Unobservable Selection and Coefficient Stability: Theory and Evidence Oster (2019, JBES)

Takaaki Kishida

Kobe University

April 3, 2019

What we will study?

- Learn a new coefficient stability approach developed by Oster (2019).
- This can be one of robustness checks!
- Do some exercise using stata (psacalc).

What Oster (2019) developed?

- The method for evaluating robustness to omitted variable bias (confounders) under the some assumptions (built on Altonji et al. (2005)).
- Testing coefficient movements in response to the inclusion of observed controls alone can be deceptive regarding the sensitivity of the results to confounders.

Failure of conditional independence assumption (CIA) ⇒ selection on unobservables

However, CIA isn't sufficient to evaluate the robustness to OVB.

Example: CIA implies... (from my paper)

Table 1. Effect of Forest Loss on Malaria

Dependent Variable	Malaria					
	(1)	(2)	(3)			
Forest Loss (log)						
Last 12 Months	0.0341**	0.0331**	0.0328**			
	(0.0165)	(0.0160)	(0.0159)			
One Year Before	-0.0247	-0.0254	-0.0267			
	(0.0166)	(0.0164)	(0.0165)			
Two Years Before	-0.0133	-0.0125	-0.0125			
	(0.0156)	(0.0153)	(0.0154)			
Subdistrict FE	YES	YES	YES			
Year-Month FE	YES	YES	YES			
HH and Indvi Controls		YES	YES			
Precipitation			YES			
Nighttime Lights			YES			
Population Density			YES			
Observations	20,820	20,820	20,820			
R-squared	0.001	0.019	0.020			
Number of Subdistrict	1,540	1,540	1,540			

 $\it Notes$: Standard errors clustered at the subdistrict level in parentheses. Statistical significance is denoted as ** at 5%.

How to interpret the results?

- As mentioned, there is still a concern about OVB even the estimated coef(s) is stable to additional observed controls.
- It is necessary to take into account coefficient and R-squared movements.

Bias-adjusted treatment effect

Oster (2019) defines an approximation of the bias-adjusted treatment effect:

$$eta^* pprox ilde{eta} - \delta [\mathring{eta} - ilde{eta}] rac{R_{\sf max} - ilde{R}}{ ilde{R} - \mathring{R}}.$$

- $\tilde{\beta}$ and \tilde{R} are the estimated coefficient and R^2 from a regression with observed controls (column (3))
- $\mathring{\beta}$ and \mathring{R} are their equivalents from a regression without observed controls (column (1))
- δ captures the degree of proportionality, indicating how much of the variation in the outcome explained by the observables and unobservables
- R_{max} is the R² from a hypothetical regression of the outcome on treatment and both observed and unobserved controls
- To identify eta^* , we need assumptions regarding δ and $R_{ extsf{max}}$
- See the original paper for details

What we need to show in the table?

As far as I know, at least

- $\mathring{\beta}$ from the baseline model (w/o controls)
- $\tilde{\beta}$ from the controlled model (w/ full set of controls)
- Identified set $[\tilde{\beta}, \beta^*(R_{\text{max}}, \delta)]$

Since R_{max} and δ are unknown, though Oster (2019) suggests usuful buonds, calculating β^* with varying R_{max} and δ would be important.

Example & interpretation (from my paper)

Table 2. Robustness Checks: Selection on Observables and Unobservables

	(1)	(2)	(3)	(4)	(5)	(6)
Outcome	Baseline Effect	Controlled Effect	Identified Set	Exclude	Within	β^*
Indep. Var. (log)	\mathring{eta} , (S.E.), [\mathring{R}]	$ ilde{eta}$, (S.E.), $[ilde{R}]$	$[\tilde{\beta}, \beta^*(2\tilde{R}, 1)]$	Zero?	95% CI?	$\delta = 2$
Fever						
Last 12 Months	0.0341**	0.0325**	[0.0305, 0.0325]	Yes		0.02828
	(0.0178)[0.001]	(0.0176)[0.02]				
One Year Before	-0.0247	-0.0256	[-0.0266, -0.0256]	Yes		-0.02786
	(0.0166)[0.001]	(0.0165)[0.02]				
Two Years Before	-0.0133	-0.0125	[-0.0125, -0.0116]	Yes		-0.01073
	(0.0156)[0.001]	(0.0153)[0.02]				

Note: Column (5) is imcompleted.

Check whether

- identified set exclude zero and
- identified set is within (x% confidence intervals).
- Calculate β^* with different assumptions on $R_{\sf max}$ and δ
- We see that all identified sets do not include zero, and
- the bias-adjusted coefs (β^*) are very close to actual estimates ($\tilde{\beta}$)

Now we go to stata!

References I

- Altonji, J. G., Elder, T. E., and Taber, C. R. (2005). Selection on Observed and Unobserved Variables: Assessing the Effectiveness of Catholic Schools. Journal of Political Economy, 113(1):151–184.
- Oster, E. (2019). Unobservable Selection and Coefficient Stability: Theory and Evidence. Journal of Business & Economic Statistics, 37(2):187–204.