Groupe symétrique

EXERCICE 1.

- **1.** Soit (i, j) une transposition avec (i < j). Montrer que $(i, j) = (i, i + 1, ..., j - 1, j) \circ (j - 1, j - 2, ..., i + 1, i)$.
- 2. Montrer que toute permutation appartenant à S_n peut s'écrire comme le produit de transpositions de la forme (k, k+1).

EXERCICE 2.

Montrer que toute permutation de S_n peut s'écrire comme un produit de transpositions de la forme (1, i) avec $i \in [2, n]$.

Exercice 3.

Déterminer la signature de $\sigma = \begin{pmatrix} 1 & 2 & \dots & n-1 & n \\ n & n-1 & \dots & 2 & 1 \end{pmatrix}$.

Exercice 4.

Déterminer le centre de S_n .

EXERCICE 5.

On note S_n le groupe des permutations de [1, n] et on pose $f(\sigma) = \sum_{k=1}^n k\sigma(k)$ pour $\sigma \in S_n$. Déterminer le minimum et le maximum de f sur S_n .

EXERCICE 6.

Soit $n \in \mathbb{N}^*$. Pour $\sigma \in S_n$, on note P_{σ} la matrice $(\delta_{i,\sigma(i)})_{1 \le i,i \le n}$.

- 1. Montrer que l'application $P: \sigma \in S_n \rightarrow P_{\sigma}$ est un morphisme de groupes de S_n dans 3. $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ b+c & a+c & a+b \end{vmatrix}$ $GL_n(\mathbb{K})$.
- **2.** Soit $\sigma \in S_n$. Que vaut ${}^tP_{\sigma}$?
- 3. Montrer que $det(P_{\sigma}) = \varepsilon(\sigma)$ pour tout $\sigma \in S_n$.

Petits déterminants

EXERCICE 7.

Soient a et x dans K. Calculer les déterminants suivants,

1.
$$\Delta_1 = \begin{bmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{bmatrix}$$
 2. $\Delta_2 = \begin{bmatrix} x & a & a \\ a & x & a \\ a & a & x \end{bmatrix}$

$$\mathbf{2.} \ \Delta_2 = \left| \begin{array}{c} x \ a \ a \\ a \ x \ a \\ a \ a \ x \end{array} \right|$$

EXERCICE 8.

Soit ω une racine cubique de l'unité. Prouver avec un minimum de calcul que

$$\left|\begin{array}{ccc} 1 & \omega^2 & \omega \\ \omega & 1 & \omega^2 \\ \omega^2 & \omega & 1 \end{array}\right| = 0$$

Exercice 9.★

Soient $a, b, c \in \mathbb{K}$. Calculer les déterminants suivants, (on factorisera les expressions obtenues!)

1.
$$\begin{vmatrix} 0 & a & b \\ a & 0 & c \\ b & c & 0 \end{vmatrix}$$

1.
$$\begin{vmatrix} 0 & a & b \\ a & 0 & c \\ b & c & 0 \end{vmatrix}$$
2. $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$
3. $\begin{vmatrix} a + b & b + c & c + a \\ a^2 + b^2 & b^2 + c^2 & c^2 + a^2 \\ a^3 + b^3 & b^3 + c^3 & c^3 + a^3 \end{vmatrix}$

3.
$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ b+c & a+c & a+b \end{vmatrix}$$

EXERCICE 10.

Calculer les déterminants suivants :

1.
$$\begin{vmatrix} 1 & a & b & ab \\ 1 & a' & b & a'b \\ 1 & a & b' & ab' \\ 1 & a' & b' & a'b' \end{vmatrix};$$

3.
$$\begin{vmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 1 & 2 \\ 2 & 1 & 0 & 1 \\ 3 & 2 & 1 & 0 \end{vmatrix};$$

4.
$$\begin{vmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{vmatrix}.$$

Gros déterminants

Exercice 11.★

Calculer, pour tous x réel et n dans \mathbb{N}^* , le déterminant de

$$\begin{pmatrix} x & 2 & \cdots & n & 1 \\ 1 & x & & \vdots & 1 \\ 1 & 2 & \ddots & n & \vdots \\ \vdots & \vdots & & x & 1 \\ 1 & 2 & \cdots & n & 1 \end{pmatrix}.$$

Exercice 12.

Soient $n \in \mathbb{N}^*$ et a_1, \dots, a_n des réels. Calculer le déterminant de

$$(\sin(a_i + a_j))_{1 \le i, j \le n}.$$

Exercice 13.★

Soient $x \in \mathbb{R}$ et $n \ge 2$. Calculer pour k < n - 1:

$$\begin{vmatrix} (x+1)^k & 2^k & 3^k & \cdots & n^k \\ (x+2)^k & 3^k & 4^k & \cdots & (n+1)^k \\ \vdots & & & \vdots \\ (x+n)^k & \cdots & \cdots & (2n-1)^k \end{vmatrix} .$$

Exercice 14.

Calculez le déterminant de la matrice $n \times n$ suivante :

$$\mathbf{A}_n = \left(\begin{array}{cc} & & 1 \\ & \ddots & \\ 1 & & \end{array} \right).$$

EXERCICE 15.

Pour tout entier $n \in \mathbb{N}$, on pose

$$S_n = \sum_{k=0}^n k.$$

Calculer, pour tout $n \ge 1$, le déterminant

$$\Delta_{n} = \begin{vmatrix} S_{1} & ---- & S_{1} \\ S_{2} & ---- & S_{2} \\ \vdots & \vdots & \vdots \\ S_{n-1} & S_{n-1} & S_{n-1} \\ S_{1} & S_{2} & \cdots & S_{n-1} & S_{n} \end{vmatrix}$$

Exercice 16.

Soient a, b et c, trois nombres complexes. On considère la matrice carrée de taille n

$$A = \begin{pmatrix} c & b - b \\ a & b \\ b \\ a - a & c \end{pmatrix}$$

et on note J, la matrice carrée de taille n dont tous les coefficients sont égaux à 1.

- **1.** On suppose que $a \neq b$.
 - a. Par des opérations sur les colonnes, démontrer que $x \mapsto \det(A + xJ)$ est une fonction affine.
 - **b.** En donnant à x deux valeurs convenables, calculer $\det(A + xJ)$ pour tout $x \in \mathbb{C}$.
- **2.** Comment calculer det(A) lorsque a = b?

Exercice 17.

Calculer le déterminant

$$D_n(x) = \begin{vmatrix} x & a & & a \\ a & & & | \\ & & & a \\ a & & & a \end{vmatrix}.$$

EXERCICE 18.

Soit $n \in \mathbb{N}^*$. Calculer

$$D_n = \begin{vmatrix} n & n-1 & \dots & 1 \\ 1 & n & \dots & 2 \\ \vdots & & & \vdots \\ n-1 & \dots & 1 & n \end{vmatrix}.$$

Exercice 19.

Caculer le déterminant de la matrice $\binom{n+i}{j}_{0 \le i,j \le p}$ avec $0 \le p \le n$.

Exercice 20.

Calculer le déterminant de taille $n \ge 2$ suivant :

$$\begin{vmatrix} a & b & \dots & b \\ b & \ddots & (0) & \vdots \\ \vdots & (0) & \ddots & b \\ b & \dots & b & a \end{vmatrix}$$

Exercice 21.

Calculer le déterminant suivant :

$$\begin{vmatrix} 0 & 1 & 2 & \dots & n-1 \\ 1 & 0 & 1 & \ddots & \vdots \\ 2 & 1 & 0 & \ddots & 2 \\ \vdots & \ddots & \ddots & \ddots & 1 \\ n-1 & \dots & 2 & 1 & 0 \end{vmatrix}$$

Exercice 22.

Calculer le déterminant d'ordre *n* suivant :

$$D_n = \begin{vmatrix} 0 & 1 & \dots & 1 \\ -1 & 0 & 1 & \dots & 1 \\ \vdots & -1 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 1 \\ -1 & -1 & \dots & -1 & 0 \end{vmatrix}$$

On explicitera les opérations sur les lignes et les colonnes effectuées le cas échéant.

EXERCICE 23.

Calculer en établissant une relation de récurrence le déterminant d'ordre n suivant.

$$D_n = \begin{vmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & (0) \\ 1 & (0) & 1 \end{vmatrix}$$

Exercice 24.

Calculer le déterminant de taille n

$$D_{n} = \begin{vmatrix} 1+x^{2} & x & 0 & \dots & 0 \\ x & 1+x^{2} & x & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & x & 1+x^{2} & x \\ 0 & \dots & \dots & 0 & x & 1+x^{2} \end{vmatrix}_{[n]}$$

Exercice 25.

Soient n un entier supérieur ou égal à 2, a_1, \ldots, a_n des complexes et $P = \prod_{i=1}^n (X - a_i)$. Calculer

$$D(x) = \begin{vmatrix} \frac{P(x)}{x - a_1} & \frac{P(x)}{x - a_2} & \cdots & \frac{P(x)}{x - a_n} \\ 1 & 1 & \cdots & 1 \\ a_1 & a_2 & \cdots & a_n \\ \vdots & \vdots & & \vdots \\ a_1^{n-2} & a_2^{n-2} & \cdots & a_n^{n-2} \end{vmatrix} \text{ pour } x \in \mathbb{C}.$$

Exercice 26.

- **1.** Soit $n \in \mathbb{N}$ tel que $n \ge 2$.. Montrer que le polynôme $P = X^n X + 1$ admet n racines distinctes dans \mathbb{C} .
- 2. On note $z_1, ..., z_n$ les racines de P. Calculer le déterminant de la matrice $A = (1 + \delta_{ij}z_i)_{1 \le i,j \le n}$.

Exercice 27.★★

Soient $n \in \mathbb{N}^*$, $a_1, ..., a_n$ et $b_1, ..., b_n$ des complexes tels que pour tout $(i, j) \in [1, n]^2$, $a_i + b_j \neq 0$. On pose alors $D_n = \det \left(\left(\frac{1}{a_i + b_j} \right)_{1 \le i, j \le n} \right)$.

- 1. Que peut-on dire de D_n lorsque deux des a_i ou deux des b_i sont égaux?
- 2. On suppose maintenant les a_i (resp. les b_j) distincts deux à deux. Dans le déterminant définissant D_n , on remplace a_n par X et on note F(X) le déterminant obtenu. Montrer que F est une fraction rationnelle d'indéterminée X. Que peut-on dire de son degré ?
- 3. Justifier que F peut s'écrire sous la forme

$$F(X) = \frac{P(X)}{\prod_{j=1}^{n} (X + b_j)}$$

Que peut-on dire du degré de P?

4. Déterminer n-1 racines de P. En déduire une expression de \mathbf{D}_n en fonction des a_i et des b_i .

EXERCICE 28.

Soient $n \in \mathbb{N}$ et $(x_0, x_1, ..., x_n) \in \mathbb{C}^{n+1}$. Calculer

$$\begin{vmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{vmatrix}$$

EXERCICE 29.

Pour $n \in \mathbb{N}^*$, on note A_n la matrice carrée de taille n dont le coefficient en position (i, j) vaut

$$\begin{cases} 2 & \text{si } i = j \\ -1 & \text{si } |i - j| = 1 \text{ et on pose } D_n = \det(A_n). \\ 0 & \text{sinon} \end{cases}$$

- 1. Ecrire les matrices A_3 , A_4 et A_5 .
- **2.** Déterminer une relation de récurrence vérifiée par la suite (D_n) .
- **3.** En déduire D_n pour tout $n \in \mathbb{N}^*$.

Déterminants d'endomorphismes

Exercice 30.

Soit f l'endomorphisme de $\mathbb{K}_2[X]$ défini par

$$P \longrightarrow P + P'$$
.

Calculer det(f). Que peut-on déduire?

Exercice 31.

Soient E un espace vectoriel de dimension n et F et G deux sous-espaces vectoriels supplémentaires de F et G. Calculer le déterminant de la projection sur F parallèlement à G et de la symétrie par rapport à F parallèlement à G en fonction des dimensions de F et G.

EXERCICE 32.

Soit E un \mathbb{K} -espace vectoriel de dimension n.

- **1.** Soit *p* un projecteur de E. Que vaut det *p* ?
- **2.** Soit *s* une symétrie de E. Que vaut det *s*?
- 3. Application : On considère f l'endomorphisme de $\mathcal{M}_n(\mathbb{K})$ qui à une matrice associe sa transposée. Que vaut det f?

Exercice 33.

Soit
$$A \in \mathcal{M}_2(\mathbb{R})$$
. On pose $m_A : \left\{ \begin{array}{ccc} M_2(\mathbb{R}) & \longrightarrow & M_2(\mathbb{R}) \\ M & \longmapsto & AM \end{array} \right.$.

- **1.** Justifier que m_A est un endomorphisme de $M_2(\mathbb{R})$.
- **2.** Montrer que det $m_A = (\det A)^2$.
- **3.** Généraliser en dimension quelconque.

Exercice 34.

Pour tout $\sigma \in \mathfrak{S}_n$, on définit une application $u_{\sigma} : \left\{ \begin{array}{ccc} \mathbb{R}_n & \longrightarrow & \mathbb{R}_n \\ (x_1, \dots, x_n) & \longmapsto & (x_{\sigma(1)}, \dots, x_{\sigma(n)}) \end{array} \right.$

- **1.** Montrer que pour tout $\sigma \in \mathfrak{S}_n$, $u_{\sigma} \in \mathscr{L}(\mathbb{R}^n)$.
- **2.** Pour σ , $\tau \in \mathfrak{S}_n$, que vaut $u_{\sigma} \circ u_{\tau}$?
- 3. En déduire que pour tout $\sigma \in \mathfrak{S}_n$, u_{σ} est un automorphisme et que U: $\left\{ \begin{array}{ccc} \mathfrak{S}_n & \longrightarrow & \mathrm{GL}_n(\mathbb{R}) \\ \sigma & \longmapsto & u_{\sigma^{-1}} \end{array} \right.$ est un morphisme de groupes.
- **4.** Calculer $\det(u_{\sigma})$ pour tout $\sigma \in \mathfrak{S}_n$.

Exercice 35.

Soit f l'application qui à tout polynôme P de $\mathbb{R}[X]$ associe le polynôme \tilde{P} tel que

$$\forall x \in \mathbb{R}, \ \tilde{P}(x) = \int_{x}^{x+1} P(t) dt$$

- **1.** Soit $n \in \mathbb{N}$. Montrer que f induit un endomorphisme f_n de $\mathbb{R}_n[X]$.
- **2.** Calculer $\det(f_n)$ en fonction de n.

Exercice 36.

Soit E un \mathbb{R} -espace vectoriel de dimension finie.

- **1.** On suppose qu'il existe $u \in \mathcal{L}(E)$ tel que $u^2 + Id_E = 0$. Montrer que dim E est paire.
- 2. On suppose qu'il existe $u \in \mathcal{L}(E)$ tel que $u^2 + u + Id_E = 0$. Montrer que dim E est paire.

Exercice 37.

Soient E un \mathbb{R} -espace vectoriel de dimension 3 de base (e_1,e_2,e_3) et u l'endomorphisme de E défini par

$$u(e_1) = 4e_1 + e_2 + 4e_3$$

 $u(e_2) = -2e_1 + e_2 - 4e_3$
 $u(e_3) = -e_1 - e_2 + e_3$

- **1.** Écrire la matrice A de u dans la base (e_1, e_2, e_3) .
- Pour λ ∈ ℝ, on pose V(λ) = det (u − λ Id_E). Calculer V(λ) sous forme factorisée pour tout λ ∈ ℝ.
 En déduire que V possède trois racines réelles λ₁, λ₂, λ₃ telles que λ₁ < λ₂ < λ₃. Préciser λ₁, λ₂, λ₃.
- 3. Vérifier que pour tout $k \in [1,3]$, $\text{Ker}(u \lambda_k \text{Id}_E)$ est de dimension 1 et en donner un vecteur directeur f_k .
- 4. Justifier que (f_1, f_2, f_3) est une base de E et donner la matrice D de u dans cette base.
- **5.** Déterminer une matrice $P \in GL_3(\mathbb{R})$ telle que $A = PDP^{-1}$. Expliciter P^{-1} .
- **6.** En déduire la matrice de u^n dans la base (e_1, e_2, e_3) pour tout $n \in \mathbb{N}^*$.

Déterminants par blocs

EXERCICE 38.

Pour $(A, B) \in \mathcal{M}_2(\mathbb{C})^2$, on note $A \otimes B$ la matrice de $\mathcal{M}_4(\mathbb{C})$ définie par blocs de la manière suivante : $A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B \\ a_{21}B & a_{22}B \end{pmatrix}$.

- **1.** Soit $(A, B, C, D) \in \mathcal{M}_2(\mathbb{C})^4$. Montrer que $(A \otimes B) \cdot (C \otimes D) = (AC) \otimes (BD)$.
- 2. Calculer $det(I_2 \otimes B)$, $det(A \otimes I_2)$ et $det(A \otimes B)$ en fonction de detA et detB.
- **3.** A quelle condition nécessaire et suffisante A⊗B est-elle inversible ? Quel est alors son inverse ?

EXERCICE 39.

Soit
$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
 où $A \in GL_p(\mathbb{R})$ et $D \in \mathcal{M}_q(\mathbb{R})$. On pose $S = D - CA^{-1}B$. Montrer que $\det(M) = \det(A)\det(S)$.

Exercice 40.★★

Soient $n \ge 1$, A, B, C et D quatre matrices réelles de taille n. Soit M la matrice réelle de taille 2n définie par :

$$\mathbf{M} = \left(\begin{array}{cc} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{array} \right)$$

On suppose que C et D commutent. Prouver que

$$det(M) = det(AD - CB).$$

Inégalités

Exercice 41.

Montrer que le déterminant d'une matrice antisymétrique réelle est toujours positif.

EXERCICE 42.

On pose, pour $a, b, c \in \mathbb{R}$:

$$A = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix}$$

- 1. Calculer A^tA.
- 2. On suppose que $a^2 + b^2 + c^2 = 1$. Prouver que

$$|\det(A)| \le 1$$
.

Comatrice

Exercice 43.

Soit $A \in GL(n, \mathbb{K})$, n > 1. Montrer que $com(com(A)) = det(A)^{n-2}A$.

Exercice 44.

Soient A, B $\in \mathcal{M}_n(\mathbb{Z})$.

- **1.** Montrer que det A, det $B \in \mathbb{Z}$.
- **2.** On suppose que det A et det B sont premiers entre eux. Montrer qu'il existe deux matrices $U, V \in \mathcal{M}_n(\mathbb{Z})$ telles que $AU + BV = I_n$.

EXERCICE 45.

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Donner le rang de com(A) en fonction de celui de A. On pourra distinguer les cas rgA = n, rgA < n - 1 et rgA = n - 1.

Divers

Exercice 46.

Pour $(a,b) \in \mathbb{C}^2$, on pose $M(a,b) = \begin{pmatrix} a & -\overline{b} \\ b & \overline{a} \end{pmatrix}$ et $\mathcal{K} = \{M(a,b), (a,b) \in \mathbb{C}^2\}$.

- **1.** A quelle condition un élément de \mathcal{K} est-il inversible ?
- **2.** Montrer que $\mathcal{K} \setminus \{0\}$ muni de la multiplication est un groupe.

Exercice 47.

Soit u un endomorphisme d'un \mathbb{K} -espace vectoriel de dimension finie. On se donne une base \mathscr{B} de E. Pour $(x_1, \dots, x_n) \in \mathbb{E}^n$, on pose

$$f(x_1,...,x_n) = \det_{\mathscr{B}}(u(x_1),x_2,...,x_n) + \cdots + \det(x_1,...,x_{n-1},u(x_n))$$

Montrer que $f = tr(u) \det_{\mathscr{B}}$.

Exercice 48.

On note $\mathrm{GL}_n(\mathbb{Z})$ l'ensemble des matrices de $\mathcal{M}_n(\mathbb{Z})$ inversibles et dont l'inverse est également dans $\mathcal{M}_n(\mathbb{Z})$.

Soit $(A, B) \in \mathcal{M}_n(\mathbb{Z})^2$. On suppose que $A + kB \in GL_n(\mathbb{Z})$ pour tout $k \in [0, 2n]$. Que vaut $\det(B)$?

Exercice 49.

Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$ semblables sur \mathbb{C} . Montrer que A et B sont semblables sur \mathbb{R} .

Exercice 50.

Soit $f \in \mathcal{L}(\mathbb{R}^3)$ vérifiant $f^3 + f = 0$.

- **1.** Montrer que $\mathbb{R}^3 = \operatorname{Ker} f \oplus \operatorname{Im} f$.
- **2.** A partir de maintenant, on suppose f non nul.
 - **a.** Justifier l'existence d'un vecteur non nul u de $\operatorname{Im} f$.
 - **b.** Montrer que $f^2(u) = -u$.
 - **c.** Montrer que la famille (u, f(u)) est libre. Que peut-on en déduire sur $\operatorname{rg} f$?
- **3.** On suppose que $\operatorname{rg} f = 3$.
 - a. Montrer que $f^2 = -$ Id. Aboutir à une contradiction en considérant le déterminant de f^2 .
 - **b.** Que peut-on en conclure sur les dimensions de $\operatorname{Im} f$ et $\operatorname{Ker} f$?
- **4.** Montrer qu'il existe une base de \mathbb{R}^3 dans laquelle la matrice de f est $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$.

Exercice 51.

Soit $p \in \mathbb{N}$ tel que $p \ge 2$. Soit $A \in \mathcal{M}_p(\mathbb{R})$ la matrice dont les coefficients sont donnés par $a_{ij} = \begin{cases} \frac{1}{p-1} & \text{si } i \ne j \\ 0 & \text{sinon} \end{cases}$.

- **1.** On note K la matrice de $\mathcal{M}_p(\mathbb{R})$ dont tous les coefficients sont égaux à 1. Exprimer K^n en fonction de K.
- **2.** En déduire deux suites (u_n) et (v_n) telles que $\forall n \in \mathbb{N}$, $A^n = u_n A + v_n I_p$.
- 3. On note X le vecteur de \mathbb{R}^p dont toutes les composantes sont égales à 1. Déterminer la limite de A^nX lorsque n tend vers $+\infty$.
- 4. Montrer que A est inversible et déterminer son inverse.
- **5.** Pour $\lambda \in \mathbb{R}$, on pose $\chi(\lambda) = \det(A \lambda I_p)$. Montrer que χ admet deux zéros distincts λ_1 et λ_2 . Que vaut $(A \lambda_1 I_p)(A \lambda_2 I_p)$?