

Learning Linear Classifiers

6/6 points earned (100%)

Quiz passed!

Continue Course

Back to Week 2

1/1 points

1.

(True/False) A linear classifier can only learn positive coefficients.

True

False

Correct Response

1/1 points

2

(True/False) In order to train a logistic regression model, we find the weights that maximize the likelihood of the model.

True

Correct Response

0	False	
~	1 / 1 points	
3. (True/False) The data likelihood is the product of the probability of the inputs x given the weights w and response y.		
0	True	

Correct Response

False

4.

Questions 4 and 5 refer to the following scenario.

Consider the setting where our inputs are 1-dimensional. We have data

Х	у
2.5	+1
0.3	-1
2.8	+1
0.5	+1

and the current estimates of the weights are w0 = 0 and w1 = 1. (w0: the intercept, w1: the weight for x).

Calculate the likelihood of this data. Round your answer to 2 decimal places.

Correct Response

$$P(y_1 = +1|x_1, w)P(y_2 = -1|x_2, w)P(y_3 = +1|x_3, w)P(y_4 = +1|x_4, w)$$

$$= \frac{1}{1 + e^{-2.5}} \frac{e^{-0.3}}{1 + e^{-0.3}} \frac{1}{1 + e^{-2.8}} \frac{1}{1 + e^{-0.5}}$$

$$= 0.230765 \cdots$$

1/1 points

5.

keter to the scenario given in Question 4 to answer the toilowing:

Calculate the derivative of the log likelihood with respect to w1. Round your answer to 2 decimal places.

Correct Response

$$\frac{\partial \ell(\mathbf{w})}{\partial \mathbf{w}_1} = \sum_{i=1}^4 h_1(\mathbf{x}_i) \left(\mathbf{1}[y_i = +1] - P(y_i = +1 | \mathbf{x}_i, \mathbf{w}) \right)
= 2.5 \left(1 - \frac{1}{1 + e^{-2.5}} \right) + 0.3 \left(0 - \frac{1}{1 + e^{-0.3}} \right)
+ 2.8 \left(1 - \frac{1}{1 + e^{-2.8}} \right) + 0.5 \left(1 - \frac{1}{1 + e^{-0.5}} \right)
= 0.366591 \dots$$

1/1 points

6.

Which of the following is true about gradient ascent? Select all that apply.

It is an iterative algorithm

Correct Response

lt only updates a few of the parameters, not all of them

Correct Response

It finds the maximum by "hill climbing"

Correct Response

