THE LET TO

Avoid iverwriting and cutting

BAHRIA UNIVERSITY (KARACHI CAMPUS)

MIDTERM EXAMINATION – FALL SEMESTER – 2020

Data Structures & Algorithms CSC-221

Class: BS (CS)-3A, B	Morning
Course Instructor: Lubna Siddiqui	Time Allowed: 90 minutes
Date: 23-11-2020 Session: I	Max Marks: 20
Student's Name:	Reg. No:
Note Write letter as answer in provided answer sheet	

ANSWER SHEET

1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
10.	

OBJECTIVES

Question no.1

Multiple Choice Questions.

- 1. Two main measures for the efficiency of an algorithm are
 - A. Processor and memory

B. Complexity and capacity

C. Time and space

D. Data and space

- 2. The operation of processing each element in the list is known as
 - A. Sorting

B. Merging

C. Searching

- D. Traversing
- 3. What is the following code segment intended to do?

```
Sorting(A)
{
for (pass=1;pass<n;pass++)
    for (c=1;c<=(n-pass);c++)
        if (A[c]>A[c+1])
        { swap (A[c], A[c+1]) }
}
```

A. Insertion Sort

B. Selection Sort

C. Quick Sort

D. Bubble sort

- 4. Which of the following statements(s) is/are true in connection with searching algorithms?
 - I. If a data set is un-sorted, a more appropriate searching technique is sequential searching.
 - II. If a data set is sorted, a more appropriate searching technique is binary searching. III. If a data set is un-sorted, a more appropriate searching technique is binary searching.
 - A. I only

B. I and II only

C. I and III only

D. All are correct

- 5. The memory address of kth element of an array can be calculated by the formula
 - A. LOC(LA[k])=Base(LA)+w(UB-LB)

B. LOC(LA[k])=Base(LA)+w(K+LB)

C. LOC(LA[k])=Base(LA)+w(K-LB) D.

D. LOC(LA[k])=Base(LA)+w(UB+LB)

6.	Worst	case time complexity of Insertion sor	t is	
	A. C.	O(n) O(log n)	B. D.	O(n ²) O(1)
7.	Which of the following is the time complexity of binary search algorithm?			
	A. C.	$O(1)$ $O(\log n)$	B. D.	O(n) O(n ²⁾
8.	The m	nemory address of the first element of	an arı	ray is called
	A. C.	Floor First	B. D.	Base Foundation
9.		is a mathematical nr behavior.	nodel	for a certain class of data structures that have
	A. C.	Data type Abstract data type	B. D.	Method Function
10.	Which	of the following represents the overf	low o	f circular queue?
	A. C.	(FRONT == -1) (FRONT=-1 && REAR=-1)	D. ((FR	REAR == N-1) CONT == REAR+1) ((FRONT == 0) && AR == N-1)))

SUBJECTIVE

Question no.2 (2+2)

a. Convert following infix expression into post fix expression. Show all steps

$$(A+B)*(C*D-E)*F/G$$

b. Consider the following queue with n=8.

front =
$$3 \text{ rear} = 5$$

Queue =
$$-$$
, $-$, 2 , 4 , 5 , $-$, $-$, $-$

(for notational convenience "-" used to denote an empty cell)

The following operations have to be performed.

- (i) 6 is added to the queue.
- (ii) Two elements are deleted from the queue.
- (iii) 10 and 12 are added to the queue.
- (iv) Two elements are deleted from the queue.
- (v) 2 and 3 are added to the queue.

What are the final front and rear values when the above operations are performed into a circular queue?

Sara is running a small cefe named" Sara's mini café" where people can enjoy delicious foods. ." Sara's mini café "provide self service dine in facility. When customer arrives he/she can take the token and wait for turn on first come first serve basis. A pile of 100 trays is placed on café counter .He/she take a tray from café counter and put the food items on a tray and pay the bill on the cash counter

- a. Which data structure would you consider to keep the record of trays? Justify your answer
- b. Write an algorithm that display the number of trays left on café counter.

Question no.4 (2+2+1)

Write the code for following scenario.

Rabia keeps the record of the books having information" Book_id, Title, Author name, ISBN. She keeps the record in a single link list. Assume that link list has 25 nodes.

- a. Sara wants to keep the record at the beginning of the link list.
- b. Sara wants to keep the record at the end of the link list.
- c. Sara wants to print all records.

Question no.5 (1+2)

a. Analyze the following growth rates of following algorithms M and N. Which one is efficient and why? Growth rate of M is $T(n)=n^2+n^3+5n$ Growth rate of N is $T(n)=7n^3+5n^2+6n$

b. Find the time complexity of following algorithms.