2023.11.15 第十四次作业

卢科政 夏业志

2023年12月13日

题目 1. (课本 4.12) 一根很长的同轴电缆,由一导体圆柱 (半径为 a) 和一同轴导体圆管构成,导体圆管的内,外半径分别为 b,c,沿导体柱和导体管通以反向电流,电流强度均为 I,且均匀分布在导体的横截面上,求:(1) 导体圆柱内 (r < a);(2) 两导体之间 (a < r < b);(3) 导体圆管内 (b < r < c);(4) 电缆外 (r > c) 各处的磁感应强度大小.

解答. 这道题考察安培环路定理的运用 $\oint_{L} \vec{B} \cdot \vec{dl} = \mu_0 \Sigma I$

(1)

在导体圆柱内 $(r < a), \Sigma I = \frac{I}{\pi a^2} \pi r^2$, 因此有:

$$B = \frac{\mu_0}{2\pi r} \frac{I}{\pi a^2} \pi r^2 = \frac{\mu_0 I r}{2\pi a^2} \tag{1}$$

(2)

两导体之间 $(a < r < b), \Sigma I = I$, 因此有:

$$B = \frac{\mu_0 I}{2\pi r} \tag{2}$$

(3)

导体圆管内 $(b < r < c), \Sigma I = I - \frac{r^2 - b^2}{c^2 - b^2} I$, 因此有:

$$B = \frac{\mu_0 I}{2\pi r} \left(1 - \frac{r^2 - b^2}{c^2 - b^2}\right) = \frac{\mu_0 I}{2\pi r} \left(\frac{c^2 - r^2}{c^2 - b^2}\right)$$
(3)

(4)

电缆外 $(r > c), \Sigma I = 0$, 因此有:

$$B = 0 (4)$$

题目 2. (课本 4.20) 将一电流均匀分布的无限大载流平面放入均匀磁场 B_0 中,放入后平面两侧的磁感应强度分别为 B_1 和 B_2 ,如图所示。求 (1) 无限大载流平面的电流密度 i;(2) 无限大载流平面单位面积上的安培力。

解答.

(1). 无限大载流平面在其两侧激发均匀磁场,磁感应强度的大小为 $\frac{\omega}{2}j$,方向相反 (详见书中例题 4.4),则可以判断出电流流向为垂直纸面向内, B_1 和 B_2 满足:

$$B_1 = B_0 - \frac{\mu_0}{2}j, B_2 = B_0 + \frac{\mu_0}{2}j$$

得到:

$$B_0 = \frac{B_1 + B_2}{2}$$
$$j = \frac{B_2 - B_1}{\mu_0}$$

(2). 由于载流平板不会受自己产生磁场的作用,所以载流平面受到的力是外磁场 \vec{B} 作用的结果,在平面上取一个面元 dS = dxdy,由于 $\vec{j}\perp\vec{B}$,则根据安培定律:

$$d\vec{F} = Idl \times \vec{B}$$

则单位面积上的安培力为:

$$\frac{dF}{dS} = \frac{jdSB_0}{dS} = jB_0 = \frac{1}{2\mu_0}(B_2^2 - B_1^2)$$

方向向左