

Simply Brighter

(In Canada) 111 Railside Road Suite 201 Toronto, ON M3A 1B2 CANADA Tel: 1-416-840 4991

Fax: 1-416-840 6541

(In US) 1241 Quarry Lane Suite 105 Pleasanton, CA 94566 USA Tel: 1-925-218 1885

Email: sales@mightex.com

Mightex CCD Line Camera Din8 Connector Description

Version 1.1.2

Oct. 18, 2018

Relevant Products

Part Numbers

TCN-1304-U, TCE-1304-U, TCE-1304-UW, TCN-1209-U, TCE-1209-U, TCE-133A-U, TCN-1024-U, TCE-1024-U, TCN-1024-UF, TCE-1024-UF

Revision History

Revision	Date	Author	Description
1.0.0	Jan. 18, 2008	JT Zheng	Initial Revision
1.0.1	Oct. 16, 2009	JT Zheng	Add TCE-133A-U
1.0.2	May. 27, 2010	JT Zheng	Add detailed description
1.1.0	Jan. 12, 2011	JT Zheng	Add TCX-1024-U/UF Modal
1.1.1	Mar. 9, 2011	JT Zheng	Add Trigger delay for TCX-1304-U
1.1.2	Oct. 18, 2018	JT Zheng	New Logo

Mightex CCD Line camera is with two connectors, one is the standard USB 2.0 Type B connector, and the another one is a 8 pin Din connector as following: (The following figure is the **receptacle of the 8pin connector on the camera module**)

(**Note:** This 8pin trigger cable is not included in the "standard' package and needs to be purchased separately)

Pin	Wire Color		
Pin1	BLACK		
Pin2	DEEP BROWN		
Pin3	RED		
Pin4	LIGHT BROWN		
Pin5	YELLOW		
Pin6	GREEN		
Pin7	BLUE		
Pin8	PURPLE		

Please pay attention that **the above pin layout above is for the receptacle on the module**, the Din 8 connector mates with it has the reversed pin layout.

Electrical Specifications:

GPIO:

The Buffer Camera is using PCA9536 chip on board for its GPIO extension, the circuit diagram on board is as following:

User might refer to the specification of PCA9536 for the details of the electrical spec. of the IO pins. Note that on our board, the Vdd = 3.3V. And the main I/Os spec. is listed in the table below.

I/Os						
VIL	LOW-level input voltage		-0.5	_	0.8	٧
VIH	HIGH-level input voltage		2.0	_	5.5	V
	LOW-level output current	V _{OL} = 0.5 V; V _{DD} = 2.3 V; Note 2	8	10	_	mA
		V _{OL} = 0.7 V; V _{DD} = 2.3 V; Note 2	10	13	_	mΑ
		V _{OL} = 0.5 V; V _{DD} = 4.5 V; Note 2	8	17	_	mΑ
IOL		V _{OL} = 0.7 V; V _{DD} = 4.5 V; Note 2	10	24	_	mΑ
		V _{OL} = 0.5 V; V _{DD} = 3.0 V; Note 2	8	(14)	_	mΑ
		V _{OL} = 0.7 V; V _{DD} = 3.0 V; Note 2	10	19	_	mΑ
	HIGH-level output voltage	I _{OH} = -8 mA; V _{DD} = 2.3 V; Note 3	1.8	_	_	V
		I _{OH} = -10 mA; V _{DD} = 2.3 V; Note 3	1.7	_	_	V
V		I _{OH} = -8 mA; V _{DD} = 3.0 V; Note 3	2.6	_	_	V
Voн		I _{OH} = -10 mA; V _{DD} = 3.0 V; Note 3	2.5	<u> </u>	_	V
		I _{OH} = -8 mA; V _{DD} = 4.75 V; Note 3	4.1	_	_	V
		I _{OH} = -10 mA; V _{DD} = 4.75 V; Note 3	4.0	_	_	V
I _{IH}	Input leakage current	V _{DD} = 3.6 V; V _I = V _{DD}	_	_	1	μΑ
I _{IL}	Input leakage current	V _{DD} = 5.5 V; V _I = V _{SS}	_	_	-100	μА

As for the timing specification, the PCA9536 has the following:

SYMBOL	PARAMETER	STANDARD MODE I ² C-bus		FAST MODE I ² C-bus		UNITS
		MIN	MAX	MIN	MAX	
Port Timing	-					
t _{PV}	Output data valid	_	200	_	200	ns
t _{PS}	Input data setup time	100	_	100	_	ns
t _{PH}	Input data hold time	1	_	1	_	με

Note that we're using FAST MODE (400kbps).

However, the above time spec. is for the PCA9536 only, as the real GPIO event is Host started, e.g. for output, it's usually:

Host →(via USB) Camera's MCU →(via I2C) PCA9536

Currently, we have a multi-thread camera engine on Host side (MS windows), so the timing for GPIO is at millisecond level and it's not undetermined. (As windows is not a RTOS).

Trigger In

The Trigger In signal is used for Synchronization of the frame grabbing with external event, there's an on camera high speed opto-coupler (HCPL0600) for signal isolation. The circuit on camera is as following:

The diode (on the Trig+/- side) is expected to be working under:

Iforward = 5mA - 25mAVforward = $\sim 1.5V$

As we have a 3600hm resister built in, we expect 3.3 - 10.0V source with 5mA minimum current source capability to be the trigger input. (External trigger source designers might also refer to the spec. of HCPL0600 for details)

A driving pulse (it's positive edge assertion) on Trig+/- will start a frame grabbing when camera is in "TRIGGER" mode, the trigger source might be from a signal generator, or a Output Pin (with Isource > 5mA) from a host.

Timing Specification:

Timing	Minimu	Typical	Maximum	Time
	m			
Trigger Pulse Width	100			us
Trigger Delay(TCX-1304-U)			100	us
Trigger Delay (TCX-1209-U)		250*		us
Trigger Delay (TCE-133A-U)		250		us
Trigger Delay (TCX-1024-U)			10	us

^{*.} Trigger Delay is defined as latency between the assertion of the trigger in signal to sensor starts to expose.