STATIOCO TUTORIALIS

Basic Concepts in Markov Chain and Examples

More information on Markov chain: http://u.math.biu.ac.il/~amirgi/CLN.pdf

- Let S be a countable set.
- Each $i \in S$ is called a state and S is called state space.
- A sequence of random variables taking values in S is called (time-homogeneous) Markov chain if $P(X_{n+1} = j | X_n = i, X_{n-1} = i_{n-1}, ..., X_1 = i_1, X_0 = i_0) = P(X_{n+1} = i_1, X_n = i_n)$

• Example (Two state Markov chain):

- Calculate n-step transition matrix of this Markov chain.
 - Transition matrix P is decomposed into the product of a block diagonal matrix J and orthogonal matrix U(Jordan normal form).
 - $P = UJU^{-1}$
 - The diagonals of J is eigenvalues of P.
 - $P^{(n)} = P^n = UI^nU^{-1}$

- In the state space S, i and $j \in S$, if $\exists n, s.t. P_{ij}^{(n)} > 0$, then we say i leads to j, written by $i \to j$.
- If i leads to j and j leads to i, we say i communicates with j, written by $i \leftrightarrow j$.
- " \leftrightarrow " is an equivalent relation.
 - For a given i, the equivalent relation induces a communicating class, $\{j: j \leftrightarrow i\}$.
 - The state space is partitioned by these communicating classes.

Three communicating classes : $\{1,2,3\}$ $\{4\}$ $\{5,6\}$ in the figure.

For a Markov chain, if its state space has only one communicating class, the Markov chain is called irreducible.

- Define $T_i = \inf\{n \ge 1; X_n = i\}$ = first passage time on i.
- Define $V_i = \sum_{n=0}^{\infty} I(X_n = i)$ = number of visits to i.
- Define $f_i = P_i(T_i < \infty)$ = return probability to i from the initial state X_0 =i.
 - $f_i = \sum_{k \ge 2} P_i(V_i = k) = P_i(V_i \ge 2)$
- If $f_i = 1$, we say state i is recurrent; otherwise, i is transient.
- Lemma: $P_i(V_i \ge k + 1) = (f_i)^k$.
- Theorem: $f_i = 1 \Leftrightarrow P_i(V_i = \infty) = 1$ and $f_i < 1 \Leftrightarrow P_i(V_i = \infty) = 0$
 - $P_i(V_i = \infty)$ is either 1 or 0.
- Theorem: $f_i=1\Leftrightarrow \sum_{n=0}^{\infty}p_{ii}^{(n)}=\infty$ (*) and $f_i<1\Leftrightarrow \sum_{n=0}^{\infty}p_{ii}^{(n)}<\infty$
- E.g. two-state Markov chain in the example is recurrent based on (*).

- If a Markov chain is irreducible,
- One state is recurrent, all states are recurrent.
- One state is transient, all states are transient.

- Simple random walk on integers:
 - Starting from 0.

•
$$P(Y_n = 1) = \frac{1}{2} = p, P(Y_n = -1) = \frac{1}{2} = q$$

- $X_n = \sum_{m=1}^n Y_m$
- Irreducible

$$p_{00}^{(2n)} = inom{2n}{n} p^n q^n. \qquad \sum_{n=N}^{\infty} p_{00}^{(2n)} \geq rac{1}{2A} \sum_{n=N}^{\infty} rac{1}{\sqrt{n}} = \infty$$

- Recurrent
- Simple random walk on 2D integers :
 - Starting from (0,0)

•
$$P(Y_n = (1,0)) = \frac{1}{4}$$
, $P(Y_n = (-1,0)) = \frac{1}{4}$, $P(Y_n = (0,1)) = \frac{1}{4}$, $P(Y_n = (0,-1)) = \frac{1}{4}$

- $X_n = \sum_{m=1}^n Y_m$
- Irreducible $p_{00}^{(2n)} = \left(\binom{2n}{n} \left(\frac{1}{2} \right)^{2n} \right)^2 \sim \frac{2}{A^2 n}$ as $n \to \infty$

For simple random walk on 3D integers

$$p_{00}^{(2n)} \le \binom{2n}{n} \left(\frac{1}{2}\right)^{2n} \binom{n}{m \ m \ m} \left(\frac{1}{3}\right)^n \sim \frac{1}{2A^3} \left(\frac{6}{n}\right)^{3/2} \quad \text{as } n \to \infty.$$

• Transient!

• A drunk man will find his way home, but a drunk bird may get lost forever. (Shizuo Kakutani)

