

Supplemental "Transmit Simultaneously" Test Report

Report No.: RF151022E06-2

FCC ID: 2AD8UFZCWM2A1

Test Model: WM2A-AC210m

Received Date: Oct. 22, 2015

Test Date: Dec. 02 to 16, 2015

Issued Date: Jan. 21, 2016

Applicant: Nokia Solutions and Networks.OY

Address: Karaportti 3, P.O. Box 226, Nokia Group, Finland.

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan R.O.C.

Test Location (1): E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan R.O.C.

Test Location (2): No. 49, Ln. 206, Wende Rd., Shangshan Tsuen, Chiung Lin Hsiang, Hsin

Chu Hsien 307, Taiwan R.O.C.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Re	leas	e Control Record	3
1	(Certificate of Conformity	4
2	5	Summary of Test Results	5
	2.1 2.2	Measurement Uncertainty	
3	(General Information	6
3 3	3.1 3.1.1 3.2 3.3 3.3.1	Duty Cycle of Test Signal Description of Support Units Configuration of System under Test General Description of Applied Standards	9 10 .11 .11
4	7	Fest Types and Results	13
	1.1.2 1.1.5 1.1.6 1.1.7 1.2.1 1.2.2 1.2.3 1.2.4 1.3.1 1.3.2 1.3.3 1.3.4 1.3.5	Radiated Emission and Bandedge Measurement. Limits of Radiated Emission and Bandedge Measurement Test Instruments Test Procedures. Deviation from Test Standard Test Setup. EUT Operating Conditions. Test Results. Conducted Emission Measurement Limits of Conducted Emission Measurement. Test Instruments Test Procedures. Deviation from Test Standard Test Setup. EUT Operating Conditions. Test Results Conducted Out of Band Emission Measurement Limits of Conducted Out of Band Emission Measurement Test Setup. Test Instruments Test Procedure Deviation from Test Standard	13 14 15 15 16 17 18 20 20 20 21 21 21 22 24 24 24 24 24
	.3.7	EUT Operating Condition	25
5	F	Pictures of Test Arrangements	26
Аp	pend	dix – Information on the Testing Laboratories	27

Release Control Record

Issue No.	Description	Date Issued
RF151022E06	Original release.	Jan. 21, 2016

1 Certificate of Conformity

Product: Wi-Fi AP Module 802.11 ac

Brand: Nokia

Test Model: WM2A-AC210m

Sample Status: MASS-PRODUCTION

Applicant: Nokia Solutions and Networks.OY

Test Date: Dec. 02 to 16, 2015

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)

ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by:	Elsie Hsu / Specialist	_ , Date:	Jan. 21, 2016	
Approved by:	May Chen Manager	_, Date:	Jan. 21, 2016	

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (SECTION 15.247)								
FCC Clause	FCC KDB 558074	Test Item	Result	Remarks				
15.207	-	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -15.16dB at 0.19297MHz.				
15.205 / 15.209 / 15.247(d)	Section 11, 12 &13	Radiated Emissions and Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -8.2dB at 39.65MHz.				

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expended Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	2.86 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.31 dB
	1GHz ~6GHz	3.40 dB
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	3.73 dB
	18GHz ~ 40GHz	4.11 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Wi-Fi AP Module 802.11 ac
Brand	Nokia
Test Model	WM2A-AC210m
Test Sample S/N	F3406027
Hardware Version	AM2
Status of EUT	MASS-PRODUCTION
Power Supply Rating	5.1Vdc from host equipment
Modulation Type	CCK, DQPSK, DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM 256QAM for OFDM in 11ac mode
Modulation Technology	DSSS, OFDM
Transfer Rate	802.11b: up to 11Mbps 802.11a/g: up to 54Mbps 802.11n: up to 300Mbps 802.11ac: up to 866.7Mbps
Operating Frequency	For 15.407 5.18 ~ 5.24GHz, 5.745 ~ 5.825GHz For 15.247 2.412 ~ 2.462GHz
Number of Channel	For 15.407 24 for 802.11a, 802.11n (HT20), 802.11ac (VHT20) 11 for 802.11n (HT40), 802.11ac (VHT40) 5 for 802.11ac (VHT80) For 15.247 11 for 802.11b/g, 802.11n (HT20) 7 for 802.11n (HT40)
Output Power	For 5GHz 1TX (Chain 0) Mode: 5.18 ~ 5.24GHz: 802.11a: 182.81mW 802.11ac (VHT20): 180.717mW 802.11ac (VHT40): 159.221mW 802.11ac (VHT80): 96.605mW 5.745 ~ 5.825GHz: 802.11a: 162.93mW 802.11ac (VHT20): 163.682mW 802.11ac (VHT40): 160.694mW 802.11ac (VHT80): 51.523mW 1TX (Chain 1) Mode: 5.18 ~ 5.24GHz: 802.11a: 195.884mW 802.11ac (VHT20): 196.789mW 802.11ac (VHT0): 190.108mW 802.11ac (VHT0): 63.387mW 5.745 ~ 5.825GHz: 802.11a: 163.305mW 802.11ac (VHT20): 161.065mW 802.11ac (VHT20): 161.065mW 802.11ac (VHT20): 162.181mW 802.11ac (VHT80): 63.882mW 2TX Mode: 5.18 ~ 5.24GHz: 802.11ac (VHT0): 162.181mW 802.11ac (VHT0): 162.181mW 802.11ac (VHT0): 38.282mW 2TX Mode: 5.18 ~ 5.24GHz: 802.11ac (VHT0): 365.945mW 802.11ac (VHT0): 365.945mW 802.11ac (VHT0): 83.213mW

	5.745 ~ 5.825GHz:			
	802.11a: 384.025mW 802.11ac (VHT20): 367.675mW			
	802.11ac (VHT20): 307.075mW 802.11ac (VHT40): 324.995mW			
	802.11ac (VHT80): 31.311mW			
	For 2.4GHz			
	1TX (Chain 0) Mode:			
	802.11b: 89.536mW			
	802.11g: 85.507mW			
	802.11n (HT20): 86.696mW			
	802.11n (HT40): 87.096mW			
	1TX (Chain 1) Mode:			
	802.11b: 89.125mW			
	802.11g: 86.497mW			
	802.11n (HT20): 85.704mW			
	802.11n (HT40): 88.512mW			
	2TX Mode:			
	802.11b: 197.709mW			
	802.11g: 199.467mW			
	802.11n (HT20): 179.345mW			
	802.11n (HT40): 178.996mW			
Antenna Type	Refer to note as below			
Antenna Connector	Refer to note as below			
Accessory Device	NA			
Data Cable Supplied	NA			

Note:

- 1. 2.4GHz and 5GHz technology can transmit at same time.
- 2. The emission of the simultaneous operation (2.4GHz and 5GHz) has been evaluated and no non-compliance was found.

3. The antennas provided to the EUT, please refer to the following table:

Antenna No	PCB Chain No.	Brand	Model	Antenna Type	Gain(dBi)	Frequency (GHz to GHz)					
			NA		5.17	2.4~2.4835					
					6.03	5.15~5.25					
1	U20	Galtronics		PIFA	6.17	5.25~5.35					
					5.57	5.47~5.725					
					5.18	5.725~5.85					
			NA	_	4.27	2.4~2.4835					
					5.1	5.15~5.25					
2	U21	Galtronics		NA	NA	NA	NA	NA	NA	PIFA	4.91
					5.23	5.47~5.725					
					5.73	5.725~5.85					

Cable Spec.									
Antenna No	Brand	Model	Connector Type	Cable Loss(dB)	Cable Length (cm)				
1	NA	NA	MMCX	0	30.6				
2	NA	NA	MMCX	0	9.1				

4. The EUT incorporates a MIMO function.

2.4GHz Band							
MODULATION MODE	DATA RATE (MCS)	TX & RX CON	FIGURATION				
802.11b	1 ~ 11Mbps	2TX	2RX				
802.11g	6 ~ 54Mbps	2TX	2RX				
000 44m (UT00)	MCS 0~7	2TX	2RX				
802.11n (HT20)	MCS 8~15	2TX	2RX				
000 44 (UT40)	MCS 0~7	2TX	2RX				
802.11n (HT40)	MCS 8~15	2TX	2RX				
5GHz Band							
MODULATION MODE	DATA RATE (MCS)	TX & RX CON	FIGURATION				
802.11a	6 ~ 54Mbps	2TX	2RX				
000 44m (UT00)	MCS 0~7	2TX	2RX				
802.11n (HT20)	MCS 8~15	2TX	2RX				
000 44 (UT40)	MCS 0~7	2TX	2RX				
802.11n (HT40)	MCS 8~15	2TX	2RX				
000 44 (////T00)	MCS 0~8, Nss=1	2TX	2RX				
802.11ac (VHT20)	MCS 0~8, Nss=2	2TX	2RX				
000 44 (////T40)	MCS 0~9, Nss=1	2TX	2RX				
802.11ac (VHT40)	MCS 0~9, Nss=2	2TX	2RX				
000 44 ()///TCO)	MCS 0~9, Nss=1	2TX	2RX				
802.11ac (VHT80)	MCS 0~9, Nss=2	2TX	2RX				

^{5.} The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.1.1 Test Mode Applicability and Tested Channel Detail

EUT CONFIGURE		APPLICA	ABLE TO		DESCRIPTION
MODE	RE≥1G	RE<1G	PLC	ОВ	DESCRIPTION
-	V	-	V	V	2TX

Where RE≥1G: Radiated Emission above 1GHz

RE<1G: Radiated Emission below 1GHz

PLC: Power Line Conducted Emission

OB: Conducted Out-Band Emission Measurement

NOTE: 1. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on Z-plane (for below 1GHz) and Y-plane (for above 1GHz).

Radiated Emission Test (Above 1GHz):

Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
2.4GHz (802.11g +	1 to 11	11	OFDM	BPSK	6
5GHz (802.11a)	149 to 165	165	OFDM	BPSK	6

Radiated Emission Test (Below 1GHz):

Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
2.4GHz (802.11g +	1 to 11	11	OFDM	BPSK	6
5GHz (802.11a)	149 to 165	165	OFDM	BPSK	6

Power Line Conducted Emission Test:

Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
2.4GHz (802.11g + 5GHz (802.11a)	1 to 11	11	OFDM	BPSK	6
	149 to 165	165	OFDM	BPSK	6

Conducted Out-Band Emission Measurement:

Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
2.4GHz (802.11g + 5GHz (802.11a)	1 to 11	11	OFDM	BPSK	6
	149 to 165	165	OFDM	BPSK	6

Test Condition:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
RE≥1G 25deg. C, 67%RH		120Vac, 60Hz	Gary Cheng
RE<1G	RE<1G 24deg. C, 66%RH		Jyunchun Lin
PLC	PLC 23deg. C, 67%RH		Andy Ho
ОВ	25deg. C, 60%RH	120Vac, 60Hz	Robert Cheng

Report No.: RF151022E06-2 Page No. 9 / 27 Report Format Version: 6.1.1

3.2 Duty Cycle of Test Signal

Duty cycle of test signal is ≥ 98 %, duty factor is not required. 2.4GHz: 802.11g: Duty cycle = 5.348 ms/5.423 ms = 0.986

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Product	Brand	Model No.	Serial No.	FCC ID	Remark
Α	Notebook Computer	DELL	E5430	4YV4VY1	FCC DoC	Provided by Lab
В	Test tool	CIG SHANGHAI	NA	NA	NA	Supplied by Client
С	Adapter	HUAWEI	HW-120150C1W	NA	NA	Supplied by Client

NOTE:

^{1.} All power cords of the above support units are non-shielded (1.8 m).

No.	Cable	Qty.	Length (m)	Shielded (Yes/ No)	Cores (Number)	Remark
1	DC	1	1.5	No	0	Supplied by Client
2	RJ-45	1	10	No	0	Provided by Lab
3	Console	1	0.7	No	0	Provided by Lab

3.3.1 Configuration of System under Test

Report No.: RF151022E06-2 Page No. 11 / 27 Report Format Version: 6.1.1

3.4 **General Description of Applied Standards** The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards: FCC Part 15, Subpart C (15.247) ANSI C63.10-2013 All test items have been performed and recorded as per the above standards.

Report No.: RF151022E06-2 Page No. 12 / 27 Report Format Version: 6.1.1

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 30dB below the highest level of the desired power:

outor:							
Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)					
0.009 ~ 0.490	2400/F(kHz)	300					
0.490 ~ 1.705	24000/F(kHz)	30					
1.705 ~ 30.0	30	30					
30 ~ 88	100	3					
88 ~ 216	150	3					
216 ~ 960	200	3					
Above 960	500	3					

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Report No.: RF151022E06-2 Page No. 13 / 27 Report Format Version: 6.1.1

4.1.2 Test Instruments

DESCRIPTION &	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED
MANUFACTURER			DATE	UNTIL
Test Receiver Agilent	N9038A	MY50010156	Aug. 12, 2015	Aug. 11, 2016
Pre-Amplifier ^(*) EMCI	EMC001340	980142	Jan. 13, 2014	Jan. 12, 2016
Loop Antenna ^(*) Electro-Metrics	EM-6879	264	Dec. 16, 2014	Dec. 15, 2016
RF Cable	NA	LOOPCAB-001 LOOPCAB-002	Jan. 18, 2015	Jan. 17, 2016
Pre-Amplifier Mini-Circuits	ZFL-1000VH2 B	AMP-ZFL-07	May 08, 2015	May 07, 2016
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	138	Feb. 03, 2015	Feb. 02, 2016
RF Cable	8D	966-3-1 966-3-2 966-3-3	Apr. 03, 2015	Apr. 02, 2016
Horn_Antenna SCHWARZBECK	BBHA9120-D	9120D-406	Feb. 05, 2015	Feb. 04, 2016
Pre-Amplifier Agilent	8449B	3008A02465	Apr. 06, 2015	Apr. 05, 2016
RF Cable	EMC104-SM- SM-2000 EMC104-SM- SM-5000 EMC104-SM- SM-5000	150317 150321 150322	Mar. 31, 2015	Mar. 30, 2016
Spectrum Analyzer Keysight	N9030A	MY54490520	July 26, 2015	July 25, 2016
Pre-Amplifier EMCI	EMC184045	980143	Jan. 16, 2015	Jan. 15, 2016
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170608	Feb. 05, 2015	Feb. 04, 2016
RF Cable	SUCOFLEX 102	36432/2 36441/2	Jan. 17, 2015	Jan. 16, 2016
Software	are ADT_Radiated _V8.7.07		NA	NA
Antenna Tower & Turn Table CT	NA	NA	NA	NA

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. *The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Loop antenna was used for all emissions below 30 MHz.
- 4. The test was performed in 966 Chamber No. 3.
- 5. The FCC Site Registration No. is 147459
- 6 The CANADA Site Registration No. is 20331-1
- 7 Tested Date: Dec. 09 to 14, 2015

4.1.3 Test Procedures

- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average (Duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (10 log(1/duty cycle)).
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 5. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4	Deviation from Test Standard	

No deviation.

4.1.5 Test Setup

<Frequency Range below 1GHz>

<Frequency Range above 1GHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions							
1. Connect the EUT with the support unit A (Notebook Computer) which is placed in remote site.							
 The communication partner run test program "art2_v_4_9_815" to enable EUT under transmission/receiving condition continuously at specific channel frequency. 							
and the second of the second o							

Report No.: RF151022E06-2 Page No. 17 / 27 Report Format Version: 6.1.1

4.1.7 Test Results

FREQUENCY RANGE 1GH	iH7 ~ 4()(iH7		Peak (PK) Average (AV)
---------------------	---------------	--	---------------------------

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	4924.00	40.8 PK	74.0	-33.2	3.62 H	127	33.35	7.45	
2	4924.00	32.5 AV	54.0	-21.5	3.62 H	127	25.05	7.45	
3	7386.00	44.9 PK	74.0	-29.1	1.62 H	171	30.38	14.52	
4	7386.00	32.4 AV	54.0	-21.6	1.62 H	171	17.88	14.52	
5	11650.00	48.3 PK	74.0	-25.7	1.84 H	194	32.90	15.40	
6	11650.00	34.1 AV	54.0	-19.9	1.84 H	194	18.70	15.40	
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	4924.00	40.8 PK	74.0	-33.2	1.87 V	50	33.35	7.45	
2	4924.00	32.8 AV	54.0	-21.2	1.87 V	50	25.35	7.45	
3	7386.00	44.9 PK	74.0	-29.1	1.55 V	294	30.38	14.52	
4	7386.00	31.3 AV	54.0	-22.7	1.55 V	294	16.78	14.52	
5	11650.00	48.8 PK	74.0	-25.2	1.65 V	208	33.40	15.40	
6	11650.00	35.2 AV	54.0	-18.8	1.65 V	208	19.80	15.40	

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " # ": The radiated frequency is out of the restricted band.

Below 1GHz Data:

FREQUENCY RANGE	Below 1GHz	DETECTOR FUNCTION	Quasi-Peak (QP)
-----------------	------------	----------------------	-----------------

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	39.65	31.8 QP	40.0	-8.2	1.50 H	230	40.68	-8.91
2	66.50	27.6 QP	40.0	-12.5	1.00 H	197	37.22	-9.67
3	98.30	26.3 QP	43.5	-17.2	1.50 H	206	39.73	-13.39
4	250.00	33.5 QP	46.0	-12.5	1.00 H	262	42.73	-9.27
5	375.00	34.9 QP	46.0	-11.1	1.00 H	58	40.31	-5.44
6	750.01	34.7 QP	46.0	-11.3	1.50 H	333	32.24	2.49
		ANTENNA	POLARITY	' & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW CORRECTION FACTOR (dBuV) (dB/m)	
1	70.89	26.3 QP	40.0	-13.7	1.00 V	360	36.47	-10.20
2	98.40	24.4 QP	43.5	-19.1	2.00 V	316	37.77	-13.36
3	196.40	24.5 QP	43.5	-19.0	1.00 V	155	35.86	-11.38
4	250.00	29.6 QP	46.0	-16.5	1.00 V	321	38.82	-9.27
5	375.00	34.5 QP	46.0	-11.5	1.00 V	34	39.92	-5.44
6	644.35	29.9 QP	46.0	-16.1	1.50 V	52	29.15	0.73

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Fraguency (MHz)		Conducted Limit (dBuV)					
	Frequency (MHz)	Quasi-peak	Average				
Ī	0.15 - 0.5	66 - 56	56 - 46				
	0.50 - 5.0	56	46				
	5.0 - 30.0	60	50				

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO. SERIAL NO.		CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	100375	May 06, 2015	May 05, 2016
Line-Impedance Stabilization Network (for EUT) SCHWARZBECK	NSLK-8127	8127-522	Sep. 01, 2015	Aug. 31, 2016
Line-Impedance Stabilization Network (for Peripheral) R&S	ENV216	100072	June 11, 2015	June 10, 2016
RF Cable	5D-FB	COCCAB-001	Mar. 09, 2015	Mar. 08, 2016
50 ohms Terminator	N/A	EMC-03	Sep. 23, 2015	Sep. 22, 2016
50 ohms Terminator	N/A	EMC-02	Oct. 01, 2015	Sep. 30, 2016
Software BVADT	BVADT_Cond_ V7.3.7.3	NA	NA	NA

Note:

- 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Shielded Room No. C.
- 3 The VCCI Con C Registration No. is C-3611.
- 4 Tested Date: Dec. 16, 2015

4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

NOTE: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

4.2.7 Test Results

Phase	Line (L)	Detector Function	Quasi-Peak (QP) / Average (AV)
			TAVETAGE (AV)

	Phase Of Power : Line (L)									
No	Frequency	Correction Factor	Reading Value (dBuV)		Emission Level Limit Margin (dBuV) (dBuV) (dB)				_	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.19297	10.35	38.40	9.78	48.75	20.13	63.91	53.91	-15.16	-33.78
2	0.27109	10.35	28.79	5.96	39.14	16.31	61.08	51.08	-21.94	-34.77
3	0.33359	10.36	33.10	8.84	43.46	19.20	59.36	49.36	-15.90	-30.16
4	0.72813	10.34	18.11	5.38	28.45	15.72	56.00	46.00	-27.55	-30.28
5	0.98984	10.32	17.64	6.78	27.96	17.10	56.00	46.00	-28.04	-28.90
6	7.08203	10.74	20.15	13.89	30.89	24.63	60.00	50.00	-29.11	-25.37
7	20.39453	11.47	18.71	12.48	30.18	23.95	60.00	50.00	-29.82	-26.05

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Phase	Neutral (N)	Detector Function	Quasi-Peak (QP) / Average (AV)
-------	-------------	-------------------	-----------------------------------

	Phase Of Power : Neutral (N)									
No	Frequency	Correction Factor		g Value uV)		Emission Level Limit (dBuV)		Margin (dB)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.28281	10.40	32.71	9.00	43.11	19.40	60.73	50.73	-17.62	-31.33
2	0.61094	10.40	21.20	8.52	31.60	18.92	56.00	46.00	-24.40	-27.08
3	0.67734	10.40	22.22	7.24	32.62	17.64	56.00	46.00	-23.38	-28.36
4	3.46875	10.62	12.90	6.83	23.52	17.45	56.00	46.00	-32.48	-28.55
5	9.07813	10.88	17.12	11.10	28.00	21.98	60.00	50.00	-32.00	-28.02
6	19.46875	11.44	20.91	15.34	32.35	26.78	60.00	50.00	-27.65	-23.22

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

4.3 Conducted Out of Band Emission Measurement

4.3.1 Limits of Conducted Out of Band Emission Measurement

Below 30dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Condition

Same as Item 4.3.6

4.3.7 Test Results (Overall Spurious Emission Test)

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 30dB offset below D1. It shows compliance with the requirement.

2.4GHz 802.11g CH 6 + 5GHz 802.11a CH 165

5 Pictures of Test Arrangements
Please refer to the attached file (Test Setup Photo).

Appendix - Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Hsin Chu EMC/RF/Telecom Lab

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab

Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---