Consuming and Persistent Types for Classical Logic

Delia KESNER ¹ Pierre VIAL²

 $^1\mathrm{IRIF},$ Université de Paris and Institut Universitaire de France

²Gallinette Team LS2N (Inria CNRS)

June 16, 2020

Intersection types (Coppo-Dezani 80)

t typable **iff** t terminates

⇒ i.e. typability charac. termination

non-idempotency (Gardner 94 - Carvalho 07)

··· quantitative info. (upper bounds)
· simple proofs of termin.

Intersection types (Coppo-Dezani 80)

t typable **iff** t terminates

⇒ i.e. typability charac. termination

non-idempotency (Gardner 94 - Carvalho 07)

→ · quantitative info. (upper bounds)· simple proofs of termin.

Exact measures

 \Rightarrow eval. length + size of the n.f.

Bernadet-Lengrand'11 & Accattoli-K-L'18

The $\lambda\mu$ -calculus (Parigot 92)

- computational interpretation of classical natural deduction.
 - \leadsto control op., backtracking
- β -red. + μ -red.
- Judgments of the form:

Intersection types (Coppo-Dezani 80)

t typable **iff** t terminates

→ i.e. typability charac. termination

non-idempotency (Gardner 94 - Carvalho 07)

· · quantitative info. (upper bounds)
· simple proofs of termin.

Exact measures

 \leadsto eval. length + size of the n.f. Bernadet-Lengrand'11 & Accattoli-K-L'18

The $\lambda\mu$ -calculus (Parigot 92)

- computational interpretation of classical natural deduction.
 - \leadsto control op., backtracking
- β -red. + μ -red.
- Judgments of the form:

Intersection types (Coppo-Dezani 80)

t typable **iff** t terminates

 $\ \ \ \, \blacktriangleright \ i.e. \ typability \ charac. \ termination$

non-idempotency (Gardner 94 - Carvalho 07)

· · quantitative info. (upper bounds)
· simple proofs of termin.

Exact measures

 $\leadsto eval.\ length + size of the n.f.$ Bernadet-Lengrand'11 & Accattoli-K-L'18

Non-idempotent intersection types → exact measures

in intuitionistic functional programming without running programs.

Question: what happens in presence of control operators?

The $\lambda\mu$ -calculus (Parigot 92)

- computational interpretation of classical natural deduction.
 - \leadsto control op., backtracking
- β -red. + μ -red.
- Judgments of the form:

Intersection types (Coppo-Dezani 80)

t typable **iff** t terminates

→ i.e. typability charac. termination

non-idempotency (Gardner 94 - Carvalho 07)

→ · quantitative info. (upper bounds)· simple proofs of termin.

Exact measures

→ eval. length + size of the n.f.
Bernadet-Lengrand'11 & Accattoli-K-L'18

Non-idempotent intersection types → exact measures

 $\hbox{in } intuition istic \hbox{ functional programming } without \hbox{ } running \hbox{ } programs.$

Question: what happens in presence of control operators?

Contribution

A type system such that, for all $\lambda\mu$ -terms t, t evaluates to normal form t' of size f in ℓ β -steps and m μ -steps iff $\Gamma \vdash^{(\ell,m,f)} t : \mathcal{U} \mid \Delta$

The $\lambda\mu$ -calculus (Parigot 92)

- computational interpretation of classical natural deduction.
 - \leadsto control op., backtracking
- β -red. + μ -red.
- Judgments of the form:

 $\begin{array}{c|c}
\Gamma \vdash t : \mathcal{U} \mid \Delta \\
\text{types variables}
\end{array}$ types co-variables

"names"

Intersection types (Coppo-Dezani 80)

t typable **iff** t terminates

 \hookrightarrow i.e. typability charac. termination

non-idempotency (Gardner 94 - Carvalho 07)

→ · quantitative info. (upper bounds)· simple proofs of termin.

Exact measures

 \leadsto eval. length + size of the n.f.

Bernadet-Lengrand'11 & Accattoli-K-L'18

Non-idempotent intersection types → exact measures

in $intuitionistic\ functional\ programming\ without\ running\ programs.$

Question: what happens in presence of control operators?

Contribution

A type system such that, for all $\lambda\mu$ -terms t, t evaluates to normal form t' of size f in ℓ β -steps and m μ -steps iff $\Gamma \vdash^{(\ell,m,f)} t : \mathcal{U} \mid \Delta$

For **3 eval**. & normalizations

- \cdot **head** eval. & head norm.
- \cdot **left.-outer.** eval.

& weak norm.

· max. eval. & strong norm.

Parametrized approach

MAIN INGREDIENTS

- Persistent elements (remain in the NF)
- Consuming elements (used during red.)

ex: $(\lambda x.y \circ x \circ x) \circ z \rightarrow_{\beta} y \circ z \circ z$

- Persistent elements (remain in the NF)Consuming elements
- (used during red.)

```
ex: (\lambda x. y \circ x \circ x) \circ z \rightarrow_{\beta} y \circ z \circ z
```

- Explicit **persistent arrow**: → (new type constructor)
- One type constant (meaning "not applied")

```
ex: \cdot \lambda x.x: \bullet \to \bullet Ok (may be applied as usual) \cdot \lambda x.x: \bullet \nrightarrow \bullet illegal
```

- Persistent elements
 (remain in the NF)
 Consuming element
- Consuming elements (used during red.)

```
ex: (\lambda x. y \circ x \circ x) \circ z \rightarrow_{\beta} y \circ z \circ z
```

- Explicit **persistent arrow**: \rightarrow (new type constructor)
- One type constant (meaning "not applied")

```
ex: \cdot \lambda x.x: \bullet \to \bullet ok (may be applied as usual) \cdot \lambda x.x: \bullet \nrightarrow \bullet illegal (may not be applied)
```

- Persistent elements (remain in the NF)
- Consuming elements (used during red.)

```
ex: (\lambda x. y \circ x \circ x) \circ z \rightarrow_{\beta} y \circ z \circ z
```

- Explicit **persistent arrow**: → (new type constructor)
- One type constant (meaning "not applied")

```
ex: \cdot \lambda x.x: \bullet \to \bullet ok (may be applied as usual)

\cdot \lambda x.x: \bullet \to \bullet \quad illegal

\cdot \lambda x.x: \bullet ok (may not be applied)

\cdot x \cdot x: \bullet \to \bullet \to \bullet \vdash x t_1 t_2: \bullet ok
```

- Persistent elements (remain in the NF)
- Consuming elements (used during red.)

ex:
$$(\lambda x. y \circ x \circ x) \circ z \rightarrow_{\beta} y \circ z \circ z$$

Problem

persistence vs. consumption
does not work naively

$$(\lambda x.x x)$$
I \rightarrow_{β} I I \rightarrow_{β} I

- Explicit **persistent arrow**: → (new type constructor)
- One type constant (meaning "not applied")

```
ex: \cdot \lambda x.x: \bullet \to \bullet ok (may be applied as usual)

\cdot \lambda x.x: \bullet \to \bullet illegal

\cdot \lambda x.x: \bullet ok (may not be applied)

\cdot x: \bullet \to \bullet \to \bullet \vdash x t_1 t_2: \bullet ok
```

- Persistent elements (remain in the NF)
- Consuming elements (used during red.)

ex:
$$(\lambda x. y \circ x \circ x) \circ z \rightarrow_{\beta} y \circ z \circ z$$

Problem

persistence vs. consumption
does not work naively

$$(\lambda x.x x) \stackrel{\bot}{\downarrow} \rightarrow_{\beta} \stackrel{\bot}{I} \stackrel{\bot}{I} \rightarrow_{\beta} \stackrel{\bot}{I}$$
is this I persistent
or consuming?

- Explicit **persistent arrow**: \rightarrow (new type constructor)
- One type constant (meaning "not applied")

```
ex: \cdot \lambda x.x: \bullet \to \bullet ok (may be applied as usual)

\cdot \lambda x.x: \bullet \to \bullet illegal

\cdot \lambda x.x: \bullet ok (may not be applied)

\cdot x: \bullet \to \bullet \to \bullet \vdash x t_1 t_2: \bullet ok
```

- Persistent elements (remain in the NF)
- Consuming elements (used during red.)

ex:
$$(\lambda x. y \circ x \circ x) \circ z \rightarrow_{\beta} y \circ z \circ z$$

Problem

persistence vs. consumption does not work naively

$$(\lambda x.x x) \stackrel{\square}{\downarrow} \rightarrow_{\beta} \stackrel{\square}{\downarrow} \stackrel{\square}{\downarrow} \rightarrow_{\beta} \stackrel{\square}{\downarrow}$$
is this I persistent
or consuming?

- Explicit **persistent arrow**: \rightarrow (new type constructor)
- One type constant (meaning "not applied")

```
ex: \cdot \lambda x.x: \bullet \to \bullet ok (may be applied as usual)

\cdot \lambda x.x: \bullet \to \bullet illegal

\cdot \lambda x.x: \bullet ok (may not be applied)

\cdot x.x: \bullet \to \bullet \to \bullet \vdash x t_1 t_2 : \bullet ok
```

Solution

use non-idempotent types

→ linearize terms

lin. = create copies of args. before they are duplicated ex: $(\lambda x.x.x)[\mathtt{I},\mathtt{I}] \rightarrow_{\beta} \mathtt{I} \mathtt{I} \rightarrow_{\beta} \mathtt{I}$

- Persistent elements (remain in the NF)
- Consuming elements (used during red.)

ex:
$$(\lambda x. y \circ x \circ x) \circ z \rightarrow_{\beta} y \circ z \circ z$$

Problem

persistence vs. consumption does not work naively

$$(\lambda x.x \, x) \underbrace{\mathsf{I}}_{\beta} \to_{\beta} \underbrace{\mathsf{I}}_{\beta} \to_{\beta} \underbrace{\mathsf{I}}_{\beta}$$

is this I persistent or consuming?

- Explicit **persistent arrow**: → (new type constructor)
- One type constant (meaning "not applied")

ex:
$$\lambda x.x: \bullet \to \bullet$$
 ok (may be applied as usual)
 $\lambda x.x: \bullet \to \bullet$ illegal
 $\lambda x.x: \bullet$ ok (may not be applied)
 $x: \bullet \to \bullet \to \bullet \to \bullet \vdash x t_1 t_2 : \bullet$ ok

Solution

use non-idempotent types

→ linearize terms

lin. = create copies of args. before they are duplicated ex: $(\lambda x. x. x)[\mathbf{I}, \mathbf{I}] \rightarrow_{\beta} \mathbf{I} \mathbf{I} \rightarrow_{\beta} \mathbf{I}$

Dealing with control operators

New case of redex creation

 \leadsto "activate" persistent arrows into consuming ones

app. constructors are created by μ -red.

PLAN

1 The Lambda-Mu Calculus

2 Non-idempotent intersection types

3 Capturing exact measures (length + normal form)

THE LAMBDA-MU CALCULUS

- Intuit. logic + Peirce's Law $((A \to B) \to A) \to A$ gives classical logic.
- Griffin 90: call—cc and Felleisen's C-operator typable with Peirce's Law $((A \to B) \to A) \to A$ \leadsto the Curry-Howard iso extends to classical logic

• Parigot 92: $\lambda\mu$ -calculus = computational interpretation of classical natural deduction $(\neq \bar{\lambda}\mu\tilde{\mu})$ judgement form: $A, A \to B \vdash A \mid B, C$

$$\frac{(A \to B) \to A \vdash (A \to B) \to A}{(A \to B) \to A \vdash (A \to B, A)} \qquad \frac{A \vdash A, B}{\vdash A \to B, A}$$

$$\frac{(A \to B) \to A \vdash A, A}{(A \to B) \to A \vdash A}$$

$$\vdash ((A \to B) \to A) \to A$$

Standard Style

$$\frac{(A \to B) \to A \vdash (A \to B) \to A}{(A \to B) \to A \vdash (A \to B, A)} \vdash A \to B, A$$

$$\frac{(A \to B) \to A \vdash A, A}{(A \to B) \to A \vdash A}$$

$$\frac{(A \to B) \to A \vdash A}{\vdash ((A \to B) \to A) \to A}$$

Standard Style

$$\frac{A \vdash A \mid B}{A \vdash B \mid A} \xrightarrow{\text{act}}$$

$$\frac{(A \to B) \to A \vdash (A \to B) \to A \mid}{(A \to B) \to A \vdash A \mid A}$$

$$\frac{(A \to B) \to A \vdash A \mid A}{(A \to B) \to A \vdash A \mid}$$

$$\vdash ((A \to B) \to A) \to A \mid$$

Focussed Style

In the right hand-side of $\Gamma \vdash F \mid \Delta$

- 1 active formula F
- inactive formulas Δ

$$\cfrac{\cfrac{\cfrac{A \vdash A \mid \cfrac{B}}{A \vdash B \mid A}}{\cfrac{A \vdash B \mid A}} \stackrel{\text{act}}{} }{\cfrac{(A \to B) \to A \vdash (A \to B) \to A \mid A}{\cfrac{(A \to B) \to A \vdash A \mid A}{\cfrac{(A \to B) \to A \vdash A \mid A}{\vdash ((A \to B) \to A) \to A \mid }} }$$

Focussed Style

In the right hand-side of $\Gamma \vdash F \mid \Delta$

- 1 active formula F
- inactive formulas Δ

• Syntax: λ -calculus

• Syntax: λ -calculus

+ names α, β, γ (store inactive formulas)

 $x_1:D,y:E\vdash t:C\mid \alpha:A,\beta:B$

• Syntax: λ -calculus $+ \text{ names } \alpha, \beta, \gamma \text{ (store inactive formulas)}$ $x_1:D,y:E \vdash t:C \mid \alpha:A,\beta:B$ $+ \text{ two constructors } [\alpha]t \text{ (naming) and } \mu\alpha \text{ (μ-abs.)}$ $\frac{de/activation}{d}$

• Typed and untyped version

 $Simply\ typable \Rightarrow SN$

- Typed and untyped version $Simply\ typable \Rightarrow SN$
- call-cc := $\lambda y.\mu\alpha.[\alpha]y(\lambda x.\mu\beta.[\alpha]x)$:

- Typed and untyped version $Simply\ typable \Rightarrow SN$
- call-cc := $\lambda y.\mu\alpha.[\alpha]y(\lambda x.\mu\beta.[\alpha]x):((A \to B) \to A) \to A$

- Typed and untyped version $Simply\ typable \Rightarrow SN$
- call-cc := $\lambda y.\mu\alpha.[\alpha]y(\lambda x.\mu\beta.[\alpha]x):((A \to B) \to A) \to A$
- β -reduction $+ (\mu\alpha.[\beta]t)u \to_{\mu} \mu\alpha.[\beta]t\{u/\!\!/\alpha\}$ where $t\{u/\!\!/\alpha\}$: replace every $[\alpha]v$ in t by $[\alpha]v$ u

• Syntax: λ -calculus $+ \text{ names } \alpha, \beta, \gamma \text{ (store inactive formulas)}$ $x_1:D,y:E \vdash t:C \mid \alpha:A,\beta:B$ $+ \text{ two constructors } [\alpha]t \text{ (naming) and } \mu\alpha \text{ (μ-abs.)}$ $\frac{de/activation}{d}$

- Typed and untyped version $Simply\ typable \Rightarrow SN$
- call-cc := $\lambda y.\mu\alpha.[\alpha]y(\lambda x.\mu\beta.[\alpha]x):((A \to B) \to A) \to A$
- β -reduction $+ (\mu\alpha.[\beta]t)u \to_{\mu} \mu\alpha.[\beta]t\{u/\!\!/\alpha\}$ where $t\{u/\!\!/\alpha\}$: replace every $[\alpha]v$ in t by $[\alpha]v$ u

 μ -red: duplication + creation of app.

 $As\ usual...$

$$\beta$$
-step rules abs + app (*i.e.* intro + elim)

CUT-ELIMINATION STEPS (CLASSICAL CASE)

μ-step
activ. of an arrow type + app
which has been deact. before

CUT-ELIMINATION STEPS (CLASSICAL CASE)

- Duplication of s
- Creation of app-rules
- B saved instead of $A \to B$

PLAN

1 The Lambda-Mu Calculus

2 Non-idempotent intersection types

3 Capturing exact measures (length + normal form)

$$I := \lambda y.y$$

$$(\lambda x.x(x\,x))\mathtt{I} \to_{\mathtt{h}} \mathtt{I}(\mathtt{I}\,\mathtt{I}) \to_{\mathtt{h}} \mathtt{I}\,\mathtt{I} \to_{\mathtt{h}} \mathtt{I}$$

$$I := \lambda y.y$$

$$(\lambda x.x(x\,x))\mathbf{I} \to_{\mathsf{h}} \mathbf{I}(\mathbf{I}\,\mathbf{I}) \to_{\mathsf{h}} \mathbf{I}\,\mathbf{I} \to_{\mathsf{h}} \mathbf{I}$$

blue: persistentred: consuming

$$I := \lambda y.y$$

$$(\lambda x.x(x\,x))\mathtt{I} \to_{\mathtt{h}} \mathtt{I}(\mathtt{I}\,\mathtt{I}) \to_{\mathtt{h}} \mathtt{I}\,\mathtt{I} \to_{\mathtt{h}} \mathtt{I}$$

$$\begin{split} \mathbf{I} := \lambda y.y \\ & (\lambda x.x(x\,x))\mathbf{I} \to_{\mathbf{h}} \mathbf{I}(\mathbf{I}\,\mathbf{I}) \to_{\mathbf{h}} \mathbf{I}\,\mathbf{I} \to_{\mathbf{h}} \mathbf{I} \end{split}$$
 not simply typable $\raiset{ } \raiset{ } \raiset$

$$\begin{split} \mathbf{I} := \lambda y.y \\ & \underbrace{\mathbf{Let} \ \mathbf{us} \ \mathbf{type}}_{(\lambda x.x(x \, x))\mathbf{I} \, \to_{\mathbf{h}} \mathbf{I}(\mathbf{I} \, \mathbf{I})} \to_{\mathbf{h}} \mathbf{I} \, \mathbf{I} \, \to_{\mathbf{h}} \mathbf{I}}_{\text{ot simply typable}} \, \bot \end{split}$$

$$\begin{split} \mathtt{I} := \lambda y.y \\ & \overset{\mathbf{Let \ us \ type}}{(\lambda x.x(x \, x))\mathtt{I} \to_{\mathtt{h}} \underbrace{\mathtt{I}(\mathtt{I}\,\mathtt{I})} \to_{\mathtt{h}} \mathtt{I}\,\mathtt{I} \to_{\mathtt{h}} \mathtt{I}}_{\mathtt{h}} \mathtt{I}\,\mathtt{I} \to_{\mathtt{h}} \mathtt{I}}_{\mathrm{not \ simply \ typable}} \end{split}$$

$$\boxed{F := o \to o}$$

$$I := \lambda y.y$$

$$\boxed{F:=\ o\to o}$$

$$egin{array}{cccc} oxed{ ext{I}:F{ o}F} & oxed{ ext{I}:F} \ oxed{ ext{I}:I:F} \ oxed{ ext{I}(I\,I):F} \ oxed{ ext{Typing}} oxed{ ext{I}(I\,I)}$$

$$I := \lambda y.y$$

$$\boxed{F:=\ o\to o}$$

$$egin{array}{cccc} oxed{ ext{I}:F{ o}F} & oxed{ ext{I}:F} \ oxed{ ext{I}:I:F} \ oxed{ ext{I}(I\,I):F} \ oxed{ ext{Typing}} oxed{ ext{I}(I\,I)}$$

$$\boxed{F:=\ o\to o}$$

$$\boxed{ \begin{array}{c} \textbf{I}: F \rightarrow F & \textbf{I}: F \\ \textbf{I}: F \rightarrow F & \textbf{II}: F \\ \hline \textbf{I}(\textbf{II}): F \\ \hline Typing \ \textbf{I}(\textbf{II}) \end{array} }$$

Principles of intersection types

- Intersection: $x: A \cap B$ $\rightarrow x$ has types A and B simultaneously

 $F := o \rightarrow o$

x may be assigned several types $\leadsto x$ placeholder for I

$$\boxed{F:=\ o\to o}$$

$$\underbrace{ \begin{bmatrix} \textbf{I}: F \rightarrow F & \textbf{I}: F \\ \textbf{I}: F \rightarrow F & \textbf{I} \textbf{I}: F \\ \end{bmatrix}}_{\textbf{I}(\textbf{I} \textbf{I}): F}$$

$$\underline{\textbf{I}(\textbf{I} \textbf{I}): F}$$

$$\underline{\textbf{Typing I(II)}}$$

$$\begin{split} \mathtt{I} := \lambda y.y \\ & \qquad \qquad \mathbf{Let} \ \mathbf{us} \ \mathbf{type} \\ & \qquad \qquad (\lambda x.x(x \, x)) \mathtt{I} \to_\mathtt{h} \mathtt{I}(\mathtt{I} \, \mathtt{I}) \to_\mathtt{h} \mathtt{I} \mathtt{I} \to_\mathtt{h} \mathtt{I} \\ & \qquad \qquad \qquad \qquad \sqcup_{\mathrm{simply} \ \mathrm{typable}} \bot \end{split}$$

$$\underbrace{ \begin{array}{c} \mathbf{I} : F \rightarrow F & \mathbf{I} : F \\ \\ \mathbf{I} : F \rightarrow F & \\ \mathbf{I} (\mathbf{I} \, \mathbf{I}) : F \\ \\ Typing \ \mathbf{I} (\mathbf{I} \, \mathbf{I}) \end{array} }_{}$$

$$\underbrace{ \begin{bmatrix} \textbf{I}: F \rightarrow F & \textbf{I}: F \\ \textbf{I}: F \rightarrow F & \textbf{II}: F \\ \textbf{I}(\textbf{II}): F \\ \end{bmatrix} }_{Typing \ \textbf{I}(\textbf{II})}$$

Quantitative information! x typed twice with $F \rightarrow F$ once with F

$$\boxed{F := o \to o}$$

$$\underbrace{ \begin{bmatrix} \mathtt{I}: F \rightarrow F & \mathtt{I}: F \\ \mathtt{I}: F \rightarrow F & \mathtt{I} \mathtt{I}: F \\ \end{bmatrix}}_{ I(\mathtt{I}\,\mathtt{I}): F}$$

$$Typing \ \mathtt{I}(\mathtt{I}\,\mathtt{I})$$

$$\mathtt{I} := \lambda y.y$$

Let us type
 $(\lambda x.x(x\,x))\mathtt{I} o_{\mathtt{h}} \mathtt{I}(\mathtt{I}\,\mathtt{I}) o_{\mathtt{h}} \mathtt{I}\,\mathtt{I} o_{\mathtt{h}} \mathtt{I}$

not simply typable o
 \sqcup simply typable \sqcup

$$\boxed{F:=\ o\to o}$$

$$\underbrace{ \begin{array}{c} \mathbf{I} : F \rightarrow F & \mathbf{I} : F \\ \\ \mathbf{I} : F \rightarrow F & \\ \hline \mathbf{I}(\mathbf{I} \, \mathbf{I}) : F \\ \\ \hline \\ Typing \ \mathbf{I}(\mathbf{I} \, \mathbf{I}) \end{array} }_{}$$

$$\begin{array}{c} x: F \to F \quad x: F \\ \hline x: F \to F \\ \hline x(x: F) \\ \hline \lambda x. x(x: F) \\ \hline \lambda x. x(x: F) \\ \hline \end{array}$$

Quantitative typing

3 types in the domain

 \leadsto I should be typed 3 times

Subject expansion works

because x has been assigned several types

Subj. exp.: typing stable under anti-reduction

Why do deriv. decrease under eval.?

Exact bounds in $\lambda\mu$ D. Kesner - P. Vial 11/22

NON-IDEMPOTENCY, REDUCTION AND DECREASE

 $(\lambda x.r)s: \mathbf{B}$

Exact bounds in $\lambda\mu$ D. Kesner - P. Vial 11/22

Exact bounds in $\lambda\mu$ D. Kesner - P. Vial 11/22

Exact bounds in $\lambda\mu$ D. Kesner - P. Vial 11 /22

NON-IDEMPOTENCY, REDUCTION AND DECREASE

Non-idempotency:

- duplication disallowed
 - $(w.r.t. \ derivs)$
- derivations decrease in size

Types:
$$\tau$$
, σ ::= $o \mid [\sigma_i]_{i \in I} \to \tau$

- intersection = multiset of types $[\sigma_i]_{i \in I}$
- ullet only on the left-h.s of o (strictness)

Types:
$$\tau$$
, σ ::= $o \mid [\sigma_i]_{i \in I} \to \tau$

- intersection = multiset of types $[\sigma_i]_{i \in I}$
- only on the left-h.s of \rightarrow (strictness)

$$\frac{1}{x: [\tau] \vdash x: \tau} \text{ ax } \frac{\Gamma; x: [\sigma_i]_{i \in I} \vdash t: \tau}{\Gamma \vdash \lambda x. t: [\sigma_i]_{i \in I} \to \tau} \text{ abs}$$

$$\frac{\Gamma \vdash t: [\sigma_i]_{i \in I} \to \tau \quad (\Gamma_i \vdash u: \sigma_i)_{i \in I}}{\Gamma + \underbrace{\iota_i \in I}_{i \in I} \Gamma_i \vdash tu: \tau} \text{ app}$$

Types:
$$\tau$$
, σ ::= $o \mid [\sigma_i]_{i \in I} \to \tau$

- intersection = multiset of types $[\sigma_i]_{i \in I}$
- only on the left-h.s of \rightarrow (strictness)

$$\frac{1}{x: \, [\tau] \vdash x: \tau} \text{ ax } \frac{\Gamma; \, x: \, [\sigma_i]_{i \in I} \vdash t: \tau}{\Gamma \vdash \lambda x. t: \, [\sigma_i]_{i \in I} \to \tau} \text{ abs }$$

$$\frac{\Gamma \vdash t: \, [\sigma_i]_{i \in I} \to \tau \quad (\Gamma_i \vdash u: \sigma_i)_{i \in I}}{\Gamma +_{i \in I} \, \Gamma_i \vdash tu: \tau} \text{ app }$$

Remark

• Relevant system (no weakening, cf. ax-rule)

Types:
$$\tau$$
, σ ::= $o \mid [\sigma_i]_{i \in I} \to \tau$

- intersection = multiset of types $[\sigma_i]_{i \in I}$
- only on the left-h.s of \rightarrow (strictness)

$$\frac{1}{x: [\tau] \vdash x: \tau} \text{ ax } \frac{\Gamma; x: [\sigma_i]_{i \in I} \vdash t: \tau}{\Gamma \vdash \lambda x. t: [\sigma_i]_{i \in I} \to \tau} \text{ abs }$$

$$\frac{\Gamma \vdash t: [\sigma_i]_{i \in I} \to \tau \quad (\Gamma_i \vdash u: \sigma_i)_{i \in I}}{\Gamma + \underset{i \in I}{\longleftarrow} \Gamma_i \vdash tu: \tau} \text{ app }$$

Remark

- Relevant system (no weakening, cf. ax-rule)
- Non-idempotency $(\sigma \land \sigma \neq \sigma)$: in app-rule, pointwise multiset sum e.g.,

$$(x : [\sigma]; y : [\tau]) + (x : [\sigma, \tau]) = x : [\sigma, \sigma, \tau]; y : [\tau]$$

Types:
$$\tau$$
, σ ::= $o \mid [\sigma_i]_{i \in I} \to \tau$

- intersection = multiset of types $[\sigma_i]_{i \in I}$
- only on the left-h.s of \rightarrow (strictness)

$$\frac{1}{x: [\tau] \vdash x: \tau} \text{ ax } \frac{\Gamma; x: [\sigma_i]_{i \in I} \vdash t: \tau}{\Gamma \vdash \lambda x. t: [\sigma_i]_{i \in I} \to \tau} \text{ abs}$$

$$\frac{\Gamma \vdash t: [\sigma_i]_{i \in I} \to \tau \quad (\Gamma_i \vdash u: \sigma_i)_{i \in I}}{\Gamma + \underbrace{\iota_i \in I}_{i \in I} \Gamma_i \vdash tu: \tau} \text{ app}$$

$$\text{Types:} \hspace{0.5cm} \tau, \; \sigma \quad ::= \hspace{0.5cm} o \hspace{0.5cm} | \hspace{0.5cm} [\sigma_i]_{i \in I} \to \tau$$

- intersection = multiset of types $[\sigma_i]_{i \in I}$
- only on the left-h.s of \rightarrow (strictness)

$$\frac{1}{x:\, [\tau] \vdash x:\tau} \text{ ax } \frac{\Gamma;\, x:\, [\sigma_i]_{i\in I} \vdash t:\tau}{\Gamma \vdash \lambda x.t:\, [\sigma_i]_{i\in I} \to \tau} \text{ abs }$$

$$\frac{\Gamma \vdash t:\, [\sigma_i]_{i\in I} \to \tau \quad (\Gamma_i \vdash u:\sigma_i)_{i\in I}}{\Gamma +_{i\in I} \Gamma_i \vdash t\, u:\tau} \text{ app }$$

Example (arg. typed n times):

$$\text{Types:} \hspace{0.5cm} \tau, \; \sigma \quad ::= \hspace{0.5cm} o \hspace{0.5cm} | \hspace{0.5cm} [\sigma_i]_{i \in I} \to \tau$$

- intersection = multiset of types $[\sigma_i]_{i \in I}$
- only on the left-h.s of \rightarrow (strictness)

$$\frac{1}{x: [\tau] \vdash x: \tau} \text{ ax } \frac{\Gamma; \, x: [\sigma_i]_{i \in I} \vdash t: \tau}{\Gamma \vdash \lambda x. t: [\sigma_i]_{i \in I} \to \tau} \text{ abs }$$

$$\frac{\Gamma \vdash t: [\sigma_i]_{i \in I} \to \tau \quad (\Gamma_i \vdash u: \sigma_i)_{i \in I}}{\Gamma + \underbrace{\iota_i}_{i \in I} \Gamma_i \vdash t u: \tau} \text{ app }$$

Example (arg. typed n times):

Types:
$$\tau$$
, σ ::= $o \mid [\sigma_i]_{i \in I} \to \tau$

- intersection = multiset of types $[\sigma_i]_{i \in I}$
- only on the left-h.s of \rightarrow (strictness)

$$\frac{1}{x: \, [\tau] \vdash x: \tau} \text{ ax } \frac{\Gamma; \, x: \, [\sigma_i]_{i \in I} \vdash t: \tau}{\Gamma \vdash \lambda x. t: \, [\sigma_i]_{i \in I} \to \tau} \text{ abs }$$

$$\frac{\Gamma \vdash t: \, [\sigma_i]_{i \in I} \to \tau \quad (\Gamma_i \vdash u: \sigma_i)_{i \in I}}{\Gamma + \underbrace{\iota_i \cap I}_{i \in I} \Gamma_i \vdash tu: \tau} \text{ app }$$

Head redexes always typed!

Types:
$$\tau$$
, σ ::= $o \mid [\sigma_i]_{i \in I} \to \tau$

- intersection = multiset of types $[\sigma_i]_{i \in I}$
- only on the left-h.s of \rightarrow (strictness)

$$\frac{x: [\tau] \vdash x: \tau}{x: [\tau] \vdash x: \tau} \text{ ax } \frac{\Gamma; x: [\sigma_i]_{i \in I} \vdash t: \tau}{\Gamma \vdash \lambda x. t: [\sigma_i]_{i \in I} \to \tau} \text{ abs}$$

$$\frac{\Gamma \vdash t: [\sigma_i]_{i \in I} \to \tau \quad (\Gamma_i \vdash u: \sigma_i)_{i \in I}}{\Gamma +_{i \in I} \Gamma_i \vdash t u: \tau} \text{ app}$$

Head redexes always typed!

but an arg. may be typed 0 time

Dynamics

- Subject Reduction (SR)

 typing stable under reduction
- Subject Expansion (SE)

 typing stable under anti-reduction

Quantitative information

Head eval. decreases the size of derivations

- $\cdot \ size \ of \ \Pi \! := \ number \ of \ judg. \ in \ \Pi$
- $\cdot \ types \ and \ judg. \ are \ not \ duplicated!$
- · true whenever the redex is typed

Theorem (de Carvalho)

t is \mathcal{R}_0 -typable

iff head eval. terminates on t

iff \exists a red. path from t to a HNF

Dynamics

- Subject Reduction (SR)

 typing stable under reduction
- Subject Expansion (SE)

 typing stable under anti-reduction

specific to intersection types

Quantitative information

Head eval. decreases the size of derivations

- $\cdot \ size \ of \ \Pi\!:= \ number \ of \ judg. \ in \ \Pi$
- $\cdot \ types \ and \ judg. \ are \ not \ duplicated!$
- · true whenever the redex is typed

Theorem (de Carvalho)

t is \mathcal{R}_0 -typable

iff head eval. terminates on t

iff \exists a red. path from t to a HNF

Dynamics

- Subject Reduction (SR)

 typing stable under reduction
- Subject Expansion (SE)

 typing stable under anti-reduction

specific to intersection types

Quantitative information

Head eval. decreases the size of derivations

- $\cdot \ size \ of \ \Pi \! := \ number \ of \ judg. \ in \ \Pi$
- · types and judg. are not duplicated!
- $\cdot \ true \ whenever \ the \ redex \ is \ typed$

Specific to **non-idempotent** inter.

Theorem (de Carvalho)

t is \mathcal{R}_0 -typable

iff head eval. terminates on t

iff \exists a red. path from t to a HNF

Dynamics

- Subject Reduction (SR)

 typing stable under reduction
- Subject Expansion (SE)

 typing stable under anti-reduction
 - specific to intersection types

Quantitative information

Head eval. decreases the ${f size}$ of derivations

- $\cdot \ size \ of \ \Pi \! := \ number \ of \ judg. \ in \ \Pi$
- $\cdot \ types \ and \ judg. \ are \ not \ duplicated!$
- \cdot true whenever the redex is typed

Specific to **non-idempotent** inter.

Theorem (de Carvalho)

t is \mathcal{R}_0 -typable

iff head eval. terminates on t

iff \exists a red. path from t to a HNF

Upper bounds:

if
$$\Pi \rhd \Gamma \vdash t : \tau$$
, then $\operatorname{sz}(\Pi) \geqslant \ell + f$ where $\cdot t \to_{h}^{\ell} \lambda x_{1} \dots x_{p} \cdot x t_{1} \dots t_{q}$ (length to HNF) $\cdot f = p + q + 1$ (size of HNF)

Dynamics

- Subject Reduction (SR)

 typing stable under reduction
- Subject Expansion (SE)

 typing stable under anti-reduction
 - specific to intersection types

$\begin{array}{c|c} \text{typing HNFs} \\ + \text{ SE} \\ \end{array} \begin{array}{c} t \text{ is typable} \\ + \text{ SR} \\ \end{array} \begin{array}{c} + \text{ decrease} \\ \end{array} \\ \begin{array}{c} \text{Head eval.} \\ \text{ on } t \\ \end{array}$

Quantitative information

Head eval. decreases the size of derivations

- $\cdot \ size \ of \ \Pi \! := \ number \ of \ judg. \ in \ \Pi$
- · types and judg. are not duplicated!
- · true whenever the redex is typed

Specific to **non-idempotent** inter.

Theorem (de Carvalho)

t is \mathcal{R}_0 -typable

iff head eval. terminates on t

iff \exists a red. path from t to a HNF

Upper bounds:

$$\begin{array}{ll} \text{if } \Pi \rhd \Gamma \vdash t : \tau, \text{ then } \underbrace{\mathsf{sz}(\Pi) \geqslant \ell + f}_{\text{where}} \\ \text{decrease} & \cdot t \to_{h}^{\ell} \lambda x_{1} \dots x_{p}.x \, t_{1} \dots t_{q} \quad \textit{(length to HNF)} \\ \cdot f = p + q + 1 & \textit{(size of HNF)} \end{array}$$

Dynamics

- Subject Reduction (SR)

 typing stable under reduction
- Subject Expansion (SE)

 typing stable under anti-reduction

specific to intersection types

Quantitative information

Head eval. decreases the size of derivations

- \cdot size of Π := number of judg. in Π
- · types and judg. are not duplicated!
- · true whenever the redex is typed

Specific to **non-idempotent** inter.

Theorem (de Carvalho)

t is \mathcal{R}_0 -typable

iff head eval. terminates on t

iff \exists a red. path from t to a HNF

Upper bounds:

$$\begin{array}{l} \text{if } \Pi \rhd \Gamma \vdash t : \tau, \text{ then } \underbrace{\mathbf{sz}(\Pi) \geqslant \ell + f}_{} \text{ where} \\ \cdot t \rightarrow_{h}^{+} \lambda x_{1} \dots x_{p}.x \, t_{1} \dots t_{q} \quad \textit{(length to HNF)} \\ \cdot f = p + q + 1 \qquad \qquad \textit{(size of HNF)} \end{array}$$

Equality when Π "minimal" in some sense

Intersection: $\mathcal{I}, \mathcal{J} := [\mathcal{U}_k]_{k \in K}$

 $\mathcal{U}, \mathcal{V} =: \langle \sigma_k \rangle_{k \in K}$: Union

Features and properties

Syntax-direction, relevance, multiplicative rules, accumulation of typing information.

Features and properties

Syntax-direction, relevance, multiplicative rules, accumulation of typing information.

$$\boxed{\texttt{call-cc}: [[[A] \rightarrow B] \rightarrow A] \rightarrow \langle A, A \rangle \qquad \textit{vs.} \qquad ((A \rightarrow B) \rightarrow A) \rightarrow A}$$

$$\begin{array}{c} \textbf{Intersection:} \ \mathcal{I}, \mathcal{J} := [\mathcal{U}_k]_{k \in K} \\ \\ x : [\mathcal{U}_1, \mathcal{U}_2]; \ y : [\mathcal{V}] \vdash t : \mathcal{U} \mid \alpha : \langle \sigma_1, \sigma_2 \rangle, \beta : \langle \tau_1, \tau_2, \tau_3 \rangle \end{array}$$

Features and properties

Syntax-direction, relevance, multiplicative rules, accumulation of typing information.

app-rule based upon the admissible rule of ND:
$$\frac{A_1 \to B_1 \lor \ldots \lor A_k \to B_k \qquad A_1 \land \ldots \land A_k}{B_1 \lor \ldots \lor B_k}$$

Features and properties

Syntax-direction, relevance, multiplicative rules, accumulation of typing information.

$$\boxed{\texttt{call-cc}: [[[A] \rightarrow B] \rightarrow A] \rightarrow \langle A, A \rangle \qquad \textit{vs.} \qquad ((A \rightarrow B) \rightarrow A) \rightarrow A}$$

Features and properties

Syntax-direction, relevance, multiplicative rules, accumulation of typing information.

$$\boxed{\texttt{call-cc}: [[[A] \to B] \to A] \to \langle A, A \rangle \qquad \textit{vs.} \qquad ((A \to B) \to A) \to A}$$

Problem

 μ -red. may *increase* the number of nodes!

because of app. rule creation

Intersection:
$$\mathcal{I}, \mathcal{J} := [\mathcal{U}_k]_{k \in K}$$
 $\mathcal{U}, \mathcal{V} := \langle \sigma_k \rangle_{k \in K}$: Union $x : [\mathcal{U}_1, \mathcal{U}_2]; \ y : [\mathcal{V}] \vdash t : \mathcal{U} \mid \alpha : \langle \sigma_1, \sigma_2 \rangle, \beta : \langle \tau_1, \tau_2, \tau_3 \rangle$

Features and properties

Syntax-direction, relevance, multiplicative rules, accumulation of typing information.

$$\boxed{\texttt{call-cc}: [[[A] \to B] \to A] \to \langle A, A \rangle \qquad \textit{vs.} \qquad ((A \to B) \to A) \to A}$$

Problem

 μ -red. may *increase* the number of nodes!

because of app. rule creation

Solution

Take into account...

- multiplicity of unions (→ no increase)
- arities of saved functions (>> decrease)

$$\begin{array}{c} \textbf{Intersection:} \ \mathcal{I}, \mathcal{J} := [\mathcal{U}_k]_{k \in K} \\ \\ x : [\mathcal{U}_1, \mathcal{U}_2]; \ y : [\mathcal{V}] \vdash t : \mathcal{U} \mid \alpha : \langle \sigma_1, \sigma_2 \rangle, \beta : \langle \tau_1, \tau_2, \tau_3 \rangle \end{array}$$

Features and properties

Syntax-direction, relevance, multiplicative rules, accumulation of typing information.

$$\boxed{\texttt{call-cc}: [[[A] \to B] \to A] \to \langle A, A \rangle \qquad \textit{vs.} \qquad ((A \to B) \to A) \to A}$$

Problem

 μ -red. may *increase* the number of nodes!

because of app. rule creation

Solution

Take into account...

- multiplicity of unions (→ no increase)
- arities of saved functions (>>> decrease)

FSCD'17 (Kesner-V.)

Quantitative characterization of HN and SN in $\lambda\mu$

PLAN

1 The Lambda-Mu Calculus

2 Non-idempotent intersection types

 \bigcirc Capturing exact measures (length + normal form)

- Persistent elements (remain in the NF)
- Consuming elements (used during eval.)

ex: $(\lambda x.y \circ x \circ x) \circ z \rightarrow_{\beta} y \circ z \circ z$

- Persistent elements (remain in the NF)
- Consuming elements (used during eval.)

ex: $(\lambda x.y \circ x \circ x) \circ z \rightarrow_{\beta} y \circ z \circ z$

- Explicit **persistent** arrow: →

 (new type constructor)
- One type constant: ●
 (meaning "not applied")
- Help define **exact types**designed to capture **exact measures**

- Persistent elements (remain in the NF)
- Consuming elements (used during eval.)

ex: $(\lambda x. y @ x @ x) @ z \rightarrow_{\beta} y @ z @ z$

- Explicit **persistent** arrow: → (new type constructor)
- \bullet One type constant: \bullet (meaning "not applied")
- Help define **exact types**designed to capture **exact measures**

```
 \begin{array}{lll} \textbf{(Types)} & \sigma,\tau & ::= & \bullet \mid [\sigma_i]_{i \in I} \xrightarrow{} \tau \mid [\sigma_i]_{i \in I} \xrightarrow{} \tau \\ \textbf{(Exact types)} & \texttt{Ex} & ::= & \bullet \mid [\bullet] \xrightarrow{} \texttt{Ex} \end{array}
```

 $\Gamma \vdash t : \tau \text{ exact when } \tau \text{ exact \& only exact types in } \Gamma$

- Persistent elements (remain in the NF)
- Consuming elements (used during eval.)

ex: $(\lambda x. y @ x @ x) @ z \rightarrow_{\beta} y @ z @ z$

- Explicit **persistent** arrow: \rightarrow (new type constructor)
- ullet One type constant: ullet (meaning "not applied")
- Help define **exact types**designed to capture **exact measures**

```
 \begin{array}{lll} \textbf{(Types)} & \sigma,\tau & ::= & \bullet \mid [\sigma_i]_{i \in I} \xrightarrow{} \tau \mid [\sigma_i]_{i \in I} \xrightarrow{} \tau \\ \textbf{(Exact types)} & \texttt{Ex} & ::= & \bullet \mid [\bullet] \xrightarrow{} \texttt{Ex} \end{array}
```

 $\Gamma \vdash t : \tau \text{ exact when } \tau \text{ exact } \& \text{ only exact types in } \Gamma$

Toward exact typing

- Persistent elements (remain in the NF)
 Consuming elements (used during eval.)
- ex: $(\lambda x.y \circ x \circ x) \circ z \rightarrow_{\beta} y \circ z \circ z$

- Explicit **persistent** arrow: \rightarrow (new type constructor)
- One type constant: ●
 (meaning "not applied")
- Help define **exact types**designed to capture **exact measures**

$$\begin{array}{ccc} (\mathbf{Types}) & \sigma, \tau & ::= & \bullet \mid [\sigma_i]_{i \in I} \to \tau \mid [\sigma_i]_{i \in I} \nrightarrow \tau \\ (\mathbf{Exact \ types}) & \mathsf{Ex} & ::= & \bullet \mid [\bullet] \to \mathsf{Ex} \\ \end{array}$$

 $\Gamma \vdash t : \tau \text{ exact when } \tau \text{ exact \& only exact types in } \Gamma$

```
\frac{x : [\bullet] \nrightarrow [\bullet] \nrightarrow \bullet}{x u_1 : [\bullet] \nrightarrow \bullet} \text{ app} \\
\frac{x u_1 : [\bullet] \nrightarrow \bullet}{\lambda x.x u_1 u_2 : \bullet} \text{ app} \\
\frac{\lambda x.x u_1 u_2 : \bullet}{\lambda yx.x u_1 u_2 : \bullet}
```

 $dom([\bullet] \rightarrow Ex) = [\bullet] \qquad \neq [], [\bullet, \bullet], \dots$ $\rightsquigarrow args are typed once$ (no less, no more)

Toward exact typing

- Persistent elements (remain in the NF)
- Consuming elements (used during eval.)

ex: $(\lambda x.y \cdot x \cdot x) \cdot z \rightarrow_{\beta} y \cdot z \cdot z$

- Explicit **persistent** arrow: \rightarrow (new type constructor)
- One type constant: (meaning "not applied")
- Help define **exact types**designed to capture **exact measures**

$$\begin{array}{ccc} (\mathbf{Types}) & \sigma, \tau & ::= & \bullet \mid [\sigma_i]_{i \in I} \to \tau \mid [\sigma_i]_{i \in I} \nrightarrow \tau \\ (\mathbf{Exact} \ \mathbf{types}) & \mathsf{Ex} & ::= & \bullet \mid [\bullet] \to \mathsf{Ex} \\ \end{array}$$

 $\Gamma \vdash t : \tau \text{ exact when } \tau \text{ exact \& only exact types in } \Gamma$

```
\frac{x : [\bullet] \nrightarrow [\bullet] \nrightarrow \bullet}{x : [\bullet] \nrightarrow \bullet} \text{ax} \qquad u_1 : \bullet \text{app}
\frac{x u_1 : [\bullet] \nrightarrow \bullet}{x u_1 u_2 : \bullet} \text{app}
\frac{x u_1 u_2 : \bullet}{\lambda x x u_1 u_2 : \bullet}
\lambda y x x u_1 u_2 : \bullet
```

 $\begin{aligned} \text{dom}([\bullet] &\rightarrow \text{Ex}) = [\bullet] &\neq [], [\bullet, \bullet], \dots \\ & \sim \text{args are typed once} \\ & \text{(no less, no more)} \end{aligned}$

- Persistent elements (remain in the NF)
- Consuming elements (used during eval.)

ex: $(\lambda x. y \circ x \circ x) \circ z \rightarrow_{\beta} y \circ z \circ z$

- Explicit **persistent** arrow: \rightarrow (new type constructor)
- One type constant: ●
 (meaning "not applied")
- Help define **exact types**designed to capture **exact measures**

```
 \begin{array}{cccc} (\mathbf{Types}) & \sigma, \tau & ::= & \bullet \mid [\sigma_i]_{i \in I} \to \tau \mid [\sigma_i]_{i \in I} \nrightarrow \tau \\ (\mathbf{Exact} \ \mathbf{types}) & \mathsf{Ex} & ::= & \bullet \mid [\bullet] \to \mathsf{Ex} \\ \end{array}
```

 $\Gamma \vdash t : \tau \text{ exact when } \tau \text{ exact \& only exact types in } \Gamma$

 $dom([\bullet] \rightarrow Ex) = [\bullet] \qquad \neq [], [\bullet, \bullet], \dots$ $\sim args are typed once$ (no less, no more)

Special abs-rule

for λx not going to be used

- Persistent elements (remain in the NF)
- Consuming elements (used during eval.)

ex: $(\lambda x. y \circ x \circ x) \circ z \rightarrow_{\beta} y \circ z \circ z$

- Explicit **persistent** arrow: \rightarrow (new type constructor)
- ullet One type constant: ullet (meaning "not applied")
- Help define **exact types**designed to capture **exact measures**

```
 \begin{array}{cccc} (\mathbf{Types}) & \sigma, \tau & ::= & \bullet \mid [\sigma_i]_{i \in I} \to \tau \mid [\sigma_i]_{i \in I} \nrightarrow \tau \\ (\mathbf{Exact} \ \mathbf{types}) & \mathsf{Ex} & ::= & \bullet \mid [\bullet] \to \mathsf{Ex} \\ \end{array}
```

 $\Gamma \vdash t : \tau \text{ exact when } \tau \text{ exact \& only exact types in } \Gamma$

 $dom([\bullet] \rightarrow Ex) = [\bullet] \qquad \neq [], [\bullet, \bullet], \dots$ $\sim args are typed once$ (no less, no more)

Special abs-rule

for λx not going to be used

- Persistent elements (remain in the NF)
- Consuming elements (used during eval.)

ex: $(\lambda x. y @ x @ x) @ z \rightarrow_{\beta} y @ z @ z$

- Explicit **persistent** arrow: → (new type constructor)
- ullet One type constant: ullet (meaning "not applied")
- Help define **exact types**designed to capture **exact measures**

```
 \begin{array}{ccc} (\mathbf{Types}) & \sigma, \tau & ::= & \bullet \mid [\sigma_i]_{i \in I} \xrightarrow{} \tau \mid [\sigma_i]_{i \in I} \xrightarrow{} \tau \\ (\mathbf{Exact} \ \mathbf{types}) & \mathsf{Ex} & ::= & \bullet \mid [\bullet] \xrightarrow{} \mathsf{Ex} \end{array}
```

 $\Gamma \vdash t : \tau \text{ exact when } \tau \text{ exact } \& \text{ only exact types in } \Gamma$

Special abs-rule

for λx not going to be used

Exact bounds in $\lambda \mu$

D. Kesner - P. Vial

- Persistent elements (remain in the NF)
- Consuming elements (used during eval.)

ex: $(\lambda x.y_0x_0x)_0z \rightarrow_{\beta} y_0z_0z$

- Explicit **persistent** arrow: → (new type constructor)
- ullet One type constant: ullet (meaning "not applied")
- Help define **exact types**designed to capture **exact measures**

```
 \begin{array}{ccc} (\mathbf{Types}) & \sigma, \tau & ::= & \bullet \mid [\sigma_i]_{i \in I} \xrightarrow{} \tau \mid [\sigma_i]_{i \in I} \xrightarrow{} \tau \\ (\mathbf{Exact} \ \mathbf{types}) & \mathsf{Ex} & ::= & \bullet \mid [\bullet] \xrightarrow{} \mathsf{Ex} \end{array}
```

 $\Gamma \vdash t : \tau$ exact when τ exact & only exact types in Γ

Inductive hypothesis

 u_1 and u_2 typed with \bullet

Special abs-rule

for λx not going to be used

- Persistent elements (remain in the NF)
- Consuming elements (used during eval.)

ex: $(\lambda x. y @ x @ x) @ z \rightarrow_{\beta} y @ z @ z$

- Explicit **persistent** arrow: \rightarrow (new type constructor)
- ullet One type constant: ullet (meaning "not applied")
- Help define exact types
 designed to capture exact measures

```
 \begin{array}{lll} \textbf{(Types)} & \sigma,\tau & ::= & \bullet \mid [\sigma_i]_{i \in I} \xrightarrow{} \tau \mid [\sigma_i]_{i \in I} \xrightarrow{} \tau \\ \textbf{(Exact types)} & \texttt{Ex} & ::= & \bullet \mid [\bullet] \xrightarrow{} \texttt{Ex} \end{array}
```

 $\Gamma \vdash t : \tau \text{ exact when } \tau \text{ exact } \& \text{ only exact types in } \Gamma$

- Persistent elements (remain in the NF)
- Consuming elements (used during eval.)

ex: $(\lambda x.y \circ x \circ x) \circ z \to_{\beta} y \circ z \circ z$

- Explicit **persistent** arrow: --> (new type constructor)
- One type constant: (meaning "not applied")
- Help define exact types designed to capture exact measures

```
\sigma, \tau ::= \bullet \mid [\sigma_i]_{i \in I} \to \tau \mid [\sigma_i]_{i \in I} \to \tau
(Types)
(Exact types) Ex := \bullet | [\bullet] \rightarrow Ex
```

 $\Gamma \vdash t : \tau \text{ exact when } \tau \text{ exact \& only exact types in } \Gamma$

• Works for **leftmost-outermost** eval.

(computes the full NF)

- Persistent elements (remain in the NF)
- Consuming elements (used during eval.)

ex: $(\lambda x. y \circ x \circ x) \circ z \rightarrow_{\beta} y \circ z \circ z$

- Explicit **persistent** arrow: \rightarrow (new type constructor)
- ullet One type constant: ullet (meaning "not applied")
- Help define **exact types**designed to capture **exact measures**

```
\begin{array}{ccc} (\mathbf{Types}) & \sigma, \tau & ::= & \bullet \mid [\sigma_i]_{i \in I} \to \tau \mid [\sigma_i]_{i \in I} \nrightarrow \tau \\ (\mathbf{Exact \ types}) & \mathsf{Ex} & ::= & \bullet \mid [\bullet] \nrightarrow \mathsf{Ex} \end{array}
```

 $\Gamma \vdash t : \tau \text{ exact when } \tau \text{ exact & only exact types in } \Gamma$

- Works for **leftmost-outermost** eval. (computes the full NF)
- For head eval., head args must be untyped

- Persistent elements (remain in the NF)
- Consuming elements (used during eval.)

ex: $(\lambda x. y \circ x \circ x) \circ z \rightarrow_{\beta} y \circ z \circ z$

- Explicit **persistent** arrow: \rightarrow (new type constructor)
- ullet One type constant: ullet (meaning "not applied")
- Help define exact types
 designed to capture exact measures

```
 \begin{array}{cccc} (\mathbf{Types}) & \sigma, \tau & ::= & \bullet \mid [\sigma_i]_{i \in I} \xrightarrow{} \tau \mid [\sigma_i]_{i \in I} \xrightarrow{} \tau \\ (\mathbf{Exact \ types}) & \mathsf{Ex} & ::= & \bullet \mid \boxed{ } \end{array}
```

 $\Gamma \vdash t : \tau \text{ exact when } \tau \text{ exact & only exact types in } \Gamma$

- Works for **leftmost-outermost** eval. (computes the full NF)
- For head eval., head args must be untyped

→ exact types must be redefined

Toward exact typing

- Persistent elements (remain in the NF)
- Consuming elements (used during eval.)

ex: $(\lambda x.y \circ x \circ x) \circ z \rightarrow_{\beta} y \circ z \circ z$

- Explicit **persistent** arrow: → (new type constructor)
- \bullet One type constant: \bullet (meaning "not applied")
- Help define exact types
 designed to capture exact measures

```
 \begin{array}{ccc} (\mathbf{Types}) & \sigma, \tau & ::= & \bullet \mid [\sigma_i]_{i \in I} \to \tau \mid [\sigma_i]_{i \in I} \to \tau \\ (\mathbf{Exact \ types}) & \mathsf{Ex} & ::= & \bullet \mid [\bullet] & \bullet \\ \end{array}
```

 $\Gamma \vdash t : \tau$ exact when τ exact & only exact types in

- Works for leftmost-outermost eval.
- (computes the full NF)
 For head eval., head args must be untyped
- → exact types must be redefined

- Persistent elements (remain in the NF)
- Consuming elements (used during eval.)

ex: $(\lambda x.y \circ x \circ x) \circ z \rightarrow_{\beta} y \circ z \circ z$

- Explicit **persistent** arrow: → (new type constructor)
- \bullet One type constant: \bullet (meaning "not applied")
- Help define exact types
 designed to capture exact measures

```
 \begin{array}{cccc} (\mathbf{Types}) & \sigma, \tau & ::= & \bullet \mid [\sigma_i]_{i \in I} \to \tau \mid [\sigma_i]_{i \in I} \to \tau \\ (\mathbf{Exact \ types}) & \mathsf{Ex} & ::= & \bullet \mid \boxed{} \end{array}
```

 $\Gamma \vdash t : \tau \text{ exact when } \tau \text{ exact & only exact types in } \Gamma$

- Works for **leftmost-outermost** eval.
- (computes the full NF)
 For head eval., head args must be untyped
- → exact types must be redefined
 - $[\bullet] \nrightarrow Ex \leadsto [] \nrightarrow Ex$

- Persistent elements (remain in the NF)
- Consuming elements (used during eval.)

ex: $(\lambda x.y \circ x \circ x) \circ z \rightarrow_{\beta} y \circ z \circ z$

- Explicit **persistent** arrow: → (new type constructor)
- \bullet One type constant: \bullet (meaning "not applied")
- Help define **exact types**designed to capture **exact measures**

```
 \begin{array}{ccc} (\mathbf{Types}) & \sigma, \tau & ::= & \bullet \mid [\sigma_i]_{i \in I} \to \tau \mid [\sigma_i]_{i \in I} \to \tau \\ (\mathbf{Exact \ types}) & \mathsf{Ex} & ::= & \bullet \mid [\quad] \to \mathsf{Ex} \\ \end{array}
```

 $\Gamma \vdash t : \tau$ exact when τ exact & only exact types in

- Works for **leftmost-outermost** eval.
 - (computes the full NF)
- - [•] → Ex → [] → Ex

- Persistent elements (remain in the NF)
- Consuming elements (used during eval.)

ex: $(\lambda x. y @ x @ x) @ z \rightarrow_{\beta} y @ z @ z$

- Explicit **persistent** arrow: \rightarrow (new type constructor)
- ullet One type constant: ullet (meaning "not applied")
- Help define **exact types**designed to capture **exact measures**

```
 \begin{array}{ccc} (\mathbf{Types}) & \sigma, \tau & ::= & \bullet \mid [\sigma_i]_{i \in I} \xrightarrow{} \tau \mid [\sigma_i]_{i \in I} \xrightarrow{} \tau \\ (\mathbf{Exact} \ \mathbf{types}) & \mathsf{Ex} & ::= & \bullet \mid [\ \ ] \xrightarrow{} \mathsf{Ex} \end{array}
```

 $\Gamma \vdash t : \tau \text{ exact when } \tau \text{ exact } \& \text{ only exact types in } \Gamma$

- Persistent elements (remain in the NF)
- Consuming elements (used during eval.)

ex: $(\lambda x.y \cdot x \cdot x) \cdot z \rightarrow_{\beta} y \cdot z \cdot z$

- Explicit **persistent** arrow: \rightarrow (new type constructor)
- ullet One type constant: ullet (meaning "not applied")
- Help define exact types
 designed to capture exact measures

```
 \begin{array}{ccc} (\mathbf{Types}) & \sigma, \tau & ::= & \bullet \mid [\sigma_i]_{i \in I} \xrightarrow{} \tau \mid [\sigma_i]_{i \in I} \xrightarrow{} \tau \\ (\mathbf{Exact} \ \mathbf{types}) & \mathsf{Ex} & ::= & \bullet \mid [\ \ ] \xrightarrow{} \mathsf{Ex} \end{array}
```

 $\Gamma \vdash t : \tau$ exact when τ exact & only exact types in Γ

$$dom([] \rightarrow Ex) = [] \neq [\bullet], [\bullet, \bullet], ...$$

$$\rightarrow \text{ head args. are } not \text{ typed}$$

 u_1 and u_2 not typed anymore

Exact bounds in $\lambda\mu$ D. Kesner - P. Vial 17 /22

$$\frac{\Gamma,x:[\sigma]\vdash^{(0,1)}x:\sigma}{\Gamma\vdash^{(\ell+1,f-\#I)}\lambda x.t:[\sigma_i]_{i\in I}\to\sigma} (\operatorname{abs}) \qquad \frac{\Gamma,x:[\sigma_i]_{i\in I}\vdash^{(\ell,f)}t:\operatorname{Ex}\qquad [\sigma_i]_{i\in I}\operatorname{exact}}{\Gamma\vdash^{(\ell+1,f-\#I)}\lambda x.t:\bullet} (\bullet_S) \\ \frac{\Gamma\vdash^{(\ell+1,f-\#I)}\lambda x.t:[\sigma_i]_{i\in I}\to\sigma}{\Gamma\vdash^{(\ell_t,f+1)}\lambda x.t:\bullet} \qquad \frac{\Gamma\vdash^{(\ell_t,f+1)}\lambda x.t:\bullet}{\Gamma\vdash^{(\ell_t,f+1)}\lambda x.t:\bullet} (\bullet_S) \\ \frac{\Gamma\vdash^{(\ell_t,f+1)}t:\mathcal{F}\qquad \Delta\Vdash^{(\ell_u,f_u)}u:\operatorname{dom}(\mathcal{F})}{\Gamma\vdash^{(\ell_t,f+1)}\iota^{(\ell_u,f_u)}\iota^{($$

Systems $\mathcal{X}_{\mathtt{hd/lo}}^{\lambda}$

Exact bounds in $\lambda\mu$ D. Kesner - P. Vial 17 /22

Variables

Focus on...

$$\frac{}{x:[\sigma]\vdash^{(0,1)}x:\sigma}(\mathtt{ax})$$

$$\frac{\Gamma, x: [\sigma_i]_{i \in I} \vdash^{(\ell, f)} t: \sigma}{\Gamma \vdash^{(\ell + 1, f - \# I)} \lambda x. t: [\sigma_i]_{i \in I} \to \sigma} \text{ (abs)} \qquad \frac{\Gamma, x: [\sigma_i]_{i \in I} \vdash^{(\ell, f)} t: \text{Ex} \qquad [\sigma_i]_{i \in I} \text{ exact}}{\Gamma \vdash^{(\ell, f + 1)} \lambda x. t: \bullet} \text{ (\bullet_S)}$$

$$\frac{\Gamma \vdash^{(\ell_t, f_t)} t: \mathcal{F} \qquad \Delta \Vdash^{(\ell_u, f_u)} u: \text{dom}(\mathcal{F})}{\Gamma + \Delta \vdash^{(\ell_t + \ell_u, f_t + f_u + \#_p \mathcal{F})} tu: \text{codom}(\mathcal{F})} \text{ (app}_S) \qquad \frac{(\Gamma_k \vdash^{(\ell_k, f_k)} t: \tau_k)_{k \in K}}{+_k \Gamma_k \Vdash^{(+_k \ell_k, +_k f_k)} t: [\tau_k]_{k \in K}} \wedge \text{ with } \mathcal{F} \text{ arrow, } \#_{\mathfrak{p}}? \to ? = 0 \text{ and } \#_{\mathfrak{p}}? \to ? = 1.$$

Systems
$$\mathcal{X}^{\lambda}_{\mathtt{hd/lo}}$$

Exact bounds in $\lambda \mu$

Focus on...

$$x : [\sigma] \vdash^{(0,1)} x : \sigma$$

$$x : [\sigma] \vdash^{(0,1)} x : \sigma$$

$$x \text{ is a n.f. } \rightsquigarrow \ell = 0$$

$$x \text{ is of size } \rightsquigarrow f = 1$$

$$\frac{}{x:[\sigma]\vdash^{(0,1)}x:\sigma}(\mathtt{ax})$$

$$\begin{split} \frac{\Gamma, x: [\sigma_i]_{i \in I} \vdash^{(\ell, f)} t: \sigma}{\Gamma \vdash^{(\ell + 1, f - \# I)} \lambda x. t: [\sigma_i]_{i \in I} \to \sigma} \text{ (abs)} & \frac{\Gamma, x: [\sigma_i]_{i \in I} \vdash^{(\ell, f)} t: \text{Ex} \quad [\sigma_i]_{i \in I} \text{ exact}}{\Gamma \vdash^{(\ell, f + 1)} \lambda x. t: \bullet} (\bullet_S) \\ \frac{\Gamma \vdash^{(\ell_t, f_t)} t: \mathcal{F} \quad \Delta \Vdash^{(\ell_u, f_u)} u: \text{dom}(\mathcal{F})}{\Gamma + \Delta \vdash^{(\ell_t + \ell_u, f_t + f_u + \#_p \mathcal{F})} tu: \text{codom}(\mathcal{F})} \text{ (app}_S) & \frac{(\Gamma_k \vdash^{(\ell_k, f_k)} t: \tau_k)_{k \in K}}{+_k \Gamma_k \Vdash^{(+_k \ell_k, +_k f_k)} t: [\tau_k]_{k \in K}} \wedge \\ & \text{with } \mathcal{F} \text{ arrow, } \#_p? \to ?? = 0 \text{ and } \#_p? \to ?? = 1. \end{split}$$

Systems
$$\mathcal{X}^{\lambda}_{\mathtt{hd/lo}}$$

Exact bounds in $\lambda \mu$

Focus on...

$$\frac{}{x:[\sigma]\vdash^{(0,1)}x:\sigma}\left(\mathtt{ax}\right)$$

$$\begin{split} \frac{\Gamma, x : [\sigma_i]_{i \in I} \vdash^{(\ell, f)} t : \sigma}{\Gamma \vdash^{(\ell + 1, f - \# I)} \lambda x.t : [\sigma_i]_{i \in I} \to \sigma} \text{ (abs)} \quad & \frac{\Gamma, x : [\sigma_i]_{i \in I} \vdash^{(\ell, f)} t : \text{Ex} \quad [\sigma_i]_{i \in I} \text{ exact}}{\Gamma \vdash^{(\ell, f + 1)} \lambda x.t : \bullet} \text{ (}\bullet_S) \\ \frac{\Gamma \vdash^{(\ell_t, f_t)} t : \mathcal{F} \quad \Delta \Vdash^{(\ell_u, f_u)} u : \text{dom}(\mathcal{F})}{\Gamma + \Delta \vdash^{(\ell_t + \ell_u, f_t + f_u + \#_p \mathcal{F})} t u : \text{codom}(\mathcal{F})} \text{ (app}_S) \quad & \frac{(\Gamma_k \vdash^{(\ell_k, f_k)} t : \tau_k)_{k \in K}}{+_k \Gamma_k \Vdash^{(+_k \ell_k, +_k f_k)} t : [\tau_k]_{k \in K}} \land \\ & \text{with } \mathcal{F} \text{ arrow, } \#_{\mathsf{P}}? \to ?? = 0 \text{ and } \#_{\mathsf{P}}? \to ?? = 1. \end{split}$$

Systems
$$\mathcal{X}^{\lambda}_{\mathtt{hd/lo}}$$

Exact bounds in $\lambda \mu$ D. Kesner - P. Vial

Consuming abstractions

used to type the abs. of redexes (initial or created)

e.g., I and
$$\lambda x.y$$
 in $(\mathbf{I}(\lambda x.y))\Delta$ (n.f = y)

$$\frac{}{x:[\sigma]\vdash^{(0,1)}x:\sigma}(\mathtt{ax})$$

$$\frac{1, x : [\sigma_i]_{i \in I} \vdash (x) \vdash t : \sigma}{\Gamma \vdash (\ell+1, f-\#I) \lambda x.t : [\sigma_i]_{i \in I} \to \sigma}$$
(abs)

$$\frac{\Gamma, x: [\sigma_i]_{i \in I} \vdash^{(\ell, f)} t: \sigma}{\Gamma \vdash^{(\ell + 1, f - \# I)} \lambda x. t: [\sigma_i]_{i \in I} \rightarrow \sigma} \text{ (abs)} \qquad \frac{\Gamma, x: [\sigma_i]_{i \in I} \vdash^{(\ell, f)} t: \texttt{Ex} \qquad [\sigma_i]_{i \in I} \texttt{ exact}}{\Gamma \vdash^{(\ell, f + 1)} \lambda x. t: \bullet} \text{ (\bullet)}$$

$$\frac{\Gamma \vdash^{(\ell_t,f_t)} t: \mathcal{F} \quad \Delta \Vdash^{(\ell_u,f_u)} u: \mathrm{dom}(\mathcal{F})}{\Gamma + \Delta \vdash^{(\ell_t+\ell_u,f_t+f_u+\#_{\mathbb{F}}\mathcal{F})} t u: \mathrm{codom}(\mathcal{F})} \underbrace{(\mathsf{app}_S)}_{} \\ \frac{(\Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k)_{k \in K}}{+_k \Gamma_k \Vdash^{(\ell_k,\ell_k+k,f_k)} t: [\tau_k]_{k \in K}}$$

$$\frac{(\Gamma_k \vdash^{(\ell_k, f_k)} t : \tau_k)_{k \in K}}{+ \iota_k \Gamma_k \vdash^{(+_k \ell_k, +_k f_k)} t : [\tau_k]_{k \in K}}$$

with \mathcal{F} arrow, $\#_{p}$? \rightarrow ? = 0 and $\#_{p}$? \rightarrow ? = 1.

Systems $\mathcal{X}_{hd/10}^{\lambda}$

Consuming abstractions

used to type the abs. of redexes (initial or created)

e.g., I and
$$\lambda x.y$$
 in $(\mathbf{I}(\lambda x.y))\Delta$
$$(\mathrm{n.f}=y)$$

Focus on...

$$\frac{\Gamma, x: [\sigma_i]_{i \in I} \vdash^{(\ell,f)} t: \sigma}{\Gamma \vdash^{(\ell+1,f-\#I)} \lambda x.t: [\sigma_i]_{i \in I} \rightarrow \sigma} \text{(abs)}$$

- $\lambda x.t$ contributes to 1 step $\leftrightarrow \ell \leftarrow \ell + 1$
- ·all the occ. of x will be subst. $\rightsquigarrow f \leftarrow f |I|$

$$\frac{}{x:[\sigma]\vdash^{(0,1)}x:\sigma}\left(\mathtt{ax}\right)$$

$$\frac{\Gamma, x : [\sigma_i]_{i \in I} \vdash^{(\ell, f)} t : \sigma}{\Gamma \vdash^{(\ell+1, f-\#I)} \lambda x.t : [\sigma_i]_{i \in I} \to \sigma}$$
(abs)

$$\frac{\Gamma, x: [\sigma_i]_{i \in I} \vdash^{(\ell, f)} t: \sigma}{\Gamma \vdash^{(\ell + 1, f - \#I)} \lambda x. t: [\sigma_i]_{i \in I} \rightarrow \sigma} \text{ (abs)} \qquad \frac{\Gamma, x: [\sigma_i]_{i \in I} \vdash^{(\ell, f)} t: \texttt{Ex} \qquad [\sigma_i]_{i \in I} \text{ exact}}{\Gamma \vdash^{(\ell, f + 1)} \lambda x. t: \bullet} \text{ (\bullet)}$$

$$\frac{\Gamma \vdash^{(\ell_t,f_t)} t: \mathcal{F} \qquad \Delta \Vdash^{(\ell_u,f_u)} u: \mathrm{dom}(\mathcal{F})}{\Gamma + \Delta \vdash^{(\ell_t+\ell_u,f_t+f_u+\#_p\mathcal{F})} t\, u: \mathrm{codom}(\mathcal{F})} \\ \frac{(\mathrm{app}_S)}{+_k \Gamma_k \Vdash^{(+_k\ell_k,+_kf_k)} t: [\tau_k]_{k \in K}}$$

with \mathcal{F} arrow, $\#_{p}$? \rightarrow ? = 0 and $\#_{p}$? \rightarrow ? = 1.

Systems $\mathcal{X}_{hd/10}^{\lambda}$

Focus on...

17 /22

$$\frac{}{x:[\sigma]\vdash^{(0,1)}x:\sigma}\left(\operatorname{ax}\right)$$

$$\begin{split} \frac{\Gamma, x : [\sigma_i]_{i \in I} \vdash^{(\ell, f)} t : \sigma}{\Gamma \vdash^{(\ell + 1, f - \# I)} \lambda x.t : [\sigma_i]_{i \in I} \to \sigma} \text{ (abs)} \quad & \frac{\Gamma, x : [\sigma_i]_{i \in I} \vdash^{(\ell, f)} t : \text{Ex} \quad [\sigma_i]_{i \in I} \text{ exact}}{\Gamma \vdash^{(\ell, f + 1)} \lambda x.t : \bullet} \text{ (}\bullet_S) \\ \frac{\Gamma \vdash^{(\ell_t, f_t)} t : \mathcal{F} \quad \Delta \Vdash^{(\ell_u, f_u)} u : \text{dom}(\mathcal{F})}{\Gamma + \Delta \vdash^{(\ell_t + \ell_u, f_t + f_u + \#_p \mathcal{F})} t u : \text{codom}(\mathcal{F})} \text{ (app}_S) \quad & \frac{(\Gamma_k \vdash^{(\ell_k, f_k)} t : \tau_k)_{k \in K}}{+_k \Gamma_k \Vdash^{(+_k \ell_k, +_k f_k)} t : [\tau_k]_{k \in K}} \land \\ & \text{with } \mathcal{F} \text{ arrow, } \#_{\mathsf{P}}? \to ?? = 0 \text{ and } \#_{\mathsf{P}}? \to ?? = 1. \end{split}$$

Systems
$$\mathcal{X}^{\lambda}_{\mathtt{hd/lo}}$$

Exact bounds in $\lambda \mu$ D. Kesner - P. Vial

Persistent abstractions

used to type the unused abs.

$$e.g.$$
, $\lambda x.u$ in $\mathbb{I}(\frac{\lambda x.u}{})$

$$\frac{}{x:[\sigma]\vdash^{(0,1)}x:\sigma}(\mathtt{ax})$$

$$\frac{\Gamma, x : [\sigma_i]_{i \in I} \vdash^{(\ell, I)} t : \sigma}{\Gamma \vdash^{(\ell+1, f - \#I)} \lambda x.t : [\sigma_i]_{i \in I} \to \sigma}$$
(abs)

$$\frac{\Gamma, x: [\sigma_i]_{i \in I} \vdash^{(\ell, f)} t: \sigma}{\Gamma \vdash^{(\ell + 1, f - \# I)} \lambda x. t: [\sigma_i]_{i \in I} \to \sigma} \text{ (abs)} \qquad \frac{\Gamma, x: [\sigma_i]_{i \in I} \vdash^{(\ell, f)} t: \mathtt{Ex} \qquad [\sigma_i]_{i \in I} \ \mathtt{exact}}{\Gamma \vdash^{(\ell, f + 1)} \lambda x. t: \bullet} (\bullet_S)$$

$$\frac{\Gamma \vdash^{(\ell_t,f_t)} t: \mathcal{F} \quad \Delta \Vdash^{(\ell_u,f_u)} u: \mathrm{dom}(\mathcal{F})}{\Gamma + \Delta \vdash^{(\ell_t,f_t)} t: f_u + \#_{\mathrm{p}}\mathcal{F}) \ t \ u: \mathrm{codom}(\mathcal{F})} \ (\mathrm{app}_S) \qquad \frac{(\Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k)_{k \in K}}{+_k \Gamma_k \Vdash^{(+_k\ell_k,+_kf_k)} t: [\tau_k]_{k \in K}} \wedge \frac{\Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k}{\Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k} \wedge \frac{\Gamma_k \vdash^{(\ell_k,f_k)} t:$$

$$\frac{(\Gamma_k \vdash^{(\ell_k, f_k)} t : \tau_k)_{k \in K}}{+_k \Gamma_k \vdash^{(+_k \ell_k, +_k f_k)} t : [\tau_k]_{k \in K}}$$

with \mathcal{F} arrow, $\#_{p}$? \rightarrow ? = 0 and $\#_{p}$? \rightarrow ? = 1.

Systems $\mathcal{X}_{hd/10}^{\lambda}$

Persistent abstractions

used to type the unused abs.

$$e.g., \lambda x.u \text{ in } I(\frac{\lambda x.u}{})$$

Focus on...

$$\frac{\Gamma, x : [\sigma_i]_{i \in I} \vdash^{(\ell, f)} t : \mathtt{Ex} \qquad [\sigma_i]_{i \in I} \text{ exact}}{\Gamma \vdash^{(\ell, f+1)} \lambda x.t : \bullet} (\bullet_S)$$

- $\begin{array}{l} \cdot \lambda x.t \text{ not fired} \leadsto \textcolor{red}{\ell} \text{ unchanged} \\ \cdot \lambda x \text{ remains in n.f.} \leadsto f \leftarrow f+1 \\ \cdot \text{``}[\sigma_i]_{i \in I} \text{ exact'' depends on hd/lo} \end{array}$

$$\frac{}{x:[\sigma]\vdash^{(0,1)}x:\sigma}(\mathtt{ax})$$

$$\frac{\Gamma, x : [\sigma_i]_{i \in I} \vdash^{(\ell, f)} t : \sigma}{\Gamma \vdash^{(\ell + 1, f - \# I)} \lambda x.t : [\sigma_i]_{i \in I} \to \sigma} \text{ (abs)} \qquad \frac{\Gamma, x : [\sigma_i]_{i \in I} \vdash^{(\ell, f)} t : \texttt{Ex} \qquad [\sigma_i]_{i \in I} \text{ exact}}{\Gamma \vdash^{(\ell, f + 1)} \lambda x.t : \bullet} (\bullet_S)$$

$$\frac{\Gamma \vdash^{(\ell_t,f_t)} t: \mathcal{F} \qquad \Delta \Vdash^{(\ell_u,f_u)} u: \mathrm{dom}(\mathcal{F})}{\Gamma + \Delta \vdash^{(\ell_t+\ell_u,f_t+f_u+\#_{\mathbf{p}}\mathcal{F})} t\, u: \mathrm{codom}(\mathcal{F})} \, (\mathrm{app}_S) \qquad \frac{(\Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k)_{k \in K}}{+_k \Gamma_k \Vdash^{(+_k\ell_k,+_kf_k)} t: [\tau_k]_{k \in K}} \, \wedge \, \frac{(\Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k)_{k \in K}}{+_k \Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k} \, \wedge \, \frac{(\Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k)_{k \in K}}{+_k \Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k} \, \wedge \, \frac{(\Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k)_{k \in K}}{+_k \Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k} \, \wedge \, \frac{(\Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k)_{k \in K}}{+_k \Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k} \, \wedge \, \frac{(\Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k)_{k \in K}}{+_k \Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k} \, \wedge \, \frac{(\Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k)_{k \in K}}{+_k \Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k} \, \wedge \, \frac{(\Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k)_{k \in K}}{+_k \Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k} \, \wedge \, \frac{(\Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k)_{k \in K}}{+_k \Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k} \, \wedge \, \frac{(\Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k)_{k \in K}}{+_k \Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k} \, \wedge \, \frac{(\Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k)_{k \in K}}{+_k \Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k} \, \wedge \, \frac{(\Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k)_{k \in K}}{+_k \Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k} \, \wedge \, \frac{(\Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k)_{k \in K}}{+_k \Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k} \, \wedge \, \frac{(\Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k)_{k \in K}}{+_k \Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k} \, \wedge \, \frac{(\Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k)_{k \in K}}{+_k \Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k} \, \wedge \, \frac{(\Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k)_{k \in K}}{+_k \Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k} \, \wedge \, \frac{(\Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k)_{k \in K}}{+_k \Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k} \, \wedge \, \frac{(\Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k)_{k \in K}}{+_k \Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k} \, \wedge \, \frac{(\Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k)_{k \in K}}{+_k \Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k} \, \wedge \, \frac{(\Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k)_{k \in K}}{+_k \Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k} \, \wedge \, \frac{(\Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k)_{k \in K}}{+_k \Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k} \, \wedge \, \frac{(\Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k)_{k \in K}}{+_k \Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k} \, \wedge \, \frac{(\Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k)_{k \in K}}{+_k \Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k} \, \wedge \, \frac{(\Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k)_{k \in K}}{+_k \Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k} \, \wedge \, \frac{(\Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k)_{k \in K}}{+_k \Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k} \, \wedge \, \frac{(\Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k)_{k \in K}}{+$$

with \mathcal{F} arrow, $\#_{p}$? \rightarrow ? = 0 and $\#_{p}$? \rightarrow ? = 1.

Systems $\mathcal{X}_{hd/10}^{\lambda}$

Focus on...

17 /22

$$\frac{}{x:[\sigma]\vdash^{(0,1)}x:\sigma}\left(\operatorname{ax}\right)$$

$$\begin{split} \frac{\Gamma, x : [\sigma_i]_{i \in I} \vdash^{(\ell, f)} t : \sigma}{\Gamma \vdash^{(\ell + 1, f - \# I)} \lambda x.t : [\sigma_i]_{i \in I} \to \sigma} \text{ (abs)} \quad & \frac{\Gamma, x : [\sigma_i]_{i \in I} \vdash^{(\ell, f)} t : \text{Ex} \quad [\sigma_i]_{i \in I} \text{ exact}}{\Gamma \vdash^{(\ell, f + 1)} \lambda x.t : \bullet} \text{ (}\bullet_S) \\ \frac{\Gamma \vdash^{(\ell_t, f_t)} t : \mathcal{F} \quad \Delta \Vdash^{(\ell_u, f_u)} u : \text{dom}(\mathcal{F})}{\Gamma + \Delta \vdash^{(\ell_t + \ell_u, f_t + f_u + \#_p \mathcal{F})} t u : \text{codom}(\mathcal{F})} \text{ (app}_S) \quad & \frac{(\Gamma_k \vdash^{(\ell_k, f_k)} t : \tau_k)_{k \in K}}{+_k \Gamma_k \Vdash^{(+_k \ell_k, +_k f_k)} t : [\tau_k]_{k \in K}} \land \\ & \text{with } \mathcal{F} \text{ arrow, } \#_{\mathsf{P}}? \to ?? = 0 \text{ and } \#_{\mathsf{P}}? \to ?? = 1. \end{split}$$

Systems
$$\mathcal{X}^{\lambda}_{\mathtt{hd/lo}}$$

Exact bounds in $\lambda \mu$ D. Kesner - P. Vial

Applications

 $persistent\ or\ not$

$$\frac{}{x:[\sigma]\vdash^{(0,1)}x:\sigma}(\mathtt{ax})$$

$$\begin{split} \frac{\Gamma, x : [\sigma_i]_{i \in I} \vdash^{(\ell, f)} t : \sigma}{\Gamma \vdash^{(\ell + 1, f - \# I)} \lambda x.t : [\sigma_i]_{i \in I} \to \sigma} \text{ (abs)} \quad \frac{\Gamma, x : [\sigma_i]_{i \in I} \vdash^{(\ell, f)} t : \text{Ex} \quad [\sigma_i]_{i \in I} \text{ exact}}{\Gamma \vdash^{(\ell, f + 1)} \lambda x.t : \bullet} \\ \frac{\Gamma \vdash^{(\ell_t, f + 1)} t : \mathcal{F} \quad \Delta \Vdash^{(\ell_u, f u)} u : \text{dom}(\mathcal{F})}{\Gamma + \Delta \vdash^{(\ell_t + \ell_u, f_t + f_u + \#_{\mathbb{P}}\mathcal{F})} t u : \text{codom}(\mathcal{F})} \text{ (app}_S) \quad \frac{(\Gamma_k \vdash^{(\ell_k, f k)} t : \tau_k)_{k \in K}}{+_k \Gamma_k \Vdash^{(+_k \ell_k, +_k f k)} t : [\tau_k]_{k \in K}} \wedge \\ \text{with } \mathcal{F} \text{ arrow, } \#_{\mathbb{P}}? \to ?? = 0 \text{ and } \#_{\mathbb{P}}? \to ?? = 1. \end{split}$$

Systems
$$\mathcal{X}^{\lambda}_{\mathtt{hd/lo}}$$

Exact bounds in $\lambda \mu$

Applications

Focus on...

$$\begin{array}{ll} \textbf{Applications} & & \\ \hline \hline \Gamma \vdash^{(\ell_t,f_t)} t: \mathcal{F} & \Delta \Vdash^{(\ell_u,f_u)} u: \text{dom}(\mathcal{F}) \\ \hline \hline \Gamma + \Delta \vdash^{(\ell_t+\ell_u,f_t+f_u+\#_p\mathcal{F})} tu: \text{codom}(\mathcal{F}) \\ \hline \\ \cdot \text{reds step counted in abs} \\ \hline \\ \sim \ell \leadsto + 0 \\ \hline \cdot f \leadsto + \#_p\mathcal{F} \ (:= \text{pers}?1:0) \\ \hline \end{array}$$

$$\frac{}{x:[\sigma]\vdash^{(0,1)}x:\sigma}(\mathtt{ax})$$

$$\begin{split} \frac{\Gamma, x : [\sigma_i]_{i \in I} \vdash^{(\ell, f)} t : \sigma}{\Gamma \vdash^{(\ell + 1, f - \# I)} \lambda x.t : [\sigma_i]_{i \in I} \to \sigma} \text{ (abs)} & \frac{\Gamma, x : [\sigma_i]_{i \in I} \vdash^{(\ell, f)} t : \text{Ex} \quad [\sigma_i]_{i \in I} \text{ exact}}{\Gamma \vdash^{(\ell, f + 1)} \lambda x.t : \bullet} \text{ (\bullet_S)} \\ \frac{\Gamma \vdash^{(\ell_t, f_t)} t : \mathcal{F} \quad \Delta \Vdash^{(\ell_u, f_u)} u : \text{dom}(\mathcal{F})}{\Gamma + \Delta \vdash^{(\ell_t + \ell_u, f_t + f_u + \#_p \mathcal{F})} t u : \text{codom}(\mathcal{F})} \text{ (app}_S) & \frac{(\Gamma_k \vdash^{(\ell_k, f_k)} t : \tau_k)_{k \in K}}{+_k \Gamma_k \Vdash^{(+_k \ell_k, +_k f_k)} t : [\tau_k]_{k \in K}} \land \\ & \text{with } \mathcal{F} \text{ arrow, } \#_{\mathbf{p}}? \to ? = 0 \text{ and } \#_{\mathbf{p}}? \to ? = 1. \end{split}$$

Systems $\mathcal{X}_{hd/10}^{\lambda}$

Applications

Focus on...

$$\begin{array}{c} \textbf{Applications} \\ \textbf{persistent or not} \\ \hline \\ \Gamma + \Delta \vdash^{(\ell_t,f_t)} t: \mathcal{F} \\ \hline \\ \Gamma + \Delta \vdash^{(\ell_t+\ell_u,f_t+f_u+\#_p\mathcal{F})} tu: \mathtt{codom}(\mathcal{F}) \\ \hline \\ \cdot \mathtt{reds \ step \ counted \ in \ abs} \\ \\ & \sim \ell \rightsquigarrow + 0 \\ \\ \cdot f \rightsquigarrow + \#_p\mathcal{F} \ (:= \mathtt{pers}?1:0) \\ \hline \\ \hline \\ \hline \\ x: [\sigma] \vdash^{(0,1)} x: \sigma \\ \hline \\ \hline \\ (\mathtt{ax}) \\ \hline \end{array}$$

$$\frac{\Gamma, x: [\sigma_i]_{i\in I} \vdash^{(\ell,f)} t: \sigma}{\Gamma \vdash^{(\ell+1,f-\#I)} \lambda x. t: [\sigma_i]_{i\in I} \to \sigma} \text{ (abs)} \qquad \frac{\Gamma, x: [\sigma_i]_{i\in I} \vdash^{(\ell,f)} t: \operatorname{Ex} \qquad [\sigma_i]_{i\in I} \operatorname{exact}}{\Gamma \vdash^{(\ell,f+1)} \lambda x. t: \bullet} (\bullet_S)$$

$$\frac{\Gamma \vdash^{(\ell_t,f_t)} t: \mathcal{F} \qquad \Delta \Vdash^{(\ell_u,f_u)} u: \operatorname{dom}(\mathcal{F})}{\Gamma + \Delta \vdash^{(\ell_t+\ell_u,f_t+f_u+\#_{\mathbb{P}}\mathcal{F})} tu: \operatorname{codom}(\mathcal{F})} (\operatorname{app}_S) \qquad \frac{(\Gamma_k \vdash^{(\ell_k,f_k)} t: \tau_k)_{k\in K}}{+_k \Gamma_k \Vdash^{(+_k\ell_k,+_kf_k)} t: [\tau_k]_{k\in K}} \wedge$$

with
$$\mathcal{F}$$
 arrow, $\#_p? \rightarrow ? = 0$ and $\#_p? \rightarrow ? = 1$.

Systems $\mathcal{X}_{hd/10}^{\lambda}$

Exact bounds in $\lambda \mu$

D. Kesner - P. Vial

Applications

Focus on...

$$\begin{array}{ll} \textbf{Applications} & & \\ \hline \hline \Gamma \vdash^{(\ell_t,f_t)} t: \mathcal{F} & \Delta \Vdash^{(\ell_u,f_u)} u: \text{dom}(\mathcal{F}) \\ \hline \Gamma + \Delta \vdash^{(\ell_t+\ell_u,f_t+f_u+\#_p\mathcal{F})} tu: \text{codom}(\mathcal{F}) \\ \hline \\ \cdot \text{reds step counted in abs} \\ \hline & & \\ \sim \ell \leadsto + 0 \\ \hline & & \\ \cdot f \leadsto + \#_p\mathcal{F} \ (:= \text{pers}?1:0) \\ \hline \end{array}$$

$$\frac{}{x:[\sigma]\vdash^{(0,1)}x:\sigma}(\mathtt{ax})$$

$$\begin{split} \frac{\Gamma, x : [\sigma_i]_{i \in I} \vdash^{(\ell, f)} t : \sigma}{\Gamma \vdash^{(\ell + 1, f - \# I)} \lambda x.t : [\sigma_i]_{i \in I} \to \sigma} \text{ (abs)} & \frac{\Gamma, x : [\sigma_i]_{i \in I} \vdash^{(\ell, f)} t : \text{Ex} \quad [\sigma_i]_{i \in I} \text{ exact}}{\Gamma \vdash^{(\ell, f + 1)} \lambda x.t : \bullet} \text{ (\bullet_S)} \\ \frac{\Gamma \vdash^{(\ell_t, f_t)} t : \mathcal{F} \quad \Delta \Vdash^{(\ell_u, f_u)} u : \text{dom}(\mathcal{F})}{\Gamma + \Delta \vdash^{(\ell_t + \ell_u, f_t + f_u + \#_p \mathcal{F})} t u : \text{codom}(\mathcal{F})} \text{ (app}_S) & \frac{(\Gamma_k \vdash^{(\ell_k, f_k)} t : \tau_k)_{k \in K}}{+_k \Gamma_k \Vdash^{(+_k \ell_k, +_k f_k)} t : [\tau_k]_{k \in K}} \land \\ & \text{with } \mathcal{F} \text{ arrow, } \#_{\mathbf{p}}? \to ? = 0 \text{ and } \#_{\mathbf{p}}? \to ? = 1. \end{split}$$

Systems $\mathcal{X}_{hd/10}^{\lambda}$

Exact bounds in $\lambda \mu$

D. Kesner - P. Vial

Applications

Focus on...

$$\begin{split} \frac{\Gamma, x : [\sigma_i]_{i \in I} \vdash^{(\ell, f)} t : \sigma}{\Gamma \vdash^{(\ell + 1, f - \# I)} \lambda x.t : [\sigma_i]_{i \in I} \to \sigma} \text{ (abs)} & \frac{\Gamma, x : [\sigma_i]_{i \in I} \vdash^{(\ell, f)} t : \text{Ex} \quad [\sigma_i]_{i \in I} \text{ exact}}{\Gamma \vdash^{(\ell, f + 1)} \lambda x.t : \bullet} (\bullet_S) \\ \frac{\Gamma \vdash^{(\ell_t, f_t)} t : \mathcal{F} \quad \Delta \Vdash^{(\ell_u, f_u)} u : \text{dom}(\mathcal{F})}{\Gamma + \Delta \vdash^{(\ell_t + \ell_u, f_t + f_u + \#_p \mathcal{F})} t u : \text{codom}(\mathcal{F})} \text{ (app}_S) & \frac{(\Gamma_k \vdash^{(\ell_k, f_k)} t : \tau_k)_{k \in K}}{+_k \Gamma_k \Vdash^{(+_k \ell_k, +_k f_k)} t : [\tau_k]_{k \in K}} \land \\ & \text{with } \mathcal{F} \text{ arrow, } \#_{\mathbf{p}}? \to ? = 0 \text{ and } \#_{\mathbf{p}}? \to ? = 1. \end{split}$$

Systems $\mathcal{X}_{hd/10}^{\lambda}$

Exact bounds in $\lambda \mu$

D. Kesner - P. Vial

$$(\lambda x.x(x\,x))\mathbf{I} \to_{\mathbf{h}} \mathbf{I}(\mathbf{I}\,\mathbf{I}) \to_{\mathbf{h}} \mathbf{I}\,\mathbf{I} \to_{\mathbf{h}} \mathbf{I}$$

$$\begin{array}{c} \mathbf{F} := [o] \to o & \text{used to type the persistent occ. of } \mathbf{I} \\ \hline \\ -\mathbf{blue}: \text{ persistent} \\ -\mathbf{red}: \text{ consuming} \\ \hline \\ x : [F] \to F & \mathbf{I} : F \\ \hline \\ \mathbf{I}(\mathbf{I}\,\mathbf{I}) : F \\ \hline \\ x : [F] \to F & \mathbf{x} : F \\ \hline \\ x(x\,x) : F & \mathbf{y} : F & \mathbf{y} : F \\ \hline \\ \lambda x.x(x\,x) : [[F] \to F, [F] \to F, F] \to F & \mathbf{I} : [F] \to F & \mathbf{I} : [F] \to F \\ \hline \end{array}$$

 $(\lambda x.x(x\,x))$ I: F

$$(\lambda x. x(x\, x)) \mathbf{I} \to_{\mathbf{h}} \mathbf{I}(\mathbf{I}\, \mathbf{I}) \to_{\mathbf{h}} \mathbf{I} \mathbf{I} \to_{\mathbf{h}} \mathbf{I}$$

$$F := [o] \to o \text{ the persistent occ. of } \mathbf{I}$$

$$F := [o] \to o \text{ the persistent occ. of } \mathbf{I}$$

$$\mathbf{F} := [o] \to o \text{ the persistent occ. of } \mathbf{I}$$

$$\mathbf{F} := [o] \to o \text{ the persistent occ. of } \mathbf{I}$$

$$\mathbf{F} := [o] \to o \text{ the persistent occ. of } \mathbf{I}$$

$$\mathbf{F} := [o] \to o \text{ the persistent occ. of } \mathbf{I} : [F] \to F$$

$$\mathbf{I} : [F] \to F \qquad \mathbf{I} : F$$

$$\mathbf{I} : [F] \to F \qquad \mathbf{I} : F$$

$$\mathbf{I} : [F] \to F \qquad \mathbf{I} : [F] \to F$$

$$\mathbf{I} : [F] \to F \qquad \mathbf{I} : F$$

$$(\lambda x. x(x\, x)) \mathbf{I} : F$$

 $(\lambda x.x(x\,x))$ I: F

$$(\lambda x. x(x\, x)) \mathbf{I} \to_{\mathbf{h}} \mathbf{I}(\mathbf{I}\, \mathbf{I}) \to_{\mathbf{h}} \mathbf{I} \mathbf{I} \to_{\mathbf{h}} \mathbf{I}$$

$$F := [o] \to o \text{ the persistent} \text{ the persistent occ. of } \mathbf{I}$$

$$F := [o] \to o \text{ the persistent} \text{ occ. of } \mathbf{I}$$

$$I : [\bullet] \to \bullet \quad \mathbf{I} : \bullet$$

$$I(\mathbf{I}\, \mathbf{I}) : \bullet$$

$$Typing I(\mathbf{I}\, \mathbf{I})$$

$$x : [\bullet] \to \bullet \quad xx : \bullet$$

$$x(x\, x) : \bullet$$

$$x(x\, x) : \bullet$$

$$x(x\, x) : [\bullet] \to \bullet, [\bullet] \to \bullet, \bullet] \to \bullet$$

$$\mathbf{I} : [\bullet] \to \bullet \quad \mathbf{I} : [\bullet] \to \bullet$$

$$\mathbf{I} : [\bullet] \to \bullet$$

$$\mathbf{I} : [\bullet] \to \bullet$$

$$\mathbf{I} : [\bullet] \to \bullet$$

 $(\lambda x.x(x\,x))$ I:

$$(\lambda x.x(x\,x))\mathbf{I} \to_{\mathbf{h}} \mathbf{I}(\mathbf{I}\,\mathbf{I}) \to_{\mathbf{h}} \mathbf{I}\,\mathbf{I} \to_{\mathbf{h}} \mathbf{I}$$

$$F := [o] \to o \text{ the persistent the persistent occ. of } \mathbf{I}$$

$$F := [o] \to o \text{ the persistent the persistent occ. of } \mathbf{I}$$

$$I : [\bullet] \to \bullet \quad \mathbf{I} : \bullet$$

$$I(\mathbf{I}\,\mathbf{I}) : \bullet$$

$$I(\mathbf{I}\,\mathbf{I}, \bullet) : \bullet$$

$$I(\mathbf{I}\,\mathbf{I}, \bullet) : \bullet$$

$$I(\mathbf{I}, \bullet) : \bullet$$

$$I(\mathbf{I}\,\mathbf{I}, \bullet) : \bullet$$

$$I(\mathbf{I}, \bullet) : \bullet$$

$$I(\mathbf{I$$

$$(\lambda x. x(x\, x)) \mathbf{I} \to_{\mathbf{h}} \mathbf{I}(\mathbf{I}\, \mathbf{I}) \to_{\mathbf{h}} \mathbf{I} \mathbf{I} \to_{\mathbf{h}} \mathbf{I}$$

$$F := [o] \to o \text{ the persistent} \text{ the persistent occ. of } \mathbf{I}$$

$$F := [o] \to o \text{ the persistent} \text{ occ. of } \mathbf{I}$$

$$I : [\bullet] \to \bullet \quad \mathbf{I} : \bullet$$

$$I(\mathbf{I}\, \mathbf{I}) : \bullet$$

$$Typing I(\mathbf{I}\, \mathbf{I})$$

$$x : [\bullet] \to \bullet \quad xx : \bullet$$

$$x(x\, x) : \bullet$$

$$x(x\, x) : \bullet$$

$$x(x\, x) : [\bullet] \to \bullet, [\bullet] \to \bullet, \bullet] \to \bullet$$

$$\mathbf{I} : [\bullet] \to \bullet \quad \mathbf{I} : [\bullet] \to \bullet$$

$$\mathbf{I} : [\bullet] \to \bullet$$

$$\mathbf{I} : [\bullet] \to \bullet$$

$$\mathbf{I} : [\bullet] \to \bullet$$

 $(\lambda x.x(x\,x))$ I:

$$(\lambda x. x(x\, x)) \mathbf{I} \to_{\mathbf{h}} \mathbf{I}(\mathbf{I}\, \mathbf{I}) \to_{\mathbf{h}} \mathbf{I} \mathbf{I} \to_{\mathbf{h}} \mathbf{I}$$

$$F := [o] \to o \text{ the persistent occ. of } \mathbf{I}$$

$$\bullet \mathbf{F} := \bullet$$

Properties of $\mathcal{X}^{\lambda}_{\mathtt{hd/lo}}$

Definition

- Exact Intersection: $[\sigma_i]_{i\in I}$ exact iff the σ_i are exact.
- Exact judgment: $\Gamma \vdash^{(\ell,f)} t : \text{Ex with } \Gamma(x) \text{ exact for all } x.$
- Exact derivation: ccl with tight judg. (local criterion).

no need to look inside deriv.

Properties of $\mathcal{X}^{\lambda}_{\mathtt{hd/lo}}$

Definition

- Exact Intersection: $[\sigma_i]_{i\in I}$ exact iff the σ_i are exact.
- Exact judgment: $\Gamma \vdash^{(\ell,f)} t : \text{Ex with } \Gamma(x) \text{ exact for all } x.$
- Exact derivation: ccl with tight judg. (local criterion).

no need to look inside deriv.

Theorem (H/WN)

Let $t \in \Lambda$. Then:

$$\Gamma \vdash^{(\ell,f)} t : \tau \text{ exact} \quad \text{iff} \quad \bullet \ t \to_{\mathtt{hd/lo}}^{\ell} t' \text{ head/full n.f.}$$

•
$$|t'|_{\text{hd/lo}} = f$$

Properties of $\mathcal{X}^{\lambda}_{\mathtt{hd/lo}}$

Definition

- Exact Intersection: $[\sigma_i]_{i\in I}$ exact iff the σ_i are exact.
- Exact judgment: $\Gamma \vdash^{(\ell,f)} t : \text{Ex with } \Gamma(x) \text{ exact for all } x.$
- Exact derivation: ccl with tight judg. (local criterion).

no need to look inside deriv.

Theorem (H/WN)

Let $t \in \Lambda$. Then:

$$\Gamma \vdash^{(\ell,f)} t : \tau \text{ exact} \quad \text{iff} \quad \bullet t \rightarrow^{\ell}_{\text{hd/lo}} t' \text{ head/full n.f.}$$

•
$$|t'|_{\text{hd/lo}} = f$$

Theorem (SN)

Idem for SN and a maximal reduction strategy.

- · Just modify $dom(\mathcal{F})$ with $dom_{mx}([] \to \tau) = [\bullet]$
- · Erasable args must now be typed
- · Specify the size of what is erased in t

Let $S \in \{\text{hd}, \text{lo}, \text{mx}\}$ (\leadsto S-exactness for inter. and union types)

$$\frac{1}{x : [\mathcal{U}] \vdash^{(0,0,1)} x : \mathcal{U} \mid \emptyset} \text{ (ax) } \frac{\Gamma \vdash^{(\ell,m,f)} t : \mathcal{U} \mid \Delta}{\Gamma \vdash^{(\ell,m,f)} [\alpha]t \mid \Delta \vee \alpha : \mathcal{U}} \text{ (c) } \frac{\Gamma \vdash^{(\ell,m,f)} t : \text{UEx}_S \mid \Delta}{\Gamma \vdash^{(\ell,m,f)} \lambda x \cdot t : \langle \bullet \rangle \mid \Delta} \text{ (\bullet)}$$

$$\frac{\Gamma \vdash^{(\ell,m,f)} t : \text{UEx}_S \mid \Delta}{\Gamma \vdash^{(\ell,m,f+1)} \lambda x \cdot t : \langle \bullet \rangle \mid \Delta} \text{ (\bullet)}$$

$$\frac{\Gamma \vdash^{(\ell,m,f)} c \mid \Delta, \alpha : \mathcal{U} \quad \mathcal{V} = \mathcal{U}^{\uparrow}}{\Gamma \vdash^{(\ell,m+ar(\mathcal{V}),f+1+c_p(\mathcal{U}))} \mu \alpha \cdot c : \mathcal{V} \mid \Delta} \text{ (μ)}$$

$$\frac{\Gamma_t \vdash^{(\ell_t,m_t,f_t)} t : \mathcal{F} \mid \Delta_t \quad \Gamma_u \Vdash^{(\ell_u,m_u,f_u)} u : \text{dom}_S(\mathcal{F}) \mid \Delta_u}{\Gamma_t \wedge \Gamma_u \vdash^{(\ell_t+\ell_u,m_t+m_u,f_t+f_u+\#_p\mathcal{F})} t u : \text{codom}(\mathcal{F}) \mid \Delta_t \vee \Delta_u} \text{ (app}_S)$$

Let
$$S \in \{\text{hd}, \text{lo}, mx\}$$
 (\leadsto S-exactness for inter. and union types)

$$\frac{x : [\mathcal{U}] \vdash^{(0,0,1)} x : \mathcal{U} \mid \emptyset}{x : [\mathcal{U}] \vdash^{(0,0,1)} x : \mathcal{U} \mid \emptyset} (ax) \qquad \frac{\Gamma \vdash^{(\ell,m,f)} t : \mathcal{U} \mid \Delta}{\Gamma \vdash^{(\ell,m,f)} [\alpha] t \mid \Delta \vee \alpha : \mathcal{U}} (c) \qquad (\land)$$

$$\frac{\Gamma \vdash^{(\ell,m,f)} t : \mathbf{UEx}_{S} \mid \Delta \qquad \Gamma(x) \ S - \mathbf{exact}}{\Gamma \setminus x \vdash^{(\ell,m,f+1)} \lambda x.t : \langle \bullet \rangle \mid \Delta} (\bullet_{S})$$

$$\frac{\Gamma \vdash^{(\ell,m,f)} c \mid \Delta, \alpha : \mathcal{U} \qquad \mathcal{V} = \mathcal{U}^{\uparrow}}{\Gamma \vdash^{(\ell,m+ar(\mathcal{V}),f+1+c_{p}(\mathcal{U}))} \mu \alpha.c : \mathcal{V} \mid \Delta} (\mu)$$

$$\frac{\Gamma_{t} \vdash^{(\ell_{t},m_{t},f_{t})} t : \mathcal{F} \mid \Delta_{t} \qquad \Gamma_{u} \vdash^{(\ell_{u},m_{u},f_{u})} u : \mathbf{dom}_{S}(\mathcal{F}) \mid \Delta_{u}}{\Gamma_{t} \wedge \Gamma_{u} \vdash^{(\ell_{t}+\ell_{u},m_{t}+m_{u},f_{t}+f_{u}+\#_{p}\mathcal{F})} t u : \mathbf{codom}(\mathcal{F}) \mid \Delta_{t} \vee \Delta_{u}} (\mathbf{app}_{S})$$

Let $S \in \{ hd, lo, mx \}$ (\leadsto S-exactness for inter. and union types)

$$\frac{\Gamma \vdash^{(\ell,m,f)} t : \mathcal{U} \mid \Delta}{\Gamma \vdash^{(\ell,m,f)} [\alpha]t \mid \Delta \vee \alpha : \mathcal{U}} \text{(c)}$$

$$\frac{\Gamma \vdash^{(\ell,m,f)} c \mid \Delta, \alpha : \mathcal{U} \quad \mathcal{V} = \mathcal{U}^{\uparrow}}{\Gamma \vdash^{(\ell,m+\operatorname{ar}(\mathcal{V}),f+1+\operatorname{c}_{\operatorname{p}}(\mathcal{U}))} \mu \alpha.c : \mathcal{V} \mid \Delta} \underbrace{(\mu)}$$

 $\text{Let } S \in \{\texttt{hd}, \texttt{lo}, \texttt{mx}\} \qquad (\leadsto S\text{-exactness for inter. and union types})$

$$\frac{\Gamma \vdash^{(\ell,m,f)} t : \mathcal{U} \mid \Delta}{\Gamma \vdash^{(\ell,m,f)} [\alpha]t \mid \Delta \vee \alpha : \mathcal{U}} \text{(c)}$$

type \mathcal{U} stored in α $via \vee$

$$\frac{\Gamma \vdash^{(\ell,m,f)} c \mid \Delta, \alpha : \mathcal{U} \quad \mathcal{V} = \mathcal{U}^{\uparrow}}{\Gamma \vdash^{(\ell,m+\operatorname{ar}(\mathcal{V}),f+1+\operatorname{c}_{\operatorname{p}}(\mathcal{U}))} \mu \alpha.c : \mathcal{V} \mid \Delta} \left(\mu\right)$$

Let $S \in \{ hd, lo, mx \}$ (\leadsto S-exactness for inter. and union types)

$$\frac{\Gamma \vdash^{(\ell,m,f)} t: \mathcal{U} \mid \Delta}{\Gamma \vdash^{(\ell,m,f)} [\alpha] t \mid \Delta \vee \alpha: \mathcal{U}} \, (\mathtt{c})$$

$$\frac{\Gamma \vdash^{(\ell,m,f)} c \mid \Delta, \alpha : \mathcal{U} \quad \mathcal{V} = \mathcal{U}^{\uparrow}}{\Gamma \vdash^{(\ell,m+\operatorname{ar}(\mathcal{V}),f+1+\operatorname{c}_{\operatorname{p}}(\mathcal{U}))} \mu \alpha.c : \mathcal{V} \mid \Delta} \underbrace{(\mu)}$$

Let $S \in \{ hd, lo, mx \}$ (\leadsto S-exactness for inter. and union types)

$$\frac{\Gamma \vdash^{(\ell,m,f)} t: \mathcal{U} \mid \Delta}{\Gamma \vdash^{(\ell,m,f)} [\alpha] t \mid \Delta \vee \alpha: \mathcal{U}} \, (\mathtt{c})$$

$$\frac{\Gamma \vdash^{(\ell,m,f)} c \mid \Delta, \alpha : \mathcal{U} \quad \mathcal{V} = \mathcal{U}^{\uparrow}}{\Gamma \vdash^{(\ell,m+\operatorname{ar}(\mathcal{V}),f+1+\operatorname{c}_{\operatorname{p}}(\mathcal{U}))} \mu \alpha.c : \mathcal{V} \mid \Delta} \left(\mu\right)$$

Capturing exact measures in $\lambda \mu$ (S = hd, lo, mx)

Let $S \in \{\text{hd}, \text{lo}, \text{mx}\}\$ (\leadsto S-exactness for inter. and union types)

$$\frac{\Gamma \vdash^{(\ell,m,f)} t : \mathcal{U} \mid \Delta}{\Gamma \vdash^{(\ell,m,f)} [\alpha] t \mid \Delta \vee \alpha : \mathcal{U}} \ (\mathbf{c})$$

$$\frac{\Gamma \vdash^{(\ell,m,f)} c \mid \Delta, \alpha : \mathcal{U} \quad \mathcal{V} = \mathcal{U}^{\uparrow}}{\Gamma \vdash^{(\ell,m+\operatorname{ar}(\mathcal{V}),f+1+\operatorname{c}_{\mathbb{P}}(\mathcal{U}))} \mu \alpha.c : \mathcal{V} \mid \Delta} (\mu)$$

Type \mathcal{U} is activated See Sec. 3.3

Capturing exact measures in $\lambda \mu$ (S = hd, lo, mx)

Let $S \in \{\text{hd}, \text{lo}, \text{mx}\}\$ (\leadsto S-exactness for inter. and union types)

$$\frac{\Gamma \vdash^{(\ell,m,f)} t : \mathcal{U} \mid \Delta}{\Gamma \vdash^{(\ell,m,f)} [\alpha] t \mid \Delta \lor \alpha : \mathcal{U}} (c)$$

$$\frac{\Gamma \vdash^{(\ell,m,f)} c \mid \Delta, \alpha : \mathcal{U} \quad \mathcal{V} = \mathcal{U}^{\uparrow}}{\Gamma \vdash^{(\ell,m+\operatorname{ar}(\mathcal{V}),f+1+\operatorname{c}_{\operatorname{p}}(\mathcal{U}))} \mu \alpha.c : \mathcal{V} \mid \Delta} \left(\mu\right)$$

Type \mathcal{U} is activated See Sec. 3.3

•
$$\mathcal{U}^{\uparrow}$$
 = transforms top-level \rightarrow into \rightarrow (top-level = not nested in [-]) $e.g., ([\langle \mathcal{I} \rightarrow \mathcal{V} \rangle] \rightarrow \langle [\overline{\bullet}] \rightarrow \overline{\bullet} \rangle)^{\uparrow} = [\langle \mathcal{I} \rightarrow \mathcal{V} \rangle] \rightarrow \langle [\overline{\bullet}] \rightarrow \overline{\bullet} \rangle$ with $\overline{\bullet} = \langle \bullet \rangle$.

Let $S \in \{\text{hd}, \text{lo}, mx\}$ (\leadsto S-exactness for inter. and union types)

$$\frac{\Gamma \vdash^{(\ell,m,f)} t : \mathcal{U} \mid \Delta}{\Gamma \vdash^{(\ell,m,f)} [\alpha]t \mid \Delta \vee \alpha : \mathcal{U}} \, (\mathtt{c})$$

$$\frac{\Gamma \vdash^{(\ell,m,f)} c \mid \Delta, \alpha : \mathcal{U} \quad \mathcal{V} = \mathcal{U}^{\uparrow}}{\Gamma \vdash^{(\ell,m+\operatorname{ar}(\mathcal{V}),f+1+\operatorname{c}_{\operatorname{p}}(\mathcal{U}))} \mu \alpha.c : \mathcal{V} \mid \Delta} \underbrace{(\mu)}$$

• \mathcal{U}^{\uparrow} = transforms top-level \rightarrow into \rightarrow (top-level = not nested in [-]) $e.g., ([\langle \mathcal{I} \rightarrow \mathcal{V} \rangle] \rightarrow \langle [\overline{\bullet}] \rightarrow \overline{\bullet} \rangle)^{\uparrow} = [\langle \mathcal{I} \rightarrow \mathcal{V} \rangle] \rightarrow \langle [\overline{\bullet}] \rightarrow \overline{\bullet} \rangle$ with $\overline{\bullet} = \langle \bullet \rangle$.

Capturing exact measures in $\lambda \mu$ (S = hd, lo, mx)

Let $S \in \{\mathtt{hd}, \mathtt{lo}, \mathtt{mx}\}$ (\leadsto S-exactness for inter. and union types)

$$\frac{\Gamma \vdash^{(\ell,m,f)} t : \mathcal{U} \mid \Delta}{\Gamma \vdash^{(\ell,m,f)} [\alpha] t \mid \Delta \vee \alpha : \mathcal{U}} \, (\mathtt{c})$$

$$\frac{\Gamma \vdash^{(\ell,m,f)} c \mid \Delta, \alpha : \mathcal{U} \quad \mathcal{V} = \mathcal{U}^{\uparrow}}{\Gamma \vdash^{(\ell,m+\operatorname{ar}(\mathcal{V}),f+1+c_{\operatorname{p}}(\mathcal{U}))} \mu \alpha.c : \mathcal{V} \mid \Delta} (\mu)$$
arity of \mathcal{V}

counts how many times $\mu.c$ is used:

• \mathcal{U}^{\uparrow} = transforms top-level \rightarrow into \rightarrow (top-level = not nested in [-]) $e.g., ([\langle \mathcal{I} \rightarrow \mathcal{V} \rangle] \rightarrow \langle [\overline{\bullet}] \rightarrow \overline{\bullet} \rangle)^{\uparrow} = [\langle \mathcal{I} \rightarrow \mathcal{V} \rangle] \rightarrow \langle [\overline{\bullet}] \rightarrow \overline{\bullet} \rangle$ with $\overline{\bullet} = \langle \bullet \rangle$.

Let $S \in \{\text{hd}, \text{lo}, \text{mx}\}$ (\leadsto S-exactness for inter. and union types)

$$\frac{\Gamma \vdash^{(\ell,m,f)} t : \mathcal{U} \mid \Delta}{\Gamma \vdash^{(\ell,m,f)} [\alpha]t \mid \Delta \vee \alpha : \mathcal{U}} \, (\mathtt{c})$$

$$\frac{\Gamma \vdash^{(\ell,m,f)} c \mid \Delta, \alpha : \mathcal{U} \quad \mathcal{V} = \mathcal{U}^{\uparrow}}{\Gamma \vdash^{(\ell,m+\operatorname{ar}(\mathcal{V}),f+1+\operatorname{c}_{\operatorname{p}}(\mathcal{U}))} \mu \alpha.c : \mathcal{V} \mid \Delta} \underbrace{(\mu)}$$

• \mathcal{U}^{\uparrow} = transforms top-level \rightarrow into \rightarrow (top-level = not nested in [-]) $e.g., ([\langle \mathcal{I} \rightarrow \mathcal{V} \rangle] \rightarrow \langle [\overline{\bullet}] \rightarrow \overline{\bullet} \rangle)^{\uparrow} = [\langle \mathcal{I} \rightarrow \mathcal{V} \rangle] \rightarrow \langle [\overline{\bullet}] \rightarrow \overline{\bullet} \rangle$ with $\overline{\bullet} = \langle \bullet \rangle$.

Capturing exact measures in $\lambda \mu$ (S = hd, lo, mx)

Let $S \in \{\text{hd}, \text{lo}, mx\}$ (\leadsto S-exactness for inter. and union types)

$$\frac{\Gamma \vdash^{(\ell,m,f)} t : \mathcal{U} \mid \Delta}{\Gamma \vdash^{(\ell,m,f)} [\alpha]t \mid \Delta \vee \alpha : \mathcal{U}} (\mathbf{c})$$

$$\frac{\Gamma \vdash^{(\ell,m,f)} c \mid \Delta, \alpha : \mathcal{U} \quad \mathcal{V} = \mathcal{U}^{\uparrow}}{\Gamma \vdash^{(\ell,m+\operatorname{ar}(\mathcal{V}),f+1+\operatorname{c}_{\operatorname{p}}(\mathcal{U}))} \mu \alpha.c : \mathcal{V} \mid \Delta} \operatorname{(}\mu \operatorname{)}$$

 $c_p(\mathcal{U})$ counts how many persistent app. $\mu\alpha.c$ will create

• \mathcal{U}^{\uparrow} = transforms top-level \rightarrow into \rightarrow (top-level = not nested in [-]) $e.g., ([\langle \mathcal{I} \rightarrow \mathcal{V} \rangle] \rightarrow \langle [\overline{\bullet}] \rightarrow \overline{\bullet} \rangle)^{\uparrow} = [\langle \mathcal{I} \rightarrow \mathcal{V} \rangle] \rightarrow \langle [\overline{\bullet}] \rightarrow \overline{\bullet} \rangle$ with $\overline{\bullet} = \langle \bullet \rangle$.

Capturing exact measures in $\lambda \mu$ (S = hd, lo, mx)

Let $S \in \{\text{hd}, \text{lo}, \text{mx}\}$ (\leadsto S-exactness for inter. and union types)

$$\frac{\Gamma \vdash^{(\ell,m,f)} t : \mathcal{U} \mid \Delta}{\Gamma \vdash^{(\ell,m,f)} [\alpha]t \mid \Delta \vee \alpha : \mathcal{U}} \, (\mathsf{c})$$

$$\frac{\Gamma \vdash^{(\ell,m,f)} c \mid \Delta, \alpha : \mathcal{U} \quad \mathcal{V} = \mathcal{U}^{\uparrow}}{\Gamma \vdash^{(\ell,m+\operatorname{ar}(\mathcal{V}),f+1+\operatorname{c}_{\operatorname{p}}(\mathcal{U}))} \mu \alpha.c : \mathcal{V} \mid \Delta} \left(\mu\right)$$

 $c_p(\mathcal{U})$ counts how many persistent app. $\mu\alpha.c$ will create

- \mathcal{U}^{\uparrow} = transforms top-level \rightarrow into \rightarrow (top-level = not nested in [-]) • e.g., $([\langle \mathcal{I} \rightarrow \mathcal{V} \rangle] \rightarrow \langle [\overline{\bullet}] \rightarrow \overline{\bullet} \rangle)^{\uparrow} = [\langle \mathcal{I} \rightarrow \mathcal{V} \rangle] \rightarrow \langle [\overline{\bullet}] \rightarrow \overline{\bullet} \rangle$ with $\overline{\bullet} = \langle \bullet \rangle$.
- $\begin{array}{c} \bullet \ c_p(\mathcal{U}) = \mathrm{counts} \ \mathrm{top\text{-}level} \ \not\rightarrow \qquad \qquad (= \mathit{number} \ \mathit{of future} \ \mathit{pers}. \ @-\mathit{nodes}) \\ e.g., \ c_p(\langle \mathcal{I} \not\rightarrow \overline{\bullet}, \mathcal{I} \rightarrow \langle \mathcal{I} \not\rightarrow \langle \mathcal{J} \not\rightarrow \overline{\bullet} \rangle \rangle, \overline{\bullet} \rangle) = 3 \end{array}$

• Parametrized system (exact types + domains)

Exact types

(spec. normal forms)

- hd: empty domains
- lo/mx: singleton domains

Domains

 $(spec.\ if\ erasable\ args\ are\ typed)$

- $\bullet \ \mathsf{dom}_{\mathtt{hd}/\mathtt{lo}}([\,] \to \mathcal{U}) = [\,]$
- $dom_{mx}([] \rightarrow \mathcal{U}) = singleton$

• Parametrized system (exact types + domains)

Exact types

- (spec. normal forms)
 hd: empty domains
- lo/mx: singleton domains

Domains

 $(spec.\ if\ erasable\ args\ are\ typed)$

- $\bullet \ \mathsf{dom}_{\mathtt{hd/lo}}([\,] \to \mathcal{U}) = [\,]$
- $dom_{mx}([] \rightarrow \mathcal{U}) = singleton$

Theorem (Kesner, V)

let $S \in \{hd, lo, mx\}$ and t a $\lambda \mu$ -term. Then:

$$t \rightarrow_S^{(\ell, m)} t'$$
 a S-NF with $|t'|_S = f$

iff $\Gamma \vdash^{(\ell,m,f)} t : \mathcal{U} \mid \Delta$ tight for some $\Gamma, \mathcal{U}, \Delta$

• Parametrized system (exact types + domains)

Exact types

(spec. normal forms)

- hd: empty domains
- lo/mx: singleton domains

Domains

 $(spec.\ if\ erasable\ args\ are\ typed)$

- $\bullet \ \mathsf{dom}_{\mathtt{hd/lo}}([\,] \to \mathcal{U}) = [\,]$
- $dom_{mx}([] \rightarrow \mathcal{U}) = singleton$

Theorem (Kesner, V)

let $S \in \{\text{hd}, \text{lo}, \text{mx}\}\$ and t a $\lambda \mu$ -term. Then:

$$t \rightarrow_S^{(\ell,m)} t'$$
 a S-NF with $|t'|_S = f$ $(f - e \text{ when } S = mx)$

iff $\Gamma \vdash^{(\ell,m,f)} t : \mathcal{U} \mid \Delta$ tight for some $\Gamma, \mathcal{U}, \Delta$

• Parametrized system (exact types + domains)

Exact types

(spec. normal forms)
• hd: empty domains

- lo/mx: singleton domains

Domains

 $(spec.\ if\ erasable\ args\ are\ typed)$

- $\bullet \ \mathtt{dom}_{\mathtt{hd/lo}}([\,] \to \mathcal{U}) = [\,]$
- $dom_{mx}([] \rightarrow \mathcal{U}) = singleton$

Theorem (Kesner, V)

let $S \in \{\text{hd}, \text{lo}, \text{mx}\}$ and $t \text{ a } \lambda \mu\text{-term}$. Then:

$$t \to_S^{(\ell,m)} t'$$
 a S-NF with $|t'|_S = f$ $(f - e \text{ when } S = mx)$

iff $\Gamma \vdash^{(\ell,m,f)} t : \mathcal{U} \mid \Delta$ tight for some $\Gamma, \mathcal{U}, \Delta$

Bonus: completely factorized proofs!

Doggy bag

Non-idempotency:

forbid duplication of typing deriv.

Doggy bag

DOGGY BAG

Doggy bag

Doggy bag

