Class 5 Data Wrangling with R (Part II)

Dr Wei Miao

UCL School of Management

October 18, 2023

Section 1

Data Wrangling Part II

Data Wrangling Part II

- Select rows (filter)
- Sort rows (arrange)
- Select columns (select)
- Generate new columns (mutate)
- Group aggregation (group_by): compute statistics for each group
- Merge datasets (join): combine datasets from different sources

Aggregation by Groups: group_by

 group_by() allows us to aggregate data by group and compute statistics for each group

```
# group by marital status
data_demo %>%
group_by(Marital_Status)
```

• Internally, the dataset is already grouped based on the specified variable(s).

- After aggregating data, we can use summarise() to compute group-specific statistics for us.
 - Similar to mutate() in generating new variables
 - Different from mutate() in that the new variable is computed based on groups.

```
# compute the average income for each marital status group
   data_demo %>%
     group_by(Marital_Status) %>%
3
     summarise(avg_income = mean(Income,na.rm = T)) %>%
     ungroup()
```

Marital_Status	avg_income
Alone	43789.00
Divorced	53300.63
Married	51776.36
Single	51091.16
Together	52609.59
Widow	56158.90

Aggregation by Groups: group_by() Multiple Groups

 We can have multiple group variables for group_by , such as computing average income for each marital status, education combination

```
# compute the average income for each marital, education group
data_demo %>%

group_by(Marital_Status,Education) %>%

summarise(avg_income = mean(Income,na.rm = T)) %>%
ungroup() %>%
head(5)
```

Marital_Status	Education	avg_income			
Alone	Graduation	34176			
Alone	Master	61331			
Alone	PhD	35860			
Divorced	2n Cycle	49345			
Divorced	Basic	9548			

Consolidate Multiple Data Frames

- When consolidating multiple data frames, we have 4 types of joining methods.
- left_join() handles most data join situations, which we will focus on today.

- left_join keeps everything from the left data frame and matches as much as it can from the right data frame based on the chosen IDs.
 - All IDs in the left data frame will be retained
 - If a match can be found, value from the right data frame will be filled in
 - If a match cannot be found, a missing value will be returned

```
df_left %>%
left_join(df_right, by = c('ID' = 'ID') )
```

Caveats for doing left_join()

- We can do 1:1, or M:1 left_joins
- Never do 1:M or M:M left_joins

demographics: 1				Transaction data: M							
ID		age	Ψ.	income	₩	ID	_	transaction	_	revenue	₹
	1		15	30	000		1		1		12
	2		18	10	000		1		2		2
							2		1		10
							2		2		5
							2		3		10

inner_join() (optional)

- inner_join only keeps the observations that appear in both data frames
 - Only common IDs in both data frames will be retained
 - If a match can be found, values will be filled in from both data frames

```
# Method 1 without pipe operator
inner_join(df_left, df_right, by = 'ID')
# Method 2 with pipe operator
df_left %>%
inner_join(df_right, by = 'ID')
# Method 3: order of data frames should not matter. Why?
df_right %>%
inner_join(df_left, by = 'ID')
```


full_join() (optional)

- full_join keeps all observations from both data frames
 - All IDs in either data frames will be retained
 - If a match can be found, values will be filled in from both data frames

```
# Method 1 without pipe operator
full_join(df_left, df_right, by = 'ID')
# Method 2 with pipe operator
df_left %>%
full_join(df_right, by = 'ID')
# Method 3: order of data frames should not matter. Why?
df_right %>%
full join(df left, by = 'ID')
```


Section 2

Data Cleaning

Missing Values

- In R, missing values are represented by the symbol NA (i.e., not available).
- Most statistical models cannot handle missing values, so we need to deal with them in R.
 - Few missing values: remove them from analysis.
 - Many missing values: need to replace them with appropriate values: mean/median/imputation

Outliers

- Sometimes, due to data collection errors, we may have abnormal observations in the data, such as unusually large and small values
- Winsorization is a common way to deal with outliers
 - Remove top 1% and bottom 1% observations

Section 3

Descriptive Analytics

Two Major Tasks of Descriptive Analytics

 You can think of descriptive analytics as creating a dashboard to display the key information you would like to know for your business.

Describe data depending on your business purposes

- "How much do our customers spend each month on average?"
- "What percentage of our customers are unprofitable?"
- "What is the difference between the retention rates of men and women?"

Make statistical inferences from data

- "Based on our sample, does the difference between the spending of men and women indicate that men and women respond differently in the customer base at large?"
- "Based on our sample, can we conclude that customers who sign up for online banking are more profitable than customers who do not?"
- "Based on our test mailing, can we conclude that ad-copy A works better than ad-copy B?"

Summary Statistics

- Summary statistics are used to summarize a set of observations, in order to communicate the largest amount of information as simply as possible.
- There are two main types of summary statistics used in evaluation:
 - measures of central tendency: mean, the median, 25 percentile, 75 percentile, the mode, etc.
 - measures of dispersion: range and standard deviation.
- It's important to include summary statistics table in your dissertation before any statistical analysis!

Summary Statistics with R

- In R, a nice package to report summary statistics is modelsummary.
- datasummary_skim() is a shortcut to conduct basic summary statistics
- For more features, refer to the package tutorial here

```
pacman::p_load(modelsummary)
## Summary statistics for numeric variables
data_demo %>%
datasummary_skim(type = "numeric")

## Summary statistics for categorical variables
data_demo %>%
datasummary_skim(type = "categorical")
```

Case Study: Preliminary Customer Analysis

• Let's solve the preliminary customer analysis case together in class!