# A Proximal Policy Optimization Approach to Detect Spoofing in Algorithmic Trading

Author: Iulia-Diana Groza

Scientific Coordinator: Diana-Lucia Miholca Computer Science, Babes-Bolyai University

# Algorithmic Trading

#### **ALGORITHMIC TRADING**



The **liquidity** of markets is **improved** by ruling out the involvement of human emotions and execution delays specific to **traditional market-making**.

# Spoofing



## Related Work

|                        | Approach            | Tools                                               | Results                                       |  |
|------------------------|---------------------|-----------------------------------------------------|-----------------------------------------------|--|
| Tuccella et al. (2021) | Supervised          | Gated Recurrent Units                               | Accuracy: <b>0.75</b>                         |  |
| Cao et al. (2015)      | Unsupervised        | Adaptive Hidden Markov<br>Model with Anomaly States | Best AUC: <b>0.89</b>                         |  |
| Li et al. (2023)       | Statistical Physics | Motion of Particles on Level<br>3 LOB Data          | Largest Anomalous<br>Deviation: <b>126.12</b> |  |

# © OpenAl Proximal Policy Optimization (PPO)



### Research Contribution

O1 Prove PPO is feasible in market surveillance

**02** Harness Level 3 LOB data

Price and size movements

Feature Engineering: Rolling statistics for price and size movements

### Data Collection and Preprocessing

#### Li et al. (2023)

Historical Level 3 LOB Data on wLUNA/USD from the LUNA flash crash from May 2022 (11/05/2022, 16:00-20:00).

|                            |       |            |             |            | Timestamp   | Price | Order Type | Side | Size  |
|----------------------------|-------|------------|-------------|------------|-------------|-------|------------|------|-------|
|                            |       |            |             |            | 18:03:32.66 | 1.10  | limit      | buy  | 29000 |
|                            |       |            |             |            | 18:12:52.87 | 1.36  | cancel     | buy  | 29000 |
| Timestamp                  | Price | Order Type | Side        | Size       | 18:23:14.53 | 1.25  | limit      | buy  | 29000 |
| Timestamp                  | File  | Order Type | Side        | Size       | 18:24:27.68 | 1.24  | limit      | buy  | 29000 |
| 16:31:39.50                | 1.62  | limit      | buy         | 111939.762 | 18:27:53.69 | 1.25  | cancel     | buy  | 29000 |
| 16:32:37.06                | 1.62  | cancel     | buy         | 111939.762 | 18:28:11.94 | 1.24  | cancel     | buy  | 29000 |
| (a) 11/05/2022 16:00-17:00 |       |            | 18:42:14.77 | 1.06       | limit       | buy   | 20000      |      |       |
| . ,                        |       |            |             |            | 18:54:15.66 | 0.80  | limit      | buy  | 29000 |
|                            |       |            |             |            | 18:54:54.42 | 0.80  | cancel     | buy  | 29000 |
|                            |       |            |             |            | 18:59:42.93 | 1.01  | cancel     | buy  | 20000 |

(b) 11/05/2022 18:00-19:00

| Timestamp                  | Price        | Order Type   | Side       | Size                     |  |  |
|----------------------------|--------------|--------------|------------|--------------------------|--|--|
| 19:28:34.77<br>19:29:07.48 | 0.73<br>0.73 | limit cancel | buy<br>buy | 535665.177<br>535665.177 |  |  |
| (c) 11/05/2022 19·00-20·00 |              |              |            |                          |  |  |

## ~1.8 Million

**Full Channel Records** 

~ 100,000

**Ticker Records** 

### Feature Engineering

Rolling Statistics: (Price + Size)

Mean Standard Deviation Variance (µ)  $(\sigma)$ 

Window Size:

10

15

 $(\sigma^2)$ 

Marking our **contribution**. They provide a detailed view of the **central tendency** and **dispersion** of the data over different time periods, allowing the identification of **abnormal fluctuations** in price and order sizes. Sudden increases create a false impression of market depth.

#### Order Flow Imbalance (OFI)

Reflects market pressure, caused by the **discrepancy** between buy and sell orders.

$$OFI(t) = \sum_{i=t-w}^{t} size_i \cdot side_i$$

#### Market Spread

Provides insight into the **market liquidity** and the **aggressiveness** of the trading activities.

$$spread = best\_ask - best\_bid$$

#### Cancellation Ratio

Evident indicator of spoofing.

$$CR = rac{reason\_canceled}{type\_received\_adjusted}$$

### Market Simulation Environment

#### Agent Playground

Provides a **controlled setting** where our PPO model can interact with **simulated** historical LUNA flash crash **market data**.

# Anomaly Detection

**Unsupervised** system for labeling legitimate spoofing attempts. Anomaly **score** computed based on empirical **feature weights**.

#### **Reward Structure**

**Reinforce** correct detections and **penalize** incorrect actions. The time series are processed **sequentially**.

# Adaptive Spoofing Threshold

Dynamically updated to the 75% most recent anomaly scores. Ensures the model remains responsive to market behavior shifts.



### **Policy Network**

#### Feedforward Neural Network



#### **Network Weights**

- Initialization: Kaiming Normal.
- Optimization: Adam Optimizer with Learning Rate of 1 x 10<sup>-3</sup>.

#### **PPO**

- Discounted Rewards: emphasize immediate actions.
- GAE: smooth out advantage estimates 
   stability & reliability.
- Clipped Surrogate Objective: prevent drastic updates, ensure stable policy improvement.
- Entropy Term: encourage exploration.



### Hyperparameter Tuning - Anomaly Detection

FEATURE WEIGHTS FOR ANOMALY SCORE CALCULATION

| Feature                  | Weight |
|--------------------------|--------|
| order_flow_imbalance     | 0.15   |
| cancel_to_received_ratio | 0.15   |
| price_5_std              | 0.05   |
| price_10_std             | 0.05   |
| price_15_std             | 0.05   |
| size_5_var               | 0.05   |
| size_10_var              | 0.05   |
| size_15_var              | 0.05   |
| spread                   | 0.10   |
| last_size_5_var          | 0.05   |
| last_size_10_var         | 0.05   |
| hour_of_day              | 0.15   |
| hour_15                  | 0.05   |
| hour_16                  | 0.05   |
| hour_17                  | 0.05   |
| hour_18                  | 0.05   |
| hour_19                  | 0.05   |







### Hyperparameter Tuning - PPO Parameters

PERFORMANCE METRICS FOR SELECTED PPO CONFIGURATIONS

| Total<br>Reward | Avg<br>Reward | Std<br>Reward | Learning<br>Rate    | F.DOCOS |    | Spoofing<br>Threshold |
|-----------------|---------------|---------------|---------------------|---------|----|-----------------------|
| 9500            | 0.317         | 0.120         | 1 ×10 <sup>-3</sup> | 128     | 30 | 0.8                   |
| 9200            | 0.307         | 0.115         | $5 \times 10^{-4}$  | 128     | 30 | 0.8                   |
| 9000            | 0.300         | 0.110         | $1 \times 10^{-3}$  | 64      | 20 | 0.8                   |
| 8900            | 0.297         | 0.105         | $5 \times 10^{-4}$  | 32      | 20 | 0.8                   |
| 8500            | 0.283         | 0.102         | $1 \times 10^{-3}$  | 128     | 30 | 0.7                   |
| 8300            | 0.277         | 0.099         | $5 \times 10^{-4}$  | 32      | 20 | 0.9                   |
| 8000            | 0.267         | 0.094         | $1 \times 10^{-3}$  | 64      | 20 | 0.7                   |
| 7800            | 0.260         | 0.091         | $5 \times 10^{-4}$  | 64      | 20 | 0.7                   |
| 7500            | 0.250         | 0.088         | $1 \times 10^{-4}$  | 32      | 10 | 0.8                   |
| 7300            | 0.243         | 0.085         | $1 \times 10^{-4}$  | 64      | 10 | 0.9                   |

# Performance Analysis

**63%** → **89%** 

**0.24** → **0.13** 

Cancellation Records

**Training Loss** 

**4,200** → **9,500** 

**17k** → **20k** 

**Total Reward** 

Maximum Frequency of Positive Reward

















### **Future Considerations**

**01** Online Learning

O2 Labeled Data for a Safer Detection

O3 Advanced Hypertuning: Grid Search,
Bayesian Optimization

# Thank you!

Questions?

### Bibliography

- https://github.com/iuliagroza/spoof.io
- Bachelor's Thesis
- https://www.5paisa.com/finschool/basics-of-algo-trading-and-examples/
- John D. Montgomery. Spoofing, market manipulation, and the limit-order book. May 2016.
- Jean-Noel Tuccella and Philip Nadler and Ovidiu Serban. Protecting Retail Investors from Order Book Spoofing using a GRU-based Detection Model. 2021.
- Cao, Yi and Li, Yuhua and Coleman, Sonya and Belatreche, Ammar and McGinnity, Thomas Martin.
   Adaptive Hidden Markov Model With Anomaly States for Price Manipulation Detection. 2015.
- Haochen Li and Maria Polukarova and Carmine Ventre. Detecting Financial Market Manipulation with Statistical Physics Tools. 2023.
- <a href="https://openai.com/research/openai-baselines-ppo">https://openai.com/research/openai-baselines-ppo</a>
- John Schulman and Filip Wolski and Prafulla Dhariwal and Alec Radford and Oleg Klimov. Proximal Policy Optimization Algorithms. 2017.
- Hyun-Kyo Lim and Ju-Bong Kim and Youn-Hee Han. Federated Reinforcement Learning for Training Control Policies on Multiple IoT Devices. March 2020.

# Demo