BIOS -900 Fall 2017 Take-Home Midterm Exam

Name:			

Date assigned: 10/11/2017; Due Date: 10/18/2017 (by 11:59 pm Blackboard clock time)

Instructions:

- 1. To receive full credit, show all work. Please make your work readable.
- 2. Use $\alpha = 0.05$ unless otherwise mentioned.
- 3. Total points for this exam are **50**.
- 4. Do not forget to write your name and page numbers on the homework.
- 5. Do not turn in irrelevant SAS output.
- 6. You cannot discuss this exam with anyone other than the instructor.

Question # 1: (14 points)

[A] Find the singular value decomposition (SVD) of the matrix $\bf A$. Show work-out similar to the suggested reading material on the bonus question of HW#2. Then verify your answers using software.

$$\mathbf{A} = \begin{bmatrix} 10 & -5 \\ 2 & -11 \\ 6 & -8 \end{bmatrix}$$

- [B] Let \mathbf{A} be a $n \times n$ matrix of rank r. Consider its SVD given by $\mathbf{M} \begin{bmatrix} \mathbf{W}_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{Q}^T$ where \mathbf{W}_r is $r \times r$ diagonal matrix of containing the non-zero singular values of \mathbf{A} . Also, \mathbf{M} and \mathbf{Q} are $n \times n$ matrices with orthogonal columns.
- [i] Show that $\mathbf{G} = \mathbf{Q} \begin{bmatrix} \mathbf{W}_r^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{M}^T$ is a generalized inverse of \mathbf{A} .
- [ii] Show that ${f AG}$ is symmetric matrix.

Question # 2: (8 points)

Prove equation 7.57 from your textbook.

Also find $\operatorname{Var}(R^2)$ when $\beta_1=\beta_2=\cdots=\beta_k=0$. Hence find $\operatorname{E}(R^2_{adj})$ and $\operatorname{Var}(R^2_{adj})$ Hint: In addition to material from Chapter 5 and Chapter 7, you may have to look into the Appendix section (Table of Common Distributions) of your Theory I textbook (Statistical Inference – by George Casella, Robert L. Berger).

Question # 3: (8 points)

The normal equations for a linear regression model are given by $(\mathbf{X}^T\mathbf{X})\widehat{\boldsymbol{\beta}} = \mathbf{X}^T\mathbf{y}$ and setting the partial derivatives equal to 0 allows us to obtain the estimates of $\boldsymbol{\beta}$. In this problem you have to prove that $(\mathbf{X}^T\mathbf{X})^{(-)}$ is a generalized inverse of $(\mathbf{X}^T\mathbf{X})$ if and only if (iff) $(\mathbf{X}^T\mathbf{X})^{(-)}\mathbf{X}^T\mathbf{y}$ is a solution of the normal equations.

Question # 4: (12 points)

Let
$$\mathbf{y} \sim \mathbb{N}_n(\mathbf{0}, a\mathbf{I}_n + b\mathbf{J}_n)$$
. Let $\bar{\mathbf{y}} = \frac{\sum_{i=1}^n y_i}{n}$ and $\hat{\sigma}^2 = \frac{\sum_{i=1}^n (y_i - \bar{y})^2}{n}$

- [i] For what values of a and b is \bar{y}^2 distributed as χ^2 random variable?
- [ii] For what values of α and b is $\hat{\sigma}^2$ distributed as χ^2 random variable?
- [iii] For fixed a and b, for what values of c and d are $cn\bar{y}^2$ and $\mathbf{y}^T(\mathbf{I}-d\mathbf{J})\mathbf{y}$ distributed as χ^2 random variables?

Question # 5: (8 points)

Solve Exercise 6.14 from your textbook. You cannot use R functions or SAS PROCs like GLM or REG to directly obtain the answers. You may use PROC IML to show all intermediary steps.