StudentName: COMPSCI 351

StudentID:

TEST 1 - Model Solutions SECOND SEMESTER 2022/2023

COMPUTER SCIENCE

Fundamentals of Database Systems
Time Allowed: FORTY FIVE (45) minutes

NOTE:

- The test is closed book.
- No calculators are permitted.
- Attempt ALL questions in this test.
- A maximum of 30 marks is available in this test.

1. The Relational Model of Data.

- (a) Consider the relation schema ITEMS. It stores the *name*, *category* and *age* of items. Write down a single relation over ITEM that
 - satisfies the two **keys** $\{name\}$ and $\{category, age\}$,
 - violates all superkeys not contained in the two keys above, and
 - has as few tuples as possible.

[3 marks]

Solution:

We need to show that neither {category} nor {age} form keys, so the first and second tuple of the following relation agree on category, and the second and third tuple of the following relation agree on age. 1 marks for each of these tuple pairs, and 1 mark for not introducing anything else.

\overline{name}	category	\overline{age}
Smurf	Toy	10
Football	Toy	2
Towel	House	2

- (b) Consider the relation schema ITEM from before, as well as the relation schema TRADE with attributes name, category, trader, and date expressing that a trader trades an item (uniquely identified by its name and category) on some date. Write down a single instance over {ITEM,TRADE} that
 - violates the **foreign key** $[name, category] \subseteq ITEM[name, category]$ on TRADE, and
 - for every tuple over TRADE there is a tuple over ITEM with matching values on category
 - has as few tuples as possible.

[2 marks]

Solution:

Since the foreign key is violated, we need at least 1 tuple in the instance over Trade, and since a match is required on *category*, we need 1 tuple in the instance over Item. If we choose non-matching values over *name*, then the foreign key is violated. 0.5 marks for violating the foreign key, 0.5 marks for satisfying the match on *category*, and 1 mark for not introducing anything else and having only two tuples.

m TRADE				1TEM		
\overline{trader}	name	category	date	\overline{name}	category	age
Troy	Smurf	Toy	01 May 2023	Footba	ıll Toy	8 years

2. SQL DDL and DML.

(a) Specify an SQL table schema that permits precisely the same instances as the relation schema ITEM={name, category, age} with keys {name, category} and {name, age}. In particular, choose the domain VARCHAR for all attributes. [3 marks]

Solution: Different solutions are possible, but 1 mark for the correct definition of attributes, and 1 mark each for specifying each key correctly. Note that all attributes must be specified NOT NULL, either explicitly or implicitly by the PRIMARY key. CREATE TABLE ITEM (

name VARCHAR, category VARCHAR, age VARCHAR NOT NULL, PRIMARY KEY(name, category), UNIQUE(name, age));

(b) In addition to the table schema ITEM above, assume we have the following table schema TRADE:

```
CREATE TABLE TRADE (
trader VARCHAR,
name VARCHAR,
category VARCHAR,
date DATE,
PRIMARY KEY(trader, date),
FOREIGN KEY(name, category) REFERENCES ITEM ON DELETE SET NULL );
and the following instance over {TRADE,ITEM}:
```

		Trade			ITEM	
\overline{trader}	name	category	date	\overline{name}	category	age
Sandra	Towel	House	10 March 2023	Smurf	Toy	10
Julia	Smurf	Toy	$15~\mathrm{May}~2023$	Football	Toy	2
Joe	Football	Toy	$3\ \mathrm{June}\ 2023$	Towel	House	2

Write down the instance after the following update operation has been performed:

DELETE FROM ITEM i WHERE i. age='2';

[2 marks]

Solution:

1 mark for removing both tuples in the instance over ITEM that have '2' in the column age, and 0.5 marks each for setting the correct referencing tuples to null.

		Trade	
trader	name	category	date
Sandra	null	null	10 March 2023
Julia	Smurf	Toy	$15~\mathrm{May}~2023$
Joe	null	null	3 June 2023

	ITEM	
name	category	age
Smurf	Toy	10

- 3. **SQL.** Consider the relational database schema {ITEM, TRADER, TRADE} as given below:
 - Item={name, category, age} with key {name}
 - Trader={trader, location} with key {trader}
 - Trade={trader, name, date} with key {trader, date} and foreign keys
 - $[name] \subseteq ITEM[name]$
 - $[trader] \subseteq TRADER[trader]$.

The schema stores trade items including their name, category, and age; traders including their trade name, and location; and trades including the name of an item a trader traded on some date.

(a) Write an **English language description** of the following query:

```
SELECT t.name, COUNT(*) AS number_of_trades FROM TRADE t, ITEM i WHERE t.name=i.name AND i.category = 'Toy' GROUP BY t.name HAVING COUNT(*) >= 100;
```

[4 marks]

Solution: 1 mark for each of the following:

- For each name of an item
- from the category 'Toy',
- list its number of trades,
- provided there are at least 100.
- (b) Write the following query in SQL: What is the name of traders from the location of 'Suzhou' who only order items from the category 'Food'? [3 marks]

Solution:

Different solutions are possible of course, but roughly 1 mark for returning the correct output schema and using city 'Suzhou' and category 'Food', 1 mark for using correct join conditions on the right tables, and 1 mark for ensuring that they only trade items of category 'Food'.

```
SELECT t.trader

FROM TRADER t

WHERE t.location='Suzhou' AND NOT EXISTS (

SELECT *

FROM TRADE t1

WHERE t1.trader=t.trader AND NOT EXISTS (

SELECT *

FROM ITEM i

WHERE i.name=t1.name AND i.category='Food'));
```

(c) Write the following query in SQL: What is the location of traders who have traded items with the same name on at least two different dates? [3 marks]

Solution:

Different solutions are possible of course, but roughly 0.5 marks for returning the correct output schema, 0.5 marks for making sure items with the same name have been traded, 2 marks for ensuring the joins use correct join attributes and the same trader traded both items.

SELECT t.location

FROM TRADE t1, TRADE t2, TRADER t

 $\begin{array}{ll} \mathtt{WHERE} & t1.\mathtt{name}{=}t2.\mathtt{name} \ \mathtt{AND} \ t1.\mathtt{trader}{=}t2.\mathtt{trader} \ \mathtt{AND} \\ & t.\mathtt{trader}{=}t1.\mathtt{trader} \ \mathtt{AND} \ t1.\mathtt{date} <> t2.\mathtt{date} \end{array}$

- 4. **Relational algebra.** Consider the relational database schema {ITEM, TRADER, TRADE} as given below:
 - ITEM={name, category, age} with key {name}
 - Trader={trader, location} with key {trader}
 - Trade={trader, name, date} with key {trader, date} and foreign keys
 - $[name] \subseteq ITEM[name]$
 - $[trader] \subseteq TRADER[trader]$.

The schema stores trade items including their name, category, and age; traders including their trade name, and location; and trades including the name of an item a trader traded on some date.

(a) Write an **English language description** of the following query:

$$\pi_{name,trader}(\text{TRADE}) \div \pi_{trader}(\sigma_{location=\text{`Chongqing'}}(\text{TRADER}))$$

[4 marks]

Solution: 1 mark for each of the following:

- What is the name of items that
- have been traded by
- every trader
- with location 'Chongqing'?
- (b) Write the following query in relational algebra: What is the name of traders from the location of 'Suzhou' who only order items from the category 'Food'? [3 marks]

Solution: 1 mark for each of the following:

- $-Q_1$: Find items that are not from category 'Food'
- $-Q_2$: Find traders who have traded items not from category 'Food'
- Q: Find traders from Suzhou and remove any traders who have traded items not from category 'Food'

$$Q_1 = \text{ITEM} - \sigma_{\text{category='Food'}}(\text{ITEM})$$

$$Q_2 = \pi_{\text{trader}}(Q_1 \bowtie \text{TRADE})$$

$$Q = \pi_{\text{trader}}(\sigma_{\text{location='Suzhou}}(\text{TRADER})) - Q_2$$

- (c) Write the following query in relational algebra: What is the location of traders who have traded items with the same name on at least two different dates? [3 marks] Solution: roughly 1 mark for each of the following:
 - $-Q_1$: Self-join of Trade tables with renamed attribute for date (same trader, same item name)
 - $-Q_2$: Project to traders who have traded the same item on different dates (set difference plus projection)
 - -Q: join Q_2 with TRADER and project to location of those traders

$$\begin{aligned} Q_1 &= \text{Trade} \bowtie \delta_{\text{date} \mapsto \text{date}} \cdot (\text{Trade}) \\ Q_2 &= \pi_{\text{trader}}(Q_1 - \sigma_{\text{date} = \text{date}} \cdot (Q_1)) \\ Q &= \pi_{\text{location}}(Q_2 \bowtie \text{Trader}) \end{aligned}$$