Applicant: Carol Brugnara et al.

Serial No.: 10/043,640

Filed:

January 10, 2002

Page: 1

Attorney's Docket No.: 13691-002005 / 470-104US2

REMARKS

Status of the Claims

Pending claims

Claims 1-16 as filed are pending.

The Restriction Requirement

The Patent Office has alleged that the pending claims of the application are directed to two separate and distinct inventions under 35 U.S.C. §121:

The Election

In response to the Restriction Requirement, Applicants elect Group I, claims 1-16 wherein X is C.

Applicant believes that no fee is required for submission of this Response.

However, if a fee is required, the Commissioner is authorized to deduct such fee from the undersigned's Deposit Account No. 06-1050. Please credit any overpayment to the above-noted Deposit Account.

If the Examiner believes a telephone conference would expedite prosecution of this application, please telephone the undersigned at 858 678 5070.

Respectfully submitted,

Date

Fish & Richardson P.C.

4350 La Jolla Village Drive, Suite 500

San Diego, California 92122 Telephone: (858) 678-5070

Facsimile: (858) 678-5099

10235066.doc

Mi K. Kim

Reg. No. 44,830

Attorney's Docket

Applicant: Carol Brugnara et al. . Serial No.: 10/043,640 January 10, 2002

Page:

Version with markings to show changes made

In the claims:

Claims 1, 3, 4, 6, 7, and 11 have been amended as follows:

A compound having the structural formula:

$$(I) \qquad \qquad (R_5)_n \qquad \qquad (R_5)_n \qquad \qquad (R_7)_m \qquad \qquad (R_7)_m$$

or a pharmaceutically acceptable salt or hydrate thereof, wherein:

m is 0, 1, 2, 3 or 4;

each n is independently 0, 1, 2, 3, 4 or 5;

X is Clor M;

Y is absent, (C_1-C_6) alkyl, (C_1-C_6) alkenyl or (C_1-C_6) alkynyl;

 R_1 is absent, -OR, -SR, =O, =S, =N-OR, -O-C(O)R, -S-C(O)R, -O-C(S)R, -S-C(S)R, or when taken together with R₂ is a 3-8 membered heterocycloalkyl or a substituted 3-8 membered heterocycloalkyl;

R₂ is absent or -H;

R, is absent or -H;

 R_4 is -H, -OR', -SR', -NR'₂, -CN, -NO₂, (C₃-C₈) cycloalkyl, 3-8 membered heterocycloalkyl, -C(0)R', -C(5)R', -C(0)OR', -C(S)OR', -C(O)SR', -C(S)SR', -C(O)NR', or -C(S)NR';

each R, R, and R, is independently selected from the group consisting of -halogen, -R', -OR', -SR', -NR', -ONR', $-SNR'_2$, $-NO_2$, -CN, -C(O)R', -C(S)R', -C(O)OR', -C(O)SR', -C(S)OR', -CS(S)R', -C(O)NR', -C(S)NR', -C(O)NR'(OR'), -C(S)NR'(OR'); -C(O)NR'(SR'), -C(S)NR'(SR'), -CH(CN)₂, $-CH[C(0)R']_2$, $-CH[C(S)R']_2$, $-CH[C(0)OR']_2$, $-CH[C(S)OR']_2$, -CH[C(0)SR'], and -CH[C(S)SR'];;

Page: 12

each R is independently selected from the group consisting of -H, (C_1-C_6) alkyl, (C_1-C_6) alkenyl, (C_1-C_6) alkynyl, (C_5-C_{20}) aryl, substituted (C_5-C_{20}) aryl, (C_6-C_{26}) alkaryl and substituted (C_6-C_{26}) alkaryl;

the heterocycloalkyl substituents are each independently selected from the group consisting of -CN, -NO₂, -NR'₂, -OR', -C(O)NR'₂, -C(S)NR'₂, -C(O)OR', -C(S)OR', -C(O)SR', -C(S)SR' and trihalomethyl;

the aryl and alkaryl substituents are each independently selected from the group consisting of halogen, -C(0)R', -C(S)R', -C(O)OR', -C(S)OR', -C(O)SR', -C(S)SR', -C(O)NR', -C(O)NR', and trihalomethyl;

each R' is independently selected from the group consisting of -H, (C_1-C_6) alkyl, (C_1-C_6) alkenyl and (C_1-C_6) alkynyl;

--- designates a single or double bond; and wherein when X is C and R_1 is =0 or -OH, at least one of R_5 , R_6 or R_7 is other than -H, or Y is present or R_4 is other than -H; and when X is N, --- is a double bond and R_1 , R_2 , R_3 and Y are absent, R_4 is other than -NH.

3. A pharmaceutical composition comprising a compound and a pharmaceutically acceptable excipient, carrier or diluent, said compound having the structural formula:

$$(R_6)_n$$

$$(R_7)_m$$

$$(R_7$$

```
Applicant: Carol Brugnara et al.
Serial No.: 10/043,640
Filed: January 10, 2002
Page: 13
```

or a pharmaceutically acceptable salt or hydrates thereof, wherein:

m is 0, 1, 2, 3 or 4; each n is independently 0, 1, 2, 3, 4 or 5; X is C or N;

Y is absent, (C_1-C_6) alkyl, (C_1-C_6) alkenyl or (C_1-C_6) alkynyl;

 R_1 is absent, -OR, -SR, =0, =S, =N-OR, -O-C(0)R, -S-C(0)R, -O-C(S)R, -S-C(S)R, or when taken together with R_2 is a 3-8 membered heterocycloalkyl or a substituted 3-8 membered heterocycloalkyl;

R₂ is absent or -H;

R, is absent or -H;

 R_4 is -H, -OR', -SR', -NR'₂, -CN, -NO₂, (C₃-C₈) cycloalkyl, 3-8 membered heterocycloalkyl, -C(0)R', -C(5)R', -C(0)OR', -C(5)OR', -C(0)SR', -C(5)SR', -C(0)NR'₂;

each R_5 , R_6 and R_7 is independently selected from the group consisting of -halogen, -R', -OR', -SR', $-NR'_2$, $-ONR'_2$, $-SNR'_2$, $-NO_2$, -CN, -C(O)R', -C(S)R', -C(O)OR', -C(O)SR', -C(S)OR', -CS(S)R', $-C(O)NR'_2$, $-C(S)NR'_2$, -C(O)NR'(OR'), -C(S)NR'(OR'); -C(O)NR'(SR'), -C(S)NR'(SR'), $-CH(CN)_2$, $-CH[C(O)R']_2$, $-CH[C(S)R']_2$, $-CH[C(S)SR']_2$;

each R is independently selected from the group consisting of -H, (C_1-C_6) alkyl, (C_1-C_6) alkenyl, (C_1-C_6) alkynyl, (C_5-C_{20}) aryl, substituted (C_5-C_{20}) aryl, (C_6-C_{26}) alkaryl and substituted (C_6-C_{26}) alkaryl;

the heterocycloalkyl substituents are each independently selected from the group consisting of -CN, -NO₂, -NR'₂, -OR', -C(0)NR'₂, -C(5)NR'₂, -C(0)OR', -C(5)OR', -C(0)SR', -C(5)SR' and trihalomethyl;

the aryl and alkaryl substituents are each independently selected from the group consisting of halogen, -C(0)R', -C(S)R', -C(0)OR', -C(S)OR', -C(0)SR', -C(0)NR', -C(0)NR', and trihalomethyl;

Page: 14

each R' is independently selected from the group consisting of -H, (C_1-C_6) alkyl, (C_1-C_6) alkenyl and (C_1-C_6) alkynyl; and

--- designates a single or double bond.

4. The pharmaceutical composition of Claim 3, wherein in the compound of structural formula (I):

m is 0 or 1;

each n is independently 0 or 1;

X is Clor M;

Y is absent, (C_1-C_3) alkyl, (C_1-C_3) alkenyl or (C_1-C_3) alkynyl;

 R_1 is absent -H, -OR, =0, -NR₂, =N-OR, -O-C(O)R, or when taken together with R_2 is 3-5 membered oxirane or 3-5 membered substituted oxirane;

R₂ is absent or -H;

R₃ is absent or -H;

 R_4 is -H, -OR, -NR₂, -CN, -C(0)OR, -C(0)NR₂ or 5-6 membered dioxoycycloalkyl;

each R_5 , R_6 and R_7 is independently selected from the group consisting of $-R^\prime$, -F, -Cl or -Br;

each R is independently selected from the group consisting of -H, (C_1-C_3) alkyl, (C_1-C_3) alkynyl, (C_5-C_{10}) aryl, substituted (C_5-C_{10}) aryl, (C_6-C_{13}) alkaryl, substituted (C_6-C_{13}) alkaryl;

the oxirane substituent is -CN, $-NO_2$, $-NR'_2$, -OR' and trihalomethyl;

the aryl and alkaryl substituents are each independently selected from the group consisting of -F, -Cl, -Br, -CN, -NO₂, -NR'₂, -C(0)R', -C(0)OR' and trihalomethyl;

R' is -H, (C_1-C_3) alkyl, (C_1-C_3) alkenyl or (C_1-C_3) alkynyl; and

--- is a single or double bond.

Applicant: Carol Brugnara et al: Serial No.: 10/043,640 Filed: January 10, 2002

Page: 15

6. A method of inhibiting mammalian cell proliferation, said method comprising the step of contacting a mammalian cell in situ with an effective amount of a compound having the structural formula:

$$(R_6)_n$$

$$(R_7)_m$$

$$R_1$$

$$R_2$$

or a pharmaceutically acceptable salt or hydrate thereof, wherein:

m is 0, 1, .2, 3 or 4;

each n is independently 0, 1, 2, 3, 4 or 5;

X is Cor N;

Y is absent, (C_1-C_6) alkyl, (C_1-C_6) alkenyl or (C_1-C_6) alkynyl;

 R_1 is absent, -OR, -SR, =O, =S, =N-OR, -O-C(O)R, -S-C(O)R, -O-C(S)R, -S-C(S)R, or when taken together with R_2 is a 3-8 membered heterocycloalkyl or a substituted 3-8 membered heterocycloalkyl;

R, is absent or -H;

R, is absent or -H;

R₄ is -H, -OR', -SR', -NR'₂, -CN, -NO₂, (C₃-C₈) cycloalkyl, 3-8 membered heterocycloalkyl, -C(0)R', -C(5)R', -C(0)OR', -C(5)OR', -C(5)SR', -C(5)SR', -C(5)NR'₂;

each R_5 , R_6 and R_7 is independently selected from the group consisting of -halogen, -R', -OR', -SR', $-NR'_2$, $-ONR'_2$, $-SNR'_2$, $-NO_2$, -CN, -C(O)R', -C(S)R', -C(O)NR', -C(O)NR',

Applicant: Carol Brugnara et al. Serial No.: 10/043,640 Filed: January 10, 2002

Page: 16

 $-C(S)NR'(OR'); -C(C)NR'(SR'), -C(S)NR'(SR'), -CH(CN)_{2}, \\ -CH[C(O)R']_{2}, -CH[C(S)R']_{2}, -CH[C(O)OR']_{2}, -CH[C(S)OR']_{2}, \\ -CH[C(O)SR']_{2} \ and \ -CH[C(S)SR']_{2};$

each R is independently selected from the group consisting of -H, (C_1-C_6) alkyl, (C_1-C_6) alkenyl, (C_5-C_{20}) aryl, substituted (C_5-C_{20}) aryl, (C_6-C_{26}) alkaryl and substituted (C_6-C_{26}) alkaryl;

the heterocycloalkyl substituents are each independently selected from the group consisting of -CN, -NO₂, -NR'₂, -OR', -C(0)NR'₂, -C(5)NR'₂, -C(0)OR', -C(5)OR', -C(0)SR', -C(5)SR' and trihalomethyl;

the aryl and alkaryl substituents are each independently selected from the group consisting of halogen, -C(0)R', -C(5)R', -C(0)OR', -C(5)OR', -C(0)SR', -C(5)SR', -C(0)NR', -C(5)NR', and trihalomethyl;

each R' is independently selected from the group consisting of -H, (C_1-C_6) alkyl, (C_1-C_6) alkenyl and (C_1-C_6) alkynyl; and

--- designates a single or double bond.

7. The method of Claim 6, wherein in the compound of structural formula (I):

m is 0 or 1;

each n is independently 0 or 1;

X is Cor N;

Y is absent, (C_1-C_3) alkyl, (C_1-C_3) alkenyl or (C_1-C_3) alkynyl;

 R_1 is absent -H, -OR, =O, -NR₂, =N-OR, -O-C(O)R, or when taken together with R_2 is 3-5 membered oxirane or 3-5 membered substituted oxirane;

R, is absent or -H;

R, is absent or -H; .

 R_4 is -H, -OR, -NR₂, -CN, -C(0)OR, -C(0)NR₂ or 5-6 membered dioxoycycloalkyl;

each R_s , R_s and R_r is independently selected from the group consisting of -R', -F, -Cl or -Br;

Applicant: Carol Brugnara et al.

Serial No.: 10/043,640 Filed: January 10, 2002

Page: 17

each R is independently selected from the group consisting of -H, (C_1-C_3) alkyl, (C_1-C_3) alkenyl, (C_5-C_{10}) aryl, substituted (C_5-C_{10}) aryl, (C_6-C_{13}) alkaryl, substituted (C_6-C_{13}) alkaryl,

the oxirane substituent is -CN, -NO $_2$, -NR $'_2$, -OR' and trihalomethyl;

the aryl and alkaryl substituents are each independently selected from the group consisting of -F, -Cl, -Br, -CN, -NO₂, -NR'₂, -C(0)R', -C(0)OR' and trihalomethyl;

R' is -H, (C_1-C_3) alkyl, (C_1-C_3) alkenyl or (C_1-C_3) alkynyl; and

--- is a single or double bond.

11. The method of Claim 10, wherein in the compound of structural formula (I):

m is 0 or 1;

each n is independently 0 or 1;

X is C or N;

Y is absent, (C_1-C_3) alkyl, (C_1-C_3) alkenyl or (C_1-C_3) alkynyl;

 R_1 is absent -H, -OR, =O, -NR₂, =N-OR, -O-C(O)R, or when taken together with R_2 is 3-5 membered oxirane or 3-5 membered substituted oxirane;

Applicant: Carol Brugnara et al

Serial No.: 10/043,640

Filed: January 10, 2002

Page: 18

R₂ is absent or -H;

R, is absent or -H;

 R_4 is -H, -OR, -NR₂, -CN, -C(0)OR, -C(0)NR₂ or 5-6 membered dioxoycycloalkyl;

each R_5 , R_6 and R_7 is independently selected from the group consisting of $-R^\prime$, -F, -Cl or -Br;

each R is independently selected from the group consisting of -H, (C_1-C_3) alkyl, (C_1-C_3) alkenyl, (C_5-C_{10}) aryl, substituted (C_5-C_{10}) aryl, (C_6-C_{13}) alkaryl, substituted (C_6-C_{13}) alkaryl,

the oxirane substituent is -CN, $-NO_2$, $-NR'_2$, -OR' and trihalomethyl;

the aryl and alkaryl substituents are each independently selected from the group consisting of -F, -Cl, -Br, -CN, -NO₂, -NR'₂, -C(0)R', -C(0)OR' and trihalomethyl;

R' is -H, (C_1-C_3) alkyl, (C_1-C_3) alkenyl or (C_1-C_3) alkynyl; and

--- is a single or double bond.