

江西理工大学

Jiangxi University of Science and Technology

信息工程学院

School of information engineering

Spring_2020

Clip Lecture series

Prof Associate, School of information engineering Jiangxi university of science and technology, China

EMAIL: ajm@jxust.edu.cn

Jiangxi University of Science and Technology

Analysis of Sequential circuits

5 important example

Design of Sequential Circuits

The behavior of a sequential circuit is determined from the inputs, the outputs and the states of its flip-flops.

Both the output and the next state are a function of the inputs and the present state.

The suggested analysis procedure of a sequential circuit is set out in Figure below.

- We start with the logic schematic from which we can derive excitation equations for each flip-flop input.
- Then, to obtain next-state equations, we insert the excitation equations into the characteristic equations.
- The output equations can be derived from the schematic, and once we have our output and next-state equations, we can generate the next-state and output tables as well as state diagrams.
- When we reach this stage, we use either the table or the state diagram to develop a timing diagram which can be verified through simulation.

Design of Sequential Circuits

DIGITAL SYSTEMS DESIGN

- The main step to design the sequential circuits
 - Analyses and understand the question
 - Extract the state table based on given data
 - Assign a number of required FF
 - Select the type of FF
 - Finding the excitation table base on state table
 - Simplification od input function of FF
 - Design the circuit

Review.....

DIGITAL SYSTEMS DESIGN

Table 5.1 *Flip-Flop Characteristic Tables*

JK Flip-Flop

J	K	Q(t + 1)	1)
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t)	Complement

D Flip-Flop

Q * = D

	D	Q(t +	1)
1	0	0	Reset
	1	1	Set

(b) Graphic Symbol

DR AJM

T Flip-Flop

T	Q(t + 1)	
0	Q(t)	No change
1	Q'(t)	Complement

 $Q(t+1)=T \oplus Q(t)$

SR FF

S	R	Q*
0	0	Q
0	1	0
I	0	1
1	1	Х

All FF type

J	K	Q _{t+1}
0	0	Qt
0	1	0
1	0	1
1	1	Q't

D	Q_{t+1}
0	0
1	1

T	Q_{t+1}	
0	Qt	
1	Q't	

All FF type

D	Q_{t+1}
0	0
1	1

J	K	Q _{t+1}
0	0	Qt
0	1	0
1	0	1
1	1	Q't

Т	Q_{t+1}
0	Qt
1	Q't

CHARACTERISTIC TABLE

J	K	Q_{t+1}
0	0	$Q_t = 0$
0	1	0
1	0	1
1	1	$Q'_t = 1$

CHARACTERISTIC EQUATION

$$\mathbf{Q}(\mathbf{next}) = \mathbf{JQ'} + \mathbf{K'Q}$$

EXCITATION TABLE

Qt	Q_{t+1}	1	K
0	0	0	χ
0	1	1	Х
1	0	χ	1
1	1	X	0

Design a sequential circuit which work based on below table with JK FF

Curren	Current state		Next	state
A	В	Х	A	В
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	1	1
1	1	1	1	1
1	1	0	0	0

Qt	Q_{t+1}	J	K
0	0	0	Х
0	1	1	Х
1	0	Х	1
1	1	Х	0

Curre	nt state	Input	Next state		FF A	Input
Α	В	Х	Α	В	J_A	KA
0	0	0	0	0	0	Х
0	0	1	0	1		
0	1	0	1	0		
0	1	1	0	1		
1	0	0	1	0		
1	0	1	1	1		
1	1	1	1	1		
1	1	0	0	0		

Now You TRY To Solve

Qt	Q_{t+1}	J	K
0	0	0	Χ
0	1	1	Χ
1	0	Х	1
1	1	Χ	0

Curre	nt state	Input	Next state		FF A	Input
Α	В	X	Α	В	J_A	KA
0	0	0	0	0	0	X
0	0	1	0	1		
0	1	0	1	0		
0	1	1	0	1		
1	0	0	1	0		
1	0	1	1	1		
1	1	1	1	1		
1	1	0	0	0		

Qt	Q_{t+1}	J	K
0	0	0	Χ
0	1	1	Χ
1	0	X	1
1	1	Χ	0

Qt	Q_{t+1}	J	K
0	0	0	Χ
0	1	1	Χ
1	0	X	1
1	1	Х	0

FF A	Input	FF B	Input					В				
J_{Λ}	KA	J_B	K _B						A	В	X	
0	Х	0	Х	B	C 00	01	11	10	0	1	0	1
0	Х	1	Х	A					1	0	0	X
1	Х	×	1	0				1	1	0	1	X
0	Х	х	0	A - 1	X	X	Х	X	1	1	1	X
х	0	0	х			1	,		1	1	0	X
Х	0	1	х				1					1
Х	0	х	0			7	X					
Х	1	x 🛧	1									
		\neg		1		$J_{A=}$ F	3 X'					

FF A	Input	FF B Input		
J_{Λ}	KA	J_{B}	K _B	
0	Х	0	Х	
0	Х	1	Х	
1	Х	Х	1	
0	Х	X	0	
Х	0	0	Х	
Х	0	1	Х	
X	0	Х	0	
Х	1	Х	1	

A	В	X	
0	0	0	X
0	0	1	X
0	1	0	1
1	0	0	1
1	0	1	X
1	1	1	1

FF A	Input	FF B Input		
J_{Λ}	KA	J _B	K _B	
0	Х	0	Х	
0	Х	1	Х	
1	Х	Х	1	
0	Х	Х	0	
Х	0	0	Х	
X	0	1	Х	
Х	0	Х	0	
Х	1	Х	1	

A	D	$oxedsymbol{\Lambda}$	
0	0	0	X
0	0	1	X
0	1	1	X
0	1	0	X
1	1	1	1

		_
ν	\mathbf{D}	v
Λ_A	D	Λ

FF A	Input	FF B Input		
J_{A}	KA	J_B	K _B	
0	Х	0	Х	
0	Х	1	Х	
1	Х	Х	1	
0	Х	Х	0	
Х	0	0	Х	
Х	0	1	Х	
Х	0	Х	0	
Х	1	Х	1 🛕	

A	\mathbf{B}	X	
0	0	1	1
0	1	1	X
0	1	0	X
1	1	0	X
1	0	1	X
1	1	1	X

Flip-flop Types

FLIP-FLOP NAME	FLIP-FLOP SYMBOL	CHARACTERIS	STIC TABLE	CHARACTERISTIC EQUATION		EXCITATION	TABLE	
		S R	Q(next)		Q	Q(next)	S	R
	S Q	0 0	Q	$Q_{(next)} = S + R'Q$	0	0	0	X
SR	>CIk	0 1	0		0	1	1	0
		1 0	1	SR = 0	1	0	0	1
		1 1	?		1	1	X	0
		J K	Q(next)		Q	Q(next)	J	K
	J Q	0 0	Q		0	0	0	X
JK	>cık	0 1	0	Q(next) = JQ' + K'Q	0	1	1	X
	—κ α'—	1 0	1		1	0	Х	1
		1 1	Q'		1	1	X	0
					Q	Q(next)		D
	D Q	D	Q(next)		0	0		0
D	>CIk	0	0	Q(next) = D	0	1		1
	— <u>α</u> '—	1	1		1	0		0
					1	1		1
					Q	Q(next)		T
	т Q	Т	Q(next)	Q(next) = TQ' + T'Q	0	0		0
T	>CIk	0	Q		0	1		1
	Q'	1	Q'		1	0		1
					1	1		0

DIGITAL SYSTEMS DESIGN

Design a sequential circuit with the JK FF which work based on below table

Current state		Input	Next	state
Α	В	X	Α	В
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

Example2(design)

Based on JK FF the excitation table will be like below

Qt	Q_{t+1}	J	K
0	0	0	Χ
0	1	1	Χ
1	0	X	1
1	1	χ	0

The	The ckt input Next state The ckt o/p							
Curren	nt state	Input	Next	state		FF input		
A	В	x	A	В	JA	KA	JB	KB
0	0	0	0	0				
0	0	1	0	1				
0	1	0	1	0				
0	1	1	0	1				
1	0	0	1	0	200		200	4
1	0	1	1	1				
1	1	0	1	1	316			
1	1	1	0	0				

Example2(design)

Based on JK FF the excitation table will be like below

Qt	Q_{t+1}	J	K
0	0	0	Χ
0	1	1	Χ
1	0	Х	1
1	1	X	0

The	The ckt input			Next state		The cl	kt o/p	
Curren	Current state		Next	state		FF input		
\boldsymbol{A}	B	x	\boldsymbol{A}	В	JA	KA	JB	KB
0	0	0	0	0	0	X	0	X
0	0	1	0	1				
0	1	0	1	0				
0	1	1	0	1				
1	0	0	1	0				
1	0	1	1	1				
1	1	0	1	1				
1	1	1	0	0				

Example2(design)

Based on JK FF the excitation table will be like below

Qt	Q_{t+1}	J	K
0	0	0	Х
0	1	1	Χ
1	0	Х	1
1	1	X	0

The	The ckt input Next state The ckt o/p							
Curren	nt state	Input	Next	state	FF input			
A	В	x	A	В	JA	KA	JB	KB
0	0	0	0	0	0	X	0	X
0	0	1	0	1	0	X	1	X
0	1	0	1	0	1	X	X	1
0	1	1	0	1	0	X	Х	0
1	0	0	1	0	X	0	0	Х
1	0	1	1	1	X	0	1	X
1	1	0	1	1	X	0	X	0
1	1	1	0	0	X	1	X	1

K map for FF

		Bx		1	3
		00	01	11	10
	A = 0				1
A	1	X	X	X	X

	X		
J_A	=	Bx'	

A	В	X	
0	1	0	1
1	0	0	X
1	0	1	X
1	1	1	X
1	1	0	X

		Bx		В		
		00			10	
	<i>A</i> 0	X	X	X	X	
A	$\begin{cases} 1 \end{cases}$			1		

K_A	=	Bx

 χ

A	В	X	
0	0	0	X
0	0	1	X
0	1	1	X
0	1	0	X
1	1	1	1

K map for FF

	Bx	B		
	0 0	00 01 11		10
A = 0		1	X	X
$A\left\{1\right $		1	X	X

 $J_B = x$

A	В	X	
0	0	1	1
0	1	1	X
0	1	0	X
1	0	1	1
1	1	1	X
1	1	0	X

		Bx		В		
		00	01	11	10	
	$A \begin{vmatrix} 0 \end{vmatrix}$	X	X		1	
A	1	X	X	1		

$K_B =$	$(A \oplus x)'$	

 \boldsymbol{x}

A	В	X	
0	0	0	X
0	0	1	X
0	1	0	1
1	0	0	X
1	0	1	X
1	1	1	1

Design Circuit

• Design a 3 bit counter with the T flip flop ,which start from 000 to 111

More Example:

Binary Counter – show state diagram and table

• The excitation circuit

(000)	11)
010	110
$ \begin{array}{c} (011) \\ (100) \end{array} $	01)
二二五四 - 1 迪	

Cui	Current state		Next state		F	F inpu	ts	
A_2	A_{1}	A_{o}	A_2	A_{1}	A_{θ}	TA ₂	TA ₁	TA ₀
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0			
0	1	0	0	1	1			
0	1	1	1	0	0			
1	0	0	1	0	1			
1	0	1	1	1	0			
1	1	0	1	1	1			
1	1	1	0	0	0	4		721

• The excitation circuit

• The excitation circuit

Current state			Next state			FF inputs			
A_2	A_{I}	A_{o}	A_2	A_{I}	A_{θ}	TA ₂	TA ₁	TA ₀	
0	0	0	0	0	1	0	0	1	
0	0	1	0	1	0				
0	1	0	0	1	1				
0	1	1	1	0	0				
1	0	0	1	0	1				
1	0	1	1	1	0				
1	1	0	1	1	1				
1	1	1	0	0	0				

• K map

• The design circuit

1	1	
1	1	

1	1	1	1
1	1	1	1

$$A_0$$

$$T_{A2} = A_1 A_0$$

A2	A1	A3	TA2
0	1	1	1
1	1	1	1

T_{A1}	$=A_0$
----------	--------

A2	A1	A3	TA1
0	0	1	1
0	1	1	1
1	0	1	1
1	1	1	1

$$T_{A0} = 1$$

Current state		Next state			FF inputs			
A_2	A_1	A_{o}	A_2	A_1	A_{θ}	<i>TA</i> 2	TA 1	TA 0
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

3 bit counter with JK

Q	2	Q1	Q0	Bit 0
0		0	0	
0)	0	1	
0		1	0	
0		1	1	
1		0	0	2
1		0	1	2 /
1		1	0	~ _/
1		1	1	

3it 1	Q2	Q1	Q0
•	0	0	0
	0	0	1
	0	1	0
	0	1/	1
	1	0	0
	1	0	1
	1	1	0

3 bit counter Solve and make the K map and check your design

Bit 2

FF- The excitation table

Q(t)	Q(t+1)	D	T	\mathbb{R}	S	J	K
0	0	0	0	X	0	0	X
0	1	1	1	X 0 1	1	1	X
1	0	0	1	1	0	X	1
1	1	1	0	0	X	X	0

Most Important Table

Solve and make the K map and check your design

• Design a 2 bit counter which count with the 0 input up counter and 1 Down counter (Use JK ff)

- With the 0 input $:00 \rightarrow 01 \rightarrow 10 \rightarrow 11 \rightarrow 00 \rightarrow 01 \rightarrow ...$
- With the 1 input : $00 \rightarrow 11 \rightarrow 10 \rightarrow 01 \rightarrow 00 \rightarrow 11 \rightarrow ...$

Example 4: State Diagram

present	next	state
state	x=0	x=1
AB	АВ	ΑВ
0 0	11	0 1
0 1	0 0	11
1 0	0 1	0 0
11	10	10

Example 4: The state table

$Q_2(t)$	Q ₁ (t)	X	$Q_2(t+1)$	$Q_1(t+1)$	${ m J}_2$	K_2	J_1	K_1	Z
0	0	0	0	1	0	X	1	X	0
0	0	1	1	1	1	X		X	1
0	1	0	1	0	1	X		1	0
0	1	1	0	0	0	X	X	1	0
1	0	0	1	1	X	0	1	X	0
1	0	1	0	1	X	1	1	X	0
1	1	0	0	0	X	1	X	1	1
1	1	1	1	0	X	0		$\backslash 1 /$	0

Example 4: k_map

$$K_2 = Q_1(t) \oplus x$$

$Q_1(t)x$				
$Q_2(t)$	00	01	11	10
0		1		1
1	X	X	X	X

$$J_2 = Q_1(t) \oplus x$$
 定为程工大学 JANGEI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Q2	Q1	X	K 2
0	0	0	X
0	0	1	X
0	1	1	X
0	1	0	X
1	0	1	1
1	1	0	1

$\mathbf{Q}2$	Q1	X	K2
0	0	1	1
0	1	0	1
1	0	0	X
1	0	1	X
1	1	1	X
1	1	0	X

Example 4: Design

Design with D type FF

present	next state		
state	x=0	x=1	
AB	AB	ΑВ	
0 0	11	0 1	
0 1	0 0	1 1	
1 0	0 1	0 0	
1 1	1 0	10	

x AB	00	01	11	10
0	1	0	0	1
1	1	1	0	0

 $D_B=B'x'+A'x$

Solve and make the K map and check your design

 D_{Δ} =AB+Bx+A'B'x'

Example 5: Binary Counter

... \rightarrow 1110 \rightarrow 1111 \rightarrow 0000 \rightarrow 0001 \rightarrow 0010 \rightarrow 0101 \rightarrow ...

Solve and make the K map and check your design

Example 5: Binary Counter

pre	sent state	_next ce=0	state ce=1	
6 ites	0000 0001 0010 1101 1110	0000 0001 0010 1101 1110	0001 0010 0011 1110 1111	→ state table
	1111	1111	0000	

Reference

- 1. Mano book
- 2. ee.hawaii.edu/~sasaki/EE361/Fall06/Lab/7disp.html
- 3. https://www.tutorialspoint.com/computer_logical_organization/combinational_circuits.htm
- 4. http://osp.mans.edu.eg/cs212/Seq_circuits_analysis.htm
- 5. http://osp.mans.edu.eg/cs212/Seq_circuits_analysis.htm

