Gamme tempérée et gamme de Pythagore

Enseignement scientifique première

Durée 1h - 10 points - Thème « La Terre, un astre singulier »

Il y a eu dans l'histoire de nombreuses constructions de gammes pour ordonner les notes à l'intérieur d'une octave. Cet exercice étudie deux types de gammes à douze notes : la gamme tempérée et la gamme de Pythagore.

L'octave peut être divisée en douze intervalles en formant douze notes de base (Do, Do[#], Ré, Mi^b, Mi, Fa, Fa[#], Sol, Sol[#], La, Si^b, Si). La gamme fréquemment utilisée de nos jours est la gamme tempérée, dans laquelle le rapport de fréquences entre deux notes consécutives est constant.

1- Préciser la valeur du rapport des fréquences de deux notes séparées d'une octave.

Le rapport des fréquences de deux notes séparées d'une octave est égal à 2.

2- Expliquer pourquoi la valeur exacte du rapport des fréquences entre deux notes consécutives de la gamme tempérée est ¹²√2.

Une octave est décomposée en 12 intervalles et la fréquence de deux notes séparées d'une octave est égal à 2 ainsi :

$$\sqrt[12]{2} \times \sqrt[12]{2} \times \sqrt[12]{2}$$

C'est pourquoi la valeur exacte du rapport des fréquences entre deux notes consécutives de la gamme tempérée est $^{12}\sqrt{2}$.

3- La fréquence du La3 est égale à 440 Hz. Calculer la valeur, arrondie au dixième, de la fréquence de la note suivante Si₃^b dans la gamme tempérée.

$$f(Si_3^b) = f(La_3) \times \sqrt[12]{2}$$

$$f(Si_3^b) = 400 \times \sqrt[12]{2}$$

$$f(Si_3^b) = 466, 2Hz$$

La valeur, arrondie au dixième, de la fréquence de la note suivante (Si₃^b) dans la gamme tempérée est égal à 466,2 Hz.

4- Jusqu'au XVIIe siècle, la gamme la plus utilisée était la gamme de Pythagore, obtenue à partir des quintes successives d'une note initiale. Le tableau ci-dessous donne les fréquences des différentes notes de la gamme de Pythagore en partant de 440 Hz.

N	lote	Mi ₃	Fa ₃	Fa ₃ #	Sol ₃	Sol ₃ #	La ₃	Si ₃ ^b	Si ₃	Do ₄	Do ₄ [†]
	quence Hz)	330	352,4	371,3	396,4	417,7	440	469,9	495	528,6	556,

4-a- Calculer le rapport des fréquences des notes Si3 et Mi3 et donner le nom d'un tel intervalle.

$$\frac{f(Si_3)}{f(Mi_3)} = \frac{495}{330} = \frac{3}{2}$$

Cet intervalle est la quinte.

4-b- On considère la fonction Python freq_suivante ci-dessous qui permet de construire la gamme de Pythagore.

def freq_suivante(f):

f = 3/2*f

if f >= 660:

f = f/2

return(f)

Donner les nombres renvoyés après l'exécution de freq_suivante(330) et de freq_suivante(440).

Préciser les notes correspondantes.

Exécution de freq_suivante(330):

$$f = \frac{3}{2} \times 330 = 495$$

f=495<660

Après l'exécution de freq_suivante(330) le nombre renvoyé est 495 Hz.

Note correspondante: Si₃

Exécution de freq_suivante(440):

$$f = \frac{3}{2} \times 440 = 660$$

f=660 est dans la condition ≤660

f=f/2

f=660/2

f=330

Après l'exécution de freq_suivante(440) le nombre renvoyé est 330 Hz.

Note correspondante : Mi₃