A Supplementary Material: Proof Appendix

Lemma 2. Let $\mathcal{B}_0, \mathcal{B}_1, \ldots$ be the ones in the definition of section 3.1. Then, for each $i \geq 0$,

- (i) $\mathcal{B}_{i+1} \subseteq \mathcal{B}_i$;
- (ii) there is a (smallest) $k \geq 0$ such that $\mathcal{B}_{k+1} = \mathcal{B}_k$;
- (iii) \mathcal{B}_i is reflexive, symmetric and transitive.

Proof. (i) Base: it is clear for i=0 by the above definition. Step: suppose it holds for i=n, i.e., $\mathcal{B}_{n+1}\subseteq\mathcal{B}_n$. $(s,s')\in\mathcal{B}_{n+2}$

 \Rightarrow (a) $(s,s') \in \mathcal{B}_0$, (b) for every $(s,s_1) \in R$, there is $(s',s'_1) \in R'$ such that $(s_1,s'_1) \in \mathcal{B}_{n+1}$, and (c) for every $(s',s'_1) \in R'$, there is $(s,s_1) \in R$ such that $(s_1,s'_1) \in \mathcal{B}_{n+1}$ \Rightarrow (a) $(s,s') \in \mathcal{B}_0$, (b) for every $(s,s_1) \in R$, there is $(s',s'_1) \in R'$ such that $(s_1,s'_1) \in \mathcal{B}_n$ by inductive assumption, and (c) for every $(s',s'_1) \in R'$, there is $(s,s_1) \in R$ such that $(s_1,s'_1) \in \mathcal{B}_n$ by inductive assumption $\Rightarrow (s,s') \in \mathcal{B}_{n+1}$.

(ii) and (iii) are evident from (i) and the definition of \mathcal{B}_i .

Lemma 1 The relation \leftrightarrow_V is an equivalence relation.

Proof. It is clear from Lemma 2 (ii) such that there is a $k \ge 0$ where $\mathcal{B}_k = \mathcal{B}_{k+1}$ which is \leftrightarrow_V , and it is reflexive, symmetric and transitive by (iii).

Proposition 1 Let $i \in \{1,2\}$, $V_1, V_2 \subseteq \mathcal{A}$, and $\mathcal{K}_i = (\mathcal{M}_i, s_i)$ (i = 1, 2, 3) be K-structures (Ind-structures) such that $\mathcal{K}_1 \leftrightarrow_{V_1} \mathcal{K}_2$ and $\mathcal{K}_2 \leftrightarrow_{V_2} \mathcal{K}_3$. Then:

- (i) $\mathcal{K}_1 \leftrightarrow_{V_1 \cup V_2} \mathcal{K}_3$;
- (ii) If $V_1 \subseteq V_2$ then $\mathcal{K}_1 \leftrightarrow_{V_2} \mathcal{K}_2$.

Proof. In order to distinguish the relations $\mathcal{B}_0, \mathcal{B}_1, \ldots$ for different set $V \subseteq \mathcal{A}$, by \mathcal{B}_i^V we mean the relation $\mathcal{B}_1, \mathcal{B}_2, \ldots$ for $V \subseteq \mathcal{A}$. Denote as $\mathcal{B}_0, \mathcal{B}_1, \ldots$ when the underlying set V is clear from the context. Moreover, for the ease of notation, we will refer to \leftrightarrow_V by \mathcal{B} (i.e., without subindex).

The following property show our result directly. Let $V \subseteq \mathcal{A}$ and $\mathcal{K}_i = (\mathcal{M}_i, s_i)$ (i = 1, 2) be K-structures. Then $(\mathcal{K}_1, \mathcal{K}_2) \in \mathcal{B}$ if and only if

- (a) $L_1(s_1) V = L_2(s_2) V$,
- (b) for every $(s_1, s_1') \in R_1$, there is $(s_2, s_2') \in R_2$ such that $(\mathcal{K}_1', \mathcal{K}_2') \in \mathcal{B}$, and
- (c) for every $(s_2, s_2') \in R_2$, there is $(s_1, s_1') \in R_1$ such that $(\mathcal{K}_1', \mathcal{K}_2') \in \mathcal{B}$,

where $\mathcal{K}'_i = (\mathcal{M}_i, s'_i)$ with $i \in \{1, 2\}$.

We prove it from the following two aspects:

 $(\Rightarrow) \text{ (a) It is apparent that } L_1(s_1) - V = L_2(s_2) - V; \text{ (b)} \\ (\mathcal{K}_1, \mathcal{K}_2) \in \mathcal{B} \text{ iff } (\mathcal{K}_1, \mathcal{K}_2) \in \mathcal{B}_i \text{ for all } i \geq 0, \text{ then for each} \\ (s_1, s_1') \in R_1, \text{ there is a } (s_2, s_2') \in R_2 \text{ such that } (\mathcal{K}_1', \mathcal{K}_2') \in \mathcal{B}_{i-1} \text{ for all } i > 0 \text{ and then } L_1(s_1') - V = L_2(s_2') - V. \\ \text{Therefore, } (\mathcal{K}_1', \mathcal{K}_2') \in \mathcal{B}. \text{ (c) This is similar with (b)}.$

 (\Leftarrow) (a) $L_1(s_1) - V = L_2(s_2) - V$ implies that $(s_1, s_2) \in \mathcal{B}_0$; (b) Condition (ii) implies that for every $(s_1, s_1') \in R_1$, there is $(s_2, s_2') \in R_2$ such that $(\mathcal{K}_1', \mathcal{K}_2') \in \mathcal{B}_i$ for all $i \geq 0$; (c) Condition (iii) implies that for every $(s_2, s_2') \in R_2$, there

is $(s_1, s_1') \in R_1$ such that $(\mathcal{K}_1', \mathcal{K}_2') \in \mathcal{B}_i$ for all $i \ge 0$ $\Rightarrow (\mathcal{K}_1, \mathcal{K}_2) \in \mathcal{B}_i$ for all $i \ge 0$ $\Rightarrow (\mathcal{K}_1, \mathcal{K}_2) \in \mathcal{B}$.

- (i) Let $\mathcal{M}_i = (S_i, R_i, L_i, s_i)$ $(i = 1, 2, 3), s_1 \leftrightarrow_{V_1} s_2$ via a binary relation \mathcal{B} , and $s_2 \leftrightarrow_{V_2} s_3$ via a binary relation \mathcal{B}'' . Let $\mathcal{B}' = \{(w_1, w_3) | (w_1, w_2) \in \mathcal{B} \text{ and } (w_2, w_3) \in \mathcal{B}_2\}$. It's apparent that $(s_1, s_3) \in \mathcal{B}'$. We prove \mathcal{B}' is a $V_1 \cup V_2$ -bisimulation containing (s_1, s_3) from the (a), (b) and (c) of the previous steps of X-bisimulation (where X is a set of atoms). For all $(w_1, w_3) \in \mathcal{B}'$:
- (a) there is $w_2 \in S_2$ such that $(w_1, w_2) \in \mathcal{B}$ and $(w_2, w_3) \in \mathcal{B}''$, and $\forall q \notin V_1, \ q \in L_1(w_1)$ iff $q \in L_2(w_2)$ by $w_1 \leftrightarrow_{V_1} w_2$ and $\forall q' \notin V_2, \ q' \in L_2(w_2)$ iff $q' \in L_3(w_3)$ by $w_2 \leftrightarrow_{V_2} w_3$. Then we have $\forall r \notin V_1 \cup V_2, \ r \in L_1(w_1)$ iff $r \in L_3(w_3)$.
- (b) if $(w_1,u_1) \in \mathcal{R}_1$, then $\exists u_2 \in S_2$ such that $(w_2,u_2) \in \mathcal{R}_2$ and $(u_1,u_2) \in \mathcal{B}$ (due to $(w_1,w_2) \in \mathcal{B}$ and $(w_2,w_3) \in \mathcal{B}''$ by the definition of \mathcal{B}'); and then $\exists u_3 \in S_3$ such that $(w_3,u_3) \in \mathcal{R}_3$ and $(u_2,u_3) \in \mathcal{B}''$, hence $(u_1,u_3) \in \mathcal{B}'$ by the definition of \mathcal{B}' .
- (c) if $(w_3, u_3) \in \mathcal{R}_3$, then $\exists u_2 \in S_2$ such that $(w_2, u_2) \in \mathcal{R}_2$ and $(u_2, u_3) \in \mathcal{B}_2$; and then $\exists u_1 \in S_1$ such that $(w_1, u_1) \in \mathcal{R}_1$ and $(u_1, u_2) \in \mathcal{B}$, hence $(u_1, u_3) \in \mathcal{B}'$ by the definition of \mathcal{B}' .
- (ii) Let $\mathcal{K}_{i,j} = (\mathcal{M}_i, s_{i,j})$ and $(s_{i,k}, s_{i,k+1}) \in R_i$ mean that $s_{i,k+1}$ is the (k+2)-th node in the path $(s_i, s_{i,1}, s_{i,2}, \ldots, s_{i,k+1}, \ldots)$ (i=1,2). We will show that $(\mathcal{K}_1, \mathcal{K}_2) \in \mathcal{B}_n^{V_2}$ for all $n \geq 0$ inductively.

Base: $L_1(s_1) - V_1 = L_2(s_2) - V_1$

- $\Rightarrow \forall q \in \mathcal{A} V_1$ there is $q \in L_1(s_1)$ iff $q \in L_2(s_2)$
- $\Rightarrow \forall q \in \mathcal{A} V_2$ there is $q \in L_1(s_1)$ iff $q \in L_2(s_2)$ due to $V_1 \subseteq V_2$
- $\Rightarrow \overline{L}_{1}(s_{1}) V_{2} = L_{2}(s_{2}) V_{2}$, i.e., $(\mathcal{K}_{1}, \mathcal{K}_{2}) \in \mathcal{B}_{0}^{V_{2}}$.

Step: Supposing that $(\mathcal{K}_1, \mathcal{K}_2) \in \mathcal{B}_i^{V_2}$ for all $0 \leq i \leq k$ (k > 0), we will show $(\mathcal{K}_1, \mathcal{K}_2) \in \mathcal{B}_{k+1}^{V_2}$.

- (a) It is apparent that $L_1(s_1) V_2 = L_2(s_2) V_2$ by base.
- (b) $\forall (s_1,s_{1,1}) \in R_1$, we will show that there is a $(s_2,s_{2,1}) \in R_2$ s.t. $(\mathcal{K}_{1,1},\mathcal{K}_{2,1}) \in \mathcal{B}_k^{V_2}$. $(\mathcal{K}_{1,1},\mathcal{K}_{2,1}) \in \mathcal{B}_{k-1}^{V_2}$ by inductive assumption, we need only to prove the following points:
 - (a) $\forall (s_{1,k},s_{1,k+1}) \in R_1$ there is a $(s_{2,k},s_{2,k+1}) \in R_2$ s.t. $(\mathcal{K}_{1,k+1},\mathcal{K}_{2,k+1}) \in \mathcal{B}_0^{V_2}$ due to $(\mathcal{K}_{1,1},\mathcal{K}_{2,1}) \in \mathcal{B}_k^{V_1}$. It is easy to see that $L_1(s_{1,k+1}) V_1 = L_1(s_{2,k+1}) V_1$, then there is $L_1(s_{1,k+1}) V_2 = L_1(s_{2,k+1}) V_2$. Therefore, $(\mathcal{K}_{1,k+1},\mathcal{K}_{2,k+1}) \in \mathcal{B}_0^{V_2}$.
 - (b) $\forall (s_{2,k}, s_{2,k+1}) \in R_1$ there is a $(s_{1,k}, s_{1,k+1}) \in R_1$ s.t. $(\mathcal{K}_{1,k+1}, \mathcal{K}_{2,k+1}) \in \mathcal{B}_0^{V_2}$ due to $(\mathcal{K}_{1,1}, \mathcal{K}_{2,1}) \in \mathcal{B}_k^{V_1}$. This can be proved as (a).
- (c) $\forall (s_2, s_{2,1}) \in R_1$, we will show that there is a $(s_1, s_{1,1}) \in R_2$ s.t. $(\mathcal{K}_{1,1}, \mathcal{K}_{2,1}) \in \mathcal{B}_k^{V_2}$. This can be proved as (ii).

Theorem1 Let $V \subseteq \mathcal{A}$, \mathcal{K}_i (i = 1, 2) be two K-structures such that $\mathcal{K}_1 \leftrightarrow_V \mathcal{K}_2$ and ϕ a formula with $\mathrm{IR}(\phi, V)$. Then $\mathcal{K}_1 \models \phi$ if and only if $\mathcal{K}_2 \models \phi$.

Proof. This theorem can be proved by inducting on the formula ϕ and supposing $Var(\phi) \cap V = \emptyset$. Let $\mathcal{K}_1 = (\mathcal{M}, s)$ and $\mathcal{K}_2 = (\mathcal{M}', s')$.

Case $\phi = p$ where $p \in \mathcal{A} - V$: $(\mathcal{M}, s) \models \phi \text{ iff } p \in L(s) \text{ (by the definition of satisfiability)}$ $\Leftrightarrow p \in L'(s')$ $(s \leftrightarrow_V s')$ $\Leftrightarrow (\mathcal{M}', s') \models \phi$

Case $\phi = \neg \psi$: $(\mathcal{M}, s) \models \phi \text{ iff } (\mathcal{M}, s) \nvDash \psi$

 $\Leftrightarrow (\mathcal{M}', s') \nvDash \psi$ (induction hypothesis)

 $\Leftrightarrow (\mathcal{M}', s') \models \phi$

Case $\phi = \psi_1 \vee \psi_2$:

 $(\mathcal{M},s) \models \phi$

 $\Leftrightarrow (\mathcal{M}, s) \models \psi_1 \text{ or } (\mathcal{M}, s) \models \psi_2$

 $\Leftrightarrow (\mathcal{M}', s') \models \psi_1 \text{ or } (\mathcal{M}', s') \models \psi_2 \text{ (induction hypothesis)}$

 $\Leftrightarrow (\mathcal{M}', s') \models \phi$

Case $\phi = EX\psi$:

 $\mathcal{M}, s \models \phi$

 \Leftrightarrow There is a path $\pi = (s, s_1, ...)$ such that $\mathcal{M}, s_1 \models \psi$

 \Leftrightarrow There is a path $\pi' = (s', s'_1, ...)$ such that $\pi \leftrightarrow_V \pi'$

 $(s \leftrightarrow_V s', \text{Proposition 1})$ $(\pi \leftrightarrow_V \pi')$

 $\Leftrightarrow s_1 \leftrightarrow_V s_1'$ $\Leftrightarrow (\mathcal{M}', s_1') \models \psi$ $\Leftrightarrow (\mathcal{M}', s_1') \models \phi$ (induction hypothesis)

Case $\phi = EG\psi$:

 $\mathcal{M}, s \models \phi$

 \Leftrightarrow There is a path $\pi = (s = s_0, s_1, ...)$ such that for each

 $i \geq 0$ there is $(\mathcal{M}, s_i) \models \psi$

 \Leftrightarrow There is a path $\pi' = (s' = s'_0, s'_1, ...)$ such that $\pi \leftrightarrow_V \pi'$

 $(s \leftrightarrow_V s', \text{Proposition 1})$

 $\Leftrightarrow s_i \leftrightarrow_V s_i'$ for each $i \geq 0$ $(\pi \leftrightarrow_V \pi')$

 $\Leftrightarrow (\mathcal{M}', s_i') \models \psi \text{ for each } i \geq 0$ $\Leftrightarrow (\mathcal{M}', s_i') \models \phi$ (induction hypothesis)

Case $\phi = E[\psi_1 U \psi_2]$:

 $\mathcal{M}, s \models \phi$

 \Leftrightarrow There is a path $\pi = (s = s_0, s_1, ...)$ such that there is $i \geq 0$ such that $(\mathcal{M}, s_i) \models \psi_2$, and for all $0 \leq j < i$, $(\mathcal{M}, s_j) \models \psi_1$

 \Leftrightarrow There is a path $\pi'=(s=s_0',s_1',\ldots)$ such that $\pi\leftrightarrow_V\pi'$ $(s \leftrightarrow_V s', \text{Proposition 1})$

 $\Leftrightarrow (\mathcal{M}', s_i') \models \psi_2$, and for all $0 \leq j < i (\mathcal{M}', s_i') \models \psi_1$ (induction hypothesis)

 $\Leftrightarrow (\mathcal{M}', s') \models \phi$

Proposition 3 Let φ be a CTL formula, then $\varphi \equiv_{\langle V',I \rangle}$ T_{φ} .

Proof. (sketch) This can be proved from T_i to T_{i+1} (0 \leq i < n) by using one transformation rule on T_i . We will prove this proposition from the following several aspects:

(1) $\varphi \equiv_{\langle \{p\},\emptyset \rangle} T_0$.

 $(\Rightarrow) \ \forall (\mathcal{M}_1, s_1) \in Mod(\varphi), i.e. \ (\mathcal{M}_1, s_1) \models \varphi. \ We$ can construct an Ind-model structure \mathcal{M}_2 is identical to \mathcal{M}_1 except $L_2(s_2) = L_1(s_1) \cup \{p\}$. It is apparent that $(\mathcal{M}_2, s_2) \models T_0 \text{ and } (\mathcal{M}_1, s_1) \leftrightarrow_{\langle \{p\}, \emptyset \rangle} (\mathcal{M}_2, s_2).$

 $(\Leftarrow) \ \forall (\mathcal{M}_1, s_1) \in Mod(T_0)$, it is apparent that $(\mathcal{M}_1, s_1) \models \varphi$ by the sematic of **start**.

By $\psi \rightarrow_t R_i$ we mean using transformation rules t on formula ψ (the formulae ψ as the premises of rule t) and obtaining the set R_i of transformation results. Let X be a set of formulas we will show $T_i \equiv_{\langle V',I \rangle} T_{i+1}$ by using the transformation rule t. Where $T_i = X \cup \{\psi\}, T_{i+1} = X \cup R_i$, V' is the set of atoms introduced by t and I is the set of indexes introduced by t. (We will prove this result in $t \in$ {Trans(1), Trans(4), Trans(6)}, other cases can be proved similarly.)

(2) For t=Trans(1):

 $(\Rightarrow) \ \forall (\mathcal{M}_1, s_1) \in Mod(T_i) \ i.e. \ (\mathcal{M}_1, s_1) \models X \land AG(q \supset T_i)$ $\mathrm{EX}\varphi$)

 $\Rightarrow (\mathcal{M}_1, s_1) \models X$ and for every π starting from s_1 and every state $s_1^j \in \pi$, $(\mathcal{M}, s_1^j) \models \neg q$ or there exists a path π' starting from s_1^j such that there exists a state s_1^{j+1} such that $(s_1^j, s_1^{j+1}) \in R_1 \text{ and } (\mathcal{M}, s_1^{j+1}) \models \varphi$

We can construct an Ind-model structure \mathcal{M}_2 is identical to \mathcal{M}_1 except $[ind]_2 = \bigcup_{s \in S} R_s \cup R_y$, where $R_{s_1^j} =$ $\{(s_1^j, s_1^{j+1}), (s_1^{j+1}, s_1^{j+2}), \dots\}$ and $R_y = \{(s_x, s_y) | \forall s_x \in S \text{ if } \forall (s_1', s_2') \in \bigcup_{s \in S} R_s, s_1' \neq s_x \text{ then find a unique } \}$ $s_y \in S$ such that $(s_x, s_y) \in R$. It is apparent that $(\mathcal{M}_1, s_1) \leftrightarrow_{\langle \emptyset, \{ind\} \rangle} (\mathcal{M}_2, s_2) \text{ (let } s_2 = s_1).$

 \Rightarrow for every path starting from s_1 and every state s_1^j in this path, $(\mathcal{M}_2, s_1^j) \models \neg q \text{ or } (\mathcal{M}_2, s_1^j) \models \text{EX}\varphi_{\langle ind \rangle}$ (by the semantic of EX)

 $\Rightarrow (\mathcal{M}_2, s_1) \models AG(q \supset E_{\langle ind \rangle} X \varphi)$

 $\Rightarrow (\mathcal{M}_2, s_1) \models X \land AG(q \supset E_{\langle ind \rangle} X \varphi)$

 $(\Leftarrow) \ \forall (\mathcal{M}_1, s_1) \in Mod(T_{i+1}) \ i.e. \ (\mathcal{M}_1, s_1) \models X \land$ $AG(q \supset E_{\langle ind \rangle} X \varphi)$

 $\Rightarrow (\mathcal{M}_1, s_1) \models X \text{ and } (\mathcal{M}_1, s_1) \models AG(q \supset E_{\langle ind \rangle} X \varphi)$

 \Rightarrow for every path starting from s_1 and every state s_1^j in this path, $(\mathcal{M}_1, s_1^j) \models \neg q$ or there exits a state s' such that $(s_1^j, s') \in [ind]_1 \text{ and } (\mathcal{M}_1, s') \models \varphi$ (by the semantic of $E_{\langle ind \rangle}X)$

 \Rightarrow for every path starting from s_1 and every state s_1^j in this path, $(\mathcal{M}_1, s_1^j) \models \neg q \text{ or } (\mathcal{M}_1, s_1^j) \models \text{EX}\varphi$ (by the semantic of EX)

 $\Rightarrow (\mathcal{M}_1, s_1) \models AG(q \supset EX\varphi)$

 $\Rightarrow (\mathcal{M}_1, s_1) \models X \land \mathsf{AG}(q \supset \mathsf{EX}\varphi)$

It is apparent that $(\mathcal{M}_1, s_1) \leftrightarrow_{\langle \emptyset, \{ind\} \rangle} (\mathcal{M}_1, s_1)$.

(3) For t=Trans(4):

 $(\Rightarrow) \ \forall (\mathcal{M}_1, s_1) \in Mod(T_i), i.e. \ (\mathcal{M}_1, s_1) \models X \land AG(q \supset I)$ $\varphi_1 \vee \varphi_2$

 $\Rightarrow (\mathcal{M}_1, s_1) \models X \text{ and } \forall s_1' \in S, (\mathcal{M}_1, s_1') \models q \supset \varphi_1 \vee \varphi_2$ $\Rightarrow (\mathcal{M}_1, s_1') \models \neg q \text{ or } (\mathcal{M}_1, s_1') \models \varphi_1 \vee \varphi_2$

The we can construct an Ind-model structure \mathcal{M}_2 as follows. \mathcal{M}_2 is the same with \mathcal{M}_1 when $(\mathcal{M}_1, s_1) \models \neg q$. When $(\mathcal{M}_1, s_1') \models q, \mathcal{M}_2$ is identical to \mathcal{M}_1 except if $(\mathcal{M}_1, s_1') \models$ φ_1 then $L_2(s_1') = L_1(s_1')$ else $L_2(s_1') = L_1(s_1') \cup \{p\}$. It is apparent that $(\mathcal{M}_2, s_1') \models (q \supset \varphi_1 \lor p) \land (p \supset \varphi_2)$, then $(\mathcal{M}_2, s_1) \models T_{i+1} \text{ and } (\mathcal{M}_1, s_1) \leftrightarrow_{\langle \{p\}, \emptyset \rangle} (\mathcal{M}_2, s_2).$

 $(\Leftarrow) \ \forall (\mathcal{M}_1, s_1) \in Mod(T_{i+1}), i.e. \ (\mathcal{M}_1, s_1) \models X \land$ $AG(q \supset \varphi_1 \vee p) \wedge AG(p \supset \varphi_2)$. It is apparent that $(\mathcal{M}_1, s_1) \models T_i$.

(4) For t=Trans(6):

We prove for $E_{\langle ind \rangle}X$, while for the AX can be proved similarly.

 $(\Rightarrow) \ \forall (\mathcal{M}_1, s_1) \in \mathit{Mod}(T_i), \ \mathit{i.e.} \ (\mathcal{M}_1, s_1) \models X \land AG(q \supset E_{\langle ind \rangle} X \varphi)$

 $\Rightarrow (\mathcal{M}_1, s_1) \models X \text{ and } \forall s_1' \in S, (\mathcal{M}_1, s_1') \models q \supset \operatorname{E}_{\langle ind \rangle} \operatorname{X} \varphi$ $\Rightarrow (\mathcal{M}_1, s_1') \models \neg q \text{ or there exists a state } s' \text{ such that}$ $(s_1', s') \in [ind] \text{ and } (\mathcal{M}_1, s') \models \varphi$

We can construct an Ind-model structure \mathcal{M}_2 as follows. \mathcal{M}_2 is the same with \mathcal{M}_1 when $(\mathcal{M}_1,s_1')\models \neg q$. When $(\mathcal{M}_1,s_1')\models q$, \mathcal{M}_2 is identical to \mathcal{M}_1 except for s' there is $L_2(s')=L_1(s')\cup\{p\}$. It is apparent that $(\mathcal{M}_2,s_1)\models \mathrm{AG}(q\supset \mathrm{E}_{\langle ind\rangle}\mathrm{X}p)\wedge \mathrm{AG}(p\supset\varphi), \ (\mathcal{M}_2,s_2)\models T_{i+1}$ and $(\mathcal{M}_1,s_1)\leftrightarrow_{\langle\{p\},\emptyset\rangle}(\mathcal{M}_2,s_2)\ (s_2=s_1)$.

 $(\Leftarrow) \ \forall (\mathcal{M}_1, s_1) \in \mathit{Mod}(T_{i+1}), \ \mathit{i.e.} \ (\mathcal{M}_1, s_1) \models X \land AG(q \supset \mathsf{E}_{\langle ind \rangle} \mathsf{X} p) \land AG(p \supset \varphi).$ It is apparent that $(\mathcal{M}_1, s_1) \models T_i.$

Proposition 4 Let φ be a CTL formula, then $T_{\varphi} \equiv_{\langle V \cup V', \emptyset \rangle} Res.$

Proof. (sketch) This can be proved from T_i to T_{i+1} $(0 \le i < n)$ by using one resolution rule on T_i .

By $\psi \to_r R_i$ we mean using resolution rules r on set ψ (the formulae in ψ as the premises of rule r) and obtaining the set R_i of resolution results. we will show $T_i \equiv_{\langle V,I \rangle} T_{i+1}$ by using the resolution rule r. Where $T_i = X \cup \psi$, $T_{i+1} = X \cup R_i$, X be a set of SNF $^g_{\text{CTL}}$ clauses, p be the proposition corresponding with literal l used to do resolution in r.

(1) If $\psi^- \to_r R_i$ by an application of $r \in \{(\mathbf{SRES1}), \dots, (\mathbf{SRES8}), \mathbf{RW1}, \mathbf{RW2}\}$, then $T_i \equiv_{\langle \{p\}, \emptyset \rangle} T_{i+1}$.

On one hand, it is apparent that $\psi \models R_i$ and then $T_i \models T_{i+1}$. On the other hand, $T_i \subseteq T_{i+1}$ and then $T_{i+1} \models T_i$.

(2) If $\psi \to_r R_i$ by an application of r=(ERES1), then $T_i \equiv_{\langle \{l, w_{\neg l}^{\wedge}\}, \emptyset \rangle} T_{i+1}$.

It has been proved that $\psi \models R_i$ in (Bolotov 2000), then there is $T_{i+1} = T_i \cup \Lambda^{\mathtt{A}}_{\neg l}$ and then $\forall (\mathcal{M}_1, s_1) \in \mathit{Mod}(T_i = X \cup \psi)$ there is a $(\mathcal{M}_2, s_2) \in \mathit{Mod}(T_{i+1} = T_i \cup \Lambda^{\mathtt{A}}_{\neg l})$ s.t. $(\mathcal{M}_1, s_1) \leftrightarrow_{\langle \{p, w^{\mathtt{A}}_{\neg l}\}, \emptyset \rangle} (\mathcal{M}_2, s_2)$ and vice versa by Proposition 3.

For rule (ERES2) we have the same result.

 $\begin{array}{llll} \textbf{Proposition} & 6 & \text{Let} & V'' &= V \cup V', & \Gamma &= \\ \textit{Instantiate}(Res,V') & \text{and} & \Gamma_1 &= \textit{Removing_atoms} \\ (\textit{Connect}(\Gamma),\Gamma), & \text{then} & \Gamma_1 \equiv_{\langle V'',\emptyset\rangle} Res \text{ and } \Gamma_1 \equiv_{\langle V'',I\rangle} \varphi. \end{array}$

Proof. Take note the fact that for each clause $C=T\supset H$ in $Connect(\Gamma)$, if $\Gamma\cap Var(C)\neq\emptyset$ then there must be an atom $p\in\Gamma\cap Var(H)$. It is apparent that $Connect(\Gamma)\models\Gamma_1$, we will show $\forall (\mathcal{M},s_0)\in Mod(\Gamma_1)$ there is a (\mathcal{M}',s_0) such that $(\mathcal{M}',s_0)\models Connect(\Gamma)$ and $(\mathcal{M},s_0)\leftrightarrow_{\langle\Gamma,\emptyset\rangle}(\mathcal{M}',s_0)$. Let $C=T\supset H$ in $Connect(\Gamma)$ with $\Gamma\cap Var(C)\neq\emptyset$, $\forall (\mathcal{M},s_0)\in Mod(\Gamma_1)$ we construct (\mathcal{M}',s_0) as (\mathcal{M},s_0) except for each $s\in S$, if $(\mathcal{M},s)\nvDash T$ then L'(s)=L(s), else:

(i) if $(\mathcal{M}, s) \models H$, then L'(s) = L(s);

(ii) else if $(\mathcal{M},s) \models T$ with $p \in Var(H) \cap \Gamma$, then if p appearing in H negatively, then if C is a global (or an initial) clause then let $L'(s) = L(s) \setminus \{p\}$ else let $L'(s^*) = L(s^*) \setminus \{p\}$ for (each (if C is an A-step or A-sometime clause)) $s^* \in \pi_s$, else if C is a global (or an initial) clause then let $L'(s) = L(s) \cup \{p\}$ else let $L'(s^*) = L(s^*) \cup \{p\}$ for (each (if C is a A-step or A-sometime clause)) $s^* \in \pi_s$. Where s^* is a next or future state of s (it depends on the type of the clause: if the clause is a X-step ($X \in \{A, E\}$) clause then s^* is the next state, else if the clause is a X-sometime clause then s^* is a future state).

It is apparent that $(\mathcal{M}, s_0) \leftrightarrow_{\langle \Gamma, \emptyset \rangle} (\mathcal{M}', s_0)$, we will show that $(\mathcal{M}', s_0) \models Connect(\Gamma)$ from the following two points:

- (1) For (i), it is apparent $(\mathcal{M}', s_0) \models C$;
- (2) For (ii) talked-above, we show it from the form of SNF_{CTL}^g clauses. Supposing C_1 and C_2 are instantiate formula of Γ :
 - (a) If C is a global clause, i.e. $C = \top \supset p \lor C_1$ with C_1 is a disjunction of literals (we suppose p appearing in C positively). If there is a $C' = \top \supset \neg p \lor C_2 \in Connect(\Gamma)$, then there is $\top \supset C_1 \lor C_2 \in Connect(\Gamma)$ by the resolution $((\mathcal{M}, s) \models C_2$ due to we have suppose $(\mathcal{M}, s) \nvDash C$). It is apparent that $(\mathcal{M}', s_0) \models C \land C'$.
 - (b) If $C = T \supset \operatorname{E}_{\langle ind \rangle} \operatorname{X}(p \vee C_1)$. If there is a $C' = T' \supset \operatorname{E}_{\langle ind \rangle} \operatorname{X}(\neg p \vee C_2) \in \operatorname{Connect}(\Gamma)$, then there is $T \wedge T' \supset \operatorname{E}_{\langle ind \rangle} \operatorname{X}(C_1 \vee C_2) \in \operatorname{Connect}(\Gamma)$ by the resolution $((\mathcal{M},s) \models \operatorname{E}_{\langle ind \rangle} \operatorname{X}C_2$ due to we have suppose $(\mathcal{M},s) \nvDash C$. It is apparent that $(\mathcal{M}',s_0) \models C \wedge C'$.
 - (c) Other cases can be proved similarly.

Therefore, we have $\Gamma_1 \equiv_{\langle V'', \emptyset \rangle} Res$ by Proposition 2 and Proposition 5.

And then $\Gamma_1 \equiv_{\langle V'',I \rangle} \varphi$ follows.