

VRDMG: Vocal Restoration via Diffusion Posterior Sampling with Multiple Guidance

Carlos Hernandez-Olivan, Koichi Saito, Naoki Murata, Chieh-Hsin Lai, Marco A. Martínez-Ramírez, Wei-Hsiang Liao, Yuki Mitsufuji University of Zaragoza, Sony AI, Sony Group Corporation

Music Restoration using Unsupervised Diffusion Models

Music restoration framed as inverse problem: Recovering a clean signal from a degraded one (inpainting, declipping, etc.).

Motivation: Explore vocal dry and wet restoration with different sampling methods.

Challenges: Ill-posed problems: Multiple possible solutions exist.

Traditional methods: Require task-specific assumptions and paired data (clean & degraded). Not well generalization to unseen data.

Deep generative models for music restoration: Trained on clean signals only.

Data-driven assumptions about clean music.

- Adaptable to various restoration tasks.
- CQT-Diff [3]: A diffusion-based approach. Good performance on piano declipping, bwe, and inpainting.

Areas for improvement:

- Semantic consistency: DC method may lead to nonsensical results.
- Generalizability: Performance on diverse data not explored.

Score-based Generative Modeling with Diffusion Processes

$$abla_{m{x}_{ au}} \log p_{ au}(m{x}_{ au}|m{y}) =
abla_{m{x}} \log p_{ au}(m{x}_{ au}) +
abla_{m{x}_{ au}} \log p_{ au}(m{y}|m{x}_{ au})$$
Conditional score density likelihood

Inverse Problem via Posterior Sampling

Recovering a clean vocal signal (x₀) from a degraded observation (y) considering a degradation function (A) and measurement noise.

- Posterior sampling: It leverages the relationship between the prior distribution of clean signals and the likelihood of observing the degraded signal given the clean one.
- Conditional score function: Combines the score function and the likelihood term based on the degradation function.

Tasks

Model: CQT-Diff [3] trained on vocal dry and wet data: NHSS dataset, NUS, MUSDB18 (vocals). 22.05KHz.

Declipping $A(x_0) = (|x_0 + c| - |x_0 - c|)/2$.

Bandwidth Extension A(x) = LPF(x)

Contributions

Enhanced Diffusion Posterior Sampling (DPS)

- RP strategy with time scheduling for improved semantic consistency.
- Refine Reconstruction Guidance (RG) with time-dependent scaling.
- Integrate Pseudoinverse-Guided Diffusion Models for broader applicability.

Systematic Evaluation

- Conduct experiments to identify the most effective combination of these approaches.
- Achieve comparable performance to the CQT model using the 1D SaShiMi-Diff architecture with a 15x faster inference speed.

 $\nabla_{oldsymbol{x}_{ au}}$: Gradient operator $\mathcal{A}(\cdot)$: Degradation function $D_{m{ heta}}(m{x}_t; \sigma_t)$: Denoiser

Inverse Problem via Posterior Sampling

Reconstruction Guidance (RG)

- Compute the likelihood term in the conditional score function.
- Measures the difference between the observed data and the predicted clean signal after applying the degradation function to it.

$$\nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{y}|\boldsymbol{x}_t) \simeq -\rho(t) \nabla_{\boldsymbol{x}_t} \|\boldsymbol{y} - \mathcal{A}(D_{\boldsymbol{\theta}}(\boldsymbol{x}_t; \sigma_t))\|^2$$

Pseudo-Inverse Guidance (IIGDM)

- An alternative method for calculating the likelihood term, applicable even for non-differentiable degradation functions.
- It leverages the pseudo-inverse of the degradation function.

$$abla_{m{x}_t} \mathrm{log} p_t(m{y} | m{x}_t) \simeq \left((h^\dagger(m{y}) - h^\dagger(h(\hat{m{x}}_0)))^\top \frac{\partial \hat{m{x}}_0}{\partial m{x}_t}
ight)^\top$$

Improving Data Consistency with RePaint (RP) Strategy

• RP resamples the intermediate prediction during the inference process, promoting semantic consistency. To avoid excessive computation, we propose applying RP cycles during a specific phase inspired by FreeDoM.

$$\mathbf{x}_t \sim \mathcal{N}(\mathbf{x}_{t-1}, (\sigma_t^2 - \sigma_{t-1}^2)\mathbf{I}) \quad U = u \cdot \mathbb{1}_{[\phi_1 T/3, \phi_2 T/3]}(t)$$

Results

Table 1. Objective metrics for declipping with pre-trained CQT and 1D models.

		SDR = 5dB				SDR = 10dB				
		FAD		SI-SDR		FAD		SI-SDR		
	Method	↓ dry	↓ wet	↑ dry	↑ wet	↓ dry	↓ wet	↑ dry	↑ wet	
	Clipped	3.48	2.25	6.42	5.06	1.10	0.87	11.08	9.18	
	RG [7]	1.84	1.55	9.79	5.36	0.66	1.19	14.39	7.76	
	RG + DC	0.94	1.05	10.13	6.15	0.66	0.52	14.48	8.69	
1D	$RG \delta \rho + DC$	0.88	1.00	10.97	6.03	0.35	0.32	14.79	8.57	
	ПGDM + DC	2.76	1.73	5.44	3.18	1.02	0.76	10.31	7.01	
	$RG \delta \rho + DC + RP$	0.47	0.65	11.83	7.03	0.15	0.21	15.42	9.05	
	RG [7]	1.59	1.05	9.87	5.76	0.37	1.04	14.29	8.20	
	RG + DC	1.16	0.80	10.09	6.24	0.37	0.39	14.33	8.91	
CQT	RG $\delta \rho$ + DC	0.52	$\overline{0.34}$	10.58	6.51	0.16	0.19	14.50	$\overline{9.02}$	
	ПGDM + DC	2.62	1.57	5.70	3.75	0.74	0.60	10.70	7.22	
	$RG \delta \rho + DC + RP$	0.73	1.02	11.61	7.33	0.13	0.28	15.03	8.75	

Table 2. Objective metrics for bandwidth extension with pre-trained CQT and 1D models

		$f_c = 3$ KHz				$f_c = 5 \text{KHz}$				
		FAD		LSD		FAD		LSD		
Model	Method	↓ dry	↓ wet	↓ dry	↓ wet	↓ dry	↓ wet	↓ dry	↓ wet	
	LPF	4.12	3.16	4.26	4.55	2.53	1.79	3.61	3.86	
1D	RG [7] RG + DC [7] RG $\delta \rho$ + DC Π GDM + DC RG $\delta \rho$ + DC + RP	2.38 1.53 1.13 1.69 1.15	1.35 1.44 1.38 1.26 1.46	1.87 <u>1.98</u> 2.01 2.14 2.00	1.95 1.84 1.89 <u>1.86</u> 1.88	1.72 0.57 0.46 0.67 0.73	$\begin{array}{c} 1.00 \\ 0.44 \\ \underline{0.48} \\ \underline{0.48} \\ 0.58 \end{array}$	1.59 1.67 1.57 1.93 1.56	$ \begin{array}{r} 1.86 \\ \underline{1.61} \\ \underline{1.61} \\ 1.70 \\ 1.60 \end{array} $	
CQT	RG [7] RG + DC [7] RG $\delta \rho$ + DC Π GDM + DC RG $\delta \rho$ + DC + RP	1.63 1.06 1.65 1.06 1.78	0.75 <u>0.65</u> 1.17 0.63 1.57	1.95 2.01 2.34 2.00 2.31	1.91 1.82 2.10 1.80 2.03	1.31 0.39 <u>0.44</u> 1.23 0.51	0.82 0.30 0.35 <u>0.32</u> 0.67	1.70 <u>1.67</u> 1.64 1.68 1.68	1.79 1.59 <u>1.61</u> 1.66 1.62	

Conslusions

- 1D model beats CQT one and it is 15 times faster in inference time.
- Further explore posterior sampling techniques especially for bwe.

References

[1] Song, Y., & Ermon, S. (2019). Generative modeling by estimating gradients of the data distribution. In Advances in Neural Information Processing Systems (Vol. 32).

[2] Song J, Vahdat A, Mardani M, Kautz J. Pseudoinverse-guided diffusion models for inverse problems. In *International Conference on Learning* Representations 2022.

[3] Moliner, E., Lehtinen, J., & Välimäki, V. (2023). Solving audio inverse problems with a diffusion model. In 2023 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP) (pp. 1-5). IEEE. [4] Yu, J., Wang, Y., Zhao, C., Ghanem, B., & Zhang, J. (2023). FreeDoM: Training-free energy-guided conditional diffusion model. In *Proceedings of the*

IEEE/CVF International Conference on Computer Vision. 2023. p. 23174-23184.

[5] Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., & Van Gool, L. (2022). RePaint: Inpainting using denoising diffusion probabilistic models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 11451-11461).

Scholar