A számításelmélet alapjai II. 2. gyakorlat

<u>Cél:</u> Formulák kiértékelése, tulajdonságaiknak vizsgálata. Módszerek megismerése a formulák igaz-, illetve hamis halmazainak meghatározására. Következmény fogalom megismerése.

<u>Fogalmak:</u> igazságértékelés, kielégíthetőség, tautológia (ítéletlogikai törvény), ekvivalencia, tautologikus következmény, legszűkebb következmény, előre- és visszakövetkeztetés

Egy n-változós formula az igazságtáblájával megadott $\{h,i\}^n \rightarrow \{h,i\}$ leképezést ír le. Egy formula **igazhalmaz**a azon I interpretációk halmaza, amelyekre a formula helyettesítési értéke **i**gaz. Egy formula **hamishalmaz**a azon I interpretációk halmaza, amelyekre a formula helyettesítési értéke **h**amis.

<u>Feladat:</u> Adjuk meg az alábbi formula nem prím részformuláit! Majd igazságtábla segítségével értékeljük ki a formulát!

$$P \rightarrow Q \rightarrow R \land \neg (R \rightarrow P)$$

$$\alpha := R \rightarrow P$$

$$\beta := \neg \alpha$$

$$\gamma := R \wedge \beta$$

$$\delta := Q \to \gamma$$

$$\varepsilon := P \to \delta$$

P	Q	R	α	β	γ	δ	3
			$R \rightarrow P$	$\neg (R \rightarrow P)$	$R \wedge \beta$	$Q \rightarrow$	$P \rightarrow \delta$
						γ	
							$P \to Q \to R \land \neg (R \to P)$
i	i	i	i	h	h	h	h
i	i	h	i	h	h	h	h
i	h	i	i	h	h	i	i
i	h	h	i	h	h	i	i
h	i	i	h	i	i	i	i
h	i	h	i	h	h	h	i
h	h	i	h	i	i	i	i
h	h	h	i	h	h	i	i

Gyakorlat: Készítsük el az alábbi formulák igazságtábláját!

a)
$$P \wedge Q \rightarrow \neg Q \vee P$$

b)
$$P \vee Q \rightarrow \neg (Q \wedge P)$$

c)
$$(Q \rightarrow P \land R) \land \neg (P \lor R \rightarrow Q)$$

Egy formula igazhalmaza/hamishalmaza rekurzív módon is előállítható.

Ennek eszköze a ϕA^{α} **igazságértékelés** függvény (α = i vagy h), amely a különböző formulák esetén az igazságtábla felírása nélkül megadja a formula közvetlen részformuláin keresztül azokat a ϕA^i és a ϕA^h feltételeket, amelyeket teljesítő interpretációkban a formula értéke **i** vagy **h** lesz.

A φ-igazságértékelés szabályai

- 1. ha A prímformula (ítéletváltozó): akkor a φ Aⁱ feltételt pontosan azok az interpretációk teljesítik amelyekben I(A)=i, a φ A^h feltételt pedig azok amelyekben I(A)=h.
- 2. a $\varphi(\neg A)^i$ feltételek pontosan akkor teljesülnek, ha teljesülnek a φA^h feltételek.
- 3. a $\varphi(A \land B)^i$ feltételek pontosan akkor teljesülnek, ha teljesülnek a φA^i és a φB^i feltételek.
- 4. a φ (A \vee B)ⁱ feltételek pontosan akkor teljesülnek, ha teljesülnek a φ Aⁱ vagy a φ Bⁱ feltételek.
- 5. a $\varphi(A \rightarrow B)^i$ feltételek pontosan akkor teljesülnek, ha teljesülnek a φA^h vagy a φA^i feltételek.
- 6. a $\varphi(\neg A)^h$ feltételek pontosan akkor teljesülnek, ha teljesülnek a φA^i feltételek.
- 7. a φ (A \wedge B)^h feltételek pontosan akkor teljesülnek, ha teljesülnek a φ A^h vagy a φ B^h feltételek.
- 8. a φ (A \vee B) h feltételek pontosan akkor teljesülnek, ha teljesülnek a φ Ah és a φ Bh feltételek.
- 9. a $\varphi(A \rightarrow B)^h$ feltételek pontosan akkor teljesülnek, ha teljesülnek a φA^i és a φA^h feltételek.

Példa:

Az igazhalmaz

X	Y	Z
i	i	i
h	i	i
h	i	h
h	h	i
h	h	h

A hamishalmazt a formula hamissá válás feltételeinek megkeresésével kapjuk.

A hamishalmaz

X	Y	Z
i	i	h
i	h	i
i	h	h

Gyakorlat: Mely interpretációkban lesz az alábbi formulák értéke igaz?

a)
$$(\neg X \rightarrow \neg Y) \land (Z \land X \rightarrow \neg Y)$$

b)
$$(\neg X \land Y) \rightarrow (\neg Z \land X \lor \neg Y)$$

Mely interpretációkban lesz az alábbi formulák értéke hamis?

c)
$$(X \rightarrow Y \land Z) \land \neg (Z \lor Y \rightarrow X)$$

d)
$$X \rightarrow Y \rightarrow X \land Y$$

Definíció: Azt mondjuk, hogy az ítéletlogikában egy I **interpretáció kielégít egy B formulát** $(I \models_0 B)$, ha a formula helyettesítési értéke **i** az I interpretációban.

Definíció: Azt mondjuk, hogy egy B formula **kielégíthető**, ha legalább egy interpretáció kielégíti. **Definíció:** Azt mondjuk, hogy egy B formula **kielégíthetetlen**, ha egyetlen interpretáció sem elégíti ki.

Definíció: Azt mondjuk, hogy egy B formula **tautológia** ($\models_0 B$), ha minden interpretáció kielégíti. A tautológiát **ítéletlogikai törvénynek** is nevezik.

Legyen $F = \{A_1, A_2, ..., A_n\}$ formulahalmaz.

Definíció: Azt mondjuk, hogy az ítéletlogikában egy I **interpretáció kielégít egy F formulahalmazt** $(I \models_0 F)$, ha a formulahalmaz minden formulájának helyettesítési értéke **i** az I interpretációban.

Definíció: Azt mondjuk, hogy egy F formulahalmaz **kielégíthető**, ha legalább egy interpretáció kielégíti.

Definíció: Azt mondjuk, hogy F formulahalmaz **kielégíthetetlen**, ha bármely interpretációban legalább egy formulája **h** (nincs olyan interpretáció, ami kielégítené).

Gyakorlat: Mondjuk meg, hogy a korábbi formulák közül melyek tautológiák?

Definíció: Ha két formula igazságtáblája azonos, ekkor azt mondjuk, hogy a formulák tautologikusan ekvivalensek.

Ennek jelölésére a ~0 szimbólumot használjuk.

Nevezetes ekvivalenciák:

1.
$$\neg \neg X \sim_0 X$$

2.
$$X \lor X \sim_0 X$$
,

3.
$$X \lor Y \sim_0 Y \lor X$$
,

4.
$$(X \lor Y) \lor Z \sim_0 X \lor (Y \lor Z)$$
,

4.
$$(X \lor Y) \lor Z \sim_0 X \lor (Y \lor Z)$$
,
5. $(X \lor Y) \land Z \sim_0 (X \land Z) \lor (Y \land Z)$,

6.
$$(X \lor Y) \land Y \sim_0 Y$$
,

7.
$$X \rightarrow Y \sim_0 \neg X \lor Y$$

8.
$$\neg (X \land Y) \sim_0 \neg X \lor \neg Y$$
,

9.
$$X \lor \neg X \sim_0$$
 True (tautológia),

10. X
$$\vee$$
 True \sim_0 True

$$X \wedge X \sim_0 X$$

$$\mathbf{A} \wedge \mathbf{A} \sim_0 \mathbf{A}$$

$$X{\wedge}Y\sim_0 Y{\wedge}X$$

$$(X \wedge Y) \wedge Z \sim_0 X \wedge (Y \wedge Z)$$

$$(X \wedge Y) \vee Z \sim_0 (X \vee Z) \wedge (Y \vee Z)$$

$$(X \wedge Y) \vee Y \sim_0 Y$$

$$(\Lambda \land 1) \lor 1 \sim_0 1$$

$$\neg (X \lor Y) \sim_0 \neg X \land \neg Y$$

$$X \land \neg X \sim_0$$
 False (kelégíthetetlen)

$$X \land False \sim_0 False$$

$$X \land True \sim_0 X$$

Egyszerűsítési szabályok:

- 1. $(X \lor d) \land (\neg X \lor d) \sim_0 d$,ahol d elemi diszjunkció
- 2. $(X \land k) \lor (\neg X \land k) \sim_0 k$,ahol k elemi konjunkció.

Feladat: Az ekvivalencia szabályok segítségével lássuk be, hogy a következő formula tautológia!

$$\models_0 A \rightarrow (B \rightarrow A)$$

$$A \rightarrow (B \rightarrow A) \sim_0 \neg A \vee (B \rightarrow A) \sim_0 \neg A \vee (\neg B \vee A) \sim_0 \neg A \vee (A \vee \neg B) \sim_0 (\neg A \vee A) \vee \neg B \sim_0 True \vee \neg B$$
 7. 7. 3. 4. 9.

$$\sim_0 \neg B \lor True \sim_0 True$$

Gyakorlat: Az ekvivalencia szabályok segítségével lássuk be, hogy a következő formulák tautológiák!

a)
$$\models_0 (A \rightarrow B \rightarrow C) \rightarrow (A \rightarrow B) \rightarrow A \rightarrow C$$

b)
$$\models_0 A \rightarrow B \rightarrow A \land B$$

Definició: Egy G formula az $F = \{F1, F2, ..., Fn\}$ formulahalmaznak tautologikus **következménye**, ha minden olyan I interpretációra, amelyre $I \models_0 \{F1, F2, ..., Fn\}$ fennáll, $I \models_0 G$ is fennáll.

Jelölés:
$$\{F1, F2, ..., Fn\} \models_0 G$$

Megjegyzés: Ha egy G formula bármely F feltételhalmaznak következménye, akkor G tautológia.

Előre- és visszakövetkeztetés

Definició: Legyen a feltételhalmazban szereplő változók száma n. Ekkor a **legszűkebb következmény** az az $\{i,h\}^n \rightarrow \{i,h\}$ leképezés, amely pontosan azokhoz az interpretációkhoz rendel *i* értéket, amelyek kielégítik a feltételhalmazt.

Megjegyzés: Ha F legszűkebb következménye R, akkor következmény minden olyan G formula, amelyre R→G tautológia, azaz R igazhalmaza része G igazhalmazának.

Előrekövetkeztetés: ismert az F feltételhalmaz, és keressük F lehetséges következményeit.

Példa. $F = \{Z \rightarrow M \lor P, Z, \neg P\}$

P	M	Z	$Z \rightarrow M \lor P$	Z	$\neg P$	következmény	
						h vagy i	
h	i	i	i	i	i	i	
						h vagy i	

Csak egy igazságkiértékelésre kielégíthető a feltételhalmaz. Tehát a legszűkebb következmény : $\neg P \land M \land Z$. De következmény pl.: $M \land Z$, $\neg P \land Z$, M, stb.

Visszakövetkeztetés: Az F feltételhalmaz és a B következményformula ismeretében eldöntjük, hogy B valóban következménye-e F-nek. Mivel F \models ₀B pontosan akkor, ha az {F \cup {¬B}} formulahalmaz kielégíthetetlen. Más szóval B pontosan akkor következménye F-nek, ha minden olyan interpretációban, ahol B hamis az F kielégíthetetlen.

<u>**Példa:**</u> $F = \{Z \rightarrow M \lor P, Z, \neg P\}$ és be kell látni, hogy M következmény. Be kell látni, hogy, ha $\neg M$ igaz, akkor $\{Z \rightarrow M \lor P, Z, \neg P\}$ nem lesz kielégíthető.

Ha minden feltételformula i legyen, akkor Z=i, P=h. Viszont ha M hamis, akkor Z \rightarrow M \lor P=h lehet csak. Tehát M következménye *F*-nek.

Feladat: Lássuk be, hogy $\{X \rightarrow Y, Y \rightarrow Z\} \models_0 X \rightarrow Z$.

X	Y	Z	$X \rightarrow Y$	Y→	X→Z
				Z	
i	i	i	i	1	1
i	i	h	i	h	h
i	h	i	h	i	i
i	h	h	h	i	h
h	i	i	i	i	i
h	i	h	i	h	i
h	h	i	i	i	i
h	h	h	i	i	i

Mivel a következmény igazsághalmazának részhalmaza a feltételeket kielégítő interpretációk halmaza, ezért igaz az állítás. Ez nem a legszűkebb következmény. Legszűkebb következmény: $(\neg X \land \neg Y) \lor (Y \land Z)$.

<u>Előrekövetkeztetéssel:</u> Ha X \rightarrow Y=i, akkor X=h vagy Y=i. *a)* Ha X=h és Y \rightarrow Z=i, akkor Y=h vagy Z=i. *b)* Ha Y=i és Y \rightarrow Z=i, akkor Z=i. Tehát (\neg X \land \neg Y) \lor (\neg X \land Z) \lor (Y \land Z) a legszűkebb következmény. Mivel, ha (\neg X \land Z)=i, akkor (\neg X \land \neg Y) \lor (Y \land Z)=i, ezért ez utóbbi a legszűkebb következmény egyszerűbb alakja.

<u>Feladat:</u> Visszakövetkeztetéssel lássuk be, hogy $\{P \to Q \lor R , R \to \neg P \land Q, P \lor R\} \models_0 Q$. Tegyük fel, hogy Q=h. Ha $P \to Q \lor R=i$, akkor $P \to R=i$ is teljesül. Ez azt jelenti, hogy P=h vagy R=i. *a)* Ha P=h és $P \lor R=i$, akkor R=i. *b)* Ha R=i és $R \to \neg P \land Q=i$, akkor $\neg P \land Q=i$ kéne legyen, de Q=h, ami ennek ellentmond.