

# Controling Complexity: Feature Selection and Regularization

CDS, NYU

Feb 7, 2022

### Complexity of Hypothesis Spaces

What is the trade-off between approximation error and estimation error?

# Complexity of Hypothesis Spaces

What is the trade-off between approximation error and estimation error?

- Bigger  $\mathcal{F}$ : better approximation but can overfit (need more samples)
- ullet Smaller  $\mathcal{F}$ : less likely to overfit but can be farther from the true function

# Complexity of Hypothesis Spaces

What is the trade-off between approximation error and estimation error?

- Bigger  $\mathcal{F}$ : better approximation but can overfit (need more samples)
- ullet Smaller  $\mathcal{F}$ : less likely to overfit but can be farther from the true function

To control the "size" of  $\mathcal{F}$ , we need some measure of its complexity:

- Number of variables / features
- Degree of polynomial

(CDS, NYU) DS-GA 1003 Feb 7, 2022 3/42

# General Approach to Control Complexity

1. Learn a sequence of models varying in complexity from the training data

$$\mathfrak{F}_1\subset \mathfrak{F}_2\subset \mathfrak{F}_n\cdots\subset \mathfrak{F}$$

# General Approach to Control Complexity

1. Learn a sequence of models varying in complexity from the training data

$$\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_n \cdots \subset \mathcal{F}$$

Example: Polynomial Functions

- $\mathcal{F} = \{\text{all polynomial functions}\}$
- $\mathcal{F}_d = \{\text{all polynomials of degree } \leq d\}$

# General Approach to Control Complexity

1. Learn a sequence of models varying in complexity from the training data

$$\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_n \cdots \subset \mathcal{F}$$

**Example: Polynomial Functions** 

- $\mathcal{F} = \{\text{all polynomial functions}\}$
- $\mathcal{F}_d = \{\text{all polynomials of degree } \leq d\}$
- 2. Select one of these models based on a score (e.g. validation error)

(CDS, NYU) DS-GA 1003 Feb 7, 2022 4/42

### Feature Selection in Linear Regression

Nested sequence of hypothesis spaces:  $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_n \cdots \subset \mathcal{F}$ 

- $\mathcal{F} = \{\text{linear functions using all features}\}$
- $\mathcal{F}_d = \{\text{linear functions using fewer than } d \text{ features}\}$

### Feature Selection in Linear Regression

Nested sequence of hypothesis spaces:  $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_n \cdots \subset \mathcal{F}$ 

- $\mathcal{F} = \{\text{linear functions using all features}\}\$
- $\mathcal{F}_d = \{\text{linear functions using fewer than } d \text{ features} \}$

#### Best subset selection:

- Choose the subset of features that is best according to the score (e.g. validation error)
  - Example with two features: Train models using  $\{\}, \{X_1\}, \{X_2\}, \{X_1, X_2\}, \text{ respectively}$
- Not an efficient search algorithm; iterating over all subsets becomes very expensive with a large number of features

5 / 42 (CDS, NYU) DS-GA 1003 Feb 7 2022

#### Forward selection:

1. Start with an empty set of features S

#### Forward selection:

- 1. Start with an empty set of features S
- 2. For each feature *i* not in *S* 
  - Learn a model using features  $S \cup i$
  - Compute score of the model:  $\alpha_i$

#### Forward selection:

- 1. Start with an empty set of features S
- 2. For each feature i not in S
  - Learn a model using features  $S \cup i$
  - Compute score of the model:  $\alpha_i$
- 3. Find the candidate feature with the highest score:  $j = \arg\max_i \alpha_i$

#### Forward selection:

- 1. Start with an empty set of features S
- 2. For each feature i not in S
  - Learn a model using features  $S \cup i$
  - Compute score of the model:  $\alpha_i$
- 3. Find the candidate feature with the highest score:  $j = \arg\max_i \alpha_i$
- 4. If  $\alpha_i$  improves the current best score, add feature  $j: S \leftarrow S \cup j$  and go to step 2; return S otherwise.

(CDS, NYU) 6 / 42 **DS-GA 1003** Feb 7, 2022

#### Forward selection:

- 1. Start with an empty set of features S
- 2. For each feature i not in S
  - Learn a model using features  $S \cup i$
  - Compute score of the model:  $\alpha_i$
- 3. Find the candidate feature with the highest score:  $j = \arg\max_i \alpha_i$
- 4. If  $\alpha_j$  improves the current best score, add feature  $j: S \leftarrow S \cup j$  and go to step 2; return S otherwise.

#### **Backward Selection:**

• Start with all features; in each iteration, remove the worst feature

(CDS, NYU) DS-GA 1003 Feb 7, 2022 6 / 42

• Number of features as a measure of the complexity of a linear prediction function

- Number of features as a measure of the complexity of a linear prediction function
- General approach to feature selection:

- Number of features as a measure of the complexity of a linear prediction function
- General approach to feature selection:
  - Define a score that balances training error and complexity

- Number of features as a measure of the complexity of a linear prediction function
- General approach to feature selection:
  - Define a score that balances training error and complexity
  - Find the subset of features that maximizes the score

- Number of features as a measure of the complexity of a linear prediction function
- General approach to feature selection:
  - Define a score that balances training error and complexity
  - Find the subset of features that maximizes the score
- Forward & backward selection do not guarantee to find the best solution.

- Number of features as a measure of the complexity of a linear prediction function
- General approach to feature selection:
  - Define a score that balances training error and complexity
  - Find the subset of features that maximizes the score
- Forward & backward selection do not guarantee to find the best solution.
- Forward & backward selection do not in general result in the same subset.

(CDS, NYU) DS-GA 1003 Feb 7, 2022 7/42

 $\ell_2$  and  $\ell_1$  Regularization

An objective that balances number of features and prediction performance:

$$score(S) = training_loss(S) + \lambda |S|$$
 (1)

(CDS, NYU) DS-GA 1003 Feb 7, 2022 9 / 42

An objective that balances number of features and prediction performance:

$$score(S) = training_loss(S) + \lambda |S|$$
 (1)

 $\lambda$  balances the training loss and the number of features used:

- Adding an extra feature must be justified by at least  $\lambda$  improvement in training loss
- Larger  $\lambda \to \text{complex models}$  are penalized more heavily

(CDS, NYU) **DS-GA 1003** Feb 7, 2022 9 / 42

Goal: Balance the complexity of the hypothesis space  ${\mathcal F}$  and the training loss

Complexity measure:  $\Omega: \mathcal{F} \to [0, \infty)$ , e.g. number of features

Goal: Balance the complexity of the hypothesis space  ${\mathcal F}$  and the training loss

Complexity measure:  $\Omega: \mathfrak{F} \to [0, \infty)$ , e.g. number of features

### Penalized ERM (Tikhonov regularization)

For complexity measure  $\Omega: \mathcal{F} \to [0, \infty)$  and fixed  $\lambda \geqslant 0$ ,

$$\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) + \lambda \Omega(f)$$

As usual, we find  $\lambda$  using the validation data.

Goal: Balance the complexity of the hypothesis space  ${\mathcal F}$  and the training loss

Complexity measure:  $\Omega: \mathfrak{F} \to [0, \infty)$ , e.g. number of features

### Penalized ERM (Tikhonov regularization)

For complexity measure  $\Omega: \mathcal{F} \to [0, \infty)$  and fixed  $\lambda \geqslant 0$ ,

$$\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) + \lambda \Omega(f)$$

As usual, we find  $\lambda$  using the validation data.

Number of features as complexity measure is hard to optimize—other measures?

(CDS, NYU) DS-GA 1003 Feb 7, 2022 10 / 42

# Weight Shrinkage: Intuition



• Why would we prefer a regression line with smaller slope (unless the data strongly supports a larger slope)?

(CDS, NYU) DS-GA 1003 Feb 7, 2022 11 / 42

# Weight Shrinkage: Intuition



- Why would we prefer a regression line with smaller slope (unless the data strongly supports a larger slope)?
- More conservative: small change in the input does not cause large change in the output

(CDS, NYU) DS-GA 1003 Feb 7, 2022 11/42

### Weight Shrinkage: Intuition



- Why would we prefer a regression line with smaller slope (unless the data strongly supports a larger slope)?
- More conservative: small change in the input does not cause large change in the output
- If we push the estimated weights to be small, re-estimating them on a new dataset wouldn't cause the prediction function to change dramatically (less sensitive to noise in data)

(CDS, NYU) DS-GA 1003 Feb 7, 2022 11 / 42

# Weight Shrinkage: Polynomial Regression



- Large weights are needed to make the curve wiggle sufficiently to overfit the data
- $\hat{y} = 0.001x^7 + 0.003x^3 + 1$  less likely to overfit than  $\hat{y} = 1000x^7 + 500x^3 + 1$

(Adapated from Mark Schmidt's slide)

(CDS, NYU) DS-GA 1003 Feb 7, 2022 12 / 42

# Linear Regression with $\ell_2$ Regularization

• We have a linear model

$$\mathcal{F} = \left\{ f : \mathsf{R}^d \to \mathsf{R} \mid f(x) = w^T x \text{ for } w \in \mathsf{R}^d \right\}$$

- Square loss:  $\ell(\hat{y}, y) = (y \hat{y})^2$
- Training data  $\mathfrak{D}_n = ((x_1, y_1), \dots, (x_n, y_n))$

# Linear Regression with $\ell_2$ Regularization

We have a linear model

$$\mathcal{F} = \left\{ f : \mathsf{R}^d \to \mathsf{R} \mid f(x) = w^T x \text{ for } w \in \mathsf{R}^d \right\}$$

- Square loss:  $\ell(\hat{y}, y) = (y \hat{y})^2$
- Training data  $\mathfrak{D}_n = ((x_1, y_1), \dots, (x_n, y_n))$
- Linear least squares regression is ERM for square loss over  $\mathcal{F}$ :

$$\hat{w} = \underset{w \in \mathbb{R}^d}{\arg \min} \frac{1}{n} \sum_{i=1}^n (w^T x_i - y_i)^2$$

• This often overfits, especially when d is large compared to n (e.g. in NLP one can have 1M features for 10K documents).

(CDS, NYU) DS-GA 1003 Feb 7, 2022 13 / 42

### Linear Regression with L2 Regularization

#### Penalizes large weights:

$$\hat{w} = \arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda ||w||_2^2,$$

where  $||w||_2^2 = w_1^2 + \cdots + w_d^2$  is the square of the  $\ell_2$ -norm.

• Also known as ridge regression.

(CDS, NYU) DS-GA 1003 Feb 7, 2022 14 / 42

# Linear Regression with L2 Regularization

#### Penalizes large weights:

$$\hat{w} = \arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda ||w||_2^2,$$

where  $||w||_2^2 = w_1^2 + \cdots + w_d^2$  is the square of the  $\ell_2$ -norm.

- Also known as ridge regression.
- Equivalent to linear least square regression when  $\lambda = 0$ .

(CDS, NYU) DS-GA 1003 Feb 7, 2022 14 / 42

### Linear Regression with L2 Regularization

#### Penalizes large weights:

$$\hat{w} = \arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda ||w||_2^2,$$

where  $||w||_2^2 = w_1^2 + \cdots + w_d^2$  is the square of the  $\ell_2$ -norm.

- Also known as ridge regression.
- Equivalent to linear least square regression when  $\lambda = 0$ .
- $\ell_2$  regularization can be used for other models too (e.g. neural networks).

(CDS, NYU) DS-GA 1003 Feb 7, 2022 14 / 42

•  $\hat{f}(x) = \hat{w}^T x$  is **Lipschitz continuous** with Lipschitz constant  $L = ||\hat{w}||_2$ : when moving from x to x + h,  $\hat{f}$  changes no more than L||h||.

- $\hat{f}(x) = \hat{w}^T x$  is **Lipschitz continuous** with Lipschitz constant  $L = ||\hat{w}||_2$ : when moving from x to x + h,  $\hat{f}$  changes no more than L||h||.
- ullet  $\ell_2$  regularization controls the maximum rate of change of  $\hat{f}$ .

(CDS, NYU) DS-GA 1003 Feb 7, 2022 15 / 42

- $\hat{f}(x) = \hat{w}^T x$  is **Lipschitz continuous** with Lipschitz constant  $L = ||\hat{w}||_2$ : when moving from x to x + h,  $\hat{f}$  changes no more than L||h||.
- $\ell_2$  regularization controls the maximum rate of change of  $\hat{f}$ .
- Proof:

$$\begin{split} \left| \hat{f}(x+h) - \hat{f}(x) \right| &= \left| \hat{w}^T(x+h) - \hat{w}^T x \right| = \left| \hat{w}^T h \right| \\ &\leqslant \|\hat{w}\|_2 \|h\|_2 \quad \text{(Cauchy-Schwarz inequality)} \end{split}$$

(CDS, NYU) DS-GA 1003 Feb 7, 2022 15 / 42

- $\hat{f}(x) = \hat{w}^T x$  is **Lipschitz continuous** with Lipschitz constant  $L = ||\hat{w}||_2$ : when moving from x to x + h,  $\hat{f}$  changes no more than L||h||.
- ullet  $\ell_2$  regularization controls the maximum rate of change of  $\hat{f}$ .
- Proof:

$$\begin{aligned} \left| \hat{f}(x+h) - \hat{f}(x) \right| &= \left| \hat{w}^T(x+h) - \hat{w}^T x \right| = \left| \hat{w}^T h \right| \\ &\leqslant \|\hat{w}\|_2 \|h\|_2 \quad \text{(Cauchy-Schwarz inequality)} \end{aligned}$$

• Other norms also provide a bound on L due to the equivalence of norms:  $\exists C > 0 \text{ s.t. } \|\hat{w}\|_2 \leqslant C \|\hat{w}\|_p$ 

(CDS, NYU) DS-GA 1003 Feb 7, 2022 15 / 42

### Linear Regression vs. Ridge Regression

#### Objective:

- Linear:  $L(w) = \frac{1}{2} ||Xw y||_2^2$
- Ridge:  $L(w) = \frac{1}{2} ||Xw y||_2^2 + \frac{\lambda}{2} ||w||_2^2$

### Linear Regression vs. Ridge Regression

#### Objective:

- Linear:  $L(w) = \frac{1}{2} ||Xw y||_2^2$
- Ridge:  $L(w) = \frac{1}{2} ||Xw y||_2^2 + \frac{\lambda}{2} ||w||_2^2$

#### Gradient:

- Linear:  $\nabla L(w) = X^T(Xw y)$
- Ridge:  $\nabla L(w) = X^T(Xw y) + \lambda w$ 
  - Also known as weight decay in neural networks

### Linear Regression vs. Ridge Regression

#### Objective:

- Linear:  $L(w) = \frac{1}{2} ||Xw y||_2^2$
- Ridge:  $L(w) = \frac{1}{2} ||Xw y||_2^2 + \frac{\lambda}{2} ||w||_2^2$

#### Gradient:

- Linear:  $\nabla L(w) = X^T(Xw y)$
- Ridge:  $\nabla L(w) = X^T(Xw y) + \lambda w$ 
  - Also known as weight decay in neural networks

#### Closed-form solution:

- Linear:  $X^T X w = X^T y$
- Ridge:  $(X^TX + \lambda I)w = X^Ty$ 
  - $(X^TX + \lambda I)$  is always invertible

### Ridge Regression: Regularization Path



$$\hat{w}_r = \underset{\|w\|_2^2 \le r^2}{\arg \min} \frac{1}{n} \sum_{i=1}^n (w^T x_i - y_i)^2$$

$$\hat{w} = \hat{w}_{\infty} = \text{Unconstrained ERM}$$

- For r = 0,  $||\hat{w}_r||_2 / ||\hat{w}||_2 = 0$ .
- For  $r = \infty$ ,  $\|\hat{w}_r\|_2 / \|\hat{w}\|_2 = 1$

17 / 42

Modified from Hastie, Tibshirani, and Wainwright's Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.

(CDS, NYU) DS-GA 1003 Feb 7, 2022

#### Lasso Regression

Penalize the  $\ell_1$  norm of the weights:

Lasso Regression (Tikhonov Form, soft penalty)

$$\hat{w} = \arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda ||w||_1,$$

where  $||w||_1 = |w_1| + \cdots + |w_d|$  is the  $\ell_1$ -norm.

("Least Absolute Shrinkage and Selection Operator")

(CDS, NYU) DS-GA 1003 Feb 7, 2022 18/42

#### Ridge vs. Lasso: Regularization Paths

#### Lasso yields sparse weights:





19 / 42

Modified from Hastie, Tibshirani, and Wainwright's Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.

(CDS, NYU) DS-GA 1003 Feb 7, 2022

The coefficient for a feature is  $0 \implies$  the feature is not needed for prediction. Why is that useful?

(CDS, NYU) DS-GA 1003 Feb 7, 2022 20 / 42

The coefficient for a feature is  $0 \implies$  the feature is not needed for prediction. Why is that useful?

• Faster to compute the features; cheaper to measure or annotate them

The coefficient for a feature is  $0 \implies$  the feature is not needed for prediction. Why is that useful?

- Faster to compute the features; cheaper to measure or annotate them
- Less memory to store features (deployment on a mobile device)

The coefficient for a feature is  $0 \implies$  the feature is not needed for prediction. Why is that useful?

- Faster to compute the features; cheaper to measure or annotate them
- Less memory to store features (deployment on a mobile device)
- Interpretability: identifies the important features

The coefficient for a feature is  $0 \implies$  the feature is not needed for prediction. Why is that useful?

- Faster to compute the features; cheaper to measure or annotate them
- Less memory to store features (deployment on a mobile device)
- Interpretability: identifies the important features
- Prediction function may generalize better (model is less complex)

(CDS, NYU) DS-GA 1003 Feb 7, 2022 20 / 42

Why does  $\ell_1$  Regularization Lead to Sparsity?

### Regularization as Constrained Empirical Risk Minimization

#### Constrained ERM (Ivanov regularization)

For complexity measure  $\Omega: \mathcal{F} \to [0, \infty)$  and fixed  $r \geqslant 0$ ,

$$\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i)$$
s.t.  $\Omega(f) \leq r$ 

#### Lasso Regression (Ivanov Form, hard constraint)

The lasso regression solution for complexity parameter  $r \ge 0$  is

$$\hat{w} = \underset{\|w\|_1 \le r}{\arg \min} \frac{1}{n} \sum_{i=1}^{n} \{w^T x_i - y_i\}^2.$$

r has the same role as  $\lambda$  in penalized ERM (Tikhonov).

22 / 42

- Let  $L: \mathcal{F} \to \mathsf{R}$  be any performance measure of f
  - $\bullet$  e.g. L(f) could be the empirical risk of f

- Let  $L: \mathcal{F} \to \mathbb{R}$  be any performance measure of f
  - e.g. L(f) could be the empirical risk of f
- For many L and  $\Omega$ , Ivanov and Tikhonov are equivalent:
  - Any solution  $f^*$  we can get from Ivanov, we can also get from Tikhonov.
  - Any solution  $f^*$  we can get from Tikhonov, we can also get from Ivanov.

- Let  $L: \mathcal{F} \to R$  be any performance measure of f
  - e.g. L(f) could be the empirical risk of f
- For many L and  $\Omega$ , Ivanov and Tikhonov are equivalent:
  - Any solution  $f^*$  we can get from Ivanov, we can also get from Tikhonov.
  - Any solution  $f^*$  we can get from Tikhonov, we can also get from Ivanov.
- The conditions for this equivalence can be derived from Lagrangian duality theory.

(CDS, NYU) DS-GA 1003 Feb 7, 2022 23 / 42

- Let  $L: \mathcal{F} \to \mathsf{R}$  be any performance measure of f
  - e.g. L(f) could be the empirical risk of f
- For many L and  $\Omega$ , Ivanov and Tikhonov are equivalent:
  - Any solution  $f^*$  we can get from Ivanov, we can also get from Tikhonov.
  - Any solution  $f^*$  we can get from Tikhonov, we can also get from Ivanov.
- The conditions for this equivalence can be derived from Lagrangian duality theory.
- In practice, both approaches are effective: we will use whichever one is more convenient for training or analysis.

(CDS, NYU) DS-GA 1003 Feb 7, 2022 23 / 42

### The $\ell_1$ and $\ell_2$ Norm Constraints

- Let's consider  $\mathcal{F} = \{f(x) = w_1x_1 + w_2x_2\}$  space)
- We can represent each function in  $\mathcal{F}$  as a point  $(w_1, w_2) \in \mathbb{R}^2$ .
- Where in  $R^2$  are the functions that satisfy the Ivanov regularization constraint for  $\ell_1$  and  $\ell_2$ ?

### The $\ell_1$ and $\ell_2$ Norm Constraints

- Let's consider  $\mathcal{F} = \{f(x) = w_1x_1 + w_2x_2\}$  space)
- We can represent each function in  $\mathcal{F}$  as a point  $(w_1, w_2) \in \mathbb{R}^2$ .
- Where in  $R^2$  are the functions that satisfy the Ivanov regularization constraint for  $\ell_1$  and  $\ell_2$ ?

• 
$$\ell_2$$
 contour:  
 $w_1^2 + w_2^2 = r$ 



• 
$$\ell_1$$
 contour:  $|w_1| + |w_2| = r$ 



### The $\ell_1$ and $\ell_2$ Norm Constraints

- Let's consider  $\mathcal{F} = \{f(x) = w_1x_1 + w_2x_2\}$  space)
- We can represent each function in  $\mathcal{F}$  as a point  $(w_1, w_2) \in \mathbb{R}^2$ .
- Where in  $R^2$  are the functions that satisfy the Ivanov regularization constraint for  $\ell_1$  and  $\ell_2$ ?

• 
$$\ell_2$$
 contour:  $w_1^2 + w_2^2 = r$ 



• 
$$\ell_1$$
 contour:  $|w_1| + |w_2| = r$ 



• Where are the sparse solutions?

## Visualizing Regularization

•  $f_r^* = \operatorname{arg\,min}_{w \in \mathbb{R}^2} \sum_{i=1}^n (w^T x_i - y_i)^2$  subject to  $w_1^2 + w_2^2 \leqslant r$ 



- Blue region: Area satisfying complexity constraint:  $w_1^2 + w_2^2 \leqslant r$
- Red lines: contours of the empirical risk  $\hat{R}_n(w) = \sum_{i=1}^n (w^T x_i y_i)^2$ .

KPM Fig. 13.3

## Why Does $\ell_1$ Regularization Encourage Sparse Solutions?

•  $f_r^* = \operatorname{arg\,min}_{w \in \mathbb{R}^2} \frac{1}{n} \sum_{i=1}^n (w^T x_i - y_i)^2$  subject to  $|w_1| + |w_2| \leqslant r$ 



- Blue region: Area satisfying complexity constraint:  $|w_1| + |w_2| \le r$
- Red lines: contours of the empirical risk  $\hat{R}_n(w) = \sum_{i=1}^n (w^T x_i y_i)^2$ .
- $\ell_1$  solution tends to touch the corners.

KPM Fig. 13.3

### Why Does $\ell_1$ Regularization Encourage Sparse Solutions?

Geometric intuition: Projection onto diamond encourages solutions at corners.

•  $\hat{w}$  in red/green regions are closest to corners in the  $\ell_1$  "ball".



Fig from Mairal et al.'s Sparse Modeling for Image and Vision Processing Fig 1.6

(CDS, NYU) DS-GA 1003 Feb 7, 2022

27 / 42

### Why Does $\ell_1$ Regularization Encourage Sparse Solutions?

Geometric intuition: Projection onto  $\ell_2$  sphere favors all directions equally.



Fig from Mairal et al.'s Sparse Modeling for Image and Vision Processing Fig 1.6

(CDS, NYU) DS-GA 1003 Feb 7, 2022

28 / 42

## Why does $\ell_2$ Encourage Sparsity? Optimization Perspective

#### For $\ell_2$ regularization,

- As w<sub>i</sub> becomes smaller, there is less and less penalty
  - What is the  $\ell_2$  penalty for  $w_i = 0.0001$ ?
- The gradient—which determines the pace of optimization—decreases as  $w_i$  approaches zero
- Less incentive to make a small weight equal to exactly zero

## Why does $\ell_2$ Encourage Sparsity? Optimization Perspective

#### For $\ell_2$ regularization,

- As w<sub>i</sub> becomes smaller, there is less and less penalty
  - What is the  $\ell_2$  penalty for  $w_i = 0.0001$ ?
- The gradient—which determines the pace of optimization—decreases as  $w_i$  approaches zero
- Less incentive to make a small weight equal to exactly zero

#### For $\ell_1$ regularization,

- The gradient stays the same as the weights approach zero
- This pushes the weights to be exactly zero even if they are already small

(CDS, NYU) DS-GA 1003 Feb 7, 2022 29 / 42

## $(\ell_q)$ Regularization

• We can generalize to  $\ell_q$  :  $(\|w\|_q)^q = |w_1|^q + |w_2|^q$ .

# $(\ell_q)$ Regularization

• We can generalize to  $\ell_q$ :  $(\|w\|_q)^q = |w_1|^q + |w_2|^q$ .









$$q = 1$$
  $q = 0.5$   $q = 0.1$ 



(CDS, NYU)

**DS-GA 1003** 

# $(\ell_a)$ Regularization

• We can generalize to  $\ell_a$ :  $(\|w\|_a)^q = |w_1|^q + |w_2|^q$ .



**DS-GA 1003** 

• Note:  $||w||_q$  is only a norm if  $q \ge 1$ , but not for  $q \in (0,1)$ 

30 / 42

# $(\ell_q)$ Regularization

• We can generalize to  $\ell_q$  :  $(\|w\|_q)^q = |w_1|^q + |w_2|^q$ .



- Note:  $||w||_q$  is only a norm if  $q \ge 1$ , but not for  $q \in (0,1)$
- When q<1, the  $\ell_q$  constraint is non-convex, so it is hard to optimize; lasso is good enough in practice

30 / 42

# Regularization

• We can generalize to  $\ell_a$ :  $(||w||_a)^q = |w_1|^q + |w_2|^q$ .



- Note:  $||w||_q$  is only a norm if  $q \ge 1$ , but not for  $q \in (0,1)$
- When q < 1, the  $\ell_q$  constraint is non-convex, so it is hard to optimize; lasso is good enough in practice
- $\ell_0$  ( $||w||_0$ ) is defined as the number of non-zero weights, i.e. subset selection

(CDS, NYU) **DS-GA 1003** Feb 7, 2022 30 / 42 Minimizing the lasso objective

## Minimizing the lasso objective

- The ridge regression objective is differentiable (and there is a closed form solution)
- Lasso objective function:

$$\min_{w \in R^d} \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \lambda ||w||_1$$

•  $||w||_1 = |w_1| + \ldots + |w_d|$  is not differentiable!

(CDS, NYU) DS-GA 1003 Feb 7, 2022 32 / 42

# Minimizing the lasso objective

- The ridge regression objective is differentiable (and there is a closed form solution)
- Lasso objective function:

$$\min_{w \in R^d} \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \lambda ||w||_1$$

- $||w||_1 = |w_1| + \ldots + |w_d|$  is not differentiable!
- We will briefly review three approaches for finding the minimum:
  - Quadratic programming
  - Projected SGD
  - Coordinate descent

(CDS, NYU) DS-GA 1003 Feb 7, 2022 32 / 42

- Consider any number  $a \in R$ .
- Let the **positive part** of a be

$$a^+ = a1(a \geqslant 0).$$

• Let the **negative part** of a be

$$a^- = -a1(a \leqslant 0).$$

- Consider any number  $a \in R$ .
- Let the **positive part** of a be

$$a^+ = a1(a \geqslant 0).$$

• Let the **negative part** of a be

$$a^- = -a1(a \leqslant 0).$$

• Is it always the case that  $a^+ \ge 0$  and  $a^- \ge 0$ ?

- Consider any number  $a \in R$ .
- Let the **positive part** of a be

$$a^+ = a1(a \geqslant 0).$$

• Let the **negative part** of a be

$$a^- = -a1(a \leqslant 0)$$
.

- Is it always the case that  $a^+ \ge 0$  and  $a^- \ge 0$ ?
- How do you write a in terms of  $a^+$  and  $a^-$ ?

- Consider any number  $a \in R$ .
- Let the **positive part** of a be

$$a^+ = a1(a \geqslant 0).$$

• Let the **negative part** of a be

$$a^-=-a1(a\leqslant 0).$$

- Is it always the case that  $a^+ \ge 0$  and  $a^- \ge 0$ ?
- How do you write a in terms of  $a^+$  and  $a^-$ ?
- How do you write |a| in terms of  $a^+$  and  $a^-$ ?

Substituting  $w = w^+ - w^-$  and  $|w| = w^+ + w^-$  results in an equivalent problem:

$$\min_{w^+,w^-} \quad \sum_{i=1}^n \left( \left( w^+ - w^- \right)^T x_i - y_i \right)^2 + \lambda 1^T \left( w^+ + w^- \right)$$
subject to  $w_i^+ \geqslant 0$  for all  $i$  and  $w_i^- \geqslant 0$  for all  $i$ ,

- This objective is differentiable (in fact, convex and quadratic)
- How many variables does the new objective have?
- This is a quadratic program: a convex quadratic objective with linear constraints.
- Quadratic programming is a very well understood problem; we can plug this into a generic QP solver.

(CDS, NYU) DS-GA 1003 Feb 7, 2022 34 / 42

## Are we missing some constraints?

We have claimed that the following objective is equivalent to the lasso problem:

$$\min_{w^+,w^-} \quad \sum_{i=1}^n \left( \left( w^+ - w^- \right)^T x_i - y_i \right)^2 + \lambda \mathbf{1}^T \left( w^+ + w^- \right)$$
subject to  $w_i^+ \geqslant 0$  for all  $i$   $w_i^- \geqslant 0$  for all  $i$ ,

- When we plug this optimization problem into a QP solver,
  - it just sees 2d variables and 2d constraints.
  - Doesn't know we want  $w_i^+$  and  $w_i^-$  to be positive and negative parts of  $w_i$ .
- Turns out that these constraints will be satisfied anyway!
- To make it clear that the solver isn't aware of the constraints of  $w_i^+$  and  $w_i^-$ , let's denote them  $a_i$  and  $b_i$

(CDS, NYU) DS-GA 1003 Feb 7, 2022 35 / 42

(Trivially) reformulating the lasso problem:

(Trivially) reformulating the lasso problem:

$$\min_{w} \min_{a,b} \sum_{i=1}^{n} \left( (a-b)^{T} x_{i} - y_{i} \right)^{2} + \lambda 1^{T} (a+b)$$
subject to  $a_{i} \geqslant 0$  for all  $i$   $b_{i} \geqslant 0$  for all  $i$ ,
$$a-b=w$$

$$a+b=|w|$$

Claim: Don't need the constraint a + b = |w|.

Exercise: Prove by showing that the optimal solutions  $a^*$  and  $b^*$  satisfies  $min(a^*, b^*) = 0$ , hence  $a^* + b^* = |w|$ .

(CDS, NYU) DS-GA 1003 Feb 7, 2022 36 / 42

Claim: Can remove min<sub>w</sub> and the constraint a - b = w.

Exercise: Prove by switching the order of the minimization.

## Projected SGD

- Now that we have a differentiable objective, we could also use gradient descent
- But how do we handle the constraints?

$$\begin{aligned} & \min_{w^+, w^- \in \mathbf{R}^d} \sum_{i=1}^n \left( \left( w^+ - w^- \right)^T x_i - y_i \right)^2 + \lambda \mathbf{1}^T \left( w^+ + w^- \right) \\ & \text{subject to } w_i^+ \geqslant 0 \text{ for all } i \\ & w_i^- \geqslant 0 \text{ for all } i \end{aligned}$$

- Projected SGD is just like SGD, but after each step
  - We project  $w^+$  and  $w^-$  into the constraint set.
  - In other words, if any component of  $w^+$  or  $w^-$  becomes negative, we set it back to 0.

(CDS, NYU) DS-GA 1003 Feb 7, 2022 38 / 42

Goal: Minimize  $L(w) = L(w_1, ..., w_d)$  over  $w = (w_1, ..., w_d) \in \mathbb{R}^d$ .

Goal: Minimize 
$$L(w) = L(w_1, ..., w_d)$$
 over  $w = (w_1, ..., w_d) \in \mathbb{R}^d$ .

• In gradient descent or SGD, each step potentially changes all entries of w.

(CDS, NYU) DS-GA 1003 Feb 7, 2022 39 / 42

Goal: Minimize 
$$L(w) = L(w_1, ..., w_d)$$
 over  $w = (w_1, ..., w_d) \in \mathbb{R}^d$ .

- In gradient descent or SGD, each step potentially changes all entries of w.
- In coordinate descent, each step adjusts only a single coordinate  $w_i$ .

$$w_i^{\text{new}} = \arg\min_{w_i} L(w_1, \dots, w_{i-1}, w_i, w_{i+1}, \dots, w_d)$$

- Solving the argmin for a particular coordinate may itself be an iterative process.
- Coordinate descent is an effective method when it's easy (or easier) to minimize w.r.t. one coordinate at a time

39 / 42 **DS-GA 1003** Feb 7, 2022

**Goal:** Minimize 
$$L(w) = L(w_1, \dots w_d)$$
 over  $w = (w_1, \dots, w_d) \in \mathbb{R}^d$ .

- Initialize  $w^{(0)} = 0$
- while not converged:
  - Choose a coordinate  $j \in \{1, \ldots, d\}$
  - $w_j^{\text{new}} \leftarrow \arg\min_{w_j} L(w_1^{(t)}, \dots, w_{j-1}^{(t)}, w_j, w_{j+1}^{(t)}, \dots, w_d^{(t)})$
  - $w_j^{(t+1)} \leftarrow w_j^{\text{new}}$  and  $w^{(t+1)} \leftarrow w^{(t)}$
  - $t \leftarrow t + 1$
- Random coordinate choice  $\Longrightarrow$  stochastic coordinate descent
- Cyclic coordinate choice  $\implies$  cyclic coordinate descent

(CDS, NYU) DS-GA 1003 Feb 7, 2022 40 / 42

#### Coordinate Descent Method for Lasso

The lasso objective coordinate minimization has a closed form! If

$$\hat{w}_{j} = \arg\min_{w_{j} \in \mathbb{R}} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2} + \lambda |w|_{1}$$

Then

$$\hat{w}_j = egin{cases} (c_j + \lambda)/a_j & \text{if } c_j < -\lambda \ 0 & \text{if } c_j \in [-\lambda, \lambda] \ (c_j - \lambda)/a_j & \text{if } c_j > \lambda \end{cases}$$

$$a_j = 2\sum_{i=1}^n x_{i,j}^2$$
  $c_j = 2\sum_{i=1}^n x_{i,j}(y_i - w_{-j}^T x_{i,-j})$ 

where  $w_{-i}$  is w without the j-th component, and  $x_{i,-i}$  is  $x_i$  without the j-th component.

(CDS, NYU) DS-GA 1003 Feb 7, 2022

41 / 42

• In general, coordinate descent is not competitive with gradient descent: its convergence rate is slower and the iteration cost is similar

- In general, coordinate descent is not competitive with gradient descent: its convergence rate is slower and the iteration cost is similar
- But it works very well for certain problems

- In general, coordinate descent is not competitive with gradient descent: its convergence rate is slower and the iteration cost is similar
- But it works very well for certain problems
- Very simple and easy to implement

- In general, coordinate descent is not competitive with gradient descent: its convergence rate is slower and the iteration cost is similar
- But it works very well for certain problems
- Very simple and easy to implement
- Example applications: lasso regression, SVMs