- Let ϕ be a predicate logic formula, l and l' two environments that agree on free variables of ϕ . Then, $M \vDash_{l} \phi$ holds iff $M \vDash_{l'} \phi$.
- A **sentence** is a predicate logic formula without free variables.
- Let ϕ be a sentence. Either $M \vDash_l \phi$ holds for every environment l, or $M \vDash_l \phi$ does not hold for every environment l. Hence, we write $M \vDash \phi$ or $M \nvDash \phi$.
- Let Γ be a set of predicate logic formulae and ψ a predicate logic formula.
 - $\Gamma \vDash \psi$ holds (or Γ semantically entails ψ) if for every model M and environment $l, M \vDash_l \psi$ holds whenever $M \vDash_l \phi$ holds for every $\phi \in \Gamma$.
 - ψ is **satisfiable** if there is a model M and an environment l such that $M \vDash_l \psi$ holds.
 - ψ is **valid** if $M \vDash_l \psi$ holds for every model M and environment l where we can compute ψ .
 - Γ is **consistent** or **satisfiable** if there is a model M and an environment l such that $M \vDash_l \phi$ for every $\phi \in \Gamma$.
- **Validity problem**: Given a predicate logic formula ϕ , check whether $\models \phi$ holds or not.
 - The validity problem for propositional logic is *NP-complete*.
 - The validity problem for predicate logic is undecidable.
- Post correspondence problem (PCP): Given $C = ((s_1, t_1), (s_2, t_2), \dots, (s_k, t_k))$ where s_i, t_i are non-empty binary strings for every $1 \le i \le k$. Check whether there are $1 \le i_1, i_2, \dots, i_n \le k$ s.t. $s_{i_1}s_{i_2}\dots s_{i_n} = t_{i_1}t_{i_2}\dots t_{i_n}$.
- $\models \phi$ holds iff $\neg \phi$ is not satisfiable.
 - Theorem: The validity problem for predicate logic is *undecidable*.
 - Corollary: The satisfiability problem for predicate logic is *undecidable*.
- **Soundness** and **completeness**: For any predicate logic sentence ϕ , $\vdash \phi$ iff $\models \phi$.
- Lemma: Let Γ be a set of predicate logic formulae. $\Gamma \vDash \phi$ implies $\Gamma \vdash \phi$ is equivalent to $\Gamma \vDash \bot$ implies $\Gamma \vdash \bot$.
- Compactness theorem: Let Γ be a set of predicate logic sentences. If all finite subset of Γ is satisfiable, Γ is satisfiable.
- Lowenhein-Skolem Theorem: Let ψ be a predicate logic sentence. If ψ has a model with at least n elements for every $n \ge 1$, ψ has a model with infinitely many elements.
- **Reachability**: Given a directed graph G and nodes n, n' in G, the reachability problem for G is to check whether there is a path of transition from n to n'.
- Reachability in predicate logic: There is no predicate logic formula ϕ with exactly two free variables u, v and exactly one binary predicate R such that ϕ holds in directed graphs iff there is a

path in the graph from the node associated with u to the node associated with v.