Описание задачи

Хотим генерировать качественные изображения, которые соответствуют текстовому описанию

- Как генерировать изображение?
- Как сделать так, чтобы оно соответствовало тексту

SOTA подходы, до появления LDM

Generative Adversarial Networks (GAN)

- Генерируют качественно
- Сложно оптимизировать
- Плохо фиксируют распределение

Diffusion Probabilistic Models

- Лучшая оценка плотности
- Лучшее качество изображений
- Генерирует долго
- Требует больших мощностей

Two-Stage Image Synthesis

Попытаемся учить в две стадии, чтобы избежать недостатков индивидуальных моделей

- VQ-VAEs (autoregressive models)
- VQGANs (autoregressive transformers)

• Миллиарды параметров для обучения

- Уйдя от обучения входной картинки высокого разрешения, мы снижаем требование высокой производительности, поскольку обучаем модель в низкоразмерном пространстве.
- Все еще сохраняем качество генерации из-за архитектуры диффузионной модели

Perceptual Image Compression

- Perceptual Loss
- Patch-based adversarial objective

Этот подход заставляют модель делать изображения реалистичными и избегать блюра

$$L_{DM} = \mathbb{E}_{x,\epsilon \sim \mathcal{N}(0,1),t} \left[\|\epsilon - \epsilon_{\theta}(x_t,t)\|_2^2 \right],$$

$$L_{LDM} := \mathbb{E}_{\mathcal{E}(x), \epsilon \sim \mathcal{N}(0,1), t} \left[\|\epsilon - \epsilon_{\theta}(z_t, t)\|_2^2 \right].$$

- Фокус на важных семантических фрагментах данных
- Обучение в пространстве меньшей размерности, гораздо более эффективном с вычислительной точки зрения.

Conditioning Mechanisms

 $\epsilon_{\theta}(z_t, t, y)$ cross-attention mechanism

Закодируем наше условие с помощью энкодера - получим r(y).

Attention
$$(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d}}\right) \cdot V$$
, with

$$Q = W_Q^{(i)} \cdot \varphi_i(z_t), \ K = W_K^{(i)} \cdot \tau_\theta(y), \ V = W_V^{(i)} \cdot \tau_\theta(y).$$

Here, \$\phi\$ denotes a (flattened) intermediate representation of the UNet

$$L_{LDM} := \mathbb{E}_{\mathcal{E}(x), y, \epsilon \sim \mathcal{N}(0, 1), t} \Big[\|\epsilon - \epsilon_{\theta}(z_t, t, \tau_{\theta}(y))\|_2^2 \Big]$$

Тесты

Txt2img

Text-Conditional Image Synthesis				
Method	FID↓	IS↑	Nparams	
CogView [†] [17]	27.10	18.20	4B	self-ranking, rejection rate 0.017
LAFITE [†] [109]	26.94	26.02	75M	
GLIDE* [59]	12.24	-	6B	277 DDIM steps, c.f.g. [32] $s = 3$
Make-A-Scene* [26]	11.84	w	4B	c.f.g for AR models [98] $s=5$
LDM-KL-8	23.31	20.03±0.33	1.45B	250 DDIM steps
LDM- KL - 8 - G *	12.63	$30.29 \scriptstyle{\pm 0.42}$	1.45B	250 DDIM steps, c.f.g. [32] $s = 1.5$

Получаем кодирование условия при помощи BERT

Витоге

- Все еще медленнее ганов
- Но намного лучше для модифицирования чем ганы