Московский физико-технический институт (госудраственный университет)

Лабораторная работа по общему курсу физики Электричество и магнетизм

Спектральный аназиз электрических сигналов.

Таранов Александр Группа Б01-206

Содержание

1	Teo	ретическое введение	1
	1.1	Периодические прямоугольные импульсы	
	1.2	Периодическая последовательность цугов	4
	1.3	Амплитудно-модулированные колебания	
2	Ход	, работы	
	2.1	Прямоугольные импульсы и проверка соотношений неоределенностей.	4
	2.2	Спектр периодической последовательности цугов	,
	2.3	Исследование спектра амплитудно-модулированного сигнала	
	2.4	Изучение фильтрации сигналов	
3	Зак	почение	

Цель работы: изучить спектры сигналов различной формы и влияние параметров сигналов на вид соответствующих спектров; проверить справедливость соотношений неопределенностей, познакомиться с работой спектральных фильтров на примере RC-цепочки.

В работе используются: генератор сигналов произваольной формы, цифровой осцилограф с функцией быстрого преобразования Фурье, подключенный к персональному компьютеру.

1. Теоретическое введение

Используется разложение в сумму синусов и косинусов с различными аргументами или, как чаще его называют, разложение в ряд Фурье.

Пусть задана функция f(t), которая периодически повторяется с частотой $\Omega_1=\frac{2\pi}{T}$, где T — период повторения импульсов. Её разложение в ряд Фурье имеет вид

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(n\Omega_1 t\right) + b_n \sin\left(n\Omega_1 t\right) \right] \tag{1}$$

или

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\Omega_1 t - \psi_n).$$
 (2)

Если сигнал чётен относительно t=0, в тригонометрической записи остаются только члены с косинусами. Для нечетной наоборот.

Коэффициенты определяются по формуле

$$a_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \cos(n\Omega_1 t) dt,$$

$$b_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \sin(n\Omega_1 t) dt.$$
(3)

Здесь t_1 – время, с которого мы начинаем отсчет.

Сравнив формулы (1) и (2) можно получить выражения для A_n и ψ_n :

$$A_n = \sqrt{a_n^2 + b_n^2},$$

$$\psi_n = \arctan \frac{b_n}{a_n}.$$
(4)

1.1. Периодические прямоугольные импульсы

Введем величину: $\Omega_1 = \frac{2\pi}{T}$, где T – период повторения импульсов. Коэффициенты при косинусных составляющих будут равны

$$a_n = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_0 \cos(n\Omega_1 t) dt = 2V_0 \frac{\tau}{T} \frac{\sin(n\Omega_1 \tau/2)}{n\Omega_1 \tau/2} \sim \frac{\sin x}{x}.$$
 (5)

Здесь V_0 - амплитуда сигнала.

Поскольку наша функция четная, то $b_n = 0$.

Рис. 1: График сигнала и его спектра (прямугольный импульс)

Пусть T кратно τ . Тогда введем ширину спектра, равную $\Delta\omega$ — расстояние от главного максимума до первого нуля огибающей, возникающего, как нетрудно убедиться при $n=\frac{2\pi}{\tau\Omega_1}$. При этом

$$\Delta\omega\tau \simeq 2\pi \Rightarrow \Delta\nu\Delta t \simeq 1. \tag{6}$$

1.2. Периодическая последовательность цугов

Рис. 2: График сигнала и его спектра (цуг)

Возьмём цуги колебания $V_0\cos(\omega_0 t)$ с длительностью цуга τ и периодом повторений T.

Функция f(t) снова является четной относительно t=0. Коэффициент при n-ой гармонике согласно формуле (3) равен

$$a_{n} = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_{0} \cos(\omega_{0}t) \cdot \cos(n\Omega_{1}t) dt =$$

$$= V_{0} \frac{\tau}{T} \left(\frac{\sin\left[\left(\omega_{0} - n\Omega_{1}\right)\frac{\tau}{2}\right]}{\left(\omega_{0} - n\Omega_{1}\right)\frac{\tau}{2}} + \frac{\sin\left[\left(\omega_{0} + n\Omega_{1}\right)\frac{\tau}{2}\right]}{\left(\omega_{0} + n\Omega_{1}\right)\frac{\tau}{2}} \right).$$

$$(7)$$

Пусть T кратно τ . Тогда спектры последовательности прямоугильных сигналов и цугов аналогичны, но максимумы сдвинуты на ω_0 .

1.3. Амплитудно-модулированные колебания

Рассмотрим гармонические колебания высокой частоты ω_0 , амплитуда которых медленно меняется по гармоническому закону с частотой $\Omega \ll \omega_0$.

Рис. 3: Пример амплитудной модуляции

$$f(t) = A_0 \left[1 + m \cos \Omega t \right] \cos \omega_0 t. \tag{8}$$

Коэффициент m называется ϵ лубиной модуляции. При m<1 амплитуда меняется от минимальной $A_{min}=A_0(1-m)$ до максимальной $A_{max}=A_0(1+m)$. Глубина модуляции может быть представлена в виде

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}}. (9)$$

Простым тригонометрическим преобразованием уравнения (8) можно найти спектр колебаний

$$f(t) = A_0 \cos \omega_0 t + \frac{A_0 m}{2} \cos (\omega_0 + \Omega) t + \frac{A_0 m}{2} \cos (\omega_0 - \Omega) t.$$
 (10)

2. Ход работы

2.1. Прямоугольные импульсы и проверка соотношений неоределенностей

Из соотношения неопределенности найдем ширину спектра

$$\Delta \nu = 1/\tau = 1/50 \cdot 10^{-6} = 20$$
 к Γ ц

Будем изменять $\nu_{\text{повт}}$ при фиксированном τ , а затем τ при фиксированном $\nu_{\text{повт}}$:

Рис. 4: Спектр при $\nu_{\text{повт}} = 1 \ \text{к} \Gamma$ ц, $\tau = 100 \ \text{мкс}$

Из графиков видно выполнение соотношение неоределенности: для спектра при $\nu_{\text{повт}}=1~\mathrm{k}\Gamma$ ц, $\tau=100~\mathrm{mkc},~\Delta\nu=10~\mathrm{k}\Gamma$ ц = $1/100\cdot10^{-6}$.

Измерим амплитуды и частоты нескольких гармоник, сравним их с значениями рассчитанными теоретически по формулам:

$$\nu_n \frac{n}{T}, |a_n| = \frac{|sin(\frac{\pi n \tau}{T})|}{\pi n}$$

n	0	1	2	3	4	5	6	7	8
$\nu_{\text{эксп}}$, к Γ ц	0	1	2	3	4	5	6	7	8
$ u_{\text{теор}}, \text{к}\Gamma$ ц	0	1	2	3	4	5	6	7	8
$a_{\text{эксп}}$, мВ	3172	563	532,9	493,5	433,3	366,2	294,4	213,4	134,7
$a_{\text{теор}}$, мВ	-	0,0984	0,0935	0,0858	0,0757	0,0637	0,0505	0,0368	0,0234
$a_{\scriptscriptstyle 9KCII}/a_1$	-	1,00	0,95	0,88	0,77	0,65	0,52	0,38	0,24
a_{reop}/a_1	-	1,00	0,95	0,87	0,77	0,65	0,51	0,37	0,24

Теперь зафиксируем период повтрения прямоугольное сигнала и будем изменять длительность испульса:

τ , MKC	20	40	60	80	100	120	140	160	180	200
ν , к Γ ц	49	25	17	15	10	8	7	6	6,5	5
$1/\tau$, MKC · 10^6	0,050	0,025	0,017	0,013	0,010	0,008	0,007	0,006	0,006	0,005

Зафиксируем длительность импульса прямоугольного сигнала и будем изменять период повторения:

ν , к Γ ц							, ,	,
$\delta \nu$, к Γ ц	5	4	3	2	1	0,5	0,4	0,2

Построим графики зависимости $\Delta \nu(1/\tau)$ и $\delta \nu(1/T)$:

$$\overline{x}$$
 σ_x^2 \overline{y} σ_y^2 r_{xy} a Δa b Δb $2.01\text{e}+00$ $2.88\text{e}+00$ 2.01 $2.88\text{e}+00$ $2.88\text{e}+00$ 1.00 0.00 0.00

$$\overline{x}$$
 σ_x^2 \overline{y} σ_y^2 r_{xy} a Δa b Δb 1.47e-02 1.73e-04 14.85 1.65e+02 1.69e-01 975.15 16.89 0.52 0.33

2.2. Спектр периодической последовательности цугов

Будем изменять параметры сигнала: частоту несущую сигнал, период повторения и чсило периодов синусоиды в одном импульсе.

2.3. Исследование спектра амплитудно-модулированного сигнала

Измерим максимальную и минимальную амплитуды сигнала: $A_{max}=1,504$ В, $A_{min}=496,4$ мВ. $\nu_0=50$ кГц, $\nu_{\rm mog}=2$ нГц.

Измерим амлитуды боковой и основной спетральных линий, в зависимости от глубины модуляции:

Рис. 5: Спектр при $\nu_0=50$ к
Гц, T=1 мс, N=5

Рис. 6: Спектр при $\nu_0=50$ к
Гц, T=1мс, N=3

Рис. 7: Спектр при $\nu_0=50$ к
Гц, T=0.5мс, N=5

m, %	10	20	30	40	50	60	70	80	90	100
$a_{\text{осн}}$, мВ	705	705	705	705	705	705	705	705	705	705
$a_{\text{бок}}, \text{мB}$	34,72	69,91	105	140	175,5	209	247,4	279,4	316,2	351,4
$a_{\text{бок}}/a_{\text{осн}}$	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50

2.4. Изучение фильтрации сигналов

Характеристики сигнала и RC-цепочки:

$$au_{RC}=RC=3$$
мкс, $T=3$ мкс, $au=150$ нс

Сравним исходный и фильтрованный сигнал:

a_{Φ} , мВ	38,62	20	12	6,9	6,2	5,6	4,8	4,2	4,1
a_0 , мВ	170	169	167,8	166,1	163	159,7	156,8	155,7	150
K	0,227	0,118	0,072	0,042	0,038	0,035	0,031	0,027	0,027
n	1	2	3	4	5	6	7	8	9
ν , к Γ ц	200	400	600	800	1000	1200	1400	1600	1800

Построим график зависимости амплитудного коэффициента фильтации от частоты:

3. Заключение

Таким образом теоретическое описание спекторв иссплежуемых сигналов подтвердилось на основе их изучения с помощью генератора и осцилографа.