Immune repertoire forensics A RepSeg data analysis tutorial

Mikhail Shugay, PhD

Skoltech, MA03172 course [Term 2, 2017-2018]

December 5, 2017

Outline

Introduction

Basic RepSeq analysis methods

Getting started

Interactive part

The assignment

T-cell receptor

T-cell:APC contact

From James and Vale, Nature 2012,

https://valelab.ucsf.edu/images/

T-cell receptor

T-cell:APC contact

From James and Vale, Nature 2012,

https://valelab.ucsf.edu/images/

TCR:pMHC structure

PDB:1ao7, rendered using UCSF chimera, colored by chain

VDJ rearrangement

An example schema for $TCR\beta$ locus

Variable, Diversity and Joining are chosen at random, V-D and D-J junctions are filled with non-template N bases.

VDJ rearrangement

An example schema for $TCR\beta$ locus

Variable, Diversity and Joining are chosen at random, V-D and D-J junctions are filled with non-template N bases.

VDJ rearrangement mechanism can be efficiently recaptured with a probabilistic model [Murugan et al. PNAS 2012]

$$P(\sigma) = P(V)P(D, J)$$

$$\times P(\#del_V|V)P(\#del_J|J)P(\#del_{D5}, \#del_{D3}|D)$$

$$\times P(\#ins_{VD})P(\#ins_{DJ}) \prod_{i \in ins_{VD}} P(b_i|b_{i-1}) \prod_{i \in ins_{DJ}} P(b_i|b_{i+1})$$

TCR regions

A TCR chains consists of the following regions:

In total there are four framework (FRs) and three complementarity determining regions/loops (CDRs).

TCR regions

A TCR chains consists of the following regions:

In total there are four framework (FRs) and three complementarity determining regions/loops (CDRs).

The likely functions of these regions are:

- ► FR regions maintain TCR secondary structure and (possibly) play role in MHC binding
- CDR1,2 are germline encoded and play role in antigen recognition, as well as (possibly) MHC binding
- CDR3 plays a major role in antigen recognition and is extremely variable

TCR repertoire sequencing

An example of a RepSeq dataset

After all pre-processing steps:

- Read grooming (filtering, etc)
- UMI-based assembly (for molecular barcoded data)
- V-D-J mapping and clonotype assembly

An example of a RepSeq dataset

After all pre-processing steps:

- Read grooming (filtering, etc)
- ▶ UMI-based assembly (for molecular barcoded data)
- V-D-J mapping and clonotype assembly

We finally get clonotype frequency tables that look like

1	Index	Frequency	Count	CDR3AA	٧	D	J	CDR3NT
1	1	1.0%	3913	CSAGGLGSTDTQYF	TRBV20- 1	TRBD1		TGCAGTGCTGGGGGGCTCGGTAGCACAGATACGCAGTATTTT
1 5 1 5 1 5 1 5 1 6 6 6 6 6 6 6 6 6	2	0.90%	3440	CASNSGSSYNEQFF	TRBV5-1	TRBD2	TRBJ2- 1	TGCGCCAGCAATAGCGGGAGCTCCTACAATGAGCAGTTCTTC
1	3	0.79%	3021	CSARQGNQPQHF	TRBV20- 1	TRBD1		TGCAGTGCGCGACAGGGGAATCAGCCCCAGCATTTT
1	4	0.65%	2490	CASSQEPGGEQFF	TRBV4-1	TRBD2	TRBJ2- 1	TGCGCCAGCAGCCAAGAGCCGGGCGGGGAGCAGTTCTTC
3 3 7 0.49% 1871 CASSQSQGSYEQYF TRBV5-1 TRBD1 TRBJ2- TGCGCCAGCAGCCAAAGTCAAGGGGGGTCCTACGAGCAGTACTTC 7 7 7 7 7 7 7 7 7	5	0.61%	2336	CASSYGMNTEAFF	TRBV6-6	TRBD2	TRBJ1- 1	TGTGCCAGCAGTTACGGGATGAACACTGAAGCTTTCTTT
8	6	0.52%	1992	CASSQGGRAPHTQYF	TRBV4-3	TRBD2		TGCGCCAGCAGCGAGGGGGGGGGGCCCCCCATACGCAGTATTTT
	7	0.49%	1871	CASSQSQGGSYEQYF	TRBV5-1	TRBD1		TGCGCCAGCAGCCAAAGTCAAGGGGGGTCCTACGAGCAGTACTTC
	8	0.48%	1847	CASSRPKSGRSGELFF		TRBD2		TGTGCCAGCAGCCGACCCAAGAGCGGGAGAAGTGGGGAGCTGTTTTTT

Outline

Introduction

Basic RepSeq analysis methods

Getting started

Interactive part

The assignment

Diversity analysis

Inspired by species richness/diversity analysis in ecology. Useful to tell naive T-cell samples from antigen-experienced T-cells containing expanded clones.

Shugay et al. NAR 2017

Variable segment usage

Similar to conventional gene expression analysis: segment profile can be useful for distinguishing different subsets of T-cells.

Clonotype sharing

The overlap/co-incidence of hypervariable CDR3 region sequences in different samples. Useful for determining sample origin and comparative analysis of immune repertoires in general.

Britanova et al. J Immunol 2016

TCR sequence annotation

Using a curated database of TCRs with known antigen specificity (VDJdb, vdjdb.cdr3.net). Directly searching for specific TCRs/determining the specificity profile of a repertoire.

Shugay et al. NAR 2017 12 / 24

Outline

Introduction

Basic RepSeq analysis methods

Getting started

Interactive part

The assignment

Downloading data

Navigate to https://github.com/antigenomics/ repseq-forensics-tutorial and download the data + code bundle as zip

Executing R code

Open the tutorial.Rmd in RStudio, it can be found in the root folder of the bundle.

```
Plot diversity values
109
110 - ```{r message=FALSE}
111
     diversity %>%
       melt %>%
112
113
       # set what values we are going to plot
       # fct_reorder reorders sample id by value
114
115
       ggplot(aes(x=fct_reorder2(sample_id, variable, value), y=value)) +
116
       # we'll make a bar plot
117
       geom_bar(stat = "identity", fill = "#0570b0") +
118
       # show each index on different subplot
119
       facet_wrap(~variable, scales = "free_y", ncol = 1) +
       xlab("") + ylab("Diversity index") +
120
121
       theme_bw()
122
```

Executing R code

Outline

Introduction

Basic RepSeq analysis methods

Getting started

Interactive part

The assignment

Interactive part

Outline

Introduction

Basic RepSeq analysis methods

Getting started

Interactive part

The assignment

The assignment

Using the analysis results we've obtained we need to assign feature labels to each sample. Namely, you need to fill the table with the following structure:

sample	donor	subset	phenotype	CMV status
s1	D1	CD4	memory	CMV-
s2	D2		naive	CMV+
s3	D1	CD8	naive	CMV-

Details

Table filling rules:

- Column names should match those on previous slide
- Sample id should be one of s₁..s₁₆
- ► Two distinct donor IDs should be used, naming doesn't matter
- Subset should be either CD4 or CD8
- Phenotype should be either memory or naive
- CMV status should be either CMV+ or CMV-
- Unknown/ambiguous fields should be left blank

A hint

While you can unambiguously assign CD4/8 and memory/naive labels, as well as point out biological replicates of the same sample, assigning donor labels is tricky.

First, it is impossible to link CD4-CD8 cells of the same donor. Same for CMV status, that is unambiguous only for CD8+memory T-cells. Therefore I expect that you mark donors in the way they will distinguish samples/replicas coming from the same and different donors.

I.e. there is no problem if donor labels are swapped between CD4 and CD8 T-cells as far as they point to distinct donors for CD4 or CD8 T-cells coming from different donor and the same donor for replicas.

Feedback

Send me filled tables as plain text tab-delimited files, the file name should be in format your-name.assignment.txt

Final remarks

Thanks for your attention!

These slides and a PDF file containing compiled analysis results can be found in slides/ and root folders of the data and code bundle.