*Solution by Audrey Felicio Anwar, silver medallist OSN Matematika 2018

LuMaT SMP Nomor 2

Bu Aya akan memancing di kolam berbentuk segitiga dengan panjang sisi 6,7,8 dengan tali pancing sepanjang t. Berapakah nilai t minimal, agar dimanapun ikan di dalam kolam berada, Bu Aya dapat melemparkan pancing dari luar kolam ke posisi ikan tersebut?

Solusi

Figure 1: Gambar Nomor 2

Misalkan kolamnya adalah $\triangle ABC$, dengan AB=6, BC=7, AC=8. Misalkan D menandakan posisi ikan. Agar t minimal, Bu Aya harus sedekat mungkin dengan kolam. Misalkan a,b,c adalah panjang proyeksi D ke BC,AC,AB secara berturut-turut. Perhatikan bahwa $t \geq min\{a,b,c\}$ untuk setiap kemungkinan posisi D. Maka t minimal adalah nilai maksimal dari $min\{a,b,c\}$. Misalkan L,r,s menandakan luas, panjang jari-jari lingkaran dalam, dan setengah keliling dari $\triangle ABC$. Perhatikan bahwa $s=\frac{21}{2}$ dan

$$L=\frac{7a+8b+6c}{2}\geq \frac{21}{2}min\{a,b,c\}$$

Maka,

$$r = \frac{L}{s} \ge \min\{a,b,c\}$$

$$r = \frac{\sqrt{s(s-a)(s-b)(s-c)}}{s} = \frac{\sqrt{15}}{2} \ge \min\{a,b,c\}$$

Maka, nilai minimal dari t adalah $\frac{\sqrt{15}}{2}$. Bu Aya dapat selalu berpindah ke titik dengan panjang proyeksi terpendek dan sudah dibuktikan panjang proyeksi terpendek selalu tidak lebih besar dari r. Maka, t=r sudah cukup untuk dapat memancing ikan, dimanapun lokasi ikan tersebut berada.