Mathematical Induction

VE281 - Data Structures and Algorithms, Xiaofeng Gao, Autumn 2019

1 Mathematical Induction

1.1 Principle

Suppose P(n) is a statement involving an integer n. Then to prove that P(n) is true for every $n \ge n_0$, it is sufficient to show these two things:

- $P(n_0)$ is true.
- For any $k \ge n_0$, if P(k) is true, then P(k+1) is true.

1.2 Example

Let P(n) be the statement $\sum_{i=0}^{n} i = n(n+1)/2$. Prove that P(n) is true for every $n \geq 0$.

Proof: We prove P(n) is true for $n \ge 0$ by induction.

Basis step. P(0) is 0 = 0(0+1)/2, and it is obviously true.

Induction Hypothesis. Assume P(k) is true for some $k \geq 0$. Then $0 + 1 + 2 + \cdots + k = k(k+1)/2$.

Proof of Induction Step. Now let us prove that P(k+1) is true.

$$0+1+2+\cdots+k+(k+1) = k(k+1)/2+(k+1)$$
$$= (k+1)(k/2+1)$$
$$= (k+1)(k+2)/2 \qquad \Box$$

1.3 An Example for the Weakness of Mathematical Induction

Prove that $\forall n \in \mathbb{N}$ with $n \geq 2$, it has prime factorizations.

Proof: Define P(n) be the statement that "n is either prime or the product of two or more primes". We will try to prove that P(n) is true for every $n \ge 2$.

Basis step. P(2) is true, since 2 is a prime. \checkmark

Induction hypothesis. P(k) for $k \geq 2$. (as usual process)

Proof of induction step. Let's prove P(k+1).

If P(k+1) is prime, \checkmark

If P(k+1) is not a prime, then we should prove that $k+1=r\times s$, where r and s are positive integers greater than 1 and less than k+1.

However, from P(k) we know nothing about r and $s \longrightarrow ???$

2 The Strong Principle of Mathematical Induction

2.1 Principle

Suppose P(n) is a statement involving an integer n. Then to prove that P(n) is true for every $n \ge n_0$, it is sufficient to show these two things:

- $P(n_0)$ is true.
- For any $k \ge n_0$, if P(n) is true for every n satisfying $n_0 \le n \le k$, then P(k+1) is true.

Also called the principle of complete induction, or course-of-values induction.

2.2 Example

Prove that $\forall n \in \mathbb{N}$ with $n \geq 2$, it has prime factorizations.

Induction hypothesis. For $k \geq 2$ and $2 \leq n \leq k$, P(n) is true. (Strong Principle)

Proof of induction step. Let's prove P(k+1).

If P(k+1) is prime, \checkmark

If P(k+1) is not a prime, by definition of a prime, $k+1=r\times s$, where r and s are positive integers greater than 1 and less than k+1.

It follows that $2 \le r \le k$ and $2 \le s \le k$. Thus by induction hypothesis, both r and s are either prime or the product of two or more primes. Then their product k+1 is the product of two or more primes. P(k+1) is true.

3 The Minimal Counterexample Principle

Prove $\forall n \in \mathbb{N}, 5^n - 2^n$ is divisible by 3.

Proof: If $P(n) = 5^n - 2^n$ is not true for every $n \ge 0$, then there are values of n for which P(n) is false, and there must be a smallest such value, say n = k.

Since $P(0) = 5^0 - 2^0 = 0$, which is divisible by 3, we have $k \ge 1$, and $k - 1 \ge 0$.

Since k is the smallest value for which P(k) false, P(k-1) is true. Thus $5^{k-1}-2^{k-1}$ is a multiple of 3, say 3j.

However, we have

$$5^{k} - 2^{k} = 5 \times 5^{k-1} - 2 \times 2^{k-1}$$

$$= 5 \times (5^{k-1} - 2^{k-1}) + 3 \times 2^{k-1}$$

$$= 5 \times 3j + 3 \times 2^{k-1}$$

This expression is divisible by 3. We have derived a contradiction, which allows us to conclude that our original assumption is false. \Box