Nikita Kazeev

Generative Models

What are they and why we need them?

Generative models

- Regression and classification: $x \rightarrow y$
- Generative models
 - Sample p(x|y)
 - Approximate density function p(x|y)

Discriminative Model

Generative Model

Image: https://developers.google.com/machine-learning/gan/generative

Generative models applications

Image generation for fun & profit: photos

Goodfellow, lan, et al.
"Generative adversarial nets." Advances in neural information processing systems. **2014**.

Karras, Tero, et al. "A style-based generator architecture for generative adversarial networks." *Proceedings of the IEEE conference on computer vision and pattern recognition.* **2019**.

Image generation for fun & profit: videos

Each video is produced using a single input image

<u>Siarohin, Aliaksandr, et al. "First order motion model for image animation." Advances in Neural Information Processing Systems.</u> 2019.

Text generation

Demo: https://colab.research.google.com/github/graykode/gpt-2-
Pytorch/blob/master/GPT2 Pytorch.ipynb

Voice generation

Quick conclusion

Why do we have all those nice things now?

- Large amount of similar data available
- Powerful hardware
- Commercial interest in consumer applications
- Loosely defined objectives

Generative models: physics

Histogram, the simplest generative model

Kernel density estimation

Aka slightly improved histograms

- Used for estimating probability density in for lowdimensional case
- Usually better accuracy than histogram
- Harder to analyse than histogram
- See the next lecture for details

Image: Poluektov, Anton. "Kernel density estimation of a multidimensional efficiency profile." *Journal of Instrumentation* 10.02 (2015): P02011.

LHC upgrade needs faster simulation

Projected LHCb computing needs breakdown by category https://indico.cem.ch/event/773049/contributions/3474742/

Simulation in HEP

Insight: the detector stays the same for each event

Simulation in HEP: particle identification

EM calorimeter shower fast simulation in ATLAS

Decent reproduction of physics observables $(\Delta \eta, \Delta \varphi, E_{\text{sim}}/E_{\text{truth}}, \text{ etc.})$

https://indico.cern.ch/event/766872/contributions/3357991/

EM calorimeter shower fast simulation in ATLAS

Generating output for 3D

https://indico.cern.ch/event/766872/contributions/3357991/

Square towers in Sampling 2

Nikita Kazeev, NRU HSE

Reconstructed data simulation

Aka fully parametric simulation

- Previously: generate detector response then reconstruct it
- Idea: generate the reconstructed events directly

https://indico.cern.ch/event/850731/contributions/3584359/

Fast simulation of Cherenkov detectors at LHCb

Detector response to kaons and pions (real data vs generated with GAN)

Difference between the real and generated ROC AUCs in units of statistical uncertainty.

https://arxiv.org/abs/1905.11825

Fast simulation with ML: pros and cons

Pros

- Fast, orders of magnitude speed-up compared to Geant4
- ▶ Can be trained on data, not MC
- ▶ Can be easily retrained in case of a detector update

Cons

- ▶ Requires training data
- ► Another source of systematic uncertainty to account for

Conclusion

- Generative models are a hot subject in the current ML research
 - Many fun ML applications are based on them
- ▶ There are promising HEP applications
- ▶ Stay tuned for the next lectures in this section!

Thank you!

Credits

Deep fake model:

Siarohin, Aliaksandr, et al. "First order motion model for image animation." Advances in Neural Information Processing Systems. 2019.

Lecture, voice acting: Nikita Kazeev

Deep fake creation, voice acting: Tatiana Gaintseva

Generative models in LHCb and ATLAS slides: Artem Maevskiy

Video editing: Elizaveta Kondakova

Albert Einstein photo: Johan Hagemeyer

Colorization: <u>alexlimcolorization</u>

Fabiola Gianotti photo: AGF s.r.l./REX

nkazeev@hse.ru

kazeevn

hse_lambda

Backup

Calorimeter simulation

Paganini, M. et al. "CaloGAN: Simulating 3D high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks." *Physical Review D* 97.1 (2018): 014021.

Nikita Kazeev, NRU HSE

More examples

- https://arxiv.org/abs/2001.05486
- https://arxiv.org/abs/2003.06413
- https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101 .076002
- https://hal.archives-ouvertes.fr/hal-02276243/document

Nikita Kazeev, NRU HSE 24