СУ №6: ЕЛЕКТРОСТАТИКА (2 учебни часа)

І.Електрични заряди. Електростатично поле. Закон на Кулон

В природата съществуват два вида електрични заряди – положителни и отрицателни. Атомите, които изграждат всички вещества, съдържат ядро (съставено от протони) и електрони, обикалящи около ядрото. Зарядите на електрона и протона са еднакви по големина и противоположни по знак.

Това са най-малките електрични заряди, които могат да съществуват самостоятелно: $e_{np} = 1,6.10^{-19}$ С, а $e_{en} = -1,6.10^{-19}$ С. За измерване на количеството електричен заряд е въведена мерната единица кулон (С). Като цяло атомите са електронеутрални – броят на протоните в ядрото е равен на броя на електроните, следователно и телата, изградени от електронеутрални атоми, също са елекронеутрални. При определени условия (например триене с парче сух плат) в дадено тяло е възможно броят на протоните да стане по-голям от този на електроните – в такъв случай тялото се нарича положително наелектризирано (или заредено). Обратно – когато броят на електроните в едно тяло е по-голям от този на протоните, то се оказва отрицателно наелектризирано. Това може да се

- ако $Q^+ = Q^-$; електронеутрално тяло: $Q^+ + Q^- = 0$;

запише кратко по следния начин:

- ако $Q^+ > Q^-$; положително наелектризирано тяло (то има излишък от протони);
- ако Q- > Q+; отрицателно наелектризирано тяло (в него има излишък от електрони);

 Q^+ и Q^- са съответно общия брой на протоните и електроните в даденото тяло.

Всеки отделен неподвижен електричен заряд или наелектризирано тяло създава в пространството около себе си силово поле, наречено електростатично поле. Силите, които действат във всяко електростатично поле се наричат електростатични сили – по своя характер тези сили са консервативни и зависят от положението на зарядите, между които действат. Електростатичното поле е друг пример за потенциално поле (аналогично на гравитационното поле на Земята, което разгледахме в механиката).

Силата на взаимодействие между неподвижни електрични заряди е определена експериментално от френския физик Ш.Кулон, а законът, на който се подчинява това взаимодействие, е известен като закон на Кулон:

 $F_{12}=kq_1q_2/r_{12}^2$, където $k=1/(4\pi\epsilon_0)=9.10^9\,\text{Nm}^2/\text{C}^2$; $\epsilon_0=8,85.10^{-12}\,\text{C}^2/\text{Nm}^2$ (ϵ_0 се нарича електрична константа или диелектрична проницаемост на вакуума), q_1 и q_2 са големините на електричните заряди, а r_{12} е разстоянието между тях. Вижда се, че кулоновата сила зависи правопропорционално от \mathbf{k} , \mathbf{q}_1 и \mathbf{q}_2 и обратнопропорционално от \mathbf{r}_{12}^2 .

Ако зарядите се намират в среда различна от вакуум, силата на взаимодействие между тях намалява: $F_{12} = kq_1q_2/\epsilon_r r_{12}^2$, където ϵ_r е безразмерна величина, наречена диелектрична проницаемост на средата ($\epsilon_r > 1$).

Законът на Кулон е установен за точкови електрични заряди – това са заредени тела, чиито размери са много малки и могат да се пренебрегнат в сравнение с разстоянията между тях. Подобно на материалната точка, точковият електричен заряд е модел, който се използва в електростатиката. Всяко наелектризирано тяло може да се разглежда като съвкупност от множество точкови електрични заряди. Проведените експерименти показват, че електростатичните сили, действащи между едноименно наелектризирани тела, са сили на отблъскване, и обратно - между разноименно наелектризираните тела – сили на привличане.

II. Интензитет на електростатичното поле. Поток на вектора на интензитета на електростатичното поле. Закон (теорема) на Гаус – частни случаи

За характеризиране на електростатичното поле се въвеждат няколко основни физични величини. Интензитетът на електростатичното поле се означава с ${\bf E}$ и се нарича още силова характеристика на полето. Определя се от формулата: ${\bf E}={\bf F}/{\bf q}$ (N/C), където ${\bf F}$ е силата, с която полето действа на положителен точков електричен заряд ${\bf q}$, поставен в дадена точка от полето; силата ${\bf F}$ може да се изрази чрез интензитета ${\bf E}: {\bf F}={\bf q}{\bf E};$ интензитетът е векторна величина и неговата посока се определя от посоката на действащата сила. Големината на интензитета можем да определим като заместим силата ${\bf F}$ с нейната големина:

 $E = kq_0q/r^2q = kq_0/r^2$ (за вакуум) и $E = kq_0/\epsilon_r r^2$ (за среда различна от вакуум), където q_0 е зарядът, който създава електростатичното поле, а r е разстоянието между зарядите q_0 и q; очевидно е, че **интензитетът зависи правопропорционално** от големината на заряда, създаващ полето, и обратнопропорционално от квадрата на разстоянието.

За електростатично поле, създадено от множество електрични заряди $(q_{01},\,q_{02},\,...,\,q_{0n})$, интензитетът в дадена точка от полето ще бъде геометрична сума от интензитетите на полетата ${\bf E_{i}}$, създавани от всеки заряд поотделно:

 ${f E} = \sum\! E_i = \sum\! F_i/q$ – тази формула изразява принципа на суперпозицията на интензитетите на електростатичните полета, създадени от голям брой електрични заряди.

Друга важна характеристика на електростатичното поле е **потока на вектора** на интензитета, който се определя от броя на силовите линии, пресичащи перпендикулярно дадена площ: $d\Phi_E = E.dS = EdScos\alpha = E_ndS$, където $E_n = Ecos\alpha$ е проекцията на вектора на интензитета върху нормалата \mathbf{n} към площта, а векторът $\mathbf{dS} = \mathbf{n} dS$ (\mathbf{n} е единичен вектор, перпендикулярен на площта \mathbf{dS}).

Законът на Гаус дава възможност лесно да се пресметнат интензитетите на важни за практическо приложение електростатични полета:

- интензитет на поле, създадено от една безкрайна, равномерно и непрекъснато наелектризирана равнина: $E = \sigma/2\epsilon_0$ (за вакуум) и $E = \sigma/2\epsilon_0\epsilon_r$ (за среда различна от вакуум), където σ се нарича повърхнинна плътност на електрични заряди и определя количеството електричен заряд върху единица площ: $\sigma = Q/S$ (C/m^2); Q е общия електричен заряд, разпределен върху цялата площ S;
- интензитет на поле, създадено от две успоредни, безкрайни, равномерно и непрекъснато наелектризирани с разноименни електрични заряди равнини: $E = \sigma/\epsilon_0 \ \, (\text{за вакуум}) \, \text{и} \ \, E = \sigma/\epsilon_0 \epsilon_r \, \, (\text{за среда различна от вакуум});$
- интензитет на поле, създадено от равномерно и непрекъснато наелектризирана сферична повърхност с количество електричен заряд Q: $E=kQ/r^2 \ (\text{за вакуум}) \ \text{и} \ E=kQ/r^2 \epsilon_r \ (\text{за среда различна от вакуум}).$

III. Потенциал на електростатичното поле. Работа на електростатични сили в електростатично поле. Връзка между интензитет и потенциал

Потенциалът е друга основна характеристика на електростатичното поле в дадена точка от него и се определя от следната формула: $\phi = U/q$ (V), където U е потенциалната енергия на точков заряд q, поставен в тази точка; $U = q\phi$. Потенциалът на електростатично поле, създадено от точков електричен заряд

 q_0 в дадена точка, която се намира на разстояние r от него, е $\phi = kq_0/r$ (за вакуум) и $\phi = kq_0/r\epsilon_r$ (за среда различна от вакуум). Очевидно **потенциалът** зависи правопропорциоално от k и q_0 и обратнопропорционално от r (и ϵ_r).

Електростатичното поле е потенциално и действащите електростатични сили в него са консервативни. От механиката знаем, че работата на консервативните сили е свързана с потенциалната енергия чрез следното равенство: $A_{1-2} = -\Delta U$.

За дадено електростатично поле, в което електричен заряд с големина q се премества от точка с потенциал ϕ_1 до точка с потенциал ϕ_2 , извършената работа от консервативните сили ще бъде: $A_{1-2} = - q\Delta \phi = - q(\phi_2 - \phi_1) = q(\phi_1 - \phi_2)$.

Интензитетът и потенциалът на електростатичното поле са две основни характеристики, които са свързани помежду си със съотношението $E=-d\phi/dr$.

Последната формула показва, че интензитетът на електростатичното поле числено е равен на изменението на потенциала на единица разстояние. Знакът

" – " означава, че векторът на интензитета е насочен в посоката, в която потенциалът намалява. Връзката между двете величини може да бъде записана и по следния начин ${\bf E}=$ - grad ϕ .

IV. Електричен капацитет. Плосък въздушен кондензатор

При наелектризирането на даден проводник с някакво количество електричен заряд, зарядът се разпределя върху неговата повърхност. Опитно е установено, че определено количество електричен заряд Q създава точно определен потенциал ϕ на проводника. Двете величини са свързани със следната зависимост: $Q = C\phi$, където C е една константа на пропорционалност, наречена електричен капацитет (или просто капацитет). Капацитетът е физична величина, която се определя от отношението на заряда, предаден на даден проводник, към неговия потенциал: $C = Q/\phi$; мерната единица за капацитет се нарича фарад (F).

Капацитетът е физична величина, която зависи от формата и размерите на даден проводник, но не зависи от материала, агрегатното състояние и неговата вътрешност (дали е плътен или кух няма значение, тъй като некомпенсираните електрични заряди се разполагат върху повърхността му).

Ако даден проводник има форма на сфера с радиус R, неговият капацитет се определя от формулата $C = 4\pi\epsilon_0 R$ (за среда вакуум) и $C = 4\pi\epsilon_0 \epsilon_r R$ (за среда различна от вакуум).

Плоският кондензатор се състои от две наелектризирани пластинки с еднаква площ S, разположени на определено разстояние d една от друга. Електричните заряди на пластинките са равни по големина и противоположни по знак: Q и –Q. Електростатичното поле е съсредоточено в пространството между двете пластинки, което се запълва с някаква диелектрична среда ($\varepsilon_r > 1$). Когато средата е въздух, $\varepsilon_r = 1$. Ако означим потенциалите на двете пластинки с ϕ_1 и ϕ_2 , капацитетът на кондензатора се определя от следното отношение:

 $C = Q/(\phi_1 - \phi_2) = Q/\Delta \phi$, където Q е големината на заряда на пластинките $(Q = \sigma S_{\pi\pi})$, а $\Delta \phi$ е потенциалната разлика между тях. Интензитетът на полето между двете пластинки $E = \sigma/\epsilon_0\epsilon_r = \Delta \phi/d$. За капацитета на плоския кондензатор може да се използва още една формула: $C = \epsilon_0 S/d$ (за вакуум) и $C = \epsilon_0 \epsilon_r S/d$ (за среда различна от вакуум).

Задачи: стр. 94 – 3, 5, 10; **Въпроси с избираем отговор**: стр. 91 – 4, 5, 6; 95 – 14, 17, 19, 23, 24, 25, 26. 92 – 11, 12, 13, 14, 17; 93 – 19, 20.

Зад. 3: Две отрицателно заредени прашинки с еднакви заряди се намират във вакуум на разстояние 0,1 cm една от друга и се отблъскват със сила 4 nN. Определете броя на излишните електрони на всяка прашинка.

$$q_1 = q_2 = -q$$
; $q = ne$; $r = 10^{-3}$ m; $F = 4.10^{-9}$ N; $k = 1/(4\pi\epsilon_0) = 9.10^9$ Nm²/C²; $n = ?$

$$F = kq^2/r^2 = k(ne)^2/r^2 \rightarrow ne = \sqrt{F.r^2/k} = \sqrt{(4.10^{-9}.10^{-6})/9.10^9} = (2/3).10^{-12}; n = 0.4.10^7.$$

Зад. 5: Как ще се измени разстоянието между два ел. заряда, ако единият от тях се увеличи 4 пъти, а силата на взаимодействие между тях остане същата?

$$q_1,\,q_2;\,\,F_1=kq_1q_2/r_1^2;\,\,F_2=k4q_1q_2/r_2^2;\,F_1=F_2\,;\,\,r_2^2/r_1^2=4;\,\,r_2/r_1=2;\,\,r_2=2r_1.$$

Зад. 10: Сфера е равномерно заредена с ел. заряд с повърхнинна плътност 6,4.10⁻¹² С/ст². Определете интензитета на ел. стат. поле, създадено от тази сфера, в точка, намираща се на такова разстояние от центъра на сферата, което е 6 пъти по-голямо от нейния радиус.

$$\sigma = 6.4.10^{-12}.10^4 = 6.4.10^{-8} \text{ C/m}^2$$
 ; $r = 6\text{R}$; $E = ?$

$$E = kQ/r^2 = kQ/36R^2$$
; $Q = \sigma S_{c\varphi} = \sigma.4\pi R^2$; $E = k\sigma\pi/9 = 64\pi = 200,96$ N/C.

Зад. 14: Потенциалът на ел. стат. поле на разстояние 40 cm от точков ел. заряд Q е 0,2kV. Да се определи силата, която действа на точков заряд с големина 1 nC, поставен в тази точка.

$$r = 40 \text{ cm} = 0.4 \text{ m}$$
; $\phi = 0.2 \text{ kV} = 200 \text{ V}$; $q = 1 \text{ nC} = 10^{-9} \text{ C}$; $F = ?$

$$F = kQq/r^2$$
; $\varphi = kQ/r \rightarrow Q = \varphi r/k$; $F = kq\varphi r/kr^2 = q\varphi/r = 10^{-9}.2.10^2/4.10^{-1} = 0.5.10^{-6} N$.

Зад.17: Частица със заряд 0,2 С се премества от точка А с потенциал 600 V в точка В с неизвестен потенциал, при което кинетичната й енергия се изменя със 100 J.

Определете потенциала в точка В.

$$q = 0.2 C = 2.10^{-1} C$$
; $\phi_A = 600 V$; $\Delta E_k = 100 J$; $\phi_B = ?$

$$\Delta E_k = A = -q(\phi_B - \phi_A) = q(\phi_A - \phi_B)$$
; $q\phi_B = q\phi_A - \Delta E_k$; $\phi_B = \phi_A - \Delta E_k/q = 100 \text{ V}$.

Зад. 19: Електрон се движи от точка A до точка B, потенциалната разлика между които е 100 V. Да се определи скоростта на електрона в точка B, ако скоростта му в точка A е 0 m/s.

$$v_A = 0$$
; $\Delta \phi = 100 \text{ V}$; $q = e = 1,6.10^{-19} \text{ C}$; $v_B = ?$

$$\begin{split} A &= \Delta E_k = (m/2)(v_{B^2} - v_{A^2}) = m v_{B^2}/2; \, A = - \, \Delta U = - \, e(\phi_B - \phi_A) = e(\phi_A - \phi_B) = e \Delta \phi; \\ m v_{B^2}/2 &= e \Delta \phi \rightarrow v_B = \sqrt{2} e \Delta \phi / m = 10^7 \sqrt{0.35} \approx 0.6.10^7 \, \text{m/s}. \end{split}$$

Зад. 23: Колко електрона се намират върху повърхността на метална сфера с диаметър 4 cm, която е заредена във вакуум до потенциал 0,1 kV? (Сферата

е отдалечена от други проводници.)

$$D = 4.10^{-2} \text{ m}$$
; $R = 2.10^{-2} \text{ m}$; $\varphi = 0.1.10^{3} = 100 \text{ V}$; $n = ?$

$$Q = C\phi = 4\pi\epsilon_0 R\phi = ne \rightarrow n = 4\pi\epsilon_0 R\phi/e = 4\pi.8,85.10^{-12}.2.10^{-2}.10^{-2}/1,6.10^{-19} = 138,9.10^{7}.$$

Зад. 24: Да се определят капацитета и повърхнинната плътност на ел. заряди върху пластините на плосък въздушен кондензатор, който е зареден до потенциална разлика $0.2~\rm kV$. Площта на всяка от пластините е $0.25~\rm m^2$, а разстоянието между тях е $1~\rm mm$.

$$\varphi = 0.2.10^3 = 2.10^2 \text{ V}$$
; $S = 0.25 \text{ m}^2$; $d = 10^{-3} \text{ m}$; $C = ?$; $\sigma = ?$

$$C = \varepsilon_0 S/d = 8.85.10^{-12}.0.25/10^{-3} = 2.21.10^{-9} F;$$

$$E = \Delta \phi/d = \sigma/\epsilon_0 \rightarrow \sigma = \epsilon_0 \Delta \phi/d = 17.7.10^{-7} C/m^2$$
.

Зад. 25: Как ще се промени капацитетът на плосък кондензатор, ако разстоянието между пластините му се увеличи 3 пъти, а площна на пластините се намали 2 пъти?

$$C_1$$
; C_2 ; d_1 ; $d_2 = 3d_1$; S_1 ; $S_2 = S_1/2$; $C_2/C_1 = ?$

$$C_1 = \varepsilon_0 \varepsilon_r S_1/d_1;$$
 $C_2 = \varepsilon_0 \varepsilon_r S_1/2.3d_1 = C_1/6.$

Зад. 26: Площта на пластините на плосък въздушен кондензатор е 60 cm^2 , електричният му заряд е 12 nC, а напрежението между пластините му 1 kV.

Колко е разстоянието между пластините на кондензатора?

$$S = 60 \text{ cm}^2 = 6.10^{-3} \text{m}^2$$
; $Q = 12.10^{-9} \text{ C}$; $\Delta \phi = 10^3 \text{ V}$; $d = ?$

$$C = \varepsilon_0 S/d$$
; $C = Q/\Delta \varphi$; $\varepsilon_0 S/d = Q/\Delta \varphi$; $d = \varepsilon_0 S\Delta \varphi/Q = (8.85/2).10^{-3} = 4.43.10^{-3} \text{ m}$.

Въпроси с избираем отговор:

- 4. Законът на Кулон, определящ големината на силата на взаимодействие между два точкови ел. заряда, се изразява чрез формулата:
- a) $F = kq_1q_2/r$; b) $F = kq_1q_2/r^2$; c) $F = r/kq_1q_2$; d) $F = r^2/kq_1q_2$; Bepen отговор: b)
- 5. Интензитетът на ел. стат. поле се дефинира като силата, действаща на:
- а) единица положителен заряд, поставен в електростатично поле;
- b) единица отрицателен заряд, поставен в електростатично поле;
- с) пробен заряд в електростатично поле;
- d) пробен заряд в магнитно поле; Верен отговор: a)
- 6. Наелектризирана метална сфера е поставена в диелектрик с относителна диелектрична проницаемост 2. Как ще се измени интензитетът на полето, създадено от тази сфера, ако тя се постави в друг диелектрик с диелектрична проницаемост 4?
- а) ще се увеличи 2 пъти; b) няма да се промени; с) ще се намали 2 пъти;
- d) ще се увеличи 4 пъти; Верен отговор: с)
- 11. В дадена точка от еднородно ел. стат. поле е поставен точков ел. заряд q, а силата, с която полето действа на заряда е F. Интензитетът на полето в тази

точка e: a)
$$E = F/q^2$$
; b) $E = F/q$; c) $E = qF$; d) $E = q^2F$; Верен отговор: b)

- 12. Какъв е интензитетът на полето в центъра на равномерно и непрекъснато наелектризирана куха сфера?
- а) зависи от радиуса на сферата; b) зависи от веществото, от което е направена сферата; c) равен на нула; d) зависи от това с какъв заряд е наелектризирана сферата; Верен отговор: c)

- 13. Големината на интензитета на ел. стат. поле около 1 безкрайна, равномерно и непрекъснато заредена равнина с повърхнинна плътност на зарядите σ е:
- a) $\sigma \epsilon_0$; b) σ/ϵ_0 ; c) $\sigma/2\epsilon_0$; d) ϵ_0/σ ; Bepen otrosop: c)
- 14. Големината на интензитета на ел. стат. поле между 2 успоредни, безкрайни, равномерно и непрекъснато заредени разноименно равнини с повърхнинна плътност на зарядите σ е:
- a) $\sigma \varepsilon_0$; b) σ/ε_0 ; c) $\sigma/2\varepsilon_0$; d) ε_0/σ ; Bepen otrosop: b)
- 17. Работата на ел. стат. сили при преместване на заряд q в ел. стат. поле от точка с потенциал ϕ_1 до точка с потенциал ϕ_2 се изразява чрез формулата:
- a) $A = -q(\phi_2 \phi_1)$; b) $A = -q(\phi_2 + \phi_1)$; c) $A = q/(\phi_1 \phi_2)$; d) $A = (\phi_1 + \phi_2)/q$; Bepen отговор: a)
- 19. Интензитетът и потенциалът на ел. стат. поле са свързани чрез зависимостта:
- a) $\varphi = dE/dr$; b) $E = -d\varphi/dr$; c) $\varphi = -dE/dr$; d) $E = -dr/d\varphi$; Bepen отговор: b)
- 20. Капацитетът на проводник зависи от:

Верен отговор: с)

- а) заряда върху проводника; с) формата и размерите на проводника;
- b) потенциала на проводника; d) веществото, от което е направен проводника;

(В теоретичната част на упражнението новите векторни величини са означени с удебелен шрифт. В задачите всички векторни величини се определят по големина.)