

厦门大学《高等数学 I-1》期中试题 B·答案

考试日期: 2013.11 信息学院自律督导部整理

一、解答题(共76分)

1、计算下列各题: (每题 6 分, 共 30 分)

(1)
$$\lim_{x\to 0} \left(\frac{1}{n^2+n+1} + \frac{2}{n^2+n+2} + L + \frac{n}{n^2+n+n}\right);$$

解: 因为

$$\frac{1+2+L+n}{n^2+n+n} \le \frac{1}{n^2+n+1} + \frac{2}{n^2+n+2} + L + \frac{n}{n^2+n+n} \le \frac{1+2+L+n}{n^2+n+1},$$

即

$$\frac{n(n+1)}{2(n^2+n+n)} \le \frac{1}{n^2+n+1} + \frac{2}{n^2+n+2} + L + \frac{n}{n^2+n+n} \le \frac{n(n+1)}{2(n^2+n+1)}.$$

$$\lim_{n\to\infty} \frac{n(n+1)}{2(n^2+n+n)} = \lim_{n\to\infty} \frac{n(n+1)}{2(n^2+n+1)} = \frac{1}{2},$$

故
$$\lim_{x\to 0} \left(\frac{1}{n^2+n+1} + \frac{2}{n^2+n+2} + L + \frac{n}{n^2+n+n}\right) = \frac{1}{2}.$$

(2)
$$\lim_{x \to 0} \frac{\cos x - \sqrt{1 - x^2}}{e^{-x^2} - \cos \sqrt{2}x}$$

解: 因为

$$\cos x - \sqrt{1 - x^2} = 1 - \frac{x^2}{2} + \frac{x^4}{24} - (1 - \frac{1}{2}x^2 + \frac{\frac{1}{2}(\frac{1}{2} - 1)}{2!}x^4) + o(x^4) = \frac{1}{6}x^4 + o(x^4),$$

$$e^{-x^2} - \cos\sqrt{2}x = 1 - x^2 + \frac{x^4}{2} - (1 - \frac{2x^2}{2} + \frac{x^4}{6}) + o(x^4) = \frac{1}{3}x^4 + o(x^4),$$

故
$$\lim_{x \to 0} \frac{\cos x - \sqrt{1 - x^2}}{e^{-x^2} - \cos \sqrt{2}x} = \lim_{x \to 0} \frac{\frac{1}{6}x^4 + o(x^4)}{\frac{1}{3}x^4 + o(x^4)} = \frac{1}{2}.$$

(3) 求函数
$$y = (2 + \cos x)^x + \frac{1-x}{1+x} \arcsin \sqrt{1-x^2}$$
, $(0 < x < 1)$ 的导数。

解
$$y = e^{x \ln(2 + \cos x)} + \frac{1 - x}{1 + x} \arcsin \sqrt{1 - x^2}$$
,于是,

$$y' = (2 + \cos x)^{x} \cdot \left[\ln(2 + \cos x) - \frac{x \sin x}{2 + \cos x}\right] - \frac{2}{(1 + x)^{2}} \arcsin \sqrt{1 - x^{2}} - \frac{\sqrt{1 - x}}{(1 + x)^{3/2}}.$$

(4) 求函数
$$y = y(x)$$
 由参数方程
$$\begin{cases} x = t - \sin t \\ y = 1 - \cos t \end{cases}$$
 所确定,求
$$\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{t=\frac{\pi}{2}} \mathcal{D} \frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\Big|_{t=\frac{\pi}{2}}.$$

解:
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sin t}{1 - \cos t}, \quad \text{故} \left. \frac{\mathrm{d}y}{\mathrm{d}x} \right|_{t = \frac{\pi}{2}} = 1;$$

$$\frac{d^2y}{dx^2} = \frac{\cos t(1-\cos t) - \sin^2 t}{(1-\cos t)^2} \cdot \frac{1}{1-\cos t} = -\frac{1}{(1-\cos t)^2}, \quad \text{if } \frac{d^2y}{dx^2} \bigg|_{t=\frac{\pi}{2}} = -1.$$

解:
$$f^{(10)}(x) = (x^2 + x + 1)\cos(x + \frac{10\pi}{2}) + 10 \times (2x + 1)\cos(x + \frac{9\pi}{2}) + \frac{10 \times 9}{2} \times 2\cos(x + \frac{8\pi}{2})$$
,

2、(8 分)求函数 $y = \frac{|x-2| \cdot \ln |x|}{x^2 - 3x + 2}$ 的间断点,并判断其类型(说明理由)。

解: 因为
$$\lim_{x\to 0} \frac{|x-2| \cdot \ln |x|}{x^2 - 3x + 2} = \infty$$
,故 $x = 0$ 为函数 $y = \frac{|x-2| \cdot \ln |x|}{x^2 - 3x + 2}$ 的第二类间断点(无穷间断点);

由于
$$\lim_{x\to 2^+} \frac{|x-2| \cdot \ln|x|}{x^2 - 3x + 2} = \ln 2$$
, $\lim_{x\to 2^-} \frac{|x-2| \cdot \ln|x|}{x^2 - 3x + 2} = -\ln 2$,所以, $x = 2$ 为函数 $y = \frac{|x-2| \cdot \ln|x|}{x^2 - 3x + 2}$ 的第一

类间断点(跳跃间断点);

而
$$\lim_{x \to 1} \frac{|x-2| \cdot \ln|x|}{x^2 - 3x + 2} = \lim_{x \to 1} \frac{(2-x) \cdot \ln(1+x-1)}{(x-2)(x-1)} = -1$$
,故 $x = 2$ 为函数 $y = \frac{|x-2| \cdot \ln|x|}{x^2 - 3x + 2}$ 的第一类间断点(可去间断点).

3、(6分)设 y = y(x) 是由方程 $x^2 + y^2 - ye^{xy} = 2$ 所确定的隐函数,求曲线 y = y(x) 在点 (0,2) 处的切线方程和法线方程。

 \mathbf{M} 对方程 $x^2 + y^2 - y e^{xy} = 2$ 两边关于 x 求导数,则有

$$2x + 2yy' - e^{xy}y' - ye^{xy}(y + xy') = 0,$$

令
$$x = 0$$
 , $y = 2$, 则有 $y'(0) = \frac{4}{3}$, 于是所求切线斜率 $k = \frac{4}{3}$.

于是,所求切线方程为
$$y-2=\frac{4}{3}x$$
,即 $4x-3y+6=0$,

法线方程为
$$y-2=-\frac{3}{4}x$$
, 即 $3x+4y-8=0$.

4、(8分) 设
$$f(x) = \begin{cases} a + e^{\frac{-1}{x}}, & x > 0 \\ b, & x = 0, & 试问 \\ \frac{\sin x}{e^x - 1}, & x < 0 \end{cases}$$

(1) a, b 为何值时, f(x) 在 $(-\infty, +\infty)$ 内连续? (2) f(x) 在 x = 0 处是否可导?

解 只须考虑 f(x) 在 x = 0 处的连续性和可导性.

(1) 为使 f(x) 在 x = 0 处连续,则有

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^-} f(x) = f(0) ,$$

即 a=1=b

(2)
$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{1 + e^{-\frac{1}{x}} - 1}{x} = 0$$
,

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{\frac{\sin x}{e^{x} - 1} - 1}{x} = \lim_{x \to 0^{-}} \frac{\sin x - e^{x} + 1}{x(e^{x} - 1)} = \lim_{x \to 0^{-}} \frac{\sin x - e^{x} + 1}{x^{2}}$$

$$= \lim_{x \to 0^{-}} \frac{\cos x - e^{x}}{2x} = \lim_{x \to 0^{-}} \frac{-\sin x - e^{x}}{2} = -\frac{1}{2}.$$

故 f(x) 在 x = 0 处不可导.

5、(8 分) 讨论函数 $f(x) = x^2 e^{-x^2}$ 的单调性,并求出该函数在实数范围内的极值和最值。

解
$$f'(x) = (2x - x^2)e^{-x} = x(2 - x)e^{-x}$$
, 令 $f'(x) = 0$, 得 $x = 0$ 或 $x = 2$.

X	$(-\infty,0)$	0	(0,2)	0	$(2,+\infty)$
f'(x)	_	0	+	0	_
f(x)	\	极小值	↑	极大值	\

函数 $f(x) = x^2 e^{-x^2}$ 在 $(-\infty, 0)$ 及 $(2, +\infty)$ 上单调减少,在 (0, 2) 上单调增加.于是,函数 $f(x) = x^2 e^{-x^2}$ 在 x = 0 处取得极小值,极小值为 f(0) = 0,在 x = 2 处取得极大值,极大值为 $f(2) = 4e^{-2}$.

由于 $\lim_{x\to\infty} f(x) = +\infty$,而 $\lim_{x\to +\infty} f(x) = 0$,因此,函数 f(x) 没有最大值,在 x = 0 处取得最小值 0.

6、(8分) 设函数
$$f(x)$$
 在 $x = 0$ 处连续,且 $\lim_{x \to 0} \frac{f(x)}{e^x - 1} = 2$,求:(1) $f'(0)$;(2) $\lim_{x \to 0} \frac{f(\tan x - \sin x)}{x \ln(1 + x^2)}$.

解: 因为函数 f(x) 在 x = 0 处连续, 故

$$f(0) = \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{f(x)}{e^x - 1} \cdot (e^x - 1) = 0.$$

(1)
$$f'(0) = \lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \frac{f(x)}{e^x - 1} \cdot \frac{e^x - 1}{x} = 2$$
;

(2)
$$\lim_{x \to 0} \frac{f(\tan x - \sin x)}{x \ln(1 + x^2)} = \lim_{x \to 0} \frac{f(\tan x - \sin x)}{\tan x - \sin x} \cdot \frac{\tan x - \sin x}{x \ln(1 + x^2)}$$
$$= f'(0) \lim_{x \to 0} \frac{\tan x - \sin x}{x^3} = 2 \lim_{x \to 0} \frac{\tan x \cdot (1 - \cos x)}{x^3} = 1.$$

7、(8分) 设 $x_0 = \sqrt{2}$, $x_n = \sqrt{2} + \frac{x_{n-1} - 1}{\sqrt{2} + x_{n-1}}$ (n = 2, 3, L), 证明数列 $\{x_n\}$ 收敛,并求极限 $\lim_{n \to \infty} x_n$;

解:
$$x_n = \sqrt{2} + \frac{x_{n-1} - 1}{\sqrt{2} + x_{n-1}} = \sqrt{2} + 1 - \frac{1 + \sqrt{2}}{\sqrt{2} + x_{n-1}}$$
.

先用归纳法证明: $x_n > x_{n-1} (n = 2, 3, L)$ 且 $\sqrt{2} < x_n < \sqrt{2} + 1$

事实上,
$$x_0 = \sqrt{2}$$
, $x_1 = \sqrt{2} + 1 - \frac{\sqrt{2} + 1}{\sqrt{2} + x_0} < \sqrt{2} + 1$ 且 $x_1 = \sqrt{2} + \frac{x_0 - 1}{\sqrt{2} + x_0} > \sqrt{2} = x_0$.

假设结论对 n=k 时成立,即 $\sqrt{2}+1>x_k>x_{k-1}>\sqrt{2}$,那么 n=k+1 时,

$$x_{k+1} = \sqrt{2} + 1 - \frac{1 + \sqrt{2}}{\sqrt{2} + x_{k+1}} < \sqrt{2} + 1$$
, $x_{k+1} = \sqrt{2} + \frac{x_k - 1}{\sqrt{2} + x_k} > \sqrt{2}$

故数列 $\{x_n\}$ 单调增加,且有上界,于是极限 $\lim_{n\to\infty}x_n$ 存在,设 $\lim_{n\to\infty}x_n=a$.

由
$$x_n = \sqrt{2} + \frac{x_{n-1} - 1}{\sqrt{2} + x_{n-1}}$$
 两边取极限,得 $a = \sqrt{2} + \frac{a - 1}{\sqrt{2} + a}$,解得 $a = \frac{1 \pm \sqrt{5}}{2}$,因为 $x_n > \sqrt{2}$,所以,

$$\lim_{n\to\infty} x_n = \frac{1+\sqrt{5}}{2}.$$

二、应用题(10分)

在椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 的第一象限部分上求一点P,使该点处的切线、椭圆及两坐标轴所围图形的面积最小。

解: 过椭圆上任意点 (x_0, y_0) 的切线斜率 $y'(x_0)$ 满足 $\frac{2x_0}{a^2} + \frac{2y_0y'(x_0)}{b^2} = 0$,则 $y'(x_0) = -\frac{b^2x_0}{a^2y_0}$,

 $(y_0 \neq 0)$, 切线方程为 $y-y_0 = -\frac{b^2x_0}{a^2y_0}(x-x_0)$. 分别令 y=0 与 x=0 , 求得 x,y 轴上的截距为:

$$y = \frac{b^2}{y_0}$$
, $x = \frac{a^2}{x_0}$,于是该切线与椭圆及两坐标轴所围图形的面积为: $S(x_0) = \frac{1}{2} \frac{a^2 b^2}{x_0 y_0} - \frac{1}{4} \pi ab$

其中
$$y_0 = b\sqrt{1 - \frac{x_0^2}{a^2}} = \frac{b}{a}\sqrt{a^2 - x_0^2}$$
,代入得 $S(x_0) = \frac{1}{2}\frac{a^3b}{x_0\sqrt{a^2 - x_0^2}} - \frac{1}{4}\pi ab$, $x_0 \in (0, a)$.

问题是求:
$$S(x) = \frac{1}{2} \frac{a^3 b}{x \sqrt{a^2 - x^2}} - \frac{1}{4} \pi a b \ (0 < x < a)$$
 的最小值,

此问题又与求函数 $f(x) = x^2(a^2 - x^2)$ 在闭区间[0,a] 上最大值等价。

由
$$f'(x) = 2x(a^2 - x^2) - 2x^3 = 0$$
,得 $a^2 - 2x^2 = 0$,即 $x = x_0 = \frac{\sqrt{2}}{2}a$, $x = 0$ (舍去),

注意到 $f(0)=f(a)=0, f(x_0)>0$,故 $x_0=\frac{\sqrt{2}}{2}a$ 是 f(x) 在 [0,a] 上最大值点,因此 $(\frac{\sqrt{2}}{2}a,\frac{\sqrt{2}}{2}b)$ 即为所求的点 P。

三、证明题(每题7分,共14分)

(1) 设函数 f(x) 在 [0,1] 上连续,并且对 [0,1] 上任意一点 x 有 $0 \le f(x) \le 1$,证明在 [0,1] 中必存在一点 c ,使得 f(c) = c .

证明: 作辅助函数 F(x) = f(x) - x, 由于对[0,1]上任意一点 x 有 $0 \le f(x) \le 1$, 则

$$F(0) = f(0) \ge 0$$
, $F(1) = f(1) - 1 \le 0$.

若F(0) = 0,则取c = 0;若F(1) = 0,则取c = 1;

若 F(0) > 0 且 F(1) < 0 ,利用零点定理,知在 (0,1) 内至少存在一点 c ,使得 F(c) = 0 .

综上,在[0,1]上至少存在一点c,使得F(c)=0,即f(c)=c.

(2) 设函数 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,且 f(1)=0 ,证明至少存在一点 $\xi \in (0,1)$,使得 $4f(\xi)+\xi f'(\xi)=0$.

证明: 做辅助函数 $F(x) = x^4 f(x)$,由己知条件知 F(x) 在 [0,1] 上连续,在 (0,1) 内可导,且 F(0) = 0, F(1) = f(1) = 0,即 F(1) = F(0).

由罗尔定理,存在 $\xi \in (0,1)$,使得 $F'(\xi) = 0$,即 $4\xi^3 f(\xi) + \xi^4 f'(\xi) = 0$,也即 $4f(\xi) + \xi f'(\xi) = 0.$