

# TTK4135 – Lecture 13 Unconstrained optimization

Lecturer: Lars Imsland

### **Outline**

- Optimality conditions for unconstrained optimization
- Ingredients in gradient descent algorithms for unconstrained optimization
  - Descent directions (steepest descent, Newton, Quasi-Newton)
  - How far to walk in descent direction (<u>line search</u>, trust region)
  - Termination criteria
- Scaling

Reference: N&W Ch.2.1-2.2



## **Example: Machine Learning**

- Learn, and make predictions, from data
- Linear regression is the most basic ML algorithm, solved using optimization
  - Linear least squares: Explicit solution
  - Nonlinear least squares: Ch. 10, N&W
- In a similar fashion: ML, neural networks, deep learning etc. are "trained" using gradient descent algorithms
  - Gradient descent for unconstrained optimization is topic of Ch. 2-10, N&W







### Learning goal Ch. 2, 3 and 6: Understand this slide **Line-search unconstrained optimization**

 $\min f(x)$ 

- Initial guess  $x_0$
- While termination criteria not fulfilled
  - Find descent direction  $p_k$  from  $x_k$
  - Find appropriate step length  $\alpha_k$ ; set  $x_{k+1} = x_k + \alpha_k p_k$
  - k = k + 1
- 3.  $x_M = x^*$ ? (possibly check sufficient conditions for optimality)



A comparison of steepest descent and Newton's method. Newton's method uses curvature information to take a more direct route. (wikipedia.org)

#### Termination criteria:

Stop when first of these become true:

- $\|\nabla f(x_k)\| \le \epsilon$  (necessary condition)
- $||x_k x_{k-1}|| \le \epsilon$ (no progress)
- $||f(x_k) f(x_{k-1})|| \le \epsilon$  (no progress)
- $k \le k_{\text{max}}$  (kept on too long)

#### Descent directions:

- Steepest descent  $p_k = -\nabla f(x_k)$
- Newton

$$p_k = -(\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$

Quasi-Newton

$$p_k = -B_k^{-1} \nabla f(x_k)$$

$$B_k \approx \nabla^2 f(x_k)$$



How to calculate derivatives - Ch. 8





## **Unconstrained optimization**



### What is a solution? Local and global minimizers





### (Strict and non-strict optimizers)







### **Necessary condition for optimality**

 $\min_{x} f(x)$ 

**Theorem 2.2**:  $x^*$  local solution and  $f \in C^1 \Rightarrow \nabla f(x^*) = 0$ 



### **Taylor expansions**

From Calculus?

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x-a)^2}{2}f''(a) + \cdots$$

In this course:

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \cdots$$





### Taylor's theorem

$$f: \mathbb{R}^n \to \mathbb{R}, \, p \in \mathbb{R}^n$$

• First order: If *f* is continuously differentiable,

$$f(x+p) = f(x) + \nabla f(x+tp)^{\top} p$$
, for some  $t \in (0,1)$ 

Second order: If f is twice continuously differentiable

$$f(x+p) = f(x) + \nabla f(x)^{\top} p + \frac{1}{2} p^{\top} \nabla^2 f(x+tp)^{\top} p$$
, for some  $t \in (0,1)$ 

### Sufficient conditions for optimality

**Theorem 2.4**:  $\nabla f(x^*) = 0$  and  $\nabla^2 f(x^*) > 0 \Rightarrow x^*$  strict local solution







$$\nabla f(0) = 0$$
$$\nabla^2 f(0) > 0$$

$$\nabla f(0) = 0$$
$$\nabla^2 f(0) = 0$$

$$\nabla f(0) = 0$$
$$\nabla^2 f(0) = 0$$

## General algorithm for solving $\min_{x} f(x)$



### **Termination criteria**



## **Descent (downhill) directions**





### Quadratic approximation to objective function

$$f(x_k + p) \approx m_k(p) = f(x_k) + p^{\top} \nabla f(x_k) + \frac{1}{2} p^{\top} \nabla^2 f(x_k) p$$

#### Minimize approximation:

$$\nabla_p m_k(p) = 0 \Rightarrow p_k = -\left(\nabla^2 f(x_k)\right)^{-1} \nabla f(x_k)$$

#### "Newton step":

$$x_{k+1} = x_k + p_k = x_k - (\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$



**Figure 9.1** Quadratic approximation to the objective function using first and second derivatives. Chong & Zak, "An introduction to optimization"



# Steepest descent directions vs Newton directions from objective function approximations





(b) Newton's method: second-order (quadratic) approximation of f(x) at  $x^k$ 

From Edgar, Himmelblau, Lasdon: "Optimization of Chemical Processes"



### **Steepest descent vs Newton**





### How far should we walk along $p_k$ ?



### **Newton line search and trust region steps**





### Scaling, scale invariance



**Figure 2.7** Poorly scaled and well scaled problems, and performance of the steepest descent direction.