МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Отчёт о выполнении лабораторной работы 3.2.3

Резонанс токов в параллельном контуре

Авторы: Клименко Виталий Евгеньевич Киркича Андрей Александрович Б01-202

Долгопрудный 8 сентября 2023 г.

Цель работы: исследование резонанса токов в параллельном колебательном контуре с изменяемой ёмкостью, получение амплитудно-частотных и фазовочастотных характеристик, определение основных параметров контура.

В работе используются: генератор сигналов, источник напряжения, нагрузкой которого является параллельный колебательный контур с переменной ёмкостью, двухканальный осциллограф, цифровые вольтметры.

Теоретичские сведения и описание установки

В данной работе изучаются резонансные явления в параллельном колебательном контуре (резонанс токов). Блок-схема экспериментальной установки показана на рис. 1. Синусоидальный сигнал от генератора поступает на вход управляемого напряжением источника тока, собранного на операционном усилителе с полевым транзистором, питание которого осуществляется встроенным блоком-выпрямителем от сети $220~\mathrm{B}$ (цепи питания на схеме не показаны). Внутреннее (выходное) сопротивление источника тока, бесконечно большое в идеальном случае, в нашей схеме составляет несколько Γ Ом. Это обеспечивает постоянство амплитуды тока I на меняющейся нагрузке - параллельном контуре, изображённом на рис. 1 в виде эквивалентной схемы.

Рис. 1: схема экспериментальной установки

Источник тока, колебательный контур и блок питания заключены в отдельный корпус, отмеченный на рисунке штриховой линией. На корпусе имеются коаксиальные разъёмы «Вход», « U_1 » и « U_2 », а также переключатель магазина ёмкостей C_n , n=1... 7. Величины ёмкостей C_n и сопротивления R_1 указаны на установке. Напряжение $\varepsilon=\varepsilon_0\cos(\omega t+\varphi_0)$ от генератора поступает на вход источника тока. Это же напряжение через разъём « U_1 » подаётся на канал 1 осциллографа и на вход вольтметра 1. Переменное напряжение на сопротивлении R_1 в используемой схеме равно напряжению ε на выходе генератора и совпадает с ним по фазе. Следовательно, ток I во внешней цепи параллельного контура определяется формулами:

$$I = \frac{\varepsilon}{R_1} = I_0 \cos(\omega t + \varphi_0), \qquad I_0 = \frac{\varepsilon_0}{R_1}$$
 (1)

Напряжение на контуре U, совпадающее с напряжением на конденсаторе U_C , поступает со знаком «—» через разделительный конденсатор и разъём « U_2 » на канал 2 осциллографа, а также на вход вольтметра 2. Колебательный контур нашей установки собран из стандартных элементов, используемых в современных радиоэлектронных цепях. Получаем выражения для импедансов ёмкостной Z_C и индуктивной Z_L ветвей параллельного колебательного контура:

$$Z_C = R_S - \frac{i}{\omega C}, \qquad Z_L = R + R_L + i\omega L$$
 (2)

где R_S и R_L - активные части импендансов конденсатора и катушки индуктивности соответственно, а R - величина постоянного активного сопротивления, добавленного в индуктивную ветвь колебательного контура для снижения его добротности с целью упрощения процедур получения и обработки резонансных кривых.

Конденсаторы магазина ёмкостей C_n в интересующем нас диапазоне частот имеют относительно малые потери.

Добротность Q контуров в наших установках достаточно высока, суммарное активное сопротивление контура в этом случае даётся формулой:

$$R_{\Sigma} = R + R_L + R_S \tag{3}$$

и, следовательно:

$$Q = \frac{\rho}{R_{\Sigma}} = \frac{\omega_0 L}{R_{\Sigma}} = \frac{1}{\omega_0 C R_{\Sigma}} >> 1 \tag{4}$$

Сильное неравенство (4) в рабочем диапазоне частот выполняется для всех контуров, используемых в работе.

Наибольший практический интерес для контуров с высокой добротностью (Q>>1) представляет случай, когда отклонение $\Delta\omega=\omega-\omega_0$ частоты внешней ЭДС от собственной частоты контура удовлетворяет сильному неравенству:

$$|\Delta\omega| << \omega_0 \tag{5}$$

При этом в первом порядке малости по относительной расстройке частоты $\frac{\Delta \omega}{\omega_0}$ выполняется соотношение:

$$\frac{\omega_0}{\omega_0} - \frac{\omega}{\omega} \approx \frac{2\Delta\omega}{\omega_0} \tag{6}$$

Величина $\delta\omega = 2|\Delta\omega_{\gamma}| = 2\gamma = 2/\tau$ представляет собой важную характеристику колебательного контура — ширину резонансной кривой $U(\omega)$, по которой с учётом соотношений $Q = \omega_0/2\gamma = \tau\omega_0/2$, зная частоту ω_0 , можно найти добротность контура:

$$Q = \frac{\omega_0}{\delta\omega} \tag{7}$$

Эти же параметры можно определить по фазово-частотной характеристике: тангенс угла наклона ψ_U в точке $\omega = \omega_0$ определяет время затухания τ , а расстояние по оси ω между точками, в которых фаза $\psi_U(\omega)$ меняется от $-\pi/4$ до $\pi/4$, равно $2/\tau$ с относительной погрешностью порядка Q^{-2} .

Обработка результатов измерений

Для начала заполним таблицу, руководствуясь следующими формулами из теоретической справки:

$$L = \frac{1}{C(2\pi f)^2} \tag{8}$$

$$\rho = \frac{1}{2\pi f C} \tag{9}$$

$$|Z_{\text{pes}}| = \frac{U}{\mathcal{E}} R_1 \tag{10}$$

$$Q = \frac{UR_1}{\mathcal{E}} 2\pi f C \tag{11}$$

$$R_{\Sigma} = \frac{\mathcal{E}}{UR_1} \frac{1}{(2\pi fC)^2} \tag{12}$$

$$R_{S_{max}} = 10^{-3} \rho \tag{13}$$

$$R_L = R_{\Sigma} - R - R_{S_{max}} \tag{14}$$

Таблица 1: Основная таблица

N	C , н Φ	f , к Γ ц	U, B	\mathcal{E} , B	L , м Γ н	ρ , O _M	$ Z_{\rm pes} $, O _M	Q	R_{Σ} , Om	$R_{S_{max}}$, Om	R_L , OM
1	$25,\!10$	32,00	1,50	0,30	986,52	198,25	5008,28	25,28	7,84	0,20	4,14
2	33,20	27,80	1,38	0,30	988,22	172,53	4606,09	26,71	6,46	0,17	2,78
3	47,30	23,00	0,99	0,30	1013,36	146,37	3303,28	22,58	6,48	0,15	2,83
4	57,40	21,00	0,85	0,30	1001,68	132,10	2836,15	21,48	6,15	0,13	2,51
5	67,50	19,40	0,70	0,30	998,10	121,60	2336,42	19,22	6,32	0,12	2,70
6	82,70	17,70	0,59	0,30	978,65	108,78	1969,27	18,11	6,00	0,11	2,39
7	101,60	16,10	0,48	0,30	962,80	97,35	1602,65	16,47	5,91	0,10	2,31
Ср. знач.					989,91						2,81
Случ. погр.					16,49						0,62

Рассчитаем средние значения $\langle L \rangle$ и $\langle R_L \rangle$, а также их случайные погрешности ΔL и ΔR_L по формулам:

$$\Delta L = \sqrt{\sum_{i=1}^{7} (L_i - \langle L \rangle)^2}$$
 (15)

$$\Delta R_L = \sqrt{\sum_{i=1}^{7} (R_{L_i} - \langle R_L \rangle)^2}$$
 (16)

Далее составим амплитудно-частотную характеристику для конденсаторов C_2 и C_3 .

Таблица 2: Данные для конденсатора C_2

U, B	f , к Γ ц	$U_{\text{отн}}$	$f_{ m oth}$
0,83	28,43	0,60	1,02
0,90	28,32	$0,\!65$	1,02
0,95	28,25	0,69	1,02
1,00	28,18	0,72	1,01
1,06	28,09	0,77	1,01
1,08	28,05	0,78	1,01
1,10	28,03	0,80	1,01
1,15	27,90	0,83	1,00
1,14	27,80	0,83	1,00
1,09	27,68	0,79	1,00
1,02	27,50	0,74	0,99
0,97	27,45	0,70	0,99
0,93	27,40	0,67	0,99
0,90	27,36	0,65	0,98
0,85	27,29	0,62	0,98
0,82	27,26	0,59	0,98

Таблица 3: Данные для конденсатора C_3

U, B	f, кГц	$U_{\text{отн}}$	$f_{ m oth}$
0,60	22,57	0,61	0,98
0,67	22,68	0,68	0,99
0,74	22,77	0,75	0,99
0,77	22,81	0,78	0,99
0,83	22,88	0,84	0,99
0,85	22,91	0,86	1,00
0,88	22,95	0,89	1,00
0,90	22,97	0,91	1,00
0,97	23,32	0,98	1,01
0,86	23,48	0,87	1,02
0,82	23,54	0,83	1,02
0,81	23,56	0,82	1,02
0,77	23,60	0,78	1,03
0,66	23,76	0,67	1,03
0,65	23,79	0,66	1,03
0,61	23,84	0,62	1,04

По результатам измерений построим графики для обоих конденсаторов в осях U(f) и $\frac{U}{U_0}(\frac{f}{f_0})$

Рис. 1: График амплитудно-частотной характеристики в осях U(f)

Рис. 2: График амплитудно-частотной характеристики в осях $\frac{U}{U_0}(\frac{f}{f_0})$

Найдём добротность по ширине резонансной кривой для C_2 и C_3 соответственно:

$$Q_2 = \frac{1}{df_2} = \frac{1}{1,01 - 0,99} = 36,63 \tag{17}$$

$$Q_3 = \frac{1}{df_3} = \frac{1}{1,03 - 0,99} = 23,26 \tag{18}$$

Составим фазово-частотную характеристику для конденсаторов C_2 и C_3 . Будем определять разность фаз между сигналами $U(t), \mathcal{E}(t)$ по следующей формуле:

$$\psi_{\text{OTH}} = \frac{x}{x_0} \psi \tag{19}$$

Результаты занесём в таблицы

Таблица 4: Результаты измерений ФЧХ для конденсатора C_2

ψ , рад	f , к Γ ц	x_0 , MKC	x, MKC	$f_{ m oth}$	$\psi_{ ext{oth}}$
-0,87	26,15	18,00	31,00	0,94	-0,28
-1,05	26,33	18,00	30,00	0,95	-0,33
-1,05	26,42	18,00	30,00	0,95	-0,33
-0,87	27,10	18,00	31,00	0,97	-0,28
-0,70	27,27	18,00	32,00	0,98	-0,22
-0,35	27,56	18,00	34,00	0,99	-0,11
-0,52	27,60	18,00	33,00	0,99	-0,17
0,00	27,79	18,00	36,00	1,00	0,00
0,00	27,89	18,00	36,00	1,00	0,00
0,17	27,92	18,00	37,00	1,00	0,06
0,52	28,15	18,00	3,00	1,01	0,17
0,70	28,26	18,00	4,00	1,02	0,22
-0,17	28,40	18,00	35,00	1,02	-0,06
1,05	28,78	18,00	6,00	1,04	0,33
1,22	29,04	18,00	7,00	1,04	0,39
1,05	29,39	18,00	6,00	1,06	0,33

Таблица 5: Результаты измерений ФЧХ для конденсатора C_3

ψ , рад	f , к Γ ц	x_0 , MKC	x, MKC	$f_{ m oth}$	$\psi_{ ext{oth}}$
-1,14	22,04	22,00	36,00	0,96	-0,36
-1,00	22,48	22,00	37,00	0,98	-0,32
0,14	23,36	22,00	1,00	1,02	0,05
-0,86	22,72	22,00	38,00	0,99	-0,27
-0,71	22,84	22,00	39,00	0,99	-0,23
-1,00	22,13	22,00	37,00	0,96	-0,32
-0,86	22,56	22,00	38,00	0,98	-0,27
-0,86	22,62	22,00	38,00	0,98	-0,27
-0,43	23,08	22,00	41,00	1,00	-0,14
-0,29	23,12	22,00	42,00	1,01	-0,09
0,00	23,22	22,00	0,00	1,01	0,00
0,29	23,47	22,00	2,00	1,02	0,09
0,57	23,53	22,00	4,00	1,02	0,18
0,86	23,78	22,00	6,00	1,03	0,27
0,71	23,64	22,00	5,00	1,03	0,23
1,00	24,20	22,00	7,00	1,05	0,32

По этим данным построим график фазово-частотной характеристики в осях $\psi_{\text{отн}}(f_{\text{отн}})$

Рис. 3: График фазово-частотной характеристики в осях $\psi_{\text{отн}}(f_{\text{отн}})$

Определим добротности контуров по расстоянию между точками оси х:

$$Q_2 = \frac{1}{dx} = \frac{1}{1,02 - 0,98} = 25 \tag{20}$$

$$Q_3 = \frac{1}{dx} = \frac{1}{1,03 - 0,99} = 25 \tag{21}$$

Далее построим график зависимости $R_L(f_{0n})$ и нанесём на график прямую $\langle R_L \rangle$.

Рис. 4: график зависимости $R_L(f_{0n})$ с прямой $\langle R_L \rangle$

Берём $Q_7=16,47$ - контур с наименьшей добротностью. Посчитаем ток по формуле:

$$I = \frac{\mathcal{E}}{R_1} = 0,3 \text{ MA}$$
 (22)

Его вектор равен $\vec{I} = \vec{I_L} + \vec{I_C}$ и расположен на оси абсцисс.

Рис. 5: векторная диаграмма

Далее:

$$\varphi_C = \frac{R + R_l}{\rho} \approx 0.06$$

$$\varphi_U = -\frac{R + R_l}{\rho} \approx -0.06$$

Вывод