Sistemas de Computação

Introdução aos Sistemas Operacionais

20/03/2019

Introdução aos Sistemas Operacionais

- Conceitos de Sistemas Operacionais
- Funções Básicas
- Breve Histórico
- Classificação de Sistemas Operacionais

Conceituação de SO

O que é um Sistema Operacional?

- É um software que age como intermediário entre o Usuário e o Hardware
- Fornece um ambiente onde o usuário possa executar programas
- Garante a utilização eficiente do Hardware
- Protege o Sistema de Computação e os usuários

Sistemas Operacionais estão presentes em todos os dispositivos com processamento!

Tipos de equipamentos (e sistemas)

Mica Mote

Personal Comp.

Tablets

Mainframe Server

Process Control Board

Game Console

ipod Touch/ iPhone

Cluster/ Server farm para Cloud

MP3 Player

Cell / Smart Phone

Sistemas Emergentes

Car Computer

Watch
Computer

Volation Research

Volation Researc

My Home

Smart Home

Data Centers

Mini-robots

Table Computing

Networked Cloud Computing

Um S.O. para cada tipo de máquina

Alguns Exemplos:

- PCs/Netbooks: Linux, variantes do UNIX, Windows 7, Vista, Mac OS X, ...
- Cloud Computing: Hadoop, Amazon EC, Xen, ...
- Celulares: Symbian, Windows Mobile, ...
- Smartphones/PDAs: iOS, PalmOS, Android, Windows Mobile, BlackBerry, AlyunOS...
- Embarcados: iOS, inferno, Maemo, ...
- Sistemas de Tempo Real: QNX, RT-UNIX, ...
- Redes de Sensores (MicaMotes): TinyOS, Contiki, ...
- Clusters/Sist. distribuídos: Mach, Plan9, Amoeba, Beowulf, Chorus ...
- WebOS: ChromeOS, JoliOS, DesktopTwo, EyeOS, ...

A função do Sistema Operacional

Utilitários: Compilador, editor de texto, SGBD, browser, ...

Aplicativos: Planilha, processador de texto, ...

Sistema de Informação: ERP, CRM, reserva de passagens aéreas, ...

Recurso de Hardware: CPU, memória, HD, dispositivos de E/S, ...

O que é um Sistema Operacional?

É uma máquina estendida

- Implementa abstrações que escondem (do programador e do usuário final) os detalhes de como usar e controlar os recursos específicos
- Fornece ao programador uma máquina virtual, que é mais fácil de usar (APIs simples baseada em conceitos independentes do hardware)

É um gerenciador de recursos

- Garante o compartilhamento seguro de recursos pelas várias atividades (processos / tarefas) concorrentes
- Tenta maximizar a eficiência no uso de recursos

Compartilhamento de Recursos

O que é?

Compartilhar recursos significa que diferentes usuários ou programas usam os recursos de forma concorrente.

Por que ocorre?

Ocorre porque num mesmo computador ou sistema computacional pode-se ter mais de um programa ou mais de um usuário operando ao mesmo tempo.

Como administrar seu uso?

Os recursos são limitados, precisam ser controlados e administrados de forma a evitar conflitos.

Componentes Típicos de um Sistema Operacional

Programas utilitários:

- Auxiliam o usuário em tarefa específica
- Browser, Compiladores, editores, shell, gerenciador de janelas, etc.

Programas de sistema:

- São ativados no boot ou periodicamente
- Permitem configuração do sistema, corrigem erros no disco, fazem back-up, gerenciam a comunicação pela rede, monitoram e colhem estatísticas sobre a ocupação de recursos, etc.

Núcleo (kernel) e drivers:

• Executa as funções mais básicas para compartilhamento seguro dos recursos (CPU, Caches, Memória, discos)

Interface usuário-sistema

O Sistema Operacional fornece as seguintes facilidades para o usuário:

- Acessar o sistema (segurança de acesso)
- Criar e gerir diretórios / arquivos e programas
- Executar programas
- Acessar dispositivos de entrada / saída
- Acessar conteúdo de arquivos
- Detectar erros de execução
- Contabilizar a utilização do sistema

Modo Administrador e Modo Usuário

- As arquiteturas atuais permitem a operação em dois (ou mais) modos da CPU:
 - Modo supervisor: acesso a todas as instruções de máquina e regiões da memória
 - Modo usuário: apenas conjunto restrito de instruções e endereçamento de apenas parte da memória
- Exemplo: No modo supervisor é possível trocar de modo, parar o sistema, iniciar uma E/S, e acessar estruturas de dados do núcleo

Estrutura Tradicional do UNIX Interface usuário-sistema e programa-sistema

	(the	users)
	1000	

shells and commands compilers and interpreters system libraries

Espaço usuário

Espaço supervisor/ núcleo

Kernel

system-call interface to the kernel

signals terminal handling character I/O system terminal drivers file system swapping block I/O system disk and tape drivers CPU scheduling page replacement demand paging virtual memory

kernel interface to the hardware

terminal controllers terminals

device controllers disks and tapes

memory controllers physical memory

Evolução

Motivação:

- Evolução do Hardware
 - novas tecnologias
 - novos processadores
 - novas abordagens de solução
- Novos serviços e funcionalidades
 - oferta gera demanda que gera problemas e novas necessidades
- Correção de Falhas (Bugs)

Um breve resumo da evolução dos computadores e SO

Equipamentos

- 1a. geração 1945 1955 válvulas, *plug boards*
- 2a. geração1955 1965 transistores, processamento em lotes
- 3a. geração1965 1980 Circuitos integrados e multiprogramação
- 4a. geração1980 2000 PCs e Servidores, rede internet
- 5^a. Geração: > 2000

Mobile: Mem. Flash, várias interfaces comunicação, eficiência de energia

- **Sistemas embarcados** (carros, aviões, ... artefatos inteligentes) com sensores, e em rede
- **DataCentros**: Multi-core, Compartilhamento de todos os recursos, virtualização, eficiência de energia

Uso / Operação

Pelo programador (um de cada vez) em linguagem de máquina

Pelo operador, Job Control Language

Cada usuário em um terminal, timesharing

PC: Multi-tarefa, único usuário Interface gráfica, em rede

Servidores: multi-usuário, alta disponibilidade

Multi-tarefa, único usuário (sempre conectado), com localização/ mapas, updates automáticos,

Usuário só configura (rede de sist. embarcados) e usa naturalmente

Operação autônoma em data centros, Service Computing, SLAs

Evolução dos SO

Com os Computadores Pessoais, os SO evoluíram nas seguintes direções:

Exemplo: MS-DOS, versões de Windows e MacOS

- Único usuário → menor demanda por segurança e controle de acesso
- Demanda por maior portabilidade e configuração do S.O.
- Hardware mais barato, e menos eficiente e, apesar disso, tempo de resposta aceitável
- Diversos tipos de periféricos para E/S (mouse, disquetes, CD-ROM, DVD, Impressoras, Pen-drives, etc.)
- Interação através de Interface gráfica
- Multi tarefa
- Interconectado em rede (acessando serviços remotos)
- Plug'n'Play e atualização automática de software

Monotarefa x Multitarefa

- Sistema Monotarefa: Admite e gerencia apenas uma tarefa em execução por vez. Ex: DOS
- Sistema Multitarefa: Admite e gerencia vários tarefas em processamento concorrente. Ex: Windows 98, Windows 2000/NT/XP, Linux ...

Vantagens x Desvantagens Multitarefa e Multiprogramação são a mesma coisa?

Monousuário x Multiusuário

- Sistema Monousuário: Admite e gerencia apenas um usuário – não permite que mais de um usuário esteja "logado" simultaneamente
 - Ex: Windows 98, Windows NT (exceto versão com Terminal Server)
- Sistema Multiusuário: Admite e gerencia vários usuários – permite que mais de um usuário esteja "logado" no sistema simultaneamente.
 - Ex: Linux, Windows 2000, VMS

- Monoprocessado x Multiprocessado
- Sistemas Monoprocessados
 - Somente reconhece uma única CPU
 - Multitarefa ou monotarefa
 - Ex: Windows 98
- Sistemas Multiprocessados
 - Reconhece mais de uma CPU
 - execução simultânea
 - Ex:Windows 2000/NT/XP, Linux

Batch x Time Sharing

Sistemas Batch

Os programas são processados em Lote, um de cada vez, não havendo interação com o usuário.

Sistemas Time Sharing

Os usuários compartilham o tempo de uso do computador que, em seqüência, dedica uma fatia do tempo de processamento para cada usuário.

- Aplicações Específicas
- Sistemas de Tempo Real

Sistemas que possuem um forte vínculo com o tempo. O resultado correto deve ser dado no tempo previsto.

Sistemas Embarcados

Sistemas inseridos em produtos com funções específicas como forno de microondas, VCR, equipamentos bélicos, etc.

