# **Programmer's Guide**

# JETI Software Development Kit jeti\_core.dll

**Version 2.x** 



JETI Technische Instrumente GmbH Tatzendpromenade 2

**D-07745** Jena

Tel.: +49-3641-225680 Fax: +49-3641-225681 e-mail: sales@jeti.com internet: www.jeti.com

# **Table of contents**

| 1 JETI SDK Overview                                     | <u></u> 5 |
|---------------------------------------------------------|-----------|
| 2 Introduction                                          | 6         |
| 2.1 How to communicate.                                 |           |
| 3 Function Reference                                    |           |
|                                                         |           |
| 3.1 JETI GETCOREDLLVERSION.                             |           |
| 3.2 JETI_SetComSearch.                                  |           |
| 3.3 JETI_GetNumDevices.                                 |           |
| 3.4 JETI_GETSERIALDEVICE.                               | 11<br>    |
| 3.5 JETI_OPENDEVICE.  3.6 JETI_OPENCOMDEVICE.           |           |
| 3.7 JETI GETFIRMWARE VERSION.                           |           |
| 3.8 JETI Get Device Type.                               |           |
| 3.9 JETI GETCOMPORTHANDLE                               |           |
| 3.10 JETI CloseDevice.                                  |           |
| 3.11 JETI_InitMeasure.                                  |           |
| 3.12 JETI MeasureStatusCore                             | 19        |
| 3.13 JETI GetLevel.                                     |           |
| 3.14 JETI_Break                                         | 21        |
| 3.15 JETI_Reset.                                        |           |
| 3.16 JETI_HardReset.                                    |           |
| 3.17 JETI_MEASCOMPDARK.                                 |           |
| 3.18 JETI_ReadCalib.                                    |           |
| 3.19 JETI_GetCalibRange.                                |           |
| 3.20 JETI_SetCalib                                      |           |
| 3.21 JETI_GETCALIB.                                     |           |
| 3.22 JETI_MeasureADC1                                   |           |
| 3.23 JETI MeasureADC2                                   |           |
| 3.24 JETI_ReadUserData64.<br>3.25 JETI_WriteUserData64. |           |
| 3.26 JETI_GETPIXEL                                      |           |
| 3.27 JETI_GetFit.                                       |           |
| 3.28 JETI GetSDelay                                     |           |
| 3.29 JETI GetTint.                                      |           |
| 3.30 JETI GETADCRES.                                    |           |
| 3.31 JETI GetSplitTime.                                 |           |
| 3.32 JETI_GetBorder.                                    |           |
| 3.33 JETI GETPARAMBLOCK                                 | 40        |
| 3.34 JETI_SetParamBlock                                 | 41        |
| 3.35 JETI_GetOptTrigg,                                  | 42        |
| 3.36 JETI_SetDistance.                                  | 43        |
| 3.37 JETI_GetDistance,                                  |           |
| 3.38 JETI_GetLaserStat.                                 |           |
| 3.39 JETI_SetLaserStat.                                 |           |
| 3.40 JETI_GetShutterStat.                               |           |
| 3.41 JETI_SetShutterStat.                               |           |
| 3.42 JETI_GETMEASHEAD.                                  |           |
| 3.43 JETI GETAUX1STAT                                   |           |
| 3.44 JETI SETAUX1STAT.                                  |           |
| 3.45 JETI_GETAUX2STAT. 3.46 JETI_SETAUX2STAT.           |           |
| 3.47 JETL AUVOUT1                                       | 52<br>5.7 |

| 3.48 JETI AuxOut1Stat                            | 55         |
|--------------------------------------------------|------------|
| 3.49 JETI AuxOut2.                               | 56         |
| 3.50 JETI AuxOut2Stat.                           | 57         |
| 3.51 JETI AuxOut3.                               | 58         |
| 3.52 JETI AuxOut3Stat.                           | 59         |
| 3.53 JETI AuxOut4.                               | 60         |
| 3.54 JETI AuxOut4Stat                            | 61         |
| 3.55 JETI AuxOut5                                | 62         |
| 3.56 JETI AuxOut5Stat.                           | 63         |
| 3.57 JETI AUXIN1STAT.                            | 64         |
| 3.58 JETI Auxin2Stat.                            | 65         |
| 3.59 JETI GetDarkmodeConf.                       | 66         |
| 3.60 JETI SetDarkmodeConf.                       | 67         |
| 3.61 JETI GetExposureConf.                       | 68         |
| 3.62 JETI SetExposureConf.                       | 69         |
| 3.63 JETI GETFUNCTION CONF                       | 70         |
| 3.64 JETI SetFunctionConf.                       | 70<br>71   |
| 3.65 JETI GETTINTCONF.                           | 71         |
| 3.66 JETI SetTintConf.                           | 73         |
| 3.67 JETI GetMinTintConf.                        | 73         |
| 3.68 JETI GetMaxTintConf.                        | 75         |
| 3.69 JETI SetMaxTintConf.                        | 75         |
| 3.70 JETI_SETMAXTINICONF. 3.70 JETI_GETAVERCONF. | 7 <u>0</u> |
| 3.71 JETI_GetAverConf.                           | 78         |
| 3.72 JETI_SETAVERCONF                            | 79         |
| 3.73 JETI_GETADAPTCONF.                          | 80         |
| 3.74 JETI GetWranConf.                           | 81         |
| 3.75 JETI SetWranConf.                           | 81         |
| 3.76 JETI GETPDARowConf.                         | 83         |
| 3.77 JETI SETPDARowConf.                         | 84         |
| 3.78 JETI GETCYCMODECONF.                        | 85         |
| 3.79 JET1 SetCycModeConf.                        | 86         |
| 3.80 JETI GetCycTimeConf.                        | 87         |
| 3.81 JETI SetCycTimeConf.                        | 88         |
| 3.82 JETI GetCycTime.                            | 89         |
| 3.83 JETI SetDefault                             | 90         |
| 3.84 JET1 FetchDark.                             | 91         |
| 3.85 JETI FETCHLIGHT.                            | 92         |
| 3 86 JETI FETCHREFER                             | 93         |
| 3.87 JETI FetchTransRefl.                        | 94         |
| 3.88 JETI FetchSprad.                            | 95         |
| 3.89 JETI FetchRadio.                            | 96         |
| 3.90 JET1 FetchPhoto.                            | 97         |
| 3.91 JETI FETCHCHROMXY.                          | 98         |
| 3.92 JET1 FetchChromuv.                          | 99         |
| 3.93 JETI FETCHDWLPE                             | 100        |
| 3.94 JET1 FETCHCCT                               | 101        |
| 3.95 JETI FEICHDUV                               | 102        |
| 3.96 JET1 FetchXYZ.                              | 103        |
| 3.97 JETI FETCHCRI.                              | 104        |
| 3.98 JETI CALCLINTDARK                           | 105        |
| 3.99 JETI CALCSPLINDARK.                         | 106        |
| 3.100 JETI CALCLINTLIGHT.                        | 107        |
| 3.101 JETI CALCSPLINLIGHT.                       | 108        |
| 3.102 JETI CALCLINTREFER.                        | 109        |
| 3.103 JETI CALCSPLINREFER.                       | 110        |
| <del>-</del>                                     |            |

| 5 Service                       | 126        |
|---------------------------------|------------|
| Appendix A                      | 125        |
| 4.3 VisualBasic / VBA Examples. | 124        |
| 4.2 LabVIEW Examples.           |            |
| 4.1 C Examples.                 | 124        |
| 4 Examples                      | <u>124</u> |
| 3.116 JETI_CalcAllValue         |            |
| 3.115 JETI_CALCCRI              |            |
| 3.114 JETI_CALCXYZ              |            |
| 3.113 JETI CALCDUV.             |            |
| 3.112 JETI CALCCCT              |            |
| 3.111 JETI_CALCDWLPE            |            |
| 3.110 JETI_CALCCHROMUV.         |            |
| 3.109 JETI_CALCCHROMXY10.       |            |
| 3.108 JETI_CALCCHROMXY          |            |
| 3.107 JETI CALCPHOTO.           |            |
| 3.106 JETI CALCRADIO.           |            |
| 3.105 JETI_CalcSplinTransRefl.  |            |
| 3.104 JETI_CalcLintTransRefl_   |            |
| 2104 IETH C. I. T. D.           | 111        |

### 1 JETI SDK Overview

The JETI Software Development Kit provides a complete software solution for interfacing spectrometric and radiometric devices from JETI Technische Instrumente GmbH. No firmware command expertise is required. Instead, a simple, high-level Application Program Interface (API) is used to provide complete connectivity. The API is provided in the form of several Windows Dynamic Link Libraries (DLL). The libraries can be used by any programming language that can handle DLL's such C/C++, VisualBasic, or LabVIEW. To get access to the functions the needed DLL files have to be copied to the Windows System Folder or to the working directory of the calling application.

The following DLLs are available:

- jeti\_spectro.dll / jeti\_spectro64.dll
  - o provides a set of functions for simple spectrometric measurement
- jeti\_spectro\_ex.dll / jeti\_spectro\_ex64.dll
  - o a set of functions like jeti\_spectro.dll, but with more options to control the measurement
- jeti radio.dll / jeti radio64.dll
  - o provides a set of functions for simple radiometric measurement, including calculation of colorimetric values (e.g. xy- and u'v'-values, CCT, CRI,...)
- jeti\_radio\_ex.dll / jeti\_radio\_ex64.dll
  - a set of functions like jeti\_radio.dll, but with more options to control the measurement and calculations
- jeti\_core.dll / jeti\_core64.dll
  - o a set of functions to fully control the device and perform custom measurement sequences

Please note that this documentation describes only the functions provided by the jeti\_core.dll. For description of the other DLL's please refer to the corresponding documents.

### 2 Introduction

The jeti\_core API is provided in the form of a Windows Dynamic Link Library (DLL). The interface DLL communicates with the device via the provided device driver.

JETI Technische Instrumente GmbH offers two versions of the DLL. The first version is for 32bit Windows operating systems (Win2000 / WinXP / Windows Vista / Windows 7).

The second version is for real 64 bit programs under the 64 bit versions of Windows Vista and Windows 7. There are no differences in the functionality between the two versions.

### 2.1 How to communicate

To get access to the functions you have to copy the file jeti\_core.dll to the working directory of your application, or to the windows\system32 directory.

In general, the user initiates communication with the target device(s) by making a call to JETI\_GetNumDevices. This call will return the number of target devices. This number is then used as a range when calling JETI\_GetSerialDevice to build a list of device serial numbers.

To access a device, it must first be opened by a call to <code>JETI\_OpenDevice</code> using an index determined from the call to <code>JETI\_GetNumDevices</code>. The <code>JETI\_OpenDevice</code> function will return a handle to the device that is used in all subsequent accesses. When I/O operations are complete, the device is closed by a call to <code>JETI\_CloseDevice</code>.

In case of a fatal communication error (error code 0xFF) JETI\_HardReset could be used to reset the device and resume the communication. For more information see the function description of JETI\_HardReset and the Appendix A.

# **3 Function Reference**

# Convention for calling : \_\_stdcall

| Туре                     | Size in Bit | Minimum                 | Maximum            |
|--------------------------|-------------|-------------------------|--------------------|
| DWORD                    | 32          | 0                       | 2 <sup>32</sup> -1 |
| (unsigned long integer)  |             |                         |                    |
| WORD                     | 16          | 0                       | 65535              |
| (unsigned short integer) |             |                         |                    |
| FLOAT                    | 32          | -3.40282E+38            | 3.40282E+38        |
| (IEEE standard)          |             |                         |                    |
| BOOL                     | 32          | <b>-2</b> <sup>21</sup> | 2 <sup>31</sup> -1 |
| (long integer)           |             |                         |                    |
| BYTE                     | 8           | 0                       | 255                |
| (unsigned char)          |             |                         |                    |

# 3.1 JETI\_GetCoreDLLVersion

This function returns the current version number of the jeti\_core DLL.

### 3.1.1 Prototype

DWORD JETI\_GetCoreDLLVersion (WORD \*wMajorVersion, WORD \*wMinorVersion, WORD \*wBuildNumber)

### 3.1.2 Parameters

### Input

| Name          | Type   | Description                | Call         |
|---------------|--------|----------------------------|--------------|
| wMajorVersion | WORD * | address of a WORD          | By reference |
|               |        | variable that will contain |              |
|               |        | the major version          |              |
| wMinorVersion | WORD * | address of a WORD          | By reference |
|               |        | variable that will contain |              |
|               |        | the minor version          |              |
| wBuildNumber  | WORD * | address of a WORD          | By reference |
|               |        | variable that will contain |              |
|               |        | the build number           |              |

| Туре  | Description |                                |
|-------|-------------|--------------------------------|
| DWORD | 0x00        | JETI_SUCCESS                   |
|       | 0x          | see Appendix A for error codes |

### 3.2 JETI\_SetComSearch

Normally the function JETI\_GetNumDevices searches all available COM ports for a connected device. With this function a single port can specified for searching.

NOTE: All JETI devices with FTDI USB-to-Serial converter normally will communicate directly with the FTDI driver instead of using the VCP (virtual com port). If the COM port number of such a device is set with these function the VCP driver will be used.

To have the full stability advantage of the FTDI driver don't use this function.

### 3.2.1 Prototype

DWORD JETI\_SetComSearch (DWORD dwComPort)

### 3.2.2 Parameters

#### Input

| Name      | Type  | Description                                                        | Call         |
|-----------|-------|--------------------------------------------------------------------|--------------|
| dwComPort | DWORD | COM port number for searching, pass 0xFFFFFFF for automatic search | By reference |

| Type  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

### 3.3 JETI\_GetNumDevices

This function searchs automatically all JETI devices with FTDI USB-to-Serial converter and all other JETI devices connected to COM ports (RS232, VCP (virtual com port), Bluetooth, RealPort (network com port)) and returns the number of devices connected to the PC.

To open a specific COM port use JETI\_OpenCOMDevice() instead.

NOTE: Do not mix this function with calls to JETI\_OpenCOMDevice()!

### 3.3.1 Prototype

DWORD JETI\_GetNumDevices (DWORD \*dwNumDevices)

### 3.3.2 Parameters

#### Input

| Name         | Туре    | Description                | Call         |
|--------------|---------|----------------------------|--------------|
| dwNumDevices | DWORD * | address of a DWORD         | By reference |
|              |         | variable that will contain |              |
|              |         | the number of devices      |              |
|              |         | connected                  |              |

| Туре  | Description |                                |
|-------|-------------|--------------------------------|
| DWORD | 0x00        | JETI_SUCCESS                   |
|       | 0x          | see Appendix A for error codes |

### 3.4 JETI\_GetSerialDevice

This function returns the serial numbers for the device specified by an index passed in dwDeviceNum. The index for the first device is 0 and the last device is the value returned by *JETI\_GetNumDevices* – 1.

NOTE: Do not mix this function with calls to JETI\_OpenCOMDevice()!

### 3.4.1 Prototype

DWORD JETI\_GetSerialDevice (DWORD dwDeviceNum, DWORD \*dwSerial1, DWORD \*dwSerial2)

### 3.4.2 Parameters

### Input

| Name        | Туре    | Description                | Call         |
|-------------|---------|----------------------------|--------------|
| dwDeviceNum | DWORD   | index of the device for    | By value     |
|             |         | which the serial           |              |
|             |         | numbers are desired        |              |
| dwSerial1   | DWORD * | address of a DWORD         | By reference |
|             |         | variable that will contain |              |
|             |         | the first serial number    |              |
| dwSerial2   | DWORD * | address of a DWORD         | By reference |
|             |         | variable that will contain |              |
|             |         | the second serial          |              |
|             |         | number                     |              |

| Туре  | Description |                                |
|-------|-------------|--------------------------------|
| DWORD | 0x00        | JETI_SUCCESS                   |
|       | 0x          | see Appendix A for error codes |

### 3.5 JETI\_OpenDevice

Opens a device (using device number returned by *JETI\_GetNumDevices*) and returns a handle which will be used for subsequent accesses.

NOTE: Do not mix this function with calls to JETI\_OpenCOMDevice()!

### 3.5.1 Prototype

DWORD JETI\_OpenDevice (DWORD dwDeviceNum, DWORD \*dwDevice)

### 3.5.2 Parameters

### Input

| Name        | Туре    | Description               | Call         |
|-------------|---------|---------------------------|--------------|
| dwDeviceNum | DWORD   | Device index. 0 for first | By value     |
|             |         | device, 1 for second,     |              |
|             |         | etc.                      |              |
| dwDevice    | DWORD * | Pointer to a variable     | By reference |
|             |         | where the handle to the   |              |
|             |         | device will be stored     |              |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | 0x00 JETI_SUCCESS              |  |
|       | 0x   | see Appendix A for error codes |  |

### 3.6 JETI\_OpenCOMDevice

Opens a device (using a specific COM port number and baudrate) and returns a handle which will be used for subsequent accesses.

For searching automatically all JETI devices use JETI GetNumDevices() and JETI OpenDevice() instead.

NOTE: All JETI devices with FTDI USB-to-Serial converter normally will communicate directly with the FTDI driver instead of using the VCP (virtual com port). If the COM port number of such a device is set with these function the VCP driver will be used. To have the full stability advantage of the FTDI driver don't use this function.

NOTE: Do not mix this function with calls to JETI\_GetNumDevices(), JETI\_GetSerialDevice() and JETI\_OpenDevice()!

### 3.6.1 Prototype

DWORD JETI\_OpenCOMDevice (DWORD dwComPort, DWORD dwBaudrate, DWORD \*dwDevice)

#### 3.6.2 Parameters

### Input

| IIIput     |         |                                                                     |              |
|------------|---------|---------------------------------------------------------------------|--------------|
| Name       | Type    | Description                                                         | Call         |
| dwComPort  | DWORD   | COM port number from 1 to 255                                       | By value     |
| dwBaudrate | DWORD   | Baudrate of the COM port (38400, 115200, 921600)                    | By value     |
| dwDevice   | DWORD * | Pointer to a variable where the handle to the device will be stored | By reference |

| Туре  | Type Description  |                                |
|-------|-------------------|--------------------------------|
| DWORD | 0x00 JETI_SUCCESS |                                |
|       | 0x                | see Appendix A for error codes |

# 3.7 JETI\_GetFirmwareVersion

This function returns the current firmware version string of the JETI device.

### 3.7.1 Prototype

DWORD JETI\_GetFirmwareVersion (DWORD dwDevice, char \*cVersionString)

### 3.7.2 Parameters

### Input

| Name           | Туре   | Description                                                                             | Call         |
|----------------|--------|-----------------------------------------------------------------------------------------|--------------|
| dwDevice       | DWORD  | Handle to a device to close as returned by<br>JETI_OpenDevice                           | By value     |
| cVersionString | char * | address of a char array<br>of 256 characters to<br>store the firmware<br>version string | By reference |

| Type  | Description |                                |
|-------|-------------|--------------------------------|
| DWORD | 0x00        | JETI_SUCCESS                   |
|       | 0x          | see Appendix A for error codes |

# 3.8 JETI\_GetDeviceType

This function returns the type of the currently connected JETI device.

NOTE: The returned device type number matches with the following devices:

0 - generic JETI device

1 – specbos device (xx01)

2 - specbos 1211

### 3.8.1 Prototype

DWORD JETI\_GetDeviceType (DWORD dwDevice, BYTE \*bDeviceType)

### 3.8.2 Parameters

#### Input

| Name        | Туре   | Description                                                   | Call         |
|-------------|--------|---------------------------------------------------------------|--------------|
| dwDevice    | DWORD  | Handle to a device to close as returned by<br>JETI_OpenDevice | By value     |
| bDeviceType | BYTE * | Pointer to a variable where the device type will be stored    | By reference |

| Туре  | Description |                                |
|-------|-------------|--------------------------------|
| DWORD | 0x00        | JETI_SUCCESS                   |
|       | 0x          | see Appendix A for error codes |

### 3.9 JETI\_GetComPortHandle

Returns the handle of the COM port which can be used in subsequent calls to Windows functions like WriteFile() or ReadFile() to send special firmware commands directly to the device.

NOTE: This function will return an error if the device was opened using FTDI driver access (see JETI\_OpenCOMDevice for detailed information).

### 3.9.1 Prototype

DWORD JETI\_GetComPortHandle (DWORD dwDevice, HANDLE \*hComPortHandle)

### 3.9.2 Parameters

### Input

| IIIpat         |          |                         |              |
|----------------|----------|-------------------------|--------------|
| Name           | Туре     | Description             | Call         |
| dwDevice       | DWORD    | Handle to a device to   | By value     |
|                |          | close as returned by    |              |
|                |          | JETI_OpenDevice         |              |
| hComPortHandle | HANDLE * | Pointer to a variable   | By reference |
|                |          | where the handle to the |              |
|                |          | COM port will be stored |              |

| Type  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | 0x00 JETI_SUCCESS              |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.10 JETI\_CloseDevice

Closes an open device using the handle provided by JETI\_OpenDevice.

### 3.10.1 Prototype

DWORD JETI\_CloseDevice (DWORD dwDevice)

### 3.10.2 Parameters

### Input

| Name     | Туре  | Description           | Call     |
|----------|-------|-----------------------|----------|
| dwDevice | DWORD | Handle to a device to | By value |
|          |       | close as returned by  |          |
|          |       | JETI_OpenDevice       |          |

| Туре  | Description       |                                |
|-------|-------------------|--------------------------------|
| DWORD | 0x00 JETI_SUCCESS |                                |
|       | 0x                | see Appendix A for error codes |

### 3.11 JETI\_InitMeasure

Starts a pre configured measurement.

NOTE:

The function will return *immediately*. Before any other DLL-function call the function *JETI\_MeasureStatusCore* must be used to check if the measurement has finished.

Please note that a measurement could take several seconds up to 2 minutes, depending

on the intensity of the light source to measure.

### 3.11.1 Prototype

DWORD JETI\_MeasureCore (DWORD dwDevice)

### 3.11.2 Parameters

### Input

| Name     | Type  | Description           | Call     |
|----------|-------|-----------------------|----------|
| dwDevice | DWORD | Handle to a device as | By value |
|          |       | returned by           |          |
|          |       | JETI OpenDevice       |          |

| Туре  | Description |                                |
|-------|-------------|--------------------------------|
| DWORD | 0x00        | JETI_SUCCESS                   |
|       | 0x          | see Appendix A for error codes |

### 3.12 JETI\_MeasureStatusCore

Returns the status of a measurement started with *JETI\_InitMeasure*. A measurement has finished if the boStatus variable is FALSE (0). If the measurement is already in progress the variable boStatus returns TRUE (1).

If a measurement was initiated with automatic adaption of integration time and the measurement could not be performed because of overexposure boStatus will be switched to FALSE (0) and the function will return an error code 0x20.

NOTE:

A function to get a measuring result should not be called until the *JETI\_MeasureStatusCore* reports that the measurement has finished.

### 3.12.1 Prototype

DWORD JETI MeasureStatusCore (DWORD dwDevice, BOOL \*boStatus)

### 3.12.2 Parameters

### Input

| Name     | Туре   | Description                                                                                    | Call         |
|----------|--------|------------------------------------------------------------------------------------------------|--------------|
| dwDevice | DWORD  | Handle to a device as returned by<br>JETI_OpenDevice                                           | By value     |
| boStatus | BOOL * | Pointer to a variable where the status will be stored TRUE (1) – in progress FALSE (0) – ready | By reference |

| Type  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.13 JETI\_GetLevel

Returns the exposure level of a previously performed radiometric or reference measurement.

### 3.13.1 Prototype

DWORD JETI\_GetLevel (DWORD dwDevice, DWORD \*dwLevelCounts, DWORD \*dwLevelPercent)

### 3.13.2 Parameters

### Input

| Name           | Type    | Description                                                                | Call         |
|----------------|---------|----------------------------------------------------------------------------|--------------|
| dwDevice       | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice                       | By value     |
| dwLevelCounts  | DWORD * | Pointer to a variable where the exposure level (ADC-counts) will be stored | By reference |
| dwLevelPercent | DWORD * | Pointer to a variable where the exposure level (Percent) will be stored    | By reference |

| Туре  | Description |                                |
|-------|-------------|--------------------------------|
| DWORD | 0x00        | JETI_SUCCESS                   |
|       | 0x          | see Appendix A for error codes |

# 3.14 JETI\_Break

This function cancels an initiated measurement.

### 3.14.1 Prototype

DWORD JETI\_Break (DWORD dwDevice)

### 3.14.2 Parameters

### Input

| Name     | Туре | Description                                          | Call     |
|----------|------|------------------------------------------------------|----------|
| dwDevice |      | Handle to a device as returned by<br>JETI_OpenDevice | By value |

| Туре  | Description |                                |
|-------|-------------|--------------------------------|
| DWORD | 0x00        | JETI_SUCCESS                   |
|       | 0x          | see Appendix A for error codes |

# 3.15JETI\_Reset

This function performs a software reset of the device firmware.

### 3.15.1 Prototype

DWORD JETI\_Reset (DWORD dwDevice)

### 3.15.2 Parameters

### Input

| Name     | Туре  | Description                       | Call     |
|----------|-------|-----------------------------------|----------|
| dwDevice | DWORD | Handle to a device as returned by | By value |
|          |       | JETI_OpenDevice                   |          |

| Туре  | Description |                                |
|-------|-------------|--------------------------------|
| DWORD | 0x00        | JETI_SUCCESS                   |
|       | 0x          | see Appendix A for error codes |

### 3.16 JETI\_HardReset

This function performs a hardware reset of the device. The effect of this function is the same as disconnecting then reconnecting the device from USB.

If the device is connected via bluetooth or RS232 then only the handle to the COM port will be closed and reopened.

### 3.16.1 Prototype

DWORD JETI\_Reset (DWORD dwDevice)

### 3.16.2 Parameters

### Input

| Name     | Туре  | Description                                          | Call     |
|----------|-------|------------------------------------------------------|----------|
| dwDevice | DWORD | Handle to a device as returned by<br>JETI OpenDevice | By value |

| Туре  | Description |                                |
|-------|-------------|--------------------------------|
| DWORD | 0x00        | JETI_SUCCESS                   |
|       | 0x          | see Appendix A for error codes |

### 3.17 JETI\_MeasCompDark

Initiates a dark measurement for further dark compensation.

NOTE: The function will return *immed* 

The function will return *immediately.* Before any other DLL-function call the function *JETI\_MeasureStatusCore* must be used to check if the measurement has finished.

Please note that this measurement could take up to 5 seconds.

### 3.17.1 Prototype

DWORD JETI\_MeasDarkComp (DWORD dwDevice)

### 3.17.2 Parameters

#### Input

| Name     | Туре  | Description           | Call     |
|----------|-------|-----------------------|----------|
| dwDevice | DWORD | Handle to a device as | By value |
|          |       | returned by           |          |
|          |       | JETI_OpenDevice       |          |

| Totalli Talao |      |                                |  |
|---------------|------|--------------------------------|--|
| Type          |      | Description                    |  |
| DWORD         | 0x00 | JETI_SUCCESS                   |  |
|               | 0x   | see Appendix A for error codes |  |

# 3.18 JETI\_ReadCalib

Reads the calibration files from a connected device.

### 3.18.1 Prototype

DWORD JETI\_ReadCalib (DWORD dwDevice, DWORD dwCalibNr, char \*cMode, char \*cRemark, DWORD \*dwBegin, DWORD \*dwEnd, DWORD \*dwStep, DWORD \*dwTint, double \*dValue)

### 3.18.2 Parameters

### Input

| Name      | Туре    | Description                                          | Call         |
|-----------|---------|------------------------------------------------------|--------------|
| dwDevice  | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice | By value     |
| dwCalibNr | DWORD   | Number of calibration file to load                   | By value     |
| cMode     | char*   | Array of 28 characters for calibration file mode     | By reference |
| cRemark   | char*   | Array of 32 characters for calibration file remark   | By reference |
| dwBegin   | DWORD*  | Pointer to a variable for the wavelength begin       | By reference |
| dwEnd     | DWORD*  | Pointer to a variable for the wavelength end         | By reference |
| dwStep    | DWORD*  | Pointer to a variable for the wavelength step        | By reference |
| dwTint    | DWORD*  | Pointer to a variable for the integration time       | By reference |
| dValue    | double* | Array of calibration data                            | By reference |

| Type  |                   | Description                    |  |
|-------|-------------------|--------------------------------|--|
| DWORD | 0x00 JETI_SUCCESS |                                |  |
|       | 0x                | see Appendix A for error codes |  |

# 3.19 JETI\_GetCalibRange

Returns the calibrated wavelength range of the currently used calibration file.

### 3.19.1 Prototype

DWORD JETI\_GetCalibRange (DWORD dwDevice, DWORD \*dwBegin, DWORD \*dwEnd, DWORD \*dwStep)

### 3.19.2 Parameters

### Input

| Name     | Туре    | Description                                                                 | Call         |
|----------|---------|-----------------------------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice                        | By value     |
| dwBegin  | DWORD * | Pointer to a variable where the start wavelength value in nm will be stored | By reference |
| dwEnd    | DWORD * | Pointer to a variable where the end wavelength value in nm will be stored   | By reference |
| dwStep   | DWORD * | Pointer to a variable where the wavelength step value in nm will be stored  | By reference |

| Туре  | Description |                                |
|-------|-------------|--------------------------------|
| DWORD | 0x00        | JETI_SUCCESS                   |
|       | 0x          | see Appendix A for error codes |

# 3.20 JETI\_SetCalib

Set the calibration file number to use for radiometric measurements.

If bCalibNr is set to zero (standard) the calibration file will be determined automatically in accordance with the attached measuring head.

### 3.20.1 Prototype

DWORD JETI\_SetCalib (DWORD dwDevice, BYTE bCalibNr)

### 3.20.2 Parameters

#### Input

| Name     | Type  | Description                                                                       | Call     |
|----------|-------|-----------------------------------------------------------------------------------|----------|
| dwDevice | DWORD | Handle to a device as returned by<br>JETI_OpenDevice                              | By value |
| bCalibNr | ВҮТЕ  | The calibration file number to use for radiometric measurements (0 for automatic) | By value |

| Type  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.21 JETI\_GetCalib

Returns the calibration file number which will be uses for radiometric measurements. If bCalibNr is set to zero (standard) the calibration file will be determined automatically in accordance with the attached measuring head.

### 3.21.1 Prototype

DWORD JETI\_GetCalib (DWORD dwDevice, BYTE \*bCalibNr)

### 3.21.2 Parameters

#### Input

| Name     | Туре   | Description                                                            | Call         |
|----------|--------|------------------------------------------------------------------------|--------------|
| dwDevice | DWORD  | Handle to a device as returned by<br>JETI OpenDevice                   | By value     |
| bCalibNr | BYTE * | Pointer to a variable where the calibration file number will be stored | By reference |

| Type  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

### 3.22 JETI\_MeasureADC1

Returns the ADC count value of the 10 bit analogue input ADC1 of VersaPIC S255 Add-On-Connector.

### 3.22.1 Prototype

DWORD JETI\_MeasureADC1 (DWORD dwDevice, WORD \*wADC1)

### 3.22.2 Parameters

### Input

| Name     | Туре  | Description                                          | Call         |
|----------|-------|------------------------------------------------------|--------------|
| dwDevice | DWORD | Handle to a device as returned by<br>JETI_OpenDevice | By value     |
| wADC1    | WORD* | Pointer to a variable for the ADC value              | By reference |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

### 3.23 JETI\_MeasureADC2

Returns the ADC count value of the 10 bit analogue input ADC2 of VersaPIC S255 Add-On-Connector.

### 3.23.1 Prototype

DWORD JETI\_MeasureADC2 (DWORD dwDevice, WORD \*wADC2)

### 3.23.2 Parameters

### Input

| Name     | Туре  | Description                                          | Call         |
|----------|-------|------------------------------------------------------|--------------|
| dwDevice | DWORD | Handle to a device as returned by<br>JETI_OpenDevice | By value     |
| wADC2    | WORD* | Pointer to a variable for the ADC value              | By reference |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

### 3.24 JETI\_ReadUserData64

Reads user data starting from block 'dwStart' to block 'dwEnd' from connected device. Up to 64KByte (depends on the devices capabilities) can be stored.

### 3.24.1 Prototype

DWORD JETI\_ReadUserData64 (DWORD dwDevice, BYTE \*bData, DWORD dwStart, DWORD dwEnd)

### 3.24.2 Parameters

#### Input

| Name     | Туре  | Description                                                  | Call         |
|----------|-------|--------------------------------------------------------------|--------------|
| dwDevice | DWORD | Handle to a device as returned by<br>JETI_OpenDevice         | By value     |
| bData    | BYTE* | Buffer of up to 65536<br>Byte (64K) of user-<br>defined data | By reference |
| dwStart  | DWORD | zero-based index of 1K starting block (063)                  | By value     |
| dwEnd    | DWORD | zero-based index of 1K end block (063)                       | By value     |

| Туре  | Description |                                |
|-------|-------------|--------------------------------|
| DWORD | 0x00        | JETI_SUCCESS                   |
|       | 0x          | see Appendix A for error codes |

# 3.25 JETI\_WriteUserData64

Writes user data block number 'dwBlock' to connected device. Up to 64KByte (depends on the devices capabilities) can be stored.

### 3.25.1 Prototype

DWORD JETI\_WriteUserData64 (DWORD dwDevice, BYTE \*bData, DWORD dwBlock)

### 3.25.2 Parameters

### Input

| прис     |       |                          |              |
|----------|-------|--------------------------|--------------|
| Name     | Туре  | Description              | Call         |
| dwDevice | DWORD | Handle to a device as    | By value     |
|          |       | returned by              |              |
|          |       | JETI_OpenDevice          |              |
| bData    | BYTE* | Buffer of 1024 Byte (1K) | By reference |
|          |       | of user-defined data     |              |
| dwBlock  | DWORD | zero-based index of 1K   | By value     |
|          |       | starting block (063)     |              |

| Type  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.26 JETI\_GetPixel

Returns the pixel quantity of the used photodiode array.

### 3.26.1 Prototype

DWORD JETI\_GetPixel (DWORD dwDevice, DWORD \*dwPixel)

### 3.26.2 Parameters

### Input

| Name     | Type    | Description                                                         | Call         |
|----------|---------|---------------------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice                | By value     |
| dwPixel  | DWORD * | Pointer to a variable where the pixel quantity value will be stored | By reference |

| Type  | Description |                                |
|-------|-------------|--------------------------------|
| DWORD | 0x00        | JETI_SUCCESS                   |
|       | 0x          | see Appendix A for error codes |

### 3.27 JETI\_GetFit

Returns the wavelength fit parameters for the device. These values can be used to calculate the pixel-wavelength-correlation according to the following formula where p is the pixel number for which the wavelength is calculated:

$$\lambda(p) = fit[0] + fit[1] \times p + fit[2] \times p^2 + fit[3] \times p^3 + fit[4] \times p^4$$

### 3.27.1 Prototype

DWORD JETI\_GetFit (DWORD dwDevice, FLOAT \*fFit)

### 3.27.2 Parameters

#### Input

| Name     | Type    | Description                                                                   | Call         |
|----------|---------|-------------------------------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice                          | By value     |
| fPhoto   | FLOAT * | Pointer to an array of up to 5 values where the fit parameters will be stored | By reference |

| Туре  | Description |                                |
|-------|-------------|--------------------------------|
| DWORD | 0x00        | JETI_SUCCESS                   |
|       | 0x          | see Appendix A for error codes |

# 3.28 JETI\_GetSDelay

Returns the scan delay (time difference between initiating a measurement and its real start) in [ms].

### 3.28.1 Prototype

DWORD JETI\_GetSDelay (DWORD dwDevice, DWORD \*dwSDelay)

### 3.28.2 Parameters

### Input

|          | _       | <b>D</b> • • •                                            | 0 "          |
|----------|---------|-----------------------------------------------------------|--------------|
| Name     | Туре    | Description                                               | Call         |
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI OpenDevice      | By value     |
| dwSDelay | DWORD * | Pointer to a variable where the scan delay will be stored | By reference |

| Type  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.29 JETI\_GetTint

Returns the default integration time of the device in ms.

### 3.29.1 Prototype

DWORD JETI\_GetTint (DWORD dwDevice, DWORD \*dwTint)

### 3.29.2 Parameters

### Input

| Name     | Туре    | Description                                                     | Call         |
|----------|---------|-----------------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice            | By value     |
| dwTint   | DWORD * | Pointer to a variable where the integration time will be stored | By reference |

| Туре  | Description |                                |
|-------|-------------|--------------------------------|
| DWORD | 0x00        | JETI_SUCCESS                   |
|       | 0x          | see Appendix A for error codes |

# 3.30 JETI\_GetADCRes

Returns the digital resolution of the ADC (analog-digital-converter) in bit.

# 3.30.1 Prototype

DWORD JETI\_GetADCRes (DWORD dwDevice, BYTE \*bADCRes)

# 3.30.2 Parameters

## Input

| Name     | Туре   | Description                                                   | Call         |
|----------|--------|---------------------------------------------------------------|--------------|
| dwDevice | DWORD  | Handle to a device as returned by<br>JETI_OpenDevice          | By value     |
| bADCRes  | BYTE * | Pointer to a variable where the ADC-resolution will be stored | By reference |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | 0x00 JETI_SUCCESS              |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.31 JETI\_GetSplitTime

Returns the splitting interval for the integration time (between 1000 and 6000 ms) for the ELIS array (0 = no split). This is a special solution to avoid a high dark signal of this detector type.

# 3.31.1 Prototype

DWORD JETI\_GetSplitTime (DWORD dwDevice, DWORD \*dwSplitTime)

## 3.31.2 Parameters

#### Input

| Name        | Туре    | Description                                               | Call         |
|-------------|---------|-----------------------------------------------------------|--------------|
| dwDevice    | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice      | By value     |
| dwSplitTime | DWORD * | Pointer to a variable where the split time will be stored | By reference |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.32 JETI\_GetBorder

Returns the low and high border used for the adaption of integration time. The borders are percent of full-scale.

# 3.32.1 Prototype

DWORD JETI\_GetBorder (DWORD dwDevice, BYTE \*bBorderMin, BYTE \*bBorderMax)

## 3.32.2 Parameters

### Input

| Name       | Type   | Description                                                 | Call         |
|------------|--------|-------------------------------------------------------------|--------------|
| dwDevice   | DWORD  | Handle to a device as returned by<br>JETI_OpenDevice        | By value     |
| bBorderMin | BYTE * | Pointer to a variable where the lower border will be stored | By reference |
| bBorderMax | BYTE * | Pointer to a variable where the upper border will be stored | By reference |

| 114441111111111111111111111111111111111 |                      |                                |  |
|-----------------------------------------|----------------------|--------------------------------|--|
| Туре                                    |                      | Description                    |  |
| DWORD                                   | VORD 0x00 JETI_SUCCE |                                |  |
|                                         | 0x                   | see Appendix A for error codes |  |

# 3.33 JETI\_GetParamBlock

Reads the 1K parameter block from a connected device.

# 3.33.1 Prototype

DWORD JETI\_GetParamBlock (DWORD dwDevice, BYTE \*bParam)

# 3.33.2 Parameters

## Input

| Name     | Туре   | Description                                                                         | Call         |
|----------|--------|-------------------------------------------------------------------------------------|--------------|
| dwDevice | DWORD  | Handle to a device as returned by<br>JETI_OpenDevice                                | By value     |
| bParam   | BYTE * | Pointer to an array of<br>1024 bytes where the<br>parameter block will be<br>stored | By reference |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.34 JETI\_SetParamBlock

Writes the 1K parameter block to a connected device.

# 3.34.1 Prototype

DWORD JETI\_SetParamBlock (DWORD dwDevice, BYTE \*bParam)

# 3.34.2 Parameters

## Input

| Name     | Туре   | Description                                                                    | Call         |
|----------|--------|--------------------------------------------------------------------------------|--------------|
| dwDevice | DWORD  | Handle to a device as returned by<br>JETI_OpenDevice                           | By value     |
| bParam   | BYTE * | Pointer to an array of<br>1024 bytes where the<br>parameter block is<br>stored | By reference |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.35 JETI\_GetOptTrigg

Returns the availability of an optical trigger on the device. If an optical trigger is available JETI\_GetCycTime() can be used to determine the cycle time of pulsed light sources / pulsed monitor back-lights.

0 – no optical trigger

1 – optical trigger available

# 3.35.1 Prototype

DWORD JETI\_GetOptTrigg (DWORD dwDevice, BOOL \*boOptTrigg)

### 3.35.2 Parameters

### Input

| Name       | Type   | Description                                                                 | Call         |
|------------|--------|-----------------------------------------------------------------------------|--------------|
| dwDevice   | DWORD  | Handle to a device as returned by<br>JETI_OpenDevice                        | By value     |
| boOptTrigg | BOOL * | Pointer to a variable where the optical trigger availability will be stored | By reference |

| Туре  | Description       |                                |
|-------|-------------------|--------------------------------|
| DWORD | 0x00 JETI_SUCCESS |                                |
|       | 0x                | see Appendix A for error codes |

# 3.36 JETI\_SetDistance

This function sets the measuring distance which is used to calculate the values in intensity measuring mode.

# 3.36.1 Prototype

DWORD JETI\_SetDistance (DWORD dwDevice, DWORD dwDistance)

## 3.36.2 Parameters

## Input

| Name       | Туре  | Description                                          | Call     |
|------------|-------|------------------------------------------------------|----------|
| dwDevice   | DWORD | Handle to a device as returned by<br>JETI_OpenDevice | By value |
| dwDistance | DWORD | the measuring distance in [mm]                       | By value |

| Туре  | Description       |                                |
|-------|-------------------|--------------------------------|
| DWORD | 0x00 JETI_SUCCESS |                                |
|       | 0x                | see Appendix A for error codes |

# 3.37 JETI\_GetDistance

This function gets the measuring distance which is used to calculate the values in intensity measuring mode.

# 3.37.1 Prototype

DWORD JETI\_GetDistance (DWORD dwDevice, DWORD \*dwDistance)

# 3.37.2 Parameters

### Input

| Name       | Туре    | Description                                                               | Call         |
|------------|---------|---------------------------------------------------------------------------|--------------|
| dwDevice   | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice                      | By value     |
| dwDistance | DWORD * | pointer to a variable where the measuring distance in [mm] will be stored | By reference |

| Туре  | Description       |                                |
|-------|-------------------|--------------------------------|
| DWORD | 0x00 JETI_SUCCESS |                                |
|       | 0x                | see Appendix A for error codes |

# ${\bf 3.38\,JETI\_GetLaserStat}$

This function gets the status of the internal pilot laser of a specbos 1201/1301/1401 device:

- 0: laser is off
- 1: laser is on

# 3.38.1 Prototype

DWORD JETI\_GetLaserStat (DWORD dwDevice, BOOL \*boLaserStat)

## 3.38.2 Parameters

## Input

| Name        | Туре   | Description                                                                                                                   | Call         |
|-------------|--------|-------------------------------------------------------------------------------------------------------------------------------|--------------|
| dwDevice    | DWORD  | Handle to a device as returned by<br>JETI_OpenDevice                                                                          | By value     |
| boLaserStat | BOOL * | pointer to a variable<br>where the pilot laser<br>status will be stored<br>TRUE (1) – laser is on<br>FALSE (0) – laser is off | By reference |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.39 JETI\_SetLaserStat

This function switches on and off the internal pilot laser of a specbos 1201/1301/1401.

# 3.39.1 Prototype

DWORD JETI\_SetLaserStat (DWORD dwDevice, BOOL boLaserStat)

## 3.39.2 Parameters

## Input

| Name        | Туре  | Description                                                       | Call     |
|-------------|-------|-------------------------------------------------------------------|----------|
| dwDevice    | DWORD | Handle to a device as returned by<br>JETI_OpenDevice              | By value |
| boLaserStat | BOOL  | the status to set<br>TRUE (1) – laser on<br>FALSE (0) – laser off | By value |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# ${\bf 3.40\,JETI\_GetShutterStat}$

This function gets the status of the internal shutter and lamp respectively:

- 1: shutter is open / lamp is on
- 0: shutter is closed / lamp is off

# 3.40.1 Prototype

DWORD JETI\_GetShutterStat (DWORD dwDevice, BOOL \*boShutterStat)

## 3.40.2 Parameters

### Input

| Name          | Туре   | Description                                                                                                                                            | Call         |
|---------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| dwDevice      | DWORD  | Handle to a device as returned by<br>JETI_OpenDevice                                                                                                   | By value     |
| boShutterStat | BOOL * | pointer to a variable where the shutter/lamp status will be stored TRUE (1) – shutter is open / lamp is on FALSE (0) – shutter is closed / lamp is off | By reference |

| Type  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | 0x00 JETI_SUCCESS              |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.41 JETI\_SetShutterStat

This function switch the internal lamp on/off and open and close the internal shutter respectively:

- 1: shutter is open / lamp is on
- 0: shutter is closed / lamp is off

# 3.41.1 Prototype

DWORD JETI\_SetShutterStat (DWORD dwDevice, BOOL \*boLaserStat)

## 3.41.2 Parameters

## Input

| Name          | Type  | Description                                                                                           | Call     |
|---------------|-------|-------------------------------------------------------------------------------------------------------|----------|
| dwDevice      | DWORD | Handle to a device as returned by<br>JETI_OpenDevice                                                  | By value |
| boShutterStat | BOOL  | the status to set TRUE (1) – shutter is open / lamp is on FALSE (0) – shutter is closed / lamp is off | By value |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.42 JETI\_GetMeasHead

This function gets the measuring head configuration (signal of hall sensors). The following settings are possible:



Front view of SCB 1201 with positions of Hall sensors.

| sensor signal 'ab' | BYTE value |
|--------------------|------------|
| 00                 | 0          |
| 01                 | 1          |
| 10                 | 2          |
| 11                 | 3          |

# 3.42.1 Prototype

DWORD JETI\_GetMeasHead (DWORD dwDevice, BYTE \*bMeasHead)

## 3.42.2 Parameters

## Input

| Name      | Туре  | Description                                                          | Call         |
|-----------|-------|----------------------------------------------------------------------|--------------|
| dwDevice  | DWORD | Handle to a device as returned by<br>JETI_OpenDevice                 | By value     |
| bMeasHead | ВҮТЕ  | pointer to a variable where the measuring head status will be stored | By reference |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | 0x00 JETI_SUCCESS              |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.43 JETI\_GetAux1Stat

This function gets the status of the auxiliary 1:

- 1: aux1 is on - 0: aux1 is off

# 3.43.1 Prototype

DWORD JETI\_GetAux1Stat (DWORD dwDevice, BOOL \*boAuxStat)

# 3.43.2 Parameters

### Input

| Name      | Type   | Description                                                                                                          | Call         |
|-----------|--------|----------------------------------------------------------------------------------------------------------------------|--------------|
| dwDevice  | DWORD  | Handle to a device as returned by<br>JETI_OpenDevice                                                                 | By value     |
| boAuxStat | BOOL * | pointer to a variable<br>where the aux1 status<br>will be stored<br>TRUE (1) – aux1 is on<br>FALSE (0) – aux1 is off | By reference |

| Type  |      | Description                    |  |  |
|-------|------|--------------------------------|--|--|
| DWORD | 0x00 | 0x00 JETI_SUCCESS              |  |  |
|       | 0x   | see Appendix A for error codes |  |  |

# 3.44 JETI\_SetAux1Stat

This function switch the auxiliary 1 on and off:

1: aux1 is on0: aux1 is off

# 3.44.1 Prototype

DWORD JETI\_SetAux1Stat (DWORD dwDevice, BOOL \*boAuxStat)

# 3.44.2 Parameters

## Input

| Name      | Type  | Description                                                           | Call     |
|-----------|-------|-----------------------------------------------------------------------|----------|
| dwDevice  | DWORD | Handle to a device as returned by<br>JETI_OpenDevice                  | By value |
| boAuxStat | BOOL  | the status to set<br>TRUE (1) – aux1 is on<br>FALSE (0) – aux1 is off | By value |

| Туре  | Description |                                |
|-------|-------------|--------------------------------|
| DWORD | 0x00        | JETI_SUCCESS                   |
|       | 0x          | see Appendix A for error codes |

# 3.45 JETI\_GetAux2Stat

This function gets the status of the auxiliary 2:

1: aux2 is on0: aux2 is off

# 3.45.1 Prototype

DWORD JETI\_GetAux2Stat (DWORD dwDevice, BOOL \*boAuxStat)

# 3.45.2 Parameters

#### Input

| Name      | Туре   | Description                                                                                                          | Call         |
|-----------|--------|----------------------------------------------------------------------------------------------------------------------|--------------|
| dwDevice  | DWORD  | Handle to a device as returned by<br>JETI_OpenDevice                                                                 | By value     |
| boAuxStat | BOOL * | pointer to a variable<br>where the aux2 status<br>will be stored<br>TRUE (1) – aux2 is on<br>FALSE (0) – aux2 is off | By reference |

| Type  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | 0x00 JETI_SUCCESS              |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.46 JETI\_SetAux2Stat

This function switch the auxiliary 2 on and off:

1: aux2 is on0: aux2 is off

# 3.46.1 Prototype

DWORD JETI\_SetAux2Stat (DWORD dwDevice, BOOL \*boAuxStat)

# 3.46.2 Parameters

# Input

| прис      |       |                                                      |          |
|-----------|-------|------------------------------------------------------|----------|
| Name      | Туре  | Description                                          | Call     |
| dwDevice  | DWORD | Handle to a device as returned by<br>JETI OpenDevice | By value |
| boAuxStat | BOOL  | the status to set TRUE (1) – aux2 is on              | By value |
|           |       | FALSE (0) – aux2 is off                              |          |

| Type  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.47 JETI\_AuxOut1

This function switch the TTL output auxout1 of VersaPIC S255 Add-On-Connector on and off:

1: auxout1 is on0: auxout1 is off

# 3.47.1 Prototype

DWORD JETI\_AuxOut1 (DWORD dwDevice, BOOL boAux1)

## 3.47.2 Parameters

### Input

| Name     | Туре  | Description                                                          | Call     |
|----------|-------|----------------------------------------------------------------------|----------|
| dwDevice | DWORD | Handle to a device as returned by<br>JETI_OpenDevice                 | By value |
| boAux1   | BOOL  | the status to set TRUE (1) – auxou1 is on FALSE (0) – auxout1 is off | By value |

| Type  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.48 JETI\_AuxOut1Stat

This function returns the status of the TTL output auxout1 of VersaPIC S255 Add-On-Connector:

1: auxout1 is on0: auxout1 is off

# 3.48.1 Prototype

DWORD JETI\_AuxOut1Stat (DWORD dwDevice, BOOL \*boAux1Stat)

# 3.48.2 Parameters

## Input

| Name       | Туре   | Description                                                                                                       | Call         |
|------------|--------|-------------------------------------------------------------------------------------------------------------------|--------------|
| dwDevice   | DWORD  | Handle to a device as returned by<br>JETI_OpenDevice                                                              | By value     |
| boAux1Stat | BOOL * | pointer to a variable where the auxout1 status will be stored TRUE (1) – auxout1 is on FALSE (0) – auxout1 is off | By reference |

| Type  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.49 JETI\_AuxOut2

This function switch the LV TTL output auxout2 of VersaPIC S255 Add-On-Connector on and off:

1: auxout2 is on0: auxout2 is off

# 3.49.1 Prototype

DWORD JETI\_AuxOut2 (DWORD dwDevice, BOOL boAux2)

# 3.49.2 Parameters

#### Input

| Name     | Туре  | Description                                                           | Call     |
|----------|-------|-----------------------------------------------------------------------|----------|
| dwDevice | DWORD | Handle to a device as returned by<br>JETI_OpenDevice                  | By value |
| boAux2   | BOOL  | the status to set TRUE (1) – auxout2 is on FALSE (0) – auxout2 is off | By value |

| Type  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.50 JETI\_AuxOut2Stat

This function returns the status of the LV TTL output auxout2 of VersaPIC S255 Add-On-Connector:

1: auxout2 is on0: auxout2 is off

# 3.50.1 Prototype

DWORD JETI\_AuxOut2Stat (DWORD dwDevice, BOOL \*boAux2Stat)

# 3.50.2 Parameters

#### Input

| Name       | Туре   | Description                                                                                                       | Call         |
|------------|--------|-------------------------------------------------------------------------------------------------------------------|--------------|
| dwDevice   | DWORD  | Handle to a device as returned by<br>JETI_OpenDevice                                                              | By value     |
| boAux2Stat | BOOL * | pointer to a variable where the auxout2 status will be stored TRUE (1) – auxout2 is on FALSE (0) – auxout2 is off | By reference |

| Type  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.51 JETI\_AuxOut3

This function switch the LV TTL output auxout3 of VersaPIC S255 Add-On-Connector on and off:

1: auxout3 is on0: auxout3 is off

# 3.51.1 Prototype

DWORD JETI\_AuxOut3 (DWORD dwDevice, BOOL boAux3)

## 3.51.2 Parameters

## Input

| Name     | Туре  | Description                                                           | Call     |
|----------|-------|-----------------------------------------------------------------------|----------|
| dwDevice | DWORD | Handle to a device as returned by<br>JETI_OpenDevice                  | By value |
| boAux3   | BOOL  | the status to set TRUE (1) – auxout3 is on FALSE (0) – auxout3 is off | By value |

| Type  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.52 JETI\_AuxOut3Stat

This function returns the status of the LV TTL output auxout3 of VersaPIC S255 Add-On-Connector:

1: auxout3 is on0: auxout3 is off

# 3.52.1 Prototype

DWORD JETI\_AuxOut3Stat (DWORD dwDevice, BOOL \*boAux3Stat)

# 3.52.2 Parameters

#### Input

| Name       | Туре   | Description                                                                                                       | Call         |
|------------|--------|-------------------------------------------------------------------------------------------------------------------|--------------|
| dwDevice   | DWORD  | Handle to a device as returned by<br>JETI_OpenDevice                                                              | By value     |
| boAux3Stat | BOOL * | pointer to a variable where the auxout3 status will be stored TRUE (1) – auxout3 is on FALSE (0) – auxout3 is off | By reference |

| Type  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.53 JETI\_AuxOut4

This function switch the LV TTL output auxout4 of VersaPIC S255 Add-On-Connector on and off:

1: auxout4 is on0: auxout4 is off

# 3.53.1 Prototype

DWORD JETI\_AuxOut4 (DWORD dwDevice, BOOL boAux4)

# 3.53.2 Parameters

## Input

| Name     | Туре  | Description                                                           | Call     |
|----------|-------|-----------------------------------------------------------------------|----------|
| dwDevice | DWORD | Handle to a device as returned by<br>JETI_OpenDevice                  | By value |
| boAux4   | BOOL  | the status to set TRUE (1) – auxout4 is on FALSE (0) – auxout4 is off | By value |

| Туре          |    | Description                    |  |
|---------------|----|--------------------------------|--|
| DWORD 0x00 JE |    | JETI_SUCCESS                   |  |
|               | 0x | see Appendix A for error codes |  |

# 3.54 JETI\_AuxOut4Stat

This function returns the status of the LV TTL output auxout4 of VersaPIC S255 Add-On-Connector:

1: auxout4 is on0: auxout4 is off

# 3.54.1 Prototype

DWORD JETI\_AuxOut4Stat (DWORD dwDevice, BOOL \*boAux4Stat)

## 3.54.2 Parameters

## Input

| Name       | Туре   | Description                                                                                                       | Call         |
|------------|--------|-------------------------------------------------------------------------------------------------------------------|--------------|
| dwDevice   | DWORD  | Handle to a device as returned by<br>JETI_OpenDevice                                                              | By value     |
| boAux4Stat | BOOL * | pointer to a variable where the auxout4 status will be stored TRUE (1) – auxout4 is on FALSE (0) – auxout4 is off | By reference |

| Type  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | 0x00 JETI_SUCCESS              |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.55 JETI\_AuxOut5

This function switch the LV TTL output auxout5 of VersaPIC S255 Add-On-Connector on and off:

1: auxout5 is on0: auxout5 is off

# 3.55.1 Prototype

DWORD JETI\_AuxOut5 (DWORD dwDevice, BOOL boAux5)

# 3.55.2 Parameters

## Input

| Name     | Туре  | Description                                                           | Call     |
|----------|-------|-----------------------------------------------------------------------|----------|
| dwDevice | DWORD | Handle to a device as returned by<br>JETI_OpenDevice                  | By value |
| boAux5   | BOOL  | the status to set TRUE (1) – auxout5 is on FALSE (0) – auxout5 is off | By value |

| Туре          |    | Description                    |  |
|---------------|----|--------------------------------|--|
| DWORD 0x00 JE |    | JETI_SUCCESS                   |  |
|               | 0x | see Appendix A for error codes |  |

# 3.56 JETI\_AuxOut5Stat

This function returns the status of the LV TTL output auxout5 of VersaPIC S255 Add-On-Connector:

1: auxout5 is on0: auxout5 is off

# 3.56.1 Prototype

DWORD JETI\_AuxOut5Stat (DWORD dwDevice, BOOL \*boAux5Stat)

# 3.56.2 Parameters

#### Input

| Name       | Туре   | Description                                                                                                       | Call         |
|------------|--------|-------------------------------------------------------------------------------------------------------------------|--------------|
| dwDevice   | DWORD  | Handle to a device as returned by<br>JETI_OpenDevice                                                              | By value     |
| boAux5Stat | BOOL * | pointer to a variable where the auxout5 status will be stored TRUE (1) – auxout5 is on FALSE (0) – auxout5 is off | By reference |

| Type  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | 0x00 JETI_SUCCESS              |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.57 JETI\_AuxIn1Stat

This function returns the status of the TTL input auxin1 of VersaPIC S255 Add-On-Connector:

- 1: auxin1 is on

- 0: auxin1 is off

# 3.57.1 Prototype

DWORD JETI\_AuxIn1Stat (DWORD dwDevice, BOOL \*boAuxIn1Stat)

# 3.57.2 Parameters

#### Input

| Name         | Туре   | Description                                                                                                                   | Call         |
|--------------|--------|-------------------------------------------------------------------------------------------------------------------------------|--------------|
| dwDevice     | DWORD  | Handle to a device as returned by<br>JETI_OpenDevice                                                                          | By value     |
| boAuxIn1Stat | BOOL * | pointer to a variable<br>where the auxin1 status<br>will be stored<br>TRUE (1) – auxin1 is on<br>FALSE (0) – auxin1 is<br>off | By reference |

| Туре  | Description                       |  |
|-------|-----------------------------------|--|
| DWORD | 0x00 JETI_SUCCESS                 |  |
|       | 0x see Appendix A for error codes |  |

# 3.58 JETI\_AuxIn2Stat

This function returns the status of the TTL input auxin2 of VersaPIC S255 Add-On-Connector:

1: auxin2 is on0: auxin2 is off

# 3.58.1 Prototype

DWORD JETI\_AuxIn2Stat (DWORD dwDevice, BOOL \*boAuxIn2Stat)

# 3.58.2 Parameters

## Input

| Name         | Type   | Description                                                                                                    | Call         |
|--------------|--------|----------------------------------------------------------------------------------------------------------------|--------------|
| dwDevice     | DWORD  | Handle to a device as returned by<br>JETI_OpenDevice                                                           | By value     |
| boAuxIn2Stat | BOOL * | pointer to a variable where the auxin2 status will be stored TRUE (1) – auxin2 is on FALSE (0) – auxin2 is off | By reference |

| Туре  | Description                       |  |
|-------|-----------------------------------|--|
| DWORD | 0x00 JETI_SUCCESS                 |  |
|       | 0x see Appendix A for error codes |  |

# 3.59 JETI\_GetDarkmodeConf

This function gets the dark measurement mode of radiometric and reference measurement:

- 1: perform a dark scan after each measurement
- 0: no dark scan after each measurement, use "dark values" for the dark current compensation

# 3.59.1 Prototype

DWORD JETI\_GetDarkmodeConf (DWORD dwDevice, BYTE \*bDarkmode)

### 3.59.2 Parameters

### Input

| Name      | Type   | Description                                              | Call         |
|-----------|--------|----------------------------------------------------------|--------------|
| dwDevice  | DWORD  | Handle to a device as returned by<br>JETI_OpenDevice     | By value     |
| bDarkmode | BYTE * | pointer to a variable where the dark mode will be stored | By reference |

| Туре  |                                   | Description  |
|-------|-----------------------------------|--------------|
| DWORD | 0x00                              | JETI_SUCCESS |
|       | 0x see Appendix A for error codes |              |

# ${\bf 3.60\,JETI\_SetDark modeConf}$

This function sets the dark measurement mode of radiometric and reference measurement:

- 1: perform a dark scan after each measurement
- 0: no dark scan after each measurement, use "dark values" for the dark current compensation

# 3.60.1 Prototype

DWORD JETI\_SetDarkmodeConf (DWORD dwDevice, BYTE bDarkmode)

### 3.60.2 Parameters

### Input

| Name      | Туре  | Description                                          | Call     |
|-----------|-------|------------------------------------------------------|----------|
| dwDevice  | DWORD | Handle to a device as returned by<br>JETI_OpenDevice | By value |
| bDarkmode | BYTE  | the dark measurement mode to set                     | By value |

| Type  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.61 JETI\_GetExposureConf

This function gets the handling of the integration time:

- 0: use previous integration time
- 1: always adapt integration time
- 2: use configured integration time

# 3.61.1 Prototype

DWORD JETI\_GetExposureConf (DWORD dwDevice, BYTE \*bExpmode)

### 3.61.2 Parameters

### Input

| IIIput   |        |                                                              |              |
|----------|--------|--------------------------------------------------------------|--------------|
| Name     | Type   | Description                                                  | Call         |
| dwDevice | DWORD  | Handle to a device as returned by<br>JETI_OpenDevice         | By value     |
| bExpmode | BYTE * | pointer to a variable where the exposure mode will be stored | By reference |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.62 JETI\_SetExposureConf

This function sets the handling of the integration time

- 0: use previous integration time1: always adapt integration time
- 2: use configured integration time

# 3.62.1 Prototype

DWORD JETI\_SetExposureConf (DWORD dwDevice, BYTE bExpmode)

### 3.62.2 Parameters

#### Input

| Name     | Type  | Description                                          | Call     |
|----------|-------|------------------------------------------------------|----------|
| dwDevice | DWORD | Handle to a device as returned by<br>JETI_OpenDevice | By value |
| bExpmode | BYTE  | the exposure mode to set                             | By value |

| Type  |                   | Description                    |  |
|-------|-------------------|--------------------------------|--|
| DWORD | 0x00 JETI_SUCCESS |                                |  |
|       | 0x                | see Appendix A for error codes |  |

# ${\bf 3.63\,JETI\_GetFunctionConf}$

This function gets the measurement function:

- 1: exposure spectrum
- 2: dark spectrum

- 3: reference spectrum
  4: transmission spectrum
  6: radiometric spectrum

# 3.63.1 Prototype

DWORD JETI\_GetFunctionConf (DWORD dwDevice, BYTE \*bPrevFunc, BYTE \*bConfFunc)

### 3.63.2 Parameters

### Input

| Name      | Туре   | Description                                                                             | Call         |
|-----------|--------|-----------------------------------------------------------------------------------------|--------------|
| dwDevice  | DWORD  | Handle to a device as returned by<br>JETI_OpenDevice                                    | By value     |
| bPrevFunc | BYTE * | pointer to a variable where the last used measurement function will be stored           | By reference |
| bConfFunc | BYTE * | pointer to a variable where the configured function for next measurement will be stored | By refernce  |

| Туре  | Description                       |              |
|-------|-----------------------------------|--------------|
| DWORD | 0x00                              | JETI_SUCCESS |
|       | 0x see Appendix A for error codes |              |

# 3.64 JETI\_SetFunctionConf

This function sets measurement function:

- 1: exposure spectrum
- 2: dark spectrum
- 3: reference spectrum4: transmission spectrum6: radiometric spectrum

# 3.64.1 Prototype

DWORD JETI\_SetFunctionConf (DWORD dwDevice, BYTE bFunction)

## 3.64.2 Parameters

### Input

| Name      | Type  | Description                                          | Call     |
|-----------|-------|------------------------------------------------------|----------|
| dwDevice  | DWORD | Handle to a device as returned by<br>JETI_OpenDevice | By value |
| bDarkmode | ВҮТЕ  | the measurement function to set                      | By value |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.65 JETI\_GetTintConf

This function gets the integration time configuration.

# 3.65.1 Prototype

DWORD JETI\_GetTintConf (DWORD dwDevice, DWORD \*dwPrevTint, DWORD \*dwConfTint)

# 3.65.2 Parameters

## Input

| Name       | Туре    | Description                                                                                         | Call         |
|------------|---------|-----------------------------------------------------------------------------------------------------|--------------|
| dwDevice   | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice                                                | By value     |
| dwPrevTint | DWORD * | pointer to a variable where the last used integration time will be stored                           | By reference |
| dwConfTint | DWORD * | pointer to a variable where the configured integration time for the next measurement will be stored |              |

| Туре  |      | Description                    |
|-------|------|--------------------------------|
| DWORD | 0x00 | JETI_SUCCESS                   |
|       | 0x   | see Appendix A for error codes |

# 3.66 JETI\_SetTintConf

This function sets the integration time for the next measurement.

The maximum value for integration time is 60000 ms.

The minimum value can be obtained by the function <code>JETI\_GetMinTintConf()</code>.

# 3.66.1 Prototype

DWORD JETI\_SetTintConf (DWORD dwDevice, DWORD dwTint)

### 3.66.2 Parameters

#### Input

| Name     | Type  | Description                                                             | Call     |
|----------|-------|-------------------------------------------------------------------------|----------|
| dwDevice | DWORD | Handle to a device as returned by<br>JETI_OpenDevice                    | By value |
| dwTint   | DWORD | the integration time to<br>set (minimum<br>integration time60000<br>ms) | By value |

| Туре  | Description |                                |
|-------|-------------|--------------------------------|
| DWORD | 0x00        | JETI_SUCCESS                   |
|       | 0x          | see Appendix A for error codes |

# 3.67 JETI\_GetMinTintConf

This function gets the minimum integration time which can be used with the currently connected instrument.

# 3.67.1 Prototype

DWORD JETI\_GetMinTintConf (DWORD dwDevice, DWORD \*dwMinTint)

## 3.67.2 Parameters

### Input

| Name      | Туре    | Description                                                             | Call         |
|-----------|---------|-------------------------------------------------------------------------|--------------|
| dwDevice  | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice                    | By value     |
| dwMinTint | DWORD * | pointer to a variable where the minimum integration time will be stored | By reference |

| Туре  | Description |                                |
|-------|-------------|--------------------------------|
| DWORD | 0x00        | JETI_SUCCESS                   |
|       | 0x          | see Appendix A for error codes |

# ${\bf 3.68\,JETI\_GetMaxTintConf}$

This function gets the maximum integration time which will be used for adaption.

# 3.68.1 Prototype

DWORD JETI\_GetMaxTintConf (DWORD dwDevice, DWORD \*dwMaxTint)

## 3.68.2 Parameters

### Input

| Name      | Туре    | Description                                                             | Call         |
|-----------|---------|-------------------------------------------------------------------------|--------------|
| dwDevice  | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice                    | By value     |
| dwMaxTint | DWORD * | pointer to a variable where the maximum integration time will be stored | By reference |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# ${\bf 3.69\,JETI\_SetMaxTintConf}$

This function sets the maximum integration time which will be used for the next auto-adapted measurement. Allowed values are between 1000 and 60000 ms.

# 3.69.1 Prototype

DWORD JETI\_SetMaxTintConf (DWORD dwDevice, DWORD dwMaxTint)

### 3.69.2 Parameters

#### Input

| Name      | Туре  | Description                                          | Call     |
|-----------|-------|------------------------------------------------------|----------|
| dwDevice  | DWORD | Handle to a device as returned by<br>JETI_OpenDevice | By value |
| dwMaxTint | DWORD | the maximum integration time to set (100060000 ms)   | By value |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.70 JETI\_GetAverConf

This function gets the count of measurement scans for average calculation.

# 3.70.1 Prototype

DWORD JETI\_GetAverConf (DWORD dwDevice, WORD \*wAver)

## 3.70.2 Parameters

### Input

| Name     | Type   | Description                                                    | Call         |
|----------|--------|----------------------------------------------------------------|--------------|
| dwDevice | DWORD  | Handle to a device as returned by<br>JETI_OpenDevice           | By value     |
| wAver    | WORD * | pointer to a variable where the average setting will be stored | By reference |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | 0x00 JETI_SUCCESS              |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.71 JETI\_SetAverConf

This function sets the count of measurement scans for average calculation.

# 3.71.1 Prototype

DWORD JETI\_SetAverConf (DWORD dwDevice, WORD wAver)

## 3.71.2 Parameters

### Input

| Name     | Type  | Description                                          | Call     |
|----------|-------|------------------------------------------------------|----------|
| dwDevice | DWORD | Handle to a device as returned by<br>JETI_OpenDevice | By value |
| wAver    | WORD  | the count of measurement scans to set                | By value |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# ${\bf 3.72\,JETI\_GetAdaptConf}$

This function gets the adaptation mode:

- 0: no adaptation if under or over exposure
- 1: new adaptation only if over exposure
- 2: new adaptation if under or over exposure

## 3.72.1 Prototype

DWORD JETI\_GetAdaptConf (DWORD dwDevice, BYTE \*bAdaptmode)

#### 3.72.2 Parameters

#### Input

| Name       | Туре   | Description                                                            | Call         |
|------------|--------|------------------------------------------------------------------------|--------------|
| dwDevice   | DWORD  | Handle to a device as returned by<br>JETI_OpenDevice                   | By value     |
| bAdaptmode | BYTE * | pointer to a variable where the adaptation mode setting will be stored | By reference |

| Type  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.73 JETI\_SetAdaptConf

This function sets the adaptation mode.

- 0: no adaptation if under or over exposure
- 1: new adaptation only if over exposure
- 2: new adaptation if under or over exposure

## 3.73.1 Prototype

DWORD JETI\_SetAdaptConf (DWORD dwDevice, BYTE bAdaptmode)

#### 3.73.2 Parameters

### Input

| Name       | Туре  | Description                                          | Call     |
|------------|-------|------------------------------------------------------|----------|
| dwDevice   | DWORD | Handle to a device as returned by<br>JETI_OpenDevice | By value |
| bAdaptmode | BYTE  | the adaptation mode to set                           | By value |

| Type  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.74 JETI\_GetWranConf

This function gets the wavelength range.

# 3.74.1 Prototype

DWORD JETI\_GetWranConf (DWORD dwDevice, DWORD \*dwBeg, DWORD \*dwEnd, DWORD \*dwStep)

## 3.74.2 Parameters

### Input

| Name     | Type    | Description                                                                      | Call         |
|----------|---------|----------------------------------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice                             | By value     |
| dwBeg    | DWORD * | pointer to a variable<br>where the start<br>wavelength will be<br>stored in [nm] | By reference |
| dwEnd    | DWORD * | pointer to a variable<br>where the end<br>wavelength will be<br>stored in [nm]   | By reference |
| dwStep   | DWORD * | pointer to a variable<br>where the step-width<br>will be stored in [nm]          | By reference |

| Type Description |      | Description                    |
|------------------|------|--------------------------------|
| DWORD            | 0x00 | JETI_SUCCESS                   |
|                  | 0x   | see Appendix A for error codes |

# 3.75 JETI\_SetWranConf

This function sets the wavelength range.

# 3.75.1 Prototype

DWORD JETI\_SetWranConf (DWORD dwDevice, DWORD dwBeg, DWORD dwEnd, DWORD dwStep)

## 3.75.2 Parameters

### Input

| Name     | Type  | Description                                          | Call     |
|----------|-------|------------------------------------------------------|----------|
| dwDevice | DWORD | Handle to a device as returned by<br>JETI_OpenDevice | By value |
| dwBeg    | DWORD | the start wavelength to set in [nm]                  | By value |
| dwEnd    | DWORD | the end wavelength to set in [nm]                    | By value |
| dwStep   | DWORD | the step-width to set in [nm]                        | By value |

| Type Description |                   | Description                    |
|------------------|-------------------|--------------------------------|
| DWORD            | 0x00 JETI_SUCCESS |                                |
|                  | 0x                | see Appendix A for error codes |

# 3.76 JETI\_GetPDARowConf

This function gets the PDA (photo-diode array) row setting.

On some PDAs (e.g. Hamamatsu S9840, S7030, S10420) it is possible to read out single rows of the detector. The possible settings depends on the detector. If dwPDARow returns 0 (zero) the hole detector array is used.

## 3.76.1 Prototype

DWORD JETI\_GetPDARowConf (DWORD dwDevice, DWORD \*dwPDARow, DWORD \*dwRowNumber)

#### 3.76.2 Parameters

#### Input

| Name        | Туре    | Description                                                       | Call         |
|-------------|---------|-------------------------------------------------------------------|--------------|
| dwDevice    | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice              | By value     |
| dwPDARow    | DWORD * | pointer to a variable where the starting PDA row will be stored   | By reference |
| dwRowNumber | DWORD * | pointer to a variable where the number of PDA rows will be stored | By reference |

| Notalli Valuo |             |                                |
|---------------|-------------|--------------------------------|
| Type          | Description |                                |
| DWORD         | 0x00        | JETI_SUCCESS                   |
|               | 0x          | see Appendix A for error codes |

# 3.77 JETI\_SetPDARowConf

This function sets the PDA (photo-diode array) row setting. On some PDAs (e.g. Hamamatsu S9840, S7030, S10420) it is possible to read out single rows of the detector. The possible settings depends on the detector. If dwPDARow is set to 0 (zero) the hole detector array is used.

## 3.77.1 Prototype

DWORD JETI\_SetPDARowConf (DWORD dwDevice, DWORD dwPDARow, DWORD dwRowNumber)

#### 3.77.2 Parameters

#### Input

| Name        | Туре  | Description                                          | Call     |
|-------------|-------|------------------------------------------------------|----------|
| dwDevice    | DWORD | Handle to a device as returned by<br>JETI_OpenDevice | By value |
| dwPDARow    | DWORD | the starting PDA row to set                          | By value |
| dwRowNumber | DWORD | the number of PDA rows to set                        | By value |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.78 JETI\_GetCycModeConf

This function gets the cycle mode.

If cycle mode is set to 1, the firmware will use number of cycles instead of milliseconds for the integration time. The function JETI\_SetCycTimeConf() must be used to set the cycle time. If cycle mode is set to 0 the integration time will be in milliseconds.

## 3.78.1 Prototype

DWORD JETI\_GetCycModeConf (DWORD dwDevice, BYTE \*bCycMode)

#### 3.78.2 Parameters

#### Input

| Name     | Type   | Description                                                             | Call         |
|----------|--------|-------------------------------------------------------------------------|--------------|
| dwDevice | DWORD  | Handle to a device as returned by<br>JETI_OpenDevice                    | By value     |
| BcycMode | BYTE * | pointer to a variable<br>where the cycle mode<br>setting will be stored | By reference |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | 0x00 JETI_SUCCESS              |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.79 JETI\_SetCycModeConf

This function sets the cycle mode.

If cycle mode is set to 1, the firmware will use number of cycles instead of milliseconds for the integration time. The function JETI\_SetCycTimeConf() must be used to set the cycle time. If cycle mode is set to 0 the integration time will be in milliseconds.

## 3.79.1 Prototype

DWORD JETI\_SetCycModeConf (DWORD dwDevice, BYTE bCycMode)

#### 3.79.2 Parameters

#### Input

| 1110010  |       |                                                      |          |
|----------|-------|------------------------------------------------------|----------|
| Name     | Type  | Description                                          | Call     |
| dwDevice | DWORD | Handle to a device as returned by<br>JETI_OpenDevice | By value |
| BcycMode | BYTE  | the cycle mode to set                                | By value |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# ${\bf 3.80\,JETI\_GetCycTimeConf}$

This function gets the cycle time in microseconds (µs).

If cycle mode is set to 1, the firmware will use number of cycles (multiples of cycle time) for the integration time.

## 3.80.1 Prototype

DWORD JETI\_GetCycTimeConf (DWORD dwDevice, DWORD \*dwCycTime)

### 3.80.2 Parameters

#### Input

| Name      | Туре    | Description                                               | Call         |
|-----------|---------|-----------------------------------------------------------|--------------|
| dwDevice  | DWORD   | Handle to a device as returned by<br>JETI OpenDevice      | By value     |
| dwCycTime | DWORD * | pointer to a variable where the cycle time will be stored | By reference |

| Туре  | Description       |                                |
|-------|-------------------|--------------------------------|
| DWORD | 0x00 JETI_SUCCESS |                                |
|       | 0x                | see Appendix A for error codes |

# 3.81 JETI\_SetCycTimeConf

This function sets the cycle time in microseconds (µs).

If cycle mode is set to 1, the firmware will use number of cycles (multiples of cycle time) for the integration time.

## 3.81.1 Prototype

DWORD JETI\_SetCycTimeConf (DWORD dwDevice, DWORD dwCycTime)

#### 3.81.2 Parameters

#### Input

| Name      | Туре  | Description                                       | Call     |
|-----------|-------|---------------------------------------------------|----------|
| dwDevice  | DWORD | Handle to a device as returned by JETI OpenDevice | By value |
| dwCycTime | DWORD | the cycle time to set                             | By value |

| Туре  | Type Description |                                |
|-------|------------------|--------------------------------|
| DWORD | 0x00             | JETI_SUCCESS                   |
|       | 0x               | see Appendix A for error codes |

# 3.82 JETI\_GetCycTime

This function can determine a cycle time in microseconds (µs) of pulsed light sources / pulsed monitor backlights by using an optical trigger (if available).

## 3.82.1 Prototype

DWORD JETI\_GetCycTimeConf (DWORD dwDevice, DWORD \*dwCycTime)

### 3.82.2 Parameters

#### Input

| Name      | Туре    | Description               | Call         |
|-----------|---------|---------------------------|--------------|
| dwDevice  | DWORD   | Handle to a device as     | By value     |
|           |         | returned by               |              |
|           |         | JETI_OpenDevice           |              |
| dwCycTime | DWORD * | pointer to a variable     | By reference |
| •         |         | where the cycle time will |              |
|           |         | be stored                 |              |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.83 JETI\_SetDefault

This function sets all measurement parameters to default values.

# 3.83.1 Prototype

DWORD JETI\_SetDefault (DWORD dwDevice)

## 3.83.2 Parameters

### Input

| Name     | Туре | Description                                          | Call     |
|----------|------|------------------------------------------------------|----------|
| dwDevice |      | Handle to a device as returned by<br>JETI_OpenDevice | By value |

| Туре  | Description       |                                |
|-------|-------------------|--------------------------------|
| DWORD | 0x00 JETI_SUCCESS |                                |
|       | 0x                | see Appendix A for error codes |

# 3.84 JETI\_FetchDark

This function returns the previously measured dark spectrum in counts per pixel.

**NOTE:** The array dwDark must provide space for at least as many values as the count of pixel of the photodiode-array. See function *JETI\_GetPixel* for further information

## 3.84.1 Prototype

DWORD JETI\_FetchDark (DWORD dwDevice, DWORD \*dwDark)

#### 3.84.2 Parameters

#### Input

| Name     | Type    | Description                                                      | Call         |
|----------|---------|------------------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice             | By value     |
| dwDark   | DWORD * | pointer to an array<br>where the dark<br>spectrum will be stored | By reference |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.85 JETI\_FetchLight

This function returns the previously measured light spectrum in counts per pixel.

**NOTE:** The array dwLight must provide space for at least as many values as the count of pixel of the photodiode-array. See function *JETI\_GetPixel* for further information

## 3.85.1 Prototype

DWORD JETI\_FetchLight (DWORD dwDevice, DWORD \*dwLight)

#### 3.85.2 Parameters

#### Input

| Name     | Туре    | Description                                                       | Call         |
|----------|---------|-------------------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice              | By value     |
| dwLight  | DWORD * | pointer to an array<br>where the light<br>spectrum will be stored | By reference |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.86 JETI\_FetchRefer

This function returns the previously measured reference spectrum in counts per pixel.

**NOTE:** The array dwRefer must provide space for at least as many values as the count of pixel of the photodiode-array. See function *JETI\_GetPixel* for further information

## 3.86.1 Prototype

DWORD JETI\_FetchRefer (DWORD dwDevice, DWORD \*dwRefer)

#### 3.86.2 Parameters

#### Input

| Name     | Type    | Description                                                           | Call         |
|----------|---------|-----------------------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice                  | By value     |
| dwRefer  | DWORD * | pointer to an array<br>where the reference<br>spectrum will be stored | By reference |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.87 JETI\_FetchTransRefl

This function returns the previously measured transmission / reflection spectrum in counts per pixel.

**NOTE:** The array dwTransRefl must provide space for at least as many values as the count of pixel of the photodiode-array. See function *JETI\_GetPixel* for further information

## 3.87.1 Prototype

DWORD JETI\_FetchTransRefl (DWORD dwDevice, DWORD \*dwTransRefl)

#### 3.87.2 Parameters

#### Input

| Name        | Туре    | Description                                                                     | Call         |
|-------------|---------|---------------------------------------------------------------------------------|--------------|
| dwDevice    | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice                            | By value     |
| dwTransRefl | DWORD * | pointer to an array where the transmission / reflection spectrum will be stored | By reference |

| Type  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.88 JETI\_FetchSprad

This function returns the previously measured radiometric spectrum. The unit of the spectrum depends on the measuring head and the corresponding calibration file.

| Measuring Head              | Description                | Unit                        |
|-----------------------------|----------------------------|-----------------------------|
| none                        | spectral radiance          | $W/sr \times m^2 \times nm$ |
|                             |                            |                             |
| cosine corrector head-piece | spectral irradiance        | W                           |
|                             |                            | $/m^2 \times nm$            |
| integrating sphere          | spectral radiant flux      | W/                          |
|                             |                            | /nm                         |
| tube                        | spectral radiant intensity | W/                          |
|                             |                            | $/sr \times nm$             |

**NOTE:** The array fSprad must provide space for the values accordingly to the wavelength range setting. For example if the wavelength range is set to 380...780 nm in 5 nm steps 81 values will be received.

$$\frac{\textit{endwavelength-startwavelength}}{\textit{wavesteps}} + 1$$

### 3.88.1 Prototype

DWORD JETI\_FetchSprad (DWORD dwDevice, FLOAT \*fSprad)

### 3.88.2 Parameters

#### Input

| Name     | Туре    | Description                                                       | Call         |
|----------|---------|-------------------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice              | By value     |
| fSprad   | FLOAT * | pointer to an array where the radiometric spectrum will be stored | By reference |

| Туре  | Description |                                |
|-------|-------------|--------------------------------|
| DWORD | 0x00        | JETI_SUCCESS                   |
|       | 0x          | see Appendix A for error codes |

# 3.89 JETI\_FetchRadio

This function returns the previously measured radiometric value. The unit of the value depends on the measuring head and the corresponding calibration file.

| Measuring Head              | Description       | Unit              |
|-----------------------------|-------------------|-------------------|
| none                        | radiance          | $W/sr \times m^2$ |
| cosine corrector head-piece | irradiance        | $W/m^2$           |
| integrating sphere          | radiant flux      | W                 |
| tube                        | radiant intensity | W/sr              |

# 3.89.1 Prototype

DWORD JETI\_FetchRadio (DWORD dwDevice, FLOAT \*fRadio)

### 3.89.2 Parameters

#### Input

| Name     | Туре    | Description                                                      | Call         |
|----------|---------|------------------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice             | By value     |
| fRadio   | FLOAT * | pointer to a variable where the radiometric value will be stored | By reference |

| Туре  | Description                       |              |
|-------|-----------------------------------|--------------|
| DWORD | 0x00                              | JETI_SUCCESS |
|       | 0x see Appendix A for error codes |              |

# 3.90 JETI\_FetchPhoto

This function returns the previously measured photometric value. The unit of the value depends on the measuring head and the corresponding calibration file.

| Measuring Head              | Description        | Unit                                      |
|-----------------------------|--------------------|-------------------------------------------|
| none                        | luminance          | $\begin{bmatrix} cd/\\ m^2 \end{bmatrix}$ |
| cosine corrector head-piece | illuminance        | lx                                        |
| integrating sphere          | luminous flux      | lm                                        |
| tube                        | luminous intensity | cd                                        |

# 3.90.1 Prototype

DWORD JETI\_FetchPhoto (DWORD dwDevice, FLOAT \*fPhoto)

### 3.90.2 Parameters

### Input

| Name     | Туре    | Description                                                   | Call         |
|----------|---------|---------------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice          | By value     |
| fPhoto   | FLOAT * | pointer to a value where the photometric value will be stored | By reference |

| Type  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | 0x00 JETI_SUCCESS              |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.91 JETI\_FetchChromxy

This function returns the previously measured CIE-1931 chromaticity coordinates x and y. The calculation is based on a  $2^{\circ}$  observer, and the wavelength range should be 380...780 nm.

## 3.91.1 Prototype

DWORD JETI\_FetchChromxy (DWORD dwDevice, FLOAT \*fChromx, FLOAT \*fChromy)

#### 3.91.2 Parameters

### Input

| Name     | Type    | Description                                            | Call         |
|----------|---------|--------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice   | By value     |
| fChromx  | FLOAT * | pointer to a variable where the x-value will be stored | By reference |
| fChromy  | FLOAT * | pointer to a variable where the y-value will be stored | By reference |

| Туре  |                   | Description                    |  |  |
|-------|-------------------|--------------------------------|--|--|
| DWORD | 0x00 JETI_SUCCESS |                                |  |  |
|       | 0x                | see Appendix A for error codes |  |  |

# 3.92 JETI\_FetchChromuv

This function returns the previously measured CIE-1976 chromaticity coordinates u' and v'. The calculation is based on a  $2^{\circ}$  observer, and the wavelength range should be 380...780 nm.

## 3.92.1 Prototype

DWORD JETI\_FetchChromxy (DWORD dwDevice, FLOAT \*fChromx, FLOAT \*fChromy)

#### 3.92.2 Parameters

### Input

| Name     | Type    | Description                                            | Call         |
|----------|---------|--------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice   | By value     |
| fChromx  | FLOAT * | pointer to a variable where the x-value will be stored | By reference |
| fChromy  | FLOAT * | pointer to a variable where the y-value will be stored | By reference |

| Type  | Description                       |              |
|-------|-----------------------------------|--------------|
| DWORD | 0x00                              | JETI_SUCCESS |
|       | 0x see Appendix A for error codes |              |

# 3.93 JETI\_FetchDWLPE

This function returns the previously measured dominant wavelength (DWL) and color purity (PE). The calculation is based on a  $2^{\circ}$  observer, and the wavelength range should be 380...780 nm.

The unit for the dominant wavelength is [nm].

The unit for the color purity is [%] (percent).

## 3.93.1 Prototype

DWORD JETI\_FetchDWLPE (DWORD dwDevice, FLOAT \*fDWL, FLOAT \*fPE)

#### 3.93.2 Parameters

#### Input

| Name     | Туре    | Description                                                        | Call         |
|----------|---------|--------------------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice               | By value     |
| fDWL     | FLOAT * | pointer to a variable where the dominant wavelength will be stored | By reference |
| fPE      | FLOAT * | pointer to a variable where the color purity will be stored        | By reference |

| Туре  | Description                       |  |
|-------|-----------------------------------|--|
| DWORD | 0x00 JETI_SUCCESS                 |  |
|       | 0x see Appendix A for error codes |  |

# 3.94 JETI\_FetchCCT

This function returns the previously measured correlated color temperature.

# 3.94.1 Prototype

DWORD JETI\_FetchCCT (DWORD dwDevice, DWORD \*dwCCT)

## 3.94.2 Parameters

### Input

| Name     | Туре    | Description                                                                 | Call         |
|----------|---------|-----------------------------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice                        | By value     |
| dwCCT    | DWORD * | pointer to a variable where the correlated color temperature will be stored | By reference |

| Type  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.95 JETI\_FetchDuv

This function returns the previously measured  $\Delta uv$  of the measured CCT.

# 3.95.1 Prototype

DWORD JETI\_FetchDuv (DWORD dwDevice, FLOAT \*fDuv)

## 3.95.2 Parameters

### Input

| Name     | Type    | Description                                          | Call         |
|----------|---------|------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice | By value     |
| Fduv     | FLOAT * | pointer to a variable where the Δuv will be stored   | By reference |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.96 JETI\_FetchXYZ

This function returns the previously measured tristimulus XYZ.

# 3.96.1 Prototype

DWORD JETI\_FetchXYZ (DWORD dwDevice, FLOAT \*fX, FLOAT \*fY, FLOAT \*fZ)

## 3.96.2 Parameters

### Input

| Name     | Type    | Description                                                  | Call         |
|----------|---------|--------------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice         | By value     |
| fX       | FLOAT * | pointer to a variable where the tristimulus X will be stored | By reference |
| fY       | FLOAT * | pointer to a variable where the tristimulus Y will be stored | By reference |
| fZ       | FLOAT * | pointer to a variable where the tristimulus Z will be stored | By reference |

| Туре  | Description                       |  |
|-------|-----------------------------------|--|
| DWORD | 0x00 JETI_SUCCESS                 |  |
|       | 0x see Appendix A for error codes |  |

## 3.97 JETI\_FetchCRI

This function returns the previously measured color rendering indices according to CIE 13.1-1995 publication.

The color temperature of the reference source is specified by dwCCT. To use the same CCT as calculated, set dwCCT to zero (0),

The function returns an array of 16 values containing the different CRI-values.

The first value (index 0) contains the chromaticity difference (DC) between the lamp to be tested and the reference illuminant. If DC is greater than 0.0054 the resulting color rendering indices may become less accurate.

The second value (index 1) contains the general color rendering index which is the arithmetical mean of eight special color rendering indices for the CIE-1974 test-color samples No. 1...8.

Value number three (index 2) to value number 16 (index 15) contains the special color rendering indices.

#### 3.97.1 Prototype

DWORD JETI\_FetchCRI (DWORD dwDevice, FLOAT \*fCRI)

#### 3.97.2 Parameters

#### Input

| Name     | Type    | Description                                                                                                   | Call         |
|----------|---------|---------------------------------------------------------------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice                                                          | By value     |
| fCRI     | FLOAT * | pointer to an array where the CRI-values will be stored (the array must contain space for at least 16 values) | By reference |

| Туре  | Description                       |  |
|-------|-----------------------------------|--|
| DWORD | 0x00 JETI_SUCCESS                 |  |
|       | 0x see Appendix A for error codes |  |

# 3.98 JETI\_CalcLintDark

This function calculates the linear interpolated ADC-counts per wavelength of a previously performed dark measurement.

**NOTE:** The array fDark must provide space for the values accordingly to the wavelength range setting. For example if the wavelength range is set to 380...780 nm in 5 nm steps 81 values will be received.

$$\frac{dwEnd - dwBeg}{fStep} + 1$$

### 3.98.1 Prototype

DWORD JETI\_CalcLintDark (DWORD dwDevice, DWORD dwBeg, DWORD dwEnd, FLOAT fStep, FLOAT \*fDark)

#### 3.98.2 Parameters

#### Input

| Name     | Type    | Description                                                                           | Call         |
|----------|---------|---------------------------------------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice                                  | By value     |
| dwBeg    | DWORD   | the start wavelength for calculation in [nm]                                          | By value     |
| dwEnd    | DWORD   | the end wavelength for calculation in [nm]                                            | By value     |
| fStep    | FLOAT   | the step-width for calculation in [nm]                                                | By value     |
| fDark    | FLOAT * | pointer to an array<br>where the linear<br>interpolated dark values<br>will be stored | By reference |

| Туре  | Description       |                                |
|-------|-------------------|--------------------------------|
| DWORD | 0x00 JETI_SUCCESS |                                |
|       | 0x                | see Appendix A for error codes |

# 3.99 JETI\_CalcSplinDark

This function calculates the cubic spline interpolated ADC-counts per wavelength of a previously performed dark measurement.

**NOTE:** The array fDark must provide space for the values accordingly to the wavelength range setting. For example if the wavelength range is set to 380...780 nm in 5 nm steps 81 values will be received.

$$\frac{dwEnd - dwBeg}{fStep} + 1$$

### 3.99.1 Prototype

DWORD JETI\_CalcSplinDark (DWORD dwDevice, DWORD dwBeg, DWORD dwEnd, FLOAT fStep, FLOAT \*fDark)

#### 3.99.2 Parameters

#### Input

| Name     | Туре    | Description                                                                                 | Call         |
|----------|---------|---------------------------------------------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice                                        | By value     |
| dwBeg    | DWORD   | the start wavelength for calculation in [nm]                                                | By value     |
| dwEnd    | DWORD   | the end wavelength for calculation in [nm]                                                  | By value     |
| fStep    | FLOAT   | the step-width for calculation in [nm]                                                      | By value     |
| fDark    | FLOAT * | pointer to an array<br>where the cubic spline<br>interpolated dark values<br>will be stored | By reference |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.100 JETI\_CalcLintLight

This function calculates the linear interpolated ADC-counts per wavelength of a previously performed light measurement.

**NOTE:** The array fLight must provide space for the values accordingly to the wavelength range setting. For example if the wavelength range is set to 380...780 nm in 5 nm steps 81 values will be received.

$$\frac{dwEnd - dwBeg}{fStep} + 1$$

## 3.100.1 Prototype

DWORD JETI\_CalcLintLight (DWORD dwDevice, DWORD dwBeg, DWORD dwEnd, FLOAT fStep, FLOAT \*fLight)

### 3.100.2 Parameters

#### Input

| Name     | Туре    | Description                                                                            | Call         |
|----------|---------|----------------------------------------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice                                   | By value     |
| dwBeg    | DWORD   | the start wavelength for calculation in [nm]                                           | By value     |
| dwEnd    | DWORD   | the end wavelength for calculation in [nm]                                             | By value     |
| fStep    | FLOAT   | the step-width for calculation in [nm]                                                 | By value     |
| fLight   | FLOAT * | pointer to an array<br>where the linear<br>interpolated light values<br>will be stored | By reference |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.101 JETI\_CalcSplinLight

This function calculates the cubic spline interpolated ADC-counts per wavelength of a previously performed light measurement.

**NOTE:** The array fLight must provide space for the values accordingly to the wavelength range setting. For example if the wavelength range is set to 380...780 nm in 5 nm steps 81 values will be received.

$$\frac{dwEnd - dwBeg}{fStep} + 1$$

## 3.101.1 Prototype

DWORD JETI\_CalcSplinLight (DWORD dwDevice, DWORD dwBeg, DWORD dwEnd, FLOAT fStep, FLOAT \*fLight)

#### 3.101.2 Parameters

#### Input

| Name     | Туре    | Description                                                                                  | Call         |
|----------|---------|----------------------------------------------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice                                         | By value     |
| dwBeg    | DWORD   | the start wavelength for calculation in [nm]                                                 | By value     |
| dwEnd    | DWORD   | the end wavelength for calculation in [nm]                                                   | By value     |
| fStep    | FLOAT   | the step-width for calculation in [nm]                                                       | By value     |
| fLight   | FLOAT * | pointer to an array<br>where the cubic spline<br>interpolated light values<br>will be stored | By reference |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.102 JETI\_CalcLintRefer

This function calculates the linear interpolated ADC-counts per wavelength of a previously performed reference measurement.

**NOTE:** The array fRefer must provide space for the values accordingly to the wavelength range setting. For example if the wavelength range is set to 380...780 nm in 5 nm steps 81 values will be received.

$$\frac{dwEnd - dwBeg}{fStep} + 1$$

### 3.102.1 Prototype

DWORD JETI\_CalcLintRefer (DWORD dwDevice, DWORD dwBeg, DWORD dwEnd, FLOAT fStep, FLOAT \*fRefer)

### 3.102.2 Parameters

#### Input

| Name     | Туре    | Description                                                                                | Call         |
|----------|---------|--------------------------------------------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice                                       | By value     |
| dwBeg    | DWORD   | the start wavelength for calculation in [nm]                                               | By value     |
| dwEnd    | DWORD   | the end wavelength for calculation in [nm]                                                 | By value     |
| fStep    | FLOAT   | the step-width for calculation in [nm]                                                     | By value     |
| fRefer   | FLOAT * | pointer to an array<br>where the linear<br>interpolated reference<br>values will be stored | By reference |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.103 JETI\_CalcSplinRefer

This function calculates the cubic spline interpolated ADC-counts per wavelength of a previously performed reference measurement.

**NOTE:** The array fRefer must provide space for the values accordingly to the wavelength range setting. For example if the wavelength range is set to 380...780 nm in 5 nm steps 81 values will be received.

$$\frac{dwEnd - dwBeg}{fStep} + 1$$

### 3.103.1 Prototype

DWORD JETI\_CalcSplinRefer (DWORD dwDevice, DWORD dwBeg, DWORD dwEnd, FLOAT fStep, FLOAT \*fRefer)

#### 3.103.2 Parameters

#### Input

| Name     | Туре    | Description                                                                                      | Call         |
|----------|---------|--------------------------------------------------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice                                             | By value     |
| dwBeg    | DWORD   | the start wavelength for calculation in [nm]                                                     | By value     |
| dwEnd    | DWORD   | the end wavelength for calculation in [nm]                                                       | By value     |
| fStep    | FLOAT   | the step-width for calculation in [nm]                                                           | By value     |
| fRefer   | FLOAT * | pointer to an array<br>where the cubic spline<br>interpolated reference<br>values will be stored | By reference |

| Туре  | Description |                                |
|-------|-------------|--------------------------------|
| DWORD | 0x00        | JETI_SUCCESS                   |
|       | 0x          | see Appendix A for error codes |

# 3.104 JETI\_CalcLintTransRefl

This function calculates the linear interpolated transmission / reflection values per wavelength of a previously performed transmission / reflection measurement.

**NOTE:** The array fTransRefl must provide space for the values accordingly to the wavelength range setting. For example if the wavelength range is set to 380...780 nm in 5 nm steps 81 values will be received.

$$\frac{dwEnd - dwBeg}{fStep} + 1$$

## 3.104.1 Prototype

DWORD JETI\_CalcLintTransRefl (DWORD dwDevice, DWORD dwBeg, DWORD dwEnd, FLOAT fStep, FLOAT \*fTransRefl)

#### 3.104.2 Parameters

#### Input

| Name       | Type    | Description                                                                                       | Call         |
|------------|---------|---------------------------------------------------------------------------------------------------|--------------|
| dwDevice   | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice                                              | By value     |
| dwBeg      | DWORD   | the start wavelength for calculation in [nm]                                                      | By value     |
| dwEnd      | DWORD   | the end wavelength for calculation in [nm]                                                        | By value     |
| fStep      | FLOAT   | the step-width for calculation in [nm]                                                            | By value     |
| fTransRefl | FLOAT * | pointer to an array where the linear interpolated transmission / reflection values will be stored | By reference |

| Туре  | Description |                                |
|-------|-------------|--------------------------------|
| DWORD | 0x00        | JETI_SUCCESS                   |
|       | 0x          | see Appendix A for error codes |

# 3.105 JETI\_CalcSplinTransRefl

This function calculates the cubic spline interpolated transmission / reflection values per wavelength of a previously performed transmission / reflection measurement.

**NOTE:** The array fDark must provide space for the values accordingly to the wavelength range setting. For example if the wavelength range is set to 380...780 nm in 5 nm steps 81 values will be received.

$$\frac{dwEnd - dwBeg}{fStep} + 1$$

### 3.105.1 Prototype

DWORD JETI\_CalcSplinTransRefl (DWORD dwDevice, DWORD dwBeg, DWORD dwEnd, FLOAT fStep, FLOAT \*fTransRefl)

#### 3.105.2 Parameters

#### Input

| Name       | Туре    | Description                                                                                                         | Call         |
|------------|---------|---------------------------------------------------------------------------------------------------------------------|--------------|
| dwDevice   | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice                                                                | By value     |
| dwBeg      | DWORD   | the start wavelength for calculation in [nm]                                                                        | By value     |
| dwEnd      | DWORD   | the end wavelength for calculation in [nm]                                                                          | By value     |
| fStep      | FLOAT   | the step-width for calculation in [nm]                                                                              | By value     |
| fTransRefl | FLOAT * | pointer to an array<br>where the cubic spline<br>interpolated<br>transmission / reflection<br>values will be stored | By reference |

| Туре  | Description |                                |
|-------|-------------|--------------------------------|
| DWORD | 0x00        | JETI_SUCCESS                   |
|       | 0x          | see Appendix A for error codes |

# 3.106 JETI\_CalcRadio

This function returns the calculated radiometric value. The unit of the value depends on the measuring head and the corresponding calibration file.

| Measuring Head              | Description       | Unit              |
|-----------------------------|-------------------|-------------------|
| none                        | radiance          | $W/sr \times m^2$ |
| cosine corrector head-piece | irradiance        | $W/m^2$           |
| integrating sphere          | radiant flux      | $\overline{W}$    |
| tube                        | radiant intensity | $W/_{sr}$         |

# 3.106.1 Prototype

DWORD JETI\_CalcRadio (DWORD dwDevice, FLOAT \*fRadio)

#### 3.106.2 Parameters

#### Input

| Name     | Туре    | Description                                                      | Call         |
|----------|---------|------------------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice             | By value     |
| fRadio   | FLOAT * | pointer to a variable where the radiometric value will be stored | By reference |

| Туре  | Description |                                |
|-------|-------------|--------------------------------|
| DWORD | 0x00        | JETI_SUCCESS                   |
|       | 0x          | see Appendix A for error codes |

# 3.107 JETI\_CalcPhoto

This function returns the calculated photometric value. The unit of the value depends on the measuring head and the corresponding calibration file.

| Measuring Head              | Description        | Unit                                      |
|-----------------------------|--------------------|-------------------------------------------|
| none                        | luminance          | $\begin{pmatrix} cd/\\ m^2 \end{pmatrix}$ |
| cosine corrector head-piece | illuminance        | lx                                        |
| integrating sphere          | luminous flux      | lm                                        |
| tube                        | luminous intensity | cd                                        |

## 3.107.1 Prototype

DWORD JETI\_CalcPhoto (DWORD dwDevice, FLOAT \*fPhoto)

### 3.107.2 Parameters

#### Input

| Name     | Туре    | Description                                                   | Call         |
|----------|---------|---------------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice          | By value     |
| fPhoto   | FLOAT * | pointer to a value where the photometric value will be stored | By reference |

| Туре  | Description       |                                |  |
|-------|-------------------|--------------------------------|--|
| DWORD | 0x00 JETI_SUCCESS |                                |  |
|       | 0x                | see Appendix A for error codes |  |

# 3.108 JETI\_CalcChromxy

This function returns the calculated CIE-1931 chromaticity coordinates x and y. The calculation is based on a **2° observer**, and the wavelength range is 380...780 nm.

## 3.108.1 Prototype

DWORD JETI\_CalcChromxy (DWORD dwDevice, FLOAT \*fChromx, FLOAT \*fChromy)

### 3.108.2 Parameters

### Input

| Name     | Type    | Description                                            | Call         |
|----------|---------|--------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice   | By value     |
| fChromx  | FLOAT * | pointer to a variable where the x-value will be stored | By reference |
| fChromy  | FLOAT * | pointer to a variable where the y-value will be stored | By reference |

| Type  | Description |                                |
|-------|-------------|--------------------------------|
| DWORD | 0x00        | JETI_SUCCESS                   |
|       | 0x          | see Appendix A for error codes |

# 3.109 JETI\_CalcChromxy10

This function returns the calculated CIE-1931 chromaticity coordinates x and y. The calculation is based on a **10° observer**, and the wavelength range is 380...780 nm.

## 3.109.1 Prototype

DWORD JETI\_CalcChromxy10 (DWORD dwDevice, FLOAT \*fChromx10, FLOAT \*fChromy10)

### 3.109.2 Parameters

### Input

| Name      | Type    | Description                                            | Call         |
|-----------|---------|--------------------------------------------------------|--------------|
| dwDevice  | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice   | By value     |
| fChromx10 | FLOAT * | pointer to a variable where the x-value will be stored | By reference |
| fChromy10 | FLOAT * | pointer to a variable where the y-value will be stored | By reference |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.110 JETI\_CalcChromuv

This function returns the calculated CIE-1976 chromaticity coordinates u' and v'. The calculation is based on a  $2^{\circ}$  observer, and the wavelength range is 380...780 nm.

## 3.110.1 Prototype

DWORD JETI\_CalcChromuv (DWORD dwDevice, FLOAT \*fChromu, FLOAT \*fChromv)

### 3.110.2 Parameters

### Input

| Name     | Type    | Description                                                   | Call         |
|----------|---------|---------------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice          | By value     |
| fChromu  | FLOAT * | pointer to a variable<br>where the u'-value will<br>be stored | By reference |
| fChromv  | FLOAT * | pointer to a variable<br>where the v'-value will<br>be stored | By reference |

| Type  | Description |                                |
|-------|-------------|--------------------------------|
| DWORD | 0x00        | JETI_SUCCESS                   |
|       | 0x          | see Appendix A for error codes |

# 3.111 JETI\_CalcDWLPE

This function returns the calculated dominant wavelength (DWL) and color purity (PE). The calculation is based on a 2° observer, and the wavelength range is 380...780 nm.

The unit for the dominant wavelength is [nm].

The unit for the color purity is [%] (percent).

### 3.111.1 Prototype

DWORD JETI\_CalcDWLPE (DWORD dwDevice, FLOAT \*fDWL, FLOAT \*fPE)

#### 3.111.2 Parameters

#### Input

| Name     | Туре    | Description                                                        | Call         |
|----------|---------|--------------------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice               | By value     |
| fDWL     | FLOAT * | pointer to a variable where the dominant wavelength will be stored | By reference |
| fPE      | FLOAT * | pointer to a variable where the color purity will be stored        | By reference |

| Туре  | Description |                                |
|-------|-------------|--------------------------------|
| DWORD | 0x00        | JETI_SUCCESS                   |
|       | 0x          | see Appendix A for error codes |

# 3.112 JETI\_CalcCCT

This function returns the calculated correlated color temperature.

# 3.112.1 Prototype

DWORD JETI\_CalcCCT (DWORD dwDevice, DWORD \*dwCCT)

### 3.112.2 Parameters

### Input

| Name     | Туре    | Description                                                                 | Call         |
|----------|---------|-----------------------------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice                        | By value     |
| dwCCT    | DWORD * | pointer to a variable where the correlated color temperature will be stored | By reference |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

# 3.113 JETI\_CalcDuv

This function returns the calculated  $\Delta uv$  for the correlated color temperature.

# 3.113.1 Prototype

DWORD JETI\_CalcDuv (DWORD dwDevice, FLOAT \*fDuv)

### 3.113.2 Parameters

### Input

| Name     | Type    | Description                                          | Call         |
|----------|---------|------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice | By value     |
| fDuv     | FLOAT * | pointer to a variable where the Δuv will be stored   | By reference |

| Type Description |      | Description                    |
|------------------|------|--------------------------------|
| DWORD            | 0x00 | JETI_SUCCESS                   |
|                  | 0x   | see Appendix A for error codes |

# 3.114 JETI\_CalcXYZ

This function returns the calculated tristimulus XYZ.

# 3.114.1 Prototype

DWORD JETI\_CalcXYZ (DWORD dwDevice, FLOAT \*fX, FLOAT \*fY, FLOAT \*fZ)

### 3.114.2 Parameters

### Input

| Name     | Туре    | Description                                                  | Call         |
|----------|---------|--------------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice         | By value     |
| fX       | FLOAT * | pointer to a variable where the tristimulus X will be stored | By reference |
| fY       | FLOAT * | pointer to a variable where the tristimulus Y will be stored | By reference |
| fZ       | FLOAT * | pointer to a variable where the tristimulus Z will be stored | By reference |

| Туре  | Description |                                |
|-------|-------------|--------------------------------|
| DWORD | 0x00        | JETI_SUCCESS                   |
|       | 0x          | see Appendix A for error codes |

## 3.115 JETI\_CalcCRI

This function returns the calculated color rendering indices according to CIE 13.1-1995 publication. The color temperature of the reference source is specified by dwCCT. To use the same CCT as calculated, set dwCCT to zero (0),

The function returns an array of 16 values containing the different CRI-values.

The first value (index 0) contains the chromaticity difference (DC) between the lamp to be tested and the reference illuminant. If DC is greater than 0.0054 the resulting color rendering indices may become less accurate.

The second value (index 1) contains the general color rendering index which is the arithmetical mean of eight special color rendering indices for the CIE-1974 test-color samples No. 1...8.

Value number three (index 2) to value number 16 (index 15) contains the special color rendering indices.

### **3.115.1** Prototype

DWORD JETI CalcCRI (DWORD dwDevice, FLOAT \*fCRI)

#### 3.115.2 Parameters

#### Input

| Name     | Type    | Description                                                                                                   | Call         |
|----------|---------|---------------------------------------------------------------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice                                                          | By value     |
| fCRI     | FLOAT * | pointer to an array where the CRI-values will be stored (the array must contain space for at least 16 values) | By reference |

| Type          |    | Description                    |  |
|---------------|----|--------------------------------|--|
| DWORD 0x00 JE |    | JETI_SUCCESS                   |  |
|               | 0x | see Appendix A for error codes |  |

# 3.116 JETI\_CalcAllValue

This function calculates all radiometric, photometric and colorimetric values.

## 3.116.1 Prototype

DWORD JETI\_CalcAllValue (DWORD dwDevice, DWORD dwBeg, DWORD dwEnd, FLOAT \*fRadio, FLOAT \*fPhoto, FLOAT \*fChromx, FLOAT \*fChromy, FLOAT \*fChromu, FLOAT \*fDWL, FLOAT \*fPE)

### 3.116.2 Parameters

#### Input

| Name     | Туре    | Description                                                         | Call         |
|----------|---------|---------------------------------------------------------------------|--------------|
| dwDevice | DWORD   | Handle to a device as returned by<br>JETI_OpenDevice                | By value     |
| fRadio   | FLOAT * | pointer to a variable where the radiometric value will be stored    | By reference |
| fPhoto   | FLOAT * | pointer to a value where<br>the photometric value<br>will be stored | By reference |
| fChromx  | FLOAT * | pointer to a variable where the x-value will be stored              | By reference |
| fChromy  | FLOAT * | pointer to a variable where the y-value will be stored              | By reference |
| fChromu  | FLOAT * | pointer to a variable where the u'-value will be stored             | By reference |
| fChromv  | FLOAT * | pointer to a variable where the v'-value will be stored             | By reference |
| fDWL     | FLOAT * | pointer to a variable where the dominant wavelength will be stored  | By reference |
| fPE      | FLOAT * | pointer to a variable where the color purity will be stored         | By reference |

| Туре  |      | Description                    |  |
|-------|------|--------------------------------|--|
| DWORD | 0x00 | JETI_SUCCESS                   |  |
|       | 0x   | see Appendix A for error codes |  |

## 4 Examples

To help starting development the SDK includes several examples for different programming languages.

## 4.1 C Examples

#### 4.1.1 RadioSample

This sample demonstrates the basic usage of the jeti\_radio DLL.

### 4.1.2 SyncSample

The SyncSample demonstrates the use of special functions to synchronize the measurements integration time with the frequency of pulsed light sources and pulsed monitor back-lights.

### 4.1.3 TriggerSample

This sample demonstrates the handle of measurements initiated by an external trigger event.

# 4.2 LabVIEW Examples

These samples demonstrate the basic usage of the DLLs within a LabVIEW program.

# 4.3 VisualBasic / VBA Examples

These sample demonstrate the usage of the jeti\_radio DLL within a VBA macro inside an excel spreadsheet.

# Appendix A

#### Error codes and their description:

| Error code | #define                    | Description                               |
|------------|----------------------------|-------------------------------------------|
| 0x00       | JETI_SUCCESS               | no error occured                          |
| 0x02       | JETI_ERROR_OPEN_PORT       | could not open COM-port                   |
| 0x03       | JETI_ERROR_PORT_SETTING    | could not set COM-port settings           |
| 0x04       | JETI_ERROR_BUFFER_SIZE     | could not set buffer size of COM-port     |
| 0x05       | JETI_ERROR_PURGE           | could not purge buffers of COM-port       |
| 0x06       | JETI_ERROR_TIMEOUT_SETTING | could not set COM-port timeout            |
| 0x07       | JETI_ERROR_SEND            | could not send to device                  |
| 0x08       | JETI_TIMEOUT               | communication timeout error               |
| 0x0A       | JETI_ERROR_RECEIVE         | could not receive from device             |
| 0x0B       | JETI_ERROR_NAK             | command not supported or invalid argument |
| 0x0C       | JETI_ERROR_CONVERT         | could not convert received data           |
| 0x0D       | JETI_ERROR_PARAMETER       | invalid argument                          |
| 0x0E       | JETI_BUSY                  | device busy                               |
| 0x11       | JETI_CHECKSUM_ERROR        | invalid checksum of received data         |
| 0x12       | JETI_INVALID_STEPWIDTH     | invalid step width                        |
| 0x13       | JETI_INVALID_NUMBER        | invalid device number                     |
| 0x14       | JETI_NOT_CONNECTED         | device not connected                      |
| 0x15       | JETI_INVALID_HANDLE        | invalid device handle                     |
| 0x16       | JETI_INVALID_CALIB         | invalid calibration file number           |
| 0x17       | JETI_CALIB_NOT_READ        | calibration data not read                 |
| 0x20       | JETI_MEASURE_FAIL          | measurement failed (overexposure)         |
| 0xFF       | JETI_FATAL_ERROR           | fatal communication error                 |

If a fatal communication error occurs (error code 0xFF) there are several ways to solve the problem.

- 1) Call JETI\_HardReset to perform a device hardware reset. The effect of this function is the same as disconnecting then reconnecting the device from USB. This will work only if the device uses an FTDI USB-to-serial converter and was opened with direct access to the FTDI driver (opened with JETI\_GetNumDevices and JETI\_OpenDevice) instead of using the VCP (virtual com port) driver (JETI\_OpenCOMDevice and/or JETI\_SetComSearch). Please note that all custom settings (e.g. integration time, function,...) will be set to default values and have to be repeated.
- 2) Closing the device with JETI\_CloseDevice will also perform a hardware reset if a fatal communication error occurred on a device with FTDI USB-to-Serial converter. After closing the device it should be possible to reopen the device with JETI\_GetNumDevices and JETI\_OpenDevice.
- 3) If a JETI device with FTDI USB-to-Serial converter was opened using VCP driver (e.g. by using JETI\_OpenCOMDevice) or by using other connections (like RS232, bluetooth,...) a fatal communication error can only be resolved by closing the device with JETI\_CloseDevice and manually reset the device.

### 5 Service

In case of any questions or technical problems please contact:

JETI Technische Instrumente GmbH

Tatzendpromenade 2

D-07745 Jena

Tel. +49 3641 225 680 Fax +49 3641 225 681

e-mail: sales@jeti.com Internet: www.jeti.com

Copyright (c) 2011 JETI Technische Instrumente GmbH. All rights reserved.

Software and operating instruction are delivered with respect to the License agreement and can be used only in accordance with this License agreement.

The hard and software as well as the operating instruction are subject to change without notice. JETI Technische Instrumente GmbH assumes no liability or responsibility for inaccuracies and errors in the operating instruction.

It is not allowed to copy this documentation or parts of it without previous written permission by JETI Technische Instrumente GmbH.

January 23, 2012