To find out the γ photon energy we calibrate the channel to the energy using known energy values for the photopeaks for the $^{60}_{27}\mathrm{Co}$ peaks. We will then use it the calibration to determine the energy of the γ ray photon emitted by $^{137}_{55}\mathrm{Cs}$.

Figure 1: Calibration of MCA using $^{60}_{27}\mathrm{Co}$

The centroids are given as

Centroid of 1.17 Mev peak $(C_1)=403.26$ Centroid of 1.32 MeV peak $(C_2)=455.542$

Figure 2: Determination of $^{137}_{55}\mathrm{Cs}~\gamma$ photon

The Centroid of the the gaussian fit on the $^{137}_{55}\mathrm{Cs}$ spectrum is $(C_E)=232.62\pm0.08.$ Fitting the Caesium photo peak with a gaussian and then using the calibration done above we get the energy of $^{137}_{55}\mathrm{Cs}~\gamma$ photon to be

$$E = \frac{1.33 - 1.17}{C_2 - C_1} \times (C_E) \text{MeV} = 0.003 * C_E \text{ MeV} = 0.697 \pm 0.159 \text{ MeV}$$

The energy of the γ ray photon emitted by $^{137}_{55}\mathrm{Cs}$ is 0.697 ± 0.159