#100	580.0	5	58.0	
Pan	5.0		.5	
Total	1000.0		100.0	

TEST FOR CLAY 11 parts clay in 1000 parts=1.1% clay

RESULTS OF TESTS Received from Springfield Sample No.10 Obtained " Alton TENSILE STRENGTH

Ref.	Ref. Breaking Strength pounds per Square inch No. Age Idays Age 28 days Age 90 days				
No.	Age Tdays	Age 28 days	Age 90days		
	120	165	220		
2	140	160	200		
3	130	160	200		
4	110	140	200		
5	160	200	200		
6	110	160	180		
7	100	140	200		
8	120	150	180		
9	100	175	200		
10	110	150	190		
Average	2 120	160	197		

FINENESS

Standard	Quantity	Quantity	Per Cent Retained
Mesh	Retained	Passing	Retained
#8	19	981	1.9
#12	18	963	1.8
#/6	38	925	3.8
#24	129	796	12.9
#100	793	3	79.3
Pan	3	,	,3
Total	1000		100.

TEST FOR CLAY

3 parts clay in 1000 parts = 3% clay

RESULTS OF TESTS Sample No. 11 Received from Springfield Optained " Alton TENSILE STRENGTH

		122 0 1 7027	10111
Ref.	Breaking S	trengthpoung	spersquare inch
No.	Ageldays	Age 28 days	Age 90 days
/	130	185	220
2	160	160	200
3	155	160	190
4	130	150	240
5	145	180	200
6	140	/70	200
7	145	180	190
8	120	150	220
9	160	220	200
10	165	195	210
Average		175	207

FINEIVESS

Standard	Quantity	Quantity	PerCent
Mesh	Retained	Passing	Retained
#8	19.2		1.92
#12	26.2	954.6	2.62
#16	50.9	903.7	5.09
#24	160.7	743.0	16.07
#100	740.0	3.0	74.00
Pan	3.0		.30
Total	1000.0		700.00

TEST FOR CLAY

2.1parts clay in 1000 parts = .21/6 clay

Sample No12 Received from Champaign
Obtained "MoundCity Ind. (Stypes)

TENSILE STRENGTH

Ref.	Ref. Breaking Strength pounds per square inch				
No.	Age Tdays	Age 28 days	Age 90days		
	220	240	340		
2	205	220	240		
3	205	290	260		
4	250	230	370		
5	210	230	310		
6	235	230	340		
7	170	225	. 300		
8	205	315	360		
9	250	330	310		
10	250	300	280		
Average	220	261	315		

FINENESS

Standard	Quantity	Quantity Passing	Per Cent
Mesh	Retained	Passing	Retained
#8	92.0	908.0	9.20
#/2	135.1	772.9	/3.57
#16	167.0	605.9	16.70
#24	208.0	397.9	20.80
#100	379.0	18.9	37.90
Pan	18.9		1.89
Total	1000.0		100.00

TEST FOR CLAY 15 parts clay in 1000 parts=1.5% clay

Sample No.13 Received from Galesburg

TENSILE STRENGTH

Ref.	Breaking Strength poundspersquare inch			
No.	Age 7 days	Age 28 days	Age 90days	
	115	155	190	
2	90	/35	200	
3	105	100	160	
4	100	155	200	
5	90	135	160	
6	100	140	160	
7	100	145	170	
8	90	155	170	
9	100	140	160	
10	100	130	180	
Avergge	99	139	175	

FINENESS

Standard	Quantity	Quantity	Per Cent
Mesh	Retained	Passing	Retained
#8	2.3	997.7	.23
#/2	2.3	995.4	.23
#16	5.6	989.8	.56
#24	30.8	959.0	3.08
#100	958.0	1.0	95,80
Pan	1.0		.10
Total	1000.0		100.00

TESTFORCLAY 3 parts clay in 1000 parts = 3% clay

Sample No.14 Received from Decatur

TENSILE STRENGTH

Ref.	Breaking Strength pounds per square inch Age 7days Age 28days Age 90days		
No.	Age Tdays	Age 28days	Age 90 days
1	230	210	360
2	180	230	380
3	250	310	300
4	190	2/0	340
5	180	180	280
6	190	280	280
7	230	190	280
8	180	160	300
9	210	210	290
10	180	230	340
Average	202	221	315

FINENESS

Standard	Quantity	Quantity	Per Cent
Mesh	Retained	Passing	Retained
#8	220	780	22.0
#12	140	640	14.0
#16	160	480	16.0
#24	126	354	12.6
#100	349	5	34.9
Pan	5		.5
Total	1000		100.0

TESTFOR CLAY 21 parts clay in 1000 parts=2.1% clay

Sample No. 15

Received from Freeport
Obtained " "

TENSILE STRENGTH

Ref.	Breaking Strength pounds per square inch			
No.		Age 28days		
	160	145	280	
2	195	90	260	
3	140	135	220	
4	150	140	230	
5	130	210	250	
6	175	250	260	
7	150	180	240	
8	160	175	250	
9	120	155	250	
10	120	160	240	
Average	145	164	248	

FINEIYESS

Standard Mesh	Quantity	Quantity	Per Cent
72	Ketained		Retained
<u>"8</u>	12	988	1.2
#12	38	950	3.8
#16	73	877	7.3
#24	142	735	14.2
#100	722	/3	72.2
Pan	/3		1.3
Total	1000		100.0

TEST FOR CLAY
23parts clay in 1000parts=2.3% clay

Sample No.16 Received from Freeport (Sandstone Screenings) Obtained " "

Ref	Breaking Strength pounds persquare inch			
No.	Age 7 days	Age 28 days	Age 90 days	
1	130	160	240	
2	130	150	250	
3	130	200	230	
4	120	150	200	
5	130	150	220	
6			220	
7			260	
8			200	
9			240	
10			230	
Average	128	164	229	

Sample No.17 Received from Aurora

TENSILE STRENGTH

Ref.	Breaking Strength pounds per square inch			
	Age Tdays	Age 28 days	Age 90days	
/	190	220	315	
2	240	260	410	
3	170	220	385	
4	220	200	270	
5	170	310	300	
6	170	270	300	
7	170	350	320	
8	210	340	360	
9	200	240	320	
10	220	290	300	
Average	196	270	328	

FINENESS

Standard Mesh	Quantity	Quantity	Per Cent
77			
# 12	92	959	4./
# 16	98	861	9.8
#	142	7/9	14.2
#.	2//	508	21.1
#100	504	4	50.4
Pan	4		.4
Total	1000		100.0

TEST FOR CLAY 5parts clay in 1000 parts = 5% clay

Sample No.18

Received from Joliet
Obtained " "

TENSILESTRENGTH

Ref.	Breaking Strength pounds persquare inch				
No.	Age 7days	Age 28days	Age 90days		
	80	90	140		
2	100	10.5	150		
3	110	115	170		
4	80	80	180		
5	100	90	160		
6	90	80	200		
7	80	90	190		
8	90	95	190		
9	90	100	160		
10	90	85	200		
Average	91	93	174		

FINENESS

Standard	Quantity	Quantity	PerCent
Mesh	Retained	Passing	Retained
#8		995.5	* *
#/2	4.1	991.4	,
#16	13.0	978.4	130
#24	160.0	818.4	16.00
#100	804.4	14.0	80.44
Pan	14.0		1.4
Total	1000.0		100,00

TEST FOR CLAY 125 parts clay in 1000 parts = 12.5% clay

Sample No.19 Received from Moline Obtained " "

TENSILE STRENGTH

Ref.	Breaking Strength pounds persquare inch				
No.	Age 1days	Age 28days	Age 90 days		
	100	140	140		
2	100	/30	120		
3	90	150	140		
4	90	105	120		
5	95	140	140		
6	105	145	150		
7	90	160	120		
8	100	150	140		
9	110	160	140		
10	120	100	120		
Average	100	138	/33		

FINENESS

Standard	Quantity	Quantity	PerCent
Mesh	Retained	Passing	Retained
#8	/3.3	986.7	1.33
# 12	22./	964.6	2.21
# 16	41.2	923.4	4.12
# 24	130.0	7934	13.00
#100	791.4	2.0	79.14
Pan	2.0		.20
Total	1000.0		100.00

TEST FOR CLAY 2 parts clay in 1000 parts = 27 clay

RESULTS OF TESTS

Sample No. 20 Received from Champaign Obtained " "

TENSILE STRENGTH

Ref.	Breaking.	Strength pou	inds persquare inch
No.	Age 7 days	Age 28 days	Age 90 days
	160	150	320
2	150	170	240
3	150	200	260
4	160	230	300
5	155	180	330
6	145	150	300
7	170	240	310
8	180	220	270
9	170	180	330
10	160	210	360
Average	160	193	302

FINENESS

	· · · · · · · · · · · · · · · · · · ·		
Standard	Quantity	Quantity	PerCent
	Retained	Passing	Retained
#8	294.6	705.4	29.46
#12	172.6	532.8	17.26
#16	163.8	369.0	16.38
#24	/38,7	230.3	/3.87
#100	177.7	52.6	17.77
Fan	526		5.26
Total	1000.0		100.00

TEST FOR CLAY 18parts clay in 1000 parts = 1,8% clay

TABLE SHOWING TENSILE STRENGTH 34 AND PER CENT. OF CLAY. IN SANDS

		- Letter - L
Sample	Breaking Strength pounds per square inch	Per Cent. of Clay
No.	Age 28 days	Contained in Sand
	129	.275
2	115	.300
3	163	.3/0
4	273	
5	240	.97
6	222	.87
7	101	6.38
8	2//	.60
9	/83	1.10
10	160	.30
11	175	.21
12	261	1,50
/3	/39	.30
14	22/	2.10
15	164	2.30
16	164	
17	270	.50
18	93	12.5
19	138	.20
20	193	7.80

TABLE SHOWING TENSILE STRENGTH AND AVERAGE FINENESS OF SANDS

		Fineness				9e ess	12 20	
Sample	To by	Fineness To by Weight Caught on Sieve No. 8 12 16 24 100 Pan					verage	rens
No.	8	12	16	24	100	Pan	A	Sti Sti bs,
	0	0	,01	.18	99.50	.3/	24.3	129
2	1.34	1.03	1.64	3.01	92.44	.54	234	115
3	8.0	5.39	3.61	6.7	78.0	.30	20.1	163
4								273
5	1246	9.94	10.86	14.41	5/,29	1.04	18.2	240
6	3.5	5.0	9.5	18.2	62.3	1.5	22.0	222
7	9.2	7.1	9.6	13.0	54.5	6.6	23.8	101
8	3.5	5.2	10.4	27.6	52.2	1.1	19.8	211
9	5.3	9.6	11.2	15.4	58.0	.5	19.1	183
10	19	18	3.8	12.9	79.3	.3	22.1	160
11	1.92	2.62	5.09	16.07	74.00	.3	21.5	175
12	9.2	13.57	16.70	20.80	37.90	1.89	17.8	261
/3	.23	.23	.56	3.08	95.80	-/	23.7	/39
14	22.0	14.0	16.0	12.6	34.9	.5	14.8	22/
15	1.2	3.8	2.3	14.2	72.2	1.3	22./	164
16								164
17	4.1	9.8	14.2	21.1	50.4	,4	18,5	270
18	.45	.41	1.30	16.00	80.44	1.40	23.9	93
19	1.33	2.2/	4.12	13.00	79.14	,2	22.0	138
20	29.46	17.26	16.38	13.87	17.77	5.26	16,3	193

Plate I

Average Fineness Constant Varying Per Cent of Clay

200

300

Plate II

Per Cent of Clay Constant Average Fineness Varying

4 2

8

Tensile Strength

200

300

