#### **Contents**

| ntroduction                                | 1 |
|--------------------------------------------|---|
| Jormed Vector Spaces                       | 1 |
| Vector Spaces, Norms, and Basic Properties | 1 |
| Examples                                   | 2 |
| Series Convergence and Completeness        | 3 |
| Proposition: Criteria for Banach Spaces    | 3 |
| Quotient Spaces                            | 3 |
| <b>Proposition</b> : Quotient Space Norm   | 3 |

#### Introduction

This is going to be part of the notes for my Honors thesis independent study, which will be focused on amenability and C\*-algebras. This section of notes will be focused on the essential results in functional analysis, starting from normed vector spaces, working our way up through C\*-algebras.

The primary source for this section is going to be Timothy Rainone's Functional Analysis-En Route to Operator Algebras, which has not been published yet.

I do not claim any of this work to be original.

# **Normed Vector Spaces**

# Vector Spaces, Norms, and Basic Properties

All vector spaces are defined over  $\mathbb{C}$ . Most of the information here is in my Real Analysis II notes, so I'm going to skip to some of the more important content.

**Definition** (Vector Space). A vector space V is a set closed under two operations

$$\begin{split} \alpha: V \times V &\to V, \ (\nu_1, \nu_2) \mapsto \nu_1 + \nu_2 \\ m: \mathbb{C} \times V &\to V, \ (\lambda, \nu) \mapsto \lambda \nu. \end{split}$$

We refer to a as addition, and m as scalar multiplication; (V, +) is an abelian ring.

**Definition** (Norm). A norm is a function

$$\|\cdot\|: V \to \mathbb{R}^+, \ \chi \mapsto \|\chi\|$$

that satisfies the following properties:

- Positive definiteness:  $\|v\| = 0$  if and only if  $v = 0_V$ .
- Triangle inequality:  $\|v + w\| \le \|v\| + \|w\|$ .
- Absolute Homogeneity:  $\|\lambda v\| = |\lambda| \|v\|$ , for  $\lambda \in \mathbb{C}$ .

If a function  $p:V\to\mathbb{R}^+$  satisfies the triangle inequality and absolute homogeneity, we say p is a seminorm.

We say the pair  $(V, \|\cdot\|)$  is a normed vector space.

**Definition** (Balls and Spheres). Let X be a normed vector space,  $x \in X$ , and  $\delta > 0$ . Then,

$$U(x,\delta) = \{ y \in X \mid d(x,y) < \delta \}$$
  

$$B(x,\delta) = \{ y \in X \mid d(x,y) \le \delta \}$$
  

$$S(x,\delta) = \{ y \in X \mid d(x,y) = \delta \}.$$

For a normed vector space, we will use the following conventions for common sets:

$$U_X = U(0,1)$$

$$B_X = B(0,1)$$

$$S_X = S(0,1)$$

$$D = U_C$$

$$T = S_C.$$

**Definition** (Equivalent Norms). Two norms on V,  $\|\cdot\|_{\alpha}$  and  $\|\cdot\|_{b}$  are said to be equivalent if there are two constants  $C_1$  and  $C_2$  such that

$$\|v\|_{a} \leq C_{1} \|v\|_{b}$$
$$\|v\|_{b} \leq C_{2} \|v\|_{a}$$

for all  $v \in V$ . We say  $\|\cdot\|_{\mathfrak{a}} \sim \|\cdot\|_{\mathfrak{b}}$ .

#### **Examples**

**Example** (Finite-Dimensional Vector Spaces). The vector space  $\mathbb{C}^n$  is with the p-norm is denoted  $\ell_p^n$ , where for  $p \in [1, \infty]$ , the p-norm is defined by

$$\|x\|_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}.$$

In the case with p = 2, this gives the traditional Euclidean norm, and with  $p = \infty$ , this gives the sup norm:

$$||x||_{\infty} = \max_{1 \le i \le n} |x_i|.$$

**Example** (A Sequence Space). We let  $\ell_p = \{(x_n)_n \mid x_n \in \mathbb{C}, \|x\|_p < \infty\}$  be the collection of sequences in  $\mathbb{C}$  with finite p-norm. Here,

$$||x||_p = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p}.$$

In the case with  $p = \infty$ , this gives the sequence space  $\ell_{\infty}$ , which has norm

$$\|\mathbf{x}\|_{\infty} = \sup_{\mathbf{n} \in \mathbb{N}} |\mathbf{x}_{\mathbf{n}}|.$$

**Example** (A Function Space). We let  $\ell^{\infty}(\Omega)$  denote the set of all bounded functions  $f:\Omega\to\mathbb{C}$ , equipped with the norm

$$\|f\|_{\infty} = \sup_{x \in \Omega} |f(x)|.$$

If  $\Omega = (\Omega, \mathcal{M}, \mu)$  is a measure space, then we let  $L^{\infty}(\Omega)$  be the space of  $\mu$ -a.e. equal essentially bounded measurable functions, under the norm

$$\|f\|_{\infty} = \operatorname{ess\,sup} |f(x)|.$$

# **Series Convergence and Completeness**

**Proposition** (Criteria for Banach Spaces): Let X be a normed vector space. The following are equivalent:

- (i) X is a Banach space.<sup>1</sup>
- (ii) If  $(x_k)_k$  is a sequence of vectors such that  $\sum_{k=1}^{\infty} ||x_k||$  converges, then  $\sum_{k=1}^{\infty} x_k$  converges.
- (iii) If  $(x_k)_k$  is a sequence in X such that  $||x_k|| < 2^{-k}$ , then  $\sum_{k=1}^{\infty} x_k$  converges.

*Proof.* To show (i) implies (ii), for n > m > N, we have

$$||s_n - s_m|| = \left\| \sum_{k=m+1}^n x_k \right\|$$

$$\leq \sum_{k=m+1}^n ||x_k||$$

$$\leq \epsilon$$

implying that s<sub>n</sub> is Cauchy, and thus converges since X is complete.

Since  $\sum_{k=1}^{\infty} 2^{-k}$  converges, it is clear that (ii) implies (iii).

To show (iii) implies (i), we let  $(x_n)_n$  be a Cauchy sequence in X. We only need construct a convergent subsequence in order to show that  $(x_n)_n$  converges.

Chose  $n_1 \in \mathbb{N}$  such that for  $n, m \ge n_1$ ,  $\|x_m - x_n\| < \frac{1}{2^2}$ , and inductively define  $n_j > n_{j-1}$  such that  $n, m \ge n_j$  implies  $\|x_m - x_n\| < \frac{1}{2^{j+1}}$ .

Let  $y_1 = x_{n_1}$ ,  $y_j = x_{n_j} - x_{n_{j-1}}$ . Then,

$$\|y_j\| = \|x_{n_j} - x_{n_{j-1}}\|$$

$$< \frac{1}{2i},$$

so  $\sum_{j=1}^{\infty} y_j$  converges by our assumption. By telescoping, we see that  $\sum_{j=1}^k y_j = x_{n_k}$ , so  $(x_{n_k})_k$  converges.

# **Quotient Spaces**

Let X be a normed vector space. Then, for  $E \subseteq X$  a subspace, there is a quotient space X/E with the projection map  $\pi: X \to X/E$ ,  $x \mapsto x + E$ . We want to make X/E into a normed space — in order to do this, we use the distance function:

$$dist_{E}(x) = \inf_{y \in E} d(x, y),$$

which is uniformly continuous. For E closed, then  $dist_{E}(x) = 0$  if and only if  $x \in E$ .

**Proposition** (Quotient Space Norm): Let X be a normed vector space, and  $E \subseteq X$  a subspace. Set

$$||x + E||_{X/F} = \operatorname{dist}_{E}(x).$$

Then,

(1)  $\|\cdot\|_{X/E}$  is a well-defined seminorm on X/E.

<sup>&</sup>lt;sup>I</sup>Complete normed vector space.

- (2) If E is closed, then  $\|\cdot\|_{X/E}$  is a norm on X/E.
- (3)  $\|x + E\|_{X/E} \le \|x\|$  for all  $x \in X$ .
- (4) If E is closed, then  $\pi: X \to X/E$  is Lipschitz.
- (5) If X is a Banach space and E is closed, then X/E is also a Banach space.