MGB 206: Decision Making and Management Science

Sanjay Saigal
ssaigal@ucdavis.edu
650 283 1985

Lesson Plan: Session 6

- 1. Session 5 reprise
- 2. Integer programs
- 3. Nonlinear programs

Page 2 MGB 206

What We Discussed Last Time

Page 3

MGB 206

Aug 9 '14

LP: Simplex Method

- Illustrative animations
 - A tiny geometric example: <u>here</u>
 - How the simplex method works: here
- The simplex method is fast & accurate
 - Practical LPs with tens of thousands of variables solved in a few minutes
 - LPs with many millions of variables can be solved in under an hour

Lesson Plan: Session 6

- 1. Session 5 reprise
- 2. Integer programs
- 3. Nonlinear programs

Exercise: Extending Boats LP

- 1. What if we have multiple objectives?
- 2. What if demand is limited?
- 3. What if we need to analyze multiple time periods in one model?
- 4. What if we need to upgrade manufacturing?

Exercise: Evaluating Upgrade

- Producing large sailboats requires an upgrade of existing production facilities
 - Cost: \$14,000
- How to model such a bump in cost?

Integer Programs

- An LP in which some of the variables cannot take on fractional values
 - A mix of continuous and integer variables, is called Mixed-Integer Programming (or, MIP)
- In RSPE, simply add constraint limiting a variable to be either int or bin
 - bin stands for binary, i.e., 0 or 1

Page 8 MGB 206

Integer Programs (2)

- Consequences of integrality constraints
 - Longer solution times
 - Turning LP into MIP may make it unsolvable!
 - For especially difficult problem may require settling for suboptimal solution
 - Dual values no longer meaningful

Page 9 MGB 206

Modeling With Integers

- Excluding fractional answers
- Yes/no decisions
- Logical conditions

Exercise: Project Portfolio

You need to choose among five projects shown below (units, million\$)

Project					
	P1	P2	Р3	P4	P5
NPV	10	17	16	8	14
Cost	48	96	80	32	64

Your budget is \$160 million

- Pick the highest-yielding projects
- Selecting P5 requires you to also select P3. Does this impact your total NPV?

Page 11 MGB 206 Aug 9 '14

MIP: Branch-And-Bound Method

- Solve the 'LP relaxation' of the MIP
 - In effect, ignore integrality of variables
 - For any variable with fractional solution value, create and solve two new LPs
 - Explore this 'tree' until
 - All variables are integer-valued or
 - You run out of time/patience or
 - You can prove you found the optimal solution
- Illustrative example: <u>here</u>

Page 12 MGB 206 Aug 9 '14

MIP: B&B Properties

- Essentially exponential search
 - No guarantees it'll converge fast
 - You may run out of patience
 - The computer may run out of memory
 - It (usually) provides an optimality bound
 - You may opt to stop at 'good enough' solution
- In practice it works quite well
 - Problems with tens of thousands of variables solved within a few hours

Lesson Plan: Session 6

- 1. Session 5 reprise
- 2. Integer programs
- 3. Nonlinear programs

What Is A Nonlinear Program?

- No expectation of linearity
 - Either in the objective or in constraints
- Integrality could be present, or not
 - But typically, variables in nonlinear programs are continuous

Exercise: Homesteading

- You have been given a 600' roll of barbed wire to fence off a rectangular parcel of land of your choosing
- Create a model to maximize your land holding
 - Outline on paper
 - Model and solve in Excel

NLP: Solution Methods

- Unlike LP/MIP
 - Many flavors of problems
 - Many distinct solution methods
 - E.g., augmented lagrangian, reduced gradient, sequential quadratic, quasi-Newton, gradient projection,...
 - Each works best on specific NLP flavor(s)
 - Not so robust: see <u>here</u>

NLP: Solution Method Properties

- Exponential local search methods
 - Subject to slow convergence
 - Floating point arithmetic-related instabilities
 - Local search => global min/max missed
 - Start near optimal and you'll be ok, else not
 - Convergence criteria can be flaky
- In practice methods need to be highly tailored to class of problems of interest

Page 18 MGB 206 Aug 9 '14

NLP: Main Takeaways

- Far less robust than LP/MIP
 - You need much problem and method knowledge to solve NLPs
 - RSPE not great at alerting you that your model likely won't converge
 - Even its error messages can't be 100% trusted
- Big message: to solve NLPs of any size, find an NLP expert

Example: Markowitz Model

- Basic concepts
 - Instrument (stocks, bonds, etc.)
 - Portfolio
 - Expected return (instrument vs portfolio)
 - Risk (= covariance)
- This notion of risk leads to a quadratic objective, with linear constraints
- Example: Stock Portfolio Optimization

Lesson Plan: Session 6

- 1. Session 5 reprise
- 2. Integer programs
- 3. Nonlinear programs

Page 21 MGB 206 Aug 9 '14