Université de Montréal ECN 6238 Économétrie des séries chronologiques Examen intra-semestriel

Aucune documentation permise Calculatrice permise

Durée: 3 heures

10 points

- 1. (a) Définissez la notion d'espace de probabilité.
 - (b) Définissez ce qu'est un **processus stochastique** (à valeurs réelles) sur un espace de probabilité.

20 points 2. Soit le processus

$$X_t = \sum_{j=1}^{m} [A_j \cos(\nu_j t) + B_j \sin(\nu_j t)], \ t \in \mathbb{Z},$$

où ν_1, \ldots, ν_m sont des constantes distinctes dans l'intervalle $[0, 2\pi)$ et $A_j, B_j, j = 1, \ldots, m$, sont des v.a.'s dans L_2 , telles que

$$\begin{split} E(A_j) &= E(B_j) = 0 \;,\; E(A_j^2) = E(B_j^2) = \sigma_j^2 \;,\; j = 1, \; \dots, \; n \;, \\ E(A_j A_k) &= E(B_j B_k) = 0, \; \text{pour} \; j \neq k \;, \\ E(A_j B_k) &= 0, \; \forall j, \; k \;. \end{split}$$

- (a) Démontrez que ce processus est stationnaire d'ordre 2.
- (b) Pour le cas où m=1, démontrez que ce processus est déterministe.

40 points 3. Considérez le processus suivants, où $\{u_t : t \in \mathbb{Z}\}$ est un bruit blanc i.i.d. N(0,1):

$$X_t = 0.5 X_{t-1} + u_t - 0.25 u_{t-1}$$

Répondez aux questions suivantes :

(a) Ce processus est-il stationnaire? Pourquoi?

- (b) Ce processus est-il inversible? Pourquoi?
- (c) Calculez
 - i) $E(X_t)$;
 - ii) $\gamma(k)$, k = 1, 2, ..., 8;
 - iii) $\rho(k)$, k = 1, 2, ..., 8.
- (d) Graphez $\rho(k)$.
- (e) Quels sont les coefficients de u_t , u_{t-1} , u_{t-2} , u_{t-3} et u_{t-4} dans la représentation moyenne mobile de X_t .
- (f) Trouvez la fonction génératrice des autocovariances de X_t .
- (g) Graphez la densité spectrale de X_t .
- (h) Calculez les quatre premières autocorrélations partielles de X_t .

10 points

- 4. Soit X_1, X_2, \ldots, X_T une série chronologique stationnaire du second ordre dont la fonction d'autocovariance $\gamma(k)$ est connue.
 - (a) Donnez la meilleure prévision linéaire (au sens de l'erreur quadratique moyenne) de X_t à partir de X_{t-1} .
 - (b) Si $E(X_t) = 10$, $\gamma(k) = 5(.25)^k$, k = 0, 1, 2, ..., et $X_3 = 2$, calculez la meilleure prévision que vous pouvez faire de X_4 .

20 points

- 5. Soit X_1, X_2, \ldots, X_T une série chronologique.
 - (a) Définissez:
 - i. les autocorrélations échantillonnales de cette série;
 - ii. les autocorrélations partielles échantillonnales de cette série.
 - (b) Discutez les distributions asymptotiques de ces deux ensembles d'autocorrélations sous l'hypothèse où X_1, X_2, \ldots, X_T sont indépendantes et identiquement distribuées (i.i.d.).
 - (c) On vous demande de tester l'hypothèse que X_1, X_2, \ldots, X_T sont i.i.d. Décrivez une procédure exacte pour ce faire.