Today's Agenda

- Look at two *M. tuberculosis* datasets
- Run <u>fastqc</u> to look at fastq data quality
- Trim poor quality reads with Trim Galore
- Mapping module

ILLUMINA DATA QC

Illumina

Nanopore

Ion Torrent

fast5

bam

Fastq format

- 1 @SEQ ID
- 2 GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGT
- 3 TT +
- 4 !"*((((***+))%%%++)(%%%%).1***-+*"))**55CCF>>>>>CCCCCCC65

Line 1 begins with a '@' character and is followed by a sequence identifier and an optional description (like a FASTA title line).

Line 2 is the raw sequence letters.

Line 3 begins with a '+' character and is optionally followed by the same sequence identifier (and any description) again.

Line 4 encodes the quality values for the sequence in Line 2, and must contain the same number of symbols as letters in the sequence.

Fastq format

fastq header format (version > 1.8)

- a. unique instrument name
- b. run id
- c. flowcell id
- d. flowcell lane
- e. tile number within the flowcell lane
- f. x-coordinate of the cluster within the tile
- g. y-coordinate of the cluster within the tile
- h. the member of a pair, 1 or 2 (paired-end or mate-pair reads only)
- i. Y if the read fails filter (read is bad), N otherwise
- j. 0 when no control bits are on
- k. index sequence

Fastq format

@AUU1/8:/1:HGI//DSXX:1:21/1:1//U/:8U// Z:N:U:ACAGCAAC+GIIGCIGI

Each sequence read is represented by 4 lines

@A00178:71:HGT77DSXX:1:1507:30291:23422 1:N:0:ACAGCAAC+GTTGCTGT ACATAGAGCTTGATGTTGTTGGCCTTCTTCCTGGTGTCGAAGAGGGTCAAAGGGGGGCCTCTTGGGGACAAAAAGGACAGCCTTGAACTCAAGCT @A00178:71:HGT77DSXX:1:1507:30291:23422 2:N:0:ACAGCAAC+GTTGCTGT CTGGATGAGGAAGCCTGAGGAGATCACCAAGGAGGAGTATGCTGCTTTCTATAAAAGCTTGACAAATGACTGGGAAGAGCATCTGGCTGTCAAG @A00178:71:HGT77DSXX:1:2413:22806:35790 1:N:0:ACAGCAAC+GTTGCTGT GCTTGATGTTGTTGGCCTTCTTCCTGGTGTCGAAGAGGTCAAAGGGGGGCCTCTTGGGGACAAAAAGGACAGCCTTGAACTCAAGCTGCCCCTC @A00178:71:HGT77DSXX:1:2413:22806:35790 2:N:0:ACAGCAAC+GTTGCTGT GAGAAGAAAAAGAAGACGATCAAGGAGGTTTCTCATGAATGGTCCTTGATCAACAAGCAGAAACCTATCTGGATGAGGAAGCCTGAGGAGATCAI @A00178:71:HGT77DSXX:1:2354:5620:8876 1:N:0:ACAGCAAC+GTTGCTGT ATGTTGTTGGCCTTCTTCCTGGTGTCGAAGAGGTCAAAGGGGGGCCTCTTGGGGACAAAAAGGACAGCCTTGAACTCAAGCTGCCCCTCTACAG @A00178:71:HGT77DSXX:1:2354:5620:8876 2:N:0:ACAGCAAC+GTTGCTGT AGAAGGAAGAAAAAGAAAAAAAAAAGAAGACGATCAAGGAGGTTTCTCATGAATGGTCCTTGATCAACAAGCAGAAACCTATCTGGATGAGGAA @A00178:71:HGT77DSXX:1:1560:6741:9815 1:N:0:ACAGCAAC+GTTGCTGT GCAGGATTTTACCATGATCGACTACTTTTTGTCATGCCCAGAGAAGCTAGATTTTGCCAATGATGTTTATAGACCATTTAACGTTTCGCCAAGC

4. Sequence quality. There is one character for each nucleotide. The characters relate to a sequence quality score e.g. how likely is the nucleotide correct? Known as **Phred score**

Quality score interpretation

$$Q = -10 \, \log_{10} P \qquad \Longrightarrow \qquad P = 10^{\frac{-Q}{10}}$$

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10000	99.99%
50	1 in 100000	99.999%

The quality (Q), also called Phred score, is the probability (P) that the corresponding basecall is incorrect.

fast5 format

Binary file (not human readable)

Contains:

- Sequence of a read
- Raw signal data from pore
- Additional log files

Typically convert fast5 to fastq for downstream analyses

BAM format for read data

Binary Alignment Map format

Binary conversion of the Sequence Alignment Map (SAM) file

Typically convert bam to fastq for downstream analyses

File format: SAM / BAM (each line: one aligned sequence read)

The SAM/BAM file format is very powerful. It is unlikely that you will need to work with the contents of a SAM/BAM file directly, but it is very informative to visualize it in a viewer and it is a great format to do further analysis with. The format specifications are at http://samtools.sourceforge.net/SAM1.pdf. Below is a brief overview of the information contained in such files.

The "Golden" Rule

Having good quality fastq data is important!!

FastQC: Per base sequence quality Good data Bad data

Quality score interpretation

$$Q = -10 \, \log_{10} P \qquad \Longrightarrow \qquad P = 10^{\frac{-Q}{10}}$$

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10000	99.99%
50	1 in 100000	99.999%

The quality (Q), also called Phred score, is the probability (P) that the corresponding basecall is incorrect.

Many tools for trimming

- Trimmomatic
- sickle
- fastP
- bbduk
- cutadapt
- Trim Galore

Questions?