GLM assumptions and diagnostics

Maarten Speekenbrink

Experimental Psychology University College London

Statistics lecture 4

Outline

- GLM assumptions
 - Unbiasedness
 - Normality
 - Homoscedasticity
 - Independence
- Transformations
- Practical problems
 - Outliers
 - Multicollinearity
- Polynomial regression

$$Y_i = \beta_0 + \beta_1 X_{1i} + \dots + \beta_{p-1} X_{p-1,i} + \epsilon_i$$
 $\epsilon_i \sim N(0,\sigma)$

- Normality: ϵ_i is Normally distributed
- Unbiasedness: the mean of ϵ_i is 0 (the model predictions are unbiased)
- Homoscedasticity: ϵ_i has constant variance σ^2
- Independence: ε_i is independent of ε_i (for all i,j

$$Y_i = \beta_0 + \beta_1 X_{1i} + \ldots + \beta_{p-1} X_{p-1,i} + \epsilon_i$$
 $\epsilon_i \sim N(0,\sigma)$

- Normality: ϵ_i is Normally distributed
- Unbiasedness: the mean of ϵ_i is 0 (the model predictions are unbiased)
- Homoscedasticity: ϵ_i has constant variance σ^2
- Independence: ε_i is independent of ε_i (for all i,j

$$Y_i = \beta_0 + \beta_1 X_{1i} + \dots + \beta_{p-1} X_{p-1,i} + \epsilon_i$$
 $\epsilon_i \sim N(0,\sigma)$

- Normality: ϵ_i is Normally distributed
- Unbiasedness: the mean of ϵ_i is 0 (the model predictions are unbiased)
- Homoscedasticity: ϵ_i has constant variance σ^2
- Independence: ε_i is independent of ε_i (for all i,j

$$Y_i = \beta_0 + \beta_1 X_{1i} + \dots + \beta_{p-1} X_{p-1,i} + \epsilon_i$$
 $\epsilon_i \sim N(0,\sigma)$

- Normality: ϵ_i is Normally distributed
- Unbiasedness: the mean of ϵ_i is 0 (the model predictions are unbiased)
- Homoscedasticity: ϵ_i has constant variance σ^2
- Independence: ε_i is independent of ε_i (for all i,j

$$Y_i = \beta_0 + \beta_1 X_{1i} + \dots + \beta_{p-1} X_{p-1,i} + \epsilon_i$$
 $\epsilon_i \sim N(0,\sigma)$

- Normality: ϵ_i is Normally distributed
- Unbiasedness: the mean of ϵ_i is 0 (the model predictions are unbiased)
- Homoscedasticity: ϵ_i has constant variance σ^2
- Independence: ε_i is independent of ε_i (for all i,j)

Useful graphs: Scatterplot

- Useful to assess bivariate linearity (unbiased model predictions)
- Can be misleading when there are multiple predictors in the model

Useful graphs: Predicted vs residual

- There should be no relation between predictions and error (residuals)
- Useful to assess unbiasedness and homoscedasticity

predicted

Useful graphs: Histogram of residuals

Should look like a normal distribution

Useful graphs: Quantile-Quantile (QQ)

- A quantile is the value of a variable such that a certain percentage of the distribution has values equal to or smaller than it
 - e.g., the 25% quantile is a value y such that $p(Y \le y) = .25$

Useful graphs: Quantile-Quantile (QQ)

- A Q-Q plot compares observed quantiles to theoretical quantiles
 - For each Y_i , estimate $\hat{p}_i \approx p(Y \le Y_i)$ as the proportion of values that are equal to or smaller than Y_i
 - Use a standard Normal distribution to determine Q_i such that $p(Y \le Q_i) = \hat{p}_i$
 - Plot Y_i against Q_i. If the distribution is Normal, they should roughly lie on straight line.

Unbiasedness

- Assess
 - Predicted-residual plot (and scatterplots)
- If violated
 - Biased predictions
- Remedies
 - Transform predictors
 - Polynomial regression
 - Use alternative model (e.g., nonlinear or nonparametric regression)

Normality

- Assess
 - · Q-Q plot, histogram
 - Tests (Shapiro-Wilk, Kolmogorov-Smirnov)
- If violated
 - Biased test results
- Remedies
 - Transform dependent variable

residual

Theoretical Quantiles

Examples of non-normal distributions

Negatively (left) skewed distribution

7 / 27

Examples of non-normal distributions

Positively (right) skewed distribution

Observed Quantiles

Examples of non-normal distributions

Heavy-tailed distribution

Observed Quantiles

Homoscedasticity

Assess

- Predicted-residual plot
- Breusch-Pagan or Koenker test
- Levene test (for grouped data)
- Violation (heteroscedasticity)
 - unbiased parameter estimates
 - biased test results

- Weighted least squares estimation
- Transform dependent variable

Independence

- Assess
 - A priori (by design)
 - Sequential dependence (for ordered data):
 - Predicted-residual plot
 - Durbin-Watson test (sequential dependence)
- Violation (dependent errors)
 - model mis-specification
- Remedies
 - Repeated measures/multilevel analysis

residual

Theoretical Quantiles

Х

- Why transform?
 - achieve unbiasedness (linearity)
 - achieve homoscedasticity
 - achieve normality (or symmetry about the regression line)
- Can transform both dependent variable and predictors
 - start with dependent to achieve homoscedasticity/normality
 - transform predictors to achieve unbiasedness (linearity)
- Transforming dependent variable changes the distribution of the errors!

- Why transform?
 - achieve unbiasedness (linearity)
 - achieve homoscedasticity
 - achieve normality (or symmetry about the regression line)
- Can transform both dependent variable and predictors
 - start with dependent to achieve homoscedasticity/normality
 - transform predictors to achieve unbiasedness (linearity)
- Transforming dependent variable changes the distribution of the errors!

- Why transform?
 - achieve unbiasedness (linearity)
 - achieve homoscedasticity
 - achieve normality (or symmetry about the regression line)
- Can transform both dependent variable and predictors
 - start with dependent to achieve homoscedasticity/normality
 - transform predictors to achieve unbiasedness (linearity)
- Transforming dependent variable changes the distribution of the errors!

- Why transform?
 - achieve unbiasedness (linearity)
 - achieve homoscedasticity
 - achieve normality (or symmetry about the regression line)
- Can transform both dependent variable and predictors
 - start with dependent to achieve homoscedasticity/normality
 - transform predictors to achieve unbiasedness (linearity)
- Transforming dependent variable changes the distribution of the errors!

- Why transform?
 - achieve unbiasedness (linearity)
 - achieve homoscedasticity
 - achieve normality (or symmetry about the regression line)
- Can transform both dependent variable and predictors
 - start with dependent to achieve homoscedasticity/normality
 - transform predictors to achieve unbiasedness (linearity)
- Transforming dependent variable changes the distribution of the errors!

Some common transformations

log transform

$$Y_i' = \log(Y_i)$$

square-root transform

$$Y_i' = \sqrt{Y_i}$$

inverse transform

$$Y_i' = \frac{1}{Y_i}$$

The 2000 US elections

The 2000 US elections

$\texttt{Buchanan}_i = \beta_0 + \beta_1 \texttt{total}_i + \epsilon_i$

$log(Buchanan)_i = \beta_0 + \beta_1 total_i + \epsilon_i$

$$\sqrt{(\text{Buchanan})_i} = \beta_0 + \beta_1 \text{total}_i + \epsilon_i$$

 $\log(\text{Buchanan})_i = \beta_0 + \beta_1 \log(\text{total})_i + \epsilon_i$

$$\sqrt{(\text{Buchanan})_i} = \beta_0 + \beta_1 \sqrt{(\text{total})_i} + \epsilon_i$$

- What are they?
 - "Unusual" data points
 - Far removed from other data points
- Consequences
 - Can have severe effect on estimates
- Detection
 - Residuals
 - Mahalanobis distance, Leverage, studentized deleted residual, Cook's distance
- Remedies
 - Remove them ... but carefully

- What are they?
 - "Unusual" data points
 - Far removed from other data points
- Consequences
 - Can have severe effect on estimates
- Detection
 - Residuals
 - Mahalanobis distance, Leverage, studentized deleted residual, Cook's distance
- Remedies
 - Remove them ... but carefully

- What are they?
 - "Unusual" data points
 - Far removed from other data points
- Consequences
 - Can have severe effect on estimates
- Detection
 - Residuals
 - Mahalanobis distance, Leverage, studentized deleted residual, Cook's distance
- Remedies
 - Remove them ... but carefully

- What are they?
 - "Unusual" data points
 - Far removed from other data points
- Consequences
 - Can have severe effect on estimates
- Detection
 - Residuals
 - Mahalanobis distance, Leverage, studentized deleted residual, Cook's distance
- Remedies
 - Remove them ... but carefully

Measures for outlier detection

- Mahalanobis distance
 - Distance of a (multivariate) data point from the center (means)
 - Follows χ^2 -distribution with p-1 degrees of freedom (for p-1 predictors)
- Leverage (lever)
 - Weight of data point in parameter estimates
 - Average leverage is $\overline{h} = \frac{p}{n}$, where p=number of parameters
 - High values (e.g., $> \frac{2p}{n}$) indicate possible problems
- Studentized deleted residual
 - Does a data point require its "own intercept"?
 - Follows t distribution with n-p-1 degrees of freedom
- Cook's distance
 - Does omission of a data point change model predictions?
 - Combination of leverage and studentized deleted residual
 - Values larger than 1 (or 2) indicate possible problems

Multiple tests and Type I error

When using outlier tests (e.g., studentized deleted residual),
 effectively performing n tests. Each test has

$$p(\text{type I error}) = p(\text{reject } H_0|H_0 \text{ true}) = \alpha$$

• When performing multiple tests, probability of making at least one type I error is (much) larger than α ! For n independent tests:

$$p(\text{at least 1 type I error}) = \alpha_{FW} = 1 - (1 - \alpha)^n$$

- e.g., with n = 100, p(at least 1 type I error) = .994
- To keep family-wise significance level $\alpha_{\rm FW}$ under control, need to adjust α for each individual test. The Bonferroni correction is

$$\alpha = \frac{\alpha_{\text{FW}}}{n}$$

which is easy to use but rather conservative

Multiple tests and Type I error

 When using outlier tests (e.g., studentized deleted residual), effectively performing n tests. Each test has

$$p(\text{type I error}) = p(\text{reject } H_0|H_0 \text{ true}) = \alpha$$

• When performing multiple tests, probability of making at least one type I error is (much) larger than α ! For n independent tests:

$$p(\text{at least 1 type I error}) = \alpha_{FW} = 1 - (1 - \alpha)^n$$

e.g., with n = 100, p(at least 1 type I error) = .994

• To keep family-wise significance level α_{FW} under control, need to adjust α for each individual test. The Bonferroni correction is

$$\alpha = \frac{\alpha_{\text{FW}}}{n}$$

which is easy to use but rather conservative

Multiple tests and Type I error

 When using outlier tests (e.g., studentized deleted residual), effectively performing n tests. Each test has

$$p(\text{type I error}) = p(\text{reject } H_0 | H_0 \text{ true}) = \alpha$$

• When performing multiple tests, probability of making at least one type I error is (much) larger than α ! For n independent tests:

$$p(\text{at least 1 type I error}) = \alpha_{FW} = 1 - (1 - \alpha)^n$$

e.g., with n = 100, p(at least 1 type I error) = .994

• To keep family-wise significance level α_{FW} under control, need to adjust α for each individual test. The Bonferroni correction is

$$\alpha = \frac{\alpha_{\mathsf{FW}}}{n}$$

which is easy to use but rather conservative

The 2000 US elections: The Palm Beach ballot

Confusion at Palm Beach County polls

Some Al Gore supporters may have mistakenly voted for Pat Buchanan because of the ballot's design.

The 2000 US elections: The Palm Beach ballot

"Palm Beach County is a Pat Buchanan stronghold and that's why Pat Buchanan received 3,407 votes there."

Ari Fleischer, Spokesman for George W. Bush

"That's nonsense. [...] the number of Buchanan activists in the county [is] between 300 and 500 – nowhere near the 3,407 who voted for him."

Jim Cunningham, Palm Beach County's Reform Party

Is Palm Beach an outlier?

Is Palm Beach an outlier?

Is Palm Beach an outlier?

county	Malahanobis	Leverage	Studentized DR	Cook's D
Palm Beach	6.788	0.118*	20.735*	3.776*
Miami-Dade	16.568*	0.266*	-3.612*	1.994*
Pinellas	5.517	0.099*	0.107	0.001
Hillsborough	4.24	0.079*	-0.135	0.001
Broward	13.513*	0.220*	-2.083	0.581

Is Palm Beach an outlier? (on log scale)

Is Palm Beach an outlier? (on log scale)

Is Palm Beach an outlier? (on log scale)

county	Malahanobis	Leverage	Studentized DR	Cook's D
Palm Beach	-33.997*	0.059*	$3.327^{\%}$	0.299
Monroe	-36.543*	0.015	-2.263	0.036
Broward	-33.715*	0.069*	-0.576	0.012

- What is it?
 - High correlation between predictor variables
 - Predictors account for same variation of Y
- Consequences
 - Estimation of parameters unreliable
 - Significance tests biased
- Detection
 - Tolerance $(1 R_j^2)$, VIF $(\frac{1}{1 R_i^2})$
 - Correlation matrix
- Remedies
 - Remove collinear/correlated predictors
 - Increase sample size

- What is it?
 - High correlation between predictor variables
 - Predictors account for same variation of Y
- Consequences
 - Estimation of parameters unreliable
 - Significance tests biased
- Detection
 - Tolerance $(1-R_j^2)$, VIF $(\frac{1}{1-R_i^2})$
 - Correlation matrix
- Remedies
 - Remove collinear/correlated predictors
 - Increase sample size

$$b_j \pm \sqrt{\frac{F_{1,n-p;\alpha}\mathsf{MSE}}{(n-1)S_{X_j}^2(1-R_j^2)}}$$

- R_j² is for model with X_j as dependent and other Xs as predictors
- Higher R_j^2 , larger interval
- If $R_i^2 = 1...$

- What is it?
 - High correlation between predictor variables
 - Predictors account for same variation of Y
- Consequences
 - Estimation of parameters unreliable
 - Significance tests biased
- Detection
 - Tolerance $(1-R_j^2)$, VIF $(\frac{1}{1-R_i^2})$
 - Correlation matrix
- Remedies
 - Remove collinear/correlated predictors
 - Increase sample size

$$b_j \pm \sqrt{\frac{F_{1,n-p;\alpha}\mathsf{MSE}}{(n-1)S_{X_j}^2(1-\frac{2}{K_j^2})}}$$

- R_j² is for model with X_j as dependent and other Xs as predictors
- Higher R_j^2 , larger interval
- If $R_i^2 = 1...$

- What is it?
 - High correlation between predictor variables
 - Predictors account for same variation of Y
- Consequences
 - Estimation of parameters unreliable
 - Significance tests biased
- Detection
 - Tolerance $(1-R_j^2)$, VIF $(\frac{1}{1-R_i^2})$
 - Correlation matrix
- Remedies
 - Remove collinear/correlated predictors
 - Increase sample size

$$b_j \pm \sqrt{\frac{F_{1,n-p;\alpha}\mathsf{MSE}}{(n-1)S_{X_j}^2(1-R_j^2)}}$$

- R_j² is for model with X_j as dependent and other Xs as predictors
- Higher R_j^2 , larger interval
- If $R_i^2 = 1...$

- What is it?
 - High correlation between predictor variables
 - Predictors account for same variation of Y
- Consequences
 - Estimation of parameters unreliable
 - Significance tests biased
- Detection
 - Tolerance $(1 R_j^2)$, VIF $(\frac{1}{1 R_j^2})$
 - Correlation matrix
- Remedies
 - Remove collinear/correlated predictors
 - Increase sample size

$$b_j \pm \sqrt{\frac{F_{1,n-p;\alpha}\mathsf{MSE}}{(n-1)S_{X_j}^2(1-\textcolor{red}{R_j^2})}}$$

- R_j² is for model with X_j as dependent and other Xs as predictors
- Higher R_j^2 , larger interval
- If $R_i^2 = 1...$

- What is it?
 - High correlation between predictor variables
 - Predictors account for same variation of Y
- Consequences
 - Estimation of parameters unreliable
 - Significance tests biased
- Detection
 - Tolerance $(1 R_j^2)$, VIF $(\frac{1}{1 R_j^2})$
 - Correlation matrix
- Remedies
 - Remove collinear/correlated predictors
 - Increase sample size

$$b_j \pm \sqrt{\frac{F_{1,n-p;\alpha}\mathsf{MSE}}{(n-1)S_{X_j}^2(1-\textcolor{red}{R_j^2})}}$$

- R_j² is for model with X_j as dependent and other Xs as predictors
- Higher R_j^2 , larger interval
- If $R_i^2 = 1...$

MODEL C: $Y_i = b_0 + e_i$

MODEL A1: $Y_i = b_0 + b_1 X_{1i} + e_i$

MODEL A2: $Y_i = b_0 + b_2 X_{2i} + e_i$

MODEL C: $Y_i = b_0 + e_i$

MODEL A1: $Y_i = b_0 + b_1 X_{1i} + e_i$

MODEL A2: $Y_i = b_0 + b_2 X_{2i} + e_i$

$$A + B + C + D = SSE(C)$$

MODEL C: $Y_i = b_0 + e_i$

MODEL A1: $Y_i = b_0 + b_1 X_{1i} + e_i$

MODEL A2: $Y_i = b_0 + b_2 X_{2i} + e_i$

$$A+B+C+D=SSE(C)$$

 $A+D=SSE(A1)$

MODEL C: $Y_i = b_0 + e_i$

MODEL A1: $Y_i = b_0 + b_1 X_{1i} + e_i$

MODEL A2: $Y_i = b_0 + b_2 X_{2i} + e_i$

$$A+B+C+D=SSE(C)$$

 $A+D=SSE(A1)$

$$A + B = SSE(A2)$$

MODEL C: $Y_i = b_0 + e_i$

MODEL A1: $Y_i = b_0 + b_1 X_{1i} + e_i$

MODEL A2: $Y_i = b_0 + b_2 X_{2i} + e_i$

$$A+B+C+D=SSE(C)$$

 $A+D=SSE(A1)$
 $A+B=SSE(A2)$
 $A=SSE(A3)$

MODEL C: $Y_i = b_0 + e_i$

MODEL A1: $Y_i = b_0 + b_1 X_{1i} + e_i$

MODEL A2: $Y_i = b_0 + b_2 X_{2i} + e_i$

MODEL A3: $Y_i = b_0 + b_1 X_{1i} + b_2 X_{2i} + e_i$

$$A+B+C+D=SSE(C)$$

$$A + D = SSE(A1)$$

$$A + B = SSE(A2)$$

$$A = SSE(A3)$$

Comparing A3 to A2:

$$B = SSR(X_1)$$

MODEL C: $Y_i = b_0 + e_i$

MODEL A1: $Y_i = b_0 + b_1 X_{1i} + e_i$

MODEL A2: $Y_i = b_0 + b_2 X_{2i} + e_i$

MODEL A3: $Y_i = b_0 + b_1 X_{1i} + b_2 X_{2i} + e_i$

$$A+B+C+D=SSE(C)$$

$$A + D = SSE(A1)$$

$$A + B = SSE(A2)$$

$$A = SSE(A3)$$

Comparing A3 to A2:

$$B = SSR(X_1)$$

Comparing A3 to A1:

$$D = SSR(X_2)$$

MODEL C: $Y_i = b_0 + e_i$

MODEL A1: $Y_i = b_0 + b_1 X_{1i} + e_i$

MODEL A2: $Y_i = b_0 + b_2 X_{2i} + e_i$

MODEL A3: $Y_i = b_0 + b_1 X_{1i} + b_2 X_{2i} + e_i$

$$A+B+C+D=SSE(C)$$

$$A+D=SSE(A1)$$

$$A + B = SSE(A2)$$

$$A = SSE(A3)$$

Comparing A3 to A2:

$$B = SSR(X_1)$$

Comparing A3 to A1:

$$D = SSR(X_2)$$

$$C = ?$$

MODEL C: $Y_i = b_0 + e_i$

MODEL A1: $Y_i = b_0 + b_1 X_{1i} + e_i$

MODEL A2: $Y_i = b_0 + b_2 X_{2i} + e_i$

MODEL A3: $Y_i = b_0 + b_1 X_{1i} + b_2 X_{2i} + e_i$

$$A+B+C+D=SSE(C)$$

$$A+D=SSE(A1)$$

$$A + B = SSE(A2)$$

$$A = SSE(A3)$$

Comparing A3 to A2:

$$B = SSR(X_1)$$

Comparing A3 to A1:

$$D = SSR(X_2)$$

$$C = ?$$

Polynomial regression

 Attempts to capture non-linear effects by also including powers of predictor

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \epsilon_i$$

Can include higher-order terms as well

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \beta_3 X_i^3 \dots + \beta_{p-1} X_i^{(p-1)} + \epsilon_i$$

(maximum p = n parameters with n observations: perfect fit)

Y =time to escape

X = number of shocks received

MODEL C: $Y_i = \beta_0 + \epsilon_i$

Y =time to escape

X = number of shocks received

MODEL C: $Y_i = b_0 + e_i$

Y =time to escape

X = number of shocks received

MODEL C: $Y_i = 5.88 + e_i$

Y =time to escape

X = number of shocks received

MODEL C: $Y_i = 5.88 + e_i$

SSE(C) = 199.05

Y = time to escape

X = number of shocks received

MODEL C: $Y_i = 5.88 + e_i$

SSE(C) = 199.05

MODEL A1: $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$

$$Y =$$
time to escape

X = number of shocks received

MODEL C: $Y_i = 5.88 + e_i$

SSE(C) = 199.05

MODEL A1: $Y_i = 10.48 - 0.61X_i + e_i$

Y =time to escape

X = number of shocks received

MODEL C: $Y_i = 5.88 + e_i$

SSE(C) = 199.05

MODEL A1: $Y_i = 10.48 - 0.61X_i + e_i$

 $SSE(A1) = 71.32, R^2 = 0.642$

 $F_{1,14} = 25.07, p < .001, PRE = 0.642$

$$Y = \text{time to escape}$$

$$X =$$
 number of shocks received

MODEL C: $Y_i = 5.88 + e_i$

SSE(C) = 199.05

MODEL A1: $Y_i = 10.48 - 0.61X_i + e_i$

 $SSE(A1) = 71.32, R^2 = 0.642$

 $F_{1,14} = 25.07, p < .001, PRE = 0.642$

MODEL A2: $Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \epsilon_i$

$$Y = \text{time to escape}$$

$$X =$$
 number of shocks received

MODEL C: $Y_i = 5.88 + e_i$

SSE(C) = 199.05

MODEL A1: $Y_i = 10.48 - 0.61X_i + e_i$

 $SSE(A1) = 71.32, R^2 = 0.642$

 $F_{1,14} = 25.07, p < .001, PRE = 0.642$

MODEL A2: $Y_i = 12.30 - 1.39X_i + 0.05X_i^2 + e_i$

$$Y = \text{time to escape}$$

$$X =$$
 number of shocks received

MODEL C:
$$Y_i = 5.88 + e_i$$

$$SSE(C) = 199.05$$

MODEL A1:
$$Y_i = 10.48 - 0.61X_i + e_i$$

$$SSE(A1) = 71.32, R^2 = 0.642$$

$$F_{1,14} = 25.07, p < .001, PRE = 0.642$$

MODEL A2:
$$Y_i = 12.30 - 1.39X_i + 0.05X_i^2 + e_i$$

$$SSE(A2) = 55.98, R^2 = 0.719$$

$$F_{1.13} = 3.56, p = .08, PRE = 0.216$$

Further reading

Judd, McClelland & Ryan:

- Chapter 13 for outliers and violation of model assumptions
- Part of Chapter 7 for polynomial regression

For next week:

- Remainder of Chapter 7 in Judd, McClelland & Ryan (2009)
- MacKinnon, Fairchild & Fritz (2007). Mediation analysis. Annual Review of Psychology (on Moodle, you can skip "Extensions of the single-mediator model")