PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/29, 15/82, 15/11, A01H 5/00

A2

(11) International Publication Number:

WO 98/11228

(43) International Publication Date:

19 March 1998 (19.03.98)

(21) International Application Number:

PCT/GB97/02424

(22) International Filing Date:

8 September 1997 (08.09.97)

(30) Priority Data:

9618862.8 9708366.1

10 September 1996 (10.09.96) GB

25 April 1997 (25.04.97)

GB

(71) Applicant (for all designated States except US): ZENECA LIMITED [GB/GB]; 15 Stanhope Gate, London WIY 6LN

(72) Inventors; and

- (75) Inventors/Applicants (for US only): SEYMOUR, Graham, Barron [GB/GB]; Horticultural Research International, Wellesboume, Warwickshire CV35 9EF (GB). BIRD, Colin, Roger [GB/GB]; Jealott's Hill Research Station, Bracknell, Berkshire RG42 6ET (GB). MEDINA-SUAREZ, Rosybel de Jesús [ES/GB]; 42 Thorndon Court, Eagle Way, Brentwood, Essex CM13 3BY (GB).
- (74) Agents: HUSKISSON, Frank, Mackie et al.; Zeneca Agrochemicals, Intellectual Property Dept., Jealott's Hill Research Station, P.O. Box 3538, Bracknell, Berkshire RG42 6YA (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

With an indication in relation to a deposited microorganism furnished under Rule 13bis separately from the description. Date of receipt by the International Bureau: 22 September 1997 (22.09.97)

(54) Title: GENETIC CONTROL OF FRUIT RIPENING

(57) Abstract

A method of modulating the ripening and/or senescence characteristics in plants of the genus Musa comprises transforming plants with one or more sequences obtainable from the deposited cDNA library having the accession number 40184, regenerating said plants and selecting from the population of transformants those plants having modulated and/or tissue senescence characteristics.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	Fl	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascur	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	12	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	[srae]	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ.	Uzbekistan
CF	Central African Republic	JР	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
· CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

15

20

25

GENETIC CONTROL OF FRUIT RIPENING

This invention relates generally to the modification of a plant phenotype by the regulation of plant gene expression. More specifically it relates to the modulation of the ripening and/or tissue senescence characteristics and plants derived therefrom. One suitable application of the present invention is the modulation of ripening and/or senescence processes in plants of the genus *Musa* (referred to herein as banana).

Two principal methods for the control of expression are known, viz.: overexpression and underexpression. Overexpression may be achieved by insertion of one or more than one extra copies of the selected gene. It is, however, not unknown for plants or their progeny, originally transformed with one or more than one extra copy of a nucleotide sequence, to exhibit the effects of underexpression as well as overexpression.

For underexpression, often referred to as "gene silencing", there are two principle methods which are commonly referred to in the art as "antisense downregulation" and "sense downregulation (also referred to as "cosuppression"). Both of these methods lead to an inhibition of expression of the target gene. Other lesser used methods involve modification of the genetic control elements, the promoter and control sequences, to achieve greater or lesser expression of an inserted gene.

There is no reason to doubt the operability of these methods: they are well- established, used routinely in laboratories around the world and products in which they have been used are on the market.

Gene control by any of these methods requires the insertion of a selected gene or genes into plant material which can be regenerated into plants. This transformation process can be performed via a number of methods, for example: the *Agrobacterium*-mediated transformation method.

In the microparticle bombardment method, microparticles of dense material, usually gold or tungsten, are fired at high velocity at the target cells where they penetrate the cells, opening an aperture in the cell wall through which DNA may enter. The DNA may be coated on to the microparticles or may be added to the culture medium.

In microinjection, the DNA is inserted by injection into individual cells via an ultrafine hollow needle.

20

25

30

Another method, viz. fibre-mediated transformation, applicable to both monocots and dicots, involves creating a suspension of the target cells in a liquid, adding microscopic needle-like material, such as silicon carbide or silicon nitride "whiskers", and agitating so that the cells and whiskers collide and DNA present in the liquid enters the cell.

In summary, then, the requirements for both sense and antisense technology are known and the methods by which the required sequences may be introduced are known. What remains, then is to identify genes whose regulation will be expected to have a desired effect, isolate them or isolate a fragment of sufficiently effective length, construct a chimeric gene in which the effective fragment is inserted between promoter and termination signals, and insert the construct into cells of the target plant species by transformation. Whole plants may then be regenerated from the transformed cells.

Bananas are a globally important fruit crop. They are not only a popular dessert fruit, but represent a vital carbohydrate staple in the tropics with as many as 100 million people subsisting on bananas and plantains as their main energy source. The cultivated dessert banana is commonly triploid, parthenocarpic and belongs to the *Musa* AAA genome group, eg. Cavendish subtypes. Bananas are climacteric fruits and ripening is regulated by ethylene produced by the fruit and involves numerous biochemical changes including the conversion of starch to sugars, cell wall disassembly, synthesis of volatile compounds, changes in phenolic constituents and degradation of chlorophyll in the peel. The conversion of starch to sugars is particularly striking, where starch accounts for 20-25% of the fresh weight of the unripe fruit and depending on the genetic background, can be converted almost entirely to sugars.

The triploid nature of the cultivated dessert banana crop has hampered conventional methods of breeding for improved characteristics. As a result of this an enormous pool of genetic resources for enhancing postharvest characteristics of the fruit has remained untapped.

According to the present invention there is provided a method of modulating the ripening or tissue senescence process in plants of the genus *Musa* comprising inserting into plant material at least one polynucleotide sequence selected from the sequences depicted as SEQ ID-Nos. 1 -57. regenerating said plant material and selecting from the transformed

5

10

15

20

25

30

regenerants, plants with modulated ripening or tissue senescence characteristics. The said polynucleotide may be obtained from the cDNA library having the NCIMB Accession Number 40814.

Further according to the present invention is a method of modulating the ripening or tissue senescence process in plants of the genus *Musa* comprising inserting into plant material at least one polynucleotide sequence or a fragment thereof, obtainable by hybridisation, from the cDNA library having the NCIMB Accession Number 40814, by the use of at least one of the sequences depicted as SEQ ID Nos 1-57 as oligonucleotide probes, said hybridisation being conducted at a temperature from 60°C to 65°C in 0.3 strength citrate buffered saline containing 0.1% SDS followed by rinsing at the same temperature with 0.3 strength citrate buffered saline containing 0.1% SDS, regenerating said plant material and selecting from the transformed regenerants, plants with modulated ripening or tissue senescence characteristics. The invention further provides a method as described above wherein the said polynucleotide is capable of modulating the production of pectate lyase and more specifically the polynucleotide comprises at least one of the sequences depicted in the sequence listings as SEQ-ID-Nos. 13-18.

A preferred method for inserting the said polynucleotides into plant material according to the method of the present invention, may be selected from the group comprising the Agrobacterium, microparticle bombardment, fibre mediated or direct insertion methods.

The invention further provides plants, their progeny and seed and material obtained from said plants, produced according to the method of the present invention. It is preferred that the said plants, their progeny and seed and material obtained from said plants are derived from plants of the genus *Musa*.

The present invention also provides a vector functional in plants comprising a promoter region which is operable in plant cells, at least one of the polynucleotide sequences described above and a transcription termination sequence. The promoter may be constitutive. developmentally regulated or switchable. In addition to this the promoter may also be tissue specific or organ specific.

Further provided is a banana produced via the preceding method, having altered fruit characteristics when compared with a banana which is not transformed with at least one of the polynucleotide sequences described above.

9 <u>.</u>

5

10

15

20

25

30

The present invention also provides an improved method of controlling plant pathogens comprising the application of an anti-pathogenic agent to plants, characterised in that plants to which the said agent is applied, are plants according to the present invention.

The gene sequences of the present invention may be synthesised *ab initio*, using the sequence data in the sequence listing provided herewith, or isolated from a library using the standard techniques know within the art. The sequences depicted in the sequence listing or parts thereof may also be used to create oligonucleotide probes for the purposes of isolating from the library those polynucleotides which are capable of producing the desired proteins. To assist the isolation of these polynucleotides we have deposited with the National Collection of Industrial & Marine Bacteria, St. Machar Drive, Aberdeen, UK, a cDNA library of the banana peel ripening related genes. The library was deposited on 9th July 1996 and has the NCIMB Accession Number 40814.

Thus, this invention is based on the identification of genes which encode proteins involved in banana ripening-related processes, specifically within banana pulp. DNA sequences according to the sequence listing or those sequences obtainable from the deposited library, may be used in the process of modifying the plant ripening characteristics of plants and/or fruit.

By virtue of this invention banana plants can be generated which, amongst other phenotypic modifications, may have one or more of the following fruit characteristics: improved resistance to damage during harvest, packaging and transportation due to slowing of the ripening and over-ripening processes; longer shelf life and better storage characteristics due to reduced activity of degradative pathways (e.g. cell wall hydrolysis); improved processing characteristics due to changed activity of proteins/enzymes contributing to factors such as: viscosity, solids, pH, elasticity; improved flavour and aroma at the point of sale due to modification of the sugar/acid balance and other flavour and aroma components responsible for characteristics of the ripe fruit; modified colour due to changes in activity of enzymes involved in the pathways of pigment biosynthesis (e.g. lycopene, β-carotene, chalcones and anthocyanins); increased resistance to post-harvest pathogens such as fungi.

The activity of the ripening-related proteins may be either increased or reduced depending on the characteristics desired for the modified plant part (fruit, leaf, flower, etc). The levels of protein may be increased: for example, by incorporation of additional genes. The additional

15

20

25

30

genes may be designed to give either the same or different spatial and temporal patterns of expression in the fruit. "Antisense" or "partial sense" or other techniques may be used to reduce the expression of ripening-related protein.

The activity of each ripening-related protein or enzyme may be modified either individually or in combination with modification of the activity of one or more other ripening- related proteins/enzymes. In addition, the activities of the ripening-related proteins/enzymes may be modified in combination with modification of the activity of other enzymes involved in fruit ripening or related processes.

DNA constructs according to the invention for gene silencing, may comprise a base sequence at least 10 bases (preferably at least 35 bases) in length for transcription into RNA. There is no theoretical upper limit to the base sequence, it may be as long as the relevant mRNA produced by the cell but for convenience it will generally be found suitable to use sequences between 100 and 1000 bases in length. When using genomic DNA as the source of a base sequence for transcription it is possible to use either intron or exon regions or a combination of both.

As a source of the DNA base sequence for transcription, a suitable cDNA or genomic DNA or synthetic polynucleotide may be used. The isolation of suitable ripening-related sequences is described above; it is convenient to use DNA sequences derived from the ripening-related clones deposited at NCIMB in Aberdeen. Sequences coding for the whole. or substantially the whole, of the appropriate ripening-related protein may thus be obtained. Suitable lengths of this DNA sequence may be cut out for use by means of restriction enzymes. The preparation of such constructs is described in more detail below. Constructs suitable for expression of the appropriate ripening-related sequence in banana cells, may be produced using a cDNA sequence selected from the deposited library having the NCIMB Accession Number 40814 or the gene sequence as found in the chromosome of the banana plant. Recombinant DNA constructs may be made using standard techniques. In this specification modulation means an increase or decrease of the desired effect. More specifically "modulation of the ripening or tissue senescence process in plants of the genus Musa" means an increase or decrease in production of a ripening related protein resulting from the method as described above. For example, where an increased ripening related protein is desired, plants may be transformed according to the method as described

25

above and those plants exhibiting the desired effect may be selected from the population of transformants. Furthermore, it may be desirable to provide a plant with modulated ripening or tissue senescence characteristics by increasing the production of one protein and decreasing the production of another protein in the same plant. For example, a banana fruit, modified using the present method, and having decreased levels of the enzyme pectate lyase would be beneficial because pulp softening would require a substantially longer time when compared with a control. In addition to this and by increasing the levels of another ripening related protein such as an antifungal protein in the same fruit using the present method, would complement the extended life of the banana pulp with increased resistance to disease.

Increase in production of a ripening related protein includes inserting into plant material one or more copies of any of the polynucleotides described above, wherein the said polynucleotides must be capable of producing a protein and thereby increasing protein levels when compared with a control plant.

Decrease in production of a ripening related protein includes inserting into plant material one or more copies of any of the polynucleotides described above, wherein the said polynucleotides must be capable of producing an mRNA which is capable of interfering with endogenous mRNA to such a degree that the levels of translated protein are reduced when compared with a control plant.

Ripening process of plants means the process of maturing or developing.

Senescence means the progressive deterioration in function of cells, tissues, organs etc., related to the period of time since that function commenced..

Control plant means a comparable plant used for the purposes of determining modulation of the ripening or tissue senescence process effect in plants. Specifically, in plant transformations the control plant is usually of the same species and variety as the material used before the transformation process and is grown in the same conditions, (usually with the transformant selection step modified in some way on the part of the control plant), as the transformed plants. More specifically the control plant may comprise an untransformed control plant or a transformed control plant providing it has not already been transformed with the same polynucleotide sequence as the plant material to be transformed.

"Plant material" includes plant cells and any other type of plant regenerable material.

20

30

The following examples further illustrate the invention but are not to be construed to limit the scope thereof:

TABLE 1. Is a list of clones isolated from banana pulp and the corresponding sequence identity number as provided in the sequence listing herein. The table also illustrates the approximate clone size, the percentage identity and, where relevant, nucleotide similarity with published sequences, based on the results obtained from comparisons with the EMBL sequence database. The table also provides, where relevant, the gene identity of those published sequences and their database accession numbers.

FIGURE 1. Plant transformation vector pUN, containing the UBI polyubiquitin promoter. FIGURE 2. Plant transformation vector pSHYN, containing hygromycin resistance gene for selection of transformed plants.

FIGURE 3. Plant transformation vector pAN, containing the banana ACC oxidase promoter.

15 EXAMPLE 1

Construction of a cDNA library of ripening genes

1.1 Isolation of messenger RNA

Total RNA was isolated from ripening (24 hours after ethylene treatment) banana pulp (*Musa acuminata* cv. Grand Nain) as described by Chang et al. Plant Molecular Biology Reporter. Vol. 11(2) 113-116 (1993). Messenger RNA was isolated from total RNA by Oligo(dT)-cellulose chromatography according to Bantle et al., Analytical Biochemistry 72, 413-427 (1976).

25 1.2 Synthesis of cDNA and Cloning into Vector

The first and second strands of the cDNAs were synthesised from the messenger RNAs using a commercial cDNA synthesis kit (Catalog No. 200450, ZAP ExpressTM Gold Cloning kit, Stratagene Ltd, Cambridge, Cambs, UK). Double stranded cDNAs were cloned into the ZAP ExpressTM vector, packaged, mixed with plating bacteria to determine titre and for library screening, following instructions of the suppliers protocol.

10

15

1.3 Screening of the cDNA library from banana pulp.

The unamplified cDNA library from ripening banana pulp was differentially screened using cDNA from unripe and ripening banana peel tissue. A proportion of the library was plated individually at low density and duplicate plaque lifts made onto Hybond N nylon filters (Amersham) according to the manufacturer's instructions. One filter was hybridised to dCTP radiolabelled cDNA from green fruit and the duplicate filter hybridised to dCTP radiolabelled cDNA from ripening fruit. Hybridization's were at high stringency. Plaques hybridising preferentially with ripening or green radiolabelled cDNA were picked and replated for a second round of selection by differential screening. These clones were numbered as ripening up- or down-regulated peel clones. The clones were in-vivo excised from the ZAP expressTM vector into the pBK-CMV phagemid vector using the ExAssistTM interference-resistant helper phage, following instructions from manufacturers protocol.

1.4 Characterisation of the ripening pulp cDNA library and the ripening-related clones.

The ripening cDNA library from pulp tissue were prepared with an efficiency of 3.2×10^5 plaque-forming units per microgram of cDNA. The sizes of the inserts in the peel library was 0.4 - 6.7 Kb with a mean size insert of 1.47 Kb.

From the 250 plaques used in the first screen, 73 putative ripening-related clones were obtained. These 73 clones were partially sequenced using the ABI PRISMTM Dye Terminator Cycle Sequencing Ready Reaction kit with AmpliTaq® DNA polymerise (Applied Biosystems, Warrington, Cheshire, UK) with forward primers specific for the pBK-CMV vector. From these, the following ripening-related clones were selected. Comparisons of these sequences in the EMBL database using GCG ('Wisconsing') software has identified homologies for the clones listed in TABLE 1 below.

25

30

20

EXAMPLE 2

Construction of truncated sense RNA vectors with the maize polyubiquitin promoter.

A vector is constructed using the sequences corresponding to a fragment of the inserts of one of the sequences 1 to 57. This fragment is synthesised by polymerase chain reaction using synthetic primers incorporating BamHI restriction sites suitable for cloning between a

maize UBI polyubiquitin promoter (Christensen et al, 1992, Plant Molecular Biology, 18:675-689) and a nopaline synthase 3'end termination sequences in the vector pUN (Fig. 1.).

The truncated sense expression cassette is excised by digestion with AscI, the ends of the fragment are made flush with T4 polymerase and it is cloned into the vector pSHYN (Fig. 2.) which has been cut with KpnI and the ends made flush with Klenow polymerase. pSHYN contains hygromycin resistance gene for selection of transformed plants.

After synthesis of the vector, the structure and orientation of the sequences are confirmed by DNA sequence analysis.

10

EXAMPLE 3

Construction of truncated sense RNA vectors with a fruit enhanced promoter.

The 1386bp HindIII fragment containing the banana ACC oxidase promoter (UK.

Application No. 9607700.3) is cloned the HindIII site in pMSC2 (Fig. 3.) to give the vector pAN.

A vector is constructed using the sequences corresponding to a fragment of the inserts of one of the sequences 1 to 57. This fragment is synthesised by polymerase chain reaction using synthetic primers incorporating BamHI restriction sites suitable for cloning between a maize UBI polyubiquitin promoter (Christensen et al, 1992, Plant Molecular Biology, 18:675-689) and a nopaline synthase 3'end termination sequences in the vector pAN. The truncated sense expression cassette is excised by digestion with AscI, the ends of the fragment are made flush with T4 polymerase and it is cloned into the vector pSHYN (Fig. 2.) which has been cut with KpnI and the ends made flush with Klenow polymerase. pSHYN contains hygromycin resistance gene for selection of transformed plants.

After synthesis of the vector, the structure and orientation of the sequences are confirmed by DNA sequence analysis.

EXAMPLE 4

30

25

Construction of an over-expression vector with the maize polyubiquitin promoter.

The complete sequence of a ripening -related cDNA containing a full open-reading frame is inserted into the vectors described in EXAMPLE 2.

EXAMPLE 5

5

Construction of an over-expression vector with a fruit enhanced promoter.

The complete sequence of a ripening -related cDNA containing a full open-reading frame is inserted into the vectors described in EXAMPLE 3.

10

20

EXAMPLE 6

Generation of transformed Musa plants

Transformed Musa plants containing the vectors are produced by the method described in Sagi et al. (1995) Biotechnology. Vol. 13 pp 481-485. Regenerated transformed plants are identified by their ability to grow on hygromycin and grown to maturity. Ripening fruit are analysed for a modulation in their ripening related or senescence characteristics.

Other suitable transformation methods for banana are described in Sagi et al. (1994) Plant Cell Reports. Vol. 13. pp 262-266. and May et al. (1995) Biotechnology. Vol. 13 pp 486-492.

TABLE 1

Sequence	Group	Clone	Size	Published Sequence	% Identity	Sequence	Published Sequences	
Identity		no.	КЪ	gene Identity		Вр		
SEQ-ID-NO-1	Pulp Upregulated	60-0		Isoflavone Reductase	9.19	714	Potato (<i>Solanum</i> tuberosum), X92075	
SEQ-ID-NO-2	Pulp Upregulated	U-017	-	Isoflavone Reductase	62.9	770	Potato (<i>Solanum</i> tuberosum), X92075	т
SEQ-ID-NO-3	Pulp Upregulated	990-0	=	Isoflavonoid Reductase	0.09	722	Arabidopsis thailiana, Z49777	·
SEQ-ID-NO-4	Pulp Upregulated	U-U104	_	Isoflavonoid Reductase	9.09	969	Arabidopsis thailiana 249777	-1
SEQ -ID-NO-5	Pulp Upregulated	0-013	1.1	Beta-1,3-Glucanase	58.5	585	Soybean (<i>Glycine ma</i> x), A26451	1
SEQ -ID-NO-6	Pulp Upregulated	U-U136	1.3	Beta-1,3-Glucanase	8.65	800	Barley (Hordeum vulgare), M91814	
SEQ -ID-NO-7	Pulp Upregulated	U-U21	8.	Transcriptional Activator	54.3	311	Zea mays, L13454	

	•	2	
•		•	-

				-12-					
Published Sequences	Orchid (Phalaenopsis sp.), X79905	Wheat (Triticum aestivum), L11872	Zea mays, Z25871	Zea mays, L14063	Zea mays, L14063	Lilium longiflorum, Z17328	Zea mays, L20140	Lycopersicon esculentum, X55193	Nicotiana tabacum, X67158
Sequence Bp	467	669	854	223	226	394	516	736	354
% Identity	67.0	79.8	54.7	60.1	9.09	57.9	1.99	65.8	54.8
Published Sequence gene Identity	S- adenosylhomocysteine Hydrolase	S-adenosyl L- homocysteine Hydrolase	Beta-amylase	O-methyl transferases	O-methyl transferase	Pectate Lyase	Pectate Lyase	Pectate Lyase	Pectate Lyase
Size Kb	0.55	8.1	0.8	0.8	0.8	8.1	1.7	=	1.6
Clone no.	U-U31	U-U131	U-U32	n-055	U-U72	89n-n	69N-N	U-U84	68n-n
Group	Pulp Upregulated	Pulp Upregulated	Pulp Upregulated	Pulp Upregulated	Pulp Upregulated	Pulp Upregulated	Pulp Upregulated	Pulp Upregulated	Pulp Upregulated
Sequence Identity	SEQ -ID-NO-8	SEQ -ID-NO-9	SEQ -ID-NO-10	SEQ -ID-NO-II	SEQ -ID-NO-12	SEQ -ID-NO-13	SEQ -1D-NO-14	SEQ -ID-NO-15	SEQ -11)-NO-16

Group	Clone no.	Size Kb	Published Sequence gene Identity	% Identity	Sequence Bp	Published Sequences
Pulp	U-U115	1.5	Pectate Lyase	67.3	508	Zea mays, L20140
Upregulated	·					
Pulp	U-U117	1.7	Pectate Lyase	55.0	333	Lilium longiflorum, Z17328
Upregulated						
Pulp	08O-O	9.0	Vicilin-like storage	53.7	387	Arabidopsis thailiana,
Upregulated		,	protein			T13642
Pulp	0-N-0	 8. 1.8	Glutamate	72.5	735	Petunia hybrida, L16797
Upregulated			Descarboxylase			
Pulp	U-U92	8.1	Glutamate	71.8	740	Arabidopsis thailiana,
Upregulated			Descarboxylase			U10034
Pulp	16N-N	Ξ	Aconitase	76.4	991	Pumpkin (Cucurbita sp.),
Upregulated						D29629
Pulp	96N-N	6.0	Express Sequence	0.69	452	Arabidopsis thailiana,
Upregulated			Tag.	-		H36910
Pulp	U-U103	2	Cell Wall Invertase	0.99	292	Zea mays, U17695
Upregulated						
Pulp	0-093	3.5	Heat Shock Protein	76.4	711	Lycopersicon esculentum,
Upregulated	,		cognate			X54030
Pulp	0-0125	8.1	Heat Shock Protein	71.0	299	Spinacia oleracea, L26243
Upregulated						
Pulp	U-U105	6.0	Hexaubiquitin Protein	64.1	237	Sunflower (Helianthus
Upregulated						annuus), X57004

	Clone no.	Size Kb	Published Sequence gene Identity	% Identity	Sequence Bp	Published Sequences
	7	80	Dolymbianitin	018	\$69	Rice (Origa sativa) X76064
	2	2		2	}	
U-U120	0	6.0	Extensin	56.9	576	Almond (Prunus
						amygdalus), X65718
U-U126		1.2	Basic Chitinase	63.2	909	Cowpea (Vigna
						unguiculata), X88801
U-U129		1.3	Beta-glucosidase	6.09	217	White clover (Trifolium
						repens), X56733
U-U130		1.3	Chlorophyll a/b	52.0	415	Rice (Oryza sativa), D00641
		:	binding protein			
U-U43		2.5	Fruit sp pp involved in	53.8	396	Tomato (Lycopersicon
			maturation			esculentum), X13743
U-U70		9.0	Root specific protein	63.6	420	Rice (Oryza sativa), L27208
91 0 -0		9.0	•	•		No published sequence
						similarity
U- U30		8.0	•	•		ı
U-U 40		01	•	•		ı
U-U108		=	•	•	_	•

										_=	15	<u>-</u>			1			_		· <u>· · ·</u>	\neg
Published Sequences		•		Cassava (Manihot	esculenta), X74160		Pea (Pisum sativum),	[X88789		Pea (Pisum sativum),	X88789		Cassava (Manihot	esculenta), X74160		Cassava (Manihot	esculenta), X74160		Potato (Solanum	uberosum), X58453	
Sequence	Вр	1		621			206			454			699			655			961		
% Identify		,		62.3			8.89			67.4			64.1			66.4			68.4		
Published Sequence	gene Identity	4		Granule Bond Starch	Synthase		Starch Synthase			Starch Synthase			Granule Bond Starch	Synthase		Starch Synthase			Granule Bond Starch	Synthase	
Size	Кb	2.2		1.3			1.3			1.3			1.3			1.3			2.3	-	
Clone	по.	U-U128		U-D4			01 Q -N			U-D13			99Q-N			U-DIII			U-D112		
Group		Pulp	Upregulated	Pulp	Down	regulated	Pulp	Down	regulated	Pulp	Down	regulated	Pulp	Down	regulated	Pulp	Down	regulated	Pulp	Down	regulated
Sequence	Identily	SEQ -ID-NO-39		SEQ -ID-NO-40	,		SEQ -ID-NO-41			SEQ -ID-NO-42			SEQ -ID-NO-43	•		SEQ -1D-NO-44			SEO -ID-NO-45	•	

WO 98/11228

				-16-			
Published Sequences	Zea mays, U06831	Cowpea (Vigna unguiculata), X88801	Cowpea (Vigna unguiculata), X88801	Cowpea (Vigna unguiculata), X88801	Cowpea (Vigna unguiculata), X88801	Barley (Hordeum vulgare), XS2S72	Luceme (Medicago saliva), X13287
Sequence Bp	517	678	578	029	701	795	637
% Identify	69.1	60.2	63	8.13	9.19	61.9	50.4
Published Sequence gene Identity	Antifungal Protein	Basic Chitinase	Basic Chitinase	Basic Chitinase	Basic Chitinase	Beta-glucanase	Nodulin Gene
Size Kb	<u>-</u>	1.3	1.7	1.3	0.7		2.3
Clone no.	U-D39	U-D50	98G-N	N-D90	U-D93	N-D61	U-D63
Group	Pulp Down regulated	Pulp Down regulated	Pulp Down regulated	Pulp Down regulated	Pulp Down regulated	Pulp Down regulated	Pulp Down regulated
Sequence Identity	SEQ -ID-NO-46	SEQ -ID-NO-47	SEQ -ID-NO-48	SEQ -ID-NO-49	SEQ -ID-NO-50	SEQ -ID-NO-51	SEQ -ID-NO-52

Sequence Identity	Group	Clone no.	Size Kb	Published Sequence gene Identity	% Identify Sequence Bp	Sequence Bp	Published Sequences
SEQ -ID-NO-53	Pulp Down regulated	U-D65	0.9	Extensin	56.7	556	Cowpea (Vigna unguiculata), X91836
SEQ -ID-NO-54	Pulp Down regulated	U-D84	9.0	Extensin	58.3	492	Cowpea (Vigna unguiculata), X91836
SEQ -ID-NO-55	Pulp Down regulated	U-D75	1.2	Wali 7	74.4	703	Wheat (Triticum aestivum), L28008
SEQ -ID-NO-56	Pulp Down regulated	U-D83	1.2	Wali 7	72.8	743	Wheat (Triticum aestivum), L28008
SEQ -ID-NO-57	Pulp Down regulated	U-D64	2.3	4		•	•

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:	
10	(i) APPLICANT: (A) NAME: ZENECA LIMITED (B) STREET: 15 STANHOPE GATE (C) CITY: LONDON (D) STATE: LONDON (E) COUNTRY: UNITED KINGDOM (F) POSTAL CODE (ZIP): W1Y 6LN	
15	(ii) TITLE OF INVENTION: GENETIC CONTROL OF FRUIT RIPENING	
	(iii) NUMBER OF SEQUENCES: 57	
20	(iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: Patentin Release #1.0, Version #1.30 (EPO)	
25	(v) CURRENT APPLICATION DATA: APPLICATION NUMBER: GB PPD	
	(2) INFORMATION FOR SEQ ID NO: 1:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 785 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown 	
35	(ii) MOLECULE TYPE: cDNA	
40	(vii) IMMEDIATE SOURCE: (B) CLONE: U-U9	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
45	CGGCACGAGG AAAAACTANG TGAGAANGAG ATAATCGTTG ACCGAGGNAG AGAATGGCGA	60
	GCGAGAAGAG CAAAATCCTG ATCATCGGGG GCACCGGGTA CATCGGCAAG TTCATCGTGT	120
50	TTGCGAGCGC CAGGTTAGGT AACCCTACCT TCGCTCTCGT CCGGAGCACC ACCGCCCCCG	180
	CCGGCCAACC CGAGAAGGCC AAGCTCCTGA GCGACTTCCA GGCCGCCGGC GTCACCCTCG	240
	TCCAGGGGGA TATNTATAAC CACGAGAGTC TGGTTAAGGC GATCAAGCTG GTGGATGTGG	300
55	TCATCTCCCC CGTCGGCTTC GGGCANCTGA NTGATCAGAC CAAGATCATC GACGCCATCN	360
	AANAAGCCGG AGGACACATC AAGAGGTACC TTCCATCGGA GTTTGGCAAC GACGTANACC	420
60	GAAGCCATGC TGTGGAGCCA GCAAAGTCTA CCTTTGTCGT CAAGCAACAA ATCANAAGGG	480
	CTGTTGAGGC ATCGGGTNTC CCTTACACCT TTGTATCTTC CAACTTTCTT CGGTGGGTNT	540
	TTECTEEEGG TATTATGACA GGCAGGAGCC ACTGGTCCTC CCACGGACAA GGTTGTCATC	600
65	TTAGGTNACG GGAACNCAAA ACGATCTTCT CNATGAANAC GACTTCCGGA CATCCCATTT	660
	ANTETTGGAT GATECATAAC CTGAACCAGG TTETATTTET TAAAACTTCE NCCACTTCTT	720
70	NTCTCTTANC ANCTCNTTTC CCTCTTGGGA AAAAAATGTC NNCTANACTT CNAAAAGGGT	780
	TTANT	785

(2) INFORMATION FOR SEQ ID NO: 2:

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 813 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
. 10	(ii) MOLECULE TYPE: cDNA	
15	(vii) IMMEDIATE SOURCE: (B) CLONE: U-U17	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:	
20	CGCGCACGAG GAAGAAACT AGGTGAGAAN GAGATAATCG TTGACCGAGG NAGAGAATGG	6
	CGAGCGAGAA GAGCAAAATC CTGATCATCG GGGGCACCGG GTACATCGGC AAGTTCATCG	120
25	TGTTTGCGAG CGCCAGGTTA GGTAACCCTA CCTTCGCTCT CGTCCGGAGC ACCACCGCCC	180
23	CCGCCGGCCA ACCCGAGAAG GCCAAGCTCC TGAGCGACTT CCAGGCCGCC GGCGTCACCC	240
	TCGTCCAGGG GGATATATAT AACCACGAGA GTCTGGTTAA GGCGATCAAG CTGGTGGATG	300
30	TGGTCATCTC CCCCGTCGGC TTCGGGCANC TGANTGATCA GACCAAGATC ATCGACGCCA	360
	TCAAAGAAGC CGGAGGACAC ATCAAGAGGT ACCTTCCATC GGAGTTTGGC AACGACGTAN	420
35	ACCGAAGCCA TGCTGTGGAG CCAGCAAAGT CGACCTTTGT CGTCAAGCAA CAAATCANAA	480
33	GGGCTGTTGA GGCATCGGGT ATCCCTTACA CCTTTGTATC TTCCAACTTC TTCGGTGGGT	540
	NTTTCCTCCC GGTATTANGA CAGGCAGGAG CCACTGGTCC TCCCACGGAC AAGGTTGTCA	600
40	TCTTANGTGA CGGGAACACA AAAGCGATCT TTCTCAATGA ANACACATCC GGACNTNCAC	660
	NATTAAAGCA GTGGATGATC CGAAAACCTG AACANGTTCT ATATCTGAAA CCTTCCGCCA	720
45	CTCTTGTCTC ATNACAACTC ATTTCCCTCT GGGAAAAAAA NGTCNGCAAA ACTCCNAAAA	78C
43	GGTCTACTTC CCGGAAGAAA AATCTGAANC ANA	813
	(2) INFORMATION FOR SEQ ID NO: 3:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 746 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
55	(D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: CDNA	
60	(vii) IMMEDIATE SOURCE: (B) CLONE: U-U66	
65	(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 3:	
	GGCACGAGGG GAAAAGGAGA TNATCGTTGA CCGAGGAGAG AATGGCGAGC GAGAAGAGCA	60
	AGATCCTGAT CATCGGGGGC ACGGGGTACA TCGGCAAGTT CATCGTGTTT GCGAGCGCCA	120
70	GGTTAGGTAA CCCTACCTTC GCTCTCGTCC GGAGCACCAC CGCCCCCCCC GGCCCAACGCC	120

	AGAAGGGCAA GCTCCTGAGC GACTTCCAGG CCGCCGGCGT CACCCTGGTC CAGGGGGATA	240
	TATATAACCA CNAGAGTCTG GTTAAGGCGA TCAAGCTGGT GGATGTGGTC ATCTCCCCCG	300
5	TCGGCTTCGG GCAGCTGAGT GATCAGACTA AGATCATCGA CGCCATCAAA GAAAGCCGGA	360
	GGACACATCA AGAGGTACCT TCCATCGGGA GTTTGGCAAC GACGTANACC GAAGCCATGC	420
10	TGTGGAAGCC ANCAAAGTCG ACCTTTGTCG TCAAGCAACA AATTANAAGG GCTGTTGAGG	480
	CATCGGGGAT CCCTTACACC TTTGTTATCT TCCAACTTCT TCGGTGGGTA TNTCCTCCCC	540
	GTATTGGGAC AGGCANGAAC CACTGGTCCT CCCCACGGAC AAGGTTGTCN TCTTAGGTGA	600
15	ACGGGAACAC CAANGCGATC TITCTCAATG AAAGACAACT CGGGACATNC CCNATTTAAC	660
	CANTGGATGA TCCNANAACC TGAACAAGGT CTATTTCTGA AAACTTCNCC ATCTTCTTTT	720
20	TCTCATAACG AACCCNTTTN CCTCTT	746
	(2) INFORMATION FOR SEQ ID NO: 4:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 795 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
30	(ii) MOLECULE TYPE: cDNA	
	(vii) IMMEDIATE SOURCE: (B) CLONE: U-U104	
35		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:	
40	GGCACGAGGA AANGAGATAA TCGTTGACCG AGGCAGAGAA TGGCGAGCGA GAAGAGCAAA	60
	ATCCTGATCA TCGGGGGCAC CGGGTACATC GGCAAGTTCA TCGTGTTTGC GAGCGCCAGG	120
	TTAGGTAACC CTACCTTCGC TCTCGTCCGG AGCACCACCG CCCCCGCCGG CCAACCCGAG	180
45	AAGGCCAAGC TCCTGAGCGA CTTCCAGGCC GCCGGCGTCA CCCTCGTCCA GGGGGATATA	240
	TATAACCACG AGAGTCTGGT TAAGGCGATC AAGCTGGTGG ATGTGGTCAT CTCCCCCGTC	300
50	GGCTTCGGGC AGCTGAGTGA TCAGACCAAG ATCATCGACG CCATCAAAGA AGCCGGAGGA	360
	CACATCAAGA GGTACCTTCC ATCGGGAGTT TGGCAACGAC GTTANACCGA AGCCATGCTG	420
	TGGAGCCAGC AAAGTCNACC TTTGTCGTCA AGCAACAAAT CANAAGGGCT GTTGANGCAT	480
55	CGGGTNTCCC TTACACCITT GTATCTTCCA ACTTCTTCGG TGGGTATTTC CTCCCGGTAT	540
	TANGACAGGC AGGACCACTG GTCCTCCCCA CNGACAAGGT TGTCNTCTTA GGTGACNGGA	600
60	ACACAAAANC ATCTTTCTCN ATGAAGACAA CTCCGGACAT ACNCNATTAA AGCNGTGGAT	660
	GATCCCAAAA CCTGAACAAG TTCCTATNTC TTGAAAACTT TCCCGCCCAA CCATCCTTTN	720
<i>-</i> -	GTTCTCCCNT TAAACCNAAC CTCCATTTTC CCCTCCTTGG GGAAAAAAA AAGGTCCGGC	780
65	NAANAACTTC CNAAA	795

(2) INFORMATION FOR SEQ ID NO: 5:

70

(i) SEQUENCE CHAPACTERISTICS:

5	(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: cDNA	
10	(vii) IMMEDIATE SOURCE: (B) CLONE: U-U13	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	
	CGGCACGAGG NAGAACCTTT TGACAGAGTT GTTGTCATGG CAACAAAAGC TTCTCTCTC	60
	ATAAAAGGCT TTGCCTTGCT GGTTTCAGTC CTTGTAGCAG TTCCAACAAG AGTGCAATCG	120
20	ATTGGTGTCT GCTACGGCAT GCTCGGCAAC AATCTTCCCC CGCCCAGCGA GGTGGTCAGT	180
	CTCTACAAAT CCAACAACAT CGCGAGGATG AGACTCTACG ATCCAAACCA AGCCGCCCTG	240
25	CAAGCCCTCA GGAACTCCAA CATCCAAGTC CTGTTGGATG TCCCCCGATC CGACGTGCAG	300
	TCACTGGCCT CCAATCCTTC GGCCGCCGGC GACTGGATCC GGAGGAACGT CGTCGCCTAC	360
	TGGCCCAGCG TCTCCTTTCG ATACATAGCT GTCGGAAACG AGCTGATCCC CGGATCGGAT	420
30	CTGGCGCAGT ACATCCTCCC CGCCATGCGC AACATCTACA ATGCTTTGTC CTCGGCTGGC	480
	CTGCAAAACC AGATCAAGGT CTCGACCGCG GTCGACACGG GCGTCCTCGG CACGTCCTAC	540
35	CCTCCCTCCG CCGGCGCCTT CTCCTCCGCC GCCCAGGCGT TACCTGANCC CCATCGTGCA	600
	GTTCTTGGCG ANTAACGGAA CGCCGCTCCT GGTCAATGTG TACCTTATTT TAACTACACC	660
	GGCAACCCGG GANAGATCTC GCTGCCTACN CCCTGTTCAC GGCCNCGGGG TCTCNTGCAG	720
40	GATGGGCGAA TTCCNCTATC ANAANCTGTT CANTCCATCT TCNAAACCGG TCTTCCCGGG	780
	CTGGAAAAA TTGGAAG	797
45	(2) INFORMATION FOR SEQ ID NO: 6:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 792 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
50	(D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: cDNA	
55	(vii) IMMEDIATE SOURCE: (B) CLONE: U-U136	
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:	
	GGCACGAGGA GAACCCTTTT GACAGAGTTG TTGTCATGGC AACAAAAGCT TCTCTCTCA	60
c	TAAAAGGCTT TGCCTTGCTG GTTTCAGTCC TTGTAGCAGT TCCAACAAGA GTGCAATCGA	120
65	TTGGTGTCTG CTACGGAATG CTCGGCAACA ATCTTCCCCC GCCCAGCGAG GTGGTCAGTC	180
	TCTACAAATC CAACAACATC GCGAGGATGA GACTCTACGA TCCAAACCAG GCCGCCCTGC	240
70	AAGCCCTCAG GAACTCCAAC ATCCAAGTCC TGTTGGATGT CCCCCGATCC GACGTGCAGT	300

	CACTGGCCTC CAATCCTTCG GCCGCCGGCG ACTGGATCCG GAGGGAACGT CGTCGCCTAC	360
	TGGCCCAGCG TCTCCTTTCG ATACATAGCT GTCGGAAACG ANCTGATCCC CGGATCGGAT	420
5	CTGGCGCAGT ACATCCTCCC CGCCATGCGC AACATCTACA ATGCTTTGTC CTCGGCTGGC	480
	CTGCAAAACC AGATCAAGGT CTCCGACCGC GGTCGACACG GGCGTCCTCG GCACGTCCTA	540
10	CCCTCCCTCC CGCCGGNGCC TTCTCCTCCG CCGCCCAAGC GTNCTGANCC CCATCGTGCA	600
	NTTCTTTGGC GAAATAACGG ANCGCCGCTC CCNGGTCCAT GTTTTTCCCT TATTTTAACT	660
	ACNCCGGCAA CCCNGGAAAG ATTTCGCTGC CCTTACGCCC CCTGGTTTCC NNGGGGCTTC	720
15	CCGGGCGTTT CTTCCTTTGC CAGGGANTNG GGGCGAATTC CCNNCTTTTC CANAAACCTT	780
	GTTCCAACNC CC	792
20	(2) INFORMATION FOR SEQ ID NO: 7:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 855 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
25	(D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: cDNA	
30	(vii) IMMEDIATE SOURCE:	
	(B) CLONE: U-U21	
35	4.44.	
33	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
	CGGCACGAGT CTCTCTGT CTCTCCGTCG TCTCGTTGTC TGTTCGTTAG GGCTTGCGAT	60
40	CGCCACCGGT CGCGAGGGTT GGAGCCATGG AATTCTTGCG GTTTGGGGCT GAGGTGGCGG	120
	CAGGAGAGGA AGCCGCGACG GGGTACTGGA TGCGATGGCA GACGCTCGTC TGCGCTCTGA	180
45	TCGTCGTCGC CCCGGCGGTC GCCGCGGTGG TTGTCGCGGC GCGGGGCGCCG GCGCCGGCGC	240
43	GACCGCTCAG GGCCGTCGAT CTCTGGGCGC CGTGCTGGGC CGGGATGCAC CCGGCCTGGC	300
	TTCTCGCGTA CCGCGGCTTC NTGTTCTTGG CCATGGCGTG GCTACTCTTC CANATGATTC	360
50	TGTTTCGCGG ATTCTCCGCG TTCTACTTCT ATACTCAGTG GACGTTTGCC TTAGTCATTG	420
	TCTATTTTGC GATCGCAACC ATTATATCCG CCCATGGCTG CTGGCTTTAC TCAAAGAGAA	480
55	GTATTATGCC AGATCAGGAG GTCAACAGAT TCCTAAATGG TGGTTTTGAG CANAATAGTC	540
	CTATGACTCT ACCTTTGAGG ACCAACAAAA ATATGAATGT TATAAGATTG CAAAGCTATC	600
	NTGAACAGGA NGCTGATGAA NAAAAANCTG GATTTTGGGG TCCTGCTATG CNACTNGTCT ATCAAAACCA TTGCANGTGC TGTAATTGTT GAAANACATT GTATTTTGGG NTCNTNCTAA	660
60	TACCATATTT GTCTTCTATA AATTTCAGGC TAAATGCTAT AATGGGCTGC ATGCATTCTC	720
	TTAATGCTGT GTTTCTTCNA ATCCAACACT TTTCTCAATA ACCTGCCATT CCCNTNTTTC	780
65	NAATGGCATT TTTGC	840
	(2) INFORMATION FOR SEQ ID NO: 8:	855
70	(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 722 base pairs (B) TYPE: nucleic acid	

WO 98/11228 PCT/GB97/02424

- 23 -

٠,

(C) STRANDEDNESS: single (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: cDNA 5 (vii) IMMEDIATE SOURCE: (B) CLONE: U-U31 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8: 60 15 GAGAGAGAGC CTAGACCGGC ATCNTCGTGC TTGCCGAGGG GCGGCTTATG ANTCTTGGTT 120 GTGCCACTGG GCATCCCAGC TTCGTCNTGT CCTGCTCCTT CACCANCCAN GTGATNGCAC 180 NACTGGANTT ATGGANGGAA ANGGCGACCG GCNNGTACGA NAAGAANGTC TATGTGCTGC 20 240 CCANGENTET GGATGAGAGG GTGGENGEGE TECNECTEGG CAAGETGGGT GEENEGETEA 300 CCNAGCTTAC NCCNTCGCGG GCTGATTACA TTAGCGTCCC GATCGAGGGA CCCTACANGC 360 25 CTGCTCACTA CNGGTATTNG GGTTGCTTNT GCNAGAGACG ATGATNATAN NTCGGAGCAC 420 TGGCNTTTTC GACTANNAGT TTGACCGATG GCTATGTTCG TTTTGCTTTT CACCTTTTGT 480 30 CTTCCCATCT TTGCTGGTTC ACCTATGGAC GTTTGTTCCA TTTGGATGTN NTGAGAAATG 540 CTGATGGCAT TTTCGGAAAN AAAAANATNT AAAATCNCGA GAGTTCTTCT ANAGCGGCCG 600 CGGGCCCNTC NNTTTTCCCC CGGGTGGGGT ACCANGTTTG TTGTNCCCNT TCCCCCTNTT 660 35 TGAGTCCTTT TACTNCCCCT GGCCGTCGTT TTATACNTCG TTGACTGGGA ANACCCTGCC 720 NT 722 (2) INFORMATION FOR SEQ ID NO: 9: 40 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 793 base pairs (B) TYPE: nucleic acid 45 (C) STRANDEDNESS: single (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: cDNA 50 (vii) IMMEDIATE SOURCE: (B) CLONE: U-U131 55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9: GGCACGAGCC TTGCCCAACT CCTTCGATTC GTTCCAACGA TCGGAGAATG GCGCTGCTGG 60 60 TGGAGAANAC GTCGACGGGA CGCGAGTACA AGGTGAAGGA CCTTTCTCAG GCTGACTTCG 120 GCCGCCTCGA GATCGAGCTG GCGGAGGTGG AGATGCCGGG CCTCATGGCG TGCCGCGCCG 180 AGTTCGGGCC CGCCAAACCT TTCGCCGGCG CCCGCATCTC CGGCTCCCTC CACATGACCA 240 65 TCCAGACCGC CGTCCTCATC GAGACCCTCA CCGCCCTCGG TGCTGAAGTC CGGTGGTGCT 300 CCTGCAACAT CTTCTCCACC CAGGACCACG CCGCTGCCGC CATTGCCCGC GACTCCGCCG 360 70

CCGTCTTCGC CTGGAAGGGA GAGACCCTCG CCGAGTACTG GTGGTGCACC GAGCGATGCC

1.

	TCGACTGGGG CCCCAACGGT GGCCCCGACC TCATCGTCGA CAAAGGGGGT GACGCCACTC	480
5	TCCTCATCCA CGAAGGCGTC AAGGCTGANG AAGANTACGA AAAAGACCGG CAAGCTGCCC	540
	GATCCGGCCT CCACGGAAAA CGCCGAATTC CAAATCGTGC TGGGGATTAT CCGCNANCGG	600
	CTCCAGGTCN AACCCCNAAA ATTACCGCCC AGATNAAAGA ACCCTCCTCC GCTTTTTGAA	660
10	GAAAACANCN CTGGCGTTCA NCGAATCTAC CANATGCCAG GGCCANCNGG GGCCCCTTGC	720
	TTCTTTCCCC CCNCCCANTC NAACNTTCCN ACGAATTCCC GTTTTACCCN AAAAACCAAN	780
	TTTTGAACAA CCT	793
15	(2) INFORMATION FOR SEQ ID NO: 10:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 847 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown 	
	(ii) MOLECULE TYPE: CDNA	
25	(vii) IMMEDIATE SOURCE: (B) CLONE: U-U32	
30		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
35	CGGCACGAGG CGACGCCGGC CTTCGCCTCC GCGTCTCCCT CCACCTCCAC TGCCACCGCC	60
	GCCCTCGCCT CCCCCTCCCC AAATCGGTCG ACTCCGCCGC CGCTACAGAC CCCGACATCC TATTCACTGA CCGCGCCGGC CGCCGCCGTG CCGACTGCCT CTCCTTCGCT GTCGACGACC	120
	TCCCTGTCCT CGACGGCAGG ACCCCGATGG AAGCCTACGA GGAGTTCTTC CGGAGCTTCC	180
· 40	GCCTCGCCTT CGCTGACTTC TTTGGTTCCG TCATTACGGA TATCACGATC GGTCTCGGGC	240 300
	CAAATGGCGA GCTCCGTTAC CCTTCGTTTC CTCCCACTGG AAGCAATCGT TTCACCGGTG	360
45	TAGGAGAATT CCAGTGTTAT GACAAATACA TGCTTGCCGA TCTCAAACGA CACGCGGAGG	420
	AAACCGGCAG CCCATTATGG GGCCTCTCTG GTCCTCACGA TGCCCCTGGG TACAACCAGT	480
50	CTCCGGACTT CGGCAACTTT TTCAAGGACC ATGGCGGCTC CTGGGANACA CCCTACGGGC	540
50	AATTCTTCCT CTCCTGGTAC ACCGGCAAGC TCCTGTCTCA CGGTGACGGC CTGCTCTCGG	600
	TCGCGTCAGA AGTATTGGTG ATTTGCCTGT CGCGCTCTCG GGCAAGGTTC CACTTTCTGC	660
55	ATTTGTTGGC AACGAAACTC GGTCGCGCCC GTCTTANCTT GAAGGCCGGG TTCTNTNACA	720
	CTTGACGGNA NAANAACNGG TTTCAAGGAT GTTGGCTAAN ATCTCCCGAA ANCNTCCTGC	780
60	ANCATGATTC ATCCCGGGCN TGGACTTCTC NGAAGGGGAA CANTCCTCAG GGTGTTCCGG	840
	TCTGCCC	847
65	(2) INFORMATION FOR SEQ ID NO: 11:	
65	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 822 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
70	(D) TOPOLOGY: unknown (ii) MOLECULE TYPE: cDNA	

i.

70

420

480

(vii) IMMEDIATE SOURCE:

(B) CLONE: U-U55 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11: GGCACGAGGC ATGGAGAACC CTGTTGCGAT GGGCATCATG GAGGAGCTTG AGGCCCAGAG 10 60 CGAGGTGTGG AACCACATTT TTAGATTCAT CACCTCCATG TCCGTCAAGT GCGCGGTGGA 120 GCTCAGGGTC CCCGACGCCA TCCACGCCCA CGGCGGCAAC GCAACTCTCC CTCAGCTGGC 180 15 CGCCGCCCTC AGCCTCCCTC CCGCCAAGCT CGCCGACCTC CGACGCCTCA TGCGCATGCT 240 GGTCCACGCC GGCTGCTTCG CCAAGCAGGA AGACNACGTG TACGCCCTCA CGCCATGGTC 300 20 GAGGCTCCTG NTGAGCTCCG AGCACACCGC GGTAGCCCCG TTCGTGGTGT GGATGCTCCA 360 CCCGCTCATG GTGCAGTCGT GGCACTCGCT GGGGGCGTGG TTCCACGGGA GGGCGCCCAC 420 CCCCTTCGCC GCAACCCACG GGAAAGGGGA TCTTCGAGAC NACACNCNAA CAGCCGGGGT 480 25 TCGCGGCCGT TCTTCANCNA NGCNATGGCG AACGACTGTC GGCTGGTGGG AAAGGTGTTG 540 GTAAANAACA TNCGGATGTG TTGGANGGAN CNCNGGTCCA TNGTGGAAGT TGGTGGCGCA 600 30 CCGGCACCCT TTTNGGCCAT TGTTGGCCGA AGGCTTTCCC GCCAACATNA AATNGCACCG 660 TTCTCCNANT TTGCCCCACT TTTCTGGCCN CNGCCGCCGG GGCCCCCNCN NACCNAAACA 720 ACTTGGATGT TTTTNGGGGG AANACATNTT CCAACATTTT ACANCCGCNC GACNTTTTTT 780 35 ACNCAATTGG TTCCNGGCNC NAATGGAAAT ANTNCTGNAT TT 822 (2) INFORMATION FOR SEQ ID NO: 12: 40 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 743 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown 45 (ii) MOLECULE TYPE: cDNA (vii) IMMEDIATE SOURCE: 50 (B) CLONE: U-U72 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12: 55 GGCACGAAGA GCCCTGTACC GGANAGCATG GAGAACCCTG TTGCGGTGGG CATCATGGAG 60 GAGCTTGAGG CCCAGAGCGA GGTGTGGAAC CACATTTTTA GATTCATCAC CTCCATGTCC 120 GTCAAGTGCG CGGTGGAGCT CAGGGTCCCC GACGCCATCC ACGCCCACGG CGGCAACGCA 60 180 ACTOTOCOTO AGCTGGCCGC CGCCGTCAGC CTCCCTCCCG CCAAGCTCGC CGACCTCCGA 240 CGCCTCATGC GCATGCTGGT CCACGCCGGC TGCTTCACCA AGCAGGAANA CNACGTGTNC 300 65 GCCCTCACGC CATGGTCGAN GCTCCTGGTG AGCTCCGANC ACACCTCGGT GGCCCCGTTC 360

GTGGTGTGGA TGCTCCACCC GCTCATGGTC CAGTCGTGGC ACTCNCTGGG GGCGTGGTTC

CACGGGAAGG GCGCCCACNC CCTTCNCCNC NACCCNCGGG AAGGGGATCT TCCANACGAC

- 26 -

	ACNCGAACAT CCGGGGTTCG CGGGCGTCTT CAACTANGCG ATGGCGAACG ACTGTCNGCT	540
	GGTGGGAAAN GTNTTGGTAA AAAAACCTTC CGGAAGTGTT NGANGGAACC CCGTCCAATN	600
5	GTGGAANTTG GTGGCNGCCG GCACCCTTNC GGGCNATCGT TGTCGAAGNC CTTCCCNCAC	660
	NTTANATING ACCGICCICC AATINICCCC ANTITICTITN GCCGCNGGNN NCGGGCCCCN	720
10	GGTNANCCNA AANCNTTTNT TTT	743
10	(2) INFORMATION FOR SEQ ID NO: 13:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 806 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown 	
20	(ii) MOLECULE TYPE: cDNA	
	(vii) IMMEDIATE SOURCE: (B) CLONE: U-U68	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:	
30	TGTTCTCCC TTCGATCACA TCTTTTTGCT CTGGGAAACG TGAGAGGTGA GACGAGGGCG	60
20	GCAATGACGG CGGGTTTAAG ATGGATTCCT CCTCTGCTTC TTCTTCTTCT GGGCTTCCTG	120
	CTGGTTTTGA ACGGAGGTCG GGGGTGGATT GGAAGCGAGA GGTCCTCTGG CTCGAGGAAT	180
35	GGCGGAGCAT CGCGGAGGAG CTTGAGAGAG GCCTCCGCGA ACGCGACCAG CGCCGATGCT	240
	TCCTTGGAAG AGAGGGCTGT AACCCGGGCA GCAGAAGCCG CAGTCGACGA CCCCGAGGAG	300
40	GTTGCTTCGA CGGTCCTGAT GACCATAATC AACAGCACGG CTCGCAGATC TCTTGGTTAT	360
	CTGTCGTGCG GTTCAGGCAA CCCGATCGAC GACTGCTGGC GGTGCGACCC TGATTGGCAT	420
	GTCAACAGAA AAAAGCTCGC TGACTGCGGC ATTGGCTTTG GACGCAACGC NATANGTGGC	480
45	CGCGACGGGG AATTTGTTCG TTGTGACAGA CTCCGGGGAC NATGATCCCC GTGAATCCTC	540
	GCCCGGGAAC ACTTANATAC CCCGTCNTCC AANGAAGTTG CCCCCTCTGG GATCCCCTTT	600
50	AAACNCNAAN TGGAAATCTC NCTCNANGGA AGAACTCNTT ATGAACAGCT TTAANACNAT	660
	CGATGGACNC NGTGTCCTCG TCCACATTGC CAATGGCGCC TGCNTCACCA NCCAATTTCN	720
	TCCCCAACNT CTTCTTCCNT NGCCTCCNCT CCCCAATGCA ACCCNCCGGG AATTCCTNGT	780
55	CCCCNCTCCC CTTCTCCTAT GGATNG	806
	(2) INFORMATION FOR SEQ ID NO: 14:	
60	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 687 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
65	(ii) MOLECULE TYPE: cDNA	
	(vii) IMMEDIATE SOURCE: (B) CLONE: U-U69	
70		

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:	
5	GGCACGAGGG AGAACAAAAA TGGCAGCATT CTTGTTCTTC CTCACCATCG CAGCCTTCAC	60
	TGCCCCCATC TACTCTTCTC GTGCACCCTT AACGTCGGCA GCTGTCCGCG ACCCTGAATT	120
	AGTAGTACAG GAAGTACAAA GAAGCTTGAA CGTGTCGCGG CGGCGACTGG GCTACTTGTC	180
10	ATGCGGCACC GGCAATCCGA TCGACGACTG CTGGCGGTGC GACCCTGACT GGGCTGACAA	240
	CCGGCAGCGG CTCGCGGACT GCGCCATCGG GTTCGGGAAG AACGCGATTG GGGGCAGGGA	300
15	CGGCGAGATA TACGTGGTGA CCGACAGTGG CGACNACNAC CCCGTCAATC CGAAGCCGGG	360
	CACGCTCCGG TACGCCGTCA TCCANGAGGG AGCCGCTGTG GATCATCTTC AAGCGCGACA	420
	TGGTCATCCA GCTGAAGGAA GGAGCTCATC ATGAAACTCC CACANAGACC ATCGACGGCC	480
20	GGGGCGCCAG CGTCCACATC TCCGGGGGGC CGTGCATCAC CACCAGTNCG TCNCCAACAT	540
	CATCATCCAC GGGCGTCCAC TTCCACNAAT GCAANCAGGG CGGGGAACGC CTTACGTTCG	600
25	CGACTCCCCC AGGGCACTAC GGGTGGCGCA CCGGTGTCCG AACGGCNANG GGGTTTTCAT	660
	CTTCCGCGGG AACCACTTCT GGGGTCA	687
	(2) INFORMATION FOR SEQ ID NO: 15:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 741 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
35	(D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: cDNA	
	(vii) IMMEDIATE SOURCE:	
40	(B) CLONE: U-U84	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:	
	TCCACATTGC CAATGGCGCC TGCATCACCA TNCAGTACAT CACCAACGTC ATCATCCATG	60
	GCCTCCACAT CCACGACTGC AAGCCCACCG GGAATGCCAT GGTCCGCAGC TCTCCTTCTC	120
50	ACTATGGATG GAGAACCATG GCTGATGGGG ATGCCGTTTC CATTTTCGGC TCCAGCCACA	180
	TTTGGGTGGA CCACTGCTCT CTGTCCAACT GCGCCGATGG ACTTGTCGAT GCCGTCATGG	240
55	GCTCCACTGC CATTACGGTC TCCAACAATT ACTTCACCCA CCACAATGAG GTCATGCTTT	300
	TGGGACACAC TGATTCTTAT GCAAGGGACA GCATCATGCA AGTAACGATC GCATTTAACC	360
	ATTTTGGTGA AGGTCTGATT CAGAGAATGC CCAGGTGCAG GCATGGCTAC TTCCACGTGG	420
60	TAAACAATGA CTACACGCAC TGGGAGATGT ACGCCATTGG CGGTAGCGCG AATCCAACGA	480
	TCAACAGTCA AGGCAACCGA TACCTTGCGC CGACCAATCC ATTTGCAAAG GAAGTAACAA	540
65	AAAGGGTGGA CACAGATCAA AGCACGTGGA AAAACTGGAA TTGGANGTCN GAAGGTGACC	60C
4 3	TGCTTCTGAA TGGTGCTTTT TTCACCCTTC CGGTGCANGG GCTTTCACCC ANCTACGCAC	660
	GGGCCTCCAC TTTGGGGGCA ACCCTCTTCC TTNGTTGANA CACTGACTCT GATGCTGGGG	720
70	TCCTGTTTTG CCAATTCGGN C	

	(2) INFORMATION FOR SEQ ID NO: 16:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 727 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
10	(ii) MOLECULE TYPE: cDNA	
	(vii) IMMEDIATE SOURCE: (B) CLONE: U-U89	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
20	GGCACGAGTT CTCTCCTTCG ATCACATCTT TTTGCTCTGG GAAACGTGAG AGGTGAGAAG	60
20	AGGGCGGCAA TGACGGCGGG TTTAAGATGG ATTCCTCCTC TGCTTCTTCT TCTTCTGGGC	120
	TTCCTGCTGG TTTTGAACGG AAGTCGGGGG TGGATTGGAA GCGAGCGGTC CTCTGGCTCG	180
25	AGGAATGGCG GAGCATCGCG GAGGAGCTTG AGAGAGGCCT CCGCGAACGC GACCAGCGCC	240
	GATGCTTCCT TGGAAGAGAG GGCTGTAACC AGGGCAGCAG AAGCCGCANT CGACGACCCC	300
30	GAGGAGGTTG CTTCGACGGT CCTGACGACC ATAATCAACA GCACGGCTCG CAGATCTCTT	360
•	GGTTATCTGT CGTGCGGTTC AGGCAACCCG ATCGACGACT GCTGGCGGTG CGACCCCGAT	420
	TGGCATGTCA ACAGAAAAAA GCTCGCTGAC TGCGGCATTG GCTTTGGCCC GCAACGCGAT	480
35	ANGTGGCCGC CACNGGGANT TGTNCNTTGT TGACAGACTC CGGGGACGAT GATCCCGTGA	540
	ATCCTCCCCC GGAACACTTA ATATTCCCCG TCATCCCAGA NCTNCCCCTC TGGATCNCCT	600
40	TTTAAACACG ACATTGGAAA TCNCCCCCNG GAAGAACTCC TTTNTAACCG CTTTNNAACA	660
	TCNATGGACN CGTGTCCACN TTCCACNTTT GCCAATGGCG CCTGCCTCNC CANCCNATTT	720
	AATCNCC	727
45	(2) INFORMATION FOR SEQ ID NO: 17:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 842 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: cDNA	
55	(vii) IMMEDIATE SOURCE: (B) CLONE: U-U115	
50		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
	GGCACGAGGG AGAACAAAAA TGGCAGCATT CATGTTCTTC CTCACCATCG CAGCCTTCAC	60
55	TGCCCCCGTC TACTCTTCTC GTGCACCCTT AACGTCAGCA GCTGTCCGCG ACCCTGAATT	120
	AGTAGTACAG GAAGTACAAA GAAGCTTGAA CGTGTCGCGG CGGCGACTGG GCTACTTGTC	180
ro	ATGCGGCACC GGCAATCCGA TCGACGACTG CTGGCGGTGC GACCCTGACT GGGCTGACAA	240
	CCGGCAGCGG CTCGCTGACT GCGCCATCGG GTTCGGGAAG AACGCGATTT GGGGCAGGGA	300

PCT/GB97/02424

J .,

	CGGCGAGATA TACGTGGTGA CCGACAGTGG CGACNACGAC CCCGTCAATC CGAAAACGGG	360
_	CACGCTCCGG TACGCCGTCA TCCAGGAGGA GCCGCTGTGG ATCATCTTCA AGCGCGACAT	420
5	GGTCATCCAG CTGAAGGAGG AGCTCATCAT GAACTCCCAC AAGACCATCG ACGGCCGGGG	480
	CGCCAGCGTC CACATCTCCG GCGGGCCGTG CATCACCACC AGTACGTCAC CAACATCATC	540
10	ATCCACGGCG TCCACATCCA CGAATGCAAG CAGGGCGGGA ACGCGTNCGT TCGCNACTCC	600
	CCAAGGGCAC TACGGGTTGG CGCACNGTGT TCNGACGGCG ACGGGTGTCC ATCTTCCGCG	660
	GGAACCACTC TGGGTCCAAC CACTGCANCG CTTGTTCCAA CTTGGCCCAC CNAANTGGGC	720
15	CTTCCNTCCC AACCCCCATT TCCTTGGGAT TNCCCCCCGC CAATTCCCCC ATTTTCCAAC	780
	NAACTINCTI TGAACCCNCC CNTGAANAAG GTCCTTGCTG CTGGGTCCCA CCAACAATTT	840
20	NA	842
	(2) INFORMATION FOR SEQ ID NO: 18:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 724 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
30	(ii) MOLECULE TYPE: cDNA	
35	(vii) IMMEDIATE SOURCE: (B) CLONE: U-U117	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:	
40	GGCACGAGTC TCCTTCGATC ACATCTTTTT GCTCTGGGAA ACGTGAGAGG TGAGACGAGG	60
	GCGGCAATGA CGGCGGGTTT AAGATGGATT CCTCCTCTGC TTCTTCTT TATGGGCTTC	120
45	CTGCTGGTTT TGAACGGAGG TCGGGGGTGG ATTGGAAGCG AGAGGTCCTC TGGCTCGAGG	180
	AATGGCGGAG CATCGCGGAG GAGCTTGAGA NAGGCCTCCG CGAACGCGAC CAGCGCCGAT	240
	GCTTCCTTGG AAGACAGGGC TGTAACCAGG GCAGCAGAAG CCGCAGTCGA TGACCCCGAG	300
50	GAGGTTGCTT CGACGGTCCT GACGACCATA ATCAACAGCA CGGCTCGAAN ATCTCTTGGT	360
	TATCTGTCGT GCGGTTCAGG CAACCCGATC GACNACTGCT GGCGGTGCGA CCCCGATTGG	420 480
55	CATNICAACA GAAAAAAGCI CGCIGACIGI GGCATIGGCI TIGGCCGCAA CCCGATANGI	540
	GGCCGCGACG GGGANTTGTN CGTTGTGACA GACTCCGGGG ACGATGATCC CCNTGAATCC	600
	TCCCCCGGGA ACACTTANAT NCCCGTCNTC CNNGAANTTT CCCCTCTGGA TCNCCTTTAA	660
60	ACCCACNIGG ANATOGOCON CNAGGAAGAA CICCITAIGA ACNGCITITI AAAACAICGA	720
	TNGGACCONG TTTCCACTTC CNCATTNGCC NAATTGGGCG CCCTGGCCNT CCNCCCNTCC	724
65	CCAA	, _
	(2) INFORMATION FOR SEQ ID NO: 19: (i) SEQUENCE CHARACTERISTICS:	
	AND PERMITE THOUGHTON IN A 1 STATE OF THE ST	

- 30 -

	(D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: cDNA	
5	(vii) IMMEDIATE SOURCE: (B) CLONE: U-U80	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:	
	GGCACGAGGG ACAAGCGATG GCAGCAGAAT TGTCTCCCAC GCTGAGCAAG AGCATCTTTG	60
15	AAGGAGCCGG TGGATCTTAC TCTACTTGGT CAGGTGCCGA TCTCCCCCTT CTTACTGATG	120
	CAAAGCTCGG CGGAGGCAAG CTTGTCCTGA AACCACTGGG CTTGGCGTTG CCTCACTATT	180
20	CCGACTCATC GAAAGTCGGC TATGTTCTTG AAGGAAGAGC GGTGGTGGGG CTAACACTCT	240
	ATGGAGAGAC CGAGCAGAGG ATACTGCTGC TTGAGAAGGG AGATGTGGTA GCGGTGGTCA	300
	TGGGGAGCCT CACGTGGTGG TACAACGAGG AGGAGGACTC CGACTTCTCC ATCGCCTTCT	360
25	TAGGCGATAC CGCGACAGCT GTGCGACCGG GCGACATCGC CTACTTCTTC TTGGCAGGAT	420
	CCCTAGGAAG TGCTCCATGG CTTTTCGACG GAAATTCCTC ANCAGGGCCT GCGGTTTAAG	480
30	GGGATGCGGA AGCTGANGAG CTCTTCGGAA GCCAACCTGG TACTCTAATC ATCACACNGC	540
	AGCAAAAGCT GCCTGGCCTC AGANCATCCC GAGCTGACAG CNAAGGGATA TCNTAAACGC	600
	TGANCGCGTA NCGGCATATA TCAATGTGAA AAGTGGTGGC TGTTCTGCCT CGGTGACCCT	660
35	TNATNAACTG GCNGCNCTGG GAAGATCAGG TTCTCCGTCN ACCTCCAAAA ATCCANCCTA	720
	ACCCCGTGCC TTGCCGGGGT TCTTCNTTGA ATCNNCTGTT CANCTGAAAT TTTTCCCCAA	780
40	GGCCNTGGAA CAATTCT	797
	(2) INFORMATION FOR SEQ ID NO: 20:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 742 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
50	(ii) MOLECULE TYPE: cDNA	
	(vii) IMMEDIATE SOURCE: (B) CLONE: U-U90	
55	(a) special control of the control o	-
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:	
	GGCACGAGAT GACTETETCG GCGGTAGCAT CGGATGCCGA TGATTCGGTC GCTTATACAT	60
50	TCGCTTCGCG ATACGTTCGC GAGGCTCTTC CCCGGTTCAG GATACCGGAG CAGTCGATCC	120
	CCAAGGATGC GGCGTACCAG ATCATCAACG ACGAGCTGAT GCTCGACGGG AACCCGCGGT	180
55	TGAATCTGGC GTCGTTCGTG ACGACGTGGA TGGAGCCGGA GTGCGATCGC CTCATCATGG	240
	CGGCCGTCAA CAAGAACTAC GTCGACATGG ACGAGTACCC CGTCACCACC GAGCTCCAGA	300
70	ATCGCTGCGT AAATATGATA GCCCACCTTT TCAATGCCCC AATTGGGGAA NACGAAACGG	360
	CTGTTGGAGT TGGAACTGTG GGTTCCTCCA GAAGCAATCA TGCTTGCAGG ACTTGCATTC	420

	AAGAGGAAAT GGCAGAACAA AAGAAAGGCA GAGGANAAGC CTTACGACAA ACCCAACNTT	480
5	GTTACCGGTG CAAATGTTCA GGTTTGCTGG GANAAATTTG CAAGGTATTT TGAAGTTTGA	540
J	ACTGAAAGAA ATTGAAGTTG AAAGAAGGAT ATTATGTTAA TGGATCCTGC CAAGGCAGTA	600
	NAAATGGTTG ATGAAAAATA CATATGTTTT TGCTGCCATC TTTGGGTTCA ACTCTCCCTG	660
10	GGAAAATTTG AANATGTTAA CCTTCTAAAT GATCTCCTGA CNGAAAAAAA CCCAGAAACT	720
	GGGTTGGACC CCCCNTACTT GT	742
15	(2) INFORMATION FOR SEQ ID NO: 21:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 807 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: cDNA	
25	(vii) IMMEDIATE SOURCE: (B) CLONE: U-U92	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:	
	GGCACGAGCT CTAGCCGATG ACTCTCTCGG CGGTAGCATC TGATGCCGAT GATTCGGTCG	60
3.5	CTTATACATT CGCTTCGCGA TACGTTCGCG AGGCTCTTCC CCGGTTCAGG ATACCGGAGC	120
,,	AGTCGATCCC CAAGGATGCG GCGTACCANA TCATCAACGA CGAGCTGATG CTCGACGGGA	180
	ACCCGCGGTT GAATCTGGCG TCGTTCGTGA CGACGTGGAT GGAGCCGGAG TGCGATCGCC	240
40	TCATCATGGC GGCCGTCAAC AAGAACTACG TCGACATGGA CGAGTACCCC GTCACCACCG	300
	AGCTCCAGAA TCGCTGCGTA AATATGATAG CCCACCTTTT CAATGCCCCG ATTGGGGAAN	360
15	ACNAAACGGC TGTTGGAGTT GGAACTGTGG GGTCCTCAAA AGCAATCATG CTTGCAGGGC	420
_	TTGCATTCAA GAGGAAATGG CANAACAAAA GAAAGGCAGA GGANAAGCCT TACGACAAAC	480
	CCAACATTGT TACCGGTGCA AATGTTCNGG TTTTGCTGGG AANAAATTTG CAAGGTATTT	540
50	TGAAATTTGA ACTGANAGAA NTGAANTTGA AAGAAGGATA TTATGTTTAT GGATCCCNGC	600
	CCAAGGCAGT ANAAATGGTT GATGAAAATA CCAATTTNTG TTGCTTGCCC ATCTTTGGGT	660
55	TCCACTCTCN CTGGGANAAT TTTGAAAAAT GTTNAGCTTC TAAATGATCT CCNGGACCNA	720
	AAAAANNCCC NNAANCTNGG TTGGGACCCC CCCNTACCTT TTCNATNCCT GCCANTTNGG	780
	GGATTCNNTA NCGCCTTTCC INCTATC	807
50	(2) INFORMATION FOR SEQ ID NO: 22:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 770 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: CDNA	
70	(vii) IMMEDIATE SOURCE:	

1. E.

(B) CLONE: U-U91

5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:	
	GGCACGAGAG AAAAAATTGT AAAGTTTGAC TTTCATGGAC AGCCTGCGGA GCTCAAGCAT	60
10	GGTAGCCTTG TCATAGCAGC AATTACAAGC TGCACAAACA CATCAAATCC CAATGTTATG	120
	CTTGGTGCTG GTCTTGTTGC AAAGAAGGCC TGTGAATTAG GTCTACAGGT TAAGCCTTGG	180
	ATCAAAACCA GCCTTGCTCC AGGTTCTGGA GTTGTTACCA AGTATTTGCT TAAGAGTGGC	240
15	CTACAAGAAT ATTTGAATCA GCAAGGATTT AATATTGTTG GGTATGGCTG CACAACATGT	300
	ATCGGAAACT CTGGGGATCT TGATGAGTCT GTGGCTGCTG CAATTTCCGA TAATGATATA	360
20	GTTGCTGCTG CTGTTCTATC TGGAAATAGG AATTTTGAGG GACGTGTGCA TCCATTGACA	420
	CGAGCTAACT ATCTTGCTTC ACCTCCGCTT GTTGTAGCTT ATGCGCTTGC TGGAACAGTT	480
	GACATTGATT TTGAAAAAGA ACCCAATTGG AACAGGGGAA GGATGGGAAA AAACATATAC	540
25	TTCCAGGATA TATGGCCGTC CACTGAANAA ATTGCACAGG TTGTGCAATC CANTGTTTTT	600
	GCCTGAAATG TTCAAGAATA CCTATGAAGC AATCACCAAA GCACCCTATG TTGGAACCAA	660
30	CTGACTGTTC CCNGCCACAC TCTTTATTCA TGGGACCCAA TCCNCNTACA TCTTAACCAC	720
,0	CNTATTTTAA GGANATGACC ATGGCCCNCC TGTCCNCATG GGGTGAAAAA	770
	(2) INFORMATION FOR SEQ ID NO: 23:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 810 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
10	(ii) MOLECULE TYPE: cDNA	
15	(vii) IMMEDIATE SOURCE: (B) CLONE: U-U96	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:	
	GGCACGAGAG GGCCGTTCCT TTTTGTGCTC GCTTTGCTGC CTCCTCGTTC GTCTTTTCCG	60
	CGAATTTCAC CGGCCATGAA CAGCCTTCGG AGCCTTCCGA CATCCTCCGC TCCGCCCTCG	120
55	CCGGTCCCGA GAGGACGTTC GAGTAGGCCA CCGACCTTGA ATCTGGGGGT GATACGACCA	180
	CATCATCTTC GTGTAAATGT CGCCAGGAGT GCATGTTCCA AGTCTTCTGC AAGTCCTGAG	240
60	AAGACTGGTG CTGAAGTGCA AGATCAGAAG TCTGAGATAT ATAGCAGTGA TATGACAAAA	300
,,,	GCAATGGGTG CAGTGCTGAC ATATAGGCAT GAGCTTGGAA TGAATTATAA TTTCATCTAC	360
	CCAGGATTGA TTGTTGGTTC TTGTCTACAG ACCCCATCAG ATGTTGATAA GCTTCCNAAA	420
55	GATTGGGGTT GAAGACCATC TTTTGCTTGC AGAAGGACTC GGATCTTTGA ATATTTTGGG	480
	GTTGAAATTG GTGCAATTCC NTGAATATGC CATGCAATGT GGTGACATTG AACATCTTCN	540
70	TGCTGAAATC AGGGATTTTG ATGCATTTGA TTTGAAGATG ANACTTCCTG CNGTANTTAC	600
	NAATTATACA AGGCTAATTA ATCCGAATGG TGGAATGACT TATTTTCNCT GTACANCCNG	660

Je A

- 33 -

	GCTTGGAAAA CGCCTGCANT TGCNTTGGCA TACNTGTTTT TGGGTTNAAG GCTATGAACT	720
5	GAATGAAAGG GCCCCNCTAC TGCNAAATTA NCCAACTTGC TCCCCNAAAT TTGGTGCTAT	780
_	AAAAANTGCC ACCNTTGATA TGCTTATNGG	810
	(2) INFORMATION FOR SEQ ID NO: 24:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 765 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
15	(D) TOPOLOGY: unknown (ii) MOLECULE TYPE: cDNA	
20	(vii) IMMEDIATE SOURCE: (B) CLONE: U-U103	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:	
	GGCACGAGCT TGGCTGTAGT CTTCTTCTCA AGTAATCTTC GTCTTCCTGA TTTGCTTGGT	60
	TGGTGGTCGG TTGCAGGGCG AAGGGATGGG GATGGGGAGG CCGAGCGGAG CTTGGTCGAC	120
30	CCCGTGGTTG GTGGTGGTTC TTGTGCATTG GCTCCTCTGG GCCACCGAGA GGAGGCGAGG	180
	GGCGGTGGTG GAGGCCTCCC ATGTGGAGTT TGCATCCCTC CAATCTGTTC CTGCCTCCGT	240
35	CGTCGACAAC AGGCTGAGGA CTGGGTATCA CTTCCAGCCC CCGAGGAACT GGATCAACGA	300
	TCCAAATGGA CCCATGTACT TCAATGGCGT CTACCACCTC TTCTACCAGT ACAACCCCAA	360
	TGGCTCCGTG TGGGGTAACA TCGTGTGGGC CCACTCGGTG TCGACCGACC TCGTCAACTG	420
40	GATAGCACTC GACCCGGCCA TCCGCCCCAG CAAGCCATTC CACATCAACG GATGCTGGTC	480
	CGGCTCCGCC ACCGTCCTCC CCGGCAACAG GCCTGCGATC TTCTACACCG GCATCNACCC	540
45	CCANCANAAA CAACTGCANA ACNTTNCNTN CCCAAGGATC TGTCCAACCT TACTCCCCNA	600
	NTGGGTCAAC CCCACTNCAA CCCCGTGATC CCCCTGGCGA CGCATCAACN CCACCCCTTC	660
	CNCNAACCCN AATACGGNTT GGCGCNGTCC CNGCACCCNC TGGAAACCCC TNGTNGGGAA	720
50	CNANTTGAAN CNGAAGGGGA AAGGCNTTCT TTNCCGAACA GGGAT	765
	(2) INFORMATION FOR SEQ ID NO: 25:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 774 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
60	(ii) MOLECULE TYPE: cDNA	
65	(vii) IMMEDIATE SOURCE: (B) CLONE: U-U93	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:	
70	GGCACGAGCG GAGAANGCAA TCTCGCTCTC TCTCTACTGC ATCGCGGCTC TCGTCCTCGA	60

WO 98/11228 PCT/GB97/02424

- 34 -

	TTACTTGAGA TATGGCAGGA AAGGGCGAGG GGCCGGCGAT CGGGATCGAT CTCGGCACCA	120
	CGTACTCGTG CGTCGGGGTG TGGCAGCACG ACCGGGTGGA GATCATCGCC AACGATCAGG	180
5	GGAATCGTAC CACCCCCTCC TATGTCGCCT TCACCGACTC CGAGCGCCTT ATCGGCGACG	240
	CTGCCAAGAA CCAGGTCGCC ATGAACCCCA TCAACACCGT CTTTGATGCA AAGCGTTTAA	300
10	TTGGTAGGCG ATTCAGTGAT TCATCTGTCC AGAGTGACAT CAAGCTCTGG CCTTTCAAGG	360
10	TCATTCCTGG TCCAGGTGAC AAGCCCATGA TTGTTGTCCA ATACAAAGGG GAGGATAAAC	420
	AGTTTGCAGC TGAAGATATT TCTTCCATGG TTTTGATAAA GATGAAAGAA ATTGCTGAAC	480
15	CTACCTGGGG TCTGTTGTCA AGAATGCCGT CCTCACTGTT CCCGCTTACT TCAATGACTC	540
	NCAACGCCCA GCCACAAAGG ATGCTGGTGT CATTGCTGGT CTCNATGTTA ATGANAATCA	600
20	TCAATGANCC CCCAGCACTG CTATTGCTTT ATGGCCTTGA CAAAANGCTA CTATTGTTGG	660
20	TGAAAAAAT TTCCTCATCT TCCATCTCCG GTGGGTGGCC TTTTGANTTC NCCTTCCTNA	720
	CCATCCAAGA AGGTTTCTTT NAAGTCAAGG CCCTGCTGGT GANACCCANC TTGG	774
25	(2) INFORMATION FOR SEQ ID NO: 26:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 786 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: cDNA	
35	(vii) IMMEDIATE SOURCE: (B) CLONE: U-U125	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:	
	GGCACGAGCT AGTCTCGAGT TTTTTTTTT TTTTTTTAA AATTGAAATT AGATGCGATT	60
45	TCGAATAGCA AACATAGTTC AGGATAAACC AACAACATTG TACCGAATTC GATAAGCTTA	120
	GGAAACTAAA TTGCGTAAAC GAAACACTTG CATGAAAGCC TATATAATAT AAGGCCGACT	180
50	AGGGACNAAA TAACTTAATC GACCTCCTCG ATCTTTGGAC CAGCGCCGCT GCCACCAGCA	240
	GGAGGAGCAT CATCATCCAT ACCACCAGCC ATGTCAGCAC CTGCTCCCTG GTACATCTTG	300
	GCGATGATGG GATTGCATAT GCTCTCCAGC TCCTTCATCT TGTCATCGAA CTCGTCGGCT	360
55	TCTGCCAACT GGTTGCCATC GAGCCATTGG ATGGCCTGCT CGATCGCATC CTCCGATCTT	420
	CTTCTTGTCA GCAGCAGCAA GCTTGGAGGC AATCTTGTCG TCGTTAATGG TGTTCCTCAT	480
60	GTTGTNAGCA TANTTTTCCA GANCATTCTT CCGATTCCAC CTTCCTTTTT ATGCTCCTCC	540
••	ATCTTCCTGA CTTGTTACTT CTCCGCTTCC CTGCACCATT TTCTCAATCT CCTCCTTGCT	600
	GACCTACCTT GTCCTTGGTG AAGGTGATCT TGTTCTCTGT CCAGTGGTCT NTCNTCNGCA	660
65	GAAANATTCC AGAATACCAT TGGGGTTCCA AATGTTNCAA AACCAAACCC GGTGGATTCT	720
	TGAAGGAAAC CCCCCCTAA GGGCCCCAGG GTGGGAAATC CCCCCAAAAA ACCCCCAAAT	780
70	TTTCCC	796
. •	(2) INFORMATION FOR SEQ ID NO: 27:	

- 35 -

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 486 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: cDNA	
10	(vii) IMMEDIATE SOURCE: (B) CLONE: U-U105	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:	
	GGCACGAGCG AGTTTTTTTT TTTTTTTTTTTTTTTTTT	60
20	ACATTACACC AAACATAGAT GTCAACAATA CATGCCAACG ATACCATTGC TTATTCCTTC	120
	AGACCTCCGA TAGGACTTCC ACGCACACCA ACAGAGAGAA CTAAGACAGC AAAGCAGCGG	180
25	ACACATACAG CCCAAAAGGG TNNGTGACCC CCGCGGAGGN GGAGCNCCAG GTGAAGGGTG	240
	GATTCCCTCT GAATGTTGTA TTCTGNCAGG GTGCGCCCGT CCTCNNTTTG NTTCCCNTCT	300
	NANATCNCCC NCTGNTGATC TGGTGGNAAT CCCCCCCTTG TCCTGTGATT CTTGCTCTTG	360
30	ACNTTTTTCT CCCNTGTCNN ANCTCTCTNC CTNCTCTGGG TNTTGGGTCT TCCCCTGTTG	420
	NANCHNICIN TINNCHIATC ATCTIGINCT CCNNCCNCCN CNCCINICNT TICCTCNNNN	480
35	GGTNNA	486
33	(2) INFORMATION FOR SEQ ID NO: 28:	
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 791 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown 	
45	(ii) MOLECULE TYPE: cDNA	
	(vii) IMMEDIATE SOURCE: (B) CLONE: U-U116	
50		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:	
<i>E E</i>	GGCACGAGTG ACAATGTCAA GGCCAAGATT CAGGATAAGG AGGGCATTCC CCCCGACCAG	60
55	CAGAGGCTCA TCTTTGCCGG CAAGCAGCTC GAGGATGGCC GCACCTTGGC TGATTACAAC	120
	ATCCAGAAGG AGTCCACCCT CCACCTTGTC CTCCGCCTCC GTGGTGGCAT GCAAATCTTC	180
60	GTCAAGACTT TGACTGGGAA GACCATCACC CTTGAGGTGG ANAGCTCGGA CACCATCGAC	
	AATGTAAAGG CCAAGATTCA GGACAAGGAG GGTNTTCCCC CGGACCAGCA AAGGCTCATC	240
	TTTGCCGGCA AGCAGCTTGA GGATGGCCGC ACCCTGGCAG ATTACAACAT TCAGAAGGAG	300
65	TETACCETTE ACCTTGTGCT GANACTTAGG GGTGGCATGC ANATETTTGT TAAGACNCTC	360
		420
70	NCAGGGGAAG ACCATTACCT TGGAGGTGGA NANCTCNGAC ACGATTGATA ATGTCNAGGC	480
	AAAGATCCAN GACAAGGANG GGATTCCACC GGATCAGCAN ANGCTGATCT TTGCTGGGAA	540

 Λ

- 36 -

	ACACTGGANG AAGGGCGCAC CCTGGCAGAT TNCNACATTC CNAAAGAATC CACCTTCACC	
		600
_	TGGTGCTCCC CCTCCGCCGG GGTCCCTAAC CCTTTTGGGC TGTATGTNTC CCCTGCCTTT	660
5	GCTGTCTTAA TTCNCTCTGT TGGTGTTCGT TGGAAATTCC CTAATCCNGA AGGTTCTTNA	720
	AAAGGAAATN AANCCNNTTG GGTTTTCCCC TTTGGCCTTT TTTTTGTTTG AAAATCCTNT	780
10	GTTTTTGGTG T	791
	(2) INFORMATION FOR SEQ ID NO: 29:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 814 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
20	(ii) MOLECULE TYPE: cDNA	
	(vii) IMMEDIATE SOURCE: (B) CLONE: U-U120	
25		
•	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:	
30	GGCACNANCC CGCTTCGGTA GCCATTATTG GTGCCCGTAG AGCGAGTGCT GAGATGGCTT	60
30	TGAGGGCCTT CTTCCCCCTC TGCATCGCTC TCGTGGTGAC GCTCTCACCT CTGTGTGATG	120
•	CCACTTCGCC TTACTACACC ATCACACCGC CCACCCCCGT GGCCAAGCCG CCTTCAGTTG	180
35	AACCACCACC CTACCACGGC CCTCCGACNA CCCACCCTAA GCCACCGAGT CATGGTGGCC	240
	AACCTCCGTC CCACCATCAC CCAACACCAA TCTACGGTGC ACCCCCTCCG CAACACCACC	300
40	ACCACCACCA ACACCACCAC CAACCTGCAC CACCAACTCA CGCANAACAC CCTCCGTACT	360
40	ACCACATGCC TTCCCCGCCG CCGCATGGCC AGCACCCGTC ACCACCGTCA CATGATTATC	420
	CCGTACCTCC TGCTCACAAG CCCCGAACTC CGCCGCCGGT TTACAAGTCT CCACCACCGA	480
45	NCCACCGTCC TTACCCTCCA TCGACGCCAC CCCACCATCC GAAGCACCCG CCTTCTCAGC	
	CGAAGCCGTC NTACAAGGCC CGCCACCATN CAAGAACATC CCTGANCACT CTCCACCGCC	540
	GCGTCACTAT CATTCTCCGT CTTCACCACC ACCACCACCA CCATACAAAA TAATCTCGTT	600
50	TTGCCATCTT CTCCCGTTTG AAAAAAAANN CAANTGTCCT TTTTATTTAA CCNAATCCAN	660
	GGGGTTTTTN TTAANATTTN AANAAANCNA ANTNTTTTCC CCCCCNTNTT GGTTNATGGC	720
55	CTATGGGTTT GTTTCTCTTC TTGGCTTTTC CCGG	780
	(2) INFORMATION FOR SEQ ID NO: 30:	814
60	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 742 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
65	(ii) MOLECULE TYPE: cDNA	
70	(vii) IMMEDIATE SOURCE: (B) CLONE: U-U126	

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:	
5	GGCACGAGGT TGTGCCTAAC AGAGAGAGAG AGAGACAGAC CGATAGCCTC CTCATTCACT	60
J	ATGGCGATCC GATCGCCAGC TTCGCTGCTG TTATTTGCGT TTCTGATGCT TGCGCTCACA	120
	GGAAGACTGC AGGCCGGGCG CAGCTCATGC ATTGGCGTCT ACTGGGGACA AAACACAGAC	180
10	GAGGGAAGCT TAGCAGATGC TTGTGCCACA GGCAACTACG AATACGTGAA CATCGCCACC	240
	CTTTTCAAGT TTGGCATGGG CCAAACTCCA NANATCAACC TCGCCGGCCA CTGTGACCCT	300
15	CGGAACAACG GCTGCGCGCG CTTAAGCAGC GAAATCCAGT CCTGCCAGGA GCGTGGAGTC	360
13	AAGGTGATGC TCTCCATCGG AGGTGGCGGG TCTTATGGCC TGAGTTCCAC CGAANACGCC	420
	AAGGACGTGG CGTCATACCT CTGGCACAGT TTCTTGGGTG GTTCTGCTGC TCGCTACTCT	480
20	CNACCCCTCG GGGATGCGGT TCTGGATGGC ATANACTTCA ACATCCCCGG AGGGAGCACA	540
	GAACACTATG ATGAACTTGC CGCTTTCCTC CNAGGGCTAC AACGAACAGG AAGCCGGAAC	600
25	CAAAAAAGTT TCACTTGAAT TGCTGCTCCC NCANTGTCCT TTCCCCGATT ACTGGCTTTG	660
	GCAACCCACT CCAAAACAAA TNTCTTCCNA CTTCCNTGTT GGGTTGCNAA NTTCCNTTCC	720
	CAANCAAACC CCTTTCNTTT GC	742
30	(2) INFORMATION FOR SEQ ID NO: 31:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 794 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: cDNA	
40 45	(Vii) IMMEDIATE SOURCE: (B) CLONE: U-U129	
+3	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:	
	GGCACGAGGG CGTGGCGGAG ATGGGGAGCT GGCGGGCTCT GTTGCAGCGG CGGCTGCTGT	60
50	TGCTCTCTGC TTTGGCGGTG GCTGTTCGTG TGAAGGCACT CAGCANANAC NATTTCCCCG	120
	CCGGCTTCAT TTTTGGCGCA GGCACCTCCG CTTATCAGGT ANAAGGTGCA GCTGCAGAGG	180
55	GGGGAANAAC ACCCAGCATT TGGGACACGT TTACGCATGC AGGGAGAACT TTCGACCAGA	240
	GCACCGGAGA CGTAGCAGCT GATCAGTATC ACAAGTACAA GGAAGATGTG AANCTGATGC	300
	ATGANATGGG CTTCGATGCT TACAGATTCT CCATCTCCTG GTCCANAGTT ATCCCCAATG	360
60	GTCGAGGGCC TGTGAATCCA CAAGGCTTGC GGTACTACAA CAACCTGATC GATGAGCTCN	420
	AAAGATATGG AATCCGAGCC TCATGTCACT CTTTACCACT TCGACCTTCC GCAAGCACTG	480
65	GAANACGAAT NCGCCGGGCA GCTGAACCCA AAGATCGTAN ANGACTTCAC CGCTTACGCC	540
	AACGTTTTGC TTCANCNAAT TTGGGGATCN AATCTAGCAC TGGATCNCCC ATCAATGAAC	600
	CAACATANAT CCCGTCCTCC GCCACNAATT CCGCATCTTC NCCCCTGGCC CCTGCTCTTT	660
70	ATCCTTNCG CCTCCAACTG CNCCAAGGGC NACTCCCCC CATTTNAAN CCCATNNNNT	720

- 38 -

	CCNCCCCCC CAATTAACCC NTTCTTGCTC TTCCCCCTTG CCTTCANCCA ACCCGCCCNT	78
	TTTCCNAAAA AANA	79
5	(2) INFORMATION FOR SEQ ID NO: 32:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 799 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: cDNA	
15	(vii) IMMEDIATE SOURCE: (B) CLONE: U-U130	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:	
	GGCACGAGCC GGCCTCAGGC ATATGGTGCG GTCGCTACAC GTGTTCAGGC AAGGCCGGGA	60
25	GCCGGCCAGG ATCATCAGGG AAGCACTGTC GAAGGCGCTG GTGAAGTACT ACCCCTTCGC	120
	GGGGCGGTTC GTGGACNATC CCGAGGGCGG CGGCGAGGTT CGTGTCGCTT GCACTGGCGA	180
30	GGGCGCTTGG TTCGTCNAGG CCAAGGCGGA CTGCAGCTTG GAGGACGTGA AGTACCTCGA	240
30	TCTCCCGCTC ATGATCCCTG AGGACGCGCT CCTGCCCAAG CCCTGCCCGG GACTGAACCC	300
	CCTCGACCTC CCTCTCATGC TGCAGGTGAC ANANTTCGTG GGCGGCGGAT TCGTGGTCGG	360
35	CCTCATCTCC GTCCATACCA TCGCCGACGG CCTCGGCGTC NTCCANTTCA TCAACGCCGT	420
	CGCCCGAAAT CGCCCGTGGC CTGCCNAANC CCACCGTGGA NCCTGCATGG TCCCGGGANG	480
40	TCNTACCCAA CCCACCTAAG CTGCCTCCCG GTGGCCCGCC CGTGTTTCCC CTCCTTCAAN	540
40	CTGCTCCACG CCACCGTCGA ACTATCCCCT GACCACATCC ATCACGTCAA GTCCCCACAC	600
	TTTGGANCTC ACCCGGCCAA CGCTGCTCTA CCTTCCACNT CCCCATCCCC AACCTGTTTG	660
45	NAATCCCGCA CGCCCCGCCN TCNACCTTGG AACCCAAGGC NTTTCCAANC TTTGCAACCC	720
	TTTTTTCCTT TCCTTCCCCC CCCAAAANAA CTTCCCCCCA CCCTTGTTTT TGCNCCCAAG	780
50	TTTTTTCCTT CCTTGCCCC	799
	(2) INFORMATION FOR SEQ ID NO: 33:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 759 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
60	(ii) MOLECULE TYPE: cDNA	
	(vii) IMMEDIATE SOURCE: (B) CLONE: U-U43	
65		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:	
70	GGAGGTTGTT GTTCATGTCC CTACTTCGGG GTCTCCTGTA CAGATTGAAT TTCAAGTAAC	60
	TAATAGCAGT GGCTACTTGG TGCTTCATTG GGGTGCAATT CATAATAGAA GGAATAACTG	120

	GTCACTTCCT TCTCGTCATC CTGATGGAAC AAAAGTATAC AAAAACCGAG CTCTCAGGAC	180
5	ACCTTTTAAA AAATCTGGTT CCACATCATC AGTAAAAATG GAGATTGATG ATCCTGAAAT	240
,	ACAAGCAGTT GAGTTTCTCA TATTTGACGA GTCAGAAAAC AAATGGTTTA AACATAATGG	300
	TCAGAATTTC CATGTCCAGT TATTAAAACA GGGCTATCAA AATCAAAATG TTTTGGCCTC	360
10	TGTAAATCCA AATGTTTCAC TGCCANAAAG AACTTGTGCA GATTCAAGCT TATCTTAGGT	420
	GGGANANAAA GGGTAGGCAA ACATATACAC CTGATCAAGA AAAGGATGAG TNTGAAGCAG	480
15	CTANAACTGA GTTTGCTANA AAAACTAAGT NNAAGTACTT CTGTANANGA NCTCCGATCT	540
.5	AAATTGACAA AAAACNCCAC TGCTGGAGCG GACAAATCCG TCAAAGTTGA AACTATCAAA	600
	AGTGGGATCC GGATGATCTT NTGCAAGTTA CANGCATACT TCCNATNGGA AAAACCGGGA	660
20	AACCATNTTA TCCCCCNGAA AAACACTNAT GGAATTGAAG AAACCAGGGA AANACTGCCC	720
	ATGAATTAAA TAAANGAACN CNCCTNCAAA CTNAGGGAA	759
25	(2) INFORMATION FOR SEQ ID NO: 34:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 785 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
30	(D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: CDNA	
35	(vii) IMMEDIATE SOURCE:	
	(B) CLONE: U-U70	
40	() 	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:	
	GGCACGAGAG AGAGAGAGA AGAGAGAGAG AGAGAGAG	60
45	AGAGTAATCG ATTTAGCGTG CAAAGTACTG CAGCAGAAGC CATGGCATCC ANGGCCTCAG	120
	CNTCGGCTGC CCTCTTCCTT GCTCTCAACC TTGTCTTCTT TGCACTCACC AGTGCTTGTG	180
50	GCACCACTTG CACCCCCGCC ACTAAGCCCC CACCGAGCTC TTCCCATGGC AAATGCCCCG	240
J U	TCGACACCCT CAAGCTGGCC TCCTGCGCCA ACGTGCTCAA TGGCCTGATC NNGGTCGGCG	300
	TCGGCAAGCT CCCGAAACAG CCGTGCGAGT GCTGCNCTCT GCTCGATGGC CTCGTCGACC TCGAGGCCGC CGTGTGCCTT TGCNCTGCTA TCANGGCCNA TGTCCTTGGC ATTCATCTCA	360
55	ACCTCCCCAT CNNCTTCAGC CNTCTCCTCA ACTACTGCGG TNAGAAGGCT CCCACCGGTT	420
	TCCAGTGCCC TTGAGCTCCC CCTGCGGATC ACATCHTCGA TCCTCTTTGC CCGTGGTGAA	480
60	TTTTNTTGAG CATTCCTTTG TGTCTTTACT TCCCTTTGTT TTTGGCTTTT TGATGACGAA	540
	AGTGTTGAGT GTTGATATGA AGGGCCANTG GCGCTTTCNT GTTAATGTTA CCTGTCNTTC	600
	CCTTTTTATT TCCACNNCTT GTTGANTTTC CCTCTCGGGT TTGTTAATGA AGATCNATGC	660
65	ATTCAATTNT TAATATTTCT GCTGCCTTCC AANAAAAAT ANNANTNCCT CCNNGAANTC	720
		78C
	TTCCT	785

5	(A) LENGTH: 784 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: CDNA	
10	(Vii) IMMEDIATE SOURCE: (B) CLONE: U-U16	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:	
	CGGCACGAGG AAANGACNAG CGATGGCAGC AGAATTGTCT CCCACGCTGA GCAAGAGCAT	60
20	CTTTGAAGGA GCCGGTGGAT CTTACTCTAC TTGGTCAGGT GCCGATCTCC CCCTTCTTAC	120
20	TGATGCAAAG CTCGGCGGAG GCAAGCTTGT CCTGAAACCA CTGGGCTTGG CGTTGCCTCA	180
	CTATTCCGAC TCATCGAAAG TCGGCTATGT TCTTGAAGGA AGAGCGGTGG TGGGGCTAAC	240
25	ACTCTATGGA GAGACCGAGC AGAGGATACT GCTGCTTGAG AAGGGAGATG TGGTAGCGGT	300
	GGTCATGGGG AGCCTCACGT GGTGGTACAA CGAGGAGGAG GACTCCGACT TCTCCATCGC	360
30	CTTCTTAGGC GATACCGCGA CAGCTGTGCG ACCGGGCGAC ATCGCCTACT TCTTCTTGGC	420
	AGGATCCCTA GGAGTGCTCC ATGGCTTTTC GACGGAATTC CTCANCAGGG CCTGCGGTAT	480
	AAGGGATGCG GAANCTGAAG AGCTCTTCGG AAGCCAACCT GGTACTCTAA TCATCNCACT	540
35	GCANCAAAAG CTGCCTGGCC TCANAAGCAT CCCGAGCTTG ACNGCGAAGG GATAGTCNTN	600
	AACNCTNANC GCGTTNCGGC ATATATCAAT GTNAANAGTG GTGGCTGTGC TGCGTCCGTG	660
40	ACACTTNATG AACTGGCCGC GCTGGGAAGA TCTGTTCTCC GTCNAACTCA CCANANTCNA	720
	ACCTAACCCC NTNCNCTTCC NGGGTTCTCC TTNATGCACT NTGCNCCTAT TTNTTTCCCA	780
	ANGC	784
45	(2) INFORMATION FOR SEQ ID NO: 36:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 817 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: cDNA	
55	(vii) IMMEDIATE SOURCE: (B) CLONE: U-U30	
60 ·		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:	
	CGGCACGAGA TATGGAGGTA TGÁTCGGGAG CTACTGGGAG CTCCGCTTTG GTGAACAACA	60
55	CGACGGCAAG AAGGGCTATG GATTCAAGGA GTGAAGGCCA TGGTACCGCA NAGGCGGGTC	120
	TTCCGGGCGT GCACCGAATT TTGCATCGGA TGAAAACCTT GGTCATCAGC ATATGGGGGC	180
70	TGGGTTCCAC CAAGGGAAAA GTTCGAATGC AAGTACCAGT GAGTCCCATG AGAGGGACTT	240
	GATCATGCAG AGGTATGATC GAAGCAGCTG GAGANTTGGA CTGCTCCANA GCTCATATTC	300

1.7

-41-

	GCTTAAGGGA GCCCGACAAG TCAGAGGACA AGGTCGAGTA AGCGAACGTT GCTACCCAAA	360
5	ATCAAGCATC AGTTANAATG GAGGTGGACT CANAGGAGTG CCACGGAAGA CATCTCTACT	420
J	GATTGTGAAG GAAAGGGATA CAGAGGCGAA NCGACGGATA NTANGGCCAT GGGCATGGCA	480
	GCGCCATGGT ACCGCANANG CGGGACTTCC GTGCAAGTCA TTGATCCCTT GCTCTCACGG	540
10	AGGGANANCG CTTGGTCCTG AAAGGGGCCN AAGAAGTGGA CATGCANANG CAATCTCCAA	600
	TTACCGAAAC ANGGCTGAAG GGCANAAGCC NANAAACTTC CTNAGAACGG TGTCAACAAT	660
15	TTCTCATCNA NATANCCGTA ATTAANGACT TCCGGTCATG CNANAATNCC CNACCNANGA	720
	ACCAANCAGG CNTACTTGTG CTGTNCTTTG CTACCCNNTG AATNGCGCCN GGTTNATNGA	780
	AAAAACGTCC TTCCCCAAGC AACCCTCTNT CAAAAAN	817
20	(2) INFORMATION FOR SEQ ID NO: 37:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 837 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: cDNA	
30	(vii) IMMEDIATE SOURCE: (B) CLONE: U-U40	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:	
	TTTTTTTTT TTTTTTTGG GTATCAGGCA AAGATGGATA CTTCCAGGTT TGCTATTTAA	60
40	GAACCATAGT CAGTCTTATG AGGAGAGACC ATACGTAATA CAATCTTTAA GATGACAAAA	120
	TCCATTCCTA CCAATACAAT GACCAAGCGA AAGGTACAAG GATAACGGGC AAAAGACTAA	180
45	ATTGCAACTA TATAAAATTC TGCTGCATTG TAGTAAATTC AACTGTGACG ACACGCCACC	240
	AGGATGAAGT CTATCTATAA ACCCACTTAT TGCTAGATGG ACGGTGTAAC AGAGCTAAAA	300
	CAGCAAAGTA GAATAAAAGA AACTGACAAC GCTTCCGCAT GCGCTCCACA TATGGAGCCA	360
50	GGCGGAGGTT GGGCAATTGG AGGAAATGAC NTTTCTGACG GTGTAACATA AAANAAATTT	420
	GTAACACCGT CAAGTACGAT TTCCCATCCT TCGGGTTGTG GCGTTCTGCT ACTTGGCATT	480
55	ACGTTAACAT CGAGTGCCGA CTTGGCAAGA CAGGACCCCA GCATCAGAAG TCAGTGTGTC	540
	AACCAAGGAA GAAGGCTTGG CCCCAAAGCT GGAGGCCCGT GCGTAACTGG CTGAACCCCT	600
	GCACCGGAAN GGGTGAAAAA AGCACCATTC AGAACAGGTC NCCTCCGACC TCCCAATTCC	660
60	AGTTCTTCCA CCNTGCTTTT GATCTGTGTC CACCTTTTTG TTACCTATTC CATCGAAGCN	720
	TANGGATTTT TAAAAATCCC GAAGGAAAGG AANTTCCNAT AATTGGTGCN CCAAANAAGG	78C
65	AAGATGGACN GAACTGTTGT TGGTTGCTCC TGTTCCTCCT TTGCAATGGA TTGGTCG	837
	(2) INFORMATION FOR SEQ ID NO: 38:	
70	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 799 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	

Y. 3.

	(b) TOPOLOGI: Unknown	
	(ii) MOLECULE TYPE: cDNA	
5	(vii) IMMEDIATE SOURCE: (B) CLONE: U-U108	
10		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:	
	GGCACGAGGC AGCTCAATCG ACCGACTCCT CCTCCTCCTC CTCCTCCTC TCTTGTTCTT	60
15	CTCATTCTAA TATAATTATC GCTTTTGGTG TGTACATCTT CTATAATTTG AGAGGATGGA	120
	GGCAGGATTG ATGGCGAAAC AAGCAGCAGC GGTTGCGAAG CCGAACGCGT TCCCCGCCCG	180
20	GAGCCTAGGG TTCGGGAGCT CGGTCAGGGG CGGATCCGGG ACCAGCAGGA TCGGGTTCGA	240
	GGCGCCCGCG AGCGTGGCAT GGAGGAAGCG GTCGATTCAG GTGGCCCGCC AAGGAGCCAT	300
	TCGGTCGGAG GTGGTCGTGG AANANAAAGC ATCNCCGCCC AAAAAGGATA AGGCCGGTCC	360
25	GGGTCGGCTC TACGTGGGTC TGCCCTTGGA CGTGGTCTCC GACGGCAACG TCNTCAACCA	420
	CGGCAAGGCC ATCGCCGCGG GTCTCCGCGC CCTCCGCCCT CCTCGGCGTT GATGGANTCN	480
30	AACTCCCCCA TCTCCTGGGG CGTTGGCGAT GGACTCCGGC GAATGGTCCT CCTACCTCCC	540
50	CCGTCNCCGC CATGGCGCGC GACNCCCGGC CTTCGCCTCC GCGTCTCCCT CCACCTCCAC	600
	TGCCANCGCC GCCCTCGCCT CCCCCTCCCC NAATCGGTCG AATCCNCCGC CGCTAACAAA	660
35	CCCCGAAATC CTATTCNCTG AACGCNCCGG CCGCCNCCNG TTGCCCAAAN TNGCCTTNTT	720
	CCTTTCCNCT TTGTTTNAAA AAAAACTCCC CNTTGTTCCT TCCAANCGGG NAGGAACCCC	780
40	CNAATGGAAA CCTTNCAAA	799
40	(2) INFORMATION FOR SEQ ID NO: 39:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 786 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
50	(ii) MOLECULE TYPE: cDNA	
	(vii) IMMEDIATE SOURCE: (B) CLONE: U-U128	
55	(b) Cholin. C Cl20	
J J	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:	
60	GGCACGAGGA AACGTCTCTC CCTCTCTCCA CTTCTCACAC CCCCGCCCCC GACTCAGCGA	60
00	ATCGACATTC TTGGCGTGTC AAGGAAACCT TTCTTTTATT TGCGAAGGAA CATGAGCAAT	120
	ACTGTTGGAC ACACCTTACC CCAGCAAGCT CTTTACCGGC CTTCTATCAA AGAAAATCAA	190
65	AGTAAAGCTC ATCAAGGAGT TTCTGCAAAC TTCTTGTGTG GAGTTCCATT AGGATCTAAG	240
	GTGGAAAATG CAGTGTCATA CAGCTCTAGG TCACTGCTTT CAACCGGATC CCTGGGAAAG	300
70	AAACTCATCA AAGGAATC. ACCAAAGCAA AATCCAAGCA TAGTCACTAT GACCCCTCGT	360
/V	GCTGTGTTGG CTGCANATCC TGCTTCAGAG CTAAGGAGAA AATTCAAGCT TGACACAAAT	420

Ť

	TCTGAATTGG AGGTTGTTGT TCATGTCCCT ACTTCGGGGT CTCCTGTNCA GATTGAATTT	480
5	CAAGTNACTA ACAGCAGTGG CTACTTGGTG CTTCNTTGGG GTGCAATTCA TAATANAAGG	540
,	AATAACTGGT CACTTCCTTC TCGTCATCCT GATGGAACAA AAGTTTNCCN AAACCCGAAC	600
	TCTCANGANA CCTTTTAAAA AATCTGGTTC CCCATCNTCC GTNAAAATGG AGATTGATGA	660
10	TCCTGAAATA CCAGCAGTNG AATTTCTCCT TANTTTTGNA ACAAATNCTC AAAAAAACCN	720
	AAATTGGGTT TTTAAAACNA TTAATGGGTC CCNAAATTTC CNTGTTCCNN TTTTTTTANA	780
15	AACAAG	786
	(2) INFORMATION FOR SEQ ID NO: 40:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 804 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
25	(ii) MOLECULE TYPE: cDNA	
	(Vii) IMMEDIATE SOURCE: (B) CLONE: U-D4	
30		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:	
	GGCACGAGAG ATAGCTGAAG TGACGTGAGG TGACTTCGAT TAGATCGAGA GAAATTTCTT	60
35	TGTGATTTTT GTGGACAATT CTCAATGGCT GCTGTAACAA ANTCACAATT CATCTCGAAA	120
	GGCTCATGCG CTGGCTATGG GGGTGTCGTC GACTCGGAGC CAAGGACCTT CCTAAACAGA	180
40	AGGGTTCTAC ACTTGAGGAA CCAAACCACC GCTTACGAAG GATTGAGATC TCGAAATGTG	240
	GTTGATTTGA TTCAGATGCC GTCTAATGCC AAGGTGATTT CAAGGAAAAC TGTGAGGGGA	300
45	ACTCAGAATC CTAGTCGTAN ACCTTGGGCT GTTGTCATTT GTGGAAAAGG GATGAACATA	360
73	GTCTTTGTCG GCGCTGANAT GGCTCCCTGG AGTAAAACCG GANGGACTCG GTGATGTTCT	420
	TGGAGGACTG CCACCGGCCA TGGCTGCAAA TGGACACAGA NTGATGACTA TAGCTCCACC	480
50	CTATGATCAG TACAAGGATG GGTGGGATAC AAATGTCCTG GCTGAATTAA AAGTTGGAAA	540
	TGAAATTGAA ANAATCCGCT TTCTTCCACT GCTATAAAAA AAGAATTGAC AGGGTTTTCA	600
55	TTGATCACCT TTGTTTCTTG AAAANGTGTT GGGAAAAACT GGAAGAATGA AATTTTGGTC	660
	CTNTCCCCGG AACTGATTTT NAAAAACANC CCCTAAANTT TANCCTTTTN TNCCCNGCCN	720
	CTTTTGGAAA CTCCCNGGAT NCTGGTTTTT TNCCACCCCC NAAAANTTTC CTNGAACCTN	780
60	TGGGGGAAAN TTTTTTTTT TTTT	804
	(2) INFORMATION FOR SEQ ID NC: 41:	
65	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 826 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
70	(ii) MOLECULE TYPE: cDNA	

- 44 -

(vii) IMMEDIATE SOURCE: (B) CLONE: U-D10

70

5		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:	
10	GGCACGAGAG ATAGCTGAAG TGACGTGAGT GGACAATTCT CAATGGCTGC TGTAACAAAG	60
	TCACAATTCA TCTCGAAAGG CTCATGCGCT GGCTATGGGG GTGTCGTCGA CTCTGAGCCA	120
	AGGACCTTCC TAAACAGAAG GGTTCTACAC TTGAGGAACC AAACCACCGC TTACGAAGGA	180
15	TTGAGATCTC GAAATGTGGT TGATTTGATT CAGATGCCGT CTAATGCCAA GGTGATTTCG	240
	AGGAAAACTG TGAGGGGAAC TCAGAATCCT AGTCGTANAC CTTGGGCTGT TGTCATTTGT	300
20	GGAAAAGGGA TGAACATAGT CTTTGTCGGC GCTGANATGG CTCCCTGGAG TAAAACCGGA	360
20	GGACTCGGTG ATGTTCTTGG AGGACTGCCA CCGGCCATGG CTGCAAATGG ACACAGAAGT	420
	GATGACTATA GCTCCACGCT ATGATCAGTA CAAGGATGGG TGGGATACAA ATGTCCTGGC	480
25	TGANTTAAAA GTTGGAAATG AAATTGAAAG AATCCGCTTC TTCCACTGCT ATNAAANAAG	540
	AATTGACAGG GTTTTCATTG ATCATCCTTT GTTTTCTTGA AAANGTGTTG GGAAAAACTG	600
30	GANGAATGAT ATNTGGTCCT GTCCCNGGAA CGGATTATTN AAAACCACCC NCTTAANATT	660
50	TACCCTTTTG TGCCCANGCA NCNTTTGGAA NCTCCCAAGG ATTCTGGATN TTTAACNACN	720
	NCCNAATACT TTTCCTGGAA CCATTTNGGG GANAANNTTG TTNTTTGTTG CNAATTAATT	780
35	GGCNCCCTGG TCCTCCTNCC TGCTACTTAA AAATTTTNTT TCNTNT	826
	(2) INFORMATION FOR SEQ ID NO: 42:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 813 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
45	(ii) MOLECULE TYPE: cDNA	
50	(vii) IMMEDIATE SOURCE: (B) CLONE: U-D13	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:	
55	GGCACGAGCT GAGGGAGTGA GGGAAAGAGA TAGCTGAAGT GACGTGAGGT GACTTCGATT	60
	AGATCGAGAG AAATTTCTTT GTGATTTTTG TGGACAATTC TCAATGGCTG CTGTAACAAA	120
60	GTCACAATTC ATCTCGAAAG GCTCATGCGC TGGCTATGGG GGTGTCGTCG ACTCGGAGCC	180
00	AAGGACCTTC CTAAACAGAA GGGTTCTACA CTTGAGGAAC CAAACCACCG CTTACGAAGG	240
	ATTGAGATCT CGAAATGTGG TTGATTTGAT TCAGATGCCG TCTAATGCCA AGGTGATTTC	300
65	AAGGGAAAAC TGTGAGGGGA ACTCAGAATC CTAGTCGTAG ACCTTGGGCT GTTGTCATTT	360
	GTGGAAAAGG GATGAACATA GTCTTTGTCG GCGCTGANAT GGCTCCCTGG GAGTAAAACC	420
70	GGAGGACTCG GTGATGTTCT TGGAGGACTG CCACCGGGCC ATGGCTGCAA ATGGACACAG	480

AAGTGATGAC TATAGCTCCA CGCTATGATC AGTACAAGGA TGGGTGGGAT NCAAATGTCC

14 . Y

- 45 -

	TGGCTGAATT AAAAGTTGGG AAATGAANTT GAAAGAATCC GCTTCTTCCA CTGCTATAAA	600
5	ANAAGAATTG ACAGGGTTTT CATTGATCAC CTTTGTTCTT GAAAAGGTGT GGGGAAAAAC	660
,	TGGAAGAATG ATATTTGGTC CTGTCCCNGG ACTGATTTNA AAACACCACC TAAAATTACC	720
	TTTTGTNCCN GCNNCTTTGG AACCNCCCNG GATCTNGATN TTANCACCCC CAANTCTTAT	780
10	CCTGGAACTT TTGGGGNAAA NTTTGTNTTT GTT	813
	(2) INFORMATION FOR SEQ ID NO: 43:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 805 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
20	(ii) MOLECULE TYPE: CDNA	
25	(vii) IMMEDIATE SOURCE: (B) CLONE: U-D66	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:	
30	GGCACGAGAA GAGATAGCTG AAGTGACGTG AGTGGACAAT TCTCAATGGC TGCTGTAACA	60
	AAGTCACAAT TCATCTCGAA AGGCTCATGC GCTGGCTATG GGGGTGTCGT CGACTCGGAG	120
35	CCAAGGACCT TCCTAAACAG AAGGGTTCTA CACTTGAGGA ACCANACCAC CGCTTACGAA	180
	GGATTGANAT CTCGAAATGT GGTTGATTTG ATTCAGATGC CGTCTAATGC CAAGGTGATT	240
	TCAAGGAAAA CTGTGAGGGG AACTCACAAT CCTAGTCGTA NACCTTGGGC TGTTGTCATT	300
40	TGTGGAAAAG GGATGAACAT AGTCTTTGTC GGCGCTGAGA TGGCTCCCTG GANTAAAACC	360
	GGAGGACTCG GTGATGTTCT TGGAGGACTG CCACCGGCCA TGGCTGCAAA TGGACACAC	420
45	GTGATGACTA TAGCTCCACG CTATGATCAG TACAAGGATG GGTGGGATAC AAATGTCCTG	480
	GCTGANTTAA AANTTGGAAA TGAAATTGAA AAGANTCCGC TTCTTCCACT GCTATAAAAN	540
	AAGAATTGAC AGGGTTTTCA TTGATCATCC TTTGTTTCTT GAAAAAGTGT GGGGAAAAAC	600
50	TGGGAAGAAT GATATNTGGT CCTGTCCCNG GAACTGATTA TAAAACACCA GCTAANATTA	660
	CCTTTTGTTG CCAGCAACTT TGGAACCCCN AGGATTCTGG ATNTTACAAC ACNAATACTA	720
55	TTCTGGAACA TTTGGGGAAA AATTGTTTTT GTTNCCAATG ANTGGCNCAC TGGTCCCNTC	780
	CCTNCCTACT TAAAAANTTT TTTCC	805
60	(2) INFORMATION FOR SEQ ID NO: 44:	
65	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 790 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: cDNA	
70	(Vii) IMMEDIATE SOURCE: (B) CLONE: U-D111	

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:	
5	GGCACGAGAA GAGATAGCTG AAGTGACGTG AGTGGACAAT TCTCAATGGC TGCTGTAACA	60
	AAGTCACAAT TCATCTCGAA AGGCTCATGC GCTGGCTATG GGGGTGTCGT CGACTCTGAG	120
10	CCAAGGACCT TCCTAAACAG AAGGGTTCTA CACTTGAGGA ACCAAACCAC CGCTTACGAA	180
10	GGATTGAGAT CTCGAAATGT GGTTGATTTG ATTCAGATGC CGTCTAATGC CAAGGTGATT	240
	TCGAGGAAAA CTGTGAGGGG AACTCAGAAT CCTAGTCGTA GACCTTGGGC TGTTGTCATT	300
15	TGTGGAAAAG GGATGAACAT AGTCTTTGTC GGCGCTGANA TGGCTCCCTG GAGTAAAACC	360
	GGAGGACTCG GTGATGTTCT TGGAGGACTG CCACCGGCCA TGGCTGCAAA TGGACACAGA	420
20	GTGATGACTA TAGCTCCACG CTATGATCAG TACAAGGATG GGTGGGATAC AAATGTCCTG	480
20	GCTGAGTTAA AAGTTGGAAA TGAAATTGAA AGANTCCGCT TCTTCCACTG CTATAAAAGA	540
	AGANTTGACA GGGTTTTCAT TGATCATCCT TTGTTTCTTG ANAAGGTGTG GGGAAAAACT	600
25	GGAAGAATGA TATATGGTCC CTGTCNCAGG AACNGATTAT GAANACAACC AGCTAAGATT	660
	AACCTTTTGT TGCCAGCACT TTGGGAACCN CAAGGATCCT GGATCTTAAC AACNCAANTC	720
30	TATTCTGGAC CATATGGGGA CAAATTGTTT TGTTGCAAAT GATGGCACCT GGTCCNNTCC	780
50	ATGCTACTTA	790
	(2) INFORMATION FOR SEQ ID NO: 45:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 813 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
40	(D) TOPOLOGY: unknown	
40	(ii) MOLECULE TYPE: CDNA	
45	(Vii) IMMEDIATE SOURCE: (B) CLONE: U-D112	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:	
50	TTTTTTTTT TTTTTTTTG GAGCATAATA GCAATTTATT CAGGAGGATC AAACTCAAAC	60
	ACTATAACAT AGACAGTAGT CACTTTCAGG GAGTGGCCAC ATTTTCCTTT GCAAGAGGAG	120
55	CTATTTCATC AGCATCGATG CCGGCTTCAC TACCAGCAGC TCCTAAGCTT AGGANAAATT	180
	GCTCCCACTT CTTAGCAGGT CCCTTCCAGG AGAGGTCTTG AGTCATGCAG TTCTGTATCA	240
	TCTCAGCAAA TGCAGGTGTG CCGTAAACTT TAAGGGCCCT TTTCACTGTC TGAATGACTT	300
60	TTTGTACATC ATCTTTATCG ACAACATCAC AATCAGGATT GAAGGGACCC ATATGAAACC	360
	CTGTGATGCC TTCTATGACA GTGTCAGCAA GTCCACCAGT TGTTGCGCAC ATGGGGGGAA	420
65	TTCCATATCG CATGCCCTGA AAGCTGGATA AGGCCACAAG GTTCGAATCT GCTGGTAAGA	480
	NCAAGAAGAT CTGCTCCAGC CATGATTTCA TGANCCAAAG GTGCATTAAA CTTCATATGT	54C
	TOTAL STREET STREET STREET STREET STREET STREET	340
70	GCTCTCACTT TATTGGGAAA CATATCTTCA AGTTGTGCAA GCTGACGCTC CAACANCTTC	600

	CGAAAATATC CGAACCTTTC TGCTCTCTAA TCTCCCTATA AAGGNTATAA CAGGGATTTC	720
5	CNGTCAACAG GTTAACCAAA TTCAACTTGT TAGGNTTCCC TTAATCCAAA GGTTTGCACC	780
,	CNNCCCATTT GTTGCTCNTA ATTGANAAAA ATT	813
	(2) INFORMATION FOR SEQ ID NO: 46:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 808 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
15	(D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: cDNA	
20	(Vii) IMMEDIATE SOURCE: (B) CLONE: U-D39	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:	
	GGCACGAGCG AGTTTTTTTT TTTTTTTTTT GCTGTGATGA TATTATGCAT CTTATTAGTT	60
	GGTTGCACCA CTTCTATTAC ATCACTCAAC AGTATTAGCC CAAGANAAGG CTAATACCTT	120
30	CNCATCACTC TTGACATCTT ATTTGTATTG TAGGANACTA GTATATATAT CTATATGCGT	180
	GGTTGCCTGC ACNAGGGCGG CTTATTAGTG GCGTCAGTGA TCTCAAGGGC AGAANACAAC	240
35	CCTGTANTTG GTGCCGCCGG GGCAGGTGAA GGTGCTCGTC TGATCGTCCT TGGGATANCT	300
	GTAGGCGTCG GGGCAGTTTC TCTTGAANAA CCGGGAGTAT TCGGTCGGGC TGCAGCTGCC	360
	GGAGTTGCAA CAGTACTGGT CCGTCTTGAA CACGGTGCAG GGGTTGTTGC ANCCGCCCGG	420
40	CGCCTTCANC GCCCCGGGGC ACTGCCCGTT GATNTCCGCC GCGCACCGGA TGCCGCGGCA	480
	NCCGCCTGAC NTGGGGCTNA ATCCCATTGG CACGTTGAAA CCGTCNACCA AGGGAAATTT	540
45	CAAAAAATCC AAGTTGTTGA ACTGGTTGAA CGCCAACTCC NCCAGGGTNT TGGGCCGGTT	600
	GCCNTACCCC GTGCATNACA ACACCCCGCC GCANTCCCCT TCTGGCACCG CCGCNTCCGC	660
	TCCCCTCAAA AGAACACCCG TGCGGCCCAA AATCCGGNCC CCCGGTGGTT CCCCCTTTCN	720
50	CTTTAANGGT CCCCAATGCC CCTGNTTTAA CTGNCTCCCC CCCANGCNCG GCCCCGGCCC	780
	ACNCTTINIT AAAACATCNG INCCNAAT	808
55	(2) INFORMATION FOR SEQ ID NO: 47:	
60	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 809 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: cDNA	
65	(vii) IMMEDIATE SOURCE: (B) CLONE: U-D50	
70	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:	

- 48 -

		-
	GGCACGAGTG TGCCTAACAG AGAAAGAGAG ACCGATAGCC TCCTCATTCA CTATGGCGAT	60
	CCGATCGCCA GCTTCGCTGC TGTTATTTGC GTTTCTGATG CTTGCGCTCA CAGGAAGACT	120
5	GCAGGCCGGG CGCAGCTCGT GCATTGGCGT CTACTGGGGA CAAAACACAG ACGAGGGAAG	180
	CTTAGCAGAT GCTTGTGCCA CAGGCAACTA CGAATACGTG AACATCGCCA CCCTTTTCAA	240
10	GTTTGGCATG GGCCAAACTC CANAGATCAA CCTCGCCGGC CACTGTGACC CTCGGAACAA	300
	CGGCTGCGCG CGCTTAAGCA GAGAAATCCA GTCCTGCCAG GAGCGTGGAG TCACGGTGAT	360
	GCTCTCCATC GGAGGTGGCG GGTCTTATGG CCTGAGTTCC ACCGAAGACG CCAAGGACGT	420
15	GGCGTCATAC CTCTGGCACA GTTTCTTGGG TGGTTCTGCT GCTCGCTACT CTCGACCCCT	480
	CGGGGATGCG GTTCTGGATG GCATANACTT CAACATCNCC GGAGGGAGCA CAGAACACTA	540
20	TGATGAACTT GCCGCTTTCC TCAAGGGCTA CNACGAACAG GAAGCCGGAA CGAAAAAANT	600
20	TTTACTTGAA TGCTGCTCCC NCANTGTCCT TTCCCGGATT ACTGGCTTGG CACCCACTCA	660
	NAAAANATCT CTTCCNACTT CCNTGTGGGT TGCANTTCCT CCAANAACCC TTCCTTGCCN	720
25	TTTCTCCCCA AAACCTATCC ATCTTGCAAT TCCTTTCACA AATTGGGTCN TNTCCNTCCC	780
	NGCCCCNAAA ACTTTTCCC TNGGGCTCC	809
30	(2) INFORMATION FOR SEQ ID NO: 48:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 809 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: cDNA	
40	(Vii) IMMEDIATE SOURCE: (B) CLONE: U-D86	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:	
	GGCACGAGCC ACAAGCTTGC CTTTGGTTGT GCCTAACAGA GAGAGAGAGA GAGACAGACC	60
50	GATAGCCTCC TCATTCACTA TGGCGATCCG ATCGCCAGCT TCGCTGCTGT TATTTGCGTT	120
	TCTGATGCTT GCGCTCACAG GAAGACTGCA GGCCCGGCGC AACTCATGCA TTGGCGTCTA	180
	CTGGGGACAA AAGACAGACG AGGGAAGCTT AGCAGATGCT TGTGCCACAG GCAACTACGA	240
55	ATACGTGAAC ATCGCCACCC TTTTCAAGTT TGGCATGGGC CAAACTCCAG AGATCAACCT	300
	CGCTAGCCAC TGTGACCCTC AGAACAACGG CTGCGCGCGC TTAAGCAGCG AAATCCAGTC	360
60	CTGCCAGGAG CGTGGAGTCA AGGTGATGCT CTCCATCGGA GGTGGCGGGT CTTATGGCCT	420
	GAGTTCCACC GAAGACGCCA AGGACGTGGC GTCATACCTC TGGCACAGTT TCTTGGGTGG	480
	TTCTGCTGCT CGCTACTCTC GACCCCTCGG GGATGCGGTT CTGGATGGCA TAAACTTCAA	540
65	CATCNCCGGA GGGAGCACAG AACACTATGA TGAACTTGCC GCTTTCCTCA AGGGCTACAA	600
	CGANCAGGAA GCCGGAACGA AAAAAGTTCA CTTGAATGCT GCTCCCCANT GTCTTTCCCG	660

GATTACTGGC TTGGCAACGC NCTCCAAAAC AAATCTCTTC CACTTCCTGT GGGTGCANTC

CTCCACAAAC CTTCNTGCAT TCTCCCCAAA CCTATCAATC TTGCNAAATG CGTTCAACAA

70

720

	TTNGGGTCTT TTCATCCCCG CCCAAAACT	809
5	(2) INFORMATION FOR SEQ ID NO: 49:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 785 base pairs	
10	(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: CDNA	
15	(vii) IMMEDIATE SOURCE: (B) CLONE: U-D90	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:	
	GGCACGAGGA GAGACCGATA GCCTCCTCAT TCACTATGGC GATCCGATCG CCAGCTTCGC	60
	TGCTGTTATT TGCGTTTCTG ATGCTTGCGC TCACAGGAAG ACTGCAGGCC GGGCGCAGCT	60 120
25	CGTGCATTGG CGTCTACTGG GGACAAAACA CAGACGAGGG AAGCTTAGCA GATGCTTGTG	180
	CCACAGGCAA CTACGAATAC GTGAACATCG CCACCCTTTT CAAGTTTGGC ATGGGCCAAA	240
30	CTCCAGAGAT CAACCTCGCC GGCCACTGTG ACCCTCGGAA CAACGGCTGC GCGCGCTTAA	300
	GCAGAGAAAT CCAGTCCTGC CAGGAGCGTG GAGTCACGGT GATGCTCTCC ATCGGAGGTG	360
35	GCGGGTCTTA TGGCCTGAGT TCCACCGAAG ACGCCAAGGA CGTGGCGTCA TACCTCTGGC	420
33	ACAGTTTCTT GGGTGGTTCT GCTGCTCGCT ACTCTCGACC CCTCGGGGAT GCGGTTCTGG	480
	ATGGCATANA CTTCAACATC GCCGGAGGGA GCACAGAACA CTATGATGAA CTTGCCGCTT	540
40	TCCTCAAGGC CTACAACGAG CAGGAAGCCG GAACGAAAAA AGTTTACTTG AATTGCTGCT	600
	CCGCANTATC CTTTCCNGAT TACTGGCTTG GCAACNCNCT CCAAAAAANA TCTCTTCCAC	660
45	TTCCTGTTGG GTGCAGTTCT TCCAANAACC CNTTCNTGCC ATTTCTCCCC AAAACGCTTT	720
	CCATCTTTGC AAATGCCTTT CAACAATTGG GGTCTTGTTC CNNCCCTGCC CCAAAAACTG	780
	TTCCT	785
50	(2) INFORMATION FOR SEQ ID NO: 50:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 813 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: cDNA	
60	(vii) IMMEDIATE SOURCE: (B) CLONE: U-D93	
65	•	
03	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:	
	GGCACGAGCG ATAGCCTCCT CATTCACTAT GGCGATCCGA TCGCCAACTT CGCTGCTGTT	60
70	ATTTGCGTTC CTGATGCTTG CGCTCACGGG AAGACTGCAG GCCCGGCCCA GCTCATGCAT	120

	TGGCGTCTAC TGGGGACAAA ACACCGACGA GGGAAGCTTA GCAGATGCTT GTGCCACAGG	180
	CAACTACGAT TACGTGAACA TCGCCACCCT TTTCAAGTTT GGCATGGGCC AAACTCCAGA	240
5	GATCAACCTC GCCGGCCACT GTGACCCTCG GAACAACGGC TGCGCGCGCT TGAGCAGCGA	300
	AATCCAGTCC TGCCAGGAGC GTGGCGTCAA GGTGATGCTC TCCATCGGAG GTGGCGGGTC	360
10	TTATGGCCTG AGTTCCACCG AAGACGCCAA GGGAAGTAGC GTCATACCTC TGGCACAGTT	420
	TCTTGGGTGG TTCTGCTGCT CGCTACTCGA GACCCCTCGG GGATGCGGAA CTGGATGGCA	480
	TANACTTCAA CATCGCCGGA GGGAGAACAG AACACTATGA TGAACTTGCC GCTTTCCTCA	540
15	AGGCCTACAA CGANCAGGAA GCCGGAACNA AAAAAGTTCA CTTGAATTGC TGCTCCGCAG	600
	TGTCCTTTCC CGGATTACTG GCTTGGCAAC GCACTCAGAA CANATCTCTT CNACTTCCTG	660
20	TGGGTGCAAT TTCCTCCACA ANCCTTCCNT GCCATTTCTC CCAAAAAGCT ATCNATCTTG	720
	CAAATGCGTT CNACAATTGG GTCTTTTCCA NCCTGCNCAA AACTGTTCCT TGGGCTCCCG	780
	CTGCCCCTGA AGGTGCNCCA ATTGGTGGCT NCT	813
25	(2) INFORMATION FOR SEQ ID NO: 51:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 819 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown 	
	(ii) MOLECULE TYPE: cDNA	
35	(vii) IMMEDIATE SOURCE: (B) CLONE: U-D61	•
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:	
	GGCACTCAGG AACTCCAACA TCCAAGTCCT GTTGGATGTC CCCCGATCCG ACGTGCAGTC	60
45	ACTGGCCTCC AATCCTTCGG CCGCCGGCGA CTGGATCCGG AGGAACGTCG TCGCCTACTG	120
	GCCCAGCGTC TCCTTTCGAT ACATAGCTGT CGGAAACGAG CTGATCCCCG GATCGGATCT	180
50	GGCGCAGTAC ATCCTCCCCG CCATGCGCAA CATCTACAAT GCTTTGTCCT CGGCTGGCCT	240
	GCAAAACCAG ATCAAGGTCT CGACCGCGGT CGACACGGGC GTCCTCGGCA CGTCCTACCC	300
	TCCCTCCGCC GGCGCCTTCT CCTCCGCCGC CCAGGCGTAC CTGAGCCCCA TCGTGCAGTT	360
55	CTTGGCGAGT AACGGAGCGC CGCTCCTGGT CAATGTGTAC CCTTATTTTA GCTACACCGG	420
	CAACCCGGGA CAGATCTCGC TGCCCTACGC CCTGTTCACG GCCTCCGGCG TCGTCGTGCA	480
60	GGATGGGCGA TTCANCTATC AGAACCTGTT CGACGCCATC GTCGACGCGG TCTTCGCGGC	540
	GCCTGGAAAA AATGGGAAGG GCGAACGTGG CGGTGGTGGT GTCCGAAAAC GGGTGGCCGT	600
	CEGCGGGCGG AAGAACCCNA AACNAACACC ANCAACNCEG CCGGAANTTT CAACCANAAC	660
65	TTGATCAGGC ATGTTNGGCG GAAGAACCCC AAGGAAAACC AGGGAAGGAA ATCAAGGCTT	720
	CNTNTTCCAA AANTTTCCAC CAAAAACCNA AAGGTGGANG GATCCAACAA AACTTTGGCC	780
70	TGTTTTATCC CAANNAACAN CCCNTCTTAC CNAATAACT	819
	(2) INFORMATION FOR SEC ID NO. 52.	

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 794 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: cDNA	
10	(vii) IMMEDIATE SOURCE: (B) CLONE: U-D63	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:	
	GGCACGAGGG ATTATAAAAA GAAACTCGCA CTCAGCCAGA TTGACTCAAG CATGAAGGTT	60
20	GCATCTTTCG AATGTTCCTT TTTTTTCCAA CATCTTTGA ATGTTACATG ACAATCATGA	120
	CGCCGTGCAT ACAATGATAC CTCTGATAGG GTTGAATGCA CAAACCACTC ATCGTGCTAT	180
	ATTGCAAGTG CTTATGTTTG TATTCATTTT CTTATAATTT CAATGTGAGA GTTACCTTAG	240
25	GTTCATATTA NATTTATATA ATATTGGGCA TAGATTTTTT TGTCATTGTT TGTGATCTGC	300
	AATTTCATTA GGTCATCGAC CATATTATGG TAAATTTAAT TTACTAAATT ATATCTTGAG	360
30	TTTATTGCTT TGCATATTTT GTGCTGGAAA CCATGCCAAT CCAACTCCTT TGCAAAACTT	420
	AAGATAATTA AAGGAGATAT TGAGGATGCC GACTGCTTTA GGTTATTTGC ATTANACAAT	480
2.5	AAACGCCCGT GAAATGGAAA TCATGCAAAG CTTTGCATGG AGAATATGTT NATAGAGATA	540
35	GACATGAAGA CATGAATATG CTTTCTTGAT GAACAACGAT GTTCACNTGT TTACTGCATG	600
	CATGATACAT CCAATGTTCT AGGCTTGTTG GCAATCATTT TATTCNAAAA ATTGTCTGTT	660
40	TCTCTNCCNC CATAAGGTTA GCTTGTGGAA AATGTTCAAC TTTGGGCNCA NATGATCCGT	720
	TTTAGCAAAA TCCCNCCATT CCTATTTTT TCCGGAATCC NNTTGGNAAA ANATCCTNAC	780
45	ATACTATTC CACA	794
45	(2) INFORMATION FOR SEQ ID NO: 53:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 798 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
55	(ii) MOLECULE TYPE: cDNA	
60	(vii) IMMEDIATE SOURCE: (B) CLONE: U-D65	
	(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 53:	
65	GGCACGAGGC CCGTAGAGCG AGTGCTGAGA TGGCTTTGAG GGCCTTCTTC CCCCTCTGCA	60
CO	TOGOTOTOGT GGTGACGCTC TCACCTCTGT GTGATGCCAC TTCGCCTTAC TACACCATCA	120
	CACCGCCCAC CCCCGTGGCC AAGCCGCCTT CAGTTGAACC ACCACCCTAC CACGGCCCTC	180
70	CGACGACCCA CCCTAAGCCA CCGAGTCATG GTGGCCAACC TCCGTCCCAC CATCACCCAA	240

- 52 -

	CACCAATCTA CGGTGCACCC CCTCCGCAAC ACCACCACCA CCACCAACAC CACCACCAAC	300
	CTGCACCACC AACTCACGCA GAACACCCTC CGTACTACCA CATGCCTTCC CCGCCGCCGC	360
5	ATGGCCAGCA CCCGTCACATG ATTATCCCGT ACCTCCTGCT CACAAGCCCC	420
	GAACTCCGCC GCCGGTTTAC AAGTCTCCAC CACCGACCCA CCGTCCTTAC CCTCCATCGA	480
10	CGCCACCCCA CCATCCGACG CACCCGCCTT CTCAGCCGAC GCCGTCATAC AAGGCCCCGC	540
10	CACCATACAA GAACATCCCT GANCATCTCC ACCGCCGCGT CACTATCATT CTCCGTCTTC	600
	ACCACCANCA CAACCACCAT NCAAATAGTC TCGTTTGCAT CTCTCCGTTG AANATGAACC	660
15	AATGTCNTTT AATAACGATC AGGGTTTCAA ATAAAAACNA ATTTCCGCCA TTGTAATGCT	720
	ATGGTTGTTC TCTCTGCTTC CCGGGGAAAG TTTCTTGGGT CATNTTAACC NCCTCCTAAT	780
20	GTTCNGCTCT TNNTANAA	798
20	(2) INFORMATION FOR SEQ ID NO: 54:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 824 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
30	(ii) MOLECULE TYPE: cDNA	
	(vii) IMMEDIATE SOURCE:	
	(R) CIONE: II-DRA	
35	(B) CLONE: U-D84	
35		
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:	60
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54: GGCACGAGCG CCCACCCCG TGGCCAAGCC GCCTTCAGTT GAACCACCAC CCTACCACGG	60 120
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54: GGCACGAGCG CCCACCCCCG TGGCCAAGCC GCCTTCAGTT GAACCACCAC CCTACCACGG CCCTCCGACG ACCCACCCTA AGCCACCGAG TCATGGTGGC CAACCTCCGT CCCACCATCA	120
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54: GGCACGAGGG CCCACCCCGG TGGCCAAGCC GCCTTCAGTT GAACCACCAC CCTACCACGG CCCTCCGACG ACCCACCCTA AGCCACCGAG TCATGGTGGC CAACCTCCGT CCCACCATCA CCCAACACCA ATCTACGGTG CACCCCCTCC GCAACACCAC CACCACCACC AACACCACCA	120 180
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54: GGCACGAGCG CCCACCCCG TGGCCAAGCC GCCTTCAGTT GAACCACCAC CCTACCACGG CCCTCCGACG ACCCACCCTA AGCCACCGAG TCATGGTGGC CAACCTCCGT CCCACCATCA CCCAACACCA ATCTACGGTG CACCCCCTCC GCAACACCAC CACCACCACC AACACCACCA CCAACCTGCA CCACCAACTC ACGCAGAACA CCCTCCGTAC TACCACATGC CTTCCCCGCC	120 180 240
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54: GGCACGAGGG CCCACCCCGG TGGCCAAGCC GCCTTCAGTT GAACCACCAC CCTACCACGG CCCTCCGACG ACCCACCCTA AGCCACCGAG TCATGGTGGC CAACCTCCGT CCCACCATCA CCCAACACCA ATCTACGGTG CACCCCCTCC GCAACACCAC CACCACCACC AACACCACCA CCAACCTGCA CCACCAACTC ACGCAGAACA CCCTCCGTAC TACCACATGC CTTCCCCGCC GCCGCATGGC CAGCACCCGT CACCACCGTC ACATGATTAT CCCGTACCTC CTGCTCACAA	120 180 240 300
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54: GGCACGAGCG CCCACCCCCG TGGCCAAGCC GCCTTCAGTT GAACCACCAC CCTACCACGG CCCTCCGACG ACCCACCCTA AGCCACCGAG TCATGGTGGC CAACCTCCGT CCCACCATCA CCCAACACCA ATCTACGGTG CACCCCCTCC GCAACACCAC CACCACCAC AACACCACCA CCAACCTGCA CCACCAACTC ACGCAGAACA CCCTCCGTAC TACCACATGC CTTCCCCGCC GCCGCATGGC CAGCACCCGT CACCACCGTC ACATGATTAT CCCGTACCTC CTGCTCACAA GCCCCGAACT CCGCCGCCGG TTTACAAGTC TCCACCACCG ACCCACCGTC CTTACCCTCC	120 180 240 300 360
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54: GGCACGAGGG CCCACCCCG TGGCCAAGCC GCCTTCAGTT GAACCACCAC CCTACCACGG CCCTCCGACG ACCCACCCTA AGCCACCGAG TCATGGTGGC CAACCTCCGT CCCACCATCA CCCAACACCA ATCTACGGTG CACCCCCTCC GCAACACCAC CACCACCACC AACACCACCA CCAACCTGCA CCACCAACTC ACGCAGAACA CCCTCCGTAC TACCACATGC CTTCCCCGGCC GCCGCATGGC CAGCACCCGT CACCACCGTC ACATGATTAT CCCGTACCTC CTGCTCACAA GCCCCGAACT CCGCCGCCGG TTTACAAGTC TCCACCACCG ACCCACCGTC CTTACCCTCC ATCGACGCCA CCCCACCATC CGACGCACCC GCCTTCTCAG CCGACGCCGT CATACAAGGC	120 180 240 300 360 420
40 45 50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54: GGCACGAGGG CCCACCCCG TGGCCAAGCC GCCTTCAGTT GAACCACCAC CCTACCACGG CCCTCCGACG ACCCACCCTA AGCCACCGAG TCATGGTGGC CAACCTCCGT CCCACCATCA CCCAACACCA ATCTACGGTG CACCCCCTCC GCAACACCAC CACCACCAC AACACCACCA CCAACCTGCA CCACCAACTC ACGCAGAACA CCCTCCGTAC TACCACATGC CTTCCCCGGC GCCGCATGGC CAGCACCCGT CACCACCGTC ACATGATTAT CCCGTACCTC CTGCTCACAA GCCCCGAACT CCGCCGCCGG TTTACAAGTC TCCACCACCG ACCCACCGTC CTTACCCTCC ATCGACGCCA CCCCACCATC CGACGCACCC GCCTTCTCAG CCGACGCCGT CATACAAGGC CCCGCCANCA TNCNAGACCA TCCCTTGAGC ACTTCTCCAN CGNTTGCGTT TATTATCATT	120 180 240 300 360 420 480
40 45 50	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 54: GGCACGAGGG CCCACCCCCG TGGCCAAGCC GCCTTCAGTT GAACCACCAC CCTACCACGG CCCTCCGACG ACCCACCCTA AGCCACCGAG TCATGGTGGC CAACCTCCGT CCCACCATCA CCCAACACCA ATCTACGGTG CACCCCCTCC GCAACACCAC CACCACCACC AACACCACCA CCAACCTGCA CCACCAACTC ACGCAGAACA CCCTCCGTAC TACCACATGC CTTCCCCGGC GCCGCATGGC CAGCACCCGT CACCACCGTC ACATGATTAT CCCGTACCTC CTGCTCACAA GCCCCGAACT CCGCCGCGG TTTACAAGTC TCCACCACCG ACCCACCGTC CTTACCCTCC ATCGACGCCA CCCCACCATC CGACGCACCC GCCTTCTCAG CCGACGCCGT CATACAAGGC CCCGCCANCA TNCNAGACCA TCCCTTGAGC ACTTCTCCAN CGNTTGCGTT TATTATCATT CTCCGTCTTC ACCACCACCA CCACCACCAT ACAAATAGTC TCGTTTGCCA TCTCTCCGTT	120 180 240 300 360 420 480 540
40 45 50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54: GGCACGAGGG CCCACCCCG TGGCCAAGCC GCCTTCAGTT GAACCACCAC CCTACCACGG CCCTCCGACG ACCCACCCCTA AGCCACCGAG TCATGGTGGC CAACCTCCGT CCCACCATCA CCCAACACCA ATCTACGGTG CACCCCCTCC GCAACACCAC CACCACCACC AACACCACCA CCCAACCTGCA CCACCAACTC ACGCAGAACA CCCTCCGTAC TACCACATGC CTTCCCCGCC GCCGCATGGC CAGCACCCGT CACCACCGTC ACATGATTAT CCCGTACCTC CTGCTCACAA GCCCCGAACT CCGCCGCGGG TTTACAAGTC TCCACCACCG ACCCACCGTC CTTACCCTCC ATCGACGCCA CCCCACCATC CGACGCACCC GCCTTCTCAG CCGACGCCGT CATACAAGGC CCCGCCANCA TNCNAGACCA TCCCTTGAGC ACTTCTCCAN CGNTTGCGTT TATTATCATT CTCCGTCTTC ACCACCACCA CCACCACCAT ACAAATAGTC TCGTTTGCCA TCTCTCCGTT GAAGATGACG CAGTGTCGTT TTAGTAGCGA TCAGGGTTAC CAATAAGAAC GATGTTGCCG	120 180 240 300 360 420 480 540 600
40 45 50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54: GGCACGAGGG CCCACCCCCG TGGCCAAGCC GCCTTCAGTT GAACCACCAC CCTACCACGG CCCTCCGACG ACCCACCCTA AGCCACCGAG TCATGGTGGC CAACCTCCGT CCCACCATCA CCCAACACCA ATCTACGGTG CACCCCCTCC GCAACACCAC CACCACCACC AACACCCAC CCAACCTGCA CCACCAACTC ACGCAGAACA CCCTCCGTAC TACCACATGC CTTCCCCGGCC GCCGCATGGC CAGCACCCGT CACCACCGTC ACATGATTAT CCCGTACCTC CTGCTCACAA GCCCCGAACT CCGCCGCCGG TTTACAAGTC TCCACCACCG ACCCACCGTC CTTACCCTCC ATCGACGCCA CCCCACCATC CGACGCACCC GCCTTCTCAG CCGACGCCGT CATACAAGGC CCCGCCANCA TNCNAGACCA TCCCTTGAGC ACTTCTCCAN CGNTTGCGTT TATTATCATT CTCCGTCTTC ACCACCACCA CCACCACCAT ACAAATAGTC TCGTTTGCCA TCTCTCCGTT GAAGATGACG CAGTGTCGTT TTAGTAGCGA TCAGGGTTAC CAATAAGAAC GATGTTGCCG CCATTGTAAT GGCTATGGTT GTTCTCTCTG CTTTTCCGGG GGAAGGTTCT TTGGGTTCAT	120 180 240 300 360 420 480 540 600 660
40 45 50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54: GGCACGAGGG CCCACCCCCG TGGCCAAGCC GCCTTCAGTT GAACCACCAC CCTACCACGG CCCTCCGACG ACCCACCCTA AGCCACCGAG TCATGGTGGC CAACCTCCGT CCCACCATCA CCCAACACCA ATCTACGGTG CACCCCCTCC GCAACACCAC CACCACCAC AACACCACCA CCAACCTGCA CCACCAACTC ACGCAGAACA CCCTCCGTAC TACCACATGC CTTCCCCGCC GCCGCATGGC CAGCACCCGT CACCACCGTC ACATGATTAT CCCGTACCTC CTGCTCACAA GCCCCGAACT CCGCCGCCGG TTTACAAGTC TCCACCACCG ACCCACCGTC CTTACCCTCC ATCGACGCCA CCCCACCATC CGACGCACCC GCCTTCTCAG CCGACGCCGT CATACAAGGC CCCGCCANCA TNCNAGACCA TCCCTTGAGC ACTTCTCCAN CGNTTGCGTT TATTATCATT CTCCGTCTTC ACCACCACCA CCACCACCAT ACAAATAGTC TCGTTTGCCA TCTCTCCGTT GAAGATGACG CAGTGTCGTT TTAGTAGCGA TCAGGGTTAC CAATAAGAAC GATGTTGCCG CCATTGTAAT GGCTATGGTT GTTCTCTCTG CTTTTCCGGG GGAAGGTTCT TTGGGTTCAT GTTAAACCTC TCTCTTAAAT GTTCATGCAT CTTATTATAA ACNAAAATTG GCCATTTNNN	120 180 240 300 360 420 480 540 600 660 720

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 797 base pairs
 (B) TYPE: nucleic acid

- 53 -

	(C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
5	(ii) MOLECULE TYPE: cDNA	
	(vii) IMMEDIATE SOURCE: (B) CLONE: U-D75	
10		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:	
1.5	GGCACGAGGG TTACGATCGT CATGTTGGGG GTGTTCAGCG GGGNAGGTGG TGGAGGTGCC	60
15	GGCGGAGCTG GTGGCCGCCG GCAGCAGGAC GCCGTCCCCT AAGACACGAG CGTCGGAGCT	120
	GATCAACCGA TTCCTCGGGA GCTTCGCTCC CGCGGTGTCG ATCCAGATCG GGGACTTGGG	180
20	ACACCTCGCC TACTCCCACG CCAACCAGTC CCCCTTCGCT CCCAGGTTGT TTGCAGCGAA	240
	GGACGANATT TACTGCCTCT TCAAGGGAGT GCTGACCAAC CTGGGCAGCT TGAGGCAGCA	300
	GTATGGGCTT TCCAAGAGTG CCGACNAGGT GGTGCTGGTC ATCGAAGCCT ACAAGGCCCT	360
25	CCGTGACCGA GCTCCCTATC CTCCCAGCTT CATGCTCGCA CACCTTACTG GCAACTTCGC	420
	CTTCGTGCTC TTCGACAAGT CCACATCATC CATCCTTGTT GCATCTGACC CANATGGAAN	480
30	ANTACCCTTG TTCTGGGGGA TCACTGCANA TGGATGCCTT GCCTTTGCTG ACNATCTANA	540
	CTTGCTGAAG GGATCGTGCG GGAAGTCACT TGCACCATTC CCTGAAGGAT GTTACTATTC	600
	CAATGCCTTG GGGGGCCTGA AAANCTATGA AAACCCCAAC ACAAGGTGAA CTGCTGTTTC	660
35	TTGAANATGA AGAANAATTN TTTGTGCCNC TTTCAAGGTG GAANGATCTG CCNTTCTTGC	720
	GGNAACCCCC TAATCAAGGA ACATCTTCCA ATGTTTGGGG CNAATGATCC TCTTAAAATC	780
40	CTAAAATTCT TGGAATT	797
	(2) INFORMATION FOR SEQ ID NO: 56:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 804 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
50	(ii) MOLECULE TYPE: cDNA	
	(vii) IMMEDIATE SOURCE: (B) CLONE: U-D83	-
5 5		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 56:	
60	GGCACGAGCT TCCACACAGG TGAGGGTAAG TCGGTTACGA TCGTCATGTT GGGGGTGTTC	60
	AGCGGGGAGG TGGTGGAGGT GCCGGCGGAG CTGGTGGCCG CCGGCAGCAG GACGCCGTCC	120
<i>_</i> -	CCTAAGACAC GGGCGTCGGA GCTGATCAAC CGATTCCTCG GGAGCTTCGC TCCCGCGGTG	180
65	TCGATCCAGA TCGGGGACTT GGGACACCTC GCCTACTCCC ACGCCAACCA GTCCCCCTTC	240
	GCTCCCAGGT TGTTTGCAGC GAAGGACGAN ATTTACTGCC TCTTCAAGGG AGTGCTGACC	300
70	AACCTGGGCA GCTTGAGGCA GCAGTATGGG CTTTCCAAGA GTGCCGACNA GGTGGTGCTG	360

- 54 -

	GICATCGRAG CCTACAAGGC CCTCCGTGAC CGANCTCCCT ATCCTCCCAG CTTCATGCTC	420
	GCACACCTTA TTGGCAACTT CGCCTTCGTG CTCTTCGACA AGTCCACATC ATCCATCCTT	480
5	GTTTGCATCT GACCCANATG GAAAAATGCC CTTGTTCTGG GGGATCACTG CANATGGATG	540
	CCTTGCCTTT GCTGACNATC TANACTTGCT GAAGGGATCG TGCGGGAANT CACTTGCACA	600
10	TTCCCTGAAN GATGTTACTA TTCCAATGCC TTGGGGGGGC TGAAAANCTA TGAAAACCCA	660
	ANCACAAGGT GACTGCTGTC TTGAANATAA AGAAAAATTT TTTGTGCCCC TTTCAAGGTT	720
	GAANGATCTG CATTCTTGCG GCACCCCCTN ATCNAGGAAC NTCNTNCCAA TGTTGGGGCA	780
15	AATATCCTCT TTAAAANCAT AAAA	804
	(2) INFORMATION FOR SEQ ID NO: 57:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 803 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
25	(ii) MOLECULE TYPE: cDNA	
30	(vii) IMMEDIATE SOURCE: (B) CLONE: U-D64	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:	
35	GGCACGAGGG ATTATAAAAA GAAACTCGCA CTCAGCCAGA TTGACTCAAG CATGAAGGTT	60
	GCATCTTTCG AATGTTCCTT TTTTTTCCAA CATCTTTTGA ATGTTACATG ACAATCATGA	120
40	CGCCGTGCAT ACAATGATAC CTCTGATAGG GTTGAATGCA CAAACCACTC ATCGTGCTAT	180
	ATTGCAAGTG CTTATGTTTG TATTCATTTT CTTATAATTT CAATGTGAGA GTTACCTTAG	240
	GTTCATATTA GATTTATATA ATATTGGGCA TAGATTTTTT TGTCATTGTT TGTGATCTGC	300
45	AATTTCATTA GGTCATCGAC CATATTATGG TAAATTTAAT TTACTAAATT ATATCTTGAG	360
	TTTATTGCTT TGCATATTTT GTGCTGGAAA CCATGCCAAT CCAACTCCTT TGCAAAACTT	420
50	AAGATAATTA AAGGAGATAT TGAGGATGCC GACTGCTTTA GGTTATTTGC ATTANACAAT	480
	AAACGCCCGT GAAATGGAAA TCATGCNAAG CTTTGCATGG AGAATATGTT NATAGANATA	540
	GACATGAAGA CATGAATATG CTTTCTTGAT GAACAACGAA GTTCACNTGT TTACTGCATG	600
55	CATGATACAT CCAATGTTCT AGGCTTGTTA GGCAACCTTT ATCCAAAAAA TTGTCTGTAC	660
	TCTCCCCCAT AAGGTAAGCC TGTGGAAAAT GTTCACTTTG GGCCNNATGA TCAGTTTANC	720
50	CGAAAATCCC CCTTCNTTAT TTGTTTTCTG AAACNCNTTG GAAANANATT CCTTACATAC	780
	CTTTTTCACN NANATNTTGA ACC	803

CLAIMS

A method of modulating the ripening or tissue senescence process in plants of the genus *Musa* comprising inserting into plant material at least one polynucleotide sequence selected from the sequences depicted as SEQ ID Nos 1 -57, regenerating said plant material and selecting from the transformed regenerants, plants with modulated ripening or tissue senescence characteristics.

10

- A method according to claim 1 wherein the polynucleotide is obtained from the cDNA library having the NCIMB Accession Number 40814.
- 3. A method of modulating the ripening or tissue senescence process in plants of the

 genus Musa comprising inserting into plant material at least one polynucleotide
 sequence or a fragment thereof, obtainable by hybridisation, from the cDNA library
 having the NCIMB Accession Number 40814, by the use of at least one of the
 sequences depicted as SEQ ID Nos 1-57 as oligonucleotide probes, said hybridisation
 being conducted at a temperature from 60°C to 65°C in 0.3 strength citrate buffered
 saline containing 0.1% SDS followed by rinsing at the same temperature with 0.3
 strength citrate buffered saline containing 0.1% SDS, regenerating said plant material
 and selecting from the transformed regenerants, plants with modulated ripening or
 tissue senescence characteristics.
- A method according to claim 1 or 2 or 3, characterised in that the said polynucleotide modulates the production of pectate lyase.
 - A method according to claim 4 in which the polynucleotide sequence comprises at least one of the sequences depicted in the sequence listings as SEQ ID Nos. 13-18.

Jan Garage

10

- 6. A method according to any preceding claim wherein the plant material is transformed using the *Agrobacterium*, microparticle bombardment, fibre mediated or direct insertion method.
- Plants, their progeny and seed and material obtained from said plants, produced according to a method as claimed in claims 1 to 6.
 - 8. A vector functional in plants comprising a promoter region which is operable in plant cells, a polynucleotide sequence defined in claims 1 to 3 and a transcription termination sequence.
 - 9. A vector according to claim 8 wherein the promoter is constitutive, developmentally regulated or switchable.
- 15 10. A vector according to claim 9 wherein the promoter is tissue specific or organ specific.
- 11. A genetically modified banana produced via the method according to claims 1 to 6 having altered fruit characteristics when compared with a banana which is not transformed with at least one of the polynucleotide sequences described in claims 1 to 3.
 - 12. A method of controlling plant pathogens comprising the application of an antipathogenic agent to plants, characterised in that plants to which the said agent is applied are plants according to claim 7.
 - 13. A polynucleotide associated with fruit ripening selected from SEQ ID Nos. 1-57.
- 14. A fruit of a plant of the genus *Musa* having a retarded ripening phenotype generated by inserting into the genome of the said plant at least one of the polynucleotide(s) as claimed in claim 13.

15. A method, polynucleotide, plant, its progeny, seed and material obtained from said plants and a banana substantially as hereinbefore described with reference to the accompanying drawings and figures.

, ak 1 2 🙀

1 4 X2

BUDAFEST TREATY ON THE INTERNATIONAL RECOGNITION OF THE DEFOSIT OF MILROCROANISMS FOR THE FURFOSES OF FATENT PROCEDURE

INTERNATIONAL FORM

Zeneca Limited,
Jealott's Hill Research
Station,
Bracknell,
Berkshire,
RG12 6EY

1 1 mg.

VIABILITY STATEMENT issued pursuant to Rule 10.2 by the INTERNATIONAL DEPOSITARY AUTHORITY identified on the following page

NAME AND ACCRESS OF THE PARTY TO WHOM THE VIABILITY STATEMENT IS ISSUED

I. DEPOSITOR	II. IDENTIFICATION OF THE MICROGRAMISM
Name: AS ABOVE Address:	Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: NCIMB 40814 Date of the deposit or of the transfer: 9 July 1996
III. VIABILITY STATEMENT	
The viability of the microorganism identified un on 11 July 1996 X viable	der II above was tested 2. On that date, the said microorganism was
no longer viable	

Indicate the date of the original deposit or, where a new deposit or a transfer has been made, the most recent relevant date (date of the new deposit or date of the transfer).

In the cases referred to in Rule 10.2(a)(ii) and (iii), refer to the most recent viability toot.

Mark with a cross the applicable box.

:	CONDITIONS	UNDER WHICH	YTELIEATV ERT	TEST KAS	S BEEN FERFORMED.
_					
-	INTERNATIO	NAL DEPOSITA	AY AUTHORITY	······································	
Name		MCIMB 23 St Macher			Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorited official(s):
Add	ress:		on/innd		Date: 12 July 1996

 $^{^4}$ Fill in if the information has been requested and if the results of the test were negative.

Veneca Limited, Jealott's Hill Research Station, Bracknell, Berkshire. RG12 6EY

....

BUDAPEST TREATY ON THE INTERNATIONAL RECOGNITION OF THE DEPOSIT OF MICROORGANISHS FOR THE PURPOSES OF PATENT PROCEDURES

INTERNATIONAL FORM

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT issued pursuant to Rule 7.1 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page

NAME AND ADDRESS OF DEPOSITOR

I. IDENTIFICATION OF THE HICROGREANISH			
Identification reference given by the Accession number given by the DEPOSITOR: INTERNATIONAL DEPOSITARY AUTHORITY:			
lambda phage banana cDNA library U2 NCIMB 40814			
II. SCIENTIFIC DESCRIPTION AND/OR PROPOSED TAXONOMIC DESIGNATION			
The microorganism identified under I above was accompanied by:			
a scientific description			
X a proposed taxonomic designation			
(Mark with a cross where applicable)			
III. RECEIPT AND ACCEPTANCE			
This International Depositary Authority accepts the microorganism identified under I above, which was received by it ong July 1996 (date of the original deposit)			
IV. RECEIPT OF REQUEST FOR CONVERSION			
The microorganism identified under I above was received by this International Depositary Authority on (date of the original deposit) and a request to convert the original deposit to a deposit under the Budapest Treaty was received by it on (date of receipt of request for conversion)			
V. INTERNATIONAL DEPOSITARY AUTHORITY			
Name: NCIMB 11 Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorized official(s):			
Address: Aberdeen Southon Date: 12 July 1996			

Where Rule 6.4(d) applies, such date is the date on which the status of international depositary authority was acquired.

Form BP/4 (sole page)