

EEX3373 Communication and Computer Technology

Day School 02

Day School 02 Outline

- Where these arithmetic and logic operations are done in a computer
- Components connected to a microprocessor
- How operations are done in a microprocessor
- How to use machine instructions to solve problems

What you lean in this Day School

- You will learn about the main components of a processor with their functions.
- You will understand how the operations mainly mathematical and logical operations are performed inside the processor.
- You will be acquainted with the necessary components required for these operations.

Arithmetic Operations

What is an arithmetic operation?

- Operators: Add (+), Subtract (-), Multiply (*), Divide (/)
 - Ex: 8 + 3 = 11

Logical Operations

What is a Logic Operation?

- Operators: OR, AND, NOT, NOR, NAND, XOR
 - Ex: A OR B

Logical Operations: OR Gate

• Ex:

A OR B

Inputs		Output
A	В	Y=A+B
0	0	0
0	1	1
1	0	1
1	1	1

Logical Operations: Other

Α	NOT A
0	1
1	0

$A \longrightarrow A$				
) 	一人	8	R
R	/			

Α	В	A AND B
0	0	0
0	1	0
1	0	0
1	1	1

Α	7			_
В—		— A	٧	В

АВ	AORB
0 0	0
0 1	1
1 0	1
1 1	1

A	В	A NAND B
0	0	1
0	1	1
1	0	1
1	1	0

Α	В	A NOR B
0	0	1
0	1	0
1	0	0
1	1	0

The Coffee Making Machine

Figure 4.1 Coffee/Tea making machine

Figure 4.2. Diagram of Coffee/Tea making machine

Coffee Machine and ALU

Where these arithmetic and logic operations are done in a

computer.

Figure 4.3. Arithmetic and Logic Unit (ALU)

The ALU

Figure 4.3. Arithmetic and Logic Unit (ALU)

The ALU needs to **keep** two **operands** (A and B) to perform the operation (to **hold operands until it finishes** the operation).

To keep (store) these operands, we use processor registers.

Processor Register: a local storage space inside a processor that holds data being processed by CPU.

The processor registers A and B store the values required for the operation.

There is a cup to hold the prepared coffee. Similarly, **processor register** *C* is used to **store** the **result** after completing the ALU operations.

How ALU to Performs...

Figure 4.4 Integration of CU and IR with ALU.

Control Unit (CU): Provide necessary signals (commands) to the ALU for operations.

Instruction Register (IR): A special register to hold the instruction being executed inside the processor.

Other Components that help ALU to Perform

 Special purpose registers (SFR): Used for different purposes to help the ALU to perform its operations. Ex:

```
Accumulator (AC)
Instruction Register (IR)
Program Counter (PC)
Memory Address Register (MAR)
Index Register (IR)
Memory Buffer Register (MBR)
```

- General Purpose Registers (GPR)
- Memory
- Stack

Computer Architecture

How a computer system is designed.

Detailed specification of the hardware and software technology standards interact to form a computer system or platform.

computer architecture, structure of a digital computer, encompassing the design and layout of its instruction set and storage registers

-Britannica

Hardware Architecture: Example

Instruction Set Architectures (ISA)

- Part of the abstract model of a computer that defines how the CPU is controlled by the software.
- The ISA acts as an interface between the hardware and the software.
- The ISA provides commands to the processor to tell it what it needs to do.
- The ISA consists of addressing modes, instructions, native data types, registers, memory architecture, interrupt, and exception handling, and external I/O.

Basic Computer Architectures

- Accumulator Architecture
- Load/Store Architecture
- Register-Memory Architecture
- Memory-Memory Architecture
- Stack Architecture

Accumulator Architecture (Hardware diagram)

Word in Compute Terminology

A word is a group of binary digits that can occupy a storage location.

Even a word made of several binary digits (bits), the computer handles each word as a **single unit**.

This is the **fundamental** unit of information used in the computer.

A word can be a data or an instruction.

Ex: 1 0 1 1 1 0 0 1

The Word Length

One of the most important characteristics of any processor is **word length** it can handle.

If it is 8 bits, numbers, addresses, instructions and data are represented by 8-bit binary numbers.

The lowest 8-bit binary number is $0000\ 0000_2$ and the highest is $1111\ 1111_2$. In decimal, this range is from 0 to 255_{10} (256_{10} unique values).

The least significant bit (LSB) is the right most bit. The most significant bit (MSB) is the left most bit.

Fetch – Execute Cycle

When a computer is executing a program, it goes through a fundamental cycle that is repeated over and over again.

These instructions should be stored in the memory in an orderly manner.

Instructions are fetching, one at a time, from memory by the Procession Unit (PU). Then the fetched instruction is executed by the PU.

When the PU is initially started, it enters the **fetch phase**. Here the instruction is taken from the memory and decoded by the PU.

Once the instruction is decoded, the PU switches to the **execute phase**. During this phase, the MPU carries out the operation given by the instruction.

Addressing Modes

What is an Addressing Mode?

Ex: Direct

Indirect

Immediate

Relative

Indexed

Indexed with indirect

Autoincrement/ autodecrement

Extended memory

Implied Addressing Mode

Immediate Addressing Mode

Direct Addressing Mode

THANK YOU!

Questions?

ශී ලංකා විවෘත විශ්වවිදනාලය ඹුலங்கை නිලந்த பல்கலைக்கழகம் The Open University of Sri Lanka

PO Box 21, Nawala, Nugegoda, Sri Lanka Phone: +94 11 288 1000 https://ou.ac.lk