Q-1 Select a dataset or datasets of your choice.

 Apply a classification algorithm and then evaluate the classification model as it is done in "classification_metrics.ipynb".

source: http://archive.ics.uci.edu/ml/datasets/Wine+Quality)

clas·si·fi·ca·tion

The action or process of classifying something according to shared qualities or characteristics.

In [58]: #from IPython.core.interactiveshell
#InteractiveShell.ast_node_interact

More »

In [59]: import pandas as pd
 import numpy as np
 import matplotlib.pyplot as plt
 from sklearn.model_selection import train_test_split
 from sklearn.neighbors import KNeighborsClassifier
 from sklearn import metrics

% matplotlib inline

from IPython.core.display import display, HTML
 display(HTML("<style>.container { width:90% !important; }</style
 >"))
 pd.set_option('display.max_columns', 100)

```
In [60]: | df = pd.read_csv('winequality-red.csv')
```

In [61]: | df.sample(5)

Out[61]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pН
715	7.2	0.49	0.18	2.7	0.069	13.0	34.0	0.99670	3.29
27	7.9	0.43	0.21	1.6	0.106	10.0	37.0	0.99660	3.17
1028	7.2	0.34	0.21	2.5	0.075	41.0	68.0	0.99586	3.37
1160	10.6	0.36	0.57	2.3	0.087	6.0	20.0	0.99676	3.14
431	7.8	0.55	0.35	2.2	0.074	21.0	66.0	0.99740	3.25

```
In [62]: # quality over 5, normalizing quality to binary
df['overfive'] = (df.quality > 5).astype(int)
```

In [63]: df.sample(5)

Out[63]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pН
262	8.0	0.520	0.03	1.7	0.070	10.0	35.0	0.99575	3.34
44	6.8	0.670	0.02	1.8	0.050	5.0	11.0	0.99620	3.48
710	10.6	1.025	0.43	2.8	0.080	21.0	84.0	0.99850	3.06
388	7.8	0.460	0.26	1.9	0.088	23.0	53.0	0.99810	3.43
1528	7.9	0.290	0.49	2.2	0.096	21.0	59.0	0.99714	3.31

```
In [64]: X = df.iloc[:,0:-2]
y = df.iloc[:,-1]
```

```
In [65]: from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(X, y, random _state=0)
```

```
In [66]: from sklearn.linear_model import LogisticRegression
    logreg = LogisticRegression()
    logreg.fit(X_train, y_train)
    y_pred_class = logreg.predict(X_test)
    #y_pred_class predicts 1 and 0
```

```
In [68]: y_test.value_counts()
    max(y_test.mean(), 1-y_test.mean())
    # calculating null accuracy
    y_test.value_counts().head(1)/len(y_test)

Out[68]: 1     215
     0     185
     Name: overfive, dtype: int64

Out[68]: 0.5375

Out[68]: 1     0.5375
    Name: overfive, dtype: float64
```

confusion matrix

```
In [69]: confusion = metrics.confusion matrix(y test, y pred class)
         TP = confusion[1, 1]
         TN = confusion[0, 0]
         FP = confusion[0, 1]
         FN = confusion[1, 0]
         # TN FP - (T)specificity (F) false positive
         # FN TP - (T)sensitivity
              * precision
         print(confusion)
         [[134 51]
          [ 46 169]]
In [70]: # classification error = Total false / Total true
         print((FP + FN) / float(TP + TN + FP + FN))
         print(1 - metrics.accuracy_score(y_test, y_pred_class))
         0.2425
         0.2425
In [71]: | # sensitivity (aka: true positive rate)
         print(TP / float(TP + FN))
         print(metrics.recall_score(y_test, y_pred_class))
         0.786046511628
         0.786046511628
In [72]: # specificity (true negative)
         print(TN / float(TN + FP))
         0.724324324324
```

Logistic regression - adjusting classificiation threshold

```
In [75]: y pred class[0:10]
         logreg.predict(X test)[0:10]
Out[75]: array([1, 0, 1, 0, 1, 0, 0, 1, 0, 0])
Out[75]: array([1, 0, 1, 0, 1, 0, 0, 1, 0, 0])
In [76]: logreg.predict_proba(X_test)[0:10,:]
Out[76]: array([[ 0.31610978,
                               0.68389022],
                [ 0.73174635, 0.26825365],
                [0.06517001, 0.93482999],
                [0.59212302, 0.40787698],
                [0.28622327, 0.71377673],
                [ 0.84859946,
                              0.15140054],
                [0.56828991, 0.43171009],
                [0.2291421, 0.7708579],
                [ 0.83836126, 0.16163874],
                [ 0.85135368, 0.14864632]])
In [77]: y pred prob = logreg.predict proba(X test)[:, 1]
         y_pred_prob[0:10]
Out[77]: array([ 0.68389022, 0.26825365, 0.93482999, 0.40787698,
                                                                    0.
         71377673,
                 0.15140054, 0.43171009, 0.7708579, 0.16163874, 0.
         148646321)
```

```
In [78]: # histogram of predicted probabilities
          plt.hist(y pred prob, bins=8)
          plt.xlim(0, 1)
          plt.title('Histogram of predicted probabilities')
          plt.xlabel('Predicted probability of diabetes')
          plt.ylabel('Frequency')
Out[78]: (array([ 35., 50., 54., 55., 36., 57., 61., 52.]),
          array([ 0.08312215, 0.19512717, 0.30713219, 0.41913722,
         0.53114224,
                   0.64314726, 0.75515229, 0.86715731, 0.97916233]),
           <a list of 8 Patch objects>)
Out[78]: (0, 1)
Out[78]: Text(0.5,1,'Histogram of predicted probabilities')
Out[78]: Text(0.5,0,'Predicted probability of diabetes')
Out[78]: Text(0,0.5,'Frequency')
                      Histogram of predicted probabilities
            60
            50
          Frequency
            30
            20
            10
             0
                      0.2
              0.0
                              0.4
                                       0.6
                                               0.8
                                                        1.0
                         Predicted probability of diabetes
In [79]: from sklearn.preprocessing import binarize
          y_pred_class = binarize([y_pred_prob], 0.3)[0]
In [80]: print(confusion)
          [[134 51]
           [ 46 169]]
In [81]: # new confusion matrix based on 0.3
         print(metrics.confusion matrix(y test, y pred class))
```

ROC Curve

[[73 112] [11 204]]

```
In [82]: fpr, tpr, thresholds = metrics.roc_curve(y_test, y_pred_prob)
    plt.plot(fpr, tpr)
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.0])
    plt.title('ROC curve for diabetes classifier')
    plt.xlabel('False Positive Rate (1 - Specificity)')
    plt.ylabel('True Positive Rate (Sensitivity)')
    plt.grid(True)
```

Out[82]: [<matplotlib.lines.Line2D at 0x114fd69e8>]

Out[82]: (0.0, 1.0)

Out[82]: (0.0, 1.0)

Out[82]: Text(0.5,1,'ROC curve for diabetes classifier')

Out[82]: Text(0.5,0,'False Positive Rate (1 - Specificity)')

Out[82]: Text(0,0.5,'True Positive Rate (Sensitivity)')


```
In [83]: # define a function that accepts a threshold and prints sensitiv
    ity and specificity
    def evaluate_threshold(threshold):
        print('Sensitivity:', tpr[thresholds > threshold][-1])
        print('Specificity:', 1 - fpr[thresholds > threshold][-1])
```

```
In [84]: evaluate_threshold(0.5)
```

Sensitivity: 0.786046511628 Specificity: 0.724324324324

Out[86]: 0.81084804229674268