Домашнее задание 5: продвинутый блок

Файл с выполненным заданием необходимо загрузить на Dropbox до дедлайна, указанного на сайте.

Домашние задания, сданные после срока, оцениваются с использованием понижающих коэффициентов: опоздание в пределах часа — штраф 10% от полученной оценки, в пределах суток — штраф 20%, в пределах недели — штраф 50%. Домашние задания, сданные через неделю после указанного срока и позже, не принимаются и не оцениваются.

Если при проверке работ установлен факт нарушения академической этики, студент получает оценку «О» за данную работу. Работа студента, предоставившего свою работу для списывания, также аннулируется.

Постановка задачи

Напишите функцию fcorrs(), которая принимает на вход параметры

- n_obs (число наблюдений);
- mean_vect (вектор средних значений);
- corr_vect (вектор коэффициентов корреляции между переменными);

и выдает матрицу, столбцы которой являются нормально распределенными переменными, средние значения которых равны значениям из вектора mean_vect, и которые скоррелированы друг с другом в соответствии со значениями коэффициентов корреляции из вектора corr_vect.

Подсказка. Вам понадобится функция mvrnorm() из библиотеки MASS.

Пример. Нужно создать матрицу из трех нормально распределенных переменных V1, V2 и V3, таких, что среднее значение V1 равно 1, среднее значение V2 равно 2, среднее значение V3 равно 3 и Corr(V1,V2) = 0.3, Corr(V1,V3) = 0.6, Corr(V2,V3) = 0.8.

```
# входные данные
n = 100
my_means = c(1, 2, 3)
my_corrs < -c(0.3, 0.6, 0.8)
# функция и ее вывод
M <- fcorrs(n_obs = n, means_vect = my_means, corrs_vect = my_corrs)
head(M)
              [,1]
                        [,2]
        1.1671382 1.1397532 2.8107346
## [1,]
## [2,]
        3.1760701 2.1983994 4.9081009
        2.9798006 3.7932459 4.6263823
## [3,]
## [4.]
        1.4008963 2.5409431 3.0599134
## [5,] -1.1826554 0.1618920 0.5489593
## [6,] 0.5325931 0.2066273 1.4986835
# проверка нужных характеристик
mean(M[, 1]); mean(M[, 2]); mean(M[, 3]) # средние
```

```
## [1] 1
## [1] 2
## [1] 3
cor(M[, 1], M[, 2]); cor(M[, 1], M[, 3]); cor(M[, 2], M[, 3]) # коэффициенты корреляции
## [1] 0.3
## [1] 0.6
## [1] 0.8
shapiro.test(M[, 1]); shapiro.test(M[, 2]); shapiro.test(M[, 3]) # нормальное распределение
##
##
   Shapiro-Wilk normality test
##
## data: M[, 1]
## W = 0.99562, p-value = 0.9879
##
   Shapiro-Wilk normality test
##
##
## data: M[, 2]
## W = 0.98316, p-value = 0.2324
##
##
   Shapiro-Wilk normality test
##
## data: M[, 3]
## W = 0.98258, p-value = 0.2099
```

Базовый вариант (на 7-8 баллов)

Написать указанную выше функцию fcorrs() в предположении, что для любых значений коэффициентов корреляции между переменными можно получить нужную матрицу переменных (что на самом деле не так), но считая, что с функцией может работать несознательный пользователь, который будет вытворять безобразия — указывать в векторе корреляций значения, превышающие по модулю 1. В связи с последним, в случае, если функции на вход подается вектор корреляций, содержащий значения, выходящие за рамки [-1,1], функция выводит на экран сообщение "The vector of correlation coefficients contains inappropriate values." и больше ничего не делает.

Продвинутый вариант (на 9-10 баллов)

Haписать указанную выше функцию fcorrs():

Во-первых, в предположении, что с функцией может работать несознательный пользователь. В связи с последним, в случае, если функции на вход подается вектор корреляций, содержащий значения, выходящие за рамки [-1,1], функция выводит на экран сообщение "The vector of correlation coefficients contains inappropriate values" и больше ничего не делает.

Во-вторых, с учетом того, что не для любых значений коэффициентов корреляции между переменными можно получить нужную матрицу переменных — корреляционная матрица должна быть неотрицательно определена (определитель матрицы должен быть больше или равен 0). В случае, если созданная по заданному вектору коэффициентов корреляций корреляционная матрица отрицательно определена, функция fcorrs() должна делать следующее:

- выводить на экран сообщение "Matrix of correlations is not positive definite. Trying to find the nearest positive definite matrix.";
- в качестве корреляционной матрицы брать ближайшую положительно определенную матрицу (функция nearPD() из библиотеки Matrix), выводить на экран старые (поданные пользователем на вход) значения коэффициентов корреляций с пометкой Old values of correlation coefficients, выводить на экран новые (из ближайшей положительно определенной матрицы) значения коэффициентов корреляций с пометкой New values of correlation coefficients, выводить на экран норму Фробениуса для разности исходной (неправильной) корреляционной матрицы и новой (правильной) матрицы с пометкой "Frobenius norm of matrix difference"; выдавать матрицу переменных, полученную на основе заданного пользователем вектора средних значений и ближайшей положительно определенной корреляционной матрицы.

Пример.

```
F \leftarrow f(x) = 100, \text{ means\_vect} = c(2, 5, 7), \text{ corrs\_vect} = c(0.3, 0.4, -0.8)
## Matrix of correlations is not positive definite.
## Trying to find the nearest positive definite matrix.
## Old values of correlation coeffs: 0.3 0.4 -0.8
## New values of correlation coeffs: 0.2843482 0.3837501 -0.7761998
## Frobenius norm of matrix difference: 0.04637858
head(F)
              [,1]
                        [,2]
##
                                 [,3]
         3.0937341 6.353769 6.415080
## [1,]
## [2,] -0.3572004 1.919156 8.417409
## [3,]
         3.5617773 4.192694 8.804377
        0.4378003 5.801622 5.200375
## [4,]
         1.2141611 5.492333 6.009009
## [5,]
## [6,]
        2.4222829 5.823135 6.484889
```