Московский физико-технический университет Факультет радиотехники и кибернетики

Лабораторная работа № 3.7.1

(Общая физика: электричество и магнетизм)

Скин-эффект в полом цилиндре

Работу выполнил: **Милославов Глеб, группа Б01-103**

> г. Долгопрудный 2022 год

1 Введение

1.1 Цель работы:

Исследование проникновения переменного магнитного поля в полый медный цилиндр.

1.2 В работе используется:

Генератор звуковой частоты, соленоид, намотанный на полый цилиндрический каркас из диэлектрика, медный экран в виде трубки, измерительная катушка, амперметр, вольтметр, осциллограф.

1.3 Экспирементальная установка:

Схема экспериментальной установки для исследования проникновения переменного магнитного поля в медный полый цилиндр изображена на рис. ??. Переменное магнитное поле создаётся с помощью соленоида, намотанного на полый цилиндрический каркас 1 из поливинилхлорида, который подключается к генератору звуковой частоты. Внутри соленоида расположен медный цилиндрический экран 2. Для измерения магнитного поля внутри экрана используется измерительная катушка 3. Необходимые параметры соленоида, экрана и измерительной катушки указаны на установке. Действующее значение переменного тока в цепи соленоида измеряется амперметром A,а действующее значение напряжения на измерительной катушке измеряет вольтметр V. Для измерения сдвига фаз между током в цепи соленоида и напряжением на измерительной катушке используется двухканальный осциллограф. На вход одного канала подаётся напряжение с резистора R, которое пропорционально току, а на вход второго канала — напряжение с измерительной катушки.

Рис. 1: Экспирементальная установка

Измерение отношения амплитуд магнитного поля внутри и вне экрана.

С помощью вольтметра V измеряется действующее значение ЭДС индукции, которая возникает в измерительной катушке, находящейся в переменном магнитном поле $H_1e^{i\omega t}$. Комплексная амплитуда ЭДС индукции в измерительной катушке равна

$$U = -SN\frac{dB_1(t)}{dt} = -i\omega\mu_0 SBH_1 e^{i\omega t}$$
(1)

где SN — произведение площади витка на число витков измерительной катушки. Показания вольтметра, измеряющего это напряжение:

$$U = \frac{SN\omega}{\sqrt{2}}\mu_0|H_1| \tag{2}$$

Видно, что модуль амплитуды магнитного поля внутри экрана $|H_1|$ пропорционален U и обратно пропорционален частоте сигнала $\nu = \omega/2\pi$:

$$|H_1| \propto \frac{U}{\nu}$$
 (3)

При этом поле вне экрана $|H_0|$ пропорционально току I в цепи соленоида, измеряемому амперметром A:

$$|H_0| \propto I$$
 (4)

Следовательно:

$$\frac{|H_1|}{|H_0|} = const \cdot \frac{U}{\nu I} \tag{5}$$

Таким образом, отношение амплитуд магнитных полей снаружи и вне экрана (коэффициент ослабления) может быть измерено по отношению $U/\nu I$ при разных частотах. Неизвестная константа может быть определена по измерениям при малых частотах $\nu \to 0$, когда $|H_1|/|H_0| \to 1$.

Определение проводимости материала экрана. В установке в качестве экрана используется медная труба промышленного производства. Технология изготовления труб оказывает заметное влияние на электропроводимость. Из-за наличия примесей проводимость меди нашей трубы отличается от табличного значения (в меньшую сторону). Для определения σ нашего экрана предлагается использовать частотную зависимость фазового сдвига между магнитными полями внутри и вне экрана при высоких частотах. в области больших частот $\omega \gg 1/(h^2\sigma\mu_0)$ зависимость $\psi(\sqrt{\omega})$ аппроксимируется прямой, проходящей через точку $\psi(0) = \pi/4$. По наклону этой прямой можно вычислить проводимость материала экрана.

Процедура измерения разности фаз с помощью осциллографа подробно описана в работе 3.2.1.

Заметим, что на схеме, изображённой на рис. 3, на входной канал II осциллографа подаётся сигнал с измерительной катушки, который пропорционален не полю внутри экрана, а его *производной по времени*, а это означает, что появляется дополнительный сдвиг по фазе на $\pi/2$. Поэтому измеренный по экрану осциллографа сдвиг по фазе между двумя синусоидами будет на $\pi/2$ больше фазового сдвига между магнитными полями вне и внутри экрана.

2 Ход работы

2.1 Зависимость $\xi = \frac{U}{\nu I}$ от частоты ν

Оценим $\nu_h = \frac{1}{\sigma \mu \mu_0 \pi \delta^2} \approx 2250 \; \Gamma$ ц

В области низких частот – от $0.01\nu_h$ до $0.1\nu_h$ – получим зависимость $\xi=\frac{U}{\nu I}$, где все три величины в формуле – результаты прямых измерений. Также вычислим $f(\nu^2)=\frac{1}{\xi^2}$ и занесём данные в таблицу:

ν, Гц	U, мВ	I, MA	ξ	$f = 1/(\xi)^2$	v², Гц²
23	195	465	0,018	3008	529
46	368	444	0,018	3080	2116
69	512	428	0,017	3327	4761
92	626	414	0,016	3702	8464
115	712	398	0,016	4132	13225
138	777	386	0,015	4700	19044
161	824	375	0,014	5369	25921
184	860	366	0,013	6132	33856
207	886	358	0,012	6996	42849
230	907	351	0,011	7922	52900

Рис. 2: Измерения в области низких частот

Будем считать систематические погрешность генератора звуковых частот, вольтметра и амперметра как половина от цены деления шкалы при снятии измерений (класс точности приборов не удалось найти):

$$\sigma_{\nu} = 0.5 \Gamma$$
ц ; $\sigma_{U} = 0.5 \text{мB}$; $\sigma_{I} = 0.5 \text{мA}$

Зададим $f = \frac{1}{\xi^2}$, посчитаем погрешности по формулам:

$$\sigma_{\xi} = \xi \sqrt{\left(\frac{\sigma_{U}}{U}\right)^{2} + \left(\frac{\sigma_{\nu}}{\nu}\right)^{2} + \left(\frac{\sigma_{I}}{I}\right)^{2}}$$

$$\sigma_{f} = \sigma_{\xi} \frac{df}{d\xi} = 2 \frac{\sigma_{\xi}}{\xi^{3}} ; \quad \sigma_{\nu^{2}} = \sigma_{\nu} \frac{d\nu^{2}}{d\nu} = 2\nu\sigma_{\nu}$$

Рис. 3: Погрешности

σξ	σf	σν ² , Γц ²	
0,00040	131,9	23	
0,00020	67,8	46	
0,00013	49,3	69	
0,00009	41,6	92	
0,00007	37,9	115	
0,00006	36,7	138	
0,00005	36,9	161	
0,00004	38,0	184	
0,00003	39,8	207	
0,00003	42,1	230	

Рис. 4: График $f(\nu^2)$ и его линейная аппроксимация

Данные линейной аппроксимации:

$$y=a+bx$$
 ; $a=2898\pm13$; $b=0.0952\pm0.0005$

Видно, что точки с высокой точностью ложаться на аппроксимирующую прямую в передах крестов погрешностей. Также, при $\nu=0,\,f(\xi)=f(\xi_0).$ Тогда:

$$\xi_0 = 0.0186 \pm 0.0004$$

Посчитаем проводимость меди: $\sigma = (43 \pm 6) \cdot 10^{-6} \; \mathrm{Om^{-1}}$

2.2 Зависимость сдвига фаз ψ от ν (низкие частоты)

В области низких частот – от $0.05\nu_h$ до $0.5\nu_h$ – получим зависимость $\psi(\nu)$, также найдём $\tan\psi$ занесём данные в таблицу:

ν, Гц	U, мВ	I, MA	Δτ, дел	k, мс/дел	Δτ, мс	ѱ, рад	tgψ
115	710	398	-3,0	1,0	-3,00	-3,74	-0,68
138	770	384	-2,6	1,0	-2,60	-3,83	-0,81
161	820	374	-2,3	1,0	-2,30	-3,90	-0,94
184	860	365	-2,1	1,0	-2,10	-4,00	-1,15
207	880	357	-1,9	1,0	-1,90	-4,04	-1,26
230	910	350	-1,7	1,0	-1,70	-4,03	-1,22
345	950	330	-2,0	0,5	-1,00	-3,74	-0,68
460	960	179	-2,0	0,5	-1,00	-4,46	-3,89
575	940	309	-1,6	0,5	-0,80	-4,46	-3,89
690	940	300	-3,2	0,2	-0,64	-4,35	-2,60
805	920	291	-3,1	0,2	-0,62	-4,71	-176,84
920	890	282	-2,7	0,2	-0,54	-4,69	-49,73
1035	870	274	-2,5	0,2	-0,50	-4,82	9,06
1150	840	266	-2,1	0,2	-0,42	-4,61	-9,33

Рис. 5: Измерения в области низких частот

где значения сдвига фаз были посчитаны по формуле:

$$\psi = 2\pi\nu\Delta\tau - \frac{\pi}{2}$$

Вычислим погрешности:

$$\sigma_{\psi} = \psi \sqrt{\left(\frac{\sigma_{\Delta\tau}}{\Delta\tau}\right)^2 + \left(\frac{\sigma_{\nu}}{\nu}\right)^2}$$

$$\sigma_{\tan \psi} = \sigma_{\psi} \, \frac{d \tan \psi}{d \psi} = \, \frac{\sigma_{\psi}}{\cos^2 \psi}$$

Построим график зависимости $\tan \psi = f(\nu)$, исключим точки, полученные при приближении к $0.5\nu_h$ и аппроксимируем оставшиеся прямой.

Рис. 6: Погрешности

σΔτ, мс	σψ	σtgψ	
0,1	0,13	0,18	
0,1	0,15	0,25	
0,1	0,17	0,32	
0,1	0,19	0,44	
0,1	0,21	0,55	
0,1	0,24	0,59	
0,05	0,19	0,27	
0,05	0,22	3,61	
0,05	0,28	4,51	
0,02	0,14	1,06	
0,02	0,15	4748,96	
0,02	0,17	430,00	
0,02	0,19	16,02	
0,02	0,22	19,30	

Рис. 7: График $\tan \psi = f(\nu)$ и его линейная аппроксимация

Данные линейной аппроксимации:

$$y = a + bx$$
; $a = 0.33 \pm 0.4$; $b = -0.007 \pm 0.001$

Тогда из формул $\delta=\sqrt{\frac{2}{\omega\sigma\mu_0}}\;$ и $\tan\psi=\frac{ah}{\delta^2}$ следует, что:

$$\sigma = \frac{d \tan \psi}{d\nu} \cdot \frac{1}{ah\pi\mu_0} = |b| \cdot \frac{1}{ah\pi\mu_0} \approx (41 \pm 8) \cdot 10^{-6} \text{ Om}^{-1}$$

2.3 Зависимость ψ от ν (низкие и высокие частоты)

В области высоких частот – от $0.25\nu_h$ до $20\nu_h$ – получим зависимость $\psi(\nu)$, занесём данные в таблицу:

ν, кГц	U, MB	I, MA	Δτ, дел	k, мс/дел	Δτ, мс	ψ, рад
0,45	959	319	2,2	0,5	1,100	0,754
2,25	612	196	2	0,1	0,200	0,471
4,50	352	115	1,8	0,05	0,090	0,188
6,75	229	78,5	2,6	0,02	0,052	-0,151
9,00	162	58,7	1,7	0,02	0,034	-0,434
11,25	121	45,9	1,2	0,02	0,024	-0,660
13,50	94	36,6	1,8	0,01	0,018	-0,829
15,75	76	29,9	1,3	0,01	0,013	-1,070
18,00	63	24,4	1	0,01	0,010	-1,225
20,25	55	19,86	0,8	0,01	0,008	-1,338
22,50	49	15,91	1,1	0,005	0,006	-1,579
24,75	44	12,35	0,9	0,005	0,005	-1,656
27,00	40	9,13	1,6	0,002	0,003	-1,813
29,25	38	6,21	1	0,002	0,002	-1,989
31,50	35	3,59	0	0,002	0,000	-2,356
33,75	33,7	2,38	-0,7	0,005	-0,004	-3,098
36,00	32,8	3,88	-1,4	0,005	-0,007	-3,940
38,25	33,2	6,57	-1,5	0,005	-0,008	-4,159
40,50	33,7	9,58	-1,5	0,005	-0,008	-4,265
42,75	34,8	12,87	-1,4	0,005	-0,007	-4,236

Рис. 8: Измерения в области высоких частот

где значения сдвига фаз были посчитаны по формуле:

$$\psi = 2\pi\nu\Delta\tau - \frac{\pi}{2}$$

Вычислим погрешности:

$$\sigma_{\psi} = \psi \sqrt{\left(\frac{\sigma_{\Delta\tau}}{\Delta\tau}\right)^2 + \left(\frac{\sigma_{\nu}}{\nu}\right)^2}$$

Построим график зависимости $\psi = f(\sqrt{\nu})$ для высоких и для низких частот.

Рис. 9: График $\psi=f(\sqrt{\nu})$ и его линейная аппроксимация

Данные прямой, проведённой из нуля координат, касаясь графика $f(\sqrt{\nu})$ при высоких частотах:

$$y = bx$$
; $b = -0.0209 \pm 0.0002$

Рассчитаем проводимость меди в этом случае:

$$\sigma = b^2 \frac{1}{h^2 \pi \mu_0} \approx (49 \pm 8) \cdot 10^{-6} \text{ Om}^{-1}$$

2.4 Зависимость индуктивности L от частоты ν

Результаты прямых измерений:

ν, Гц	L, мГн
40	10,6
100	9,13
2000	3,09
20000	4,14
15000	3,49

(b) График зависимости $L(\nu)$

Получили, что $L_{max}=10.6$ мГн и $L_{min}=3.09$ мГн.

Построим график зависимости $\frac{L_{max}-L_{min}}{L-L_{min}}=f(\nu^2)$:

Рис. 11: График $\frac{L_{max}-L_{min}}{L-L_{min}}=f(\nu^2)$ и его линейная аппроксимация

Данные аппроксимирующей прямой, проведённой из начала координат:

$$y = bx$$
; $b = (3.4 \pm 1.6) \cdot 10^{-8}$

Рассчитаем проводимость меди в этом случае:

$$\sigma = \sqrt{\frac{df}{d\nu^2}} \cdot \frac{1}{ah\pi\mu_0} = \sqrt{b} \cdot \frac{1}{ah\pi\mu_0} \approx (45 \pm 11) \cdot 10^{-6} \text{ Om}^{-1}$$

3 Итого

Была проверена линейная зависимость $f(\nu^2)=\frac{1}{\xi^2}$. В работе также Были посчитано значение проводимости меди разными способами:

•
$$\sigma = (43 \pm 6) \cdot 10^{-6} \text{ Om}^{-1}$$

•
$$\sigma = \frac{d \tan \psi}{d\nu} \cdot \frac{1}{ah\pi\mu_0} = |b| \cdot \frac{1}{ah\pi\mu_0} \approx (41 \pm 8) \cdot 10^{-6} \text{ Om}^{-1}$$

•
$$\sigma = b^2 \frac{1}{h^2 \pi \mu_0} \approx (49 \pm 8) \cdot 10^{-6} \text{ Om}^{-1}$$

•
$$\sigma = \sqrt{\frac{df}{d\nu^2}} \cdot \frac{1}{ah\pi\mu_0} = \sqrt{b} \cdot \frac{1}{ah\pi\mu_0} \approx (45 \pm 11) \cdot 10^{-6} \text{ Om}^{-1}$$