173. Synthesen von Moniliformin, einem Mycotoxin mit Cyclobutendion-Struktur¹)

von Daniel Belluša), Hanspeter Fischerb), Hans Greutera) und Pierre Martina)

Zentrale Forschungslaboratorien^a) und Departement Forschung, Division Agrarchemie^b), Ciba-Geigy AG, 4002 Basel

(21.XII.77)

Syntheses of Moniliformin, a Mycotoxine with a Cyclobutenedione Structure

Summary

Six different routes to 3-hydroxy-3-cyclobutene-1,2-dione (4), the free acid of the mycotoxine Moniliformin (= alkali salt of 4) are described. A common feature of all pathways is the synthesis of cyclobutanes having the oxidation level 6. Moniliformin precursors which are easily transformed to 4 by acid catalysed hydrolysis include [2+2]-cycloadducts of ketene with tetraalkoxy-olefins, 3,4,4-trialkoxycyclobutenes, derivatives of polyfluorinated cyclobutenes, the brominated [2+2]-cycloadduct of ethyl vinyl ether and dichloroketene, tetrabromocyclobutanone, [2+2]-photocycloadducts of dichlorovinylenecarbonate with dichloroethylenes, and the dimer of chloroketene. The most convenient synthesis via the [2+2]-cycloadduct of tetraethoxyethylene and ketene (14b) is reported in detail and produces 4 in four simple steps in 57% overall yield. In addition, two new syntheses of squaric acid (56) are described.

1. Einleitung. - Das Mycotoxin Moniliformin, das im Jahre 1973 von Cole et al. aus Fusarium moniliforme (Na⁺-Salz) [2] bzw. aus Giberella fujikuroi (K⁺-Salz) [3] isoliert wurde, besitzt eine bemerkenswert einfache und für einen Naturstoff ungewöhnliche Struktur. Es handelt sich um ein Alkalisalz von 3-Hydroxy-3-cyclobuten-1,2-dion (4)²), dessen Struktur wegen der nicht eindeutigen chemischen und spektroskopischen Analyseresultate röntgenographisch bestimmt wurde [3]. 4 und insbesondere seine Ester [4]³) zeigen wachstumsregulierende Wirkungen auf diverse Pflanzenarten.

^{1) 9.} Mitt. über Synthese und Reaktivität von Vierring-Verbindungen. 8. Mitt.: [1].

²⁾ Im weiteren Text wird 4 als Moniliformin bezeichnet. Eine wässerige Lösung von 4 kann leicht, z.B. mit einem Mol-Äquiv. NaOH bzw. KOH, in den authentischen Naturstoff übergeführt werden.

³) 4 ist eine starke vinyloge Carbonsäure mit $pK_a = 0.0 \pm 0.05$ (s. exper. Teil), die sich ähnlich wie die strukturell verwandte Quadartsäure [5] mit Alkoholen autokatalytisch vererstern lässt [4].

Die drei in der Literatur beschriebenen Synthesen von Moniliformin eignen sich in ihren Ausführungen wenig zur Herstellung von grösseren, für eingehende Untersuchungen notwendigen Mengen. Cole et al. [3] haben authentisches Moniliformin durch eine [2+2]-Cycloaddition von in situ aus Dichloracetylchlorid und Triäthylamin gebildetem Dichlorketen (1) an Äthoxyacetylen (2) hergestellt (Schema 1). Für die bekannte Stufe $1+2\rightarrow 3$ wurde schon früher eine Ausbeute von 20% erzielt [6], für die Hydrolyse $3\rightarrow 4$ fehlt jegliche experimentelle Angabe [3]. Diese auf den ersten Blick sehr einfache Synthese hat zwei Nachteile. Erstens ist die Herstellung von 2 aufwendig [7], und zweitens betrug die Ausbeute an Moniliformin (4) aus 1 und 2 in den von uns wiederholten Experimenten maximal 5%.

$$Schema 1$$

$$CCI_2=C=O + CH \equiv C - OC_2H_5 \longrightarrow C_2H_5O \xrightarrow{C_2H_5O} 3 \xrightarrow{HCI/H_2O} HO$$

Die weiteren zwei Synthesen von Moniliformin stammen aus der Zeit, bevor 4 als Naturstoff entdeckt worden ist. Die Schlüsselstufe der Synthese von Scharf & Pinske [8-10] ist die photochemische Ausbildung eines Cyclobutan-Derivates wie 7 oder 9, das die Oxydationsstufe 6 wie Moniliformin besitzt⁴) und zu diesem hydrolysiert werden kann. Experimentelle Daten fehlen aber sowohl für die photosensibilisierten [2+2]-Cycloadditionen $5+6\rightarrow 7$ und $8\rightarrow 9$ [8-11] als auch für die Hydrolyse zu 4 [8] [10]*). Ausserdem ist 8 nur über mehrere Stufen

Schema 2

$$Cl \rightarrow 0$$
 $Cl \rightarrow 0$
 $Cl \rightarrow 0$
 $Sens. \rightarrow 0$
 $Cl \rightarrow 0$
 $Sens. \rightarrow 0$
 $Cl \rightarrow 0$

⁴⁾ Cyclobutan-Derivate können wie chemische Elemente die Oxydationsstufe 0 (= Cyclobutan selbst) bis 8 aufweisen. Die Oxydationsstufe eines Cyclobutan-Derivates ist durch die Anzahl seiner Hydroxygruppen, bzw. dazu äquivalenter Gruppen bestimmt. Als äquivalente Substituenten gelten solche Gruppen, die sich formal ohne Oxydations- oder Reduktionsmittel in eine (Halogenatome, OR, SR, NR₂, Ringdoppelbindung u.ä.) oder zwei (>C=O, >C=S, >C=NR u.ä.) Hydroxygruppen überführen lassen.

^{*)} Anmerkung bei der Korrektur (20.4.1978). In der neuesten Arbeit von Scharf et al. [83] sind nun die folgenden präparativen Ausbeuten angegeben: 72% für 5+6→7, 54% für 2 8→9 und 30% für 9→4. Bei der Hydrolyse von 7 entstehen anstelle von 4 nur Cyclopropanderivate.

zugänglich [9] [10]. Unsere analogen photochemischen Synthesen von Moniliformin, ausgehend vom besser zugänglichen Dichlorvinylencarbonat (5), sind in Kap. 6 beschrieben.

Die älteste Synthese von 4 stammt von Hoffmann et al. [12]. Diese Autoren hydrolysierten das [2+2]-Cycloaddukt von Keten an Tetramethoxyäthylen zu 4. Durch teilweise Änderung der Ausgangssubstanzen und Optimierung erreichten wir eine entscheidende Steigerung der Ausbeute von 4, so dass dies die ergiebigste Synthese von Moniliformin geworden ist.

Die vorliegende Mitteilung befasst sich also mit verbesserten bekannten Herstellungsmethoden und mit prinzipiell neuen Bildungsmöglichkeiten von Moniliformin (4).

2. Synthese Nr. 1. – 2.1. [2+2]-Cycloadditionen von Keten an Tetraalkoxyäthylene. Der oben erwähnten Synthese von 4 nach Hoffmann [12] lag als vierring-bildender Schritt die [2+2]-Cycloaddition von gasförmigem Keten an Tetramethoxyäthylen (12a) zugrunde (Schema 3), wobei zu 72% ein (1:1)-Gemisch von 13a und 14a entstand, das sich nicht trennen liess. Hydrolyse des Adduktgemisches mit 20proz. Salzsäure bei Raumtemperatur lieferte 4 in ca. 25% Ausbeute (bzgl. 14a) [12].

- i) 10a, b: [13]; 10c: 100-140°/6 Std.
- 11a: NaH/CH₃O(CH₂CH₂O)₄CH₃/90°/15 Std.;
 11b, c: NaH/CH₃OCH₂CH₂OCH₃/Rückfluss/18 Std.
- iii) 14b: 18proz. Salzsäure/Tetrahydrofuran 10:1, 40°/6 Std.
- iv) $(C_2H_5)_2O/(C_2H_5)_3N$ ca. 25:1, Kieselgel-60/0-25°/2-5 Std.
- v) 15b: 18proz. Salzsäure/Tetrahydrofuran 5:1, 35°/40 Min.

Die schwere Zugänglichkeit der Tetraalkoxyäthylene wäre früher das Haupthindernis für diese Synthese gewesen. Bis 1973 waren sowohl Tetramethoxyäthylen (12a) [13] als auch Tetraäthoxyäthylen (12b) [14] chemische Raritäten. Andere Tetraalkoxyäthylene waren unbekannt. Dann veröffentlichte Scheeren et al. [15] eine elegante zweistufige Synthese von Tetraalkoxyäthylenen aus 4-Chlorphenol und Orthoameisensäuretrialkylestern 10 via die Dialkoxy-(4-chlorphenoxy)methane 11. Die Ausbeute der Stufe 11→12 wurde von uns gegenüber der in [15] angegebenen – durch Verwenden des hochsiedenden Tetraäthylenglycol-dimethyläthers als Lösungsmittel bei der Reaktion 11a→12a, anstelle von 1,2-Dimethoxyäthan – um mehr als 30% auf 80-90% erhöht. Auf diesem Wege haben wir aus 10c über 11c (70%) auch Tetrabutoxyäthylen (12c; 92%) hergestellt.

Die Resultate der [2+2]-Cycloadditionen von Keten an die nun leicht zugänglichen elektronenreichen Tetraalkoxyäthylene 12 sind in *Tabelle 1* wiedergegeben. Die Cycloaddition an 12a bzw. 12b ergab neben den 2,2,3,3-Tetraalkoxycyclobutanonen 14a bzw. 14b kleine Mengen der neuen 2,2-Dialkoxy-3-oxobuttersäure-ester 17a bzw. 17b. Deren Entstehung deutet auf eine über die 1,4-dipolare, rotationsfähige Zwischenstufe 16 verlaufende Cycloaddition hin⁵) (Schema 4). Das positiv geladene Ende von 16 stellt ein tertiäres Dialkoxycarbeniumion dar. Aus der ambienten Reaktionsweise solcher gut untersuchter [21] [22] Carboxoniumionen folgt zwanglos eine Erklärung sowohl für die hohen Ausbeuten der Cyclobutanone 14 als auch für die Bildung von 17.

Die Bildung von intermediären 1,4-Dipolen bei [2+2]-Cycloadditionen von Ketenen an elektronenreiche Olefine wurde schon verschiedentlich zur Erklärung exper. Befunde herangezogen; vgl. z.B. die Arbeiten über Additionen an Alkoxy-olefine [16], Alkylthio-olefine [17], Vinylcyclopropane [18] und Enamine [19]. Theoretische Aspekte dazu vgl. [20].

Reaktand	13		14		17		
	Ausbeute [%]	Sdp. [°/Torr]	Ausbeute [%]	Sdp. [°/Torr]	Ausbeute [%]	Sdp. [°/Torr]	
12a	22 ^b)	50/0,2	60b)	50/0,2	5 ^b)	50/0,2	
12b		_	87,5	63-67/0,01°)	5,5	90/0,1	
12c	_	_	83	$130/2 \times 10^{-4}$ d)	ca. 2	_e)	

Tabelle 1. [2+2]-Cycloaddition von Keten an Tetraalkoxyäthylene (12)a)

- a) Gasförmiges Keten wurde jeweils bei 0-5° in flüssiges 12 (kein Lösungsmittel) eingeleitet, bis im GC. kein 12 mehr nachgewiesen werden konnte: vgl. exper. Teil.
- b) 13a, 14a und 17a destillierten gemeinsam: angegeben sind die durch NMR. ermittelten Ausbeuten.
- c) Smp. 46,5-47°.
- d) Im Kugelrohr.
- e) Säulenchromatographisch isoliertes Öl.

Nach $H\ddot{u}nig$ [21] reagiert ein Carboxoniumion 18 mit einem Nucleophil Nu $^-$ entweder in einer kinetisch kontrollierten Reaktion am zentralen C-Atom (\rightarrow 19) oder es wird in einer thermodynamisch kontrollierten S_N 2-Reaktion zu 20 entalkyliert (Schema 5). Die Bedeutung der Reaktionswege hängt von mehreren Faktoren ab [21]; da aber Weg 18 \rightarrow 19 reversibel sein kann, stellen die stabilen Ester 20 meistens die Endprodukte dar. Die Additionsprodukte 19 lassen sich beim Verwenden von stark nucleophilen Anionen wie CN $^-$, RO $^-$ oder R $^-$ isolieren. Mit den weniger nucleophilen Halogenid-Ionen oder mit ungeladenen Nucleophilen wie H $_2$ O, ROH oder RCOOH hingegen erfolgt in der Regel Entalkylierung zu 20. Wenn der Substituent R in 18 ein a-Wasserstoffatom (R=CH-) enthält, kann auch Deprotonierung zum Keten-acetal 21 stattfinden [22]. Unter diesen allgemeinen Gesichtspunkten lassen sich die Resultate der Cycloadditionen zwischen Tetraalkoxyolefinen und Keten gut verstehen.

In Abwesenheit anderer Nukleophile stellt die intramolekulare Reaktion zum Vierring 14 die bevorzugte Reaktion für den 1,4-Dipol 16A dar⁶). Da jedoch 16 nicht nur ein ambidentes positiv geladenes Zentrum, sondern auch ein am-

⁶⁾ Eine intramolekulare Entalkylierung 16A → 22 (analog 18 → 20) würde eine ungünstige [23] 6-Endo-Tet-Reaktion [24] darstellen und wurde von uns nie beobachtet. Ebenfalls haben wir nie ein (2:1)-Addukt mit sechsgliedrigem Ring gefunden.

bidentes negativ geladenes Zentrum besitzt, sind a priori beide Rotameren 16A und 16B zum Ringschluss befähigt. Da nur bei der Cycloaddition von Keten an Tetramethoxyäthylen (12a) ein Oxetan, d.h. 13a, gefunden wurde⁷), muss angenommen werden, dass bei Tetraäthoxy- (12b) und Tetrabutoxyäthylen (12c) entweder kein C,O-Ringschluss $16B \rightarrow 13$ stattfindet, oder dass 13b und 13c sofort via 16B und 16A zu den unter den Reaktionsbedingungen stabilen Cyclobutanonen 14b bzw. 14c zurück reagieren⁸) (zur Stabilität von 14 vgl. Kap. 2.2). Die voluminöseren Substituenten in 13b ($R = C_2H_5$) und 13c ($R = C_4H_9$) im Vergleich zu 13a ($R = CH_3$) dürften diese Rückreaktion begünstigen.

Mit Spuren von neutralen Nucleophilen (z. B. Essigsäure, die sich aus Keten und Feuchtigkeitsspuren bilden kann), erfolgt innerhalb der Lebensdauer von 16 eine die Ringschlüsse zu 14 und 13 konkurrenzierende Entalkylierung zu 17. Der Gehalt an Wasser bzw. Essigsäure hängt von der exper. Arbeitsweise ab, weshalb die Ausbeuten von 17a-c je nach Versuch (vgl. Tab. 1) schwanken. Verbindung 17 dürfte ein direktes Folgeprodukt des primär bei der Cycloaddition gebildeten 16 darstellen, denn das einmal gebildete 14 ist unter den Bedingungen der Cycloaddition (0-5°) hinreichend stabil, um keine Spaltung zu 16 einzugehen (vgl. 14b im exper. Teil). Erst bei Temperaturen von 30-40° und in Gegenwart von überschüssigen wässerigen Säuren entsteht 17, jedoch wahrscheinlich nicht via 16 (vgl. Kap. 2.2).

Die Abwesenheit eines Wasserstoffatoms an C(3) von 16 ist ein weiterer, vermutlich sehr gewichtiger Grund für die Entstehung von 14 in hohen Ausbeuten. Elektronenreiche, mit 12 verwandte 1,1-Dialkoxyolefine (= Keten-acetale) liefern im Unterschied zu 12 bei Cycloadditionsversuchen mit Ketenen 1,1-Dialkoxy-2-acylolefine (Acylketenacetale) mit push-pull Charakter [16], weil sich die im Primärschritt gebildeten 1,4-Dipole durch formale 1,3-[H]-Verschiebung stabilisieren, ohne einen Ringschluss einzugehen (vgl. dazu auch Fussnote 18).

2.2. Hydrolyse von Tetraalkoxycyclobutanonen (14) zu Moniliformin. Moniliformin (4) war durch Hydrolyse von 2,2,3,3-Tetramethoxycyclobutanon (14a) mit 20proz. Salzsäure in einer Ausbeute von 25% hergestellt worden [12]. Unsere Vorversuche zeigten, dass die Hydrolyse der Cyclobutanone 14a-c zu 4 je nach Bedingungen in unterschiedlichem Masse von Ringöffnung begleitet war. Die Resultate der säurekatalysierten Hydrolyse von 14b sind in der Tabelle 2 zusammengestellt. Danach führte die Hydrolyse mit 18proz. wässeriger Salzsäure mit ca. 1/10 Vol. Tetrahydrofuran als Lösungsvermittler bei 40° zum besten Erfolg (Versuch 6, Tab. 2). Das Nebenprodukt 17b entstand in einer Ausbeute von

^{7) [2+2]-}Cycloadditionen unter Beteiligung der Keten-Carbonylgruppe wurden mit Olefinen nur selten, z.B. bei den Reaktionen von Bis-(trifluormethyl)keten mit Enoläthern [16d], von Äthoxyketen mit Cyclohexen [25] und von Keten mit 1,1-Diäthoxy-olefinen [26], beobachtet.

⁸⁾ Huisgen & Otto [19b] kamen anhand von Lösungsmitteleinflüssen auf die Produkteverteilung der Reaktion von Dimethylketen mit N-Isobutenylpyrrolidin zum Schluss, dass der intermediäre 1,4-Dipol primär in der rotameren Form vom Typ 16B gebildet wird, welche im Vergleich zu 16A ein kleineres Coulomb-Potential aufweist. Jedem Ringschluss zum Cyclobutanon-Derivat muss eine Rotation um die C(2), C(3)-Bindung zum energiereicheren Rotameren vom Typ 16A vorausgehen, mit einer Geschwindigkeit, die durch steigende Lösungsmittelpolarität begünstigt wird; vgl. dazu [19e].

Ver- such Nr.	Reaktionsbedingungena)			Ausbeute [%] an			
	Lösungsmittel	Tem [°]	p. Zeit [Std.]	4	17b	23b	25b
1.	CH ₃ CN/H ₂ O 4:1	80	24	26	-c)	-c)	-c)
2.	98proz. HCOOH	20	48	55	7	20b)	4
3.	CH ₃ COOH/H ₂ O 4:1	40	20	31	15	24	_
4.	CF ₃ COOH/H ₂ O 4:1	40	1 Min.	66	7	22	2
5.	36proz. Salzsäure/H ₂ O/THF 5:5:1	40	4,5	52	7	- ^d)	30
6.	36proz. Salzsäure/H ₂ O/THF 5:5:1	40	6	88	8	-d)	-

Tabelle 2. Hydrolyse von 2,2,3,3-Tetraäthoxycyclobutanon (14b) unter verschiedenen Bedingungen

- Die Versuche 2 und 4-6 sind detailliert im exper. Teil beschrieben. Versuche 1 und 3 erfolgten analog dem Versuch Nr. 4.
- b) Davon 7,8% als Ameisensäure-ester 24b isoliert.
- Neben 4 wurden nur dunkle, hochviskose Produkte gebildet.
- d) Kontrollexperimente zeigten, dass 23b unter diesen Bedingungen hydrolytisch nicht stabil ist.

ca. 8% und liess sich beim Aufarbeiten durch Waschen mit Hexan leicht von 4 abtrennen (4 ist in Hexan unlöslich). Der Versuch 5 zeigt, dass bei kürzerer Hydrolysendauer auch der Moniliforminäthylester (25b) als Produkt der unvollständigen Hydrolyse gefasst werden kann.

Ameisensäure (98%) wurde kürzlich [27] als Reagens für eine saubere und sehr milde (RT.) Formolyse von Acetalen empfohlen. Die Reaktion von 14b führte jedoch sowohl mit konz. Ameisensäure als auch mit 80proz. Essigsäure oder 80proz. Trifluoressigsäure zur Bildung der ringgeöffneten Produkte 17b und 23b bzw. auch 24b (Tab. 2).

Um die Bildung der Ringöffnungsprodukte zu erklären, wurden noch folgende Experimente durchgeführt: Kochen unter Rückfluss in absolutem, mit HCl gesättigtem Äthanol wandelte 14b in 5 Minuten leicht in 17b (23%) und 23 (74%) um. In Abwesenheit von HCl blieb 14b in siedendem Äthanol während 8 Std. unverändert. Versuch 1 (Tab. 2) zeigt ebenfalls, dass für die Ausbildung von 17b und 23b die hohe Polarität des Lösungsmittels allein in Abwesenheit einer Säure nicht ausreichend ist; auch eine sorgfältige Verfolgung (GC.) der Hydrolyse in Acetonitril/Wasser 4:1 bei 80° zeigte kein Auftreten von 17b und 23b. Diese Resultate lassen sich schwer durch eine Ringöffnung von 14b via einen 1,4-Dipol 16b und nachfolgende Protonierung/Dealkylierung zu 17b (vgl. Schema 4) erklären.

Als alternativer Weg für die Bildung von 23b könnte sich 14b zunächst zu 26b enolisieren, das sich in einer elektrocyclischen Cyclobuten-Ringöffnungsreaktion zu 27b umlagert; 27b würde sich schliesslich durch zweifache Protonierung/Dealkylierung über 28b zu 23b stabilisieren (Schema 6). Dagegen sprechen jedoch gewichtige Argumente. Erstens sind die Ester der Enolform 26b thermisch recht stabil (bei 100-120° ohne Ringöffnung destillierbar [28]) und zweitens haben Hünig & Hoch [19d]

Schema 6

in einer sorgfältigen Studie mit deuterierten 3-Aminocyclobutanonen bewiesen, dass keine elektrocyclische Ringöffnung über deren Enolformen eintritt. Drittens kommt hinzu, dass der Zusatz von Triäthylamin zu einer siedenden Athanol-Lösung von 14b keine Ringöffnung zu 23b auslöste, obwohl Basen die Enolisierung von Cyclobutanonen stark beschleunigen [29]. Säuren haben hingegen nur einen vergleichsweise kleinen Einfluss auf die Enolisierungsgeschwindigkeit der Cyclobutanone [29]. Die oben erwähnten Experimente in Äthanol zeigen jedoch, dass die Anwesenheit einer Säure einen entscheidenden Effekt auf die Bildung sowohl von 23b als auch von 17b ausübt.

Alle diese Befunde lassen sich am ehesten mit einer säure-assistierten heterolytischen Spaltung von **29b** (= **14b**-H⁺), also mit einer Reaktion vom Typus der *Grob*-Fragmentierung [30], vereinbaren (*Schema 7*). Die Protonierung des Carbonyl-Sauerstoffatoms ist wesentlich; es ist uns nicht gelungen, eine rein thermische Spaltung von **14b**, mit der Carbonylgruppe als einer nukleofugen Gruppe, zu erzwingen. Es ist anzunehmen, dass das vicinal, an C(2) und C(3) tetrasubstituierte Cyclobutanon **29b** in einer gefalteten Konformation mit einem Faltungswinkel von *ca.* 27-30° vorliegt [31], welcher sich vermutlich entlang der Reaktionskoordinate noch vergrössern kann⁹). Dies ergibt eine stereoelektronische Situation, die ein problemloses «Hineingleiten» in einen Übergangszustand mit einer günstigen Überlappung der sich bildenden p-Orbitale mit den vorhandenen n- und π -Orbitalen erlaubt. Äther-Gruppen vermögen zwar in der Regel bei ähnlichen Fragmentierungen nicht als elektrofuge Gruppen zu wirken, auch wenn

Dies trifft dann zu, wenn sich das Elektronen-Defizit am C(1) entlang der Reaktionskoordinate einer konzertierten Spaltung zuerst vergrössert, z.B. durch Übergang von partiell zu voll protonierter Carbonylgruppe. Es wurde nämlich berechnet (CDNO), dass die energetisch günstigste Konformation eines Cyclobutylkations einen Faltungswinkel von ca. 80° aufweist [32].

die stereoelektronischen Gegebenheiten ideal sind [30]; eine Ausnahme bilden jedoch diejenigen Äther-Fragmentierungen, die zur Ausbildung von sehr stabilen Carbeniumionen wie die mesomeren Formen von 30b bzw. 31b führen [33]. Zudem wird die Spaltung im vorliegenden Fall durch die Freisetzung der Cyclobutanon-Ringspannung (>24,5 kcal/mol [34]) unterstützt. Im Einklang mit der bevorzugten Bildung von höher substituierten Doppelbindungen bei der Grob-Fragmentierung [30] wird in 29b hauptsächlich die $\sigma_{3,2}$ -Bindung gelöst und die vierfach substituierte $\pi_{1,2}$ -Bindung gebildet: das Verhältnis 23b:17b betrug tatsächlich in allen Experimenten ca. 2:1 bis 3:1.

Die Bevorzugung eines der geschwindigkeitsbestimmenden Schritte, welche zur Bildung von 4 bzw. 17b und 23b führen, d.h. Protonierung der Äthoxygruppe (\rightarrow Hydrolyse über ein Alkoxycarbeniumion, wahrscheinlich an C(3) von 14b) vs. Protonierung am Carbonylsauerstoffatom (\rightarrow Spaltung) dürfte von schwer abzuschätzenden Faktoren (sterische Hinderung, Säurestärke, Lösungsmittelpolarität, Temperatur, Basizität der Acetalgruppierung und der Carbonylgruppe u.ä.) abhängen. Da die Produktausbeuten (Tab. 2) darauf hindeuten, dass $\Delta\Delta H^{*}$ der beiden Prozesse maximal nur 0,8 kcal/mol beträgt, wird auf den Einfluss dieser Faktoren nicht eingegangen.

2.3. 3, 4, 4-Trialkoxycyclobutenone (15) durch Alkoholeliminierung aus 14. Hydrolyse von 15 zu Moniliformin. Die aus der präparativen Sicht unerwünschten Prozesse 14→17 und 14→23 bei der sauren Hydrolyse von 14 zu 4 liessen sich vollständig vermeiden, wenn 14 zuerst in das 3,4,4-Trialkoxycyclobutenon (15) übergeführt wurde. Die Entstehung von 15 in stark unterschiedlichen Mengen wurde zuerst bei säulenchromatographischen Abtrennungen von 14 an Kieselgel-Säulen beobachtet. Die damals unerwünschte Reaktion 14→15 liess sich durch Zugabe von 4% Triäthylamin zu Kieselgel nicht unterdrücken, im Gegenteil, die Alkohol-Eliminierung aus 14 wurde dadurch quantitativ. Präparativ wurden dann die reinen 14a-c in ätherischen Lösungen, die ca. 4% Triäthylamin enthielten, durch 2-5stdg. Rühren mit der ca. 10fachen Gewichtsmenge Kieselgel bei Raumtemperatur in die Cyclobutenone 15a, 15b bzw. 15c übergeführt, in Ausbeuten von 44, 82 bzw. 89% (Schema 8)¹¹¹)¹¹).

Die Cyclobutenone 15 sind neue¹²), stabile, bei 0° über zwei Jahre haltbare und ohne Zersetzung destillierbare farblose Öle. Sie lassen sich durch ihren push-pull Charakter spektroskopisch leicht erkennen. In den IR.-Spektren von

¹⁰⁾ Anstelle von Triäthylamin liessen sich auch andere tertiäre Amine verwenden. Mit Kieselgel allein erfolgte die Eliminierung 14→15 ebenfalls, jedoch wesentlich langsamer. Mit Triäthylamin allein wurde 14 langsam in ein komplexes Gemisch, das auch 15 enthielt (GC.), umgewandelt.

¹¹⁾ Im Laufe unserer Arbeiten haben Mayr & Huisgen [35] eine analoge Alkohol-Eliminierung aus den [2+2]-Cycloaddukten einiger Ketene an Enoläther beschrieben. Diese erfolgte mit neutralem oder basischem Al₂O₃ der Aktivitätstufe 1 und führte zu in Stellung 3 unsubstituierten Cyclobutenonen. Unsere Vorversuche zeigten, dass die Reaktion 14→15 auch mit Al₂O₃ ungestört verläuft.

Als nächstverwandt zu 15 darf man die [2+2]-Cycloaddukte von Ketenen an Alkoxyacetylene ansehen [3] [6] [36-38]. Für die Herstellung von 15 durch eine analoge [2+2]-Cycloaddition an Alkoxyacetylen wären die bis anhin unbekannten Dialkoxyketene zu verwenden. Deren Vorläufer, die Dialkoxyacetylchloride, dürften jedoch kaum herzustellen sein, wie vergebliche Versuche zur Herstellung von Dimethoxyacetylchlorid gezeigt haben [39].

C R=CAH

- i) Kieselgel-60 (Merck) und 4% (C_2H_5)₃N, $N_2/20^\circ/5$ Std.
- ii) NaH(Kat.)/CH3OCH2CH2OCH3/N2/20°/20 Std.

15 erscheint die (C=O)-Schwingung bei 1767-1775 cm⁻¹ und die charakteristische, sehr starke (C=C)-Bande bei 1590-1597 cm⁻¹. Die UV.-Absorption liegt bei 245-248 ($\pi \to \pi^*$) und 277-289 nm ($n \to \pi^*$), also wesentlich länger- ($\pi \to \pi^*$) bzw. kürzer-wellig ($n \to \pi^*$) als bei Cyclobutenonen ohne *push-pull* Charakter (\leq 227 bzw. *ca.* 320 nm, vgl. z.B. [35]). In den ¹H-NMR.-Spektren (CDCl₃) erscheint das Singulett von H-C(2) bei 5,42-5,47 ppm.

Bei der Methylierung von 14b mit Methyljodid in Dimethoxyäthan in Gegenwart von NaH wurde neben dem gewünschten 2-Methyl-3, 3, 4, 4-tetraäthoxycyclobutanon¹³) auch eine hochsiedende Verbindung (Sdp. 150–160°/0,03 Torr) gebildet. Eine Wiederholung dieser Reaktion *ohne* CH₃I lieferte 62% 14b und 18% einer hochsiedenden Substanz, die spektroskopisch als das dimere Halbacetal 32b identifiziert wurde (s. exper. Teil).

Mechanistisch ist die Ausbildung von 32b gut verständlich. Das mit NaH aus 14b gebildete a-Carbanion stösst entweder ein $(C_2H_5O^-)$ -Ion unter Bildung von 15b ab oder greift eine Molekel des bereits entstandenen 15b (α,β) -ungesättigtes Keton) am Ende des konjugierten Systems an 14). Erneute Alkoholeliminierung und Halbacetalisierung der Carbonylgruppe führen zu 32b.

Die Hydrolyse von 15 mit 18proz. Salzsäure bei 35° lieferte bereits nach 40 Minuten reines Moniliformin (4) in nahezu quantitativer Ausbeute¹⁵) (eine Ringöffnung tritt also nicht ein).

¹³⁾ Über eine neue Synthese von 3-Hydroxy-4-methyl-3-cyclobuten-1,2-dion («Methylmoniliformin») [40] via eine saure Hydrolyse dieses 2-Methylcyclobutanons werden wir später berichten.

Dieser zwei Cyclobutanringe verknüpfende Schritt ist mechanistisch vergleichbar mit einer Überführung von 4-mono(oder di)-alkylsubstituierten 3-Alkoxycyclobutenonen in die entsprechenden 3-Alkyl- [37] [41] oder 3-Arylcyclobutenone [37] mit Grignard-Reagentien.

¹⁵⁾ Es seien an dieser Stelle noch Versuche zur Herstellung von 14b über die [2+2]-Cycloaddukte 34a-d aus den «Keten-Äquivalenten» [42] 33a-d und 12b erwähnt: 2-Acetoxyacrylnitril (33a) und 2-(Trimethylsilyloxy)acrylnitril (33b) [43] reagierten mit 12b nicht (115°/2 Tage). Mit 2-Chloracrylnitril (33c) wurde das Cycloaddukt 34c zwar leicht gebildet (91% Ausbeute; s. exper. Teil), es liess sich jedoch mit Standardmethoden [42] nicht in 14b überführen. Bei der in situ Erzeugung

3. Synthese Nr. 2. - Umwandlungen von Chlor-fluor-cyclobutenen und deren Hydrolyse zu Moniliformin (4). Polyfluorsubstituierte Alkene weisen eine ausgeprägte Tendenz zu [2+2]-Cycloadditionsreaktionen untereinander und mit anderen Alkenen und Alkinen [46] auf. Die dabei gebildeten Cyclobutane besitzen die Oxydationsstufe 4 oder mehr⁴). Diese Eigenschaft wurde von Cohen et al. [47] zur ersten Synthese von Quadratsäure (Oxydationsstufe 7) genutzt. Es war naheliegend, sich in der reichen Palette der bereits bekannten Polyfluorcyclobutane oder deren einfachen Umwandlungsprodukte [46] nach Verbindungen der Oxydationsstufe 6 umzuschauen und zu versuchen, diese potentiellen Vorläufer von Moniliformin (4) hydrolytisch in 4 überzuführen. Dazu wurden die Verbindungen 37, 38 und 41 gewählt und durch teils bekannte $(36 \rightarrow 37 [48], 40 \rightarrow 41 [49])$, teils neue $(37 \rightarrow 38, 37 \rightarrow 41)$ Reaktionen aus 36 bzw. 39 hergestellt (Schema 9). Die Zurodnung der Substituenten in den Cyclobutenen 38 und 41 erfolgte aus den ¹H-, ¹³C- und ¹⁹F-NMR.-Spektren (s. exper. Teil). Die ¹H- und ¹⁹F-NMR.-Spektren von 36, 37 und 40 stimmen mit Literaturdaten ([50] [51] bzw. [52]) überein. Verbindung 36 wurde durch die gut reproduzierbare thermische [2+2]-Cycloaddition von Chlortrifluoräthylen an 1,1-Dichloräthylen hergestellt [48]. Die Ausbeute an 36 liess sich jedoch durch keine Abänderung der exper. Bedingungen

- i) 180°/10 Std. [48]
- ii) $(C_2H_5)_2O/(C_2H_5)_3N/20$ Std. [48]
- iii) 1 mol KOH/C₂H₅OH/0° 3 Std.
- iv) 2 mol KOH/C₂H₅OH/0°/3 Std. [49]
- NaBH₄/CH₃OCH₂CH₂OCH₃/ $0-5^{\circ}$ /3 Std. [53]
- vi) konz. Schwefelsäure/100°/2 Std.
- vii) konz. Schwefelsäure/100°/5 Min.
- viii) konz. Schwefelsäure/100°/1 Std.

von 2-Chloracrylsäurechlorid 33d aus 2,3-Dichlorpropionsäurechlorid und Triäthylamin in Gegenwart von 12b wurden gleichzeitig das [2+2]-Cycloaddukt 34d in 30% Ausbeute und, in Analogie zur Reaktionsweise von 1-Acylalken-1-carbonitrilen [44], das [4+2]-Cycloaddukt 35 in 38% Ausbeute gebildet (s. exper. Teil). Die Auftrennung von 34d und 35 lies sich nicht durchführen, so dass 34d im Gemisch mit 35 nach der Corey-Methode [45] in das nicht isolierte Chlorisocyanat 34e (X=N=C=O, Y=Cl) übergeführt wurde. Saure Hydrolyse des rohen 34e mit 18proz. Salzsäure führte zu Moniliformin (4). Wegen der sehr schwierigen Isolierung von 4 in reiner Form aus dem Gemisch mit nicht näher untersuchten Säuren (IR.) wurde dieser Weg zu 4 nicht weiter ausgearbeitet.

über die in [48] angegebenen 48% erhöhen (s. exper. Teil). Das Cyclobuten 39 ist käuflich 16).

In Analogie zur Hydrolyse von zahlreichen polyfluorsubstituierten Cyclobutanen zur Quadratsäure [47] [53] wurden 37, 38 und 40 sauer leicht zu Moniliformin (4) hydrolysiert. Die Hydrolyse von 37 mit konz. Schwefelsäure musste wegen der Flüchtigkeit von 37 (Sdp. 89-90°) in Druckgefässen durchgeführt werden. Dies liess sich umgehen, indem 37 zuerst in 38 oder 41 (je 75% Ausbeute) umgewandelt wurde und diese Verbindungen bei Normaldruck hydrolysiert wurden.

4. Synthese Nr. 3. – [2+2]-Cycloaddition von Dichlorketen an Äthylvinyläther und anschliessende Bromierung. Dichlorketen (1) [54], das in situ durch Dehydrohalogenierung der Dichloressigsäurehalogenide bequem zugänglich ist, gehört zu den reaktivsten und am häufigsten eingesetzten Ketenen in den [2+2]-Cycloadditionsreaktionen. Dank ihm erlangen die gebildeten a, a-Dichlorcyclobutanone bereits die Oxydationsstufe 4. Durch Reaktion von 1 mit einem Partner, welcher zwei weitere Oxydationsstufen in das [2+2]-Cycloaddukt einbringt, liesse sich die Oxydationsstufe 6 von 4 verwirklichen. Die mit niedriger Ausbeute (max. 5%) verlaufende, in Kap. 1 erwähnte [2+2]-Cycloaddition zwischen 1 und 2 [3] gehorcht bereits diesem Syntheseprinzip. Unsere Suche nach anderen geeigneten Reaktionspartnern für 1 hatte keinen Erfolg: weder 5,6-Dihydro-1,4-dioxin [55] noch Vinylencarbonat (Fluka) bildeten mit 1 isolierbare [2+2]-Cycloaddukte 17).

¹⁶⁾ PCR Incorp., Gainesville, Fl. 32 603, USA.

¹⁷⁾ Es sei an dieser Stelle vermerkt, dass prinzipiell alle in Fussnote 20 aufgezählten Olefine mit 1 [2+2]-Cycloaddukte der Oxydationsstufe 6 bilden könnten. Eine kürzlich versuchte [2+2]-Cycloaddition von 1 mit 1,1-Diäthoxy-äthylen ergab jedoch anstelle eines Cyclobutanons nur ein Acylierungsprodukt, das 4,4-Diäthoxy-1,1-dichlorbut-3-en-2-on [16e].

Das von Brady & Waters [56] beschriebene 2,2-Dichlor-3-äthoxycyclobutanon (44), das bei einer [2+2]-Cycloadditionsreaktion des in situ aus Dichloressigsäurebromid und Triäthylamin hergestellten Dichlorketens (1) mit Äthylvinyläther entstehen soll, besitzt bereits die Oxydationsstufe 5 und liesse sich durch a-Bromierung und anschliessende Hydrolyse in 4 überführen. Unter den in [56] angegebenen Bedingungen entstand 44 aber nur in 8% Ausbeute und nur dann, wenn als Vorläufer von 1 das umständlich zugängliche [57], unstabile Dichloressigsäurebromid verwendet wurde. Beim Verwenden des käuflichen Dichloressigsäurechlorids entstand überraschenderweise kein 44, sondern nur 43, in 51% Ausbeute (Schema 10). Die Überprüfung des Reaktionsverlaufes zeigte, dass 43 durch eine elektrocyclische Cyclobuten-Ringöffnung aus dem Enolester 42 während der Destillation (≤110°) gebildet wurde¹⁸). So zeigte das NMR.-Spektrum (CCl₄) des rohen, nicht destillierten Additionsproduktes unmittelbar nach der Reaktion zwei Dubletten bei 4,52 und 5,82 ppm (J=1,5 Hz; je 1 H), die in gutem Einklang mit den für H-C(3) bzw. H-C(2) von 42 erwarteten Signalen stehen. Nach 24 Std. Stehen der NMR.-Messlösung bei Raumtemperatur betrug die Intensität dieser Signale noch ca. 50%; dafür erschienen die Dubletten der olefinischen Protonen H-C(3) und H-C(4) von 43 bei 5,76 bzw. 6,79 ppm ($J_{trans} = 12,5$ Hz). Rohes 42 wurde durch Hydrolyse mit Wasser bei Raumtemperatur in das gesuchte Cyclobutanon 44 übergeführt.

Die Bildung des Enolesters 42 ist überraschend, bedeutet es doch, dass trotz eines grossen Überschusses an Äthylvinyläther während der Reaktion das Dichlorketen (1) bevorzugt mit der Enolform von 44 reagiert, und dass diese Enolform rasch genug gebildet wird, um mit überschüssigem Äthylvinyläther in Konkurrenz zu treten. Es ist zwar bekannt, dass Cyclobutanon sich unter basischen Bedingungen besonders leicht enolisiert [29]; die Entstehung eines Cyclobutenol-esters vom Typus 42 wurde jedoch unseres Wissens bei [2+2]-Cycloadditionen mit Dichlorketen (1) nie beschrieben.

Glücklicherweise eignet sich 42 ebensogut wie 44 zur Synthese von 4:42 wurde in CCl₄ zum Dibromid 45, das als Gemisch von acht Stereoisomeren vorliegen kann, bromiert. Infolge Zersetzung bei Isolierungsversuchen konnte 45 nicht analytisch rein gewonnen werden. Seine Struktur ist durch das ¹H-NMR.-

Dipolare Zwischenprodukte wie i und iv wurden zur Erklärung der Produkte vom Typus 43 bei der [2+2]-Cycloaddition von 1 an 4-Methylen-spiro[2.4]heptan herangezogen [18]; die intermediäre Entstehung von Cyclobutenen vom Typus 42 wurde hingegen in [18] nicht in Betracht gezogen.

¹⁸) Zu 43 könnten ausser 42→43 a priori auch andere Wege führen, z.B.:

(Signalgruppen im Protonenverhältnis 3:4:1; vgl. exper. Teil) und Massenspektrum (u.a. 405 (M^+ – OC_2H_5), 371 (M^+ – Br; Isotopenverteilungsbild zeigt 1 Br und 4 Cl)) nur teilweise belegt; den Beweis für die Vierringstruktur von 45 lieferte seine Hydrolyse mit 18proz. Salzsäure/Dioxan/80° zu Moniliformin (4) (Ausbeute 50% bzgl. 45). Somit wurde die Reaktionsfolge $1 \rightarrow 42 \rightarrow 45 \rightarrow 4$ ohne Isolierung der Zwischenprodukte in einer Gesamtsbeute von 23% realisiert.

5. Synthese Nr. 4. – Erschöpfende a-Bromierung von Cyclobutanon. Diese Synthese ermöglicht die Herstellung von Moniliformin (4) aus käuflichem Cyclobutanon (46)¹⁹). Die vierfache a-Bromierung von 46 nach Conia & Ripoll [59] führte zu 2,2,4,4-Tetrabromcyclobutanon (47) der gewünschten Oxydationsstufe 6 in 90% Ausbeute (Schema 11). Der Verlauf der Bromierung liess sich direkt in der Reaktionslösung an Hand der Verschiebung der IR.-Bande der Carbonylgruppe von 1778 cm⁻¹ in 46 zu 1824 cm⁻¹ in 47 verfolgen (vgl. [60]).

Es ist uns nicht gelungen, 47 direkt zu Moniliformin (4) zu hydrolysieren. Bei der Hydrolyse des daraus nach [59] mit Triäthylamin hergestellten, nicht isolierbaren, instabilen 2,4,4-Tribromcyclobutenons (48) mit konz. Salzsäure bildete sich 4 auch nur in 11% Ausbeute. Eine etwas höhere Ausbeute an 4 (18%) ergab die Hydrolyse des isolierbaren 2,2,4-Tribrom-3-methoxycyclobutanons (49) [59] mit konz. Salzsäure. Wegen des zwar käuflichen [19], jedoch schlecht zugänglichen Reaktanden 46 [58] und den niedrigen Ausbeuten der Hydrolysen ist diese Synthese von Moniliformin (4) weniger attraktiv.

6. Synthese Nr. 5. – Photosensibilisierte [2+2]-Cycloadditionen von Chloräthylenen an Dichlorvinylencarbonat (5). In Kap. 1 ist die Synthese des (1:1)-Photoadduktes 7 erwähnt. Dieses wird in mässiger Quantenausbeute ($\phi_p = 0.3$; Acetophenon als Sensibilisator) aus Dichlorvinylencarbonat (5) und 2,2-Dimethyl-1,3-dioxol (6) bei der Bestrahlung in Dioxan bei 20° gebildet. Angesichts der schwierigen Zugänglichkeit von 6 [61] haben wir zuerst eine analoge photosensibilisierte [2+2]-Cycloadditionsreaktion zwischen dem zugänglicheren 5,6-Dihydro-

¹⁹) Fluka. Neue Synthesen von 46 sind in [58] beschrieben.

1,4-dioxin [55] und 5 untersucht. In Tetrahydrofuran, Hexan, Acetonitril oder Aceton mit Acetophenon als Sensibilisator bildete sich aber bei der UV.-Bestrahlung ($\lambda > 300$ nm) immer ein komplexes Gemisch. Aus einem präparativen Ansatz wurde durch schnelle Säulenchromatographie das sterisch einheitliche, kristalline (1:1)-Photoaddukt 50 (Tab. 3) in einer Ausbeute von nur 2,4% isoliert (vgl. exper. Teil). Aus dem ¹H-NMR.-Spektrum folgt, dass alle Ringe in 50 cis-verknüpft sind (C_s -Symmetrie); die syn/anti-Isomerie lässt sich jedoch nicht bestimmen. 50 wurde mit 18proz. Salzsäure/Dioxan 1:1 bei 70° in 84% Ausbeute leicht zu 4 hydrolysiert.

Tabelle 3. 1H -NMR.- und ^{13}C -NMR.-Parameter der [2+2]-Photocycloaddukte von Dichlorvinylencarbonat (5) mit 5,6-Dihydro-1, 4-dioxin (\rightarrow 50), 1,1-Dichloräthylen (\rightarrow 51), trans-1,2-Dichloräthylen (\rightarrow 52a, 52b), 1,1-Dichlor-1-propen (\rightarrow 53) und Trichloräthylen (\rightarrow 54)

Cycloaddukt	¹ H-NMR. ^a)	¹³ C-NMR. ^a)				
		C(1)	C(2)	C(3)	C(4)	C=O
0 CI O O O O O O O O O O O O O O O O O O	3,6-3,9 und 4,0-4,3 (2 sym. m, je 2 H, OCH ₂ CH ₂ O); 4,53 (s, 2 H, H-C(3), H-C(4)) ^b)					
H CI CI CI 51	3,64 und 3,74 (2 d , J_{gem} = 16, 2 H-C(4))	95,89	105,09	83,26	61,05	147,71
H CI CI O O O O O O O O O O O O O O O O O	5,04 (s, 2 H, H-C(3), H-C(4))		103,16		63,12	148,88
CI CI 52b	5,24 und $5,56$ (2 d , $J = 7,5$, $H-C(3)$, $H-C(4)$)	b) 98,53	und 100,58	64,10 ur	nd 64,55	148,75
CH ₃ Cl Cl Cl Cl 53 ^c)	1,44 und 1,47 (2 d, J=7, CH ₃); 3,57 und 3,62 (2 qa, 1 H, H-C(4))	^d)100,13 ^d)99,54	104,81 103,66	87,36 90,48	59,43 60,66	148,63 149,07
CI C	5,07 und 5,09 (2 s, H-C(4))	e)96,98 und 100,26	103,24 und 103,64	87,44 und 88,68	73,34 und 73,43	146,88 und 146,97

a) Angabe von δ in ppm. ¹H-NMR.-Spektren in CDCl₃; ¹³C-NMR.-Spektren: 51 und 54 in CDCl₃, 20°; 52a, b und 53 in Aceton-d₆, -80° .

b) Die Zuordnung zu C(1) oder C(2) bzw. C(3) oder C(4) bleibt offen.

c) Stereoisomerengemisch im Verhältnis von 5,8:4,2 (53) bzw. ca. 2:1 (54).

d) Obere Zeile: Spektren der reinen, GC.-isolierten Hauptkomponente; untere Zeile: idem der Nebenkomponente.

e) Die Zuordnung der Signale zu endo-H- bzw. exo-H-54 ist offen.

Andere bekannte Dialkoxyolefine, die ausser mit 6 und 5,6-Dihydro-1,4-dioxin auch mit Dichlorvinylencarbonat (5) ein für die Hydrolyse zu 4 geeignetes (1:1)-Photoaddukt bilden könnten, sind in grösseren Mengen schwer zugänglich²⁰). Der Zugang über 5 zu (1:1)-Photoaddukten mit Cyclobutanstruktur der Oxydationsstufe 6 ist aber keineswegs auf Dialkoxyolefine als Additionspartner beschränkt. Auch die käuflichen Dichloräthylene haben sich dazu als geeignet erwiesen. Beim Bestrahlen von 1,1-Dichloräthylen und 5 unter den gleichen Bedingungen wie bei 5,6-Dihydro-1,4-dioxin konnte das [2+2]-Photocycloaddukt 51 nur in 13% Ausbeute erhalten werden, vermutlich wegen der parallelen Photopolymerisation von 1,1-Dichloräthylen, die bereits nach kurzer Bestrahlungsdauer zur Ausbildung einer dicken Suspension führte. Die Struktur von 51 steht im Einklang mit den ¹H- und ¹³C-NMR.-Spektren (Tab. 3), und seine leichte Hydrolyse durch Salzsäure zu 4 (69% Ausbeute) lieferte den chemischen Strukturbeweis.

Bei der sensibilisierten Bestrahlung von 5 in Gegenwart von (E)-1,2-Dichloräthylen entstand ein komplexes Gemisch. Die Reingewinnung der zwei (1:1)-Photoaddukte 52a und 52b gelang durch präparative Gas-chromatographie (5,6% und 6% Ausbeute). Die Konfigurationszuordnung erfolgte anhand der ¹³C-NMR. Spektren (Tab. 3): das Vorhandensein von fünf getrennten Signalen für 52b deutet auf eine molekulare Asymmetrie und auf die trans-Stellung der Substituenten an C(3) und C(4) hin; dagegen enthält das Spektrum von 52a wegen des Vorhandenseins einer Symmetrieebene nur drei Kohlenstoffatom-Signale. Ob es sich bei der cis-Verbindung 52a um das exo-cis- oder endo-cis-Isomere handelt, bleibt offen, da das zweite Stereoisomere nicht isoliert werden konnte²¹). 52a und 52b wurden mit 18proz. Salzsäure zu 4 hydrolysiert.

In *Tabelle 3* sind zum Vergleich noch die ¹H- und ¹³C-NMR.-Parameter der [2+2]-Photocycloaddukte **53** und **54**²²) von **5** an 1,1-Dichlor-1-propen bzw. an Trichloräthylen angegeben.

Saure Hydrolyse von 53 führte leicht zu 3-Hydroxy-4-methyl-3-cyclobuten-1,2-dion (55) [40]. Von Belang ist die im exper. Teil beschriebene Hydrolyse von 54, da sie einen neuen Zugang zur Quadratsäure 56 [47] und zum bislang nicht darstellbaren Monochlorid 57 der Quadratsäure eröffnet.

²⁰⁾ Solche Olefine stellen z.B. 1,2-Bis(trimethylsilyloxy)äthylen [62], 1,1-Dialkoxyäthylene [63], 1-Alkoxy-1-aryloxyäthylene [64], 1,2-Dialkoxyäthylene [65] und 1,3-Dioxole [61] [66] dar.

²¹⁾ Die Bildung von 52a deutet auf einen Reaktionsweg über ein 1,4-Diradikal als Zwischenstufe [67]. Seine genügend lange Lebensdauer ermöglicht den Verlust der ursprünglichen (E)-Ole-finkonfiguration durch eine freie Rotation vor der Ausbildung der zweiten Einfachbindung. Dieser Sachverhalt wurde bereits mehrmals bei [2+2]-Photocycloadditionen von (E)-1,2-Dichloräthylen beobachtet [68].

²²⁾ Im Unterschied zur Bildung von 50-52 entstanden 53 und 54 durch Aceton-sensibilisierte Photoreaktionen in besseren Ausbeute (27% bzw. 38%):

Ähnlich wie **52b** enthalten die Stereoisomeren von **53** und **54** je ein 4-endo- und 4-exo-ständiges Vierringproton in jeweils gleicher magnetischer Umgebung bezüglich der Substituenten in 3-Stellung. Was die jeweilige Beeinflussung dieses Protons durch die 1,2-Substituenten (die zwei in cis-Stellung zueinander stehende Cl-Atome am Carbonatring) anbelangt, so wurde früher am Beispiel von cis-1,2-Carbonyldioxy-1,2-dichlorcyclobutan gezeigt [69], dass der Carbonatring die zu ihm in seinem Abschirmungsbereich syn-ständigen (d.h. endo-ständigen) Protonen geringfügig nach höherem Feld $(\Delta\delta(\text{CDCl}_3)=0,220\text{ ppm})$ verschiebt. Somit dürften die jeweils bei höherem Feld auftretenden ¹H-NMR.-Signale von endo-ständigen Vierringprotonen stammen: $H_{\text{endo}}-C(4)$ von **51** bei 3,64 ppm, H-C(3) von **52b** bei 5,24 ppm, $H_{\text{endo}}-C(4)$ von **53** bei 3,57 ppm und $H_{\text{endo}}-C(4)$ von **54** bei 5,07 ppm.

Zusammenfassend lässt sich sagen, dass die [2+2]-Photocycloadditionen von 5 mit 1,2- und besonders mit 1,1-Dichloräthylen sauberere und etwas ausgiebigere Photoreaktionen als diejenigen mit 5,6-Dihydro-1,4-dioxin darstellen. Die präparativen Ausbeuten lagen jedoch in unseren nur z.T. optimierten Versuchen immer unter 14%, so dass sich diese Reaktionen weniger gut zur Synthese von Moniliformin (4) eignen.

7. Synthese Nr. 6. – Dimerisierung von Chlorketen. Das gemeinsame Merkmal der Synthesen Nr. 1, 2 und 5 ist eine [2+2]-Cycloaddition von zwei verschiedenen olefinischen Verbindungen zu einem zu 4 hydrolysierbaren Cyclobutanderivat der Oxydationsstufe 6. Im Hinblick auf die unterschiedliche Zugänglichkeit, Stabilität und Reaktivität der beiden Cycloadditionskomponenten drängten sich Versuche zur Herstellung von Cyclobutanderivaten der Oxydationsstufe 6 via eine [2+2]-Cyclodimerisierung von zwei gleichen olefinischen Verbindungen auf. Das einzige bekannte Beispiel dieser Art ist die in Kap. 1 erwähnte, für unsere Zwecke aber ungeeignete Photodimerisierung von Chlorvinylencarbonat (8: Schema 2).

Besonders attraktiv erscheint hingegen die Dimerisierung der Ketene vom Typ 58 (Schema 12), da verschiedene Ketene leicht mit sich selbst zu Cyclobutan-1,3-dionen der Art 59 reagieren. Die in Betracht zu ziehenden Ketene 58 wie z.B. Chlorketen (X=Cl) [70], Methoxyketen (X=OCH₃) [71] oder Acetoxyketen (X=OCOCH₃) [70] sind durch Dehydrohalogenierung der entsprechenden Säurechloride in situ gut zugänglich und würden Dimere 59 der Oxydationsstufe 6 liefern.

Über die ringbildende Dimerisierung von Haloketenen ist sehr wenig bekannt. In entsprechenden Versuchen von Brady [72] sollen nur a-Halovinylester und polymere Harze, aber keine Dimeren isolierbar gewesen sein. Kitahara [6] isolierte jedoch nach einer nicht näher beschriebenen Dimerisierung von Chlorketen und nachfolgender Behandlung des Rohproduktes mit Diazomethan 2,4-Dichlor-3-methoxy-2-cyclobuten-1-on, also einen Methyläther der Enolform von 61 (keine Angabe der Ausbeute). Wir haben früher [28] bei einer Reaktion mit Chlorketen das 2,4-Dichlor-3-äthoxy-2-cyclobuten-1-on²³), also einen Äthyläther der Enolform von 61, als Nebenprodukt isoliert. Die Bildung dieser beiden Enolester

²³) IR. (fl.): u.a. 1790 (C=O) und 1622 (C=C, *«push-pull»*) cm⁻¹. - NMR. (CDCl₃): 1,53 (t, CH₃CH₂O), 4,72 (qa, CH₃CH₂O) und 5,19 (s, H-C(4)) ppm. MS.: u.a. 180 (M^+), 152, 142 (M^+ -Cl), 124, 117 und 89 (100%).

- i) $(C_2H_5)_3N/(C_2H_5)_2O$ zu 64/ $(C_2H_5)_2O$ zutropfen/0-5° 2½ Std.
- ii) 18proz. Salzsäure/CH3OH 2:1/RT./3 Tage
- iii) C₂H₅OH/RT./4 Tage
- iv) C₂H₅OH/Molekularsieb 4 Å/80°/20 Std.

deutet auf das Entstehen eines echten Chlorketen-Dimeren 61 hin. Es wurde deshalb versucht, das Chlorketen 58 (X=Cl) in situ herzustellen und gezielt zu 61 zu dimerisieren, indem Triäthylamin zu einer gut gerührten, auf 0-5° gekühlten ätherischen Lösung von 60 getropft wurde. Bei diesem Vorgehen und auch beim Zugeben von 60 zu Triäthylamin wurde nach Entfernen der unlöslichen Ammoniumsalze und des Äthers ein dunkles Öl isoliert, das mit ziemlicher Regelmässigkeit ca. halbsoviel wie das eingesetzte 60 wog. Tiefere Temperaturen und Überschuss von 60 übten keinen Einfluss auf diese Rohausbeute aus: bei über 25° und einem Überschuss an Triäthylamin verminderte sie sich. Das thermisch und hydrolytisch unstabile Rohgemisch liess sich nicht trennen und Destillation bei 80-90°/0,01 Torr ergab nur ca. 4% Rohgemisch als farblose, schnell dunkel werdende Flüssigkeit, deren GC.-Auftrennung fehlschlug. Das Vorhandensein einer breiten Carbonylbande bei 1780 cm⁻¹ und einer intensiven (C=C)-Schwingung bei 1620 cm⁻¹ im sonst einfachen IR.-Spektrum des rohen Öles deutet eher auf die Enolform von 61 oder sogar auf den Chloressigsäureester dieser Enolform mit «push-pull»-Charakter (vgl. z. B. [73]) als auf ein β-Lacton 62 hin. Im letzteren Fall wäre in Analogie zu Diketen eine (C=O)-Schwingung bei ca. 1840-1860 cm⁻¹ und eine (C=C)-Bande bei ca. 1680 cm⁻¹ zu erwarten [74].

Bei der Umsetzung des rohen Öles mit abs. Äthanol entstanden anstatt des

erwarteten 2,4-Dichlor-3-äthoxy-2-cyclobuten-1-ons lediglich ringgeöffnete Derivate der 2,4-Dichlor-3-oxobuttersäure 63-65 [75] in kleinen Mengen (6-13%). Äthanolyse des β -Lactons 62 muss nicht die einzige Erklärung für die Bildung von 63-65 sein, denn auch α -Halogencyclobutanone der Art 61 können mit Nucleophilen eine Ringöffnung erleiden. Letztere Reaktion erfordert gewöhnlich eine Aktivierung der Cyclobutanon-Carbonylgruppe durch zwei α -Halogenatome [59]. Ein ringöffnender, ebenfalls zu 63 führender Angriff von Äthanol auf eine der Carbonylgruppen in 61 dürfte zusätzlich durch die Aktivierung durch die andere, β -ständige Carbonylgruppe («intramolekulare Acylgruppe») erleichtert werden. Somit bleibt die Frage des Vorläufers von 63 offen²⁴).

Da auch zahlreiche weitere orientierende Versuche zur Analyse des Cyclo-additionsgemisches erfolglos blieben, wurde das rohe Öl direkt mit 18proz. Salzsäure/Methanol 2:1 zu Moniliformin (4) hydrolysiert. Die Ausbeute blieb jedoch auch bei optimalen Bedingungen (RT., 3 Tage) mit 1,6% nur sehr klein (vgl. exper. Teil). Änderungen dieser Bedingungen führten zu keiner Ausbeutesteigerung.

Obwohl die präparative Ausbeute an 4 nach diesem im Grunde gelungenen Syntheseweg gering ist, dürfte die überaus einfache Synthese $60 \rightarrow (61) \rightarrow 4^{25}$) die Methode der Wahl sein, falls 4 nur in spektroskopischen oder in Gramm-Mengen gewünscht wird. Diese Feststellung gilt im Prinzip auch für Quadratsäure (56). 4 liess sich nämlich leicht zum neuen 3-Brom-4-hydroxy-3-cyclobuten-1,2-dion (66: «Quadratsäure-monobromid») bromieren, dessen saure Hydrolyse 56 ergab.

- i) CH2Cl2/RT./3 Std.
- ii) konz. Salzsäure/90°/24 Std.

25) Nach einer in situ Erzeugung von Acetoxyketen [70] liess sich kein Dimer 59 (X=OCOCH₃) nachweisen, und die Hydrolyse des Rohgemisches führte zu keinem 4. Bei der in situ Bildung von Methoxyketen (58; X=OCH₃) [71] aus Methoxyessigsäurechlorid mit Triäthylamin in siedendem Toluol bildete sich ebenfalls kein Dimer 59 (X=OCH₂); stattdessen wurde das monodemethylierte Methoxyketen-Trimer v, ein Derivat der Hydroxytetronsäure [76], in 24% Ausbeute gebildet:

Dies stellt eine beispiellose Keten-Trimerisierungsreaktion dar.

²⁴) Die Dimerisierung von Methylketen (58; X=CH₃) wird durch die Reaktionsbedingungen stark beeinflusst: in Äther führte sie zu einem β-Lacton vom Typ 62; hingegen entstand in CH₂Cl₂ ausschliesslich ein 1,3-Cyclobutandion vom Typ 61 [73b]. Unsere Versuche mit Chlorketen (58; X=Cl) in CH₂Cl₂ zeigten keine Vorteile gegenüber Äther.

Wir danken Herrn Dr. H.-R. Blattmann für die pK_a-Messungen, den Herren Dr. H. Sauter und Dr. T. Winkler für die wertvollen Ratschläge zu NMR.-Problemen, den Herren Dr. J. Richter, W. Blum und E. Schlumpf für die Ausführung der GC.-MS.-Analysen, unseren spektroskopischen und analytischen Abteilungen für die Aufnahme der übrigen Spektren sowie für die Ausführung der Mikroanalysen, und besonders Herrn E. Christen für seine sorgfältige experimentelle Mitarbeit.

Experimenteller Teil

Allgemeines. Siehe [77]. Zusätzlich gilt: RT.=Raumtemperatur; RV.=Rotationsverdampfer; THF=Tetrahydrofuran.

Dibutoxy-(4-chlorphenoxy)methan (11c). Aus einer Lösung von 47 g (0,37 mol) 4-Chlorphenol in 85 g (0,37 mol) Orthoameisensäure-tributylester werden während 6 Std. 27,7 g (102%) Butanol bei 40-50 Torr abdestilliert. Die Badtemp, wird dabei kontinuierlich von 100 auf 140° erhöht. Der Destillationsrückstand wird in 150 ml Cyclohexan gelöst und nacheinander mit 2mal 50 ml eiskalter konz. NaOH-Lösung und 2mal 50 ml Wasser extrahiert. Die organische Phase wird über K₂CO₃ getrocknet und destilliert: 73,3 g (70%) 11c, Sdp. 101-104°/0,01 Torr. - IR. (fl.): u.a. 1598, 1488, 1235, 1112, 1040, 1010, 970, 826. - NMR. (CDCl₃): 0,90 (br. t, 6 H, 2 CH₃); 1,1-1,9 (m, 8 H, 2 CH₂CH₂); 3,62 (t, 4 H, 2 CH₂O); 5,62 (s, 1H, Methin-H); 6,6-7,4 (m, 4 H, 4 arom. H).

C₁₅H₂₃ClO₃ Ber. C 62,82 H 8,08 Cl 12,36 O 16,74% (286,80) Gef. ,, 63,05 ,, 8,00 ,, 12,39 ,, 16,75%

Tetramethoxyäthylen (12a). 57,6 g (ca. 1,2 mol) Natriumhydrid (55proz. Dispersion in Mineralöl) und 255 ml Tetraäthylenglycoldimethyläther werden im Sulfierkolben vorgelegt. 202 g (1 mol) nach [15] hergestelltes Dimethoxy-(4-chlorphenoxy)methan (11a) werden schnell zugetropft. Die Suspension wird auf 90° erwärmt und 15 Std. bei dieser Temp. gerührt. Danach wird ca. 18 Std. lang auf RT. abkühlen gelassen²⁶). 150 ml Pentan werden zugegeben, das Natrium-4-chlorphenolat wird abgenutscht und mit 3mal 50 ml Pentan nachgewaschen. Aus dem Filtrat wird zuerst durch Destillation bei 20°/12 Torr das Pentan entfernt. Nachher destillieren bei 46-49°/12 Torr 62,6 g (84,6%) Tetramethoxyäthylen (12a), $d_4^{20} = 1,0385 \pm 0,0002$ g/ml. - IR. (fl.): u.a. 1446, 1232, 1200, 1160, 1123, 1051, 1009, 972. - ¹H-NMR.: vgl. [13c]. - ¹³C-NMR.: vgl. [78].

Tetraäthoxyäthylen (12b). 342 g (1,48 mol) nach [15] hergestelltes Diäthoxy-(4-chlorphenoxy)methan (11b) werden innert 30 Min. in eine unter Rückfluss kochende Suspension von 85,2 g (ca. 1,75 mol) Natriumhydrid (55proz. Dispersion in Mineralöl) in 400 ml Dimethoxyäthan getropft. Nach weiteren 18 Std. unter Rückfluss wird die Suspension langsam²⁶) auf 20° abgekühlt, das Natrium-4-chlorphenolat abfiltriert und mit 3mal 100 ml Dimethoxyäthan nachgewaschen. Das Lösungsmittel wird durch Destillation über eine 30 cm lange Vigreux-Kolonne abgetrennt. Die Destillation des Rückstandes bei 76-79°/14 Torr ([15]: 77°/15 Torr) liefert 122 g (81%) 12b, $d_4^{20} = 0.9391 \pm 0.0002$ g/ml. – IR. (fl.): u.a. 1470, 1441, 1385, 1368, 1292, 1219, 1120, 1030, 886, 870. – NMR. (C_6D_6): 1,17 (t, t = 7, 12 H, 4 CH₃) und 3,78 (t = t + t + t CH₂O).

```
C<sub>10</sub>H<sub>20</sub>O<sub>4</sub> Ber. C 58,87 H 9,88 O 31,37% (204,26) Gef. ,, 58,56 ,, 9,98 ,, 31,54%
```

Tetrabutoxyäthylen (12c). Es wird nach dem gleichem Verfahren wie für 12b aus Dibutoxy-(4-chlorphenoxy)methan (11c) in 92% Ausbeute hergestellt, Sdp. 69-73°/0,03 Torr, $d_4^{20} = 0.8961 \pm 0.0002$ g/ml. - IR. (fl.): u.a. 1468, 1433, 1380, 1206, 1120, 1063, 1020. - NMR. (CDCl₃): 0,96 (t, J = 6.5, 12 H, 4 CH₃); 1,2-1,8 (m, 16 H, 4 CH₂CH₂); 3,72 (t, J = 6.5, 8 H, 4 CH₂O).

```
C<sub>18</sub>H<sub>36</sub>O<sub>4</sub> (316,48) Ber. C 68,31 H 11,47 O 20,22% Gef. C 67,92 H 11,56 O 20,27%
```

2,2,3,3-Tetramethoxycyclobutanon (14a). In flüssiges, auf 0-5° gekühltes Tetramethoxyäthylen (12a) (37 g; 0,25 mol) wird gasförmiges Keten bis zum vollständigen Verschwinden des Olefins

²⁶⁾ Die dadurch ausgebildeten grossen Kristalle des Natrium-4-chlorphenolats lassen sich wesentlich besser abfiltrieren als diejenigen, die unter Rühren und schnellerem Abkühlen gebildet werden.

im $GC.^{27}$) geleitet. Beim Erzeugen des Ketens durch Aceton-Pyrolyse mittels einer «Keten-Lampe» [79]²⁸) dauert die Reaktion 14 Std. Das rohe Gemisch wird bei 50°/0,2 Torr destilliert. Das farblose Destillat, 41,3 g (87%), enthält nach Auswertung des NMR.-Spektrums die Verbindungen 13a, 14a und 17a im Verhältnis 25:69:6. – IR. (fl.): u.a. 1800 (C=O von 14), 1718 (C=C von 13), 1205, 1170, 1096, 1056, 1014, 892. – NMR. (CDCl₃): 2,28 (s, CH₃CO von 17); 2,99 (s, 2 H-C(4) von 14), 3,2-3,6 (5 s, CH₃O von 13, 14 und 17); 3,80 (s, CO₂CH₃ von 17); 4,19 und 4,39 (2d, J_{gem} =3,5, =CH₂ von 13)²⁹).

C₈H₁₄O₅ (190,02) Ber. C 50,52 H 7,42 O 42,06% Gef. C 50,41 H 7,35 O 41,69%

2,2,3,3-Tetraäthoxycyclobutanon (14b). In 204 g (1 mol) Tetraäthoxyäthylen (12b) wird Keten (vgl. Herstellung von 14a) bei 0-5° während 37 Std. bis zum vollständigen Verschwinden der IR.-Bande des Olefins bei 1218 cm⁻¹ eingeleitet. Die anschliessende Destillation bei 63-67°/0,001 Torr liefert 223,6 g farbloses Öl, das in 200 ml Hexan gelöst wird. Nach Abkühlen auf -70° scheiden sich weisse Kristalle ab, die filtriert und mit 100 ml Hexan (-70°) gewaschen werden: 208 g (84,5%) 14b vom Smp. 45-46° (46,5-47° nach 3fachem Umkristallisieren aus Hexan). - IR. (KBr): u.a. 1802, 1385, 1242, 1075, 928, 832. - UV. (C₂H₃OH): 224 (1330), 327 (47). - 1 H-NMR. (C₆D₆): 1,10, 1,13 (2 t, J=7, 12 H, 4 CH₃CH₂O); 2,78 (s, 2 H, 2 H-C(4)); 3,0-4,1 (m, 8 H, 4 CH₃CH₂O). - 13 C-NMR. (CDCl₃): 15,21 und 15,33 (CH₃); 51,52 (C(4)); 59,29 und 60,55 (CH₂O); 101,49 (C(3)); 110,28 (C(2)); 202,93 (C(1)). - MS.: u.a. 217 (M^{+} - C₂H₅), 189, 161, 143, 133, 115 (100), 87.

C₁₂H₂₂O₂ (246,31) Ber. C 58,51 H 9,00 O 32,48% Gef. C 58,34 H 9,12 O 32,44%

Bei der säulenchromatographischen Auftrennung der eingedampften Mutterlauge mit Benzol/THF 9:1 werden zuerst 7,5 g 14b, verunreinigt mit ca. 15% 15b (vgl. Herstellung von 15b aus 14b), isoliert. Die Gesamtausbeute an 14b beträgt somit 87,5%. Die weiteren Eluate enthalten 12 g farbloses Öl, das bei 90°/0,1 Torr (Kugelrohr) destilliert und 2,2-Diäthoxy-3-oxobuttersäure-äthylester (17b) ist (5,5% Ausbeute). – IR. (fl.): u.a. 1758, 1730, 1590, 1261, 1123, 850. – ¹H-NMR. (CDCl₃): 1,34 und 1,35 (2 t, 6 H und 3 H, 3 CH_2CH_2O); 2,37 (t, 3 H, CH_3CO); 3,60 (t, 4 H, 2 t, 2 t, 2 t, 3 H, CO₂CH₂CH₃). – ¹³C-NMR. (CDCl₃): 14,06 (CO₂CH₂CH₃); 15,12 (2 t, 2 t, 3 t, 4 t, 4 t, 5 t, 6 t, 6 t, 6 t, 7 t, 6 t, 7 t, 6 t, 7 t, 6 t, 7 t, 8 t, 9 t, 9 t, 6 t, 9 t,

C₁₀H₁₈O₅ (218,26) Ber. C 55,03 H 8,31 O 36,65% Gef. C 55,23 H 8,40 O 36,40%

14b bleibt nach 8 Std. Rühren bei 0-5° in Dimethoxyäthan/H₂O 4:1, Dimethoxyäthan/H₂O/CH₃COOH 80:15:5, Acetonitril/H₂O 4:1 oder HMPT/H₂O 4:1 unverändert.

2,2,3,3-Tetrabutoxycyclobutanon (14c). In 6,35 g (0,02 mol) 12c wird Keten (vgl. Herstellung von 14a) bei 0° während 7 Std. geleitet. Die Destillation des leicht gelben Gemisches im Kugelrohr bei 130°/0,0002 Torr liefert 5,95 g (83%) 14c als viskoses Öl. – IR. (fl.): u.a. 1805, 1470, 1381, 1153, 1085, 1037. – NMR. (CDCl₃): 0,96 und 0,98 (2 t, t=6,5, 12 H, 4 CH₃); 1,2-1,8 t=1,4 t=1,4 CH₂CH₂); 2,77 t=1,2 H, 2 H-C(4)); 3,35-3,9 t=1,4 CH₂O).

C₂₀H₃₈O₅ (358,52) Ber. C 67,00 H 10,68 O 22,31% Gef. C 66,59 H 10,40 O 22,59%

Das Nebenprodukt (ca. 2% gemäss NMR.) wird durch Säulenchromatographie mit Benzol (Rf (14c) ca. 0,5; Rf (17c) ca. 0,35) isoliert und als 2,2-Dibutoxy-3-oxobuttersäure-butylester (17c) identifiziert. – IR. (CHCl₃): u.a. 1755, 1738, 1460, 1352, 1270, 1117. – NMR. (CDCl₃): 0,7-1,9 (m, 21 H, 3 CH₃CH₂CH₂); 2,28 (s, 3 H, CH₃CO); 3,46 (t, t=7, 4 H, 2 CH₂O); 4,18 (t, 2 H, CO₂CH₂).

Hydrolyse von 14b mit Salzsäure zu 3-Hydroxy-3-cyclobuten-1, 2-dion (= Moniliformin; 4)²). Eine Emulsion von 246 g (1 mol) 14b, 2 l 18proz. Salzsäure und 200 ml THF wird 6 Std. bei 40° intensiv gerührt. Die homogen gewordene Lösung wird bei 40°/12 Torr auf ca. 1 l eingeengt und 18 Std. mit Äther kontinuierlich extrahiert. Eindampfen des ätherischen Extraktes bei ca. 50°/12 Torr

^{27) 3%} SE-30 GC.-Kolonne, 1/2" Durchmesser, 110°.

²⁸) Erhältlich von Fa. Ace Glass Inc., Vineland, 08360 New Jersey.

²⁹) In CCl₄ [12]: 4,05 und 4,25. Es könnte sich a priori auch um die Signale der exocyclischen Methylenprotonen von Diketen handeln. Diese erscheinen jedoch in CHCl₃ bei 4,45 und 4,80 ppm [28].

und Waschen der verbliebenen öligen hellbraunen Kristalle mit 3mal 100 ml Hexan liefern 86,3 g (88%) rohes Moniliformin (4) mit korrekten Analysen, Smp. 149–153° (Zers.). Behandlung mit Aktivkohle und Umkristallisieren aus Äther ergeben weisse Kristalle vom Smp. 158° (Zers.; [12]: 145–150° (Zers.); [3]: 158°). – UV. (H₂O): 224,5 (25600), 255 (7000). – Phosphoreszenzspektren: vgl. [80]. – IR. und NMR.: vgl. [12].

Aus den eingedampften Hexan-Waschlösungen werden durch Säulenchromatographie (vgl. Herstellung von 14b) 17,5 g (8%) 17b isoliert.

Hydrolyse von 14b mit Salzsäure zu 4 und 3-Äthoxy-3-cyclobuten-1,2-dion (= Moniliformin-äthylester; 25b). Es wird wie im vorigen Beispiel, aber nur 4,5 Std. hydrolysiert. Die Aufarbeitung ergibt 51 g (52%) 4 und 70 g Öl, das nach Destillation bei ca. 70-110°/0,1 Torr 53,1 g farbloses Öl liefert, zusammengesetzt gemäss GC.-Analyse²⁸) aus 32,8 g 25b (30%, bezogen auf 14b) und 15,3 g (7%) 17b. Reines 25b wird durch fraktioniertes Destillieren bei 75-80°/0,02 Torr gewonnen. - UV. (C₂H₅OH): 300 Sch. (31); 356 (11). - IR. (fl.): u.a. 1800, 1765, 1580, 1280, 1008. - NMR. (CDCl₃): 1,55 (t, CH₃CH₂O); 4,55 (qa, CH₃CH₂O); 8,60 (s, H-C(4)).

C₆H₆O₃ (126,11) Ber. C 57,11 H 4,78 O 38,05% Gef. C 56,84 H 4,90 O 38,10%

Formolyse von 14b mit Ameisensäure. 24,6 g (0,1 mol) 14b werden in 300 ml Ameisensäure bei 20° gelöst. Nach 48 Std. ist kein 14b mehr vorhanden, die Ameisensäure wird i.RV. entfernt, der ölig-kristalline Rückstand bei 0° mit 30 ml Äther/Hexan 1:1 verrührt und filtriert: 5,4 g (55%) Moniliformin (4) vom Smp. 154-157°. Kugelrohrdestillation (75-110/0,1 Torr) des eingedampften Filtrates ergibt 6,05 g farbloses Öl, das nach GC.-Analyse³0) nur 17b, 23b, 24b und 25b im Verhältnis 21:40:25:14 enthält. Diese Verbindungen werden gas-chromatographisch³0) getrennt: 1,45 g (6,6%) 17b, vgl. Herstellung von 14b; 2,35 g (12,3%) 23b, IR. und NMR. sind identisch mit authentischem Diäthylester der rac-Äpfelsäure; 1,7 g (7,8%) 2-Formyloxybernsteinsäure-diäthylester (24b) [NMR. (CDCl₃): 1,28 und 1,31 (2 t, J=7, 6 H, 2 CH₃CH₂O); 2,90 (d, 2 H, 2 H-C(3)); 4,16 und 4,24 (2 qa, 4 H, 2 CH₃CH₂O); 5,57 (t, 1 H, H-C(2)); 8,08 (s, 1 H, H-C=O)]; 0,55 g (4,3%) 25b, vgl. Herstellung von 25b durch Hydrolyse von 14b.

CI.-MS. (Isobutan als Reaktandgas³¹): **17b**: u.a. 219 (MH^+) , 173 $(MH^+ - C_2H_5OH, 100)$, 145, 117. **23b**: u.a. 191 (MH^+) , 145 $(MH^+ - C_2H_5OH)$, 117 $(145 - C_2H_4 \text{ oder CO}, 100)$. **24b**: u.a. 219 $(MH^+ - C_2H_5OH)$ oder HCOOH), 117 (100). **25b**: u.a. 127 (MH^+) , 99 $(MH^+ - C_2H_4 \text{ oder CO})$.

Hydrolyse von 14b zu 4 mit Trifluoressigsäure. 2,46 g (0,01 mol) 14b werden in 24 ml CF₃COOH bei RT. aufgelöst und dann werden unter Rühren 6 ml H₂O zugegeben. Die Temp. steigt auf ca. 35°. In einer nach 1 Min. entnommenen Probe ist durch GC.³⁰) und DC. kein 14b mehr nachweisbar. Alle flüchtigen Anteile werden i.V. abdestilliert (Bad 60°/15 Torr). Der nichtflüchtige Rückstand aus weissen, öligen Kristallen wird mit 10 ml Benzol/Hexan 1:1 gewaschen, abfiltriert, getrocknet und durch IR. als reines 4 (0,65 g; 66%) identifiziert. Die Waschlösung enthält 0,14 g (7%) 17b, 0,43 g (22%) 23b und 0,03 g (2%) 25b.

3,4,4-Trimethoxy-2-cyclobutenon (15a). Eine Lösung von 5,5 g (29 mmol) 14a (69% Gehalt an 14a; vgl. Herstellung von 14a) in 20 ml abs. Äther wird in eine gerührte, auf 0° gekühlte Suspension von 55 g Kieselgel-60 (Merck) in 70 ml Äther und 3 ml Triäthylamin getropft. Nach 2 Std. bei RT. ist 14a vollständig umgesetzt (DC. mit Äther). Das Kieselgel wird abfiltriert und ausgiebig mit Äther gewaschen. Aus dem Filtrat wird Äther im schwachen Vakuum bis 30° abdestilliert und der Rückstand an einer Säule chromatographisch mit Äther in zwei Fraktionen getrennt. Die erste Fraktion besteht nach GC.-Analyse²⁸) aus 0,56 g (11%) 2,2-Dimethoxy-3-oxobuttersäure-methylester (17a) und 0,64 g (10%) 3,3,4,4-4-Pentamethoxy-2-butanon (= Methylorthoester von 17a). Diese werden durch GC.²⁷) getrennt und spektroskopisch identifiziert. 17a: IR. (CHCl₃): u.a. 1738, 1710, 1431, 1350, 1272, 1124, 1087. - ¹H-NMR. (CDCl₃): 2,28 (s. CH₃CO); 3,33 (s. 2 CH₃O); 3,80 (s. CO₂CH₃). - ¹³C-NMR. (CDCl₃): 26,29 (C(4)); 51,43 (2 CH₃O); 52,98 (CO₂CH₃); 101,87 (C(2)); 166,32 (CO₂CH₃); 205,53 (C(3)).

Orthoester von 17a: IR. (CHCl₃): u.a. 1736, 1440, 1352, 1173, 1115, 947. – 1 H-NMR. (CDCl₃): 2,24 (*s*, CH₃CO); 3,36 (*s*, 2 CH₃O-C(3)); 3,42 (*s*, 3 CH₃O-C(4)). – 13 C-NMR. (CDCl₃): 27,28 (C(1)); 51,23, 51,34 (alle CH₃O); 104,80 (C(3)); 142,51 (C(4)); 203,83 (C(2)).

³⁰) Vgl. Fussnote 27, Temp. 135°.

³¹⁾ Für diese Untersuchung wurde ein Finnigan 3300/6000 GC.-MS.-Computersystem verwendet, das für den Betrieb mit Glaskapillarsäulen modifiziert war [81].

Die zweite säulenchromatographisch isolierte Fraktion enthält 1,4 g (31%, bzw. 44% bzgl. reinem 14a) reines 15a. – UV. (CH₃OH): 245 (13500), 277 (80). – IR. (fl.): u.a. 1775, 1597, 1350, 1200, 1186, 983, 918. – NMR. (CDCl₃): 3,51 (s, 2 CH₃O-C(4)); 4,0 (s, CH₃O-C(3)); 5,47 (s, 1 H, H-C(2)).

C₇H₁₀O₄ (158,15) Ber. C 53,16 H 6,37 O 40,47% Gef. C 53,20 H 6,33 O 40,28%

3,4,4-Triäthoxy-2-cyclobutenon (15b). Eine Lösung von 1,23 g (5 mmol) 14b in 10 ml abs. Äther wird in eine grührte, auf 0° gekühlte Suspension von 12,5 g Kieselgel-60 in 15 ml Äther und 0,5 ml Triäthylamin getropft. Dann wird 5 Std. bei RT. gerührt, das Kieselgel abfiltriert und mit 100 ml Äther gewaschen. Die Destillation der eingedampften Eluate im Kugelrohr bei 75°/0,02 Torr liefert 0,82 g (82%) 15b als farbloses Öl. – UV. (C₂HOH): 248 (13700), 289 (80). – IR. (fl.): u. a. 1767, 1590, 1334, 1196, 1078, 846. – 1 H-NMR. (CDCl₃): 1,23 (t, t=7, 6 H, 2 Ct3CH₂O-C(4)); 1,48 (t, 3 H, t4CH₂O-C(3)); 3,9 (t6,4 H, 2 CH₃CH₂O-C(4)); 4,14 (t7,2 H, CH₃CH₂O-C(3)); 5,42 (t8, 1 H, H-C(2)). – 13 C-NMR. (CDCl₃): 14,21 (t7,4 (t7) (C(4)); 15,45 (2 t7) (CH₃CH₂O-C(4)); 61,32 (2 t8) (CH₃CH₂O-C(4)); 70,06 (CH₃CH₂O-C(3)); 111,74 (C(4)); 114,76 (C(2)); 188,03 (C(3)); 189,90 (C(1)). Die Zuordnung zu C(3) bzw. C(1) erfolgte anhand der weittragenden Kopplungen im unentkoppelten Spektrum: 2 J(C(3), H)=1,4 (t8); 3 J(C(3), H)=3,2 (t8) bzw. 2 J(C(1), H)=2,7 (t8).

C₁₀H₁₆O₄ (200,23) Ber. C 59,99 H 8,06 O 31,96% Gef. C 59,88 H 8,06 O 32,06%

3,4,4-Tributoxy-2-cyclobutenon (15c). Wie bei der Herstellung von 15b werden aus 120 mg (0,3 mmol) 14c nach dem Einengen der Filtrate 84 mg (89%) 15c als farbloses Öl gewonnen. – UV. (C₄H₉OH): 248 (13100), 289 (89). – IR. (fl.): u.a. 1772, 1594, 1463, 1335, 1188, 1075, 920, 831. – NMR. (CDCl₃): 0,97 und 1,04 (2 t, J=7, 9 H, CH₃ und 2 CH₃); 1,2 und 2,0 (2 t, t) 12 H, 3 CH₂CH₂); 3,78 (t, 4 H, 2 CH₂O-C(4)); 4,22 (t, 2 H, CH₂O-C(3)); 5,42 (t, t) 1 H, H-C(2)).

C₁₆H₂₈O₄ (282,40) Ber. C 67,58 H 9,93 O 22,50% Gef. C 67,65 H 9,86 O 22,61%

15b und 3,4,4-Triäthoxy-2-(1',2',2',3'-tetraäthoxy-3'-hydroxycylobutyl)-2-cyclobutenon (32b). 7,4 g (0,03 mol) 14b werden in einer Suspension von 0,1 g (0,002 mol) NaH (55proz. Dispersion in Mineralöl, Fluka) in 50 ml Dimethoxyäthan (über Al₂O₃ getrocknet) gelöst. Nach 20 Std. Rühren ist kein 14b mehr vorhanden. Es wird filtriert, das Filtrat eingedampft und der Rückstand im Kugelrohr fraktioniert destilliert. Die erste Fraktion mit Sdp. 110°/0,04 Torr besteht aus 3,7 g (62%) 15b. Die zweite Fraktion bei 150-160°/0,03 Torr ergibt 1,2 g (18%) 32b als farbloses, viskoses Öl. -UV. (C₂H₅OH): 235 (920), 299 (113). - IR. (fl.): 3510 (OH), 1769, 1640, 1436, 1383, 1339, 1270, 1090, 1051, 842. - 1 H-NMR. (CDCl₃): 1,12, 1,23, 1,28 und 1,43 (4 t, J = 7; 3, 6, 9 bzw. 3 H; 7 CH₃CH₂O); 1,88 und 3,0 (2 d; $J_{gem} = 12.5$, je 1 H, 2 H-C(4')); 3,28 (br. s, 1 H, HO-C(3')); 3,35-4,05 (m, 12 H, $2 \text{ CH}_3\text{C}H_2\text{O}-\text{C}(4)$, -C(2'), $\text{CH}_3\text{C}H_2\text{O}-\text{C}(1')$, -C(3')); 4,51 (qa, J=7, 2 H, $\text{CH}_3\text{C}H_2\text{O}-\text{C}(3)$). ¹³C-NMR. (CDCl₃): 15,16, 15,26, 15,45, 15,60 (alle CH₃); 40,59 (C(4')); 58,39, 58,83, 59,45, 59,73, 61,69,61,79 (alle CH₃CH₂O ausser CH₃CH₂O-C(3)); 69,36 (CH₃CH₂-C(3)); 71,91 (C(1'); weittragende Kopplungen ${}^{2}J(C, H) = 3.2$ und 5,3 (2 d)); 105,25 (C(3')?); 106,14 (C(2')?); 114,79 (C(4)); 129,83 (C(2)); 183,31 (C(3)); ${}^{3}J(C, H) = 3,2 (t)$); 190,57 (C(1)); J(C, H) = 0). - MS. (Felddesorption): 446 (M^+) . MS. (Elektronenstoss): 446 (M^+) , 417 $(M^+ - C_2H_5)$, 400 $(M^+C_2H_5OH)$, 371, 355, 343, 330, 297, 273, 204, 175, 147.

C₂₂H₃₈O₉ (446,54) Ber. C 59,18 H 8,58 O 32,25% Gef. C 59,22 H 8,74 O 32,18%

Hydrolyse von 15b mit Salzsäure zu 4. Eine Emulsion von 6,0 g (0,03 mol) 15b, 50 ml 18proz. Salzsäure und 10 ml THF, die intensiv bei 35° gerührt wird, enthält nach 40 Min. kein 15b mehr. Nach dem Einengen verbleiben 2,97 g (100%) hellbraune Kristalle, die mit Cyclohexan gewaschen werden und gemäss IR. und DC. reines 4 darstellen, Smp. 150-153° (Zers.).

 pK_a -Bestimmung von 4. Das pK_a von 4 wurde UV.-Spektroskopisch bestimmt. Als Mass für die Stärke der Schwefelsäure wurde die H_-Skala [84] verwendet, was allerdings zu einer Steigung der logarithmierten Titrationskurve von 0.75 ± 0.02 führte. Das ergab einen pK_a -Wert von 0.0 ± 0.05 ; d.h. Halbprotonierung in 1.2 M 1.2 M

1-Chlor-2, 2, 3, 3-tetraäthoxycyclobutan-1-carbonitril (34c). Ein Gemisch von 51 g (0,25 mol) 12b, 44 g (0,5 mol) 2-Chloracrylnitril und 0,5 g Hydrochinon wird unter Stickstoff 24 Std. bei 90° gerührt und danach durch eine kurze Kolonne fraktioniert. Die Fraktion vom Sdp. 73-79°/0,1 Torr besteht aus 66,2 g (91%) reinem 34c, $n_D^{D0} = 1,4410$. - IR. (fl.): u.a. 2233, 1444, 1376, 1275, 1097, 1050, 790. - ¹H-NMR. (CDCl₃): 1,0-1,5 (m, 12 H, 4 C H_3 CH₂O); 2,42 und 2,88 (2 d, d = 12,5, 2H, 2 H-C(4)); 3,2-4,1

 $(m, 8 \text{ H}, 4 \text{ CH}_3\text{C}H_2\text{O}).$ - $^{13}\text{C}\text{-NMR}.$ (CDCl₃): 15,02, 15,16 (4 $C\text{H}_3\text{C}\text{H}_2\text{O})$; 44,86 (C(4)); 53,02 (C(1)); 59,09, 59,18, 60,18, 60,28 (4 $C\text{H}_3C\text{H}_2\text{O})$; 104,0, 105,25 (C(2), C(3)); 117,67 (CN). - MS.: u.a. 256 (M^+ - Cl), 246 (M^+ - C₂H₅O), 226, 175 (M^+ - CH₂=C(OC₂H₅)₂,?), 154 (100), 126, 98.

C₁₃H₂₂ClNO₄ Ber. C 53,51 H 7,60 Cl 12,15 N 4,80% (291,78) Gef. ,, 53,53 ,, 7,61 ,, 11,78 ,, 4,74%

1-Chlor-2, 2, 3, 3-tetraäthoxycyclobutan-1-carbonsäurechlorid (34d) und 5, 6-Dichlor-2, 2, 3, 3-tetraäthoxy-3,4-dihydro-2H-pyran (35). In eine gut gerührte Lösung von 22,4 g (0,11 mol) 12b und 11,1 g (0,11 mol) Triäthylamin in 200 ml Hexan wird eine Lösung von 16,1 g (0,1 mol) 2,3-Dichlorpropionsäurechlorid in 50 ml Hexan innerhalb 30 Min. getropft. Die beige Suspension wird bei RT. 4 Std. nachgerührt, filtriert und das Filtrat i.RV. eingeengt. Die Destillation des Rückstandes bei 90-100 $^{\circ}$ /0,04 Torr ergibt 22,3 g (68%) Öl, das nach ¹H- und ¹³C-NMR. nur die (1:1)-Addukte von 12b und 2-Chloracrylsäurechlorid, nämlich 34d und 35, enthält. Trennversuche mittels fraktionierter Destillation und GC. schlugen fehl. Die Zusammensetzung folgt aus der Integration des ¹H-NMR. (CDCl₃): 30% 34d (2 d für 2 H-C(4) bei 2,23 und 3,18, $J_{gem} = 14$) und 38% 35 (s bei 2,63). – IR. (fl.; 34d/35-Gemisch): u.a. 1762 (COCl von 34d), 1650 (C=C von 35), 1471, 1375, 1320, 1266, 1200, 1113, 1174, 940, 871. - ¹³C-NMR. (CDCl₃) von 34d (im Gemisch mit 35 aufgenommen; Zuordnung der Signale zu 34d bzw. 35 u.a. aufgrund des Vergleiches mit 13C-NMR, von 34c): 15,04 und 15,46 (4 CH₃CH₂O); 42,38 (C(4)); 57,75, 59,37, 59,78 und 61,61 (4 CH₃CH₂O); 72,85 (C(1)); 103,46 und 107,28 (C(2), C(3)); 170,89 (COCl). ¹³C-NMR. (CDCl₃) von 35: 15,46 (4 CH₃CH₂O); 38,61 (C(4)); 57,59 und 60,22 (4 CH_3CH_2O); 98,69 (C(3)); 104,75 (C(5)), 113,32 (C(2)); (C(2)); 135,41 (C(6)). - MS. (Gemisch): 328 (M^+), 293, 283, 257, 204 (M^+ - CH₂=C(Cl)COCl, !), 175, 147 (100), 119, 91.

C₁₃H₂₂Cl₂O₅ (329,22) Ber. C 47,43 H 6,74 Cl 21,54% Gef. C 47,58 H 6,80 Cl 20,78%

1,1,2-Trichlor-2,3,3-trifluorcyclobutan (36). Die Reaktion zwischen Chlortrifluoräthylen und 1,1-Dichloräthylen bei 180° nach [48] liefert nach 10 Std. 36 in 48% Ausbeute, Sdp. 118-120°. – IR. (fl.): u.a. 1405, 1310, 1235, 1110, 1078, 795, 786, 755, 730. Die ¹H-NMR.- und ¹⁹F-NMR.-Spektren sind identisch mit denjenigen in [50]. Unter anderen Bedingungen entsteht 36 in kleineren Ausbeuten: 23% nach 2 Std. bei 180° bzw. 39% nach 10 Std. bei 160°. Bei über 190° wird die [2+2]-Cyclodimerisierung von Chlortrifluoräthylen die vorherrschende Reaktion.

1,4-Dichlor-3,3,4-trifluor-1-cyclobuten (37). Die Dehydrochlorierung von 36 nach [48] gibt 37 in 88% Ausbeute, Sdp. 89-90°. – IR. (fl.): u.a. 1585, 1300, 1070, 966, 820, 671. – ¹H-NMR. und ¹⁹F-NMR. sind identisch mit denjenigen in [51].

1-Chlor-2, 3, 3-trifluor-4-äthoxy-1-cyclobuten (38). Es wird analog der Herstellung von 38 aus 40 [49] gearbeitet: Zu einer gerührten Lösung von 17,7 g (0,1 mol) 37 in 20 ml Äthanol wird unter Eiskühlung eine Lösung von 6,5 g (0,1 mol) KOH in 15 ml Äthanol getropft. Nach 3 Std. wird das Gemisch auf 400 g Eis gegossen und mit Äther extrahiert. Die Destillation der organischen Phasen nach deren Waschen mit H₂O und Trocknen über MgSO₄ liefert 14,1 g (75%) 38, Sdp. 100-102°. - IR. (fl.): u.a. 1715, 1365, 1325, 1235, 1190, 832, 773. - 1 H-NMR. (CDCl₃): 1,29 (t, CH₃CH₂O); 3,72 (qa, CH₃CH₂O); 4,44 (d×d; 4 J(H, F)=17, 2 J(H, F)=2; H-C(2)). - 19 F-NMR. (CD₃COCD₃, δ(CCl₃F intern)=0): -111,47 (d×t, 2 J(F, F)=197,5, 3 J(H, F)= 3 J(F, F)=2, F-C(3)); -119,37 (d×d×d; 3 J(F, F)=7 und 2, 4 J(H, F)=17, F-C(2)); -122,39 (d×d, 2 J(F, F)=197,5, 3 J(F, F)=7, F-C(3)).

1,3-Diāthoxy-2-chlor-3,3-difluor-1-cyclobuten (41). Nach der analogen Vorschrift [49] wird zu einer eisgekühlten Lösung von 70,8 g (0,4 mol) 37 in 80 ml Äthanol eine Lösung von 48 g (0,8 mol) KOH in 120 ml Äthanol innerhalb 1 Std. getropft. Das Gemisch wird 3 Std. bei 0° gerührt und danach auf 1,3 1 eiskaltes Wasser gegossen. Die organische Schicht wird mit H_2O gewaschen, über $MgSO_4$ getrocknet und destilliert. Bei 79–80°/20 Torr werden 63,6 g (75%) 41 gewonnen. – UV. (C₂H₅OH): 264 Sch. – IR. (fl.): u.a. 1689, 1320, 1234, 1075, 1036, 870. – 1 H-NMR. (CDCl₃): 1,24 und 1,35 (2 t, 2 CH₃CH₂O); 3,64 und 4,25 (2 qa, 2 CH₃CH₂O); 4,35 (d, J(H, F)=2, H-C(3)). – 13 C-NMR. (H-rauschentkoppelt, CDCl₃): 15,1 und 15,3 (2 CH₃CH₂O); 66,0 und 67,3 (2 CH₃CH₂O); 82,8 (qa, J(C, F)=20 und 23, C(3)); 107,8 (qa, J(C, F)=22 und 33, C(2)); 118,9 (t, J(C, F)=282, C(4)); 146,3 (t, J(C, F)=25, C(1)). – 19 F-NMR. (CD₃COCD₃, δ (CCl₃F intern)=0): –109,67 (d×d, J(F, F)=197, J(H, F)=2, F-C(4)); –121,25 (d, J(F, F)=197, F-C(4)).

Hydrolyse von 38 zu 4. 9,35 g (0,05 mol) 38 und 75 g konz. Schwefelsäure (97%) werden 1 Std. bei 100° gerührt. Dann wird das schwarze Gemisch auf Eis gegossen und mit Äther kontinuierlich extrahiert. Der über Na₂SO₄ getrocknete Ätherextrakt wird eingedampst und der schwarze, pulvrige Rückstand (4,5 g) aus Äther umkristallisiert: 4,1 g (84%) 4.

Hydrolyse von 37 zu 4. 5 g (0,03 mol) 37 werden mit 70 ml konz. Schwefelsäure in einer 100ml-Glasampulle 2 Std. auf 100° gehalten. Die Lösung wird auf 200 g Eis gegossen und kontinuierlich 36 Std. mit Äther extrahiert. Die Aufarbeitung (wie bei $38 \rightarrow 4$) liefert 2,35 g (80%) 4.

Hydrolyse von 41 zu 4. 20 ml konz. Schweifelsäure werden auf 100° erwärmt. Unter intensivem Rühren wird 1 g (4,7 mmol) 41 langsam zugetropft. Nach 5 Min. Nachrühren wird die heisse Lösung auf 100 g Eis gegossen und mit 6mal 50 ml Äther extrahiert. Die Extrakte werden über MgSO₄ getrocknet und eingedampft. Umkristallisieren des Rückstandes aus Äther ergibt 0,26 g (55%) 4.

3-Äthoxy-4, 4-dichlor-1-dichloracetoxy-1-cyclobuten (42). Es wird wie bei der Herstellung von 43 (siehe unten), jedoch mit 3,6mal gröseren Mengen der Reaktanden (Dichloracetylchlorid=1 mol) gearbeitet. Der braune Rückstand wird nicht destilliert, sondern in 140 ml CCl₄ bei 0-5° gelöst und mit Bleicherde Tonsil AC klarfiltriert. Nach Entfernen von CCl₄ bei 15-17°/12 Torr werden aus dem Rückstand die flüchtigen Anteile i.HV. (RT., 1 Std./0,005 Torr) abgezogen. Es bleiben 110,3 g gelbbraunes Öl zurück, das nach NMR.-Analyse ca. $85\pm5\%$ 42 enthält (ca. 64% Ausbeute). – IR. (fl.): u.a. 1803 und 1636. – NMR. (CDCl₃): 1,30 (t, J=7, CH₃CH₂O); 3,5-4,2 (m, CH₃CH₂O) und Nebenkomponente(n)); 4,52 (d, J=1,5, H-C(3)); 5,82 (d, J=1,5, H-C(2)); 6,18 (s, 1 H, COCHCl₂).

4-Äthoxy-1, 1-dichlor-2-dichloracetoxy-1, 3-butadien (43). In eine Lösung von 70 ml (50,4 g; 0,74 mol) Äthylvinyläther und 41 ml (30 g; 0,3 mol) Triäthylamin in 200 ml Äther wird unter Rühren bei 0° während 2 Std. eine Lösung von 41,2 g (0,28 mol) Dichloracetylchlorid in 50 ml Äther getropft. Nach 1 Std. Rühren bei 0° wird das Ammoniumsalz abfiltriert, das Filtrat mit eiskaltem Wasser gewaschen und über MgSO₄ getrocknet. Nach Entfernen des Äthers liefert die Destillation des braunen Rückstandes bei 103-109°/0,06 Torr 21 g (51%) 43 als gelbes Öl. - IR. (fl.): u.a. 1795, 1780, 1646, 1591, 1200, 1135, 980, 942. - ¹H-NMR. (CDCl₃): 1,30 (t, J=7, CH₃CH₂O); 3,86 (qa, J=7, CH₃CH₂O); 5,76 (d, J_{trans}=12,5, H-C(3)); 6,12 (s, 1 H, COCHCl₂); 6,79 (d, J_{trans}=12,5, H-C(4)). - ¹³C-NMR. (CDCl₃): 14,5 (CH₃CH₂O); 63,7 (CHCl₂); 66,6 (CH₃CH₂O); 96,5 (C(3)); 111,1 (C(1)); 141,6 (C(2)); 151,6 (C(4)); 160,4 (C=O).

C₈H₈Cl₄O₃ (293,96) Ber. C 32,69 H 2,74 Cl 48,24% Gef. C 32,29 H 2,80 Cl 48,80%

3-Äthoxy-2, 2-dichlorcyclobutanon (44) aus 42. 34,5 g rohes 42, enthaltend ca. 29,4 g (0,1 mol) 42 (vgl. Herstellung von 42), werden mit 110 ml Wasser 2 Std. bei RT. intensiv gerührt. Danach wird 4mal mit je 50 ml Äther/Pentan 1:1 extrahiert, die Extrakte werden mit Wasser und mit 2mal 100 ml eiskalter 2proz. NaHCO₃-Lösung gewaschen. Nach dem Trocknen über Na₂SO₄ wird der Rückstand fraktioniert. Beim Sdp. 83-86°/18 Torr werden 6,95 (38%) 44 als farbloses Öl gewonnen. – IR. (fl.): u.a. 1802, 1757, 1340, 1201, 983, 840, 741. – NMR. (CDCl₃): 1,33 (t, t = 6,5, t CH₃CH₂O); 3,1-3,6 (t t = 18, t = 19, t = 10, t = 10,

44 aus 1 und Äthylvinyläther. Zu einer Lösung von 46,0 g (0,64 mol) frisch destilliertem Äthylvinyläther und 26,0 g (0,26 mol) Triäthylamin in 170 ml trockenem Äther wird innerhalb 1½ Std. eine Lösung von 46,4 g (0,24 mol) frisch bereitetem Dichloracetylbromid [57] in 40 ml Äther unter Rühren bei 0° getropft. Nach weiteren 3 Std. Rühren bei 0° wird das gebildete Ammoniumsalz abfiltriert, mit etwas Äther gewaschen und das Filtrat eingeengt. Das GC. des Rückstandes zeigt eine Hauptkomponente mit kurzer Retentionszeit; eine weitere Komponente mit ca. gleich langer Retentionszeit wie 42 (bzw. 43) tritt nur in geringen Mengen (< 5%) auf. Destillation des Gemisches bei 40°/0,08 Torr liefert 3,7 g (7,8%; [56]: 45%) 44 mit gleichen IR.- und NMR.-Spektren wie im vorstehenden Versuch

4 via Bromierung 42→45 und Hydrolyse von 45. 110 g rohes 42 (Reinheit ca. 85%; ca. 0,32 mol) werden in 400 ml CCl₄ gelöst. 60 g (0,33 mol) Brom werden unter intensivem Rühren innerhalb 20 Min. bei ca. 5° zugetropft. Eine NMR.-Kontrolle zeigt nach 3½ Std. kein d bei 5,82 ppm mehr an. Danach wird das CCl₄ i.RV. bei 25° entfernt. Das rohe Isomerengemisch 45 [IR. (fl.): u.a. 1802, 1120, 788. - NMR. (CDCl₃): 1,2-1,6 (m, 3 H); 4,4-5,7 und 5,18 («d», zusammen 4 H); 5,9-6,3 (m, 1 H). - MS. (Direkteinlass, 50°): u.a. 405 (M⁺ - OC₂H₅), 371 (M⁺ - Br, Isotopenverteilung entspricht 1 Br und 4 Cl), 243, 215, 140 (C₂H₅OCH=CCl₂, ?)] wird mit 900 ml 18proz. Salzsäure und 300 ml Dioxan 14 Std. bei 80° intensiv gerührt. Nach dem Abkühlen wird die dioxanhaltige wässerige Lösung

2mal mit wenig Toluol extrahiert und dann bei 45°/12 Torr eingedampft. Die resultierende braune Kristallmasse wird mit 30 ml Toluol verrührt, abfiltriert, i.V. getrocknet, in 100 ml Wasser gelöst, mit Aktivkohle klarfiltriert und wiederum vollständig eingedampft: 15,8 g (50,3% bzgl. 42) reines 4 mit gleichem Smp. und IR. wie das aus 14b hergestellte 4.

Hydrolyse von rohem 45 mit 93proz. Schwefelsäure (100°, 1 Std.) und anschliessende kontinuierliche Extraktion mit Äther liefert 4 in einer Ausbeute von nur 6%.

Hydrolyse von 48 zu 4. Zu 40 ml ätherischer Lösung von 2,4,4-Tribrom-2-cyclobutenon (48), das aus 8 g (0,021 mol) 2,2,4,4-Tetrabromcyclobutanon (47) nach [59] hergestellt wird, werden unter intensivem Rühren 60 ml konz. Salzsäure gegeben. Die Temp. wird danach auf 55° erhöht, wobei der Äther abdestilliert. Nach 16 Std. wird abgekühlt, mit 150 ml H₂O verdünnt und mit Äther extrahiert. Der Destillationsrückstand der über MgSO₄ getrockneten Extrakte wird mit 2 ml Äther überschichtet und bei 0° kristallisieren gelassen: 0,23 g (11%) 4 vom Smp. 159-160° (Zers.).

Hydrolyse von 49 mit Salzsäure zu 4. Eine Emulsion von 5,05 g (0,015 mol) 2,2,4-Tribrom-3-methoxycyclobutanon (49) [59] in 60 ml konz. Salzsäure wird 16 Std. bei 55° intensiv gerührt. Die Aufarbeitung erfolgt wie bei der Hydrolyse $48 \rightarrow 4$ und liefert 0,25 g (18%) 4 vom Smp. 156–158° (Zers.).

7,8-Carbonyldioxy-7,8-dichlor-2,5-dioxabicyclo [4.2.0] octan (50). Eine Lösung von 7,8 g (0,05 mol) Dichlorvinylencarbonat (5), 0,5 ml Acetophenon und 30 ml 5,6-Dihydro-1,4-dioxin [55] in 90 ml THF wird 39 Std. bestrahlt³²). THF, 5,6-Dihydro-1,4-dioxin und überschüssiges 5 werden bei 80°/12 Torr abdestilliert. Die Destillation des Rückstandes bei 80-100°/0,04 Torr liefert 1,4 g Öl, das sich schnell dunkel färbt. Die offensichtliche Thermolabilität verunmöglicht auch die GC.-Reingewinnung der Komponenten. Durch schnelle Säulenchromatographie mit Toluol/Essigester 9:1 werden jedoch 280 mg (2,4%) kristallines (1:1)-Photoaddukt 50 isoliert, Smp. 96-97° (aus Äther/Hexan). Rf 0,58 mit Toluol/Essigester 9:1. - 1R. (CHCl₃): u.a. 1859, 1280, 1185, 1114, 1064, 971, 952, 926. - NMR. siehe Tabelle 3.

C₇H₆Cl₂O₅ (241,03) Ber. C 34,88 H 2,51 Cl 29,42% Gef. C 35,10 H 2,66 Cl 29,06%

1,2-Carbonyldioxy-1,2,3,3-tetrachlorcyclobutan (51). Eine Lösung von 15,5 g (0,1 mol) 5, 1 ml frisch destilliertem Acetophenon und 60 ml 1,1-Dichloräthylen in 180 ml THF wird 30 Std. bestrahlt³²). Die gebildeten polymeren Flocken werden abfiltriert und das Filtrat bei 80°/12 Torr eingedampft, wobei auch nichtumgesetztes 5 entfernt wird. Die Kugelrohr-Destillation des Rückstandes gibt 5,6 g hellgelbes Öl, dessen GC.-Analyse (5% SE-30 Kolonne, 140°) folgende Zusammensetzung zeigt: 18% 5, 23% Acetophenon und 59% 51. Die Ausbeute an 51 beträgt also 3,3 g (13,2%). Reines 51 wird für analytische Zwecke durch GC.-Trennung auf der gleichen Kolonne gewonnen. – IR. (fl.): 1855, 1410, 1241, 1158, 1075, 780, 713. – NMR.: siehe Tabelle 3.

C₅H₂Cl₄O₃ (251,88) Ber. C 23,84 H 0,80 Cl 56,30% Gef. C 24,08 H 0,91 Cl 56,20%

1,2-Carbonyldioxy-1,2,3,4-tetrachlorcyclobutan (52). Eine Lösung von 15,5 g (0,1 mol) 5, 1 ml Acetophenon und 60 ml 1,2-Dichloräthylen in 180 ml THF wird 21 Std. bestrahlt³²). Die gelbbraune Lösung wird bei 80°/12 Torr eingedampft. Die Destillation des Rückstandes (10 g) bei 0,12 Torr liefert bis 75° 0,5 g 5 und bei 75-105° 8,64 g komplexes Gemisch, das nach GC. (5% SE-30, 130°) 4 Hauptprodukte in Mengen von je > 15% (Retentionszeiten 4,5, 6,1, 10,8 und 15 Min.) und einige weitere Nebenprodukte (1-6%) enthält³3). Nur die durch präp. GC. isolierten Hauptkomponenten 52b und 52a der Retentionszeiten 6,1 bzw. 10,8 Min., deren Anteil am destillierten Photolysat 16,2% bzw. 17,6% (entsprechend 1,4 und 1,52 g, d.h. 5,6% bzw. 6% Ausbeute bzgl. eingesetztes 5) beträgt, weisen im IR. eine starke Carbonat-Bande bei 1865-1870 cm⁻¹ auf. Sie werden für Analysen durch präp. GC. an der gleichen Kolonne rein isoliert.

52b: Öl. – IR. (fl.): n.a. 1866, 1835, 1234, 1185, 1164, 1092, 1043, 1019, 975, 920, 851, 740. – NMR.: siehe *Tabelle 3*.

³²⁾ Die Bestrahlung wird unter Stickstoff bei 15° in einem zylindrischen Gefäss mit magnetischem Rührer und einem zentral angeordneten Brenner ausgeführt. Als Lichtquelle wird ein Hg-Hochdruckbrenner Phillips HPK 125 W in einem doppelwandigen Pyrexfinger benützt.

³³⁾ Als günstigstes Lösungsmittel für diese Photoreaktion wurde in Vorversuchen THF ermittelt. In Acetonitril und 1,2-Dichloräthylen ist die Umsetzung von 5 wesentlich langsamer und in Aceton und Hexan entstehen mehr Nebenprodukte.

52a: Smp. 152-154° (aus Äther/Hexan). - IR. (CCl₄): u.a. 1870, 1228, 1194, 1173, 1092, 1056, 1015, 975, 952, 698. - NMR.: siehe *Tabelle 3*.

```
C<sub>5</sub>H<sub>2</sub>Cl<sub>4</sub>O<sub>3</sub> (251,88) Ber. C 23,84 H 0,80 Cl 56,30% Gef. C 23,97 H 0,86 Cl 56,03%
```

1,2-Carbonyldioxy-1,2,3,3,4-pentachlorcyclobutan (54). Eine Lösung von 15,5 g (0,1 mol) 5 und 60 ml Trichloräthylen in 180 ml Aceton wird 10 Tage bestrahlt³²). Die Lösungsmittel und überschüssiges 5 werden bei 80°/10 Tor abgedampft und der Rückstand bei 75-85°/0,1 Torr destilliert. Es werden 11 g (38%) 54 mit einer GC.-Reinheit (5% SE-30, 150°) von 92% gewonnen. - IR. (CHCl₃): u. a. 1872, 1180, 1167, 1074, 1030, 988, 888. - NMR.: siehe Tabelle 3.

```
C<sub>5</sub>HCl<sub>5</sub>O<sub>3</sub> (286,34) Ber. C 20,97 H 0,35 Cl 61,91% Gef. C 21,12 H 0,30 Cl 61,83%
```

Hydrolyse von 50-52 zu 4. Die Lösungen von 95 mg (0,33 mmol) 50 in 3 ml 18proz. Salzsäure/ Dioxan 1:1, oder 2 g Destillat von 51 (enthaltend 1,18 g (4,7 mmol) reines 51, vgl. Herstellung von 51) in 30 ml des gleichen Gemisches oder 3,1 g Destillat von 52 (enthaltend zusammen 1,048 g (4,1 mmol) reine Photoaddukte 52a und 52b, vgl. Herstellung von 52) in 70 ml des gleichen Gemisches werden jeweils 2 Std. bei 70° gerührt. Danach werden alle flüchtigen Anteile bei 70°/10 Torr abdestilliert. Die ölig-kristallinen dunklen Rückstände werden mit Hexan 1 Std. bei 20° gerührt, abfiltriert und mit Hexan/Äther 9:1 mehrmals gewaschen, wonach kristallines 4 in folgenden Ausbeuten gewonnen wird: 27 mg (84%) aus 50, 0,32 g aus 51 (69% bzgl. reinem 51) und 0,13 g aus 52 (32% bzgl. reinem 52). IR.-Spektren sind identisch mit dem aus 14b hergestellten 4.

Hydrolyse von 54 zu Quadratsäure (56). Eine Suspension von 2,86 g (10 mmol) 54 in 50 ml konz. Salzsäure wird 4 Std. bei 70° gerührt. Die homogene Lösung wird bei 70°/10 Torr zur Trockene eingedampft. Der ölig-kristalline Rückstand wird mit 20 ml Äther verrührt und abfiltriert: 0,96 g (84%) Quadratsäure (56), mit völlig gleichem IR.-Spektrum wie eine authentische Probe (Fluka).

Wird die Lösung bereits nach 1 Std. abgekühlt und mit 3mal 40 ml Äther extrahiert, so ergibt die anschliessende Destillation der eingedampften Ätherphasen bei 50°/0,04 Torr (Kugelrohr) 0,34 g (26%) 3-Chlor-4-hydroxy-3-cyclobuten-1,2-dion (57) als gelbliches Öl. – UV. (CH₃CN): 224 (14760), 237 (Sch, 12700). – IR. (CHCl₃): u.a. 2500 (br.), 1805, 1765, 1612, 1313, 1034, 870.

```
C<sub>4</sub>HClO<sub>3</sub> Ber. C 36,26 H 0,76 Cl 26,76 O 36,23% (132,50) Gef. ,, 36,02 ,, 0,80 ,, 26,48 ,, 36,70%
```

4 aus Chloracetylchlorid (60). Zu einer gekühlten (0-5°), gut gerührten Lösung von 56,5 g (0,5 mol) 60 in 700 ml Äther werden innert 30 Min. 52 g (0,52 mol) Triäthylamin getropft. Die graubraune Suspension wird noch 2 Std. bei 5-10° nachgerührt, dann filtriert und das Filtrat i.RV. eingedampft. Der dunkle Rückstand A (26 g) wird in 450 ml 18proz. Salzsäure/CH₃OH 1:2 gelöst und 3 Tage bei RT. gerührt. Danach wird das Methanol i.RV. entfernt, Wasser (100 ml) zugegeben und die dunkle wässerige Lösung 3mal mit Toluol extrahiert. Die wässerige Phase wird i.RV. eingedampft, der Rückstand (2,4 g) in 30 ml Äther gelöst und mit Aktivkohle klarfiltriert. Nach Zugabe von Benzol zum Filtrat kristallisieren 380 mg (1,55%) hellgraues 4 aus.

Kleinere Ausbeuten an 4 werden bei folgenden Hydrolysen des Rückstandes A erhalten: mit 510 ml 18proz. Salzsäure/Dioxan 7:3 bei 40°/3 Std. entsteht 4 in 0,9% Ausbeute und mit 500 ml 18proz. Salzsäure/Dioxan 1:1 bei 70°/2 Std. in 0,24% Ausbeute. Nach der Hydrolyse von A mit 150 ml konz. Schwefelsäure bei 100°/1 Std. und anschliessender kontinuierlicher Extraktion mit Äther wird 4 in 1,63% Ausbeute isoliert.

Wird der Rückstand A (26,2 g) in 700 ml abs. Äthanol gelöst, 4 Tage bei RT. stehengelassen und anschliessend bei 90–95°/0,3 Torr destilliert, so werden neben viel Destillationsrückstand 3,0 g (6%) 2,4-Dichlor-3-oxobuttersäure-äthylester (63) als farblose Flüssigkeit erhalten (94proz. GC.-Reinheit). – UV.: siehe [82]. – IR. (CHCl₃): u.a. 1725, 1586, 1292, 1238, 1077, 1013. – 1 H-NMR. (CDCl₃): 1,37 und 1,40 (2 t, Intensitätsverhältnis ca. 4:1, 3 H, CH₃CH₂O); 4,2–4,45 (m, 4 H, 2 H–C(4), CH₃CH₂O); 5,07 (s, ca. 0,82 H, H–C(2) der Ketoform); 12,23 (br. s, ca. 0,2 H, HO der Enolform). 13 C-NMR. (CDCl₃): Ketoform: 13,61 (CH₃CH₂O); 45,67 (C(4)); 58,64 (C(2)); 63,60 (CH₃CH₂O); 164,33 (C(1)); 191,31 (C(2)). Enolform: nur Signale bei 14,06 (CH₃CH₂O), 40,25 (C(4)) und 62,81 (CH₃CH₂O) sind erkennbar. In Aceton-d₆ erscheint bei -80° zusätzlich C(2) bei 99,19 ppm (C(4) bei 41,32).

Wird der Rückstand A (25,7 g) in 800 ml abs. Äthanol gelöst und in einem Soxhlet-Apparat, der mit 200 g Molekularsieb 4 Å gefüllt ist, 20 Std. unter Rückfluss gekocht, so ergibt die anschliessende Destillation bei 70–80°/0,1 Torr 7,1 g flüssiges Gemisch von 63, 64 und 65 im Verhältnis 35:45:20. 63–65 können durch GC.²⁷) rein gewonnen werden: 3-Åthoxy-2, 4-dichlor-3-butensäure-äthylester (64): 3,2 g (5,6%). – IR. (CHCl₃): u.a. 1740, 1621, 1357, 1170, 1150, 1022. – 1 H-NMR. (CDCl₃): 1,33 und 1,36 (2 t, 6 H, 2 CH₃CH₂O); 4,17 und 4,26 (2 qa, 4 H, 2 CH₃CH₂O); 4,79 (s, 1 H, H-C(2)); 5,85 (s, 1 H, H-C(4)). – 13 C-NMR. (CDCl₃): 14,01 und 15,45 (2 CH₃CH₂O-C(3)); 105,59 (C(4), 1 J(C, H)=158,8, 3 J(C, H)=2,8); 62,96 (CH₃CH₂O-C(1)); 69,07 (CH₃CH₂O-C(3)); 105,59 (C(4), 1 J(C, H)=199,0, 3 J(C, H)=3,9); 150,76 (C(3)); 166,17 (C(1)). – 3 Athoxy-2,4-dichlor-2-butensäure-äthylester (65): 1,42 g (2,5%). – IR. (fl.): 1690, 1575, 1255, 1104, 1076. – 1 H-NMR. (CDCl₃): 1,37 und 1,43 (2 t, 6 H, 2 CH₃CH₂O); 4,27 (qa, 4 H, 2 CH₃CH₂O); 4,81 (s, 2 H, 2 H-C(4)). – 13 C-NMR. (CDCl₃): 14,11 und 15,21 (2 CH₃CH₂O); 37,02 (C(4)); 62,06 (CH₃CH₂O-C(1)); 65,44 (CH₃CH₂O-C(2)); 108,38 (C(2)); 160,20 (C(3)); 163,58 (C(1)).

3-Brom-4-hydroxy-3-cyclobuten-1, 2-dion (66). Zu einer gerührten Suspension von 2,95 g (0,03 mol) 4 in 30 ml CH₂Cl₂ werden 5 g (0,031 mol) Brom bei RT. getropft. Nach 3 Std. wird die homogene braune Lösung i.RV. zur Trockne eingedampft. Aus dem Rückstand werden nach Umkristallisieren aus Äther/Hexan 4,72 g (89%) 66 als gelbe Kristalle vom Smp. 159-160° gewonnen. - IR. (CHCl₃): u.a. 1810, 1775, 1744, 1613, 1290, 1095, 1030, 870.

C₄HBrO₃ (176,95) Ber. C 27,19 H 0,57 Br 45,09% Gef. C 27,40 H 0,62 Br 44,70%

Hydrolyse von 66 zu Quadratsäure (56). Eine Lösung von 1,77 g (0,01 mol) 66 in 20 ml konz. Salzsäure wird 24 Std. bei 90° gerührt. Nach Abkühlen auf 0° fallen 0,83 g (73%) schneeweisses 56 aus. Smp. und IR. sind identisch mit denjenigen von authentischem 56.

LITERATURVERZEICHNIS

- [1] D. Belluš, Helv. 60, 2379 (1977).
- [2] R.J. Cole, J.W. Kirksey, H.G. Cutler, B.L. Doupnik & J.C. Peckham, Science 179, 1234 (1973).
- [3] J.P. Springer, J. Clardy, R.J. Cole, J. W. Kirksey, R.K. Hill, R.M. Carlson & J.L. Isidor, J. Amer. chem. Soc. 96, 2267 (1974).
- [4] H.-P. Fischer & D. Belluš (Ciba-Geigy AG), D.O.S. 2,616,756 (1975); Chem. Abstr. 86, 72011c (1977).
- [5] G. Maahs & P. Hegenberg, Angew. Chem. 78, 927 (1966).
- [6] N. Morita, T. Asao & Y. Kitahara, Chem. Letters 1972, 927.
- [7] E.R.H. Jones, G. Eglinton, M.C. Whiting & B.L. Shaw, Org. Synthesis, Coll. Vol. 4, 404 (1963).
- [8] H.-D. Scharf, H. Frauenrath & W. Pinske, Chemiedozenten-Tagung, Regensburg 29.3.-2.4.1976, Referatenband, S. A-9.
- [9] W. Pinske, Dissertation, TH Aachen 1972; zitiert in [8] und [10].
- [10] H.-D. Scharf, Angew. Chem. 86, 567 (1974).
- [11] H. Leismann, H.W. Gaidetzka, J. Berix, J. Mattay & H.-D. Scharf, Tetrahedron Letters 1976, 3927.
- [12] R. W. Hoffmann, U. Bressel, J. Gehlhaus & H. Häuser, Chem. Ber. 104, 873 (1971).
- [13] a) R. W. Hoffmann & H. Häuser, Tetrahedron Letters 1964, 197; b) D. M. Lemal, E. P. Gosselink & A. Ault, ibid. 1964, 579; c) R. W. Hoffmann & H. Häuser, Tetrahedron 21, 891 (1965).
- [14] S.M. McElvain & R.L. Clarke, J. Amer. chem. Soc. 69, 2661 (1947); S.M. McElvain & J.T. Venerable, ibid. 72, 1661 (1950).
- [15] J. W. Scheeren, R. J. F. M. Staps & R. J. F. Nivard, Rec. Trav. chim. Pays-Bas 92, 11 (1973).
- [16] a) R. Scarpati & D. Sica, Gazz. chim. ital. 92, 1073 (1962); b) R. Scarpati, D. Sica & C. Sanuacroce, Tetrahedron 20, 2735 (1964); c) R. Huisgen, L.A. Feiler & P. Otto, Chem. Ber. 102, 3405 (1969); d) D. C. England & C. G. Krespan, J. org. Chemistry 35, 3312 (1970); e) H.-D. Scharf & E. Sporrer, Synthesis 1975, 733.
- [17] R. Scarpati, C. Santocroce & D. Sica, Gazz, chim, ital. 95, 302 (1965).
- [18] S. Sarel, A. Felzenstein & J. Yovell, Tetrahedron Letters 1975, 4069.

- [19] a) L.A. Feiler & R. Huisgen, Chem. Ber. 102, 3428 (1969); b) R. Huisgen & P. Otto, J. Amer. chem. Soc. 91, 5922 (1969); c) S. Hünig & H. Hoch, Chem. Ber. 105, 2216 (1972); d) H. Hoch & S. Hünig, ibid. 105, 2660 (1972) und dort zitierte Lit.; e) L. Ghosez & M.J. O'Donnell, in Pericyclic Reations, Vol. 2, Eds. A.D. Marchand & R.E. Lehr, Academic Press, New York 1977, S. 94.
- [20] R. Sustmann, A. Ansmann & F. Vahrenholt, J. Amer. chem. Soc. 94, 8099 (1972); K.N. Houk, R. W. Strozier & J.A. Hall, Tetrahedron Letters 1974, 897.
- [21] S. Hünig, Angew. Chem. 76, 400 (1964).
- [22] H. Perst, in Carbonium Ions, Vol. 5, Eds. G.A. Olah & P. von R. Schleyer, J. Wiley & Sons, Inc., New York 1976, S. 1961.
- [23] L. Tenud, S. Farooq, J. Seibl & A. Eschenmoser, Helv. 53, 2059 (1970).
- [24] J.E. Baldwin, Chem. Commun. 1976, 734.
- [25] T. DoMinh & O.P. Strausz, J. Amer. chem. Soc. 92, 1766 (1970).
- [26] T. Kato, Y. Yamamoto & S. Takeda, Yakugaku Zasshi 94, 884 (1974); Chem. Abstr. 81, 104677 (1974); Chem. Inform. 1974, 52-209.
- [27] A. Gorgues, Bull. Soc. chim. France 1974, 529.
- [28] Unveröffentlichte Resultate.
- [29] H. Schechter, M.J. Collis, R. Dessy, Y. Okuzumi & A. Chen, J. Amer. chem. Soc. 84, 2905 (1962).
- [30] K.B. Becker & C.A. Grob, in 'The Chemistry of Double-Bonded Functional Groups', Part 2, Ed. S. Patai, Wiley Intersc., London 1977, S. 653.
- [31] R.M. Moriarty, in 'Topics in Stereochemistry', Vol. 8, Eds. E.I. Eliel & N.L. Allinger, Wiley Intersc., New York 1974, S. 271.
- [32] K. B. Wiberg & G. Szeimies, J. Amer. chem. Soc. 92, 571 (1970).
- [33] R.K. Hill & S. Barcza, J. org. Chemistry 27, 317 (1962); P.G. Gassman & J.G. Macmillan, J. Amer. chem. Soc. 91, 5527 (1969); P.G. Gassman, J.L. Marshall & J.G. Macmillan, ibid. 95, 6319 (1973).
- [34] J. Roček & A.E. Radkowsky, J. Amer. chem. Soc. 95, 7123 (1973); P. Müller & J.-C. Perlberger, ibid. 97, 6862 (1975).
- [35] H. Mayr & R. Huisgen, Angew. Chem. 87, 491 (1975).
- [36] E. V. Dehmlow, Chem. Ber. 100, 3829 (1967).
- [37] H.H. Wasserman, J. U. Piper & E. V. Dehmlow, J. org. Chemistry 38, 1451 (1973).
- [38] J. Nieuwenhuis & J. F. Arens, Rec. Trav. chim. Pays-Bas 77, 761 (1958); J. Nieuwenhuis & J. F. Arens, ibid. 77, 1163 (1958); B. Rosebeek & J. F. Arens, ibid. 81, 549 (1962); H. H. Wassermann & E. Dehmlow, Tetrahedron Letters 1962, 1031; J. Druey, E. F. Jenny, K. Schenker & R. B. Woodward, Helv. 45, 600 (1962); R. H. Hasek, P. G. Gott & J. C. Martin, J. org. Chemistry 29, 2510 (1964); L. Canonica, A. Corbella, G. Jommi, F. Pelizzoni & C. Scolastico, Tetrahedron Letters 1966, 3031; H. Olsman, Kon. Ned. Akad. Wetensch., Proc., Ser. B 69 (5), 629, 645, 660, 675; Chem. Abstr. 66, 64994x (1967).
- [39] D. S. Malament, in 'P.D. and the Bartlett Group at Harvard 1934-1974', Harvard 1975, S. 272.
- [40] J. S. Chickos, J. Amer. Soc. 92, 5749 (1970).
- [41] J. Ficini, J. Besseyre & M. Clayes, Bull. Soc. chim. France 1975, 1809; J. Ficini & J.-P. Genet, ibid. 1975, 1811.
- [42] S. Ranganathan, D. Ranganathan & A. K. Mehrotra, Synthesis 1977, 289.
- [43] U. Hertenstein & S. Hünig, Angew. Chem. 87, 195 (1975).
- [44] P.H.J. Ooms, J.W. Scheeren & R.J.F. Nivard, Synthesis 1975, 260; P.H.J. Ooms, L.P.C. Delbressine, J.W. Scheeren & R.J.F. Nivard, J. chem. Soc. Perkin I 1976, 1533.
- [45] E.J. Corey, T. Ravindranathan & S. Terashima, J. Amer. chem. Soc. 93, 4326 (1971).
- [46] J.D. Roberts & C.M. Sharts, Org. Reactions 12, 1 (1962); D. Seebach, in 'Houben-Weyl', Vol. 4/4, G. Thieme Verlag, Stuttgart 1971, S. 206.
- [47] S. Cohen, J. R. Lacher & J. D. Park, J. Amer. chem. Soc. 81, 3480 (1959).
- [48] M. S. Raasch, R. E. Miegel & J. E. Castle, J. Amer. chem. Soc. 81, 2678 (1959).
- [49] J. D. Park, L. H. Wilson & J. R. Lacher, J. org. Chemistry 28, 1008 (1963).
- [50] R. K. Harris & V.J. Robinson, J. magn. Resonance 1, 362 (1969).
- [51] R.A. Newmark, G.R. Apai & R.O. Michael, J. magn. Resonance 1, 418 (1969).
- [52] W. R. Cullen & P. S. Dhaliwal, Canad. J. Chemistry 45, 719 (1967).

- [53] J. D. Park, S. Cohen & J. R. Lacher, J. Amer. chem. Soc. 84, 2919 (1962); R. West, H. Y. Niu & M. Ito, ibid. 85, 2584 (1963); B. E. Smart & C. G. Krespan, ibid. 99, 1218 (1976).
- [54] D. Borrmann & R. Wegler (Bayer AG), D.A.S. 1214211 (1962); Chem. Abstr. 64, 19425c (1966); D. Borrmann & R. Wegler, Chem. Ber. 99, 1245 (1966); H.C. Stevens, D.A. Reich, D.R. Brandt, K.R. Fountain & E.J. Gaughan, J. Amer. chem. Soc. 87, 5257 (1965); L. Ghosez, R. Moutaigne & P. Mollet, Tetrahedron Letters 1966, 135; W.T. Brady, H.G. Liddel & W.L. Vaughn, J. org. Chemistry 31, 626 (1966); R. W. Turner & T. Seden, Chem. Commun. 1966, 399.
- [55] R. K. Summerbell & L. N. Bauer, J. Amer. chem. Soc. 57, 2364 (1935); R. K. Summerbell & R. R. Umhoefer, ibid. 61, 3016 (1939); R. D. Moss & J. Paige, J. chem. Eng. Data 12, 452 (1967); M. B. Rubin. Synthesis 1977, 266.
- [56] W. T. Brady & O. H. Water, J. org. Chemistry 32, 3703 (1967).
- [57] F. E. King & P. C. Spensley, J. chem. Soc. 1952, 2144, 2151.
- [58] J.D. Roberts & C.W. Sauer, J. Amer. chem. Soc. 71, 3925 (1949) und dort zitierte Lit.; J.-M. Conia, P. Leriverend & J.-L. Ripoll, Bull. Soc. chim. France 1961, 1803; J.R. Salaün & J.-M. Conia, Chem. Commun. 1971, 1579; K. Ogura, M. Yamashita, M. Suzuki & G. Tsuchihashi, Tetrahedron Letters 1974, 3653; G. Stork, J.C. Depezay & J. d'Angelo, ibid. 1975, 389; B. Trost & Y. Tamaru, ibid. 1975, 3797.
- [59] J.-M. Conia & J.-L. Ripoll, Bull. Soc. chim. France 1963, 763.
- [60] J.-M. Conia & J.-L. Ripoll, Bull. Soc. chim. France 1963, 768.
- [61] N.D. Field, J. Amer. chem. Soc. 83, 3504 (1961).
- [62] H. Teichmann & V. Prey, Liebigs Ann. Chem. 732, 121 (1970); H.-D. Scharf & J. Mattay, Tetrahedron Letters 1976, 3509.
- [63] S.M. McElvain & D. Kundiger, Org. Synth., Col. Vol. 3, 506 (1955); E.J. Corey, J. Dolf Bass, R. Le Mahieu & J.B. Mitra, J. Amer. chem. Soc. 86, 5570 (1964); W.C. Kuryla & J.E. Hyre, Org. Synth., Col. Vol. 5, 684 (1973); C.R. Cliff & D.J. Dunn, OPPI Briefs 7, 23 (1975).
- [64] R.J. Broekema, Rec. Trav. chim. Pays-Bas 94, 209 (1975).
- [65] S.M. McElvain & C.H. Stammer, J. Amer. chem. Soc. 73, 915 (1951); H. Baganz, K. Präfcke & J.Rost, Chem. Ber. 96, 2653 (1963) und dort zitierte Lit.
- [66] W. K. Anderson & R. H. Dewey, J. Amer. chem. Soc. 95, 7161 (1973).
- [67] W. G. Dauben, L. Salem & N.J. Turro, Accounts chem. Res. 8, 41 (1975).
- [68] R. Steinmetz, W. Hartmann & G.O. Schenck, Chem. Ber. 98, 3854 (1965); W. Metzner, Tetrahedron Letters 1968, 1321; W. Metzner & W. Hartmann, Chem. Ber. 101, 4099 (1968); W. L. Dilling, T.E. Tabor, F.P. Boer & P.P. North, J. Amer. chem. Soc. 92, 1399 (1970); T. Miyamoto, T. Mori & Y. Odaira, Chem. Commun. 1970, 1598; D.C. Neckers, J. H. Dopper & H. Wynberg, J. org. Chemistry 35, 1582 (1970); R.O. Loutfy & P. de Mayo, Canad. J. Chemistry 50, 3465 (1972); D.N. Harpp & C. Heitner, J. org. Chemistry 38, 4184 (1973); E.K.G. Schmidt, Chem. Ber. 107, 2440 (1974).
- [69] H.-D. Scharf, W. Erb, H.-W. Borsdorff & D. Wendisch, Chem. Ber. 106, 1695 (1973).
- [70] G. Opitz, M. Kleemann & F. Zimmermann, Angew. Chem. 74, 32 (1962).
- [71] M. Rey, S. Roberts, A. Dieffenbacher & A.S. Dreiding, Helv. 53, 417 (1970).
- [72] W. T. Brady & P. L. Ting, J. org. Chemistry 40, 3417 (1975).
- [73] a) E. Enk & H. Spes, Angew. Chem. 73, 834 (1961); b) D.G. Farnum, J. R. Johnson, R. E. Hess, T. B. Marshall & B. Webster, J. Amer. chem. Soc. 87, 5191 (1965).
- [74] The Aldrich Library of Infrared Spectra, Ed. Ch. Pouchert, Aldrich Chem. Co., 1970; Spektrum No. C-310.
- [75] K.-J. Boosen (Lonza AG), US. Pat. 3,950,412 (1976).
- [76] L.J. Haynes & J. R. Plimmer, Quart. Rev. 14, 292 (1960).
- [77] D. Belluš, K. von Bredow, H. Sauter & C.D. Weis, Helv. 56, 3004 (1973).
- [78] M. Herberhold, G.O. Wiedersatz & C.G. Kreiter, Z. Naturforsch. 31b, 35 (1976).
- [79] J. W. Wiliams & C. D. Hurd, J. org. Chemistry 5, 122 (1940).
- [80] J.A. Lansden, R.J. Clarkson, W. C. Neely, R.J. Cole & J.W. Kirksey, J. Assoc. Off. anal. Chemistry 57, 1392 (1974).
- [81] W. Blum & W.J. Richter, J. Chromatogr. 132, 249 (1977).
- [82] Z. Bankowska, P. Bukowski & B. Grabowski, Rocz. Chem. 44, 1481 (1970).
- [83] H.-D. Scharf, H. Frauenrath & W. Pinske, Chem. Ber. 111, 168 (1978).
- [84] E. Patton & R. West, J. Amer. chem. Soc. 95, 8703 (1973).