Supplemental Information for NASA/TM-2011-216470

Generalized Fluid System Simulation Program, Version 5.0—Educational

A.K. Majumdar Marshall Space Flight Center, Huntsville, Alabama

APPENDIX D—INPUT AND OUTPUT DATA FILES FROM EXAMPLE 1
APPENDIX E—INPUT AND OUTPUT DATA FILES FROM EXAMPLE 2
APPENDIX F—INPUT AND OUTPUT DATA FILES FROM EXAMPLE 3
APPENDIX G—INPUT AND OUTPUT DATA FILES FROM EXAMPLE 4
APPENDIX H—INPUT AND OUTPUT DATA FILES FROM EXAMPLE 5
APPENDIX I—INPUT AND OUTPUT DATA FILES FROM EXAMPLE 6
APPENDIX J—INPUT AND OUTPUT DATA FILES FROM EXAMPLE 7
APPENDIX K—INPUT AND OUTPUT DATA FILES FROM EXAMPLE 8
APPENDIX L—INPUT AND OUTPUT DATA FILES FROM EXAMPLE 9
APPENDIX M—INPUT AND OUTPUT DATA FILES FROM EXAMPLE 10
APPENDIX N—INPUT AND OUTPUT DATA FILES FROM EXAMPLE 11
APPENDIX O—INPUT AND OUTPUT DATA FILES FROM EXAMPLE 12
APPENDIX P—LIST OF PUBLICATIONS WHERE GFSSP HAS BEEN USED

APPENDIX D—INPUT AND OUTPUT DATA FILES FROM EXAMPLE 1

Simulation of a Flow System Consisting of a Pump, Valve, and Pipe Line

Contents	Page
Example 1 Input File	2
Example 2 Output File	3

```
GFSSP VERSION
 503
GFSSP INSTALLATION PATH
C:\Program Files\GFSSP\
ANALYST
ALOK MAJUMDAR
INPUT DATA FILE NAME
C:\Program Files\GFSSP\Examples\Ex1\Ex1.dat
OUTPUT FILE NAME
Ex1.out
TITLE
Simulation of a Flow System Consisting of a Pump, Valve and Pipe Line
USETUP
F
DENCON
         GRAVITY
                   ENERGY
                               MIXTURE
                                             THRUST
                                                       STEADY
                                                                  TRANSV
                                                                             SAVER
F
         Τ
                   Т
                                                       Т
                                                                            ROTATION
HEX
         HCOEF
                    REACTING
                                INERTIA
                                             CONDX
                                                       ADDPROP
                                                                  PRINTI
F
         F
                   F
                                F
                                                       F
                                                                  Τ
BUOYANCY HRATE
                                             MOVBND
                   INVAL
                               MSORCE
                                                       TPA
                                                                  VARGEO
                                                                            TVM
                                F
                                             F
                                                       F
         Τ
                   F
                   PRNTADD
                                                       CONJUG
SHEAR
         PRNTIN
                               OPVALVE
                                             TRANSQ
                                                                  RADIAT
                                                                            WINPLOT
F
         Т
                   Τ
                                F
                                             F
                                                       F
                                                                  F
                                                       WINFILE
         INSUC
                   VARROT
                               CYCLIC
                                             CHKVALS
                                                                  DALTON
PRESS
F
         F
                   F
                                F
                                             F
                                                       Τ
                                                                  F
NORMAL
         SIMUL
                   SECONDL
                               NRSOLVT
F
         Т
                   Τ
                               F
NNODES
         NINT
                   NBR
                               NF
4
         2
                   3
                               1
         RELAXD
                   RELAXH
                               CC
                                             NITER
1
         0.5
                   1
                               0.0001
                                             500
NFLUID(I), I = 1, NF
11
NODE
       INDEX DESCRIPTION
               "Node 1"
1
       2
               "Node 2"
 2
       1
 3
               "Node 3"
               "Node 4"
       2
4
NODE
       PRES (PSI) TEMP(DEGF)
                                 MASS SOURC
                                              HEAT SOURC
                                                           THRST AREA
                                                                         CONCENTRATION
       14.7
                    60
                                 0
1
                                              0
                                                            0
 2
       14.7
                    60
                                 0
                                              0
                                                            0
 3
       14.7
                    60
                                 0
                                              0
                                                            0
                                 0
 4
       14.7
                    60
                                              0
                                                            0
INODE
       NUMBR NAMEBR
              12 23
2
       2
 3
               23
                   34
BRANCH
         UPNODE
                   DNNODE
                              OPTION
                                        DESCRIPTION
12
         1
                   2
                             14
                                        "Pump 12"
 23
         2
                   3
                              13
                                        "Valve 23"
                                        "Pipe 34"
 34
         3
                   4
                              1
BRANCH
                      PUMP CONST1
                                    PUMP CONST2 PUMP CONST3
                                                                 AREA
         OPTION -14
12
                      30888
                                    0
                                                  -0.0008067
                                                                 201.06
         OPTION -13
                                             AREA
BRANCH
                      DIA
                              K1
                                    K2
                             1000
23
                      6
                                      0.1
                                           28.274
                                     EPSD
BRANCH
         OPTION -1
                      LENGTH
                                DIA
                                                  ANGLE
                                                           AREA
34
                      18000
                                6
                                        0.005
                                                  95.74
                                                           28.274
```

G F S S P (Version 5.0)

Generalized Fluid System Simulation Program September, 2006
Developed by NASA/Marshall Space Flight Center

Copyright © by Marshall Space Flight Center

A generalized computer program to calculate flow rates, pressures, temperatures, and concentrations in a flow network.

TITLE :Simulation of a Flow System Consisting of a Pump, Valve and Pipe Line ANALYST : ALOK MAJUMDAR FILEIN :C:\Program Files\GFSSP\Examples\Ex1\Ex1.dat FILEOUT :Ex1.out LOGICAL VARIABLES DENCON = F GRAVITY = T ENERGY = TMIXTURE = FTHRUST = FSTEADY = T TRANSV = F SAVER = F HEX = F = F HCOEF REACTING = F INERTIA = FCONDX = FTWOD = F PRINTI = T ROTATION = F BUOYANCY = F HRATE = TINVAL = F MSORCE = F MOVBND = F = F TPA VARGEO = F TVM = F = F SHEAR PRNTIN = T PRNTADD = T ADDPROP = F PRESS = F INSUC = F VARROT = F NORMAL = F SECONDL = TCONJUG = F NRSOLVT = F NNODES = 4NINT = 3 NBR NF = 1 NVAR = 5 = 2 NHREF

FLUIDS: H2O

BOUNDARY NODES

INPUT S	PECIFICATIONS	FOR INTERNAL	NODES						
NODE	AREA	MASS	HEAT						
2	(IN^2) 0.0000E+00	(LBM/S) 0.0000E+00	(BTU/S) 0.0000E-						
3	0.0000E+00	0.0000E+00	0.0000E-						
BRANCH		DNNODE OPT		100					
12		2 14							
23	2	3 13							
34		4 1							
BRANCH	OPTION -14:		•	CONST2		MP CONST3	AREA		
12 BRANCH	0.309E+05 OPTION -13:	0.000E+00		307E-03	0.	201E+03			
23	0.600E+01	DIA, K1, K2 0.100E+04		00E+00	0	283E+02			
BRANCH		LENGTH, DIA				2036102			
34	0.180E+05	0.600E+01		00E-02		957E+02	0.283E+0	12	
	GUESS FOR IN								
NODE	P(PSI)	TF(F)	Z(COMP)	RHO			LITY		
2	0.1470E+02	0.6000E+02	0.7616E-		BM/FT^ 6237E+		000E+00		
3	0.1470E+02 0.1470E+02		0.7616E		6237E+		000E+00		
-	********								
TRIAL S	OLUTION								
BRANCH	, - ,		LBM/SEC)						
12	0.0000	0.0100							
23 34	0.0000	0.0100 0.0100							
34	0.0000	0.0100							
SOLUTIO	N								
INTERNA	L NODES								
NODE	P(PSI)	TF(F)	Z		RHO		EM(LBM)	QUALITY	
0	0.0000=.00	0 60007.00	0 110	CT 01		/FT^3)	0.00007.00	0.0000=.0	2.0
2 3	0.2290E+03 0.2288E+03	0.6003E+02 0.6003E+02	0.1186			41E+02 41E+02	0.0000E+00 0.0000E+00	0.0000E+0	
J	0.2200E+03	0.0003E+02	0.110.)E-01	0.02	416702	0.0000E+00	0.00005+0	00
NODE	Н	ENTROPY	EMU		COND		CP	GAMA	
	BTU/LB	BTU/LB-R	LBM/F7	Γ-SEC	BTU/	FT-S-R	BTU/LB-R		
2	0.2869E+02	0.5542E-01				23E-04	0.1000E+01	0.1003E+01	
3	0.2869E+02	0.5542E-01	0.7542	2E-03	0.95	23E-04	0.1000E+01	0.1003E+01	
BRANCHE	.s								
	KFACTOR	DELP	FLOW RATE	VELOCIT	'Y RI	EYN. NO.	MACH NO.	ENTROPY GEN.	LOST WORK
	2/(LBM-FT)^2)		(LBM/SEC)					BTU/(R-SEC)	
12		-0.214E+03						0.000E+00	0.000E+00
23	0.764E-03							0.210E-03	0.848E+02
34	0.591E+00	0.214E+03	U.191E+03	U.156E+	-02 0	.644E+06	0.130E-01	0.162E+00	0.657E+05
	**** TOTAL F	ENTROPY GENERA	ATION = 0.1	163E+00 F	BTU/(R	-SEC) ***	***		
					, (10	/			

Terms Extract Challention 0:1051/00 bio/(n che)

**** TOTAL WORK LOST = 0.120E+03 HP *****

SOLUTION SATISFIED CONVERGENCE CRITERION OF 0.100E-03 IN $\,$ 5 ITERATIONS TAU = 100000000.000000 $\,$ ISTEP = 1

TIME OF ANALYSIS WAS 1.00144000000000E-002 SECS

APPENDIX E—INPUT AND OUTPUT DATA FILES FROM EXAMPLE 2

Simulation of a Water Distribution Network

Contents	Page
Example 2 Input File	6
Example 2 Output File	8

```
GFSSP VERSION
  503
GFSSP INSTALLATION PATH
C:\Program Files\GFSSP\
ANALYST
Alok Majumdar
INPUT DATA FILE NAME
C:\Program Files\GFSSP\Examples\Ex2\Ex2.dat
OUTPUT FILE NAME
Ex2.out
TITLE
Simulation of a water distribution network
USETUP
F
DENCON
             GRAVITY
                        ENERGY
                                     MIXTURE
                                                 THRUST
                                                             STEADY
                                                                          TRANSV
                                                                                       SAVER
Τ
                        F
                                     F
                                                 F
                                                             Τ
                                                                          F
                                                                                       ROTATION
HEX
             HCOEF
                        REACTING
                                     INERTIA
                                                 CONDX
                                                             ADDPROP
                                                                          PRINTI
F
             F
                        F
                                                 F
                                                             F
                                                                                       F
                                                                          Т
BUOYANCY
                        INVAL
                                                 MOVBND
                                                                          VARGEO
             HRATE
                                     MSORCE
                                                             TPA
                                                                                       TVM
                                     F
                                                 F
                                                                          F
                        F
SHEAR
             PRNTIN
                        PRNTADD
                                                             CONJUG
                                                                                       WINPLOT
                                     OPVALVE
                                                 TRANSQ
                                                                          RADIAT
F
                        Τ
                                     F
                                                 F
                                                             F
                                                                          F
                                                                          DALTON
PRESS
             INSUC
                        VARROT
                                     CYCLIC
                                                 CHKVALS
                                                             WINFILE
F
                        F
                                     F
                                                 F
                                                             Τ
                                                                          F
NORMAL
            SIMUL
                        SECONDL
                                     NRSOLVT
F
            Τ
                        Т
                                     F
NNODES
            NINT
                        NBR
                                     NF
9
             5
                        10
                                     0
RELAXK
             RELAXD
                        RELAXH
                                     CC
                                                 NITER
                                     0.0001
             0.5
1
                        1
                                                 500
RHOREF
            EMUREF
62.4
            0.00066
NODE
         INDEX
                     DESCRIPTION
1
         2
                     "Node 1"
                      "Node 2"
2
         1
 3
         2
                     "Node 3"
         2
                      "Node 4"
 4
                     "Node 5"
5
         1
                     "Node 6"
 6
         1
                     "Node 7"
 7
 8
         1
                     "Node 8"
                      "Node 9"
         2
 9
NODE
        PRES (PSI)
                      MASS SOURC
                                      HEAT SOURC
                                                       THRST AREA
        50
                      0
1
                                      Ω
                                                       0
 2
         49.6
                      0
                                      0
                                                       0
3
                      0
                                      0
                                                       0
        48
 4
        45
                      0
                                      0
                                                       0
5
        48.4
                      0
                                      0
                                                       0
        47.4
                      0
                                                       0
 6
                                      0
         49.2
                                                       0
                      0
                                                       0
 8
                                      0
         46.4
 9
         46
                      0
                                      0
                                                       0
          NUMBR
                       NAMEBR
INODE
                              25
                                    27
 2
          3
                       12
 5
          4
                       25
                              53
                                    57
                                         56
 6
          3
                       56
                              68
                                    64
 7
           3
                       27
                              57
                                    78
 8
           3
                       78
                              68
                                    89
```

BRANCH 12 25 27 53 57 56 78 68	UPNODE 1 2 5 5 7	DNNODE 2 5 7 3 7 6 8	OPTION 1 1 1 1 1 1 1 1 1	DESCRIPTION "Pipe 12" "Pipe 25" "Pipe 27" "Pipe 53" "Pipe 56" "Pipe 78" "Pipe 68"		
64	6	4	1	"Pipe 64"		
89	8	9	1	"Pipe 89"		
BRANCH	OPTION -1		DIA	EPSD	ANGLE	AREA
12		120	6	0.0018	0	28.274
BRANCH	OPTION -1		DIA	EPSD	ANGLE	AREA
25		2400	6	0.0018	0	28.274
BRANCH	OPTION -1		DIA	EPSD	ANGLE	AREA
27		2400	5	0.0018	0	19.635
BRANCH	OPTION -1		DIA	EPSD	ANGLE	AREA
53		120	5	0.0018	0	19.635
BRANCH	OPTION -1		DIA	EPSD	ANGLE	AREA
57	0.000.000.1	1440	4	0.0018	0	12.566
BRANCH	OPTION -1			EPSD		AREA
56	ODELON 1	2400	4	0.0018	0	12.566
BRANCH 78	OPTION -1	LENGTH	DIA	EPSD	ANGLE	AREA
	ODELON 1	2400	4	0.0018	0	12.566
BRANCH	OPTION -1	LENGTH	DIA 4	EPSD	ANGLE 0	AREA
68	ODELON 1	1440	=	0.0018	-	12.566
BRANCH 64	OPTION -1	LENGTH 120	DIA 4	EPSD 0.0018	ANGLE 0	AREA 12.566
	ODELON 1				ANGLE	
BRANCH 89	OPTION -1	LENGTH 120	DIA 5	EPSD 0.0018	ANGLE 0	AREA 19.635
09		120	J	0.0010	U	19.000

G F S S P (Version 5.0)

Generalized Fluid System Simulation Program

September, 2006
Developed by NASA/Marshall Space Flight Center Copyright © by Marshall Space Flight Center

A generalized computer program to calculate flow rates, pressures, temperatures and concentrations in a flow network.

TITLE :Simulation of a water distribution network

ANALYST :Alok Majumdar

FILEIN :C:\Program Files\GFSSP\Examples\Ex2\Ex2.dat

FILEOUT :Ex2.out LOGICAL VARIABLES

3	0.4800E+02	0.0000E+00
4	0.4500E+02	0.0000E+00
9	0.4600E+02	0.0000E+00

INPUT	SPECIFICATIONS	FOR INTERNAL	NODES
NODE	AREA	MASS	HEAT
	(IN^2)	(LBM/S)	BTU/LBM)
2	0.0000E+00	0.0000E+00	0.0000E+00
5	0.0000E+00	0.0000E+00	0.0000E+00
6	0.0000E+00	0.0000E+00	0.0000E+00
7	0.0000E+00	0.0000E+00	0.0000E+00
8	0.0000E+00	0.0000E+00	0.0000E+00

BRANCH	UPNODE	DNNODE	OPTION	
12	1	2	1	
25	2	5	1	
27	2	7	1	
53	5	3	1	
57	5	7	1	
56	5	6	1	
78	7	8	1	
68	6	8	1	
64	6	4	1	
89	8	9	1	

OPTION-1:	LENGTH	DIA	EPSD	ANGLE	AREA
	0.120E+03	0.600E+01	0.180E-02	0.000E+00	0.283E+02
	0.240E+04	0.600E+01	0.180E-02	0.000E+00	0.283E+02
	0.240E+04	0.500E+01	0.180E-02	0.000E+00	0.196E+02
	0.120E+03	0.500E+01	0.180E-02	0.000E+00	0.196E+02
	0.144E+04	0.400E+01	0.180E-02	0.000E+00	0.126E+02
	0.240E+04	0.400E+01	0.180E-02	0.000E+00	0.126E+02
	0.240E+04	0.400E+01	0.180E-02	0.000E+00	0.126E+02
	0.144E+04	0.400E+01	0.180E-02	0.000E+00	0.126E+02
	0.120E+03	0.400E+01	0.180E-02	0.000E+00	0.126E+02
	0.120E+03	0.500E+01	0.180E-02	0.000E+00	0.196E+02
	OPTION-1:	0.120E+03 0.240E+04 0.240E+04 0.120E+03 0.144E+04 0.240E+04 0.240E+04 0.144E+04 0.120E+03	0.120E+03	0.120E+03	0.120E+03

INITIAL GUESS FOR INTERNAL NODES

NODE	P(PSI)
2	0.4960E+02
5	0.4840E+02
6	0.4740E+02
7	0.4920E+02
8	0.4640E+02

TRIAL SOLU	TION	
BRANCH	DELP(PSI)	FLOWRATE (LBM/SEC)
12	0.0000	0.0100
25	0.0000	0.0100
27	0.0000	0.0100
53	0.0000	0.0100
57	0.0000	0.0100
56	0.0000	0.0100
78	0.0000	0.0100
68	0.0000	0.0100
64	0.0000	0.0100
89	0.0000	0.0100
SOLUTION		
INTERNAL		
NODE	P(PSI)	EM(LBM)
2	0.4979E+02	0.0000E+00
5	0.4810E+02	0.0000E+00
6	0.4535E+02	0.0000E+00
7	0.4833E+02	0.0000E+00
8	0.4600E+02	0.0000E+00

BRANCHE	ES							
BRANCH	KFACTOR	DELP	FLOW RATE	VELOCITY	REYN. NO.	MACH NO.	ENTROPY GEN.	LOST WORK
	(LBF-S^2/	(PSI)	(LBM/SEC)	(FT/SEC)			BTU/(R-SEC)	LBF-FT/SEC
	(LBM-FT)^2)							
12	0.301E-02	0.210E+00	0.100E+03	0.817E+01	0.386E+06	0.000E+00	0.135E-03	0.484E+02
25	0.609E-01	0.169E+01	0.631E+02	0.515E+01	0.244E+06	0.000E+00	0.687E-03	0.246E+03
27	0.154E+00	0.146E+01	0.370E+02	0.435E+01	0.171E+06	0.000E+00	0.349E-03	0.125E+03
53	0.762E-02	0.104E+00	0.444E+02	0.522E+01	0.206E+06	0.000E+00	0.300E-04	0.107E+02
57	0.301E+00	-0.224E+00	-0.104E+02	-0.190E+01	0.599E+05	0.000E+00	0.150E-04	0.536E+01
56	0.469E+00	0.275E+01	0.291E+02	0.534E+01	0.168E+06	0.000E+00	0.516E-03	0.184E+03
78	0.471E+00	0.232E+01	0.267E+02	0.490E+01	0.154E+06	0.000E+00	0.400E-03	0.143E+03
68	0.289E+00	-0.650E+00	-0.180E+02	-0.331E+01	0.104E+06	0.000E+00	0.755E-04	0.270E+02
64	0.230E-01	0.355E+00	0.471E+02	0.864E+01	0.272E+06	0.000E+00	0.108E-03	0.385E+02
89	0.858E-02	0.447E-02	0.866E+01	0.102E+01	0.401E+05	0.000E+00	0.249E-06	0.892E-01

***** TOTAL ENTROPY GENERATION = 0.232E-02 BTU/(R-SEC) ******

**** TOTAL WORK LOST = 0.151E+01 HP *****

SOLUTION SATISFIED CONVERGENCE CRITERION OF 0.100E-03 IN 11 ITERATIONS TAU = 100000000.000000 ISTEP = 1

TIME OF ANALYSIS WAS 2.002880000000000E-002 SECS

APPENDIX F—INPUT AND OUTPUT DATA FILES FROM EXAMPLE 3

Simulation of Compressible Flow in a Converging-Diverging Nozzle

Contents	<u>Page</u>
Example 3 Input File	10
Example 3 Output File	16

```
GFSSP VERSION
  503
GFSSP INSTALLATION PATH
C:\Program Files\GFSSP\
ANALYST
jwb
INPUT DATA FILE NAME
C:\Program Files\GFSSP\Examples\Ex3\Ex3.dat
OUTPUT FILE NAME
Ex3.out
TITLE
Simulation of Compressible Flow in a Converging-Diverging Nozzle \,
USETUP
DENCON
         GRAVITY
                    ENERGY
                                 MIXTURE
                                              THRUST
                                                          STEADY
                                                                       TRANSV
                                                                                   SAVER
F
         F
                    Т
                                              F
                                                          Т
                                                                                   ROTATION
HEX
         HCOEF
                    REACTING
                                 INERTIA
                                              CONDX
                                                          ADDPROP
                                                                       PRINTI
         F
                    F
                                 Т
                                              F
                                                          F
                                                                       F
BUOYANCY HRATE
                                              MOVBND
                    INVAL
                                 MSORCE
                                                          TPA
                                                                       VARGEO
                                                                                   TVM
         F
                                 F
                                              F
                                                          F
                    F
                    PRNTADD
                                                          CONJUG
                                                                                   WINPLOT
SHEAR
         PRNTIN
                                 OPVALVE
                                              TRANSQ
                                                                       RADIAT
          F
                    F
                                 F
                                              F
                                                          F
                                                                       F
         INSUC
                    VARROT
                                 CYCLIC
                                              CHKVALS
                                                                       DALTON
PRESS
                                                          WINFILE
                    F
                                 F
                                              F
                                                          Τ
                                                                       F
NORMAL
         SIMUL
                    SECONDL
                                 NRSOLVT
         Т
                    Τ
                                 F
NNODES
         NINT
                    NBR
                                 NF
17
         1.5
                    16
                                 1
RELAXK
         RELAXD
                    RELAXH
                                 CC
                                              NITER
1
         0.5
                                 0.0001
                                              500
                    1
NFLUID(I), I = 1, NF
11
NODE
        INDEX DESCRIPTION
                "Node 1"
1
        2
                "Node 2"
 2
        1
 3
        1
               "Node 3"
                "Node 4"
 4
        1
                "Node 5"
 5
               "Node 6"
 6
        1
               "Node 7"
 7
 8
               "Node 8"
               "Node 9"
 9
        1
 10
        1
               "Node 10"
               "Node 11"
 11
       1
 12
               "Node 12"
               "Node 13"
1.3
       1
               "Node 14"
 14
       1
 15
       1
               "Node 15"
                "Node 16"
16
        1
 17
               "Node 17"
        PRES (PSI) TEMP(DEGF)
                                                  HEAT SOURC THRST AREA CONCENTRATION
NODE
                                   MASS SOURC
1
        150
                     1000
                                   0
                                                  0
       14.7
                     60
 2
                                   0
                                                  0
                                                               0
 3
       14.7
                      60
                                   0
                                                  0
                                                               0
 4
       14.7
                      60
                                   0
                                                  0
                                                               0
 5
        14.7
                      60
                                   0
                                                  0
                                                               0
        14.7
                                                               0
 6
                      60
                                   0
                                                               0
 7
                      60
                                   0
                                                  0
        14.7
 8
        14.7
                      60
                                   0
                                                  0
                                                               0
 9
       14.7
                      60
                                   0
                                                  0
                                                               Ω
 10
       14.7
                      60
                                   0
                                                  0
                                                               0
 11
       14.7
                      60
                                   0
                                                  0
                                                               0
                                   0
 12
       14.7
                      60
                                                  0
                                                               0
 13
       14.7
                      60
                                   0
                                                  0
                                                               0
 14
       14.7
                      60
 15
        14.7
                      60
                                   0
                                                  0
                                                               0
 16
       14.7
                     60
                                   0
                                                  0
                                                               0
17
        60
                     1000
                                   0
```

INODE 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	NUMBR 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		NAMEBR 12 23 34 45 56 67 78 89 910 1011 1112 1213 1314 1415 1516	23 34 45 56 67 78 89 910 1011 1112 1213 1314 1415 1516 1617				
BRANCH	UPNODE		DNNOI	DΕ	OPTION		DESCRIPTION	N
12	1		2		2		"Restrict	12"
23	2		3		2		"Restrict	
34	3		4		2		"Restrict	
45	4		5		2		"Restrict	
56	5		6		2		"Restrict	
67	6		7		2		"Restrict	
78	7		8		2		"Restrict	
89 910	8 9		9 10		2		"Restrict	
1011	10		11		2		"Restrict	
1112	11		12		2		"Restrict	
1213	12		13		2		"Restrict	
1314	13		14		2		"Restrict	
1415	14		15		2		"Restrict	
1516	15		16		2		"Restrict	1516"
1617	16		17		2		"Restrict	1617"
BRANCH	OPTION	-2	FLOW	COEFF	AI	REA		
12			0			.3587		
BRANCH	OPTION	-2		COEFF		REA		
23	ODELON	2	0	COPPE		.2717		
BRANCH 34	OPTION	-2	0 PLOW	COEFF		REA .2243		
BRANCH	OPTION	-2		COEFF		.ZZ43 REA		
45	0111011	_	0	COLLI		.2083		
BRANCH	OPTION	-2	FLOW	COEFF		REA		
56			0		0 .	.1901		
BRANCH	OPTION	-2	FLOW	COEFF	AI	REA		
67			0		0 .	.1949		
BRANCH	OPTION	-2		COEFF		REA		
78 BRANCH	ODELON	0	0	CORRE		.2255		
89	OPTION	-2	0 PLOW	COEFF		REA .2875		
BRANCH	OPTION	-2		COEFF		REA		
910	0111011	_	0	COLLI		.3948		
BRANCH	OPTION	-2		COEFF		REA		
1011			0		0 .	.564		
BRANCH	OPTION	-2	FLOW	COEFF	AI	REA		
1112			0		0 .	.7633		
BRANCH	OPTION	-2	FLOW	COEFF		REA		
1213			0			.9927		
BRANCH	OPTION	-2		COEFF		REA		
1314	0.000	_	0	~~===		.252		
BRANCH	OPTION	-2		COEFF		REA		
1415	OPTION	_ つ	0 ET OM	COFFE		.4668		
BRANCH 1516	OFITON	-∠	0 F.TOM	COEFF		REA .5703		
BRANCH	OPTION	-2		COEFF		REA		
1617	0111011	-	0	00111		.6286		
'			-		Ξ.			

BRANCH		NOUB:	R	NMUBR
12 23 34 45 56 67 78 89 910 1011 1112 1213 1314 1415 1516 1617 BRANCH 12 23 34 45 56 67 78 89 910 1011 1112 1213 1314 1415		0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		12 23 34 45 56 67 78 89 910 1011 1112 1213 1314 1415 1516 NMDBR 23 34 45 56 67 78 89 910 1011 1112 1213 1314 1415 1516
1516 1617 BRANCH		0		1617
12 UPSTRM DNSTRM 23			ANGLE	1
BRANCH 23			0.000	700
UPSTRM 12 DNSTRM 34			ANGLE 0.000 ANGLE 0.000	000
BRANCH 34			0.000	,00
UPSTRM 23 DNSTRM			ANGLE 0.000 ANGLE	000
45 BRANCH			0.000	
45 UPSTRM 34			ANGLE	
DNSTRM 56 BRANCH	BR.		0.000	
56 UPSTRM 45	BR.		ANGLE	
DNSTRM 67	BR.		ANGLE	1
BRANCH 67 UPSTRM	BR.		ANGLE	1
56 DNSTRM 78			0.000 ANGLE	000
BRANCH 78				

UPSTRM BR. ANGLE 0.00000 67 ANGLE DNSTRM BR. 89 0.00000 BRANCH 89 UPSTRM BR. ANGLE 78 0.00000 DNSTRM BR. ANGLE 0.00000 910 BRANCH 910 UPSTRM BR. ANGLE 0.00000 89 DNSTRM BR. ANGLE 0.00000 1011 BRANCH 1011 UPSTRM BR. ANGLE 910 0.00000 DNSTRM BR. ANGLE 1112 0.00000 BRANCH 1112 UPSTRM BR. ANGLE 1011 0.00000 DNSTRM BR. ANGLE 1213 0.00000 BRANCH 1213 UPSTRM BR. ANGLE 1112 0.00000 DNSTRM BR. ANGLE 1314 0.00000 BRANCH 1314 ANGLE UPSTRM BR. 1213 0.00000 ANGLE DNSTRM BR. 1415 0.00000 BRANCH 1415 UPSTRM BR. ANGLE 0.00000 1314 DNSTRM BR. ANGLE 1516 0.00000 BRANCH 1516 UPSTRM BR. ANGLE 1415 0.00000 ANGLE DNSTRM BR. 1617 0.00000 BRANCH 1617 UPSTRM BR. ANGLE 0.00000 1516 DNSTRM BR. ANGLE

NUMBER OF BRANCHES WITH INERTIA
16
12
23
34
45
56
67
78
89
910
1011
1112
1213

G F S S P (Version 5.0)

Generalized Fluid System Simulation Program September, 2006
Developed by NASA/Marshall Space Flight Center

Copyright © by Marshall Space Flight Center

A generalized computer program to calculate flow rates, pressures, temperatures and concentrations in a flow network.

```
:Simulation of Compressible Flow in a Converging-Diverging Nozzle
ANALYST
           :jwb
FILEIN
          :C:\Program Files\GFSSP\Examples\Ex3\Ex3.dat
FILEOUT
           :Ex3.out
LOGICAL VARIABLES
DENCON
 GRAVITY = F
 ENERGY
MIXTURE = F
 THRUST
         = F
 STEADY
        = F
TRANSV
 SAVER
HEX
         = F
 HCOEF
         = F
REACTING = F
 INERTIA = T
 CONDX
 TWOD
         = F
 PRINTI
         = F
 ROTATION = F
 BUOYANCY = F
         = F
HRATE
 INVAL
         = F
        = F
= F
 MSORCE
MOVBND
         = F
 TPA
 VARGEO
         = F
 TVM
         = F
         = F
 SHEAR
 PRNTIN
        = F
PRNTADD = F
ADDPROP = F
 PRESS
         = F
 INSUC
         = F
 VARROT
         = F
        = F
 NORMAL
 SECONDL = T
CONJUG = F
NRSOLVT = F
        = 17
NNODES
NINT
         = 15
         = 16
NBR
 NF
         = 1
 NVAR
         = 31
NHREF
         = 2
FLUIDS: H2O
BOUNDARY NODES
NODE
                                                 (IN^2)
                                    (LBM/FT^3)
```

0.1736E+00

0.0000E+00

16

1

17

(PSI)

0.1500E+03

0.6000E+02

(F) 0.1000E+04

SOLUTION INTERNAI								
NODE	P(PSI)	TF(F)	Z		RHO (LBM/FT^3)	EM(LBM)	QUALITY	
2	0.1500E+0	0.100)E+04 0	9939E+00	0.1736E+00	0.0000E+0	0 0.1000E+	0.1
3	0.1373E+0			9939E+00	0.1620E+00	0.0000E+0		
4	0.1197E+0			9941E+00	0.1455E+00	0.0000E+0		
5	0.1045E+0			9942E+00	0.1308E+00	0.0000E+0		
6	0.8213E+0			9944E+00	0.1084E+00	0.0000E+0		
7	0.5974E+0			9946E+00	0.8463E-01	0.0000E+0		
8	0.4267E+0			9948E+00	0.6523E-01	0.0000E+0		
9	0.3498E+0			9949E+00	0.5597E-01	0.0000E+0		
10	0.4116E+0			9949E+00	0.6344E-01	0.0000E+0		
11	0.5165E+0			9947E+00	0.7561E-01	0.0000E+0		
12	0.5650E+0			9946E+00	0.8106E-01	0.0000E+0		
13	0.5839E+0	0.7260	DE+03 0.	9946E+00	0.8315E-01	0.0000E+0	0 0.1000E+	01
14	0.5930E+0	0.730	LE+03 0.	9946E+00	0.8415E-01	0.0000E+0	0 0.1000E+	01
15	0.5974E+0	0.732	LE+03 0.	9946E+00	0.8463E-01	0.0000E+0	0 0.1000E+	01
16	0.5991E+0	0.732	BE+03 0.	9946E+00	0.8483E-01	0.0000E+0	0 0.1000E+	01
DDANGUE	•							
BRANCHES BRANCH	KFACTOR	DELP	FLOW RATE	VELOCITY	REYN. NO.	MACH NO.	ENTROPY GEN.	TOOM MODIA
DRANCH	(LBF-S^2/	(PSI)	(LBM/SEC)	(FT/SEC)	REIN. NO.	MACH NO.	BTU/(R-SEC)	LBF-FT/SEC
	(LBM-FT)^2		(LDM/SEC)	(FI/SEC)			DIU/(R-SEC)	LDF-F1/SEC
12	0.000E+00	0.000E+00	0.336E+00	0.778E+03	0.376E+06	0.342E+00	0.000E+00	0.000E+00
23	0.000E+00	0.127E+02	0.336E+00	0.103E+04	0.432E+06	0.452E+00	0.000E+00	0.000E+00
34	0.000E+00	0.127E+02 0.176E+02	0.336E+00	0.133E+04	0.485E+06	0.592E+00	0.000E+00	0.000E+00
45	0.000E+00	0.170E+02 0.153E+02	0.336E+00	0.160E+04	0.520E+06	0.720E+00	0.000E+00	0.000E+00
56	0.000E+00	0.133E+02 0.223E+02	0.336E+00	0.195E+04	0.563E+06	0.890E+00	0.000E+00	0.000E+00
67	0.000E+00	0.224E+02	0.336E+00	0.229E+04	0.591E+06	0.107E+01	0.000E+00	0.000E+00
78	0.000E+00	0.171E+02	0.336E+00	0.254E+04	0.595E+06	0.123E+01	0.000E+00	0.000E+00
89	0.000E+00	0.769E+01	0.336E+00	0.254E+04	0.576E+06	0.130E+01	0.000E+00	0.000E+00
910	0.000E+00	-0.618E+01	0.336E+00	0.219E+04	0.518E+06	0.112E+01	0.000E+00	0.000E+00
1011	0.000E+00	-0.105E+02	0.336E+00	0.135E+04	0.415E+06	0.682E+00	0.000E+00	0.000E+00
1112	0.000E+00	-0.485E+01	0.336E+00	0.840E+03	0.336E+06	0.413E+00	0.000E+00	0.000E+00
1213	0.000E+00	-0.189E+01	0.336E+00	0.602E+03	0.288E+06	0.293E+00	0.000E+00	0.000E+00
1314	0.000E+00	-0.903E+00	0.336E+00	0.465E+03	0.254E+06	0.226E+00	0.000E+00	0.000E+00
1415	0.000E+00	-0.443E+00	0.336E+00	0.393E+03	0.234E+06	0.190E+00	0.000E+00	0.000E+00
1516	0.000E+00	-0.174E+00	0.336E+00	0.365E+03	0.226E+06	0.177E+00	0.000E+00	0.000E+00
1617	0.000E+00	-0.857E-01	0.336E+00	0.351E+03	0.221E+06	0.170E+00	0.000E+00	0.000E+00
1017	0.0001.00	0.0375 01	0.3301.00	0.3311.03	0.2211.00	0.1701.00	0.0001.00	0.0001.00
	**** TOTA	L ENTROPY GE	NERATION =	0.000E+0	00 BTU/(R-SEC)	*****		
	**** TOTAL	WORK LOST =	0.00	0E+00 HP **	* * *			

TIME OF ANALYSIS WAS 0.300432000000000

APPENDIX G—INPUT AND OUTPUT DATA FILES FROM EXAMPLE 4

Simulation of the Mixing of Combustion Gases and a Cold Gas Stream

Contents	Page
Example 4 Input File	19
Example 4 Output File	20

```
GFSSP VERSION
  503
GFSSP INSTALLATION PATH
C:\Program Files\GFSSP\
ANALYST
ALOK MAJUMDAR
INPUT DATA FILE NAME
C:\Program Files\GFSSP\Examples\Ex4\Ex4.dat
OUTPUT FILE NAME
Ex4.out
TITLE
Simulation of the Mixing of Combustion Gases and a Cold Gas Stream
USETUP
F
DENCON
            GRAVITY
                        ENERGY
                                     MIXTURE
                                                 THRUST
                                                            STEADY
                                                                        TRANSV
                                                                                   SAVER
F
                        Τ
                                     Τ
                                                 F
                                                            Τ
                                                                        F
                                                                                   ROTATION
HEX
            HCOEF
                        REACTING
                                     INERTIA
                                                 CONDX
                                                            ADDPROP
                                                                        PRINTI
            F
                        F
                                     F
                                                 F
                                                            F
                                                                        Т
                                                                                   F
BUOYANCY
                                                 MOVBND
            HRATE
                        INVAL
                                     MSORCE
                                                            TPA
                                                                        VARGEO
                                                                                   TVM
F
                                     F
                                                 F
                                                                        F
            Τ
                        F
                        PRNTADD
                                                                                   WINPLOT
SHEAR
            PRNTIN
                                     OPVALVE
                                                 TRANSQ
                                                            CONJUG
                                                                        RADTAT
F
            Τ
                                     F
                                                 F
                                                            F
                                                                        F
                                                            WINFILE
                        VARROT
                                                 CHKVALS
                                                                        DALTON
PRESS
            TNSUC
                                     CYCLIC
F
            F
                        F
                                     F
                                                 F
                                                            Τ
                                                                        F
NORMAL
            SIMUL
                        SECONDL
                                     NRSOLVT
F
            F
                        Т
                                     F
NNODES
            NINT
                        NBR
                                     NF
4
            1
                        3
                                     2
            RELAXD
                        RELAXH
                                     CC
                                                 NITER
                                     0.0001
1
            0.5
                        0.75
                                                 500
NFLUID(I), I = 1, NF
6 11
       INDEX
NODE
                 DESCRIPTION
                 "Node 1"
1
       2
                 "Node 2"
 2
       2
 3
                 "Node 3"
                 "Node 4"
4
NODE
         PRES(PSI)
                      TEMP (DEGF)
                                     MASS SOURC
                                                     HEAT SOURC
                                                                    THRST AREA
                                                                                    CONCENTRATION
         500
                      1500
                                     0
                                                                                    0.1
                                                                                             0.9
1
                                                     0
                                                                    0
 2
         500
                       80
                                     0
                                                     0
                                                                    0
                                                                                    1 0
 3
         338.2
                       1500
                                     0
                                                     0
                                                                    0
                                                                                    0.1
                                                                                             0.9
         14.7
                       80
 4
                                     0
                                                     0
                                                                    0
                                                                                    0.5
                                                                                             0.5
INODE
       NUMBR NAMEBR
3
               13
                       2.3
                              34
       3
BRANCH
         UPNODE
                   DNNODE
                              OPTION
                                         DESCRIPTION
                   3
                              2
                                         "Restrict 13"
1.3
         1
 23
         2
                   3
                              2
                                         "Restrict 23"
34
         3
                   4
                              22
                                         "Orifice 34"
BRANCH
                       FLOW COEFF
         OPTION -2
                                      AREA
13
                       0.6
                                      1
                       FLOW COEFF
BRANCH
         OPTION -2
                                      AREA
23
                       0.6
                                      FLOW COEF
BRANCH
         OPTION -22
                       AREA
34
                       1
                                      0.6
```

G F S S P (Version 5.0)

Generalized Fluid System Simulation Program September, 2006 Developed by NASA/Marshall Space Flight Center

Copyright © by Marshall Space Flight Center

A generalized computer program to calculate flow rates, pressures, temperatures and concentrations in a flow network.

:Simulation of the Mixing of Combustion Gases and a Cold Gas Stream ANALYST :ALOK MAJUMDAR FILEIN :C:\Program Files\GFSSP\Examples\Ex4\Ex4.dat FILEOUT :Ex4.out LOGICAL VARIABLES DENCON = F GRAVITY = F ENERGY = TMIXTURE = T THRUST = FSTEADY TRANSV = F SAVER = F HEX = F HCOEF = F REACTING = F INERTIA = FCONDX = FTWOD = F PRINTI = T ROTATION = F BUOYANCY = F = T HRATE INVAL = F MSORCE = F MOVBND = F = F TPA VARGEO = F TVM = F = F SHEAR PRNTIN = T PRNTADD = T ADDPROP = F PRESS = F INSUC = F VARROT = F NORMAL = F SECONDL = TCONJUG = F NRSOLVT = F NNODES = 4NINT = 1 = 3 NBR NF = 2 NVAR NVAR = 4 NHREF = 2= 4

FLUIDS: 02 H20

BOUNDARY	NODES							
NODE	P	T	RHO	AREA	С	CONCENTRATIONS		
	(PSI)	(F)	(LBM/FT^3				H20	
1	0.5000E+0						0.9000E+00	
2	0.5000E+0 0.1470E+0						0.0000E+00 0.5000E+00	
		FOR INTERNAL		72 0.0000ET	00 0	.5000E+00	0.J000E+00	
	AREA	MASS	HEAT					
	(IN^2)	(LBM/S)	(BTU/S)					
3 (0.0000E+00	0.0000E+00	0.0000E+0	00				
BRANCH	UPNODE	DNNODE	OPTION					
13 23	1 2	3 3	2					
34	3	4	22					
BRANCH	OPTION-2	FLOW COEF	AREA					
13		0.600E+00	0.100E+01					
BRANCH	OPTION-2	FLOW COEF	AREA					
23		0.600E+00	0.100E+01					
BRANCH 34	OPTION-22	FLOW COEF 0.600E+00	AREA 0.100E+01					
	GUESS FOR IN		0.1006+01					
	P(PSI)	TF(F)	Z(COMP)	RHO	CONCE	NTRATIONS		
			(LBM/FT^3)		02	H20		
).3382E+03	0.1500E+04	0.9966E+00	0.2984E+00	0.1000	DE+00 0.90	000E+00	
TRIAL SO			T D1/ (000)					
BRANCH 13	DELP(PSI) 0.0000	FLOWRATE (LBM/SEC)					
23	0.0000	0.0100						
34	0.0000	0.0100						
SOLUTION								
NODE	L NODES P(PSI)	TF(F)	Z	RHO	F	CM(LBM)	CONCENTRATION	I C
NODE	1 (131)	II (I)	21	(LBM/FT^3		и (при)		120
3	0.4788E+03	0.6886E+03	0.9862E+00	0.1060E+0		.0000E+00	0.7553E+00 (
NODE	H	ENTROPY	EMU	COND		CP	GAMA	
3	BTU/LB 0.7213E+03	BTU/LB-R 0.1527E+01	LBM/FT-SEC 0.2079E-04	BTU/FT-S- 0.8153E-0		BTU/LB-R).3757E+00	0.1297E+01	
9	0.72131103	0.13276101	0.20791 04	0.01331 0	5 0	.57575100	0.12376101	
BRANCHES								
BRANCH	KFACTOR	DELP			REYN. NO	O. MACH NO.	ENTROPY GEN.	LOST WORK
	(LBF-S^2/	(PSI)	(LBM/SEC)	(FT/SEC)			BTU/(R-SEC)	LBF-FT/SEC
13	(LBM-FT)^2) 0.228E+04	0.212E+02	0.116E+01	0.424E+03).560E+0	06 0.166E+00	0.590E-02	0.900E+04
23	0.317E+03	0.212E+02).294E+(0.800E-02	0.336E+04
34	0.317E+03	0.464E+03).277E+0		0.259E-01	0.232E+05
	**** TOTAL	ENTROPY GENER	RATION = 0	.398E-01 BTU,	(R-SEC)) *****		
	****	IODK IOST -	0.646E+02) UD ****				
	IOIAL V	VORIX LOS1 -	0.0401102	. 111				
WARNING!	CHKGASP: T	out of fluid	property rang	e at node	1			
WARNING!	CHKGASP: T	out of fluid	property rang	e at node	3			
COT TIPT ON	CVALCELEU C	ONVEDCENCE OF	ITERION OF 0	1005-03 TM	27 TmT	ZD N TT OM C		
	100000000.0		ISTEP =		Z / 111	TIVATIONS		
				-				
						• • • • • • • • • • • •	• • • • • • • • • • • • •	
TIME OF	ANALYSIS WAS	2.002880000	000000E-002 S	SECS				

APPENDIX H—INPUT AND OUTPUT DATA FILES FROM EXAMPLE 5

Simulation of a Flow System Involving a Heat Exchanger

Contents	Page
Example 5 Input File	23
Example 5 Output File	25

```
GFSSP VERSION
   503
GFSSP INSTALLATION PATH
C:\Program Files\GFSSP\
ANALYST
Todd Steadman
INPUT DATA FILE NAME
C:\Program Files\GFSSP\Examples\Ex5\Ex5.dat
OUTPUT FILE NAME
Ex5.out
TITLE
Simulation of a Flow System Involving a Heat Exchanger
USETUP
DENCON
             GRAVITY
                         ENERGY
                                      MIXTURE
                                                   THRUST
                                                               STEADY
                                                                           TRANSV
                                                                                       SAVER
F
                         Τ
                                      F
                                                   F
                                                                           F
HEX
             HCOEF
                         REACTING
                                      INERTIA
                                                   CONDX
                                                               ADDPROP
                                                                           PRINTI
                                                                                       ROTATION
                         F
                                                   F
                                                               F
                                                                           F
Т
             Т
                                                                                       F
BUOYANCY
             HRATE
                         INVAL
                                      MSORCE
                                                   MOVBND
                                                               TPA
                                                                           VARGEO
                                                                                       MVT
             Τ
                         F
                                      F
                                                   F
                                                                           F
SHEAR
             PRNTIN
                         PRNTADD
                                      OPVALVE
                                                   TRANSO
                                                               CONJUG
                                                                           RADIAT
                                                                                       WINPLOT
                         F
                                      F
                                                   F
                                                               F
                                                                           F
                         VARROT
PRESS
             INSUC
                                      CYCLIC
                                                   CHKVALS
                                                               WINFILE
                                                                           DALTON
                         F
                                      F
                                                   F
                                                               Τ
                                                                           F
             SIMUL
                         SECONDL
                                      NRSOLVT
NORMAL
             Т
                         Τ
                                      F
NNODES
             NINT
                         NBR
                                      NF
8
             4
                         6
             RELAXD
                         RELAXH
                                      CC
                                                   NITER
                                      0.0001
1
             0.5
                                                   500
                         1
NFLUID(I), I = 1, NF
11
          INDEX
NODE
                        DESCRIPTION
1
          2
                        "Node 1"
                        "Node 2"
 2
          1
 3
                        "Node 3"
                        "Node 4"
          2
 4
                        "Node 5"
 5
                        "Node 6"
 6
          1
                        "Node 7"
 7
 8
                        "Node 8"
                                                                         THRST AREA
NODE
          PRES (PSI)
                         TEMP (DEGF)
                                        MASS SOURC
                                                        HEAT SOURC
                                                                                         CONCENTRATION
 1
           50
                         100
                                        0
                                                         0
 2
           14.7
                         60
                                        0
                                                         0
                                                                         0
 3
           14.7
                         60
                                        0
                                                         0
                                                                         0
           25
                         60
                                        0
                                                                         0
 4
                                                         0
 5
           50
                         60
                                        0
                                                         0
                                                                         0
 6
           14.7
                         60
                                         0
                                                         0
                                                                         0
                         60
 7
           14.7
                                        0
                                                         0
                                                                         0
 8
           25
                         60
                      NAMEBR
           NUMBR
INODE
 2
           2
                      12
                             23
 3
           2
                      2.3
                             34
 6
           2
                      56
                             67
 7
           2
                      67
                             78
                                                DESCRIPTION
BRANCH
           UPNODE
                      DNNODE
                                   OPTION
                                                "Pipe 12"
 12
           1
                      2
                                   1
                                                "Pipe 23"
           2
                      3
                                   1
 2.3
 34
           3
                      4
                                   1
                                                "Pipe 34"
 56
           5
                                                "Pipe 56"
                      6
                                   1
 67
           6
                      7
                                                "Pipe 67"
 78
                      8
                                   1
                                                "Pipe 78"
BRANCH
         OPTION -1
                      LENGTH
                                   DIA
                                                EPSD
                                                           ANGLE
                                                                       AREA
                                   0.25
                                                                       0.049087
12
                      10
BRANCH
         OPTION -1
                      LENGTH
                                   DIA
                                                EPSD
                                                           ANGLE
                                                                       AREA
 23
                      10
                                   0.25
                                                0
                                                           0
                                                                       0.049087
BRANCH
         OPTION -1
                      LENGTH
                                   DIA
                                                EPSD
                                                           ANGLE
                                                                       AREA
                      10
                                   0.25
                                                                       0.049087
BRANCH
         OPTION -1
                      LENGTH
                                                           ANGLE
                                   DTA
                                                EPSD
                                                                       AREA
 56
                      10
                                   0.5
                                                0
                                                           0
                                                                        0.19635
```

ANGLE

AREA

EPSD

OPTION -1

LENGTH

DIA

BRANCH

67		10	0.5	0	0	0.19635
BRANCH	OPTION -1	LENGTH	DIA	EPSD	ANGLE	AREA
78		10	0.5	0	0	0.19635
NUMBER	OF HEAT EXCHA	ANGERS				
1						
IBRHOT	IBRCLD	ITYPHX	ARHOT	ARCOLD	UA	HEXEFF
23	67	1	0	0	1.1038	1.5

G F S S P (Version 5.0)

Generalized Fluid System Simulation Program
September, 2006
Developed by NASA/Marshall Space Flight Center

Developed by NASA/Marshall Space Flight Center Copyright © by Marshall Space Flight Center

A generalized computer program to calculate flow rates, pressures, temperatures and concentrations in a flow network.

:Simulation of a Flow System Involving a Heat Exchanger ANALYST : Todd Steadman FILEIN :C:\Program Files\GFSSP\Examples\Ex5\Ex5.dat FILEOUT :Ex5.out LOGICAL VARIABLES DENCON = F GRAVITY = FENERGY = TMIXTURE = FTHRUST = FSTEADY TRANSV = F SAVER = F = T HEX HCOEF REACTING = F INERTIA = FCONDX = FTWOD = F PRINTI = F ROTATION = F BUOYANCY = F = T HRATE INVAL = F MSORCE = F MOVBND = F = F TPA VARGEO = F TVM = F = F SHEAR PRNTIN = T PRNTADD = F ADDPROP = F PRESS = F INSUC = F VARROT = F NORMAL = F SECONDL = TCONJUG = F NRSOLVT = F NNODES = 8 NINT = 4 = 6 NBR NF = 1 NVAR = 10 NHREF = 2 = 10

FLUIDS: H2O

BOUNDARY	Y NODES									
NODE	P	T	III 4 2)	RHO	AREA					
(PSI) 1	(F) 0.5000E+	(LBM/F 02 0.1000		(IN^2) 0.6201E+02	0.0000)E+00				
4	0.2500E+			0.6237E+02						
5	0.5000E+			0.6238E+02						
8	0.2500E+	02 0.6000	E+02	0.6237E+02	0.0000)E+00				
INPUT SI	PECIFICATIONS	FOR INTERNA	L NODES							
NODE	AREA	MASS		HEAT						
0	(IN^2)	(LBM/S)		(BTU/S)						
2	0.0000E+00 0.0000E+00			0.0000E+00 0.0000E+00						
6	0.0000E+00			0.0000E+00						
7	0.0000E+00	0.0000E	1+00	0.0000E+00						
BRANCH	UPNODE	DNNODE	OPTIO	ON						
	12	1	2 1							
	23	2	3 1							
	34 56	3 5	4 1 6 1							
	67	6	7 1							
	78	7	8 1							
	OPTION -1:			ANGLE, ARE						
12 PDANCU	0.100 OPTION -1:		250E+00	0.000E+ ANGLE, ARE		.000E	E+00 (0.491E-	JI	
23	0.100		250E+00	0.000E+		.000E	E+00 (0.491E-	01	
BRANCH	OPTION -1:	•		ANGLE, ARE						
34	0.100		250E+00	0.000E+		.000E	E+00 (0.491E-	01	
56	OPTION -1: 0.100		.а, врзи, 500E+00	ANGLE, ARE. 0.000E+		.000E	E+00 ().196E+	0.0	
	OPTION -1:			ANGLE, ARE						
67	0.100		500E+00	0.000E+		.000E	E+00 ().196E+	0.0	
BRANCH 78	OPTION -1: 0.100		IA, EPSD, 500E+00	ANGLE, ARE. 0.000E+		.000E	7+00 ().196E+	1 0	
7.0	0.100	E. 02	0000100	0.0001	00 0	.0001		J. 130L	5 0	
SOLUTION										
NODE	AL NODES P(PSI)	TF(F)	Z		RHO		EM(LBM)		QUALITY	
	- (/	(- ,	_		(LBM/FT^3	3)			£	
2	0.4185E+02	0.1000E+		2025E-02	0.6200E+0		0.0000E+		0.0000E	
3 6	0.3370E+02 0.4163E+02	0.7180E+ 0.6002E+		1709E-02 2157E-02	0.6229E+0 0.6237E+0		0.0000E+ 0.0000E+		0.0000E	
7	0.3327E+02	0.6451E+		1709E-02	0.6237E+0		0.0000E+		0.0000E	
BRANCHES		DELE	DI OU DAM		DELIN N	10	MA CIL NO	DAIMD O	ov cen	TOOM MODIA
BRANCH	KFACTOR (LBF-S^2/		FLOW RAT (LBM/SEC		REYN. N	NO.	MACH NO.	BTU/(I	PY GEN.	LOST WORK LBF-FT/SEC
	(LBM-FT)^2)	(101)	(LDII) OLO	, (11,010)				D10/ (1	C DEC)	EDI II/OEC
12	0.150E+04	0.815E+01	0.885E+0	0 0.419E+02	0.118E+	+06	0.333E-01	0.3841	E-04	0.167E+02
23	0.150E+04		0.885E+0				0.333E-01	0.3841		0.167E+02
34 56	0.160E+04 0.412E+02		0.885E+0 0.541E+0				0.343E-01 0.530E-01	0.4301		0.178E+02 0.104E+03
67	0.412E+02 0.412E+02		0.541E+0				0.530E-01	0.2581		0.104E+03
78	0.407E+02		0.541E+0				0.528E-01	0.253		0.103E+03
	**** TOTAL	ENTROPY GENE	ERATION =	= 0.890E-	-03 BTU/(R	-SEC)	*****			
						,				
	**** TOTAL V	WORK LOST =	0.6	561E+00 HP *	***					

TIME OF ANALYSIS WAS 2.00288000000000E-002 SECS

APPENDIX I—INPUT AND OUTPUT DATA FILES FROM EXAMPLE 6

Radial Flow on a Rotating Disk

Contents	Page
Example 6 Input File	28
Example 6 Output File	32

```
GFSSP VERSION
  503
GFSSP INSTALLATION PATH
C:\Program Files\GFSSP\
ANALYST
Paul Schallhorn
INPUT DATA FILE NAME
C:\Program Files\GFSSP\Examples\Ex6\Ex6.dat
OUTPUT FILE NAME
Ex6.out
TITLE
Radial Flow on a Rotating Radial Disk
USETUP
DENCON
            GRAVITY
                        ENERGY
                                     MIXTURE
                                                  THRUST
                                                              STEADY
                                                                           TRANSV
                                                                                       SAVER
F
                        Τ
                                                              Τ
                                                                                       ROTATION
HEX
           HCOEF
                       REACTING
                                     INERTIA
                                                  CONDX
                                                              ADDPROP
                                                                           PRINTI
            F
                                     Т
                                                  F
                                                              F
                                                                           Т
                                                                                       Т
BUOYANCY
                                                  MOVBND
           HRATE
                        INVAL
                                     MSORCE
                                                              TPA
                                                                           VARGEO
                                                                                       TVM
                                     F
                                                  F
            Τ
            PRNTIN
                        PRNTADD
                                                                                       WINPLOT
SHEAR
                                     OPVALVE
                                                  TRANSQ
                                                              CONJUG
                                                                           RADIAT
            F
                        F
                                     F
                                                  F
                                                              F
                                                                           F
PRESS
            INSUC
                       VARROT
                                     CYCLIC
                                                  CHKVALS
                                                              WINFILE
                                                                           DALTON
            F
                        F
                                     F
                                                  F
                                                              Τ
                                                                           F
NORMAL
           SIMUL
                       SECONDL
                                     NRSOLVT
            Т
                        F
                                     F
NNODES
           NINT
                       NBR
13
           11
                       12
                                     1
RELAXK
           RELAXD
                        RELAXH
                                     CC
                                                  NITER
1
           0.5
                                     0.0001
                                                  500
                        1
NFLUID(I), I = 1, NF
11
NODE
            INDEX
                         DESCRIPTION
                          "Node 1"
1
            2
                          "Node 2"
 2
           1
 3
                          "Node 3"
                          "Node 4"
 4
           1
                          "Node 5"
 5
           1
                         "Node 6"
 6
           1
                         "Node 7"
 7
 8
           1
                          "Node 8"
                          "Node 9"
 9
           1
 10
           1
                         "Node 10"
                          "Node 11"
11
           1
 12
                          "Node 12"
                          "Node 13"
1.3
           2
                      TEMP (DEGF)
NODE
        PRES (PSI)
                                      MASS SOURC
                                                      HEAT SOURC
                                                                      THRST AREA
                                                                                      CONCENTRATION
1
        90
                       80
                                                      Ω
 2
        14.7
                       70
                                                       0
                                                      0
 3
                       70
                                      0
                                                                      Ω
        14.7
 4
        14.7
                       70
                                      0
                                                      0
                                                                      0
                       70
 5
        14.7
                                                      0
                                                                      0
                                      0
 6
        14.7
                       70
                                      0
                                                      0
                                                                      0
 7
        14.7
                       70
                                      0
                                                      0
                                                                      0
                       70
 8
        14.7
                                      0
                                                      0
                                                                      0
 9
        14.7
                       70
                                                      0
                                      0
 10
                       70
                                      Ω
                                                      0
                                                                      0
        14.7
 11
        14.7
                       70
                                      0
                                                      0
                                                                      0
 12
        14.7
                       70
                                                      0
                                                                      Ω
                                      Ω
 13
        30
                       80
                                      0
                                                      0
```

TMODE	MILIMED	21224	IDD.			
INODE	NUMBR	NAME 12		22		
2	2			23		
3	2	23		34		
4	2	34		45		
5	2	45		56		
6	2	56		67		
7	2	67		78		
8	2	78		89		
9	2	89		910		
10	2	910		101		
11	2	1011		111	_	
12	2	1112		121		
BRANCH	UPNODE	DNNODE	OPT	ION		IPTION
12	1	2	2		"Rest	
23	2	3	2		"Rest	
34	3	4	2		"Rest	
45	4	5	2		"Rest	
56	5	6	2		"Rest	
67	6	7	2		"Rest	
78	7	8	2		"Rest	
89	8	9	2		"Rest	
910	9	10	2		"Rest	
1011	10	11	2		"Rest	
1112	11	12	2		"Rest	rict 1112"
1213	12	13	2		"Rest	rict 1213"
BRANCH	OPTIO	N -2	FL	WO	COEFF	AREA
12			0			3.1416
BRANCH	OPTIO	N -2	FL	OW	COEFF	AREA
23			0			1.8041
BRANCH	OPTIO	N -2	FL	OW	COEFF	AREA
34			0			3.2218
BRANCH	OPTIO	N -2	FL	WO	COEFF	AREA
45			0			4.6767
BRANCH	OPTIO	N -2	FL	WO	COEFF	AREA
56			0			5.7231
BRANCH	OPTIO	N -2	FL	OW	COEFF	AREA
67			0			6.2062
BRANCH	OPTIO	N -2	FL	OW	COEFF	AREA
78			0			68.33
BRANCH	OPTIO	N -2	FL	OW	COEFF	AREA
89			0			6.2062
BRANCH	OPTIO	N -2	FL	WO	COEFF	AREA
910			0			5.7231
BRANCH	OPTIO	N -2		OW	COEFF	AREA
1011			0			4.6767
BRANCH	OPTIO	N -2		OW	COEFF	AREA
1112			0			3.4605
BRANCH	OPTIO	N -2			COEFF	AREA
1213				021		6.2299
BRANCH		OUBR	I	NMU	IBR	
12	0					
23	1			12		
34	1			23		
45	1			34		
56	1			45		
67	1			56		
78	1			67		
89	1			78		
910	1			89		
1011	1			910		
1112	1			101		
1213	1			111	.2	

BRANCH 12 23 34 45 56 67 78 89 910 1011 1112 1213	NODBR 1 1 1 1 1 1 1 1 1 1 1 1 1 0	NMDBR 23 34 45 56 67 78 89 910 1011 1112 1213
BRANCH 12 UPSTRM BR. DNSTRM BR. 23 BRANCH		
23 UPSTRM BR. 12 DNSTRM BR. 34	0.00000	
BRANCH 34 UPSTRM BR. 23 DNSTRM BR.	0.00000 ANGLE	
45 BRANCH 45 UPSTRM BR. 34 DNSTRM BR.	0.00000	
56 BRANCH 56 UPSTRM BR.	0.00000	
DNSTRM BR. 67 BRANCH 67 UPSTRM BR.	ANGLE 0.00000	
56 DNSTRM BR. 78 BRANCH	0.00000	
UPSTRM BR. 67 DNSTRM BR. 89	0.00000	
BRANCH 89 UPSTRM BR. 78 DNSTRM BR.	0.00000 ANGLE	
910 BRANCH 910 UPSTRM BR. 89	0.00000 ANGLE 0.00000	
DNSTRM BR.		

```
BRANCH
1011
 UPSTRM BR.
              ANGLE
910
               0.00000
DNSTRM BR.
               ANGLE
1112
               0.00000
BRANCH
1112
UPSTRM BR.
               ANGLE
1011
               0.00000
DNSTRM BR.
               ANGLE
              0.00000
1213
BRANCH
1213
 UPSTRM BR.
              ANGLE
              0.00000
1112
DNSTRM BR.
              ANGLE
NUMBER OF BRANCHES WITH INERTIA
12
 12
23
 34
 45
 56
 67
 78
 89
 910
 1011
1112
 1213
NUMBER OF ROTATING BRANCHES
9
BRANCH
           UPST RAD
                        DNST RAD
                                     RPM
                                                K ROT
           1.25
                                      5000
                                                0.8671
23
                        2.25
           2.25
                        3.625
                                      5000
                                                0.8158
                        4.6875
                                      5000
 45
           3.625
                                                0.763
           4.6875
                        5.375
                                      5000
                                                0.7252
 56
 67
           5.375
                        5.5
                                     5000
                                                0.7076
                        5.375
                                      5000
                                                0.7129
 89
           5.5
 910
           5.375
                        4.6875
                                      5000
                                                0.7349
                                                0.7824
 1011
           4.6875
                        3.625
                                      5000
1112
           3.625
                        2.65
                                      5000
                                                0.8376
```

G F S S P (Version 5.0)

Generalized Fluid System Simulation Program September, 2006
Developed by NASA/Marshall Space Flight Center

Copyright © by Marshall Space Flight Center

A generalized computer program to calculate flow rates, pressures, temperatures and concentrations in a flow network.

:Radial Flow on a Rotating Radial Disk

0.0000E+00

```
ANALYST : Paul Schallhorn
FILEIN :C:\Program Files\GFSSP\Examples\Ex6\Ex6.dat
FILEOUT
        :Ex6.out
LOGICAL VARIABLES
DENCON = F
GRAVITY = F
ENERGY = T
MIXTURE = F
THRUST = F
STEADY
TRANSV = F
SAVER = F
HEX
        = F
HCOEF
        = F
REACTING = F
INERTIA = T
CONDX = F
        = F
TWOD
PRINTI = T
ROTATION = T
BUOYANCY = F
HRATE = T
INVAL
       = F
MSORCE = F
MOVBND = F
         = F
TPA
VARGEO = F
TVM
         = F
        = F
SHEAR
PRNTIN = F
PRNTADD = F
ADDPROP = F
PRESS = F
INSUC
        = F
VARROT = F
NORMAL = F
SECONDL = F
CONJUG = F
NRSOLVT = F
NNODES = 13
NINT
         = 11
        = 12
NBR
NF
        = 1
NVAR
        = 23
       = 2
NHREF
FLUIDS: H2O
BOUNDARY NODES
                                       RHO
                                                     AREA
NODE
         P
                        (F)
                                      (LBM/FT^3)
                                                     (IN^2)
        0.9000E+02 0.8000E+02 0.6224E+02
0.3000E+02 0.8000E+02 0.6222E+02
                                                     0.0000E+00
1
```

32

SOLUTIO	N							
INTERNA	L NODES							
NODE	P(PSI)	TF(F)	Z	I	RHO	EM(LBM)	QUALITY	
					(LBM/FT^3)			
2	0.9000E+02	0.8000E+02	0.4500	DE-02 (0.6224E+02	0.0000E+00	0.0000E+00	
3	0.1237E+03	0.8001E+02	0.6182	2E-02 (0.6225E+02	0.0000E+00	0.0000E+00	
4	0.1924E+03	0.8002E+02	0.9618	BE-02 (0.6226E+02	0.0000E+00	0.0000E+00	
5	0.2582E+03	0.8004E+02	0.1290	DE-01 (0.6227E+02	0.0000E+00	0.0000E+00	
6	0.3048E+03	0.8005E+02	0.1523	3E-01 (0.6228E+02	0.0000E+00	0.0000E+00	
7	0.3135E+03	0.8005E+02	0.156	6E-01 (0.6228E+02	0.0000E+00	0.0000E+00	
8	0.3135E+03	0.8005E+02			0.6228E+02	0.0000E+00	0.0000E+00	
9	0.3046E+03	0.8005E+02	0.1522	2E-01 (0.6228E+02	0.0000E+00	0.0000E+00	
10	0.2568E+03	0.8004E+02	0.1283	3E-01 (0.6227E+02	0.0000E+00	0.0000E+00	
11	0.1877E+03	0.8002E+02		9E-02 (0.6226E+02	0.0000E+00	0.0000E+00	
12	0.1328E+03	0.8001E+02	0.663	7E-02 (0.6225E+02	0.0000E+00	0.0000E+00	
BRANCHE								
BRANCH	KFACTOR	DELP	FLOW RATE	VELOCITY	REYN. NO.	MACH NO.	ENTROPY GEN.	
	(LBF-S^2/	(PSI)	(LBM/SEC)	(FT/SEC)				
		, - ,	(2211, 525)	(,,			BTU/(R-SEC)	LBF-FT/SEC
4.0	(LBM-FT)^2)				0.05505		,	
12	0.000E+00	0.850E-11	0.729E+01	0.537E+01		0.437E-02	0.000E+00	0.000E+00
23	0.000E+00 0.000E+00	0.850E-11 -0.337E+02	0.729E+01 0.729E+01	0.537E+01 0.935E+01	0.127E+06	0.762E-02	0.000E+00 0.000E+00	0.000E+00 0.000E+00
23 34	0.000E+00 0.000E+00 0.000E+00	0.850E-11 -0.337E+02 -0.688E+02	0.729E+01 0.729E+01 0.729E+01	0.537E+01 0.935E+01 0.524E+01	0.127E+06 0.953E+05	0.762E-02 0.426E-02	0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00
23 34 45	0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.850E-11 -0.337E+02 -0.688E+02 -0.658E+02	0.729E+01 0.729E+01 0.729E+01 0.729E+01	0.537E+01 0.935E+01 0.524E+01 0.361E+01	0.127E+06 0.953E+05 0.792E+05	0.762E-02 0.426E-02 0.294E-02	0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00
23 34 45 56	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.850E-11 -0.337E+02 -0.688E+02 -0.658E+02 -0.466E+02	0.729E+01 0.729E+01 0.729E+01 0.729E+01 0.729E+01	0.537E+01 0.935E+01 0.524E+01 0.361E+01 0.295E+01	0.127E+06 0.953E+05 0.792E+05 0.716E+05	0.762E-02 0.426E-02 0.294E-02 0.240E-02	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
23 34 45 56 67	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.850E-11 -0.337E+02 -0.688E+02 -0.658E+02 -0.466E+02 -0.871E+01	0.729E+01 0.729E+01 0.729E+01 0.729E+01 0.729E+01 0.729E+01	0.537E+01 0.935E+01 0.524E+01 0.361E+01 0.295E+01 0.272E+01	0.127E+06 0.953E+05 0.792E+05 0.716E+05 0.688E+05	0.762E-02 0.426E-02 0.294E-02 0.240E-02 0.221E-02	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
23 34 45 56 67 78	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.850E-11 -0.337E+02 -0.688E+02 -0.658E+02 -0.466E+02 -0.871E+01 0.854E-11	0.729E+01 0.729E+01 0.729E+01 0.729E+01 0.729E+01 0.729E+01 0.729E+01	0.537E+01 0.935E+01 0.524E+01 0.361E+01 0.295E+01 0.272E+01 0.247E+00	0.127E+06 0.953E+05 0.792E+05 0.716E+05 0.688E+05 0.207E+05	0.762E-02 0.426E-02 0.294E-02 0.240E-02 0.221E-02 0.201E-03	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
23 34 45 56 67 78 89	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.850E-11 -0.337E+02 -0.688E+02 -0.658E+02 -0.466E+02 -0.871E+01 0.854E-11 0.884E+01	0.729E+01 0.729E+01 0.729E+01 0.729E+01 0.729E+01 0.729E+01 0.729E+01	0.537E+01 0.935E+01 0.524E+01 0.361E+01 0.295E+01 0.272E+01 0.272E+01	0.127E+06 0.953E+05 0.792E+05 0.716E+05 0.688E+05 0.207E+05 0.688E+05	0.762E-02 0.426E-02 0.294E-02 0.240E-02 0.221E-02 0.201E-03 0.221E-02	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
23 34 45 56 67 78 89 910	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.850E-11 -0.337E+02 -0.688E+02 -0.658E+02 -0.466E+02 -0.871E+01 0.854E-11 0.884E+01 0.478E+02	0.729E+01 0.729E+01 0.729E+01 0.729E+01 0.729E+01 0.729E+01 0.729E+01 0.729E+01	0.537E+01 0.935E+01 0.524E+01 0.361E+01 0.295E+01 0.272E+01 0.247E+00 0.272E+01 0.295E+01	0.127E+06 0.953E+05 0.792E+05 0.716E+05 0.688E+05 0.207E+05 0.688E+05 0.716E+05	0.762E-02 0.426E-02 0.294E-02 0.240E-02 0.221E-02 0.201E-03 0.221E-02 0.240E-02	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
23 34 45 56 67 78 89 910 1011	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.850E-11 -0.337E+02 -0.688E+02 -0.658E+02 -0.466E+02 -0.871E+01 0.854E-11 0.884E+01 0.478E+02 0.692E+02	0.729E+01 0.729E+01 0.729E+01 0.729E+01 0.729E+01 0.729E+01 0.729E+01 0.729E+01 0.729E+01	0.537E+01 0.935E+01 0.524E+01 0.361E+01 0.295E+01 0.272E+01 0.247E+00 0.272E+01 0.295E+01 0.361E+01	0.127E+06 0.953E+05 0.792E+05 0.716E+05 0.688E+05 0.207E+05 0.688E+05 0.716E+05 0.792E+05	0.762E-02 0.426E-02 0.294E-02 0.240E-02 0.221E-02 0.201E-03 0.221E-02 0.240E-02 0.294E-02	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
23 34 45 56 67 78 89 910 1011 1112	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.850E-11 -0.337E+02 -0.688E+02 -0.658E+02 -0.466E+02 -0.871E+01 0.854E-11 0.884E+01 0.478E+02 0.692E+02 0.549E+02	0.729E+01 0.729E+01 0.729E+01 0.729E+01 0.729E+01 0.729E+01 0.729E+01 0.729E+01 0.729E+01 0.729E+01	0.537E+01 0.935E+01 0.524E+01 0.361E+01 0.295E+01 0.272E+01 0.247E+00 0.272E+01 0.295E+01 0.361E+01 0.487E+01	0.127E+06 0.953E+05 0.792E+05 0.716E+05 0.688E+05 0.207E+05 0.688E+05 0.716E+05 0.792E+05	0.762E-02 0.426E-02 0.294E-02 0.240E-02 0.221E-02 0.201E-03 0.221E-02 0.240E-02 0.294E-02 0.397E-02	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
23 34 45 56 67 78 89 910 1011	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.850E-11 -0.337E+02 -0.688E+02 -0.658E+02 -0.466E+02 -0.871E+01 0.854E-11 0.884E+01 0.478E+02 0.692E+02	0.729E+01 0.729E+01 0.729E+01 0.729E+01 0.729E+01 0.729E+01 0.729E+01 0.729E+01 0.729E+01	0.537E+01 0.935E+01 0.524E+01 0.361E+01 0.295E+01 0.272E+01 0.247E+00 0.272E+01 0.295E+01 0.361E+01	0.127E+06 0.953E+05 0.792E+05 0.716E+05 0.688E+05 0.207E+05 0.688E+05 0.716E+05 0.792E+05	0.762E-02 0.426E-02 0.294E-02 0.240E-02 0.221E-02 0.201E-03 0.221E-02 0.240E-02 0.294E-02	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SOLUTION SATISFIED CONVERGENCE CRITERION OF 0.100E-03 IN $\,$ 6 ITERATIONS TAU = $\,$ 100000000.000000 $\,$ ISTEP = 1

TIME OF ANALYSIS WAS 3.00432000000000E-002 SECS

APPENDIX J—INPUT AND OUTPUT DATA FILES FROM EXAMPLE 7

Flow in a Long Bearing Squeeze Film Damper

Contents	Page
	_
Example 7 Input File	35
Example 7 Output File	38

```
GFSSP VERSION
   503
GFSSP INSTALLATION PATH
C:\Program Files\GFSSP\
ANALYST
Paul Schallhorn
INPUT DATA FILE NAME
C:\Program Files\GFSSP\Examples\Ex7\Ex7.dat
OUTPUT FILE NAME
Ex7.out
TITLE
Flow in a Long Bearing Squeeze Film Damper
USETUP
DENCON
            GRAVITY
                        ENERGY
                                    MIXTURE
                                                  THRUST
                                                             STEADY
                                                                          TRANSV
                                                                                     SAVER
Τ
                                     F
                                                  F
                                                                                     ROTATION
HEX
            HCOEF
                        REACTING
                                     INERTIA
                                                  CONDX
                                                              ADDPROP
                                                                          PRINTI
F
            F
                        F
                                     F
                                                  F
                                                             F
                                                                          F
                                                                                     F
BUOYANCY
            HRATE
                        INVAL
                                    MSORCE
                                                  MOVBND
                                                             TPA
                                                                          VARGEO
                                                                                     TVM
                                                                          F
            Τ
                                     F
                                                  Τ
                                                             F
                                                                                     F
SHEAR
            PRNTIN
                        PRNTADD
                                    OPVALVE
                                                  TRANSQ
                                                             CONJUG
                                                                          RADIAT
                                                                                     WINPLOT
            F
                        Τ
                                     F
                                                  F
                                                             F
                                                                          F
                                                                                     F
                                    CYCLIC
                                                  CHKVALS
PRESS
            INSUC
                        VARROT
                                                             WINFILE
                                                                          DALTON
            F
                        F
                                     F
                                                  F
                                                             Τ
                                                                          F
NORMAL
            SIMUL
                         SECONDL
                                    NRSOLVT
            Т
                                     F
NNODES
            NINT
                         NBR
                                    NF
20
            18
                        19
                                     0
RELAXK
            RELAXD
                        RELAXH
                                    CC
                                                  NITER
                                    0.0001
1
            0.5
                                                  500
                        1
RHOREF
            EMUREF
57.806
            0.005932
NODE
           INDEX
                       DESCRIPTION
                       "Node 1"
1
           2
                       "Node 2"
 2
           1
 3
           1
                       "Node 3"
                       "Node 4"
 4
           1
 5
                       "Node 5"
                       "Node 6"
 6
           1
                       "Node 7"
 7
           1
 8
           1
                       "Node 8"
                       "Node 9"
 9
           1
 10
                       "Node 10"
                       "Node 11"
 11
           1
 12
                       "Node 12"
 13
                       "Node 13"
           1
                       "Node 14"
 14
           1
 15
           1
                       "Node 15"
                       "Node 16"
 16
           1
 17
                       "Node 17"
                       "Node 18"
 18
           1
 19
           1
                       "Node 19"
                       "Node 20"
 2.0
           2
NODE
         PRES (PSI)
                       MASS SOURC
                                       HEAT SOURC
                                                        THRST AREA
 1
         0
                       0
                                       0
                                                        0
 2
         0
                       0
                                       0
                                                        0
 3
         0
                       0
                                       0
                                                        0
                                                        0
 4
         0
                       0
                                       0
 5
         0
                       0
                                       0
                                                        0
         0
                       0
                                       0
                                                        0
 6
 7
         0
                       0
                                       0
                                                        0
                       0
                                                        0
 8
         0
                                       0
 9
         0
                       0
                                       0
                                                        0
 10
         10
                       0
                                       0
                                                        0
                                                        0
 11
         0
                       0
                                       0
 12
         0
                       0
                                       0
                                                        0
 13
         0
                       0
                                       0
                                                        0
 14
         0
                       0
                                       0
                                                        0
 15
         0
                       0
                                       0
                                                        0
 16
         0
                       0
                                       0
                                                        0
```

18 19 20	0 0 0	0 0	0 0 0	0 0 0		
INODE 2	NUMBR 2	NAMEBR 12	23			
3	2	23	34			
4 5	2 2	34 45	45 56			
6	2	56	67			
7 8	2 2	67 78	78 89			
9	2	89	910			
10	2	910	1011			
11 12	2 2	1011 1112	1112 1213			
13	2	1213	1314			
14	2	1314	1415			
15 16	2 2	1415 1516	1516 1617			
17	2	1617	1718			
18 19	2 2	1718 1819	1819 1920			
BRANCH	UPNODE	DNNODE	OPTION	DESCRIP	TION	
12	1	2	3	"Duct 1		
23 34	2 3	3 4	3 3	"Duct 2 "Duct 3		
45	4	5	3	"Duct 4		
56	5	6	3	"Duct 5		
67 78	6 7	7 8	3 3	"Duct 6 "Duct 7		
89	8	9	3	"Duct 8	9"	
910 1011	9 10	10 11	3 3	"Duct 9 "Duct 1		
1112	11	12	3	"Duct 1		
1213	12	13	3	"Duct 1		
1314 1415	13 14	14 15	3 3	"Duct 1 "Duct 1		
1516	15	16	3	"Duct 1		
1617	16	17	3	"Duct 1		
1718 1819	17 18	18 19	3 3	"Duct 1" Duct 1		
1920	19	20	3	"Duct 1		
BRANCH	OPTION -3	LENGTH	HEIGHT	WIDTH	TYPE	AREA
12 BRANCH	OPTION -3	0.82673 LENGTH	0.01258 HEIGHT	0.94 WIDTH	1 TYPE	0.0118252 AREA
23	0111011 0	0.8267	0.01799	0.94	1	0.0169106
BRANCH	OPTION -3	LENGTH	HEIGHT	WIDTH	TYPE	AREA
34 BRANCH	OPTION -3	0.82673 LENGTH	0.02822 HEIGHT	0.94 WIDTH	1 TYPE	0.0265268 AREA
45		0.82673	0.04217	0.94	1	0.0396398
BRANCH 56	OPTION -3	LENGTH 0.82673	HEIGHT 0.05832	WIDTH 0.94	TYPE 1	AREA 0.0548208
BRANCH	OPTION -3	LENGTH	HEIGHT	WIDTH	TYPE	AREA
67	0.000.000.000	0.82673	0.07492	0.94	1	0.0704248
BRANCH 78	OPTION -3	LENGTH 0.82673	HEIGHT 0.09018	WIDTH 0.94	TYPE 1	AREA 0.0847692
BRANCH	OPTION -3	LENGTH	HEIGHT	WIDTH	TYPE	AREA
89	ODETON 3	0.82673	0.10244	0.94	1	0.0962936
BRANCH 910	OPTION -3	LENGTH 0.82673	HEIGHT 0.11037	WIDTH 0.94	TYPE 1	AREA 0.103748
BRANCH	OPTION -3	LENGTH	HEIGHT	WIDTH	TYPE	AREA
1011 BRANCH	OPTION -3	0.82673 LENGTH	0.11311 HEIGHT	0.94 WIDTH	1 TYPE	0.106323 AREA
1112	OLITON -3	0.82673	0.11037	0.94	1	0.103748
BRANCH	OPTION -3	LENGTH	HEIGHT	WIDTH	TYPE	AREA
1213		0.82673	0.10244	0.94	1	0.0962936

BRANCH	OPTION -3	LENGTH	HEIGHT	WIDTH	TYPE	AREA
1314		0.82673	0.09018	0.94	1	0.0847692
BRANCH	OPTION -3	LENGTH	HEIGHT	WIDTH	TYPE	AREA
1415		0.82673	0.07492	0.94	1	0.0704248
BRANCH	OPTION -3	LENGTH	HEIGHT	WIDTH	TYPE	AREA
1516		0.82673	0.05832	0.94	1	0.0548208
BRANCH	OPTION -3	LENGTH	HEIGHT	WIDTH	TYPE	AREA
1617		0.82673	0.04217	0.94	1	0.0396398
BRANCH	OPTION -3	LENGTH	HEIGHT	WIDTH	TYPE	AREA
1718		0.82673	0.02822	0.94	1	0.0265268
BRANCH	OPTION -3	LENGTH	HEIGHT	WIDTH	TYPE	AREA
1819		0.82673	0.01799	0.94	1	0.0169106
BRANCH	OPTION -3	LENGTH	HEIGHT	WIDTH	TYPE	AREA
1920		0.82673	0.01258	0.94	1	0.0118252
NUMBER	OF NODES WITH	H MOVING BOUN	DARY			
18						
NODE	AREAN	VBOUND				
2	0.77713	0.25618				
3	0.77713	0.4846				
4	0.77713	0.6605				
5	0.77713	0.76483				
6	0.77713	0.78628				
7	0.77713	0.72252				
8	0.77713	0.58047				
9	0.77713	0.37551				
10	0.77713	0.12986				
11	0.77713	-0.12986				
12	0.77713	-0.37551				
13	0.77713	-0.58047				
14	0.77713	-0.72252				
15	0.77713	-0.78628				
16	0.77713	-0.76483				
18	0.77713	-0.4846				
19	0.77713	-0.25618				

G F S S P (Version 5.0)

Generalized Fluid System Simulation Program September, 2006
Developed by NASA/Marshall Space Flight Center

Copyright © by Marshall Space Flight Center

A generalized computer program to calculate flow rates, pressures, temperatures and concentrations in a flow network.

```
:Flow in a Long Bearing Squeeze Film Damper
ANALYST : Paul Schallhorn
FILEOUT :Ex7.out
LOGICAL VARIABLES
DENCON = T
GRAVITY = F
ENERGY
       = F
MIXTURE = F
THRUST
      = F
STEADY
       = T
      = F
TRANSV
SAVER
       = F
HEX
       = F
HCOEF
       = F
REACTING = F
INERTIA = F
CONDX = F
TWOD
       = F
PRINTI = F
ROTATION = F
BUOYANCY = F
      = T
HRATE
INVAL
       = F
MSORCE
       = F
MOVBND = T
       = F
TPA
VARGEO = F
TVM
       = F
       = F
SHEAR
PRNTIN
       = F
PRNTADD = T
ADDPROP = F
PRESS
       = F
INSUC
       = F
VARROT
       = F
NORMAL = F
SECONDL = T
CONJUG = F
NRSOLVT = F
       = 20
NNODES
NINT
       = 18
       = 19
NBR
NF
       = 0
NVAR
       = 37
NHREF
       = 2
RHOREF = 57.8060 \text{ LBM/FT**}3
EMUREF = 0.5932E-02 LBM/FT-SEC
BOUNDARY NODES
NODE.
        P
                     AREA
 (PSI)
         (IN^2)
       1
 20
```

SOLUTION INTERNAL NODES NODE P(PSI) EM(LBM) 0.1365E+02 0.0000E+00 0.1273E+02 0.0000E+00 3 0.9716E+01 0.0000E+00 0.7660E+01 0.0000E+00 5 0.5812E+01 0.0000E+00 0.4250E+01 0.0000E+00 7 8 0.2901E+01 0.0000E+00 0.1690E+01 0.0000E+00 0.5551E+00 0.0000E+00 10 -0.5551E+00 0.0000E+00 11 -0.1690E+01 0.0000E+00 12 13 -0.2901E+01 0.0000E+00 -0.4250E+01 0.0000E+00 14 1.5 -0.5812E+01 0.0000E+00 -0.7660E+01 0.0000E+00 16 17 -0.9716E+01 0.0000E+00 18 -0.1273E+02 0.0000E+00 19 -0.1365E+02 0.0000E+00 BRANCHES BRANCH KFACTOR DELP FLOW RATE VELOCITY REYN. NO. MACH NO. ENTROPY GEN. LOST WORK (LBF-S^2/ (PSI) (LBM/SEC) (FT/SEC) BTU/(R-SEC) LBF-FT/SEC (LBM-FT)^2) 12 0.440E+06 -0.136E+02 -0.668E-01 -0.141E+02 0.140E+04 0.000E+00 0.635E-05 0.227E+01 0.920E+00 0.131E-01 0.193E+01 0.230E+03 0.000E+00 2.3 0.770E+06 0.841E-07 0.301E-01 0.164E+00 0.154E+02 0.230E+04 0.000E+00 34 0.161E+05 0.301E+01 0.345E-05 0.123E+01 0.370E+00 0.233E+02 0.425E+04 0.000E+00 45 0.216E+04 0.206E+01 0.530E-05 0.190E+01 0.718E+03 0.185E+01 0.609E+00 0.277E+02 0.594E+04 0.000E+00 0.784E-05 56 0.280E+01 0.156E+01 0.735E+04 0.000E+00 67 0.308E+03 0.854E+00 0.302E+02 0.929E-05 0.332E+01 78 0.167E+03 0.135E+01 0.108E+01 0.317E+02 0.846E+04 0.000E+00 0.101E-04 0.363E+01 0.126E+01 0.326E+02 0.138E+01 0.331E+02 89 0.110E+03 0.121E+01 0.927E+04 0.000E+00 0.106E-04 0.380E+01 0.976E+04 0.000E+00 910 0.861E+02 0.113E+01 0.109E-04 0.389E+01 1011 0.795E+02 0.111E+01 0.142E+01 0.332E+02 0.993E+04 0.000E+00 0.110E-04 0.392E+01 0.113E+01 0.976E+04 0.000E+00 0.109E-04 1112 0.861E+02 0.138E+01 0.331E+02 0.389E+01 1213 0.110E+03 0.121E+01 0.126E+01 0.326E+02 0.927E+04 0.000E+00 0.106E-04 0.380E+01 0.167E+03 0.135E+01 0.108E+01 0.317E+02 0.846E+04 0.000E+00 0.101E-04 1314 0.363E+01 1415 0.308E+03 0.156E+01 0.854E+00 0.302E+02 0.735E+04 0.000E+00 0.929E-05 0.332E+01 1516 0.718E+03 0.185E+01 0.609E+00 0.277E+02 0.594E+04 0.000E+00 0.784E-05 0.280E+01 0.425E+04 0.000E+00 1617 0.206E+01 0.370E+00 0.233E+02 0.216E+04 0.530E-05 0.190E+01 1718 0.161E+05 0.301E+01 0.164E+00 0.154E+02 0.230E+04 0.000E+00 0.345E-05 0.123E+01 0.230E+03 0.000E+00 1819 0.770E+06 0.920E+00 0.131E-01 0.193E+01 0.841E-07 0.301E-01 1920 0.440E+06 -0.136E+02 -0.668E-01 -0.141E+02 0.140E+04 0.000E+00 0.635E-05 0.227E+01

***** TOTAL ENTROPY GENERATION = 0.139E-03 BTU/(R-SEC) *****

**** TOTAL WORK LOST = 0.903E-01 HP *****

......

TIME OF ANALYSIS WAS 1.00144000000000E-002 SECS

APPENDIX K—INPUT AND OUTPUT DATA FILES FROM EXAMPLE 8

Simulation of the Blow Down of a Pressurized Tank

Contents	Page
Example 8 Input File	41
Example 8 History File	42
Example 8 Output File (Partial)	43

```
GFSSP VERSION
  503
GFSSP INSTALLATION PATH
C:\Program Files\GFSSP\
ANALYST
Alok Majumdar
INPUT DATA FILE NAME
C:\Program Files\GFSSP\Examples\Ex8\Ex8.dat
OUTPUT FILE NAME
Ex8.out
TITLE
Simulation of the Blow Down of a Pressurized Tank
USETUP
F
DENCON
         GRAVITY
                    ENERGY
                                 MIXTURE
                                            THRUST
                                                       STEADY
                                                                  TRANSV
                                                                             SAVER
F
         F
                    Т
                                            F
                                                                  Τ
                                                                             ROTATION
HEX
         HCOEF
                    REACTING
                                 INERTIA
                                            CONDX
                                                       ADDPROP
                                                                   PRINTI
F
         F
                    F
                                 F
                                            F
                                                       Т
                                                                  Τ
                                                                             F
BUOYANCY HRATE
                    TNVAL
                                 MSORCE
                                            MOVBND
                                                       TPA
                                                                  VARGEO
                                                                             TVM
         F
                                 F
                                            F
                                                                   F
                    F
                    PRNTADD
                                                                             WINPLOT
SHEAR
         PRNTIN
                                 OPVALVE
                                            TRANSQ
                                                       CONJUG
                                                                  RADIAT
F
         T
                    Τ
                                 F
                                            F
                                                       F
                                                                   F
PRESS
         INSUC
                    VARROT
                                 CYCLIC
                                            CHKVALS
                                                       WINFILE
                                                                  DALTON
F
         F
                    F
                                 F
                                            F
                                                       Τ
                                                                  F
NORMAL
         SIMUL
                    SECONDL
                                 NRSOLVT
F
         Τ
                    Т
                                 F
NNODES
         NINT
                    NBR
                                 NF
2.
         1
                    1
                                 1
RELAXK
         RELAXD
                    RELAXH
                                 CC
                                            NITER
1
         0.5
                    1
                                 0.0001
                                            500
DTAU
         TIMEF
                    TIMEL
                                 NPSTEP
                                            NPWSTEP
                                 25
         0
                    200
1
NFLUID(I), I = 1, NF
33
         CPREF
                    GAMREF
                                 EMUREF
                                                           PREF
                                                                    TREF
                                                                              HREF
                                                                                       SREF
RREF
                                            AKREF
53.34
         0.24
                    1.3999
                                 1.26e-05
                                            4.133e-06
                                                           14.7
                                                                     -459
         INDEX
                    DESCRIPTION
NODE:
1
                    "Node 1"
                    "Node 2"
2
         2
                       TEMP (DEGF)
NODE
         PRES (PSI)
                                   MASS
                                            SOURC
                                                     HEAT SOURC
                                                                  THRST AREA NODE-VOLUME CONCENTRATION
1
         100
                        80
                                                                   17280
 ex8hs2.dat
INODE
         NUMBR
                    NAMEBR
                    12
1
         1
BRANCH
         UPNODE
                    DNNODE
                                OPTION
                                           DESCRIPTION
                                           "Orifice 12"
12
                                22
         1
BRANCH
         OPTION -22
                         AREA
                                       FLOW COEF
12
                         0.00785
                                       1
INITIAL FLOWRATES IN BRANCHES FOR UNSTEADY FLOW
12 0
```

EXAMPLE 8 HISTORY FILE

EX8HS2.DAT

2 0 14.700 80.00 1.00 1000 14.700 80.00 1.00

......

G F S S P (Version 5.0)
Generalized Fluid System Simulation Program
September, 2006
Developed by NASA/Marshall Space Flight Center
Copyright © by Marshall Space Flight Center

A generalized computer program to calculate flow rates, pressures, temperatures and concentrations in a flow network.

......

```
:Simulation of the Blow Down of a Pressurized Tank
TITLE
ANALYST : Alok Majumdar
FILEIN :C:\Program Files\GFSSP\Examples\Ex8\Ex8.dat
FILEOUT :Ex8.out
 LOGICAL VARIABLES
DENCON = F
GRAVITY = F
ENERGY = T
MIXTURE = F
THRUST = F
STEADY = F
TRANSV = T
SAVER
       = F
       = F
HEX
HCOEF = F
REACTING = F
INERTIA = F
CONDX
        = F
TWOD
TWOD = F
PRINTI = T
ROTATION = F
BUOYANCY = F
HRATE = F
       = F
INVAL
MSORCE = F
MOVBND = F
TPA
        = F
VARGEO = F
TVM
       = F
SHEAR
        = F
PRNTIN = T
PRNTADD = T
ADDPROP = T
PRESS = F
INSUC = F
VARROT = F
NORMAL = F
SECONDL = T
CONJUG = F
NRSOLVT = F
NNODES = 2
NINT = 1
NBR
        = 1
NF
        = 1
NVAR
       = 3
NHREF = 2
```

FLUIDS: IDEL

```
BOUNDARY NODES
NODE
     P
                    Τ
                                 RHO
                                              AREA
                     (F)
        (PSI) (F) (LBM/FT^3)
0.1470E+02 0.8000E+02 0.7355E-01
                                               (IN^2)
                                               0.0000E+00
INPUT SPECIFICATIONS FOR INTERNAL NODES
NODE
                    MASS
                                HEAT
       (IN^2)
                    (LBM/S)
                               (BTU/LBM)
                 0.0000E+00 0.0000E+00
       0.0000E+00
BRANCH
       UPNODE
                  DNNODE
                              OPTION
12
       1
                  2
                              2.2
BRANCH OPTION -22
                 FLOW COEF
                              AREA
                              0.785E-02
                 0.100E+01
12
INITIAL GUESS FOR INTERNAL NODES
      P(PSI)
                   TF(F)
                               Z(COMP)
                                            RHO
                                                         OUALITY
NODE:
                                             (LBM/FT^3)
       0.1000E+03
                   0.8000E+02
                              0.1000E+01
                                            0.5003E+00
                                                         0.0000E+00
1
TRIAL SOLUTION
BRANCH DELP(PSI)
                 FLOWRATE (LBM/SEC)
12
        0.0000
                  0.0000
SOLUTION SATISFIED CONVERGENCE CRITERION OF 0.100E-03 IN 7 ITERATIONS
:
SOLUTION SATISFIED CONVERGENCE CRITERION OF 0.100E-03 IN 7 ITERATIONS
TAU = 0.25000E + 02
     ISTEP = 25
BOUNDARY NODES
NODE P(PSI)
                 TF(F)
                                         RHO
                            Z(COMP)
                                                       OUALTTY
                                         (LBM/FT^3)
    0.1000E+01
                                        0.7355E-01
                                                       0.0000E+00
SOLUTION
INTERNAL NODES
 NODE P(PSI)
                 TF(F)
                                         RHO
                                                       EM(LBM)
                                                                    QUALITY
                                         (LBM/FT^3)
       0.8831E+02 0.6118E+02 0.1000E+01
                                         0.4578E+00
                                                       0.4578E+01
                                                                    0.0000E+00
 NODE H
                            EMU
                                         COND
                  ENTROPY
                                                       CP
                                                                    GAMA
      BTU/LB
                 BTU/LB-R
                            LBM/FT-SEC BTU/FT-S-R
                                                       BTU/LB-R
      0.4133E-05
                                                       0.2400E+00
                                                                    0.1400E+01
BRANCHES
BRANCH KFACTOR
                 DELP
                          FLOW RATE VELOCITY REYN. NO. MACH NO.
                                                                 ENTROPY GEN. LOST WORK
       (LBF-S^2/
                 (PSI)
                           (LBM/SEC)
                                     (FT/SEC)
                                                                  BTU/(R-SEC) LBF-FT/SEC
       (LBM-FT)^2)
       0.000E+00
                 0.736E+02 0.162E-01 0.647E+03 0.196E+06 0.579E+00 0.000E+00 0.000E+00
12
       ***** TOTAL ENTROPY GENERATION = 0.000E+00 BTU/(R-SEC) *****
       **** TOTAL WORK LOST = 0.000E+00 HP *****
SOLUTION SATISFIED CONVERGENCE CRITERION OF 0.100E-03 IN 7 ITERATIONS
TAU = 25.000000000000 ISTEP = 25
            :
            :
            :
```

ISTEP = 100TAU = 0.10000E + 03BOUNDARY NODES P(PSI) TF(F) Z(COMP) QUALITY (LBM/FT^3) 0.1470E+02 0.8000E+02 0.1000E+01 0.7355E-01 0.0000E+00 SOLUTION INTERNAL NODES TF(F) RHO QUALITY NODE P(PSI) EM(LBM) (LBM/FT^3) 0.0000E+00 0.6159E+02 0.1025E+02 0.1000E+01 0.3539E+00 0.3539E+01 NODE ENTROPY EMU COND CP GAMA BTU/LB BTU/LB-R LBM/FT-SEC BTU/FT-S-R BTU/LB-R 1 0.1294E+03 0.1501E+01 0.1260E-04 0.4133E-05 0.2400E+00 0.1400E+01 BRANCHES DELP FLOW RATE VELOCITY BRANCH KFACTOR REYN. NO. MACH NO. ENTROPY GEN. LOST WORK (LBF-S^2/ (FT/SEC) (PSI) (LBM/SEC) BTU/(R-SEC) LBF-FT/SEC (LBM-FT)^2) 0.000E+00 12 0.000E+00 0.469E+02 0.119E-01 0.615E+03 0.144E+06 0.579E+00 0.000E+00 **** TOTAL ENTROPY GENERATION = 0.000E+00 BTU/(R-SEC) ***** **** TOTAL WORK LOST = 0.000E+00 HP **** SOLUTION SATISFIED CONVERGENCE CRITERION OF 0.100E-03 IN 7 ITERATIONS TAU = 100.00000000000 ISTEP = 100: SOLUTION SATISFIED CONVERGENCE CRITERION OF 0.100E-03 IN 7 ITERATIONS TAII = 199.00000000000TSTEP = 199ISTEP = 200TAU = 0.20000E + 03BOUNDARY NODES NODE: P(PSI) TF(F) Z(COMP) RHO QUALITY (LBM/FT^3) 0.1470E+02 0.8000E+02 0.1000E+01 0.7355E-01 0.0000E+00 SOLUTION INTERNAL NODES NODE P(PSI) TF(F) RHO EM(LBM) QUALITY (LBM/FT^3) -0.4681E+02 0.1000E+01 0.3914E+02 0.2560E+01 0.0000E+00 0.2560E+00 NODE ENTROPY F.MII COND H CP GAMA BTU/LB-R LBM/FT-SEC BTU/FT-S-R BTU/LB-R BTU/LB 0.1501E+01 0.1294E+03 0.1260E-04 0.4133E-05 0.2400E+00 0.1400E+01 1 BRANCHES ENTROPY GEN. LOST WORK FLOW RATE BRANCH KFACTOR DELP VELOCITY REYN. NO. MACH NO. (LBF-S^2/ (PSI) (LBM/SEC) (FT/SEC) BTU/(R-SEC) LBF-FT/SEC (LBM-FT)^2) 12 0.000E+00 0.244E+02 0.804E-02 0.576E+03 0.976E+05 0.579E+00 0.000E+00 0.000E+00 ***** TOTAL ENTROPY GENERATION = 0.000E+00 BTU/(R-SEC) ***** **** TOTAL WORK LOST = 0.000E+00 HP ***** SOLUTION SATISFIED CONVERGENCE CRITERION OF 0.100E-03 IN 7 ITERATIONS TAU = 200.00000000000 ISTEP = 200 TIME OF ANALYSIS WAS 0.260374400000000 SECS

APPENDIX L—INPUT AND OUTPUT DATA FILES FROM EXAMPLE 9

A Reciprocating Piston-Cylinder

Contents	Page
Example 9 Input File	47
Example 9 History File	48
Example 9 Output File (Partial)	51

```
GFSSP VERSION
  503
GFSSP INSTALLATION PATH
C:\Program Files\GFSSP\
ANALYST
Paul Schallhorn
INPUT DATA FILE NAME
C:\Program Files\GFSSP\Examples\Ex9\Ex9.dat
OUTPUT FILE NAME
Ex9.out
TITLE
A Reciprocating Piston-Cylinder
USETUP
F
DENCON
           GRAVITY
                       ENERGY
                                   MIXTURE
                                                THRUST
                                                            STEADY
                                                                        TRANSV
                                                                                    SAVER
F
                       Τ
                                                F
                                                                                    ROTATION
HEX
           HCOEF
                       REACTING
                                   INERTIA
                                                CONDX
                                                            ADDPROP
                                                                        PRINTI
           F
                       F
                                                F
                                                            F
                                                                        F
                                                                                    F
BUOYANCY
                                                MOVBND
           HRATE
                       TNVAL
                                   MSORCE
                                                            TPA
                                                                        VARGEO
                                                                                    TVM
                                                            F
                                                                        Τ
           Τ
                                                Τ
           PRNTIN
                                                            CONJUG
                                                                                    WINPLOT
SHEAR
                       PRNTADD
                                   OPVALVE
                                                TRANSQ
                                                                        RADIAT
F
           F
                       Τ
                                                F
                                                            F
                                                                        F
                       VARROT
                                                                        DALTON
PRESS
           INSUC
                                   CYCLIC
                                                CHKVALS
                                                            WINFILE
F
           F
                       F
                                   F
                                                F
                                                            F
                                                                        F
NORMAL
           SIMUL
                       SECONDL
                                   NRSOLVT
F
           Т
                       Τ
                                   F
NNODES
           NINT
                       NBR
2
           2
                       1
                                   1
RELAXK
           RELAXD
                       RELAXH
                                   CC
                                                NITER
                                   0.0001
1
           0.5
                       1
                                                500
DTAU
           TIMEF
                       TIMEL
                                   NPSTEP
                                                NPWSTEP
0.0001
           0
                       0.05
                                    1
                                                1
NFLUID(I), I = 1, NF
4
                    DESCRIPTION
         INDEX
NODE
1
                    "Node 1"
         1
                    "Node 2"
2
         1
NODE
        PRES (PSI)
                      TEMP (DEGF)
                                    MASS SOURC
                                                  HEAT SOURC
                                                                 THRST AREA
                                                                               NODE-VOLUME
                                                                                             CONCENTRATION
1
        14.7
                      75
                                    0
                                                  0
                                                                 0
                                                                               0
 2
        14.7
                      75
                                    0
                                                   0
                                                                 0
                                                                               0
ex9vg.dat
INODE
                  NAMEBR
        NUMBR
1
        1
                  12
 2
        1
                  12
BRANCH
          UPNODE
                         DNNODE
                                     OPTION
                                                DESCRIPTION
12
                         2
                                     1
                                                 "Pipe 12"
          1
                                                EPSD
                                                                  ANGLE
                                                                             AREA
BRANCH
          OPTION -1
                        LENGTH
                                     DIA
                        7
                                     3
                                                                             7.0686
INITIAL FLOWRATES IN BRANCHES FOR UNSTEADY FLOW
12 0
NUMBER OF NODES WITH MOVING BOUNDARY
2
NODE
1
 2
```

VARIABLE 41	GEOMETRY	HISTORY FILE		
0.000000	0.0000	0.0000	0.0000	0.0000
0.001250	0.0000	0.0000	0.0000	0.0000
0.002500	0.0000	0.0000	0.0000	0.0000
0.003750	0.0000	0.0000	0.0000	0.0000
0.005000	0.0000	0.0000	0.0000	0.0000
0.006250	0.0000	0.0000	0.0000	0.0000
0.007500	0.0000	0.0000	0.0000	0.0000
0.008750	0.0000	0.0000	0.0000	0.0000
0.010000 0.011250	0.0000	0.0000	0.0000	0.0000
0.012500	0.0000	0.0000	0.0000	0.0000
0.013750	0.0000	0.0000	0.0000	0.0000
0.015000	0.0000	0.0000	0.0000	0.0000
0.016250	0.0000	0.0000	0.0000	0.0000
0.017500	0.0000	0.0000	0.0000	0.0000
0.018750	0.0000	0.0000	0.0000	0.0000
0.020000 0.021250	0.0000	0.0000	0.0000	0.0000
0.021230	0.0000	0.0000	0.0000	0.0000
0.023750	0.0000	0.0000	0.0000	0.0000
0.025000	0.0000	0.0000	0.0000	0.0000
0.026250	0.0000	0.0000	0.0000	0.0000
0.027500	0.0000	0.0000	0.0000	0.0000
0.028750	0.0000	0.0000	0.0000	0.0000
0.030000	0.0000	0.0000	0.0000	0.0000
0.031250 0.032500	0.0000	0.0000	0.0000	0.0000
0.032300	0.0000	0.0000	0.0000	0.0000
0.035000	0.0000	0.0000	0.0000	0.0000
0.036250	0.0000	0.0000	0.0000	0.0000
0.037500	0.0000	0.0000	0.0000	0.0000
0.038750	0.0000	0.0000	0.0000	0.0000
0.040000	0.0000	0.0000	0.0000	0.0000
0.041250 0.042500	0.0000	0.0000	0.0000	0.0000
0.042300	0.0000	0.0000	0.0000	0.0000
0.045000	0.0000	0.0000	0.0000	0.0000
0.046250	0.0000	0.0000	0.0000	0.0000
0.047500	0.0000	0.0000	0.0000	0.0000
0.048750	0.0000	0.0000	0.0000	0.0000
0.050000	0.0000	0.0000	0.0000	0.0000
BRANCH VOLU	ин. 49.4800	0.0000	100.000	0.0000
0.001250	49.2189		100.000	0.0000
0.002500	48.4421		100.000	0.0000
0.003750	47.1687	0.0000	100.000	0.0000
0.005000	45.4300		100.000	0.0000
0.006250	43.2689		100.000	0.0000
0.007500	40.7386		100.000	0.0000
0.008750 0.010000	37.9014 34.8271		100.000	0.0000
0.011250	31.5915		100.000	0.0000
0.012500	28.2742		100.000	0.0000
0.013750	24.9569		100.000	0.0000
0.015000	21.7213		100.000	0.0000
0.016250	18.6470		100.000	0.0000
0.017500	15.8098		100.000	0.0000
0.018750 0.020000	13.2795 11.1184		100.000	0.0000
0.021250	9.37983		100.000	0.0000
0.022500	8.10644		100.000	0.0000
0.023750	7.32964	0.0000	100.000	0.0000
0.025000	7.06857		100.000	0.0000
0.026250	7.32964		100.000	0.0000
0.027500 0.028750	8.10644 9.37983		100.000	0.0000
0.030000	11.1184		100.000	0.0000
0.031250	13.2795		100.000	0.0000
0.032500	15.8098	0.0000	100.000	0.0000

0.033750 0.035000 0.036250 0.037500 0.038750 0.040000 0.041250 0.042500 0.043750 0.045000 0.046250 0.047500 0.048750 0.048750	18.64704 21.72130 24.95692 28.27423 31.59153 34.82716 37.90143 40.73865 43.26896 45.43005 47.16871 48.44213 49.21895 49.48004	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
BRANCH 0.000000 0.001250 0.002500 0.003750 0.005000 0.006250 0.007500 0.012500 0.012500 0.012500 0.015000 0.015000 0.015000 0.015000 0.015000 0.015000 0.025000 0.025000 0.025000 0.025000 0.025000 0.025000 0.025000 0.025000 0.025000 0.03750 0.036250 0.037500 0.036250 0.037500 0.042500 0.0445000 0.0445000 0.0445500	AREA 7.06858347	1.0000 1.0000	1.0000 1.0000	1.0000 1.0000
0.047500 0.048750 0.050000 1 0.000000 0.001250 0.002500 0.003750 0.006250 0.007500 0.008750 0.01250 0.01250 0.01250 0.013750 0.015000 0.016250	7.06858347 7.06858347 7.06858347 7.06858347 7.06858347 7.06858347 7.06858347 7.06858347 7.06858347 7.06858347 7.06858347 7.06858347 7.06858347 7.06858347 7.06858347 7.06858347 7.06858347	1.0000 1.0000 1.0000 0.000000 2.457263 4.854020 7.131254 9.232895 11.10719 12.70799 13.99588 14.93914 15.51456 15.70795 15.51456 14.93916 13.99590	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000

0.017500 0.018750 0.020000 0.021250 0.022500 0.023750 0.025000 0.026250 0.027500 0.028750 0.038750 0.031250 0.032500 0.033750 0.036250 0.037500 0.038750 0.038750 0.041250 0.042500 0.042500 0.042500 0.042500 0.042500 0.048750 0.048750 0.0500000	7.06858347 7.06858347	12.70802 11.10722 9.232928 7.131292 4.854059 2.457304 0.000000 -2.457222 -4.853980 -7.131217 -9.232861 -11.10716 -12.70797 -13.99586 -14.93913 -15.51455 -15.70795 -15.51457 -14.93917 -13.99592 -12.70804 -11.10725 -9.232962 -7.131329 -4.854099 -2.457345 0.000000
2 0.000000 0 0.001250 0.002500 0.006250 0.007500 0.011250 0.012500 0.012500 0.01250 0.015000 0.016250 0.016250 0.018750 0.020000 0.021250 0.022500 0.022500 0.023750 0.025000 0.026250 0.027500 0.028750 0.03000 0.031250 0.032500 0.031250 0.032500 0.033750 0.035000 0.036250 0.037500 0.036250 0.037500 0.038750 0.038750 0.038750 0.038750 0.041250 0.042500 0.041250 0.042500 0.042500 0.042500 0.044500 0.046250 0.048750 0.048750 0.048750 0.048750 0.048750 0.050000	7.06858347 7.06858347	0.000000 2.457263 4.854020 7.131254 9.232895 11.10719 12.70799 13.99588 14.93914 15.51456 15.70795 15.51456 14.93916 13.99590 12.70802 11.10722 9.232928 7.131292 4.854059 2.457304 0.000000 -2.457222 -4.853980 -7.131217 -9.232861 -11.10716 -12.70797 -13.99586 -14.93913 -15.51455 -15.70795 -15.51457 -14.93917 -13.99592 -12.70804 -11.10725 -9.232962 -7.131329 -4.854099 -2.457345 0.000000

G F S S P (Version 5.0)

Generalized Fluid System Simulation Program September, 2006
Developed by NASA/Marshall Space Flight Center

Copyright © by Marshall Space Flight Center

A generalized computer program to calculate flow rates, pressures, temperatures and concentrations in a flow network.

```
TITLE : A Reciprocating Piston-Cylinder
ANALYST: Paul Schallhorn
FILEIN :C:\Program Files\GFSSP\Examples\Ex9\Ex9.dat
FILEOUT :Ex9.out
LOGICAL VARIABLES
DENCON = F
GRAVITY = F
ENERGY
MIXTURE = F
 THRUST
        = F
 STEADY
        = T
TRANSV
 SAVER = F
HEX
         = F
         = F
 HCOEF
REACTING = F
 INERTIA = F
 CONDX
         = F
 TWOD
 PRINTI
         = F
 ROTATION = F
 BUOYANCY = F
        = T
HRATE
 INVAL
         = F
MSORCE = F
MOVBND = T
         = F
 TPA
 VARGEO
        = T
 TVM
         = F
         = F
SHEAR
 PRNTIN
        = F
PRNTADD = T
ADDPROP = F
 PRESS
         = F
 INSUC
         = F
 VARROT
         = F
        = F
NORMAL
 SECONDL = T
CONJUG = F
NRSOLVT = F
NNODES = 2
NINT = 2
NBR = 1
NF
      = 1
NVAR = 5
NHREF = 2
FLUIDS: N2
BOUNDARY NODES
                        RHO
                         (LBM/FT^3)
        (PSI)
                                       (IN^2)
                  (F)
      ISTEP = 1
                     TAU = 0.10000E-03
BOUNDARY NODES
      P(PSI) TF(F) Z(COMP) RHO
NODE
                                               QUALITY
                                                          (LBM/FT^3)
```

SOLUTIO INTERNA NODE	ON AL NODES P(PSI)	TF(F)	Z	RHO	EM(LBM)	QUALITY		
1 2	0.1471E+02 0.1471E+02	0.7510E+02 0.7510E+02	0.1000E+01 0.1000E+01	(LBM/FT ³) 0.7182E-01 0.7182E-01	0.1028E-02 0.1028E-02	0.1000E+01 0.1000E+01		
NODE	H BTU/LB	ENTROPY BTU/LB-R	EMU LBM/FT-SEC	COND BTU/FT-S-R	CP BTU/LB-R	GAMA		
1 2	0.1975E+03 0.1975E+03	0.1054E+01 0.1054E+01	0.1199E-04 0.1199E-04	0.4154E-05 0.4154E-05	0.2487E+00 0.2487E+00	0.1401E+01 0.1401E+01		
BRANCHI BRANCI		(PSI) (L	OW RATE VELOCI BM/SEC) (FT/SE		. MACH NO. BTU/(R-SEC)	ENTROPY GEN. LBF-FT/SEC	LOST WORK	
12	0.000E+00		000E+00 0.000E	+00 0.000E+00	0.000E+00	0.000E+00	0.000E+00	
	**** TOTAL	ENTROPY GENERAL	TION = 0.000E	+00 BTU/(R-SEC	C) *****			
	**** TOTAL W	NORK LOST =	0.000E+00 HP *	****				
	: : :							
	ISTEP = 250	TAU = 0.2500	00E-01					
BOUNDA	RY NODES NODE P(PSI) TF(F) Z(COM (LBM/FT^3)	P) RHO QUALIT	Y				
SOLUTIO								
NODE	AL NODES P(PSI)	TF(F)	Z	RHO (LBM/FT^3)	EM(LBM)	QUALITY		
1 2	0.2235E+03 0.2235E+03	0.6933E+03 0.6933E+03	0.1007E+01 0.1007E+01	0.5024E+00 0.5024E+00	0.1028E-02 0.1028E-02	0.1000E+01 0.1000E+01		
NODE	H BTU/LB	ENTROPY BTU/LB-R	EMU LBM/FT-SEC	COND BTU/FT-S-R	CP BTU/LB-R	GAMA		
1 2	0.3536E+03 0.3536E+03	0.1054E+01 0.1054E+01	0.2052E-04 0.2052E-04	0.7338E-05 0.7338E-05	0.2597E+00 0.2597E+00	0.1382E+01 0.1382E+01		
BRANCH BRANCH	KFACTOR I		RATE VELOCITY /SEC) (FT/SEC)		MACH NO.	ENTROPY GEN. BTU/(R-SEC)	LOST WORK LBF-FT/SEC	
12		0.000E+00 0.62	0E-23 0.251E-2	0.154E-17	0.149E-24	0.658E-54	0.590E-48	
	***** TOTAL ENTROPY GENERATION = 0.658E-54 BTU/(R-SEC) ******							
	**** TOTAL WORK LOST = 0.107E-50 HP *****							
AT ISTEP= 250 WARNING! CHKGASP: T out of fluid property range at node 1								
	o. ciii(dibi. i	out or rrura pr	operty range at	11000				

:

ISTEP = 500 TAU = 0.50000E-01

BOUNDAF	RY NODES								
	NODE	P(PSI)		TF(F)		Z(COMP)	RHO (LBM/FT^3)	QUALITY	
SOLUTIO									
INTERNA	AL NODES								
NODE	P(PSI)	TF(F)		Z		RHO (LBM/FT^3)	EM(LBM)	QUALITY	
1	0.1470E+02	0.7501E+	0.2	0.100	00E+01	0.7179E-01	0.1028E-02	0.1000E+0	1
2	0.1470E+02	0.7501E+			00E+01	0.7179E-01	0.1028E-02	0.1000E+0	
2	0.14701102	0.75011	02	0.100	701101	0.71796 01	0.10201 02	0.1000010	L
NODE	Н	ENTROPY		EMU		COND	CP	GAMA	
	BTU/LB	BTU/LB-R		LBM/I	T-SEC	BTU/FT-S-R	BTU/LB-R		
1	0.1975E+03	0.1054E+	01	0.119	99E-04	0.4153E-05	0.2487E+00	0.1401E+01	1
2	0.1975E+03	0.1054E+	01	0.119	99E-04	0.4153E-05	0.2487E+00	0.1401E+01	1
_	0.13,02,00	0.10012	· ·	0.11.	,,,,	0.11002 00	0.210,2.00	0.11012.0	-
	BRANCHES								
BRANCH	KFACTOR	DELP	FLOW	RATE	VELOCITY	REYN. NO.	MACH NO.	ENTROPY GEN.	LOST WORK
	(LBF-S^2/	(PSI)	(LBM/	SEC)	(FT/SEC)		BTU/(R-SEC)	LBF-FT/SEC	
	(LBM-FT)^2)	(/	(/	,	(,,		, (,		
12	0.510E+22	0.000E+00	0.620	E-23	0.176E-20	0.263E-17	0.152E-23	0.406E-52	0.169E-46
	0.0101.22	0.0000100	0.020		0.1.00 20	0.2000 17	0.1028 20	0.1002 02	0.1000 10

**** TOTAL ENTROPY GENERATION = 0.406E-52 BTU/(R-SEC) *****

**** TOTAL WORK LOST = 0.307E-49 HP ****

TIME OF ANALYSIS WAS 1.09156960000000 SECS

APPENDIX M—INPUT AND OUTPUT DATA FILES FROM EXAMPLE 10

Power Balancing of a Turbopump Assembly

Contents	Page
Example 10 Input File	55
Example 10 Pump Characteristic Data File	58
Example 10 Output File	59

```
GFSSP VERSION
   503
GFSSP INSTALLATION PATH
C:\Program Files\GFSSP\
ANALYST
INPUT DATA FILE NAME
C:\Program Files\GFSSP\Examples\Ex10\Ex10.dat
OUTPUT FILE NAME
Ex10.out
TITLE
Power Balancing of a Turbopump Assembly
USETUP
F
DENCON
             GRAVITY
                          ENERGY
                                          MIXTURE
                                                        THRUST
                                                                    STEADY
                                                                                   TRANSV
                                                                                               SAVER
F
                                                        F
                                                                                               ROTATION
HEX
             HCOEF
                          REACTING
                                          INERTIA
                                                        CONDX
                                                                    ADDPROP
                                                                                   PRINTI
Т
                                          F
                                                        F
                                                                    F
                                                                                   F
                                                                                               F
             Т
                          F
BUOYANCY
             HRATE
                          TNVAL
                                          MSORCE
                                                        MOVBND
                                                                    TPA
                                                                                   VARGEO
                                                                                               TVM
                          F
                                          F
                                                        F
                                                                    Τ
                                                                                               WINPLOT
SHEAR
             PRNTIN
                          PRNTADD
                                          OPVALVE
                                                        TRANSQ
                                                                    CONJUG
                                                                                   RADIAT
F
             F
                                          F
                                                        F
                                                                    F
                                                                                   F
             INSUC
                          VARROT
                                          CYCLIC
                                                        CHKVALS
PRESS
                                                                    WINFILE
                                                                                   DALTON
                          F
                                          F
                                                        F
                                                                    Τ
                                                                                   F
NORMAL
             SIMUL
                          SECONDL
                                         NRSOLVT
             Τ
                          F
                                          F
NNODES
             NINT
                          NBR
                                          NF
20
             17
                          2.0
                                          1
RELAXK
             RELAXD
                          RELAXH
                                          CC
                                                        NITER
1
             0.5
                                          0.0001
                                                        500
                          1
NFLUID(I), I = 1, NF
1.0
NODE
          INDEX
                     DESCRIPTION
                     "Node 1"
 1
          2
                     "Node 2"
 2
          1
 3
                     "Node 3"
                     "Node 4"
          1
 4
                     "Node 5"
 5
          1
                     "Node 6"
          1
 6
                     "Node 7"
 7
 8
                     "Node 8"
                     "Node 9"
 9
          1
 10
          1
                     "Node 10"
                     "Node 11"
 11
          1
 12
                     "Node 12"
                     "Node 13"
 1.3
          1
 14
          1
                     "Node 14"
 15
          1
                     "Node 15"
                     "Node 16"
 16
          1
 17
                     "Node 17"
                     "Node 18"
 18
          1
 19
          1
                     "Node 19"
                     "Node 20"
 20
          2
                          TEMP (DEGF)
NODE
          PRES (PSI)
                                         MASS SOURC
                                                         HEAT SOURC
                                                                         THRST AREA
                                                                                          CONCENTRATION
 1
          60
                          -419
                                          0
                                                         0
                                                                         0
                          -419
 2
          25
                                          0
                                                         0
                                                                         0
 3
          25
                          -419
                                                         0
                                                                         0
                                          0
                          -419
                                                         0
 4
          2.5
                                          0
                                                                         0
 5
          25
                          -419
                                          0
                                                         0
                                                                         0
          25
                          -419
                                                         0
                                                                         0
 6
                                          0
 7
          25
                          -419
                                          0
                                                         0
                                                                         0
                                                         0
 8
          25
                          -419
                                          0
                                                                         0
                          -419
                                                         0
 9
          25
                                          0
                                                                         0
 10
          25
                          -419
                                                         0
                                                                         0
                                          0
                          -419
                                                         0
 11
          25
                                          0
                                                                         0
 12
          25
                          -419
                                          0
                                                         0
                                                                         0
 13
          2.5
                          -419
                                          0
                                                         0
                                                                         0
 14
          25
                          -419
                                          0
                                                         0
                                                                         0
 15
          25
                          -419
                                          0
                                                         0
                                                                         0
 16
          2.5
                          -419
                                          0
                                                         0
                                                                         0
 17
```

14.7

18 19 20	25 25 14.7	-419 -419 80	0 0 0	200 0 0		0 0 0
INODE 2	NUMBR 2	NAMEBR 12	23			
3 4	2	23 34	34 45	46		
5	2	45	57	10		
6 7	2 2	46 57	68 78			
8	3	78	68	89		
9 10	2 2	89 910	910 1011			
11	2	1011	1112			
12 13	2 2	1112 1213	1213 1314			
14	2	1314	1415			
15 16	2	1415 1516	1516 1617	1618		
18	2	1618	1819			
19 BRANCH	2 UPNODE	1819 DNNODE	1920 OPTION	DESCRIPTION	N.	
12	1	2	16	"CV 12"		
23 34	2	3 4	15 1	"Pump 23" "Pipe 34"		
45	4	5	1	"Pipe 45"		
57 78	5 7	7 8	1	"Pipe 57" "Pipe 78"		
46	4	6	1	"Pipe 46"		
68 89	6 8	8 9	1 16	"Pipe 68" "CV 89"		
910	9	10	1	"Pipe 910"		
1011 1112	10 11	11 12	1 16	"Pipe 1011'	T	
1213	12	13	15	"Pump 1213'	•	
1314 1415	13 14	14 15	1	"Pipe 1314"		
1516	15	16	1	"Pipe 1516'		
1617 1618	16 16	17 18	16 16	"CV 1617" "CV 1618"		
1819	18	19	1	"Pipe 1819	"	
1920	19	20	1	"Pipe 1920'	"	
BRANCH 12	OPTION -16	5 CV 2.877	AREA 0.196	35		
BRANCH 23	OPTION -15	HORSEPOWE 0	ER EFFIC 0.8		EA 12112	
BRANCH	OPTION -1	LENGTH	DIA	EPSD .	ANGLE	AREA
34 BRANCH	OPTION -1	100 LENGTH	0.3927 DIA	0.0025 EPSD	0 ANGLE	0.12112 AREA
45	OTITON I	100	0.3927	0.0025	0	0.12112
BRANCH 57	OPTION -1	LENGTH 100	DIA 0.3927	EPSD 0.0025	ANGLE 0	AREA 0.12112
BRANCH	OPTION -1	LENGTH	DIA	EPSD	ANGLE	AREA
78 BRANCH	OPTION -1	100 LENGTH	0.3927 DIA	0.0025 EPSD	0 ANGLE	0.12112 AREA
46	OFIION -I	100	0.3927	0.0025	0	0.12112
BRANCH 68	OPTION -1	LENGTH 100	DIA 0.3927	EPSD 0.0025	ANGLE 0	AREA 0.12112
BRANCH	OPTION -16		AREA	0.0023	U	0.12112
89	ODETON 1	3.554	0.19635	EDCD	ANCIE	7 D E 7
BRANCH 910	OPTION -1	LENGTH 100	DIA 0.3927	EPSD 0.0025	ANGLE 0	AREA 0.12112
BRANCH	OPTION -1	LENGTH	DIA	EPSD	ANGLE	AREA
1011 BRANCH	OPTION -16	100 5 CV	0.3927 AREA	0.0025	0	0.12112
1112		3.554	0.19635	W 3000		
BRANCH 1213	OPTION -15	HORSEPOWER 0	EFFICIENO 1	0.019635		
BRANCH	OPTION -1	LENGTH	DIA	EPSD	ANGLE	AREA
1314		100	0.3927	0.0025	0	0.12112

BRANCH 1415 BRANCH 1516	OPTION -1 OPTION -1	100			EPSD 0.0025 EPSD 0.0025	ANGLE 0 ANGLE 0	AREA 0.12112 AREA 0.12112	
	OPTION -16	CV		AREA	0.0023	0	0.12112	
1617		0.00354		0.01				
BRANCH	OPTION -16	CV		AREA				
1618		3.554		0.19635				
BRANCH	OPTION -1	LENGTH		DIA	EPSD	ANGLE	AREA	
1819		100		0.3927	0.0025	0	0.12112	
	OPTION -1				EPSD	ANGLE	AREA	
1920		100		0.3927	0.0025	0	0.12112	
NUMBER (OF HEAT EXCHA	NGERS						
IBRHOT	IBRCLD	ITYPHX	ARHO	T ARCOLD	UA	HEXEFF		
1415	57	2	0	0	0	0.8		
1819	910	2	0	0	0	0.9		
NUMBER OF TURBOPUMP ASSEMBLY IN THE CIRCUIT								
IBRPMP	IBRTRB	SPEED (RPM)]	EFFTURB	DIATRB	PSITRD		
23	1213	80000		0.5	3.435	0.4		
PUMP CH	ARACTERISTICS	CURVE DAT	A FIL	E				
ex11pmp	23.dat							

Example 10 Pump Characteristic Data File EX11PMP23.DAT

18		
0.000	8.680E-06	0.000
3.035E-05	8.971E-06	8.8724E-10
6.071E-05	9.190E-06	9.7065E-10
9.106E-05	9.341E-06	1.0804E-09
1.214E-04	9.436E-06	1.2166E-09
1.518E-04	9.486E-06	1.3393E-09
1.821E-04	9.486E-06	1.4570E-09
2.125E-04	9.445E-06	1.5644E-09
2.428E-04	9.372E-06	1.6733E-09
2.732E-04	9.263E-06	1.7872E-09
3.035E-04	9.117E-06	1.9105E-09
3.339E-04	8.935E-06	2.0558E-09
3.643E-04	8.753E-06	2.2161E-09
3.718E-04	8.689E-06	2.2698E-09
3.749E-04	8.625E-06	2.2869E-09
3.794E-04	8.479E-06	2.3215E-09
3.807E-04	8.388E-06	2.3281E-09
3.810E-04	0.000E+00	0.000

G F S S P (Version 5.0)

Generalized Fluid System Simulation Program September, 2006
Developed by NASA/Marshall Space Flight Center

Copyright © by Marshall Space Flight Center

A generalized computer program to calculate flow rates, pressures, temperatures and concentrations in a flow network.

```
:Power Balancing of a Turbopump Assembly
ANALYST :PS\
FILEIN :C:\Program Files\GFSSP\Examples\Ex11\Ex11.dat\
FILEOUT :Ex11.out\
LOGICAL VARIABLES
DENCON = F
GRAVITY = F
ENERGY = T
MIXTURE = F
THRUST = F
 STEADY
TRANSV = F
 SAVER = F
        = T
HEX
HCOEF
REACTING = F
 INERTIA = F
 CONDX = F
 TWOD
        = F
 PRINTI = F
ROTATION = F
 BUOYANCY = F
       = T
HRATE
 INVAL
       = F
MSORCE = F
MOVBND = F
        = T
TPA
 VARGEO = F
 TVM
        = F
        = F
SHEAR
 PRNTIN = F
 PRNTADD = T
ADDPROP = F
 PRESS = F
 INSUC
        = F
VARROT = F
NORMAL = F
 SECONDL = F
CONJUG = F
NRSOLVT = F
NNODES = 20
NINT
        = 17
        = 20
NBR
NF
        = 1
NVAR
        = 37
       = 2
NHREF
FLUIDS: H2
```

BOUNDARY	NODES			
NODE	P	T	RHO	AREA
	(PSI)	(F)	(LBM/FT^3)	(IN^2)
1	0.6000E+02	-0.4190E+03	0.4267E+01	0.0000E+00
17	0.1470E+02	0.8000E+02	0.5112E-02	0.0000E+00
20	0.1470E+02	0.8000E+02	0.5112E-02	0.0000E+00

1								
IBRPMP	IBRTRB SPE	ED(RPM)	ETATRB	PSITR	TORQU	JE (LB-IN)	HPOWER	
23 1213	3 0.800E+05		0.000E+00	0.000E+0	0.000	E+00	0.000E+	.00
SOLUTION	N							
INTERNAI	L NODES							
NODE	P(PSI)	TF(F)	Z		RHO	EM(LBN	1)	QUALITY
					(LBM/FT^3)			
2	0.5542E+02	-0.4190E	+03 0.603	12E-01	0.4262E+01	0.0000	E+00	0.0000E+00
3	0.1790E+04	-0.4074E	+03 0.13	70E+01	0.4700E+01	0.0000	E+00	0.0000E+00
4	0.1780E+04	-0.4072E	+03 0.13	51E+01	0.4693E+01	0.0000	E+00	0.0000E+00
5	0.1778E+04	-0.4072E	+03 0.13	50E+01	0.4692E+01	0.0000	E+00	0.0000E+00
6	0.1775E+04	-0.4072E	+03 0.13	57E+01	0.4690E+01	0.0000	E+00	0.0000E+00
7	0.1777E+04	-0.1462E	+03 0.10	91E+01	0.9764E+00	0.0000	E+00	0.1000E+01
8	0.1771E+04	-0.3066E	+03 0.10	63E+01	0.2046E+01	0.0000	E+00	0.1000E+01
9	0.1765E+04	-0.3066E	+03 0.10	52E+01	0.2040E+01	0.0000	E+00	0.1000E+01
10	0.1741E+04	0.1474E	+03 0.10	65E+01	0.5061E+00	0.0000	E+00	0.1000E+01
11	0.1645E+04	0.1478E	+03 0.10	51E+01	0.4794E+00	0.0000	E+00	0.1000E+01
12	0.1618E+04	0.1479E	+03 0.10	50E+01	0.4719E+00	0.0000	E+00	0.1000E+01
13	0.1078E+04	0.9029E	+02 0.10	43E+01	0.3531E+00	0.0000	E+00	0.1000E+01
14	0.9403E+03	0.9075E	+02 0.103	38E+01	0.3093E+00	0.0000	E+00	0.1000E+01
15	0.7830E+03	-0.3869E	+01 0.103	34E+01	0.3120E+00	0.0000	E+00	0.1000E+01
16	0.6272E+03	-0.3550E	+01 0.102	28E+01	0.2514E+00	0.0000	E+00	0.1000E+01
18	0.5766E+03	0.2489E	+03 0.102	20E+01	0.1498E+00	0.0000	E+00	0.1000E+01
19	0.2539E+03	-0.2250E	+03 0.100	08E+01	0.2016E+00	0.0000	E+00	0.1000E+01
NODE	Н	ENTROPY	EMU		COND	CP		GAMA
	BTU/LB	BTU/LB-R	LBM/I	FT-SEC	BTU/FT-S-R	BTU/LE	8-R	
2	-0.9824E+02	0.6868E+	01 0.76	36E-05	0.1636E-04		D . O1	
3	-0.2292E+02	0.00000				0.2562	' F: + U	0.1935E+01
		0.6868E+	01 0.998	34E-05		0.2562		0.1935E+01 0.1536E+01
4		0.6868E+ 0.6868E+		34E-05 26E-05	0.2255E-04	0.2462	E+01	0.1536E+01
4 5	-0.2292E+02	0.6868E+	01 0.992	26E-05	0.2255E-04 0.2252E-04	0.2462	E+01 E+01	0.1536E+01 0.1539E+01
5			01 0.992 01 0.993		0.2255E-04	0.2462	E+01 E+01 E+01	0.1536E+01
	-0.2292E+02 -0.2292E+02	0.6868E+ 0.6868E+	01 0.992 01 0.993 01 0.993	26E-05 19E-05	0.2255E-04 0.2252E-04 0.2251E-04	0.2462 0.2469 0.2469	2E+01 9E+01 9E+01 2E+01	0.1536E+01 0.1539E+01 0.1540E+01
5 6 7	-0.2292E+02 -0.2292E+02 -0.2292E+02	0.6868E+ 0.6868E+ 0.6868E+	01 0.993 01 0.993 01 0.990 01 0.444	26E-05 19E-05 01E-05	0.2255E-04 0.2252E-04 0.2251E-04 0.2251E-04	0.2462 0.2469 0.2469 0.2472	2E+01 9E+01 9E+01 2E+01 E+01	0.1536E+01 0.1539E+01 0.1540E+01 0.1541E+01
5 6	-0.2292E+02 -0.2292E+02 -0.2292E+02 0.9610E+03	0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+	01 0.993 01 0.993 01 0.994 01 0.444 01 0.364	26E-05 19E-05 01E-05 49E-05	0.2255E-04 0.2252E-04 0.2251E-04 0.2251E-04 0.2579E-04	0.2469 0.2469 0.2469 0.2472 0.4051	EE+01 EE+01 EE+01 EE+01 EE+01	0.1536E+01 0.1539E+01 0.1540E+01 0.1541E+01 0.1394E+01
5 6 7 8	-0.2292E+02 -0.2292E+02 -0.2292E+02 0.9610E+03 0.3228E+03 0.3228E+03	0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+	01 0.99 01 0.99 01 0.99 01 0.44 01 0.36 01 0.36	26E-05 19E-05 01E-05 49E-05 49E-05 44E-05	0.2255E-04 0.2252E-04 0.2251E-04 0.2251E-04 0.2579E-04 0.1629E-04 0.1627E-04	0.2462 0.2469 0.2469 0.2472 0.4051 0.3731	2E+01 2E+01 2E+01 2E+01 E+01 2E+01 2E+01	0.1536E+01 0.1539E+01 0.1540E+01 0.1541E+01 0.1394E+01 0.1813E+01
5 6 7 8 9	-0.2292E+02 -0.2292E+02 -0.2292E+02 0.9610E+03 0.3228E+03	0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+	01 0.99 01 0.99 01 0.99 01 0.44 01 0.36 01 0.36	26E-05 19E-05 01E-05 49E-05 49E-05 44E-05	0.2255E-04 0.2252E-04 0.2251E-04 0.2251E-04 0.2579E-04 0.1629E-04	0.2462 0.2463 0.2463 0.2472 0.4051 0.3731	2E+01 2E+01 2E+01 E+01 E+01 E+01 2E+01 2E+01	0.1536E+01 0.1539E+01 0.1540E+01 0.1541E+01 0.1394E+01 0.1813E+01 0.1813E+01
5 6 7 8 9 10	-0.2292E+02 -0.2292E+02 -0.2292E+02 0.9610E+03 0.3228E+03 0.3228E+03	0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+	01 0.993 01 0.993 01 0.996 01 0.444 01 0.366 01 0.655 01 0.655	26E-05 19E-05 01E-05 49E-05 49E-05 44E-05	0.2255E-04 0.2252E-04 0.2251E-04 0.2251E-04 0.2579E-04 0.1629E-04 0.1627E-04 0.3408E-04	0.2462 0.2469 0.2469 0.2472 0.4051 0.3731 0.3730	EE+01 EE+01 EE+01 EE+01 EE+01 EE+01 EE+01 EE+01 EE+01	0.1536E+01 0.1539E+01 0.1540E+01 0.1541E+01 0.1394E+01 0.1813E+01 0.1813E+01 0.1411E+01
5 6 7 8 9 10 11	-0.2292E+02 -0.2292E+02 -0.2292E+02 0.9610E+03 0.3228E+03 0.3228E+03 0.2065E+04	0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+	01 0.993 01 0.993 01 0.999 01 0.444 01 0.366 01 0.655 01 0.655 01 0.655	26E-05 19E-05 01E-05 49E-05 49E-05 44E-05 67E-05	0.2255E-04 0.2252E-04 0.2251E-04 0.2251E-04 0.2579E-04 0.1629E-04 0.1627E-04 0.3408E-04	0.2462 0.2469 0.2469 0.2472 0.4051 0.3731 0.3730 0.3538	E + 01 D + 01 D + 01 D + 01 E + 01 E + 01 D + 01	0.1536E+01 0.1539E+01 0.1540E+01 0.1541E+01 0.1394E+01 0.1813E+01 0.1813E+01 0.1411E+01 0.1410E+01
5 6 7 8 9 10 11	-0.2292E+02 -0.2292E+02 -0.2292E+02 0.9610E+03 0.3228E+03 0.3228E+03 0.2065E+04 0.2065E+04	0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+	01 0.99 01 0.99 01 0.99 01 0.44 01 0.36 01 0.65 01 0.65 01 0.65	26E-05 19E-05 01E-05 49E-05 49E-05 44E-05 67E-05 60E-05	0.2255E-04 0.2252E-04 0.2251E-04 0.2251E-04 0.2579E-04 0.1629E-04 0.1627E-04 0.3408E-04 0.3405E-04	0.2462 0.2469 0.2469 0.2472 0.4051 0.3731 0.3733 0.3538 0.3536	EE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01	0.1536E+01 0.1539E+01 0.1540E+01 0.1541E+01 0.1394E+01 0.1813E+01 0.1813E+01 0.1411E+01 0.1410E+01
5 6 7 8 9 10 11 12 13	-0.2292E+02 -0.2292E+02 -0.2292E+02 0.9610E+03 0.3228E+03 0.3228E+03 0.2065E+04 0.2065E+04 0.2065E+04	0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+	01 0.99 01 0.99 01 0.99 01 0.44 01 0.36 01 0.65 01 0.65 01 0.65 01 0.60 01 0.60	26E-05 19E-05 01E-05 49E-05 49E-05 44E-05 67E-05 60E-05 58E-05 93E-05	0.2255E-04 0.2252E-04 0.2251E-04 0.2251E-04 0.2579E-04 0.1629E-04 0.3408E-04 0.3405E-04 0.3405E-04	0.2462 0.2469 0.2469 0.2472 0.4051 0.3731 0.3730 0.3536 0.3536	EE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01	0.1536E+01 0.1539E+01 0.1540E+01 0.1541E+01 0.1394E+01 0.1813E+01 0.1813E+01 0.1411E+01 0.1410E+01 0.140E+01
5 6 7 8 9 10 11 12 13 14	-0.2292E+02 -0.2292E+02 -0.2292E+02 0.9610E+03 0.3228E+03 0.3228E+03 0.2065E+04 0.2065E+04 0.2065E+04 0.1854E+04	0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+	01 0.993 01 0.993 01 0.999 01 0.444 01 0.366 01 0.655 01 0.655 01 0.655 01 0.655 01 0.655 01 0.655	26E-05 19E-05 21E-05 49E-05 44E-05 67E-05 60E-05 68E-05 93E-05 81E-05	0.2255E-04 0.2252E-04 0.2251E-04 0.2251E-04 0.2579E-04 0.1629E-04 0.3408E-04 0.3405E-04 0.3405E-04 0.3192E-04 0.3189E-04	0.2462 0.2469 0.2469 0.2472 0.4051 0.3731 0.3539 0.3536 0.3576	E+01 E+01 E+01 E+01 E+01 E+01 E+01 E+01 E+01 E+01 E+01 E+01 E+01 E+01	0.1536E+01 0.1539E+01 0.1540E+01 0.1541E+01 0.1394E+01 0.1813E+01 0.1411E+01 0.1410E+01 0.1401E+01 0.1399E+01
5 6 7 8 9 10 11 12 13 14	-0.2292E+02 -0.2292E+02 -0.2292E+02 0.9610E+03 0.3228E+03 0.3228E+03 0.2065E+04 0.2065E+04 0.2065E+04 0.1854E+04 0.1854E+04	0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+	01 0.993 01 0.999 01 0.999 01 0.444 01 0.366 01 0.655 01 0.655 01 0.650 01 0.650 01 0.650 01 0.650	26E-05 19E-05 21E-05 49E-05 44E-05 67E-05 60E-05 58E-05 93E-05 93E-05 98E-05	0.2255E-04 0.2252E-04 0.2251E-04 0.2251E-04 0.2579E-04 0.1629E-04 0.1627E-04 0.3408E-04 0.3405E-04 0.3192E-04 0.3189E-04 0.2852E-04	0.2462 0.2469 0.2469 0.2472 0.4051 0.3731 0.3539 0.3536 0.3536 0.3571	E+01 D+01	0.1536E+01 0.1539E+01 0.1540E+01 0.1541E+01 0.1394E+01 0.1813E+01 0.1813E+01 0.1411E+01 0.1410E+01 0.140E+01 0.1399E+01 0.1382E+01
5 6 7 8 9 10 11 12 13 14 15	-0.2292E+02 -0.2292E+02 -0.2292E+02 0.9610E+03 0.3228E+03 0.3228E+04 0.2065E+04 0.2065E+04 0.2065E+04 0.1854E+04 0.1854E+04 0.1508E+04	0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+ 0.6868E+	01 0.993 01 0.993 01 0.999 01 0.444 01 0.366 01 0.655 01 0.655	26E-05 19E-05 21E-05 49E-05 49E-05 44E-05 67E-05 60E-05 58E-05 93E-05 31E-05 58E-05	0.2255E-04 0.2252E-04 0.2251E-04 0.2251E-04 0.2579E-04 0.1629E-04 0.1627E-04 0.3408E-04 0.3405E-04 0.3192E-04 0.3189E-04 0.2852E-04 0.2848E-04	0.2462 0.2469 0.2469 0.2472 0.4051 0.3731 0.3538 0.3538 0.3576 0.3571	E+01 D+01	0.1536E+01 0.1539E+01 0.1540E+01 0.1541E+01 0.1394E+01 0.1813E+01 0.1813E+01 0.1411E+01 0.1410E+01 0.140E+01 0.1399E+01 0.1382E+01 0.1379E+01

BRANCHE	S							
BRANCH	KFACTOR	DELP	FLOW RATE	VELOCITY	REYN. NO	MACH NO.	ENTROPY GEN.	LOST WORK
	(LBF-S^2/	(PSI)	(LBM/SEC)	(FT/SEC)			BTU/(R-SEC)	LBF-FT/SEC
	(LBM-FT)^2)						
12	0.132E+05	0.458E+01	0.224E+00	0.385E+02	0.892E+0	0.277E-01	0.110E-02	0.346E+02
23	0.000E+00	-0.173E+04	0.224E+00	0.625E+02	0.114E+0	0.448E-01	0.000E+00	0.000E+00
34	0.298E+05	0.104E+02	0.224E+00	0.566E+02	0.872E+0	0.403E-01	0.175E-02	0.712E+02
45	0.302E+05	0.130E+01	0.787E-01	0.199E+02	0.308E+0	0.141E-01	0.770E-04	0.314E+01
57	0.303E+05	0.130E+01	0.787E-01	0.199E+02	0.309E+0	0.141E-01	0.770E-04	0.314E+01
78	0.144E+06	0.618E+01	0.787E-01	0.958E+02	0.688E+0	0.292E-01	0.294E-03	0.717E+02
46	0.300E+05	0.439E+01	0.145E+00	0.368E+02	0.569E+0	0.261E-01	0.480E-03	0.196E+02
68	0.300E+05	0.439E+01	0.145E+00	0.368E+02	0.571E+0	0.261E-01	0.480E-03	0.196E+02
89	0.180E+05	0.626E+01	0.224E+00	0.803E+02	0.187E+0	0.307E-01	0.829E-03	0.987E+02
910	0.684E+05	0.238E+02	0.224E+00	0.130E+03	0.239E+0	7 0.499E-01	0.316E-02	0.376E+03
1011	0.276E+06	0.962E+02	0.224E+00	0.526E+03	0.133E+0	7 0.114E+00	0.130E-01	0.613E+04
1112	0.768E+05	0.267E+02	0.224E+00	0.343E+03	0.104E+0	0.745E-01	0.380E-02	0.180E+04
1213	0.000E+00	0.540E+03	0.224E+00	0.348E+04	0.330E+0	0.757E+00	0.000E+00	0.000E+00
1314	0.396E+06	0.138E+03	0.224E+00	0.754E+03	0.143E+0	0.173E+00	0.294E-01	0.126E+05
1415	0.452E+06	0.157E+03	0.224E+00	0.861E+03	0.143E+0	0.197E+00	0.383E-01	0.164E+05
1516	0.448E+06	0.156E+03	0.224E+00	0.853E+03	0.163E+0	0.216E+00	0.454E-01	0.161E+05
1617	0.148E+12	0.613E+03	0.773E-03	0.443E+02	0.196E+0	0.112E-01	0.764E-03	0.271E+03
1618	0.146E+06	0.506E+02	0.223E+00	0.651E+03	0.128E+0	0.165E+00	0.182E-01	0.647E+04
1819	0.933E+06	0.323E+03	0.223E+00	0.177E+04	0.121E+0	0.358E+00	0.125E+00	0.692E+05
1920	0.692E+06	0.239E+03	0.223E+00	0.132E+04	0.255E+0	0.466E+00	0.209E+00	0.381E+05
	1							
IBRPMP	IBRTRB	SPEED (RPM)	ETATRB	PSITR	Т	ORQUE(LB-IN)	HPOWER	
23	1213	0.800E+05	0.578E+0	0.269E	E+00 0	.511E+02	0.649E+02	

TIME OF ANALYSIS WAS 0.510734400000000 SECS

APPENDIX N—INPUT AND OUTPUT DATA FILES FROM EXAMPLE 11

Steady State & Transient Conduction Through a Circular Rod, with Convection

Contents	Page
Example 11 Input File	63
Example 11 Property Files	65
Example 11 Output File	66

```
GFSSP VERSION
   503
GFSSP INSTALLATION PATH
C:\Program Files\GFSSP\
ANALYST
Alok Majumdar
INPUT DATA FILE NAME
C:\Program Files\GFSSP\Examples\Ex11\Ex11.dat
OUTPUT FILE NAME
Ex11.out
TITLE
Steady State & Transient Conduction Through a Circular Rod, With Convection
USETUP
F
DENCON
            GRAVITY
                        ENERGY
                                     MIXTURE
                                                THRUST
                                                             STEADY
                                                                          TRANSV
                                                                                      SAVER
F
                        Τ
                                                F
                                                             Т
                                                                          F
HEX
            HCOEF
                        REACTING
                                     INERTIA
                                                CONDX
                                                             ADDPROP
                                                                          PRINTI
                                                                                      ROTATION
F
            F
                                     F
                                                 F
                                                             F
                                                                          Т
                                                                                      F
BUOYANCY
            HRATE
                        TNVAL
                                     MSORCE
                                                MOVBND
                                                            TPA
                                                                          VARGEO
                                                                                      MVT
                                                 F
                                                             F
                                                                          F
            Τ
                                                                                      WINPLOT
SHEAR
            PRNTIN
                        PRNTADD
                                     OPVALVE
                                                TRANSO
                                                             CONJUG
                                                                         RADTAT
F
            Τ
                        Τ
                                     F
                                                 F
                                                             Τ
                                                                          F
                        VARROT
PRESS
            TNSUC
                                     CYCLIC
                                                CHKVALS
                                                            WINFILE
                                                                         DALTON
F
            F
                        F
                                     F
                                                F
                                                             F
                                                                         F
NORMAL
           SIMUL
                        SECONDL
                                    NRSOLVT
F
            Τ
                        F
                                     F
NNODES
           NINT
                        NBR
4
            2
                        3
                                     1
RELAXK
            RELAXD
                        RELAXH
                                     CC
                                                NITER
1
           0.5
                        1
                                    0.0001
                                                500
NFLUID(I), I = 1, NF
11
NODE
        INDEX DESCRIPTION
                "Node 11"
11
        2
                "Node 12"
12
        1
 13
               "Node 13"
                "Node 14"
        2
14
 NODE
       PRES (PSI)
                      TEMP (DEGF)
                                     MASS SOURC
                                                     HEAT SOURC
                                                                    THRST AREA
                                                                                   CONCENTRATION
        50
                       70
                                     0
                                                     0
                                                                    0
11
 12
        14.7
                       60
                                     0
                                                      0
                                                                    0
 13
        14.7
                       60
                                     0
                                                     0
                                                                    0
                       70
 14
        45
                                     0
                                                     0
                                                                    0
INODE
            NUMBR
                       NAMEBR
12
            2
                       1112
                                1213
 13
                       1213
                                1314
BRANCH
           UPNODE
                       DNNODE
                                  OPTION
                                              DESCRIPTION
1112
            11
                       12
                                   1
                                              "Pipe 1112"
 1213
            12
                       13
                                  1
                                              "Pipe 1213"
                                              "Pipe 1314"
            13
1314
                       14
                                   1
                        LENGTH
BRANCH
                                                EPSD
                                                                       AREA
          OPTION -1
                                     DIA
                                                           ANGLE
1112
                        0.1
                                      1.73
                                                0
                                                            0
                                                                        2.3506
                                                EPSD
BRANCH
           OPTION -1
                        LENGTH
                                                                       AREA
                                     DTA
                                                           ANGLE
1213
                         12
                                     1.73
                                                 0
                                                            0
                                                                       2.3506
BRANCH
           OPTION -1
                        LENGTH
                                     DIA
                                                EPSD
                                                            ANGLE
                                                                       AREA
1314
                        12
                                      1.73
                                                0
                                                            0
                                                                        2.3506
                                                NSAC
NSOLID
           NAMB
                        NSSC
                                     NSFC
                                                           NSSR
8
           2
                                                2
                                                           0
                                      8
NODESL MATRL
                  SMASS
                                TS
                                              NUMSS
                                                       NUMSF
                                                                  NUMSA
                                                                             NUMSSR
                                                                                           DESCRIPTION
2 41
                  1.00000
                                70.00000
                                                                                           "S Node 2"
                                                        1
                                                                  1
                                                                             Ω
                                              1
NAMESS
23
NAMESF
122
NAMESA
12
 3
     41
                  1.00000
                               70.00000
                                             2
                                                      1
                                                                 0
                                                                             0
                                                                                           "S Node 3"
NAMESS
23 34
```

NAMESF 123 4 41 NAMESS		1.00000	70.00000	2 1	0	0	"S Node 4"
34 45 NAMESF 124 5 41 NAMESS 45 56		1.00000	70.0000	2 1	0	0	"S Node 5"
NAMESF 125 6 41 NAMESS 56 67		1.00000	70.00000	2 1	0	0	"S Node 6"
NAMESF 136 7 41 NAMESS 67 78		1.00000	70.00000	2 1	0	0	"S Node 7"
NAMESF 137 8 41 NAMESS 78 89		1.00000	70.00000	2 1	0	0	"S Node 8"
NAMESF 138 9 41 NAMESS 89 NAMESF		1.00000	70.00000	1 1	1	0	"S Node 9"
139 NAMESA 910 NODEAM 1	TAMB 32.00	000 "A	SCRIPTION Node 1"				
10 ICONSS	212.0 ICNSI		Node 10" ARCSIJ	DISTSIJ	DESCRIPTION		
23	2	3	3.14159	3.00000	"Conductor 23"		
34	3	4	3.14159	3.00000	"Conductor 34"		
45	4	5	3.14159	3.00000	"Conductor 45"		
56 67	5 6	6 7	3.14159 3.14159	3.00000 3.00000	"Conductor 56" "Conductor 67"		
78	7	8	3.14159	3.00000	"Conductor 78"		
89	8	9	3.14159	3.00000	"Conductor 89"		
ICONSF	ICS	ICF MODI		HCSF	EMSFS	EMSFF	DESCRIPTION
122 123	2	12 0 12 0	1.88500e+01 1.88500e+01			0.00000e+00 0.00000e+00	"Convection 122" "Convection 123"
123	4	12 0		3.17000e-0			"Convection 124"
125	5	12 0	1.88500e+01			0.00000e+00	"Convection 125"
136	6	13 0	1.88500e+01			0.00000e+00	"Convection 136"
137	7	13 0	1.88500e+01			0.00000e+00	"Convection 137"
138 139	8 9	13 0 13 0	1.88500e+01 1.88500e+01			0.00000e+00 0.00000e+00	"Convection 138" "Convection 139"
ICONSA	ICSAS	ICSAA	ARSA	HCSA	EMSAS	EMSAA	DESCRIPTION
12	2	1	3.14159e+00	2.00000e-02	0.00000e+00	0.00000e+00	"Convection 12"
910	9	10	3.14159e+00	2.00000e-02	0.00000e+00	0.00000e+00	"Convection 910"

EXAMPLE 11 PROPERTY FILES

USER1CP.PRP 2 0.19

0 0.1981 1000 0.1981

USER1K.PRP

2 0 0.002611 1000 0.002611

G F S S P (Version 5.0)
Generalized Fluid System Simulation Program
September, 2006
Developed by NASA/Marshall Space Flight Center
Copyright © by Marshall Space Flight Center

A generalized computer program to calculate flow rates, pressures, temperatures and concentrations in a flow network.

TITLE :Steady State & Transient Conduction Through a Circular Rod, With Convection ANALYST : Alok Majumdar FILEIN :C:\Program Files\GFSSP\Examples\Ex11\Ex11.dat FILEOUT :Ex11.out LOGICAL VARIABLES DENCON = F GRAVITY = FENERGY = T MIXTURE = FTHRUST = F STEADY = T TRANSV = F SAVER = F HEX = F HCOEF = F REACTING = F INERTIA = F CONDX = FTWOD = F PRINTI = TROTATION = F BUOYANCY = F = T HRATE INVAL = F MSORCE = F MOVBND = F = F TPA VARGEO = F = F TVM SHEAR = F PRNTIN = T PRNTADD = T ADDPROP = FPRESS = FINSUC = F VARROT = F NORMAL = F SECONDL = F CONJUG = TNRSOLVT = F NNODES = 4= 2 NINT = 3 NF = 1 NVAR = 5

66

NHREF = 2 FLUIDS: H2O

11 0)E+02 0	HO LBM/FT^3) .6231E+02 .6231E+02	AREA (IN^2) 0.0000E+ 0.0000E+	
12 0.	EA N^2) 0000E+00	OR INTERNAL MASS (LBM/S) 0.0000E- 0.0000E-	HE (B +00 0.	AT TU/S) 0000E+00 0000E+00		
BRANCH OPTION 1213 0. BRANCH OPTION	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.173E+01 LENGTH, DI 0.173E+01 LENGTH, DI	A, EPSD, A 0.000E+ A, EPSD, A 0.000E+ A, EPSD, A	00 0.000 NGLE, AREA 00 0.000	DE+00 0 DE+00 0	.235E+01
INITIAL GUESS NODE P(P	SI)	RNAL NODES TF(F) 0.6000E+02	Z(COM 2 0.761	(1	HO LBM/FT^3) .6237E+02	QUALITY 0.0000E+00
TRIAL SOLUTION BRANC 1112 0.00	ON H DELP(PS: 00 0.0100 00 0.0100	0.6000E+0	2 0.761		6237E+02	0.0000E+00
CONJUGATE HEA NSOLIDX = 8 NAMB = 2 NSSC = 7 NSFC = 8 NSAC = 2 NSSR = 0	AT TRANSFE	R				
NODESL 2 NAMESS 23 NAMESF 122 NAMESA 12	MATRL 41	SMASS 1.0000	TS 70.0000	NUMSS 1	NUMSF 1	NUMSA 1
NODESL 3 NAMESS 23 NAMESF	MATRL 41 34	SMASS 1.0000	TS 70.0000	NUMSS 2	NUMSF 1	NUMSA 0
123 NODESL 4 NAMESS 34 NAMESF 124	MATRL 41 45		TS 70.0000	NUMSS 2	NUMSF 1	NUMSA 0
NODESL 5 NAMESS 45 NAMESF	MATRL 41 56	SMASS 1.0000	TS 70.0000	NUMSS 2	NUMSF 1	NUMSA 0
125 NODESL 6	MATRL 41	SMASS 1.0000	TS 70.0000	NUMSS 2	NUMSF 1	NUMSA 0

NAMESS 56 NAMESF 136	67								
NODESL 7 NAMESS	MATRL 41	SMASS 1.0000	TS 70.0000	N(2	UMSS	NUM 1	SF	NUMSA 0	
67 NAMESE 137	78								
NODESL 8	MATRL 41	SMASS 1.0000	TS 70.0000	NU 2	UMSS	NUM 1	SF	NUMSA 0	
NAMESS 78 NAMESF 138	89								
NODESL 9	MATRL 41	SMASS 1.0000	TS 70.0000	NU 1	UMSS	NUM 1	SF	NUMSA 1	
NAMESS 89 NAMESF 139 NAMESA 910	,								
NODEAM 1 10	32.0000 212.0000								
ICONSS 23 34 45 56	ICNSI 2 3 4 5	ICNSJ 3 4 5 6	ARCSIJ 3.1416 3.1416 3.1416 3.1416	DISTS 3.000 3.000 3.000 3.000	0 0 0				
67 78 89	6 7 8	7 8 9	3.1416 3.1416 3.1416	3.000 3.000 3.000	0				
ICONSF 122 123	ICS 2 3	ICF 12 12	ARSF 18.8500 18.8500	EMSFS 0.000 0.000	0	0.0000			
124 125 136	4 5 6	12 12 13	18.8500 18.8500 18.8500	0.000 0.000 0.000	0	0.0000 0.0000 0.0000			
137 138 139	7 8 9	13 13 13	18.8500 18.8500 18.8500	0.000 0.000 0.000	0	0.0000 0.0000 0.0000			
ICONSA 12 910	ICSAS 2 9	ICSAA 1 10	ARSA 0.3142E+01 0.3142E+01	(HCSA 0.2000 0.2000		EMSAS 0.0000 0.0000		EMSAA 0.0000E+00 0.0000E+00
SOLUTIC INTERNA NODE	N L NODES P(PSI)	TF(F)	Z		RHO		EM(LB	M)	QUALITY
12 13	0.4998E+02 0.4749E+02	0.7000E+02 0.7001E+02		-02		31E+02 31E+02		0E+00 0E+00	0.0000E+00 0.0000E+00
NODE	H BTU/LB	ENTROPY BTU/LB-R	EMU LBM/FT-	SEC	COND BTU/F	T-S-R	CP BTU/L	B-R	GAMA
12 13	0.3816E+02 0.3816E+02	0.5542E-01 0.5542E-01				52E-04 52E-04		8E+00 8E+00	0.1007E+01 0.1007E+01

BRANCHE	ES							
BRANCH	KFACTOR	DELP	FLOW RATE	VELOCITY	REYN. NO.	MACH NO.	ENTROPY GEN.	LOST WORK
	(LBF-S^2/	(PSI)	(LBM/SEC)	(FT/SEC)			BTU/(R-SEC)	LBF-FT/SEC
1112	(LBM-FT)^2) 0.639E-03	0.207E-01	0.684E+02	0.672E+02	0.920E+06	0.554E-01	0.795E-05	0.328E+01
1213	0.767E-01	0.249E+01	0.684E+02	0.672E+02	0.920E+06	0.554E-01	0.954E-03	0.393E+03
1314	0.767E-01	0.249E+01	0.684E+02	0.673E+02	0.920E+06	0.555E-01	0.954E-03	0.393E+03
SOLID N		m.c						
NODESL	CPSLD BTU/LB 1	TS F F						
2	0.000E+0		E+02					
3	0.000E+0	0.569	E+02					
4	0.000E+0	0.691	E+02					
5	0.000E+0							
6	0.000E+0							
7 8	0.000E+(
9	0.000E+0							
,	0.00011	0.101.	L103					
SOLID T	TO SOLID COND	UCTOR						
ICONSS	CONDKIA	J QD0	DTSS					
	BTU/S I		J/S					
23 34	0.261E-		.333E-02					
34 45	0.261E- 0.261E-		.279E-02 .276E-02					
56	0.261E-		.322E-02					
67	0.261E-		.428E-02					
78	0.261E-	-02 -0	.611E-02					
89	0.261E-	-02 -0	.906E-02					
SOLID	O FLUID CONE	MICTOD						
ICONSE			CSF	HCSFR				
	BTU/S		TU/SFT**2 F					
122	-0.115H	E-02 0.	.317E-03	0.000E+0	0			
123	-0.5441	E-03 0.	.317E-03	0.000E+0	0			
124	-0.356		.317E-03	0.000E+0				
125	0.466		.317E-03	0.000E+0				
136 137	0.105E 0.183E		.317E-03 .317E-03	0.000E+0 0.000E+0				
138	0.294		.317E-03	0.000E+0				
139	0.4591		.317E-03	0.000E+0				
	O AMBIENT CO		-					
ICONSA	QDOTSA	HC:		HCSAR	**0 E			
12	BTU/S 0.448B		J/S FT**2 F 200E-01	BTU/S FT 0.000E+0				
910	-0.136		200E-01	0.000E+0				
220	0.1001			0.000210	-			
SOLUTIO	ON SATISFIED	CONVERGENCE	CRITERION	OF 0 100E-	03 TN 10 '	ITERATIONS		
	100000000.0		ISTEP = 1	0.1001				
TIME OF	F ANALYSIS WA	s 0.13018	7200000000	SECS				

APPENDIX O—INPUT AND OUTPUT DATA FILES FROM EXAMPLE 12

Simulation of Fluid Transient Following Sudden Valve Closure

Contents	Page
Example 12 Input File	71
Example 12 History & Restart Files	73
Example 12 Output File (Partial)	74

```
GFSSP VERSION
   503
GFSSP INSTALLATION PATH
C:\Program Files\GFSSP\
ANALYST
Alok Majumdar
INPUT DATA FILE NAME
C:\Program Files\GFSSP\Examples\Ex15\Ex15.dat
OUTPUT FILE NAME
Ex15.out
TITLE
Simulation of Fluid Transient Following Sudden Valve Closure
USETUP
DENCON
             GRAVITY
                        ENERGY
                                     MIXTURE
                                                 THRUST
                                                             STEADY
                                                                          TRANSV
                                                                                        SAVER
F
                        Τ
                                                 F
                                                                                        ROTATION
HEX
             HCOEF
                        REACTING
                                     INERTIA
                                                 CONDX
                                                            ADDPROP
                                                                           PRINTI
             F
                        F
                                     F
                                                 F
                                                            F
                                                                           Т
BUOYANCY
             HRATE
                        TNVAL
                                     MSORCE
                                                 MOVBND
                                                            TPA
                                                                           VARGEO
                                                                                        TVM
                                                 F
                                                                           F
             Τ
                                                            F
SHEAR
             PRNTIN
                        PRNTADD
                                     OPVALVE
                                                 TRANSQ
                                                            CONJUG
                                                                          RADTAT
                                                                                        WINPLOT
             Т
                        Τ
                                                 F
                                                             F
                                                                           F
                        VARROT
                                     CYCLIC
                                                 CHKVALS
PRESS
             TNSUC
                                                            WINFILE
                                                                          DATTON
             F
                        F
                                                 F
                                                            Τ
                                                                          F
NORMAL
             SIMUL
                        SECONDL
                                     NRSOLVT
F
             Τ
                        F
NNODES
             NINT
                        NBR
7
             5
                        6
RELAXK
             RELAXD
                        RELAXH
                                                 NITER
1
             0.5
                        1
                                     0.0001
                                                 500
DTAU
             TIMEF
                        TIMEL
                                     NPSTEP
                                                 NPWSTEP
0.02
             0
                        1
                                                 1
NFLUID(I), I = 1, NF
6
           INDEX
                      DESCRIPTION
NODE
1
           2
                      "Node 1"
                      "Node 2"
 2
          1
 3
           1
                      "Node 3"
                      "Node 4"
          1
 4
                      "Node 5"
 5
          1
 6
                      "Node 6"
                      "Node 7"
 7
          2
NODE
        PRES (PSI)
                      TEMP (DEGF)
                                    MASS SOURC
                                                  HEAT SOURC
                                                                THRST AREA
                                                                                NODE-VOLUME
                                                                                                CONCENTRATION
 2
        14.7
                                    Ω
                                                                Ω
                      60
                                                  Ω
                                                                                Ω
 3
        14.7
                      60
                                    0
                                                  0
                                                                 0
                                                                                0
        14.7
                      60
                                    0
                                                                 0
 4
                                                  0
                                                                                0
 5
        14.7
                      60
                                    0
                                                  0
                                                                 0
                                                                                0
 6
        14.7
                      60
                                    0
 ex15hs1.dat
 ex15hs7.dat
INODE
          NUMBR
                      NAMERR
 2
           2
                      12
                              23
                      2.3
                              34
 3
           2
 4
           2
                      34
                              45
 5
           2
                      45
                              56
 6
           2
                      56
                              67
           UPNODE
                      DNNODE
                                 OPTION
                                            DESCRIPTION
BRANCH
                                            "Pipe 12"
12
                      2
                                 1
           1
23
           2
                      3
                                 1
                                            "Pipe 23"
           3
                      4
                                            "Pipe 34"
34
                                 1
                                            "Pipe 45"
45
           4
                      5
                                 1
56
           5
                      6
                                 1
                                            "Pipe 56"
                                            "Restrict 67"
                      7
                                 2
67
           6
BRANCH OPTION -1
                      LENGTH
                                            EPSD
                                                        ANGLE
                                 DIA
                                                                     AREA
                      960
                                 0.25
                                             0
                                                        0
                                                                     0.049087
12
BRANCH OPTION -1
                      LENGTH
                                 DIA
                                            EPSD
                                                        ANGLE
                                                                     AREA
23
                      960
                                 0.25
                                             0
                                                        0
                                                                     0.049087
BRANCH OPTION -1
                      LENGTH
                                 DIA
                                            EPSD
                                                        ANGLE
                                                                     AREA
                      960
                                 0.25
                                             0
                                                                     0.049087
34
                                                        0
BRANCH OPTION -1
                      LENGTH
                                 DIA
                                            EPSD
                                                        ANGLE
                                                                     AREA
                                                                     0.049087
```

960

0.25

```
BRANCH OPTION -1 LENGTH DIA EPSD ANGLE AREA 56 960 0.25 0 0 0.049
                                                            0.049087
BRANCH OPTION -2
                   FLOW COEFF AREA
67
                  0.6 0.0491
INITIAL FLOWRATES IN BRANCHES FOR UNSTEADY FLOW
12
 23
      0
 34
     0
     0 0
 45
 56
 67
NUMBER OF CLOSING/OPENING VALVES IN THE CIRCUIT
1
BRANCH
67
FILE NAME
ex15vlv.dat
RESTART NODE INFORMATION FILE
FNDEX15.DAT
RESTART BRANCH INFORMATION FILE
FBREX15.DAT
```

EXAMPLE 12 HISTORY AND RESTART FILES

```
EX15HS1.DAT
      500.0 -260.0 0.0
0
1000
     500.0 -260.0 0.0
EX15HS7.DAT
2
0
       450.0
               -260.0
                        0.0
                      0.0
     450.0
             -260.0
1000
EX15VLV.DAT
0.00
      0.0491
0.02
      0.0164
     0.00545
0.04
0.06
     0.00182
     0.00061
0.08
0.1
      1.E-16
     1.E-16
100
FNDEX15.DAT
                                          H(BTU/LB) CONC RHO(LB/FT^3)
NODE.
          P(PSF)
                       TF(R)
          EMU(LB/FT-S) Z R(LBF-FT/LB-R) EM(LB)
                                                      CP(BTU/LB-R)
                                                                         ENTROPY (BTU/LB-R)
                    199.6258
                                           77.07056
          70570.99
                                                       1.000000
          64.96349
                       8.4011677E-05
                                           0.1126991
                                                      48.28000
                                                                   0.0000000E+00 0.4173057
 1.524868
                                               1.000000
 3
           69141.62
                      199.6527
                                     77.07056
3 69141.62 199.6527
64.94235 8.3891122E-05 0.1104375
0.4175506 1.524851
                                     48.28000
                                                  0.0000000E+00
                                               1.000000
0.0000000E+00
                                    77.07058
           67712.23
                       199.6797
64.92119 8.3770668E-05 0.1081750
0.4178011 1.524851
                                    48.28000
                                               1.000000
0.0000000E+00
           66282.80
                       199.7065
                                    77.07059
 5
 64.90001 8.3650339E-05 0.1059117
                                   48.28000
0.4180055 1.524851
                       199.7332
                                     77.07063
                                               1.000000
           64853.37
 6
 64.87878 8.3530074E-05 0.1036477 48.28000 0.0000000E+00
0.4182283 1.524851
FBREX15.DAT
BRANCH
        AK
                      FLOWR(LB/S)
                                         VEL(FT/S)
                      9.6560813E-02
9.6560813E-02
          153259.8
12
                                         4.358272
                                         4.360718
          153280.5
 2.3
 34
          153282.9
                      9.6560813E-02
                                         4.362138
                       9.6560813E-02
          153285.4
 45
                                         4.363560
 56
          153287.8
                       9.6560813E-02
                                         4.364984
          5722.974
                      9.6560813E-02
 67
                                        4.369652
```

G F S S P (Version 5.0)

Generalized Fluid System Simulation Program
September, 2006

Developed by NASA/Marshall Space Flight Center
Copyright © by Marshall Space Flight Center

A generalized computer program to calculate flow rates, pressures, temperatures and concentrations in a flow network.

```
:Simulation of Fluid Transient Following Sudden Valve Closure
ANALYST : Alok Majumdar
FILEIN :C:\Program Files\GFSSP\Examples\Ex12\Ex12.dat
FILEOUT :Ex12.out
LOGICAL VARIABLES
DENCON = F
GRAVITY = F
ENERGY = T
MIXTURE = F
 THRUST = F
 STEADY
         = F
TRANSV = T
 SAVER = F
HEX
         = F
HCOEF
        = F
REACTING = F
 INERTIA = F
 CONDX = F
         = F
 TWOD
 PRINTI = T
ROTATION = F
 BUOYANCY = F
       = T
HRATE
 INVAL
        = T
MSORCE = F
MOVBND = F
         = F
 TPA
 VARGEO = F
 TVM
         = F
         = F
SHEAR
 PRNTIN = T
 PRNTADD = T
ADDPROP = F
 PRESS = F
 INSUC
         = F
 VARROT
        = F
NORMAL = F
 SECONDL = F
CONJUG = F
NRSOLVT = F
NNODES = 7
NINT
         = 5
         = 6
NBR
NF
         = 1
NVAR
         =16
NHREF = 2
FLUIDS: 02
BOUNDARY NODES
NODE P
                   (F) (LBM/FT^3) (IN^2)
-0.2600E+03 0.6499E+02 0.0000E+00
-0.2600E+03 0.6491E+02 0.0000E+00
       (PSI)
 1
       0.5000E+03
 7
       0.4500E+03
```

INPUT S NODE 2 3 4 5 6	AREA (IN^2) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	FOR INTERNAL NOMASS (LBM/S) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	ODES HEAT (BTU/S) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00			
BRANCH 12 23 34 45 56	UPNODE 1 2 3 4	DNNODE OPTIC 2 1 3 1 4 1 5 1 6 1	ON			
67	6 OPTION -1:	7 2 LENGTH, DIA, ER	OCD ANCIE ADE	7.		
12	0.960E+03	0.250E+00 0	.000E+00 0.00	00E+00 0.491	E-01	
3	OPTION -1: 0.960E+03		.000E+00 0.00	0.491	E-01	
BRANCH 34	OPTION -1: 0.960E+03	LENGTH, DIA, ER 0.250E+00 0.	PSD, ANGLE, ARE .000E+00 0.00		E-01	
BRANCH 45	OPTION -1: 0.960E+03	LENGTH, DIA, EF 0.250E+00 0.		A)0E+00 0.491	E-01	
BRANCH 56	OPTION -1: 0.960E+03	LENGTH, DIA, ER 0.250E+00 0.		A)0E+00 0.491	E-01	
BRANCH		OW COEF, AREA	.0001100 0.00	,01,00		
	GUESS FOR IN					
NODE	P(PSI)	TF(F)	Z(COMP)	RHO (LBM/FT^3)	QUALITY	
2	0.4901E+03 0.4802E+03	-0.2600E+03 -0.2599E+03		0.6496E+02 0.6494E+02	0.0000E+00 0.0000E+00	
4 5	0.4702E+03	-0.2599E+03		0.6492E+02	0.0000E+00	
6	0.4603E+03 0.4504E+03	-0.2599E+03 -0.2599E+03		0.6490E+02 0.6488E+02	0.0000E+00 0.0000E+00	
TRIAL S	SOLUTION					
BRANCH 12	DELP(PSI) 0.0000	FLOWRATE (LE 0.0966	BM/SEC)			
23	0.0000	0.0966				
34 45	0.0000	0.0966 0.0966				
56	0.0000	0.0966				
67	0.0000	0.0966				
	ISTEP = 1	TAU = 0.2000	00E-01			
	RY NODES	mp (p)	E (COMP)	DHO	OURT TIME	
NODE	P(PSI)	TF(F)	Z(COMP)	RHO (LBM/FT^3)	QUALITY	
1 7	0.5000E+03 0.4500E+03	-0.2600E+03 -0.2600E+03	0.0000E+00 0.0000E+00	0.6499E+02 0.6491E+02		
SOLUTIO						
NODE	AL NODES P(PSI)	TF(F)	Z	RHO	EM(LBM)	QUALITY
2	0.4831E+03	-0.2600E+03	0.1111E+00	(LBM/FT^3) 0.6497E+02	0.2657E+01	0.0000E+00
3	0.4724E+03	-0.2600E+03	0.1087E+00	0.6494E+02	0.1771E+01	0.0000E+00
4 5	0.4639E+03 0.4644E+03	-0.2599E+03 -0.2599E+03	0.1067E+00 0.1068E+00	0.6492E+02 0.6491E+02	0.1771E+01 0.1770E+01	0.0000E+00 0.0000E+00
6	0.4993E+03	-0.2597E+03	0.1147E+00	0.6493E+02	0.8853E+00	0.0000E+00
NODE	H BTU/LB	ENTROPY BTU/LB-R	EMU LBM/FT-SEC	COND BTU/FT-S-R	CP BTU/LB-R	GAMA
2	0.7705E+02	0.1525E+01	0.8398E-04	0.1819E-04	0.4174E+00	0.2026E+01
3 4	0.7705E+02 0.7705E+02	0.1525E+01 0.1525E+01	0.8386E-04 0.8374E-04	0.1818E-04 0.1817E-04	0.4177E+00 0.4179E+00	0.2028E+01 0.2029E+01

```
5
           0.7708E+02 0.1525E+01 0.8367E-04 0.1816E-04 0.4179E+00 0.2030E+01
  6
              0.7721E+02 0.1525E+01
                                                                       0.8376E-04
                                                                                                       0.1817E-04
                                                                                                                                  0.4174E+00
                                                                                                                                                               0.2028E+01
BRANCHES
                                                                FLOW RATE VELOCITY REYN. NO. MACH NO. ENTROPY GEN. LOST WORK
BRANCH KFACTOR
                                      DELP
                 (LBF-S^2/
                                        (PSI)
                                                                  (LBM/SEC) (FT/SEC)
                                                                                                                                      BTU/(R-SEC) LBF-FT/SEC
                  (LBM-FT)^2)
                 0.152E+06 0.169E+02
                                                                   0.999E-01 0.451E+01 0.726E+05 0.569E-02
                                                                                                                                                              0.150E-04
                                                                                                                                                                                          0.233E+01
                                                                   0.968E-01 0.437E+01 0.705E+05 0.552E-02
0.960E-01 0.434E+01 0.700E+05 0.547E-02
                                       0.108E+02
  2.3
                 0.153E+06
                                                                                                                                                               0.138E-04
                                                                                                                                                                                          0.214E+01
  34
                 0.153E+06
                                         0.847E+01
                                                                                                                                                               0.135E-04
                                                                                                                                                                                          0.209E+01
                                                                   0.927E-01 0.419E+01 0.677E+05 0.528E-02
                 0.155E+06
                                         -0.464E+00
                                                                                                                                                              0.122E-04
                                                                                                                                                                                          0.190E+01
  45
                                        -0.350E+02 0.748E-01 0.338E+01 0.547E+05 0.426E-02 0.493E+02 0.409E-01 0.553E+01 0.516E+05 0.697E-02
                 0.162E+06
                                                                                                                                                              0.673E-05
                                                                                                                                                                                          0.105E+01
  56
                                        0.493E+02
                                                                                                                                                              0.347E-06
                                                                                                                                                                                          0.539E-01
                 0.513E+05
SOLUTION SATISFIED CONVERGENCE CRITERION OF 0.100E-03 IN 283 ITERATIONS
  TAU = 2.000000000000000E-002 ISTEP =
                               :
                               :
                                             TAII = 0.50000E+00
               TSTEP = 25
BOUNDARY NODES
NODE P(PSI)
                                           TF(F)
                                                                          Z(COMP)
                                                                                                       RHO
                                                                                                                                  OUALITY
                                                                                                       (LBM/FT^3)
                                       0.5000E+03
                                                                                                       0.6499E+02
                                                                                                                                  0.0000E+00
  7
              0.4500E+03
                                                                                                      0.6491E+02
                                                                                                                                  0.0000E+00
SOLUTION
INTERNAL NODES
                                                                                                       RHO
            P(PST)
                                           TF(F)
                                                                           7.
                                                                                                                                     EM (T<sub>1</sub>BM)
                                                                                                                                                               OUALTTY
NODE
                                                                                                       LBM/FT^3)
  2
              0.4830E+03
                                        -0.2600E+03
                                                                          0.1111E+00
                                                                                                       0.6497E+02
                                                                                                                                   0.2658E+01
                                                                                                                                                              0.0000E+00
                                       -0.2601E+03
                                                                                                                                                               0.0000E+00
                                                                                                      0.6493E+02
  3
               0.4549E+03
                                                                          0.1047E+00
                                                                                                                                    0.1771E+01
                                                                                                      0.6490E+02
                                                                                                                                    0.1770E+01
                                                                                                                                                               0.0000E+00
              0.4353E+03
                                          -0.2601E+03
                                                                           0.1003E+00
                                                                           0.9715E-01
                                                                                                       0.6488E+02
                                                                                                                                    0.1769E+01
                                                                                                                                                               0.0000E+00
              0.4216E+03
                                           -0.2601E+03
  5
  6
               0.4180E+03
                                           -0.2600E+03
                                                                           0.9631E-01
                                                                                                       0.6486E+02
                                                                                                                                    0.8844E+00
                                                                                                                                                               0.0000E+00
            H
NODE:
                                           ENTROPY
                                                                          F.MII
                                                                                                       COND
                                                                                                                                    CP
                                                                                                                                                               GAMA
              BTU/LB
                                           BTII/I.B-R
                                                                          LBM/FT-SEC
                                                                                                       BTU/FT-S-R
                                                                                                                                    BTU/LB-R
  2
              0.7704E+02
                                       0.1525E+01
                                                                          0.8400E-04
                                                                                                      0.1819E-04
                                                                                                                                   0.4174E+00
                                                                                                                                                               0.2026E+01
                                       0.1525E+01
                                                                          0 8379E-04
                                                                                                      0.1817E-04
                                                                                                                                   0.4180E+00
               0.7699E+02
                                                                                                                                                               0.2029E+01
  3
  4
               0.7696E+02
                                            0.1525E+01
                                                                           0.8363E-04
                                                                                                        0.1816E-04
                                                                                                                                    0.4184E+00
                                                                                                                                                               0.2031E+01
               0.7695E+02
                                          0.1525E+01
                                                                          0.8349E-04
                                                                                                       0.1815E-04
                                                                                                                                    0.4187E+00
                                                                                                                                                               0.2032E+01
  5
  6
               0.7697E+02
                                       0.1525E+01
                                                                          0.8340E-04
                                                                                                   0.1814E-04
                                                                                                                                 0.4188E+00
                                                                                                                                                              0.2033E+01
BRANCHES
                                                                                                                                                             ENTROPY GEN. LOST WORK
                                                         FLOW RATE VELOCITY REYN. NO. MACH NO.
BRANCH KFACTOR
                                       DELP
               (LBF-S^2/
                                       (PSI)
                                                               (LBM/SEC) (FT/SEC)
                                                                                                                                                             BTU/(R-SEC) LBF-FT/SEC
               (LBM-FT)^2)
               0.203E+06 \\ \phantom{0}0.170E+02 \\ \phantom{0}-0.285E-01 \\ \phantom{0}-0.129E+01 \\ \phantom{0}0.208E+05 \\ \phantom{0}0.163E-02 \\ \phantom{0}0.467E-06 \\ \phantom{0}0.725E-01 \\ \phantom{0}0.725E-01 \\ \phantom{0}0.208E+05 \\ \phantom{0}0.163E-02 \\ \phantom{0}0.467E-06 \\ \phantom{0}0.467E-06 \\ \phantom{0}0.725E-01 
 12
                                       23
               0.215E+06
                                                                                                                                                             0.243E-06
                                                                                                                                                                                        0.377E-01
  34
               0.235E+06
                                                                                                                                                             0.931E-07
                                                                                                                                                                                        0.145E-01
                                       0.137E+02 -0.903E-02 -0.408E+00 0.661E+04 0.514E-03 0.200E-07
  4.5
               0.274E+06
                                                                                                                                                                                        0.310E-02
              0.237E+06
                                       0.365E+01 -0.292E-02 -0.132E+00 0.214E+04 0.166E-03 0.583E-09 -0.320E+02 -0.111E-11 -0.246E+05 0.179E+02 0.309E+02 0.186E-09
                                                                                                                                                                                        0.906E-04
  56
                                                                                                                                                                                        0.288E-04
               0.138E+34
SOLUTION SATISFIED CONVERGENCE CRITERION OF 0.100E-03 IN 101 ITERATIONS
:
                               :
                              :
                                                                          TAU =
```

0.10000E+01

TSTEP =

5.0

BOUNDAR	Y NODES					
NODE	P(PSI)	TF(F)	Z(COMP)	RHO (LBM/FT^3)	QUALITY	
1	0.5000E+03	-0.2600E+03	0.0000E+00	0.6499E+02	0.0000E+00	
7	0.4500E+03	-0.2600E+03	0.0000E+00	0.6491E+02	0.0000E+00	
SOLUTIO	N					
INTERNA	L NODES					
NODE	P(PSI)	TF(F)	Z	RHO (LBM/FT^	EM(LBM) 3)	QUALITY
2	0.5083E+03	-0.2599E+03	0.1168E+00	0.6499E+	0.2658E+0	0.0000E+00
3	0.5192E+03	-0.2598E+03	0.1193E+00	0.6499E+	02 0.1772E+0	0.0000E+00
4	0.5261E+03	-0.2597E+03	0.1208E+00	0.6498E+	02 0.1772E+0	0.0000E+00
5	0.5303E+03	-0.2596E+03	0.1217E+00	0.6497E+	02 0.1772E+0	0.0000E+00
6	0.5313E+03	-0.2596E+03	0.1220E+00	0.6496E+	0.8856E+0	0.0000E+00
NODE	Н	ENTROPY	EMU	COND	CP	GAMA
	BTU/LB	BTU/LB-R	LBM/FT-SEC	BTU/FT-S	-R BTU/LB-R	
2	0.7711E+02	0.1525E+01	0.8413E-04	0.1820E-	0.4170E+0	0.2024E+01
3	0.7717E+02	0.1525E+01	0.8411E-04	0.1820E-		
4	0.7722E+02	0.1525E+01	0.8406E-04	0.1819E-	04 0.4168E+0	0.2025E+01
5	0.7726E+02	0.1525E+01	0.8401E-04	0.1819E-	0.4167E+0	0.2025E+01
6	0.7729E+02	0.1525E+01	0.8394E-04	0.1819E-	0.4168E+0	0.2025E+01
BRANCHE	S					
BRANCH	KFACTOR	DELP F1	LOW RATE VELOC	CITY REYN.	NO. MACH NO.	ENTROPY GEN.LOST WORK
Didiivoii	(LBF-S^2/		LBM/SEC) (FT/S		No. Inion No.	BTU/(R-SEC) LBF-FT/SEC
	(LBM-FT)^2)					
12	0.189E+06		0.378E-01 -0.17			0.101E-05 0.157E+00
23	0.195E+06		0.334E-01 -0.15			0.720E-06 0.112E+00
34	0.207E+06		0.263E-01 -0.11			0.372E-06 0.578E-01
45	0.232E+06		0.167E-01 -0.75			0.107E-06 0.167E-01
56	0.312E+06		0.569E-02 -0.25			0.570E-08 0.887E-03
67	0.138E+34	0.814E+02 -0	0.111E-11 -0.24	6E+05 0.179	E+02 0.310E+02	0.186E-09 0.288E-04

TIME OF ANALYSIS WAS 27.5996864000000 SECS

......

APPENDIX P—LIST OF PUBLICATIONS WHERE GFSSP HAS BEEN USED

	Title	Author(s)	Conference/Journal
1	A General Fluid System Simulation Program to	Alok Majumdar	31st AIAA/ASME/SAE/ASEE
	Model Secondary Flows in Turbomachinery	Katherine Van Hooser	Joint Propulsion Conference and
	, , , , , , , , , , , , , , , , , , ,		Exhibit, July 10-12, 1995, San
			Diego, CA, AIAA 95-2969
2	Mathematical Modeling of Free Convective	Alok Majumdar	32 nd AIAA/ASME/SAE/ASEE
	Flows for Evaluating Propellant Conditioning	John Bailey	Joint Propulsion Conference and
	Concepts	Kimberly Holt	Exhibit, July 1-3, 1996, Lake
		Susan Turner	Buena Vista, FL, AIAA 96-3117
3	A Generalized Fluid System Simulation	Alok Majumdar	33 rd AIAA/ASME/SAE/ASEE
	Program to Model Flow Distribution in Fluid	John Bailey	Joint Propulsion Conference and
	Networks	Biplab Sarkar	Exhibit, July 6-9, 1997, Seattle,
			WA, AIAA 97-3225
4	Numerical Prediction of Pressure Distribution	Paul Schallhorn	33 rd AIAA/ASME/SAE/ASEE
	Along the Front and Back Face of a Rotating	Alok Majumdar	Joint Propulsion Conference and
	Disc With and Without Blades		Exhibit, July 6-9, 1997, Seattle,
_			WA, AIAA 97-3098
5	Flow Network Analyses of Cryogenic	Douglas Richards	33 rd AIAA/ASME/SAE/ASEE
	Hydrogen Propellant Storage and Feed Systems	Daniel Vonderwell	Joint Propulsion Conference and
			Exhibit, July 6-9, 1997, Seattle,
(A Communication of Chaid Contains Circuitation	Alala Maissa dan	WA, AIAA 97-3223 34 th AIAA/ASME/SAE/ASEE
6	A Generalized Fluid System Simulation Program to Model Flow Distribution in Fluid	Alok Majumdar John Bailey	Joint Propulsion Conference and
	Networks	Paul Schallhorn	Exhibit, July 13-15, 1998,
	Networks	Todd Steadman	Cleveland, OH, AIAA 98-3682
7	Flow Simulation in Secondary Flow Passages	Daul Sahaliharn	34 th AIAA/ASME/SAE/ASEE
7	Flow Simulation in Secondary Flow Passages of a Rocket Engine Turbopump	Paul Schallhorn Alok Majumdar	Joint Propulsion Conference and
	of a Rocket Engine Turoopump	Katherine Van Hooser	Exhibit, July 13-15, 1998,
		Matthew Marsh	Cleveland, OH, AIAA 98-3684
		Watthew Walsh	Cicvelland, 611, AIAA 76-3004
8	A Novel Approach for Modeling Long	Paul Schallhorn	34 th AIAA/ASME/SAE/ASEE
	Bearing Squeeze Film Damper Performance	David Elrod	Joint Propulsion Conference and
		David Goggin	Exhibit, July 13-15, 1998,
		Alok Majumdar	Cleveland, OH, AIAA 98-3684
9	Unstructured Finite Volume Computational	Alok Majumdar	7 th AIAA/USAF/NASA/ISSMO
	Thermo-Fluid Dynamics Method for Multi-	Paul Schallhorn	Symposium on Multidisciplinary
	Disciplinary Analysis and Design Optimization		Analysis and Optimization,
			September 2-4, 1998, St. Louis, MO
1.0	N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	41.136	AIAA 98-4810
10	Numerical Modeling of Pressurization of a	Alok Majumdar	37 th AIAA Aerospace Sciences
	Propellant Tank	Todd Steadman	Meeting Conference and Exhibit,
			January 11-14, 1999, Reno, NV
			AIAA 99-0879 To be published in AIAA Journal of
			Propulsion and Power, November-
			December 2000
			December 2000

	Title	Author(s)	Conference/Journal
11	A Second Law Based Unstructured Finite Volume Procedure for Generalized Flow Simulation	Alok Majumdar	37th AIAA Aerospace Sciences Meeting Conference and Exhibit, January 11-14, 1999, Reno, NV AIAA 99-0934
12	Numerical Prediction of Transient Axial Thrust and Internal Flows in a Rocket Engine Turbopump	Katherine Van Hooser John Bailey Alok Majumdar	35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, June 21, 1999, Los Angeles, CA, AIAA 99-2189
13	Numerical Modeling of Helium Pressurization System of Propulsion Test Article (PTA)	Todd Steadman Alok Majumdar Kimberly Holt	Thermal & Fluids Analysis Workshop, September 13-17, 1999, Huntsville, AL
14	A Steady State and Quasi-Steady Interface Between the Generalized Fluid System Simulation Program and the SINDA/G Thermal Analysis Program	Paul Schallhorn Alok Majumdar Bruce Tiller	Thermal & Fluids Analysis Workshop, September 13-17, 1999, Huntsville, AL
15	Interfacing a General Purpose Fluid Network Flow Program with the Sinda/G Thermal Analysis Program	Paul Schallhorn Dan Popok	SAE Paper No. 1999-01-2162
16	An Unsteady Long Bearing Squeeze Film Damper Model – Part I: Circular Centered Orbits	Paul Schallhorn David Elrod David Goggin Alok Majumdar	38 th AIAA Aerospace Sciences Meeting Conference and Exhibit, January 11-14, 1999, Reno, NV AIAA 2000-0352
17	An Unsteady Long Bearing Squeeze Film Damper Model – Part II: Statically Eccentric Operation	Paul Schallhorn David Elrod David Goggin Alok Majumdar	38 th AIAA Aerospace Sciences Meeting Conference and Exhibit, January 11-14, 1999, Reno, NV AIAA 2000-0353
18	A Fluid Circuit Model for Long Bearing Squeeze Film Damper Rotordynamics	Paul Schallhorn David Elrod David Goggin Alok Majumdar	AIAA Journal of Propulsion and Power, Vol. 16, No. 5, pp 777-780, Sept – Oct 2000
19	Unsteady Analysis of the Fluid Film Forces in a Long Bearing Squeeze Film Damper	Paul Schallhorn	Ph. D. Dissertation, University of Alabama in Huntsville, 1998
20	Numerical Modeling and Test Data Comparison of Propulsion Test Article Helium Pressurization System	Kimberly Holt Alok Majumdar Todd Steadman Ali Hedayat	36 th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July 16-19, 2000, Huntsville, AL, AIAA 2000-3719
21	Numerical Modeling of Drying Residual RP-1 in Rocket Engines	Alok Majumdar Robert Polsgrove Bruce Tiller	Thermal & Fluids Analysis Workshop, August 21-25, 2000, Cleveland, OH
22	Incorporation of Condensation Heat transfer Model into a Flow Network Code	Miranda Anthony. Alok Majumdar	Thermal & Fluids Analysis Workshop, September 10-14, 2001, Huntsville, Alabama.

	Title	Author(s)	Conference/Journal
23	Discharge Characteristics of the International Space Station (Ise) Portable Fire Extinguisher (Pfe) and the effect on Closed Volumes	Charles E Martin Paul Schallhorn Paul Wieland	SAE Paper No. 2001-01-2316
24.	Modeling of Chill Down in Cryogenic Transfer Lines	M. Cross A.K. Majumdar J. C. Bennett Jr. R. B. Malla	Journal of Spacecraft and Rockets, Vol. 39, No. 2, 2002, pp 284-289.
25	Numerical modeling of cavitating venturi – a flow control element of propulsion system	Alok Majumdar	Thermal & Fluids Analysis Workshop, August 12-16, 2002, Houston, TX
26	Numerical Modeling of Fluid Transient by a Finite Volume Procedure for Rocket Propulsion Systems	Alok Majumdar Robin Flachbart	Proceedings of ASME FEDSM'03, 4 th ASME/JSME Joint Fluids Engineering Conference, Paper No. FEDSM2003-45275, Honolulu, Hawaii, USA, July 6-10, 2003
27	Numerical Modeling of Thermofluid Transients During Chilldown of Cryogenic Transfer Lines	Alok Majumdar Todd Steadman	33 rd International Conference on Environmental Systems (ICES), Paper No. 2003-01-2662, Vancouver, Canada, July 6-10, 2003.
28	Numerical Modeling of Unsteady Thermofluid Dynamics in Cryogenic Systems	Alok Majumdar	Thermal & Fluids Analysis Workshop, August 18-22, 2003, Hampton, Virginia
29	A Novel Approach for Modeling Chemical Reaction in Generalized Fluid System Simulation Program	Mehmet Sozen Alok Majumdar	39 th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July 20-23, 2003, Huntsville, AL, AIAA 2003-4467
30	Numerical Modeling of Conjugate Heat Transfer in Fluid Network	Alok Majumdar	Thermal & Fluids Analysis Workshop, August 30- September 3, 2004, Jet Propulsion Laboratory, Pasadena, California
31	Numerical Modeling of Flow Distribution in Microfluidics Systems	Alok Majumdar Helen Cole C. P. Chen	Proceedings of Forum on Microfluidics Devices and Systems, ASME Fluids Engineering Conference, Paper No. FEDSM 2005-77378, June 19-23, 2005, Houston, Texas
32	Development and Implementation of Non- Newtonian Rheology into the Generalized Fluid System Simulation Program (GFSSP)	Roberto Di Salvo Stelu Deaconn Alok Majumdar	42 nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July 9-12, 2006, Sacramento, CA, AIAA 2006-
33	Microfluidic System Simulation including the Electro-Viscous Effect	Eileen Rojas C. P. Chen Alok Majumdar	Integration and Commercialization of Macro and Nano Systems, ASME International Conference, Paper No. MNC2007-21295, Sanya, Hainan China, Jan 10-13, 2007