BIVARIATE (CONT.) AND REVIEW

Zack Kertcher

Statistics for Management Fall 2016

Plan for today

- 1. Class logistics
- 2. Presentations
- 3. Bivariate relationships (cont.)
- 4. Mid-term review

PRESENTATIONS

BIVARIATE RELATIONS (CONT.)

What we already know and what need to know

Relationship	Statistics	Plots
F/F	<pre>table prop.table(t) margin.table(t)</pre>	mosaicplot barplot()
N/F		boxplot()
N/N		<pre>plot(x~y) abline(lm(x~y))</pre>

What we already know and what need to know

Relationship	Statistics	Plots
F/F	<pre>table prop.table(t) margin.table(t)</pre>	mosaicplot barplot()
N/F	aggregate descibeBy group_by()	boxplot()
N/N	cor lm()	<pre>plot(x~y) abline(lm(x~y)) pairs() Corrplot()</pre>

EXAM REVIEW

Part I

- 1. From Blackboard, reload the real estate data as **realestate**.
- 2. Prepare variables as needed. (<u>Hint</u>: make sure that variables are in the type they need to be, and that all variables are ready for analysis)
- 3. What is the 75th percentile of price? What are the 10th and 90th percentiles of lotsize?
- 4. Examine the following variables *individually*: <u>lotsize</u>, <u>price</u>, <u>stories</u>. In your examination, use univariate statistics, and plots.
- 5. Discuss each variable, including the distribution shape, central tendency, skew, and other observed features.

Part II

- 1. How much, on average, does a house with air conditioning costs, compared to one without it (airco)?
- 2. What is the difference in the distribution of price between houses with and without air conditioning? Use relevant statistics and plots.
- 3. Using the correlation function, find what is the relationship between <u>price</u> and <u>lotsize</u>.
- 4. Use a correlation matrix to examine the relationships across all numeric variables in the data. Which variables are correlated? (Hint: assume that values over 0.4 or under -0.4 indicate a correlation). What are the two highest correlations in the data?