CHE221A

Assignment 06

- 1. Consider an ideal gas mixture at 83.14 kPa and 500 K. It contains 2 moles of species A and 3 holes of species B. Calculate the following: \bar{V}_A , \bar{V}_B , v_A , v_B , V_A , V_B , V, v, ΔV_{mix} , Δv_{mix} .
- 2. For a given binary system at constant T and P, the molar volume (in cm³/mol) is given by

$$v = 100y_a + 80y_b + 2.5y_ay_b$$

- (a) What is the pure species molar volume for species a, v?
- (b) Come up with an expression for the partial molar volume, \bar{V}_A , in terms of y_b . What is the partial molar volume at infinite dilution, \bar{V}_a^{∞} ?
- 3. Consider a binary mixture of species 1 and species 2. A plot of the partial molar volumes in [cm³/mol] of species 1 and 2, \bar{V}_1 , and \bar{V}_2 , vs. mole fraction of species 1 is shown below. For a mixture of 1 mole of species 1 and 4 moles of species 2, determine the following quantities for this mixture: \bar{V}_1 , \bar{V}_2 , v₁, v₂, V₁, V₂, V, v, ΔV_{mix} .

- 4. For a given binary system, the partial molar volume of species I is constant. What can you say about species 2? Explain.
- 5. Consider the Berthelot equation of state:

$$P = \frac{RT}{v - b} - \frac{a}{Tv^2}$$

- (a) Develop an expression for the fugacity and fugacity coefficient of a pure species.
- (b) Use the results of Problem 4.29 to write the result of part (a) in terms of reduced pressure, reduced temperature, and reduced volume.
- 6. Experimental data taken from 0 to 50 bar give the fugacity of a pure gas to be:

$$f = Pe^{-CP}$$

where P is the pressure in bar and C is a constant that depends only on temperature. For the region of 0° C to 100° C. α is given by:

$$C = -0.065 + \frac{30}{T}$$

where T is in Kelvin.

- (a) Find an equation of state for this gas that is valid from 0°C to 100°C.
- (b) What is the molar volume (in m³/mole) at 80°C and 30 bar?
- 7. Consider a mixture of species 1, 2, and 3. The following equation of state is available for the vapor phase:

Where, $\frac{A}{RT} = -9.0 * 10^{-5} \left[\frac{1}{atm^2} \right]$

$$\frac{B}{RT} = 3.0 * 10^{-5} \left[\frac{1}{atm^2} \right]$$

and y₁,y₂ and y₃ are the mole fractions of species 1, 2 and 3, respectively

A vapor mixture of 1 mole of species 1, 2 moles of species 2, and 2 moles of species 3 is cooled to 300 K at constant pressure of 50 atm, where some of it condenses into a liquid phase.

- (a) Calculate an expression for the pure species fugacity coefficient for species 1 in the vapor φ_1^{ν} and the fugacity coefficient, $\widehat{\varphi_1^{\nu}}$, of species 1 in the mixture.
- (b) If the fugacity of species 1 in the liquid, \hat{f}_1^l , is 15 atm, calculate the mole fraction of vapor species 1 in equilibrium with the liquid
- 8. Verify that,

$$\left(\frac{\partial g_i}{\partial P}\right)_T = v_i = RT \left(\frac{\partial (\ln f_i)}{\partial P}\right)_T$$