

HEURISTIC SEARCH

4.0	Introduction	4.3	Using Heuristics in Games
4.1	An Algorithm for Heuristic Search	4.4	Complexity Issues
4.2	Admissibility, Monotonicity, and Informedness	4.5	Epilogue and References
		4.6	Exercises

The successive stages of **open** and **closed** that generate this graph are:

- open = [a4];
 closed = []
- 2. open = [c4, b6, d6];
 closed = [a4]
- 3. open = [e5, f5, b6, d6, g6]; closed = [a4, c4]
- 4. open = [f5, h6, b6, d6, g6, l7]; closed = [a4, c4, e5]
- 5. open = [j5, h6, b6, d6, g6, k7, l7]; closed = [a4, c4, e5, f5]
- 6. open = [I5, h6, b6, d6, g6, k7, I7]; closed = [a4, c4, e5, f5, j5]
- 7. open = [m5, h6, b6, d6, g6, n7, k7, l7]; closed = [a4, c4, e5, f5, j5, l5]
- 8. success, m = goal!

Level of Search

open and closed as they appear after the third iteration of heuristic search. **Figure 4.11:**

ALGORITHM A, ADMISSIBILITY, ALGORITHM A*

Consider the evaluation function f(n) = g(n) + h(n), where

n is any state encountered in the search.

g(n) is the cost of **n** from the start state.

h(n) is the heuristic estimate of the cost of going from **n** to a goal.

If this evaluation function is used with the **best_first_search** algorithm of Section 4.1, the result is called *algorithm A*.

A search algorithm is *admissible* if, for any graph, it always terminates in the optimal solution path whenever a path from the start to a goal state exists.

If algorithm A is used with an evaluation function in which $\mathbf{h}(\mathbf{n})$ is less than or equal to the cost of the minimal path from \mathbf{n} to the goal, the resulting search algorithm is called algorithm \mathbf{A}^* (pronounced "A STAR").

It is now possible to state a property of **A*** algorithms:

All **A*** algorithms are admissible.

MONOTONICITY

A heuristic function **h** is monotone if

- 1. For all states \mathbf{n}_i and \mathbf{n}_i , where \mathbf{n}_i is a descendant of \mathbf{n}_i ,
 - $h(n_i) h(n_j) \leq cost(n_i, n_j),$

where $cost(n_i, n_j)$ is the actual cost (in number of moves) of going from state n_i to n_i .

2. The heuristic evaluation of the goal state is zero, or h(Goal) = 0.

INFORMEDNESS

For two A^* heuristics h_1 and h_2 , if $h_1(n) \le h_2(n)$, for all states n and $h_1(m) < h_2(m)$ in the search space, heuristic h_2 is said to be *more informed* than h_1 .

neuristic search with space searched by breadthheuristically is shaded. The optimal solution path first search. The portion of the graph searched is in bold. Heuristic used is **f(n) = g(n) + h(n)** Comparison of state space searched using where h(n) is tiles out of place. **Figure 4.12:**

state partitions the seven matches into State space for a variant of nim. Each one or more piles. **Figure 4.13:**

Figure 4.14: Exhaustive minimax for the game of nim. Bold lines indicate forced win for MAX. Each node is marked with its derived value (0 or 1) under minimax.

Figure 4.15: Minimax to a hypothetical state space. Leaf states show heuristic values; internal states show backed-up values.

X has 4 possible win paths;

O has 6 possible wins

E(n) = 4 - 6 = -2

X has 5 possible win paths; O has 4 possible wins

$$E(n) = 5 - 4 = 1$$

O(n) is total of Opponent's possible winning lines where M(n) is the total of My possible winning lines E(n) is the total Evaluation for state n Heuristic is E(n) = M(n) - O(n)

Heuristic measuring conflict applied to states of tic-tac-toe. **Figure 4.16:**