### Министерство образования Российской Федерации

# МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. БАУМАНА

Факультет: Информатика и системы управления Кафедра: Информационная безопасность (ИУ8)

#### ЭЛЕКТРОНИКА И СХЕМОТЕХНИКА

Лабораторная работа №3 на тему:

«Исследование дешифраторов»

Вариант 4

Преподаватель:

Ковынев Н.В.

Студент:

Девяткин Е.Д.

Группа:

ИУ8-54

Репозиторий работы: <a href="https://github.com/ledibonibell/Module05-ECE">https://github.com/ledibonibell/Module05-ECE</a>

Москва 2024

# Цель работы

Изучение принципов построения и методов синтеза дешифраторов, экспериментальное исследование дешифраторов.

#### Входные данные

### Задание 1:

| Вариант | Синтезируемая схема |
|---------|---------------------|
| 4       | DC 3-8 (с входом E) |

#### Задание 2:

| Вариант | Синтезирующая схема |
|---------|---------------------|
| 4       | DC 4-16 из 74LS139D |

### Задание 3:

| Вариант | - |
|---------|---|
| -       | - |

### Перечень приборов

Генератор слова XWG1;

Лампочки;

# Ход работы

Задание 1. Выполните синтез и исследуйте схему дешифратора (рис. 1).



Рис. 1 - Дешифратор DC 3-8 (с входом E).

| Е | X3 | X2 | X1 | Y0 | Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 |
|---|----|----|----|----|----|----|----|----|----|----|----|
| 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 0 | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 0 | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 0 | 0  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 0 | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 0 | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 0 | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 0 | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1 | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1 | 0  | 0  | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1 | 0  | 1  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  |
| 1 | 0  | 1  | 1  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  |
| 1 | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  |

| 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

Табл. 1 - Таблица истинности на дешифратора DC 3-8 (с входом E).

Также получим уравнения логики для выхода дешифратора:

$$\begin{cases} \overline{X}_{1}\overline{X}_{2}\overline{X}_{3}E = Y_{0} \\ \overline{X}_{1}\overline{X}_{2}X_{3}E = Y_{1} \\ \overline{X}_{1}X_{2}\overline{X}_{3}E = Y_{2} \\ \overline{X}_{1}\overline{X}_{2}X_{3}E = Y_{3} \\ X_{1}\overline{X}_{2}\overline{X}_{3}E = Y_{4} \\ X_{1}X_{2}\overline{X}_{3}E = Y_{5} \\ X_{1}X_{2}\overline{X}_{3}E = Y_{6} \\ X_{1}X_{2}X_{3}E = Y_{7} \end{cases}$$

**Задание 2**. Разработайте и реализуйте в Multisim схему наращивания размерности дешифратора до 4-16, используя микросхемы 74LS139D (рис. 2).



Рис. 2 - DC 4-16;

| X | X | X | X | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y1 | Y1 | Y1 | Y1 | Y1 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|
| 1 | 2 | 3 | 4 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 | 1  | 2  | 3  | 4  | 5  |
| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  |
| 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  |
| 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  |
| 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  |
| 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  |
| 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  |
| 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1  | 1  | 1  | 1  | 1  |
| 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1  | 1  | 1  | 1  | 1  |

| 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |

Табл. 2 - Таблица истинности на дешифратора DC 4-16.

**Задание 3**. Исследование дешифратора из двоичного в 7-ми сегментный код индикатора (рис. 3).



Рис. 3 - Схема дешифратора из двоичного в 7-сегментный код.

| X1 | X2 | X3 | X4 | A | В | С | D | Е | F | G |
|----|----|----|----|---|---|---|---|---|---|---|
| 0  | 0  | 0  | 0  | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0  | 0  | 0  | 1  | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0  | 0  | 1  | 0  | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
| 0  | 0  | 1  | 1  | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| 0  | 1  | 0  | 0  | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 0  | 1  | 0  | 1  | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
| 0  | 1  | 1  | 0  | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 0  | 1  | 1  | 1  | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 1  | 0  | 0  | 0  | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1  | 0  | 0  | 1  | 1 | 1 | 1 | 1 | 0 | 1 | 1 |

Табл. 3 - Таблица истинности входов 7-ми сегментного индикатора.

# Вывод

Были изучены принципы построения, методы синтеза дешифраторов, наращивание их разрядности, также были построены таблицы истинности для всех рассматриваемых дешифраторов.