3 Edge detection

At its core, an **edge** in an image represents a boundary or significant change in intensity between adjacent pixels. This change could be in terms of color, brightness, or texture. Essentially, edges help define the shape and structure of objects within an image, making them one of the most fundamental features for understanding and interpreting visual data. The process in which the edges in an image are identified is called **edge detection**. By detecting objects we can, for example:

- **Identify objects:** Edges often correspond to the outlines of objects. For example, detecting the edge of a person against a background is crucial for tasks like object detection or segmentation.
- **Simplify images:** By focusing on the edges, we reduce an image to its most important structures. This simplification is useful in tasks like image compression or recognition.
- **Analyze shapes:** Many shape-based analyses depend on extracting edges to define boundaries. In gesture recognition, for instance, the edges of hands can be used to identify specific movements.

As commented, edges can be defined as transitions between image regions that have different gray levels (intensities). In this way, the unidimensional, continuous model of an ideal edge is:

Parameters:

- intensity increment H = A B.
- angle of the slope: "α".
- coordinate "x₀" of the midpoint

That is, and edge is defined by three parameters:

- Intensity increment (H=A-B): The difference in intensity between the bright and dark regions.
- **Slope angle** (α): The angle of the transition, which represents how quickly the intensity changes from the dark region to the bright region. A steeper slope indicates a sharper edge, while a gradual slope suggests a softer transition (e.g., shadows or blurred boundaries).
- **Midpoint** (x_0) : The location of the center of the edge, where the intensity transition is most prominent.

However, the idealized concept of an edge represented as this a continuous model doesn't fully capture the complexity found in discrete digital images, which are subject to noise and resolution limitations.

Error types related to edge detection

Finding edges properly is not a straightforward task, as there exist different errors that can appear when applying edge detection techniques:

- **Detection error.** A good detector exhibits a low ratio of false negative and false positive, that is:
 - False negatives: Existing edges that are not detected.
 - False positives: Detected objects that are not real.
- Localization error. Edges are detected, but they are not at the real, exact position.
- **Multiple response.** Multiple detections are raised for the same edge (the edge is thick).

The following figure illustrates such errors.

Thereby, when designing a good edge detector, the goal is to achieve low detection and localization errors, as well as to avoid multiple responses.

3.1 Operators based on first derivative (gradient)

In the upcoming chapters, we are going to investigate and implement different edge detection methods. All of them are based on our dear convolution operation, having their own pros and cons.

Concretely, in this notebook we will cover **first-derivative** based operators, which try to detect borders by looking at abrupt intensity differences in neighbor pixels. In the image below we can see two functions f(x) (first row) and how their derivatives (second row) reach their maximum values at the points where the functions' values change more abruptly (around x_o).

If we are dealing with a **two-dimensional** continuous function f(x, y), its derivative is a *vector* (**gradient**) defined as:

$$abla f(x,y) = \left[egin{array}{c} rac{\partial}{\partial x} f(x,y) \ rac{\partial}{\partial y} f(x,y) \end{array}
ight] = \left[egin{array}{c} f_x(x,y) \ f_y(x,y) \end{array}
ight]$$

which points at the *direction* of maximum (positive) variation of f(x, y):

$$lpha(x,y) = rctanigg(rac{f_y(x,y)}{f_x(x,y)}igg)$$

and has a module proportional to the strength of this variation:

$$|
abla f(x,y)|=\sqrt{(f_x(x,y))^2+(f_y(x,y))^2}pprox |f_x(x,y)|+|f_y(x,y)|$$

The image below shows examples of gradient vectors:

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix} \qquad \nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

Concretely, the techniques based on the first derivative explored here are:

- Discrete approximations of a gradient operator (Sobel, Prewitt, Roberts, etc., Section 3.1.1).
- The **Derivative of Gaussian** (DroG) operator (Section 3.1.2).

Problem context - Edge detection for medical images

Edge detection in medical images is of capital importance for the diagnosis of different diseases (e.g., the detection of tumor cells) in human organs such as lungs and prostates, becoming an essential pre-processing step in medical image segmentation.

In this context, *Hospital Clínico*, a very busy hospital in Málaga, is asking local engineering students to join their research team. They are looking for a person with knowledge in image processing and, in order to ensure it, they have published 3 medical images: medical_1.jpg , medical_2.jpg and medical_3.jpg . They have asked us to perform accurate edge detection in the three images, as well as to provide an explanation of how it has been made.

```
import numpy as np
from scipy import signal
import cv2
import matplotlib.pyplot as plt
import matplotlib
from ipywidgets import interactive, fixed, widgets
matplotlib.rcParams['figure.figsize'] = (15.0, 15.0)
images_path = './images/'
```

To face this challenge, we are going to use plenty edge detection methods, which will be tested and compared in order to determine the best option.

ASSIGNMENT 1: Taking a look at images

First, display the provided images to get an idea about what we are dealing with.

Note: As most medical images does not provide color information, we are going to use border detection in grayscale images.

Tip: Different approaches can be followed for edge detection in color images, like converting to YCrCb color space (appendix 2), or detecting edges on each RGB channel.

```
In [2]: # ASSIGNMENT 1
        # Display the provided images in a 1x3 plot to see what are we dealing with
        # Write your code here!
        # Read the images
        medical_1 = cv2.imread(images_path + 'medical_1.jpg', 0)
        medical_2 = cv2.imread(images_path + 'medical_2.jpg', 0)
        medical_3 = cv2.imread(images_path + 'medical_3.jpg', 0)
        # And show them
        plt.subplot(131)
        plt.imshow(medical_1, cmap='gray')
        plt.title('Medical 1')
        plt.subplot(132)
        plt.imshow(medical_2, cmap='gray')
        plt.title('Medical 2')
        plt.subplot(133)
        plt.imshow(medical_3, cmap='gray')
        plt.title('Medical 3')
        plt.show()
```


3.1.1 Discrete approximations of a gradient operator

The first bunch of methods that we are going to explore carry out a **discrete approximation of a gradient operator** based on the differences between gray (intensity) levels. For example, in order to obtain the derivative in the rows' direction, we could apply:

- Backward difference of pixels along a row: $f_x(x,y) pprox G_R(i,j) = [F(i,j) - F(i-1,j)]/T$

0	0	0
0	1	-1
0	0	0

- Symmetric difference of pixels along a row: $f_x(x,y)pprox G_R(i,j)=[F(i+1,j)-F(i-1,j)]/2T$

1	0	-1
0	0	0

These approximations are typically implemented through the convolution of the image with a pair of templates H_R (for rows, computing horizontal derivatives for detecting vertical edges) and H_C (for columns, computing vertical derivatives for detecting horizontal ones), that is:

$$G_R(i,j) = F(i,j) \otimes H_R(i,j)$$

 $G_C(i,j) = F(i,j) \otimes H_C(i,j)$

Perhaps the most popular operator doing this is such of **Sobel**, although there are many of them that provide acceptable results. These operators use the aforementioned two kernels (typically of size 3×3 or 5×5) which are convolved with the original image to calculate approximations of the derivatives.

These are some examples (first column: operator name; second one: H_R ; third column: H_C):

At this point we know how to perform a discrete approximation of a gradient operator through the application of a convolution operation with two different kernels, that is:

$$abla F(x,y) = egin{bmatrix} F\otimes H_C \ F\otimes H_R \end{bmatrix}$$

But, how could we use the output of those computations to detect edges? The following figure clarifies that!

Kernel sizes

As discussed, kernels can be of different size, and that size directly affects the quality of the detection and the localization (e.g. Sobel 3×3 or 5×5):

- Small template:
 - more precise localization (good localization).
 - more affected by noise (likely produces false positives).
- Large template:
 - less precise localization.
 - more robust to noise (good detector).
 - higher computational cost ($O(N \times N)$).

ASSIGNMENT 2: Playing with Sobel derivatives

Now that we have acquired a basic understanding of these methods, let's complete the following code cell to employ the Sobel kernels (S_x, S_y) to compute both derivatives and

display them along with the original image (medical_3.jpg).

Notice that the derivative image values can be positive **and negative**, caused by the negative values in the kernel. This implies that the desired depth of the destination image (ddepth) has to be at least a signed data type when calling to the filter2D() method.

```
In [3]: # ASSIGNMENT 2
        # Read one of the images, compute both kernel derivatives, apply them to the ima
        # Write your code here!
        # Read the image
        image = cv2.imread(images_path + 'medical_3.jpg', 0)
        # Define horizontal and vertical kernels
        kernel_h = np.array([[1,0,-1],[2,0,-2],[1,0,-1]])*(1/4)
        kernel_v = np.array([[-1,-2,-1],[0,0,0],[1,2,1]])*(1/4)
        # Apply convolution
        d_horizontal = cv2.filter2D(image,cv2.CV_16S,kernel_h) # Using ddepth=cv2.CV_16S
        d_vertical = cv2.filter2D(image,cv2.CV_16S,kernel_v)
        # And show them!
        plt.subplot(131)
        plt.imshow(image, cmap='gray')
        plt.title('Original image')
        plt.subplot(132)
        plt.imshow(d_horizontal, cmap='gray')
        plt.title('Horizontal derivative')
        plt.subplot(133)
        plt.imshow(d_horizontal, cmap='gray')
        plt.title('Vertical derivative');
```


Once we have computed both derivative images G_C and G_R , we can determine the *complete* edge image by computing the image gradient magnitude and then binarizing the result. Recall that the image codifying the gradient magnitude can be computed and approximated as:

$$|
abla F(x,y)| = \sqrt{(F\otimes G_C)^2 + (F\otimes G_R)^2} pprox |F\otimes G_C| + |F\otimes G_R|$$

ASSIGNMENT 3a: Time to detect edges

Complete edge_detection_chart() that computes the gradient image of an input one using kernel_h and kernel_v (kernels for horizontal and vertical derivatives respectively) and **binarize the resultant image** (final edges image) using threshold.

Then display in a 1x3 plot image, the gradient image, and finally, an image with the detected edges! (Only if verbose is True).

Tip: you should normalize gradient image before thresholding.

Interesting functions: np.absolute(), np.add(), cv2.threshold()

```
In [4]: # ASSIGNMENT 3a
        # Implement a function that that computes the gradient of an image, taking also
        # It must also binarize the resulting image using a threshold
        # Show the input image, the gradient image (normalized) and the binarized edge i
        def edge_detection_chart(image, kernel_h, kernel_v, threshold, verbose=False):
            """ Computed the gradient of the image, binarizes and display it.
                Args:
                    image: Input image
                    kernel_h: kernel for horizontal derivative
                    kernel_v: kernel for vertical derivative
                    threshold: threshold value for binarization
                    verbose: Only show images if this is True
                Returns:
                    edges: edges binary image
            # Write your code here!
            # Compute derivatives
            d_h = cv2.filter2D(image,cv2.CV_16S,kernel_h) # horizontal
            d_v = cv2.filter2D(image,cv2.CV_16S,kernel_v) # vertical
            # Compute gradient
            gradient_image = np.add(np.absolute(d_h),np.absolute(d_v)) # Hint: You have
            #Normalize gradient
            norm_gradient = np.copy(image)
            norm_gradient = cv2.normalize(gradient_image, None, 0, 255, cv2.NORM_MINMAX)
            # Threshold to get edges
            ret, edges = cv2.threshold(norm gradient, threshold, 255,cv2.THRESH BINARY)
            if verbose:
                # Show the initial image
                plt.subplot(131)
                plt.imshow(image, cmap='gray')
                plt.title('Original image')
                # Show the gradient image
                plt.subplot(132)
                plt.imshow(gradient_image, cmap='gray')
                plt.title('Gradient image')
                # Show edges image
                plt.subplot(133)
                plt.imshow(edges, cmap='gray')
                plt.title('Edges detected')
            return edges
```

You can use next code to **test if your results are correct**:

ASSIGNMENT 3b: Testing our detector

Now **try the implemented method** with different size Sobel kernels $(3 \times 3, 5 \times 5, ...)$.

```
In [6]: # ASSIGNMENT 3b
        # Read the image, set you kernels (Sobel, Roberts, Prewitt, etc.) and interact w
        # Write your code here!
        # Read image
        image = cv2.imread(images_path + 'medical_3.jpg', 0)
        # Define kernel (Sobel)
        kernel_h = np.array([[-2, -1, 0, 1, 2],
                                   [-2, -1, 0, 1, 2],
                                    [-4, -2, 0, 2, 4],
                                    [-2, -1, 0, 1, 2],
                                    [-2, -1, 0, 1, 2]]
        kernel v = np.array([[-2, -2, -4, -2, -2],
                                  [-1, -1, -2, -1, -1],
                                  [0,0,0,0],
                                  [ 1, 1, 2, 1, 1],
                                  [2, 2, 4, 2, 2]])
        kernel_h3x3 = np.array([[1,0,-1],[2,0,-2],[1,0,-1]])*1/4
        kernel_v3x3 = np.array([[-1,-2,-1],[0,0,0],[1,2,1]])*1/4
        prewitt_horizontal = np.array([[1, 0, -1],
                                      [1, 0, -1],
                                      [1, 0, -1]])*1/3
        prewitt_vertical = np.array([[-1, -1, -1],
                                    [ 0, 0, 0],
                                    [ 1, 1, 1]])*1/3
        roberts_horizontal = np.array([[0, 0, 0],
                                      [0, 0, 1],
```


OPTIONAL

200

Try other edge detection operators based on the first derivative with different kernel sizes (Roberts, Prewitt, etc.).

Thinking about it (1)

Now, answer following questions:

• What happens if we use a bigger kernel?

Se aprecia cómo se detectan mejor los bordes exteriores, pero en el interior se detectan mucho menos. Detecta mejor esos bordes y elimina ruido, pero a la vez es menos preciso

• There are differences between Sobel and other operators?

Sí, he probado con Prewitt y con Robert. La diferencia con Prewitt no es muy grande, pero con Robert sí. (profundizo en el siguiente apartado).

• What errors appear using those operators?

Usando Prewitt, aparecía bastante más ruido, sin embargo, la detección Robert era bastante mala. Ruido por todos lados y los bordes muy mal definidos.

• Why kernels usually are divided by a number? (e.g. 3×3 Sobel is divided by 4)

Para normalizar la escala, por ejemplo, evitando que se saturen los píxeles.

3.1.2 DroG operator

Despite the simplicity of the previous techniques, they have a remarkable drawback: their performance is highly influenced by image noise. Taking a look at the following figure we can see how, having an apparently not so noisy function (first row), where it is easy to

visually detect a step (an abrupt change in its values) around 1000, the response of the derivative with that level of noise is as bigger as the step itself!

But not everything is lost! An already studied image processing technique can be used to mitigate such noise: **image smoothing**, and more concretely, **Gaussian filtering!** The basic idea is to smooth the image and then apply a gradient operator, that is to compute $\frac{\partial}{\partial x}(f\otimes g)$. Not only that, this can be done even more efficiently thanks to the convolution derivative property:

$$\frac{\partial}{\partial x}(f\otimes g) = f\otimes \frac{\partial}{\partial x}g$$

 $\setminus [5pt]$

That is, precomputing the resultant kernels from the convolution of the Gaussisan filtering and the Sobel ones, and then convolving them with the image to be processed. With that we save one operation!

This combination of smoothing and gradient is usually called **Derivative of Gaussian operator (DroG)**. Formally:

$$abla [f(x,y)\otimes g_{\sigma}(x,y)] = f(x,y)\otimes
abla [g_{\sigma}(x,y)] = f(x,y)\otimes \operatorname{DroG}(x,y)$$
 $abla [f(x,y)\otimes g_{\sigma}(x,y)] = \underbrace{\left[egin{array}{c} rac{\partial}{\partial x}[g_{\sigma}(x)g_{\sigma}(y)] \ rac{\partial}{\partial y}[g_{\sigma}(x)g_{\sigma}(y)] \end{array}
ight]}_{ ext{separability}} = \underbrace{\left[egin{array}{c} rac{-xg_{\sigma}(x)g_{\sigma}(y)}{\sigma^2} \ rac{-yg_{\sigma}(x)g_{\sigma}(y)}{\sigma^2} \end{array}
ight]}_{ ext{g}(x)'=-xg(x)/\sigma^2} = \left[egin{array}{c} rac{-xg_{\sigma}(x,y)}{\sigma^2} \ rac{-yg_{\sigma}(x,y)}{\sigma^2} \end{array}
ight]$

Recall that $g_{\sigma}(x,y)$ is just the 2D gaussian kernel. We worked with it in Chapter 2!

Also remember from the previous notebooks the expression of the Gaussian distribution with 2 variables centered at the origin of coordinates, where the standard deviation σ controls the degree of smoothness:

Remember from the previous notebooks the expression of the Gaussian distribution with 2 variables centered at the origin of coordinates, where the standard deviation σ controls the degree of smoothness:

$$g_{\sigma}(x,y)=rac{1}{2\pi\sigma^2}exp\left(-rac{x^2+y^2}{2\sigma^2}
ight)$$

Take into account that the DroG template or kernel is **created just once**! Then it can applied to as many images as you want.

ASSIGNMENT 4: Applying DroG

We would like to try this robust edge detection technique, so complete the gaussian_kernel() method that:

- 1. constructs a 2D gaussian filter (that is, $g_{\sigma}(x,y)$ in the previous DroG definition) from a 1D one, and
- 2. derives it, getting the DroG template (in other words, compute $-xg_{\sigma}(x,y)/\sigma^2$ and $-yg_{\sigma}(x,y)/\sigma^2$).
- 3. Finally, it calls our function <code>edge_detection_chart()</code> , but using the DroG template instead of the Sobel one.

Its inputs are:

- an image to be processed,
- the kernel aperture size,
- the standard deviation, and
- the gradient image binaritazion threshold.

```
In [7]: # ASSIGNMENT 4
# Implement a function that builds the horizontal and vertical DroG templates an
# Inputs: an image, the kernel aperture size, the Gaussian standard deviation an
# It returns the horizontal and vertical kernels
def drog_kernel(image, w_kernel, sigma, threshold, verbose=False):
    """ Construct the DroG operator and call edge_detection_chart.

Args:
    image: Input image
    w_kernel: Kernel aperture size
    sigma: Standard deviation of the Gaussian distribution
    threshold: Threshold value for binarization
    verbose: Only show images if this is True

Returns:
    DroG_h, DroG_v: DroG kernerl for computing horizontal and vertical d
    """
# Write your code here!
```

```
# Create the 1D gaussian filter
s = sigma
w = w_kernel
gaussian_kernel_1D = np.array([(1/(s*np.sqrt(2*np.pi)))*np.exp(-(z**2)/(2*(s
# Get the 2D gaussian filter from the 1D one.
vertical_kernel = gaussian_kernel_1D.reshape(2*w+1,1)
horizontal_kernel = gaussian_kernel_1D.reshape(1,2*w+1)
gaussian_kernel_2D = signal.convolve2d(vertical_kernel, horizontal_kernel)
# Construct DroG
# Define x and y axis
x = np.arange(-w,w+1)
y = np.vstack(x)
# Get the kernels for detecting horizontal and vertical edges
DroG_h = gaussian_kernel_2D*(-x)/s**2 # Horizontal derivative
DroG_v = gaussian_kernel_2D*(-y)/s**2 # Vertical derivative
# Call edge detection chart using DroG
edge_detection_chart(image, DroG_h, DroG_v, threshold, True)
return DroG_h, DroG_v
```

You can use next code to **test if results are correct**:

```
In [8]: # Create an input image
         image = np.array([[10,60,20],[60,22,74],[72,132,2]], dtype=np.uint8)
         # Apply the Gaussian kernel
         drog_kernel(image, w_kernel=1, sigma=1.2, threshold=100)
Out[8]: (array([[ 0.03832673, 0.
                                             , -0.03832673],
                  [ 0.05423735, 0.
                                             , -0.05423735],
                  [ 0.03832673, 0.
                                             , -0.03832673]]),
           array([[ 0.03832673, 0.05423735, 0.03832673],
                  Γ0.
                          , 0.
                                                0.
                                                             1,
                  [-0.03832673, -0.05423735, -0.03832673]]))
                                                Gradient image
                                                                               Edges detected
       -0.5
                                      -0.5
                                                                    -0.5
        0.0
                                      0.0
                                                                     0.0
        0.5
                                      0.5
                                                                     0.5
        1.0
                                      1.0
                                                                     1.0
        1.5
                                      1.5
        2.0
                                       2.0
                              2.0
                                  2.5
                                        -0.5
                                            0.0
                                                0.5
                                                    1.0
                                                         1.5
                                                             2.0
                                                                 2.5
                                                                                   1.0
                                                                                           2.0
```

Expected output:

```
[-0. , -0. , -0. ],
[-0.03832673, -0.05423735, -0.03832673]]))
```

Thinking about it (2)

Now **try this method** and play with its interactive parameters in the next code cell. Then **answer the following questions**:

What happens if a bigger kernel is used?

Se elimina el ruido, esta vez de forma bastante más exitosa, la imagen queda mucho más clara.

• What kind of errors appear and disappear whenever sigma is modified?

Tanto si la aumentas como la disminuyes, hay bordes que no se detectan correctamente, y aparece mucho ruido.

• Why the gradient image have lower values than the one from the original image? Tip: image normalization

Yo creo, que es que al suavizar la imagen, los cambios de color no son tan abruptos y por tanto, el gradiente tiene valores más bajos, porque la "variación" de la "función" (imagen) es menor.

• Now that you have tried different techniques, in your opinion, which is the best one for this type of images?

Yo diría, que aunque el Drog requiere de más coste computacional, es mejor. Priorizo en este caso la calidad, de nada sirve intentar detectar bordes si no los detectas bien por tanto me quedo con este, que me quita probkemas de ruido y da bordes mejor definidos

```
In [9]: # Read the image
          image = cv2.imread(images_path + 'medical_3.jpg', 0)
          # Interact with the three input parameters
          interactive(drog_kernel, image=fixed(image), w_kernel=(1,5,1), sigma=(0.4,5,0.5)
Out[9]:
              w kernel
                 sigma
                                                   2.40
              threshold
                                                   120
                     Original image
                                                     Gradient image
                                                                                    Edges detected
           50
                                                                          100
          100
                                          100
                                          150
                                                                         150
          150
          200
                                                                         200
          250
```

Conclusion

Awesome! Now you have expertise in more applications of the convolution operator. In this notebook you:

- Learned basic operators for edge detection that perform a **discrete approximation** of a gradient operator.
- Learned how to construct a DroG kernel in an efficient way.
- Played a bit with them in the context of medical images, discovering some real and meaningful utilities.

3.2 Operators based on second derivative

In the previous notebooks we saw how to detect edges by looking at the gradient image (first-derivative), but it is also possible to do that by analyzing the output of operators based on the second-derivative!

As you may remember, first derivative operators try to detect edges by looking for high magnitude values of such derivatives. The figure below shows a one-dimensional continuous function f(x) in (a) and its first derivative in (b), where we can see that the point corresponding to the highest intensity difference reaches a maximum value:

The third figure (c) shows its second derivative, so we can check how such a value corresponds to... **a zero crossing!** That is, a second derivative yields a zero-crossing at points where the gradient presents a maximum, so we could detect edges looking for those crossings.

Unfortunately, things get a little tricky when moving to a 2D space (like images). Why? because depending on the orientation of the edge, this zero-crossing may go almost unnoticed (see, for example, d):

In this notebook we are going two explore two methods that face such issue and detect edges using the second derivative. These are:

- Laplacian operator (Section 3.2.1)
- LoG operator (Section 3.2.2)

Additionally, we will also take a look at a widely used algorithm that is a combination of different techniques: the **Canny algorithm** (Section 3.2.3).

Problem context - Edge detection for medical images

Unfortunately, you were not accepted (yet!) by the researching team at *Hospital Clínico* because the obtained results in the previous notebook were not as good as expected. Anyway, they have shown you the algorithms that they are currently using so you can learn for future opportunities. Let's have a look!


```
In [1]: import numpy as np
    from scipy import signal
    import cv2
    import matplotlib.pyplot as plt
    import matplotlib
    from ipywidgets import interact, fixed, widgets
    from mpl_toolkits.mplot3d import Axes3D

matplotlib.rcParams['figure.figsize'] = (15.0, 15.0)

images_path = './images/'
```

3.2.1 Laplacian operator

To face the previously posed issue about unnoticed edges due to the derivate orientation, the idea behind the Laplacian operator is to combine second derivatives in perpendicular directions. Thus, it is defined as:

$$abla^2 f(i,j) = rac{\partial^2}{\partial x^2} f(i,j) + rac{\partial^2}{\partial y^2} f(i,j)$$

Note that, by definition, **it returns a scalar**, not a vector as in the gradient case. Indeed, the Laplacian is the trace of the *Hessian matrix*, which fully characterizes the second derivative of a function:

$$H(f) = egin{bmatrix} rac{\partial f^2}{\partial x^2} & rac{\partial}{\partial x} rac{\partial f}{\partial y} \ rac{\partial f}{\partial y} rac{\partial f}{\partial x} & rac{\partial f^2}{\partial y^2} \end{bmatrix}$$

Compared with the first derivative-based edge detectors such as the Sobel operator, the Laplacian operator have a number of advantages:

- it is a linear operator,
- invariant to image orientation, and
- precise when localizing edges.

Implementation

Now that we know the theory, let's have a look at how the Laplacian operator is implemented:

1. We start by considering first derivatives (OpenCV uses Sobel, but any alternative is valid):

$$rac{\partial f(x,y)}{\partial x} = f_x(x,y) pprox G_R(i,j) = f(i+1,j) - f(i,j)$$

$$rac{\partial f(x,y)}{\partial y} = f_x(x,y) pprox G_C(i,j) = f(i,j+1) - f(i,j)$$

2. Then, take second derivatives using the previous definitions:

$$g=rac{\partial f^2}{\partial x^2}=f_{xx}(x,y)pprox G_R(i,j)-G_R(i-1,j)=f(i+1,j)-2f(i,j)+f(i-1,j)$$

$$h = rac{\partial f^2}{\partial u^2} = f_{yy}(x,y) pprox G_C(i,j) - G_C(i-1,j) = f(i,j+1) - 2f(i,j) + f(i,j-1)$$

3. Finally, implement it as a convolution with a certain kernel, so $L[F(i,j)] = F(i,j) \otimes L(i,j).$ This would lead to the operation $L[F(i,j)] = (F(i,j) \otimes g) + (F(i,j) \otimes h), \text{ but thanks to the distributive property of convolution:}$

$$\underbrace{f \otimes (g+h)}_{\text{One convolution}} = \underbrace{(f \otimes g) + (f \otimes h)}_{\text{Two convolutions}}$$

We can obtain a kernel that carries out both convolutions at once!:

$$q + h = q+h=L$$

0	0	0
1	-2	1
0	0	0

0	1	0
0	-2	0
0	1	0

0	1	0
1	-4	1
0	1	0

Zero-crossing

Note that the result of applying the Laplacian operator is not directly an edges image, but a second-derivative image. Recall that in the case of operators based on the first derivative we had to combine the two images returned by the gradient operator, and then apply a threshold to select edges. In this case, **it is needed an algorithm to detect zero-crossings** in the second-derivative (Laplacian) image in order to return a binary image of edges.

An example of a simple zero-crossing algorithm could be:

- 1. Select a small positive number th (threshold).
- 2. A pixel is labelled as an edge if in the Laplacian image:
 - its value is smaller than -th and at least one of its neighbours is bigger that th, or
 - ullet its value is bigger than th and at least one of its neighbours is smaller than -th

Advantages:

- Zero crossing produces a closed (or almost closed) contour, and
- it provides edges of 1-pixel width!

Limitations

• Unfortunately, the Laplacian operator is very sensitive to noise, resulting in a poor edge detection. Solution: If the image is blurred using a Gaussian filter before applying the Laplace operator, we can partially solve the noise problem. If this is done, the resultant o is called **LoG (Laplacian of Gaussian)**.

3.2.2 LoG operator

So, the LoG operator first smoothes the image, and then applies the Laplacian operator (or viceversa, it's commutative!). Considering the convolution properties:

$$abla^2[f(x,y)\otimes g_\sigma(x,y)]=f(x,y)\otimes
abla^2[g_\sigma(x,y)]=f(x,y)\otimes LoG_\sigma(x,y)$$

LoG is an isotropic operator, that is, it keeps radial symmetry. In this way, it is assumed that the covariance in both image dimensions is the same! Mathematically it is expressed as:

$$LoG_{\sigma}(x,y) = rac{1}{\pi\sigma^4}igg[rac{x^2+y^2}{2\sigma^2}-1igg] \exp^{-rac{x^2+y^2}{2\sigma^2}} = rac{1}{\pi\sigma^4}igg[rac{r^2}{2\sigma^2}-1igg] \exp^{-rac{r^2}{2\sigma^2}} = LoG_{\sigma}(r^2)$$

Let's print the LoG operator!

```
In [2]: # Gauss filter
v = np.arange(-5,5,0.1)
X, Y = np.meshgrid(v,v)
covar = np.array([[2, 0],[0, 2]]) ## Assuming no correlation between X and Y
gauss_filter = np.exp(-0.5*(X**2/covar[0][0]+Y**2/covar[1][1]))

# Laplace filter
laplace_filter = np.array(([[0,1,0],[1,-4,1],[0,1,0]]), dtype="float")

# LoG operator
LoG = cv2.filter2D(gauss_filter, -1, laplace_filter)

# Plot it!
fig = plt.figure()
ax = plt.axes(projection='3d')
ax.plot_surface(X,Y,LoG,cmap='summer', edgecolor='none');
```


As a side note, the LoG operator is not separable. However, it can be implemented as **DoG (Difference of Gaussians)**, a sum of separable operators, reducing its complexity from $O(N^2)$ to O(4N). The DoG is defined as:

$$DoG_{\sigma_{1}\sigma_{2}}(x,y) = g_{\sigma_{1}}(x,y) - g_{\sigma_{2}}(x,y) = g_{\sigma_{1}}(x)g_{\sigma_{1}}(y) - g_{\sigma_{2}}(x)g_{\sigma_{2}}(y)$$

Giving the ratio $\sigma_1/\sigma_2=1.6$ the best approximation of LoG. This complexity reduction approach is employed, for example, in the popular SIFT keypoint detector, as we will see in following notebooks.

Limitations

- It is computationally costly,
- it doesn't provide any information about edge orientations,
- the output contains negative and non-integer values, so for display purposes the image should be normalized to the range 0-255,
- it is needed a zero-crossing method, and
- it tends to round object corners (more heavily as σ grows).

Experiencing Laplacian and LoG operators

Now that we are almost experts in the Laplacian and LoG operators, let's play a bit with them!

ASSIGNMENT 1a: Applying Gaussian smoothing

First, complete the function gaussian_smoothing() that:

- 1. blurs an image using a Gaussian filter, then
- 2. normalizes it to leverage the full range of values $[0,\ldots,255]$ (this is just a way to process the image in order to increase its contrast), and
- 3. finally returns the resulting image.

Interesting functions:

For normalization you can use cv2.normalize().

```
In [3]: # ASSIGNMENT 1a
# Implement a function that blurres an input image using a Gaussian filter and t
def gaussian_smoothing(image, sigma, w_kernel):
    """ Blur and normalize input image.

Args:
    image: Input image to be binarized
    sigma: Standard deviation of the Gaussian distribution
    w_kernel: Kernel aperture size

Returns:
    smoothed_norm: Blurred image
"""
# Write your code here!

# Define 1D kernel
s=sigma
w=w_kernel
kernel_1D = np.array([(1/(s*np.sqrt(2*np.pi)))*np.exp(-(z**2)/(2*(s**2))) fo
```

```
# Apply distributive property of convolution
vertical_kernel = kernel_1D.reshape(2*w+1,1)
horizontal_kernel = kernel_1D.reshape(1,2*w+1)
gaussian_kernel_2D = signal.convolve2d(vertical_kernel, horizontal_kernel)

# Blur image
smoothed_img = cv2.filter2D(image,cv2.CV_8U,gaussian_kernel_2D)

# Normalize to [0 254] values
smoothed_norm = np.array(image.shape) # Esta Línea diria que no es necesaria
smoothed_norm = cv2.normalize(smoothed_img, None, 0, 254, cv2.NORM_MINMAX) #
return smoothed_norm
```

ASSIGNMENT 1b: Applying Laplacian and LoG operators

Now, we are going to see the differences between the Laplacian and LoG operators. For that complete the laplace_testing() function which:

- 1. applies the Laplacian operator to the input image and
- 2. to a blurred version of the input image (use the previously implemented function gaussian_smoothing() to smooth it). Notice that applying the Laplacian operator after smoothing the image is equivalent to applying the LoG operator.
- 3. Finally displays both images along with the original one in a 1x3 plot.

This function uses as inputs:

- an image to be processed,
- the size of the Laplacian filter (should be odd), and
- the parameters of the Gaussian filter.

Note that it would possible to reduce the computation time by precomputing LoG (as commented above). This is convolving the Laplacian and Gaussian filters instead of applying them separately.

Interesting functions:

• OpenCV defines the Laplace operator as cv2.Laplacian().

```
# Blur image
blurred_img = gaussian_smoothing(image, sigma, w_gaussian)
# Apply Laplacian to the original image
laplacian = cv2.Laplacian(image, -1, ksize=size_Laplacian)
# Aplay Laplacian to the blurred image
laplacian_blurred = cv2.Laplacian(blurred_img, -1, ksize=size_Laplacian)
# Show initial image
plt.subplot(131)
plt.imshow(image, cmap='gray')
plt.title('Original image')
# Show Laplacian
plt.subplot(132)
plt.imshow(laplacian, cmap='gray')
plt.title('Laplacian without blurring')
# Show LoG
plt.subplot(133)
plt.imshow(laplacian_blurred, cmap='gray')
plt.title('Laplacian blurred (LoG)')
```

It is time to try this method to our medical images and play with interactive parameters.

Thinking about it (1)

Now, answer the following questions:

 Could be the Laplacian applied without a previous blurring? Does this have any drawback?

Sí, pero Laplacian es muy sensible. Cualquier variación puede notarse enormemente. Como observamos en la segunda imagen, capta muchos detalles que no son necesarios. Además, es muy sensible al ruido, lo que es otro gran inconveniente. Are the images obtained in the previous function edge images?

No, Laplacian no detecta bordes, es simplemente una segunda derivada, detecta cambios en la intensidad de la imagen, lo que resulta en detalles que no son bordes.

• If not, what would be needed for obtaining the edges from those images?

Para ello, necesitaríamos, además, buscar los sitios en los que esta 'segunda derivada' sea igual a 0, para detectar eso como borde. En este caso, se usa un número cercano a 0 como umbral.

The next code cell implements zero crossing detection, so it retruns the final edges image.

```
In [6]: # This function takes an image, applies LoG (in reality, Gaussian and then Lapla
        # It will show the original image, the image with LoG and the image with Zero-Cr
        def zero_crossing(image, size_Laplacian, sigma, w_gaussian, threshold):
            blurred_img = gaussian_smoothing(image, sigma, w_gaussian)
            laplacian = cv2.Laplacian(blurred img, cv2.CV 16S, ksize=size Laplacian)
            laplacian_blurred = cv2.normalize(laplacian, None, -255, 255, cv2.NORM_MINMA
            width, height = laplacian_blurred.shape
            edges = np.zeros_like(laplacian_blurred,np.uint8)
            for x in range(1,width-1):
                for y in range(1,height-1):
                    neighbors = [
                         laplacian_blurred[x-1, y-1], laplacian_blurred[x, y-1], laplacia
                         laplacian_blurred[x-1, y],
                         laplacian_blurred[x-1, y+1], laplacian_blurred[x, y+1], laplacia
                    1
                    if(laplacian_blurred[x,y] > threshold and any(n < -threshold for n i</pre>
                         edges[x,y] = 255
            # Show initial image
            plt.subplot(131)
            plt.imshow(image, cmap='gray')
            plt.title('Original image')
            # Show LoG blurred image
            plt.subplot(132)
            plt.imshow(laplacian_blurred, cmap='gray')
            plt.title('LoG')
            # Show LoG with Zero-Crossing
            plt.subplot(133)
            plt.imshow(edges, cmap='gray')
            plt.title('LoG with Zero-Crossing')
            plt.show()
In [7]: image = cv2.imread(images_path + 'medical_3.jpg', 0)
```

```
In [7]: image = cv2.imread(images_path + 'medical_3.jpg', 0)
```


3.2.3 The Canny algorithm

The Canny edge detector^[1] is an algorithm that combines a number of techniques:

- the DroG operator,
- non-maxima suppression, and
- hysteresis.

It was designed to be a good detector, yield a good localization, and to provide a single response!

This algorithm consists of the following steps:

- 1. **Noise filtering and gradient image**. Apply the DroG operator to reduce noise and obtain a gradient image.
- 2. Non-maximum suppression. This removes pixels that are not considered to be part of an edge. Typically, the gradient image obtained after using DroG presents thick edges. The idea is to keep only those pixels that are maximum within their neighborhood in the direction of the gradient, suppressing the rest of them. Hence, only thin lines (candidate edges) will remain. For that:
 - We consider 4 main directions or *angular sectors*: [0,45], [45,90], [90,135], [135,180]. The gradient angle $\theta[i,j]$ is approximated by where it lays.
 - A 3x3 filter is moved over the gradient image G[i,j] at each pixel, and it suppresses the edge strength of the center pixel (for example by setting its value to 0) if its magnitude is not greater than the magnitude of the two neighbors in the gradient direction. This way we have a single response at each edge.

We pick the maximun of these three pixels

- 3. **Hysteresis**: The final step, for which the Canny algorithm uses two thresholds (upper and lower) to determine edge pixels:
 - If the grey level of a candidate pixel of the gradient image is higher than the upper threshold, the pixel is accepted as an edge.
 - If the grey level of a candidate pixel of the gradient image is below the lower threshold, then it is rejected.
 - If the grey level of a candidate pixel of the gradient image is between the two
 thresholds, then it will be accepted only if it is connected to a pixel that is above
 the upper threshold and rejected otherwise.

This algorithm can be executed repeatedly with different levels of smoothing (changing the sigma of the DroG operator). Different sigmas produce edges at different spatial features.

ASSIGNMENT 2: The enormously popular Canny algorithm

Complete canny_testing(), which applies the Canny algorithm. Note that OpenCV Canny's implementation does not apply Gaussian smoothing, but directly applies Sobel. This gives to us the opportunity to:

- 1. check the performance of this technique by considering the initial image and a smoothed version of it. *Note: use our popular gaussian_smoothing()* function for blurring the image
- 2. After this, display both resulting images along the original one.

This function takes as arguments:

- an image,
- both lower and upper Canny thresholds, and

the parameters of the Gaussian filter.

Interesting functions:

OpenCV implements the Canny algorithm in cv2.Canny().

```
In [8]: # ASSIGNMENT 2
        # Implement a function that applies the Canny operator to an input image and to
        # Display a 1x3 plot with the original image and the two resulting edge images.
        # Inputs: image, size of the Laplacian kernel, sigma and size of the Gaussian ke
        def canny testing(image, lower threshold, upper threshold, sigma, w gaussian):
            """ Apply Canny algorithm to an image.
                Args:
                    image: Input image to be binarized
                    lower_threshold: bottom value for hysteresis
                    upper_threshold: top value for hysteresis
                    sigma: Standard deviation of the Gaussian distribution
                    w_gaussian: Gaussian kernel aperture size
            # Smooth image
            blurred_img = gaussian_smoothing(image, sigma, w_gaussian)
            # Apply Canny to original image
            canny = cv2.Canny(image,upper_threshold,lower_threshold)
            # Apply Canny to blurred image
            canny_blurred = cv2.Canny(blurred_img,upper_threshold,lower_threshold)
            # Show initial image
            plt.subplot(131)
            plt.imshow(image, cmap='gray')
            plt.title('Original image')
            # Show Canny without blurring
            plt.subplot(132)
            plt.imshow(canny, cmap='gray')
            plt.title('Canny without smoothing')
            # Show Canny with blurring
            plt.subplot(133)
            plt.imshow(canny_blurred, cmap='gray')
            plt.title('Canny smoothed')
```

Among the multiple parameters of this algorithm, it is interesting to check its performance with different levels of smoothing (changing the sigma of the DroG operator). As commented, different sigma produces edges at different spatial features. Try the effect of this and other parameters playing with the interactive parameters in the following code cell. You can also try with your own images.

```
In [9]: # Read an image
        image = cv2.imread(images_path + 'medical_2.jpg', 0)
        # Interact with the parameters
        interact(canny_testing, image=fixed(image), lower_threshold=(0,260,20), upper_th
```


Thinking about it (2)

Now, answer following questions:

 Could Canny be applied without a previous blurring? Which are the consequences of this?

Sí, pero es muy sensible al ruido. Esto provoca muchos falsos positivos, y bordes que no lo son.

• What is a *good* value for both, lower and upper thresholds? Would these values be the same for any input image?

He estado testeando, y la combinación que me ha dado el mejor resultado es 60 en el pequeño y 240 en el grande. Esto se puede traducir en ser muy exigente para detectar un borde, pero bastante generoso a la hora de seguir buscando en ese borde. Esto provoca que el hueso se detecte de forma bastante clara, por ejemplo, en el caso de la imagen 2. En cuanto a las imágenes 3 y 1, los resultados son increíbles, detecta con mucha calidad los contornos de ambas imágenes, y sobre todo en la 3, los detalles que debe detectar del interior de la misma.

 Now that you have tried a good number of edge detection methods, which one is your favorite, and why?

Me quedo con Canny sin duda, me parece el más ajustable de todos y el que da los resultados más eficaces sin dudarlo. Ninguno de los otros métodos me ha dado resultados tan buenos en mi opinión como Canny.

Conclusion

Terrific! You finished this notebook, that includes information about:

Laplacian and LoG operators and the importance of smoothing, and

• how the Canny algorithm is implemented and how to use it.

Curiosity

The Canny algorithm is a well known algorithm in the computer vision field. It is used in a lot of modern technologies. However, the original paper was published in 1986 by John Canny^[1].

References

[1]: CANNY, John. A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence, 1986, no 6, p. 679-698.