Automatically Discharging VDM Proof Obligations

Formal Methods 2008: VDM-Overture Workshop

Sander Daniël Vermolen

This work

Thesis at

Radboud University Nijmegen

- Jozef Hooman
- Peter Gorm Larsen
- Frits Vaandrager
- John Fitzgerald

- Radboud University Nijmegen
- Engineering College of Århus
- Radboud University Nijmegen
- Newcastle University

Outline

- Domain & Goals
- Approach
- Translation
- Proof
- Results & Concluding remarks

Arbitrary code

```
isPalindrome : seq of char -> bool
isPalindrome (pal) ==

if len pal = 0 then true;
else

pal(1) = pal(len pal)
   &&
   isPalindrome(subSequence(pal, 2, len pal - 1))

madam

racecar

racecar

testset
```


Arbitrary code

```
isPalindrome : seq of char -> bool
isPalindrome (pal) ==

if len pal = 0 then true;
else

pal(1) = pal(len pal)
   &&
   isPalindrome(subSequence(pal, 2, len pal - 1))
testset
```


Model Inconsistencies - VDM++

```
Color = <red> | <yellow> | <green>;
turnTo (..., <purple>);

turnTo(
    mk_TrafficLight(<red>),
    <red>
)
```

turnTo(x, <red>)

Model inconsistencies - Characteristics

- Trigger run-time errors
- Detectable using only the model

Model inconsistencies - Classes

Model inconsistencies - Prevention

- Testing
 - Completeness
- Proof
 - Limited number of types of inconsistencies
 - Using proof obligations

ダ TUDelft

Proof Obligations

Theorem provers

- Theorems
- Proof search
 - Interactive
 - Automatic
- Tactics

グ TUDelft

Theorem provers - HOL

- Higher Order Logic (version 4)
 - Small axiom base
 - Adding theorems by proof only
 - Large number of libraries

Goal

Automating (as far as possible) the discharging of proof obligations generated by the integrity examiner

- 1. VDM++ to HOL translation
- 2. Automated proof of the Proof Obligations

Outline

- Domain & Goals
- Approach
- Translation
- Proof
- Results & Concluding remarks

Architecture

- 1. Preparation
- 2. Translation
- 3. Proof attempts

Architecture - Preparation

Architecture - Translation

Architecture - Proof

Outline

- Domain & Goals
- Approach
- Translation
- Proof
- Results & Concluding remarks

Translation - Types

$$\langle T_1 * T_2 * \cdots * T_n \rangle = \langle T_1 \rangle * \langle T_2 \rangle * \cdots * \langle T_n \rangle$$

$$\langle \text{map } T_d \text{ to } T_r \rangle = (\langle T_d \rangle | - \rangle \langle T_r \rangle)$$

$$\langle T_1 * T_2 * \cdots * T_{n-} \rangle = \langle T_1 \rangle * \langle T_2 \rangle * \cdots * \langle T_n \rangle - \langle T_{n+1} \rangle$$

Translation - Expressions

 $\langle | Identifier | \rangle = Identifier$

$$\langle |\text{if } P \text{ then } E_1 \text{ else } E_2| \rangle = \text{if } \langle |P| \rangle \text{ then } \langle |E_1| \rangle \text{ else } \langle |E_2| \rangle$$

$$\langle |(E_f | E_{P_1}, \dots, E_{P_n})| \rangle = \langle |E_f| \rangle (\langle |E_{P_1}| \rangle) \dots (\langle |E_{P_n}| \rangle)$$

TUDelft

Translation - Complications

- Type management
 - Type definition using existing type vs no type definition
 - Translating invariants
- Partiality

Patterns let

$$mk_{a}$$
, b , d , c) = mk_{a} , d

in .

Dependencies

Proof – Domain checking

- Domain checking
- Subtype checking
- Satisfiability of implicit definitions
- Termination

factorial (x) ==

if
$$x = 0$$
 then 1

else $x * factorial(x - 1)$

pre $x >= 0$

$$\forall_{x:int}.(\text{pre_factorial}(x) \land x \neq 0) \Rightarrow \text{pre_factorial}(x-1)$$

 $\forall_{x:int}.(x \geq 0 \land x \neq 0) \Rightarrow (x-1) \geq 0$

TUDelft

Proof – Domain checking

- TAUT_TAC
- MESON_TAC
- DECIDE_TAC
- VDM_ARITH_TAC
- REDUCE_TAC

```
(! val:num too:ind frm:ind wrld:AbWorld.(T ==> ((((((\x) x y . \sim (x =
   v)) frm too) ∧ (frm IN (FDOM wrld.abPurses) ) ) ∧ (too IN
   (FDOM wrld.abPurses) ) ) ∧ ((GetBalance (FAPPLY
   wrld.abPurses frm)) >= val ) ) ==> (let RESULT = (let
   newFrm = (ReduceBalance (FAPPLY wrld.abPurses frm) val)
   and newTo = (IncreaseBalance (FAPPLY wrld.abPurses too)
   val) in (make AbWorld wrld.authentic ((\xspace x , FUNION \xspace x )
   wrld.abPurses ((FEMPTY |+ (too,newTo) ) |+ (frm,newFrm) ))))
   in (((((GetTotal (FAPPLY RESULT.abPurses frm)) + (GetTotal
   (FAPPLY RESULT.abPurses too)) ) = ((GetTotal (FAPPLY
   wrld.abPurses frm)) + (GetTotal (FAPPLY wrld.abPurses too)) )
   ) Λ (((GetBalance (FAPPLY RESULT.abPurses frm)) +
   (GetBalance (FAPPLY RESULT.abPurses too)) ) = ((GetBalance
   (FAPPLY wrld.abPurses frm)) + (GetBalance (FAPPLY
   wrld.abPurses too)) ) ) ==> (! name.(((name IN ((FDOM
   RESULT.abPurses) DIFF \{frm;too\}) \land T) ==> (((GetBalance
   (FAPPLY wrld.abPurses name)) = (GetBalance (FAPPLY
   RESULT.abPurses name)) ) ==> (name IN (FDOM
   RESULT.abPurses)))))))))))
```


Proof – Subtype checking

- Domain checking
- Subtype checking
- Satisfiability of implicit def.
- Termination

types:

```
specialNat = nat inv x == x <> 2
```

functions:

```
sum : specialNat * specialNat -> specialNat
sum (x, y) ==
  x + y;
```

$$\forall_{x:specialNat,y:specialNat}.inv_specialNat(x + y)$$

 $\forall_{x:specialNat,y:specialNat}.(x + y) \neq 2$

Proof – Subtype checking

Simplification support

- Stateful simplification
- Stateless simplification

Decision support

- Pre-defined theorems
- Custom theorems

Proof – Satisfiability

- Domain checking
- Subtype checking
- Satisfiability of implicit def.
- Termination

sqrt (x : real) r : real
pre
$$x \ge 0$$

post $r * r = x$;

$$\forall_{x:real}.\mathsf{pre_sqrt}(\mathsf{x}) \to \exists_{r:real}.\mathsf{post_sqrt}(x,r) \ \forall_{x:real}.x \ge 0 \to \exists_{r:real}.r \cdot r = x$$

TUDelft

Proof – Termination

- Domain checking
- Subtype checking
- Satisfiability of implicit definitions
- Termination

May 24, 2008

28

Results

- 15 case studies
- 4 significant case studies

Category	# valid obligations	# proved
Domain checking	37	37
Subtype checking	19	14
Satisfiability of implicit definitions	6	5

Conclusions

Translation

- Correctness of translation
- Correctness of implementation
- Object orientation

Proof

- Relative high rate of success
- Time efficient

TUDelft

Future & Current research

- Extension of translation
- Extension of tactic
- Process automation
- New concepts

- Operational semantics
- User guided proof

www.overturetool.org

