

Grupo: B

Docente: Ing. Rodrigo Castro Caicedo

Estudiantes: Santiago Monroy Quiazua – Diego Mauricio Paez Gonzalez

Códigos: 076231132 - 076231135

# Cifrador Biometrico (KeyBS).

Monroy Quiazua Santiago Paez Gonzalez Diego Mauricio

Universidad Libre – Sede Bosque

Ingenieria de software III ING 22032

Ing. Castro Caicedo Rodrigo Marzo 2025



Grupo: B

Docente: Ing. Rodrigo Castro Caicedo

Estudiantes: Santiago Monroy Quiazua – Diego Mauricio Paez Gonzalez

Códigos: 076231132 - 076231135

# **CIFRADOR BIOMETRICO (KeyBS)**

## **AUTORES**:

# MONROY QUIAZUA SANTIAGO PAEZ GONZALEZ DIEGO MAURICIO

DOCENTE: INGENIERO CASTRO CAICEDO RODRIGO

UNIVERSIDAD LIBRE – SEDE BOSQUE FACULTAD INGENIERIA CARRERA DE INGENIERIA DE SISTEMAS BOGOTA D.C MARZO 2025



| Asignatura: INGENIERIA | DE | SOFTWARE III |
|------------------------|----|--------------|
|------------------------|----|--------------|

Grupo: B

Docente: Ing. Rodrigo Castro Caicedo

Estudiantes: Santiago Monroy Quiazua – Diego Mauricio Paez Gonzalez

Códigos: 076231132 - 076231135

| PRUEBAS – CIFRADOR BIOMETRICO KeyBS | 3 |
|-------------------------------------|---|
| DUCCION AL PLAN DE PRUEBAS          |   |
| IVOS DEL PLAN DE PRUEBAS            |   |
| NCE DE LAS PRUEBAS                  |   |
| S DE PRUEBA.                        |   |

## PLAN DE PRUEBAS – CIFRADOR BIOMETRICO KeyBS

### INTRODUCCION AL PLAN DE PRUEBAS.

El plan de pruebas en este proyecto tiene como propósito asegurar la calidad y seguridad del sistema KeyBS, un cifrador biométrico que utiliza la autenticación facial y dactilar para la gestión de credenciales. Se evaluará el correcto funcionamiento de sus características principales, su seguridad, compatibilidad y experiencia de usuario.

### OBJETIVOS DEL PLAN DE PRUEBAS.

- 1. Validar que nuestro sistema cumpla con los requisitos funcionales y no funcionales.
- 2. Asegurar la compatibilidad entre diferentes sistemas operativos y aplicaciones.
- 3. Detectar y corregir posibles fallos antes del lanzamiento.
- 4. Evaluar la seguridad del cifrado y la autenticación bioemtrica.

## ALCANCE DE LAS PRUEBAS.

| ALCANCE DE LAS PRUEBAS EN KeyBS |                                                |  |
|---------------------------------|------------------------------------------------|--|
| Pruebas Funcionales.            | Evaluar la autenticación biométrica, cifrado   |  |
|                                 | de contraseñas y la gestión de sesiones.       |  |
| Pruebas de Seguridad.           | Validar la protección contra ataques como lo   |  |
|                                 | son el keylogging, phishing y malware.         |  |
| Pruebas de Compatibilidad.      | Asegurar un buen rendimiento en las            |  |
|                                 | diferentes plataformas como lo son:            |  |
|                                 | Windows, macOS, Android e IOS.                 |  |
| Pruebas de Rendimiento.         | Medir tiempos de respuesta y consumo de        |  |
|                                 | recursos.                                      |  |
| Pruebas de Usabilidad.          | Evaluar la experiencia del usuario en términos |  |
|                                 | de interfaz y facilidad de uso.                |  |



Grupo: B

Docente: Ing. Rodrigo Castro Caicedo

Estudiantes: Santiago Monroy Quiazua – Diego Mauricio Paez Gonzalez

Códigos: 076231132 - 076231135

## CASOS DE PRUEBA.

## PRUEBAS FUNCIONALES.

| ID. | DESCRIPCION.               | ENTRADA.               | RESULTADO ESPERADO      |
|-----|----------------------------|------------------------|-------------------------|
| CF- | Registro de usuario con    | Datos personales,      | Usuario registrado      |
| 01  | autenticación biométrica.  | huella o rostro.       | correctamente.          |
| CF- | Inicio de sesión con       | Huella dactilar o      | Acceso concedido si     |
| 02  | autenticación biométrica.  | reconocimiento facial. | coincide con los datos  |
|     |                            |                        | registrados.            |
| CF- | Cifrado y almacenamiento   | Credenciales           | Las credenciales se     |
| 03  | seguro de credenciales.    | ingresadas.            | almacenan cifradas      |
|     |                            |                        | correctamente.          |
| CF- | Recuperación de acceso con | Solicitud de           | Verificacion biométrica |
| 04  | biometría.                 | recuperación.          | exitosa permite acceso. |

## PRUEBAS DE SEGURIDAD.

| ID. | DESCRIPCION.                    | ENTRADA.               | RESULTADO ESPERADO          |
|-----|---------------------------------|------------------------|-----------------------------|
| CS- | Intento de acceso con una       | Biometría no           | Acceso denegado.            |
| 01  | huella/rostro no registrado.    | autorizada.            |                             |
| CS- | Intento de acceder a            | Solicitud de           | Bloqueo del acceso.         |
| 02  | credenciales sin autenticación. | visualización sin      |                             |
|     |                                 | autenticación.         |                             |
| CS- | Análisis de cifrado de datos    | Extracción de          | Datos ininteligibles sin la |
| 03  | almacenados.                    | credenciales cifradas. | clave biométrica.           |
| CS- | Prueba de resistencia contra    | Múltiples intentos de  | Bloqueo del sistema tras    |
| 04  | ataques de fuerza bruta.        | acceso.                | intentos fallidos.          |

### PRUEBAS DE COMPATIBILIDAD.

| INOLI | DAS DE COMI A HUILIDAD. |             |                                     |
|-------|-------------------------|-------------|-------------------------------------|
| ID.   | DESCRIPCION.            | ENTORNO.    | RESULTADO ESPERADO.                 |
| CC-   | Uso de Windows 10/11.   | Windows.    | Funcionalidad completa sin errores. |
| 01    |                         |             |                                     |
| CC-   | Uso de macOS.           | macOS.      | Funcionalidad completa sin errores. |
| 02    |                         |             |                                     |
| CC-   | Uso en Android.         | Android 10+ | Funcionalidad completa sin errores. |
| 03    |                         |             |                                     |



|  | Asignatura: | INGENIERIA | DE SOF | TWARE III |
|--|-------------|------------|--------|-----------|
|--|-------------|------------|--------|-----------|

Grupo: B

Docente: Ing. Rodrigo Castro Caicedo

Estudiantes: Santiago Monroy Quiazua – Diego Mauricio Paez Gonzalez

Códigos: 076231132 - 076231135

| CC- | Uso de IOS. | IOS 14+ | Funcionalidad completa sin errores. |
|-----|-------------|---------|-------------------------------------|
| 04  |             |         |                                     |

### PRUEBAS DE RENDIMIENTO.

| ID. | DESCRIPCION.            | CONDICIONES      | RESULTADO ESPERADO.               |
|-----|-------------------------|------------------|-----------------------------------|
|     |                         | •                |                                   |
| PR- | Tiempo de respuesta del | Inicio de sesión | Acceso en menos de tres segundos. |
| 01  | sistema.                | con biometría.   | _                                 |
| PR- | Consumo de memoria.     | Uso prolongado.  | No debe exceder el 10% de la RAM. |
| 02  |                         |                  |                                   |

## PRUEBAS DE USABILIDAD.

| ID. | DESCRIPCION.                  | CONDICIONES       | RESULTADO ESPERADO.                  |
|-----|-------------------------------|-------------------|--------------------------------------|
|     |                               |                   |                                      |
| PU- | Facilidad de navegación en la | Usuario sin       | Completa las tareas sin necesidad de |
| 01  | interfaz.                     | experiencia       | ayuda.                               |
|     |                               | previa.           |                                      |
| PU- | Claridad de mensajes de       | Intento de acceso | Mensaje claro y comprensible.        |
| 02  | error.                        | fallido.          |                                      |

#### CRITERIOS DE ACEPTACION.

El sistema se considera listo para su implementación si:

- Se superan al menos el 95% de los casos de prueba.
- No se encuentran fallos críticos de seguridad o estabilidad.
- Se garantiza una respuesta inferior a 3 segundos en autenticaciones.
- La experiencia de usuario es positiva en al menos el 90% de las pruebas de usabilidad.

#### **CONCLUSIONES:**

- El desarrollo de KeyBS ha sido un proceso integral que combina ciberseguridad, criptografía, biometría y arquitectura de software para ofrecer una solución robusta y confiable en la gestión de accesos digitales. Su diseño está basado en seguridad, automatización, escalabilidad y usabilidad, asegurando una experiencia fluida sin comprometer la integridad de los datos.
- Uno de los principales logros del sistema es la autenticación biométrica con cifrado avanzado (AES y RSA), garantizando que las credenciales sean inaccesibles para terceros. La aplicación de protocolos seguros como TLS/SSL refuerza el enfoque Zero-Trust, donde cada acceso es verificado rigurosamente, minimizando riesgos de ataques como phishing o intercepciones.



Grupo: B

Docente: Ing. Rodrigo Castro Caicedo

Estudiantes: Santiago Monroy Quiazua – Diego Mauricio Paez Gonzalez

Códigos: 076231132 - 076231135

- El enfoque en la automatización reduce la intervención del usuario, agilizando el acceso sin necesidad de recordar múltiples contraseñas. Además, la compatibilidad con diferentes aplicaciones y dispositivos refuerza la universalidad y escalabilidad de KeyBS, permitiendo su uso en entornos multiplataforma. La integración con cualquier campo de entrada de contraseñas ofrece una solución adaptable y accesible.

- Desde el punto de vista del desarrollo, la aplicación de los patrones de diseño Singleton y Facade ha mejorado la estructuración, mantenibilidad y modularidad del sistema. Singleton asegura la existencia de una única instancia del sistema de autenticación, mientras que Facade permite una interfaz más simple y segura para la interacción con terceros.
- KeyBS no solo responde a la creciente preocupación por la seguridad digital, sino que también sienta las bases para futuras innovaciones en autenticación biométrica y criptografía. Su implementación en diferentes sectores podría consolidarlo como un estándar de seguridad digital, promoviendo un acceso más seguro, eficiente y confiable a los servicios digitales.