Logic of Computer Science Lecture 4: Predicate Logic – Quantifiers and Domains

Emmanuel Kwesi Tandoh

University of Mines and Technology (UMaT)

June 2025

Knowledge | Truth | Excellence

Real-World Connections

Why Predicate Logic Matters

Before diving into symbols, let's see some real-world applications:

Database Queries

"Find all users who have never logged in."

$$\forall u \; (\mathsf{User}(u) \land \neg \exists t \; \mathsf{Login}(u, t))$$

Program Verification

"Every sorted array has its elements in non-decreasing order."

$$\forall A (\mathsf{Sorted}(A) \rightarrow \forall i < j \ A[i] \leq A[j])$$

E. K. Tandoh (UMaT)

Lecture 4 - Predicate Logic

June 2025

Real-World Connections Continued

Artificial Intelligence

"There exists a path from start to goal."

 $\exists p \; \mathsf{Path}(\mathsf{start}, p, \mathsf{goal})$

Takeaway

Predicate logic gives us the language to express "for all" and "there exists" precisely—crucial when specs must be unambiguous.

Learning Objectives

By the end of this session, students should be able to:

By the end of this lesson you will be able to:

- Translate English statements into formulas using \forall , \exists .
- Specify and clarify domains for variables.
- Negate quantified statements: push \neg through $\forall \leftrightarrow \exists$.
- Use counterexamples and witnesses in proofs.

Syntax & Semantics Refresher

Variables

Placeholders ranging over a domain D.

E.g. $x, y \in D$ where $D = \{all students\}.$

Predicates

Properties or relations on variables.

- CS(x): "x is a CS student."
- Takes(x, DM): "x takes Discrete Math."

Quantifiers

- Universal: $\forall x P(x)$ means "For all x in the domain, P(x) holds."
- Existential: $\exists x P(x)$ means "There exists at least one x in the domain such that P(x)."

5 / 17

E. K. Tandoh (UMaT) Lecture 4 – Predicate Logic June 2025

Syntax & Semantics Refresher Continued

Domain Specification

Always clarify your universe: "Over students" means x ranges only over students.

Scope & Binding

Parentheses matter in logic:

$$\forall x (P(x) \rightarrow Q(x))$$
 vs. $(\forall x P(x)) \rightarrow Q$

These are **not** the same.

E. K. Tandoh (UMaT)

Lecture 4 – Predicate Logic June 2025 6 / 17

Translating English \rightarrow Predicate Logic

Examples of Translation

English Statement	Formal Translation
Every CS student has taken	$\forall x [CS(x) \rightarrow TookDM(x)]$
Discrete Math.	
Some algorithms terminate.	$\exists a Terminates(a)$
No student skipped the final	$\neg \exists x [Student(x) \land SkippedFE(x)]$
exam. Exactly one professor is absent today.	$\exists ! p Absent(p)$

Translating English \rightarrow Predicate Logic

Tip: How to express "Exactly one"

$$\exists x [P(x) \land \forall y (P(y) \rightarrow y = x)]$$

This means: There exists a unique x such that P(x) is true.

Lecture 4 – Predicate Logic June 2025 8 / 17

Negation of Quantified Statements

Quantifier Negation Rules

To push a negation through a quantifier, apply the following equivalences:

$$\neg(\forall x P(x)) \iff \exists x \neg P(x)$$

$$\neg(\exists x P(x)) \iff \forall x \neg P(x)$$

Example

$$\neg(\forall x \, \mathsf{Likes}(x, \mathsf{Pizza})) \equiv \exists x \, \neg \mathsf{Likes}(x, \mathsf{Pizza})$$

Interpretation: "There is someone who does not like pizza."

Negation of Quantified Statements

Exercise

Negate: "There exists a solution to the equation f(x) = 0."

Try: Express $\neg(\exists x \, f(x) = 0)$ using universal quantification.

Refuting Universal Claims

Universal Claim: $\forall x P(x)$

To refute a universal statement, find a counterexample:

Find c such that $\neg P(c)$

Example

Claim: "All primes are odd."

$$\forall p \, (\mathsf{Prime}(p) \to \mathsf{Odd}(p))$$

Counterexample: p = 2 is a prime but not odd.

$$\Rightarrow \neg(\forall p \, (\mathsf{Prime}(p) \to \mathsf{Odd}(p)))$$

Therefore, the universal statement is false.

11 / 17

E. K. Tandoh (UMaT) Lecture 4 – Predicate Logic June 2025

Proving Existential Claims

Existential Claim: $\exists x P(x)$

To prove an existential statement, provide a witness:

Exhibit w such that P(w)

Example

Claim: "There exists an even Fibonacci number greater than 10." Let's try a few Fibonacci numbers:

- $F_6 = 8 \to No$
- $F_7 = 13 \rightarrow \text{Not even}$
- ullet $F_8=21
 ightarrow {
 m Not even}$

Try more or prove by construction that such a number exists.

E. K. Tandoh (UMaT) Lecture 4 – Predicate Logic

1. Translation & Negation

• (a) Statement: "There exists a student who has never missed a quiz."

1. Translation & Negation

- (a) Statement: "There exists a student who has never missed a quiz."
 - ϕ : $\exists x (Student(x) \land \neg MissedQuiz(x))$

1. Translation & Negation

- (a) Statement: "There exists a student who has never missed a quiz."
 - ϕ : $\exists x (Student(x) \land \neg MissedQuiz(x))$
 - $\neg \phi$: $\forall x (\neg Student(x) \lor MissedQuiz(x))$

1. Translation & Negation

- (a) Statement: "There exists a student who has never missed a quiz."
 - ϕ : $\exists x (Student(x) \land \neg MissedQuiz(x))$
 - $\neg \phi$: $\forall x (\neg Student(x) \lor MissedQuiz(x))$
- (b) Statement: "All primes are odd."

1. Translation & Negation

- (a) Statement: "There exists a student who has never missed a quiz."
 - ϕ : $\exists x (Student(x) \land \neg MissedQuiz(x))$
 - $\neg \phi$: $\forall x (\neg Student(x) \lor MissedQuiz(x))$
- (b) Statement: "All primes are odd."
 - ϕ : $\forall p (\mathsf{Prime}(p) \to \mathsf{Odd}(p))$

1. Translation & Negation

- (a) Statement: "There exists a student who has never missed a quiz."
 - ϕ : $\exists x (Student(x) \land \neg MissedQuiz(x))$
 - $\neg \phi$: $\forall x (\neg \mathsf{Student}(x) \lor \mathsf{MissedQuiz}(x))$
- (b) Statement: "All primes are odd."
 - ϕ : $\forall p (\mathsf{Prime}(p) \to \mathsf{Odd}(p))$
 - $\neg \phi$: $\exists p (\mathsf{Prime}(p) \land \neg \mathsf{Odd}(p))$

E. K. Tandoh (UMaT) Lecture 4 – Predicate Logic

1. Translation & Negation

- (a) Statement: "There exists a student who has never missed a quiz."
 - ϕ : $\exists x (Student(x) \land \neg MissedQuiz(x))$
 - $\neg \phi$: $\forall x (\neg \mathsf{Student}(x) \lor \mathsf{MissedQuiz}(x))$
- (b) Statement: "All primes are odd."
 - ϕ : $\forall p (\mathsf{Prime}(p) \to \mathsf{Odd}(p))$
 - $\neg \phi$: $\exists p (\mathsf{Prime}(p) \land \neg \mathsf{Odd}(p))$

2. Counterexample Challenge

Statement: $\forall n \in \mathbb{N}, n > 1 \rightarrow n$ is composite

E. K. Tandoh (UMaT) Lecture 4 – Predicate Logic June 2025 13/17

1. Translation & Negation

- (a) Statement: "There exists a student who has never missed a quiz."
 - ϕ : $\exists x (Student(x) \land \neg MissedQuiz(x))$
 - $\neg \phi$: $\forall x (\neg Student(x) \lor MissedQuiz(x))$
- (b) Statement: "All primes are odd."
 - ϕ : $\forall p (\mathsf{Prime}(p) \to \mathsf{Odd}(p))$
 - $\neg \phi$: $\exists p (\mathsf{Prime}(p) \land \neg \mathsf{Odd}(p))$

2. Counterexample Challenge

Statement: $\forall n \in \mathbb{N}, \ n > 1 \to n$ is composite

Is it true? No.

Lecture 4 – Predicate Logic June 2025 13 / 17

1. Translation & Negation

- (a) Statement: "There exists a student who has never missed a quiz."
 - ϕ : $\exists x (Student(x) \land \neg MissedQuiz(x))$
 - $\neg \phi$: $\forall x (\neg Student(x) \lor MissedQuiz(x))$
- (b) Statement: "All primes are odd."
 - ϕ : $\forall p (\mathsf{Prime}(p) \to \mathsf{Odd}(p))$
 - $\neg \phi$: $\exists p (\mathsf{Prime}(p) \land \neg \mathsf{Odd}(p))$

2. Counterexample Challenge

Statement: $\forall n \in \mathbb{N}, \ n > 1 \rightarrow n$ is composite

Is it true? No.

Counterexample: n = 2

E. K. Tandoh (UMaT) Lecture 4 – Predicate Logic

1. Translation & Negation

- (a) Statement: "There exists a student who has never missed a quiz."
 - ϕ : $\exists x (Student(x) \land \neg MissedQuiz(x))$
 - $\neg \phi$: $\forall x (\neg \mathsf{Student}(x) \lor \mathsf{MissedQuiz}(x))$
- (b) Statement: "All primes are odd."
 - ϕ : $\forall p (\mathsf{Prime}(p) \to \mathsf{Odd}(p))$
 - $\neg \phi$: $\exists p (\mathsf{Prime}(p) \land \neg \mathsf{Odd}(p))$

Counterexample Challenge

Statement: $\forall n \in \mathbb{N}, n > 1 \rightarrow n$ is composite

Is it true? No.

Counterexample: n = 2

2 > 1 but 2 is prime, not composite. \Rightarrow Statement is **false**.

13 / 17

E. K. Tandoh (UMaT) Lecture 4 – Predicate Logic June 2025

3. Statement

"Every binary string starts with '0'."

3. Statement

"Every binary string starts with '0'."

(a) Domain: All binary strings

3. Statement

"Every binary string starts with '0'."

(a) Domain: All binary strings

• Consider the string "1" — does it start with '0'?

3. Statement

"Every binary string starts with '0'."

(a) Domain: All binary strings

- Consider the string "1" does it start with '0'? No.
- Counterexample: "10", "1" statement is false.

E. K. Tandoh (UMaT) Lecture 4 – Predicate Logic

3. Statement

"Every binary string starts with '0'."

- (a) Domain: All binary strings
 - Consider the string "1" does it start with '0'? No.
 - Counterexample: "10", "1" statement is false.
- (b) Domain: Binary strings of even length

14 / 17

E. K. Tandoh (UMaT) Lecture 4 – Predicate Logic June 2025

3. Statement

"Every binary string starts with '0'."

(a) Domain: All binary strings

- Consider the string "1" does it start with '0'? No.
- Counterexample: "10", "1" statement is false.

(b) Domain: Binary strings of even length

- Consider "10", "11" both are even length.
- Do they start with '0'?

14 / 17

Lecture 4 – Predicate Logic June 2025

3. Statement

"Every binary string starts with '0'."

(a) Domain: All binary strings

- Consider the string "1" does it start with '0'? No.
- Counterexample: "10", "1" statement is false.

(b) Domain: Binary strings of even length

- Consider "10", "11" both are even length.
- Do they start with '0'? Not necessarily. Still **false**.

E. K. Tandoh (UMaT) Lecture 4 – Predicate Logic June 2025 14 / 17

3. Statement

"Every binary string starts with '0'."

(a) Domain: All binary strings

- Consider the string "1" does it start with '0'? No.
- Counterexample: "10", "1" statement is false.

(b) Domain: Binary strings of even length

- Consider "10", "11" both are even length.
- Do they start with '0'? Not necessarily. Still **false**.

Discussion Prompt:

How does changing the domain affect the truth value of statements?

What You Should Remember

• Quantifiers (\forall, \exists) let us express "all" vs. "some" precisely.

What You Should Remember

- Quantifiers (\forall, \exists) let us express "all" vs. "some" precisely.
- **Domains** and **scope** are critical—never assume a hidden universe.

What You Should Remember

- Quantifiers (\forall, \exists) let us express "all" vs. "some" precisely.
- **Domains** and **scope** are critical—never assume a hidden universe.
- Negation Rules: Flip quantifiers and push the negation in:

$$\neg \forall x P(x) \equiv \exists x \neg P(x), \quad \neg \exists x P(x) \equiv \forall x \neg P(x)$$

15 / 17

E. K. Tandoh (UMaT) Lecture 4 – Predicate Logic June 2025

What You Should Remember

- Quantifiers (\forall, \exists) let us express "all" vs. "some" precisely.
- **Domains** and **scope** are critical—never assume a hidden universe.
- Negation Rules: Flip quantifiers and push the negation in:

$$\neg \forall x P(x) \equiv \exists x \neg P(x), \quad \neg \exists x P(x) \equiv \forall x \neg P(x)$$

Counterexamples disprove universal claims.
 Witnesses validate existential claims.

Lecture 4 – Predicate Logic June 2025 15 / 17

What You Should Remember

- Quantifiers (\forall, \exists) let us express "all" vs. "some" precisely.
- **Domains** and **scope** are critical—never assume a hidden universe.
- Negation Rules: Flip quantifiers and push the negation in:

$$\neg \forall x P(x) \equiv \exists x \neg P(x), \quad \neg \exists x P(x) \equiv \forall x \neg P(x)$$

- Counterexamples disprove universal claims.
 - Witnesses validate existential claims.

Final Tip

Approach logic like debugging code—check definitions, test boundaries, and validate truth.

◆ロト ◆問 ト ◆ 差 ト ◆ 差 ・ 釣 へ ②

References I

- D. Gries and F. B. Schneider, *A Logical Approach to Discrete Math*, Springer-Verlag, 1993.
- K. H. Rosen, Discrete Mathematics and Its Applications, 7th ed., McGraw-Hill, 2011.
- P. Halmos, Naive Set Theory, Van Nostrand, 1960.

16 / 17

E. K. Tandoh (UMaT) Lecture 4 – Predicate Logic June 2025

Thank You!