

Tempo de Execução

- Um algoritmo é um procedimento passo-a-passo para realizar uma dada tarefa em tempo finito
- ◆ O **tempo de execução** de um algoritmo tipicamente cresce à medida que se aumenta o tamanho de sua entrada
- O tamanho da entrada é o valor de uma dada grandeza de interesse que reflete o tamanho de uma instância particular de problema a ser solucionado pelo algoritmo
- Exemplo (tamanho da entrada para um algoritmo de ordenação):
 - tamanho da entrada = no. de elementos a serem ordenados

3

Limitações do Método Experimental

- É preciso implementar o algoritmo, muitas vezes complexo
- Os resultados podem não servir como indicativo do tempo de execução para outras entradas que não foram consideradas nos testes
- Para comparar dois algoritmos, devem ser utilizadas exatamente as mesmas condições, configurações e ambientes de hardware e software

5

Análise Teórica

- Baseada em uma descrição de alto nível do algoritmo, ao invés de uma dada implementação / linguagem
 - Descrição de alto nível: por ex., pseudo-código
- Caracteriza o tempo de execução como uma função do tamanho da entrada, n
- Leva em consideração todas as possíveis entradas
- Permite avaliar a rapidez de um algoritmo de forma independente de qualquer ambiente de hardware e/ou software

Ь

Operações Primitivas

- São ações básicas executadas pelos algoritmos
- Aparecem no pseudo-código
- Não dependem da linguagem de programação
- Considera-se que tenham tempo de execução constante

- Exemplos:
 - Atribuição de valor a uma variável
 - Operação aritmética com dois números
 - Comparação de dois números
 - Indexação em um arranjo
 - Seguir uma referência ou ponteiro
 - Chamar ou retornar de uma rotina*

Contagem de Operações Primitivas

- Inspecionando o pseudo-código pode-se determinar o no. máx. de operações primitivas executadas por um algoritmo, em função do tamanho da entrada
- Exemplo (algoritmo para encontrar o valor máximo em um arranjo):

Algoritmo $array Max(A, n)$	# operações
$atualMax \leftarrow A[0]$	2
para $i \leftarrow 1$ até $n-1$ faça	1 + 2n
$\mathbf{se}A[i] > atualMax\mathbf{ent}\mathbf{\tilde{ao}}$	2(n-1)
$atualMax \leftarrow A[i]$	2(n-1)
/* incremento implícito do contador i */	2(n-1)
retorne atualMax	1

Total: $6n \le t(n) \le 8n - 2$

10

Estimando o Tempo de Execução O algoritmo arrayMax executa: • 6n operações primitivas no melhor caso • 8n - 2 operações primitivas no pior caso Suponhamos que: t₁ = tempo gasto pela operação primitiva mais rápida t₂ = tempo gasto pela operação primitiva mais lenta Seja T(n) o tempo de pior caso de arrayMax. Então: t₁ (8n - 2) ≤ T(n) ≤ t₂ (8n - 2) Portanto, T(n) é limitado por duas funções lineares

11

Análise – Busca Binária É preciso descobrir quantas vezes o algoritmo repete o laço enquanto no pior caso (que corresponde ao insucesso da busca) Inicialmente, o intervalo de busca em V possui n elementos i ← 0 e s ← n − 1 Após 1 comparação, restarão n / 2 elementos Após 2 comparações, restarão n / 4 elementos ... Após quantas comparações restarão zero elementos (pior caso)? A resposta é [log₂n] (teto(log₂n) ou log₂n arredondado para cima)

Termos de Menor Ordem

- Assim como fatores constantes não afetam a taxa de crescimento, termos de menor ordem também tendem a não mais afetá-la conforme o tamanho da entrada n cresce
- Exemplo:

2 5 7 11	1 1 1 1				
n	1	10	100	1.000	
n^2	1	100	10.000	1.000.000	-
$n^2 + n$	2	110	10.100	1.001.000	
Δ	100%	10%	1%	0,1%	

• Incremento dado por um termo de menor ordem aumenta em termos absolutos, mas diminui em termos relativos

21

Termos de Menor Ordem

escalas logarítmicas $n^2 + n$ n^2 n^2 n^2 n^2 n^2 n^2

Exercícios

 Estime o número de operações primitivas do famoso algoritmo de ordenação Bubble-Sort (algoritmo da bolha):

```
Algoritmo Bubble(V, n)
Entrada: vetor V de n inteiros
Saída: vetor V ordenado em ordem crescente
para j \leftarrow n-1 até 1 faça
para i \leftarrow 0 até j-1 faça
se V[i] > V[i+1] então /* troca V[i] com V[i+1] */
aux \leftarrow V[i]
V[i] \leftarrow V[i+1]
V[i+1] \leftarrow aux
retorne V /* por referência */
```

- OBS: faça a estimativa para os números **mínimo** e **máximo**, e explique quais tipos de entrada (vetor V) levariam a esses extremos

Bibliografia

- M. T. Goodrich & R. Tamassia, Data Structures and Algorithms in C++/Java, John Wiley & Sons, 2002/2005
- M. T. Goodrich & R. Tamassia, Estruturas de Dados e Algoritmos em Java, Bookman, 2002
- N. Ziviani, *Projeto de Algoritmos*, Thomson, 2a. Edição, 2004
- ◆ T. H. Cormen et al., Introduction to Algorithms, MIT Press, 2nd Edition, 2001