Applicazioni Lineari - Sommario

Tutto sulle applicazioni lineari (penultimo argomento)

A. LE PRIME DEFINIZIONI

A1. Definizione basilare

Definizione di Applicazione Lineare

Definizione base di applicazione lineare. Esempi.

0. Preambolo

OSS 0.a. (Aree di indagine della matematica) La matematica è una materia che studia principalmente due temi: da un lato lo studio di certi determinate entità matematiche, come le matrici, i vettori, i sistemi lineari e i spazi vettoriali.

Dall'altro lato, la matematica si occupa anche di collegare questi oggetti studiati mediante le *funzioni* (Funzioni); tra poco studieremo delle funzioni che in oggetto prendono dei *spazi vettoriali* (Spazi Vettoriali), evidenziando la loro complessità e ricchezza, dovute al fatto che i *spazi vettoriali* sono sostanzialmente degli insiemi con più restrizioni.

1. Definizione di Applicazione Lineare

#Definizione

Siano V, V' due K-spazi vettoriali (Definizione 1 (Definizione 1.1. (spazio vettoriale sul campo K))).

Chiamo una funzione (Definizione 2 (Definizione 1.2. (dominio, codominio e legge))) del tipo

$$(V,V',f)\sim f:V\longrightarrow V'$$

una applicazione lineare se valgono due condizioni:

A1. (Additività) "L'immagine della somma è la somma delle immagini"

$$orall v_1, v_2 \in V, f(v_1 + v_2) = f(v_1) + f(v_2)$$

A2. (Omogeneità) "L'immagine dello scalamento è lo scalamento dell'immagine"

$$orall v \in V, f(\lambda v) = \lambda f(v)$$

#Osservazione

OSS 1.1. (Operazioni stesse ma diverse) Notiamo che nelle proprietà A1. e A2. (additività e omogeneità) abbiamo l'associazione tra due operazioni diverse; a sinistra abbiamo la somma (scalamento) definita in V, d'altro lato abbiamo una "altra" somma (scalamento) definita in V'. Per essere più precisi sarebbe preferibile scrivere

$$f(v_1+v_2)=f(v_1)\oplus f(v_2)$$

е

$$f(\lambda \cdot v) = \lambda \odot f(v)$$

dove $+, \cdot$ sono definite in V e invece \oplus, \odot in V'.

2. Esempi di Applicazione Lineari

(#Esempio)

Esempio 1.1. (Esempio di applicazione lineare da 2D a 1D)

Sia $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ una funzione dove

$$f\left(\binom{x}{y}\right) = x + 2y$$

Allora per verificare che f sia a tutti gli effetti un'applicazione lineare, proviamo l'additività e l'omogeneità di f. In un colpo solo la verifichiamo scrivendo

$$egin{aligned} f\left(\lambda\cdot\left(egin{pmatrix} x_1\ y_1 \end{pmatrix} + egin{pmatrix} x_2\ y_2 \end{pmatrix}
ight) &= f\left(egin{pmatrix} \lambda x_1 + \lambda x_2 \ \lambda y_1 + \lambda y_2 \end{pmatrix}
ight) \ &= (\lambda x_1 + \lambda x_2) + 2(\lambda y_1 + \lambda y_2) \ &= \lambda (x_1 + 2y_1) + \lambda (x_2 + 2y_2) \ &= f\left(\lambdaegin{pmatrix} \lambda egin{pmatrix} x_1\ y_1 \end{pmatrix} + f\left(\lambdaegin{pmatrix} x_2\ y_2 \end{pmatrix}
ight) \end{aligned}$$

A2. Applicazioni lineari notevoli

Applicazioni Lineari Notevoli

Prime applicazioni lineari che verranno date per noti: trasformazione lineare associata ad una matrice, funzione coordinante.

1. Trasformazione lineare associata ad una matrice

#Definizione

Sia $A \in M_{m,n}(K)$ una matrice (Definizione 1 (Definizione 1.1. (matrice $m \times n$ a coefficienti in K))).

Allora la matrice A definisce una funzione del tipo

$$L_A:K^n\longrightarrow K^m;v\mapsto A\cdot v$$

La *funzione* associa un vettore K^n ad un vettore $A \cdot v$ che vive in K^n ; ricordiamoci che · rappresenta la *moltiplicazione riga per colonna* (Operazioni particolari con matrici > ^eecbc9).

#Proposizione

${\mathscr O}$ Proposizione 1.1. (L_A è un'applicazione lineare)

Per ogni $matrice\ A\in M_{m,n}(K)$ la funzione precedentemente definita L_A è una applicazione lineare (Definizione 1 (Definizione 1.1. (applicazione lineare da V a V primo))).

#Dimostrazione

DIMOSTRAZIONE della proposizione 1.1.

Siano $v_1, v_2 \in K^n$. Allora sfruttando delle *proprietà* della moltiplicazione riga per colonna (Operazioni particolari con matrici > ^5cf872), otteniamo

$$egin{aligned} L_A(v_1+v_2) &= A \cdot (v_1+v_2) \ &= A \cdot v_1 + A \cdot v_2 \ &= L_A(v_1) + L_A(v_2) \end{aligned}$$

Similmente, supponendo $\lambda \in K$, dimostriamo che

$$L_A(\lambda v) = A \cdot (\lambda v) = \lambda (A \cdot v) = \lambda L_A(v)$$

Esempio particolare

#Esempio

${\mathscr O}$ Esempio 1.1. (rotazione nel piano di un angolo lpha in senso antiorario)

Sia $lpha \in \mathbb{R}$ un angolo e consideriamo la matrice "rotazione"

$$R_lpha = egin{pmatrix} \coslpha & -\sinlpha \ \sinlpha & \coslpha \end{pmatrix}$$

Allora l'applicazione lineare rappresentato da

$$L_{R_lpha}:\mathbb{R}^2\longrightarrow\mathbb{R}^2$$

rappresenterebbe la rotazione di un angolo α in senso *antiorario*. Calcoliamo ad esempio

$$L_{R_lpha}(egin{pmatrix}1\0\end{pmatrix})=egin{pmatrix}\coslpha&-\sinlpha\\sinlpha&\coslpha\end{pmatrix}\cdotegin{pmatrix}1\0\end{pmatrix}=egin{pmatrix}\coslpha\\sinlpha\end{pmatrix}$$

Invece per esercizio si lascia al lettore di calcolare

$$L_{R_lpha}(inom{0}{1})$$

(vi è dato un suggerimentino nella figura sottostante!)

GRAFICO 1.1. (Situazione grafica)

2. Applicazione lineare coordinante

#Definizione

▶ Definizione (Definizione 2.1. (funzione coordinante)).

Sia V un K-spazio vettoriale di dimensione finita (Definizione 1 (Definizione 1.1. (dimensione di un spazio vettoriale))), suppongo $\dim V = n \in \mathbb{N}$. Sia \mathcal{B} una base (Definizione 1.1. (Base)).

Allora definiamo la funzione che prende le coordinate di un vettore rispetto a \mathcal{B} in questo modo:

$$F_{\mathcal{B}}:V\longrightarrow K^n$$

dove, dato un vettore $v \in V$ e applicandoci questa funzione ho il vettore K^n che contiene tutte le coordinate di v rispetto alla base $\mathcal B$ (Definizione 1.2. (Coordinate di vettore rispetto alla base)).

Infatti questa definizione è ben posta in quanto \mathcal{B} è base di V, pertanto ogni vettore v è espressione *unica* dello span della *base*. Quindi

$$F_{\mathcal{B}}(v) = egin{pmatrix} \lambda_1 \ dots \ \lambda_n \end{pmatrix}, v = \lambda_1 v_1 + \ldots + \lambda_n v_n$$

Proposizione 2.1. (invertibilità della funzione coordinante)

La funzione $F_{\mathcal{B}}$ è *iniettiva* in quanto abbiamo che ogni vettore è *espressione* unica dello span della base; si può verificare che è anche suriettiva. Quindi questa applicazione lineare è biiettiva, quindi invertibile (Teorema 13 (Teorema 6.1. (condizione necessaria e sufficiente per l'esistenza della funzione inversa f^{-1})).

Allora si dice che $F_{\mathcal{B}}$ è un isomorfismo di spazi vettoriali.

3. Applicazioni lineari inverse di isomorfismi

#Esercizio

Esercizio 3.1. (inverse degli isomorfismi come spazi vettoriali)

Provare che se $f:V\longrightarrow V'$ è *biiettiva*, allora $f^{-1}:V'\longrightarrow V$ è anch'essa un'*applicazione lineare*. Quindi dimostrare che se una applicazione lineare è isomorfa, allora considerando la sua inversa si conserveranno le stesse proprietà.

#Dimostrazione

DIMOSTRAZIONE dell'esercizio 3.1.

1. Dimostro la additività di f^{-1} : Considero innanzitutto la composizione $f \circ f^{-1}$, che per definizione deve valere

$$(f\circ f^{-1})(V')=V'$$

Allora calcolo $f \circ f^{-1}$ per $v_1' + v_2'$ in due modi diversi: nella prima considerandoli "assieme", nell'altra "distinguendo" le immagini.

$$\begin{cases} 1. \ f(\boxed{f^{-1}(v_1'+v_2')}) = v_1' + v_2' \\ 2. \ f(f^{-1}(v_1')) + f(f^{-1}(v_2')) = v_1' + v_2' \stackrel{\text{AL1 di } f}{\Longrightarrow} f(\boxed{f^{-1}(v_1') + f^{-1}(v_2')} \\ \Longrightarrow f^{-1}(v_1'+v_2') = f^{-1}(v_1') + f^{-1}(v_2') \end{cases}$$

2. Dimostro l'omogeneità di f^{-1} : I procedimenti sono analoghi.

$$egin{cases} f(f^{-1}(\lambda v')) = \lambda v' \ \lambda \cdot f(f^{-1}(v')) = f(\lambda \cdot f^{-1}(v')) = \lambda v' \ \implies f^{-1}(\lambda v') = \lambda f^{-1}(v') \ \blacksquare \end{cases}$$

B. NUCLEO E IMMAGINE

B1. Definizione di Nucleo e Immagine

Definizione di Nucleo e immagine

Definizione di nucleo e immagine di un'applicazione lineare.

1. Nucleo

#Definizione

▶ Definizione (Definizione 1.1. (nucleo di un'applicazione lineare)).

Sia $f: V \longrightarrow V'$ un'applicazione lineare (Definizione 1 (Definizione 1.1. (applicazione lineare da V a V primo))).

Definiamo il nucleo di f come il sottoinsieme definito da

$$\ker f = \{v \in V | f(v) = 0\}$$

Ovvero "gli elementi del dominio tale che le loro immagini sono il vettore nullo $0_{V'}$ "

Quindi è immediato verificare che $\ker f \subseteq V$.

2. Immagine

#Definizione

✔ Definizione (Definizione 2.1. (immagine di un'applicazione lineare)).

Sia $f: V \longrightarrow V'$ un'applicazione lineare.

Si definisce invece l'immagine di f come il sottoinsieme

$$\operatorname{im} f = \{v' \in V' | \exists v \in V : f(v) = v'\}$$

Ovvero "gli elementi del codominio che sono associati ad almeno un elemento del dominio".

Allora è immediato verificare che im $f \subseteq V'$.

B2. Proposizioni su ker, im

Proposizioni su Nucleo e Immagine

Prime proprietà del nucleo e dell'immagine (Definizione di Nucleo e immagine) di un'applicazione lineare: ker, im sottospazi vettoriali di V e V'; f iniettiva allora ker è il più piccolo possibile, f suriettiva allora im è il codominio.

1. Nucleo e immagine come sottospazi vettoriali

#Proposizione

Proposizione 1.1. (nucleo e immagine sono sottospazi vettoriali)

Sia $f: V \longrightarrow V'$ un'applicazione lineare (Definizione 1 (Definizione 1.1. (applicazione lineare da V a V primo))).

Allora $\ker f$ è sottospazio vettoriale di V; $\operatorname{im} f$ è sottospazio vettoriale di V'.

#Dimostrazione

DIMOSTRAZIONE della proposizione 1.1. (^d0ed96)

Prima dimostro che $\ker f$ è *sottospazio vettoriale* di V verificando le tre proprietà dello sottospazio vettoriale (Definizione 1 (Definizione 1.1. (sottospazio vettoriale))).

1. (elemento nullo appartiene a ker) Considero f(0) e vedo che valgono le seguenti:

$$f(0) = f(0+0) \implies f(0) = f(0) + f(0) \implies f(0) = 0$$

Allora $0 \in \ker f$.

2. (chiusura della somma in V) Siano per ipotesi $v_1,v_2\in\ker f$; allora seguono che

$$f(v_1) = 0 \wedge f(v_2) = 0$$

Pertanto

$$f(v_1) + f(v_2) = 0 + 0 \implies f(v_1 + v_2) = 0 \implies v_1 + v_2 \in \ker f$$

3. (chiusura dello scalamento in V) Siano per ipotesi $v \in \ker f$ e $\lambda \in K$; allora segue che

$$f(v) = 0$$

Allora

$$\lambda f(v) = \lambda \cdot 0 \implies f(\lambda v) = 0 \implies \lambda v \in \ker f$$

Ora consideriamo l'immagine im.

4. (elemento nullo appartiene all'immagine) Abbiamo appena dimostrato che

$$f(0) = 0$$
; pertanto $0 \in \operatorname{im} f$.

5. (chiusura della somma in V') Siano per ipotesi $v_1',v_2'\in\operatorname{im} f$. Allora valgono che

$$\exists v_1, v_2 \in V: f(v_1) = v_1' \wedge f(v_2) = v_2'$$

Allora segue che

$$f(v_1) + f(v_2) = v_1' + v_2' \implies f(v_1 + v_2) = v_1' + v_2' \implies (v_1 + v_2) \in$$

6. (chiusura dello scalamento in V') Sia per ipotesi $v' \in \operatorname{im} f$ e $\lambda \in K$. Allora vale che

$$\exists v \in V: f(v) = v'$$

Allora

$$\lambda \cdot f(v) = \lambda \cdot v' \implies f(\lambda v) = \lambda v' \implies \lambda v' \in \operatorname{im} f lacksquare$$

2. Relazione tra iniettività-suriettività e nucleoimmagine

#Proposizione

Proposizione 2.1.

Sia $f:V\longrightarrow V'$ un'applicazione lineare. Siano $\ker f$ e $\operatorname{im} f$ rispettivamente il nucleo e l'immagine di f.

Allora valgono che

i. f è iniettiva (Definizione 8 (Definizione 3.2. (funzione iniettiva))) se e solo se $\ker f = \{0\}$ (ovvero il nucleo di f è il più piccolo possibile.

ii. f è suriettiva (Definizione 7 (Definizione 3.1. (funzione suriettiva))) se e solo se im f = V' (ovvero l'immagine di f coincide col codominio V').

(#Dimostrazione)

DIMOSTRAZIONE della proposizione 2.1. (^1a8f27)

Dimostriamo la i. della proposizione.

1. " \Longrightarrow ": Sia f iniettiva. Allora $f(v_1) = f(v_2) \iff v_1 = v_2$. Supponendo che $f(v_1) = 0$ per un v_1 qualsiasi; però ker è un sottospazio vettoriale, quindi $0 \in \ker f$.

Allora $f(0) = f(v_1) \implies v_1 = 0$. Pertanto 0 è l'*unico* elemento tale che la sua immagine risulta 0.

2. " \Longleftarrow ": Sia $\ker f=\{0\}$. Allora consideriamo $v_1,v_2\in V: f(v_1)=0; f(v_2)=0.$ Allora

$$f(v_1) = f(v_2) \implies f(v_1) - f(v_2) = 0 \implies f(v_1 - v_2) = 0$$

Allora $v_1-v_2\in\ker f$ e $0\in\ker f$ in quanto $\ker f$ è *sottospazio vettoriale*, allora

$$f(v_1-v_2)=f(0) \implies v_1=v_2$$

La ii. della proposizione è quasi una *tautologia* (Tautologia), in quanto abbiamo una specie di *"parafrasi"* per il concetto della suriettività. Pertanto non è necessaria una dimostrazione formale per questa parte.

B3. Teorema di struttura per le applicazioni lineari

Teorema di struttura per Applicazioni Lineari

Enunciato, dimostrazione ed esempio del teorema di struttura per le applicazioni lineari.

1. Enunciato

Ora vediamo come un'applicazione lineare è completamente determinata da dove "finiscono" le basi.

(#Teorema)

🗏 Teorema (Teorema 1.1. (di struttura per le applicazioni lineari)).

Siano V, V' due *spazi vettoriali* di K, finitamente generati (Definizione 1 (Definizione 1.1. (dimensione di un spazio vettoriale))).

ATTENZIONE! Ciò non deve necessariamente significare che le loro dimensioni devono coincidere.

Allora prendendo ${\cal B}$ una base del dominio del tipo

$$\mathcal{B} = \{v_1, \dots, v_n\}$$

Ora siano v_1, \ldots, v'_n dei vettori *qualsiasi* in V'.

Allora *esiste* ed è *unica* un'applicazione lineare (Definizione 1 (Definizione 1.1. (applicazione lineare da V a V primo))) $f: V \longrightarrow V'$ che soddisfa le seguente condizione: $f(v_i) = v_i'$

$$oxed{\exists f: V \longrightarrow V' | orall i \in \{1,\ldots,n\}, f(v_i) = v_i'}$$

2. Dimostrazione

#Dimostrazione

DIMOSTRAZIONE del *teorema 1.1.* (Teorema 1 (Teorema 1.1. (di struttura per le applicazioni lineari)))

Per questa dimostrazione usiamo una tecnica particolare: questa consiste prima nel supporre l'esistenza di tale funzione, di dimostrarne l'unicità, ottenendo alla fine così degli "indizi" per costruire la funzione supposta. Sia $v \in V$; per ipotesi \mathcal{B} è una base (Definizione 1.1. (Base)) di V, quindi per definizione abbiamo che $v \in \operatorname{span}(\mathcal{B})$. Allora si scrive in maniera unica (Teorema 1.1. (Caratterizzazione delle basi)) che

$$v = \lambda_1 v_1 + \ldots + \lambda_n v_n$$

Allora

$$f(v) = f(\lambda_1 v_1 + \ldots + \lambda_n v_n)$$

Per le proprietà di f sappiamo che

$$f(v) = \lambda_1 f(v_1) + \ldots + \lambda_n f(v_n)$$

Per ipotesi abbiamo supposto che f(v) = v'; pertanto

$$f(v) = \lambda_1 v_1' + \dots \lambda_n v_n'$$

Quindi l'immagine di $v \in V$ è *univocamente* determinata dalle proprietà supposte vere per f.

Pertanto sappiamo che se questa f esiste, allora questa è unica.

Ora "troviamo" l'applicazione lineare f, che in realtà è già stata trovata: quindi usiamo l'"indizio" lasciato sopra definendo f(v) nel modo seguente e dimostrando che questa è effettivamente un'applicazione lineare e soddisfa la condizione imposta nell'enunciato.

$$f(v) := \lambda_1 v_1' + \ldots + \lambda_n v_n'$$

1. (*l'immagine di* $f(v_i)$ *coincide con* v_i') Qui basta imporre $(\lambda_1, \ldots, \lambda_i, \ldots, \lambda_n) = (0, \ldots, 1, \ldots, 0)$; allora

$$f(v_i) = 0 + \ldots + v_i' + \ldots + 0 = v_i' ext{ OK}$$

2. (f è additiva) Siano $u,v\in V$. Allora voglio dimostrare f(u)+f(v)=f(u+v)

Dato che $\mathcal B$ è base di V, allora u,v sono *espressioni uniche* di elementi della base come combinazione lineare. Allora

$$egin{aligned} u &= \mu_1 v_1 + \ldots + \mu_n v_n \ v &= \lambda_1 v_1 + \ldots + \lambda_n v_n \ u + v &= (\mu_1 + \lambda_1) v_1 + \ldots + (\mu_n \lambda_n) v_n \end{aligned}$$

Ora calcoliamo f(u) e f(v) separatamente

$$f(u) = \mu_1 v_1' + \ldots + \mu_n v_n'; f(v) = \lambda_1 v_1' + \ldots + \lambda_n v_n' \ \Longrightarrow f(u) + f(v) = (\mu_1 + \lambda_1) v_1' + \ldots + (\mu_n + \lambda_n) v_n'$$

Invece calcoliamo f(u+v) e scopriamo che

$$\boxed{f(u+v)} = (\mu_1+\lambda_1)v_1'+\ldots+(\mu_n+\lambda_n)v_n' = \boxed{f(u)+(v)}$$

 (f è omogenea) Analogamente si dimostra che f è omogenea. Si lascia di dimostrare questo al lettore per esercizio. ■

3. Conseguenza

OSS 3.1. (Le immagini di un sistema di generatore sono un sistema di generatori per l'immagine di f) Consideriamo $f:V\longrightarrow V'$ un'applicazione lineare tra spazi vettoriali finitamente generati.

Sia $\mathcal{B} = \{v_1, \dots, v_n\}$ una base di V: allora se considero le loro immagini $f(v_1), \dots, f(v_n)$ allora vedo che questi sono un *sistema di generatori* per im f

(Definizione 2 (Definizione 2.1. (immagine di un'applicazione lineare))).

Infatti se $v' \in \operatorname{im} f$ allora $\exists v \in V : f(v) = v'$

Quindi, dato che \mathcal{B} è base di V, possiamo scrivere

$$f(v) = f(\lambda_1 v_1 + \ldots + \lambda_n v_n) = \ldots = \lambda_1 f(v_1) + \ldots + \lambda_n f(v_n)$$

Per il teorema appena enunciato e dimostrato sappiamo che $f(v_i)=v_i'$; allora

$$v' = \lambda_1 v_1' + \ldots + \lambda_n v_n'$$

Allora

$$orall v' \in \operatorname{im} f, v' \in \operatorname{span}(v_1', \dots, v_n') \implies \operatorname{im} f = \operatorname{span}(v_1', \dots, v_n')$$

Inoltre notiamo che abbiamo solo usato il fatto che \mathcal{B} è un sistema di generatori per V.

#Corollario

■ Corollario (Corollario 3.1. (relazione tra l'immagine e lo span degli immagini di una applicazione lineare)).

Sia $f: V \longrightarrow V'$ una applicazione lineare.

Sia $\mathcal{B}=\{v_1,\ldots,v_n\}$ una base di V; siano v_1',\ldots,v_n' elementi di V'. Sia inoltre $f(v_i)=v_i', \forall i\in\{1,\ldots,n\}.$

Allora

$$oxed{\mathrm{im}\, f = \mathrm{span}(v_1',\ldots,v_n')}$$

4. Esempio

#Esempio

Esempio 4.1. (esempio su \mathbb{R}^2 su base canonica \mathcal{E})

Considero in \mathbb{R}^2 la sua base standard $\mathcal{E}=(e_1,e_2)$, dove

$$e_1=egin{pmatrix}1\0\end{pmatrix};e_2=egin{pmatrix}0\1\end{pmatrix}$$

Ora considero due elementi qualsiasi in \mathbb{R}^2

$$w_1=inom{2}{3}; w_2=inom{-1}{4}$$

Per il teorema di struttura di applicazioni lineare, sappiamo che esiste ed è unica un'applicazione lineare $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tale che

$$f(e_1) = w_1, f(e_2) = w_2$$

Ora ci chiediamo il seguente: chi è l'immagine attraverso f di un generico elemento $\binom{x}{u} \in \mathbb{R}^2$?

Per farlo scrivo questo generico vettore esprimendolo in termini di e_1,e_2 ; ovvero

$$\begin{pmatrix} x \\ y \end{pmatrix} = xe_1 + ye_2$$

Per il teorema di struttura,

$$finom{x}{y}=x\cdotinom{2}{3}+y\cdotinom{-1}{4}=inom{2x-y}{3x+4y}$$

#Esempio

🧷 Controesempio 4.1. (quando non può esistere la funzione)

Osserviamo che invece non può esistere un'applicazione lineare tale che

$$f \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
$$f \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
$$f \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 11 \\ 17 \end{pmatrix}$$

In quanto questi tre elementi non sono *linearmente indipendenti*, quindi non formano una *base* per \mathbb{R}^2 .

C. TEOREMA DI DIMENSIONE

C1. Definizione di Rango per Applicazione Lineare

Definizione di Rango per Applicazione Lineare

Definizione di rango per un'applicazione lineare.

0. Osservazione preliminare

OSS 0.a. (Osservazione sulla trasformazione lineare L_A) Consideriamo una matrice $A \in M_{m,n}(K)$ e la trasformazione lineare associata alla matrice A, L_A (Definizione 1 (Definizione 1.1. (trasformazione lineare associata alla matrice))).

$$L_A:K^n\longrightarrow K^m; L_A(v)=A\cdot v$$

Se in K^n prendiamo la base standard \mathcal{E}_i , dove

$$\mathcal{E} = \{e_1, \dots, e_n\}; e_i = egin{pmatrix} 0 \ dots \ 1 ext{ (posizione } i ext{-esimo} \ dots \ 0 \end{pmatrix}$$

Calcolando $A \cdot e_i$, per la definizione di righe per colonne (Operazioni particolari con matrici > $^{\circ}$ eecbc9) notiamo che otterremo proprio la sua colonna. Allora

$$A \cdot e_i = A^{(1)}$$

Per l'osservazione effettuata in Teorema di struttura per Applicazioni Lineari (Corollario 2 (Corollario 3.1. (relazione tra l'immagine e lo span degli immagini di una applicazione lineare))), sappiamo che

$$egin{aligned} \operatorname{im} L_A &= \operatorname{span}(L_A(e_1), \dots, L_A(e_n)) \ &= \operatorname{span}(A^{(1)}, \dots, A^{(n)}) \end{aligned}$$

Pertanto prendendo la dimensione (Definizione 1 (Definizione 1.1. (dimensione di un spazio vettoriale))) dell'applicazione lineare L_A si otterrebbe

$$\dim(\operatorname{span}(A^{(1)},\ldots,A^{(n)}))$$

che è esattamente la definizione del rango (Definizione 1 (Definizione 1.1. (rango))) della matrice A.

 $\dim\operatorname{im} L_A=\dim\operatorname{span}(A^{(1)},\ldots,A^{(n)})=\operatorname{rg}(A)$

1. Definizione di Rango per un'applicazione lineare

#Definizione

Definizione (Definizione 1.1. (rango di un'applicazione lineare)).

Sia $f: V \longrightarrow V'$ un'applicazione lineare (Definizione 1 (Definizione 1.1. (applicazione lineare da V a V primo))) tra spazi vettoriali di dimensione finita.

Allora definiamo il rango di f come

$$\operatorname{rg} f = \dim(\operatorname{im} f)$$

OSS 1.1. Data l'osservazione precedente, il *rango* di un'applicazione lineare è una *generalizzazione* del rango di una matrice.

C2. Teorema di Dimensione per le Applicazioni Lineari

Teorema di dimensione per le Applicazioni Lineari

Teorema di dimensione per le applicazioni lineari: enunciato, dimostrazione ed esempi.

1. Enunciato

#Teorema

🗏 Teorema (Teorema 1.1. (di dimensione per le applicazioni lineari)).

Sia $f: V \longrightarrow V'$ un'applicazione lineare (Definizione 1 (Definizione 1.1. (applicazione lineare da V a V primo))) tra due *spazi vettoriali di dimensione finita*.

Allora vale che

$$\dim V = \dim \ker f + \dim \operatorname{im} f$$

Alternativamente, usando la definizione di *rango* (Definizione 1 (Definizione 1.1. (rango))) per un'applicazione lineare si può scriverla come

2. Dimostrazione

#Dimostrazione

DIMOSTRAZIONE del teorema di dimensione per le applicazioni lineari (Teorema 1 (Teorema 1.1. (di dimensione per le applicazioni lineari))) Fissiamo la dimensione di $V \dim V = n$.

Fissiamo ora una *base* di $\ker f$; sia dunque $\mathcal{B}_{\ker f} = \{v_1, \dots, v_k\}$. Allora $\dim \ker f = k$. Ora per costruzione sappiamo che v_1, \dots, v_k sono *linearmente* indipendenti, dunque per il *teorema di estensione* (Teorema 2.1.

(Teorema del completamento/estensione)) possiamo "estendere" la base del nucleo di f ad essere una base di V. Ovvero

$${\mathcal B}_V={\mathcal B}_{\ker f}\cup\{v_{k+1},\ldots,v_n\}=\{v_1,\ldots,v_k,v_{k+1},\ldots,v_n\}$$

Se riusciamo a dimostrare che la base di $\operatorname{im} f$ è la parte con cui abbiamo "estesa" la base di $\ker f$, allora abbiamo dimostrato il teorema in quanto si avrebbe

$$k + (n - k) = n$$

Allora dimostriamo che

$$\mathcal{B}_{\mathrm{im}\ f} = \{f(v_{k+1}), \ldots, f(v_n)\}$$

Ovvero che tali elementi sono linearmente indipendenti e sistemi di generatori per im f

Linearmente indipendenti
 Supponiamo che esista una loro combinazione lineare nulla:

$$a_{k+1}f(v_{k+1}) + \ldots + a_nf(v_n) = 0$$

Dato che f è una applicazione lineare, possiamo manipolarla da formare

$$f(a_{k+1}v_{k+1}+\ldots+a_nv_n)=0$$

Pertanto $a_{k+1}v_{k+1}+\ldots+a_nv_n\in\ker f$. Quindi

$$a_{k+1}v_{k+1} + \ldots + a_nv_n = b_1v_1 + \ldots + b_kv_k$$

In quanto v_1, \ldots, v_k è *base* per $\ker f$ (ovvero un elemento qualsiasi di $\ker f$ è esprimibile in forma di combinazione lineare degli elementi della base).

Allora otteniamo la combinazione lineare nulla di v_1, \ldots, v_n

$$-b_1v_1 - \ldots - b_kv_k + a_{k+1}v_{k+1} + \ldots + a_nv_n = 0$$

che sappiamo essere *unica* in quanto v_1, \ldots, v_n è *base* di V, dunque linearmente indipendente.

Quindi l'unica possibilità è che tutti i coefficienti b_i e a_i siano uguali a 0. Dunque abbiamo dimostrato che $f(v_{k+1}), \ldots, f(n)$ sono linearmente indipendenti

• Sistema di generatori per V:

Dall'osservazione sul teorema di struttura delle applicazioni lineari (Teorema di struttura per Applicazioni Lineari > ^8fd96a) abbiamo visto che le immagini di elementi di basi per V formano un sistema di generatori per im f; dunque $f(v_1), \ldots, f(v_n)$ è un sistema di generatori per im f.

D'altro canto abbiamo appena visto che $v_1, \ldots, v_k \in \ker f$, allora per definizione $f(v_1), \ldots, f(v_k)$ sono sicuramente tutti nulli.

Allora "rimangono" solo gli elementi da k+1 esimo.

Formalizzando il linguaggio, abbiamo

$$\operatorname{im} f = \operatorname{span}(f(v_1), \dots, f(v_n)) = \operatorname{span}(f(v_{k+1}), \dots, f(v_n)) \ \Longrightarrow \operatorname{dim} \operatorname{im} f = \operatorname{dim} \operatorname{span}(f(v_{k+1}, \dots, f(v_n))) = n - k$$

Ricostruendo tutto da capo, abbiamo

$${\mathcal B}_V = {\mathcal B}_{\ker f} \cup {\mathcal B}_{\operatorname{im} f} \implies n = k + (n-k) = \boxed{n = n}$$

3. Esempi

#Esempio

Supponiamo $f:\mathbb{R}^3\longrightarrow\mathbb{R}^4$ un'applicazione lineare.

Allora sicuramente sappiamo che f non potrà essere *suriettiva*: infatti per il teorema appena enunciato e dimostrato, sappiamo che

$$\dim \mathbb{R}^3 = \dim \ker f + \dim \operatorname{im} f$$

Quindi

$$3 = \dim \ker f + \dim \operatorname{im} f \implies \dim \operatorname{im} f = 3 - \dim \ker f \leq 3$$

Allora sappiamo che gli elementi delle immagini saranno al massimo di dimensione 3, mentre la dimensione di $\mathbb{R}^4=4$.

C3. Conseguenze del teorema di dimensione delle Applicazioni Lineari

Conseguenze del teorema di dimensione delle Applicazioni Lineari

Conseguenze (in formi di corollari) del teorema di dimensione (Teorema di dimensione per le Applicazioni Lineari)

1. Teorema della dimensione delle soluzioni per i sistemi lineari omogenei

OSS 1.1. (*Il vuoto colmato*) Ora possiamo finalmente "colmare" un vuoto che avevamo lasciato nel capitolo sui sistemi lineari, in particolare sul teorema di dimensione delle soluzioni per i sistemi lineari omogenei. (Teorema di dimensione delle soluzioni di sistemi lineari).

RICHIAMO al teorema di dimensione delle soluzioni di sistemi lineari

Teorema 1 (Teorema 1.1. (teorema di dimensione delle soluzioni di sistemi lineari)).

Sia $A \in M_{m,n}(K)$;

sia W l'insieme delle soluzioni del sistema lineare omogeneo associato ad A (Definizione 5 (Definizione 1.4. (sistema omogeneo))) con A=A, $s\in K^n$, ovvero

$$W=\{s\in K^n:A\cdot s=0\}$$

Allora

$$\overline{\dim W = n - \operatorname{rg}(A)}$$

Sia dunque $A \in M_n(K)$ e consideriamo il *sistema lineare omogeneo*

$$Ax = 0$$

Allora possiamo interpretare l'insieme delle sue *soluzioni* in termini di *applicazioni lineari*, prendendo la *trasformazione lineare associata alla matrice* A (Definizione 1 (Definizione 1.1. (trasformazione lineare associata alla matrice))).

Ovvero

$$W=\{s\in K^n:A\cdot s=0\}=\{s\in K^n:L_A(s)=0\}=\ker L_A$$

#Corollario

➡ Corollario (Corollario 1.1. (teorema di dimensione delle soluzioni di un sistema lineare omogeneo)).

Sia $A \in M_n(K)$, allora la dimensione dello sottospazio vettoriale $W \subseteq K^n$ delle soluzioni del sistema lineare omogeneo associato è uguale a $n - \operatorname{rg} A$

$$oxed{\dim W = n - \operatorname{rg} A}$$

#Dimostrazione

DIMOSTRAZIONE del *corollario 1.1.* (Corollario 1 (Corollario 1.1. (teorema di dimensione delle soluzioni di un sistema lineare omogeneo)))

Visto che $W = \ker L_A$, allora per il *teorema di dimensione* (Teorema 1 (Teorema 1.1. (di dimensione per le applicazioni lineari))) sappiamo che

$$\dim K^n = \dim \ker L_A + \dim \operatorname{im} L_A \ \Longrightarrow n = \dim W + \operatorname{rg} L_A \ \operatorname{rg} L_A = \operatorname{rg} A \ \Longrightarrow \boxed{\dim W = n - \operatorname{rg} A}$$

2. Suriettività e iniettività in termini di dimensioni

#Corollario

☆ Corollario (Corollario 2.1. (di caratterizzazione per applicazioni lineari iniettive e suriettive)).

Sia $f: V \longrightarrow V'$ un'applicazione lineare ta spazi vettoriali di dimensione finita.

Supponiamo che essi hanno la stessa dimensione; $\dim V = \dim V'$ Allora f è *iniettiva* se e solo se f è *suriettiva*, ovvero, compattando la scrittura, si ha

$$\dim V = \dim V' \implies f \text{ iniettiva} \iff f \text{ suriettiva}$$

#Dimostrazione

DIMOSTRAZIONE del *corollario 2.1.* (Corollario 2 (Corollario 2.1. (di caratterizzazione per applicazioni lineari iniettive e suriettive)))

" \Longrightarrow ": Sia f iniettiva; allora per il la proposizione 2.1. sul nucleo e l'immagine di un'applicazione lineare (Proposizioni su Nucleo e Immagine > ^1a8f27), si ha $\ker f = \{0\}.$

Allora, per il teorema di dimensione (Teorema 1 (Teorema 1.1. (di dimensione per le applicazioni lineari))) si ha

$$\dim V = \dim \operatorname{im} f + \dim \ker f \implies \dim V = \dim \operatorname{im} f$$

Pertanto $\operatorname{im} f = V$; dato che $\operatorname{im} f \subseteq V'$, ma V e V' hanno la stessa dimensione, si ha che $\operatorname{im} f = V'$ e dunque f è suriettiva.

" $\Leftarrow=$ ": Sia f suriettiva, allora im f=V'; ovvero $\dim \operatorname{im} f=\dim V'=\dim V$ allora per il teorema di dimensione,

$$\dim V = \dim \ker f + \dim \inf f$$

$$= \dim \ker f + \dim V$$

$$\dim \ker f = 0 \implies \ker f = \{0\}$$

Ovvero f è iniettiva. ■

#Corollario

Corollario (Corollario 2.2. (invertibilità di un'applicazione lineare iniettiva o suriettiva)).

Sia
$$f:V\longrightarrow V'$$
, con $\dim V=\dim V'$. Allora

$$f$$
 iniettiva $\iff f$ suriettiva $\iff f$ biiettiva $\iff f$ invertibile

#Dimostrazione

DIMOSTRAZIONE del *corollario 2.2.* (Corollario 3 (Corollario 2.2. (invertibilità di un'applicazione lineare iniettiva o suriettiva)))

Dimostrazione omessa in quanto basta conoscere il teorema di invertibilità di

una funzione (Teorema 13 (Teorema 6.1. (condizione necessaria e sufficiente per l'esistenza della funzione inversa f^{-1})))

D. MATRICI ASSOCIATE ALLE APPLICAZIONI LINEARI

D1. Definizione di matrice associata

Definizione della Matrice associata a un'Applicazione Lineare

Definizione della matrice associata ad un'applicazione lineare rispetto alle basi del dominio e del codominio, esempi.

1. Definizione

#Definizione

Definizione (Definizione 1.1. (matrice associata a f rispetto alle basi B, C)).

Sia $f: V \longrightarrow V'$ un'applicazione lineare (Definizione 1 (Definizione 1.1. (applicazione lineare da V a V primo))) tra spazi vettoriali (Definizione 1 (Definizione 1.1. (spazio vettoriale sul campo K))) di dimensione finita (Definizione 1 (Definizione 1.1. (dimensione di un spazio vettoriale))). Siano \mathcal{B}, \mathcal{C} rispettivamente le basi (Definizione 1.1. (Base)) di V, V'

$$\mathcal{B} = \{v_1,\ldots,v_n\}; \mathcal{C} = \{w_1,\ldots,w_m\}$$

Definiamo quindi la matrice associata ad f rispetto alle basi \mathcal{B} e \mathcal{C} , come la matrice (Definizione 1 (Definizione 1.1. (matrice $m \times n$ a coefficienti in K))) in $M_{m,n}(K)$ denotata con

$$M_{\mathcal{C}}^{\mathcal{B}}(f)$$

e ottenuta nella maniera seguente.

Per ogni vettore v_i di $\mathcal B$ scriviamo $f(v_i)$ come la combinazione lineare di w_1,\ldots,w_m ; le coordinate (Definizione 1.2. (Coordinate di vettore rispetto alla base)) rispetto agli elementi di $\mathcal C$ formeranno la colonna i-esima della

matrice

In altre parole,

$$(M_{\mathcal{C}}^{\mathcal{B}}(f))^{(i)} = ext{coordinate di } f(v_i) ext{ a } \mathcal{C}; orall i \in \{1,\dots,n\}$$

2. Esempi

(#Esempio)

\mathscr{O} Esempio 2.1. (su \mathbb{R}^2)

Considero la trasformazione lineare

$$f(inom{x}{y}) = inom{2x-y}{x+2y}$$

Considero la base standard \mathcal{E} formata dagli elementi $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ e $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ come le basi del dominio e del codominio.

Allora vogliamo costruire la matrice associata all'applicazione lineare f

$$M_{\varepsilon}^{\mathcal{E}}(f)$$

Per farlo calcoliamo $f(\begin{pmatrix} 1 \\ 0 \end{pmatrix})$ e $f(\begin{pmatrix} 0 \\ 1 \end{pmatrix})$, li esprimiamo come *combinazioni lineari* di mathcalE per prendere le loro coordinate, al fine calcolare le colonne della matrice associata.

Si lascia di svolgere il procedimento meccanico al lettore per esercizio.

#Esempio

Esempio 2.2. (applicazione nulla)

Considero f l'applicazione nulla, ovvero del tipo

$$f(v) = 0_V$$

Allora per *qualsiasi* scelta delle basi del dominio \mathcal{B} e del codominio \mathcal{C} , la *matrice associata* ad f sarà *sempre nulla*, in quanto i vettori di \mathcal{C} sono *linearmente indipendenti* (Definizione 3 (Definizione 2.1. (vettori linearmente indipendenti))) in quanto *basi*.

Esempio 2.3. (applicazione identità)

Consideriamo f l'applicazione identità, ovvero del tipo

$$f(V) = V$$

Sia quindi $\mathcal{B} = \{v_1, \dots, v_n\}$ basi sia del *dominio* che del *codominio*; pertanto $(f(v_i))_i = (v_i)_i$.

Per l'osservazione precedente si nota che

$$f(v_i) \in \operatorname{span} \mathcal{B} \implies v_i = 0v_1 + \ldots + 0v_{i-1} + v_i + 0v_{i+1} + \ldots + 0v_n$$

Allora, svolgendo i calcoli necessari, la associata all'applicazione identità rispetto alle stesse basi del dominio e del codominio è la matrice identità $\mathbb{1}_n$

$$M_{\mathcal{B}}^{\mathcal{B}}(f)=\mathbb{1}_n$$

D2. Prime proprietà sulle matrici associate

Prime Proprietà sulle Matrici associate a un'Applicazione Lineare

Prime proprietà sulle matrici associate ad un'applicazione lineare.

1. Prime proprietà sulle matrici associate

#Proposizione

Proposizione 1.1. (prime proprietà sulle matrici associate)

Siano $f, h: V \longrightarrow V'$ due applicazioni lineari (Definizione 1 (Definizione 1.1. (applicazione lineare da V a V primo))) con \mathcal{B} , \mathcal{C} rispettivamente le basi di V, V'.

Supponiamo inoltre che ci sia anche $g:V'\longrightarrow V''$, con $\mathcal C$ base di V''. Sia poi $\lambda\in K$ uno scalare.

Sia $M_{\mathcal{C}}^{\mathcal{B}}(f) \in M_{m,n}(K)$ una matrice associata all'applicazione lineare f

(Definizione 1 (Definizione 1.1. (matrice associata a f rispetto alle basi B, C))).

Allora valgono le seguenti sei proprietà:

$$egin{aligned} i. \ M_{\mathcal{B}}^{\mathcal{B}}(\mathrm{id}_V) &= \mathbb{1}_n \ ii. \ M_{\mathcal{C}}^{\mathcal{B}}(0_V) &= 0 \in M_{m,n}(K) \ iii. \ M_{\mathcal{D}}^{\mathcal{B}}(g \circ f) &= M_{\mathcal{D}}^{\mathcal{C}}(g) \cdot M_{\mathcal{C}}^{\mathcal{B}}(f) \ iv. \ M_{\mathcal{C}}^{\mathcal{B}}(\mathrm{id}_V) &= (M_{\mathcal{B}}^{\mathcal{C}}(\mathrm{id}_V))^{-1} \ v. \ M_{\mathcal{C}}^{\mathcal{B}}(f+h) &= M_{\mathcal{C}}^{\mathcal{B}}(f) + M_{\mathcal{C}}^{\mathcal{B}}(h) \ vi. \ M_{\mathcal{C}}^{\mathcal{B}}(\lambda \cdot f) &= \lambda \cdot M_{\mathcal{C}}^{\mathcal{B}}(f) \end{aligned}$$

#Dimostrazione

DIMOSTRAZIONE delle *prime proprietà sulle matrici associate* (^0af01d) Dimostrazioni omesse in quanto per verificarle basta usare *definizioni* delle *applicazioni lineari*, *matrici associate* ed eventualmente usare delle loro proprietà. Alternativamente, si può avvalere dei diagrammi commutativi.

D3. Teoremi sulle matrici associate

Teoremi sulle Matrici associate a un'Applicazione Lineare

Due risultati importanti derivanti dalla definizione della matrice associata ad un'applicazione lineare.

1. Primo risultato relativo alle coordinate

#Teorema

🗏 Teorema (Teorema 1.1. (relazione tra le coordinate rispetto alle basi)).

Sia $f: V \longrightarrow V'$ un'applicazione lineare tra spazi vettoriali di dimensione finita (Definizione 1 (Definizione 1.1. (applicazione lineare da V a V primo)), Definizione 3 (Definizione 1.1. (vettore)), Definizione 1 (Definizione 1.1. (dimensione di un spazio vettoriale))).

Siano \mathcal{B},\mathcal{C} rispettivamente *basi* di V,V' (Definizione 1.1. (Base)). In particolare sia $\mathcal{B}=\{v_1,\ldots,v_n\}$

Fissiamo v un vettore di V; $v \in V$

Supponiamo che ci sia il vettore-colonna A in K^n sia il vettore che

rappresenta le coordinate di v rispetto a \mathcal{B} ;

$$A = egin{pmatrix} lpha_1 \ dots \ lpha_n \end{pmatrix} \cdot v = lpha_1 v_1 + \ldots + lpha_n v_n$$

Allora le coordinate di f(v) rispetto a $\mathcal C$ sono date da

$$egin{pmatrix} eta_1 \ dots \ eta_m \end{pmatrix} = M_{\mathcal{C}}^{\mathcal{B}}(f) \cdot A = M_{\mathcal{C}}^{\mathcal{B}}(f) \cdot egin{pmatrix} lpha_1 \ dots \ lpha_n \end{pmatrix}$$

#Dimostrazione

DIMOSTRAZIONE del teorema 1.1.

La dimostrazione è omessa in quanto è "semplice" visto che basta scrivere le definizioni e compiere dei calcoli. Quindi la dimostrazione è lasciata da svolgere al lettore.

Consiglio: definire $f(v_i)$ in un certo modo e usare un "trick" in cui si sfrutta il fatto che f soddisfa le proprietà delle applicazioni lineari.

#Osservazione

Osservazione 1.1. (interpretazione grafica)

Come "interpretazione grafica" di questo teorema possiamo avvalerci dell'esempio 2.2. sui diagrammi commutativi (Diagramma Commutativo > ^d97de6).

2. Secondo risultato relativo alla composizione

#Teorema

Teorema (Teorema 2.1. (matrice associata della composizione delle applicazioni lineari)).

Siano $f:V\longrightarrow V'$, $g:V'\longrightarrow V''$ due applicazioni lineari tra spazi vettoriali di dimensione finita.

Siano $\mathcal{B}, \mathcal{C}, \mathcal{D}$ rispettivamente le *basi* di V, V', V''.

Allora possiamo considerare la composizione $g \circ f : V \longrightarrow V''$ e vale che

$$M_{\mathcal{D}}^{\mathcal{B}}(g\circ f)=M_{\mathcal{D}}^{\mathcal{C}}(g)\cdot M_{\mathcal{C}}^{\mathcal{B}}(f)$$

TRUCCHETTO MNEMONICO. Come trucchetto mnemonico si potrebbe visualizzare che le lettere C si "cancellano".

#Dimostrazione

DIMOSTRAZIONE del teorema 2.1.

Anche qui la dimostrazione è stata omessa in quanto bisogna solo usare le definizioni.

Caso applicazioni identità

#Corollario

★ Corollario (Corollario 2.1.).

Sia V un K-spazio vettoriale di dimensione finita, siano \mathcal{B},\mathcal{C} basi di V. Sia id_V l'applicazione lineare $identit\grave{a}$.

Allora

$$M_{\mathcal{B}}^{\mathcal{C}}(\mathrm{id}_V)\cdot M_{\mathcal{C}}^{\mathcal{B}}(\mathrm{id}_V)=M_{\mathcal{B}}^{\mathcal{B}}(\mathrm{id}_V)=\mathbb{1}_n$$

Quindi vediamo che la matrice $M^{\mathcal{C}}_{\mathcal{B}}(\mathrm{id}_V)$ è l'*inversa* di $M^{\mathcal{B}}_{\mathcal{C}}(\mathrm{id}_V)$.

D4. Matrice simile

Definizione di Matrice Simile

Definizione di due matrici simili.

1. Definizione di Matrici Simili

#Definizione

Siano $A, B \in M_n(K)$ due matrici quadrate (Definizione 4 (Definizione 2.1. (matrice quadrata di ordine n))).

A,B si dicono simili se esiste una matrice invertibile $P\in M_n(K)$ tale che

$$B = P^{-1} \cdot A \cdot P$$

D5. Matrice del cambiamento di base

Matrice del cambiamento di Base

Matrice del cambiamento di Base: osservazioni preliminari, l'utilità e riassunto (definizione generale)

1. Prima Osservazione: sulle prime proprietà delle matrici associate

#Osservazione

Osservazione 1.1. (sulle prime proprietà delle matrici associate)

Facciamo delle considerazioni sulle Prime Proprietà sulle Matrici associate a un'Applicazione Lineare e sui Teoremi sulle Matrici associate a un'Applicazione Lineare.

Consideriamo $f: V \longrightarrow V$ con $\dim V = n$. Per il *corollario 2.2. sulle applicazioni lineari* si ha che f è un *isomorfismo* (ovvero biettiva, pertanto invertibile) (Corollario 3 (Corollario 2.2. (invertibilità di un'applicazione lineare iniettiva o suriettiva))).

Allora $f^{-1}:V\longrightarrow V$ è anch'essa applicazione lineare e supponendo che $\mathcal B$ sia una base di V, abbiamo il seguente:

$$M_{\mathcal{B}}^{\mathcal{B}}(f)\cdot M_{\mathcal{B}}^{\mathcal{B}}(f^{-1})=M_{\mathcal{B}}^{\mathcal{B}}(f\circ f^{-1})=M_{\mathcal{B}}^{\mathcal{B}}(\mathrm{id}_V)=\mathbb{1}_n$$

Da ciò ricaviamo in particolare che la matrice $M_{\mathcal{B}}^{\mathcal{B}}(f)$ è *invertibile* e la sua inversa è *esattamente* $M_{\mathcal{B}}^{\mathcal{B}}(f^{-1})$.

$$oxed{(M^{\mathcal{B}}_{\mathcal{B}}(f))^{-1}=(M^{\mathcal{B}}_{\mathcal{B}}(f^{-1}))}$$

Ovviamente questo presuppone che in primis la matrice $M_{\mathcal{B}}^{\mathcal{B}}(f)$ sia invertibile.

Ricordiamo inoltre il *teorema 1.1. sulle matrici associate* (Teorema 1 (Teorema 1.1. (relazione tra le coordinate rispetto alle basi))): ovvero che

prendendo un'altra base $\mathcal C$ di V, possiamo trovare le *coordinate* di f(v) rispetto a $\mathcal C$ col seguente calcolo:

$$egin{pmatrix} eta_1 \ dots \ eta_m \end{pmatrix} = M_{\mathcal{C}}^{\mathcal{B}}(f) \cdot egin{pmatrix} lpha_1 \ dots \ lpha_n \end{pmatrix}$$

Istanziamo dunque questo risultato per $f = id_V$.

$$\operatorname{id}_V:V\longrightarrow V$$

con \mathcal{B}, \mathcal{C} basi di V.

Allora prendendo un qualunque vettore $v \in V$ con le coordinate rispetto a \mathcal{B} come $\alpha_1, \ldots, \alpha_n$, allora le coordinate dello stesso vettore f(v) = v rispetto a \mathcal{C} verranno calcolate nel modo sopra indicato.

Pertanto possiamo considerare la matrice

$$M_{\mathcal{C}}^{\mathcal{B}}(\mathrm{id}_V)$$

come la matrice del cambiamento di base.

2. Detour: l'utilità di questa idea

DETOUR. Ora è naturale chiedersi a cosa serva quest'osservazione: naturalmente, come ci suggerisce la denominazione, una *matrice del cambiamento di base* serve per *cambiare* la *base* di un spazio vettoriale e trovare le *coordinate* dell'immagine della "base cambiata" in funzione della "base cambiata" stessa.

Infatti, codifichiamo certi problemi con *applicazioni lineari*: dunque scegliendo una base qualsiasi per lo *spazio vettoriale* abbiamo *coordinate diverse*. Vogliamo svolgere certi calcoli con queste coordinate, però avvolte questi calcoli possono diventare complicati: dunque, avendo coordinate diverse (ovvero cambiando basi) possiamo "*semplificare*" il problema. Questo sarà infatti il problema della *diagonalizzazione* (Considerazioni Preliminari sulla Diagonalizzazione).

3. Proposizione: Risultato finale

Allora da tutti questi risultati appena derivati, possiamo enunciare la seguente proposizione.

#Proposizione

Proposizione 3.1. (calcolo di una nuova matrice associata con basi cambiate)

Sia $f: V \longrightarrow V'$ un'applicazione lineare tra spazi vettoriali di dimensione finita.

Siano \mathcal{B}, \mathcal{C} le basi "originarie" di V, V'.

Siano poi $\tilde{\mathcal{B}}, \tilde{\mathcal{C}}$ le "nuove basi" di V, V'.

Allora abbiamo il seguente:

$$egin{aligned} M_{ ilde{\mathcal{C}}}^{ ilde{\mathcal{B}}}(f) &= M_{ ilde{\mathcal{C}}}^{ ilde{\mathcal{B}}}(\operatorname{id}_{V'} \circ f \circ \operatorname{id}_{V}) \ M_{ ilde{\mathcal{C}}}^{ ilde{\mathcal{B}}}(f) &= M_{ ilde{\mathcal{C}}}^{\mathcal{C}}(\operatorname{id}_{V'}) \cdot M_{\mathcal{C}}^{\mathcal{B}}(f) \cdot M_{\mathcal{B}}^{ ilde{\mathcal{B}}}(\operatorname{id}_{V}) \end{aligned}$$

Pertanto, se conosciamo la matrice $M_{\mathcal{C}}^{\mathcal{B}}(f)$ allora possiamo ottenere la "nuova matrice" $M_{\tilde{\mathcal{C}}}^{\tilde{\mathcal{B}}}(f)$ moltiplicando a destra e a sinistra la "matrice conosciuta" per le due matrici di cambiamento di base.

#Osservazione

Osservazione 3.1. (idea grafica)

Graficamente abbiamo una specie di "semplificazione" delle basi:

$$M_{ ilde{\mathcal{C}}}^{ extcolored}(\mathrm{id}_V)\cdot M_{ ilde{\mathcal{C}}}^{ ilde{\mathcal{B}}}(f)\cdot M_{ ilde{\mathcal{B}}}^{ ilde{\mathcal{B}}}=M_{ ilde{\mathcal{C}}}^{ ilde{\mathcal{B}}}(f)$$

Ovviamente questo serve *solamente* come un trucco mnemonico, non una dimostrazione rigorosa.

#Corollario

Corollario (Corollario 3.1. (caso particolare del calcolo della nuova matrice associata)).

In particolare se prendiamo $f:V\longrightarrow V$, con $\mathcal B$ la "base originaria" e $\mathcal C$ la "nuova base" con cui facciamo il cambiamento di base, allora vale che

$$M_{\mathcal{C}}^{\mathcal{C}}(f) = M_{\mathcal{C}}^{\mathcal{B}}(\mathrm{id}_V) \cdot M_{\mathcal{B}}^{\mathcal{B}}(f) \cdot M_{\mathcal{C}}^{\mathcal{B}}(\mathrm{id}_V)$$

#Dimostrazione

DIMOSTRAZIONE della proposizione 3.1..

Omessa in quanto basta considerare che $f = id_{V'} \circ f \circ id_V$ e il teorema 2.1. sulle matrici associate (Teorema 2 (Teorema 2.1. (matrice associata della composizione delle applicazioni lineari))).

#Osservazione

Osservazione 3.2. (origine della nozione di matrice simile)

Notiamo che la nozione di matrice simile discende proprio da queste considerazioni: infatti considerando P come la matrice del cambiamento di base

$$P=M_{\mathcal{B}}^{\mathcal{C}}(\mathrm{id}_V)$$

Pertanto la sua inversa è

$$P^{-1} = (M_{\mathcal{B}}^{\mathcal{C}}(\mathrm{id}_V))^{-1} = M_{\mathcal{C}}^{\mathcal{B}}(\mathrm{id}_V)$$

Allora l'uguaglianza del corollario 3.1. può essere scritta come

$$M_{\mathcal{C}}^{\mathcal{C}}(f) = P^{-1} \cdot M_{\mathcal{B}}^{\mathcal{B}}(f) \cdot P$$

che è proprio la nozione di *matrice simile* (Definizione 1 (Definizione 1.1. (matrici simili))).

Infatti $M_{\mathcal{C}}^{\mathcal{C}}(f)$ e $M_{\mathcal{B}}^{\mathcal{B}}(f)$ sono *simili*.

E. LO SPAZIO DELLE APPLICAZIONI LINEARI

E1. L'insieme delle applicazioni lineari

L'insieme delle Applicazioni Lineari

Cenno all'insieme delle applicazioni lineari: definizione e teorema della funzione matrice associata ad un'applicazione lineare.

1. Definizione dell'insieme \mathcal{L}

P Definizione (Definizione 1.1. (l'insieme delle applicazioni lineari dal dominio al codominio \mathcal{L})).

Siano V,V' dei K-spazi vettoriali (Definizione 1 (Definizione 1.1. (spazio vettoriale sul campo K))) di dimensione finita (Definizione 1 (Definizione 1.1. (dimensione di un spazio vettoriale))); $\dim V = n; \dim V' = m$ Allora definiamo l'insieme delle applicazioni lineari da V in V' come l'insieme \mathcal{L}

$$\mathcal{L}(V,V')=\{\mathrm{id}_V,0_V,f,\ldots\}$$

#Proposizione

${\mathscr O}$ Proposizione 1.1. (${\mathcal L}$ diventa un spazio vettoriale)

Abbiamo che definendo la *somma* tra applicazioni lineari in maniera "puntuale" e analogamente lo *scalamento* di un'applicazione lineare, ovvero

$$(f+g)(v)=f(v)+g(v); (\lambda\cdot v)(v)=\lambda\cdot f(v)$$

Abbiamo che l'insieme delle applicazioni lineari $\mathcal{L}(V,V')$ diventa un spazio vettoriale su K.

2. Teorema della funzione matrice associata ad applicazione lineare

#Teorema

Teorema (Teorema 2.1. (della funzione matrice associata ad un'applicazione lineare)).

Nelle ipotesi della definizione 1.1. (Definizione 1 (Definizione 1.1. (l'insieme delle applicazioni lineari dal dominio al codominio \mathcal{L}))), fissata \mathcal{B} base di V e \mathcal{C} base di V', possiamo definire una funzione del tipo

$$\mathcal{L}(V,V') \longrightarrow M_{m,n}(K); f \mapsto M_{\mathcal{C}}^{\mathcal{B}}(f)$$

Allora questa funzione è un'applicazione lineare ed un isomorfismo.