Deep Neural Networks for Text Classification

Aniruddha Shamasundar(ashamas) Chinmai Kaidabettu Srinivas(ckaidab) Siddu Madhure Jayanna(smadhur)

Problem Statement

- Develop, compare and analyse performance of 3 different Deep Neural Networks for text classification
 - 1. Convolutional Neural Network (CNN)
 - 2. Recurrent Neural Network (RNN)
 - 3. Hierarchical Attention Network (HAN)
- Use word vectors generated by Google's GloVe as an underlying data model to get the vector embeddings for our data set

Dataset

News Category Dataset

- Consists of 200k news headlines from the year 2012 to 2018 obtained from <u>HuffPost</u>.
- Consists of 41 different news categories.

Sample Dataset

```
{
"category": "CRIME",
"headline": "There Were 2 Mass Shootings In Texas Last Week, But
Only 1 On TV",
"authors": "Melissa Jeltsen",
"link": "https://www.huffingtonpost.com/entry/texas-amanda-painte
r-mass-shooting_us_5b081ab4e4b0802d69caad89",
"short_description": "She left her husband. He killed their children.
Just another day in America.",
"date": "2018-05-26"
}
```


Dataset preprocessing- 1

- 1. Reduced 41 categories to 20 news categories by:
 - a. Merging related categories to a single category
- 2. Combined short description along with news headline to give descriptive news headline
- 3. Sequence encoding
 - Formatted our text samples into number sequences to feed it to neural network
 - Utilize
 - keras.preprocessing.text.Tokenizer
 - Keras.preprocessing.sequence.pad_sequences

Dataset preprocessing- 2

- 4) Creation of Embedding Layer using GloVe
 - Compute an index mapping of words to vector embeddings
 - Use the above vector embeddings to create an embedding layer
- 5) Convert each of the 20 categories into a vector of 20-dimensions
 - Use one hot encoding technique.

DNN models

We have built and analyzed the following deep neural networks

- 1. Convolutional Neural Networks (CNN)
- 2. Recurrent Neural Networks (RNN)
- 3. Hierarchical Attention Networks (HAN)

Flow Diagram

Convolutional Neural Networks

- Convolutional layer is used to identify special pattern in text data
 - Use different sized kernels to identify patterns of different sizes
 - Identifies patterns regardless of the position of words
- Use Max Pooling Layer to reduce the spatial size of the data representation
- Use Dropout layer to avoid overfitting
- Use Dense layer with softmax activation function to classify the news headline

CNN Model Summary

Layer (type)	Output Shape	Param #	Connected to
input_1 (InputLayer)	(None, 29)	0	
embedding_1 (Embedding)	(None, 29, 1	.00) 11440500	input_1[0][0]
conv1d_1 (Conv1D)	(None, 29, 2	256) 51456	embedding_1[0][0]
conv1d_2 (Conv1D)	(None, 29, 2	256) 77056	embedding_1[0][0]
conv1d_3 (Conv1D)	(None, 29, 2	256) 102656	embedding_1[0][0]
max_pooling1d_1 (MaxPooling1D)	(None, 9, 25	66) 0	conv1d_1[0][0]
max_pooling1d_2 (MaxPooling1D)	(None, 9, 25	66) 0	conv1d_2[0][0]
max_pooling1d_3 (MaxPooling1D)	(None, 9, 25	66) 0	conv1d_3[0][0]
dropout_1 (Dropout)	(None, 9, 25	66) 0	max_pooling1d_1[0][0]
dropout_2 (Dropout)	(None, 9, 25	66) 0	max_pooling1d_2[0][0]
dropout_3 (Dropout)	(None, 9, 25	66) 0	max_pooling1d_3[0][0]
concatenate_1 (Concatenate)	(None, 9, 76	58) 0	<pre>dropout_1[0][0] dropout_2[0][0] dropout_3[0][0]</pre>
flatten_1 (Flatten)	(None, 6912)	0	concatenate_1[0][0]
dropout_4 (Dropout)	(None, 6912)	0	flatten_1[0][0]
dense_1 (Dense)	(None, 20)	138260	dropout_4[0][0]
	========		

Recurrent Neural Networks

- Overcomes shortcoming of traditional NN in dealing with sequence data
 - Integrates lexical and semantic information
- Layers Involved:
 - Use Spatial Dropout layer to perform variational dropout in text models
 - Use LSTM layer to retain last output in RNN

 Use Dense layer with softmax activation function for multi-class text classification

RNN Model Summary

Output	Shape	Param #
(None,	29, 100)	11440500
(None,	29, 100)	0
(None,	200)	240800
(None,	20)	4020
	(None, (None,	Output Shape (None, 29, 100) (None, 29, 100) (None, 200) (None, 200)

Hierarchical Attention Networks

- Main idea words make sentences and sentences make documents
- Preprocess data and construct 3D Matrix in order to cater the needs of HAN architecture
 - First Dimension represents total number of documents.
 - Second Dimension represents number of sentences in a document
 - Third dimension represents number of words in a sentence
- Layers Involved:
 - Use bidirectional LSTM layer to incorporate contextual information
 - Use Time Distributed layer to apply a layer to every temporal slice of input
 - Use Attention layer to:
 - Apply attention mechanism at word level and sentence level
 - Enables to attend more and less important content during document representation
- Use Dense layer with softmax activation function for multi-class text classification.

HAN Model Summary

Layer (type)	Output	Shape	Param #
input_7 (InputLayer)	(None,	3, 29)	0
time_distributed_5 (TimeDist	(None,	3, 200)	11842300
bidirectional_4 (Bidirection	(None,	3, 300)	421200
time_distributed_6 (TimeDist	(None,	3, 200)	60200
attention_with_context_4 (At	(None,	200)	40400
dropout_6 (Dropout)	(None,	200)	0
dense_8 (Dense)	(None,	20)	4020

Tuning Hyperparameters

- Learning rate
- Batch size
- GloVe embedding dimensions
- Number of epochs
- Maximum number of words in a sentence for each model
- Number of layers in each model
- Number of filters for CNN
- Kernel size for max pooling in CNN
- Number of cells for LSTM layer in RNN
- Maximum number of sentences considered in HAN
- Dropout percentage

Results

The accuracy rate of CNN: 64.75%

The accuracy rate of RNN: 67.01%

The accuracy rate of HAN: 74.05%

Analysis and Conclusion

Contd...

Performance: HAN > RNN > CNN

However, CNN model has outperformed the other two models (RNN & HAN) in terms of training time.

References

https://www.cs.cmu.edu/~./hovy/papers/16HLT-hierarchical-attention-networks.pdf

https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html

https://www.aclweb.org/anthology/W18-5408

https://towardsdatascience.com/multi-class-text-classification-with-lstm-1590bee1bd17

https://medium.com/analytics-vidhya/hierarchical-attention-networks-d220318cf87e

Thank You