Home Work 10

63. end Recursive Binary Search;

The problems in this problem set cover lectures C11 and C12

1. Define a recursive binary search algorithm. a. If lb > ubReturn -1 else Mid := (lb+ub)/2If Array(Mid) = elementReturn Mid Elsif Array(Mid) < Element Return Binary Search(Array, mid+1, ub, Element) Else Return Binary Search(Array, lb, mid-1, Element) End if End if Implement your algorithm as an Ada95 program. 46. function Binary_Search (My_Search_Array : My_Array; Lb : Integer; Ub: Integer; Element : Integer) return Integer is 47. mid: integer; 48. begin 49. if (Lb> Ub) then 50. return -1; 51. else 52. Mid := (Ub+Lb)/2;53. if My_Search_Array(Mid) = Element then return(Mid); 54. 55. elsif My Search Array(Mid) < Element then return (Binary Search(My Search Array, Mid+1, Ub, Element)); 57. else 58. return (Binary_Search(My_Search_Array, Lb, Mid-1, Element)); 59. end if; 60. end if; 62. end Binary Search;

c. What is the recurrence equation that represents the computation time of your algorithm?

```
Recursive Binary Search
                                                                                            Cost
if (Lb> Ub) then
                                                                                            c1
    return -1;
                                                                                            c2
else
                                                                                            c3
    Mid := (Ub+Lb)/2;
                                                                                            c4
    if My Search Array(Mid) = Element then
                                                                                            c5
        return(Mid);
                                                                                            c6
    elsif My Search Array(Mid) < Element then
                                                                                            c7
        return (Binary Search (My Search Array, Mid+1, Ub, Element));
                                                                                            T(n/2)
                                                                                    c8
        return (Binary Search (My Search Array, Lb, Mid-1, Element));
                                                                                            T(n/2)
                                                                                            c9
end if;
                                                                                            c10
```

In this case, only one of the recursive calls is made, hence only one of the T(n/2) terms is included in the final cost computation.

Therefore
$$T(n)$$
 = $(c1+c2+c3+c4+c5+c6+c7+c8+c9+c10) + T(n/2)$
= $T(n/2) + C$

d. What is the Big-O complexity of your algorithm? Show all the steps in the computation based on your algorithm.

$$T(n) = T(n/2) + C$$

$$Y T(n) = aT(n/b) + cn^{k},$$
where a,c > 0 and b > 1
$$O_{n}^{\log_{b} a} ? \qquad a ? b^{k}$$

$$O_{n}^{k} \log_{b} n ? \qquad a ? b^{k}$$
The second term is used,

- 2. What is the Big-O complexity of:
- a. Heapify function

T(n) =

A heap is an array that satisfies the heap properties i.e., $A(i) \le A(2i)$ and $A(i) \le A(2i+1)$.

The heapify function at 'i' makes A(i .. n) satisfy the heap property, under the assumption that the subtrees at A(2i) and A(2i+1) already satisfy the heap property.

Heapify function	Cost
Lchild := Left(I);	c1
Rchild := Right(I);	c2
if (Lchild <= Heap_Size and Heap_Array(Lchild) > Heap_Array(I))	c3
Largest:= Lchild;	c4
else	c5
Largest := I;	c6
if (Rchild <= Heap_Size)	c7
if Heap_Array(Rchild) > Heap_Array(Largest)	c8
Largest := Rchild;	c 9
if (Largest /= I) then	c10
Swap(Heap_Array, I, Largest);	c11
Heapify(Heap_Array, Largest);	T(2n/3)

$$T(n) = T(2n/3) + C'$$

= $T(2n/3) + O(1)$

a = 1, b = 3/2, f(n) = 1, therefore by master theorem,

$$T(n) = O\left(n^{\log_b a} \log n\right)$$

$$= O\left(n^{\log_{3/2} 1} \log n\right)$$

$$= O(1 * \log n)$$

$$= O(\log n)$$

The important point to note here is the T(2n/3) term, which arises in the worst case, when the heap is asymmetric, i.e., the right subtree has one level less than the left subtree (or vice-versa).

b. Build_Heap function

Code	Cost t(n)
Heap_Size := Size; for I in reverse 1 (Size/2) loop Heapify(Heap_Array, I); end loop;	c1 n/2+1 (n/2) log n n/2
C T() 1. (0.1. (0.1) 1. (0.1)	

Therefore
$$T(n) = c1 + n/2 + 1 + (n/2)\log n + n/2$$

= $(n\log(n))/2 + n + (c1+1)$

```
Simplifying
=> T(n) = O(n log(n))

c. Heap_Sort

Heap Sort

Build_Heap(Heap_Array, Size);
for I in reverse 2.. size loop
   Swap(Heap_Array, 1, I);
```

Heap_Size:= Heap_Size -1;

Heapify(Heap Array, 1);

$$T(n) = 2 O(n\log n) + (c1+c2+1)n - O(\log n) + = 2 O(n\log n) - O(\log n) + c'n$$

Simplifying,

$$\Rightarrow$$
 $T(n) = O(nlogn)$

Cost t(n)

O(nlogn))
n
c1(n-1)
c2(n-1)
O(log n)(n-1)