Tosidet variansanalyse og faktordiagrammer Statistisk Dataanalyse 2

Anders Tolver

Dagens program

- Den tosidede variansanalysemodel
- Vekselvirkninger mellem to faktorer
- Den additive model i tosidet variansanalyse
- Flerfaktorforsøg
- Faktordiagrammer

Eksempel 3.2: beskrivelse af data

Datasættet fra lærebogens eksempel 3.2 består af målinger af indholdet af organisk stof (organic) i 36 forsøgsenheder (mesh bags).

Forsøgsenhederne stammer både fra behandlet kvæg (Ivermectin) og fra ubehandlet kvæg (control).

Forsøgsenhederne har ligget i jorden i 8, 12 eller 16 uger.

To faktorer: TREAT og TIME

Eksempel 3.2: datasættet

```
##
           TREAT TIME organic nr
                                   TREAT TIME organic
      Ivermectin
                       3028.7 19 Control
                                                2425.0
## 1
                                                2630.1
      Ivermectin
                       2805.7 20 Control
      Ivermectin
                       3061.3 21 Control
                                                2557.0
                       3113.4 22 Control
                                                2763.4
      Ivermectin
      Ivermectin
                       2938.1 23 Control
                                                2701.0
      Tvermectin
## 6
                       3063.4 24 Control
                                                2544.2
## 7
      Ivermectin
                       2765.0 25 Control
                                                2530.6
      Ivermectin
                       2713.7 26 Control
                                                2301.2
      Ivermectin
                       2945.7 27 Control
                                            12
                                                2389.8
## 10 Ivermectin
                       2869.3 28 Control
                                            12
                                                2445.2
## 11 Ivermectin
                       2902.0 29 Control
                                            12
                                                2218.5
                   12
## 12 Tvermectin
                       2836.6 30 Control
                                                2348.1
## 13 Ivermectin
                       2413.3 31 Control
                                            16
                                                1995.0
## 14 Tvermectin
                   16
                       2592.6 32 Control
                                            16
                                                2165.2
                       2804.7 33 Control
                                                1940.9
## 15 Ivermectin
## 16 Ivermectin
                       2546.5 34 Control
                                                2271.8
                                            16
## 17 Twermectin
                       2823.7 35 Control
                                                2493.8
## 18 Tvermectin
                       2845.2 36 Control
                                                2452.8
```


Eksempel 3.2: formål med forsøget

Vi kunne være interesserede i flg. spørgsmål

- Har behandlingen indflydelse på indholdet af organisk stof?
- Hvilket niveau af TREAT giver størst indhold af organisk stof?
- Afhænger indholdet af organisk stof af, hvor længe forsøgsenhederne har ligget i jorden?
- Hvilket niveau af TIME giver størst indhold af organisk stof?
- Afhænger effekten af behandlingen af, hvor længe forsøgshederne har ligget i jorden?
- Hvilken komb. af TREAT og TIME giver det største indhold af organisk stof?

Faktorer

Forsøgsenheder: $1, 2, \dots, N$.

En faktor inddeler forsøgsenhederne i et antal grupper.

Faktoren knytter en en værdi til hver forsøgsenhed, nemlig niveauet af faktoren for den pågældende forsøgsenhed. Vi skriver F_i .

 $n_j(F)$ er antal forsøgsenh. der er på niveau j af faktoren F.

F kaldes balanceret hvis $n_j(F)$ er ens for alle j, dvs. hvis der er lige mange forsøgsenheder i alle grupper. Skriver så n_F for antallet af forsøgsenheder per niveau.

Der findes altid to trivielle inddelinger/faktorer:

Identiske faktor (I): hver forsøgsenhed udgør sin egen gruppe.

Trivielle faktor (0): alle observationer betragtes som een gruppe.

For to faktorer F og G har man produktfaktoren $(F \times G)$:

Svarer til at observationerne grupperes efter både F og G samtidig.

Eksempel 3.2: oversigt over faktorer

Faktorerne TREAT og TIME er balancerede. Hvorfor?

Desuden har vi produktfaktoren TREAT×TIME med alle kombinationer af TREAT og TIME.

Hvor mange forskellige niveauer har

 $TREAT \times TIME?$

• Er TREAT×TIME balanceret ?

Eksempel 3.2: 2-sidet ANOVA

Den (fulde) tosidede variansanalysemodel er givet ved

$$M: Y_i = \gamma(\text{TREAT} \times \text{TIME}_i) + e_i,$$

hvor e_1, \ldots, e_{36} er uafhængige og $N(0, \sigma^2)$ -fordelte.

- middelværdi afhænger af værdien af produktfaktoren TREAT×TIME
- ullet samme σ^2 (varians) i alle grupper
- uafhængige og normalfordelte fejl

(Dette er blot den ensidede variansanalysemodel med TREAT×TIME som forklarende faktor!)

Eksempel 3.2: 2-sidet ANOVA

Middelværdiparametrene, $\gamma(Iver, 8), \dots, \gamma(Ubeh, 12)$, estimeres ved gruppegennemsnit over relevante forsøgsenheder.

Residualkvadratsum

$$SS_e^{TREAT \times TIME} = \sum_{i=1}^{36} (Y_i - \hat{\gamma}(TREAT \times TIME_i))^2$$

Mean square error el. residual mean square

$$s^2 = \hat{\sigma}^2 = MS_e^{TREAT \times TIME} = \frac{1}{36 - 6}SS_e^{TREAT \times TIME}$$

NB: Normeringen i udtrykket for s^2 skyldes, at der er 36 observationer og 6 grupper givet ved faktoren TREAT \times TIME.

Interaction plots

Grafisk undersøgelse af vekselsvirkning

- For hver kombination af TREAT×TIME udregnes gruppegennemsnit.
- Gruppegennemsnit plottes op mod værdien af faktoren TIME
- Punkter hørende til samme værdi af TREAT forbindes med linjestykker
- Parallelle kurver taler for additiv model
- Systematiske afvigelser mellem kurver tyder på vekselvirkning
- Svært at eftervise vekselvirkning vha. interaction plot, men ...
- hvis et formelt statistisk test viser signifikant vekselvirkning, kan kommandoen interaction.plot bruges til at beskrive årsagen/retningen.

Interaction plots

Data fra eksempel 3.2: Vekselvirkning/additiv model ?

Eksempel 3.2: additiv model

Indledningsvis undersøges om vekselvirkingen kan fjernes så modellen reduceres til den additive model for tosidet variansanalyse

$$H_0: Y_i = \alpha(\mathtt{TREAT}_i) + \beta(\mathtt{TIME}_i) + e_i,$$

hvor e_1, \ldots, e_N er uafhængige og normalford. $N(0, \sigma^2)$.

Middelværdien i gruppen givet ved $TREAT_i = Ivermectin og TIME_i = 8$ er lig med summen

$$\alpha(\text{Ivermectin}) + \beta(8).$$

Modellen omtales også som den lineære model uden

vekselvirkning.

Eksempel 3.2: hvad udtrykker den additive model?

Ved test for reduktion til den additive model undersøges, om behandlingseffekten (-længden af de blå linjestykker) afhænger af tid!

Den additive model: Estimation

Residualkvadratsum

$$SS_e^{\text{TREAT}+\text{TIME}} = \sum_{i=1}^{N} (Y_i - (\hat{\alpha}(\text{TREAT}_i) + \hat{\beta}(\text{TIME}_i)))^2$$

Mean square error eller residual mean square

$$s^2 = \hat{\sigma}^2 = MS_e^{\text{TREAT} + \text{TIME}} = \frac{1}{N - k - m + 1}SS_e^{\text{TREAT} + \text{TIME}}$$

Angiver variansestimat under den additive model.

2-sidet ANOVA: reduktion

Vekselvirking: fremgangsmåde afhænger af om vi har flere forsøgsenheder (gentagelser) for hvert niveau af TREAT×TIME gentagelser Test om modellen kan reduceres til den additive model.

ingen gentagelser Formelt test ikke muligt! Grafisk undersøgelse af vekselvirkning ved interaction plot.

Derefter: test for hovedeffekt af TREAT og TIME.

- Hvilke modeller skal fittes?
- Hvilken model, skal der testes mod?

Eksempel 3.2: R

I R udføres test for vekselvirkning som følger ...

```
model1<-lm(data$organic~data$TIME:data$TREAT)
modelad<-lm(data$organic~data$TIME+data$TREAT)
anova(modelad,model1)</pre>
```

```
Analysis of Variance Table
```

```
Model 1: data$organic ~ data$TIME + data$TREAT
Model 2: data$organic ~ data$TIME:data$TREAT
Res.Df RSS Df Sum of Sq F Pr(>F)
1 32 664410
2 30 656742 2 7668 0.1751 0.8402
```

Testet godkendes → ingen vekselvirkning

Tilsvarende analyser viser, at TREAT og TIME har marginal effekt!

Eksempel 3.2: variansanalyseskema

Ved brug af R udskrifter udfyldes skemaerne

Model	Fakt.	Mv.	SS_e	df _e
1	TREAT×TIME	$\gamma(\mathtt{TREAT} \times \mathtt{TIME}_i)$	656742	30
2	TREAT+TIME	$\alpha(\mathtt{TREAT}_i) + \beta(\mathtt{TIME}_i)$	664410	32
3a	TIME	$\beta(\mathtt{TIME}_i)$	2395959	33
3b	TREAT	$lpha(\mathtt{TREAT}_i)$	1432502	34
Test	Faktor	F	df	р
2 vs 1	$TREAT \times TIME$	0.1751	2	0.84
3a vs 2	TREAT	83.397	1	0
3b vs 2	TIME	18.497	2	0

NB: Input til skema findes f.x. ved at køre summary og deviance

> summary(modelad)

[... part of output ...]

Residual standard error: 144.1 on 32 degrees of freedom

> deviance(modelad)

[1] 664410

Additive model: konklusioner I

Slutmodel (additiv model for 2-sidet ANOVA)

$$Y_i = \alpha(\mathtt{TREAT}_i) + \beta(\mathtt{TIME}_i) + e_i,$$

hvor $e_1, \ldots, e_{36} \sim N(0, \sigma^2)$ er uafhængige.

Parameterestimater (kan) angives således

$$\hat{\alpha}(\text{Ubeh}) + \hat{\beta}(8) = 2583.29$$
 $\hat{\alpha}(\text{Iver}) - \hat{\alpha}(\text{Ubeh}) = 438.63$ $\hat{\beta}(12) - \hat{\beta}(8) = -197.13$ $\hat{\beta}(16) - \hat{\beta}(8) = -357.15$

NB: For additiv model angives parameterestimater ofte ved angivelse af estimat for en referencegruppe (-her bruges (TREAT, TIME) = (Ubeh, 8)) samt forskellene til referencegruppen.

Variansestimat $s^2 = \hat{\sigma}^2 = 144.1^2$.

Struktur: gennemsnit givet ved TREAT × TIME ligger på parallelle kurver.

Punkternes beliggenhed kan beskrives ved kun 4 parametre, men parametriseringen afhænger af, hvordan modellen fittes i R.


```
modelad <-lm(data $ organic ~ data $ TREAT + data $ TIME)
summary (modelad)
```

##		Estimate	Std.	Error	t value	Pr(> t)
##	(Intercept)	2583.2944	48	.03102	53.783871	5.933454e-33
##	data\$TREATIvermectin	438.6278	48	.03102	9.132176	1.990792e-10
##	data\$TIME12	-197.1333	58	.82575	-3.351140	2.076990e-03
##	data\$TIME16	-357.1500	58	. 82575	-6.071321	8.831140e-07

Gruppegennemsnit for additive model

modelad2<-lm(data\$organic~data\$TREAT+data\$TIME-1) summary(modelad2)

```
##
                         Estimate Std. Error
                                            t value
                                                           Pr(>|t|)
## data$TREATControl
                        2583.2944
                                   48.03102 53.783871 5.933454e-33
## data$TREATIvermectin 3021.9222
                                   48.03102 62.916047 4.108697e-35
## data$TIME12
                        -197.1333 58.82575 -3.351140 2.076990e-03
## data$TIME16
                       -357.1500
                                   58.82575 -6.071321 8.831140e-07
```

Gruppegennemsnit for additive model

Anders Tolver - 2-sidet ANOVA - SD2 7/9-2017 Dias 21/32

modelad3<-lm(data\$organic~data\$TIME+data\$TREAT-1)</pre> summary(modelad3)

#	#	Estimate	Std. Err	or	t value	Pr(> t)
#	# data\$TIME8	2583.2944	48.031	02	53.783871	5.933454e-33
#	# data\$TIME12	2386.1611	48.031	02	49.679579	7.307952e-32
#	# data\$TIME16	2226.1444	48.031	02	46.348052	6.540890e-31
#	# data\$TREATIvermectin	438.6278	48.031	02	9.132176	1.990792e-10

Gruppegennemsnit for additive model

Additive model: konf.interval / LSD

Udregn fraktil i t-fordeling: $t = t_{0.975, N-m-k+1}$, hvor k = |TREAT| = 2, m = |TIME| = 3, $N = k \cdot m \cdot n = 2 \cdot 3 \cdot 6$ (antal forsøg).

Et 95 %-konf. int. for $\alpha(a) + \beta(b)$ er

$$\hat{\alpha}(a) + \hat{\beta}(b) \pm t \cdot s \sqrt{\frac{k+m-1}{N}}$$

Least significant difference (LSD) for

Faktor	Kontrast	LSD		
Α	$\alpha(a_j) - \alpha(a_{j'})$	$t \cdot s\sqrt{\frac{2k}{N}}$		
В	$\beta(b_j) - \beta(b_{j'})$	$\int t \cdot s \sqrt{\frac{2m}{N}}$		

Additive model: konklusioner II

Variansestimat og relevant *t*-fraktil

$$t = t_{0.975,32} = 2.0369$$
 $s = \hat{\sigma} = 144.1$

Estimater for enkeltgrupper

		TIME	
TREAT	8	12	16
Ivermectin	3022	2825	2665
Control	2583	2386	2226

Konf.interval gruppeestimat:
$$\pm t \cdot s \sqrt{\frac{k+m-1}{N}} = \pm 97.8$$

$$LSD$$
-værdier: $LSD_{TREAT} = 97.8$ $LSD_{TIME} = 119.8$

Eksempel 3.2: resultater af forsøget

Hvordan skal vi besvare vores spørgsmål?

- Har behandlingen indflydelse på indholdet af organisk stof?
- Hvilket niveau af TREAT giver størst indhold af organisk stof?
- Afhænger indholdet af organisk stof af, hvor længe forsøgsenhederne har ligget i jorden?
- Hvilket niveau af TIME giver størst indhold af organisk stof?
- Afhænger effekten af behandlingen af, hvor længe forsøgshederne har ligget i jorden?
- Hvilken komb. af TREAT og TIME giver det største indhold af organisk stof?

Flerfaktorforsøg: faktordiagrammer

Faktordiagrammer benyttes til at skabe sig overblik over strukturen i et forsøgsdesign.

Dagens gennemgående eksempel indholder 3 egentlige faktorer

 $\texttt{TREAT}, \texttt{TIME}, \texttt{TREAT} \times \texttt{TIME}$

samt de trivielle faktorer

I,0

Bemærk, at TREAT × TIME er finere end både TREAT og TIME.

Der tegnes pile fra finere faktorer til grovere. Fineste faktor (-enhedsfaktoren I) placeres til venstre på tegningen.

Der tegnes pile fra finere faktorer til grovere. Fineste faktor (-enhedsfaktoren I) placeres til venstre på tegningen.

Antallet af niveauer skrives i øverste højre hjørne.

Der tegnes pile fra finere faktorer til grovere. Fineste faktor (-enhedsfaktoren I) placeres til venstre på tegningen.

Antallet af niveauer skrives i øverste højre hjørne.

Antallet af df tilføjes i nederste højre hjørne, ved fra antallet af niveauer at fratrække df for grovere faktorer.

Der tegnes pile fra finere faktorer til grovere. Fineste faktor (-enhedsfaktoren I) placeres til venstre på tegningen.

Antallet af niveauer skrives i øverste højre hjørne.

Antallet af df tilføjes i nederste højre hjørne, ved fra antallet af niveauer at fratrække df for grovere faktorer.

Ex: Ud for TREAT \times TIME skrives 6-1-2-1=2!

Øvelse (hjemme eller senere!)

Der indgår ofte flere faktorer i et eksperiment...

Vækstforsøg med 16 planter i fire vækstkamre under forskellige gødnings- og lysforhold. Planternes vækst er målt.

		Ly	s 1		Lys 2				
	Kamı	mer 1	Kamı	mer 2	Kamı	mer 3	Kammer 4		
Gødning	4.70	5.14	4.49	4.42	4.42	4.80	4.81	4.95	
Ingen gødning	5.28	4.28	4.50	4.30	4.61	4.68	4.77	5.11	

- Hvad er forsøgsenhederne og hvor mange er der?
- Hvad er de relevante faktorer, og hvad er deres niveauer?
- Er faktorerne balancerede? Angiv n_F for de balancerede faktorer.

Flere faktorer

Er der noget "særligt" ved faktorerne kammer og lys?

To faktorer F og G.

F er finere end G — eller F er "nested indenfor" G — hvis

- G-grupperne kan fås ved at slå F-grupper sammen
- "hvis vi kender F, så kender vi også G"

De to udsagn siger det samme!

Vi siger også G er grovere end F, og vi skriver $G \leq F$ eller $F \geq G$.

Trefaktorforsøg

Fra noternes eksempel 2.2.

	Lys1					Lys2				
	Kammer 1		Kammer 2		Kammer 3		Kammer 4			
Gødning	*	*	*	*	*	*	*	*		
Ingen gødning	*	*	*	*	*	*	*	*		

Faktorer: G (Gødning), K (Kammer) og L (Lys)

Bemærk: K er finere end L!

Vekselvirkninger: $G \times K$, $G \times L$, $(K \times L = K)$

Trivielle faktorer: I, 0

Lad os forsøge at tegne det tilhørende faktordiagram.

Trefaktorforsøg

Tilhørende statistiske model:

$$Y_i = \gamma(G \times K_i) + e_i, \quad e_i \sim N(0, \sigma^2).$$

G: Gødning

K: Kammer

L: Lys

NB: Vi sætter [..] omkring faktorer som ikke indgår i den systematiske del af modellen!

Spørgsmål: overvejes hjemme!

- Opskriv alle interessante hypoteser ved et tofaktorforsøg
- I hvilken rækkefølge skal modellen reduceres ved et tofaktorforsøg?
- Hvornår kan man teste for vekselvirkning i et tofaktorforsøg?
- Hvordan skal man fortolke parameterestimaterne fra R-udskriften ved den additive model?
- Hvordan beregnes frihedsgradsantallet (DF) for et faktordiagram?

