

중간고사 대비

록표: 시험 시간 100분 동안 3문제를 해결하려면, 문제당 약 33분 안에 코드를 작성하고 결과를 도출 → 속도와 정확성!

시험 시작 직후 (1분)
□ 문제 전체 훑어보기
□ 데이터 파일 경로 수정
□ 범주형 변수 이름 확인 후 수정
□ 종속변수(outcome) 이름 수정
□ 제외할 변수 확인 (ID, 고객번호 등)
□ 문제에서 요구하는 성과지표 확인 (MAE, RMSE, MAPE 등)
☐ test_size 확인 (0.2인지 0.4인지)
☐ cv 값 확인 (5-fold인지 10-fold인지)
□ 각 문제별 시간 배분 메모
각 문제 시작 시
□ 문제 요구사항 형광펜 체크
□ 필요한 템플릿 복사
□ 데이터 로드 후 즉시 info() 실행
제출 전 (5분)
□ 모든 셀 실행 확인
□ 출력 결과 있는지 확인
□ 파일명 확인
□ 제출 완료 확인

▼ 오류 및 주의할 점

1. 🔴 전처리 및 데이터 타입 오류 (가장 치명적)

모델 학습 이전에 데이터 타입 문제로 인해 코드가 멈추는 경우가 가장 흔합니다.

- 결측치(NaN) 오류: df.isnull().sum() 으로 확인하고, 결측치가 있는 행을 제거하거나 (Ex. df.dropna()) 중앙값/평균으로 대체해 야 합니다. 모델 학습 함수(model.fit())에 NaN 이 들어가면 에러가 납니다.
- 범주형 변수 오류: Gender 나 released_year 같은 변수를 pd.get_dummies() 처리하지 않고 그냥 모델에 넣으면 에러가 납니다 (특 히 선형 모델에서). 반드시 df['col'] = df['col'].astype('category') 를 먼저 적용하세요.
- 목표 변수 형태 오류: 분류 문제인데 목표 변수(y)가 숫자가 아닌 문자열(예: 'Satisfaction', 'Neutral', 'Dissatisfaction') 로 되어 있다면, LabelEncoder 등을 써서 0, 1, 2 등으로 **숫자 매핑**을 해야 모델이 작동합니다.

2. 譥 템플릿/라이브러리 호출 오류

준비한 템플릿이 최신 Scikit-learn 버전과 맞지 않거나, 특정 함수를 import 하지 않은 상태에서 실행하면 에러가 납니다.

- Import 확인: from sklearn.linear_model import Lasso 처럼 필요한 라이브러리가 반드시 임포트되어 있는지 확인하세요.
- 오타: 변수명이나 함수명에 오타가 없는지, 시험 전에 복사/붙여넣기 템플릿을 최소 3번은 미리 실행해보고 저장해 두세요.

3. 🐞 모델 수렴/제한 조건 오류

일부 복잡한 모델은 학습 반복 횟수(Iteration)가 부족할 때 에러를 발생시킬 수 있습니다.

• max_iter 설정: LogisticRegression 이나 규제 회귀 모델(Lasso, Ridge) 사용 시, max_iter=1000 또는 ** max_iter=10000 *처럼 충분 히 큰 값을 명시적으로 설정하여 수렴 오류를 방지하세요.

요구 지표 키워드	Python 함수 및 모듈
RMSE (근의 평균 제곱 오 차)	<pre>np.sqrt(mean_squared_error(y_test, y_pred))</pre>
MAE (평균 절대 오차)	<pre>mean_absolute_error(y_test, y_pred)</pre>
R^2 (결정계수)	r2_score(y_test, y_pred)
AUC (Area Under the Curve)	<pre>roc_auc_score(y_test, y_prob)</pre>
F1 Score	f1_score(y_test, y_pred) 또는 scoring='f1'
Cross-Validation (교차 검증)	<pre>cross_val_score(model, X, y, cv=5, scoring='')</pre>
	RMSE (근의 평균 제곱 오차) MAE (평균 절대 오차) R^2 (결정계수) AUC (Area Under the Curve) F1 Score Cross-Validation (교차

- 모든 변수가 이미 숫자로 되어 있다면, pd.get_dummies() 를 사용하기 위해 columns 에 넣을 변수가 없을 수 있습니다.
- 조치: 이 경우 get_dummies 코드를 생략하고 바로 X = df.drop('phishing', axis=1) 으로 넘어가도 됩니다. (단, df.info() 와 df.head() 로 확인했을 때 Object 타입이 하나도 없을 경우에만!)

범주형 케이스

```
Case 1: 숫자로 표현된 범주형 변수
python# 		 잘못된 판단: 0, 1로 표현되어 있으면 int64로 인식됨
df['Gender'] # 0, 1, 0, 1, 0... → int64로 인식!

# 		 올바른 처리: 범주형으로 변환
df['Gender'] = df['Gender'].astype('category')
# 또는
df['Gender'] = df['Gender'].astype(str)
```

```
# ID, 번호 등은 분석에서 제외!
exclude_cols = ['id', 'ID', 'CLIENTNUM', 'CustomerID', 'HomeID']

# 방법 1: 직접 제외
X = df.drop(exclude_cols + ['목표변수'], axis=1, errors='ignore')

# 방법 2: 컬럼 선택 시 제외
cols_to_use = [col for col in df.columns if col not in exclude_cols]
```

```
# object로 인식되지만 날짜형으로 변환 필요

df['Date'] = pd.to_datetime(df['Date'])

# 날짜에서 특징 추출

df['Year'] = df['Date'].dt.year

df['Month'] = df['Date'].dt.month

df['DayOfWeek'] = df['Date'].dt.dayofweek
```

🔔 파이프라인 주의사항:

- 1. **파라미터 이름:** GridSearchCV 를 파이프라인과 함께 쓸 때는, 모델 파라미터 이름 앞에 반드시 모델 객체의 이름과 언더바 두 개를 붙여야 합니다. (예: DecisionTreeClassifier 객체를 'classifier'로 명명했다면, max_depth 는 'classifier_max_depth' 가 됩니다.)
- 2. **전처리:** 범주형 변수와 수치형 변수를 분리하여 ** ColumnTransformer **를 사용하는 것이 가장 깔끔한 표준 방법입니다.

이 정리표와 완성된 프레임만 있다면, 시험장에서 어떤 문제가 나오더라도 당황하지 않고 핵심 코드를 빠르게 적용할 수 있을 거예요! 🍐

▲ 2. 자주 실수하는 부분

실수	올바른 방법	주의사항
원핫인코딩 전에 X, y 분리 안함	y 먼저 분리 → X만 인코딩	y까지 인코딩하면 안 됨!
drop_first=True 사용	drop_first=False	문제에서 명시 없으면 False!
범주형 변수 그대로 사용	반드시 원핫인코딩	의사결정나무도 인코딩 필요!
목표변수 범주형 변환 안함	astype('category')	0/1이어도 범주형으로!
criterion 기본값 사용	문제에서 지정한 것 사용	gini(기본) vs entropy
cv 겹수 틀림	문제 확인!	5겹?10겹?
scoring 틀림	문제 확인!	AUC? F1? 정확도?
변수 중요도 - 전체 데이터로 학습 안함	<pre>fit(X_encoded, y)</pre>	train만 쓰면 편향됨!
max_depth 튜닝 범위 틀림	보통 2~20	문제에서 지정 확인!
4		▶

🚹 scoring 치트시트

문제 유형	scoring	사용 예
분류 - F1	'f1'	2022, 2024 기출
분류 - ROC AUC	'roc_auc'	2021, 2022, 2023
분류 - 정확도	'accuracy'	2021 기출
회귀 - MSE	'neg_mean_squared_error'	← 음수!
회귀 - RMSE	'neg_root_mean_squared_error'	← 음수!
4		▶

회귀는 음수 떼기 필수!

```
python
best_mse = -grid_search.best_score_ # 음수 붙이기!
```

문제에서 이렇게 나오면	의미	처리 방법/코드	
"수치형 변수만 독 립변수로"	범주형 제외	<pre>numerical_cols = df.select_dtypes(include=['int64', 'float64']).columns</pre>	
"원 핫 인코딩을 수 행하라"	더미 변수 만들기	<pre>pd.get_dummies(X, drop_first=False)</pre>	
"의미가 없는 변수 제외"	ID, 번호 등 제외	drop(['CLIENTNUM', 'id', 'Unnamed: 0'])	
"표준화를 수행하 라"	수치형만 스케일링	StandardScaler() - 의사결정나무는 보통 안 함!	
"범주형으로 변환 하라"	0/1 → category	astype('category')	
"NA 값이 포함된 행을 제거"	결측치 삭제	df.dropna()	
"최대나무를 만들 어라"	max_depth 제한 없음	DecisionTreeClassifier() (기본값)	
"순수도 지표는 entropy"	criterion 지정	criterion='entropy'	
"순수도 지표는 gini"	criterion 지정	criterion='gini'	
"5겹 교차검증"	cv 지정	<pre>cross_val_score(model, X, y, cv=5)</pre>	
"10겹 교차검증"	cv 지정	<pre>cross_val_score(model, X, y, cv=10)</pre>	

중간고사 대비

3

"성과지표는 AUC"	scoring 지정	scoring='roc_auc'	
"성과지표는 f1"	scoring 지정	scoring='f1_weighted' 또는 'f1'	
"성과지표는 정확 도"	scoring 지정	scoring='accuracy'	
"변수 중요도를 시 각화"	feature_importances_	model.feature_importances_	
"상위 N개 변수를 활용"	중요도 기준 선택	<pre>importance_df.head(N)['feature'].tolist()</pre>	
"max_depth 값을 변화시켜"	하이퍼파라미터 튜닝	for depth in range(2, 21):	
"8:2로 나누어라"	train_test_split	test_size=0.2	
"무작위로 나누며"	random_state 설정	random_state=42	
"학습집합으로 모 형 생성"	fit만 사용	<pre>model.fit(X_train, y_train)</pre>	
"테스트집합으로 성과 측정"	predict 후 평가	model.predict(X_test) → accuracy_score()	
4		•	

'성능 지표는 F1 Score를 사용하라.	불균형 데이터에서 주로 사용되는 지 표입니다. 정밀도(Precision)와 재현 율(Recall)의 조화평균입니다.	from sklearn.metrics import **f1_score** Grid Search의 scoring을 'f1'로 설정
'입력 변수 중요도를 파악하라.'	모델 학습 후, 어떤 변수가 결과에 가 장 큰 영향을 미쳤는지 확인하는 코드 입니다.	model.feature_importances_를 DataFrame으로 정리하여 출력
'AUC로 성과를 측정하라.'	이진 분류 문제에서 가장 중요한 지표 입니다. 예측 확률 이 필요합니다.	from sklearn.metrics import **roc_auc_score**model.predict_proba(X_test)[:, 1] (확률 추출)
'Confusion Matrix를 출력하라.'	모델이 정답과 오답을 얼마나 맞추고 틀렸는지 표로 보여줍니다.	from sklearn.metrics import **classification_report**classification_report(y_test, y_pred)
'5겹 교차검증(5-Fold Cross- Validation)을 통해 성과를 측정하라.'	데이터를 5등분하여 5번의 학습과 평 가를 반복하는 방식으로, 모델의 안정 성을 확인합니다.	from sklearn.model_selection import **cross_val_score**cross_val_score(model, X, y, cv=5, scoring='')
'데이터 불균형을 처리하라.'	소수 클래스의 비율이 너무 낮을 때 SMOTE를 사용하여 데이터셋을 보정해야 합니다.	from imblearn.over_sampling import **SMOTE**sm = SMOTE(random_state=42).fit_resample(X_train, y_train)
'적합한 형태로 입력변수를 변환하여 라.'	대부분 **범주형 변수 (Categorical)**를 모델이 인식할 수 있도록 숫자로 변환하라는 의미입니 다.	<pre>pd.get_dummies(df, drop_first=True) (One-Hot Encoding)</pre>

▼ 1. 회귀분석

문제 키워드	목적/의미	필수 함수 및 코드	비고/주의사항
변수 제거	불필요한 ID, 고유값 1개 변수 제거	df.drop(['ID_COL', 'Model'], axis=1, inplace=True)	2021년 기출처럼 값이 하나뿐인 변수는 반드시 제거.
결측치 (Missing)	데이터의 빈 값 처리	df.isnull().sum() (확인) df['컬럼'].fillna(df['컬럼'].median(), inplace=True)	수치형은 ** median() **으로, 범주 형은 ** mode()[0] **로 대체.
이상치 (Outlier)	극단적인 값 탐지 및 처리	IQR(사분위 범위) 필터링을 사용해 행 제거가 가장 빠름.	\$\text{Q3} + 1.5 \times \text{IQR}\$ 이상, \$\text{Q1} - 1.5 \times \text{IQR}\$ 이하 제거.
범주형 변환	모델 학습을 위한 숫 자 인코딩	df['범주형'] = df['범주형'].astype('category')X = pd.get_dummies(X, drop_first=True)	숫자로 된 범주형 변수도 ** astype('category') **로 변환해 야 함.
데이터 분리	학습 데이터와 평가 데이터 분리	from sklearn.model_selection import train_test_splitX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)	test_size=0.3 (30%) 또는 문제 요구사항에 따름.

데이터 불균형	소수 클래스 데이터 보강	from imblearn.over_sampling import **SMOTE**sm = SMOTE(random_state=42).fit_resample(X_train, y_train)	분류 문제 에서 목표 변수의 비율이 쏠려있을 때(04-Evaluation.pdf 35p).
---------	------------------	--	--

▼ 2. 나이브베이즈

문제 키워드	필수 성능 지표	Python 함수	적용 코드 형식
RMSE (근의 평균 제 곱 오차)	모델 오차를 원래 단위로 표시 (가장 중요)	mean_squared_error	np.sqrt(mean_squared_error(y_test, y_pred))
\$R^2\$ (결정계수)	모형의 설명력 (0 ~ 1)	r2_score	r2_score(y_test, y_pred)
MAE (평균 절대 오 차)	오차의 절대값 평균	mean_absolute_error	mean_absolute_error(y_test, y_pred)
Lasso / Ridge	규제 회귀 모델	from sklearn.linear_model import Lasso / Ridge	Lasso(alpha=0.1).fit(X_train, y_train)
최적 \$\alpha\$ 튜닝	규제 강도 \$\alpha\$ 최 적화	GridSearchCV	GridSearchCV(Lasso(max_iter=), param_grid={'alpha':}, scoring='neg_mean_squared_error', cv=5)

▼ 3. 의사결정트리

문제 키워드	필수 성능 지표	Python 함수	적용 코드 형식
AUC	이진 분류 모델의 종 합 성과 (ROC 곡선 면적)	roc_auc_scoreroc_curve	<pre>roc_auc_score(y_test, model.predict_proba(X_test)[:, 1])</pre>
F1 Score	데이터 불균형 시 주 로 요구됨	f1_scoreclassification_report	f1_score(y_test, y_pred) 또는 scoring='f1'
Confusion Matrix	분류 결과를 행렬로 요약	classification_report	<pre>print(classification_report(y_test, y_pred))</pre>
max_depth 튜닝	최적의 트리 깊이 찾 기	GridSearchCV	GridSearchCV(DecisionTreeClassifier(random_state=42), param_grid={'classifier_max_depth': list(range(2, 21))}, scoring='roc_auc', cv=5)
변수 중요도	결과에 가장 큰 영향 을 준 변수 파악	feature_importances_	model.feature_importances_ 를 DataFrame으로 정리 후 출력
5-Fold CV	모델의 안정성 검증 (문제 필수 요구 사 항)	cross_val_score	cross_val_score(model_pipeline, X, y, cv=5, scoring='roc_auc')
나이브 베이즈	모델 선택	GaussianNB (수치형/일반 적) MultinomialNB (카운트/텍스 트)	데이터의 변수 유형에 따라 GaussianNB 또는 MultinomialNB 를 선택

▼ 개념

구분	분류 (Classification)	회귀 (Regression)
목표 변수 (Y)	범 주형 (Categorical) / 이산형	수치형 (Numerical) / 연속형
예측 값	미리 정의된 클래스/범주 예측	임의의 실수 값 예측
문제 예시	고객 이탈 여부 (Yes / No), 지연 여부 (0 / 1), 만족도 (Dissatisfaction / Neutral / Satisfaction)	주택 가격, 스트리밍 횟수, 비용 (청구액)
주요 모델	로지스틱 회귀, 의사결정나무, 나이브 베이즈	선형 회귀, Lasso/Ridge 회귀 , 의사결정나 무 (Regressor)

a. 회귀분석

항목	Linear Regression	Lasso Regression	Ridge Regression
핵심	오차의 제곱합을 최소화 하는 최적의 계수(기울기) 찾기	오차의 제곱합 + \$\mathbf{L_1}\$ 규제 (\$\sum	\beta_i
사용 목적	변수 간 선형 관계 파악 및 예측	변수 선택 효과 (덜 중요한 변수의 계수를 0 으로 만듦)	다중공선성 처리 (계수를 0에 가깝게 줄여줌)
시험 대비	alpha 튜닝(GridSearchCV 사용) 및 스케일링 (StandardScaler) 필수 요구 가능성 높음.		

b. 의사결정트리

항목 분류 나무	분류 나무 (DecisionTreeClassifier)	회귀 나무
87	문파 니구 (Decision nee Classifier)	(DecisionTreeRegressor)

목표 변수	범주형	수치형
분할 기준	불순도 최소화 (Gini Index 또는 Entropy)	오차 최소화 (MSE)
핵심 하이퍼파라미 터	max_depth (나무의 깊이)	max_depth
시험 대비	1. max_depth 튜닝 (GridSearchCV) 2. ** feature_importances_ **를 이용한 변수 중요도 분석 및 Top N개 변수 추출	

c. 나이브 베이즈

항목	GaussianNB	MultinomialNB
데이터 유형 가정	연속형 수치 데이터 (정규분포 가정)	이산형/카운트 데이터 (텍스트 분석, One- Hot Encoding된 범주형 데이터)
시험 대비	1. MultinomialNB 사용 (범주형 인코딩 데이터가 많음) 2. \$\mathbf{\alpha}\$ (alpha) 하이퍼파라미터 튜닝 (GridSearchCV)	

A. 분류 모델 (Classification Metrics)

지표	코드 (scoring=)	의미/사용 목적
ROC AUC	roc_auc	가장 보편적인 분류 지표. 0과 1 사이의 값이며, 1에 가까울수록 성능이 좋음. 모델의 예측 확률 (Probability)을 사용하여 분류 임계값에 관계없이 성능을 평가. (시험에 자주 나옴)
F1 Score	f1	**정밀도(Precision)**와 **재현율(Recall)**의 조화평균. 클래스 불균형이 있을 때, 모델이 한쪽 클래스만 잘 맞추는 것을 방지하고자 할 때 유용. (2024년 기출에 명시됨)
Accuracy	accuracy	전체 데이터 중 정확히 맞춘 비율. 클래스 불균형이 클 때는 신뢰하기 어려움.

B. 회귀 모델 (Regression Metrics)

지표	코드 (scoring=)	의미/사용 목적
MSE (Mean Squared Error)	neg_mean_squared_error	오차(실제값 - 예측값)의 제곱 평균. 큰 오차에 패널티를 더 부여함. (제곱이므로 단위가 원래 값과 다름)
MAE (Mean Absolute Error)	neg_mean_absolute_error	오차의 절댓값 평균 . 직관적이며, 이상치에 덜 민감함. (단위가 목표 변수와 동 일)
RMSE (Root Mean Squared Error)	별도 scoring 없음	MSE에 루트를 씌운 값. 단위가 목표 변수와 동일 하여 해석이 용이함. (\$\sqrt{MSE}\$)

4. 데이터 전처리 오류 방지 체크리스트 (🚖 시험 필수)

인터넷 차단 환경에서 가장 치명적인 에러는 전처리 단계에서 발생합니다.

오류 유형	내용	해결 코드 템플릿
타입 오류	숫자 형태의 범주형 변수 (0 , 1 로 된 Gender 등)가int64로 인식되어 모델이 잘못 학습됨.	df['col'] = df['col'].astype('category') 또는 df['col'] = df['col'].astype(str)
누락값 오류	NaN 이 포함된 채로 모델 학습(fit()) 시도.	제거: df.dropna(subset=['col'], inplace=True) 대체: df['col'].fillna(df['col'].median(), inplace=True)
인코딩 누락	문자열/범주형 변수를 get_dummies() 하지 않고 모델에 넣음.	X = pd.get_dummies(X, columns=['cat_col1', 'cat_col2'])
불필요 변수 포함	ID , track_name 등 예측에 불필요한 고유 식별자 변수를 포함.	X.drop(columns=['ID', 'NAME', 'key'], inplace=True)

중간고사 대비

6