



# **OGC Standards**





#### **OGC Services Architecture**



#### **Geospatial Feature data**:

An object that can have a geographic location and other properties

#### **Geospatial Coverage data:**

Digital geospatial information representing space/time-varying phenomena

#### **Geospatial Browse/Maps**:

Representation of a 3D World on a 2D map



# **Definitions**



#### **Some definitions**

**Conceptual model:** Type of data model that defines **WHAT** the system contains independent of HOW it will be implemented.

Logical model: Type of data model that defines HOW the system should be implemented. A logical data model is a fully-attributed data model that is independent of technology, data storage or organizational constraints. It typically describes data requirements from the business point of view. The logical Data Model adds further information to the Conceptual Data Model elements. The advantage of using a Logical Data Model is to provide a foundation to form the base for the Physical Model. However, the modeling structure remains generic.

**Physical model:** Type of data model that describes HOW the system <u>is implemented</u> using a specific file format. A Physical Data Model is a fully-attributed Data Model that is dependent upon a specific version of a data persistence technology. It describes a format-specific implementation of the Data Model.



#### **Web Services**

Web services are functionalities exposed on intranet or internet to automate synchronous exchanges between computer systems.

- intranet or internet: http protocol and open formats
- synchronous exchanges: request and response in a short period of time (flow)

Web services facilitate interoperability between computer systems by providing solutions to constraints of distance, availability, formats,



#### **Protocoles HTTP**

The HyperText Transfer Protocol (HTTP) is the client/server communication protocol at the origin of the World Wide Web. The best known HTTP clients are web browsers. HTTP offers several access methods: GET, POST, PUT, DELETE, ...

#### HTTP - compose a GET

- HTTP-GET request allows to specify in the URL the call parameters
  - ? signals the beginning of the parameter sequence
  - & is the separator between parameters (key=value)
  - + replaces <space>
- examplehttp://api.itimeteo.com/getMetar.ims?icao=LFRN&format=xml

#### **HTTP** - composing a POST

- HTTP-GET request is limited because you can't put everything you want in the URL. HTTP-POST allows you to overcome this constraint:
  - to send the server many parameters
  - to send files
  - 0...
- To compose an HTTP POST request, you need a web form, a program or a browser extension



# **Access Service**



#### Simple Feature Access (https://www.ogc.org/standards/sfa)

**Description:** set of standards that specify a common storage and access model of geographic feature made of mostly two-dimensional geometries (point, line, polygon, multi-point, multi-line, etc.) used by geographic information systems.



Geometry class hierarchy





### **Simple Feature Access**

#### From the conceptual model, three logical models:

**Well-known Text Representation for Geometry** 

can be used both to construct new instances of the type and to convert existing instances to textual form for alphanumeric display

Well-known Binary Representation for Geometry

provides a portable representation of a geometric object as a contiguous stream of bytes. It permits geometric object to be exchanged between an SQL/CLI client and an SQL-implementation in binary form.

- Well-known Text Representation of Spatial Reference Systems https://www.ogc.org/standards/wkt-crs
- GeoJson (subset of SFA)

| Geometry Type   | Text Literal Representation                                                              | Comment                                                                           |
|-----------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Point           | Point (10 10)                                                                            | a Point                                                                           |
| LineString      | LineString ( 10 10, 20 20, 30 40)                                                        | a LineString with 3 points                                                        |
| Polygon         | Polygon<br>((10 10, 10 20, 20 20, 20 15, 10 10))                                         | a Polygon with 1<br>exteriorRing and 0<br>interiorRings                           |
| Multipoint      | MultiPoint ((10 10), (20 20))                                                            | a MultiPoint with 2 points                                                        |
| MultiLineString | MultiLineString ( (10 10, 20 20), (15 15, 30 15) )                                       | a MultiLineString with 2 linestrings                                              |
| MultiPolygon    | MultiPolygon ( ((10 10, 10 20, 20 20, 20 15, 10 10)), ((60 60, 70 70, 80 60, 60 60 )) )  | a MultiPolygon with 2 polygons                                                    |
| GeomCollection  | GeometryCollection<br>(<br>POINT (10 10),<br>POINT (30 30),<br>LINESTRING (15 15, 20 20) | a GeometryCollection<br>consisting of 2 Foint<br>values and a LineString<br>value |

The geographic coordinate system string for UTM zone 10 on NAD83 is

```
GEOGCS["GCS North American 1983",
      DATUM["D North American 1983",
      ELLIPSOID["GRS 1980", 6378137, 298.257222101]],
      PRIMEM["Greenwich", 0],
      UNIT["Degree", 0.0174532925199433]]
EXAMPLE 3 The full string representation of UTM Zone 10N is
PROJCS["NAD 1983 UTM Zone 10N",
  GEOGCS["GCS North American 1983",
  DATUM[ "D North American 1983", ELLIPSOID["GRS 1980", 6378137, 298.257222101]],
  PRIMEM["Greenwich", 0], UNIT["Degree", 0.0174532925199433]],
   PROJECTION["Transverse Mercator"], PARAMETER["False Easting", 500000.0],
  PARAMETER["False Northing", 0.0], PARAMETER["Central Meridian", -123.0],
   PARAMETER["Scale Factor", 0.9996], PARAMETER["Latitude of Origin", 0.0],
   UNIT["Meter", 1.0]]
```



## **Simple Feature Access**

#### **Some implementations:**

- GEOS (Geometry Engine Open Source) CGO wrapper (C++)
- JTS (Java, Python wrapper)
- Gdal (C/C++, Python wrapper)
- OpenLayers (JavaScript)
- PostGIS (database)
- GeoPandas (Python)
- ...



## WFS (Web Feature Service) https://www.ogc.org/standards/wfs

**Description**: It allows a client to retrieve and update geospatial data encoded in the Geography Markup Language (GML)

#### Operations:

- GetCapabilities describes the service
- GetFeature retrieves the objects
- DescribeFeatureType describes the objects



## WFS (Web Feature Service) - GetCapabilities

| Parameter                 | R/O | Description               |
|---------------------------|-----|---------------------------|
| VERSION = version         | R   | Version of the service    |
| SERVICE = WFS             | R   | Type of the service (WFS) |
| REQUEST = GetCapabilities | R   | Name of the operation     |

We get back a XML document describing the available services and data

http://giswebservices.massgis.state.ma.us/geoserver/wfs?request=GetCapabilities&service=WFS&version=1.0.0

#### In the XML response:

- <Service> describes the service and the conditions of access
- <a>Capability><Request></a> describes the operations and formats supported
- <FeatureTypeList><Operations> describes the error messages
- <FeatureTypeList>

#### <FeatureType>

- <Name> identifier of the layer
- <Title> <Abstract> <Keywords> description of the layer
- <SRS> Coordinate Reference System of the source
- <LatLonBoundingBox> Bounding box of the data
- <ogc:FilterCapabilities>spatial and scalar filters available for queries





# WFS (Web Feature Service) - DescribeFeatureType

| Parameter                     | R/O | Description               |
|-------------------------------|-----|---------------------------|
| VERSION = version             | R   | Version of the service    |
| SERVICE = WFS                 | R   | Type of the service (WFS) |
| REQUEST = DescribeFeatureType | R   | Name of the operation     |

We get an XML document describing the schema of object type (FeatureType)

http://giswebservices.massgis.state.ma.us/geoserver/wfs?request=DescribeFeatureType&service=wfs &version=1.1&typename=massgis:GISDATA.SCHOOLS PT M LDT



# **WFS (Web Feature Service) - GetFeature**

| Parameter                  | R/O | Description                                                                                                    |
|----------------------------|-----|----------------------------------------------------------------------------------------------------------------|
| VERSION = version          | R   | Version of the service                                                                                         |
| SERVICE = WFS              | R   | Type of the service (WFS)                                                                                      |
| REQUEST = GetFeature       | R   | Name of the operation                                                                                          |
| TYPENAME = typename_list   | R   | List of object types to query, seperator «, »                                                                  |
| MAXFEATURES=n              | 0   | maximum number of objects returned                                                                             |
| PROPERTYNAME=property_list | 0   | List of attributes returned                                                                                    |
| FILTER=filter_list         | Ο   | list of filters on objects, comma separator (OGC Filter Encoding) - Mutually exclusive with FEATUREID and BBOX |
| FEATUREID=id_list          | 0   | filter by identifier of returned objects, mutually exclusive with FILTER and BBOX                              |
| BBOX=xmin,ymin,xmax,ymax   | 0   | filtering of returned objects. Mutually exclusive with FEATUREID and FILTER                                    |



## **WFS (Web Feature Service) - Examples**

Get a count of the number of schools in the massgis:GISDATA.SCHOOLS\_PT layer (without and with geometry)

http://giswebservices.massgis.state.ma.us/geoserver/wfs?request=GetFeature&service=wfs&version=1.1&typeName=massgis:GISDATA.SCHOOLS\_PT&resultType=hits

http://giswebservices.massgis.state.ma.us/geoserver/wfs?request=getfeature&version=1.1&service=wfs&typename=massgis:GISDATA.SCHOOLS\_PT&CQL\_FILTER=BBOX%28shape,45004,909195,55684,932912%29&resultType=hits

Get all the attribute (column, field) names of the layer GISDATA.TOLLBOOTHS\_PT

http://giswebservices.massgis.state.ma.us/geoserver/wfs?SERVICE=wfs&VERSION=1.0 .0&REQUEST=describefeaturetype&TYPENAME=massgis:GISDATA.TOLLBOOTHS\_PT

http://giswebservices.massgis.state.ma.us/geoserver/wfs?SERVICE=wfs&VERSION=1.0 .0&REQUEST=describefeaturetype&TYPENAME=massgis:GISDATA.TOLLBOOTHS\_PT& outputformat=text/javascript



## **WFS (Web Feature Service) - Examples**

Get all the values of all the attributes of all the features of the layer GISDATA.TOLLBOOTHS\_PT

http://giswebservices.massgis.state.ma.us/geoserver/wfs?request=GetFeature&version=1.0.0&typeName=massgis:GISDATA.TOLLBOOTHS PT

Get all the values of all the attributes of all the features of the layer GISDATA.TOLLBOOTHS\_PT, sorted by an attribute

http://giswebservices.massgis.state.ma.us/geoserver/wfs?request=GetFeature&version=1.1.0&typeName=massgis:GISDATA.TOLLBOO THS PT&sortBy=town+A

Get all the values of the feature with OBJECTID = 1 in the layer GISDATA.TOWNS\_POLY

http://giswebservices.massgis.state.ma.us/geoserver/wfs?request=GetFeature&service=wfs&version=1.1&featureId=GISDATA.TOWNSPOLY.1

Download all the values all (or some) the attributes for the layer GISDATA.TOWNS\_POLY

http://giswebservices.massgis.state.ma.us/geoserver/wfs?request=GetFeature&service=wfs&version=1.0.0&typename=massgis:GISDA TA.TOWNS\_POLY&outputformat=SHAPE-ZIP

http://giswebservices.massgis.state.ma.us/geoserver/wfs?request=getfeature&version=1.0.0&outputformat=SHAPE-ZIP&service=wfs&typename=massgis:GISDATA.OPENSPACE\_POLY&filter=OWNER\_ABRVM165

Download all the values all the attributes for the layer GISDATA.TOWNS\_POLY in CSV format

http://giswebservices.massgis.state.ma.us/geoserver/wfs?request=GetFeature&service=wfs&version=1.0.0&typename=massgis:GISDA TA.TOWNS POLY&outputformat=csv

More an more examples : <a href="https://wiki.state.ma.us/display/massgis/GeoServer+-+WFS+-+Examples">https://wiki.state.ma.us/display/massgis/GeoServer+-+WFS+-+Examples</a>



## WCS (Web Coverage Service) - http://docs.opengeospatial.org/is/17-089r1/17-089r1.html

Description: It allows you to publish images, maps or geodatabases that contain rasters.

#### The operations:

- GetCapabilities: <u>http://app.spaceclimateobservatory.org/mapserv?map=WMS\_SRTM&service=WCS&request=g</u> etCapabilities&version=1.0.0
- DescribeCoverage: <a href="http://app.spaceclimateobservatory.org/mapserv?map=WMS\_SRTM&service=WCS&request=DescribeCoverage&version=1.0.0&identifiers=SRTM">http://app.spaceclimateobservatory.org/mapserv?map=WMS\_SRTM&service=WCS&request=DescribeCoverage&version=1.0.0&identifiers=SRTM</a>
- GetCoverage:

   <a href="http://app.spaceclimateobservatory.org/mapserv?map=WMS\_SRTM&service=WCS&request=GetCoverage&width=33&height=33&crs=EPSG:4326&coverage=SRTM&version=1.0.0&format=image/x-aaigrid&bbox=90,-90,180,0[&time=...]</a>





| 2.1 | Core:                                                                                                 |          |    |
|-----|-------------------------------------------------------------------------------------------------------|----------|----|
|     | OGC® Web Coverage Service (WCS) Interface Standard - Core, version 2.1                                | 17-089r1 | IS |
| 2.0 | Core:                                                                                                 |          |    |
|     | OGC® WCS 2.0 Interface Standard - Core, version 2.0.1                                                 | 09-110r4 | IS |
|     | Service Extensions:                                                                                   |          |    |
|     | OGC® Web Coverage Service Interface Standard – Transaction Extension                                  | 13-057r1 | IS |
|     | OGC® WCS Interface Standard - Range Subsetting Extension, version 1.0.0                               | 12-040   | IS |
|     | OGC® WCS Interface Standard - Scaling Extension, version 1.0.0                                        | 12-039   | IS |
|     | OGC® WCS Interface Standard – CRS Extension, version 1.0.0                                            | 11-053r1 | IS |
|     | OGC® WCS Interface Standard - Interpolation Extension, version 1.0.0                                  | 12-049   | IS |
|     | OGC® WCS Interface Standard - Processing Extension, version 2.0.0                                     | 08-059r4 | IS |
|     | Protocol Extensions:                                                                                  |          |    |
|     | OGC® WCS Interface Standard - KVP Protocol Binding Extension, version 1.0.1                           | 09-147r3 | IS |
|     | OGC® WCS - XML/POST Protocol Binding Extension, version 1.0.0                                         | 09-148r1 | IS |
|     | OGC® Web Coverage Service 2.0 Interface Standard - XML/SOAP Protocol Binding Extension, version 1.0.0 | 09-149r1 | IS |
|     | Application Profiles:                                                                                 |          |    |
|     | OGC® MetOcean Application profile for WCS2.1: Part 0 MetOcean Metadata                                | 15-045r7 | IS |
|     | OGC® MetOcean Application profile for WCS2.1: Part 1 MetOcean GetCorridor Extension v1.0              | 15-108r3 | IS |
|     | OGC® MetOcean Application profile for WCS2.1: Part 2 MetOcean GetPolygon Extension v1.0               | 17-086r3 | IS |
|     | OGC® WCS Interface Standard - Earth Observation Application Profile, version 1.1                      | 10-140r2 | IS |
|     | OGC® WCS Interface Standard - Earth Observation Application Profile, version 1.0                      | 10-140r1 | IS |



### **WCS**



# Web Coverage Service (WCS) Suite

WCS Core: access to n-D coverages & subsets



- Format conversion on the fly
- WCS Extensions: optional functionality facets
- WCS Application Profiles: domain-oriented bundling (EO, MetOcean, ...)



## WMS (Web Map Service) https://www.ogc.org/standards/wms

**Description**: A Web Map Service (WMS) dynamically produces maps of georeferenced data from geographic information. This international standard defines a "map" as a representation of geographic information in the form of an image file suitable for display on a computer screen. A map is not the data itself. Maps produced by WMS are usually produced in an image format such as PNG, FIG or JPEG, or sometimes in a vector format such as SVG

#### The different operations:

- **GetCapabilities**
- GetMap
- GetFeatureInfo
- DescribeLayer
- GetLegendGraphic



## WMS (Web Map Service) - GetCapabilities

Table 3 — The parameters of a GetCapabilities request URL

| Request parameter       | Mandatory/optional | Description                                 |
|-------------------------|--------------------|---------------------------------------------|
| VERSION=version         | 0                  | Request version                             |
| SERVICE=WMS             | М                  | Service type                                |
| REQUEST=GetCapabilities | М                  | Request name                                |
| FORMAT=MIME_type        | 0                  | Output format of service metadata           |
| UPDATESEQUENCE=string   | 0                  | Sequence number or string for cache control |

http://giswebservices.massgis.state.ma.us/geoserver/wms?request=getcapabilitie s&version=1.1.0&service=wms



# WMS (Web Map Service) - GetMap

Table 8 — The Parameters of a GetMap request

| Request parameter           | Mandatory/optional | Description                                                                          |
|-----------------------------|--------------------|--------------------------------------------------------------------------------------|
| VERSION=1.3.0               | M                  | Request version.                                                                     |
| REQUEST=GetMap              | М                  | Request name.                                                                        |
| LAYERS=layer_list           | М                  | Comma-separated list of one or more map layers.                                      |
| STYLES=style_list           | М                  | Comma-separated list of one rendering style per requested layer.                     |
| CRS=namespace:identifier    | М                  | Coordinate reference system.                                                         |
| BBOX=minx,miny,maxx,maxy    | М                  | Bounding box corners (lower left, upper right) in CRS units.                         |
| WIDTH=output_width          | М                  | Width in pixels of map picture.                                                      |
| HEIGHT=output_height        | M                  | Height in pixels of map picture.                                                     |
| FORMAT=output_format        | М                  | Output format of map.                                                                |
| TRANSPARENT=TRUE FALSE      | 0                  | Background transparency of map (default=FALSE).                                      |
| BGCOLOR=color_value         | 0                  | Hexadecimal red-green-blue colour value for the background color (default=0xFFFFFF). |
| EXCEPTIONS=exception_format | 0                  | The format in which exceptions are to be reported by the WMS (default=XML).          |
| TIME=time                   | 0                  | Time value of layer desired.                                                         |
| ELEVATION=elevation         | 0                  | Elevation of layer desired.                                                          |
| Other sample dimension(s)   | 0                  | Value of other dimensions as appropriate.                                            |





# WMS (Web Map Service) - GetFeatureInfo



# WMS (Web Map Service) - DescribeLayer



# WMS (Web Map Service) - GetLegendGraphic

http://giswebservices.massgis.state.ma.us/geoserver/wms?VERSION=1.1.0&REQU EST=GetLegendGraphic&LAYER=massgis:GISDATA.COUNTIES\_POLY&STYLE=GI SDATA.COUNTIES\_POLY::Default&WIDTH=16&HEIGHT=200&FORMAT=image/png



## WMS (Web Map Service) - Style et SLD

http://geobretagne.fr/geoserver/bzh/wms?LAYERS=bzh:commune\_bdcarto&TRANSPARENT=true& VERSION=1.1.1&FORMAT=image/png&SERVICE=WMS&REQUEST=GetMap&SRS=EPSG:2154&BBOX=150941,6780587,190077,6819722&WIDTH=512&HEIGHT=512

http://geobretagne.fr/geoserver/bzh/wms?LAYERS=bzh:commune\_bdcarto&TRANSPARENT=true&
VERSION=1.1.1&FORMAT=image/png&SERVICE=WMS&
REQUEST=GetMap&SRS=EPSG:2154&BBOX=150941,
6780587,190077,6819722&WIDTH=512&HEIGHT=512
&SLD=http://geobretagne.
fr/mapfishapp/ws/sld/geodoc6211521421358206358.sld





# WMS (Web Map Service) - Time

# Temporal capabilities with TIME parameter

- Specifying a time as yyyy-MM-ddThh:mm:ss.SSSZ
- Specifying an absolute interval: 2002-09-01T00:00:00.0Z/2002-09-30T23:59:59.999Z
- Specifying a relative interval : 2002-09-01T00:00:00.0Z/P1M
- Reduced accuracy time: 2002-09
- Reduced accuracy time with ranges: 2002-09/2002-12
- Specifying a list of time: TIME=2012-08-12T12:00:00.0Z,2012-08-13T12:00:00.0Z,2012-08-14T12:00:00.0Z
- Specifying a periodicity: PT1H

http://localhost/wms?request=GetMap&service= WMS&version=1.3.0&layers=solar&styles=color map&crs=IAU2000:1000&bbox=15.15104058007 ,21.731919794922,57.154894212888,58.961058 64257&width=78&height=330&format=image/png &TIME=2018-10-18







# **WMS (Web Map Service) - Examples**





## WMS & WFS & WCS





#### **WMTS**





Query with a pre-defined tesselation related to a projection to have a fast access

#### The operations:

GetCapabilities :

http://localhost/wmts?service=WMTS&version=1.0.0&request=GetCapabilities or http://localhost/wmts/1.0.0/WMTSCapabilities.xml

GetTile:

http://localhost/wmts?service=WMTS&request=GetTile&version=1.0.0&layer=et opo2&style=default&format=image/png&TileMatrixSet=WholeWorld CRS 84&T ileMatrix=10m&TileRow=1&TileCol=3 or http://localhost/wmtsdefault/WholeWorld CRS 84/10m/1/3.png

- GetTile with time: <a href="http://map1.vis.earthdata.nasa.gov/wmts-geo/{Product}/{Style}/{Time}/{TileMatrixSet}/{TileMatrix}/{TileRow}/{TileCol}.jpg</a>
- GetFeatureInfo:

http://localhost/wmts?service=WMTS&request=GetFeatureInfo&version=1.0.0&layer=coastlines&style=default&format=image/png&TileMatrixSet=WholeWorldCRS 84&TileMatrix=10m&TileRow=1&TileCol=3&J=86&l=132&InfoFormat=application/gml+xml or

http://localhost/wmts/default/WholeWorld CRS 84/10m/1/3/86/132.xml



# **Processing Service**



# **WPS (Web Processing Service)**

**Description :** WFS can return subsets of data but cannot return any changed data. A WPS on the other hand, can modify returned data. A WPS could perform buffer, reproject, simplify, etc.

**GetCapabilities:** Provides access to general information about the WPS and lists the operations and access methods supported by the WPS

http://giswebservices.massgis.state.ma.us/geoserver/wps?service=WPS&version=1.0.0 &request=GetCapabilities

Dscribeprocess: Allows WPS clients to request a full description of one more processes that can be executed by the service. The description includes the input and output parameters and formats

**Execute: Allows PWS clients to run a specified process** 



# **WCSP (Web Coverage Processing Service)**

Description: high-level grid coverage filtering & processing language

Poor: minimise data transfer as well as [client-side] processing

- As in WCS Core: subsetting = trim | slice
  - Trim: 2 coordinates → interval along axis (axis retained in result)
  - Slice: 1 coordinate → slice point on axis (axis removed from result)
  - Axes not mentioned; retained in full extent
- Axis name defined in CRS ("axis abbreviation")
  - Ex: Lat, Long, AnsiDate, ...













#### WCS & WCPS & WPS

OGC standards cover full range from data-intensive to processing-intensive "big data" coverage services

WCS WCPS WPS

data access ad-hoc analytics predefined process



# **Discovery services**



# OpenSearch & parameter extension & Geo/Time extension + EO profile





#### OpenSearch consists in:

- A getCapabilities file thats contains :
  - Metadata about the service (attribution, logo, name, description, rights, ...)
    - The URL template

#### <Url

template="https://peps.cnes.fr/resto/api/collections/S1/search.json?q={searchTerms?}&maxRecords={count?}&index={startIndex?}&page={startPage?}&lang={language?}&identifier={geo:uid?}&geometry={geo:geometry?}&box={geo:box?}&location={geo:name?}&lon={geo:lon?}&lat={geo:lat?}&radius={geo:radius?}&startDate={time:start?}&completionDate={time:end?}&parentIdentifier={eo:parentIdentifier?}&productType={eo:productType?}&processingLevel={eo:processingLevel?}&platform={eo:platform?}&instrument={eo:instrument?}&resolution={eo:resolution?}&orpanisationName={eo:organisationName?}&orbitDirection={eo:orbitDirection?}&sorbitNumber={eo:orbitNumber}&sensorMode={eo:sensorMode?}&cloudCover={eo:cloudCover?}&snowCover={eo:snowCover?}&cultivatedCover={resto:cultivatedCover?}&desertCover={resto:desertCover?}&floodedCover={resto:floodedCover={resto:floodedCover}&nesto:parentIdentifier}&sude ={eo:orbitNumber}&sude ={eo:orbitNumber}&sude ={eo:orbitNumber}&sude ={eo:orbitDirection}&sude ={eo:orbitNumber}&sude ={eo:orbitNumbe

- For each parameter: description, the possible values (enumeration, range)
- The output is a GeoJSON (JSON where geometry (as WKT) is specified)

The thematic data model/vocabulary is defined in EO profile (<u>OGC® OpenSearch Extension for Earth Observation</u>)

#### More:

- <a href="http://www.opensearch.org/Specifications/OpenSearch/Extensions/Parameter/1.0">http://www.opensearch.org/Specifications/OpenSearch/Extensions/Parameter/1.0</a>
- https://portal.opengeospatial.org/files/?artifact\_id=56866 (OGC® OpenSearch Geo and Time Extensions)
- http://docs.opengeospatial.org/is/13-026r8/13-026r8.html (OGC® OpenSearch Extension for Earth Observation)



#### **CSW & Geonetwork**





# GeoAPI & GeoPackage



## **GeoAPI & GeoPackage**

The GeoAPI interfaces provide a layer which separates client code from application code, which implements the API.

The GeoPackage Encoding Standard describes a set of rules and conventions for storing vector features, imagery tile matrix sets, raster map tile matrix sets and non-spatial tabular data in an SQLite database. The standard also describes rules for extending the capabilities of a GeoPackage. (Replace shapefile and GeoPackage has better performance and takes up less space when storing large files.)

Info: https://si.ecrins-parcnational.com/blog/2020-02-geojson-shapefile-geopackage.html