Examenul de bacalaureat național 2018 Proba E. c)

Matematică M_mate-info

Clasa a XI-a

Simulare

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Determinați numărul complex z, știind că $2\overline{z} + iz = 4 + 5i$, unde \overline{z} este conjugatul lui z.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 3 2x. Determinați valorile reale ale lui x pentru care $(f \circ f)(x) < x$.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația $3^{x^2+1} \cdot \sqrt[3]{27} = 3^3$.
- **5p 4.** Calculați probabilitatea ca, alegând o submulțime dintre submulțimile cu două elemente ale mulțimii $A = \{0,1,2,3,4,5\}$, aceasta să conțină numai numere pare.
- **5p 5.** Se consideră dreptunghiul \overrightarrow{ABCD} cu $\overrightarrow{AB} = 8$, $\overrightarrow{AD} = 4$ și punctul \overrightarrow{M} , mijlocul laturii \overrightarrow{CD} . Calculați lungimea vectorului $\overrightarrow{v} = \overrightarrow{DC} + \overrightarrow{BM}$.
- **5p 6.** Se consideră $E(x) = \sin \frac{2x}{3} \cos \frac{8x}{3}$, unde x este număr real. Arătați că numărul $E\left(\frac{\pi}{4}\right)$ este natural.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ și $A(a) = \begin{pmatrix} a^2 + a & a^2 a & 1 \\ a^2 a & a^2 + a & 1 \\ 0 & 0 & 1 \end{pmatrix}$, unde a este număr real.
- **5p** a) Arătați că $\det(A(-2)) = -32$.
- **5p b**) Determinați valorile reale ale lui x pentru care $\det(A(x) xI_3) \ge 0$.
- **5p** c) În reperul cartezian xOy se consideră punctele $P_a\left(a^2+a,a^2-a\right)$, unde a este număr real. Demonstrați că pentru orice număr real nenul a, punctele P_a , P_{-a} și O **nu** sunt coliniare.
 - 2. Se consideră matricea $M(x) = \begin{pmatrix} 1 & 0 & x \\ 0 & 2^x & 0 \\ 0 & 0 & 1 \end{pmatrix}$, unde x este număr real.
- **5p** a) Demonstrați că $M(x) \cdot M(-x) = M(0)$, pentru orice număr real x.
- **5p b**) Calculați inversa matricei M(x), $x \in \mathbb{R}$.
- **5p** c) Arătați că $\det(M(1) + M(2) + ... + M(n)) = 2n^2(2^n 1)$, pentru orice număr natural nenul n.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f:(-1,+\infty) \to \mathbb{R}$, $f(x) = \frac{x^2 + 2x}{(x+1)^2}$.
- **5p** a) Calculați $\lim_{x\to 0} \frac{f(x)}{x}$.
- **5p b**) Determinați ecuația asimptotei orizontale spre $+\infty$ la graficul funcției f.
- **5p** c) Demonstrați că șirul $(a_n)_{n\geq 1}$ cu $a_n = f(1) \cdot f(2) \cdot f(3) \cdot \dots \cdot f(n)$ este descrescător.

2. Se consideră funcția
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = \begin{cases} 2^x + \sin(x-1) + m, & x \le 1 \\ \frac{\sqrt{3x-2}-1}{x^2-1}, & x > 1 \end{cases}$, unde m este număr real.

- **5p** a) Arătați că $\lim_{\substack{x \to 1 \\ x > 1}} f(x) = \frac{3}{4}$.
- **5p b**) Determinați numărul real m pentru care funcția f este continuă pe \mathbb{R} .
- **5p** c) Pentru $m = -\frac{5}{4}$, demonstrați că ecuația f(x) = 0 are cel puțin o soluție în intervalul (0,2).