

Introduction Histogram Density Estimation Parzen Windows kn—Nearest-Neighbor Estimation The Nearest-Neighbor Rule

1. Introduction

Problems

- In most pattern recognition applications it is suspect that that the forms of the density function were known.
- All Parametric densities are unimodal (have a single local maximum), whereas many practical problems involve multi-modal densities.

■ Nonparametric procedures

- Estimating the density functions p(x).
- It can be used with arbitrary distributions and without the assumption that the forms of the underlying densities are known.
- Nonparametric estimation methods:
- **□** Histogram Density Estimation
- **□** Parzen Windows
- □ kn-Nearest-Neighbor Estimation

Ch.3 Content

- Introduction
- Histogram Density Estimation
- Parzen Windows
- kn-Nearest-Neighbor Estimation
- The Nearest-Neighbor Rule

• Basic idea

A vector $x: x = (x_1, ..., x_d)^T$

- ① The region falled x in is partitioned into a sequence of small regions R_i .
- ② Count the number k_i of samples falling in each small region R_i .
- 3 Compute the probabity in region R_i as the density estimate at x.

• Probability that a vector x will fall in region R is:

$$P_R = \int_R p(x')dx' \tag{1}$$

 P_R — a smoothed (or averaged) version of the density function p(x);

R — the falling region;

x — the vector;

2. Density Estimation

• Basic idea

• Probability that k of these n fall in R:

$$P_k = \binom{n}{k} P_R^{\ k} (1 - P_R)^{n-k} \tag{2}$$

n — sample of size;

k - k points fall in R;

• Expected value for *k*:

$$E(k) = nP_R = k$$

and for the density function p.

k/n — a good estimate for the probability P_R

small,
$$p$$
 is constant within it. (4)

$$-\mu(\Re)$$
: a hypervolume in the Euclidean space \Re^n
 \mathbb{R} is so thin it. $\int_{\Re} p(x') dx' \approx p(x) \int_{\Re} dx'$

$$= p(x) \int_{\Re} 1_R(x) dx'$$

 $p(x|\omega_i)$

0.4

$$= p(x)V(\mathfrak{R})$$

 $P_R = \int_R p(x')dx' \approx p(x)V$ V — the volume enclosed by region R;

• Basic idea:

Combining equation (1), (3) and (4) yields:

2. Density Estimation

- ullet To estimate the density at x, we form a sequence of regions
 - A sequence of regions R_1, R_2, \dots, R_N
 - Let V_i be the volume of R_i ,

 $-k_i$ be the number of samples falling in R_i .

 $-\hat{p}_i(x)$ be the i^{th} estimate for $p_i(x)$.

$$\hat{p}_i(x) \cong \frac{k_i/n}{V_i}$$

- The volume $v \to 0$ anyway if we want to use this estimation.
- V cannot be allowed to become small since the number of samples is always limited.

9

• Uninteresting case:

① There is no sample included in \mathcal{R} .

$$\lim_{\begin{subarray}{c} v \to 0 \\ k=0\end{subarray}} \hat{p}(x) = 0 \quad \text{if} \quad n = \text{fixed}$$

② There are unlimited samples in \mathcal{R} .

2. Density Estimation

• Three necessary conditions should apply if we want $\hat{p}_i(x)$ to converge to p(x):

- $2 \lim_{n\to\infty} k_i = \infty$

• There are two different ways of obtaining sequences of regions that satisfy these conditions:

$$\hat{p}_i(\mathbf{x}) \xrightarrow[n \to \infty]{} p(\mathbf{x})$$

- **□** Parzen-window estimation method
- \Box The k_n-nearest neighbor estimation method

Ch.3 Content

- Introduction
- Histogram Density Estimation
- Parzen Windows
- kn-Nearest-Neighbor Estimation
- The Nearest-Neighbor Rule

■ Parzen-window estimation method

$$\hat{p}_n(x) \xrightarrow[n \to \infty]{} p(x)$$

- GOAL: a solution for the problem of the unknown "best" window function.
- **METHOD**: shrink an initial region by specifying the volume V_n as some function of n, such as $\overline{V_n} = 1/\sqrt{n}$.

3. Parzen Windows

1) Parzen-window approach to estimate densities by temporarily assuming that the region \Re^d is in a d-dimensional hypercube V_n . $(V = f(n), \text{ such as } h = 1/\sqrt{n})$

$$V = h^d$$
 (h : the length of an edge of \Re^d)

② Set the window function $\varphi(\mu)$: $\varphi(\mu) = \begin{cases} 1 & |\mu_j| \leq \frac{1}{2}, j = 1, ..., d \\ 0 & otherwise \end{cases}$

The number k_n of samples in this hypercube V_n is:

$$k_n = \sum_{i=1}^n \varphi\left(\frac{x - x_i}{h}\right)$$

—Dataset: $x_1, \dots x_i \dots, x_n$. $-arphi((x-x_i)/h)$ is equal to unity if x_i

falls within the hypercube of volumn V centered at x and equal to zero otherwise.

Kernel function:
$$K(x, x_i) = \frac{1}{V} \varphi\left(\frac{x - x_i}{h}\right)$$

We obtain the estimate:

$$\hat{p}(x) \approx (k_n/n)/V$$

$$k_n = \sum_{i=1}^n \varphi\left(\frac{x - x_i}{h}\right)$$

$$\frac{k_n = \sum_{i=1}^n \varphi\left(\frac{x - x_i}{h}\right)}{\hat{p}(x)} = \frac{1}{n} \sum_{i=1}^n \frac{1}{V} \varphi\left(\frac{x - x_i}{h}\right)$$

$$-\hat{p}(x)$$
 estimates $p(x)$ as an average of functions of x and the samples $(x_i, i = 1, ..., n)$.

These functions φ can be general.

$$\frac{K(x,x_i) = \frac{1}{V}\varphi\left(\frac{x-x_i}{h}\right)}{\hat{p}(x) = \frac{1}{n}\sum_{i=1}^{n}K(x,x_i)}$$

 $K(x,x_i) \ge 0$, $\int K(x,x_i) dx = 1$

Example:

Gaussian kernel function

3. Parzen Windows

Kernel function

• Hypercube kernel function:

$$k(x,x_i) = \begin{cases} \frac{1}{h^d} & \left| x^j - x_i^j \right| \le \frac{h}{2}, \ j = 1, \dots, d \\ 0 & otherwise \end{cases}$$

• Gaussian kernel function:

Faussian kernel function:

$$k(x, x_i) = \frac{1}{\sqrt{(2\pi)^d \rho^{2d} |Q|}} \exp\left[-\frac{1}{2} \frac{(x - x_i)^T Q^{-1} (x - x_i)}{\rho^2}\right]$$

• Hypersphere kernel function:

$$k(x, x_i) = \begin{cases} V^{-1} & ||x - x_i|| \le \rho \\ 0 & otherwise \end{cases}$$

• Case: $p(x) \sim N(0,1)$

Let
$$\varphi(\mu) = \frac{1}{\sqrt{2\pi}} e^{-\mu^2/2} \qquad \text{, thus:}$$

$$h_n = h_1/\sqrt{n}$$

$$\hat{p}(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h_n} \varphi\left(\frac{x - x_i}{h_n}\right)$$

- ——an average of normal densities centered at the samples x_i .
- —— the contributions of the individual samples are clearly observable.
- For n = 1 and $h_1 = 1$ $\hat{p}_1(x) = \varphi(x - x_1)$ $= \frac{1}{\sqrt{2\pi}} e^{-(x - x_1)^2/2}$ $\hat{p}_1(x) \sim N(x_1, 1)$
- For n = 100 and $h_1 = 1$

$$\hat{p}_{100}(x) = \frac{1}{100} \sum_{i=1}^{100} \frac{1}{0.1} \cdot \varphi\left(\frac{(x - x_i)}{0.1}\right)$$

$$= \frac{1}{100} \sum_{i=1}^{100} \frac{1}{0.1\sqrt{2\pi}} e^{-\frac{(x - x_i)^2}{2 \times 0.1^2}}$$

3. Parzen Windows

- Classifiers based on Parzen-window estimation
 - Estimate the densities for each category and classify a test point by the label corresponding to the maximum posterior.

 The decision region for a Parzen-window classifier depends upon the choice of window function.

Classification example in 2D Parzen-window

—A small h leads to boundaries that are complicated than for large h on same data set.

Ch.3 Content

- Introduction
- Histogram Density Estimation
- Parzen Windows
- kn-Nearest-Neighbor Estimation
- The Nearest-Neighbor Rule

4. k_n - Nearest neighbor estimation

 \square k_n - Nearest neighbor estimation

 $\hat{p}_n(x) \xrightarrow[n \to \infty]{} p(x)$

- **GOAL**: a solution for the problem of the unknown "best" window function.
- **METHOD**: let the cell volume be a function of the training data number.
 - Specify k_n as some function of n, such as $k_n = \sqrt{n}$.
 - Grow the volume V_n (a cell V_n about x) until it encloses k_n neighbor-samples of x ($k_n = f(n)$, such as $k_n = k_1 \sqrt{n}$).
 - k_n are called the k_n nearest-neighbors of x.

$$k_n = \sqrt{n}$$

4. k_n - Nearest neighbor estimation

• 2 possibilities can occur:

$$\hat{p}(x) \cong (k_n/n)/V_n$$

- Density is high near x; therefore the cell will be small which provides a good resolution.
- Density is **low**; therefore the cell will grow **large** and stop until higher density regions are reached.

Example:

Eight points in one-dimension and the k -nearest-neighbor density estimates, for k=3 and k=5 .

The k -nearest-neighbor estimate of a two-dimensional density for k=5 .

4. k_n - Nearest neighbor estimation

Example:
$$\begin{cases} k_1 = 1 \\ k_n = k_1 \sqrt{\overline{n}} = \sqrt{\overline{n}} \end{cases}$$

n = 256

4. k_n - Nearest neighbor estimation

- Estimation of a posterior probability $P(\omega_i|x)$
 - GOAL: estimate $P(\omega_i|x)$ from a set of n labeled samples, $\omega_i \in \{\omega_1, \omega_2, ..., \omega_c\}$.
 - METHOD:
 - ullet Let's place a cell of volume V around x and capture k samples.
 - k_i samples amongst k turned out to be labeled ω_i then:

$$p_n(x,\omega_i) = \frac{k_i/n}{V}$$

An estimate for $P_n(\omega_i|x)$ is:

$$P_n(\omega_i|x) = \frac{p_n(x,\omega_i)}{\sum_{j=1}^c p_n(x,\omega_j)} = \frac{k_i}{k}$$

- k_i/k is the fraction of the samples within the cell that are labeled ω_i .
- For minimum error rate, the most frequently represented category within the cell is selected.
- If k is large and the cell sufficiently small, the performance will approach the best possible.

Ch.3 Content

- Introduction
- Histogram Density Estimation
- Parzen Windows
- kn-Nearest-Neighbor Estimation
- The Nearest-Neighbor Rule

5. The nearest -neighbor rule

- The nearest -neighbor rule
 - GIVEN: $\mathcal{D}_c = \{x_1, x_2, ... x_c\}$, c labeled prototypes, $x_1 \in \omega_1, ..., x_c \in \omega_c$; a test point x;
 - <u>METHOD</u>: Let $x_i \in \mathcal{D}_c$ be the closest prototype to a test point x then the nearest-neighbor rule for classifying x is to assign it the label associated with x_i .

$$g_i(x) = d_i(x, x_i), i = 1, ..., c \longrightarrow j = \underset{i}{arg \min} g_i(x) \longrightarrow x \in \omega_j$$

• Error Bounds: $P^* \le P \le P^* (2 - \frac{c}{c-1}P^*)$

- —The nearest-neighbor rule leads to an error rate greater than the minimum possible (Bayes rate).
- —If the number of prototype is large (unlimited), the error rate of the nearest-neighbor classifier is never worse than twice the Bayes rate (it can be demonstrated!)
- If $n \to \infty$, it is always possible to find x_i sufficiently close so that: $P(\omega|x_i) \cong P(\omega_i|x)$

5. The nearest -neighbor rule

• The nearest –neighbor rule

Exercise: Try to use the nearest neighbor rule to label x = (0.68, 0.60).

Prototypes	Labels
(0.50, 0.30)	ω3
(0.70, 0.65)	ω_5

$$x = (0.68,0.60)$$

$$x_1 = (0.50,0.30), x_1 \in \omega_3$$

$$x_2 = (0.70,0.65), x_2 \in \omega_5$$

$$d_1 = |x - x_1| = \sqrt{(0.68 - 0.5)^2 + (0.6 - 0.3)^2} \approx 0.35$$

$$d_2 = |x - x_2| = \sqrt{(0.68 - 0.7)^2 + (0.6 - 0.65)^2} \approx 0.05$$

 x_2 is the nearest neighbor of $x, x \in \omega_5$ <u>Decision:</u> ω_5 is the label assigned to χ

5. The nearest -neighbor rule

- The nearest -neighbor rule——Voronoi tesselation
 - Partition the feature space into cells consisting of all points closer to a given training point x than to any other training points.
 - All points in such a cell are thus labelled by the category— a so-called *Voronoi* of the space.

Example:

Voronoi cells in two dimensions

Voronoi cells in three dimensions

5. The nearest -neighbor rule

- The k nearest-neighbor rule
 - GOAL: Classify x by assigning it the label most frequently represented among the k-nearest samples and use a voting scheme.
 - **METHOD**:

$$g_i(x) = k_i \longrightarrow j = arg \max_i g_i(x), i = 1, ..., c$$

 $-k_i$: the number of neighbor samples with i label

• Error Bounds:

- —P*: Bayes rate
- $-C_k(P^*)$: the error-rate for the k -nearest-neighbor rule for a two-category problem.
- $-k = 1 \Rightarrow$ the nearest neighbor rule
- $-k = \infty \Rightarrow Bayes decision$

5. The nearest –neighbor rule

ullet The k – nearest-neighbor rule

Example:

In this k = 5 case, the test point x?

 \boldsymbol{x} would be labelled the category of the black points.

The test sample would be labelled Class Horse.

5. The nearest -neighbor rule

ullet The k – nearest-neighbor rule

k = 3 (odd value) and x = (0.10, 0.25) are given. Try to use the k-nearest

Exercise: neighbor rule to label x.

	i
Prototypes	Labels
(0.15, 0.35)	ω_1
(0.10, 0.28)	ω_2
(0.09, 0.30)	ω_1
(0.12, 0.20)	ω_2

$$x_1 = (0.15, 0.35), x_1 \in \omega_1; \quad x_2 = (0.10, 0.28), x_2 \in \omega_2$$

 $x_3 = (0.15, 0.35), x_3 \in \omega_1; \quad x_4 = (0.15, 0.35), x_4 \in \omega_2$

$$d_1 = \sqrt{(0.1 - 0.15)^2 + (0.25 - 0.35)^2} \approx 0.11$$

$$d_2 = \sqrt{(0.1 - 0.1)^2 + (0.25 - 0.28)^2} \approx 0.03$$

$$d_3 = \sqrt{(0.1 - 0.09)^2 + (0.25 - 0.3)^2} \approx 0.051$$

$$d_4 = \sqrt{(0.1 - 0.12)^2 + (0.25 - 0.2)^2} \approx 0.054$$

Closest vectors to \boldsymbol{x} with their labels are:

 $x_2 \in \omega_2; x_3 \in \omega_1; x_4 \in \omega_2$

One voting scheme assigns the label ω_2 to x.

5. The nearest -neighbor rule

ullet The k – nearest-neighbor rule

Prerequisite Knowledge in Ch.4 Calculate the extremum by Lagrange function. Inverse Matrix

