

防电池反接独立线性锂电池充电器

RoHS 认证,绿色无铅封装

封装类型: SOT-23-5L

产品概述

SLM4055 是一款完整的单节锂电池恒流恒压线性充电 IC,最大充电电流可达到800mA。它采用极小的SOT-23-5L 封装,只需要外接极少的外部元件,使它能完全适用于便携式产品的应用。SLM4055 专为USB 电源特性设计,同时SLM4055 也可以作为独立的线性锂电池充电器。

产品应用

- 手持电话, PDA, MP4/MP3 播放器
- 蓝牙设备
- 充电器

典型应用

产品特性

RoHS

- 充电电流最大可编程至 800mA
- 无需外接 MOSFET、二极管和感应电阻
- 过温保护恒流恒压充电
- 具备电池防反接功能
- 可从 USB 口直接给单节锂电池充电
- 预设 4.2V 充电电压,精度达到±1%
- 涓流充电隔值 2.9V
- 可预设无涓流充电模式
- 软启动,有效限制冲击电流
- RoHS SOT-23-5L 封装

图 1.封装

www.sola-ic.com 1 / 6

Sola IC

管脚描述

管脚号	管脚名	功能
1	CHRG	充电状态指示
2	GND	接地端
3	BAT	接电池
4	VCC	电源输入
5	PROG	充电电流编程脚

CHRG(1): 开漏极充电状态输出脚。当对电池充电时,内部NMOS管将此引脚拉低,充电状态指示 LED亮; 当充电完成时,内部NMOS管为高阻态,LED灭。

GND(2): 电源地。

BAT(3): 充电电流输出脚。向电池提供充电电流,同时控制充电完成电压为4.2V。内部精确电阻分压器从改脚引出,控制输出电压。关断模式下,此电阻分压器从改脚断开连接。

VCC(4): 电源输入正极。向充电器供电,电压范围4.5V至6.5V。接1μF对地电容以减少纹波。

PROG(5): 充电电流编程器脚,充电电流监测与充电开关。可通过此脚与地之间链接的1%电阻来设定充电电流。当芯片处于恒流充电状态时,此脚上的电平定义为1V。所有工作状态下,充电电流的大小可按下式计算:

IBAT =900VPROG/RPROG

此脚也可作为充电开关脚,将此脚和地断开,充电器进入关断模式,充电停止,芯片的输入电流降至 $25\mu A$ 以下。

最大额定值(1)

参数	额定值
供电电压 (Vcc)	-0.3V 至+8V
PROG 脚电压 (VPROG)	VCC +0.3V
BAT 脚电压 (VBAT)	+8V
CHRG 脚电压 (VCHRG)	+8V
BAT 脚短路时间	持续
BAT 脚电流 (IBAT)	850mA
最大结温	+125°C
存贮温度范围	-65°C 至+125°C
工作温度范围	-40°C 至+85°C
焊接温度 (10 秒)	+300°C

www.sola-ic.com 2 / 6

防电池反接独立线性锂电池充电器

工作范围(2)

参数	符号	数值	单位
输入电压	Vcc	-0.3 ~ +8	V
结温	TJ	-40 ~ +80	°C

直流电学特性

(VCC = 5V, TJ= 25°C,特别标注除外)

参数	符号	条件	最小	典型	最大	单位
输入电压	Vcc		4.25		6.5	V
		充电模式(3),R _{PROG} = 10K		190		
输入支持电流	Icc	待机模式		85		μΑ
		关断模式(RPROG不接 Vcc <vuv)< td=""><td></td><td>45</td><td></td></vuv)<>		45		
整流输出电压	VFLOAT	0°C≤TJ≤85°С, Іват=40mA	4.158	4.2	4.242	٧
		充电模式,R _{PROG} = 10K		90		mA
		充电模式,RPROG= 2K		450		mA
BAT脚电流	IBAT	待机模式,VBAT=4.2V		2.5		μА
		关断模式,RPROG不接		±0.1		μA
		睡眠模式,Vcc=0V		±0.1		μА
涓流充电电流	ITRIKL	VBAT <vtrikl,< td=""><td></td><td>10</td><td></td><td></td></vtrikl,<>		10		
		RPROG= 10K				mA
涓流隔值电压	VTRIKL	Rprog= 10K, VBAT上升		2.9		V
手动关断隔值电压	VMSD	PROG脚电压上升时			1.25	V
		PROG脚电压下降时			1.2] V
VCC-VBAT关断隔值电压	VASD	电源从低到高时		100		
		电源从高到低时		30		mV
涓流充电关断隔值电流	ITERM	R _{PROG} = 10K(4)		10		
		R PROG= 2K		45		mA

www.sola-ic.com 3 / 6

防电池反接独立线性锂电池充电器

PROG脚电压	VPROG	R _{PROG} =10K,充电	1.03	٧
CHRG脚弱下拉电流	ICHRG	Vchrg=5V	0	uA
CHRG脚输出低电压	VCHRG	Ichrg=5mA	0.35	٧
二次充电隔值电压	ΔVRHRG	VFLOAT- VRECHRG	150	mV
恒温下结温	TLIM		120	${\mathbb C}$
软启动时间	tss	IBAT=0至1000V/RPROG	100	uS
二次充电比较器的滤波器滞	trechrg	VBAT从高到低	2	mS
后时间				
终止充电比较器的滤波滞后		IBAT降至ICHRG/10	1000	uS
时间				
PROG脚上拉电流			1	uA

注1: 超过最大额定值可能会损耗芯片。

注2: 超过此工作范围芯片不能保证正常工作。

注3: 支持电流包括PROG脚电流(约100μA),但不包括通过BAT脚流到电池的电流(约100mA)。

注 4: ITERM 是 PROG 脚电阻设定充电电流值的一部分。

应用说明

防反接功能:

SLM4055具备锂电池防反接功能,当Vcc接电源时,若误操作将需要充电的锂电池极性接反,此时SLM4055会自动检测到电池反接状态并且进入停机模式,避免锂电池和芯片损坏。

www.sola-ic.com 4 / 6

稳定性:

恒流反馈控制环路无需输出电容即可输出稳定的电压给外接在充电器输出端上的电池。如无外接电池,输出应接一输出电容以 减少纹波。

恒流模式下,PROG 脚为反馈环路。恒流模式的稳定性受 PROG 脚的阻抗影响。如无外加电容于 PROG 脚上,则当编程电阻高至 20KΩ时,充电器仍能保持稳定;然而,如有外加电容,最大允许编程电阻将减小。

VCC旁路电容:

虽然可以使用各种类型的电容作为旁路电容,但最好采用多层陶瓷电容。因为在一定的启动条件下,电容受到高压瞬态冲击,某些陶瓷电容将产生自振。例如当连接充电器至一个波动电源上时,即可发生上述情况。建议应用时在 Vcc 输入端与 GND 并联一个容值为 0.1uF--1uF 的多层陶瓷电容。

耗散功率:

通过热反馈减小充电电流的条件可以近似地估算芯片的耗散功率。几乎所有的功率损耗均是由内部MOSFET产生的,有如下近似计算公式:

PD=(VCC-VBAT) IBAT

热保护时芯片周围温度为:

 $T_A=120\,C-P_D$ JA = $120\,C-(V_{CC}-V_{BAT})$ IBAT θ JA

散热考虑:

因为此芯片是小尺寸 SOT-23-5L 封装,通过 PCB 布局来散热对充电电流最大化是非常重要的。 散热路径为芯片晶片到引脚,再至焊盘,然后到 PCB 铜皮。PCB 板作为散热器其上的焊盘应尽量宽, 并相应地加大铜皮以将热量扩散至空气。进行 PCB 布局设计时,PCB 上其他发热元件也必须予以考 虑,尽量避免和充电器靠近,否则整体温度的上升也会影响充电器的充电电流。

www.sola-ic.com 5 / 6

封装信息

www.sola-ic.com 6 / 6