云南大学 2019 年春季学期软件学院 2018 级

《线性代数》期末考试(闭卷)试卷 A

满分 100 分 考试时间: 120 分钟 任课教师: 赵明雄, 张一凡, 胡盛, 黄光能, 郁湧

题号	_	=	Ξ	四	总分
得分					

得分

一、选择题(本大题共 10 小题,每小题 2 分,共 20 分)

答案写在下列表格内

1	2	3	4	5	6	7	8	9	10

- A. 8*M* B. 2 *M* C. *M* D. 6 *M*

- 2. 若 *A* , *B* 都是方阵,且|*A*|=2,|*B*|= -1,则|A⁻¹B|=()
 - A. -2
- B. 2 C. 1/2
- D. -1/2
- 3. 已知可逆方阵 $A^{-1} = \begin{pmatrix} -3 & 7 \\ 1 & -2 \end{pmatrix}$,则 A = ()
 - A. $\begin{pmatrix} -2 & 7 \\ 1 & -3 \end{pmatrix}$ B. $\begin{pmatrix} 2 & 7 \\ 1 & 3 \end{pmatrix}$ C. $\begin{pmatrix} 3 & -7 \\ -1 & 2 \end{pmatrix}$ D. $\begin{pmatrix} -3 & 7 \\ 1 & -2 \end{pmatrix}$

- 4. 如果 n 阶方阵 A 的行列式|A|=0,则下列正确的是()
 - A. A=O
- B. r(A) > 0 C. r(A) < n D. r(A) = 0
- 5. 设 A, B 均为 n 阶矩阵, $A \neq O$, 且 AB = O,则下列结论必成立的是()

A. BA = O B. B = O C. $(A+B)(A-B)=A^2-B^2$ D. $(A-B)^2=A^2-BA+B^2$

- 6. 下列各向量组线性相关的是()
 - A. $\alpha_1=(1, 0, 0), \alpha_2=(0, 1, 0), \alpha_3=(0, 0, 1)$

D	$\alpha = 0$	1	2	2)	_	· _ (1	5	6)	$\alpha_3 = 0$	()	1	()	
D.	$\alpha_1 = 0$	Ι,	Ζ,	3)	$, \alpha$	2 = 0	4,	Э,	O_{j}	$\alpha_3 = 0$	Ζ,	Ι,	U	,

C.
$$\alpha_1=(1, 2, 3), \alpha_2=(2, 4, 5)$$

D.
$$\alpha_1$$
=(1, 2, 2), α_2 =(2, 1, 2), α_3 =(2, 2, 1)

7. 设 AX=b 是一非齐次线性方程组, η_1 , η_2 是其任意 2 个解, 则下列结论错 误的是()

A.
$$n_1+n_2$$
 是 $AX=O$ 的一个解

A.
$$\eta_1 + \eta_2$$
 是 $AX = O$ 的一个解 B. $\frac{1}{2}\eta_1 + \frac{1}{2}\eta_2$ 是 $AX = b$ 的一个解

C.
$$\eta_1 - \eta_2$$
 是 $AX=O$ 的一个解

C.
$$\eta_1 - \eta_2$$
 是 $AX=O$ 的一个解 D. $2\eta_1 - \eta_2$ 是 $AX=b$ 的一个解

8. 设
$$A$$
为3阶方阵, A 的特征值为1, 2, 3,则3 A 的特征值为()

9. 设
$$A \in n$$
 阶方阵, 且 $|A|=2$, $A*$ 是 A 的伴随矩阵, 则 $|A*|=()$

A.
$$\frac{1}{2}$$

B.
$$2^n$$

A.
$$\frac{1}{2}$$
 B. 2^n C. $\frac{1}{2^{n-1}}$ D. 2^{n-1}

D.
$$2^{n-1}$$

10. 设 A 是 m×n 矩阵, B 是 s×n 矩阵, C 是 m×s 矩阵, 则下列运算有意义 的是()

$$A.$$
 AB

$$\mathbf{C}.$$
 AB^T

B.
$$BC$$
 C. AB^T D. AC^T

得分

二、填空题(本大题共5小题,每小题2分,共10分)

1.设行列式
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$
=7, $\begin{vmatrix} a_{13} & a_{11} \\ a_{23} & a_{21} \end{vmatrix}$ =2,则行列式 $\begin{vmatrix} a_{11} & a_{12} + a_{13} \\ a_{21} & a_{22} + a_{23} \end{vmatrix}$ =5.

2. 已知 $m \times n$ 矩阵 **A** 的列向量组线性无关,则秩 $R(A^T) = \underline{n}$

3. 设 A 是 5×6 矩阵,A 的秩 R(A) = 2,则齐次线性方程组 Ax = 0 的基础解系中 4 个线性无关的解向量.

4. 设 A、B 为 n 阶方阵(n>3), 且秩 R(A)=n, 秩 R(B)=3, 则秩 R(AB)=_3_.

5.设矩阵
$$A = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$
,则 $A^{-1} = \underline{\qquad} 1/4 \quad 0 \quad 0 \quad 0 \quad 1 \quad -2 \quad 0 \quad 0$

1____.

得分

三、计算题(本大题共4小题,每小题各10分,共40分)

1. 已知行列式
$$D = \begin{vmatrix} 3 & 1 & -1 & 2 \\ -5 & 1 & 2 & -4 \\ 2 & 0 & 1 & -1 \\ 1 & -5 & 3 & -3 \end{vmatrix}$$
, D 的 (i,j) 元的余子式为 M_{ij} ,

计算 M_{31} - $3M_{32}$ - $2M_{33}$ - $2M_{34}$,写出求解步骤.

- 2. 已知矩阵 $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 & 3 \\ -1 & -2 & 4 \\ 0 & 5 & 1 \end{pmatrix}$, 求解
 - (1) 10A(2 分);
 - (2) A^T(2 分);
 - (3) A^TB-2A(6 分)

3. 己知向量组 A:
$$a_1 = \begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix}$$
, $a_2 = \begin{pmatrix} 1 \\ -5 \\ -7 \end{pmatrix}$, $a_3 = \begin{pmatrix} -1 \\ 3 \\ 3 \end{pmatrix}$, $a_4 = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$ 和未知向量 $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$,

满足 Ax=0, 其中 A 为矩阵(a₁,a₂,a₃,a₄), 求解:

(1)向量组 A 的秩.(4分) (2)Ax=0 的基础解系.(4分) (3)Ax=0 的通解.(2分)

4. 已知矩阵 A=
$$\begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$
, 求解:

- (1)矩阵(A-λE). (2 分) (2)矩阵 A 的特征值.(4 分)
- (3)矩阵 A 的特征向量.(4分)

得分

四、证明题(本大题共3小题,每小题10分,共30分)

1.设 A 为 n 阶矩阵,满足 A² =10E,证明 A-2E 可逆,并求(A-2E)-1。

2. 设 λ_1 和 λ_2 是矩阵 A 的两个不同的特征值,其对应的特征向量依次为 p_1 和 p_2 ,证明 p_1 - p_2 不是 A 的特征向量。

3. 证明:向量组 α_1 , α_2 , α_3 线性无关的<u>充分必要</u>条件是向量组 α_1 + α_2 , α_2 + α_3 , α_3 + α_1 线性无关。