Statistical mechanics of the maximum-average submatrix problem

Vittorio Erba, Florent Krzakala, Rodrigo Pérez, and Lenka Zdeborová

arXiv:2303.05237

Maximum-average submatrix problem

Given $N \times N$ matrix J of real numbers find $k \times k$ submatrix with largest sum of entries

Maximum-average submatrix problem

Given $N \times N$ matrix J of real numbers find $k \times k$ submatrix with largest sum of entries

Submatrix: intersection of k rows and columns, not necessarily adjacent

Maximum-average submatrix problem

Given $N \times N$ matrix J of real numbers find $k \times k$ submatrix with largest sum of entries

Submatrix: intersection of k rows and columns, not necessarily adjacent

Encoding: use two two *N*-dim 0/1 vector σ , τ

 $\sigma_i = 1$ iff *i*-th row chosen

 $\tau_j = 1$ iff j-th column chosen

Energy
$$(\sigma, \tau) = \sum_{i,j} J_{ij} \sigma_i \tau_j$$

Random + high dim setting:

J iid Gaussian, $N \to \infty$

Why is this model interesting

- **1.** Results for random Gaussian i.i.d. $J, N \to \infty$ and $k \ll N$ (small submatrices) **Missing:** large submatrix regime $k \sim N + \text{can}$ we say more for $k \ll N$?
 - [1] Bhamidi, Dey, and Nobel. "Energy landscape for large average submatrix detection problems in Gaussian random matrices." (2017)
 - [2] Gamarnik, Li "Finding a large submatrix of a Gaussian random matrix," (2018)
 - [3] El Cheairi, Gamarnik. "Densest Subgraphs of a Dense Erdös-Rènyi Graph. Asymptotics, Landscape and Universality." (2022).

Why is this model interesting

- **1.** Results for random Gaussian i.i.d. $J, N \to \infty$ and $k \ll N$ (small submatrices) **Missing:** large submatrix regime $k \sim N + \text{can}$ we say more for $k \ll N$?
 - [1] Bhamidi, Dey, and Nobel. "Energy landscape for large average submatrix detection problems in Gaussian random matrices." (2017)
 - [2] Gamarnik, Li "Finding a large submatrix of a Gaussian random matrix," (2018)
 - [3] El Cheairi, Gamarnik. "Densest Subgraphs of a Dense Erdös-Rènyi Graph. Asymptotics, Landscape and Universality." (2022).
- 2. Unexpected link with rare cluster phenomenology of binary perceptron
 Typical structure of energy level sets is clustered, but efficient algorithms work
 Equilibrium vs
 non-equilibrium vs
 algorithmic properties?

Result: equilibrium phase diagram

Symmetric case: $J = J^T$, same row/columns

Equilibrium/typical properties through

$$p(\sigma) \propto \exp \beta H(\sigma)$$

$$H(\sigma) = \frac{1}{2\sqrt{N}} \sum_{i < j} J_{ij} \sigma_i \sigma_j + h \sum_i \sigma_i$$

$$\beta: \text{ fix energy level} \qquad h: \text{ fix submatrix size}$$

Variant of SK model computation ("classic" replicas)

- boolean spins + fixed magnetisation m = k/N
- small submatrix limit recovered for $m \to 0$
- rigorous [1]? [1] Panchenko. "Free energy in the mixed p-spin models with vector spins." (2018)

Result: equilibrium phase diagram

Symmetric case: $J = J^T$, same row/columns

Equilibrium/typical properties through

$$p(\sigma) \propto \exp \beta H(\sigma)$$

$$H(\sigma) = \frac{1}{2\sqrt{N}} \sum_{i < j} J_{ij} \sigma_i \sigma_j + h \sum_i \sigma_i$$

$$\beta: \text{ fix energy level} \qquad h: \text{ fix submatrix size}$$

Variant of SK model computation ("classic" replicas)

- boolean spins + fixed magnetisation m = k/N
- small submatrix limit recovered for $m \to 0$
- rigorous [1]? [1] Panchenko. "Free energy in the mixed p-spin models with vector spins." (2018)

Result: equilibrium phase diagram

Symmetric case: $J = J^T$, same row/columns

Equilibrium/typical properties through

$$p(\sigma) \propto \exp \beta H(\sigma)$$

$$H(\sigma) = \frac{1}{2\sqrt{N}} \sum_{i < j} J_{ij} \sigma_i \sigma_j + h \sum_i \sigma_i$$

$$\beta: \text{ fix energy level} \qquad h: \text{ fix submatrix size}$$

- boolean spins + fixed magnetisation m = k/N
- small submatrix limit recovered for $m \to 0$
- rigorous [1]? [1] Panchenko. "Free energy in the mixed p-spin models with vector spins." (2018)

N matrix size k submatrix size m = k/N A submatrix avg

^[1] Bhamidi, Dey, and Nobel. "Energy landscape for large average submatrix detection problems in Gaussian random matrices." (2017)

^[2] Gamarnik, Li "Finding a large submatrix of a Gaussian random matrix," (2018)

^[3] El Cheairi, Gamarnik. "Densest Subgraphs of a Dense Erdös-Rènyi Graph. Asymptotics, Landscape and Universality." (2022).

N matrix size k submatrix size m = k/N A submatrix avg

[1,3] The best possible submatrix-average equals the largest out of N^k independent Gaussians with variance $2k^{-2}$ (REM-like).

 $\begin{bmatrix} J_{1,1} & J_{1,2} & J_{1,3} & J_{1,4} & J_{1,5} & J_{1,6} & J_{1,7} & J_{1,8} & J_{1,9} & J_{1,10} & J_{1,11} & J_{1,12} \\ J_{2,1} & J_{2,2} & J_{2,3} & J_{2,4} & J_{2,5} & J_{2,6} & J_{2,7} & J_{2,8} & J_{2,9} & J_{2,10} & J_{2,11} & J_{2,12} \\ J_{3,1} & J_{3,2} & J_{3,3} & J_{3,4} & J_{3,5} & J_{3,6} & J_{3,7} & J_{3,8} & J_{3,9} & J_{3,10} & J_{3,11} & J_{3,12} \\ J_{4,1} & J_{4,2} & J_{4,3} & J_{4,4} & J_{4,5} & J_{4,6} & J_{4,7} & J_{4,8} & J_{4,9} & J_{4,10} & J_{4,11} & J_{4,12} \\ J_{5,1} & J_{5,2} & J_{5,3} & J_{5,4} & J_{5,5} & J_{5,6} & J_{5,7} & J_{5,8} & J_{5,9} & J_{5,10} & J_{5,11} & J_{5,12} \\ J_{6,1} & J_{6,2} & J_{6,3} & J_{6,4} & J_{6,5} & J_{6,6} & J_{6,7} & J_{6,8} & J_{6,9} & J_{6,10} & J_{6,11} & J_{6,12} \\ J_{7,1} & J_{7,2} & J_{7,3} & J_{7,4} & J_{7,5} & J_{7,6} & J_{7,7} & J_{7,8} & J_{7,9} & J_{7,10} & J_{7,11} & J_{7,12} \\ J_{8,1} & J_{8,2} & J_{8,3} & J_{8,4} & J_{8,5} & J_{8,6} & J_{8,7} & J_{8,8} & J_{8,9} & J_{8,10} & J_{8,11} & J_{8,12} \\ J_{9,1} & J_{9,2} & J_{9,3} & J_{9,4} & J_{9,5} & J_{9,6} & J_{9,7} & J_{9,8} & J_{9,9} & J_{9,10} & J_{10,11} & J_{10,12} \\ J_{10,1} & J_{10,2} & J_{10,3} & J_{10,4} & J_{10,5} & J_{10,6} & J_{10,7} & J_{10,8} & J_{10,9} & J_{10,10} & J_{10,11} & J_{10,12} \\ J_{11,1} & J_{11,2} & J_{11,3} & J_{11,4} & J_{11,5} & J_{11,6} & J_{11,7} & J_{11,8} & J_{11,9} & J_{11,10} & J_{11,11} & J_{11,12} \\ J_{12,1} & J_{12,2} & J_{12,3} & J_{12,4} & J_{12,5} & J_{12,6} & J_{12,7} & J_{12,8} & J_{12,9} & J_{12,10} & J_{12,11} & J_{12,12} \end{bmatrix}$

- [1] Bhamidi, Dey, and Nobel. "Energy landscape for large average submatrix detection problems in Gaussian random matrices." (2017)
- [2] Gamarnik, Li "Finding a large submatrix of a Gaussian random matrix," (2018)
- [3] El Cheairi, Gamarnik. "Densest Subgraphs of a Dense Erdös-Rènyi Graph. Asymptotics, Landscape and Universality." (2022).

N matrix size k submatrix size m = k/N A submatrix avg

[1,2] Local maxima (stable among same-row or same-column) have lower submatrix-average than the best one, and can be found by an efficient iterative algorithm

- [1] Bhamidi, Dey, and Nobel. "Energy landscape for large average submatrix detection problems in Gaussian random matrices." (2017)
- [2] Gamarnik, Li "Finding a large submatrix of a Gaussian random matrix," (2018)
- [3] El Cheairi, Gamarnik. "Densest Subgraphs of a Dense Erdös-Rènyi Graph. Asymptotics, Landscape and Universality." (2022).

N matrix size k submatrix size m = k/N A submatrix avg

[2] Algorithmic hardness bound through Overlap Gap Property

Overlap Gap Property: w.h.p. on the disorder, each pair of submatrices with submatrix-average at this energy is either very close (large overlap q) or very far (zero overlap q). No intermediate distance can be observed.

Gamarnik. "The overlap gap property: A topological barrier to optimizing over random structures." (2021)

- [1] Bhamidi, Dey, and Nobel. "Energy landscape for large average submatrix detection problems in Gaussian random matrices." (2017)
- [2] Gamarnik, Li "Finding a large submatrix of a Gaussian random matrix," (2018)
- [3] El Cheairi, Gamarnik. "Densest Subgraphs of a Dense Erdös-Rènyi Graph. Asymptotics, Landscape and Universality." (2022).

N matrix size k submatrix size m = k/N A submatrix avg

[2] Best efficient algorithm (greedy) performs better than typical local-maxima

- [1] Bhamidi, Dey, and Nobel. "Energy landscape for large average submatrix detection problems in Gaussian random matrices." (2017)
- [2] Gamarnik, Li "Finding a large submatrix of a Gaussian random matrix," (2018)
- [3] El Cheairi, Gamarnik. "Densest Subgraphs of a Dense Erdös-Rènyi Graph. Asymptotics, Landscape and Universality." (2022).

Results: weak clustering phase

N matrix size k submatrix size m=k/N A submatrix avg

Clustering: exponential number of orthogonal clusters

Freezing: each cluster has zero entropy + internal overlap = 1

Algorithm working in frozen phase?

N matrix size k submatrix size m = k/N A submatrix avg

Clustering: exponential number of orthogonal clusters

Freezing: each cluster has zero entropy + internal overlap = 1

Atypical clusters?

N matrix size k submatrix size m = k/N A submatrix avg

In binary perceptron: atypical clusters unfrozen + connected [1,2]. Is the same happening in this model? Need to look at non-equilibrium

^[1] Baldassi et al. "Subdominant dense clusters allow for simple learning and high computational performance in neural networks with discrete synapses." (2015)

^[2] Abbe, Li, Sly. "Binary perceptron: efficient algorithms can find solutions in a rare well-connected cluster." (2022)

Result: a first look at non-equilibrium properties

Franz-Parisi potential (For the curious: RS ansatz for probe, dynamical 1RSB ansatz for reference) Entropy of probes (energy $\geq a$) at fixed overlap q with typical frozen states (energy a') \iff structure of super-level sets around typical frozen states

Result: a first look at non-equilibrium properties

Franz-Parisi potential (For the curious: RS ansatz for probe, dynamical 1RSB ansatz for reference) Entropy of probes (energy $\geq a$) at fixed overlap q with typical frozen states (energy a') \iff structure of super-level sets around typical frozen states

 $\geq a$ a'

 $\geq a$ a'

 $\geq a$ a'

 $\geq a$ a'

 $\geq a$ a'

 $\geq a$ a'

 $\geq a$ a' q

Result: Complexity vs Entropy

Fix energy super-level of probes (energy $\geq a$) How many planted clusters are there in the super-level, and how large?

Energy of reference (frozen state)

1.5 1.6 1.7 1.8 1.9 2.0

Result: Complexity vs Entropy

Fix energy super-level of probes (energy $\geq a$) How many planted clusters are there in the super-level, and how large?

a close to global max

a close to freezing

A first look at non-equilibrium properties

There seems to be **no correlation** between planted clusters and algorithmic/OGP thresholds!

We learn structural informations on level sets + that planted clusters are not responsible for algorithmic properties

Only looks at surroundings of frozen clusters! Other atypical clusters could still exists

Results and open questions

Characterised phase diagram in large (0 < m < 1) and small $(m \to 0)$ submatrix regimes

Found frozen 1-RSB phase where efficient algorithms provably work for $m \to 0$

Studied planted clusters around frozen configurations for $m \to 0$ Found no link with algorithmic properties

Technical: very simple and explicit formulas (SP equations solved) for $m \to 0$!!

Thank you!

Paper on arXiv:2303.05237