Solution homework exercise 7.3:

Statement: Let $A \in \mathbb{R}^{n \times n}$ be invertible and $x, y \in \mathbb{R}^n$. $A + xy^T$ is invertible if and only if $y^T A^{-1}x \neq -1$ and in this case

$$(A + xy^T)^{-1} = A^{-1} - \frac{A^{-1}xy^TA^{-1}}{1 + y^TA^{-1}x}.$$

Proof: Consider first the case that x = 0. Then

$$A + xy^T = A$$

and thus $A + xy^T$ is invertible because A is invertible. Furthermore, x = 0 implies

$$y^T A^{-1} x = 0 \neq -1.$$

Consider now the case $x \neq 0$. Assume that $A + xy^T$ is invertible. Then $(A + xy^T)A^{-1}$ is invertible as well and

$$0 \neq (A + xy^{T})A^{-1}x = x + xy^{T}A^{-1}x = x(1 + y^{T}A^{-1}x).$$

This implies $1 + y^T A^{-1} x \neq 0$ and thus $y^T A^{-1} x \neq -1$.

Assume now that $y^T A^{-1} x \neq -1$. Then

$$\begin{split} (A+xy^T)\left(A^{-1}-\frac{A^{-1}xy^TA^{-1}}{1+y^TA^{-1}x}\right) &= AA^{-1}+xy^TA^{-1}-A\frac{A^{-1}xy^TA^{-1}}{1+y^TA^{-1}x}-xy^T\frac{A^{-1}xy^TA^{-1}}{1+y^TA^{-1}x}\\ &= I+xy^TA^{-1}-\frac{xy^TA^{-1}}{1+y^TA^{-1}x}-\frac{xy^TA^{-1}xy^TA^{-1}}{1+y^TA^{-1}x}\\ &= I+xy^TA^{-1}-\frac{xy^TA^{-1}}{1+y^TA^{-1}x}-y^TA^{-1}x\frac{xy^TA^{-1}}{1+y^TA^{-1}x}\\ &= I+xy^TA^{-1}-(1+y^TA^{-1}x)\frac{xy^TA^{-1}}{1+y^TA^{-1}x}\\ &= I+xy^TA^{-1}-xy^TA^{-1}=I. \end{split}$$

Hence $(A + xy^T)$ is invertible and $A^{-1} - \frac{A^{-1}xy^TA^{-1}}{1+y^TA^{-1}x}$ is its inverse.