

This document is protected by Copyright. Use must be in accordance with Ts & Cs - https://qats.com.au/QATs-Ts-and-Cs.pdf For purchasing school's classroom use only. Not for electronic distribution or upload.

2023 Higher School Certificate Trial Examination Chemistry

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using a black pen
- Draw diagrams using a pencil
- NESA-approved calculators may be used
- Write your student number on this examination and on the multiple-choice answer sheet.
- Three data sheets and a Periodic Table are provided at the back of this paper

Total marks: 100

Section I – 20 marks

- Attempt Questions 1-20 (pages 2-11)
- Allow about 35 minutes for this section

Section II - 80 marks

- Attempt Questions 21-30 (pages 12-32)
- Allow about 2 hours and 25 minutes for this section

1

Disclaimer

Every effort has been made to prepare this Examination in accordance with the NESA documents. No guarantee or warranty is made or implied that the Examination paper mirrors in every respect the actual HSC Examination question paper in this course. This paper does not constitute 'advice' nor can it be construed as an authoritative interpretation of NESA intentions. No liability for any reliance, use or purpose related to this paper is taken. Advice on HSC examination issues is only to be obtained from NESA. The publisher does not accept any responsibility for accuracy of papers which have been modified.

Section I Multiple-Choice 20 marks

Attempt Questions 1-20 Allow about 35 minutes for this section Use the multiple-choice answer sheet provided to answer Questions 1-20

1 The following graph shows how the solubility of an unidentified substance changes with the temperature of the solution.

What mass of precipitate will be produced when 20 mL of a saturated solution at 40°C is cooled to 10°C?

- A. 6 g
- B. 12 g
- C. 15 g
- D. 30 g
- 2 0.1 moles of each of the following substances is dissolved in 1 L of water. For which substance would the pH of the resultant solution be closest to 14?
 - A. NH₄Cl
 - B. CH₃CH₂OH
 - C. Ca(OH)₂
 - D. NaCH₃COO

- Which of the following pairs of compounds will form a precipitate when 0.1 mol L⁻¹ solutions of each are mixed?
 - A. AgNO₃ and Ba(NO₃)₂
 - B. K_2SO_4 and $Cu(NO_3)_2$
 - C. Ca(NO₃)₂ and KBr
 - D. NaOH and CuCl₂
- 4 The molar masses of C₂H₆, CH₃OH and CH₃F are similar. Which of the following lists these compounds in order of increasing boiling point?
 - A. $C_2H_6 < CH_3OH < CH_3F$
 - B. $CH_3OH < CH_3F < C_2H_6$
 - C. $CH_3F < CH_3OH < C_2H_6$
 - D. $C_2H_6 < CH_3F < CH_3OH$
- Iodine monochloride (ICl) reacts with carbon-carbon double bonds (one ICl per double bond). If 0.105 g of a molecule of molar mass 304.5 g mol⁻¹ reacts with exactly 0.224 g of ICl, how many carbon-carbon double bonds are present in the molecule?
 - A. 3
 - B. 4
 - C. 5
 - D. 8

6 The following endothermic reaction is at equilibrium in a sealed container:

$$PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$$

Which of the following changes would result in an increase in the number of moles of $PCl_5(g)$ present at equilibrium?

- I. Increasing the temperature
- II. Increasing the volume
- A. I only
- B. II only
- C. Both I and II
- D. Neither I nor II
- What is the pH of a 0.20 M solution of sodium benzoate, Na(C_6H_5COO)? The K_a of benzoic acid, C_6H_5COOH , is 6.5 x 10^{-5} .
 - A. 5.26
 - B. 8.74
 - C. 9.09
 - D. 11.56
- What mass of silver chloride (MM = 143.4) will dissolve in 1.00 L of water? The K_{sp} of AgCl is 1.8 x 10^{-10} .
 - A. 1.4 mg
 - B. 1.9 mg
 - C. 2.9 mg
 - D. 3.8 mg

9 Sulfur trioxide is formed from the reaction of sulfur dioxide and oxygen:

$$SO_2(g) + \frac{1}{2}O_2(g) \stackrel{\rightleftharpoons}{=} SO_3(g)$$

At 1000 K, an equilibrium mixture has partial pressures of 0.562 atm SO₂, 0.101 atm O₂ and 0.332 atm SO₃. What is the equilibrium constant K_p for the reaction at this temperature?

- A. 1.86
- B. 3.46
- C. 5.85
- D. 16.8
- The ¹H NMR spectrum of an organic compound has three unique sets of peaks: a single peak, a septet and, a doublet.

The compound is

- A. 3-methyl butanoic acid.
- B. 2-methyl propanoic acid.
- C. 2-chloro-2-methylpropane.
- D. 1,2-dichloro-2-methylpropane.
- How many isomers have the formula $C_2H_2Br_2$?
 - A. 1
 - B. 2
 - C. 3
 - D. 4

Which of the following identifies Reactant X and Product Y in the condensation reaction shown below?

	Reactant X	Product Y
A.	CH ₃ CH ₂ OH	CH ₃ CHOHCH ₂ CH ₃
B.	CH ₃ CH ₂ NH ₂	CH ₃ CH ₂ CONHCH ₃
C.	CH ₃ CH ₃	CH ₃ COCH ₂ CH ₃
D.	CH ₃ NH ₂	CH ₃ CONHCH ₃

A conductometric titration was carried out using an acid and a base of similar concentration and the graph below was recorded.

The acid and base used could have been:

- A. H₂SO₄ and Ba(OH)₂
- B. H₂SO₄ and NH₃
- C. CH₃COOH and NH₃
- D. CH₃COOH and KOH

- Which one of the following statements indicates why ethanol produced from sugar cane is defined as a biofuel whereas ethanol produced from coal is not?
 - A. Ethanol produced from sugar cane generates less greenhouse gases when used as a fuel than ethanol produced from coal
 - B. Ethanol produced from coal can be used to generate electrical energy whereas ethanol produced from sugar cane cannot
 - C. Sugar cane is recently living organic matter whereas coal is formed over millions of years
 - D. Sugar cane is a natural resource whereas coal is not
- 15 The IUPAC systematic name for the following molecule is

$$\begin{array}{c|cccccccccccccccccH \\
H & & & & & & & & & & \\
N & & & & & & & & & \\
H & & & & & & & & \\
H & & & & & & & & \\
H & & & & & & & & \\
H & & & & & & & \\
H & & & & & & & \\
H & & & & & & & \\
H & & & & & & & \\
H & & & & & & & \\
H & & & & & & & \\
H & & & & & & & \\
H & & & & & & & \\
H & & & & & & & \\
H & & & & & & & \\
H & & & & & & & \\
H & & & & & & & \\
H & & & & & & & \\
H & & & & & & & \\
H & & & & & & & \\
H & & & & & & & \\
H & & & & & & & \\
H & & & & & & & \\
H & & & & & & & \\
H & & & & & & & \\
H & & & & & & & \\
H & & & & & & & \\
H & & & & & & & \\
H & & & & & & & \\
H & & & & & & & \\
H & & & & & & & \\
H & & & & & & & \\
H & & & & & & & \\
H & & & & & & & \\
H & & & & & & & \\
H & & & & & & & \\
H & &$$

- A. 3-aminobutan-1-ol.
- B. 4-hydroxybutan-2-amine.
- C. 3-methyl-3-aminopropan-1-ol.
- D. 3-hydroxy-1-methylpropan-1-amine.

An unidentified organic substance with the molecular formula $C_4H_8O_2$ is found to react with a base. Mass spectrometry shows the parent molecular ion has a mass-to-charge ratio, m/z, of 88.

- Which one of the following species is consistent with a peak on the mass spectrum at m/z = 45?
- A. COOH+
- B. CH₃CH₂O⁺
- C. $CH_3CH_2OH^+$
- D. CH₃CH₂CH₂COOH⁺

The diagram below represents the distribution of kinetic energy in a sample of gaseous reactant molecules.

The activation energy $E_{\rm al}$ has been changed to activation energy $E_{\rm a2}$. This change increases the reaction rate.

Which of the following gives the most likely cause of the change from E_{a1} to E_{a2} and explains why the reaction rate would increase?

	Cause of the change	Why the reaction rate increases
A.	Catalyst added	Molecules move faster, resulting in more successful collisions
B.	Catalyst added	Greater proportion of reactants collide with sufficient energy to react
C.	Temperature increased	Greater proportion of reactants collide with the correct orientation to react
D.	Concentration of reactants increased	Greater frequency of collisions, resulting in more successful collisions

- 18 100 mL of 0.4 M nitric acid, HNO₃, is added to 100 mL of 0.1 M barium hydroxide, Ba(OH)₂. The pH of the resulting solution is
 - A. 0.3
 - B. 0.7
 - C. 0.8
 - D. 1.0

The following two spectra were obtained for a pure organic substance, Compound W.

¹³C NMR spectrum

Infra-red spectrum

The formula of Compound W that is consistent with the spectra above is

- A. CH₂(OH)CH₂CH₂OH
- B. CH₃CH₂COOH
- C. CH₃COOCH₃
- D. CH₃COCH₃

- A 20.00 mL sample of vinegar is placed in a volumetric flask. The volumetric flask is then filled up to the line marking its designated volume. Then a 20.00 mL aliquot of the diluted sample of vinegar is titrated against a 0.102 M solution of potassium hydroxide, KOH, using a phenolphthalein indicator. If the undiluted sample of vinegar has a concentration of 3.16% m/v acetic acid, CH₃COOH, which volumetric flask should be selected to be able to dilute the original sample of vinegar and obtain titres of about 20 mL?
 - A. 100 mL volumetric flask
 - B. 200 mL volumetric flask
 - C. 250 mL volumetric flask
 - D. 1000 mL volumetric flask

END OF SECTION I

Section II Short Response 80 marks

Attempt Questions 21-30

Allow about 2 hours and 25 minutes for this section.

Answer the questions in the spaces provided. These spaces provide guidance for the expected length of response.

Show all relevant working for questions involving calculations.

Extra writing space is provided on pages 33 and 34. If you use this space, clearly indicate which question you are answering.

Question 21 (5 marks)

Part of the contact process for the manufacture of sulfuric acid involves the conversion of sulfur dioxide to sulfur trioxide, as shown by the equation:

$$2SO_2(g) + O_2(g) \Longrightarrow 2SO_3(g)$$
 $\Delta H = -192 \text{ kJ mol}^{-1}$

As part of a laboratory study of this process, a container was filled with an equilibrium mixture of sulfur dioxide, sulfur trioxide, and oxygen in the presence of a catalyst. The container was initially at 450°C. Concentrations during the following experiment are shown in the diagram below.

- (a) What change occurred at the 10-minute point?
- (b) Which components of the equilibrium mixture are represented by X and Y?

Y =

Question 21 continues on the next page

X =

Question 21 (continued)

(c)	Give explanations, using Le Chatelier's principle, for the changes in concentration that occurred in X , Y and O_2 between 10 and 20 minutes. If no further changes were imposed on the equilibrium after 20 minutes had elapsed, predict the shape of the graph after the 20-minute mark.	3

Question 22 (9 marks)

In the upper atmosphere, ozone, $O_3(g)$, is formed from oxygen, $O_2(g)$, in the presence of ultraviolet (UV) light. An equation that represents this chemical reaction is:

$$3O_2(g) \stackrel{UV \text{ light}}{=\!\!\!=} 2O_3(g)$$

Graph 1(below) shows the effect of temperature on the equilibrium concentration of $O_3(g)$ in a sealed container containing only $O_2(g)$ and $O_3(g)$. The container is clear and exposed to UV light.

(a)	State whether the forward reaction is endothermic or exothermic.	1
(b)	Explain your answer to part (a).	2

Question 22 continues on the next page

Question 22 (continued)

(c) Conversion of $O_3(g)$ to $O_2(g)$ is the reverse reaction.

1

Sketch the energy profile for the conversion of $O_3(g)$ on the axes provided.

5

(d) 7.50×10^{-2} mol of $O_2(g)$ was placed in an evacuated and sealed 3.00 L container at 30°C. This clear container was exposed to UV light. At equilibrium, 1.56×10^{-7} mol of $O_3(g)$ had formed in the container. Calculate the equilibrium constant at 30°C.

Question 23 (8 marks)

Elemental sulfur can be used to control outbreaks of powdery mildew on grapes. However, sulfur remaining on the grapes after harvest can be converted to a number of undesirable compounds during fermentation in wine production. A wine chemist uses atomic absorption spectroscopy to determine the amount of sulfur remaining on grapes.

In a particular analysis, 100.0 g of grapes were treated with 100.0 mL of surfactant solution to remove the sulfur remaining on the grapes when they were harvested. 25.00 mL of this surfactant solution was treated to convert all of the sulfur to sulfate ions and then dried to produce an ash containing the sulfate ions. This ash was transferred to a 10.00 mL volumetric flask containing 2.00 mL of 200 mg/L solution of barium Ba^{2+} ions. The volume of solution in the volumetric flask was then made up to the calibration line. A precipitate of $BaSO_4$ formed and settled to the bottom of the volumetric flask.

A small amount of the solution containing the unreacted Ba²⁺ ions was removed from the volumetric flask and analysed using atomic absorption spectroscopy. This solution gave an absorbance of 0.11.

A calibration curve was prepared using standard solutions of 10, 20, 30 and 40 mg/L Ba²⁺(aq).

(a)	Determine the concentration of barium ions remaining in the 10.00 mL sample solution. Hence determine the mass of barium ions, in mg, remaining in the 10.00 mL sample solution.		

Question 23 continues on the next page

Question 23 (continued)

(b)	Determine the amount of barium ions, in moles, that reacted to produce the barium sulfate precipitate.	2
(c)	Determine the mass of sulfur, in mg, remaining on the 100.0 g of harvested grapes.	2
(d)	The amount of sulfur remaining on the grapes can also be determined using gravimetric analysis. Explain two reasons why atomic absorption spectroscopy is a better way to determine the residual sulfur on the grapes, compared to gravimetric analysis.	2

Question 24 (8 marks)

A small organic molecule contains carbon, hydrogen, oxygen and chlorine atoms. A pH probe was inserted into a dilute aqueous solution of this compound and the pH was 4.5.

The mass spectrum, infrared spectrum, ¹H NMR spectrum and ¹³C NMR spectrum of this compound are provided on pages 21 and 22.

(a)	On the infrared spectrum, on page 22, label the peaks that correspond to the presence of two functional groups involving carbon, hydrogen and/or oxygen atoms in this compound. Please note that the peak due to the C-Cl stretch has been labelled.		
(b)	What information is provided by the pH of the aqueous solution?	1	
(c)	What information is provided by the mass spectrum?	1	
(d)	What specific information about the structure of the compound is provided by the splitting pattern in the 'H NMR spectrum and the data table on page 23?	2	

Question 24 continues on the next page

Question 24 (continued)

(f)

Draw a molecular structure for this molecule.

(e)	Use the data provided to determine the number of carbon and hydrogen atoms in a molecule of this compound. Explain your reasoning.	2

1

Question 24 (continued)

¹³C NMR spectrum

Question 24 (continued)

¹H NMR spectrum

¹H NMR data

Chemical shift (ppm)	Peak splitting	Relative peak area
1.7	doublet (2 peaks)	3
4.5	quartet (4 peaks)	1
11.2	singlet (1 peak)	1

Question 25 (11 marks)

A student was given 4 colourless liquids that were labelled **A**, **B**, **C** and **D**. They were known to be ethanol, ethanoic acid, pentane and hex-3-ene, but the exact identity of each liquid was unknown. The student tested the properties of each liquid and obtained the following results.

	A	В	С	D
Solubility in water	insoluble	soluble	soluble	insoluble
Addition of red-coloured	colour	no immediate	no immediate	no immediate
bromine solution (aq)	disappears	reaction	reaction	reaction
Addition of sodium carbonate	no reaction	gas evolved	no reaction	no reaction
solution (aq)				

(a)	Identify each of the liquids.	2
	A =	
	$\mathbf{B} = \dots$	
	$\mathbf{C} = \dots$	
	D =	
(b)	Identify the type of reaction occurring between compound A and bromine solution, write a balanced equation and draw the structure(s) of the compound(s) formed.	3
(c)	Identify the type of reaction occurring between compound B and Na ₂ CO ₃ solution, write a balanced equation and draw the structure of the anion formed.	3

Question 25 continues on the next page

Question 25 (continued)

Ι	Discuss the different solubilities of the 4 compounds in water.	3
•		
-		
-		

Question 26 (13 marks)

(a)	Acids and bases have been defined differently by scientists over several centuries. Justify this statement by comparing the theories of Arrhenius and Brønsted-Lowry, using appropriate examples.
(b)	Calculate the pH values of 0.001 M solutions of hydrochloric acid and hypochlorous acid, HOCl, which has an acid dissociation constant, K_a , of 3.0 x 10 ⁻⁸ at 25°C.

Question 26 continues on the next page

Question 26 (continued)

(c)	Account for the different pH values calculated in part (b).	2
(d)	A buffer solution is prepared by combining 100 mL of 0.010 M hydrocyanic acid (HCN) and 0.055 g of solid NaCN. K_a HCN = 4.9 x 10^{-10}	4
	Calculate the pH of this buffer solution and explain the classification of the solution as a buffer.	

Question 27 (6 marks)

The ammonium ion, NH_4^+ , is a weak acid with an acid dissociation constant of 5.6×10^{-10} at 25° C. A saturated solution of ammonium chloride has a pH of 4.67 at 25° C.

(a)	Calculate the K_{sp} of ammonium chloride at 25°C.	3
(b)	What is the solubility of ammonium chloride in water at this temperature?	1
(c)	If 0.10 mL of a 2.0 x 10 ⁻⁵ M solution of silver nitrate were added to 100 mL of a saturated solution of ammonium chloride, will a precipitate form? K_{sp} AgCl = 1.77 x 10 ⁻¹⁰ Show all calculations and reasoning.	2

Question 28 (8 marks)

A solution of sodium carbonate of concentration 1.0 M has a pH which is close to 11. When this sodium carbonate solution is titrated with 1.0 M HCl solution, 2 equivalence points are observed. These occur at pH values of approximately 8 and 4.

(a)	Write an equation for the overall reaction between Na ₂ CO ₃ and HCl when excess HCl is available.	1
(b)	Explain why there are 2 equivalence points for this titration and write equations for the 2 reactions that occur.	3
<i>(</i>)		•

(c) Sketch a graph to show the titration curve for this reaction when excess HCl is available.

Volume HCl (mL)

Question 28 continues on the next page

Question 28 (continued)

(d)	Identify the species present in the titration flask at the equivalence point at pH 8.	1
(e)	Name 2 indicators, one which would change colour at pH 8, and another which would change colour at pH 4.	1

8

Complete the information required in the boxes below.

Question 30 (4 marks)

An object recovered from the ocean was found to contain residues of oil and salt water. Scientists decided to soak the object in fresh water containing a surfactant, such as soap, over a prolonged period, with the soap solution being replaced and discarded at regular intervals.

(a)	Identify the structure and properties of a surfactant, such as soap, which makes its use suitable in this recovery process. Use appropriate diagrams in your response.	2

Question 30 continues on the next page

Question 30 (continued)

(b)	Compare the process of repeated washing of the object recovered from the ocean with the process of removal of toxins in food products traditionally used by Aboriginal and Torres Strait Islander Peoples.	2

END OF PAPER

Section II - Extra writing space				
If you use this space, clearly indicate which question you are answering.				

Section II - Extra writing space				
If you use this space, clearly indicate which question you are answering.				

Student Number:	

CHEMISTRY – MULTIPLE-CHOICE ANSWER SHEET

ATTEMPT ALL QUESTIONS

Place an X in your response for each multiple-choice question to indicate your choice.

Question				
1	A	В	С	D
2	A	В	С	D
3	A	В	С	D
4	A	В	С	D
5	A	В	С	D
6	A	В	С	D
7	A	В	С	D
8	A	В	С	D
9	A	В	С	D
10	A	В	С	D
11	A	В	С	D
12	A	В	С	D
13	A	В	С	D
14	A	В	С	D
15	A	В	С	D
16	A	В	С	D
17	A	В	С	D
18	A	В	С	D
19	A	В	С	D
20	A	В	С	D

Chemistry

FORMULAE SHEET

$$n = \frac{m}{MM} \qquad c = \frac{n}{V} \qquad PV = nRT$$

$$q = mc\Delta T \qquad \Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} \qquad \text{pH} = -\log_{10}\left[\text{H}^{+}\right]$$

$$PK_{a} = -\log_{10}\left[K_{a}\right] \qquad A = \varepsilon lc = \log_{10}\frac{I_{o}}{I} \qquad 6.022 \times 10^{23} \text{ mol}^{-1}$$

$$\text{Volume of 1 mole ideal gas: at 100 kPa and at 0°C (273.15 K)} \qquad 22.71 \text{ L}$$

$$\text{at 25°C (298.15 K)} \qquad 24.79 \text{ L}$$

$$\text{Gas constant} \qquad 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$$

$$\text{Ionisation constant for water at 25°C (298.15 K)}, K_{w} \qquad 1.0 \times 10^{-14}$$

$$\text{Specific heat capacity of water} \qquad 4.18 \times 10^{3} \text{ J kg}^{-1} \text{ K}^{-1}$$

DATA SHEET

Solubility constants at 25°C

Compound	K_{sp}	Compound	K_{sp}
Barium carbonate	2.58×10^{-9}	Lead(II) bromide	6.60×10^{-6}
Barium hydroxide	2.55×10^{-4}	Lead(II) chloride	1.70×10^{-5}
Barium phosphate	1.3×10^{-29}	Lead(II) iodide	9.8×10^{-9}
Barium sulfate	1.08×10^{-10}	Lead(II) carbonate	7.40×10^{-14}
Calcium carbonate	3.36×10^{-9}	Lead(II) hydroxide	1.43×10^{-15}
Calcium hydroxide	5.02×10^{-6}	Lead(II) phosphate	8.0×10^{-43}
Calcium phosphate	2.07×10^{-29}	Lead(II) sulfate	2.53×10^{-8}
Calcium sulfate	4.93×10^{-5}	Magnesium carbonate	6.82×10^{-6}
Copper(II) carbonate	1.4×10^{-10}	Magnesium hydroxide	5.61×10^{-12}
Copper(II) hydroxide	2.2×10^{-20}	Magnesium phosphate	1.04×10^{-24}
Copper(II) phosphate	1.40×10^{-37}	Silver bromide	5.35×10^{-13}
Iron(II) carbonate	3.13×10^{-11}	Silver chloride	1.77×10^{-10}
Iron(II) hydroxide	4.87×10^{-17}	Silver carbonate	8.46×10^{-12}
Iron(III) hydroxide	2.79×10^{-39}	Silver hydroxide	2.0×10^{-8}
Iron(III) phosphate	9.91×10^{-16}	Silver iodide	8.52×10^{-17}
		Silver phosphate	8.89×10^{-17}
		Silver sulfate	1.20×10^{-5}

Aylward and Findlay, SI Chemical Data (5th Edition) is the principal source of data for this examination paper. Some data may have been modified for examination purposes.

Infrared absorption data

	a mosor priori data
Bond	Wavenumber/cm ⁻¹
N—H (amines)	3300–3500
O—H (alcohols)	3230-3550 (broad)
с—н	2850-3300
O—H (acids)	2500–3000 (very broad)
C≡N	2220–2260
c=o	1680–1750
с=с	1620–1680
с-о	1000–1300
с-с	750–1100

$^{13}\mathrm{C}$ NMR chemical shift data

Type of carbon		ö/ppm
-c-c-		5-40
R - C - Cl o	or Br	10-70
R - C - C -	-	20-50
R - C - N		25-60
-c-o-	alcohols, ethers or esters	50-90
c = c (90-150
$R-C\equiv N$		110-125
		110-160
R — C — 0	esters or acids	160-185
R — C — 	aldehydes or ketones	190-220

UV absorption (This is not a definitive list and is approximate.)

Chromophore	λ_{\max} (nm)
с—н	122
с-с	135
с=с	162

Chromophore	λ_{\max} (nm)
с≡с	173 178 196 222
с—сі	173
С—Вг	208

Some standard potentials

K ⁺ + e ⁻		K(s)	-2.94 V
$Ba^{2+} + 2e^{-}$	\rightleftharpoons	Ba(s)	-2.91 V
Ca ²⁺ + 2e	-	Ca(s)	-2.87 V
$Na^+ + e^-$		Na(s)	-2.71 V
$Mg^{2+} + 2e^{-}$	=	Mg(s)	-2.36 V
Al ³⁺ + 3e ⁻	*	Al(s)	-1.68 V
$Mn^{2+} + 2e^{-}$		Mn(s)	-1.18 V
H ₂ O + e ⁻	-	$\frac{1}{2}H_2(g) + OH^-$	-0.83 V
$Zn^{2+} + 2e^{-}$		Zn(s)	-0.76 V
Fe ²⁺ + 2e ⁻		Fe(s)	-0.44 V
Ni ²⁺ + 2e ⁻	-	Ni(s)	-0.24 V
$Sn^{2+} + 2e^{-}$	\rightleftharpoons	Sn(s)	-0.14 V
Pb ²⁺ + 2e ⁻	\rightleftharpoons	Pb(s)	-0.13 V
H+ + e-	\rightleftharpoons	$\frac{1}{2}H_2(g)$	0.00 V
$SO_4^{2-} + 4H^+ + 2e^-$	\rightleftharpoons	$SO_2(aq) + 2H_2O$	0.16 V
$Cu^{2+} + 2e^{-}$	\rightleftharpoons	Cu(s)	0.34 V
$\frac{1}{2}O_2(g) + H_2O + 2e^-$	-	2OH-	0.40 V
$Cu^{+} + e^{-}$	\rightleftharpoons	Cu(s)	0.52 V
$\frac{1}{2}I_2(s) + e^{-}$	\rightleftharpoons	I-	0.54 V
$\frac{1}{2}I_2(aq) + e^-$	=	I-	0.62 V
Fe ³⁺ + e ⁻	\rightleftharpoons	Fe ²⁺	0.77 V
Ag+ + e-	\rightleftharpoons	Ag(s)	0.80 V
$\frac{1}{2}Br_2(I) + e^{-}$	-	Br-	1.08 V
$\frac{1}{2}Br_2(aq) + e^{-}$	-	Br-	1.10 V
$\frac{1}{2}O_2(g) + 2H^+ + 2e^-$	\rightleftharpoons	H_2O	1.23 V
$\frac{1}{2}Cl_2(g) + e^{-}$	-	CIT	1.36 V
$\frac{1}{2}Cr_2O_7^{2-} + 7H^+ + 3e^-$	\rightleftharpoons	$Cr^{3+} + \frac{7}{2}H_2O$	1.36 V
$\frac{1}{2}Cl_2(aq) + e^-$	\rightleftharpoons	CIT	1.40 V
$MnO_4^- + 8H^+ + 5e^-$	-	$Mn^{2+} + 4H_2O$	1.51 V
$\frac{1}{2}F_2(g) + e^{-}$	-	F-	2.89 V

		_			_		Т	_			_	_	Т	_	_	_		_	E	1
2 He 4.003	2;	20 Z	Neon	18	Ar	39,95	36	Ϋ́	83.80 Krypton	54	×e	131.3	98	Ru		Radon	118	Cno	Unanoctium	
	91	1900	Phonine	17	ਹ	35.45 Otherine	35	Br	79.90 Bestraine	53	Н	126.9	88	Ą		Astatine	117	Ous	Uninseptium	
	∞ (16.00	Oxygen	9 <u>j</u>	S	32.07 Suffer	34	Se	78.96 Selenium	52	E-	127.6	84	Po		Polonium	116	ŗ	Livermorium	
	L 2	N 12	Nitrogen	IS	۵,	30.97	33	As	74.92 Arsenie	51	Sp	121.8	83	Bi	209.0	Bismuth	115	Cup	Unaspestism	
	90	2021	Carbon	14	S	28.09 Silicon	32	g	72.64 Gernaniun	20	Sn	118.7	82	P	207.2	Lead	114	豆	Florevian	
	50 E	10.81	Beron	13	A	26.98	31	Са	69.72 Gallium	64	п	114.8	8	F	204.4	Thalliam	113	III C	Unnotrium	
ELEMENTS							30	Zu	65.38 Zinc	48	3	112.4	80	Hg	200.6	Mercury	112	ű	Coperatolian	
							29	õ	63.55 Copper	47	Ag	107.9	70	Au	197.0	Gold	111	Rg	Recngenium	
оғ тне							28	Z	58.69 Nickel	46	Pd	106.4	78	Y	195.1	Platinum	110	ñ	Darmstadtism	
	6/	Au 1970	Gold				27	රි	58.93 Cobali	45	Rh	102.9	77	H	192.2	Iridium	109	Mt	Meimerium	
PERIODIC TABLE	Atomic Number	Symbol mic Weight	Name				56	Fe	55.85 Iron	44	Ru	101.1	76	ő	190.2	Osmium	108	Hs	Hassian	
PERIO	Ator	Symbol Standard Atomic Weight					25	Mn	54.94 Manganese	43	Tc	Wednesday	75	Re	186.2	Rhenium	107	Bh	Behrium	
							24	Ü	52,00 Chromiun	42	Wo	95.96	74	×	183.9	Tungston	106	Sg	Seaborgium	
							23	>	50.94 Variation	41	ĝ	92.91	73	Ta	180.9	Tamaham	105	â	Dubnium	
							22	Ξ	47.87 Titanian	40	Zr	91.22	77	H					Butherfordium	
							21	Sc	44.96 Scandium	39	Y	88.91	57-71			Lasthanoids	89-103		Actinoids	
	46	9012	Beryllium	12	W W	24.31 Magnesium	20	Ü	40,08 Calcium	38	Sr	87.61	95	Ba	137.3	Barram	88	Ra	Radium	
1 H 1.008 Hydrogen	ω,	6 941	Lithium	=;	Z	22.99 Sodium	19	×	39.10	37	&	85.47	55	ű	132.9	Caesium	87	占	Francium	

STREET, STREET	CHAN													
57	28	- 26	09	19	62	63	49	99	99	29	89	69	70	71
Ľa	ರೆ	Ŀ.	PZ	Pm	Sm	E	35	£	Ď	H	占	Щ	ΧP	3
138.9	140.1	140.9	144.2		150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.1	175.0
Lanhanum	Cerium	Prascodymium	Neodymium	Promethium	Sameriem	Escopium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulliam	Ytterbism	Lutetium

	2 93 94 95 96 97 98 99 100 101 102 103	Np Pu Am Cm Bk Cf Es Fm Md No		Neptuaium Platonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawsencium	
	93	ď		Neptunium Platonium	
	91 92	_	_	Protactinium Uranium	
chilolins	06 68	H.	232.0	ctinium Therium	

Standard atomic weights are abridged to four significant figures. Elements with no reported values in the table have no stable nuclides.

Information on elements with atomic numbers 113 and above is sourced from the International Union of Pure and Applied Chemistry Periodic Table of the Elements (January 2016 version) is the principal source of all other data. Some data may have been modified.

This document is protected by Copyright.
Use must be in accordance with Ts & Cs - https://qats.com.au/QATs-Ts-and-Cs.pdf
For purchasing school's classroom use only. Not for electronic distribution or upload.

2023 HIGHER SCHOOL CERTIFICATE CHEMISTRY EXAMINATION MARKING GUIDELINES & ADVICE FOR TEACHERS

Disclaimer

Every effort has been made to prepare this Examination in accordance with the NSW Education Standards Authority documents. No guarantee or warranty is made or implied that the Examination paper mirrors in every respect the actual HSC Examination question paper in this course. This paper does not constitute 'advice' nor can it be construed as an authoritative interpretation of NSW Education Standards Authority intentions. No liability for any reliance, use or purpose related to this paper is taken. Advice on HSC examination issues is only to be obtained from the NSW Education Standards Authority. The publisher does not accept any responsibility for accuracy of papers which have been modified.

IMPORTANT SECURITY ADVICE FOR EXAMINATION TASKS

By ordering and using QATs materials from Janison you are agreeing to the **Terms and Conditions** of sale, found at gats.com.au/QATs-Ts-and-Cs

Storage

This resource is protected by Copyright and sold on the condition that it is not placed on any school network, student management system or social media site (such as Facebook, Google Drive, OneDrive, etc.) at any time. It should be stored on a local device drive of the teacher who made the purchase.

Purchaser Use

This resource is for use in the purchasing school or institution only. **STRICTLY NOT FOR PRIVATE TUTOR USE.** You may not make copies, sell, lend, borrow, upload, or distribute any of the contents within the QATS product or produce, transmit, communicate, adapt, distribute, license, sell, modify, publish, or otherwise use, any part of the QATs product without our permission or as permitted under our <u>Terms and Conditions</u>.

Embargo

Students must not take their Examination Assessment Tasks home/out of the classroom until the end of the embargoed period. This is to ensure the integrity of the task. In **NSW**, this period is mandated by QATs. In **VIC**, **QLD** and **SA** this period may be determined by individual schools based on specific school requirements. Teachers may go through papers and results with students in class during this period; however, papers must be collected and kept by the teacher at the end of the lesson (or similar). When the embargoed period has ended, assessments may be permanently returned to students.

Compliance and Task Editing

This task has been developed to be compliant with NESA assessment requirements, however, QATs does not guarantee or warrant compliance.

It may be necessary to edit or change this task for security or compliance purposes. Permission is provided to do this for internal school purposes only. If so, care should be taken to maintain the quality of the material concerning its design and layout, including such elements as marking schemes, pagination, cross-referencing, and so on. QATs assumes no responsibility for the integrity of the task once it is changed. If you edit this task you must:

- Remove the QATs and Janison logos and all other references to QATs and Janison.
- Select and copy 'Task' pages ONLY into a new document. These are the only pages students will require to complete their assessment. Save with a school-/class-specific file/subject/outcome name. Do not use the QATs file code.
- Remove all footer information from all pages. The page 1 footer of QATs is usually set up differently from other pages. Insert your own footer information for your reference.
- Remove all QATs header references from all pages.
- Insert your school logo/identification on page 1 and other pages at your discretion.

Unless otherwise indicated and to the best of our knowledge, all copyright in the QATS product is owned by or licensed to Janison Solutions Pty Ltd (ABN 35 081 797 494) trading as QATS. If you reasonably believe that any content in our QATS product infringes on anyone's intellectual property rights or is the owner of the copyright and would like to request removal of the content, please email qatsadmin@janison.com

This document is protected by Copyright.
Use must be in accordance with Ts & Cs - https://qats.com.au/QATs-Ts-and-Cs.pdf
For purchasing school's classroom use only. Not for electronic distribution or upload.

2023 Higher School Certificate Trial Examination Chemistry

Marking Guidelines

Section I Multiple-Choice (20 marks)

Question	Answer
1	A
2	С
3	D
4	D
5	В
6	A
7	В
8	В
9	A
10	В
11	C
12	D
13	D
14	C
15	A
16	A
17	В
18	D
19	С

20

A

Explanations for Multiple-Choice (20 marks)

1 A

When 100 mL solution is cooled from 40°C to 10°C, the mass of precipitate forming = 50 - 20 = 30 g When 20 mL solution is cooled through the same temperature range, then $20/100 \times 30 = 6$ g of precipitate forms.

2 C

The only bases are Ca(OH)₂ and NaCH₃COO. Of these, Ca(OH)₂ is the stronger as it ionises completely to form OH-. Hence the pH will be close to 14.

3 D

The combination will form Cu(OH)₂ which is classified as insoluble and hence will form a precipitate in water. All nitrates are soluble, so precipitates cannot form in any of the other alternative answers.

4 D

The compound with the strongest intermolecular forces will have the highest boiling point. Ethane, C_2H_6 , has only weak dispersion forces/temporary dipole-dipole forces, fluoromethane is polar, so has permanent dipole-dipole forces (stronger than temporary dipole-dipole forces) and methanol has hydrogen bonding between adjacent molecules. This is the strongest of the 3 types of intermolecular forces. So the order of BP is $C_2H_6 < CH_3F < CH_3OH$.

5 B

No. of moles of the molecule = 0.105 g/MM = 0.105/304.5 = 0.000345 moles of the molecule

Moles of ICl used = 0.224 g/MM = 0.224/(126.9 + 35.45) = 0.224/162.35 moles ICl = 0.00138 moles ICl = moles double bonds

No. of double bonds per molecule = No. of moles of double bonds/No. of moles of molecules = 0.00138/0.000345 = 4

Hence there must be 4 double bonds per molecule

6 A

Only statement I is correct. The forward reaction is endothermic, so an increase in temperature will favour the forward reaction and produce a higher yield of PCl₅. Increasing the volume decreases the pressure, so the equilibrium shifts to the side with a greater no. of molecules. This is the LHS of the equation. So increasing the volume favours the backward reaction, not the production of PCl₅.

7 | E

Benzoic acid is a weak acid

 $K_a C_6 H_5 COOH = 6.5 \times 10^{-5}$

So K_b C₆H₅COO- = 1.0 x 10⁻¹⁴/6.5 x 10⁻⁵ = 1.54 x 10⁻¹⁰

C₆H₅COO- reacts with water to form OH-

Let
$$[OH-] = x$$

$$K_b = [x][x]/(0.2 - x) = 1.54 \times 10^{-10}$$

$$x^2 = 1.54 \times 10^{-10} \times 0.2 = 3.08 \times 10^{-11}$$

$$x = \sqrt{(3.08 \times 10^{-11})} = 5.55 \times 10^{-6}$$

$$pOH = -log_{10} (5.55 \times 10^{-6}) = 5.26$$

$$pH = 14 - 5.26 = 8.74$$

8 B

 K_{sp} AgCl = 1.8 x 10⁻¹⁰

If solubility of AgCl = x

Then $x^2 = 1.8 \times 10^{-10}$

 $x = 1.34 \times 10^{-5} \text{ mol/L}$

Hence mass AgCl dissolving per litre = $1.34 \times 10^{-5} \times 143.4 = 0.00193 \text{ g} = 1.9 \text{ mg}$

9 A

$$K_p = [SO_3] / [SO_2] [O_2]^{1/2} = 0.332 / (0.562 \text{ x} \sqrt{0.101}) = 0.332 / (0.562 \text{ x} 0.318) = 1.86$$

10 B

On a ¹H NMR spectrum

Single peak – no H atom on an adjacent C atom

Doublet – one H atom on an adjacent C atom

Septet – 6 equivalent H atoms on two adjacent C atoms.

The presence of three significant peaks on the ¹H NMR spectrum indicates that the compound has three different hydrogen environments on its molecules.

- A. (CH₃)₂CHCH₂COOH 4 peaks
- B. (CH₃)₂CHCOOH 3 peaks doublet, septet, singlet
- C. $(CH_3)_2CCICH_3 1$ peak
- D. $(CH_3)_2CClCH_2Cl 2$ peaks

11

There are 3 isomers, including the *cis*-1,2-dibromoethene and *trans*-1,2-dibromoethene and 1,1-dibromoethene.

$$c = c$$

$$C = C$$

$$c = c$$

- 1,2-dibromoethene trans-isomer
- 1,2-dibromoethene cis-isomer
- 1,1-dibromoethene

12 D

A is incorrect as ethanoic acid and ethanol would form an ester. It is an alcohol.

B is incorrect as ethanoic acid and ethylamine form CH₃CONHCH₂CH₃ (not CH₃CH₂CONHCH₃).

C does not react with ethanoic acid.

D is correct as $CH_3COOH + CH_3NH_2 \rightarrow CH_3CONHCH_3$ as shown = Y

13 I

The graph is typical of a weak acid reacting with a strong base. The conductance is initially low as the weak acid is only partially ionised. The conductance increases as ethanoate ions form. At the equivalence point all the ethanoic acid molecules have been neutralised, so no molecules apart from water are in the solution. After the equivalence point the conductivity increases as there is an excess of the strong base, containing K^+ and OH^- ions.

14 C

Biofuels are those produced from renewable resources, not from fossil fuels. Biofuels are derived from living, or recently living, organisms and they are used to produce energy. Ethanol from biomass is identical to that produced from fossil fuels, so produces the same amount of carbon dioxide per mole and can be used in the same way. Biomass material has recently been made during photosynthesis which has removed carbon dioxide from the atmosphere.

15 A

The –OH group has higher priority than an –NH₂ group. Hence –OH is on C-1 of the 4-C chain with –NH₂ group on C-3.

16 A

Since the compound reacts with base, it must be either $CH_3CH_2CH_2COOH$ or $(CH_3)_2CHCOOH$. While $(COOH^+)$ and $(CH_3CH_2O^+)$ are both consistent with m/z = 45, only $(COOH^+)$ is consistent with the compound being an acid.

17 | I

Since E_{a2} is lower than E_{a1} , a catalyst (which lowers the activation energy) must have been added. The lower activation energy causes an increase in the proportion of total collisions that are successful. A catalyst does not increase the speed of particles.

18 D

100 mL of 0.4 M HNO₃ contains (100/1000) x 0.4 moles H^+ = 0.04 moles H^+ 100 mL of 0.1 M Ba(OH)₂ contains (100/1000) x 0.1 x 2 moles OH- = 0.02 moles OH-

There are 0.02 moles H⁺ excess (after neutralisation) in 200 mL solution. Hence $(1000/200) \times 0.02 = 0.10$ moles excess H⁺ per litre of final solution.

 $[H^+] = 0.1 \text{ M}$ So pH = 1.0

19 C

The ¹³C NMR spectrum indicates that there are 3 carbon environments.

The IR spectrum supports the presence of C=O and the lack of O-H (acid) or O-H (alcohol). CH₃COOCH₃ (option C) is the only option. CH₃COCH₃ (option D) is incorrect as this has only 2 C environments.

$20 \mid A$

n(KOH) in 20 mL titre = 0.102 x 20 x 10⁻³ = 0.00204 mol $n(CH_3COOH)$ in 20 mL diluted = 0.00204 mol

 $m(\text{CH}_3\text{COOH})$ in 100 mL = 5 x 0.00204 x 60 = 0.612 g in 100 mL; i.e. 0.612% m/V So, vinegar has to be diluted by a factor of 3.16 / 0.612 = 5.2

This can be achieved by diluting 20 mL original sample to 100 mL.

Section II – Short responses (80 marks)

Question 21 (5 marks)

21 (a) (1 mark)

	Criteria	Mark
•	Identifies the change as the addition of extra oxygen, O2, into the container.	1

Sample answer

Extra oxygen, O2, was added into the container.

21 (b) (1 mark)

Criteria	Mark
• Identifies SO ₃ (g) as X and SO ₂ (g) as Y.	1

Sample answer

 $X = SO_3(g)$

 $Y = SO_2(g)$

21 (c) (3 marks)

Criteria	Marks
 Explains or defines Le Chatelier's principle. Explains the changes in [SO₃(g)], [SO₂(g)] and [O₂(g)] between 10 and 20 minutes. Explains that a new equilibrium is achieved at 20 minutes and that the concentrations of all 3 gases will remain constant (at their 20-minute values) after 20 minutes. 	3
• TWO of the above.	2
ONE of the above.	1

Sample answer

When a system is at equilibrium and a change (concentration, pressure, volume, temperature) is imposed on the system, the equilibrium will shift in a direction to compensate for, or counteract, that imposed change.

Upon addition of O_2 at 10 minutes, there is an immediate spike in the concentration of oxygen only. To compensate for this extra oxygen, the position of equilibrium moves to the right. Hence the amount of SO_3 (or X) will increase and the amount of SO_2 (or Y) will decrease. Because the forward reaction rate has temporarily increased, some (but not all) of the added O_2 will be consumed in the reaction to form additional SO_3 . Hence $[O_2(g)]$ will fall after the spike. The falls in $[O_2(g)]$ and $[SO_2(g)]$ and the increase in $[SO_3(g)]$ continue until a new equilibrium is reached at 20 minutes. This new equilibrium will have the same K_{eq} as previously but different proportions of all 3 gases.

After 20 minutes, if no further change is imposed on the equilibrium mixture, the concentrations of all 3 gases will remain at their values at 20 minutes. The lines representing the concentrations of the 3 gases will be parallel to the x-axis (time axis). (Note: a new graph does not need to be drawn.)

Question 22 (9 marks)

22 (a) (1 mark)

	Criteria	Mark
•	The forward reaction is endothermic.	1

Sample answer

Endothermic.

22 (b) (2 marks)

Criteria	Marks
 Refers to the trend in the graph which shows that the concentration of ozone increases as temperature increases. AND Indicates the forward reaction must be endothermic, as a temperature increase favours the reaction which takes in heat (as an increase in temperature has a greater impact on the proportion of collisions overcoming the activation energy of the endothermic reaction than the exothermic reaction). 	2
 Refers to the trend in the graph which shows that the concentration of ozone increases as temperature increases. OR Indicates the forward reaction must be endothermic as, by Le Chatelier's principle, a temperature increase favours the reaction which takes in heat (OR an increase in temperature has a greater impact on the proportion of collisions overcoming the activation energy of the endothermic reaction than the exothermic reaction). 	1

Sample answer

The graph shows that the concentration of ozone increases as temperature increases. The forward reaction must be endothermic as, by Le Chatelier's principle, a temperature increase favours the reaction which takes in heat. The rate of the endothermic reaction is increased more than the rate of the backward reaction when heat is added. An increase in temperature will favour the reaction that cools the reaction vessel (the endothermic reaction).

Also, an increase in temperature has a greater impact on the proportion of collisions overcoming the activation energy of the endothermic reaction than the exothermic reaction. The endothermic reaction has a greater activation energy than the reverse exothermic reaction. By collision theory, raising the temperature from 10°C to 45°C for a reaction with a higher activation energy has a greater impact on the fraction of collisions with enough energy to react. The same increase in temperature for a reaction with a lower activation energy produces only a smaller increase in the fraction of collisions with enough energy to react.

22 (c) (1 mark)

Criteria	Mark
Draws an energy profile for an exothermic reaction.	1

Sample answer

22 (d) (5 marks)

Criteria	Marks
Correct answer.	5
Incorrect answer with correct reasoning but mathematical error.	4
• Correct calculation of concentrations of both gases at equilibrium.	3
Correct calculation of moles of both gases at equilibrium.	2
Evidence of some correct reasoning.	1

Sample answer

$$3O_2(g) \rightleftharpoons 2O_3(g)$$

	O_2	<i>O</i> ₃
Initial (mol)	7.50 x 10-2	0
Change (mol)	$-\{(3/2) \times (1.56 \times 10^{-7})\}\$ = -2.34 \times 10^{-7}	+1.56 x 10-7
Equilibrium (mol)	7.50 x 10 ⁻²	1.56 x 10 ⁻⁷
Equilibrium (mol/L)	$(7.50 \times 10^{-2}) / 3 = 0.0250$	$(1.56 \times 10^{-7}) / 3 = 5.20 \times 10^{-8}$

$$K_{eq} = [O_3]^2 \, / \, [O_2]^3 = \, \left(5.20 \; x \; 10^{-8}\right)^2 \, / \, \left(0.0250\right)^3 = \, 2.704 \; x \; 10^{-15} \, / \; 1.563 \; x \; 10^{-5} = 1.73 \; x 10^{-10}$$

Question 23 (8 marks)

23 (a) (2 marks)

Criteria	Marks
 Estimates that the [Ba²⁺] is 19 mg/L (from graph). Calculates that mass of Ba²⁺ in 10 mL is 0.19 mg. 	2
• Estimates that the [Ba ²⁺] is 19 mg/L (from graph).	1

Sample answer

From the graph, $[Ba^{2+}]$ remaining = 19 mg L^{-1} Mass Ba^{2+} in 10.00 m $L = (19/1000) \times 10$ mg = 0.19 mg

23 (b) (2 marks)

Criteria	Marks
• Calculates the no. of moles of Ba ²⁺ that reacted to produce the barium sulfate precipitate.	2
• Calculates the mass of Ba ²⁺ that reacted to produce the barium sulfate precipitate.	1

Sample answer

mass Ba^{2+} added to volumetric flask = (2.00 / 1000) x 200 = 0.400 mg mass Ba^{2+} remaining in volumetric flask = 0.19 mg mass Ba^{2+} reacted = 0.400 - 0.19 = 0.21 mg = 0.00021 g

No. of moles Ba^{2+} reacted = $0.21 \times 10^{-3} / 137.3 = 1.5 \times 10^{-6}$ mol

23 (c) (2 marks)

Criteria	Marks
• Calculates the no. of moles of sulfur in 25 mL surfactant.	
AND	2
• Calculates the mass of sulfur, in mg, on the 100.0 g of grapes.	
• Calculates the no. of moles of sulfur in 25 mL surfactant.	1

Sample answer

$$n(S)$$
 in 25 mL surfactant = $n(BaSO_4)$ precipitated in volumetric flask = $n(Ba^{2+})$ reacted = 1.5 x 10-6 mol

$$n(S)$$
 in 100.0 g of grapes = $n(S)$ in 100 mL surfactant = 4 x 1.5 x 10-6 = 6.0 x 10-6 mol

$$m(S)$$
 in 100.0 g of grapes = 6.0 x 10⁻⁶ x 32.1 = 1.9 x 10⁻⁴ g = 0.19 mg

23 (d) (2 marks)

Criteria	Marks
• Explains TWO reasons why AAS is a better way of determining the amount of S left on grapes than gravimetric analysis.	2
• Explains ONE reason why AAS is a better way of determining the amount of S left on grapes than gravimetric analysis.	1

Sample answer

Gravimetric analysis is less accurate than AAS when very small quantities are to be precipitated and weighed.

The percentage error due to loss of solid during precipitation, filtering, weighing and drying is likely to be greater in gravimetric analysis than in an instrumental analysis which is very sensitive, in that small concentrations can be detected and measured against standards.

A large mass of grapes is needed for effective gravimetric analysis, whereas only a small but representative sample is needed for AAS analysis.

Question 24 (8 marks)

24 (a) (1 mark)

	Criteria	Mark
•	Identifies correctly 2 peaks on the infrared spectrum as an –OH from an acid AND a carbonyl group (C=O).	1

Sample answer

24 (b) (1 mark)

Criteria	Mark
Identifies the compound as acidic	
OR	1
• Concludes that the compound contains a –COOH group.	

Sample answer

The compound forms an acidic solution, so probably contains a -COOH group.

24 (c) (1 mark)

Criteria	Mark
• Identifies that the molecular mass is approximately 110 because of the m/z ratio of the parent peak(s).	1

Sample answer

The mass spectrum indicates that there are 2 parent peaks, at m/z ratios of 108 and 110 – hence the molecular mass will be 108 or 110 depending on which chlorine isotope is present.

24 (d) (2 marks)

Criteria	Marks
• Indicates there are three hydrogen environments in the molecule. AND	
 Indicates (from the splitting patterns) that one hydrogen environment has three neighbouring H atoms, one hydrogen environment has one neighbouring H atom, and one hydrogen environment has no neighbouring H atoms. 	2
• Indicates there are three hydrogen environments in the molecule.	1

Sample answer

There are 3 different hydrogen environments on the molecule, one with three neighbouring H, one with one neighbouring H and one with no neighbouring H atoms.

NMR provides information on how many hydrogen neighbours exist for a particular hydrogen or group of equivalent hydrogens. In general, an NMR resonance will be split into N+1 peaks where N= number of hydrogens on the adjacent atom or atoms.

If there are **no hydrogens** on the adjacent atoms, then the resonance will remain a single peak, a **singlet**.

If there is **one hydrogen** on the adjacent atoms, the resonance will be split into two peaks of **equal size**, a **doublet**.

Two hydrogens on the adjacent atoms will split the resonance into three peaks with an area in the ratio of 1:2:1, a triplet.

If there are 3 hydrogens on the adjacent atoms, the resonance will be split into four peaks with an area in the ratio of 1:3:3:1, a quartet.

Hence, 2 of the three hydrogen environments are CH_3 and CH; the third is COOH.

24 (e) (2 marks)

Criteria	Marks
• Uses the data from the mass spectrum, ¹ H NMR spectrum and the ¹³ C NMR spectrum to conclude that there are 3 carbon atoms, 5 hydrogen atoms (and 1 chlorine atom) in the molecule.	2
• Uses the data from the spectra to make a correct conclusion about either the number of carbons or the number of hydrogen atoms.	1

Sample answer

Since the molecular mass is approximately 109 and assuming only 1 chlorine is present, the total mass of carbon and hydrogen is close to 74.

The chlorine atom must be attached to a carbon atom (see IR spectrum).

This would correspond to 3 carbons, 2 oxygens and 5 hydrogens (36 + 32 + 5)

The conclusion from part (b) is that the compound is an acid.

The conclusions from the ¹³C NMR and ¹H NMR spectra and splitting patterns is that there are 3 carbons and 5 hydrogens. A chlorine is attached to the carbon of the –CH group.

24 (f) (1 mark)

Criteria	Mark
• Draws a molecular formula that corresponds to the conclusion in part (e).	1

Sample answer

Question 25 (11 marks)

25 (a) (2 marks)

	Criteria	Marks
•	Correctly identifies all 4 liquids.	2
•	Correctly identifies 2 liquids.	1

Sample answer

A = hex-3-ene

 $\mathbf{B} = ethanoic \ acid$

C = ethanol

D = pentane

25 (b) (3 marks)

Criteria	Marks
 Identifies the reaction between A and bromine as an addition reaction. Writes a balanced equation. Draws the structure of the compound formed 3,4-dibromohexane. 	3
• TWO of the above.	2
ONE of the above.	1

Sample answer

The reaction between hex-3-ene and bromine solution is addition.

$$C_6H_{12}(l) + Br_2(aq) \rightarrow C_6H_{12}Br_2(l)$$

25 (c) (3 marks)

Criteria	Marks
 Identifies the reaction between B and sodium carbonate solution as an acid-base reaction. Writes a balanced equation. Draws the structure of the ethanoate ion. 	3
• TWO of the above.	2
ONE of the above.	1

Sample answer

An acid-base reaction occurs.

$$2CH_3COOH\left(aq\right) \ + \ CO_3^{2-}\left(aq\right) \ \rightarrow \ CO_2\left(g\right) \ + \ H_2O\left(l\right) \ + \ 2CH_3COO^{-}\left(aq\right)$$

25 (d) (3 marks)

Criteria	Marks
 Discusses the solubilities of the 4 substances in water by correctly identifying: the structures and polarity of each of the 4 substances AND 	3
• the strength of the intermolecular (or ionic) forces between the substances and water.	
 Discusses the solubilities of 3 of the 4 substances in water by correctly identifying: the structures and polarity of each of the 3 substances AND 	2
 the strength of the intermolecular (or ionic) forces between the substances and water. 	
• Discusses some correct information about the solubility of carbon compounds in water.	1

Sample answer

A = hex-3-ene

This is a non-polar covalently bonded molecule, while water is polar. The liquids do not form a solution as the water molecules are strongly attracted to other water molecules by hydrogen bonding. These strong intermolecular forces mean that water and hex-3-ene form immiscible layers. Hex-3-ene molecules are only attracted to each other by weak temporary dipole-dipole forces/dispersion forces.

$\mathbf{B} = ethanoic \ acid$

This covalently bonded molecule dissolves in water because the polar part of the molecule, the -COOH group, is attracted to water by strong intermolecular hydrogen bonding between the H of the -COOH group (which has a $\delta+$ charge due to the polar bond with oxygen of the -OH group) and the O of water.

In addition, ethanoic acid is a weak acid and partially ionises in water to form hydronium and ethanoate ions. These dissolve in water due to the attraction between the charged ions and polar water molecules. As a result, ethanoic acid dissolves readily in water and does not form layers.

The response continues on the next page

C = ethanol

Ethanol is a polar molecule. It is described as having a "dual" nature, as it has both polar and non-polar parts to the molecule. The polar –OH end of the molecule forms strong hydrogen bonding, allowing ethanol to be totally miscible in water. No layers form. The strength of hydrogen bonding and the small hydrocarbon chain (which has no attraction for water) means that the net result is ethanol and water are completely miscible.

Hydrogen bond
$$H \longrightarrow C \longrightarrow C \longrightarrow 0 \xrightarrow{\delta - 0} \longrightarrow H \longrightarrow H$$

$$H \longrightarrow H \longrightarrow H \longrightarrow H \longrightarrow H \longrightarrow H \longrightarrow H$$

D = pentane

This is a non-polar covalently bonded molecule, while water is polar. The liquids do not form a solution as the water molecules are strongly attracted to other water molecules by hydrogen bonding. These strong intermolecular forces mean that water and pentane form immiscible layers. Pentane molecules are only attracted to each other by weak temporary dipole-dipole forces/dispersion forces.

Question 26 (13 marks)

26 (a) (4 marks)

Criteria	Marks
 Justifies the statement. Correctly outlines the theories of Arrhenius and Br?nsted-Lowry. Provides examples of acids and bases which illustrate each theory. Provides examples of substances which are classified as acids or bases by one but not the other of these theories. 	4
 Correctly outlines the theories of Arrhenius and Br?nsted-Lowry. Provides examples of acids and bases which illustrate each theory. Provides examples of substances which are classified as acids or bases by one but not the other of these theories. 	3
 Correctly outlines the theories of Arrhenius and Br?nsted-Lowry. Provides examples of acids and bases which illustrate each theory	2
Correctly outlines the theory of Arrhenius OR Br?nsted-Lowry.	1

Sample answer

<u>Swedish scientist, Svante Arrhenius</u> (in 1887) described acids as compounds which produced hydrogen ions (we would now say hydronium ions) as the only positive ions in an aqueous solution. Hence the solvent is water and substances such as ammonium ion or iron (III) chloride solution could not be described as acids, even though they do result in solutions with a pH < 7.

The <u>Br?nsted-Lowry</u> theory (1923) defines acids and bases by their structures. A Br?nsted-Lowry acid is capable of donating a proton, regardless of its state or the nature of the solvent.

<u>Arrhenius</u> described bases as the hydroxides of alkali and alkaline earth metals. These bases are known as alkalis. These include sodium hydroxide, potassium hydroxide, barium hydroxide and calcium hydroxide.

Br? nsted-Lowry bases are capable of accepting a proton. This is irrespective of state and the reaction does not need to be occurring in water. Ammonia gas accepts a proton from hydrogen chloride gas, forming a solid salt.

Even before the times of Arrhenius, Br? nsted and Lowry, other scientists such as Lavoisier (1777) and Davy (1810) had put forward theories, based on experiments, that claimed that oxygen and hydrogen (respectively) were common in all acids.

Hence the statement is correct. Acids and bases have been defined differently by scientists over several centuries.

26 (b) (3 marks)

Criteria	Marks
Correct pH values calculated for both acids, with working.	3
• Correct pH value for ONE of the TWO acids, with a mathematical error in the other calculation.	2
ONE correct pH value calculated.	1

Sample answer

For 0.001 M HCl

$$pH = log_{10} [H^+] = log_{10}(0.001) = 3$$

For 0.001 M HOCl
 $K_a = [H^+] [OCl^-] / [HOCl] = 3.0 \times 10^{-8}$
Let x moles HOCl ionise
 $x^2 = 3.0 \times 10^{-8} \times 0.001$
 $[H^+] = \sqrt{(3.0 \times 10^{-11})} = 0.0000054 = 5.4 \times 10^{-6} \text{ mol/L}$

 $pH = log_{10} [H^+] = log_{10} (5.4 \times 10^{-6}) = 5.27$

26 (c) (2 marks)

Criteria	Marks
• Accounts for the difference in pH values for the acids HCl and HOCl, in terms of the degrees of dissociation.	2
• Outlines that HCl is a strong acid and HOCl is a weak acid.	1

Sample answer

HCl is a strong acid so all the molecules are completely dissociated in water. No equilibrium exists. The $[H^+]$ is the same as the concentration of the acid.

HOCl is a weak acid. It only partially ionises in water, so the proportion of molecules converted to ions is small. Significantly less than 100% of molecules are converted into ions, so the $[H^+]$ is much smaller than for HCl. Hence the pH is much higher.

26 (d) (4 marks)

Criteria	Marks
 Calculates the pH to 2 s.f. Explains why this mixture is classified as a buffer. 	4
 Calculates the pH with correct steps but a mathematical error. Explains why this mixture is classified as a buffer. 	3
 Determines the [H₃O⁺] in the buffer	2
 Determines the [H₃O⁺] in the buffer	1

Sample answer

$$HCN(aq) + H_2O(l) \rightleftharpoons CN^-(aq) + H_3O^+(aq)$$

$$K_a HCN = [CN-][H_3O^+] = 4.9 \times 10^{-10}$$

[HCN]

On mixing, the volume is 100 mL

Initial [HCN] = 0.010 mol/L

 $\begin{array}{l} \textit{Initial [CN-]} = 0.055 \ \textit{g} \ / \ 100 \ \textit{mL} = (0.055 \ / \ 49.01) \ \textit{mol/100 mL} = 0.001122 \ \textit{mol/100 mL} \\ = 0.01122 \ \textit{mol/L} \end{array}$

Let x mol/L HCN ionise at equilibrium.

At equilibrium

$$[HCN] = (0.010 - x) \text{ mol/L}$$

 $[CN-] = (0.01122 + x) \text{ mol/L}$

$$[H_3O^+] = x mol/L$$

$$K_a HCN = [CN-][H_3O^+] = 4.9 \times 10^{-10} = (0.01122 + x)(x)$$

 $[HCN] (0.010 - x)$

Assume x is small by comparison with 0.01122 and with 0.010 mol/L

$$K_a HCN = \underline{[CN-][H_3O+]} = 4.9 \times 10^{-10} = \underline{(0.01122)(x)}$$

 $\underline{[HCN]}$ (0.010)

$$[H_3O^+] = x = 4.367 \times 10^{-10} \text{ mol/L}$$

$$pH = 9.36$$

A buffer solution is one which will maintain an almost constant pH, even if small quantities of strong acid or base are added to it. As long as there are close to equal moles of equal concentration solutions making up the buffer mixture, and the acid and base are both only

moderately strong as acids and bases, the solution will stay at close to the pH value 9.36, as calculated above. By Le Chatelier's Principle, if [x] is small by comparison with the concentrations of the acid and base, if the concentration of H^+ in the buffer mixture changes slightly, the proportions of HCN and CN-will change to keep the pH close to 9.36.

Question 27 (6 marks)

27 (a) (3 marks)

Criteria	Marks
• Correctly calculates the K_{sp} of ammonium chloride, including all working and reasoning.	3
• Incorrect answer due to mathematical error but with correct method and reasoning.	2
Some evidence of correct method and reasoning.	1

Sample answer

$$NH_{4}^{+}$$
 $(aq) + H_{2}O(l) \iff H_{3}O^{+}(aq) + NH_{3}(aq) K_{a} = 5.6 \times 10^{10}$

In a saturated solution of NH₄Cl, at 25°C, the pH = 4.67 Hence
$$[H^+] = 10^{-4.67} = 0.00002138 = 2.138 \times 10^{-5} \text{ mol/L}$$

Substituting into the acid dissociation constant equilibrium constant expression $K_{eq} = [H_3O^+][NH_3]/[NH_4^+] = 5.6 \times 10^{-10}$

If
$$[H_3O^+] = 2.138 \times 10^{-5}$$
, then $[NH_3] = 2.138 \times 10^{-5}$
Thus $[NH_4^+] = (2.138 \times 10^{-5})^2 / 5.6 \times 10^{-10} = 0.816 \text{ mol/L}$

Hence
$$K_{sp} NH_4Cl = [NH_4^+] [Cl^-] = (0.816)^2 = 0.67$$

27 (b) (1 mark)

Criteria	Mark
• Correctly calculates the solubility of ammonium chloride at 25°C.	1

Sample answer

Let solubility of
$$NH_4Cl = x$$

 $K_{sp} = [NH_4^+] [Cl^-] = x^2$
 $x = \sqrt{0.67} = 0.82 \text{ mol/L}$

27 (c) (2 marks)

	Criteria	Marks
•	Determines that precipitation of AgCl will occur, by showing $Q > K_{sp}$ AgCl.	2
•	Shows some correct working and reasoning.	1

Sample answer

When ammonium chloride solution is saturated, at 25°C, [Cl-] = 0.82 mol/L= 0.082 mol/100 mL

Moles of Ag^+ added = $(0.1/1000) \times 2.0 \times 10^{-5} = 2.0 \times 10^{-9}$ Total volume of solution = 100.1 mL [Cl-] = 0.82 mol/L[Ag^+] = $2.0 \times 10^{-9} \text{ mole per } 100.1 \text{ mL} = 2.0 \times 10^{-8} \text{ mol/L}$

 $Q = [Ag^+]$ [Cl-] = 0.82 x 2.0 x 10-8 = 1.64 x 10-8 Since Q is greater than 1.77 x 10-10 (the K_{sp} AgCl), then precipitation of AgCl will occur.

Question 28 (8 marks)

28 (a) (1 mark)

Criteria	Mark
Correct answer.	1

Sample answer

$$Na_2CO_3(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + CO_2(g) + H_2O(l)$$

28 (b) (3 marks)

Criteria	Marks
 Explains that the overall reaction occurs in 2 steps, as the carbonate ion is dibasic (can react with 2 hydrogen ions) with each step having an equivalence point. Writes TWO correct equations for the reactions corresponding to the TWO steps. 	3
 Explains that the overall reaction occurs in 2 steps, with each step having an equivalence point. Writes ONE correct equation for the reactions corresponding to ONE of the steps. 	2
ONE of the above.	1

Sample answer

The overall reaction occurs in 2 steps, as the carbonate ion is dibasic (can react with 2 hydrogen ions), with each step having an equivalence point.

$$CO_3^{2-}(aq) + H_3O^+(aq) \iff HCO_3^-(aq) + H_2O(l)$$

$$HCO_3$$
 $(aq) + H_3O^+(aq) \Longrightarrow CO_2(g) + 2H_2O(l)$

28 (c) (2 marks)

	Criteria	Marks
•	Sketches a graph of the correct shape, showing 2 equivalence points at the correct pH values.	2
•	Sketches a graph of the correct shape.	1

Sample answer

28 (d) (1 mark)

	Criteria	Mark
• Id	entifies the predominant species at pH 8.	1

Sample answer

Hydronium ions, H_3O^+ , chloride ions, Cl^- , hydrogen carbonate ions, HCO_3^- , sodium ions, Na^+ , $(CO_3^{2-}$ and OH^- in very low concentration)

28 (e) (1 mark)

	Criteria	Mark
•	Identifies 2 indicators, one that changes colour at pH 8 and the other at pH 3-4.	1

Sample answer

Phenolphthalein will change colour at the first equivalence point (pH 8) – from pink to colourless.

Methyl orange will change colour at the second equivalence point $(pH\ 3-4)$ – from yellow to red.

Question 29 (8 marks)

Criteria	Marks
• 8 correct answers.	8
• 7 correct answers.	7
• 6 correct answers.	6
• 5 correct answers.	5
• 4 correct answers.	4
• 3 correct answers.	3
• 2 correct answers.	2
• 1 correct answer.	1

Sample answer

Question 30 (4 marks)

30 (a) (2 marks)

Criteria	Marks
• Describes how the recovery process requires a surfactant which will remove the oil	
AND	2
 Uses a diagram to show the hydrophobic and hydrophilic parts of a soap molecule and explains the cleaning process. 	
• Describes how the recovery process requires a surfactant which will remove the oil	
OR	1
 Uses a diagram to show the hydrophobic and hydrophilic parts of a soap molecule and explains the cleaning process. 	

Sample answer

A surfactant is a substance that disperses dirt and grease as small particles throughout the water. Soap is the sodium or potassium salt of a long-chain fatty acid. It has a hydrophobic (hydrocarbon) tail which is attracted to oil or grease, and a negatively charged hydrophilic head, which is attracted to water. The small spherical particles are called micelles. The oil is represented by the circle. The hydrophobic tails are attracted to the oil, while the anionic heads are on the outer surface of the micelle, closest to the water. The ions in the water will be attracted to the outer surface of the micelles. When the surfactant is washed away from the object, the oil and some of the ions go with the water.

SOAP ION

30 (b) (2 marks)

Criteria	Marks
• Compares the process of removal of ions embedded in an object from the ocean with the leaching of toxins from food, noting the similarity between the 2 processes.	2
 Recognises that both processes are related to discarding a saturated solution and replacing it with pure water, allowing new dissolution until the solution again becomes saturated. 	1

Sample answer

In a saturated solution there is an equilibrium, as ions are constantly leaving the surface of the solid and returning to the surface at the same rate. If the solid is removed from a saturated solution and more water added, the solid will dissolve until the solution is again saturated (or all the solid has been converted to ions if the solubility has not been reached).

When an object is recovered from the ocean, salts are usually embedded within the object. To restore the artefact, a process of leaching is used. This involves placing the artefact in water including surfactant for an extended period so that the salts can dissolve. Once the water becomes saturated with the ions from the salt, no further removal of salt from the artefact can occur. If the saturated solution is discarded and replaced with water including surfactant, new dissolution will occur until the solution again becomes saturated. This process is repeated with pure water until the solution contains a minimal concentration of ions in solution.

In removing the toxicity from foods, a similar repeated process of leaching and discarding the saturated solution occurs. The food, such as seeds from cycad plants, is crushed and left over time for the toxic chemicals to be dissolved. Once the solution is saturated, the solution is discarded and replaced by pure water. Once the majority of the toxicity has been removed by this leaching process, the food is then baked to bring about chemical changes and destroy any remnants of the toxic chemical.

2023 Higher School Certificate Trial Examination Chemistry

Section 1 Mapping Grid

Question	Marks	Content	Syllabus Outcomes
1	1	Mod 5: Solution Equilibria	12-4, 12-6, 12-12
2	1	Mod 6: Using Brønsted-Lowry Theory	12–6, 12–13
3	1	Mod 8: Analysis of Inorganic Substances	12–5, 12–15
4	1	Mod 7: Hydrocarbons; Alcohols; Products of Reaction involving Hydrocarbons	12–6, 12–14
5	1	Mod 7: Products of Reaction involving Hydrocarbons	12–6, 12–14
6	1	Mod 5: Factors that Affect Equilibrium	12–5, 12–12
7	1	Mod 6: Quantitative Analysis	12–6, 12–13
8	1	Mod 5: Solution Equilibria	12-4, 12-6, 12-12
9	1	Mod 5: Calculating the Equilibrium Constant	12–6, 12–12
10	1	Mod 8: Analysis of Organic Substances	12–6, 12–15
11	1	Mod 7: Nomenclature	12–5, 12–14
12	1	Mod 7: Reactions of Organic Acids and Bases	12–5, 12–14
13	1	Mod 6: Quantitative Analysis	12–6, 12–13
14	1	Mod 7: Alcohols	12–7, 12–14
15	1	Mod 7: Nomenclature	12–7, 12–14
16	1	Mod 8: Analysis of Organic Substances	12–5, 12–15
17	1	Mod 5: Factors that Affect Equilibrium	12–5, 12–12
18	1	Mod 6: Using the Brønsted-Lowry Theory	12–5, 12–13
19	1	Mod 8: Analysis of Organic Substances	12–5, 12–15
20	1	Mod 6: Quantitative Analysis	12–6, 12–13

Section II Mapping Grid

Question	Marks	Content	Syllabus Outcomes
21 (a)	1	Mod 5: Factors that Affect Equilibrium	12-4, 12-5, 12-7, 12-12
21 (b)	1	Mod 5: Factors that Affect Equilibrium	12-4, 12-5, 12-7, 12-12
21 (c)	3	Mod 5: Factors that Affect Equilibrium	12-4, 12-7, 12-12
22 (a)	1	Mod 5: Factors that Affect Equilibrium	12-4, 12-5, 12-7, 12-12
22 (b)	2	Mod 5: Factors that Affect Equilibrium	12-4, 12-7, 12-12
22 (c)	1	Mod 5: Factors that Affect Equilibrium	12-4, 12-7, 12-12
22 (d)	5	Mod 5: Calculating the Equilibrium Constant	12–6, 12–12
23 (a)	2	Mod 8: Analysis of Inorganic Substances	12–5, 12–6, 12–15
23 (b)	2	Mod 8: Analysis of Inorganic Substances	12–5, 12–6, 12–15
23 (c)	2	Mod 8: Analysis of Inorganic Substances	12-5, 12-6, 12-15
23 (d)	2	Mod 8: Analysis of Inorganic Substances	12–7, 12–15
24 (a)	1	Mod 8: Analysis of Organic Substances	12-5, 12-6, 12-7, 12-15
24 (b)	1	Mod 8: Analysis of Organic Substances	12–5, 12–15
24 (c)	1	Mod 8: Analysis of Organic Substances	12–5, 12–15
24 (d)	2	Mod 8: Analysis of Organic Substances	12–5, 12–15
24 (e)	2	Mod 8: Analysis of Organic Substances	12-6, 12-7, 12-15
24 (f)	1	Mod 8: Analysis of Organic Substances	12–7, 12–15
25 (a)	2	Mod 8: Analysis of Organic Substances	12-5, 12-6, 12-14, 12-15
25 (b)	3	Mod 7: Hydrocarbons	12–5, 12–7, 12–14
25 (c)	3	Mod 7: Reactions of Organic Acids and Bases	12–6, 12–7, 12–14
25 (d)	3	Mod 7: Hydrocarbons , Alcohols, Reactions of Organic Acids and Bases	12-7, 12-14, 12-15
26 (a)	4	Mod 6: Properties of Acids and Bases	12–7, 12–13
26 (b)	3	Mod 6: Quantitative Analysis	12-6, 12-13
26 (c)	2	Mod 6: Using the Brønsted-Lowry Theory	12-7, 12-13
26 (d)	4	Mod 6: Quantitative Analysis	12–6, 12–13
27 (a)	3	Mod 6: Quantitative Analysis Mod 5: Solution Equilibria	12–6, 12–12, 12-13
27 (b)	1	Mod 5: Solution Equilibria	12–6, 12–12
27 (c)	2	Mod 5: Solution Equilibria	12–6, 12–12
28 (a)	1	Mod 6: Properties of Acids and Bases	12–7, 12–13
28 (b)	3	Mod 6: Quantitative Analysis	12–7, 12–13
28 (c)	2	Mod 6: Quantitative Analysis	12-4, 12-7, 12-13, 12-14

28 (d)	1	Mod 6: Quantitative Analysis	12–7, 12–13
28 (e)	1	Mod 6: Quantitative Analysis	12–7, 12–13
29	8	Mod 8: Analysis of Organic Substances	12–5, 12–7, 12–15
30 (a)	2	Mod 7: Reactions of Organic Acids and Bases	12–7, 12–14
30 (b)	2	Mod 5: Solution Equilibria	12–7, 12–12