- α) Η (1) για κάθε $\lambda \in \mathbb{R}$ παριστάνει κύκλο με κέντρο $K(3\lambda, -2\lambda)$ που ανήκει στην ευθεία $\varepsilon: 2x+3y=0$, αφού $2\cdot 3\lambda+3(-2\lambda)=6\lambda-6\lambda=0$.
- β) Aν M(x,y) τυχαίο σημείο μιας εκ των ευθειών $\varepsilon_1, \varepsilon_2$, τότε $d(M,\varepsilon) = 1 \Leftrightarrow \frac{|2x+3y|}{\sqrt{2^2+3^2}} = 1 \Leftrightarrow |2x+3y| = \sqrt{13} \text{ onóte } 2x+3y = \sqrt{13} \text{ ή}$

 $2x+3y=-\sqrt{13}$ που είναι οι ζητούμενες εξισώσεις των ευθειών $\varepsilon_{\rm l},\varepsilon_{\rm l}$.

- γ) Αφού τα κέντρα $\mathrm{K}(3\lambda,-2\lambda)$ όλων των κύκλων που προκύπτουν από την (1), ανήκουν στην $\varepsilon:2x+3y=0$, δηλαδή στη μεσοπαράλληλη των $\varepsilon_1,\varepsilon_2$, έχουμε ότι $d(\mathrm{K},\varepsilon_1)=d(\mathrm{K},\varepsilon_2)=1=\rho$. Συνεπώς όλοι οι κύκλοι που προκύπτουν από την (1) εφάπτονται στις ευθείες $\varepsilon_1,\varepsilon_2$.
- δ) Ένα τετράγωνο του οποίου οι δύο απέναντι πλευρές ανήκουν στις ευθείες $\varepsilon_1, \varepsilon_2$, θα έχει μήκος πλευράς ίσο με την απόσταση των $\varepsilon_1, \varepsilon_2$, δηλαδή 2. Συνεπώς το εμβαδόν του θα είναι ίσο με 4.

