$12n_{0411} \ (K12n_{0411})$

Ideals for irreducible components of X_{par}

$$\begin{split} I_1^u &= \langle u^{12} - 6u^{11} + 10u^{10} - 16u^9 + 24u^8 - 45u^7 + 45u^6 - 39u^5 + 21u^4 - 20u^3 - 3u^2 + 3b + u - 6, \\ u^{12} - 5u^{11} + 10u^{10} - 15u^9 + 23u^8 - 39u^7 + 45u^6 - 36u^5 + 18u^4 - 11u^3 - 2u^2 + 3a + 4u - 5, \\ u^{13} - 4u^{12} + 10u^{11} - 17u^{10} + 28u^9 - 42u^8 + 57u^7 - 57u^6 + 45u^5 - 23u^4 + 8u^3 + 4u^2 - 4u + 3 \rangle \\ I_2^u &= \langle u^3 + 2u^2 + b + 3u + 2, \quad -u^3 - 3u^2 + a - 5u - 2, \quad u^4 + 3u^3 + 5u^2 + 3u + 1 \rangle \\ I_3^u &= \langle -u^3 - u^2 + b - a - u, \quad a^2 + au + u^2, \quad u^4 + u^3 + u^2 + 1 \rangle \\ I_4^u &= \langle -u^3 + u^2 + b - a - u, \quad a^2 + au - u^2 + 2u - 2, \quad u^4 - u^3 + u^2 + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 33 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{12} - 6u^{11} + \dots + 3b - 6, \ u^{12} - 5u^{11} + \dots + 3a - 5, \ u^{13} - 4u^{12} + \dots - 4u + 3 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{3}u^{12} + \frac{5}{3}u^{11} + \cdots - \frac{4}{3}u + \frac{5}{3}\\ -\frac{1}{3}u^{12} + 2u^{11} + \cdots - \frac{1}{3}u + 2 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1\\-u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{4}{3}u^{12} + \frac{11}{3}u^{11} + \cdots - \frac{10}{3}u + \frac{2}{3}\\ \frac{5}{3}u^{12} - 6u^{11} + \cdots + \frac{14}{3}u - 4 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{3}u^{12} - \frac{7}{3}u^{11} + \cdots + \frac{4}{3}u - \frac{10}{3}\\ \frac{5}{3}u^{12} - 6u^{11} + \cdots + \frac{14}{3}u - 4 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{5}{3}u^{12} + 6u^{11} + \cdots - \frac{14}{3}u + 3\\ \frac{4}{3}u^{12} - 9u^{11} + \cdots + \frac{19}{3}u - 10 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{5}{3}u^{12} - \frac{14}{3}u^{11} + \cdots + \frac{5}{3}u - \frac{5}{3}\\ \frac{5}{3}u^{12} - 3u^{11} + \cdots + u^{2} + \frac{8}{3}u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{4}{3}u^{11} + 3u^{10} + \cdots - \frac{4}{3}u^{2} - \frac{4}{3}\\ \frac{1}{3}u^{12} - 3u^{11} + \cdots + \frac{4}{3}u - 3 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1}{3}u^{12} + \frac{5}{3}u^{11} + \cdots + \frac{4}{3}u - 3\\ \frac{1}{3}u^{12} - 3u^{11} + \cdots + \frac{4}{3}u^{2} + \frac{4}{3}\\ -2u^{12} + 5u^{11} + \cdots - 2u + 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{5}{3}u^{12} - \frac{14}{3}u^{11} + \cdots + \frac{5}{3}u - \frac{5}{3}\\ -2u^{12} + 8u^{11} + \cdots - 4u + 5 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$= -3u^{12} + 11u^{11} - 24u^{10} + 36u^9 - 58u^8 + 85u^7 - 105u^6 + 83u^5 - 44u^4 + u^3 + 16u^2 - 21u + 9u^2 + 10u^2 + 10u^2$$

Crossings	u-Polynomials at each crossing
c_1	$u^{13} + 20u^{11} + \dots + 36u + 1$
c_2, c_5	$u^{13} + 2u^{12} + \dots + 18u^2 - 1$
c_3, c_7	$u^{13} - u^{12} + \dots + 3u - 9$
$c_4, c_8, c_{10} \\ c_{11}, c_{12}$	$u^{13} + 7u^{11} + \dots - u - 1$
<i>c</i> ₆	$u^{13} + 4u^{12} + \dots - 4u - 3$
<i>C</i> 9	$u^{13} - 2u^{12} + \dots - 133u - 47$

Crossings	Riley Polynomials at each crossing
c_1	$y^{13} + 40y^{12} + \dots + 516y - 1$
c_2, c_5	$y^{13} + 20y^{11} + \dots + 36y - 1$
c_{3}, c_{7}	$y^{13} + 5y^{12} + \dots + 531y - 81$
c_4, c_8, c_{10} c_{11}, c_{12}	$y^{13} + 14y^{12} + \dots - 3y - 1$
<i>C</i> ₆	$y^{13} + 4y^{12} + \dots - 8y - 9$
<i>C</i> 9	$y^{13} + 2y^{12} + \dots + 7725y - 2209$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.112707 + 0.825249I		
a = 1.70029 - 0.14926I	-12.72660 - 0.46866I	-5.30984 - 0.31692I
b = 2.12147 - 1.28759I		
u = -0.112707 - 0.825249I		
a = 1.70029 + 0.14926I	-12.72660 + 0.46866I	-5.30984 + 0.31692I
b = 2.12147 + 1.28759I		
u = 0.406174 + 0.693805I		
a = -0.149604 - 0.367477I	-1.76494 + 1.40421I	0.52711 - 5.14601I
b = -0.471527 + 0.893453I		
u = 0.406174 - 0.693805I		
a = -0.149604 + 0.367477I	-1.76494 - 1.40421I	0.52711 + 5.14601I
b = -0.471527 - 0.893453I		
u = 1.024170 + 0.753551I		
a = 0.053482 + 1.217710I	3.48672 - 4.77545I	3.43860 + 2.44766I
b = 0.722949 - 0.068003I		
u = 1.024170 - 0.753551I		
a = 0.053482 - 1.217710I	3.48672 + 4.77545I	3.43860 - 2.44766I
b = 0.722949 + 0.068003I		
u = 0.843226 + 1.079170I		
a = 1.241480 + 0.154013I	2.43630 + 11.55640I	2.21919 - 5.92330I
b = 2.48433 - 0.51976I		
u = 0.843226 - 1.079170I		
a = 1.241480 - 0.154013I	2.43630 - 11.55640I	2.21919 + 5.92330I
b = 2.48433 + 0.51976I		
u = 0.909975 + 1.063640I		
a = -0.583078 - 0.410756I	-5.92792 + 3.64387I	-2.44803 - 4.63149I
b = -1.264870 - 0.146138I		
u = 0.909975 - 1.063640I		
a = -0.583078 + 0.410756I	-5.92792 - 3.64387I	-2.44803 + 4.63149I
b = -1.264870 + 0.146138I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.81473 + 1.23874I		
a = -0.804503 + 0.414194I	-8.05335 - 3.89125I	-0.817708 + 0.132635I
b = -2.15769 - 0.65518I		
u = -0.81473 - 1.23874I		
a = -0.804503 - 0.414194I	-8.05335 + 3.89125I	-0.817708 - 0.132635I
b = -2.15769 + 0.65518I		
u = -0.512230		
a = 0.750525	0.686378	14.7810
b = 0.130679		

$$II. \\ I_2^u = \langle u^3 + 2u^2 + b + 3u + 2, \ -u^3 - 3u^2 + a - 5u - 2, \ u^4 + 3u^3 + 5u^2 + 3u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} + 3u^{2} + 5u + 2\\-u^{3} - 2u^{2} - 3u - 2 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1\\-u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 2u^{3} + 6u^{2} + 9u + 4\\-u^{2} - 2u - 2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2u^{3} + 5u^{2} + 7u + 2\\-u^{2} - 2u - 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -2u^{3} - 5u^{2} - 7u - 1\\2u^{3} + 5u^{2} + 7u + 2 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 2u^{3} + 5u^{2} + 7u + 2\\-u^{3} - 3u^{2} - 5u - 3 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} + 3u^{2} + 4u + 1\\-u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} + 3u^{2} + 4u + 1\\-u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} + 3u^{2} + 5u + 2\\-u - 1 \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} -u^{3} - 3u^{2} - 4u - 1\\u^{2} + 3u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 2u^{3} + 5u^{2} + 7u + 2\\-u^{3} - 4u^{2} - 5u - 2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes $= -7u^3 18u^2 19u 4$

Crossings	u-Polynomials at each crossing
c_1	$u^4 - 3u^3 + 5u^2 - 3u + 1$
c_2	$u^4 - u^3 - u^2 + u + 1$
<i>c</i> ₃	$(u^2 - u + 1)^2$
c_4, c_8	$u^4 + u^3 + 2u^2 + 2u + 1$
C5	$u^4 + u^3 - u^2 - u + 1$
<i>C</i> ₆	$u^4 + 3u^3 + 5u^2 + 3u + 1$
C ₇	$(u^2+u+1)^2$
c_9, c_{10}, c_{11} c_{12}	$u^4 - u^3 + 2u^2 - 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^4 + y^3 + 9y^2 + y + 1$
c_2, c_5	$y^4 - 3y^3 + 5y^2 - 3y + 1$
c_{3}, c_{7}	$(y^2+y+1)^2$
$c_4, c_8, c_9 \\ c_{10}, c_{11}, c_{12}$	$y^4 + 3y^3 + 2y^2 + 1$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.378256 + 0.440597I		
a = 0.121744 + 1.306620I	-1.54288 - 0.56550I	2.94255 - 3.09675I
b = -0.929304 - 0.758745I		
u = -0.378256 - 0.440597I		
a = 0.121744 - 1.306620I	-1.54288 + 0.56550I	2.94255 + 3.09675I
b = -0.929304 + 0.758745I		
u = -1.12174 + 1.30662I		
a = -0.621744 + 0.440597I	-8.32672 - 4.62527I	-4.94255 + 9.02760I
b = -2.07070 - 0.75874I		
u = -1.12174 - 1.30662I		
a = -0.621744 - 0.440597I	-8.32672 + 4.62527I	-4.94255 - 9.02760I
b = -2.07070 + 0.75874I		

III.
$$I_3^u = \langle -u^3 - u^2 + b - a - u, \ a^2 + au + u^2, \ u^4 + u^3 + u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a \\ u^{3} + u^{2} + a + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2}a - u^{3} - u^{2} - u \\ -u^{3}a + u^{3} + u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{3}a - u^{2}a - u \\ -u^{3}a + u^{3} + u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3}a - 3u^{2}a - 2u^{3} + au - 1 \\ -4u^{3}a + 2u^{3} + 3u^{2} - 3a - 3u + 3 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + a - u + 1 \\ 2u^{3} + 2u^{2} + a + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2}a + u^{3} \\ u^{2}a + u^{3} + a + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2}a + u^{3} + a + u \\ u^{2}a + u^{3} + a + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{2}a \\ u^{3}a + a + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2}a - 2u + 1 \\ 2u^{3} - u^{2} + a + 2u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^2 4u + 1$

Crossings	u-Polynomials at each crossing
c_1	$u^8 - 13u^7 + 49u^6 + 10u^5 - 330u^4 - 13u^3 + 1300u^2 + 868u + 169$
c_{2}, c_{5}	$u^8 + 3u^7 + 11u^6 + 28u^5 + 48u^4 + 79u^3 + 96u^2 + 58u + 13$
c_{3}, c_{7}	$u^8 + u^7 - 5u^6 - 4u^5 + 15u^4 + 31u^3 + 34u^2 + 32u + 19$
$c_4, c_8, c_{10} \\ c_{11}, c_{12}$	$u^8 + u^7 - 2u^6 - u^5 + 6u^4 + 4u^3 + u^2 + 2u + 1$
c_6	$(u^4 - u^3 + u^2 + 1)^2$
<i>c</i> ₉	$u^8 + u^7 - 4u^6 + 7u^5 + 24u^4 - 9u^3 - 9u^2 - 2u + 4$

Crossings	Riley Polynomials at each crossing
c_1	$y^8 - 71y^7 + \dots - 314024y + 28561$
c_2, c_5	$y^8 + 13y^7 + 49y^6 - 10y^5 - 330y^4 + 13y^3 + 1300y^2 - 868y + 169$
c_3, c_7	$y^8 - 11y^7 + 63y^6 - 160y^5 + 107y^4 + 125y^3 - 258y^2 + 268y + 361$
$c_4, c_8, c_{10} \\ c_{11}, c_{12}$	$y^8 - 5y^7 + 18y^6 - 31y^5 + 38y^4 - 4y^3 - 3y^2 - 2y + 1$
c_6	$(y^4 + y^3 + 3y^2 + 2y + 1)^2$
<i>c</i> 9	$y^8 - 9y^7 + 50y^6 - 241y^5 + 786y^4 - 517y^3 + 237y^2 - 76y + 16$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.351808 + 0.720342I		
a = 0.447930 - 0.664845I	-1.85594 + 1.41510I	1.17326 - 4.90874I
b = -0.099494 + 0.456028I		
u = 0.351808 + 0.720342I		
a = -0.799738 - 0.055496I	-1.85594 + 1.41510I	1.17326 - 4.90874I
b = -1.34716 + 1.06538I		
u = 0.351808 - 0.720342I		
a = 0.447930 + 0.664845I	-1.85594 - 1.41510I	1.17326 + 4.90874I
b = -0.099494 - 0.456028I		
u = 0.351808 - 0.720342I		
a = -0.799738 + 0.055496I	-1.85594 - 1.41510I	1.17326 + 4.90874I
b = -1.34716 - 1.06538I		
u = -0.851808 + 0.911292I		
a = -0.363298 - 1.193330I	5.14581 - 3.16396I	4.82674 + 2.56480I
b = 0.184126 - 0.607681I		
u = -0.851808 + 0.911292I		
a = 1.215110 + 0.282041I	5.14581 - 3.16396I	4.82674 + 2.56480I
b = 1.76253 + 0.86769I		
u = -0.851808 - 0.911292I		
a = -0.363298 + 1.193330I	5.14581 + 3.16396I	4.82674 - 2.56480I
b = 0.184126 + 0.607681I		
u = -0.851808 - 0.911292I		
a = 1.215110 - 0.282041I	5.14581 + 3.16396I	4.82674 - 2.56480I
b = 1.76253 - 0.86769I		

IV. $I_4^u = \langle -u^3 + u^2 + b - a - u, \ a^2 + au - u^2 + 2u - 2, \ u^4 - u^3 + u^2 + 1 \rangle$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a \\ u^{3} - u^{2} + a + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2}a - u^{3} + u^{2} - u \\ u^{3}a + u^{3} - u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3}a - u^{2}a - u \\ u^{3}a + u^{3} - u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3}a - u^{2}a + au - 1 \\ -u^{2} - a + u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2}a - u^{3} + 2u^{2} - 2u \\ u^{2}a - u^{3} + 2u^{2} + a - u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2}a - u^{3} + 2u^{2} + a - u \\ u^{2}a - u^{3} + 2u^{2} + a - u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{2}a + 2u^{3} - 2u^{2} + 2u \\ -u^{3}a - 2u^{3} + 2u^{2} - a - u \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} u^{2}a + 2u^{3} - 2u^{2} + 2u \\ -u^{3}a - 2u^{3} + 2u^{2} - a - u \end{pmatrix}$$

$$a_{14} = \begin{pmatrix} u^{2}a + 2u - 1 \\ -u^{2} - a \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4u^2 + 4u + 1$

Crossings	u-Polynomials at each crossing
c_1	$u^8 - 7u^7 + 17u^6 - 14u^5 + 2u^4 + u^3 + 1$
c_2	$u^8 + 3u^7 + u^6 - 4u^5 - 4u^4 - u^3 + 2u^2 + 2u + 1$
<i>c</i> ₃	$u^8 + u^7 + 5u^6 + 8u^5 + 7u^4 + 11u^3 + 10u^2 + 1$
c_4, c_8	$u^8 - u^7 + 6u^6 - 5u^5 + 12u^4 - 8u^3 + 9u^2 - 4u + 1$
<i>C</i> ₅	$u^8 - 3u^7 + u^6 + 4u^5 - 4u^4 + u^3 + 2u^2 - 2u + 1$
<i>c</i> ₆	$(u^4 - u^3 + u^2 + 1)^2$
	$u^8 - u^7 + 5u^6 - 8u^5 + 7u^4 - 11u^3 + 10u^2 + 1$
<i>c</i> 9	$u^8 - u^7 + 8u^6 - 3u^5 - 16u^4 - 15u^3 + 47u^2 + 70u + 52$
c_{10}, c_{11}, c_{12}	$u^8 + u^7 + 6u^6 + 5u^5 + 12u^4 + 8u^3 + 9u^2 + 4u + 1$

Crossings	Riley Polynomials at each crossing
c_1	$y^8 - 15y^7 + 97y^6 - 114y^5 + 34y^4 + 33y^3 + 4y^2 + 1$
c_{2}, c_{5}	$y^8 - 7y^7 + 17y^6 - 14y^5 + 2y^4 + y^3 + 1$
c_{3}, c_{7}	$y^8 + 9y^7 + 23y^6 + 4y^5 - 25y^4 + 29y^3 + 114y^2 + 20y + 1$
$c_4, c_8, c_{10} \\ c_{11}, c_{12}$	$y^8 + 11y^7 + 50y^6 + 121y^5 + 166y^4 + 124y^3 + 41y^2 + 2y + 1$
<i>C</i> ₆	$(y^4 + y^3 + 3y^2 + 2y + 1)^2$
<i>c</i> ₉	$y^8 + 15y^7 + \dots - 12y + 2704$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.351808 + 0.720342I		
a = -1.44280 + 0.28054I	-11.72550 - 1.41510I	1.17326 + 4.90874I
b = -0.89538 + 1.40141I		
u = -0.351808 + 0.720342I		
a = 1.79461 - 1.00088I	-11.72550 - 1.41510I	1.17326 + 4.90874I
b = 2.34204 + 0.11999I		
u = -0.351808 - 0.720342I		
a = -1.44280 - 0.28054I	-11.72550 + 1.41510I	1.17326 - 4.90874I
b = -0.89538 - 1.40141I		
u = -0.351808 - 0.720342I		
a = 1.79461 + 1.00088I	-11.72550 + 1.41510I	1.17326 - 4.90874I
b = 2.34204 - 0.11999I		
u = 0.851808 + 0.911292I		
a = -0.855085 - 0.593153I	-4.72380 + 3.16396I	4.82674 - 2.56480I
b = -1.402510 - 0.007501I		
u = 0.851808 + 0.911292I		
a = 0.003277 - 0.318139I	-4.72380 + 3.16396I	4.82674 - 2.56480I
b = -0.544147 + 0.267512I		
u = 0.851808 - 0.911292I		
a = -0.855085 + 0.593153I	-4.72380 - 3.16396I	4.82674 + 2.56480I
b = -1.402510 + 0.007501I		
u = 0.851808 - 0.911292I		
a = 0.003277 + 0.318139I	-4.72380 - 3.16396I	4.82674 + 2.56480I
b = -0.544147 - 0.267512I		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ (u^4 - 3u^3 + 5u^2 - 3u + 1) $ $ (u^8 - 13u^7 + 49u^6 + 10u^5 - 330u^4 - 13u^3 + 1300u^2 + 868u + 169) $ $ (u^8 - 7u^7 + \dots + u^3 + 1)(u^{13} + 20u^{11} + \dots + 36u + 1) $
c_2	$(u^{4} - u^{3} - u^{2} + u + 1)(u^{8} + 3u^{7} + \dots + 2u + 1)$ $\cdot (u^{8} + 3u^{7} + 11u^{6} + 28u^{5} + 48u^{4} + 79u^{3} + 96u^{2} + 58u + 13)$ $\cdot (u^{13} + 2u^{12} + \dots + 18u^{2} - 1)$
c_3	$((u^{2} - u + 1)^{2})(u^{8} + u^{7} + \dots + 32u + 19)$ $\cdot (u^{8} + u^{7} + \dots + 10u^{2} + 1)(u^{13} - u^{12} + \dots + 3u - 9)$
c_4, c_8	$(u^{4} + u^{3} + 2u^{2} + 2u + 1)$ $\cdot (u^{8} - u^{7} + 6u^{6} - 5u^{5} + 12u^{4} - 8u^{3} + 9u^{2} - 4u + 1)$ $\cdot (u^{8} + u^{7} + \dots + 2u + 1)(u^{13} + 7u^{11} + \dots - u - 1)$
c_5	$(u^{4} + u^{3} - u^{2} - u + 1)(u^{8} - 3u^{7} + \dots - 2u + 1)$ $\cdot (u^{8} + 3u^{7} + 11u^{6} + 28u^{5} + 48u^{4} + 79u^{3} + 96u^{2} + 58u + 13)$ $\cdot (u^{13} + 2u^{12} + \dots + 18u^{2} - 1)$
c_6	$((u^4 - u^3 + u^2 + 1)^4)(u^4 + 3u^3 + \dots + 3u + 1)(u^{13} + 4u^{12} + \dots - 4u - 3u^{12} + \dots + 3u^{13} + \dots + 3u^{1$
c ₇	$(u^{2} + u + 1)^{2}(u^{8} - u^{7} + 5u^{6} - 8u^{5} + 7u^{4} - 11u^{3} + 10u^{2} + 1)$ $\cdot (u^{8} + u^{7} - 5u^{6} - 4u^{5} + 15u^{4} + 31u^{3} + 34u^{2} + 32u + 19)$ $\cdot (u^{13} - u^{12} + \dots + 3u - 9)$
c_9	$(u^{4} - u^{3} + 2u^{2} - 2u + 1)$ $\cdot (u^{8} - u^{7} + 8u^{6} - 3u^{5} - 16u^{4} - 15u^{3} + 47u^{2} + 70u + 52)$ $\cdot (u^{8} + u^{7} - 4u^{6} + 7u^{5} + 24u^{4} - 9u^{3} - 9u^{2} - 2u + 4)$ $\cdot (u^{13} - 2u^{12} + \dots - 133u - 47)$
c_{10}, c_{11}, c_{12}	$(u^{4} - u^{3} + 2u^{2} - 2u + 1)(u^{8} + u^{7} + \dots + 2u + 1)$ $\cdot (u^{8} + u^{7} + 6u^{6} + 5u^{5} + 12u^{4} + 8u^{3} + 9u^{2} + 4u + 1)$ $\cdot (u^{13} + 7u^{11} + \dots - u - 1)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y^4 + y^3 + 9y^2 + y + 1)(y^8 - 71y^7 + \dots - 314024y + 28561)$ $\cdot (y^8 - 15y^7 + 97y^6 - 114y^5 + 34y^4 + 33y^3 + 4y^2 + 1)$ $\cdot (y^{13} + 40y^{12} + \dots + 516y - 1)$
c_2, c_5	$(y^{4} - 3y^{3} + 5y^{2} - 3y + 1)(y^{8} - 7y^{7} + 17y^{6} - 14y^{5} + 2y^{4} + y^{3} + 1)$ $\cdot (y^{8} + 13y^{7} + 49y^{6} - 10y^{5} - 330y^{4} + 13y^{3} + 1300y^{2} - 868y + 169)$ $\cdot (y^{13} + 20y^{11} + \dots + 36y - 1)$
c_3, c_7	$(y^{2} + y + 1)^{2}$ $\cdot (y^{8} - 11y^{7} + 63y^{6} - 160y^{5} + 107y^{4} + 125y^{3} - 258y^{2} + 268y + 361)$ $\cdot (y^{8} + 9y^{7} + 23y^{6} + 4y^{5} - 25y^{4} + 29y^{3} + 114y^{2} + 20y + 1)$ $\cdot (y^{13} + 5y^{12} + \dots + 531y - 81)$
c_4, c_8, c_{10} c_{11}, c_{12}	$(y^{4} + 3y^{3} + 2y^{2} + 1)$ $\cdot (y^{8} - 5y^{7} + 18y^{6} - 31y^{5} + 38y^{4} - 4y^{3} - 3y^{2} - 2y + 1)$ $\cdot (y^{8} + 11y^{7} + 50y^{6} + 121y^{5} + 166y^{4} + 124y^{3} + 41y^{2} + 2y + 1)$ $\cdot (y^{13} + 14y^{12} + \dots - 3y - 1)$
c_6	$(y^4 + y^3 + 3y^2 + 2y + 1)^4 (y^4 + y^3 + 9y^2 + y + 1)$ $\cdot (y^{13} + 4y^{12} + \dots - 8y - 9)$
<i>c</i> 9	$(y^4 + 3y^3 + 2y^2 + 1)$ $\cdot (y^8 - 9y^7 + 50y^6 - 241y^5 + 786y^4 - 517y^3 + 237y^2 - 76y + 16)$ $\cdot (y^8 + 15y^7 + \dots - 12y + 2704)(y^{13} + 2y^{12} + \dots + 7725y - 2209)$