

Lab CudaVision
Learning Vision Systems on Graphics Cards (MA-INF 4308)

Optimization and Learning

18.11.2022

PROF. SVEN BEHNKE, ANGEL VILLAR-CORRALES

Contact: villar@ais.uni-bonn.de

1

Understanding Learning Curves

Training and Evaluation Curves

- Give us information about how the model performs
 - Learning from training set
 - Generalization on validation set

However...

Stability in Neural Networks

• What do these two images have in common?

- Both suffer from positive feedback
- Wrong choice of hyper-parameters can lead to disaster

Effect of Learning Rate

- η too small \square negative feedback \square loss decreases slowly or stagnates
- Choice of η is critical for learning!

Dynamic Learning Rates

Learning Rate Scheduler

- Adjust the Ir during training according to a predefined schedule:
 - Linear
 - Exponential
 - Step-wise
 - On-Plateau

Learning Rate WarmUp

- Increase the learning rate from a very small value to the desired learning rate during the first training iterations
 - Avoid early over-fitting
 - Accelerate convergence

Popular Learning-Rate Curves

LR Warmup + Exponential Scheduler

Alpha = 0.5 Steps=1e4

Multi-Step Scheduler

LR-Factor = 0.5 Steps=[15, 45, 70, 90]

LR Warmup + Plateau Scheduler

LR-Factor = 0.5 Patience=5

Importance of Initialization

- Use a suitable initialization: Xavier or He
- Use prior knowledge for initialization
- In general, PyTorch's default initialization is quite good

Diagnosing Model Behavior

How to Avoid Underfitting?

- Add more layers to your model
- More powerful architectural designs
 - Residual connections
 - Dense connections
- Clean your data
 - Outliers
 - Noisy labels

How to Avoid Overfitting

- Reduce model capacity
- Use more training examples
 - Gather more data
 - Data augmentation
- Regularization
 - Dropout
 - Weight regularization
 - Early stopping
 - Normalization (e.g. Batch Norm)

Regularization

Data Augmentation

- Artificially enlarging your dataset
- Spatial or pixel transformations

Enlarge your Dataset

Generative models

Be careful!

Weight Regularization

- Enforcing certain priors on the model parameters
- Regularization applied to loss function
- L2 Regularization (Ridge or weight decay)
 - Enforce small parameter norm □ small parameters

$$\tilde{L}(\mathbf{w}, \mathbf{X}, \mathbf{Y}) = L(\mathbf{w}, \mathbf{X}, \mathbf{Y}) + \frac{\lambda}{\lambda} \|\mathbf{w}\|_{2}^{2}$$

$$\mathbf{w}^{(k+1)} = \underbrace{\left(1 - \eta \frac{\lambda}{\lambda}\right)}_{\text{Shrinkage}} - \eta \frac{\partial L}{\partial \mathbf{w}^{(k)}}$$

- L1 Regularization (*Lasso*)
 - Enforces sparsity in the parameters

$$\tilde{L}(\mathbf{w}, \mathbf{X}, \mathbf{Y}) = L(\mathbf{w}, \mathbf{X}, \mathbf{Y}) + \frac{\lambda}{N} \|\mathbf{w}\|_{1}$$

$$\mathbf{w}^{(k+1)} = \underbrace{\mathbf{w}^{(k)} - \eta \underset{\text{Other shrinkage}}{\lambda} \operatorname{sign}\left(\mathbf{w}^{(k)}\right)} - \eta \frac{\partial L}{\partial \mathbf{w}^{(k)}}$$

L1 + L2 Regularization (*Elastic*)

Dropout

- During training, randomly set activations to zero with probability (1-p)
- At test time, we use all activations, but scaled by p
- Usual values
 - \circ p=0.2 for input layer
 - p=0.5 for hidden layers

Dataset Splits

Splitting your Dataset

Generate your Dataset

- Annotated data is scarce and expensive to obtain
- Use synthetic data for training

Simple Generation

Simulators (CARLA)

Game Engines (GTA V)

Evaluation Metrics

Problem with Accuracy

 "Let's image we are trying to detect if a person has some rare disease that is present in a 0.01% of the population based on some digital pathology scans"

- Always predicting a negative results
 - Correct 99.99% of the time
- Accuracy is not always a good metric:
 - Imbalanced datasets
 - Not-permissible mistakes

Precision and Recall

 Precision, Recall and F1-Score are better suited metrics for many pattern recognition problems

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F1 = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$