Elettronica T 14-1-2025	Ritirato	A	D	Totale
cognome	matricola			
nome	firma			

A1 Si consideri il circuito a OPAMP di figura. Nell' ipotesi che gli OPAMP siano ideali ed in alto guadagno, si calcoli la funzione di trasferimento e se ne disegnino i diagrammi di Bode (ampiezza e fase). Esplicitare i passaggi

$$H(j\omega) = 8\frac{1 + j\omega \frac{RC}{2}}{1 + j\omega RC}$$

A2 Sia ora $v_{IN} = V_M \cdot \sin(\omega_0 t)$ con $\omega_0 = 1$ MRAD/s. Sia inoltre SR=1V/ μ s. Calcolare II massimo valore di V_M che garantisce il funzionamento in alto guadagno dell' OPAMP. Esplicitare i passaggi

- 1. Determinare l'espressione booleana al nodo O
- 2. Dimensionare i transistori nMOS e pMOS in modo che i tempi di salita e discesa, al nodo F, siano inferiori o uguali a 100pS. Si ottimizzi il progetto per minimizzare l'area occupata da tutti i transistori.
- 3. Determinare la capacità di carico per i segnali C e CLK

Si tenga conto che i transistori dell'inverter di uscita hanno le seguenti geometrie :

Sp=300, Sn= 150.

Esplicitare i passaggi

Parametri tecnologici:

Rrif p = 10Kohm

Rrif n= 5Kohm

 $Cox = 7 \text{ fF/}\mu\text{m}^2$

 $Lmin = 0.25 \mu m$

 $V_{\rm CC} = 3.3 V$

$$C_C$$
=21fF
 C_{CLK} =16.6fF