Aula 14

14 Dia 14: Velocidade média vs instantânea

Exercício 14.1. Uma bola é lançada diretamente para cima no instante t=0 segundos.

(a) Usando os dados fornecidos na tabela abaixo, esboce a altura y(t) medida em metros acima do solo.

1		0.5							
y(t)	0	1.75	3	3.75	4	3.75	3	1.75	0

- (b) Calcule a velocidade média da bola no intervalo $0 \le t \le 4$. Interprete sua resposta.
- (c) Calcule a velocidade média v da bola nos intervalos indicados na tabela abaixo.

t	[0, 0.5]	[0.5, 1]	[1, 1.5]	[1.5, 2]	[2, 2.5]	[2.5, 3]	[3, 3.5]	[3.5, 4]
v								

- (d) Calcule a equação da reta que passa pelos pontos (0, y(0)) e (0.5, y(0.5)).
- (e) Qual a relação entre a velocidade média em [0, 0.5], e a reta que você calculou em (d)?
- (f) Qual a relação entre a velocidade média no intervalo [2.5, 3.5] e a reta que passa pelos pontos (2.5, y(2.5)) e (3.5, y(3.5))?
- (g) O que você conclui das suas respostas em (e) e (f)?

Exercício 14.2. Suponha que os seguintes dados adicionais sobre a trajetória da bola estejam disponíveis.

t	0.9	0.99	0.999	1	1.001	1.01	1.1
y(t)	2.79	2.9799	2.997999	3	3.001999	3.0199	3.19

(a) Calcule a velocidade média v da bola nos intervalos indicados na tabela abaixo.

t	[0.9, 0.99]	[0.99, 0.999]	[0.999, 1]	[1, 1.001]	[1.001, 1.01]	[1.01, 1.1]
v						

Use sua resposta para estimar a velocidade instantânea da bola no instante t = 1.

Exercício 14.3. Bill saiu para correr, e o gráfico abaixo mostra a distância d = d(t) de Bill para sua casa, como uma função do tempo t.

Dentre os pontos A a F marcados, determine

- (a) Em quais dos pontos Bill está se distanciando de sua casa.
- (b) Em quais dos pontos Bill está se aproximando de sua casa.
- (c) Em quais dos pontos a velocidade do Bill é negativa? O que significa neste caso ele estar com velocidade negativa?
- (d) Em quais pontos a velocidade de Bill é a maior possível.
- (e) Em quais pontos a velocidade de Bill é a menor possível.

Figura 1: Gráfico para o Exercício 14.3

Exercício 14.4. O gráfico de f(t) na Figura 2 abaixo mostra a posição de uma partícula no tempo t. Liste as seguintes quantidades em ordem, do menor para o maior.

(a) A: velocidade média entre t = 1 e t = 3,

(b) B: velocidade média entre t = 5 e t = 6,

(c) C: velocidade instantânea em t=1,

(d) D: velocidade instantânea em t=3,

(e) E: velocidade instantânea em t=5,

(f) F: velocidade instantânea em t = 6.

Figura 2: O gráfico da função f para o Exercício 14.4