4.3 Algorithme de Viterbi

Étant donné un HMM M et une séquence w générée selon M, le chemin de Viterbi de w dans M est la séquence V_w d'états cachés la plus probable permettant de la générer. Plus formellement, V_w est la séquence $c \in S^{|w|}$ qui maximise P(c|w):

$$V_w = ArgMax_{c \in S^{|w|}} P(c|w).$$

D'après la formule de Bayes, on a $P(c|w) = \frac{P(w|c)P(c)}{P(w)}$. On peut donc aussi écrire

$$V_w = ArgMax_{c \in S^{|w|}} P(w|c) P(c).$$

Si $w = o_1 \dots o_n$ et $c = s_1 \dots s_n$,

$$P(w|c)P(c) = \prod_{i=1}^{n} E(s_i, o_i) \cdot \pi(s_1) \prod_{i=1}^{n-1} T(s_i, s_{i+1}).$$

Comme il est pratiquement impossible d'énumérer tous les chemins de longueur n, on a recours à une méthode de programmation dynamique pour rendre le problème praticable. Pour cela, on considère la séquence d'états $c_{k,i}$ la plus probable permettant de générer $o_1 \dots o_i$ et terminant dans l'état k. On note $p_{k,i}$ la probabilité associée.

Exercice 14

- 1. Comment calculer $c_{k,1}$? $p_{k,1}$?
- 2. Comment calculer $c_{k,i+1}$ et $p_{k,i+1}$ en fonction des valeurs précédentes?
- 3. Écrivez la méthode Viterbi(self, w) qui calcule le chemin de Viterbi de w et la probabilité associée. Pour acroître la robustesse des calculs, vous pouvez calculer plutôt le logarithme de cette probabilité.

Exercice 15 Soit M un HMM, $w = o_1 \dots o_n$ une séquence générée à partir de M, $v_1 \dots v_n$ le chemin de Viterbi de w dans M et pv(w) la probabilité associée. Quelle est la probabilité que w soit généré le long de son chemin de Viterbi? Écrivez un programme permettant d'évaluer ce nombre et testez le sur les HMMs définis précédemment pour des longueurs variables de w.

Exercice 16 Soit M un HMM, $w = o_1 \dots o_n$ une séquence générée à partir de M, $s_1 \dots s_n$ la suite d'états correspondant. Soit $v_1 \dots v_n$ le chemin de Viterbi de w dans M. On s'intéresse au nombre d'indices i tels que $s_i = v_i$. Réalisez une expérience avec l'un des HMMs définis précédemment, et n = 1000 permettant d'évaluer ce nombre.