3. előadás

2016. szeptember 26.

Emlékeztető:

• Szakadási helyek: $f \notin C\{a\}$.

• A szakadási helyek osztályozása.

A továbbiakban néhány példát mutatunk szakadási helyekre.

1. példa. Legyen

$$f(x) := \begin{cases} \frac{\sin x}{x}, & \text{ha } x \in \mathbb{R} \setminus \{0\} \\ 0, & \text{ha } x = 0. \end{cases}$$

• $f \in C\{a\}$, ha $a \in \mathbb{R} \setminus \{0\}$,

$$\lim_{x \to 0} f = \lim_{x \to 0} \frac{\sin x}{x} = 1 \neq f(0) = 0.$$

A megszüntethető szakadási hely elnevezés arra utal, hogy ebben az esetben az

$$\widetilde{f}(x) := \begin{cases} f(x), & \text{ha } x \in \mathbb{R} \setminus \{0\} \\ \lim_{0} f = 1, & \text{ha } x = 0 \end{cases}$$

1

függvény "már" folytonos az a=0 pontban, azaz $\widetilde{f}\in C\{0\},$ mert $\lim_0\widetilde{f}=\widetilde{f}(0)=1.$

2. példa. Az előjel-függvény:

$$f(x) := sign(x) \quad (x \in \mathbb{R})$$

- $f \in C\{a\}$, ha $a \in \mathbb{R} \setminus \{0\}$,
- a=0 elsőfajú szakadási hely, mert

$$\lim_{0+0} f = 1 \neq \lim_{0-0} f = -1.$$

Megjegyzés. Másodfajú szakadás sokféleképpen lehet.

3. példa. A Dirichlet-függvény:

$$f(x) := \begin{cases} 1, & \text{ha } x \in \mathbb{Q} \\ 0, & \text{ha } x \in \mathbb{Q}^* = \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

• $\forall a \in \mathbb{R}$ másodfajú szakadási hely, mert

$$\exists \lim_{a \to 0} f \text{ és } \not\exists \lim_{a \to 0} f.$$

4. példa. Dirichlet-típusú függvény

$$f(x) := \begin{cases} x, & \text{ha } x \in \mathbb{Q} \\ 0, & \text{ha } x \in \mathbb{Q}^* = \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

- $f \in C\{0\},$
- $\forall a \in \mathbb{R} \setminus \{0\}$ másodfajú szakadási hely, mert $\not\exists \lim_{a \to 0} f$ és $\not\exists \lim_{a \to 0} f$.

5. példa.

$$f(x) := \begin{cases} 0, & \text{ha } x < 0 \\ 10, & \text{ha } x = 0 \\ \frac{1}{x}, & \text{ha } x > 0. \end{cases}$$

- $f \in C\{a\}$, ha $a \in \mathbb{R} \setminus \{0\}$,
- a=0 másodfajú szakadási hely, mert

$$\lim_{0\to 0}f=0\neq \lim_{0\to 0}f=+\infty.$$

Tétel. (Monoton függvények szakadási helyei.)

Legyen $f:(\alpha,\beta)\to\mathbb{R}$ monoton függvény. Ekkor f-nek legfeljebb elsőfajú szakadásai lehetnek, azaz egy $a\in\mathcal{D}_f=(\alpha,\beta)$ pontban f folytonos vagy elsőfajú szakadása van.

Bizonyítás nélkül. ■

Elemi függvények

1. A hatvány- és a gyökfüggvények

Legyen $n \in \mathbb{N}$ rözített természetes szám.

Hatványfüggvény: $f(x) := x^n \ (x \in [0, +\infty)).$

Gyökfüggvény: $\sqrt[p]{}:[0,+\infty)\ni x\mapsto \sqrt[p]{x}.$

Igazolható:

- $f \uparrow$ és folytonos $[0, +\infty)$ -n \Longrightarrow \exists inverze,
- $f^{-1} = \sqrt{(a \text{ gyökfüggvény a hatványfüggvény inverze)}}$,
- f^{-1} † és folytonos $[0, +\infty)$ -n.

A függvények képe:

 $\bf Megjegyzés.$ A függvénytulajdonságok megfogalmazhatók, megjegyzendők. Például:

$$\lim_{0} \sqrt[p]{} = 0, \quad \lim_{+\infty} \sqrt[p]{} = +\infty. \blacksquare$$

2. Az exp és az ln függvény

Tétel. (Az exp függvény tulajdonságai.)

$$1^o\,\exp(x):=\exp x:=e^x:=\sum_{n=0}^{+\infty}\frac{x^n}{n!}\quad (x\in\mathbb{R}).$$

 $2^o \bullet \exp(0) = 1,$

•
$$\exp(1) = \sum_{n=0}^{+\infty} \frac{1}{n!} = e \left(:= \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n \right).$$

3° A függvényegyenlet:

$$e^{x+y} = e^x \cdot e^y \quad (x, y \in \mathbb{R}).$$

 $4^o \exp \uparrow \textit{\'es folytonos } \mathbb{R}\text{-}en.$

 $5^o \mathcal{R}_{\rm exp} = (0, +\infty).$

$$6^{o} \lim_{+\infty} \exp = +\infty \quad \acute{e}s \quad \lim_{-\infty} \exp = 0.$$

Bizonyítás nélkül. ■

Az exp függvény képe:

Definíció. Mivel az $\exp: \mathbb{R} \to \mathbb{R}$ függvény $\uparrow \mathbb{R}$ -en, ezért \exists inverze. Legyen

$$\ln := \log := \exp^{-1}$$

a (természetes alapú vagy e alapú) logaritmusfüggvény.

Megjegyzések.

1°
$$\mathcal{D}_{\ln} = \mathcal{R}_{\exp} = (0, +\infty)$$
 és $\mathcal{R}_{\ln} = \mathcal{D}_{\exp} = \mathbb{R}$.

 2^o Ha x > 0, akkor

$$\ln x := \ln(x) = y \quad \stackrel{\text{inverz}}{\Longrightarrow} \quad e^y = x.$$

 $\ln x$ tehát az a kitevő, amire az alapot (vagyis az e számot) emelve x-et kapunk. Ez azt jelenti, hogy a fenti módon értelmezett logaritmus a középiskolai definícióval egyezik meg. \blacksquare .

Az ln függvény képe az exp függvény képének az y = x egyenletű egyenesre vonatkozó tükörképe.

Megjegyzés. A függvénytulajdonságok megfogalmazhatók, megjegyzendők. ■

Tétel. (Az ln függvény tulajdonságai.)

$$1^o \bullet \ln e^x = x \quad (\forall x \in \mathbb{R}),$$

•
$$e^{\ln x} = x \quad (\forall x > 0).$$

$$2^{\circ} \ln(x \cdot y) = \ln x + \ln y \quad (x, y > 0).$$

 $3^{\circ} \ln \uparrow \text{ \'es folytonos } (0,+\infty)\text{-en, tov\'abb\'a } \mathcal{R}_{\ln} = \mathbb{R}.$

$$4^{\circ} \lim_{n \to \infty} \ln n = +\infty \quad \text{\'es} \quad \lim_{n \to \infty} \ln n = -\infty.$$

Megjegyzések.

 1^o Az expx"jól számolható" $\forall\,x\in\mathbb{R}$ esetén, mert expxegy végtelen sor összege.

 2^o Az $\ln x$ minden x>0számra értelmezve van, de az értéke így nem számolható. Később majd az ln függvényt is előállítjuk hatványsor összegeként, és annak felhasználásával lehet a függvényértékeket kiszámolni.

$3. Az \exp_a és a \log_a függvények$

Megjegyzés. A célunk az a^x értelmezése tetszőleges a > 0 alap és $x \in \mathbb{R}$ kitevő esetére úgy, hogy a hatványozás $x \in \mathbb{Q}$ esetén "megszokott" azonosságai érvényben maradjanak.

Az e szám tetszőleges $x \in \mathbb{R}$ kitevős hatványait már értelmeztük. a^x ételmezéséhez abból indulunk ki, hogy az a > 0 számot felírhatjuk e hatványaként:

$$a = e^{\ln a}$$
.

A hatvány hatványozására vonatkozó azonosság csak úgy marad érvényben, ha a^x -t így értelmezzük:

$$a^x = \left(e^{\ln a}\right)^x = e^{x \ln a}. \blacksquare$$

Definíció. Legyen a > 0 valós szám. Tetszőleges $x \in \mathbb{R}$ esetén az a **szám** x-edik hatványát így értelmezzük:

$$a^x := e^{x \cdot \ln a}$$

Igazolható: $(ab)^x = a^x \cdot b^x$ és $a^{x+y} = a^x \cdot a^y$ $(a, b > 0; x, y \in \mathbb{R})$.

Definíció. Legyen a > 0 valós szám. Az a **alapú exponenciális függvényt** így értelmezzük:

$$\exp_a:\mathbb{R}\to\mathbb{R},\quad \exp_a(x):=a^x=\exp(x\cdot\ln a)\quad (\forall\,x\in\mathbb{R}).$$

Megjegyzés. Világos, hogy $\exp_e = \exp$.

Igazolható (az exp és az ln függvény tulajdonságait is figyelembe véve):

- Ha $0 < a \neq 1,$ akkor az $\exp_a : \mathbb{R} \to (0, +\infty)$ függvény egy folytonos bijekció.
- \bullet Haa>1,akkor \exp_a szigorúan monoton növő és

$$\lim_{-\infty} \exp_a = 0, \qquad \lim_{+\infty} \exp_a = +\infty.$$

 \bullet Ha0 < a < 1,akkor \exp_a szigorúan monoton fogyó és

$$\lim_{-\infty} \exp_a = +\infty, \qquad \lim_{+\infty} \exp_a = 0. \ \blacksquare$$

 $Az \exp_a$ függvény képe

Megjegyzés. A függvénytulajdonságok megfogalmazhatók, megjegyzendők. ■

Definíció. Ha a>0 valós szám és $a\neq 1$, akkor az \exp_a szigorúan monoton és folytonos \mathbb{R} -en, ezért van inverze, amelyet a **alapú logaritmusfüggvénynek** nevezünk és \log_a -val jelölünk, azaz

$$\log_a := (\exp_a)^{-1}, \quad ha \ a > 0 \ \textit{\'es} \ a \neq 1.$$

Megjegyzés. Világos, hogy $\log_e = \ln = \log$. Továbbá $\log_a(x) = \log_a x = y \iff a^y = x$, azaz $\log_a x$ az a kitevő, amire a-t emelve x-et kapunk. \blacksquare

A \log_a függvény képe:

Megjegyzés. A függvénytulajdonságok megfogalmazhatók, megjegyzendők. ■

Tétel. (A \log_a függvény tulajdonságai.)

 $1^o~Ha~a>1,~akkor\log_a~szigor\'uan~monoton~n\"ov\~o~folytonos~f\"uggv\'eny~\'es~\mathcal{R}_{\log_a}=\mathbb{R},~tov\'abb\'a$

$$\lim_{0+0}\log_a=-\infty,\qquad \lim_{+\infty}\log_a=+\infty.$$

 2^o Ha 0 < a < 1, akkor \log_a szigorúan monoton fogyó folytonos függvény és $\mathcal{R}_{\log_a} = \mathbb{R}$, továbbá

$$\lim_{0+0}\log_a=+\infty,\qquad \lim_{+\infty}\log_a=-\infty.$$

 3^o Logaritmusazonosságok: Legyen $0 < a \neq 1$. Ekkor

- $\log_a(x \cdot y) = \log_a x + \log_a y \quad (x, y > 0);$
- $\log_a\left(\frac{x}{y}\right) = \log_a x \log_a y \quad (x, y > 0);$
- $\log_a(x^y) = y \log_a x \quad (x > 0, \ y \in \mathbb{R}).$

4. Hatványfüggvények

Definíció. Tetszőleges $\alpha \in \mathbb{R}$ szám esetén az α kitevőjű hatványfüggvényt így értelmezzük:

$$h_{\alpha}:(0,+\infty)\ni x\mapsto x^{\alpha}:=e^{\alpha\ln x}.$$

Tétel. (A hatványfüggvény tulajdonságai.)

Legyen $0 \neq \alpha \in \mathbb{R}$. Ekkor a $h_{\alpha}: (0, +\infty) \to (0, +\infty)$ függvény egy folytonos bijekció, amely

 $\bullet \ \alpha > 0$ esetén szigorúan monoton növő, és

$$\lim_{0+0} h_{\alpha} = 0, \qquad \lim_{+\infty} h_{\alpha} = +\infty,$$

 \bullet $\alpha < 0$ esetén pedig szigorúan monoton fogyó, és

$$\lim_{0+0} h_{\alpha} = +\infty, \qquad \lim_{+\infty} h_{\alpha} = 0.$$

6

Bizonyítás. Az eddigiek alapján.

A h_{α} hatványfüggvény képe:

DIFFERENCIÁLSZÁMÍTÁS

Előzetes megjegyzések

Korábban megismertük a matematikai analízis egyik legalapvetőbb fogalmát, nevezetesen: valós-valós függvény **pontbeli határértékének** a definícióját. Emlékeztetünk arra, hogy ezzel a fogalommal egy függvénynek azt a – szemléletünk alapján eléggé világos – tulajdonságát fogalmaztuk meg matematikai szempontból is *pontos* formában, hogy egy adott ponthoz "közeli" helyeken a függvényértékek "közel" vannak valamely (valós, $+\infty$ vagy $akár -\infty$) értékhez.

A további néhány előadáson a **differenciálszámítás** legfontosabb eredményeivel és eszköztárával ismerkedünk meg. Ez a témakör a matematikai analízisnek, sőt az egész matematikának és az alkalmazásoknak is egyik igen fontos fejezete. A differenciálszámítás jól használható általános módszert ad többek között függvények tulajdonságainak a leírásához.

Több elemi függvényt hatványsor összegfüggvényeként értelmeztünk. Például az exp függvény szigorú monotonitása a definícióból kiindulva viszonylag könnyen igazolható. Más a helyzet a sin vagy a cos függvényekkel. Megemlítettük, hogy ezek a függvények a középiskolai tanulmányainkban megismert függvényekkel azonosak. A megszokott tulajdonságok igazolása (például a monotonitási intervallumok) a "hatványsoros" definícióból kiindulva azonban nem egyszerű feladat; ehhez (is) szükségünk lesz a differenciálszámítás eszköztárához.

A kiindulópontunk a pontbeli derivált fogalmának az értelmezése.

A derivált motivációja, szemléletes jelentése

Valós-valós függvény grafikonjának egyik "jellegzetes" tulajdonsága az, hogy annak vajon van-e "töréspontja" vagy nincsen.

Vegyünk két egyszerű példát:

A jobb oldali függvény grafikonjának az (a, f(a)) pont egy "töréspontja". A bal oldali függvény grafikonjának nincs "töréspontja".

A különbség pontos leírásához induljunk ki abból az ötletből, hogy húzzunk szelőt a grafikon (a, f(a)) pontjában:

A szelő meredeksége:

$$m_h = \frac{f(a+h) - f(a)}{h}.$$

A bal oldali függvénynél a szelőknek van "határhelyzete", a jobb oldali függvénynél nincs, amit "geometriamentesen" úgy fogalmazhatunk meg, hogy a bal oldali függvénynél

$$\exists \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
 határérték és az véges,

a jobb oldali függvénynél a szóban forgó határérték nem létezik. Ezt úgy fejezzük ki, hogy a bal oldali függvény "deriválható az a pontban", a jobb oldali függvény pedig "nem deriválható az a pontban".