

planetmath.org

Math for the people, by the people.

Hausdorff metric

Canonical name HausdorffMetric Date of creation 2013-03-22 13:28:34 Last modified on 2013-03-22 13:28:34

Owner Koro (127) Last modified by Koro (127)

Numerical id 11

Author Koro (127) Entry type Definition Classification msc 54E35

Synonym Hausdorff distance Defines Hausdorff hemimetric Let (X, d) be a metric space, and let \mathcal{F}_X be the family of all closed and bounded subsets of X. Given $A \in \mathcal{F}_X$, we will denote by $N_r(A)$ the neighborhood of A of radius r, i.e. the set $\bigcup_{x \in A} B(x, r)$.

The upper Hausdorff hemimetric is defined by

$$\delta^*(A, B) = \inf\{r > 0 : B \subset N_r(A)\}.$$

Analogously, the lower Hausdorff hemimetric is

$$\delta_*(A, B) = \inf\{r > 0 : A \subset N_r(B)\}.$$

Finally, the *Hausdorff metric* is given by

$$\delta(A, B) = \max\{\delta^*(A, B), \delta_*(A, B)\}.$$

for $A, B \in \mathcal{F}_X$.

The following properties follow straight from the definitions:

- 1. $\delta^*(A, B) = \delta_*(B, A);$
- 2. $\delta^*(A, B) = 0$ if and only if $B \subset A$;
- 3. $\delta_*(A, B) = 0$ if and only if $A \subset B$;
- 4. $\delta^*(A, C) \leq \delta^*(A, B) + \delta^*(B, C)$, and similarly for δ_* .

From this it is clear that δ is a metric: the triangle inequality follows from that of δ_* and δ^* ; symmetry follows from $\delta^*(A,B) = \delta_*(A,B)$; and $\delta(A,B) = 0$ iff both $\delta_*(A,B)$ and $\delta^*(A,B)$ are zero iff $A \subset B$ and $B \subset A$ iff A = B.

Hausdorff metric inherits completeness; i.e. if (X, d) is complete, then so is (\mathcal{F}_X, δ) . Also, if (X, d) is totally bounded, then so is (\mathcal{F}_X, δ) .

Intuitively, the Hausdorff hemimetric δ^* (resp. δ_*) measure how much bigger (resp. smaller) is a set compared to another. This allows us to define hemicontinuity of correspondences.