1a. $R1 \cap R2$

ID	В
0	B0

1b. $R1 \times R2$

ID	A	В	ID.2	B.2	D	Е
0	A0	B0	0	B0	D0	E0
0	A0	B0	2	B99	D2	E2
0	A0	B0	3	B3	D3	E3
1	A1	B1	0	B0	D0	E0
1	A1	B1	2	B99	D2	E2
1	A1	B1	3	B3	D3	E3
2	A2	B2	0	B0	D0	E0
2	A2	B2	2	B99	D2	E2
2	A2	B2	3	В3	D3	E3

1c.

 $R1\bowtie R2$

ID	A	В	D	E
0	A0	B0	D0	E0

1d.

 $R1\bowtie R2$

ID	A	В	D	E
0	A0	B0	D0	E0
1	A1	B1	null	null
2	A2	B2	null	null

1e. *R*1⋈*R*2

ID	A	В	D	Е
0	A0	B0	D0	E0
2	null	B99	D2	E2
3	null	В3	D3	E3

1f. *R*1™ R2

ID	A	В	ID	В	D	Е
0	A0	B0	0	B0	D0	E0
1	A1	B1	null	null	null	null
2	A2	B2	null	null	null	null
null	null	null	2	B99	D2	E2
null	null	null	3	В3	D3	E3

 $2a.\pi_{(Pizza)}(\sigma_{(Gender \,=\, female \,\, \land \,\, Age > 20)}(Person \bowtie Eats)$

 $2b. \ \pi_{(Name)}(\sigma_{(Gender \ = \ female)}(Person \bowtie Eats) \bowtie \sigma_{(Pizzeria \ = \ ``Straw \ Hat")}(Serves)$

2c. $\pi_{(Pizzerias)}(\sigma_{(price < 10)}(Serves) \bowtie \sigma_{(Name = "Amy" \lor "Fay")}(Person \bowtie Eats)$

2d.
$$\pi_{(Pizzerias)}(\sigma_{(price < 10)}(Serves) \bowtie \sigma_{(Name = "Amy" \land "Fay")}(Person \bowtie Eats)$$

2e.
$$\pi_{(name)}(\sigma_{(pizzeria = "dominoes"} Eats \bowtie Serves - \sigma_{(pizzeria = "dominoes"} Frequents)$$

2f. p(youngerAge,
$$\pi_{(age)}(\sigma_{(Pizza = "Mushrooms"} Eats \bowtie Person) - \pi_{(youngerAge < age)}(\sigma_{(Pizza = "Mushrooms"} Eats \bowtie Person)$$

2g.
$$\pi_{\text{(Pizzerias)}}(\sigma_{\text{(age}>30)} \text{ Frequents} \bowtie \text{Person})$$

3a.
$$\{BG\}^+ = B,G,A,C,D,E,F$$

$$3c. R{AB \rightarrow CD}$$

C->EF

 $G \rightarrow AF$

3d.

3D)
$$R = \{AB \rightarrow CD \\ C \rightarrow EF \\ G \rightarrow AF \}$$
 $R_1(ABCD)$
 $R_2(ABEFG)$
 $G \rightarrow FA$
 $AB \rightarrow CD$
 $CK = G$
 $R_3(GAF)$
 $R_4(B, E)$
 $R_4(B, E)$
 $R_5 = E$
 $R_7 =$

4d.

4D
$$R \leq A \Rightarrow B < D$$
 $B \leftarrow \Rightarrow D \in B$
 $B \rightarrow A \leq B$
 $R_1(A, F)$
 $R_2(B \leftarrow B)$
 $R_3(D - F)$
 $R_4(B \leftarrow B)$
 $R_4 \rightarrow F$
 $R_4 \rightarrow$

5b. A-> BCDF

 $E \rightarrow A$

B->D

BD->CF

 $DF \rightarrow G$

SC
$$2 = \begin{cases} A \rightarrow BcDF \\ E \rightarrow A \\ B \rightarrow D \\ BD \rightarrow CF \\ DF \rightarrow \rightarrow G \end{cases}$$
 $R, (E,A)$
 $E \rightarrow A$
 $R_2 (ABCDFG)$
 $Ch:E$
 $A \rightarrow BcDF$
 $BD \rightarrow CF$
 $Ch:A$
 $R_3 (BDCF)$
 $R_4 (BCDFG)$
 $R_5 (BDCF)$
 $R_7 (BCDFG)$
 $R_7 (BCDFG)$

5c.