

深度学习与视频编码

王苫社 北京大学

目录

- □ 概述
- □ 神经网络视频编码历史
- □ 基于深度学习的视频编码进展
- □ 展望

目录

- □ 概述
- □ 神经网络视频编码历史
- □ 基于深度学习的视频编码进展
- □ 展望

神经网络视频编码简史

目录

- □ 概述
- □ 神经网络视频编码历史
- □ 基于深度学习的视频编码进展
- □ 展望

起源

□ 基于神经网络的编码技术源自上世纪八十年代.

Figure 4. Schematic diagram of a neuron

三层人工神经网络用于图像变换编码. [1, 2]

神经网络硬件电路实现[3]

上世纪九十年代初

- □ 基于多层感知机的图像编码
 - DPCM using a multilayer perceptron network
 - Predictive Coding

design for image coding[J]. IEEE Proceedings I (Communications, Speech and Vision), 1992, 139(5): 501-507.

九十年代中期

- □ 自适应预测编码 [11-18]
 - Complexity analysis & Entropy coding

将图像划分为小块进行编码. [11]

利用空域临近像素作为辅助预测. [12, 13]

2000年左右

- □ 两个主要的问题[19-28]
 - 1. 端到端的多层感知机编码
 - 2. 由图像扩展到视频编码

In 2006

□ 自编码器开启深度学习时代 by G.E. Hinton

Pretraining

[29] Geoffrey E.et al. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504-507.

Unrolling

Fine-tuning

目录

- □ 概述
- □ 神经网络视频编码历史
- □ 基于深度学习的视频编码进展
 - 预测增强
 - 环路滤波
 - 深度学习与视频编码标准
- □ 展望

Outline

□ 深度学习与视频编码

- 帧内预测
- 帧间编码
 - □ 分像素插值
 - □ 预测增强
 - □ 参考帧质量提升
- 环路滤波
- 模式决策
 - □ 编码优化

帧内预测 (1)

- □ 数据驱动的帧内预测方法
 - 基于全卷积网络
 - 全连接网络
 - □ 单一模型: IPFCN-S (IPFCN-S-L: 将网络参数减半)
 - □ 双模型(为DC和planar训练专门模型): IPFCN-D (IPFCN-

D-L: 将网络参数减半)

Sequences		IPFCN	vs. HM-16.9	
sequences	IPFCN-S	IPFCN-D	IPFCN-S-L	IPFCN-D-L
Class A	-3.8 %	-4.4 %	-3.0%	-3.7%
Class B	-2.8 %	-3.2 %	-2.2%	-2.8%
Class C	-1.9 %	-2.1 %	-1.6%	-1.9%
Class D	-1.7 %	-1.8 %	-1.4%	-1.7%
Class E	_39%	-4 5 %	-3.0%	_3.5%
Overall	-2.6 %	-3.0 %	-2.1%	-2.5%
Encode Time	4930%	13052%	285%	483%
Decode Time	26572%	28927%	923%	1141%

帧内预测 (2)

☐ Design Resnet for Intra 8x8 PU

帧内预测(2)

- □ 预测增强
 - 训练数据生成
 - 当前PU通过HEVC得到最优intra mode

帧内预测(2)

□ 残差学习

QP: 22 27 32 37, HEVC Intra, DL Platform: Matcovnet

Sequences	BD-rate	Sequences	BD-rate
Traffic	-0.9%	PartyScene	-0.5%
PeopleOnStreet	-1.2%	RaceHorses	-0.7%
Kimono	-0.2%	BasketballPass	-0.4%
ParkScene	-0.8%	BQSquare	-0.1%
Cactus	-0.8%	BlowingBubbles	-0.7%
BasketballDrive	-0.6%	RaceHorses	-0.7%
BQTerrace	-0.8%	FourPeople	-0.3%
BasketballDrill	-0.5%	Johnny	-1.0%
BQMall	-0.6%	KristenAndSara	-0.8%
All average		-0.70%	

基于深度学习的分像素插值

- □ 针对1/2像素设计神经网络
 - 帧间预测:分像素插值+图像超分辨技术

Class Seq	iuence	BD-rate of LDP		BD-rate of LDB			BD-rate of RA			
Ciass	ductice \(\)	Y (%)	U (%)	V (%)	Y (%)	U (%)	V (%)	Y (%)	U (%)	V (%)
Overall All		-3.9	-1.5	-1.4	-2.7	-0.7	-0.6	-1.3	-0.6	-0.7

Class	Sequence	BD	rate of I	.DP	BD	rate of I	.DB	BE	rate of l	RA
Class	Sequence	Y	U	V	Y	U	V	Y	U	V
All Sequences	Overall	-2.2%	-0.6%	-0.5%	-1.2%	0.4%	-0.1%	-0.9%	-0.3%	-0.6%

Yan, N., Liu, D., Li, H., Li, B., Li, L., Wu, F. Convolutional Neural Network-Based Fractional-Pixel Motion Compensation. IEEE Transactions on Circuits and Systems for Video Technology, 2018.

Liu, J., Xia, S., Yang, W., Li, M., Liu, D. One-for-All: **Grouped Variation Network-Based Fractional** Interpolation in Video Coding, IEEE Transactions on Image Processing, 28(5), 2140-2151, 2019.

帧间预测增强(1)

- □ 利用空域-时域联合信息
 - 空域周边重建像素
 - 时域参考像素

帧间预测增强(2)

□提升预测准确性

□ 帧间双向预测预测(BIP)

Sequences	BIP-CN1	V vs. HM-16.9
Sequences	RA	LDB
Class A	-2.1 %	-1.7 %
Class B	-3.2 %	-1.9 %
Class C	-2.2 %	-0.9 %
Class D	-3.2 %	-1.0 %
Class E	/	-2.8 %
Overall	-2.7 %	-1.7 %
Encode Time	149%	185%
Decode Time	4259%	2853%

Zhao, Z., Wang, S., Wang, S., Zhang, X., Ma, S., Yang, J. Enhanced bi-prediction with convolutional neural network for high efficiency video coding. *IEEE Transactions on Circuits and Systems for Video Technology*, 2018.

□ 虚拟参考帧生成

☐ Deep Virtual Reference Frame, DVRF

Sequences	DV	RF
sequences	RA (HM16.9)	RA (JEM7.1)
Class A	-6.7%	-1.3%
Class B	-3.5%	-0.4%
Class C	-4.0%	-0.8%
Class D	-5.7%	-0.7%
Class E	/	-0.8%
Overall	-4.6%	-0.7%
Encode Time	135%	124%
Decode Time	4376%	1025%

Zhao, L., Wang, S., Zhang, X., Wang, S., Ma, S., Gao, W. Enhanced CTU-level inter prediction with deep frame rate upconversion for high efficiency video coding. *IEEE International Conference on Image Processing*, pp. 206-210, 2018.

□ 基于整帧的处理: SRCNN

■ In-loop

Table 1. Performance of our proposed IFCNN in comparison with SAO in terms of BD rates (BDBR).

5710 1	II tolling	OI DD Tut	es (BBBR).	•		
		All Intra	LDP-Case	LDP-Case	RA-Case	RA-Case
Sizes Seq.	All Illua	I	II	I	II	
		BDBR (%)	BDBR (%)	BDBR (%)	BDBR (%)	BDBR (%)
	BD	-10.1	-5.3	-3.0	-6.0	-6.7
832×	BQM	-3.7	-3.0	-2.4	-2.4	-2.9
480	PS	-2.7	-2.0	-1.2	0.0	-1.1
	BDT	-7.6	-3.5	-2.4	-4.3	-4.9
	BP	-3.3	-2.8	-1.5	-0.6	-1.1
416×	BQS	-2.4	-3.3	-2.9	1.4	-0.8
240	В	-3.4	-2.3	-2.6	0.0	-1.4
	RH	-4.9	-0.4	0.6	-1.2	-1.6
	Avg.	-4.8	-2.8	-1.9	-1.6	-2.6

北京大学参 INSTITUTE OF DIGITAL

□ 帧内编码后处理

- Post processing, All Intra
- QP: 22, 27, 32, 37

Class	Cognopas]	BD-rate	е
Class	Sequence	Y (%)	U (%)	V (%)
	Traffic	-5.6	-3.5	-4.1
Class A	PeopleOnStreet	-5.4	-5.9	-5.7
Class A	Nebuta	-0.9	-4.9	-4.1
	SteamLocomotive	-1.9	-0.5	-0.3
	Kimono	-2.5	-1.5	-1.4
	ParkScene	-4.4	-3.3	-2.5
Class B	Cactus	-4.6	-3.9	-6.3
	BasketballDrive	-2.5	-3.7	-5.3
	BQTerrace	-2.6	-3.3	-3.0
	BasketballDrill	-6.9	-5.8	-6.8
Class C	BQMall	-5.1	-5.3	-5.3
	PartyScene	-3.6	-4.4	-4.4
	RaceHorses	-4.2	-6.7	-11.0
	BasketballPass	-5.3	-4.4	-6.5
	BQSquare	-3.8	-4.2	-6.4
Class D	BlowingBubbles	-4.9	-8.4	-7.9
	RaceHorses	-7.6	-8.5	-11.5
	FourPeople	-7.0	-5.3	-5.2
Class E	Johnny	-5.9	-5.0	-5.5
Class E	KristenAndSara	-6.7	-6.1	-6.2
	Class A	-3.5	-3.7	-3.6
	Class B	-3.3	-3.2	-3.7
Class Summary	Class C	-5.0	-5.5	-6.9
	Class D	-5.4	-6.4	-8.1
	Class E	-6.5	-5.5	-5.6
Overall	All	-4.6	-4.7	-5.5

Performance

Left: HEVC CTC,

Right: Compare with other networks

Netw	ronle	I	BD-rate	e
Netw	VOLK	Y (%)	U (%)	V (%)
	Class A	0.9	2.1	2.1
	Class B	1.0	3.3	4.5
AR-CNN	Class C	-0.6	2.6	4.0
	Class D	-0.8	1.9	2.0
	Class E	0.4	5.5	6.1
	Overall	0.2	3.0	3.7
	Class A	-2.8	-3.2	-3.1
	Class B	-2.7	-2.7	-3.3
VDSR	Class C	-4.1	-4.8	-5.7
	Class D	-4.4	-5.6	-7.3
	Class E	-5.7	-5.7	-6.1
	Overall	-3.8	-4.3	-4.9

INSTITUTE OF DIGITAL MEDIA, PEKING UNIVERSITY

- □基于内容特性的神经网络环路滤波
 - □ 针对不同内容特性的视频图像训练CNN模型
 - ☐ Content analysis + CNN in-loop filter

设计CNN环路滤波语法元素

Sequences	AI				LDB LDP RA			RA				
Sequences	Y	U	V	Y	U	V	Y	U	V	Y	U	V
Class A	-4.7%	-3.3%	-2.6%	-6.7%	-2.6%	-1.9%	-3.5%	0.2%	0.3%	-6.6%	-3.4%	-3.0%
Class B	-3.5%	-2.8%	-3.0%	-5.7%	-1.6%	-2.2%	-4.5%	-0.5%	-1.1%	-6.5%	-2.5%	-2.7%
Class C	-3.4%	-3.5%	-5.0%	-5.0%	-3.4%	-5.0%	-4.4%	-1.9%	-3.0%	-4.5%	-3.3%	-4.5%
Class D	-3.2%	-4.7%	-6.0%	-3.8%	-1.7%	-2.6%	-3.5%	-0.8%	-0.9%	-3.3%	-2.6%	-3.6%
Class E	-5.8%	-4.1%	-5.2%	-8.6%	-5.2%	-5.6%	-7.7%	-1.7%	-0.9%	-9.0%	-4.2%	-5.3%
Overall	-4.1%	-3.7%	-4.1%	-6.0%	-2.9%	-3.5%	-4.7%	-1.0%	-1.2%	-6.0%	-3.2%	-3.8%

- □ 智能编码与VVC(JVET-N0110)
 - ALF之后
 - 浅层卷积神经网络
 - 亮度分量与色度分量共享网络
 - 帧级开关、CTU级开关、32x32块开关

_	ruore s.	resums or t	ne proposed	CI (II (III)					
		Rando	om access M	ain10₽					
		Over VTM-4.0₽							
	Y↩	U₽	V₽	EncT₽	<u>DecT</u> ₽				
Class A1₽	-2.95%↵	-8.57%₽	-13.33% ₽	100%₽	189%.				
Class A2₽	-1.47%∻	-18.33%₽	-15.72% ₽	100%₽	130%₽				
Class B₽	-1.52%↩	-23.99%₽	-21.70% ₽	100%₽	148%₽				
Class C.	0.12%₽	-5.94%₽	-6.99%₽	99%.₽	116%.				
Class E₽	₽	₽	₽	₽	₽				
Overall∂	-1.36%₽	-14.96%₽	-14.91% ₽	100% ₽	142%↵				
Class D.₽	ē	₽	₽	ė.	₽				
Class F₽	42	₽	43	42	₽				

- □ 智能编码与VVC(JVET-N0133)
 - 代替Deblock, SAO, ALF
 - 辅助输入信息:块划分结构和QP
 - SE(Squeeze and Excitation) block

ę.	All Intra Main10 (GPU).							
ø	Over VTM-4.0 💪							
φ.	Y	$U_{\scriptscriptstyle\mathcal{D}}$	V	Encl	DecT_			
Class A1	#VALUE!_	#VALUE!_	#VALUE!_	#NUM!_	#NUM!_			
Class A2	#VALUE!_	#VALUE!	#VALUE!_	#NUM!_	#NUM!_			
Class B ₂₃	-3.99%_	-10.41%	-10.75%	81%_	1762%_			
Class C	-5.92%_	-9.56%	-12.46%,	61%_	2847%_			
Class E	-7.26% ್ಷ	-6.89% ್ಷ	-9.10%	60% ا	2451% _			
Overall _	-5.72%	-8.95%	-10.77%	67% ₂	2353% _			
Class D	-6.24%	-12.31%_	-16.61%_	62%_	4510% ے			
Class F	10.52%	11.89%	6.30% _	62%	2127% ್ವ			

- □ 智能编码与VVC(JVET-N0169)
 - **■** CNNLF的位置
 - 辅助输入信息: QP Map
 - 并行化:分块滤波

Results for CNNF before the SAO

	20000000			_					
		All Intra Main10 ₽							
		Over VTM-4.0 ₽							
	Y₽	U₽	V₽	EncT.	DecT₽				
Overall ₽	-3.48%₽	-5.18%₽	-6.77%₽	142%₽	38414%₽				

Results for CNNF before the ALF with DF and SAO turned off-

	All Intra Main10 ₽						
	Over VTM-4.0 ₽						
	Y₽	U₽	V₽	EncT.₽	DecT₽		
Overall ₽	- 4.65%	-6.73%₽	-7.92%₽	139%₽	37956%₽		

Results for CNNF without all the conventional filters

	TCCSCITES TO	CITII WILL	iour un une e	on ventiona	IIIICI 5		
		Α	II Intra Main1	0.₽			
	Over VTM-4.0 ₽						
	Y₽	U₽	V₽	EncT.₽	DecT₽		
Overall ₽	-4.14%₽	-5.49%₽	-6.70%₽	140%₽	38411%₽		

- □ 智能编码与VVC(JVET-N0254)
 - Dense Residual CNN
 - 深度可分离卷积(DSC)减少参数量

	All Intra Main10 Over VTM-4.0₽						
	Y₽	U₽	V₽	EncT₽	<u>DecT</u> ₽		
Class A1₽	-0.97%₽	-1.64% <i>↩</i>	-2.91%₽	114%₽	5904%₽		
Class A2₽	-1.46%₽	-2.72%∻	-1.77%∻	107%₽	3465%₽		
Class B₽	-0.93%₽	-2.19%₽	-3.08%₽	106%₽	3665%₽		
Class C₽	-1.90%₽	-2.34%₽	-3.33%₽	104%₽	4520% <i>₽</i>		
Class E₽	-2.57%₽	-1.57%₽	-2.13%₽	108%₽	7759%₽		
Overall∂	-1.52%₽	-2.12%₽	-2.73%₽	107%₽	4667%₽		
Class D₽	-2.22%₽	-0.92%₽	-3.37%₽	103%₽	3955%₽		

	Random Access Main10 Over VTM-4.0₽						
	Y₽	U₽	V٠	EncT₽	DecT₽		
Class A1₽	-1.27%₽	-3.38%₽	-5.10%₽	106%₽	6967%₽		
Class A2₽	-2.21%₽	-5.74%₽	-2.88%∻	106%₽	6435%₽		
Class B₽	-1.13%₽	-4.73%₽	-4.55% ↔	106%₽	7011%₽		
Class C₽	-1.39%₽	-3.63%₽	-4.36%∻	106%₽	8110%₽		
Class E₽	φ.		₽	₽	₽		
Overall∂	-1.45%₽	-4.37%₽	-4.27%₽	106%₽	7156% <i>₽</i>		
Class D₽	-1.39%₽	-1.96%₽	-3.08%₽	105%₽	4217%₽		

	Low delay B Main10 Over VTM-4.0₽							
	Y₽	U₽	V	EncT₽	DecT₽	4		
Class A1₽	₽	₽	₽	₽	₽	4		
Class A2₽	₽		₽	47	4	4		
Class B₽	-1.12%₽	-7.24%↔	-7.12%₽	105%₽	8387%₽	4		
Class C₽	-1.40%₽	-6.97%∻	-6.45%₽	104%₽	9894%₽	4		
Class E₽	-2.45%₽	-2.80%₽	-2.95%₽	116%₽	9434%₽	4		
Overall₽	-1.54%₽	-6.04%₽	-5.86%₽	108%₽	9127%₽	4		
Class D₽	-1.73%₽	-2.75%₽	-4.92%₽	105%₽	6881%₽	4		

- □ 智能编码与AVS3
 - QP分段训练残差网络
 - 代替Deblock, SAO, ALF
 - 帧级开关、CTU级开关

호자 (AV)	CNN Loop	Filter vs HPM-	2.4, AI (4K)
序列(4K)	Y	Ü	V
Campfire_3840x2160_30	-5.73%	-10.29%	-2.45%
DaylightRoad2_3840x2160_ 60	-7.60%	-0.67%	-4.42%
ParkRunning3	-3.81%	-3.73%	-3.42%
Tango2_3840x2160_60	-4.52%	-3.41%	-5.14%
平均性能	-5,41%	-4.53%	-3.85%

$\Delta \mathbf{I}$	19.	_1\/	1/2	73	\cap
$\boldsymbol{\Gamma}$, D.	- T V J		י ט	v

⇒Di (roco = zoo)	CNN Loop Filter vs HPM-2.4, Al			CNN Loop Filter vs HPM-2.4, RA		
序列(1080p 720p)	Y	U	v	Y	U	v
BasketballDrive_1920x1080 _50	-8.03%	-11.57%	-15.57%	-2.51%	-2.59%	-0.11%
Cactus_1920x1080_50	-7.69%	-6.37%	-8.04%	-6.43%	-6.70%	-7.93%
City_1280x720_60	-3.61%	-4.28%	-3.17%	-2.53%	-5.55%	-6.00%
Crew_1280x720_60	-4.12%	-2.67%	-4.06%	-3.12%	-6.50%	-9.10%
Vidyo1_1280x720_60	-11.29%	-4.65%	-8.56%	-8.87%	-5.88%	-8.63%
Vidyo3_1280x720_60	-8.45%	-3.19%	-0.97%	-1.53%	-2.94%	-6.15%
平均性能	-7.20%	-5.45%	-6.74%	-4.17%	-5.03%	-6.32%

- □ 基于CNN的CU模式决策
 - 1. 分析CU块纹理
 - 2. 减少CU模式的数目
 - 3. 引入QP作为辅助信息

- □ 实现
 - Adding FastCUMode()
 - into xCompressCU

```
function XCOMPRESSCU(*pCurCU)
    m \leftarrow \text{FastCUMode}(\text{pCurCU}, QP, QS)
    if m \neq SPLIT then
        C_{2N} \leftarrow \text{CHECKINTRA}(\text{pCurCU})
    else
        C_{2N} \leftarrow \infty
    end if
    if m \neq \text{HOMO} and curD < maxD then
        C_N \leftarrow 0
        for i = 0 to 3 do
             pSubCU_i \leftarrow pointer to SubCU_i
             C_N \leftarrow C_N + \text{XCompressCU}(\text{pSubCU}_i)
         end for
    else
        C_N \leftarrow \infty
    end if
    CheckBestMode(C_{2N}, C_N)
end function
```

- □ HEVC Intra 硬件编码器实现
 - Big / Small CU pipeline

Liu Z, Yu X, Chen S, et al. CNN oriented fast HEVC intra CU mode decision. ISCAS 2016: 2270-2273.

□ 使用类似LeNet结构

Taking QP into consideration

(b) Architecture of Convolutional Neural Network for CU Mode Decision

- □ 将编码模式决策建模为二分类问题
 - 预测当前编码单元是否划分

□ VLSI 设计CNN加速模块

□ 性能对比

■ 63% time save with 2.7% loss in BDBR

Table III: Performance Comparison between Proposed Solution and Existing Algorithms

Algorithm	$\Delta T_{\rm CMD}[\%]$	$\Delta T_{\rm PMD} [\%]$	BDBR[%]	$\Delta T[\%]$	VLSI
[3]	50 - α	α	0.7	50	No
[5] [†]	26	45	1.0	60	No
[6]	52	0	0.8	52	No
[7] [†]	52	5	5.1	57	Yes
[8]	62.	0	4.5	62.	Yes
Proposed	63	0	2.7	63	Yes

indicates that class F sequences were not tested.

- □ CTU级处理
 - 两级RDO
 - □ 1. 是否采用变分辨率编码
 - □ 2. 上采样模块使用DCT插值或CNN

Li Y, Liu D, Li H, Li L, Wu F. Convolutional Neural Network-Based Block Up-sampling for Intra Frame Coding.

- □ 亮度分量网络
 - Input: low resolution patch, output: high resolution

□ 色度分量处理: 使用亮度作为引导

Li Y, Liu D, Li H, Li L, Wu F. Convolutional Neural Network-Based Block Up-sampling for Intra Frame Coding.

□ 下采样后应调整QP

■ 回归得到原始QP与下采样QP系数αβ

Li Y, Liu D, Li H, Li L, Wu F. Convolutional Neural Network-Based Block Up-sampling for Intra Frame Coding.

□ 测试条件

Qp: 32, 37, 42, 47

Class Sequence		BD-Rate (Anchored on HEVC)				BD-Rate (Anchored on HEVC+DCTIF)			
Class	Sequence	Y	U	V	Y SSIM	Y	U	V	Y SSIM
	Traffic	-10.1%	-3.5%	6.0%	-12.9%	-8.0%	-13.2%	-2.6%	-7.9%
Class A	PeopleOnStreet	-9.7%	-14.8%	-14.5%	-12.9%	-8.5%	-20.4%	-18.5%	-9.7%
Class A	Nebuta	-2.0%	-22.0%	3.1%	-4.4%	-1.7%	-22.5%	1.6%	-3.6%
	SteamLocomotive	-1.7%	-27.7%	-25.4%	-6.1%	-1.2%	-34.2%	-25.6%	-2.8%
	Kimono	-7.7%	-5.5%	18.8%	-9.6%	-3.4%	-25.9%	-4.3%	-3.4%
	ParkScene	-7.1%	-14.4%	-2.3%	-11.3%	-5.0%	-25.2%	-14.6%	-6.6%
Class B	Cactus	-6.6%	-2.5%	8.3%	-10.0%	-5.0%	-6.5%	0.9%	-6.7%
	BQTerrace	-3.7%	-7.6%	-9.1%	-9.6%	-3.1%	-8.2%	-7.1%	-6.5%
	BasketballDrive	-6.1%	-1.2%	3.2%	-10.8%	-3.4%	-5.8%	-2.5%	-3.8%
	BasketballDrill	-4.9%	4.5%	8.1%	-7.9%	-4.0%	4.9%	2.1%	-6.6%
Class C	BQMall	-2.9%	-7.2%	-7.2%	-6.2%	-2.3%	-10.6%	-9.1%	-5.3%
Class C	PartyScene	-1.0%	-5.1%	-1.6%	-4.0%	-1.0%	-5.5%	-3.2%	-3.6%
	RaceHorsesC	-6.7%	4.6%	7.5%	-10.7%	-6.0%	1.9%	3.9%	-8.6%
	BasketballPass	-2.0%	-3.7%	9.2%	-4.3%	-2.3%	-7.5%	12.3%	-4.4%
Class D	BQSquare	-0.9%	-0.6%	-21.1%	-1.4%	-0.5%	1.7%	-16.7%	-1.2%
Class D	BlowingBubbles	-3.2%	3.1%	-8.0%	-5.3%	-1.7%	0.5%	-9.6%	-3.8%
	RaceHorses	-9.9%	7.5%	6.4%	-12.6%	-9.6%	5.0%	6.6%	-11.1%
	FourPeople	-7.2%	-10.5%	-11.0%	-11.0%	-7.2%	-14.7%	-14.5%	-9.5%
Class E	Johnny	-9.0%	-3.2%	-3.2%	-11.1%	-7.1%	-6.0%	-8.3%	-5.6%
	KristenAndSara	-6.8%	-11.2%	-11.1%	-13.0%	-5.3%	-8.4%	-10.6%	-8.2%
	Fountains	-4.0%	-12.9%	-11.2%	-7.4%	-2.0%	-16.1%	-9.2%	-2.0%
	Runners	-11.2%	22.8%	-0.1%	-12.4%	-7.0%	0.9%	-13.7%	-6.0%
Class UHD	Rushhour	-8.5%	4.4%	1.8%	-10.3%	-3.2%	-9.2%	-9.5%	-3.0%
	TrafficFlow	-12.7%	-11.7%	-5.8%	-12.7%	-6.9%	-17.3%	-11.9%	-5.6%
	CampfireParty	-8.4%	-10.8%	-0.8%	-9.5%	-6.5%	-10.8%	-5.0%	-6.4%
	of Classes A-E	-5.5%	-6.0%	-2.2%	-8.8%	-4.3%	-10.0%	-6.0%	-5.9%
Average	of Class UHD	-9.0%	-1.6%	-3.2%	-10.5%	-5.1%	-10.5%	-9.9%	-4.6%

□ RD-曲线

□ 算法命中率

■ 绿色: 下采样编码 + CNN, 红色: 上采样编码 + DCTIF

QP 32

目录

- □ 概述
- □ 神经网络视频编码历史
- □ 深度学习视频编码进展
- □ 展望

Future Works

- □ 深度学习为视频编码性能提升提供了新的思路
 - 未来可期
 - 有"大货"
 - 为什么能带来性能的明显提升值得进行理论探索
- □ 深度学习进入视频编码标准尚需进一步探索

参考文献

- [1] Cottrell G W, Munroe P, Zipser D. Image compression by neural network. An example of extensional programming[J]. Technical report, 1987. [2] Chua L O, Lin T. A neural network approach to transform image coding[J]. International journal of circuit theory and applications, 1988, 16(3): 317-324. [3] Luttrell S P. Image compression using a multilayer neural network[J]. Pattern Recognition Letters, 1989, 10(1): 1-7. [4] Luttrell S P. Image compression using a neural network[C]//Proc. IGARSS. 1988, 88: 1231-1238. [5] Naillon M, Theeten J B. Neural approach for TV image compression using a Hopfield type network[C]//Advances in neural information processing systems. 1989: 264-271. [6] Luttrell S P. The use of Bayesian and entropic methods in neural network theory[M]//Maximum entropy and Bayesian methods. Springer, Dordrecht, 1989: 363-370. [7] Sicuranza G L, Romponi G, Marsi S. Artificial neural network for image compression[J]. Electronics letters, 1990, 26(7): 477-479. [8] Kung S Y, Diamantaras K I. A neural network learning algorithm for adaptive principal component extraction (APEX)[C]//Acoustics, Speech, and Signal Processing, 1990. ICASSP-90., 1990 International Conference on. IEEE, 1990: 861-864. [9] Antonini M, Barlaud M, Mathieu P, et al. Multiscale image coding using the Kohonen neural
- □ [10] Manikopoulos C N. Neural network approach to DPCM system design for image coding[J]. IEE Proceedings I (Communications, Speech and Vision), 1992, 139(5): 501-507.

network[C]//Visual Communications and Image Processing'90: Fifth in a Series. International Society

for Optics and Photonics, 1990, 1360: 14-27.

参考文献

[20] Jiang J. Image compression with neural networks—a survey[J]. Signal processing: image

Communication, 1999, 14(9): 737-760.

参考文献

- [21] Venetianer, Peter L., et al. "Analogic CNN algorithms for some image compression and restoration tasks." IEEE transactions on circuits and systems I: Fundamental theory and applications 42.5 (1995): 278-284. [22] Ng K S, Cheng L M. Artificial neural network for discrete cosine transform and image compression[C]//Document Analysis and Recognition, 1997., Proceedings of the Fourth International Conference on. IEEE, 1997, 2: 675-678. [23] Venetianter P L, Roska T. Image compression by cellular neural networks[J]. IEEE transactions on circuits and systems I: fundamental theory and applications, 1998, 45(3): 205-215. [24] Papamarkos, Nikos, Charalambos Strouthopoulos, and Ioannis Andreadis. "Multithresholding of color and gray-level images through a neural network technique." Image and Vision Computing 18.3 (2000): 213-222. [25] Bakırcıoğlu H, Koçak T. Survey of random neural network applications[J]. European journal of operational research, 2000, 126(2): 319-330. [26] Clausen, Clifford, and Harry Wechsler. "Color image compression using PCA and backpropagation learning." pattern recognition 33.9 (2000): 1555-1560. [27] Watanabe, Eiji, and Katsumi Mori. "Lossy image compression using a modular structured neural network." Neural Networks for Signal Processing XI, 2001. Proceedings of the 2001 IEEE Signal Processing Society Workshop. IEEE, 2001.
- [28] Vilovic, Ivan. "An experience in image compression using neural networks." Multimedia Signal Processing and Communications, 48th International Symposium ELMAR-2006 focused on. IEEE, 2006.
- [29] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. science, 2006, 313(5786): 504-507.

谢谢!

Q & A