Summary of Master Method

Case	Ratio check	Inequality that must be checked	Theorem 4.1 text pg 94	Notes (see pages 94-95)
1	$\frac{f(n)}{n^{\log_b a}} = n^{-\varepsilon}, \ \varepsilon > 0$	$f(n) \leq c n^{\log_b a}$	If $f(n) \in O\left(n^{\log_b a - \varepsilon}\right)$ for some constant $\varepsilon > 0$, then $T\left(n\right) \in \Theta\left(n^{\log_b a}\right)$ Total cost dominated by cost of the recursion tree leaves.	Not only must $f\left(n\right)$ be smaller than $n^{\log_b a}$, it must be polynomially smaller
2	$\frac{f(n)}{n^{\log_b a}} = \lg^k n, \ k \ge 0$	$c_1 n^{\log_b a} \le f(n) \le c_2 n^{\log_b a}$	If $f(n) \in \Theta\left(n^{\log_b a}\right)$ then $T\left(n\right) \in \Theta\left(n^{\log_b a} \lg n\right)$ Total cost evenly distributed over recursion tree levels.	
Exercise 4.6-2 pg 106	Not applicable	Not applicable	If $f(n) \in \Theta(n^{\log_b a} \lg^k n)$ where $k \ge 0$, then $T(n) \in \Theta(n^{\log_b a} \lg^{k+1} n)$	
3	$\frac{f(n)}{n^{\log_b a}} = n^{\varepsilon}, \ \varepsilon > 0$	$cn^{\log_b a} \leq f\left(n ight)$	If $f(n) \in \Omega\left(n^{\log_b a + \varepsilon}\right)$ for some constant $\varepsilon > 0$, and if $af\left(n/b\right) \le cf\left(n\right)$ for some constant $c < 1$ and all sufficiently large n , then $T\left(n\right) \in \Theta\left(f\left(n\right)\right)$ Total cost dominated by cost of the recursion tree root.	Not only must $f(n)$ be larger than $n^{\log_b a}$, it must be polynomially larger and satisfy the "regularity" condition $af(n/b) \le cf(n)$ If $f(n)$ has the form n^i $c = (a/b^i)$ which is <1

Notes:

Applies only to recurrences of the form T(n) = aT(n/b) + f(n) where $a \ge 1$ and b > 1 are constants and f(n) is an asymptotically positive function. See page 56 for definition $\lg^k n = (\lg n)^k$

Critical exponent $E = \frac{\log a}{\log b} = \log_b a$

If f(n) is smaller than $n^{\log_b a}$ but not polynomially smaller or if f(n) is larger than $n^{\log_b a}$ but not polynomially larger or if the "regularity" condition $af(n/b) \le cf(n)$ is not satisfied the Master method cannot be used to solve the recurrence

605.621