北京大学数学科学学院期中试题

2010-2011 学年第二学期

考试科目:		常微分方程	考试时间:		2011 年 4 月 29 日
姓	名:		学	号:	

本试题共5_ 道大题,满分100_分

- 1. (40分,每题10分)求解下列微分方程。
 - (1) $y dx (x + y^2) dy = 0$
 - (2) $(e^x \cos y + 3x^2y)dx + (x^3 e^x \sin y)dy = 0$
 - (3) $(x^2y y^3)dx x^3dy = 0$
 - $(4) \left(\frac{dy}{dx}\right)^2 + x \frac{dy}{dx} y = 0$
- 2. (15 分) 记初值问题

$$\frac{\mathrm{d}y}{\mathrm{d}x} = xy + \sin(xy), y(0) = \eta$$

的解为 $y = \phi(x, \eta)$. 求 $\frac{\partial \phi}{\partial n}(x, 0)$.

3. (15 分)证明微分方程

$$\frac{\mathrm{d}x}{\mathrm{d}y} = 2 + y^4 + \sin x$$

的所有右行解的最大存在区间是有界的。

4. (10分)证明微分方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} = (x^2 + y^2 + 1)\sin(xy)$$

的所有解在 $(-\infty, +\infty)$ 上存在,并且为单调的。

5. (20 分)设 f(x,y) 为全平面上的有界连续函数,且存在常数 $L \in (0,1)$,使得对任意的 x, y_1, y_2 都有

$$|f(x, y_1) - f(x, y_2)| \le L|y_1 - y_2|.$$

考虑一阶微分方程

$$y' + y = f(x, y).$$

(1) (10 分)证明: $y = \phi(x)$ 为上述方程在 $(-\infty, +\infty)$ 上的有界解 当且仅当 $\phi(x)$ 为下面积分方程的连续有界解:

$$\phi(x) = \int_{-\infty}^{x} e^{t-x} f(t, \phi(t)) dt.$$

(2) 证明上述一阶微分方程在 $(-\infty, +\infty)$ 上有唯一的有界解。

(编辑: 伏贵荣 2017年2月)