

# FIRST SEMESTER 2015-16 <u>Course Handout (Part II)</u>

Date: 03/08/2015

In addition to part -I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : CHE F311

Course Title : KINETICS & REACTOR DESIGN

Instructor-in-charge : DR. PRADIPTA CHATTOPADHYAY

Other Instructors (Tutorial): MR. SUBHAJIT MAJUMDER

## **Scope and Objective of the Course:**

This course provides an introduction to chemical reaction kinetics, design and performance of various types of reactors for chemically reacting systems which yield industrially important products. The chief emphasis in this course will be to understand the fundamentals of kinetics of reactions, design and analysis of reactors.

#### **Text Books:**

T1 H.S. Fogler "Elements of Chemical Reaction Engineering", Pearson Education, Inc., 4<sup>th</sup> Edition, 2006.

#### **Reference Books:**

**R1** O. Levenspiel, "Chemical Reaction Engineering", John Wiley, 3<sup>rd</sup> Edition., 1999.







## **Course Plan:**

| Lect. No. | Learning Objectives                                                   | Chief topics to be covered                                                                                  | Ref.<br>Chap./Sec.#(Book) |
|-----------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------|
| 1         | Overview of the course                                                | Introduction                                                                                                |                           |
| 2-4       | To know the concept of mole balances                                  | Rate of reaction, mole balance<br>equation, batch reactor, CSTR,<br>tubular reactor, packed-bed reactor     | Ch. 1, T1                 |
| 5-8       | To understand the aspects of conversion and reactor sizing            | Design equations for reactors, reactors in series, space time, space velocity                               | Ch. 2, T1                 |
| 9-12      | To understand the concepts of rate laws, stoichiometry                | Rate laws, reaction order, stoichiometry, flow systems                                                      | Ch. 3, T1                 |
| 13-16     | To study the various concepts of isothermal reactor design            | Design of CSTR, tubular reactors, plug-flow design equation                                                 | Ch. 4, T1                 |
| 17-20     | To study the important concepts of analysis of rate data              | Batch reactor data, integral method of data analysis                                                        | Ch. 5, T1                 |
| 21-23     | To understand the various aspects of multiple reactions               | Parallel reactions, maximizing desired product in series reactions                                          | Ch. 6, T1 & Ch. 7,<br>R1  |
| 24-28     | To understand the important concepts of catalysis, catalytic reactors | Steps in a catalytic reaction, the rate limiting step, synthesizing rate law, mechanism, rate-limiting step | Ch. 10, T1                |
| 29-34     | To understand the various aspects of bioreactors                      | Bioreactors, cell growth, rate laws, stoichiometry                                                          | Ch. 7, T1                 |
| 35-37     | To understand the important concepts of steady state                  | Energy balance, calculation of heat of reaction, adiabatic operation                                        | Ch. 8, T1                 |





|       | nonisothermal reactor                                                        |                                                                     |            |
|-------|------------------------------------------------------------------------------|---------------------------------------------------------------------|------------|
|       | design                                                                       |                                                                     |            |
| 38-40 | To understand the important concepts of residence time for chemical reactors | General characteristics, measurement of RTD, characteristics of RTD | Ch. 13, T1 |

### **Evaluation Scheme:**

| Component             | Duration               | Weightage | Date & Time             | Remarks |
|-----------------------|------------------------|-----------|-------------------------|---------|
| Mid-Sem Test          | 90 min                 | 90 marks  | 9/10 2:00 - 3:30 PM     | СВ      |
| Surprise Tests        | 15 mins for tests only | 75 marks  | During tutorial session | -       |
| Class Participation   | -                      | 15 marks  | -                       | -       |
| Comprehensive<br>Exam | 3 hours                | 120 marks | 11/12 FN                | CB+OB   |

**Chamber Consultation Hour:** To be announced in the class.

Notice: Notice will be displayed on Chemical Engineering Notice Board as necessary.

Make up Policy: No make up will be granted for Surprise Tests.

Instructor-in-charge

CHE F311



