Algebraische Topologie¹

Dozent: Dr. V. Alekseev

MTEX:rydval.jakub@gmail.com

Version: 1. Juli 2017

Technische Universität Dresden

¹Math Ma ALGTOP: Algebraische Topologie, WS 2016/17

INHALTSVERZEICHNIS

Inhaltsverzeichnis

0	Einf	ührung	1
1	Торо	ologische Räume	2
	1.1	Grundlagen	2
2	Homotopie		
	2.1	Motivation	5
	2.2	Homotopie zwischen Abbildungen	6
	2.3	Konstruktionen und Beispiele	7
	2.4	Fundamentalgruppe	
	2.5	Fundamental gruppe von S^1	11
	2.6	Hochhebung von Wegen und Homotopien	12
	2.7	Überlagerungen und Fundamentalgruppe	16
	2.8	Gruppen angegeben durch Erzeuger und Relationen;	
		freie Gruppen	28
	2.9	Angabe der Gruppen durch Erzeuger und Relationen.	31
	2.10	Konsequenzen des Satzes von Seifert–van Kampen	38
	2.11	Höhere Homotopiegruppen	41
3	Homologie 42		
	3.1	Simplizialkomplexe	42
	3.2	Homologie für Simplizialkomplexe	43

0 Einführung

Algebraische Topologie dient dazu, mittels algebraischen Methoden (Zuordnung von algebraischen Objekten) topologische Räume zu verstehen (Klassifizierung). Beispiele von algebraischen Objekten:

- $S_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ Einheitssphäre,
- Π_2 Torus.

Ein Merkmal der Sphäre: jede Schleife $\gamma:[0,1]\longrightarrow S^2$ (stetig) ist zusammenziehbar. Auf dem Torus gibt es sogar zwei Arten nicht zusammenziehbarer Schleifen, die man ineinander nicht überführen Kann.

Literaturempfehlung:

- A. Hatcher: Algebraic Topology (https://www.math.cornell.edu/~hatcher/AT/AT.pdf),
- C. Kosniowski: A First Course in Algebraic Topology,
- A. Fomenko, D. B. Fuchs: Homotopic Topology.

Topologische Räume

1.1 Grundlagen

- **1.1.1 Definition.** (X, \mathcal{T}) ist ein topologischer Raum, wenn \mathcal{T} ein System von Teilmengen von X ist, das folgende Eigenschaften hat:
 - (1) \emptyset , $X \in \mathcal{T}$,
 - (2) $(U_i)_{i\in I} \subset \mathcal{T} \Longrightarrow \bigcup_{i\in I} U_i \in \mathcal{T},$ (3) $U_1, ..., U_n \in \mathcal{T} \Longrightarrow \bigcap_{i=1}^n U_i \in \mathcal{T}.$

 \mathcal{T} heißt *Topologie*, Elemente von \mathcal{T} heißen *offene Teilmengen* von X, $U_t \subset X$ heißt *Umgebung* von einem $t \in X$ wenn $\exists O \in \mathcal{T}$ s.d. $t \in O \subset U_t$. $\{O_i\}_{i \in I} \subset \mathcal{T}$ heißt *Basis* von \mathcal{T} , falls $\forall O \in \mathcal{T} \exists J \subset I$ s.d. $O = \bigcup_{i \in I} O_i$. $A \subset X$ heißt *abgeschlossen* gdw. $X \setminus A$ offen ist. Sei (X, \mathcal{T}') ein weiterer topologischer Raum, dann ist \mathcal{T}' stärker als \mathcal{T} , wenn $\mathcal{T} \subseteq \mathcal{T}'$ ($\iff \mathcal{T}$ schwächer als \mathcal{T}')

- **1.1.2 Beispiel.** *X* beliebige Menge;
 - $T_{\text{disc}} = \{\text{alle Teilmengen von X}\}\ diskrete\ Topologie,$
 - $\mathcal{T}_{triv} = \{\emptyset, X\}$ antidiskrete Toplogie.
 - (X, d) metrischer Raum;
 - $\mathcal{T}_d := \{ U \subset X \mid \forall x \in U \exists \varepsilon > 0 \text{ s.d. } B(x, \varepsilon) \subset U \}.$
- **1.1.3 Definition.** (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) topologische Räume, Abb. $f: X \longrightarrow Y$ heißt
 - *stetig in* $x \in X$ falls \forall Umgeb. $U_{f(x)} \exists$ Umgeb. $U_x : f(U_x) \subset U_{f(x)}$,
 - *stetig*, wenn $\forall U \in \mathcal{T}_Y$ gilt: $f^{-1}(U) \in \mathcal{T}_X$,
 - *Homöomorphismus*, falls f stetig ist und $\exists g: Y \longrightarrow X$ stetig mit $f \circ g = \mathrm{id}_Y$, $g \circ f =$ id_X (insbesondere sind Homöomorphismen stets Bijektionen).

Bemerkung: Falls nicht explizit gesagt, wird ab jetzt Stetigkeit aller Abb. vorausgesetzt.

- **1.1.4 Beispiel.** Eine "stetige Deformation" des Einheitskreises S_2 liefert einen Homöomorphismus zwischen den Parametrisierungen, die S2 und das Endprodukt der Deformation beschreiben.
 - · Die Buchstaben

sind nicht homöomorph—die eindimensionale/"dünne" Version von A" verliert durch Wegname von kleiner Umgebung geschickt gewählter Punkten den Zusammenhang, die zweidimensionale/"dicke" Version nicht.

- **1.1.5 Definition.** topologischer Raum (X, \mathcal{T}_X) heißt:
 - *zusammenhängend*, wenn es keine Zerlegung $X = X_1 \sqcup X_2$ in zwei disjunkte, nichtleere, offene Mengen gibt,
 - wegzusammenhängend, wenn $\forall x, y \in X \exists \gamma : [0,1] \longrightarrow X$ stetig mit $\gamma(0) = x, \gamma(1) = y$.
- 1.1.6 Proposition. Wegzusammenhängende Räume sind zusammenhängend.

Beweis. (Beruhrt an der Tatsache, dass [0,1] zusammenhängend ist.) (X, \mathcal{T}_X) topologischer Raum, $X = X_1 \sqcup X_2$, X_1 , X_2 offen, nichtleer $\Longrightarrow \exists x \in X_1, y \in X_2$. Da X wegzusammenhängend ist: $\exists \gamma : [0,1] \longrightarrow X$, $\gamma(0) = x$, $\gamma(1) = y$. Es folgt $[0,1] = \gamma^{-1}(X) = \gamma^{-1}(X_1 \sqcup X_2) = \gamma^{-1}(X_1) \sqcup \gamma^{-1}(X_2)$. Die Tatsache, dass $\gamma^{-1}(X_1)$, $\gamma^{-1}(X_2)$ offen sind liefert einen Widerspruch.

1.1.7 Definition. (X, \mathcal{T}) topologischer Raum, $A \subset X$.

$$\overline{A} := \bigcap_{\substack{A \subset F \subset X \\ \text{abgeschl.}}} F$$

ist der *Abschluss* von *A*. *A* liegt *dicht* in $X : \Longleftrightarrow \overline{A} = X$.

1.1.8 Lemma. $\overline{A} = \{x \in X \mid \forall U \ni x \text{ offen gilt } U \cap A \neq \emptyset\}.$

Beweis. Übung.

1.1.9 Definition. (X, \mathcal{T}) topologischer Raum heißt *Hausdorffraum*, wenn

$$\forall x \neq y \in X \exists U_x, U_y \text{ offen mit } x \in U_x, y \in U_y, U_x \cap U_y = \emptyset.$$

Bemerkung: Metrische Räume sind Hausdorffräume.

1.1.10 Definition. (X, \mathcal{T}) topologischer Raum heißt kompakt, wenn es für jede offene Überdeckung $\{U_i\}_{i\in I}$ von X (also U_i offen, $\bigcup_{i\in I}U_i=X$) eine endliche Teilüberdeckung $U_{i_1},...,U_{i_n}$ gibt $(\exists i_1,...,i_n\in I$ s.d. U_i offen, $\bigcup_{k=1}^n U_{i_k}=X)$.

Bemerkung: Es ist sinnvoll, Kompaktheit nur auf Hausdorffräumen zu betrachten. Im Weiteren werden topologische Räume/ Hausdorffräume einfach mit X bezeichnet.

- **1.1.11 Definition.** (X, \mathcal{T}_X) topologischer Raum, $Y \subset X \implies (Y, \mathcal{T}_Y)$ ist topologischer Raum mit *induzierter Topologie* (*Teilraumtopologie*) $\mathcal{T}_Y := \{U \cap Y \mid U \in \mathcal{T}_X\}$.
- **1.1.12 Proposition.** X Hausdorffraum, $Y \subset X$ kompakt $\implies Y$ abgeschlossen.

3

1 TOPOLOGISCHE RÄUME

Beweis. X ist Hausdorffraum $\implies \forall x \in X \setminus Y \forall y \in Y \exists V_{x,y} \ni y, \ U_{x,y} \ni x \text{ offen mit } V_{x,y} \cap U_{x,y} = \emptyset.$ Wenn $x \in X \setminus Y \implies \bigcup_{y \in Y} (V_{x,y} \cap Y) = Y, \ V_{x,y} \cap Y \text{ offen in } Y.$ Y ist kompakt $\implies \exists y_1, ..., y_n \in Y \text{ s.d. } \bigcup_{k=1}^n (V_{x,y} \cap Y) = Y, \ V_{x,y_k} \cap U_{x,y_k} \implies U_{x,y_k} \cap Y = \emptyset \implies \text{für } U_x := \bigcap_{k=1}^n U_{x,y_k} \text{ gilt } U_x \cap Y = \emptyset.$ Nun ist $X \setminus Y = \bigcup_{x \in X \setminus Y} U_x \text{ offen } \implies Y \text{ ist abgeschlossen.}$

1.1.13 Proposition. X kompakt, Y Hausdorffraum, $Abb.\ f: X \longrightarrow Y$ stetig, injektiv $\implies f: X \longrightarrow Y$ ist ein Homöomorphismus.

Beweis. $f: X \longrightarrow f(X)$ ist stetig und bijektiv \Longrightarrow man braucht zu zeigen, dass die inverse Abb. stetig ist, oder, dass f abgeschlossene Teilmengen von X auf abgeschlossene Teilmengen von f(X) abbildet. Nun, wenn $X' \subset X$ abgeschlossen, dann auch kompakt $\Longrightarrow f(X')$ kompakt, da Kompaktheit unter stetigen Abbildungen erhalten bleibt $(f(X') = \bigcup_{i \in I} U_i \Longrightarrow X' = \bigcup_{i \in I} f^{-1}U_i \overset{X'}{=} \bigcup_{k=1}^n f^{-1}U_{i_k} \Longrightarrow f(X') = \bigcup_{k=1}^n U_{i_k}) \Longrightarrow f(X') \subset Y$ abgeschlossen nach obiger Proposition.

2 Homotopie

2.1 Motivation

Das X :="dickes A" und Y :="dünnes A" aus Beispiel 1.4 sind nicht homöomorph aber doch irgendwie ähnlich. Manchmal ist Hömöomorphie eine zu strenge Forderung. Man hat eine Einbettung $\iota: X \longrightarrow Y$ mit einer Familie von Abbildungen $f_t: X \longrightarrow Y$, $t \in [0,1]$, s.d.

- $f_0 = \operatorname{id}_Y$,
- $f_1(Y) \subset \iota(X)$,
- die Abb. $F: Y \times [0,1] \longrightarrow Y, (y,t) \mapsto f_t(y)$ ist stetig,
- $f_t|_{\iota(X)} = \mathrm{id}|_{\iota(X)}$.
- **2.1.1 Definition.** Sei Y ein topologischer Raum, $A \subset Y$ ein Teilraum. A heißt Deformations retrakt von Y, wenn $\exists F: Y \times [0,1] \longrightarrow Y$ stetig, s.d.
 - $F(\cdot,0) = \mathrm{id}_Y$,
 - $F(y,1) \in A \forall y \in Y$,
 - $F(a, t) = a \forall t \in [0, 1] \forall a \in A$.
- **2.1.2 Beispiel.** Einheitssphäre S_1 ist kein Deformationsretrakt von $\overline{B(0,1)} \subset \mathbb{R}^2$.
- **2.1.3 Definition.** Sei X ein topologischer Raum, f: X o Y (d.h. f surjektiv), dann kann man eine Topologie $\mathcal{T}_f := \{U \subset Y \mid f^{-1}(U) \subset X \text{ offen}\}$ auf Y definieren. Diese heißt *Quotiententopologie*.
- **2.1.4 Beispiel.** $R \subset X \times X$ eine Äquivalenzrelation, $q: X \longrightarrow X/_R$ kanonische Abbildung liefern eine Quotiententopologie auf $X/_R$. Z.B. $X := [0,1]^2$, \sim gegeben durch Identifizierung der Strecken $\{0\} \times [0,1]$ mit $\{1\} \times [0,1]$ und $[0,1] \times \{0\}$ mit $[0,1] \times \{1\}$. Die Menge $X/_{\sim}$ ist homöomorph zu dem Torus Π_2 . Anschaulich:

2.1.5 Proposition (universelle Eigenschaft der Quotiententopologie). Sei Y eine Menge, X ein topologischer Raum, $f: X \rightarrow Y$ (surjektive) Abbildung. Betrachte (Y, \mathcal{T}_f) . Dann gilt für alle topologische Räume Z: eine Abb. $g: Y \longrightarrow Z$ ist stetig $\iff g \circ f: X \longrightarrow Z$ ist stetig.

Beweis. " \Longrightarrow " $U \subset Z$ offen $\Longrightarrow g^{-1}(U)$ offen $\Longrightarrow f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ offen, d.h. $g \circ f$ stetig. " \longleftrightarrow " $U \subset Z$ offen, $g \circ f$ stetig $\Longrightarrow (g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$ offen $\Longrightarrow g^{-1}(U)$ ist offen wegen \mathcal{T}_f .

2.1.6 Beispiel. Sei $f: X \longrightarrow Y$ stetig, Zylinder $Z_f := X \times [0,1] \sqcup Y /_{\sim}$, wobei \sim Punkte $(x,1) \in X \times [0,1]$ mit $f(x) \in Y$ identifiziert. Übung: $Y \subset Z_f$ ist ein Deformationsretrakt.

2.2 Homotopie zwischen Abbildungen

- **2.2.1 Definition.** Seien X, Y topologische Räume, f_0 , $f_1: X \longrightarrow Y$ (stetig). Eine Homotopie zwischen f_0 und f_1 ist eine stetige Abbildung $F: X \times [0,1] \longrightarrow Y$ mit $F(\cdot,0) = f_0$, $F(\cdot,1) = f_1$.
- **2.2.2 Definition.** Sei $A \subset X$ ein Teilraum. Dann heißt eine Abbildung $r: X \longrightarrow A$ mit $r|_A = \operatorname{id}_A$ eine *Retraktion* von X auf A.
- **2.2.3 Definition.** Seien X, Y topologische Räume, f_0 , $f_1: X \longrightarrow Y$ stetig, $A \subset X$ Teilraum mit $f_0|_A = f_1|_A$, f_0 und f_1 heißen *homotop relativ* zu A, wenn $\exists F: X \times [0,1] \longrightarrow Y$ Homotopie zwischen f_0 und f_1 , sodass $F(a,t) = f_0(a) = f_1(a) \forall a \in A \forall t \in [0,1]$.
- **2.2.4 Beispiel.** Aus der Funktionentheorie ist Bekannt: $\gamma_1 : [0,1] \longrightarrow B(0,1) \setminus \{0\}, \ t \mapsto 1/2e^{i\pi t}$ ist homotop zu $\gamma_2 : [0,1] \longrightarrow B(0,1) \setminus \{0\}, \ t \mapsto 1/2e^{-i\pi t}$, sie sind allerdings nicht homotop relativ zu $\{-1/2,1/2\}$.
- **2.2.5 Definition.** Zwei topologische Räume X, Y heißen *homotopieäquivalent*, wenn $\exists f: X \longrightarrow Y, g: Y \longrightarrow X$, sodass $f \circ g$ homotop zu id_Y und $g \circ f$ homotop zu id_X .

Notation: $X \simeq Y$ (X homotopieäquivalent zu Y), $X \cong Y$ (X homöomorph zu Y).

2.2.6 Proposition. Sei Y ein topologischer Raum, $A \subset Y$ Teilraum. Wenn A ein Deformationsretrakt von Y ist, dann gilt $A \simeq Y$.

Beweis. Die Abb. $F: Y \times [0,1] \longrightarrow Y$ ist eine Homotopie zwischen id_Y und $r: Y \longrightarrow A$, r(y) := F(y,1), die eine Retraktion ist, weil $r(a) = F(a,1) = a \, \forall \, a \in A$. Betrachte $\iota: A \hookrightarrow Y$ Inklusion; $\iota \circ r \simeq \mathrm{id}_Y$ durch $F, r \circ \iota = \mathrm{id}_A$.

- **2.2.7 Definition.** Ein topologischer Raum heißt *kontrahierbar*, wenn $X \simeq \{*\}$.
- **2.2.8 Beispiel.** $B(0,1) \subset \mathbb{R}^n$ ist zusammenziehbar: $\{0\} \subset B(0,1)$ ist Deformationsretrakt via $F: B(0,1) \times [0,1] \longrightarrow B(0,1), (x,t) \mapsto (1-t)x$.
 - \mathbb{R}^n ist zusammenziehbar, denn $B(0,1) \cong \mathbb{R}^n$ (analog $(0,1) \cong \mathbb{R}$ mittels $F: B(0,1) \longrightarrow \mathbb{R}$, $x \mapsto \tan \pi (x 1/2)$),
 - $S_n := \{x \in \mathbb{R}^{n+1} \mid ||x||_2 = 1\} \subset \mathbb{R}^{n+1}$ ist nicht zusammenziehbar.

2. Vorlesung, 13.10.2016

3. Vorlesung, 19.10.2016

Konstruktionen und Beispiele

• Wiederholung: Torus lässt sich darstellen als

$$[0,1] \times [0,1]/(0,y) \sim (1,y) \wedge (x,0) \sim (x,1)$$

Sukzessives Zusammenkleben. Formales Vorgehen:

- (0) Starte mit einem Punkt $\{*\} =: e^0$.
- (1) Betrachte zwei Kopien von [0,1]: $e_a^1 := [0,1]$, $e_b^1 := [0,1] \implies \partial e_a^1 = \{0_a,1_a\}$, $\partial e_b^1 = \{0_b,1_b\}$. Abbildungen $\varphi_a: \partial e_a^1 \longrightarrow e^0 = \{*\}$, $\varphi_b: \partial e_b^1 \longrightarrow e^0 = \{*\}$.

$$X^{1} := e^{0} \cup e_{a}^{1} \cup e_{b}^{1} / \varphi_{a}(x) \sim x \wedge \varphi_{b}(x) \sim x$$

(habe e_a^1 , e_b^1 an e^0 angeklebt). (2) Betrachte $e^2 := D^2$ (= $\overline{B(0,1)} \subset \mathbb{R}^2$), $\partial e^2 := \partial D^2 = S^1$, $\varphi^2 : \partial e^2 \longrightarrow X^1$,

$$\implies X^2 := X^1 \cup e^2 / \varphi^2(x) \sim x = \Pi^2.$$

• Konstruktion einer Sphäre: Verklebe den gesamten Rand einer Kreisscheibe mit einem einzigen Punkt. $X^0 := \{*\}, X^1 := X^0, e_2 = D^2, \varphi^2 : \partial e^2 \longrightarrow X^1, x \mapsto * \implies$ $X^2 := X^1 \cup e^{2}/_{\varphi^2(x) \sim x} = S^2.$

Notation:

• Zusammenkleben von Räumen längs einer Abbildung: Seien X, Y topologische Räume, $\varphi: A \subset X \longrightarrow Y$ stetig. Dann ist

$$X \cup_{\varphi} Y := X \sqcup Y /_{X} \sim \varphi(x), x \in X$$

- $D^n := \overline{B(0,1)} \subset \mathbb{R}^n$.
- $\partial D^n = S^{n-1} = \{x \in \mathbb{R}^n \mid ||x||_2 = 1\}.$
- e_{α}^{n} bezeichnet stets eine Kopie von D^{n} . So eine Kopie heißt n-Zelle.
- **2.3.1 Definition.** Ein CW-Komplex X ist ein topologischer Raum, der wie folgt entsteht:
 - (0) Fange mit einem diskreten Raum $X^0 :=$ disjunkte Vereinigung von Punkten an.
 - (1) Definiere induktiv die Räume X^n (die sogenannte n-Skelette / n-Gerüste von X) für $n \ge 1$ folgendermaßen: für eine Familie $\{e_q^n\}_{\alpha \in A}$ von n-Zellen fixiere stetige
 - Abbildungen $\varphi_{\alpha}^{n}: \partial e_{\alpha}^{n} \longrightarrow X^{n-1}$ und definiere $X^{n}:=(\bigsqcup_{\alpha\in A}e_{\alpha}^{n})\cup_{\varphi_{\alpha}^{n}}X^{n-1}$. (2) $X=\bigcup_{n\in\mathbb{N}}X^{n}$ mit der *schwachen Topologie*: $Y\subset X$ offen $\iff Y\cap X^{n}$ offen für alle n.
- **2.3.2 Definition.** Eine topologische *Mannigfaltigkeit* von Dimension n ist ein Hausdorffraum X, sodass jeder Punkt $x \in X$ eine Umgebung $U \ni x$ besitzt, die homöomorph zu \mathbb{R}^n ist.

7

2.3.3 Beispiel (Flächen höheren Geschlechts). Anschaulich: Man schneidet aus der Sphäre S^2 zwei Kreise aus und klebt an die Löcher die kreisförmigen Enden eines Zylinders $[0,1] \times S^2$. Dieses Objekt ist homöomorph zu einem Torus. Eine Fläche Σ_g , die durch sukzessives Ankleben von g Handgriffen an die Sphäre S^2 heißt *Fläche von Geschlecht g*. Siehe z.B. Abbildung auf S. 5 in Hatcher: Algebraic Topology. Ferner:

$$\cong$$
 Zylinder \cong Möbiusband \cong Kleinsche Flasche \cong R \mathbb{P}^2

Wiederholdung: $\mathbb{RP}^2 := \{ \text{Geraden } l \subset \mathbb{R}^3 \mid 0 \in l \}$ (topologisiert durch Winkelabstand) ist die *Projektive Ebene*. Andere Definition:

$$\mathbb{RP}^{2} := \mathbb{R}^{3} \setminus \{0\} /_{\nu} \sim \lambda \nu, \lambda \in \mathbb{R}^{x} = \{ [x_{1} : x_{2} : x_{3}] \mid (x_{1}, x_{2}, x_{3}) \neq 0 \}$$
$$= \underbrace{\{ [x_{1} : x_{2} : 1] \}}_{\mathbb{R}^{2}} \cup \underbrace{\{ [x_{1} : x_{2} : 0] \}}_{\mathbb{RP}^{1}}$$

oder $\mathbb{RP}^2 := S^2 /_{x \sim -x}$. Allgemeiner Fall:

$$\mathbb{RP}^n := \{ \text{Geraden } l \subset \mathbb{R}^{n+1} \mid l \ni 0 \} = \mathbb{R}^{n+1} \setminus \{0\} / \nu \sim \lambda \nu, \ \lambda \in \mathbb{R}^x = S^n / x \sim -x \}$$

In sogenannten homogenen Koordinaten:

$$\{[x_0: x_1: \dots: x_n] \mid (x_0, \dots, x_n) \neq 0\} = \mathbb{R}^n \sqcup \mathbb{RP}^{n-1}.$$

Der kleinste Fall:

$$\mathbb{RP}^1 = \underbrace{\mathbb{R}}_{=e^1} \sqcup \underbrace{\{\infty\}}_{=e^0} = S^1 /_{x \sim -x} \cong S^1.$$

 \mathbb{RP}^n ist also ein CW-Komplex mit einer Zelle in jeder Dimension und die Anklebeabbildungen sind die kanonischen Abbildunden $\varphi^k: S^k \longrightarrow \mathbb{RP}^k$.

3. Vorlesung, 19.10.2016 4. Vorlesung, 20.10.2016

2.4 Fundamentalgruppe

Sei *X* topologischer Raum (ab jetzt: alle Räume sind Hausdorff).

2.4.1 Definition. Eine stetige Abbildung $\gamma:[0,1]\longrightarrow X$ heißt *Weg* in X. Ein Weg $\gamma:[0,1]\longrightarrow X$ mit $\gamma(0)=\gamma(1)$ heißt *Schleife* in X.

Konvention: Homotopie von Wegen wird immer relativ zu $\{0,1\}$ verstanden. $\gamma_1 \sim \gamma_2$ wird verstanden als $\gamma_1 \sim_{\{0,1\}} \gamma_2$. $(\gamma_1(0) = \gamma_2(0), \gamma_1 = \gamma_2(1), H : [0,1] \times [0,1] \longrightarrow X$ zwischen γ_1 und γ_2 muss $H(0,t) = \gamma_1(0) = \gamma_2(0), H(1,t) = \gamma_1(1) = \gamma_2(1)$. Notation:

• I := [0, 1],

- $H: X \times I \longrightarrow Y$ eine Homotopie zwischen f und g, dann schreibe $H: f \sim g$.
- **2.4.2 Beispiel.** Je zwei Wege mit gleichen Anfangs- und Endpunkten in \mathbb{R}^n sind homotop: $\gamma_1, \gamma_2 : I \longrightarrow \mathbb{R}^n$ mit $\gamma_1(0) = \gamma_2(0) = x$, $\gamma_1(1) = \gamma_2(1) = y$. Wähle $H(s,t) := t \cdot \gamma_2(s) + (1-t)\gamma_1(s) \Longrightarrow H$ ist eine Homotopie.
- **2.4.3 Korollar.** Alle Schleifen an $0 \in \mathbb{R}^n$ sind homotop.
- **2.4.4 Proposition.** Homotopie von Wegen mit festen Endpunkten $x, y \in X$ ist eine Äquivalenzrelation. Sei $\gamma_1, \gamma_2, \gamma_3 : I \longrightarrow X$. Wegen $\gamma_1(0) = \gamma_1(0) = \gamma_3(0) = x$, $\gamma_1(1) = \gamma_1(1) = \gamma_3(1) = y$:
 - $\gamma_1 \sim \gamma_2$, $\iff \gamma_2 \sim \gamma_1$
 - $\gamma_1 \sim \gamma_1$
 - $\gamma_1 \sim \gamma_2$, $\gamma_2 \sim \gamma_3 \Longrightarrow \gamma_1 \sim \gamma_3$.

Beweis. • $H: \gamma_1 \leadsto \gamma_2$ Homotopie, dann ist $\overline{H}(s,t) := H(s,1-t)$ eine Homotopie $\gamma_2 \leadsto \gamma_1$.

- $H: \gamma_1 \rightsquigarrow \gamma_1: H(s,t) := \gamma_1(s)$.
- $H_1: \gamma_1 \sim \gamma_2$, $H_2: \gamma_2 \sim \gamma_1$. Definiere

$$H(s,t) := \begin{cases} H_1(s,2t), & t \in [0,1/2], \\ H_2(s,2t-1), & t \in [1/2,1]. \end{cases}$$

Dies ist eine Homotopie zwischen γ_1 und γ_3 .

Übung: Der Beweis funktioniert für beliebige stetige Abb. $\gamma: Z \longrightarrow X$ (Homotopie ist eine Äquivalenzrelation auf stetigen Abbildungen). Notation: $[\gamma]$ ist die Äquivalenzklasse des Wegen γ ([f] ist die Äquivalenzklasse der Abb. [f]).

2.4.5 Definition. Seien $\gamma_1, \gamma_2 : I \longrightarrow X$ zwei Wege s.d. $\gamma_2(0) = \gamma_1(1)$. Dann wird der Weg $\gamma := \gamma_2 \cdot \gamma_1$ so definiert:

$$\gamma(s) := \left\{ \begin{array}{ll} \gamma_1(2s), & s \in [0, 1/2], \\ \gamma_2(2s-1), & s \in [1/2, 1]. \end{array} \right.$$

 γ heißt *Verknüpfung* von γ_1 , γ_2 .

2.4.6 Lemma. $\gamma_1 \sim \gamma_1' \Longrightarrow \gamma_2 \cdot \gamma_1 \sim \gamma_2 \cdot \gamma_1', \gamma_2 \sim \gamma_2' \Longrightarrow \gamma_2 \cdot \gamma_1 \sim \gamma_2' \cdot \gamma_1.$

Beweis. Wenn $H: \gamma_1 \leadsto \gamma_1', \gamma_{1,t}(\cdot) := H(\cdot, t)$, dann ist $H_{2,1}(s, t) := \gamma_2 \cdot \gamma_{1,t}(s)$ eine Homotopie $\gamma_2 \cdot \gamma_1 \leadsto \gamma_2 \cdot \gamma_1'$. Analog andersherum.

Sei $x_0 \in X$ fest. Def.: $\Omega(X, x_0) := \{ \gamma : I \longrightarrow X \mid \gamma(0) = \gamma(1) = x_0 \}$ Schleifen an x_0 . Die Verknüpfung definiert Operation $\cdot : \Omega(X, x_0) \times \Omega(X, x_0) \longrightarrow \Omega(X, x_0)$, die aber nicht assoziativ ist:

2.4.7 Definition. $(\pi_1(X, x_0), \cdot), \pi_1(X, x_0) := \{ [\gamma] | \gamma \in \Omega(X, x_0) \}, \cdot \text{ ist die obige Verknüpfung, heißt } Fundamentalgruppe von <math>X$ an x_0 .

2.4.8 Proposition. $\pi_1(X, x_0)$ ist eine Gruppe mit dem neutralen Element $e = [\underline{x_0}], \underline{x_0} : I \longrightarrow X, t \mapsto x_0$. Das Inverse einer Klasse $[\gamma]$ ist gegeben durch $[\gamma]^{-1} = [\overline{\gamma}], \overline{\gamma}(t) := \overline{\gamma}(1-t)$.

Beweis. Assoziativität—zu zeigen ist $[\gamma_3 \cdot (\gamma_2 \cdot \gamma_1)] = [(\gamma_3 \cdot \gamma_2) \cdot \gamma_1]$. Die Abb.

$$\gamma_3 \cdot (\gamma_2 \cdot \gamma_1)(s) := \left\{ \begin{array}{ll} \gamma_1(4s), & s \in [0, 1/4], \\ \gamma_2(4s-1), & s \in [1/4, 1/2], \\ \gamma_3(2s-1), & s \in [1/2, 1]. \end{array} \right.$$

$$(\gamma_3 \cdot \gamma_2) \cdot \gamma_1(s) := \left\{ \begin{array}{ll} \gamma_1(2s), & s \in [0, 1/2], \\ \gamma_2(4s-2), & s \in [1/4, 3/4], \\ \gamma_3(4s-3), & s \in [3/4, 1]. \end{array} \right.$$

sind äquivalent durch folgende Homotopie (zuerst anschaulich in der Bildnotation):

$$H(s,t) := \left\{ \begin{array}{ll} \gamma_1((4-2t)s), & s \in [0,1/(4-2t)], \\ \gamma_2(4s-t-1), & s \in ..., \\ \gamma_3((2+2t)s-1-2t), & s \in \end{array} \right.$$

Neutrales Element: $[\underline{x_0} \cdot \gamma] = [\gamma \cdot \underline{x_0}] = [\gamma]$ offenbar. Inverses: $[\gamma \cdot \overline{\gamma}] = [\overline{\gamma} \cdot \gamma] = e$. Wähle

$$H(s,t) := \left\{ \begin{array}{ll} \gamma(2s(1-t)), & s \in [0,1/2] \\ \gamma((1-2s)(1-t)), & s \in [1/2,1] \end{array} \right.$$

Dann ist dies tatsächlich eine Homotopie $\overline{\gamma} \cdot \gamma \leadsto \underline{x_0}$ mit $H(s,1) = \gamma(0) = x_0$. Da $\overline{\gamma}$, folgt das andere.

2.4.9 Beispiel. • $\pi_1(\mathbb{R}^n, 0) \cong \{e\}$ (jede Schleife ist homotop zur konstanten Schleife).

• Wenn $X \cong \{*\}$, dann $\pi_1(X,*) \cong \{e\}$, denn: $\gamma: I \longrightarrow X$ eine Schleife an *, dann kann man die Homotopie zwsichen $f: X \longrightarrow X$, $x \mapsto *$ und id: $X \longrightarrow X$ benutzen, um zu zeigen: $\gamma \sim \underline{*}$: Sei $\gamma: I \longrightarrow X$ gegeben, $H: X \times I \longrightarrow X$ Homotopie zwischen id und $f \Longrightarrow H \circ (\gamma \times \mathrm{id}): I \times I \longrightarrow X$ eine Homotopie zwischen γ und $\underline{*}$ (denn: $H \circ (\gamma \times \mathrm{id})(s,0) = H(\gamma(s),0) = \gamma(s)$, weil $H(\cdot,0) = \mathrm{id}$ und $H \circ (\gamma \times \mathrm{id})(s,1) = H(\gamma(s),1) = *$, weil $H(\cdot,1) = \gamma$.)

10

- $S^1 \subset \mathbb{C}$, dann $\pi_1(S^1,1) \cong \mathbb{Z}$. (Expliziter Homomorphismus $\phi : \pi_1(S^1,1) \longrightarrow \mathbb{Z}$ ist gegeben z.B. durch Funktionentheorie: $[\gamma] \stackrel{\phi}{\mapsto} \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z}$.)
- **2.4.10 Proposition.** Seien X, Y topologische Räume, $f: X \longrightarrow Y$ stetig, $x_0 \in X, y_0 \in Y$, $f(x_0) = y_0$. Dann gilt: die Abbildung $f_*: \pi_1(X, x_0) \longrightarrow \pi_1(Y, y_0)$, $[\gamma] \mapsto [f \circ \gamma]$ ein Gruppenhomomorphismus. Außerdem: wenn $g: Y \longrightarrow Z$ stetig, $g(y_0) = z_0 \Longrightarrow (g \circ f)_* = g_* \circ f_*: \pi_1(X, x_0) \longrightarrow \pi_1(Z, z_0)$.

Beweis. f_* ist wohldefiniert, weil $\gamma_1 \sim \gamma_2$ durch H, dann gilt $f \circ \gamma_1 \sim f \circ \gamma_2$ durch $f \circ H$. $f_*(\gamma_2 \cdot \gamma_1) = [f \circ (\gamma_2 \cdot \gamma_1)] = [f \circ \gamma_2] \cdot [f \circ \gamma_1] = f_*(\gamma_2) \cdot f_*(\gamma_1) \cdot (g \circ f)_*([\gamma]) = [g \circ f \circ \gamma] = g_*([f \circ g]) = (g_* \circ f_*)([\gamma]).$

4. Vorlesung, 20.10.2016 5. Vorlesung, 26.10.2016

2.4.11 Lemma. $f, f': X \longrightarrow Y$ zwei stetige Abb. $mit \ f(x_0) = f'(x_0) = y_0 \Longrightarrow f \sim f'$ rel. $zu \ x_0 \Longrightarrow f_* = f'_*$.

Beweis. $f_*([\gamma]) = [f \circ \gamma]$. Erste Homotopie $f \leadsto f'$ induziert eine Homotopie $f \circ \gamma \leadsto f'([\gamma]) = [f \circ \gamma] = [f' \circ \gamma] = f'([\gamma])$.

Die obigen Behauptungen motivieren die Frage: Wie hängt $\pi_1(X, x_0)$ von x_0 ab?

2.4.12 Lemma. Sei X ein wegzusammenhängender Raum, $x_0, x_1 \in X$. Dann gilt: $\pi_1(X, x_0) \cong \pi_1(X, x_1)$. Genauer: Jede Homotopieklasse der Wege $\beta : I \longrightarrow X$, $\beta(0) = x_0$, $\beta(1) = x_1$ induziert einen solchen Isomorphismus $\Theta_{[\beta]} : \pi_1(X, x_0) \longrightarrow \pi_1(X, x_1)$, $[\gamma] \mapsto [\beta \cdot \gamma \cdot \beta^{-1}]$.

2.4.13 Definition. X wegzusammenhängend $\implies \pi_1(X)$ ist die Isomorphieklasse von $\pi_1(X, x_0)$ mit $x_0 \in X$.

2.5 Fundamentalgruppe von S^1

Wir wollen folgenden Satz zeigen:

2.5.1 Satz. $\pi_1(S^1, 1)$ (bzw. $S^1 \subseteq \mathbb{C}$) ist isomorph zu \mathbb{Z} , sie wird durch die Äquivalenzklasse der Schleife $\omega : I \longrightarrow S^1$, $s \mapsto e^{2\pi i s} = \cos(2\pi s) + i\sin(2\pi s)$ erzeugt.

Was ist hier zu zeigen? $\omega^n \sim (\cos 2\pi n s + i \sin 2\pi n s = e^{2\pi i n s}), n \in \mathbb{Z}$. Zu zeigen:

• Jede Schleife in S^1 ist homotop zu einer ω^n .

• $\omega^n \nsim 1$.

Betrachte $p:\mathbb{R}\longrightarrow S^1,\ x\mapsto e^{2\pi ix}$ (hier hat man $p(x+n)=p(x)\forall n\in\mathbb{Z}$, also realisiert man $S^1\simeq\mathbb{R}/\mathbb{Z}$). Idee: Für jede Schleife $\gamma\in\Omega(S^1,1)$ gibt es einen eindeutigen Weg $\widetilde{\gamma}:I\longrightarrow\mathbb{R}$ mit $\widetilde{\gamma}(0)=0,\ p\circ\widetilde{\gamma}=\gamma$ (die sogenannte Hochhebung von γ). Nun kann man eine Abbildung $\gamma:\Omega(S^1,1)\longrightarrow\mathbb{Z},\ \gamma\mapsto\widetilde{\gamma}(1)$ (Wdhlg. $\Omega(S^1,1):=\{\gamma:I\longrightarrow S^1\mid\gamma(0)=\gamma(1)=1\}$) definieren. Dann müsste man zeigen: φ induziert eine Abbildung $\overline{\varphi}:\pi_1(S^1,1)\longrightarrow\mathbb{Z}$, die ein Isomorphismus ist (dazu sollte man zeigen, dass $\overline{\varphi}$ nur von der Homotopieklasse von γ abhängt).

2.5.2 Definition. Eine *Überlagerung* $p: Y \longrightarrow X$ ist eine surjektive stetige Abbildung mit folgenden Eigenschaften: Für jeden Punkt $x \in X$ ex. eine Umgebung $U \ni x$, so dass

$$p^{-1}(U) = \bigsqcup_{j \in I} V_j \subset Y,$$

wobe
i $V_j\subset Y$ offen und so dass $p|_{V_j} \longrightarrow U$ ein Homö
omorphismus ist.

2.5.3 Beispiel. • $p: \mathbb{R} \longrightarrow S^1$, $x \mapsto e^{2\pi i x}$ ist eine Überlagerung, denn: p stetig, surjektiv, und für jedes $z = e^{i\varphi} \in S^1$ gilt: $p^{-1}(S^2 \setminus \{z\}) \cong (S^1 \setminus \{z\}) \times \mathbb{Z}$.

• Wenn man $S^1 \subset \mathbb{C}$ realisiert, kann man die Abb. $p_k : S^1 \longrightarrow S^1$, $z \mapsto z^k$ $(e^{i\varphi} \mapsto e^{ki\varphi})$. Es ist $p^{-1}(S^1 \setminus \{-z\}) \cong (S^1 \setminus \{-z\}) \times \mathbb{Z}/k$.

2.6 Hochhebung von Wegen und Homotopien

Fragestellung: Gegeben eine stetige Abbildung $f: Z \longrightarrow X$, finde *Hochhebungen* $\widetilde{f}: Z \longrightarrow Y$, $(f = p \circ \widetilde{f})$ und untersuche, ob sie eindeutig sind.

2.6.1 Proposition (Homotopiehochhebungseigenschaft von Überlagerungen). Sei $p: Y \longrightarrow X$ eine überlagerung, $F: Z \times I \longrightarrow X$ stetig. Sei $\widetilde{F}: Z \times \{0\} \longrightarrow Y$ eine Abbildung mit $p \circ \widetilde{F} = F|_{Z \times \{0\}}$ (intuitiv: F ist eine Homotopie zwischen $F|_{Z \times \{0\}}$ und $F|_{Z \times \{1\}}$, und eine Hochhebung von der ersten Abbildung ist gegeben). Dann existiert eine Fortsetzung $\widetilde{F}: Z \times I \longrightarrow Y$ mit $p \circ \widetilde{F} = F$, von der obigen $\widetilde{F}: Z \times \{0\} \longrightarrow Y$.

2.6.2 Korollar. (1) Gegeben $\gamma: I \longrightarrow X$ und $y_0 \in Y$ s.d. $p(y_0) = \gamma(0)$, es ex. genau eine Hochhebung $\widetilde{\gamma}: I \longrightarrow Y$ mit $\widetilde{\gamma}(0) = y_0$ ($Z = \{*\}, F = \gamma: I \longrightarrow X, \widetilde{F}|_{\{0\}} = y_0$).

(2) Gegeben $\gamma_1, \gamma_2 : I \longrightarrow X$, eine Homotopie $H : \gamma_1 \rightsquigarrow \gamma_2$ und $y_0 \in p^{-1}(\gamma_1(0)) = p^{-1}(\gamma_2(0)) \Longrightarrow \exists ! \widetilde{H} : I \times I \longrightarrow Y$ zwischen den Hochhebungen $\widetilde{\gamma}_1, \widetilde{\gamma}_2$ s.d. $\widetilde{H}|_{I \times \{0\}} = H$.

Beweis (der Homotopiehochhebungseigenschaft). Sei $z_0 \in Z$ fest. Wir werden erstmal \widetilde{F} auf $N \times I$ fortsetzen, wobei $N \ni z_0$ eine Umgebung von z_0 ist. Die Abbildung

 $F:Z\times I\longrightarrow X \text{ ist stetig, deswegen existiert für jedes }t\in X \text{ eine Umgebung }N_t\times(a_t,b_t)\subset Z\times I \text{ von }(z_0,t), \text{ s.d. }F(N_t\times(a_t,b_t))\subset U^t\subset X \text{ für eine Umgebung }U^t \text{ von }F(z_0,t) \text{ mit }p^{-1}(U^t)=\bigsqcup_{j\in I}V_j^t, \text{ wobei }p|_{V_j^t} \text{ ein Homöomorphismus ist }(F \text{ stetig}+\text{Def. der }U\text{berlagerung}). Sei \bigcup_{t\in I}(a_t,b_t)=I \text{ eine off. }U\text{berdeckung, }I \text{ kompakt} \implies \text{ es gibt eine endliche Teilüberdeckung, also }I=\bigcup_{i=1}^n(a_{t_i},b_{t_i}), \text{ o.B.d.A. }0=a_{t_1}< b_{t_1}< ... < a_{t_n}< b_{t_n}=1. \text{ Sei }N:=\bigcap_{i=1}^nN_{t_i}\subset Z. \text{ Wir definieren }\widetilde{F} \text{ auf }N\times I \text{ induktiv: }(\text{o.B.d.A.})$ $F(N\times [a_{t_1},b_{t_1}))\subset U^{t_1}, \text{ deswegen }\exists! j \text{ s.d. }\widetilde{F}(N\times \{0\})\subset V_j^{t_1}; \text{ definiere }\widetilde{F}|_{N\times (a_{t_1},b_{t_1})}:=p_{j,1}^{-1}\circ F, \text{ wobei }p_{j,1}^{-1}:U^{t_1}\longrightarrow V_j^{t_1} \text{ der inverse Homöomorphismus ist. Weiter: Wenn }\widetilde{F}$ auf $N\times\bigcup_{i=1}^k(a_{t_i},b_{t_i}) \text{ definiert ist, dann ist der Durchschnitt }(a_{t_k},b_{t_k})\cap(a_{t_{k+1}},b_{t_{k+1}})\neq\emptyset$ (evtl. nach Umnummerierung). Dann definiert man $\widetilde{F}|_{N\times (a_{t_k+1},b_{t_k+1})}:=p_{j,k+1}^{-1}\circ F, \text{ wobei }p_{j,k+1}:U^{t_{k+1}}\longrightarrow V_j^{t_{k+1}} \text{ ein Homöomorphismus ist, }F(N\times (a_{t_k},b_{t_k}))\subset V_j^{t_{k+1}}. \text{ Nach endlich vielen Schritten erhalten wir }\widetilde{F}:N\times I\longrightarrow Y. \text{ Diese Fortsetzung ist eindeutig, weil die Wahl von }j\text{ in jedem Schritt eindeutig war. Schreibe jetzt }Z=\bigcup_{z\in Z}N_z\text{ (wiederhole für jede Wahl von }z_0)\Longrightarrow \text{ erhalte }\widetilde{F}_z:N_z\times I\longrightarrow Y \text{ für jedes }z\text{. Sobald }N_z\cap N_{z'}\neq\emptyset, \text{ gilt }\widetilde{F}_z=\widetilde{F}_{z'}, \text{ weil die Fortsetzung eindeutig}\Longrightarrow \text{ Definiere }\widetilde{F}_z\text{ eindeutig}.$

5. Vorlesung, 26.10.2016 6. Vorlesung, 27.10.2016

Beweis (von Satz 2.5.1). $p: \mathbb{R} \longrightarrow S^1$, $x \mapsto e^{2\pi i x}$ ist eine Überlagerung. Die Hochhebung $\widetilde{\omega}$ von ω mit $\widetilde{\omega}(0) = 0$ ist $\widetilde{\omega}(s) = s$ (damit $(p \circ \widetilde{\omega})(s) = e^{2\pi i s} = \omega(s)$). Entsprechend ist $\widetilde{\omega}^n(s) = n \cdot s$ die eindeutige Hochhebung von ω^n . Definiere eine Abbildung $\phi: \pi_1(S^1, 1) \longrightarrow \mathbb{Z}$ durch $\phi([\gamma]) := \widetilde{\gamma}(1)$, wobei $\widetilde{\gamma}$ die (eindeutige) Hochhebung von γ ist. Z.z.: ϕ ist wohldefiniert. Dazu:

- (1) $\widetilde{\gamma}$ ist eine Hochhebung, also $p \circ \widetilde{\gamma} = \gamma \Longrightarrow (p \circ \widetilde{\gamma})(1) = p(\widetilde{\gamma}(1)) = \gamma(1) = 1 \Longrightarrow \widetilde{\gamma}(1) \in p^{-1}(1) = \mathbb{Z}$.
- (2) Seien γ_1, γ_2 zwei homotope Schleifen an 1. Seien $\widetilde{\gamma}_1, \widetilde{\gamma}_2$ ihre Hochhebungen. Nach dem Korollar von oben sind auch $\widetilde{\gamma}_1, \widetilde{\gamma}_2$ homotop, und daher $\widetilde{\gamma}_1(1) = \widetilde{\gamma}_2(1)$.

Nun ist z.z.: ϕ ist ein Gruppenhomomorphismus. Dazu erstmal: für jedes $\gamma \in \Omega(S^1,1)$ gibt es ein $n \in \mathbb{Z}$ s.d. $[\gamma] = [\omega^n]$. Dazu: hebe γ hoch zu $\widetilde{\gamma}$, sei $\phi([\widetilde{\gamma}]) = n \in \mathbb{Z}$. Jetzt sind $\widetilde{\gamma}$ und $\widetilde{\omega}^n$ zwei Wege in \mathbb{R} mit den gleichen Anfangspunkten $(\widetilde{\gamma}(0) = 0 = \widetilde{\omega}^n(0))$ und Endpunkten $(\widetilde{\gamma}(1) = n = \widetilde{\omega}^n(1)) \implies \widetilde{\gamma} \sim \widetilde{\omega}^n$, weil je zwei Wege in \mathbb{R} mit gleichen Anfangs- und Endpunkten homotop sind (z.B. durch lineare Homotopie). Daher: $\gamma = p \circ \widetilde{\gamma} \sim p \circ \widetilde{\omega}^n = \omega^n$. Ferner $\phi([\omega^n]) = n$. $\phi([\omega^n] \cdot [\omega^m]) = \phi([\omega^{n+m}]) = n + m = \phi([\omega^n]) + \phi([\omega^m]) \implies \phi$ ist eine Homomorphismus, surjektiv. Bleibt: ϕ ist injektiv. Dazu $\phi([\omega^n]) = 0 \implies n = 0$, $\omega^0 = \underline{1}$.

2.6.3 Satz (Fundamentalsatz der Algebra). *Jedes komplexe Polynom* $p \in \mathbb{C}[z]$, $p(z) = z^n + a_{n-1}z^{n-1} + ... + a_0$, $n \ge 1$ hat eine Nullstelle in \mathbb{C} .

Beweis. Annahme: p hat keine Nullstellen in \mathbb{C} . Sei $r \ge 0$, betrachte

$$f_r(s) = \frac{p(re^{2\pi is})/p(r)}{|p(re^{2\pi is})/p(r)|} \in S^1 \subset \mathbb{C} \forall r.$$

So ist $f_r: I \longrightarrow S^1$ eine Schleife in S^1 an 1. Wenn r sich stetig verändert, verändert sich die Schleife stetig $(f: \mathbb{R}_{\geq 0} \longrightarrow S^1, (r, s) \mapsto f_r(s)$ ist stetig) $\Longrightarrow [f_r]$ ist unabhängig von r.

$$f_0(s) = \frac{p(0)/p(0)}{|p(0)/p(0)|} = 1 \Longrightarrow [f_0] = e \text{ in } \pi_1(S^1, 1).$$

Aber: $p(z) = z^n (1 + \frac{a_{n-1}}{z} + ... + \frac{a_0}{z^n}) = z^n r(z)$ und $|\frac{a_{n-1}}{z} + ... + \frac{a_0}{z^n}| < 1$ für $|z| \ge R$ hinreichend groß $\Longrightarrow r(z) \subset B(1,1) \Longrightarrow r : \{|z| \ge R\} \longrightarrow \mathbb{C}$ ist homotop zur konstanten Abbildung $\widetilde{r}(z) = 1$ durch Abbildungen $r_t(z) \ne 0$ auf $|z| \ge R \Longrightarrow$ für hinreichend große r ist

$$f_r \sim \underbrace{\left(s \mapsto \frac{r^n e^{2\pi i n s}}{r^n} = e^{2\pi i n s}\right)}_{\omega^n}$$

 $e = [f_r] = [\omega^n] \neq e$ in $\pi_1(S^1, 1)$. Widerspruch.

2.6.4 Satz (Brouwerscher Fixpunktsatz). Sei $D^2 \subset \mathbb{R}^2$ und sei $h: D^2 \longrightarrow D^2$ stetig. Dann hat h einen Fixpunkt.

Beweis. Widerspruchsbeweis. Wenn $h(x) \neq x \forall x \in D^2$. Definiere $r(x) \in S^1$ als den Punkt, wo der Strahl mit Richtung h(x) - x den Rand Schneidet. Also gilt $r : D^2 \longrightarrow S^1$, $r|_{S^1} = \mathrm{id}_{S^1}$ (r ist eine Retraktion von D^2 auf S^1). Sei $\iota : S^1 \hookrightarrow D^2$ die Inklusionsabbildung. Nach Proposition 2.4.10 sind $r_* : \pi_1(D^2, x_0) \longrightarrow \pi_1(S^1, x_0)$, $\iota_* : \pi_1(S^2, x_0) \longrightarrow \pi_1(D^1, x_0)$ Homomorphismen. Es ist $r \circ \iota = \mathrm{id}_{S^1} \Longrightarrow r_* \circ \iota_* = (r \circ \iota)_* = (\mathrm{id}_{S^1})_* = \mathrm{id}_{\pi_1(S^1, x_0)}$.

 \implies id_{\mathbb{Z}} faktoriziert durch {*e*}. Widerspruch.

2.6.5 Satz (Borsuk-Ulam). *Sei* $f: S^2 \longrightarrow \mathbb{R}^2$ *eine stetige Abbildung. Dann* $\exists x \in S^2$ *mit* f(x) = f(-x).

Beweis. Widerspruchsbeweis. Wenn $f(x) \neq f(-x) \forall x \in S^2$, definiere

$$g(x) = \frac{f(x) - f(-x)}{\|f(x) - f(-x)\|} \in S^{1}$$

 \implies $g: S^2 \longrightarrow S^1$ ist stetig. Sei $\eta: I \longrightarrow S^2$ die Schleife $s \mapsto (\cos 2\pi s, \sin 2\pi s, 0) \in S^2 \subset \mathbb{R}^2 \implies h:= g \circ \eta$ ist eine Schleife in S^1 . Wir setzen: $\{s+1/2\}=s+1/2 \mod 1$ ist der *Bruchteil* von s+1/2. Es gilt $g(-x)=-g(x) \ \forall x \in S^2 \implies h(\{s+1/2\})=-h(s)$, denn

$$h(s+1/2) = g(\eta(s+1/2)) = g((\cos(2\pi s + \pi), \sin(2\pi s + \pi), 0)) = g(-\eta(s)) = -h(s)$$

und $h(0) = h(1) \Longrightarrow$ wenn $\tilde{h}: I \longrightarrow \mathbb{R}$ eine Hochhebung von h ist, dann gilt $\tilde{h}(\{s+1/2\}) = \tilde{h}(s) + q_s + 1/2$, wobei $q_s \in \mathbb{Z}$ ungerade. Es gilt $\mathbb{Z} \ni q_s = \tilde{h}(\{s+1/2\}) - \tilde{h}(s) - 1/2$ stetig $\Longrightarrow q_s = q \ \forall s \in I \Longrightarrow \tilde{h}(\{s+1/2\}) - \tilde{h}(s) = (2q+1)/2$, also gilt $\tilde{h}(1) - \tilde{h}(0) = 2q+1 \neq 0$ (weil ungerade) $\Longrightarrow [h] \neq [1]$ (sonst wäre $\tilde{h}(1) = \tilde{h}(0)$). Aber $e \neq [h] = [g \circ \eta] = g_*([\eta])$. Aber $e \neq [h] = [g \circ \eta] = g_*([\eta])$. Aber $e \neq [h] = [g \circ \eta] = g_*([\eta])$. Seien $e \neq [h] = [g \circ \eta] = g_*([\eta])$. Seien $e \neq [h] = [g \circ \eta] = g_*([\eta])$. Schleife an $e \neq [h] = [g \circ \eta] = g_*([\eta])$.

2.6.6 Proposition. Seien X, Y topologische Räume, $x_0 \in X$, $y_0 \in Y$. Dann gilt: $\pi_1(X \times Y, (x_0, x_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0)$.

Beweis. Jede Schleife γ in $X \times Y$ an (x_0, y_0) definiert durch Verknüpfung mit Projektionen $\pi_X : X \times Y \longrightarrow X$, $(x, y) \mapsto x$, $\pi_Y : X \times Y \longrightarrow Y$, $(x, y) \mapsto y$ zwei Schleifen $\pi_X \circ \gamma$, $\pi_Y \circ \gamma$. Umgedreht: ein Paar $(\gamma_x, \gamma_y) \in \Omega(X, x_0) \times \Omega(Y, y_0)$ definiert Schleife $\gamma(s) := (\gamma_x(s), \gamma_y(s)) \in \Omega(X \times Y, (x_0, y_0))$. Diese Entsprechung respektiert Homotopien und Verknüpfungen (nachzurechnen) $\implies (\pi_X)_* \times (\pi_Y)_* : \pi_1(X \times Y, (x_0, y_0)) \longrightarrow \pi_1(X, x_0) \times \pi_1(Y, y_0)$ ist ein Isomorphismus.

2.6.7 Korollar.
$$\pi_1(\Pi^n) = \pi_1(S^1 \times ... \times S^1) \cong \mathbb{Z}^n$$
.

6. Vorlesung, 27.10.2016

7. Vorlesung, 03.11.2016

2.7 Überlagerungen und Fundamentalgruppe

Wiederholung: Sei $p:(Y,y_0) \longrightarrow (X,x_0)$ eine Überlagerung $(p(y_0)=x_0)$, dann ist $p_*: \pi_1(Y,y_0) \longrightarrow \pi_1(X,x_0)$, $[\gamma] \mapsto [p \circ \gamma]$ der induzierte Gruppenhomomorphismus.

2.7.1 Proposition. p_* ist injektiv, $p_*(\pi_1(Y, y_0)) \subset \pi_1(X, x_0)$ ist die Untergruppe der Homotopieklassen von Schleifen γ , deren Hochhebung $\widetilde{\gamma}$ mit $\widetilde{\gamma}(0) = y_0$ auch Schleife ist.

Beweis. Sei $\hat{\gamma} \in \Omega(Y, y_0)$ mit $p_*([\hat{\gamma}]) = e \implies p \circ \hat{\gamma} = \gamma \sim \underline{x_0}$. Wegen der Eindeutigkeit der Hochhebung gilt $\hat{\gamma} = \widetilde{\gamma}$ (Hochhebung von γ mit $\widetilde{\gamma}(0) = \overline{y_0}$). Homotopiehochhebung liefert eine Homotopie von $\widetilde{\gamma}$ zu einer Hochhebung von $\underline{x_0}$, die nach Eindeutigkeit der Hochhebung gleich $\underline{y_0}$ ist $\Longrightarrow \hat{\gamma} = \underline{y_0} \Longrightarrow [\hat{\gamma}] = e \in \pi_1(Y, y_0)$. p_* ist also injektiv. Wenn $[\gamma] \in \operatorname{Im}(p_*) \Longrightarrow [\widetilde{\gamma}] \in \overline{\pi_1}(Y, y_0)$, weil $\overline{p_*}([\widetilde{\gamma}]) = [\gamma] \Longrightarrow \widetilde{\gamma} \in \Omega(Y, y_0)$.

Frage: Sei $\Gamma := \pi(X, x_0)$, $\Lambda < \Gamma$ Untergruppe. Gibt es eine Überlagerung $p : (Y, y_0) \longrightarrow (X, x_0)$ mit $p_*(\pi_1(Y, y_0)) = \Lambda$?

2.7.2 Beispiel. $(X, x_0) = (S^1, 1) \implies \pi_1(S^1, 1) \cong \mathbb{Z} =: \Gamma$, jedes $\Lambda < \mathbb{Z}$ hat die Form $n\mathbb{Z}$. Welche Überlagerung gehört zu $n\mathbb{Z} < \mathbb{Z}$?

- $p_n:(S^1,1)\longrightarrow (S^1,1), z\mapsto z^n \Longrightarrow (p_n)_*([\omega])=[\omega^n]\Longrightarrow (p_n)_*(\mathbb{Z})=n\mathbb{Z}.$
- Sei n=0, d.h. wir betrachten $0 < \mathbb{Z}$. Dann ist $p: \mathbb{R} \longrightarrow S^1$, $x \mapsto e^{2\pi i x}$ die zugehörige Überlagerung.

2.7.3 Definition. Sei (X, x_0) ein punktierter Raum. Eine Überlagerung $\widetilde{p}: (\widetilde{X}, \widetilde{x}_0) \longrightarrow (X, x_0)$ heißt *universelle Überlagerung*, falls $\pi_1(\widetilde{X}, \widetilde{x}_0) = \{e\}$.

Bemerkung: Es ist sinnvoll, X als wegzusammenhängend vorauszusetzen (alles hängt nur von der Wegzusammenhangskomponente von x_0 ab).

Welche Eigenschaften von X sind notwendig für existenz einer universellen Überlagerung? Sei $\widetilde{p}:(\widetilde{X},\widetilde{x}_0)\longrightarrow (X,x_0)$ eine universelle Überlagerung, sei $\gamma\in\Omega(X,x_0)$, $\widetilde{\gamma}\in\Omega(\widetilde{X},\widetilde{x}_0)$ eine Hochhebung von γ (also setzen wir voraus, dass γ zu einer Schleife hochgehoben wird). Dann ist $\widetilde{\gamma}\sim \underline{\widetilde{x}_0}$, weil \widetilde{X} einfach zusammenhängend ist. Wenn $U\ni x_0$ eine Umgebung von x_0 derart ist, dass $p^{-1}(U)=\bigsqcup_{\alpha\in F}V_\alpha$ mit $p:V_\alpha\longrightarrow U$ Homöomorphismus, dann liegt $\widetilde{x}_0\in V_{\alpha_0}$, also hebt sich jede Schleife $\gamma\in\Omega(U,x_0)$ zu $\widetilde{\gamma}\in\Omega(V_{\alpha_0},\widetilde{x}_0)$. D.h. $\widetilde{\gamma}\sim\widetilde{x}_0\Longrightarrow\gamma\sim x_0$.

Also gilt: Für jede offene Teilmenge $x \in W \subset X$ gibt es eine offene Teilmenge $x \in U \subset W \subset X$ s.d. jede Schleife $\gamma \in \Omega(U,x)$ homotop zur konstanten Schleife \underline{x} ist. Dies ist eine Eigenschaft von X, die notwendig für die Existenz von einer universellen Überlagerung ist. Wenn X diese erfüllt, heißt X semilokal einfach zusammenhängend.

2.7.4 Definition. X heißt lokal wegzusammenhängend, wenn $\forall W \subset X$ offen eine offene Teilmenge $U \subset W$ ex. s.d. U wegzusammenhängend ist.

Bemerkung: CW-Komplexe erfüllen beide Eigenschaften automatisch (sie sind lokal zusammenziehbar, also hat jeder Punkt eine zusammenziehbare Umgebung).

Sei X ein wegzusammenhängender, lokal wegzusammenhängender, semilokal einfach zusammenhängender Raum, $x_0 \in X$ fest. Sei

$$\widetilde{X} := \{ [\gamma] \mid \gamma : I \longrightarrow X \text{ Weg mit } \gamma(0) = x_0 \},$$

 $p:\widetilde{X}\longrightarrow X,$ $[\gamma]\mapsto \gamma(1),$ $\widetilde{x}_0:=\underline{x_0}\in\widetilde{X}.$ Die Abb. p ist wohldefiniert und surjektiv, da X wegzusammenhängend. Wir brauchen eine Topologie auf \widetilde{X} , s.d. $p:(\widetilde{X},\widetilde{x_0})\longrightarrow (X,x_0)$ eine Überlagerung ist. Dazu betrachten wir:

 $\mathcal{U} := \{U \subset X \text{ offen, wegzusammenhängend } | \iota_* : \pi_1(U) \longrightarrow \pi_1(X) \text{ trivial} \}.$

Bemerkung: $U \in \mathcal{U}$, $V \subset U$ offen, wegzusammenhängend $\implies V \in \mathcal{U}$ ($\iota_*^V : \pi_1(V) \longrightarrow \pi_1(U) \longrightarrow \pi_1(X)$ ist trivial, weil ι_*^U trivial).

Behauptung. Sei X lokal wegzusammenhängend, semilokal einfach zusammenhängend $\implies \mathcal{U}$ ist eine Basis der Topologie auf X.

Beweis (der Behauptung). Es reicht zu zeigen: $\forall W \subset X$ offen, $\exists U \in \mathcal{U}$ mit $U \subset W$. Sei W gegeben. Finde $U' \subset W$ s.d. jede Schleife in U' homotop zur konstanten Schleife in X ist (also $\iota_* : \pi_1(U') \longrightarrow \pi_1(X)$ ist trivial) und finde für dieses U' eine wegzusammenhängende offene Teilmenge U. Es folgt $U \in \mathcal{U}$, weil

Wir beweisen nun den nächsten Satz. Sei $U \in \mathcal{U}$ und $[\gamma] \in \widetilde{X}$ mit $\gamma(1) \in U$. Definiere

$$U_{[\gamma]} := \{ [\eta \cdot \gamma] \mid \eta : I \longrightarrow X \text{ mit } \eta(0) = \gamma(1) \text{ und } \eta(I) \subset U \}$$

(wohldefiniert, weil Homotopie verträglich mit Verknüpfung ist). Die Abbildung

$$p|_{U_{[\gamma]}}:U_{[\gamma]}\longrightarrow U$$

ist surjektiv, weil U wegzusammenhängend ist, auch injektiv, weil wenn $(\eta_1 \cdot \gamma)(1) = (\eta_2 \cdot \gamma)(1) \Longrightarrow [\eta_1 \cdot \gamma] = [\eta_2 \cdot \gamma]$. Sei jetzt \mathcal{T} die Topologie auf \widetilde{X} , die $\{U_{[\gamma]} \mid U \in \mathcal{U}, [\gamma] \in \widetilde{X}\}$ als Basis hat. Dann gilt: $p|_{U_{[\gamma]}} : U_{[\gamma]} \longrightarrow U$ ist ein Homöomorphismus (wenn $V_{[\gamma]} \subset U_{[\gamma]} \iff V \subset U$). Also ist $p: (\widetilde{X}, \widetilde{x}_0) \longrightarrow (X, x_0)$ stetig, weil Stetigkeit eine lokale Eigenschaft ist. Sei jetzt $U \in \mathcal{U}$, wähle $x \in U$.

$$p^{-1}(U) = \bigsqcup_{[\gamma]} {}^{1}U_{[\gamma]}.$$

Weil: Sei $U_{[\gamma_1]} \cap U_{[\gamma_2]} \neq \emptyset$. D.h. $[\eta_1 \cdot \gamma_1] = [\eta_2 \cdot \gamma_2]$ für gewisse $\eta_1, \eta_2 : I \longrightarrow U, \gamma_1, \gamma_2 : I \longrightarrow X$.

¹Vereinigung über Homotopieklassen von Wegen $\gamma: I \longrightarrow X, \gamma(0) = x_0, \gamma(1) = x \in U$

Sei $[\eta' \cdot \gamma_1] \in U_{[\gamma_1]}$. Dann gilt

$$[\eta' \cdot \gamma_1] = [\eta' \cdot \overline{\eta_1} \cdot \eta_1 \cdot \gamma_1] = [\eta' \cdot \overline{\eta_1} \cdot \eta_2 \cdot \gamma_2] = [\eta'' \cdot \gamma_2] \in U_{[\gamma_2]}$$

- $\Longrightarrow U_{[\gamma_1]} = U_{[\gamma_2]}$. Also: $p: (\widetilde{X}, \widetilde{x}_0) \longrightarrow (X, x_0)$ ist eine Überlagerung. Bleibt zu zeigen: \widetilde{X} ist einfach zusammenhängend.
 - (1) \widetilde{X} ist wegzusammenhängend. Sei $[\gamma] \in \widetilde{X}$. Wir brauchen einen Weg $\widetilde{\gamma}: I \longrightarrow \widetilde{X}$ mit $\widetilde{\gamma}(0) = \widetilde{x}_0, \ \widetilde{\gamma}(1) = \gamma$. Def.

$$\widetilde{\gamma}(t) := s \mapsto \left\{ \begin{array}{ll} \gamma(s) & \text{falls } s \in [0, t], \\ \gamma(t) & \text{falls } s \in [t, 1] \end{array} \right. \tag{tautologische}$$

$$\implies \widetilde{\gamma}(0) = \underline{x_0}, \, \widetilde{\gamma}(1) = \gamma.$$

- (2) Es reicht zu zeigen: $p_*(\pi_1(\widetilde{X}, \widetilde{x}_0)) = \{e\} < \pi_1(X, x_0)$, da p_* injektiv ist. Das Bild $p_*(\pi_1(\widetilde{X}, \widetilde{x}_0))$ besteht aus Homotopieklassen $[\gamma]$ von Wegen $\gamma \in \Omega(X, x_0)$, deren Hochhebung $\widetilde{\gamma} \in \Omega(\widetilde{X}, \widetilde{x}_0)$. Wenn $\gamma \in \Omega(X, x_0)$, sei $\widehat{\gamma} : I \longrightarrow \widetilde{X}$ wie oben definiert. $\widehat{\gamma}$ ist eine Hochhebung von γ mit $\widehat{\gamma}(0) = \underline{x_0}$ und $\{\widehat{\gamma}(t)\}_{t \in I}$ ist eine Homotopie zwischen \widetilde{x}_0 und $\widetilde{\gamma}$. D.h.: $[\widetilde{\gamma}] = [\widetilde{x}_0] \Longrightarrow \pi_1(\widetilde{X}, \widetilde{x}_0) = \{e\}$.
- **2.7.5 Satz.** Sei X ein wegzusammenhängender, lokal wegzusammenhängender und semilokal einfach zusammenhängender Raum. Dann existiert eine universelle Überlagerung $p:(\widetilde{X},\widetilde{x}_0)\longrightarrow (X,x_0)$ (für jedes $x_0\in X$).

Bemerkung: Ab jetzt betrachten wir nur Räume, die lokal wegzusammenhängend und semilokal einfach zusammenhängend sind (s.d. jede Wegzusammenhangskomponente eine universelle Überlagerung besitzt).

Beobachtung: Sei $\Gamma := \pi_1(X, x_0)$. Dann wirkt Γ von rechts auf $(\widetilde{X}, \widetilde{x}_0)$ durch

$$\begin{split} [\gamma] \cdot [\beta] &= [\gamma \cdot \beta]. \\ \bigcap_{\ \ \, \bigcap} \ \ \, \bigcap \\ \widetilde{\chi} \ \ \, \Gamma \end{split}$$

7. Vorlesung, 03.11.2016

8. Vorlesung, 09.11.2016

Letztes mal haben wir gesehen: Wenn (X, x_0) ein hinreichend guter topologischer Raum ist, dann existiert eine universelle Überlagerung $p: (\widetilde{X}, \widetilde{x}_0) \longrightarrow (X, x_0)$. Um aus \widetilde{X} eine andere Überlagerung zu konstruieren, brauchen wir folgenden Begriff: Sei Γ eine Gruppe, Y ein topologischer Raum.

- **2.7.6 Definition.** Homeo(Y) := { $f: Y \longrightarrow Y \mid f \text{ ist Hom\"oomorphismus}}.$
 - Eine *Wirkung* von Γ auf Y ist ein Gruppenhomomorphismus $\alpha : \Gamma \longrightarrow \text{Homeo}(Y)$. Bezeichnung: $\Gamma \stackrel{\alpha}{\frown} Y$.
- **2.7.7 Beispiel.** Sei $\Gamma := \mathbb{Z}$. Dann ist $\alpha : \mathbb{Z} \longrightarrow \operatorname{Homeo}(\mathbb{R}), n \mapsto (x \mapsto x + n)$ eine Wirkung.

Sei $\Gamma \overset{\alpha}{\frown} Y$ eine Wirkung. Sei $R_{\Gamma \overset{\alpha}{\frown} Y} := \{(y, \alpha(g)(y)) \mid y \in Y, g \in \Gamma\}.$

$$\Gamma^{\backslash Y} := R_{\Gamma \overset{\alpha}{\cap} Y}^{\quad \ } \bigvee^{Y} = y \overset{\alpha(g)(y), \ \ }{y \in Y, g \in \Gamma}^{\quad \ } \bigvee^{Y}$$

heißt Quotientenraum der Wirkung (der Raum aller Orbits).

Bemerkung: Der obige Begriff der Wirkung heißt manchmal Linkswirkung, weil die Abbildung α eine Abbildung $\widetilde{\alpha}: \Gamma \times X \longrightarrow X$, $(g,y) \mapsto \alpha(g)(y)$ induziert. $\widetilde{\alpha}$ erfüllt $\alpha(gh,x) = \widetilde{\alpha}(g,\widetilde{\alpha}(h,x))$. Wenn die Wirkung fest ist, schreibt man $g \cdot x$ für $\alpha(g)(x)$. Entsprechend gibt es den Begriff der Rechtswirkung $\widetilde{\beta}: X \times \Gamma \longrightarrow X$ mit $(x,g) \mapsto \widetilde{\beta}(x,g)$ mit Abkürzung $\widetilde{\beta}(x,g) = x \cdot g$. Es gilt $\widetilde{\beta}(x,gh) = \widetilde{\beta}(\widetilde{\beta}(x,g),h)$. Zu einer Rechtswirkung $\widetilde{\beta}$ gehört auch ein Homomorphismus $\beta: \Gamma \longrightarrow$ Homeo $(Y), g \mapsto \widetilde{\beta}(x,g^{-1})$.

Rechtswirkungen bezeichnet man durch $Y \stackrel{\beta}{\frown} \Gamma$. Entsprechend bezeichnet man den Quotientenraum durch Y/Γ für die Rechtswirkung.

2.7.8 Beispiel. Sei G eine Gruppe, Y := G. Dann ist $L : G \times Y \longrightarrow G$, $(g,h) \mapsto g \cdot h$ eine Linkswirkung, $R : Y \times G \longrightarrow G$, $(h,g) \mapsto h \cdot g$ ist eine Rechtswirkung.

2.7.9 Beispiel. Sei $X = S^1 \subset \mathbb{C}$, $\Gamma = \mathbb{Z}$, $\alpha_\omega : \Gamma \cap X$ gegeben durch $\alpha_\omega(n)(z) := e^{i\omega n} \cdot z$ für $\omega \in \mathbb{R}$.

- (i) $\omega/2\pi \in \mathbb{Q} \implies \text{jede Bahn ist endlich} \implies S^1/\mathbb{Z} \cong S^1$. (Eigentlich \cong ([0, 1]) aber 0 ist mit 1 verklebt.)
- (ii) $\omega/2\pi \notin \mathbb{Q} \Longrightarrow$ jede Bahn ist dicht in S^1 . $X_\omega := S^1/\mathbb{Z}$ ist schwer verständlich. Die Topologie auf X_ω viel besser: Wenn $f: X_\omega \longrightarrow Z$ stetig $\Longrightarrow \overline{f} := f \circ q$ ist stetig (Eigenschaft der Quotiententopologie—die feinste Topologie, für die die Abbildung q stetig ist).

$$S^{1} \qquad \overline{f} = f \circ q$$

$$S^{1}/\mathbb{Z} \xrightarrow{f} Z$$

Aber \overline{f} ist nach Konstruktion \mathbb{Z} -invariant: $\overline{f} \circ \alpha_{\omega}(n) = \overline{f} \, \forall n \in \mathbb{Z}$.

$$\overline{f}(\alpha_{\omega}(n)(x)) = \overline{f}(x) \forall x \in S^1, \forall n \in \mathbb{Z} \Longrightarrow \overline{f}(y) = \overline{f}(x) \forall x, y \in S^1,$$

da die Bahn von x dicht ist und \overline{f} stetig $\Longrightarrow \overline{f}$ ist konstant $\Longrightarrow f$ ist konstant $\Longrightarrow X_\omega$ hat triviale Topologie (die antidiskrete Topologie) und ist somit z.B. nicht Hausdorff.

2.7.10 Definition. Sei X ein topologischer Raum, $\alpha : \Gamma \cap X$ eine Wirkung. Dann heißt α eine Überlagerungswirkung, wenn jedes $x \in X$ eine Umgebung $U \ni x$ hat s.d. $\forall g_1 \neq g_2 \in \Gamma$ gilt $g_1 U \cap g_2 U = \emptyset$ $(g_1 U = \alpha(g_1)(U), g_2 U = \alpha(g_2)(U))$.

19

2.7.11 Proposition. $\alpha:\Gamma \cap X$ ist eine Überlagerungswirkung $\Longrightarrow q:X \longrightarrow_{\Gamma} \backslash^X$ ist eine Überlagerung.

Beweis. Sei $x \in X$, $U \ni x$ aus der Def. der Überlagerungswirkung. Dann gilt für V := q(U).

$$q^{-1}(V) = \bigsqcup_{g \in \Gamma} gU,$$

denn:

- $q(x) \in V \iff \exists g \in \Gamma \text{ s.d. } g \cdot x \in U \text{ (Def. des Quotientenraumes)}.$
- die Vereinigung ist disjunkt, denn: $g_1U \cap g_2U \neq \emptyset \implies g_1 = g_2$ nach Definition eine Überlagerungswirkung.
- $q|_{gU}: gU \longrightarrow V$ ist ein Homöomorphismus nach Definition der Quotiententopologie. (Inverse stetig wegen Injektivität).

Sei (X, x_0) topologischer Rum, $(\widetilde{X}, \widetilde{x}_0)$ eine universelle Überlagerung, $\Gamma := \pi_1(X, x_0)$. Wir haben folgende Rechtswirkung von Γ auf $(\widetilde{X}, \widetilde{x}_0)$:

$$\widetilde{\beta}: \widetilde{X} \times \Gamma \longrightarrow \widetilde{X}, ([\gamma], [\delta]) \longrightarrow [\gamma \cdot \delta].$$

Dies ist tatsächlich eine Wirkung, denn $[(\gamma \cdot \delta_1) \cdot \delta_2] = [\gamma \cdot (\delta_1 \cdot \delta_2)]$. Es ist ebenfalls eine Überlagerungswirkung: Für jedes $\widetilde{x} \in \widetilde{X}$ gibt es eine Umgebung $U_{[\gamma]}$ (bei der Konstruktion von \widetilde{X} benutzt) mit: $[\gamma_1] \neq [\gamma_2] \in \pi_1(X, x_0) \Longrightarrow U_{[\gamma]} \cdot \gamma_1 \cap U_{[\gamma]} \cdot \gamma_2 = \emptyset$ (wurde bei Konstruktion von \widetilde{X} bewiesen).

2.7.12 Korollar. Sei $\Lambda < \Gamma := \pi_1(X, x_0)$ eine Untergruppe. Dann gilt: die Abbildung $q_\Lambda : (\widetilde{X}, \widetilde{x}_0) \longrightarrow (\widetilde{X}, \widetilde{x}_0)/\Lambda =: X_\Lambda$ ist eine Überlagerung.

Also haben wir:

$$(\widetilde{X}, \widetilde{x}_0) \qquad q_{\Lambda}$$

$$\widetilde{p} \downarrow \qquad (X, x_0) \leftarrow p_{\Lambda} (X_{\Lambda}, x_0^{\Lambda})$$

Wenn $\widetilde{x} \cdot g = \widetilde{y}$ für ein $g \in \Lambda$ mit $\widetilde{x} = [\gamma]$, $\widetilde{y} = [\gamma']$, $g = [\delta]$. Dann $[\gamma'] = [\gamma \cdot \delta] \Longrightarrow \gamma'(1) = \gamma(1) \Longrightarrow \widetilde{p}(\widetilde{y}) = \widetilde{p}(\widetilde{x}) \Longrightarrow \exists p_{\Lambda} : (X_{\Lambda}, x_{0}^{\Lambda}) \longrightarrow (X, x_{0})$ stetig (nach universellen Eigenschaft von Quotientenraum) $p_{\Lambda}([\gamma] \cdot \Lambda) = \gamma(1)$.

2.7.13 Proposition. p_{Λ} ist eine Überlagerung.

Beweis. Zu zeigen: $\forall x \in X \exists U \ni x \text{ s.d. } p_{\Lambda}^{-1}(U) = \bigsqcup_{j \in J} V_j \text{ s.d. } p_{\Lambda}|_{V_j} : V_j \stackrel{\cong}{\longrightarrow} U$ ein Homöomorphismus. Nimm U aus der Überlagerungseigenschaft von $\widetilde{p} \Longrightarrow \widetilde{p}(U) = \bigsqcup_{k \in K} \widetilde{V}_k \subset \widetilde{X} \text{ s.d. } \widetilde{p}|_{\widetilde{V}_k}$ Homöomorphismus $\Longrightarrow V_j := q_{\Lambda}(\widetilde{V}_k)$, wo \widetilde{V}_{k_j} einzeln (aus jeder Λ-Bahn wird eine gewählt) aus Λ-Bahnen von $\widetilde{V}_k's$ gewählt werden.

2.7.14 Proposition. $(p_{\Lambda})_*(\pi_1(X_{\Lambda}, x_0^{\Lambda})) = \Lambda < \pi_1(X, x_0)$ (insbesondere gibt es für jede $\Lambda < \pi_1(X, x_0)$ eine Überlagerung, die Λ realisiert).

Beweis. Wir haben folgende Charakterisierung von $(p_{\lambda})_*(\pi_1(X_{\Lambda}, x_0^{\Lambda}))$: $[\gamma] \in (p_{\lambda})_*(\pi_1(X_{\Lambda}, x_0^{\Lambda})) \iff \widetilde{\gamma}$ ist eine Schleife in X_{Λ} (Hochhebung nach X_{Λ}). D.h. $\widetilde{\gamma}(1) = \widetilde{\gamma}(0) = x_0^{\Lambda}$. Sei $\widetilde{\widetilde{\gamma}}$ die Hochhebung von γ nach \widetilde{X} (es gilt: $q_{\Lambda}(\widetilde{\widetilde{\gamma}}) = \widetilde{\gamma}$).

 $\gamma(1) = x_0^{\Lambda} \iff \widetilde{\widetilde{\gamma}}(1) \text{ liegt in der } \Lambda\text{-Bahn von } \widetilde{x}_0, \text{ also } \exists [\delta] \in \Lambda \text{ s.d. } \widetilde{\widetilde{\gamma}}(1) = \widetilde{x}_0 \cdot [\delta] = [\delta].$ Aber $\widetilde{\widetilde{\gamma}}(1) = [\gamma] \in \widetilde{X}$ (wenn $\gamma : I \longrightarrow X$ Weg, ist $\widetilde{\widetilde{\gamma}} : I \longrightarrow \widetilde{X}, \ t \mapsto [\gamma|_{[0,t)}]$ die Hochhebung von $\gamma) \Longrightarrow [\gamma] = [\delta] \in \Lambda.$

2.7.15 Definition. Zwei Überlagerungen $p:(Y,y_0)\longrightarrow (X,x_0),\ p':(Y',y_0')\longrightarrow (X,x_0)$ heißen isomorph, wenn $\exists h:Y\longrightarrow Y'$ Homöomorphismus mit $p'\circ h=p$.

Frage: Sei $p:(Y, y_0) \longrightarrow (X, x_0)$ eine Überlagerung, $f:(Z, z_0) \longrightarrow (X, x_0)$ eine (stetige) Abbildung. Wann existiert eine Hochhebung $\overline{f}:(Z, z_0) \longrightarrow (Y, y_0)$ ($p \circ \overline{f} = f$)?

Beobachtung: Wenn \overline{f} existiert, dann gilt: $f_* = p_* \circ \overline{f}_* : \pi_1(Z, z_0) \longrightarrow \pi_1(X, x_0) \Longrightarrow \operatorname{Im} f_* \subset \operatorname{Im} p_* \subset \pi_1(X, x_0).$

2.7.16 Proposition. Sei p, f wie oben, Z wegzusammenhängend. Eine Hochhebung \overline{f} existiert genau dann, wenn $f_*(\pi_1(Z, z_0)) \subset p_*(\pi_1(Y, y_0))$.

Beweis. Notwendigkeit erledigt. Sei $f:(Z,z_0)\longrightarrow (X,x_0)$ gegeben, sei $f_*(\pi_1(Z,z_0))\subset p_*(\pi_1(Y,y_0))$. Sei $z\in Z$ gegeben, sei $\gamma_z:I\longrightarrow Z$ ein Weg von z_0 nach z. $f\circ\gamma_z$ ist ein Weg in X mit Anfang x_0 . Sei $\overline{\gamma}_z$ die Hochhebung von $f\circ\gamma_z$ nach Y mit Anfang y_0 . Sei $\overline{f}(z):=\overline{\gamma}_z(1)$. Dann $p\circ\overline{f}(z)=f(z)$ nach Eigenschaften von $\overline{\gamma}_z$.

Frage: Warum ist \overline{f} wohldefiniert? Sei γ_z' ein anderer Weg von z_0 nach z, $f \circ \gamma_z', \overline{\gamma}_z'$ entsprechend. Zu zeigen: $\overline{\gamma}_z(\underline{1}) = \overline{\gamma}_z'(1)$. Es ist $\gamma_z'^{-1} \circ \gamma_z \in \Omega(Z, z_0) \Longrightarrow f \circ (\gamma_z'^{-1} \circ \gamma_z) \in \Omega(X, x_0)$. Also $[f \circ (\gamma_z'^{-1} \circ \gamma_z)] = f_*([\gamma_z'^{-1} \circ \gamma_z]) \subset \operatorname{Im} p_*$ nach Voraussetzung $\Longrightarrow \gamma_z'^{-1} \circ \gamma_z$ hebt sich zu einer Schleife hoch; nach Eindeutigkeit ist diese Schleife gleich $\overline{\gamma}_z'^{-1} \circ \overline{\gamma}_z \Longrightarrow \overline{\gamma}(z)(1) = \overline{\gamma}_z'(1)$.

8. Vorlesung, 09.11.2016

9. Vorlesung, 10.11.2016

2.7.17 Satz. Seien $p:(Y,y_0)\longrightarrow (X,x_0)$, $p':(Y',y_0')\longrightarrow (X,x_0)$ wegzusammenhängende Überlagerungen mit $p_*(\pi_1(Y,y_0))=p_*'(\pi_1(Y',y_0'))\subset \pi_1(X,x_0)$. Dann gilt: $p:(Y,y_0)\longrightarrow (X,x_0)$ und $p':(Y',y_0')\longrightarrow (X,x_0)$ sind isomorph.

Beweis. Satz über Hochhebung von Abbildungen liefert Hochhebungen $\overline{p}:(Y,y_0)\longrightarrow (Y',y_0'), \overline{p}':(Y',y_0)\longrightarrow (Y,y_0)$. Wir wollen zeigen, dass $\overline{p}\circ\overline{p}'=\operatorname{id}_{Y'}, \overline{p}'\circ\overline{p}=\operatorname{id}_{Y}$. Dazu: $\overline{p}\circ\overline{p}'(y_0')=y_0'$, d.h. die Menge $A':=\{y'\in Y'\mid \overline{p}\circ\overline{p}'=y'\}\neq\emptyset$. Wir zeigen: A' ist offen und abgeschlossen:

- A' abgeschlossen, denn $A' = ((\overline{p} \circ \overline{p}') \times id)^{-1}(\Delta)$, wobei $\Delta := \{(y', y') \mid y' \in Y'\} \subseteq Y' \times Y'$.
- A' ist offen, denn $\overline{p} \circ \overline{p}' : (Y', y_0') \longrightarrow (Y', y_0')$ ist eine Hochhebung von der $p':(Y, y_0) \longrightarrow (X, x_0)$, denn $p' \circ \overline{p} \circ \overline{p}' = p \circ \overline{p}' = p'$.

$$id \xrightarrow{\overline{p} \circ \overline{p}'} (Y', y'_0)$$

$$(Y', y'_0) \xrightarrow{p'} (X, x_0)$$

Sei $U \subset X$ eine offene Teilmenge s.d. $p^{-1}(U) = \bigsqcup_{j \in J} V_j$ s.d. $p'|_V : V_j \xrightarrow{\cong} U$ lokaler Homöomorphismus ist. Sei $y' \in Y'$ s.d. $p'(y') \in U$, s.d. $\mathrm{id}(y') = \overline{p} \circ \overline{p}'(y')$. Es $\exists j$ s.d. $y' \in V_j$. Daher bildet $\overline{p} \circ \overline{p}'$ das V_j in V_j ab. Das heißt, dass $\overline{p} \circ \overline{p}'|_{V_j} = \mathrm{id}|_{V_j} \Longrightarrow A'$ ist offen (mit jedem Punkt enthält sie eine Umgebung). Nun ist Y' ist wegzusammenhängend $\Longrightarrow A' = Y' \Longrightarrow \overline{p} \circ \overline{p}' = \mathrm{id}$; aus Symmetriegründen folgt auch $\overline{p}' \circ \overline{p} = \mathrm{id}_Y$.

2.7.18 Satz (Klassifikationssatz für Überlagerungen). *Es gibt eine* 1:1-*Korrespondenz zwsichen*

$$\left(\begin{array}{c} \textit{Isomorphieklassen von Überlagerungen} \\ p:(Y,y_0) \longrightarrow (X,x_0) \ (\textit{wegzusammenhängend}) \end{array}\right) \quad \textit{und} \quad \left(\begin{array}{c} \textit{Untergruppen} \\ \Lambda < \pi_1(X,x_0) \end{array}\right)$$

Die Korrespondenz ordnet einer Überlagerung $p:(Y,y_0) \longrightarrow (X,x_0)$ die Untergruppe $p_*(\pi_1(Y,y_0)) \subseteq \pi_1(X,x_0)$ zu.

Beweis. Es folgt aus

- (1) Existenz von Überlagerungen zu jeder Untergruppe von $\pi_1(X, x_0)$.
- (2) Überlagerungen, die zu gleicher Untergruppe gehören, sind isomorph.

2.7.19 Beispiel (Klassifikation von Überlagerungen von S^1). Wir wissen schon: $\pi_1(S^1,1) \cong \mathbb{Z}$. Jede Untergruppe $\Lambda \subset \mathbb{Z}$ ist von der Form $n\mathbb{Z}$ für ein $n \in \mathbb{N}$.

- n = 0: $\Lambda = 0 < \mathbb{Z}$. Dazu gehört die universelle Überlagerung $\widetilde{p}: \mathbb{R} \longrightarrow S^1, x \mapsto e^{2\pi i x}$.
- $n \neq 0$: $\Lambda = n\mathbb{Z} \subset \mathbb{Z}$, $p_n : S^1 \longrightarrow S^1$, $z \mapsto z^n$.

Notation: $\Gamma := \pi_1(X, x_0)$, $\Lambda < \Gamma \Longrightarrow (X_\Lambda, x_0^\Lambda)$ ist die (eindeutig bestimmte) wegzusammenhängende Überlagerung, die zu Λ gehört.

Erinnerung:

2.7.20 Lemma. $\Lambda_1 < \Lambda_2 < \Gamma$, dann gilt: es gibt ein kommutatives Diagramm

Entsprechend: Wenn es eine stetige Abbildung $q_{\Lambda_2}^{\Lambda_1}$ gibt, die das obige Diagramm kom*mutativ macht, dann gilt* $\Lambda_1 < \Lambda_2$.

Beweis. $X_{\Lambda_1} = \widetilde{X}/\Lambda_1$, $X_{\Lambda_2} = \widetilde{X}/\Lambda_2$. Wenn $\Lambda_1 < \Lambda_2$, dann erhalten wir eine kanonische stetige Abbildung

$$q_{\Lambda_2}^{\Lambda_1}: X_{\Lambda_1} = \widetilde{X}/_{\Lambda_1} \longrightarrow X_{\Lambda_1} = \widetilde{X}/_{\Lambda_2},$$

 $p_{\Lambda_1}=p_{\Lambda_2}\circ q_{\Lambda_2}^{\Lambda_1}$ nach Konstruktion von p_{Λ_1} , p_{Λ_2} . Die Umkehrung folgt aus Eindeutigkeit der Korrespondenz zwischen Gruppen mit Überlagerungen.

2.7.21 Definition. Sei $p:(Y,y_0) \longrightarrow (X,x_0)$ eine Überlagerung mit (X,x_0) wegzusammenhängend. Die Mächtigkeit von $p^{-1}(x_0)$ heißt *Anzahl der Blätter* der Überlagerung (wohldefiniert, da $|p^{-1}(x_0)| = |p^{-1}(x)| \forall x \in X$ wegen X zusammenhängend).

2.7.22 Lemma. Sei $p_{\Lambda}: (X_{\Lambda}, x_0^{\Lambda}) \longrightarrow (X, x_0)$ eine Überlagerung (zur $\Lambda < \pi_1(X, x_0) =: \Gamma$). Dann gilt: $|p_{\Lambda}^{-1}(x_0)| = [\Gamma : \Lambda]$.

Beweis. Sei $\gamma \in \Omega(X, x_0)$, $\widetilde{\gamma} : I \longrightarrow X_{\Lambda}$ die Hochhebung davon. Wenn $[\lambda] \in \Lambda \implies \widetilde{\lambda} \in \Lambda$ $\Omega(X_{\Lambda}, x_0^{\Lambda})$, das heißt, $\widetilde{\gamma} \cdot \widetilde{\lambda}$ hat gleichen Endpunkt wie $\widetilde{\gamma}$. Definiere jetzt $\phi : \Gamma / \Lambda \longrightarrow p_{\Lambda}^{-1}(x_0)$, $[\gamma] \cdot \Lambda \mapsto \widetilde{\gamma}(1)$. Abb. ϕ ist bijektiv, denn:

- ϕ ist injektiv: $\widetilde{\gamma}(1) = \widetilde{\gamma}'(1) \Longrightarrow \widetilde{\gamma}'^{-1} \circ \widetilde{\gamma} \in \Omega(X_{\Lambda}, x_0^{\Lambda}) \Longrightarrow [\gamma'^{-1} \circ \gamma] \in \Lambda \Longrightarrow [\gamma] \in [\gamma'] \cdot \Lambda$. ϕ ist surjektiv: X_{Λ} wegzusammenhängend $\Longrightarrow \forall y \in p^{-1}(x_0) \exists \widetilde{\gamma} : I \longrightarrow X_{\Lambda}$, ein Weg von x_0^{Λ} nach $y : p_{\Lambda} \circ \widetilde{\gamma} \in \Omega(X, x_0)$ mit Hochhebung $\widetilde{\gamma}$, $\phi([p_{\Lambda} \circ \widetilde{\gamma}] \cdot \Lambda) = \widetilde{\gamma}(1) = y$.

23

- **2.7.23 Korollar.** Die Anzahl der Blätter der universellen Überlagerung ist gleich $|\pi_1(X, x_0)|$.
- **2.7.24 Definition.** Sei $(Y, y_0) \xrightarrow{p} (X, x_0)$ eine Überlagerung. Eine *Decktransformation* $h: Y \longrightarrow Y$ ist ein Homöomorphismus mit $p \circ h = p$ (anders gesagt: $h: (Y, y_0) \longrightarrow (Y, h(y_0))$ ist ein Isomorphismus von Überlagerungen).

Die Decktransformationen bilden eine Gruppe, die durch Aut(p) bezeichnet wird. Frage: Was ist Aut (p_{Λ}) in Termen von $\Lambda < \pi_1(X, x_0)$?

- **2.7.25 Definition.** Eine Überlagerung $(Y, y_0) \xrightarrow{p} (X, x_0)$ heißt *normal*, wenn die Gruppe von Decktransformationen $\operatorname{Aut}(p)$ *transitiv* auf $p^{-1}(x_0)$ wirkt $(\forall x_0' \in p^{-1}(x_0) \exists h \in \operatorname{Aut}(p)$ mit $h(x_0) = x_0'$).
- **2.7.26 Proposition.** Sei $p:(Y, y_0) \longrightarrow (X, x_0)$ eine Überlagerung, s.d. beide Räume wegzusammenhängend sind, sei $\Lambda := p_*(\pi_1(Y, y_0)) < \pi_1(X, x_0) =: \Gamma$ die zugehörige Untergruppe. Dann gilt:
 - (1) p ist normal $\iff \Lambda \triangleleft \Gamma$ Normalteiler.
 - (2) Aut $(p) \cong N(\Lambda) /_{\Lambda}$, wobei

$$N(\Lambda) := \{ g \in \Gamma \mid g \Lambda g^{-1} = \Lambda \},\,$$

der Normalisator $von \Lambda in \Gamma$.

(3) *Insbesondere gilt:* p *normal* \Longrightarrow Aut $(p) \cong \Gamma /_{\Lambda}$,

$$\operatorname{Aut}(\widetilde{p}) \cong \Gamma$$
.

2.7.27 Korollar. Aut $(\widetilde{p}) \cong \pi_1(X, x_0) = \Gamma$.

9. Vorlesung, 10.11.2016

10. Vorlesung, 17.11.2016

Erinnerung: p heißt normal, wenn Aut(p) transitiv auf $p^{-1}(x_0)$ wirkt, also $\forall y \in p^{-1}(x_0) \exists h \in Aut(p) \text{ s.d. } h(y_0) = y_1.$

Beweis (der Proposition). Sei $h \in Aut(p)$, dann haben wir folgendes kommutative Diagramm:

 $\Lambda = p_* \pi_1(Y, y_0) = p_* h_* \pi_1(Y, y_0) = p_* \pi_1(Y, y_1)$, weil h_* ein Isomorphismus ist.

Sei $\widetilde{\gamma}$ ein Weg in Y von y_0 nach y_1 , $\gamma := p \circ \widetilde{\gamma}$. Es gibt einen Isomorphismus $\phi_{\gamma} : \pi_1(Y, y_0) \longrightarrow \pi_1(Y, y_1), [\delta] \mapsto [\widetilde{\gamma} \cdot \delta \cdot \widetilde{\gamma}^{-1}].$

 p_* ist injektiv $\implies p_*\pi_1(Y, y_0)$ und $p_*\pi_1(Y, y_1)$ sind durch $[\gamma] \in \pi_1(X, x_0)$ konjugiert:

$$[\gamma] \cdot \Lambda \cdot [\gamma]^{-1} = p_* \pi_1(Y, y_1).$$

Wenn jetzt $h \in \operatorname{Aut}(p)$ mit $h(y_0) = y_1$, so ist $p_*\pi_1(Y, y_1) = \Lambda$ nach obiger Beobachtung $\Longrightarrow [\gamma] \cdot \Lambda \cdot [\gamma]^{-1} = \Lambda \iff [\gamma] \in N(\Lambda)$.

Das heißt: Wenn p normal ist, nimm ein beliebiges $[\gamma] \in \pi_1(X, x_0)$, lifte das zu $\widetilde{\gamma}$ in Y mit Anfang y_0 . Sei y_1 das Ende von $\widetilde{\gamma}$. Nach Normalität von $p \exists h \in \operatorname{Aut}(p)$ mit $h(y_0) = y_1 \Longrightarrow [\gamma] \in N(\Lambda)$. Da $[\gamma]$ beliebig war, folgt $N(\Lambda) = \Gamma \Longrightarrow \Lambda \unlhd \Gamma$.

Umgekehrt: Wenn $\Lambda \subseteq \Gamma$ normal, $y_1 \in p^{-1}(x_0)$ gegeben. Nimm $\widetilde{\gamma}$ in Y von y_0 nach $y_1 \Longrightarrow \gamma := p \circ \widetilde{\gamma}$ erfüllt $[\gamma] \cdot \Lambda \cdot [\gamma]^{-1} = \Lambda$. Da $[\gamma] \cdot \Lambda \cdot [\gamma]^{-1} = p_* \pi_1(Y, y_1)$, $\exists h : (Y, y_0) \longrightarrow (Y, y_1)$ mit $p \circ h = p$. Aus Symmetriegründen existiert $g : (Y, y_1) \longrightarrow (Y, y_0)$ mit $p \circ g = p$. Da h, g eindeutig sind und jeweils p hochheben, gilt $g \circ h = \mathrm{id}$, $h \circ g = \mathrm{id} \Longrightarrow h \in \mathrm{Aut}(p)$.

Damit ist (1) bewiesen.

Für (2): Wie betrachten die Abbildung $\varphi:N(\Lambda)\longrightarrow \operatorname{Aut}(p),\ [\gamma]\mapsto h_{[\gamma]},\ h_{[\gamma]}$ ist die eindeutig bestimmte Hochhebung

$$(Y, y_1) \xrightarrow{h_{[\gamma]}} p$$

$$(Y, y_0) \xrightarrow{p} (X, x_0)$$

wobei $y_1 = \widetilde{\gamma}(1)$, $\widetilde{\gamma}$ ist die Hochhebung von γ .

 γ ist wohldefiniert:

- $\tilde{\gamma}(1)$ kommt nur auf $[\gamma]$ an (homotope Wege haben homotope Hochhebungen).
- $h_{[\gamma]} \in \text{Aut}(p)$ wie in (1). $h_{[\gamma]} \cdot h_{[\gamma]^{-1}}$ ist die Hochhebung der $p:(Y,y_0) \longrightarrow (X,x_0)$ und ist daher gleich id.
- φ ist ein Homomorphismus: $h_{[\gamma_2,\gamma_1]}$ und $h_{[\gamma_2]} \cdot h_{[\gamma_1]}$ heben $p:(Y,y_0) \longrightarrow (X,x_0)$ nach (Y,y_2) hoch \Longrightarrow Gleichheit wegen Eindeutigkeit.

• φ ist surjektiv: Sei $h \in Aut(p)$,

Sei $\widetilde{\gamma}$ ein Weg von y_0 nach y_1 in Y, $\gamma:=p\circ\widetilde{\gamma}$. Dann ist $h=h_{[\gamma]}$ nach Konstruktion.

• $\ker \varphi = \{ [\gamma] \in N(\Lambda) \mid h_{[\gamma]} = \mathrm{id} \} = \{ [\gamma] \in N(\Lambda) \mid \widetilde{\gamma}(1) = y_0 \}$. (\$\Lambda\$ besteht aus Schleifen unten, die sich zu Schleifen hochheben.) D.h. $\varphi : N(\Lambda) \longrightarrow \mathrm{Aut}(p)$ surjektiv, $\ker(\varphi) = \Lambda \Longrightarrow \mathrm{Aut}(p) \cong N(\Lambda) /_{\Lambda}$ nach dem Homomorphiesatz.

Erinnerung: $\Gamma \cap Y$ ist eine Überlagerungswirkung. Dann ist $q:(Y,y_0) \longrightarrow (Y/\Gamma,\overline{y_0})$ eine Überlagerung.

Beobachtung: Jedes $g \in \Gamma$ definiert ein Element $\alpha(g) \in \text{Aut}(q)$:

2.7.28 Proposition. *In der obingen Situation gilt:*

- (1) $Aut(q) \cong \Gamma$, wenn Y wegzusammenhängend.
- (2) $\Gamma \cong \pi_1(Y/\Gamma)/q_*\pi_1(Y)$, wenn Y wegzusammenhängend ist.

Beweis. Die Überlagerung $q:(Y,y_0)\longrightarrow \left(Y/\Gamma,\overline{y_0}\right)$ ist normal, weil $q^{-1}(\overline{y_0})=y_0\cdot\Gamma$, und Γ wirkt darauf transitiv.

$$\operatorname{Aut}(q) \cong \pi_1(Y/\Gamma)/q_*\pi_1(Y)$$

nach dem Satz oben.

Nun haben wir: Wenn $h \in Aut(q)$

 $\exists g \in \Gamma \text{ s.d. } y_1 = \alpha(g)y_0. \text{ Aber dann ist } \alpha(g) \text{ auch eine Hochhebung von } q: (Y, y_0) \longrightarrow (Y/\Gamma, \overline{y_0}) \operatorname{nach}(Y, y_1) \Longrightarrow h = \alpha(g) \Longrightarrow \operatorname{Aut}(q) \cong \Gamma.$

2.7.29 Korollar. Wenn $\Gamma \cap Y$ eine Überlagerungswirkung ist, Y einfach zusammenhängend (Y wegzusammenhängend, $\pi_1(Y) \cong \{1\}$). Dann gilt:

$$\pi_1(Y/\Gamma) \cong \Gamma.$$

- **2.7.30 Beispiel.** Es ist $\pi_1(\mathbb{RP}^n) \cong \mathbb{Z}/2$. Denn $\mathbb{RP}^n \cong S^n/\mathbb{Z}/2$, $\mathbb{Z}/2 \cap S^n$ durch $t \cdot x = -x$ für t = 1.
 - Sei $Y = \mathbb{R}^2$, dann $\mathbb{R}^2 / \mathbb{Z}^2 \cong \Pi^2 \Longrightarrow \pi_1(\Pi^2) \cong \mathbb{Z}^2$. Wirkung ist $t \cdot x := (x \mapsto x + t)$
 - Sei $\Gamma \subset \text{Isom}(\mathbb{R}^2)$ die Automorphismengruppe von diesen Graphen:

$$\mathbb{R}^2/\Gamma = \bigcap_{i=1}^n = \text{die kleinsche Flasche } F, \pi_1(F) \cong \Gamma.$$

Frage: Gibt es für jede Gruppe Γ einen wegzusammenhängenden Raum X mit $\pi_1(X) \cong \Gamma$? Wir werden für diese Frage die Cayley-Graphen betrachten und daraus den Raum X wie oben konstruieren.

2.7.31 Definition. Sei Γ eine Gruppe, $S \subset \Gamma$ Teilmenge,

$$\langle S \rangle := \bigcup_{\Lambda < \Gamma, S \subseteq \Lambda} \Lambda$$

die durch S erzeugte Untergruppe von Γ . S heißt Erzeugendenmenge von Γ , wenn $\langle S \rangle = \Gamma$. (Übung: $\langle S \rangle = \{s_1^{\varepsilon_1} \cdots s_n^{\varepsilon_n} \mid n \in \mathbb{N}, \ s_i \in S, \varepsilon_i \in \{\pm 1\}$).

2.7.32 Beispiel.
$$\Gamma = (\mathbb{Z}, +), S = (2, 4), \langle S \rangle = 2\mathbb{Z}. S' = \{3, 5\} \Longrightarrow \langle S \rangle = \mathbb{Z}.$$

2.7.33 Definition. Sei Γ eine Gruppe, $S \subseteq \Gamma$, $\langle S \rangle = \Gamma$. Cay (Γ, S) ist der Graph mit

- Ecken $V(\text{Cay}(\Gamma, S)) = \Gamma$,
- Kanten $E(\text{Cay}(\Gamma, S)) = \{(g, gs) \mid g \in \Gamma, s \in S\}.$

Entsprechend können wir $Cay(\Gamma, S)$ als einen 1-dimensionalen CW-Komplex auffassen (Ecken=0-Zellen, Kanten=1-Zellen).

2.7.34 Beispiel. $\Gamma = (\mathbb{Z}, +)$

• $S = \{1\}$:

• $S = \{2, 3\}$:

Die Linkswirkung von Γ auf sich selbst induziert eine Wirkung Γ $\stackrel{\alpha}{\frown}$ Cay(Γ, S) ($g \in \Gamma = V(\text{Cay}(\Gamma, S))$, $\alpha(h)(g) = h \cdot g$).

 $(g,gs) \in E(Cay(\Gamma,S)) \rightsquigarrow \alpha(h)(g,gs) = (h,hgs) \in E(Cay(\Gamma,S))$. Die Wirkung $\Gamma \cap Cay(\Gamma,S)$ ist eine Überlagerung (Übung).

Den Quotientenraum Γ $Cay(\Gamma, S)$ kann man leicht verstehen; Γ wirkt transitiv auf Γ , also bleibt im Quotienten nur eine Ecke [1], an dieser Ecke bekommen wir |S| Schleifen; Sei X ein Punkt mit |S| Schleifen. Was ist $\pi_1(X)$?

Beobachtung: Wenn $\pi_1(\operatorname{Cay}(\Gamma,S)) \cong \{1\} \implies \pi_1(X_S) \cong \Gamma$ nach Proposition. $\pi_1(X_1) = \pi(\bigcirc) \cong \mathbb{Z}$. Um $\pi(\bigcirc)$ zu berechnen, brauche ich eine Gruppe $\Gamma = \langle a,b \rangle$, s.d. $\pi_1(\operatorname{Cay}(\Gamma,\{a,b\})) \cong \{1\}$ (ohne Schleifen).

10. Vorlesung, 17.11.2016

11. Vorlesung, 23.11.2016

Frage:
$$\pi\left(\sum_{S}\right)$$
 =? Wenn $\pi_1(\text{Cay}(\Gamma, S))$ = {1} ist $\Gamma \cong \pi_1(X_S)$.

2.8 Gruppen angegeben durch Erzeuger und Relationen; freie Gruppen

Fragestellung: Sei Γ eine Gruppe erzeugt durch $S \subseteq \Gamma$ ($\Gamma = \langle S \rangle$). Welche "Rechenregeln" gelten für Elemente in S. Kann man Γ anhand von S und dessen "Rechenregeln" beschrieben?

2.8.1 Beispiel. $\Gamma := \langle a, b \rangle$. Wenn in Γ gilt: ab = ba, was folgt über Γ ? In Γ gilt: Jedes $g \in \Gamma$ kann man schreiben als $g = a^{\varepsilon_1} \cdot b^{\varepsilon_2} \cdot a^{\varepsilon_3} \cdots$, $\varepsilon_i \in \{-1, 0, 1\}$. Nach der Rechenregel oben erhalten wir $g = a^n \cdot b^m$, $n, m \in \mathbb{Z}$. Es kann sein, dass $\Gamma \cong \mathbb{Z}^2 = \langle (0, 1), (1, 0) \rangle$ oder $\Gamma \cong \{1\}$, wenn a = b. Der Unterschied besteht darin, ob es weitere "Rechenregeln" gibt, die $a^n \cdot b^m$ verfeinern können.

2.8.2 Beispiel. $\Gamma:=\langle a,b\rangle$ "ohne Rechenregeln". Es gilt $\Gamma\ni g=a^{\varepsilon_1}\cdot b^{\varepsilon_2}\cdot a^{\varepsilon_3}\cdots$, $\varepsilon_i\in\{-1,0,1\}$. Elemente sind z.B. $ab\,a^{-1}\,b^{-1}$, $ab^2a^{-2}\,b^{-3}$ etc. Alle diese Wörter müssen unterschiedliche Elemente geben, denn: wenn z.B. $ab\,a^{-1}\,b^{-1}=ab^2a^{-2}\,b^{-3}\Longleftrightarrow b^3a^2b^{-2}a^{-1}ab\,a-1b^{-1}=b^3a^2b^{-1}a^{-1}b^{-1}=1$.

2.8.3 Definition. Sei *S* eine Menge,

$$X = S \sqcup \underbrace{\overline{S}}_{\text{Eine andere Kopie von } S}$$

Ein Wort im Alphabet X ist eine endliche Folge $w = x_1 x_2 \cdots x_n$ von Elementen von X, $n \in \mathbb{N}$ $(n = 0 \Longrightarrow w = \underline{\varepsilon} = \underline{1} \text{ leeres Wort})$. Wort w heißt reduziert, wenn es kein Teilwort von der Form $s \cdot \overline{s}$ oder $\overline{s} \cdot s$ hat, $s \in S$. Z.B. $S = \langle a, b \rangle$, $a \, \overline{b} \, \overline{a} \, b$ reduziert, $a \, \overline{a}$ nicht reduziert.

Die Menge der Wörter bezeichnet man X^* . Die reduzierten Wörter bezeichnet man X^*_r . Wenn $v, w \in X^*$, $v = v_1 \cdots v_m$, $w = w_1 \cdots w_n$, $v_i, w_i \in X$ dann $v w := v_1 \cdots v_n w_1 \cdots w_n$. Die Reduktion eines Wortes $w = v \, \overline{s} \, \overline{s} \, u$, $s \in S$, $v, u \in X^*$ ist das Wort $w' = v \, u$; die Reduktion von $w = v \, \overline{s} \, s \, u$ ist $w = v \, u$

2.8.4 Lemma. Jedes Wort kann man durch endlich viele Reduktionsschritte auf ein reduziertes Wort bringen, dieses ist eindeutig.

Bezeichnung: $r: X^* \longrightarrow X_r^*$, $w \mapsto$ (reduzierte Form von w).

2.8.5 Proposition und Definition. (X_r^*, \cdot) , $w \cdot v := r(w v)$ ist eine Gruppe. Sie heißt f r e i e G r u p p e mit dem Erzeugendensystem <math>S.

Beweis. Assoziativität folgt aus Assoziativität der Konkatenation und Eindeutigkeit der reduzierten Form: $w \cdot v \cdot u = r(w \cdot v \cdot u) = r(r(w \cdot v) \cdot u) = r(w \cdot r(v \cdot u))$. Sei $\overline{} : X \longrightarrow X$, $S \ni a \mapsto \overline{a} \in \overline{S}$, $\overline{S} \ni \overline{a} \mapsto a \in S$. Dann gilt mit $w^{-1} := \overline{w_n} \cdots \overline{w_1}$:

$$w^{-1} \cdot w = r(\overline{w_n} \cdots \overline{w_1} \cdot w_1 \cdots w_n) = \underline{1} = r(w_n \cdots w_1 \cdot \overline{w_1} \cdots \overline{w_n}) = w \cdot w^{-1}.$$

Bezeichnung: \mathbb{F}_S freie Gruppe auf dem Erzeugendensystem S. Je zwei unterschiedliche reduzierte Wörter sind unterschiedliche Elemente von der Gruppe nach Konstruktion.

2.8.6 Proposition (Universelle Eigenschaft der freien Gruppe). Sei S eine Menge, \mathbb{F}_S freie Gruppe auf S. Dann gilt: für jede Gruppe Γ und jede Abbildung $\varphi: S \longrightarrow \Gamma$ \exists ! Homomorphismus $\phi: \mathbb{F}_S \longrightarrow \Gamma$ s.d. $\phi|_S = \varphi$.

Bemerkung: Analog dazu gilt: V Vektorraum, $B \subseteq V$ Basis, \forall Vektorräume $W \ \forall \varphi : B \longrightarrow W \exists ! \phi : V \longrightarrow W$ linear mit $\phi|_B = \varphi$.

Beweis. Sei $\varphi: S \longrightarrow \Gamma$ gegeben. Definiere $\Phi(w_1, ..., w_n) = \varphi(w_1) \cdots \varphi(w_n)$, $w_i \in S = S \cup S^{-1}$. Sei $\varphi(w^{-1}) := \varphi(w)^{-1}$ (auf S^{-1} fortgesetzt). Dann gilt $\Phi(r(w \cdot v)) = \Phi(w \cdot v) = \Phi(w) \cdot \Phi(v)$ weil $\varphi(s) \cdot \varphi(s^{-1}) = \varphi(s) \cdot \varphi(s)^{-1} = 1 \Longrightarrow \Phi$ ist eine Homomorphismus.

Eindeutigkeit: Wenn $\Psi : \mathbb{F}_S \longrightarrow \Gamma$ ist Homomorphismus mit $\Psi|_S = \varphi$, dann gilt: $\Psi(s^{-1}) = \Psi(s)^{-1} = \varphi(s)^{-1} = \Phi(s)^{-1}$, $s \in S$. Dann gilt: $\Psi(w_1 \cdots w_n) = \Psi(w_1) \cdot \Psi(w_n) = \varphi(w_1) \cdots \varphi(w_n) = \Phi(w_1) \cdots \Phi(w_n) = \Phi(w)$.

2.8.7 Korollar. Wenn |S| = |S'|, dann gilt $\mathbb{F}_S \cong \mathbb{F}_{S'}$.

Beweis. Übung.

2.8.8 Korollar. Wenn $\Gamma = \langle S \rangle$, dann ist Γ ein Quotient von $\mathbb{F}_S : \exists q : \mathbb{F}_S \to \Gamma$. Nach universellen Eigenschaft: q surjektiv, weil $\Gamma > q(\mathbb{F}_S) \supseteq dS \implies q(\mathbb{F}_S) \supseteq \langle S \rangle = \Gamma$.

Sei $\mathbb{F}_2 := \langle a, b \rangle$ frei auf 2 Erzeugern. Was ist Cay $(\mathbb{F}_2, \{a, b\})$?

2.8.9 Proposition. Cay(\mathbb{F}_2 , {a, b}) ist ein 4-regulärer Baum.

Beweis. (1) Jede Ecke ist mit 4 anderen Knoten verbunden (durch a, b, a^{-1}, b^{-1}).

(2) Es ist ein Baum, denn: ein Zyklus an $w \in \mathbb{F}_2$ ist eine Sequenz $w, wa^{\epsilon_1}, wa^{\epsilon_2}b^{\epsilon_2}, ..., w \cdot v = w \iff v = 1$, wobei v reduziert ist, weil wir Rückgänge nicht erlauben, somit ist v trivial \implies es gibt keine Zyklen.

2.8.10 Korollar. $\pi_1(\text{Cay}(\mathbb{F}_2, \{a, b\})) \cong \{1\}.$

Beweis. $(Cay(\mathbb{F}_2, \{a, b\}))$ ist zusammenziehbar: wir müssen eine Homotopie zwischen id und $c: Cay(\mathbb{F}_2) \longrightarrow e$ konstruieren. Sei h_t , $t \in [0, 1]$ eine Familie der Abbildungen, die die 4 Kanten an 1 zusammenzieht?

 $h_t^{(1)}$ sei die Familie von Abbildungen, die diese neuen Kanten an e zusammenzieht. Die gewünschte topologie entsteht durch Ausführung von $h_t^{(n)}$ auf dem Intervall $t \in [1-1/2^n, 1-1/2^{n+1}]$ und Verkleben.

2.8.11 Korollar.
$$\pi(\underbrace{\bigcirc)} \cong \mathbb{F}_2$$
; analog (\ddot{U} bung): $\pi(\underbrace{\bigcirc}) \cong \mathbb{F}_S$.

Tatsächlich gilt noch mehr: die Fundamentalgruppe von jedem Graphen ist frei (Übung). Idee: G = (V, E) hat einen maximalen Baum $T \subseteq G$, T wird zusammenziehbar

2.9 Angabe der Gruppen durch Erzeuger und Relationen.

2.9.1 Definition. Sei Γ eine Gruppe, $F \subseteq \Gamma$ eine Teilmenge. Die *normale Hülle* von F ist die kleinste normale Untergruppe $N \triangleleft \Gamma$, welche F enthält. Bezeichnung:

$$\langle\langle F \rangle\rangle = \bigcap_{N' \leq \Gamma, N' \supseteq F} N'.$$

2.9.2 Proposition. Sei Γ eine Gruppe, $F \subseteq \Gamma$ eine Teilmenge. Die normale Hülle $\langle \langle F \rangle \rangle$ hat folgende Eigenschaft: \forall Homomorphismen $\varphi : \Gamma \longrightarrow \Lambda$ mit $F \subseteq \ker \varphi$ gilt: $\langle \langle F \rangle \rangle \subseteq \ker \varphi$, und $\langle \langle F \rangle \rangle$ ist die größte normale Untergruppe von Γ mit dieser Eigenschaft.

Beweis. $\ker \varphi \triangleleft \Gamma \Longrightarrow (F \subseteq \ker \varphi \Longrightarrow \langle \langle F \rangle) \subseteq \ker \varphi)$. Maximalität:

$$q:\Gamma \to \Gamma/\langle\langle F \rangle\rangle$$
, $\ker q = \langle\langle F \rangle\rangle$.

2.9.3 Definition. Sei S eine Menge, $R \subseteq \mathbb{F}_S$. Die Gruppe $\Gamma = \langle S | R \rangle$ definiert durch Erzeuger S mit Relationen R ist

$$\Gamma = \langle S|R \rangle := \mathbb{F}_S / \langle \langle R \rangle \rangle.$$

2.9.4 Proposition. $\Gamma = \langle S|R \rangle$ hat folgende universelle Eigenschaft: \forall Gruppen Λ und jede Abbildung $\varphi : S \longrightarrow \Lambda$ s.d. $\ker \varphi \supseteq \langle \langle R \rangle \rangle$, wobei $\varphi : \mathbb{F}_S \longrightarrow \Lambda$ der durch φ induzierter Homomorphismus ist, existiert ein eindeutiger Homomorphismus $\overline{\varphi} : \Gamma \longrightarrow \Lambda$. Die Abbildung kann man auf Erzeuger angeben, wenn Relationen erfüllt sind.

Beweis. Übung.

2.9.5 Beispiel. $\Gamma = \langle a, b \mid ab \, a^{-1} \, b^{-1} \rangle \left(= \langle a, b \mid ab \, a^{-1} \, b^{-1} = 1 \rangle = \langle a, b \mid ab = ba \rangle. \right)$ Behauptung: $\Gamma \cong \mathbb{Z}^2$. Ein Homomorphismus ist $\Phi : \Gamma \longrightarrow \mathbb{Z}^2$, $a \mapsto (1,0)$, $b \mapsto (0,1)$ ist surjektiv, weil (1,0), (0,1) das \mathbb{Z}^2 erzeugen, die inverse Abbildung ist $\Psi : \mathbb{Z}^2 \longrightarrow \Gamma$, $(1,0) \mapsto a$, $(0,1) \mapsto b$.

11. Vorlesung, 23.11.2016

12. Vorlesung, 24.11.2016

Letztes mal: Da Cayley-Graphen von freien Gruppen Bäume sind: $\pi_1(\mathfrak{S}_{...}) \cong \mathbb{F}_S$. Frage:

|S| viele

Kann man diese Tatsache auch folgendermaßen verstehen: $\pi_1(X_1) = \pi(\bigcirc) \cong \mathbb{Z} = \langle a \rangle$ und $\pi_1(X_1) = \pi_1(\bigcirc) \cong \mathbb{Z} = \langle b \rangle \implies \pi_1(\bigcirc) \cong \mathbb{F}_2 = \langle a, b \rangle$. Genauer: Wie berechnet man $\pi(U_1 \cup U_2)$ in Termen von $\pi_1(U_1)$ und $\pi_1(U_2)$? Die Antwort auf diese Frage ist der Satz von Seifert—van Kampen.

2.9.6 Definition. Seien Γ_1 , Γ_2 , Λ drei Gruppen und seien die Homomorphismen φ_1 : $\Lambda \longrightarrow \Gamma_1$, φ_2 : $\Lambda \longrightarrow \Gamma_2$ gegeben. Also ein Diagramm

$$\begin{array}{c}
\Lambda \xrightarrow{\varphi_1} \Gamma_1 \\
\varphi_2 \downarrow \\
\Gamma_2
\end{array}$$

Eine Gruppe Γ zusammen mit Homomorphismen $\psi_1: \Gamma_1 \longrightarrow \Gamma$, $\psi_2: \Gamma_2 \longrightarrow \Gamma$ heißt *Pushout* von diesem Diagramm, wenn

- (1) $\psi_1 \circ \varphi_1 = \psi_2 \circ \varphi_2$.
- (2) \forall Gruppen G mit Homomorphismen $\theta_1 : \Gamma_1 \longrightarrow G$, $\theta_2 : \Gamma_2 \longrightarrow G$ mit $\theta_1 \circ \varphi_1 = \theta_2 \circ \varphi_2$ $\exists ! \phi : \Gamma \longrightarrow G$, welcher das Diagramm kommutativ macht.

Pushouts kann man auch für

- Mengen → Mengenabbildungen,
- Vektorräume lineare Abbildungen,
- topologische Räume stetige Abbildungen,

definieren. Auf Mengen:

$$Y := Y_1 \sqcup_{\varphi_1, \varphi_2} Y_2 = Y_1 \sqcup Y_2 / \varphi_1(x) \sim \varphi_2(x) \forall x \in X.$$

Gegeben θ_1, θ_2 mit $\theta_1 \circ \varphi_1 = \theta_2 \circ \varphi_2 \Longrightarrow \theta_1(\varphi_1(x)) = \theta_2(\varphi_2(x)) \Longrightarrow \theta_1, \theta_2$ sind konstant auf Äquivalenzklassen von $\sim \Longrightarrow \exists \phi: Y \longrightarrow Z, \ y_1 \mapsto \theta_1(y_1), \ y_2 \mapsto \theta_2(y_2)$.

2.9.7 Beispiel. $\Lambda = \{1\}, \Gamma_1 = \Gamma_2 = \mathbb{Z}$

$$\begin{cases} 1\} \xrightarrow{\varphi_1} \mathbb{Z} = \langle b \rangle \\ \varphi_2 \downarrow \\ \langle a \rangle = \mathbb{Z} \end{cases}$$

Behauptung: Pushout von dem obigen Diagramm ist $\Gamma = \mathbb{F}_2 = \langle a, b \rangle$ mit $\psi_1 : \mathbb{Z} = \langle a \rangle \hookrightarrow \mathbb{F}_2$, $\psi_2 : \mathbb{Z} = \langle b \rangle \hookrightarrow \mathbb{F}_2$. Beweis: Gegeben eine Gruppe G, $\theta_1 : \mathbb{Z} = \langle a \rangle \hookrightarrow \mathbb{F}_2$, $\theta_2 : \mathbb{Z} = \langle b \rangle \hookrightarrow \mathbb{F}_2$

2.9.8 Proposition. Jedes Diagramm

$$\begin{array}{c}
\Lambda \xrightarrow{\varphi_1} \Gamma_1 \\
\varphi_2 \downarrow \\
\Gamma_2
\end{array}$$

hat einen Pushout. Den kann man folgendermaßen konstruieren: Seien $\Gamma_1 = \langle S_1 | R_1 \rangle$, $\Gamma_2 = \langle S_2 | R_2 \rangle$. Dann ist der Pushout

$$\Gamma := \langle S_1 \cup S_2 | R_1 \cup R_2 \cup \{ \underbrace{\varphi_1(\lambda)\varphi_2(\lambda)^{-1}}_{\in \Gamma_1} \mid \lambda \in \Lambda \}$$

Insbesondere ist der Pushout bis auf Isomorphie eindeutig bestimmt, ψ_1, ψ_2 sind induziert durch Inklusionen $S_1, S_2 \hookrightarrow S_1 \cup S_2$.

Beweis. Nach Proposition vom letzten Mal ist ein Homomorphismus $\phi: \Gamma \longrightarrow G$ bestimmt durch $\phi(S_1 \cup S_2)$, falls die Relationen im Kern des induzierten Homomorphismus $\overline{\phi}: \mathbb{F}_{S_1 \cup S_2} \longrightarrow G$ liegen.

Wir müssen nachrechnen, dass $R_1 \cup R_2 \cup \{\varphi_1(\lambda)\varphi_2(\lambda)^{-1} \mid \lambda \in \Lambda\} \subseteq \ker \overline{\phi}$, wobei $\phi(s_1) := \theta_1(s_1)$, $\phi(s_2) := \theta_2(s_2)$.

 R_1 , $R_2 \subseteq \ker \phi$, denn θ_1 , θ_2 induzieren Homomorphismen $\overline{\theta}_1$, $\overline{\theta}_2$ auf freien Gruppen \mathbb{F}_{S_1} , \mathbb{F}_{S_2} , s.d. R_1 bzw. R_2 im Kern von $\overline{\theta}_1$ bzw. $\overline{\theta}_2$ liegt.

$$\overline{\phi}(\varphi_1(\lambda)\varphi_2(\lambda)^{-1}) = \overline{\phi}(\varphi_1(\lambda))\overline{\phi}(\varphi_1(\lambda))^{-1} = \overline{\theta}_1(\varphi_1(\lambda))\overline{\theta}_2(\varphi_2(\lambda))^{-1} = 1,$$

weil $\theta_1 \circ \varphi_1 = \theta_2 \circ \varphi_2$. Γ ist durch $S_1 \cup S_2$ erzeugt $\Longrightarrow \varphi$ eindeutig bestimmt.

2.9.9 Definition. Der Pushout vom Diagramm

$$\begin{array}{ccc}
1 & \longrightarrow & \Gamma_1 \\
\downarrow & & & \\
\Gamma_2 & & & \\
\end{array}$$

heißt *freies Produkt* von Γ_1 und Γ_2 . Bezeichnung: $\Gamma = \Gamma_1 * \Gamma_2$.

Konkret:
$$\Gamma_1 = \langle S_1 | R_1 \rangle$$
, $\Gamma_2 = \langle S_2 | R_2 \rangle \Longrightarrow \Gamma_1 * \Gamma_2 = \langle S_1 \cup S_2 | R_1 \cup R_2 \rangle$.

2.9.10 Beispiel.
$$(a_1, ..., a_n) = \mathbb{F}_n = \mathbb{Z} * ... * \mathbb{Z}$$
.

2.9.11 Definition. Seien Γ_1 , Γ_2 Gruppen, $\Lambda < \Gamma_1$, $\Lambda < \Gamma_2$. Der Pushout von

heißt *amalgamiertes freies Produkt* von Γ_1 , Γ_2 über Λ ; Bezeichnung: $\Gamma_1 *_{\Lambda} \Gamma_2$.

2.9.12 Satz (Seifert—van Kampen). Sei $X = U_1 \cup U_2$ eine Vereinigung von zwei offenen Teilmengen, s.d. $U_1, U_2, U_1 \cap U_2$ wegzusammenhängend sind. Sei $x_0 \in U_1 \cap U_2$. Dann gilt: $\pi_1(X, x_0)$ ist der Pushout von

$$\pi_1(U_1 \cap U_2, x_0) \hookrightarrow (\iota_1)_* \longrightarrow \pi_1(U_1, x_0)$$

$$\downarrow \\ \pi_1(U_2, x_0)$$

wobei $\iota_1: U_1 \hookrightarrow X$, $\iota_2: U_2 \hookrightarrow X$ Inklusionsabbildungen sind.

2.9.13 Korollar. $\pi_1(\bigcirc \bullet \bigcirc) \cong \mathbb{F}_2$ (denn $\bigcirc \bullet \bigcirc \bullet \cup \bullet \bigcirc$ mit einem gemeinsamen Mittelpunkt $\Longrightarrow \pi_1(U_1 \cap U_2) \cong 1$ und $\pi_1(U_1) = \pi_1(U_2) = \mathbb{F}_1$). Analoge Aussage hat man für n hintereinander geschachtelte Schleifen.

Zur Idee des Beweises vom Satz von Seifert—van Kampen: Wir wollen zeigen, dass $\pi_1(X,x_0)$ ein Pushout ist d.h., $\forall G$ und $\forall \theta_1:\pi_{U_1,x_0}\longrightarrow G$, $\theta_2:\pi_{U_2,x_0}\longrightarrow G$ mit $\theta_1\circ(\iota_1)_*=\theta_2\circ(\iota_2)_*\exists!\phi:\pi_1(X,x_0)\longrightarrow G$.

Frage: Wie interpretiert man einen Homomorphismus $\theta: \pi_1(Y, y_0) \longrightarrow G$ geometrisch (topologisch)?

Konstruktion: Sei (Y, y_0) ein punktierter Raum, $\theta: \pi_1(Y, y_0) \longrightarrow G$ ein Homomorphismus. Betrachte

$$Z:=\widetilde{Y}\times_{\theta}G=\widetilde{Y}\times G/(y\cdot [\gamma],g)\sim (y,\theta([\gamma])g), [\gamma]\in \pi_1(Y,y_0), g\in G\cdot$$

Alternativ:

$$Z := \widetilde{Y} \times G /_{\pi_1(Y, y_0)},$$

wobei $\pi_1(Y, y_0)$ von rechts auf $\widetilde{Y} \times G$ wirkt:

$$(y,g)\cdot[\gamma]=(y[\gamma],\theta([\gamma])^{-1}g).$$

 $p:Z\longrightarrow Y$, $[(y,g)]\mapsto \widetilde{p}(y)$, $\widetilde{p}:\widetilde{Y}\longrightarrow Y$ dann ist $p:(Z,z_0)\longrightarrow (Y,y_0)$ eine Überlagerungsabbildung $(z_0=[(\widetilde{y}_0,1)])$, weil \widetilde{p} eine Überlagerung war. Außerdem trägt Z eine rechte G-Wirkung durch Decktransformationen:

$$[(y,g)] \cdot h := [(y,gh)].$$

Außerdem gilt: $Z/G \cong Y$. Fazit: Aus einem Homomorphismus $\theta : \pi_1(Y, y_0) \longrightarrow G$ haben wir eine Überlagerung $p : (Z, z_0) \longrightarrow (Y, y_0)$ mit einer G-Wirkung durch Decktransformation bekommen, s.d. $Z/G \cong Y$.

2.9.14 Definition. Seien $p:(Z,z_0)\longrightarrow (Y,y_0)$ eine Überlagerung mit einer G-Wirkung, $p':(Z',z'_0)\longrightarrow (Y,y_0)$ eine Überlagerung mit einer G-Wirkung. Ein Homomorphismus $h:Z\longrightarrow Z'$ s.d. $p'\circ h=p$ und $h(z\cdot g)=h(z)\cdot g\ \forall\ z\in Z,\ g\in G$ heißt *Isomomorphismus* (von Überlagerungen mit G-Wirkung).

2.9.15 Proposition. Homomorphismen $\theta: \pi_1(Y, y_0) \longrightarrow G$ entsprechen eindeutig Isomorphieklassen von Überlagerungen $p: (Z, z_0) \longrightarrow (Y, y_0)$ mit G-Wirkung s.d. $Z/_G \cong Y$.

Beweis. Inverse Konstruktion zur obigen. Wenn: $p:(Z,z_0)\longrightarrow (Y,y_0)$ eine G-Überlagerung mit $Z/_G\cong Y$. Sei $\theta:\pi_1(Y,y_0)\longrightarrow G$ gegeben durch $[\gamma]\mapsto g_{[\gamma]}$ s.d. $z_0\cdot g_{\gamma}=\widetilde{\gamma}(1)$, wobei $\widetilde{\gamma}$ die eindeutig bestimmte Hochhebung von γ ist. Diese Konstruktion ist invers zur obigen (wir zeigen allerdings nur eine Richtung) Wenn $Z=\widetilde{Y}\times_{\theta}G$, sei $[\gamma]\in\pi_1(Y,y_0)$, die Hochhebung $\widetilde{\gamma}$ von γ nach \widetilde{Y} erfüllt $\widetilde{\gamma}(1)=[\gamma]$. D.h., die Hochhebung $\widetilde{\gamma}_z$ von γ nach Z erfüllt

$$\widetilde{\gamma}_z(1) = [(z_0[\gamma], 1)] = [(z_0, \theta([\gamma]))] = [(z_0, 1)] \cdot \theta([\gamma]) \Longrightarrow g_{[\gamma]} = \theta([\gamma]).$$

12. Vorlesung, 24.11.2016 13. Vorlesung, 07.12.2016

Beweis (von dem Satz 2.9.12). Bedeutung von Satz von Seifert—van Kampen: Es gibt ein kommutatives Diagramm

 $\varphi_1, \ \varphi_2$ seien Homomorphismen induziert durch $U_1, U_2 \hookrightarrow X$. Brauchen: Universelle Eigenschaft: Sei G eine Gruppe, $\theta_1, \ \theta_2$ gegeben. Nach Proposition heben wir Überlagerungen $(U_1', x_1) \longrightarrow (U_1, x_0)$ und $(U_2', x_1) \longrightarrow (U_2, x_0)$ mit G-Wirkungen, die zu $\theta_1: \pi_1(U_1, x_0) \longrightarrow G, \ \theta_2: \pi_1(U_2, x_0) \longrightarrow G$ gehören. Die Einschränkungen dieser Überlagerungen auf $U_1 \cap U_2$ sind isomorph als G-Überlagerungen, denn sie gehören nach Proposition zu Hom. $\theta_1 \circ (\iota_1)_*$ bzw. $\theta_2 \circ (\iota_2)_*$: $\pi_1(U_1 \cap U_2, x_0) \longrightarrow G$, die gleich sind. D.h. \exists Homöomorphismus $h: p_1^{-1}(U_1 \cap U_2) \longrightarrow p_2^{-1}(U_1 \cap U_2)$, der mit Projektionen kommutiert und mit G-Wirkungen verträglich ist. Definiere

$$X' := U_1' \cup U_2' = U_1' \sqcup U_2' /_{x \sim h(x)}$$

 p_1, p_2 geben Abbildung $p: X' \longrightarrow X$. X' ist eine G-Überlagerung, weil U_1', U_2' es waren, h verträglich mit der G-Wirkung \leadsto erhalte $\phi: \pi_1(X, x_0) \longrightarrow X$, der zu X' gehört. Es

2 HOMOTOPIE

gilt : $\phi \circ \varphi_2$ ist eindeutig durch die Struktur von X' über U_2 bestimmt $\Longrightarrow \phi \circ \varphi_2 = \theta_2$. Eindeutigkeit: Wenn $\phi' : \pi_1(X, x_0) \longrightarrow G$ mit $\varphi' \circ \varphi_2 = \theta_2$, $\phi' \circ \varphi_1 = \theta_1$. Konstruiere eine Überlagerung $p : X'' \longrightarrow X$ zu ϕ .

- X" ist über U₂ isomorph zu U₂', weil φ' ∘ φ₂ = θ₂
 X" ist über U₁ isomorph zu U₁', weil φ' ∘ φ₁ = θ₁

$$\implies X'' \cong X'.$$

2 HOMOTOPIE

Konsequenzen des Satzes von Seifert-van Kampen

Erinnerung: $\pi_1(\mathcal{E}_S, x_0) \cong \mathbb{F}_S$. $\pi_1(\mathcal{O}, x_0)$ ein Pushout von

$$\begin{cases} 1 \} \longrightarrow \mathbb{Z} \\ \downarrow & \downarrow \\ \mathbb{Z} \longrightarrow \mathbb{Z} \times \mathbb{Z} = \mathbb{F}_2 \end{cases}$$

2.10.1 Beispiel. Wir betrachten den Torus $T = U_1 \cup U_2$, $\pi_1(T, x_0) \cong \mathbb{Z}^2$

 $\theta_1(aba^{-1}b^{-1}) = 1$ jedenfalls $\Longrightarrow \exists! \phi : \langle a, b \mid aba^{-1}b^{-1} = 1 \rangle \longrightarrow G$

Erweiterung zu einem mehrfachen Torus $\Sigma_g := U_1 \cup U_2$, wobei

- U_1 Umgebung von Schleifen $a_1,b_1,...,a_g,b_g$. U_2 die 2-Zelle, die längs $a_1b_1a_1^{-1}b_1^{-1}a_2b_2a_2^{-1}b_2^{-1}...a_gb_ga_g^{-1}b_g^{-1}$ angeklebt wird.

$$\Sigma_g = ... = \prod_{k=1}^g [a_k, b_k].$$

Also man hat nach Seifert-van Kampen:

Wie beim Torus folgt $\pi_1(\Sigma_g) \cong \langle a_1, ..., a_g, b_1, ..., b_g \mid \prod_{k=1}^g [a_k, b_k] = 1 \rangle$. Die Fläche Σ_g von Geschlecht g entsteht, indem man an ein Bouquet von 2g Kreisen eine 2-Zelle angeklebt. Die Anklebeabbildung ist durch das Wort

$$a_1b_1a_1^{-1}b_1^{-1}a_2b_2a_2^{-1}b_2^{-1}...a_gb_ga_g^{-1}b_g^{-1}$$

bestimmt.

Sei $\Gamma = \langle S \mid R \rangle$ eine Gruppe gegeben durch Erzeuger und Relationen. Betrachte den CW-Komplex X_{Γ} gegeben durch:

- eine 0-Zelle e^0 ,
- |S| 1-Zellen e_s^1 , $s \in S$, die mit beiden Randpunkten an e^0 angeklebt werden, |R| 2-Zellen e_r^2 , $r \in R$ mit Anklebeabbildungen $\varphi_r : \partial e_r^2 \cong S^1 \longrightarrow e^0 \cup \bigcup_{s \in S} e_s^1$ (klebe e_r^2 längs des Weges r im Erzeuger $s \in S$ an). Wenn $r = s_1^{\alpha_1} \cdot s_2^{\alpha_2} \cdots s_k^{\alpha_k}$. Zerlege S^1 in $|\alpha_1| + ... + |\alpha_k|$ gleiche Teile.
- **2.10.2 Beispiel.** Wenn $\Gamma = \langle a_1, ..., a_g, b_1, ..., b_g \mid \prod_{k=1}^g [a_k, b_k] = 1 \rangle \Longrightarrow X_\Gamma \cong \Sigma_g$. $\Gamma = \langle a \mid a^2 = 1 \rangle \Longrightarrow X_\Gamma \cong \mathbb{RP}^2$.

Frage/Verdacht: $\pi_1(X_{\Gamma}, e^0) \cong \Gamma$.

2.10.3 Proposition. Sei X ein wegzusammenhängender Raum, sei

$$Y = X \cup_{\varphi_{\alpha}} \left(\bigcup e_{\alpha}^{2} \right)_{\alpha \in A}$$

gleich X mit angeklebten Zellen e_{α}^2 durch Abbildung $\varphi_{\alpha}: S^1 \longrightarrow X$. Seien $x_{\alpha} \in \varphi_{\alpha}(S^1)$, $x_0 \in X$, γ_{α} Weg von x_0 nach x_{α} . Sei $[\varphi_{\alpha}] \in \pi_1(X, x_{\alpha})$ die Klasse von φ_{α} , $[\gamma_{\alpha}^{-1} \cdot \varphi_{\alpha} \cdot \gamma_{\alpha}] \in \pi_1(X, x_0)$. Sei $N := \langle \langle [\gamma_{\alpha}^{-1} \cdot \varphi_{\alpha} \cdot \gamma_{\alpha}] \mid \alpha \in A \rangle \rangle \triangleleft \pi_1(X, x_0)$. Dann gilt:

- (1) Die Inklusion $X \hookrightarrow Y$ definiert eine Surjektion $\pi_1(X, x_0) \longrightarrow \pi_1(Y, x_0)$ mit Kern gleich N; also gilt $\pi_1(Y, x_0) \cong \pi_1(X, x_0)$.
- (2) Wenn Y' von Y durch Ankleben von n-Zellen für n > 2 erhalten wird, gilt: $Y \hookrightarrow Y'$ induziert einen Isomorphismus von Fundamentalgruppen.
- (3) X CW-Komplex, dann gilt: die Inklusion $X^2 \hookrightarrow X$ von dem 2-Skelett induziert einen Isomorphismus $\pi_1(X^2, x_1) \cong \pi_1(X, x_0)$.

2.10.4 Korollar. X CW-Komplex,

$$X^2 = e^0 \cup \bigcup_{s \in S} e_s^1 \cup_{\varphi_r} \bigcup_{r \in R} e_r^2$$

mit Anklebeabbildung φ_r . Seien $\overline{r} \in \mathbb{F}_s \cong \pi_1(X^1, e^0)$ induziert durch φ_r ($\overline{r} = [\varphi_r] \in \pi_1(X^1, e^0)$). Dann gilt: $\pi_1(X, x_0) \cong \langle S | \overline{r}, r \in R \rangle$.

13. Vorlesung, 07.12.2016

14. Vorlesung, 08.12.2016

Beweis (der letzten Proposition). Wähle $y_2 \in e_\alpha^2$. Schreibe $Z = U \cup V$, $U = Z \setminus \bigcup_\alpha \{y_\alpha\}$, $V = Z \setminus X \cong \{x_0'\}$. Dann

$$\underbrace{U \cap V}_{x_{\alpha}' := \{x_{0}\} \times 1 \in} = \bigcup_{\alpha \in A} e_{\alpha}^{2} \setminus \{y_{\alpha}\} \cup \bigcup_{\alpha \in A} (\operatorname{Im} \gamma_{\alpha}) \times (0, 1].$$

 $\pi_1(X, x_0) \cong \pi_1(Z, x_0')$ —Berechnung mit Seifert-van Kampen:

$$\pi_{1}(U \cap V, x'_{0}) \longrightarrow \pi_{1}(U, x'_{0}) \cong \pi_{1}(X, x_{0})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$1 \cong \pi_{1}(V, x'_{0}) \longrightarrow \pi_{1}(Z, x'_{0}) \cong \pi_{1}(X, x_{0})/N$$

$$\pi_{1}(U, x'_{0}) \cong \pi_{1}(X, x_{0}) \quad \pi_{1}(U \cap V, x'_{0}) \cong \mathbb{F}_{A} = \langle a_{\alpha} \mid \alpha \in A \rangle.$$

Es gilt nach Konstruktion $\theta \circ \iota_*(a_\alpha) = [\gamma_\alpha^{-1} \circ \phi_\alpha \circ \gamma_\alpha] \in \pi_1(X, x_0)$. Also $\pi_1(Z, x_0') \cong \pi_1(X, x_0) / N$, damit ist (1) bewiesen. (2) analog, wobei alle Gruppen im Diagramm trivial sind, da man in S^n für n > 1 schleifen zusammenziehen kann. (3): X CW-Komplex, dann gilt $\pi_1(X^2, x_0) \cong \pi_1(X, x_0)$.

2.10.5 Korollar. $\Gamma = \langle S \mid R \rangle$, $X_{\Gamma} = e^0 \cup \bigcup_{s \in S} e^1_s \cup_{\varphi_r} \bigcup_{r \in R} e^2_r$ mit Anklebeabbildung φ_r durch Relationen gegeben, dann gilt

$$(\mathbb{F}_S/_{\langle\langle R\rangle\rangle}\cong)\pi_1(X_{\Gamma})\cong\Gamma.$$

Für jeden CW-Komplex X kann man somit die Fundamentalgruppe in Termen on Erzeugern und Relationen aus der CW-Struktur bestimmen. Also gibt die Fundamentalgruppe nur Information über niedrigdimensionale Struktur von X. Somit kann man durch π_1 z.B. Flächen unterscheiden: $\pi_1(\Sigma_g)$ ist nicht isomorph zu $\pi_1(\Sigma_{g'})$ für $g \neq g'$, aber $\pi_1(\mathbb{RP}^n) \not\cong \pi_1(\mathbb{RP}^m)$ für $n \neq m$.

2.11 Höhere Homotopiegruppen

Nach Def. ist $\pi_1(X, x_0) = \{ [\gamma] \mid \gamma : (S^1, 1) \longrightarrow (X, x_0) \}$. Analog: $\pi_n(X, x_0) = \{ [\gamma] \mid \gamma : (S^n, *) \longrightarrow (X, x_0) \}$.

2.11.1 Definition. (X, x_0) , (Y, y_0) zwei punktierte Räume. Dann ist

$$X \vee Y := X \sqcup Y /_{x_0} \sim y_0$$

mit ausgewählten Punkten x_0 , y_0 die *Ein-Punkt-Vereinigung*. Die Abbildung $S^1 \stackrel{g}{\longrightarrow} S^1 \vee S^1$ definiert die Verknüpfung in der Fundamentalgruppe, gegeben $\gamma_1: S^1 \longrightarrow X$, $\gamma_2: S^1 \longrightarrow X$:

$$\gamma_1 \lor \gamma_2 : S^1 \lor S^1 \longrightarrow X \quad \gamma_1 \cdot \gamma_2 : S^1 \stackrel{g}{\longrightarrow} S^1 \lor S^1 \stackrel{\gamma_1 \lor \gamma_2}{\longrightarrow} X$$

Analog hat man $q: S^n \longrightarrow S^n \vee S^n$. Verkbüpfung auf $\pi_n(X, x_0)$: $f_1, f_n \in \pi_n(X, x_0)$;

$$f_1 \cdot f_2 : S^n \xrightarrow{q} S^n \vee S^n \xrightarrow{f_1 \vee f_2} (X, x_0).$$

Liefert Gruppenstruktur auf $\pi_n(X, x_0)$.

Hauptproblem: $\pi_n(S^k)$ sind unbekannt. Z.B. $\pi_3(S^2)$ ist nichttrivial \implies es existiert eine nichttriviale Abbildung $h: S^3 \longrightarrow S^2$, die sogenannte *Hopf-Faserung*.

Homologie 3

Simplizialkomplexe

Wir beginnen mit dem n-Simplex:

baryzentrische Koordinaten
$$\Delta^n := \left\{ (t_i)_{i=0}^n \in \mathbb{R}^{n+1} \mid t_i \geq 0, \ \sum_{i=0}^n t_i = 1 \right\} = \overbrace{\left[v_0, v_1, ..., v_n\right]}^{\text{baryzentrische}},$$

 $v_i := (0, ..., 1, ..., 0)$. Die Facetten f_k von Δ^n sind Simplizes $[v_0, ..., \hat{v}_k, ..., v_n]$, Simplizes von Dimension n-1.

Allgemeiner: Eine beliebige Teilmenge $I \subseteq \{0, ..., n\}$ definiert den Teilsimplex $\Delta_I \subset \Delta^n$; $\Delta_I := [v_i]_{i \in I}$. Gegeben beliebige Punkte $a_0, ..., a_n \in \mathbb{R}^{n+1}$, die affin unabhängig sind, hat man den Simplex

$$[a_0,...,a_n] := \left\{ \sum_{i=0}^n t_i a_i \mid t_i \ge 0, \sum_{i=0}^n t_i = 1 \right\}.$$

Es gibt in diesem Fall eine kanonische affine Abbildung

$$\Delta^n \longrightarrow [a_0, ..., a_n], (t_i) \longrightarrow (\sum_{i=0}^n t_i a_i).$$

Die Ordnung der erzeugenden Ecken ist wichtig, wir unterscheiden zwischen $[a_0,...,a_n]$ und $[a_1, a_0, ..., a_n]$ (der Simplex ist durch einige gewisse Ordnung auf den Ecken bestimmt).

3.1.1 Definition. Die Vereinigung von allen Facetten von Δ^n ist der Rand $\partial \Delta^n$,

$$\overset{\circ}{\Delta}^n := \Delta^n \backslash \partial \Delta^n.$$

- **3.1.2 Definition.** Sei X ein topologischer Raum. X hat eine simpliziale Struktur (ist eine Simplizialkomplex), wenn eine Menge von Abbildungen $\sigma_{\alpha}: \Delta^{n_{(\alpha)}} \longrightarrow X$ gegeben ist, so dass:
 - (1) $\sigma_{\alpha}|_{\Lambda}^{\circ n}$ ist injektiv, und jeder Punkt in X ist im Bild genau eines $\sigma_{\alpha}|_{\Lambda}^{\circ n}$.
 - (2) σ_α|_{f_k} ⊂ σ_α = σ_β für ein geeignetes β. Hierbei benutzen wir die kanonische Identifizierung [v'₀, ..., v'_{n-1}] = Δⁿ⁻¹ → f_k = [v₀, ..., v̂_k, ..., v_n].
 (3) A ⊂ X offen ⇔ σ_α⁻¹(A) offen ∀α.

Anschaulich: X ist Verklebung von Simplizes längs Ränder. Z.B.: Nicht erlaubt: Beispiele: Polyeder sind Simplizialkomplexe (eventuelle nach Unterteilungen von Facetten).

14. Vorlesung, 08.12.2016

15. Vorlesung, 14.12.2016

Homologie für Simplizialkomplexe

Simplizialkomplexe: Zusammenkleben von Simplizes längs Facetten.

Intuitive Frage: Wie kann man Simplizialkomplexe topologisch unterscheiden? Geometrisch: Simplizialkomplexe können "Löcher verschiedener Dimensionen" haben. Kombinatorische Struktur auf Simplizes: Ränder. Der Standardsimplex:

$$\Delta^n := \left\{ (t_1, ..., t_n) \in \mathbb{R}^{n+1} \mid t_i \ge 0, \sum_{i=0}^n t_i = 1 \right\} = [v_0, ..., v_n].$$

Die Facetten von Δ^n sind $[v_0,...,\hat{v}_k,...,v_n]$, die (n-1)-dimensionalen Teilsimplizes. Der Rand von Δ^n für kleinere n:

- $\Delta^0 = \{*\}, \partial \Delta^0 = \emptyset.$
- $$\begin{split} \bullet \quad & \Delta^1 = [v_0, v_1], \, \partial \, \Delta^1 = [v_1] [v_0] \in \mathbb{Z} \cdot [v_0] \oplus \mathbb{Z} \cdot [v_1]. \\ \bullet \quad & \Delta^2 = [v_0, v_1, v_2]; \, \partial \, \Delta^2 = [v_1, v_2] [v_0, v_2] + [v_0, v_1] \in \mathbb{Z}[v_0, v_1] \oplus \mathbb{Z}[v_0, v_1] \oplus \mathbb{Z}[v_2, v_1]. \end{split}$$

Sei X ein Simplizialkomplex mit Strukturabbildungen $\sigma_{\alpha}: \Delta^n \longrightarrow X$.

3.2.1 Definition. Die *simplizialen* n -*Ketten* von X sind Elemente der freien abelschen Gruppe erzeugt von den offenen n-Simplizes von X:

$$C_n^{\Delta}(X) = \bigoplus_{\sigma_{\alpha}: \Delta^n \longrightarrow X} \mathbb{Z}.$$

Sie sind als formale Summen darstellbar: $\sum_{\alpha} n_{\alpha} \sigma_{\alpha}$, $n_{\alpha} \in \mathbb{Z}$, $\sigma_{\alpha} : \Delta^{n} \longrightarrow X$. Sei $\partial^{n} : C_{n}^{\Delta}(X) \longrightarrow C_{n-1}^{\Delta}(X)$ der Randhomomorphismus gegeben durch

$$\partial^{n}(\sigma_{\alpha}) = \sum_{i=0}^{n} (-1)^{i} \sigma_{\alpha} \Big|_{[\nu_{0},\dots,\hat{\nu}_{i},\dots,\nu_{n}]}.$$

3.2.2 Beispiel. Wir betrachten

$$X := a$$

$$a$$

$$b$$

 $C_0^{\Delta}(X) = \mathbb{Z} \cdot [a] \oplus \mathbb{Z} \cdot [b] \oplus \mathbb{Z} \cdot [c] \oplus \mathbb{Z} \cdot [d].$

- 1-Simplizes: [ab], [bc], [ac], [ad], [db], [dc].
- 2-Simplizes [abc], [abd], [bcd], [acd].

Es gilt:

- $\partial[ab]=[b]-[a]$.
- $\partial [abc] = [bc] [ac] + [ab]$.
- $\partial(\partial[abc]) = [c] [b] [c] + [a] + [b] [a] = 0.$
- **3.2.3 Lemma.** $\partial_{n-1} \circ \partial_n = 0$.

Beweis.

$$\begin{split} \partial_{n-1} \circ \partial_{n}(\sigma_{\alpha}) = & \partial_{n-1} \Biggl(\sum_{i=0}^{n} (-1)^{i} \sigma_{\alpha} \Big|_{[\nu_{0}, \dots, \hat{\nu}_{i}, \dots, \nu_{n}]} \Biggr) \\ = & \sum_{i=0}^{n} (-1)^{i} \Biggl(\sum_{j < i} (-1)^{j} \sigma_{\alpha} \Big|_{[\nu_{0}, \dots, \hat{\nu}_{j}, \dots, \hat{\nu}_{j}, \dots, \nu_{n}]} \Biggr) \\ + & \sum_{j > i} (-1)^{j-i} \sigma_{\alpha} \Big|_{[\nu_{0}, \dots, \hat{\nu}_{i}, \dots, \hat{\nu}_{j}, \dots, \nu_{n}]} \Biggr) \\ = & 0. \end{split}$$

3.2.4 Definition. Die Untergruppe $\ker \partial_n \subset C_n^{\Delta}(X)$ heißt die *Gruppe der n-Zykel* in X.

3.2.5 Definition. Die Untergruppe Im $\partial_n \subset C^{\Delta}_{n-1}(X)$ heißt die *Gruppe der* (n-1)-*Ränder*.

Zum letzten Beispiel: [bcd]-[acd]+[abd]-[abc] ist ein 2-Zykel, aber kein Rand! (Übung) Beobachtung: Da $\partial_{n-1}\circ\partial_n=0$, gilt Im $\partial_n\subset\ker\partial_{n-1}$ (alle Ränder sind auch Zykel).

3.2.6 Definition. Die n-te Simpliziele Homologiegruppe von einem Simplizialkomplex X ist

$$H_n^{\Delta}(X) := \frac{\ker \partial_n}{\lim \partial_{n+1}} = \frac{n-\text{Zykel}}{n-\text{Ränder}}$$

3.2.7 Definition. Eine Folge $(C_n)_{n\in\mathbb{N}}$ von Gruppen C_n mit Homomorphismen $\partial_n:C_n\longrightarrow C_{n-1}$, anschaulich

$$\longrightarrow \dots \longrightarrow C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_n} C_{n-2} \xrightarrow{\partial_{n-1}} \dots \xrightarrow{\partial_1} C_0 \longrightarrow 0.$$

heißt *Kettenkomplex*, falls $\partial_{n-1} \circ \partial_n = 0$.

 $H_n(C_{\cdot}) := \frac{\ker \partial_n}{\lim \partial_{n+1}}$ ist die Homologie des Kettenkomplexes C_{\cdot} .

3.2.8 Beispiel. (1) Wir betrachten

$$S^1 := a \underbrace{l_{ba}}_{l_{ab}} b$$

$$C_0^{\Delta}(S^1) \cong \mathbb{Z}^2 = \langle a,b \rangle, \ C_1^{\Delta}(S^1) \cong \mathbb{Z}^2 = \langle l_{ab}, l_{ba} \rangle, \ C_n^{\Delta}(S^1) = 0 \text{ für } n \geq 2$$

$$\begin{array}{c} \mathbb{Z}l_{ab} \oplus \mathbb{Z}l_{ba} \\ 0 \longrightarrow 0 \longrightarrow C_1 \longrightarrow C_0 \stackrel{\widehat{\mathcal{C}}_0}{\longrightarrow} 0 \\ & \qquad \qquad \mathbb{Z}a \oplus \mathbb{Z}b \end{array}$$

Es gilt $\ker \partial_0 = C_0$, $\operatorname{Im} \partial_1 = \langle \partial l_{ab}, \partial l_{ba} \rangle = \langle b-a, a-b \rangle = \langle b-a \rangle \subset C_0 \Longrightarrow \text{simplizialer Kettenkomplex.}$

$$H_0^{\Delta}(S^1) \cong \underbrace{\mathbb{Z}a \oplus \mathbb{Z}b/\langle b-a\rangle}_{(na,mb) \mapsto n-m} \cong \mathbb{Z}.$$

Es gilt: $\partial_1(l_{ab}) = b - a$, $\partial_1(l_{ba}) = a - b$. Damit:

$$H_1^{\Delta}(S^1) := \ker \partial_1 \big/_{\text{Im } \partial_2} = \ker \partial_1 = \underbrace{(n l_{ab} \oplus n l_{ba})}_{\cong \mathbb{Z}, \text{ erzeugt durch } l_{ab} + l_{ba}} \subset C_1.$$

(2) Torus:

$$C_{2}^{\Delta}(T^{2}) \cong \mathbb{Z}^{2} \cong \mathbb{Z}U \oplus \mathbb{Z} \cdot L$$

$$C_{1}^{\Delta}(T^{2}) \cong \mathbb{Z}^{3} \cong \mathbb{Z}a \oplus \mathbb{Z} \cdot b \oplus \mathbb{Z} \cdot c$$

$$C_{0}^{\Delta}(T^{2}) \cong \mathbb{Z} \cdot v.$$

$$\partial_{2}(L) = b + a + c$$

$$\partial_{2}(U) = -c - b - a$$

$$\partial_{1}(a) = \partial_{1}(b) = \partial_{1}(c) = v - v = 0.$$

$$H_{0}^{\Delta}(T^{2}) = \ker \partial_{0} / \lim_{\partial_{1}} \partial_{1} = C_{0} / 0 \cong C_{0} \cong \mathbb{Z}.$$

$$H_{1}^{\Delta}(T^{2}) = \ker \partial_{1} / \lim_{\partial_{2}} \partial_{2} \cong \mathbb{Z}a \oplus \mathbb{Z}b \oplus \mathbb{Z}c / \langle a + b + c \rangle \cong \mathbb{Z}^{2} = \langle [a], [b] \rangle.$$

$$H_{2}^{\Delta}(T^{2}) = \ker \partial_{2} / \lim_{\partial_{3}} \partial_{3} \cong \ker \partial_{2} = \langle L + U \rangle \subset C_{2}$$

(3) Projektive Ebene:

$$C_2^{\Delta}(\mathbb{RP}^2) \cong \mathbb{Z}^2 \cong \mathbb{Z}U \oplus \mathbb{Z}L$$

$$C_1^{\Delta}(\mathbb{RP}^2) \cong \mathbb{Z}^3 \cong \mathbb{Z}a \oplus \mathbb{Z} \cdot b \oplus \mathbb{Z} \cdot c$$

$$C_0^{\Delta}(\mathbb{RP}^2) \cong \mathbb{Z} \cdot v \oplus \mathbb{Z}w.$$

$$\partial_2(L) = b - a - c$$

$$\partial_2(U) = c + b - a$$

$$\partial_1(a) = w - v, \ \partial_1(b) = w - v, \ \partial_1(c) = v - v = 0.$$

$$\partial_0 = 0.$$

$$H_0^{\Delta}(\mathbb{RP}^2) = \frac{C_0}{\operatorname{Im} C_1} = \mathbb{Z}_v \oplus \mathbb{Z}w / \langle w - v \rangle \cong \mathbb{Z}.$$

$$H_1^{\Delta}(\mathbb{RP}^2) = \ker \partial_1 / \operatorname{Im} \partial_2 = \frac{C_1}{\operatorname{Im} \partial_2} \cong \langle c, a - b \rangle / \langle c + b - a, b - a - c \rangle$$

$$= \langle c, a - b \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c + b - a, 2c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c - b - c \rangle$$

$$= \langle c, a - b - c \rangle / \langle c - b - c \rangle / \langle c - b - c \rangle$$

$$= \langle c, a - b$$

15. Vorlesung, 14.12.2016 16. Vorlesung, 15.12.2016

Letztes mal: simpliziale Homologie. Fragen/Nachteile:

- (1) $H_n^{\Delta}(X)$ hängen a priori von der Simplizialstruktur ab. (2) $H_n^{\Delta}(X)$ nur für Simplizialkomplexe defininiert, man möchte sie für für andere Räume auch definieren!

Antwort: erweitere die Definition der Homologie!

3.2.9 Definition. Sei X ein topologischer Raum. Ein singulärer n-Simplex in X ist eine stetige Abbildung $\sigma: \Delta^n \longrightarrow X$.

$$C_n(X) := \Big\{ \sum_i n_i \sigma_i \ \big| \ n_i \in \mathbb{Z}, \ \sigma_i : \Delta^n \longrightarrow X \ \text{singuläre} \ n\text{-Simplizes} \Big\} = \bigoplus_{\sigma: \Delta^N \longrightarrow X} \mathbb{Z}.$$

Randhomomorphismus $\partial^n:C^\Delta_n(X){\:\longrightarrow\:} C^\Delta_{n-1}(X)$ gegeben durch

$$\partial^{n}(\sigma_{\alpha}) = \sum_{i=0}^{n} (-1)^{i} \sigma_{\alpha} \Big|_{[\nu_{0},\dots,\hat{\nu}_{i},\dots,\nu_{n}]}.$$

3.2.10 Lemma. $\partial_{n-1} \circ \partial_n = 0$.

Beweis. Wie vorher.

Wie vorher haben wir n-Zykel $Z_n := \ker \partial_n$, Ränder $B_n := \operatorname{Im} \partial_{n+1}$.

3.2.11 Definition. Die n-te singuläre Homotopiegruppe von X ist

$$H_n^{\Delta}(X) := \frac{\ker \partial_n}{\lim \partial_{n+1}} = \frac{n-\text{Zykel}}{n-\text{Ränder}}$$

3.2.12 Definition. Die Sequenz

$$\longrightarrow \dots \longrightarrow C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_n} C_{n-2} \xrightarrow{\partial_{n-1}} \dots \xrightarrow{\partial_1} C_0 \longrightarrow 0.$$

hießt singulärer Kettenkomplex von X

3.2.13 Lemma. Wenn $X = \bigcup_{\alpha} X_{\alpha}$. Dann gilt: $H_n(X) = \bigoplus_{\alpha} H_n(X_{\alpha})$.

Beweis. Für jeden singulären Simplex $\sigma: \Delta^n \longrightarrow X$ gilt: $\sigma(\Delta^n) \subset X_{\alpha_\sigma}$ für ein $\alpha_\sigma \Longrightarrow C_n(X) = \bigoplus_{\alpha} C_n(X_\alpha), \ \partial_n: C_n(X_\alpha) \longrightarrow C_{n-1}(X_\alpha) \Longrightarrow H_n(X) = \bigoplus_{\alpha} H_n(X_\alpha).$

3.2.14 Proposition. Wenn X nichtleer und wegzusammenhängend ist, dann gilt: $H_0(X) \cong \mathbb{Z}$.

Beweis. Nach Definition gilt

$$H_0^{\Delta}(X) := \ker \partial_0 / \operatorname{Im} \partial_1 = C_0 / \operatorname{Im} \partial_1.$$

Definiere die Abbildung $\varepsilon: C_0(X) \longrightarrow \mathbb{Z}$, $\sum_i n_i \sigma_i \mapsto \sum_i n_i$. Diese ist surjektiv, weil $X \neq \emptyset$. Wir haben $\operatorname{Im} \partial_1 \subset \ker \varepsilon$: Für jeden singulären 1-Simplex $\sigma: \Delta^1 \longrightarrow X$ —einen Weg in X—gilt $\partial_1 \sigma = \sigma(1) - \sigma(0) \stackrel{\varepsilon}{\mapsto} 0$. Es gilt auch $\ker \varepsilon \subset \operatorname{Im} \partial_1$: Sei $\sum_i n_i x_i \in \ker \varepsilon$, dann $\sum_i n_i = 0$. Wir wählen einen Punkt $x_0 \in X$ und Pfade $\tau_i: \Delta^1 \longrightarrow X$ mit $\tau_i(0) = x_0$, $\tau_i(1) = \sigma_i(v_0)$, und wir setzen $\sigma_0: v_0 \mapsto x_0$. Dann ist τ_i singulärer 1-Simplex mit $\partial(\tau_i) = \sigma_i - \sigma_0$. Somit

$$\partial(\sum_{i} n_{i} \tau_{i}) = \sum_{i} n_{i} \sigma_{i} - \sum_{i} n_{i} \sigma_{0} = \sum_{i} n_{i} \sigma_{i},$$

denn $\sum_i n_i = 0$. Also ist $\sum_i n_i \sigma_i$ ein Rand. Also ker $\varepsilon = \operatorname{Im} \partial_1 \implies H_0(X) = \frac{C_0}{\operatorname{Im} \partial_1} \cong \operatorname{Im}(\varepsilon) = \mathbb{Z}$ nach dem Homomorphiesatz.

Bemerkung: $\varepsilon: C_0 \longrightarrow \mathbb{Z}, \sum_i n_i \sigma_i \mapsto \sum n_i$ heißt Augmentationsabbildung.

47

3.2.15 Proposition. Es gilt:

$$H_n(\{*\}) = \begin{cases} \mathbb{Z}, & n = 0, \\ 0, & n > 0. \end{cases}$$

Beweis. Es gibt für $\{*\}$ nur einen singulären Simplex $\sigma_n : \Delta^n \longrightarrow \{*\}$ in jeder Dimension. Also sieht der singuläre Kettenkomplex so aus:

$$\partial \sigma_n = \sum_{i=0}^n (-1)^i \sigma_{n-1} = \begin{cases} 0, & n \text{ ungerade,} \\ \sigma_{n-1}, & n \text{ gerade.} \end{cases}$$

Wir haben also

$$\Longrightarrow H_0(\{*\}) \cong \mathbb{Z}, H_n(X) = 0, n > 0.$$

Beobachtung: Wenn X, Y topologische Räume sind und $f: X \longrightarrow Y$ stetig $\implies f_*$: $C_n(X) \longrightarrow C_n(Y)$, $\sigma \mapsto f \circ \sigma$ und es gilt $\partial_n^Y \circ f_* = f_* \circ \partial_n^X$, weil

$$\partial_n(f \circ \sigma) = \sum (-1)^i f \circ \left(\sigma \Big|_{[\nu_0, \dots, \hat{\nu}_i, \dots, \nu_n]}\right) = \sum (-1)^i \left(f \circ \sigma \Big|_{[\nu_0, \dots, \hat{\nu}_i, \dots, \nu_n]}\right).$$

Dementsprechend gilt:

- f_{*}(ker ∂_n) ⊂ ker ∂_n Y,
 f_{*}(Im ∂_n) ⊂ Im ∂_n Y.

Wir bekommen also $f_*: H_n(X) \longrightarrow H_n(Y), [e] \mapsto [f_*e].$

3.2.16 Korrolar. $X \cong Y \Longrightarrow H_n(X) \cong H_n(Y) \forall n \in \mathbb{N}$.

Beweis. f,g inverse Homomorphismen $\implies f_*g_* = \mathrm{id}_* = \mathrm{id}$ und $g_*f_* = \mathrm{id}_* = \mathrm{id}$.

Bemerkung: Algebraische Sichtweise: Wenn $C_{(\cdot)}$, $D_{(\cdot)}$ Kettenkomplexe

Eine Sequenz $f_{*n}:C_n\longrightarrow D_n$ on Homomorphismen heißt Kettenabbildung, wenn $\partial_n\circ$ $f_{*n} = f_{*n-1} \circ \partial_n.$

3.2.17 Satz. Seien X, Y topologische Räume, $f, g: X \longrightarrow Y$. Wenn $f \cong g$, dann gilt: $f_* = g_* : H_n(X) \longrightarrow H_m(Y).$

3.2.18 Korrolar. $X \cong Y \Longrightarrow H_n \cong H_n(Y), n \in \mathbb{N}.$

Beweis. Se $F: X \times I \longrightarrow Y$ eine Homotopie zwischen f und g. Wir wollen aus F eine Abbildung zwischen $C_n(X)$ und $C_n(Y)$ bekommen. Wenn $\partial: \Delta^n \longrightarrow X$ ein singulärer Simplex ist, $\Delta^n \stackrel{\sigma}{\longrightarrow} X \stackrel{f}{\longrightarrow} Y$, $\Delta^n \times I \stackrel{\sigma \times \mathrm{id}}{\longrightarrow} X \times I \stackrel{F}{\longrightarrow} Y$. Wir müssen $\Delta^n \times I$ in Simplizes zerlegen:

$$\Delta^1 \times I = \boxed{ } \qquad \Delta^2 \times I = \boxed{ }$$

Allgemein: $\Delta^n \times I = \bigcup_{i=0}^n [v_0,..,v_i,w_i,...,w_n]$ (Nachrechnen!). Wir haben jetzt die Abbildung $F \circ (\sigma \times \mathrm{id}) : \Delta^n \times I \longrightarrow Y$ für jeden singulären Simplex $\sigma : \Delta^n \longrightarrow X$. Wir definieren nun die sogenannten *Prismoperatoren*

$$P_{n}(\sigma) := \sum_{i=0}^{n} (-1)^{i} \left(F \circ (\sigma \circ id) \right) \Big|_{[v_{0}, \dots, v_{i}, w_{i}, \dots, w_{n}]} \in C_{n+1}(Y).$$

$$\cdots \longrightarrow C_{n+1} \xrightarrow{\partial_{n+1}} C_{n} \xrightarrow{\partial_{n}} C_{n-1} \longrightarrow \cdots$$

$$f_{*} \bigvee_{i=0}^{n} g_{*} \xrightarrow{\partial_{n+1}} f_{*} \bigvee_{i=0}^{n} g_{*} \xrightarrow{\partial_{n}} C_{n-1} \longrightarrow \cdots$$

$$\cdots \longrightarrow C_{n+1} \xrightarrow{\partial_{n+1}} C_{n} \xrightarrow{\partial_{n}} C_{n-1} \longrightarrow \cdots$$

Wir zeigen jetzt folgende Identität: $\partial \circ P = g_* - f_* - P \circ \partial$. Indexverschiebung liefert:

$$\begin{split} \partial_{n+1} \circ P_n(\sigma) &= \sum_{j \le i} (-1)^j (-1)^i F \circ (\sigma \times \mathrm{id}) \Big|_{[v_0, \dots, \hat{v}_j, \dots, v_i, w_i, \dots, w_n]} \\ &+ \sum_{j \ge i} (-1)^i (-1)^{j+1} F \circ (\sigma \times \mathrm{id}) \Big|_{[v_0, \dots, v_i, w_i, \dots, \hat{w}_j, \dots, w_n]} \end{split}$$

Terme i = j: Kürzen sich außer

$$F \circ (\sigma \times \mathrm{id})\big|_{[\hat{v}_0,\dots,v_i,w_i,\dots,w_n]} - F \circ (\sigma \times \mathrm{id})\big|_{[v_0,\dots,v_i,w_i,\dots,\hat{w}_n]} = g_* - f_*.$$

Die Terme mit $i \neq j$ vergleichen wir mit

$$\begin{split} P \circ \partial(\sigma) = & P\Big(\sum_{i} (-1)^{i} \sigma \Big|_{[v_{0}, \dots, \hat{v}_{i}, \dots, v_{n}]}\Big) \\ = & \Big(\sum_{i} (-1)^{i} \sum_{j > i} (-1)^{j} (F \circ \sigma \times \mathrm{id}) \Big|_{[v_{0}, \dots, v_{j}, w_{j}, \dots, \hat{w}_{j}, \dots, v_{n}]} \\ & + \sum_{i} \sum_{j < i} (-1)^{i-1} (-1)^{j} (F \circ \sigma \times \mathrm{id}) \Big|_{[v_{0}, \dots, \hat{v}_{j}, \dots, v_{j}, w_{j}, \dots, v_{n}]}\Big) \end{split}$$

Also gilt: $\partial \circ P = g_* - f_* - P \circ \partial$. Wir wollen zeigen: $f_* = g_*$ auf Homologie. Dazu sei $\alpha \in Z_n(X)$ (ein Zykel)

$$f_{*n}(\alpha) - g_{*n}(\alpha) = \partial \circ P(\alpha) + p \circ \partial(\alpha) = \partial \circ P(\alpha) \in \operatorname{Im} \partial$$

 $\implies f_{*n}(\alpha) - g_{*n}(\alpha) \in B_n(Y) \implies f_*([\alpha]) = g_*([\alpha]) \in H_n(Y) \implies f_* = g_*, \text{ da in } H_n(Y) \text{ durch } Im \partial \text{ faktorisiert wird.}$

- **3.2.19 Definition.** Seien $C_{(\cdot)}$, $D_{(\cdot)}$ Kettenkomplexe, $f_{(\cdot)}$, $g_{(\cdot)}$: $C_{(\cdot)} \longrightarrow D_{(\cdot)}$ Kettenabbildungen. Eine Sequenz (P_n) : $C_n \longrightarrow D_{n+1}$ hießt *Kettenhomotopie* zwischen $f_{(\cdot)}$, $g_{(\cdot)}$, wenn $f_n g_n = \partial_{n+1} \circ P_n P_{n-1} \circ \partial_n$.
- **3.2.20 Lemma.** $f_{(\cdot)}, g_{(\cdot)}$ Kettenhomotop $\Longrightarrow f_* = g_* : H_n(C) \longrightarrow H_n(D)$.

Beweis. $\alpha \in Z_n \subset C_n \Longrightarrow f_n(\alpha) - g_n(\alpha) = \partial_{n+1} \circ P_n(\alpha) - P_{n-1} \circ \partial(\alpha)$. Rest in dem letzten Beweis enthalten.

Was ist die Relation zwischen Homologiegruppen von X, $A \subset X$ und X/A? Algebraische Vorbereitung: lange exakte Sequenzen.

3.2.21 Definition. Eine Sequenz von abelschen Gruppen A_n zusammen mit Homomorphismen $f_n: A_n \longrightarrow A_{n-1}$ heißt *exakt*, wenn ker $f_n = \operatorname{Im} f_{n+1}$ ($\iff H_n(A_{(\cdot)}) = 0 \forall n$)

Demzufolge beschreibt Homologie, wie inexakt eine Sequenz ist.

3.2.22 Beispiel. Eine kurze exakte Sequenz ist eine exakte Sequenz der Form

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0 \tag{*}$$

- **3.2.23 Lemma.** (*) kurze exakte Sequenz \iff f injektiv, g surjektiv, $B/A \stackrel{g}{\underset{\sim}{\longrightarrow}} C$.
- **3.2.24 Definition.** Ein Paar von topologischen Räumen (X, A), $(A \subset X)$ heißt *gutartig*, wenn A abgeschlossen ist und A ein Deformationsretrakt einer Umgebung $U \supset A$ ist.
- **3.2.25 Satz.** Wenn (X, A) ein gutartiges Paar ist, so haben wir eine lange exakte Sequenz:

$$\dots \longrightarrow H_n(A) \xrightarrow{\iota_*} H_n(X) \xrightarrow{p_*} H_n(X/A) \xrightarrow{\partial_*} H_{n-1}(A) \longrightarrow \dots$$

 $(i_* steht für kanonische Inklusion, p_* für kanonische Projektion.)$

3.2.26 Beispiel. $(X, A) = (D^k, S^{k-1}) \sim \text{Berechnung von } H_n(S^k).$

16. Vorlesung, 15.12.2016 17. Vorlesung, 21.12.2016

Letztes mal: (X, A) gutartig, dann hat man folgende lange exakte Homologiesequenz:

$$\ldots \longrightarrow H_n(A) \xrightarrow{\iota_*} H_n(X) \xrightarrow{p_*} H_n(X/A) \xrightarrow{\partial_*} H_{n-1}(A) \longrightarrow \ldots$$

3.2.27 Beispiel. $X = D^d$, $A = \partial D^d = S^{d-1} \subset D^d$. X ist zusammenziehbar

$$\implies H_n(X) = \begin{cases} \mathbb{Z}, & n = 0, \\ 0, & n > 0. \end{cases}$$

Denn mit $D^d/S^{d-1} = S^d$:

$$\longrightarrow H_n(S^{d-1}) \xrightarrow{\iota_*} \underbrace{H_n(D^d)}_{=0} \xrightarrow{p_*} H_n(S^d) \xrightarrow{\partial_*} H_{n-1}(S^{d-1}) \xrightarrow{} \underbrace{H_{n-1}(D^d)}_{=0}$$

folgt:

$$\partial_n: H_n(S^d) \xrightarrow{\cong} H_n(S^{d-1})$$

ist ein Isomorphismus, das heißt: $H_1(S^1) \cong \mathbb{Z}$; $\underbrace{H_k(S^1)}_{H_{k+d-1}(S^d)} \cong 0$ für k > 1. Also:

$$H_n(S^d) = \begin{cases} \mathbb{Z}, & n = 0, \\ 0, & n \neq 0, n \neq d, \\ \mathbb{Z}, & n = d. \end{cases}$$

3.2.28 Korollar (Analogon des Brouwerschen Fixpunktsatzes für höhere Dimensionen). ∂D^d ist kein Retrakt von D^d ; insbesondere hat jede stetige Abbildung $f: D^d \longrightarrow D^d$ einen Fixpunkt.

Beweis. Durch Widerspruch. Sei $r:D^d\longrightarrow \partial D^d$ eine Retraktion $\Longrightarrow \overbrace{r\circ\iota}^{=\operatorname{id}}:\partial D^d\longrightarrow \partial D^d$. Es folgt: $\overbrace{r\circ\iota}^{=r_*\circ\iota_*}\longrightarrow$

Strategie des Beweises:

- (1) Rein algebraischer Teil: eine kurze exakte Sequenz von Kettenkomplexen 0 \longrightarrow $C(A) \longrightarrow C(X) \longrightarrow C(X) / C(A) \longrightarrow 0$ gibt eine lange exakte Homologiesequenz.
- (2) In dieser Homologiesequenz wir statt $H_n(X/A)$ die sogenannte relative Homologie $H_n(X,A)$ stehen. Diese Gruppen müssen wir vergleichen.
- **3.2.29 Definition.** Seien (A_n) , (B_n) , (C_n) Kettenkomplexe (jeweils mit Randabbildung $\partial_n(A)$, $\partial_n(B)$, $\partial_n(C)$). Eine kurze exakte Sequenz von Kettenkomplexen ist eine Familie von kurzen exakten Sequenzen

$$0 \longrightarrow A_n \xrightarrow{f_n} B_n \xrightarrow{g_n} C_n \longrightarrow 0,$$

die mit Randabbildungen verträglich sind, d.h. das Diagramm

3.2.30 Beispiel. $A \subset X$ Unterraum, $C_n(A)$ —singuläre Ketten in A, $C_n(X)$ —singuläre Ketten in X, $f_n: C_n(A) \longrightarrow C_n(X)$. Durch Inklusion induziert: $\sigma: \Delta^n \longrightarrow A \subset X$

$$0 \qquad C_n(A) \longrightarrow C_n(X) \longrightarrow C_n(X)/C_n(A)$$

$$\downarrow \partial_n \qquad \qquad \downarrow \partial_n$$

$$0 \longrightarrow C_{n-1}(A) \longrightarrow C_{n-1}(X) \longrightarrow C_{n-1}(A)$$

3.2.31 Satz (Fundamentalsatz der homologischen Algebra). Sei

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

eine Erweiterung von Kettenkomplexen. Es gibt eine lange exakte Homologiesequenz

...
$$\longrightarrow H_n(A.) \xrightarrow{f_*} H_n(B.) \xrightarrow{g_*} H_n(C.) \xrightarrow{\partial_*} H_{n-1}(A.) \xrightarrow{\dots} ...$$

Beweis. (1) Bestimmung der Randabbildung.

$$H_n(C) = \ker \partial_n^C / \operatorname{Im} \partial_n^C.$$

Sei $[x] \in H_n(C) \implies \exists x \in \ker \partial_n \subset C_n$, welches [x] repräsentiert. $g_n : B_n \to C_n$ surjektiv $\implies \exists b \in B_n$ mit $f_n(b) = x$. Wegen Kommutativität gilt $g_{n-1} \circ \partial_n(b) = 0$, wegen Exaktheit der unteren Zeile gilt: $\exists a \in A_{n-1}$ mit $f_{n-1}(a) = \partial_n(b)$. Setze $\partial_*([x]) = [a] \in H_{n-1}(A)$. Wohldefiniertheit: $f_{n-1}\partial_{n-1}(a) = \partial_{n-1}f_{n-1}(a) = \partial_{n-1}\partial_n(b) = 0$. Unabhängig von der Wahl von x: Sei $x' \in \partial_n^C$ mit $x' - x = c' \in \operatorname{Im} \partial_{n+1} \Longrightarrow \exists c'' \in C_{n+1}$ mit $\partial_{n+1}(c'') = c'$. Sei $b'' \in B_{n+1}$ s.d. $g_{n+1}(b'') = c'' \Longrightarrow x$ liefert zu $b' := b + \partial_{n+1}(b'') \in B_n \Longrightarrow \partial_n(b') = \partial_n(b) + \partial_n \circ \partial_{n+1}(b'') = \partial_n(b)$. Unabhängig von der Wahl von b: Wenn $g_n(\tilde{b}) = x$, dann gilt: $\tilde{b} - b = \partial_n \circ f_n(\tilde{a}) \in \operatorname{Im} \partial_n$, $\partial_*([x])$ ist unabhängig von der Wahl von b. Nun müssen wir zeigen, dass die Homologiesequenz exakt ist. Also z.z.:

$$\ker f_{*} \stackrel{(\supseteq)}{=} \operatorname{Im} \partial_{*}$$

$$\ker g_{*} \stackrel{(\supseteq)}{=} \operatorname{Im} f_{*} : g_{*} \circ f_{*} : A_{*} \longrightarrow C_{*}$$

$$\ker \partial_{*} \stackrel{(\supseteq)}{=} \operatorname{Im} g_{*} : g_{*}([b]) = [g_{n}(b)], \partial_{*} g_{*}([b]) = [0]$$

$$0 \qquad A_{n+1} \longrightarrow B_{n+1} \longrightarrow C_{n+1} \qquad 0$$

$$\downarrow \partial_{n+1} \qquad \downarrow \partial_{n+1} \qquad \downarrow \partial_{n+1}$$

$$0 \longrightarrow A_{n} \longrightarrow B_{n} \longrightarrow C_{n} \qquad 0$$

Die umgekehrten Inklusionen (\subset): $\ker g_* \subseteq \operatorname{Im} f_*$. Sei $[b] \in \ker g_*$, repräsentiert durch $b \in B_n$ $g_n(b) = \partial_{n+1}(c) = \partial_{n+1}(g_{n+1}(b')) = g_n(\partial_n(b')) \implies g_n(b - \partial_n(b')) = 0 \implies \exists a \in A_n$ s.d. $f_n(a) = b - \partial_{n-1}(b')$.

 $f_{n-1}(\partial_n(a)) = \partial_n(f_n)(a) = \partial_n(b - \partial_{n+1}(b')) = 0 \implies \partial_n(a) = 0 \implies [a] \in H_n(A.)$ $f_*([a]) = [f_n(a)] = [b - \partial_{n+1}(b)] = [b].$ $\ker f_* \subset \operatorname{Im} \partial_*. \operatorname{Sei} [a] \in \ker f_* \implies a \in \ker \partial_n, f_n(a) \in \operatorname{Im} \partial_{n+1} \implies \exists b \in B_{n+1} \operatorname{mit} \partial_{n+1}(b) = a.$

$$0 A_{n+1} \longrightarrow B_{n+1} \longrightarrow C_{n+1} 0$$

$$\downarrow \partial_{n+1} \downarrow \partial_{n+1} \downarrow \partial_{n+1}$$

$$0 \longrightarrow A_n \longrightarrow B_n \longrightarrow C_n 0$$

Sei $[g_{n+1}(b)]$ =: $[x] \in H_{n+1}(C)$. $(\partial_{n+1} \circ g_{n+1}(b) = g_n \circ \partial_{n+1}(b) = g_n \circ f_n(a) = 0$.) $\partial_*[x] = [a]$ nach Definition der Randabbildung. Es bleibt noch: $\ker \partial_* \subset \operatorname{Im} g_*$. Sei $[x] \in \ker \partial_*$ mit $\partial_*[x] = 0$. D.h. wenn $b \in B_n$ mit $g_n(b) = x$ und $\partial_n(b) = f_{n-1}(a)$, dann gilt $a \in \operatorname{Im} \partial_n \Longrightarrow \exists a' \in A_n$ s.d. $a = \partial_n(a')$.

Sei $b' := f_n(a'), \ \partial_n(b') = f_{n-1}(a) = \partial_n(b)$. Das heißt $\partial_n(b-b') = 0, \ [b-b'] \in H_n(B.);$ $\partial_n(g_n(b-b')) = g_{n-1}(\partial_n(b-b')) = 0 \Longrightarrow g_*([b-b']) \in H_n(C.), \ g_n(b-b') = x - g_n(b') = x - g_n(f_n(a')) = x.$

Also haben wir:

$$0 \longrightarrow A. \longrightarrow B. \longrightarrow C. \longrightarrow 0$$

$$\Longrightarrow \dots \longrightarrow H_n(A.) \xrightarrow{f_*} H_n(B.) \xrightarrow{g_*} H_n(C.) \longrightarrow \xrightarrow{\partial_*} H_{n-1}(A.) \longrightarrow \dots$$

3.2.32 Korrolar. Wenn $A \subset X$, dann hat man eine lange exakte Homologiesequenz

$$... \longrightarrow H_n(A) \longrightarrow H_n(X \longrightarrow H_n(X,A) \longrightarrow H_{n-1}(A) \longrightarrow ...,$$

wobei

$$H_n(X,A) = H_n(C_{\cdot}(X)/C_{\cdot}(A)),$$

die sogenannte relative Homologiegruppe. $H_n(X,A) \ni [x]$ heißt $\partial_n(x) \in C(A)$