Vectors

Definition

A vector \vec{x} in 2D (or 3D) space is a quantity with both magnitude and direction. Vectors with the same magnitude and direction are considered equal, regardless of position.

The zero vector, denoted $\vec{0}$, is the vector with zero magnitude and no direction.

Graphically, a non-zero vector is represented by a line terminated by an arrow. The length of the line indicates the magnitude and the arrow indicates the direction. When a vector is positioned with its tail at the origin, its head coincides with a *terminal point*:

Analytically, a vector is represented by the coordinates of its terminal point (when originating from the origin), regardless of its actual position.

The zero vector has all zero components: $\vec{0} = (0, 0)$.

Notation

The magnitude of a non-zero vector $\vec{x}=(a,b)$, denoted $\|\vec{x}\|$, can be determined using the Pythagorean Theorem:

$$\|\vec{x}\| = \sqrt{a^2 + b^2}$$

The zero vector has zero magnitude:

$$\|\vec{0}\| = 0$$

Vector Addition

Graphically, vectors are added by placing them head-to-tail or by using the parallelogram method:

Analytically, vectors are added using component-wise addition of their terminal points:

$$\begin{aligned} \vec{x} &=& (a,b) \\ \vec{y} &=& (c,d) \\ \vec{x} + \vec{y} &=& (a+c,b+d) \end{aligned}$$

Theorem

The zero vector acts as an additive identity:

$$\vec{x} + \vec{0} = \vec{0} + \vec{x} = \vec{x}$$

Proof

Let
$$\vec{x} = (a, b)$$

 $\vec{x} + \vec{0} = (a, b) + (0, 0) = (a + 0, b + 0) = (a, b) = \vec{x}$
 $\vec{0} + \vec{x} = (0, 0) + (a, b) = (0 + a, 0 + b) = (a, b) = \vec{x}$

Scalar Multiplication

A vector can be multiplied by a real number, called a scalar, to change its magnitude and/or direction:

t > 0: Increases/decreases the magnitude by a factor of t

t=0: Results in the zero vector

t < 0: Increases/decreases the magnitude by a factor of |t| and reverses the direction

$$\vec{x} = (a, b)$$

$$\frac{\|\vec{x}\|}{t\|\vec{x}\|} = \frac{a}{x} \implies x = ta$$

$$\frac{\|\vec{x}\|}{t\|\vec{x}\|} = \frac{b}{y} \implies y = tb$$

$$t\vec{x} = (ta, tb)$$

Definition

To say that two non-zero vectors \vec{x} and \vec{y} are parallel means there exists some non-zero scalar t such that $\vec{y} = t\vec{x}$. If t > 0 then the vectors are in the same direction. If t < 0 then the vectors are in reverse directions.

Notation

The vector $(-1)\vec{x}$, denoted $-\vec{x}$, is a vector parallel to \vec{x} with the same magnitude as \vec{x} , but with the opposite direction of \vec{x} .

Theorem

For every vector \vec{x} , the vector $-\vec{x}$ acts as an additive inverse:

$$\vec{x} + (-\vec{x}) = (-\vec{x}) + \vec{x} = \vec{0}$$

Proof

Let
$$\vec{x} = (a, b)$$

 $-\vec{x} = (-1)(a, b) = (-a, -b)$
 $\vec{x} + (-\vec{x}) = (a, b) + (-a, -b) = (a - a, b - b) = (0, 0) = \vec{0}$
 $(-\vec{x}) + \vec{x} = (-a, -b) + (a, b) = (-a + a, -b + b) = (0, 0) = \vec{0}$

Vector Subtraction

Using vector addition, inverses and identity, we can develop a notion of vector subtraction:

$$\vec{y} + \vec{u} = \vec{x}$$
 $\vec{u} = \vec{x} - \vec{y}$
 $\vec{u} = (a, b) - (c, d) = (a - c, b - d)$

Geometry

Lines

Problem: Find the vector equation for the line that passes through the terminal points of two vectors \vec{a} and \vec{b} .

$$\vec{u} = \vec{b} - \vec{a}$$

$$(x, y) = \vec{a} + t\vec{u} = \vec{a} + t(\vec{b} - \vec{a})$$

Planes

Problem: Find the vector equation for the plane that passes through the terminal points of three non-colinear vectors $\vec{a}, \vec{b},$ and $\vec{c}.$

$$\begin{split} \vec{u} &= \vec{b} - \vec{a} \\ \vec{v} &= \vec{c} - \vec{a} \\ (x,y) &= \vec{a} + s\vec{u} + t\vec{v} = \vec{a} + s(\vec{b} - \vec{a}) + t(\vec{c} - \vec{a}) \end{split}$$