Úloha č. 1

a) Vlastnosti ekvivalence plynou z rovnosti v definici

reflexivita
$$L(\mathbf{x}) = L(\mathbf{x}) \implies (\mathbf{x}, \mathbf{x}) \in \ker L$$

symetrie $(\mathbf{x}, \mathbf{y}) \in \ker L \implies L(\mathbf{x}) = L(\mathbf{y}) \implies L(\mathbf{y}) = L(\mathbf{x}) \implies (\mathbf{y}, \mathbf{x}) \in \ker L$
tranzitivita $L(\mathbf{x}) = L(\mathbf{y}) \wedge L(\mathbf{y}) = L(\mathbf{z}) \implies L(\mathbf{x}) = L(\mathbf{z}) \implies (\mathbf{x}, \mathbf{z}) \in \ker L$

- **b)** Mějme bod $\mathbf{x} = (x, y, z)$ splňující x + y + z = n. Potom $[\mathbf{x}]$ je rovina obsahují všechny body splňující tuto rovnici. (Promítnutím této roviny do některé z kanonických rovin vznikne přímka s gradientem -1). Správnost tohoto rozkladu plyne přímo z definice L.
- c) $T = \{(x,0,0) | x \in \mathbb{R}\}.$ Že dva různé prvky T jsou v různé třídě ekvivalence vidíme triviálně (mají jiné součty souřadnic). Vezmeme-li n z rovnice pro nějakou třídu ekvivalence, bod (n,0,0) náleží T i této třídě. T tedy pokrývá všechny třídy ekvivalence, čímž splňujeme i první podmínku.

Úloha č. 2

$$34x + 21y = 8$$

 $NSD(34, 21) = 1$
 34
 21
 $13 = 34 - 21$
 $8 = 21 - 13 = -34 + 2 \cdot 21$

Řešením je tedy množina $\{(-1,2)+k(21,-34)|k\in\mathbb{Z}\}$. Platnost postupu viz. cvičení.

Úloha č. 3

Rovnice soustavy jsou nezávislé, tedy pro každý racionální parametr bude množina řešení neprázdná. Nechť má soustava pro nějaký racionální parametr (a,b,c) řešení (x_0,y_0,z_0) . Aby byla množina řešení uzavřená na součty, musí obsahovat i vektor $2(x_0,y_0,z_0)$.

Zároveň ovšem snadno vidíme, že po dosazení $2(x_0, y_0, z_0)$ do soustavy dostaneme pravou stranu rovnou 2(a, b, c). Protože je $2(x_0, y_0, z_0)$ řešením soustavy, musí platit $2(a, b, c) = (a, b, c) \implies (a, b, c) = 0$.