

หน้า 1/9

ภาควิชาวิศ	าวกรรมไฟฟ้าและ	ะคอมพิวเตอ	ภาคการศึกษาที่	ปีการศึกษา	
รหัสวิชา	010113026	ชื่อวิชา	Digital Laboratory	ตอนเรียน	หมายเลขโต๊ะ
อาจารย์ผู้สอน			เวลาที่ทำการทดลอ	ง วัน	ที่

การทดลองที่ 5

Code Converter

<u>วัตถุประสงค์</u>

- 1. เพื่อให้สามารถใช้โปรแกรมคอมพิวเตอร์เพื่อจำลองการทำงานของวงจรลอจิกเกทได้
- 2. เพื่อให้เข้าใจการทำงานของอุปกรณ์แปลงรหัส BCD to 7-Segment Converter
- 3. เพื่อให้เข้าใจการทำงานของอุปกรณ์แปลงรหัส Binary to Gray Code Converter

<u>เครื่องมือและอุปกรณ์</u>

1. ระบบคอมพิวเตอร์ 1 เครื่อง พร้อมติดตั้งโปรแกรม Quartus II เวอร์ชั่น 8.0 (Student Edition) ขึ้นไป

การทดลองตอนที่ 1 วงจรแปลงรหัสแบบ BCD to 7-Segment Converter

คำสั่งการทดลอง

- 1. ให้ออกแบบวงจรแปลงรหัส BCD ให้เป็นรหัสแบบ 7-Segment Decoder ในรูปที่ 1 โดยใช้ข้อมูลแสดงการ ทำงานจากตารางความจริงของแต่ละเซ็กเมนต์ a, b, c, d, e, f และ g ให้ น.ศ. ออกแบบตามขั้นตอนดังนี้
 - ก) ให้แสดงวิธีการทำ K-Map จากตารางความจริง
 - ข) สร้างสมการลอจิกฟังก์ชั่น จาก K-Map
 - ค) เขียนวงจรที่ออกแบบตามสมการลอจิกฟังก์ชั่น โดยใช้เกทพื้นฐาน (AND , OR , NOT etc.)

- a) BCD-7 Segment Code Converter block
- b) 7-Segment Display

รูปที่ 1

w_3	w_2	w_1	w_0	а	b	c	d	e	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 2 / 9

2. บันทึกผลการออกแบบ (แสดงการลดรูปด้วยตาราง K-Map, สมการลอจิก, และ รูปวงจร) , $\frac{d=don't\ care}{\frac{1}{2}}$ $\frac{1}{2}$ $\frac{1}{2}$

w₃w₂
w₁w₀ 00 01 11 10
00 d d
01 d d
11 d d d
10 d d d

รูปที่ 2.1

<u>เซ็กเมนต์ b</u> b(w₃,w₂,w₁,w₀) =

รูปที่ 2.2

รูปที่ 2.3

<u>เซ็กเมนต์ d</u> d(w₃,w₂,w₁,w₀) =

รูปที่ 2.4

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 3 / 9

<u>เซ็กเมนต์ e</u> e(w ₃ ,w ₂ ,w ₁ ,w ₀) =	
w ₁ w ₂ w ₁ w ₀ 00 01 11 10 01 d 11 d d 10 d d \$\text{3UN} 2.5	
<u>เซ็กเมนต์ f</u> f(w ₃ ,w ₂ ,w ₁ ,w ₀) =	
w ₁ w ₀ 00 01 11 10 00 d 01 d d 11 d d 10 d d 3Un 2.6	
<u>เซ็กเมนต์ g</u> g(w ₃ ,w ₂ ,w ₁ ,w ₀) =	
w ₁ w ₀ 00 01 11 10 00 d 01 d d 11 d d 10 d d 3ปที่ 2.7	
ลายเซ็นอาจารย์ผู้คว	บคุม//
 ให้ น.ศ. สร้างโฟลเดอร์สำหรับเก็บงานขึ้นใหม่เพื่อเก็บ "Lab05CombiBuild2"จากนั้นให้สร้างโปรเจค ชื่อ "BCD2_7Seg" ขึ้นมา ดังรูปที่ 3 ให้ใช้ชิพ FPGA เบอร์ EP3C10E144C8 	พhat is the working directory for his project? (C:\altera\80\quartus\LabDigit\Lab05CombiBuild2) What is the name of this project? (BCD2_7Seg) What is the name of the top-level design entity for this pexactly match the entity name in the design file. (รูปที่ 3) (BCD2_7Seg)

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 4 / 9

4. นำวงจรที่ได้จากการออกแบบในข้อ 2 (รูปที่ 2.1 – 2.7) มาเขียนวงจรบน Graphic Editor Tool และทำการคอมไพล์ให้เรียบร้อย จากนั้นให้ทำการสร้าง symbol ของวงจรขึ้นมา โดยไปที่เมนู

File >> create/update

และเลือก

Create symbol file for current file ก็จะได้อุปกรณ์ชื่อ BCD2_7Seg ดังรูปที่ 4

รูปที่ 4

- 5. สร้างไฟล์แสดงแผนภาพทางเวลา (Timing diagram) ด้วย Vector Waveform Editor Tool โดย
 - กำหนดค่าของสำหรับแสดงผลจำลองการทำงานให้มีค่าดังนี้ End Time = 1.0 us Grid Size =
 - จัดกลุ่มอินพุท w_0 , w_1 , w_2 และ w_3 ให้เป็นกลุ่มชื่อ "W" และกำหนด ค่าเป็นแบบนับ 0 ถึง 9 (ดูรูปที่ 5) ปรับค่าช่วงละ 100 ns. ดังในรูปที่ 6
- 6. จำลองการทำงานโหมด Functional Mode บันทึกผลที่ได้ลงในรูปที่ 6

รูปที่ 5

บันทึกผลการทดลอง

ก) ในแต่ละช่วงค่าของ w ให้ น.ศ. ระบายสีดำ ลงบนเซ็กเม้นต์ (a ,b, c, d, e, f, g)

โดย เซ็กเม้นต์ที่มีค่าลอจิกเป็น '1' ให้ระบายระบายสีดำ (**ใช้ดินสอสีเข้ม**)

เซ็กเม้นต์ที่มีค่าลอจิกเป็น '**0**' ให**้ปล่อยว่างไว้**เช่นเดิม

สังเกตผลที่ได้จากการแสดงค่าบน 7 segment ตรงกันกับค่าของ w หรือไม่

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 5/9

6	ข) อธิบายความสัมพันธ์กันของค่า w กับสถานะของลอจิกที่ปรากฏบนรูปของ 7-Segment
P	ค) หากค่าของ W มีค่ามากเกินกว่า 9 (ค่าระหว่าง 10 ถึง 15) ปรากฏผลบนรูปของ 7-segment เช่นไร
	ในทางปฏิบัติจริงค่าของ W มีค่ามากเกินกว่า 9 (ค่าระหว่าง 10 ถึง 15) ได้หรือไม่ เพราะเหตุใด
	ลายเซ็นอาจารย์ผู้ควบคุม
7	ให้ทำการ ปิดโปรเจค ที่สร้างมาในขั้นตอนที่ 1 – 5 ก่อนที่จะทำการทดลองต่อไป

- 8. ให้เขียนภาษา VHDL เพื่อสร้างวงจรสำหรับแปลงรหัส **BCD (ระบบเลขฐานสิบที่เขียนแทนด้วยเลขไบนารี** ขนาด 4 บิท) ให้เป็นรหัสแบบ 7-Segment Decoder ดังในรูปที่ 7 โดยดำเนินการดังนี้
 - ให้สร้างโปรเจคขึ้นใหม่ชื่อ "VHD_7SEGM"
 - เก็บงานนี้ไว้ในไฟล์ชื่อ **"VHD_7SEGM.∨hd"**
 - เมื่อคอมไพล์เสร็จแล้วให้สร้าง Symbol ไว้เพื่อเตรียมใช้ในการทดลองต่อไป

รูปที่ 7

```
LIBRARY ieee:
USE ieee.std_logic_1164.all;
ENTITY VHD_7SEGM IS
                  ( bcd : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
Leds : OUT STD_LOGIC_VECTOR(1 TO 7));
    PORT (bcd : IN
END VHD 7SEGM;
ARCHITECTURE Behavior OF VHD_7SEGM IS
BEGIN
    PROCESS (bcd)
    BEGIN
        CASE bcd IS
             ASE bcd IS -- al
WHEN "0000" => leds <= "1111110";
WHEN "00001" => leds <= "0110000";
WHEN "0010" => leds <= "1101101";
WHEN "0100" => leds <= "1101011";
WHEN "0101" => leds <= "0110011";
WHEN "0101" => leds <= "1011011";
WHEN "0110" => leds <= "10110111";
WHEN "0111" => leds <= "1110000";
WHEN "1000" => leds <= "1111111";
WHEN "1001" => leds <= "1111011";
WHEN "1001" => leds <= "1111011";
WHEN OTTERS => leds <= "00000000";
                                                                                                 -- abcdefg
         END CASE;
      END PROCESS:
END Behavior;
```

- 9. สร้างไฟล์แสดงแผนภาพทางเวลา (Timing diagram) และกำหนดค่าของพารามิเตอร์สำหรับแสดงผลจำลอง โดยให้มีค่าดังนี้ End Time = 1.0 us Grid Size
 - สัญญาณอินพุท "bcd" กำหนดค่าเป็นแบบตัวเลขนับจาก 0 ถึง 9 ช่วงละ 100 ns.
 - จำลองการทำงานโหมด Functional mode บันทึกผลที่ได้ลงในรูปที่ 8

หน้า 6 / 9

ลายเซ็นอาจารย์ผู้ควบคุม...../...../....../

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 7 / 9

การทดลองตอนที่ 2 หลักการทำงานของ Gray Code Converter

- 10. **ปิดโปรเจค**ที่สร้างมาในขั้นตอนก่อนหน้าและให้ทำดังนี้
 - a) ให้สร้างโปรเจคชื่อ "Binary2Gray" ขึ้นมาใหม่
 - b) สร้างไฟล์ขึ้นใหม่ให้มีชื่อตรงกันกับชื่อโปรเจค สำหรับเก็บงานวงจรแปลงรหัสเลขไบนารีไปเป็น รหัสเลขแบบเกรย์ ในรูปที่ 9
 - c) กำหนดให้ใช้ชิพ FPGA เบอร์ **EP3C10E144C8**
 - d) เขียนวงจรดังรูปที่ 9 ทำการคอมไพล์และสร้าง symbol ของวงจรไว้สำหรับการทดลองขั้นต่อไป

วงจรแปลงเลขไบนารีขนาด 4 บิทให้เป็น รหัสแบบ Gray code ขนาด 4 บิท

รูปที่ 9

- 11. สร้างไฟล์แสดงแผนภาพทางเวลา (Timing diagram) ดังรูปที่ 10 โดยกำหนดค่าสำหรับแสดงผลจำลองการทำ งานโดยให้มีค่า End Time = 800 ns , Grid Size = 1 ns
 - สัญญาณ "bin3 bin0" กำหนดค่าเป็นแบบนาฬิกา ช่วงละ 50 ns. (bin0 มี period = 100ns)
 - จำลองการทำงานโหมด Functional mode บันทึกผลลงในรูปที่ 10 และเขียนค่าลอจิกบนตารางความจริง

ข้นทึกผลการทดลอง ก) อธิบายความสัมพันธ์กันของค่าไบนารี bin3-bin0 กับสถานะของลอจิกของ gra3-gra0 (อธิบายโดยใช้แผน ภาพหรือสมการ)

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 8 / 9

ข) จากตารางความจริง สังเกตการเปลี่ยนค่าของเลขไบนารี (เช่นจาก 0000 ไป 0001 เป็นต้น) จุดที่มี <u>การเปลี่ยนแปลง</u> พร้อมกัน 2 บิท มีจุดคือ
จุดที่มี <u>การเปลี่ยนแปลง</u> พร้อมกัน 3 บิท มีจุดคือ
จุดที่มี <u>การเปลี่ยนแปลง</u> พร้อมกัน 4 บิท มีจุดคือ
 ค) จากตารางความจริง สังเกตการณ์เปลี่ยนค่าของรหัสเกรย์ (gray code) มีการเปลี่ยนแปลงพร้อมกันมากกว่า 1 บิท มี จุดคือ
คุณสมบัติ่ของ Gray Code ที่ดีกว่า Binary คือ

		Bin	ary		Gray				
Decimal	bin3	bin2	bin1	bin0	gra3	gra2	gra1	gra0	
00	0	0	0	0					
01	0	0	0	1					
02	0	0	1	0					
03	0	0	1	1					
04	0	1	0	0					
05	0	1	0	1					
06	0	1	1	0					
07	0	1	1	1					
08	1	0	0	0					
09	1	0	0	1					
10	1	0	1	0					
11	1	0	1	1					
12	1	1	0	0					
13	1	1	0	1					
14	1	1	1	0					
15	1	1	1	1					

ลายเซ็นอาจารย์ผู้ควบคุม...../...../....../

- 12. **ปิดโปรเจค**ที่สร้างมาในขั้นตอนที่ 10 12 ก่อนจะทำการทดลองต่อไป
- 13. a) ให้สร้างโปรเจคชื่อ "Gray2Bin" และสร้างไฟล์ขึ้นมาเก็บงาน ออกแบบวงจรในรูปที่ 11
 - b) ให้บันทึกไฟล์ไว้ในโฟลเดอร์เดียวกันกับงานทดลองก่อนหน้านี้
 - c) ให้ใช้ชิพเบอร์ EP3C10E144C8
 - d) ทำการคอมไพล์และสร้าง symbol ของวงจรขึ้นมาไว้สำหรับ การทดลองต่อไป

วงจรแปลงรหัสแบบ Gray code ขนาด 4 บิท ให้เป็นเลขไบนารีขนาด 4 บิท

รูปที่ 11

14. สร้างไฟล์แสดงแผนภาพทางเวลา กำหนดค่าของพารามิเตอร์สำหรับแสดงผลจำลองการทำงานโดยให้มีค่า End Time = 800 ns Grid Size = 1 ns สร้างรูปคลื่นของสัญญาณ gra0 gra1 gra2 gra3 ให้เป็นแบบนาฬิกาดังในรูปที่ 12 และทำการกลับเฟส ของสัญญาณด้วยเครื่องมือบนเมนูดังในรูปที่ 13

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 9/9

สัญญาณ gra0

สัญญาณ gra1

สัญญาณ gra2

สัญญาณ gra3

รูปที่ 12 15. จำลองการทำงานด้วยโหมด "Functional mode" บันทึกผลที่ได้ลงในรูปที่ 14 และตารางความจริง

บันทึกผลการทดลอง

อธิบายความสัมพันธ์กันของค่าไบนารี bin3-bin0 กับสถานะ
ของลอจิกของ gra3-gra0 (อธิบายโดยใช้แผนภาพหรือสมการ

ลายเซ็นอาจารย์ผู้ควบคุม/..... /..../.....

งานมอบหมายท้ายการทดลอง

ให้เขียนลงบนกระดาษ A4 ที่มีเส้นบรรทัดและรวมใส่ท้ายเอก สารการทดลอง ส่งอาจารย์ผู้สอนในคราวถัดไป)

1. ให้เขียนภาษา VHDL สำหรับแปลงรหัสระหว่าง

Gray Code ⇒ Binary และ Binary ⇒ Gray Code

	Gray				Binary			
Decimal	gra3	gra2	gra1	gra0	bin3	bin2	bin1	bin0
00	0	0	0	0				
01	0	0	0	1				
02	0	0	1	1				
03	0	0	1	0				
04	0	1	1	0				
05	0	1	1	1				
06	0	1	0	1				
07	0	1	0	0				
08	1	1	0	0				
09	1	1	0	1				
10	1	1	1	1				
11	1	1	1	0				
12	1	0	1	0				
13	1	0	1	1				
14	1	0	0	1				
15	1	0	0	0				

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ