

(a => b) Sei Seine Basis von Valso instesondere (inear unablangig. =) Es ist nus die Maximalitat zu zeigen. SeivEVS. Da Sein Erzeugendensystem ist
existieren V, ..., vn E Sund of ..., an Ek mit

v = \(\sum_{i=1}^{2} v_{i}^{2} \) \(\sum_{i=1}^{2} v_{i}^{2} v_{i}^{2} v_{i}^{2} \) \(\sum_{i=1}^{2} v_{i}^{2} v_{i}^{2} v_{i}^{2} \) \(\sum_{i=1}^{2} v_{i}^{2} v_{i}^{2} v_{i}^{2} v_{i}^{2} \) \(\sum_{i=1}^{2} v_{i}^{2} v_{i}^{2} v_{i}^{2} v_{i}^{2} v_{i}^{2} \) \(\sum_{i=1}^{2} v_{i}^{2} v_{i}^ (b =) c) Sei S maximal linear unablangig. Witzeigen zuerst

dass S ein Erzeugenden system ist.

Sei v E V. Falls v ES, so gilt v E (S) und wis sind

Gertig. Sei nun also v ES. Nacl b) ist Surviy

Linear ablangig.

2 7 16 16 ES 11 1 2 A G E 1/2 Widt M Q 1/2
=) I v,, vh ES und a, a, a, E k nicht alle O mit
av + \(\sqrt{a.v.} = 0 \) (a=0 kann ge(ten)
Falls a=0 so waren V, v Cineas abhangia
in Wideppruct zu 6) / Es ist also a 70.
$= v = -\sum_{i=1}^{\infty} (\alpha_i a_i) \cdot v_i \in (S), d. L. v_i s \neq erzeugt.$
F-1/·/1/ / M······························
Es bloibt also die Minimalitat von Sals Erzeugenden -
System zu zeigen,
Sei vES. Falls SSv& ein Erzeugendersystem ware
_ 4
dans gabe es v, v ES\ {v} und a, a EK mit
$V = \sum_{i=1}^{N} q \cdot v \cdot (i) = (-1) v + \sum_{i=1}^{N} q \cdot v \cdot = 0$
=) Wit er(alten einen Widerspruck zur linearen
=) Wit er (alder einen Widerspruck zur linearen Unablängigkeit von S (also zu 6)) =) Sist minimal als Treengendensystem
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
als treugend en ystem

(c	=) a) Sei S ein minimales Frougendersystem Die Lineare
	Unablangigheit von Sjstzuzeigen
	Seien v. v. ES (paarweise versclieden) und a, a Ek
	mit Zavi=0. Wir nelmen an hicht all a waen
	gleich Null O. B. d. A. sei a, \$ O.
	Ohne Beschränkung der Allgemeinleit =) $V_1 = \sum_{i=2}^{n} \alpha_i^{-1} q_i v_i \in \langle S' \rangle$ mit $\langle S' \rangle = S \{ v_i \} \}$
	=) Alle Elemente von S Gegen also in (S') => V=(S')
	in Wides pract 2015 Minimalitat von S, also c)
	=) Sist line as unablangia.
	instasondere ()
Klar ist,	nit diesen Charalterisierungez dass jedes V mit einem Erzeugender system auch eine Basis Lat. Dazu wählt man
exollichen	trzeugender system auch eine Basis Lat. Dazu wählt man

eilfact ein minimales (endlictes) Freugeldensystem	
Tüs V mit unendiclem Erzeugenden system gelt dieses Argument micht die Aussage gilf aber trotzden:	
die Aussage gilf aber trotzden:	
Proposition Jodes Veletoroum Lateriae Rasis	
Beweis über Zom scles Lemma	
Beispiel Sei Meine unendliche Menge und V= Abb (M, K). Das ist ein Veltorraum, also existiert eine	
Basis von V. Füs V ist Leine Basis bekannt.	
Eigenschaffen von Basen	
Lemma Sei E = V ein endlichides Erzeugendensystem und Us V	
eine lineas unablangige Menge. Dann gilt 10/ = IE/.	

ENU ist endlid, wis konnen also die Aussage durch Indulation Sei E={v,..., vn} (V; paarweise verdieden) Fûs U = E ist zu zeigen Sei also v \(\) existieren a,,,, an EV mit v= a, v, + ... + a, v, Wegen v & E gilt v + v; ti =n. Es gibt ein i so doss v. & O und q. & O, deun sonst hat man durch v = \(\xi \ \ \ai \colon \); so fort die line are Ablangigheit von U. Zwiderspruch Sei o. B. d. A. $v \in E[U]$ and $a \neq 0$. Mit $E = \{v, v_2, ..., v_n\}$ ergibt sid $v = a, v - \{z, a, v, \in E\}$ =) E ist ein Erzeagendersystem Nacl Des von E gilt |E'|V| = |E|V|-1. hauktion liesert |V| = |E|.

Satz	Falls V ein endlicles Erzeugendensystem Lat, so sind alle Basen
	von V endlich und haben gleich wiele Elemente.
	unablangia und dahes nach obigen Lemna endlich. Zudem Liesert das Lemma mit U=B, und E=Bz, dass /B, /=/Bz/
	und un gekel H aucl B2/ = B1/ Also B1/ = B2/.
Definition	Sei Vein Vehtorraum mit endlichem Erzeugenden system.
	Die Dinenson dim (V) von V ist die Elementanzahl jeder Basis von V. Falls des Veltorraum V kein en dicles
	Erzeugendens ystem Lat, so scheiben wir dim(v) = 0
	Wir unterscleiden diese Begriffe durch die Sprechweise unendlich-dimensional bzw. "unendlich-dimensional" for V.
	endlich-dimensional bzw. unandlich-dimensional for b.

· K Lat Dimension n (h-din. Standardraum) wahle z.B. Standardbasis entspricht des Anzall des Freileitsgrade. · Für V= K[x] gilt dim (v) = D. {x / nENo } ist unendlide Basis Proposition Sei Ax=0 ein Lomogenes (65 mit At K.)

Dann gilt für die Lösungsmenge (1)

dim (L) = n - rang (A). Bestimmung einer Basis Input: (U)= K mit erzeugenden Veltoren V, , um Output. Basis (is (U)

