6. Valores e vectores próprios

6.1 Valores e vectores próprios

Definição 6.1. Seja E um espaço vectorial sobre \mathbb{K} e seja φ um endomorfismo de E. Seja ainda $\lambda \in \mathbb{K}$. Diz-se que λ é um valor próprio de φ se existe um vector $v \in E$ tal que $v \neq 0_E$ e

$$\varphi(v) = \lambda v.$$

Ao vector v chama-se vector próprio de φ associado ao valor próprio λ .

Definição 6.2. Chama-se **espectro de** φ , e representa-se por $\sigma(\varphi)$, ao conjunto de todos os valores próprios de φ .

Exemplo 6.3. Determine-se os valores próprios e vectores próprios do endomorfismo φ de \mathbb{R}^3 definido, em relação à base canónica desse espaço, pela matriz

$$A = \left[\begin{array}{rrr} 1 & 0 & 1 \\ -1 & 1 & 0 \\ 1 & -1 & 0 \end{array} \right].$$

Determinar um valor próprio de φ é encontrar $\lambda \in \mathbb{R}$ para o qual existe (x,y,z) não nulo tal que $\varphi(x,y,z) = \lambda(x,y,z)$. Ora, pelo Teorema 5.53, pode passar-se para representação matricial:

$$\varphi(x,y,z) = \lambda(x,y,z) \Leftrightarrow \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \lambda \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} - \lambda \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \\ 1 & -1 & 0 \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} \begin{pmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} 1 - \lambda & 0 & 1 \\ -1 & 1 - \lambda & 0 \\ 1 & -1 & -\lambda \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Portanto, é necessário encontrar $\lambda \in \mathbb{R}$ para o qual o sistema anterior admite, pelo menos, uma solução não trivial, ou seja, se a característica da matriz do sistema for inferior a 3, ou, equivalentemente, a matriz do sistema não for invertível. Assim, λ é tal que

$$\begin{vmatrix} 1 - \lambda & 0 & 1 \\ -1 & 1 - \lambda & 0 \\ 1 & -1 & -\lambda \end{vmatrix} = 0.$$

Assim:

$$\begin{vmatrix} 1-\lambda & 0 & 1\\ -1 & 1-\lambda & 0\\ 1 & -1 & -\lambda \end{vmatrix} = 0 \Leftrightarrow (1-\lambda)(1-\lambda)(-\lambda) + 1(1-(1-\lambda)) = 0$$
$$\Leftrightarrow -\lambda \left((1-\lambda)^2 - 1 \right) = 0$$
$$\Leftrightarrow \lambda = 0 \lor (1-\lambda)^2 - 1 = 0$$
$$\Leftrightarrow \lambda = 0 \lor \lambda = 2.$$

Assim, o espectro de φ é o conjunto $\sigma(\varphi) = \{0, 2\}.$

Determinem-se os vectores próprios de φ associados a $\lambda = 0$. Por definição, são todos $(x,y,z) \in \mathbb{R}^3 \setminus \{(0,0,0)\}$ tais que $\varphi(x,y,z) = 0(x,y,z)$, ou seja, $\varphi(x,y,z) = (0,0,0)$. Novamente é equivalente a resolver o sistema

$$\begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Leftrightarrow \begin{cases} x+z=0 \\ -x+y=0 \\ x-y=0 \end{cases} \Leftrightarrow \begin{cases} z=-x \\ y=x \end{cases}$$

Logo, os vectores próprios de φ associados a $\lambda = 0$ são da forma (x, x, -x), com $x \in \mathbb{R} \setminus \{0\}$. Note-se que se determinaram as coordenadas dos vectores próprios na base canónica de \mathbb{R}^3 :

$$(x, x, -x)_{\mathcal{B}_{\mathbb{P}^3}} = x(1, 0, 0) + x(0, 1, 0) - x(0, 0, 1) = (x, x, -x).$$

Determinem-se agora os vectores próprios de φ associados a $\lambda=2$. Usando o mesmo raciocínio, basta resolver o sistema

$$\begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 2 \begin{bmatrix} x \\ y \\ z \end{bmatrix} \Leftrightarrow \begin{bmatrix} -1 & 0 & 1 \\ -1 & -1 & 0 \\ 1 & -1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Passando para matriz ampliada, obtém-se:

Logo, (z, -z, z), com $z \in \mathbb{R} \setminus \{0\}$, são os vectores próprios de φ associados a $\lambda = 2$.

Exercício 6.4. Considere o endomorfismo ϕ de $M_{2\times 2}(\mathbb{R})$ definido por

$$\phi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} 2c & a+c \\ b-2c & d \end{bmatrix}, \quad \textit{para todo } \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{2\times 2}(\mathbb{R}).$$

Determine os seus valores próprios e os vectores próprios associados.

Atendendo ao exemplo anterior, escreva-se o teorema:

Teorema 6.5. Seja E um espaço vectorial sobre \mathbb{K} de dimensão n tal que \mathcal{B} uma base ordenada de E. Seja φ um endomorfismo de E tal que $A = M(\varphi; \mathcal{B}, \mathcal{B})$. Então:

(a) $\lambda \in \mathbb{K}$ é valor próprio de φ se e só se

$$|A - \lambda I_n| = 0.$$

(b) $v \in E$ é vector próprio de φ associado ao valor próprio λ se e só se, sendo X_0 a matriz coluna das coordenadas de v na base \mathcal{B} , X_0 é uma solução não nula do sistema de equações lineares

$$(A - \lambda I_n)X = 0.$$

Demonstração. Prove-se (a). Seja $\lambda \in \mathbb{K}$. Então λ é valor próprio de φ se e só se existe $v \in E$ tal que $v \neq 0_E$ e $\varphi(v) = \lambda v$, ou seja, se e só se existe $X_0 \in M_{n \times 1}(\mathbb{K}) \setminus \{0\}$, tal que $AX_0 = \lambda X_0$, onde X_0 é a matriz coluna das coordenadas de v na base \mathcal{B} , que é equivalente a

$$AX_0 - \lambda X_0 = 0 \Leftrightarrow (A - \lambda I_n)X_0 = 0.$$

Ou seja, se e só se o sistema homogéneo $(A - \lambda I_n)X = 0$ é possível e indeterminado, isto é, se e só se

$$|A - \lambda I_n| = 0,$$

pelos Teorema 3.43 e Teorema 3.44.

A demonstração de (b) fica como exercício.

Prova-se que $|A-\lambda I|$ é um polinómio em λ de grau n. Assim defina-se:

Definição 6.6. Seja E um espaço vectorial sobre \mathbb{K} de dimensão n tal que \mathcal{B} uma base ordenada de E. Seja φ um endomorfismo de E tal que $A=M(\varphi;\mathcal{B},\mathcal{B})$. Ao polinómio $|A-\lambda I_n|$ chama-se **polinómio característico de** φ , e representa-se por $p_{\varphi}(\lambda)$.

A equação $p_{\varphi}(\lambda) = 0$ designa-se por equação característica de φ .

Viu-se, no teorema anterior, que, sendo A uma matriz de φ em relação a uma base fixa, λ é valor próprio se e só se $|A - \lambda I| = 0$, ou seja, as raízes do polinómio característico de φ são os valores próprios de φ .

Definição 6.7. Seja E um espaço vectorial sobre \mathbb{K} e seja φ um endomorfismo de E. Seja ainda $\lambda \in \mathbb{K}$ um valor próprio de φ . Chama-se **multiplicidade** algébrica de λ , e representa-se por $m_a(\lambda)$, à multiplicidade de λ enquanto raiz do polinómio característico de φ , $p_{\varphi}(\lambda)$.

Recorde-se que λ_0 é raiz de multiplicidade k de um polinómio $p(\lambda)$ se e só se $p(\lambda) = (\lambda - \lambda_0)^k q(\lambda)$, onde $q(\lambda)$ é um polinómio que não admite λ_0 como raiz.

Exemplo 6.8. Seja ϕ o endomorfismo de \mathbb{R}^4 cuja matriz, em relação à base canónica de \mathbb{R}^4 , é

$$A = \left[\begin{array}{cccc} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right].$$

Determine-se a multiplicidade algébrica dos valores próprios de ϕ . Pelo teorema anterior, como

$$p_{\phi}(\lambda) = |A - \lambda I_4| = \begin{vmatrix} 2 - \lambda & 1 & 0 & 0\\ 0 & 2 - \lambda & 0 & 0\\ 0 & 0 & -1 - \lambda & 0\\ 0 & 0 & 0 & 1 - \lambda \end{vmatrix}$$
$$= (2 - \lambda)(2 - \lambda)(-1 - \lambda)(1 - \lambda)$$
$$= (2 - \lambda)^2(-1 - \lambda)(1 - \lambda),$$

então os valores próprios de ϕ são -1, 1 e 2, onde

$$m_a(2) = 2$$
 e $m_a(-1) = m_a(1) = 1$.

Exercício Resolvido 6.9. Seja φ o endomorfismo de \mathbb{R}^3 cuja matriz, em relação à base $\mathcal{B} = ((1,1,1),(1,1,0),(1,0,0))$ de \mathbb{R}^3 , é

$$A = \left[\begin{array}{rrr} 1 & -1 & 0 \\ -1 & 2 & 1 \\ 0 & 1 & 1 \end{array} \right].$$

Determine os valores próprios de φ , as respectivas multiplicidades algébricas e os vectores próprios associados.

Resolução: Pelo teorema anterior, como

$$p_{\varphi}(\lambda) = |A - \lambda I_3| = \begin{vmatrix} 1 - \lambda & -1 & 0 \\ -1 & 2 - \lambda & 1 \\ 0 & 1 & 1 - \lambda \end{vmatrix}$$
$$= (1 - \lambda) ((2 - \lambda)(1 - \lambda) - 1) - (-1) (-(1 - \lambda) - 0)$$
$$= (1 - \lambda)^2 (2 - \lambda) - (1 - \lambda) + (-1)(1 - \lambda)$$
$$= (1 - \lambda)((1 - \lambda)(2 - \lambda) - 1 - 1)$$
$$= (1 - \lambda)((1 - \lambda)(2 - \lambda) - 2)$$
$$= (1 - \lambda)(\lambda^2 - 3\lambda)$$
$$= (1 - \lambda)\lambda(\lambda - 3),$$

então os valores próprios de φ são 0, 1 e 3 e, portanto,

$$m_a(0) = m_a(1) = m_a(3) = 1.$$

Determinem-se os vectores próprios associados a $\lambda = 0$. Ou seja, tem que se resolver o sistema $(A - 0I_3)X = 0 \Leftrightarrow AX = 0$, onde X é a matriz coluna das coordenadas do vector próprio, em relação à base \mathcal{B} . Donde, como

$$\left[\begin{array}{ccccc} 1 & -1 & 0 & 0 \\ -1 & 2 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{array} \right] \xrightarrow{L'_2 := L_2 + L'_1} \left[\begin{array}{cccccc} 1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{array} \right] \xrightarrow{L'_3 := L_3 - L'_2} \left[\begin{array}{cccccc} 1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right],$$

vem que

$$\left\{ \begin{array}{l} x-y=0 \\ y+z=0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x=y \\ z=-y \end{array} \right.$$

Assim os vectores próprios associados a $\lambda = 0$ são vectores da forma:

$$v = (y, y, -y)_{\mathcal{B}} = y(1, 1, 1) + y(1, 1, 0) + (-y)(1, 0, 0) = (y, 2y, y), \quad com \ y \in \mathbb{R} \setminus \{0\}.$$

Determinem-se agora os vectores próprios associados a $\lambda=1$. Analogamente, como

$$\begin{bmatrix} A - 1I_3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 & 0 \\ -1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \xrightarrow{L_2 \leftrightarrow L_1} \begin{bmatrix} -1 & 1 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$\xrightarrow{L'_3 := L_3 + L_2} \begin{bmatrix} -1 & 1 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

vem que

$$\left\{ \begin{array}{l} -x+y+z=0 \\ -y=0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} z=x \\ y=0 \end{array} \right.$$

Donde os vectores próprios associados a $\lambda = 1$ são vectores da forma:

$$v = (x, 0, x)_{\mathcal{B}} = x(1, 1, 1) + x(1, 1, 0) + x(1, 0, 0) = (2x, x, x), \quad com \ x \in \mathbb{R} \setminus \{0\}.$$

Por fim, determinem-se os vectores próprios associados a $\lambda = 3$. Como

$$\begin{bmatrix} A - 3I_3 & 0 \end{bmatrix} = \begin{bmatrix} -2 & -1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ 0 & 1 & -2 & 0 \end{bmatrix} \xrightarrow{L_2 \leftrightarrow L_1} \begin{bmatrix} -1 & -1 & 1 & 0 \\ -2 & -1 & 0 & 0 \\ 0 & 1 & -2 & 0 \end{bmatrix}$$

$$\xrightarrow{L_2' := L_2 - 2L_2} \begin{bmatrix} -1 & -1 & 1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\xrightarrow{L_3' := L_3 - L_2'} \begin{bmatrix} -1 & -1 & 1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} ,$$

 $ent\~ao$

$$\begin{cases} -x - y + z = 0 \\ y - 2z = 0 \end{cases} \Leftrightarrow \begin{cases} x = -z \\ y = 2z \end{cases}$$

pelo que os vectores próprios associados a $\lambda=3$ são vectores da forma:

$$v = (-z, 2z, z)_{\mathcal{B}} = (-z)(1, 1, 1) + 2z(1, 1, 0) + z(1, 0, 0) = (2z, z, -z), \quad com \ z \in \mathbb{R} \setminus \{0\}.$$

Exercício 6.10. Considere o endomorfismo de \mathbb{R}^3 cuja matriz, em relação à base $\mathcal{B} = ((1,0,1),(-1,1,0),(0,0,-1))$ de \mathbb{R}^3 , é

$$A = \left[\begin{array}{ccc} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{array} \right].$$

Determine os valores próprios, os respectivos vectores próprios associados e as respectivas multiplicidades algébricas.

Seja E um espaço vectorial sobre \mathbb{K} . Dado um valor próprio λ de um endomorfismo de E, os vectores próprios associados são determinados a partir de soluções não nulas de um sistema homogéneo indeterminado. Uma vez que um sistema homogéneo indeterminado tem um conjunto infinito de soluções que formam um subespaço vectorial de E é claro que, se ao conjunto dos vectores próprios juntar-se o vector nulo do espaço vectorial E, se obtém um subespaço vectorial de E. De facto,

Teorema 6.11. Seja E um espaço vectorial sobre \mathbb{K} e seja φ um endomorfismo de E. Seja ainda $\lambda \in \mathbb{K}$. Defina-se

$$\mathcal{U}_{\lambda} = \{ v \in E : \varphi(v) = \lambda v \}.$$

Então:

- (a) \mathcal{U}_{λ} é um subespaço vectorial de E.
- **(b)** $\mathcal{U}_{\lambda} \neq \{0_E\}$ se e só se λ é valor próprio de φ .

Demonstração. Prove-se (a). Note-se que:

- (i) $0_E \in \mathcal{U}_{\lambda}$, pois $\varphi(0_E) = \lambda 0_E$.
- (ii) Sejam $\alpha, \beta \in \mathbb{K}$ e sejam $u, v \in \mathcal{U}_{\lambda}$. Então $\varphi(u) = \lambda u$ e $\varphi(v) = \lambda v$. Donde

$$\varphi(\alpha u + \beta v) = \alpha \varphi(u) + \beta \varphi(v)$$
 pois φ é aplicação linear
$$= \alpha \lambda u + \beta \lambda v$$
 por hipótese $u \in \mathcal{U}_{\lambda}$ e $v \in \mathcal{U}_{\lambda}$
$$= \lambda(\alpha u + \beta v)$$
 pelos axiomas de espaço vectorial

Logo $\alpha u + \beta v \in \mathcal{U}_{\lambda}$.

Pelo Teorema 4.14, \mathcal{U}_{λ} é um subespaço vectorial de E.

Prove-se (b). (\Rightarrow) Suponha-se que $\mathcal{U}_{\lambda} \neq \{0_E\}$. Então existe $v \neq 0_E$ tal que $v \in \mathcal{U}_{\lambda}$, ou seja, $\varphi(v) = \lambda v$ e, portanto, por definição, λ é valor próprio de φ .

 (\Leftarrow) Reciprocamente, suponha-se que $\lambda \in \sigma(\varphi)$. Então existe $v \neq 0_E$ tal que $\varphi(v) = \lambda v$ e, portanto, $v \in \mathcal{U}_{\lambda}$, ou seja, $\mathcal{U}_{\lambda} \neq \{0_E\}$.

Definição 6.12. Seja E um espaço vectorial sobre \mathbb{K} e seja φ um endomorfismo de E. Seja ainda $\lambda \in \mathbb{K}$ um valor próprio de φ . Ao subconjunto de E definido por

$$\mathcal{U}_{\lambda} = \{ v \in E : \varphi(v) = \lambda v \}$$

chama-se subespaço próprio de φ associado ao valor próprio λ .

Definição 6.13. Seja E um espaço vectorial sobre \mathbb{K} e seja φ um endomorfismo de E. Seja ainda $\lambda \in \mathbb{K}$ um valor próprio de φ . Chama-se **multiplicidade** geométrica de λ , e representa-se por $m_q(\lambda)$, à dimensão de \mathcal{U}_{λ} , ou seja,

$$m_a(\lambda) = \dim(\mathcal{U}_{\lambda}).$$

Exemplo 6.14. Considere o endomorfismo φ de \mathbb{R}^3 cuja matriz, em relação à base canónica de \mathbb{R}^3 , é

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 5 \end{bmatrix}.$$

Determine-se a multiplicidade geométrica dos valores próprios de φ . Primeiro, determinem-se os valores próprios de φ . Como

$$p_{\varphi}(\lambda) = |A - \lambda I_3| = \begin{vmatrix} 1 - \lambda & 1 & 0 \\ 0 & 2 - \lambda & 2 \\ 0 & 2 & 5 - \lambda \end{vmatrix}$$
$$= (1 - \lambda)((2 - \lambda)(5 - \lambda) - 4)$$
$$= (1 - \lambda)(\lambda^2 - 7\lambda + 6)$$
$$= (1 - \lambda)(\lambda - 1)(\lambda - 6)$$

então os valores próprios de φ são 1 e 6, com $m_a(1)=2$ e $m_a(6)=1$.

Determine-se o subespaço próprio associado a $\lambda = 1$. Ou seja,

$$\begin{bmatrix} A - 1I_3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 4 & 0 \end{bmatrix} \xrightarrow{L'_2 := L_2 - L_1 \\ L'_3 := L_3 - 2L_1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 4 & 0 \end{bmatrix}$$

$$\xrightarrow{L'_3 := L_3 - 2L_2} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

vem que

$$\begin{cases} y = 0 \\ 2z = 0 \end{cases} \Leftrightarrow \begin{cases} y = 0 \\ z = 0 \end{cases}$$

Logo

$$U_1 = \{(x,0,0) : x \in \mathbb{R}\} = \langle (1,0,0) \rangle$$

e, portanto, $m_q(1) = 1$ (justifique!).

Determine-se agora o subespaço próprio associado a $\lambda=6$. Analogamente, como

$$\left[\begin{array}{cccc} A - 6I_3 & 0 \end{array} \right] = \left[\begin{array}{cccc} -5 & 1 & 0 & 0 \\ 0 & -4 & 2 & 0 \\ 0 & 2 & -1 & 0 \end{array} \right] \xrightarrow{L_3' = L_3 + \frac{1}{2}L_2'} \left[\begin{array}{ccccc} -5 & 1 & 0 & 0 \\ 0 & -4 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right],$$

vem que

$$\begin{cases} -5x + y = 0 \\ -4y + 2z = 0 \end{cases} \Leftrightarrow \begin{cases} y = 5x \\ z = 10x \end{cases}$$

Donde

$$U_6 = \{(x, 5x, 10x) : x \in \mathbb{R}\} = \langle (1, 5, 10) \rangle$$

e, portanto, $m_g(6) = 1$ (justifique!).

Exercício 6.15. Considere o endomorfismo ψ de \mathbb{R}^3 cuja matriz, em relação à base canónica de \mathbb{R}^3 , é

$$A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 2 & 0 \\ 1 & 1 & 1 \end{bmatrix}.$$

Determine a multiplicidade geométrica dos valores próprios de ψ .

O próximo resultado estabelece uma relação entre a multiplicidade algébrica e a multiplicidade geométrica de um valor próprio de um endomorfismo.

Teorema 6.16. Seja E um espaço vectorial sobre \mathbb{K} e seja φ um endomorfismo de E. Seja ainda $\lambda \in \mathbb{K}$ um valor próprio de φ . Então,

$$1 \leq m_a(\lambda) \leq m_a(\lambda)$$
.

Observação 6.17. Resulta do teorema anterior que, se $m_a(\lambda) = 1$, ou seja, se λ é uma raiz simples do polinómio característico, então $m_g(\lambda) = 1$.

6.2 Endomorfismos diagonalizáveis

O próximo resultado garante que a valores próprios distintos correspondem vectores próprios linearmente independentes.

Teorema 6.18. Seja E um espaço vectorial sobre \mathbb{K} e seja φ um endomorfismo de E. Sejam ainda $\lambda_1, \lambda_2, \ldots, \lambda_p \in \mathbb{K}$ valores próprios de φ , distintos dois a dois. Se $u_1, u_2, \ldots, u_p \in E$ são vectores próprios de φ associados a $\lambda_1, \lambda_2, \ldots, \lambda_p$, respectivamente, então u_1, u_2, \ldots, u_p são linearmente independentes.

Demonstração. A demonstração é feita por indução em p. Para $p=1, u_1$ é linearmente independente pois, por definição de vector próprio, $u_1 \neq 0_E$.

Suponha-se agora que, por hipótese de indução, p-1 vectores próprios associados a p-1 valores próprios distintos são linearmente independentes. Sejam $u_1, u_2, \ldots, u_p \in E$ vectores próprios de φ associados aos valores próprios

 $\lambda_1, \lambda_2, \dots, \lambda_p$, respectivamente, onde $\lambda_i \neq \lambda_j$, para todo $i, j \in \{1, \dots, p\}$ e $i \neq j$. Suponha-se que

$$\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_p u_p = 0_E. \tag{6.1}$$

Então,

$$\varphi(\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_p u_p) = \varphi(0_E)$$

$$\Rightarrow \alpha_1 \varphi(u_1) + \alpha_2 \varphi(u_2) + \dots + \alpha_p \varphi(u_p) = 0_E$$

e, como u_1, u_2, \ldots, u_p são vectores próprios, tem-se:

$$\alpha_1(\lambda_1 u_1) + \alpha_2(\lambda_2 u_2) + \dots + \alpha_n(\lambda_n u_n) = 0_E. \tag{6.2}$$

Multiplicando ambos os membros da igualdade (6.1) por λ_1 obtém-se:

$$\alpha_1 \lambda_1 u_1 + \alpha_2 \lambda_1 u_2 + \dots + \alpha_p \lambda_1 u_p = 0_E. \tag{6.3}$$

Subtraindo membro a membro (6.2) a (6.3), resulta que:

$$\alpha_2(\lambda_2 - \lambda_1)u_2 + \dots + \alpha_p(\lambda_p - \lambda_1)u_p = 0_E,$$

ou seja, tem-se uma combinação linear nula de p-1 vectores próprios associados a p-1 valores próprios distintos; donde, por hipótese de indução, estes vectores são linearmente independentes e, portanto,

$$\alpha_2(\lambda_2 - \lambda_1) = \dots = \alpha_p(\lambda_p - \lambda_1) = \mathbf{0}_{\mathbb{K}}.$$

Como, para todo $i \in \{2, \ldots, p\}, \ \lambda_i \neq \lambda_1$, então

$$\alpha_2 = \cdots = \alpha_p = \mathbf{0}_{\mathbb{K}}.$$

Substituindo em (6.1) os escalares $\alpha_2, \ldots, \alpha_p$ por $\mathbf{0}_{\mathbb{K}}$, vem $\alpha_1 u_1 = 0_E$, ou seja, como $u_1 \neq 0_E$, $\alpha_1 = \mathbf{0}_{\mathbb{K}}$. Logo u_1, u_2, \ldots, u_p são linearmente independentes. \square

Corolário 6.19. Seja E um espaço vectorial sobre \mathbb{K} e seja φ um endomorfismo de E. Sejam ainda $\lambda_1, \lambda_2, \ldots, \lambda_p \in \mathbb{K}$ valores próprios de φ , distintos dois a dois. Então,

$$U_{\lambda_1} + U_{\lambda_2} + \cdots + U_{\lambda_p}$$

é uma soma directa.

Demonstração. Para se provar que a soma é directa prove-se que qualquer elemento $v \in U_{\lambda_1} + U_{\lambda_2} + \dots + U_{\lambda_p}$ se escreve de forma única como soma de elementos dos subespaços vectoriais $U_{\lambda_1}, U_{\lambda_2}, \dots, U_{\lambda_p}$. Seja $v \in U_{\lambda_1} + U_{\lambda_2} + \dots + U_{\lambda_p}$. Suponha-se que

$$v = v_1 + v_2 + \dots + v_p$$
, com $v_i \in U_{\lambda_i}$, para todo $i \in \{1, \dots, p\}$

 $v=u_1+u_2+\cdots+u_p, \quad \text{com } u_i\in U_{\lambda_i}, \text{ para todo } i\in\{1,\ldots,p\}.$

Assim,

$$0_E = v - v = (v_1 - u_1) + (v_2 - u_2) + \dots + (v_p - u_p).$$

Note-se que $v_i - u_i \in U_{\lambda_i}$, para todo $i \in \{1, \dots, p\}$, pois U_{λ_i} é um subespaço vectorial de E. Repare-se que se tem uma combinação linear nula dos vectores referidos com escalares não todos nulos, o que implicaria que esses vectores fossem linearmente dependentes. Como a valores próprios distintos correspondem vectores próprios linearmente independentes, o vector $v_i - u_i$ não pode ser vector próprio associado a λ_i ; donde $v_i - u_i = 0_E$, ou seja, $v_i = u_i$, para todo $i \in \{1, \dots, p\}$.

Assim, note-se que no caso em que

$$E = U_{\lambda_1} \oplus U_{\lambda_2} \oplus \cdots \oplus U_{\lambda_p}$$

então existe uma base de E constituída por vectores próprios de φ : basta considerar a união das bases das várias parcelas $U_{\lambda_1}, U_{\lambda_2}, \dots, U_{\lambda_p}$.

Suponha-se que $\mathcal{B} = (e_1, e_2, \dots, e_n)$ é uma base de E constituída por vectores próprios de φ . Suponha-se que e_i é um vector próprio associado ao valor próprio λ_i , para todo $i \in \{1, \dots, n\}$. Note-se que $\lambda_1, \lambda_2, \dots, \lambda_n$ não são necessariamente distintos. Então:

$$\varphi(e_1) = \lambda_1 e_1 = (\lambda_1, 0, 0, \dots, 0, 0)_{\mathcal{B}}$$

$$\varphi(e_2) = \lambda_2 e_2 = (0, \lambda_2, 0, \dots, 0, 0)_{\mathcal{B}}$$

$$\vdots$$

$$\varphi(e_n) = \lambda_n e_n = (0, 0, 0, \dots, 0, \lambda_n)_{\mathcal{B}},$$

Assim,

$$M(\varphi; \mathcal{B}, \mathcal{B}) = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}.$$

Deste modo apresenta-se a seguinte definição:

Definição 6.20. Seja E um espaço vectorial sobre \mathbb{K} e seja φ um endomorfismo de E. Diz-se que φ é **diagonalizável** se existe uma base de E formada por vectores próprios de φ .

Atendendo ao que foi visto anteriormente pode escrever-se o seguinte resultado:

Teorema 6.21. Seja E um espaço vectorial sobre \mathbb{K} e seja φ um endomorfismo de E. Então φ é diagonalizável se e só se existe uma base \mathcal{B} de E tal que $M(\varphi; \mathcal{B}, \mathcal{B})$ é uma matriz diagonal.

Demonstração. (⇒) Veja-se o que foi escrito antes da definição 6.20.

 (\Leftarrow) Suponha-se que existe uma base $\mathcal{B} = (e_1, e_2, \dots, e_n)$ de E tal que

$$M(\varphi; \mathcal{B}, \mathcal{B}) = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}.$$

Isso significa que $\varphi(e_i) = (0, \dots, 0, \lambda_i, 0, \dots, 0)_{\mathcal{B}}$, onde λ_i ocupa a *i*-ésima posição do *n*-uplo, ou seja, $\varphi(e_i) = \lambda_i e_i$, para todo $i \in \{1, \dots, n\}$. Ou seja, e_i é um vector próprio de φ associado ao valor próprio λ_i , para todo $i \in \{1, \dots, n\}$. Logo \mathcal{B} é uma base de E formada por vectores próprios de φ .

Observação 6.22. Seja E um espaço vectorial sobre \mathbb{K} de dimensão n e seja φ um endomorfismo de E. Suponha-se que φ é diagonalizável. Então existe uma base \mathcal{B} de E formada por n vectores próprios de φ . Seja ainda \mathcal{B}' uma outra base de E tal que $A = M(\varphi; \mathcal{B}', \mathcal{B}')$. Então, esquematicamente, tem-se:

Logo

$$D = M(\varphi; \mathcal{B}, \mathcal{B}) = P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

onde $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{K}$ são valores próprios de φ (não necessariamente distintos).

Note-se que $P = M(\mathcal{B}, \mathcal{B}')$, ou seja,

$$P = \begin{bmatrix} X_1 & \cdots & X_n \end{bmatrix}$$
.

onde X_i é a i-ésima coluna constituída pelas coordenadas, na base \mathcal{B}' , do i-ésimo vector da base \mathcal{B} , que é um vector próprio associado ao valor próprio λ_i , para todo $i \in \{1, \ldots, n\}$. Note-se que P é invertível pois é uma matriz mudança de base. A esta matriz chama-se matriz diagonalizante de φ .

O próximo resultado fornece uma condição necessária e suficiente para um endomorfismo ser diagonalizável.

Teorema 6.23. Seja E um espaço vectorial sobre \mathbb{K} de dimensão n e seja φ um endomorfismo de E. Sejam ainda $\lambda_1, \lambda_2, \ldots, \lambda_p \in \mathbb{K}$ os valores próprios de φ . Então, φ é diagonalizável se e só se

$$m_g(\lambda_1) + m_g(\lambda_2) + \dots + m_g(\lambda_p) = n.$$

Exemplo 6.24. Averigúe-se se que os seguintes endomorfismos são diagonalizáveis e, em caso afirmativo, escreva-se a matriz diagonal que o representa relativamente a uma certa base do espaço (formada por vectores próprios desse mesmo endomorfismo) e a sua matriz diagonalizante.

1. Seja φ um endomorfismo de \mathbb{R}^2 tal que $\varphi(x,y)=(x+y,3x-y)$, para todo $(x,y)\in\mathbb{R}^2$. Note-se que $\varphi(1,0)=(1,3)$ e $\varphi(0,1)=(1,-1)$. Donde,

$$A = M(\varphi; \mathcal{B}_{\mathbb{R}^2}, \mathcal{B}_{\mathbb{R}^2}) = \left[egin{array}{cc} 1 & 1 \ 3 & -1 \end{array}
ight].$$

Determinem-se os valores próprios de φ . Ora

$$|A - \lambda I_2| = \begin{vmatrix} 1 - \lambda & 1 \\ 3 & -1 - \lambda \end{vmatrix}$$
$$= (1 - \lambda)(-1 - \lambda) - 3$$
$$= \lambda^2 - 4 = (\lambda + 2)(\lambda - 2).$$

Assim, φ tem dois valores próprios $\lambda = -2$ e $\lambda = 2$. Sabe-se que

$$m_a(-2) = 1 \Rightarrow m_g(-2) = 1$$

 $m_a(2) = 1 \Rightarrow m_a(2) = 1.$

Assim, como $m_g(-2)+m_g(2)=2=\dim\mathbb{R}^2$, pelo Teorema 6.23, φ é diagonalizável.

Determine-se agora uma base de \mathbb{R}^2 formada por vectores próprios de φ .

Para $\lambda = 2$, determine-se o subespaço próprio associado. Pretende-se assim encontrar os vectores $(x, y) \in \mathbb{R}^2$ tais que

$$(A - 2I_2) \left[\begin{array}{c} x \\ y \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \end{array} \right],$$

ou seja, encontrar a solução do sistema

$$\left[\begin{array}{cc} -1 & 1 \\ 3 & -3 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right].$$

Resolvendo obtém-se

$$U_2 = \{(x, x) : x \in \mathbb{R}\} = \langle (1, 1) \rangle.$$

Recorde-se que A é a matriz de φ em relação à base canónica.

Para $\lambda = -2$, calcule-se o subespaço próprio associado. Analogamente, pretende-se encontrar os vectores $(x, y) \in \mathbb{R}^2$ tais que

$$(A+2I_2)\left[\begin{array}{c}x\\y\end{array}\right]=\left[\begin{array}{c}0\\0\end{array}\right],$$

ou seja, encontrar a solução do sistema

$$\left[\begin{array}{cc} 3 & 1 \\ 3 & 1 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right].$$

Assim.

$$U_{-2} = \{(x, -3x) : x \in \mathbb{R}\} = \langle (1, -3) \rangle.$$

Como vectores próprios de φ associados a valores próprios distintos são linearmente independentes, os vectores (1,1) e (1,-3) são linearmente independentes e, portanto, formam uma base de \mathbb{R}^2 (justifique!). Donde uma base de \mathbb{R}^3 formada por vectores próprios é

$$\mathcal{B} = ((1,1), (1,-3)).$$

Sabe-se que $\varphi(1,1)=2(1,1)=(2,0)_{\mathcal{B}}\ e\ \varphi(1,-3)=-2(1,-3)=(0,-2)_{\mathcal{B}}.$ Logo

$$D = M(\varphi; \mathcal{B}, \mathcal{B}) = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}.$$

Note-se que, esquematicamente

Donde $D = P^{-1}AP$, onde $P = M(\mathcal{B}, \mathcal{B}_{\mathbb{R}^2})$ e $P^{-1} = M(\mathcal{B}_{\mathbb{R}^2}, \mathcal{B})$, ou seja,

$$P = \left[\begin{array}{cc} 1 & 1 \\ 1 & -3 \end{array} \right].$$

2. Seja ψ um endomorfismo de \mathbb{R}^2 tal que $\psi(x,y)=(x,2x+y)$, para todo $(x,y)\in\mathbb{R}^2$.

Note-se que $\psi(1,0) = (1,2)$ e $\psi(0,1) = (0,1)$. Logo,

$$A = M(\psi; \mathcal{B}_{\mathbb{R}^2}, \mathcal{B}_{\mathbb{R}^2}) = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}.$$

Determine-se os valores próprios de ψ . Ora

$$|A-\lambda I_2|=\left|\begin{array}{cc} 1-\lambda & 0 \\ 2 & 1-\lambda \end{array}\right|=(1-\lambda)(1-\lambda)=(1-\lambda)^2.$$

Pelo que ψ tem um único valor próprio $\lambda = 1$, com multiplicidade algébrica igual a 2.

Então $m_g(1) = 1$ ou $m_g(1) = 2$. Se $m_g(1) = 2$, ψ é diagonalizável; se $m_g(1) = 1$, ψ não é diagonalizável.

Determine-se o subespaço próprio associado a $\lambda = 1$. Pretende-se assim encontrar os vectores $(x, y) \in \mathbb{R}^2$ tais que

$$(A - 1I_2) \left[\begin{array}{c} x \\ y \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \end{array} \right],$$

ou seja, encontrar a solução do sistema

$$\left[\begin{array}{cc} 0 & 0 \\ 2 & 0 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right].$$

Assim,

$$U_1 = \{(0, y) : y \in \mathbb{R}\} = \langle (0, 1) \rangle$$

e, consequentemente, $m_a(1) = 1$ e ψ não é diagonalizável.

Exercício Resolvido 6.25. Considere ϕ um endomorfismo de \mathbb{R}^3 definido por $\phi(x, y, z) = (x - 3y + 3z, 3x - 5y + 3z, 6x - 6y + 4z)$, para todo $(x, y, z) \in \mathbb{R}^3$.

Averigúe se ϕ é diagonalizável e, em caso afirmativo, escreva a matriz diagonal que o representa relativamente a uma certa base do espaço (formada pelos seus vectores próprios) e a sua matriz diagonalizante.

 $\underline{\text{Resolução:}}\ \textit{Note-se}\ \textit{que}$

$$\phi(1,0,0) = (1,3,6), \quad \phi(0,1,0) = (-3,-5,-6) \quad e \quad \phi(0,0,1) = (3,3,4).$$

Logo,

$$A = M(\phi; \mathcal{B}_{\mathbb{R}^3}, \mathcal{B}_{\mathbb{R}^3}) = \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}.$$

Determinem-se os valores próprios de φ. Ora

$$|A - \lambda I_3| = \begin{vmatrix} 1 - \lambda & -3 & 3 \\ 3 & -5 - \lambda & 3 \\ 6 & -6 & 4 - \lambda \end{vmatrix}$$

$$= (1 - \lambda)((-5 - \lambda)(4 - \lambda) + 18) + (-3)(-1)^{1+2}(3(4 - \lambda) - 18) +$$

$$+ 3(-18 - 6(-5 - \lambda))$$

$$= (1 - \lambda)(-5 - \lambda)(4 - \lambda) + 18(1 - \lambda) + 9(4 - \lambda) - 3 \times 18 - 3 \times 18 - 18(-5 - \lambda)$$

$$= (1 - \lambda)(-5 - \lambda)(4 - \lambda) + 18 - 18\lambda + 36 - 9\lambda - 108 + 90 + 18\lambda$$

$$= (1 - \lambda)(-5 - \lambda)(4 - \lambda) + 9(4 - \lambda)$$

$$= (4 - \lambda)[(1 - \lambda)(-5 - \lambda) + 9]$$

$$= (4 - \lambda)(\lambda^2 + 4\lambda + 4)$$

$$= (4 - \lambda)(\lambda + 2)^2.$$

Assim, ϕ tem dois valores próprios $\lambda=-2$ e $\lambda=4$, onde $m_a(-2)=2$ e $m_a(4)=1$. Tem-se então que $m_g(4)=1$ e $m_g(-2)=1$ ou $m_g(-2)=2$.

Assim, ϕ é diagonalizável se e só se $m_q(-2) = 2$.

Determine-se então o subespaço próprio associado a $\lambda = -2$. Pretendem-se os vectores $(x, y, z) \in \mathbb{R}^3$ tais que

$$(A+2I_3)\left[\begin{array}{c} x\\y\\z\end{array}\right]=\left[\begin{array}{c} 0\\0\\0\end{array}\right],$$

ou seja, encontrar a solução do sistema

$$\begin{bmatrix} 3 & -3 & 3 \\ 3 & -3 & 3 \\ 6 & -6 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Assim,

$$U_{-2} = \{ (y - z, y, z) : y, z \in \mathbb{R} \}$$

= \{ y(1, 1, 0) + z(-1, 0, 1) : y, z \in \mathbb{R} \}
= \langle (1, 1, 0), (-1, 0, 1) \rangle

e, portanto, $m_q(-2) = 2$, ou seja, ϕ é diagonalizável.

Para determinar uma base de \mathbb{R}^3 constituída por vectores próprios é necessário ainda determinar o subespaço próprio associado a $\lambda = 4$. Assim, para $\lambda = 4$, pretende-se encontrar os vectores $(x, y, z) \in \mathbb{R}^3$ tais que

$$(A - 4I_3) \left[\begin{array}{c} x \\ y \\ z \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right].$$

ou seja, encontrar a solução do sistema

$$\begin{bmatrix} -3 & -3 & 3 \\ 3 & -9 & 3 \\ 6 & -6 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Assim,

$$U_4 = \{(y, y, 2y) : y \in \mathbb{R}\} = \langle (1, 1, 2) \rangle.$$

Como vectores próprios de ϕ associados a valores próprios distintos são linearmente independentes,

$$\mathcal{B} = ((1,1,2), (1,1,0), (-1,0,1)).$$

é uma base de \mathbb{R}^3 , formada por vectores próprios de ϕ . Assim,

$$D = M(\phi; \mathcal{B}, \mathcal{B}) = \begin{bmatrix} 4 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

 $e D = P^{-1}AP$, onde

$$P = M(\mathcal{B}, \mathcal{B}_{\mathbb{R}^3}) = \left[egin{array}{ccc} 1 & 1 & -1 \ 1 & 1 & 0 \ 2 & 0 & 1 \end{array}
ight]$$

e

$$P^{-1} = M(\mathcal{B}_{\mathbb{R}^3}, \mathcal{B}) = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{3}{2} & -\frac{1}{2} \\ -1 & 1 & 0 \end{bmatrix}.$$

Exercício 6.26. Considere ψ um endomorfismo de \mathbb{R}^3 cuja matriz em relação à base $\mathcal{B} = ((1, 1, -1), (1, -1, 0), (-1, 0, 0))$ é

$$A = \left[\begin{array}{rrr} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{array} \right].$$

Averigúe se ψ é diagonalizável e, em caso afirmativo, escreva a matriz diagonal que o representa relativamente a uma certa base do espaço (formada pelos seus vectores próprios) e a matriz diagonalizante.

Corolário 6.27. Seja E um espaço vectorial sobre \mathbb{K} de dimensão n e seja φ um endomorfismo de E. Se φ admite n valores próprios distintos então φ é diagonalizável.

De facto, como a multiplicidade algébrica de cada valor próprio é 1, a multiplicidade geométrica de cada um dos valores próprios também é 1. Por isso, a soma das multiplicidades geométricas dos n valores próprios distintos de φ é igual a n, ou seja, existe uma base de E formada por vectores próprios de φ .

Note-se que se φ não admite n valores próprios distintos nada se pode concluir.

Observação 6.28. Recorde-se $\mathcal{L}(E,E)\cong M_{n\times n}(\mathbb{K})$ (veja-se Teorema 5.56). Assim, dada $A\in M_{n\times n}(\mathbb{K})$, existe um endomorfismo φ de E e uma base \mathcal{B} de E tal que $A=M(\varphi;\mathcal{B},\mathcal{B})$. Ora isso permite que todas as definições dadas neste capítulo possam ser reescritas para uma matriz quadrada de ordem n. Assim, diz-se que $\lambda\in\mathbb{K}$ é valor próprio de A se λ é valor próprio de φ ; analogamente, $v\in E$ é um vector próprio de A associado ao valor próprio λ se v é um vector próprio de φ associado ao valor próprio λ .

Além disso, diz-se que A é diagonalizável se for semelhante a uma matriz diagonal, isto é, se existem matrizes quadradas de ordem n, P e D, com P invertível e D diagonal, tais que

$$D = P^{-1}AP.$$

 $\mathring{A} matriz P chama-se matriz diagonalizante de A.$

Do que foi dito anteriormente diz-se que, se A é uma matriz quadrada de ordem n, A é diagonalizável se e só se tem n vectores próprios linearmente independentes. Uma matriz P diagonalizante de A, tem por colunas as coordenadas na base $\mathcal B$ dos vectores próprios de A linearmente independentes. Se P é uma matriz diagonalizante de A e $D=P^{-1}AP$, então os elementos diagonais de D são os valores próprios de A correspondentes às colunas de P.

Atendendo à observação anterior, veja-se uma condição necessária para a semelhança de matrizes.

Teorema 6.29. Duas matrizes semelhantes têm o mesmo polinómio característico, isto é, duas matrizes que representam o mesmo endomorfismo têm o mesmo polinómio característico.

Demonstração. Sejam $A, C \in M_{n \times n}(\mathbb{K})$ duas matrizes semelhantes. Então, existe uma matriz invertível $S \in M_{n \times n}(\mathbb{K})$ tal que $C = S^{-1}AS$. Assim,

$$\det(C - \lambda I_n) = \det(S^{-1}AS - \lambda I_n)$$

$$= \det(S^{-1}AS - \lambda S^{-1}I_nS)$$

$$= \det(S^{-1}(A - \lambda I_n)S)$$

$$= \det(S^{-1})\det(A - \lambda I_n)\det S$$

$$= \frac{1}{\det S}\det(A - \lambda I_n)\det S$$

$$= \det(A - \lambda I_n).$$

Observação 6.30. Note-se que se duas matrizes têm o mesmo polinómio característico nada se pode concluir quanto à semelhança entre elas. Por exemplo, considerem-se as matrizes

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \qquad e \qquad I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

É fácil verificar que têm o mesmo polinómio característico, $(1-\lambda)^2$ (verifique!) e, no entanto, não são semelhantes. De facto, se A e I_2 fossem semelhantes, existia $S \in M_{2\times 2}(\mathbb{R})$ invertível tal que $A = S^{-1}I_2S = I_2$, o que é absurdo! Logo A e I_2 não são semelhantes.

Exercício 6.31. Verifique se as matrizes

$$A = \left[\begin{array}{ccc} 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4 \end{array} \right] \qquad e \qquad C = \left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{array} \right]$$

são semelhantes.

Exercício Resolvido 6.32. Considere a matriz A que representa um endomorfismo φ de \mathbb{R}^2 em relação à base $\mathcal{B} = ((1,1),(-1,2))$ de \mathbb{R}^2 :

$$A = \left[\begin{array}{cc} 1 & 3 \\ 2 & 2 \end{array} \right]$$

- 1. Calcule os valores próprios de φ .
- Determine o subespaço próprio associado ao valor próprio de maior valor absoluto.
- 3. Indique, caso exista, uma matriz diagonal semelhante a A, justificando a existência dessa matriz.

Resolução:

1. Os valores próprios de φ encontram-se determinando as soluções da sua equação característica. Ora,

$$A - \lambda I_2 = \left[\begin{array}{cc} 1 - \lambda & 3 \\ 2 & 2 - \lambda \end{array} \right].$$

Assim, $\det(A-\lambda I) = 0$ se e só se $(1-\lambda)(2-\lambda)-6 = 0$, o que é equivalente a determinar as soluções da equação $\lambda^2 - 3\lambda - 4 = 0$, ou seja, $\lambda = -1$ ou $\lambda = 4$.

Logo, os valores próprios de φ são -1 e 4.

2. Como |4| > | -1|, ou seja, 4 é o valor próprio de maior valor absoluto, o subespaço próprio pedido é o subespaço próprio associado a 4. Por definição:

$$U_4 = \{(x, y) \in \mathbb{R}^2 : \varphi(x, y) = 4(x, y)\}.$$

Tem-se então:

$$\varphi(x,y) = 4(x,y) \Leftrightarrow (A-4I_2)X = 0,$$

onde X é a matriz coluna das coordenadas de (x,y) na base \mathcal{B} . A matriz ampliada do sistema é:

$$\left[\begin{array}{c|c} A - 4I_2 & 0 \end{array}\right] = \left[\begin{array}{ccc} -3 & 3 & 0 \\ 2 & -2 & 0 \end{array}\right] \overrightarrow{L'_2 = L_2 + \frac{2}{3}L_1} \left[\begin{array}{ccc} -3 & 3 & 0 \\ 0 & 0 & 0 \end{array}\right].$$

Assim,

$$U_4 = \{(x, x)_{\mathcal{B}} : x \in \mathbb{R}\}$$

= \{x(1, 1) + x(-1, 2) : x \in \mathbb{R}\}
= \{(0, 3x) : x \in \mathbb{R}\} = \langle ((0, 3))

3. Repare-se que existir uma matriz diagonal semelhante a A é o mesmo que existir uma matriz diagonal que representa o mesmo endomorfismo φ (recorde-se que matrizes que representam o mesmo endomorfismo são semelhantes). O que significa verificar que φ é diagonalizável. Pelo que já foi dito, basta verificar se a soma das multiplicidades geométricas dos valores próprios de φ é igual à dimensão de \mathbb{R}^2 .

Ora,

$$m_a(-1) = 1 \Rightarrow m_g(-1) = 1$$

 $m_a(4) = 1 \Rightarrow m_g(4) = 1.$

Então, $2 = \dim \mathbb{R}^2 = m_g(-1) + m_g(4)$. Logo φ é diagonalizável, o que significa que existe uma base de \mathbb{R}^2 para a qual a matriz de φ é diagonal. E essa base é a base formada por vectores próprios de φ linearmente independentes e a matriz é a matriz diagonal formada pelos valores próprios de φ . Note-se que

$$U_{-1} = \{(x, y) \in \mathbb{R}^2 : \varphi(x, y) = -(x, y)\}.$$

 $Prove\ que$

$$U_{-1} = \left\{ \left(-\frac{3}{2}y, y \right)_{\mathcal{B}} : y \in \mathbb{R} \right\}$$
$$= \left\{ -\frac{3}{2}y(1, 1) + y(-1, 2) : y \in \mathbb{R} \right\}$$
$$= \left\{ \left(-\frac{5}{2}y, \frac{1}{2}y \right) : y \in \mathbb{R} \right\} = \langle (-5, 1) \rangle$$

Assim, $D = P^{-1}AP$, onde

$$D = M(\varphi; \mathcal{B}', \mathcal{B}') = \begin{bmatrix} 4 & 0 \\ 0 & -1 \end{bmatrix},$$

com $\mathcal{B}' = ((0,3),(-5,1)), e$

$$P = \left[\begin{array}{cc} 1 & -3 \\ 1 & 2 \end{array} \right].$$

 $Note\mbox{-}se\ que$

$$(0,3) = a(1,1) + b(-1,2) \Rightarrow a = 1 \land b = 1$$

$$(-5,1) = a(1,1) + b(-1,2) \Rightarrow a = -3 \land b = 2.$$

e, esquematicamente,

Exercício 6.33. 1. Considere o endomorfismo φ de \mathbb{R}^3 definido por $\varphi(x,y,z) = (x,2y+z,z)$, para todo $(x,y,z) \in \mathbb{R}^3$. Mostre que existe uma base \mathcal{B} de \mathbb{R}^3 tal que $M(\varphi;\mathcal{B},\mathcal{B})$ é uma matriz diagonal e, em caso afirmativo, indique essa base.

2. Seja ϕ um endomorfismo de \mathbb{R}^3 tal que

$$M(\phi; \mathcal{B}_{\mathbb{R}^3}, \mathcal{B}_{\mathbb{R}^3}) \left[egin{array}{cccc} 1 & k & 0 \ k+1 & 1 & 1 \ 0 & 1 & k-1 \end{array}
ight]$$

onde $\mathcal{B}_{\mathbb{R}^3}$ é a base canónica de \mathbb{R}^3 e k é um parâmetro real. Indique os valores de k para os quais existe um vector não nulo (a,b,c) tal que

$$\phi(a, b, c) = -(a, b, c).$$