Exhibit G

Parameter	Potable Soun	e Sample Even	t 1 Sample Event 1	Sample Event 1	Sample Event 2	2 Sample Event 2 Static fire	Sample Event 3	Sample Event 3	Sample Event 4	Sample Event 4	Sample Event 4	Sample Event 5	Sample Event 5	Sample Event 6	Sample Event 6	Sample Event 7		Sample Event 8	Sample Event 8	Sample Event 9	Sample Event 9	Sample Event	Sample Event	Sample Event	Sample Event 11 Launch	Sample Event	Sample Event	Sample Event	Sample Event	Sample Event	Sample Event	Sample Event	Sample Event
	Water	Test (off pad)	Test (retention pond)	Test Central Outfall	Static fire (off pad)	Static fire (retention pond)	Test (off pad)	Test (retention pond)	Static fire (off pad)	Static fire (retention pond)		(off pad)	(retention pond)	Static fire (off pad)	Static fire (retention pond)	Launch (off pad)	(retention pond)	Static fire (off pad)	Static fire (retention pond)	Wet Dress (off pad)	Wet Dress (retention pond)	10 Deluge Test (off pad)	10 Deluge Test	11 Launch (off pad)	(retention pond)	(off pad)	12 Deluge Test (retention pond)	13 Deluge Test (off pad)	13 Deluge Test	14 Launch 4 (off pad)	14 Launch 4 (retention pond)	15 Deluge Test (off pad)	(retention pond)
Date	8/18/2023	10 71.7	7/28/2023	7/28/2023	8/6/2023	8/6/2023	8/18/2023	8/18/2023	8/25/2023	8/25/2023	8/25/2023	10/23/2023	10/23/2023	10/25/2023	10/25/2023	11/18/2023	11/18/2023	12/29/2023	12/29/2023	2/14/2024	2/14/2024	3/10/2024	3/10/2024	3/14/2024	3/14/2024	4/5/2024	4/5/2024	5/29/2024	5/29/2024	6/6/2024	6/6/2024	7/15/2024	7/15/2024
Chloramines (Lab Titration)	NS	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Chlorine Dioxide Cl2	NS	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Residual,Free(Lab)Tit	NS	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NEG	NEG
CI2 Residual,Total(Lab)Ti	NS	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Turbidity	4.5	130	360	NS	40	65	200	36	8.7	21	16	6.5	20	2.8	3.6	5.71	7.76	11	37.4	29	13.6	1.66	5.59	10.4	5.14	15.1	9.12	ND	2.55	25.2	3.04	59.3 NTU	32.8 NTU
1,1,1-Trichloroethane	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene 1,2,4-	ND ND	ND ND	ND ND	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Trichlorobenzene 1,2-Dichloroethane	ND	ND ND	ND ND	NS	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND
Dichlorophenoxyacet	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND
2,4,5-TP (Silvex)	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND
Acrylamide	NS ND	ND ND	ND ND	NS NS	ND 0.87	ND ND	NS ND	NS ND	NS ND	NS ND	NS ND	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS ND	NS ND	NS ND	NS ND	NS ND	NS ND
Bromoacetic acid	NS	ND	ND	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND
Bromodichlorometha ne	1.89	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND
Bromoform	ND ND	ND ND	ND ND	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Carbon Tetrachloride Chloroacetic acid	ND	ND ND	ND ND	NS NS	ND ND	ND ND	ND NS	ND NS	ND NS	ND NS	ND NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	ND NS	ND NS	ND NS	ND NS	ND NS	NS NS
Chlorobenzene	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND ND
Chloroform cis-1,2-	2.55	ND ND	ND ND	NS NC	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS	NS NS	NS NC	NS NC	NS NC	NS NC	NS NS	NS NS	NS	NS NC	NS NC	NS NC	NS NC	NS NS	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Dichloroethylene Dalapon	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND
(dichloropropionic acid)	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND
Dibromoacetic acid Dibromochlorometha	NS 1.29	ND	ND ND	NS	ND ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NO	NS	NS	NS NS	NS	NS	NS	NS	NS	NS	NS	NS
ne Dichloroacetic acid	1.29 NS	ND ND	ND ND	NS NS	ND ND	ND ND	ND NS	ND NS	ND NS	ND ND	ND NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS
Dichloromethane	ND	ND	ND ND	NS NS	ND	ND	ND ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS NS	NS	NS	NS NS	NS	NS	NS ND	ND ND	ND	ND	ND	ND ND
Dinoseb	ND ND	ND ND	ND ND	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	NS	NS NS	NS	NS NC	NS NS	NS NC	NS NS	NS NS	NS NS	NS NS	NS NC	NS NC	NS NS	NS NC	NS NS	NS	NS	NS NS	NS	NS	NS	NS NS
Epichlorohydrin Ethylbenzene	ND	ND ND	ND ND	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS	NS NS	NS NS	NS NS	NS	NS NS	NS	NS NS	NS ND	ND	NS ND	NS ND	NS ND	ND ND
Glyphosate	NS NS	ND	ND	NS	ND	ND ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
m- and p-Xylene	ND ND	ND ND	ND ND	NS NS	ND ND	ND ND	NS ND	NS ND	NS ND	NS ND	NS ND	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
o-Dichlorobenzene (1.2-DCB)	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND
o-Xylene	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND
(1.4-DCB)	ND ND	ND ND	ND ND	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Picloram	ND	ND ND	ND ND	NS NS	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	NS	NS NS	NS	NS NS	NS	NS	NS	NS NS	NS	NS NS	NS NS	NS NS	NS	NS NS	NS	NS NS	ND	ND ND	ND	ND ND	ND ND	ND ND
Styrene	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Toluene	ND 1.17	ND ND	ND ND	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
trans-1,2- Dichloroethylene	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND
Trichloroacetic acid	NS	ND	ND	NS	ND	ND	NS	NS	NS	NS	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Trichloroethylene Trihalomethanes	ND 0.00573	ND ND	ND ND	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS ND	NS ND	NS ND	NS ND	NS ND	NS ND
(Total) Vinyl chloride	ND ND	ND ND	ND	NS	ND ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS	NS	NS	ND	ND ND	ND	ND	ND	ND
Xylenes, Total	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS 0.00000	NS	NS	NS	NS
Antimony, Total Arsenic, Total	ND 0.00305	ND 0.00532	ND 0.0031	NS 0.0125	ND 0.00156	ND 0.00194	ND 0.00396	ND ND	ND 0.00583	ND ND	ND 0.00657	NS 0.00606	NS 0.00177	NS 0.00105	NS 0.00249	NS 0.0033	NS ND	NS 0.00356	NS 0.00211	NS 0.0124	NS 0.00192	NS 0.00768	NS 0.00214	NS 0.0114	NS 0.00184	NS 0.00201	NS 0.003	0.00122 0.00499	0.00286 0.00188	0.00122 0.00457	0.00112 0.0000169	0.00122 0.00575	0.00261
Barium, Total	0.169	0.285	0.197	0.377	0.0945	0.611	0.129	0.219	0.0922	0.122	0.113	0.248	0.0769	0.117	0.0927	0.151	0.0889	0.0996	0.103	0.132	0.084	0.117	0.0954	0.107	0.0852	0.0942	0.12	0.179	0.0943	0.0917	0.085	0.11	0.194
Beryllium, Total Cadmium, Total	ND ND	0.00365 ND	0.0036 ND	NS ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.00321	ND 0.00237	NS 0.00112	NS 0.000203	NS 0.000623	NS ND	NS 0.000344	NS 0.000295	NS 0.00145	NS 0.0013	NS 0.000376	NS 0.000576	NS 0.000273	NS ND	0.0003	NS ND	NS 0.000384	NS 0.001	ND 0.000821	ND 0.000107	ND 0.0000717	ND ND	ND ND	ND ND
Chromium, Total	0.00122	5	4.73	0.0528	ND	0.00675	0.00409	0.00946	0.00585	0.00697	0.0066	0.00314	0.00192	0.00161	0.00157	0.0333	0.372	0.0136	0.0115	0.00223	0.00315	0.00192	0.0013	0.0349	0.0526	0.0106	0.001	0.00424	0.00155	0.019	0.000282	0.021	0.0161
Copper, Total Lead, Total	0.00602 ND	0.0248	0.0196 0.0029	0.041 0.0123	0.00865 ND	0.0233	0.00671 0.00224	0.0114 ND	0.00471 ND	0.0155 ND	0.00705 ND	0.00579 0.000634	0.00516 ND	0.0055 ND	0.0056 ND	0.00334 ND	0.00595 ND	0.0107 ND	0.0142 0.000614	0.00434 ND	0.00807 ND	0.00534 0.000583	0.00738 ND	0.00534 ND	0.00807 ND	0.0118 0.00044	0.0146 0.0005	0.0074 0.00349	0.00949 ND	0.00986 0.000932	0.0000747 ND	0.0099 ND	0.0175
Mercury, Total	ND	ND	ND	ND	0.363	0.224	ND	ND	ND	ND	ND	ND	ND	0.128	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.149	0.139	ND	ND
Selenium, Total Thallium, Total	ND ND	0.0113 ND	0.0115 0.0014	ND NS	0.00226 ND	ND ND	ND ND	ND ND	0.014 ND	ND ND	0.0173 ND	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	0.00396 NS	0.00257 NS	0.0479 NS	0.000959 NS	0.00549 NS	0.00149 NS	0.00274 NS	ND NS	0.000851 NS	0.00294 NS	0.00296 ND	0.00286 ND	ND ND	ND ND	ND NS	ND NS
Bromate	NS	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS
Chlorite DW Nitrate-Nitrogen	NS	ND 0.494	ND 0.445	NS NS	ND 1.57	ND 0.204	NS 1.28	NS 0.884	NS 1.07	NS 0.369	NS 0.483	NS 4.20	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS 3.12		NS 1.81	NS	NS 1.81	NS 4.33
Total DW Nitrite-Nitrogen,	0.305 ND	0.494	0.445	NS NS	0.283	0.291	0.02766	0.884	0.0634	0.369	0.483	1.29 NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	3.12 NS	1.2 NS	1.81 NS	1.2 NS	1.81 NS	1.32 NS
Total Fluoride	ND 0.643	0.0762	1.38	NS NS	1.34	0.327	0.02766	0.0341	0.0634	0.0503	0.15	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS 1.7	0.97	1.22	1.24	NS NS	NS NS
Chlorine Residual (Onsite/TC)	NS	0	0	NS	0	0	NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.2	0	0	0	0
Field Cl2 Check for CNa	POS	NEG	NEG	NS	NEG	NEG	POS	POS	NEG	POS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NEG	NEG	NEG	NEG	NEG	NEG
Field Sulfide Check for CNa	NEG	NEG	NEG	NS	NEG	NOT YET	NEG	NEG	NEG	NEG	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NEG	NEG	NEG	NEG	NEG	NEG
Cyanide - Available/Amenable	ND	ND	ND	NS	0.0768	NOT YET	ND	ND	ND	0.269	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Cyanide After Chlorination	ND	0.0146	2.15	NS	0.0352	NOT YET	ND	ND	ND	ND	0.035	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Cyanide, total E-coli Colilert-18	0.006 NS	0.0068 POSITIVE	0.0084 POSITIVE	NS NS	0.112	0.0414 POSITIVE	0.0292 NS	0.0252 NS	0.0414 NS	0.299 NS	0.0336 NS	ND NS	ND NS	0.016 NS	0.0028 NS	ND NS	ND NS	0.0912 NS	0.0872 NS	ND NS	ND NS	ND NS	ND NS	ND NS	ND NS	0.0702 NS	0.00238 NS	ND NS	ND NS	ND NS	ND NS	ND NS	0.088 NS
Heterotrophic Plate	NS NS	>738	>738	NS NS	neg >738	>738	NS NS	NS	NS NS	NS NS	NS NS	NS	NS NS	NS	NS NS	NS NS	NS	NS	NS NS	NS	NS	NS NS	NS	NS NS	NS NS	NS	NS NS	NS	NS NS	NS	NS NS	NS NS	NS NS
Total Coliform Colilert 18	NS	POSITIVE	_	NS	POSITIVE	POSITIVE	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Color	5	15	100	NS	45	10	30	20	15	15	25	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Lab Spec. Conductance at 25 C	1160	4450	2280	NS	3510	1190	3820	1250	4150	1190	12800	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Laboratory pH	7.9	8.2	10.1	NS	7.5	8.4	8	8.4	8.1	8.2	7.4	8.1	7.6	8.1	8.1	8.2	8.7	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	7.69	8.2	7.09	6.97	8.1	8.6	8.1	8.2 (onsite)

Langelier Saturation					1	1	1																					1 1					
Index @22C	0.1764	0.6535	2.365	NS	-0.1524	0.5581	0.3506	0.6916	0.635	0.4722	0.02935	NS	NS	NS	NS	NS	NS																
MBAS (Surfactant/Foaming Agents)	NS	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Odor	NS	None Observed	None Observed	NS	none	None Observed	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Total Alkalinity (as CaCO3)	118	162	128	NS	69.7	90	116	116	112	115	163	134	134	122	126	120	113	132	132	149	137	98.6	131	156	103	135	143	142	136	208	106	143	130
Total Hardness (as CaCO3)	260	270	230	NS	460	250	350	280	603	240	560	NS	NS	NS	NS	NS	NS																
Aluminum, Total	0.0614	4.8	3.24	NS	0.415	0.833	2.56	0.927	0.218	0.951	0.952	0.0731	0.0586	0.0951	0.045	0.102	0.513	0.568	0.913	0.106	0.061	0.0288	0.0373	0.212	0.518	0.842	0.005	1.58	0.0702	1.88	0.00615	0.275	10.8
Calcium	68.8	85.5	66.2	NS	152	66.8	93.1	71.6	149	69.5	143	499	77.6	152	78.1	123	69.9	106	78.1	234	78.4	195	85.5	187	73.7	155	84.5	373	83.3	109	72.7	109	81
Copper, Total	0.00608	0.0256	0.0194	NS	0.0085	0.0208	0.0068	0.0124	0.00506	0.0133	0.00839	NS	NS	NS	NS	NS	NS	0.0107	0.0142	0.00434	0.00807	0.00534	0.00738	0.00534	0.00807	0.00534	0.00807	0.00474	0.00949	0.00986	0.0000747	0.00986	0.0175
Iron, Total	0.0687	10.4	7.04	NS	13.6	7.93	2.36	1.51	0.15	0.619	0.35	0.0408	NS	NS	NS	0.043	0.127	0.369	0.817	0.0731	0.678	ND	0.265	0.129	0.14	0.376	0.691	1.41	0.702	1.31	0.199	1.31	1.72
Manganese, Total	0.00393	0.139	0.0909	0.346	0.289	0.163	0.0798	0.0465	0.0179	0.0262	0.0223	0.105	0.0561	0.0632	0.0207	0.0156	0.0137	0.0685	0.0428	0.016	0.0424	0.017	0.0247	0.0363	0.0119	0.074	0.0409	0.168	0.059	0.0394	0.0163	0.0394	0.071
Silver, Total	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	0.000065	ND	ND	ND	ND	NS															
Sodium	136	351	343	NS	618	143	250	153	792	135	517	NS	NS	NS	NS	NS	NS																
Zinc, Total	0.00721	0.855	0.594	0.877	0.0077	0.383	0.11	0.636	0.00695	0.18	0.0821	0.0713	0.762	0.155	0.688	0.0755	0.656	0.0913	1.40	0.111	1.5	0.0321	1.05	0.00516	0.205	0.941	0.001	0.131	1.42	0.0604	0.00443	0.0181	0.966
Chloride	143	1180	238	NS	881	147	997	164	1070	152	4080	10600	220	1810	213	981	201	1040	189	8670	186	1860	189	1950	228	1900	215	2370	83.3	641	197	1120	221
Fluoride	ND	ND	1.43	NS	1.38	ND	ND	ND	5.3	ND	ND	NS	1.7	0.97	1.22	1.24	NS	NS															
Sulfate	232	405	620	NS	337	230	293	240	402	232	630	1790	252	440	274	326	260	440	274	440	274	440	274	440	274	602	379	619	282	336	281	451	296
Total Dissolved Solids	700	2480	1400	NS	1950	530	2200	620	2450	660	7880	19800	780	3750	940	2060	520	2310	750	12700	680	3550	760	3920	880	2590	880	4860	950	1660	800	2120	820
Corrosivity - Drinking Water	Slight Scale	Scale Forming	Scale Forming	NS	slight corr.	Scale Forming	Slight Scale	Scale Forming	Scale Forming	Slight Scale	SLIGHT SCALE	NS	NS	NS	NS	NS	NS																
Chemical Oxygen Demand	24.6	128	50.3	NS	ND	ND	53.2	24.6	21.7	ND	33.2	NS	10.7	<20.0	ND	ND	ND	ND															
Phosphorus (as P), total	22.5	0.846	0.312	NS	0.172	0.0694	0.24	0.16	0.277	0.176	0.0975	NS	0.063	0.0241	0.572	0.17	NS	NS															
Fluoride	ND	ND	1.42	NS	1.45	ND	ND	ND	ND	ND	ND	NS	1.7	0.97	1.22	1.24	NS	NS															
Nitrate-Nitrite Nitrogen	ND	0.892	0.682	NS	2.55	0.838	ND	ND	0.912	ND	ND	1.29	0.567	1.77	0.695	1.71	0.824	1.85	1.13	0.754	1.63	1.08	1.61	2.24	1.42	4.42	1.39	NS	NS	NS	NS	NS	NS
Oil and Grease (HEM)	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	NS	1.2	ND	ND	ND	NS	NS															
Total Suspended Solids	ND	3970	223	NS	370	34	208	49	34.9	15.5	52.7	4.5	5.6	3.6	ND	5.1	7.8	3.6	ND	3.6	ND	3.6	ND	3.6	ND	73.3	17.8	49.9	7.5	724	7.1	724	19
Total Kjeldahl Nitrogen	1.28	2.83	1.92	NS	0.959	0.588	1.03	1.31	1.29	1.3	1.94	NS	0.283	0.064	0.747	0.372	52.6	NS															
Biochemical Oxygen Demand (BOD5)	3.13	ND	11.3	NS	8.31	4.39	9.17	12.8	4.85	4.82	7.69	NS	2.33	8.49	10.5	3.56	NS	NS															
Nickel												0.00857	0.00354	0.00381	0.00238	0.00289	0.00339	0.00586	0.00866	0.00698	0.00716	0.00444	0.0034	0.00544	0.00349	0.00897	0.001	0.00903	0.00626	0.00287	0.0000224	0.00422	0.0119
Nitrogen, Total	1.28	3.722	2.602	NS	3.509	1.426	1.03	1.31	2.202	1.3	1.94	NS	ND	ND	ND	ND	ND	0.161	NS	NS													