

Conception d'algorithmes

Retour Arrière

Le problème du sac à dos

- > Vu l'année dernière (cours + tutorat)
- > ..?
- > Rappel sur les algo récursifs ...
 - ??

Ecriture d'un algorithme récursif

- > Ingrédients:
 - Cas trivial
 - Cas récursif
 - Quantité de contrôle (assurer terminaison)
 - Paramétrage du problème et premier appel

Exemple1: équilibrer une balance à plateau

Un ensemble de n poids w1, w2,...,wn

Comment les répartir en 2 sous ensemble de masses égales

Formulation

- \gt Soit xi = 0 si la masse i est à gauche, et xi=1 sinon
- > Objectif:

$$\sum_{i=1}^{n} x_i w_{i} = \sum_{i=1}^{n} (1 - x_i) w_i$$

> Ou minimiser

$$\delta = \sum_{i=1}^{n} x_i w_i - \sum_{i=1}^{n} (1 - x_i) w_i$$

Principe de l'algorithme

- > Principe récursif
 - On prend le « premier » poids, on l'affecte à un plateau et on regarde si ça peut donner la solution en passant au suivant
 - Sinon on affecte ce « premier » à l'autre plateau et on regarde si ça peut donner la solution en passant au suivant
- > Cas trivial:
 - On a affecté tous les poids → on retourne vrai si la différence des plateau est nulle
- > Paramétrage
 - Le rang du poids considéré

Implantation

- > Structures de données nécessaires
- > Algorithme
- > Comment afficher la solution (où est elle?)
- > Passage à un problème d'optimisation ?

Algorithme

- > ???
- > À vous

Principe général

- > C'est un parcours d'arbre.
- > Si le nœud *n* est une feuille
 - regarder si c'est une solution oui retourner VRAI non retourner FAUX
- Sinon
 pour chaque fils c du nœud n
 Si la résolution de c est un succès retourner VRAI retourner FAUX // on a tout exploré ...
- > fsi

Algorithme moins informel

```
resoudre (n: nœud): booleen
si feuille(n) alors retourner solution(n)
sinon
pour c dans fils(n) faire
Si resoudre(c) alors retourner VRAI fsi
fpour
retourner FAUX
```

solution(n: nœud): booleenIndique si n est solution

Illustration avec le problème du sac à dos

```
charge = 15
paquets = 12, 2, 4, 1, 1
```


Remarques

- > Arrêt
 - Quand solution trouvée (résolution de problème)
 - Quand optimum trouvé (optimisation) donc lorsque tout est parcouru
- > Ici description d'un parcours en profondeur d'abord
 - Possibilité d'ordonner les fils selon une heuristique
- > Parfois on trouve des états déjà rencontrés
 - Comment éviter de refaire les calculs ...
 - Équivalent à un parcours de graphe
 - Optimisation = plus court chemin ...

Cas d'application

- > Exemples
 - Cavalier sur échiquier
 - Balance à N plateaux
 - Trouver un chemin/un objet dans un labyrinthe
- Cadrage
 - Représentation du problème
 - Principe d'algorithme récursif


```
private boolean resoudreR(int i) {
        // trivial cases
        if (i == nbMass) {
                return sommeOk();
        } else {
                // here we try all the possibilities
                for (int possibility = 0; possibility < nbSet; possibility++) {</pre>
                         repartition[i - 1] = possibility;
                         if (resoudreR(i + 1)) // on essaie en mettant sur le ieme
                                                                          // plateau)
                                 return true;
                // all is tried and fails
                return false;
```