Sistemi

UniVR - Dipartimento di Informatica

Fabio Irimie

Indice

1	Con 1.1 1.2	Tipi di segnali	2 2 3
2	Not	azioni	4
3	Sistemi		
	3.1	Approccio classico	6
	3.2	Approccio moderno	6
	3.3	Obsolescenza	6
	3.4	Causalità	7
	3.5	Stabilità	7
		3.5.1 Stabilità BIBO (Bounded Input Bounded Output)	8
		3.5.2 Stabilità Asintotica	9
4	Mo	dello di segnali	10

1 Concetti base

Un sistema è formato da **segnali trasmessi**, un'esempio di segnale è la voce che usiamo per comunicare tra di noi. Il sistema prende le informazioni ricevute dal segnale e le rielabora.

Degli esempi di sistema sono:

- ullet Microfono-Casse
- Freno della macchina

1.1 Tipi di segnali

I segnali possono essere di due tipi:

• Segnali a tempo continuo: Segnali che hanno infiniti punti per ogni infinitesimo di tempo.

Figura 1: Esempio di segnale a tempo continuo

• Segnali a tempo discreto: Segnali che hanno un numero finito di punti per ogni intervallo di tempo.

Figura 2: Esempio di segnale a tempo discreto

Per elaborare i dati attraverso un computer bisogna convertire un segnale continuo in uno discreto, questo processo è chiamato **campionamento** e non è **distruttivo**, cioè si può tornare indietro al segnale originale.

Figura 3: Esempio di campionamento

Una volta campionato il segnale si deve **quantizzare**, ovvero approssimare il valore del segnale a un valore discreto, questa operazione è **parzialmente distruttiva**, cioè si può tornare indietro al segnale originale perdendo alcune informazioni.

Figura 4: Esempio di quantizzazione

Infine si fa **encoding**, ovvero si codifica il segnale per poterlo adattare ad un altro tipo di segnale, questo processo è **completamente distruttivo**.

I segnali possono essere di dimensioni diverse, ad esempio:

- L'andamento di una borsa è un segnale a 1 dimensione.
- Una foto in bianco e nero è un segnale a 2 dimensioni (x,y).
- Una foto colorata è un segnale multidimensionale $(x, y)^3$ per rappresentare ogni colore (R,G,B).

1.2 Rappresentazione dei sistemi

Un sistema lo rappresentiamo con un blocco, dove all'ingresso mettiamo il segnale in ingresso e all'uscita il segnale in uscita.

Figura 5: Rappresentazione di un sistema

L'output di un sistema può essere rielaborato per essere inserito nuovamente come input in un altro sistema, ad esempio:

Figura 6: Rappresentazione di due sistemi in cascata

2 Notazioni

Tutti i segnali sono indicati con la lettera minuscola, ad esempio:

$$\underbrace{f}_{segnale} \qquad \underbrace{f(t)}_{\text{segnale a tempo continuo}}$$

Oppure si utilizzano delle notazioni standard:

- 1. t, τ, t_i : tempo continuo
- 2. k: tempo discreto

In questo corso si considerano solo segnali continui o discreti monodimensionali non negativi e solo sistemi **LTI** (Lineari e Tempo Invarianti):

- 1. Lineare: Vale la sovrapposizione degli effetti, cioè se $v_1(t)$ è l'uscita del sistema per $u_1(t)$ e $v_2(t)$ è l'uscita del sistema per $u_2(t)$ allora $v_1(t) + v_2(t)$ è l'uscita del sistema per $u_1(t) + u_2(t)$.
- 2. **Tempo Invariante**: A prescindere dal punto di tempo in cui si applica il segnale, l'uscita del sistema è sempre la stessa.

Figura 7: Esempio di invarianza nel tempo

I sistemi vengono rappresentati con lettere maiuscole greche o non.

3 Sistemi

3.1 Approccio classico

Questo approccio prevede di avere un **evento fisico** (circuito, molla, ecc...) e per questo evento bisogna definire un **modello** del sistema. Questo si può fare attraverso degli strumenti grafici o matematici. Come strumenti matematici si usano:

1. Continuo:

- (a) Equazioni differenziali
- (b) Trasformate di Laplace
- (c) Trasformate di Fourier

2. Discreto:

- (a) Equazioni alle differenze
- (b) Transformate Z

Una volta modellato l'evento fisico si può fare un'analisi del sistema e ciò permette di descrivere la **stabilità** e le **proprietà** del sistema.

L'ultima fase è quella di **sintesi**, cioè la fase di correzione del sistema per far si che risulti stabile.

3.2 Approccio moderno

L'approccio moderno ha solo un blocco per rappresentare gli stati:

Figura 8: Rappresentazione di un sistema con l'approccio moderno

3.3 Obsolescenza

L'obsolescenza è il numero di anni che un sistema può durare. I sistemi che verranno studiati sono quelli che si trovano nella sezione di comportamento lineare, cioè i sistemi che non cambiano nel tempo.

Figura 9: Sezione di comportamento lineare

Un'esempio è una molla che si deforma in base alla forza applicata, quando essa si deforma assume un comportamento plastico e quindi non lineare, mentre quando non si deforma assume un comportamento elastico e quindi lineare.

3.4 Causalità

La causalità è l'input del sistema e l'effetto è l'output che produce, quindi la causa precede sempre l'effetto. Non esiste un sistema causale che abbia l'output prima dell'input.

Figura 10: Esempio di causalità

3.5 Stabilità

Un sistema è stabile se, a seguito di un'oscillazione, ritorna al suo stato di equilibrio e il sistema si ferma. Un sistema è instabile se, a seguito di un'oscillazione, si allontana dal suo stato di equilibrio.

Figura 11: Sistema instabile

Figura 12: Sistema stabile

3.5.1 Stabilità BIBO (Bounded Input Bounded Output)

Se il segnale di ingresso è limitato in ampiezza allora il segnale di uscita è limitato in ampiezza.

$$\exists M>0, \ |u(t)| < M \ \forall t \in \mathbb{R}$$

$$\downarrow \downarrow$$

$$\exists N>0, \ |v(t)| < N \ \forall t \in \mathbb{R}$$

con $M,N\in\mathbb{R}$ non per forza uguali

Figura 13: Esempio di sistema stabile BIBO

3.5.2 Stabilità Asintotica

Se il segnale di ingresso si annulla allora il segnale di uscita si annulla.

$$\lim_{t\to\infty}v(t)=0\ \forall r\ \mathrm{di}\ u(t),\ t\in\mathbb{R}$$

Figura 14: Esempio di sistema stabile asintotico

La stabilità asintotica implica la stabilità BIBO, ma non viceversa.

4 Modello di segnali

Un segnale si può scrivere nel seguente modo:

$$lpha \in \mathbb{C}$$
 $l \in \mathbb{R}$ $g(t) = \sum_i \sum_j c_{ij} \cdot \underbrace{l^{lpha t}}_{ ext{Parte esponenziale}} \cdot \underbrace{l^l \cdot \underbrace{l!}_{ ext{Parte polinomiale}}}_{ ext{Parte polinomiale}}$

Figura 15: Esempo di segnale

Ad esempio con l=1:

$$y(t) = \sum_{i} \sum_{j} c_{ij} \cdot l^{\alpha t} \cdot \frac{t^{1}}{1!} = \sum_{i} \sum_{j} c_{ij} \cdot l^{\alpha t} \cdot t$$

Con $\alpha<0$ il sistema è stabile perchè l'esponenziale tende a 0.

Con l=2:

$$y(t) = \sum_{i} \sum_{j} c_{ij} \cdot l^{\alpha t} \cdot \frac{t^2}{2!} = \sum_{i} \sum_{j} c_{ij} \cdot l^{\alpha t} \cdot \frac{t^2}{2}$$

ecc...