Generarea unor cuadraturi de tip Gauss

Radu T. Trîmbiţaş

10 mai 2021

Formula

$$\int_{a}^{b} w(x)f(x)dx = \sum_{k=1}^{n} A_{k}f(x_{k}) + R_{n}(f)$$

se numește de tip Gauss dacă coeficienții și nodurile sunt alese astfel încât gradul de exactitate să fie maxim. Nodurile $x_k,\ k=1,...,n$ sunt rădăcinile polinomului

$$\pi_n(x) = \prod_{k=1}^n (x - x_k).$$

ortogonal pe [a, b], în raport cu ponderea w.

Să considerăm relația de recurență pentru polinoamele ortogonale monice

$$\pi_{k+1}(x) = (x - \alpha_k)\pi_k(x) - \beta_k \pi_{k-1}(x), \qquad k = 0, 1, 2, \dots$$

$$\pi_0(x) = 1, \quad \pi_{-1}(x) = 0.$$
(1)

unde

$$\beta_0 = \int_a^b w(x)f(x)dx = \mu_0. \tag{2}$$

Coeficienții din relația de recurență (1) au expresia

$$\alpha_k = \frac{(x\pi_k, \pi_k)}{(\pi_k, \pi_k)}, \qquad \beta_k = \frac{(x\pi_k, \pi_{k-1})}{(\pi_{k-1}, \pi_{k-1})}.$$

Matricea Jacobi de ordinul n a funcției pondere w este o matrice tridia-

gonală simetrică, definită prin

$$J_n(w) = \begin{bmatrix} \alpha_0 & \sqrt{\beta_1} & & & 0\\ \sqrt{\beta_1} & \alpha_1 & \sqrt{\beta_2} & & & \\ & \sqrt{\beta_2} & & \ddots & \\ & & \ddots & \ddots & \sqrt{\beta_{n-1}} \\ 0 & & & \sqrt{\beta_{n-1}} & \alpha_{n-1} \end{bmatrix}.$$

Nodurile x_k sunt valori proprii ale lui J_n

$$J_n v_k = x_k v_k, \quad v_k^T v_k = 1, \quad k = 1, 2, \dots, n,$$
 (3)

iar coeficienții A_k se pot exprima cu ajutorul primei componente $v_{k,1}$ a vectorilor proprii corespunzători normalizați:

$$w_k = \beta_0 v_{k,1}^2, \quad k = 1, 2, \dots, n$$
 (4)

Dacă $f \in C^{2n}[a,b]$, pentru rest avem expresia

$$R_n(f) = \frac{f^{(2n)}(\xi)}{(2n)!} \int_a^b w(x) \pi_n^2(x) dx.$$

Tabela 1 dă câteva dintre polinoamele ortogonale clasice și coeficienții din relațiile lor de recurență.

Cu datele din tabel se formează matricea J şi se găsesc x_k şi A_k . Polinoamele ortogonale se aleg în funcție de intervalul de definiție şi de pondere. De exemplu, pentru. w=1 se lucrează cu polinoamele Legendre pe [-1,1] şi se face apoi schimbarea de variabilă pentru a trece la [a,b].

Observația 1 Pentru polinoamele Jacobi avem

$$\alpha_k = \frac{\beta^2 - \alpha^2}{(2k + \alpha + \beta)(2k + \alpha + \beta + 2)}$$

si

$$\beta_0 = 2^{\alpha + \beta + 1} B(\alpha + 1, \beta + 1),$$

$$\beta_k = \frac{4k(k + \alpha)(k + \alpha + \beta)(k + \beta)}{(2k + \alpha + \beta - 1)(2k + \alpha + \beta)^2 (2k + \alpha + \beta + 1)}, \quad k > 0.$$

Polinoamele	Notație	Ponderea	interval	α_k	β_k
Legendre	$P_n(l_n)$	1	[-1,1]	0	2 (k=0)
					$(4-k^{-2})^{-1} (k>0)$
Cebîşev #1	T_n	$(1-t^2)^{-\frac{1}{2}}$	[-1,1]	0	π (k =0)
					$\frac{1}{2}$ (k=1)
					$\frac{1}{4}$ (k>1)
Cebîşev #2	$u_n(Q_n)$	$(1-t^2)^{\frac{1}{2}}$	[-1,1]	0	$\frac{1}{2}\pi \ (k=0)$
					$\frac{1}{4} (k>0)$
Jacobi	$P_n^{(\alpha,\beta)}$	$(1-t)^{\alpha}(1-t)^{\beta}$	[-1,1]		
		$\alpha > -1, \beta > -1$			
Laguerre	$L_n^{(\alpha)}$	$t^{\alpha}e^{-t} \alpha > -1$	$[0,\infty)$	$2k+\alpha+1$	$\Gamma(1+\alpha)$ $(k=0)$
					$k(k+\alpha)$ $(k>0)$
Hermite	H_n	e^{-t^2}	\mathbb{R}	0	$\sqrt{\pi} (k=0)$
					$\frac{1}{2}k \ (k>0)$

Tabela 1: Polinoame ortogonale

Probleme.

- 1. Implementați funcții ce generează formule de cuadratură gaussiene pentru ponderile clasice date în tabela 1.
- 2. Să se calculeze integralele $\int_{-1}^{1} \sin x^2 dx$ și $\int_{-1}^{1} \cos x^2 dx$ cu precizia $\varepsilon = 10^{-7}$ folosind o cuadratură gaussiană. Câte noduri sunt necesare?
- 3. Determinați o formulă de cuadratură de forma

$$\int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^2}} dx = \sum_{k=1}^{10} A_k f(x_k) + R(f)$$

care să aibă grad maxim de exactitate. Să se aplice formula pentru a calcula $\int_{-1}^1 \frac{xe^{-x^2}}{\sqrt{1-x^2}} \, \mathrm{d}x$. Verificare.

4. Determinați o formulă de cuadratură de forma

$$\int_{-1}^{1} \sqrt{1 - x^2} f(x) \, \mathrm{d}x = \sum_{k=1}^{10} A_k f(x_k) + R(f)$$

care să aibă grad maxim de exactitate. Să se aplice formula pentru a calcula $\int_{-1}^1 \sqrt{1-x^2}e^{-x^2} dx$. Cât este eroarea?

5. Calculați

$$\int_0^\infty e^{-x} \sin(x) dx, \ \int_0^\infty e^{-x} \cos(x) dx,$$

cu 8 zecimale exacte folosing o cuadratură Gauss-Laguerre.

6. Calculați

$$\int_{\mathbb{R}} e^{-x^2} \sin x dx, \qquad \int_{\mathbb{R}} e^{-x^2} \cos x dx$$

utilizând o formulă de cuadratură Gauss-Hermite.

7. Aproximați $\int_0^{\frac{\pi}{2}}\frac{1}{\sqrt{\sin x}}\,\mathrm{d}x$ cu 9 zecimale exacte, folosind o cuadratură Gauss-Jacobi.