In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
from sklearn.linear_model import LogisticRegression
```

In [83]:

```
d=pd.read_csv(r"C:\Users\user\Downloads\fra.csv")[0:13]
d
```

Out[83]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp
0	1	39	4.0	0	0.0	0.0	0	(
1	0	46	2.0	0	0.0	0.0	0	(
2	1	48	1.0	1	20.0	0.0	0	(
3	0	61	3.0	1	30.0	0.0	0	
4	0	46	3.0	1	23.0	0.0	0	(
5	0	43	2.0	0	0.0	0.0	0	
6	0	63	1.0	0	0.0	0.0	0	(
7	0	45	2.0	1	20.0	0.0	0	(
8	1	52	1.0	0	0.0	0.0	0	
9	1	43	1.0	1	30.0	0.0	0	
10	0	50	1.0	0	0.0	0.0	0	(
11	0	43	2.0	0	0.0	0.0	0	(
12	1	46	1.0	1	15.0	0.0	0	
4								+

Logistic Regression

In [84]:

```
feature_matrix=d.iloc[:,0:15]
target_vector=d.iloc[:,-1]
```

In [85]:

```
from sklearn.preprocessing import StandardScaler
```

```
In [86]:
fs=StandardScaler().fit_transform(feature_matrix)
In [87]:
logr=LogisticRegression()
logr.fit(fs,target_vector)
Out[87]:
LogisticRegression()
In [91]:
observation=[[1,2,3,4,5,6,7,8,9,10,11,12,12,14,15
             ]]
In [92]:
predication=logr.predict(observation)
print(predication)
[0]
In [93]:
logr.classes_
Out[93]:
array([0, 1], dtype=int64)
In [94]:
logr.predict_proba(observation)[0][0]
Out[94]:
```

Logistic Regression-2

In [95]:

0.6613205387211075

```
import re
from sklearn.datasets import load_digits
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
```

In [96]:

```
digits=load_digits()
digits
Out[96]:
{'data': array([[ 0., 0., 5., ..., 0., 0., 0.],
        [0., 0., 0., ..., 10., 0., 0.],
              0., 0., ..., 16., 9.,
        [ 0.,
        [0., 0., 1., ..., 6., 0.,
        [0., 0., 2., ..., 12., 0., 0.],
                                 1.,
        [ 0., 0., 10., ..., 12.,
 'target': array([0, 1, 2, ..., 8, 9, 8]),
 'frame': None,
 'feature_names': ['pixel_0_0',
  'pixel_0_1',
  'pixel_0_2',
  'pixel_0_3',
  'pixel_0_4',
  'pixel_0_5',
  'pixel_0_6',
  'pixel_0_7',
  'nixel 1 0'.
```

In [97]:

```
plt.figure(figsize=(20,4))
for index,(image,label) in enumerate(zip(digits.data[0:5],digits.target[0:5])):
    plt.subplot(1,5,index+1)
    plt.imshow(np.reshape(image,(8,8)),cmap=plt.cm.gray)
    plt.title('Number:%i\n'%label,fontsize=15)
```


In [98]:

```
x_train,x_test,y_train,y_test=train_test_split(digits.data,digits.target,test_size=0.30)
```

In [99]:

(1257,)
(540,)

```
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)

(1257, 64)
(540, 64)
```

```
In [100]:
```

```
logr=LogisticRegression(max_iter=100000)
```

In [101]:

```
logr.fit(x_train,y_train)
```

Out[101]:

LogisticRegression(max_iter=100000)

In [102]:

```
print(logr.predict(x_test))
```

In [103]:

```
print(logr.score(x_test,y_test))
```

0.9611111111111111

In []: