5 Quantization

- 5.1 Basics of Rate Distortion Theory
- 5.2 Scalar Quantization
- 5.3 Lloyd-Max Quantization
- 5.4 Entropy Coded Scalar Quantization
- 5.5 Embedded Quantization
- 5.6 Adaptive Quantization
- 5.7 Vector Quantization

5.1 Basics of Rate Distortion Theory

Rate distortion theory calculates the minimum transmission bit rate *R* for a required signal quality

Bit rate at least *R* for maximum distortion *D*

Distortion (dt. *Verzerrung*): maximum average distortion *D* allowed, measured according to suitable criterion

Generality: Results of rate distortion theory are obtained without consideration of a specific coding method

Distortion

Assumption: symbol x sent, symbol \hat{x} received

Distortion is non-negative

$$d(x,\hat{x}) \ge 0$$

and

$$d(x, \hat{x}) = 0$$
 for $x = \hat{x}$

Average distortion calculated with help of joint probability mass function

$$D = \mathrm{E}\{d(x,\hat{x})\} = \sum_{x} \sum_{\hat{x}} p_{X,\hat{X}}(x,\hat{x})d(x,\hat{x})$$

Subjective perception of images and video

- Distortion D may take subjective visual impression into account
- Obtained e.g. by extensive subjective visual tests
- No widely accepted measures available

Distortion Measures for Images

Given: Original signal x[m, n]

Reconstructed signal $\hat{x}[m,n]$

Error signal $e[m,n] = x[m,n] - \hat{x}[m,n]$

Mean squared error (MSE): Expectation value of the error signal

$$E\{e^{2}[m,n]\} = E\{(x[m,n] - \hat{x}[m,n])^{2}\} = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} (x[m,n] - \hat{x}[m,n])^{2}$$

If the error signal is zero-mean, the mean squared error is equal to the variance of the error signal:

$$\sigma_e^2 = P_e - \mu_e^2 = E\{e^2[m, n]\}$$
 for $\mu_e = 0$

Power of the original signal: $P_x = \mathbb{E}\{x^2[m,n]\}$

Signal to Noise Ratio (SNR)

$$SNR[dB] = 10 \log_{10} \frac{P_{\chi}}{\sigma_e^2}$$

Peak Signal to Noise Ratio

Signal to Noise Ratio depends on the mean value of the original signal

⇒ not desired for video and image signals

Alternative: Reference to the maximum amplitude $A = 2^b - 1$ of the original signal, e. g. A = 255 for b = 8 bit per sample

Peak Signal to Noise Ratio (PSNR)

$$PSNR_{image}[dB] = 10 \log_{10} \frac{A^2}{\sigma_e^2}$$

The PSNR is always greater than zero, because A is the maximum difference between two arbitrary images x[m,n] and y[m,n].

For **video signals** with K images in a sequence x[m, n, k] with time axis k the above considerations apply similarly with

$$P_{x} = \mathbb{E}\{x^{2}[m, n, k]\}, \quad \sigma_{e}^{2} = \mathbb{E}\{e^{2}[m, n, k]\} = \frac{1}{MNK} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \sum_{k=0}^{K-1} (x[m, n, k] - \hat{x}[m, n, k])^{2}$$

Mean PSNR of a Video Sequence

In a video sequence the total quality is often calculated by averaging the PSNR values over all K images of a sequence. Regarding the mean error of an image k

$$\sigma_e^2[k] = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} e^2[m, n, k]$$

the mean PSNR of a video sequence results in

$$\overline{\text{PSNR}_{\text{image}}} = \frac{1}{K} \sum_{k=0}^{K-1} 10 \log \frac{A^2}{\sigma_e^2[k]} = 10 \log \left(\prod_{k=0}^{K-1} \frac{A^2}{\sigma_e^2[k]} \right)^{\frac{1}{K}} = -10 \log \left(\prod_{k=0}^{K-1} \frac{\sigma_e^2[k]}{A^2} \right)^{\frac{1}{K}}$$

$$\geq -10 \log \left(\frac{1}{K} \sum_{k=0}^{K-1} \frac{\sigma_e^2[k]}{A^2} \right) = 10 \log \frac{A^2}{\frac{1}{K} \sum_{k=0}^{K-1} \sigma_e^2[k]} = \text{PSNR}_{\text{video}}$$

due to the arithmetic mean being greater than the geometric mean.

Result: averaging of PSNR values over all images of a video sequence results in bigger values, the more unequally distributed the errors are over the images of the video sequence

Mutual Information for Discrete RVs

Mutual information (dt. *Transinformation*) between two discrete random variables X and Y specifies the information provided by X about Y

Definition given the joint probability mass functions $p_{X,Y}(x,y)$ and marginal probability mass functions $p_X(x)$ and $p_Y(x)$

$$I(X;Y) = \sum_{x} \sum_{y} p_{X,Y}(x,y) \log_2 \frac{p_{X,Y}(x,y)}{p_X(x) \cdot p_Y(y)}$$

Properties of mutual information

$$I(X;Y) = I(Y;X) \ge 0$$

 $I(X;Y) \le H(X)$ and $I(Y;X) \le H(Y)$
 $I(X;Y) = H(Y) - H(Y|X) = H(X) - H(X|Y)$

Rate-Distortion Function

Definition of rate-distortion function using mutual information

$$R(D) = \min_{d \le D} I(X; \hat{X})$$

• For a given maximum average distortion D, the rate distortion function R(D) is the lower bound for the transmission bit rate

Source coding theorem: for any $D \ge 0$ there exists a source code with average distortion $d \le D$ and rate R arbitrarily close to R(D)

Properties of R(D) function

- Convex
- Continuous and monotonically decreasing
- Inverse D(R) exists and is called distortion-rate function

Continuous Random Variables

Problem in continuous case: entropy as defined previously is infinite

- Replace probability mass function by probability density function $p_X(x)$
- Define differential entropy

$$h(X) = E\{-\log_2 p_X(X)\} = -\int p_X(x) \log_2 p_X(x) dx$$

Relative measure of uncertainty, can be negative

Gaussian RV X with zero mean and variance σ^2

$$p_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-x^2/2\sigma^2}$$

$$h(X) = -\int p_X(x) \log_2 p_X(x) dx$$

$$= \frac{1}{2} \log_2 2\pi e^{-2}$$

Shannon lower bound: for an IID process, the MSE rate-distortion function is lower bounded by

$$R_L(D) = h(X) - \frac{1}{2}\log_2 2\pi eD$$

Rate Distortion for IID Gaussian Source

IID Gaussian source X with variance σ^2

R(D) lower bound for MSE distortion

$$R(D) = \frac{1}{2}\log_2 2\pi e\sigma^2 - \frac{1}{2}\log_2 2\pi eD$$
$$= \begin{cases} \frac{1}{2}\log_2 \frac{\sigma^2}{D} & \text{for } \sigma^2 > D\\ 0 & \text{else} \end{cases}$$

$$D(R) = \sigma^2 2^{-2R} \quad R \ge 0$$

Theoretical bound on signal-to-noise ratio

SNR =
$$10\log_{10} \frac{\sigma^2}{D(R)}$$
 [dB]
= $20R\log_{10} 2 \approx 6.02 \cdot R$ [dB]

R(D) for non-Gaussian sources with same σ^2 is always below Gaussian

Rule of thumb: 1 bit corresponds to approximately 6 dB in SNR

Rate Distortion for Non-Gaussian IID Source

Rate-distortion function for any IID source

- Typically not to be expressed in closed form, computed numerically
- Bounded by

$$R_{\rm L}(D) \le R(D) \le \frac{1}{2} \log_2 \frac{\sigma^2}{D}$$

Shannon lower bound

Gaussian rate-distortion function

Distortion-rate function equivalently bounded by

Rate Distortion for Correlated Gaussian Source

Assumption: Discrete Gaussian source *x* with power spectrum

Consequences

- Frequency range over which power spectrum is smaller than θ need not be coded
- Remaining frequency range should be coded with rate R such that error signal has power equal to θ

5.2 Scalar Quantization

Input-output characteristics of scalar quantizer

Principle

Reconstruction levels are attributed to continuous range of input values

Construction of quantizer according to

- error criterion (maximum error, total error,...) or
- entropy criterion

For irrelevancy reduction in coding systems quantization is performed on color values, prediction signals, transform coefficients, ...

Uniform versus Non-uniform Quantization

⇒ Non-uniform quantization to adapt error to psychophysical properties by taking advantage of Weber's law

Midrise quantizer: symmetric with even number of reconstruction levels (no zero)
Midtread quantizer: symmetric with odd number of reconstruction levels

Uniform Midtread Quantization

Quantize:
$$q = Q(x) = sign(x) \left| \frac{|x|}{\Delta} + \frac{1}{2} \right|$$

Dequantize:
$$\hat{x} = Q^{-1}(q) = \begin{cases} 0 & q = 0 \\ sign(q)(|q| + \delta) \Delta & q \neq 0 \end{cases}$$

 Δ = quantization step size

 δ = offset to reflect shape of $p_x(x)$, zero for uniform distribution of input X

Mean square error of uniform quantizer:

Approximation for small
$$\Delta$$
: $p_E(e) \cong \frac{1}{\Delta}$ for $-\frac{\Delta}{2} \leq e < \frac{\Delta}{2}$

$$\Rightarrow$$
 Variance of quantization error: $\sigma_e^2 = \int_{-\Delta/2}^{\Delta/2} p_E(e) \cdot e^2 de = \frac{\Delta^2}{12}$

Uniform Quantization with Deadzone

Quantize:
$$q = Q(x) = \begin{cases} 0 & |x| < \beta \\ sign(x) \left\lfloor \frac{|x| - \beta}{\Delta} + 1 \right\rfloor & else \end{cases}$$

Dequantize:
$$\hat{x} = Q^{-1}(q) = \begin{cases} 0 & q = 0\\ sign(q)((|q| - \frac{1}{2} + \delta)\Delta + \beta) & q \neq 0 \end{cases}$$

 Δ = quantization step size

 β = threshold for quantization into zero bin

 δ = offset to reflect shape of $p_x(x)$, zero for uniform distribution of input X

Special cases

 $\beta = \Delta/2$ uniform midtread quantizer as before $\beta = \Delta$ width of zero bin is 2Δ

5.3 Lloyd-Max Quantization

Problem:

given a signal with known PDF $p_x(x)$, find a quantizer with M reconstruction levels such that MSE is minimized

$$d = E\{(X - \hat{X})^2\} = \sum_{k=0}^{M-1} \int_{t_k}^{t_{k+1}} (x - \hat{x})^2 p_X(x) dx \to \min$$

Approach: Lloyd-Max scalar quantizer with two necessary conditions

Setting partial derivative of d with respect to t_q equal to zero yields

• Place M-1 decision thresholds half way between reconstruction levels

$$t_q = \frac{\hat{x}_{q-1} + \hat{x}_q}{2}$$

Setting partial derivative of d with respect to \hat{x}_q equal to zero yields

 Place M reconstruction levels in the center of mass of the PDF between two successive decision thresholds

$$\hat{x}_q = \frac{\int_{t_q}^{t_{q+1}} x \cdot p_X(x) dx}{\int_{t_q}^{t_{q+1}} p_X(x) dx}$$

Lloyd-Max Algorithm Based on Training Set

Lloyd-Max algorithm for quantizer design using training data

Choose initial set of representative levels \hat{x}_q , q = 0, 1, ..., M - 1

Repeat

Assign each sample x_i in training set T to closest representative \hat{x}_q minimizing the Euclidian distance

$$J_{x_i}(q) = (x_i - \hat{x}_q)^2$$
 $q = 0, 1, ..., M - 1$

yielding sets

$$B_q = \{x_i \in T : Q(x_i) = q\} \quad q = 0, 1, ..., M - 1$$

Calculate M new representative levels as mean of each set B_q

$$\hat{x}_q = \frac{1}{\|B_q\|} \sum_{\mathbf{x}_i \in B_q} x_i, \quad q = 0, 1, \dots, M - 1$$

Until no further reduction in total distortion $d = \sum_{x_i} (x_i - \hat{x}_{Q(x_i)})^2$

Properties and Performance of Lloyd-Max

Zero-mean: quantization error has zero mean independent of whether input signal has zero mean or not

$$\mathrm{E}\big\{(X-\widehat{X})\big\}=0$$

Decorrelation: quantization error and quantizer output are uncorrelated

$$\mathrm{E}\big\{(X-\widehat{X})\widehat{X}\big\}=0$$

but: quantization error typically correlated with quantizer input

Variance reduction: variance of quantizer output is reduced by amount of MSE

$$\sigma_{\hat{X}}^2 = \sigma_X^2 - \mathbb{E}\{(X - \hat{X})^2\}$$

Equal contribution: all intervals contribute equally towards the overall MSE

$$E\{(X - \hat{X})^2 | X \in I_j\} p_j = E\{(X - \hat{X})^2 | X \in I_k\} p_k \quad \forall j, k$$

with interval $I_q = [t_q, t_q + 1)$ and p_q equals probability of interval q

High Rate Approximation of Lloyd-Max

Approximation: for large rate *R* the distortion-rate function of Lloyd-Max quantization behaves like

$$d(R) \cong \varepsilon^2 \sigma^2 2^{-2R}$$

Parameter ε^2 depends on particular PDF, for zero-mean symmetric PDF it follows:

$$\varepsilon^2 \sigma^2 = \frac{2}{3} \left[\int_0^\infty \sqrt[3]{p_X(x)} dx \right]^3$$

Example values of ε^2 compared to Shannon lower bound

	D(R)	Lloyd-Max
Uniform	$\frac{6}{\pi e} \approx 0.703$	1
Laplacian	$\frac{\pi}{e} \cong 0.865$	$\frac{9}{2} = 4.5$
Gaussian	1	$\frac{\sqrt{3}\pi}{2} \cong 2.721$

Demo 5 "Lloyd Max"

5.4 Entropy Coded Scalar Quantization

Coding of quantizer index

- Lloyd-Max quantizer optimum for coding at fixed rate
- How to incorporate variable length encoding of index?

Problem formulation: for a signal x with given distribution p_X , we seek to minimize the MSE distortion

$$E\{(X-\hat{X})^2\} = \sum_{q=0}^{M-1} \int_{t_q}^{t_{q+1}} (x-\hat{x}_q)^2 p_X(x) dx$$

subject to the constraint that

$$H(\hat{X}) = -\sum_{q=0}^{M-1} p_q \log_2 p_q \le R$$
 with $p_q = \int_{t_q}^{t_{q+1}} p_X(x) dx$

Solution: minimize Lagrangian cost function

$$J = E\{(X - \hat{X})^2\} + \lambda H(\hat{X})$$

Iterative Entropy Coded Scalar Quantizer Design

Lloyd-Max algorithm for entropy coded scalar quantizer

Choose initial set of representative levels \hat{x}_q , $q=0,1,\ldots,M-1$ and corresponding probabilities p_q

Repeat

Calculate M-1 decision thresholds

$$t_q = \frac{\hat{x}_{q-1} + \hat{x}_q}{2} + \lambda \frac{\log_2 p_{q-1} - \log_2 p_q}{2(\hat{x}_q - \hat{x}_{q-1})} \quad q = 0, 1, \dots, M - 1$$

Calculate M new representative levels and probabilities p_q

$$\hat{x}_{q} = \frac{\int_{t_{q}}^{t_{q+1}} x \cdot p_{X}(x) dx}{\int_{t_{q}}^{t_{q+1}} p_{X}(x) dx}, \quad p_{q} = \int_{t_{q}}^{t_{q+1}} p_{X}(x) dx \quad q = 0, 1, \dots, M-1$$

Until no further reduction in Lagrangian cost

Extension by outer loop to find suitable parameter $\lambda > 0$ minimizing *J*

Entropy Constraint Design Based on Training Set

Lloyd-Max algorithm for entropy coded quantizer using training data

Choose initial set of representative levels \hat{x}_q , $q=0,1,\ldots,M-1$ and corresponding probabilities p_q

Repeat

Assign each sample x_i in training set T to representative \hat{x}_q minimizing Lagrangian cost

$$J_{x_i}(q) = (x_i - \hat{x}_q)^2 - \lambda \log_2 p_q \quad q = 0, 1, \dots, M - 1$$

yielding sets

$$B_q = \{x_i \in T : Q(x_i) = q\} \quad q = 0,1,...,M-1$$

Calculate M new representative levels and probabilities p_q

$$\hat{x}_q = \frac{1}{\|B_q\|} \sum_{\mathbf{x}_i \in B_q} x_i, \quad p_q = \frac{\|B_q\|}{\sum_{q=0}^{M-1} \|B_q\|} \quad q = 0, 1, \dots, M-1$$

Until no further reduction in total cost $J = \sum_{x_i} [(x_i - \hat{x}_{Q(x_i)})^2 - \lambda \log_2 p_{Q(x_i)}]$

High Rate Performance of EC Scalar Quantization

High rate and MSE distortion: uniform quantizer with very large number of levels is optimum scalar quantizer in entropy coded case [Gish, Pierce, 1968]

Distortion is approximately constant for small quantizer interval △

$$d \cong \frac{\Delta^2}{12}$$

Entropy is approximately given by

$$H(\hat{X}) = -\sum_{q=-\infty}^{\infty} p_q \log_2 p_q \cong h(X) - \log_2 \Delta$$

If efficient coding is used, it follows that $R \cong H(\hat{X}) \to \Delta \cong 2^{h(X)-R}$

Distortion-rate function for entropy coded (uniform) scalar quantization

$$d(R) = \frac{1}{12} 2^{2h(X)} 2^{-2R}$$

is 1.53 dB from Shannon lower bound $D(R) \ge \frac{1}{2\pi e} 2^{2h(X)} 2^{-2R}$

Comparison of High Rate Performance

Observation: high-rate distortion function for IID data in case of

- Lloyd-Max quantization as well as
- entropy coded (uniform) quantization is of general form

$$d(R) \cong \varepsilon^2 \sigma^2 2^{-2R}$$

Comparison of scaling factor ε^2

	Shannon $D(R)$	Lloyd – Max	Entropy coded
Uniform	$\frac{6}{\pi e} \cong 0.703$	1	1
Laplacian	$\frac{\mathrm{e}}{\pi} \cong 0.865$	$\frac{9}{2} = 4.5$	$\frac{e^2}{6} \cong 1.232$
Gaussian	1	$\frac{\sqrt{3}\pi}{2} \cong 2.721$	$\frac{\pi e}{6} \cong 1.423$

5.5 Embedded Quantization

Scalability: successively refine reconstructed data as bit-stream is decoded

- Decoded subset gives lower quality signal approximation
- Facilitated by nested ("embedded") quantization

Coding: form quantizer index by adding log_2M_k bits for M_k intervals at Q_k

 Lower quantizations can be formed by dropping components from indices of higher rate approximations

Restriction: in general only one quantizer can be optimum with respect to Lloyed-Max condition (exception: uniform quantizer)

Embedded Quantization with Deadzone

Construction of a family of embedded uniform scalar quantizers with deadzone

Typical case: width of zero-bin is 2Δ

Quantizer index for
$$p = 0$$
 given by $q = Q(x) = sign(x) \left| \frac{|x|}{\Delta} \right|$

Reconstruction from index: $\hat{x} = Q^{-1}(q) = \begin{cases} 0 & q = 0 \\ sign(q)(|q| + \delta)\Delta & q \neq 0 \end{cases}$

Coding for Embedded Quantization with Deadzone

Embedded coding of nested deadzone quantizer with step sizes $2^p \Delta$:

- Assume that quantizer index q can be represented with K bits
- Index q can be written in sign plus magnitude form as

$$q = Q_{K-1}(x) = s, q_0, q_1, \dots, q_{K-1}$$

Dropping last p bits from q

$$q_p = Q_{K-1-p}(x) = s, q_0, q_1, \dots, q_{K-1-p}$$

gives the uniform deadzone quantizer with step size $2^p \Delta$

Same result as if quantization was performed using step size of $2^p \Delta$ rather than Δ in the first place

• If p LSBs of q are unavailable, simply reconstruct at lower level of quality

• Reconstruction rule:
$$\hat{x} = Q^{-1}(q_p) = \begin{cases} 0 & q_p = 0 \\ \operatorname{sign}(q_p)(\left|q_p\right| + \delta)2^p \Delta & q_p \neq 0 \end{cases}$$

5.6 Adaptive Quantization

Perception of quantization errors

→ very critical, fine quantization

Quantization scale

- homogeneous objects of medium brightness

5.7 Vector Quantization

Non-uniform codebook

Uniform codebook

(Lattice VQ)

vector

Vector Quantization for Images

Idea: Image block is regarded as multidimensional vector \boldsymbol{x}

- Codebook contains a reduced ensemble of all possible image blocks
- Image block is replaced by similar vector out of codebook
- Only codebook index is transmitted
- Optimal codebook entry is selected based on a distortion measure

LBG Algorithm

Generalization of Lloyd-Max algorithm for vector quantization

First published by Linde, Buzo, and R. Gray in 1980 ⇒ "LBG Algorithm"

Assumption: fixed code word length for index *q*

Idea taken from Lloyd-Max algorithm

Successive optimization of code book using suitable training set

Problem

- Unstructured code book requires full search
- Computationally expensive

LBG Algorithm (cont.)

LBG algorithm for vector quantizer design

Choose training set T and initial set of reconstruction vectors \hat{x}_q , q = 0, 1, ..., M-1

Repeat

Assign each sample x_i in training set T to closest representative \hat{x}_q minimizing the Euclidian distance

$$J_{x_i}(q) = \|x_i - \widehat{x}_q\|^2 \quad q = 0, 1, ..., M - 1$$

yielding sets

$$B_q = \{x_i \in T : Q(x_i) = q\} \quad q = 0,1,...,M-1$$

Calculate M new reconstruction vectors as centroid of each set B_q

$$\widehat{x}_q = \frac{1}{\|B_q\|} \sum_{x_i \in B_q} x_i, \quad q = 0, 1, ..., M-1$$

Until no further reduction in total distortion $d = \sum_{x_i} \|x_i - \widehat{x}_{Q(x_i)}\|^2$

Entropy Coded Vector Quantization

Extended LBG algorithm for entropy coded vector quantizer design

Choose initial set of reconstruction vectors \hat{x}_q , $q=0,1,\ldots,M-1$ and corresponding probabilities p_q

Repeat

Assign each sample x_i in training set T to representative \widehat{x}_q minimizing Lagrangian cost

$$J_{x_i}(q) = \|x_i - \hat{x}_q\|^2 - \lambda \log_2 p_q \quad q = 0, 1, ..., M - 1$$

yielding sets

$$B_q = \{x_i \in T : Q(x_i) = q\} \quad q = 0,1,...,M-1$$

Calculate M new reconstruction vectors and probabilities p_a

$$\widehat{x}_q = \frac{1}{\|B_q\|} \sum_{x_i \in B_q} x_i, \quad p_q = \frac{\|B_q\|}{\sum_{q=0}^{M-1} \|B_q\|} \quad q = 0, 1, \dots, M-1$$

Until no further reduction in total Lagrangian cost $J = \mathbb{E}\left\{\left\|\mathbf{X} - \widehat{\mathbf{X}}\right\|^2\right\} + \lambda H(\widehat{\mathbf{X}})$

Quantization - Summary

- Rate distortion theory: minimum transmission bit rate for given distortion
- *R(D)* for memoryless Gaussian source and MSE: 6 dB/bit
- Uniform quantization with small quantization step size
- Lloyd-Max quantization for optimum quantizer design
- Vector quantization allows joint quantization of several signal samples
- Design of optimum vector quantizer with LBG algorithm

