

硕士学位论文

叶层化代数簇对的 Sarkisov 纲领

作者姓名:	王延泽	
指导教师:	陈亦飞 副研究员 中国科学院数学与系统研究所	
学位类别:	理学硕士	
学科专业:	基础数学	
培养单位:	中国科学院数学与系统科学研究院	

Sarkisov program for foliated pairs

A thesis submitted to

University of Chinese Academy of Sciences
in partial fulfillment of the requirement
for the degree of
Master of Natural Science
in Pure Mathematics

By

Yanze Wang

Supervisor: Professor Yifei Chen

Academy of Mathematics and Systems Science, Chinese Academy of Sciences

June, 2024

中国科学院大学 学位论文原创性声明

本人郑重声明: 所呈交的学位论文是本人在导师的指导下独立进行研究工作所取得的成果。承诺除文中已经注明引用的内容外,本论文不包含任何其他个人或集体享有著作权的研究成果,未在以往任何学位申请中全部或部分提交。对本论文所涉及的研究工作做出贡献的其他个人或集体,均已在文中以明确方式标明或致谢。本人完全意识到本声明的法律结果由本人承担。

作者签名:

日期:

中国科学院大学 学位论文授权使用声明

本人完全了解并同意遵守中国科学院大学有关收集、保存和使用学位论文的规定,即中国科学院大学有权按照学术研究公开原则和保护知识产权的原则,保留并向国家指定或中国科学院指定机构送交学位论文的电子版和印刷版文件,且电子版与印刷版内容应完全相同,允许该论文被检索、查阅和借阅,公布本学位论文的全部或部分内容,可以采用扫描、影印、缩印等复制手段以及其他法律许可的方式保存、汇编本学位论文。

涉密及延迟公开的学位论文在解密或延迟期后适用本声明。

作者签名: 导师签名:

日期: 日期:

摘要

中文摘要、英文摘要、目录、论文正文、参考文献、附录、致谢、攻读学位期间发表的学术论文与其他相关学术成果等均须由另页右页(奇数页)开始。

关键词:中国科学院大学,学位论文,模板

Abstract

The purpose of this note is to introduce three methods of the Sarkisov program, which aims to factorize birational maps of log Mori fibre spaces. One of goals of birational geometry is to classify birational equivalence classes. The minimal model program is to find a good representative in every fixed birational equivalence class. All of these good representatives can be divided into two classes. One is called the minimal model, and the other is called Mori fiber space, both of which are not unique. Any two Mori fiber spaces in a same birational class is connected by a birational map, which can be decomposed into finitely many maps from the four types of "links" by the Sarkisov program.

Key Words: Minimal Model Program, Sarkisov Program, Foliated pairs

目 录

第1章 绪论	1
第 2 章 预备知识 ······	5
2.1 代数簇与奇点 · · · · · · · · · · · · · · · · · · ·	5
2.2 极小模型纲领 · · · · · · · · · · · · · · · · · · ·	5
2.3 有限极小模型	6
2.4 叶状结构 · · · · · · · · · · · · · · · · · · ·	8
第3章 下降法	9
3.1 定义与引理	10
3.2 Sarkisov 纲领的流程图·····	13
3.3 下降法的终结性 · · · · · · · · · · · · · · · · · · ·	16
第 4 章 双标量法 ······	17
4.1 定义和引理	17
4.2 用双标量法构造 Sarkisov 连接······	19
4.3 双标量 Sarkisov 纲领的终结性·····	22
第 5 章 有限模型法 · · · · · · · · · · · · · · · · · · ·	25
5.1 Construction of Sarkisov links	25
5.2 Decomposition into Sarkisov links · · · · · · · · · · · · · · · · · · ·	28
第 6 章 叶层化 Sarkisov 纲领 ······	31
第7章 结论与展望 · · · · · · · · · · · · · · · · · · ·	33
7.1 例子 · · · · · · · · · · · · · · · · · ·	33
7.1.1 Original method · · · · · · · · · · · · · · · · · · ·	33
7.1.2 Double scaling method · · · · · · · · · · · · · · · · · · ·	35
7.1.3 Polytope method · · · · · · · · · · · · · · · · · · ·	35
7.2 应用 · · · · · · · · · · · · · · · · · ·	37
7.3 展望	37

第1章 绪论

极小模型纲领 (minimal model program, MMP) 的目标是按双有理等价类分类代数簇,并选取选择恰当的代表元。极小模型纲领猜想,每一个代数簇都双有理等价于一个极小模型 (minimal model)或一个森纤维空间 (Mori fibre space, mfs),但这样的代表元有时并不唯一,于是自然的问题就是不同代表元之间的关系。对于极小模型的情形,我们有

定理1.1(平转连接极小模型). 令 (W, B_W) 为一个 \mathbb{Q} -分解的终端对 (terminal pair),且 (X, B_X) , (Y, B_Y) 是它的两个极小模型。那么双有理映射 $X \dashrightarrow Y$ 可以分解为一系列 $(K_X + B_X)$ -平转 (flop).

对于森纤维空间,由 Sarkisov 纲领可知

定理 1.2 (主定理). 令 $f:(X,B) \to S$ 和 $f':(X',B') \to S'$ 为两个 MMP-连接的 Q-分解 klt 算术森纤维空间,则有双有理映射 Φ :

$$(X, B) \xrightarrow{\Phi} (X', B')$$

$$f \downarrow \qquad \qquad \downarrow f'$$

$$S \qquad \qquad S'$$

可以分解为 Sarkisov 连接映射的复合,即

$$\Phi = \Psi_n \circ \cdots \circ \Psi_1$$

其中 $Ψ_i: X_i \longrightarrow X_{i+1}$ 是下列四种 Sarkisov 连接之一:

其中所有 $f:(X,B)\to S$ and $f_1:(X_1,B_1)\to S_1$ 都是算术森纤维空间,所有 p,q 都是除子压缩,所有虚线的映射都是翻转 (flip)、平转 (flop) 或反向翻转 ($inverse\ flip$) 的复合。

在具有叶状结构的代数簇对 (foliated pair) 上有类似结果:

定理 1.3 (主定理 2). TODO

Sarkisov 纲领起源于对直纹曲面的分类?],?]. 对终端三维代数簇 (terminal threefolds) 的完整证明由 Corti 给出,使用的是下降法。?]. 由下降法的 Sarkisov 纲领归纳地构造 Sarkisov 连接。选取一个定义了双有理映射 $\Phi: X \dashrightarrow X'$ 的线性系 \mathcal{H} (或一个一般的除子 $\mathcal{H} \in \mathcal{H}$),那么第一个 Sarkisov 连接 $\psi_1: X \dashrightarrow X_1$ 由运行一种特殊的极小模型纲领得到,被称为 2-ray game,并且取决于 $\mathcal{H}(\mathcal{H})$ 的选取。接着用 $\Phi_1 = \Phi \circ \psi_1^{-1}: X_1 \dashrightarrow X'$ 替代 $\Phi: X \dashrightarrow X'$ 并重复这一过程。

Sarkisov 次数 (μ, λ, e) 可以度量两个森纤维空间的 "距离"。由 Fano 代数簇的有界性,第一个不变量 μ 落在一个离散集中。第二个不变量典范阈值 (canonical threshold) λ 和第三个不变量相容除子 (crepant divisor) 的个数和代数簇相对于 H 的奇异性质有关。每构造一个 Sarkisov 连接,新的双有理映射 $X_i \dashrightarrow X'$ 的 Sarkisov 次数 (μ_i, λ_i, e_i) 会下降,于是 Sarkisov 纲领将在有限步内终结。

Bruno 和 Matsuki ?] 将这种方法推广到 Q-分解的 klt 奇点的三维代数簇的情形。并且他们给出了任意维 Q-分解 klt 奇点代数簇的 Sarkisov 纲领的下降法的大纲。之后在极小模型纲领中有一些重要进展,例如标量极小模型纲领 (MMP with scaling) 的终结性 ?],lct 的 ACC (accending chain condition)?], δ -lc Fano 簇的有界性 ?],?],这些进展使得 Bruno 和 Matsuki 的大纲部分地可行,剩下的主要问题与算术翻转的终结性和局部算术典范阈值 (local log canonical thresholds) 的 ACC(或者有限性) 有关。本文将这种方法称为下降法,并且在第三章第第一节具体讨论。

利用弱典范模型的有限性?] (finiteness of weak log canonical models),Hacon?] 给出了另一种构造 Sarkisov 纲领的方法,在本文中称之为双标量法,这种方法对所有维数都成立。这两种方法都是通过 2-ray game 来构造 Sarkisov 连接,但是在双标量法中固定了两个森纤维空间的公共算术解消 (W,B_W) 作为 Sarkisov 纲领的 "屋顶",使得分解中的每一个森纤维空间都是 W 的某个弱算术典范模型。双标量法的 Sarkisov 纲领的终结性由弱算术典范模型的有限性推出,这与标量翻转 (flips with scaling) 的终结性的证明类似。刘继豪?] 将这种方法推广到了generalized pairs 的情况。本文第三章第二节介绍这种方法。

利用 Shokurov 的多面体方法?],?], Hacon 和 M^c Kernan?]给出了一种新方法不通过 2-ray game 实现 Sarkisov 纲领。令 W 为 (X,B) → S 和 (X',B') → S' 的公共算术解消,则在 W 上有两个除子 D 和 D',使得 S 和 S' 是 W 相对于 K_W+D 和 K_W+D' 的丰沛模型 (ample model)。进一步,W 的除子的多面体的 边界上有其他除子 D_i ,每个除子对应一个森纤维空间 X_i → S_i 和 W 的丰沛模型 S_i 。于是在多面体边界上有一条路径连接这些除子 D_i ,并且将 Φ 分解为对应的 Sarkisov 连接。Miyamoto?] 将这种方法应用到了任意特征代数闭域上的 Ic 算术 曲面或 \mathbb{Q} -分解算术曲面。本文将这种方法成为有限模型法,并且在第三章第三节介绍。

在第三章第四节,本文给出三种方法的具体例子。Sarkisov 纲领有许多应用,例如 2 阶 Cremona 群的经典结果。即每一个射影平面的双有理自同构都是由自同构和标准二次映射复合生成。(见?, Chapter 2])。Takahashi?]对算术曲面建立了特殊的 Sarkisov 纲领,并得到了另一个经典代数结论的几何证明:每一个仿射平面的自同构都由仿射自同构和上三角变换复合。(见?, Chpter 13], Chapter 13)。Lamy? [给出了更多其他应用。

foliation mmp

叶状结构的代数簇 (foliated varies) 用子层 $\mathcal{F} \subset \mathcal{T}_X$ 代替切丛,进而用叶状典范除子 (foliated canonical divisor) $K_{\mathcal{F}}$ 代替典范除子 K_X 。等人发展了带叶状结构的极小模型纲领,尤其是高维情况的带代数可积的叶状结构的代数簇。在第四章介绍在这种情况下的 Sarkisov 纲领。

第2章 预备知识

2.1 代数簇与奇点

定义 2.1. \Rightarrow (X, B) 为代数簇对,且 $f:Y\to X$ 是它的算术解消,则有

$$K_Y + C = f^*(K_X + B),$$

那么除子 E 的差异数 (discrepancy)a(E; X, B) 定义为

$$a(E; X, B) = - \operatorname{mult}_E C.$$

进一步, 定义 (X, B) 的差异数:

 $\operatorname{discrep}(X, B) := \inf \{ a(E; X, B) : E \text{ is an exceptional divisor over } X \}$

和整体差异数

totdiscrep $(X, B) := \inf \{ a(E; X, B) : E \text{ is a divisor over } X \}.$

2.2 极小模型纲领

我们将极小模型纲领中出现的代数簇对称为极小模型的**结果**,将 MMP 停止处的代数簇称为 MMP 的**输出** (要么是极小模型,要么是森纤维空间)。对于极小模型纲领,有如下结果。

定理 2.1 (标量 MMP 的终结定理). ?,Corollary 1.4.2] 令 $\pi: X \to U$ 为正规拟射影代数簇间的射影态射,且 (X,B) 是 Q-分解 klt 代数簇对,其中 K_X+B R-Cartier除子,且 B 是 π -big。若 $C \ge 0$ 为 R-除子,且 K_X+B+C 是 klt 和 π -数值有效 (nef),那么在 U 上运行 C-标量的 (K_X+B) -MMP,那么这个极小模型纲领将终结。

定理 2.2 (极小模型输出). ?,Corollary 1.3.3] 令 $\pi: X \to U$ 为正规拟射影代数簇间的射影态射,且 (X,B) 是 Q-分解 klt 代数簇对,其中 K_X+B 是 R-Cartier 除子。若 K_X+B 不是 π -伪有效的,那么运行 U 上的 (K_X+B) -MMP,将终结于森纤维空间 $g: Y \to Z$ 。

推论 2.3. ? , Corollary 13.7] 令 (X,B) 为 klt 代数簇对, \mathfrak{C} 是任意差异数满足 $a(E;X,B) \leq 0$ 的例外除子 E 的集合,那么有双有理态射 $f:Z \to X$ 和 \mathbb{Q} -除子 B_Z 使得:

- (1) (Z, B_z) 是 klt 代数簇对:
- (2) $E \neq f$ -例外除子当且仅当 $E \in \mathbb{C}$;

(3) 若 $E \in \mathfrak{C}$ 则 $\operatorname{mult}_E B_Z = -a(E;X,B)$,且 $f_*B_Z = B$ 和 $K_Z + B_Z = f^*(K_X + B)$ 。

- **定义 2.2. ?**, Definition 3.3] 如果多个代数簇对 $\{(X_i, B_i)\}$ 是从算术光滑的代数簇对 (W, B_W) 的 $(K_W + B_W)$ -MMP 的不同结果,则称它们为 MMP-相关的 (MMP-related) if they are results of $(K_W + B_W)$ -MMPs starting from a given log smooth pair (W, B_W) .
- **引理 2.4.?**, *Proposition 3.4]* 令 $\{(X_l, B_l)\}$ 为有限多个互相双有理等价的 Q-分解 klt 代数簇对,那么下列条件等价:
 - (1) 它们是 MMP-相关的;
- (2) 存在一个算术光滑代数簇对 (W, B_W) 和一组射影双有理态射 $f_l: W \to X_l$ 支配每个 X_l , 满足 $f_{l*}B_W = B_l$ 和分歧等式

$$K_W + B_W = f_l^*(K_{X_l} + B_l) + \sum_{exceptional} a_{li} E_{li}$$

其中对每个 f_l -例外除子 E_{li} 满足 $a_{li} > 0$ 的不等式条件;

(3) 对任意两个代数簇对 $(X, B = \sum_i b_i B_i), (X', B' = \sum_j b'_j B'_j)$, 有 $a(B_i; X', B') \ge -b_i$ 且严格不等式成立当且仅当 B_i 是 X' 上的例外除子。同样的, 有 $a(B'_j; X, B) \ge -b'_i$ 且严格不等式成立当且仅当 B'_i 是 X 上的例外除子。

证明. 我们给出 (3) \Longrightarrow (2) 的简略证明:令 W 为支配每个代数簇对 (X_l , B_l = $\sum b_{li}B_{li}$) 的算术光滑解消,并有射影双有理态射 $f_l:W\to X_l$,它们例外除子的并 $f_{l*}^{-1}B_l\cup E_{li}$ 是一个横截相交的除子。令 $B_W=\sum_t d_tD_t$,其中如果 D_t 是 $\cup_l f_{l*}^{-1}B_l$ 中的某个素除子则 $d_t=b_{li}$,如果 B_t 是每个 X_l 上的例外除子,则 $d_t=1$ 。由条件 (3),这是定义良好的。那么 (W, B_W) 上的分歧等式 (ramification formula) 中的不等式条件也由 (3) 得到。

2.3 有限极小模型

定义 2.3. ?,§2] 对有理映射 $f: X \longrightarrow Y$ 若有 f 的解消 $p: W \to X$ 和 $q: W \to Y$ 满足 p 和 q 都是压缩态射且 p 双有理态射,则称 f 为有理压缩映射 (rational contraction)。若 q 也是双有理态射,且每个 p-例外除子都是 q-例外除子,则称 f 为双有理压缩映射 (birational contraction)。如果 f^{-1} 也是双有理压缩映射,则称 f 为小双有理映射 (small birational map)。

- **定义 2.4. ?**, Definition 3.6.1]令 $f: X \dashrightarrow Y$ 为正规拟射影代数簇间的双有理映射,且 $p: W \to X$ 和 $q: W \to Y$ 是 f 的解消。若 D 是 X 上的 \mathbb{R} -Cartier 除子,满足 $D_Y = f_*D$ 也是 \mathbb{R} -Cartier 除子,那么如果满足
 - f 不解压任何除子(即 f 是双有理压缩);
- $E = p^*D q^*D_Y$ 是 Y 上的有效除子 (对应的, Supp p_*E 包含全部 f-例外除子)。

则称 f 为 D-非正性的 (D-non-positive) , 对应的 , D-负性的 (D-negative) 。

回顾双有理代数几何中关于模型的定义?1:

定义 2.5. ?, Definition 3.6.5] 令 $\pi: (X, D) \to U$ 为正规拟射影代数簇间的射影态射, $K_X + D \not\in X$ 上的 \mathbb{R} -Cartier 除子,且 $f: X \dashrightarrow Y \not\in U$ 上的双有理映射。如果 $f \not\in (K_X + D)$ -非正性的且 $K_Y + f_*D \not\in U$ 上半丰沛的,那么称 Z 和 f 为关于 D 的半丰沛模型 (semiample model)。

令 $g: X \longrightarrow Z$ 为 U 上的有理映射, $p: W \to X$ 和 $q: W \to Z$ 是对 g 的解消,其中 q 是压缩态射。若 Z 上有 U 上的丰沛除子 H ,且 $p^*(K_X + D) \sim_{\mathbb{R}, U} q^*H + E$,其中 E 满足对任意的 $B \in |p^*(K_X + D)/U|_{\mathbb{R}}$ 都有 $B \geqslant E$,则称 Z 是 X 关于 D 的丰沛模型 (ample model) 。

- **定义 2.6. ?**, Definition 3.6.7] 令 $\pi:(X,D)\to U$ 为正规拟射影代数簇间的射影态射,若 K_X+D 是 lc 且 $f:X\dashrightarrow Y$ 是双有理压缩映射,那么有如下定义:
- (1) 如果 $f \in (K_X + D)$ -非正性的且 $K_Y + f_*D \in U$ 上数值有效的,则称 Y 为关于 $D \in U$ 的 **弱算术典范模型** (weak log canonical model);
- (2) 如果 $f \in (K_X + D)$ -非正性的且 $K_Y + f_*D \in U$ 上丰沛的,则称 Y 为关于 D 在 U 的 **算术典范模型** (log canonical model);
- (3) 如果 $f \in (K_X + D)$ -负性的且 $K_Y + f_*D \in U$ 上数值有效的和 Q-分解的,并且具有 dlt 奇点,则称 Y 为关于 D 在 U 的 **算术终端模型** (**log terminal model**)。
- **引理 2.5.** ?, *lemma 3.6.6]* 令 $\pi: X \to U$ 是正规拟射影代数簇间的射影态射,且 $D \not\in X$ 上的 \mathbb{R} -*Cartier* 除子。
- (1) 如果 $g_i: X \longrightarrow X_i, i = 1, 2$ 是关于 D 的 U 上的两个丰沛模型,那么有同构态射 $h: X_1 \to X_2$ 满足 $g_2 = h \circ g_1$ 。即丰沛模型在同构意义下唯一。
- (2) 如果 $f: X \dashrightarrow Y$ 是 U 上关于 D 的半丰沛模型,那么 U 上关于 D 的丰沛模型 $g: X \dashrightarrow Z$ 存在,并且 $g = h \circ f$,其中 $h: Y \to Z$ 是压缩态射,Z 上有对应丰沛除子 H 满足 $f_*D \sim_{\mathbb{R}U} h^*H$ 。
- (3) 若 $f: X \longrightarrow Y$ 是 U 上双有理映射,那么 f 是关于 D 在 U 上的丰沛模型 且仅当 f 是关于 D 在 U 上的半丰沛模型 且 f_*D 在 U 上丰沛。

根据上述引理,有算术典范模型的等价定义:

定义 2.7. 令 $\pi:(X,D) \to U$ 是正规拟射影代数簇间的射影态射, $K_X + D$ 有 lc 奇点且 $f: X \dashrightarrow Y$ 是不解压任何除子的双有理映射。如果 Y 是关于 D 在 U 上的丰沛模型,那么称之为**算术典范模型**(log canonical model)。

进一步,对于边界是大除子的代数簇对,还有

引理 2.6. ?, lemma 3.9.3] 令 $\pi:(X,B) \to U$ 是正规拟射影代数簇间的射影态射,且 (X,B) 是具有 klt 奇点的代数簇对,B 在 U 上是大除子。如果哦 $f:X \dashrightarrow Y$ 是 U 上弱算术典范模型,那么

- f 是 U 上半丰沛模型;
- U 上的丰沛模型 $g: X \longrightarrow Z$ 存在;
- 存在压缩态射 $h:Y\to Z$ 和 Z 上在 U 上丰沛的 \mathbb{R} -除子,使得 $K_Y+f_*B\sim_{\mathbb{R},U}h^*H$ 。

下面给出除子的多面体相关的定义和定理:

定义 2.8. ?, Definition 1.1.4] 令 $\pi: X \to U$ 为正规拟射影代数簇间的射影态射,且 V 是 WDiv_R(X) 的定义在有理数上的优先为子射影空间。取定一个 R-除子 $A \ge 0$,定义:

$$\mathcal{L}_{A}(V) = \{ D = A + B : B \in V, K_{X} + D \text{ flc 奇点且} B \geqslant 0 \}$$

$$\mathcal{E}_{A\pi}(V) = \{ D \in \mathcal{L}_{A}(V) : K_{X} + D \text{ 是} U \text{上的伪有效除子} \}$$

令 $f: X \longrightarrow Y$ 为 U 上的双有理压缩映射, 定义

$$W_{A,\pi,f}(V) = \{D \in \mathcal{E}_A(V) : f \neq (X,D) \ \Delta U \perp b$$
 弱算术典范模型}

今 $g: X \longrightarrow Z \in U$ 上的有理压缩映射, 定义

$$A_{A\pi g}(V) = \{D \in \mathcal{E}_A(V) : g \neq (X, D)$$
 在 U 上的丰沛模型 $\}$

进一步,将 $\mathcal{A}_{A,\pi,g}(V)$ 在 $\mathcal{L}_A(V)$ 中的闭包记作 $\mathcal{C}_{A,\pi,g}(V)$ 。

如果基底 U 是清楚的,或是一个点,那么我们省略 π ,简单记作 $\mathcal{E}_A(V)$ 和 $\mathcal{A}_{A,f}$ 。

定理 2.7. (弱算术典范模型有限性,?, Theorem E]). 令 $\pi: X \to U$ 是正规 拟射影代数簇间的射影态射,且 A 是一个一般的在 U 上丰沛的 \mathbb{R} -除子,且 $V \subset \mathrm{WDiv}_{\mathbb{R}}(X)$ 是定义在有理数上的有限维线性子空间,假设存在具有 klt 奇点的 代数簇对 (X, Δ_0) 。那么存在有限多个 U 上的双有理映射 $f_i: X \dashrightarrow X_i, 1 \leq i \leq l$,若某个 $D \in \mathcal{L}_A(V)$ 有关于 D 的在 U 上的弱算术典范模型 $f: X \dashrightarrow Y$,那么对某个 $1 \leq i \leq l$ 存在同构态射 $h_i: X_i \to Y$ 使得 $f = h_i \circ f_i$ 。

2.4 叶状结构

这一节介绍带叶状结构的代数簇对的基本知识。

第3章 下降法

在这一章中, 代数簇对 (X, B) 的边界除子 $B \in \mathbb{Q}$ -除子。

首先回顾 Corti [?] 给出的三维终端奇点的 Sarkisov 纲领。令 $f:X\to S$ 和 $f':X'\to S'$ 是双有理等价的两个有终端奇点的三维森纤维空间。S' 上的丰沛除子 A' 使得对某个 $\mu'>0$ 有 X' 上的一般的丰沛除子 H' 满足 $H'\sim -\mu'K_{X'}+f'^*A'$,并令 H 是 H' 在 X 上的双有理变换 (birational transform)。取一个公共解消 $p:W\to X$ 和 $q:W\to X'$ 。

- (1) $\diamondsuit \mu = \max\{c \in \mathbb{R} : K_X + \frac{1}{c}H$ 在S上数值有效 $\};$
- (2) $\diamondsuit \lambda = \min\{c \in \mathbb{R} : (X, \frac{1}{c}H)$ 有典范奇点};
- (3) 令 $e = (X, \frac{1}{4}H)$ 的无差异的例外除子的个数。

如果 $\lambda \leq \mu$,在 X 运行相对于恰当基底的 $(K_X + \frac{1}{\mu}H)$ -MMP;如果 $\lambda > \mu$ 则构造一个除子解压 (divisorial extraction) $p: Z \to X$,并运行相对于 S 的 $(K_Z + \frac{1}{\lambda}H_Z)$ -MMP,这样得到第一个 Sarkisov 连接 $\psi_1: X \dashrightarrow X_1$ 。这两种情况都是 2-ray games。用 X_1 和 $\Phi_1 = \Phi \circ \psi_1^{-1}: X_1 \dashrightarrow X'$ 替换 X 和 Φ ,并重复这个过程,这样递归地构造一系列 Sarkisov 连接。在这个过程中不变量 (μ, λ, e) 将按字典序下降,最终得到 $\Psi_N: X_{N-1} \dashrightarrow X_N$,且 $X_N \cong X'$ 。这就是三维终端奇点代数簇的 Sarkisov 纲领。

对于 \mathbb{Q} -分解的有 klt 奇点的代数簇对,考虑 MMP-相关的森纤维空间 (X, B) 和 (X', B')。一个自然的想法是按如下定义 μ 和 λ :

- (1) $\diamondsuit \mu = \max\{c \in \mathbb{R} : K_X + B + \frac{1}{c}H$ 在S上数值有效 $\};$
- (2) $\diamondsuit \lambda = \min\{c \in \mathbb{R} : (X, B + \frac{1}{c}H)$ 有典范奇点};
- (3) 令 $e = (X, B + \frac{1}{4}H)$ 的无差异的例外除子的个数。

Bruno 和 Matsuki 给出了 λ 的另一种定义 (见3.3),且取决于特定的一个包含 (X, B) 和 (X', B') 的代数簇对的集合 C_{θ} ,这个集合满足:

- 对任意两个 C_{θ} 中的代数簇对 (X,B),(X',B') ,存在 C_{θ} 中的代数簇对 (W,B_W) 和算术公共解消 $p:W\to (X,B)$ 和 $q:W\to (X',B')$,使得 (W,B_W) 具有 klt 奇点且 $p_*B_W=B,q_*B_W=B'$ 。
 - 在集合中的任意代数簇对 (X,B) 和 (Z,B_Z) 上可以运行 (K_X+B+cH) -

MMP 和 $(K_Z + B_Z + cH_Z)$ -MMP, 并且所有结果都任然在集合 C_θ 中;

• 所有 C_{θ} 中的代数簇对都具有 δ-lc 奇点,其中 δ 是取决于 C_{θ} 的正数。

3.1 定义与引理

令 K = K(X) 是双有理等价类的有理函数域 (注意到双有理等价的代数簇有相同的有理函数域) 令 $\Sigma = \{v\}$ 是有理函数域的离散赋值的集合。

定义 3.1. [?, Definition 3.5] 取一个函数 $\theta: \Sigma \to [0,1)_{\mathbb{Q}}$,那么可以定义关于 θ 的集合 C_{θ} ,包含满足下列条件的具有 klt 奇点的代数簇对 $(X,B=\sum a_{i}B_{i})$:

- (1) $a_i = \theta(B_i)$;
- (2) 对所有 X 上的例外除子 E 有 $a(E; X, B) > -\theta(E)$ 。

注. 例如取 $\theta \equiv 0$ 为常值函数,那么 C_{θ} 是所有和 X 双有理等价的具有终端奇点的代数簇 Y (不带有边界)。

根据这个集合可以定义 θ -差异数 (θ -discrepancy):

定义 3.2 (θ -差异数). 令 C_{θ} 为上述代数簇对的集合,且 (X, B) 是有理函数域满足 K(X) = K 的代数簇对。令 $f: Y \to X$ 是 (X, B) 的一个算术奇点解消,有分歧 等式:

$$K_Y + B_Y + C = f^*(K_X + B)$$

其中 $B_Y = f_*^{-1}B + \sum_{E_i \text{ exc}} \theta(E_i)E_i$ 。则 X 的例外除子 E_i 的 θ -差异数定义为

$$a_{\theta}(E_i; X, B) = - \operatorname{mult}_{E_i} C.$$

或等价的,可以定义为

$$a_{\theta}(E_i; X, B) = a(E_i; X, B) + \theta(E_i).$$

如果 (X, B) 上的所有例外除子 E 满足 $a_{\theta}(E; X, B) \ge 0$ (对应的, $a_{\theta}(E; X, B) > 0$), 则称代数簇对 (X, B) 具有 θ -典范奇点 (对应的, θ -终端奇点)。

注. θ -典范代数簇对并不总在集合 C_{θ} 中。

Bruno 和 Matsuki 的 [?, Lemma 3.6] 构造了运行 Sarkisov 纲领所需要的集合 C_{θ} :

命题 3.1. 令 $f:(X,B)\to S$ 和 $f':(X',B')\to S'$ 是两个 *MMP*-相关的具有 klt 奇点的 Q-分解森纤维空间,有双有理映射 Φ :

$$(X,B) \xrightarrow{\Phi} (X',B')$$

$$f \downarrow \qquad \qquad \downarrow f'$$

$$S \qquad \qquad S'$$

假设 $B = \sum_i b_i B_i + \sum_j d_j D_j$ 和 $B' = \sum_j d'_j D_j + \sum_k b'_k B'_k$,其中 B_i 是在 X 上但不在 X' 上的除子, B'_k 是在 X' 上但不在 X 上的除子,而 D_j 是在 X 和 X' 上的除子。由引理2.4,有 $d_i = d'_i$ 。取一个有理数 ϵ 满足

$$-$$
 totdiscrep (X, B) , $-$ totdiscrep $(X', B') < \epsilon < 1$

并按如下定义函数 $\theta: \{v\} \rightarrow [0,1)_{\mathbb{Q}}:$

- 对于边界 B, B' 的除子, 有 $\theta(B_i) = b_i, \theta(D_i) = d_i, \theta(B'_k) = b'_k$;
- 如果 $E \neq X$ 和 X' 上的例外除子,则 $\theta(E) = \epsilon$;
- 如果 D 是 X 和 X' 上的除子,但不是 B 或 B' 的部分,则 θ(D) = 0。

那么定义3.1 构造的集合 C_{θ} 满足:

- (1) (X, B) 和 (X', B') 在集合 C_{θ} 中;
- (2) 对 C_{θ} 中任意有限多个具有 klt 奇点的代数簇对 $\{(X_{l}, B_{l})\}$,有 $(Z, B_{Z}) \in C_{\theta}$ 射影双有理态射 $Z \to X_{l}$ 使得 X_{l} 是相对于 X_{l} 的 $(K_{Z} + B_{Z})$ -MMP 的输出,因此也是相对于 Spec \mathbb{C} 的 $(K_{Z} + B_{Z})$ -MMP 结果;
- (3) 任何从 C_{θ} 中一个元素出发的 (K+B)-MMP , 其结果依然落入 C_{θ} 。如果对任何 $c \in \mathbb{Q}_{>0}$ 和无基点的除子 H 给出的 (K+B+cH)-MMP 也成立。
- 注. 令 $\delta = 1 \epsilon$, 那么所有 C_{θ} 中的代数簇对都是具有 δ -lc。

使用命题 3.1中的假设和记号,可以定义 Sarkisov 次数 (Sarkisov degree)。取 S'上的极丰沛的除子 A' 和足够大和可除的整数 $\mu' > 1$ 使得

$$\mathcal{H}' = |-\mu'(K_{X'} + B') + f'^*A'|$$

是 X' 在 Spec \mathbb{C} 上的极丰沛的完全线性系。令 (W,B_W) 是 X 和 X' 在 C_θ 中的公共算术解消,有射影态射 $\sigma:W\to X$ 和 $\sigma':W\to X'$ 满足 $\sigma_*B_W=B,\sigma'_*B_W=B'$ 。令 Let $\mathcal{H}_W:=\sigma'^*\mathcal{H}'$,那么 $\mathcal{H}:=\Phi_*^{-1}\mathcal{H}'=\sigma_*\mathcal{H}_W$ 。进一步,如果 \mathcal{H} 不是无基点的,那么

$$\sigma^*\mathcal{H} = \mathcal{H}_{W} + F$$

其中 $F = \sum f_l F_l \ge 0$ 是固定部分 (fixed part)。取线性系 \mathcal{H}' 中的一个一般除子 H' 使得 $H_W := \sigma'^* H' = \sigma_*'^{-1} H' \in \mathcal{H}_W$,并记 $H := \Phi_*^{-1} H' = \sigma_* H_W$ 。那么 H 是 f-丰沛的,且 $\sigma^* H = H_W + F$ 。通过取进一步的解消,不妨设 H_W 与 σ 和 σ' 的例外除子各部分光滑且互相横截相交 (即 $(W, H_W + \operatorname{Exc} \sigma + \operatorname{Exc} \sigma')$ 是算术光滑的)。

接下来定义在 C_{θ} 中关于 H' (或 H') 的 Sarkisov 次数:

定义 3.3. [?, Definition 3.8] C_{θ} 中关于 H' (或 H') 的 Sarkisov 次数是一个按字典序排序的三元组 (μ , λ , e),其中:

• 数值有效阈值 μ : 令 $C \subset X$ 是被 f 压缩的曲线,那么

$$\mu := -\frac{H.C}{(K_X + B).C}$$

 $\exists \mathbb{I} \ K_X + B + \frac{1}{\mu} H \equiv_S 0;$

• θ -典范阈值 $\frac{1}{\lambda}$: 若 H 无基点则定义 $\lambda = 0$; 否则定义

$$\frac{1}{\lambda} := \max\{t : a_{\theta}(E; X, B + tH) \geqslant 0, \forall X 上 例 外除子 E\}$$

• $(K_X + B_X + \frac{1}{\mu}H)$ -无差别除子个数: e = 0 若 H 无基点 (此时 $\lambda = 0$) 则定义 e = 0; 否则定义

$$e = \#\{E; E \in \mathcal{G}$$
-例外除子,且 $a_{\theta}(E; X, B + \frac{1}{\lambda}H) = 0\}$

注. (1) Sarkisov 次数取决于 A', H' 和 θ 的选取。

(2) 取公共算术解消 $(W, B_W) \in C_\theta$,其中 $B_W = \sum \theta(E)E$,并且有射影双有理态射 $\sigma: W \to X, \sigma': W \to X'$ 。由于 $\sigma^* \mathcal{H} = \mathcal{H}_W + \sum f_l F_l$,所以有分歧等式:

$$K_W + B_W + tH_W = \sigma^*(K_X + B + tH) + \sum (a_l - tf_l)E_l$$

其中 $\sum a_l E_l$ 是有效除子且支撑在 $\operatorname{Exc} \sigma$ 上。那么 $\lambda := \max\{\frac{f_l}{a_l}\}$ 。如果 \mathcal{H} 是无基点的,那么 $\sum f_l F_l = 0$ 且 $\lambda = 0$ 。

(3) e 是公式

$$K_W + B_W + \frac{1}{\lambda} H_W = \sigma^* (K_X + B + \frac{1}{\lambda} H) + \sum_{l} (a_l - \frac{1}{\lambda} f_l) E_l.$$

中系数 $\sum (a_l - \frac{1}{\lambda}f_l)E_l$ 为 0 的部分的个数。这样的素除子 E_1, \ldots, E_e 称作 $(K_X + B + \frac{1}{\lambda}H)-\theta$ -无差别的。

需要构造在集合 C_{θ} 中的解压态射:

引理 3.2. 使用定义3.3中的记号,并假设 $\lambda \neq 0$,那么存在压缩态射 $f: Z \to X$ 满足:

- $(Z, B_Z) \in C_\theta$ 且 $(Z, B_Z + \frac{1}{4}H_Z)$ 具有 θ -终端奇点的 Q-分解代数簇对;
- $\rho(Z) = \rho(X) + 1$;
- $f \in (K_X + B + \frac{1}{1}H)$ -无差别的,即

$$K_Z + B_Z + \frac{1}{\lambda}H_Z = f^*(K_X + B + \frac{1}{\lambda}H)$$

证明. 按照 [? , Proposition 1.6] 的思路来证明。取定义3.3中的 $(W,B_W)\in C_\theta$ 和公共算术解消 $\sigma:W\to X,\sigma':W\to X'$ 。将 $(K_X+B+\frac{1}{\lambda}H)$ - θ -无差别除子重新编号 E_1,\dots,E_e ,那么有

$$K_W + B_W + \frac{1}{\lambda} H_W = \sigma^* (K_X + B + \frac{1}{\lambda} H) + \sum_{l=1}^e 0 \cdot E_l + \sum_{l>a} (a_l - \frac{1}{\lambda} f_l) E_l.$$

在 W 上运行相对于 X 的对某丰沛除子标量的 $(K_W+B_W+\frac{1}{\lambda}H_W)$ -MMP,将终结于 $(W,B_W+\frac{1}{\lambda}H_W)$ 相对于 X 极小模型 $p:(Y,B_Y+\frac{1}{\lambda}H_Y)\to X$,且 p 的例外除子恰好是 $\cup_{i=1}^e E_i$,并且 p 是无差别的:

$$K_Y + B_Y + \frac{1}{\lambda}H_Y = p^*(K_X + B + \frac{1}{\lambda}H)$$

接下来运行相对于 X 的对某丰沛除子标量的 $(K_Y + B_Y)$ -MMP,将终结于 (Y, B_Y) 相对于 X 的极小模型,这个极小模型就是 (X, B)。令 $f: Z \to X$ 是 MMP 中的最后一个除子压缩,那么 f 就是满足条件的除子解压态射。

3.2 Sarkisov 纲领的流程图

这一节主要按照[?, §1]的内容。

如果 $\lambda \leq \mu$ 且 $K_X + B + \frac{1}{\mu}H$ 是数值有效的,那么两个森纤维空间是同构的,Sarkisov 纲领在此结束。

定理 3.3 (Noether-Fano-Iskovskikh 判定法). 按照定义3.3中的记号,有

- (1) $\mu \geqslant \mu'$;
- (2) 如果 $\mu \ge \lambda$ 且 $(K_X + B + \frac{1}{\mu}H)$ 是数值有效的,那么 Φ 是森纤维空间的同构,即有交换图表:

$$X \xrightarrow{\sim} X'$$

$$f \downarrow \qquad \qquad \downarrow f'$$

$$S \xrightarrow{\sim} S'$$

证明. 按照?, Claim 13.20],?, Theorem 5.1] 和?, Theorem 4.2]的思路给出证明:

(1) 只需证明 $(K_X+B+\frac{1}{\mu'}H)$ 是 f-数值有效的。取公共解消 $\sigma:W\to X$ 和 $\sigma':W\to X'$,有分歧公式

$$K_W + B_W + \frac{1}{\mu'} H_W = \sigma'^* (K_{X'} + B' + \frac{1}{\mu'} H') + \sum_i e'_j E_j + \sum_i g'_k G'_k$$
$$= \sigma^* (K_X + B + \frac{1}{\mu'} H) + \sum_i g_i G_i + \sum_i e_j E_j$$

其中 $\{G_i\}$, $\{E_j\}$ 是 σ -例外除子, $\{E_j\}$, $\{G_k'\}$ 是 σ' -例外除子。即 G_i 是只在 σ 上 例外的除子, G_k' 是只在 σ' 上例外除子, E_j 是在二者上都例外的除子。由于 $H_W = \sigma'^*H'$,所以 $g_k' > 0$ 或者没有这样的 G_k' (这是由 B_W 的构造得到的)。取被 f 压缩的的一般曲线 $C \subset X$,且它在 W 的双有理原像 \tilde{C} 和 G_i , E_j 无交,并且不包含在 G_k' 中。那么有

$$\begin{split} C.\left(K_X+B+\frac{1}{\mu'}H\right) = &\tilde{C}.\left(\sigma^*\left(K_X+B+\frac{1}{\mu'}H\right)+\sum g_iG_i+\sum e_jE_j\right) \\ = &\tilde{C}.\left(\sigma'^*\left(K_{X'}+B'+\frac{1}{\mu'}H'\right)+\sum e_j'E_j+\sum g_k'G_k'\right) \\ = &\tilde{C}.\sigma'^*f'^*A'+\tilde{C}.\left(\sum g_k'G_k'\right) \geqslant 0. \end{split}$$

由此推出 $(K_X + B + \frac{1}{\mu'}H)$ 是 f-数值有效的,且 $\mu \geqslant \mu'$;

(2) 首先证明 $\mu' = \mu'$ 。只需证 $\mu' > \mu$,同上,只需证 $(K_{X'} + B' + \frac{1}{\mu}H')$ 是 f'-数值有效的。同上取被 f' 压缩的 X' 上的一般曲线 $C' \subset X'$,并且

在 W 上的双有理原像 \tilde{C}' 和 G'_k , E_i 无交, 并且不包含在 G_i 。那么同上可得 到 $C'.\left(K_{X'}+B'+\frac{1}{u}H'\right)\geqslant 0$, 即 $(K_{X'}+B'+\frac{1}{u}H')$ 是 f'-数值有效的。而 $(K_{X'} + B' + \frac{1}{\mu'}H') \equiv_{f',\mathbb{Q}} 0$,所以 $\frac{1}{\mu} \geqslant \frac{1}{\mu'}$,这就推出 $\mu' \geqslant \mu$ 。

接下来证明它们同构。取X上极丰沛除子D,且D'是在X'上的严格双有 理变换。那么 D' 是 f'-丰沛的,所以存在 $0 < d \ll 1$ 使得:

- $K_X + B + \frac{1}{\mu}H + dD$ 是丰沛除子; $K_{X'} + B' + \frac{1}{\mu}H' + dD'$ 是丰沛除子。

因此 X 和 X' 都是 $(W, B_W + \frac{1}{\mu}H_W + dD_W)$ 的算术典范模型,由算术典范模型 的唯一性, $X \cong X'$ 。更进一步,f 和 f' 压缩相同的曲线数值等价类,所以两个 森纤维空间同构。

如果 Noether-Fano-Iskovskikh 判定法的条件不成立,则进行 Sarkisov 纲领的 归纳构造。

引理 3.4. (1) 如果 $\lambda \leq \mu$ 且 $K_X + B + \frac{1}{u}H$ 不是数值有效的,那么存在压缩 态射 $f: X \to T$ 和 III 或 IV 型 Sarkisov 连接 $\psi_1: X \dashrightarrow X_1$;

(2) 如果 $\lambda > \mu$ 那么存在除子压缩 (除子解压) $p: Z \to X$ 和 I 或 II 型 Sarkisov 连接 $\psi_1: X \dashrightarrow X_1$ 。

证明. 分两种情况考虑:

- (1) 假设 $\lambda \leq \mu$ 和 $K_X + B + \frac{1}{\mu}H$ 不是数值有效的。记 f 是 $(K_X + B)$ -负性的 极端射线 $R = \overline{NE}(X/S)$ 的压缩态射,那么由 μ 的定义有 $(K_X + B + \frac{1}{\mu}H).R = 0$ 。 存在极端射线 $P \subset \overline{\mathrm{NE}}(X)$ 使得 $(K_X + B + \frac{1}{u}H).P < 0$ 且 F := P + R 是极端面 (细节见 ? , 5.4.2])。取 0 < $\delta \ll 1$ 使得 $(K_X + B + (\frac{1}{\mu} - \delta)H).P < 0,由于 <math display="inline">H$ 是 f-丰沛的,有 $(K_X + B + (\frac{1}{\mu} - \delta)H).R < 0$ 。因此 $F \neq (K_X + B + (\frac{1}{\mu} - \delta)H)$ -负性的 极端面。由于 $(X, B + (\frac{1}{\mu} - \delta)H)$ 有 klt 奇点,由压缩定理,存在关于 F 的压缩态 射 $g: X \to T$ 穿过 $f: X \to S$ 。由于 $(X, B + \frac{1}{\mu}H)$ 具有 klt 奇点,且 $\rho(X/T) = 2$, 可以运行相对于 T 的关于某丰沛除子标量的 $(K_X + B + \frac{1}{\mu}H)$ -MMP。由于 $B + \frac{1}{\mu}H$ 是相对于 T 的大除子,这个 MMP 终结。有下列情况:
- (1).1 在有限多步翻转复合 $X \longrightarrow Z$ 后,第一个非翻转的压缩态射是一个除 子压缩 $p: Z \to X_1$,之后是一个森纤维空间的压缩态射 $f_1: (X_1, B_1 + \frac{1}{\mu}H_1) \to X_1$ S_1 。这个压缩态射 f_1 也是关于 (X_1, B_1) 的森纤维空间。这是第三型的 $\stackrel{\mu}{\mathsf{Sarkisov}}$ 连接。
- (1).2 在有限多步翻转复合 $X \longrightarrow X_1$ 后,第一个非翻转的压缩态射是森纤维 空间的压缩态射 $f_1:(X_1,B_1+\frac{1}{\mu}H_1)\to S_1$ 。这个压缩态射 f_1 也是关于 (X_1,B_1) 的森纤维空间。这是个第四型的 Sarkisov 连接。

(1).3 在有限多步翻转复合 $X \dashrightarrow Z$ 后,第一个非翻转的压缩态射是一个除子压缩 $p: Z \to X_1$,且

$$K_Z + B_Z + \frac{1}{\mu}H_Z = p^*(K_{X_1} + B_1 + \frac{1}{\mu}H_1) + eE$$

其中 e>0, $E=\operatorname{Exc}\ p$ 且 $f_1:(X_1,B_1+\frac{1}{\mu}H_1)\to T$ 是关于 $(X,B+\frac{1}{\mu}H)$ 在 T 上的极小模型。事实上 $\overline{\operatorname{NE}}(X_1/T)$ 唯一的极端射线是 $(K_{X_1}+B_1+\frac{1}{\mu}H_1)$ -平凡的,所以是 $(K_{X_1}+B_1)$ -负性的。所以 $f_1:(X_1,B_1)\to T$ 是森纤维空间。取 $S_1=T$,这是 III 型 Sarkisov 连接。

- (1).4 在有限多步翻转复合 $X \dashrightarrow Z$ 后, $(K_X + B + \frac{1}{\mu}H)$ -MMP 终结于 T 上的极小模型 $(X_1, B_1 + \frac{1}{\mu}H_1)$ 。那么存在 $\overline{\text{NE}}(X_1/T)$ 的极端射线 R ,并且是 $(K_{X_1} + B_1 + \frac{1}{\mu}H_1)$ -平凡的和 $(K_{X_1} + B_1)$ -负性的。令 $f_1: X_1 \to S_1$ 为关于 R 的压缩态射,这是第四型的 Sarkisov 连接。
- (2) 假设 $\lambda > \mu$ 。取引理3.2构造的除子解压 $p: (Z, B_Z + \frac{1}{\lambda}H_Z) \to (X, B + \frac{1}{\lambda}H)$,即 (Z, B_Z) 具有 θ -终端奇点且 $p^*(K_X + B + \frac{1}{\lambda}H) = K_Z + B_Z + \frac{1}{\lambda}H_Z$,其中 $B_Z = \sum \theta(E_v)E_v$ 。运行相对于 S 的对某丰沛除子标量的 $(K_Z + B_Z + \frac{1}{\lambda}H_Z)$ -MMP,由于 Z 被 $(K_Z + B_Z + \frac{1}{\lambda}H_Z)$ -负性的曲线覆盖, $(K_Z + B_Z + \frac{1}{\lambda}H_Z)$ 不是相对伪有效的。因此由2.2这个 MMP 终结于森纤维空间。有下列两种情况:
- (2).1 在有限多步翻转复合 $X \dashrightarrow X'$ 后,第一个非翻转的压缩态射是一个除子压缩 $q: Z' \to X_1$,接着是森纤维空间压缩态射 $f_1: (X_1, B_1 + \frac{1}{\lambda}H_1) \to S$ 。令 $S_1 = S$,那么压缩态射 f_1 同时也是关于 (X_1, B_1) 的森纤维空间。这是第二型的 Sarkisov 连接。
- (2).2 在有限多步翻转复合 $Z \longrightarrow X_1$ 后,第一个非翻转的压缩态射是森纤维空间 $f_1: (X_1, B_1 + \frac{1}{\lambda}H_1) \to S_1$ 由于 $(K_{X_1} + B_1 + \frac{1}{\lambda}H_1)$ 是在 S_1 上反丰沛 (anti-ample) 的除子,且 H_1 f_1 -丰沛的所以 $(K_{X_1} + B_1)$ 在 S_1 上反丰沛。因此 $f_1: (X_1, B_1) \to S_1$ 是森纤维空间,这个第一型的 Sarkisov 连接。

用 (X_1, B_1) 和 $\Phi_1 = \Phi \circ \psi_1^{-1}$ 替换 (X, B) 和 Φ ,并重复上述引理内容。

注. Sarkisov 次数在此过程中按字典序下降:

- 对于(1):
- (1).1 和 (1).2 的情况下,由于 $K_{X_1} + B_1 + \frac{1}{\mu} H_1$ 在 S_1 上反丰沛,所以有 $\mu_1 < \mu_o$
- (1).3 和 (1).4 的情况下,由于 ($K_{X_1}+B_1+\frac{1}{\mu}H_1$) 在射线 $R=\overline{\mathrm{NE}}(X_1/S_1)$,所以有 $\mu_1=\mu$ 。注意到 ($X_1,B_1+\frac{1}{\mu}H_1$) 任然具有 θ-典范奇点,所以 $\lambda_1\leqslant\mu=\mu_1$,所以下一个 Sarkisov 连接依然是情况 (1)。对于 (1).3 的情况,还有 $\rho(X_1)=\rho(X)-1$ 。
 - 对 (2).1,有 $\mu_1 \leq \mu$ 和 $\lambda_1 \leq \lambda$ 。且如果 $\lambda_1 = \lambda$,那么 $e_1 < e$ 。

3.3 下降法的终结性

Bruno 和 Matsuki 给出的下降法的 Sarkisov 纲领的终结性需要下列条件:

- (1) 数值有效阈值 μ 的离散性 (或者 DCC)。由于本章的代数簇对 (X, B) 的 边界除子是 Q-除子,由 δ -lc Fano 代数簇对的有界性和相关定理 ([?, Theorem 1.1]),任意维数下此条件都成立 (离散的正有理数集满足 DCC)。
 - (2) 翻转的终结性(这对高维情况还没有完全证明);
 - (3) lct 的 ACC (ascending chain condition of log canonical thresholds);
- (4) 对具有终端奇点的代数簇的 Sarkisov 纲领需要局部 lct 的有限性;对具有 klt 奇点的代数簇对的 Sarkisov 纲领需要局部 θ -ct (θ -canonical thresholds) 的有限性终端奇点的代数簇对的局部 lct 的有限性。这些在四维及以上的情况还不清楚。

用反证法部分证明终结性:

如果上一节中构造的 Sarkisov 连接构成无限长的序列,即有无限多个 X_i 和构造的映射:

$$X = X_0 \longrightarrow X_1 \longrightarrow \cdots \longrightarrow X_i \longrightarrow \cdots \longrightarrow X'$$

- (1) 由 μ_i 的离散性 (DCC),不妨设在有限步后 μ_i 是常值,不再下降。或者不妨试 $\mu = \mu_0 = \mu_i$ 对所有 i 成立。
- (2) 如果序列中有一个第三型或第四型的 Sarkisov 连接 ψ_i ,那么后续每一个 Sarkisov 连接 ψ_j ,i 都是第三型或第四型 (见注 3.2)。由于第三型 Sarkisov 连接的 Picard 数严格下降,所以只有有限多个。于是在 $j \gg 0$ 时 ψ_j 全部为第四型 Sarkisov 连接,同时也是无限多个翻转的复合。对于三维代数簇对和四维伪有效的代数簇对,这样的翻转只有有限多步,这是一个矛盾。
- (3) 假设所有 Sarkisov 连接都是第一型或者第二型的。lct 的 ACC 对所有维数都成立 [?],素以存在整数 α 使得对 $i \gg 0$ 有 $(X_i, B_i + \alpha H_i)$ 具有 klt 奇点,并且每个 Sarkisov 连接 ψ_i , $i \gg 0$ 都同时是相对于 S_i 的 $(K_{Z_i} + B_{Z_i} + \alpha H_{Z_i})$ -MMP 结果。在具有终端奇点的三维代数簇的情况,这和 θ -典范阈值的有限性矛盾 (具体见 [?, Claim 2.2])。

第4章 双标量法

本章介绍 [?, §13] 和 [?] 中的双标量法构造 (double scaling) 的 Sarkisov 纲 领。下降法用 X' 上的除子 H' 来作为标量,双标量法在 X 和 X' 上分别构造除子 G 和 H' ,作为双标量。令 W 为 MMP-相关的森纤维空间 $f:(X,B)\to S$ 和 $f':(X',B')\to S'$ 的公共解消,取在 S 上的 \mathbb{Q} -除子 A 使得 $G\sim_{\mathbb{Q}}-(K_X+B)+f^*A$ 是一般的丰沛 \mathbb{Q} -除子。类似的,取 S' 上的丰沛 \mathbb{Q} -除子,使得 $H'\sim_{\mathbb{Q}}-(K_{X'}+B')+f'^*A'$ 是一般的丰沛 \mathbb{Q} -除子。那么 (X,B+G) 和 (X',B'+H') 是 W (关于 B_W+G_W 和 B_W+H_W) 的两个弱算术典范模型。双标量 Sarkisov 纲领将构造 W 的有限多个弱算术典范模型 $(X_i,B_i+g_iG_i+h_iH_i)$,它们是分别关于 $(W,B_W+g_iG_W+h_iH_W)$ 的模型,其中 $0\leqslant g_i,h_i\leqslant 1$ 。这些模型间的双有理映射 $\psi_i:X_i\longrightarrow X_{i+1}$ 是通过 2-ray game 构造的 Sarkisov 连接映射。

和下降法相比,这种方法在一个更小的集合内运行 MMP 和 Sarkisov 纲领。 所有的 X_i 都对应一个 $(K_W + D_i)$ -非正性的双有理压缩映射 $W \dashrightarrow X_i$,其中 D_i 是 WDiv_R(W) 的一个紧子集 $\mathcal{E}_A(V)$ 。对于这个子集有弱算术典范模型的有限性性质,由此可以得到双标量法的 Sarkisov 纲领的终结性。

4.1 定义和引理

令 (W, B_W) 是 Q-分解具有 klt 奇点的代数簇对,并且 $f:(X, B) \to S$ 和 $f':(X', B') \to S'$ 是两个不同的 $(K_W + B_W)$ -MMP 的输出,且都是森纤维空间。接下来给出一些所需的记号和引理。

定义 4.1. 今 $f: X \longrightarrow Y$ 是正规拟射影代数簇间的双有理映射,如果

- f 不解压除子;
- 对所有在 X 之上的 (包括更高模型上的) 除子 E 都有 $a(E; X, B_X) \leq a(E; Y, B_Y)$, 那么记 $(X, B) \geq (Y, B_Y)$ 。

对于具有终端奇点的代数簇对,有下面的引理:

引理 4.1. [?, Lemma 13.8] 令 $f: W \dashrightarrow X$ 是双有理映射且 (W, B_W) 具有终端 奇点。如果

- f 不解压除子;
- $K_X + B$ 是数值有效除子,其中 $B = f_* B_W$;
- 对所有 $E \subset W$ 之上的除子 E 都有 $a(E; X, B) \ge a(E; W, B_W)$ 。

那么有

- $(W, B_W) \ge (X, B)$;
- (X, B) 具有 klt 奇点;

- 如果 $Z \to X$ 是关于 E 的除子解压, 其中 $a(E; X, B) \leq 0$, 那么 E 是 W 上的除子;
 - 如果 $Z \to X$ 是 (X, B) 的终端化, 那么 $W \longrightarrow Z$ 不解压除子。

相反的,从非正性映射出发,可以构造这样的具有终端奇点的更高模型:

引理 4.2. [?, Lemma 3.5] 令 $\sigma: (W, B_W) \dashrightarrow (X, B)$ 是 $(K_W + B_W)$ -非正性双有理映射,使得 $\sigma_*(K_W + B_W) = K_X + B$ 且 (W, B_W) 是 Q-分解的具有 klt 奇点的代数簇对,那么存在一个映射解消 $\pi: \tilde{W} \to W$ 和 $\tilde{\sigma}: \tilde{W} \to X$ 使得

- $(\tilde{W}, B_{\tilde{W}})$ 是 Q-分解的具有终端奇点的代数簇对,且 $\tilde{\sigma}_* B_{\tilde{W}} = B$;
- $\tilde{\sigma} \not \equiv (K_{\tilde{W}} + B_{\tilde{W}})$ -非正性的且 $(\tilde{W}, B_{\tilde{W}}) \geqslant (X, B)$;

通过应用引理 4.2,可以调整双标量法 Sarkisov 纲领的初始设定。用 (W, B_W) 的奇点解消代替它,使得 (W, B_W) 具有终端奇点,且 $\sigma: W \to X$ 和 $\sigma': W \to X'$ 是 $(K_W + B_W)$ -非正性态射,并且 $(W, B_W) \geqslant (X, B), (X', B')$ 。

取 S 和 S' 上的极丰沛 \mathbb{Q} -除子 A 和 A' 使得 $G \sim_{\mathbb{Q}} -(K_X + B) + f^*A$ 和 $H \sim_{\mathbb{Q}} -(K_{X'} + B') + f^{'*}A'$ 是丰沛 \mathbb{Q} -除子。进一步,可以假设 G 和 H 满足 $G_W := \sigma^*G = \sigma_*^{-1}G$ 和 $H_W := \sigma^{'*}H = \sigma_*^{'-1}H$ 。因此 $\sigma_*(K_W + B_W + G_W) = K_X + B + G$ 是数值有效的,因此引理 4.1 的结论满足。如果必要的话取进一步解消,可以假设 $(W, B_W + gG_W + hH_W)$ 算术光滑,并且对所有 $0 \leq g, h \leq 2$ 都具有终端奇点。在这个设定下,有双标量的 Sarkisov 纲领:

定理 4.3 (双标量 Sarkisov 纲领). [?, Claim 13.12] 沿用上述记号,有有限多个 Sarkisov 连接的序列

和有理数

$$\begin{aligned} 1 &= g_0 \geqslant g_1 \geqslant \cdots \geqslant g_N &= 0 \\ 0 &= h_0 \leqslant h_1 \leqslant \cdots \leqslant h_N &= 1 \end{aligned}$$

满足

- (1) 对每个 i, 双有理压缩映射 $\sigma_i: W \longrightarrow X_i$ 都是 $(K_W + B_W + g_i G_W + h_i H_W)$ -非正性的,并且 $(K_{X_i} + B_i + g_i G_i + h_i H_i) = \sigma_{i*}(K_W + B_W + g_i G_W + h_i H_W)$ 是数值有效的,且相对于 S_i 数值平凡;
 - (2) $(W, B_W + g_i G_W + h_i H_W) \geqslant (X_i, B_i + g_i G_i + h_i H_i);$

- (3) 每一个 Sarkisov 连接 $X_i \longrightarrow X_{i+1}$ 都是一组 $(K_{X_i} + B_i + g_i G_i + h_i H_i)$ -平凡的映射的复合;
 - (4) 最后一个森纤维空间 $X_N \to S_N$ 同构于 $X' \to S'$ 。

这里平凡映射指

定义 4.2. [?, §13.2] 令 $f: X \longrightarrow Y \neq S$ 正规拟射影代数簇间的有理映射,并且 $D \neq X \perp \mathbb{R}$ -Cartier \mathbb{R} -除子,且 $f_*D = D_Y$ 。如果 $D \neq S \perp \mathbb{R}$ -Cartier 除子的拉回,那么称 $f \Rightarrow D$ -平凡 (D-trivial)。

4.2 用双标量法构造 Sarkisov 连接

这一节将归纳地构造 Sarkisov 连接。假设已经构造定理4.3中的映射 σ_i : $W \dashrightarrow X_i$, 即

- $f_i:(X_i,B_i)\to S_i$ 是森纤维空间,且 $\sigma_{i*}B_W=B_i$;
- $\sigma_i: W \dashrightarrow X_i$ 是 $(K_W + B_W + g_i G_W + h_i H_W)$ -非正性的,且

$$(K_{X_i} + B_i + g_iG_i + h_iH) = \sigma_{i*}(K_W + B_W + g_iG_W + h_iH_W)$$

是数值有效的,并且相对于 S_i 数值平凡;

- $(W, B_W + g_i G_W + h_i H_W) \ge (X_i, B_i + g_i G_i + h_i H_i);$
- $0 \le g_i, h_i \le 1$ 是有理数。

那么构造下一个满足定理4.3 的 Sarkisov 连接 $X_i \longrightarrow X_{i+1}$ 。类比下降法的 Sarkisov 次数,引入下列记号:

定义 4.3. 令 C_i 是被 f_i 压缩的 (也称为 f-vertical) X_i 上的曲线,那么

- $\bullet \ r_i := \frac{H_i.C_i}{G_i.C_i};$
- 令 Γ 是满足下列条件的 $t \in [0, \frac{g_t}{r_t}]$ 的集合
- $(1) \quad \left(W, B_W + g_i G_W + h_i H_W + t (H_W r_i G_W)\right) \geqslant \left(X_i, B_i + g_i G_i + h_i H_i + t \left(H_i r_i G_i\right)\right);$
- (2) $K_{X_i} + B_i + g_i G_i + h_i H + t(H_i r_i G_i)$ 数值有效.

 $\Leftrightarrow s_i = \max \Gamma;$

• $\[\Box D_{W,i} = B_W + g_i G_W + h_i H_W \] \[A D_i = B_i + g_i G_i + h_i H_i \], \] \[\[\] \] \[\] \[$

$$D_{W,i}(t) = B_W + g_i G_W + h_i H_W + t(H_W - r_i G_W)$$

和

$$D_i(t) = B_i + g_i G_i + h_i H_i + t(H_i - r_i G_i)$$

那么有

(1) $r_i > 0$;

- (2) $\Gamma = \{0\}$ 或 Γ 是闭区间
- (3) $g_{i+1} = g_i \Leftrightarrow h_{i+1} = h_i \Leftrightarrow s_i = 0$;

(细节见[?, Lemma 4.4])

构造 Sarkisov 连接:

如果 $s_i = \frac{g_i}{r_i}$,此时 $g_{i+1} = 0$ 。令 N = i+1 且 $f_N : X_N = X_i \to S_N = S_i$,那 么 $X_N \to S_N$ 与 $f' : X' \to S'$ 同构 (见命题 4.6),这样双标量 Sarkisov 纲领停止。如果 $s_i < \frac{g_i}{r_i}$,那么如下构造 Sarkisov 连接 $X_i \dashrightarrow X_{i+1}$:

(1) 若 s_i 不是集合 Γ 的第一个条件1的阈值,也就是说存在 $0 < \epsilon \ll 1$,使 得 W 上任意除子 E,都有

$$a(E; X_i, D_i(s_i + \epsilon)) \geqslant a(E; W, D_{W,i}(s_i + \epsilon))$$

进一步假设 $K_{X_i} + D_i(s_i + \epsilon)$ 不是数值有效。那么对某个 $0 < \delta \ll \epsilon$,存在一个 2 维的 $(K_{X_i} + D_i(s_i + \epsilon) - \delta G_i)$ -负性极端面 F,由 $R = \mathbb{R}_{\geq 0}[C_i]$ 和令一个极端射线 P 张成 (spanned by)。于是存在关于 F 的压缩态射 $X_i \to T_i$ 穿过 f_i 。

接着运行相对于 T_i 的关于某丰沛除子标量的 $(K_{X_i} + D_i(s_i + \epsilon))$ -MMP,在有限多个翻转后,会接着一个关于 $(K_{X_i} + D_i(s_i + \epsilon))$ 的森纤维空间,或一个除子压缩,或一个极小模型。

- (1).1 若记 $X_i \longrightarrow X_{i+1}$ 是翻转的复合,并且有森纤维空间 $X_{i+1} \to S_{i+1}$,那么这是第四型的 Sarkisov 连接;
- (1).2 若记 $X_i \dashrightarrow Z_i$ 是翻转的复合,并接着一个除子压缩态射 $Z_i \to X_{i+1}$,那么令 $S_{i+1} = T_i$,则 $X_{i+1} \to S_{i+1}$ 是一个森纤维空间。这是第三型的 Sarkisov 连接。
- (1).3 若记 $X_i \longrightarrow X_{i+1}$ 是翻转的复合,且 $X_{i+1} \to T_i$ 是关于 $(X_i, D_i(s_i + \epsilon))$ over T_i 的极小模型。令 C' 是 C_i 在 X_{i+1} 上的双有理变换,则有 $(K_{X_{i+1}} + D_{i+1}(\epsilon))$.C' = 0 和 $(K_{X_{i+1}} + B_{i+1})$.C' < 0,因此有压缩态射 $X_{i+1} \to S_{i+1}$ over T_i 。这个态射是森纤维空间,并且这是第三型 Sarkisov 连接。
- (2) 如果 s_i 集合 Γ 的第一个条件1的阈值,也就是说存在 $0 < \epsilon \ll 1$ 和 W 上的 σ_i -例外除子 E_i 使得

$$a(E_i; X_i, D_i(s_i + \epsilon)) < a(E_i; W, D_{W,i}(s_i + \epsilon))$$

此时有

$$a(E_i; X_i, D_i(s_i)) = a(E_i; W, D_{W,i}(s_i)) = - \operatorname{mult}_{E_i}(D_{W,i}(s_i)) \le 0$$

令 $p_i: Z_i \to X_i$ 是推论 2.3 中除子 E_i 的除子解压,并且记

$$K_{Z_i} + D_{Z_i}(s_i) = K_{Z_i} + B_{Z_i} + g_{i+1}G_{Z_i} + h_{i+1}H_{Z_i} = p_i^* \left(K_{X_i} + D_i(s_i)\right)$$

取充分小的 δ 使得 $0 < \delta \ll \epsilon \ll 1$ 且

$$K_{Z_i} + \Delta_i = p_i^*(K_{X_i} + D_i(s_i + \epsilon) - \delta G_i)$$

是 klt 奇点。接下来运行相对于 S_i 的 $(K_{Z_i}+\Delta_i)$ -MMP。由于 Z_i 被 $(K_{Z_i}+\Delta_i)$ -负性 的曲线覆盖,所以 $(K_{Z_i}+\Delta_i)$ 相对于 S_i 不是伪有效的,并且这个 MMP 终结于森纤维空间。同时,对一任意 $0<\delta'\leq\delta$,这也是 $p_i^*(K_{X_i}+D_i(s_i+\epsilon)-\delta'G_i)$ -MMP。在有限多步翻转之后,要么终结于 $(K_{Z_i}+\Delta_i)$ 的森纤维空间,要么 $(K_{Z_i}+\Delta_i)$ 的除子压缩。

(2).1 若记 $Z_i \longrightarrow X_{i+1}$ 是有限步翻转的复合,并终结于森纤维空间

$$X_{i+1} \rightarrow S_{i+1}$$

那么是第一型的 Sarkisov 连接。在这种情况下有 $\rho(X_{i+1}) = \rho(X_i) + 1$ 。

(2).2 若记 $Z_i \dashrightarrow Z'_{i+1}$ 是有限步翻转的复合,并且接着相对于 S_i 的除子压缩

$$q_i: Z'_{i+1} \rightarrow X_{i+1}$$

那么 $X_{i+1} \rightarrow S_i =: S_{i+1}$ 是森纤维空间,这是第二型 Sarkisov 连接。 类似于下降法中的 Sarkisov 次数,定义4.3中的不变量也有变化:

断言 4.4. 由 [?, Lemma 13.14-17] 和 [?, Lemma 4.2] 可以得到:

- $r_i \leq r_{i+1}$ 。在(1).1的情况,还有 $r_i < r_{i+1}$ 。
- 在情况 (1) 中由于 $X_i \longrightarrow X_{i+1}$ 是相对于 T_i 的 $(K_{X_i} + D_i(s_i))$ -平凡映射,所以对任意的 W 之上的除子 E ,都有

$$a(E; X_i, D_i(s_i)) = a(E; X_{i+1}, D_{i+1})$$

和不等式

$$a(E; X_{i+1}, D_{i+1}) \ge a(E; W, D_{W,i+1})$$

• 在情况 (2) 中由于 $X_i \longrightarrow X_{i+1}$ 是相对于 S_i 的 $(K_{X_i} + D_i(s_i))$ -平凡映射,所以同样对任意的 W 之上的除子 E ,都有

$$a(E; X_i, D_i(s_i)) = a(E; X_{i+1}, D_{i+1})$$

和不等式

$$a(E; X_{i+1}, D_{i+1}) \ge a(E; W, D_{W,i+1})$$

• 在情况 (1) 中,任意除子 $E \subset W$ 和 $0 < \epsilon \ll 1$,都有

$$a(E; X_i, D_i(s_i + \epsilon)) \le a(E; X_{i+1}, D_{i+1}(\epsilon))$$

并且因为 $X_i \not\cong X_{i+1}$, 所以有W之上的除子F使得

$$a(F; X_i, D_i(s_i + \epsilon)) < a(F; X_{i+1}, D_{i+1}(\epsilon))$$

• 在情况 (2) 中、任何除子 $E \subset W$ 、对所有 $0 < \epsilon \ll 1$ 都有

$$a(E; X_i, D_i(s_i + \epsilon) - \delta G_i) \le a(E; X_{i+1}, D_{i+1}(\epsilon) - \delta G_{i+1})$$

并且因为 $X_i \not\cong X_{i+1}$,所以有W之上的除子F使得

$$a(F; X_i, D_i(s_i + \epsilon) - \delta G_i) < a(F; X_{i+1}, D_{i+1}(\epsilon) - \delta G_{i+1})$$

• $h_i \leq 1$, 且 $h_i = 1$ 当且仅当 $g_i = 0$;

4.3 双标量 Sarkisov 纲领的终结性

引理 **4.5.** [?, Lemma 13.18-19] (or [?, Lemma 4.9]) Suppose we construct a sequence of Sarkisov links:

then

- (1) there are only finitely many possibilities for $f_i: X_i \to S_i$ up to isomorphism;
- (2) the Sarkisov program with double scaling of (G_W, H_W) terminates. That is, there exists an integer N > 0 such that $g_N = 0$.
- 证明. (1) This essentially follows the finiteness of weak log canonical models (Theorem 2.7). We construct the subspace V of $WDiv_{\mathbb{R}}(W)$ as follows:
- (1).1 If $h_k > 0$ for some k. Since H_W is 数值有效 and big, there is an ample \mathbb{Q} -divisor A_W and an effective \mathbb{Q} -divisor C_W such that $H_W \sim_{\mathbb{Q}} A_W + C_W$. 令 V be the affine space spanned by components of B_W , G_W , H_W , C_W , then for i > k:

$$B_W + g_i G_W + h_i H_W \sim_{\mathbb{Q}} h_k A_W + B_W + g_i G_W + (h_i - h_k) H_W + h_k C_W = \colon \Delta_i \in \mathcal{L}_{h_k A_W}(V)$$

(1).2 If $h_k = 0$ for all k, then $h_i \equiv 0$ and $g_i \equiv 1$. Since G_W is 数值有效 and big, there is an ample \mathbb{Q} -divisor A_W and an effective \mathbb{Q} -divisor C_W such that $G_W \sim_{\mathbb{Q}} A_W + C_W$. 令 V be the affine space spanned by components of B_W , C_W , then

$$B_W + G_W \sim_{\mathbb{Q}} A_W + B_W + C_W = : \Delta_i \in \mathcal{L}_{A_W}(V)$$

Then all X_i are weak log canonical models of (W, Δ_i) . By finiteness of weak log canonical models, there are finitely many $\sigma_i : W \dashrightarrow X_i$ up to isomorphism.

From now on, we shall show that for a $\sigma_i: W \dashrightarrow X_i$ there are finitely many log Mori fibre spaces $X_i \to S_i$ in the sequence up to isomorphism. Indeed, we may assume that there is a k such that $X_i \cong X_k$ for all i > k, and f_i is the contraction corresponding to an extremal ray $R_i \subset \overline{\mathrm{NE}}(X_k)$. Then we have $(K_{X_k} + B_k).R_i < 0$ and $(K_{X_k} + B_k + g_iG_k + h_iH_k).R_i = 0$. Furthermore, H_k and G_k are relatively ample over S_i for all i > k. There are three cases.

(1).1 If $h_i = 0$ for all i, hence $g_i = 1$ for all i.

Since G_i is big, we have $G_k = A_k + E_k$ for some ample \mathbb{Q} -divisor A_k and effective \mathbb{Q} -divisor E_k . $\Leftrightarrow B_k' = B_k + (1-\epsilon)G_k + \frac{\epsilon}{2}E_k$ for sufficiently small ϵ such that (X_k, B_k') is klt. Then $(K_{X_k} + B_k').R_i < 0$ and $(K_{X_k} + B_k' + \frac{\epsilon}{2}A_k).R_i < 0$ for all i > k. By the Cone theorem, we have

$$\overline{\mathrm{NE}}(X_k) = \overline{\mathrm{NE}}(X_k)_{K_{X_k} + B_k' + \frac{\epsilon}{2}A_k \geqslant 0} + \sum_{\alpha \in \Lambda \text{ finite set}} R_\alpha.$$

Again, there are finitely many log Mori fibre spaces $f_i: X_i \to S_i$ of X_k .

(1).2 If $h_i > 0$ for some i > k, then we may assume $h_k > 0$ after replacing k by i. In this case, we suppose $0 < h_k < 1$.

Since H_k is big, we have $h_k H_k = A_k + E_k$ for some ample \mathbb{Q} -divisor H_k and effective \mathbb{Q} -divisor E_k . $\Leftrightarrow B_k' = B_k + (1-\epsilon)h_k H_k + \epsilon E_k$ for sufficiently small ϵ such that (X_k, B_k') is klt. Then $(K_{X_k} + B_k') \cdot R_i < 0$ and $(K_{X_k} + B_k' + \epsilon A_k) \cdot R_i < 0$ for all i > k. By the Cone theorem, we have

$$\overline{\mathrm{NE}}(X_k) = \overline{\mathrm{NE}}(X_k)_{K_{X_k} + B_k' + \epsilon A_k \geqslant 0} + \sum_{\alpha \in \Lambda \text{ finite set}} R_{\alpha}.$$

All extremal rays R_i corresponding to f_i for i > k are in the finite set $\{R_\alpha\}_{\alpha \in \Lambda}$, thus there are finitely many log Mori fibre spaces $f_i : X_i \to S_i$ of X_k .

- (1).3 If $h_k = 1$, then the sequence of X_i is finite, and the assertion follows.
- (2) Assume this sequence of Sarkisov links is infinite, then there exists an i such that there are infinitely many j > i such that $f_i : X_i \to S_i$ and $f_j : X_j \to S_j$ are isomorphic. Then we have $g_{i+1} = g_{j+1}$ and $h_{i+1} = h_{j+1}$. Since the sequences of h_k and g_k are monotone, we have $h_{i+1} = h_k$ and $g_{i+1} = g_k$ for all k > i. Suppose $X_i \dashrightarrow X_{i+1}$ is a Sarkisov link in the case 1 of the Construction in 4.2, then the next Sarkisov link is also in case 1, and all the Sarkisov links after are in the case 1. Note that $X_i \cong X_j$ and therefore $\rho(X_i) = \rho(X_j)$, the Sarkisov links are all of the type IV. But this contradicts 4.4 of assertion 4.4. Therefore, there is no Sarkisov link of type III or IV after X_i . In other words, the Sarkisov links after X_i are all type I or II in case ??.

Since $\rho(X_i) = \rho(X_j)$, X_i and X_j are linked by the Sarkisov links of type II. But this contracts 4.4 of assertion 4.4.

命题 4.6. $X_N \to S_N$ is isomorphic to $X' \to S'$.

证明. Similarly to 2 of Theorem 3.3, we have $h_N=1$ and hence $X_N\to S_N$ is isomorphic to $X'\to S'$.

第5章 有限模型法

In this section, we follow [?]. The approach is different from the previous two approaches as it does not rely explicitly on 2-ray games. We briefly explain the ideas of the method.

Let W be a common log resolution of two MMP-related Mori fibre spaces $X \to S$ and $Y \to T$. Take a finite dimensional affine subspace V of $\mathrm{WDiv}_{\mathbb{R}}(W)$ and an ample \mathbb{Q} -divisor A. Then $\{A_i = A_{A,f_i}\}$ is a partition of $\mathcal{E}_A(V)$, and each A_i corresponds to an ample model of W. There are morphisms connecting certain ample models (Theorem 5.2).

- (1) S, T are ample models of W for some $D_S, D_T \in \mathcal{L}_A(V)$;
- (2) D_S and D_T are two points that divide the boundary $\partial \mathcal{L}_A(V)$ into two parts. On one of the parts, there are finitely many segments connecting D_S and D_T , and let D_i be the endpoints of the segments. Each D_i corresponds to a Sarkisov link. (See Figure 7.1, where $D_S = D_0$ and $D_T = D_1$)

Then $X \longrightarrow Y$ is the composition of these Sarkisov links, and Theorem ?? follows.

5.1 Construction of Sarkisov links

In this section, we construct one Sarkisov link. The following theorems show the partition of $\mathcal{E}_A(V)$ corresponding to ample models and morphisms between these ample models.

- 定理 5.1. [? , Corollary 1.1.5] Let $\pi: X \to U$ be a projective morphism of normal quasi-projective varieties, and $V \subset \mathrm{WDiv}_{\mathbb{R}}(X)$ be a finite dimensional rational subspace. Suppose that there is a divisor $\Delta_0 \in V$ such that (X, Δ_0) is klt. Let A be a general ample \mathbb{Q} -divisor over U which has no components common with any element of V.
 - (1) There are finitely many birational maps $f_i: X \dashrightarrow X_i$ over U such that

$$\mathcal{E}_{A,\pi}(V) = \bigcup_i \mathcal{W}_i$$

where $W_i = W_{A,f_i}(V)$ is a rational polytope. Moreover, if $f: X \dashrightarrow Y$ is a log terminal model of $K_X + D$ over U for some $D \in \mathcal{E}_{A,\pi}(V)$, then $f = f_i$ for some i.

(2) There are finitely many rational maps $g_i: X \longrightarrow Z_i$ over U such that

$$\mathcal{E}_{A,\pi}(V) = \coprod_{j} \mathcal{A}_{j}$$

- $\{\mathcal{A}_j = \mathcal{A}_{A,\pi,g_j}\}$ is a partition of $\mathcal{E}_A(V)$. Let \mathcal{C}_j be the closure of \mathcal{A}_j in $\mathcal{L}_{A,\pi}(V)$;
 - (3) For every f_i there is a g_j and a morphism $h_{ij}: Y_i \to Z_j$ such that $W_i \subset C_j$.
- 定理 5.2. [? , Theorem 3.3] Let W be a smooth projective variety, and V be a finite dimensional affine subspace of $\mathrm{WDiv}_{\mathbb{R}}(W)$ defined over the rational numbers and fix an ample effective \mathbb{Q} -divisor A. Suppose that there is an element D_0 of $\mathcal{L}_A(V)$ such that $K_W + D_0$ is big and klt. Then there are finitely many rational contractions $f_i: W \dashrightarrow X_i$ such that
- (1) $\{A_i = A_{A,f_i}\}$ is a partition of $\mathcal{E}_A(V)$. A_i is a finite union of interiors of rational polytopes. Let C_i be the closure of A_i in $\mathcal{L}_A(V)$. If f_i is birational then C_i is a rational polytope;
- (2) If i, j are two indices such that $A_j \cap C_i \neq \emptyset$ then there is a contraction f_{ij} : $X_i \to X_j$ such that $f_j = f_{ij} \circ f_i$;
- (3) Suppose in addition V spans the Neron-Severi group of W. Pick i such that a connected component C of C_i intersects the interior of $\mathcal{L}_A(V)$, the following are equivalent:
 - (3).1 C spans V;
 - (3).2 If $D \in A_i \cap C$ then f_i is a log terminal model of $K_W + D$;
 - (3).3 f_i is birational and X_i is \mathbb{Q} -factorial.
- (4) Suppose in addition V spans the Neron-Severi group of W. If i, j are two indices such that C_i spans V and D is a general point of $A_j \cap C_i$ which is also a point of interior of $\mathcal{L}_A(V)$, then C_i and $\overline{\mathrm{NE}}(X_i/X_j)^* \times \mathbb{R}^k$ are locally isomorphic in a neighborhood of D, for some $k \geq 0$. Furthermore, $\rho(X_i/X_j) = \dim C_i \dim C_j \cap C_i$.
- 引理 5.3. [?, Corollary 3.4] If V spans the Neron-Severi group of W, then there is a Zariski dense open subset U of the Grassmannian G(r,V) of real affine subspaces of dimension r such that any $[V'] \in U$ defined over the rational numbers satisfies (1-4) of Theorem 5.2.
- 证明. Let $U \subset G(r,V)$ be the set of real affine subspace V' of V of dimension r, which contains no face of any \mathcal{C}_i of $\mathcal{L}_A(V)$. In particular, the interior of $\mathcal{L}_A(V')$ is contained in the interior of $\mathcal{L}_A(V)$. It is clear that any $V' \in U$ defined over the rationals satisfies (1-4) of Theorem 5.2.

By the above Lemma, from now on in this section, we always assume that V has dimension 2 and satisfies (1-4) of Theorem 5.2. The following lemma classifies the morphisms in (2) of Theorem 5.2 into a divisorial contraction, a small contraction or a log Mori fibre space. In some cases (Lemma 5.4 (2)), two small contractions form a flop.

引理 5.4. [? , Lemma 3.5] Let $f: W \longrightarrow X$ and $g: W \longrightarrow Y$ be two rational contractions such that $C_{A,f}$ is of dimension 2 and $\mathcal{O} = C_{A,f} \cap C_{A,g}$ is of dimension 1. Assume $\rho(X) \geqslant \rho(Y)$ and \mathcal{O} is not contained in the boundary of $\mathcal{L}_A(V)$. Let D be an interior point of \mathcal{O} and $B = f_*D$. Then there is a rational contraction $\pi: X \longrightarrow Y$ and $g = \pi \circ f$ such that either

- (1) $\rho(X) = \rho(Y) + 1$ and π is $(K_X + B)$ -trivial, and either
- (1).1 π is birational and \mathcal{O} is not contained in the boundary of $\mathcal{E}_A(V)$, and either
- (1).1.1 π is a divisorial contraction and $\mathcal{O} \neq \mathcal{C}_{A,g}$, or
- (1).1.2 π is a small contraction and $\mathcal{O} = \mathcal{C}_{A,g}$, or
- (1).2 π is a log Mori fibre space, and $\mathcal{O} = \mathcal{C}_{A,g}$ is contained in the boundary of $\mathcal{E}_A(V)$, or
- (2) $\rho(X) = \rho(Y)$, and π is a $(K_X + B)$ -flop and $\mathcal{O} \neq C_{A,g}$ is not contained in the boundary of $\mathcal{E}_A(V)$.

引理 5.5. [? , Lemma 3.6] Let $f: W \dashrightarrow X$ be a birational contraction between \mathbb{Q} -factorial varieties. Suppose (W, D) and (W, D + A) are both klt. If f is the ample model of (W, D + A) and A is ample, then f is a result of the $(K_W + D)$ -MMP.

This lemma guarantees that every variety in the Sarkisov links constructed later is a result of the (W, B_W) -MMP.

Finally, we show that there is a Sarkisov link corresponding to certain $D \in \mathcal{E}_A(V)$. Let D = A + B be a point of the boundary of $\mathcal{E}_A(V)$ in the interior of $\mathcal{L}_A(V)$. Let $\mathcal{T}_1, \ldots, \mathcal{T}_k$ be the polytopes \mathcal{C}_i of dimension 2 containing D. Possibly re-ordering, we may assume that the intersection \mathcal{O}_0 and \mathcal{O}_k of \mathcal{T}_1 and \mathcal{T}_k with boundary of $\mathcal{E}_A(V)$ and $\mathcal{O}_i = \mathcal{T}_i \cap \mathcal{T}_{i+1}$ are one dimensional. Let $f_i : W \longrightarrow X_i$ be the birational contraction associated to \mathcal{T}_i and $\mathcal{G}_i : W \longrightarrow S_i$ be the rational contraction associated to \mathcal{O}_i .

Set $f = f_1 : W \dashrightarrow X, g = f_k : W \dashrightarrow Y$ and $\phi : X \to S = S_0, \psi : Y \to T = S_k$ and $X' = X_2, Y' = X_{k-1}$ and let $W \dashrightarrow R$ be the ample model of D. Then

定理 5.6. [? , Theorem 3.7] Suppose B_W is any divisor such that (W, B_W) is a log smooth terminal pair and $D - B_W$ is ample. Then ϕ and ψ are log Mori fibre spaces,

which are outputs of the $(K_W + B_W)$ -MMP. Moreover, D is contained in more than two polytopes, then ϕ and ψ are connected by a Sarkisov link, where each f_i is a result of running the $(K_W + B_W)$ -MMP.

证明. We may assume $k \ge 3$, and we have

Note that $\rho(X_i/R) \le 2$ and $\rho(X/S) = \rho(Y/T) = 1$. Thus,

- (1) s is the identity and p is a divisorial contraction (extraction), or
- (2) s is a contraction and p is a flop.

The same holds for q and t. The map $X' \dashrightarrow Y'$ is the composition of the flops. This gives 4 types of links.

5.2 Decomposition into Sarkisov links

We need a special resolution W and a special affine subspace $V \subset \mathrm{WDiv}(W)$ as follows.

引理 5.7. [?, Lemma 4.1] Let $\phi: X \to S$ and $\psi: Y \to T$ be two MMP-related log Mori fibre spaces corresponding to two klt projective varieties (X, B_X) and (Y, B_Y) . Then we may find a smooth projective variety W, two birational morphisms $f: W \to X$ and $g: W \to Y$, a klt pair (W, B_W) , an ample \mathbb{Q} -divisor A on W and a two-dimensional rational affine subspace V of $\mathrm{WDiv}_{\mathbb{R}}(W)$ such that

- (1) If $D \in \mathcal{L}_A(V)$ then $D B_W$ is ample;
- (2) $A_{A,\phi \circ f}$ and $A_{A,\psi \circ g}$ are not contained in the boundary of $\mathcal{L}_A(V)$;
- (3) V satisfies (1-4) of Theorem 5.2;
- (4) $C_{A,f}$ and $C_{A,g}$ are two-dimensional;
- (5) $C_{A,\phi \circ f}$ and $C_{A,\psi \circ g}$ are one dimensional.

证明. By assumption there is a Q-factorial klt pair (W, B_W) such that $f: W \dashrightarrow X$ and $g: W \dashrightarrow Y$ are the outputs of the $(K_W + B_W)$ -MMP. Let $p': W' \to W$ be any log resolution that resolves the indeterminacy of f and g, then we may write

$$K_{W'} + B_{W'} = p'^*(K_W + B_W) + E'$$

where $E' \geqslant 0$ and $B_{W'} \geqslant 0$ have no common components, and E' is exceptional and $p'_*B_{W'} = B_W$. Pick a divisor -F which is ample over W with Supp $F = \operatorname{Exc} p'$ such that $K_{W'} + B_{W'} + F$ is klt. As p' is $(K_{W'} + B_{W'} + F)$ -negative and $(K_W + B_W)$ is klt and W is \mathbb{Q} -factorial, the $(K_{W'} + B_{W'} + F)$ -MMP over W terminates with the pair (W, B_W) . Replacing (W, B_W) by $(W', B_{W'} + F)$ we may assume that (W, B_W) is log smooth and f, g are morphisms.

Pick general ample Q-divisors A, H_1, H_2, \ldots, H_k on W such that H_1, \ldots, H_k generate the Neron-Severi group of W. Let $H = A + H_1 + \ldots + H_k$. Pick sufficiently ample divisors A_S on S and A_T on T such that

$$-(K_X + B_X) + \phi^* A_S$$
 and $-(K_Y + B_Y) + \psi^* A_T$

are both ample. Pick a rational number $0 < \delta < 1$ such that

$$-(K_X + B_X + \delta f_* H) + \phi^* A_S$$
 and $-(K_Y + B_Y + \delta g_* H) + \psi^* A_T$

are both ample and f and g are both $(K_W + B_W + \delta H)$ -negative. Replacing H by δH we may assume that $\delta = 1$. Now pick a \mathbb{Q} -divisor $B_0 \leq B_W$ such that $A + (B_0 - B_W)$, $-(K_X + f_*B_0 + f_*H) + \phi^*A_S$ and $-(K_Y + g_*B_0 + f_*H) + \psi^*A_T$ are all ample and f and g are both $(K_W + B_0 + \delta H)$ -negative.

Pick general ample Q-divisors $F_1 \ge 0$ and $G_1 \ge 0$ such that

$$F_1 \sim_{\mathbb{Q}} -(K_X + f_* B_0 + f_* H) + \phi^* A_S$$
 and $G_1 \sim_{\mathbb{Q}} -(K_Y + g_* B_0 + g_* H) + \psi^* A_T$

and

$$K_W + B_0 + H + F + G$$

is klt, where $F = f^*F_1$ and $G = g^*G_1$. Let V_0 be the affine subspace of $\mathrm{WDiv}_{\mathbb{R}}(W)$ which is the translation by B_0 of the vector subspace spanned by H_1, \ldots, H_k, F, G . Suppose that $D = A + B \in \mathcal{L}_A(V_0)$. Then

$$D - B_W = (A + B_0 - B_W) + (B - B_0)$$

is ample, as $B - B_0$ is nef by definition of V_0 . Note that

$$B_0 + F + H \in \mathcal{A}_{A, do f}(V_0), B_0 + G + H \in \mathcal{A}_{u \circ \sigma}(V_0)$$

and f, respectively g, is a weak log canonical model of $K_W + B_0 + F + H$, respectively $K_W + B_0 + G + H$. Thus, Theorem 5.2 implies that V_0 satisfies (1-4) of Theorem 5.2.

Since H_1,\ldots,H_k generated the Neron-Severi group of W we may find constants h_1,\ldots,h_k such that $G\equiv\sum_{i=1}^kh_iH_i$. Then there is $0<\delta\ll 1$ such that $B_0+F+\delta G+H-\delta(\sum_{i=1}^kh_iH_i)\in\mathcal{L}_A(V_0)$ and

$$B_0 + F + \delta G + H - \delta (\sum_{i=1}^{k} h_i H_i) \equiv B_0 + F + H.$$

Thus, $\mathcal{A}_{A,\phi\circ f}$ is not contained in the boundary of $\mathcal{L}_A(V_0)$. Similarly, $\mathcal{A}_{A,\psi\circ g}$ is not contained in the boundary of $\mathcal{L}_A(V_0)$. In particular $\mathcal{A}_{A,\phi\circ f}$ and $\mathcal{A}_{A,\psi\circ g}$ span affine hyperplanes of V_0 , since $\rho(X/S) = \rho(Y/T) = 1$.

Let V_1 be the translation by B_0 of the two-dimensional vector space spanned by F + H - A and G + H - A. Let V be a small general perturbation of V_1 as in Lemma 5.3, which is defined over the rationals. This is the affine subspace we need.

Then we can prove the main theorem

Proof of Theorem ??. Let (W, B_W) , A and V as in the Lemma ??. Pick $D_0 \in \mathcal{A}_{A,\phi \circ f}$ and $D_1 \in \mathcal{C}_{A,g}$ belonging to the interior of $\mathcal{L}_A(V)$. As V is two-dimensional, removing D_0 and D_1 divides the boundary of $\mathcal{E}_A(V)$ into two parts. The part which consists entirely of divisors that are not big is contained in the interior of $\mathcal{L}_A(V)$. Consider tracing this boundary from D_0 to D_1 . Then there are finitely many $2 \le i \le N$ points D_i which are contained in more than two polytopes $\mathcal{C}_{A,f_i}(V)$. By Lemma 5.6, each point D_i gives a Sarkisov link. The birational map $X \dashrightarrow Y$ is the composition of such links. \square

第6章 叶层化 Sarkisov 纲领

第7章 结论与展望

7.1 例子

首先给出一些具体的 MMP-相关的森纤维空间的 Sarkisov 分解的例子。

7.1.1 Original method

Let $X=\mathbb{P}^2$ with coordinates $(x_0:x_1:x_2)$ and $X'=\mathbb{P}^2$ with coordinates $(y_0:y_1:y_2)$. Denote $B=\{x_0=0\}$ and $B'=\{y_0=0\}$. Take a rational map $\Phi:X\dashrightarrow X'$ defined by

$$\Phi: (x_0: x_1: x_2) \dashrightarrow (x_0^2: x_0x_1: x_1^2 + x_0x_2)$$

There is a common resolution $\sigma:W\to X$ and $\sigma':W\to X'$, which are both compositions of three blow-ups at indeterminacy points. Precisely, $\pi_1:W_1\to X$ is the blow-up at the indeterminacy point $P_0\in B$ of Φ . Identify B with its strict transform on W_1 and let E_1 be the exceptional divisor of π_1 . $\pi_2:W_2\to W_1$ is the blow-up at $P_1=E_1\cap B$. Identify B and E_1 with their strict transforms on W_2 and let E_2 be the exceptional divisor of π_2 . $\pi_3:W=W_3\to W_2$ is blow-ups at a point $P_2\in E_2\setminus (B\cup E_1)$. Identify B,E_1 and E_2 with their strict transforms on W_3 and let E_3 be the exceptional divisor of π_3 . Then $\sigma=\pi_3\circ\pi_2\circ\pi_1$ and $W=W_3$ is a common resolution of Φ . Moreover, $\sigma':W\to X'$ is the composition of the blowing-down curves $W=W_3'\xrightarrow{\pi_3'}W_2'\xrightarrow{\pi_2'}W_1'\xrightarrow{\pi_1'}X'$ in the order of B,E_2,E_1 .

We establish some notations of varieties:

- Let $W_2 \to Z_0$ be the contraction of E_1 on W_2 , then $Z_0 \to X_1$ is the contraction of B and $Z_0 \to X_0$ is the extraction of E_2 on X;
- Let $W_2' \to Z_1$ be the contraction of E_1 on W_2' , then $Z_1 \to X_1$ is the extraction of E_3 on X_1 , and $Z_1 \to X'$ is the contraction of E_2 ;
- $W \to Z$ be the contraction of E_1 and E_2 on W, then $Z \to X$ is the extraction of E_3 and $Z \to X'$ is the contraction of B.

That is

and

Consider the pairs (X, bB) and (X', b'B'), and take the function θ such that:

- $\theta(B) = b$ and $\theta(B') = b'$;
- $\theta(E_1) = \theta(E_2) = \epsilon$ with $b, b' < \epsilon < 1$.

Then we have the ramification formulas:

Let $\mathcal{H}' = |\mathcal{O}_{X'}(1)|$ be the very ample complete linear system on X', then $H \in |\mathcal{O}_X(2)|$.

Different choices of θ and ϵ give different decompositions:

(1) If $2b + 2b' \ge 3\epsilon > 0$, then Φ is the composition of two Sarkisov links ψ_0, ψ_1 of type II:

(2) If $2b + 2b' < 3\epsilon$, then Φ is just one Sarkisov link of type II:

(3) If $\epsilon = b = b' = 0$, then Φ is the composition of four Sarkisov links ψ_i :

7.1.2 Double scaling method

Notations and assumptions as in Section 7.1.1, let $B_W = \frac{1}{2}(B+E_1+E_3)$ and consider pairs $(X,\frac{1}{2}B)$ and $(X',\frac{1}{2}B')$. Then we have $G=G_0\sim_{\mathbb{Q}}\frac{5}{2}B$ and $H'\sim_{\mathbb{Q}}\frac{5}{2}B'$.

- (1) $r_0 = 2$ and $s_0 = \frac{1}{5}$. X_1 is a weak log canonical model of $(W, B_W + \frac{3}{5}G_W + \frac{1}{5}H_W)$;
- (2) $r_1 = 1$ and $s_1 = \frac{2}{5}$. $X_2 = X'$ is a weak log canonical model of $(W, B_W + \frac{1}{5}G_W + \frac{3}{5}H_W)$.

This gives the same decomposition as in the case (1) in Section 7.1.1.

7.1.3 Polytope method

Let P,Q be two different points on \mathbb{P}^2 and let L be the line passing through P and Q. Let $p:X\to\mathbb{P}^2$ be the blow-up at P and E_1 be the exceptional divisor. Let $q:Y\to\mathbb{P}^2$ be the blow-up at Q and E_2 be the exceptional divisor. Let $W\to\mathbb{P}^2$ be the blow-up of P and Q, then we have contractions $f:W\to X$ and $g:W\to Y$. Identify L,E_1 and E_2 with their strict transforms on W. Let $h:W\to Z$ be the contraction of

图 7.1 Decomposition of $\mathcal{E}_A(V)$

L, then $Z \cong \mathbb{P}^1 \times \mathbb{P}^1 = \mathbb{F}_0$.

Note that $X \cong \mathbb{F}_1$, there is a Mori fibre space $\phi: X \to S \cong \mathbb{P}^1$. Similarly, there is another Mori fibre space $\psi: Y \to T \cong \mathbb{P}^1$. There is a birational map $\Phi: X \dashrightarrow Y$ induced by p and q. If we take $B_W = \frac{1}{4}L$ on W, then f and g are two log Mori fibre spaces given by the outputs of $(K_W + B_W)$ -MMPs.

Take $A \sim_{\mathbb{Q}} -K_W + \frac{1}{4}L$, and let V be the translation by $\frac{1}{4}L$ of the 2-dimensional vector space spanned by E_1 and E_2 . Then we have $\mathcal{L}_A(V) = \mathcal{E}_A(V)$. Furthermore, $K_W + D \sim_{\mathbb{Q}} \frac{1}{2}L + aE_1 + bE_2$ for $0 \le a, b \le 1$ if $D \in \mathcal{E}_A(V)$. The partition of $\mathcal{E}_A(V)$ is Then D_0 and D_1 correspond to log Mori fibre spaces $\phi: X \to S$ and $\psi: Y \to T$. D_2, D_3 and D_4 correspond to three Sarkisov links. Therefore, we have a decomposition of $\Phi: X \dashrightarrow Y$ as

- 7.2 应用
- 7.3 展望