

Introduction to Fourier Transforms

lain Bethune, Gavin Pringle, Joachim Hein EPCC
The University of Edinburgh

Lectures over next week

Iain Bethune – FFT

- Wed 30th Sep Lecture: Intro to FFTs
- Mon 5th Oct Lecture: FFT Libraries
- Tue 6th Oct Practical: FFT image processing
- Wed 7th Oct Lecture: Parallel FFTs

Overview

- The Fourier Transform
 - Who, what, why?
 - Fourier Series
 - Mathematical properties of the Fourier Transform
- Discrete Fourier Transform
 - Introduction to first exercise
- Fast Fourier Transform
 - A brief overview
 - Worked example of 4-point DFT

Fourier Transfoms

- Jean Baptiste Joseph Fourier (1768-1830) first employed what we now call Fourier Transforms whilst working on the theory of heat
 - The Fourier transform first appeared in "On the Propagation of Heat in Solid Bodies", memoir to Paris Institute, 21 Dec., 1807.
- Linear Transform which takes temporal or spatial information and converts into information which lies in the frequency domain
 - And visa versa
 - Frequency domain also known as Fourier space, Reciprocal space, or Gspace -> "Spectral Methods"
- Mathematical tool which alters the problem to one which is more easily solved

Pictures of Joseph Fourier

Who would use Fourier Transforms?

Physical Sciences

- Cosmology (P³M N-body solvers)
- Fluid mechanics
- Computational Chemistry (See L09)
- Quantum physics
- Signal and image processing
 - Antenna studies
 - Optics

Numerical analysis

- Linear systems analysis
- Boundary value problems
- Large integer multiplication (Prime finding)

Statistics

- Random process modelling
- Probability theory

Caveat: different disciplines use different notation, normalisation, and sign conventions

Fourier's Theorem

- Fourier's Theorem:
 - All periodic signals may be represented by an infinite sum of sines and cosines of different periods and amplitudes.
- The cosines and sines are associated with the symmetrical and asymmetric information, respectively
- Fourier Transforms encode this information via

$$e^{i\theta} = \cos\theta + i\sin\theta$$

 NB: Any signal may be considered periodic, by replicating the non-zero part to infinity.

Example: The Top Hat Function

The top hat function, along with the individual 1st, 2nd and 3rd
 Fourier components and their sum.

Example: The Top Hat Function

Mathematics of the Fourier Transform

 The Fourier Transform of a complex function f (x) is given as

$$F(s) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi xs} dx$$

The inverse Fourier Transform is given as

$$f(x) = \int_{-\infty}^{\infty} F(s)e^{i2\pi xs} ds$$

The Fourier pair is defined as

$$f(x) \ll F(s)$$

Example: The Top Hat Function

Time scaling

$$f(at) \Leftrightarrow \frac{1}{|a|} F\left(\frac{s}{a}\right)$$

Frequency scaling

$$\frac{1}{|b|} f\left(\frac{t}{b}\right) \Leftrightarrow F(bs)$$

Time shifting

$$f(t-t_0) \Leftrightarrow F(s)e^{2\pi i s t_0}$$

Frequency shifting

$$f(t)e^{-2\pi i s_0 t} \Leftrightarrow F(s-s_0)$$

Properties: Convolution Theorem

 Say we have two functions, g (t) and h (t), then the convolution of the two functions is defined as

$$g \otimes h \equiv \int_{-\infty}^{\infty} g(\tau)h(t-\tau)d\tau$$

 The Fourier Transform of the convolution is simply the product of the individual Fourier Transforms

$$g \otimes h \Leftrightarrow G(s)H(s)$$

Properties: Correlation

The correlation of the two functions is defined by

$$Corr(g,h) \equiv \int_{-\infty}^{\infty} g(\tau + t)h(\tau)d\tau$$

The Fourier Transform of the correlation is simply

$$Corr(g,h) \Leftrightarrow G(s)H(-s)$$

Discrete Fourier Transform

• The Discrete Fourier Transform of N complex points f_k is defined as

$$F_n = \sum_{k=0}^{N-1} f_k e^{2\pi i k n/N}$$

 The inverse Discrete Fourier Transform, which recovers the set of f_ks exactly from F_ns is

$$f_k = \frac{1}{N} \sum_{n=0}^{N-1} F_n e^{-2\pi i k n/N}$$

Both the input function and its Fourier Transform are periodic

Example: Cosine function

3 periods for N=16:

Example: Cosine function

- FT is genuine complex Figure shows real part only
- Peak of height N at k=3 and k=N-3

Discrete Fourier Transform

The DFT can be rewritten as

$$F_n = a_0 + \sum_{k=1}^{N-1} \left(a_k \cos\left(2\pi k \frac{n}{N}\right) + b_k i \sin\left(2\pi k \frac{n}{N}\right) \right)$$

- Thus, the DFT essentially returns real number values for a_k and b_k , stored in a complex array
 - $-a_k$ and b_k are functions of f_k
 - remaining trigonometric constants (twiddle factors) may be pre-computed for a given N
- The scaling, shifting, convolution and correlation relationships, which hold for the continuous case, also hold for the discrete case.

DFT Laboratory

- Visit and play with the DFT Laboratory
 - Copied from Stanford University
 - Written by Dave Hale, Landmark Graphics
 - Local copy: http://www.epcc.ed.ac.uk/~ibethune/FFTlab/FftLab.html
 - Original: <u>sepwww.stanford.edu/oldsep/hale/FftLab.html</u>
- Suggested experiments in the handout

Only takes 15 minutes, please attempt before next lecture!

Fast Fourier Transform

- What is the computational cost of the DFT?
 - Each of the N points of the DFT is calculated in terms of all the N points in the original function: $O(N^2)$

$$F_n = \sum_{k=0}^{N-1} f_k e^{2\pi i k n/N}$$

Very expensive to compute, even for moderate N

Fast Fourier Transform

- In 1965, J.W. Cooley and J.W. Tukey published a DFT algorithm which is of O(N log N)
 - N is a power of 2
 - FFTs in general are not limited to powers of 2, however, the order may resort to $O(N^2)$
 - Essentially a divide-and-conquer algorithm (details to follow)
 - In hindsight, faster than O(N²) algorithms were previously, independently discovered
 - Gauss was probably first to use such an algorithm in 1805

Fast Fourier Transform

- FFT is an efficient method for computing the DFT
 - Orders of magnitude faster, even for small values of N

N	N^2	N log ₂ (N)
128	16384	896

- For further reading, implementation details consult:
 - Numerical Recipes. The Art of Scientific Computing, 3rd Edition,
 2007, Cambridge University Press (www.nr.com)

Algorithm based on Danielson & Lanczos (1942)

$$\begin{split} F_n &= \sum_{k=0}^{N-1} f_k e^{2\pi i k n/N} \\ F_n &= \sum_{k=0}^{N/2-1} f_{2k} e^{2\pi i (2k)n/N} + \sum_{k=0}^{N/2-1} f_{2k+1} e^{2\pi i (2k+1)n/N} \\ F_n &= \sum_{k=0}^{N/2-1} f_{2k} e^{2\pi i k n/(N/2)} + e^{2\pi i n/N} \sum_{k=0}^{N/2-1} f_{2k+1} e^{2\pi i k n/(N/2)} \\ F_n &= F_n^e + W_N^n F_n^o \qquad W_N &= e^{2\pi i/N} \end{split}$$

Can continue to break down into smaller and small FFTs

$$F_n = F_n^e + W_N^n F_n^o$$

$$F_{n} = F_{n}^{ee} + W_{N/2}^{n} F_{n}^{eo} + W_{N}^{n} F_{n}^{oe} + W_{N/2}^{n} W_{N}^{n} F_{n}^{oo}$$

$$F_{n} = F_{n}^{ee} + W_{N}^{2n} F_{n}^{eo} + W_{N}^{n} F_{n}^{oe} + W_{N}^{3n} F_{n}^{oo}$$

• For a 4 element DFT (N=4), each of the remaining 1-element DFTs must be one of the f_k we started with – but which ones?

- Bit reversal
- Set e=0, o=1, and reverse the order in binary

$$F_n^{ee} = f_{00} = f_0$$
 $F_n^{eo} = f_{10} = f_2$ etc...

- Swapping elements by bit reversal is O(N)
- Now build up the F_n by combining the reordered f_ks

Recall:

$$F_n = F_n^e + W_N^n F_n^o$$

• i.e. we can find all the components of an N-length DFT via 2 N/2-length DFTs – these are periodic with period N/2 so

$$F_n^e = F_{n-N/2}^e$$
 $F_n^o = F_{n-N/2}^o$ $W_N^n = -W_N^{n-N/2}$

$$F_{n} = \begin{cases} F_{n}^{e} + W_{N}^{n} F_{n}^{o} & \text{if } n < N/2 \\ F_{n-N/2}^{e} - W_{N}^{n-N/2} F_{n-N/2}^{o} & \text{if } n \ge N/2 \end{cases}$$

• So first combine N=1 DFTs pairwise:

f.	f	f.	f
'0	' 2	'1	'3

becomes

$$f_0+f_2$$
 f_1+f_3 f_0-f_2 f_1-f_3

• Then combine the N=2 DFTs in even/odd pairs:

becomes

$$f_0+f_2+f_1+f_3$$
 $f_0-f_2+W(f_1-f_3)$ $f_0+f_2-(f_1+f_3)$ $f_0-f_2-W(f_1-f_3)$

=

$$f_0+f_2+f_1+f_3$$
 $f_0-f_2+if_1-if_3$ $f_0+f_2-f_1-f_3$ $f_0-f_2-if_1+if_3$

- Try e.g. taking the transform of (1, 2, 3, 4)
- Gives (10, -2-2i, -2, -2+2i)

- Compare with e.g. FFT Calculator
 - http://www.random-science-tools.com/maths/FFT.htm
 - Or implement your own using FFTW (see later)
- Correct answer, (modulo choice of sign for imaginary part)

Psuedocode example given in Num. Recipes Ch. 12

Key Points

- Log₂(N) steps
- Each step we update N elements
- Overall runtime is O(NlogN)
- This is a real pain to implement (either by hand or in code)
- You don't want to ever do this!