Source Coding

Joe Louis Paul. I

Outline

- Coding Theory
- Two Aspects of Coding Theory
- Source Encoding Vs Channel Encoding
- Need of Source Coding
- Source Codes
- Source Encoder
- Types of Source Coding
- Fixed Length and Variable Length Codes
- Development of an Efficient Source Encoder
- A Typical Source Coding Scheme
- Average Codeword Length
- Coding Efficiency
- Shannon's Source Coding Theorem
- Determining the Value of L_{min}
- Coding Efficiency using H(S)

Coding Theory

- The purpose is to design an efficient and reliable data transmission methods.
- This typically involves the removal of redundancy and the correction (or detection) of errors in the transmitted data.
- It also includes the study of the properties of codes and their fitness for a specific application.

Two Aspects of Coding Theory

- Data compression (or, source coding)
- Error correction (or, channel coding)

Source Encoding Vs Channel Encoding

- Source encoding, attempts to compress the data from a source in order to transmit it more efficiently.
 - This practice is found every day on the Internet where the common "Zip" data compression is used to reduce the network load and make files smaller.
- The second, <u>channel encoding</u>, adds extra data bits to make the transmission of data more robust to disturbances present on the transmission channel.

Need of Source Coding

- The important problem in communication is that <u>how the efficient representation</u> <u>of data produced by discrete source</u> <u>can be achieved?</u>
- The process by which this representation is achieved called as source coding (i.e. representation of symbols in binary).
- The aim of source coding is to take the source data and make it smaller.

Source Codes

 Basically source codes <u>try to reduce</u> <u>the redundancy present in the</u> source, and represent the source with fewer bits that carry more information.

Source Encoder

 The device or an element which involves with source coding in a communication system.

Types of Source Coding

- Fixed Length Coding (FLC)
- Variable Length Coding (VLC)

Fixed Length Coding (FLC)

- Modern codes
 - used for the interchange and processing of information
 - encode each character by one or more octets, an octet being a sequence of 8 bits.
- A code is fixed length if each character of the code is represented by the same number of octets.

Example: Fixed Length Coding

ASCII

- One of the most well known coded character sets is ASCII, the American Standard Code for Information Interchange.
- This represents 128 characters and uses all possible combinations of 7 bits.

Table I: 8-bit Extended ASCII

_			
65	01000001	Α	Uppercase A
66	01000010	В	Uppercase B
67	01000011	С	Uppercase C
68	01000100	D	Uppercase D
69	01000101	Е	Uppercase E
70	01000110	F	Uppercase F
71	01000111	G	Uppercase G
72	01001000	Н	Uppercase H
73	01001001	I	Uppercase I
74	01001010	J	Uppercase J
75	01001011	K	Uppercase K
76	01001100	L	Uppercase L
77	01001101	М	Uppercase M
78	01001110	N	Uppercase N
79	01001111	0	Uppercase O
80	01010000	Р	Uppercase P
81	01010001	Q	Uppercase Q
82	01010010	R	Uppercase R
83	01010011	S	Uppercase S
84	01010100	Т	Uppercase T
85	01010101	U	Uppercase U
86	01010110	V	Uppercase V
87	01010111	W	Uppercase W
88	01011000	X	Uppercase X
89	01011001	Υ	Uppercase Y
90	01011010	Z	Uppercase Z

Variable Length Coding (VLC)

 In coding theory a variable-length code is a code which maps source symbols to a variable number of bits.

Example: Variable Length Coding

Morse Code

- Letters of the alphabet and numbers are encoded into sequence of marks and spaces denoted as "." and "-" respectively.
- Example
 - Letter E denoted as "."
 - Letter Q denoted as "--.-"

Table II: Morse Code-A Variable Length Code

Fixed Length and Variable Length Codes (1/3)

- A fixed length code, or block code is a code whose codewords all have the same length n.
- In this case, the number *n* is also called as the *length of the code*.
- If a code *C* contains codewords of varying lengths then it is called as a <u>variable length code</u>.

Fixed Length and Variable Length Codes (2/3)

- Fixed length codes have advantages and disadvantages over variable length codes.
- One advantage is that <u>they never</u> <u>require a special symbol to separate</u> <u>the characters in the message being</u> <u>coded</u>.
- For example, consider the encoded ASCII message,
 - 01000011010011110100010001000101

Fixed Length and Variable Length Codes (3/3)

- Binary (ASCII) code is a fixed length code whose codewords have length 8, we know that the first 8 bit represents the first character of the original message. Similarly the second set of 8 bits represents the second character in that message.
- Perhaps, the main disadvantage of fixed length codes, such as the ASCII code, is that <u>characters</u> <u>that are used frequently such as the letter e,</u> <u>have codes as long as characters that are used in</u> <u>frequently, such as the space character</u>.
- On the other hand, variable length codes, which can encode frequently used characters using <u>shorter codewords</u> can save a great deal of space and time.

Development of an Efficient Source Encoder

 The <u>statistics of the source is</u> <u>required</u>.

Two Fundamental Requirements

- The codewords produced by the source encoder are in binary form.
- -The source coding scheme should be uniquely decodable so that the original source sequence can be reconstructed exactly from the encoded binary sequence.

A Typical Source Coding Scheme

- Let us assume that
 - Source sequence s_k
 - Binary sequence b_k
 - Length of the binary sequence l_k

Source Coding

- Consider a source that has an alphabet of K different symbols such that \mathbf{s}_k is the k^{th} symbol in the alphabet.
- Also let $\mathbf{s_k}$ occurs with probability $\mathbf{p_k}$ and let the binary codeword assigned to $\mathbf{s_k}$ by the encoder have length l_k measured in bits.

Average Codeword Length \overline{L}

 The average codeword length of the source encoder is defined as

$$\overline{L} = \sum_{k=0}^{K} p_k l_k$$

 The unit of average codeword length is bits per symbol.

Coding Efficiency n

- \bullet L represents the average number of bits per source symbol used in the source encoding process.
- ullet If L_{\min} denotes the minimum possible codeword length then, the coding efficiency of the source encoder is defined as

$$\eta = \frac{L_{\min}}{\overline{L}}$$

• The coding efficiency will be equal to one if $L = L_{\min}$ i.e. efficient source input.

Shannon's Source Coding Theorem

- With $\overline{L} \geq L_{\min}$, then $\eta \leq 1$.
- The source encoder is said to be efficient when η approaches unity.

Source coding Theorem

– Given a discrete memoryless source of $\underline{}$ entropy H(S), the average code-word $\underline{}L$ length for any source encoding is bounded as

$$L \ge H(S)$$

Determining the Value of L_{min}

From Coding efficiency formula,

$$\overline{L} \ge L_{\min}$$

From Shannon's Source Coding Theorem,

$$\overline{L} \geq H(S)$$

From these above equations,

$$L_{\min} = H(S)$$

Coding Efficiency using H(S)

• If H(S) denotes the minimum possible codeword length then, the coding efficiency of the source encoder is defined as

$$\eta = \frac{H(S)}{\overline{L}}$$

