

Vorlesung "Logik"

10-201-2108-1

7. PL1 – Semantische Eigenschaften

Ringo Baumann
Professur für Formale Argumentation
und Logisches Schließen

05. Juni 2025 Leipzig

In der letzten Vorlesung

Terme Formeln Strukturen Semantik

Fahrplan für diese Vorlesung

Koinzidenzlemma
Erfüllbarkeit, Tautologien und Co.
Semantische Äquivalenz
Ersetzungstheorem
Folgerung

Wiederholung

- τ -Struktur $\mathfrak{A} = (U^{\mathfrak{A}}, I^{\mathfrak{A}})$ mit $\tau = (P_1, P_2, \dots, f_1, f_2, \dots)$
- Belgung $\beta: \mathcal{V} \to U^{\mathfrak{A}}$ zu $\beta': \mathcal{T} \to U^{\mathfrak{A}}$ mit:

 - $\beta'(f(t_1,\ldots,t_n)) = f^{\mathfrak{A}}(\beta'(t_1),\ldots,\beta'(t_n)) \text{ für } f \in \mathcal{F},$ $ar(f) = n \geq 1 \text{ und } t_1,\ldots,t_n \in \mathcal{T}$
- freies und gebundenes Vorkommen (nicht bzw. im Wirkungsbereich eines Quantors)
- Gegeben eine Interpretation (\mathfrak{A}, β) . Wir definieren:
 - $(\mathfrak{A},\beta)(P(t_1,\ldots,t_n))=1$ gdw. $(\beta(t_1),\ldots,\beta(t_n))\in P^{\mathfrak{A}}$
 - aussagenlogische Fälle (¬, ∧, ∨)
 - $(\mathfrak{A},\beta)(\exists x\phi)=1$ gdw. existiert $a\in U^{\mathfrak{A}}$ mit $(\mathfrak{A},\beta_{\lceil x\mapsto a\rceil})(\phi)=1$
 - $(\mathfrak{A},\beta)(\forall x\phi) = 1$ gdw. für alle $a \in U^{\mathfrak{A}}$ gilt: $(\mathfrak{A},\beta_{[x\mapsto a]})(\phi) = 1$

Koinzidenzlemma

- analog zur AL
- sei $s(\phi)$ die Menge der in ϕ vorkommenden Prädikatenund Funktionssymbole (Signatur von ϕ)

Lemma

Gegeben eine Formel ϕ . Seien (\mathfrak{A}, β) und (\mathfrak{B}, γ) Interpretationen. Sofern $U^{\mathfrak{A}} = U^{\mathfrak{B}}$, $S^{\mathfrak{A}} = S^{\mathfrak{B}}$ für alle $S \in s(\phi)$, und $\beta(x) = \gamma(x)$ für alle $x \in frei(\phi)$, dann $(\mathfrak{A}, \beta)(\phi) = (\mathfrak{B}, \gamma)(\phi)$.

Beweis per struktureller Induktion.

- **1** Zeige zuerst per Terminduktion: Falls $\beta(x) = \gamma(x)$ für alle $x \in var(t)$, dann $\beta(t) = \gamma(t)$. (Übung 5)
- Sei $\phi = P(t_1, \ldots, t_n)$ atomar. Da $\beta|_{frei(\phi)} = \gamma|_{frei(\phi)}$ und für alle $1 \le i \le n : var(t_i) \subseteq frei(\phi)$ folgern wir mit $\beta(t_i) = \gamma(t_i)$. Somit: $(\mathfrak{A}, \beta)(\phi) = 1$ gdw. $(\beta(t_1), \ldots, \beta(t_n)) \in P^{\mathfrak{A}}$ gdw. $(\gamma(t_1), \ldots, \gamma(t_n)) \in P^{\mathfrak{B}}$ gdw. $(\mathfrak{B}, \gamma)(\phi) = 1$

Koinzidenzlemma

Lemma

Gegeben eine Formel ϕ . Seien (\mathfrak{A},β) und (\mathfrak{B},γ) Interpretationen. Sofern $U^{\mathfrak{A}} = U^{\mathfrak{B}}$, $S^{\mathfrak{A}} = S^{\mathfrak{B}}$ für alle $S \in s(\phi)$, und $\beta(x) = \gamma(x)$ für alle $x \in frei(\phi)$, dann $(\mathfrak{A},\beta)(\phi) = (\mathfrak{B},\gamma)(\phi)$.

Beweis per struktureller Induktion.

- aussagenlogischen Fälle:
 - Sei $\phi = \psi \land \xi$ und gelte für ψ und ξ die Koinzidenzeigenschaft. Da $\beta|_{frei(\phi)} = \gamma|_{frei(\phi)}$ und $frei(\psi) \cup frei(\xi) = frei(\phi)$ gilt $\beta|_{frei(\psi)} = \gamma|_{frei(\psi)}$ und $\beta|_{frei(\xi)} = \gamma|_{frei(\xi)}$. Somit schließen wir:

$$(\mathfrak{A},\beta)(\phi \wedge \psi) = 1$$
 gdw. $(\mathfrak{A},\beta)(\phi) = 1$ und $(\mathfrak{A},\beta)(\psi) = 1$ gdw. $(\mathfrak{B},\gamma)(\phi) = 1$ und $(\mathfrak{B},\gamma)(\psi) = 1$ gdw. $(\mathfrak{B},\gamma)(\phi \wedge \psi) = 1$

Disjunktion und Negation analog.

Koinzidenzlemma

Lemma

Gegeben eine Formel ϕ . Seien (\mathfrak{A},β) und (\mathfrak{B},γ) Interpretationen. Sofern $U^{\mathfrak{A}} = U^{\mathfrak{B}}$, $S^{\mathfrak{A}} = S^{\mathfrak{B}}$ für alle $S \in s(\phi)$, und $\beta(x) = \gamma(x)$ für alle $x \in frei(\phi)$, dann $(\mathfrak{A},\beta)(\phi) = (\mathfrak{B},\gamma)(\phi)$.

Beweis per struktureller Induktion.

- Quantorenfälle:
 - Sei $\phi = \exists y \, \psi$ und gelte für ψ die Koinzidenzeigenschaft. Da $\beta \mid_{frei(\phi)} = \gamma \mid_{frei(\phi)}$ gilt für beliebiges $a \in U^{\mathfrak{A}}$, daß $\beta_{[y \mapsto a]} \mid_{frei(\psi)} = \gamma_{[y \mapsto a]} \mid_{frei(\psi)} (\text{Anm.: Es kann durchaus}$ $\beta(y) \neq \gamma(y))$. Folglich $(\mathfrak{A}, \beta_{[y \mapsto a]})(\psi) = (\mathfrak{B}, \gamma_{[y \mapsto a]})(\psi)$. Wir schließen:

$$(\mathfrak{A},\beta)(\exists y\,\psi)=1$$
 gdw. existiert $a\in U^{\mathfrak{A}}$ mit $(\mathfrak{A},\beta_{[y\mapsto a]})(\psi)=1$ gdw. existiert $a\in U^{\mathfrak{B}}$ mit $(\mathfrak{B},\gamma_{[y\mapsto a]})(\psi)=1$ gdw. $(\mathfrak{B},\gamma)(\exists y\,\psi)=1$

• $\phi = \forall y \psi$ analog

Koinzidenzlemma - Bemerkungen

Im Hintergrund ist immer eine Signatur τ fixiert, d.h. alle betrachteten Strukturen sind implizit τ -Strukturen, interpretieren also <u>alle</u> Prädikaten- und Funktionssymbole aus τ .

Koinzidenzlemma rechtfertigt, daß zur Wahrheitswertbestimmung von ϕ es ausreicht:

- lacktriangle nur vorkommende Symbole in ϕ zu interpretieren
- 2 nur freie Variablen in ϕ zu belegen

Für geschlossene Formeln ergibt sich sogar die Unabhängigkeit von Belegungen

Corollary

Sei $\mathfrak A$ eine Struktur. Für Belegungen β, γ und <u>Sätze</u> ϕ gilt:

$$(\mathfrak{A},\beta)(\phi)=1$$
 gdw. $(\mathfrak{A},\gamma)(\phi)=1$

Dies rechtfertigt die Notation $\mathfrak{A}(\phi) = 1$.

Erfüllbarkeit, Tautologien und Co.

Eine Interpretation (\mathfrak{A},β) heißt Modell von ϕ , falls $(\mathfrak{A},\beta)(\phi) = 1$. Andernfalls, Widerlegung von ϕ .

Eine Formel ϕ heißt

erfüllbar, falls ein Modell von ϕ existiert falls kein Modell von ϕ existiert

falsifizierbar, falls eine Widerlegung von ϕ existiert tautologisch, falls keine Widerlegung von ϕ existiert

kontingent, falls erfüllbar und falsifizierbar

Beispiele:

P(x) kontingent $\exists x \neg P(x) \lor P(a)$ erfüllbar, tautologisch $\forall x \forall y (x \neq y \lor f(x) \neq f(y))$ falsifizierbar, unerfüllbar

Erfüllbarkeit, Tautologien und Co.

Eine Formel ϕ heißt

erfüllbar, falls ein Modell von ϕ existiert

tautologisch, falls keine Widerlegung von ϕ existiert

Anmerkungen:

- assoziierte Entscheidungsprobleme sind im Vergleich zur AL ungleich schwieriger – sie sind algorithmisch nicht lösbar, d.h. unentscheidbar (Church, 1936)
- Koinzidenzsatz erlaubt zwar Einschränkung auf Signatur von ϕ , dennoch existieren unendlich viele Interpretationen
- Darüber hinaus: Erfüllbarkeit impliziert nicht Erfüllbarkeit durch eine endliche Struktur (siehe Tafel)
- Mehr noch: auch endliche Erfüllbarkeit/Gültigkeit ist unentscheidbar (Trakhtenbrot, 1950)

Existentieller und Universeller Abschluß

Definition

Sei ϕ Formel mit $frei(\phi) = \{x_1, \dots, x_n\}$. Die Sätze $\exists x_1 \dots \exists x_n \phi$, $\forall x_1 \dots \forall x_n \phi$ heißen existenzieller bzw. universeller Abschluß.

Lemma

Eine Formel ϕ ist genau dann

- o erfüllbar, wenn ihr existentieller Abschluß erfüllbar ist.
- 2 tautologisch, wenn ihr universeller Abschluß tautologisch ist.

Beweis: (\Rightarrow) Sei ϕ erfüllbar. Somit existiert Interpretation (\mathfrak{A},β) mit $(\mathfrak{A},\beta)(\phi)=1$. Für freie Variablen x_i existieren $a_i\in U^{\mathfrak{A}}$ mit $\beta(x_i)=a_i$. Offensichtlich gilt $\beta_{[x_1\mapsto a_1,\dots,x_n\mapsto a_n]}=\beta$. Folglich existieren $a_1,\dots,a_n\in U^{\mathfrak{A}}$ mit $(\mathfrak{A},\beta_{[x_1\mapsto a_1,\dots,x_n\mapsto a_n]})(\phi)=1$, d.h. $(\mathfrak{A},\beta)(\exists x_1\dots\exists x_n\phi)=1$.

Existentieller und Universeller Abschluß

Definition

Sei ϕ Formel mit $frei(\phi) = \{x_1, \dots, x_n\}$. Die Sätze $\exists x_1 \dots \exists x_n \phi$, $\forall x_1 \dots \forall x_n \phi$ heißen existenzieller bzw. universeller Abschluß.

Lemma

Eine Formel ϕ ist genau dann

- erfüllbar, wenn ihr existentieller Abschluß erfüllbar ist.
- 2 tautologisch, wenn ihr universeller Abschluß tautologisch ist.

Beweis: (\Leftarrow) Sei $\exists x_1 \ldots \exists x_n \phi$ erfüllbar, d.h. es existiert Interpretation (\mathfrak{A},β) mit $(\mathfrak{A},\beta)(\exists x_1 \ldots \exists x_n \phi)=1$. Nach Semantikdefinition existieren $a_1,\ldots,a_n \in U^{\mathfrak{A}}$ mit $(\mathfrak{A},\beta_{[x_1\mapsto a_1,\ldots,x_n\mapsto a_n]})$ $(\phi)=1$. Die Interpretation $(\mathfrak{A},\beta_{[x_1\mapsto a_1,\ldots,x_n\mapsto a_n]})$ bezeugt die Erfüllbarkeit von ϕ .

Sei wieder $Mod(\phi) = \{(\mathfrak{A}, \beta) \mid (\mathfrak{A}, \beta) \text{ ist Modell von } \phi\}.$

Definition

Zwei Formeln $\phi, \psi \in \mathcal{F}_{PL}$ heißen semantisch äquivalent, in Zeichen $\phi \equiv \psi$, sofern $Mod(\phi) = Mod(\psi)$.

Es gelten die bekannten aussagenlogischen Äquivalenzen:

•
$$\neg \neg \phi \equiv \phi$$
 (Elimination der doppelten Negation)

$$\neg (\phi \land \psi) \equiv \neg \phi \lor \neg \psi$$
$$\neg (\phi \lor \psi) \equiv \neg \phi \land \neg \psi$$

(De Morgansche Gesetze)

•
$$\phi \land (\psi \lor \xi) \equiv (\phi \land \psi) \lor (\phi \land \xi)$$

 $\phi \lor (\psi \land \xi) \equiv (\phi \lor \psi) \land (\phi \lor \xi)$

(Distributivgesetze)

•
$$\phi \land \psi \equiv \psi$$
, falls ϕ tautologisch $\phi \lor \psi \equiv \phi$, falls ϕ tautologisch

(Tautologieregel)

• $\phi \wedge \psi \equiv \phi$, falls ϕ unerfüllbar $\phi \vee \psi \equiv \psi$, falls ϕ unerfüllbar

(Unerfüllbarkeitsregel)

Sei wieder $Mod(\phi) = \{(\mathfrak{A}, \beta) \mid (\mathfrak{A}, \beta) \text{ ist Modell von } \phi\}.$

Definition

Zwei Formeln $\phi, \psi \in \mathcal{F}_{PL}$ heißen semantisch äquivalent, in Zeichen $\phi \equiv \psi$, sofern $Mod(\phi) = Mod(\psi)$.

 $\neg \forall X \phi \equiv \exists X \neg \phi$ $\neg \exists X \phi \equiv \forall X \neg \phi$

(De Morgansche Gesetze)

• $\forall X (\phi \land \psi) \equiv \forall X \phi \land \forall X \psi$ $\exists X (\phi \lor \psi) \equiv \exists X \phi \lor \exists X \psi$

(Distributivgesetze)

 $\forall x \forall y \phi \equiv \forall y \forall x \phi$ $\exists x \exists v \phi \equiv \exists v \exists x \phi$

(Kommutativität)

• Falls $x \notin frei(\psi)$, dann $\forall x (\phi \land \psi) \equiv \forall x \phi \land \psi$ $\forall x (\phi \lor \psi) \equiv \forall x \phi \lor \psi$ $\exists x (\phi \land \psi) \equiv \exists x \phi \land \psi$ $\exists x (\phi \lor \psi) \equiv \exists x \phi \lor \psi$

(Scopusverschiebung)

Sei wieder $Mod(\phi) = \{(\mathfrak{A}, \beta) \mid (\mathfrak{A}, \beta) \text{ ist Modell von } \phi\}.$

Definition

Zwei Formeln $\phi, \psi \in \mathcal{F}_{PL}$ heißen semantisch äquivalent, in Zeichen $\phi \equiv \psi$, sofern $Mod(\phi) = Mod(\psi)$.

$$\bullet \neg \forall x \phi \equiv \exists x \neg \phi$$

Beweis:

$$(\mathfrak{A},\beta)(\neg \forall x \, \phi) = 1$$
 gdw. $(\mathfrak{A},\beta)(\forall x \, \phi) = 0$ gdw. es gilt nicht für alle $a \in U^{\mathfrak{A}} : (\mathfrak{A},\beta_{[x \mapsto a]})(\phi) = 1$ gdw. es existiert ein $a \in U^{\mathfrak{A}}$ mit $(\mathfrak{A},\beta_{[x \mapsto a]})(\phi) = 0$ gdw. es existiert ein $a \in U^{\mathfrak{A}}$ mit $(\mathfrak{A},\beta_{[x \mapsto a]})(\neg \phi) = 1$ gdw. $(\mathfrak{A},\beta)(\exists x \neg \phi) = 1$

Sei wieder $Mod(\phi) = \{(\mathfrak{A}, \beta) \mid (\mathfrak{A}, \beta) \text{ ist Modell von } \phi\}.$

Definition

Zwei Formeln $\phi, \psi \in \mathcal{F}_{PL}$ heißen semantisch äquivalent, in Zeichen $\phi \equiv \psi$, sofern $Mod(\phi) = Mod(\psi)$.

• Falls $x \notin frei(\psi)$, dann $\exists x (\phi \land \psi) \equiv \exists x \phi \land \psi$

Beweis:

$$\begin{split} &(\mathfrak{A},\beta)(\exists x\,(\phi\wedge\psi))=\text{1 gdw.}\\ &\text{es existiert ein }a\in A\,\text{mit }(\mathfrak{A},\beta_{[x\mapsto a]})(\phi\wedge\psi)=\text{1 gdw.}\\ &\text{es existiert ein }a\in A\,\text{mit }(\mathfrak{A},\beta_{[x\mapsto a]})(\phi)=\text{1 und }(\mathfrak{A},\beta_{[x\mapsto a]})(\psi)=\text{1 gdw.}\\ &\text{es existiert ein }a\in A\,\text{mit }(\mathfrak{A},\beta_{[x\mapsto a]})(\phi)=\text{1 und }\underbrace{(\mathfrak{A},\beta)(\psi)=\text{1}}_{}\,\text{gdw.} \end{split}$$

Koinzidenzlemma

$$(\mathfrak{A},\beta)(\exists x \, \phi) = 1 \text{ und } (\mathfrak{A},\beta)(\psi) = 1 \text{ gdw.}$$

 $(\mathfrak{A},\beta)(\exists x \, \phi \wedge \psi) = 1$

П

Ersetzungstheorem

Analog zur AL.

Theorem

Gegeben zwei Formeln $\phi, \psi \in \mathcal{F}_{PL}$ mit $\phi \equiv \psi$. Sei $\xi \in \mathcal{F}_{PL}$ mit $\phi \in t(\xi)$ und $\xi' \in \mathcal{F}_{PL}$ eine Formel, die sich durch Ersetzung eines Vorkommens von ϕ in ξ durch ψ ergibt. Dann gilt: $\xi \equiv \xi'$.

Beweis (Induktion über den Formelaufbau von ξ):

- IA: Sei $\xi = P(t_1, \dots, t_n)$ atomar. Somit $\phi = \xi$, da $t(\xi) = \{\xi\}$ per Def. Folglich $\xi' = \psi$ und $\xi \equiv \xi'$ da $\phi \equiv \psi$ vorausgesetzt.
- Fälle ¬, ∧, ∨ analog zur AL
- Gelte die Ersetzungseigs. für ξ_1 (IV) und sei $\xi = \forall x \, \xi_1$.
 - Falls $\phi = \xi$, dann argumentiere wie im IA (IV nicht nötig)
 - Sei nun $\phi \neq \xi$. Dann muss $\xi' = \forall x \xi_1'$ wobei ξ_1' durch ersetzen von ϕ in ξ_1 durch ψ entsteht. Da nach IV $\xi_1 \equiv \xi_1'$ gilt, muss per Definition Allquantor $\forall x \xi_1 \equiv \forall x \xi_1'$. Somit, $\xi \equiv \xi'$.
- Fall $\xi = \exists x \, \xi_1$ analog.

Generierung/Identifizierung von Äquivalenzen

Ersetzungstheorem

- wird oft ohne explizite Erwähnung verwendet
- rechtfertigt neue Äquivalenzen

Zum Beispiel:
$$\neg \exists x \neg \phi \equiv \forall x \phi$$

$$\neg \exists x \neg \phi \equiv \neg \neg \forall x \phi \qquad \text{(De Morgan, } \exists x \neg \phi \equiv \neg \forall x \phi\text{)}$$
$$\equiv \forall x \phi \qquad \text{(Doppelnegation)}$$

Aussagenlogische Form

erlaubt erkennen von prädikatenlogischen Tautologien
 Zum Beispiel: Folgende Formel ist tautologisch

$$\forall x \, P(x) \to \big(\exists y \, Q\big(y, f(y)\big) \to \forall x \, P(x)\big)$$
 da $p \to (q \to p) \equiv \top$

Folgerung

Wie in der AL erweitern wir den Modellbegriff auf Mengen von Formeln und setzen:

$$Mod(T) = \bigcap_{\phi \in T} Mod(\phi)$$

Die Definition der Folgerung bleibt auch unverändert, d.h.

Definition

Sei $T \subseteq \mathcal{F}_{PL}$ und $\phi \in \mathcal{F}_{PL}$. Wir sagen, ϕ folgt (logisch) aus T, falls $Mod(T) \subseteq Mod(\phi)$ und schreiben: $T \models \phi$

- Konventionen aus AL übertragen sich
- Beweise für Schnitteigenschaft, Antimonotonie von Mod und Deduktionstheorem für ⊨ übertragen sich
- Endlichkeitssatz/Kompaktheitssatz sowie
 Interpolationstheorem gelten auch (Beweise komplizierter)

Vorlesung "Logik"

10-201-2108-1

7. PL1 – Semantische Eigenschaften

Ringo Baumann
Professur für Formale Argumentation
und Logisches Schließen

05. Juni 2025 Leipzig

