PROJET FÉDÉRÉ 2022/2023

DÉTECTION DES PIÈCES MONNAIS POUR LES AVEUGLES

Presenté par

YASSINE HATTAY & SAMAR HAMRAOUI

Encadrant

MR KAMEL CHAIEB

Plan

Contexte

Problématique

Solution

Analyse

Analyse

code python sur la carte

code python du serveur

Realisation

Choix matériel

choix de model

Préparation de données

Entrainement du modèle

Clôture

Contexte

Problématique

Les personnes aveugles rencontrent souvent des difficultés lorsqu'il s'agit de différencier les différents valeur des pièces de monnaie en leur possession

Solution

envoi d'une photo des pièces

réception des résultats de détection

Analyse

Comment l'utilisateur déclenche-t-il l'envoi de l'image et la réception des résultats? et comment le processus se déroule-t-il en détail?

Analyse du carte

Envoi du photo au serveur 📴

Réception des résultat

Code python sur la carte

1-importation: `requests`, `picamera`,`

RPI.GPIO et pyttsx3

- 2-Configuration du camera
- **3-**Configuration du broches
- 4-Definition de la fonction du rappel
- **5-**Détection d'événement sur la broche du bouton

Analyse du serveur

Serveur

Détection les types des pièces et le nombre de chaque type

Réception du photo

Envoi du résultat en format json

Code de serveur

- 1- Importation: `argparse`, `json`,
 `torch`, `Flask` et `Popen`
- **O** PyTorch
- 2- Configuration de l'application Flask
- 3- Définition de les routes
 - a- Route d'index: index.html
 - **b** Route de détection d'objets
- **4** Fonction principale

Réalisation

Choix materiél

pour la choix matériel en raison de la disponibilité de ressources en ligne et de tutoriels, la carte Raspberry paraissait être un bon choix pour ce projet.

Pourqoi un serveur?

En utilisant un serveur, nous pouvons fournir les informations nécessaires à l'utilisateur dans un temps raisonnable avec l'aide d'un modèle d'apprentissage profond qui serait sinon plus lent et moins précis dans une carte raspberry.

Choix du model

Algorithme d'apprentissage profond

- -Rapide
- -Bonne précision
- -Polyvalent

Preparation des données

Script python

.TXT

la préparation des données

LabelImg

étiquetage des photos

Entrainement du modèle:

configuration des paramètres

Clôture

Probléme

Ce modèle détecte parfois des types des pièces incorrects

Comment le rendre plus performant?

1 Augmentation des données

2 Équilibrage des données

Ensembles de modèles

Merci pour votre attention

N'hésitez pas à poser vos questions