Counting with infinities

Arno Pauly

March 8, 2021

Pre-preview

Claim: There are more formal languages than there are grammars.

Injections, surjections and bijections

Definition

We call a function $f: X \to Y$

an injection if
$$\forall x_1, x_2 \in X \ f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

plain reading every element in Y is the image of at most element from X

a surjection if
$$\forall y \in Y \exists x \in X \ f(x) = y$$

plain reading every element in Y is the image of some element from X

a bijection if it is both an injection and a surjection

Connection to cardinality

Let $\mathbf{n} = \{0, 1, ..., n-1\}$. Realize that

- ► There is an injection from **n** to X if and only if X has at least n elements.
- There is a surjection from n to X if and only if X has at most n elements.
- There is a bijection from n to X if and only if X has exactly n elements.

Some facts

- 1. There is an injection from *X* to *Y* if and only if there is a surjection from *Y* to *X*.
- 2. If there is no injection from *X* to *Y*, then there is an injection from *Y* to *X*.
- 3. If there is an injection from X to Y and an injection from Y to X, then there is a bijection from X to Y.

Cardinality

Definition

We write $|X| \le |Y|$ if there is a surjection from Y to X, and |X| = |Y| if there is a bijection from X to Y.

- For any two sets, $|X| \le |Y|$ or $|Y| \le |X|$.
- ▶ If $|X| \le |Y|$ and $|Y| \le |X|$, then |X| = |Y|.
- ▶ If $|X| \le |Y|$ and $|Y| \le |Z|$, then $|X| \le |Z|$,

We usually write |X| = n rather than $|X| = |\mathbf{n}|$.

Infinite cardinalities

Proposition

 $|\{2n \mid n \in \mathbb{N}\}| = |\mathbb{N}|$ (plain reading: there are as many even natural numbers as there are natural numbers)

Theorem

 $|\mathbb{Q}| = |\mathbb{N}|$ (plain reading: there are as many rational numbers as there are natural numbers)

So its all just infinity?

Theorem

Let X be a set. There is no surjection $\phi: X \to \mathcal{P}(X)$. (Recall $\mathcal{P}(X)$ is the set of all subsets of X).

Proof.

- Let $\phi: X \to \mathcal{P}(X)$ be a function.
- ▶ Consider $D_{\phi} := \{x \in X \mid x \notin \phi(x)\}.$
- Assume that there is some $x_0 \in X$ with $\phi(x_0) = D_{\phi}$ (if ϕ were surjection, there would need to be one).
- ▶ Does $x_0 \in D_\phi = \phi(x_0)$ hold?
- Contradiction!

Preview

- What are the possible cardinalities of formal languages?
- How many grammars are there?
- ▶ How many formal languages are there, i.e. what is $|\mathcal{P}(\Sigma^*)|$?