# TFM: Análisis predictivo de incidentes navales en EEUU, 2002 - 2015

Anexo 5.2. Modelado: MergedActivity

Oscar Antón

diciembre de 2023

## Carga de librerías, funciones y datos

```
# Librería
                                  # Propósito
library(MASS)
                                  # Regresión ordinal
library(nnet)
                                  # Regresión multinomial
                                  # Equilibrado de muestra. Método del cubo.
library(sampling)
library(DMwR)
                                  # Equilibrado de muestra. Método Smote.
library(mice)
                                  # Imputación de valores ausentes.
library(arulesCBA)
                                  # Discretización de variables (Redes bayesianas)
library(fastDummies)
                                  # Variables Dummy (One hot encoding)
library(caret)
                                  # Modelos de machine Learning
library(keras)
                                  # API para redes neuronales
                                  # Metricas en caret para variables multiclase (>2)
library(MLmetrics)
                                  # Manejo de modelos Gradient Boosting. Debido a error va
library(gbm)
rImp()
library(pROC)
                                  # Performance de modelos (curva ROC)
library(h2o)
                                  # Machine Learning framework (Java)
library(doParallel)
                                  # Cómputo multihilo
library(tictoc)
                                  # Benchmarking (tiempo de cómputo)
library(DALEX)
                                  # Interpretabilidad de modelos ML
library(iBreakDown)
                                  # Explicatividad local
library(modelStudio)
                                  # Análisis interactivo de explicabilidad
library(gridExtra)
                                  # Manejo de gráficos
library(kableExtra)
                                  # Formato de tablas
library(formattable)
                                  # Formato de tablas
library(ggpubr)
                                  # Visualización de datos (ggarrange)
library(data.table)
library(tidyverse)
                                  # Sintaxis para el manejo de datos. Incluye dplyr, gaplo
t2, etc.
source("../4.Functions/myCustomFunctions.R")
```

```
# Cargar el dataframe MergedActivity (100% incidentes)
# Se lee como dataframe en vez de como datatable para evitar errores
MergedActivity <- as.data.frame(readRDS("../1.DataPreprocess/DataMergedActivity/MergedActivity.rds"))</pre>
```

#### **Switches**

```
# Guardar datos o no
save_switch <- 0</pre>
```

# 1. Creación de datasets para los modelos

# 1.1. Dataset con variables numéricas y factor (General)

- · Criba de variables
- · Creación de la variable objetivo: "y" (categoría de incidente). Será la última variable del dataset
- · Reducción de variabilidad en variables categóricas
- · Escalado para variables numéricas

```
# Adaptación de variables:
# Obviar variables identificativas y de localización
# Obviar otras variables con información no relevante para el análisis predictivo
# Renombrado
# Conversión de variables de fecha, hora y año a valores continuos
# Reducir variabilidad de ciertas variables discretas (lump factorials)
# Convertir a factor el resto de variables discretas
# Se escalarán las variables numéricas después del equilibrado e imputación de NAs, no ah
ora.
MergedActivity <- MergedActivity %>%
  select(-vessel_id, -imo_number, -vessel_name) %>%
  select(-event_type, -build_year, -wave_hgt, -visibility, -casualty, -pollution) %>%
  select(-flag_abbr, -classification_society, -solas_desc) %>%
  rename(vessel length = length) %>%
  rename(y = event_class) %>%
  mutate(date = yday(as.Date(date))) %>%
  mutate(hour = round(as.numeric(sub(":.*", "", hour)) + (as.numeric(sub(".*:", "", hour))
/ 60), 2)) %>%
  mutate_at(vars(vessel_class), lump_factorials) %>%
  mutate_at(vars(region, watertype, damage_status, y), factor)
# Visualización de la estructura
str(MergedActivity)
## 'data.frame':
                   68000 obs. of 16 variables:
                   : int 1475897 1475897 1477008 1477373 1477402 1484262 1485352 1485
## $ activity id
352 1598058 1475186 ...
## $ date
                      : num 1111111112...
## $ hour
                     : num 3.75 3.75 13.88 18.17 10 ...
## $ region
                     : Factor w/ 6 levels "Alaska", "Canada", ...: 5 5 3 5 4 5 5 5 4 4 ...
## $ latitude
                    : num 37 37 39.3 31.5 30.6 ...
## $ longitude
                     : num -88.3 -88.3 -76.4 -88 -88 ...
                     : Factor w/ 2 levels "ocean", "river": 2 2 1 2 1 2 2 2 1 1 ...
## $ watertype
## $ damage_status
                     : Factor w/ 5 levels "Actual Total Loss",..: 5 5 5 2 5 5 2 2 5 2
## $ vessel_class : Factor w/ 11 levels "Barge", "Bulk Carrier",..: 1 10 3 10 1 1 1 1
28 ...
## $ age
                      : int 21 21 29 20 6 5 21 21 25 39 ...
                 : int 1065 932 19 227 764 823 888 888 38412 13 ...
## $ gross_ton
## $ vessel_length : num 200 135.6 38.2 78.8 200 ...
## $ air_temp
                     : num -38.5 -38.5 -17.1 11 41.2 ...
```

## 1.1.1. Equilibrado de variable objetivo

## \$ wind\_speed : num NA NA 66.2 NA 85.7 ...

## \$ y

## \$ damage\_assessment: int 100 100 5600 5600 1000 95000 95000 10000 10000 40000 ...

: Factor w/ 5 levels "Critical Events",..: 2 2 5 3 2 2 2 4 2 5 ...

```
# Verificación del equilibrado de la muestra
table(MergedActivity$y)
```

```
##
## Critical Events Maritime Accidents Material Issues Onboard Emergencies
## 16938 18467 17158 6630
## Third-party Damages
## 8807
```

A efectos del análisis predictivo, se van a balancear los niveles de la variable objetivo a 9000 observaciones por nivel.

- · Submuestreos (Cube) para: Critical Events, Maritime Accidents, Material Issues
- · Sobremuestreos (smote) para: Onboard Emergencies, Third-party Damages

```
# Tamaño de la muestra a la que queremos llegar en cada nivel
n = 9000
```

### Submuestreos: Método del cubo

### Variables significativas

```
# También para una regresión ordinal
if (save_switch == 1) {
# Establecemos un modelo de regresión ordinal para "y" puesto que se puede establecer un o
rden en sus valores
multi_model <- multinom(y ~ ., na.omit(MergedActivity), Hess = TRUE)
# Modelo de selección de variables por pasos con el criterio de Información de Akaike
multi_model_stp <- stepAIC(multi_model, direction = "both")
# Guardado
saveRDS(multi_model , "Models/multi_model.RDS")
saveRDS(multi_model_stp , "Models/multi_model_stp.RDS")
}else{
    multi_model_stp <- readRDS("Models/multi_model_stp.rds")
}
# Resultados. Variables relevantes en el modelo
multi_model_stp$terms[[3]]</pre>
```

```
## activity_id + date + hour + region + latitude + watertype + damage_status +
## vessel_class + age + gross_ton + vessel_length + air_temp +
## wind_speed + damage_assessment
```

#### Submuestreo en Critical Events

```
# Se eliminarán observaciones con NA
CriticalEvents <- MergedActivity %>%
  filter(y == "Critical Events") %>%
  filter(complete.cases(.)) %>%
  mutate(across(where(is.factor), droplevels))
```

```
# creamos un vector de "1" de dimensión = número de observaciones del nivel predominante
UNO = rep(1, nrow(CriticalEvents))
# Se necesita que todas las variables sean numéricas
# Variables cuantitativas
X1 <- CriticalEvents %>%
   select(activity_id, hour, longitude, age, gross_ton, vessel_length, air_temp, wind_spee
d)
# Variables cualitativas: One hot encoding
X2 <- disjunctive(CriticalEvents$region)</pre>
colnames(X2) <- levels(CriticalEvents$region)</pre>
X3 <- disjunctive(CriticalEvents$watertype)</pre>
colnames(X3) <- levels(CriticalEvents$watertype)</pre>
X4 <- disjunctive(CriticalEvents$vessel_class)</pre>
colnames(X4) <- levels(CriticalEvents$vessel_class)</pre>
X5 <- disjunctive(CriticalEvents$damage_status)</pre>
colnames(X5) <- levels(CriticalEvents$damage_status)</pre>
# Juntamos todo para formar la matriz de diseño
X = as.matrix(cbind(UNO, X1, X2, X3, X4, X5))
# Probabilidades de inclusión
pik = rep(n / nrow(CriticalEvents), nrow(CriticalEvents))
# Obtención de los índices de la nueva muestra con ayuda de la librería sampling
# method = 2 para fase de aterrizaje mediante supresión de variables
# order = 1 para que los datos sean ordenados aleatoriamente
set.seed(123)
indicemuestreo = samplecube(X, pik, method = 2, order = 1, comment = FALSE )
# Obtención de la submuestra
CriticalEvents_cube <- CriticalEvents[which(indicemuestreo == 1),]</pre>
# Comprobación del tamaño
cat('El tamaño de la submuestra con y = Critical Events, es:', dim(CriticalEvents_cube))
```

# Para comprobar la estimación del tamaño poblacional,

```
## El tamaño de la submuestra con y = Critical Events, es: 9000 16
```

### Submuestreo en Maritime Accidents

```
# Se eliminarán observaciones con NA
MaritimeAccidents <- MergedActivity %>%
filter(y == "Maritime Accidents") %>%
filter(complete.cases(.)) %>%
mutate(across(where(is.factor), droplevels))
```

```
# Para comprobar la estimación del tamaño poblacional,
# creamos un vector de "1" de dimensión = número de observaciones del nivel predominante
UNO = rep(1, nrow(MaritimeAccidents))
# Se necesita que todas las variables sean numéricas
# Variables cuantitativas
X1 <- MaritimeAccidents %>%
   select(activity_id, hour, longitude, age, gross_ton, vessel_length, air_temp, wind_spee
d)
# Variables cualitativas: One hot encoding
X2 <- disjunctive(MaritimeAccidents$region)</pre>
colnames(X2) <- levels(MaritimeAccidents$region)</pre>
X3 <- disjunctive(MaritimeAccidents$watertype)</pre>
colnames(X3) <- levels(MaritimeAccidents$watertype)</pre>
X4 <- disjunctive(MaritimeAccidents$vessel_class)</pre>
colnames(X4) <- levels(MaritimeAccidents$vessel_class)</pre>
X5 <- disjunctive(MaritimeAccidents$damage_status)</pre>
colnames(X5) <- levels(MaritimeAccidents$damage_status)</pre>
# Juntamos todo para formar la matriz de diseño
X = as.matrix(cbind(UNO, X1, X2, X3, X4, X5))
# Probabilidades de inclusión
pik = rep(n / nrow(MaritimeAccidents), nrow(MaritimeAccidents))
# Obtención de los índices de la nueva muestra con ayuda de la librería sampling
# method = 2 para fase de aterrizaje mediante supresión de variables
# order = 1 para que los datos sean ordenados aleatoriamente
set.seed(123)
indicemuestreo = samplecube(X, pik, method = 2, order = 1, comment = FALSE )
# Obtención de la submuestra
MaritimeAccidents_cube <- MaritimeAccidents[which(indicemuestreo == 1),]</pre>
# Comprobación del tamaño
cat('El tamaño de la submuestra con y = Maritime Accidents, es:', dim(MaritimeAccidents_cu
be))
```

```
## El tamaño de la submuestra con y = Maritime Accidents, es: 9000 16
```

### Material Issues

```
# Se eliminarán observaciones con NA
MaterialIssues <- MergedActivity %>%
  filter(y == "Material Issues") %>%
  filter(complete.cases(.)) %>%
  mutate(across(where(is.factor), droplevels))
```

```
UNO = rep(1, nrow(MaterialIssues))
# Se necesita que todas las variables sean numéricas
# Variables cuantitativas
X1 <- MaterialIssues %>%
   select(activity_id, hour, longitude, age, gross_ton, vessel_length, air_temp, wind_spee
d)
# Variables cualitativas: One hot encoding
X2 <- disjunctive(MaterialIssues$region)</pre>
colnames(X2) <- levels(MaterialIssues$region)</pre>
X3 <- disjunctive(MaterialIssues$watertype)</pre>
colnames(X3) <- levels(MaterialIssues$watertype)</pre>
X4 <- disjunctive(MaterialIssues$vessel_class)</pre>
colnames(X4) <- levels(MaterialIssues$vessel_class)</pre>
X5 <- disjunctive(MaterialIssues$damage_status)</pre>
colnames(X5) <- levels(MaterialIssues$damage_status)</pre>
# Juntamos todo para formar la matriz de diseño
X = as.matrix(cbind(UNO, X1, X2, X3, X4, X5))
# Probabilidades de inclusión
pik = rep(n / nrow(MaterialIssues), nrow(MaterialIssues))
# Obtención de los índices de la nueva muestra con ayuda de la librería sampling
# method = 2 para fase de aterrizaje mediante supresión de variables
# order = 1 para que los datos sean ordenados aleatoriamente
set.seed(123)
indicemuestreo = samplecube(X, pik, method = 2, order = 1, comment = FALSE )
# Obtención de la submuestra
MaterialIssues_cube <- MaterialIssues[which(indicemuestreo == 1),]</pre>
# Comprobación del tamaño
cat('El tamaño de la submuestra con y = Material Issues, es:', dim(MaterialIssues_cube))
## El tamaño de la submuestra con y = Material Issues, es: 9000 16
```

# creamos un vector de "1" de dimensión = número de observaciones del nivel predominante

# Para comprobar la estimación del tamaño poblacional,

### Sobremuestreos: Smote

Onboard Emergencies

```
OnboardEmergencies <- MergedActivity %>%
filter(y == "Onboard Emergencies")
```

```
# Observaciones a generar
ngenerar <- n - nrow(OnboardEmergencies)</pre>
# Porcentaje de muestra sintética o sobremuestreada
p_over <- ngenerar / nrow(OnboardEmergencies) * 100</pre>
# Muestra provisional: Se juntan con el resto de subconjuntos anteriormente nivelados.
# Se eliminan niveles no presentes
# La variable objetivo debe ser de tipo factor
# Las variables numéricas deben estar sin atributos de escalado
muestra_provisional <- rbind(CriticalEvents, MaritimeAccidents_cube, MaterialIssues_cube,</pre>
OnboardEmergencies) %>%
  mutate(across(where(is.factor), droplevels))
# Obtención de la muestra sintética con la librería DMwR
OnboardEmergencies_smote <- SMOTE(y \sim ., data = muestra_provisional, perc.over = p_over, p
erc.under = 0)
# Comprobación del tamaño
cat('El tamaño de la submuestra con y = Onboard Emergencies, es:', dim(OnboardEmergencies_
smote))
```

### ## El tamaño de la submuestra con y = Onboard Emergencies, es: 9000 16

### Third-party Damages

```
ThirdpartyDamages <- MergedActivity %>%
filter(y == "Third-party Damages")
```

```
ngenerar <- n - nrow(ThirdpartyDamages)</pre>
# Porcentaje de muestra sintética o sobremuestreada
p_over <- ngenerar / nrow(ThirdpartyDamages) * 100</pre>
# Muestra provisional: Se juntan con el resto de subconjuntos anteriormente nivelados.
# Se eliminan niveles no presentes
# La variable objetivo debe ser de tipo factor
# Las variables numéricas deben estar sin atributos de escalado
muestra_provisional <- rbind(CriticalEvents, MaritimeAccidents_cube, MaterialIssues_cube,</pre>
ThirdpartyDamages) %>%
  mutate(across(where(is.factor), droplevels))
# Obtención de la muestra sintética con la librería DMwR
ThirdpartyDamages smote <- SMOTE(y ~ ., data = muestra provisional, perc.over = p over, pe
rc.under = 0)
# Comprobación del tamaño
cat('El tamaño de la submuestra con y = Third-Party Damages, es:', dim(ThirdpartyDamages_s
mote))
```

```
## El tamaño de la submuestra con y = Third-Party Damages, es: 9000 16
```

### Unión de datos

```
# Unión de Los subconjuntos
MergedActivityBalanced <- bind_rows(
    CriticalEvents_cube,
    MaritimeAccidents_cube,
    MaterialIssues_cube,
    OnboardEmergencies_smote,
    ThirdpartyDamages_smote)

# Estructura
str(MergedActivityBalanced)</pre>
```

```
## 'data.frame': 45000 obs. of 16 variables:
                    : num 1475186 1484669 1482821 1479220 1730323 ...
## $ activity_id
## $ date
                     : num 2 3 4 5 5 6 8 8 8 8 ...
## $ hour
                     : num 22 13.9 18.5 11.8 10 ...
                     : Factor w/ 5 levels "Alaska", "East Coast", ...: 3 5 5 3 3 2 3 5 5 3
## $ region
. . .
## $ latitude
                  : num 27.8 37.8 44.6 27.9 30 ...
## $ longitude
                     : num -82.8 -122.2 -124.1 -82.5 -93.8 ...
## $ watertype : Factor w/ 2 levels "ocean", "river": 1 1 1 1 1 1 1 1 1 1 ...
## $ damage_status
                     : Factor w/ 5 levels "Actual Total Loss",..: 2 2 2 2 5 5 5 5 2 5
## $ vessel_class : Factor w/ 11 levels "Barge", "Bulk Carrier",..: 8 7 3 7 10 8 4 4 7
10 ...
## $ age
                     : num 39 1 36 58 30 13 22 1 75 30 ...
## $ gross ton
                    : num 13 91 49 5 163 ...
## $ vessel_length : num 32 107.3 54.8 31 71 ...
## $ air_temp
                     : num 149.8 112.4 75.5 89.4 105.3 ...
## $ wind speed
                    : num 48.5 41.6 43.3 30 73.8 ...
## $ damage_assessment: num 40000 0 200 0 0 150 0 0 0 0 ...
                     : Factor w/ 5 levels "Critical Events",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ y
```

## 1.1.2. Imputación de valores ausentes

```
# Con ayuda de la librería mice, se van a aplicar los métodos Cart y Random forest.
# Se aplican 5 x 5 iteraciones a las tres variables con NA: air_temp, wind_speed y damage_
assessment
if (save_switch == 1) {
MergedActivityBalancedCart <- MergedActivityBalanced %>%
  mice(method = "cart", minbucket = 4) %>%
  complete() %>%
  as.data.frame()
MergedActivityBalancedRF <- MergedActivityBalanced %>%
  mice(method = "rf", ntree = 3) %>%
  complete() %>%
  as.data.frame()
# Guardado junto
loggedsave(MergedActivityBalancedCart, "Datasets")
loggedsave(MergedActivityBalancedRF, "Datasets")
}else{
    MergedActivityBalancedCart <- readRDS("Datasets/MergedActivityBalancedCart.rds")</pre>
    MergedActivityBalancedRF <- readRDS("Datasets/MergedActivityBalancedRF.rds")
}
```

#### Comparación

```
# Tabla con las medias de las variables imputadas junto con una columna de diferencias en
valor absoluto
bind rows(
    summarise(MergedActivityBalanced,
              Dataset = "MergedActivityBalanced (Original)",
              mean_air_temp = mean(air_temp, na.rm = TRUE),
              mean_wind_speed = mean(wind_speed, na.rm = TRUE),
              mean_damage_assessment = mean(damage_assessment, na.rm = TRUE)),
    summarise(MergedActivityBalancedCart,
              Dataset = "MergedActivityBalancedCart",
              mean_air_temp = mean(air_temp),
              mean_wind_speed = mean(wind_speed),
              mean_damage_assessment = mean(damage_assessment)),
    summarise(MergedActivityBalancedRF,
              Dataset = "MergedActivityBalancedRF",
              mean air temp = mean(air temp),
              mean wind speed = mean(wind speed),
              mean_damage_assessment = mean(damage_assessment)),
) %>%
  mutate(suma = mean_air_temp + mean_wind_speed + mean_damage_assessment) %>%
  mutate(dif_total = abs(suma - suma[1])) %>%
  mutate(dif_total = color_tile("lightgreen", "white")(dif_total)) %>%
  select(-suma) %>%
  kable(escape = F) %>%
  kable_styling("hover", full_width = F) %>%
  add_header_above(c("", "Comparación de medias"= 4))
```

### Comparación de medias

| Dataset                              | mean_air_temp | mean_wind_speed | mean_damage_assessment | dif_ |
|--------------------------------------|---------------|-----------------|------------------------|------|
| MergedActivityBalanced<br>(Original) | 151.2707      | 50.51718        | 104365.3               | 0.0  |
| MergedActivityBalancedCart           | 151.6104      | 49.00846        | 104383.4               | 16.  |
| MergedActivityBalancedRF             | 151.7052      | 49.09728        | 104420.8               | 54.  |

Teniendo en cuenta las medias, la opción que minimiza las diferencias es el método Cart

### 1.1.3. Consolidación de datos

```
# Elección del dataframe completo.
# Filtrado de variables estadisticamente irrelevantes según regresión
# Se escalan variables numéricas
# Se cambian Las etiquetas de la variable objetivo para evitar problemas en caret
if (save_switch == 1) {
    MergedActivityGeneral <- MergedActivityBalancedCart %>%
        select(-date, -latitude, -damage_assessment) %>%
        mutate_if(is.numeric, scale) %>%
        mutate(y = factor(y, labels = make.names(levels(y))))

loggedsave(MergedActivityGeneral, "Datasets")
}else{
    MergedActivityGeneral <- readRDS("Datasets/MergedActivityGeneral.rds")
}

str(MergedActivityGeneral)</pre>
```

```
45000 obs. of 13 variables:
## 'data.frame':
   $ activity id : num [1:45000, 1] -1.83 -1.82 -1.82 -1.83 -1.56 ...
##
     ... attr(*, "scaled:center")= num 3223764
##
    ..- attr(*, "scaled:scale")= num 955025
##
    $ hour
                   : num [1:45000, 1] 1.681 0.367 1.112 0.027 -0.271 ...
##
    ... attr(*, "scaled:center")= num 11.7
##
     ... attr(*, "scaled:scale")= num 6.15
                 : Factor w/ 5 levels "Alaska", "East Coast", ...: 3 5 5 3 3 2 3 5 5 3 ...
                : num [1:45000, 1] 0.5352 -1.0936 -1.1722 0.5473 0.0788 ...
   $ longitude
    ..- attr(*, "scaled:center")= num -95.7
##
     ... attr(*, "scaled:scale")= num 24.2
                : Factor w/ 2 levels "ocean", "river": 1 1 1 1 1 1 1 1 1 1 ...
   $ damage_status: Factor w/ 5 levels "Actual Total Loss",..: 2 2 2 2 5 5 5 2 5 ...
##
   $ vessel_class : Factor w/ 11 levels "Barge", "Bulk Carrier",..: 8 7 3 7 10 8 4 4 7 10
##
                   : num [1:45000, 1] 0.753 -1.509 0.575 1.884 0.217 ...
##
   $ age
     ... attr(*, "scaled:center")= num 26.3
##
    ..- attr(*, "scaled:scale")= num 16.8
##
                  : num [1:45000, 1] -0.342 -0.337 -0.34 -0.343 -0.332 ...
## $ gross_ton
    ... attr(*, "scaled:center")= num 5014
##
##
   ... attr(*, "scaled:scale")= num 14606
## $ vessel_length: num [1:45000, 1] -0.755 -0.401 -0.647 -0.759 -0.571 ...
    ... attr(*, "scaled:center")= num 193
##
    ... attr(*, "scaled:scale")= num 213
##
## $ air_temp
                 : num [1:45000, 1] -0.0205 -0.4315 -0.8383 -0.685 -0.5105 ...
    ..- attr(*, "scaled:center")= num 152
##
    ... attr(*, "scaled:scale")= num 90.8
##
## $ wind_speed : num [1:45000, 1] -0.0183 -0.2458 -0.189 -0.6315 0.8264 ...
    ... attr(*, "scaled:center")= num 49
##
    ... attr(*, "scaled:scale")= num 30
##
   $ y
                   : Factor w/ 5 levels "Critical.Events",..: 1 1 1 1 1 1 1 1 1 1 ...
```

# 1.2. Dataset con variables factor (Redes bayesianas)

```
# Aplicación del método mdlp con ayuda de la librería arulesCBA para discretizar las varia bles factoriales  \text{MergedActivityFactor} \leftarrow \text{discretizeDF.supervised}(y \sim ., \text{MergedActivityGeneral})
```

```
# Guardado de datos
if (save_switch == 1) {
loggedsave(MergedActivityFactor, "Datasets")
}else{
    MergedActivityFactor <- readRDS("Datasets/MergedActivityFactor.rds")
}</pre>
```

```
# Verificación de estructura
str(MergedActivityFactor)
```

```
45000 obs. of 13 variables:
## 'data.frame':
   $ activity_id : Factor w/ 5 levels "[-Inf,-0.991)",..: 1 1 1 1 1 1 1 1 1 1 ...
##
     ... attr(*, "discretized:breaks")= num [1:6] -Inf -0.991 0.9027 0.0633 1.514 ...
##
     ... attr(*, "discretized:method")= chr "mdlp"
##
    $ hour
                   : Factor w/ 7 levels "[-Inf,-1.84)",..: 7 5 6 4 4 5 4 2 4 4 ...
     ... attr(*, "discretized:breaks")= num [1:8] -Inf -1.838 -0.764 -0.948 0.135 ...
##
     ... attr(*, "discretized:method")= chr "mdlp"
                   : Factor w/ 5 levels "Alaska", "East Coast", ...: 3 5 5 3 3 2 3 5 5 3 ...
                   : Factor w/ 73 levels "[-Inf,-2.9393)",..: 63 11 9 65 24 65 51 12 10 22
    $ longitude
##
     ... attr(*, "discretized:breaks")= num [1:74] -Inf -2.939 -1.481 -1.117 -0.885 ...
##
     ... attr(*, "discretized:method")= chr "mdlp"
##
                  : Factor w/ 2 levels "ocean", "river": 1 1 1 1 1 1 1 1 1 1 ...
##
   $ damage_status: Factor w/ 5 levels "Actual Total Loss",..: 2 2 2 2 5 2 5 5 2 5 ...
##
   $ vessel_class : Factor w/ 11 levels "Barge", "Bulk Carrier",..: 8 7 3 7 10 8 4 4 7 10
##
                   : Factor w/ 9 levels "[-Inf,-1.33)",..: 8 1 8 9 6 3 6 1 9 6 ...
##
   $ age
##
     ... attr(*, "discretized:breaks")= num [1:10] -Inf -1.33 -0.734 -1.271 -0.701 ...
     ... attr(*, "discretized:method")= chr "mdlp"
##
                : Factor w/ 35 levels "[-Inf,-0.34205)",..: 1 4 3 1 6 3 33 32 20 4 ...
##
##
     ... attr(*, "discretized:breaks")= num [1:36] -Inf -0.342 -0.338 -0.342 -0.337 ...
    ... attr(*, "discretized:method")= chr "mdlp"
##
   $ vessel_length: Factor w/ 21 levels "[-Inf,-0.686)",..: 1 6 2 1 4 1 21 20 15 2 ...
##
     ..- attr(*, "discretized:breaks")= num [1:22] -Inf -0.6856 -0.6175 0.0114 -0.5757 ...
##
    ... attr(*, "discretized:method")= chr "mdlp"
##
                   : Factor w/ 3 levels "[-Inf,-1.06)",..: 3 2 2 2 2 3 2 3 2 2 ...
##
     ... attr(*, "discretized:breaks")= num [1:4] -Inf -1.058 -0.393 Inf
##
     ... attr(*, "discretized:method")= chr "mdlp"
##
   $ wind_speed : Factor w/ 4 levels "[-Inf,-0.591)",..: 2 2 2 1 3 4 2 3 1 2 ...
##
     ... attr(*, "discretized:breaks")= num [1:5] -Inf -0.591 0.334 2.129 Inf
##
     ... attr(*, "discretized:method")= chr "mdlp"
   $ y
                   : Factor w/ 5 levels "Critical.Events",..: 1 1 1 1 1 1 1 1 1 1 ...
```

# 1.3. Dataset con variables numéricas (Gradient Boosting)

```
# Creamos variables dummy con la ayuda de la librería fastDummies y juntamos con las varia
bles numéricas
# Pero la variable objetivo se queda como factor para utilizarse en modelos de clasificac
ión
MergedActivityNum <- cbind(
  dummy_cols(MergedActivityGeneral[ , c(3, 5,6,7)], remove_selected_columns = TRUE),
  MergedActivityGeneral[ ,c(1,2, 4, 8,9,10,11,12,13)]
)</pre>
```

```
# Guardado de datos
if (save_switch == 1) {
loggedsave(MergedActivityNum, "Datasets")
}else{
    MergedActivityNum <- readRDS("Datasets/MergedActivityNum.rds")
}</pre>
```

```
# Verificación de estructura
str(MergedActivityNum)
```

```
## 'data.frame':
                 45000 obs. of 32 variables:
## $ region Alaska
                                                 : int 0000000000...
## $ region_East Coast
                                                 : int 0000010000...
## $ region_Gulf of Mexico
                                                 : int 1001101001...
## $ region_Mississippi
                                                 : int 0000000000...
## $ region West Coast
                                                 : int 0110000110...
## $ watertype_ocean
                                                 : int 111111111...
## $ watertype_river
                                                 : int 0000000000...
## $ damage status Actual Total Loss
                                                 : int 0000000000...
## $ damage_status_Damaged
                                                : int 1111010010...
## $ damage_status_Total Constructive Loss: Salvaged : int 0000000000...
## $ damage_status_Total Constructive Loss: Unsalvaged: int 0000000000...
## $ damage_status_Undamaged
                                                 : int 0000101101...
## $ vessel_class_Barge
                                                 : int 0000000000...
## $ vessel_class_Bulk Carrier
                                                 : int 0000000000...
                                                 : int 0010000000...
## $ vessel class Fishing Vessel
## $ vessel_class_General Dry Cargo Ship
                                                 : int 0000001100...
## $ vessel_class_Miscellaneous Vessel
                                                 : int 0000000000...
## $ vessel_class_Offshore
                                                 : int 0000000000...
## $ vessel_class_Passenger Ship
                                                 : int 0101000010...
## $ vessel_class_Recreational
                                                 : int 1000010000...
                                                 : int 0000000000...
## $ vessel_class_Tank Ship
## $ vessel_class_Towing Vessel
                                                : int 0000100001...
## $ vessel_class_other value
                                                 : int 0000000000...
## $ activity id
                                                 : num [1:45000, 1] -1.83 -1.82 -1.8
2 -1.83 -1.56 ...
   ..- attr(*, "scaled:center")= num 3223764
##
    ..- attr(*, "scaled:scale")= num 955025
## $ hour
                                                 : num [1:45000, 1] 1.681 0.367 1.11
2 0.027 -0.271 ...
   ... attr(*, "scaled:center")= num 11.7
    ... attr(*, "scaled:scale")= num 6.15
## $ longitude
                                                 : num [1:45000, 1] 0.5352 -1.0936 -
1.1722 0.5473 0.0788 ...
   ... attr(*, "scaled:center")= num -95.7
    ..- attr(*, "scaled:scale")= num 24.2
## $ age
                                                  : num [1:45000, 1] 0.753 -1.509 0.5
75 1.884 0.217 ...
   ..- attr(*, "scaled:center")= num 26.3
##
    ..- attr(*, "scaled:scale")= num 16.8
##
## $ gross ton
                                                  : num [1:45000, 1] -0.342 -0.337 -
0.34 -0.343 -0.332 ...
   ... attr(*, "scaled:center")= num 5014
##
    ..- attr(*, "scaled:scale")= num 14606
##
## $ vessel_length
                                                  : num [1:45000, 1] -0.755 -0.401 -
0.647 -0.759 -0.571 ...
   ... attr(*, "scaled:center")= num 193
##
   ... attr(*, "scaled:scale")= num 213
##
## $ air temp
                                                  : num [1:45000, 1] -0.0205 -0.4315
-0.8383 -0.685 -0.5105 ...
   ... attr(*, "scaled:center")= num 152
##
   ..- attr(*, "scaled:scale")= num 90.8
                                                  : num [1:45000, 1] -0.0183 -0.2458
## $ wind speed
-0.189 -0.6315 0.8264 ...
```

```
## ... attr(*, "scaled:center")= num 49
## ... attr(*, "scaled:scale")= num 30
## $ y
ts",..: 1 1 1 1 1 1 1 1 1 1 1 ...
: Factor w/ 5 levels "Critical.Even
```

# 1.4. Particionado de datos

```
# Índice de partición
Indice_Particion <- createDataPartition(MergedActivityGeneral$y, p = 0.80, list = FALSE )

# Muestras de entrenamiento y test para propósito general
train_MA_general <- MergedActivityGeneral[Indice_Particion, ]
test_MA_general <- MergedActivityGeneral[-Indice_Particion, ]

# Muestras de entrenamiento y test para redes bayesanas
train_MA_factor <- MergedActivityFactor[Indice_Particion, ]
test_MA_factor <- MergedActivityFactor[-Indice_Particion, ]

# Muestras de entrenamiento y test para Gradient Boosting
train_MA_num <- MergedActivityNum[ Indice_Particion, ]
test_MA_num <- MergedActivityNum[ -Indice_Particion, ]

# Guardado de datos
if (save_switch == 1) {
datasets_MA_particionados <- list(train_MA_general = train_MA_general,</pre>
```

# 2. Entrenamiento de los modelos

```
# Reset
rm(list = ls())
source("../4.Functions/myCustomFunctions.R")
train_switch <- 0
if (train_switch == 0){
    nb_MA_train <- readRDS("Models/nb_MA_train.RDS")
    GBM_MA_train <- readRDS("Models/GBM_MA_train.RDS")
    rf_MA_train <- readRDS("Models/rf_MA_train.RDS")
    nnet_MA_train <- readRDS("Models/nnet_MA_train.RDS")
    C5_MA_train <- readRDS("Models/C5_MA_train.RDS")
}
list2env(readRDS("Datasets/datasets_MA_particionados.rds"), envir = .GlobalEnv)</pre>
```

```
## <environment: R_GlobalEnv>
```

# Método de validación cruzada

# 2.1. Modelos de redes bayesianas

# 2.1.1. Naïve Bayes

```
if (train_switch == 1) {
set.seed(7)
tic()
  clusterCPU <- makePSOCKcluster(detectCores() - 1)</pre>
  registerDoParallel(clusterCPU)
  nb_MA_train <- train(train_MA_factor[, !names(train_MA_factor) %in% "y"],</pre>
                   train_MA_factor$y,
                   method = 'nb',
                   metric = metrica,
                   # preProc = c('center', 'scale'),
                   trControl = control)
  stopCluster(clusterCPU)
  clusterCPU <- NULL</pre>
  saveRDS(nb_MA_train, "Models/nb_MA_train.RDS")
toc()
}else{
  nb_MA_train <- readRDS("Models/nb_MA_train.RDS")</pre>
```

```
# Resultados
nb_MA_train
```

```
## Naive Bayes
##
## 36000 samples
##
     12 predictor
       5 classes: 'Critical.Events', 'Maritime.Accidents', 'Material.Issues', 'Onboard.Eme
##
rgencies', 'Third.party.Damages'
## No pre-processing
## Resampling: Cross-Validated (8 fold, repeated 2 times)
## Summary of sample sizes: 31500, 31500, 31500, 31500, 31500, 31500, ...
## Resampling results across tuning parameters:
##
                                    prAUC Accuracy Kappa
##
     usekernel logLoss
                         AUC
                                                                   Mean F1
##
    FALSE
               1.552391 0.7211618 0.4272545 0.41325
                                                        0.2665625 0.4111456
     TRUE
               1.552391 0.7211618 0.4272545 0.41325
##
                                                        0.2665625 0.4111456
    Mean_Sensitivity Mean_Specificity Mean_Pos_Pred_Value Mean_Neg_Pred_Value
##
    0.41325
                      0.8533125
                                       0.4148792
##
                                                            0.8536251
##
    0.41325
                      0.8533125
                                       0.4148792
                                                            0.8536251
    Mean_Precision Mean_Recall Mean_Detection_Rate Mean_Balanced_Accuracy
##
    0.4148792
                   0.41325
                                0.08265
                                                     0.6332813
##
##
    0.4148792 0.41325
                                 0.08265
                                                     0.6332813
##
## Tuning parameter 'fL' was held constant at a value of \theta
## Tuning
## parameter 'adjust' was held constant at a value of 1
## logLoss was used to select the optimal model using the smallest value.
## The final values used for the model were fL = 0, usekernel = FALSE and adjust
## = 1.
```

```
# Métricas
grafico_metricas(nb_MA_train)
```

### **Métrica ROC**





# Resultados
resultados(nb\_MA\_train, "Naive Bayes")

### RESULTADOS DEL MODELO Naive Bayes

| usekernel | fL | adjust | logLoss  | AUC       | prAUC     | Accuracy | Kappa     | Mean_F1   | Mea |
|-----------|----|--------|----------|-----------|-----------|----------|-----------|-----------|-----|
| FALSE     | 0  | 1      | 1.552391 | 0.7211618 | 0.4272545 | 0.41325  | 0.2665625 | 0.4111456 |     |
| TRUE      | 0  | 1      | 1.552391 | 0.7211618 | 0.4272545 | 0.41325  | 0.2665625 | 0.4111456 |     |

# Mejor modelo
mejor\_modelo(nb\_MA\_train)

## [1] "El mejor módelo es el que muestra los siguientes hiperparámetros:"

| fL | usekernel | adjust |  |  |
|----|-----------|--------|--|--|
| 0  | FALSE     | 1      |  |  |

# Curvas ROC y AUC
curvas\_ROC(nb\_MA\_train, "de Naïve Bayes", train\_MA\_factor, test\_MA\_factor)

### Curvas ROC del modelo de Naïve Bayes



## [1] "ROC del modelo con el fichero de test: 0.729759722222222"

# Validación: Matriz de confusión
validation(nb\_MA\_train, "de Naïve Bayes", train\_MA\_factor, test\_MA\_factor)

```
## [1] "Modelo de Naïve Bayes - Tabla de confusión para los datos de entrenamiento"
## Confusion Matrix and Statistics
##
##
## Prediction
                          Critical. Events Maritime. Accidents Material. Issues
##
     Critical. Events
                                     1668
                                                           817
                                                                           1231
##
     Maritime.Accidents
                                     1242
                                                          3378
                                                                           1119
##
     Material.Issues
                                     2461
                                                          1349
                                                                           3304
##
     Onboard. Emergencies
                                      1036
                                                           880
                                                                           862
                                       793
                                                           776
##
     Third.party.Damages
                                                                            684
##
                         Reference
## Prediction
                          Onboard. Emergencies Third. party. Damages
     Critical.Events
##
                                          1062
##
     Maritime.Accidents
                                           888
                                                                883
     Material.Issues
                                          1337
                                                               1061
##
     Onboard. Emergencies
##
                                          3185
                                                               1054
                                           728
                                                               3483
##
     Third.party.Damages
##
## Overall Statistics
##
##
                   Accuracy : 0.4172
##
                     95% CI: (0.4121, 0.4223)
##
       No Information Rate: 0.2
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa: 0.2715
##
##
   Mcnemar's Test P-Value : < 2.2e-16
##
## Statistics by Class:
##
##
                         Class: Critical. Events Class: Maritime. Accidents
## Sensitivity
                                         0.23167
                                                                    0.46917
## Specificity
                                         0.86705
                                                                    0.85653
## Pos Pred Value
                                         0.30344
                                                                    0.44980
## Neg Pred Value
                                         0.81864
                                                                    0.86585
## Prevalence
                                         0.20000
                                                                    0.20000
## Detection Rate
                                         0.04633
                                                                    0.09383
## Detection Prevalence
                                         0.15269
                                                                    0.20861
## Balanced Accuracy
                                         0.54936
                                                                    0.66285
##
                         Class: Material.Issues Class: Onboard.Emergencies
## Sensitivity
                                                                     0.44236
                                         0.45889
## Specificity
                                         0.78444
                                                                     0.86694
## Pos Pred Value
                                                                     0.45390
                                         0.34735
## Neg Pred Value
                                         0.85291
                                                                     0.86147
## Prevalence
                                                                     0.20000
                                         0.20000
## Detection Rate
                                         0.09178
                                                                     0.08847
## Detection Prevalence
                                         0.26422
                                                                     0.19492
## Balanced Accuracy
                                         0.62167
                                                                     0.65465
                         Class: Third.party.Damages
##
## Sensitivity
                                             0.48375
## Specificity
                                             0.89649
## Pos Pred Value
                                             0.53883
## Neg Pred Value
                                             0.87415
```

## [1] "Modelo de Naïve Bayes - Tabla de confusión para los datos de validación"

```
## Confusion Matrix and Statistics
##
                         Reference
##
## Prediction
                          Critical. Events Maritime. Accidents Material. Issues
##
     Critical. Events
                                       428
                                                           199
##
     Maritime.Accidents
                                       313
                                                           851
                                                                            276
##
     Material.Issues
                                       606
                                                           364
                                                                            839
##
     Onboard. Emergencies
                                       241
                                                           206
                                                                            185
##
     Third.party.Damages
                                       212
                                                           180
                                                                            179
##
## Prediction
                          Onboard. Emergencies Third. party. Damages
##
     Critical. Events
                                           250
                                                                185
                                                                196
##
     Maritime.Accidents
                                           233
     Material.Issues
##
                                           336
                                                                286
                                                                275
     Onboard. Emergencies
                                           803
##
##
     Third.party.Damages
                                           178
                                                                858
##
## Overall Statistics
##
                   Accuracy : 0.4199
##
##
                     95% CI: (0.4097, 0.4302)
##
       No Information Rate: 0.2
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa: 0.2749
##
    Mcnemar's Test P-Value : < 2.2e-16
##
##
## Statistics by Class:
##
##
                         Class: Critical. Events Class: Maritime. Accidents
## Sensitivity
                                         0.23778
                                                                    0.47278
## Specificity
                                         0.86736
                                                                    0.85861
## Pos Pred Value
                                         0.30947
                                                                    0.45532
## Neg Pred Value
                                         0.81988
                                                                    0.86692
## Prevalence
                                         0.20000
                                                                    0.20000
## Detection Rate
                                         0.04756
                                                                    0.09456
## Detection Prevalence
                                         0.15367
                                                                    0.20767
## Balanced Accuracy
                                         0.55257
                                                                    0.66569
##
                         Class: Material.Issues Class: Onboard.Emergencies
## Sensitivity
                                         0.46611
                                                                     0.44611
## Specificity
                                         0.77889
                                                                     0.87403
## Pos Pred Value
                                         0.34513
                                                                     0.46959
## Neg Pred Value
                                         0.85371
                                                                     0.86324
## Prevalence
                                         0.20000
                                                                     0.20000
## Detection Rate
                                         0.09322
                                                                     0.08922
## Detection Prevalence
                                         0.27011
                                                                     0.19000
## Balanced Accuracy
                                         0.62250
                                                                     0.66007
##
                         Class: Third.party.Damages
                                             0.47667
## Sensitivity
## Specificity
                                             0.89597
## Pos Pred Value
                                             0.53391
## Neg Pred Value
                                             0.87258
## Prevalence
                                             0.20000
```

### Resumen de métricas

```
# Resumen de métricas
resumen_MA_nb <- resumen_multiclass(nb_MA_train, train_MA_factor, test_MA_factor)
# Presentación
resumen_MA_nb %>% kable(escape = F) %>%
  kable_styling("hover", full_width = F) %>%
  add_header_above(c(" ", "Naïve Bayes Classifier" = 5))
```

#### Naïve Bayes Classifier **AUC** Accuracy Kappa Sensitivity **Specificity** 0.854 **Datos Entrenamiento** 0.725 0.417 0.271 0.417 Datos Validación 0.726 0.420 0.275 0.420 0.855

### Importancia de las variables

```
# Importancia general de las variables
importancia_var_overall(nb_MA_train, "de Naïve Bayes")
```

# Importancia de las variables



# Importancia de variables por cada valor de predicción importancia\_var(nb\_MA\_train, "de Naïve Bayes")

### Importancia de las variables Modelo de Naïve Bayes



# 2.2. Modelos Gradient Boosting

### 2.2.1. Modelo GBM

```
# Entrenamiento
if (train_switch == 1) {
set.seed(7)
tic()
clusterCPU <- makePSOCKcluster( detectCores()-1 )</pre>
registerDoParallel(clusterCPU)
tune_grid <- expand.grid(n.trees = seq(from = 100, to = 500, by = 25),</pre>
                          interaction.depth = c(1, 2, 3, 4, 5),
                          shrinkage = 0.1,
                          n.minobsinnode = 10)
GBM_MA_train <- train(train_MA_num[ , -length(train_MA_num)],</pre>
                  train_MA_num$y,
                  method = "gbm",
                  metric = metrica,
                  trControl = control,
                  tuneGrid = tune_grid)
stopCluster(clusterCPU)
saveRDS(GBM_MA_train, "Models/GBM_MA_train.RDS")
toc()
}else{
  GBM_MA_train <- readRDS("Models/GBM_MA_train.RDS")</pre>
}
```

```
# Resultados

GBM_MA_train
```

```
## Stochastic Gradient Boosting
##
## 36000 samples
##
      31 predictor
       5 classes: 'Critical.Events', 'Maritime.Accidents', 'Material.Issues', 'Onboard.Eme
##
rgencies', 'Third.party.Damages'
##
## No pre-processing
## Resampling: Cross-Validated (8 fold, repeated 2 times)
   Summary of sample sizes: 31500, 31500, 31500, 31500, 31500, ...
   Resampling results across tuning parameters:
##
##
     interaction.depth n.trees
                                logLoss
                                           AUC
                                                      prAUC
                                                                Accuracy
##
     1
                        100
                                 1.421799
                                          0.7104177 0.4074903
                                                                0.4012639
                        125
                                          0.7133146 0.4113238
##
     1
                                 1.415076
                                                                0.4045972
##
     1
                        150
                                1.409956
                                          0.7154615 0.4141833
                                                                0.4074028
##
     1
                        175
                                 1.405948
                                          0.7173134 0.4164173
                                                                0.4082778
##
     1
                        200
                                1.402865
                                          0.7186031 0.4180661
                                                                0.4081111
##
                        225
                                          0.7198719 0.4196619
     1
                                1.400130
                                                                0.4089306
##
     1
                        250
                                1.397609
                                          0.7209901 0.4209062 0.4101389
##
     1
                        275
                                1.395478
                                          0.7219672 0.4221593 0.4101806
##
     1
                        300
                                1.393616
                                          0.7228167 0.4231857
                                                                0.4110972
##
                                          0.7235979 0.4241142 0.4105694
     1
                        325
                                1.391878
##
                        350
                                1.390251
                                          0.7243895 0.4251142 0.4115278
     1
##
     1
                        375
                                1.388788
                                          0.7250509 0.4258912 0.4125139
##
     1
                        400
                                1.387409
                                          0.7256973 0.4267028
                                                                0.4123889
##
     1
                        425
                                1.386290
                                          0.7262027 0.4274507
                                                                0.4131806
##
     1
                        450
                                1.385241
                                          0.7267019 0.4280281 0.4133472
##
     1
                        475
                                1.384167
                                           0.7272175 0.4286178
                                                                0.4144028
##
     1
                        500
                                1.383186
                                          0.7276770 0.4292198
                                                                0.4149306
##
     2
                        100
                                 1.378019
                                          0.7310384 0.4380791 0.4188056
##
     2
                        125
                                 1.369057
                                          0.7349097 0.4432524
                                                                0.4226667
##
     2
                        150
                                          0.7381611 0.4475211 0.4241667
                                 1.361603
##
     2
                        175
                                 1.355282
                                          0.7407652 0.4510734
                                                                0.4272361
##
     2
                        200
                                 1.350330
                                          0.7428412 0.4537321 0.4279167
##
     2
                        225
                                 1.346199
                                          0.7444966 0.4557991 0.4292361
##
     2
                        250
                                 1.342053
                                          0.7461290 0.4579814 0.4306806
     2
##
                        275
                                 1.339083
                                          0.7471988 0.4595801
                                                               0.4319028
##
     2
                        300
                                 1.336816
                                          0.7480383 0.4607709
                                                                0.4315000
                                          0.7487271 0.4618919
##
     2
                        325
                                 1.334773
                                                                0.4321944
##
     2
                        350
                                          0.7493354 0.4625454
                                                                0.4324861
                                1.333059
##
     2
                        375
                                 1.331362
                                          0.7498966 0.4635425
                                                                0.4334167
     2
##
                        400
                                 1.329933
                                          0.7504245 0.4642843
                                                                0.4336528
##
     2
                        425
                                 1.328379
                                          0.7509697 0.4651207
                                                                0.4345694
##
     2
                        450
                                          0.7513514 0.4655934
                                                                0.4353889
                                1.327274
     2
##
                        475
                                 1.326295
                                          0.7516543 0.4659920
                                                                0.4349583
     2
##
                        500
                                1.325343
                                          0.7519641 0.4665756
                                                                0.4355417
##
     3
                        100
                                1.353801
                                          0.7419725 0.4536293
                                                                0.4269028
##
     3
                        125
                                1.345573
                                          0.7451882 0.4577480
                                                                0.4297639
##
     3
                        150
                                1.338883
                                          0.7476799 0.4609927
                                                                0.4313194
##
     3
                        175
                                1.333635
                                          0.7496772 0.4638145
                                                                0.4322222
##
     3
                        200
                                1.329588
                                          0.7511628 0.4658818
                                                                0.4337361
##
     3
                        225
                                1.326348
                                          0.7521653   0.4674075   0.4340139
     3
##
                        250
                                 1.323609 0.7530989 0.4684791 0.4348750
```

| ## | 3         | 27        | 5      | 1.321356   | 0 | .7538947 | 0.4696158 | 0   | .4362917         |
|----|-----------|-----------|--------|------------|---|----------|-----------|-----|------------------|
| ## | 3         | 36        | 0      | 1.319950   | 0 | .7542248 | 0.4700407 | 0   | .4363056         |
| ## | 3         | 32        | .5     | 1.318212   | 0 | .7546953 | 0.4707831 | 0   | .4369861         |
| ## | 3         | 35        | 0      | 1.316835   | 0 | .7550978 | 0.4712729 | 0   | .4370417         |
| ## | 3         | 37        | 5      | 1.315735   | 0 | .7554160 | 0.4716288 | 0   | .4358611         |
| ## | 3         | 46        | 0      | 1.314767   | 0 | .7556558 | 0.4719951 | 0   | .4363611         |
| ## | 3         | 42        | .5     | 1.314018   | 0 | .7558778 | 0.4723211 | 0   | .4364306         |
| ## | 3         | 45        | 0      | 1.313438   | 0 | .7559660 | 0.4725956 | 0   | .4366528         |
| ## | 3         | 47        | 5      | 1.312668   | 0 | .7561717 | 0.4729624 | 0   | .4369444         |
| ## | 3         | 56        | 0      | 1.311955   | 0 | .7563827 | 0.4732209 | 0   | .4368472         |
| ## | 4         | 16        |        | 1.340799   | 0 | .7469502 | 0.4609868 | 0   | .4307639         |
| ## | 4         | 12        |        | 1.333286   | 0 | .7496843 | 0.4645747 |     | .4337361         |
| ## | 4         | 15        |        | 1.327647   |   | .7516810 | 0.4669337 |     | .4353889         |
| ## | 4         | 17        |        | 1.324032   |   | .7527457 | 0.4683581 |     | .4354167         |
| ## | 4         | 26        |        | 1.320874   |   | .7536796 | 0.4695436 |     | .4350000         |
| ## | 4         | 22        |        | 1.318887   |   | .7541705 | 0.4700324 |     | .4351111         |
| ## | 4         | 25        |        | 1.316778   | 0 | .7548176 | 0.4710103 | 0   | .4354167         |
| ## | 4         | 27        |        | 1.315099   |   | .7553756 | 0.4714053 |     | .4357222         |
| ## | 4         | 36        |        | 1.313932   |   | .7556535 | 0.4718179 |     | .4358333         |
| ## | 4         | 32        |        | 1.313060   |   | .7558386 | 0.4720151 |     | .4359444         |
| ## | 4         | 35        |        | 1.312593   |   | .7558391 | 0.4720426 |     | .4359306         |
| ## | 4         | 37        |        | 1.311944   |   | .7559724 | 0.4724338 |     | .4366667         |
| ## | 4         | 46        |        | 1.311542   |   | .7560016 | 0.4724530 |     | .4364444         |
| ## | 4         | 42        |        | 1.311272   |   | .7560057 | 0.4726567 |     | .4362361         |
| ## | 4         | 45        |        | 1.311036   |   | .7559903 | 0.4727301 |     | .4357917         |
| ## | 4         | 47        |        | 1.310665   |   | .7560592 | 0.4728300 |     | .4357222         |
| ## | 4         | 56        |        | 1.310523   |   | .7560021 | 0.4729357 |     | .4356250         |
| ## | 5         | 16        |        | 1.331034   |   | .7510332 | 0.4664366 |     | .4341250         |
| ## | 5         | 12        |        | 1.324844   |   | .7529935 | 0.4689662 |     | .4352500         |
| ## | 5         | 15        |        | 1.320249   | 0 | .7544621 | 0.4706374 | 0   | .4362778         |
| ## | 5         | 17        |        | 1.317313   |   | .7551641 | 0.4717544 |     | .4356250         |
| ## | 5         | 26        |        | 1.314972   | 0 | .7556787 | 0.4723556 |     | .4356528         |
| ## | 5         | 22        | .5     | 1.313310   | 0 | .7559960 | 0.4730165 | 0   | .4360417         |
| ## | 5         | 25        | 0      | 1.312131   | 0 | .7562457 | 0.4734188 | 0   | .4360972         |
| ## | 5         | 27        | 5      | 1.311219   | 0 | .7563096 | 0.4736295 | 0   | .4361944         |
| ## | 5         | 36        |        | 1.311015   | 0 | .7562160 | 0.4734417 | 0   | .4347778         |
| ## | 5         | 32        |        | 1.310787   | 0 | .7561085 | 0.4734252 | 0   | .4345972         |
| ## | 5         | 35        | 0      | 1.310059   | 0 | .7562578 | 0.4736816 | 0   | .4349028         |
| ## | 5         | 37        |        | 1.310068   | 0 | .7561652 | 0.4735240 | 0   | .4348056         |
| ## | 5         | 46        | 0      | 1.310553   | 0 | .7558287 | 0.4731793 | 0   | .4350694         |
| ## | 5         | 42        | .5     | 1.310803   | 0 | .7556284 | 0.4730491 | 0   | .4345833         |
| ## | 5         | 45        | 0      | 1.310611   | 0 | .7556765 | 0.4733142 | 0   | .4340694         |
| ## | 5         | 47        | 5      | 1.310779   | 0 | .7555445 | 0.4732981 | 0   | .4340833         |
| ## | 5         | 50        | 0      | 1.311570   | 0 | .7551041 | 0.4728771 | 0   | .4334861         |
| ## | Карра     | Mean_F1   | Mean_S | Sensitivit | у | Mean_Spe | cificity  | Mea | n_Pos_Pred_Value |
| ## | 0.2515799 | 0.3890900 | 0.4012 | 2639       |   | 0.850316 | 0         | 0.3 | 927028           |
| ## | 0.2557465 | 0.3928106 | 0.404  | 5972       |   | 0.851149 | 3         | 0.3 | 960388           |
| ## | 0.2592535 | 0.3964689 | 0.4074 | 4028       |   | 0.851850 | 7         | 0.3 | 991196           |
| ## | 0.2603472 | 0.3972535 | 0.4082 | 2778       |   | 0.852069 | 4         | 0.3 | 997583           |
| ## | 0.2601389 | 0.3975688 | 0.4083 | 1111       |   | 0.852027 | 8         | 0.3 | 993471           |
| ## | 0.2611632 | 0.3987747 | 0.4089 | 9306       |   | 0.852232 | 6         | 0.4 | 004735           |
| ## | 0.2626736 | 0.4001359 | 0.410  | 1389       |   | 0.852534 | 7         | 0.4 | 016410           |
| ## | 0.2627257 | 0.4004952 | 0.410  | 1806       |   | 0.852545 | 1         | 0.4 | 019097           |
| ## | 0.2638715 | 0.4013311 | 0.4110 | 9972       |   | 0.852774 | 3         | 0.4 | 028735           |
| ## | 0.2632118 | 0.4009011 | 0.410  | 5694       |   | 0.852642 | 4         | 0.4 | 021071           |
|    |           |           |        |            |   |          |           |     |                  |

| ## | 0.2644097 | 0.4022694 | 0.4115278 | 0.8528819 | 0.4031628 |
|----|-----------|-----------|-----------|-----------|-----------|
| ## | 0.2656424 | 0.4030958 | 0.4125139 | 0.8531285 | 0.4039788 |
| ## | 0.2654861 | 0.4029481 | 0.4123889 | 0.8530972 | 0.4036084 |
| ## | 0.2664757 | 0.4040265 | 0.4131806 | 0.8532951 | 0.4045800 |
| ## | 0.2666840 | 0.4042635 | 0.4133472 | 0.8533368 | 0.4046831 |
| ## | 0.2680035 | 0.4055390 | 0.4144028 | 0.8536007 | 0.4059576 |
| ## | 0.2686632 | 0.4060198 | 0.4149306 | 0.8537326 | 0.4063206 |
| ## | 0.2735069 | 0.4108844 | 0.4188056 | 0.8547014 | 0.4138034 |
| ## | 0.2783333 | 0.4154980 | 0.4226667 | 0.8556667 | 0.4178866 |
| ## | 0.2802083 | 0.4175638 | 0.4241667 | 0.8560417 | 0.4191474 |
| ## | 0.2840451 | 0.4208558 | 0.4272361 | 0.8568090 | 0.4220413 |
| ## | 0.2848958 | 0.4218846 | 0.4279167 | 0.8569792 | 0.4226199 |
| ## | 0.2865451 | 0.4234332 | 0.4292361 | 0.8573090 | 0.4239022 |
| ## | 0.2883507 | 0.4251657 | 0.4306806 | 0.8576701 | 0.4253399 |
| ## | 0.2898785 | 0.4267873 | 0.4319028 | 0.8579757 | 0.4266442 |
| ## | 0.2893750 | 0.4264556 | 0.4315000 | 0.8578750 | 0.4263258 |
| ## | 0.2902431 | 0.4272559 | 0.4321944 | 0.8580486 | 0.4269126 |
| ## | 0.2906076 | 0.4275235 | 0.4324861 | 0.8581215 | 0.4269200 |
| ## | 0.2917708 | 0.4285529 | 0.4334167 | 0.8583542 | 0.4280586 |
| ## | 0.2920660 | 0.4288972 | 0.4336528 | 0.8584132 | 0.4283725 |
| ## | 0.2932118 | 0.4298976 | 0.4345694 | 0.8586424 | 0.4292295 |
| ## | 0.2942361 | 0.4307605 | 0.4353889 | 0.8588472 | 0.4302341 |
| ## | 0.2936979 | 0.4303980 | 0.4349583 | 0.8587396 | 0.4297642 |
| ## | 0.2944271 | 0.4309013 | 0.4355417 | 0.8588854 | 0.4301558 |
| ## | 0.2836285 | 0.4206684 | 0.4269028 | 0.8567257 | 0.4218615 |
| ## | 0.2872049 | 0.4243941 | 0.4297639 | 0.8574410 | 0.4249856 |
| ## | 0.2891493 | 0.4263073 | 0.4313194 | 0.8578299 | 0.4264688 |
| ## | 0.2902778 | 0.4275815 | 0.4322222 | 0.8580556 | 0.4276451 |
| ## | 0.2921701 | 0.4290575 | 0.4337361 | 0.8584340 | 0.4289883 |
| ## | 0.2925174 | 0.4295952 | 0.4340139 | 0.8585035 | 0.4294040 |
| ## | 0.2935937 | 0.4307858 | 0.4348750 | 0.8587187 | 0.4305344 |
| ## | 0.2953646 | 0.4321680 | 0.4362917 | 0.8590729 | 0.4318702 |
| ## | 0.2953819 | 0.4324228 | 0.4363056 | 0.8590764 | 0.4319835 |
| ## | 0.2962326 | 0.4331212 | 0.4369861 | 0.8592465 | 0.4325762 |
| ## | 0.2963021 | 0.4332892 | 0.4370417 | 0.8592604 | 0.4326216 |
| ## | 0.2948264 | 0.4322331 | 0.4358611 | 0.8589653 | 0.4315735 |
| ## | 0.2954514 | 0.4327910 | 0.4363611 | 0.8590903 | 0.4320583 |
| ## | 0.2955382 | 0.4328757 | 0.4364306 | 0.8591076 | 0.4321156 |
| ## | 0.2958160 | 0.4332827 | 0.4366528 | 0.8591632 | 0.4325442 |
| ## | 0.2961806 | 0.4334098 | 0.4369444 | 0.8592361 | 0.4326404 |
| ## | 0.2960590 | 0.4334754 | 0.4368472 | 0.8592118 | 0.4326536 |
| ## | 0.2884549 | 0.4256477 | 0.4307639 | 0.8576910 | 0.4261704 |
| ## | 0.2921701 | 0.4290566 | 0.4337361 | 0.8584340 | 0.4292855 |
| ## | 0.2942361 | 0.4308813 | 0.4353889 | 0.8588472 | 0.4308010 |
| ## | 0.2942708 | 0.4313089 | 0.4354167 | 0.8588542 | 0.4311696 |
| ## | 0.2937500 | 0.4310607 | 0.4350000 | 0.8587500 | 0.4306731 |
| ## | 0.2938889 | 0.4314470 | 0.4351111 | 0.8587778 | 0.4308453 |
| ## | 0.2942708 | 0.4317796 | 0.4354167 | 0.8588542 | 0.4310664 |
| ## | 0.2946528 | 0.4322033 | 0.4357222 | 0.8589306 | 0.4313224 |
| ## | 0.2947917 | 0.4322968 | 0.4358333 | 0.8589583 | 0.4315182 |
| ## | 0.2949306 | 0.4325614 | 0.4359444 | 0.8589861 | 0.4318544 |
| ## | 0.2949132 | 0.4325447 | 0.4359306 | 0.8589826 | 0.4317114 |
| ## | 0.2958333 | 0.4333376 | 0.4366667 | 0.8591667 | 0.4325402 |
| ## | 0.2955556 | 0.4332412 | 0.4364444 | 0.8591111 | 0.4323905 |
| ## | 0.2952951 | 0.4331743 | 0.4362361 | 0.8590590 | 0.4323977 |
|    |           |           |           |           |           |

| ## | 0.2947396             | 0.4328870 | 0.4357917 | 0.8589479  | 0.4321198           |
|----|-----------------------|-----------|-----------|------------|---------------------|
| ## | 0.2946528             | 0.4327608 | 0.4357222 | 0.8589306  | 0.4319556           |
| ## | 0.2945312             | 0.4328509 | 0.4356250 | 0.8589062  | 0.4321326           |
| ## | 0.2926562             | 0.4299471 | 0.4341250 | 0.8585312  | 0.4304263           |
| ## |                       |           | 0.4352500 | 0.8588125  |                     |
| ## | 0.2953472             |           |           | 0.8590694  |                     |
| ## |                       |           | 0.4356250 | 0.8589062  |                     |
| ## |                       |           | 0.4356528 |            |                     |
| ## |                       |           | 0.4360417 |            |                     |
| ## |                       |           | 0.4360972 | 0.8590243  |                     |
| ## |                       |           | 0.4361944 | 0.8590486  |                     |
| ## | 0.2934722             |           |           |            |                     |
| ## |                       |           |           |            |                     |
|    |                       |           | 0.4345972 | 0.8586493  |                     |
| ## |                       |           | 0.4349028 |            |                     |
| ## |                       |           | 0.4348056 |            |                     |
| ## |                       |           | 0.4350694 | 0.8587674  |                     |
| ## |                       |           | 0.4345833 | 0.8586458  |                     |
| ## |                       |           | 0.4340694 |            |                     |
| ## |                       |           | 0.4340833 |            |                     |
| ## |                       |           | 0.4334861 |            |                     |
| ## |                       |           |           |            | Mean_Detection_Rate |
| ## | 0.8516946             |           |           | 0.4012639  |                     |
| ## | 0.8524995             |           | 0.3960388 |            |                     |
| ## | 0.8531201             |           | 0.3991196 |            | 0.08148056          |
| ## | 0.8533463             |           | 0.3997583 | 0.4082778  | 0.08165556          |
| ## | 0.8532582             |           | 0.3993471 | 0.4081111  | 0.08162222          |
| ## | 0.8534220             |           | 0.4004735 |            | 0.08178611          |
| ## | 0.8537103             |           | 0.4016410 | 0.4101389  | 0.08202778          |
| ## | 0.8536905             |           | 0.4019097 | 0.4101806  | 0.08203611          |
| ## | 0.8539284             |           | 0.4028735 | 0.4110972  | 0.08221944          |
| ## | 0.8537882             |           | 0.4021071 | 0.4105694  | 0.08211389          |
| ## | 0.8539903             |           | 0.4031628 | 0.4115278  | 0.08230556          |
| ## | 0.8542578             |           | 0.4039788 | 0.4125139  | 0.08250278          |
| ## | 0.8542304             |           | 0.4036084 | 0.4123889  | 0.08247778          |
| ## | 0.8543981             |           | 0.4045800 | 0.4131806  | 0.08263611          |
| ## | 0.8544319             |           | 0.4046831 | 0.4133472  | 0.08266944          |
| ## | 0.8546762             |           | 0.4059576 | 0.4144028  | 0.08288056          |
| ## | 0.8548119             |           | 0.4063206 | 0.4149306  | 0.08298611          |
| ## | 0.8557241             |           | 0.4138034 | 0.4188056  | 0.08376111          |
| ## | 0.8565992             |           | 0.4178866 | 0.4226667  | 0.08453333          |
| ## | 0.8568934             |           | 0.4191474 | 0.4241667  | 0.08483333          |
| ## | 0.8576263             |           | 0.4220413 | 0.4272361  | 0.08544722          |
| ## | 0.8577470             |           | 0.4226199 | 0.4279167  | 0.08558333          |
| ## | 0.8580481             |           | 0.4239022 | 0.4292361  | 0.08584722          |
| ## | 0.8583738             |           | 0.4253399 | 0.4306806  | 0.08613611          |
| ## | 0.8586325             |           | 0.4266442 | 0.4319028  | 0.08638056          |
| ## | 0.8585189             |           | 0.4263258 | 0.4315000  | 0.08630000          |
| ## | 0.8586798             |           | 0.4269126 | 0.4321944  | 0.08643889          |
| ## | 0.8587520             |           | 0.4269200 | 0.4324861  | 0.08649722          |
| ## | 0.8589739             |           | 0.4280586 | 0.4334167  | 0.08668333          |
| ## | 0.8590178             |           | 0.4283725 | 0.4336528  | 0.08673056          |
| ## | 0.8592378             |           | 0.4292295 | 0.4345694  | 0.08691389          |
| ## | 0.8594369             |           | 0.4302341 | 0.4353889  | 0.08707778          |
| ## | 0.8593187             |           | 0.4297642 | 0.4349583  | 0.08699167          |
| ## | 0.8594764             |           | 0.4301558 | 0.4355417  | 0.08710833          |
|    | 3.333+70 <del>1</del> |           | 3301330   | J. 1333411 | 1.10, 10033         |
|    |                       |           |           |            |                     |

| ## | 0.8575174                        | 0.4218615              | 0.4269028              | 0.08538056               |
|----|----------------------------------|------------------------|------------------------|--------------------------|
| ## | 0.8581260                        | 0.4249856              | 0.4297639              | 0.08595278               |
| ## | 0.8584635                        | 0.4264688              | 0.4313194              | 0.08626389               |
| ## | 0.8586469                        | 0.4276451              | 0.4313194              | 0.08644444               |
| ## | 0.8590271                        | 0.4289883              | 0.432222               | 0.08674722               |
| ## | 0.8590644                        | 0.4294040              | 0.4340139              | 0.08680278               |
|    | 0.8592390                        | 0.4305344              | 0.4348750              | 0.08697500               |
| ## | 0.8595976                        | 0.4318702              | 0.4362917              | 0.08725833               |
| ## | 0.8595716                        | 0.4319835              | 0.4363056              | 0.08725833               |
| ## | 0.8597384                        | 0.4325762              | 0.4369861              | 0.08739722               |
| ## | 0.8597383                        | 0.4326216              | 0.4370417              | 0.08740833               |
| ## | 0.8594269                        | 0.4315735              | 0.4378417              | 0.08740833               |
| ## | 0.8595447                        | 0.4313733              | 0.4363611              | 0.08717222               |
| ## | 0.8595618                        | 0.4321156              | 0.4364306              | 0.08727222               |
| ## | 0.8595956                        | 0.43251442             | 0.4366528              | 0.08733056               |
| ## | 0.8596873                        | 0.4325442              | 0.4369444              | 0.08738889               |
|    |                                  |                        |                        |                          |
| ## | 0.8596417<br>0.8583405           | 0.4326536              | 0.4368472<br>0.4307639 | 0.08736944               |
| ## |                                  | 0.4261704              |                        | 0.08615278               |
| ## | 0.8590267                        | 0.4292855              | 0.4337361              | 0.08674722               |
| ## | 0.8594160                        | 0.4308010              | 0.4353889              | 0.08707778               |
| ## | 0.8593742                        | 0.4311696              | 0.4354167              | 0.08708333               |
| ## | 0.8592427                        | 0.4306731              | 0.4350000              | 0.08700000               |
| ## | 0.8592375                        | 0.4308453              | 0.4351111              | 0.08702222               |
| ## | 0.8593112                        | 0.4310664              | 0.4354167              | 0.08708333               |
| ## | 0.8593766                        | 0.4313224              | 0.4357222              | 0.08714444               |
| ## | 0.8594038                        | 0.4315182              | 0.4358333              | 0.08716667               |
| ## | 0.8594148                        | 0.4318544              | 0.4359444              | 0.08718889               |
| ## | 0.8594137                        | 0.4317114              | 0.4359306              | 0.08718611               |
| ## | 0.8595909                        | 0.4325402              | 0.4366667              | 0.08733333               |
| ## | 0.8595209                        | 0.4323905              | 0.4364444              | 0.08728889               |
| ## | 0.8594505                        | 0.4323977              | 0.4362361              | 0.08724722               |
| ## | 0.8593192                        | 0.4321198              | 0.4357917              | 0.08715833               |
| ## | 0.8593114<br>0.8592640           | 0.4319556              | 0.4357222              | 0.08714444               |
| ## |                                  | 0.4321326              | 0.4356250              | 0.08712500               |
| ## | 0.8590641                        | 0.4304263              | 0.4341250              | 0.08682500               |
| ## | 0.8593217                        | 0.4314325              | 0.4352500              | 0.08705000               |
| ## | 0.8595551                        | 0.4324403              | 0.4362778              | 0.08725556               |
| ## | 0.8593720                        | 0.4315975              | 0.4356250              | 0.08712500               |
| ## | 0.8593428                        | 0.4319007              | 0.4356528              | 0.08713056               |
| ## | 0.8594338                        | 0.4323123              | 0.4360417              | 0.08720833               |
| ## | 0.8594227                        | 0.4325969              | 0.4360972              | 0.08721944               |
| ## | 0.8594455<br>0.8590648           | 0.4326247              | 0.4361944              | 0.08723889               |
| ## | 0.8590177                        | 0.4314372              | 0.4347778              | 0.08695556               |
| ## |                                  | 0.4312954              | 0.4345972              | 0.08691944               |
| ## | 0.8590701<br>0.8590342           | 0.4317596              | 0.4349028<br>0.4348056 | 0.08698056<br>0.08696111 |
| ## |                                  | 0.4317349              |                        |                          |
| ## | 0.8590882<br>0.8580516           | 0.4320189              | 0.4350694              | 0.08701389               |
| ## | 0.8589516                        | 0.4316538<br>0.4311077 | 0.4345833              | 0.08691667<br>0.08681389 |
| ## | 0.8588256<br>0.8588184           | 0.4311077<br>0.4312461 | 0.4340694<br>0.4340833 |                          |
| ## | 0.8588184<br>0.8586773           | 0.4312461<br>0.4305151 |                        | 0.08681667               |
| ## |                                  | 0.4305151              | 0.4334861              | 0.08669722               |
| ## | Mean_Balanced_Accurate 0.6257899 | асу                    |                        |                          |
| ## |                                  |                        |                        |                          |
| ## | 0.6278733<br>0.6296267           |                        |                        |                          |
| ## | 0.0290207                        |                        |                        |                          |

## 0.6301736 ## 0.6300694 ## 0.6305816 ## 0.6313368 ## 0.6313628 ## 0.6319358 ## 0.6316059 ## 0.6322049 ## 0.6328212 ## 0.6327431 ## 0.6332378 ## 0.6333420 ## 0.6340017 ## 0.6343316 ## 0.6367535 0.6391667 ## ## 0.6401042 ## 0.6420226 ## 0.6424479 ## 0.6432726 ## 0.6441753 ## 0.6449392 ## 0.6446875 0.6451215 ## ## 0.6453038 ## 0.6458854 ## 0.6460330 0.6466059 ## ## 0.6471181 ## 0.6468490 ## 0.6472135 ## 0.6418142 ## 0.6436024 ## 0.6445747 ## 0.6451389 ## 0.6460851 ## 0.6462587 ## 0.6467969 ## 0.6476823 ## 0.6476910 ## 0.6481163 ## 0.6481510 ## 0.6474132 ## 0.6477257 0.6477691 ## ## 0.6479080 ## 0.6480903 ## 0.6480295 ## 0.6442274 ## 0.6460851 ## 0.6471181 ## 0.6471354 ## 0.6468750 ## 0.6469444

##

0.6471354

```
##
     0.6473264
##
     0.6473958
##
     0.6474653
##
     0.6474566
##
     0.6479167
     0.6477778
##
     0.6476476
##
##
     0.6473698
##
     0.6473264
##
     0.6472656
##
     0.6463281
##
     0.6470313
##
     0.6476736
##
     0.6472656
     0.6472830
##
     0.6475260
##
     0.6475608
##
     0.6476215
##
     0.6467361
##
##
     0.6466233
##
     0.6468142
     0.6467535
##
     0.6469184
##
     0.6466146
##
     0.6462934
##
     0.6463021
##
     0.6459288
##
##
## Tuning parameter 'shrinkage' was held constant at a value of 0.1
##
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
## logLoss was used to select the optimal model using the smallest value.
## The final values used for the model were n.trees = 350, interaction.depth =
   5, shrinkage = 0.1 and n.minobsinnode = 10.
```

```
# Metricas
grafico_metricas(GBM_MA_train)
```

### **Métrica ROC**





# Resultados
resultados(GBM\_MA\_train, "Stochastic Gradient Boosting")

#### RESULTADOS DEL MODELO Stochastic Gradient Boosting

| shrinkage | interaction.depth | n.minobsinnode | n.trees | logLoss  | AUC       | prAUC     | Accu   |
|-----------|-------------------|----------------|---------|----------|-----------|-----------|--------|
| 0.1       | 1                 | 10             | 100     | 1.421799 | 0.7104177 | 0.4074903 | 0.4012 |
| 0.1       | 2                 | 10             | 100     | 1.378019 | 0.7310384 | 0.4380791 | 0.4188 |
| 0.1       | 3                 | 10             | 100     | 1.353801 | 0.7419725 | 0.4536293 | 0.4269 |
| 0.1       | 4                 | 10             | 100     | 1.340799 | 0.7469502 | 0.4609868 | 0.4307 |
| 0.1       | 5                 | 10             | 100     | 1.331033 | 0.7510332 | 0.4664366 | 0.4341 |
| 0.1       | 1                 | 10             | 125     | 1.415076 | 0.7133146 | 0.4113238 | 0.4045 |
| 0.1       | 2                 | 10             | 125     | 1.369057 | 0.7349097 | 0.4432524 | 0.4226 |
| 0.1       | 3                 | 10             | 125     | 1.345573 | 0.7451882 | 0.4577480 | 0.4297 |
| 0.1       | 4                 | 10             | 125     | 1.333286 | 0.7496843 | 0.4645747 | 0.4337 |
| 0.1       | 5                 | 10             | 125     | 1.324844 | 0.7529935 | 0.4689662 | 0.4352 |
| 0.1       | 1                 | 10             | 150     | 1.409956 | 0.7154615 | 0.4141833 | 0.4074 |
| 0.1       | 2                 | 10             | 150     | 1.361603 | 0.7381611 | 0.4475211 | 0.4241 |

```
# Mejore modelo
mejor_modelo(GBM_MA_train)
```

## [1] "El mejor módelo es el que muestra los siguientes hiperparámetros:"

|    | n.trees | interaction.depth | shrinkage | n.minobsinnode |
|----|---------|-------------------|-----------|----------------|
| 79 | 350     | 5                 | 0.1       | 10             |

```
# Curvas ROC y AUC
curvas_ROC(GBM_MA_train, "de Stochastic Gradient Boosting", train_MA_num, test_MA_num)
```

```
## Warning in roc.default(train[, c(length(train))], pred_train[, clase]):
## 'response' has more than two levels. Consider setting 'levels' explicitly or
## using 'multiclass.roc' instead
```

```
## Setting levels: control = Critical.Events, case = Maritime.Accidents
```

```
## Setting direction: controls < cases
```

```
## Warning in roc.default(test[, c(length(test))], pred_test[, clase]): 'response'
## has more than two levels. Consider setting 'levels' explicitly or using
## 'multiclass.roc' instead
```

```
## Setting levels: control = Critical.Events, case = Maritime.Accidents
## Setting direction: controls < cases</pre>
```

## Curvas ROC del modelo de Stochastic Gradient Boosting



## [1] "ROC del modelo con el fichero de test: 0.767169290123457"

# Validación, Matriz de confusión validation(GBM\_MA\_train, "Stochastic Gradient Boosting", train\_MA\_num, test\_MA\_num)

```
## [1] "Modelo Stochastic Gradient Boosting - Tabla de confusión para los datos de entrena
## Confusion Matrix and Statistics
##
##
                         Reference
## Prediction
                          Critical. Events Maritime. Accidents Material. Issues
##
     Critical.Events
                                      2650
                                                           610
                                                                          1253
##
     Maritime.Accidents
                                       976
                                                          4262
                                                                           932
##
     Material. Issues
                                      1948
                                                           924
                                                                          3532
##
     Onboard. Emergencies
                                       847
                                                           616
                                                                           773
##
     Third.party.Damages
                                       779
                                                           788
                                                                           710
##
                         Reference
## Prediction
                          Onboard. Emergencies Third.party. Damages
##
     Critical.Events
                                           843
                                                                635
     Maritime.Accidents
                                           674
                                                                684
##
     Material. Issues
                                                                641
##
                                          1055
                                                                680
##
     Onboard. Emergencies
                                          3878
##
     Third.party.Damages
                                          750
                                                               4560
##
## Overall Statistics
##
##
                   Accuracy: 0.5245
                     95% CI: (0.5193, 0.5297)
##
##
       No Information Rate: 0.2
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa: 0.4056
##
   Mcnemar's Test P-Value : < 2.2e-16
##
##
## Statistics by Class:
##
##
                         Class: Critical. Events Class: Maritime. Accidents
## Sensitivity
                                         0.36806
                                                                     0.5919
## Specificity
                                         0.88399
                                                                     0.8866
## Pos Pred Value
                                         0.44233
                                                                     0.5662
## Neg Pred Value
                                         0.84838
                                                                     0.8968
## Prevalence
                                         0.20000
                                                                     0.2000
## Detection Rate
                                         0.07361
                                                                     0.1184
## Detection Prevalence
                                         0.16642
                                                                     0.2091
## Balanced Accuracy
                                         0.62602
                                                                     0.7393
##
                         Class: Material.Issues Class: Onboard.Emergencies
                                        0.49056
## Sensitivity
                                                                      0.5386
## Specificity
                                         0.84139
                                                                      0.8988
## Pos Pred Value
                                         0.43605
                                                                      0.5708
## Neg Pred Value
                                         0.86853
                                                                      0.8863
## Prevalence
                                         0.20000
                                                                      0.2000
## Detection Rate
                                         0.09811
                                                                      0.1077
## Detection Prevalence
                                         0.22500
                                                                      0.1887
## Balanced Accuracy
                                         0.66597
                                                                      0.7187
##
                         Class: Third.party.Damages
## Sensitivity
                                              0.6333
                                              0.8949
## Specificity
## Pos Pred Value
                                              0.6010
```

```
## Confusion Matrix and Statistics
##
                         Reference
##
## Prediction
                          Critical. Events Maritime. Accidents Material. Issues
##
     Critical. Events
                                       444
                                                           173
##
     Maritime.Accidents
                                       318
                                                           939
                                                                           278
##
     Material.Issues
                                       595
                                                           290
                                                                            667
##
     Onboard. Emergencies
                                       226
                                                           183
                                                                            201
##
     Third.party.Damages
                                       217
                                                           215
                                                                            202
##
## Prediction
                          Onboard. Emergencies Third. party. Damages
##
     Critical. Events
                                           258
                                                                155
##
     Maritime.Accidents
                                           188
                                                                190
     Material.Issues
##
                                           297
                                                                198
     Onboard. Emergencies
                                                                213
##
                                           848
                                           209
##
     Third.party.Damages
                                                               1044
##
## Overall Statistics
##
##
                   Accuracy: 0.438
##
                     95% CI: (0.4277, 0.4483)
##
       No Information Rate: 0.2
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa: 0.2975
##
   Mcnemar's Test P-Value: 4.845e-16
##
##
## Statistics by Class:
##
##
                         Class: Critical. Events Class: Maritime. Accidents
## Sensitivity
                                         0.24667
## Specificity
                                         0.85583
                                                                     0.8647
## Pos Pred Value
                                         0.29960
                                                                     0.4909
## Neg Pred Value
                                         0.81963
                                                                     0.8785
## Prevalence
                                         0.20000
                                                                     0.2000
## Detection Rate
                                         0.04933
                                                                     0.1043
## Detection Prevalence
                                                                     0.2126
                                         0.16467
## Balanced Accuracy
                                         0.55125
                                                                     0.6932
##
                         Class: Material.Issues Class: Onboard.Emergencies
## Sensitivity
                                         0.37056
                                                                     0.47111
## Specificity
                                         0.80833
                                                                     0.88569
## Pos Pred Value
                                         0.32584
                                                                     0.50748
## Neg Pred Value
                                                                     0.87011
                                         0.83705
## Prevalence
                                         0.20000
                                                                     0.20000
## Detection Rate
                                         0.07411
                                                                     0.09422
## Detection Prevalence
                                         0.22744
                                                                     0.18567
## Balanced Accuracy
                                         0.58944
                                                                     0.67840
##
                         Class: Third.party.Damages
## Sensitivity
                                              0.5800
## Specificity
                                              0.8829
## Pos Pred Value
                                              0.5533
## Neg Pred Value
                                              0.8937
## Prevalence
                                              0.2000
```

#### Resumen de métricas

#### **Stochastic Gradient Boosting**

|                     | AUC   | Accuracy | Карра | Sensitivity | Specificity |  |
|---------------------|-------|----------|-------|-------------|-------------|--|
| Datos Entrenamiento | 0.820 | 0.524    | 0.406 | 0.524       | 0.881       |  |
| Datos Validación    | 0.759 | 0.438    | 0.298 | 0.438       | 0.860       |  |

### Importancia de las variables

```
# Importancia de variables por cada valor de predicción
#GBM_MA_train$modelInfo$varImp <- NULL # Anular la función para solucionar bug
importancia_var(GBM_MA_train, "Stochastic Gradient Boosting")
```

## Importancia de las variables Modelo Stochastic Gradient Boosting



# 2.3. Otros modelos

## 2.3.1. Random Forest

```
# Entrenamiento
if (train_switch == 1) {
set.seed(7)
tic()
clusterCPU <- makePSOCKcluster(detectCores()-1)</pre>
registerDoParallel(clusterCPU)
rfGrid <- expand.grid(mtry = c(5,10,15,20,29))
rf_MA_train <- train(y ~ ., data = train_MA_general,</pre>
                  method = "rf", metric = metrica,
                   #preProc = c("center", "scale"),
                  trControl = control,
                  tuneGrid = rfGrid)
stopCluster(clusterCPU)
saveRDS(rf_MA_train, "Models/rf_MA_train.RDS")
toc()
}else{
  rf_MA_train <- readRDS("Models/rf_MA_train.RDS")</pre>
```

```
# Resultados
rf_MA_train
```

```
## Random Forest
##
## 36000 samples
##
      12 predictor
       5 classes: 'Critical.Events', 'Maritime.Accidents', 'Material.Issues', 'Onboard.Eme
##
rgencies', 'Third.party.Damages'
##
## No pre-processing
## Resampling: Cross-Validated (8 fold, repeated 2 times)
## Summary of sample sizes: 31500, 31500, 31500, 31500, 31500, 31500, ...
## Resampling results across tuning parameters:
##
##
     mtry logLoss
                               prAUC
                    AUC
                                          Accuracy
                                                    Kappa
                                                               Mean F1
##
     5
          1.495059 0.7145125 0.4276375 0.3892917 0.2366146 0.3901783
          1.645300 0.6841079 0.4026863 0.3837778 0.2297222 0.3857173
     10
##
     15 1.661983 0.6836756 0.4022318 0.3829444 0.2286806 0.3849418
##
     20
          1.676596 0.6847599 0.4020952 0.3819167 0.2273958 0.3843439
##
##
     29
          1.699858 0.6854478 0.4000137 0.3801806 0.2252257 0.3830582
    Mean_Sensitivity Mean_Specificity Mean_Pos_Pred_Value Mean_Neg_Pred_Value
##
    0.3892917
                                       0.3924425
##
                      0.8473229
                                                            0.8471848
                                       0.3882125
##
    0.3837778
                      0.8459444
                                                            0.8457048
##
    0.3829444
                    0.8457361
                                       0.3875009
                                                            0.8454887
                                       0.3873449
##
    0.3819167
                      0.8454792
                                                            0.8451738
##
    0.3801806
                      0.8450451
                                        0.3865740
                                                            0.8446818
##
    Mean_Precision Mean_Recall Mean_Detection_Rate Mean_Balanced_Accuracy
##
    0.3924425
                   0.3892917
                                 0.07785833
                                                     0.6183073
##
    0.3882125
                    0.3837778
                                 0.07675556
                                                     0.6148611
##
    0.3875009
                    0.3829444
                                 0.07658889
                                                     0.6143403
##
    0.3873449
                   0.3819167
                                 0.07638333
                                                     0.6136979
##
    0.3865740
                    0.3801806
                                 0.07603611
                                                     0.6126128
##
## logLoss was used to select the optimal model using the smallest value.
## The final value used for the model was mtry = 5.
```

```
# Métricas
grafico_metricas(rf_MA_train)
```

### **Métrica ROC**







## Métrica Kappa



# Resultados
resultados(rf\_MA\_train, "Random Forest")

#### RESULTADOS DEL MODELO Random Forest

| mtry | logLoss  | AUC       | prAUC     | Accuracy  | Kappa     | Mean_F1   | Mean_Sensitivity | Me |
|------|----------|-----------|-----------|-----------|-----------|-----------|------------------|----|
| 5    | 1.495059 | 0.7145125 | 0.4276375 | 0.3892917 | 0.2366146 | 0.3901783 | 0.3892917        |    |
| 10   | 1.645301 | 0.6841079 | 0.4026863 | 0.3837778 | 0.2297222 | 0.3857173 | 0.3837778        |    |
| 15   | 1.661983 | 0.6836756 | 0.4022318 | 0.3829444 | 0.2286806 | 0.3849418 | 0.3829444        |    |
| 20   | 1.676596 | 0.6847599 | 0.4020952 | 0.3819167 | 0.2273958 | 0.3843439 | 0.3819167        |    |
| 29   | 1.699858 | 0.6854478 | 0.4000137 | 0.3801806 | 0.2252257 | 0.3830582 | 0.3801806        |    |

```
# Mejor modelo
mejor_modelo(rf_MA_train)
```

## [1] "El mejor módelo es el que muestra los siguientes hiperparámetros:"

#### mtry

5

```
# Curvas ROC y AUC
curvas_ROC(rf_MA_train, "de Random Forest", train_MA_general, test_MA_general)
```

```
## Warning in roc.default(train[, c(length(train))], pred_train[, clase]):
## 'response' has more than two levels. Consider setting 'levels' explicitly or
## using 'multiclass.roc' instead
```

```
## Setting levels: control = Critical.Events, case = Maritime.Accidents
```

```
## Setting direction: controls < cases
```

```
## Warning in roc.default(test[, c(length(test))], pred_test[, clase]): 'response'
## has more than two levels. Consider setting 'levels' explicitly or using
## 'multiclass.roc' instead
```

```
## Setting levels: control = Critical.Events, case = Maritime.Accidents
## Setting direction: controls < cases</pre>
```





## [1] "ROC del modelo con el fichero de test: 0.761791203703704"

# Validación, Matriz de confusión
validation(rf\_MA\_train, "RF", train\_MA\_general, test\_MA\_general)

```
## [1] "Modelo RF - Tabla de confusión para los datos de entrenamiento"
## Confusion Matrix and Statistics
##
##
## Prediction
                          Critical. Events Maritime. Accidents Material. Issues
##
     Critical.Events
                                      5148
                                                           211
                                                                            731
##
     Maritime.Accidents
                                       462
                                                          6253
                                                                            446
##
     Material.Issues
                                      1065
                                                           308
                                                                           5430
##
     Onboard. Emergencies
                                       292
                                                           227
                                                                            356
##
     Third.party.Damages
                                       233
                                                           201
                                                                            237
##
                         Reference
## Prediction
                          Onboard. Emergencies Third. party. Damages
     Critical.Events
##
                                           414
##
     Maritime.Accidents
                                           205
                                                                209
     Material.Issues
                                           543
                                                                195
##
     Onboard. Emergencies
##
                                          5760
                                                                275
                                           278
                                                               6216
##
     Third.party.Damages
##
## Overall Statistics
##
##
                   Accuracy : 0.8002
##
                     95% CI: (0.796, 0.8043)
##
       No Information Rate: 0.2
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa: 0.7502
##
##
   Mcnemar's Test P-Value : < 2.2e-16
##
## Statistics by Class:
##
##
                         Class: Critical. Events Class: Maritime. Accidents
## Sensitivity
                                          0.7150
                                                                     0.8685
## Specificity
                                          0.9423
                                                                     0.9541
## Pos Pred Value
                                          0.7561
                                                                     0.8255
## Neg Pred Value
                                          0.9297
                                                                     0.9667
## Prevalence
                                          0.2000
                                                                     0.2000
## Detection Rate
                                          0.1430
                                                                     0.1737
## Detection Prevalence
                                          0.1891
                                                                     0.2104
## Balanced Accuracy
                                          0.8287
                                                                     0.9113
##
                         Class: Material.Issues Class: Onboard.Emergencies
## Sensitivity
                                          0.7542
                                                                      0.8000
## Specificity
                                          0.9267
                                                                      0.9601
## Pos Pred Value
                                          0.7201
                                                                      0.8336
## Neg Pred Value
                                          0.9378
                                                                      0.9505
## Prevalence
                                          0.2000
                                                                      0.2000
## Detection Rate
                                          0.1508
                                                                      0.1600
## Detection Prevalence
                                          0.2095
                                                                      0.1919
## Balanced Accuracy
                                          0.8404
                                                                      0.8800
##
                         Class: Third.party.Damages
## Sensitivity
                                              0.8633
## Specificity
                                              0.9670
## Pos Pred Value
                                              0.8676
## Neg Pred Value
                                              0.9659
```

```
## Confusion Matrix and Statistics
##
                         Reference
##
## Prediction
                          Critical. Events Maritime. Accidents Material. Issues
##
     Critical. Events
                                       282
                                                           178
##
     Maritime.Accidents
                                       299
                                                           868
                                                                            272
##
     Material.Issues
                                       804
                                                           352
                                                                            442
##
     Onboard. Emergencies
                                       235
                                                           168
                                                                            220
##
     Third.party.Damages
                                       180
                                                           234
                                                                            159
##
## Prediction
                          Onboard. Emergencies Third. party. Damages
##
     Critical. Events
                                                                198
                                           271
##
     Maritime.Accidents
                                           167
                                                                201
     Material.Issues
##
                                           347
                                                                188
     Onboard. Emergencies
                                           803
                                                                189
##
##
     Third.party.Damages
                                           212
                                                               1024
##
## Overall Statistics
##
##
                   Accuracy : 0.3799
##
                     95% CI: (0.3698, 0.39)
##
       No Information Rate: 0.2
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa: 0.2249
##
   Mcnemar's Test P-Value: 4.573e-14
##
##
## Statistics by Class:
##
##
                         Class: Critical. Events Class: Maritime. Accidents
## Sensitivity
                                         0.15667
                                                                    0.48222
## Specificity
                                         0.81194
                                                                    0.86958
## Pos Pred Value
                                         0.17237
                                                                    0.48035
## Neg Pred Value
                                         0.79386
                                                                    0.87043
## Prevalence
                                         0.20000
                                                                    0.20000
## Detection Rate
                                         0.03133
                                                                    0.09644
## Detection Prevalence
                                         0.18178
                                                                    0.20078
## Balanced Accuracy
                                         0.48431
                                                                    0.67590
##
                         Class: Material.Issues Class: Onboard.Emergencies
## Sensitivity
                                                                     0.44611
                                         0.24556
## Specificity
                                         0.76514
                                                                     0.88722
## Pos Pred Value
                                         0.20722
                                                                     0.49721
## Neg Pred Value
                                         0.80224
                                                                     0.86500
## Prevalence
                                         0.20000
                                                                     0.20000
                                         0.04911
## Detection Rate
                                                                     0.08922
## Detection Prevalence
                                         0.23700
                                                                     0.17944
## Balanced Accuracy
                                         0.50535
                                                                     0.66667
##
                         Class: Third.party.Damages
## Sensitivity
                                              0.5689
## Specificity
                                              0.8910
## Pos Pred Value
                                              0.5661
## Neg Pred Value
                                              0.8921
## Prevalence
                                              0.2000
```

| ## Detection Rate       | 0.1138 |  |
|-------------------------|--------|--|
| ## Detection Prevalence | 0.2010 |  |
| ## Balanced Accuracy    | 0.7299 |  |
|                         |        |  |

### Resumen de métricas

```
# Resumen
resumen_MA_rf <- resumen_multiclass(rf_MA_train, train_MA_general, test_MA_general)
# Presentación
resumen_MA_rf %>% kable(escape = F) %>%
  kable_styling("hover", full_width = F) %>%
  add_header_above(c(" ", "Random forest " = 5))
```

|                     | Random forest |          |       |             |             |  |  |
|---------------------|---------------|----------|-------|-------------|-------------|--|--|
|                     | AUC           | Accuracy | Карра | Sensitivity | Specificity |  |  |
| Datos Entrenamiento | 0.969         | 0.80     | 0.750 | 0.80        | 0.950       |  |  |
| Datos Validación    | 0.712         | 0.38     | 0.225 | 0.38        | 0.845       |  |  |

### Importancia de las variables

```
# Importancia general de variables
importancia_var_overall(rf_MA_train, "Random Forest")
```

### Importancia de las variables Modelo Random Forest



## 2.3.2. Perceptrón Multicapa

```
if (train_switch == 1) {
set.seed(7)
tic()
clusterCPU <- makePSOCKcluster(detectCores()-1)</pre>
registerDoParallel(clusterCPU)
nnetGrid <- expand.grid(size = c(1:10),</pre>
                          decay =c(0.01, 0.05, 0.5, 0.1))
nnet_MA_train <- train(y ~ .,</pre>
                     data = train_MA_general,
                     method = "nnet",
                     metric = metrica,
                     #preProc = c("center", "scale"),
                     trControl = control,
                     tuneGrid = nnetGrid)
stopCluster(clusterCPU)
saveRDS(nnet_MA_train, "Models/nnet_MA_train.RDS")
toc()
}else{
  nnet_MA_train <- readRDS("Models/nnet_MA_train.RDS")</pre>
}
```

```
# Resultados
nnet_MA_train
```

```
## Neural Network
##
## 36000 samples
##
      12 predictor
       5 classes: 'Critical.Events', 'Maritime.Accidents', 'Material.Issues', 'Onboard.Eme
##
rgencies', 'Third.party.Damages'
##
## No pre-processing
## Resampling: Cross-Validated (8 fold, repeated 2 times)
   Summary of sample sizes: 31500, 31500, 31500, 31500, 31500, ...
   Resampling results across tuning parameters:
##
##
     size decay
                  logLoss
                            AUC
                                       prAUC
                                                  Accuracy
                                                             Kappa
                                                                        Mean_F1
##
           0.01
                  1.519664
                                                  0.3029722
      1
                            0.6221473
                                       0.2804625
                                                             0.1287153
                                                                        0.2454748
##
      1
           0.05
                  1.523253
                           0.6186305
                                       0.2925513
                                                  0.3047222
                                                             0.1309028
                                                                        0.2381025
##
           0.10
                  1.520877
                            0.6199773
                                       0.2966987
                                                  0.3052361
                                                             0.1315451
                                                                        0.2393792
      1
##
           0.50
                  1.515592
                                       0.2976701
                                                  0.3059722
                                                             0.1324653
      1
                            0.6232340
                                                                        0.2452584
##
      2
           0.01
                  1.473517
                            0.6682673
                                       0.3498832
                                                  0.3540833
                                                             0.1926042
                                                                        0.3243782
##
      2
           0.05
                  1.474719
                            0.6668120 0.3503621
                                                 0.3554028
                                                             0.1942535
                                                                        0.3188136
##
      2
           0.10
                  1.473079
                            0.6696913 0.3505570 0.3585139
                                                             0.1981424
                                                                        0.3269261
##
      2
           0.50
                  1.469200
                            0.6701568 0.3532544
                                                  0.3581944
                                                             0.1977431
                                                                        0.3266217
##
      3
           0.01
                  1.437262 0.6956643
                                       0.3816074
                                                  0.3924583
                                                             0.2405729
                                                                        0.3632169
##
      3
           0.05
                  1.433127
                            0.6987220
                                       0.3880050
                                                  0.3954167
                                                             0.2442708
                                                                        0.3661203
##
      3
                                       0.3869012 0.3913333
           0.10
                  1.434277
                            0.6972084
                                                             0.2391667
                                                                        0.3630374
##
      3
           0.50
                  1.430214
                            0.7006509
                                       0.3923930
                                                  0.3962083
                                                             0.2452604
                                                                        0.3701908
##
      4
           0.01
                  1.425801
                           0.7033451
                                       0.3945261 0.3944306
                                                             0.2430382
                                                                        0.3745539
##
      4
           0.05
                  1.423084
                           0.7037890
                                       0.3957770 0.3933194
                                                             0.2416493
                                                                        0.3727188
##
      4
           0.10
                  1.423768 0.7042857
                                       0.3958977
                                                  0.3953889
                                                             0.2442361
                                                                        0.3745832
##
      4
           0.50
                  1.422541
                            0.7055508
                                       0.3981398
                                                  0.3962917
                                                             0.2453646
                                                                        0.3755291
##
      5
           0.01
                  1.414363
                            0.7089816
                                       0.4027331
                                                  0.3977917
                                                             0.2472396
                                                                        0.3818927
##
      5
           0.05
                  1.414279
                            0.7091442
                                       0.4022228
                                                  0.3972500
                                                             0.2465625
                                                                        0.3784312
##
      5
           0.10
                  1.414252
                           0.7088743
                                       0.4020976
                                                  0.3961389
                                                             0.2451736
                                                                        0.3768904
##
      5
           0.50
                            0.7096713
                                       0.4035351
                                                  0.3978750
                                                             0.2473437
                  1.414337
                                                                        0.3843152
##
      6
           0.01
                  1.407686
                            0.7128909
                                       0.4073919
                                                  0.3995833
                                                             0.2494792
                                                                        0.3848615
##
           0.05
                  1.408870
                            0.7117183
                                       0.4066203
                                                  0.3965556
                                                             0.2456944
                                                                        0.3827887
      6
##
      6
           0.10
                  1.409246
                            0.7119439
                                       0.4066963
                                                  0.3981944
                                                             0.2477431
                                                                        0.3840940
##
      6
           0.50
                  1.408543
                           0.7129201
                                       0.4091744
                                                  0.3999583
                                                             0.2499479
                                                                        0.3854345
      7
##
           0.01
                  1.401368
                            0.7159617
                                       0.4127287
                                                  0.4002500
                                                             0.2503125
                                                                        0.3895161
##
      7
           0.05
                  1.401892
                            0.7156687
                                       0.4116978
                                                  0.4009028
                                                             0.2511285
                                                                        0.3900581
##
      7
           0.10
                  1.400769
                            0.7164598
                                       0.4157054
                                                  0.4006250
                                                             0.2507812
                                                                        0.3868146
      7
##
           0.50
                  1.401184
                                       0.4129168
                                                  0.4012083
                            0.7161484
                                                             0.2515104
                                                                        0.3875725
##
      8
           0.01
                  1.399856
                            0.7167071
                                       0.4142098
                                                  0.3993056
                                                             0.2491319
                                                                        0.3894194
                                                                        0.3899967
##
      8
           0.05
                  1.398312
                           0.7180932
                                       0.4149825
                                                  0.4014167
                                                             0.2517708
##
      8
           0.10
                  1.395315
                            0.7190334
                                       0.4176899
                                                  0.4033194
                                                             0.2541493
                                                                        0.3929079
##
      8
           0.50
                                                  0.4035972
                  1.397300
                            0.7181131
                                       0.4149385
                                                             0.2544965
                                                                        0.3913921
##
      9
           0.01
                  1.392700
                            0.7203887
                                       0.4194174
                                                  0.4034861
                                                             0.2543576
                                                                        0.3943171
      9
##
           0.05
                  1.392283
                            0.7203482
                                       0.4212082
                                                  0.4048611
                                                             0.2560764
                                                                        0.3965004
##
      9
           0.10
                  1.393632 0.7200236
                                       0.4199040
                                                  0.4036944
                                                             0.2546181
                                                                        0.3936248
##
      9
           0.50
                  1.393728 0.7199400
                                       0.4186684
                                                  0.4050139
                                                             0.2562674
                                                                        0.3963877
##
     10
           0.01
                  1.387036
                            0.7229238
                                       0.4230512
                                                  0.4044444
                                                             0.2555556
                                                                        0.3966414
                  1.388362 0.7229946
##
     10
           0.05
                                       0.4234236
                                                  0.4054444
                                                             0.2568056
                                                                        0.3956124
##
     10
           0.10
                  1.388425
                            0.7221781
                                       0.4216582
                                                  0.4052778
                                                             0.2565972
                                                                        0.3949243
##
     10
           0.50
                  1.391190 0.7210525 0.4199281
                                                  0.4044028
                                                             0.2555035
                                                                        0.3942856
     Mean_Sensitivity Mean_Specificity Mean_Pos_Pred_Value Mean_Neg_Pred_Value
##
```

| ## | 0.3029722                | 0.8257431              | 0.2898637  | 0.8335787              |
|----|--------------------------|------------------------|------------|------------------------|
| ## | 0.3047222                | 0.8261806              | 0.2922597  | 0.8349343              |
| ## | 0.3052361                | 0.8263090              | 0.2935207  | 0.8347606              |
| ## | 0.3059722                | 0.8264931              | 0.2930119  | 0.8341674              |
| ## | 0.3540833                | 0.8385208              | 0.3365148  | 0.8416841              |
| ## | 0.3554028                | 0.8388507              | 0.3378112  | 0.8424567              |
| ## | 0.3585139                | 0.8396285              | 0.3427305  | 0.8427800              |
| ## | 0.3581944                | 0.8395486              | 0.3409425  | 0.8426029              |
| ## | 0.3924583                | 0.8481146              | 0.3770260  | 0.8507548              |
| ## | 0.3954167                | 0.8488542              | 0.3808550  | 0.8514993              |
| ## | 0.3913333                | 0.8478333              | 0.3801380  | 0.8504925              |
| ## | 0.3962083                | 0.8490521              | 0.3857534  | 0.8515221              |
| ## | 0.3944306                | 0.8486076              | 0.3841748  | 0.8505585              |
| ## | 0.3933194                | 0.8483299              | 0.3806230  | 0.8503764              |
| ## | 0.3953889                | 0.8488472              | 0.3848521  | 0.8508809              |
| ## | 0.3962917                | 0.8490729              | 0.3834695  | 0.8510396              |
| ## | 0.3977917                | 0.8494479              | 0.3891054  | 0.8511266              |
| ## | 0.3972500                | 0.8493125              | 0.3849283  | 0.8511562              |
|    | 0.3961389                | 0.8490347              | 0.3848771  | 0.8509333              |
| ## |                          |                        |            |                        |
| ## | 0.3978750                | 0.8494687              | 0.3890023  | 0.8508881              |
| ## | 0.3995833                | 0.8498958              | 0.3905732  | 0.8514393<br>0.8505599 |
| ## | 0.3965556                | 0.8491389<br>0.8495486 | 0.3862825  |                        |
| ## | 0.3981944                |                        | 0.3904402  | 0.8510200              |
| ## | 0.3999583                | 0.8499896              | 0.3909866  | 0.8515088              |
| ## | 0.4002500                | 0.8500625              | 0.3919547  | 0.8512231              |
| ## | 0.4009028                | 0.8502257              | 0.3928632  | 0.8513997              |
| ## | 0.4006250                | 0.8501562              | 0.3941579  | 0.8516278              |
| ## | 0.4012083                | 0.8503021              | 0.3913496  | 0.8517380              |
| ## | 0.3993056                | 0.8498264              | 0.3918934  | 0.8508962              |
| ## | 0.4014167                | 0.8503542              | 0.3924264  | 0.8515919              |
| ## | 0.4033194                | 0.8508299              | 0.3963418  | 0.8519874              |
| ## | 0.4035972                | 0.8508993              | 0.3959842  | 0.8522031              |
| ## | 0.4034861                | 0.8508715              | 0.3969177  | 0.8519145              |
| ## | 0.4048611                | 0.8512153              | 0.3998250  | 0.8521630              |
| ## | 0.4036944                | 0.8509236              | 0.3963415  | 0.8520344              |
| ## | 0.4050139                | 0.8512535              | 0.3989243  | 0.8522383              |
| ## | 0.4044444                | 0.8511111              | 0.3998573  | 0.8520292              |
| ## | 0.4054444                | 0.8513611              | 0.3997604  | 0.8524583              |
| ## | 0.4052778                | 0.8513194              | 0.3990848  | 0.8524732              |
| ## | 0.4044028                | 0.8511007              |            | 0.8522358              |
| ## | Mean_Precision 0.2898637 | _                      |            | Mean_Balanced_Accuracy |
| ## |                          | 0.3029722              | 0.06059444 | 0.5643576              |
| ## | 0.2922597                | 0.3047222              | 0.06094444 | 0.5654514              |
| ## | 0.2935207                | 0.3052361              | 0.06104722 | 0.5657726              |
| ## | 0.2930119                | 0.3059722              | 0.06119444 | 0.5662326              |
| ## | 0.3365148                | 0.3540833              | 0.07081667 | 0.5963021              |
| ## | 0.3378112                | 0.3554028              | 0.07108056 | 0.5971267              |
| ## | 0.3427305                | 0.3585139              | 0.07170278 | 0.5990712<br>a 5088715 |
| ## | 0.3409425                | 0.3581944              | 0.07163889 | 0.5988715              |
| ## | 0.3770260                | 0.3924583              | 0.07849167 | 0.6202865              |
| ## | 0.3808550                | 0.3954167              | 0.07908333 | 0.6221354              |
| ## | 0.3801380                | 0.3913333              | 0.07826667 | 0.6195833              |
| ## | 0.3857534                | 0.3962083              | 0.07924167 | 0.6226302              |
| ## | 0.3841748                | 0.3944306              | 0.07888611 | 0.6215191              |
| ## | 0.3806230                | 0.3933194              | 0.07866389 | 0.6208247              |
|    |                          |                        |            |                        |

```
##
     0.3848521
                     0.3953889
                                   0.07907778
                                                         0.6221181
##
     0.3834695
                     0.3962917
                                   0.07925833
                                                         0.6226823
##
     0.3891054
                     0.3977917
                                   0.07955833
                                                         0.6236198
     0.3849283
##
                     0.3972500
                                   0.07945000
                                                         0.6232813
                                                         0.6225868
##
     0.3848771
                     0.3961389
                                   0.07922778
##
     0.3890023
                     0.3978750
                                   0.07957500
                                                         0.6236719
##
     0.3905732
                     0.3995833
                                   0.07991667
                                                         0.6247396
##
     0.3862825
                     0.3965556
                                   0.07931111
                                                         0.6228472
##
     0.3904402
                     0.3981944
                                   0.07963889
                                                         0.6238715
##
     0.3909866
                     0.3999583
                                   0.07999167
                                                         0.6249740
##
     0.3919547
                     0.4002500
                                   0.08005000
                                                         0.6251562
##
     0.3928632
                     0.4009028
                                   0.08018056
                                                         0.6255642
##
     0.3941579
                     0.4006250
                                   0.08012500
                                                         0.6253906
##
     0.3913496
                     0.4012083
                                   0.08024167
                                                         0.6257552
##
     0.3918934
                     0.3993056
                                   0.07986111
                                                         0.6245660
##
     0.3924264
                     0.4014167
                                   0.08028333
                                                         0.6258854
##
     0.3963418
                     0.4033194
                                   0.08066389
                                                         0.6270747
##
     0.3959842
                     0.4035972
                                   0.08071944
                                                         0.6272483
##
     0.3969177
                     0.4034861
                                   0.08069722
                                                         0.6271788
##
     0.3998250
                     0.4048611
                                   0.08097222
                                                         0.6280382
##
     0.3963415
                     0.4036944
                                   0.08073889
                                                         0.6273090
                                   0.08100278
##
     0.3989243
                     0.4050139
                                                         0.6281337
##
     0.3998573
                     0.4044444
                                   0.08088889
                                                         0.6277778
                                   0.08108889
     0.3997604
                     0.4054444
##
                                                         0.6284028
##
     0.3990848
                     0.4052778
                                   0.08105556
                                                         0.6282986
##
     0.3964928
                     0.4044028
                                   0.08088056
                                                         0.6277517
##
## logLoss was used to select the optimal model using the smallest value.
## The final values used for the model were size = 10 and decay = 0.01.
```

```
# Métricas
grafico_metricas(nnet_MA_train)
```

### **Métrica ROC**





# Resultados
resultados(nnet\_MA\_train, "Perceptrón multicapa")

#### RESULTADOS DEL MODELO Perceptrón multicapa

| size | decay | logLoss  | AUC       | prAUC     | Accuracy  | Kappa     | Mean_F1   | Mean_Sensitiv |
|------|-------|----------|-----------|-----------|-----------|-----------|-----------|---------------|
| 1    | 0.01  | 1.519664 | 0.6221473 | 0.2804625 | 0.3029722 | 0.1287153 | 0.2454748 | 0.3029        |
| 1    | 0.05  | 1.523253 | 0.6186305 | 0.2925513 | 0.3047222 | 0.1309028 | 0.2381025 | 0.30472       |
| 1    | 0.10  | 1.520877 | 0.6199773 | 0.2966987 | 0.3052361 | 0.1315451 | 0.2393792 | 0.3052        |
| 1    | 0.50  | 1.515592 | 0.6232340 | 0.2976701 | 0.3059722 | 0.1324653 | 0.2452584 | 0.3059        |
| 2    | 0.01  | 1.473517 | 0.6682673 | 0.3498832 | 0.3540833 | 0.1926042 | 0.3243782 | 0.3540        |
| 2    | 0.05  | 1.474719 | 0.6668120 | 0.3503621 | 0.3554028 | 0.1942535 | 0.3188136 | 0.35540       |
| 2    | 0.10  | 1.473078 | 0.6696913 | 0.3505570 | 0.3585139 | 0.1981424 | 0.3269261 | 0.3585        |
| 2    | 0.50  | 1.469200 | 0.6701568 | 0.3532544 | 0.3581944 | 0.1977431 | 0.3266217 | 0.35819       |
| 3    | 0.01  | 1.437262 | 0.6956643 | 0.3816074 | 0.3924583 | 0.2405729 | 0.3632169 | 0.3924        |
| 3    | 0.05  | 1.433128 | 0.6987220 | 0.3880050 | 0.3954167 | 0.2442708 | 0.3661203 | 0.3954        |
| 3    | 0.10  | 1.434277 | 0.6972084 | 0.3869012 | 0.3913333 | 0.2391667 | 0.3630374 | 0.3913        |
| 3    | 0.50  | 1.430214 | 0.7006509 | 0.3923930 | 0.3962083 | 0.2452604 | 0.3701908 | 0.39620       |

```
# Mejor modelo
mejor_modelo(nnet_MA_train)
```

## [1] "El mejor módelo es el que muestra los siguientes hiperparámetros:"

|    | size | decay |
|----|------|-------|
| 37 | 10   | 0.01  |

```
# Curvas ROC y AUC curvas_ROC(nnet_MA_train, "Perceptrón multicapa", train_MA_general, test_MA_general)
```

```
## Warning in roc.default(train[, c(length(train))], pred_train[, clase]):
## 'response' has more than two levels. Consider setting 'levels' explicitly or
## using 'multiclass.roc' instead
```

```
## Setting levels: control = Critical.Events, case = Maritime.Accidents
```

```
## Setting direction: controls < cases
```

```
## Warning in roc.default(test[, c(length(test))], pred_test[, clase]): 'response'
## has more than two levels. Consider setting 'levels' explicitly or using
## 'multiclass.roc' instead
```

```
## Setting levels: control = Critical.Events, case = Maritime.Accidents
## Setting direction: controls < cases</pre>
```



## [1] "ROC del modelo con el fichero de test: 0.734038117283951"

# Validación, Matriz de confusión validation(nnet\_MA\_train, "Perceptrón multicapa", train\_MA\_general, test\_MA\_general)

```
## [1] "Modelo Perceptrón multicapa - Tabla de confusión para los datos de entrenamiento"
## Confusion Matrix and Statistics
##
##
## Prediction
                          Critical. Events Maritime. Accidents Material. Issues
##
     Critical. Events
                                     1662
                                                           715
                                                                           1238
##
     Maritime.Accidents
                                       986
                                                          3059
                                                                           919
##
     Material.Issues
                                      2322
                                                          1405
                                                                           3167
##
     Onboard. Emergencies
                                      1138
                                                           912
                                                                           912
##
     Third.party.Damages
                                     1092
                                                          1109
                                                                           964
##
                         Reference
## Prediction
                          Onboard. Emergencies Third. party. Damages
     Critical.Events
##
                                           936
##
     Maritime.Accidents
                                           739
                                                                927
                                                                779
     Material.Issues
                                          1447
##
     Onboard. Emergencies
##
                                          3174
                                                                766
                                           904
                                                               3874
##
     Third.party.Damages
##
## Overall Statistics
##
##
                   Accuracy : 0.4149
##
                     95% CI: (0.4098, 0.42)
##
       No Information Rate: 0.2
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa: 0.2686
##
##
   Mcnemar's Test P-Value : < 2.2e-16
##
## Statistics by Class:
##
##
                         Class: Critical. Events Class: Maritime. Accidents
## Sensitivity
                                         0.23083
                                                                    0.42486
## Specificity
                                         0.87003
                                                                    0.87601
## Pos Pred Value
                                         0.30749
                                                                    0.46139
## Neg Pred Value
                                         0.81899
                                                                    0.85901
## Prevalence
                                         0.20000
                                                                    0.20000
## Detection Rate
                                         0.04617
                                                                    0.08497
## Detection Prevalence
                                         0.15014
                                                                    0.18417
## Balanced Accuracy
                                         0.55043
                                                                    0.65043
##
                         Class: Material.Issues Class: Onboard.Emergencies
## Sensitivity
                                         0.43986
                                                                     0.44083
## Specificity
                                         0.79330
                                                                     0.87056
## Pos Pred Value
                                                                     0.45987
                                         0.34726
## Neg Pred Value
                                         0.84996
                                                                     0.86164
## Prevalence
                                         0.20000
                                                                     0.20000
## Detection Rate
                                         0.08797
                                                                     0.08817
## Detection Prevalence
                                         0.25333
                                                                     0.19172
## Balanced Accuracy
                                         0.61658
                                                                     0.65569
                         Class: Third.party.Damages
##
## Sensitivity
                                              0.5381
## Specificity
                                              0.8587
## Pos Pred Value
                                              0.4877
## Neg Pred Value
                                              0.8815
```

## Prevalence 0.2000
## Detection Rate 0.1076
## Detection Prevalence 0.2206
## Balanced Accuracy 0.6984

## [1] "Modelo Perceptrón multicapa - Tabla de confusión para los datos de validación"

```
## Confusion Matrix and Statistics
##
                         Reference
##
## Prediction
                          Critical. Events Maritime. Accidents Material. Issues
##
     Critical. Events
                                       397
                                                           186
##
     Maritime.Accidents
                                       272
                                                           776
                                                                            229
##
     Material.Issues
                                       576
                                                           365
                                                                            792
##
     Onboard. Emergencies
                                       266
                                                           215
                                                                            205
##
     Third.party.Damages
                                       289
                                                           258
                                                                            235
##
## Prediction
                          Onboard. Emergencies Third.party. Damages
##
     Critical. Events
                                                                221
                                           213
                                           196
##
     Maritime.Accidents
                                                                216
     Material.Issues
##
                                           374
                                                                211
     Onboard. Emergencies
                                           777
                                                                214
##
                                                                938
##
     Third.party.Damages
                                           240
##
## Overall Statistics
##
##
                   Accuracy: 0.4089
##
                     95% CI: (0.3987, 0.4191)
##
       No Information Rate: 0.2
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa: 0.2611
##
   Mcnemar's Test P-Value : < 2.2e-16
##
##
## Statistics by Class:
##
##
                         Class: Critical. Events Class: Maritime. Accidents
## Sensitivity
                                         0.22056
                                                                    0.43111
## Specificity
                                         0.86681
                                                                    0.87319
## Pos Pred Value
                                         0.29277
                                                                    0.45944
## Neg Pred Value
                                         0.81646
                                                                    0.85994
## Prevalence
                                         0.20000
                                                                    0.20000
## Detection Rate
                                         0.04411
                                                                    0.08622
## Detection Prevalence
                                         0.15067
                                                                    0.18767
## Balanced Accuracy
                                         0.54368
                                                                    0.65215
##
                         Class: Material.Issues Class: Onboard.Emergencies
## Sensitivity
                                          0.4400
                                                                     0.43167
## Specificity
                                          0.7881
                                                                     0.87500
## Pos Pred Value
                                          0.3417
                                                                     0.46333
## Neg Pred Value
                                          0.8491
                                                                     0.86030
## Prevalence
                                          0.2000
                                                                     0.20000
## Detection Rate
                                                                     0.08633
                                          0.0880
## Detection Prevalence
                                          0.2576
                                                                     0.18633
## Balanced Accuracy
                                          0.6140
                                                                     0.65333
##
                         Class: Third.party.Damages
## Sensitivity
                                              0.5211
## Specificity
                                              0.8581
## Pos Pred Value
                                              0.4786
## Neg Pred Value
                                              0.8776
## Prevalence
                                              0.2000
```

#### Resumen de métricas

#### Red Neuronal. Perceptrón Multicapa

|                     | AUC   | Accuracy | Карра | Sensitivity | Specificity |
|---------------------|-------|----------|-------|-------------|-------------|
| Datos Entrenamiento | 0.730 | 0.415    | 0.269 | 0.415       | 0.854       |
| Datos Validación    | 0.724 | 0.409    | 0.261 | 0.409       | 0.852       |

## Importancia de las variables

```
# Importancia general de las variables
importancia_var_overall(nnet_MA_train, "Perceptrón multicapa")
```

## Importancia de las variables Modelo Perceptrón multicapa



2.3.3. Árbol C5

```
# Entrenamiento
if (train_switch == 1) {
set.seed(7)
tic()
  clusterCPU <- makePSOCKcluster(detectCores() - 1)</pre>
  registerDoParallel(clusterCPU)
  grid_c50 <- expand.grid(winnow = c(T, F),</pre>
                         trials = c(1, 5, 10, 15, 20),
                         model = 'tree')
  tic()
  C5_MA_train <- train(y~.,
                  data = train_MA_general,
                  method = 'C5.0',
                  metric = metrica,
                  #preProc = c('center', 'scale'),
                  trControl = control,
                  tuneLength = 10,
                  tuneGrid = grid_c50)
  stopCluster(clusterCPU)
  clusterCPU <- NULL
  saveRDS(C5_MA_train, "Models/C5_MA_train.RDS")
toc()
}else{
  C5_MA_train <- readRDS("Models/C5_MA_train.RDS")</pre>
```

```
# Resultado
C5_MA_train
```

```
## C5.0
##
## 36000 samples
##
      12 predictor
       5 classes: 'Critical.Events', 'Maritime.Accidents', 'Material.Issues', 'Onboard.Eme
##
rgencies', 'Third.party.Damages'
##
## No pre-processing
## Resampling: Cross-Validated (8 fold, repeated 2 times)
  Summary of sample sizes: 31500, 31500, 31500, 31500, 31500, ...
  Resampling results across tuning parameters:
##
##
     winnow trials logLoss
                                AUC
                                           prAUC
                                                      Accuracy
                                                                 Kappa
##
     FALSE
              1
                      1.659866
                                           0.3930191 0.3900278 0.2375347
                                0.6921549
              5
     FALSE
                     11.598187
##
                                0.6879126
                                           0.2911302 0.4013611 0.2517014
##
     FALSE
             10
                      9.353292 0.7000911
                                           0.3169549 0.4012639 0.2515799
                                           0.3211655 0.4016389 0.2520486
##
     FALSE
             15
                      8.991357
                                0.7016935
             20
##
     FALSE
                      8.711262 0.7029643
                                           0.3245679 0.4008056 0.2510069
##
              1
                      1.560276 0.7045828 0.4078656 0.3997778 0.2497222
      TRUE
              5
##
      TRUE
                      4.084759 0.6989048
                                           0.3791123 0.4028472 0.2535590
##
      TRUE
             10
                      4.084759
                                0.6989048
                                           0.3791123 0.4028472 0.2535590
                                           0.3791123 0.4028472 0.2535590
##
      TRUE
             15
                      4.084759
                                0.6989048
##
     TRUE
                      4.084759 0.6989048 0.3791123 0.4028472 0.2535590
             20
##
                Mean_Sensitivity Mean_Specificity Mean_Pos_Pred_Value
     Mean_F1
##
     0.3917586 0.3900278
                                  0.8475069
                                                    0.3947639
##
     0.3982930 0.4013611
                                  0.8503403
                                                    0.3961903
##
     0.3979326 0.4012639
                                  0.8503160
                                                    0.3955330
##
     0.3982938 0.4016389
                                  0.8504097
                                                    0.3958192
##
     0.3973837 0.4008056
                                  0.8502014
                                                    0.3948557
##
     0.4016563 0.3997778
                                  0.8499444
                                                    0.4051352
##
     0.4038584 0.4028472
                                  0.8507118
                                                    0.4064814
##
     0.4038584 0.4028472
                                  0.8507118
                                                    0.4064814
##
     0.4038584 0.4028472
                                  0.8507118
                                                    0.4064814
##
     0.4038584 0.4028472
                                  0.8507118
                                                    0.4064814
     Mean Neg Pred Value Mean Precision Mean Recall Mean Detection Rate
##
##
     0.8473113
                          0.3947639
                                          0.3900278
                                                       0.07800556
##
     0.8507216
                          0.3961903
                                          0.4013611
                                                       0.08027222
##
     0.8507289
                          0.3955330
                                          0.4012639
                                                       0.08025278
##
     0.8508249
                          0.3958192
                                          0.4016389
                                                       0.08032778
##
     0.8506273
                          0.3948557
                                          0.4008056
                                                       0.08016111
##
                                          0.3997778
                                                       0.07995556
     0.8497363
                          0.4051352
##
     0.8506058
                          0.4064814
                                          0.4028472
                                                       0.08056944
##
     0.8506058
                          0.4064814
                                          0.4028472
                                                       0.08056944
##
     0.8506058
                          0.4064814
                                          0.4028472
                                                       0.08056944
                          0.4064814
                                          0.4028472
                                                       0.08056944
##
     0.8506058
##
     Mean_Balanced_Accuracy
##
     0.6187674
##
     0.6258507
##
     0.6257899
##
     0.6260243
##
     0.6255035
##
     0.6248611
##
     0.6267795
##
     0.6267795
```

```
## 0.6267795
##
## Tuning parameter 'model' was held constant at a value of tree
## logLoss was used to select the optimal model using the smallest value.
## The final values used for the model were trials = 1, model = tree and winnow
## = TRUE.
```

```
# Gráfico de métricas
grafico_metricas(C5_MA_train)
```

#### **Métrica ROC**





## Métrica Kappa



# Resultados
resultados(C5\_MA\_train, "Árbol C5")

### RESULTADOS DEL MODELO Árbol C5

| model | winnow | trials | logLoss   | AUC       | prAUC     | Accuracy  | Kappa     | Mean_F1   | M |
|-------|--------|--------|-----------|-----------|-----------|-----------|-----------|-----------|---|
| tree  | FALSE  | 1      | 1.659866  | 0.6921549 | 0.3930191 | 0.3900278 | 0.2375347 | 0.3917586 |   |
| tree  | TRUE   | 1      | 1.560276  | 0.7045828 | 0.4078656 | 0.3997778 | 0.2497222 | 0.4016563 |   |
| tree  | FALSE  | 5      | 11.598187 | 0.6879126 | 0.2911302 | 0.4013611 | 0.2517014 | 0.3982930 |   |
| tree  | TRUE   | 5      | 4.084759  | 0.6989048 | 0.3791123 | 0.4028472 | 0.2535590 | 0.4038584 |   |
| tree  | FALSE  | 10     | 9.353292  | 0.7000911 | 0.3169549 | 0.4012639 | 0.2515799 | 0.3979326 |   |
| tree  | TRUE   | 10     | 4.084759  | 0.6989048 | 0.3791123 | 0.4028472 | 0.2535590 | 0.4038584 |   |
| tree  | FALSE  | 15     | 8.991357  | 0.7016935 | 0.3211655 | 0.4016389 | 0.2520486 | 0.3982938 |   |
| tree  | TRUE   | 15     | 4.084759  | 0.6989048 | 0.3791123 | 0.4028472 | 0.2535590 | 0.4038584 |   |
| tree  | FALSE  | 20     | 8.711262  | 0.7029643 | 0.3245679 | 0.4008056 | 0.2510069 | 0.3973837 |   |
| tree  | TRUE   | 20     | 4.084759  | 0.6989048 | 0.3791123 | 0.4028472 | 0.2535590 | 0.4038584 |   |

```
# Mejor modelo
mejor_modelo(C5_MA_train)
```

## [1] "El mejor módelo es el que muestra los siguientes hiperparámetros:"

```
trials model winnow

6 1 tree TRUE
```

```
# Curvas ROC y AUC
curvas_ROC(C5_MA_train, "de Árbol C5", train_MA_general, test_MA_general)

## Warning in roc.default(train[, c(length(train))], pred_train[, clase]):
## 'response' has more than two levels. Consider setting 'levels' explicitly or
## using 'multiclass.roc' instead

## Setting levels: control = Critical.Events, case = Maritime.Accidents

## Setting direction: controls < cases

## Warning in roc.default(test[, c(length(test))], pred_test[, clase]): 'response'
## has more than two levels. Consider setting 'levels' explicitly or using
## 'multiclass.roc' instead</pre>

## Setting levels: control = Critical.Events, case = Maritime.Accidents
```





## [1] "ROC del modelo con el fichero de test: 0.732574845679012"

# Validación, Matriz de confusión validation(C5\_MA\_train, "de Árbol C5", train\_MA\_general, test\_MA\_general)

```
## [1] "Modelo de Árbol C5 - Tabla de confusión para los datos de entrenamiento"
## Confusion Matrix and Statistics
##
##
## Prediction
                          Critical. Events Maritime. Accidents Material. Issues
##
     Critical. Events
                                      3541
                                                           692
                                                                           1644
##
     Maritime.Accidents
                                       761
                                                          4957
                                                                            912
##
     Material.Issues
                                      1787
                                                           576
                                                                           3631
##
     Onboard. Emergencies
                                       705
                                                           474
                                                                            663
                                                           501
##
     Third.party.Damages
                                       406
                                                                            350
##
                         Reference
## Prediction
                          Onboard. Emergencies Third. party. Damages
     Critical.Events
##
                                          1004
##
     Maritime.Accidents
                                           590
                                                                494
     Material.Issues
                                           782
                                                                366
##
     Onboard. Emergencies
##
                                          4418
                                                                642
                                           406
                                                               4963
##
     Third.party.Damages
##
## Overall Statistics
##
                   Accuracy : 0.5975
##
##
                     95% CI: (0.5924, 0.6026)
##
       No Information Rate: 0.2
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa: 0.4969
##
##
    Mcnemar's Test P-Value : < 2.2e-16
##
## Statistics by Class:
##
##
                         Class: Critical. Events Class: Maritime. Accidents
## Sensitivity
                                         0.49181
                                                                     0.6885
## Specificity
                                         0.85851
                                                                     0.9043
## Pos Pred Value
                                         0.46494
                                                                     0.6426
## Neg Pred Value
                                         0.87109
                                                                     0.9207
## Prevalence
                                         0.20000
                                                                     0.2000
## Detection Rate
                                         0.09836
                                                                     0.1377
## Detection Prevalence
                                         0.21156
                                                                     0.2143
## Balanced Accuracy
                                         0.67516
                                                                     0.7964
##
                         Class: Material.Issues Class: Onboard.Emergencies
## Sensitivity
                                          0.5043
                                                                      0.6136
## Specificity
                                          0.8781
                                                                      0.9137
## Pos Pred Value
                                          0.5084
                                                                      0.6401
## Neg Pred Value
                                          0.8763
                                                                      0.9044
## Prevalence
                                          0.2000
                                                                      0.2000
## Detection Rate
                                          0.1009
                                                                      0.1227
## Detection Prevalence
                                          0.1984
                                                                      0.1917
## Balanced Accuracy
                                          0.6912
                                                                      0.7637
                         Class: Third.party.Damages
##
## Sensitivity
                                              0.6893
## Specificity
                                              0.9423
## Pos Pred Value
                                              0.7490
## Neg Pred Value
                                              0.9238
```

```
## Confusion Matrix and Statistics
##
                         Reference
##
## Prediction
                          Critical. Events Maritime. Accidents Material. Issues
##
     Critical. Events
                                                           252
##
     Maritime.Accidents
                                       303
                                                           895
                                                                           293
##
     Material.Issues
                                       553
                                                           263
                                                                           539
##
     Onboard. Emergencies
                                       225
                                                           167
                                                                           234
##
     Third.party.Damages
                                       153
                                                           223
                                                                            163
##
## Prediction
                          Onboard. Emergencies Third.party. Damages
##
     Critical. Events
                                           333
                                                                235
                                           199
##
     Maritime.Accidents
                                                                223
     Material.Issues
##
                                           303
                                                                171
     Onboard. Emergencies
                                           800
                                                                254
##
##
     Third.party.Damages
                                           165
                                                                917
##
## Overall Statistics
##
##
                   Accuracy: 0.413
##
                     95% CI: (0.4028, 0.4233)
##
       No Information Rate: 0.2
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa: 0.2662
##
   Mcnemar's Test P-Value: 3.658e-12
##
##
## Statistics by Class:
##
##
                         Class: Critical. Events Class: Maritime. Accidents
## Sensitivity
                                         0.31444
                                                                    0.49722
## Specificity
                                         0.80681
                                                                    0.85861
## Pos Pred Value
                                         0.28922
                                                                    0.46785
## Neg Pred Value
                                         0.82479
                                                                    0.87230
## Prevalence
                                         0.20000
                                                                    0.20000
## Detection Rate
                                         0.06289
                                                                    0.09944
## Detection Prevalence
                                         0.21744
                                                                    0.21256
## Balanced Accuracy
                                         0.56063
                                                                    0.67792
##
                         Class: Material.Issues Class: Onboard.Emergencies
## Sensitivity
                                         0.29944
                                                                     0.44444
## Specificity
                                                                     0.87778
                                         0.82083
## Pos Pred Value
                                         0.29470
                                                                     0.47619
## Neg Pred Value
                                         0.82415
                                                                     0.86339
## Prevalence
                                         0.20000
                                                                     0.20000
                                         0.05989
## Detection Rate
                                                                     0.08889
## Detection Prevalence
                                         0.20322
                                                                     0.18667
## Balanced Accuracy
                                         0.56014
                                                                     0.66111
##
                         Class: Third.party.Damages
## Sensitivity
                                              0.5094
## Specificity
                                              0.9022
## Pos Pred Value
                                              0.5657
## Neg Pred Value
                                              0.8803
## Prevalence
                                              0.2000
```

#### Resumen

```
# Resumen
resumen_MA_C5 <- resumen_multiclass(C5_MA_train, train_MA_general, test_MA_general)

# Presentación
resumen_MA_C5 %>% kable(escape = F) %>%
kable_styling("hover", full_width = F) %>%
add_header_above(c(" ", "Árbol C5 " = 5))
```

#### Árbol C5 **AUC** Accuracy Kappa Sensitivity **Specificity Datos Entrenamiento** 0.874 0.598 0.497 0.598 0.899 Datos Validación 0.714 0.413 0.266 0.413 0.853

### Importancia de las variables

```
# Importancia general de las variables
C5_MA_train$modelInfo$varImp <- NULL
importancia_var_overall(C5_MA_train, "de Árbol C5")</pre>
```

### Importancia de las variables Modelo de Árbol C5



# Importancia de variables por cada valor de predicción

importancia\_var(C5\_MA\_train, "de Árbol C5")

### Importancia de las variables Modelo de Árbol C5



## 2.4. Redes neuronales con Keras

## 2.4.1. API Secuencial: Red densamente conectada

```
# Conversión a variables dummy para la variable objetivo con ayuda de la librería fastDumm
ies
y_train <- dummy_cols(train_MA_num, select_columns = "y", ) %>%
    select(starts_with("y_"))

y_test <- dummy_cols(test_MA_num, select_columns = "y") %>%
    select(starts_with("y_"))

# Selección de las variables explicativas en formato numérico (ya normalizadas)
x_train <- train_MA_num %>%
    select(-y)

x_test <- test_MA_num %>%
    select(-y)
```

```
# Crear el modelo
keras_model_1 <- keras_model_sequential() %>%
  layer_dense(units = 128, activation = 'relu', input_shape = dim(x_train)[2]) %>%
  layer_dropout(rate = 0.5) %>%
  layer_dense(units = 64, activation = 'relu') %>%
  layer_dropout(rate = 0.5) %>%
  layer_dense(units = dim(y_train)[2], activation = 'softmax')

# Estructura
print(keras_model_1)
```

```
## Model: "sequential"
## Layer (type)
                         Output Shape
                                              Param #
## dense_2 (Dense)
                         (None, 128)
                                              4096
## dropout_1 (Dropout)
                         (None, 128)
## dense_1 (Dense)
                         (None, 64)
                                              8256
## dropout (Dropout)
                         (None, 64)
                                              0
## dense (Dense)
                         (None, 5)
                                              325
## Total params: 12,677
## Trainable params: 12,677
## Non-trainable params: 0
```

```
# Compilar el modelo
keras_model_1 %>% compile(
  loss = 'categorical_crossentropy',
  optimizer = 'adam',
  metrics = c('accuracy')
)
```

```
# Entrenar el modelo
if (train_switch == 1) {
keras_model_evolution <- keras_model_1 %>%
    fit(as.matrix(x_train), as.matrix(y_train),
        epochs = 50,
        batch_size = 32,
        callbacks = list(callback_early_stopping(monitor = 'val_loss', patience = 10, restor
e_best_weights = TRUE)),
        validation_data = list(as.matrix(x_test), as.matrix(y_test))
        )
        keras_model_1 %>% save_model_hdf5("Models/keras_model_1.hdf5")
        saveRDS(keras_model_evolution, "Models/keras_model_evolution.rds")
} else {
    keras_model_1 <- load_model_hdf5("Models/keras_model_1.hdf5")
    keras_model_evolution <- readRDS("Models/keras_model_evolution.rds")
}</pre>
```

keras\_model\_evolution

```
##
## Final epoch (plot to see history):
## loss: 1.361
## accuracy: 0.4217
## val_loss: 1.338
## val_accuracy: 0.4259
```

### plot(keras\_model\_evolution)



#### Resumen de métricas

```
# Resumen de métricas
resumen_MA_keras_model_1 <- keras_resumen_multiclass(keras_model_1, x_train, x_test, y_tra
in, y_test)</pre>
```

```
## Setting direction: controls > cases
```

```
## Setting direction: controls < cases
## Setting direction: controls < cases</pre>
```

```
## Setting direction: controls > cases
```

```
## Setting direction: controls < cases
## Setting direction: controls < cases</pre>
```

```
# Presentación
resumen_MA_keras_model_1 %>% kable(escape = F) %>%
kable_styling("hover", full_width = F) %>%
add_header_above(c(" ", "keras_model_1" = 5))
```

#### keras\_model\_1

|                     | AUC   | Accuracy | Карра | Sensitivity | Specificity |
|---------------------|-------|----------|-------|-------------|-------------|
| Datos Entrenamiento | 0.624 | 0.445    | 0.306 | 0.456       | 0.862       |
| Datos Validación    | 0.620 | 0.426    | 0.282 | 0.436       | 0.857       |

```
modelo <- keras_model_1

# Entrenamiento
predicciones <- predict(modelo, as.matrix(x_train))
predicciones <- apply(predicciones, 1, which.max)
Y_train <- max.col(y_train)

curvaROC_train <- multiclass.roc(Y_train, predicciones)</pre>
```

```
## Setting direction: controls > cases
```

```
## Setting direction: controls < cases
## Setting direction: controls < cases</pre>
```

```
AUC_train <- round(auc(curvaROC_train),digits=3)

confusion_train <- confusionMatrix(as.factor(Y_train), as.factor(predicciones))

Accuracy_train <- round(c(confusion_train[["overall"]][["Accuracy"]]), digits=3)

Kappa_train <- round(c(confusion_train[["overall"]][["Kappa"]]), digits=3)
```

## 2.5. Extra: H2o Framework

Como extra, se va a comparar los modelos anteriores con uno automático para ver si se puede mejorar los resultados

```
# Arranque de h2o
h2o.init()
```

```
Connection successful!
##
## R is connected to the H2O cluster:
       H2O cluster uptime:
                                    40 minutes 7 seconds
##
##
       H2O cluster timezone:
                                    Europe/Paris
##
       H2O data parsing timezone: UTC
##
       H2O cluster version:
                                    3.40.0.4
##
       H2O cluster version age:
                                    7 months and 11 days
       H2O cluster name:
                                    H2O_started_from_R_0_okx249
##
       H2O cluster total nodes:
##
       H2O cluster total memory:
                                    5.38 GB
##
##
       H2O cluster total cores:
                                    12
##
       H2O cluster allowed cores:
                                    12
       H2O cluster healthy:
                                    TRUE
##
##
       H2O Connection ip:
                                    localhost
##
       H2O Connection port:
                                    54321
##
       H2O Connection proxy:
                                    NA
##
       H2O Internal Security:
                                    FALSE
       R Version:
                                    R version 4.3.0 (2023-04-21 ucrt)
##
```

```
## Warning in h2o.clusterInfo():
## Your H2O cluster version is (7 months and 11 days) old. There may be a newer version av
ailable.
## Please download and install the latest version from: https://h2o-release.s3.amazonaws.c
om/h2o/latest_stable.html
```

## 2.5.1. AutoML Procesado

```
# Conversión del dataframe general a un objeto H2o
h2o_df <- data.table(readRDS("Datasets/MergedActivityGeneral.rds")) %>%
as.h2o()
```

```
##
|
|
|
|-----| 100%
```

```
# División de datos en entrenamiento y validación
splits <- h2o.splitFrame(h2o_df, ratios = c(0.8, 0.19999))
h2o_train <- splits[[1]]
h2o_test <- splits[[2]]

# Establecimiento de los nombres de las variables predictoras
predictoras <- colnames(h2o_train)[1:12]
# y el nombre de la variable objetivo
respuesta <- "y"</pre>
```

```
# Entrenamiento
if (train_switch == 1) {
set.seed(123)
# Configuramos y ejecutamos el proceso de auto machine learning
mod_aml_h2o <- h2o.automl(</pre>
  x = predictoras,
  y = respuesta,
  training_frame = h2o_train,
  leaderboard_frame = h2o_test,
  max_runtime_secs = 2000 # Tiempo máximo de ejecución en segundos
)
# Guardamos el modelo y el objeto h2o
saveRDS(mod_aml_h2o, "Models/mod_aml_h2o.RDS")
h2o.saveModel(object= mod_aml_h2o@leader, path="Models/", force=TRUE)
}
# Leemos el modelo y el objeto h2o
mod aml h2o <- readRDS("Models/mod aml h2o.RDS")</pre>
h2o.loadModel(paste0("Models/", mod_aml_h2o@leader@model_id))
```

```
## Model Details:
## ========
##
## H2OMultinomialModel: stackedensemble
## Model ID: StackedEnsemble_BestOfFamily_4_AutoML_1_20231209_172047
## Model Summary for Stacked Ensemble:
##
                                           key
                                                          value
## 1
                             Stacking strategy cross_validation
## 2
          Number of base models (used / total)
                                                            4/4
## 3
              # GBM base models (used / total)
                                                            1/1
              # DRF base models (used / total)
##
                                                            2/2
     # DeepLearning base models (used / total)
## 5
                                                            1/1
                         Metalearner algorithm
                                                            GRM
## 6
## 7
            Metalearner fold assignment scheme
                                                         Random
                                                              5
                            Metalearner nfolds
## 8
## 9
                       Metalearner fold column
                                                             NA
            Custom metalearner hyperparameters
## 10
                                                           None
##
##
## H2OMultinomialMetrics: stackedensemble
## ** Reported on training data. **
##
## Training Set Metrics:
## ========
##
## MSE: (Extract with `h2o.mse`) 0.510757
## RMSE: (Extract with `h2o.rmse`) 0.7146726
## Logloss: (Extract with `h2o.logloss`) 1.465757
## Mean Per-Class Error: 0.5957195
## AUC: (Extract with `h2o.auc`) NaN
## AUCPR: (Extract with `h2o.aucpr`) NaN
## Confusion Matrix: Extract with `h2o.confusionMatrix(<model>,train = TRUE)`)
## ------
## Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
##
                      Critical. Events Maritime. Accidents Material. Issues
## Critical.Events
                                  424
                                                     189
                                                                    1145
## Maritime.Accidents
                                  206
                                                    1041
                                                                     608
## Material.Issues
                                 1205
                                                     261
                                                                     274
## Onboard.Emergencies
                                  278
                                                      62
                                                                     473
## Third.party.Damages
                                  290
                                                     227
                                                                     145
## Totals
                                 2403
                                                    1780
                                                                    2645
##
                      Onboard. Emergencies Third.party. Damages Error
## Critical.Events
                                      226
                                                           39 0.7904
## Maritime.Accidents
                                       64
                                                          128 0.4915
## Material.Issues
                                      178
                                                           31 0.8594
## Onboard.Emergencies
                                     1147
                                                           90 0.4405
## Third.party.Damages
                                      140
                                                         1219 0.3968
## Totals
                                     1755
                                                         1507 0.5932
##
                                  Rate
## Critical.Events
                      = 1.599 / 2.023
## Maritime.Accidents
                      = 1.006 / 2.047
## Material.Issues
                      = 1.675 / 1.949
## Onboard.Emergencies =
                           903 / 2.050
## Third.party.Damages =
                           802 / 2.021
```

```
## Totals
                    = 5.985 / 10.090
##
## Hit Ratio Table: Extract with `h2o.hit_ratio_table(<model>,train = TRUE)`
## Top-5 Hit Ratios:
##
   k hit ratio
## 1 1 0.406838
## 2 2 0.586819
## 3 3 0.752230
## 4 4 0.888206
## 5 5 1.000000
##
##
##
##
##
## H2OMultinomialMetrics: stackedensemble
## ** Reported on cross-validation data. **
## ** 5-fold cross-validation on training data (Metrics computed for combined holdout pred
ictions) **
##
## Cross-Validation Set Metrics:
## =========
##
## Extract cross-validation frame with `h2o.getFrame("levelone_training_StackedEnsemble_Be
stOfFamily_4_AutoML_1_20231209_172047")`
## MSE: (Extract with `h2o.mse`) 0.4281953
## RMSE: (Extract with `h2o.rmse`) 0.6543663
## Logloss: (Extract with `h2o.logloss`) 1.178701
## Mean Per-Class Error: 0.4772615
## AUC: (Extract with `h2o.auc`) NaN
## AUCPR: (Extract with `h2o.aucpr`) NaN
## Hit Ratio Table: Extract with `h2o.hit_ratio_table(<model>,xval = TRUE)`
## Top-5 Hit Ratios:
  k hit ratio
## 1 1 0.522976
## 2 2 0.733129
## 3 3 0.862225
## 4 4 0.948762
## 5 5 1.000000
##
##
##
##
## Cross-Validation Metrics Summary:
                                        sd cv_1_valid cv_2_valid
##
                              mean
                          0.522983 0.003260
                                              0.525721
                                                        0.517978
## accuracy
## auc
                               NA 0.000000
                                                   NA
                                                              NA
                          0.477017 0.003260 0.474279
## err
                                                        0.482022
                      3429.800000 43.654324 3439.000000 3499.000000
## err_count
## logloss
                          1.178679 0.009542 1.170900 1.194422
## max_per_class_error 0.561557 0.010933 0.551382 0.554558
## mean_per_class_accuracy
                          0.522836 0.003776 0.525526
                                                        0.517734
                          0.477164 0.003776
                                              0.474474
                                                        0.482266
## mean_per_class_error
```

```
0.428193 0.002862
                                                   0.425300
## mse
                                                               0.432488
                                   NA 0.000000
                                                         NA
## pr_auc
                                                                     NA
## r2
                             0.786204 0.001790
                                                   0.788790
                                                               0.785716
                             0.654361 0.002185
                                                   0.652150
                                                               0.657638
## rmse
##
                           cv_3_valid cv_4_valid cv_5_valid
## accuracy
                             0.523274
                                         0.525963
                                                     0.521982
## auc
                                   NA
                                               NA
                                                           NA
                             0.476726
                                         0.474037
                                                     0.478018
## err
## err_count
                          3390.000000 3396.000000 3425.000000
## logloss
                             1.179102
                                         1.171284
                                                     1.177687
## max per class error
                             0.579592
                                       0.561026
                                                     0.561224
## mean_per_class_accuracy
                             0.524978
                                         0.526064
                                                     0.519879
## mean_per_class_error
                             0.475022
                                         0.473936
                                                     0.480121
                             0.429383
                                         0.426130
                                                     0.427663
## pr auc
                                   NA
                                               NA
                                                           NA
## r2
                             0.784412
                                         0.787197
                                                     0.784903
## rmse
                             0.655273
                                         0.652787
                                                     0.653959
```

```
# Mejor modelo
mod aml h2o@leaderboard
```

```
##
                                                     model_id mean_per_class_error
## 1 StackedEnsemble BestOfFamily 4 AutoML 1 20231209 172047
                                                                         0.4516766
        StackedEnsemble AllModels 5 AutoML 1 20231209 172047
                                                                         0.4550481
        StackedEnsemble_AllModels_3_AutoML_1_20231209_172047
## 3
                                                                         0.4663601
        StackedEnsemble_AllModels_2_AutoML_1_20231209_172047
## 4
                                                                         0.4826991
## 5 StackedEnsemble_BestOfFamily_3_AutoML_1_20231209_172047
                                                                         0.4865004
## 6 StackedEnsemble_BestOfFamily_2_AutoML_1_20231209_172047
                                                                         0.4938496
##
      logloss
                   rmse
                              mse
## 1 1.151665 0.6459388 0.4172370
## 2 1.275898 0.7047981 0.4967404
## 3 1.178963 0.6479503 0.4198396
## 4 1.223863 0.6698405 0.4486864
## 5 1.225977 0.6706256 0.4497387
## 6 1.244179 0.6768944 0.4581860
##
## [72 rows x 5 columns]
```

```
# Rendimiento del mejor modelo
h2o.performance(mod_aml_h2o@leader, newdata = h2o_test)
```

```
## H2OMultinomialMetrics: stackedensemble
##
## Test Set Metrics:
## =========
## MSE: (Extract with `h2o.mse`) 0.4990596
## RMSE: (Extract with `h2o.rmse`) 0.7064415
## Logloss: (Extract with `h2o.logloss`) 1.429426
## Mean Per-Class Error: 0.5754344
## AUC: (Extract with `h2o.auc`) NaN
## AUCPR: (Extract with `h2o.aucpr`) NaN
## Confusion Matrix: Extract with `h2o.confusionMatrix(<model>, <data>)`)
## Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
                     Critical. Events Maritime. Accidents Material. Issues
## Critical.Events
                                448
                                                  187
## Maritime.Accidents
                                191
                                                  969
                                                                 459
## Material.Issues
                                939
                                                  246
                                                                 399
                                                  91
## Onboard. Emergencies
                                273
                                                                 359
## Third.party.Damages
                                247
                                                  218
                                                                124
## Totals
                               2098
                                                 1711
                                                                2198
##
                     Onboard. Emergencies Third. party. Damages Error
## Critical.Events
                                    202
                                                       73 0.7465
## Maritime.Accidents
                                     72
                                                      149 0.4734
## Material.Issues
                                    158
                                                       55 0.7780
## Onboard. Emergencies
                                    924
                                                       89 0.4677
## Third.party.Damages
                                    154
                                                     1062 0.4116
## Totals
                                   1510
                                                     1428 0.5750
## Critical.Events
                     = 1.319 / 1.767
## Maritime.Accidents =
                         871 / 1.840
## Material.Issues
                     = 1.398 / 1.797
## Onboard.Emergencies =
                         812 / 1.736
## Third.party.Damages =
                         743 / 1.805
## Totals
                     = 5.143 / 8.945
## Hit Ratio Table: Extract with `h2o.hit_ratio_table(<model>, <data>)`
  ______
## Top-5 Hit Ratios:
    k hit_ratio
## 1 1 0.425042
## 2 2 0.607937
## 3 3 0.764002
## 4 4 0.896926
## 5 5 1.000000
```

# 3. Comparación de los modelos

## 3.1. Importancia de las variables

ggarrange(importancia\_var\_overall(rf\_MA\_train, "de Random Forest"),
 importancia\_var\_overall(C5\_MA\_train, "de C5"),
 importancia\_var(GBM\_MA\_train, "de Gradient Boosting"),
 importancia\_var\_overall(nnet\_MA\_train, "de Perceptrón Multicapa"),
 ncol=2,nrow=2)



# 3.2. Desempeño de los modelos

```
# Los dos cuadros con los algoritmos utilizados los construimos uniendo la salida de la fu
nción resumen
Nombresmodelos <- c("NB", "GBM", "RF", "MLP", "C5", "Keras")
# Para los datos de entrenamiento
DatosEntrenamiento <- rbind(resumen_MA_nb[1,], resumen_MA_GBM[1,], resumen_MA_rf[1,], resu
men_MA_nnet[1,], resumen_MA_C5[1,], resumen_MA_keras_model_1[1,])
rownames(DatosEntrenamiento) <- Nombresmodelos</pre>
DatosEntrenamiento <- as.data.frame(DatosEntrenamiento)</pre>
DatosEntrenamiento %>% arrange(-AUC) %>%
    mutate(AUC = color_tile("white", "orange")(AUC),
    Accuracy = color_tile("white", "pink")(Accuracy),
    Kappa = color_tile("white", "pink")(Kappa),
    Sensitivity = color_tile("white", "purple")(Sensitivity),
    Specificity = color_tile("white", "green")(Specificity)
  ) %>%
  kable(escape = F) %>%
  kable_styling("hover", full_width = F) %>%
  add_header_above(c(" ", "Comparación con la Muestra de Entrenamiento" = 5))
```

#### Comparación con la Muestra de Entrenamiento

|       | AUC   | Accuracy | Карра | Sensitivity | Specificity |
|-------|-------|----------|-------|-------------|-------------|
| RF    | 0.969 | 0.800    | 0.750 | 0.800       | 0.950       |
| C5    | 0.874 | 0.598    | 0.497 | 0.598       | 0.899       |
| GBM   | 0.820 | 0.524    | 0.406 | 0.524       | 0.881       |
| MLP   | 0.730 | 0.415    | 0.269 | 0.415       | 0.854       |
| NB    | 0.725 | 0.417    | 0.271 | 0.417       | 0.854       |
| Keras | 0.624 | 0.445    | 0.306 | 0.456       | 0.862       |

```
# Los dos cuadros con los algoritmos utilizados los construimos uniendo la salida de la fu
nción resumen
Nombresmodelos <- c("NB", "GBM", "RF", "MLP", "C5", "Keras")
# Para los datos de Validacion
DatosValidacion <- rbind(resumen_MA_nb[2,], resumen_MA_GBM[2,], resumen_MA_rf[2,], resumen
_MA_nnet[2,], resumen_MA_C5[2,], resumen_MA_keras_model_1[2,])
rownames(DatosValidacion) <- Nombresmodelos</pre>
DatosValidacion <- as.data.frame(DatosValidacion)</pre>
DatosValidacion %>% arrange(-AUC) %>%
    mutate(AUC = color_tile("white", "orange")(AUC),
    Accuracy = color_tile("white", "pink")(Accuracy),
    Kappa = color_tile("white", "pink")(Kappa),
    Sensitivity = color_tile("white", "purple")(Sensitivity),
    Specificity = color_tile("white", "green")(Specificity)
  ) %>%
  kable(escape = F) %>%
  kable_styling("hover", full_width = F) %>%
  add_header_above(c(" ", "Comparación con la Muestra de Validación" = 5))
```

#### Comparación con la Muestra de Validación

|       | AUC   | Accuracy | Карра | Sensitivity | Specificity |  |  |
|-------|-------|----------|-------|-------------|-------------|--|--|
| GBM   | 0.759 | 0.438    | 0.298 | 0.438       | 0.860       |  |  |
| NB    | 0.726 | 0.420    | 0.275 | 0.420       | 0.855       |  |  |
| MLP   | 0.724 | 0.409    | 0.261 | 0.409       | 0.852       |  |  |
| C5    | 0.714 | 0.413    | 0.266 | 0.413       | 0.853       |  |  |
| RF    | 0.712 | 0.380    | 0.225 | 0.380       | 0.845       |  |  |
| Keras | 0.620 | 0.426    | 0.282 | 0.436       | 0.857       |  |  |

Comparativa de Logloss para todos los modelos:

```
# Tabla comparativa
Nombresmodelos <- c("NB", "GBM", "RF", "MLP", "C5", "Keras", "AutoML")
DatosEntrenamiento <- rbind(mean(nb_MA_train$results$logLoss),</pre>
                            mean(GBM_MA_train$results$logLoss),
                            mean(rf_MA_train$results$logLoss),
                            mean(nnet_MA_train$results$logLoss),
                             mean(C5_MA_train$results$logLoss),
                             (keras_model_1 %>% evaluate(as.matrix(x_test), as.matrix(y_tes
t)))[["loss"]],
                             h2o.performance(mod_aml_h2o@leader)@metrics[["logloss"]]
rownames(DatosEntrenamiento) <- Nombresmodelos</pre>
DatosEntrenamiento <- as.data.frame(DatosEntrenamiento) %>% rename(logloss = V1)
DatosEntrenamiento %>% arrange(logloss) %>%
    mutate(logloss = color_tile("lightyellow", "white")(logloss)) %>%
    kable(escape = F) %>%
    kable_styling("hover", full_width = F)
```

|        | logloss  |
|--------|----------|
| Keras  | 1.338324 |
| GBM    | 1.338944 |
| MLP    | 1.425373 |
| AutoML | 1.465757 |
| NB     | 1.552391 |
| RF     | 1.635759 |
| C5     | 5.821327 |

```
z <- h2o.performance(mod_aml_h2o@leader)@metrics</pre>
```

# 3.3. Contraste de hipótesis

```
##
## Call:
## resamples.default(x = modelos)
##
## Models: NB, GBM, RF, MLP, C5
## Number of resamples: 16
## Performance metrics: Accuracy, Accuracy.1, AUC, Kappa, Kappa.1, logLoss, Mean_Balanced_
Accuracy, Mean_Detection_Rate, Mean_F1, Mean_Neg_Pred_Value, Mean_Pos_Pred_Value, Mean_Pre
cision, Mean_Recall, Mean_Sensitivity, Mean_Specificity, prAUC
## Time estimates for: everything, final model fit
```

summary(comp\_modelos)

```
##
## Call:
## summary.resamples(object = comp_modelos)
##
## Models: NB, GBM, RF, MLP, C5
   Number of resamples: 16
##
  Accuracy
##
                     1st Ou.
                                 Median
                                                    3rd Ou.
              Min.
                                             Mean
##
         0.4026667 0.4086111 0.4131111 0.4132500 0.4166111 0.4242222
   NB.1 0.4026667 0.4086111 0.4131111 0.4132500 0.4166111 0.4242222
                                                                          0
         0.4215556 0.4300000 0.4366667 0.4349028 0.4397222 0.4462222
                                                                          0
##
   GBM
   GBM.1 0.4215556 0.4300000 0.4366667 0.4349028 0.4397222 0.4462222
                                                                          0
##
         0.3748889 0.3830000 0.3920000 0.3892917 0.3945556 0.3971111
                                                                          0
##
   RF
   RF.1 0.3748889 0.3830000 0.3920000 0.3892917 0.3945556 0.3971111
##
                                                                          0
         0.3960000 0.3998889 0.4027778 0.4044444 0.4092778 0.4135556
                                                                          0
##
   MLP
## MLP.1 0.3960000 0.3998889 0.4027778 0.4044444 0.4092778 0.4135556
                                                                          0
##
         0.3860000 0.3930000 0.3987778 0.3997778 0.4037222 0.4211111
                                                                          a
   C5.1 0.3860000 0.3930000 0.3987778 0.3997778 0.4037222 0.4211111
                                                                          0
##
##
##
  Accuracy.1
##
                   1st Qu.
                              Median
                                                  3rd Qu.
                                                               Max. NA's
            Min.
                                           Mean
## NB 0.4026667 0.4086111 0.4131111 0.4132500 0.4166111 0.4242222
                                                                        0
   GBM 0.4215556 0.4300000 0.4366667 0.4349028 0.4397222 0.4462222
                                                                        0
     0.3748889 0.3830000 0.3920000 0.3892917 0.3945556 0.3971111
                                                                        0
  MLP 0.3960000 0.3998889 0.4027778 0.4044444 0.4092778 0.4135556
                                                                        0
       0.3860000 0.3930000 0.3987778 0.3997778 0.4037222 0.4211111
                                                                        0
##
## AUC
##
            Min.
                   1st Qu.
                              Median
                                           Mean
                                                  3rd Qu.
## NB 0.7126653 0.7194630 0.7214030 0.7211618 0.7248631 0.7269994
   GBM 0.7453859 0.7554500 0.7571335 0.7562578 0.7585071 0.7636082
      0.7062244 0.7120075 0.7149972 0.7145125 0.7169910 0.7228908
   MLP 0.7164480 0.7201198 0.7220000 0.7229238 0.7270804 0.7311149
                                                                        0
       0.6953737 0.7003115 0.7052496 0.7045828 0.7075966 0.7194952
##
##
   Kappa
                                                                  Max. NA's
##
              Min.
                     1st Qu.
                                 Median
                                             Mean
                                                    3rd Qu.
##
  NB
         0.2533333 0.2607639 0.2663889 0.2665625 0.2707639 0.2802778
                                                                          a
##
   NB.1 0.2533333 0.2607639 0.2663889 0.2665625 0.2707639 0.2802778
                                                                          0
         0.2769444 0.2875000 0.2958333 0.2936285 0.2996528 0.3077778
                                                                          0
##
   GBM
   GBM.1 0.2769444 0.2875000 0.2958333 0.2936285 0.2996528 0.3077778
                                                                          0
##
##
   RF
         0.2186111 0.2287500 0.2400000 0.2366146 0.2431944 0.2463889
                                                                          0
  RF.1 0.2186111 0.2287500 0.2400000 0.2366146 0.2431944 0.2463889
                                                                          0
##
         0.2450000 0.2498611 0.2534722 0.2555556 0.2615972 0.2669444
##
  MI P
                                                                          0
## MLP.1 0.2450000 0.2498611 0.2534722 0.2555556 0.2615972 0.2669444
                                                                          a
         0.2325000 0.2412500 0.2484722 0.2497222 0.2546528 0.2763889
##
                                                                          0
   C5.1 0.2325000 0.2412500 0.2484722 0.2497222 0.2546528 0.2763889
##
                                                                          0
##
## Kappa.1
##
            Min.
                   1st Qu.
                              Median
                                           Mean
                                                  3rd Qu.
                                                                Max. NA's
## NB 0.2533333 0.2607639 0.2663889 0.2665625 0.2707639 0.2802778
                                                                        0
## GBM 0.2769444 0.2875000 0.2958333 0.2936285 0.2996528 0.3077778
                                                                        0
## RF 0.2186111 0.2287500 0.2400000 0.2366146 0.2431944 0.2463889
```

```
## MLP 0.2450000 0.2498611 0.2534722 0.2555556 0.2615972 0.2669444
                                                                 a
## C5 0.2325000 0.2412500 0.2484722 0.2497222 0.2546528 0.2763889
                                                                 0
##
## logLoss
##
          Min. 1st Qu.
                         Median
                                   Mean 3rd Qu.
                                                    Max. NA's
## NB 1.526336 1.544231 1.548398 1.552391 1.565442 1.589366
## GBM 1.293248 1.306109 1.308582 1.310059 1.310104 1.337623
## RF 1.451035 1.485385 1.493904 1.495059 1.502951 1.531118
## MLP 1.370757 1.380793 1.388613 1.387036 1.395820 1.399624
## C5 1.477131 1.548544 1.564795 1.560276 1.582994 1.615533
##
## Mean Balanced Accuracy
##
           Min.
                 1st Qu.
                            Median
                                       Mean
                                              3rd Ou.
## NB 0.6266667 0.6303819 0.6331944 0.6332813 0.6353819 0.6401389
## GBM 0.6384722 0.6437500 0.6479167 0.6468142 0.6498264 0.6538889
  RF 0.6093056 0.6143750 0.6200000 0.6183073 0.6215972 0.6231944
  MLP 0.6225000 0.6249306 0.6267361 0.6277778 0.6307986 0.6334722
  ##
## Mean Detection Rate
##
            Min.
                   1st Qu.
                              Median
                                           Mean
                                                  3rd Qu.
                                                               Max. NA's
## NB 0.08053333 0.08172222 0.08262222 0.08265000 0.08332222 0.08484444
## GBM 0.08431111 0.08600000 0.08733333 0.08698056 0.08794444 0.08924444
## RF 0.07497778 0.07660000 0.07840000 0.07785833 0.07891111 0.07942222
                                                                       0
  MLP 0.07920000 0.07997778 0.08055556 0.08088889 0.08185556 0.08271111
                                                                       a
  C5 0.07720000 0.07860000 0.07975556 0.07995556 0.08074444 0.08422222
                                                                       0
##
##
## Mean_F1
           Min.
##
                 1st Qu.
                            Median
                                             3rd Qu.
                                                          Max. NA's
                                       Mean
## NB 0.4009419 0.4067160 0.4102325 0.4111456 0.4145803 0.4219515
## GBM 0.4162543 0.4281084 0.4336985 0.4322107 0.4368422 0.4436470
## RF 0.3742307 0.3855476 0.3925531 0.3901783 0.3955244 0.3983683
                                                                 0
## MLP 0.3884735 0.3918767 0.3952359 0.3966414 0.4019253 0.4076257
                                                                 0
## C5 0.3876638 0.3956343 0.4006359 0.4016563 0.4054051 0.4229917
##
## Mean_Neg_Pred_Value
##
           Min.
                 1st Qu.
                            Median
                                       Mean
                                              3rd Qu.
## NB 0.8508935 0.8524300 0.8536985 0.8536251 0.8544471 0.8565288
## GBM 0.8560227 0.8578432 0.8594715 0.8590701 0.8602851 0.8619187
  RF 0.8437675 0.8454122 0.8477863 0.8471848 0.8484515 0.8491002
## MLP 0.8494532 0.8508248 0.8519007 0.8520292 0.8531545 0.8541490
##
## Mean Pos Pred Value
           Min.
                 1st Qu.
                            Median
                                              3rd Qu.
                                       Mean
## NB 0.4046612 0.4104087 0.4140718 0.4148792 0.4177292 0.4280659
## GBM 0.4153255 0.4276816 0.4332397 0.4317596 0.4363010 0.4433127
                                                                 0
## RF 0.3754790 0.3897868 0.3942409 0.3924425 0.3979209 0.4011984
                                                                 a
## MLP 0.3908149 0.3931473 0.4005744 0.3998573 0.4047983 0.4122558
                                                                 0
a
##
## Mean_Precision
                 1st Qu.
##
           Min.
                            Median
                                       Mean
                                              3rd Ou.
## NB 0.4046612 0.4104087 0.4140718 0.4148792 0.4177292 0.4280659
                                                                 0
## GBM 0.4153255 0.4276816 0.4332397 0.4317596 0.4363010 0.4433127
                                                                 0
```

```
## RF 0.3754790 0.3897868 0.3942409 0.3924425 0.3979209 0.4011984
                                                                 a
## MLP 0.3908149 0.3931473 0.4005744 0.3998573 0.4047983 0.4122558
                                                                 0
## C5 0.3898278 0.3992120 0.4041697 0.4051352 0.4084073 0.4260283
                                                                 0
##
## Mean_Recall
                                             3rd Qu.
##
           Min.
                 1st Qu.
                           Median
                                       Mean
## NB 0.4026667 0.4086111 0.4131111 0.4132500 0.4166111 0.4242222
## GBM 0.4215556 0.4300000 0.4366667 0.4349028 0.4397222 0.4462222
  RF 0.3748889 0.3830000 0.3920000 0.3892917 0.3945556 0.3971111
## MLP 0.3960000 0.3998889 0.4027778 0.4044444 0.4092778 0.4135556
                                                                 0
  C5 0.3860000 0.3930000 0.3987778 0.3997778 0.4037222 0.4211111
##
## Mean Sensitivity
##
                 1st Qu.
                           Median
                                       Mean
                                              3rd Qu.
## NB 0.4026667 0.4086111 0.4131111 0.4132500 0.4166111 0.4242222
## GBM 0.4215556 0.4300000 0.4366667 0.4349028 0.4397222 0.4462222
                                                                 0
## RF 0.3748889 0.3830000 0.3920000 0.3892917 0.3945556 0.3971111
## MLP 0.3960000 0.3998889 0.4027778 0.4044444 0.4092778 0.4135556
##
## Mean_Specificity
##
           Min.
                 1st Qu.
                                              3rd Qu.
                           Median
                                       Mean
## NB 0.8506667 0.8521528 0.8532778 0.8533125 0.8541528 0.8560556
## GBM 0.8553889 0.8575000 0.8591667 0.8587257 0.8599306 0.8615556
                                                                 0
## RF 0.8437222 0.8457500 0.8480000 0.8473229 0.8486389 0.8492778
                                                                 0
## MLP 0.8490000 0.8499722 0.8506944 0.8511111 0.8523194 0.8533889
                                                                 0
a
##
## prAUC
##
                 1st Qu.
                           Median
                                             3rd Qu.
           Min.
                                       Mean
## NB 0.4179170 0.4211103 0.4269191 0.4272545 0.4319427 0.4386689
## GBM 0.4562260 0.4709588 0.4744424 0.4736816 0.4766839 0.4876280
                                                                 0
## RF 0.4134681 0.4243376 0.4280715 0.4276375 0.4317999 0.4369321
                                                                 0
## MLP 0.4151405 0.4193325 0.4211189 0.4230512 0.4263797 0.4351272
                                                                 0
## C5 0.3936745 0.4047484 0.4081179 0.4078656 0.4131351 0.4204168
```

dotplot(comp\_modelos)



AccuracyracyAUCKapptedpato\_thateanceDettAteanteDattePotedenceMethateathsBiptepiActiv

densityplot(comp\_modelos, metric = "Kappa" ,auto.key = list(columns = 3))



diferencias <- diff(comp\_modelos)
summary(diferencias)</pre>

```
##
## Call:
## summary.diff.resamples(object = diferencias)
##
## p-value adjustment: bonferroni
## Upper diagonal: estimates of the difference
## Lower diagonal: p-value for H0: difference = 0
##
## Accuracy
##
       NB
                 GBM
                           RF
                                     MLP
## NB
                 -0.021653 0.023958 0.008806 0.013472
                            0.045611 0.030458 0.035125
## GBM 1.093e-10
## RF 7.628e-12 < 2.2e-16
                                     -0.015153 -0.010486
## MLP 0.001453 3.685e-10 1.784e-05
                                                0.004667
## C5 6.868e-05 6.107e-10 0.001427 0.461759
##
## Accuracy.1
##
       NB
                 GBM
                           RF
                                     MLP
                 -0.021653 0.023958 0.008806 0.013472
## NB
## GBM 1.093e-10
                            0.045611 0.030458 0.035125
## RF 7.628e-12 < 2.2e-16
                                     -0.015153 -0.010486
## MLP 0.001453 3.685e-10 1.784e-05
                                                0.004667
## C5 6.868e-05 6.107e-10 0.001427 0.461759
##
## AUC
##
       NB
                 GBM
                           RF
                                     MLP
## NB
                 -0.035096 0.006649 -0.001762 0.016579
## GBM < 2.2e-16
                            0.041745 0.033334 0.051675
## RF 6.431e-05 < 2.2e-16
                                     -0.008411 0.009930
## MLP 0.3993
                 7.677e-14 2.690e-05
                                                0.018341
## C5 2.356e-08 5.680e-16 9.573e-05 7.073e-09
##
## Kappa
##
                 GBM
                           RF
                                     MLP
                 -0.027066 0.029948 0.011007 0.016840
## GBM 1.093e-10
                            0.057014 0.038073 0.043906
## RF 7.628e-12 < 2.2e-16
                                     -0.018941 -0.013108
## MLP 0.001453 3.685e-10 1.784e-05
                                                0.005833
## C5 6.868e-05 6.107e-10 0.001427 0.461759
##
## Kappa.1
       NB
                                     MLP
##
                 GBM
                           RF
                 -0.027066 0.029948 0.011007 0.016840
## NB
                            0.057014 0.038073 0.043906
## GBM 1.093e-10
## RF 7.628e-12 < 2.2e-16
                                     -0.018941 -0.013108
## MLP 0.001453 3.685e-10 1.784e-05
                                                0.005833
## C5 6.868e-05 6.107e-10 0.001427 0.461759
##
## logLoss
                                     MLP
##
       NB
                 GBM
                           RF
## NB
                  0.242332 0.057332 0.165354 -0.007885
## GBM < 2.2e-16
                           -0.185000 -0.076977 -0.250217
## RF 2.736e-08 < 2.2e-16
                                      0.108023 -0.065217
## MLP < 2.2e-16 1.465e-14 1.601e-12
                                               -0.173240
```

```
## C5 1.0000000 9.002e-14 0.0001216 1.987e-11
##
## Mean_Balanced_Accuracy
                            MLP
      NB
              GBM
##
                        RF
               -0.013533 0.014974 0.005503 0.008420
## NB
## GBM 1.093e-10
                         0.028507 0.019036 0.021953
## RF 7.628e-12 < 2.2e-16
                         -0.009470 -0.006554
## MLP 0.001453 3.685e-10 1.784e-05
                                            0.002917
## C5 6.868e-05 6.107e-10 0.001427 0.461759
##
## Mean Detection Rate
                    RF
      NB
##
               -0.0043306 0.0047917 0.0017611 0.0026944
## GBM 1.093e-10
                          0.0091222 0.0060917 0.0070250
## RF 7.628e-12 < 2.2e-16
                                   -0.0030306 -0.0020972
## MLP 0.001453 3.685e-10 1.784e-05
                                              0.0009333
## C5 6.868e-05 6.107e-10 0.001427
                                   0.461759
##
## Mean F1
    NB
               GBM RF
##
                                 MLP
## NB
               -0.021065 0.020967 0.014504 0.009489
                         0.042032 0.035569 0.030554
## GBM 8.092e-10
                                 -0.006463 -0.011478
## RF 3.801e-11 < 2.2e-16
                                  -0.005015
## MLP 7.402e-06 9.673e-11 0.0665975
## C5 0.0028082 5.013e-09 0.0004242 0.4330947
##
## Mean_Neg_Pred_Value
    NB
##
             GBM RF
                                 MI P
## NB
               -0.005445 0.006440 0.001596 0.003889
                 0.011885 0.007041 0.009334
## GBM 6.244e-11
## RF 3.922e-12 < 2.2e-16
                                 -0.004844 -0.002551
## MLP 0.033420 1.447e-09 1.352e-06
                                           0.002293
## C5 1.356e-05 2.708e-10 0.002306 0.007742
##
## Mean_Pos_Pred_Value
##
                                 MLP
## NB
               -0.016880 0.022437 0.015022 0.009744
## GBM 6.765e-08
                         0.039317 0.031902 0.026624
## RF 3.236e-11 1.338e-15
                                 -0.007415 -0.012693
## MLP 7.339e-06 2.150e-09 0.0501308 -0.005278
## C5 0.0030415 3.630e-08 0.0001425 0.3288351
##
## Mean_Precision
                       RF
##
     NB
             GBM
                                 MLP
               -0.016880 0.022437 0.015022 0.009744
## NB
## GBM 6.765e-08
                         0.039317 0.031902 0.026624
## RF 3.236e-11 1.338e-15
                           -0.007415 -0.012693
## MLP 7.339e-06 2.150e-09 0.0501308
                                          -0.005278
## C5 0.0030415 3.630e-08 0.0001425 0.3288351
##
## Mean_Recall
      NB
               GBM
                     RF
##
                                 MI P
               -0.021653 0.023958 0.008806 0.013472
## NB
## GBM 1.093e-10 0.045611 0.030458 0.035125
## RF 7.628e-12 < 2.2e-16
                                 -0.015153 -0.010486
```

```
## MLP 0.001453 3.685e-10 1.784e-05
                                     0.004667
## C5 6.868e-05 6.107e-10 0.001427 0.461759
##
## Mean_Sensitivity
## NB GBM RF MLP C5
     -0.021653 0.023958 0.008806 0.013472
## NB
## GBM 1.093e-10 0.045611 0.030458 0.035125
## RF 7.628e-12 < 2.2e-16 -0.015153 -0.010486
## MLP 0.001453 3.685e-10 1.784e-05 0.004667
## C5 6.868e-05 6.107e-10 0.001427 0.461759
##
## Mean_Specificity
## NB GBM RF MLP C5
## NB -0.005413 0.005990 0.002201 0.003368
## GBM 1.093e-10 0.011403 0.007615 0.008781
## RF 7.628e-12 < 2.2e-16 -0.003788 -0.002622
                               0.001167
## MLP 0.001453 3.685e-10 1.784e-05
## C5 6.868e-05 6.107e-10 0.001427 0.461759
##
## prAUC
           GBM RF MLP C5
## NB
## NB -0.0464271 -0.0003831 0.0042032 0.0193888
## GBM 2.936e-15 0.0460440 0.0506303 0.0658159
## RF 1.00000 < 2.2e-16 0.0045863 0.0197719
## MLP 0.19388 5.704e-14 0.02432 0.0151856
                                0.0151856
## C5 6.467e-08 5.458e-15 1.231e-07 2.798e-07
```