Paraméteres bonyolultság

Kovács Milán, Nemkin Viktória

2021. március 16.

Menetrend

- Motiváció
- Bar Fight Prevention problem
- Operation Definíciók
- Feedback arc set

Klasszikus bonyolultságelmélet

Algoritmus: hány lépést tesz az input méretének függvényében?

- Nem biztos, hogy az egyforma méretű bemenetek egyformán nehezek...
- Nem biztos, hogy egy teljesen általános megoldásra van szükségünk...

Példa: Prímtényezős felbontás

Feladat: prímtényezős felbontás megadása.

Kézzel melyiket lenne könnyebb megoldani?

- $4503599627370496 = 2^{52}$
- $1125897758834689 = 524287 \cdot 2147483647$

Számítógépnek melyiket lenne könnyebb megoldani?

- 10000-nél kisebb prímszámok szorzata.
- RSA kódolás feltörése: két nagyon nagy prím szorzatát felbontani.

Példa: Sűrű / ritka gráfok

Sűrű gráf:

Ritka gráf:

- ullet Input: szomszédossági mátrix o ugyanakkora.
- ullet Gráfalgoritmusok: független csúcshalmaz, klikk, színezés o nem egyformán nehéz.

Valós életbeli problémák

Üzleti korlátok:

- Facebook:
 - ismerősök száma ≤ 500 (fokszám)
 - aktív felhasználók száma ≤ 3 milliárd (csúcsszám)
- Google:
 - keresett kifejezés hossza ≤ 100 karakter (illesztett minta hossza)
 - egy oldalon a linkek száma < 1000 (fokszám)
- Orvosi alkalmazások:
 - DNS hosszúsága
 - protein max mérete

...stb

Feladat

Sztori

- Biztonsági őr egy vidéki bárban
- Péntek esti bulik, verekedés
- Falu lakóit ismerjük, tudjuk kik szoktak verekedni
- Megelőzés: nem engedünk be mindenkit
- Menedzsment: legfeljebb k vendég elutasítása
- Csütörtök este van, holnap estig kell eldönteni

Bar Fight Prevention problem

Input

- Vendégek listája: n darab vendég
- Minden vendégpárra: fognak-e verekedni
- Legfeljebb hány vendéget utasíthatunk el: k (kevesebbet lehet)

Output

- Megoldható-e, hogy a beengedettek között ne legyen verekedés?
- Kiket kell kitiltani?

Példa

- Csúcsok = vendégek, élek = verekedni fognak.
- Kitilható vendégek száma: k=3.

Kérdések:

- Kit tiltsunk ki, hogy ne legyen verekedés?
- Melyik Algoritmuselméletből tanult feladat ez?

Megoldás

- Csúcsok = vendégek, élek = verekedni fognak.
- Kitilható vendégek száma: k=3.

Kérdések:

- Kit tiltsunk ki, hogy ne legyen verekedés?
 Bob-ot, Daniel-t és Fedor-t.
- Melyik Algoritmuselméletből tanult feladat ez?
 Lefogó csúcshalmaz: ∀ él legalább egyik végpontja benne van.

Brute force megoldás

- Csúcsok száma: n
- Minden lehetséges vendég-részhalmaz:
- \circ 2ⁿ eset
- Ha őket zárnánk ki a többiek között marad-e él?

Ha tudjuk, hogy a k kicsi, pl. $k \le 10$

- A menedzsment úgysem fog nagy k-t engedni.
- Aki 0 fokszámú azt beengedhetem, mert senkivel nem fog összeveszni.

k+1

- Aki k-nál nagyobb fokszámú azt nem engedhetem be, mert akkor a szomszédjait kellene kitiltani, akik k-nál többen vannak.
- Ha valakit kitiltok akkor k-t csökkentem eggyel.
- Maradék gráf: 1...k fokú csúcsok. Minden kitiltás így k vagy kevesebb konfliktust fog megoldani a továbbiakban.
- ullet Ha több mint k^2 élünk van akkor biztosan nem megoldható a feladat, készen vagyunk.
- Ha k^2 vagy kevesebb élünk van, akkor legfeljebb $2k^2$ csúcsunk lehet (minden élnek két vége van és nincs 0 fokú csúcs).
- $\binom{2k^2}{k}$ mostmár $k \le 10$ -re már jobb mint az előbbi 2^n .

1 fokú csúcsok

- Az 1 fokú csúcs és szomszédja esetében: ha beengedem a csúcsot akkor az 1 darab szomszédját nem engedhetem be.
- Ezzel biztos nem lett rosszabb a helyzet, mert ha a csúcsot nem engedem be akkor a szomszédját beengedhetem, de annak még lehetnek egyéb szomszédjai is.
- Ezért engedjük be az 1 fokú csúcsokat és tiltsuk ki a szomszédokat (ezzel k-t is csökkentsük 1-el).
- Így mostmár 2..k konfliktus lehet.
- Erre megint kiszámolom a max csúcsszámot, ez mostmár csak k^2 , erre még jobb szám jön ki.

?

Itt van még a példának folytatása bounded search tree-kkel, de azt inkább Milánnak kellene elmondania.

Kernelizációs technika általánosan

Vertex cover feladat megoldása egyben

Paraméteres komplexitás definíciója általánosan

Szemezgetés