Universidade Federal de Minas Gerais Escola de Engenharia

Programa de Pós Graduação em Engenharia Metalúrgica, Materiais e de Minas Disciplina: EMT873 - Modelamento térmico e fluidodinâmico aplicado a sistemas metalúrgicos

Simulação de escoamento e transferência de calor em duto cilíndrico

Dickson Alves de Souza

Professor Roberto Parreiras Tavares

Belo Horizonte, 07 de Dezembro de 2017

O Problema

Escoamento laminar

$$Re = 100 < Re^* = 2100$$

 Fluxo de calor constante pelas paredes do duto

 $q = 100 W/m^2$

PROPRIEDADES FÍSICAS:

ρ = 1 kg/m³ μ = 0,002 kg / (m.s) Cp = 1006,43 J / (kg.K) k = 0,0242 W/(m.K)

CONDIÇÕES DE CONTORNO FLUIDODINÂMICAS:

v = 1 m/s na entrada do duto p = 1 atm na saída do duto

O Problema *Geometria*

Solução analítica do escoamento

Os fenômenos de entrada desaparecem após:

 O perfil de velocidade é parabólico e descrito por:

$$\frac{v}{2\bar{v}} = 1 - \left(\frac{r}{R}\right)^2$$

Solução analítica do escoamento

Desenvolvimento do perfil de velocidade

Desenvolvimento do perfil de velocidade

Desenvolvimento do perfil de velocidade

A previsão teórica indica que o perfil estaria plenamente desenvolvido após 70 cm

Solução analítica da transferência de calor

$$\Theta(\xi,\zeta) = 4\zeta + \xi^2 - \frac{1}{4}\xi^4 - \frac{7}{24}$$

$$\Theta = \frac{T - T_1}{q_0 R/k}$$

Temperatura adimensional

$$\zeta = \frac{z}{\rho \hat{C}_p v_{z,max} R^2 / k}$$

Distância axial adimensional

$$\xi = \frac{r}{R}$$

Distância radial adimensional

Solução analítica da transferência de calor

$$\zeta = \frac{z}{\rho \hat{C}_p v_{z,max} R^2 / k}$$

Segundo Bird, Steward e Lightfoot (2002, p. 315), a solução analítica prediz temperaturas para $\zeta > 0,1$ com precisão de 2%. Porém a distância radial adimensional é inferior a esse valor mesmo para a extremidade do duto

$$\zeta = \frac{3,0 \ m \cdot 0,0242 \frac{W}{m \cdot K}}{1 \frac{kg}{m^3} \cdot \frac{1006,43 \ J}{kg \cdot K} \cdot 2 \frac{m}{s} \cdot 0,1^2 m^2}$$

$$\zeta = 3.61 \cdot 10^{-3}$$

- Malhas quadradas sucessivamente mais refinadas:
- 5 cm (120 elementos)
- 2 cm (750 elementos)
- 1 cm (3000 elementos)
- 0,5 cm (12000 elementos)
- 0,25 cm (24000 elementos)

Melhora a solução

Sem dúvida:
Melhora a solução
Mas:
Diferença pouco perceptível

Diferenças significativas entre as malhas de 120 e 750 elementos.

Ainda é possível notar melhoria da solução ao aumentar para 3000 elementos.

Resultados para 12000 e 24000 elementos estão superpostos e é difícil reconhecer diferença nessa escala

Pequenas diferenças no perfil próximo à parede do duto para malhas com mais de 12000 elementos

Fator de decisão: esforço computacional! Crescimento do número de iterações é aproximadante linear com o tamanho da malha

Efeito das configurações do Solver

Efeito sobre a velocidade de convergência; Pouco perceptível sobre os resultados.

Efeito das configurações do Solver

Tabela 1: Combinações de métodos de discretização espacial								
	Combinação #01	Combinação #02	Combinação #03	Combinação #04	Combinação #05			
Pressão	Second Order	Standard	Linear	PRESTO!	Linear			
Momentum	Second Order Upwind	First Order Upwind	Power Law	QUICK	Third-Order MUSCL			
Energia	Second Order Upwind	First Order Upwind	Power Law	QUICK	Third-Order MUSCL			

Efeito das configurações do Solver

Efeito perceptível sobre a velocidade de convergência

Diferença pouco significativa sobre os resultados para essa classe de problemas

Tabela 1: Combinações de métodos de discretização espacial								
	Combinação #01	Combinação #02	Combinação #03	Combinação #04	Combinação #05			
Pressão	Second Order	Standard	Linear	PRESTO!	Linear			
Momentum	Second Order Upwind	First Order Upwind	Power Law	QUICK	Third-Order MUSCL			
Energia	Second Order Upwind	First Order Upwind	Power Law	QUICK	Third-Order MUSCL			

Conclusões

Campo de pressão e de velocidades não são alterados pela introdução do fenômeno de transferência de calor

Perfil parabólico predito é observado nos resultados da simulação numérica

Conclusões

Diferença de temperatura entre a linha central e a parede chega a ~90 °C

Após refino de malha, poucas diferenças são perceptíveis nos resultados quando configurações do Solver são alteradas.

Conclusões

A diferença mais marcante é a maior velocidade de convergência para o acoplamento COUPLED