16.4: Green's Theorem

Circulation density of a vector field $\vec{F} = M\mathbf{i} + N\mathbf{j}$ at point (x, y) is the scalar expression:

$$\operatorname{curl} \vec{F} \cdot \mathbf{k} = \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}$$

Divergence (flux density) of vector field $\vec{F} = M\mathbf{i} + N\mathbf{j}$ at (x,y) is:

$$\operatorname{div} ec{F} = rac{\partial M}{\partial x} + rac{\partial N}{\partial y}$$

See <u>∇, div, and curl</u> for a full definition of div and curl.

Circulation-Curl or Tangential Form

Let C be piecewise smooth, simple closed curve enclosing region R in the plane.

Let $\vec{F} = M\mathbf{i} + N\mathbf{j}$ be a vector field with M and N have continuous 1st partial derivatives in open region containing R.

Then:

The <u>counterclockwise circulation</u> of \vec{F} around C equals the double integral of $\operatorname{curl} \vec{F} \cdot \mathbf{k}$ over R.

$$\oint_C ec{F} \cdot ec{T} \, ds = \oint_C M \, dx + N \, dy = \iint_R \left(rac{\partial N}{\partial x} - rac{\partial M}{\partial y}
ight) dx \, dy \, dy$$

Flux-Divergence or Normal Form

Let C be piecewise smooth, simple closed curve enclosing region R in the plane.

Let $\vec{F} = M\mathbf{i} + N\mathbf{j}$ be a vector field with M and N have continuous 1st partial derivatives in open region containing R.

Then:

The <u>outward flux</u> of \vec{F} around C equals the double integral of $\text{div } \vec{F}$ over R.

$$\oint_C ec{F} \cdot ec{n} \, ds = \oint_C M \, dy - N \, dx = \iint_R \left(rac{\partial M}{\partial x} + rac{\partial N}{\partial y}
ight) dx \, dy \, dy$$

Area

Green's Theorem can be used to write area in terms of a line integral.

$$egin{aligned} A_R &= \iint_R \, dy \, dx \ &= \iint_R \left(rac{1}{2} + rac{1}{2}
ight) dy \, dx \ &= rac{1}{2} \oint x \, dy - y \, dx \end{aligned}$$

#module4 #week12