

Open ML Course: Линейные модели

Open ML Course: Линейные модели 2023

Домашнее задание

Для решения нужно использовать python и sklearn, желательно последних версий.

Вопрос 1. Создайте данные используя make_regression(n_samples=100, n_features=20, noise=10, random_state=42)

Что можно сказать о полученных данных?

- Среднее признаков по модулю меньше единицы и стандартное отклонение около единицы (отличается не более, чем на 20%)
- Есть корреляции больше .5 между разными признаками
- Для вычисления значений признаков требуется регуляризованная регрессия
- Для лучшего предсказания признаки нужно отнормировать

Вопрос 2. Используя sklearn.linear_model постройте LinearRegression, Ridge(random_state=1), Lasso на дефолтных параметрах и ненормированных признаках. Для оценки регрессии используем R2 из

функции score модели.
Ответьте на вопросы 1-3.
Теперь отнормируйте признаки. Постройте опять 3 регрессии.
Ответьте на вопросы 4-6.
Вопрос 7 относится ко всем построенным в вопросе регрессиям.
По score (R2) Ridge лучше всего
✓ По score (R2) LinearRegression лучше всего
По score (R2) Lasso лучше всего. Теперь отнормируйте признаки. Постройте опять 3 регрессии
По score (R2) Ridge лучше всего
✓ По score (R2) LinearRegression лучше всего
По score (R2) Lasso лучше всего
Из всех построенных регрессий в вопросе, Ridge лучше всего
Bonpoc 3. Из вопpoca 2 используйте LinearRegression, Ridge, Lasso, постpоенные на пpизнaкax без нормиpовaния. Для ответов на вопpосы сpaвните полученные коэффициенты.
Для LinearRegression посчитайте значимость признаков, используя statsmodels. Достаньте истинные значения признаков из make_regression.
Для вопросов 5 и 6 формула расчета: d = abs(round(reg.coef_[i],3) - round(coefs[i],3))/round(coefs[i],3)
if d == np.inf: d=1
if d == np.nan: d=0 coefs - истинные коэффициенты.
Значение коэффициента у константы лучше всего оценила LinearRegression (без проверки значимости)
Lasso правильно занулила все нулевые признаки
■ Модуль statsmodels для LinearRegression неправильно определил значимость некоторых коэффициентов
У Ridge и Lasso коэффициенты всегда меньше, чем у LinearRegression
LinearRegression точнее всего определила коэффициенты, если посчитать сумму долей абсолютных

аосолютных отклонении от истинного значения и занулить те коэффициенты, которые незначимо отличаются от нуля по p-value
Вопрос 4. Давайте теперь разберем, как правильно нормировать X. Изменим немного данные: X['x5'] = X['x5'] + 5 X['x10'] = X['x10'] + 10 X['x15'] = X['x15'] + 15 (Порядковый номер столбца X с 0)
Разобьем выборку на train - где мы будем обучать регрессию и test - где мы будем проверять качество регрессии: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
В качестве реализации регрессии возьмем Ridge(random_state=1). Метрика качества R2.
☐ Нормирование X_train и X_test с помощью StandardScalar, который обучен на X_train, дает лучше результат, по сравнению с отсутствием нормировки, причем значительно (во 2-м знаке)
■ Нормирование X_train и X_test с помощью StandardScalar, который обучен на всем X, дает самые лучшие результаты, сравнивая все варианты обучения StandardScalar
Вопрос 5. Давайте теперь изменим только X_test (моделируя ситуацию, когда тестовые данные "поплыли"): X_test['x5'] = X_test['x5'] - 2 X_test['x10'] = X_test['x10'] - 5 X_test['x15'] = X_test['x15'] - 7
В качестве реализации регрессии продолжаем с Ridge(random_state=1). Метрика качества R2.
✓ Нормирование X_train и X_test с помощью StandardScalar, который обучен на X_train, дает лучше результат, по сравнению с отсутствием нормировки, причем значительно (во 2-м знаке)
■ Нормирование X_train и X_test с помощью StandardScalar, который обучен на всем X, дает самые лучшие результаты, сравнивая все варианты обучения StandardScalar

ка не может оыть меньше о
Вопрос 6. Давайте теперь изменим X_test и X_train следующим образом:
X_train['x5'] = X_train['x5'] * 2.5 X_train['x10'] = X_train['x10'] * 5.5 X_train['x15'] = X_train['x15'] * 7.7
X_test['x5'] = X_test['x5'] * 2 + 0.5 X_test['x10'] = X_test['x10'] * 5 + 1 X_test['x15'] = X_test['x15'] * 7 + 1.5
В качестве реализации регрессии продолжаем с Ridge(random_state=1). Метрика качества R2.
 Нормирование X_train и X_test с помощью StandardScalar, который обучен на X_train, дает лучше результат, по сравнению с отсутствием нормировки, причем значительно (во 2-м знаке) ✓ Нормирование X_train и X_test с помощью StandardScalar, который обучен на X_train для X_train, и на X_test для X_test, дает хуже результат, чем StandardScalar, который обучен только на X_train, причем значительно (в 2-м знаке)
✓ Нормирование X_train и X_test с помощью StandardScalar, который обучен на всем X, дает самые лучшие результаты, сравнивая все варианты обучения StandardScalar
Вопрос 7. Работаем с датасетом, определенном в вопросе 4 (где 5й,10й,15й признаки увеличены). Разобьём на трейн и тест как в вопросе 4. Используем нормированные признаки и Ridge(random_state=1): Теперь давайте сделаем пропущенные значения для важного признака: X_train.loc[X_train['x1'].isin(X_train['x1'].sample(smpl, random_state=1+exp)), 'x1'] = np.nan,
где попробуем 5 вариантов случайности exp = range(5). smpl - кол-во пропущенных значений.
Ответьте на вопросы 1-2.
Потом сделаем пропущенные значения только для неважного признака: X_train.loc[X_train['x10'].isin(X_train['x10'].sample(smpl, random_state=1+exp)), 'x10'] = np.nan, где попробуем 5 вариантов случайности exp = range(5).
Ответьте на вопросы 3-4.
При 0-60% пропущенных значений, заполнение средним по х1 работает лучше для важного признака, чем отбрасывание наблюдений с пропущенными значениями
Для 70-90% пропущенных значений, заполнение средним по х1 работает лучше для важного признака, чем отбрасывание наблюдений с пропущенными значениями

~		
	Для 70-90% пропущенных значений, заполнение средним по x10 работает лучше для неважного признака, чем отбрасывание наблюдений с пропущенными значениями	
Вопрос 8. Вопросы 4-6 были про правильное нормирование. Вопрос 7 был про заполнение пропусков. Подведем итоги экспериментов. Какие выводы можно сделать?		
•		
~	Лучше всегда нормировать при применении регуляризации	
~	Если мы предполагаем, что распределение X_test (данные, на которых мы будем применять модель) может измениться, то лучше отдельно обучать и применять StandardScalar для train и отдельно обучать и применять для test	
	Заполнение пропусков средним работает всегда	
~	Если признак важный, а доля пропущенных значений невелика, то лучше наблюдения с пропущенными значениями просто отбросить	
Вопрос 9. Создадим данные, используя X, y, coefs = make_regression(n_samples=1000, n_features=200, noise=10, random_state=42, coef=True) Давайте построим Ridge(random_state=1), Lasso, LinearRegression на ненормированных данных (т.к. сырые данные близки к нормированным) и на 100 случайно выбранных наблюдениях. Качество оценим по mean_squared_error от истинных значений и предсказаний на наблюдениях, которые не участвовали в обучении (900).		
оце	вайте построим Ridge(random_state=1), Lasso, LinearRegression на ненормированных данных (т.к. рые данные близки к нормированным) и на 100 случайно выбранных наблюдениях. Качество ним по mean_squared_error от истинных значений и предсказаний на наблюдениях, которые не	
оце	вайте построим Ridge(random_state=1), Lasso, LinearRegression на ненормированных данных (т.к. рые данные близки к нормированным) и на 100 случайно выбранных наблюдениях. Качество ним по mean_squared_error от истинных значений и предсказаний на наблюдениях, которые не	
оце	вайте построим Ridge(random_state=1), Lasso, LinearRegression на ненормированных данных (т.к. рые данные близки к нормированным) и на 100 случайно выбранных наблюдениях. Качество ним по mean_squared_error от истинных значений и предсказаний на наблюдениях, которые не ствовали в обучении (900).	
оце	вайте построим Ridge(random_state=1), Lasso, LinearRegression на ненормированных данных (т.к. рые данные близки к нормированным) и на 100 случайно выбранных наблюдениях. Качество ним по mean_squared_error от истинных значений и предсказаний на наблюдениях, которые не ствовали в обучении (900). Самая лучшая регрессия – LinearRegression	
оце	вайте построим Ridge(random_state=1), Lasso, LinearRegression на ненормированных данных (т.к. рые данные близки к нормированным) и на 100 случайно выбранных наблюдениях. Качество ним по mean_squared_error от истинных значений и предсказаний на наблюдениях, которые не ствовали в обучении (900). Самая лучшая регрессия — LinearRegression Самая лучшая регрессия — Ridge	
оце	вайте построим Ridge(random_state=1), Lasso, LinearRegression на ненормированных данных (т.к. рые данные близки к нормированным) и на 100 случайно выбранных наблюдениях. Качество оним по mean_squared_error от истинных значений и предсказаний на наблюдениях, которые не ствовали в обучении (900). Самая лучшая регрессия — LinearRegression Самая лучшая регрессия — Ridge Самая лучшая регрессия — Lasso Самые близкие к истинным значения коэффициентов у Linear Regression, если оценить по методу	
оце	вайте построим Ridge(random_state=1), Lasso, LinearRegression на ненормированных данных (т.к. рые данные близки к нормированным) и на 100 случайно выбранных наблюдениях. Качество вним по mean_squared_error от истинных значений и предсказаний на наблюдениях, которые не ствовали в обучении (900). Самая лучшая регрессия — LinearRegression Самая лучшая регрессия — Ridge Самая лучшая регрессия — Lasso Самые близкие к истинным значения коэффициентов у Linear Regression, если оценить по методу вопроса 3	

Гри 0-60% пропущенных значений, заполнение средним по х10 работает в среднем лучше для

Вопрос 10.
Мультиколлинеарность. Вернемся к первоначальным данным:
X, y, coefs = make_regression(n_samples=100, n_features=20, noise=10, random_state=42, coef=True)
Добавим к X столбец x['x20'] = x['x1'] (столбец, равный первому признаку, если нумерация столбцов с 0). Давайте построим Ridge(random_state=1), Lasso, LinearRegression на нормированных данных.
Ответьте на вопросы 1-3.
Пропуск важной переменной. Вернемся к первоначальным данным: X, y, coefs = make_regression(n_samples=100, n_features=20, noise=10, random_state=42, coef=True) Уберем из X важный x['x1'] (столбец, равный первому признаку, если нумерация признаков с 0). Давайте построим Ridge(random_state=1), Lasso, LinearRegression на нормированных данных.
Ответьте на вопросы 4-6.
Lasso занулила коэффициенты для x[ˈx20ˈ] и x[ˈx1ˈ]
☑ Ridge и LinearRegression уменьшила коэффициенты для х['x20'] и х['x1'] примерно в 2 раза, по сравнению с регрессией без х['x20']
 Коэффициенты изменились существенно (в среднем более, чем на 10%)
Lasso занулила все истинно нулевые коэффициенты
Этот блок пройден, но вы можете его перепройти. Внимание! После нажатия на кнопку текущий результат будет утерян. Сбросить результат и попробовать еще раз
4 (2) 4 +
Конкурс "Турникеты-2.0" Ореп ML Course: Линейные модели 2023
Следующий блок — Главная страница трека На главную ↑