Cálculo 1

Lista de Exercícios – Semana 08

Temas abordados: Taxas relacionadas; Extremos de funções

Seções do livro: 3.10; 4.1

- 1) Um funil cônico têm um diâmetro de 30 centímetros na parte superior e altura de 40 centímetros. Se o funil for alimentado à taxa de 1,5 l/seg e tem uma vazão de 800 cm³/seg, determine quão rapidamente está subindo o nível de água quando esse nível for de 25 centímetros.
- 2) Um ponto move-se sobre o gráfico de $y = 1/(x^2 + 1)$, de tal modo que sua abcissa x varia a uma velocidade de 5 m/s. Qual a velocidade de y no instante em que x é igual a 10 metros ?
- 3) Um carro, vindo do norte, aproxima-se de um cruzamento em ângulo reto a uma velocidade de 60 km/h. Ao mesmo tempo, um outro carro, que se situa à leste do cruzamento, afasta-se a uma velocidade de 50 km/h. Determine a taxa de variação da distância entre os dois carros no instante em que o primeiro está a 20 km do cruzamento e o segundo está a 15 km do cruzamento. Qual a interpretação física do sinal do resultado encontrado? (veja Vídeo 1)
- 4) Um objeto circular aumenta de tamanho de alguma forma desconhecida. Entretanto, é sabido que quando o raio é igual a 6 metros, a taxa de variação do raio é igual a 4 m/min. Encontre a taxa de variação da área quando o raio é igual a 6 metros.
- 5) Um dos catetos de um triângulo retângulo diminui à uma taxa de 2,5 cm/min, enquanto outro cresce 5 cm/min. Em certo instante, o comprimento do primeiro lado é 20 centímetros e o do segundo é 15 centímetros. Passados 2 minutos, a que taxa está variando a área? Ela está aumentando ou diminuindo?
- 6) Uma escada de 8 metros está encostada numa parede. Se a extremidade inferior da escada for afastada do pé da parede a uma velocidade constante de 2 m/seg, com que velocidade a extremidade superior estará descendo no instante em que a inferior estiver a 3 metros da parede? (veja Vídeo 2)
- 7) Explique por que o ponto x = 0 é um ponto de mínimo da função f(x) = |x|. O que acontece com a derivada neste ponto?
- 8) Um ponto $x_0 \in \text{dom}(f)$ é chamado máximo local de f se existe $\delta > 0$ tal que

$$f(x_0) \ge f(x), \quad \forall x \in \text{dom}(f) \cap (x_0 - \delta, x_0 + \delta).$$

Naturalmente, todo ponto de máximo de f é um ponto de máximo local de f.

Supondo que $x = x_0$ é um ponto de máximo local de f onde a derivada $f'(x_0)$ existe, resolva os itens abaixo.

(a) Usando a desigualdade acima, verifique que a derivada lateral à direita satisfaz

$$f'_{+}(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0.$$

(b) Repetindo o argumento, verifique que a derivada lateral à esquerda satisfaz

$$f'_{-}(x_0) = \lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0} \ge 0.$$

- (c) Lembrando que as derivadas laterais coincidem, conclua que $f'(x_0) = 0$.
- 9) Proceda de maneira análoga ao exercício acima para definir o conceito de mínimo local de f. O que se pode dizer sobre a derivada de f em um ponto de mínimo local?
- 10) O que significa dizer que x_0 é um ponto crítico de f?
- 11) Toda função contínua definida em [a, b] tem ponto de máximo e de mínimo. Use os 3 exercícios anteiores para descrever uma estratégia para encontrar os pontos de máximo e mínimo desta função.
- 12) Em cada um dos itens abaixo, é dada uma função definida em um intervalo fechado [a, b]. Depois de encontrar os pontos críticos da função no intervalo (a, b), determine os pontos de máximo e mínimo (global) de cada uma delas. (veja Vídeo 4)

(a)
$$f(x) = x^3 - 3x^2, x \in [-1, 4]$$

(a)
$$f(x) = x^3 - 3x^2$$
, $x \in [-1, 4]$ (b) $g(x) = 3x^5 - 5x^3 + 12$, $x \in [0, 2]$

(c)
$$f(y) = 1 - |y - 1|, y \in [0, 2]$$
 (d) $h(x) = \sqrt[3]{x}, x \in [-1, 8]$

(d)
$$h(x) = \sqrt[3]{x}, x \in [-1, 8]$$

(e)
$$g(y) = \sqrt{4 - y^2}, y \in [-2, 1]$$
 (f) $s(t) = te^{-t}, t \in [0, 2]$ (g) $f(x) = \ln(1 + x), x \in [0, 3]$ (h) $v(t) = e^{-t^2}, t \in [-4, 3]$

(f)
$$s(t) = te^{-t}, t \in [0, 2]$$

(g)
$$f(x) = \ln(1+x), x \in [0,3]$$

(h)
$$v(t) = e^{-t^2}, t \in [-4, 3]$$

- 13) Prove que entre todos os retângulos com um dado perímetro P, o quadrado é o que possui maior área.
- 14) Um retângulo deve ser inscrito em uma semicircunferência de raio a > 0. Qual é a maior área que o retângulo pode ter e quais são as suas dimensões? (veja Vídeo 5)
- 15) Seja $y_m(x) = mx + b$, com $m \neq 0$, a equação de uma reta que passa pelo ponto (2,3).
 - (a) Verifique que $y_m(x) = mx + (3-2m)$.
 - (b) Calcule as coordenadas dos pontos em que a reta y_m intercepta os eixos $\mathcal{O}y$ e $\mathcal{O}x$, respectivamente.
 - (c) Se A(m) é a área do triângulo retângulo situado no 10 quadrante, com cada um dos seus catetos apoiados nos eixos coordenados e cuja hipotenusa contém o ponto (2,3), mostre que

$$A(m) = -\frac{(2m-3)^2}{2m}, \qquad m < 0.$$

- (d) Explique porque somente a teoria desenvolvida até agora não nos permite concluir que A tem ponto de mínimo.
- (e) Verifique que a função A(m) tende para infinito quando $m \to -\infty$ ou $m \to 0^-$.
- (f) O item acima mostra que existem a < -1 < b < 0 tais que

$$A(m) > A(-1), \qquad \forall m \in (-\infty, a) \cup (b, 0).$$

Conclua que, apesar do domínio da função A(m) se aberto e ilimitado, ela possui um ponto de mínimo.

RESPOSTAS

- 1) $1792/(225\pi)$ cm/s
- 2) $-100/101^2$ m/s
- 3) A taxa de variação é -18 km/h, o que significa que os carros estão se aproximando um do outro
- 4) $48\pi \text{ m}^2/\text{min}$
- 5) Aumentando à uma taxa de 6,25 cm²/min
- 6) $6/\sqrt{55}$ m/s
- 7) Como $f(x) = |x| \ge 0 = |0| = f(0)$ para todo $x \in \mathbb{R}$, o ponto x = 0 é um ponto de mínimo de f. Neste ponto, a derivada não existe.
- 8) (a) Note que, como $x \to x_0^+$, o denominador $(x x_0)$ é sempre positivo.
 - (b)
 - (c) Lembre que em um ponto onde f é derivável as derivadas laterais coincidem.
- 9) O ponto $x_0 \in \text{dom}(f)$ é chamado mínimo local de f se existe $\delta > 0$ tal que

$$f(x_0) \le f(x), \quad \forall x \in \text{dom}(f) \cap (x_0 - \delta, x_0 + \delta).$$

Se este é o caso e $f'(x_0)$ existe, o mesmo argumento do exercício anterior mostra que $f'(x_0) = 0$.

- 10) Um ponto x_0 pertencente ao interior do domínio da função f é um ponto crítico se $f'(x_0) = 0$ ou $f'(x_0)$ não existe.
- 11) Os passos são: determinar os pontos críticos; calcular a função nos pontos críticos e nos extremos do domínio; comparar os valores encontrados
- 12) PC=Pontos críticos; PMin=Pontos de mínimo; PMax=Pontos de Máximo.
 - (a) PC: $\{0, 2\}$ PMin: $\{-1, 2\}$ PMax: $\{4\}$
 - (b) PC: {1} PMin: {1} PMax: {2}
 - (c) PC: {1} PMin: {0, 2} PMax: {1}
 - (d) PC: $\{0\}$ PMin: $\{-1\}$ PMax: $\{8\}$
 - (e) PC: $\{0\}$ PMin: $\{-2\}$ PMax: $\{0\}$
 - (f) PC: {1} PMin: {0} PMax: {1}
 - (g) PC: não existem PMin: {0} PMax: {3}
 - (h) PC: $\{0\}$ PMin: $\{-2\}$ PMax: $\{2\}$
 - (i) PC: $\{0\}$ PMin: $\{-4\}$ PMax: $\{0\}$
- 13) Denote por x e y dois lados não paralelos do retângulo e observe que o seu perímetro é P=2x+2y
- 14) A área máxima vale a^2 e é atingida por um retângulo cuja base mede $a\sqrt{2}$ e altura mede $a/\sqrt{2}$
- **15)** (a) basta notar que $y_m(2) = 3$
 - (b) (0, 3-2m) e ((2m-3)/m, 0)
 - (c)
 - (d) o domínio não é um intervalo fechado
 - (e)
 - (f) compare o mínimo de A no intervalo [a,b] com os valores da função fora deste intervalo fechado