ANSWERS 423

Answer to Some Selected Problems

UNIT 8

8.25 15 g

UNIT 12

12.32 Mass of carbon dioxide formed = 0.505 g Mass of water formed = 0.0864 g

12.33 % fo nitrogen = 56

12.34 % of chlorine = 37.57

12.35 % of sulphur = 19.66

UNIT 13

- Due to the side reaction in termination step by the combination of two CH₃ 13.1 free radicals.
- 13.2 (a) 2-Methyl-but-2-ene

 - (c) Buta-1, 3-diene
 - (e) 2-Methylphenol
 - (g) 4-Ethyldeca -1,5,8- triene
- 13.3 $CH_{2} = CH - CH_{2} - CH_{3}$
 - (ii) $CH_3 CH_2 = CH CH_3$ (iii) $CH_2 = C - CH_3$
 - CH.
 - (b) (i) $HC \equiv C - CH_2 - CH_2 - CH_3$
 - (ii) $CH_3 C \equiv C CH_2 CH_3$
 - (iii) $CH_3 CH C \equiv CH$ CH₃
- 13.4 (i) Ethanal and propanal
 - (iii) Methanal and pentan-3-one
- 3-Ethylpent-2-ene 13.5
- But-2-ene 13.6
- 13.7 4-Ethylhex-3-ene

$$CH_3 - CH_2 - C = CH - CH_2 - CH_3$$
 | $CH_2 - CH_3$

- (b) Pent-1-ene-3-yne
- (d) 4-Phenylbut-1-ene
- 5-(2-Methylpropyl)-decane
 - But-1-ene
 - But-2-ene
 - 2-Methylpropene
 - Pent-1-yne
 - Pent-2-yne
 - 3-Methylbut-1-yne
 - (ii) Butan-2-one and pentan-2-one
 - (iv) Propanal and benzaldehyde

13.8 (a)
$$C_4H_{10}(g)+13/2O_2(g) \xrightarrow{\Delta} 4CO_2(g)+5H_2O(g)$$

(b)
$$C_5H_{10}(g)+15/2 O_2(g) \xrightarrow{\Delta} 5CO_2(g)+5H_2O(g)$$

(c)
$$C_6H_{10}(g)+17/2 O_2(g) \xrightarrow{\Delta} 6CO_2(g) + 5H_2O(g)$$

(d)
$$C_7H_8(g) + 9O_2(g) \xrightarrow{\Delta} 7CO_2(g) + 4H_2O(g)$$

cis-Hex-2-ene

trans-Hex-2-ene

The cis form will have higher boiling point due to more polar nature leading to stronger intermolecular dipole-dipole interaction, thus requiring more heat energy to separate them.

- 13.10 Due to resonance
- 13.11 Planar, conjugated ring system with delocalisation of (4n+2) π electrons, where, n is an integer
- 13.12 Lack of delocalisation of $(4n +2) \pi$ electrons in the cyclic system.
- 13.13 (i)

$$+ \operatorname{Br}_{2} \xrightarrow{\operatorname{FeBr}_{3}} \xrightarrow{\operatorname{Conc. HNO}_{3}} \xrightarrow{\operatorname{Conc. HNO}_{3}} + \operatorname{NO}_{2}$$

(ii)

ANSWERS 425

(iii)

$$\overbrace{\text{Separation by}}^{\text{CH}_3}$$
 fractional distillation
$$\overbrace{\text{NO}_2}^{\text{CH}_3}$$

(iv)
$$\begin{array}{c} O \\ C - CH_3 \\ \hline \end{array}$$
 Anhy. AlCl₃
$$\begin{array}{c} O \\ C - CH_3 \\ \hline \end{array}$$

13.14

15 H attached to 1° carbons

4 H attached to 2° carbons

1 H attached to 3° carbons

- 13.15 More the branching in alkane, lower will be the boiling point.
- 13.16 Refer to addition reaction of HBr to unsymmetrical alkenes in the text.

13.17
$$CH_3 - C = O$$
 $CH_3 - C = O$ CHO
| | | and | | CH₃ - C = O CHO

All the three products cannot be obtained by any one of the Kekulé's structures. This shows that benzene is a resonance hybrid of the two resonating structures.

- 13.18 H C \equiv C H > C₆H₆ > C₆H₁₄. Due to maximum s orbital character in enthyne (50 per cent) as compared to 33 per cent in benzene and 25 per cent in *n*-hexane.
- 13.19 Due to the presence of 6π electrons, benzene behaves as a rich source of electrons thus being easily attacked by reagents deficient in electrons.

13.20 (i)
$$3 \text{ CH} \equiv \text{CH} \xrightarrow{\text{Red hot} \atop \text{Iron tube}}$$

(ii)
$$C_2H_4 \xrightarrow{Br_2} CH_2 - CH_2 \xrightarrow{alc. KOH} CH_2 = CHBr \xrightarrow{NaNH_2} Br Br$$

$$HC \equiv HC \xrightarrow{\text{Red hot}}$$
 $Red \text{hot}$
 $Red \text{hot}$

(iii)
$$C_6H_{14} = \frac{Cr_2O_3 / V_2O_5/Mo_2O_3}{773 \text{ K}, 10-20 atom}$$

$$\begin{array}{c} \text{CH}_3\\ \text{I}\\ 13.21 \ \text{CH}_2 = \text{C} - \text{CH}_2 - \text{CH}_3 \end{array}$$

2-Methylbut-1-ene

$$CH_{3}$$

$$CH_{3} - C = CH - CH_{3}$$

2-Methylbut-2-ene

$$\begin{array}{c} \operatorname{CH_3} \\ \operatorname{I} \\ \operatorname{CH_3-CH--CH=CH_2} \end{array}$$

3-Methylbut-1-ene

- 13.22 (a) Chlorobenzene>p-nitrochlorobenzene> 2,4 dinitrochlorobenzene (b) Toluene> p-CH $_3$ -C $_6$ H $_4$ -NO $_2$ > p-O $_2$ N-C $_6$ H $_4$ -NO $_2$
- 13.23 Toleune undergoes nitration most easily due to electron releasing nature of the methyl group.
- 13.24 FeCl₃
- 13.25 Due to the formation of side products. For example, by starting with 1-bromopropane and 1-bromobutane, hexane and octane are the side products besides heptane.

INDEX 427

INDEX

A		halogenation mechanismIsomerisation	381 382
Acid rain	409, 410	- ozonolysis	391
Acidic dehydration of alcohols	388	- pyrolysis	382
Activating groups	403	- reaction with steam	382
Acyclic compounds	339	Alkenes	384
Alicyclic compounds	339	– addition of dihydrogen	388
Alkali metals	300	- addition of hydrogen halides	389
– atomic radii	300	- addition of hydrogen halides, mechanism	389
- chemical properties	301	- addition of sulphuric acid	390
- halides	303	- addition of water	391
hydration enthalpy	300	- chemical properties	388
- hydroxides	303	- geometrical isomers	386
- ionic radii	300	- oxidation	391
- ionisation enthalpy	300	– physical properties	389
- oxides	303	position isomerism	386
	300	- preparation	387
physical propertiesreactivity towards air	301	- structural isomerism	385
	301	Alkynes	392
- reactivity towards dihydrogen		- acidic characters	394
- reactivity towards halogens	302	- addition of dihydrogen	395
- reactivity towards water	302	- addition of halogens	395
- reducing nature	302	- addition of hydrogen halides	395
- salts of oxoacids	303	- addition of water	395
– solution in liquid ammonia	302	- addition reaction	394
- uses	302	- cyclic polymerisation	396
Alkaline earth metals	306	- linear polymerisation	395
- atomic radii	306	– polymerisation	395
- carbonates	309	– preparation	393
- chemical properties	308	Allotropes of carbon	325
- electronic configuration	306	Aluminium 317, 318	
- halides	309	Aluminium, uses	322
 hydration enthalpies 	307	Angle of tortion	384
- hydroxides	309	Anti Markovnikov rule	390
– ionic radii	306	Arenes	396
– ionisation enthalpies	307	Arenium ion, formation	401
- nitrates	309	Arenium ion, stabilisation	401
– oxides	309	Aromatic compounds	339
– physical properties	307	Aromaticity	399
 reactivity towards air 	308	Atmospheric pollution	407
– reactivity towards halogens	308	F	
 reactivity towards water 	308	TO.	
– reducing nature	308	В	
– salts of oxoacids	309	Baking soda	306
– solution in liquid ammonia	308	Balancing of redox reaction	274
- uses	308	Benzene	396
- sulphates	309	- Friedel-crafts alkylation	400
Alkanes	374	- chemical properties	400
- aromatisation	382	- combustion	402
– chain isomerism	386	- electrophilic substitution	400
- combustion	381	- Friedel-crafts acylation	400
 controlled oxidation 	382	mechanism of electrophilic substitution	400
– geometrical isomerism	386	nitration	400
- halogenation	380	mu atton	100

– physical properties	400	Conformations, relative stability	384
– preparation	399	Crystallisation	356
- resonance	398	_	
- stability	398	D	
- structure	397	Deactivating groups	403
- sulphonation	400	Decarboxylation	379
Benzenoid aromatic compounds	339	Decomposition reaction	270
Benzenoids	396	Dehalogenation	388
Beryllium	306	Detection of Carbon	362
- anomalous behaviour	310	Detection of hydrogen	362
- diagonal relationship with aluminium		Deuterium Deuterium	285
Biochemical oxygen demand (BOD)	415	Diamond	325
Biological importance of calcium	312	Diborane	321
Biological importance of magnesium	312	Differential extraction	360
Biological importance of potassium	306	Dihedral angle	383
Biological importance of sodium	306 336	Dihydrogen	285
Bond line structural formula Borax	320	Dihydrogen, as a fuel	289, 294
	320 322	Dihydrogen, chemical properties	286
Borohydrides Boron anomalous proportios	322 320	Dihydrogen, commercial production	286
Boron, anomalous properties Boron, uses	320 322	Dihydrogen, laboratory preparation	286
Branched chain hydrocarbons	341	Dihydrogen, physical properties	286
Dianched chain hydrocarbons	341	Dihydroges, uses	287
		Directive influence of functional groups	402
C		Displacement reaction	270
Calcium	306, 307	Disproportionation reaction	272
- hydroxide	311	Distillation under reduced pressure	358
- oxide	310	Distillation	357
– sulphate (Plaster of Paris)	311	Dry ice	328
- sulphate	311		
Carbocation	349	E	
Carbon 325	2, 323, 325	_	
- allotropes	325	Effects of depletion of the ozone layer	414
- anomalous behaviour	325	Electrochemical series	267
- uses	327	Electrodes	278
Carbon monoxide	327	Electrode potential	278
Carbon dioxide	328	Electrode process	277
Carcinogenicity	403	Electromeric effect	355
Catenation	325	Electron deficient molecules	319
Caustic soda	305	Electronic configuration,	015 017
Cement	312	- p-block elements	315, 317
Cement, setting	312	- s-block elements	299
Cement, uses	312	Electrophile	350 350
Chain isomerism	348	Electrophilic reaction Electrophilic substitution reaction	400
Chain isomers, alkanes	375	β-Elimination reaction	388
Characteristic features of double bond	335	Environment pollution, control	418
Chemical pollutants	415	Environmental pollution	406
Chromatography	360	Estimation of halogens, Carius method	367
Chromatography, adsorption	360	Estimation of natogens, Carros method	364
Chromatography, column	360	Estimation of nitrogen, Kjeldahl's method	
Chromatography, partition	361	Estimation of mirrogen, Richard's metho	u 368
Chromatography, thin layer	361	Estimation of oxygen Estimation of phosphorous	368
Cis-isomer	386	Estimation of sulphur	367
Combination reactions	270	Eutrophication	415
Compressed natural gas (CNG)	373	Datiophication	410
Condensed Structural formula	336	_	
Conformation	383	F	
Conformation Eclipsed	383	Fractional distillation	357
Conformation Staggered	383	Fullerenes	325
Conformational isomers	383	- differences	020

INDEX 429

Functional group isomerism	348	- reducing action in acidic medium	294
Functional groups	340	reducing action in basic mediumstorage	294 294
C		- structure	294
G		- uses	294
Gaseous air pollutants	407	Hydrogen storage	289
Global warming	408	Hydrogenation	378
Graphite	326	Hydrolysis	291
Green chemistry	419	Hyperconjugation	355
Green house effect	328, 408		
Group 13 elements, atomic radii	317	I	
- chemical properties	318		000
- electronegativity	318	Ice structure Inductive effect	290
ionisation enthalpyoxidation states	317	Inductive enect Industrial waste	352 417
	318	Inert pair effect	315
physical propertiesreactivity towards acids	318 319	Inner core	315
- reactivity towards air	319	International standard for drinking water	415
- reactivity towards all	319	Ionisation enthalpy, s-block elements	300
- reactivity towards halogens	320		3, 374
- trends in chemical reactivity	318	Isotopes	285
Group 14 elements, chemical properties	324		
- covalent radius	323	K	
electronegativity	323		
- electronic configuration	323	Kekulé, structure	397
- ionization enthalpy	323	Kharash effect	390
- oxidation states	324	Kolbe's electrolytic method	379
– physical properties	323	-	
 reactivity towards halogens 	324	L	
 reactivity towards oxygen 	324	Lassaigne's test	362
- reactivity towards water	324	Liquified petroleum gas (LPG)	373
– trends in chemical reactivity	324	Lithium 300, 301	, 304
		- anomalus properties	304
H		 difference from alkali metals 	304
Heavy hydrogen	285	- points of similarities with magnesium	304
Heterolytic cleavage	349		
Homologous series	340, 374	M	
Homolytic cleavage	349, 350	Markovnikov rule	389
Hückel rule	399	Meta directing groups	403
Hydrate formation	291	Metal activity series	267
Hydration enthalpy s-block elements	300	Metal carbonyles	328
Hydrides	288	Metamerism	349
– covalent	288	Methyl carbocation	350
- interstitial	289	Molecular models	338
- ionic	288	Monomers	392
– electron precise	288	Monomore	002
– electron rich	288	N	
– metallic	289		
– molecular	288	Newman projections of ethane	383
 non-stoichiometric 	289	Nomenclature	340
- saline	288	– alkanes	374
Hydrogen economy	295	– alkenes	384
Hydrogen peroxide	293	- arenes	396
- chemical properties	294	- IUPAC system	340
- oxidising action in acidic medium	294 294	– of substituted benzene compounds	346
oxidising action in basic mediumphysical properties	294 293	Non-benzenoid compound	339
- properties - preparation	293 293	Nucleophiles Nucleophilic reaction	350 350
- preparation	290	NUCLEODHIIC FEACLION	കാവ

430			CHEMISTRY
		Silicon dioxide	328
0		Silicones	329
Ortho directing groups	402	Slaked lime	311
Orthoboric acid	320	Smog	411
Oxidant	269	Sodium carbonate	304
Oxidation number	267	Sodium carbonate, properties	305
Oxidation state	268	Sodium chloride	305
Oxidation	265, 268	Sodium hydrogencarbonate	306
Ozone hole	413	Sodium hydroxide	305
		Soil pollution	416
P		Standard electrode potential	278, 279
-	400	Steam distillation	359
Para directing groups	402	Stereoisoisomers, alkenes	349
Particulate pollutant	411	Stereoisomerisms	349
Permanent hardness	292	Stock notation	269
- removal by calagon's method	292	Straight chain hydrocarbons	341
- removal by ion exhange method	292	Stratospheric pollution	413
- removal by synthetic resins	292	Structural isomerism	348
Peroxide effect	390	Structural isomers, alkanes	375
Photochemical smog	413	Structure of double bond	384
Photochemical smog control	413 412	Structure of triple bond	393
Photochemical smog, effects		Sublimation	356
Photosynthesis	328 311	Syngas	286
Plaster of paris Polar reaction	350	Synthesis gas	286, 327
Polymerisation	391		
Portland cement	312	T	
Position isomerism	348	/ 1	
Potassium	300, 301, 306	Temporary hardness	292
Producer gas	327	Test for halogens	363
Protium	285	Test for nitrogen	362
Houdin	200	Test for phosphorous	363
0		Test for sulphur	363
\mathbf{g}		Tortional strain	383, 384
Quantitative analysis for carbon	363	Trans-isomer	386
Quantitative analysis for halogens	367	Tritium	285
Quantitative analysis for hydrogen	363	Tropospheric pollution	407
Quantitative analysis for nitrogen	364		
Quick lime	310	W	
			004
R		Washing soda	304
Redox couple	278	Water, amphoteric nature	291
Redox reactions	263, 269, 291	Water, chemical properties	291
Redox reactions, type	270	Water, hard	291
Reducing Agent	265, 269	Water, heavy	294
Reductant	269	Water gas	327
Reduction	265, 269	Water pollution	414
Resonance effect	354	Water pollution, causes	414
Resonance stabilisation energy	353	Water, hydrate formation	291
Resonance structure	353	Water, in hydrolysis reactions	291
R _f value	361	Water, physical properties	289
Rotamers	383	Water, Soft	291
		Water, structure	290
S		Water-gas shift reaction	286
	000	Wurtz reaction	379
Sawhorse projections of ethane	383	_	
Sigma complex	401	\mathbf{Z}	
Silicates Silicia acid	330	Zeolites	330
Silicic acid	325	Zeonies	330

430