Shallow Introduction to Deep Learning

Pau Badia

Context

Artificial Intelligence

Any technique that enables computers to mimic human behaviour

Machine Learning

Ability to learn without explicitly being programed

Deep Learning

Extract patterns from data using neural networks

Why deep learning

- Features describe your data
- Deep learning learns <u>underlying features</u> directly from data

Patient's health status

Mid level features

Genome Proteome

Low level features

Specific mutation profile Metabolic quantification profile

Perceptron (neuron)

Activation functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

Leaky ReLU

 $\max(0.1x, x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

ReLU

 $\max(0, x)$

Activation functions

Activation functions introduce non-linearities into the network

Linear decision

Arbitrarily complex functions

Example

$$y = g(\sum_{i=1}^{m} x_i w_i)$$

$$y = g((1 \times 0.5) + (-2 \times 3) + (3 \times 1))$$

$$y = g(0.5 - 6 + 3)$$

$$y = g(-2.5)$$

$$y = 0.075$$

Multi Output Perceptron

Inputs densely connected to all outputs → Dense layers

Example problem

• Is the patient healthy? x = [67, 135]

Loss function

• The loss (L) measures the cost incurred from incorrect predictions

Predicted

Actual

Training NN: Loss optimization

We want to change W to achieve lowest loss

$$\mathbf{W}^* = \underset{\mathbf{W}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(x^{(i)}; \mathbf{W}), y^{(i)})$$

- 1. Randomly pick initial W
- 2. Compute gradient
- 3. Small step opposite of gradient
- 4. Repeat until convergence

Algorithm

1. Initialize weights randomly

- 2. Loop until convergence:
 - a. Compute gradient
 - b. Update weights

3. Return weights

NN are just a function optimization, no Al uprising is possible!

Learning rate

Factor that controls how quickly the model converges

$$W \leftarrow W - \boxed{\eta} \frac{\partial J(W)}{\partial W}$$

Most important parameter, controls training:

- Low Ir: model doesn't converge
- High Ir: model converges too quickly to a local minima

Adaptive learning rates: Lr tuned according to:

- Gradient size
- Size weights
- etc.

Important terminology

Epoch:

One Epoch is when the ENTIRE dataset is passed forward and backward through the neural network. An epoch is comprised of one or more batches.

Batch:

Part of the dataset that is passed to the network

Batch size:

Total number of training examples present in a single batch

Overfitting problem

We want our model to be generalistic

New data would confuse the model

Solution 1: Dropout

- During training, randomly set some activations to 0
- Forces network to not rely on any single node → generalization

Solution 2: Early Stopping

- Split data into training and test datasets → Test will never update weights
- Stop training before we overfit

Take home messages

Perceptron

- Building block NN
- Nonlinear activation functions

Neural Networks

- Stack of perceptrons
- Optimize by backpropagation

Training

- Learning Rate
- Batching
- Overfitting