Pamäťový model

Pri časovej analýze algoritmov sa zvyčajne používa takzvaný *RAM model* (skratka z anglického *Random-Access Machine*, stroj s náhodným prístupom k pamäti), v ktorom sa predpokladá možnosť pristupovať k ľubovolnému úseku pamäte v konštantnom čase. To znamená, že vo výslednej asymptotickej analýze počítame len počet vykonaných operácií.

V skutočnosti však moderné počítače využívajú niekoľko úrovňovú pamäťovú hierarchiu. Tá sa typicky skladá z registrov a troch úrovní *cache* (vyrovnávacej pamäte) priamo na procesore, následne z hlavnej operačnej pamäte a disku. V tomto poradír sú tieto úrovne zoradené od najrýchlejšej a najmenšej (odozva rádovo 1 ns, kapacita 128 KiB) až po najpomalšiu ale najväčšiu (odozva od 100 μs po 10 ms podľa typu¹, kapacita rádovo 1 TiB). Podrobné hodnoty pre všetky úrovne sú v tabuľke ??.

tabulka

Dôsledkom tejto hierarchie je závislosť výslednej rýchlosti algoritmu od jeho prístupov k pamäti. Operácie, ktoré využívajú dáta uložene na disku potrvajú dlhšie ako tie, ktoré využívajú iba dáta v registroch. V skutočnosti sa tieto dáta postupne presunú z disku do hlavnej pamäte, do *cache* na procesore a napokon do registrov. Následne sa môže požadovaná operácia vykonať rovnako rýchlo ako v druhom prípade, avšak nejaký čas bol algoritmus nečinný a čakalo sa na presun dát. Pre všetky susedné dvojice pamäťových úrovní teda slúži tá menšia a rýchlejšia ako vyrovnávacia pamäť pre tú väčšiu a pomalšiu.

1.1 External-memory model

Spôsobom ako zohľadniť tieto skutočnosti pri analýze algoritmov je takzvaný externalmemory model (model externej pamäte), nazývaný tiež I/O model alebo cache-aware

¹Klasické pevné disky (HDD) alebo disky bez pohyblivých častí (SSD)

Obrázok 1.1: External-memory model

model. Ten popisuje pamäť skladajúcu sa z dvoch častí (obrázok 1.1), ktoré voláme cache a disk.

Všetky výpočty prebiehajú nad dátami v *cache*, ktorá má obmedzenú veľkosť. Ostatné dáta sú uložené na disku neobmedzenej veľkosti, no nemôžeme s nimi priamo manipulovať a je ich potrebné najskôr preniesť do *cache*. V samotnej analýze algoritmov potom počítame počet týchto prenosov z disku do *cache* a naopak.

Samotné presuny sú realizované v blokoch pamäte veľkosti B. Disk aj cache sa skladajú z takýchto blokov a za jednu operáciu považujeme presun jedného bloku medzi nimi. Cache má obmedzenú veľkosť M a skladá sa teda z $\frac{M}{B}$ blokov.

1.1.1 Cache-aware algoritmy

Pokiaľ poznáme parametre B a M, môžeme skonštruovať algoritmus, ktorý bude túto dvojicu pamätí využívať efektívne. Takéto algoritmy voláme cache-aware (uvedomujúci si cache). Súčasťou tohto algoritmu by bolo explicitné spravovanie presunov pamäte - je potrebné riešiť čítanie blokov z disku a ich umiestňovanie do cache, nahrádzanie blokov v cache pri zaplnení a spätný zápis blokov na disk.

Tento model tiež popisuje len dve úrovne pamäte a teda funguje efektívne len pre danú susednú dvojicu, pre ktorú ho na základe znalosti parametrov optimalizujeme. V moderných systémoch ale máme takýchto dvojíc niekoľko. Keby sme poznali parametre pre všetky tieto dvojice môžeme zovšeobecniť tento model pre viac úrovní a explicitne riešiť presun blokov medzi nimi. Takto sa však samotná správa pamäte potenciálne stáva komplikovanejším problémom ako pôvodný algoritmus.

1.2 Cache-oblivious model

Riešením týchto problémov je cache-oblivious model (na cache nedbajúci), v ktorom uvažujeme rovnakú dvoj-úrovňovú pamäť zloženú z disku a cache. Na rozdiel od cache-aware modelu však algoritmus nepozná parametre B a M. Pokiaľ sa nám napriek tomu podarí navrhnúť algoritmus, ktorý vykonáva (asymptoticky) rovnaký počet pamäťových presunov ako cache-aware algoritmus, bude bežať efektívne pre ľubovolné takéto parametre.

Takéto algoritmy majú na rozdiel od *cache-aware* algoritmov v *external-memory* modely mnohé výhody. Samotná implementácia algoritmu nemôže explicitne riešiť presun blokov pokiaľ nepozná veľkosť bloku ani koľko blokov môže do *cache* uložiť. Táto úloha zostane ponechaná na nižšiu vrstvu (operačný systém resp. hardware v prípade *cache* na procesore) - algoritmus bude pristupovať k pamäti priamo bez ohľadu na to, či sa nachádza v *cache* alebo nie a v prípade potreby prebehnú nutné prenosy na nižšej úrovni (z pohľadu algoritmu) automaticky.

Ďalšou výhodou je automatická optimalizácia pre dané parametre. V prípade *cache-aware* algoritmov môže byť problémom získať presné hodnoty týchto parametrov a potrebné pri ich zmene upraviť algoritmus. Vývoj algoritmu, ktorý bude fungovať na rozličných architektúrach, môže byť problematický.

V neposlednom rade bude takýto *cache-oblivious* algoritmus efektívny medzi každou dvojicou susedných úrovní. Vzhľadom na to, že hodnoty parametrov nepozná, musí pre ľubovolnú takú dvojicu pracovať rovnako efektívne.

1.2.1 Správa pamäte

V momente keď sa *cache-oblivious* algoritmus pokúsi o vykonanie operácie, ktorá potrebuje dáta mimo cache je potrebné ich najskôr z disku skopírovať. V prípade, že je v cache voľný blok tak je možné presunúť dáta bez nutnosti nahradenia. V opačnom prípade je však potrebné uvoľniť miesto tým, že sa vyberie blok z cache, v prípade, že bol upravený sa jeho obsah zapíše späť na disk a následne sa požadovaný blok z disku zapíše na jeho miesto v cache. Tento proces sa nazýva výmena stránok (*page replacement*), a algoritmus rozhodujúci, ktorý blok z cache odstrániť, voláme stratégia výmeny stránok (*page-replacement strategy*).

Ak by sa táto stratégia správala tak, že vždy odstráni blok, ktorý bude potrebný v ďalšom kroku algoritmu, tak by bolo zakaždým presúvať bloky medzi diskom a cache. To by znamenalo, že počet blokov, s ktorými v cache môžeme pracovať je M/B=1. Ďalším problémom je asociatívnosť cache - z praktických dôvodov je často možné daný blok z disku uložiť len na niekoľko pozícií v cache. Inak by bolo potrebné ukladať spolu s každým blokom jeho plnú adresu na disku, čo by redukovalo celkový počet blokov, ktoré sa do cache zmestia. Znížením asociativity je možné ukladať iba časť adresy,

pričom zvyšok je implicitne určený pozíciou v cache. V prípade nízkej asociativity však môžu opäť nastať situácie, kedy je algoritmus schopný využiť iba malý počet blokov v cache.

Tieto problémy *cache-oblivious* model obchádza predpokladom ideálnej cache - cache, ktorá je plne asociatívna (každý blok disku je možné uložiť v každom bloku cache) a používa optimálnu stratégiu výmeny stránok, ktorá vždy odstráni blok, ktorý bude potrebný najneskôr. Prvý predpoklad je síce v reálnych systémoch nepraktický, no z teoretického hľadiska je v poriadku. Druhý predpoklad je však nerealizovateľný, keďže by stratégia výmeny stránok musela predpovedať budúce kroky algoritmu. Nasledovné lemy však ukazujú, že bez týchto predpokladov na reálnom systéme s nízkou asociativitou a jednoduchou stratégiou výmeny stránok sa algoritmus zhorší len o konštantný faktor.

Lema 1.2.1. Algoritmus, ktorý v ideálnej cache veľkosti M s blokmi veľkosti B vykoná T pamäťových operácií, vykoná najviac 2T pamäťových operácií v cache veľkosti 2M s blokmi veľkosti B pri použití stratégie LRU alebo FIFO. [?, Lemma 12]

Lema 1.2.2. Plne asociatívna cache veľkosti M sa dá simulovať s použitím $\mathcal{O}(M)$ pamäte tak, že prístup ku každému bloku v cache zaberie v priemernom prípade $\mathcal{O}(1)$ času. ??, Lemma 16]

Stratégia *LRU* (least recently used) vyberá vždy blok, ktorý bol najdlhšie nepoužitý. Implementácia vyžaduje udržiavať si ku každému bloku počítadlo, ktoré sa pri prístupe nastaví na nulu a pri prístupe k iným blokom zvýši o jedna. Pri potrebe uvoľniť miesto v cache vyberieme blok s najväčšou hodnotou počítadla - ten, ku ktorému najdlhšie nebol prístup.

Stratégia FIFO (first in, first out) je ešte jednoduchšia - bloky sú udržiavame zoradené podla poradia ich vloženia do cache. Keď vyberáme blok na odstránenie tak vezmeme ten, ktorý bol pridaný najskôr a teda je na začiatku tohto usporiadania.

Cache-oblivius algoritmy a dátové štruktúry

Intro text - obsah kapitoly (alg/ds, analyza, ...)

2.1 Základné algoritmy

Na demonštráciu *cache-oblivious* algoritmov a ich analýzy v *external-memory* modeli použijeme jednoduchý algoritmus, ktorý počíta agregačnú funkciu nad hodnotami uloženými v poli.

2.1.1 Popis algoritmu

Majme pole A veľkosti |A|=N a označme jeho prvky $A=\{a_1,\ldots,a_N\}\in X^N$. Chceme vypočítať hodnotu $f_g(A)$, kde $g:X\times Y\to Y$ je agregačná funkcia, $g_0\in Y$ je počiatočná hodnota a $f_g:X^\infty\to Y$ je rozšírenie agregačnej funkcie definované následovne:

$$f_g(\{a_1, \dots, a_k\}) = g(a_k, f(\{a_1, \dots, a_{k-1}\}))$$

 $f_g(\emptyset) = g_0$

Túto funkciu je možné implementovať jednoducho ako jeden cyklus. Schematickú verziu implementácie uvádzame v algoritme 2.1.

Algoritmus 2.1 Implementácia agregačnej funkcie f_q

- 1: **function** AGGREGATE (g, g_0, A)
- 2: $y \leftarrow g_0$
- 3: for $i \leftarrow 1, \ldots, |A|$ do
- 4: $y \leftarrow g(A[i], y)$
- 5: return y

Spravna
notacia
pre x
infinity?

Tento algoritmus s použitím vhodnej funkcie g a hodnoty g_0 je možné použiť na rôzne, často užitočné výpočty, ako napríklad maximum, minimum, suma a podobne:

$$g^{\max}(x,y) = \max(x,y)$$
 $g_0^{\max} = -\infty$
 $g^{\sup}(x,y) = x+y$ $g_0^{\sup} = 0$

2.1.2 Analýza zložitosti

Časová analýza

Klasická časová analýza tohto algoritmu je triviálna ak uvažujeme $RAM \ model$. Keďže prístup ku každému prvku A[i] zaberie konštantný čas a za predpokladu, že čas na výpočet funkcie g, T_g , je nezávislý na vstupe, bude výsledný čas na výpočet tejto funkcie

$$T(N) = \mathcal{O}(1) + N[\mathcal{O}(1) + T_a + \mathcal{O}(1)] = T_a \cdot \mathcal{O}(N)$$

Pamäťová analýza

V prípade cache-aware algoritmu by sme pole A mali uložené v $\lceil \frac{N}{B} \rceil$ blokoch veľkosti B. Pri výpočte by sme postupne tieto bloky načítali do cache a pracovali s nimi. V rámci jedného bloku počas výpočtu nedochádza k pamäťovým presunom. Zároveň stačí každý prvok spracovať raz a teda celkový počet pamäťových operácií bude presne rovný počtu blokov, $\lceil \frac{N}{B} \rceil$. Tento algoritmus však požaduje znalosť parametra B a explicitný presun blokov.

Jednoducho však vieme dosiahnuť (takmer) rovnakú zložitosť aj v prípade cacheoblivious algoritmu 2.1, ktorý žiadne parametre pamäte zjavne nevyužíva a nepozná.
Budeme predpokladať, že pole A je uložené v súvislom úseku pamäte - to je možné
dosiahnuť aj bez znalosti parametrov pamäte. Zvyšok algoritmu prebieha rovnako ako
v predchádzajúcom prípade. Každý blok obsahujúci nejaký prvok poľa A bude teda
presunutý do cache práve raz, a žiadne iné presuny nenastanú. Ostáva zistiť, koľko
takých blokov môže byť.

Keďže nepoznáme veľkosti blokov v pamäti, nevieme pri ukladaní prvkov poľa zaručiť zarovnanie so začiatkom bloku. V najhoršom prípade uložíme do prvého bloku iba jeden prvok. Potom bude nasledovať $\lfloor \frac{N}{B} \rfloor$ plných blokov a nakoniec ešte najviac jeden blok, ktorý opäť nie je plný. Spolu máme teda $\lfloor \frac{N}{B} \rfloor + 2$ blokov.

Pokiaľ $\lfloor \frac{N}{B} \rfloor < \lceil \frac{N}{B} \rceil$ máme spolu najviac $\lceil \frac{N}{B} \rceil + 1$ blokov. V opačnom prípade B delí N, teda v prvom a poslednom bloku je spolu presne B prvkov a medzi nimi sa nachádza najviac $\frac{N-B}{B} = \frac{N}{B} - 1$ plných. Teda blokov je vždy najviac $\lceil \frac{N}{B} \rceil + 1$.

Zostrojili sme teda cache-oblivious algoritmus s asymptoticky rovnakou zložitosťou $\mathcal{O}(\frac{N}{B})$ ako optimálny cache-aware algoritmus, ktorého implementácia je však jednoduchšia, keďže nemusí explicitne spravovať presun blokov do cache.

2.2 Vyhľadávacie stromy

intro ...

lowerbound

2.2.1 *Cache-aware* riešenie

V prípade, že poznáme veľkosť blokov B v cache, môžeme problém vyhľadávacích stromov riešiť B-stromom s vetvením $\Theta(B)$. Každý vrchol teda vieme načítať s použitím $\mathcal{O}(1)$ pamäťových presunov. Výška takého B-stromu, ktorý má N listov, bude $\mathcal{O}(\log_B N)$. Celkovo teda vyhľadávanie v tomto strome vykoná $\mathcal{O}(\log_B N)$ pamäťových presunov. To zodpovedá dolnej hranici vo vete .

dokaz

2.2.2 Naivné cache-oblivious riešenie

Predtým ako popíšeme efektívne cache-oblivious riešenie, pozrime sa na klasický binárny vyhľadávací strom. Jednoduchý a častý spôsob ako usporiadať uzly binárneho stromu v pamäti je nasledovný. Koreň uložíme na pozíciu 1. Ľavého a pravého potomka vrchola na pozícii x uložíme na pozície 2x a 2x+1. Otec vrcholu x bude na pozícii $\lfloor \frac{x}{2} \rfloor$. Príklad takto uloženého stromu je na obrázku 2.2(a).

Výhodou tohto usporiadania sú implicitné vzťahy medzi vrcholmi. Na udržiavanie stromu stačí jednorozmerné pole kľúčov. Na prechod medzi nimi môžeme použiť triviálne funkcie uvedene v .

algoritm

Nevýhodou je však vysoký počet pamäťových presunov pri vyhľadávaní. Výška tohto stromu je $\mathcal{O}(\log N)$. Pri načítaní vrcholu na pozícii x sa v rovnakom bloku nachádzajú vrcholy na pozíciach

$$x - k, \dots, x - 1, x, x + 1, \dots, x + l$$

kde k+l < B. Pri ďalšom kroku vyhľadávania budeme potrebovať vrchol 2x alebo 2x+1 a teda nás pozície menšie ako x nezaujímajú. V najlepšom prípade teda bude k=0 a l=B-1. Aby sa v tomto intervale nachádzali požadované vrcholy musí platiť

$$2x + 1 \le x + l = x + B - 1$$
$$x \le B - 2$$

To znamená, že pre pozície x>B-2 už bude potrebný pamäťový presun pre každý vrchol. Vrchol s pozíciou B-2 bude mať hĺbku $\mathcal{O}(\log B)$ a teda počet vrcholov na ceste z koreňa do listu, ktorých pozície v pamäti sú väčšie ako B-2 bude $\Omega(\log N - \log B)$. Pre každý z nich je potrebné vykonať pamäťový presun a teda vyhľadávanie v takto usporiadanom binárnom strome vykoná $\Omega(\log \frac{N}{B})$ pamäťových presunov, čo je horšie ako pri cache-aware B-strome.

porovnat fnc?

Obrázok 2.1: Schematické znázornenie rekurzívneho delenia pri van Emde Boas usporiadaní. Podstromy τ_0, \ldots, τ_k sa uložia do súvislého pola.

2.2.3 Statický cache-oblivious vyhľadávací strom

Problémom predošlého riešenia je neefektívne usporiadanie v pamäti - pri prístupe ku vrcholu sa spolu s ním v rovnakom bloku nachádzajú vrcholy, ktoré nie sú pre ďalší priebeh algoritmu podstatné.

Riešením je takzvané van Emde Boas usporiadanie (van Emde Boas layout, nazvané podla van Emde Boas stromov s podobnou myšlienkou), ktoré funguje následovne. Uvažujme úplný binárny strom výšky h. Ak h=1 tak máme iba jeden vrchol v a výstupom usporiadania bude (v).

Pre h > 1 rozdelíme vstupný strom na podstrom τ_0 výšky $\frac{h}{2}$, ktorého koreňom je koreň pôvodného stromu. Zostanú nám podstromy τ_1, \ldots, τ_k , ktorých korene sú potomkovia listov τ_0 a listy sú listy vstupného stromu. Rekurzívne ich uložíme do van Emde Boas usporiadania a následne uložíme za seba, výstupom teda bude $(\tau_0, \tau_1, \ldots, \tau_k)$. Schéma tohto delenia je na obrázku 2.1 a príklad takto usporiadaného stromu na obrázku 2.2(b).

Tieto podstromy majú veľkosť $\Theta(\sqrt{N})$ kde N je veľkosť vstupného stromu, keďže ich výška je $\frac{h}{2}=\frac{1}{2}\lg N=\lg\sqrt{N}.$

Vyhľadávanie

pointers vs implicit indexing

Pri analýze vyhľadávania sa pozrime na také podstromy predošlého delenia, že ich veľkosť je $\Theta(B)$. Ďalšie delenie a preusporiadanie je už zbytočné, no to *cache-oblivious* algoritmus nemá ako vedieť. Keďže ale po rekurzívnom volaní získame len iné usporiadanie, ktoré uložíme v súvislom úseku pamäte, bude stále možné tento podstrom načítať v $\mathcal{O}(1)$ blokoch.

Majme teda vyhľadávací strom zložený z takýchto podstromov, ktorých veľkosť je medzi $\Omega(\sqrt{B})$ a $\mathcal{O}(B)$. Ich výška je teda $\Omega(\log B)$. Pri strome výšky $\mathcal{O}(\log N)$ teda prejdeme cez $\mathcal{O}(\frac{\log N}{\log B})$ takých podstromov a každý vyžaduje konštantný počet pamäťových presunov a spolu sa ich teda vykoná $\mathcal{O}(\log_B N)$, čo zodpovedá spodnej

Obrázok 2.2: Porovnanie klasického a van Emde Boas usporiadania na úplnom binárnom strome výšky 5. Čísla vo vrcholoch určujú poradie v pamäti.

hranici tohto problému.

Máme teda vyhľadávanie, ktoré je rovnako ako pri *cache-aware* B-stromoch optimálne. Problémom tejto dátovej štruktúry je však nemožnosť efektívne vkladať či odoberať prvky - pri každej zmene by bolo potrebné strom preusporiadať. Máme teda *cache-oblivious* ekvivalent statických *cache-aware* B-stromov.

Na úpravu tohto statického stromu tak, aby efektívne zvládal operácie pridávania a odoberania, budeme potrebovať pomocnú dátovú štruktúru, ktorú popíšeme v nasledovnej sekcii.

2.3 Usporiadané pole

obrazky

Problémom údržby usporiadaného poľa (z anglického ordered-file maintenance) budeme volať problém spočívajúci v udržiavaní zoradenej postupnosti prvkov, do ktorej možno pridávať nové prvky medzi ľubovolné dva existujúce a tiež prvky odstraňovať. Dátovou štruktúrou, ktorá tento problém rieši efektívne je štruktúra zhustenej pamäte (packed-memory structure). Táto štruktúra udržiava prvky v súvislom poli veľkosti $\mathcal{O}(N)$ s medzerami medzi prvkami veľkosti $\mathcal{O}(1)$. Vďaka tomu bude načítanie K po sebe idúcich prvkov vyžadovať $\mathcal{O}(\frac{K}{B})$ pamäťových presunov.

2.3.1 Popis štruktúry

Celá dátová štruktúra pozostáva z jedného poľa veľkosti $T=2^k$. To (pomyselne) rozdelíme na bloky veľkosti $S=2^l$ tak, že $S=\Theta(\log N)$. Počet blokov tak bude tiež mocnina dvoch.

Nad týmito blokmi zostrojíme (imaginárny) úplný binárny strom, ktorého listy sú bloky udržiavaného poľa. Hlbkou vrchola označíme jeho vzdialenosť od koreňa, pričom koreň má hlbku 0 a listy majú hlbku d = k - l.

2.3.2 Definície

Kapacitou vrchola v, c(v), označíme počet položiek (aj prázdnych, teda aj s medzerami) poľa patriacich do blokov v podstrome začínajúcom v tomto vrchole. Kapacita listov bude teda S, ich rodičov 2S a kapacita koreňa bude T. Podobne budeme počet neprázdnych položiek v podstrome vrcholu v volať obsadnosť a značiť o(v).

Ďale hustotou, $0 \le d(v) \le 1$, označíme $d(v) = \frac{o(v)}{c(v)}$. Zvoľme ľubovolné konštanty

$$0 < \rho_d < \rho_0 < \tau_o < \tau_d < 1$$

a definujme pre vrchol s hĺbkou k dolnú a hornú hranicu hustoty ρ_k a τ_k tak, že dostaneme postupnosť hraníc pre všetky hĺbky, pričom platí $(\rho_i, \tau_i) \subset (\rho_{i+1}, \tau_{i+1})$ a teda sa tieto intervaly smerom od listov ku koreňu zmenšujú:

$$\rho_k = \rho_0 + \frac{k}{d}(\rho_d - \rho_0) \quad \tau_k = \tau_0 - \frac{k}{d}(\tau_0 - \tau_d)$$

$$0 < \rho_d < \rho_{d-1} < \dots < \rho_0 < \tau_0 < \tau_1 < \dots < \tau_d < 1$$

Napokon, vrchol v hĺbky k je v hraniciach hustoty ak platí $\rho_k \leq d(v) \leq \tau_k$.

2.3.3 Operácie

pseudocode?

Vkladanie

Implementácia operácie vkladania sa skladá z niekoľkých krokov. Najskôr zistíme, do ktorého bloku v spadá pozícia, na ktorú vkladáme. Pozrieme sa, či je tento blok v hraniciach hustoty. Ak áno tak platí d(v) < 1 a teda o(v) < c(v), čiže v tomto bloku je voľné miesto. Môžeme teda zapísať novú hodnotu do tohto bloku, pričom môže byť potrebné hodnoty v bloku popresúvať, avšak zmení sa najviac S pozícii.

V opačnom prípade je tento blok mimo hraníc hustoty. Budeme postupovať hore v strome dovtedy, kým nenájdeme vrchol v hraniciach. Keďže strom je iba pomyselný, budeme túto operáciu realizovať pomocou dvoch súčasných prechodov k okrajom poľa.

Počas tohto prechodu si udržiavame počet neprázdnych a všetkých pozícii a zastavíme v momente, keď hustota dosiahne požadované hranice.

Po nájdení takéhoto vrchola v hraniciach rovnomerne rozdelíme všetky hodnoty v blokoch prislúchajúcich danému podstromu. Keďže intervaly pre hranice sa smerom ku listom iba rozširujú budú po tomto popresúvaní všetky vrcholy tohto podstromu v hraniciach hustoty a teda aj požadovaný blok bude obsahovať aspoň jednu prázdnu pozíciu. Môžeme teda novú hodnotu vložiť ako v prvom kroku.

Ak nenájdeme taký vrchol, ktorého hustota by bola v hraniciach, a teda aj koreň je mimo hraníc, je táto štruktúra príliš plná. V takom prípade zostrojíme nové pole dvojnásobnej veľkosti a všetky existujúce položky, s pridanou novou, rovnomerne rozmiestnime do nového poľa.

Odstraňovanie

Operácia odstraňovania prebieha analogicky. Ako prvé požadovanú položku odstránime z prislúchajúceho bloku. Ak je tento blok aj naďalej v hraniciach hustoty tak skončíme, inak postupujeme nahor v strome, kým nenájdeme vrchol v hraniciach. Následne rovnomerne prerozdelíme položky blokoch daného podstromu.

Pokiaľ taký vrchol nenájdeme, je pole príliš prázdne a zostrojíme nové polovičnej veľkosti a rovnomerne do neho rozmiestnime zostávajúce položky pôvodného.

2.3.4 Analýza

Pri vložení aj odstraňovaní sa upraví súvislý interval I, ktorý sa skladá z niekoľkých blokov. Nech pri nejakej operácii došlo k prerozdeleniu prvkov v blokoch prislúchajúcich podstromu vrchola u. Teda pred týmto prerozdelením bol vrchol u v hĺbke k v hraniciach hustoty ($\rho_k \leq d(u) \leq \tau_k$) ale nejaký jeho potomok v nebol.

Po prerozdelení budú všetky vrcholy v danom podstrome v hraniciach hustoty, avšak nie len v svojich ale aj v hraniciach pre hĺbku k, ktoré sú tesnejšie. Bude teda platiť $\rho_k \leq d(v) \leq \tau_k$. Najmenší počet operácii vloženia, q, potrebný na to, aby bol vrchol v opäť mimo hraníc je

$$\frac{o(v)}{c(v)} = d(v) \le \tau_k$$

$$\frac{o(v) + q}{c(v)} > \tau_{k+1}$$

$$o(v) \le \tau_k c(v)$$

$$o(v) + q > \tau_{k+1} c(v)$$

$$q > (\tau_{k+1} - \tau_k) c(v)$$

Podobne pre prekročenie dolnej hranice je potrebných aspoň $(\rho_k - \rho_{k+1})c(v)$ operácii odstránenia.

Pri úprave intervalu blokov v podstrome vrcholu u je potrebné upraviť najviac c(u) položiek, avšak táto situácia nastane pokiaľ sa potomok v ocitne mimo hraníc hustoty.

Priemerná veľkosť intervalu, ktorý treba preusporiadať pri vložení do podintervalu prislúchajúceho vrcholu v teda bude

$$\frac{c(u)}{(\tau_{k+1} - \tau_k)c(v)} = \frac{2c(v)}{(\tau_{k+1} - \tau_k)c(v)} = \frac{2}{\tau_{k+1} - \tau_k} = \frac{2d}{\tau_d - \tau_0} = \mathcal{O}(\log T)$$

keďže τ_d a τ_0 sú konštanty a výška stromu d s T listami je $d = \Theta(\log T)$. Podobným spôsobom dostaneme rovnaký odhad pre odstraňovanie.

Pri vkladaní a odstraňovaní prvku ovplyvníme najviac d podintervalov - tie, ktoré prislúchajú vrcholom na ceste z daného listu (bloku) do koreňa. Spolu teda bude veľkosť upraveného intervalu v priemernom prípade $\mathcal{O}(\log^2 T)$.

worstcase bounds? conjenctured lowerbound?

Táto dátová štruktúra teda udržiava N usporiadaných prvkov v poli veľkosti $\mathcal{O}(N)$ a podporuje operácie vkladania a odstraňovania, ktoré upravujú súvislý interval priemernej veľkosti $\mathcal{O}(\log^2 N)$ a je ich teda možné realizovať pomocou $\mathcal{O}(\frac{\log^2 N}{B})$ pamäťových presunov.