Relacije

1 Osnove

- \bullet Za neki skup A, dekartov proizvod $A\times A$ se zove **dekartov kvadrat** i piše se A^2
- Za neka dva skupa A i B, bilo koji podskup skupa uređenih parova skupa $A \times B$ zovemo **binarna** relacija i pišemo: $\rho \subseteq A \times B$
- Ako $x \in A$ i $y \in B$ i $(x,y) \in \rho$ onda kažemo da je x u relaciji ρ sa y i pišemo $x \rho y$
- Pošto su relacije skupovi, mogu se vršiti sve operacije kao nad ostalim skupovima poput unije, presjeka, razlike, itd...

Primjer: Dati su skupovi $A = \{1, 2\}$ i $B = \{\alpha, \beta\}$

Onda je dekartov proizvod $A \times B = \{(1, \alpha), (1, \beta), (2, \alpha), (2, \beta)\}$

Neka imamo relaciju $\rho_1 = \{(2, \alpha), (1, \alpha)\}$ onda kažemo da je 2 u relaciji ρ_1 sa α tj. $2\rho_1\alpha$ jer $(2, \alpha) \in \rho_1$. Isto vrijedi i za drugi uređeni par.

2 Osobine

Za neku relaciju ρ vrijede sljedeće osobine:

• refleksivna: $(\forall x \in A)(x\rho x)$

• simetrična: $(\forall x, y \in A)(x\rho y \Rightarrow y\rho x)$

• tranzitivna: $(\forall x, y, z \in A)(x\rho y \land y\rho z \Rightarrow x\rho z)$

3 Grafički i tabelarni prikaz

Relacije se mogu i grafički ili tabelarno prikazati. Ako postoji skup $A = \{1, 3, 4, 9\}$ i relacija $\rho \subseteq A^2$ i $\rho = \{(1, 1), (1, 3), (1, 4), (1, 9), (3, 3), (3, 9), (4, 4), (9, 9)\}$, onda se to može prikazati na sljedeći način:

ρ	1	3	4	9
1	T	T	T	T
3	上	T	\perp	T
4	上	\perp	T	\perp
9	上	\perp	\perp	T

Osobine relacije se mogu naslutiti na dijagramu. Za **refleksivne** relacije vrijedi da svaki čvor ima vezu sam na sebe. Kod **simetrične** relacije, ako postoji veza $A \to B$ onda postoji i veza $B \to A$ tj. postoji dvosmjerna veza. Kod **tranzitivne** relacije, ako postoji $A \to B$ i $B \to C$ onda postoji i $A \to C$.

4 Ponavljanje

- 1. U skupu $A = \{1, 2, 3, 4\}$ odrediti tablice za relacije: = (jednako), < (manje), | (biti dijelilac od)
- 2. U skupu $A = \{1, 2, 3, 4\}$ definisana je relacija $\rho : (\forall (x, y) \in A) : x \rho y \Leftrightarrow y = x + 1$ Napisati tablicu, prikazati grafički, ispisati parove i ispitati osobine relacije.
- 3. U skupu $A = \{-1, 0, 1\}$ definisana je relacija $\rho : (\forall (x, y) \in A) : x\rho y \Leftrightarrow y^3 = x^3$ Napisati tablicu, prikazati grafički, ispisati parove i ispitati osobine relacije.
- 4. U skupu $A = \{-2, -1, 0, 1, 2\}$ definisana je relacija $x \rho y \Leftrightarrow x \leq y$ Napisati tablicu, prikazati grafički, ispisati parove i ispitati osobine relacije.