Universidade Federal da Grande Dourados Análise Numérica — Lista 2 Engenharia Mecânica — 2016.2 Prof. Adriano Barbosa

- 1. Seja $f(x) = x^2 6$:
 - (a) Use o método de Newton e calcule p_2 usando $p_0 = 1$.
 - (b) Use o método da Secante e calcule p_3 usando $p_0=3$ e $p_1=2$.
 - (c) Use o método da Falsa Posição e calcule p_3 usando $p_0=3$ e $p_1=2$.
 - (d) Qual dos itens acima é mais próximo de $\sqrt{6}$.
- 2. Sejam $f(x) = -x^3 \cos x$ e $p_0 = -1$. Use o método de Newton para calcular p_2 . Podemos usar $p_0 = 0$?
- 3. Use o método de Newton e encontre soluções com precisão de pelo menos 10^{-4} para os problemas abaixo:
 - (a) $x^3 2x^2 5 = 0$ no intervalo [1, 4].
 - (b) $x 0.8 0.2 \sin x = 0$ no intervalo $[0, \pi/2]$.
- 4. Use o método de Newton para aproximar, com precisão de 10^{-4} , o ponto do gráfico de $y = x^2$ mais próximo do ponto (1,0). [Dica: minimize $[d(x)]^2$, onde d(x) é a distância entre (x, x^2) e (1,0)].
- 5. Ao usar o método de Newton para resolver a equação $0.5+0.25x^2-x\sin x-0.5\cos 2x=0$ com $p_0=\pi/2$ e precisão 10^{-5} precisamos de 15 iterações. Para $p_0=5\pi$ e mesma precisão, precisamos de 19 iterações. Por que o método de Newton não apresenta a usual convergência rápida para esse problema?
- 6. A função $f(x) = \tan(\pi x) 6$ possui um zero em $\frac{1}{\pi} \arctan 6 \approx 0.447431543$. Tome $p_0 = 0$ e $p_1 = 0.48$ e use 10 iterações dos métodos abaixo para aproximar essa raiz. Qual dos métodos é apresenta melhor resultado?
 - (a) Bisseção.
 - (b) Falsa Posição.
 - (c) Secante.
- 7. A equação $x^2-10\cos x=0$ possui duas soluções, ± 1.3793646 . Use o método de Newton para aproximar as soluços com precisão 10^{-5} com os valores de p_0 abaixo:
 - (a) $p_0 = -100$

- (b) $p_0 = -50$
- (c) $p_0 = -25$
- (d) $p_0 = 25$
- (e) $p_0 = 50$
- (f) $p_0 = 100$

Respostas:

- 1. (a) $p_2 = 2.60714$ (b) $p_3 = 2.45454545$ (c) $p_3 = 2.4444444$
- (\mathbf{d}) a aproximação em (\mathbf{c}) é melhor
- 2. $p_2 = -0.86568$
- 3. (a) $p_4 = 2.690647$, com $p_0 = 2.5$ (b) $p_5 = 0.964334$, com $p_0 = \pi/4$
- 4. (0.5897545, 0.3478104) após 6 iterações e $p_0 = 0$
- 6. (a) $p_{10} = 0.4479563$ (b) $p_{10} = 0.442067$ (c) $p_{10} = -195.895$
- 7. (a) $p_8 = -1.379365$ (b) $p_7 = -1.379365$ (c) $p_7 = 1.379365$
- (d) $p_7 = -1.379365$ (e) $p_7 = 1.379365$ (e) $p_8 = 1.379365$