	$\tau_{1-}^{\#2} \uparrow^{\alpha}$	$\tau_{1^{-}}^{#1} + ^{\alpha}$	$\sigma_{1}^{#2} + \alpha$	$\sigma_{1^{-}}^{\sharp 1} \dagger^{lpha}$	$\tau_{1+}^{#1} + ^{\alpha \beta}$	$\sigma_{1+}^{*2} + ^{lphaeta}$	$\sigma_{1^+}^{\sharp 1} + ^{lpha eta}$	
	0	0	0	0	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	0	$\sigma_{1^{+}lphaeta}^{\#1}$
	0	0	0	0	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2 k^2 r_5 + t_1}{(1+k^2)^2 t_1^2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\sigma_{1}^{\#2}{}_{lphaeta}$
	0	0	0	0	$\frac{-2 k^4 r_5 + k^2 t_1}{(1+k^2)^2 t_1^2}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$ au_{1}^{\#1}{}_{lphaeta}$
	i kr5+2k ³ r5	0	$-\frac{1}{\sqrt{2}(k^2r_5+2k^4r_5)}$	$\frac{1}{k^2 r_5}$	0	0	0	$\sigma_{1^-\alpha}^{\#1}$
	$-\frac{i(6x^2r_5+t_1)}{\sqrt{2}k(1+2x^2)^2r_5t_1}$	0	$\frac{6k^2r_5+t_1}{2(k+2k^3)^2r_5t_1}$	$-\frac{1}{\sqrt{2}(k^2r_5+2k^4r_5)}$	0	0	0	$\sigma_{1^-\alpha}^{\#2}$
Ī	0	0	0	0	0	0	0	$ au_{1^{-}}^{\#1}{}_{lpha}$
	$\frac{6k^2r_5+t_1}{(1+2k^2)^2r_5t_1}$	0	$\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$	$-\frac{i}{kr_5+2k^3r_5}$	0	0	0	$ au_{1^-lpha}^{\#2}$

$f_{1-}^{#2} +^{\alpha}$	$f_{1-}^{#1} \dagger^{\alpha}$	$\omega_{1^{-}}^{\#2}\dagger^{lpha}$	$\omega_{1^{-}}^{\sharp 1} \dagger^{lpha}$	$f_{1+}^{#1} \dagger^{\alpha\beta}$	$\omega_{1+}^{#2} \dagger^{\alpha\beta}$	$\omega_{1}^{#1} + ^{lphaeta}$	
0	0	0	0	$\frac{i k t_1}{\sqrt{2}}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{1}{2} + \frac{\alpha \beta}{2} k^2 r_5 - \frac{t_1}{2}$	$\omega_{1^{+}lphaeta}^{\#1}$
0	0	0	0	0	0	$-\frac{t_1}{\sqrt{2}}$	$\omega_{1+\alpha\beta}^{\#2} f$
0	0	0	0	0	0	$-\frac{ikt_{1}}{\sqrt{2}}$	$f_{1+\alpha\beta}^{\#1}$
$-rac{1}{3}ar{\it l}\it k\it t_1$	0	$\frac{t_1}{3\sqrt{2}}$	$k^2 r_5 + \frac{t_1}{6}$	0	0	0	$\omega_{1^- \ lpha}^{\# 1}$
$-\frac{1}{3}i\sqrt{2}kt_1$	0	$\frac{t_1}{3}$	$\frac{t_1}{3\sqrt{2}}$	0	0	0	$\omega_{1^-}^{\#2}{}_{lpha}$
0	0	0	0	0	0	0	$f_{1^{-}\alpha}^{\#1}$
2 k ^{2 t} 1	0	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	<u> </u>	0	0	0	$f_{1^-\alpha}^{\#2}$

	$\omega_0^{\#1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^{+}}^{\#1}$ †	0	0	0	0
$f_{0+}^{#1}\dagger$	0	0	0	0
$f_{0+}^{#2}\dagger$	0	0	0	0
$\omega_{0}^{#1}$ †	0	0	0	$k^2 r_2 - t_1$

_	$\sigma_{0^+}^{\#1}$	$\tau_0^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^+}^{\sharp 1}\dagger$	0	0	0	0
$\tau_{0}^{\#1}$ †	0	0	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_0^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 - t_1}$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}{}_{\alpha\beta}$	$\sigma_{2-\alpha\beta\chi}^{\#1}$
$\sigma_{2^{+}}^{\sharp 1}\dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}{}_{\alpha\beta}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	$\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1}\dagger^{\alpha\beta\chi}$	0	0	<u>t</u> 1 2

Total #:	$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	$\tau_{1+}^{\#1}{}^{\alpha\beta} + ik \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1}^{\#2\alpha} + 2ik \sigma_{1}^{\#2\alpha} == 0$	$\sigma_{0+}^{\#1} == 0$	$\tau_{0+}^{\#1} == 0$	$\tau_{0+}^{\#2} == 0$	SO(3) irreps	Source constraints
17	5	3	3	3	1	1	1	#	

	massive partici	е
	Pole residue:	$-\frac{1}{r_2} > 0$
2	Polarisations:	1
•	Square mass:	$\frac{t_1}{r_2} > 0$
	Spin:	0
	Parity:	Odd

Unitarity conditions
$r_2 < 0 \&\& r_5 < 0 \&\& t_1 < 0$