

DSC Program 2020-2021

STATISTICS

Statistics

WHY STATISTICS Statistics Limitations

"STATISTICS IS THE SCIENCE OF COLLECTING, ORGANIZING PRESENTING, ANALYZING, AND INTERPRETING NUMERICAL DATA"

"STATISTICS IS A WAY TO GET INFORMATION FROM DATA."

Data Statistics

Information

<u>Data:</u> Facts, especially numerical facts, collected together for reference or information.

<u>Information:</u> Knowledge communicated concerning some particular fact.

Statistics is a *tool* for creating *new understanding* from a set of numbers.

Statistical Terms

Variable

A variable is a feature characteristic of any member of a population differing in quality or quantity from another member.

Statistical Data Type According to variable type

Types of data

Categorical

Categorical data represents groups or categories.

Examples:

- 1. Car brands: Audi, BMW and Mercedes.
- 2. Answers to yes/no questions: yes and no

Numerical data represents numbers. It is divided into two groups: discrete and continuous. Discrete data can be usually counted in a finite matter, while continuous is infinite and impossible to count.

Examples:

Discrete: # children you want to have, SAT score

Continuous: weight, height

Levels of measurement

There are two qualitative levels: nominal and ordinal. The nominal level represents categories that cannot be put in any order, while ordinal represents categories that **can** be ordered.

Examples:

Nominal: four seasons (winter, spring, summer, autumn) Ordinal: rating your meal (disgusting, unappetizing, neutral, tasty, and delicious) There are two quantitative levels: interval and ratio. They both represent "numbers", however, ratios have a true zero, while intervals don't.

Examples:

Interval: degrees Celsius and Fahrenheit

Ratio: degrees Kelvin, length

Statistical Terms

Population

A population is the group from which data is to be collected.

Population

Sample

A sample is a subset of a population.

SELECTED

Population

Sample

Parameter

Statistic

A descriptive measure of a *population*. A des

A descriptive measure of a *sample*.

Samples have Statistics.

Statistic that represents the center point or typical value of a dataset. These measures indicate where most values in a distribution fall and are also referred to as the central location of a distribution.

DEFINITION

HOW TO COMPUTE

PROPERTIES

Mean

• The sum of values divided by the number of data points.

Median

• The middle value when the data arranged.

Mode

The value that occurs most frequency

HOW TO COMPUTE

Ungrouped Data

height
130
100
90
115
105
120
80
70

Height (in cm)	No of students
159-162	1
163-166	4
167-170	11
171-174	12
175-178	6
179-182	4
183-186	2

Grouped Data

Mean

Ungrouped data

Arithmetic Mean
$$\bar{x} = \frac{\sum x_i}{n}$$

		Height
	I	130
	2	100
	3	90
	4	115
	5	105
	6	120
	7	80
n=8 ←	8	70
	Total	810

median

Ungrouped data

**Put the observation in ascending order(lowest first to highest last)

	Height			Height
1	130	1-Ascending	1	70
2	100	_	2	80
3	90	order	3	90
4	115		4 —	100
5	105		5 —	→ 105
6	120	m-0	6	115
7	80	n=8	7	120
8	70		8	130

When the number of observations (n) is even:

- 1. Find the value at position $\left(\frac{n}{2}\right)$
- 2. Find the value at position $\left(\frac{n}{2}+1\right)$

$$(n/2)+1=5$$
 v2= 105

$$median=(v1+v2)/2=(100+105)/2$$
 102.5

	Weight			Weight
1	62	a A 1.	1	40
2	55	1-Ascending	2	48
3	48	order	3	50
4	90		4	52
5	52		5 —	→ 55
6	60	n=9	6	60
7	40	11-7	7	60
8	50		8	62
9	60		9	90

When the number of observations (n) is odd: the median is the value at position

$$\left(\frac{n+1}{2}\right)$$

$$(n+1)/2=5$$

The value that occurs most frequency

Mode Grouped data

	Height	Weight
1	130	62
2	100	55
3	90	48
4	115	90
5	105	52
6	120	60
7	80	40
8	70	50
9		60

height mode=	nan
weight mode=	60

Mean, median and mode Grouped data

Class	frequency(f)
16-	4
24-	8
32-	9
40-	13
48-	10
56-	5
64-72	I
Total	50.00

Mean

Grouped data

Arithmetic Mean
$$=\frac{\sum (f_i * X_i)}{\sum f_i}$$

Class	frequency(f)	Mid-Point(x)	f*x
16-	4	20	80
24-	8	28	224
32-	9	36	324
40-	13	44	572
48-	10	52	520
56-	5	60	300
64-72	1	68	68
Total	50.00		2088

$$\bar{X} = \frac{\sum fx}{\sum f} = \frac{2088}{50} = 41.76$$

Median

Grouped data

Class	frequency(f)
16-	4
24-	8
32-	9
40-	13
48-	10
56-	5
64-72	I
Total	50.00

1-Ascending cumulative frequency distribution table

Upper limits	CF
Less than 24	4
Less than 32	=4+8=12
Less than 40	=12+9=21
Less than 48	34
Less than 56	44
Less than 64	49
Less than 72	50
	Less than 24 Less than 32 Less than 40 Less than 48 Less than 56 Less than 64

- **2**-Find the position of median= $\frac{\sum f}{2} = \frac{50}{2} = 25$
 - **3-Median class** = (40-48)Lower limit of median class (M_o) =40 Width of median class (l)=8 $f_1 = 21$

 $f_2 = 34$

$$median = M_o + \frac{pos. -f_1}{f_2 - f_1} * l$$
$$= 40 + \frac{25 - 21}{34 - 21} * 8 = 42.46$$

Mode

Grouped data

l=8 equal width

	Class	frequency(f)	
	16-	4	A -12 0-4
	24-	8	$\Delta_1 = 13-9=4$
	32-	9	
$M_o = 40$ —	→ 40-	(13)	
	48-	10	
	56-	5	$\Delta_2 = 13 - 10 = 3$
	64-72	I	2 2 13 13 3
	Total	50.00	

$$mode = M_o + \frac{\Delta_1}{\Delta_1 + \Delta_2} * l$$

$$mode = 40 + \frac{4}{4+3} * 8$$

$$mode = 42.46$$

Mode

Grouped dataunequal width

	Class	frequency	The length of the	modified		
	Class	(f)	class	frequency		
	0-	3	5	3/5=0.60	Δ_1 =2-1.143=0.857	
	5-	8	7	8/7=1.1 4	21 2 111 15 0.007	Λ
$M_o=12$	12-	16	8	2.00		$mode = M_o + \frac{\Delta_1}{\Delta_1 + \Delta_2} * l$
	20-	- 11	10	1.10		$\Delta_1 + \Delta_2 = 0.857$
l=8	30-	7	15	0.47	Δ_2 =2-1.1=0.9	$mode = 12 + \frac{0.037}{0.857 + 0.9} * 8$
	45-50	5	5	1.00		
	total	50				mode = 15.9

There in no best, but what separates to determine which is better is the data?

Mean

Good with normal distributed data

Too bad with outlier because it's affected by all the data

Mode

Good with significantly duplicated data

Also bad with the outlier

Median

Measure of central is one of the best to deal with outlier

Dispersion refers to measures of how spread out our data is. Typically they're statistics for which values near zero signify not spread out at all and for which large values (whatever that means) signify very spread out.

DEFINITION

HOW TO COMPUTE

PROPERTIES

RANGE & IQR

RANGE & IQR

VARIANCE

$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$$

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

population variance

sample variance

STANDARD DEVIATION FORMULAS

$$\sigma = \sqrt{\sigma^2}$$

population standard deviation sample standard deviation

$$S = \sqrt{S^2}$$

COEFFICIENT OF VARIATION (CV)

/relative standard deviation/

standard deviation

mean

365√DataScience

COEFFICIENT OF VARIATION (CV)

$$c_{v} = \frac{\sigma}{\mu}$$

Population formula

Sample formula

$$\widehat{c_{m{
u}}} = rac{s}{\overline{x}}$$

Covariance VS Correlation

Skewness

Positive (right)

Dataset 1	Interval	Frequency
1	0 to 1	4
1	1 to 2	6
1	2 to 3	4
1	3 to 4	2
2	4 to 5	2
2	5 to 6	0
2	6 to 7	1

Mean	Median	Mode
2.79	2.00	2.0

Zero (no skew)

Dataset 2	Interval	Frequency
1	0 to 1	2
1	1 to 2	2
2	2 to 3	3
2	3 to 4	5
3	4 to 5	3
3	5 to 6	2
3	6 to 7	2
4		

Mean	Median	Mode
4.00	4.00	4.00

Negative (left)

Dataset 3	Interval	Frequency
1	0 to 1	1
2	1 to 2	1
3	2 to 3	2
3	3 to 4	3
4	4 to 5	4
4	5 to 6	8
4	6 to 7	3
5		
_		

Mean	Median	Mode
4.90	5.00	6.00

Skewness

The coefficient of Skewness is a measure for the degree of symmetry in the variable distribution.

Negatively skewed distribution or Skewed to the left Skewness <0

Normal distribution Symmetrical Skewness = 0

Positively skewed distribution or Skewed to the right Skewness > 0

Kurtosis

The coefficient of Kurtosis is a measure for the degree of peakedness/flatness in the variable distribution.

Platykurtic distribution Low degree of peakedness Kurtosis <0

Normal distribution Mesokurtic distribution Kurtosis = 0

Leptokurtic distribution High degree of peakedness Kurtosis > 0

Normalization rescales the values into a range of [0,1]. This might be useful in some cases where all parameters need to have the same positive scale. However, the outliers from the data set are lost.

$$X_{changed} = rac{X - X_{min}}{X_{max} - X_{min}}$$

Standardization rescales data to have a mean (μ) of 0 and standard deviation (σ) of 1 (unit variance).

$$X_{changed} = rac{X - \mu}{\sigma}$$

For most applications standardization is recommended.

Feature Scaling Standardization Vs Normalization

