나만의 작은 세그웨이

제안서

2023. 5. 1 인하대학교 정보통신공학부 박승재 (12191765)

연구목표

• 제목

나만의 작은 세그웨이

• 주제 선정 동기

음식점의 서빙 로봇을 보고, 바퀴 2개로 <u>스스로 중심을 잡으며</u> 이동하는 로 봇을 만들면 재밌을 것 같다고 생각함

• 1차 목표

- ① 바퀴 2개에 DC 모터를 하나씩 연결
- ② 자이로 가속도 센서를 이용해 로봇의 기울어짐을 인식
- ③ PID 제어로 바퀴의 움직임을 조절해서 안 넘어지게 함

• **2차 목표** (일정 여유가 있으면)

④ 초음파 센서 2개를 좌우로 달아 물체를 일정(15cm)하게 따라가게 함

시스템 구성

• 블록 다이어그램

주요 부분

- MCP2221A와 핀이 겹쳐서 TCB2, TCB3 사용 불가
 - TCB0, TCB1만 사용해서 모터 2개를 제어해야 함
 - 모터 하나당 PWM 신호가 2개 필요(양 방향)
- TCB0은 PA2/PF4와, TCB1은 PA3/PF5와 연결되어 있음
 - 모터당 하나의 TCB를 할당, 2개의 IN에 PAn/PFn을 물리고 역방향 회전이 필요할
 때는 PORTMUX_TCBROUTEA /= PORTMUX_TCBO_ALT1_gc,를 통해 PWM 출력 핀 변경

주요 부분

• 자이로 가속도 센서의 특성

자이로 센서는 저속의 정지 상태에서 누적오차로 드리프트 발생 → 저주파 노이즈 가속도 센서는 충격에 과하게 반응하여 필요 이상의 노이즈 발생 → 고주파 노이즈 ∴ 상보 필터를 이용해 노이즈 필터링

상보필터는 가속도 값에 Low-pass filter를 취하고 자이로 값에 High-pass filter를 취한다.

주요 부분

• PID 제어를 통한 중심 잡기

$$ext{MV(t)} = K_p e(t) + K_i \int_0^t e(t) \, dt + K_d rac{de}{dt}$$

로봇이 앞/뒤로 기울어진 각도는, 자이로 가속도 센서의 y축(또는 x축) 각도를 계산하면 구할 수 있다.

로봇이 <u>정지</u>상태일 때는 앞/뒤로 <u>기울어진 각도가 0</u>이 되게끔 MV(t)를 계산해 모터를 움직인다.

로봇이 <u>앞으로</u> 움직여야 한다면 로봇의 목표 <u>각도를 앞쪽으로</u>살짝 기울어주면 된다.

PID의 제어 파라미터 Kp Ki Kd는 실험적인 방법으로 찾을 것이다.

주요 부품

자이로 가속도 센서

I2C 통신 (400kHz 속도)

3축 자이로 + 3축 가속도

Resolution

자이로 16.4 LSB/°/s

가속도 2048 LSB/mg

Serial Clock Serial Data Auxiliary Serial Data Auxiliary Serial Clock I2C Address Select Interrupt

초음파 센서

인식 범위: 2cm - 4m

측정 각도: 15° 미만

(high level of time * sound velocity (340m/s)) / 2

주요 부품

DC 모터 + 기어박스

동작 전압: 3V - 6V

최대 부하 전류: 1.1A

최대 토크: 0.24 Nm

기어비: 1:220

(바퀴랑 호환되는 모터가 필요해서 해당 제품 선택)

모터 드라이버

듀얼 H-Bridge 드라이버

입력 전압: 2 - 10V DC

신호 전압: 1.8 – 7V PWM

최대 동작 전류: 1.5A

	Mode	IN1	IN2	IN3	IN4
Motor A	Forward	1/PWM	0		
	Reverse	0	1/PWM		
	Standby	0	0		
	Brake	1	1		
Motor B	Forward			1/PWM	0
	Reverse			0	1/PWM
	Standby			0	0
	Brake			1	1

부품 견적

부품명	규격	규격 모델		가격(원)
MCU 세트	-	- Microchip ATMEGA4809 + MCP2221A		1
자이로 가속도 센서	20.2x15.5x2.5mm	MPU6050 GY-521 [SZH-EK007]		3,850
초음파 센서	45x20x15mm	HC-SR04 [SZH-USBC-004]		1,980x2
DC 모터+기어박스	70x36.6x22.4mm	NP01S-220	2	1,980x2
모터 드라이버	29.2x23x12mm	[SZH-MDBL-010]	1	1,980
바퀴	66x66x26.6mm	바퀴 66파이	2	880x2
만능기판	50x50mm	50x50mm 만능기판 일반홀(0.9mm) 50*50		1,870
합계				

배송비 2,700원 / 저항, 전선 등은 견적에 포함하지 않음

주요 회로

진행 계획

	4.24 ~ 30	5.1 ~ 7	5.8 ~ 14	5.15 ~ 21	5.22 ~ 28	5.29 ~ 6.4
BOM 작성 및 회로도 구현						
회로 구현(브레드보드)						
회로 구현(만능기판)						
S/W 개발						
최종 점검						

출처 및 부품 구매

- https://rasino.tistory.com/325
- https://swiftcam.tistory.com/163
- https://m.blog.naver.com/ysahn2k/221382002057
- https://www.devicemart.co.kr/goods/view?no=1247052
- https://www.devicemart.co.kr/goods/view?no=1323062
- https://www.devicemart.co.kr/goods/view?no=37852
- https://www.devicemart.co.kr/goods/view?no=1327609
- https://www.devicemart.co.kr/goods/view?no=37801
- https://www.devicemart.co.kr/goods/view?no=1377098

Power

Ground

Functionality

Clock, crystal

