2020-2021学年秋季学期

自然语言处理 Natural Language Processing

授课教师: 胡玥

助 教: 于静

中国科学院大学网络空间安全学院专业核心课

自然语言处理 Natural Language Processing

第6章 图卷积神经网络

授课教师: 胡玥

授课时间: 2020.9

基于深度学习的自然语言处理课程内容

语言处 理方法

第6章 图卷积神经网络

概要

本章主要内容:

介绍图卷积神经网络 (GNN) 的基本概念,模型结构

本章教学目的:

了解并掌握图卷积神经网络 (GNN) 的相关知识

内容提要

- 6.1 概述
- 6.2 Spatial-based GNN
- 6.3 GNN 变形

问题引入:

Non-Euclidean

CNN

GNN in NLP

Graph neural networks (GNN)

GNN in NLP

Song et al., ACL 2018 Song et al., TACL 2019 Ding et al., ACL 2019 Tu et al., ACL 2019

Graph neural networks (GNN)

图卷积神经网络

Spectral-based Graph Convolutional neural Networks

Define Convolution in Spectral domain, Convolutional is defined via graph Fourier transform and Convolutional theorem.

Challenge: Convolution filter define in spectral domain (not in vertex domain)

Spatial-based Graph Convolutional neural Networks

Define Convolution in the vertex domain, Convolutional is defined as a weighted average function over all vertices located in the neighborhood of target vertex.

Challenge: The size of neighborhood varies remarkably across nodes

内容提要

- 6.1 概述
- 6.2 Spatial-based GNN
- 6.3 GNN 变形

GNN Goal

输入: original network

输出: Node representation set

每个表示带有原图的特征信息

GNN模型结构: 輸入 GNN (開始 GNN (開始 GNN (明報 GNN (明述 GNN (知述 GNN (明述 GNN (知述 GNN (明述 GNN (知述 GNN (明述 GNN (知

- · 卷积层 Weight sharing
- 池化层 Reduce the number of parameters

GNN参数如何确定

■ 参数个数

实心结点是对应的空心结点的邻接结点聚集

参数维度

$$x^{(h^{k-1})}\times \mathbf{B}=x^{(h^k)}$$

 h^k : feature matrix $\mathbf{X}^{\wedge} \in \mathbb{R}^{N^{\times} K}$

0		<i>k</i> 1	<i>k</i> 2	<i>k</i> 3	k 4	
	w 1	0.1	0.7	1.2	1.1	
	w 2	0.3	0.4	0.3	0.1	
\mathbf{W}_k \mathbf{B}_k \mathbf{W}_k \mathbf{B}_k	w 3	0.5	0.3	1.5	0.4	
	w 4	1.0	0.1	0.2	0.5	
	w 5	2.0	0.4	0.1	2.4	
h^{k-1}						

参数B

以X为例,X*同理 X* 为 X 的邻接聚集结点

 \mathbf{h}^{k-1} :weight matrix $\mathbf{B} \in \mathbb{R}^{M \times K}$

图上结点X

	f1	f2	f3	f4	f5
Node 1	0.1	0.7	1.2	1.1	0.9
Node 2	0.3	0.4	0.3	0.1	1.2
Node 3	0.5	0.3	1.5	0.4	0.6
Node 4	1.0	0.1	0.2	0.5	0.1

 \mathbf{h}^{k-1} : feature matrix $\mathbf{X} \in \mathbb{R}^{N^{\times}M}$

参数: W, B $\in \mathbb{R}^{M^{\times}K}$

M: **X**(**h**^{k-1}) 特征维度

K: **X**(**h**^k) 特征维度

- Weight sharing
- Reduce the number of parameters

GNN 卷积步骤:

Step1: Aggregation

Step2: Transformation

GNN 池化?

Basic GNN

GCN

- · More parameter sharing.
- Down-weights high degree neighbors.

例:

Output

Step2: Transformation

Step1: Aggregation

Input:

		Nod	Node	Nod	Nod			f1	f2	f3	f4j	f 5
		e 1	e 2	e 3	e 4	N	ode 1	0.1	0.7	1.2	1.1	0.9
Node	e 1	0	1	1	1	N	ode 2	0.3	0.4	0.3	0.1	1.2
Node	e 2	1	0	1	0	N	ode 3	0.5	0.2	4 5	0.4	0.6
Nod	e 3	1	1	0	0				0.3	1.5	0.4	0.6
Node	e 4	1	0	0	0	N	ode 4	1.0	0.1	0.2	0.5	0.1
	adj	ace	ncy	ma	atrix		featu	re m	atri	x X	$\in \mathbb{R}$	$N \times I$

GNN模型训练:

$$\mathbf{h}_{v}^{0} = \mathbf{x}_{v} \qquad \text{(i.e., what we learn)}$$

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{k} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{k-1}}{|N(v)|} + \mathbf{B}_{k} \mathbf{h}_{v}^{k-1} \right), \ \forall k \in \{1,...,K\}$$

$$\mathbf{z}_{v} = \mathbf{h}_{v}^{K}$$

在最后一层(K层)得到每个结点的表示后,可以根据任务将其代入任何损失函数,然后用梯度下降法训练参数

例1: 结点分类 (有监督)

例2: 相似结点表示相似 (无监督)

有向图的GNN:

GNN 卷积步骤:

Step1: Aggregation

Step2: Transformation

$$\mathbf{h}_{t-1}^k \longrightarrow \mathbf{h}_t^i$$

Step1: Aggregation

$$egin{aligned} \mathbf{m}_t^{\uparrow i} &= \sum_{k \in \Omega_{\uparrow}(i)} \mathbf{h}_{t-1}^k \ \mathbf{m}_t^{\downarrow i} &= \sum_{k \in \Omega_{\downarrow}(i)} \mathbf{h}_{t-1}^k \ \mathbf{m}_t^i &= [\mathbf{m}_t^{\uparrow i}; \mathbf{m}_t^{\downarrow i}] \end{aligned}$$

Step2: Transformation

$$\mathbf{h}_t^i = \sigma(\mathbf{W}_g^m \mathbf{m}_t^i + \mathbf{W}_g^x \mathbf{x}_t^i + \mathbf{b}_g)$$

内容提要

- 6.1 概述
- 6.2 Spatial-based GNN
- 6.3 GNN 变形

6.3 **GNN变形**

GNN变形:

根据结点聚集和层级连接方法的不同有大量不同形式的GNN

GNN Models based on Propagation Step

6.3 **GNN变形**

GNN Models based on Connection

Deep Graph Convolutional Networks

DGCN: Residual Connections

DGCN: Dense Connections

参考文献:

Zhuan Zhou, Graph Convolutional Neural Networks: An introduction Tutorial ,2018

Jing Yu, Deep Learning on Graphs with Graph Convolutional Networks Yue Zhang, Graph Neural Networks in NLP

在此表示感谢!

中国科学院大学网络空间安全学院专业核心课

物物各位!

课程编码 201M4005H 课程名称 自然语言处理 授课团队名单 胡玥、于静