Probabilités

Méthode et contexte

- Une mesure de probabilité étant en particulier finie, on a dans ce cadre que les espaces L^p sont emboités, i.e : $L^{\infty} \subseteq \cdots \subseteq L^1$.

Définitions et propriétés élémentaires

Dans tout ce qui suit, on travaille dans un espace probabilisé (Ω, \mathcal{F}, P) , et on pourra utiliser un espace mesurable (E, \mathcal{E}) .

Définition 1.

- 1. Si $X: \Omega \mapsto E$ est mesurable, alors X est appelée variable aléatoire (v.a.) à valeurs dans E.
- 2. Si X est une v.a. à valeurs dans E, on appelle loi de X la mesure image de P par X, notée P_X et vérifiant

$$P_X(A) = P\left(X^{-1}(A)\right) = P\left(\left\{\omega \in \Omega \mid X(\omega) \in A\right\}\right) = P(X \in A).$$

DÉFINITION 2. Pour toute v.a.r X, on appelle fonction de répartition de X la donnée de $F_X : \mathbb{R} \mapsto [0,1]$ définie par $F_X(t) = P(X \le t) = P_X(]-\infty,t]$).

REMARQUE. F_X est continue à droite, limitée à gauche (càdlàg), croissante, tend vers 0 en $-\infty$, 1 en $+\infty$, et caractérise P_X .

DÉFINITION 3. Soit X une v.a. à valeurs dans \mathbb{R}^d . On appelle fonction caractéristique de X, notée Φ_X , la fonction de \mathbb{R}^d dans \mathbb{C} définie par

$$\Phi_X(\xi) := \int_{\mathbb{R}^d} e^{i\langle x,\xi\rangle} dP_X(x) = E\left(e^{i\langle X,\xi\rangle}\right).$$

REMARQUE. Φ_X est en fait la transformée de Fourier de la loi P_X . C'est une fonction uniformément continue, dont le module est borné par 1. Φ_X a autant de dérivées que X a de moments finis.

REMARQUE. Si
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
, alors $\Phi_X(\xi) = exp(i\xi\mu - \frac{\xi^2\sigma^2}{2})$.

DÉFINITION 4. Si X est une v.a. à valeurs dans \mathbb{N} , on appelle fonction génératrice de X, la fonction $G_X : [0,1] \mapsto \mathbb{R}^+$ définie par :

$$G_X(t) := E(t^X) = \sum_{n=0}^{+\infty} t^n P(X = n).$$

REMARQUE. G_X caractérise la loi de X, et détermine tous les moments de X comme l'explique la proposition suivante.

Proposition 1. — Soit X une v.a. à valeurs dans \mathbb{N} , alors pour tout $k \geq 1$:

$$E\left(\prod_{i=0}^{k-1} (X-i)\right) = \lim_{t \to 1^{-}} G_X^{(k)}(t).$$

Sacha Ben-Arous 1 E.N.S Paris-Saclay

Résultats principaux

Théorème 2 (Inégalité de Markov). — Soit X une v.a.r presque surement positive, alors pour $\alpha > 0$:

$$P(X \ge \alpha) \le \frac{E(X)}{\alpha}$$

THÉORÈME 3 (Inégalité de Jensen). — Soient $X \in L^1$, et Φ une fonction convexe sur un intervalle I tel que $P(X \in I) = 1$ et $E(|\Phi(X)|) < \infty$. Alors $\Phi(E(X)) \leq E(\Phi(X))$. Si Φ est de plus strictement convexe, alors il y a égalité si et seulement si X est p.s constante.

Théorème 4. — Soient X_1 et X_2 des v.a. à valeurs dans \mathbb{R}^d . Si $\Phi_{X_1} = \Phi_{X_2}$, alors $P_{X_1} = P_{X_2}$.

Outils importants

PROPOSITION 5 (Changement de variable). — Soit X une v.a. à valeurs dans (E, \mathcal{E}) , et $f: E \mapsto \overline{\mathbb{R}}$ une fonction mesurable telle que $f \geq 0$ p.p. ou $E(|f(X)|) < \infty$, alors:

$$E(f(X)) = \int_{E} f(x) dP_X(x).$$

COROLLAIRE 6 (Inégalité de Bienaymé-Tchebychef). — Si $X \in L^2$ est une v.a.r, alors pour tout $\varepsilon > 0$:

$$P(|X - E(X)| \ge \varepsilon) \le \frac{V(X)}{\varepsilon^2}$$

Autres résultats

Lemme 7. — Soit I un intervalle de \mathbb{R} . Si $\Phi: I \mapsto \mathbb{R}$ est une fonction convexe, alors pour tout $x \in \mathring{I}$:

$$\Phi(x) = \sup_{a,b \mid l_{a,b} \le \Phi} l_{a,b}(x)$$

Sacha Ben-Arous 2 E.N.S Paris-Saclay