Joining Techniques for Novel Metal-Polymer Hybrid Heat Exchangers

Gowtham Kuntumalla, Yuquan Meng, Manjunath Rajagopal, Chenhui Shao, Placid Ferreira, Sanjiv Sinha

Mechanical Science & Engineering

University of Illinois at Urbana-Champaign

Low temperature heat recovery

Introduction

HX Design

Characterization

Mfg. Setup

Summary

~ **50%** of industrial waste heat is < 200 °C

Current low temperature (< 150 °C) waste heat recovery HX

Not viable & payback period > 3 years

	<u>Polymers</u>	<u>Metal</u>
<u>Metric</u>	Source: Cevallos, TherPES lab, Univ of Maryland	Source: Zhejiang Tongxing Refrigeration Co., Ltd.
Cost	\$	\$\$\$
Corrosion & Fouling	Minimal	Problematic
Thermal Conductivity	Low (~ 0.2 W/m.K)	High (~ 400 W/m.K)
Weight	Low	High

Overall Heat Transfer Coefficient (U)

Introduction

HX Design

Characterization

Mfg. Setup

Summary

Related Talk:

Design of hybrid metal-polymer heat exchanger for low temperature waste heat recovery # 11421, Nov 11, 4:40 PM

Rajagopal et al., IJHMT 2019

Calculation specs:

$$t_{wall} = 2.5$$
mm,

Fouling resistance = $0.005 [m^2 K W^{-1}]$,

Water flow rate (inner) = 0.005 kg/s,

Air flow rate (outer) $\sim 4.7 \text{ m}^3/\text{s}$

1MW waste heat source

Design of metal-polymer hybrid tubes

Joints characterization at testing facility

Introduction

HX Design

Characterization

Mfg. Setup

Summary

Universal Testing Machine

Ultrasonic welding (Cu + Cu) - load curves

Introduction

HX Design

Characterization

Mfg. Setup

Summary

Ultrasonic weld joints b/w Copper and Copper

Peel Test

Results @ 25°C only

Illustrative Curves

Shear Test

Ultrasonic welding (Cu + Cu) - test results

Introduction HX Design

Characterization

Mfg. Setup

Mode 1

(Peel test)

0.5

Fixed Clamp

Copper

Joint (shaded)

Polymer (or)

Copper

Moving Clamp

0.7

0.8

Summary

Mode 2

(Shear test)

Ultrasonic weld joints b/w Copper and Copper

Sonotrode vibration amplitudes

0.6

Weld Time [s]

0.4

Sample: \sim 10 mil (250 μ m) Copper + \sim 10 mil Copper

10 repetitions per joint

Results

@ 25°C only

Adhesive joints (Cu + poly) - load curves

Introduction

HX Design

Characterization

Mfg. Setup

Summary

Adhesive joints b/w **Copper and Polymer**

Shear Test

(ASTM D3165)

Illustrative Curves

Adhesive joints (Cu + poly) - test results

Sample: ~ 1 mil (25µm) Copper + ~ 1 mil Adhesive + ~ 1 mil Kapton

5 repetitions per joint

Takeaways: characterization of joints

Introduction

HX Design

Characterization

Mfg. Setup

Summary

Adhesives (Cu + poly):

- Weak link
- Tough to join Copper + Kapton
- Temperature → Bond Strength

Adhesive Shear Strength:

 \sim 0.13 MPa

(Cu + poly)

Ultrasonic Welding (Cu + Cu):

- Kapton + Cu not possible
- Science not yet fully understood
- Empirical expts. to get best parameter set

USW Shear Strength:

 \sim 14 MPa

(Only Cu + Cu)

Recent testing (after acceptance of this paper)

Introduction

HX Design

Characterization

Mfg. Setup

Summary

Epoxy: good alternative joint for Cu/Poly.

How does it work for Cu/Cu?

^{*} Not published in this paper

Manufacturing Setup - CAD

Introduction

HX Design

Characterization

Mfg. Setup

Summary

Built in-house at UIUC

*Adhesive dispensing, motor driver electronics **not** shown

Manufacturing Setup – Actual setup

Introduction

HX Design

Characterization

Mfg. Setup

Summary

Working Video – Helical Tape Laying Process

Introduction

HX Design

Characterization

Mfg. Setup

Summary

Summary

Shear Strength vs. Temperature in Copper/Copper Joints 1.2 JB Kwik Weld JB Cold Weld 1.0 JB Plastic Bonder Strength (MPa) Cotronics 4538 0.4 **Testing** 0.0 20 60 80 100 120 140 160 Temperature (°C)

Shear Strength vs. Temperature in Copper/Kapton Joints 1.6 --- 5 mil Kapton Tensile 0.1 MPa limit 1.4 JB Kwik Weld JB Cold Weld 1.2 JB Plastic Bonder Strength (MPa) 9.0 8.0 0:1 Cotronics 4538 0.4 0.2 0.0 20 40 60 80 100 120 140 160 Temperature (°C)

Epoxy joints are promising

Prototype

Joints

Acknowledgements

Prof. Nenad Miljkovic

DOE Award No. DE-EE0008312

Our team

Prof. Placid Ferreira Prof. Chenhui Shao

condition

Heat Exchanger

Learning Module

and database

Feedback

Controller

Fouling estimate

Prof. Srinivasa Salapaka

Appendix

Enhancing polymers

Tavman, I.H., J. App. Poly. Sci. (1996)

Aluminum powders in HDPE

Xu et al., Nat. Comms. (2019)

Stretched/ aligned polymers

Good heat spreaders

 $k_{in\text{-}plane} \sim 62\text{--}200 \text{ Wm}^{-1} \text{K}^{-1}$

Poor transverse thermal conductivity

Transverse elastic moduli 15 %

Maximum operating pressure for polymer pipes $\sim 150 \text{ psi}$

Objective:

- High transverse heat transfer ($k_{eff} \sim 1 \; {
 m Wm^{-1}K^{-1}}$)
- Have higher operating pressures (~ 150 psi)
- Reduce material costs: hybrid metal-polymer
- Ease of manufacturing scalability

Why shear strength > 0.1 MPa is enough?

At high internal pressures, the joint surfaces move, causing delamination:

Simulated using cohesive zone modelling (CZM)

For a <u>0.1 MPa</u> joint shear & tensile strength:

Takeaway

Joint shear/tensile strength of ~0.1 MPa is enough for a 50 psi water flow

Further, we anticipate only a maximum of **3-5 psi** absolute pressure during parallel operation

Safe maximum internal pressure \sim 50 psi (0.3 MPa),

Glimpses of related work

Controls & Health Monitoring

- Objective- Design controls architecture for low cost waste heat recovery heat exchangers:
 - typically result in reference tracking/regulation problems
 - e.g. regulate flue gas outlet temperature (T_{fout}) by control of flow rate (f_w)
- Key Challenges- Unmodeled dynamics, large uncertainties and noise
 - uncertainties in flue gas conditions (e.g. flow rates and temperatures)
 - unknown/complex system dynamics
- Approach- Learn from historical data
 - Learn steady state controller operating points (slow-time scale)
 - Real-time feedback controller for accurate temperature regulation

Comparison of Flow Passing Two Tubes

Temperature contour / R2R tube

Temperature contour / Smooth tube

Turbulence kinetic energy contour / R2R

Turbulence kinetic energy contour / Smooth

Anti-fouling Coatings

Classical Nucleation Theory

$$R = N_{S} Z j \exp\left(\frac{-\Delta G}{k_{B} T}\right)$$
$$\Delta G = \frac{4}{3} \pi r^{3} \Delta g + 4 \pi r^{2} \sigma$$

Acknowledgements

DOE Award No. DE-EE0008312

Other aspects: Controls & health monitoring, HX Simulations,

Dr. Placid Ferreira

Dr. Chenhui Shao

Dr. Srinivasa Salapaka

Dr. Sanjiv Sinha (lead PI)