Laboratoře z průmyslové elektroniky a senzorů Katedra měření, ČVUT – FEL, Praha, letní semestr 2017/18

J. Fischer, V. Petrucha,, T. Drábek

Sestavení kitu s procesorem STM32F042F6P6 na nepájivém kontaktním poli pro přístroj F0 – Lab

Náplň

Požadavek na přístroje a jejich funkce

Náhrada přístrojových funkcí mikroprocesorem (software defined instrumentation)

- Využití procesoru STM32F042 pro realizaci přístrojů
- Realizace kitu na nepájivém kontaktním poli, schéma, postup
- Základní oživení kitu, blikání LED
- Instalace SW a ovladačů na PC
- Použití programu BOOT loader pro nahrání firmwaru
- Oživení kitu s USB a nahrání firmware přes USB
- Funkce F0 Lab přístrojové funkce a jejich využití

Proč Kit s procesorem STM32F042

Pro experimenty potřebujeme přístroje typu

- Voltmetr
- Osciloskop
- Impulsní generátor

Potřeba pro každého studenta v laboratoři i pro domácí přípravu

Funkce přístrojů:

- Měřit statické nebo velmi pomalu proměnné napětí, případně proudy
- Měřit průběh signálu v čase
- Generovat impulsní signál

Nahradit přístroje **SDI (softwarově definovaným přístrojem)** s využitím procesoru s USB a PC

Procesor – sběr dat a generování signálu PC – napájení, ovládání a zobrazení výsledků

Volba procesoru pro přístroj

Co musí procesor obsahovat

Potřeba měřit napětí, převodník napětí na číslo, analog-číslicový převodník Analog – Digital Converter – ADC

Impulsní generátor - PWM

Rozhraní USB pro komunikaci

Možnost nahrát firmware do procesoru přes USB (Boot loader)

Možnost využít kit i pro tvorbu vlastních programů pomocí on-line IDE mbed – musí existovat kit se stejným procesorem podporovaným mbed (developer.mbed.org)

Možnost zapájet na adaptor a umístit na kontaktní pole, dostupnost

Volba – microcontroller **STM32F042F6P6** v pouzdře TSSOP20

V tomto textu se pro STM32F042 používá zjednodušené označení "procesor"

http://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-cortex-mcus/stm32-mainstream-mcus/stm32f0-series/stm32f0x2/stm32f042f6.html

Kit https://os.mbed.com/platforms/ST-Nucleo-F042K6/

Materiál

- nepájivé kontaktní pole
- modul s procesorem STM32F042F6P6 na adaptoru
- konektor mini USB s kontakty na adaptoru
- stabilizátor +3,3 V typu HT 7533-1
- 2x LED
- rezistor 470 Ohmů,
- 2x elektrolyt. kondenzátor 22 uF/25 V
- přepínač (přepínání BOOT /RUN)
- tlačítko (Reset)

Realizace F0 – Lab s mikrořadičem

Realizace laboratorního přístroje F0 – Lab s mikrořadičem Mikrořadič (procesor) STM32F042F6P6

Procesorové jádro ARM Cortex – M0, 32-bitový procesor

Obsahuje:

Paměti: programu FLASH 32 kByte, pamět' RAM 6 kByte sběrnice, vstupně výstupní brány, čítače-časovač,

Převodník ADC (analog-číslicový převodník) s rozlišením 12 bitů tedy výstupem jsou binární čísla

0 V výstup 0000 0000 0000

3,3 V (resp. V_{DDA}) výstup 1111 1111 1111 (což představuje **0 až 4095** dekadicky)

Rozsah převodníku ADC je určen napětím V_{DDA} pokud je $V_{DDA} = 3,3 V$, pak je **krok** (kvantum) **převodníku** přibl. 0,8 mV

Rozlišení – srovnatelné s multimetrem

Bloková struktura mikrořadiče STM32F031

STM32F031
je jednodušší
varianta
oproti STM32F042,
zde je uveden
pro názornost

STM32F042 má navíc USB

Struktura
STM3F042
komplexní obvod,
obsahuje mnoho
periferních bloků

Limity napětí na STM32F042, aneb "jak to nespálit"

- Obvod STM32F042 je vyroben technologii CMOS (stejně jako drtivá většina ostatních procesorů) a z toho vyplývají omezení
- Napájení V_{DD} a V_{SS} (GND) se nesmí přepólovat = otevře se substrátová dioda a poteče velký proud omezený napájecím zdrojem. Obvod bude "topit"

Na vstupech nesmí být záporné napětí (nižší potenciál, než na V_{SS})

na V_{DD} = 3,3 V, může být i menší (do 2,4 V), napájením +5 V se zničí.

- Na vstupy voltmetru **nesmí** být přivedeno napětí **větší než napájecí** (V_{DDA}), otevřely by se přechody PN na vstupu a tekl by proud přes tuto diodu do napájení a může se poškodit vstupní struktura (tedy na vstup procesoru bez napájení se nesmí přivést žádné napětí!!!)
- Jak řešit ochranu? Do série se vstupem zapojit ochranný rezistor alespoň 470 Ohmů, kterým se omezí velikost proudu!!!
- V modulu s STM32F042 jsou napájecí piny V_{DDA} a V_{DD} propojeny

STM32F042 – limity napětí

Table 18. Voltage characteristics⁽¹⁾

	Symbol	Ratings	Min	Max	Unit
	V_{DD} - V_{SS}	External main supply voltage	-0.3	4.0	٧
	V _{DDIO2} -V _{SS}	External I/O supply voltage	-0.3	4.0	V
	V _{DDA} -V _{SS}	External analog supply voltage	-0.3	4.0	٧
	V_{DD} – V_{DDA}	Allowed voltage difference for $V_{DD} > V_{DDA}$	-	0.4	V
	V _{BAT} -V _{SS}	External backup supply voltage	-0.3	4.0	٧
		Input voltage on FT and FTf pins	V _{SS} −0.3	V _{DDIOx} + 4.0 ⁽³⁾	V
	V _{IN} ⁽²⁾	Input voltage on TTa pins	V _{SS} −0.3	4.0	V
		Input voltage on any other pin	V _{SS} −0.3	4.0	V
	$ \Delta V_{DDx} $	Variations between different V _{DD} power pins	-	50	m∨
	$ V_{SSx}-V_{SS} $	Variations between all the different ground pins	-	50	m∨
,	V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Section 6.3.12: Electrical sensitivity characteristics		-

All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

^{2.} V_{IN} maximum must always be respected. Refer to *Table 19: Current characteristics* for the maximum allowed injected current values.

Valid only if the internal pull-up/pull-down resistors are disabled. If internal pull-up or pull-down resistor is enabled, the maximum limit is 4 V.

Signály procesoru, zapojení do obvodu

Pin 16 V_{DD} digitální napájení +3,3 V

Pin 5 V_{DDA} analogové napájení +3,3 V (u nás propojeno V_{DD} a V_{DDA})

Pin **15 Pin V**_{SS} – **GND** – **zem**, **na 0 V**

Pin 4 NRST reset, na tlačítko a na zem GND

Pin 1 BOOT – 0 na +3,3 V volba BOOT (nahrávání firmware do flash)

BOOT – 0 na GND (zem) volba *RUN* – běh programu

Pin 10 PA4 Blikání LED zapojené proti zemi – test

Pin 18 na D+ USB konektor

Pin 17 na D- USB konektor

Zapojení kitu F0 – Lab

C_{B4} = 100 nF Je zapojen přímo na adaptoru procesoru.

C_{B2} pro HT7533 není nutný C_{B1}, C_{B3} elyt 22 uF

Uspořádání na kontaktním poli

Orientace kontaktního pole válcové výstupky – na pravé straně a nahoře!

Doporučené barvy vodičů
v rozvodu napájení
Zelená (modrá) – GND
Červená – +3,3 V
Žlutá (purpurová) – +5 V
"Šetřit místem" – procesor
umístit blízko hornímu
okraji pole

Schéma zapojení STM32F042

Poznámky k sestavení kitu

Sundat **krycí folii** na zadní straně pole **a přilepit krycí plech** (pozor, precizně polohovat plech, aby nezůstala odkrytá lepicí vrstva)

- Konektor **USB**, **regulátor** napětí HT7533 **+3,3 V**, **indikace napájení +3,3 V LED 1** (s rezistorem 470 Ohmů). **Zkontrolovat** správnost **napětí +3,3 V**
- Zapojit modul se STM32F042, přepínač BOOT, reset tlačítko, LED na pin 10 s rezistorem 470 Ohmů. Přepínač boot do polohy "Run", pin č. 1 přepínačem připojen na zem (GND).
- Poznámka: přepínač spíná kontakty na opačné straně, tedy posun doleva sepne pravý kontakt na střed a opačně.
- Oživit **blikání LED 2 na pinu 10 (PA4)** s programem **dodaným ve FLASH** paměti procesoru
- Oživit **nahrávání firmware** osciloskopu do procesoru prostřednictvím USB rozhraní, program **DfuSE Demo**
- Oživit F0 Lab s funkcemi: Impulsní generátor, voltmetr a osciloskop

Piny – Voltmetr, osciloskop

Pro oživení – v STM32F042 jsme nahráli program blikání: Testovací program – blikání PA4 pin 10, připojit LED přes rezistor 470 Ohmů na zem.

Aplikační program – firmware a) Voltmetr, b) osciloskop PC aplikace – společná

PWM out pin 14 generátor PWM – pro funkci voltmetr i osciloskop CH1 pin 11 pro funkci voltmetr i osciloskop CH2 pin 12 pro funkci voltmetr i osciloskop CH1 pin 13 pro funkci voltmetr i osciloskop

Rozvod napájení na kontaktním poli

"Tlusté" zelené vodiče- zem GND, červené vodiče napájení +3,3 V žluté +5 V (VBUS). Všechny vodiče použité v rozvodu napájení jsou "tlusté", průměr 0,65 mm

LED + rezistor 470 Ohmů, kontrola napájení, stačí tenké vodiče

Rozvod napájení na kontaktním poli

"Tlusté" zelené vodiče – zem GND – připojení pinu 15 červené vodiče napájení +3,3 V, piny 5 a 16

Stabilizátor - přívod +5 V a výstup +3,3 V "tlusté". Ostatní signálové jsou "tenké". LED + rezistor 470 Ohmů, kontrola napájení

Uspořádání kitu – popisy

Kit - detail

Kit - detail

Kit – detail

.

Instalace potřebného SW

Na počítačích v laboratořích je nainstalovaný potřebný software, který se nachází ve složce DFUSE na ploše

Pro práci na vlastním počítači je potřeba nainstalovat programy DFuse Demo, ovladač VCP a využívat aplikaci zero_elabviewer_v0.2

Instalace potřebného SW

Postup instalace:

- 1. Zkopírovat složku *DFUSE* do vlastního počítače
- 2. otevřít složku *DFUSE*
- 3. nainstalovat aplikaci DfuSe_Demo_V3.0.5_Setup
- 4. otevřít složku VCP Driver
- 5. nainstalovat aplikaci *VCP_V1.3.1_Setup* podle typu systému (32bitový/64bitový operační systém)
- 6. vyzkoušet připojení mikroprocesoru k počítači
- 7. otevřít složku *F0_lab*
- 8. otevřít složku application
- 9. otevřít aplikaci zero_elabviewer_v0.2
- 10.přepínač do polohy *RUN* na nepájivém poli a zmáčknout tlačítko RESET
- 11.navázat komunikaci

STM32F042 jako zařízení (v režimu BOOT)

Při aktivaci "Boot loader", se v zařízeních objeví STM32..., při stisku reset opět zmizí

Nahrání firmware pomocí programu DfuSE Demo

Procesor je v režimu "BOOT"

DFU mode – Device Firmware Upgrade

Vybrat soubor xxx.DFU
Pro nahrání

Nutná předchozí instalace programu DfuSE Demo

Potvrdit "ANO"

Po nahrání firmware do FLASH

Program STM32 Cube Programmer

Alternativní program pro "download" firmware - "STM32 Cube Programmer", jeho vstupem je přímo soubor xxx.BIN

Program

Přepínač BOOT přepnout do "RUN" a provést reset. Po spuštění firmware F0 – Lab se v zařízeních objeví Virtual COM Port (různé číslo, podle instalace počítače). Potřebná předchozí instalace VCP Driver

STM32F042 jako zařízení (v režimu běhu programu F0-Lab)

Po spuštění firmware F0 – Lab se objeví

Spuštění F0-Lab, přepínání konfigurací

"Voltmeter" = PWM output + voltmetr, "Oscilloscope" = PWM out.+ oscil.

Konfigurace PWM + voltmetr

PWM nastavení frekvence a střídy obdélníkového signálu, (amplituda – V_{DD} = +3,3 V) na pinu č. 14

Voltmetr na pinu č. 11 (Ch1), č. 12 (Ch2), č. 12 (Ch3)

V_{dda} = měří své napájecí napětí

Průměrování ze zvoleného počtu vzorků

Funkce osciloskopu

Spouštění - volba hrany, náběžná, spádová,

Auto – samovolné spouštění

Volba vzorkovací frekvence a počtu vzorků

34

Osciloskop, kurzory ("pravá myš") a výběr menu kurzorů)

Osciloskop a sestavení F0 – Lab

- Sestavit celý F0 Lab s mikrořadičem STM32F042, napájení
 z +3,3 V, spustit firmware (nahraný námi již do čipu) blikání LED
- Připojit na USB, ověřit funkci BOOT a nahrát firmware F0 Lab
- Aktivovat funkci voltmetru ("next configuration")
- Ověřit funkci voltmetru a osciloskopu, propojit pin č. 14 (výstup PWM generátoru) na vstup kanálu 1 voltmetru pin č. 11
- Spustit generátor, nastavit frekvenci 1 Hz, spustit voltmetr, bez průměrování (měří střídavě 0 a +3,3 V – kolísá)
- Aktivovat funkci "recording" voltmetru a pozorovat záznam.
- Zavřít okno voltmetr

Změnit konfiguraci na "Osciloskop", ponechat propojku pinů č. 11 na č. 14,

• Spustit PWM, frekvence 100 Hz, spustit osciloskop, pozorovat signál.