## Battery Computing

An MMSC Case Study on Scientific Computing Candidate Number: 1072462

#### Abstract

This work shall attempt to

**Our Goal:** Numerically obtain the solution  $\{a(x,T),b(x,T)\}$  of

$$\begin{cases} \frac{\partial a}{\partial t} = D_a \frac{\partial^2 a}{\partial x^2}, & a : \mathbb{R}^+ \times [0, T] \mapsto [0, 1], \ T \in \mathbb{R}^+, \ D_a \in \mathbb{R}^+, \\ \frac{\partial b}{\partial t} = D_b \frac{\partial^2 b}{\partial x^2}, & b : \mathbb{R}^+ \times [0, T] \mapsto [0, 1], \ D_b \in \mathbb{R}^+, \\ a(\infty, t) = 1, \ b(\infty, t) = 0 & \forall t \in [0, T] \\ a(x, 0) = 1, \ b(x, 0) = 0 & \forall x \in (0, \infty) \\ a(0, t) = 0, \ \frac{\partial a}{\partial x} + D \frac{\partial b}{\partial x} = 0 \end{cases}$$

The implementation bla bla



Figure 1: Graphical User Interface

# Contents

| 1        | Problem Introduction    |                               | 3 |
|----------|-------------------------|-------------------------------|---|
|          | 1.1                     | Chronoamperometry             | 3 |
|          | 1.2                     | DC Voltammetry                | 3 |
|          | 1.3                     | AC Voltammetry                | 3 |
| <b>2</b> | Mathematical Background |                               |   |
|          | 2.1                     | Laplace Integral Transform    | 3 |
|          | 2.2                     | Chebyshev Polynomials         | 3 |
| 3        | Finite Differences      |                               |   |
|          | 3.1                     | Results                       | 4 |
| 4        | Analytical Approaches   |                               |   |
|          | 4.1                     | Similarity Solution           | 4 |
|          | 4.2                     | Integral Equation             | 4 |
|          |                         | 4.2.1 Derivation              | 4 |
|          |                         | 4.2.2 Numerical Solution      | 4 |
| 5        | Spectral Method         |                               | 4 |
|          | 5.1                     | Enforcing Boundary Conditions | 5 |
|          | 5.2                     | Implicit Euler                | 5 |
|          | 5.3                     | Implementation                | 5 |
|          | 5.4                     | Results                       | 5 |
| 6        | Cor                     | nclusion                      | 5 |

## 1 Problem Introduction

Clearly, batteries relevant.

Figure

Figure 2: Wohoo

## 1.1 Chronoamperometry

## 1.2 DC Voltammetry

## 1.3 AC Voltammetry

# 2 Mathematical Background

Let  $\mathbb{N}$  denote the nonnegative integers, so  $0 \in \mathbb{N}$ . Similarly, let  $\mathbb{R}^+ = [0, \infty)$  denote the nonnegative real numbers. Figure 2.

## 2.1 Laplace Integral Transform

What is Laplace?

Proof for Laplace's differentiation theorem.

## 2.2 Chebyshev Polynomials

Proof of  $U_k(-1)$ 's value.

## 3 Finite Differences

Construct Ax = b.

#### 3.1 Results

## 4 Analytical Approaches

### 4.1 Similarity Solution

### 4.2 Integral Equation

- 4.2.1 Derivation
- 4.2.2 Numerical Solution

## 5 Spectral Method

From the definition of Chebyshev polynomials  $T_k(x) = \cos(k\theta)$ , we can derive that

$$\frac{\mathrm{d}T_k}{\mathrm{d}x} = \frac{\mathrm{d}T_k}{\mathrm{d}\theta} \frac{\mathrm{d}\theta}{\mathrm{d}x} = \dots = kU_{k-1}(x) \,,$$

where  $U_k : [-1, 1] \mapsto \mathbb{R}$  denote the Chebyshev polynomials of the second kind, which in turn are defined by

$$U_k(\cos\theta)\sin(\theta) = \sin((n+1)\theta)$$
.

In order to enforce a von-Neumann boundary condition on the left and a Dirichlet boundary condition on the right, we are interested in explicitly setting coefficients  $a_k$  such that

$$a_x(-1,t) = \frac{\mathrm{d}a}{\mathrm{d}x}\Big|_{x=-1} = \tilde{l}$$
 and  $a(1) = r$ , where  $\tilde{l}, r \in \mathbb{R}$ .

Using the Chebyshev series ansatz

$$a(x,t) = \sum_{k=0}^{N-1} a_k^{(t)} T_k(x)$$

we have that

$$\frac{\mathrm{d}a}{\mathrm{d}x} = \sum_{k=0}^{N-1} a_k^{(t)} \frac{\mathrm{d}T_k}{\mathrm{d}x}(x) \,,$$

so we are interested in

$$a_x(-1,t) = \frac{\mathrm{d}a}{\mathrm{d}x}\Big|_{x=-1} = \sum_{k=0}^{N-1} a_k^{(t)} \frac{\mathrm{d}T_k}{\mathrm{d}x}\Big|_{x=-1} = \sum_{k=0}^{N-1} a_k^{(t)} k U_{k-1}(-1).$$

Following from TODO (explained on Wikipedia), we know that

$$U_k(-1) = (-1)^k (k+1)$$
 and  $T_k(1) = 1 \quad \forall k \in \mathbb{N}$ ,

which turns our conditions into algebraic conditions w.r.t. the coefficients  $a_k^{(t)}$ ,

$$a_x(-1,t) = \frac{\mathrm{d}a}{\mathrm{d}x}\Big|_{x=-1} = \sum_{k=0}^{N-1} a_k^{(t)} k^2 (-1)^{k-1} \stackrel{!}{=} \tilde{l}$$
 and  $a|_{x=1} = \sum_{k=0}^{N-1} a_k^{(t)} \stackrel{!}{=} r$ .

Knowing that the heat equation Forward Euler numerical scheme modifies all but the two highest-degree coefficients in the series, we expand:

$$a_{x}(-1,t) = \sum_{k=0}^{N-1} a_{k}^{(t)} T_{k}'(-1) = \underbrace{-\sum_{k=0}^{N-3} a_{k}^{(t)} k^{2} (-1)^{k}}_{N-1} - (N-2)^{2} (-1)^{N-2} a_{N-2} - (N-1)^{2} (-1)^{N-1} a_{N-1}$$

$$a(1,t) = \sum_{k=0}^{N-1} a_{k}^{(t)} T_{k}(1) = \underbrace{\sum_{k=0}^{N-3} a_{k}^{(t)}}_{:=\Sigma_{2}} + a_{N-2} + a_{N-1}$$

### 5.1 Enforcing Boundary Conditions

Von Neumann on the left

## 5.2 Implicit Euler

## 5.3 Implementation

The solver was implemented in C++.

#### 5.4 Results

Chronoamperometry, DC Voltammetry, AC Voltammetry

## 6 Conclusion