TO11 - Nendredi 13 movembre 2020

Hyprithme d'Euclide standard

$$a, b \in \mathbb{Z}$$
 $n = a$, $n_1 = b$
 $n_0 = n_1 q_0 + n_2$ $q_0 \in \mathbb{Z}$, $0 \le n_2 \le n_1$
 $n_1 = n_2 q_1 + n_3$ $q_1 \in \mathbb{Z}$ $0 \le n_3 \le n_2$
 $n_1 = n_1 q_0 + n_3$ $q_1 \in \mathbb{Z}$ $0 \le n_3 \le n_2$
 $n_1 = n_1 q_0 + n_1 + n_1$ $n_1 = p_0 \in \mathbb{Z}$
 $n_1 = n_1 q_0 + n_1 + n_1$ $n_1 = p_0 \in \mathbb{Z}$
 $n_1 = n_1 q_0 + n_1 + n_1$ $n_1 = p_0 \in \mathbb{Z}$
 $n_1 = n_1 q_0 + n_1 = p_0 \in \mathbb{Z}$
 $n_1 = n_1 q_0 + n_1 = p_0 \in \mathbb{Z}$
 $n_1 = n_1 q_0 + n_1 = p_0 \in \mathbb{Z}$

Relation de Betrout: Sit a, b $\in \mathbb{Z}_{\bullet}$ pgcd(a, b)=1, $\Longrightarrow \exists u, v \in \mathbb{Z}_{\bullet}$ qu+b v = 1.

Algorithme d'Euclide étendu

,		a, b e Z	. Л _о = а	,n=b.	
no = uo a+ V	65			No = a	11 = b
71= U1a+N	ale	→	Л。 = а	u. = 1	v₀ = 0
	Î	→	n, = 6	u ₁ = 0	v ₁ = 1
$n_2 = \mu_2 a + \sqrt{2}$		no= n, (0+22 →	12=20-29	42= 40-9041	V2 = V0 - 90 V1.
		21 = 2291 + 23	13 = 71-1291	W3= W1-91 W2	V3 = V1 - 91 V2
= a(40-0	9051	;			
40(00	V2	12 1-1 = 12 9 1-1 + 12 +1	72n+1=5n-1-	W _{n+1}	Vn+1
		n= n+1 9+ 0		77	1
	Rg	xialb	ፖ。 =	- 10· 凡4 + 凡の	Mn+1 a+ Vn+1 b= 12 n+1
		n_ n_	on tre	ouve 7 ₁	, 10 "

 $T_1 = \frac{n_1}{2} \cdot q_1 + T_3$

M, v por unques:
$$a=4, 4=3$$
 $pgcd(3,4)=1$.
 $4+(-1)\cdot 3=1$. $M=1, v=-1$
 $4\cdot 4+(-5)\cdot 3=1$ $M=4$, $v=-5$.

Feuille 4:

		刀。= 0 = 13	n= b = 17
*	No= a = 13	No = 1	No = 0
\rightarrow	r1 = b = 17	w ₁ = 0	$V_1 = 1$
13=17×0+13	13 = 13-17 × 0	N2= 1 = N0 - 0. N1	$V_2 = 0 = V_0 - 0$, V_1
17 = 13×1+4	4 = 17 - 13 ك	u3=u1-u2 = -1	$v_3 = v_1 - v_2 = 1$
13= 4 3+	1=13-4×3	иги 2 - 3·43 = 1+3 - 4	$V_4 = V_2 - 3 \cdot V_3 = -3$
4-1.4+0			
rete mil		. /	
·	pgcd (13, 17)	= 4.13-	3.17 = 1
	10	((52-51))	
		(' ' ' ' ' ' ' '	

n= a=32, n=b= 27

n= a=32	1 1/2=1/2= 2 T		
		a	b
	→ No=a= 32	1	0
	→ 11= 6= 27	0	1
32 = 27 ×1+5	→5 = 32 - 27	1	- 1
	→ 2 = 27-5×5	-5	1-5×(-1) = 6 -
⇒5=2×2+	1 = 5-2×2	$1 - 2 \times (-5) = 91$	-1-2 x 6 = -13
2=1+2+0			
_			
			27
Po	gcd (32,27)=1 =	11 32 - 13.27	27 13
	U ·	11	8 1

352

٥

$$\begin{cases} (n+1) + (-1) \cdot n = 1 & \text{dinc} \ pgcd(n+1, n) = 1. \\ a - b = 1 & \text{dinc} \end{cases}$$

$$\frac{280}{1995} = \frac{35}{180} + \frac{35}{280}$$

$$\frac{35}{280} = \frac{35}{280} \times 2 + 35$$

$$\frac{360}{280} = 35 \times 28 + 0$$

$$2-\sqrt{3}q \in \mathbb{Z} + 2003 = n \cdot q + 8$$
 $3002 = n \cdot q + 27 \cdot 0 \leq 27 \leq n$
 $4ne$
 $1 = 2003 - 8 = 1095$
 $1 = 3002 - 27 = 2075$
 $1 = 3002 - 27 = 2075$

donc n/1995 et n/1975 done n/pgcd (1995, 1975) =35

pour le 20/11. 4.4, 4.5