# 考研数学笔记 以姜晓千强化课讲义为底本

Weary Bird

2025年7月30日

## 相见欢·林花谢了春红

林花谢了春红,太匆匆。无奈朝来寒雨晚来风。胭脂泪,相留醉,几时重。自是人生长恨水长东。

2025年7月30日

# 目录

| 第一章 | 二重积分    | 1 |
|-----|---------|---|
| 1.1 | 二重积分的概念 | 1 |
| 1.2 | 交换积分次序  | 2 |
| 1.3 | 二重积分的计算 | 3 |
| 1.4 | 其他题型    | 9 |

## 第一章 二重积分

### 1.1 二重积分的概念

Remark. 二重积分的定义

$$\lim_{n \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{n} f(\frac{i}{n}, \frac{j}{n}) \cdot \frac{1}{n} \frac{1}{n} = \int_{0}^{1} \int_{0}^{1} f(x, y) dx dy$$

和一元函数的积分定义题目一样, 关键是提出  $\frac{1}{n}$ 

1. (2010, 数二, 数二) 
$$\lim_{n \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{n}{(n+i)(n^{2}+j^{2})} =$$

$$(A) \int_{0}^{1} dx \int_{0}^{x} \frac{1}{(1+x)(1+y^{2})} dy \quad (B) \int_{0}^{1} dx \int_{0}^{x} \frac{1}{(1+x)(1+y)} dy$$

$$(C) \int_{0}^{1} dx \int_{0}^{1} \frac{1}{(1+x)(1+y)} dy \quad (D) \int_{0}^{1} dx \int_{0}^{1} \frac{1}{(1+x)(1+y^{2})} dy$$

Solution.

原式 = 
$$\frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \frac{1}{\left(1 + \frac{i}{n}\right) \left[1 + \left(\frac{j}{n}\right)^2\right]}$$
  
=  $\int_0^1 dx \int_0^1 \frac{dy}{(1+x)(1+y^2)}$   
=  $\frac{\pi}{4} \ln 2$ 

2. (2016, 数三) 设  $J_i = \iint_{D_i} \sqrt[3]{x - y} dx dy (i = 1, 2, 3)$ , 其中  $D_1 = \{(x, y) | 0 \le x \le 1, 0 \le y \le 1\},$   $D_2 = \{(x, y) | 0 \le x \le 1, 0 \le y \le \sqrt{x}\},$   $D_3 = \{(x, y) | 0 < x < 1, x^2 < y < 1\}, 则$ 

- (A)  $J_1 < J_2 < J_3$  (B)  $J_3 < J_1 < J_2$
- (C)  $J_2 < J_3 < J_1$  (D)  $J_2 < J_1 < J_3$

**Solution**. 显然区域  $D_1$  满足轮换对称性, 因此有

$$J_1 = \frac{1}{2} \iint_{D_1} \left( \sqrt[3]{x - y} + \sqrt[3]{y - x} \right) = 0$$

对于区域  $D_2$ , 可以将  $D_1$  划分为如下两部分



显然蓝色区域  $D_2$  等于  $D_1 - D_{2'}$  其中  $D_{2'}$  为红色区域即

$$J_2 = \iint_{D_1} - \iint_{D_{2'}} \sqrt{x - y} \mathrm{d}x \mathrm{d}y$$

不难发现在红色区域 y > x 是显然的, 故  $J_2 > 0$ , 同理可以得出  $J_3 < 0$ 

$$J_3 < J_1 < J_2$$

#### 交换积分次序 1.2

3. (2001, 数一) 交换二次积分的积分次序:  $\int_{0}^{1} dy \int_{0}^{1-y} f(x,y) dx =$ \_\_\_\_\_

Solution. 交换积分次序的题目,注意原函数的积分上下限即可,画图即可.

原式 = 
$$-\int_{-1}^{0} dy \int_{1-y}^{2} f(x,y) dx$$
  
=  $-\int_{1}^{2} dx \int_{1-x}^{0} f(x,y) dy$ 

4. 二次积分 
$$\int_0^1 dy \int_y^1 \left( \frac{e^{x^2}}{x} - e^{y^2} \right) dx = _____$$

Solution.

原式 = 
$$\int_0^1 dy \int_y^1 \frac{e^{x^2}}{x} dx - \int_0^1 dy \int_y^1 e^{y^2} dy$$
  
=  $\int_0^1 e^{x^2} dx - \int_0^1 (1-y)e^{y^2} dy$   
=  $\int_0^1 xe^{x^2} dx$   
=  $\frac{1}{2}(e-1)$ 

5. 交换  $I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_{0}^{a\cos\theta} f(r,\theta) dr$  的积分次序。

Solution. 极坐标的积分换序,不要按照极坐标做就当成 x-y 做

原式 = 
$$\int_0^{\frac{\sqrt{2}}{2}a} \mathrm{d}r \int_{-\frac{\pi}{4}}^{\arccos\frac{r}{a}} f(r,\theta) \mathrm{d}\theta + \int_{\frac{\sqrt{2}}{2}a}^a \mathrm{d}r \int_{-\arccos\frac{r}{a}}^{\arccos\frac{r}{a}} f(r,\theta) \mathrm{d}\theta$$

什么时候要变化积分次序

第一种 - 出现典型的可积不可求的函数如

$$\begin{cases} e^{\pm x^2}, e^{\frac{1}{x}}, \frac{1}{\ln x} \\ \sin x^2, \sin \frac{1}{x}, \frac{\sin x}{x} \\ \cos x^2, \cos \frac{1}{x}, \frac{\cos x}{x} \end{cases}$$

第二种 - 题目明确要求了要进行积分变换

第三种 - 积分区域和积分顺序显然不符合

第四种-题目给的积分正常做会非常难算

1.3 二重积分的计算

Remark.



6. (2011, 数一、数二) 已知函数 f(x,y) 具有二阶连续偏导数,且  $f(1,y)=0, f(x,1)=0, \iint_D f(x,y) dx dy=a$ ,其中  $D=\{(x,y)|0\leq x\leq 1,0\leq y\leq 1\}$ ,计算二重积分

$$I=\iint_D xyf_{xy}''(x,y)\mathrm{d}x\mathrm{d}y.$$

**Solution**. 有题设可知  $f'_x(x,1) = f'_y(1,y) = 0$ 

原式 = 
$$\int_0^1 dx \int_0^1 xy f''_{xy}(x,y) dy$$
  
=  $\int_0^1 x dx \int_0^1 y df'_x(x,y)$   
=  $-\int_0^1 x dx \int_0^1 f'_x(x,y) dy$   
=  $-\int_0^1 dy \int_0^1 x f'(x,y) dx$   
=  $\iint_D f(x,y) dx dy = a$ 

7. 计算  $\iint_D \sqrt{|y-x^2|} dx dy$ , 其中  $D = \{(x,y)| -1 \le x \le 1, 0 \le y \le 2\}$ 。

Solution. 积分区域如下所示



显然图像关于x对称,且原函数关于y是偶数故由对称性可知

原式 = 
$$2\iint_{D_1} \sqrt{x^2 - y} dx dy + 2\iint_{D_2} \sqrt{y - x^2} dx dy$$
  
=  $2\int_0^1 dx \int_0^{x^2} \sqrt{x^2 - y} dy + 2\int_0^1 dx \int_{x^2}^2 \sqrt{y - x^2} dy$   
 $2\int_0^1 dx \int_0^{x^2} \sqrt{x^2 - y} dy = \frac{4}{3}\int_0^1 x^3 dx = \frac{1}{3}$   
 $2\int_0^1 dx \int_{x^2}^2 \sqrt{y - x^2} dy = \frac{4}{3}\int_0^1 (2 - x^2)^{\frac{3}{2}} dx$   
 $\xrightarrow{x = \sqrt{2} \sin t} \frac{16}{3} \int_0^{\frac{\pi}{4}} \cos^4 t dt$   
=  $\frac{16}{3}\int_0^{\frac{\pi}{4}} (1 + \cos 2t)^2 dt$   
=  $\frac{2}{3}\int_0^{\frac{\pi}{2}} (1 + \cos t)^2 dt$   
=  $\frac{\pi}{2} + \frac{4}{3}$   
原式 =  $\frac{5}{3} + \frac{\pi}{2}$ 

8. (2018, 数二) 设平面区域 D 由曲线  $\begin{cases} x=t-\sin t \\ y=1-\cos t \end{cases}$  (0  $\leq t \leq 2\pi$ ) 与 x 轴围成, 计算二重积分  $\iint_D (x+2y) dx dy$ 。

Solution. 题设参数方程即摆线 图像如图所示, 关键性质为其关于  $x = \pi$  对称



由于摆线关于  $x = \pi$  对称由形心公式有

$$\iint_D x \mathrm{d}x \mathrm{d}y = \pi \iint_D \mathrm{d}x \mathrm{d}y$$

故有

原式 = 
$$\iint_D (\pi + 2y) dx dy$$
  
=  $\int_0^{2\pi} dx \int_0^{y(x)} (\pi + 2y) dy$   
=  $\int_0^{2\pi} [\pi y(x) + y^2(x)] dx$   
 $\frac{x = t - \sin t}{2\pi} \int_0^{2\pi} [\pi (1 - \cos t) + (1 - \cos t)^2] (1 - \cos t) dt$   
=  $3\pi^2 + 5\pi$ 

9. (2007, 数二、数三) 设二元函数

$$f(x,y) = \begin{cases} x^2, & |x| + |y| \le 1\\ \frac{1}{\sqrt{x^2 + y^2}}, & 1 < |x| + |y| \le 2 \end{cases}$$

计算二重积分  $\iint_D f(x,y) dx dy,$  其中  $D = \{(x,y) | |x| + |y| \leq 2\}$ 。

Solution. 积分区域如图所示



由奇偶性可知

原式 = 
$$4(\iint_{D_1} x^2 dx dy + \iint_{D_2} \frac{1}{\sqrt{x^2 + y^2}} dx dy)$$

其中

综上

原式 = 
$$4(\frac{1}{12} + \sqrt{2} \ln (\sqrt{2} + 1))$$

10. (2014, 数二、数三) 设平面区域  $D = \{(x,y)|1 \le x^2 + y^2 \le 4, x \ge 0, y \ge 0\}$ , 计算

$$\iint_D \frac{x \sin(\pi \sqrt{x^2 + y^2})}{x + y} \mathrm{d}x \mathrm{d}y.$$

Solution. 积分区域如下所示



(方法一)转换为极坐标,此时积分为

原式 = 
$$\int_0^{\frac{\pi}{2}} d\theta \int_1^2 \frac{r \cos \theta \sin (\pi r)}{r (\sin \theta + \cos \theta)} r \cdot dr$$
= 
$$\int_0^{\frac{\pi}{2}} \frac{\cos \theta}{\sin \theta + \cos \theta} d\theta \int_1^2 r \sin (\pi r) dr$$
= 
$$\frac{\pi}{4} \cdot \frac{-3}{\pi} = -\frac{3}{4}$$

(方法二) 考虑轮换对称性, 此时积分为

$$\begin{split} I &= \frac{1}{2} \iint_{D} \sin{(\pi \sqrt{x^2 + y^2})} \mathrm{d}x \mathrm{d}y \\ &= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \mathrm{d}\theta \int_{1}^{2} \sin{(\pi r)} r \cdot \mathrm{d}r \\ &= \frac{\pi}{4} \cdot (-\frac{3}{\pi}) = -\frac{3}{4} \end{split}$$

11. (2019, 数二) 已知平面区域  $D=\{(x,y)||x|\leq y,(x^2+y^2)^3\leq y^4\}$ , 计算二重积分

$$\iint_D \frac{x+y}{\sqrt{x^2+y^2}} \mathrm{d}x \mathrm{d}y.$$

Solution.

## 1.4 其他题型

12. (2010, 数二) 计算二重积分 
$$I=\iint_D r^2\sin\theta\sqrt{1-r^2\cos2\theta}drd\theta$$
 其中  $D=\left\{(r,\theta)\mid 0\leq r\leq \sec\theta, 0\leq \theta\leq \frac{\pi}{4}\right\}$ 

Solution.

13. (2009, 数二、数三) 计算二重积分  $\iint_D (x-y) dx dy$  其中  $D = \{(x,y) | (x-1)^2 + (y-1)^2 \le 2, y \ge x\}.$ 

Solution.

1.4 其他题型

第一章 二重积分