Można się powołać na każde twierdzenie sformułowane na wykładzie lub ćwiczeniach.

(1) (20pkt)(konstrukcja uzwarcenia przestrzeni lokalnie zwartej) Niech (Y, \mathcal{T}) będzie niezwartą, lokalnie zwartą T_2 przestrzenią topologiczną i niech ∞ będzie punktem nienależącym do Y. Rozważmy przestrzeń $X = Y \cup \{\infty\}$. Deklarujemy, że zbiór $A \subseteq Y$ jest otwarty wtedy i tylko wtedy gdy $A \in \mathcal{T}$. Natomiast zbiory otwarte zawierające ∞ są postaci $\{\infty\} \cup (Y \setminus K)$, gdzie $K \subseteq Y$ jest zwarty.

Przypomnijmy, że przestrzeń jest lokalnie zwarta jeśli dla każdego punktu istnieje otwarte otoczenie, którego domknięcie jest zwarte.

- (a) (7pkt) Sprawdzić, że faktycznie zdefiniowaliśmy topologię na X.
- (b) (7pkt) Pokazać, że X jest przestrzenią zwartą. Nie zapomnieć pokazać, że X jest T_2 .
- (c) (6pkt) Niech Y będzie zbiorem liczb naturalnych z topologią dyskretną. Konstruujemy X jak wyżej. Podać przykład zanurzenia X w (\mathbb{R}, d_e) .
- (2) (30pkt) Niech $\mathbb N$ będzie przestrzenią liczb naturalnych z topologią dyskretną. Niech $\mathbb N^{\mathbb N}$ będzie przestrzenią ciągów liczb naturalnych z topologią produktową. Wiemy, że $\mathbb N^{\mathbb N}$ jest metryzowalna przez

$$d(a,b) = \begin{cases} \frac{1}{\min\{i: n_i \neq m_i\}}, & \text{gdy } a \neq b, \\ 0, & \text{gdy } a = b. \end{cases}$$

gdzie $a = (n_1, n_2, \ldots), b = (m_1, m_2, \ldots).$

- (a) (5pkt) Pokazać, że $\mathbb{N}^{\mathbb{N}}$ ma bazę przeliczalną złożoną ze zbiorów które są jednocześnie otwarte i domknięte.
- (b) (6pkt) Pokazać, że $\mathbb{N}^{\mathbb{N}}$, nie jest przestrzenią zwartą.
- (c) (7pkt) Udowodnić, że każdy zbiór zwarty w N^N ma puste wnętrze.
- (d) (12pkt) Pokazać, że $\mathbb{N}^{\mathbb{N}}$ jest homeomorficzna z $\mathbb{R} \setminus \mathbb{Q}$.