# Introduction to Linear Programming

Jia Chen

Nanjing University

October 27, 2011



# THE LINEAR PROGRAMMING PROBLEM

#### DEFINITION

Decision variables

$$x_j, j = 1, 2, ..., n$$

Objective Function

$$\zeta = \sum_{i=1}^{n} c_i x_i$$

We will primarily discuss maxizming problems w.l.g.

Constraints

$$\sum_{j=1}^{n} a_j x_j \ \{ \leq, =, \geq \} \ b$$

# THE LINEAR PROGRAMMING PROBLEM

#### **OBSERVATION**

Constraints can be easily converted from one form to another

#### INEQUALITY

$$\sum_{j=1}^{n} a_j x_j \ge b$$

is equivalent to

$$-\sum_{j=1}^{n} a_j x_j \le -b$$

# EQUALITY

$$\sum_{j=1}^{n} a_j x_j = b$$

is equivalent to

$$\sum_{j=1}^{n} a_j x_j \ge b$$

$$\sum_{j=1}^{n} a_j x_j \le b$$



# THE STANDARD FORM

#### STIPULATION

We prefer to pose the inequalities as less-thans and let all the decision variables be nonnegative

#### STANDARD FORM OF LINEAR PROGRAMMING

$$\begin{array}{ll} Maximize & \underline{\zeta = c_1x_1 + c_2x_2 + \ldots + c_nx_n} \\ Subject \ to & a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \leq b_1 \\ & a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n \leq b_2 \\ & \ldots \\ & a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n \leq b_m \end{array}$$

 $x_1, x_2, ..., x_n \ge 0$ 

# THE STANDARD FORM

#### **OBSERVATION**

The standard-form linear programming problem can be represented using matrix notation

#### STANDARD NOTATION

Maximize 
$$\zeta = \sum_{j=1}^{n} c_j x_j$$
  
Subject to  $\sum_{j=1}^{n} a_{ij} x_j \le b_i$   
 $x_j \ge 0$ 

#### MATRIX NOTATION

$$\begin{aligned} Maximize \ \zeta &= \vec{c}^{\mathrm{T}} \cdot \vec{x} \\ Subject \ to \ A\vec{x} &\leq \vec{b} \\ \vec{x} &> \vec{0} \end{aligned}$$

# SOLUTION TO LP

#### **DEFINITION**

- A proposal of specific values for the decision variables is called a solution
- If a solution satisfies all constraints, it is called feasible
- If a solution attains the desired maximum, it is called optimal

#### Infeasile Problem

$$\frac{\zeta = 5x_1 + 4x_2}{x_1 + x_2 \le 2}$$
$$-2x_1 - 2x_2 \le -9$$
$$x_1, x_2 \ge 0$$

#### Unbounded Problem

$$\frac{\zeta = x_1 - 4x_2}{-2x_1 + x_2 \le -1} \\
-x_1 - 2x_2 \le -2 \\
x_1, x_2 \ge 0$$



## HOW TO SOLVE IT

### QUESTION

Given a specific feasible LP problem in its standard form, how to find the optimal solution?

#### THE SIMPLEX METHOD

- Start from an initial feasible solution
- Iteratively modify the value of decision variables in order to get a better solution
- Every intermediate solutions we get should be feasible as well
- We continue this process until arriving at a solution that cannot be improved



# EXAMPLE

#### Original Problem

$$\frac{\zeta = 5x_1 + 4x_2 + 3x_3}{2x_1 + 3x_2 + x_3 \le 5}$$
$$4x_1 + x_2 + 2x_3 \le 11$$
$$3x_1 + 4x_2 + 2x_3 \le 8$$
$$x_1, x_2, x_3 \ge 0$$

#### SLACKED PROBLEM

$$\frac{\zeta = 5x_1 + 4x_2 + 3x_3}{w_1 = 5 - 2x_1 - 3x_2 - x_3}$$

$$w_2 = 11 - 4x_1 - x_2 - 2x_3$$

$$w_3 = 8 - 3x_1 - 4x_2 - 2x_3$$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

#### INITIAL STATE

- $x_1 = 0, x_2 = 0, x_3 = 0$
- $w_1 = 5, w_2 = 11, w_3 = 8$

### SLACKED PROBLEM

$$\frac{\zeta = 5x_1 + 4x_2 + 3x_3}{w_1 = 5 - 2x_1 - 3x_2 - x_3}$$

$$w_2 = 11 - 4x_1 - x_2 - 2x_3$$

$$w_3 = 8 - 3x_1 - 4x_2 - 2x_3$$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

#### AFTER FIRST ITERATION

• 
$$x_1 = \frac{5}{2}, x_2 = 0, x_3 = 0$$

• 
$$w_1 = 0, w_2 = 1, w_3 = \frac{1}{2}$$

#### **OBSERVATION**

Notice that  $w_1=x_2=x_3=0$ , which indicate us that we can represent  $\zeta, x_1, w_2, w_3$  in terms of  $w_1, x_2, x_3$ 

#### SLACKED PROBLEM

$$\frac{\zeta = 5x_1 + 4x_2 + 3x_3}{w_1 = 5 - 2x_1 - 3x_2 - x_3}$$

$$w_2 = 11 - 4x_1 - x_2 - 2x_3$$

$$w_3 = 8 - 3x_1 - 4x_2 - 2x_3$$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

### REWRITE THE PROBLEM

$$\zeta = \frac{12.5 - 2.5w_1 - 3.5x_2 + 0.5x_3}{x_1 = 2.5 - 0.5w_1 - 1.5x_2 - 0.5x_3}$$

$$w_2 = 1 + 2w_1 + 5x_2$$

$$w_3 = 0.5 + 1.5w_1 + 0.5x_2 - 0.5x_3$$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

#### CURRENT STATE

- $w_1 = 0, x_2 = 0, x_3 = 0$
- $x_1 = \frac{5}{2}, w_2 = 1, w_3 = \frac{1}{2}$

#### SLACKED PROBLEM

$$\zeta = \frac{12.5 - 2.5w_1 - 3.5x_2 + 0.5x_3}{x_1 = 2.5 - 0.5w_1 - 1.5x_2 - 0.5x_3}$$

$$w_2 = 1 + 2w_1 + 5x_2$$

$$w_3 = 0.5 + 1.5w_1 + 0.5x_2 - 0.5x_3$$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

#### AFTER SECOND ITERATION

$$w_1 = 0, x_2 = 0, x_3 = 1$$

• 
$$x_1 = 2, w_2 = 1, w_3 = 0$$

#### REWRITE THE PROBLEM

$$\zeta = \frac{13 - w_1 - 3x_2 - w_3}{x_1 = 2 - 2w_1 - 2x_2 + w_3}$$

$$w_2 = 1 + 2w_1 + 5x_2$$

$$x_3 = 1 + 3w_1 + x_2 - 2w_3$$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

### Current State

- $w_1 = 0, x_2 = 0, w_3 = 0$
- $\bullet$   $x_1 = 2, w_2 = 1, x_3 = 1$

#### Third iteration

- This time no new variable can be found
- Not only brings our method to a standstill, but also proves that the current solution  $\zeta=13$  is optimal!



### SLACK VARIABLES

We want to solve the following standard-form LP problem:

$$\zeta = \sum_{j=1}^{n} c_j x_j$$

$$\sum_{j=1}^{n} a_{ij} x_j \leq b_i \qquad i = 1, 2, ..., m$$

$$x_j \geq 0 \qquad j = 1, 2, ..., n$$

Our first task is to introduce slack variables:

$$x_{n+i} = w_i = b_i - \sum_{j=1}^{n} a_{ij} x_j$$
  $i = 1, 2, ..., m$ 



# ENTERING VARIABLE

Initially, let  $\mathcal{N}=\{1,2,...,n\}$  and  $\mathcal{B}=\{n+1,n+2,...,n+m\}$ . A dictionary of the current state will look like this:

$$\zeta = \overline{\zeta} + \sum_{j \in \mathcal{N}} \overline{c_j} x_j$$

$$x_i = \overline{b_i} - \sum_{j \in \mathcal{N}} \overline{a_{ij}} x_j \qquad i \in \mathcal{B}$$

Next, pick k from  $\{j \in \mathcal{N} | \overline{c_j} > 0\}$ . The variable  $x_k$  is called entering variable.

Once we have chosen the entering variable, its value will be increased from zero to a positive value satisfying:

$$x_i = \overline{b_i} - \overline{a_{ik}} x_k \ge 0 \qquad i \in \mathscr{B}$$



### LEAVING VARIABLE

Since we do not want any of  $x_i$  go negative, the increment must be

$$x_k = \min_{i \in \mathcal{B}, \overline{a_{ik}} > 0} \{ \overline{b_i} / \overline{a_{ik}} \}$$

After this increament of  $x_k$ , there must be another leaving variable  $x_l$  whose value is decreased to zero.

Move k from  $\mathscr N$  to  $\mathscr B$  and move l from  $\mathscr B$  to  $\mathscr N$ , then we get a better result and a new dictionary.

Repeat this process until no entering variable can be found.



## HOW TO INITIALIZE

### QUESTION

If an initial state is not avaliable, how could we obtain one?

### SIMPLEX METHOD: PHASE I

We handle this difficulty by solving an auxiliary problem for which

- A feasible dictionary is easy to find
- The optimal dictionary provides a feasible dictionary for the original problem

# How to initialize (cont.)

#### **OBSERVATION**

The original problem has a feasible solution iff. the auxiliary problem has an optimal solution with  $x_0=0$ 

#### Original Problem

$$\zeta = \sum_{j=1}^{n} c_j x_j$$

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i \qquad i = 1, 2, ..., m$$

$$x_i \ge 0$$
  $j = 1, 2, ..., n$ 

### Auxiliary Problem

$$\underline{\xi = -x_0}$$

$$\sum_{j=1}^{n} a_{ij} x_j - x_0 \le b_i$$

$$i=1,2,...,m$$

$$x_j \ge 0$$
  $j = 0, 1, 2, ..., n$ 

# EXAMPLE

#### Original Problem

$$\zeta = -2x_1 - x_2$$

$$-x_1 + x_2 \le -1$$
$$-x_1 - 2x_2 \le -2$$
$$x_2 \le 1$$
$$x_1, x_2 \ge 0$$

# Auxiliary Problem

$$\underline{\xi = -x_0}$$

$$-x_1 + x_2 - x_0 \le -1$$

$$-x_1 - 2x_2 - x_0 \le -2$$

$$x_2 - x_0 \le 1$$

$$x_0, x_1, x_2 \ge 0$$

# SLACKED AUXILIARY PROBLEM

$$\xi = -x_0$$

$$w_1 = -1 + x_1 - x_2 + x_0$$

$$w_2 = -2 + x_1 + 2x_2 + x_0$$

$$w_3 = 1 - x_2 + x_0$$

### OBSERVATION

This dictionary is infeasible, but if we let  $x_0$  enter...

#### AFTER FIRST ITERATION

$$\xi = -2 + x_1 + 2x_2 - w_2$$

$$x_0 = 2 - x_1 - 2x_2 + w_2$$
$$w_1 = 1 - 3x_2 + w_2$$

$$w_3 = 3 - x_1 - 3x_2 + w_2$$

#### **OBSERVATION**

Now the dictionary become feasible!



#### SECOND ITERATION

Pick  $x_2$  to enter and  $w_1$  to leave

#### After second iteration

$$\underline{\xi = -\frac{4}{3} + x_1 - \frac{2}{3}w_1 - \frac{1}{3}w_2}$$

$$x_0 = \frac{4}{3} - x_1 + \frac{2}{3}w_1 + \frac{1}{3}w_2$$
$$x_2 = \frac{1}{3} - \frac{1}{3}w_1 + \frac{1}{3}w_2$$
$$w_3 = 2 - x_1 + w_1$$

#### THIRD ITERATION

Pick  $x_1$  to enter and  $x_0$  to leave

#### AFTER THIRD ITERATION

$$\underline{\xi = 0 - x_0}$$

$$x_1 = \frac{4}{3} - x_0 + \frac{2}{3}w_1 + \frac{1}{3}w_2$$
$$x_2 = \frac{1}{3} - \frac{1}{3}w_1 + \frac{1}{3}w_2$$
$$w_3 = \frac{2}{3} + x_0 + \frac{1}{3}w_1 - \frac{1}{3}w_2$$

#### BACK TO THE ORIGINAL PROBLEM

We now drop  $x_0$  from the equations and reintroduce the original objective function:

#### OIGNIAL DICTIONARY

$$\zeta = -2x_1 - x_2 = -3 - w_1 - w_2$$

$$x_1 = \frac{4}{3} + \frac{2}{3}w_1 + \frac{1}{3}w_2$$

$$x_2 = \frac{1}{3} - \frac{1}{3}w_1 + \frac{1}{3}w_2$$

$$w_3 = \frac{2}{3} + \frac{1}{3}w_1 - \frac{1}{3}w_2$$

## Solve this problem

- This dictionary is already optimal for the original problem
- But in general, we cannot expect to be this lucky every time



# Special Cases

- What if we fail to get an optimal solution with  $x_0=0$  for the auxiliary problem? The problem is infeasible.
- What if we fail to find a corresponding leaving variable after another one enters?
   The problem is unbounded.
- What if the candidate of leaving variable is not unique?
   The dictionary is degenerate/stalled.

# Infeasibility: Example

#### Original Problem

$$\underline{\zeta = 5x_1 + 4x_2}$$

$$x_1 + x_2 \le 2$$

$$-2x_1 - 2x_2 \le -9$$

$$x_1, x_2 \ge 0$$

# SLACKED AUXILIARY PROBLEM

$$\underline{\xi} = -x_0$$

$$w_1 = 2 - x_1 - x_2 + x_0$$
  
$$w_2 = -9 + 2x_1 + 2x_2 + x_0$$

# INFEASIBILITY: EXAMPLE(CONT.)

#### $x_0$ enter, $w_2$ leave

$$\underline{\xi = -9 - w_2 + 2x_1 + 2x_2}$$

$$x_0 = 9 + w_2 - 2x_1 - 2x_2$$
$$w_1 = 11 - w_2 - 3x_1 - 3x_2$$

#### $x_1$ ENTER, $w_1$ LEAVE

$$\xi = -\frac{5}{3} - \frac{2}{3}w_1 - \frac{4}{3}w_2 - x_2$$

$$x_0 = \frac{5}{3} + \frac{2}{3}w_1 + \frac{4}{3}w_2 + x_2$$
$$x_1 = \frac{11}{3} - \frac{1}{3}w_1 - \frac{1}{3}w_2 - x_2$$

#### OBSERVATION

The optimal value of  $\xi$  is less than zero, so the problem is infeasible.



# Unboundedness: Example

#### Original Problem

$$\zeta = x_1 - 4x_2$$

$$-2x_1 + x_2 \le -1$$
  
$$-x_1 - 2x_2 \le -2$$
  
$$x_1, x_2 \ge 0$$

#### **OBSERVATION**

 $x_1 = 0.8, x_2 = 0.6$  is a feasible solution

#### AFTER FIRST ITERATION

$$\zeta = -1.6 + 1.2w_1 - 1.2w_2$$

$$x_1 = 0.8 + 0.4w_1 - 0.4w_2$$

$$x_2 = 0.6 - 0.2w_1 + 0.4w_2$$



# Unboundedness: Example(cont.)

#### SECOND ITERATION

Pick  $w_1$  to enter and  $x_2$  to leave

#### AFTER SECOND ITERATION

$$\zeta = 2 - 6x_2 + 1.2w_2$$

$$x_1 = 2 - 2x_2 + 1.2w_2$$

$$w_1 = 3 - 5x_2 + 2w_2$$

#### THIRD ITERATION

- Now we can only pick  $w_2$  to enter, but this time no variable would leave.
- Thus this is an unbounded problem.

# DEGENERACY: EXAMPLE

#### Original Problem

$$\zeta = x_1 + 2x_2 + 3x_3$$

$$x_1 + 2x_3 \le 2$$
$$x_2 + 2x_3 \le 2$$

$$x_1, x_2, x_3 \ge 0$$

#### **OBSERVATION**

It is easy to verify that  $x_1 = x_2 = x_3 = 0$  is a feasible solution.

#### Slacked Problem

$$\zeta = x_1 + 2x_2 + 3x_3$$

$$w_1 = 2 - x_1 - 2x_3$$

$$w_2 = 2 - x_2 - 2x_3$$



# DEGENERACY: EXAMPLE(CONT.)

#### FIRST ITERATION

Pick  $x_3$  to enter and  $w_1$  to leave

#### AFTER FIRST ITERATION

$$\zeta = 3 - 0.5x_1 + 2x_2 - 1.5w_1$$

$$x_3 = 1 - 0.5x_1 - 0.5w_1$$
$$w_2 = x_1 - x_2 + w_1$$

#### SECOND ITERATION

Notice that  $x_2$  cannot really increase, but it can be reclassified.

#### AFTER SECOND ITERATION

$$\zeta = 3 + 1.5x_1 - 2w_2 + 0.5w_1$$

$$x_2 = x_1 - w_2 + w_1$$
$$x_3 = 1 - 0.5x_1 - 0.5w_1$$

# DEGENERACY: EXAMPLE(CONT.)

#### Third iteration

Pick  $x_1$  to enter and  $x_3$  to leave

#### AFTER THIRD ITERATION

$$\zeta = 6 - 3x_3 - 2w_2 - w_1$$

$$x_1 = 2 - 2x_3 - w_1$$

$$x_2 = 2 - 2x_3 - w_2$$

#### **OBSERVATION**

Now we obttin the optimal solution  $\zeta = 6$ .

#### WHAT TYPICALLY HAPPENS

- Usually one or more pivot will break away from the degeneracy
- However, cycling is sometimes possible, regardless of the pivoting rules



# CYCLING: EXAMPLE

It has been shown that if a problem has an optimal solution but by applying simplex method we end up cycling, the problem must involve dictionaries with at least 6 variables and 3 constraints.

#### CYCLING DICTIONARY

$$\zeta = 10x_1 - 57x_2 - 9x_3 - 24x_4$$

$$w_1 = -0.5x_1 + 5.5x_2 + 2.5x_3 - 9x_4$$

$$w_2 = -0.5x_1 + 1.5x_2 + 0.5x_3 - x_4$$

$$w_3 = 1 - x_1$$

In practice, degeneracy is very common, but cycling is rare.



# CYCLING AND TERMINATION

#### THEOREM

If the simplex method fails to terminate, then it must cycle.

#### Proof

- ullet A dictionary is completely determined by specifying  ${\mathscr B}$  and  ${\mathscr N}$
- There are only  $\binom{n+m}{m}$  different possibilities
- If the simplex method fails to terminate, it must visit some of these dictionaries more than once. Hence the algorithm cycles

Q.E.D.

#### Remark

This theorem tells us that, as bad as cycling is, nothing worse can happen.



# CYCLING ELIMINATION

### QUESTION

Are there pivoting rules for which the simplex method will never cycle?

#### BLAND'S RULE

Both the entering and the leaving variable should be selected from their respective sets by choosing the variable  $x_k$  with the smallest index k.

#### Theorem

The simplex method always terminates provided that we choose the entering and leaving variable according to Bland's Rule.

Detailed proof of this theorem is omitted here.



# FUNDAMENTAL THEOREM

### FUNDAMENTAL THEOREM OF LINEAR PROGRAMMING

For an arbitrary LP, the following statements are true:

- If there is no optimal solution, then the problem is either infeasible or unbounded.
- If a feasible solution exists, then a basic feasible solution exists.
- If an optimal solution exists, then a basic optimal solution exists.

#### Proof

- The Phase I algorithm either proves the problem is infeasible or produces a basic feasible solution.
- The Phase II algorithm either discovers the problem is unbounded or finds a basic optimal solution.

## QUESTION

Will the simplex method terminate within polynomial time?

#### Worst case analysis

- For those non-cycling variants of the simplex method, the upper bound on the number of iteration is  $\binom{n+m}{m}$
- The expression is maximized when m=n, and it is easy to verify that

$$\frac{1}{2n}2^{2n} \le \binom{2n}{n} \le 2^{2n}$$

- In 1972, V.Klee and G.J.Minty discovered an example which requries  $2^n-1$  iterations to solve using the largest coefficient rule
- It is still an open question whether there exist pivot rules that would guarantee a polynonial number of iterations

## QUESTION

Does there exist any other algorithm that can solve linear programming? Will they run in polynomial time?

#### HISTORY OF LP ALGORITHMS

- The simplex algorithm was developed by G.Dantzig in 1947
- Khachian in 1979 proposed the ellipsoid algorithm. This is the first polynomial time algorithm for LP.
- In 1984, Karmarkar's algorithm reached the worst-case bound of  $O(n^{3.5}L)$ , where the bit complexity of input is O(L).
- In 1991, Y.Ye proposed an  $O(n^3L)$  algorithm
- Whether there exists an algorithm whose running time depends only on m and n is still an open question.



# MOTIVATION

#### Original Problem

Maximize

$$\zeta = 4x_1 + x_2 + 3x_3$$

$$x_1 + 4x_2 \le 1$$
$$3x_1 - x_2 + x_3 \le 3$$
$$x_1, x_2, x_3 > 0$$

#### **OBSERVATION**

Every feasible solution provides a lower bound on the optimal objective function value  $\zeta^*$ 

#### EXAMPLE

The solution

$$(x_1,x_2,x_3)=(0,0,3)$$
 tells us  $\zeta^*\geq 9$ 

# MOTIVATION(CONT.)

### QUESTION

How to give an upper bound on  $\zeta^*$ ?

#### Original Problem

Maximize

$$\zeta = 4x_1 + x_2 + 3x_3$$

$$x_1 + 4x_2 \le 1$$

$$3x_1 - x_2 + x_3 \le 3$$

$$x_1, x_2, x_3 \ge 0$$

#### An upper bound

Multiply the first constraint by 2 and add that to 3 times the second constraint:

$$11x_1 + 5x_2 + 3x_3 \le 11$$

which indicates that  $\zeta^* \leq 11$ 

# MOTIVATION(CONT.)

### QUESTION

Can we find a tighter upper bound?

#### Better upper bound

Multiply the first constraint by  $y_1$  and add that to  $y_2$  times the second constraint:

$$(y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + (y_2)x_3 \le y_1 + 3y_2$$

- The coefficients on the left side must be greater than the corresponding ones in the objective function
- In order to obtain the best possible upper bound, we should minimize  $y_1 + 3y_2$



# MOTIVATION(CONT.)

#### **OBSERVATION**

The new problem is the dual problem associated with the primal one.

#### PRIMAL PROBLEM

Maximize

$$\zeta = 4x_1 + x_2 + 3x_3$$

$$x_1 + 4x_2 \le 1$$
$$3x_1 - x_2 + x_3 \le 3$$
$$x_1, x_2, x_3 \ge 0$$

### **DUAL PROBLEM**

Minimize

$$\underline{\xi = y_1 + 3y_2}$$

$$y_1 + 3y_2 \ge 4$$

$$4y_1 - y_2 \ge 1$$

$$y_2 \ge 3$$

$$y_1, y_2 \ge 0$$

## THE DUAL PROBLEM

#### PRIMAL PROBLEM

Maximize

$$\zeta = \sum_{j=1}^{n} c_j x_j$$

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i \quad i = 1, 2, ..., m$$
$$x_j \ge 0 \quad j = 1, 2, ..., n$$

#### Dual Problem

Minimize

$$\xi = \sum_{i=1}^{m} b_i y_i$$

$$\sum_{i=1}^{m} y_i a_{ij} \ge c_j \quad j = 1, 2, ..., n$$
$$y_i \ge 0 \quad i = 1, 2, ..., m$$

# THE DUAL PROBLEM (MATRIX NOTATION)

## Primal Problem

Maximize

$$\zeta = \vec{c}^{\rm T} \vec{x}$$

$$A\vec{x} \le \vec{b}$$
$$\vec{x} > \vec{0}$$

### Dual Problem

Minimize

$$\xi = \vec{b}^{\rm T} \vec{y}$$

$$A^{\mathrm{T}} \vec{y} \ge \vec{c}$$
$$\vec{y} \ge \vec{0}$$

## Dual Problem

-Maximize

$$\underline{-\xi} = -\vec{b}^{\mathrm{T}}\vec{y}$$

$$-A^{\mathrm{T}}\vec{y} \le -\vec{c}$$
$$\vec{y} \ge \vec{0}$$

## Weak Duality Theorem

#### THE WEAK DUALITY THEOREM

If  $\vec{x}$  is feasible for the primal and  $\vec{y}$  is feasible for the dual, then

$$\zeta = \vec{c}^{\mathrm{T}} \vec{x} \le \vec{b}^{\mathrm{T}} \vec{y} = \xi$$

#### Proof

$$\therefore A\vec{x} \le \vec{b}, \qquad \vec{c}^{\mathrm{T}} \le (A^{\mathrm{T}}\vec{y})^{\mathrm{T}} = \vec{y}^{\mathrm{T}}A$$

$$\therefore \zeta = \vec{c}^{\mathrm{T}} \vec{x} \leq (\vec{y}^{\mathrm{T}} A) \vec{x} = \vec{y}^{\mathrm{T}} (A \vec{x}) \leq \vec{y}^{\mathrm{T}} \vec{b} = \vec{b}^{\mathrm{T}} \vec{y} = \xi$$

Q.E.D

**Primal** 

Dual

Gap?



## STRONG DUALITY THEOREM

#### THE STRONG DUALITY THEOREM

If  $\vec{x}^*$  is optimal for the primal and  $\vec{y}^*$  is optimal for the dual, then

$$\zeta^* = \vec{c}^{\mathrm{T}} \vec{x}^* = \vec{b}^{\mathrm{T}} \vec{y}^* = \xi^*$$

#### Proof

It suffices to exhibit a dual feasible solution  $\vec{y}$  satisfying the above equation

Suppose we apply the simplex method. The final dictionary will be

$$\zeta = \zeta^* + \sum_{j \in \mathcal{N}} \overline{c_j} x_j$$



# STRONG DUALITY THEOREM(CONT.)

## PROOF(CONT.)

Let's use  $\vec{c}^*$  for the objective coefficients corresponding to original variables, and use  $\vec{d}^*$  for the objective coefficients corresponding to slack variables. The above equation can be written as

$$\zeta = \zeta^* + \vec{c}^{*T} \vec{x} + \vec{d}^{*T} \vec{w}$$

Now let  $\vec{y} = -\vec{d}^*$ , we shall show that  $\vec{y}$  is feasible for the dual problem and satisfy the equation.

# STRONG DUALITY THEOREM(CONT.)

### PROOF(CONT.)

We write the objective function in two ways.

$$\zeta = \vec{c}^{T} \vec{x} = \zeta^{*} + \vec{c}^{*T} \vec{x} + \vec{d}^{*T} \vec{w}$$

$$= \zeta^{*} + \vec{c}^{*T} \vec{x} + (-\vec{y}^{T}) (\vec{b} - A\vec{x})$$

$$= \zeta^{*} - \vec{y}^{T} \vec{b} + (\vec{c}^{*T} + \vec{y}^{T} A) \vec{x}$$

Equate the corresponding terms on both sides:

$$\zeta^* - \vec{y}^{\mathrm{T}} \vec{b} = 0 \tag{1}$$

$$\vec{c}^{\mathrm{T}} = \vec{c}^{*\mathrm{T}} + \vec{y}^{\mathrm{T}} A \tag{2}$$

# STRONG DUALITY THEOREM(CONT.)

## PROOF(CONT.)

Equation (1) simply shows that

$$\vec{c}^{\mathrm{T}}\vec{x}^* = \zeta^* = \vec{y}^{\mathrm{T}}\vec{b} = \vec{b}^{\mathrm{T}}\vec{y}$$

Since the coefficient in the optimal dictionary are all non-positive, we have  $\vec{c}^* \leq \vec{0}$  and  $\vec{d}^* \leq \vec{0}$ . Therefore, from equation (2) we know that

$$A^{\mathrm{T}} \vec{y} \le c$$
$$\vec{y} \ge \vec{0}$$

Q.E.D.



## EXAMPLE

#### OBSERVATION

As the simplex method solves the primal problem, it also implicitly solves the dual problem.

#### Primal Problem

Maximize

$$\zeta = 4x_1 + x_2 + 3x_3$$

$$x_1 + 4x_2 \le 1$$
$$3x_1 - x_2 + x_3 \le 3$$
$$x_1, x_2, x_3 \ge 0$$

### Dual Problem

Minimize

$$\underline{\xi = y_1 + 3y_2}$$

$$y_1 + 3y_2 \ge 4$$
$$4y_1 - y_2 \ge 1$$
$$y_2 \ge 3$$
$$y_1, y_2 \ge 0$$

# EXAMPLE(CONT.)

### OBSERVATION

The dual dictionary is the <u>negative transpose</u> of the primal dictionary.

### PRIMAL DICTIONARY

$$\zeta = 4x_1 + x_2 + 3x_3$$

$$w_1 = 1 - x_1 - 4x_2$$

$$w_2 = 3 - 3x_1 + x_2 - x_3$$

### DUAL DICTIONARY

$$-\xi = -y_1 - 3y_2$$

$$z_1 = -4 + y_1 + 3y_2$$

$$z_2 = -1 + 4y_1 - y_2$$

$$z_3 = -3 + y_2$$

# EXAMPLE(CONT.)

#### FIRST ITERATION

Pick  $x_3(y_2)$  to enter and  $w_2(z_3)$  to leave.

#### Primal Dictionary

$$\zeta = 9 - 5x_1 + 4x_2 - 3w_2$$

$$w_1 = 1 - x_1 - 4x_2$$

$$x_3 = 3 - 3x_1 + x_2 - w_2$$

### DUAL DICTIONARY

$$-\xi = -9 - y_1 - 3z_3$$

$$z_1 = 5 + y_1 + 3z_3$$

$$z_2 = -4 + 4y_1 - z_3$$

$$y_2 = 3 + z_3$$



# EXAMPLE(CONT.)

#### SECOND ITERATION

Pick  $x_2(y_1)$  to enter and  $w_1(z_2)$  to leave. Done.

#### PRIMAL DICTIONARY

$$\zeta = 10 - 6x_1 - w_1 - 3w_2$$

$$x_2 = 0.25 - 0.25x_1 - 0.25w_1$$
  

$$x_3 = 3.25 - 3.25x_1 - 0.25w_1$$
  

$$- w_2$$

## DUAL DICTIONARY

$$-\xi = -10 - 0.25z_2 - 3.25z_3$$

$$z_1 = 6 + 0.25z_2 + 3.25z_3$$

$$y_1 = 1 + 0.25z_2 + 0.25z_3$$

$$y_2 = 3 + z_3$$



## Complementary Slackness

#### Complementary Slackness Theorem

Suppose  $\vec{x}$  is primal feasible and  $\vec{y}$  is dual feasible. Let  $\vec{w}$  denote the primal slack variables, and let  $\vec{z}$  denote the dual slack variables. Then  $\vec{x}$  and  $\vec{y}$  are optimal if and only if

- $x_j z_j = 0$ , for j = 1, 2, ..., n
- $w_i y_i = 0$ , for i = 1, 2, ..., m

#### Remark

- Primal complementary slackness conditions  $\forall j \in \{1, 2, ..., n\}, \ either \ x_j = 0 \ or \ \sum_{i=1}^m a_{ij} y_i = c_j$
- Dual complementary slackness conditions  $\forall i \in \{1, 2, ..., m\}, \ either \ y_i = 0 \ or \ \sum_{j=1}^n a_{ij} x_j = b_i$



# Complementary Slackness(cont.)

#### Proof

We begin by revisiting the inequality used to prove the weak duality theorem:

$$\zeta = \sum_{j=1}^{n} c_j x_j = \vec{c}^{\mathsf{T}} \vec{x} \le (\vec{y}^{\mathsf{T}} A) \vec{x} = \sum_{j=1}^{n} \left( \sum_{i=1}^{m} y_i a_{ij} \right) x_j$$

This inequality will become an equality if and only if for every j=1,2,...,n either  $x_j=0$  or  $c_j=\sum_{i=1}^m y_ia_{ij}$ , which is exactly the primal complementary slackness condition.

The same reasoning holds for dual complementary slackness conditions.

Q.E.D.



## Special Cases

### QUESTION

What can we say about the dual problem when the primal problem is infeasible/unbounded?

#### Possibilities

- The primal has an optimal solution iff. the dual also has one
- The primal is infeasible if the dual is unbounded
- The dual is infeasible if the primal is unbounded

#### However...

It turns out that there is a fourth possibility: both the primal and the dual are infeasible



## FOURTH POSSIBILITY: EXAMPLE

#### PRIMAL PROBLEM

Maximize

$$\zeta = 2x_1 - x_2$$

$$x_1 - x_2 \le 1$$
$$-x_1 + x_2 \le -2$$
$$x_1, x_2 \ge 0$$

### Dual Problem

Minimize

$$\xi = y_1 - 2y_2$$

$$y_1 - y_2 \ge 2$$
  
-  $y_1 + y_2 \ge -1$   
 $y_1, y_2 > 0$ 

## FLOW NETWORKS

#### FLOW NETWORK

A flow network is a directed graph G=(V,E) with two distinguished vertices: a source s and a sink t. Each edge  $(u,v)\in E$  has a nonnegative capacity c(u,v). If  $(u,v)\notin E$ , then c(u,v)=0.

#### Positive Flow

A positive flow on G is a function  $f: V \times V \to \mathbb{R}$  satisfying:

Capacity constraint

$$\forall u, v \in V, \quad 0 \le f(u, v) \le c(u, v)$$

Flow conservation

$$\forall u \in V - \{s, t\}, \quad \sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) = 0$$

# FLOW NETWORKS(CONT.)



#### VALUE

The value of the flow is the net flow out of the source:

$$\sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$

# FLOW NETWORKS(CONT.)

#### THE MAXIMUM FLOW PROBLEM

Given a flow network G, find a flow of maximum value on G.

### LP of MaxFlow

$$\begin{aligned} & \mathsf{Maximize} \\ & \zeta = \vec{e_s}^{\mathrm{T}} \vec{x} \end{aligned}$$

$$A\vec{x} = \vec{0}$$
$$\vec{x} \le \vec{c}$$
$$\vec{x} > \vec{0}$$

### REMARKS

- A is a  $|E| \times |V|$  matrix containing only 0,1 and -1 where A((u,v),u)=-1 and A((u,v),v)=1. Specially, we let A((s,v),\*)=A((v,t),\*)=0
- $\vec{e_s}$  is a 0-1 vector where if  $(s, v) \in E$  then  $e_{(s,v)} = 1$ .

# FLOW NETWORKS(CONT.)



#### EXPLANATION

$$\vec{x} = (f_{(s,a)}, f_{(s,c)}, f_{(a,b)}, f_{(b,t)}, f_{(c,b)}, f_{(c,t)})^{\mathrm{T}}$$

$$A' = \begin{bmatrix} -1 & -1 & 0 & 0 & 0 & 0\\ 1 & 0 & -1 & 0 & 0 & 0\\ 0 & 0 & 1 & -1 & -1 & 0\\ 0 & 1 & 0 & 0 & 1 & -1\\ 0 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

$$\vec{e_s} = (1, 1, 0, 0, 0, 0)^{\mathrm{T}}$$

$$\vec{c} = (3, 2, 1, 3, 4, 2)^{\mathrm{T}}$$

## FLOW AND CUT

#### CUT AND CAPACITY

A  $\operatorname{cut} S$  is a set of nodes that contains the source node but does not contains the sink node.

The capacity of a cut is defined as  $\sum_{u \in S, v \notin S} c(u, v)$ .

#### The minimum cut Problem

Given a flow network G, find a cut of minimum capacity on G.

#### The Max-flow min-cut theorem

In a flow network, the maximum value of a flow equals the minimum capacity of a cut.

## PROOF OF THE THEOREM

First, let's find the dual of the max-flow problem.

### LP of MaxFlow

 $\begin{array}{l} \mathsf{Maximize} \\ \zeta = \vec{e_s}^{\,\mathrm{T}} \vec{x} \end{array}$ 

$$A\vec{x} = \vec{0}$$
$$\vec{x} \le \vec{c}$$
$$\vec{x} > \vec{0}$$

## REWRITE THE LP

Maximize  $\zeta = \vec{e_s}^{\mathrm{T}} \vec{x}$ 

$$\begin{bmatrix} A \\ -A \\ I \end{bmatrix} \vec{x} \le \begin{bmatrix} \vec{0} \\ \vec{0} \\ \vec{c} \end{bmatrix}$$
$$\vec{x} \ge \vec{0}$$

# Dual Problem

Minimize

$$\xi = \begin{bmatrix} \vec{0} \\ \vec{0} \\ \vec{c} \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} \vec{y_1} \\ \vec{y_2} \\ \vec{z} \end{bmatrix}$$

$$\begin{bmatrix} A \\ -A \\ I \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} \vec{y_1} \\ \vec{y_2} \\ \vec{z} \end{bmatrix} \ge \vec{e_s}$$

 $\vec{y_1}, \vec{y_2}, \vec{z} \ge \vec{0}$ 

Next, let's rewrite the dual of the max-flow problem.

### Dual Problem

Minimize  $\xi = \vec{c}^{\mathrm{T}} \vec{z}$ 

$$A^{\mathrm{T}}(\vec{y_1} - \vec{y_2}) + \vec{z} \ge \vec{e_s}$$
  
 $\vec{y_1}, \vec{y_2}, \vec{z} \ge \vec{0}$ 

If we let  $\vec{y} = \vec{y_1} - \vec{y_2}$ , then  $\vec{y}$  becomes an unconstrained variable.

### REWRITE THE CONSTRAINTS

Minimize

$$\underline{\xi = \vec{c}^{\mathrm{T}} \vec{z}}$$

$$y_v - y_u + z_{(u,v)} \ge 0 \quad \text{if } u \ne s, v \ne t$$

$$y_v + z_{(u,v)} \ge 1 \quad \text{if } u = s, v \ne t$$

$$-y_u + z_{(u,v)} \ge 0 \quad \text{if } u \ne s, v = t$$

$$z_{(u,v)} \ge 1 \quad \text{if } u = s, v = t$$

$$\vec{z} \ge \vec{0}$$

$$\vec{y} \text{ is free}$$

Fix  $y_s = 1$  and  $y_t = 0$ , and all the above inequalities can be written in the same form:

### **DUAL PROBLEM OF MAXCUT**

$$\begin{array}{l} \text{Minimize} \\ \xi = \vec{c}^{\mathrm{T}} \vec{z} \end{array}$$

$$y_{s} = 1$$

$$y_{t} = 0$$

$$y_{v} - y_{u} + z_{(u,v)} \ge 0$$

$$\vec{z} \ge \vec{0}$$

 $\vec{y}$  is free

We will show that the optimal solution of the dual problem (denoted as OPT) equals to the optimal solution of the minimum cut problem (denoted as MIN-CUT).

OPT<MIN-CUT</li>

Given a minimum cut of the network, let  $y_i=1$  if vertex  $i\in S$  and  $y_i=0$  otherwise. Let  $z_{(u,v)}=1$  if the edge (u,v) cross the cut.

It is obvious that the constraint  $y_v-y_u+z_{(u,v)}\geq 0$  can always be satisfied, and the value of the objective function is equal to the capacity of the cut.

Therefore, MIN-CUT is a feasible solution to the LP dual.

### OPT≥MIN-CUT

Consider the optimal solution  $(\vec{y}^*, \vec{z}^*)$ . Pick  $p \in (0,1]$  uniformly at random and let  $S = \{v \in V | y_v^* \geq p\}$ Note that S is a valid cut. Now, for any edge (u,v),  $Pr[(u,v) \ in \ the \ cut] = Pr(y_v^*$ 

$$\therefore E[Capacity \ of \ S] = \sum_{\substack{c(u,v) \\ \leq \sum c(u,v)}} c_{(u,v)} Pr[(u,v) \ in \ the \ cut]}$$

$$\leq \sum_{\substack{c \\ =\bar{c}^{\mathrm{T}}\bar{z}^* = \xi^*}} c_{(u,v)} z_{(u,v)}^*$$

Hence there must be a cut of capacity less than or equal to OPT. The claim follows.



## GAME THEORY: BASIC MODEL

One of the most elegant application of LP lies in the field of Game Theory.

#### STRATEGIC GAME

A strategic game consists of

- A finite set N (the set of players)
- For each player  $i \in N$  a nonempty set  $A_i$  (the set of actions/strategies available to player i)
- For each player  $i \in N$  a preference relation  $\succeq_i$  on  $A = \times_{j \in N} A_j$

The preference relation  $\succeq_i$  of player i can be represented by a utility function  $u_i:A\to\mathbb{R}$  (also called a payoff function), in the sense that  $u_i(a)\geq u_i(b)$  whenever  $a\succeq_i b$ 



# GAME THEORY: BASIC MODEL(EXAMPLE)

A finite strategic game of two players can be described conveniently in a table like this:

| Prisoner's Dilemma |           |        |  |  |
|--------------------|-----------|--------|--|--|
|                    | Cooperate | Defect |  |  |
| Cooperate          | 2,2       | 0,3    |  |  |
| Defect             | 3,0       | 1,1    |  |  |

## GAME THEORY: ZERO-SUM GAME

If in a game the gain of one player is offset by the loss of another player, such game is often called a zero-sum game

| Rock-Paper-Scissors |       |      |         |  |
|---------------------|-------|------|---------|--|
|                     | Paper | Rock | Scissor |  |
| Paper               | 0,0   | 1,-1 | -1,1    |  |
| Rock                | -1,1  | 0,0  | 1,-1    |  |
| Scissor             | 1,-1  | -1,1 | 0,0     |  |

## GAME THEORY: MATRIX GAME

A finite two-person zero-sum game is also called a matrix game, for it can be represented solely by one matrix.

### Rock-Paper-Scissors(Matrix Notation)

Utilities for the row player is:

$$U = \left[ \begin{array}{rrr} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{array} \right]$$

Utilities for the column player is simply the negation of U:

$$V = -U = \left[ \begin{array}{rrr} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{array} \right]$$

## GAME THEORY: MIXED STRATEGY

A mixed strategy  $\vec{x}$  is a randomization over one player's pure strategies satisfying  $\vec{x} \ge \vec{0}$  and  $\vec{e}^T \vec{x} = 1$ .

The expected utility is the expectation of utility over all possible outcomes.

#### Expected utility

Let  $\vec{x}$  and  $\vec{y}$  denote the mixed strategy of column player and row player, respectively. Then the expected utility to the row player is  $\vec{x}^{\rm T} U \vec{y}$ , and the expected utility to the column player is  $-\vec{x}^{\rm T} U \vec{y}$ 

## Rock-Paper-Scissors(Mixed Strategy)

If both player choose a mixed strategy of  $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ , their expected utility will be 0, which conforms to our intuition.



## GAME THEORY: MOTIVATION

### QUESTION

Suppose the payoffs in Rock-Paper-scissors game are altered:

$$U = \left[ \begin{array}{rrr} 0 & 1 & -2 \\ -3 & 0 & 4 \\ 5 & -6 & 0 \end{array} \right]$$

- Who has the edge in this game?
- What is the best strategy for each player?
- How much can each player expect to win in one round?

## OPTIMAL PURE STRATEGY

First let us consider the case of pure strategy.

- If the row player select row i, her payoff is at least  $\min_j u_{ij}$ . To maximize her profit she would select row i that would make  $\min_j u_{ij}$  as large as possible.
- If the column player select column j, her payoff is at most  $-\max_i u_{ij}$ . To minimize her loss she would select column j that would make  $\max_i u_{ij}$  as small as possible.
- If  $\exists i, j$  such that  $\max_i \min_j u_{ij} = \min_j \max_i u_{ij} = v$ , the matrix game is said to have a saddlepoint, where i and j constitute a Nash Equilibrium.

## SADDLEPOINT: EXAMPLE

#### EXAMPLE

Here is a matrix game that contains a saddlepoint:

$$U = \left[ \begin{array}{rrr} -1 & 2 & 5 \\ 1 & 8 & 4 \\ 0 & 6 & 3 \end{array} \right]$$

However, it is very common for a matrix game to have no saddlepoint at all:

$$U = \left[ \begin{array}{rrr} 0 & 1 & -2 \\ -3 & 0 & 4 \\ 5 & -6 & 0 \end{array} \right]$$

## OPTIMAL MIXED STRATEGY

#### THEOREM

Given the (mixed) strategy of the row player, if  $\vec{y}$  is the column player's best response then for each pure strategy i such that  $y_i > 0$ , their expected utility must be the same.

#### Proof

Suppose this were not true. Then

- There must be at least one i yields a lower expected utility.
- If I drop this strategy i from my mix, my expected utility will be increased.
- But then the original mixed strategy cannot be a best response. Contradiction.

Q.E.D.



#### **OBSERVATION**

- ullet For pure strategies, the row player should maxi-minimize her utility  $u_{ij}$
- For mixed strategies, the row player should maxi-minimize her expected utility  $\vec{x}^{\rm T} U \vec{y}$  instead.

# Maximinimization Problem

$$\max_{\vec{x}} \min_{\vec{y}} \underline{\vec{x}^{\mathrm{T}} U \vec{y}}$$

$$\vec{e}^{\mathrm{T}}\vec{x} = 1$$
$$\vec{x} > 0$$

#### SHIFT TO PURE STRATEGY

$$\max_{\vec{x}} \min_{i} \underline{\vec{x}^{\mathrm{T}} U \vec{e_i}}$$

$$\vec{e}^{\mathrm{T}}\vec{x} = 1$$

$$\vec{x} \ge 0$$

#### **OBSERVATION**

Let  $v = \min_i \vec{x}^{\mathrm{T}} U \vec{e_i}$ , then

$$\forall i = 1, 2, ..., n, \qquad v \leq \vec{x}^{\mathrm{T}} U \vec{e_i}$$

## MAXIMINIMIZATION PROBLEM

 $\max_{\vec{x}} v$ 

$$\begin{aligned} v \leq \vec{x}^{\mathrm{T}} U \vec{e_i} & i = 1, 2, ..., m \\ \vec{e}^{\mathrm{T}} \vec{x} = 1 \\ \vec{x} > 0 \end{aligned}$$

#### MATRIX NOTATION

Maximize

$$\zeta = v$$

$$v\vec{e} \le U\vec{x}$$
$$\vec{e}^{\mathrm{T}}\vec{x} = 1$$
$$\vec{x} > 0$$



#### OBSERVATION

By symmetry, the column player seeks a mixed strategy that mini-maximize her expected loss.

# MINIMAXIMIZATION PROBLEM

$$\min_{\vec{y}} \max_{\vec{x}} \vec{x}^{\mathrm{T}} U \vec{y}$$

$$\vec{e}^{\mathrm{T}}\vec{y} = 1$$
$$\vec{y} > 0$$

### MATRIX NOTATION

Minimize

$$\underline{\xi = u}$$

$$u\vec{e} \ge U^{\mathrm{T}}\vec{y}$$
$$\vec{e}^{\mathrm{T}}\vec{y} = 1$$
$$\vec{y} \ge 0$$

#### **OBSERVATION**

The mini-maximization problem is the dual of the maxi-minimization problem.

#### Primal Problem

Maximize

$$\underline{\zeta} = v$$

$$v\vec{e} \le U\vec{x}$$
$$\vec{e}^{\mathrm{T}}\vec{r} = 1$$

$$\vec{x} > 0$$

## Dual Problem

Minimize

$$\xi = u$$

$$u\vec{e} \ge U^{\mathrm{T}}\vec{y}$$

$$\vec{e}^{\mathrm{T}}\vec{y} = 1$$

$$\vec{y} \ge 0$$



#### **OBSERVATION**

The mini-maximization problem is the dual of the maxi-minimization problem.

#### PRIMAL PROBLEM

Maximize

$$\zeta = \left[ \begin{array}{cc} 0 & 1 \end{array} \right] \left[ \begin{array}{c} \vec{x} \\ v \end{array} \right]$$

$$\begin{bmatrix} -U & \vec{e} \\ \vec{e}^{\mathrm{T}} & 0 \end{bmatrix} \begin{bmatrix} \vec{x} \\ v \end{bmatrix} \stackrel{\leq}{=} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 
$$\vec{x} \geq \vec{0}, \quad v \text{ is free}$$

#### Dual Problem

Minimize

$$\xi = \left[ \begin{array}{cc} 0 & 1 \end{array} \right] \left[ \begin{array}{c} \vec{y} \\ u \end{array} \right]$$

$$\begin{bmatrix} -U^{\mathrm{T}} & \vec{e} \\ \vec{e}^{\mathrm{T}} & 0 \end{bmatrix} \begin{bmatrix} \vec{y} \\ u \end{bmatrix} \stackrel{\geq}{=} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$\vec{y} \geq \vec{0}, \qquad u \ is \ free$$

# MINMAX THEOREM

#### VON NEUMANN'S MIN-MAX THEOREM

$$\max_{\vec{x}} \min_{\vec{y}} \vec{x}^{\mathrm{T}} U \vec{y} = \min_{\vec{y}} \max_{\vec{x}} \vec{x}^{\mathrm{T}} U \vec{y}$$

#### Proof

This theorem is a direct consequence of the Strong Duality Theorem and our previous analysis.

Q.E.D.

#### Remarks

- The common optimal value  $v^*=u^*$  is called the value of the game
- A game whose value is 0 is called a fair game

## MINMAX THEOREM: EXAMPLE

We now solve the modified Rock-Paper-Scissors game.

# Problem $Maximize \ \zeta = v$

$$\begin{bmatrix} 0 & -1 & 2 & 1 \\ 3 & 0 & -4 & 1 \\ -5 & 6 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ v \end{bmatrix} \le \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

# SOLUTION

$$\vec{x}^* = \begin{bmatrix} \frac{62}{1002} \\ \frac{27}{102} \\ \frac{13}{102} \end{bmatrix}$$

$$\zeta^* \approx 0.15686$$

 $x_1, x_2, x_3 \geq 0,$  v is free

# POKER FACE

## Poker



#### Tricks in Card game

- Bluff: increase the bid in an attempt to coerce the opponent even though lose is inevitable if the challenge is accepted
- Underbid: refuse to bid in an attempt to give the opponent false hope even though bidding is a more profitable choice

## QUESTION

Are bluffing and underbidding both justified bidding strategies?

## Poker: Model

Our simplified model involves two players, A and B, and a deck having three cards 1,2 and 3.

#### Betting scenarios

- A passes, B passes: \$1 to holder of higher card
- A passes, B bets, A passes: \$1 to B
- A passes, B bets, A bets: \$2 to holder of higher card
- A bets, B passes: \$1 to A
- A bets, B bets: \$2 to holder of higher card

# POKER: MODEL(CONT.)

#### **OBSERVATION**

Player A can bet along one of 3 lines while player B can bet along four lines.

#### BETTING LINES FOR A

- First pass. If B bets, pass again.
- First pass. If B bets, bet.
- Bet.

#### BETTING LINES FOR B

- Pass no matter what
- If A passes, pass; if A bets, bet
- If A passes, bet; if A bets, pass
- Bet no matter what



## STRATEGY

#### Pure Strategies

Each player's pure strategies can be denoted by triples  $(y_1, y_2, y_3)$ , where  $y_i$  is the line of betting that the player will use when holding card i.

- The calculation of expected payment must be carried out for every combination of pairs of strategies
- Player A has  $3 \times 3 \times 3 = 27$  pure strategies
- Player B has  $4 \times 4 \times 4 = 64$  pure strategies
- There are altogether  $27 \times 64 = 1728$  pairs. This number is too large!

# STRATEGY(CONT.)

#### Observation 1

When holding a 1

- Player A should refrain from betting along line 2
- Player B should refrain from betting along line 2 and 4

#### Observation 2

When holding a 3

- Player A should refrain from betting along line 1
- Player B should refrain from betting along line 1,2 and 3

# STRATEGY(CONT.)

#### Observation 3

When holding a 2

- Player A should refrain from betting along line 3
- Player B should refrain from betting along line 3 and 4

Now player A has only  $2\times 2\times 2=8$  pure strategies and player B has only  $2\times 2\times 1=4$  pure strategies. We are able to compute the payoff matrix then.

# **PAYOFF**

| Payoff Matrix |         |         |         |         |
|---------------|---------|---------|---------|---------|
|               | (1,1,4) | (1,2,4) | (3,1,4) | (3,2,4) |
| (1,1,2)       |         |         | 1/6     | 1/6     |
| (1,1,3)       |         | -1/6    | 1/3     | 1/6     |
| (1,2,2)       | 1/6     | 1/6     | -1/6    | 1/6     |
| (1,2,3)       | 1/6     |         |         | -1/6    |
| (3,1,2)       | -1/6    | 1/3     |         | 1/2     |
| (3,1,3)       | -1/6    | 1/6     | 1/6     | 1/2     |
| (3,2,2)       |         | 1/2     | -1/3    | 1/6     |
| (3,2,3)       |         | 1/3     | -1/6    | 1/6     |



# EXPLANATION

Player A's optimal strategy is as follows:

- When holding 1, mix line 1 and 3 in 5:1 proportion
- When holding 2, mix line 1 and 2 in 1:1 proportion
- When holding 3, mix line 2 and 3 in 1:1 proportion

Note that it is optimal for player A to use line 3 when holding a 1 sometimes, and this bet is certainly a bluff.

It is also optimal to use line 2 when holding a 3 sometimes, and this bet is certainly an underbid.