Problem

We can droose A.B.C for the root

$$\begin{array}{c|ccccc}
 & A & \hline
 & A & Cost \\
\hline
 & 12 & \\
\hline
 & 23 & \hline
\end{array}$$

Tes-World X1, X2
$$\frac{1}{11}$$
 $\frac{1}{1}$ $\frac{3}{12} = \frac{1}{4}$
No-World X3, X4 $\frac{4}{11}$ $\frac{1}{1}$ $\frac{1}{1}$ X6, X8 $\frac{9}{12} = \frac{3}{4}$
ENT(T_A)= $-\frac{7}{11}\log_2(\frac{7}{11}) - \frac{4}{11} \times \log_2(\frac{4}{11}) = 0.9457$

ENT
$$(F-A) = -\frac{1}{4} \log_2(\frac{1}{4}) - \frac{3}{4} \log_2(\frac{3}{4}) = 0.8113$$

The entropy of the state after splitting A model:
ENT $(A) = \coprod_{23} \times 0.9457 + \coprod_{23} \times 0.8113$

$$\frac{14}{23}$$
 T/F $\frac{9}{23}$

Tes-World
$$X_1, X_2, X_5 \stackrel{4}{+} | X_7 \stackrel{?}{=}$$
No-World $X_6 \stackrel{3}{+} | X_3, X_4, X_8 \stackrel{?}{=}$

$$ENT(T_B) = -\frac{4}{7}\log_2(\frac{4}{7}) - \frac{3}{7}\log_2(\frac{3}{7}) = 0.9852$$

$$ENT(F-B) = -\frac{2}{9}\log_2(\frac{2}{9}) - \frac{2}{9}\log_2(\frac{7}{9}) = 0.7642$$

ENT(B) =
$$\frac{14}{23}$$
 (0.9852) + $\frac{9}{23}$ (0.7642) = [0.8987]

$$\frac{7}{23}$$
 T/F $\frac{16}{23}$

Tes-World X1, X5, X7
$$\frac{4}{5}$$
 | X2 $\frac{3}{8} = \frac{63}{168}$
No-World X3 $\frac{3}{7}$ | X4, X6, X8 $\frac{5}{8} = \frac{405}{168}$

ENT
$$(T_B) = -\frac{4}{9} \log_2(\frac{4}{7}) - \frac{3}{7} \log_2(\frac{3}{7}) = 0.9852$$

$$ENT(F-B) = -\frac{3}{5}\log_2(\frac{3}{5}) - \frac{5}{5}\log_2(\frac{5}{5}) = 0.9544$$

$$ENT(C) = \frac{1}{23}(0.9852) + \frac{16}{23}(0.9544) = [0.9638]$$

Then we pick A as the root node since it
has the lowest entropy
(A=T)
If we choose B for the next layer:
A A
T/F B
于 T / F #
Tes-World X1, $X_2 \stackrel{7}{=} = 1$
No-World β 0 x_3, x_4 $\frac{4}{4} = 1$
$ENT(B A=T) = \boxed{0}$ $(A=T)$
ENT(BIA=1)=0 If we choose C for the next layer: A
A
F
T/F
Tes-World X_1 $\frac{1}{4}$ X_2 $\frac{6}{7}$
No-World X3 3 4 X4 1

ENT ((CIA)=T) = $-\frac{1}{4}\log_2(\frac{1}{4}) - \frac{3}{4}\log_2(\frac{3}{4}) = 0.81127$ ENT ((CIA)=F) = $-\frac{6}{4}\log_2(\frac{6}{4}) - \frac{1}{4}\log_2(\frac{1}{4}) = 0.59167$ ENT (CIA) = $(\frac{4}{11})(0.81127) + (\frac{7}{11})(0.59167) = [0.6715]$ If we choose B for the next layer (A=F):

$$\frac{7}{12} \times \frac{5}{12}$$

$$\frac{\text{Yes-World}}{\text{No-World}} \times 5 \qquad \frac{1}{7} \qquad \times 7 \qquad \frac{2}{5}$$

$$\frac{2}{5}$$

$$\frac{3}{5}$$

 $ENT((BIA)=T) = -\frac{1}{7}log_2(\frac{1}{7}) - \frac{6}{7}log_2(\frac{1}{7}) = 0.59167$

ENT((BIA)=F)=- $\frac{2}{5}\log_2(\frac{2}{5})-\frac{3}{5}\log_2(\frac{2}{5})=0.97095$

$$ENT(C|A=F)=[0]$$

```
Problem 2
  (AV7B) D (7CVD)
 Formula: p(+) 9 = (p179) V (7p19)
((AV7B) / 7(7CVD)) V(7(AV7B) / (7CVD))
((AV7B)\Lambda(C\Lambda7D))V((7A\LambdaB)\Lambda(7CVD))
((AV7B)ACA7D)V(7AABA(7CVD))
((A \land C \land \neg D) \lor (\neg B \land C \land \neg D)) \lor ((\neg A \land B \land \neg C) \lor (\neg A \land B \land D))
 Finally 4 clauses
 (AACATD) V (TBACATD) V (TAABATC) V (TAABAD)
  \# < 2 \qquad \# < 1 \qquad \# < 1 \qquad \# < 2
1.5 0.5 1.5
```

All four clauses weighted equally, edges pointing to the output node.

The Neural Network

