```
# Basic Libraries
 import numpy as np
 import pandas as pd
 from warnings import filterwarnings
 from collections import Counter
 # Visualizations Libraries
 import matplotlib.pyplot as plt
 import seaborn as sns
 import plotly
 import plotly.offline as pyo
 import plotly.express as px
 import plotly.graph_objs as go
 pyo.init_notebook_mode()
 import plotly.figure_factory as ff
 import missingno as msno
# Data Pre-processing Libraries
 from \ sklearn.preprocessing \ import \ Standard Scaler, Min Max Scaler
 from sklearn.model_selection import train_test_split
 # Modelling Libraries
 from \ sklearn.linear\_model \ import \ Logistic Regression, Ridge Classifier, SGD Classifier, Passive Aggressive Classifier, Passive Classifier, Passive Aggressive Classifier, Passive Classifier, 
 from sklearn.linear_model import Perceptron
 from sklearn.svm import SVC,LinearSVC,NuSVC
 from sklearn.neighbors import KNeighborsClassifier,NearestCentroid
 from sklearn.tree import DecisionTreeClassifier
 from \ sklearn. ensemble \ import \ Random Forest Classifier, AdaBoost Classifier, Gradient Boosting Classifier \ and Gradient Boost \ Gradient Boost \ Gradient \ 
 from sklearn.naive_bayes import GaussianNB,BernoulliNB
 from sklearn.ensemble import VotingClassifier
 # Evaluation & CV Libraries
 from sklearn.metrics import precision_score,accuracy_score
 from \ sklearn.model\_selection \ import \ Randomized Search CV, Grid Search CV, Repeated Stratified KFold Search CV, Grid Search CV
```

 \square

- Colors

```
colors_blue = ["#132C33", "#264D58", '#17869E', '#51C4D3', '#84DBE9']
colors_dark = ["#1F1F1F", "#313131", '#636363', '#AEAEAE', '#DADADA']
colors_green = ['#01411C','#4B6F44','#4F7942','#74C365','#D0F0C0']
sns.palplot(colors_blue)
sns.palplot(colors_green)
sns.palplot(colors_dark)
```


Importing The Dataset

df.head()

```
Hardness
                   3276 non-null
                                  float64
   Solids
                   3276 non-null
                                  float64
3
   Chloramines
                   3276 non-null
                                  float64
   Sulfate
                   2495 non-null
                                  float64
   Conductivity
                   3276 non-null
                                   float64
   Organic_carbon 3276 non-null
                                  float64
   Trihalomethanes 3114 non-null
                                  float64
   Turbidity
                   3276 non-null
                                  float64
9 Potability
                   3276 non-null
                                  int64
```

dtypes: float64(9), int64(1)
memory usage: 256.1 KB

4 9.092223 181.101509 17978.986339

memory usuger issue

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	Trihalomethanes	Turbidity	Potability
0	NaN	204.890455	20791.318981	7.300212	368.516441	564.308654	10.379783	86.990970	2.963135	0
1	3.716080	129.422921	18630.057858	6.635246	NaN	592.885359	15.180013	56.329076	4.500656	0
2	8.099124	224.236259	19909.541732	9.275884	NaN	418.606213	16.868637	66.420093	3.055934	0
3	8.316766	214.373394	22018.417441	8.059332	356.886136	363.266516	18.436524	100.341674	4.628771	0

398.410813

11.558279

31.997993

4.075075

6.546600 310.135738

Visualizations

```
d= pd.DataFrame(df['Potability'].value_counts())
fig = px.pie(d,values='Potability',names=['Not Potable','Potable'],hole=0.4,opacity=0.6,
            color_discrete_sequence=[colors_green[3],colors_blue[3]],
            labels={'label':'Potability','Potability':'No. Of Samples'})
fig.add_annotation(text='We can resample the data<br>> to get a balanced dataset',
                   x=1.2, y=0.9, showarrow=False, font\_size=12, opacity=0.7, font\_family='monospace')
fig.add_annotation(text='Potability',
                   x=0.5, y=0.5, showarrow=False, font_size=14, opacity=0.7, font_family='monospace')
fig.update_layout(
    font_family='monospace',
    title=dict(text='Q. How many samples of water are Potable?',x=0.47,y=0.98,
               font=dict(color=colors_dark[2],size=20)),
    legend=dict(x=0.37,y=-0.05,orientation='h',traceorder='reversed'),
    hoverlabel=dict(bgcolor='white'))
fig.update_traces(textposition='outside', textinfo='percent+label')
fig.show()
```

```
barmode='group',histfunc='count')
fig.add_vline(x=151, line_width=1, line_color=colors_dark[1],line_dash='dot',opacity=0.7)
fig.add_vline(x=301, line_width=1, line_color=colors_dark[1],line_dash='dot',opacity=0.7)
fig.add_vline(x=76, line_width=1, line_color=colors_dark[1],line_dash='dot',opacity=0.7)
fig.add_annotation(text='<76 mg/L is<br/>considered soft',x=40,y=130,showarrow=False,font_size=9)
fig.add_annotation(text='Between 76 and 150<br/>cbr> (mg/L) is<br/>br>moderately hard',x=113,y=130,showarrow=False,font_size=9)
fig. add\_annotation (text='Between 151 \ and \ 300 \ (mg/L) < brace is considered hard', x=250, y=130, showarrow=False, font\_size=9)
fig.add_annotation(text='>300 mg/L is<br/>considered very hard',x=340,y=130,showarrow=False,font_size=9)
fig.update_layout(
    font_family='monospace',
    title=dict(text='Hardness Distribution',x=0.53,y=0.95,
               font=dict(color=colors_dark[2],size=20)),
    xaxis_title_text='Hardness (mg/L)',
    yaxis_title_text='Count',
    legend=dict(x=1,y=0.96,bordercolor=colors\_dark[4],borderwidth=0,tracegroupgap=5),\\
    bargap=0.3,
fig.show()
```

```
bargap=0.3,
)
fig.show()
```

```
fig = px.histogram(df,x='Organic_carbon',y=Counter(df['Organic_carbon']),color='Potability',template='plotly_white',
```

```
cor=df.drop('Potability',axis=1).corr()
cor
```

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	Trihalomethanes	Turbidity
ph	1.000000	0.082096	-0.089288	-0.034350	0.018203	0.018614	0.043503	0.003354	-0.039057
Hardness	0.082096	1.000000	-0.046899	-0.030054	-0.106923	-0.023915	0.003610	-0.013013	-0.014449
Solids	-0.089288	-0.046899	1.000000	-0.070148	-0.171804	0.013831	0.010242	-0.009143	0.019546
Chloramines	-0.034350	-0.030054	-0.070148	1.000000	0.027244	-0.020486	-0.012653	0.017084	0.002363
Sulfate	0.018203	-0.106923	-0.171804	0.027244	1.000000	-0.016121	0.030831	-0.030274	-0.011187
Conductivity	0.018614	-0.023915	0.013831	-0.020486	-0.016121	1.000000	0.020966	0.001285	0.005798
Organic_carbon	0.043503	0.003610	0.010242	-0.012653	0.030831	0.020966	1.000000	-0.013274	-0.027308
Trihalomethanes	0.003354	-0.013013	-0.009143	0.017084	-0.030274	0.001285	-0.013274	1.000000	-0.022145

→ Data Preparation

```
fig = msno.matrix(df,color=(0,0.5,0.5))
```

		Ý,	Hardr	ess	solids	Chlori	grifte ⁵	utate	Conducti
	1								
.snull().	sum()								
Chloram Sulfate		0 781							
Conduct Organic	ivity c_carbon omethanes ty ity	0 0 162 0							
Conduct Organic Trihalo Turbidi Potabil dtype:	civity c_carbon mmethanes ty ity int64	0 0 162 0 0							
Conduct Organic Trihalo Turbidi Potabil dtype:	civity c_carbon methanes city int64 cility']==0].	0 0 162 0 0	Solids	Chloramines	Sulfate	Conductivity	Organic carbon	Tribalomethanes	Turhid
Conduct Organic Trihalo Turbidi Potabil dtype:	civity c_carbon mmethanes ty ity int64	0 0 162 0 0	Solids 1998.000000	Chloramines 1998.000000	Sulfate 1510.000000	Conductivity 1998.000000	Organic_carbon 1998.000000	Trihalomethanes 1891.000000	
Conduct Organic Trihalo Turbidi Potabil dtype:	civity c_carbon methanes ty ity int64 cility']==0].	0 0 162 0 0 describe()							1998.000
Conduct Organic Trihalo Turbidi Potabil dtype: f['Potab	carbon methanes ty int64 ph 1684.000000	0 0 162 0 0 describe() Hardness	1998.000000	1998.000000	1510.000000	1998.000000	1998.000000	1891.000000	1998.000
Conduct Organic Trihalo Turbidi Potabil dtype: If['Potab	civity c_carbon methanes ty int64 ph 1684.000000 7.085378	0 0 162 0 0 describe() Hardness 1998.000000 196.733292	1998.000000 21777.490788	1998.000000 7.092175	1510.000000 334.564290	1998.000000 426.730454	1998.000000 14.364335	1891.000000 66.303555	1998.000 3.965 0.780
Conduct Organic Trihalo Turbidi Potabil dtype: f['Potab count mean std	carbon methanes :: ty :: int64 ph	0 0 162 0 0 describe() Hardness 1998.000000 196.733292 31.057540	1998.000000 21777.490788 8543.068788	1998.000000 7.092175 1.501045	1510.000000 334.564290 36.745549	1998.000000 426.730454 80.047317	1998.000000 14.364335 3.334554	1891.000000 66.303555 16.079320	1998.000 3.965 0.780 1.450
Conduct Organic Trihalo Turbidi Potabil dtype: f['Potab count mean std min	civity c_carbon methanes ty .ity int64 cility']==0].0 ph 1684.000000 7.085378 1.683499 0.0000000	0 0 162 0 0 describe() Hardness 1998.000000 196.733292 31.057540 98.452931 177.823265	1998.000000 21777.490788 8543.068788 320.942611	1998.000000 7.092175 1.501045 1.683993	1510.000000 334.564290 36.745549 203.444521	1998.000000 426.730454 80.047317 181.483754	1998.000000 14.364335 3.334554 4.371899	1891.000000 66.303555 16.079320 0.738000	1998.000 3.965 0.780 1.450 3.444
Conduct Organic Trihalo Turbidi Potabil dtype: f['Potab count mean std min 25%	ph 1684.000000 7.085378 1.683499 0.000000 6.037723	0 0 0 162 0 0 describe() Hardness 1998.000000 196.733292 31.057540 98.452931 177.823265 197.123423	1998.000000 21777.490788 8543.068788 320.942611 15663.057382	1998.000000 7.092175 1.501045 1.683993 6.155640	1510.000000 334.564290 36.745549 203.444521 311.264006	1998.000000 426.730454 80.047317 181.483754 368.498530	1998.000000 14.364335 3.334554 4.371899 12.101057	1891.000000 66.303555 16.079320 0.738000 55.706530	1998.000 3.965 0.780 1.450 3.444 3.948
Conduct Organic Trihalo Turbidi Potabil dtype: f['Potab count mean std min 25% 50%	ph 1684.00000 7.085378 1.683499 0.000000 6.037723 7.035456	0 0 0 162 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1998.000000 21777.490788 8543.068788 320.942611 15663.057382 20809.618280	1998.000000 7.092175 1.501045 1.683993 6.155640 7.090334	1510.000000 334.564290 36.745549 203.444521 311.264006 333.389426	1998.000000 426.730454 80.047317 181.483754 368.498530 422.229331	1998.000000 14.364335 3.334554 4.371899 12.101057 14.293508	1891.000000 66.303555 16.079320 0.738000 55.706530 66.542198	Turbid: 1998.0000 3.9656 0.7802 1.4500 3.4440 4.496 6.7390

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	Trihalomethanes	Turbidity	Pot
count	1101.000000	1278.000000	1278.000000	1278.000000	985.000000	1278.000000	1278.000000	1223.000000	1278.000000	
mean	7.073783	195.800744	22383.991018	7.169338	332.566990	425.383800	14.160893	66.539684	3.968328	
std	1.448048	35.547041	9101.010208	1.702988	47.692818	82.048446	3.263907	16.327419	0.780842	
min	0.227499	47.432000	728.750830	0.352000	129.000000	201.619737	2.200000	8.175876	1.492207	
25%	6.179312	174.330531	15668.985035	6.094134	300.763772	360.939023	12.033897	56.014249	3.430909	
50%	7.036752	196.632907	21199.386614	7.215163	331.838167	420.712729	14.162809	66.678214	3.958576	
75%	7.933068	218.003420	27973.236446	8.199261	365.941346	484.155911	16.356245	77.380975	4.509569	
max	13.175402	323.124000	56488.672413	13.127000	481.030642	695.369528	23.604298	124.000000	6.494249	

df[df['Potability']==0][['ph','Sulfate','Trihalomethanes']].median()

ph 7.035456 Sulfate 333.389426

```
Trihalomethanes 66.542198 dtype: float64
```

```
df[df['Potability']==1][['ph','Sulfate','Trihalomethanes']].median()
                          7.036752
     Sulfate
                        331.838167
     Trihalomethanes
                        66.678214
     dtype: float64
df['ph'].fillna(value=df['ph'].median(),inplace=True)
df['Sulfate'].fillna(value=df['Sulfate'].median(),inplace=True)
df['Trihalomethanes'].fillna(value=df['Trihalomethanes'].median(),inplace=True)
df.isnull().sum()
     Hardness
                        0
     Solids
                        0
     Chloramines
                       0
     Sulfate
     Conductivity
                       0
     Organic carbon
                       0
     Trihalomethanes
                       0
     Turbidity
                       0
     Potability
                        0
     dtype: int64
```

Standardizing The Data

```
X = df.drop('Potability',axis=1).values
y = df['Potability'].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=101)
scaler = StandardScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
```

Modelling

```
filterwarnings('ignore')
models =[("LR", LogisticRegression(max_iter=1000)),("SVC", SVC()),('KNN',KNeighborsClassifier(n_neighbors=10)),
         ("DTC",\ DecisionTreeClassifier()), ("GNB",\ GaussianNB()),\\
        ("SGDC", SGDClassifier()),("Perc", Perceptron()),("NC",NearestCentroid()),
        ("Ridge", RidgeClassifier()),("NuSVC", NuSVC()),("BNB", BernoulliNB()),
         ('RF',RandomForestClassifier()),('ADA',AdaBoostClassifier()),
        ('XGB',GradientBoostingClassifier()),('PAC',PassiveAggressiveClassifier())]
results = []
names = []
finalResults = []
for name, model in models:
   model.fit(X_train, y_train)
   model_results = model.predict(X_test)
   score = precision_score(y_test, model_results, average='macro')
    results.append(score)
   names.append(name)
   finalResults.append((name, score))
finalResults.sort(key=lambda k:k[1],reverse=True)
```

finalResults

```
[('SVC', 0.6928617374229805),
('XGB', 0.6630921227291691),
('RF', 0.6371248936111797),
('NUSVC', 0.6227085849916291),
('GNB', 0.6012450851900393),
('KNN', 0.599731034904334),
('ADA', 0.5730733082706767),
('PAC', 0.5446198830409357),
('DTC', 0.526067736800721),
('SGDC', 0.5245597775718258),
```

```
('NC', 0.5180221380172848),
('Perc', 0.47848552636610453),
('LR', 0.3045801526717557),
('Ridge', 0.3045801526717557),
('BNB', 0.3045801526717557)]
```

Hyperparameter Tuning

```
model_params = {
    'XGB':
        'model':GradientBoostingClassifier(),
        'params':
            'learning_rate':[0.0001,0.001,0.01,0.1],
            'n_estimators':[100,200,500,1000],
            'max_features':['sqrt','log2'],
            'max_depth':list(range(11))
   },
    'Random Forest':
        'model':RandomForestClassifier(),
        'params':
        {
            'n_estimators':[10,50,100,200],
            'max_features':['auto','sqrt','log2'],
            'max_depth':list(range(1,11))
   }
cv = RepeatedStratifiedKFold(n_splits=5,n_repeats=2)
scores=[]
for model_name,params in model_params.items():
    rs = RandomizedSearchCV(params['model'],params['params'],cv=cv,n_iter=20)
    scores.append([model_name,dict(rs.best_params_),rs.best_score_])
data=pd.DataFrame(scores,columns=['Model','Parameters','Score'])
data
```

```
        Mode1
        Parameters
        Score

        0
        XGB {'n_estimators': 500, 'max_features': 'sqrt', ... 0.663919

        1
        Random Forest {'n_estimators': 100, 'max_features': 'sqrt', ... 0.666813
```

Final Model

```
param=data['Parameters']
model = VotingClassifier(estimators=[
                                       ('XGB',GradientBoostingClassifier(**param[0])),
                                       ('RF',RandomForestClassifier(**param[1])),
                                      ],voting='hard')
accuracy=[]
scaler = StandardScaler()
skf = RepeatedStratifiedKFold(n_splits=5,n_repeats=2)
skf.get_n_splits(X,y)
for train_index, test_index in skf.split(X,y):
    X_train, X_test = X[train_index], X[test_index]
    y_train, y_test = y[train_index], y[test_index]
    scaler.fit(X_train)
    X_train = scaler.transform(X_train)
    X_{\text{test}} = \text{scaler.transform}(X_{\text{test}})
    model.fit(X_train,y_train)
    predictions=model.predict(X_test)
    score=accuracy_score(y_test,predictions)
    accuracy.append(score)
np.mean(accuracy)
```

0.6639138428598026

Conclusion

- 1. The TDS levels seem to contain some descripency since its values are on an average 40 folds more than the upper limit for safe drinking water.
- 2. The data contains almost equal number of acidic and basic pH level water samples.
- 3. 92% of the data was considered Hard.
- 4. Only 2% of the water samples were safe in terms of Chloramines levels.
- 5. Only 1.8% of the water samples were safe in terms of Sulfate levels.
- 6. 90.6% of the water samples had higher Carbon levels than the typical Carbon levels in drinking water (10 ppm).
- 7. 76.6% of water samples were safe for drinking in terms of Trihalomethane levels in water.
- **8.** 90.4% of the water samples were safe for drinking in terms of the Turbidity of water samples.
- 9. The correlation coefficients between the features were very low.
- 10. Random Forest and XGBoost worked the best to train the model.
- 11. The ensemble method of using the Voting Classfier on Stratified K-folded samples gave an accuracy of >64%