

Universidade de Brasília – UnB Faculdade UnB Gama – FGA Engenharia de Software

AprEnDO: aplicativo para fixação de equações diferenciais ordinárias de 1ª ordem - um relato de experiência

Autor: Leonardo Arthur Degolim Oliveira Orientadora: Prof^a Dr^a Tatiane da Silva Evangelista Coorientadora: Prof^a Bruna Nayara Moreira Lima Data de apresentação: 10/12/2018

> Brasília, DF 2018

Leonardo Arthur Degolim Oliveira

AprEnDO: aplicativo para fixação de equações diferenciais ordinárias de 1ª ordem - um relato de experiência

Monografia submetida ao curso de graduação em Engenharia de Software da Universidade de Brasília, como requisito parcial para obtenção do Título de Bacharel em Engenharia de Software.

Universidade de Brasília – UnB Faculdade UnB Gama – FGA

Orientadora Prof^a Dr^a Tatiane da Silva Evangelista Coorientadora Prof^a Bruna Nayara Moreira Lima

> Brasília, DF 2018

Leonardo Arthur Degolim Oliveira

AprEnDO: aplicativo para fixação de equações diferenciais ordinárias de 1ª ordem - um relato de experiência

Monografia submetida ao curso de graduação em Engenharia de Software da Universidade de Brasília, como requisito parcial para obtenção do Título de Bacharel em Engenharia de Software.

Prof^a Dr^a Tatiane da Silva Evangelista Orientadora

Prof^a Bruna Nayara Moreira Lima Coorientadora

PhD Prof^o Ronni Geraldo Gomes de Amorim Convidado 1

Prof^o Dr. Edson Alves da Costa Júnior

Convidado 2

Brasília, DF 2018

Resumo

O objetivo deste trabalho era desenvolver um jogo de celular o aprEnDO para analisar se foi possível apoiar a aprendizagem de equações diferenciais ordinárias (EDO) de 1ª ordem. O jogo contém perguntas a respeito de classificação e resolução de equações. A metodologia de trabalho foi um relato de experiência de uma aplicação de jogo em uma classe de Cálculo 2 (C2) da Faculdade do Gama da UnB em que a professora orientadora ministra o ensino. Uma turma utilizou o aplicativo enquanto outras turmas não tiveram contato com o jogo. Existe uma prova que os alunos realizarão, mapas conceituais desenvolvidos pelos envolvidos e dados analisados a partir dos jogos enviados pelos jogadores para concluir se o jogo trouxe algum benefício de aprendizado efetivo aos alunos.

Palavras-chave: ED. aplicativo para celular. jogo. software.

Lista de ilustrações

Figura 1 – Prototipação das telas iniciais do jogo 30
Figura 2 — Prototipação das telas dos módulos
Figura 3 – Prototipação das telas dos módulos
Figura 4 – Diagrama de Classe do AprEnDO
Figura 5 – Tela inicial
Figura 6 – Modo de classificação parte 1
Figura 7 – Modo de classificação parte 2
Figura 8 – Modo de classificação parte 3
Figura 9 – Exemplo da fase de classificação de homogeneidade
Figura 10 – Exemplo da fase de classificação de tipo
Figura 11 – Feedback fornecido à uma tentativa inválida
Figura 12 – Tela de finalização do modo de classificação
Figura 13 – Modo de resolução parte 1
Figura 14 – Modo de resolução parte 2
Figura 15 – Jogo da memória com 1 carta selecionada $\dots \dots \dots$
Figura 16 – Jogo da memória com alguns pares encontrados
Figura 17 – Vitória de jogo da memória

Lista de tabelas

Lista de abreviaturas e siglas

ED Equação Diferencial

EDO Equação Diferencial Ordinária

PVI Problemas de valor inicial

VI Valor Inicial

APP Aplicativo

OCDE Organização para a Cooperação e Desenvolvimento Econômico

Cap. Capítulo

C2 Cálculo 2

UnB Universidade de Brasília

Sumário

1	INTRODUÇÃO	9
2	REFERENCIAL TEÓRICO	1
2.1	Brasil com matemática	1
2.2	Sucesso de jogos no ensino	2
2.3	Mapas Conceituais	4
2.4	Engenharia de software	6
2.4.1	Teste de software	7
2.4.2	Plataformas mobile	8
3	EQUAÇÃO DIFERENCIAL	9
3.1	Classificação de ED	9
3.1.1	Tipo	g
3.1.2	Ordem	.C
3.1.3	Linearidade	.C
3.2	Solução de ED	2
3.2.1	Tipos de solução	2
3.2.2	Equação de variáveis separáveis	3
3.2.3	Equação Homogênea	3
3.2.4	Equação Exata	4
3.2.5	Equação Linear 1ª ordem	5
4	METODOLOGIA 2	7
5	ENGENHARIA DE SOFTWARE	8
5.1	Requisitos de Software	8
5.2	Prototipação	9
5.3	Banco de dados	3
5.4	Ambiente de desenvolvimento	4
5.5	Empacotamento	6
5.6	Servidor aprEnDO	6
6	MANUAL DO APRENDO	8
6.1	Pacote 1	8
6.1.1	Módulo 1	8
6.1.2	Módulo 2	-6

6.2	Pacote 2	51
7	CONCLUSÃO	53
	REFERÊNCIAS	54

1 Introdução

O Brasil tem uma qualidade de ensino de matemática inferior a de muitos países. A Organização para a Cooperação e Desenvolvimento Econômico (OCDE) utiliza uma escala de classificação que vai de 1 a 6 para as habilidades de matemática. 70.3% dos estudantes brasileiros estão abaixo do nível 2, o qual foi estabelecido como o mínimo para exercer a cidadania como cidadão pleno (INEP, 2015a).

Além desta informação outros 3 fatos também contribuíram para formular a proposta deste trabalho. Um deles foi o estudo de (NETO; BLANCO; SILVA, 2017), que é uma revisão sistemática de literatura realizada nas bases de dados Scielo Library, BI-REME Biblioteca, Science Direct, ACM Library e IEEE Xplore Digital Library e nos periódicos Revista Brasileira de Informática na Educação e a Revista de Novas Tecnologias na Educação. O estudo procurou artigos que constatavam a existência de ferramentas relacionadas com gamificação e dificuldades de aprendizagem de matemática e/ou Discalculia. De 2008 trabalhos, nenhum eram relacionando gamificação e dificuldades de matemática. Por fim concluiu-se que:

"identifica-se a necessidade de pesquisas sobre esta temática, já que as dificuldades de aprendizagem na Matemática são frequentes em sala de aula, e a gamificação tem-se mostrado uma ferramenta promissora nos ambientes de ensino e aprendizagem em todos os níveis de ensino" (NETO; BLANCO; SILVA, 2017).

No entanto para (DICHEVA *et al.*, 2015) que é citado no estudo (NETO; BLANCO; SILVA, 2017), a falta de pesquisa na área é justificada por ser uma temática nova.

Outro fator foi o estudo de (SOUZA, 2016) o qual diz que Cálculo 2 (C2) é uma disciplina das que mais causa a evasão dos alunos do curso de matemática noturno na UnB. Após saber deste estudo houve a comparação da ementa de C2 no curso matemática noturno e de C2 no curso de Engenharias no Gama da UnB e foi constatado que há a equivalência das disciplinas, então foram coletados e analisados as menções de Cálculo 2 (C2) da UnB dos períodos 2/2017 e 1/2018 e verificamos que a maioria das menções está concentrada no Médio (MM). Com o intuito de elevar as menções dos alunos da UnB decidiu-se fazer um jogo para celular com o intuito de inserir no ambiente dos alunos uma ferramenta a mais para ajudar os estudantes a aprender se divertindo.

O último fator foi não ter encontrado nenhum jogo de matemática para o ensino e/ou suporte de EDO de 1ª ordem. Apenas jogos para o ensino fundamental, limite, integral, derivada e um jogo de vídeo-game que aplica equações diferenciais na movimentação dos personagens (princípio da dinâmica de Newton)(GIACINTI et al., 2013).

O desenvolvimento do jogo é para os alunos terem uma ferramenta a mais como meio de treinamento e fixação do conhecimento para aumentarem suas menções.

Existem também estudos mostrando como a tecnologia da suporte para jogos na hora do ensino e ajuda na fixação do conhecimento.

A primeira parte da metodologia seguida foi a pesquisa bibliográfica para levantar o referencial teórico a respeito do auxílio de mapas conceituais, a contribuição efetiva de jogos e seu sucesso no ensino. Já a segunda parte da metodologia foi um relato de experiência aplicado em alunos de C2 na universidade do Gama, utilizando o mapa conceitual e estatísticas levantadas do aprEnDO para avaliar o impacto do aplicativo como ferramenta de suporte ao aprendizado em EDO de 1º nível.

Dado o problema e a justificativa deste trabalho, gerou-se a questão: Como dar suporte no ensino de EDO 1^a ordem apresentados em sala de aula de forma lúdica? A partir deste questionamento, levantou-se o objetivo: desenvolver um jogo para celular Android que dê suporte ao ensino de equações diferenciais ordinárias (EDO) de 1^a ordem. O jogo visa treinar os alunos a reconhecer, classificar e resolver equações presentes no dia-a-dia e no ambiente da engenharia. O jogo conterá 2 módulos com diferentes fases de dificuldades e a funcionalidade do envio de dados colhidos do jogo para análise.

O jogo tem seus requisitos definidos e a documentação para auxílio de entendimento e contribuição. Com o jogo pronto será aplicado em um grupo da turma de C2 no período do primeiro semestre de 2019 para que possa ser gerado dados e estatísticas para concluir se o jogo trouxe alguma eficiência no aprendizado ou não.

Será aplicado um mapa conceitual à turma para analisar a fixação do conhecimento e ocorrerá medições além das estatísticas do jogo pela comparação das notas de provas que a turma realizará. A comparação só será possível porque outras turmas de C2 não participantes da estratégia do jogo farão a mesma prova.

O capítulo 2 abordará o referencial teórico, dando ênfase nos baixos indíces de classificação do Brasil no conhecimento de matemática, apoiando a gamificação e jogos como uma prática que deixa as tarefas e atividades mais divertidas, revisando conceitos de engenharia de software para desenvolvimento de jogos e aplicação de Mapas Conceituais como ferramenta de avaliação de aprendizagem. O capítulo 3 aborda ED para introduzir um nivelamento de conteúdo a ser abordado no jogo. O capítulo 4 explica a metodologia do trabalho seguida. O capítulo 5 é o maunal do aprEnDO que explica as fases do jogo, como espera-se que ele seja jogado e fotos do aplicativo. O capítulo 6 fala a respeito da engenharia de software aplicada no projeto, cita requisitos do jogo, artefatos de auxílio, ambiente de desenvolvimento, o banco de dados, como é o processo de empacotamento e o servidor que recebe dados de jogo. O Capítulo 7 apresenta a conclusão do trabalho e o capítulo 8 mostra as referências do trabalho.

2 Referencial Teórico

O referencial teórico presente discorrerá a respeito de 4 temas para defender a ideia deste trabalho. O primeiro tema contextualiza o Brasil com a matemática, depois abordaremos o uso de jogos como um facilitador no ensino, seja para jogos de matemática ou não, sejam jogos eletrônicos ou não. O terceiro tema justificará o uso do mapa conceitual como uma ferramenta de validação de conhecimento adquirido e por fim trará conceitos da engenharia de software para um bom processo de desenvolvimento de software em jogos e/ou aplicações gamificadas.

2.1 Brasil com matemática

No Brasil 70.3% dos alunos estão abaixo do nível de conhecimento em matemática. Nível este que de acordo com a Organização para a Cooperação e Desenvolvimento Econômico (OCDE) foi estabelecido para medir a capacidade do alunos em exercer plenamente sua cidadania (INEP, 2015a). A qualidade do ensino de matemática no Brasil é ruim de acordo com (ESTADÃO, 2016) (INEP, 2015b). O estudo do INEP é realizado a cada 3 anos e é lançado no final do ano seguinte. Foi realizado pela última vez em 2015 quando o Brasil foi 13º colocado em um estudo com 14 países participantes da OCDE. Ficou na frente da República Dominicana e atrás de países como Coréia do Sul, Canadá, Portugal e Estados Unidos. De acordo com o (ESTADÃO, 2016) a posição do Brasil para a qualidade do ensino de matemática e ciências é 133 entre 139 países participantes.

Um dos porquês desses índices baixos é que existe o desânimo em salas de aula, as vezes por parte dos professores e outras por parte dos alunos. Os professores precisam se reinventar para atrair a atenção dos alunos e melhorar a eficiência do aprendizado em sala de aula. Parte do desânimo dos alunos em sala de aula deve-se por achar a matemática como algo chato, não entenderem o conteúdo e não terem uma base de conteúdo bem solidificada.

Outro problema é que existem poucos estudos relacionando gamificação com matemática (NETO; BLANCO; SILVA, 2017), principalmente quando se fala de matemática no ensino superior. Quando se encontra matemática para nível superior com gamificação os estudos são focados para o conteúdo de cálculo 1 (limite, derivada e integral). Nada foi encontrado relacionado ao contexto de gamificação + equações diferenciais. Nenhum jogo de equações diferenciais (ED) foi encontrado.

O estudo (NETO; BLANCO; SILVA, 2017) fez um levantamento bibliográfico sobre gamificação com matemática e dificuldades no ensino de matemática e não encontrou

nenhum estudo na área de gamificação com dificuldades de aprendizado em matemática. Porém pelo gráfico ?? pode indicar que há a dificuldade de aprendizado, já que ocorrem reprovações na matéria e a menção que mais está presente é a MM.

Uma das maneiras de ajudar os alunos a se interessarem mais em sala de aula e atrair a atenção dos mesmos é utilizar o lúdico, ou seja, aprender brincando. Para isso o uso de computadores ou tecnologias da informação como o celular é útil para melhorar o engajamento nas tarefas, principalmente com exercícios e aplicações para a prática das matérias ensinadas em sala de aula (DUPAUL; STONER, 2007).

2.2 Sucesso de jogos no ensino

Este tópico visa apoiar jogos e gamificação como uma estratégia boa para aprendizado dos jogadores e também como boa ferramenta para ser utilizada como aprendizagem. Para isso serão mostrados citações de autores que reforçam isso que foi dito, assim também como exemplos de casos reais da utilização de jogos em ambientes educacionais.

Jogo é prática que ajuda na concretização do conhecimento, além de tornar o ambiente mais prazeroso (COELHO, 2010).

"O caráter lúdico, bem como a possibilidade de atuação crítica, proporciona ao aluno uma participação efetiva no processo de ensino aprendizagem, se tornando um momento ímpar de crescimento pessoal e coletivo." (COELHO, 2010). O que significa que contribui para o aluno se tornar um ser ativo e pensante, capacitando-o a exercer seu papel como cidadão.

"Os jogos despertam o interesse dos jovens trazendo diversos benefícios aliados à educação[...]"(SILVA et al., 2016)

"Na literatura, encontram-se vários trabalhos que demonstram profissionais de educação utilizando os jogos como ferramenta de auxílio ao aprendizado" (SOUZA; FRANÇA, 2016, p. 3)

"Como a finalidade na sala de aula é estimular ideias dos alunos, ensinar apenas com aulas expositivas tradicionais pode dificultar o aprendizado." (SOUZA; FRANÇA, 2016, p. 4)

"Uma das propostas metodológicas para ensino de engenharia de software e suas disciplinas, são os jogos educacionais. Sabe-se que os jogos educacionais, segundo Nunes e Parreira (2015), têm sido intensamente utilizados por profissionais da área de educação como auxílio para a construção do conhecimento. Em sua pesquisa, Fukusawa et al. (2015) apontam alguns dos benefícios que os jogos educacionais podem trazer ao processo de ensino e aprendizagem como, por exemplo, a motivação e o aprendizado por descoberta. Portanto, os jogos podem proporcionar a vivência em experiências de aprendizagem

concretas (MONSALVE; WERNECK; CESAR, 2010 apud SOUZA; FRANÇA, 2016, p. 4)."

Silva et al. (2015) comentam que uma abordagem alternativa às aulas tradicionais, devido a elas serem mais teóricas e expositivas, é a utilização dos jogos, pois esta abordagem preza por uma teoria de motivação humana como ponto de partida (SOUZA; FRANÇA, 2016).

"Uma das propostas de melhoria de aprendizado em sala de aula são os jogos educacionais" (SOUZA; FRANÇA, 2016, p. 4)

Foram pesquisados nos Anais da base WEI e selecionados os artigos que tivessem trabalhos com jogos que auxiliassem no aprendizado de ensino superior das disciplinas de Engenharia de Software, referencialmente os que validassem com alunos. (SOUZA; FRANÇA, 2016)

Jogos e gamificação diferem-se, porém ambos já vem sendo usados em ambientes de ensino. Existem vários exemplos de casos de sucesso, como por exemplo "O bicho papão da matemática virou um gatinho", é um jogo de matemática para alunos do 1° e 2° ano fundamental.O jogo ajuda a fazer divisões. Segundo a notícia no portal.mec, 300 alunos se beneficiaram deste projeto. Um dos símbolos que ficou marcado era de uma aluna que tinha reprovado, tirava notas baixas, não interagia muito com os outros alunos e acabou se envolvendo, aprendendo o jogo de tal maneira que passou a tirar 10, ir resolver no quadro e se sentir capaz. É relatado também que não melhorou só em matemática, como em outras matérias. Segundo o professor, além da menina citada, muitos outros que não sabiam divisão aprenderam também.link da notícia.

Outros exemplos de jogos sendo utilizados em contextos educacionais: Este estudo (SOUZA; FRANÇA, 2016) fez um levantamento de jogos para o uso específico na engenharia de software. São listados 20 jogos no apêndice, com cada um focado em uma disciplina do curso.

Mais um estudo (SILVA et al., 2016), que é uma proposta de aplicativo gamificado para ensino de cálculo onde é proposto um jogo para o ensino de matemática com o conteúdo voltado para os temas de conjunto, limite, derivada e integral, não é voltado para o tema de EDO 1ª ordem.

Então até aqui é possível ver que existem muitos jogos no ensino. Porém jogos para matemática no ensino superior não foram encontrados muitos trabalhos, e afunilando um pouco mais para jogos de equação diferencial não foi encontrado nenhum.

Atratividade de jogos está relacionada a mecanismos psicológicos e sociais (SOUZA; FRANÇA, 2016)

Para o jogo ser bem aceito e cumprir com a sua meta, ele deve dar uma boa base de conhecimento e motivação (SOUZA; FRANÇA, 2016).

O computador e tecnologias como celular, além de serem ferramentas de auxílio, são também motivadoras para os estudantes (SANTOS, 2017).

Este tópico visa reafirmar o potencial dos jogos tecnológicos para ser usado como ferramenta de atração dos alunos para os colégios e universidades e as citações neste tópico visam reforçar que jogos podem ser utilizados para fazer os estudantes gostarem e se atreverem mais no contexto da matemática. Espera-se que os alunos busquem e tenham a vontade do conhecimento por si próprio para que se tornem mais independentes. Também conclui-se que existem poucos estudos de jogos na área de C2, específico para ED, apesar de terem estudos na área de matemática, estes destinam-se a cálculo 1 e matérias do ensino fundamental.

2.3 Mapas conceituais

Primeiro de tudo, o que é um mapa conceitual (MC) e como fazer um? De acordo com (NOVAK, 2000 apud SOUZA; BORUCHOVITCH, 2009), "mapa conceitual é uma estrutura hierárquica, iniciados por conceitos mais abrangentes, os quais progressivamente vão sendo relacionados com conceitos mais específicos e esclarecendo suas relações de subordinação".

Um Mapa Conceitual é formado por conceitos e palavras de enlace. Um conceito pode ser uma palavra ou uma expressão chave identificado geralmente em um retângulo ou alguma outra forma e palavras de enlace podem ser uma palavra ou uma expressão que conecta conceitos de modo que dois conceitos conectados por uma palavra ou expessão de enlace é chamado de proposição. Podem ser formadas proposições verdadeiras ou falsas.

O MC pode ser alterado tanto em profundidade quanto em extensão. Profundidade se refere a especificação de algum conceito geral granularizando-o em novas proposições, ou seja, novos conceitos e palavras de enlace. Extensão se refere à adição de novos conceitos, porém não a granularização de um conceito anterior.

Um estudo lido foi o "Mapa conceitual: seu potencial como instrumento avaliativo", ele ajudou a entender vantages e desvantagens de um mapa conceitual. Este foi realizado com 32 alunas de pedagogia do 3º semestre que utilizaram o mapa conceitual para sintetizar informações de muitos textos que foram lidos. Todos os mapas eram apresentados para a turma e havia o debate dos mapas em relação a estar abordando a maioria dos conceitos chaves dos textos ou não.

As alunas eram identificadas como Ax (sendo x o número de 1 a 32, que é a quantidade de participantes). Foram realizados entrevistas, questionários e também solicitado

aos grupos de 3 ou 4 alunas que registrassem 3 vantagens e 3 desvantagens percebidos para avaliar a experiência e o potencial do MC. As vantagens elencadas do mapa foram:

• Ajuda identificar as dificuldades de aprendizagem;

A2 diz que "mapas conceituais tornam os conhecimentos mais claros no que se sabe ou não, porque evidencia o que foi aprendido, mostrando também dúvidas, dificuldades e erros" (SOUZA; BORUCHOVITCH, 2009).

• Favorecer a reelaboração de conceitos a sua consequente sedimentação;

O MC deixa claro a reorganização cognitiva, pois os conceitos conforme são aprofundados e entendidos melhor vão se estendendo e as proposições formadas são alteradas.(SOUZA; BORUCHOVITCH, 2009)

• Proporcionar feedback quase imediato;

Pois ao iniciar a elaboração do mapa já percebe-se em quais conceitos há a dificuldade de falar a respeito e de conectar.

• Integração e ampliação dos conhecimentos.

"O trabalho com mapas conceituais nos levou a aprender a identificar os elementos essenciais e inter-relacioná-los"A8 (SOUZA; BORUCHOVITCH, 2009).

Em (SOUZA; BORUCHOVITCH, 2009) é dito que o mapa conceitual além de ser uma ferramenta avaliativa, também se configurou como estratégia de aprendizagem, vantagem enunciada por 31% das duplas participantes. 38% das alunas também declararam que o mapa conceitual possibilita efetivar sucessivas síncreses, análises e sínteses, porém precisa ser discutido em conjunto para sempre aumentar a compreensão.

"Apesar de a aprendizagem implicar a elaboração e a reelaboração do conhecimento pelo educando, ela também permanece refém de interações com os pares e com o professor" (SOUZA; BORUCHOVITCH, 2009, p. 180), ou seja, o aluno não aprende tudo sozinho, são também nas interações com outros envolvidos que as experiências ficam armazenadas e possibilitam chances de aprendizado.

Acima foi citado algumas das vantagens percebidas pelos MCs e também a observação que além da realização do mapa são necessárias interações entre os participantes para a colaboração no aumento do conhecimento e correções de potenciais erros existentes nos mapas de alguns. Abaixo encontra-se observações e obstáculos encontrados no mesmo estudo a respeito do mapa conceitual:

• (CORREIA; VALLE; SILVA, 2009) cita a dificuldade de corrigir mapas conceituais comparando a questões de múltipla escolha.

Primeiro porque o mapa pode ser muito extenso. Segundo que demanda tempo para olhar todas as proposições e avaliá-las quanto à sua corretude e a veracidade. Terceiro porque cada mapa é diferente, único e demanda tempo para ser analisado, principalmente se tiver muitos mapas da turma. Devido a estas dificuldades e também pelo fato dos alunos aprenderem mais estando incluídos na correção, pois podem comparar com seus mapas com outros, que os autores (CORREIA; VALLE; SILVA, 2009) disseram ser necessário incluir os alunos na etapa de correção.

• Leva tempo e exige certo treino, prática e conhecimento para conseguir organizar as informações existentes em seu cérebro de modo a expô-los em conceito e conectores.

Então no ínicio pode ser trabalhoso e complicado fazer um mapa claro e entendível.

Passado o ponto de explicar mapas conceituais, é necessário entender o que ele é e para que serve. O MC é uma ferramenta de avaliação de conhecimento, que pode ser usado para ver onde as pessoas estão errando nos conceitos e nas proposições e também avaliar o quão extenso é a rede de conhecimentos da pessoa em determinado tema (SOUZA; BORUCHOVITCH, 2009).

Este estudo (COSTA; SILVA; RIBEIRO, 2012) por concordar com (NOVAK, 2000) que os MCs contribuem para o ensino-aprendizagem utilizou o mapa conceitual para conhecer o que os alunos sabem sobre Gravitação.

Tendo visto a utilização de mapas conceituais como uma ferramenta de avaliação, deseja-se utilizar o Mapa Conceitual (MC) também neste trabalho como ferramenta que avalia a fixação de conteúdo dos alunos.

2.4 Engenharia de software

Hoje em dia softwares estão presente em todos os lugares, tudo que a gente 'toca'. Softwares não se desgastam (físicamente) como hardware, mas estão sujeitos a modificações durante o seu ciclo de vida (FILHO, 2015). As modificações as vezes podem causar efeitos acidentais e/ou não esperados. Um software precisa de modificações conforme o tempo passa e para isso acontecer com mais tranquilidade exige a necessidade de uma documentação. Quanto melhor a documentação, mais fácil para entender. Para manter um bom projeto de software é necessário ter ou criar uma cultura de engenharia de software para adotar as melhores práticas. As quais que compreendem os pilares de custo, tempo de desenvolvimento e qualidade de software (FILHO, 2015).

No glossário de terminologia de Engenharia de Software da IEEE Std 610.12-1990, define-se Engenharia de Software como a aplicação de uma abordagem sistemática, disciplinada e quantificável para o desenvolvimento, operação e manutenção de um software; isto é aplicação de engenharia de software. Engenharia de software também pode ser o estudo das abordagens (IEEE, 1990).

Como softwares precisam de manutenção corretiva e/ou evolutiva, também está sujeito a inserção de defeitos decorrentes do desenvolvimento. Estes defeitos podem ser vistos e consertados antes da entrega (FILHO, 2015) ou ser descoberto pelo usuário que está utilizando e não espera se deparar com o erro. Por isso além de uma documentação, software também precisa de testes, estes que quando bem feitos asseguram a qualidade e confiabilidade do produto de software.

Engenharia de software está presente e tem descrições de melhores práticas em todas as fases desde a concepção, elaboração, construção e transição de um projeto. Seja em um projeto com metologia tradicional ou ágil, um projeto passa por essas fases. A engenharia de software "tem como objetivo apoiar o desenvolvimento profissional de software, cobrindo todos os aspectos da produção de um software." (MONSALVE; WERNECK; CESAR, 2010 apud SOUZA; FRANÇA, 2016)

[(SOUZA; FRANÇA, 2016)] Benitti e Molléri (2008) concordam que a engenharia de software é uma área muito jovem e sofre contínuas mudanças nos seus fundamentos tecnológicos concretizadas nos métodos e ferramentas de suporte, portanto necessita de métodos de ensino lúdicos e dinâmicos que possam contribuir na aprendizagem do estudante.

Eng de Software percorre o levantamento de requisitos de um jogo, o planejamento e desenvolvimento das funcionalidades, testes para garantir que está tudo funcionando como o occorido e o empacotamento e a entrega para a finalização. Com o tempo também podem precisar de melhorias, manutenção e evoluções. Além de agregar valor para o cliente, também é necessário gerenciar sua infra-estrutura, realizar as configurações para a padronização e fazer o controle de mudanças e gestão da qualidade.

2.4.1 Teste de software

Teste de software é uma atividade importante do desenvolvimento de software pois está relacionado à qualidade de software, este pode ajudar a verificar o cumprimento dos requisitos.

(VALLE, 2017, p. 17) diz que um teste tem basicamente 4 fases, o planejamento, projeto, a execução e a avaliação do resultado dos testes. Já (PRESSMAN, 2011), (DE-LAMARO; MALDONADO; JINO, 2016) dizem que os testes devem acontecer ao longo do processo de desenvolvimento do software, pois é o momento onde as funcionalidades

estão frescas no pensamento do desenvolvedor e este deve garantir com testes que ocorra o funcionamento esperando das funções.

2.4.2 Plataformas mobile

Existem diversas maneiras de se construir APP para mobiles. Algumas apenas para celulares Android, outras para sistemas iOS e outras para ambas plataformas. Existes estratégias de desenvolvimento onde o código gerado já é nativo da própria plataforma alvo e outras onde o código é transformado para a plataforma nativa. Existe um projeto chamado kivy, onde é escrito código Python e o kivy converte o código para gerar aplicações para Android e iOS.

Outra estratégia é o react native, onde o código é escrito utilizando HTML, CSS e JavaScript com o react e parte desse código é convertido em nativo para rodar com maior eficiência nos celulares.

3 Equação Diferencial

Este capítulo fará uma breve explicação sobre ED revisando conteúdos que estarão presente no jogo aprEnDO.

Na engenharia e na natureza existem problemas e fenômenos que envolvem tempo, distância, tamanho, velocidade, volume entre outros. É possível fazer modelagens desses casos e relacioná-los a equações. Em alguns casos essas equações incógnitas envolvem uma taxa de variação, quando isso ocorre dizemos que as equações estão relacionadas às chamadas equações diferenciais (ED).

Equações diferenciais envolvem derivadas de uma ou mais variáveis dependentes em relação a uma ou mais variáveis independentes (NÓBREGA, 2016).

3.1 Classificação de ED

As ED podem ser classificadas por tipo, ordem e linearidade.

3.1.1 Tipo

Podem ser ED ordinárias ou parciais, de acordo com o número de variáveis independentes. Quando a ED tem apenas uma variável independente, é chamada de ED ordinária (EDO). Quando a ED tem mais que uma variável independente, é chamada de ED parcial (EDP). Uma EDP usa o símbolo ∂ , normalmente chamado de del.

Nas equações 3.1, 3.2 e 3.3 é possível ver exemplos de EDO. Nas equações 3.4, 3.5 e 3.6, EDP.

$$\frac{dy}{dx} = x^2y\tag{3.1}$$

$$\frac{dy}{dx} = sen(x) \tag{3.2}$$

$$\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = 0\tag{3.3}$$

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial t^2} = 0 \quad , \quad u = f(x, t) \tag{3.4}$$

$$\frac{\partial^2 u}{\partial x^2} + 5\frac{\partial u}{\partial t} + 3u = 0 \quad , \quad u = f(x, t)$$
 (3.5)

$$\frac{\partial u}{\partial t}(x,t) = 3\frac{\partial^2 u}{\partial x^2}(x,t) \tag{3.6}$$

Em 3.1, 3.2 e 3.3 é possível observar que a variável dependente y é derivada apenas em relação à variável independente x.

Em 3.4, 3.5 e 3.6 é possível observar que a variável u é dependente das variáveis x e t independentes.

3.1.2 Ordem

Uma EDO pode ser classificada de ordem 1 até n. A ordem da equação diferencial é a ordem da derivada de maior grau que aparece na função. Abaixo seguem exemplos de EDOs com ordem diferente para evidenciar melhor.

$$y'' - (10y')^4 + 37y = 0 (3.7)$$

Em 3.7 uma EDO de segunda ordem por conta do termo y''.

$$dy/dx + sen(x) - y = 1 (3.8)$$

Em 3.8 uma EDO de primeira ordem, pois a maior quantidade de derivadas presente é 1.

$$\frac{\partial^2 u}{\partial x^2} + 5\frac{\partial u}{\partial y} - 3x = 0 \quad , \quad u = f(x, y)$$
(3.9)

Em 3.9 é exemplificado uma EDP de segunda ordem.

3.1.3 Linearidade

As equações diferenciais podem ser classificadas em linear e não-linear. Uma equação linear é aquela que possui apenas funções lineares no lado esquerdo e direito da igualdade. A seguir um exemplo da forma geral de uma equação linear.

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$
(3.10)

Para ser linear, é necessário cumprir 2 condições.

- 1. a variável dependente y e todas as suas derivadas devem ter grau 1 (elevado a 1)
- 2. cada coeficiente é dependente apenas de 1 variável independente x.

Exemplos de equações lineares:

$$-x^2y''' + 3xy'' + 2y = 0 (3.11)$$

$$2x\frac{d^3y}{dx^3} + (x-4)y = 0 (3.12)$$

$$xdy + (y - xy - e^x)dx = 0 (3.13)$$

Exemplos de equações não lineares:

$$yy'' - (2x - 3)y' - 1y = 3x (3.14)$$

$$x\frac{d^3y}{dx^3} + (\frac{d^2y}{dx^2})^2 = 0 (3.15)$$

A equação 3.11, 3.12 são ED lineares pois cumprem as 2 propriedades, já que o termo dependente y e todas suas derivadas tem grau 1 e todos os seus coeficientes estão apenas em função da variável independente x.

A equação 3.13, apesar de não estar escrita na mesma forma de 3.10 também é uma ED linear. Psode ser reescrita para a forma 3.10, quando dividida a equação por dx,

$$x\frac{d^{1}y}{dx^{1}} + (y - xy - e^{x}) = 0,$$

e colocando y em evidência e somando e^x de ambos os lados:

$$x\frac{d^1y}{dx^1} + (1-x)y = e^x.$$

Então é possível notar que a variável y dependente e todas suas derivadas tem grau 1 e os coeficientes estão função da variável independente x, caracterizando-a como linear.

A equação 3.14 apesar de ter o termo independente y e todas suas derivadas de grau 1, apresenta um coeficiente em função da variável dependente y, no termo yy''

A equação 3.15 também é não-linear pois apresenta a derivada de ordem 2 elevado ao grau 2, descumprindo com a propriedade de ter apenas termos lineares.

Para uma ED não ser linear basta que não cumpra 1 das duas propriedades citadas acima.

3.2 Solução de ED

Resolver uma ED significa encontrar a função que satisfaça a equação diferencial. É necessário integrar uma diferencial para encontrar a solução. Para dizer que uma equação soluciona uma EDO, basta que qualquer função f definida em algum intervalo I ao ser substituída na equação diferencial reduza a equação a uma identidade (NÓBREGA, 2016).

Por exemplo, considere a equação diferencial abaixo e a sua solução

$$y' = 25 + y^2 (3.16)$$

$$y = 5\tan(5x) \tag{3.17}$$

A equação y é considerada solução, pois ao se substituir y e sua derivada na ED 3.16 é encontrada a identidade 0=0.

3.2.1 Tipos de solução

Existem três tipos de solução de uma EDO, a geral, a particular e a singular.

- geral: Onde o número de possíveis constantes é n. Com n da ordem da EDO, a mesma quantidade das unidades da ordem de integração.
- particular: É a solução deduzida da solução geral, atribuindo valores particulares a constante, ou seja, o número máximo possível de constantes é 1, com um valor específico.
- singular: Não é uma solução deduzida da solução geral e só existe em alguns casos.

A seguir será mostrado um exemplo de solução geral de uma ED.

$$\frac{dy}{dx} = x$$
 é o mesmo que $y' = x$, com y em função de x => y(x)

integrando dos dois lados, temos que:

$$\int y'dy = \int xdx = y + c1 = \frac{x^2}{2} + c2 \tag{3.18}$$

c2 - c1 = C, então temos a solução geral

$$y = \frac{x^2}{2} + C (3.19)$$

Relacionado à solução específica temos os problemas de valor inicial (PVI), onde após encontrar a solução geral, deve-se substituir o valor inicial (VI) na equação para determinar o valor específico da constante.

3.2.2 Equação de variáveis separáveis

São as equações em que um lado da igualdade pode-se separar uma variável e do outro lado a outra variável mais uma constante arbitrária (C). Para obter a solução geral de equações separáveis é necessário isolar os termos e integrar os dois lados. Em caso de ser fornecido valor inicial, é possível obter a solução particular.

Exemplo:

$$Mdx = -Ndy$$

Com M = M(x) e N = N(y) podendo assumir funções de uma variável, produto de uma só variável ou constante. Abaixo são mostrados exemplos de EDO separáveis:

$$xdx=ydy+C$$

$$x^2y'y-2xy^3=0$$
é igual a $x^2yy'=2xy^3$ e também é igual a $\frac{x^2}{2x}=\frac{y^3}{yy'}$
$$xdx+sen(x)=\frac{1}{y}dy-6y$$

Abaixo são mostrados exemplos de EDO não separáveis:

$$x^2-3xy+5y^2=0$$
, tentando separar, obtemos $x(x-3y)=y^2$
$$(x^2+y^2)dx+(x^2-xy)dy=0$$

$$x^3+x^2y+y^3=0$$
, tentando separar, obtemos $x^3+(x^2y)=-y^3$

Nas equações a,b,c vemos que não é tão trivial separar a equações para integrar ambos os lados. Devido às equações de variáveis não separáveis, temos as equações homogêneas para tentar contornar esse problema não separação.

3.2.3 Equação Homogênea

Algumas EDOs não separáveis podem se tornar separáveis fazendo uma troca de variável. Uma EDO é chamada de homogênea se for satisfeita a seguinte relação:

$$f(kx, ky) = k^m f(x, y) \tag{3.20}$$

com m sendo o grau da homogeneidade.

Equações homogêneas podem ser escritas na forma

$$Mdx + Ndy = 0 \quad , \quad M(x) \quad e \quad N(y) \tag{3.21}$$

com M e N sendo homogêneas do mesmo grau.

A seguir um exemplo de EDO não separável e homogênea sendo transformada em uma separável após uma troca de variáveis.

$$f(x,y) = (2x - y)dx - (x + 4y)dy, (3.22)$$

vamos substituir x por kx e y por ky para verificar que a equação é homogênea

$$f(kx, ky) = (2kx - ky)dx - (kx + 4ky)dy$$

$$f(kx, ky) = k(2x - y)dx - k(x + 4y)dy$$

$$f(kx, ky) = k[(2x - y) - (x + 4y)]$$

$$f(kx, ky) = k^{1}f(x, y).$$
(3.23)

É uma função homogênea de grau 1

Agora que vimos que é uma função homogênea, podemos fazer uma troca de variável para transformar a função em uma equação de variáveis separáveis.

3.2.4 Equação Exata

Uma EDO é denominada exata se puder satisfazer duas condições:

• 1^a: ser escrita na forma de:

$$Mdx + Ndy = 0; (3.24)$$

Com M = M(x,y) e N = N(x,y).

• 2^a: estabelecer a seguinte igualdade:

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Algumas vezes, uma função não exata pode ser transformada em exata, multiplicandoa por um fator de integração $\mu(x)$, que resulta em :

$$\mu M(x,y)dx + \mu N(x,y)dy = 0$$

3.2.5 Equação Linear 1^a ordem

Uma equação linear de 1ª ordem pode ser definida da forma geral como:

$$a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$
 (3.25)

dividindo toda a equação por a1, teremos $a_0(x)/a_1(x)$ uma função P(x) e $g(x)/a_1(x)$ uma função f(x). Reescrevendo a equação, teremos dy/dx + P(x)y = f(x). Multipliquemos agora toda a equação por dx e passemos o termo f(x) para o lado esquerdo da equação e teremos

$$dy + (P(x)y - f(x))dx = 0$$

Multiplique a equação por $\mu(x)$

$$\mu(x)dy + \mu(x)(P(x)y - f(x))dx$$

Pelo critério para ser uma ED exata citado em (NÓBREGA, 2016), a equação é uma diferencial exata se

$$\frac{\partial}{\partial x}\mu(x) = \frac{\partial}{\partial y}\mu(x)(P(x)y - f(x))$$

Do lado esquerdo temos uma derivada ordinária e do lado direito derivamos em y.

$$\frac{d\mu(x)}{dx} = \mu(x)P(x)$$

Agora vamos multiplicar a equação por $\frac{dx}{\mu}$ para obter uma ED separável

$$\frac{d\mu}{\mu} = P(x)dx$$

Para resolver a equação separável, integramos ambos os lados

$$\int \frac{d\mu}{\mu} = \int P(x)dx$$

Como resultado, obtemos

$$ln|u| = \int P(x)dx$$

Multiplicando por e de ambos os lados

$$e^{\ln|\mu|} = e^{\int P(x)dx}$$

Dessa maneira encontramos o fator integrante como sendo

$$\mu(x) = e^{\int P(x)dx}$$

Dessa maneira podemos resolver equações diferenciais exatas e equações diferenciais de primeira ordem

4 Metodologia

Utilizou-se a pesquisa bibliográfica e um relato de experiência. A pesquisa bibliógráfica visa pesquisar e conhecer a literatura existente para levantar um referencial teórico a respeito do tema a ser tratado. Esta serviu para levantar o referencial teórico a respeito do auxílio de mapas conceituais, a contribuição efetiva de jogos e seu sucesso no ensino e os conceitos da Engenharia de Software.

A segunda parte da metodologia foi um relato de experiência da aplicação do jogo aprEnDO em alunos de C2 na universidade do Gama, utilizando o mapa conceitual e estatísticas levantadas do jogo para avaliar o impacto do aplicativo como ferramenta de suporte ao aprendizado em EDO de 1º nível.

O conteúdo da matéria ministrado aos alunos durará cerca de 1 mês. Durante os dias que estará sendo ensinado a matéria, a turma estará treinando a fixação do conteúdo também com o jogo e enviando suas estatísticas para um servidor central. Após isso solicitará aos alunos interessados para realizar um mapa conceitual a respeito do domínio do conteúdo de equações diferenciais. Espera-se que eles produzam em grupos de 3 ou 4 pessoas os seus conhecimentos até o momento sobre equações diferenciais.

Espera-se encontrar no mapa os conceitos de ordem de ED, tipo, linearidade, homogeneidade e técnicas de solução de uma EDO de 1ª ordem separável, exata, não exata, homogênea e não homogênea. Estes são os temas abordados no jogo e exigido de conhecimento para poder avançar na fases dos módulos.

A análise dos mapas conceituais se dará qualitativamente, pois fica subjetivo a maneira como os alunos selecionam os conceitos, as palavras de enlace e suas proposições, e também faz-se necessário avaliar se as proposições estão corretas e se as ligações criadas são verdadeiras.

A análise de estatísticas enviadas do jogo será quantitativa e exibirá um gráfico de análise.

Todos os alunos da Faculdade do Gama que cursam C2 no período 1/2019 independente da turma, participarão de uma prova compartilhada formulada pelos professores. Essa prova visa medir o conhecimento dos alunos de diferentes turmas. Uma das questões será de EDO 1ª ordem, esta questão será utilizada para a comparação entre os alunos participantes do jogo e o restante não participante. A questão será um indicador de melhoria utilizado para a análise.

5 Engenharia de Software

5.1 Requisitos de Software

Os requisitos de software foram levantados e utilizados na hora do desenvolvimento para alcançar os objetivos elencados para o jogo.

- Ter um módulo para classificação de EDO
 - Ter fase de classificação de ordem
 - Ter fase de classificação de tipo
 - Ter fase de classificação de linearidade
 - Ter fase de classificação de homogeneidade
 - Ter fase de classificação de separável
 - Ter fase de classificação de exata
 - Escolher 20 questões aleatórias do banco de equações
- Ter um módulo para resolução de EDO de 1ª ordem
 - Ter fase de resolução de EDO 1ª ordem homogênea
 - Ter fase de resolução de EDO 1ª ordem não homogênea
 - Ter fase de resolução de EDO 1ª ordem exata
 - Ter fase de resolução de EDO 1ª ordem não exata
 - Escolher 10 pares de equações aleatórias do banco de equações
- Estar disponível para download no google play
- Sinalizar ao usuário fases concluídas
- Permitir envio de bugs e erros
 - Notificar se o erro é por falta de internet
 - Notificar se o erro é por problema do servidor
- Permitir envio de sugestões e feedback
 - Notificar se o erro é por falta de internet
 - Notificar se o erro é por problema do servidor

- Ter um módulo de envio de estatísticas
 - Identificar o aluno pela matrícula
 - Enviar estatísticas de classificação
 - * armazenar fases concluídas
 - * armazenar quantidade de vezes que cada fase foi concluída
 - * armazenar 20 questoes presentes na tentativa
 - * armanezar tempo total gasto em cada conclusão
 - Enviar estatísticas de resolução
 - * armazenar fases concluídas
 - * armazenar quantidade de vezes que cada fase foi concluída
 - * armazenar 10 questoes presentes na tentativa
 - * armanezar tempo total gasto em cada conclusão
 - Sinalizar ao usuário quando a estatística for enviada
 - Sinalizar ao usuário quando a estatística não for enviada
 - * Notificar se o erro é por falta de internet
 - * Notificar se o erro é por problema do servidor

5.2 Prototipação

A prototipação não seria utilizada, até deparar-se com o problema de não saber como seria a imagem final das telas, então optou-se por utilizar a prototipagem de baixa fidelidade, onde o importante seria ter uma noção geral de como seriam as telas. Desenhou-se então no papel um exemplo de como imaginava-se que seria a tela final do jogo. O primeiro desenho foi o seguinte

Figura 1 – Prototipação das telas iniciais do jogo

Figura 2 — Prototipação das telas dos módulos

Figura 3 – Prototipação das telas dos módulos

A 2 retrata como seria o jogo enquanto pensava-se que existiria os níveis de dificuldades fácil, médio e difícil. Depois houve o mapeamento dos níveis de dificuldade para o indicado na figura 3.

5.3 Banco de dados

Antes de existir o modelo definitivo dos arquivos de seeds, foi modelado a primeira versão do modelo relacional. Este modelo tinha 5 entidades, cada uma com seus atributos. As entidades modeladas foram:

- EQUAÇÃO_DIFERENCIAL com os atributos linearidade, separável, homogênea, exata e o id como chave primária.
- ORDEM com os atributos primeira, segunda, terceira, ordem superior
- DIFICULDADE com os atributos fácil, facilmedio, medio, mediodificil e difícil
- TIPO com os atributos ordinária e parcial
- PERGUNTA com os atributos img src, largura e comprimento
- RESPOSTA com os atributos img_src, largura e comprimento

Houve a reflexão de criar uma entidade comum para pergunta e resposta como por exemplo IMAGEM, onde PERGUNTA e RESPOSTA herdariam as propriedades. Após outra reflexão, optou-se por não utilizar o modelo do banco porque foi julgado que o problema não era tão complexo e os dados poderiam estar guardados em pastas organizadas ao invés de um banco.

Na pasta banco existe um arquivo chamado **seeds.txt** que é o arquivo com as equações diferenciais para alimentar o banco de dados da aplicação aprEnDO. O script **equações.js** lê o arquivo de seeds equação por equação, faz a requisição para o Wolfran Alpha utilizando os códigos da pasta wolfran_api e requisita todos os pod disponíveis (pod são os arrays de informação disponibilizados). Após ter os pods são filtradas as informações desejadas e salvas em arquivos de informações localizadas na pasta **info**. Os pods apresentam as *urls* das imagens de pergunta e das equações de resposta, quando existe resposta. Equações sem solução só podem ser utilizadas no primeiro módulo do jogo, o de classificação e não são incluídas no módulo de resolução. As imagens de perguntas baixadas são salvas na pasta **pergunta** e as imagens de respostas salvas na pasta **resposta**.

Com todas as informações desejadas de cada equação é possível utilizar o arquivo estatisticas.js que lê todos os arquivos de informaçõe para contabilizar as informações

da quantidade de equações diferenciais, quais tem resposta e quais não, quais são homogêneas, exatas, separáveis, linear, não linear, ordem1, ordem2, ordem3, ordem de 4 para cima são consideradas ordem superior, além de fazer a contagem total,também são indicados o número da equação. Essas informações são escritas num arquivo de controle para que possa ser lido pelo aplicativo aprEnDO e fazer a seleção das equações correta para renderizar, a depender do nível que a pessoa está jogando. O nome do arquivo de controle é **DADOS_GERAIS.json**.

5.4 Ambiente de desenvolvimento

O diagrama de classe foi modelado de modo a facilitar o desenvolvimento, pois deu uma guiada no que precisava ser feito e como as classes do jogo e os componentes se relacionam.

Figura 4 – Diagrama de Classe do AprEnDO

Fonte: do próprio autor

A linguagem de programação utilizada é o nodejs com o framework react native para gerar aplicação em código nativo android. Para baixar os pacotes e fazer o controle dos mesmos está sendo utilizado o nvm e o yarn.

O ambiente de desenvolvimento usa um emulador para simular a tela.

O WolfranAlpha será utilizado para fazer requisições de EDO's para serem utilizadas nas fases do jogo. Com uma chave de teste gratuita serão baixados os metad ados em formato JSON através de uma API. A API baixada do wolfran na linguagem javascript foi baixada no endereço https://products.wolframalpha.com/api/libraries/javascript/. A chave gratuita permite 2000 requisições em um mês, com o código de série: 3GGQAT-98EG4KV6VL. A estratégia é baixar os metadados das requisições de EDO's com equações

e respostas, para comprimir e utilizar no jogo sem que a internet seja um requisito para jogar, porém para enviar dados ao servidor será necessário o acesso à internet.

5.5 Empacotamento

O jogo é empacotado para criar um arquivo .apk, e este que é instalado nos celulares. Para submeter o jogo ao Google Play para os jogadores poderem baixá-lo é necessário criar o .apk. O mesmo só é criado sempre que tem alguma nova atualização no jogo, seja no banco de equações ou manutenção corretiva ou evolutiva do jogo.

O empacotamento do jogo ocorre dentro da pasta do projeto react native. É utilizado o comando 'npm run android'.

5.6 Servidor aprEnDO

O servidor aprendo hospedado no heroku serve para receber estatísticas dos aplicativos enviados pelos alunos. Os alunos para enviar a estatística precisam informar o número da matrícula. As informações são enviadas em formato JSON e armazenadas no banco de dados integrado com o servidor.

O jogo aprEnDO além do aplicativo de celular tem um servidor para contabilizar dados do jogo. O servidor está hospedado no heroku utilizando uma contra free que esteve disponível durante a fase de teste dos alunos, apesar de gratuito comparado com a necessidade que era necessário deu para suprir todas as expectativas. Junto com a aplicação foi adicionado um plugin de banco de dados mongodb. Este banco armazenou em um documento os metadados do jogo. O mongodb é um add-on no mLab que permite integração com o heroku, ele permite uma conta temporária com uma quantidade limitada de capacidade de dados, mas para o necessário que são apenas arquivo json. O único problema é que o mLab não indica utilizar a conta free para a produção por não produzir replicação, porém o banco estava sendo acompanhado muitas vezes por dia para coletar os dados recebidos dos alunos. O servidor foi escrito em node.js. O script index.js do servidor cria uma rota /estatísticas que é a utilizada pelos aplicativos para enviar a requisição POST.

O servidor está hospedado no github do heroku, pela interface da linha de comando (CLI) pode ser clonado o projeto com o comando 'heroku git:clone -a servidor-aprendo'. Para desenvolvimento foi utilizado uma única branch, que foi o necessário. Mais branches seriam criadas, caso fosse necessário. Tendo em vista que o servidor deveria estar pronto até o dia 10 de maio, que era o início da data de aplicação do jogo com os alunos, até esta data o servidor estava sendo desenvolvido e testado, o único problema crucial que poderia ocorrer seria não realizar os commits dos códigos adicionados e removidos. Assim que o

servidor estivesse pronto, a expectativa era não precisar alterar mais código nele, apenas se o servidor quebrasse por algum caso inesperado, aí sim o servidor teria de entrar no ar novamente e novas branches de correção seriam criadas para não impedir o funcionamento parcial do servidor. Porém como os logs do servidor estavam sendo acompanhados muitas vezes por dia durante o período de aplicação e o servidor não caiu nenhuma vez, não foi necessário criar branches adicionais para a correção de erros.

Ao receber os dados json enviados do aplicativo do celular para o servidor, o mesmo concatena todos os dados que chegam em uma variável apenas. Ao terminar a leitura dos dados de chegada eles são formatados é escrito uma resposta de sucesso verdadeiro, a função 'lê histórico' é chamada e a resposta é encerrada.

A função 'lê histórico' recupera o documento existente no banco de dados heroku_41w8651l hospedado no mLab, da coleção chamada histórico. A função analisa checa se a matrícula recebida pela requisição já havia alguma vez enviado estatísticas ou se é uma matrícula nova. Em caso de matrícula nova, uma nova linha é adicionada com chave primária a matrícula do aluno e salva no banco. Em caso de matrícula existente é iterado sobre classificação e resolução e todas suas fases e incrementado a quantidade de vitórias a mais que foi concluído das fases no jogo e em seguida o arquivo é atualizado no banco do mLab.

6 Manual do aprEnDO

O jogo é composto em 2 pacotes, o pacote de exercícios e o pacote de estatísticas. É na página inicial que você pode escolher o que deseja fazer.

Figura 5 – Tela inicial

Fonte: do próprio autor

6.1 Pacote 1

No pacote de exercícios temos 2 módulos, o de classificação e o de resolução.

6.1.1 Módulo 1

O módulo de classificação objetiva fixar o reconhecimento e classificação de EDs. Este é composto de 6 fases: tipo, ordem, homogeneidade, linearidade, separável e exata respectivamente. Essas fases foram classificadas como sendo da mais fácil para a mais complexa. Para navegar entre as fases basta arrastar a tela para a direita. Cada fase

tem o domínio das suas perguntas e o número fixo de 20 equações que são selecionadas aleatoriamente de acordo com a fase.

As perguntas de tipo são:

- Escolha a ED ordinária
- Escolha a ED parcial

As perguntas de ordem são:

- Escolha a ED de ordem 1
- Escolha a ED de ordem 2
- Escolha a ED de ordem 3
- Escolha a ED de ordem superior

As perguntas de homogeneidade são:

- Escolha a ED homogênea
- Escolha a ED NÃO homogênea

As perguntas de linearidade são:

- Escolha a ED linear
- Escolha a ED NÃO linear

As perguntas para a fase separável são:

- Escolha a ED separável
- Escolha a ED NÃO separável

As perguntas se exata são:

- Escolha a ED exata
- Escolha a ED NÃO exata

Figura 6 – Modo de classificação parte 1

Figura 7 – Modo de classificação parte 2

Figura 8 – Modo de classificação parte 3

As fases de classificação apresentam 4 equações como opção sendo que apenas 1 é a correta. Ao pressionar cada opção por um tempo aparecerá a imagem da equação em uma janela modal para tentar melhorar a visualização. Para escolher uma opção basta dar um toque na opção desejada. Em caso de acerto da equação carregará automaticamente a próxima pergunta. Em caso de erro aparecerá o feedback da escolha da opção inválida. Ao fim da fase será redirecionado novamente para o modo de classificação, após a parabenização do jogador, onde é possível escolher outra fase para jogar ou voltar para trocar o módulo.

Figura 9 – Exemplo da fase de classificação de homogeneidade

Figura 10 – Exemplo da fase de classificação de tipo

Escolha a ED: ordinaria
$$7 \times \frac{\partial u(x, y)}{\partial x} + 3 \times \frac{\partial u(x, y)}{\partial y} = 0$$

$$\frac{\partial^2 u(x, y)}{\partial x^2} - \frac{\partial^2 u(x, y)}{\partial y^2} = 0$$

$$\frac{\partial u(x, t)}{\partial t} = -2 \times \frac{\partial^6 u(x, t)}{\partial x^6}$$

$$y'(x) = \frac{x - y(x)}{x + y(x)}$$
Fo

Figura 11 – Feedback fornecido à uma tentativa inválida

Figura 12 – Tela de finalização do modo de classificação

6.1.2 Módulo 2

O módulo de resolução visa fixar o conhecimento de resolução de EDOs de 1ª e tem 4 fases. São elas homogênea, NÃO homogênea, exatas e NÃO exatas. Este módulo estão presentes APENAS equações diferenciais ordinárias de primeira ordem.

Figura 13 – Modo de resolução parte 1

Figura 14 – Modo de resolução parte 2

Para isso jogaremos o jogo da memória, o qual tem o objetivo de encontrar as cartas gêmeas. Uma carta contém a EDO proposta e a carta gêmea contém a solução correta.

Existem 2 campos reservados na tela para mostrar as cartas selecionadas. O jogo é composto de 20 cartas, 10 EDO e 10 soluções de EDO. Cada carta é selecionada com um toque sobre ela, onde sua face será mostrada e seu conteúdo se mostrará em 1 dos 2 campos reservados. Cada clique inverte o lado da carta que está sendo mostrado. Ao selecionar 2 cartas haverá a comparação se são complementares (ou seja, pergunta e resposta). Em caso afirmativo, as cartas congelarão não sendo mais possível interagir com elas, em caso negativo apenas esconderão sua face para que inicie outra tentativa do jogador.

 $\frac{\partial y(x)}{\partial x} = \frac{x^2 + y(x)^2}{x y(x)}$

Figura 15 – Jogo da memória com 1 carta selecionada

Figura 16 – Jogo da memória com alguns pares encontrados

Figura 17 – Vitória de jogo da memória

Ao terminar qualquer fase do jogo da memória, após a confirmação o jogo retornará à tela de seleção da fase a ser jogada.

6.2 Pacote 2

O pacote de estatísticas está relacionado à coleta de dados para a avaliação da quantidade de erros nas questões, quais foram as questões mais erradas e qual fase os estudantes tem mais dificuldade. O envio das estatísticas para o servidor não ocorrerá de forma programada, depende do jogador enviar os dados de acordo com a sua vontade de colaboração através de um botão e a confirmação do envio.

Na tela principal do jogo, terá um botão para enviar sugestões do jogo e outro botão para notificar erros e bugs encontrados. O botão de enviar sugestões de jogo redirecionará a uma tela onde o jogador pode escrever x caracteres de sugestões e confirmar o envio para enviar ao servidor central de análise, essas sugestões podem se tornar *issues* e/ou features novas do jogo. O botão de erros e bugs encontrados redirecionará a uma nova tela

onde é possível escrever e/ou anexar 1 foto do incidente ocorrido, para que este possa ser analisado.

7 Conclusão

Para trabalhos futuros podem ser pensadas em mais funcionalidades para o jogo, como a criação de um personagem e ganho de itens para utilizações no jogo.

Referências

- COELHO, V. M. O jogo como prática pedagógica na escola inclusiva. 2010. Accessado em: 22/10/2018. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/1485/Coelho_Vania_Maria.pdf?sequence=1. Citado na página 12.
- CORREIA, P. R. M.; VALLE, B. X. do; SILVA, J. G. R. J. A. C. da. Mapas conceituais como ferramenta de avaliaÇÃo: Desafios e possibilidades de mudanÇas na sala de aula. **Encontro Nacional de Pesquisa em Educação em Ciências**, 2009. ISSN 21766940. Citado na página 16.
- COSTA, M. H. C. da; SILVA, G. M.; RIBEIRO, T. N. O uso de mapas conceituais como instrumento de avaliaÇÃo no ensino de fÍsica: Um estudo a partir do tema as leis de newton. 2012. Disponível em: http://educonse.com.br/2012/eixo_06/PDF/75.pdf. Citado na página 16.
- DELAMARO, M.; MALDONADO, J.; JINO, M. Introdução ao teste de software. Rio de Janeiro, 2016. Citado na página 17.
- DICHEVA, D. et al. Gamification in education: A systematic mapping study. Educational Technology & Society, v. 18, p. 75–88, 07 2015. Citado na página 9.
- DUPAUL, G. J.; STONER, G. **TDAH nas escolas Estratégias de Avaliação e Intervenção**. 1ª edição. ed. São Paulo: M. Books do Brasil Editora Ltda, 2007. 130 p. ISBN 978-85-7680-017-0. Citado na página 12.
- ESTADÃO. Brasil é um dos piores em qualidade de matemática e ciências. 2016. Accessado em: 20/10/2018. Disponível em: https://educacao.estadao.com.br/noticias/geral,brasil-e-um-dos-piores-em-qualidade-de-ensino-de-matematica-e-ciencias, 10000061150. Citado na página 11.
- FILHO, A. M. D. S. Software everywhere: sobre a demanda de software e da engenharia de software. 2015. ISSN 1519-6186. Disponível em: http://periodicos.uem.br/ojs/index.php/EspacoAcademico/article/view/29122/15124. Citado 2 vezes nas páginas 16 e 17.
- GIACINTI, M. et al. A video game based on elementary differential equations. Scientific Research, 2013. Citado na página 9.
- IEEE. Ieee standard glossary of software engineering terminology. 1990. Disponível em: https://ieeexplore-ieee-org.ez54.periodicos.gov.br/stamp.jsp?tp="https://ieeexplore-ieee-org.ez54.periodicos.gov.br/stamp.jsp.">https://ieeexplore-ieee-org.ez54.periodicos.gov.br/stamp.jsp.
- INEP. Resultados de Leitura e Matemática equipe nacional. 2015. 27-29 p. Accessado em: 26/10/2018. Disponível em: http://download.inep.gov.br/acoes_internacionais/pisa/resultados/2015/pisa_apresentacao_leitura_e_matematica.pptx. Citado 2 vezes nas páginas 9 e 11.
- INEP. Resultados de Leitura e Matemática equipe nacional. 2015. Accessado em: 20/10/2018. Disponível em: http://download.inep.gov.br/acoes_internacionais/pisa/resultados/2015/pisa_apresentacao_leitura_e_matematica.pptx. Citado na página 11.

Referências 55

MONSALVE, E. S.; WERNECK, V. M. B.; CESAR, J. Simules-w: Um jogo para o ensino de engenharia de software. **Anais do III Fórum de Educação em Engenharia de Software**, p. 17–26, 2010. Citado 2 vezes nas páginas 13 e 17.

- NETO, J. C.; BLANCO, M. B.; SILVA, J. A. da. O uso de gamificação e dificuldades matemáticas: possíveis aproximações. **RENOTE Revista Novas Tecnologias na Educação**, v. 15, n. 1, 2017. ISSN 1679-1916. Disponível em: https://seer.ufrgs.br/renote/article/download/75151/42586. Citado 2 vezes nas páginas 9 e 11.
- NOVAK, J. D. Aprender, criar e utilizar o conhecimento: mapas conceituais como ferramentas de facilitação nas escolas e empresas. 2000. Citado 2 vezes nas páginas 14 e 16.
- NÓBREGA, D. D. **Equações diferenciais ordinárias e algumas aplicações**. Caicó-RN, p. 1–18, 27–31, Junho 2016. Citado 3 vezes nas páginas 19, 22 e 25.
- PRESSMAN, R. S. Engenharia de software. São Paulo, 2011. Citado na página 17.
- SANTOS, L. A. F. Software gamificado para auxílio ao ensino e aprendizagem de matemática para crianças. Brasília, Brazil, p. 75, 2017. Citado na página 14.
- SILVA, V. et al. Proposta de um aplicativo gamificado para o ensino de cálculo. Congresso Regional sobre Tecnologias na Educação, Recife/PE Brasil, 2016. Disponível em: http://ceur-ws.org/Vol-1667/CtrlE_2016_AC_paper_14.pdf>. Citado 2 vezes nas páginas 12 e 13.
- SOUZA, L. F. D. de. Evasão do curso de Licenciatura em Matemática (Noturno) da Universidade de Brasília. Brasília, 2016. Citado na página 9.
- SOUZA, M.; FRANÇA, C. O que explica o sucesso de jogos no ensino de engenharia de software? uma teoria de motivação. **WEI 24º Workshop sobre Educação em Computação**, 08 2016. Citado 4 vezes nas páginas 12, 13, 14 e 17.
- SOUZA, N. A. de; BORUCHOVITCH, E. Mapa conceitual: seu potencial como instrumento avaliativo. v. 21, p. 173–192, 2009. Citado 3 vezes nas páginas 14, 15 e 16.
- VALLE, P. H. D. Jogos educacionais: uma contribuição para o ensino de teste de software. São Carlos, 2017. Citado na página 17.