LOCAL DIFFERENCE TERMS

For the most part we use standard notation, definitions, and results of universal algebra, such as those found in [Ber12]. However, we make a few exceptions for notational simplicity. For example, if $\mathbf{A} = \langle A, \ldots \rangle$ is an algebra with elements $a, b \in A$, then we use $\theta(a, b)$ to denote the congruence of \mathbf{A} generated by a and b.

Let $\mathbf{A} = \langle A, \ldots \rangle$ be an algebra, fix $a, b \in A$ and $i \in \{0, 1\}$. A local difference term for (a, b, i) is a ternary term p satisfying the following:

(0.1) if
$$i = 0$$
, then $a [Cg(a, b), Cg(a, b)] p(a, b, b)$;
if $i = 1$, then $p(a, a, b) = b$.

If p satisfies (0.1) for all triples in some subset $S \subseteq A \times A \times \{0,1\}$, then we call p a local difference term for S.

Let $S = A \times A \times \{0,1\}$ and suppose that every pair $((a_0, b_0, \chi_0), (a_1, b_1, \chi_1))$ in S^2 has a local difference term. That is, for each pair $((a_0, b_0, \chi_0), (a_1, b_1, \chi_1))$, there exists p such that for each $i \in \{0,1\}$ we have

(0.2)
$$a_i [Cg(a_i, b_i), Cg(a_i, b_i)] p(a_i, b_i, b_i), \text{ if } \chi_i = 0, \text{ and}$$

(0.3)
$$p(a_i, a_i, b_i) = b_i$$
, if $\chi_i = 1$.

Under these hypothesis we will prove that every subset $S \subseteq S$ has a local difference term. That is, there is a single term p that works (i.e., satisfies (0.2) and (0.3)) for all $(a_i, b_i, \chi_i) \in S$. The statement and proof of this new result follows.

Theorem (cf. [VW14, Theorem 2.2]). Let \mathcal{V} be an idempotent variety and $\mathbf{A} \in \mathcal{V}$. Define $\mathcal{S} = A \times A \times \{0,1\}$ and suppose that every pair $((a_0,b_0,\chi_0),(a_1,b_1,\chi_1)) \in \mathcal{S}^2$ has a local difference term. Then every subset $S \subseteq \mathcal{S}$, has a local difference term.

Proof. The proof is by induction on the size of S. In the base case, |S| = 2, the claim holds by assumption. Fix n > 2 and assume that every subset of S of size $2 \le k \le n$ has a local difference term. Let $S = \{(a_0, b_0, \chi_0), (a_1, b_1, \chi_1), \dots, (a_n, b_n, \chi_n)\} \subseteq S$, so that |S| = n + 1. We prove S has a local difference term.

Since $|S| \ge 3$ and $\chi_i \in \{0,1\}$ for all i, there must exist indices $i \ne j$ such that $\chi_i = \chi_j$. Assume without loss of generality that one of these indices is j = 0. Define the set $S' = S \setminus \{(a_0, b_0, \chi_0)\}$. Since |S'| < |S|, the set S' has a local difference term p. We split the remainder of the proof into two cases. In the first case $\chi_0 = 0$ and in the second $\chi_0 = 1$.

Date: January 8, 2017.

Case 1: $\chi_0 = 0$. Without loss of generality, suppose that $\chi_1 = \cdots = \chi_k = 1$, and $\chi_{k+1} = \cdots = \chi_n = 0$. Define $T = \{(a_0, p(a_0, b_0, b_0), 0), (a_1, b_1, 1), (a_2, b_2, 1), \dots, (a_k, b_k, 1)\}$, and note that |T| < |S|. Let t be a local difference term for T. Define

$$d(x, y, z) = t(x, p(x, y, y), p(x, y, z)).$$

Since $\chi_0 = 0$, we need to show $(a_0, d(a_0, b_0, b_0))$ belongs to $[Cg(a_0, b_0), Cg(a_0, b_0)]$. We have

$$d(a_0, b_0, b_0) = t(a_0, p(a_0, b_0, b_0), p(a_0, b_0, b_0)) [\tau, \tau] a_0,$$

where we have used τ to denote $Cg(a_0, p(a_0, b_0, b_0))$. Note that $(a_0, p(a_0, b_0, b_0)) = (p(a_0, a_0, a_0), p(a_0, b_0, b_0))$ belongs to $Cg(a_0, b_0)$, so $\tau \leq Cg(a_0, b_0)$. Therefore, by monotonicity of the commutator, $[\tau, \tau] \leq [Cg(a_0, b_0), Cg(a_0, b_0)]$. It follows from this and (0.4) that

$$d(a_0, b_0, b_0) [Cg(a_0, b_0), Cg(a_0, b_0)] a_0,$$

as desired.

For the indices $1 \le i \le k$ we have $\chi_i = 1$, so we wish to prove $d(a_i, a_i, b_i) = b_i$ for such i. Observe,

$$d(a_i, a_i, b_i) = t(a_i, p(a_i, a_i, a_i), p(a_i, a_i, b_i))$$

$$(0.6) = t(a_i, a_i, b_i)$$

$$(0.7) = b_i.$$

Equation (0.5) holds by definition of d, (0.6) because p is an idempotent local difference term for S', and (0.7) because t is a local difference term for T.

The remaining triples in our original set S have indices satisfying $k < j \le n$ and $\chi_j = 0$. Thus, for these triples we want $d(a_i, b_i, b_j)$ [Cg (a_i, b_i) , Cg (a_i, b_i)] a_i . By definition,

(0.8)
$$d(a_j, b_j, b_j) = t(a_j, p(a_j, b_j, b_j), p(a_j, b_j, b_j)).$$

Since p is a local difference term for S', we have

$$(p(a_j, b_j, b_j), a_j) \in [\operatorname{Cg}(a_j, b_j), \operatorname{Cg}(a_j, b_j)].$$

This and (0.8) imply that $(d(a_j, b_j, b_j), t(a_j, a_j, a_j))$ belongs to $[Cg(a_j, b_j), Cg(a_j, b_j)]$. Finally, by idempotence of t we have $d(a_j, b_j, b_j)$ $[Cg(a_j, b_j), Cg(a_j, b_j)]$ a_j , as desired.

Case 2: $\chi_0 = 1$. Without loss of generality, suppose $\chi_1 = \chi_2 = \cdots = \chi_k = 0$, and $\chi_{k+1} = \chi_{k+2} = \cdots = \chi_n = 1$. Define T to be the set

$$\{(p(a_0, a_0, b_0), b_0, 1), (a_1, b_1, 0), (a_2, b_2, 0), \dots, (a_k, b_k, 0)\},\$$

and note that |T| < |S|. Let t be a local difference term for T and define d(x, y, z) = t(p(x, y, z), p(y, y, z), z). Since $\chi_0 = 1$, we want $d(a_0, a_0, b_0) = b_0$. By the definition of d,

$$d(a_0, a_0, b_0) = t(p(a_0, a_0, b_0), p(a_0, a_0, b_0), b_0) = b_0.$$

The last equality holds since t is a local difference term for T, thus, for $(p(a_0, a_0, b_0), b_0, 1)$. If $1 \le i \le k$, then $\chi_i = 0$, so for these indices we want $d(a_i, b_i, b_i)$ $[\operatorname{Cg}(a_i, b_i), \operatorname{Cg}(a_i, b_i)]$ a_i . Again, starting from the definition of d and using idempotence of p, we have

(0.9)
$$d(a_i, b_i, b_i) = t(p(a_i, b_i, b_i), p(b_i, b_i, b_i), b_i)$$
$$= t(p(a_i, b_i, b_i), b_i, b_i).$$

Next, since p is a local difference term for S', we have

$$(0.10) t(p(a_i, b_i, b_i), b_i, b_i) [\theta(a_i, b_i), \theta(a_i, b_i)] t(a_i, b_i, b_i).$$

Finally, since t is a local difference term for T, hence for (a_i, b_i, b_i) , we have $t(a_i, b_i, b_i)$ [Cg (a_i, b_i) , Cg (a_i, b_i)] a_i . Combining this with (0.9) and (0.10) yields

$$d(a_i, b_i, b_i)$$
 [Cg (a_i, b_i) , Cg (a_i, b_i)] a_i ,

as desired.

The remaining elements of our original set S have indices j satisfying $k < j \le n$ and $\chi_j = 1$. For these we want $d(a_j, a_j, b_j) = b_j$. Since p is a local difference term for S', we have $p(a_j, a_j, b_j) = b_j$, and this along with idempotence of t yields

$$d(a_j, a_j, b_j) = t(p(a_j, a_j, b_j), p(a_j, a_j, b_j), b_j)$$

= $t(b_i, b_i, b_i) = b_i$,

as desired. \Box

Corollary. A finite idempotent algebra **A** has a difference term operation if and only if every pair $((a, b, i), (a', b', i')) \in (A \times A \times \{0, 1\})^2$ has a local difference term.

Proof. One direction is clear, since a difference term operation for **A** is obviously a local difference term for the whole set $A \times A \times \{0,1\}$. For the converse, suppose each pair in $(A \times A \times \{0,1\})^2$ has a local difference term. Then, by Theorem , there is a single local difference term for the whole set $A \times A \times \{0,1\}$, and this is a difference term operation for **A**. Indeed, if d is a local difference term for $A \times A \times \{0,1\}$, then for all $a,b \in A$, we have $a [\operatorname{Cg}(a,b), \operatorname{Cg}(a,b)] d(a,b,b)$, since d is a local difference term for (a,b,0), and we have d(a,a,b) = b, since d is also a local difference term for (a,b,1).

Corollary. If \mathcal{V} is a variety generated by a finite idempotent algebra, then there is a polynomial-time algorithm for deciding whether or not \mathcal{V} has a difference term.

Proof. Let **A** be a finite idempotent algebra and let $\mathcal{V} = \mathbb{V}(\mathbf{A})$. We describe a polynomial-time algorithm for deciding whether the hypothesis of Corollary holds for **A**, thereby proving that we can decide in polynomial-time whether there is a difference term operation for **A**. We will then complete the proof by explaining why **A** has a difference term operation iff the variety it generates has a difference term.

Fix a pair ((a, b, i), (a', b', i')) in $(A \times A \times \{0, 1\})^2$. If i = i' = 0, then the first projection is a local difference term. If i = i' = 1, then the third projection is a local difference term. The two remaining cases to consider are (1) i = 0 and i' = 1, and (2) i = 1 and i' = 0. Since these are completely symmetric, we only handle the first case. Assume the given pair of triples is ((a, b, 0), (a', b', 1)). By definition, a term t is local difference term for this pair iff

$$a \left[\operatorname{Cg}(a, b), \operatorname{Cg}(a, b) \right] t^{\mathbf{A}}(a, b, b) \text{ and } t^{\mathbf{A}}(a', a', b') = b'.$$

We can rewrite this condition more compactly by considering $t^{\mathbf{A}\times\mathbf{A}}((a,a'),(b,a'),(b,b')) = (t^{\mathbf{A}}(a,b,b),t^{\mathbf{A}}(a',a',b'))$. Clearly t is a local difference term for ((a,b,0),(a',b',1)) iff

$$t^{\mathbf{A} \times \mathbf{A}}((a, a'), (b, a'), (b, b')) \in a/\delta \times \{b'\},\$$

where $\delta = [\text{Cg}(a, b), \text{Cg}(a, b)]$ and a/δ denotes the δ -class containing a. (Observe that $a/\delta \times \{b'\}$ is a subalgebra of $\mathbf{A} \times \mathbf{A}$ by idempotence.) It follows that the pair ((a, b, 0), (a', b', 1)) has a local difference term iff the subuniverse of $\mathbf{A} \times \mathbf{A}$ generated by $\{(a, a'), (b, a'), (b, b')\}$ intersects nontrivially with the subuniverse $a/\delta \times \{b'\}$.

Thus, the algorithm takes as input **A** and, for each triple ((a, a'), (b, a'), (b, b')) in $(A \times A)^3$, computes $\delta = [\operatorname{Cg}(a, b), \operatorname{Cg}(a, b)]$, computes the subalgebra **S** of **A** × **A** generated by $\{(a, a'), (b, a'), (b, b')\}$, and then tests whether $S \cap (a/\delta \times \{b'\})$ is empty. If we find an empty intersection at any point, then the algorithm returns the answer "no difference term operation." Otherwise, **A** has a difference term operation.

Finally, we observe that if \mathbf{A} has a difference term operation, then the variety it generates has a difference term.

TODO: justify the last sentence of the last proof.

References

[Ber12] Clifford Bergman. *Universal algebra*, volume 301 of *Pure and Applied Mathematics (Boca Raton)*. CRC Press, Boca Raton, FL, 2012. Fundamentals and selected topics.

[VW14] M. Valeriote and R. Willard. Idempotent n-permutable varieties. Bull. Lond. Math. Soc., 46(4):870–880, 2014. URL: http://dx.doi.org/10.1112/blms/bdu044, doi:10.1112/blms/bdu044.

University of Hawaii

 $E ext{-}mail\ address:$ williamdemeo@gmail.com $E ext{-}mail\ address:$ ralph@math.hawaii.edu