

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Ethyl (Z)-3-(4-methylanilino)-2-[(4methylphenyl)carbamoyl]prop-2-enoate

Arun M. Islor, a B. Garudachari, a Thomas Gerber, b Eric Hosten^b and Richard Betz^b*

^aNational Institute of Technology-Karnataka, Department of Chemistry, Medicinal Chemistry Laboratory, Surathkal, Mangalore 575 025, India, and ^bNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa Correspondence e-mail: richard.betz@webmail.co.za

Received 18 October 2012; accepted 22 October 2012

Key indicators: single-crystal X-ray study; T = 200 K; mean $\sigma(C-C) = 0.002 \text{ Å}$; R factor = 0.051; wR factor = 0.147; data-to-parameter ratio = 18.4.

The title compound, C₂₀H₂₂N₂O₃, is a secondary amine featuring an amide and an ester functionality in connection with a Michael system. The conformation about the C=C bond is E. Intramolecular $N-H\cdots O$ hydrogen bonds occur. In the crystal, $C-H\cdots O$ contacts connect the molecules into chains along the b-axis direction.

Related literature

For general information about the synthetic and industrial importance of aniline and its derivatives, see: Berry & Royd (1984); Garudachari et al. (2012); Sridharan et al. (2006); Kasthuri et al. (2008). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental

Crystal data

c = 15.6043 (4) Å $C_{20}H_{22}N_2O_3$ $M_r = 338.40$ $\beta = 91.470 \ (1)^{\circ}$ Monoclinic, C2/c $V = 3515.07 (15) \text{ Å}^3$ a = 18.8170 (4) ÅZ = 8b = 11.9752 (3) Å Mo $K\alpha$ radiation

 $\mu = 0.09 \text{ mm}^{-1}$ T = 200 K

 $0.42 \times 0.26 \times 0.19 \text{ mm}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.965, \ T_{\max} = 0.984$

16569 measured reflections 4353 independent reflections 3411 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.022$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.147$ S = 1.054353 reflections 237 parameters

H atoms treated by a mixture of independent and constrained refinement

 $\Delta \rho_{\text{max}} = 0.56 \text{ e Å}^{-3}$ $\Delta \rho_{\min} = -0.22 \text{ e Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$\begin{array}{c} \hline \\ C23-H23\cdots O1^{i} \\ C25-H25\cdots O2^{ii} \\ N1-H1\cdots O1 \\ N2-H2\cdots O2 \\ \end{array}$	0.95	2.68	3.620 (2)	170
	0.95	2.70	3.4685 (19)	139
	0.97 (2)	1.85 (2)	2.6383 (17)	135.9 (18)
	0.88 (2)	1.92 (2)	2.6713 (18)	143.0 (19)

Symmetry codes: (i) $-x + \frac{1}{2}$, $-y + \frac{1}{2}$, -z; (ii) $-x + \frac{1}{2}$, $-y + \frac{3}{2}$, -z.

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear sciences, Government of India, for the Young Scientist award.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2185).

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

Berry, D. F. & Royd, S. A. (1984). Soil Sci. Soc. Am. J. 48, 565-569.

Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.

Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.

Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Garudachari, B., Satyanarayana, M. N., Thippeswamy, B., Shivakumar, C. K., Shivananda, K. N., Hegde, G. & Isloor, A. M. (2012). Eur. J. Med. Chem. 54, 900-906.

Kasthuri, J., Santhanalakshmi, J. & Rajendiran, N. (2008). J. Iran. Chem. Soc. **3**, 436-444.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Sridharan, V., Perumal, S., Avendano, C. & Menendez, J. C. (2006). Synlett, pp. 91-95

Acta Cryst. (2012). E68, o3218 [doi:10.1107/S1600536812043723]

Ethyl (Z)-3-(4-methylanilino)-2-[(4-methylphenyl)carbamoyl]prop-2-enoate

Arun M. Islor, B. Garudachari, Thomas Gerber, Eric Hosten and Richard Betz

Comment

The study of aniline derivatives is important due to the presence of amines in natural products and nucleic acids (Berry & Royd, 1984). Aniline compounds find widespread applications in the field of synthetic chemistry such as the synthesis of quinolines and indoles (Garudachari *et al.*, 2012; Sridharan *et al.*, 2006). Aniline derivatives are also widely used in many industries such as in the production of dyes and agrochemicals (Kasthuri *et al.*, 2008). Keeping in mind the importance of aniline derivatives, the title compound was synthesized to study its crystal structure.

The molecule can – simultaneously – be regarded as a secondary amide, an enamine, an ester as well as featuring a Michael system. The C=C bond is (E) configured. The least-squares planes defined by the respective carbon atoms of the phenyl rings intersect at an angle of 49.57 (8) °. The central part of the molecule, including the ethyl group, is essentially planar (r.m.s. of the least-squares plane defined by all the non-hydrogen atoms of the respective part of this molecule = 0.0569 Å) with the oxygen atom of the ethoxy group deviating most from this plane (0.095 (1) Å) (Fig. 1).

In the crystal, intramolecular N–H···O bonds involving all secondary amine groups and double bonded oxygen atoms are observed. In addition, intermolecular C–H···O contacts whose range falls slightly below the sum of van-der-Waals radii of the atoms participating are present. The latter contacts are supported by hydrogen atoms on the phenyl group that is bonded to the amide-type nitrogen atom and exclusively have ketonic oxygen atoms as acceptors. In terms of graph-set analysis (Etter *et al.*, 1990; Bernstein *et al.*, 1995), the descriptor for these contacts is $S(6)S(6)R^2_2(14)R^2_2(18)$ on the unary level. Metrical parameters as well as information about the symmetry of these contacts are summarized in Table 1. In total, the molecules are connected to chains along the crystallographic *b* axis. The shortest intercentroid distance between two aromatic systems was measured at 4.5754 (9) Å and is observed between the two different aromatic moieties in neighbouring molecules (Fig 2).

The packing of the title compound in the crystal structure is shown in Figure 3.

Experimental

A mixture of diethyl-{[(4-methylphenyl)amino]methylidene} propanedioate (1.0 g, 0.0036 mol) and 4-methylaniline (0.19 g, 0.0018 mol) in dowtherm (10 ml) was stirred at 150 °C for 2 h. The reaction mixture was then cooled to 25 °C and stirred in n-hexane (20 ml) for 10 min. The solid product obtained was filtered, dried and further purified by column chromatography using petrol ether and ethyl acetate (v:v = 5:5) as the eluent to get a white solid. Crystals were grown by slow evaporation of a dilute ethanol solution at room temperature, yield: 0.52 g (42.6%).

Refinement

Carbon-bound H atoms were placed in calculated positions (C—H = 0.95 Å for aromatic and vinylic carbon atoms, C—H = 0.99 Å for the methylene group, and C—H = 0.98 Å for the methyl groups) and were included in the refinement in the riding model approximation, with $U_{iso}(H)$ set to 1.2 or 1.5 $U_{eq}(C)$. The H atoms of the methyl groups were allowed to

rotate with a fixed angle around the C—C bond to best fit the experimental electron density [HFIX 137 in the *SHELX* program suite (Sheldrick, 2008), with $U_{iso}(H)$ set to $1.5U_{eq}(C)$]. Both nitrogen-bound H atoms were located on a difference Fourier map and refined freely.

Computing details

Data collection: *APEX2* (Bruker, 2010); cell refinement: *SAINT* (Bruker, 2010); data reduction: *SAINT* (Bruker, 2010); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

Figure 1

The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).

Figure 2 Intermolecular contacts, viewed along [0 0 - 1]. Intermolecular C–H···O contacts are depicted with green dashed lines, intramolecular N–H···O hydrogen bonds are depicted with blue dashed lines. Symmetry operators: (i) -x + 1/2, -y + 3/2, -z; (ii) -x + 1/2, -y + 1/2, -z.

Figure 3Molecular packing of the title compound, viewed along [0 0 - 1] (anisotropic displacement ellipsoids drawn at 50% probability level).

Ethyl (Z)-3-(4-methylanilino)-2-[(4-methylphenyl)carbamoyl]prop-2-enoate

F(000) = 1440
$D_{\rm x} = 1.279 {\rm Mg m}^{-3}$
Melting point = 438–440 K
Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$
Cell parameters from 7492 reflections
$\theta = 2.4-28.3^{\circ}$
$\mu = 0.09 \text{ mm}^{-1}$
T = 200 K
Cubic, white
$0.42 \times 0.26 \times 0.19 \text{ mm}$

Data collection

Bruker APEXII CCD

diffractometer

Radiation source: fine-focus sealed tube

Graphite monochromator

 φ and ω scans

Absorption correction: multi-scan

(SADABS; Bruker, 2008)

 $T_{\min} = 0.965, T_{\max} = 0.984$

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.051$

 $wR(F^2) = 0.147$

S = 1.05

4353 reflections

237 parameters

0 restraints

Primary atom site location: structure-invariant

direct methods

16569 measured reflections

4353 independent reflections

3411 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.022$

 $\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$

 $h=-18{\longrightarrow}25$

 $k = -15 \rightarrow 11$

 $l = -20 \rightarrow 20$

Secondary atom site location: difference Fourier

map

Hydrogen site location: inferred from

neighbouring sites

H atoms treated by a mixture of independent

and constrained refinement

 $w = 1/[\sigma^2(F_0^2) + (0.0721P)^2 + 2.7716P]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\text{max}} = 0.56 \text{ e Å}^{-3}$

 $\Delta \rho_{\min} = -0.22 \text{ e Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
O1	0.10013 (6)	0.36356 (9)	0.05742 (8)	0.0390 (3)	
O2	0.06034 (7)	0.70809 (10)	0.07895 (9)	0.0432 (3)	
O3	-0.03953 (6)	0.66632 (10)	0.14650 (8)	0.0396 (3)	
N1	-0.02327(7)	0.33906 (11)	0.13174 (9)	0.0328 (3)	
N2	0.14011 (7)	0.53822 (11)	0.02606 (9)	0.0311 (3)	
C1	-0.25933 (9)	0.06696 (16)	0.22528 (12)	0.0427 (4)	
H1A	-0.3026	0.0976	0.1980	0.064*	
H1B	-0.2645	0.0658	0.2876	0.064*	
H1C	-0.2516	-0.0092	0.2046	0.064*	
C2	-0.02178(8)	0.44917 (13)	0.13478 (10)	0.0312 (3)	
H2A	-0.0606	0.4854	0.1608	0.037*	
C3	0.03155 (8)	0.51666 (13)	0.10328 (9)	0.0297 (3)	
C4	0.09288 (8)	0.46684 (13)	0.06104 (9)	0.0302 (3)	
C5	0.02073 (8)	0.63730 (14)	0.10765 (10)	0.0326 (3)	
C6	-0.05772 (10)	0.78362 (15)	0.14399 (13)	0.0469 (4)	
H6A	-0.0622	0.8099	0.0839	0.056*	
H6B	-0.0205	0.8283	0.1741	0.056*	
C7	-0.12693 (12)	0.79542 (19)	0.18756 (17)	0.0635 (6)	
H7A	-0.1402	0.8745	0.1898	0.095*	
H7B	-0.1224	0.7658	0.2460	0.095*	
H7C	-0.1637	0.7537	0.1556	0.095*	
C8	0.41549 (10)	0.47429 (18)	-0.11452(14)	0.0508 (5)	
H8A	0.4139	0.4875	-0.1765	0.076*	
H8B	0.4322	0.3981	-0.1029	0.076*	
H8C	0.4481	0.5278	-0.0868	0.076*	

C11	-0.08114 (8)	0.27242 (13)	0.15835 (10)	0.0309(3)
C12	-0.09618 (8)	0.17563 (14)	0.11323 (10)	0.0341 (3)
H12	-0.0674	0.1541	0.0669	0.041*
C13	-0.15332 (9)	0.11012 (13)	0.13590 (10)	0.0334 (3)
H13	-0.1632	0.0436	0.1046	0.040*
C14	-0.19666(8)	0.13884 (13)	0.20320 (10)	0.0318 (3)
C15	-0.18046 (9)	0.23622 (14)	0.24851 (10)	0.0345 (3)
H15	-0.2091	0.2575	0.2951	0.041*
C16	-0.12299 (9)	0.30289 (13)	0.22665 (10)	0.0339 (3)
H16	-0.1125	0.3689	0.2583	0.041*
C21	0.20602 (8)	0.51483 (13)	-0.01130 (10)	0.0291 (3)
C22	0.24017 (9)	0.41154 (13)	-0.00733 (11)	0.0348 (4)
H22	0.2177	0.3494	0.0184	0.042*
C23	0.30724 (9)	0.40025 (13)	-0.04125 (11)	0.0371 (4)
H23	0.3301	0.3296	-0.0382	0.044*
C24	0.34214 (8)	0.48883 (14)	-0.07960(11)	0.0355 (4)
C25	0.30692 (9)	0.59088 (14)	-0.08402 (10)	0.0350 (4)
H25	0.3293	0.6528	-0.1102	0.042*
C26	0.23978 (8)	0.60390 (13)	-0.05100 (10)	0.0315 (3)
H26	0.2165	0.6741	-0.0554	0.038*
H1	0.0165 (11)	0.3084 (18)	0.1007 (13)	0.051 (6)*
H2	0.1286 (11)	0.6090 (19)	0.0307 (13)	0.046 (6)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0374 (6)	0.0282 (6)	0.0518 (7)	-0.0027 (5)	0.0111 (5)	0.0020 (5)
O2	0.0395 (6)	0.0313 (6)	0.0595 (8)	-0.0067(5)	0.0168 (6)	0.0000(5)
О3	0.0365 (6)	0.0332 (6)	0.0498 (7)	-0.0006(5)	0.0139 (5)	0.0026 (5)
N1	0.0278 (6)	0.0320(7)	0.0389 (7)	-0.0026(5)	0.0048 (5)	0.0011 (5)
N2	0.0281 (6)	0.0269 (7)	0.0384 (7)	-0.0020(5)	0.0039 (5)	0.0021 (5)
C1	0.0386 (9)	0.0414 (10)	0.0482 (10)	-0.0135 (7)	0.0049 (7)	0.0033 (8)
C2	0.0305 (7)	0.0325 (8)	0.0304(7)	-0.0024(6)	-0.0008(6)	0.0011 (6)
C3	0.0286 (7)	0.0308 (8)	0.0297 (7)	-0.0047(6)	-0.0001(6)	0.0017 (6)
C4	0.0293 (7)	0.0311 (8)	0.0300(7)	-0.0058(6)	-0.0017(6)	0.0026 (6)
C5	0.0309(7)	0.0343 (8)	0.0329(8)	-0.0039(6)	0.0028 (6)	0.0001 (6)
C6	0.0472 (10)	0.0346 (9)	0.0599 (12)	0.0025 (8)	0.0159 (9)	0.0037 (8)
C7	0.0595 (13)	0.0477 (12)	0.0848 (16)	0.0138 (10)	0.0327 (12)	0.0098 (11)
C8	0.0335 (9)	0.0503 (11)	0.0694 (13)	-0.0037(8)	0.0150 (9)	-0.0061 (9)
C11	0.0273 (7)	0.0308 (8)	0.0346 (8)	-0.0032(6)	0.0000(6)	0.0066(6)
C12	0.0322 (8)	0.0349 (8)	0.0355 (8)	-0.0002(6)	0.0042 (6)	0.0022(6)
C13	0.0355 (8)	0.0277 (7)	0.0368 (8)	-0.0023(6)	-0.0009(6)	0.0017 (6)
C14	0.0285 (7)	0.0305 (8)	0.0365 (8)	-0.0034(6)	-0.0004(6)	0.0068 (6)
C15	0.0337 (8)	0.0346 (8)	0.0353 (8)	-0.0024(6)	0.0034 (6)	0.0018 (6)
C16	0.0355 (8)	0.0311 (8)	0.0350(8)	-0.0059(6)	-0.0015(6)	-0.0004(6)
C21	0.0270 (7)	0.0288 (7)	0.0315 (7)	-0.0043(6)	0.0003 (6)	0.0002 (6)
C22	0.0328 (8)	0.0256 (7)	0.0462 (9)	-0.0055 (6)	0.0041 (7)	0.0021 (6)
C23	0.0343 (8)	0.0261 (7)	0.0509 (10)	-0.0009(6)	0.0024 (7)	-0.0028(7)
C24	0.0291 (7)	0.0356 (8)	0.0419 (9)	-0.0043 (6)	0.0034(6)	-0.0046 (7)
C25	0.0335 (8)	0.0325 (8)	0.0390(8)	-0.0080(6)	0.0043 (6)	0.0031 (6)

C26	0.0314 (8)	0.0274 (7)	0.0357 (8)	-0.0021 (6)	-0.0002 (6)	0.0037 (6)
Geometr	ic parameters (Å	, °)				
O1—C4		1.2458 (19)	C8—C24	1.	507 (2)
O2—C5		1.2214 (19	<i>'</i>	C8—H8A		9800
O3—C5		1.3451 (19		C8—H8B	0.	9800
O3—C6		1.446 (2)		C8—H8C	0.	9800
N1—C2		1.320(2)		C11—C12	1.	382 (2)
N1—C1	1	1.4207 (19)	C11—C16	1.	390 (2)
N1—H1		0.97(2)	1	C12—C13	1.	384 (2)
N2—C4		1.3576 (19)	C12—H12	0.	9500
N2—C2	1	1.412 (2)	1	C13—C14	1.	389 (2)
N2—H2		0.88(2)	1	C13—H13	0.	9500
C1—C14	4	1.507 (2)	1	C14—C15	1.	393 (2)
C1—H1.	A	0.9800	1	C15—C16	1.	394 (2)
C1—H1	В	0.9800	1	C15—H15	0.	9500
C1—H1	C	0.9800	1	C16—H16	0.	9500
C2—C3		1.388 (2)	1	C21—C22	1.	395 (2)
C2—H2.	A	0.9500		C21—C26	1.	395 (2)
C3—C5		1.461 (2)		C22—C23	1.	388 (2)
C3—C4		1.470(2)		C22—H22	0.	9500
C6—C7		1.491 (3)		C23—C24	1.	391 (2)
C6—H6.	A	0.9900		C23—H23	0.	9500
C6—H6	В	0.9900		C24—C25	1.	391 (2)
C7—H7.	A	0.9800		C25—C26	1.	385 (2)
C7—H7	В	0.9800		C25—H25	0.	9500
C7—H7	C	0.9800	1	C26—H26	0.	9500
C5—O3-	—C6	116.13 (13)	C24—C8—H8C	10	9.5
C2-N1-	—C11	124.50 (14	.)	H8A—C8—H8C	10	9.5
C2—N1-	—H1	112.3 (13)		H8B—C8—H8C	10	9.5
C11—N	1—H1	122.6 (13)	1	C12—C11—C16	11	9.89 (14)
C4—N2-	—C21	129.21 (14	.)	C12—C11—N1	11	8.09 (14)
C4—N2-	—H2	114.2 (14)	1	C16—C11—N1	12	22.02 (14)
C21—N	2—H2	116.5 (13)	1	C11—C12—C13	11	9.70 (15)
C14—C	l—H1A	109.5	1	C11—C12—H12	12	20.1
C14—C	1—H1B	109.5		C13—C12—H12	12	20.1
H1A—C	1—H1B	109.5		C12—C13—C14	12	21.85 (15)
C14—C	1—H1C	109.5		C12—C13—H13	11	9.1
H1A—C	1—H1C	109.5		C14—C13—H13	11	9.1
Н1В—С	1—H1C	109.5		C13—C14—C15	11	7.76 (14)
N1—C2-	—C3	125.72 (15	()	C13—C14—C1	12	20.62 (15)
N1—C2	—H2A	117.1		C15—C14—C1	12	21.62 (15)
C3—C2-	—H2A	117.1		C14—C15—C16	12	21.08 (15)
C2—C3-	—C5	117.15 (14)	C14—C15—H15	11	9.5
C2—C3-	—C4	120.36 (14	.)	C16—C15—H15	11	9.5
C5—C3-	—C4	122.29 (13)	C11—C16—C15	11	9.72 (15)
O1—C4	—N2	122.23 (14	.)	C11—C16—H16	12	20.1
				C15—C16—H16		20.1

N2—C4—C3	117.02 (14)	C22—C21—C26	118.90 (14)
O2—C5—O3	121.02 (15)	C22—C21—N2	124.49 (14)
O2—C5—C3	125.61 (15)	C26—C21—N2	116.53 (14)
O3—C5—C3	113.37 (13)	C23—C22—C21	119.48 (14)
O3—C6—C7	106.77 (15)	C23—C22—H22	120.3
O3—C6—H6A	110.4	C21—C22—H22	120.3
C7—C6—H6A	110.4	C22—C23—C24	122.27 (15)
O3—C6—H6B	110.4	C22—C23—H23	118.9
C7—C6—H6B	110.4	C24—C23—H23	118.9
H6A—C6—H6B	108.6	C23—C24—C25	117.49 (15)
C6—C7—H7A	109.5	C23—C24—C8	120.95 (16)
C6—C7—H7B	109.5	C25—C24—C8	121.56 (16)
H7A—C7—H7B	109.5	C26—C25—C24	121.22 (15)
C6—C7—H7C	109.5	C26—C25—H25	119.4
H7A—C7—H7C	109.5	C24—C25—H25	119.4
H7B—C7—H7C	109.5	C25—C26—C21	120.62 (15)
C24—C8—H8A	109.5	C25—C26—H26	119.7
C24—C8—H8B	109.5	C21—C26—H26	119.7
H8A—C8—H8B	109.5		
C11—N1—C2—C3	-174.78 (14)	C11—C12—C13—C14	0.1 (2)
N1—C2—C3—C5	175.86 (15)	C12—C13—C14—C15	-0.6(2)
N1—C2—C3—C4	0.9 (2)	C12—C13—C14—C1	178.83 (15)
C21—N2—C4—O1	-6.6 (2)	C13—C14—C15—C16	0.4(2)
C21—N2—C4—C3	173.92 (14)	C1—C14—C15—C16	-179.03 (15)
C2—C3—C4—O1	-4.3 (2)	C12—C11—C16—C15	-0.8(2)
C5—C3—C4—O1	-179.08 (14)	N1—C11—C16—C15	178.07 (14)
C2—C3—C4—N2	175.10 (14)	C14—C15—C16—C11	0.3 (2)
C5—C3—C4—N2	0.4(2)	C4—N2—C21—C22	-10.2(3)
C6—O3—C5—O2	6.2 (2)	C4—N2—C21—C26	172.94 (15)
C6—O3—C5—C3	-172.92 (15)	C26—C21—C22—C23	1.3 (2)
C2—C3—C5—O2	-175.98 (15)	N2—C21—C22—C23	-175.49 (15)
C4—C3—C5—O2	-1.1(3)	C21—C22—C23—C24	-0.1(3)
C2—C3—C5—O3	3.1 (2)	C22—C23—C24—C25	-0.7(3)
C4—C3—C5—O3	178.03 (13)	C22—C23—C24—C8	178.98 (17)
C5—O3—C6—C7	177.95 (16)	C23—C24—C25—C26	0.4(2)
C2—N1—C11—C12	144.73 (16)	C8—C24—C25—C26	-179.34 (16)
C2—N1—C11—C16	-34.1 (2)	C24—C25—C26—C21	0.8 (2)
C2—N1—C11—C16 C16—C11—C12—C13	-34.1 (2) 0.6 (2)	C24—C25—C26—C21 C22—C21—C26—C25	0.8 (2) -1.7 (2)

Hydrogen-bond geometry (Å, o)

<i>D</i> —H··· <i>A</i>	<i>D</i> —H	$H\cdots A$	D··· A	<i>D</i> —H··· <i>A</i>
C23—H23···O1 ⁱ	0.95	2.68	3.620(2)	170
C25—H25···O2 ⁱⁱ	0.95	2.70	3.4685 (19)	139
N1—H1···O1	0.97(2)	1.85 (2)	2.6383 (17)	135.9 (18)
N2—H2···O2	0.88 (2)	1.92 (2)	2.6713 (18)	143.0 (19)

Symmetry codes: (i) -x+1/2, -y+1/2, -z; (ii) -x+1/2, -y+3/2, -z.