MATH 325 Q1: LINEAR ALGEBRA III, PART 3

The Jordan normal form

We start by recalling some facts which we already know. Let A be a matrix of size $n \times n$ -matrix with coefficients in F. It defines an F-linear map

$$\alpha_A: F^n \longrightarrow F^n, v \longmapsto A \cdot v.$$

As we mentioned before A is precisely the matrix of α_A in the standard basis e_1, \ldots, e_n .

If v_1, \ldots, v_n is another basis of F^n we can express $A \cdot v_j$ in terms of this basis:

$$A \cdot v_j = \sum_{i=1}^n b_{ij} \cdot v_i.$$

The matrix $B = (b_{ij})$ is the matrix of α_A with respect to the basis v_1, \ldots, v_n and we have the conjugacy property

$$B = S^{-1} \cdot A \cdot S,$$

where $S = (s_{ij})$ is the matrix whose columns are the vectors v_1, \ldots, v_n :

$$v_j = \sum_{i=1}^n s_{ij} \cdot e_i = \begin{pmatrix} s_{1j} \\ s_{2j} \\ \vdots \\ s_{nj} \end{pmatrix}.$$

Going in the reverse direction, let T be an invertible matrix and $C = T^{-1} \cdot A \cdot T$. Since T is invertible the column vectors

$$w_{1} = \begin{pmatrix} t_{11} \\ t_{21} \\ \vdots \\ t_{n1} \end{pmatrix}, w_{2} = \begin{pmatrix} t_{12} \\ t_{22} \\ \vdots \\ t_{n2} \end{pmatrix}, \dots, w_{n} = \begin{pmatrix} t_{1n} \\ t_{2n} \\ \vdots \\ t_{nn} \end{pmatrix}$$

form another basis of F^n and $C = (c_{ij})$ is the matrix of α_A with respect to this basis. As we mentioned before our aim is for a given matrix A to find a conjugate matrix $T^{-1}AT$ which is as simple as possible (equivalently, to find another basis of F^n in which the matrix of the map α_A is simple).

To understand what we can expect we first consider matrices of small size.

The case of 2×2 -matrices.

Let

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

be a complex 2×2 -matrix. The corresponding linear map $\alpha_A : \mathbb{C}^2 \longrightarrow \mathbb{C}^2$, $x \mapsto A \cdot x$, is given by the formula

$$\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) \longrightarrow \left(\begin{array}{c} ax_1 + bx_2 \\ cx_1 + dx_2 \end{array}\right).$$

Since any polynomial in \mathbb{C} has a root we have

$$P_A(T) = (T - \lambda_1) \cdot (T - \lambda_2),$$

where λ_1, λ_2 are the eigenvalues of A, which may be equal.

Case (i): $\lambda_1 \neq \lambda_2$. Let v_1 and v_2 be eigenvectors for λ_1 and λ_2 , respectively. Since $\lambda_1 \neq \lambda_2$ the vectors v_1, v_2 are linear independent and so they form a basis of \mathbb{C}^2 . With respect to this basis the matrix

of
$$\alpha_A$$
 is $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$. (In this case we say that A is diagonalizable.)

Case (ii): $\lambda_1 = \lambda_2$. We denote this complex number by λ . In this case the matrix A can be diagonalizable or not. If there are two linear independent eigenvectors v, w for λ then the matrix of α_A with respect

to the basis
$$v, w$$
 is equal $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$, and so A is diagonalizable.

If A is not diagonalizable then the dimension of the eigenspace E_{λ} for λ is 1. Let v be an eigenvector for λ and $w' \in \mathbb{C}^2$ any other vector, such that v, w' is a basis of \mathbb{C}^2 . Then $\alpha_A(v) = A \cdot v = \lambda \cdot v$ and $\alpha_A(w') = e \cdot v + f \cdot w'$ for some complex numbers e, f, and so

the matrix of α_A with respect to this basis is $\begin{pmatrix} \lambda & e \\ 0 & f \end{pmatrix}$. Since this

matrix is conjugate to A it has the same characteristic polynomial $P_A(T) = (T - \lambda)^2$. This implies $f = \lambda$. Hence A is conjugate to

$$B' := \left(\begin{array}{c} \lambda & e \\ 0 & \lambda \end{array}\right).$$

Note that the complex number e can not be zero since then w' would be an eigenvector and so the eigenspace of A for the eigenvalue λ would

have dimension 2 (because it would then be generated by the linear independent vectors v and w').

We replace now the basis v, w' by v and $w := e^{-1} \cdot w'$. Then we have $\alpha_A(v) = \lambda \cdot v$ and

$$\alpha_A(w) = \alpha_A(e^{-1} \cdot w')$$

$$= e^{-1} \cdot \alpha_A(w')$$

$$= e^{-1} \cdot (\lambda \cdot w' + e \cdot v)$$

$$= \lambda \cdot w + v,$$

and so the matrix of α_A with respect to this basis is

$$B = \left(\begin{array}{c} \lambda & 1\\ 0 & \lambda \end{array}\right).$$

(We could reach the same if we replace v, w' by $e \cdot v$ and w.)

Summary: if A is not diagonalizable A is similar to the so-called 2×2 -Jordan block, i.e. there exists a basis of \mathbb{C}^2 , such that the linear map $\alpha_A : \mathbb{C}^2 \longrightarrow \mathbb{C}^2$, $v \mapsto A \cdot v$, has matrix $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$, where λ is the

only eigenvalue of A, with respect to this basis. Such a basis is called a $Jordan\ basis$ for A.

Remark. The precise definition of Jordan-block and Jordan basis will be given later.

We illustrate the above consideration with an example of a not diagonalizable matrix.

Example. Let
$$A = \begin{pmatrix} 1 & 2 \\ -2 & 5 \end{pmatrix} \in M_{2\times 2}(\mathbb{C})$$
. Then we have

 $P_A(T) = (T-1) \cdot (T-5) + 4 = T^2 - 6T + 9 = (T-3)^2$

and so $\lambda = 3$ is the only eigenvalue of A. One can check that $v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is an eigenvector for the eigenvalue $\lambda = 3$. We extend this to a basis

of \mathbb{C}^2 by $w' = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

We compute $\alpha_A(v) = 3 \cdot v$ and

$$\alpha_A(w') = A \cdot w' = \begin{pmatrix} 2 \\ 5 \end{pmatrix} = 2 \cdot v + 3 \cdot w'.$$

Hence in above notation we have e=2. We replace now the basis v,w' by v and $w=\frac{1}{2}\cdot w'$, i.e. by

$$v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 and $w = \begin{pmatrix} 0 \\ \frac{1}{2} \end{pmatrix}$,

and compute $\alpha_A(v) = 3 \cdot v$ and $\alpha_A(w) = v + 3 \cdot w$, i.e. α_A has the matrix $B = \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}$ with respect to this basis. This matrix is conjugate to A and we have

for
$$S = \begin{pmatrix} 1 & 0 \\ 1 & \frac{1}{2} \end{pmatrix}$$
.

Generalized eigenvalues.

Let V be a finite dimensional complex vector space and $\alpha: V \longrightarrow V$ a \mathbb{C} -linear map.

Definition. A complex number λ is called a generalized eigenvalue of α if there is an integer $l \geq 1$, and a nonzero vector $v \in V$, such that

$$(\alpha - \lambda \cdot \mathrm{id}_V)^l(v) = 0.$$

The vector v is then called a generalized eigenvector for λ .

Notation. We denote the union of the zero vector and all generalized eigenvectors for the generalized eigenvalue λ by K_{λ} , or more precisely by $K_{\lambda}(\alpha)$. Thus,

$$K_{\lambda}(\alpha) = \{ v \in V \mid (\alpha - \lambda \cdot \mathrm{id}_V)^l(v) = 0 \text{ for some integer } l \}.$$

Note that we proved before that $K_{\lambda}(\alpha)$ is a vector subspace in V.

Definition. The vector subspace $K_{\lambda}(\alpha)$ is called the generalized eigenspace for the eigenvalue λ .

Remark. Note that the eigenspace

$$E_{\lambda}(\alpha) = \{ v \in V \mid \alpha(v) = \lambda \cdot v \}$$

for the eigenvalue λ of α is contained in $K_{\lambda}(\alpha)$.

Example. If $V = \mathbb{C}^n$ and $\alpha = \alpha_A : \mathbb{C}^n \longrightarrow \mathbb{C}^n$, $v \mapsto A \cdot v$, for some $n \times n$ -matrix A then

$$(\alpha_A - \lambda \operatorname{id}_V)(v) = (A - \lambda \cdot I_n) \cdot v = A \cdot v - \lambda \cdot v,$$

and so $(\alpha_A - \lambda \cdot id_V)^l(v) = (A - \lambda \cdot I_n)^l \cdot v$. In this case a generalized eigenvalue (respectively eigenvector) of α_A is also called a generalized eigenvalue (respectively eigenvector) of the matrix A.

We observe that an eigenvalue is also a generalized eigenvalue, and vice versa.

Lemma. Every generalized eigenvalue is an eigenvalue.

Proof. Let v be a generalized eigenvector for the generalized eigenvalue λ of α , say we have $(\alpha - \lambda \cdot \mathrm{id}_V)^l(v) = 0$ for some $l \geq 1$. We can assume that l is minimal with this property. Then for the nonzero vector $v' = (\alpha - \lambda \cdot \mathrm{id}_V)^{l-1}(v) \neq 0$ we have

$$(\alpha - \lambda \cdot id_V)(v') = (\alpha - \lambda \cdot id_V)^l(v) = 0.$$

The later equation implies $\alpha(v') = \lambda \cdot v'$ and so v' is an eigenvector for λ , *i.e.* λ is an eigenvalue.

On the other hand eigenvectors for λ are also generalized eigenvectors, but generalized eigenvectors for λ have not to be eigenvectors of α . For instance consider the \mathbb{C} -linear map $\alpha_A : \mathbb{C}^2 \longrightarrow \mathbb{C}^2$,

 $v \mapsto A \cdot v$, where A is the 2 × 2-matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. The sole eigenvalue

(hence also the only generalized eigenvalue) of A is $\lambda = 1$. We have

$$A \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 and so $v = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ is not an eigenvector of A . But

$$I_n - A = \left(\begin{array}{cc} 0 & -1 \\ 0 & 0 \end{array} \right) ,$$

and therefore $(I_n - A)^2 = 0$, which has as a consequence that

$$(\mathbf{I}_n - A)^2 \cdot v = 0,$$

i.e. v is a generalized eigenvector of A.

Lemma. The set $K_{\lambda} = K_{\lambda}(\alpha) \subset V$ is a linear subspace which is α -invariant.

Proof. This was proved in class before.

Digression: Complex polynomials.

Before we continue our discussion of the generalized eigenspaces $K_{\lambda}(\alpha)$ of a linear map $\alpha: V \longrightarrow V$ we prove first two useful results about complex polynomials.

Recall for this that a constant polynomial $\neq 0$ has degree 0 but the zero polynomial has here by convention degree -1. (There are other conventions for the degree of the zero polynomial, some authors define its degree to be $-\infty$.)

Lemma A (division algorithm). Let f(T) and g(T) be two complex polynomials with $g(T) \neq 0$. Then there exists unique polynomials h(T) and r(T) with $\deg r(T) < \deg g(T)$, such that

$$f(T) = h(T) \cdot g(T) + r(T).$$

Proof. We prove this by induction on $d := \deg f(T)$. If $\deg f(T) < e := \deg g(T)$ we set h(T) = 0 and r(T) = f(T). So let now $\deg f(T) \ge \deg g(T)$ and assume (by induction) that we have proven the lemma for all polynomials of degree smaller than $\deg f(T)$.

We have $f(T) = a_d T^d + a_{d-1} T^{d-1} + \ldots + a_0$ and $g(T) = b_e T^e + b_{e-1} T^{e-1} + \ldots + b_0$ with $a_d \neq 0$ and $b_e \neq 0$. The polynomial

$$f_1(T) := f(T) - \frac{a_d}{b_e} \cdot T^{d-e} \cdot g(T) = (a_{d-1} - \frac{a_d b_{e-1}}{b_e}) T^{d-1} + \dots + a_0 - \frac{a_d b_0}{b_e}$$

has degree at most $d-1 < d = \deg f(T)$ and so by induction there is $h_1(T)$ and r(T) with $\deg r(T) < \deg g(T)$, such that $f_1(T) = h_1(T) \cdot g(T) + r(T)$, and so we have

$$f(T) = (h_1(T) + \frac{a_d}{b_e} \cdot T^{d-e}) \cdot g(T) + r(T).$$

Setting $h(T) := h_1(T) + \frac{a_d}{b_e} \cdot T^{d-e}$ finishes the proof.

Lemma B. Let $f_1(T), \ldots, f_m(T)$ be complex polynomials, which are not all zero. Then there exists complex polynomials $h_1(T), \ldots, h_m(T)$, such that the polynomial

$$l(T) = h_1(T) \cdot f_1(T) + \ldots + h_m(T) \cdot f_m(T)$$

divides all polynomials $f_i(T)$, i.e. $f_i(T) = g_i(T) \cdot l(T)$ for some $g_i(T) \in \mathbb{C}[T]$ for all $1 \leq i \leq m$.

Proof. Let

$$U := \left\{ \sum_{i=1}^{m} a_i(T) \cdot f_i(T) \mid a_i(T) \in \mathbb{C}[T], \ i = 1, \dots, m \right\}.$$

Let l(T) be a polynomial of minimal but ≥ 0 degree in the set U, say $l(T) = \sum_{i=1}^{m} c_i(T) \cdot f_i(T)$ for some $c_i(T) \in \mathbb{C}[T]$. Note that $l(T) \neq 0$ since $\deg l(T) \geq 0$ by assumption.

By Lemma A above we find $g_i(T)$ and $r_i(T)$ with deg $r_i(T) < \deg l(T)$, such that

$$f_i(T) = g_i(T) \cdot l(T) + r_i(T) \tag{1}$$

for all $1 \leq i \leq m$. This is equivalent to

$$r_i(T) = (1 - c_i(T) \cdot g_i(T)) \cdot f_i(T) - \sum_{j \neq i} (g_i(T) \cdot c_j(T)) \cdot f_j(T),$$

and so $r_i(T)$ is in the set U for all $1 \leq i \leq m$. Since l(T) is of degree strictly bigger than $r_i(T)$ and also has the smallest degree ≥ 0 in the set U we conclude that $r_i(T) = 0$ for all $1 \leq i \leq m$, and so $f_i(T) = g_i(T) \cdot l(T)$ as desired.

This has the following consequence.

Corollary. Let $f_1(T), \ldots, f_m(T), m \geq 2$, be complex polynomials without common root, i.e. there does not exists $\lambda \in \mathbb{C}$, such that $f_i(\lambda) = 0$ for all $1 \leq i \leq m$. Then there exists $k_1(T), \ldots, k_m(T) \in \mathbb{C}[T]$, such that

$$1 = k_1(T) \cdot f_1(T) + \ldots + k_m(T) \cdot f_m(T).$$

Proof. Let $l(T) = \sum_{i=1}^{m} h_i(T) \cdot f_i(T)$ be as in Lemma B. If $\deg l(T) \geq 1$ then there exists a complex number λ , such that $l(\lambda) = 0$. But since $f_i(T) = g_i(T) \cdot l(T)$ this implies $f_i(\lambda) = g_i(\lambda) \cdot l(\lambda) = 0$ for all $1 \leq i \leq m$, and so the polynomials $f_i(T)$ would have a common root. Hence $l(t) = c \neq 0$ is constant, and so with $k_i(T) = c^{-1} \cdot h_i(T)$ we get $1 = \sum_{i=1}^{m} k_i(T) \cdot f_i(T)$.