RSA Conference 2015 San Francisco | April 20-24 | Moscone Center

SESSION ID: CRYP-R04

How to Incorporate Associated Data in Sponge-Based Authenticated Encryption

Yu Sasaki and Kan Yasuda

NTT Secure Platform Laboratories

Authenticated Encryption

all-in-one

- Simple security discussion
- Higher performance

Associated Data (AD)

- The data to be authenticated but not encrypted
 - Ex: Traffic Signal

- AD makes sense only when two types of data co-exist in communication
 - Ex: Packet Header

How to Build Authenticated Encryption

- Using symmetric-key primitive as a base
 - Block-cipher
 - Hash function
 - Stream cipher
 - Random permutation
- Sponge construction [Keccak-team 2007]
 - Designing permutation is easier than other primitives.
 - It turned out that the sponge construction can be lightweight.
 - 7 out of 57 designs in CAESAR are adopting the sponge construction.

RSA Conference 2015 San Francisco | April 20-24 | Moscone Center

Previous Sponge-Based Constructions

Sponge Construction (Hash Function)

- First absorb message, then squeeze the output.
- Security is c/2 bits.

SpongeWrap (Authenticated Encryption)

- ◆ Absorb K, N, A. Squeeze T
- Both of absorb an squeeze are done for the encryption part (duplex)

donkeySponge (MAC)

- Absorb (K, M) in r + c bits. (inspired by Alpha-MAC)
- Internal state is secret $\rightarrow b/2$ -bit security.

monkeyDuplex

- Efficient initialization for nonce-based scheme
- For different (K, M) state after P is randomized.

Drawbacks of Sponge-Based AE

- ◆ A must be provided before M. Otherwise, the computation gets stuck.
- Padding (frame bit) in every block occupies 1 bit.

Approach of NORX

- NORX is a CAESAR submission by Aumasson et al.
- It accepts associated data after M, called "trailer."

Jean-Phillip Aumasson, Philipp Jovanovic and Samuel Neves, NORX v1, Submitted to CAESAR.

RSA*Conference2015

San Francisco | April 20-24 | Moscone Center

Our Constructions

Simple Construction

- Introducing Donkey for associated data
- SpongeWrap + monkeyDuplex + donkeySponge + Header/Trailer

Avoiding Frame bits

- New padding schemes are necessary
- New domain separations are necessary

#RSAC

Padding for A

- 10* padding for the last block
- ◆ Constant addition for the outer part of the last block → 10*1 padding

Padding for M

- 10* padding for the last block
- Outer part of the last block must be independent of the previous blocks

Construction 1: donkeyHeaderTreailer

The same security bound as Jovanovic et al. at Asiacrypt 2014.

Construction 2: Concurrent Absorption

◆ Absorb M in r bits, absorb A in c bits, simultaneously

Construction 2: Concurrent Absorption

◆ Absorb M in r bits, absorb A in c bits, simultaneously

Remarks on Concurrent Absorption

- ◆ The number of P calls is minimized.
 - minimum power consumption (Green CRYPTO!!)
 - suitable for light-weight circumstances
- ◆ A, M must be provided in suitable timing.
 - wouldn't be a problem if A and M can be stored
- When A < M, A is processed with free of cost.

- Proposed by Rogaway to process A and M independently.
- ◆ Tag for A is later masked by a part of ciphertext.
- secure in the nonce-respecting setting

#RSAC

Construction 3: Sponge-Based CT (two keys)

#RSAC

Construction 3: Sponge-Based CT (one key)

RSA*Conference2015

San Francisco | April 20-24 | Moscone Center

Further Optimization

Nonce Stealing in Sponge

- Nonce stealing was proposed by Rogaway.
- ◆ IV is usually big in sponge. Many bits of A can be embedded.

Key Translation

- Absorb |K| more bits of A during the initialization
 - Trivial related-key attacks
 - Trivial key-length-extension attacks
 - Key recovery with $2^{K/2}$ in the nonce-repeat setting

RSA Conference 2015 San Francisco | April 20-24 | Moscone Center

Concluding Remarks

Concluding Remarks

- Proposal of three Sponge variants focusing on associated data donkeyHeaderTrailer / Concurrent Absorption / Sponge-Based **Ciphertext Translation**
 - high efficiency / implementation flexibility
 - the same level of the provable security as the ordinary sponge
 - Avoiding frame bits
- Further efficiency optimization with techniques for block-ciphers

Nonce stealing / Key translation

Analysis of ASCON

Ch. Dobraunig, M. Eichlseder, F. Mendel, M. Schläffer Graz University of Technology

April 2015

Overview

Broad analysis of CAESAR candidate ASCON-128

- Attacks on round-reduced versions
 - Key-recovery (6/12 rounds)
 - Forgery (4/12 rounds)

CAESAR

- CAESAR: Competition for Authenticated Encryption Security, Applicability, and Robustness
 - http://competitions.cr.yp.to/caesar.html

- Inspired by
 - AES
 - SHA-3
 - eStream

CAESAR - Candidates

ACORN	++AE	AEGIS	AES-CMCC
AES-COBRA	AES-COPA	AES-CPFB	AES-JAMBU
AES-OTR	AEZ	Artemia	Ascon
AVALANCHE	Calico	CBA	CBEAM
CLOC	Deoxys	ELmD	Enchilada
FASER	HKC	HS1-SIV	ICEPOLE
iFeed[AES]	Joltik	Julius	Ketje
Keyak	KIASU	LAC	Marble
McMambo	Minalpher	MORUS	NORX
OCB	OMD	PAEQ	PAES
PANDA	π -Cipher	POET	POLAWIS
PRIMATEs	Prøst	Raviyoyla	Sablier
SCREAM	SHELL	SILC	Silver
STRIBOB	Tiaoxin	TriviA-ck	Wheesht
YAES			

ASCON - Design Goals

Security

Efficiency

Lightweight

Simplicity

Online

Single pass

Scalability

Side-Channel Robustness

ASCON - General Overview

- Focus on ASCON-128
- Nonce-based AE scheme
- Sponge inspired

ASCON - Permutation

Iterative application of round function

- One round
 - Constant addition
 - Substitution layer
 - Linear layer

ASCON - Round

Substitution layer

Linear layer

ASCON - Round

$$x_4 \oplus (x_4 \gg 7) \oplus (x_4 \gg 41) \to x_4$$

$$x_3 \oplus (x_3 \gg 10) \oplus (x_3 \gg 17) \to x_3$$

$$x_2 \oplus (x_2 \gg 1) \oplus (x_2 \gg 6) \to x_2$$

$$x_1 \oplus (x_1 \gg 61) \oplus (x_1 \gg 39) \to x_1$$

$$x_0 \oplus (x_0 \gg 19) \oplus (x_0 \gg 28) \to x_0$$

Linear transformation

Analysis – ASCON

- Attacks on round-reduced versions of Ascon-128
 - Key-recovery
 - Forgery

- Analysis of the building blocks
 - Permutation

Key-recovery – Idea

- Target initialization
- Choose nonce
- Observe key-stream
- Deduce information about the secret key

	rounds	time	method
Ascon-128	6 / 12 5 / 12	2 ⁶⁶ 2 ³⁵	cube-like
	5 / 12 4 / 12	2 ³⁶ 2 ¹⁸	differential-linear

Cube-like Attack – Idea

- Key-recovery attack based on Dinur et al. [DMP+15]
- Utilizes low algebraic degree of one round
- Output bits of initialization function of input bits
- Choose cube variables so that cube sum only depends on a fraction of all key bits
- Now able to create a "fingerprint" of a part of the secret key

Initialization – Input

Cube-like Attack – Cube Tester

- Take all cube variables from N₁
- After one round one cube variable per term
- After two rounds two cube variables per term
- After 6 rounds 32 cube variables per term

Cube-like Attack – Cube Tester

- Take all cube variables from N₁
- After one round one cube variable per term
- After two rounds two cube variables per term
- After 6 rounds 32 cube variables per term

- Take 33 cube variables from N₁
- Cube sum after 6 rounds definitely zero
- Although degree about 64

Cube-like Attack – Borderline Cubes

■ Take 32 cube variables from N₂ e.g. N₂[0..31]

Degree after 6 rounds about 64

Cube sum result of non-linear equation

Which variables are involved?

Cube-like Attack – After first S-Layer

$$x_{0}[i] = N_{2}[i]K_{1}[i] + N_{1}[i] + K_{2}[i]K_{1}[i] + K_{2}[i] + K_{1}[i]C[i] + K_{1}[i] + C[i]$$

$$x_{1}[i] = N_{2}[i] + N_{1}[i]K_{2}[i] + N_{1}[i]K_{1}[i] + N_{1}[i] + K_{2}[i]K_{1}[i] + K_{2}[i] + K_{1}[i] + C[i]$$

$$x_{2}[i] = N_{2}[i]N_{1}[i] + N_{2}[i] + K_{2}[i] + K_{1}[i] + 1$$

$$x_{3}[i] = N_{2}[i]C[i] + N_{2}[i] + N_{1}[i]C[i] + N_{1}[i] + K_{2}[i] + K_{1}[i] + C[i]$$

$$x_{4}[i] = N_{2}[i]K_{1}[i] + N_{2}[i] + N_{1}[i] + K_{1}[i]C[i] + K_{1}[i]$$

Cube-like Attack

- Take 32 cube variables from N₂ e.g. N₂[0..31]
- Cube sum after 6 rounds result of non-linear equation
 - Known constants
 - Key-bits K₁[0..31]
 - **Not** key-bits *K*₁[32..63]
 - **Not** key-bits *K*₂[0..63]

Cube-like Attack – 6/12 Rounds

Online Phase: Take fingerprint of 32 key-bits

 Offline Phase: Match fingerprint by brute-forcing those 32 key-bits

Cube-like Attack – 6/12 Rounds

Online Phase: Take fingerprint of 32 key-bits

 Offline Phase: Match fingerprint by brute-forcing those 32 key-bits

 For 5/12 rounds, attack has practical complexity and has been implemented

Forgery – Idea

- Based on differential cryptanalysis
- Create forgeries from known ciphertext and tag pairs
 - Target encryption
 - Target finalization
- Need for good differential characteristics

Forgery – ASCON-128

Forgery – ASCON-128

Forgery – ASCON-128

■ 3/12 rounds finalization probability 2⁻³³

	input difference	after 1 round	after 2 rounds	after 3 rounds
<i>X</i> ₀	8000000000000000	8000100800000000	8000000002000080	????????????????
X ₁	0000000000000000	800000001000004	9002904800000000	???????????????
X2	0000000000000000000	00000000000000000000 →	d200000001840006 \rightarrow	??????????????
X3	0000000000000000	0000000000000000	0102000001004084	4291316c5aa02140
<i>X</i> ₄	0000000000000000	0000000000000000	0000000000000000	090280200302c084

4/12 rounds finalization probability 2⁻¹⁰¹

	input difference	after 4 rounds
<i>x</i> ₀	8000000000000000	???????????????
<i>X</i> ₁	0000000000000000	???????????????
<i>X</i> ₂	0000000000000000000000000000000000000	???????????????
<i>X</i> ₃	000000000000000	280380ec6a0e9024
<i>X</i> ₄	0000000000000000	eb2541b2a0e438b0

Analysis – Permutation

- Zero-sum distinguisher 12 rounds with complexity 2¹³⁰
- Search for differential and linear characteristics
- Proof on minimum number of active S-boxes

result	rounds	differential	linear
	1	1	1
proof	2	4	4
	3	15	13
heuristic	4	44	43
	≥ 5	> 64	> 64

Conclusion

Many state-of-the-art techniques applied

ASCON provides a large security margin

For more information visit http://ascon.iaik.tugraz.at

Analysis of ASCON

Ch. Dobraunig, M. Eichlseder, F. Mendel, M. Schläffer Graz University of Technology

April 2015

Reference

[CAE14] CAESAR committee.

CAESAR: Competition for authenticated encryption: Security, applicability, and robustness.

http://competitions.cr.yp.to/caesar.html, 2014.

[DEMS14] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.

Ascon.

Submission to the CAESAR competition: http://ascon.iaik.tugraz.at, 2014.

 $[\mathsf{DMP}^+\mathsf{15}] \quad \text{Itai Dinur, Pawel Morawiecki, Josef Pieprzyk, Marian Srebrny, and Michal Straus.}$

Cube Attacks and Cube-attack-like Cryptanalysis on the Round-reduced Keccak Sponge Function.

Proceedings of EUROCRYPT 2015 (to appear), 2015.