SOLVING HIERARCHICAL AUCTIONS WITH HTN PLANNING

Antoine Milot^{1,2,3}, Estelle Chauveau², Simon Lacroix¹ and Charles Lesire³ ¹LAAS-CNRS, ²NAVAL GROUP, ³ONERA

Problematic and approach

Multi-Robot Task Allocation and Planning

When a robot has to complete several tasks it needs to solve a planning problem. However, when considering a multi-robot system it is necessary to both allocate and plan these tasks. This results in the Multi-Robot Task Allocation problem. In order to solve this problem we propose an approach interleaving decomposition and allocation of the tasks.

How to interleave Decomposition and Allocation? → by hybridizing auctions & Hierarchical Task Networks.

Auction-Based Allocation

Decentralized decision scheme

Robust to communication failures

Hierarchical Task Network (HTN) Planning

• Integrate expert knowledge to decompose difficult tasks into simpler ones

Allocation with auctions

Figure 1: Allocation with auctions process.

Auction key points

- The auctioneer is in charge of tasks allocation
- Bidders formulate bids (ex: a cost)
- Bids are independant
- A bidder can win at most one bid

Auctioning with HTN planning

- Items for sale are HTNs
- HTN Planning is used to:
- Estimate bids
- -Solve the WDP

Use case – *BorderDelivery* problem

To illustrate our approach, we consider a *BorderDelivery* problem, inspired from the *transport* and *logistics* problems of the IPC2020.

Objectives:

- Store both packages in the Storage area
- Randomly check one of the packages

Figure 2: BorderDelivery Problem.

This minimal example can be expressed as an HTN planning problem. It allows to highlight the key points of our approach.

Figure 3: The *Grounded HTN Tree* \mathcal{H} corresponding to the *BorderDelivery* problem.

Overall protocol

The approach features global and local aspects

- Global part: multi-robot level, i.e. what to allocate and to who
- Local part: how a particular robot can accomplish a task

Figure 4: Approach protocol.

The tasks in the multi-robot level are labeled in order to ensure that each robot reasons on the same elements. The resulting HTN is the *Grounded HTN Tree* \mathcal{H} .

Bid Estimation

- The bidder **extends**, on the tasks to estimate, ${\cal H}$ with its proper actions
- Bidder's capacities are described in a local HTN domain
- Only local actions can increment the cost
- start and end actions are used to apply preconditions and effects of the task
- An **HTN solver** is used to find a plan (and its beled task l_4 . associated cost)

Figure 5: Local decomposition of la-

m-wdp-bring-new-pkg(l₄,... AllocateOrResell(I₄) m-allocate(l₄,r₁) action-allocate(I₄,r₁)

Figure 6: Decomposition of task l_4 integrating received bids.

2 Winner Determination Problem

- For every bid a new method to allocate the task is added
- For every task a new method to resell it is added
- Resale cost is a lever to control the allocation process
- An HTN solver is used to determine an allocation

3 End of an auction round

- \mathcal{H} is **updated** with the WDP result
- The winners commit the plans corresponding to their winning bids
- A new auction round begins with the remaining tasks for sale

Figure 7: Update example of \mathcal{H} after an auction round.

Totally vs Partially ordered problems

- The approach is sound and complete on totally ordered problems
- Improvement are necessary to support partially ordered problems with causal constraints

Auctioning with partially-ordered HTNs

Generalities

- Problems are rarely totally ordered
- When integrating causal constraints they become harder to solve

Numerous applications require to be able to solve partially-ordered or notordered problems with causal constraints.

BorderDelivery case

- The presence of a package at a specific location is a causal constraint
- There is no particular reason to:
- move a specific package *first* and *then* the other one
- wait that both packages are in *Storare* before checking one

By removing the ordering constraints $l_1 \rightarrow l_2$ and $l_4 \rightarrow l_5$ the problem becomes partially-ordered.

Allocation on partially-ordered problems yield execution deadlock

Let's consider two robots, r_1 and r_2 , and the following sequence of allocation:

- First round: r_1 wins task l_4 with the plan: $[l_4]$; r_2 wins task l_5 with the plan: $[l_5]$
- Second round: r_1 wins l_6 with the plan: $[l_5 \rightarrow l_6 \rightarrow l_4]$
- Third round: r_2 wins l_7 with the plan: $[l_4 \rightarrow l_7 \rightarrow l_5]$

All tasks have been allocated. However, the resulting allocation cannot be executed. Both robots locally computed a plan involving a precedence constraint between one of their task and a task of the other robot. There is a mutual dependency between l_4 and l_5 .

Origin of the problem

These inconsistencies may arise due to the lack of information on the bidders' local plans when solving the WDP and estimating successive bids.

Necessary improvements

- The results (i.e. committed local plans) from the allocation of the previous round must be encoded into the new \mathcal{H} .
- The WDP problem formulation (process 2) must reflect the bidders' intentions in order to provide a consistent solution.

Ongoing work – Improving the framework

- Transmission of each local plan associated to a bid (at multi-robot level)
- Integration of the received local plans as possibilities in the WDP thanks to new decompositions and causal constraints sets

Figure 8: Illustration of the local plans integration in the WDP at the 2nd round.