The Impact of Environmental Variability on Fishers' Harvest Decisions in Chile using a Multi-Species Approach

REALLY EARLY DRAFT – PLEASE DO NOT CITE

Felipe J. Quezada-Escalona

Departmento de Economía Universidad de Concepción

October 28, 2025

Abstract

In this paper, we aim to answer how fishing decisions, aggregate catch levels, and the price of marine resources will be affected under different climatic scenarios in the multi-species small pelagic fishery (SPF) in Chile, composed by anchoveta (Engraulis ringens), jack mackerel (Trachurus murphyi), and sardine (Strangomera bentincki), among others. By doing this, we expect to gain a better understanding of how Chilean fishers and fishing communities will adapt to climate change. To address our research question, we will estimate a multi-species harvesting model. This model considers species' economic and biological interrelation to study the effect of climate variability on harvest decisions and substitution between species, and determine the impact of different climatic scenarios on the well-being (e.g., profits) of fishers and fishing communities in Chile. We hypothesize that when fishers have reduced access to a main target species, they will switch to the closest substitute if the expected revenue from targeting this new species exceeds the expected costs. Otherwise, the vessel would decrease fishing effort or even exit the fishery due to the lack of economically viable substitutes. Moreover, we expect that this behavior is heterogeneous depending on the geographical area of operation – as it determines the availability of other species– and the gear type used.

1 Introduction

The distribution and abundance of marine resources are changing in response to environmental conditions such as global ocean warming (Poloczanska et al., 2013). Climate change will shift species distribution in the future, leading to reduced species availability in some areas and increased availability in others (Sumaila et al., 2011). The literature that studies fishers' responses to either

changes in fish availability or policies that restrict access to fisheries (e.g., Stafford, 2018; Vasquez Caballero et al., 2023) has identified that they can adopt the following adaptive strategies: (i) reduce or reallocate fishing effort, either to another species or to another location (Gonzalez-Mon et al., 2021); (ii) continue following the same strategy; or (iii) exit the fishery and find alternative employment (Powell et al., 2022). Among these strategies, reallocating effort to alternative species has been identified as a potentially effective response to climate change (Young et al., 2018). Diversification of target species has also been linked to reduced income variability (e.g., Kasperski & Holland, 2013; Sethi et al., 2014) and greater resilience to both climate shocks (Cline et al., 2017; Fisher et al., 2021) and interannual oceanographic variability (Aguilera et al., 2015; Finkbeiner, 2015).

This emphasis on diversification aligns with broader evidence from food-producing sectors. As Cruz (2025) highlights, climate variability substantially affects agriculture and fisheries, where income depends heavily on environmental fluctuations (e.g., temperature, rainfall) and market forces (e.g., input costs) (Carter et al., 2018; Kasperski & Holland, 2013). With variability expected to reduce productivity, income risk is likely to rise (Carter et al., 2018; Free et al., 2019). Diversification—whether within a sector (e.g., switching crops or species) or across sectors—is often promoted as an adaptive strategy (Abbott et al., 2023). However, these strategies can be costly for resource-dependent communities with limited capital and skills (Cherdchuchai & Otsuka, 2006; Ellis, 2000), and the role of switching costs in shaping diversification remains poorly understood.

In the fisheries context, switching between species requires not only the skills but also the appropriate gear and permits (Frawley et al., 2021; Powell et al., 2022). Even if these conditions are met, diversification may still be constrained by port infrastructure, markets, and regulations (Beaudreau et al., 2019; Kasperski & Holland, 2013; Powell et al., 2022). Therefore, deciding which adaptation strategy to adopt is not straightforward and depends on multiple factors. Moreover, fishers may respond differently to similar circumstances depending on their goals, skills, and preferences (Jardine et al., 2020; Powell et al., 2022; Zhang & Smith, 2011).

In this research, we aim to answer how fishing decisions, aggregate catch levels, and the price of marine resources will be affected under different climatic scenarios in the multi-species small pelagic fishery (SPF) in Chile, composed of anchoveta (Engraulis ringens), jack mackerel (Trachurus murphyi), sardine (Strangomera bentincki), among others. The SPF is the most important in terms of catches in the country, accounting for almost 94% of the total Chilean catch in 2019 (SUBPESCA, 2020). Through this research, we aim to gain a deeper understanding of how Chilean fishers and fishing communities will adapt to climate change. According to Cheung et al. (2010), the Chilean Exclusive Economic Zone (EEZ) is projected to experience one of the largest losses in maximum catch potential due to climate change. However, the Southeast Pacific remains one of the least studied regions regarding the impacts of climate change on fisheries (Sumaila et al., 2011).

To address our research question, we will estimate a multi-species harvesting model based on Kasperski (2015). This model considers species' economic and biological interrelations to study

the effect of climate variability on harvest decisions and substitution between species, and to determine the impact of different climatic scenarios on the well-being (e.g., profits) of fishers and fishing communities in Chile. We expect to find significant effects of climate variables on species stock dynamics, the cost of fishing during a trip, and the number of trips a vessel takes. These environmental effects might influence optimal harvest levels and prices in local markets.

Under a changing climate, studying the effect of climatic variability on fishers' harvest decisions and landings is relevant for understanding fishing communities' adaptive capacities and strategies in response to climate change, thereby enabling the design of potential mitigation measures in response to these changes by policymakers. Countries have different institutions, cultures, and norms, leading to differing responses based on the study's location. For this reason, conducting this research based on the Chilean fishing industry is necessary to develop local policies that aim to reduce climate change impacts on fisheries. While there is some literature on the effect of climate change on Chilean fisheries, I am unaware of local-level studies that consider a multiple-species framework and the interrelationship between the local market and fishing decisions seen under a variable climate context.¹

Because predator—prey links couple these species, reductions in anchoveta or sardine availability may reflect not only environmental drivers but also changes in predation pressure from jack mackerel (Alheit & Niquen, 2004; Arancibia et al., 2019). Thus, even fishers who do not target jack mackerel can face induced changes in catch rates and revenues through ecosystem feedbacks. We hypothesize that if the availability of a main target species decreases, fishers will switch to the closest substitute when expected revenues (net of switching costs) exceed expected costs; otherwise they may reduce effort or exit the fishery. We also expect cross-fleet spillovers: in Chile, jack mackerel is predominantly harvested by the industrial purse-seine fleet, whereas anchoveta and sardine have substantial artisanal and industrial participation. Shocks in one component can propagate across fleets via both biology and markets, in addition to economic linkages (bycatch constraints, shared gear, and market spillovers). This strengthens the case for a multi-species framework that models joint dynamics and substitution rather than single-species responses. Moreover, we expect that this behavior is heterogeneous depending on the geographical area of operation—as it determines the availability of other species (Reimer et al., 2017)—and the gear type used.

2 SPF in Chile

The small pelagic fishery (SPF) in Chile is of critical importance to the national fisheries sector. In 2019, the SPF represented nearly 94% of total national fish landings (SUBPESCA, 2020). The fishery is primarily composed of anchoveta (Engraulis ringens), sardine (Strangomera bentincki), and jack mackerel (Trachurus murphyi). While in the Northern region competition mainly occurs

¹For the case of Chile, as far as I know, the only article that studies fishers' behavior using discrete choice modeling is Peña-Torres et al. (2017). This article studies how the El Niño–Southern Oscillation (ENSO) affects fishers' location choices in the jack mackerel fishery.

between anchoveta and jack mackerel, in the Central-South region all three species play a major role. This makes the Central-South particularly relevant for the study of species interactions and potential substitution within a multispecies management framework, and it is therefore the focus of this research.

The jack mackerel fishery was initially concentrated in northern Chile, but since the mid-1980s the main fishing grounds have shifted to Central-South Chile, traditionally within 50 nautical miles of the coast (Peña-Torres et al., 2017). Historically, species in the SPF have been used primarily for fishmeal and fish oil production (Peña-Torres et al., 2017). In fact, about 85% of jack mackerel landings, on a yearly average between 1987 and 2004, were destined for reduction into fishmeal and fish oil (Peña-Torres et al., 2017). Today, several key ports serve as hubs for these activities, including San Antonio, Tomé, Talcahuano, San Vicente, Coronel, Lota, and Corral.

2.1 Status of the stocks

Historically, anchoveta in the Central-South was considered collapsed until 2018, shifted to over-exploited status in 2019, and has since 2020 been fished within maximum sustainable yield (MSY) limits. Meanwhile, sardine stocks have generally remained within MSY levels, except in 2021 and 2023 when they were classified as overexploited. Jack mackerel was overexploited until 2018 but has since been harvested within MSY limits.

2.2 Quota allocation

The Chilean fishing sector is managed primarily through a Total Allowable Catch (TAC; Cuota Global), which is divided between the industrial and artisanal sectors. A small share (2%) is reserved for research, with additional portions allocated to contingency and human consumption. The TAC is subdivided by region and season, and unused quotas may be reassigned during the fishing year.

Anchoveta and sardine are regulated as a mixed-species fishery: although each has its own quota, substitution between them is permitted. A share of industrial quota is also periodically reassigned to the artisanal sector.

Since 2013, the industrial sector has operated under an individual transferable quota (ITQ) system, known as Transferable Fishing Licenses (*Licencias Transables de Pesca*, *LTP*). Class A licenses were allocated based on historical catches, while Class B licenses—up to 15% of the industrial fraction—are auctioned, with the first auctions held in 2015. These sealed-bid, first-price auctions aimed to broaden access and limit concentration but have faced challenges such as low participation, difficulties in reflecting economies of scale, and signs of potential coordinated bidding (Peña-Torres et al., 2022).

The artisanal TAC operates under a regulated freedom-to-fish regime, allowing registered vessels to fish without individual quotas, except in areas where access is closed or suspended, in which case authorities may implement management measures. The main measure is the Régimen Artesanal de Extracción (RAE), which allocates the regional artisanal TAC by area, vessel size, landing site (caleta), organization, or individually, in agreement with artisanal fisher organizations. To date, area-based and organization-based allocations are the only observed schemes. Area-based allocations allow registered artisanal vessels in a given area to fish as in open access until the assigned quota is exhausted, while organization-based allocations follow the historical rights of members to distribute the organization's quota.

• Sardine: RAE in V, VIII Y X regions? What about other species? Open access in anchovy and jack mackerel (only artisanal TAC matter at country level?)

2.2.1 Chile regionalized fisheries governance framework

Chile has a regionalize fisheres governance framework, where boat register in one region can not fish in another one. For instance, a recent conflict between the Biobío and Ñuble regions has reignited the debate over the spatial governance of the small pelagic fishery (SPF) in south-central Chile. In late August 2025, the Chilean Chamber of Deputies approved a resolution urging the Government to repeal the authorization that allows vessels from Biobío to operate in the coastal waters of Ñuble. The measure, promoted by local authorities and artisanal organizations from Ñuble, aims to protect local fishing grounds and reduce pressure on nearshore ecosystems. However, representatives from Biobío have warned that such restrictions could have severe economic consequences for the region, given its strong dependence on small pelagic landings. This episode highlights the institutional tensions arising from Chile's regionalized fisheries governance framework, where jurisdictional boundaries often conflict with the biological and economic interdependencies of fish stocks.

2.3 Other regulations

2.3.1 Limited entry

Fishery with restricted access to new operators (just artisanal?)

2.3.2 Biological closures for recruitment

- Jack mackerel is open through all year.
- Sardine and anchovy: In southern-central Chile, December—April (fixed period: January to February).

2.3.3 Biological closures for reproduction

- Jack mackerel is open through all year.
- Sardine and anchovy: In southern-central Chile, July-October (fixed period: August-September).
- Seasonality? Include quarter dummies? Jack mackerel gather in the first 6 month of the year in shoals, great density in EEZ, then migrate outside 200nm ()

2.3.4 Minimum size

• Jack mackerel: 26 cm

• Sardine and anchovy?

2.3.5 Maximum harvest levels

• All species: Maximum catch limit per vessel owner (LMC) for industrial vessels

2.4 Switching patterns

See Figure 1 for strategy transitions. The year 2019 is used as reference as anchoveta and jack mackerel started to recover.

Table 1 for strategy transitions.

Table 2 for industrial strategy transitions.

2.5 Fishing seasons

3 Data and methodology

To fulfill the research's objectives, and following Kasperski (2015), the research entails five different stages: (i) estimating the annual stock dynamics of each species included in the model, (ii) estimating trip level cost functions, (iii) estimating total annual trips, (iv) estimate the inverse demand model for outputs (i.e., price responses to supply), and (v) conduct numerical optimization to examine how harvest and profits levels evolve over time. The numeral optimization uses estimated parameters from the previous four stages to conduct the optimization procedure.

Table 1: Comparison of Strategies Before and After – Small-scale vessels

	Before		After	
Strategy	n	%	n	%
Sardine and Anchoveta	420	31.9	376	63.5
Only Sardine	416	31.6	133	22.5
Sardine and Other	193	14.6	8	1.4
Sardine, Anchoveta and Other	139	10.5	21	3.5
Sardine, JackMackerel and Anchoveta	23	1.7	23	3.9
Only Other	60	4.6	2	0.3
Only Anchoveta	21	1.6	16	2.7
Anchoveta and Other	14	1.1	2	0.3
Sardine and JackMackerel	10	0.8	3	0.5
Only JackMackerel	7	0.5	3	0.5
JackMackerel and Other	4	0.3	2	0.3
JackMackerel and Anchoveta	1	0.1	3	0.5
JackMackerel, Anchoveta and Other	4	0.3	0	0.0
Sardine, JackMackerel, Anchoveta, Other	4	0.3	0	0.0
Sardine, JackMackerel and Other	2	0.2	0	0.0

Table 2: Comparison of Strategies Before and After – Industrial vessels

	Before		After	
Strategy	n	%	n	%
Only JackMackerel	46	36.2	28	96.6
Sardine and JackMackerel	22	17.3	1	3.4
Sardine and Anchoveta	14	11.0	0	0.0
JackMackerel and Other	13	10.2	0	0.0
Sardine, JackMackerel and Anchoveta	13	10.2	0	0.0
Only Other	6	4.7	0	0.0
JackMackerel and Anchoveta	3	2.4	0	0.0
Sardine, JackMackerel and Other	3	2.4	0	0.0
Only Sardine	2	1.6	0	0.0
Anchoveta and Other	1	0.8	0	0.0
Only Anchoveta	1	0.8	0	0.0
Sardine and Other	1	0.8	0	0.0
Sardine, Anchoveta and Other	1	0.8	0	0.0
Sardine, JackMackerel, Anchoveta, Other	1	0.8	0	0.0

Figure 1: Strategy transitions for small-scale vessels $\,$

Figure 2: Strategy transitions for industrial vessels

Figure 3: Average monthly landings by species (2012-2024; South-Central Chile)

3.1 Historical data

We use data requested from the Chilean Fisheries Development Institute (Instituto de Fomento Pesquero, IFOP) covering the 2012–2024 period. The dataset includes trip-level microdata, which contain detailed records on vessel identifiers, departure and arrival times, vessel capacity, fleet and gear type, ports of departure and landing, fishery codes, haul timing and location, species composition, retained catch, and trip activity. In addition, we requested annual information on stock abundance and vessel landings by port, county, region, country, and species. Finally, we use ex-vessel prices, reported monthly or annually by port, county, region, country, and species. These prices reflect those paid by processing plants to fishers at the point of first sale and are obtained through IFOP's landing surveys, which do not necessarily cover all market transactions.

For the environmental covariates, we use data from the E.U. Copernicus Marine Service Information, accessed through the Copernicus Marine Toolbox API. Salinity, sea surface temperature, and current speed and direction were obtained from the Global Ocean Physics Reanalysis (GLO-RYS12V1), which provides data at a 1/12° horizontal resolution with 50 vertical levels (E.U. Copernicus Marine Service Information, 2025c). Wind speed and direction at the surface were obtained from the Global Ocean Hourly Reprocessed Sea Surface Wind and Stress from Scatterometer and

Model dataset, available at 0.125° horizontal spatial resolution and hourly frequency (E.U. Copernicus Marine Service Information, 2025b). Chlorophyll-a concentrations were obtained from the Global Ocean Colour dataset, which provides data at ~4 km horizontal resolution (E.U. Copernicus Marine Service Information, 2025a). All environmental data were retrieved daily (hourly in the case of winds) for the 2012–2024 period, covering the Chilean Exclusive Economic Zone (EEZ) between 32°S and 41°S (Figure 4)

Figure 4: Geographical extent of the study area used for environmental covariates limited to the Chilean Exclusive Economic Zone

3.1.1 To be requested

- Average wage pay to crew member per hour
- Diesel cost.
- Permits by vessels
- Quota prices?
 - Auction market but also secondary market if available

- * If no data, maybe intrapolate prices from other auctions?
- Captures elements of forward-looking behavior and information (Birkenbach et al., 2024).
 Reimer et al. (2022) similarly argue that including a quota price captures forward looking behavior and allows one to simplify the dynamic model to a static one.
- Quota by area/fishing organization for Artisanal, and TAC for industrial with ITQ (by vessel?)
- Reallocations of quotas?

3.2 Future data for projections

- OracleBio
 - Unfurtunally, only decadal (e.g., 2040–2050) projections for different scenarios for SST, salinity, currents and chlorophyll (4km resolution)
 - No winds; CMIP6 for winds? (~100 km).

3.3 Econometrics models

3.3.1 Stock dynamics

To estimate stock dynamics, we use annual data on species-specific biomass (stock abundance) and vessel landings within Chile's Exclusive Economic Zone (EEZ). Following Kasperski (2015), the baseline model for the interannual growth of each species i is represented by a discrete logistic function that accounts for intra- and inter-species interactions:

$$x_{i,y+1} + h_{iy} = \underbrace{(1+r_i)x_{iy} + \eta_i x_{iy}^2}_{R_i(x_{iy})} + \underbrace{\sum_{j\neq i}^{n-1} a_{ij} x_{iy} x_{jy}}_{I_i(x_y)} \quad i = 1, \dots, n$$
(1)

where x_{iy} is the fish stock by species $i=1,\ldots,n$ in year y,n is the total number of species, h_{iy} is the annual harvest of species i on year y,r_i is the intrinsic growth rate of the resource i,η_i is a density-dependent factor related to the carrying capacity, and α_{ij} are the interaction parameters between species. The system of n growth equations is estimated simultaneously using seemingly unrelated regression (SUR). Following Richter et al. (2018), we augment (1) by including environmental covariates Env_{iy} that affect the fish stock and an error term ε_{iy} that captures random recruitment:

$$x_{i,y+1} + h_{iy} = \underbrace{(1 + r_i)x_{iy} + \eta_i x_{iy}^2}_{R_i(x_{iy})} + \underbrace{\sum_{j \neq i}^{n-1} a_{ij} x_{iy} x_{jy}}_{I_i(x_n)} + \rho_i Env_{iy} + \varepsilon_{iy} \quad i = 1, \dots, n$$
(2)

where ρ_i are the coefficient for the environmental covariates.

Environmental conditions were summarized annually using sea surface temperature (SST) and chlorophyll-a concentration (CHL), both averaged over the South-Central Chile region within the EEZ. These variables were selected due to their recognized influence on small pelagic productivity and spatial distribution (Axbard, 2016). To capture potential nonlinear responses, both linear and quadratic terms for SST and CHL were included. Early specifications also tested linear and quadratic wind effects, but excluding them did not significantly reduce explanatory power $(F_{6.24} = 0.36, p$ -value = 0.89). SST serves as a proxy for large-scale oceanographic regimes (warm vs. cold phases) that shape recruitment success and species dominance along the Humboldt Current System. Anchovy tends to dominate during cold, nutrient-rich phases, while sardine prevail under warmer conditions (Cahuin et al., 2009; Yáñez et al., 2014). CHL captures interannual variations in primary productivity, which are critical for sustaining the planktonic base of pelagic food webs. As emphasized by Sumaila et al. (2011), "Changes in primary productivity and planktonic community structure affect the amount of energy transferred to higher trophic levels and, eventually, the productivity of trophic groups that contribute to fisheries catches" (Cheung et al., 2008; see also Jennings et al., 2008). Thus, chlorophyll acts as an indicator of ecosystem energy available to forage fish.

The SUR framework is particularly suited to this multi-species context, as it allows for contemporaneous correlation among residuals that arise from shared environmental shocks and trophic linkages. Cross-species interaction terms are specified between predator (jack mackerel) and prey (anchoveta, sardine) pairs, enabling the model to capture both biological coupling and indirect effects of environmental variability transmitted across species.

3.3.2 Trip level cost functions

• Sumaila et al. (2011): "Capital costs, that is, the cost of vessels, fishing gear, processing plants and so on, would be affected by climate change if additional capital for fishing and process ing operations is required to adapt to climate change impacts on the quantity, composition and distribution of fisheries resources65. Changes in migratory routes and fish distribution would affect travel time, which can lead to increases or decreases in fuel and ice cost depending on catch levels and patterns, and the management regime in place."

Ignoring trip subscript, the cost functions vary by vessel $v=1,\ldots,V_g$ and gear used $g=1,\ldots,G$, where V_g is the number of observations using gear type g, and G is the total number of available (or observed) gears:

$$C_{vg} = \sum_{i=1}^{2n+M+k} \alpha_{g,\mathbf{X}_i} \mathbf{X}_{ivg} + \frac{1}{2} \sum_{i=1}^{2n+M+k} \sum_{i=1}^{2n+M+k} \alpha_{g,\mathbf{X}_i\mathbf{X}_j} \mathbf{X}_{ivg} \mathbf{X}_{jvg}$$
(3)

where $C_{vg} = wz_{vg}^*$, $\mathbf{X}_{vg} = [w; h_{vg}; x; Z_v]$, w is a $V_g \times M$ matrix of variable input prices, h_{vg} is an $V_g \times n$ matrix of harvest quantities, x is an $V_g \times n$ matrix of given stock levels of the species of interest,

and Z_v is an $V_g \times k$ matrix of given vessel characteristics. Therefore, \mathbf{X}_{vg} is a $V_g \times (2n + M + k)$ matrix, and \mathbf{X}_{ivg} represents the *i*th column of the \mathbf{X}_{vg} matrix.

Together with estimating the restricted cost function, we estimate the conditional input demand equations. This addition allows an increase in the degrees of freedom by imposing cross-equation parameter constraints and allows for the testing of, for instance, jointness in inputs (Kasperski, 2015). The conditional input demand equations are derived by Shepard's Lemma:

$$\frac{\partial C_{vg}}{\partial w_m} = z_{vg,w_m}^* = \alpha_{g,w_m} + \sum_{j=1}^{2n+M+k} \alpha_{g,w_m,\mathbf{X}_j} \mathbf{X}_{jvg} \quad m = 1,\dots,M. \tag{4}$$

Similar to stock dynamics, the system of equations formed by (3) and (4) can be estimated using SUR. To comply with economic theory, and to reduce even more the number of parameters to estimate, the following restrictions are imposed when estimating (4):

1. Symmetry of the cost function, where

$$\alpha_{g,\mathbf{X}_i\mathbf{X}_i} = \alpha_{g,\mathbf{X}_i\mathbf{X}_i} \quad \forall \quad i=1,\dots,(2n+M+k); \ i \neq j; \ g=1,\dots,G.$$

2. Linear homogeneity in input prices, where

$$\sum_m^M \alpha_{g,w_m} = 1 \text{ and } \sum_m^M \alpha_{g,w_m,\mathbf{X}_i} = 0 \quad i=1,\dots,(2n+M+k); \ g=1,\dots,G.$$

Data at the trip level is available upon request from the Chilean Fisheries Research Institute (IFOP), which registers geo-referenced catch information on the Chilean fleet's fishing operation per trip (see e.g. Peña-Torres et al., 2017 and IFOP data observatory). As inputs we can use the time spent at sea during a trip, where the price is the average wage pay to crew member per hour, and the distance traveled during a trip, where the price of distance traveled is the diesel cost. Therefore, the total cost function $C_{vg} = wz_{vg}^*$ for vessel v, using gear g in a trip would be sum of the total cost of distance travelled plus the total cost of the time spent at sea.

Note: Depending on the type of vessel, this cost should change. Some vessels are more efficient, other one are more heavy. How to capture this? The righ hand side has vessel characteristics, so the effect of harvest would be conditional on vessel characteristics, the stock levels and input prices. As we only care in the margin how harvest increase cost, this should be fine. Kasperski (2015) mention this "...no reliable fixed cost information on these vessels exists, but these should not affect the optimization as economic decisions are made at the margin. Therefore, this study does not measure true profit, but rather a proxy based on the net operating rent accruing to vessels in the fishery."

To link this function to climate change, we can also include additional environmental variables

Env to \mathbf{X}_{vg} such as wind intensity and wave conditions in each trip at the harvest location, upon data availability. Therefore, the augmented X_{vg} matrix becomes $\mathbf{X}_{vg}' = [w; h_{vg}; x; Z_v; Env]$.

MAYBE INCLUDE QUOTA PRICE? Higher quota prices for depleted stocks (e.g., GOM cod) reduce incentives to target them. and Active leasing markets for quota (and previously for DAS) allow fishermen to treat quota as a "priced input" rather than a fixed, exhaustible resource.

Add - liters/hours x hours trip x fuel price - crew member x harvest x price x share - certification cost per landed ton x landing

3.3.3 Total annual trips

The number of trips a vessel will take in a given year for each gear type used is assumed to follow a Poison distribution (Kasperski, 2015):

$$Pr\left[T_{vgy}^{*}=t_{v}\right]=\frac{exp^{-exp(U_{vg}^{\prime}\beta_{g})}exp(U_{vg}^{\prime}\beta_{g})^{t_{v}}}{t_{v}!}\tag{5}$$

where $U_{vg}=[p,w,h_{vg},\bar{q},Z_{vg}]$ is a $(3n+M+k+1)\times V_g$ matrix of explanatory variables, β_g is a $(3n+M+k+1)\times 1$ matrix of coefficients to be estimated, t_v is the number of trips taken by vessel v using gear type g in year y, and \bar{q} is the annual quota level. Additionally, we can add the accumulation of "bad weather days" as an explanatory variable to incorporate weather conditions into this decision, thus $U_{vg}=[p,w,h_{vg},\bar{q},Z_{vg},Env]$

3.3.4 Inverse demand model

The price of each species is modeled using an Inverse Almost Ideal Demand System (IADS). The price of a species i in year y is the following:

$$\ln p_{iy} = \sum_{j=1}^{n} \gamma_{j} \ln h_{j,y} + \gamma_{H} \ln H + \gamma_{FM} \ln P^{\text{FishMeal}} + \epsilon_{iy}, \quad i = 1, \dots, n, \ j = 1, \dots, n.$$
 (6)

Note that harvest may be endogenous in this system due to simultaneity. For this reason, the system formed by (6) will be estimated using a Three Stage Least Squares (3SLS) procedure, where h_j{j,y} would be instrumented by variables that affect the fishers' supply function such as SST, Chl, and fuel prices.

3.4 Numerical optimization

To obtain the effect of future climate variability on stock, harvest, quota and profits, we conduct numerical optimization for different climate scenarios using the parameters estimates for the stock dynamic, cost functions, total annual trips and inverse demand equations. In each year, a vessel maximizes profits by choosing their optimal number of trips T_g and harvest levels per trip $h_{g\tau}$ given a gear type:

$$\begin{split} \max_{h_{gt},T_g} \quad & \pi_{vgt} = \sum_{\tau=t}^{T_g} \rho^{\tau} \left\{ P(h)h_{g\tau} - C_g(h_{g\tau}|w,x,Z,Env) \right\} \quad \tau = t,\dots,T_g \\ \text{s.t} \quad & q_{g,t+1} = \omega * \bar{q} - \sum_{t=1}^{t} h_{gt} \geq 0, \quad t = 1,\dots,T-1, \quad g = 1,\dots,G \end{split} \tag{7}$$

where ρ is the intra-annual discount factor, ω is a vector of shares of \bar{q} , and $h_{lt}=0$ for all $l\neq g$. The vector of shares is obtained from historical data on harvest. The optimal profit from the maximization problem in (7) is denoted as $\pi^*_{vgy}(p,w,x,Z,\bar{q},\omega,Env)$, and h^*_{vgty} and T^*_{vgy} are the optimal choices harvest per trip and total number of trips in year y for vessel v. To obtain the optimal quota level, we must solve the social-planner optimization problem to maximize the net value of the fishery by choosing the quota levels per year and by species.

Following Kasperski (2015), the optimization problem will be conducted for the next 25 years. I will use different climate scenarios and compare different optimal outcomes between them by using future projections for the environmental variables included in the model.

3.5 Projections

From ($Y\acute{a}\~nez$ et al., 2014):

- "To project the model, the average structure of catches and temperature (of Antofagasta and the region Niño 3 + 4) for the years 2005, 2006 and 2007 were used as starting point. We consider a linear increase in temperature, taking into account four climate change scenarios based on the scenarios presented by IPCC, designed for the northern part of Chile until 2100.
 - 1. The first scenario considers an increase in temperature of 0.034°C per year (Fuenzalida et al., 2007), similar to that estimated by Trenberth et al. (2007).
 - 2. A second scenario, more moderate, of 0.025° C/year is also proposed by Fuenzalida et al. (2007).
 - 3. The third scenario is not considered a significant effect on the area, following the work of Trenberth et al. (2007).
 - 4. The fourth scenario is contradictory, indicating a cooling de 0.02 °C/year (Falvey & Garreaud, 2009). It should be noted that according to the work of Fuenzalida et al. (2007) and Falvey & Garreaud (2009) the same SST increase (or decrease) were considered for both temperatures (in Antofagasta and in the Niño 3 + 4 region)."

4 Results

4.1 Stock biomass model

As shown in Figure 5, biomass levels vary by species, and there is some interrelation between them. It is also clear that these biomass levels are affected by the harvests that occurred during those periods. For instance, in the case of jack mackerel, an abrupt decline in biomass is observed, likely due to a combination of overexploitation of the resource and unfavorable environmental conditions.

Figure 5: Estimated biomass of small pelagic species in Chile (2000–2024)

Figure 6 show biomass adding harvest

Table 3 reports the Seemingly Unrelated Regression (SUR) estimates for annual biomass dynamics of sardine, anchoveta, and jack mackerel in central—southern Chile. The adjusted \mathbb{R}^2 values...

Some facts: - Herrick, S. F. Jr, et al. in Climate Change and Small Pelagic Fish (eds Checkley, D. M., Roy, C., Alheit, J. & Oozeki, Y.) 256–274 (Cambridge Univ. Press, 2009): "Sardine is known to be more productive during warm-water regimes in the California Current ecosystem."

TAREA: ¿Como usar errores robustos en un SUR?

Variable — biomass — harvest

Figure 6: Estimated biomass vs harvest of small pelagic species in CentralSouth Chile (2000–2024)

Table 3: Seemingly Unrelated Regression (SUR) estimates of biomass dynamics for small pelagic species in Central–Southern Chile.

Variable	Sardine	Anchoveta	Jack mackerel
Constant	23.781***	10.355***	25.891***
Biomass (t)	0.353*	1.260***	1.035***
Biomass sq (t)	-0.011	-0.209***	-0.022**
SST	-12.377	-4.985	5.168
Chlorophyll-a	70.441**	-6.189	-15.631
(SST) sq	52.233*	-2.526	-46.039
Chlorophyll-a sq	155.277	59.220	438.550
$Sardine \times Jack mackerel$	0.012	NA	-0.008
$Sardine \times Anchoveta$	0.017	-0.010	NA
Anchoveta \times Jack mackerel	NA	0.011	0.045
R-squared (Adj.)	0.516	0.279	0.732

Standard errors in parentheses. Significance levels: * p<0.1; ** p<0.05; *** p<0.01.

Residual correlations (ρ): Sardine–Anchoveta = -0.44; Sardine–Jack = -0.72; Anchoveta–Jack = +0.70.

4.2 Trip level costo function

```
« NO RESULTS YET »
```

4.3 Total Annual trips

```
« NO RESULTS YET »
```

4.4 Inverse demand model

```
« NO RESULTS YET »
```

Two undergrad students working on this module for their thesis... Results by July 2026

4.5 Numerical optimization

```
« NO RESULTS YET »
```

Once I have results for the four models, then I can run optimizations

5 Discussion

- From Sumaila et al. (2011): "A shift in species' geographic range will thus affect the distribution and composition of fisheries resources. This may affect fishing operations, the allocation of catch shares and the effectiveness of fisheries management measures"
- For the ITQ fisheries (i.e., industrial jack mackerel?:
 - The theoretical findings on multispecies harvest patterns in Birkenbach et al. (2020) give rise to nuanced hypotheses about how behavior and outcomes will change after the adoption of catch shares. For example, a secure property right to catch fish at any time in the fishing season allows firms to spread the catch of stocks with high prices and downward-sloping demand over a longer fishing season. This minimizes market gluts that steer product toward lower priced frozen markets (Homans & Wilen, 2005) and can result in higher prices for those species. Fishermen might also shift their efforts toward lower-priced species with cheaper quota or toward non-catch-share fisheries, intensifying the race to fish for those species during portions of the season (Asche et al., 2007; Cunningham et al., 2016).
 - * However, we do not include other species than jack mackerel, sardine and anchovy that might be caught by thise fleet. This would require too expand the model by **N** species, which would increase dimensionality of the model.

- * We need permits to check if actually this happen (... still problem with Open-Access fisheries that do not require permits)
- Although the present model captures the historical relationships between biomass, temperature, and productivity, future strengthening of coastal winds and warming of the Chilean coast (Fuenzalida et al. 2007; Garreaud et al. 2009) could shift these dynamics, altering species overlap and fishery composition.
- About using CHL for future predictions.
 - From Sumaila et al. (2011): "However, our understanding of the magnitude and direction of climate change effects on primary productivity is uncertain. For example, projections of primary production based on an empirical relationship estimate increases of 0.7–8.1% by 2050 relative to 2000 (ref. 39), whereas outputs from four Earth-system models suggest a possible decrease of 2–20% by 2100 relative to pre-industrial conditions12. The opposite trends and the large regional differences of the estimates highlight the uncertainty in the projection of large-scale changes in primary productivity".
- About prices (Sumaila et al., 2011):
 - "Everything being equal, when climate change reduces fish supply, fish price should increase, which could be large enough to balance out the loss in gross revenues due to reduced catches. However, consumers may seek substitutes as prices increase, thereby dampening the demand for fish and reducing the potential for price increases."
 - "Ex-vessel revenues can be affected by climate change through effects first on the quantity, quality and distribution of catches, and then, on ex-vessel prices of fish."
- Adaptation (Sumaila et al., 2011):
 - "When climate change affects the composition and productivity of exploited species in a region, some fishers can adapt by switching target species or gear type81 or by moving to marginally productive areas. Grafton, R. Q. Adaptation to climate change in marine capture fisheries. Mar. Policy 34, 606–615 (2010)."
 - * "For example, new fisheries have already developed for several southern species in the UK (for example, red mullet) as these species have started to migrate to the North Sea because of an increase in sea temperature. Beare, D. J. et al. Long-term increase in prevalence of North Sea fishes having southern biogeographic affinities. Mar. Ecol. Prog. Ser. 284, 269–278 (2004)."
 - * "The ability of fishers and fishing enterprises to adapt depends on a number of factors, including the mobility of the fishing fleet. -"At present, the dominant hypothesis is that more technologically advanced fleets, usually located in rich northern countries, are more likely to be better prepared to adapt to climate change by moving to other fishing grounds and by shifting gears. MacNeil, M. A. et al. Transitional

states in marine fisheries: adapting to predicted global change. Phil. Trans. R. Soc. B 365, 3753-3763 (2011)."

6 Conclusions

NO YET!

6.1 Future research question

- Several other extensions to the model can be incorporated to be improved. For instance, the geographical space where fishermen operate is relevant, as depending on the location chosen and when to participate, the set of potential choices would vary (Reimer et al., 2017). As I mentioned above, it is possible to extend the stock dynamic model by considering different locations. The model would also require that the participation decision, which is captured by the Poisson model on the annual number of trips, should then consider the decision to participate in a determined fishing ground, connecting the multispecies model of Kasperski (2015) to the literature of location choice modeling (e.g., Dupont, 1993; Hicks et al., 2020; Smith, 2005).
- Does higher quota allocation of jack mackerel, a predator for anchovy and sardine, helps small scale sector actually?

7 Repository

The source code for this project is available on GitHub

References

- Abbott, J. K., Sakai, Y., & Holland, D. S. (2023). Species, space and time: A quarter century of fishers' diversification strategies on the US west coast. Fish Fish (Oxf.), 24(1), 93–110.
- Aguilera, S. E., Cole, J., Finkbeiner, E. M., Le Cornu, E., Ban, N. C., Carr, M. H., Cinner, J. E., Crowder, L. B., Gelcich, S., Hicks, C. C., Kittinger, J. N., Martone, R., Malone, D., Pomeroy, C., Starr, R. M., Seram, S., Zuercher, R., & Broad, K. (2015). Managing small-scale commercial fisheries for adaptive capacity: Insights from dynamic social-ecological drivers of change in monterey bay. *PLoS One*, 10(3), e0118992.
- Alheit, J., & Niquen, M. (2004). Regime shifts in the humboldt current ecosystem. *Progress in Oceanography*, 60(2-4), 201–222. https://doi.org/10.1016/j.pocean.2004.02.006

- Arancibia, H., Klarian, S., Alarcón, R., Barros, M., Harrod, C., Jackson, A., Schultz, E. T., Medina, M., Neira, S., & Valdés, J. (2019). Informe final proyecto FIPA 2017-63: Conducta trófica del jurel. Universidad de Concepción; Universidad Andrés Bello; Universidad Arturo Prat; Universidad de Antofagasta. https://www.subpesca.cl/fipa/613/articles-98303_informe_final.pdf
- Asche, F., Gordon, D. V., & Jensen, C. L. (2007). Individual vessel quotas and increased fishing pressure on unregulated species. *Land Economics*, 83(1), 41–49.
- Axbard, S. (2016). Income opportunities and sea piracy in indonesia: Evidence from satellite data. American Economic Journal: Applied Economics, 8(2), 154–194. https://doi.org/10.1257/app. 20140404
- Beaudreau, A. H., Ward, E. J., Brenner, R. E., Shelton, A. O., Watson, J. T., Womack, J. C., Anderson, S. C., Haynie, A. C., Marshall, K. N., & Williams, B. C. (2019). Thirty years of change and the future of alaskan fisheries: Shifts in fishing participation and diversification in response to environmental, regulatory and economic pressures. Fish Fish, 20(faf.12364), 601–619.
- Birkenbach, A. M., Cojocaru, A. L., Asche, F., Guttormsen, A. G., & Smith, M. D. (2020). Seasonal harvest patterns in multispecies fisheries. *Environ. Resour. Econ.*, 75(3), 631–655.
- Birkenbach, A. M., Lee, M.-Y., & Smith, M. D. (2024). Counterfactual modeling of multispecies fisheries outcomes under market-based regulation. *Journal of the Association of Environmental and Resource Economists*, 11(3), 755–796. https://doi.org/10.1086/727356
- Cahuin, S. M., Cubillos, L. A., Niquen, M., & Escribano, R. (2009). Climatic regimes and the recruitment rate of anchoveta, engraulis ringens, off peru. *Estuarine, Coastal and Shelf Science*, 84(4), 591–597.
- Carter, C., Cui, X., Ghanem, D., & Mérel, P. (2018). Identifying the economic impacts of climate change on agriculture [Journal Article]. *Annual Review of Resource Economics*, 10(Volume 10, 2018), 361–380. https://doi.org/https://doi.org/10.1146/annurev-resource-100517-022938
- Cherdchuchai, S., & Otsuka, K. (2006). Rural income dynamics and poverty reduction in thai villages from 1987 to 2004. *Agricultural Economics*, 35(s3), 409–423. https://doi.org/https://doi.org/10.1111/j.1574-0862.2006.00187.x
- Cheung, W. W., Close, C., Lam, V., Watson, R., & Pauly, D. (2008). Application of macroecological theory to predict effects of climate change on global fisheries potential. *Marine Ecology Progress Series*, 365, 187–197.
- Cheung, W. W., Lam, V. W., Sarmiento, J. L., Kearney, K., Watson, R., Zeller, D., & Pauly, D. (2010). Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. *Global Change Biology*, 16(1), 24–35.
- Cline, T. J., Schindler, D. E., & Hilborn, R. (2017). Fisheries portfolio diversification and turnover buffer alaskan fishing communities from abrupt resource and market changes. *Nat. Commun.*, 8, 14042.
- Cruz, S. J. (2025). Climate variability and labor allocation: Evidence from mexican small-scale

- fisheries. Working Paper. https://sjcruz.github.io/publication/jmp/
- Cunningham, S., Bennear, L. S., & Smith, M. D. (2016). Spillovers in regional fisheries management: Do catch shares cause leakage? *Land Economics*, 92(2), 344–362.
- Dupont, D. P. (1993). Price uncertainty, expectations formation and fishers' location choices. *Mar. Resour. Econ.*, 8(3), 219–247.
- Ellis, F. (2000). The determinants of rural livelihood diversification in developing countries. *Journal of Agricultural Economics*, 51(2), 289–302. https://doi.org/https://doi.org/10.1111/j.1477-9552.2000.tb01229.x
- E.U. Copernicus Marine Service Information. (2025a). Global ocean colour (copernicus-GlobColour) [Dataset]. Marine Data Store (MDS). https://doi.org/10.48670/moi-00281
- E.U. Copernicus Marine Service Information. (2025b). Global ocean hourly reprocessed sea surface wind and stress from scatterometer and model [Dataset]. Marine Data Store (MDS). https://doi.org/10.48670/moi-00185
- E.U. Copernicus Marine Service Information. (2025c). Global ocean physics reanalysis [Dataset]. Marine Data Store (MDS). https://doi.org/10.48670/moi-00021
- Falvey, M., & Garreaud, R. D. (2009). Regional cooling in a warming world: Recent temperature trends in the southeast pacific and along the west coast of subtropical south america (1979–2006). *Journal of Geophysical Research: Atmospheres*, 114(D4).
- Finkbeiner, E. M. (2015). The role of diversification in dynamic small-scale fisheries: Lessons from baja california sur, mexico. *Glob. Environ. Change*, 32, 139–152.
- Fisher, M. C., Moore, S. K., Jardine, S. L., Watson, J. R., & Samhouri, J. F. (2021). Climate shock effects and mediation in fisheries. *Proc. Natl. Acad. Sci. U. S. A.*, 118(2).
- Frawley, T. H., Muhling, B. A., Brodie, S., Fisher, M. C., Tommasi, D., Le Fol, G., Hazen, E. L., Stohs, S. S., Finkbeiner, E. M., & Jacox, M. G. (2021). Changes to the structure and function of an albacore fishery reveal shifting social-ecological realities for pacific northwest fishermen. Fish Fish, 22(2), 280–297.
- Free, C. M., Thorson, J. T., Pinsky, M. L., Oken, K. L., Wiedenmann, J., & Jensen, O. P. (2019). Impacts of historical warming on marine fisheries production. *Science*, 363(6430), 979–983. https://doi.org/10.1126/science.aau1758
- Fuenzalida, H., Aceituno, P., Falvey, M., Garreaud, R., Rojas, M., & Sánchez, R. (2007). Study on climate variability for chile during the 21st century [Technical report]. National Environmental Committee.
- Gonzalez-Mon, B., Bodin, Ö., Lindkvist, E., Frawley, T. H., Giron-Nava, A., Basurto, X., Nenadovic, M., & Schlüter, M. (2021). Spatial diversification as a mechanism to adapt to environmental changes in small-scale fisheries. *Environ. Sci. Policy*, 116, 246–257.
- Hicks, R. L., Holland, D. S., Kuriyama, P. T., & Schnier, K. E. (2020). Choice sets for spatial discrete choice models in data rich environments. *Res. Energy Econ.*, 60, 101148.
- Homans, F. R., & Wilen, J. E. (2005). Markets and rent dissipation in regulated open access fisheries. *Journal of Environmental Economics and Management*, 49(2), 381–404.

- Jardine, S. L., Fisher, M. C., Moore, S. K., & Samhouri, J. F. (2020). Inequality in the economic impacts from climate shocks in fisheries: The case of harmful algal blooms. *Ecol. Econ.*, 176, 106691.
- Jennings, S., Mélin, F., Blanchard, J. L., Forster, R. M., Dulvy, N. K., & Wilson, R. W. (2008). Global-scale predictions of community and ecosystem properties from simple ecological theory. *Proceedings of the Royal Society B: Biological Sciences*, 275(1641), 1375–1383.
- Kasperski, S. (2015). Optimal multi-species harvesting in ecologically and economically interdependent fisheries. *Environ. Resour. Econ.*, 61(4), 517–557.
- Kasperski, S., & Holland, D. S. (2013). Income diversification and risk for fishermen. *Proc. Natl. Acad. Sci. U. S. A.*, 110(6), 2076–2081.
- Peña-Torres, J., Dresdner, J., & Vasquez, F. (2017). El niño and fishing location decisions: The chilean straddling jack mackerel fishery. *Mar. Resour. Econ.*, 32(3), 249–275.
- Peña-Torres, J., Muñoz, R., Quezada, F., & Kaufmann, C. (2022). Entry deterrence and collusion at repeated multiunit auctions of ITQs. *Marine Resource Economics*, 37(4), 437–465. https://doi.org/10.1086/721014
- Poloczanska, E. S., Brown, C. J., Sydeman, W. J., Kiessling, W., Schoeman, D. S., Moore, P. J., Brander, K., Bruno, J. F., Buckley, L. B., Burrows, M. T., Duarte, C. M., Halpern, B. S., Holding, J., Kappel, C. V., O'Connor, M. I., Pandolfi, J. M., Parmesan, C., Schwing, F., Thompson, S. A., & Richardson, A. J. (2013). Global imprint of climate change on marine life. Nat. Clim. Chang., 3(10), 919–925.
- Powell, F., Levine, A., & Ordonez-Gauger, L. (2022). Climate adaptation in the market squid fishery: Fishermen responses to past variability associated with el niño southern oscillation cycles inform our understanding of adaptive capacity in the face of future climate change. Clim. Change, 173(1-2), 1.
- Reimer, M. N., Abbott, J. K., & Haynie, A. C. (2022). Structural behavioral models for rights-based fisheries. *Resource and Energy Economics*, 68, 101294.
- Reimer, M. N., Abbott, J. K., & Wilen, J. E. (2017). Fisheries production: Management institutions, spatial choice, and the quest for policy invariance. *Mar. Resour. Econ.*, 32(2), 143–168.
- Richter, A., Eikeset, A. M., Van Soest, D., Diekert, F. K., & Stenseth, N. C. (2018). Optimal management under institutional constraints: Determining a total allowable catch for different northeast arctic cod fishery fleet segments. *Environmental and Resource Economics*, 69, 811–835. https://doi.org/10.1007/s10640-016-0106-3
- Sethi, S. A., Reimer, M., & Knapp, G. (2014). Alaskan fishing community revenues and the stabilizing role of fishing portfolios. *Mar. Policy*, 48, 134–141.
- Smith, M. D. (2005). State dependence and heterogeneity in fishing location choice. J. Environ. Econ. Manage., 50(2), 319-340.
- Stafford, T. M. (2018). Accounting for outside options in discrete choice models: An application to commercial fishing effort. *J. Environ. Econ. Manage.*, 88, 159–179.
- SUBPESCA. (2020). Informe sectorial de pesca y acuicultura 2019. Subsecretaría de Pesca y

- Acuicultura. https://www.subpesca.cl/portal/618/articles-106845 documento.pdf
- Sumaila, U. R., Cheung, W. W., Lam, V. W., Pauly, D., & Herrick, S. (2011). Climate change impacts on the biophysics and economics of world fisheries. *Nature Climate Change*, 1(9), 449–456.
- Trenberth, K. E., Jones, P. D., Ambenje, P., Bojariu, R., Easterling, D., Klein, T. A., Parker, D., Rahimzadeh, F., Renwick, J. A., Rusticucci, M., Soden, B., & Zhai, P. (2007). Observations: Surface and atmospheric climate change. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Climate change 2007: The physical science basis. Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change (pp. 235–336). Cambridge University Press.
- Vasquez Caballero, S., Sylvia, G., & Holland, D. S. (2023). Fishery participation and location choice model: The west coast salmon troll commercial fishery. Can. J. Fish. Aquat. Sci.
- Yáñez, E., Barbieri, M. A., Plaza, F., & Silva, C. (2014). Climate change and fisheries in chile. In M. Behnassi, M. Syomiti Muteng'e, G. Ramachandran, & K. N. Shelat (Eds.), Vulnerability of agriculture, water and fisheries to climate change: Toward sustainable adaptation strategies (pp. 259–270). Springer Netherlands. https://doi.org/10.1007/978-94-017-8962-2_16
- Young, T., Fuller, E. C., Provost, M. M., Coleman, K. E., St. Martin, K., McCay, B. J., & Pinsky, M. L. (2018). Adaptation strategies of coastal fishing communities as species shift poleward. ICES Journal of Marine Science, 76(1), 93–103.
- Zhang, J., & Smith, M. D. (2011). Heterogeneous response to marine reserve formation: A sorting model approach. *Environ. Resour. Econ.*, 49(3), 311–325.