

MITx: 14.310x Data Analysis for Social Scientists

Help

- Module 1: The Basics of R and Introduction to the Course
- ▶ Entrance Survey
- Module 2:

 Fundamentals of
 Probability, Random
 Variables,
 Distributions, and Joint
 Distributions
- Module 3: Gathering and Collecting Data, Ethics, and Kernel Density Estimates

Gathering and Collecting Data

Finger Exercises due Oct 17, 2016 05:00 IST

Ø,

Module 3: Gathering and Collecting Data, Ethics, and Kernel Density Estimates > Summarizing and Describing Data > Kernel Density Estimation, Part III - Quiz

Kernel Density Estimation, Part III - Quiz

☐ Bookmark this page

Question 1

1 point possible (graded)

For a given functional form of the Kernel weighting function, what determines its height?

- a. The number of observations.
- b. The height should be chosen optimally.
- c. The bandwidth
- d. The probability density function of the underlying random variable.

Explanation

Since the kernel function integrates to 1, and the bandwidth represents the (fixed) width of the interval over which it is evaluated, the bandwidth determines the limits of the integral, and thus determines the height of the kernel function.

Summarizing and Describing Data

Finger Exercises due Oct 17, 2016 05:00 IST

Module 3: Homework

Homework due Oct 10, 2016 05:00 IST

- Module 4: Joint,
 Marginal, and
 Conditional
 Distributions &
 Functions of Random
 Variable
- Module 5: Moments of a Random Variable,
 Applications to
 Auctions, & Intro to
 Regression
- Module 6: Special
 Distributions, the
 Sample Mean, the
 Central Limit Theorem,
 and Estimation

Submit You have used 0 of 2 attempts

Question 2

(d)

(A)

1 point possible (graded)

Which of these would be an unsuitable Kernel? (Select all that apply)

- a. A hump-shaped (inverted U) function.
- b. A V-shaped function.
 - c. An inverted V-shaped (pyramid) function.
- d. A bell-shaped function.

Explanation

The goal of kernel density estimation is to estimate random variables' probability density functions. We turn to kernel density estimates to obtain a smoother, less variable representation of the underlying data, than a histogram.

Intuitively, any function that weights observations on the boundary of the intervals more than observations at the center of the interval surrounding a given point, will lead to higher variance. This would defeat the purpose of a kernel, as it would result in a less smooth estimator.

- Module 7: Assessing and Deriving
 Estimators Confidence Intervals, and Hypothesis Testing
- Module 8: Causality,
 Analyzing Randomized
 Experiments, &
 Nonparametric
 Regression
- Module 9: Single and Multivariate Linear
 Models
- Module 10: Practical Issues in Running Regressions, and Omitted Variable Bias
- Module 11: Intro to
 Machine Learning and
 Data Visualization
- Module 12: Endogeneity,

Instrumental Variables,
and Experimental
<u>Design</u>

- Exit Survey
- **▶** Final Exam

© All Rights Reserved

© 2016 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

