Wydział WFIIS	Imię i nazwisko 1. Mateusz Kulig	1	Rok 2021	Grupa 1	Zespół 3
-	2. Przemysław F				
PRACOWNIA FIZYCZNA WFiIS AGH	Temat: Opraco	Nr ćwiczenia 0			
Data wykonania 10.10.2021	Data oddania	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA

W sprawozdaniu opisaliśmy pomiar wartości przyspieszenia grawitacyjnego wyznaczonego przy pomocy wahadła matematycznego i wzoru na okres jego drgań. Pomiaru dokonaliśmy dla trzech długości nici, do zagadnienia podeszliśmy dwiema różnymi metodami. W pierwszej z nich bezpośrednio użyliśmy wzoru związanego z okresem drgań, a w drugiej skorzystaliśmy z prostej regresji dla której współczynnik kierunkowy był bezpośrednio związany z wartością owego przyspieszenia. Pierwsza z metod dała wynik zgodny z wartością tablicową z dokładnością do niepewności rozszerzonej, natomiast wynik drugiej nie zmieścił się w zakresie.

1. Wstęp teoretyczny.

Wahadło matematyczne jest to prosty model fizyczny, który reprezentuje ciało punktowe o masie M zawieszone na nieważkiej, nierozciągliwej nici o długości I. Jeśli wychylimy ciało z położenia równowagi o mały kąt θ to zacznie działać na niego siła wypadkowa prostopadła do siły naciągu nici i skierowana zawsze w stronę położenia równowagi. Z tego powodu ciało zacznie oscylować wokół położenia równowagi i poruszać się ruchem niejednostajnie zmiennym.

Rys. 1. Schemat działania wahadła matematycznego. Masa punktowa M po wychyleniu z położenia równowagi (linia przerywana) doznaje wypadkowej siły \mathbf{F}'_{w} skierowanej prostopadle do kierunku naciągu nici. Siła powodująca ruch jest siłą wypadkową siły ciężkości \mathbf{G} oraz naciągu nici \mathbf{N}' , działającej na ciało. Siła ta powoduje ruch wahadła zawsze w kierunku położenia równowagi. W położeniu równowagi siła wypadkowa $\mathbf{F}_{w} = \mathbf{0}$ oraz $\mathbf{G} = \mathbf{N} -$ naciąg nici równoważy siłę ciężkości. [1]

Siła wypadkowa w momencie odchylenia o kąt heta ma wartość wyrażoną wzorem

$$F_{w} = -Mgsin(\theta). \tag{1}$$

Z drugiej zasady dynamiki Newtona otrzymujemy równanie różniczkowe opisujące ruch wahadła

$$\frac{d^2\theta}{dt^2} + \frac{g}{l}\sin\theta = 0. {(2)}$$

Jest to równanie nieliniowe, jednak dla małych kątów $\sin\theta \approx \theta$ więc równanie (2) przyjmie postać

$$\frac{d^2\theta}{dt^2} + \frac{g}{l}\theta = 0. ag{3}$$

Rozwiązaniem tego równania jest funkcja

$$\theta(t) = \theta_0 \cos\left(\sqrt{\frac{g}{l}}t + \varphi\right),\tag{4}$$

 θ_0 – Amplituda drgań

 φ – Przesunięcie fazowe

Jest to równanie ruchu punktu materialnego zawieszonego na wahadle. Otrzymujemy z niego wzór na okres drgań wahadła

$$T = 2\pi \sqrt{\frac{l}{g}}. ag{5}$$

Po prostych przekształceniach powyższego wzoru otrzymujemy formułę na przyspieszenie ziemskie

$$g = 4\pi^2 \frac{l}{r^2}. (6)$$

Znając więc długość wahadła I i jego okres T jesteśmy w stanie za pomocą wzoru (6) wyznaczyć przyśpieszenie grawitacyjne.

2. Aparatura

W doświadczeniu dysponowaliśmy następującymi przyrządami:

- Stoper marki Q&Q Dokładność pomiarowa tego stopera wynosi 0,01 [s]. Jednak ze względu na szybkość reakcji ludzkiego organizmu wynosząca 0,1 [s], niepewność pomiaru czasu wynosi właśnie 0,1 [s].
- Linijka (marka nieznana) Dokładność pomiarowa 0,01 [m]. Jest to niepewność związana z najmniejszą możliwą do odczytu działką na linijce.
- Statyw z kulką zawieszoną na nitce Odchyleniem od teorii fizycznej jest nie punktowy rozkład
 masy, oraz nić która posiada masę i nie jest idealnie nierozciągliwa. Możliwym źródłem
 niepewności jest również trudność w dokładnym odczytaniu odległości między punktem
 zawieszenia nici i środkiem metalowej kulki. Na błąd pomiaru wpłynąć mogło również
 wychylenie ciała o zbyt duży kąt od położenia równowagi.

3. Metodyka doświadczenia

Przeprowadzenie doświadczenia polegało na odchyleniu kulki o mały kąt dla którego $sin(x) \approx x$. Następnie by ograniczyć wpływ reakcji eksperymentatora zmierzyliśmy czas potrzebny na wykonanie przez wahadło 10 okresów więc otrzymany wynik należy podzielić przez 10. Pomiar okresu przeprowadziliśmy dla trzech różnych długości wahadła i dla każdej wykonaliśmy 10 pomiarów. Do obliczenia wartości przyspieszenia grawitacyjnego użyliśmy dwóch różnych metod. W pierwszej z nich bezpośrednio użyliśmy wzoru (6) i w tym celu skorzystaliśmy z jednej serii pomiarowej dla długości nici L_3 . W drugiej metodzie użyliśmy prostej regresji, której współczynnik kierunkowy był bezpośrednio związany z wartością przyspieszenia ziemskiego. W tej metodzie wykorzystaliśmy wyniki pomiaru okresu drgań wahadła dla wszystkich trzech długości nici.

4. Analiza danych

Wyniki pomiarów, potrzebnych to zastosowania dwóch metod obliczenia przyspieszenia grawitacyjnego, zebrane zostały w poniższej tabeli.

Tab. 1. Tabela wyników pomiaru okresu dla trzech różnych długości.

	<i>L</i> ₁ = 0,505[m]		L ₂ = 0,395 [m]		<i>L</i> ₃ = 0,310 [m]	
Ν	10 T ₁ [s]	$T_1[s]$	10 T ₂ [s]	$T_2[s]$	10 T ₃ [s]	<i>T</i> ₃ [s]
1	13,65	1,365	12,48	1,248	11,22	1,122
2	14,12	1,412	12,52	1,252	11,13	1,113
3	14,37	1,437	12,58	1,258	11,16	1,116
4	14,06	1,406	12,52	1,252	11,14	1,114
5	14,18	1,418	12,39	1,239	11,19	1,119
6	14,28	1,428	12,45	1,245	11,04	1,104
7	14,28	1,428	12,48	1,248	11,22	1,122
8	14,25	1,425	12,55	1,255	11,29	1,129
9	14,26	1,426	12,33	1,233	11,19	1,119
10	14,09	1,409	12,33	1,233	11,21	1,121

Okres, który użyjemy do obliczeń, będzie średnią wartością dla 10 pomiarów. Tak więc:

$$< T_1 > = 1,4154 [s]$$

$$\langle T_2 \rangle = 1,2463$$
 [s]

$$\langle T_3 \rangle = 1,1179 [s]$$

Niepewność pomiaru okresu otrzymujemy dzieląc przyjętą uprzednią niepewność związaną z czasem reakcji równą ΔT =0,1 [s] przez liczbę drgań, otrzymana w ten sposób niepewność czasu wynosi

$$u(T) = 0.01 [s].$$

Ostatecznie wyniki okresów drgań otrzymane dla trzech różnych długości nici, przy zastosowaniu niepewności rozszerzonej, o współczynniku k = 2, wynoszą:

$$\langle T_1 \rangle = (1.42 \pm 0.02) [s]$$

$$\langle T_2 \rangle = (1,25 \pm 0,02) [s]$$

$$\langle T_3 \rangle = (1,12 \pm 0,02) [s]$$

Metoda I

Pierwszym sposobem na wyznaczenie przyspieszenia grawitacyjnego jest użycie wzoru (6) do jednej z serii pomiarowych, przeprowadzonych dla określonej długości nici.

Podstawiając wartość średnią $< T_3 >$ za okres T do wzoru (6) otrzymujemy przyspieszenie ziemskie

$$g_I = 9,79 \left[\frac{\text{m}}{\text{s}^2} \right].$$

Niepewność związaną z wyliczanym przyspieszeniem grawitacyjnym obliczymy za pomocą wzoru na prawo przenoszenia niepewności zastosowaną do wzoru (6)

$$u_{I}(g) = \sqrt{\left(\frac{-8\pi^{2}l}{T^{3}} * u(T)\right)^{2} + \left(\frac{4\pi^{2}}{T^{2}} * u(l)\right)^{2}}.$$
 (7)

Za niepewność długości nici przyjmujemy dokładność działki u(l) = 0.01 [m].

Po podstawieniu danych liczbowych otrzymujemy wartość niepewności przyspieszenia grawitacyjnego równą

$$u_I(g) = 0.36 \left[\frac{\mathrm{m}}{\mathrm{s}^2} \right].$$

Stosując niepewność rozszerzoną dla powyższego wyniku o współczynniku rozszerzenia k=2, otrzymujemy

$$U_I(g) = 0.72 \left[\frac{\mathrm{m}}{\mathrm{s}^2} \right].$$

Zatem wartość przyspieszenia grawitacyjnego otrzymana metodą I wynosi

$$g_I = (9,79 \pm 0,72) \left[\frac{\text{m}}{\text{s}^2} \right].$$

Metoda II

Drugim sposobem wyznaczenia przyspieszenia grawitacyjnego jest metoda związana z użyciem prostej regresji. W celu dopasowania prostej przeprowadziliśmy serie pomiarów dla trzech różnych długości nici. Następnie wyznaczyliśmy średnią okresów uzyskując w ten sposób trzy punkty na wykresie kwadratu okresu od długości (rys. 1.). Wyznaczona na tej bazie prosta regresji dana jest wzorem

$$y = 3,8758x + 0,0389.$$
 (8)

Tak więc współczynnik kierunkowy prostej regresji wynosi A=3,8758, a jego niepewność, obliczona za pomocą wbudowanej w program Excel funkcji "REGLINP()" wynosi u(A)=0,024.

Współczynnik kierunkowy A jest powiązany z przyspieszeniem grawitacyjnym wzorem

$$g_{II} = \frac{4\pi^2}{A}. (9)$$

Podstawiając wartości liczbowe otrzymaliśmy wartość $g_{II}=10$,19 $\left[rac{ ext{m}}{ ext{s}^2}
ight]$.

Niepewność otrzymanego w ten sposób przyspieszenia ziemskiego wyznaczamy za pomocą prawa przenoszenia niepewności zastosowanego do wzoru (9), w wyniku którego otrzymujemy wzór

$$u_{II}(g) = \sqrt{\left(\frac{-4\pi^2}{A^2} \cdot u(A)\right)^2} = \frac{4\pi^2}{A^2} \cdot u(A)$$
 (10)

Po podstawieniu do niego odpowiednich wartości, otrzymujemy, że niepewność przyspieszenia grawitacyjnego wynosi $u_{II}(g)=0.06~\left[\frac{\rm m}{\rm s^2}\right]$.

Stosując niepewność rozszerzoną dla powyższego wyniku o współczynniku rozszerzenia k = 2, otrzymujemy

$$U_{II}(g) = 0.12 \left[\frac{\mathrm{m}}{\mathrm{s}^2} \right].$$

Zatem wartość przyspieszenia grawitacyjnego otrzymana metodą II wynosi

$$g_{II} = (10,19 \pm 0,12) \left[\frac{\text{m}}{\text{s}^2} \right].$$

Rys. 1. Wykres zawierający trzy punkty pomiarowe odpowiadające trzem różnym długościom wahadła. Na wykresie widoczna jest prosta regresji dana wzorem (8).

5. Podsumowanie

W wyniku zastosowania pierwszej z metod wyznaczenia przyspieszenia grawitacyjnego otrzymaliśmy wartość przyspieszenia równą $g=(9,79\pm0,72)\left[\frac{\mathrm{m}}{s^2}\right]$. Jest zgodna z wartością tablicową dla Krakowa $(9,8105\left[\frac{\mathrm{m}}{s^2}\right])$ [2]. Za pomocą drugiej metody wynik jaki wyznaczyliśmy metodą prostej regresji wyniósł $g=(10,19\pm0,12)\left[\frac{\mathrm{m}}{s^2}\right]$. Wynik uzyskany za pomocą drugiej metody nie zgadza się z wartością tablicową nawet po zastosowaniu niepewności rozszerzonej.

6. Literatura

- [1] http://www.fis.agh.edu.pl/~pracownia_fizyczna/pomoce/Uwagi%20do%20sprawozdan.pdf 05.11.2021
- [2] https://pl.wikipedia.org/wiki/Przyspieszenie_ziemskie_ 05.11.2021