BATCH COURSE TIMINGS 7:15P.M-8:15 P.M(EMERGE CLASS 11th)/5 P.M-6:30P.M (EXPERT BATCH)

JAI SHREE RAM

- **1.** Let α and β be the roots of the equation $x^2 + x + 1 = 0$, the equation whose roots are α^{19} , β^7 is
 - (a) $x^2 x 1 = 0$ (b) $x^2 x + 1 = 0$
- - (c) $x^2 + x 1 = 0$ (d) $x^2 + x + 1 = 0$
- 2. If one root of a quadratic equation is $\frac{1}{2+\sqrt{5}}$, then the equation is
 - (a) $x^2 + 4x + 1 = 0$ (b) $x^2 + 4x 1 = 0$
 - (c) $x^2 4x + 1 = 0$ (d) None of these
- **3.** If one of the roots of the equation $x^2 + ax + b = 0$ and
 - $x^2 + bx + a = 0$ is coincident. Then the numerical value of
 - (a+b) is
 - (a) 0
- (b) 1
- (c) 1
- (d) 5
- 4. Let p and q be the roots of the equation $x^2 2x + A = 0$ and let r and s be the roots of the equation $x^2 18x$ + B = 0. If p < q < r < s are in arithmetic progression then the values of A and B are given by
 - (a) A = 3, B = 77
- (b) A = 3, B = 7
- (c) A = -3, B = 77
- (d) A = 3, B = -7
- 5. The value of 'a' for which one root of quadratic equation $(a^2 5a + 3) x^2 + (3a 1)x + 2 = 0$ is twice as large as other is:

 - (a) 2/3 (b) -2/3 (c) 1/3
- (d) 1/3
- **6.** If $x = \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots \infty}}}$ then x is equal to :
 - (a) $\frac{1+\sqrt{5}}{2}$ (b) $\frac{1-\sqrt{5}}{2}$ (c) $\frac{1\pm\sqrt{5}}{2}$ (d) None of these

- 7. The value of 'a' for which the sum of the squares of the roots of the equation x^2 (a 2)x a 1 = 0 assumes the least value is:
 - (a) 0
- (b) 1
- (c) 2
- (d) 3
- 8. If α , β be the roots of $ax^2 + bx + c = 0$; γ , δ be the roots of $px^2 + qx + r = 0$; and D_1 , D_2 the respective discriminants. If α , β , γ , δ are in A.P. then $D_1:D_2$ =

- (a) $\frac{a^2}{b^2}$ (b) $\frac{a^2}{p^2}$ (c) $\frac{b^2}{q^2}$ (d) $\frac{c^2}{r^2}$

BATCH COURSE TIMINGS 7:15P.M-8:15 P.M(EMERGE CLASS 11th)/5 P.M-6:30P.M (EXPERT BATCH)

JAI SHREE RAM

9. If α , β are roots of x^2 - 3x + 1 = 0 then the equation whose roots are $\frac{1}{\alpha - 2}$, $\frac{1}{\beta - 2}$ is -

(a)
$$x^2 + x - 1 = 0$$

(b)
$$x^2 + x + 1 = 0$$

(c)
$$x^2 - x - 1 = 0$$

(d) None of these

10. If $x^2 - 3x + 2$ be a factor of $x^4 - px^2 + q$, then (p, q) =

(c) (4, 3) (d) (5, 4)

11. Let α , β be the roots of $x^2 - x + p = 0$ and γ , δ be root of $x^2 - 4x + q = 0$. If α , β , γ , δ are in G.P., then the integral value of p and q respectively are

$$(c) - 6, 3$$

12. If 1 - i is a root of the equation $x^2 + ax + b = 0$, then the values of a and b are

13. Let α , β be the roots of the equation (x-a)(x-b)=c, $c \neq 0$, then the roots of the equation $(x-\alpha)(x-\beta)+c=0$ are

14. If the roots of the equation $x^2 - px + q = 0$ differ by unity then

(a)
$$p^2 = 1 - 4q$$

(b)
$$p^2 = 1 + 4q$$

(c)
$$q^2 = 1 - 4p$$

(d)
$$q^2 = 1 + 4p$$

15. If p and q are the roots of the equation $x^2 + px + q = 0$, then

(a)
$$p = 1$$
, $q = -2$ (b) $p = 0$, $q = 1$

(b)
$$p = 0$$
, $q = 1$

(c)
$$p = -2$$
, $q = 0$

(c)
$$p = -2$$
, $q = 0$ (d) $p = -2$, $q = 1$

ANSWER

1)D 2)B 3)B 4)B 5)A 6)A 7)B 8)B 9)C 10)D 11)A 12)B 13)C 14)B `15)A

LUCKY JETHANI

(IITB)