Bibliography

- Aaronson, S. & D. Gottesman, Physical Review A **70** (5) (2004). "Improved simulation of stabilizer circuits". DOI: 10.1103/physreva.70.052328 arXiv:quant-ph/0406196
- Aharonov, Y. & J. Anandan, Phys. Rev. Lett. 58 (16), 1593 (1987). "Phase Change During a Cyclic Quantum Evolution". DOI: 10.1103/PhysRevLett.58.1593
- Alicea, J., Y. Oreg, G. Refael, F. von Oppen, & M. P. A. Fisher, Nat Phys 7 (5), 412 (2011). "Non-Abelian statistics and topological quantum information processing in 1D wire networks". DOI: 10.1038/nphys1915
- Anandan, J., Physics Letters A **133** (4-5), 171 (1988). "Non-adiabatic non-abelian geometric phase". DOI: 10.1016/0375-9601(88)91010-9
- Aspect, A., P. Grangier, & G. Roger, Phys. Rev. Lett. 47 (7), 460 (1981). "Experimental Tests of Realistic Local Theories via Bell's Theorem".
- Barenco, A., C. H. Bennett, R. Cleve, et al., Physical Review A 52 (5), 3457 (1995). "Elementary gates for quantum computation". DOI: 10.1103/physreva.52.3457 arXiv:quant-ph/9503016
- Bell, J. S., Rev. Mod. Phys. **38** (3), 447 (1966). "On the Problem of Hidden Variables in Quantum Mechanics".
- Bennett, C. H., D. P. DiVincenzo, J. A. Smolin, & W. K. Wootters, Phys. Rev. A 54 (5), 3824 (1996). "Mixed-state entanglement and quantum error correction". DOI: 10.1103/PhysRevA.54.3824 arXiv:quant-ph/9604024
- Bennett, C. H. & S. J. Wiesner, Phys. Rev. Lett. **69 (20)**, 2881 (1992). "Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states".
- Bergou, J. A., U. Herzog, & M. Hillery, "Discrimination of Quantum States," in Paris & Rehacek (2004), Chap. 11, pp. 417–465. DOI: 10.1007/978-3-540-44481-7_11

Bernstein, E. & U. Vazirani, "Quantum Complexity Theory," in *Proceedings of the 25th Annual ACM Symposium on the Theory of Computing* (ACM Press, New York, 1993), pp. 11–20.

- Bernstein, E. & U. Vazirani, SIAM Journal on Computing **26** (5), 1411 (1997). "Quantum Complexity Theory". DOI: 10.1137/s0097539796300921
- Berry, M. V., Proc. R. Soc. London A **392**, 45 (1984). "Quantal Phase Factors Accompanying Adiabatic Changes".
- Blum, K., Density Matrix Theory and Applications, Vol. 64 of Springer Series on Atomic, Optical, and Plasma Physics (Springer Berlin Heidelberg, 2012), 3rd ed., ISBN 978-3-642-20560-6.
- Born, M., Z. Phys. 37 (12), 863 (1926). "Zur Quantenmechanik der Stoßvorgänge".
- Bouwmeester, D., J.-W. Pan, M. Daniell, H. Weinfurter, & A. Zeilinger, Phys. Rev. Lett. 82 (7), 1345 (1999). "Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement".
- Bravyi, S. B. & A. Y. Kitaev, arXiv:quant-ph/9811052 (1998). "Quantum codes on a lattice with boundary".
- Breuer, H.-P. & F. Petruccione, *The Theory of Open Quantum Systems* (Oxford University Press, New York, 2002).
- Browne, D. & H. Briegel, "One-Way Quantum Computation," in *Quantum Information: From Foundations to Quantum Technology Applications*, edited by Bruß, D. & G. Leuchs (Wiley, 2016), pp. 449–473, 2nd ed. DOI: 10.1002/9783527805785.ch21 arXiv:quant-ph/0603226
- Calderbank, A. R. & P. W. Shor, Phys. Rev. A **54** (2), 1098 (1996). "Good quantum error-correcting codes exist".
- Caves, C. M., Phys. Rev. D 23 (8), 1693 (1981). "Quantum-mechanical noise in an interferometer".
- Chefles, A., "Quantum States: Discrimination and Classical Information Transmission.A Review of Experimental Progress," in Paris & Rehacek (2004), Chap. 12, pp. 467–511. DOI: 10.1007/978-3-540-44481-7_12
- Chiaverini, J., Science **308** (**5724**), 997 (2005). "Implementation of the Semiclassical Quantum Fourier Transform in a Scalable System". DOI: 10.1126/science. 1110335
- Choi, M.-S., J. Phys.: Condens. Matt. **15** (**46**), 7823 (2003). "Geometric Quantum Computation in Solid-State Qubits". arXiv:quant-ph/0111019

Cleve, R., A. Ekert, C. Macchiavello, & M. Mosca, Proceedings of the Royal Society A **454** (**1969**), 339 (1998). "Quantum algorithms revisited". DOI: 10.1098/rspa.1998.0164 arXiv:quant-ph/9708016

- Cornwell, J. F., Group Theory in Physics, Vol. I (Academic Press, Orlando, 1984).
- Cornwell, J. F., *Group Theory in Physics: An Introduction* (Academic Press, San Diego, 1997).
- Das, A., Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, & H. Shtrikman, Nat Phys 8 (12), 887 (2012). "Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions".
- Deng, M. T., C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, & H. Q. Xu, Nano Letters 12 (12), 6414 (2012). "Anomalous Zero-Bias Conductance Peak in a Nb-InSb Nanowire-Nb Hybrid Device".
- Dennis, E., A. Kitaev, A. Landahl, & J. Preskill, Journal of Mathematical Physics 43 (9), 4452 (2002). "Topological quantum memory". DOI: 10.1063/1.1499754 arXiv:quant-ph/0110143
- Deutsch, D., Proc. R. Soc. London A **400**, 97 (1985). "Quantum theory, the Church-Turing principle and the universal quantum computer". DOI: 10.1098/rspa.1985.0070
- Deutsch, D. & R. Jozsa, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 439 (1907), 553 (1992). "Rapid Solution of Problems by Quantum Computation". DOI: 10.1098/rspa.1992.0167
- DiVincenzo, D. P., Fortschr. Phys. 48, 771 (2000). "The Physical Implementation of Quantum Computation". DOI: 10.1002/1521-3978(200009)48:9/11<771:: AID-PROP771>3.0.C0; 2-E arXiv:quant-ph/0002077
- Dum, R., A. S. Parkins, P. Zoller, & C. W. Gardiner, Phys. Rev. A **46** (7), 4382 (1992). "Monte Carlo simulation of master equations in quantum optics for vacuum, thermal, and squeezed reservoirs".
- Einstein, A., B. Podolsky, & N. Rosen, Phys. Rev. 47, 777 (1935). "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?"
- Fowler, A. G., M. Mariantoni, J. M. Martinis, & A. N. Cleland, Physical Review A 86 (3), 032324 (2012). "Surface codes: Towards practical large-scale quantum computation". DOI: 10.1103/physreva.86.032324 arXiv:1208.0928
- Freedman, M. H., Foundations of Computational Mathematics 1 (2), 183 (2001). "Quantum Computation and the Localization of Modular Functors". DOI: 10.1007/s102080010006

Giovannetti, V., S. Lloyd, & L. Maccone, Physical Review Letters **96** (1), 010401 (2006). "Quantum Metrology". DOI: 10.1103/PhysRevLett.96.010401 arXiv:quant-ph/0509179

- Gottesman, D., Stabilizer Codes and Quantum Error Correction, Ph.D. thesis, California Institute of Technology, Pasadena, California (1997). arXiv:quant-ph/9705052
- Gottesman, D., Phys. Rev. A 57 (1), 127 (1998). "Theory of fault-tolerant quantum computation". DOI: 10.1103/PhysRevA.57.127 arXiv:quant-ph/9702029
- Gottesman, D., "The Heisenberg Representation of Quantum Computers," in Group 22: proceedings of XXII International Colloquium on Group Theoretical Methods in Physics: Hobart, July 13-17, 1998, edited by Corney, S. P., R. Delbourgo, & P. D. Jarvis (International Press, Cambridge, MA, 1999), ISBN 978-1571460547. arXiv:quant-ph/9807006
- Greenberger, D. M., M. A. Horne, & A. Zeilinger, "Going beyond Bell's theorem," in *Bell's Theorem, Quantum Theory, and Conceptions of the Universe*, edited by Kafatos, M. (Kluwer Academic, Dordrecht, The Netherlands, 1989). arXiv:0712.0921
- Griffiths, R. B. & C.-S. Niu, Physical Review Letters **76** (17), 3228 (1996). "Semiclassical Fourier Transform for Quantum Computation". DOI: 10.1103/physrevlett.76.3228 arXiv:quant-ph/9511007
- Hardy, L., Phys. Rev. Lett. **68 (20)**, 2981 (1992). "Quantum Mechanics, Local Realistic Theories, and Lorentz-Invariant Realistic Theories".
- Higgins, B. L., D. W. Berry, S. D. Bartlett, H. M. Wiseman, & G. J. Pryde, Nature **450** (7168), 393 (2007). "Entanglement-free Heisenberg-limited phase estimation". DOI: 10.1038/nature06257 arXiv:0709.2996
- Horodecki, M., P. Horodecki, & R. Horodecki, Phys. Lett. A **223** (1), 1 (1996). "Separability of mixed states: necessary and sufficient conditions". DOI: 10. 1016/0375-9601(95)00930-2
- Jiang, M., S. Luo, & S. Fu, Physical Review A 87 (2) (2013). "Channel-state duality". DOI: 10.1103/physreva.87.022310
- Kitaev, A. Y., Electronic Colloquium on Computational Complexity 3, 3 (1996). "Quantum measurements and the Abelian Stabilizer Problem". arXiv:quant-ph/9511026
- Kitaev, A. Y., Russian Mathematical Surveys **52 (6)**, 1191 (1997). "Quantum computations: algorithms and error correction".

Kitaev, A. Y., Physics-Uspekhi **44** (**10S**), 131 (2001). "Unpaired Majorana fermions in quantum wires". DOI: 10.1070/1063-7869/44/10S/S29 arXiv:cond-mat/0010440

- Kitaev, A. Y., Ann. Phys. **303** (1), 2 (2003). "Fault-tolerant quantum computation by anyons". DOI: 10.1016/S0003-4916(02)00018-0 arXiv:quant-ph/9707021
- Laflamme, R., C. Miquel, J. P. Paz, & W. H. Zurek, Physical Review Letters 77 (1), 198 (1996). "Perfect Quantum Error Correcting Code". DOI: 10.1103/physrevlett.77.198 arXiv:quant-ph/9602019
- Lang, S., Introduction to Linear Algebra, Undergraduate Texts in Mathematics (Springer New York, New York, 1986), 2nd ed., ISBN 9781461210702. DOI: 10.1007/978-1-4612-1070-2
- Lang, S., *Linear Algebra* (Springer, Berlin, 1987), 3rd ed., ISBN 978-1-4757-1949-9. DOI: 10.1007/978-1-4757-1949-9
- Loss, D. & D. P. DiVincenzo, Phys. Rev. A 57 (1), 120 (1998). "Quantum comutation with quantum dots".
- Lundeen, J. S., B. Sutherland, A. Patel, C. Stewart, & C. Bamber, Nature 474 (7350), 188 (2011). "Direct measurement of the quantum wavefunction". DOI: 10.1038/nature10120
- Mourik, V., K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, & L. P. Kouwenhoven, Science **336** (6084), 1003 (2012). "Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices".
- Nadj-Perge, S., I. K. Drozdov, J. Li, et al., Science **346** (**6209**), 602 (2014). "Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor". DOI: 10.1126/science.1259327 arXiv:http://www.sciencemag.org/content/346/6209/602.full.pdf
- Nakazato, H., Y. Hida, K. Yuasa, B. Militello, A. Napoli, & A. Messina, Physical Review A **74 (6)**, 062113 (2006). "Solution of the Lindblad equation in the Kraus representation". DOI: 10.1103/physreva.74.062113 arXiv:quant-ph/0606193
- Nielsen, M. & I. L. Chuang, *Quantum computation and quantum information* (Cambridge University Press, New York, 2011), 10th anniversary ed., ISBN 978-1107002173.
- Pan, J.-W., D. Bouwmeester, M. Daniell, H. Weinfurter, & A. Zeilinger, Nature 403, 515 (2000). "Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement".

Paris, M. & J. Rehacek, eds., Quantum State Estimation, Vol. 649 of Lecture Notes in Physics (Springer Berlin Heidelberg, Berlin, 2004), ISBN 9783540444817. DOI: 10.1007/b98673

- Peres, A., Phys. Rev. Lett. 77 (8), 1413 (1996). "Separability Criterion for Density Matrices". DOI: 10.1103/PhysRevLett.77.1413 arXiv:quant-ph/9604005
- Plenio, M. B. & P. L. Knight, Rev. Mod. Phys. **70** (1), 101 (1998). "The quantum-jump approach to dissipative dynamics in quantum optics".
- Raussendorf, R. & H. J. Briegel, Phys. Rev. Lett. **86** (22), 5188 (2001). "A One-Way Quantum Computer".
- Raussendorf, R., D. Browne, & H. Briegel, Journal of Modern Optics 49 (8), 1299 (2002). "The one-way quantum computer—a non-network model of quantum computation". DOI: 10.1080/09500340110107487 arXiv:quant-ph/0108118
- Raussendorf, R., D. E. Browne, & H. J. Briegel, Phys. Rev. A **68** (2), 022312 (2003). "Measurement-based quantum computation on cluster states". DOI: 10.1103/PhysRevA.68.022312 arXiv:quant-ph/0301052
- Shor, P. W., "Algorithms for Quantum Computation: Discrete Logarithms and Factoring," in *Proceedings of the 35th Annual Symposium on Foundations of Computer Science* (IEEE Computer Society, Washington, DC, USA, 1994), SFCS '94, pp. 124–134. DOI: 10.1109/SFCS.1994.365700
- Shor, P. W., SIAM Journal on Computing 26 (5), 1484 (1997). "Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer". arXiv:quant-ph/9508027
- Simon, D. R., SIAM Journal on Computing **26** (5), 1474 (1997). "On the Power of Quantum Computation". DOI: 10.1137/s0097539796298637
- Sjöqvist, E., D. M. Tong, L. Mauritz Andersson, B. Hessmo, M. Johansson, & K. Singh, New Journal of Physics 14 (10), 103035 (2012). "Non-adiabatic holonomic quantum computation". DOI: 10.1088/1367-2630/14/10/103035 arXiv:1107.5127
- Smolin, J. A. & D. P. DiVincenzo, Phys. Rev. A **53** (4), 2855 (1996). "Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate". DOI: 10.1103/PhysRevA.53.2855
- Steane, A. M., Phys. Rev. Lett. **77** (5), 793 (1996). "Error Correcting Codes in Quantum Theory".
- Størmer, E., *Positive Linear Maps of Operator Algebras* (Springer, Berlin, 2013), ISBN 9783642343698. DOI: 10.1007/978-3-642-34369-8

Vallone, G. & D. Dequal, Physical Review Letters 116 (4), 040502 (2016). "Strong Measurements Give a Better Direct Measurement of the Quantum Wave Function". DOI: 10.1103/physrevlett.116.040502 arXiv:1504.06551

- Wang, C., J. Harrington, & J. Preskill, Annals of Physics **303** (1), 31 (2003). "Confinement-Higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory". DOI: 10.1016/s0003-4916(02)00019-2
- Weyl, H., The theory of groups and quantum mechanics (Dover, London, 1931).
- Wigner, E. P., Group Theory and its Application to the Quantum Mechanics of Atomic Spectra (Academic Press, New York, 1959), english translation ed.
- Wilczek, F. & A. Zee, Phys. Rev. Lett. **52** (24), 2111 (1984). "Appearance of Gauge Structure in Simple Dynamical Systems". DOI: 10.1103/PhysRevLett.52.2111
- Wilmut, I., A. E. Schnieke, J. McWhir, A. J. Kind, & K. H. S. Campbell, Nature 385 (6619), 810 (1997). "Viable offspring derived from fetal and adult mammalian cells".
- Wooters, W. K. & W. H. Zurek, Nature **299**, 802 (1982). "A single quantum cannot be cloned".
- Zanardi, P. & M. Rasetti, Phys. Lett. A **264** (2-3), 94 (1999). "Holonomic quantum computation". DOI: 10.1016/S0375-9601(99)00803-8 arXiv:quant-ph/9904011
- Zurek, W. H., Phys. Today 44 (10), 36 (1991). "Decoherence and the transition from quantum to classical".
- Zurek, W. H., Nature 404, 130 (2000). "Quantum cloning: Schrodinger's sheep". DOI: 10.1038/35004684
- Zurek, W. H., Los Alamos Science 27, 2 (2002). "Decoherence and the Transition from Quantum to Classical: Revisited".

Index

Abelian group, 305	controlled-NOT gate, 51
amplitude damping, 190	multi-qubit controlled-NOT, 78
ancillary qubit, 79	CNOT gate, 58, 104, 111
· ·	code space, 202, 214
Bell basis, see also Bell states, 129	code words, 207
Bell measurement, 88, 129	complementarity principle, 9
Bell states, 128	completely positive and trace-preserving
Bell's inequality, 128	supermap, 171
Bell's test, 128	completely positive supermap, 170, 171,
Bernstein-Vazirani algorithm, 132, 140	176, 178, 179, 289, 290
birthday paradox, 141	completeness relation, 32, 33, 274
bit flip, 42	computational basis, see also logical basis
bitwise AND, 76	conjugation, 224, 226
Bloch space, 224, 225	control qubit, 51
Bloch sphere, 18, 19	controlled unitary gate, 157
Bloch vector, 18	controlled- U gate, 51, 167
bra-ket notation, 40	multi-qubit controlled- U gate, 65,
bright state, 110	75
	convex linear, 171
Calderbank-Shor-Steane codes, 242	coset, 219, 223, 302
center, 219	CSS codes, see also Calderbank-Shor-
channel-state duality, 179	Steane codes
Choi isomorphism, 178–180, 293	cyclic evolution, 108, 110
Choi matrix, 178, 287, see also Choi	cyclic group, 224, 305
operator	cyclic groups, 300
Choi operator, see also Choi matrix, 178,	CZ
199, 292	controlled-Z gate, 56
Choi vector, 180, 181	CZ gate, 56, 104, 105, 122, 224
classical communication channel, 129	
Clifford group, 224, 227, 259	damping operator, 187, 190, 197
Clifford operators, see also Pauli opera-	dark state, 122
tors, 224, 239	dark states, 110
closed system, 10, 169, 170	decoherence, 171, 201
closure relation, 172	density matrix, 15
cluster state, 90, 111, 119	density operator, 15, 169–171, 178, 179,
CNOT, 51, 82, 129, 224	193, 281

dephasing, 183	group, 297
depolarizing process, 190	group generators, 218, 222, 230, 299
Deutsch-Jozsa algorithm, 132	group theory, 217, 297
Deutsch-Jozsa problem, 141	
dicrect product group, 305	Hadamard gate, 44, 89, 104, 113, 129,
discrete Fourier transform, 145, 146, 163	224
discrete logarithm, 146	Hadamard matrix, 44
DiVincenzo criteria, 94	Hardy's test, 128
<i>m</i> II	Heisenberg exchange interaction, 103
effective Hamiltonian, 187, 190, 197	Heisenberg limit, 32
elementary qunatum logic gates, 40	Hermitian operator, 170, 289
Elements, 9	hidden subgroup problem, 146, 156, 162–
entangled state, 13, 15, 52	164
entanglement, 128, 135	hiddne subgroup problem, 146
entanglement fidelity, 179	Hilbert space, 10, 94
environment, 169	homomorphism, 301
error correction conditions, 236	
error syndrome, 203	inertial force, 99
error-detection, 203	inertial frame, 98
error-recovery, 203	initialization, 95
Euclid of Alexandria, 9	invariant subgroup, 219
Euler rotation, 49, 115	inverse quantum Fourier transform
Euler angles, 49	quantum Fourier transform, 152
exclusive OR, 53	irreversible population loss, 187
f 4 200	Ising exchange ineraction, 105
factor group, 219, 302	Ising exchange interaction, 104, 105
factorization algorithm, 125, 141, 156, 166	isomorphism, 301
	I
fidelity, 179	Josephson inductance, 93
flux quantization, 93	kinetic inductance, 93
Fredkin gate, 81, 82	Kraus element, 230
gate teleportation, 180	Kraus elements, 172, 176, 184, 189, 199,
gauge transformation, 109	290
generalized interaction picture, 197	orthogonal Kraus elements, 290
geometric phase, 106	Kraus maps, see also Kraus elements,
geometric quantum computation, 111	see also Kraus elements
Gottesman vector, 220, 221, 223	Kraus operator-sum representation, see
Gottesman-Knill theorem, 227, 229	also Kraus representation
graph state, see also cluster state, 111,	Kraus operators, see also Kraus elements
118, 229	Kraus representation, 171, 172, 176, 290
Gray code, 65, 76	
Gray code sequence, 76	Kraus representation theorem, 176
Greenberger-Horne-Zeilinger state, 56,	Larmor precession, 97
90	Lindblad basis, 193

Lindblad equation, 186, 192	order-finding problem, 146, 158, 166
Lindblad generator, 187, 188, 190, 193	orthonormal basis, 274
Lindblad operators, 187	
linear indepedent, 263	parallel transport, 109
linearly dependent, 263	partial trace, 172
logical basis, 11, 223	path ordering, 109
logical operators, 222, 223, 229–231, 238	Pauli gates, see also Pauli operators
, , , , ,	Pauli group, 217, 221, 224, 235, 298, 304,
Markov approximation, 186	305
Markov assumption, 188	Pauli operator, 122
maximally entangled, 90	Pauli operators, 40, 89, 95, 129, 218
maximally entangled state, 178	Pauli X, 40
measurement, 39, 95, 171	Pauli Y, 42
measurement operators, 33	Pauli Z, 41
measurement-based quantum computa-	period-finding algorithm, 163, 166
tion, 111	phase damping, 184, 189
mixed state, 15, 183	phase flip, 42
modular exponentiation, 162, 166	phase gate, 89
modular multiplication, 158	pinciple of deffered measurement, 153
modular multiplication, 166	planar codes, 247, 252
momentum basis, 162	planar exchange interaction, see also XY
	exchange interaction
Newton's laws of motion, 9	plaquette defect, 256, 257
no-cloning theorem, 28, 29, 128, 201	plaquette operators, 247, 252
non-Abelian gauge potential, 109	point group, 224
non-cloning theorem, 54	position basis, 162
non-Hermitian Hamiltonian, 187, 197	positive definite operator, see also posi-
non-inertial effect, 99, 108	tive operator
non-negative operator, see also positive semidefinite operator	positive operator, 170, 179, 269, 273, 274, 289
non-selective measurement, 33	positive semidefinite operator, 172, 269,
nonlocality, 126	273, 274
normal operator, 273	postulates of quantum mechanics, 9
normalizer, 224	product group, 305
	projection operator, 179, 292
octant phase gate, 50	pure state, 29
one-way quantum computation, see also	
measurement-based quantum con	aquadrant phase gate, 224
putation	quadrant phase grate, 50, 224
open quantum system, 169, 170	quantum entanglement, 15
operation time, 97	quantum channel, 171
operator-sum representation, 177, 288,	quantum circuit model
289	quantum circuit diagram, 39
order-finding algorithm, 166	quantum communication, 29

quantum computer, 93	rotating frame, 98
quantum computer architecture, 93	Hamiltonian in the rotating frame,
quantum decoherence, see also decoher-	99
ence	time-evolution operator in the rotat-
quantum efficiency, 95	ing frame, 99
quantum entanglement, 32, 56	rotation, 48
quantum entangler circuit, 52	rotation operator, 97
quantum error-correction condition, 212	
quantum error-correction conditions, 213	scalable system, 94
quantum Fourier transform, 147, 157,	Schmidt decomposition, 13
159,161,162	Schmidt rank, 22
quantum gate teleportation, 180, 199	selective measurement, 33
quantum information theory, 288	separable state, 13
quantum jump approach, 187, 196	Shor, Peter W., 125
quantum jump operators, see also Lind-	Simon's algorithm, 132, 141
blad operators, see also Lind-	Simon's problem, 141
blad operators	special theory of relativity, 128
quantum logic gate, 51, 93	spectral decomposition, 172, 179, 274
quantum logic gate operation, 39	spin-boson model, 120
quantum Markovian dynamics, 187	stabilizer, 215, 229, 230, 258
quantum master equation, see also Lind-	stabilizer circuit, 229
blad equation, 192	stabilizer codes, 242
quantum non-demolition measurement,	stabilizer subgroup, see also stabilizer,
120	see also stabilizer
quantum operation, 33, 170, 177, 199	standard quantum limit, 32
quantum oracle, 132, 133, 138, 142, 163,	state vector, 10
167	statistical ensemble, 15
quantum parallelism, 132	statistical mixture, 281
quantum phase estimation, 146, 156, 162,	super-mapping, see also supermap
164, 166	superdense coding, 126
quantum register, 45, 53	supermap, 170, 177, 287, 289
quantum state, 10	superoperator, 171, 186, 281, 287
quantum statistical mechanics, 288	surface codes, 246
quantum teleportation, 15, 56, 126, 128	SWAP, 58, 82
qubit, 39, 94	SWAP gate, 58, 103, 104, 122
quantum bit, 39	$\sqrt{\text{SWAP}}$ gate, 60, 104, 122
qunatum phase estimation, 156	
	target qubit, 51
Rabi oscillation, 99, 108	- ·
Rabi frequency, 99	tensor-product basis, 13
2 07	tensor-product basis, 13 tensor-product space, 13
reduced density matrix, 90	tensor-product basis, 13
	tensor-product basis, 13 tensor-product space, 13
reduced density matrix, 90	tensor-product basis, 13 tensor-product space, 13 time ordering, 108

```
toric codes, 247
trace, 170, 171
trace Hermitian product, 176, 177, 285
trace product, see also trace Hermitian
        product
translational freedom of Lindblad opera-
        tors, 188
two-leve unitary transformation, 84
two-level unitary transformation, 68, 70,
    two-level unitary matrix, 73, 75
uncertainty principle, 29
unconditional security, 29
unitary freedom of Kraus elements, 181,
        187, 188
unitary freedom of Lindblad operators,
        187-189
unitary group, 40
unitary matrix, 40
unitary representation, 171
universal quantum computation, 40, 68,
    universal set of quantum gate oper-
        ations, 95
    universal set of quantum logic gates,
universal set of classical logic gates, 83
vector space of linear maps, 284
vector space of linear operators, 19
vertex defect, 256, 257
vertex operator, 257
vertex operators, 247, 252
von Neumann scheme of measurement,
        160, 161
wave-particle duality, 9
XOR, see also exclusive OR
XY exchange interaction, 104
```