# Introducción a los modelos computacionales Práctica 1. Implementación del perceptrón multicapa

<u>Javier Sánchez Monedero</u> (jsanchezm@uco.es) Pedro Antonio Gutiérrez (pagutierrez@uco.es)

Asignatura "Introducción a los modelos computacionales"

4º Curso Grado en Ingeniería Informática
Especialidad Computación
Escuela Politécnica Superior
(Universidad de Córdoba)

1 de octubre de 2024





Contenidos

Notación y arquitectura





# Objetivos de la práctica

- Familiarizar al alumno con los modelos computacionales de redes neuronales, en concreto, con el perceptrón multicapa.
- Implementar el algoritmo de retropropagación básico para el perceptrón multicapa.
- Comprobar el efecto de distintos parámetros y preprocesamiento:
  - Arquitectura de la red.
  - Factor de momento.
  - Normalización de datos.
  - etc.





## Algoritmo de retropropagación

- Leer y analizar los apuntes de teoría.
- Analizar especialmente el pseudocódigo.





# Condición de parada

- Versión estándar, el algoritmo para si:
  - El error de entrenamiento no baja más de 0,00001 o sube, durante 50 iteraciones (bucle externo).





## Consideraciones para la normalización de datos I

- La mayoría de métodos de aprendizaje automático necesitan que los datos estén normalizados para mitigar el efecto de las diferentes magnitudes de las variables.
- Existen muchas variantes de la normalización, pero las dos más comunes son:
  - Escalado: cada variable se transforma para que esté en un intervalo [a, b]:

$$X' = a + \frac{\left(X - X_{\min}\right)\left(b - a\right)}{X_{\max} - X_{\min}} \tag{1}$$

 Estandarización: normaliza cada variable típicamente produciendo una distribución de media cero y desviación típica 1:

$$X' = \frac{X - \mu}{\sigma} \tag{2}$$





## Consideraciones para la normalización de datos II

- En ambos casos es importante que los parámetros de escalado se calculen sobre el conjunto de entrenamiento, y luego se apliquen las transformaciones en el conjunto de entrenamiento y en el test.
- Un error común es aplicar la normalización sobre el conjunto de test calculando los valores mínimos y máximos (X<sub>máx</sub> y X<sub>mín</sub>), o la media y desviación (μ y σ), sobre este conjunto o antes de realizar la partición en conjuntos de entrenamiento y test. En ambos casos se está utilizando directa o indirectamente información de test para la construcción del modelo.
- En nuestro caso, vamos a escalar las variables de entrada en el rango [-1,1] y las variables de salida en [0,1] ya que la última capa de salida es una sigmoide.





# Algoritmo de retropropagación

## Algoritmo de retropropagación on-line

#### Inicio

- $w_{ii}^h \leftarrow U[-1,1]$  // Aleatorios entre -1 y+1
- Repetir
  - Para cada patrón con entradas x, y salidas d
    - $\bullet$   $\Delta w_{ii}^h \leftarrow 0$  // Se aplicarán cambios por cada patrón
    - **2** out  $i \leftarrow x_i //$  Alimentar entradas
    - **3** forwardPropagation() // Propagar las entradas ( $\Rightarrow \Rightarrow$ )
    - backPropagation() // Retropropagar el error (⇐⇐)
    - accumulateChange() // Calcular ajuste de pesos
    - 6 weightAdjustment() // Aplicar el ajuste calculado

#### Fin Para

Hasta (CondicionParada)

Oevolver matrices de pesos.





# Algoritmo de retropropagación

### Algoritmo de retropropagación off-line

#### Inicio

- $w_{ii}^h \leftarrow U[-1,1]$  // Aleatorios entre -1 y+1
- Repetir
  - $\Delta w_{ii}^h \leftarrow 0$  // Se aplicarán cambios al final
  - Para cada patrón con entradas x, y salidas d
    - $\mathbf{0}$  out<sub>i</sub><sup>0</sup>  $\leftarrow x_i$  // Alimentar entradas
    - ② forwardPropagation() // Propagar las entradas (⇒⇒)
    - backPropagation() // Retropropagar el error (⇐⇐)
    - accumulateChange() // Acumular ajuste de pesos

#### Fin Para

weightAdjustment() // Aplicar el ajuste calculado

Hasta (CondicionParada)

3 Devolver matrices de pesos.



## forwardPropagation()

#### Inicio

- **1** Para h de 1 a H // Para cada capa  $(\Rightarrow \Rightarrow)$ 
  - **1** Para i de 1 a  $n_h$  // Para cada neurona de la capa h

1 
$$net_j^h \leftarrow w_{j0}^h + \sum_{i=1}^{n_{h-1}} w_{ji}^h out_i^{h-1}$$
2  $out_j^h \leftarrow \frac{1}{1 + \exp(-net_i^h)}$ 

$$out_j^h \leftarrow \frac{1}{1 + \exp(-net_j^h)}$$

Fin Para

Fin Para





## backPropagation()

#### Inicio

- Para j de 1 a n<sub>H</sub> // Para cada neurona de salida
  - $\delta_j^H \leftarrow -(d_j out_j^H) \cdot g'(net_j^H)$  // Hemos obviado la constante (2), ya que el resultado será el mismo

#### Fin Para

- 2 Para h de H-1 a 1 // Para cada capa ( $\Leftarrow \Leftarrow$ )
  - **1** Para j de 1 a  $n_h$  // Para cada neurona de la capa h
    - **1**  $\delta_j^h \leftarrow \left(\sum_{i=1}^{n_{h+1}} w_{ij}^{h+1} \delta_i^{h+1}\right) \cdot out_j^h \cdot \left(1 out_j^h\right) // Pasa por todas las neuronas de la capa <math>h+1$  conectadas con j

#### Fin Para

#### Fin Para





## acummulateChange()

#### Inicio

- **1** Para h de 1 a H // Para cada capa  $(\Rightarrow \Rightarrow)$ 
  - Para i de 1 a  $n_h$  // Para cada neurona de la capa h
    - **9** Para i de 1 a  $n_{h-1}$  // Para cada neurona de la capa h-1  $\Delta w_{ji}^h \leftarrow \Delta w_{ji}^h + \delta_j^h \cdot out_i^{h-1}$  Fin Para

Fin Para

Fin Para





## weightAdjustment()

#### Inicio

- **1** Para h de 1 a H // Para cada capa ( $\Rightarrow\Rightarrow$ )
  - **9** Para j de 1 a  $n_h$  // Para cada neurona de la capa h
    - **9** Para i de 1 a  $n_{h-1}$  // Para cada neurona de la capa h-1  $w_{ji}^h \leftarrow w_{ji}^h \eta \Delta w_{ji}^h \mu \left( \eta \Delta w_{ji}^h (t-1) \right)$  Fin Para
    - 2  $w_{i0}^{h} \leftarrow w_{i0}^{h} \eta \Delta w_{i0}^{h} \mu (\eta \Delta w_{i0}^{h}(t-1))$  // Sesgo

Fin Para

Fin Para





# Introducción a los modelos computacionales Práctica 1. Implementación del perceptrón multicapa

<u>Javier Sánchez Monedero</u> (jsanchezm@uco.es) Pedro Antonio Gutiérrez (pagutierrez@uco.es)

Asignatura "Introducción a los modelos computacionales"

4º Curso Grado en Ingeniería Informática
Especialidad Computación
Escuela Politécnica Superior
(Universidad de Córdoba)

1 de octubre de 2024



