REPORT

December 21, 2024

Midterm Take-Home Exam December 20, 2024 (DUE January 10, 2025)

Instructions

- Open book and open class notes are allowed (including notes taken by students during exam). No other notes are allowed.
- Each answer should be clearly written, and the solution should be developed in detail.
- Mathematical derivations need to show all steps that lead to the answer.
- Partial credit will be given for incomplete solutions.
- There is NO penalty for incorrect solutions.

Hints - equations - conventions:

• Notation

- -R represents the rate of communication in bits per channel use (bpcu),
- $-\rho$ represents the SNR (signal to noise ratio),
- w will denote additive noise which will be distributed as a circularly symmetric Gaussian random variable $\mathbb{C}\mathcal{N}(0, N_0)$. If N_0 is not specified, then set $N_0 = 1$,
- Remember: for a given signal-to-noise ratio (SNR), then SNR in dB is simply $10log_{10}SNR$
- SISO stands for single-input single-output, MISO stands for multiple-input single output, SIMO stands for single-input multiple output, MIMO stands for multiple input multiple output.
- MU stands for multi-user.
- CSIT stands for channel state information at the transmitter, while CSIR stands for channel state information at the receiver.
- AWGN stands for additive white Gaussian noise.

• GOOD LUCK!!

EXAM PROBLEMS

1) (1 point). Consider a SISO setting, with no fading. Consider that the maximum possible rate (i.e., the capacity) is equal to 7 bpcu. What is the minimum SNR required to achieve this rate? Do you need CSIR?

[]:

2) (1 point). Consider a SISO quasi-static fading channel with no CSIT. We wish to decrease the probability of error, from $P_{err} \approx (SNR)^{-1}$ to $P_{err} \approx (SNR)^{-4}$. Suggest various ways we can achieve this, based on what we have learned in class.

[]:

3) (1 point). What are some of the advantages of MISO vs. SIMO, mentioned in class?

[]:

4) (1 point). In a single-user MIMO channel, how much diversity gain would we be able to get if we employed a transmitter with 4 transmit antennas and a receiver with 2 receive antennas, when in fact the channel between the first transmit and receive antenna, is identical always to the channel between the first transmit and second receive antenna?

[]:

5) (1 point). In a single-user MISO channel, how much multiplexing gain would we be able to get if we employed a transmitter with 2 transmit antennas?

[]:

- 6) (1 points). Consider communication over a quasi-static 2×1 MISO fading channel. Assume that you must draw symbols from 16-QAM.
 - Can you name a space time code, that gives full diversity in this setting, and then describe the rate (in bpcu) of such a code.

[]:

- 7) (3 points). In the context of various strategies, answer if each of the following statements are true or false, justifying briefly your answers.
 - In a MISO channel, we can get transmitter beamforming gain even without CSIT.
 - A base station equipped with 5 antennas in the downlink, can simultaneously serve up to 5 users (single receive antenna each).
 - A base station equipped with 5 antennas in the downlink, can simultaneously serve up to 10 users (two receive antennas each).
 - A base station equipped with 4 antennas in the downlink, can simultaneously serve up to 2 users (two receive antennas each).

- Line of sight channels are detrimental for spatial multiplexing in both single-user and multiuser MIMO.
- For a MIMO receiver using spatial multiplexing, the complexity of ZF receiver is more than the complexity of the maximum-likelihood receiver.
- CSIT is easier to obtain than CSIR.
- CSIT is of cardinal importance in multi-user MIMO.

[]:

8) (2 points). In a MU-MIMO channel, if I double the number of users I simultaneously serve, must I always halve the individual rate to each user? Justify your answer.

[]:

9) (4 points). Consider communication over the 2×1 quasi-static fading MISO channel, using a diagonal code (see below for details) such that the channel model is given by

$$\overbrace{(y_1 \quad y_2)}^{\underline{y}} = \theta \ \overbrace{(h_1 \quad h_2)}^{\underline{h}}$$

[]: