Razonamiento Probabilístico en el Tiempo: Filtros de Kalman y Localización

Introducción al Razonamiento y Representación del Conocimiento en el Tiempo

El **razonamiento probabilístico en el tiempo** es fundamental para mantener y actualizar el conocimiento sobre entornos que evolucionan dinámicamente. En inteligencia artificial y robótica, es común enfrentarse a sistemas que cambian con el tiempo y donde las mediciones pueden ser ruidosas o inciertas.

Por qué es Importante

- **Evolución del Entorno**: En muchas aplicaciones, necesitamos mantener nuestro conocimiento actualizado sobre el estado del mundo a medida que cambia.
- Incertidumbre Creciente: Sin nuevas evidencias, nuestra confianza en el estado actual disminuye con el tiempo.
- **Reducción de Incertidumbre**: Al incorporar nuevas evidencias, podemos reducir la incertidumbre sobre variables específicas del entorno.

Aplicaciones Comunes

- Modelos Físicos: Predicción del clima, corrientes marinas, movimientos sísmicos.
- Seguimiento de Objetos: Localización y navegación de robots móviles.
- Sistemas Económicos: Análisis y predicción de mercados financieros.
- Sistemas Dinámicos: Cualquier sistema que evolucione temporalmente y requiera predicciones.

Enfoques para el Razonamiento Probabilístico en el Tiempo

Existen dos enfoques principales:

- 1. Modelos de Markov y Modelos Ocultos de Markov (HMMs).
- 2. Filtros de Kalman y su extensión, Filtros de Kalman Extendidos (EKF).

Ambos enfoques son casos particulares de **Redes Bayesianas Dinámicas**, pero en este resumen nos centraremos en los **Filtros de Kalman**, ampliamente utilizados en robótica para la localización de robots móviles y en la resolución del problema de SLAM (Simultaneous Localization and Mapping).

Revisión de Distribuciones Gaussianas

Antes de adentrarnos en los filtros de Kalman, es importante revisar las **distribuciones gaussianas**, ya que los filtros de Kalman asumen modelos gaussianos en su funcionamiento.

Distribución Normal Univariada

Para una variable aleatoria continua x, la distribución normal univariada con media μ y varianza σ^2 se define como:

$$g(x) \sim \mathcal{N}(\mu, \sigma^2) = rac{1}{\sqrt{2\pi\sigma^2}} e^{-rac{1}{2} \left(rac{x-\mu}{\sigma}
ight)^2}$$

Distribución Normal Multivariada

Para un vector aleatorio ${\bf x}$ de dimensión n, con media ${\boldsymbol \mu}$ y matriz de covarianza Σ , la distribución normal multivariada es:

$$g(\mathbf{x}) = rac{1}{\sqrt{(2\pi)^n \det(\Sigma)}} \exp\left(-rac{1}{2}(\mathbf{x}-oldsymbol{\mu})^ op \Sigma^{-1}(\mathbf{x}-oldsymbol{\mu})
ight)$$

El Problema de la Localización de Robots Móviles

La localización de robots móviles es un ejemplo clásico en inteligencia artificial donde el razonamiento probabilístico en el tiempo es esencial.

Descripción del Problema

- Mapa del Entorno: Es imprescindible disponer de un mapa del entorno en el que se moverá el robot.
- Posición Inicial:
 - Conocida: Se trata de un problema de seguimiento (tracking), es decir, localización local.
 - Desconocida: El robot debe determinar su ubicación sin conocimiento previo (localización global).
- **Sensores**: El robot cuenta con sensores para realizar observaciones del entorno.
- Incertidumbre:
 - Movimiento: Existen errores (ruido) en el movimiento del robot, incluso si se ejecuta un comando preciso.
 - Sensores: Las lecturas de los sensores también son imprecisas debido al ruido.

Representación de la Incertidumbre

- Pose del Robot: En un plano bidimensional, la pose se representa como ((X, Y, \phi)), donde (\phi) es la orientación.
- Modelado Gaussiano: La incertidumbre se representa mediante una distribución gaussiana sobre cada variable.

Filtro de Kalman

El **Filtro de Kalman** es un algoritmo recursivo que permite estimar el estado de un sistema dinámico lineal en presencia de ruido gaussiano.

Componentes del Filtro de Kalman

El filtro se define mediante matrices que modelan la evolución del estado y las observaciones:

- 1. Matriz de Transición de Estado (A_t):
- Es una matriz $n \times n$ que describe cómo el estado cambia de t-1 a t en ausencia de comandos de control o ruido.
- · Modela la dinámica del sistema.
- 2. Matriz de Control (B_t):

- \circ Es una matriz n imes l que describe cómo los comandos de control \mathbf{u}_t afectan al estado.
- Permite incorporar acciones o movimientos realizados.

3. Matriz de Observación (C_t):

- \circ Es una matriz k imes n que mapea el estado \mathbf{x}_t al espacio de las observaciones \mathbf{z}_t .
- Modela cómo el estado se refleja en las mediciones.

4. Ruido de Proceso (ε_t):

- Representa la incertidumbre en el modelo de movimiento.
- $\circ~$ Se asume que $oldsymbol{arepsilon}_t$ sigue una distribución normal con covarianza $R_t.$

5. Ruido de Observación (δ_t):

- Representa la incertidumbre en las mediciones de los sensores.
- \circ Se asume que $oldsymbol{\delta}_t$ sigue una distribución normal con covarianza Q_t .

Modelo del Sistema

El estado y las observaciones evolucionan según:

• Evolución del Estado:

$$\mathbf{x}_t = A_t \mathbf{x}_{t-1} + B_t \mathbf{u}_t + \boldsymbol{\varepsilon}_t$$

• Modelo de Observación:

$$\mathbf{z}_t = C_t \mathbf{x}_t + \boldsymbol{\delta}_t$$

Ciclo Predicción-Corrección

El filtro de Kalman opera en dos pasos iterativos:

1. Predicción:

- Estima el estado posterior dado el comando de control y el modelo de transición.
- Predicción de la media:

$$\hat{\boldsymbol{\mu}}_t = A_t \boldsymbol{\mu}_{t-1} + B_t \mathbf{u}_t$$

• Predicción de la covarianza:

$$\hat{\Sigma}_t = A_t \Sigma_{t-1} A_t^ op + R_t$$

• La incertidumbre aumenta debido al ruido en el movimiento.

2. Corrección (Actualización):

- Actualiza la estimación del estado incorporando las nuevas observaciones.
- Cálculo de la Ganancia de Kalman ((K_t)):

$$K_t = \hat{\Sigma}_t C_t^ op (C_t \hat{\Sigma}_t C_t^ op + Q_t)^{-1}$$

· Actualización de la media:

$$oldsymbol{\mu}_t = \hat{oldsymbol{\mu}}_t + K_t(\mathbf{z}_t - C_t \hat{oldsymbol{\mu}}_t)$$

Actualización de la covarianza:

$$\Sigma_t = (\mathbf{I} - K_t C_t) \hat{\Sigma}_t$$

• La incertidumbre disminuye gracias a la información adicional de las observaciones.

Características del Filtro de Kalman

- **Óptimo para Sistemas Lineales Gaussianos**: Provee estimaciones óptimas cuando el sistema y el modelo de observación son lineales y los ruidos son gaussianos.
- Forma Cerrada: Las distribuciones de probabilidad se mantienen gaussianas en cada iteración.
- Eficiente Computacionalmente: El costo es polinomial respecto a las dimensiones del estado y las observaciones.

Filtro de Kalman Extendido (EKF)

Para sistemas no lineales, el filtro de Kalman estándar no es aplicable. El **Filtro de Kalman Extendido (EKF)** es una extensión que permite trabajar con modelos no lineales.

Problema de No Linealidad

Muchos sistemas reales, especialmente en robótica, no pueden ser descritos mediante modelos lineales. Por ejemplo, el movimiento de un robot móvil a menudo es mejor representado por funciones no lineales debido a la naturaleza de su dinámica y sensores.

Modelo del Sistema No Lineal

• Evolución del Estado:

$$\mathbf{x}_t = \mathbf{g}(\mathbf{u}_t, \mathbf{x}_{t-1}) + oldsymbol{arepsilon}_t$$

Modelo de Observación:

$$\mathbf{z}_t = \mathbf{h}(\mathbf{x}_t) + \boldsymbol{\delta}_t$$

Donde g y h son funciones no lineales.

Linearización mediante Expansión de Taylor

El EKF aproxima las funciones no lineales g y h mediante su **expansión en serie de Taylor de primer orden** alrededor de la estimación actual.

- Jacobianos:
 - Matriz Jacobiana del Modelo de Transición ((G_t)):

$$G_t = \left. rac{\partial \mathbf{g}}{\partial \mathbf{x}}
ight|_{\mathbf{x} = oldsymbol{\mu}_{t-1}, \mathbf{u} = \mathbf{u}_t}$$

Matriz Jacobiana del Modelo de Observación ((H_t)):

$$H_t = \left.rac{\partial \mathbf{h}}{\partial \mathbf{x}}
ight|_{\mathbf{x}=\hat{oldsymbol{\mu}}_t}$$

Algoritmo del EKF

El algoritmo sigue un proceso similar al filtro de Kalman estándar, pero utilizando las aproximaciones lineales.

Pasos del EKF

1. Predicción del Estado:

$$egin{aligned} & \hat{oldsymbol{\mu}}_t = \mathbf{g}(\mathbf{u}_t, oldsymbol{\mu}_{t-1}) \ & \hat{\Sigma}_t = G_t \Sigma_{t-1} G_t^ op + R_t \end{aligned}$$

2. Cálculo de la Ganancia de Kalman:

$$ullet K_t = \hat{\Sigma}_t H_t^ op (H_t \hat{\Sigma}_t H_t^ op + Q_t)^{-1}$$

3. Actualización del Estado:

$$oldsymbol{\omega} oldsymbol{\mu}_t = \hat{oldsymbol{\mu}}_t + K_t(\mathbf{z}_t - \mathbf{h}(\hat{oldsymbol{\mu}}_t))$$

4. Actualización de la Covarianza:

$$\circ \ \Sigma_t = (\mathbf{I} - K_t H_t) \hat{\Sigma}_t$$

Notas Importantes

- Aproximación Local: La linearización es válida en un entorno cercano a la estimación actual.
- No Óptimo: El EKF no es óptimo para sistemas no lineales, pero suele proporcionar buenos resultados en la práctica.
- Sensibilidad: La precisión del EKF depende de qué tan lineal sea el sistema en la región de operación.

Visualización de la Linearización

La siguiente gráfica ilustra cómo la expansión de Taylor aproxima la función no lineal (\mathbf{g}) mediante una línea tangente en el punto de operación:

Localización Mediante EKF

La **localización EKF** es una aplicación práctica del filtro de Kalman extendido para mantener y actualizar la estimación de la pose de un robot móvil.

Objetivos

- Mantenimiento de la Pose: Mantener una representación probabilística (gaussiana) de la pose del robot a lo largo del tiempo.
- Media y Covarianza:
 - La media (\boldsymbol{\mu} t) indica la posición más probable del robot.
 - La covarianza (\Sigma_t) refleja la incertidumbre asociada a esa estimación.

Funcionalidad

• Predicción: Basada en el modelo de movimiento y los comandos ejecutados.

• Corrección: Incorporando las observaciones de los sensores para ajustar la estimación.

Caso de Posición Inicial Conocida

- **Seguimiento (Tracking)**: Si la posición inicial es conocida, el EKF puede mantener la estimación de la pose del robot a medida que se mueve.
- Reducción de Incertidumbre: Las observaciones periódicas permiten reducir la incertidumbre en la estimación.

Localización Global

Cuando la posición inicial del robot es desconocida, la localización mediante EKF no es suficiente debido a que la distribución inicial debería ser una gaussiana con varianza infinita, lo cual es impracticable. En estos casos, se utilizan algoritmos de **localización de Markov** o filtros de partículas.

Algoritmo de Localización de Markov

- Distribución de Creencia (bel): Mantiene una función de probabilidad sobre todas las poses posibles.
- Actualización Basada en Observaciones: A medida que el robot obtiene nuevas observaciones, actualiza la distribución de creencia para reducir la incertidumbre.
- **Ejemplo 1D**: En un entorno unidimensional, la distribución de creencia puede visualizarse como una función sobre la línea, ajustándose en cada paso temporal.

Conclusiones

El razonamiento probabilístico en el tiempo es esencial para sistemas que requieren mantener un conocimiento actualizado y preciso en entornos dinámicos e inciertos. Los filtros de Kalman y su extensión, los filtros de Kalman extendidos, proporcionan herramientas poderosas para estimar el estado de un sistema cuando las dinámicas y observaciones pueden ser modeladas lineal o no linealmente.

Ventajas del Filtro de Kalman

- Estimación Óptima: En sistemas lineales gausianos, provee estimaciones óptimas del estado.
- Eficiencia Computacional: Es computacionalmente eficiente y adecuado para aplicaciones en tiempo real.
- Extensibilidad: El EKF permite manejar sistemas no lineales mediante aproximaciones locales.

Limitaciones

- Linealidad: El filtro de Kalman estándar no es adecuado para sistemas no lineales.
- Aproximaciones en EKF: La linearización en el EKF puede introducir errores si el sistema es altamente no lineal.
- Inicialización: Requiere estimaciones iniciales de la media y la covarianza, lo cual puede ser un desafío en problemas de localización global.

Aplicaciones en Robótica

- Localización de Robots Móviles: Seguimiento preciso de la pose del robot en entornos conocidos.
- SLAM (Simultaneous Localization and Mapping): Construcción del mapa del entorno mientras se estima la pose del robot.
- Navegación Autónoma: Permite a los robots tomar decisiones informadas basadas en estimaciones precisas de su estado.