- One of top 10 algorithms of 20th century in science and engineering
 - "the greatest influence on the development and practice of science and engineering in the 20th century"
 - https://www.computer.org/csdl/mags/cs/2000/01/c1022.htm
 - "one of the best practical sorting algorithm for general inputs"
 - inspiration for developing general algorithm techniques for various applications

- > Invented by Tony Hoare in 1959
 - Visiting student in Russia, needed to sort the words before looking them up in dictionary
 - Insert sort was too slow so he developed quicksort, but couldn't implement it until learnt ALGOL and its ability to do recursion
- > Further improvements
 - Sedgwick, Bentley, Yaroslavskiy
 - Dual-pivot implementation in 2009, now implemented in Java 7 onwards

- 1. Shuffle the array a[] (we'll talk later why)
- 2. Partition the array so that, for some j
 - a[j] is in place (called pivot)
 - There is nothing larger than a[j] to the left of it
 - There is nothing smaller to the right of it (where does equal go?)
- 3. Sort each subarray recursively

- > To sort an array S
 - 1. If the number of elements in **S** is 0 or 1, then return. The array is sorted.
 - 2. Pick an element ν in S. This is the *pivot* value.
 - 3. Partition S-{ ν } into two disjoint subsets, S₁ = {all values $x \le \nu$ }, and S₂ = {all values $x \ge \nu$ }.
 - 4. Return QuickSort(S₁), v, QuickSort(S₂)

Quicksort example

Quicksort example

Quicksort - details

- > Implement partitioning
 - > recursive
- > Pick a pivot
 - > want a value that will cause $|S_1|$ and $|S_2|$ to be non-zero, and close to equal in size if possible
- Dealing with cases where the element equals the pivot

Quicksort - partitioning

- > Need to partition the array into left and right sub-arrays
 - the elements in left sub-array are ≤ pivot
 - elements in right sub-array are ≥ pivot
- > How do the elements get to the correct partition?
 - Choose an element from the array as the pivot
 - Make one pass through the rest of the array and swap as needed to put elements in partitions

Quicksort - picking a pivot

- Ideally median value
 - > Expensive, calculating median
 - > Approximate: choose a median of first, middle and last values
- Choose pivot randomly
 - > Need a random number generator
- Choose the first element
 - > Ok if array shuffled, bad if array sorted worst case for quicksort

Quicksort - in-place partitioning

- > If we use an extra array, partitioning is easy to implement, but not so much easier that it is worth the extra cost of copying the partitioned version back into the original.
- > Partition in-place

Quicksort – in-place partitioning example

Repeat until i and j pointers cross.

- Scan i from left to right so long as (a[i] < a[lo]).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

Quicksort - in-place partitioning example

Partitioning trace (array contents before and after each exchange)

Quicksort – in-place partitioning example

Repeat until i and j pointers cross. Scan i from left to right so long as (a[i] < a[lo]). Scan j from right to left so long as (a[j] > a[lo]). • Exchange a[i] with a[j]. When pointers cross. • Exchange a[10] with a[j]. E S

Quicksort - partition code

```
private int partition(Comparable[] numbers, int lo, int hi) {
   int i = lo;
   int j = hi+1;
   Comparable pivot = numbers[lo];
   while(true) {
      while((numbers[++i].compareTo(pivot) < 0)) {</pre>
         if(i == hi) break;
      while((pivot.compareTo(numbers[--j]) < 0)) {</pre>
         if(j == lo) break;
      if(i >= j) break;
      Comparable temp = numbers[i];
      numbers[i] = numbers[j];
      numbers[j] = temp;
   numbers[lo] = numbers[j];
   numbers[j] = pivot;
   return j;
```

Quicksort - example

> Partitioning one array - need to do this recursively on the array left of j and right of j

Quicksort - recursive code

```
public void sort(Comparable[] numbers) {
    recursiveQuick(numbers, 0, numbers.length-1);
}

public void recursiveQuick(Comparable[] numbers, int lo, int hi) {
    if(hi <= lo) {
        return;
    }
    int pivotPos = partition(numbers, lo, hi);
    recursiveQuick(numbers, lo, pivotPos-1);
    recursiveQuick(numbers, pivotPos+1, hi);
}</pre>
```

Quicksort – iterative version?

> With the help of auxiliary stack

Quicksort – performance

- > How many compares to partition the array of length N?
- > How many recursive calls? depth of recursion
- > Best case analysis for shuffled elements?
- > Worst case analysis for sorted elements?
- > TurningPoint polls

Quicksort – best case analysis

What is the number of compares?

Quicksort - worst case analysis

What is the number of compares?

3 4 5 6 7 8 9 10 11 12 13 14 initial values G 14 A B C D E F G H I J CDEFGHI 14 A B C D E F G H 14 A B C D E F G $\mathsf{G}\mathsf{H}$ 12 12 14 A B C 13 13 14 ABCDEFGHIJKLMNO

a[]

- Make sure to always avoid worst case performance by shuffling the array at the start!
- > Alternatively pick a random pivot in each subarray
- > Quicksort is therefore a randomized algorithm
 - Uses random numbers to decide what to do next somewhere in its logic

Quicksort - performance

- Home PC executes 108 compares/second.
- Supercomputer executes 1012 compares/second.

	insertion sort (n²)			mergesort (n log n)			quicksort (n log n)		
computer	thousand	million	billion	thousand	million	billion	thousand	million	billion
home	instant	2.8 hours	317 years	instant	1 second	18 min	instant	0.6 sec	12 min
super	instant	1 second	1 week	instant	instant	instant	instant	instant	instant

Quicksort - performance

Average case. Expected number of compares is $\sim 1.39 n \lg n$.

- 39% more compares than mergesort.
- Faster than mergesort in practice because of less data movement.

Maths in Sedgwick

Quicksort - properties summary

- > Not stable because of long distance swapping.
- > No iterative version (without using a stack).
- > Pure quicksort not good for small arrays.
- > "In-place", but uses auxiliary storage because of recursive call (O(logn) space).
- > O(n log n) average case performance, but O(n²) worst case performance.

Quicksort improvements

- > Use insertion sort for small arrays
 - Cut off to insertion sort at subarray size ~10
- Use median for pivot value (median of 3 random items, ie first, last, middle)
- > 3-way quicksort, dual pivot, 3-pivot

Quicksort - stop at equal keys

- > qsort() in C bug reported in 1991 "unbearably slow" for organ-pipe inputs (eg "01233210")
 - In implementations and textbooks until then
- N^2 time to sort organ-pipe inputs, and random arrays of 0s and 1s
- > Improvement now: stop scanning if keys are equal

Quicksort - all items the same

Quicksort - stop at equal keys

- > Problem if all items equal to pivot are moved to one side of it
 - Consequence ~1/2 n^2 compares when all keys are equal
- > Stop when keys are equal
 - If all keys are equal, divides the array exactly
 - Why not put all items that are the same as partition item in place? 3-way partitioning

3-way partitioning

Goal. Partition array into three parts so that:

- Entries between 1t and gt equal to the partition item.
- · No larger entries to left of 1t.
- · No smaller entries to right of gt.

Dutch national flag problem

Problem. [Edsger Dijkstra] Given an array of n buckets, each containing a red, white, or blue pebble, sort them by color.

Operations allowed.

- swap(i, j): swap the pebble in bucket i with the pebble in bucket j.
- *color*(*i*): color of pebble in bucket *i*.

Requirements.

- Exactly *n* calls to *color*().
- At most n calls to swap().
- · Constant extra space.

3-way partitioning

Let v be partitioning item a[lo].
Scan i from left to right.
- (a[i] < v): exchange a[lt] with a[i]; increment both lt and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt
- (a[i] == v): increment i
It i
| p
| A
| B
| X
| W
| P
| P
| A
| B
| X
| W
| P
| P
| P
| A
| B
| X
| W
| P
| P
| P
| A
| B
| X
| W
| P
| P
| P
| P
| A
| B
| X
| W
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P
| P</

3-way partitioning

- Improves
 quick sort
 when
 there are
 duplicate
 keys
- (observe in your assignme nt)

```
private static void sort(Comparable[] a, int lo, int hi)
  if (hi <= lo) return;
  int lt = lo, gt = hi;
  Comparable v = a[lo];
  int i = lo;
  while (i <= gt)
      int cmp = a[i].compareTo(v);
              (cmp < 0) exch(a, 1t++, i++);
      else if (cmp > 0) exch(a, i, gt--);
      else
                        i++;
                                          before
   sort(a, lo, lt - 1);
   sort(a, gt + 1, hi);
                                          during
```

2-pivot quick sort

Use two partitioning items p_1 and p_2 and partition into three subarrays:

- Keys less than p_1 .
- Keys between p_1 and p_2 .
- Keys greater than p_2 .

	< p ₁	p_1	$\geq p_1$ and $\leq p_2$	<i>p</i> ₂	> p ₂
↑ 10		∱ 1t		↑ at	↑ hi

Recursively sort three subarrays.

3-pivot quick sort

Three-pivot quicksort

Use three partitioning items p_1 , p_2 , and p_3 and partition into four subarrays:

- Keys less than p_1 .
- Keys between p_1 and p_2 .
- Keys between p_2 and p_3 .
- Keys greater than p_3 .

< p ₁	<i>p</i> 1	$\geq p_1$ and $\leq p_2$	p_2	$\geq p_2 \text{ and } \leq p_3$	<i>p</i> ₃	> <i>p</i> ₃
↑ 10	↑ a1		↑ a2		↑ a3	↑ hi

Demos

https://algs4.cs.princeton.edu/lectures/23DemoPartitio ning.pdf

- > Quicksort
- > 3-way partitioning
- > Dual pivot partitioning

Quicksort - cache improvements

- > Principle of locality
 - the same values, or related storage locations, are frequently accessed
 - Temporal locality
 - > If at one point a particular memory location is referenced, then it is likely that the same location will be referenced again in the near future
 - Spatial locality
 - > If a particular storage location is referenced at a particular time, then it is likely that nearby memory locations will be referenced in the near future -> pre-fetch arrays
 - Predictability of memory access
 - Implications for caching
 - > cache stores data "nearer" to processor so that it can be accessed quicker in the future
- > 2-pivot and 3-pivot have smaller number of cache misses and smaller number of recursive calls to a subproblem larger than the size of a cache block
- Multi-Pivot Quicksort: Theory and Experiments by Kushagra, López-Oritz, Munro, and Qiao
 - Original paper http://epubs.siam.org/doi/pdf/10.1137/1.9781611973198.6
 - Discussion: https://cs.stanford.edu/~rishig/courses/ref/l11a.pdf

Caching improvements

Why do 2-pivot (and 3-pivot) quicksort perform better than 1-pivot?

- A. Fewer-compares.
- B. Fewer-exchanges.
- C. Fewer cache misses.

entries scanned is a good proxy for cache performance when comparing quicksort variants

partitioning	compares	exchanges	entries scanned	
1-pivot	$2 n \ln n$	0.333 n ln n	$2 n \ln n$	
median-of-3	median-of-3 $1.714 n \ln n$		$1.714 n \ln n$	
2-pivot	2-pivot 1.9 n ln n		$1.6 n \ln n$	
3-pivot	1.846 n ln n	0.616 n ln n	1.385 n ln n	

Reference: Analysis of Pivot Sampling in Dual-Pivot Quicksort by Wild-Nebel-Martínez

Bottom line. Caching can have a significant impact on performance.

Merge vs quick

- > In Java, Arrays.sort() uses **QuickSort** for sorting primitives and **MergeSort** for sorting Arrays of Objects. This is because, merge sort is stable, so it won't reorder elements that are equal.
 - Why does it matter for Objects and not for primitive data types?
- > QuickSort in java
 - 2-pivot since 2009
- > MergeSort in java
 - Timsort

Sort algorithms summary

- > Use system sort Arrays.sort(); usually good enough
- > What to consider when picking an algorithm?

Compare performance to system sort in your assignment?

Sorting algorithms summary

	inplace?	stable?	best	average	worst	remarks
selection	V		½ n ²	½ n ²	½ n ²	n exchanges
insertion	~	V	n	½ n ²	½ n ²	use for small n or partially ordered
shell	V		$n \log_3 n$?	$c n^{3/2}$	tight code; subquadratic
merge		V	½ n l g n	$n \lg n$	$n \lg n$	$n \log n$ guarantee; stable
timsort		V	n	$n \lg n$	$n \lg n$	improves mergesort when preexisting order
quick	V		$n \lg n$	$2 n \ln n$	$\frac{1}{2} n^2$	$n \log n$ probabilistic guarantee; fastest in practice
3-way quick	V		n	$2 n \ln n$	½ n ²	improves quicksort when duplicate keys
heap	V		3 n	$2 n \lg n$	$2 n \lg n$	$n \log n$ guarantee; in-place
?	~	•	n	$n \lg n$	$n \lg n$	holy sorting grail

Comparator interface

- > Comparable interface
 - Uses natural order to compare things
 - Can override method compareTo() if want custom-defined criteria
- > But what if we have Objects we want to compare according to multiple custom-defined criteria?
- > Comparator interface
 - Can create multiple classes implementing Comparator and override compare method
 - Custom ordering
 - To use with system sort, pass as a second argument to Array.sort(a, new MyCustomOrder());

Quick algorithms exercise

- > Which algorithm would work best to sort data as it arrives, one piece at a time, perhaps from a network?
- 1. Mergesort
- 2. Selection sort
- 3. Quicksort
- 4. Insertion sort

Another quick question

- > Which algorithm would you use to sort 1 million of 32-bit integers?
- 1. Mergesort
- 2. Selection sort
- 3. Quicksort
- 4. Insertion sort
- 5. None of the above

https://www.youtube.com/watch?v=k4RRi_ntQc8