

Motivación

- Combinar algoritmos, normalmente árboles, para mejorar sus prestaciones
- Proporcionan grandes prestaciones en problemas complejos

- 1. Remuestreo Bootstrap
- 2. Bagging
- 3. Random Forest
- 4. Importancia variables

Remuestreo Bootstrap

- Técnica estadística para cuantificar la incertidumbre de un estimador
 - En ML nos sirve para medir las prestaciones de un algoritmo
- Supongamos un problema de aprendizaje supervisado, donde disponemos de un conjunto de datos etiquetados $\{X, y\}$, con N = 15.

Remuestreo Bootstrap

Bootstrap: remuestras con repetición

P*b: Prestaciones remuestra b

Out-of-bag performance estimation

- ullet Out-of-bag, remuestra b: P_b^*
- Prestaciones totales

$$OOB = \frac{1}{B} \sum_{b=1}^{B} P_b^*$$

- Normalmente B = 200-500
- Al promediar reducimos la varianza del estimador (es similar cross-validation)

- 1. Remuestreo Bootstrap
- 2. Bagging
- 3. Random Forest
- 4. Importancia variables

Bagging: Bootstrap AGGregation

- Motivación: reducir varianza de los árboles de decisión (en función de la división los resultados pueden ser muy distintos)
- Utilizar bootstrap para combinar árboles de decisión:
 - Se construyen (entrenan) B árboles utilizando B remuestras

 \circ Se combina la salida para predecir una nueva muestra: $\mathbf{x}^{(new)}$

Bagging

• Se combina la salida para predecir una nueva muestra: $\mathbf{x}^{(new)}$

$$\circ$$
 Regresión: $\hat{y} = \frac{1}{B} \sum_{b=1}^{B} f_{b,TREE}^*(\mathbf{x}^{(new)})$

$$\circ$$
 Clasificación: majority vote $\hat{y} = \max_{k=1,...,K} \left\{ \sum_{b=1}^B f_{b,TREE}^*(\mathbf{x}^{(new)})
ight\}$

Se estiman las prestaciones mediante Out-Of-Bag

Bagging: pros and cons

- OK
 - mejoran las prestaciones sustancialmente
- KO
 - Si hay uno o varios predictores fuertes, puede que los B árboles generados sean bastante similares, por lo que no estamos reduciendo la varianza dado que los árboles están altamente correlacionados

- 1. Remuestreo Bootstrap
- 2. Bagging
- 3. Random Forest
- 4. Importancia variables

Random forest

- Motivación: **decorrelacionar** árboles remuestrados
- Utilizar bootstrap para combinar árboles de decisión:
 - Se construyen (entrenan) B árboles utilizando B remuestras
 - En la construcción de cada árbol, para cada split se fuerza a utilizar un subconjunto aleatorio de m < d predictores
- Normalmente $m = \sqrt{d}$
- Si m = d, entonces es Bagging
- Si el número de predictores relevantes es pequeño, y alta dimensionalidad, peligro de overfitting

- 1. Remuestreo Bootstrap
- 2. Bagging
- 3. Random Forest
- 4. Importancia variables

Importancia de las variables

- Con la agregación de árboles se pierde interpretabilidad
- No obstante se puede extraer una medida de la importancia de cada variable
 - Cuánto mejoran las prestaciones en los splits asociados a dicha variable (ESL, página 368)
 - En otras palabras: para cada split de cada árbol construido, se mide la mejora en prestaciones debido a la variable por la que se particiona el árbol.
- Medida relativa: se escala entre 0-100
- Puede aplicarse a un árbol individual, pero no es concluyente
- Se puede utilizar como ranking en <u>selección de características</u>, ¡pero hay que hacerlo bien! (wrapper)

Importancia de las variables

Referencias

- Introduction to Statistical Learning
 - Capítulo 5, sección 2
 - Capítulo 8, sección 2
- The Elements of Statistical Learning
 - Capítulo 10, sección 13
 - Capítulo 15
- Hands On Machine Learning.
 - Capítulo 7

Let's code!

