Дискретное вероятностное пространство

- 1. События A и B независимые. Докажите, что события \overline{A} и \overline{B} также независимые.
- **2.** При двух бросаниях игрального кубика вероятность того, что выпадает одинаковое число очков, равна $\frac{1}{6}$. Докажите, что кубик правильный, т.е. все числа от 1 до 6 выпадают равновероятно.
- **3.** Докажите, что из попарной независимости событий A_1 , A_2 , A_3 не следует независимость в совокупности.
- **4.** Даны события A_1, A_2, \ldots, A_n . Докажите, что
- a) $P(\bigcup_{i=1}^{n} A_i) = \sum_{i} P(A_i) \sum_{i < j} P(A_i \cap A_j) + \dots$
- **b)** $P(\bigcap_{i=1}^n A_i) = P(A_1) \cdot P(A_2|A_1) \cdot \ldots \cdot P(A_n|\bigcap_{i=1}^{n-1} A_i)$ при условии, что $P(A_1 \cap A_2 \cap \ldots \cap A_{n-1}) > 0$.
- **5.** Пусть B_1, B_2, \ldots, B_n образуют полную группу событий и $P(B_i) > 0$. Докажите, что для любого события A верно равенство $P(A) = \sum_{i=1}^n P(A|B_i) \cdot P(B_i)$.
- **6.** (Байес) Пусть P(A)>0 и P(B)>0. Докажите, что $P(A|B)=\frac{P(B|A)\cdot P(A)}{P(B)}.$
- 7. Каким по счёту студент должен идти сдавать экзамен, чтобы с наибольшей вероятностью ему достался знакомый билет, если он выучил лишь k билетов из n?

 8. В некоторой семье двое детей (рождение девочки и мальчика равновероятны). Какова вероятность того, что из них один мальчик и одна девочка? Известно, что а) один из детей мальчик; b) один из детей мальчик и он родился в понедельник. Какова теперь вероятность того, что в семье разнополые дети?