Assessing Model Assumptions

More on serial correlation

Comments on residuals in general

Normality assumptions for random effects

Note: Different groups sometimes propose different (but related) strategies.

Serial Correlation

Correlation within a cluster from successive measurements over time.

Further decompose $\epsilon_i \sim N(\mathbf{0}, \mathbf{R}_i)$:

$$\epsilon_i = \epsilon_{(1)i} + \epsilon_{(2)i}$$

$$\epsilon_{(1)i}$$
 = serial correlation

$$\epsilon_{(2)i}$$
 = measurement error

Marginal covariance:

$$var(\mathbf{Y}_i) = \mathbf{V}_i = \mathbf{Z}_i \mathbf{D} \mathbf{Z}_i^T + \tau^2 \mathbf{H}_i + \sigma^2 \mathbf{I}_{n_i}$$

$$H_{ik} = g(|t_{ij} - t_{ik}|)$$
 for some function $g(\cdot)$ with $g(0) = 1$.

Informal Check for Serial Correlation

Do we need to model serial correlation? \to hard because residual variability dominated by $Z\widehat{b}$

Idea: Orthogonalize \mathbf{r}_i (OLS residuals – remove systematic effects) from \mathbf{Z}_i

Lets us study variability not explained by random effects

Set
$$\mathbf{A}_i = n_i \times (n_i - q)$$
 matrix with $\mathbf{A}_i^T \mathbf{Z}_i = 0$ and $\mathbf{A}_i^T \mathbf{A}_i = \mathbf{I}$.

$$\Rightarrow \widetilde{\mathbf{r}}_i = \mathbf{A}_i^T \mathbf{r}_i \sim \mathcal{N}(0, \mathbf{A}_i^T \mathbf{V}_i \mathbf{A}_i)$$

$$\mathbf{A}_i^T \mathbf{V}_i \mathbf{A}_i = \tau^2 \mathbf{A}_i^T \mathbf{H}_i \mathbf{A}_i + \sigma^2 \mathbf{I}_{n-q}.$$

No serial correlation means that the $\tilde{\mathbf{r}}$'s are all $N(0, \sigma^2)$

Deviation from normality implies model is off: **possibly** need serial correlation component.

Informal Check for Serial Correlation

Random intercept + slope

Normal Q-Q Plot

Semi-Variograms

Empirical, nonparametric approach for studying serial correlation (Diggle, 1998)

Semi-Variogram for Random Intercept(Diggle, 1998)

$$\mathbf{V}_{i} = \nu^{2} \mathbf{J}_{n_{i}} + \tau^{2} \mathbf{H}_{i} + \sigma^{2} \mathbf{I}$$

where **J** is matrix of 1's and ν^2 is variance of random intercept.

$$var(r_{ij}) = \nu^2 + \tau^2 + \sigma^2.$$

$$cor(r_{ij}, r_{ik}) = \rho(|t_{ij} - t_{ik}|) = \frac{\nu^2 + \tau^2 g(|t_{ij} - t_{ik}|)}{\nu^2 + \tau^2 + \sigma^2}$$

Then the semivariogram is defined as

$$v(|t_{ij}-t_{ik}|) = \frac{1}{2}E(r_{ij}-r_{ik})^2 = \sigma^2 + \tau^2(1-g(|t_{ij}-t_{ik}|))$$

Semi-Variograms

Essentially: looking at similarity between pairs of observations

x-axis: Lag = $|t_k - t_j|$)

y-axis: Semivariance = $v(|t_{ij} - t_{ik}|)$

Variograms for CF Data

Sample variogram uses the empirical squared differences between pairs of residuals from the same subject.

Remarks

- Can compare the shape of variogram to theoretical correlation structures
- Can de-correlate the residuals from the fitted model: then should get a horizontal line if the correlation correctly specified.
- Can still be hard to tease apart a "best" structure: different strategies can give different answers
- As long as you're not strictly interested in the serial correlation, probably good enough just to include it (even if $g(\cdot)$ not optimal)

Residuals in Linear Mixed Models

Residual analysis is useful for checking model assumptions and looking for outliers. What is a "residual" for LMM?

- Marginal: $\mathbf{Y}_i \mathbf{X}_i \hat{\boldsymbol{\beta}}$ Deviation of individual curve from population mean
- Subject specific: $\mathbf{Y}_i \mathbf{X}_i \mathbf{Z}_i \hat{\mathbf{b}}_i$ Deviation of observations from subject specific predicted line

Decorrelated Residuals

$$\widehat{\mathbf{V}}_i = \mathbf{L}_i \mathbf{L}_i^T$$

$$\mathbf{r}_i^* = \mathbf{L}_i^{-1} \mathbf{r}_i = \mathbf{L}_i^{-1} (\mathbf{Y}_i - \mathbf{X}_i \widehat{\boldsymbol{\beta}})$$

which are uncorrelated with variance 1.

Note that $\mathbf{r}_{i_1}^*$ is just standardized residual, but $\mathbf{r}_{i,k}^*$ is an estimate for

$$\frac{Y_{ik} - E[Y_{ik}|Y_{i1}, \dots, Y_{i(k-1)}]}{sd(Y_{ik}|Y_{i1}, \dots, Y_{i(k-1)})}$$

We can do all of the usual thinks with de-correlated residuals (e.g. normality, outlying observations, outlying individuals)

Outlying Individuals

Calculate Mahalanobis distance

$$d_i = \mathbf{r}_i^{*^T} \mathbf{r}_i^*$$

Then $d_i \sim \chi^2_{n_i}$ if model correctly specified \rightarrow p-value

More formal notions of local influence for observations and subjects are in Verbeke and Molenberghs.

1

Normality Assumption of Random Effects

Recall: assume $\mathbf{b} \sim N(0, \mathbf{D}(\boldsymbol{\theta}))$

What is the impact of violations of normality?

How do we assess normality?

Impact of Normality Assumption

In General:

- \bullet Normality assumption significantly affects $\widehat{\boldsymbol{b}}$
- Normality assumption has little effect on eta and heta estimation
- Normality assumption affects the SEs and consequently $oldsymbol{eta}$ and $oldsymbol{ heta}$ inference

Assessing Normality

Can we just look at the empirical estimates of \hat{b}_i ? o Only sometimes.

- (1) The \hat{b}_i all have different individual distributions
- (2) Shrinkage effect makes them look pretty normal anyway

Estimated \hat{b}_{i_2} from CF data.

Assessing Normality - Use More Complex Model!

Need to compare results under normality to results from relaxed model.

Heterogeneity Model:

$$\mathbf{b}_i \sim \sum_{j=1}^g \pi_j \mathcal{N}(m{\mu}_j, \mathbf{D})$$
 $\sum_{i=1}^g \pi_j = 1$ and $\sum_{i=1}^g \pi_j m{\mu}_j = 0$

Essentially: unobserved heterogeneity in the model.

Would like to test $H_0: g = 1$ vs $H_A: g = 2$ (hard! \leftarrow boundary problem)

Could also test:
$$H_0: \mu_1 = \mu_2$$
 OR $H_0: \pi_1 = 0$ OR $H_0: \pi_2 = 0$ (also hard!)

15

Heterogeneity Model

Conditional Model:

$$\mathbf{Y}_i = \mathbf{X}_i oldsymbol{eta} + \mathbf{Z}_i \mathbf{b}_i + \epsilon_i, \quad \epsilon_i \sim N(\mathbf{0}, \mathbf{R}_i)$$
 $\mathbf{b}_i \sim \sum_{j=1}^g \pi_j N(\mu_j, \mathbf{D})$
 $\sum_{j=1}^g \pi_j = 1 \quad ext{and} \quad \sum_{j=1}^g \pi_j \mu_j = 0$

Marginal Model:

$$\mathbf{Y}_i \sim \sum_{i=1}^g \pi_j N(\mathbf{X}_i oldsymbol{eta} + \mathbf{Z}_i oldsymbol{\mu}, \mathbf{V}_i)$$

Heterogeneity Model (2)

Estimation Usual EM-algorithm

Goodness of Fit Assess Need for Mixture

If $F_i(\cdot)$ is CDF, then $F_i(\mathbf{Y}_i) \sim \textit{Unif} \rightarrow \mathsf{Hard}$ due to multidimensionality

Instead: consider $\mathbf{a}_i^T \mathbf{Y}_i$

17

Heterogeneity Model Goodness of Fit

 $\mathbf{a}_{i}^{T}\mathbf{Y}_{i}$ is univariate such that

$$\mathcal{U}_i = F_i(\boldsymbol{a}_i^T \boldsymbol{\mathsf{Y}}_i) = \sum_{j=1}^g \pi_j \Phi\left(\frac{\boldsymbol{a}_i^T (\boldsymbol{\mathsf{Y}}_i - \boldsymbol{\mathsf{X}}_i \boldsymbol{\beta} - \boldsymbol{\mathsf{Z}}_i \boldsymbol{\mu}_j)}{\sqrt{\boldsymbol{a}_i^T \boldsymbol{\mathsf{V}}_i \boldsymbol{a}}}\right) \sim \textit{Unif}$$

KS-test assesses uniformity with estimates plugged in.

Any choice of \mathbf{a}_i leads to valid test, but affects power: set equal to largest eigenvector of $\mathbf{R}_i^{-1}\mathbf{Z}_i\mathbf{D}^*\mathbf{Z}_i^T$ with $\mathbf{D}^* = \sum (\pi_j \boldsymbol{\mu}_j \boldsymbol{\mu}_j^T + \mathbf{D}_j)$, the overall covariance of \mathbf{b}_i .

Can test range of g to evaluate number of components.