Problem 0 [1 bonus mark]. Write your name and student ID (number) on every submitted answer sheet.

Problem 1 [10 marks]. In a typical case, more training samples will result in training mean squared error (MSE) loss going _____ and validation error going _________. Fill in the blanks with "up" and/or "down".

Problem 2 [30 marks] discrete

The variance of a random variable X is defined as

$$\operatorname{Var}_{X \sim P(X)}[X] = \mathbb{E}_{X \sim P(X)} \left[\left(X - \mathbb{E}_{X \sim P(X)}[X] \right)^2 \right]$$

- a) Prove $\operatorname{Var}_{X \sim P(X)}[X] = \mathbb{E}_{X \sim P(X)}[X^2] \left(\mathbb{E}_{X \sim P(X)}[X]\right)^2$.
- **b)** Use the definition of expectation to prove its linearity: $\mathbb{E}_{X \sim P(X)}[af(X) + bg(X)] = a\mathbb{E}_{X \sim P(X)}[f(X)] + b\mathbb{E}_{X \sim P(X)}[g(X)]$
- c) Does linearity hold for variance? Prove or disprove the following statement: $\begin{aligned} & \operatorname{Var}_{X \sim P(X)}[af(X) + bg(X)] \\ &= a \operatorname{Var}_{X \sim P(X)}[f(X)] + b \operatorname{Var}_{X \sim P(X)}[g(X)] \end{aligned}$

a)
$$V_{xy}(x) = E_{xy}(x) \left[X^2 + \left(\frac{E_{xy}(x)}{xy}(x) \right)^2 - 2X \frac{E_{xy}(x)}{xy}(x) \right]$$

$$= E_{xy}(x) \left[x^2 \right] + \left(\frac{E_{xy}(x)}{xy}(x) \right)^2 - 2 \left(\frac{E_{xy}(x)}{xy}(x) \right)^2$$

$$= E_{xy}(x) \left[x^2 \right] - 2 \left(\frac{E_{xy}(x)}{xy}(x) \right)^2$$

$$= \sum_{xy} \left[x^2 \right] - 2 \left(\frac{E_{xy}(x)}{xy}(x) \right)^2$$

Dropping Xnp(x) is okany.

b)
$$E_{x \rightarrow p(x)} \left[a f(x) + bg(x) \right] = \sum_{x} \left[p(x) \cdot \left(a f(x) + bg(x) \right) \right]$$

$$= a \sum_{x} p(x) f(x) + b \sum_{x} p(x) g(x)$$

$$= a E_{x} \left[f(x) \right] + b E_{x} \left[g(x) \right]$$

$$= a \sum_{x \rightarrow p(x)} \left[f(x) \right] + b E_{x} \left[g(x) \right]$$

C). No. Counter-example:

Let
$$X \sim N(0, 1)$$
 $f(x) = X$
 $a = b = 1$
 $g(x) = -X$

Var $[X - X] = Var[0] = 0$
 $x \rightarrow p(x)$

But a $Var[f(x)] + b$ $Var[g(x)]$
 $x \rightarrow p(x)$
 $x \rightarrow p(x)$
 $x \rightarrow p(x)$
 $x \rightarrow p(x)$

Page 2/2

Problem 3 [60 marks]. Consider (potentially problematic) maximum likelihood estimation (MLE) for feature selection. We assume $t = \sum_{i=0}^{d} \alpha_i w_i x_i + \epsilon$, where $t = \sum_{i=0}^{d} \alpha_i w_i x_i + \epsilon$ and $t = \sum_{i=0}^{d} \alpha_i w_i x_i + \epsilon$.

- a) $\alpha_i=1$ means the ith feature is <u>selected</u>, and $\alpha_i=0$ means the ith feature is <u>Aiscarde</u>. Fill in the blanks with "selected" and/or "discarded".
- **b)** Consider a training set $\mathcal{D} = \{(\boldsymbol{x}^{(m)}, t^{(m)})\}_{m=1}^{M}$. Present the MLE principle and show its equivalence to mean squared error, denoted by $J(\boldsymbol{\alpha}, \boldsymbol{w})$. Provide derivation steps.
- **c)** Is the loss function convex or not? Briefly explain why or why not. No proof is needed.

No. dom J is not convex as ais discret

- d) Closed-form solutions may still be possible for certain non-convex functions. Prove that $\min_{\substack{\alpha,w \ \alpha, w : \alpha \in I \ \alpha, w \in A_{l} = 0}} J(\alpha, w) \leq \min_{\substack{\alpha,w \ \alpha, x = 1 \ \alpha, w \in A_{l} = 0}} J(\alpha, w)$, where $\exists \exists x = 1 \ \exists x = 1$
- e) Give a closed-form solution to the problem $\min_{\boldsymbol{x} \in \boldsymbol{\alpha}, \boldsymbol{w}} J(\boldsymbol{\alpha}, \boldsymbol{w})$. Provide derivation steps, including the derivation for the optimal \boldsymbol{w} .
- f) Explain why such MLE cannot help feature selection.

because MLE will select all features

Hints:

- The optimization variables include α_i and w_i for $i=0,\cdots,d$.
- The Gaussian assumption suggests $p(\epsilon) = c_1 \exp\{-c_2 \epsilon^2\}$ for some positive constants c_1 and c_2 .
- For explanation questions, a few words would suffice. Then can be fit between question lines.

END OF THE EXAM

Maximum Likelihood estimation: () maximize $\sum_{m=1}^{M}$ by $c_1 \exp \left\{-c_2\left(t^{(m)} - \sum_{i=0}^{d} \alpha_i w_i x_i\right)^2\right\}$ (a) minimize $\frac{1}{2M} = \frac{M}{m=1} \left(t^{(m)} - \sum_{i=0}^{d} (Y_i : W_i : X_i)^2 \times Z_i \text{ ok}, \sum_{i=0}^{d} w_i \text{ okay} \right)$ $T_{CONSTANT} = \frac{1}{M} \left(t^{(m)} - \sum_{i=0}^{d} (Y_i : W_i : X_i)^2 \times Z_i \text{ ok}, \sum_{i=0}^{d} w_i \text{ okay} \right)$ For any optimum of with (di=0) that minimites J (a,w) we may have optimion &*, w* such that $\alpha_i^* = 1$, $w_i^* = 0$, and $\alpha_j^* = \alpha_j^*$, $w_j^* = w_j^*$ for β_i that relieves the same value of J(d,w) Therefore $\min_{\alpha, w: \alpha = 1} J(\alpha, w) \leq \min_{\alpha, w: \alpha = 0} J(\alpha, w)$ a closed-form solution may have =1 Then the problem rednus to classic likear regression $= \frac{1}{2M} \left(w^{T} X^{T} X w - 2 t^{T} X w + t^{T} t \right)$ OJ = IM (2 XTX w-2XTt) set D * (x1x)-1 xT+