## Biomarker discovery: LC-MS Proteomics

Nanocourse: Data Science using R September 6<sup>th</sup>, 2024

Jeon Lee



# Agenda

- 1. Overview of biomarker discovery steps
- 2. Batch correction/data harmonization
- 3. Harmonization of proteomics data with missing values
- 4. Introduction to LC-MS proteomics
  - MS for metabolomics/proteomics
  - LC; LC-MS/MS
  - Peak annotation
  - Typical proteomics data & analysis steps
- 5. Demo: Proteomics analysis
- 6. Hands-on practice



# Overview of biomarker discovery steps





# Batch correction/data harmonization (1)



To generalize findings with high confidence, need more samples.

#### **Analysis & Evaluation**



Batch effect- Comparing two samples is not enough due to batch differences

Yu, Y., Zhang, N., Mai, Y. et al. Correcting batch effects in large-scale multiomics studies using a reference-material-based ratio method. *Genome Biol* **24**, 201 (2023).



# Batch correction/data harmonization (2)



Has slightly better ability to remove batch effect (could be bc has more features/data points than proteomics (10000 vs 1000))

Use similar technique, but how batch effect influences each level depends



Yu, Y., Zhang, N., Mai, Y. et al. Correcting batch effects in large-scale multiomics studies using a reference-material-based ratio method. Genome Biol 24, 201 (2023).



# Batch correction/data harmonization (3)





Yu, Y., Zhang, N., Mai, Y. et al. Correcting batch effects in large-scale multiomics studies using a reference-material-based ratio method. Genome Biol 24, 201 (2023).



#### Harmonization of proteomics data with missing values (1)

For single cell and LC-MS data: Have missing values

Can't batch correct imputed data bc need complete data to batch correct. So imput first



Voß, H., Schlumbohm, S., Barwikowski, P. et al. HarmonizR enables data harmonization across independent proteomic datasets with appropriate handling of missing values. *Nat Commun* 13, 3523 (2022)



#### Harmonization of proteomics data with missing values (2)







Voß, H., Schlumbohm, S., Barwikowski, P. et al. HarmonizR enables data harmonization across independent proteomic datasets with appropriate handling of missing values. *Nat Commun* **13**, 3523 (2022)



# Introduction to LC-MS proteomics



# MS for metabolomics/proteomics

- MS is an analytical technique that ionizes chemical species and sorts the ions based on their mass-to-charge ratio (m/z).
- Mass spectrometers are comprised of an ionization source and a mass detector, for example,
  - MALDI-TOF: matrix assisted laser desorption ionization, time-of-flight detection
  - ESI-trap: electrospray ionization, ion trap detection





# Liquid chromatography

- LC is the separation technique of choice for larger and non-volatile molecules such as proteins and complex peptides
- LC is also an ideal method for separating isomers, which have the same mass and will otherwise not be differentiated by a mass spectrometer

LC-MS offers broad sample coverage because different column chemistries, such as reversed phase liquid chromatography, can be used



# Tandem mass spectrometry (LC-MS/MS)

- Combination of LC and two mass analyzers in mass spectrometry (MS/MS)
- Once samples are ionized to generate a mixture of ions, precursor ions of a specific mass-to-charge ratio (m/z) are selected (MS1) and then fragmented (MS2) to generate a product ions for detection.
- The fragments then reveal aspects of the chemical structure of the precursor ion.



F.A. Mellon, Encyclopedia of Food Sciences and Nutrition (2nd Edition, 2003)



#### Peak annotation

- Peak grouping (a-c) aims at grouping peaks that belong to each metabolite/protein.
- In feature annotation (e, f), expected theoretical distances between known ion adduct masses are compared with experimental distances found among peaks (e).
- After peak annotation, putative identification can be achieved by accurate mass search (g) or by comparison with MS/MS data (h).



Xavier, D. et al (2018) Analytical chemistry



# Typical proteomics data

- Each row includes an accession id, of which protein has been detected, other meta data, and its abundance measured across the samples.
  - Coverage[%] = no. amino acids in all found peptides / total no. amino acids in the entire protein sequence
  - No.Peptides: No. distinct peptide sequences in the protein group
  - No.Unique\_Peptides: No. peptide sequences unique to a protein group
  - No.PSMs: Total no. identified peptide sequences for the protein, including those redundantly identified
  - MW[kDa]: Molecular weight without considering post-translational modifications
- Some proteins are detected in some samples but not in the other samples

| A  | Α         | C         | D                                                                      | E           | F           | G       | Н                  | 1       | J        | K                | L                |
|----|-----------|-----------|------------------------------------------------------------------------|-------------|-------------|---------|--------------------|---------|----------|------------------|------------------|
| 1  | Protein_F | Accession | Description                                                            | Coverage[%] | No.Peptides | No.PSMs | No.Unique_Peptides | MW[kDa] | Gene     | Abundance_934187 | Abundance_934188 |
| 2  | High      | P63261    | Actin, cytoplasmic 2 OS=Homo sapiens OX=9606 GN=ACTG1 PE=1 SV=1        | 96          | 43          | 6502    | 2                  | 41.8    | ACTG1    | 30142523.02      | 449237770.5      |
| 3  | High      | P60709    | Actin, cytoplasmic 1 OS=Homo sapiens OX=9606 GN=ACTB PE=1 SV=1         | 96          | 43          | 6488    | 2                  | 41.7    | 7 ACTB   | 11088943097      | 1.28E+11         |
| 4  | High      | O43707    | Alpha-actinin-4 OS=Homo sapiens OX=9606 GN=ACTN4 PE=1 SV=2             | 95          | 113         | 5193    | 6                  | 104.8   | ACTN4    | 2053379189       | 54971240930      |
| 5  | High      | Q13813    | Spectrin alpha chain, non-erythrocytic 1 OS=Homo sapiens OX=9606 GN=SP | 89          | 319         | 5110    | 12                 | 284.4   | SPTAN1   | 3401878545       | 26753571901      |
| 6  | High      | A0A0D9SF  | Spectrin alpha chain, non-erythrocytic 1 OS=Homo sapiens OX=9606 GN=SP | 88          | 309         | 4996    | 2                  | 282.7   | 7 SPTAN1 | 6749205.641      | 42286992         |
| 7  | High      | H7C144    | Alpha-actinin-4 OS=Homo sapiens OX=9606 GN=ACTN4 PE=1 SV=2             | 92          | 111         | 4830    | 5                  | 104.3   | 3        | 1874029          | 52463477.09      |
| 8  | High      | Q01082    | Spectrin beta chain, non-erythrocytic 1 OS=Homo sapiens OX=9606 GN=SPT | 84          | 246         | 4266    | 224                | 274.4   | 4 SPTBN1 | 2552146613       | 20243849937      |
| 9  | High      | P68032    | Actin, alpha cardiac muscle 1 OS=Homo sapiens OX=9606 GN=ACTC1 PE=1 S  | 64          | 32          | 3429    | 9                  | 42      | 2 ACTC1  | 906591877.7      | 9311096952       |
| 10 | High      | P12814    | Alpha-actinin-1 OS=Homo sapiens OX=9606 GN=ACTN1 PE=1 SV=2             | 88          | 82          | 2375    | 3                  | 103     | ACTN1    | 155772807.2      | 5159761723       |
| 11 | High      | A0A7I2V4  | Alpha-actinin-1 OS=Homo sapiens OX=9606 GN=ACTN1 PE=1 SV=1             | 83          | 77          | 2313    | 0                  | 103.5   | 5        |                  | 1527293.125      |
| 12 | High      | Q15149    | Plectin OS=Homo sapiens OX=9606 GN=PLEC PE=1 SV=3                      | 71          | 375         | 2167    | 131                | 531.5   | 5 PLEC   | 1094893182       | 4176426088       |



### Proteomics analysis steps

- Three steps in proteomics analysis
  - Data acquisition/raw data processing
  - Data pre-processing
  - (main/downstream) data analysis
- Typical data pre-processing steps include: 1) missing value imputation, 2) transformation, (3) scaling, and (4) normalization





# Demo: Proteomics analysis

"Demo\_Proteomics\_Analysis.html"

