The PRIVATE functions of package AquaEnv

Andreas F. Hofmann

November 25, 2008

Description

PRIVATE function: calculates [A(2-)] of a bivalent acid

Usage

Abi(Sum, K1, K2, H)

Arguments

Sum	the total concentration of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)
K1	the first dissociation constant of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)
K2	the second dissociation constant of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)
Н	the proton concentration in a unit consistent with all othert input variables (e.g. $\mathrm{mol/kg\text{-}solution})$

Author(s)

Atri $Atri$

Description

PRIVATE function: calculates [A(3-)] of a trivalent acid

Usage

```
Atri(Sum, K1, K2, K3, H)
```

Arguments

Sum	the total concentration of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)
K1	the first dissociation constant of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)
K2	the second dissociation constant of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)
КЗ	the third dissociation constant of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)
Н	the proton concentration in a unit consistent with all other input variables (e.g. $\mathrm{mol/kg\text{-}solution})$

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

Description

PRIVATE function: calculates [A(-)] of an univalent acid

Usage

Auni(Sum, K, H)

Arguments

Sum	the total concentration of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)
K	the dissociation constant of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)
Н	the proton concentration in a unit consistent with all other input variables (e.g. mol/kg-solution)

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

Cl

Cl

Description

PRIVATE function: calculates chlorinity Cl from salinity S

Usage

C1(S)

Arguments

S

salinity S in practical salinity units (i.e. no unit)

Value

chlorinity Cl in permil

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

References

DOE1994, Zeebe2001

ConcRelCl

ConcRelCl

Description

PUBLIC data frame: a collection of concentrations of key chemical species in seawater, relative with respect to chlorinity (DOE1994))

Author(s)

Description

PRIVATE function: calculates [H2A] of a bivalent acid

Usage

H2Abi(Sum, K1, K2, H)

Arguments

Sum	the total concentration of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)
K1	the first dissociation constant of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)
K2	the second dissociation constant of the acid in question in a unit consistent with all other input variables (e.g. $\mathrm{mol/kg\text{-}solution})$
Н	the proton concentration in a unit consistent with all other input variables (e.g. mol/kg-solution)

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

|--|

Description

PRIVATE function: calculates [H2A(-)] of a trivalent acid

Usage

H2Atri(Sum, K1, K2, K3, H)

Arguments

Sum	the total concentration of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)
K1	the first dissociation constant of the acid in question in a unit consistent with all other input variables (e.g. mol/kg -solution)
K2	the second dissociation constant of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)

КЗ	the third dissociation constant of the acid in question in a unit consistent with all other input variables (e.g. mol/kg -solution)
Н	the proton concentration in a unit consistent with all othert input variables (e.g. $\mathrm{mol/kg\text{-}solution})$

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

Description

PRIVATE function: calculates [H3A] of a trivalent acid

Usage

H3Atri(Sum, K1, K2, K3, H)

Arguments

Sum	the total concentration of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)
K1	the first dissociation constant of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)
K2	the second dissociation constant of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)
К3	the third dissociation constant of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)
Н	the proton concentration in a unit consistent with all other input variables (e.g. mol/kg-solution)

Author(s)

HAbi HAbi

Description

PRIVATE function: calculates [HA(-)] of a bivalent acid

Usage

HAbi(Sum, K1, K2, H)

Arguments

Sum	the total concentration of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)
K1	the first dissociation constant of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)
K2	the second dissociation constant of the acid in question in a unit consistent with all other input variables (e.g. $\mathrm{mol/kg\text{-}solution})$
Н	the proton concentration in a unit consistent with all other input variables (e.g. mol/kg-solution)

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

HAtri HAtri

Description

PRIVATE function: calculates [HA(2-)] of a trivalent acid

Usage

HAtri(Sum, K1, K2, K3, H)

Arguments

Sum	the total concentration of the acid in question in a unit consistent with all other input variables (e.g. mol/kg -solution)
K1	the first dissociation constant of the acid in question in a unit consistent with all other input variables (e.g. $\rm mol/kg$ -solution)
K2	the second dissociation constant of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)

K3 the third dissociation constant of the acid in question in a unit consistent

with all other input variables (e.g. mol/kg-solution)

H the proton concentration in a unit consistent with all othert input vari-

ables (e.g. mol/kg-solution)

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

HAuni	HAuni	

Description

PRIVATE function: calculates [HA] of an univalent acid

Usage

HAuni(Sum, K, H)

Arguments

Sum the total concentration of the acid in question in a unit consistent with

all other input variables (e.g. mol/kg-solution)

K the dissociation constant of the acid in question in a unit consistent with

all other input variables (e.g. mol/kg-solution)

H the proton concentration in a unit consistent with all othert input vari-

ables (e.g. mol/kg-solution)

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

I	I		

Description

PRIVATE function: calculates the ionic strength I as a function of salinity S

Usage

I(S)

Arguments

S salinity S in practical salinity units (i.e. no unit)

Value

ionic strength in mol/kg-H2O (molality)

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

References

DOE1994, Zeebe2001, Roy1993b (the carbonic acid paper)

Iterms

Iterms

Description

PRIVATE function: returns the ionic strength I, I(2), sqrt(I), and I*sqrt(I)

Usage

Iterms(S)

Arguments

S salinity in practical salinity units (i.e. no unit)

Value

a list containing:

I the ionic strength

Author(s)

Sterms

Sterms

Description

PRIVATE function: returns S, S(2), sqrt(S), and S*sqrt(S)

Usage

Sterms(S)

Arguments

S

salinity in practical salinity units (i.e. no unit)

Value

a list containing:

 S^2 the square of S

 $\verb| sqrtS| \qquad \qquad the square root of S|$

S*sqrtS S times its square root

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

Tk

Tk

Description

PRIVATE function: calculates the temperature in Kelvin from the temperature in degrees centigrade

Usage

Tk(Tc)

Arguments

Tc temperature in degrees centigrade

Value

temperature in Kelvin

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

att att

Description

PRIVATE function: sets the attributes for calculated dissociation constants (Ks)

Usage

att(K)

Arguments

K

the calculated dissociation constant K

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

basicplot

basicplot

Description

PRIVATE function: basic wrapper for the R plot function for plotting objects of class aquaenv; no return value, just side-effect

Usage

Arguments

aquaenv object of class aquaenv

x-value: the independent variable describing a change in elements of an

object of class aquaenv

type standard plot parameter; default: plot lines

mgp standard plot parameter; default: axis title on line 1.8, axis labels on line

0.5, axis on line 0

mar	standard plot parameter; default: margin of 3 lines bottom and left and 0.5 lines top and right
oma	standard plot parameter; default: no outer margin
size	the size of the plot device; default: 15 (width) by 13 (height) inches
mfrow	standard plot parameter; default: 11 columns and 10 rows of plots
device	the device to plot on; default: "x11" (can also be "eps" or "pdf")
filename	filename to be used if "eps" or "pdf" is selected for device
newdevice	flag: if TRUE, new plot device is opened
setpar	flag: if TRUE parameters are set with the function par
	further arguments will be passed

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

bjerrumplot

Description

PRIVATE function: creates a bjerrumplot from the elements of an object of class aquaenv given in what; no return value, just side-effect

Usage

```
bjerrumplot(aquaenv, what, log=FALSE, palette=NULL, device="x11",
    filename="aquaenv", size=c(12,10), ylim=NULL,
    lwd=2, xlab="free scale pH",
    mgp=c(1.8, 0.5, 0), mar=c(3,3,0.5,0.5), oma=c(0,0,0,0),
    legendposition="bottomleft", legendinset=0.05, legendlwd=4,
    bg="white", newdevice, setpar,...)
```

Arguments

aquaenv	object of class aquaenv
what	vector of names of elements of aquaenv that should be plotted; if not specified: what <- c("CO2", "HCO3", "CO3", "BOH3", "BOH4", "OH", "H3PO4", "H2PO4", "HPO4", "PO4", "SiOH4", "SiOOH3", "SiO2OH2", "H2S", "HS", "S2min", "NH4", "NH3", "H2SO4", "HSO4", "SO4", "HF", "F", "HNO3", "NO3", "HNO2", "NO2")
log	should the plot be on a logarithmic y axis?
palette	a vector of colors to use in the plot (either numbers or names given in $\operatorname{colors}())$
device	the device to plot on; default: "x11" (can also be "eps" or "pdf")

filename to be used if "eps" or "pdf" is selected for device

size the size of the plot device; default: 12 (width) by 10 (height) inches

ylim standard plot parameter; if not supplied it will be calculated by range()

of the elements to plot

1wd standard plot parameter; width of the lines in the plot

xlab x axis label

mgp standard plot parameter; default: axis title on line 1.8, axis labels on line

0.5, axis on line 0

mar standard plot parameter; default: margin of 3 lines bottom and left and

0.5 lines top and right

oma standard plot parameter; default: no outer margin

legendposition

position of the legend

legendinset standard legend parameter inset

legendlwd standard legend parameter lwd: line width of lines in legend bg standard legend parameter: default background color: white

newdevice flag: if TRUE, new plot device is opened

setpar flag: if TRUE parameters are set with the function par

... further arguments will be passed

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

calcH_CO2 $calcH_CO2$

Description

PRIVATE function: calculates [H+] from an object of class aquanenv and a given [CO2]: by analytically solving the resulting quadratic equation

Usage

calcH_CO2(aquaenv, CO2)

Arguments

aquaenv object of class aquaenv

co2 given [CO2] in mol/kg-solution

Value

calculated [H+] in mol/kg-solution

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

calcH_TA

 $calcH_TA$

Description

PRIVATE function: calculates [H+] from an object of class aquanenv and a given [TA]: first according to Follows2006, if no solution is found after Technicals\$maxiter iterations, uniroot is applied

Usage

```
calcH_TA(aquaenv, TA)
```

Arguments

aquaenv object of class aquaenv

TA given [TA] in mol/kg-solution

Value

calculated [H+] in mol/kg-solution

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

calcSumCO2_TA_CO2

 $calcSumCO2_TA_CO2$

Description

PRIVATE function: calculates [SumCO2] from an object of class aquanenv, a given [TA], and a given [CO2]: by analytically solving the resulting quadratic equation

Usage

```
calcSumCO2_TA_CO2(aquaenv, TA, CO2)
```

Arguments

aquaenv object of class aquaenv

TA given [TA] in mol/kg-solution
CO2 given [CO2] in mol/kg-solution

Value

calculated [SumCO2] in mol/kg-solution

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

calcSumCO2_pH_CO2

 $calcSumCO2_pH_CO2$

Description

PRIVATE function: calculates [SumCO2] from an object of class aquanenv, a given pH, and a given [CO2]: by analytically solving the resulting equation

Usage

```
calcSumCO2_pH_CO2(aquaenv, pH, CO2)
```

Arguments

aquaenv object of class aquaenv

pH given pH on the free proton scale CO2 given [CO2] in mol/kg-solution

Value

calculated [SumCO2] in mol/kg-solution

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

calcSumCO2_pH_TA

 $calcSumCO2_pH_TA$

Description

PRIVATE function: calculates [SumCO2] from an object of class aquanenv, a given pH, and a given [TA]: by analytically solving the resulting quadratic equation

Usage

```
calcSumCO2_pH_TA(aquaenv, pH, TA)
```

Arguments

aquaenv object of class aquaenv

pH given pH on the free proton scale
TA given [TA] in mol/kg-solution

Value

calculated [SumCO2] in $\operatorname{mol/kg}$ -solution

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

 ${\tt calcTA}$

 $\operatorname{calc} T\!A$

Description

PRIVATE function: calculates [TA] from an object of class aquanenv and a given [H+]

Usage

calcTA(aquaenv, H)

Arguments

aquaenv object of class aquaenv

H the proton concentration in a unit consistent with all othert input vari-

ables (e.g. mol/kg-solution)given [H+] in mol/kg-solution

Value

the calculated [TA]

Author(s)

calcTAMinor

 $calc\,TAMinor$

Description

PRIVATE function: calculates minor contributions to [TA] from an object of class aquanenv and a given [H+]

Usage

```
calcTAMinor(aquaenv, H)
```

Arguments

aquaenv object of class aquaenv

H the proton concentration in a unit consistent with all othert input vari-

ables (e.g. mol/kg-solution)given [H+] in mol/kg-solution

Value

calculated minor contributions to [TA]

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

cloneaquaenv

clone aquaenv

Description

PRIVATE function: clones an object of class aquaenv: it is possible to supply a new value for either TA or pH; the switches speciation, skeleton, revelle, and dsa are obtained from the object to be cloned

Usage

cloneaquaenv(aquaenv, TA=NULL, pH=NULL, k_co2=NULL, k1k2="roy", khf="dickson")

Arguments

aquaenv	object of class aquaenv
TA	optional new value for TA
рН	optional new value for pH

k_co2 used for TA fitting: give a K_CO2 and NOT calculate it from T and S:

i.e. K_CO2 can be fitted in the routine as well

k1k2 either "roy" (default, Roy1993a) or "lueker" (Lueker2000, calculated with

seacarb) for K_CO2 and K_HCO3.

khf either "dickson" (default, Dickson1979a) or "perez" (Perez1987a, calcu-

lated with seacarb) for K_HF

Value

cloned object of class aquaenv

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

 ${\tt convert.standard} \qquad {\tt convert.standard}$

Description

PRIVATE function: converts either the pH scale of a pH value, the pH scale of a dissociation constant (K*), or the unit of a concentration value

Usage

Arguments

x	the object to be converted (pH value, K* value, or concentration value)
vartype	the type of x, either "pHscale", "KHscale", or "conc"
what	the type of conversion to be done, for pH scales one of "free2tot", "free2sws", "free2nbs", (any combination of "free", "tot", "sws", and "nbs"); for concentrations one of "molar2molal", "molar2molin", (any combination of "molar" (mol/l), "molal" (mol/kg-H2O), and "molin" (mol/kg-solution))
Tc	temperature in degrees centigrade
S	salinity (in practical salinity units: no unit)
d	depth in meters

SumH2SO4 total sulfate concentration in mol/kg-solution; if not supplied this is cal-

culated from S

total fluoride concentration in mol/kg-solution; if not supplied this is cal-SumHF

culated from S

khf either "dickson" (default, Dickson1979a) or "perez" (using seacarb, Perez1987a)

for K_HF

Value

converted pH, K*, or concentration value, attributed with the new unit/pH scale

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

|--|

Description

PRIVATE function: creates a cumulative plot from the elements of an object of class aquaenv given in what; no return value, just side-effect

Usage

```
cumulativeplot(aquaenv, xval, what, total=TRUE, palette=NULL,
               device="x11", filename="aquaenv", size=c(12,10),
               ylim=NULL, lwd=2, mgp=c(1.8, 0.5, 0),
               mar=c(3,3,0.5,0.5), oma=c(0,0,0,0),
               legendposition="bottomleft", legendinset=0.05,
               legendlwd=4, bg="white",
               y.intersp=1.2, newdevice, setpar,...)
```

Arguments

aquaenv	object of class aquaenv
xval	x-value: the independent variable describing a change in elements of an object of class aquaenv
what	vector of names of elements of aquaenv that should be plotted
total	should the sum of all elements specified in what be plotted as well?
palette	a vector of colors to use in the plot (either numbers or names given in $\operatorname{colors}())$
device	the device to plot on; default: "x11" (can also be "eps" or "pdf")
filename	filename to be used if "eps" or "pdf" is selected for device
size	the size of the plot device; default: 12 (width) by 10 (height) inches

ylim standard plot parameter; if not supplied it will be calculated by an adap-

tation of range() of the elements to plot

lwd standard plot parameter; width of the lines in the plot

mgp standard plot parameter; default: axis title on line 1.8, axis labels on line

0.5, axis on line 0

mar standard plot parameter; default: margin of 3 lines bottom and left and

0.5 lines top and right

oma standard plot parameter; default: no outer margin

legendposition

position of the legend

legendinset standard legend parameter inset

legendlwd standard legend parameter lwd: line width of lines in legend bg standard legend parameter: default background color: white

y.intersp standard legend parameter; default: 1.2 lines space between the lines in

the legend

newdevice flag: if TRUE, new plot device is opened

setpar flag: if TRUE parameters are set with the function par

... further arguments will be passed

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

dAdH_bi $dAdH_bi$

Description

PRIVATE function: calculates the derivative of [A(2-)] of a bivalent acid with respect to [H+]

Usage

dAdH_bi(H, SumA, K1, K2)

Arguments

H the proton concentration in a unit consistent with all other input variables

(e.g. mol/kg-solution)

SumA the total concentration of the acid in question in a unit consistent with

all other input variables (e.g. mol/kg-solution)

K1 the first dissociation constant of the acid in question in a unit consistent

with all other input variables (e.g. mol/kg-solution)

K2 the second dissociation constant of the acid in question in a unit consistent

with all other input variables (e.g. mol/kg-solution)

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

Description

PRIVATE function: calculates the derivative of [A(3-)] of a trivalent acid with respect to [H+]

Usage

```
dAdH_tri(H, SumA, K1, K2, K3)
```

Arguments

Н	the proton concentration in a unit consistent with all other input variables (e.g. mol/kg -solution)
SumA	the total concentration of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)
K1	the first dissociation constant of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)
K2	the second dissociation constant of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)
КЗ	the third dissociation constant of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

Description

PRIVATE function: calculates the derivative of [A(-)] of a univalent acid with respect to [H+]

Usage

```
dAdH_uni(H, SumA, K)
```

Arguments

H the proton concentration in a unit consistent with all other input variables

(e.g. mol/kg-solution)

SumA the total concentration of the acid in question in a unit consistent with

all other input variables (e.g. mol/kg-solution)

K the dissociation constant of the acid in question in a unit consistent with

all other input variables (e.g. mol/kg-solution)

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

dH2AdH_bi $dH2AdH_bi$

Description

PRIVATE function: calculates the derivative of [H2A] of a bivalent acid with respect to [H+]

Usage

```
dH2AdH_bi(H, SumA, K1, K2)
```

Arguments

H the proton concentration in a unit consistent with all other input variables

(e.g. mol/kg-solution)

SumA the total concentration of the acid in question in a unit consistent with

all other input variables (e.g. mol/kg-solution)

K1 the first dissociation constant of the acid in question in a unit consistent

with all other input variables (e.g. mol/kg-solution)

K2 the second dissociation constant of the acid in question in a unit consistent

with all other input variables (e.g. mol/kg-solution)

Author(s)

 $dH2AdH_tri$

 $dH2AdH_tri$

Description

PRIVATE function: calculates the derivative of [H2A(-)] of a trivalent acid with respect to [H+]

Usage

```
dH2AdH_tri(H, SumA, K1, K2, K3)
```

Arguments

Н	the proton concentration in a unit consistent with all other input variables (e.g. $\mathrm{mol/kg}$ -solution)
SumA	the total concentration of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)
K1	the first dissociation constant of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)
K2	the second dissociation constant of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)
К3	the third dissociation constant of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

dH3AdH_tri	$dH3AdH_tri$
------------	---------------

Description

PRIVATE function: calculates the derivative of [H3A] of a trivalent acid with respect to [H+]

Usage

```
dH3AdH_tri(H, SumA, K1, K2, K3)
```

Arguments

Н	the proton concentration in a unit consistent with all other input variables (e.g. $\mathrm{mol/kg\text{-}solution})$
SumA	the total concentration of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)
K1	the first dissociation constant of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)
K2	the second dissociation constant of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)
КЗ	the third dissociation constant of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

|--|

Description

PRIVATE function: calculates the derivative of [HA(-)] of a bivalent acid with respect to [H+]

Usage

```
dHAdH_bi(H, SumA, K1, K2)
```

Arguments

Н	the proton concentration in a unit consistent with all other input variables (e.g. $\mathrm{mol/kg}\text{-}\mathrm{solution})$
SumA	the total concentration of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)
K1	the first dissociation constant of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)
K2	the second dissociation constant of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)

Author(s)

dHAdH_tri

 $dHAdH_tri$

Description

PRIVATE function: calculates the derivative of [HA(2-)] of a trivalent acid with respect to [H+]

Usage

```
dHAdH_tri(H, SumA, K1, K2, K3)
```

Arguments

Н	the proton concentration in a unit consistent with all othert input variables (e.g. $\mathrm{mol/kg\text{-}solution})$
SumA	the total concentration of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)
K1	the first dissociation constant of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)
K2	the second dissociation constant of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)
КЗ	the third dissociation constant of the acid in question in a unit consistent with all other input variables (e.g. mol/kg-solution)

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

dHAdH uni	$dHAdH_{-}$	uni

Description

PRIVATE function: calculates the derivative of [HA] of a univalent acid with respect to $[\mathrm{H}+]$

Usage

```
dHAdH_uni(H, SumA, K)
```

Arguments

H the proton concentration in a unit consistent with all other input variables

(e.g. mol/kg-solution)

SumA the total concentration of the acid in question in a unit consistent with

all other input variables (e.g. mol/kg-solution)

K the dissociation constant of the acid in question in a unit consistent with

all other input variables (e.g. mol/kg-solution)

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

dTAdH dTAdH

Description

PRIVATE function: calculates the derivative of [TA] with respect to [H+]: the buffer factor

Usage

dTAdH(ae)

Arguments

ae object of class aquaenv

Value

derivative of [TA] with respect to [H+]: the buffer factor

Author(s)

dTAdKdKdS

dTAdKdKdS

Description

PRIVATE function: calculates the derivative of [TA] with respect to changes in the dissociation constants (Ks) times the derivative of the dissociation constants with respect to salinity S

Usage

dTAdKdKdS(ae)

Arguments

ae

object of class aquaenv

Value

derivative of [TA] with respect to changes in the dissociation constants (Ks) times the derivative of the dissociation constants with respect to salinity S

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

dTAdKdKdSumH2SO4

dTAdKdKdSumH2SO4

Description

PRIVATE function: calculates the derivative of [TA] with respect to changes in the dissociation constants (Ks) times the derivative of the dissociation constants with respect to the total sulfate concentration (influence via scale conversion)

Usage

dTAdKdKdSumH2SO4(ae)

Arguments

ae

object of class aquaenv

Value

derivative of [TA] with respect to changes in the dissociation constants (Ks) times the derivative of the dissociation constants with respect to the total sulfate concentration (influence via scale conversion)

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

dTAdKdKdSumHF

dTAdKdKdSumHF

Description

PRIVATE function: calculates the derivative of [TA] with respect to changes in the dissociation constants (Ks) times the derivative of the dissociation constants with respect to the total fluoride concentration (influence via scale conversion)

Usage

dTAdKdKdSumHF(ae)

Arguments

ae

object of class aquaenv

Value

derivative of [TA] with respect to changes in the dissociation constants (Ks) times the derivative of the dissociation constants with respect to the total fluoride concentration (influence via scale conversion)

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

dTAdKdKdT

dTAdKdKdT

Description

PRIVATE function: calculates the derivative of [TA] with respect to changes in the dissociation constants (Ks) times the derivative of the dissociation constants with respect to temperature T

Usage

dTAdKdKdT(ae)

Arguments

ae

object of class aquaenv

Value

derivative of [TA] with respect to changes in the dissociation constants (Ks) times the derivative of the dissociation constants with respect to temperature T

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

dTAdKdKdd

dTAdKdKdd

Description

PRIVATE function: calculates the derivative of [TA] with respect to changes in the dissociation constants (Ks) times the derivative of the dissociation constants with respect to depth d

Usage

dTAdKdKdd(ae)

Arguments

ae

object of class aquaenv

Value

derivative of [TA] with respect to changes in the dissociation constants (Ks) times the derivative of the dissociation constants with respect to depth d

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

deltaPlnK

deltaPlnK

Description

PRIVATE function: the generic function for the pressure correction for dissociation constants and solubility products according to Millero1995

Usage

deltaPlnK(Tk, d, coeff)

Arguments

Tk temperature in Kelvind the depth in meters

coeff a vector containing the coefficients a0, a1, a2, b0, b1, b2 for the respective

dissociation constant or solubility product

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

References

Millero1995, corrected by Lewis1998

from.data.frame

 $from.\,data.frame$

Description

PRIVATE function: creates an object of class aquaenv from a data frame (e.g. as supplied from the numerical solver of a dynamic model)

Usage

from.data.frame(df)

Arguments

df data frame

Value

object of class aquaenv

Author(s)

hydroP

hydroP

Description

PRIVATE function: calculates the hydrostatic pressure from the depth (the hydrostatic pressure increases per m depth by 1/10 of 1 atm)

Usage

hydroP(d)

Arguments

d

depth in meters

Value

hydrostatic pressure in bars

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

lnK

lnK

Description

PRIVATE function: generic formula (see publication associated with AquaEnv) for K calculations that use the natural logarithm (ln)

Usage

Arguments

A	coefficient A
В	coefficient B
C	coefficient C
D	coefficient D
E	coefficient E

Tk temperature in Kelvin

Value

the ln of the K associated with the coefficients

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

 \log K logK

Description

PRIVATE function: generic formula (see publication associated with AquaEnv) for K calculations that use the decadal logarithm (log)

Usage

Arguments

Α	coefficient A
В	coefficient B
C	coefficient C
D	coefficient D
E	coefficient E
Tk	temperature in Kelvin

Value

the log of the K associated with the coefficients

Author(s)

molal2molin

molal2molin

Description

PRIVATE function: calculates the conversion factor converting from molality (mol/kg-H2O) to molinity (mol/kg-solution) from salinity S

Usage

molal2molin(S)

Arguments

S

salinity S in practical salinity units (i.e. no unit)

Value

the conversion factor from molality (mol/kg-H2O) to molinity (mol/kg-solution)

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

References

Roy1993b (the carbonic acid paper), DOE1994

opendevice

opendevice

Description

PRIVATE function: opens a device for plotting; no return value, just side-effect

Usage

```
opendevice(device, size, filename)
```

Arguments

device either "x11", "eps", or "pdf"

size size of the plot device in the form c(width, height)

 $\mbox{ filename to use if "eps" or "pdf" is used} \\$

Author(s)

plotall

plotall

Description

PRIVATE function: plots all elements of an object of class aquaenv; no return value, just side-effect

Usage

```
plotall(aquaenv, xval, ...)
```

Arguments

aquaenv object of class aquaenv

x-value: the independent variable describing a change in elements of an

object of class aquaenv

... further arguments will be passed

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

revelle

revelle

Description

PRIVATE function: calculates the revelle factor

Usage

revelle(ae)

Arguments

ae

object of class aquaenv

Value

the revelle factor

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

References

 $Sundquist 1979,\ Zeebe 2001,\ Emerson 2008$

scaleconvert

scale convert

Description

PRIVATE function: provides pH scale conversion factors (caution: the activity coefficient for H+ (needed for NBS scale conversions) is calculated with the Davies equation (Zeebe2001) which is only accurate up to ionic strengthes of I=0.5)

Usage

```
scaleconvert(Tc, S, d=0, SumH2SO4=NULL, SumHF=NULL, khf="dickson")
```

Arguments

		_	
Tα	temperature	in docroos	contigrado
10	temperature	III degrees	centigrade

salinity S in practical salinity units (i.e. no unit)

d depth in meters

SumH2S04 total sulfate concentration in mol/kg-solution; if not supplied this is cal-

culated from S

SumHF total fluoride concentration in mol/kg-solution; if not supplied this is cal-

culated from S

khf either "dickson" (default, Dickson1979a) or "perez" (using seacarb, Perez1987a)

for K_HF

Value

a list of conversion factors "free2tot", "free2sws", etc.

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

References

Dickson1984, DOE1994, Zeebe2001

seaconc

seaconc

Description

PRIVATE function: calculates concentrations of constituents of natural seawater from a given salinity S

Usage

```
seaconc(spec, S)
```

Arguments

spec

constituent of seawater (chemical species) of which the concentration should be calculated. can be any name of the vectors ConcRelCl and MeanMolecularWeight: "Cl", "SO4", "Br", "F", "Na", "Mg", "Ca", "K",

"Sr", "B", "S"

S

salinity S in practical salinity units (i.e. no unit)

Value

concentration of the constituent of seawater speciefied in spec in mol/kg-solution (molinity): this is determined by the data in ConcRelCl and MeanMolecularWeight

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

References

DOE1994

seadensity

seadensity

Description

PRIVATE function: calculates seawater density (in kg/m3) from temperature (in degrees centigrade) and salinity

Usage

seadensity(Tc, S)

Arguments

Tc temperature in degrees centigrade

S salinity S in practical salinity units (i.e. no unit)

Value

seawater density in kg/m3

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

References

Millero1981, DOE1994

selectplot selectplot

•

Description

PRIVATE function: plots just the elements of an object of class aquaenv given in what; no return value, just side-effect

Usage

```
selectplot(aquaenv, xval, what, mfrow=c(1,1), size=c(7,7), ...)
```

Arguments

aquaenv object of class aquaenv

x-value: the independent variable describing a change in elements of an

object of class aquaenv

what vector of names of elements of aquaenv that should be plotted

mfrow standard plot parameter; default: just one plot

size the size of the plot device; default: 7 (width) by 7 (height) inches

... further arguments will be passed

Author(s)

 ${\tt splitS_K_CO2}$

 $splitS_K_CO2$

Description

PRIVATE function: returns the intersection of the formulae for K_CO2 for S < 5 and S >= 5

Usage

splitS_K_CO2(Tk)

Arguments

Tk

temperature in Kelvin

Value

the value for S where the two formulae intersect at temperature Tk

Author(s)

Andreas F. Hofmann (a.hofmann@nioo.knaw.nl)

splitS_K_HCO3

 $splitS_K_HCO3$

Description

PRIVATE function: returns the intersection of the formulae for K_HCO3 for S < 5 and S >= 5

Usage

splitS_K_HCO3(Tk)

Arguments

Tk

temperature in Kelvin

Value

the value for S where the two formulae intersect at temperature Tk

Author(s)