Week 5

Magnetic Resonance Spectroscopy

5.1 Lecture 8: Magnetic Resonance Spectroscopy

- 1/31: Refer to Chapter 14 of McQuarrie and Simon [1].
 - There is both NMR (nuclear magnetic resonance) and ESR (electron spin resonance) or EPR (electron paramagnetic resonance).
 - The last two are the same thing.
 - Two fields: The static magnetic field, and the probing electromagnetic field.
 - Derivation of quantized angular momentum.
 - In molecules, there is a multiplicity/degeneracy of states that grows as 2J+1. They have quantized angular momentum.
 - So is the orbital angular momentum of electrons!
 - Putting atoms into a magnetic field *creates* the anisotropy necessary for discussing the z-component (or any coordinate component) of angular momentum.
 - Spin angular momentum: Just means that the objects (e.g., electrons and nuclei) have a property that looks a lot like spin and/or angular momentum.
 - We say that each nucleon has a spin of 1/2. Protons and neutrons add separately.
 - Even number of protons and neutrons? Spin 0.
 - Mixed even/odd? We have actual nuclear spin.
 - ➤ We need a nucleus like this to detect!
 - Odd/odd? We have 0 spin again.
 - We focus on spin 1/2 particles. These have two degenerate energy states that split in a magnetic field.
 - Classical picture of spin angular momentum.
 - Picture a charged particle with angular momentum. The circulating charge produced a magnetic field which aligns along the direction of the angular momentum.
 - Indeed, a spinning charged particle behaves like a dipole.
 - $-\gamma = 2mc$ is the **gyromagnetic ratio**.
 - Quantum spin angular momentum.
 - Basically the same thing; we just rephrase everything from before in the language of operators.
 - **Zeeman effect**: Two energy levels split with increasing B.

- Larmor frequency: The frequency $\nu = \gamma B/2\pi$ in the radio frequency range that induces a shift.
- Typical operating conditions.
 - NMR vs. ESR: NMR has a stronger magnetic field, longer EM excitation radio waves, and significantly lower gyromagnetic ratios.
 - There is only a tiny difference between nuclear state occupation at room temperature; hence supercooling to get something detectable.
- What is the magnetic dipole doing in the magnetic field?
 - No constraints on the x and y components of I.
 - A dipole in a field experiences a torque.
 - Dipole precesses around B at the Larmor frequency ν .
 - FT-NMR spectrometers use pulsed rf fields to synchronize and detect the procession of spins.
- Lots of good extension material on NMR; also worth rewatching at some point!

5.2 Lecture 9: Magnetic Resonance Spectroscopy 2

- 2/2: Summary of last time.
 - The quantity that we're measuring is spin angular momentum \bar{I} , which is a vector quantity.

$$|\bar{I}| = \hbar \sqrt{I(I+1)}$$

where I = 1/2 is the nuclear spin quantum number.

- The other quantity of concern is the projection $I_z = m_I \hbar$ where $m_i = \pm 1/2$.
- In a magnetic field, we break degeneracy, getting $E(m_I) = -\gamma_N \hbar m_I B$ and $\Delta E = -\gamma_N \hbar B$.
- Electromagnetic resonance is achieved when the frequency ν of incident radiation satisfies $h\nu=\Delta E$.
- The interest in chemistry: Chemical shift.
 - There are small variations in the frequency for different types of protons depending on the surrounding electron density.
 - Measured frequency depends on effective magnetic field.
 - Shielding: The influence of electrons around the nucleus on the effective magnetic field.
 - The effective field is smaller than the applied field.
 - Shielding *decreases* the splitting (this is why nearby highly polar groups lead to large shifts, while alkanes have small shifts).
- Measuring the chemical shift.
 - We measure the difference in the Larmor frequency relative to a standard (TMS).
 - Shielding is a small effect (on the order of 10^{-6} , so we use ppm δ).
 - Example: 1 ppm at 500 MHz is $\nu = 500$ Hz, which is tiny (on the order of microjoules).
- Chemical shift charts (from OChem) are included in the slides.
- FT-NMR spectrometers.
 - How do we make these measurements?
 - NMR spectrometers are almost all working in FT mode these days.

- They use pulsed radiofrequency (r.f.) fields and detect the precession of spins.
- Precession of one spin in a magnetic field occurs at the Larmor frequency.
- Applying an excitation field creates a superposition of $m_s = \pm 1/2$ states. The net dipole is now perpendicular, and precesses that way (i.e., in the xy plane) in a mathematically describable fashion.
- Putting your superconducting coil along the x- or y-axis allows you to detect changes.
- Magnetization: The macroscopic alignment of magnetic dipoles $\bar{M} = \sum \bar{\mu}$.
 - At equilibrium, \bar{M} aligns along \bar{B} .
 - An rf field rotates magnetization to x: This is a $\pi/2$ -pulse or a 90°-pulse.
 - We detect precessing magnetization and return to equilibrium during the free-induction decay.
 An FT of the decay then generates our spectrum.
- Relaxation mechanism.
 - Spin state lifetime (T_1) .
 - "Spin-lattice" or "longitudinal" relaxation.
 - \blacksquare Recovery of the magnetization along z.
 - A molecular property.
 - Transfer of energy to the environment.
 - The return of magnetization to equilibrium has a characteristic time constant T_1 which appears in the time vs. relaxation plot $1 e^{-t/T_1}$.
 - Dephasing (T_2) .
 - "Transverse" relaxation.
 - \blacksquare Loss of magnetization in the xy-plane of many different sources.
 - We have the loss described by e^{-t/T_2} .
 - These two processes are not independent.
- There are numerous types of NMR experiments.
 - In our lab, we just scratch the surface.
 - We use a population inversion to measure T_1 .
 - π -pulse to invert magnetization.
 - Wait for relaxation.
 - Read out following another $\pi/2$ -pulse.
 - Two-dimensional spectroscopy.
 - Heteronuclear single quantum coherence spectroscopy (HSQC).
 - Excite ¹H; transfer its magnetization to ¹³C, which is nice because ¹³C is hard to excite on its own.
 - Transfer back to ¹H and detect.
 - Tells us which protons transfer magnetization.