Quantitative Finance Qualifying Exam 2017 Summer

INSTRUCTIONS

You have 4 hours to do this exam.

<u>Reminder</u>: This exam is closed notes and closed books. No electronic devices are permitted. Phones must be turned completely off for the duration of the exam.

PART 1: Do 2 out of problems 1, 2, 3. PART 2: Do 2 out of problems 4, 5, 6. PART 3: Do 2 out of problems 7, 8, 9. PART 4: Do 2 out of problems 10, 11, 12.

All problems are weighted equally.

On this cover page write which eight problems you want graded.

Problems to be graded:

Academic integrity is expected of all students at all times, whether in the presence or absence of members of the faculty.

Understanding this, I declare that I shall not give, use, or receive unauthorized aid in this examination.

Name (PRINT CLEARLY), ID number:

Signature

Stony Brook University Applied Mathematics and Statistics

1. Spot Rate Computation and Applications

You are given the following information. Assume annual compounding throughout.

- A 1-year zero-coupon bond with a face value of \$100,000 sells at a discount of \$98,522.17.
- A 2-year bond with a face value of \$10,000 and an annual coupon of \$300 sells at price of \$10,099.25.
- A 3-year bond with a face value of \$100,000 and an annual coupon of \$3,100 sells at a price of \$100,356.00.

Solve for the following:

- a) Spot Curve: Using the market data, above compute the 3-year spot curve.
- b) Bond Valuation: Using the spot rates computed above compute the price of a 3-year bond with a face value of \$1,000,000 and annual coupon of \$2,000.
- c) Forward Rate: Compute the forward rate $f_{2,3}$.

2. Market Portfolio

Consider the following simple quadratic program representing the portfolios on the Capital Market Line (CML) and its solution to proportionality. The parameters μ and Σ , are the returns' mean vector and covariance matrix, respectively, and r_f is the risk-free rate. The value of $\lambda \ge 0$ parameterizes the CML:

$$\min\left\{\frac{1}{2}\mathbf{x}^{T}\mathbf{\Sigma}\,\mathbf{x}-\mathbf{\lambda}(\mathbf{\mu}-r_{f})^{T}\mathbf{x}\right\}$$

Assume the Capital Asset Pricing Model (CAPM), *i.e.*, at time t for an asset i with return $r_i(t)$, market M with return $r_M(t)$ and risk-free rate r_f , and mean-zero, uncorrelated error terms $\varepsilon_i(t)$, the following expression holds

$$r_i(t)$$
 $r_f = {}_i(r_M(t) r_f) + {}_i(t)$

Further assume that the covariance matrix is invertible. Show that the value of x_i , the allocation of asset i in the market portfolio, is proportional to

$$x_i \mu \frac{i}{\mathrm{Var}[_{-i}]}$$

3. Chooser European Option

A standard chooser European option is one in which the option holder has the right to decide if the option is a vanilla European put or a call at some point prior to the expiry of the option. We assume that the strike price K and expiry T are the same for both the put and call. The current time is t and the time the choice must be made is τ with $0 \le t \le \tau \le T$. Write the expression for the price of the chooser F(t) in terms of vanilla European options and, if necessary, any discounted cash-flows.

4. Power Law Model

We wish to investigate the lower tail of a return distribution. Let $Q(x) = \text{Prob}[X \ge x]$ denote the *survival function* of x. A log-log plot of the survival function for $x \ge 0$ is shown below.

- a) Does the distribution of x display at any point evidence that the tail of the distribution follows a power law? Explain what you looked for to determine this.
- b) If so, at what point does that behavior emerge? Explain your answer.
- c) If there is evidence of a power law in the upper tail, estimate its exponent. Employ a simple visual approximation but explain how you accomplished it. If not, hypothesize a reasonable return distribution.
- d) Based on your work above, define to proportionality the PDF and CDF of the upper tail in the power law region.
- e) What can you say about the existence of the moments of the distribution based on the work above? Explain you answer.

5. Markowitz Portfolio

Assume that returns follow a multivariate Normal distribution with mean vector μ , positive-definite covariance matrix Σ and risk-free rate r_f . The mean-variance portfolio optimization with unit capital is the quadratic program below. Note that both long and short positions are allowed in this instance.

$$\mathcal{M} = \min_{\mathbf{x}} \left\{ \frac{1}{2} \mathbf{x}^T \mathbf{\Sigma} \, \mathbf{x} - \lambda \, (\mathbf{\mu}^T - r_f)^T \mathbf{x} \mid \mathbf{1}^T \mathbf{x} = 1 \right\}$$

where the risk-reward trade-off is controlled by the parameter $0 \le \lambda$.

- a) Assuming an investor population of mean-variance optimizers, derive an expression for the market (*i.e.*, tangent) portfolio.
- b) Given that different investors have different return goals or risk preferences, explain how an investor uses cash and market portfolio to achieve them.
- c) Explain why the approach you described in (b) above is superior in mean-variance terms to any other strategy.

6. Copula

Assume all distributions' CDFs in this question are continuous, monotonically increasing functions. Let $F_X(x)$ be the CDF of a multivariate random variable X with marginals $F_{Xi}(x_i)$, $i = \{1, ..., n\}$ and let Uniform[0, 1] designate the uniform distribution on the unit interval.

- a) Show that the random variable $U = F_{Xi}(X_i) \sim \text{Uniform}[0, 1]$.
- b) Let $H_Z(z)$ be the CDF of a continuous univariate random variable Z. Show that the random variable $H_Z^{-1}(U)$ where U ~ Uniform[0, 1] realizes a random variable with the same distribution as Z.
- c) Derive the copula associated with $F_X(x)$, *i.e.*, a function $C_X(u)$, $u = \{u_1, \dots, u_n\}$ where C is a multivariate CDF with Uniform[0, 1] marginals, representing the dependence structure of $F_X(x)$ separate from its marginals.
- d) Let $G_{Yi}[y_i]$, $i = \{1, ..., n\}$ designate the CDFs of continuous univariate random variables Y_i . We wish to construct a multivariate distribution $G_Y[y]$ with marginals $G_{Yi}[y_i]$ and the same dependence structure as $F_X(x)$. Write an expression for $G_Y[y]$ which accomplishes this.

7. VaR of a European Call

Consider a European call option with parameters as follows: current stock price S_0 , strike K, risk-free rate r, volatility rate σ , and time to maturity T years.

Assuming a geometric Brownian motion for the stock price process S_t , use the delta-normal valuation to compute the 95% VaR over a horizon of 3 days for a long position of a European call.

8. Kendall Tau

Let $\mathbf{X} = (X_1, X_2)$ be a bivariate Gaussian copula with correlation 0.5 and continuous margins.

Show that the Kendall's τ is:

$$\rho_{\tau}(X_1, X_2) = \frac{1}{3}$$

9. VaR of a GARCH Process

Consider the following AR(1)-GARCH(1,1) model for daily return r_t :

$$r_t = \theta r_{t-1} + u_t$$
 $u_t = \sigma_t \varepsilon_t$ $\sigma_t^2 = \omega + \alpha u_{t-1}^2 + \beta \sigma_{t-1}^2$

where $-1 < \theta < 1$; $\theta \neq 0$; $\alpha > 0$; $\beta > 0$; $\omega > 0$ and $\alpha + \beta < 1$.

What is the 99% 2-day VaR of a long position at time t?

10. Heat Equation

Compute the partial derivatives of the normal Gaussian distribution function g with respect to space and time: $\frac{\partial g}{\partial x}$, $\frac{\partial^2 g}{\partial x^2}$ and $\frac{\partial g}{\partial t}$, where:

$$g(x,t) = \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{x^2}{2t}\right)$$

Verify Kolmogorov PDE (a.k.a. heat equation):

$$\frac{\partial^2 g}{\partial x^2}(x,t) = \frac{\partial g}{\partial t}(x,t)$$

11. Shifted Log-Normal Process

Consider a shifted log-normal model for an option on a stock S_t . A shifted log-normal process is given by:

$$dS_t = (S_t + \delta)\alpha_{\delta}dt + (S_t + \delta)\beta_{\delta}dW$$

1. Show that, at maturity T, the distribution of $D_T = S_T + \delta$ is log-normal and give its formula, then the formula for the distribution function of S_T .

Reminder: if f(x) is the pdf of a random variable X, then the pdf of $Y = \exp(X)$ is $yf(\operatorname{Ln}(y))$

Don't forget the Itô term when computing the distribution of $Ln(D_T)$

- 2. Compute the expectation $\mu = E(S_T)$ and the variance $\sigma = Var(S_T)$ with respect to S_0 , δ , α_{δ} and β_{δ}
- 3. Given S_0 , δ , μ and σ , compute α_{δ} and β_{δ}
- 4. Show that, when $d \to +\infty$, with fixed μ and σ , then the distribution of S_T tends to a Gaussian distribution

12. Random Variables of Class L^p

We recall that a random variable *X* on a probability space $(\Omega, \mathfrak{T}, P)$ is of *class* L^p if $E(|X|^p) < +\infty$.

Show that if *X* is of class L^2 , it is of class L^1 .

(hint: Cauchy-Schwarz inequality)

More generally, show that if $0 \le q \le p$ then if X is of class L^p , it is of class L^q .

(hint: consider the events $A = \{|X| \le 1\}$ and $B = \{|X| > 1\}$)