SEMINARARBEIT

Rahmenthema des Wissenschaftspropädeutischen Seminars:

Klima

Leitfach: Physik

Thema der Arbeit:

Die Strahlungsphysik des CO₂-Treibhauseffekts

Verfasser/in: Christopher Mehnert Kursleiter/in: Ulrich Steiner

Abgabetermin: 11. November 2025

Bewertung	Note	Notenstufe in Worten	Punkte		Punkte
Schriftliche Arbeit				x 3	
Abschlusspräsentation				x 1	
Current					

Summe:

Gesamtleistung nach § 29 (6) GSO = Summe : 2 (gerundet)

_	_	-	11	•	
_	•	-		١g	

Ich versichere, dass ich die vorgelegte Seminararbeit persönlich und unverfälscht verfasst, sämtliche hierfür zu Hilfe genommene gedruckte sowie digitale Quellen im Literaturverzeichnis angegeben und die aus diesen Quellen stammenden Zitate oder Belegstellen für sinngemäß wiedergegebene Inhalte in meiner Seminararbeit als solche kenntlich gemacht habe.

Die Seminararbeit ist in dieser oder einer ähnlichen Form in keinem anderen Kurs des diesjährigen oder eines vorhergehenden Abiturjahrgangs vorgelegt worden.

Ort, Datum	Unterschrift des/der Oberstufenschülers/in

SEMINARARBEIT

Rahmenthema des Wissenschaftspropädeutischen Seminars:

Klima

Leitfach: Physik

Thema der Arbeit:

Die Strahlungsphysik des CO2-Treibhauseffekts

Verfasser/in: Christopher Mehnert Kursleiter/in: Ulrich Steiner

Inhaltsverzeichnis

1	Ein	leitung	3		
2 Physikalische Grundlagen der Wärmestrahlung					
	2.1	Strahlungsgesetze	3		
		2.1.1 Das Plancksche Strahlungsgesetz	3		
		2.1.2 Das Stefan-Boltzmann Gesetz	3		
	2.2	Anwendung auf das System Sonne-Erde	3		
3	Mol	ekülphysik des CO ₂	3		
	3.1	Molekülstruktur und Schwingungsmoden	3		
	3.2	Quantenmechanische Grundlagen der Absorption	3		
	3.3	Das CO_2 -Absorptionsspektrum	3		
4	Der	Treibhauseffekt	3		
	4.1	Strahlungsbilanz der Erde ohne Atmosphäre	3		
5	Anh	nang	4		
	5.1	Literaturverzeichnis	4		

1 Einleitung

2 Physikalische Grundlagen der Wärmestrahlung

2.1 Strahlungsgesetze

2.1.1 Das Plancksche Strahlungsgesetz

Die spektrale Energiedichteverteilung der Hohlraumstrahlung wird durch das Plancksche Strahlungsgesetz beschrieben. Die spektrale spezifische Ausstrahlung $B_f(T)$ eines schwarzen Körpers als Funktion der Frequenz f und der Temperatur T lautet nach Plank (1900) [3][1]:

$$B_f(T) = \frac{2hf^3}{c_0^2} \cdot \frac{1}{e^{hf/kT} - 1} \quad [2]$$

Alternativ kann die spektrale Strahldichte als Funktion der Wellenlänge λ formuliert werden:

$$B_{\lambda}(T) = \frac{2hc_0^2}{\lambda^5} \cdot \frac{1}{e^{hc_0/\lambda kT} - 1}$$
 [2]

Hierbei bezeichnet $h=6.626\times 10^{-34}\,\rm J\,s$ das Plancksche Wirkungsquantum, $c=2.998\times 10^8\,\rm m\,s^{-1}$ die Vakuumlichtgeschwindigkeit und $k=1.381\,\rm J\,K^{-1}$ die Boltzmann-Konstante [4]

2.1.2 Das Stefan-Boltzmann Gesetz

Eine Ober

- 2.2 Anwendung auf das System Sonne-Erde
- 3 Molekülphysik des CO₂
- 3.1 Molekülstruktur und Schwingungsmoden
- 3.2 Quantenmechanische Grundlagen der Absorption
- 3.3 Das CO₂-Absorptionsspektrum
- 4 Der Treibhauseffekt
- 4.1 Strahlungsbilanz der Erde ohne Atmosphäre

5 ANHANG 4

5 Anhang

5.1 Literaturverzeichnis

[1] Physics Department. STEFAN - BOLTZMANN'S LAW OF RADIATION. URL: https://laboratoriofisica.uc3m.es/guiones_ing/qp/Stefan-Boltzmann_guide_english.pdf (besucht am 31.10.2025).

- [2] R. Girwidz. Das plancksche Strahlungsgesetz. URL: https://www.didaktik.physik.uni-muenchen.de/materialien/grundlagen/planck/m4_2_planck.pdf (besucht am 30.10.2025).
- [3] Max Planck. "Ueber das Gesetz der Energieverteilung im Normalspectrum". In: Annalen der Physik 309.3 (1901), S. 553-563. DOI: https://doi.org/10.1002/andp. 19013090310. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.19013090310. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19013090310.
- [4] Eite Tiesinga u. a. "CODATA recommended values of the fundamental physical constants: 2018". In: Rev. Mod. Phys. 93 (2 Juni 2021), S. 025010. DOI: 10.1103/RevModPhys.93.025010. URL: https://link.aps.org/doi/10.1103/RevModPhys.93.025010.