Manifold Learning

ml essentials Heidelberg 2020

Dr. Stefan Kühn

https://www.linkedin.com/in/stefan-k%C3%BChn-020a34119/

https://www.xing.com/profile/Stefan_Kuehn46/cv

Workshop resources

Notebooks

https://github.com/cc-skuehn/Workshop_Manifold_Learning

Run Notebooks on

https://colab.research.google.com/

Slides about Manifold Learning

Manifold Learning at MCubed 2018

What is a manifold?

Mathematical concept from Differential Geometry

Why is it a useful concept?

Relativity theory, black holes, and the Poincaré conjecture

- · A Manifold locally resembles Euclidean Space
- · Allows to generalize useful concepts like Calculus
- · Allows to describe geometric properties by means of Calculus
- Einstein's general theory of relativity
- Gravitational lensing and black holes
- · Perelman and the proof of the Poincaré conjecture

Ok, that's Differential geometry, but where is Machine Learning?

What are properties of a manifold?

Important Properties – Topology and more

- Number of Connected Components
- Holes
- Curvature
- Smoothness
- Dimensionality
- · ...you_name_it...

What are properties of a good visualization?

Preserve important properties

- Number of connected components?
- · Holes?
- · Curvature?
- Smoothness?
- Dimensionality?
- Distances between points?
- Angles, orientations?
- Local versus global properties?

You cannot have it all!

Which one is correct?

What does "Learning" mean in Manifold Learning?

· Learning the high-dimensional manifold

- Somewhat independent from low-dim approximation
- Mathematical theories can be complex
- · Local versus global properties, distance vs. density etc.

· Learning the low-dimensional approximation (or embedding)

- Depends on properties to be preserved
- Depends on choice of similarity/distance measure

Learning the mapping from high-dim to low-dim

Depends on everything above

Learning the structure without assumptions?

No. All methods make use of explicit and / or implicit assumptions.
 Sometimes it's hard to figure these out but they determine what you get / see in the end.

Manifold Learning Methods in sklearn

- Locally Linear Embedding
 - Neighborhood-preserving
- · Isomap
 - Quasi-isometric
- Multi-Dimensional Scaling (MDS)
 - · Quasi-isometric
- Spectral Embedding
 - Spectral clustering based on similarity (Laplacian Eigenmaps)
- Local Tangent Space Alignment (LTSA)

Local Tangent Space Alignment

Dimensionality Reduction Methods

· PCA

- Preserves variance
- Best approximation by linear subspace
- Comes with quantitative estimation of loss
- Solves multiple approximations at once

Gaussian Random Projections

- Preserves distances
- · Based on Johnson-Lindenstrauss lemma
- Simple and reliable
- · Generates a random projection matrix using a Gaussian

Sparse Random Projections

- Preserves distances and enforces sparsity
- Uses a much simpler probability distribution

"Advanced" Methods – Advanced Math

· tSNE or t-Distributed Stochastic Neighbor Embedding

- Transforms Euclidean distances between points into conditional probabilities for similarity
- · Idea is to find a 2D/3D probability distribution that is similar to he high-dim distribution
- Learns a mapping that preserves these probabilities
- Minimizes Kullback-Leibler divergence (somehow)

· UMAP or Uniform Manifold Approximation and Projection

- Based on Differential Geometry and Algebraic Topology
- Preserves important structural properties
- If you really want to know more:
 - Category Theory
 - Functors
 - Fuzzy Topological Representation

Demo Time

Sometimes, words are insufficient...

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely,

One-dimensional manifolds include lines and circles, but not figure eights (because they have *crossing points* that are not k self-intersections) in three dimensional real space, but also the Klein bottle and real projective plane, which will always self-

So let's use code!

```
print(__doc__)

from time import time

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.ticker import NullFormatter
%matplotlib inline
from sklearn import manifold, datasets
```

Google Colab

- https://colab.research.google.com/notebooks/ welcome.ipynb
- Sign in with your Google Account
- Load first Jupiter Notebook from GitHub repo:
 - File -> Open Notebook -> Github -> Enter Github URL
 - cc-skuehn -> Workshop_Manifold_Learning
 - Manifold_S_Dataset.ipynb

Backup - Experiments

• https://distill.pub/2016/misread-tsne/