9/8

£ ()

Intro to limits and derivatives \$ 2.1 + 2.2

So far we have reviewed functions, and hopefully you had seen most of that material before in algebra/pre-calculus. Today, we will introduce calculus in earnest.

The first important notion in calculus is a limit.

Consider the function

$$f(x) = \frac{x-1}{x^2-1}$$

If we graph it near x=1, it looks something like this

Notice the "O" at x=1: this shows that x=1 is not in the domain off (because we would divide by zero at x=1).

However, it looks like there is a value fix) "should" take at X=1: the value 1/2.

At x values near 1, f(x) gets close to 1/2, and it gets closer to 1/2 the nearer to x=1 we get.

We express this by $\lim_{x \to 1} \frac{x-1}{x^2-1} = \frac{1}{2}$

or in words, "the limit of f(x) as x goes to I is 1/2."

Defin (Intuitive definition of a limit)

The limit of f(x) at x = x is L, written $\lim_{x \to x} f(x) = L$

if we can force fixed to be as close to L as we want by requiring the input to be sufficiently close, but not equal, to .

Notice how the definition of the limit does not require f(x) to be defined at x=a, or for f(a) to equal the limit lim f(x) if it is defined. But... if this is the case we say flows it continuous at a.

Defin f(x) is continuous at a point x=q in its domain if f(a) = lim f(x).

Most of the functions we've looked at so far. like x", Vx, sin(x), cos(x), ex, In(x), etc. are continuous at all points in their domain. very roughly, this means we can I'draw the graph without lifting our pencil."

For an example of a function that is not continuous (i.e., discontinuous) of a point in its domain:

E.y. Let
$$f(x) = \begin{cases} \frac{x-1}{x^2-1} & \text{if } x \neq 1, -1 \\ 1 & \text{if } x = 1 \end{cases}$$

The graph of f(x) The discontinuity et x=1
near x=1 is

and since $\lim_{x\to 1} f(x) = 1/2 \neq 1 = f(1)$, it's discontinuous at x=1.

Then lim f(x) does not exist,

because for names of x slightly more than 0, f(x)=1, while for values of x slightly less than 0, f(x)=-1. Does not get close to a single value near x 20 !

This last example is related to one-sided imits: Defin we write lim f(x) = L and say the left-hand limit of f(x) at x=a is L (or "limit as x approaches a from the left") if we can make t(x) as close to Las we want by requiring x to be sufficiently close to and less than a We write lim; = L and say the right-hand limit is L for analogous thing but with values greater than a. tig. With f(x) as in previous example, we have $x \rightarrow 0^- f(x) = -1$ and $\lim_{x \rightarrow 0^+} f(x) = 1$.

Note $\lim_{x\to a} f(x) = L \iff \lim_{x\to a^+} f(x) = L = \lim_{x\to a^+} f(x)$.

Related to one-sided imits are imits at intinity

Def'n We write lim f(x) = L if we can make f(x) arbitrarily close to L by requiring x to be big enough We wrote 15m f(x) = L if same but for x small enough.

for f(x)=1/2, we have 1x) + (x) = 0 = 1im +(x1

12.9.

For f(x) = e x we have $\lim_{x\to -\infty} f(x) = 0 \quad (but net as x \to \infty).$

1

Eig. when we defined $e = \lim_{n \to \infty} (1 + \ln)^n$, we were using limit at infinity of $f(n) = (1+1/n)^n$. We can check f(1) = (1+1) = 2 チロノ=(14%)2=2.25 f(160) = 2,7048 ... and it yets closer to e = 2.71... as $n \rightarrow \infty$.

9/11 Derivative as a limit \$2.1,2.7

If most "normal" functions we work with are continuous at all points in their domain, you might wonder why we define limits at all, especially for points not in domain.

Keason is we want to define the derivative as a limit, and this naturally involves a limit that is "% " (So not computable just by "plugging in values").

Recall our discussion from 1st day of class;

We have a point P on Q=(x,f(x)) a curre, i.e. graph of function f(x). Assume P=(a, f(a)) is fixed. E P=(a,f(a)) For another point Q on the

شسط

£....

E-

£-

£--

6

6

curve, with Q= (x, f(x1), What is the slope of the secant line from PtoQ? slope = $\frac{rise}{run} = \frac{f(x) - f(a)}{x - a}$

Recall that the tangent line of the curve at P is the limit of the secont line as we send Q to P 50 what is the slope of the tangent line at P?

= lim f(x)-f(a) tangent $x \rightarrow a x - a$

This is the derivative of flx at x=a!

Defin The derivative of f(x) at a point x = a in its domain is $\lim_{x\to a} f(x) - f(a)$ Eig: Let's compute the derivative of $f(x) = x^2$ at point x=1. We need to compute $\lim_{x \to 1} f(x) - f(1) = \lim_{x \to 1} \frac{x^2 - 1}{x - 1}$ To do this, we use the algebraic trick: $(x^2 - 1) = (x + 1)(x - 1)$ So $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x + 1)(x - 1)}{(x + 1)} = \lim_{x \to 1} \frac{(x + 1)}{(x - 1)} = \frac{2}{x}$ ð • We will justify all these steps later when we -4 talk about rules for computing liveits (but it should match lim x-1 = 1/2 from before...) And it lasks reasonable that the slope of the tengent at x = 1 is 21 -2 -3 E.g. If instead we compute the derivative of f(x)=x2 -3 at point x=0, we get -3 $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = \lim_{x\to 0} \frac{x^2-0}{x-0} = \lim_{x\to 0} \frac{x^2}{x} = \lim_{x\to 0} x = 0.$ 3 .. 🗘 -3 and again it looks .) like the slope of trangent at X=0 is zero (noritantal):

But why do we care about derivatives? They tell us "instantaneous rate of change."

E'y' Suppose a car's position in meters (away from some after x seconds is given by function f(x). How can we find the speed of the car at time x = a?

position flx1=X

If f(x)=x, so that the car is moving at a constant rate of 1 m/s, then clearly at any time its speed is this value of 1 m/s.

Ca Ca

(_--

در وت

د شده د شبه

0

شسط

شنهد) نسهنگا

شسط

<u>....</u>

ئىسى ئىلگى

نسدين

<u>.</u>...

<u>.</u>....

£

÷ --

-

ţ ţ -

<u>...</u>

F-

Position shope of tengent speed time

But what if instead $f(x) = x^2$ (which represents an accelerating car). To find the speed at time x = 1, we could measure its position et time x=1 and x=b for b a little more than 1. We then compute:

Speed $x = \frac{f(b) - f(1)}{b} = \frac{x^2}{a^2}$

To be super accurate, we want b to be very close to 1, so the best definition of speed at time 1 is:

1im f(b)-f(1), i.e., the derivative of f(x) $0 \rightarrow 1$ $0 \rightarrow 1$ $0 \rightarrow 1$

We saw before that the derivative of $S(x) = x^2$ at x = 1 is 2, so the accelerating car is moving faster than the constant speed car at time x = 1. However, at time x = 0, the derivative is Q, because ar is just striking to move!

9/13

Rules for limits \$2.3

The following rules for limits allow us to compute many limits in practice:

Thrn (Limit Laws) Suppose lim f(x) and lim g(x) both exist.

Then: 1. lim [f(x) +g(x)] = lim f(x) + lim g(x)

2. $\lim_{x \to a} \left[f(x) - g(x) \right] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$

3. I'm [c.f(x)] = c.lim f(x) for any constant CEIR

4. Im [f(x).g(x)] = lin f(0). lin g(x)

5 $\lim_{x\to a} \left[\frac{f(x)}{g(x)} \right] = \lim_{x\to a} \frac{f(x)}{g(x)}$ as long as $\lim_{x\to a} g(x) \neq 0$.

"Limit of sum is sum of limits," et cetera ...

The (Base Case Limits)

lim c = c for any constant CEIR, x->a and lim x = a

these laws tell as that:

Thin . If P(x) is a polynomial, then lim P(x)=P(a)

· If P(x) is a rational function (ratio of polynomials)

and a is in its domain, then $\lim_{x\to a} \frac{P(x)}{Q(x)} = \frac{P(a)}{D(a)}$

"Can evaluate limits of polynomials/ rational fin's by prugging in."

جسر (____ Let's see now we can use these laws to show سندك Fig. lim $\frac{x-1}{x^2-1} = \frac{1}{2}$ "difference $= \frac{17m}{x \rightarrow 1} \frac{(x+1)(x-1)}{(x+1)(x-1)}$ <u>___</u> of Squares" $= \lim_{x \to 1} \frac{1}{x + 1} \cdot \lim_{x \to 1}$ " product of imits" = 1/2 . 1 -**2**2 _ How do we know lim x-1 = 1? Notice that X-1 = 1 for any xx1. We need one more rule: _ 9 Thm (f + f(x) = g(x)) for all $x \neq a$, then $\lim_{x\to a} f(x) = \lim_{x\to a} g(x).$ _ This makes sense because remember that: -"the limit of fix 1 at x= a only cares about fix) near x=a not what happens exactly at X= a, 4 -This rule letr us "cancel factors" in a limit; عسي -Also have: Then (Limits of powers/roots) For any positive integer n, ---lim [f(x)] = (lim f(x)) and lim Vf(x) = Vim f(x) (Whenever the right-hand side is defined). These tell us: if f(x) is any "algebrais tunction" (built out of powers and roots, together with addition (subtraction (multiplication / division) نسست مريا and a is in domain of fix, then lim f(x) = f(a).

 More was

More ways limits can fail to exist \$2.2

So far we've only seen one example of a limit not existing, and it was when the 2 one-sided limits disagreed.

But limits can fail to exist, for many reasons.

Eg.

Consider $f(x) = \frac{1}{x^2}$. For x near zero, f(x) will be a big positive number, and it gets

bigger & bigger as x gets closer & closer to 0.

So $\lim_{x\to 0} \frac{1}{x^2}$ does not exist.

In this case lim $\frac{1}{x^2} = \infty$ to mean that as x gets we write $x \to 0$ $x^2 = \infty$ to mean that as x gets closer to 0 (on either side), f(x) becomes arbitrarily large.

Note: I'm f(x)= 00 (or lim f(x) = -00)

counts as the limit not existing (since it is not a finite number)

Compare: If $\lim_{x\to\infty} f(x) = L$ or $\lim_{x\to-\infty} f(x) = L$, then f(x) has a "horizontal asymptote at y = L"

horiz asymptote at y=0.

one-sided limits

If $\lim_{x \to a} f(x) = \pm \infty$ (or $\lim_{x \to a} f(x) = \pm \infty$ or $\lim_{x \to a} f(x) = \pm \infty$)

then f(x) has a "Vertical asymptote at x = a"

2.g. 1 4 = 1/x2

- Vertical asymptote at x=0

۴

Limits can fail to exist for even more "complicated" reasons; Eig. Let $f(x) = \sin(\frac{1}{x})$, whose graph looks like:

As a gets closer and closer to Zero, in passes through many multiples of 2TT, so Sin () passes thru many periods. In each period, it attains a max. value of +1, and also a min. Value of -I. Thus, near zero, there are so-many is for which $Sin(\frac{1}{2})=1$, and \varnothing -many for which $Sin(\frac{1}{2})=-1$. Since it oscillates rapidly between these values, Here is no single value that f(x) approaches as 7 gets close to zero. Therefore, the limit lim sm (1/x) does not excit. In fact, reither of 1m sin(=) or 1m sin(=) exist, So this limit fails to exist not because of a disagneement between one-sided limits, or because the function goes, off to 100, but for a more complicated reason...

The Squeeze Treasen \$2,3

Sometimes we can calculate a limit for a function f(x) by comparing it (in size) to other functions.

Then if $f(x) \leq g(x)$ for x near a (except possibly at a) and the limits of f g at a both exist, then $\lim_{x\to a} f(x) \leq \lim_{x\to a} g(x)$

Thm (Squeeze Theorem) If $f(x) \leq g(x) \leq h(x)$ for π near a (except possibly at a), and $\lim_{x \to a} f(x) = L = \lim_{x \to a} h(x)$ then also $\lim_{x \to a} g(x) = L$.

Picture:

"squeeze Theorem) If $f(x) \leq g(x) \leq h(x)$ for $f(x) = L = \lim_{x \to a} h(x)$ for g(x) = L.

Eg. Let's use the squeeze theorem to compute 1im x2 sin(1/x).

Note we cannot use product law for limits here Since lim sin(1/21 does not exist. But...

Since sin(1/x) is always between -1 and 1, have

maxim So that we can apply squeeze than with $\lim_{x\to 0} -\chi^2 = 0 = \lim_{x\to 0} \chi^2$

to conclude that lim x2 sin(1/x) = 0 as well.

(Even though x2 sin (1/x) "oscillates" a lot as x >0, the amplitudes of the waves get smaller and smaller...