Summary

1.

The derivative of $f(x) = e^x$ is $f'(x) = e^x$.

The function $f(x) = e^x$ is its own derivative.

Example 1. Find the derivative of each.

- (a) $y = 7e^x$
- (b) $y = x^4 \cdot e^x$
- (c) $g(x) = \frac{x^2}{e^x}$
- (d) $f(x) = \ln(e^x)$

Chain Rule for the Exponential Function If f(x) is differentiable, then the derivative of $h(x) = e^{f(x)}$ is $h'(x) = e^{f(x)} \cdot f'(x)$

Example 2. Find $\frac{dy}{dx}$ for each.

- (a) $y = e^{3x-3}$
- (b) $y = e^{6x 0.5x^6}$
- (c) $g(x) = e^{1-\ln(x)}$
- (d) $f(x) = \ln(e^{3x} 8)$

Applications

The world's population during the 20th century closely follows the equation

$$p(t) = 1.419e^{0.014t}$$
 [0, 100]

where t represents the number of years since 1900 and p(t) represents the world's population (in billions).

Evaluate and interpret p'(10) and compare it to p'(99).