Fall 09
Instructor: Mihir Bellare
November 16, 2009

Problem Set 8

Due: Monday November 23, 2009, in class.

Collaboration is allowed on this problem set. See the course information sheet for collaboration rules.

Problem 1. [40 points] Let \mathcal{K}_{rsa} be an RSA generator with associated security parameter k. The associated RO model SRSA KEM $\mathcal{KEM} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ is defined via

algorithm
$$\mathcal{K}$$
 algorithm \mathcal{E}_{pk}^{H} algorithm \mathcal{E}_{pk}^{H} $x \overset{\$}{\leftarrow} \mathbf{Z}_{N}^{*}$ algorithm $\mathcal{D}_{sk}^{H}(C_{a})$ $x \leftarrow C_{a}^{d} \mod N$ $K \leftarrow H(x)$ $C_{a} \leftarrow x^{e} \mod N$ return (pk, sk) return (K, C_{a})

Here we view $H: \mathbb{Z}_N^* \to \{0,1\}^k$ when the public key is (N,e). Let A be an ind-cpa adversary that makes 1 **Enc** query and q queries to the RO H. Show that there is a OW-adversary I such that

$$\mathbf{Adv}^{\mathrm{ind-cpa}}_{\mathcal{KEM}}(A) \leq \mathbf{Adv}^{\mathrm{owf}}_{\mathcal{K}_{\mathrm{rsa}}}(I)$$

The running time of I should be about that of A plus the time for q RSA operations.