CMSC351: Prerequisite

Johning To

5/23/2023

1	Symbols		2	
2	Proofs			
	2.1	Weak Induction	3	
	2.2	Strong Induction	3	
	2.3	Constructive Induction	4	
	2.4	Structural Induction	5	
3	Combinatorics			
	3.1	Permutations and Combinations	7	
	3.2	Probability and Expected Value	7	
4	Calculus			
	4.1	Sequences and Sums	8	
	4.2	L'hopital Rule	9	
	4.3	Manipulation of Logs	9	

1 Symbols

- 1. For all (\forall)
- 2. There exists (\exists)
- 3. Element in set (\in)
- 4. Greater than (>)
- 5. Less than (<)
- 6. Greater than equal (\geq)
- 7. Less than equal (\leq)

2 Proofs

2.1 Weak Induction

First, we need to prove $\forall n \geq n_0 \ P(n)$ we first prove $P(n_0)$ (which is the base case) and then we prove $\forall k \geq n_0 \ P(k) \to P(k+1)$ (which is the inductive step) (you can also prove P(k-1)). The assumption of P(k) in the inductive step is the inductive hypothesis.

Ultimately, for the inductive step we are trying to find that for any $k \geq n_0$ if P(k) is true, then P(k+1) is also true.

Example: Suppose we have a set of nested Russian dolls (Matryoshka dolls). Each doll is contained with another doll, each doll is labeled 1, 2, 3 and so on.

In this hypothetical, there are two things that are true. Let's say M(n) is true iff (if and only if) doll n has another doll contained.

- (a) The first doll has another doll contained. That is, M(n) is true.
- (b) For every doll k, if doll k has another doll inside then doll k+1 has another doll inside.

$$\forall k \ge 1, M(k) \to M(k+1)$$

We can now conclude that $\forall n \geq 1, M(n)$.

2.2 Strong Induction

The goal of strong induction is we need to find some property, we can say P(n) and we need to find some n greater than equal to a $(n \ge a)$.

How can we accomplish this?

Step 1 (Basis step): We are going to prove for P(a) (we would just prove P(a) for weak induction), P(a+1), ..., for some finite number say P(b).

 $(P(a), P(a+b), ..., P(b)) \leftarrow$ we prove each of these.

Step 2 (Induction): We can now assume P(i) where $a \leq i \leq k$. (Assume P(i)). Then, we prove P(k+1).

Example: Fibonacci Sequence

Proof. Claim: The Fibonacci Sequence is defined as the following: F(0) = 0, F(1) = 1 and for $n \ge 2, F(n) = F(n-1) + F(n-2)$. We want to prove that for all $n \ge 0, F(n) \le 2^n$

Base cases:

For
$$n = 0$$
: $F(0) = 0 \le 2^0 = 1$
For $n = 1$: $F(1) = 1 \le 2^1 = 1$

For both these base case, they hold true.

Inductive Step: Assume that for all $i, 0 \le i \le k$, we have $F(k) \le 2^k$.

(This could also be known as the inductive hypothesis)

We now need to prove $F(k+1) \leq 2^{k+1}$.

By the inductive hypothesis, we have $F(n) \leq 2^n$ and $F(n-1) \leq 2^{n-1}$.

We can prove by which:

$$\begin{split} F(k+1) &= F(k) + F(k-1) \\ &\leq 2^{k-1} + 2^{k-2} \\ &\leq 2^{k-1} + 2^{k-1} \\ &= 2^k \end{split} \tag{IH}$$

2.3 Constructive Induction

When we are solving recurrences and we have guessed the general form, and we do not know the constants, we usepackage constructive induction.

Example: We know that $\sum_{i=1}^n i = \frac{1}{2}n^2 - \frac{1}{2}n$. But how do we determine $\sum_{i=1}^n i^2$? Since we know the solution for the first sum is a quadratic, we can guess that for the second sum that is cubic $(an^3 + bn^2 + cn + d)$. We start with assumptions. $\sum_{i=1}^{n-1} i = a(n-1)^3 + b(n-1)^2 + c(n-1) + d$ and n > 0 We need to prove that $\sum_{i=1}^{n-1} i^2 = an^3 + bn^2 + cn + d$ So, we need:

$$\sum_{i=1}^{n} i = an^3 + bn^2 + cn + d$$

$$\sum_{i=1}^{n-1} i + n^2 = an^3 + bn^2 + cn + d$$

$$a(n-1)^3 + b(n-1)^2 + c(n-1) + d + n^2 = an^3 + bn^2 + cn + d$$

$$a(n^3 - 3n^2 + 3n - 1) + b(n^2 - 2n + 1) + c(n-1) + d = an^3 + bn^2 + cn + d$$

$$an^3 + (b - 3a)n^2 + (3a - 2b + c)n + (d - a + b - c) = an^3 + bn^2 + cn + d$$

$$an^3 + (b - 3a + 1)n^2 + (3a - 2b + c)n + (d - a + b - c) = an^3 + bn^2 + cn + d$$

We arrive at a systems of equations:

$$b-3a+1=b$$
$$3a-2b+c=c$$
$$d-a+b-d=d$$

Thus, $a = \frac{1}{3}$, $b = \frac{1}{2}$, $c = \frac{1}{6}$ and d = 0

Therefore,

$$\sum_{i=1}^{n} i^2 = \frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n = \frac{n(n+1)(2n+1)}{6}$$

2.4 Structural Induction

To prove some property, P(x) holds for all x in recursively defined set R.

- P(b) for each base case $b \in R$
- P(c(x)) for each constructor, c, assuming inductive hypothesis P(x).

Suppose S is a recursively defined set

To prove a statement of the form:

$$\forall s \in S. P(s)$$

- Base Case: Show P holds for each element defined to be in S as a base case.
- Inductive Step: For each recursive rule used to build S, show that if P holds for things already in S, then P also holds for the new elemnts constructed by the rules.

Example: Let $t \in B$ be a binary tree.

We define a binary tree as the following:

- A single node is a binary tree.
- If B_1 and B_2 are binary trees then a single node as parent B_1 and B_2 is also a binary tree.

Let e(t) = the number of empty trees contained in t.

From this graph, e(t) = 4 and b(t) = 3

Theroem: For all $t \in B$, e(t) = 1 + b(t)

We can prove this by structural induction!

Proof. By structural induction.

Base Case:

The number of empty trees in an empty tree is 1. \checkmark

The number of binary trees in an empty tree is 0. \checkmark

Inductive Step:

Let $t_1, t_2 \in B$ and suppose $e(t_1) = 1 + b(t_1)$ and $e(t_2) = 1 + b(t_2)$. Then,

3 Combinatorics

3.1 Permutations and Combinations

Formulas:

$$n$$
 objects, permutate $k=\frac{n!}{(n-k)!}$ n objects, choose $k=\frac{n!}{k!(n-k)!}$ n categories, permutate $k=n^k$

3.2 Probability and Expected Value

Suppose X is a random variable that represents the different outcomes $x_1, ..., x_n$ with respective probabilities $p_1, ..., p_n$ then the expected value of X is:

$$E(X) = p_1 x_1 + \dots + p_n x_n$$

Example. Suppose an algorithm sorts the values in a list and returns the alternating sum/difference of the result. For example, if you give it [5, 8, 4, 1] and then sorts to [1, 4, 5, 8] and then returns 1 - 4 + 5 - 8 = -6.

If we are given the following inputs: [5, 8, 4, 1], [10, 20, 0], [2, 1] and [0, 5, 2, -3]. The following outcomes of each:

$$\begin{aligned} [5,8,4,1] &\to -6 \\ [10,20,0] &\to -10 \\ [2,1] &\to -1 \\ [0,5,2,-3] &\to -1 \end{aligned}$$

Since all inputs are equally likely, the probability of each input set is $\frac{1}{4}$.

$$0.25(-6) + 0.25(10) + 0.25(-1) + 0.25(-6) = 0.75$$

4 Calculus

4.1 Sequences and Sums

Some must know sums:

$$\sum_{i=1}^{n} 1 = n$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=0}^{n} r^{i} = \frac{r^{n+1} - 1}{r - 1}$$

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

$$\sum_{i=1}^{n} i * 2^{i} = (n-1)2^{n+1} + 2$$

Example: Let's solve the following sum:

$$\sum_{i=2}^{n} 2i + 2^{-1} + i^2$$

First, we split can split the summation up (because of the addition).

$$\sum_{i=2}^{n} 2i + \sum_{i=2}^{n} 2^{-i} + \sum_{i=2}^{n} i^{2}$$

We can solve each one of these separately now.

$$\sum_{i=2}^{n} 2i = 2\sum_{i=2}^{n} i = 2\left[\frac{n(n+1)}{2} - 1\right]$$

$$\sum_{i=2}^{n} 2^{-i} = \sum_{i=2}^{n} \frac{1}{2}^{n} = \left[\sum_{i=0}^{n} \frac{1}{2}^{n}\right] - 1 - \frac{1}{2} = \left[\frac{\frac{1}{2}^{n+1} - 1}{\frac{1}{2} - 1}\right] - \frac{1}{2}$$

$$\sum_{i=2}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6} - 1$$

The results of the sum of those:

$$2\left[\frac{n(n+1)}{2} - 1\right] + \left[\frac{\frac{1}{2}^{n+1} - 1}{\frac{1}{2} - 1}\right] - \frac{1}{2} + \left[\frac{n(n+1)(2n+1)}{6}\right] - 1$$

4.2 L'hopital Rule

Things to remember:

Theorem. Suppose we are trying to evaluate:

$$\lim_{x \to \infty} \frac{f(x)}{g(x)}$$

• If $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x) = 0$ then:

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

• If $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x) = \infty$ then:

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

4.3 Manipulation of Logs

$$log_b a = \frac{log_c a}{log_c b} \text{ (base changes)}$$

$$log_b (xy) = log_b x + log_b y$$

$$log_b (\frac{x}{y}) = log_b x - log_b y$$

$$log_b (x^p) = plog_b x$$