1.	Für $n=0,1,2,\ldots,49$ sei A_n das Ereignis, dass Matse-Azubi Karl genau n der 49 Übungsaufgaben zur
	Stochastik vor der Klausur selbstständig bearbeitet hat. B sei das Ereignis, dass Karl die Klausur besteht.
	Zur Vereinfachung sei angenommen: $P(A_n) = \frac{1}{50}$ und die Wahrscheinlichkeit, mit der er besteht, wenn
	er <i>n</i> Aufgaben bearbeitet hat, sei $\frac{n}{50}$.

(a)	Berechnen	Sie d	lie I	Nahrscl	heinli	chkeit	dass l	Karl	die i	Klausur	hesteht
(a)	Detectilien	DIC (ис и	varusci	пенш	CHECH	uassi	ıxaıı	uic .	Mausui	Destelli.

T **		
Lösung:		
2004110		

(b) Karl hat die Klausur bestanden. Wie groß ist die Wahrscheinlichkeit, dass er vor der Klausur nicht mehr als 5 Aufgaben selbstständig bearbeitet hat?

Lösung:			