Домашнее задание ДЗ-7 по ТУ

- **0.** Разобрать представленный в файле пример решения типовой задачи по теме занятия №7 (см. файл «Разбираем пример по занятию ТУ №7 2024.pdf»).
- **1.** Решить задачи 1-4, а именно: для нескольких, описанных ниже линейных динамических систем привести объяснение к представленным уравнениям динамики и выполнить следующие задания:
 - (а) получить вид коэффициента передачи;
- (б) получить формулы для импульсной переходной функции $\psi(t)$ и функции переходной проводимости h(t), построить качественный вид графиков и объяснить их вид исходя из физического смысла задачи;
- (в) выписать формулы и нарисовать на комплексной плоскости вид годографа (АФЧХ), указав стрелкой направление возрастания частоты, объяснить частотные свойства звена, отраженные в годографе;
- (г) построить вид АЧХ, выделить диапазоны частот подавления и усиления амплитуды входного периодического сигнала.
- 1). Гидропривод. Вход: $\mathbf{u}(t)$ подаваемый объем рабочей жидкости в единицу времени, \mathbf{S} площадь сечения гидроцилиндра, выход: $\mathbf{x}(t)$ величина смещения поршня (и штока). Уравнение: $\dot{\mathbf{x}}\mathbf{S} = u(t)$.
- 2). Контур с индуктивностью (катушкой) L без омического сопротивления (R=0). Вход: u(t) подаваемое на контур напряжение; выход: I(t) ток в контуре. Уравнение: $L\dot{I}=u(t)$.
- 3). R—С цепочка с бесконечно большим сопротивлением внешней нагрузки (выходной ток i=0). Вход: $\mathbf{u}(t)$ подаваемое на цепочку входное напряжение; выход: $\mathbf{v}(t)$ —напряжение на конденсаторе. Исходные уравнения: $\frac{q}{c}+RI=u(t),\quad I=\dot{q},\quad v=\frac{q}{c},\quad$ где q заряд конденсатора. Поэтому в итоге: $v+RC\dot{v}=u(t)$.
- 4). Тележка массы m, катящаяся по рельсам при наличии вязкого трения -h v(t), где v(t) скорость тележки. Вход: f(t) горизонтальная сила, действующая на тележку вдоль направления движения, выход: v(t) скорость движения.

Обратите внимание: структура коэффициентов передачи в задачах 1 и 2 – идентична. То же относится и к задачам 3 и 4. Каков тип этих коэффициентов передачи?

- 2. Решить задачи 5 и 6.
- 5). Восстановить коэффициент передачи и вид уравнения динамики для линейного динамического звена, если его переходная функция (функция переходной проводимости) имеет вид: $h(t) = 50 50e^{-\frac{t}{0.025}}$. Построить для него АЧХ и ФЧХ. Какова функциональность этого звена в частотной области?
- 6). Для линейного динамического звена с выходом y(t) и коэффициентом передачи $K(p) = \frac{4}{p^3 + 3p^2 p + 1}$ найти комбинацию обобщенных функций $\delta_k(t)$, которую нужно добавить ко входному сигналу x(t), чтобы это было эквивалентно мгновенной выставке следующих начальных условий по выходной величине: y(0) = 5, $\dot{y}(0) = 0$, $\ddot{y}(0) = 2$. (Прочитайте раздел 2.3 в файле «Теория по занятию ТУ №7 2024.pdf»)