<u>Proof.</u> If s(A) is not strictly dominant, then we have by Thm.2.9 and A-III,Cor.6.5 that $\{\lambda \in \sigma(A) : \text{Re } \lambda > s(A) - r\}$ contains infinitely many eigenvalues for every r > 0. From A-III,Cor.6.4 it follows that $\{\lambda \in \sigma(T(t)) : |\lambda| > r\}$ contains infinitely many eigenvalues (counted according to their multiplicities) for every $r < \exp(s(A)t) = r(T(t))$. This contradicts the assumption $r_{\text{ess}}(T(t)) < r(T(t))$ (see A-III,3.7).

Corollary 2.12. Suppose A has compact resolvent and non-empty spectrum. If the corresponding semigroup is eventually norm continuous (e.g., if it is holomorphic or differentiable), then there is a strictly dominant eigenvalue admitting a positive eigenfunction.

<u>Proof.</u> Since $(T(t))_{t\geq 0}$ is eventually norm continuous, $\{\lambda \in \sigma(A) : Re \ \lambda \geq s(A) - r\}$ is compact for every r > 0 (see A-II,Thm.1.20) and this set does not have accumulation points because A has compact resolvent. In other words, it is a finite set. The assertion now follows from Thm.2.9 and Cor.1.4.

We now consider some examples. The first one shows that there are positive semigroups with $P\sigma_b(A)$ being not cyclic. It is unknown if there are semigroups where $\sigma_b(A)$ is not cyclic.

Example 2.13. Consider $E = C(\Gamma) \times C_O(\mathbb{R})$ ($\cong C_O(\Gamma \dot{\mathbb{U}}\mathbb{R})$). We fix a positive function $k \in C_O(\mathbb{R})$ with compact support. The operator A given by

(2.20)
$$A(f,g) := (f',g' + \frac{1}{2\pi} \int_0^{2\pi} f(\theta) d\theta \cdot k)$$
$$D(A) := \{(f,g) \in E : f,g \in C^1, g' \in C_0(\mathbb{R})\}$$

generates a semigroup $(T(t))_{t \ge 0}$ which is given by

Then $(T(t))_{t\geq 0}$ is a positive semigroup and $\|T(t)\| \leq (1+\|k\|_1)$. In particular, $s(A) \leq \omega(A) \leq 0$. It is easy to see that 0 is not an eigenvalue of A , while all ik , $k \in \mathbf{Z}$, $k \neq 0$ are eigenvalues, the corresponding eigenfunctions being $(e_k,0)$ with $e_k(\theta)=e^{ik\theta}$.