

Today's Lecture

Disjoint Sets

- Often need to keep a collection of disjoint sets.
 - Example: {{4, 6, 2, 0}, {1, 3}, {5}}
- May need to union disjoint sets.
- May need to check if two items are in same set.

Use Case

- We are given a **stream** of nodes, edges.
- Want to keep track of CCs at every step.
- ▶ BFS/DFS take $\Theta(V + E)$ time; efficient to compute CCs once, but then need to recompute.

Use Cases

- Used in Kruskal's algorithm for MST.
- Used in single linkage clustering.
- Used in Tarjan's algorithm to find LCA in a tree.

Disjoint Sets, Abstractly

- A disjoint sets ADT represents a collection of disjoint sets.
 - Example: {{4, 6, 2, 0}, {1, 3}, {5}}
- Supports three operations:
 - .make_set(), .find_set(x), .union(x, y)
- Sometimes called a Union-Find data type.

Assumption

- Elements are consecutive integers.
 - Example: {{4,6,2,0},{1,3},{5}}
- Not really a limitation.
 - Keep dictionary mapping, e.g., string ids to integers.

.make_set()

- Create a new singleton set.
- ► Element "id" automatically inferred, returned.

```
>>> ds = DisjointSet()
>>> ds.make_set()
0
>>> ds.make_set()
1
>>> ds.make_set()
```

.union(x, y)

- Union sets containing x and y.
- Updates data structure in-place.

```
>>> ds = DisjointSet()
>>> ds.make_set()
0
>>> ds.make_set()
1
>>> ds.make_set()
2
>>> ds.union(0, 2)
```

.find_set(x)

- Find **representative** of set containing x.
- Representative is arbitrary, but same for all items in same set.
- Used to test if two nodes in same set.
- Guaranteed to not change unless a union is performed.

```
>>> # ds is {{0}. {1}. {2}}
>>> ds.union(0, 2)
>>> ds.find set(0)
>>> ds.find set(2)
0
>>> ds.union(0. 1)
>>> ds.find set(0)
>>> ds.find_set(1)
1
>>> ds.find set(2)
1
```

Today's Lecture

- How do we implement a disjoint set?
- We'll introduce the disjoint set forest data structure.

► Talk about two heuristics that make it very efficient.

Disjoint Set Forests

Implementing Disjoint Sets

► First idea: a list of sets.

$$[{2, 4, 3}, {1, 5}, {0}]$$

▶ **Problem**: unioning two sets takes time linear in size of smaller.

Looking Ahead

We'll design data structure so that all operations, including union, take (practically) Θ(1) time.

The Idea

 Represent collection as a forest of trees, called a Disjoint Set Forest.

- Example: {{2, 4, 3, 6}, {1, 5}, {0}}
- Not unique!

Tree Structure

- Each node has reference to **parent**.
- Not a binary tree!

Representing Forests

We have several choices:

- 1) Each node is own **object** with parent attribute.
- 2) Keep a list containing parent of each element.

Approach #1

class DSFNode:

```
def __init__(self, parent=None):
    self.parent = parent
```

- make_set becomes DSFNode()
- find_set and union are functions, not methods.
- They accept DSFNode objects.

Approach #2

```
class DisjointSetForest:
    def init (self):
        # self._parent[i] is
        # parent of element i
        self. parent = []
    def make set(self):
        . . .
    def find set(self, x):
        . . .
    def union(self, x, y):
```

Implementation Notes

- We'll use the second approach.
- We can use second representation because elements are consecutive integers.
- For cache locality, use numpy array, not list.

.make_set

.find_set(x)

► Idea: use the "root" as the representative.

.find_set

```
def find_set(self, x):
    if self._parent[x] is None:
        return x
    else:
        return self.find_set(self._parent[x])
```

.union(x, y)

Idea: make one root the parent of the other.

.union(x, y)

Analysis

- .make_set: Θ(1) time¹
- .union: depends on .find_set
- ► .find_set: *O*(*h*), where *h* is height of tree

¹Amortized, since we're using a dynamic array. But truly Θ(1) with an over-allocated static array or in the object representation.

Tree Height

- Trees can be very deep, with h = O(n).
 - ▶ .find_set and .union can take $\Theta(n)$ time!

Example:

```
# dsf is {{0}, {1}, {2}, {3}, {4}}
>>> dsf.union(1, 0)
>>> dsf.union(2, 1)
>>> dsf.union(3, 2)
>>> dsf.union(4, 3)
```

Tree Height

▶ But trees can also be shallow, with h = O(1).

Example:

```
# dsf is {{0}, {1}, {2}, {3}, {4}}
>>> dsf.union(0, 1)
>>> dsf.union(1, 2)
>>> dsf.union(2, 3)
>>> dsf.union(3, 4)
```


Path Compression and Union-by-Rank

The Bad News

- We saw that the tree can become very deep.
- In worst case, .find_set and thus .union take $\Theta(n)$ time.

Heuristics

- Now: two heuristics helping trees stay shallow.
- Union-by-Rank and Path Compression
- ► Together, these result in a massive speed up.

Path Compression

Idea: if we find a long path during .find_set, "compress" it to (possibly) reduce height.

.find_set

```
def find_set(self, x):
    if self._parent[x] is None:
        return x
    else:
        root = self.find_set(self._parent[x])
        self._parent[x] = root
        return root
```

Union-by-Rank

► Should we .union(x, y) or .union(y, x)?

Union-by-Rank

- Placing deeper tree under shallower tree increases height by one.
- But placing shallower tree under deeper tree doesn't increase height.
- ▶ **Idea**: always place shallower tree under deeper.

Rank

We need to keep track of height (rank) of each tree.

- Store rank attribute.
- ▶ rank[i] is height² of tree rooted at node i.

²Exactly the height if path compression isn't used, but upper bound if it is.

Rank

```
class DisjointSetForest:
   def init (self):
        self. parent = []
        self. rank = []
    def make set(self):
        # infer new element's "id"
        x = len(self. parent)
        self. parent.append(None)
        self._ranka.append(0)
        return x
```

.union

```
def union(self. x. v):
    x rep = self.find set(x)
    v rep = self.find set(v)
    if x_rep == y_rep:
        return
    if self. rank[x rep] > self. rank[v rep]:
        self. parent[v rep] = x rep
    else:
        self. parent[x rep] = v rep
        if self. rank[x rep] == self. rank[v rep]:
            self. rank[y rep] += 1
```

Note

- With path compression, rank is no longer exactly the height – it is an upper bound.
- But this is good enough.

Analysis

Analysis of DSF

- A DSF with path compression and union-by-rank ensures trees are shallow.
- ► How does this affect runtime?

Answer

- Assuming union-by-rank and path compression...
- ▶ In a sequence of m operations, n of which are .make_sets...
- Amortized cost of a single operation is $O(\alpha(n))$.
- \triangleright α is the **inverse Ackermann function**, and it is essentially constant.

Inverse Ackermann

```
\alpha(n) n

0 n \in [0, 1, 2]
1 n = 3
2 n \in [4, ..., 7]
3 n \in [8, ..., 2047]
4 n \in [2048, ..., 2^{2048}] and beyond
```

Proof

- ► The formal analysis is quite involved.
- But we'll provide some intuition.

Union-by-rank Alone

▶ Union-by-rank alone ensures height is $O(\log n)$.

```
# dsf is {{0}, {1}, {2}, {3}}
>>> dsf.union(0, 1)
>>> dsf.union(2, 3)
>>> dsf.union(0, 2)
```

Union-by-rank Alone

Union-by-rank alone ensures .find_set is O(log n).

Path Compression + U-by-R

- With path compression, individual .find_set calls can take O(log n).
- But they massively improve subsequent calls.
 - For other nodes, too!