Faculty Member:	Dated:
Semester:	Section:

EE313: ELECTRONIC CIRCUIT DESIGN

Lab10: Differential pair

(Mismatches and Offset Null adjustment)

S.no	Name	Reg. no.	Total/25
_			
1			
2			
2			
3			
4			

Objective

The input offset voltage of operational amplifiers (op amps) arises from unavoidable mismatches in the differential input stage of the op-amp circuit caused by mismatched transistor pairs, collector currents, current-gain betas (β) , collector or emitter resistors, etc. This experiment deals with voltage offset due to collector resistance mismatch.

Materials

The items listed in table 1 will be needed. For this lab, assume all NPN transistors are identical 2N2222 BJTs.

CAUTION: Please DO NOT leave the circuit on for long periods since there is a risk of heating up of transistors.

Components	Quantity
Transistors:	2N2222 NPN x2
Resistors:	10k x 1 ,5.6k x 2, 1k variable resistor

Introduction

Consider the simplified input-stage circuit of the operational amplifier in Figure 1. The input offset voltage of the op amp results from mismatches in collector/emitter resistors and the transistor pair of the differential input. Each of these mismatches is examined separately below.

Figure 1. The Simplified Differential Input Circuit

Effect of Collector-Resistor (R_C) Mismatch on Vos

When the transistors Q_1 and Q_2 in Figure 1 are perfectly matched, the current, I, is divided equally between them.

Let
$$R_c = \frac{R_{c1} + R_{c2}}{2}$$
 and $\Delta R_c = R_{c1} - R_{c2}$

Then,
$$R_{c1} = R_c + \frac{\Delta R_c}{2}$$
 and $R_{c2} = R_c - \frac{\Delta R_c}{2}$

Thus, the output voltage, V_0 , is [1a]:

$$\begin{split} & \textit{I}_{o} = \textit{V}_{c2} - \textit{V}_{c1} = \left(\textit{V}_{DD} - \frac{\alpha I}{2} \; \textit{R}_{c2}\right) - \left(\textit{V}_{DD} - \frac{\alpha I}{2} \; \textit{R}_{c1}\right) = \left[\textit{V}_{DD} - \frac{\alpha I}{2} \left(\textit{R}_{c} - \frac{\Delta \textit{R}_{c}}{2}\right)\right] \\ & - \left[\textit{V}_{DD} - \left(\frac{\alpha I}{2}\right)\!\!\left(\textit{R}_{c} + \frac{\Delta \textit{R}_{c}}{2}\right)\right] = \Delta \textit{R}_{c} \; \frac{\alpha I}{2} \end{split}$$

The input offset voltage is
$$V_{os} = \frac{V_o}{A_d} = \frac{V_o}{g_m R_c} = \frac{\alpha \left(\Delta R_c\right) \left(\frac{I}{2}\right)}{\frac{\alpha I}{V_T} R_c} = V_T \frac{\Delta R_c}{R_c} = \frac{kT}{q} \frac{\Delta R_c}{R_c}$$
 (1)

where

$$\alpha = \frac{\beta}{\beta+1}; \text{ differential gain : } A_d = g_m R_c; \ g_m = \frac{I_c}{V_T} \text{ and } V_T = \frac{kT}{q} \text{ is the thermal voltage.}$$

Here k is Boltzmann's constant and q is the charge on the electron

Procedure

PART 1- CALCULATION

a) Consider the circuit shown in Figure 2 using 2N2222 transistors for the NPN BJTs.

Use R3 =
$$10 \text{ k} \Omega$$
, R1 = R2 = $5.6 \text{ k} \Omega$, VCC = 9 V and VEE= -9 V

b) Calculate the DC bias currents I_{C1} and I_{C2} and Voltages V_{C1} and V_{C2} .

4 (1)

 V_{C1} :______ V_{C2} :_____

c) Hence calculate the differential gain A_d for the give circuit.

Figure 2. Differential Amplifier

$V_{\rm C}$	21:		V _{C2} :	V _{C2} - V _{C1} :		
	c) Hen	ce using the measur	red current, calculat	e the differential gain A_d for the	e give circuit.	
$\mathbf{A}_{\mathbf{d}}$	d=					
		ing the measured va values calculated for		and A_d , Determine the offset volume	age V _{OS.} Does it compare	with
	V _{OS} =_		_			
	e) No	w add a variable res	sistor as shown in fi	oure 3 Make sure that the resis	tance is equal on both side	20

Figure 3. Differential Amplifier with potentiometer.

f) Adjust the potentiometer so that V_{C2} - V_{C1} becomes 0. Measure the resistances labeled **x** and **1-x** on figure 3.

X :	1-X:	

PART 3- SIMULATION

a)	Simulate in PSpice	the circuit shown in Figure	re 3 using 2N2222	transistors for	the NPN I	BJTs.	Use
	potentiometer(POT) from the breakout library	in PSPICE				

Use R3 = $10 \text{ k} \Omega$, R1 = R2 = $5.6 \text{ k} \Omega$, VCC = 9 V and VEE= -9 V

Note: Use the measured values for R1 and R2 and the higher value resistance of the two as R1

b)	Use bias point analysis for DC bias currents I _{C1} and I	I _{C2} and Voltages	V_{C1} and V_{C2} .	When potentiometer is
	set at 0.5.			

V_{C1}:______, I_{C2}:______ V_{C2}:______ V_{C2}- V_{C1}:_____

c) Use the same values for X and 1-X measured for PART 2 and calculate the set point of potentiometer. Write down the

Note: Set: 0 *means* 1-*x:* 1*kohms and set:* 1 *means* x=1k *ohms for the potentiometer*

 V_{C1} :______ V_{C2} -______ V_{C2} --______