

Salva Rühling Cachay¹, Emma Erickson*², Arthur Fender C. Bucker*^{3, 4}, Ernest Pokropek*⁵, Willa Potosnak*⁶, Suyash Bire⁸, Salomey Osei⁷, and Björn Lütjens⁸

¹Technical University of Darmstadt, ²University of Illinois at Urbana-Champaign,
 ³University of São Paulo, ⁴ Technical University of Munich, ⁵Warsaw University of Technology,
 ⁶Duquesne University, ⁷African Institute for Mathematical Sciences, ⁸Massachusetts Institute of Technology

Work motivated by the ProjectX research competition & supported by a Microsoft AI For Earth Grant

Salva Rühling Cachay, Emma Erickson, Arthur Fender C. Bucker, Ernest Pokropek, Willa Potosnak, Suyash Bire, Salomey Osei, and Björn Lütjens salvaruehling@gmail.com

1. Motivation

Deep learning successes in long range forecasting rely on convolutional neural networks (CNN), but...

(Long Range) Forecasting:	CNNs:
Driven by large-scale/global interactions	Based on spatially <i>local</i> computations/convolutions
Anomalies/Patterns in different parts of the world should be treated differently	Assume translational equivariance
May only need parts of the world as input	Require a <i>grid</i> as input

2. Contributions

- First application of graph neural networks (GNN) to long range forecasting & design of the Graphiño GNN.
- Design of a novel graph connectivity learning module, → our approach applicable without a pre-defined graph
- Model outperforms competitive dynamical and deep learning model for up to 6 months
- Model learns a sensible world connectivity structure that can be linked to ENSO dynamics theories

*based on the eigenvector centrality score of each node/grid cell

Model	n = 1	n = 2	n = 3	n = 4	n = 5	n = 6	n = 9	n = 12	n = 23
SINTEX-F [37]	0.895	0.89	0.84	0.805	0.78	0.74	0.62	0.51	0.315
CNN [8]	0.9423	0.9158	0.8761	0.8320	0.7983	0.7616	0.7133	0.6515	0.2870
Graphiño	0.9747	0.9461	0.9170	0.8742	0.8226	0.7800	0.6313	0.5755	0.3363

All-season correlation skill in ENSO forecasting for n lead months, with the same setup as Ham et al. [8] Our graph convolutional network+connectivity learning module, *Graphiño*, is competitive to and more **interpretable** (Fig 2.) than previous state-of-the-art, due to its better suited inductive biases.

El Niño-Southern Oscillation (ENSO)

- ENSO warm phase → El Niño
- ENSO cold phase → La Niña
- Causes disasters worldwide
- Mode of climate variability
- ONI (or Niño3.4 index) is a common measure of ENSO
 - Sea surface temperature anomalies in the tropical Pacific (averaged out over the ONI region and 3 months)

EL NIÑO CLIMATE IMPACTS

December-February

Image from:

Salva Rühling Cachay, Emma Erickson, Arthur Fender C. Bucker, Ernest Pokropek, Willa Potosnak, Suyash Bire, Salomey Osei, and Björn Lütjens salvaruehling@gmail.com

1. Motivation

Deep learning successes in long range forecasting rely on convolutional neural networks (CNN), **but**...

(Long Range) Forecasting:	CNNs:
Driven by large-scale/global interactions	Based on spatially <i>local</i> computations/convolutions
Anomalies/Patterns in different parts of the world should be treated differently	Assume translational equivariance
May only need parts of the world as input	Require a <i>grid</i> as input

A gridded climate dataset

 Convolutional Neural Network (CNN) convolutions depend on the values of the center node and its <u>local</u> neighbors

 Convolutional Neural Network (CNN) convolutions depend on the values of the center node and its <u>local</u> neighbors

 Convolutional Neural Network (CNN) convolutions depend on the values of the center node and its <u>local</u> neighbors

 A graph convolution generalizes them to a variable number of non-Euclidean neighbors connected by edges

But ..., How do we define the edge structure?

Learn the structure too!

Salva Rühling Cachay, Emma Erickson, Arthur Fender C. Bucker, Ernest Pokropek, Willa Potosnak, Suyash Bire, Salomey Osei, and Björn Lütjens salvaruehling@gmail.com

1. Motivation

Deep learning successes in long range forecasting rely on convolutional neural networks (CNN), **but**...

(Long Range) Forecasting:	CNNs:				
Driven by large-scale/global interactions	Based on spatially <i>local</i> computations/convolutions				
Anomalies/Patterns in different parts of the world should be treated differently	Assume translational equivariance				
May only need parts of the world as input	Require a <i>grid</i> as input				

2. Contributions

- First application of graph neural networks (GNN) to long range forecasting & design of the Graphiño GNN
- Design of a **novel graph connectivity** learning module,

 → our approach applicable without a pre-defined graph
- Model outperforms competitive dynamical and deep learning model for up to 6 months
- Model learns a sensible world connectivity structure that can be linked to ENSO dynamics theories

Salva Rühling Cachay, Emma Erickson, Arthur Fender C. Bucker, Ernest Pokropek, Willa Potosnak, Suyash Bire, Salomey Osei, and Björn Lütjens salvaruehling@gmail.com

1. Motivation

Deep learning successes in long range forecasting rely on convolutional neural networks (CNN), **but**...

(Long Range) Forecasting:	CNNs:
Driven by large-scale/global interactions	Based on spatially <i>local</i> computations/convolutions
Anomalies/Patterns in different parts of the world should be treated differently	Assume translational equivariance
May only need parts of the world as input	Require a <i>grid</i> as input

2. Contributions

- First application of graph neural networks (GNN) to long range forecasting & design of the Graphiño GNN
- Design of a **novel graph connectivity** learning module,

 → our approach applicable without a pre-defined graph
- Model outperforms competitive dynamical and deep learning model for up to 6 months
- Model learns a sensible world connectivity structure that can be linked to ENSO dynamics theories

Learn the structure too!

What do we want?

- Parameter-efficiency
- (weighted) edges in [0, 1]
- Directed edges?
- Sparsitivity

Structure learner

At each iteration:

$$\mathbf{M}_1 = \tanh\left(\alpha_1 \tilde{\mathbf{X}} \tilde{\mathbf{W}}_1\right) \in \mathbb{R}^{N \times \tilde{d}_2},\tag{1}$$

$$\mathbf{M}_2 = \tanh\left(\alpha_1 \tilde{\mathbf{X}} \tilde{\mathbf{W}}_2\right) \in \mathbb{R}^{N \times \tilde{d}_2},\tag{2}$$

$$\mathbf{A} = \operatorname{sigmoid}\left(\alpha_2 \mathbf{M}_1 \mathbf{M}_2^T\right) \in [0, 1]^{N \times N},\tag{3}$$

where $ilde{\mathbf{W}}_1, ilde{\mathbf{W}}_2 \in \mathbb{R}^{ ilde{d}_1 imes ilde{d}_2}$ are learnable parameters,

(4) Remove all but the largest E values A_ij (set them to zero)

Parameter-efficiency

N- The number of nodes

 $\tilde{\mathbf{X}} \in \mathbb{R}^{N \times \tilde{d_1}}$ - Static node representations

Salva Rühling Cachay, Emma Erickson, Arthur Fender C. Bucker, Ernest Pokropek, Willa Potosnak, Suyash Bire, Salomey Osei, and Björn Lütjens salvaruehling@gmail.com

1. Motivation

Deep learning successes in long range forecasting rely on convolutional neural networks (CNN), **but**...

(Long Range) Forecasting:	CNNs:
Driven by large-scale/global interactions	Based on spatially <i>local</i> computations/convolutions
Anomalies/Patterns in different parts of the world should be treated differently	Assume translational equivariance
May only need parts of the world as input	Require a <i>grid</i> as input

2. Contributions

- First application of graph neural networks (GNN) to long range forecasting & design of the Graphiño GNN
- Design of a **novel graph connectivity** learning module,

 → our approach applicable without a pre-defined graph
- Model outperforms competitive dynamical and deep learning model for up to 6 months
- Model learns a sensible world connectivity structure that can be linked to ENSO dynamics theories

The Graph Neural Network

- Projecting the ONI can be framed as a *graph regression* problem
- We build upon a Graph Convolutional Network (GCN; Kipf et al.)
- A basic graph convolution can be written as

$$\mathbf{Z} = \sigma(\mathbf{AXW}) \in \mathbb{R}^{N \times \text{out-dim}}$$

- The GCN is extended by
 - residual and jumping knowledge connections
 - Node-in-degree normalization replaced with batch-normalization over feature dimension

Salva Rühling Cachay, Emma Erickson, Arthur Fender C. Bucker, Ernest Pokropek, Willa Potosnak, Suyash Bire, Salomey Osei, and Björn Lütjens salvaruehling@gmail.com

1. Motivation

Deep learning successes in long range forecasting rely on convolutional neural networks (CNN), **but**...

(Long Range) Forecasting:	CNNs:
Driven by large-scale/global interactions	Based on spatially <i>local</i> computations/convolutions
Anomalies/Patterns in different parts of the world should be treated differently	Assume translational equivariance
May only need parts of the world as input	Require a <i>grid</i> as input

2. Contributions

- First application of graph neural networks (GNN) to long range forecasting & design of the Graphiño GNN
- Design of a novel graph connectivity learning module,
 → our approach applicable without a pre-defined graph
- Model outperforms competitive dynamical and deep learning model for up to 6 months
- Model learns a sensible world connectivity structure that can be linked to ENSO dynamics theories

Model	n = 1	n = 2	n = 3	n = 4	n = 5	n = 6	n = 9	n = 12	n = 23
SINTEX-F [37]	0.895	0.89	0.84	0.805	0.78	0.74	0.62	0.51	0.315
CNN [8]	0.9423	0.9158	0.8761	0.8320	0.7983	0.7616	0.7133	0.6515	0.2870
Graphiño	0.9747	0.9461	0.9170	0.8742	0.8226	0.7800	0.6313	0.5755	0.3363

All-season correlation skill in ENSO forecasting for *n lead months, with the same setup as Ham et al. [8]* Our graph convolutional network+connectivity learning module, *Graphiño*, is competitive to and more interpretable (Fig 2.) than previous state-of-the-art, due to its better suited inductive biases.

Salva Rühling Cachay, Emma Erickson, Arthur Fender C. Bucker, Ernest Pokropek, Willa Potosnak, Suyash Bire, Salomey Osei, and Björn Lütjens salvaruehling@gmail.com

1. Motivation

Deep learning successes in long range forecasting rely on convolutional neural networks (CNN), **but**...

(Long Range) Forecasting:	CNNs:
Driven by large-scale/global interactions	Based on spatially <i>local</i> computations/convolutions
Anomalies/Patterns in different parts of the world should be treated differently	Assume translational equivariance
May only need parts of the world as input	Require a <i>grid</i> as input

2. Contributions

- First application of graph neural networks (GNN) to long range forecasting & design of the Graphiño GNN
- Design of a novel graph connectivity learning module,
 → our approach applicable without a pre-defined graph
- Model outperforms competitive dynamical and deep learning model for up to 6 months
- Model learns a sensible world connectivity structure that can be linked to ENSO dynamics theories

Model	n = 1	n = 2	n = 3	n = 4	n = 5	n = 6	n = 9	n = 12	n = 23
SINTEX-F [37]	0.895	0.89	0.84	0.805	0.78	0.74	0.62	0.51	0.315
CNN [8]	0.9423	0.9158	0.8761	0.8320	0.7983	0.7616	0.7133	0.6515	0.2870
Graphiño	0.9747	0.9461	0.9170	0.8742	0.8226	0.7800	0.6313	0.5755	0.3363

All-season correlation skill in ENSO forecasting for *n lead months, with the same setup as Ham et al.* [8] Our graph convolutional network+connectivity learning module, *Graphiño*, is competitive to and more interpretable (Fig 2.) than previous state-of-the-art, due to its better suited inductive biases.

How to analyze the learned connectivity?

Around 12k edges/connections...

Eigenvector centrality...

- Measures the importance/influence of a node in/on the graph
- Google's early Pagerank algorithm is a variant of it
 - Pages with more links (from other important pages) are more important
 - → Locations with more connections are more important
 (propagate more information during message-passing/graph convolutions)
- Node centrality vector \mathbf{v} solves the eigenvector equation of the adjacency matrix: $\mathbf{A}\lambda = \mathbf{v}\lambda$

Inspecting the learned world connectivity

→ 1 lead month

Inspecting the learned world connectivity

\rightarrow 3 lead months

Inspecting the learned world connectivity

\rightarrow 23 lead months

Conclusions

- Our proposed structure learning+GNN model outperforms competitive dynamical and deep learning models for up to 6 months.
- Novel ML interpretability method for the earth sciences
- Easily applicable to related problems in long range forecasting and beyond

Exciting Future Research Directions...

- GNNs likely not the end of the story...
- Better skill in forecasting extreme ENSO events (e.g. via a custom loss function)
- Better structure learning modules & analysis to potentially find yet undiscovered sources of predictability for ENSO
- Injecting climatologists' domain knowledge into pre-defined, fixed connectivity structures

Salva Rühling Cachay, Emma Erickson, Arthur Fender C. Bucker, Ernest Pokropek, Willa Potosnak, Suyash Bire, Salomey Osei, and Björn Lütjens salvaruehling@gmail.com

1. Motivation

Deep learning successes in long range forecasting rely on convolutional neural networks (CNN), **but**...

(Long Range) Forecasting:	CNNs:				
Driven by large-scale/global interactions	Based on spatially <i>local</i> computations/convolutions				
Anomalies/Patterns in different parts of the world should be treated differently	Assume translational equivariance				
May only need parts of the world as input	Require a <i>grid</i> as input				

2. Contributions

- First application of graph neural networks (GNN) to long range forecasting & design of the Graphiño GNN.
- Design of a novel graph connectivity learning module,
 → our approach applicable without a pre-defined graph
- Model outperforms competitive dynamical and deep learning model for up to 6 months
- Model learns a sensible world connectivity structure that can be linked to ENSO dynamics theories

Fig 2. Learned world connectivity structure* for 1 (top and 6 (bottom) lead months.

*based on the eigenvector centrality score of each node/grid cell

Model	n = 1	n = 2	n = 3	n = 4	n = 5	n = 6	n = 9	n = 12	n = 23
SINTEX-F [37]	0.895	0.89	0.84	0.805	0.78	0.74	0.62	0.51	0.315
CNN [8]	0.9423	0.9158	0.8761	0.8320	0.7983	0.7616	0.7133	0.6515	0.2870
Graphiño	0.9747	0.9461	0.9170	0.8742	0.8226	0.7800	0.6313	0.5755	0.3363

All-season correlation skill in ENSO forecasting for *n lead months, with the same setup as Ham et al.* [8] Our graph convolutional network+connectivity learning module, *Graphiño*, is competitive to and more interpretable (Fig 2.) than previous state-of-the-art, due to its better suited inductive biases.

Salva Rühling Cachay¹, Emma Erickson², Arthur Fender C. Bucker^{3, 4}, Ernest Pokropek⁵, Willa Potosnak⁶, Salomey Osei⁷, and Björn Lütjens⁸

¹Technical University of Darmstadt, ²University of Illinois at Urbana-Champaign,
 ³University of São Paulo, ⁴ Technical University of Munich, ⁵Warsaw University of Technology,
 ⁶Duquesne University, ⁷African Institute for Mathematical Sciences, ⁸ Massachusetts Institute of Technology

Thank you! Questions?

A non-local graph structure is key

TABLE II: Incorporating geographical distant information is key for a strong performance. We report the correlation skill for n lead months of the same GNN with 1) our structure learning module, 2) the structure learning module from [33], and 3) a fixed, local connectivity structure with edges based on spatial proximity (local).

Edge structure	n = 1	n = 3	n = 6	n = 9
Local	0.9063	0.7752	0.5946	0.4586
[33]	0.9117	0.8503	0.6439	0.4190
Graphiño	0.9747	0.9170	0.7800	0.6313

Structure learner

At each iteration:

$$\mathbf{M}_1 = \tanh\left(\alpha_1 \tilde{\mathbf{X}} \tilde{\mathbf{W}}_1\right) \in \mathbb{R}^{N \times \tilde{d}_2},\tag{1}$$

$$\mathbf{M}_2 = \tanh\left(\alpha_1 \tilde{\mathbf{X}} \tilde{\mathbf{W}}_2\right) \in \mathbb{R}^{N \times \tilde{d}_2},$$
 (2)

$$\mathbf{A} = \operatorname{sigmoid}\left(\alpha_2 \mathbf{M}_1 \mathbf{M}_2^T\right) \in [0, 1]^{N \times N}, \tag{3}$$

where $\tilde{\mathbf{W}}_1, \tilde{\mathbf{W}}_2 \in \mathbb{R}^{\tilde{d}_1 \times \tilde{d}_2}$ are learnable parameters,

(4) Remove all but the largest E values A_ij (set them to zero)