Exploring Facial Recognition Techniques: LBP versus Deep Learning on LFW DatasetM.Sc. of Cybersecurity

Eleonora Fornaro 1836820

Michela Giampaolo 1838257

Damiano Gualandri 1892871

Academic Year 2023/2024

Table of Contents

1 Introduction

▶ Introduction

Project Implementation

Conclusion

Local Binary Pattern

- captures pixel-wise patterns and transitions within small regions
- computationally efficient for facial recognition

Deep learning

- Deep neural networks for the extraction of facial features
- Raise the level of accuracy in face recognition

• Main aim:

- Highlights differences between Face detection and Recognition with LBP and Deep Learning
- Use an unconstrained dataset like LFW.

Identification Open Set

1 Introduction

Tasks

 Determine whether a probe's biometric signature matches someone's in the gallery

 customized to achieve ideal rates according to application purpose

Labeled Faces in the Wild

- Images captured under uncontrolled conditions
- Variations in terms of PIE (Pose, Illumination and Expression)
- Partial Occlusion

Table of Contents

2 Project Implementation

Introduction

- ► Project Implementation
- Conclusion

Local Binary Pattern

2 Project Implementation

 Face Detection carried out with the face_detect() function in which we could use either Haar Classifier or LBP Classifier

• Haar Cascade Classifier

 Effective and highly accurate for detection in various scenarios but require significant memory resources and may struggle with image variations.

LBP Classifier

 Efficient and faster but sensitive to noise in the data, leading to false positives or decreased accuracy

Local Binary Pattern

2 Project Implementation

- Create Face recognizer
- Face Recognition The face Recognition happens inside the predict function
- Label is tha label predicted that is inside the gallery while the confidence is a measure of distance.

#create the LBP face recognizer
face_recognizer = cv2.face.LBPHFaceRecognizer_create()

label, confidence = face_recognizer.predict(face)

Rates

 Confidence is the value to compare to the threshold in order to increment GA, FR, FA, GR.

```
def calculate_metrics(t, test_img, subfolder, predicted_img, subjects, DI, FR, FA, GR):
   (label_pred, predicted, confidence) = predict(test_img)
   if predicted is not know.
   if confidence < t t:
        if label_pred = subfolder:
        predicted_img, append((label_pred,predicted))
        DI += 1
        else:
        if subfolder not in subjects:
        FAx=1
        else:
        if label_pred != subfolder:
        GR+=1
        CR+=1
        return (DI,FR,FA,GR)</pre>
```


Deep Face

- Find function
- VGG model as recognition model
- OpenCV for face detection
- Thresholds varies from 0.01 to 0.99

For deep learning we used the same logic to calculate rates.

Cosine Similarity

 used to measure the or similarity or distance between two face embedding, treated as vectors, calculating the cosine of the angle between them.

Deep Face

- Organization of probes and gallery is the same used for LBP
- Only variation in reprocessing: find function, which search for the identity in the gallery and return list of pandas data frame
- Calculate the number of GA, FR, FA and GR

 Due to the different nature of DeepFace, we're now able to correctly detect the face of Calista

Performance Evaluations

2 Project Implementation

Assessment

- Calculate the following rates:
 - Detection and Identification Rate DIR(t,1): rank k is 1 for both LBP and DF
 - False Acceptance Rate (FAR)
 - False Rejection Rate (FRR)
 - Equal Error Rate (ERR)

Table of Contents

3 Conclusion

Introduction

- Project Implementation
- **▶** Conclusion

Deep Face vs LBP

- LBP ability to address complex variations may be limited, especially with diverse lighting and angles
- Deep Learning excelled in flexibility even with complex patterns
- LBP approach is faster computational cheaper

Future Works

- Multi biometric system by combining scores (normalization of scores since we have different ranges)
- Live Detection

Exploring Facial Recognition Techniques: Thank you for listening!

Any questions?