The analysis of GANs from mathematics perspective

model part

2017-7-14

Table

- GANs model
 - Perspective of Analysis
 - Perspective of Statistics
 - Perspective of Info. Theory

Generative Adversarial Networks¹

Generator: G, Parameterization θ_g , The true distribution of data $P_r(PDF: p_r(x))$, Generated distribution $P_g(PDF: p_g(x))$

Discriminator D, Parameterization θ_d , discriminate the probability of a data comes from P_g

The objective function is a classical saddle point problem

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{x \sim P_r}[\log D(x)] + \mathbb{E}_{x \sim P_g}[\log(1 - D(x))]$$
 (1)

using variational method to D, it is not hard to get $D^*(x) = \frac{p_r(x)}{p_g(x) + p_r(x)}$, substitute it into the objective function, we have:

$$\min 2JSD(P_r||P_g) - 2\log 2 \tag{2}$$

FACT: The optimization of the primal problem is equivalent to the optimization of the JS divergence between P_r and P_g

¹Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, NIPS, 2014

The Generalization of JS divergence²

The methods to measure the distance between two distributions are various, some work focus on the generalization of the JSD.

f-divergence family(Ali-Silvey distances):

$$D_f(P_r||P_g) = \int_x p_g(x) f(\frac{p_r(x)}{p_g(x)}) dx$$
(3)

in which, generative function $f: \mathbb{R}_+ \to \mathbb{R}$ is convex, lower-semicontinuous, with f(1) = 0

Based on the powerful theorem that if f is convex and lower semicontinuous, then $f^{**} = f$, it can be rewritten as

$$f(u) = \sup_{t \in dom_{f^*}} \{tu - f^*(t)\}$$
 (4)

Thus, the lower bound for the divergence of P_r and P_g comes as:

$$D_f(P_r||P_g) \ge \sup_{T \in \mathcal{T}} (\mathbb{E}_{x \sim P_r}[T(x)] - \mathbb{E}_{x \sim P_g}[f^*(T(x))])$$
 (5)

²f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization.

Still by variational method

$$T^{*}(x) = f'(\frac{p_{r}(x)}{p_{g}(x)})$$
 (6)

The primal objective function can be rewritten as:

$$\min_{\theta_g} \max_{w} F(\theta_g, w) = \min_{\theta_g} \max_{w} \mathbb{E}_{x \sim P_r}[T_w(x)] - \mathbb{E}_{x \sim P_g}[f^*(T_w(x))]$$
 (7)

Name	$D_f(P\ Q)$	Generator $f(u)$	$T^*(x)$
Kullback-Leibler	$\int p(x) \log rac{p(x)}{q(x)} \mathrm{d}x$	$u \log u$	$1 + \log \frac{p(x)}{q(x)}$
Reverse KL	$\int q(x) \log \frac{q(x)}{p(x)} dx$	$-\log u$	$-\frac{q(x)}{p(x)}$
Pearson χ^2	$\int \frac{(q(x)-p(x))^2}{p(x)} dx$	$(u-1)^2$	$2(\frac{p(x)}{q(x)}-1)$
Squared Hellinger	$\int \left(\sqrt{p(x)}-\sqrt{q(x)} ight)^2 \mathrm{d}x$	$(\sqrt{u}-1)^2$	$\left(\sqrt{\frac{p(x)}{q(x)}} - 1\right) \cdot \sqrt{\frac{q(x)}{p(x)}}$
Jensen-Shannon	$\frac{1}{2}\int p(x)\log rac{2p(x)}{p(x)+q(x)} + q(x)\log rac{2q(x)}{p(x)+q(x)}\mathrm{d}x$	$-(u+1)\log\tfrac{1+u}{2}+u\log u$	$\log \frac{2p(x)}{p(x)+q(x)}$
GAN	$\int p(x)\log \tfrac{2p(x)}{p(x)+q(x)} + q(x)\log \tfrac{2q(x)}{p(x)+q(x)}\mathrm{d}x - \log(4)$	$u\log u - (u+1)\log(u+1)$	$\log \frac{p(x)}{p(x)+q(x)}$

it is not hard to prove that if f is taken as the last function in the chart, the objective function is exactly same as that in vanilla GAN. By the way, for $Pearson\chi^2$ divergence, there is also a corresponding paper ³

³Least square GAN Zhe Wang (XJTU)

The disadvantages of using f-divergence family

- the optimization process is unstable⁴
- it may lead to mode collapse 5
- Generator didn't learn anything useful, just memorize some samples ⁶

Possible reasons

 it isn't appropriate to assume that both Generator and Discriminator has infinite modeling capacity

FACT:

It isn't appropriate to use the JS divergence to measure the distance of two lower-dimensional distributions if both of them lie on a high-dimensional space⁷

⁴Improved techniques for training GANS

⁵Loss-Sensitive Generative Adversarial Networks on Lipschitz Densities

⁶Generalization and Equilibrium in Generative Adversarial Nets

⁷Towards Principle Methods for Training GAN

Why JSD is not good?

Lemma 1

True distribution P_r and generated distribution P_g lie on two lower-dimensional submanifolds of a high-dimensional space.

Lemma 2

if A and B are two lower-dimensional, compact submanifolds, A doesn't intersect with B, then, there is always a perfect discriminator D (smooth, continuous, and takes two different constants on A and B) that can separate A and B.

(Elegant Proof: Urysohn's lemma)

Lemma 3: A weaker condition

As long as two lower-dimensional submanifolds doesn't perfect align (the probability for such circumstance is 1), there is always a perfect discriminator can separate these two submanifolds (almost everywhere)

7 / 14

Theorem 1

As long as theses two lower-dimensional submanifolds don't perfect align, their JS divergence always takes a constant, which is log 2, neglecting the real distance of them.

Theorem 2:

As long as the distribution P_g is generated by a continuous differentiable function, what's more P_g , P_r lies on two lower-dimensional submaniflods, which don't perfect align, then as Discriminator converges to the perfect one, the gradient for the generator converges to 0

FACT:

 $JSD(P_r||P_{g_\theta})$ is a constant almost everywhere thus not continuous w.r.t P_{g_θ} , the back propagated gradient for G is close to 0

Solution: Find a distance measurement ρ that satisfies,

- Distribution $P_{g_{\theta}}$ is continuous w.r.t g_{θ}
- Measurement $\rho(P_r||P_{g_\theta})$ is continuous w.r.t P_{g_θ}

8 / 14

Wasserstein Distance⁸

$$W(P_r, P_g) = \inf_{\gamma \in \Pi(P_r, P_g)} \mathbb{E}_{(x, y) \sim \gamma}[||x - y||]$$
(8)

Properties

- if g_{θ} is continuous w.r.t θ , then $W(P_r||P_{g_{\theta}})$ is continuous w.r.t θ
- **②** if g_{θ} is local Lipschitz, then $W(P_r||P_{g_{\theta}})$ is continuous almost everywhere, differentiable almost everywhere.

How weak

- TV Distance: $\delta(P_r||P_g) = \sup_{A \in \Sigma} |p_r(A) p_g(A)|$
- KL Divergence: $KL(P_r||P_g) = \int \log(\frac{p_r(x)}{p_\sigma(x)})p_r(x)d\mu(x)$
- JS Divergence: $JSD(P_r||P_g) = KL(P_r||\frac{1}{2}(P_r + P_g)) + KL(P_g||\frac{1}{2}(P_r + P_g))$

⁸Wasserstein GAN

- $\delta(P_r||P_g) \to 0 \iff JSD(P_r||P_g) \to 0$ (the two norms induced by TV divergence and JS divergence are euqivalent)
- $KL(P_g||P_r) \rightarrow 0 \Longrightarrow JSD(P_r||P_g) \rightarrow 0 \Longrightarrow W(P_r||P_g) \rightarrow 0$
- the topology induced by KL divergence is the strongest one, then comes JSD and TV, the weakest one is induced by Wasserstein

Why it is weak

- $W(P_r||P_{g_\theta}) \to 0$ means P_{g_θ} convergence in distribution to P_r
- JSD and TV induce the strongest topology in $C_b(\chi)^*$, while the Wasserstein distance is the $weak^*$ topology corresponding to that \circ

How to use?

$$W(P_r||P_{g_\theta}) = \sup_{\|f\|_{L} \le 1} \mathbb{E}_{x \sim P_r}[f(x)] - \mathbb{E}_{x \sim P_{g_\theta}}[f(x)]$$
(9)

Minimize $W(P_r||P_{g_\theta})$ w.r.t θ .

The objective function change into

$$\min_{\theta} \max_{w} \mathbb{E}_{x \sim P_r} [f_w(x)] - \mathbb{E}_{z \sim P(z)} [f_w(g_{\theta}(z))]$$
(10)

How to realize $||f||_L \le 1$?

a trick used is called weight clipping, just force all the parameters of f fall into $w \in [-t, t]$.

Disadvantages

- This trick greatly reduce the set for Lipschitz functions.
- the experiment results show that all parameters of f are around t and -t

Some subsequent work are came up with 9 to solve these two problems

⁹Improved Training of Wasserstein GANs

Perspective of Statistics

Lemma

$$P_r = P_g \iff \forall \Phi \in C, ||\mathbf{E}_{x \sim P_r} \Phi(x) - \mathbf{E}_{x \sim P_g} \Phi(x)||^2 = 0$$

GAN: view Φ as the Discriminator D, the first step is to maximize the discrepancy by adjusting D:

$$\max_{w} || E_{x \sim P_r} \Phi_w(x) - E_{x \sim P_g} \Phi_w(x) ||^2$$
 (11)

then minimize the maximum w.r.t Generator:

$$\min_{\theta_g} \max_{w} ||\mathbf{E}_{x \sim P_r} \Phi_w(x) - \mathbf{E}_{x \sim P_g} \Phi_w(x)||^2$$
(12)

 MMD^{10} : using the samples mean after nolinear transformation as a substitute for Expectation:

$$\left\| \frac{1}{N} \sum_{i=1}^{N} \Phi(x_i) - \frac{1}{M} \sum_{j=1}^{M} \Phi(x_j) \right\|^2$$
 (13)

Make using of kernel trick, no Discriminator, optimize the objective function w.r.t Generator

¹⁰Training generative neural networks via Maximum Mean Discrepancy optimization

Perspective of Info. Theory¹¹¹²

True distribution P_r , generated distribution P_{g_θ} , $Z \sim Ber(\pi)$, the random variable X satisfies:

$$P(X|Z=0) = P_g, \ P(X|Z=1) = P_r \tag{14}$$

Generator G_{θ} hopes to inference the value of π , try to independent with Z, it can be achieved by minimizing the mutual information:

$$I(X,Z) = KL(p(x,z)||p(x)p(z))$$
(15)

minimize mutual information \iff X, Z are independent, \iff $P_r = P_g$

$$I(X,Z) = H(Z) + \mathbb{E}_X \mathbb{E}_{Z|X} \log q(z|x) + \mathbb{E}_X KL[p(z|x)||q(y|x)]$$

$$= \max_q H(Z) + \mathbb{E}_X \mathbb{E}_{Z|X} \log q(z|x)$$
(16)

$$I(X,Z) \ge H(Z) + \max_{\Psi} \mathbb{E}_{X,Z} \log q(z|x;\Psi)$$

$$= H(Z) + \max_{\Psi} \pi \mathbb{E}_{P_r} \log q(1|x;\Psi) + (1-\pi)\mathbb{E}_{P_g} \log q(0|x;\Psi)$$
(17)

$$\min I(X,Z) \Longrightarrow \min_{g_{\theta}} \max_{\Psi} \pi \mathbb{E}_{P_r} \log q(1|x;\Psi) + (1-\pi) \mathbb{E}_{P_g} (1 - \log q(1|x;\Psi))$$

Conclusion

The Non-parametric Estimation of the distance between P_r and P_g^{13} :

Definition

Integral Probability Metrics:

$$\gamma_F(P_r, P_g) := \sup_{f \in F} \left| \int_M f dP_r - \int_M f dP_g \right| \tag{18}$$

in which F is a set which contains all real valued, bounded measurable functions on M

All the foregoing models differs in the choice of F

- Wasserstein distance: $F = \{f : ||f||_L \le 1\}$
- TV distance or Kolmogorov distance: $F = \{f : ||f||_{\infty} \le 1\}$
- MMD: $F = \{f : ||f||_H \le 1\}$

¹³Non-parametric Estimation of Integral Probability Metrics