Lagrangian Approaches for Knowledge Injection When soft constraints are enough

Constrained Machine Learning

Let's consider ML problem with constrained output

In particular, let's focus on problems in the form:

$$\operatorname{argmin}_{\theta} \left\{ L(y) \mid y = f(\hat{x}, \omega), g(y) \le 0 \right\}$$

Where:

- lacksquare L is the loss
- \hat{x} is the training input
- lacksquare y is the ML model output, i.e. $f(x,\omega)$
- lacktriangledown is the parameter vector (we assume a parameterized model)
- \blacksquare g is a constraint function

Equality csts. can be viewed as double-inequalities (but they admit simplifications)

Constrained Machine Learning

Example 1: logical rules

E.g. hiearchies in multi-class classification ("A dog is also an animal"):

$$y_{i,dog} \leq y_{i,animal}$$

■ This constraint is defined over individual examples

Example 2: shape constraints

E.g. input x_i cannot cause the output to decrease (monotonicity)

$$y_i \le y_k \quad \forall i, k : x_{i,j} \le x_{k,j} \land x_{i,h} = x_{k,h} \forall h \ne j$$

■ This is a relational constraint, i.e. defined over multiple examples

Lagrangian Relaxations for Constrained ML

One way to deal with this problem is to rely on a Lagrangian Relaxation

Main idea: we turn the constraints into penalty terms:

$$\operatorname{argmin}_{\theta} \left\{ L(y) + \lambda^{T} \max(0, g(y)) \mid y = f(\hat{x}, \omega) \right\}$$

Or, alternatively:

$$\operatorname{argmin}_{\theta} \left\{ L(y) + \lambda^{T} \max(0, g(y))^{2} \mid y = f(\hat{x}, \omega) \right\}$$

lacktriangle We use a vector of multipliers λ to weight the constraint violations

This is a popular approach for ML with constraints

- One of the first occurrences as <u>Semantic Based Regularization</u>
- The constraints are "distilled" in the model parameters

Lagrangian Relaxations for Constrained ML

Equality constraints can be treated as double inequalities

...Or via the simplified form:

$$\arg\min_{\theta} \left\{ L(\mathbf{y}) + \lambda^T g(\mathbf{y})^2 \right\} \text{ with: } \mathbf{y} = f(\mathbf{x}; \theta)$$

There are a few big caveats, in particular:

- The degree of constraint satisfaction depends on the multipliers
- There is no trivial guarantee that constraints are eventually satisfied

...But neither point matters if we just want to inject some expert knowledge in a ML model

Scarce Labels in RUL Predictions

RUL estimation is a major goal for predictive maintenance

However, ground truth for RUL is hard to come by:

- Run-to-failure experiments are time consuming
- They may not be viable for large and complex machines

Typically, only a few runs are available

However, data about normal operation may still be abundant

- This may come from test runs, installed machines, etc.
- It looks exactly like the input data for our RUL prediction model
- ...And it will still show sign of component wear

However, the true RUL value in this case will be unknown

Can we still take advantage of this data?

Data Loading and Preparation

We will rely on the NASA C-MAPPS dataset

...Which contains simulated run-to-failure experiments for turbo-fan engines

ut[3]:																	
		src	machine	cycle	p1	p2	р3	s1	s2	s3	s4	•••	s13	s14	s15	s16	s17
	0	train_FD001	1	1	-0.0007	-0.0004	100.0	518.67	641.82	1589.70	1400.60		2388.02	8138.62	8.4195	0.03	392
	1	train_FD001	1	2	0.0019	-0.0003	100.0	518.67	642.15	1591.82	1403.14		2388.07	8131.49	8.4318	0.03	392
	2	train_FD001	1	3	-0.0043	0.0003	100.0	518.67	642.35	1587.99	1404.20		2388.03	8133.23	8.4178	0.03	390
	3	train_FD001	1	4	0.0007	0.0000	100.0	518.67	642.35	1582.79	1401.87		2388.08	8133.83	8.3682	0.03	392
	4	train FD001	1	5	-0.0019	-0.0002	100.0	518.67	642.37	1582.85	1406.22		2388.04	8133.80	8.4294	0.03	393

- There are four sub-datasets (column src)
- Columns p1-3 represent control parameters
- Columns s1-21 are sensor readings

Data Loading and Preparation

We will focus on the FD004 dataset (the hardest)

```
In [4]: data_by_src = util.partition_by_field(data, field='src')
dt = data_by_src['train_FD004']
dt[dt_in] = dt[dt_in].astype(np.float32)
```

Then we separate two sets for training and one for testing

- The first trainign set will contain finished experiments (supervised)
- ...The second will contain data for still running machines (unsupervised)

```
In [43]:
    trs_ratio = 0.03 # Supervised experiments / all experiments
    tru_ratio = 0.6 # Unsupervised experiments / remaining experiments
    trs, tmp = util.split_datasets_by_field(dt, field='machine', fraction=trs_ratio, seed=42)
    tru, ts = util.split_datasets_by_field(tmp, field='machine', fraction=tru_ratio, seed=42)

    trs_mcn, tru_mcn, ts_mcn = trs['machine'].unique(), tru['machine'].unique(), ts['machine'].unique(), tru['machine'].unique(), ts['machine'].unique(), tru_mcn);
    write in try_mcn, ts_mcn = trs['machine'].unique(), tru['machine'].unique(), ts['machine'].unique(), tru_mcn);
```

Data Loading and Preparation

Then we standardize the input data

```
In [44]: | sscaler, nscaler = StandardScaler(), MinMaxScaler()
          trs s, tru s, ts s = trs.copy(), tru.copy(), ts.copy()
          trs s[dt in] = sscaler.fit transform(trs[dt in])
          tru s[dt in], ts s[dt in] = sscaler.transform(tru[dt in]), sscaler.transform(ts[dt in])
          trs s[['rul']] = nscaler.fit transform(trs[['rul']])
          tru_s[['rul']], ts_s[['rul']] = nscaler.transform(tru[['rul']]), nscaler.transform(ts[['rul']])
          maxrul = nscaler.data max [0]
          display(trs s.head())
                       src machine cycle
                                                              p3
                                                                                                             s13
                                             p1
                                                      p2
                                                                        s1
           1725 train FD004 467
                                       -1.688818 -1.924463 0.445653 1.811018
                                                                          1.784571 1.676982
                                                                                            1.834240 ... 0.445850 0.741
           1726 train FD004 467
                                                         0.445653 0.754417
                                                                           0.824865
                                                                                    0.604660
                                                                                             0.459056
                                                                                                      ... 0.445775 -0.158
                                        -0.320795 0.385443
           1727 train FD004 467
                                        -1.688920 -1.925123 0.445653 1.811018
                                                                           1.768350 1.668955
                                                                                             1.823341 ... 0.445477 0.684
           1728 train FD004 467
                                                                          -0.742836 -0.576935 -0.541685 ... 0.443309 0.078
                                        1.184267  0.844852  0.445653 -1.021583
```

-1.688948 -1.925453 0.445653 1.811018

1.767810 1.726471 1.761244 ... 0.445402 0.677

5 rows × 28 columns

1729 train FD004 467

Later, we will need the maximum RUL value on the training set

MLP with Scarce Labels

As a baseline, we will train a MLP model on the supervised data

We do not split a validation set, given we have scarce data

```
In [45]: nn = util.build ml model(input size=len(dt in), output size=1, hidden=[32, 32])
         history = util.train ml model(nn, trs s[dt in], trs s['rul'], validation split=0., epochs=40)
          util.plot training history(history, figsize=figsize)
           0.14
           0.12
           0.10
           0.08
           0.06
           0.04
           0.02
                                                       epochs
          Model loss: 0.0223 (training)
```

Evaluation

Let's inspect the predictions

```
In [46]: trs_pred = nn.predict(trs_s[dt_in]).ravel() * maxrul
          stop = 1400
          util.plot rul(trs pred[:stop], trs["rul"].iloc[:stop], same scale=False, figsize=figsize)
           250
           200
           150
           100
                             200
                                                    600
                                                                800
                                                                           1000
                                                                                       1200
                                        400
                                                                                                   1400
```

- The predictions have a decreasing trend (which is good)
- ...But they are very noisy (which is bad)

Evaluation

The behavior on the test data has a similar trend

...And it is similarly noisy

Cost Model

The RUL estimator is meant to be used to define a policy

Namely, we stop operations when:

$$f(x,\omega) \le \theta$$

lacksquare Where $f(x,\omega)$ is the estimated output and heta is threshold

Calibrating θ is best done by relying on a cost model

- We assume that operating for a time step generates 1 unit of profit
- lacktriangleright ...And that failing looses $oldsymbol{C}$ units of profits w.r.t. performing maintenance
- lacktriangle We also assume we never stop a machine before a "safe" interval $oldsymbol{s}$

Both $oldsymbol{C}$ and $oldsymbol{s}$ are calibrated on data in our example:

```
In [48]: failtimes = dt.groupby('machine')['cycle'].max()
    safe_interval, maintenance_cost = failtimes.min(), failtimes.max()
```

Cost Model and Threshold Optimization

We then proceed to choose θ to optimize the cost

```
In [49]: cmodel = util.RULCostModel(maintenance_cost=maintenance_cost, safe_interval=safe_interval)
         th range = np.linspace(-15, 30, 100)
         trs thr = util.optimize threshold(trs s['machine'].values, trs pred, th range, cmodel, plot=True
         print(f'Optimal threshold for the training set: {trs thr:.2f}')
         Optimal threshold for the training set: -11.82
            100
           -300
           -400
                                                     threshold
```

Cost Results

Let's now check the costs on all datasets

```
In [50]: trs_c, trs_f, trs_sl = cmodel.cost(trs_s['machine'].values, trs_pred, trs_thr, return_margin=Trt
ts_c, ts_f, ts_sl = cmodel.cost(ts['machine'].values, ts_pred, trs_thr, return_margin=True)
print(f'Cost: {trs_c} (supervised), {ts_c} (test)')
Cost: -427 (supervised), 20382 (test)
```

- The cost for the training set is good (negative)
- ...But that is not the case for the training set

```
In [51]: trs_nm, tru_nm, ts_nm = len(trs_mcn), len(tru_mcn), len(ts_mcn)
    print(f'Avg. fails: {trs_f/trs_nm:.2f} (supervised), {ts_f/ts_nm:.2f} (test)')
    print(f'Avg. slack: {trs_sl/trs_nm:.2f} (supervised), {ts_sl/len(ts_mcn):.2f} (test)')

Avg. fails: 0.00 (supervised), 0.46 (test)
    Avg. slack: 7.57 (supervised), 11.47 (test)
```

■ In particular, there is a very high failure rate on unseen data

Domain Knowledge as Constraints

We know that the RUL decreases at a fixed rate

- After 1 time step, the RUL will have decreased by 1 unit
- After 2 time steps, the RUL will have decreased by 2 units and so on

In general, let \hat{x}_i and \hat{x}_j be the i-th and j-th samples for a given component Then we know that:

$$f(\hat{x}_i, \omega) - f(\hat{x}_j, \omega) = j - i$$
 $\forall i, j = 1..m \text{ s.t. } c_i = c_j$

- $lacksquare c_i, c_j$ are the machine for (respectively) sample i and j
- Samples are assumed to be temporally sorted
- The left-most terms is the difference between the predicted RULs
- $\mathbf{j} \mathbf{i}$ is the difference between the sequential indexes of the two samples
- ...Which by construction should be equal to the RUL difference

Domain Knowledge as Constraints

The relation we identified is a constraint

$$f(\hat{x}_i, \omega) - f(\hat{x}_j, \omega) = j - i$$
 $\forall i, j = 1..m \text{ s.t. } c_i = c_j$

It represents domain knowledge that should (in principle) hold for our problem

■ It is fine to treat this as a soft constraint

As a regularization term, we will use:

$$\lambda \left(f(\hat{x}_i, \omega) - f(\hat{x}_j, \omega) - (j - i) \right)^2$$

Using the absolute value (h1 norm) may also work

- The constraint involves pairs of example, i.e. it is a relational constraint
- In principle we should consider all pairs, but that may scale poorly

Our Regularizer

We can focus on contiguous pairs, leading to the loss

$$L(\hat{x}, \omega) + \lambda \sum_{\substack{i < j \\ c_i = c_i}} \left(f(\hat{x}_i, \omega) - f(\hat{x}_j, \omega) - (j - i) \right)^2$$

- lacktriangle Where $i \prec j$ iff j is the next sample for after i for a given machine
- This approach requires a linear (rather than quadratic) number of constraints

It can work with mini-batches

- In this case, will refer to contiguous samples in the same batch
- ...And of course for the same component

We will now see how to implement this approach

Removing RUL Values

We start by preparing a bit more the unsupervised data

- We remove the end of the unsupervised data sequences
- Then, we replace RUL values with -1 (invalid)
- Finally, we merge supervised and unsupervised data in a single dataset

```
In [52]: tru_s2 = util.rul_cutoff_and_removal(tru_s, cutoff_min=20, cutoff_max=60, seed=42)
    tr_s2 = pd.concat((trs_s, tru_s2))
    tr_s2.head()
```

Out[52]:

	src	machine	cycle	p1	p2	р3	s1	s2	s3	s4	•••	s13	
1725	train_FD004	467	1	-1.688818	-1.924463	0.445653	1.811018	1.784571	1.676982	1.834240		0.445850	0.741
1726	train_FD004	467	2	-0.320795	0.385443	0.445653	0.754417	0.824865	0.604660	0.459056		0.445775	-0.158
1727	train_FD004	467	3	-1.688920	-1.925123	0.445653	1.811018	1.768350	1.668955	1.823341		0.445477	0.684
1728	train_FD004	467	4	1.184267	0.844852	0.445653	-1.021583	-0.742836	-0.576935	-0.541685		0.443309	0.078
1729	train_FD004	467	5	-1.688948	-1.925453	0.445653	1.811018	1.767810	1.726471	1.761244		0.445402	0.677

5 rows × 28 columns

Our regularizer requires to have sorted samples from the same machine

The easiest way to ensure we have enough is using a custom DataGenerator

```
class SMBatchGenerator(tf.keras.utils.Sequence):
    def __init__(self, data, in_cols, batch_size, seed=42): ...
    def __len__(self): ...
    def __getitem__(self, index): ...
    def on_epoch_end(self): ...
    def __build_batches(self): ...
```

- __len__ is called to know how many batches are left
- __getitem__ should return one batch
- on_epoch_end should take care (e.g.) of shuffling

The __init_ method takes care of the initial setup

```
def __init__(self, data, in_cols, batch_size, seed=42):
    super(SMBatchGenerator).__init__()
    self.data = data
    self.in_cols = in_cols
    self.dpm = split_by_field(data, 'machine')
    self.rng = np.random.default_rng(seed)
    self.batch_size = batch_size
    # Build the first sequence of batches
    self.__build_batches()
```

- We store some fields
- We split the data by machine
- We build a dedicated RNG
- ...And finally we call the custom-made __build_batches method

The __build_batches method prepares the batches for one full epoch

```
def build batches(self):
    self.batches, self.machines = [], []
    mcns = list(self.dpm.keys())
    self.rng.shuffle(mcns) # sort the machines at random
    for mcn in mcns: # Loop over all machines
        index = self.dpm[mcn].index # sample indexes for this machine
        . . .
        self.rnq.shuffle(idx) # shuffle sample indexes for this machine
        bt = idx.reshape(-1, self.batch size) # split into batches
        bt = np.sort(bt, axis=1) # sort every batch individually
        self.batches.append(bt) # store the batch
        self.machines.append(np.repeat([mcn], len(bt))) # add machine information
    self.batches = np.vstack(self.batches) # concatenate
    self.machines = np.hstack(self.machines)
```

We rebuild batches after each epoch

```
def on_epoch_end(self):
    self.__build_batches()
```

Most of the remaining work is done in the __getiitem__ method:

```
def __getitem__(self, index):
    idx = self.batches[index]
    x = self.data[self.in_cols].loc[idx].values
    y = self.data['rul'].loc[idx].values
    flags = (y != -1)
    info = np.vstack((y, flags, idx)).T
    return x, info
```

- The RUL value is -1 for the unsupervised data: we flag the meaningful RULs
- ...We pack indexes, RUL values, and flags into a single info tensor

We then enforce the constraints by means of a custom training step

```
class CstRULRegressor(keras.Model):
    def __init__(self, rul_pred, alpha, beta, maxrul): ...

def train_step(self, data): ...

def call(self, data): return self.rul_pred(data)
...
```

- We use a custom keras. Model subclass
- ...And accept an externally built RUL prediction model (rul_pred)
- The custom training step is implemented in train_step
- The call method relies on the external model for RUL prediction

In the __init__ function:

```
def __init__(self, rul_pred, alpha, beta, maxrul):
    super(CstRULRegressor, self).__init__(input_shape, hidden)
# Store the base RUL prediction model
    self.rul_pred = rul_pred
# Weights
    self.alpha = alpha
    self.beta = beta
    self.maxrul = maxrul
...
```

- beta is the regularizer weight, alpha is a weight for the loss function itself
- We also store the maximum RUL

In the custom training step:

```
def train step(self, data):
    x, info = data
    y true, flags, idx = info[:, 0:1], info[:, 1:2], info[:, 2:3]
    with tf.GradientTape() as tape:
        y pred = self(x, training=True) # predictions
        mse = k.mean(flags * k.square(y pred-y true)) # MSE loss
        delta pred = y pred[1:] - y pred[:-1] # pred. difference
        delta rul = -(idx[1:] - idx[:-1]) /self.maxrul # index difference
        deltadiff = delta pred - delta rul # difference of differences
        cst = k.mean(k.square(deltadiff)) # requalization term
        loss = self.alpha * mse + self.beta * cst # loss
```

- We unpack the info tensor
- Inside a GradientTape, we construct our regularized loss

In the custom training step:

```
def train_step(self, data):
    ...
    tr_vars = self.trainable_variables
    grads = tape.gradient(loss, tr_vars) # gradient computation
    self.optimizer.apply_gradients(zip(grads, tr_vars)) # weight update
    ...
```

- We then apply the (Stochastic) Gradient Descent step
- Then we update and retun the loss trackers

The SBR Approach

We can now test our SBR approach

```
In [61]: nn aux = util.build ml model(input size=len(dt_in), output_size=1, hidden=[32, 32])
   nn2 = util.CstRULRegressor(rul pred=nn aux, alpha=1, beta=6, maxrul=maxrul)
   batch gen = util.CstBatchGenerator(tr s2, dt in, batch size=32)
   history = util.train ml model(nn2, X=batch gen, y=None, validation split=0., epochs=20, verbose=
   Epoch 1/20
   0.0063
   Epoch 2/20
   0.0020
   Epoch 3/20
   0.0019
   Epoch 4/20
   0.0019
   Epoch 5/20
   0.0019
   Epoch 6/20
   0.0018
   Epoch 7/20
   0.0018
```

The SBR Approach

...And we can check the training curve

Inspecting the Predictions

Let's have a look at the predictions on the supervised data

- The signal is much more stable
- The scale is still off, but we can fix that with a well chosen threshold

Inspecting the Predictions

Then let's do the same for the unsupervised data

Inspecting the Predictions

Then let's do the same for the test data

The behavior is more stable and consistent than before

Threshold Optimization and Cost Evaluation

We can now optimize the threshold optimization (on the supervised data)

```
In [66]: cmodel = util.RULCostModel(maintenance_cost=maintenance_cost, safe_interval=safe_interval)
         th range2 = np.linspace(50, 150, 200)
         trs thr2 = util.optimize threshold(trs s['machine'].values, trs pred2, th range2, cmodel, plot=1
         print(f'Optimal threshold for the training set: {trs thr2:.2f}')
         Optimal threshold for the training set: 88.19
           2500
           2000
           1500
         통
1000
                                                       100
                                                                      120
                                                      threshold
```

Threshold Optimization and Cost Evaluation

Finally, we can evaluate the SBR approach in terms of cost

- The number of fails has decreased very significantly
- The slack is still contained

And we did this with just a handful of run-to-failure experiments