Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

Reserve aSB433 .N37

partment of

ricultural esearch ervice

nuary 1986

National Dormant Bermudagrass Overseeding Test, 1984

Progress Report 1985

This is a progress report of cooperative investigations containing data collected during one year only. Seed of each entry is from one seed lot only, therefore data for an entry is from that one seed lot. For these reasons, interpretation, publication, or display of data should be done with caution because results may be modified with additional experimentation.

Copies of this publication may be purchased from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

ARS has no additional copies for free distribution.

United States Department of Agriculture

Agricultural Research Service

National Dormant Bermudagrass Overseeding Test, 1984

Progress Report 1985

National Turfgrass Evaluation Program Sponsored by United States Department of Agriculture and Maryland State Turfgrass Council

NATIONAL TURFGRASS EVALUATION PROGRAM

The National Turfgrass Evaluation Program (NTEP) is designed to develop and coordinate uniform evaluation trials of turfgrass varieties and promising selections in the United States and Canada. Test results can be used by national companies and plant breeders to determine the broad picture of the adaptation of a cultivar. Results can also be used to determine if a cultivar is well adapted to a local area or level of turf maintenance.

Briefly, the NTEP is a self-supporting, non-profit program. sponsored by the Beltsville Agricultural Research Center and the Maryland Turfgrass Council. Program policy is made by a policy committee consisting of one member from each of the four (4) Regional Turfgrass Research Commmittees in the United States, one member from the Lawn Seed Division of the American Seed Trade Association, a national coordinator, and a technical coordinator. The program will not make variety recommendations. However, the data from tests can be used by extension specialists and others for making recommendations.

The policy committee is responsible for determining program policy including, (1) requirements for submission of entries, (2) scheduling tests, (3) evaluation methods, (4) selecting standard or control test entries, (5) setting entry fees, (6) coordinating tests in their respective regions, (7) establishing guidelines for publication and data distribution and (8) scheduling committee meetings. The national coordinator is responsible for the overall coordination and operation of the NTEP, including (1) soliciting entries and distribution of test seed sets to evaluators, (2) data summarization and distribution, and, (3) management of test materials, facilities, and finances.

National Coordinator - Jack Murray, USDA-ARS, Beltsville, Maryland

Technical Coordinator - Kevin Morris, Maryland Turfgrass Council

POLICY COMMITTEE MEMBERS

Dr. Reed Funk, Rutgers University

Dr. Terry Riordan, University of Nebraska

Dr. William Gilbert, North Carolina State University

Dr. Richard Schmidt, VPI and State University Mr. Bob Peterson, E. F. Burlingham & Sons

FOR ADDITIONAL REPORTS OR INFORMATION WRITE:

Kevin Morris, Technical Coordinator National Turfgrass Evaluation Program Beltsville Agricultural Research Center-West Building 001, Room 328 Beltsville, Maryland 20705

MAR ? 5 1993

CONTENTS

LOCATIONS S	UBMITTING DATA FOR 1984-851
	AL DORMANT BERMUDAGRASS OVERSEEDING TEST - d Sponsors
Table A -	1984 Locations, Site Descriptions and Management Practices in the 1984 National Dormant Bermudagrass Overseeding Test3
Table B -	Locations and Data Collected in 1984-853
Table 1 -	Mean Turfgrass Quality Ratings of Overseeding Cultivars, Blends and Mixtures for Each Month Grown at Ten Locations in the U.S4
Table 2 -	Mean Turfgrass Quality Ratings of Overseeding Cultivars, Blends and Mixtures at Ten Locations in the United States6
Table 3 -	Ranking of Mean Turfgrass Quality Ratings of Overseeding Cultivars, Blends and Mixtures at Ten Locations in the United States8
Table 4 -	Genetic Color Ratings of Dverseeding Cultivars. Blends and Mixtures10
Table 5 -	Spring Greenup Ratings of Overseeding Cultivars, Blends and Mixtures11
Table 6 -	Leaf Texture Ratings of Overseeding Cultivars, Blends and Mixtures12
Table 7 -	Seedling Vigor Ratings of Overseeding Cultivars, Blends and Mixtures13
Table 8 -	Spring Density Ratings of Overseeding Cultivars, Blends and Mixtures14
Table 9 -	Fall Density Ratings of Overseeding Cultivars, Blends and Mixtures15
Table 10 -	Percent Living Ground Cover (Spring) Ratings of Overseeding Cultivars, Blends and Mixtures16
Table 11 -	Winter Color Ratings of Overseeding Cultivars, Blends and Mixtures17
Table 12 -	Drought Tolerance (Wilting) Ratings of Overseeding Cultivars, Blends and Mixtures18
Table 13 -	Melting Out in Spring of Overseeding Cultivars, Blends and Mixtures19
	Wear Tolerance Ratings of Overseeding Cultivars, Blends and Mixtures
	Frost Tolerance Ratings of Overseeding Cultivars, Blends and Mixtures21
Table 16 -	Percent Bermudagrass (June) Ratings of Overseeding Cultivars, Blends and Mixtures22

LOCATIONS SUBMITTING DATA FOR 1984-85

State	Location	Code
Arizona	Paradise Valley (Paradise Valley Country Club - tee)	AZ1
California	Indian Wells (The Vintage Club - fairway)	CA1
Florida	Gainesville (green)	FL1
Georgia	Athens (tee)	GA 1
Louisiana	Baton Rouge (green)	LA1
Mississippi	Mississippi State (green)	MS1
North Carolina	Raleigh (green)	NC1
North Carolina	Hampstead (Belvedere Plantation - green)	NC2
Oklahoma	Stillwater (tee)	OK1
South Canalina	Clamson (fairway)	501

1984 NATIONAL DORMANT BERMUDAGRASS OVERSEEDING TEST

Entries and Sponsors

اد	Seed, Inc.		=	=	= -	r Have uk.	Merchants,	Inc.	Barenbrug Holland		=			Seed, Inc.			=		International Seeds			=		=		=		=	
Sponsor	Loft's eme gs fes.						Turf N	rye	Barenb	Sussession				Loft's gs fes.	J is		eme	n - >							gs fes.		gs fes.		
Components	Prelude P. rye 75% Marvelgreen Supreme 25% Jamestown Chewings	Palmer Prelude Cowboy	33% Palmer P. rye 33% Prelude P. rye	Palmer P. r Prelude P.	mer P. rye			rye II P.	Tando P. rye		30% Repell P. rye 40% Tara P. rye	de	P. rye	Palmer P. Jamestown	15% Sabre poa triviali 50% Cowboy P. rye		85% Marvelgreen Supreme	an)	30% Derby P. rye	30% Regal P. rye 20% Gator P. rve	Sabre P.	Derby P.	20% All*Star D rvs		25% Highlight	Derby P. r	40% Highlight Chewings 20% Sabre boa trivialie	Derby P. r	40% Kegal P. rye 20% Gator P. rye
Name	Prelude Marvelgreen 3+1	Marvelgreen Supreme	Par 3	Palmer/Prelude	Palmer	WSC 001	V. I.P.		Tando Tara-Green	Supreme	Tara-Green		Tara	Marvelgreen Classic	Loft's #1		Marvelgreen	(PhD w/Sabre			e G	P. Rye Blend	Dixie Green	Overseeding Mix	-	w/ Sabre	PhD	
Entry No.	34	36	37	38	39	04	4 4		42	7	44		45	46	47		48	49	20			5		52		23		54	
																				2									
Sponsor	O. M. Scotts	=		ye	= (van ber have uk. "	= :	Heart Seed Co.	E. F. Burlingham	SS.	=	=		Seed Research, Inc.	Turf-Seed, Inc.	=	= =			Garfield Williamson Turf-Seed, Inc.	Jacklin Seed Co.	= (Penn State Univ.	=	J. & L. Adikes	Barenbrug Holland	= =	Loft's Seed, Inc.	: :
Components Sponsor	O. M. S	. rye rye	rye		tion P. rye	P. rye Van Der Have P. rye "	P. T	rye blue Heart	Pennant P. rye E. F. Burlingham	30% Koket Chewings fes.	70% Pennant P. rye 30% Belle P. rye		Koket Chewings fes.	Palmer P. rye Seed Premier P. rye	ed,	rye.		33% Birdie II P. rve	Citation II P. rye	Omega II P. rye Garfield Williamso	Jacklin	do	rye Penn	D V V V V V V V V V V V V V V V V V V V	d. & L.	Barenbr	BAR Lp 412 P. rye	Loft's Seed,	Yorktown II P. rye
	otta P. rye O. M. S Caravelle P. rye " Derby P. rye	Pennant P. rye Loretta P. rye Derby P. rye	Pennfine P. rye Victa Ky. blue	20%	n Ovation P. rye	Blanca P. rye van Der Have Master P. rye "	Brenda P. r	rye blue Heart	Pennant P. rye E. F.	30% Koket Chewings			30% Koket Chewings fes.	Palmer P. rye Seed Premier P. rye	Prelude P. rye die II P. rve Turf-Seed,	II Citation II P. rye	20F P. rye	CBS 11 33% Umega 11 P. rye 33% Rindie II P. rve	Citation II P. rye		Huntsville Ky. blue Jacklin	Streaker Red top	PSU-111 P. rye Penn		r All*Star P. rye J. & L.	y Barry P. rye Barenbr	rye	Cowboy P. rye Loft's Seed,	rye

LOCATIONS, SITE DESCRIPTIONS AND MANAGEMENT PRACTICES	C DVEDSEEDING TEST
SCRIPTIONS AND MA	PMANT DEDMINACDAS
1984 LOCATIONS, SITE DE	TEST ASSA MATTOMAN DODWANT DEDMINDACDASS OVEDSEEDING TEST
TABLE A.	

IRRIGATION PRACTICED	TO PREVENT STRESS ONLY DURING SEVERE STRESS TO PREVENT STRESS TO PREVENT STRESS TO PREVENT STRESS
MOWING HEIGHT (IN)	0.00-0.5 TO 0.00-0
SUN OR SHADE	FULL SUN FULL SUN FULL SUN FULL SUN FULL SUN FULL SUN FULL SUN FULL SUN
NITROGEN (LBS/1000 SQ FT)	1. 1-2.0 3. 1-4.0 2. 1-3.0 4. 1-5.0 6. 1-7.0 1. 1-2.0 3. 1-4.0
SOIL POTASSIUM (LBS/ACRE)	0-150 151-240 0-150
SOIL PHOSPHOROUS (LBS/ACRE)	151-270 151-270 151-270 - 151-270 61-150
SOIL	6.6-7.0 5.6-6.0 6.1-6.5 5.6-6.0 5.6-6.0
SOIL TEXTURE	LOAMY SAND SANDY LOAM SANDY CLAY LOAM SILT LOAM AND SILT SANDY CLAY LOAM
LOCATION	AZI CA11 FL11 GA11 NC1 NC2 OK1

1984-85	
LOCATIONS AND DATA COLLECTED IN	
TABLE B.	

TABLE B.					LOCATIO	INS AND DA	LOCATIONS AND DATA COLLECTED IN 1984-85	CTED IN	1984-85	10					
LOCATION	JANUARY QUALITY RATING	FEBRUARY QUALITY RATING	MARCH QUALITY RATING	APRIL QUALITY RATING	MAY QUALI RATIN	JUNE TY QUALITY IG RATING	JULY JITY QUALITY NG RATING	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	>	SEPTEMBER QUALITY RATING	RATING		W ≻	DECEMBER QUALITY RATING	GENETIC
AZ1 CA1 FL1 GA1	× × ×	××× ×	× ×××	×××									× ×	××××	××
N N N N N N N N N N N N N N N N N N N	× × ×	× ×××	××××	** **	× ×××	××					×	^ ^ ^	× × ×	××××	×
LOCAT	LOCATION GREENUP	ENUP LEAF	JRE	RANCE	SEEDLING VIGOR	SPRING	FALL	PERCENT COVER SPRING		ANCE	WINTER	DROUGHT TOLERANCE WILTING		TING	PERCENT BERMUDA JUNE
AZ1 CA1 FL1 GA1		×		×	× ×						×	×			
MS1 NC2 OK1	××	×			××	×	×	×		×	××			×	×

MEAN TURFGRASS QUALITY RATINGS OF OVERSEEDING CULTIVARS, BLENDS AND MIXTURES FOR EACH MONTH GROWN AT TEN LOCATIONS IN THE U.S. 1984-85 DATA

TURFGRASS QUALITY RATINGS 1-9; 9=IDEAL TURF: MONTHS 1/

NAME	OAN	FEB	MAR	APR	MAY	NOO	JUL	AUG	SEP	100	NON NO.	DEC	MEAN
* OMEGA II													9.9
G								•	•				
* PRELUDE	5.4								•				6.4
* V.I.P.									•				,
* TARA-GREEN SUPREME							٠						
TANDO													
* PALMER/PRELUDE													
* PALMER								•		5.3			6.4
* TARA													
* OVATION					-			•					
* PAR 3							٠						
PSU-333								•					
* BARRY													
PSU-111								•	,				
* CBS II								•					
* ALL*STAR							٠.	•	•				
* CITATION II								•	•				
* MARVELGREEN 3+1													
* MARVELGREEN SUPREME													
* BIRDIE II								٠					
\sim								٠					
* MARVELGREEN						- 1			٠		- 1		
* MANHATTAN II													
BURLINGHAM #2													
* WINTER TURF V									٠				
BURLINGHAM #3								٠					6.2
* PHD													
								٠					
* DIXIE GREEN RYE BLEND									•				
LORETTA							٠	,					
							٠	,					
* MARVELGREEN CLASSIC								,					
BRENDA			,										
RANGER													
* MARVELGREEN + SABRE	0.6) v	O +	- o	0°0	. c) c	0 u	о п 1 С	0.0
						•	•	•	•				
* WINIEK TOKT III							. ,		• •				
								. ,					
RAD ID 412								, ,					
								٠					
in in													
									٠				
* COWDO *							٠						
	5.1						٠	•	•				
LP 80-1			5.5				,						
BURI INGHAM #1	5.0		ę				٠		,				
* PHD W/SABRE													
AGREE	4.6				4				٠				

MEAN TURFGRASS QUALITY RATINGS OF OVERSEEDING CULTIVARS, BLENDS AND MIXTURES FOR EACH MONTH GROWN AT TEN LOCATIONS IN THE U.S. TABLE 1. (CONTINUED)

1984-85 DATA

TURFGRASS QUALITY RATINGS 1-9; 9=IDEAL TURF: MONTHS

	MEAN	5.4	3.9	3.7	3.6	0.7
	DEC	5.0	3.6	3°.8	3.8	6.0
	NON	5.2	3.9	4.2	4.2	1.0
	OCT	5.7	5.0	6.3	5.7	4.4
	SEP	٠	•			
	AUG	•		•		٠
	JUL			٠	٠	٠
•	NOD	7.0	7.0	6.2	4.5	1.4
	MAY	5.9	4.8	4.6	4.0	1.4
	APR	6.3	4.6	4.0	4.1	1.0
)	MAR	5.9	4.1	3.8	4.1	6.0
	FEB	5.0	3.5	3.2	3.3	1.0
	NAD	4.8	3.9	3.9	3.7	7.
	NAME	- DIXIE GREEN W/SABRE	HUNTSVILLE	* ARGYLE	* STREAKER	LSD VALUE

COMMERCIALLY AVAILABLE VARIETY

QUALITY RATINGS ARE BASED ON AN OVERALL VISUAL ESTIMATE INTEGRATING ALL THE FACTORS OF TURFGRASS QUALITY INCLUDING COLOR, DENSITY, DISEASE AND INSECT RESISTANCE, ETC. TO DETERMINE STATISTICAL DIFFERENCES AMONG ENTRIES, SUBTRACT ONE ENTRY'S MEAN FROM ANOTHER ENTRY'S MEAN. STATISTICAL DIFFERENCES OCCUR WHEN THIS VALUE IS LARGER THAN THE CORRESPONDING LSD VALUE (LSD 0.05).

- 4 4 0 W W W W W W W W T A W $\mathsf{CLAL}(\mathsf{CL$ NC 1 9=IDEAL TURF LA1 1984-85 DATA 1-9 GA RATINGS α FL1 $4 \land \texttt{u} \land \texttt{u$ $@ \ \ \, (\ \ \ \, (\ \ \ \, (\ \ \ \, (\ \ \ \, (\ \ \ \, (\ \ \ \, (\ \ \ \, (\ \ \ \, (\ \ \ \, (\ \ \ \, (\ \ \ \, (\ \ \ \, (\ \ \ \, (\ \ \ \,)))))))))$ CA 1 AZ1 BLEND OVERSEED 3+1 SUPREME CLASSIC SABRE SUPREME RYE III PALMER/PRELUDE + WINTER TURF V BURLINGHAM #3 BURLINGHAM #2 BURLINGHAM #1 MANHATTAN II MARVELGREEN MARVELGREEN DIXIE GREEN MARVELGREEN MARVELGREEN MARVELGREEN DIXIE GREEN WINTER TURF WINTER TURF BAR LP 412 CITATION II PHD W/SABRE AGREE YORKTOWN II TARA-GREEN TARA-GREEN BIRDIE II ALL *STAR CHAMPION OMEGA II PENNANT CBS II PSU-333 PSU-222 LORETTA WSC 001 LOFTS # PRELUDE DVATION PSU-111 LP 80-1 RANGER PALMER BRENDA MASTER BIANCA COWBOY TANDO PAR 3 BARRY TARA NAME 2DF

TABLE 2. (CONTINUED) MEAN TURFGRASS QUALITY RATINGS OF OVERSEEDING CULTIVARS, BLENDS AND MIXTURES AT TEN LOCATIONS IN THE UNITED STATES 1984-85 DATA

	MEAN	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	SC1	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
	0K1	1.6.7.7.7.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	
	NC2	0 4 72 E. 0 4 8 0 8 9	
TURF	NC 1	0.4.8. + 0.4.2. + 0.4.3. +	
9=IDEAL T	MS 1	8. 4. 0. 0. 4. 0. 4. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	
	LA1	23.3 4.8 9.0 9.0	
INGS 1-	GA 1	4 4 2 8 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
QUALITY RATINGS 1-9;	FL 1	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
QUAL	CA1	0.88.0	
	AZ1	4.22.6 +	
	NAME	DIXIE GREEN W/SABRE HUNTSVILLE ARGYLE STREAKER LSD VALUE	

TO DETERMINE STATISTICAL DIFFERENCES AMONG ENTRIES, SUBTRACT ONE ENTRY'S MEAN FROM ANOTHER ENTRY'S MEAN. STATISTICAL DIFFERENCES OCCUR WHEN THIS VALUE IS LARGER THAN THE CORRESPONDING LSD VALUE (LSD 0.05). 1

RANKING OF MEAN TURFGRASS QUALITY RATINGS OF OVERSEEDING CULTIVARS. BLENDS AND MIXTURES AT TEN LOCATIONS IN THE UNITED STATES

○ u u u o ○ u u ○ o u o o o u u u u u STATE LOCATIONS REPORTING LA1 1984-85 DATA MEAN: : 1=HIGHEST RANKINGS QUALITY BLEND OVERSEED SUPREME CLASSIC MARVELGREEN + SABRE SUPREME 3+1 RYE PALMER/PRELUDE PALMER BURLINGHAM #2 BURLINGHAM #1 WINTER TURE BURLINGHAM # WINTER TURF BAR LP 412 WSC 001 DIXIE GREEN MARVELGREEN MANHATTAN II MARVELGREEN MARVELGREEN DIXIE GREEN WINTER TURF MARVELGREEN PHD W/SABRE AGREE CITATION II YORKTOWN II TARA-GREEN TARA-GREEN BIRDIE II LOFTS #1 CHAMPION ALL*STAR OMEGA II PAR 3 PSU-333 OVATION PRELUDE PSU-111 PENNANT LORETTA LP 80-1 BRENDA COWBOY BIANCA TANDO BARRY V. I.P TARA NAME DHO

TABLE 3. (CONTINUED) RANKING OF MEAN TURFGRASS QUALITY RATINGS OF OVERSEEDING CULTIVARS. BLENDS AND MIXTURES AT TEN LOCATIONS IN THE UNITED STATES

1984-85 DATA

QUALITY RANKINGS ; 1=HIGHEST MEAN: STATE LOCATIONS REPORTING

MEAN	51 53 54
SC 1	34.0 47.5 39.0
0K1	52 52
NC2	35 52 54
NC 1	52 53 54
MS 1	32.0 47.5 54.0 50.0
LA1	52 53 54
GA 1	51 52 53
FL1	50 52 53
CA1	52 53 54
AZ1	51 53 52
NAME	DIXIE GREEN W/SABRE HUNTSVILLE ARGYLE STREAKER

RANKING OF MEAN TURFGRASS QUALITY IS ACHIEVED BY ASSIGNING "1" TO THE HIGHEST MEAN, "2" TO THE SECOND HIGHEST MEAN, ETC. FOR EACH LOCATION. IF MEANS ARE TIED, THE MEAN OF THE RANKS THEY ARE TIED FOR IS USED. FOR EXAMPLE, IF TWO MEANS ARE TIED FOR THE SECOND AND THIRD RANKS, BOTH ARE ASSIGNED "2.5". 1

TABLE 4. GENETIC COLOR RATINGS OF OVERSEEDING CULTIVARS, BLENDS AND MIXTURES
1984-85 DATA

GENETIC COLOR RATINGS 1-9; 9=DARK GREEN 1/ MEAN SC1 NAME CA1 F1 1 7.6 WINTER TURF III 6.7 7.7 8.3 8.7 7.4 6.0 7.7 ALL*STAR 7.4 CBS II 7.0 9.0 6.3 TARA-GREEN 6.7 7.7 8.0 7.4 PENNANT 6.7 7.0 8.0 7.2 6.7 7.7 7.0 7.1 MARVELGREEN 3+1 7.7 6.7 7.1 OMEGA II 7.0 7 7 6.7 7.1 PAR 3 7 0 PSU-333 6.3 7.7 7.3 7.1 7.1 6.7 8.3 6.3 TARA 7.0 7.3 7.1 V.I.P. 7 0 7.0 BURLINGHAM #2 6.0 7 7 7 3 CHAMPION 5.7 8.3 7.0 7.0 PHD W/SABRE 6.0 8.3 6.7 7.0 7.3 7.0 2DF 6.0 7.7 6.7 7 7 6 3 6 9 DIXIE GREEN OVERSEED 6.0 7.0 7.3 6.8 LOFTS #1 MARVELGREEN SUPREME 6.3 7.7 6.3 6.8 PALMER/PRELUDE 6.7 7.0 6.7 6.8 6.7 7.0 6.7 6.8 PREI UDE CITATION II 6.3 7.0 6.7 7.0 6.7 DIXIE GREEN RYE BLEND 6.0 7.0 MARVELGREEN 6.0 7.0 7.0 6.7 7.0 7.0 6.7 TARA-GREEN SUPREME 6.0 BRENDA 6.0 7.7 6.3 6.7 7.7 6.3 6.7 6.0 **BURLINGHAM #3** PALMER 6.3 7.0 6.7 6.7 7.0 6.7 6.7 PHD 6.3 BURLINGHAM #1 5.3 7.7 6.7 6.6 DIXIE GREEN W/SABRE 5.3 7.7 6.7 6.6 BARRY 6.0 7.7 5.7 6.4 5.0 7.7 6.7 COWROY 6 4 MANHATTAN II 6.3 7.0 6.0 6.4 7.0 6.0 6.3 6.4 DVATION PSU-222 6.0 7.0 6.3 6.4 6.0 7.0 6.3 6.4 RANGER TANDO 7.0 6.3 6.0 6.4 WINTER TURF I 6.3 7.0 6.0 6.4 YORKTOWN II 6.0 7.0 6.3 6.4 BIRDIE II 6.0 7.0 6.0 6.3 BIANCA 5.7 7.0 6.3 6.3 MARVELGREEN + SABRE 6.3 5.7 7.0 6.3 MARVELGREEN CLASSIC 6.3 5.7 7.0 6.3 6.0 5.7 7.0 6.2 AGREE BAR LP 412 6.0 5.7 7.0 6.2 LORETTA 6.0 6.3 6.3 6.2 MASTER 6.0 7.0 5.7 6.2 PSU-111 6.0 5.7 7.0 6.2 WSC 001 6.7 5.7 6.0 6.1 3.3 8.3 6.3 6.0 STREAKER WINTER TURF V 6.0 5.0 6 3 5.8 7.0 6.0 ARGYLE 3.7 5 6 LP 80-1 5.3 5.7 5.7 5.6 HUNTSVILLE 6.3 6.0 3.7 5.3 LSD VALUE 0.8 1.7 1.5 0.8

^{1/} COLOR RATINGS ARE BASED ON GENETIC COLOR AND NOT CHLOROSIS OR BROWNING CAUSED BY MOWER DAMAGE,
DISEASE, ETC. TO DETERMINE STATISTICAL DIFFERENCES AMONG ENTRIES, SUBTRACT ONE ENTRY'S MEAN FROM
ANOTHER ENTRY'S MEAN. STATISTICAL DIFFERENCES OCCUR WHEN THIS VALUE IS LARGER THAN THE CORRESPONDING LSD VALUE (LSD 0.05).

TABLE 5. SPRING GREENUP RATINGS OF OVERSEEDING CULTIVARS, BLENDS AND MIXTURES
1984-85 DATA

SPRING GREENUP RATINGS 1-9; 9=COMPLETELY GREEN 1/ NAME OK 1 SC1 MEAN MARVELGREEN 3+1 6.7 7.7 7 2 TARA-GREEN 6.7 7.2 7.7 WINTER TURF III 6.0 8.3 7.2 BARRY 7.3 6.7 7.0 MARVELGREEN SUPREME 6.3 7.7 7.0 ARGYLE 6.7 7.0 6.8 BURLINGHAM #1 6.3 7.3 6.8 CHAMPION 6.3 7.3 6.8 COWBOY 6.7 7.0 6.8 DIXIE GREEN RYE BLEND 7.0 6.7 6.8 PALMER 6.7 7.0 6.8 PALMER/PRELUDE 6.7 7.0 6.8 PENNANT 7.0 6.7 6.8 PSU-333 6.0 7.7 6.8 BIRDIE II 6.7 6.7 6.7 PAR 3 6.0 7.3 6.7 PHD W/SABRE 6.7 6.7 6 7 PRELUDE 6.3 6.7 7.0 RANGER 6.7 6.7 6.7 STREAKER 6.7 6.7 6.7 WSC 001 6.3 7.0 6.7 YORKTOWN II 6.0 7.0 6.5 2DF 6.0 7.0 6.5 ALL*STAR 6.3 6.7 6.5 BURLINGHAM #2 6.3 6.7 6.5 BURLINGHAM #3 6.3 6.7 6.5 WINTER TURF I 5.7 7.3 6.5 CBS II 6.3 6.3 6.3 CITATION II 6.3 6.3 LP 80-1 6.0 6.7 6.3 MANHATTAN II 6.3 6.3 6.3 MARVELGREEN 6.3 6.3 6.3 **BAR LP 412** 6.3 6.0 6.2 DIXIE GREEN OVERSEED 6.3 6.0 6.2 DIXIE GREEN W/SABRE 6.3 6.0 6.2 LORETTA 7.0 5.3 6.2 MARVELGREEN + SABRE 5.3 7.0 6.2 MARVELGREEN CLASSIC 5.7 6.7 6.2 MASTER 6.0 6.3 6.2 PHD 7.0 5.3 6.2 TANDO 6.0 6.3 6.2 TARA 6.0 6 3 6 2 TARA-GREEN SUPREME 7.0 5.3 6.2 V.I.P. 6.3 6.0 6 2 BIANCA 6.0 6.0 6.0 PSU-111 6.0 6.0 6.0 PSU-222 6.0 6.0 6.0 WINTER TURF V 6.0 6.0 6.0 6.7 6.0 AGREE 5.3 OMEGA II 6.3 5.7 6.0 5.7 6.0 5.8 HUNTSVILLE 5.7 6.0 5.8 LOFTS #1 BRENDA 6.0 5.3 5.7 5.0 OVATION 6.0 5.5 1.0 LSD VALUE 1.5 0.9

^{1/} TO DETERMINE STATISTICAL DIFFERENCES AMONG ENTRIES, SUBTRACT ONE ENTRY'S MEAN FROM ANOTHER ENTRY'S MEAN. STATISTICAL DIFFERENCES OCCUR WHEN THIS VALUE IS LARGER THAN THE CORRES-PONDING LSD VALUE (LSD 0.05).

TABLE 6. LEAF TEXTURE RATINGS OF OVERSEEDING CULTIVARS, BLENDS AND MIXTURES 1984-85 DATA

LEAF TEXTURE RATINGS	1-9;	9=VERY	FINE 1
NAME	FL1	SC1	MEAN
WINTER TURF V STREAKER LORETTA BURLINGHAM #3 LOFTS #1 MASTER WINTER TURF I BIANCA BRENDA PHD BAR LP 412 AGREE CHAMPION MANHATTAN II TARA TARA-GREEN SUPREME ARGYLE BIRDIE II BURLINGHAM #2 DIXIE GREEN OVERSEED MARVELGREEN + SABRE PALMER/PRELUDE PRELUDE PSU-111 PSU-333 TANDO WINTER TURF III CITATION II COWBOY DIXIE GREEN RYE BLEND OVATION PSU-222 WSC OO1 BURLINGHAM #1 CBS II HUNTSVILLE MARVELGREEN 3+1 PALMER PENNANT PHD W/SABRE TARA-GREEN ALL*STAR DIXIE GREEN W/SABRE LP 80-1 OMEGA II PAR 3 RANGER 2DF MARVELGREEN SUPREME V.I.P. YORKTOWN II MARVELGREEN BARRY MARVELGREEN CLASSIC LSD VALUE	9.0 8.3 7.7 7.0 7.0 7.0 7.0 7.0 7.0 7.0	8.0 7.7 8.0 8.3 8.3 8.3 8.0 8.0 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7	8.50 8.77 7.77 7.55 5.53 3.33 2.22 2.22 2.22 2.22 2.22 2

^{1/} TO DETERMINE STATISTICAL DIFFERENCES AMONG ENTRIES, SUBTRACT ONE ENTRY'S MEAN FROM ANOTHER ENTRY'S MEAN. STATISTICAL DIFFERENCES OCCUR WHEN THIS VALUE IS LARGER THAN THE CORRES-PONDING LSD VALUE (LSD 0.05).

TABLE 7. SEEDLING VIGOR RATINGS OF OVERSEEDING CULTIVARS, BLENDS AND MIXTURES 1984-85 DATA

SEEDLING VIGOR RATINGS	1-9;	9=MAXI	MUM SEE	DLING \	IGOR 1/
NAME	CA1	GA 1	OK1	SC1	MEAN
CBS II	7 7	4 77			
	7.7		6.7	8.0	6.8
BIRDIE II	7.3	5.3	6.7	7.3	6.7
PENNANT	7.7	5.7	6.0	7.3	6.7
BURLINGHAM #2	7.0	4.7	6.7	8.0	6.6
2DF	7.7	5.7	6.0	7.0	6.6
AGREE	6.7	5.3			
ALL*STAR	7.3		7.0	7.3	6.6
		5.0	6.7	7.3	6.6
OMEGA II	7.3	5.3	7.0	6.7	6.6
CHAMPION	7.7	4.7	6.3	7.3	6.5
LORETTA	7.7	5.7	4.3	8.3	6.5
TARA-GREEN	7.7	4.7	5.7	8.0	6.5
V.I.P.	7.3	5.3	6.3	7.0	
OVATION	7.0	4.7	5.7	8.3	6.4
	7.3			7.7	
DAD 2	7.3				6.4
PUDLINGUAM #4		5.3	5.3	7.7	6.4
BURLINGHAM #1	7.0	4.3	5.7	8.3	6.3
OTIMITON II	7.3	5.7	6.0		6.3
	7.7	5.3	5.0	7.3	6.3
WINTER TURF III	8.0	5.0	4.0	8.0	6.3
LOFTS #1	7.0	5.0	5.7	7.3	6.3
LOFTS #1 MANHATTAN II WINTER TURF V BIANCA	7.7	4.7	5.7	7.0	6.3
WINTER TURF V	7.0	5.7	5.3	7.0	6.3
BIANCA	7.0	4.3	6.0	7.3	6.2
MARVELGREEN	7.7	4.0	5.7	7.3	6.2
PALMER	7.3	5.0	5.3	7.0	6.2
PSU-222	7.7	5.3	5.0	6.7	6.2
BIANCA MARVELGREEN PALMER PSU-222 BARRY PRELUDE BRENDA COWBOY PHD	7.0	5.3	5.0	7.0	6.1
PRELUDE	8.0	5.0		6.3	6.1
BRENDA	7.0	5.3			6.1
COMBOX	7.0	4.3	5.7	7.3	6.1
PHD	7.7	4.0	5.0	7.7	6.1
PSU-333	7.7	4.3	5.0	7.3	6.1
	7.0	5.0	5.0	7.0	
DIXIE GREEN RYE BLEND					6.0
		4.7		6.7	6.0
PSU-111		5.3	4.0	7.3	6.0
	5.7	4.7		7.3	5.9
DIXIE GREEN OVERSEED	7.0	5.0	3.7	8.0	5.9
MARVELGREEN SUPREME					5.8
MASIER	7.0				5.8
			4.7	7.0	
		4.7		7.3	5.8
TARA-GREEN SUPREME	7.7	4.0	4.7	6.7	5.8
YORKTOWN II	7.3	4.3	4.0	7.3	5.8
WINTER TURF I	7.0	4.3	3.7	7.7	5.7
RANGER	7.3	4.7	2.7	7.7	5.6
WSC 001	7.0	4.0	4.3	7.0	5.6
MARVELGREEN + SABRE	6.0	5.0	3.7	7.3	5.5
MARVELGREEN 3+1	7.0	4.0	3.0	7.3	5.3
DIXIE GREEN W/SABRE	7.0	3.7	3.0	7.3	5.3
MARVELGREEN CLASSIC	7.0	4.7	2.3	7.0	5.3
PHD W/SABRE	7.3	3.3	3.0	7.3	5.3
ARGYLE	4.7	3.0	1.0	8.0	4.2
STREAKER	5.7	1.7	2.0	7.0	4.2
HUNTSVILLE	4.3	1.0	1.3	7.3	3.5
HOIAL 2ATETE	4.3	1.0	1.3	7.3	3.3
LCD VALUE	0.7	1 /	2.0	4 4	0.7
LSD VALUE	0.7	1.4	2.0	1.1	0.7

^{1/} TO DETERMINE STATISTICAL DIFFERENCES AMONG ENTRIES, SUBTRACT ONE ENTRY'S MEAN FROM ANOTHER ENTRY'S MEAN. STATISTICAL DIFFERENCES OCCUR WHEN THIS VALUE IS LARGER THAN THE CORRESPONDING LSD VALUE (LSD 0.05).

TABLE 8. SPRING DENSITY RATINGS OF OVERSEEDING CULTIVARS, BLENDS AND MIXTURES 1984-85 DATA

DENSITY RATINGS 1-9: 9=MAXIMUM DENSITY 1/ SC1 MEAN 8.7 8.7 OVATION 8.0 8.0 BIANCA 8.0 8.0 MASTER 8.0 8.0 PRELUDE 8.0 8.0 V.I.P. 7.7 7.7 CHAMPION 7.7 7.7 PALMER 7.7 7.7 PENNANT STREAKER 7.7 7.7 7.7 TANDO WINTER TURF V 7.7 7.7 7.7 7.7 WSC 001 7.7 YORKTOWN II 7.7 7.3 7.3 ALL*STAR 7.3 BAR LP 412 7.3 7.3 7.3 7.3 BURLINGHAM #1 7.3 BURLINGHAM #2 7.3 BURLINGHAM #2
BURLINGHAM #3 7.3 7.3 CBS II 7.3 COWBOY 7.3 7.3 DIXIE GREEN RYE BLEND 7.3 7.3 7.3 LOFTS #1 7.3 7.3 LORETTA 7.3 LP 80-1 7.3 7.3 MARVELGREEN 3+1 7.3 7.3 7.3 7.3 PAR 3 7.3 TARA 7.3 TARA-GREEN 7.3 7.3 7.3 TARA-GREEN SUPREME 7.3 WINTER TURF I
WINTER TURF III 7.3 7.3 7.3 AGREE 7.0 7.0 7.0 ARGYLE 7.0 BRENDA 7.0 DIXIE GREEN OVERSEED DIXIE GREEN W/SABRE 7.0 7.0 7.0 7.0 MARVELGREEN 7.0 7.0 7.0 7.0 MARVELGREEN SUPREME 7.0 7.0 OMEGA II 7.0 7.0 PHD 7.0 7.0 PSU-333 7.0 7.0 RANGER 7.0 7.0 BARRY 6.7 6.7 BIRDIE II 6.7 6.7 MANHATTAN II 6.7 MARVELGREEN + SABRE 6.7 MARVELGREEN CLASSIC 6.7 6.7 6.7 PALMER/PRELUDE 6.7 6.7 PHD W/SABRE 6.7 PSU-111 6.7 6.7 PSU-222 6.7 6.7 2DF 6.7 6.7 LSD VALUE 1.2 1.2

^{1/} TO DETERMINE STATISTICAL DIFFERENCES AMONG ENTRIES, SUBTRACT ON ENTRY'S MEAN FROM ANOTHER ENTRY'S MEAN. STATISTICAL DIFFERENCES OCCUR WHEN THIS DIFFERENCE IS LARGER THAN THE CORRESPONDING LSD VALUE (LSD 0.05).

TABLE 9. FALL DENSITY RATINGS OF OVERSEEDING CULTIVARS, BLENDS AND MIXTURES 1984-85 DATA

DENSITY RATINGS 1-9;	9=MAXIMUM	DENSITY	1,
NAME	SC1	MEAN	
	SC1 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.	MEAN 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.	1,
	7.7 7.3 7.3 7.3 7.0	7.7 7.3 7.3 7.3 7.0	
DIXIE GREEN RYE BLEN MARVELGREEN + SABRE TARA LOFTS #1 PHD W/SABRE MARVELGREEN CLASSIC	7.0 7.0 6.7 6.7	7.0 7.0 7.0 6.7 6.7	
LSD VALUE	1.0	1.0	

^{1/} TO DETERMINE STATISTICAL DIFFERENCES AMONG ENTRIES, SUBTRACT ON ENTRY'S MEAN FROM ANOTHER ENTRY'S MEAN. STATISTICAL DIFFERENCES OCCUR WHEN THIS DIFFERENCE IS LARGER THAN THE CORRESPONDING LSD VALUE (LSD 0.05).

TABLE 10. PERCENT LIVING GROUND COVER (SPRING) RATINGS OF OVERSEEDING CULTIVARS, BLENDS AND MIXTURES
1984-85 DATA

PERCENT LIVING GROUND COVER IN SPRING: LOCATIONS 1/

NAME	SC1	MEAN
04504 **		00.0
OMEGA II	88.3	88.3
PENNANT	88.3	88.3
V.I.P.	88.3	88.3
WINTER TURF I	88.3	88.3
ARGYLE	86.7	86.7
BIANCA	86.7	86.7
LOFTS #1	86.7	86.7
PSU-111	86.7	86.7
ALL*STAR	85.0	85.0
COWBOY	85.0	85.0
DIXIE GREEN RYE BLEND	85.0	85.0
LORETTA	85.0	85.0
MARVELGREEN + SABRE	85.0	85.0
MARVELGREEN SUPREME	85.0	85.0
MASTER	85.0	85.0
PHD W/SABRE	85.0	85.0
PSU-333	85.0	85.0
BAR LP 412	83.3	83.3
BARRY	83.3	83.3
BIRDIE II	83.3	83.3
BURLINGHAM #3	83.3	83.3
CHAMPION	83.3	83.3
HUNTSVILLE	83.3	83.3
MARVELGREEN 3+1	83.3	83.3
OVATION	83.3	83.3
TANDO	83.3	83.3
TARA-GREEN	83.3	83.3
TARA-GREEN SUPREME	83.3	83.3
AGREE	81.7	81.7
BRENDA	81.7	81.7
BURLINGHAM #1	81.7	81.7
BURLINGHAM #2	81.7	81.7
CBS II	81.7	81.7
DIXIE GREEN OVERSEED	81.7	81.7
DIXIE GREEN W/SABRE	81.7	81.7
LP 80-1	81.7	81.7
MANHATTAN II	81.7	81.7
MARVELGREEN	81.7	81.7
PALMER/PRELUDE	81.7	81.7
PAR 3	81.7	81.7
PHD	81.7	81.7
STREAKER	81.7	81.7
TARA	81.7	81.7
WINTER TURF III		81.7
WINTER TURF V	81.7 81.7	81.7
YORKTOWN II	81.7	81.7
PSU-222	80.0	80.0
RANGER	80.0	80.0
2DF	80.0	80.0
MARVELGREEN CLASSIC	78.3	78.3
PRELUDE	78.3	78.3
WSC 001	76.7	76.7
PALMER	75.0	75.0
LSD VALUE	7.4	7.4

^{1/} PERCENT LIVING GROUND COVER IS USED TO EXPRESS MASSIVE LOCALIZED DAMAGE SUCH AS THAT CAUSED BY DISEASE, WEEDS, INSECTS, DROUGHT, ETC. TO DETERMINE STATISTICAL DIFFERENCES AMONG ENTRIES, SUBTRACT ON ENTRY'S MEAN FROM ANOTHER ENTRY'S MEAN. STATISTICAL DIFFERENCES OCCUR WHEN THIS DIFFERENCE IS LARGER THAN THE CORRESPONDING LSD VALUE (LSD 0.05).

TABLE 11. WINTER COLOR RATINGS OF OVERSEEDING CULTIVARS, BLENDS AND MIXTURES 1984-85 DATA

WINTER COLOR RATINGS 1-9; 9=COMPLETE COLOR RETENTION 1/

TIMIER COLOR RATINGS 1-9;	9=COMP	LETE C	OLOR RET	rention
NAME	GA 1	OK1	SC1	MEAN
MARVELGREEN + SABRE MARVELGREEN CLASSIC DIXIE GREEN W/SABRE PHD W/SABRE V.I.P. CHAMPION DIXIE GREEN OVERSEED MARVELGREEN 3+1 PAR 3 BURLINGHAM #3 DIXIE GREEN RYE BLEND PALMER/PRELUDE PRELUDE PHD MANHATTAN II PSU-333 TARA-GREEN TARA-GREEN SUPREME LOFTS #1 MARVELGREEN SUPREME PALMER RANGER ARGYLE BURLINGHAM #1 LP 80-1 TARA WINTER TURF V COWBOY MARVELGREEN OMEGA II PENNANT WINTER TURF I CBS II TANDO BIRDIE II	GA1 5.0 3.3 3.0 2.3 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7	0K1 6.3 6.0 6.7 6.0 6.7 6.0 6.7 5.3 6.7 5.7 5.7 7 5.3 7 6.0 7 5.3 7 7 7 7 7 7 7 7 7 8 7 8 7 8 7 8 7 8 7	5.3 6.7 7.3 6.3 6.3 7.6 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6	MEAN 5.4 5.2 5.2 5.1 5.1 5.0 5.0 5.0 6.9 6.9 6.9 6.8 6.8 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6
BIRDIE II PSU-222 ALL*STAR BRENDA WSC 001 YORKTOWN II BARRY	2.3 2.3 2.0 2.7	5.7 5.7 5.3 3.3	5.3 5.0 5.7 7.0 5.3	4.4
	2.0	4.7 5.0 5.3 5.0 3.7	6.0	4.2 4.2 4.2 4.1 4.1
CITATION II BAR LP 412 LORETTA 2DF BIANCA STREAKER	2.0 2.3 2.0 2.0 2.3 2.0 2.0	4.3 5.7 4.3 4.0 4.3 4.0 2.3	5.3 5.7 5.0 5.0	4.0 4.0 3.9 3.9 3.9 3.7 3.3
LSD VALUE .	0.9	1.7	1.3	0.8

^{1/} TO DETERMINE STATISTICAL DIFFERENCES AMONG ENTRIES, SUBTRACT ONE ENTRY'S MEAN FROM ANOTHER ENTRY'S MEAN. STATISTICAL DIFFERENCES OCCUR WHEN THIS DIFFERENCE IS LARGER THAN THE CORRESPONDING LSD VALUE (LSD 0.05).

DROUGHT TOLERANCE RATINGS 1-9; 9=NO WILTING 1/

NAME	GA 1	MEAN	
V 1 D	7.0	7.0	
V.I.P.	7.0		
TARA-GREEN SUPREME	6.7	6.7	
MARVELGREEN 3+1	6.3	6.3	
RANGER	6.3	6.3	
TARA-GREEN	6.3	6.3	
BURLINGHAM #1	6.3 6.0	6.0	
LORETTA	6.0	6.0	
MANHATTAN II	6.0	6.0	
DALMED (DELLIDE	6.0	6.0	
PALMER/PRELUDE MARVELGREEN SUPREME	5.0	5.7	
PALMER	5.7	5.7	
PHD	5.7	5.7	
PRELUDE	5.7	5.7	
TANDO	5.7	5.7	
TARA	5 7	5.7	
YORKTOWN II	5.7	5.7	
BRENDA		5.3	
BURLINGHAM #3	5.3	5.3	
DUKLINGHAM #3	5.3	5.3	
DIXIE GREEN OVERSEED			
HUNTSVILLE	5.3	5.3	
PAR 3 WINTER TURF I ARGYLE	5.3	5.3	
WINTER TURF I	5.3	5.3	
ARGYLE	5.0	5.0	
DAD ID 440	5.0	5.0	
BARRY	5.0	5.0	
BURLINGHAM #2	5.0	5.0	
CBS II	5.0	5.0	
DIXIE GREEN W/SABRE		5.0	
DIATE GREEN W/ SABRE			
OMEGA II PHD W/SABRE	5.0	5.0	
PHU W/SABRE	5.0	5.0	
CITATION II	4.7	4.7	
DIXIE GREEN RYE BLEND	4.7	4.7	
LOFTS #1	4.7	4.7	
MARVELGREEN	4.7	4.7	
OVATION	4.7	4.7	
PSU-333	4.7	4.7	
WSC 001	4 7	4.7	
2DF	4 7	4.7	
AGREE	1 2	4.3	
BIDDIE II	4.3		
LOFTS #1 MARVELGREEN OVATION PSU-333 WSC OO1 2DF AGREE BIRDIE II CHAMPION COWBOY PENNANT PSU-111	4.3	4.3	
CHAMPIUN	4.3	4.3	
COMBOA	4.3	4.3	
PENNANT	4.3	4.3	
1 30 111	4.0	4.3	
ALL*STAR	4.0	4.0	
MASTER	4.0	4.0	
PSU-222	4.0	4.0	
WINTER TURF III	4.0	4.0	
BIANCA	3.7	3.7	
STREAKER	3.7	3.7	
LP 80-1	3.3	3.3	
MARVELGREEN CLASSIC	3.3	3.3	
MARVELGREEN + SABRE	3.0	3.0	
WINTER TURF V	2.7	2.7	
LSD VALUE	2.6	2.6	

^{1/} TO DETERMINE STATISTICAL DIFFERENCES AMONG ENTRIES, SUBTRACT ONE ENTRY'S MEAN FROM ANOTHER ENTRY'S MEAN. STATISTICAL DIFFERENCES OCCUR WHEN THIS DIFFERENCE IS LARGER THAN THE CORRESPONDING LSD VALUE (LSD 0.05).

TABLE 13. MELTING OUT IN SPRING RATINGS OF OVERSEEDING CULTIVARS,
BLENDS AND MIXTURES
1984-85 DATA

MELTING OUT RATINGS 1-9; 9=NO DISEASE 1/

NAME	SC1	MEAN
AGREE	9.0	9.0
ARGYLE	9.0	9.0
BARRY	.9.0	9.0
BIANCA	9.0	9.0
BRENDA	9.0	9.0
BURLINGHAM #1	9.0	9.0
BURLINGHAM #2	9.0	9.0
CHAMPION	9.0	9.0
COWBOY	9.0	9.0
DIXIE GREEN OVERSEED DIXIE GREEN RYE BLEND	9.0	9.0
LOFTS #1	9.0	9.0
LORETTA	9.0	9.0
LP 80-1	9.0	9.0
MANHATTAN II	9.0	9.0
MARVELGREEN	9.0	9.0
OMEGA II	9.0	9.0
PALMER/PRELUDE	9.0	9.0
PAR 3	9.0	9.0
PHD	9.0	9.0
PRELUDE	9.0	9.0
PSU-222	9.0	9.0
PSU-333 STREAKER	9.0	9.0
TARA-GREEN	9.0	9.0
TARA-GREEN SUPREME	9.0	9.0
WINTER TURF III	9.0	9.0
WINTER TURF V	9.0	9.0
WSC 001	9.0	9.0
2DF	9.0	9.0
BURLINGHAM #3	8.7	8.7
MASTER	8.7	8.7
YORKTOWN II	8.7	8.7
ALL*STAR	8.3	8.7
BIRDIE II	8.3	8.3
CBS II	8.3	8.3
DIXIE GREEN W/SABRE	8.3	8.3
MARVELGREEN CLASSIC	8.3	8.3
MARVELGREEN SUPREME	8.3	8.3
PALMER	8.3	8.3
PENNANT	8.3	8.3
RANGER TARA	8.3	8.3
V.I.P.	8.3	8.3
WINTER TURF I	8.3	8.3
BAR LP 412	8.0	8.0
HUNTSVILLE	8.0	8.0
MARVELGREEN + SABRE	8.0	8.0
MARVELGREEN 3+1	8.0	8.0
OVATION	8.0	8.0
PSU-111 PHD W/SABRE	8.0	8.0
FID W/ SADKE	1.1	7.7
LSD VALUE	1.4	1.4

^{1/} TO DETERMINE STATISTICAL DIFFERENCES AMONG ENTRIES, SUBTRACT ONE ENTRY'S MEAN FROM ANOTHER ENTRY'S MEAN. STATISTICAL DIFFERENCES OCCUR WHEN THIS VALUE IS LARGER THAN THE CORRESPONDING LSD VALUE (LSD 0.05).

TABLE 14. WEAR TOLERANCE RATINGS OF OVERSEEDING CULTIVARS, BLENDS AND MIXTURES
1984-85 DATA

9=MAXIMUM WEAR TOLERANCE 1/ WEAR TOLERANCE RATINGS 1-9; FL1 MEAN NAME 9.0 9.0 BRENDA 9.0 CHAMPION 9.0 9.0 9.0 COWBOY 9.0 DIXIE GREEN W/SABRE 9.0 9.0 9.0 LOFTS #1 9.0 9.0 LORETTA 9.0 9.0 MASTER OMEGA II 9.0 9.0 9.0 9.0 OVATION 9.0 9.0 PALMER 9.0 9.0 PAR 3 9.0 9.0 PHD 9.0 9.0 PRELUDE RANGER 9.0 9.0 9.0 TARA 9.0 9.0 9.0 TARA-GREEN 9.0 WINTER TURF I 9.0 9.0 9.0 WSC 001 YORKTOWN II 9.0 9.0 8.3 8.3 ALL*STAR BARRY 8.3 8.3 8.3 8 3 BIRDIE II BURLINGHAM #3 8.3 8.3 8.3 8.3 CBS II 8.3 8.3 CITATION II MANHATTAN II 8.3 8.3 MARVELGREEN 8.3 8.3 MARVELGREEN SUPREME 8.3 8.3 8.3 8.3 MARVELGREEN 3+1 8.3 PALMER/PRELUDE 8.3 PHD W/SABRE 8.3 8.3 8.3 8.3 PSU-222 8.3 PSU-333 8.3 TANDO 8.3 8.3 TARA-GREEN SUPREME 8.3 8.3 WINTER TURF V 8.3 8.3 2DF 8.3 8.3 **BAR LP 412** 7.7 7.7 BIANCA 7.7 7.7 BURLINGHAM #2 7.7 7.7 DIXIE GREEN OVERSEED 7.7 7.7 DIXIE GREEN RYE BLEND 7.7 HUNTSVILLE 7.7 7.7 MARVELGREEN + SABRE 7.7 7.7 PENNANT 7.7 7.7 PSU-111 7.7 WINTER TURF III 7.7 7.7 BURLINGHAM #1 7.0 7.0 LP 80-1 7.0 7.0 MARVELGREEN CLASSIC 7.0 7.0 V.I.P. 7.0 7.0 STREAKER 6.3 6.3 AGREE 5.7 5.7 ARGYLE 5.7 5.7 LSD VALUE 1.8 1.8

^{1/} TO DETERMINE STATISTICAL DIFFERENCES AMONG ENTRIES, SUBTRACT ONE ENTRY'S MEAN FROM ANOTHER ENTRY'S MEAN. STATISTICAL DIFFERENCES OCCUR WHEN THIS VALUE IS LARGER THAN THE CORRESPONDING LSD VALUE (LSD 0.05).

FROST TOLERANCE RATINGS 1-9; 9=NO INJURY 1/

NAME	SC1	MEAN
BIANCA	7.3	7 2
TANDO	7.3	7.3
ARGYLE	7.0	7.0
BRENDA	7.0	7.0
BURLINGHAM #2	7.0	7.0
TARA-GREEN SUPREME	7.0	7.0
ALL*STAR	6.7	6.7
DIXIE GREEN RYE BLEND	6.7	6.7
MARVELGREEN 3+1	6.7	6.7
OVATION	6.7	6.7
PSU-333	6.7	6.7
STREAKER	6.7	6.7
TARA-GREEN	6.7	6.7
WSC 001	6.7	6.7
2DF	6.7	6.7
BAR LP 412	6.3	6.3
BARRY	6.3	6.3
BURLINGHAM #1	6.3	6.3
BURLINGHAM #3	6.3	6.3
DIXIE GREEN W/SABRE	6.3	6.3
LOFTS #1	6.3	6.3
MARVELGREEN CLASSIC	6.3	6.3
MASTER	6.3	6.3
PALMER PALMER/PRELUDE	6.3	6.3
	6.3	6.3
PHD W/SABRE RANGER	6.3	6.3
TARA	6.3	6.3
WINTER TURF I	6.3	6.3
BIRDIE II	6.0	6.0
COWBOY	6.0	6.0
DIXIE GREEN OVERSEED	6.0	6.0
LP 80-1	6.0	6.0
MARVELGREEN + SABRE	6.0	6.0
MARVELGREEN SUPREME	6.0	6.0
PENNANT	6.0	6.0
PSU-111	6.0	6.0
V.I.P.	6.0	6.0
WINTER TURF III	6.0	6.0
AGREE	5.7	5.7
CHAMPION	5.7	5.7
HUNTSVILLE	5.7	5.7
LORETTA	5.7	5.7
MANHATTAN II	5.7	5.7
MARVELGREEN	5.7	5.7
OMEGA II	5.7	5.7
PAR 3 PHD	5.7 5.7	5.7 5.7
PRELUDE	5.7	5.7
PSU-222	5.7	5.7
WINTER TURF V	5.7	5.7
YORKTOWN II	5.3	5.3
CBS II	5.0	5.0
	0.0	0.0
LSD VALUE	1.2	1.2

^{1/} TO DETERMINE STATISTICAL DIFFERENCES AMONG ENTRIES, SUBTRACT ONE ENTRY'S MEAN FROM ANOTHER ENTRY'S MEAN. STATISTICAL DIFFERENCES OCCUR WHEN THIS VALUE IS LARGER THAN THE CORRESPONDING LSD VALUE (LSD 0.05).

TABLE 16. PERCENT BERMUDAGRASS (JUNE) RATINGS OF OVERSEEDING CULTIVARS,
BLENDS AND MIXTURES
1984-85 DATA

PERCENT BERMUDAGRASS DURING SPRING TRANSITION: LOCATIONS 1/

NAME	NC2	MEAN
AGREE STREAKER ARGYLE HUNTSVILLE OMEGA II WINTER TURF V BARRY DIXIE GREEN RYE BLEND DIXIE GREEN W/SABRE LOFTS #1 MARVELGREEN + SABRE BAR LP 412 LP 80-1 MARVELGREEN CLASSIC PAR 3 PHD TARA-GREEN WINTER TURF III BURLINGHAM #3 CBS II MARVELGREEN SUPREME MARVELGREEN 3+1 MASTER PHD W/SABRE PRELUDE PSU-111 RANGER TANDO V.I.P. YORKTOWN II BIANCA BIRDIE II MANHATTAN II MARVELGREEN PENNANT TARA WSC OO1 2DF BRENDA CITATION II DIXIE GREEN OVERSEED OVATION PALMER PSU-222	56.7 43.3 40.0 40.0 40.0 40.0 36.7 36.7 36.7 36.7 36.7 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.0 30.0	56.7 43.3 40.0 40.0 40.0 36.7 36.7 36.7 36.7 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 30.0
PALMER PSU-222	23.3	23.3
LORETTA BURLINGHAM #1 BURLINGHAM #2 CHAMPION PALMER/PRELUDE TARA-GREEN SUPREME PSU-333 WINTER TURF I ALL*STAR COWBOY	21.7 20.0 20.0 20.0 20.0 20.0 16.7 15.0 13.3	21.7 20.0 20.0 20.0 20.0 20.0 16.7 15.0 13.3
LSD VALUE	17.6	17.6

^{1/} TO DETERMINE STATISTICAL DIFFERENCES AMONG ENTRIES, SUBTRACT ONE ENTRY'S MEAN FROM ANOTHER ENTRY'S MEAN. STATISTICAL DIFFERENCES OCCUR WHEN THIS VALUE IS LARGER THAN THE CORRES-PONDING LSD VALUE (LSD 0.05).