

Speech Enhancement with Variance Constrained Autoencoders

Code: https://github.com/danielbraithwt/Speech-Enhancement-with-Variance-Constrained-Autoencoders

Daniel T. Braithwaite and W. Bastiaan Kleijn

SCHOOL OF ENGINEERING AND COMPUTER SCIENCE, VICTORIA UNIVERSITY OF WELLINGTON, NEW ZEALAND

TE WHARE WĀNANGA O TE ŪPOKO O TE IKA A MĀUI SVICTORIA UNIVERSITY OF WELLINGTON

PROBLEM

- Magnitude spectrum enhancement methods provide spectrogram output:
 - Quality of enhancement relies on method used to synthesise speech from spectrogram.
- Classical enhancement paradigm (e.g., Wiener filtering):
 - Methods do not know attributes of speech.
 - Methods produce audible distortions.
- Consider a situation where multiple speech signals are equally plausible (given some noisy input):
 - MMSE approach compromises between them, which yields distortions.
- Instead, generative enhancement paradigm:
 - Generate convincing speech that matches the content of the original noisy signal.
 - In the previous example a generative approach picks one of the equally likely signals, leading to reasonable sounding speech.
 - A Maximum likelihood approach would also do this, but without a prior on clean speech the noisy signal would be returned.
 - Generative approach includes a prior.
- Other time domain enhancement approaches based off generative models are not truly generative.
- Objective: Develop a time domain speech enhancement model based on the Variance Constrained Autoencoder (VCAE) which is a step towards a generative system and is computationally less complex than competing solutions.

CONTRIBUTIONS

- The Speech Enhancement Variance Constrained Autoencoder (SE-VCAE).
- SE-VCAE outperforms SE-GAN and SE-WaveNet
 - A subjective MUSHRA evaluation demonstrates that SE-VCAE is better at de-noising speech, compared to SE-GAN and SE-WaveNet.
 - SE-VCAE uses a less complex neural network architecture compared to SE-GAN and SE-WaveNet.

BACKGROUND

- Speech Enhancement GAN (SE-GAN) [1]:
 - Based on the Generative Adversarial Network (GAN).
 - Adds an encoder and L1 error criterion to ensure that generated audio matches desired clean speech.
 - Complex network structure.
- Speech Enhancement WaveNet (SE-WaveNet) [2]:
 - Based on WaveNet.
 - Minimises regression loss function, not generative.
 - Complex network structure.
- Both SE-GAN and SE-WaveNet outperform the classical Wiener enhancement method, according to subjective test.

VARIANCE CONSTRAINED AUTOENCODER

- $q_{\phi}(z|x)$ is the distribution over latent variables for a given x, sampling from $q_{\phi}(z|x)$ is defined as:
 - $\mu_{\phi}(x)$ outputs the mean of $q_{\phi}(z|x)$, μ_{ϕ} is implemented by a neural network with parameter ϕ .
 - sample $\varepsilon \sim p(\varepsilon)$, where $p(\varepsilon)$ is a user-defined distribution (e.g., $\mathcal{N}(0, I \cdot \sigma_{\varepsilon})$).
 - then, $z \sim q_{\phi}(z|x)$ has the form $z = \mu_{\phi}(x) + \varepsilon$.
- $p_{\theta}(x|z)$ is the distribution over data given the latent features, typically deterministic.
 - Typically, $p_{\theta}(X|Z)$ is assumed to be a factored Gaussian or Laplace distribution.
- $q_{\phi}(z|x)$ and $p_{\theta}(x|z)$ denoted encoder and decoder.
- Optimise by maximising likelihood of data, subject to a variance constraint:
 - Cannot constrain variance directly, need to use a penalty function.

 $\max_{\phi,\theta} \mathbb{E}_{X \sim p_D(x)} \mathbb{E}_{Z \sim q_{\phi}(z|x;)} [\log p_{\theta}(X|Z)]$

 $-\lambda \mid \mathbb{E}_{Z \sim q_{\phi}(z)}[\mid\mid Z - \mathbb{E}_{Z \sim q_{\phi}(z)}[Z]\mid\mid_{2}^{2}] - v \mid,$

SPEECH ENHANCEMENT VCAE

- Objective: Use VCAE for speech enhancement.
- Define the input distribution as \tilde{X} , the noisy data.
- Output distribution is the clean data.
- The objective function is an extension of VCAEs:
 - Maximises likelihood of clean data at output given features inferred from corresponding noisy data.
 - $p_{\theta}(X|Z)$ assumed to be factored Laplace distribution.
 - Constrains the latent distributions variance using a penalty function.
 - Applies L1 regularisation to the weights of the encoder and decoder.
 - Minimises the Wasserstein distance between $p_{\theta}(x)$ and $p_{D}(x)$ (given by $W_{f}(p_{\theta}(x),p_{D}(x))$).

• The dataset consisted of 30 speakers from VoiceBank [3]:

Noisy data constructed by corrupting the training and test-

- 28 for the training set, and two for the testing set.

ing speakers with noise; some noise is artificially gener-

Testing noise SNRs are 17.5, 12.5, 7.5, and 2.5 dB.

ated and the remainder is from the Demand dataset [4]:

Training and testing noise types are distinct.

- Training noise SNRs are 15, 10, 5, and 0 dB.

Audio recorded at 42 kHz, and down-sampled to 16 kHz.

Same dataset as was used by SE-GAN and SE-WaveNet.

DATASET

 $+W_{f}(p_{\theta}(x), p_{D}(x)) + \beta \cdot (||\theta||_{1} + ||\phi||_{1})$ $-\lambda |\mathbb{E}_{Z \sim q_{\phi}(z)}[||Z - \mathbb{E}_{Z \sim q_{\phi}(z)}[Z]||_{2}^{2}] - \nu|,$

EXPERIMENTAL SET-UP

- Output block size was 37.5 milliseconds (600 samples).
- Input block size was 62.5 milliseconds (1000 samples). Central 37.5 milliseconds is the desired reconstruction.
- Before splitting audio files into blocks, a pre-emphasis (0.95) filter is applied.
- The encoder/decoder neural networks used:
 - 1D-Convolutional layers; Batch norm; 330 latent features.
- The procedure for enhancing a test signal is:
 - Apply a pre-emphasis (0.95) filter to the audio file.
 - Split the file into blocks of length 1000, such that for successive blocks the central 600 samples overlap by 300 samples.
 - Apply the trained SE-VCAE model to these blocks, yielding the set of enhanced blocks.
 - Join the enhanced blocks using a Hann window (this smooths any discontinuities between blocks).
 - Apply de-emphasis (0.95) filter to the joined blocks.

EXAMPLE OF ENHANCEMENT

- Spectrogram representations of the clean, noisy and SE-VCAE enhanced versions of a single audio file.
- Length is \approx 2 seconds. SNR is 2.5 dB.

MUSHRA SET-UP

- Subjective MUSHRA test used to evaluate model.
- SE-GAN and SE-WaveNet were reference systems.
- 20 units in total. One unit consists of six hidden audio files:
 - noisy signal; enhancement produced by SE-VCAE/GAN/WaveNet; hidden reference; noisy speech signal with 5 dB lower SNR.
- Six respondents.
- Used a paired t-test for significance testing, with a p-value of 0.05.

OVERALL RESULTS

 Average MUSHRA scores for each model tested, over all noise types and SNRs.

Noisy SE-GAN SE-WaveNet SE-VCAE 26.9 ± 3.2 50.1 ± 3.1 48.0 ± 3.7 $\mathbf{59.0}\pm3.4$

- All models outperform the noisy signals.
- SE-GAN and SE-WaveNet are equivalent.
- SE-VCAE improves upon SE-GAN and SE-WaveNet.

RESULTS PER SNR

 Average MUSHRA scores for each model tested, split by SNR.

SNR (dB)	Noisy	SE-GAN	SE-WaveNet	SE-VCAE
2.5	20.4 ± 5.8	43.0 ± 4.8	36.4 ± 5.6	53.9 ± 6.4
7.5	24.8 ± 5.9	45.2 ± 5.8	40.8 ± 7.2	54.9±7.2
12.5	33.0 ± 6.5	60.4±6.7	55.0±6.7	65.9 \pm 6.1
17.5	29.5 ± 6.1	51.9±5.5	59.7 ± 6.9	61.2 \pm 6.8

- All models outperform the noisy signals for all SNRs.
- SE-VCAE outperforms SE-GAN and SE-WaveNet for the SNRs 2.5 dB and 7.5 dB.
- SE-VCAE is equivalent to SE-GAN and SE-WaveNet for the SNRs 12.5 dB and 17.5 dB.

RESULTS PER NOISE TYPE

 Average MUSHRA scores for each model tested, split by noise type.

Noise	Noisy	SE-GAN	SE-WaveNet	SE-VCAE
living	24.0 ± 7.0	44.2 ± 5.8	36.1 ± 7.1	63.5 ± 6.9
psquare	25.2 ± 5.1	44.8 ± 4.2	46.6 ± 5.7	54.7±5.6
cafe	29.8 ± 5.7	60.7±5.7	54.0 ± 6.3	61.6±6.3
bus	31.1 ± 9.3	51.3±10.2	59.0±11.7	59.5±8.7

- All models outperform the noisy signals for all noise types.
- For living room and psquare, SE-VCAE outperforms SE-GAN and SE-WaveNet.
- For cafe SE-VCAE is equivalent to SE-GAN, both improve on SE-WaveNet.
- For bus, all models are equivalent.

CONCLUSIONS

- SE-VCAE outperforms both SE-GAN and SE-WaveNet.
 - Overall SE-VCAE improves upon SE-GAN and SE-WaveNet, shown by subjective evaluation.
 - When scores are split by SNR: SE-VCAE improves upon SE-GAN and SE-WaveNet for SNRs of 2.5 dB and 7.5 dB.
- SE-VCAE uses a less complex neural network structure than these two competing models.
 - SE-VCAE has encoder and decoder networks that consist of fewer layers.

ACKNOWLEDGEMENTS

This work was supported by funding from GN.

REFERENCES

- [1] S. Pascual, A. Bonafonte, and J. Serra, "SEGAN: Speech enhancement generative adversarial network," in *Proc. Interspeech* 2017, 2017, pp. 3642–3646.
 [2] D. Rethage, J. Pons, and X. Serra, "A WaveNet for speech denoising," in 2018 IEEE International Conference on Acoustics,
- [2] D. Retnage, J. Pons, and X. Serra, A waveNet for speech denoising, in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018, pp. 5069–5073.
 [3] C. Veaux, J. Yamagishi, and S. King, "The voice bank corpus: Design, collection and data analysis of a large regional accent speech database," in Oriental COCOSDA held jointly with 2013 Conference on Asian Spoken Language Research and Evaluation
- (O-COCOSDA/CASLRE), 2013 International Conference. IEEE, 2013, pp. 1–4.

 [4] J. Thiemann, N. Ito, and E. Vincent, "The diverse environments multi-channel acoustic noise database: A database of multichannel environmental noise recordings," The Journal of the Acoustical Society of America, vol. 133, no. 5, pp. 3591–3591,

