

Universidade Federal do Rio Grande do Norte Centro de Ensino Superior do Seridó Departamento de Computação e Tecnologia

Avaliação 03 de Álgebra Linear

32. [M] Construct a pair \mathbf{u} , \mathbf{v} of random vectors in \mathbb{R}^4 , and let

$$A = \begin{bmatrix} .5 & .5 & .5 & .5 \\ .5 & .5 & -.5 & -.5 \\ .5 & -.5 & .5 & -.5 \\ .5 & -.5 & -.5 & .5 \end{bmatrix}$$

- a. Denote the columns of A by $\mathbf{a}_1, \dots, \mathbf{a}_4$. Compute the length of each column, and compute $\mathbf{a}_1 \cdot \mathbf{a}_2$, $\mathbf{a}_1 \cdot \mathbf{a}_3$, $\mathbf{a}_1 \cdot \mathbf{a}_4$, $\mathbf{a}_2 \cdot \mathbf{a}_3$, $\mathbf{a}_2 \cdot \mathbf{a}_4$, and $\mathbf{a}_3 \cdot \mathbf{a}_4$.
- b. Compute and compare the lengths of **u**, A**u**, **v**, and A**v**.
- c. Use equation (2) in this section to compute the cosine of the angle between u and v. Compare this with the cosine of the angle between Au and Av.
- d. Repeat parts (b) and (c) for two other pairs of random vectors. What do you conjecture about the effect of A on vectors?

33. [M] Generate random vectors \mathbf{x} , \mathbf{y} , and \mathbf{v} in \mathbb{R}^4 with integer entries (and $\mathbf{v} \neq \mathbf{0}$), and compute the quantities

$$\left(\frac{\mathbf{x} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}, \left(\frac{\mathbf{y} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}, \frac{(\mathbf{x} + \mathbf{y}) \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}, \frac{(10\mathbf{x}) \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}$$

Repeat the computations with new random vectors \mathbf{x} and \mathbf{y} . What do you conjecture about the mapping $\mathbf{x} \mapsto T(\mathbf{x}) = \left(\frac{\mathbf{x} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}$ (for $\mathbf{v} \neq \mathbf{0}$)? Verify your conjecture algebraically.

34. [M] Let
$$A = \begin{bmatrix} -6 & 3 & -27 & -33 & -13 \\ 6 & -5 & 25 & 28 & 14 \\ 8 & -6 & 34 & 38 & 18 \\ 12 & -10 & 50 & 41 & 23 \\ 14 & -21 & 49 & 29 & 33 \end{bmatrix}$$
. Construct

a matrix N whose columns form a basis for Nul A, and construct a matrix R whose *rows* form a basis for Row A (see Section 4.6 for details). Perform a matrix computation with N and R that illustrates a fact from Theorem 3.

35. [M] Show that the columns of the matrix A are orthogonal by making an appropriate matrix calculation. State the calculation you use.

$$A = \begin{bmatrix} -6 & -3 & 6 & 1 \\ -1 & 2 & 1 & -6 \\ 3 & 6 & 3 & -2 \\ 6 & -3 & 6 & -1 \\ 2 & -1 & 2 & 3 \\ -3 & 6 & 3 & 2 \\ -2 & -1 & 2 & -3 \\ 1 & 2 & 1 & 6 \end{bmatrix}$$

- **36.** [M] In parts (a)–(d), let U be the matrix formed by normalizing each column of the matrix A in Exercise 35.
 - a. Compute U^TU and UU^T . How do they differ?
 - b. Generate a random vector \mathbf{y} in \mathbb{R}^8 , and compute $\mathbf{p} = UU^T\mathbf{y}$ and $\mathbf{z} = \mathbf{y} \mathbf{p}$. Explain why \mathbf{p} is in Col A. Verify that \mathbf{z} is orthogonal to \mathbf{p} .
 - c. Verify that z is orthogonal to each column of U.
 - d. Notice that $\mathbf{y} = \mathbf{p} + \mathbf{z}$, with \mathbf{p} in Col A. Explain why \mathbf{z} is in $(\operatorname{Col} A)^{\perp}$. (The significance of this decomposition of \mathbf{y} will be explained in the next section.)