A little more CFG parsing

Computational Linguistics (LING 455)

Rutgers University

Nov 23, 2021

ı

Summary

CFGs

CFGs have rewrite rules of the shape $A \rightarrow \varphi$, where φ is a string of terminals and non-terminals.

• The restriction is on the LHS. This is what makes it context-free.

We can contemplate restrictions on the RHS as well:

- Rules like $A \rightarrow x$, $A \rightarrow xB$ only: finite-state/regular
- Rules like $A \rightarrow x$, $A \rightarrow BC$ only: Chomsky Normal Form

CNF is a convenience, not a restriction in expressive power.

The parsing task

A **grammar** is a way of finitely and succinctly specifying a (typically infinite) number of objects with a certain shape.

Parsing is the task of structuring a linear representation in a way sanctioned by some grammar.

Naive CFG parsing

For non-singleton strings:

- Break the input string into two (every possible way)
- Recurse, parsing the left half and the right half (given g)
- Try to combine the resulting yields nl and nr (given g)
- Return the resulting categories

Naive parsing is inefficient: each substring under a given length is parsed multiple (depending on the string length, maybe many) times.

Each substring is identified by a **span**, a pair of numbers (i, j):

Spans can arranged in a table. Then parsing amounts to filling the table in. The key to efficiency: each span occurs exactly **once!**

Each substring is identified by a **span**, a pair of numbers (i, j):

Spans can arranged in a table. Then parsing amounts to filling the table in. The key to efficiency: each span occurs exactly **once!**

Each substring is identified by a **span**, a pair of numbers (i, j):

Spans can arranged in a table. Then parsing amounts to filling the table in. The key to efficiency: each span occurs exactly **once!**

Each substring is identified by a **span**, a pair of numbers (i, j):

Spans can arranged in a table. Then parsing amounts to filling the table in. The key to efficiency: each span occurs exactly **once!**

Each substring is identified by a **span**, a pair of numbers (i, j):

Spans can arranged in a table. Then parsing amounts to filling the table in. The key to efficiency: each span occurs exactly **once!**

Each substring is identified by a **span**, a pair of numbers (i, j):

Spans can arranged in a table. Then parsing amounts to filling the table in. The key to efficiency: each span occurs exactly **once!**

Each substring is identified by a **span**, a pair of numbers (i, j):

Spans can arranged in a table. Then parsing amounts to filling the table in. The key to efficiency: each span occurs exactly **once!**

Each substring is identified by a **span**, a pair of numbers (i, j):

Spans can arranged in a table. Then parsing amounts to filling the table in. The key to efficiency: each span occurs exactly **once!**

Each substring is identified by a **span**, a pair of numbers (i, j):

Spans can arranged in a table. Then parsing amounts to filling the table in. The key to efficiency: each span occurs exactly **once!**

Each substring is identified by a **span**, a pair of numbers (i, j):

Spans can arranged in a table. Then parsing amounts to filling the table in. The key to efficiency: each span occurs exactly **once!**

Each substring is identified by a **span**, a pair of numbers (i, j):

$$\mid$$
 "Mary" \mid "saw" \mid "the" \mid "elk" \mid 4

Spans can arranged in a table. Then parsing amounts to filling the table in. The key to efficiency: each span occurs exactly **once!**

Each substring is identified by a **span**, a pair of numbers (i, j):

Spans can arranged in a table. Then parsing amounts to filling the table in. The key to efficiency: each span occurs exactly **once!**

	0,1		0,2		0,3		0,4	
14	DP						S	
Dr.	DP		1,2		1,3		1,4	
		10	VT				VP	
		"SOM	va		2,3		2,4	
				"x,	D		DP	
				the	0 11		3,4	
						"ela	NP	
						4	-"	

Enriched parsing

These parsing algorithms treat parse yields as (lists of) categories. We might be interested in other kinds of yields:

- Trees (e.g., LBT's) that encode the structure of the parsed object
- Weights that report (e.g.) how probable a derivation is
- Costs associated with a derivation

Enriched parsing

The strategy for parsing to LBT's is quite reminiscent of how we generalized FSA parsing to FST parsing:

```
step delta x (q,m) = [ (s, m<n) | (r,y,n,s) <- delta, q==r, y==x ]
```

```
parseToLBT g [x] = [ Leaf n x | n :- y <- g, y==x ]
parseToLBT g xs =
  [ Branch n tl tr | (ls, rs) <- breaks xs,
      tl <- parseToLBT g ls,
      tr <- parseToLBT g rs,
      n :> (l, r) <- g, label tl == l, label tr == r ]</pre>
```

The old result of a parse (previously, a state; now, a category) is **enriched** with some extra info (previously, a string; now, a tree).

Weighted or probabilistic CFGs

A straightforward extension of CFGs pairs rules with **weights**, **probabilities**, or **costs**.

```
type WCFG cat term weight = [(Rule cat term, weight)]
type PCFG cat term = WCFG cat term Double
```

Computing the weight of a whole analysis means **accumulating** the weights, via a monoid! (Exercise: change CYK.)

Parsing with weights (assume all $A \rightarrow BC$ rules weighted 1)

Parsing with weights (assume all $A \rightarrow BC$ rules weighted 1)

Parsing with weights (assume all $A \rightarrow BC$ rules weighted 1)

Transition-based parsing

Parsing as state transitions

Another way to conceptualize parsing is via transitions:

- Specify what a **starting stage** is
- Specify what a goal stage is
- Specify a transition relation on stages

Example: finite-state parsing

- A starting stage is a pair (A, xs), where $A \in I$ and xs is the input
- A goal stage is a pair (A, ε) , where $A \in F$
- $(A, x_i x_{i+1} \dots x_n) \Rightarrow (B, x_{i+1} \dots x_n) \text{ iff } (A, x_i, B) \in \Delta$

Shift-reduce parsing

CFG parsing can work in a similar way. Given a set of rules G:

- A starting stage is (ε, xs) , where xs is the input
- A goal stage is (A, ε) , where A is a nonterminal
- Transitions either read a terminal or reduce 2 nonterminals:
 - 1. SHIFT: $(\Phi, x_i x_{i+1} \dots x_n) \Rightarrow (A\Phi, x_{i+1} \dots x_n)$, where $A \rightarrow x_i \in G$
 - 2. REDUCE: $(RL\Phi, xs) \Rightarrow (A\Phi, xs)$, where $A \rightarrow LR \in G$

	Туре	Rule	Configuration
0			$(\varepsilon, Mary saw the elk)$

	Туре	Rule	Configuration
0			$(\varepsilon, Mary saw the elk)$
1	SHIFT	$DP \to Mary$	(DP, saw the elk)

	Type	Rule	Configuration
0			$(\varepsilon, Mary saw the elk)$
1	SHIFT	$DP \rightarrow Mary$	(DP, saw the elk)
2	SHIFT	$VT \rightarrow saw$	(VT DP, the elk)

	Туре	Rule	Configuration
0			$(\varepsilon, Mary saw the elk)$
1	SHIFT	$DP \rightarrow Mary$	(DP, saw the elk)
2	SHIFT	$VT \rightarrow saw$	(VT DP, the elk)
3	SHIFT	$D \rightarrow the$	(D VT DP, elk)

	Type	Rule	Configuration
0			$(\varepsilon, Mary saw the elk)$
1	SHIFT	$DP \rightarrow Mary$	(DP, saw the elk)
2	SHIFT	$VT \rightarrow saw$	(VT DP, the elk)
3	SHIFT	$D \rightarrow the$	(D VT DP, elk)
4	SHIFT	$NP \rightarrow elk$	(NP D VT DP, ε)

Туре	Rule	Configuration
		$(\varepsilon, Mary saw the elk)$
SHIFT	$DP \rightarrow Mary$	(DP, saw the elk)
SHIFT	$VT \rightarrow saw$	(VT DP, the elk)
SHIFT	$D \rightarrow the$	(D VT DP, elk)
SHIFT	$NP \rightarrow elk$	(NP D VT DP, ε)
REDUCE	$DP \rightarrow D NP$	(DP VT DP, ε)
	SHIFT SHIFT SHIFT	SHIFT $DP \rightarrow Mary$ SHIFT $VT \rightarrow saw$ SHIFT $D \rightarrow the$ SHIFT $NP \rightarrow elk$

	Type	Rule	Configuration
0			$(\varepsilon, Mary saw the elk)$
1	SHIFT	$DP \rightarrow Mary$	(DP, saw the elk)
2	SHIFT	$VT \rightarrow saw$	(VT DP, the elk)
3	SHIFT	$D \rightarrow the$	(D VT DP, elk)
4	SHIFT	$NP \rightarrow elk$	(NP D VT DP, ε)
5	REDUCE	$DP \to D \; NP$	(DP VT DP, ε)
6	REDUCE	$VP \rightarrow VT DP$	(VP DP, ε)

	Туре	Rule	Configuration
0			$(\varepsilon, Mary saw the elk)$
1	SHIFT	$DP \rightarrow Mary$	(DP, saw the elk)
2	SHIFT	$VT \rightarrow saw$	(VT DP, the elk)
3	SHIFT	$D \rightarrow the$	(D VT DP, elk)
4	SHIFT	$NP \rightarrow elk$	(NP D VT DP, ε)
5	REDUCE	$DP \to D \; NP$	(DP VT DP, ε)
6	REDUCE	$VP \rightarrow VT DP$	(VP DP, ε)
7	REDUCE	$S \rightarrow DP VP$	(S, ε)

	Туре	Rule	Configuration
0			$(\varepsilon, $ the elk saw Mary $)$

	Туре	Rule	Configuration
0			$(\varepsilon, $ the elk saw Mary $)$
1	SHIFT	$D \rightarrow the$	(D, elk saw Mary)

	Туре	Rule	Configuration
0			$(\varepsilon, $ the elk saw Mary $)$
1	SHIFT	$D \rightarrow the$	(D, elk saw Mary)
2	SHIFT	$NP \rightarrow elk$	(NP D, saw Mary)

	Туре	Rule	Configuration
0			$(\varepsilon, $ the elk saw Mary $)$
1	SHIFT	$D \rightarrow the$	(D, elk saw Mary)
2	SHIFT	$NP \rightarrow elk$	(NP D, saw Mary)
3	REDUCE	$DP \to D \; NP$	(DP, saw Mary)

	Type	Rule	Configuration
0			$(\varepsilon, $ the elk saw Mary $)$
1	SHIFT	$D \rightarrow the$	(D, elk saw Mary)
2	SHIFT	$NP \rightarrow elk$	(NP D, saw Mary)
3	REDUCE	$DP \to D \; NP$	(DP, saw Mary)
4	SHIFT	$VT \rightarrow saw$	(VT DP, Mary)

	Type	Rule	Configuration
0			$(\varepsilon, $ the elk saw Mary $)$
1	SHIFT	$D \rightarrow the$	(D, elk saw Mary)
2	SHIFT	$NP \rightarrow elk$	(NP D, saw Mary)
3	REDUCE	$DP \to D \; NP$	(DP, saw Mary)
4	SHIFT	$VT \rightarrow saw$	(VT DP, Mary)
5	SHIFT	$DP \rightarrow Mary$	(DP VT DP, ε)

	Type	Rule	Configuration
0			$(\varepsilon, $ the elk saw Mary $)$
1	SHIFT	$D \rightarrow the$	(D, elk saw Mary)
2	SHIFT	$NP \rightarrow elk$	(NP D, saw Mary)
3	REDUCE	$DP \to D \; NP$	(DP, saw Mary)
4	SHIFT	$VT \rightarrow saw$	(VT DP, Mary)
5	SHIFT	$DP \rightarrow Mary$	(DP VT DP, ε)
6	REDUCE	$VP \rightarrow VT DP$	(VP DP, ε)

	Type	Rule	Configuration
0			$(\varepsilon, $ the elk saw Mary $)$
1	SHIFT	$D \rightarrow the$	(D, elk saw Mary)
2	SHIFT	$NP \rightarrow elk$	(NPD, saw Mary)
3	REDUCE	$DP \to D \; NP$	(DP, saw Mary)
4	SHIFT	$VT \rightarrow saw$	(VT DP, Mary)
5	SHIFT	$DP \rightarrow Mary$	(DP VT DP, ε)
6	REDUCE	$VP \rightarrow VT DP$	(VP DP, ε)
7	REDUCE	$S \rightarrow DP VP$	(S,arepsilon)

	Туре	Rule	Configuration
0			$(\varepsilon, \text{ saw the elk with Mary})$

	Туре	Rule	Configuration
0			$(\varepsilon, \text{saw the elk with Mary})$
 5	 SHIFT	$ DP \to Mary $	(DP P NP D VT, ε)

	Туре	Rule	Configuration
0			$(\varepsilon, \text{ saw the elk with Mary})$
 5 6	 SHIFT REDUCE	$ \begin{array}{c}\\ DP \to Mary\\ PP \to P DP \end{array} $	 (DP P NP D VT, ε) (PP NP D VT, ε)

	Туре	Rule	Configuration
0			$(\varepsilon, \text{ saw the elk with Mary})$
 5 6 7	SHIFT REDUCE REDUCE	$DP \rightarrow Mary$ $PP \rightarrow PDP$ $NP \rightarrow NPP$	 (DP P NP D VT, ε) (PP NP D VT, ε) (NP D VT, ε)
•••	•••	•••	•••

	Туре	Rule	Configuration
0			$(\varepsilon, \text{saw the elk with Mary})$
 5 6 7	SHIFT REDUCE REDUCE	$DP \rightarrow Mary$ $PP \rightarrow PDP$ $NP \rightarrow NPP$	 (DP P NP D VT, ε) (PP NP D VT, ε) (NP D VT, ε)
•••	•••	•••	•••

	Туре	Rule	Configuration
0			$(\varepsilon, \text{saw the elk with Mary})$

	Туре	Rule	Configuration
0			$(\varepsilon, \text{saw the elk with Mary})$
 5 6 7	SHIFT REDUCE REDUCE	$DP \rightarrow Mary$ $PP \rightarrow PDP$ $NP \rightarrow NPP$	 (DP P NP D VT, ε) (PP NP D VT, ε) (NP D VT, ε)
•••	•••	•••	•••

	Type	Rule	Configuration
0			$(\varepsilon, \text{ saw the elk with Mary})$
			•••

	Туре	Rule	Configuration
0			$(\varepsilon, \text{saw the elk with Mary})$
 5 6 7	SHIFT REDUCE REDUCE	$DP \rightarrow Mary$ $PP \rightarrow PDP$ $NP \rightarrow NPP$	 (DP P NP D VT, ε) (PP NP D VT, ε) (NP D VT, ε)
•••	•••	•••	•••

	Type	Rule	Configuration
0			$(\varepsilon, \text{ saw the elk with Mary})$
3	 SHIFT	$ NP \to elk $	 (NP D VT, with Mary)

	Туре	Rule	Configuration
0			$(\varepsilon, \text{ saw the elk with Mary})$
 5 6 7	SHIFT REDUCE REDUCE	$DP \rightarrow Mary$ $PP \rightarrow PDP$ $NP \rightarrow NPP$	 (DP P NP D VT, ε) (PP NP D VT, ε) (NP D VT, ε)
	•••	•••	•••

	Type	Rule	Configuration
0			$(\varepsilon, \text{ saw the elk with Mary})$
 3 4	 SHIFT REDUCE	$\begin{array}{c} \dots \\ NP \to elk \\ DP \to D \ NP \end{array}$	 (NP D VT, with Mary) (DP VT, with Mary)

Ambiguity in shift-reduce parsing

	Туре	Rule	Configuration
0			$(\varepsilon, \text{ saw the elk with Mary})$
 5 6 7	SHIFT REDUCE REDUCE	$DP \rightarrow Mary$ $PP \rightarrow PDP$ $NP \rightarrow NPP$	 (DP P NP D VT, ε) (PP NP D VT, ε) (NP D VT, ε)
	•••	•••	•••

	Type	Rule	Configuration
0			$(\varepsilon, \text{ saw the elk with Mary})$
 3 4 5	SHIFT REDUCE REDUCE	$NP \rightarrow elk$ $DP \rightarrow D NP$ $VP \rightarrow VT DP$	 (NP D VT, with Mary) (DP VT, with Mary) (VP, with Mary)
•••	•••	•••	

Stage's, shift, and reduce

```
type Stage cat term = ([cat], [term])
shift
  :: Eq term =>
     CFG cat term -> Stage cat term -> [Stage cat term]
shift g (cs, t:ts) = [(n:cs, ts) | n:-x < - g, x==t]
reduce
  :: Eq cat =>
     CFG cat term -> Stage cat term -> [Stage cat term]
reduce g (r:l:cs, ts) = [(n:cs, ts) | n:>(l',r') <- g,
                                       l'==l, r'==r]
```

Nondeterminism in parsing

At any stage, the next course is not necessarily fully determined.

• This is how ambiguity can arise. After stage 3 in our derivation of saw the elk with Mary, do we SHIFT or REDUCE next?

This means that a single Stage in general begets a [Stage]. We need to try everything we can, to ensure we explore every path.

Trying everything

Keep taking steps till nothing changes

helper takes steps until we reach a **fixed point**:

```
*W12> s = words "Mary saw the elk with the binoculars"
*W12> parseSR eng s
[([S],[]),([S],[])]
```

parseSR is really just a recognizer. Could you enrich it to parse to LBT's, or associate parse paths with weights, costs, etc?

Top-down parsing

Shift-reduce parsing works bottom-up: we find out what categories our terminals are, and start building structure.

Bottom-up is also how CYK and naive parsing algos worked

Top-down parsers **predict** how a derivation will go:

- A starting stage is (A, xs), where $A \in N$ and xs is the input
- A goal stage is $(\varepsilon, \varepsilon)$
- Transitions either expand a non-terminal or match a terminal:
 - 1. PREDICT: $(A\Phi, x_i ... x_n) \Rightarrow (BC\Phi, x_i ... x_n)$, where $A \rightarrow BC \in G$
 - 2. MATCH: $(A\Phi, x_i x_{i+1} \dots x_n) \Rightarrow (\Phi, x_{i+1} \dots x_n)$, where $A \rightarrow x_i \in G$

	Туре	Rule	Configuration
0			(S, Mary saw the elk)

	Туре	Rule	Configuration
0			(S, Mary saw the elk)
1	PREDICT	$S \rightarrow DP VP$	(DP VP, Mary saw the elk)

	Туре	Rule	Configuration
0			(S, Mary saw the elk)
1	PREDICT	$S \rightarrow DP VP$	(DP VP, Mary saw the elk)
2	MATCH	$DP \rightarrow Mary$	(VP, saw the elk)

	Type	Rule	Configuration
0			(S, Mary saw the elk)
1	PREDICT	$S \rightarrow DP VP$	(DP VP, Mary saw the elk)
2	MATCH	$DP \rightarrow Mary$	(VP, saw the elk)
3	PREDICT	$VP \rightarrow VT DP$	(VT DP, saw the elk)

	Type	Rule	Configuration
0			(S, Mary saw the elk)
1	PREDICT	$S \rightarrow DP VP$	(DP VP, Mary saw the elk)
2	MATCH	$DP \rightarrow Mary$	(VP, saw the elk)
3	PREDICT	$VP \rightarrow VT DP$	(VT DP, saw the elk)
4	MATCH	$VT \rightarrow saw$	(DP, the elk)

	Type	Rule	Configuration
0			(S, Mary saw the elk)
1	PREDICT	$S \rightarrow DP VP$	(DP VP, Mary saw the elk)
2	MATCH	$DP \rightarrow Mary$	(VP, saw the elk)
3	PREDICT	$VP \rightarrow VT DP$	(VT DP, saw the elk)
4	MATCH	$VT \rightarrow saw$	(DP, the elk)
5	PREDICT	$DP \to D \; NP$	(D NP, the elk)

	Type	Rule	Configuration
0			(S, Mary saw the elk)
1	PREDICT	$S \rightarrow DP VP$	(DP VP, Mary saw the elk)
2	MATCH	$DP \rightarrow Mary$	(VP, saw the elk)
3	PREDICT	$VP \rightarrow VT DP$	(VT DP, saw the elk)
4	MATCH	$VT \rightarrow saw$	(DP, the elk)
5	PREDICT	$DP \to D \; NP$	(D NP, the elk)
6	MATCH	$D \rightarrow the$	(NP, elk)

	Type	Rule	Configuration
0			(S, Mary saw the elk)
1	PREDICT	$S \rightarrow DP VP$	(DP VP, Mary saw the elk)
2	MATCH	$DP \rightarrow Mary$	(VP, saw the elk)
3	PREDICT	$VP \rightarrow VT DP$	(VT DP, saw the elk)
4	MATCH	$VT \rightarrow saw$	(DP, the elk)
5	PREDICT	$DP \to D \; NP$	(D NP, the elk)
6	MATCH	$D \rightarrow the$	(NP, elk)
7	МАТСН	$NP \rightarrow elk$	$(\varepsilon, \varepsilon)$

There's something naturally incremental in top-down parsing. We build, or hypothesize, structure, immediately. In bottom-up parsing, REDUCE steps often depend on further-right SHIFT/REDUCE steps.

Туре	Rule	Configuration
0		(S, the elk saw Mary)

	Type	Rule	Configuration
0			(S, the elk saw Mary)
1	PREDICT	$S \rightarrow DP VP$	(DP VP, the elk saw Mary)

	Type	Rule	Configuration
0			(S, the elk saw Mary)
1	PREDICT	$S \rightarrow DP VP$	(DP VP, the elk saw Mary)
2	PREDICT	$DP \to D \; NP$	(D NP VP, the elk saw Mary)

	Type	Rule	Configuration
0			(S, the elk saw Mary)
1	PREDICT	$S \rightarrow DP VP$	(DP VP, the elk saw Mary)
2	PREDICT	$DP \to D \; NP$	(D NP VP, the elk saw Mary)
3	MATCH	$D \rightarrow the$	(NP VP, elk saw Mary)

	Type	Rule	Configuration
0			(S, the elk saw Mary)
1	PREDICT	$S \rightarrow DP VP$	(DP VP, the elk saw Mary)
2	PREDICT	$DP \to D \; NP$	(D NP VP, the elk saw Mary)
3	MATCH	$D \rightarrow the$	(NP VP, elk saw Mary)
4	MATCH	$NP \rightarrow elk$	(VP, saw Mary)

	Type	Rule	Configuration
0			(S, the elk saw Mary)
1	PREDICT	$S \rightarrow DP VP$	(DP VP, the elk saw Mary)
2	PREDICT	$DP \to D \; NP$	(D NP VP, the elk saw Mary)
3	MATCH	$D \rightarrow the$	(NP VP, elk saw Mary)
4	MATCH	$NP \rightarrow elk$	(VP, saw Mary)
5	PREDICT	$VP \rightarrow VT DP$	(VT DP, saw Mary)

	Type	Rule	Configuration
0			(S, the elk saw Mary)
1	PREDICT	$S \rightarrow DP VP$	(DP VP, the elk saw Mary)
2	PREDICT	$DP \to D \; NP$	(D NP VP, the elk saw Mary)
3	MATCH	$D \rightarrow the$	(NP VP, elk saw Mary)
4	MATCH	$NP \rightarrow elk$	(VP, saw Mary)
5	PREDICT	$VP \rightarrow VT DP$	(VT DP, saw Mary)
6	MATCH	$VT \rightarrow saw$	(DP, Mary)

	Type	Rule	Configuration
0			(S, the elk saw Mary)
1	PREDICT	$S \rightarrow DP VP$	(DP VP, the elk saw Mary)
2	PREDICT	$DP \to D \; NP$	(D NP VP, the elk saw Mary)
3	MATCH	$D \rightarrow the$	(NP VP, elk saw Mary)
4	MATCH	$NP \rightarrow elk$	(VP, saw Mary)
5	PREDICT	$VP \rightarrow VT DP$	(VT DP, saw Mary)
6	MATCH	$VT \rightarrow saw$	(DP, Mary)
7	MATCH	$DP \rightarrow Mary$	$(\varepsilon, \varepsilon)$

	Туре	Rule	Configuration
6	MATCH	$D \rightarrow the$	(NP, elk)

	Туре	Rule	Configuration
6	MATCH	$D \rightarrow the$	(NP, elk)
7	PREDICT	$NP \rightarrow NP PP$	(NP PP, elk)

	Туре	Rule	Configuration
6	MATCH	$D \rightarrow the$	(NP, elk)
7	PREDICT	$NP \rightarrow NP PP$	(NP PP, elk)
8	PREDICT	$NP \rightarrow NP PP$	(NP PP PP, elk)

	Туре	Rule	Configuration
6	MATCH	$D \rightarrow the$	(NP, elk)
7	PREDICT	$NP \rightarrow NP PP$	(NP PP, elk)
8	PREDICT	$NP \rightarrow NP PP$	(NP PP PP, elk)
9	PREDICT	$NP \rightarrow NP PP$	(NP PP PP PP, elk)

If we keep PREDICT-ing, the parsing algorithm never terminates. Which rules are problematic?

	Туре	Rule	Configuration
6	MATCH	$D \rightarrow the$	(NP, elk)
7	PREDICT	$NP \rightarrow NP PP$	(NP PP, elk)
8	PREDICT	$NP \rightarrow NP PP$	(NP PP PP, elk)
9	PREDICT	$NP \rightarrow NP PP$	(NP PP PP PP, elk)

If we keep PREDICT-ing, the parsing algorithm never terminates. Which rules are problematic? **Left-recursive** rules, $A \rightarrow AB$.

Non-termination is **bad**. How might we deal with it here?

	Туре	Rule	Configuration
6	MATCH	$D \rightarrow the$	(NP, elk)
7	PREDICT	$NP \rightarrow NP PP$	(NP PP, elk)
8	PREDICT	$NP \rightarrow NP PP$	(NP PP PP, elk)
9	PREDICT	$NP \rightarrow NP PP$	(NP PP PP PP, elk)

If we keep PREDICT-ing, the parsing algorithm never terminates. Which rules are problematic? **Left-recursive** rules, $A \rightarrow AB$.

Non-termination is **bad**. How might we deal with it here?

Look-ahead: curtail the expansions based on length of the input

Earley parsers

Another example of a parser that works top-down, but which does not suffer from non-termination in left-recursive grammars is an **Earley** parser.

We won't discuss Earley parsers in depth in this course, but the way that they avoid non-termination is easy enough to understand:

- Earley parsers have an agenda consisting of rules to try next
- A rule like NP \rightarrow NP PP can be added to the agenda
- But adding this rule twice is no different from adding it once: it's already on the agenda!
- Once an agenda is stable (everything new that can be added has been), the parser gets to work trying its items

Transition-based parsing

In effect, transition-based parsing constructs something known as a **pushdown automaton** (PDA), in which a pushdown stack of nonterminals functions as an auxiliary memory source.

A pushdown stack is a special kind of memory in which we can only **pop** the top element off the stack, **push** a new element onto the stack, or do composite actions built out of those primitives.

CFG parsing is akin to finite-state parsing, with (pushdown) memory!