

AMENDMENTS TO THE SPECIFICATION:

Please amend the paragraph on page 9, lines 26-34, as follows:

The recording layer in the optical information recording medium in the embodiments of the present invention can be formed out of arbitrary one of materials capable of recording interference fringes. The materials involve, for example, inorganic crystals exhibiting a photorefractive effect such as LiNbO_3 , LiTaO_3 , BaTiO_3 , $\text{Ba}_{1-x}\text{Ca}_x\text{TiO}_3$, KNbO_3 , $\text{KTa}_{1-x}\text{Nb}_x\text{O}_3$ $\text{KTa}_{1-x}\text{Nb}_x\text{O}_3$ (KTN), $\text{Ba}_2\text{NaNb}_5\text{O}_{12}$, $\text{Sr}_{1-x}\text{Ba}_x\text{Nb}_2\text{O}_6$ (SBN), $\text{Bi}_{12}\text{TiO}_{20}$ $\text{Bi}_{12}\text{TiO}_{20}$ (BTO), $\text{Bi}_{12}\text{SiO}_{20}$ $\text{Bi}_{12}\text{SiO}_{20}$ (BSO), $\text{Bi}_{12}\text{GeO}_{20}$ $\text{Bi}_{12}\text{GeO}_{20}$ (BGO), GaAs, and InP. A photorefractive polymer may be used. A liquid crystal doped photorefractive medium can be formed out of a photopolymer, a photochromic material, or a photo-addressable material.