

Sheet (1): Measurements Errors

- 1) A batch of resistors that each have a nominal resistance of 330Ω are to be tested and classified as $\pm 5\%$ and $\pm 10\%$ components. Calculate the maximum and minimum absolute resistance for each case.
- 2) A group of resistors are specified to have a value of $100\Omega \pm 8\%$ at 25°C. If the temperature coefficient of these resistors is $-300 \ ppm/^{\circ}C$. Calculate the maximum and minimum resistance for these components at $100^{\circ}C$.
- 3) Determine the resolution of the digital instrument shown in the figure

- 4) Three resistors are connected in series. One resistor has a value of $330\Omega \pm 5\%$, and the other two are $330\Omega \pm 10\%$. Calculate the maximum and minimum values of the total resistance.
- 5) A DC power supply provides currents to four electronic circuits. The currents are, 37mA, 42mA, 13mA, and 6.7mA. The first two are measured with an accuracy of $\pm 3\%$, and the other two are measured with $\pm 1\%$ accuracy. Determine the maximum and minimum level of the total supply current.
- 6) The voltages at opposite ends of a $470\Omega \pm 5\%$ resistor are measured as $V_1 = 12V$ and $V_2 = 5V$. The measuring accuracies are $\pm 0.5V$ for V_1 and $\pm 2\%$ for V_2 . Calculate the level of current in the resistor, and specify its accuracy.
- 7) A $470\Omega \pm 10\%$ resistor has a potential difference of 12V across its terminals. If the voltage is measured with an accuracy of $\pm 6\%$, determine the power dissipation in the resistor, and specify the accuracy of the result.