Ridlo W. Wibowo || 20912009

November 3, 2012

Problem. Buatlah program untuk solusi Parabolic Partial Differential Equations (PDE),

- Forward Difference Method (FTCS)
- Backward Difference Method (BTCS)
- Crank-Nicolson Method (C-N)

Lalu tentukan solusi untuk PDE:

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \tag{0.1}$$

untuk $0 < x < \pi \operatorname{dan} t > 0 \operatorname{dengan}$,

- syarat batas: $u(0,t) = u(\pi,t) = 0.0$ untuk t > 0
- syarat awal: $u(x,0) = \sin(x)$ untuk $0 \le x \le \pi$

Gunakan $h=\frac{\pi}{10}$ dan k=0.05 dan bandingkan hasilnya untuk t=0.5. (solusi eksak $u(x,t)=e^{-t}\sin x$)

Result. Dari penurunan dan algoritma yang diberikan di buku *Numerical Analysis* oleh Richard L.Burden dan J. Douglas Faires, lalu dapat diterapkan untuk membuat program penyelesaian masalah PDE. Program yang telah dibuat terlampir di akhir (ftcs.cpp, btcs.cpp, CN.cpp).

• Tabel FTCS

$\overline{x_i}$	$u_{(x_i,0.5)}$	$w_{(x_i,0.5)}$	$ u-w _{(x_i,0.5)}$
0	0	0	0
0.314159	0.187428	0.18582	0.001608
0.628319	0.35651	0.35345	0.00306
0.942478	0.490694	0.486482	0.004212
1.25664	0.576845	0.571894	0.004951
1.5708	0.606531	0.601325	0.005206
1.88496	0.576845	0.571894	0.004951
2.19911	0.490694	0.486482	0.004212
2.51327	0.35651	0.35345	0.00306
2.82743	0.187428	0.18582	0.001608
3.14159	0	0	0

• Tabel BTCS

			1 1
x_i	$u_{(x_i,0.5)}$	$w_{(x_i,0.5)}$	$ u-w _{(x_i,0.5)}$
0	0	0	0
0.314159	0.187428	0.190452	0.003024
0.628319	0.35651	0.362261	0.005751
0.942478	0.490694	0.498609	0.007915
1.25664	0.576845	0.58615	0.009305
1.5708	0.606531	0.616315	0.009784
1.88496	0.576845	0.58615	0.009305
2.19911	0.490694	0.498609	0.007915
2.51327	0.35651	0.362261	0.005751
2.82743	0.187428	0.190452	0.003024
3.14159	0	0	0

• Tabel Crank-Nicolson

$\overline{x_i}$	21/ 0.5)	211/ 0.5	$ u-w _{(x=0.5)}$
	$u_{(x_i,0.5)}$	$w_{(x_i,0.5)}$	$ u - w _{(x_i, 0.5)}$
0	0	0	0
0.314159	0.187428	0.188179	0.000751
0.628319	0.35651	0.357938	0.001428
0.942478	0.490694	0.492659	0.001965
1.25664	0.576845	0.579155	0.00231
1.5708	0.606531	0.60896	0.002429
1.88496	0.576845	0.579155	0.00231
2.19911	0.490694	0.492659	0.001965
2.51327	0.35651	0.357938	0.001428
2.82743	0.187428	0.188179	0.000751
3.14159	0	0	0

Perbandingan Error

x_i	ftcs	btcs	CN
0.314159	0.001608	0.003024	0.000751
0.628319	0.00306	0.005751	0.001428
0.942478	0.004212	0.007915	0.001965
1.25664	0.004951	0.009305	0.00231
1.5708	0.005206	0.009784	0.002429
1.88496	0.004951	0.009305	0.00231
2.19911	0.004212	0.007915	0.001965
2.51327	0.00306	0.005751	0.001428
2.82743	0.001608	0.003024	0.000751
max:	0.005206	0.009784	0.002429

Dengan nilai k dan h sesuai persoalan untuk t=0.5 ternyata ketiga metode konvergen, dan yang paling baik adalah Crank-Nicolson. Metode FTCS dengan nilai $\lambda=0.506606$ (> 0.5), ternyata masih konvergen.

Kondisi Akhir (t=0.5)

Plot hasil akhir (t = 0.5).

Diperbesar disekitar $x = \frac{\pi}{2} \ (t = 0.5).$

LAMPIRAN

ftcs.cpp

```
2 /* ftcs.cpp (forward time central space)
 3 /* forward difference method - parabolic PDE
 4 /* Copyleft (c) 2012. Ridlo W. Wibowo
 5 /**********************************
 6 \mid \#include \mid < iostream > 
 7 \mid \#include \mid < math.h >
 8 \mid \#include \mid \langle stdlib \mid h \rangle
9 \mid \#in\ clu\ d\ e \ \langle s\ t\ d\ i\ o\ .\ h 
angle
10 | \#include | < fstream > 
|11| \# define \_USE\_MATH\_DEFINES
12 using namespace std;
13
14 int main() {
15
       cout << "### Parabolic PDE - Forward Difference Method ###\n";
       cout \ll "--- Equation : d(u)/dt = d^2(u)/dx^2 with u(x,t) ---\n";
16
       double xi = 0.0, xf=M_PI; // L=1.0 -> rentang x double ti = 0.0, tf=0.5; // time
17
18
       int nt = 10; // jumlah pemenggalan di t int nx = 10; // jumlah pemenggalan di x
19
20
21
22
       double k = (tf-ti)/nt;
23
       double h = (xf-xi)/nx;
24
25
       double alpha = 1.;
26
       double lam = alpha*alpha*k/(h*h);
27
       cout \ll "alpha = " \ll alpha \ll endl;
       cout \ll "step in x (h) = " \ll h \ll endl;
28
       cout << "step in t (k) = " << k << endl;
29
       cout << "lambda
                               = " << lam << endl;
30
31
32
       double wi[100];
33
       double wf[100];
34
       double x [100];
35
       // syarat batas
36
37
       wi[0] = 0.0;
38
       wi[nx] = 0.0;
39
       // syarat awal
40
       x[0] = xi;
41
       x[nx] = xf;
42
43
       for (int i=1; i< nx; i++){
           x[i] = x[i-1] + h;
44
            wi[i] = sin(x[i]);
45
46
47
       // bentuk output filenya aneh, karena untuk
48
       // mempermudah ketika membuat animasi memakai gnuplot
49
       ofstream out ("ftcs-out.txt");
50
       // print kondisi awal
51
       for (int i=0; i<=nx; i++){
```

```
o\,ut \;<<\; x\,[\;i\;] \;<<\; "\;\; "\;\; <<\; w\,i\,[\;i\;] \;<<\; "\,\backslash\, n\,"\,;\,\}
52
53
54
         // kerjo dimulai.. ayo
         \quad \textbf{for} \ (\,i\,n\,t \quad j \!=\! 1; \ j \!=\! n\,t\;; \ j \!+\! +\! )\{
55
               \operatorname{wf}[0] = \operatorname{wi}[0];
56
               wf[nx] = wi[nx];
57
58
               for (int i=1; i< nx; i++)
59
                     wf[i] = (1.-2.*lam)*wi[i] + lam*(wi[i+1] + wi[i-1]);
60
61
               // print, njur sekalian tuker baru
62
               out << "\n";
63
               for (int i=0; i<=nx; i++){
                     out << x[i] << " " << wf[i] << "\n";
64
65
                     wi[i] = wf[i]; \}
66
         out.close();
         cout << "finish ... \setminus n";
67
68
         return 0;
69 }
```

btcs.cpp

```
2 /* btcs.cpp (backward time central space)
 3 /* backward difference method - parabolic PDE
 4 /* Copyleft (c) 2012. Ridlo W. Wibowo
 6 \mid \#include \mid \langle iostream \rangle
 7 \mid \#include \mid < math.h >
 8 \mid \#include \mid \langle stdlib \mid h \rangle
 9 \mid \#i \, n \, c \, l \, u \, d \, e \quad \langle s \, t \, d \, i \, o \, . \, h \rangle
|10| \#include < fstream > 
|11| \# define \_USE\_MATH\_DEFINES
12 using namespace std;
13
14
15 int main() {
          cout << \text{"$\#\#$} Parabolic PDE - Backward Difference Method $\#\# \ ";}
16
          cout \,<<\,"--- \,\, E\, quation \,\, : \,\, d(\,u\,) \,/\,\, dt \,\, = \,\, d\,\hat{\,}\, 2(\,u\,) \,/\,\, dx\,\hat{\,}\, 2 \  \, with \  \, u\,(\,x\,\,,\,t\,\,) \,\,\, --- \,\, \backslash n\,\, "\,\, ;
17
         double xi = 0.0, xf=M_PI; // L=1.0 \rightarrow rentang x double ti = 0.0, tf=0.5; // time
18
19
         int nt = 10; // jumlah pemenggalan di t int nx = 10; // jumlah pemenggalan di x
20
21
22
23
         double k = (tf-ti)/nt;
24
         double h = (xf-xi)/nx;
25
```

```
26
       double alpha = 1.;
27
       {\tt double\ lam}\ =\ alpha\!*\!alpha\!*\!k/(\,h\!*\!h\,)\;;
                           = " << alpha << endl;
28
       cout << "alpha
       cout << "step in x (h) = " << h << endl;
29
       cout << "step in t (k) = " << k << endl;
30
                                = " << lam << endl;
31
       cout << "lambda"
32
33
       double w[100];
34
       double x[100];
       double \ l\,[\,1\,0\,0\,]\;,\ u\,[\,1\,0\,0\,]\;,\ z\,[\,1\,0\,0\,]\;;
35
36
37
       // syarat batas
38
       w[0] = 0.0;
39
       w\,[\,\,nx\,\,]\ =\ 0\,\,.\,0\,\,;
40
       // syarat awal, insiasi
41
42
       x[0] = xi;
43
       x[nx] = xf;
44
       for (int i=1; i< nx; i++){
45
           x[i] = x[i-1] + h;
46
            w[i] = sin(x[i]);
47
48
       // Crout method
49
       l[1] = 1. + 2.*lam;
50
       u[1] = -lam/l[1];
51
52
       for (int i=2; i<(nx-1); i++){
53
            l[i] = 1. + 2.*lam + lam*u[i-1];
54
            \mathbf{u}[\mathbf{i}] = -\mathbf{lam}/\mathbf{l}[\mathbf{i}];
55
56
       1[nx-1] = 1. + 2.*lam + lam*u[nx-2];
57
58
       // for (int i=1; i<nx; i++){
59
              cout << l[i] << endl;}
60
61
       // bentuk output filenya aneh, karena untuk
62
       // mempermudah ketika membuat animasi memakai gnuplot
63
       ofstream out ("btcs-out.txt");
64
       // print kondisi awal
       65
66
67
68
       // kerjo dimulai.. ayo
69
       for (int j=1; j<=nt; j++){
            w[0] = 0.0;
70
71
            w[nx] = 0.0;
            z[1] = w[1]/l[1];
72
73
            for (int i=2; i< nx; i++){
74
                z[i] = (w[i] + lam*z[i-1])/l[i];
75
            w[nx-1]=z[nx-1];
76
77
            for (int i=nx-2; i>=1; i--)
78
                w[i] = z[i] - u[i]*w[i+1];
79
```

CN.cpp

```
2 \mid /* \text{CN.cpp (Crank-Nicolson method)}
 3 /* parabolic PDE
                                                              */
 4 /* Copyleft (c) 2012. Ridlo W. Wibowo
 5 /*********************************
 6 \mid \#include \mid < iostream > 
 7 \mid \#include \mid \langle math.h \rangle
 8 \mid \#include \mid \langle stdlib \mid h \rangle
 9 \mid \#include \mid \langle stdio.h \rangle
10 \mid \#include \mid \langle fstream \rangle
11 \mid \#define USE MATH DEFINES
12 using namespace std;
13
14 int main() {
15
        cout << "\#\#\# \ Parabolic \ PDE - \ Crank-Nicolson \ Method \ \#\#\#\backslash n" \ ;
        cout \ll "---- Equation : d(u)/dt = d^2(u)/dx^2 with u(x,t) ---\n";
16
17
        \label{eq:constraint} \texttt{double} \ \ xi \ = \ 0.0 \ , \ \ xf\!\!=\!\!\! M\_PI; \ \ // \ \ L\!\!=\!\!1.0 \ -\!\!\!> \ rentang \ \ x
        double ti = 0.0, tf=0.5; // time
18
19
        int nt = 10; // jumlah pemenggalan di t
        int nx = 10; // jumlah pemenggalan di x
20
21
22
        double k = (tf-ti)/nt;
23
        double h = (xf-xi)/nx;
^{24}
25
        double alpha = 1.;
26
        double lam = alpha*alpha*k/(h*h);
27
        cout \ll "alpha = " \ll alpha \ll endl;
        cout \ll "step in x (h) = " \ll h \ll endl;
28
        cout \ll "step in t (k) = " \ll k \ll endl;
29
                                   ^{'} = " << lam << endl;
        cout << "lambda
30
31
32
        double w[100];
33
        double x [100];
        double 1[100], u[100], z[100];
35
```

```
36
         // syarat batas
        w[0] = 0.0;
37
38
        w[nx] = 0.0;
39
         // syarat awal, insiasi
40
        x[0] = xi;
41
42
        x[nx] = xf;
43
         for (int i=1; i< nx; i++){
44
              x[i] = x[i-1] + h;
45
              w[i] = sin(x[i]);
46
47
         // Crout method
48
         l[1] = 1. + lam;
49
         u[1] = -lam/(2.*l[1]);
50
51
         for (int i=2; i<(nx-1); i++){
52
              l[i] = 1. + lam + lam*u[i-1]/2.;
53
              u[i] = -lam/(2.*l[i]);
54
         1[nx-1] = 1. + lam + lam *u[nx-2]/2.;
55
56
57
         // for (int i=1; i<nx; i++){
58
                cout << l[i] << endl;}
59
60
         // bentuk output filenya aneh, karena untuk
61
         // mempermudah ketika membuat animasi memakai gnuplot
         ofstream out ("CN-out.txt");
62
         // print kondisi awal
63
64
         for (int i=0; i<=nx; i++){
              65
66
67
         // kerjo dimulai.. ayo
68
         for (int j=1; j<=nt; j++){
69
              w[0] = 0.0;
70
              w[nx] = 0.0;
              z\,\,[\,1\,] \,\,=\,\, (\,(\,1.\,-\,la\,m\,)\,*w\,[\,1\,] \,\,+\,\, (\,la\,m\,/\,2\,.\,)\,*w\,[\,2\,]\,)\,\,/\,l\,\,[\,1\,]\,;
71
72
              \mathbf{for} \ (\,i\,n\,t \quad i\,{=}\,2\,;\,i{<}nx\,;\,\,i\,{+}{+})\{
73
                   z\,[\,i\,] \;=\; ((\,1.\,-\,la\,m\,)\,*w\,[\,i\,] \;+\; (\,la\,m\,/\,2\,.\,)\,*(\,w[\,i\,+\,1] \;+\; w\,[\,i\,-\,1] \;+\; z\,[\,i\,-\,1])\,)\,/\,l\,[
                        i];}
74
              w[nx-1]=z[nx-1];
75
76
              for (int i=nx-2; i>=1; i--){
77
                   w[\;i\;]\;=\;z\;[\;i\;]\;-\;u\;[\;i\;]\!*\!w[\;i+1]\,;\}
78
79
              out << "\n \n";
80
               \mbox{ for } (i\,n\,t \quad i\,{=}\,0\,;i\,{<}{=}nx\,;\,i\,{+}{+})\{
                   out << x[i] << " " << w[i] << " \backslash n"; \} \}
81
82
         out.close();
83
         cout \ll "finish ... \setminus n";
84
         return 0;}
```