拉普拉斯变换

维基百科,自由的百科全书

拉普拉斯变换是应用数学中常用的一种积分变换,又名**拉氏转换**,其符号为 $\mathcal{L}\left\{f(t)\right\}$ 。拉氏变 换是一个线性变换,可将一个有引数实数 $t(t \ge 0)$ 的函数转换为一个引数为复数s的函数:

$$F(s) = \int_0^\infty f(t)e^{-st} dt.$$

拉氏变换在大部份的应用中都是对射的,最常见的 f(t)和 F(s)组合常印制成表,方便查阅。拉普 拉斯变换得名自皮埃尔-西蒙·拉普拉斯,他在机率论的研究中首先引入了拉氏变换。

拉氏变换和傅里叶变换有关,不过傅里叶变换将一个函数或是信号表示为许多弦波的叠加,而拉 氏变换则是将一个函数表示为许多矩的叠加。拉氏变换常用来求解微分方程及积分方程。在物理 及工程上常用来分析线性非时变系统,可用来分析电子电路、谐振子、光学仪器及机械设备。在 这些分析中,拉氏变换可以作时域和频域之间的转换,在时域中输入和输出都是时间的函数,在 频域中输入和输出则是复变角频率的函数,单位是弧度每秒。

对于一个简单的系统,拉氏变换提供另一种系统的描述方程,可以简化分析系统行为的时 间[1]。像时域下的线性非时变系统,在频域下会转换为代数方程,在时域下的卷积会变成频域 下的乘法。

目录

- 1 正式定义
 - 1.1 拉普拉斯逆变换
- 2 拉普拉斯变换的存在性
- 3 拉普拉斯变换的基本性质
- 4 变换简表
- 5 与其他变换的联系
- 6 例子:如何应用此变换及其性质
- 7 在工程学上的应用
- 8 相关条目
- 9 参考书目、资料来源

正式定义

对于所有实数 $t \ge 0$, 函数 f(t)的拉普拉斯变换是函数 F(s), 定义为:

$$F(s) = \int_0^\infty e^{-st} f(t) dt$$

参数s是一个复数:

 $s = \sigma + i\omega$, σ 和 ω 为实数。

拉普拉斯变换的其他表示法中使用 $\mathcal{L}f$ 或 \mathcal{L}_t $\{f(t)\}$ 而非F。 \mathcal{L} 是一个运算符号,它代表对其对象进行拉普拉斯积分 $\int_0^\infty e^{-st}\,dt$;F(s)是f(t)的拉普拉斯变换结果。

拉普拉斯逆变换

拉普拉斯逆变换有许多不同的名称,如**维奇积分、傅立叶-梅林积分、梅林逆公式**,是一个复积分:

$$f(t) = \mathcal{L}^{-1}{F} = \mathcal{L}_s^{-1}{F(s)} \equiv \frac{1}{2\pi i} \lim_{T \to \infty} \int_{\gamma - iT}^{\gamma + iT} e^{st} F(s) ds,$$

其中v是一个使F(s)的积分路径在收敛域内的实数。

拉普拉斯变换的存在性

关于一个函数f(t)的拉普拉斯变换,只有在拉普拉斯积分是收敛的情况下才存在。也就是说,f(t)必须是在对于t>0的每一个有限区间内都是间断性连续的,且当t趋于无穷大的时候,f(t)是指数阶地变化。

拉普拉斯变换的基本性质

函数 f(t)和 g(t)的拉普拉斯变换分别为 F(s)和 G(s):

$$f(t) = \mathcal{L}^{-1}\{F(s)\}$$
$$g(t) = \mathcal{L}^{-1}\{G(s)\}$$

下面的表格是一系列单边拉普拉斯变换的性质:[2]

单边拉普拉斯变换的性质

	时域	s域	注释
线性	af(t) + bg(t)	aF(s) + bG(s)	可以用积分的基本规则证明。
时域 微分	tf(t)	-F'(s)	F 是 F的一阶 导数。
频域 微分	$t^n f(t)$	$(-1)^n F^{(n)}(s)$	更一般的形 式是 <i>F</i> (<i>s</i>)的 <i>n</i> 阶导数。
微分	f'(t)	sF(s) - f(0)	f是一个可 微函数,并 且其导数为 指数类型。 这条性质可

2017/12/	11 12 12	别又跌"堆垒百代",自由则百代主力	
			以通过分部 积分得到。
二阶微分	f''(t)	$s^2F(s) - sf(0) - f'(0)$	f为二阶可 微且二阶导 数是指数型 的。通过对 f(t)应用微 分性质可 得。
一般	$f^{(n)}(t)$	$s^{n}F(s) - \sum_{k=1}^{n} s^{k-1}f^{(n-k)}(0)$	f为n阶可微,其n阶导数是指数型的。通过数学归纳法证明。
频率 积分	$\frac{1}{t}f(t)$	$\int_{s}^{\infty} F(\sigma) d\sigma$	这是由频率 微分和条件 收敛推导出 来的。
积分	$\int_0^t f(\tau) d\tau = (u * f)(t)$	$\frac{1}{s}F(s)$	u(t)是阶跃 函数,注意 到(u * f)(t) 是u(t)和 f(t)的卷 积。
时间 标度		$\frac{1}{a}F\left(\frac{s}{a}\right)$	a > 0
频率 平移	$e^{at}f(t)$	F(s-a)	
时域 平移	f(t-a)u(t-a)	$e^{-as}F(s)$	u(t)表示阶 跃函数
乘法	f(t)g(t)	$\frac{1}{2\pi i} \lim_{T \to \infty} \int_{c-iT}^{c+iT} F(\sigma) G(s-\sigma) d\sigma$	积分沿完全 处在 <i>F</i> 收敛 域内的竖直 线Re(σ) = <i>c</i> 。 ^[3]
卷积	$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau$	$F(s) \cdot G(s)$	
复共 轭	$f^*(t)$	$F^*(s^*)$	
互相	$f(t) \star g(t)$	$F^*(-s^*) \cdot G(s)$	

关			
周期函数	f(t)	$\frac{1}{1 - e^{-Ts}} \int_0^T e^{-st} f(t) dt$	f(t) 是 用 用期函数, 有 $f(t)$ 是 时 所 f(t) 是 时 f(t) 是 $f(t)$ — $f(t)$

■ 初值定理:

 $f(0^+)=\lim_{s o\infty}sF(s)$.,要求F(s)为真分式,即分子的最高次小于分母的最高次,否则使用多项式除法将F(s)分解

■ 终值定理:

 $f(\infty) = \lim_{s \to 0} sF(s)$,要求 sF(s)的所有极点都在左半复平面或原点为单极点。

变换简表

原函数 $f(t) = \mathcal{L}^{-1} \left\{ F(s) \right\}$	转换后函数 $F(s) = \mathcal{L}\left\{f(t) ight\}$	收敛区域
$\delta(t)$	1	all s
$\delta(t- au)$	$e^{-\tau s}$	
u(t)	$\frac{1}{s}$	s > 0
u(t- au)	$\frac{e^{-\tau s}}{s}$	s > 0
$t \cdot u(t)$	$\frac{1}{s^2}$	s > 0
$e^{-\alpha t} \cdot u(t)$	$\frac{1}{s+\alpha}$	$s > -\alpha$
$(1 - e^{-\alpha t}) \cdot u(t)$	$\frac{\alpha}{s(s+\alpha)}$	s > 0
$\sin(\omega t) \cdot u(t)$	$\frac{\omega}{s^2 + \omega^2}$	s > 0

2014/12/11	拉音拉斯受快 - 维基	日科,目出的日科全
$\cos(\omega t) \cdot u(t)$	$\frac{s}{s^2 + \omega^2}$	s > 0
$\sinh(\alpha t) \cdot u(t)$	$\frac{\alpha}{s^2 - \alpha^2}$	$s > \alpha $
$\cosh(\alpha t) \cdot u(t)$	$\frac{s}{s^2 - \alpha^2}$	$s > \alpha $
$e^{-\alpha t}\sin(\omega t)\cdot u(t)$	$\frac{\omega}{(s+\alpha)^2 + \omega^2}$	$s > -\alpha$
$e^{-\alpha t}\cos(\omega t)\cdot u(t)$	$\frac{s+\alpha}{(s+\alpha)^2+\omega^2}$	$s > -\alpha$
$\frac{t^n}{n!} \cdot u(t)$	$\frac{1}{s^{n+1}}$	s > 0
$\frac{t^n}{n!}e^{-\alpha t}\cdot u(t)$	$\frac{1}{(s+\alpha)^{n+1}}$	$s > -\alpha$
$\sqrt[n]{t} \cdot u(t)$	$s^{-(n+1)/n} \cdot \Gamma\left(1 + \frac{1}{n}\right)$	s > 0
$\ln\left(\frac{t}{t_0}\right) \cdot u(t)$	$-\frac{t_0}{s} \left[\ln(t_0 s) + \gamma \right]$	s > 0
$J_n(\omega t) \cdot u(t)$	$\frac{\omega^n \left(s + \sqrt{s^2 + \omega^2}\right)^{-n}}{\sqrt{s^2 + \omega^2}}$	$s > 0 \\ (n > -1)$
$I_n(\omega t) \cdot u(t)$	$\frac{\omega^n \left(s + \sqrt{s^2 - \omega^2}\right)^{-n}}{\sqrt{s^2 - \omega^2}}$	$s > \omega $
$Y_0(\alpha t) \cdot u(t)$	$-\frac{2\sinh^{-1}(s/\alpha)}{\pi\sqrt{s^2+\alpha^2}}$	s > 0
$K_0(\alpha t) \cdot u(t)$		
$\operatorname{erf}(t) \cdot u(t)$	$\frac{e^{s^2/4}\operatorname{erfc}(s/2)}{s}$	s > 0

与其他变换的联系

■ 与傅里叶变换关系

$$\hat{f}(\omega) = \mathcal{F} \{ f(t) \}$$

$$= \mathcal{L} \{ f(t) \} |_{s=i\omega} = F(s) |_{s=i\omega}$$

$$= \int_{-\infty}^{\infty} e^{-i\omega t} f(t) dt.$$

■ 与z变换的联系

z 变换表达式为:

$$X(z) = \sum_{n=0}^{\infty} x[n]z^{-n}$$

其中 $z \leftarrow e^{sT}$. 比较两者表达式有:

$$X_q(s) = X(z)\Big|_{z=e^{sT}}$$
.

例子:如何应用此变换及其性质

拉普拉斯变换在物理学和工程中是常用的;线性时不变系统的输出可以通过卷积单位脉冲响应与 输入信号来计算,而在拉氏空间中执行此计算将卷积通过转换成乘法来计算。后者是更容易解 决,由于它的代数形式。

拉普拉斯变换也可以用来解决微分方程,这被广泛应用于电气工程。拉普拉斯变换把线性差分方 程化简为代数方程,这样就可以通过代数规则来解决。原来的微分方程可以通过施加逆拉普拉斯 变换得到其解。英国电气工程师奥利弗·黑维塞第一次提出了一个类似的计划,虽然没有使用拉 普拉斯变换;以及由此产生的演算被誉为黑维塞演算。

在工程学上的应用

应用拉普拉斯变换解常变量齐次微分方程,可以将微分方程化为代数方程,使问题得以解决。在 工程学上,拉普拉斯变换的重大意义在于:将一个信号从时域上,转换为复频域(s域)上来表 示,对于分析系统特性,系统稳定有着重大意义;在线性系统,控制自动化上都有广泛的应用。

相关条目

- Z转换
- 微分方程
- 傅立叶变换
- 微分几何中的拉普拉斯算子
- 控制理论
- 信号处理
- 线性系统

■ 双边拉普拉斯变换

参考书目、资料来源

- 1. ^ Korn & Korn 1967, §8.1
- 2. ^ Korn & Korn 1967, 第226-227页
- 3. ^ Bracewell 2000, Table 14.1, p. 385
 - 电机电子类科《工程数学》, ISBN 957-584-377-0, 作者陈锡冠、胡曦、周祯晖老师, 高 立出版社。
- Korn, G. A.; Korn, T. M., Mathematical Handbook for Scientists and Engineers 2nd, McGraw-Hill Companies, 1967, ISBN 0-07-035370-0.

取自"http://zh.wikipedia.org/w/index.php?title=拉普拉斯变换&oldid=33314045"

- 本页面最后修订于2014年11月14日(星期五)23:38。
- 本站的全部文字在知识共享 署名-相同方式共享 3.0协议之条款下提供,附加条款亦可能应用(请参阅使用条 款)。

Wikipedia®和维基百科标志是维基媒体基金会的注册商标;维基™是维基媒体基金会的商标。 维基媒体基金会是在美国佛罗里达州登记的501(c)(3)免税、非营利、慈善机构。