External Sorting

CSC443H1 Database System Technology

Why do databases need to Sort?

User asking for sorted output (Select...order by...)

Creating an Index

Joining Tables (More later)

Merge-Sort Analysis

Log(n) iterations, each of which traverses all n elements: O(n log₂(n)) CPU work

Merge-Sort Analysis

Log(n) iterations, each of which traverses all n elements: O(n log₂(n)) CPU work

We need O(n) space by maintaining at most two lists at a time

Quick-Sort

- 1. Pick random pivot point and initialize two pointers at ends
- 2. Move each pointer towards pivot, stopping at first out-of-order value respect to pivot
- 3. Swap pair of out-of-order entries and continue
- 4. Continue recursively on both partitions around pivot.

Quick-Sort

- 1. Pick random pivot point and initialize two pointers at ends
- 2. Move each pointer towards pivot, stopping at first out-of-order value respect to pivot
- 3. Swap pair of out-of-order entries and continue
- 4. Continue recursively on both partitions around pivot.

Quick-Sort

Properties: Expected O(N log₂ N) worst-case

But can be O(N2) with low probability

(e.g., always pick minimum key in each partition)

Sequential memory access is fast

In-place algorithm: no need for x2 space like merge-sort

1 2 3 4 5 6 7 8 9 10

But what if data does not fit in memory?

Impact of More Memory

 $O(N/B \cdot \log_{M/B}(N/M))$

Impact of More Memory

O(N/B · log_{M/B}(N/M))

f

Fewer partitions to merge

Impact of More Memory

How much memory to merge all partitions in one pass?

Let $log_{M/B}(N/M) = 1$ and solve for M

We get:
$$M = \sqrt{N \cdot B}$$
 (Measured in entries)

Hence, memory can accommodate $\sqrt{N/B}$ buffers

Two-Pass Merge Sort Algorithm

Use at least $M = \sqrt{N \cdot B}$ memory to partition the data.

This creates at most $N/M = \sqrt{N/B}$ sorted partitons

Two-Pass Merge Sort Algorithm

Use at least $M = \sqrt{N \cdot B}$ memory to partition the data.

This creates at most $N/M = \sqrt{N/B}$ sorted partitions

Then merge in one pass using at most $\sqrt{N/B}$ input buffers

Cost: O(N/B)

How much memory do we need in practice?

Assume 1 TB, 16 byte entries, and 4KB pages N= 2^{36} entries. And with 4KB pages, B= 2^{8} entries. Hence, we need $M = \sqrt{N \cdot B} = \sqrt{2^{44}} = 2^{22}$ entries in memory or 64 MB

Hence, for all practical purposes, a 2 pass sorting algorithm is practical.

Achieved our goal of sorting using O(N/B) I/Os using little memory:)

But how about CPU overheads?

We still expect O(N log₂ N). Do we achieve it?

Analyzing CPU

Partitioning Phase

Merging Phase

Partitioning Phase

Each chunk contains M entries

Need O(M log₂ M) CPU cycles to merge-sort it in-memory

Doing this for all N/M chunk takes O(N log₂ M) CPU

Analyzing CPU

Partitioning Phase O(N log₂ M)

Merging Phase

Merging Phase

maximum # partitions to merge in one go?

Merging Phase

maximum # partitions to merge in one go?

How to merge partitions?

$$\sqrt{N/B}$$

How to merge partitions?

Binary Min-Heap

Well-known data structure that efficiently extracts the minimum value in a collection of data items

API	Runtime
Insert(key)	O(log ₂ N)
Key = extract_min()	O(log ₂ N)
<pre>min_key = insert_and_extract(new_key) (efficiently combines both operations)</pre>	O(log ₂ N)

Binary Min-Heap

(1) Complete binary tree(All levels are full & largest level is full from left to right)

(2) Parent key always smaller than children'.

Binary Min-Heap Extract Minimum

O(log₂ N) min extraction cost

min_key = insert_and_extract(new_key)

O(log₂ N) for insert_and_extract

Binary Min-Heap Implementation

Tree with Pointers

Array

Compact since the binary tree is complete. Avoids overhead of pointers.

Binary Min-Heap Construction

We can construct a heap for N entries using normal insertions

Binary Min-Heap Efficient Array Construction

Start with Unordered N keys

Binary Min-Heap Efficient Array Construction

O(N) < O(N log₂ N) from before with pure insertions

Side-Note on Heap-Sort

If data fits in memory, we can sort it using a heap

Heap-Sort

Worst case O(N log N)

In-place

Merge-Sort

Worst case O(N log N) Requires more space

Quick-Sort

Less robust performance Avg. worst case O(N log N) In-place Now back to how to merge partitions in external merge-sort

How to merge partitions?

can do this with insert_and_extract

can do this with insert_and_extract: $O(log_2\sqrt{N/B})$ per entry

can do this with insert_and_extract: $O(log_2\sqrt{N/B})$

 $O(N \cdot log_2 \sqrt{N/B})$ overall

Analyzing CPU

Partitioning Phase

 $O(N \cdot log_2M)$

Merging Phase

$$O(N \cdot log_2 \sqrt{N/B})$$

Analyzing CPU

Partitioning Phase

$$O(N \cdot log_2M)$$

$$= O(N \cdot log_2 \sqrt{N \cdot B})$$

Merging Phase

$$O(N \cdot log_2 \sqrt{N/B})$$

Analyzing CPU

Partitioning Phase

Merging Phase

Total cost

$$O(N \cdot log_2 \sqrt{N \cdot B}) + O(N \cdot log_2 \sqrt{N/B})$$

$$O(N \cdot log_2 \sqrt{N/B})$$

 $O(N \cdot log_2N)$

Same as in-memory merge-sort:)

$$O(N \cdot log_2N)$$

Overall costs

 $O(N \cdot log_2 N)$ CPU

 $O(N/B \cdot log_{M/B}(N/M))$ [/O

Overall costs

$$O(N \cdot log_2 N)$$
 CPU

$$O(N/B \cdot log_{M/B}(N/M))$$
 I/O or $O(N/B)$ when $M > \sqrt{N \cdot B}$

Suppose we need next min entry from buffer 2 but it is empty.

Suppose we need next min entry from buffer 2 but it is empty.

Double buffering: load one additional buffer preemptively for each partition before the first buffer empties

Double buffering: load one additional buffer preemptively for each partition before the first buffer empties

Larger though fewer buffers: more groups, so potentially more iterations, but each I/O reads more data

