

Arquitetura e Organização de computadores

ENGENHARIA DA COMPUTAÇÃO – UFC/SOBRAL

Prof. Danilo Alves danilo.alves@alu.ufc.br

PROJETOS

- Estudo de aplicações de eletrônica digital na resolução de problemas.
- Projetar circuitos que solucionem problemas.
- Processo básico para realizar o projeto:

PROJETOS

- Etapas básicas a serem seguidas:
 - 1. Descrição do problema a ser resolvido.
 - 2. Descrição das condições para resolver o problema.
 - 3. Estabelecer convenções de nomenclatura para as variáveis que descrevem o problema.
 - 4. Montar a Tabela Verdade que descreve o problema usando a nomenclatura estabelecida em
 3.
 - 5. Simplificar as expressões da Tabela Verdade.
 - 6. Desenhar o Circuito Simplificado

Problema a ser resolvido: Controle de Semáforos num cruzamento

- a) Quando há carros somente na rua $B \Rightarrow S2$ permanece aberto (verde)
- b) Quando há carros somente na rua $A \Rightarrow S1$ permanece aberto (verde)
- c) Quando há carros nas ruas $A \in B \Rightarrow abre S1$ (rua $A \notin preferencial$)

- Estabelecer convenções de nomenclatura:
 Obs. Entradas são os sensores A e B, saídas são os sinais verde e vermelho de S1 e S2.
- Há carro na rua $A \Rightarrow A=1$
- Não há carro na rua $A \Rightarrow A=0$
- Há carro na rua $B \Rightarrow B=1$
- Não há carro na rua B ⇒ B=0
- Sinais de saída: Verde \Rightarrow Vd, Vermelho \Rightarrow Vm para S1 e S2.
- \blacksquare S1 está aberto \Rightarrow VdS1=1, VmS1=0, VdS2=0, VmS2=1.

Montar a tabela de acordo com a lógica das regras do problema.

	Entradas		Saldas			
		Ь_				
	A	В	VdS1	VmS1	VdS2	VmS2
	0	0	0	1	1	0
	0	1	0	1	1	0
	1	0	1	0	0	1
Preferencial	1	1	1	0	0	1

 Ausência de carros em ambas as ruas: como não foi especificada nenhuma saída para este caso, então é preciso escolher qual semáforo estará aberto

Saidas

- Montar expressão da tabela:
 - Observe que temos 4 saídas, logo teríamos uma expressão para cada.
 - Observe que o VdS1=VmS2 e VdS2=VmS1, logo as duas expressões serão equivalentes e os sinais podem ser representados pelo mesmo circuito.

A	В	VdS1/VmS2	
0	0	0	
0	1	0	
1	0	1	\longrightarrow A. \bar{B}
1	1	1	→ A.B
			<u></u>
		V	$dS1 = A.\overline{B} + A.B$

A	В	VdS2/VmS1	
0	0	1	$\longrightarrow \bar{A}.\bar{B}$
0	1	1	$\longrightarrow \bar{A}.B$
1	0	0	<u></u>
1	1	0	

$$VdS2 = \bar{A}.\bar{B} + \bar{A}.B$$

- Simplifica as expressões:
 - $VdS1 = A.\overline{B} + A.B \Rightarrow A$
 - $VdS2 = \bar{A}.\bar{B} + \bar{A}.B \Rightarrow \bar{A}$
- Monta o circuito equivalente:

• Projete um circuito de controle de alarme para proteger um carro. Dois sensores (A e B) são usados para monitorar a abertura e fechamento das portas direita e esquerda. Uma chave (C) é usada para ativar e desativar o alarme (AL). O alarme será disparado somente se estiver ativado. Faça o diagrama de portas lógicas do circuito e simplifique se possível.

- Convenções:
- Entradas: Sensores A e B, e Chave C. Saída Alarme disparado AL.
- Alarme Al=1 somente se C = 1 e A = 1 ou B = 1.
- Construir a tabela de acordo com a lógica do problema.

A	В	C	AL
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

• Obter a expressão da tabela:

A	В	C	AL
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

- Simplificação da expressão e obtenção do circuito:
- $AL = \overline{A}.B.C + A.\overline{B}.C + A.B.C \Rightarrow CA + CB$
- Montar o circuito:

Projete um circuito para controlar uma bomba que enche uma caixa d'água (caixa 2) no alto de um edifício a partir de outra caixa (caixa 1) usada como reservatório, colocada no térreo. O circuito, através de sensores convenientemente dispostos nas caixas, deve atuar na bomba e numa eletroválvula (que permite abastecer a caixa 1) ligada à canalização de entrada. Faça o diagrama

de portas lógicas do circuito e simplifique se possível.7

• Obs: Caso a caixa 1 não esteja cheia, a eletroválvula deve ligar e desligar após encher.

A bomba deve ser desligada quando a caixa 2 encher.

- Convenções:
- Entradas: Sensores da caixa 1 (A e B), Sensor da caixa 2 (C).
- Saídas: Bomba (B0) e Eletroválvula (Ev).
- Situações:
- Caixa 1 vazia ⇒ A=0, B=0
 Caixa 2 vazia ⇒ C=0
 ⇒ Liga Ev=1, Não liga Bo=0
- Caixa 1 vazia ⇒ A=0, B=0
 Caixa 2 cheia ⇒ C=1
 ⇒ Liga Ev=1, Não liga Bo=0

- 3. Caixa 1 nem cheia nem vazia \Rightarrow A=0,B=1 Caixa 2 vazia \Rightarrow C=0 \Rightarrow Liga Ev=1, Liga Bo=1
- 4. Caixa 1 nem cheia nem vazia ⇒ A=0,B=1 Caixa 2 cheia ⇒ C=1 ⇒ Liga Ev=1, Não liga Bo=0
- 5. Caixa 1 cheia ⇒ A=1,B=1 Caixa 2 vazia ⇒ C=0 ⇒ Não liga Ev=0, Liga Bo=1
- 6. Caixa 1 cheia ⇒ A=1,B=1 Caixa 2 cheia ⇒ C=1 ⇒ Não liga Ev=0, Não liga Bo=0

- Construção da tabela:
- Obs: Em alguns casos da tabela, existem combinações impossíveis com o problema.

A	В	C	Bo	Ev
0	0	0	0	1
0	0	1	0	1
0	1	0	1	1
0	1	1	0	1
1	0	0	X	X
1	0	1	X	X
1	1	0	1	0
1	1	1	0	0

Obtenção das expressões:

A	В	C	Bo	
0	0	0	0	
0	0	1	0	
0	1	0	1	$\longrightarrow \bar{A}.B.\bar{C}$
0	1	1	0	
1	0	0	X	
1	0	1	X	
1	1	0	1	\longrightarrow A.B. \bar{C}
1	1	1	0	

 $Bo = \bar{A}.B.\bar{C} + A.B.\bar{C}$

A	В	C	EV
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	X
1	0	1	X
1	1	0	0
1	1	1	0

 $\longrightarrow \bar{A}.\bar{B}.\bar{C}$

 $\longrightarrow \bar{A}.\bar{B}.C$

 $\longrightarrow \bar{A}.B. \bar{C}$

 $\longrightarrow \bar{A}.B.C$

- Simplificação das expressões:
- Bo = \bar{A} . $B.\bar{C}$ + A.B. \bar{C} \Rightarrow B. \bar{C} Ev = \bar{A} . \bar{B} . \bar{C} + \bar{A} . \bar{B} .C + \bar{A} .B. \bar{C} + \bar{A} .B.C \Rightarrow \bar{A}
- Obtenção do circuito:

