Cycle-GAN based Data Augmentation for Melanoma Image Classification

Saankhya S Mondal M.Tech in Al IISc, Bengaluru

Background

Malign

- Skin cancer is the most prevalent type of cancer, and its early and accurate detection is desirable.
- Melanoma is responsible for 75% of skin cancer deaths.
- This project deals with **detecting Melanoma using skin lesion images.**
- The highly imbalanced SIIM-ISIC Melanoma Classification dataset containing 'benign' (majority class) and 'malign' (minority class) samples has been used.
- 'Malign' samples data augmentation is essential to train robust deep learning binary classifiers.

Proposed Approach

- To tackle the class imbalance and less data, CycleGANs have been used to generate synthetic 'malign' samples. They are suitable for unpaired image-toimage translation.
- Pairs of 'benign' and 'malign' images are fed to the generators that learn to generate fake samples. The discriminator learns to differentiate between real and fake.
- Required number of synthetic 'malign' samples were generated by feeding 'benign' samples into the generator.
- Using the new balanced dataset and transfer learning, binary classification have been performed.

Technical Details

- Generator three down-sampling convolutional layers, followed by nine residual blocks, and three up-sampling convolutional layers.
- Residual Blocks two convolutional layers and a skip connection.
- Discriminator PatchGAN discriminator with five convolutional layers.
- Loss function $L(G_{AB}, G_{BA}, D_A, D_B) = L_{GAN}(G_{AB}, D_B, A, B) + L_{GAN}(G_{BA}, D_A, A, B) + \lambda L_{cyc}(G_{AB}, G_{BA})$ $G_{AB}, G_{BA} = arg \min_{G_{AB}, G_{BA}} \min_{D_A, D_B} L(G_{AB}, G_{BA}, D_A, D_B)$
- GAN loss MSE loss, Cycle loss L1 loss, Discriminator loss MSE loss
- Cycle-GAN trained for 720 epochs with Adam optimization, an initial learning rate of 0.0002, and $\lambda = 10$.
- Binary classifier EfficientNet transfer learning with BCE loss.

Contributions (Novelty)

- Traditional data augmentation techniques like flipping, rotating, cropping is considered baseline.
- Firstly, I used PatchGAN discriminator which tries to classify each pixel (uses MSE loss) in a patch (14x14 in this case) as real or fake instead of the whole image (uses BCE loss).
- Used LeakyReLU activation function everywhere in generator and discriminator instead of ReLU.
- Introduced label smoothing as a way of regularization.

Results & Conclusion

Method	Test ROC-AUC
Flipping, Cropping, Rotating	0.79
CycleGAN Baseline	0.87
CycleGAN label smoothing	0.89

The second and fourth columns are CycleGAN generated synthetic 'malign' samples from the respective 'benign' samples in the first and third columns.

- Generating synthetic minority class samples using CycleGAN is a better method for data augmentation.
- It also solves the problem of class imbalance which is prevalent in medical imaging.
- There is variability in the generated images.