NSR Search Results Page 1 of 4

Visit the **Isotope Explorer** home page!

24 reference(s) found:

Keynumber: 1988RA10

Reference: J.Phys.(London) G14, Supplement S223 (1988)

Authors: S.Raman, S.Kahane, J.E.Lynn **Title:** Direct Thermal Neutron Capture

Keyword abstract: NUCLEAR REACTIONS ⁹Be, ¹², ¹³C, ²⁴, ²⁵, ²⁶Mg, ³², ³⁴, ³³S, ⁴⁰, ⁴⁴Ca

 (n,γ) , E=slow; calculated capture σ .

Keynumber: 1987SH03

Reference: Nucl.Instrum.Methods Phys.Res. A254, 139 (1987)

Authors: J.F.Shriner, Jr., G.E.Mitchell, E.G.Bilpuch

Title: Significance Levels of Linear Correlation Coefficients

Keyword abstract: NUCLEAR REACTIONS ⁴², ⁴⁴Ca, ⁵⁸Fe, ¹³⁶Xe, ¹³⁸Ba(n, γ),E=thermal; ⁴², ⁴⁴Ca, ¹³⁶Xe, ¹³⁸Ba(d,p),E ≈ 10 MeV; ⁵⁰Cr(p,p'), ⁴⁴Ca(p, γ),E not given; calculated channel,width,amplitude

correlation coefficients, significance levels, probability density functions. Bootstrap method.

Keynumber: 1987KA28

Reference: Phys.Rev. C36, 533 (1987) **Authors:** S.Kahane, J.E.Lynn, S.Raman

Title: Analysis of Primary Electric Dipole Gamma Rays from Slow-Neutron Capture by Ca Isotopes **Keyword abstract:** NUCLEAR REACTIONS ⁴⁰, ⁴², ⁴⁴, ⁴⁶, ⁴⁸Ca(n, γ),E=thermal; calculated direct

capture σ . 41, 43, 45, 47, 49Ca deduced resonance parameters. Optical model.

Keynumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

Keyword abstract: NUCLEAR REACTIONS,ICPND 20 , 21 , 22 Ne, 23 Na, 24 , 25 , 26 Mg, 27 Al, 28 , 29 , 30 Si, 31 P, 32 , 33 , 34 , 36 S, 35 , 37 Cl, 36 , 38 , 40 Ar, 39 , 40 , 41 K, 40 , 42 , 43 , 44 , 46 , 48 Ca, 45 Sc, 46 , 47 , 48 , 49 , 50 Ti, 50 , 51 V, 50 , 52 , 53 , 54 Cr, 55 Mn, 54 , 56 , 57 , 58 Fe, 59 Co, 58 , 60 , 61 , 62 , 64 Ni, 63 , 65 Cu, 64 , 66 , 67 Zn(n,γ), (n,p), (n,α), (p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), 70 Zn(p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), E=low; compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction σ vs temperature. Statistical model.

Keynumber: 1980PIZN

Coden: CONF Kiev(Neutron Physics) Proc, Part3, P270, Pisanko

Keyword abstract: NUCLEAR REACTIONS 22 , 23 Na,Mg, 24 , 25 , 26 Mg, 27 Al,Si, 28 , 29 , 30 Si, 31 P,S, 32 , 33 , 34 S,Cl, 35 , 36 , 37 Cl,Ar, 36 , 38 , 40 Ar,K, 39 , 40 , 41 K,Ca, 40 , 42 , 43 , 44 , 46 , 48 Ca, 45 , 46 Sc,Ti, 46 , 47 , 48 , 49 , 50 Ti,V, 50 , 51 V,Cr, 50 , 52 , 53 , 54 Cr,Fe, 54 , 56 , 57 , 58 Fe, 59 Co,Ni, 58 , 59 , 60 , 61 , 62 , 64 Ni,Cu, 63 , 65 Cu,Zn, 64 , 66 , 67 , 68 , 70 Zn,Ga, 69 , 71 Ga(n,γ), (n,n), (n,α),E=thermal; evaluated σ,radiative capture resonance integrals.

Keynumber: 1980IS02

Reference: Can.J.Phys. 58, 168 (1980)

Authors: M.A.Islam, T.J.Kennett, S.A.Kerr, W.V.Prestwich

NSR Search Results Page 2 of 4

Title: A Self-Consistent Set of Neutron Separation Energies

Keyword abstract: NUCLEAR REACTIONS ¹H, ⁹Be, ¹⁴N, ²⁴, ²⁵Mg, ²⁷Al, ²⁸, ²⁹Si, ³²S, ³⁵Cl, ⁴⁰, ⁴⁴Ca, ⁴⁷, ⁴⁸, ⁴⁹Ti, ⁵⁰, ⁵², ⁵³Cr, ⁵⁵Mn, ⁵⁴, ⁵⁶, ⁵⁷Fe(n,γ),E=thermal; measured Εγ,Ιγ. ²H, ¹⁰Be, ²⁵, ²⁶Mg, ²⁸Al, ²⁹, ³⁰Si, ³³S, ³⁶Cl, ⁴¹, ⁴⁵Ca, ⁴⁸, ⁴⁹, ⁵⁰Ti, ⁵¹, ⁵³, ⁵⁴Cr, ⁵⁶Mn, ⁵⁵, ⁵⁷, ⁵⁸Fe deduced Q,neutron binding energy.

Kevnumber: 1978VE06

Reference: Nucl.Phys. A299, 429 (1978) **Authors:** R.Vennink, W.Ratynski, J.Kopecky

Title: Circular Polarization of Neutron Capture γ -Rays from Ca, Ti, Fe and Ni

Keyword abstract: NUCLEAR REACTIONS ⁴²Ca, ⁴⁴Ca, ⁴⁶Ti, ⁵⁶Fe, ⁵⁸Fe, ⁶⁴Ni(polarized n,γ),E=th;

measured γ-CP. ⁴³Ca, ⁴⁵Ca, ⁴⁷Ti, ⁵⁷Fe, ⁵⁹Fe, ⁶⁵Ni levels deduced J. Enriched targets.

·

Keynumber: 1977VEZP

Coden: REPT INDC(SEC)-62/L,P141,Vennink

Keyword abstract: NUCLEAR REACTIONS ⁴⁴Ca(polarized n, γ); measured CP γ. ⁴⁵Ca levels deduced

J,π.

Keynumber: 1977MU02

Reference: Nucl.Phys. A279, 317 (1977)

Authors: A.R.de L.Musgrove, B.J.Allen, J.W.Boldeman, D.M.H.Chan, R.L.Macklin

Title: Odd-Even Effects in Radiative Neutron Capture by ⁴²Ca, ⁴³Ca and ⁴⁴Ca

Keyword abstract: NUCLEAR REACTIONS ⁴², ⁴³, ⁴⁴Ca(n, γ),E >2.5 keV; measured σ (n, γ). ⁴³, ⁴⁴,

 45 Ca deduced resonances, Γγ, Γn.

Keynumber: 1974ALZU

Coden: PREPRINT B J Allen, 2/11/74

Keyword abstract: NUCLEAR REACTIONS ⁴⁰, ⁴², ⁴³, ⁴⁴Ca(n, γ),E=2.5-600 keV; measured σ (E). ⁴¹,

⁴³, ⁴⁴, ⁴⁵Ca deduced resonances,γ-width,n-width.

Keynumber: 1973IS08

Reference: Nucl.Instrum.Methods 109, 493 (1973)

Authors: H.Ishikawa

Title: Measurements of Neutron Reaction Cross Sections Using a Liquid Scintillation Spectrometer

Keyword abstract: NUCLEAR REACTIONS ²H. ³¹P. ³⁴S. ⁴⁴Ca. ⁶²Ni(n.γ); measured σ(E).

Keynumber: 1973GEYY

Coden: REPT INDC(SEC)-35/L P6

Keyword abstract: NUCLEAR REACTIONS 40 , 42 , 43 , 44 Ca(n, γ); calculated σ (E). 41 , 43 , 44 , 45 Ca

levels deduced level-width.

Keynumber: 1972ST04

Reference: Nucl.Phys. A181, 225 (1972)

Authors: F.Stecher-Rasmussen, K.Abrahams, J.Kopecky

Title: Circular Polarization of Neutron Capture γ-Rays from Al, Ar and Ca

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ⁴⁰Ar, ⁴⁰, ⁴⁴Ca(polarized n,γ);E=thermal; measured

 γ -CP. ²⁸ Al, ⁴¹ Ar, ⁴¹, ⁴⁵ Ca levels deduced J,π. ²⁸ Al transition deduced γ -mixing. Natural targets.

NSR Search Results Page 3 of 4

Keynumber: 1971CR02

Reference: Nucl.Phys. A169, 95 (1971) **Authors:** F.P.Cranston, D.H.White

Title: Thermal Neutron Capture Cross Sections in Calcium

Keyword abstract: NUCLEAR REACTIONS Ca, 42 , 43 , 44 Ca(n, γ), E=thermal; measured E γ ,I γ , integrated product I γ xE γ . 40 , 42 , 43 , 44 , 46 , 48 Ca deduced σ. Enriched targets. Ge(Li), Moxon-Rae

detectors.

Keynumber: 1971CH56

Reference: Aust.J.Phys. 24, 671 (1971) **Authors:** D.M.H.Chan, J.R.Bird

Title: Study of γ-Radiation Following keV Neutron Capture in Calcium Isotopes

Keyword abstract: NUCLEAR REACTIONS Ca, ⁴⁰, ⁴², ⁴⁴Ca(n,γ), measured Eγ,Ιγ. ⁴¹, ⁴³, ⁴⁵Ca

deduced resonances, transitions.

Keynumber: 1971BIZV

Coden: REPT ORNL-TM-3379, J R Bird,9/14/71

Keyword abstract: NUCLEAR REACTIONS F,Na,Mg,Al,S, ³⁵Cl,K,Ca, ⁴⁰, ⁴², ⁴⁴Ca,Ti,V,Fe, ⁵⁴,

 56 Fe,Ni, 58 , 60 Ni, 63 Cu,Zn(n,γ),E=10-100 keV; measured Eγ,Iγ. 9 inx 12 in NaI detector.

Keynumber: 1971BIZH

Reference: Thesis, Univ.California (1971); UCRL-51060 (1971)

Authors: R.E.Birkett

Title: A Study of Gamma Rays Following Thermal Neutron Capture in ⁴²Ca and ⁴⁴Ca

Keyword abstract: NUCLEAR REACTIONS ⁴², ⁴⁴Ca(n, γ),E=thermal; measured E γ ,I γ , $\gamma\gamma$ -coin;

deduced Q. ⁴³, ⁴⁵Ca deduced levels,J,π,γ-branching. Ge(Li),NaI(Tl) detectors.

Keynumber: 1971ARZJ

Coden: CONF Legnaro(1f₇/₂ Nuclei),P251

Keyword abstract: NUCLEAR REACTIONS 36 Ar, 40 Ar, 40 K, 40 , 42 , 44 , 46 , 48 Ca, 47 Ti, 55 Mn, 57 Fe, 59 Co(n,γ),E=thermal; surveyed Εγ,Ιγ,γγ-coin,γγ(θ),γ-polarization data. 37 Ar, 41 Ar, 41 K, 41 , 43 , 45 , 47 , 49 Ca, 48 Ti, 56 Mn, 58 Fe, 60 Co deduced levels, J, π ,γ-mixing.

Keynumber: 1971ALYW Coden: REPT CONF-730538-1

Keyword abstract: NUCLEAR REACTIONS 40 , 42 , 43 , 44 Ca, 134 , 135 , 136 , 137 , 138 Ba(n, γ); measured σ

(E).

Keynumber: 1970SI10

Reference: J.Inorg.Nucl.Chem. 32, 2839 (1970)

Authors: G.H.E.Sims, D.G.Juhnke

Title: The Thermal Neutron Capture Cross-Sections and Resonance Capture Integrals of ⁴⁴Ca, ⁶²Ni, ¹⁶⁸Ca, ¹⁷⁴Ca, ¹⁶⁹Ca, ¹⁷⁴Ca, ¹⁷⁴Ca,

 $^{168}\mathrm{Yb},~^{174}\mathrm{Yb},~^{169}\mathrm{Tm},$ and $^{203}\mathrm{Tl}$

Keyword abstract: NUCLEAR REACTIONS 44 Ca, 62 Ni, 168 , 174 Yb, 169 Tm, 203 Tl(n, γ), E=thermal;

measured σ ; deduced resonance integrals.

NSR Search Results Page 4 of 4

Keynumber: 1969GR21

Reference: Nucl. Phys. A133, 545 (1969)

Authors: H.Gruppelaar

Title: Gamma-Gamma Angular-Correlation Measurements in the 44 Ca(n, γ) 45 Ca Reaction

Keyword abstract: NUCLEAR REACTIONS ⁴⁴Ca(n, γ), E = thermal; measured $\gamma\gamma(\theta)$. ⁴⁵Ca levels

deduced J, γ-mixing. Enriched target; Ge(Li), NaI detectors.

Keynumber: 1969BO31

Reference: Yadern.Fiz. 10, 31 (1969); Soviet J.Nucl.Phys. 10, 17 (1970) **Authors:** A.P.Bogdanov, E.A.Rudak, A.V.Soroka, V.N.Tadeush, E.I.Firsov

Title: Investigation of the Gamma-Gamma Coincidences in the $Ca^{44}(n,\gamma)Ca^{45}$ Reaction

Keyword abstract: NUCLEAR REACTIONS ⁴⁴Ca(n,γ), E=thermal; measured γγ-coin. ⁴⁵Ca deduced

transitions, γ-branching.

Keynumber: 1968GR11

Reference: Nucl.Phys. A114, 463 (1968) **Authors:** H.Gruppelaar, P.Spilling, A.M.J.Spits

Title: Investigation of the 44 Ca(n, γ) 45 Ca Reaction

Keyword abstract: NUCLEAR REACTIONS 44 Ca(n, γ), E=thermal; measured I γ , E γ ; deduced Q. 45 Ca

deduced levels, branching, J,π . Enriched ⁴⁴Ca target, Ge(Li) detector.

Keynumber: 1967GR16

Reference: Nucl.Phys. A102, 226 (1967) **Authors:** H.Gruppelaar, P.Spilling

Title: Thermal-Neutron Capture Gamma Rays from Natural Calcium

Keyword abstract: NUCLEAR REACTIONS 40 , 44 Ca(n, γ), E=thermal; measured E γ , I γ ; deduced Q.

⁴¹, ⁴⁵Ca deduced levels, branching. Enriched ⁴⁰Ca target, Ge(Li) detector.
