EXHIBIT 012

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

"Integrated circuit and method for buffering to optimize burst length in networks on chips"

'800 Patent Claim

Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1

10. A method for buffering data in an integrated circuit having a plurality of processing modules being connected with an interconnect through interface units, wherein a first processing module communicates to a second processing module using transactions, the method comprising the

Without conceding that the preamble of claim 10 of the '800 Patent is limiting, Qualcomm Incorporated and Qualcomm Technologies, Inc.'s (together, "Qualcomm") Snapdragon 8+ Gen 1 Mobile Platform (hereinafter, the "Snapdragon SoC") is an integrated circuit and performs a method for buffering data in an integrated circuit having a plurality of processing modules being connected with an interconnect through interface units, wherein a first processing module communicates to a second processing module using transactions), either literally or under the doctrine of equivalents.

Snapdragon 8+ Gen 1 Mobile Platform

New power and performance enhancements deliver the ultimate boost across all your on-device experiences.

The Snapdragon° 8+ Gen 1 Mobile Platform is our premium-tier powerhouse. Qualcomm° Adreno¨ GPU offers a 10% increase in GPU clock speeds and 30% GPU power reduction while the Qualcomm° Kryo¨ CPU provides 10% better CPU performance and 30% CPU improved power efficiency. Plus, this platform delivers additional power savings and extended performance across the board—including over 80 minutes longer video streaming and more than 50 minutes longer web browsing.

acts of:

¹ The Snapdragon SoC is charted as a representative product made used, sold, offered for sale, and/or imported by or on behalf of Qualcomm. The citations to evidence contained herein are illustrative and should not be understood to be limiting. The right is expressly reserved to rely upon additional or different evidence, or to rely on additional citations to the evidence cited already cited herein.

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1	
	https://www.qualcomm.com/products/application/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-8-plus-gen-1-mobile-platform	
	The Snapdragon SoC comprises a plurality of processing modules, for example Qualcomm Adreno GPU; Qualcomm Kryo CPU; Qualcomm Hexagon Processor; and Platform Security Foundations, Trusted Execution Environment & Services, Secure Processing Unit (SPU):	

U.S. Patent No. 8,086,800 (Radulescu and Goossens)
"Integrated circuit and method for buffering to optimize burst length in networks on chips"

'800 Patent Claim	Qualcomm Snapdragon 8+ 0	Gen 1 Mobile Platform Syster	m on Chip ¹
	Snapdragon 8+ mobile platform Gen 1		SPECIFICATIONS & FEATURES
	Artificial Intelligence	Camera	CPU
	Qualcomm* Adreno* GPU Qualcomm* Kryo* CPU Qualcomm* Hexagon* Processor • Fused AI Accelerator • Hexagon* Tensor Accelerator	Qualcomm Spectra" Image Signal Processor Triple 18-bit ISPs Up to 3.2 Gigapixels per Second computer vision ISP (CV-ISP) Up to 36 MP triple camera @ 30 FPS with Zero	Kryo CPU Up to 3.2 GHz; with Arm Cortex-X2 technology 64-bit Architecture Visual Subsystem
	Hexagon Vector eXtensions Hexagon Scalar Accelerator Support for mix precision(INT8+INT16) Support for all precisions (INT8, INT16, FP16)	Shutter Lag • Up to 64+36 MP dual camera @ 30 FPS with Zero Shutter Lag • Up to 108 MP single camera @ 30 FPS with Zero Shutter Lag • Up to 200 Megapixel Photo Capture	Adreno GPU Vulkan* 1.1 API support HDR gaming (10-bit color depth, Rec. 2020 color gamut) Physically Based Rendering
	Qualcomm* Sensing Hub	Rec. 2020 color gamut photo and video capture	Volumetric Rendering
	5G Modem-RF System	Up to 10-bit color depth photo and video capture	Adreno Frame Motion Engine
	Snapdragon* X65 5G Modem-RF System	8K HDR Video Capture + 64 MP Photo Capture	 API Support: OpenGL* ES 3.2, OpenCL* 2.0 FP, Vulkan 1.1
	 5G mmWave and sub-6 GHz, standalone 	10-bit HEIF: HEIC photo capture, HEVC video capture	Hardware-accelerated H.265 and VP9 decoder
	(SA) and non-standalone (NSA) modes, FDD, TDD Dynamic Spectrum Sharing	Video Capture Formats: HDR10+, HDR10, HLG, Dolby Vision	 HDR Playback Codec support for HDR10+, HDR10, HLG and Dolby Vision
	 mmWave: 8 carriers, 2x2 MIMO 	8K HDR Video Capture @ 30 FPS	
	Sub-6 GHz: 4x4 MIMO	4K Video Capture @ 120 FPS	Security
	Qualcomm* 5G PowerSave 2.0 Qualcomm* Smoot Transmit* 2.0 technology	Slow-mo video capture at 720p @ 960 FPS	Platform Security Foundations, Trusted Execution
	Qualcomm* Smart Transmit* 2.0 technology Qualcomm* Wideband Envelope Tracking	Bokeh Engine for Video Capture	Environment & Services, Secure Processing Unit (SPU)
	Qualcomm* Al-Enhanced Signal Boost	Video super resolution	Trust Management Engine
	Global 5G multi-SIM	Multi-frame Noise Reduction (MFNR)	Qualcomm* wireless edge services (WES) and
	Downlink: Up to 10 Gbps	Locally Motion Compensated Temporal Filtering	premium security features Qualcomm* 3D Sonic Sensor and Qualcomm* 3D
	Multimode support: 5G NR, LTE including CBRS, WCDMA, HSPA, CDMA Ix, EV-DO, GSM/EDGE	Multi-Frame and triple exposure staggered/digital overlap HDR dual-sensor support	Sonic Max (fingerprint sensor)
	ACTION AND AND AND AND AND AND AND AND AND AN	Al-based face detection, auto-focus, and auto-exposure	Qualcomm* Type-1 Hypervisor

U.S. Patent No. 8,086,800 (Radulescu and Goossens)
"Integrated circuit and method for buffering to optimize burst length in networks on chips"

	Wi-Fi & Bluetooth®		Charging
	Qualcomm* FastConnect** 6900 System	Audio	Qualcomm* Quick Charge" 5 Technology
	 Wi-Fi Standards: Wi-Fi 6E, Wi-Fi 6 (802.11ax), 	Qualcomm Aastic" audio codec (WCD9385)	quality quality of the state of
	 Wi-Fi 5 (802.11ac), 802.11a/b/g/n 	New Qualcomm Agstic smart speaker amplifier	Location
	Wi-Fi Spectral Bands: 2.4 GHz, 5 GHz, 6 GHz Park spectral 3.4 Chas	(WSA8835)	GPS, Glonass, BeiDou, Galileo, QZSS,
	Peak speed: 3.6 Gbps Channel Bandwidth: 20/40/80/160 MHz	Total Harmonic Distortion + Noise (THD+N), Playback:	NavIC capable
	8-stream sounding (for 8x8 MU-MIMO)	-108dB	Dual Frequency GNSS (L1/L5)
	MIMO Configuration: 2x2 (2-stream)	Qualcomm® Audio and Voice Communication Suite	Sensor-Assisted Positioning
	MU-MIMO (Uplink & Downlink)	Display	 Urban pedestrian navigation with sidewalk accuracy
	· 4K QAM	On-Device Display Support:	Global freeway lane-level vehicle navigation
	OFDMA (Uplink & Downlink) (COLORO COLORO C	• 4K @ 60 Hz	
	 4-Stream (2x2 + 2x2) Dual Band Simultaneous (DBS) Wi-Fi Security: WPA3-Enterprise, WPA3- Enhanced 	• QHD+ @ 144 Hz	Memory
	Open, WPA3 Easy Connect, WPA3-Personal	Maximum External Display Support:	Support for LP-DDR5 memory up to 3200 MHz
	Integrated Bluetooth	up to 4K @ 60 Hz	Memory Density: up to 16 GB
	Bluetooth Features: Bluetooth* 5.3, LE Audio, Dual	 10-bit color depth, Rec. 2020 color gamut 	
	Bluetooth antennas	HDR10 and HDR10+	General Specifications
	 Bluetooth audio: Snapdragon Sound" Technology with support for Qualcomm" aptX" Voice, aptX 	Demura and subpixel rendering for OLED Uniformity	Full Suite of Snapdragon Elite Gaming" features
	Lossless, aptX Adaptive, and LE audio		4 nm Process Technology
			USB Version 3.1; USB Type-C Support
			Part Number: SM8475
	Certain optional features available subject to Carrier and OEM selection for an additional fe frapplagan, Qualcommi, Quickommi Heisagan, Qualcommi Sid Power Sews, Qualcommi Sid Qualcommi Signet Hyperises, Qualcommi Alexan, Qualcommi Sensery Hub, Qualcommi andro its subsidiaries, Qualcommi exhibition, Qualcommi Alexan, Sensor Commission, Qualcommi Hub, Qualcommi Bernor, Shapadipan, Qualcommi, Hubeagan, Singadipan, Dillas Garring, Advance, Santi Connect, Sina aptit is a trademark or registered trademark of Qualcommi Redminlages International, Ltd. 620022 Qualcommi Technologies, Inc. and for its afficiated companies. All Rights Reserved. https://www.qualcommission.com/	íyo, Qualcomm Smart Transmit, Qualcomm Wideband Erwelope Tracking, Qualcomm Al-Enh Ó Sanic Max, Qualcomm FastConnect, Snapdragon Sound, Qualcomm aptX, Snapdragon Elli	ght, and Quick Charge are trademarks or registered trademarks of Qualcomm Incorporated. rtech/dm-
The Snapdragon SoC util derivative thereof, (collect processing modules through	1 0	*	rconnect technology, and/or a

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

U.S. Patent No. 8,086,800 (Radulescu and Goossens)
"Integrated circuit and method for buffering to optimize burst length in networks on chips"

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	Certain Arteris Technology Assets Acquired
	by Kurt Shuler , on October 31, 2013
	Arteris to continue to license, support and maintain Arteris FlexNoC® interconnect IP
	SUNNYVALE, California — October 31, 2013 — Arteris Inc., a leading innovator and supplier of silicon-proven commercial network-on-chip (NoC) interconnect IP solutions, today announced that Qualcomm Technologies, Inc. ("Qualcomm"), a subsidiary of Qualcomm Incorporated, has acquired certain technology assets from Arteris and hired personnel formerly employed by Arteris.
	66 Arteris NoC technology has been and will continue to be a key enabler for
	creating larger and more complex chips in a shorter amount of time at a
	lower cost. This acquisition of our technology assets represents a validation
	of the value of Arteris' Network-on-Chip interconnect IP technology.
	ARTERISI
	K. Charles Janoc, President and CEO, Arteris
	As part of the acquisition transaction, Arteris retains the right to license, support and maintain the existing Arteris FlexNoC and Arteris FlexLLI product lines in order to fulfill existing and new licensing contracts. Qualcomm has agreed to make certain FlexNoC updates available to Arteris based upon an agreed upon schedule and provide certain engineering support to Arteris. Arteris has rights to make customer support-related modifications to FlexNoC. There are no changes in Arteris' contractual obligations or operations with
	https://www.arteris.com/press-releases/Qualcomm-Arteris-asset-acquisition-2013_oct_31; https://www.fiercewireless.com/tech/qualcomm-acquires-arteris-noc-tech-assets-team

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

U.S. Patent No. 8,086,800 (Radulescu and Goossens)
"Integrated circuit and method for buffering to optimize burst length in networks on chips"

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	For example, the Arteris NoC uses Network Interface Units (NIUs), which "translate[] between third-party [OCP, AMBA AHB, APB, and AXI protocols] and NTTP protocols" and in the Arteris NoC, "[m]ost transactions require the following two-step transfers," including "[a] master send[ing] request packets" and "the slave return[ing] response packets":
	11.3.1.1 Transaction Layer
	The transaction layer is compatible with bus-based transaction protocols used for on-chip communications. It is implemented in NIUs, which are at the boundary of the NoC, and translates between third-party and NTTP protocols. Most transactions require the following two-step transfers:
	A master sends request packets.
	Then, the slave returns response packets.
	As shown in Figure 11.1, requests from an initiator are sent through the master NIU's transmit port, Tx, to the NoC request network, where they are routed to the corresponding slave NIU. Slave NIUs, upon reception of request packets

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

"Integrated circuit and method for buffering to optimize burst length in networks on chips"

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	on their receive ports, Rx, translate requests so that they comply with the protocol used by the target third-party IP node. When the target node responds, returning responses are again converted by the slave NIU into appropriate response packets, then delivered through the slave NIU's Tx port to the response network. The network then routes the response packets to the requesting master NIU, which forwards them to the initiator. At the transaction level, NIUs enable multiple protocols to coexist within the same NoC. From the point of view of the NTTP modules, different third-party protocols are just packets moving back and forth across the network.

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	NoC, "[m]ost transactions require the following two-step transfers," including "[a] master send[ing] request packets" and "the slave return[ing] response packets":
	11.3.1.1 Transaction Layer
	The transaction layer is compatible with bus-based transaction protocols used for on-chip communications. It is implemented in NIUs, which are at the boundary of the NoC, and translates between third-party and NTTP protocols. Most transactions require the following two-step transfers:
	A master sends request packets.
	Then, the slave returns response packets.
	As shown in Figure 11.1, requests from an initiator are sent through the master NIU's transmit port, Tx, to the NoC request network, where they are routed to the corresponding slave NIU. Slave NIUs, upon reception of request packets
	on their receive ports, Rx, translate requests so that they comply with the protocol used by the target third-party IP node. When the target node responds, returning responses are again converted by the slave NIU into appropriate response packets, then delivered through the slave NIU's Tx port to the response network. The network then routes the response packets to the requesting master NIU, which forwards them to the initiator. At the transaction level, NIUs enable multiple protocols to coexist within the same NoC. From the point of view of the NTTP modules, different third-party protocols are just packets moving back and forth across the network.

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	11.3.2 Network Interface Units
	The Arteris Danube IP library includes NIUs for different third party protocols. Currently, three different protocols are supported: AHB (APB), OCP, and AXI. For each protocol, two different NIU units can be instantiated:
	 Initiator NIU—third party protocol-to-NTTP, used to connect a master node to the NoC
	 Target NIUs—NTTP-to-third party protocol, used to connect a slave node to the NoC
	Networks-On-Chips Theory and Practice, https://vdoc.pub/download/networks-on-chips-theory-and-practice-embedded-multi-core-systems-6f26qivv11f0 , at 316-317.
	As a further example, "Initiator NIU unitsenable connection between an AMBA-AHB master IP and the NoC [and] translate[] AHB transactions AHB transactions into an equivalent NTTP packet sequence, and transports requests and responses to and from a target NIU, that is, slave IP" and has a "FIFO memory [] inserted in the datapath for AHB write access":

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	11.3.2.1 Initiator NIU Units
	Initiator NIU units (the architecture of the AHB initiator is given in Figure
	11.4) enable connection between an AMBA-AHB master IP and the NoC.
	It translates AHB transactions into an equivalent NTTP packet sequence,
	and transports requests and responses to and from a target NIU, that is, slave IP (slave can be any of the supported protocols). The AHB-to-NTTP
	unit instantiates a Translation Table for address decoding. This table receives
	32-bit AHB addresses from the NIU and returns the packet header and necker
	information that is needed to access the NTTP address space: Slave address,
	Slave offset, Start offset, and the coherency size (see Figure 11.2). Whenever
	the AHB address does not fit the predefined decoding range, the table as-
	serts an error signal that sets the error bit of the corresponding NTTP request
	packet, for further error handling by the NoC. The translation table is fully
	user-defined at design time: it must first be completed with its own hardware
	parameters, then passed to the NIU.
	A FIFO memory is inserted in the datapath for AHB write accesses. The
	FIFO memory absorbs data at the AHB initiator rate, so that NTTP packets can

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	burst at NoC rate as soon as a minimum amount of data has been received. The width of the FIFO and the AHB data bus is identical, and the FIFO depth is defined by the hardware parameter. This parameter indicates the amount of data required to generate a Store packet: each time the FIFO is full, a Request packet is sent on the Tx port. Of course, if the AHB access ends before the FIFO is full, the NTTP request packet is sent. Because AHB can only tolerate a single outstanding transaction, the AHB bus is frozen until the NTTP transaction has been completed. That is
	 During a read request, until the requested data arrives from the Rx port During a nonbufferable write request, in which case only the last access is frozen and the acknowledge occurs when the last NTTP response packet has been received When an internal FIFO is full

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
a slave the provides responses to the requests;	For example, the Arteris NoC uses Network Interface Units (NIUs), which "translate[] between third-party [OCP, AMBA AHB, APB, and AXI protocols] and NTTP protocols" and in the Arteris NoC, "[m]ost transactions require the following two-step transfers," including "[a] master send[ing] request packets" and "the slave return[ing] response packets":
	11.3.1.1 Transaction Layer
	The transaction layer is compatible with bus-based transaction protocols used for on-chip communications. It is implemented in NIUs, which are at the boundary of the NoC, and translates between third-party and NTTP protocols. Most transactions require the following two-step transfers:
	A master sends request packets.
	Then, the slave returns response packets.
	As shown in Figure 11.1, requests from an initiator are sent through the master NIU's transmit port, Tx, to the NoC request network, where they are routed to the corresponding slave NIU. Slave NIUs, upon reception of request packets

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip ¹
	on their receive ports, Rx, translate requests so that they comply with the protocol used by the target third-party IP node. When the target node responds, returning responses are again converted by the slave NIU into appropriate response packets, then delivered through the slave NIU's Tx port to the response network. The network then routes the response packets to the requesting master NIU, which forwards them to the initiator. At the transaction level, NIUs enable multiple protocols to coexist within the same NoC. From the point of view of the NTTP modules, different third-party protocols are just packets moving back and forth across the network.

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	11.3.2 Network Interface Units
	The Arteris Danube IP library includes NIUs for different third party protocols. Currently, three different protocols are supported: AHB (APB), OCP, and AXI. For each protocol, two different NIU units can be instantiated:
	 Initiator NIU—third party protocol-to-NTTP, used to connect a master node to the NoC
	 Target NIUs—NTTP-to-third party protocol, used to connect a slave node to the NoC
	Networks-On-Chips Theory and Practice, https://vdoc.pub/download/networks-on-chips-theory-and-practice-embedded-multi-core-systems-6f26qivv11f0 , at 316-317.
	As further example, "Target NIU units enable connection of a slave IP to the NoC by translating NTTP packet sequences into equivalent packet transactions, and transporting requests and responses to and from targets" and have a FIFO memory in the datapath:

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	11.3.2.2 Target NIU Units
	Target NIU units enable connection of a slave IP to the NoC by translating NTTP packet sequences into equivalent packet transactions, and transporting requests and responses to and from targets (the architecture of the AHB Target NIU is given in Figure 11.5). For the AHB target NIU, the AHB address space is mapped from the NTTP address space using the slave offset, the start/stop offset, and the slave address fields, when applicable (from the header of the request packet, Figure 11.2). The AHB address bus is always
	32 bits wide, but the actual address space size may be downsized by setting a hardware parameter. Unused AHB address bits are then driven to zero. The NTTP request packet is then translated into one or more corresponding AHB accesses, depending on the transaction type (word aligned or nonaligned access). For example, if the request is an atomic Store, or a Load that can fit an AHB burst of specified length, then such a burst is generated. Otherwise, an AHB burst with unspecified length is generated.

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
interface unit of the interface units;	For example, the Arteris NoC uses Network Interface Units (NIUs), which "translate[] between third-party [OCP, AMBA AHB, APB, and AXI protocols] and NTTP protocols" and in the Arteris NoC, the NIUs "are at the boundary of the NoC" and there is a NIU connected to each of the master and slave nodes:
	11.3.1.1 Transaction Layer
	The transaction layer is compatible with bus-based transaction protocols used for on-chip communications. It is implemented in NIUs, which are at the boundary of the NoC, and translates between third-party and NTTP protocols. Most transactions require the following two-step transfers:
	A master sends request packets.
	Then, the slave returns response packets.
	As shown in Figure 11.1, requests from an initiator are sent through the master NIU's transmit port, Tx, to the NoC request network, where they are routed to the corresponding slave NIU. Slave NIUs, upon reception of request packets

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	on their receive ports, Rx, translate requests so that they comply with the protocol used by the target third-party IP node. When the target node responds, returning responses are again converted by the slave NIU into appropriate response packets, then delivered through the slave NIU's Tx port to the response network. The network then routes the response packets to the requesting master NIU, which forwards them to the initiator. At the transaction level, NIUs enable multiple protocols to coexist within the same NoC. From the point of view of the NTTP modules, different third-party protocols are just packets moving back and forth across the network.

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	11.3.2 Network Interface Units
	The Arteris Danube IP library includes NIUs for different third party protocols. Currently, three different protocols are supported: AHB (APB), OCP, and AXI. For each protocol, two different NIU units can be instantiated:
	 Initiator NIU—third party protocol-to-NTTP, used to connect a master node to the NoC
	 Target NIUs—NTTP-to-third party protocol, used to connect a slave node to the NoC
	Networks-On-Chips Theory and Practice, https://vdoc.pub/download/networks-on-chips-theory-and-practice-embedded-multi-core-systems-6f26qivv11f0 , at 316-317.
	As a further example, "Initiator NIU unitsenable connection between an AMBA-AHB master IP and the NoC":

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	11.3.2.1 Initiator NIU Units
	Initiator NIU units (the architecture of the AHB initiator is given in Figure
	11.4) enable connection between an AMBA-AHB master IP and the NoC.
	It translates AHB transactions into an equivalent NTTP packet sequence,
	and transports requests and responses to and from a target NIU, that is, slave IP (slave can be any of the supported protocols). The AHB-to-NTTP
	unit instantiates a Translation Table for address decoding. This table receives
	32-bit AHB addresses from the NIU and returns the packet header and necker
	information that is needed to access the NTTP address space: Slave address,
	Slave offset, Start offset, and the coherency size (see Figure 11.2). Whenever
	the AHB address does not fit the predefined decoding range, the table as-
	serts an error signal that sets the error bit of the corresponding NTTP request
	packet, for further error handling by the NoC. The translation table is fully
	user-defined at design time: it must first be completed with its own hardware
	parameters, then passed to the NIU.
	A FIFO memory is inserted in the datapath for AHB write accesses. The
	FIFO memory absorbs data at the AHB initiator rate, so that NTTP packets can

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip ¹
	burst at NoC rate as soon as a minimum amount of data has been received. The width of the FIFO and the AHB data bus is identical, and the FIFO depth is defined by the hardware parameter. This parameter indicates the amount of data required to generate a Store packet: each time the FIFO is full, a Request packet is sent on the Tx port. Of course, if the AHB access ends before the FIFO is full, the NTTP request packet is sent. Because AHB can only tolerate a single outstanding transaction, the AHB bus is frozen until the NTTP transaction has been completed. That is
	 During a read request, until the requested data arrives from the Rx port During a nonbufferable write request, in which case only the last access is frozen and the acknowledge occurs when the last NTTP response packet has been received When an internal FIFO is full

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
interconnect so that the master interface unit is between the master and the interconnect;	For example, the Arteris NoC uses Network Interface Units (NIUs), which "translate[] between third-party [OCP, AMBA AHB, APB, and AXI protocols] and NTTP protocols" and in the Arteris NoC, the NIUs "are at the boundary of the NoC" and there is a NIU connected to each of the master and slave nodes, between the nodes and the network:
interconnect,	11.3.1.1 Transaction Layer
	The transaction layer is compatible with bus-based transaction protocols used for on-chip communications. It is implemented in NIUs, which are at the boundary of the NoC, and translates between third-party and NTTP protocols. Most transactions require the following two-step transfers:
	A master sends request packets.
	Then, the slave returns response packets.
	As shown in Figure 11.1, requests from an initiator are sent through the master NIU's transmit port, Tx, to the NoC request network, where they are routed to the corresponding slave NIU. Slave NIUs, upon reception of request packets

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	on their receive ports, Rx, translate requests so that they comply with the protocol used by the target third-party IP node. When the target node responds, returning responses are again converted by the slave NIU into appropriate response packets, then delivered through the slave NIU's Tx port to the response network. The network then routes the response packets to the requesting master NIU, which forwards them to the initiator. At the transaction level, NIUs enable multiple protocols to coexist within the same NoC. From the point of view of the NTTP modules, different third-party protocols are just packets moving back and forth across the network.

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip ¹
	11.3.2 Network Interface Units
	The Arteris Danube IP library includes NIUs for different third party protocols. Currently, three different protocols are supported: AHB (APB), OCP, and AXI. For each protocol, two different NIU units can be instantiated:
	 Initiator NIU—third party protocol-to-NTTP, used to connect a master node to the NoC
	 Target NIUs—NTTP-to-third party protocol, used to connect a slave node to the NoC
	Networks-On-Chips Theory and Practice, https://vdoc.pub/download/networks-on-chips-theory-and-practice-embedded-multi-core-systems-6f26qivv11f0 , at 316-317.
	As a further example, "Initiator NIU unitsenable connection between an AMBA-AHB master IP and the NoC":

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	11.3.2.1 Initiator NIU Units
	Initiator NIU units (the architecture of the AHB initiator is given in Figure
	11.4) enable connection between an AMBA-AHB master IP and the NoC.
	It translates AHB transactions into an equivalent NTTP packet sequence,
	and transports requests and responses to and from a target NIU, that is, slave IP (slave can be any of the supported protocols). The AHB-to-NTTP
	unit instantiates a Translation Table for address decoding. This table receives
	32-bit AHB addresses from the NIU and returns the packet header and necker
	information that is needed to access the NTTP address space: Slave address,
	Slave offset, Start offset, and the coherency size (see Figure 11.2). Whenever
	the AHB address does not fit the predefined decoding range, the table as-
	serts an error signal that sets the error bit of the corresponding NTTP request
	packet, for further error handling by the NoC. The translation table is fully
	user-defined at design time: it must first be completed with its own hardware
	parameters, then passed to the NIU.
	A FIFO memory is inserted in the datapath for AHB write accesses. The
	FIFO memory absorbs data at the AHB initiator rate, so that NTTP packets can

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	burst at NoC rate as soon as a minimum amount of data has been received. The width of the FIFO and the AHB data bus is identical, and the FIFO depth is defined by the hardware parameter. This parameter indicates the amount of data required to generate a Store packet: each time the FIFO is full, a Request packet is sent on the Tx port. Of course, if the AHB access ends before the FIFO is full, the NTTP request packet is sent. Because AHB can only tolerate a single outstanding transaction, the AHB bus is frozen until the NTTP transaction has been completed. That is
	 During a read request, until the requested data arrives from the Rx port During a nonbufferable write request, in which case only the last access is frozen and the acknowledge occurs when the last NTTP response packet has been received When an internal FIFO is full

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
interface unit of the interface units;	For example, the Arteris NoC uses Network Interface Units (NIUs), which "translate[] between third-party [OCP, AMBA AHB, APB, and AXI protocols] and NTTP protocols" and in the Arteris NoC, the NIUs "are at the boundary of the NoC" and there is a NIU connected to each of the master and slave nodes:
	11.3.1.1 Transaction Layer
	The transaction layer is compatible with bus-based transaction protocols used for on-chip communications. It is implemented in NIUs, which are at the boundary of the NoC, and translates between third-party and NTTP protocols. Most transactions require the following two-step transfers:
	A master sends request packets.
	 Then, the slave returns response packets.
	As shown in Figure 11.1, requests from an initiator are sent through the master NIU's transmit port, Tx, to the NoC request network, where they are routed to the corresponding slave NIU. Slave NIUs, upon reception of request packets

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

"Integrated circuit and method for buffering to optimize burst length in networks on chips"

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	on their receive ports, Rx, translate requests so that they comply with the protocol used by the target third-party IP node. When the target node responds, returning responses are again converted by the slave NIU into appropriate response packets, then delivered through the slave NIU's Tx port to the response network. The network then routes the response packets to the requesting master NIU, which forwards them to the initiator. At the transaction level, NIUs enable multiple protocols to coexist within the same NoC. From the point of view of the NTTP modules, different third-party protocols are just packets moving back and forth across the network.

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	11.3.2 Network Interface Units
	The Arteris Danube IP library includes NIUs for different third party protocols. Currently, three different protocols are supported: AHB (APB), OCP, and AXI. For each protocol, two different NIU units can be instantiated:
	 Initiator NIU—third party protocol-to-NTTP, used to connect a master node to the NoC
	 Target NIUs—NTTP-to-third party protocol, used to connect a slave node to the NoC
	Networks-On-Chips Theory and Practice, https://vdoc.pub/download/networks-on-chips-theory-and-practice-embedded-multi-core-systems-6f26qivv11f0 , at 316-317.
	As further example, "Target NIU units enable connection of a slave IP to the NoC by translating NTTP packet sequences into equivalent packet transactions, and transporting requests and responses to and from targets":

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	11.3.2.2 Target NIU Units
	Target NIU units enable connection of a slave IP to the NoC by translating NTTP packet sequences into equivalent packet transactions, and transporting requests and responses to and from targets (the architecture of the AHB Target NIU is given in Figure 11.5). For the AHB target NIU, the AHB address space is mapped from the NTTP address space using the slave offset, the start/stop offset, and the slave address fields, when applicable (from the header of the request packet, Figure 11.2). The AHB address bus is always
	32 bits wide, but the actual address space size may be downsized by setting a hardware parameter. Unused AHB address bits are then driven to zero. The NTTP request packet is then translated into one or more corresponding AHB accesses, depending on the transaction type (word aligned or nonaligned access). For example, if the request is an atomic Store, or a Load that can fit an AHB burst of specified length, then such a burst is generated. Otherwise, an AHB burst with unspecified length is generated.

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
connecting the	The Arteris NoC utilized by the Snapdragon SoC connects the slave interface unit to the
slave interface unit	interconnect so that the slave interface unit is between the slave and the interconnect, either
to the interconnect so that the slave	literally or under the doctrine of equivalents.
interface unit is between the slave	For example, the Arteris NoC uses Network Interface Units (NIUs), which "translate[] between third-party [OCP, AMBA AHB, APB, and AXI protocols] and NTTP protocols" and in the Arteris
and the interconnect;	NoC, the NIUs "are at the boundary of the NoC" and there is a NIU connected to each of the master and slave nodes, between the nodes and the network:
	11.3.1.1 Transaction Layer
	The transaction layer is compatible with bus-based transaction protocols used for on-chip communications. It is implemented in NIUs, which are at the boundary of the NoC, and translates between third-party and NTTP protocols. Most transactions require the following two-step transfers:
	A master sends request packets.
	Then, the slave returns response packets.
	As shown in Figure 11.1, requests from an initiator are sent through the master NIU's transmit port, Tx, to the NoC request network, where they are routed to the corresponding slave NIU. Slave NIUs, upon reception of request packets

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	on their receive ports, Rx, translate requests so that they comply with the protocol used by the target third-party IP node. When the target node responds, returning responses are again converted by the slave NIU into appropriate response packets, then delivered through the slave NIU's Tx port to the response network. The network then routes the response packets to the requesting master NIU, which forwards them to the initiator. At the transaction level, NIUs enable multiple protocols to coexist within the same NoC. From the point of view of the NTTP modules, different third-party protocols are just packets moving back and forth across the network.

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip ¹
	11.3.2 Network Interface Units
	The Arteris Danube IP library includes NIUs for different third party protocols. Currently, three different protocols are supported: AHB (APB), OCP, and AXI. For each protocol, two different NIU units can be instantiated:
	 Initiator NIU—third party protocol-to-NTTP, used to connect a master node to the NoC
	 Target NIUs—NTTP-to-third party protocol, used to connect a slave node to the NoC
	Networks-On-Chips Theory and Practice, https://vdoc.pub/download/networks-on-chips-theory-and-practice-embedded-multi-core-systems-6f26qivv11f0 , at 316-317.
	As further example, "Target NIU units enable connection of a slave IP to the NoC by translating NTTP packet sequences into equivalent packet transactions, and transporting requests and responses to and from targets":

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	11.3.2.2 Target NIU Units
	Target NIU units enable connection of a slave IP to the NoC by translating NTTP packet sequences into equivalent packet transactions, and transporting requests and responses to and from targets (the architecture of the AHB Target NIU is given in Figure 11.5). For the AHB target NIU, the AHB address space is mapped from the NTTP address space using the slave offset, the start/stop offset, and the slave address fields, when applicable (from the header of the request packet, Figure 11.2). The AHB address bus is always
	32 bits wide, but the actual address space size may be downsized by setting a hardware parameter. Unused AHB address bits are then driven to zero. The NTTP request packet is then translated into one or more corresponding AHB accesses, depending on the transaction type (word aligned or nonaligned access). For example, if the request is an atomic Store, or a Load that can fit an AHB burst of specified length, then such a burst is generated. Otherwise, an AHB burst with unspecified length is generated.

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

Page 50 of 114

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

"Integrated circuit and method for buffering to optimize burst length in networks on chips"

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
determining by a master determination unit of the master	The Arteris NoC utilized by the Snapdragon SoC determines by a master determination unit of the master interface unit a first optimal amount of data to be buffered by a master wrapper of the master interface unit, either literally or under the doctrine of equivalents.
interface unit a first optimal amount of data to be buffered by a	For example, the Arteris NoC uses Network Interface Units (NIUs), which "translate[] between third-party [OCP, AMBA AHB, APB, and AXI protocols] and NTTP protocols" and in the Arteris NoC, the NIUs "are at the boundary of the NoC" and there is a NIU connected to each of the master and slave nodes, between the nodes and the network:
master wrapper of the master	11.3.1.1 Transaction Layer
interface unit;	The transaction layer is compatible with bus-based transaction protocols used for on-chip communications. It is implemented in NIUs, which are at the boundary of the NoC, and translates between third-party and NTTP protocols. Most transactions require the following two-step transfers:
	A master sends request packets.
	Then, the slave returns response packets.
	As shown in Figure 11.1, requests from an initiator are sent through the master NIU's transmit port, Tx, to the NoC request network, where they are routed to the corresponding slave NIU. Slave NIUs, upon reception of request packets

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	on their receive ports, Rx, translate requests so that they comply with the protocol used by the target third-party IP node. When the target node responds, returning responses are again converted by the slave NIU into appropriate response packets, then delivered through the slave NIU's Tx port to the response network. The network then routes the response packets to the requesting master NIU, which forwards them to the initiator. At the transaction level, NIUs enable multiple protocols to coexist within the same NoC. From the point of view of the NTTP modules, different third-party protocols are just packets moving back and forth across the network.

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip ¹
	11.3.2 Network Interface Units
	The Arteris Danube IP library includes NIUs for different third party protocols. Currently, three different protocols are supported: AHB (APB), OCP, and AXI. For each protocol, two different NIU units can be instantiated:
	 Initiator NIU—third party protocol-to-NTTP, used to connect a master node to the NoC
	 Target NIUs—NTTP-to-third party protocol, used to connect a slave node to the NoC
	Networks-On-Chips Theory and Practice, https://vdoc.pub/download/networks-on-chips-theory-and-practice-embedded-multi-core-systems-6f26qivv11f0 , at 316-317.
	In the Arteris NoC "Initiator NIU unitsenable connection between an AMBA-AHB master IP and the NoC" and includes blocks such as "Data FIFO," "Translation Table," "Build Header & Necker," and "Packet Assembly":

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	defined by the hardware parameter" which "indicates the amount of data required to generate a
	Store packet: each time the FIFO is full, a Request packet is sent on the Tx port":
	11.3.2.1 Initiator NIU Units
	Initiator NIU units (the architecture of the AHB initiator is given in Figure
	11.4) enable connection between an AMBA-AHB master IP and the NoC.
	It translates AHB transactions into an equivalent NTTP packet sequence,
	and transports requests and responses to and from a target NIU, that is,
	slave IP (slave can be any of the supported protocols). The AHB-to-NTTP
	unit instantiates a Translation Table for address decoding. This table receives
	32-bit AHB addresses from the NIU and returns the packet header and necker
	information that is needed to access the NTTP address space: Slave address,
	Slave offset, Start offset, and the coherency size (see Figure 11.2). Whenever
	the AHB address does not fit the predefined decoding range, the table as-
	serts an error signal that sets the error bit of the corresponding NTTP request
	packet, for further error handling by the NoC. The translation table is fully
	user-defined at design time: it must first be completed with its own hardware
	parameters, then passed to the NIU.
	A FIFO memory is inserted in the datapath for AHB write accesses. The
	FIFO memory absorbs data at the AHB initiator rate, so that NTTP packets can

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	burst at NoC rate as soon as a minimum amount of data has been received. The width of the FIFO and the AHB data bus is identical, and the FIFO depth is defined by the hardware parameter. This parameter indicates the amount of data required to generate a Store packet: each time the FIFO is full, a Request packet is sent on the Tx port. Of course, if the AHB access ends before the FIFO is full, the NTTP request packet is sent. Because AHB can only tolerate a single outstanding transaction, the AHB bus is frozen until the NTTP transaction has been completed. That is
	 During a read request, until the requested data arrives from the Rx port During a nonbufferable write request, in which case only the last access is frozen and the acknowledge occurs when the last NTTP response packet has been received When an internal FIFO is full

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
of the slave interface unit a second optimal amount of data to be buffered by a slave wrapper of the slave interface unit;	For example, the Arteris NoC uses Network Interface Units (NIUs), which "translate[] between third-party [OCP, AMBA AHB, APB, and AXI protocols] and NTTP protocols" and in the Arteris NoC, the NIUs "are at the boundary of the NoC" and there is a NIU connected to each of the master and slave nodes, between the nodes and the network: 11.3.1.1 Transaction Layer The transaction layer is compatible with bus-based transaction protocols used for on-chip communications. It is implemented in NIUs, which are at the boundary of the NoC, and translates between third-party and NTTP protocols. Most transactions require the following two-step transfers: • A master sends request packets. • Then, the slave returns response packets. As shown in Figure 11.1, requests from an initiator are sent through the master NIU's transmit port, Tx, to the NoC request network, where they are routed to the corresponding slave NIU. Slave NIUs, upon reception of request packets

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	on their receive ports, Rx, translate requests so that they comply with the protocol used by the target third-party IP node. When the target node responds, returning responses are again converted by the slave NIU into appropriate response packets, then delivered through the slave NIU's Tx port to the response network. The network then routes the response packets to the requesting master NIU, which forwards them to the initiator. At the transaction level, NIUs enable multiple protocols to coexist within the same NoC. From the point of view of the NTTP modules, different third-party protocols are just packets moving back and forth across the network.

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip ¹
	11.3.2 Network Interface Units
	The Arteris Danube IP library includes NIUs for different third party protocols. Currently, three different protocols are supported: AHB (APB), OCP, and AXI. For each protocol, two different NIU units can be instantiated:
	 Initiator NIU—third party protocol-to-NTTP, used to connect a master node to the NoC
	 Target NIUs—NTTP-to-third party protocol, used to connect a slave node to the NoC
	Networks-On-Chips Theory and Practice, https://vdoc.pub/download/networks-on-chips-theory-and-practice-embedded-multi-core-systems-6f26qivv11f0 , at 316-317.
	As further example, "Target NIU units enable connection of a slave IP to the NoC by translating NTTP packet sequences into equivalent packet transactions, and transporting requests and responses to and from targets" and includes blocks such as "Data FIFO "and "Packet Assembly":

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	11.3.2.2 Target NIU Units
	Target NIU units enable connection of a slave IP to the NoC by translating NTTP packet sequences into equivalent packet transactions, and transporting requests and responses to and from targets (the architecture of the AHB Target NIU is given in Figure 11.5). For the AHB target NIU, the AHB address space is mapped from the NTTP address space using the slave offset, the start/stop offset, and the slave address fields, when applicable (from the header of the request packet, Figure 11.2). The AHB address bus is always
	32 bits wide, but the actual address space size may be downsized by setting a hardware parameter. Unused AHB address bits are then driven to zero. The NTTP request packet is then translated into one or more corresponding AHB accesses, depending on the transaction type (word aligned or nonaligned access). For example, if the request is an atomic Store, or a Load that can fit an AHB burst of specified length, then such a burst is generated. Otherwise, an AHB burst with unspecified length is generated.

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip ¹
	In the Target NIUs of the Arteris NoC, similar to as described above for the Initiator NIUs, "[a] FIFO memory is inserted in the datapath for AHB accesses. The FIFO memory absorbs data at the AHB rate, so that NTTP packets can burst at NoC rate as soon as a minimum amount of data has been received." "[T]he FIFO depth is defined by the hardware parameter" which "indicates the amount of data required to generate a packet: each time the FIFO is full, a packet is sent on the Tx port":
	A FIFO memory is inserted in the datapath for AHB write accesses. The FIFO memory absorbs data at the AHB initiator rate, so that NTTP packets can
	burst at NoC rate as soon as a minimum amount of data has been received. The width of the FIFO and the AHB data bus is identical, and the FIFO depth is defined by the hardware parameter. This parameter indicates the amount of data required to generate a Store packet: each time the FIFO is full, a Request packet is sent on the Tx port. Of course, if the AHB access ends before the FIFO is full, the NTTP request packet is sent. Because AHB can only tolerate a single outstanding transaction, the AHB bus is frozen until the NTTP transaction has been completed. That is
	 During a read request, until the requested data arrives from the Rx port
	 During a nonbufferable write request, in which case only the last access is frozen and the acknowledge occurs when the last NTTP response packet has been received
	When an internal FIFO is full

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	Networks-On-Chips Theory and Practice, https://vdoc.pub/download/networks-on-chips-theory-and-practice-embedded-multi-core-systems-6f26qivv11f0 , at 317-318.
buffering by the slave wrapper of the slave interface unit data from the slave to be	The Arteris NoC utilized by the Snapdragon SoC buffers by the slave wrapper of the slave interface unit data from the slave to be transferred over the interconnect until a first optimal amount of data is buffered, either literally or under the doctrine of equivalents.
transferred over the interconnect until a first optimal amount of	For example, the Arteris NoC uses Network Interface Units (NIUs), which "translate[] between third-party [OCP, AMBA AHB, APB, and AXI protocols] and NTTP protocols" and in the Arteris NoC, the NIUs "are at the boundary of the NoC" and there is a NIU connected to each of the master and slave nodes, between the nodes and the network:
data is buffered;	11.3.1.1 Transaction Layer
	The transaction layer is compatible with bus-based transaction protocols used for on-chip communications. It is implemented in NIUs, which are at the boundary of the NoC, and translates between third-party and NTTP protocols. Most transactions require the following two-step transfers:
	A master sends request packets.
	Then, the slave returns response packets.
	As shown in Figure 11.1, requests from an initiator are sent through the master NIU's transmit port, Tx, to the NoC request network, where they are routed to the corresponding slave NIU. Slave NIUs, upon reception of request packets

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip ¹
	on their receive ports, Rx, translate requests so that they comply with the protocol used by the target third-party IP node. When the target node responds, returning responses are again converted by the slave NIU into appropriate response packets, then delivered through the slave NIU's Tx port to the response network. The network then routes the response packets to the requesting master NIU, which forwards them to the initiator. At the transaction level, NIUs enable multiple protocols to coexist within the same NoC. From the point of view of the NTTP modules, different third-party protocols are just packets moving back and forth across the network.

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	11.3.2 Network Interface Units
	The Arteris Danube IP library includes NIUs for different third party protocols. Currently, three different protocols are supported: AHB (APB), OCP, and AXI. For each protocol, two different NIU units can be instantiated:
	 Initiator NIU—third party protocol-to-NTTP, used to connect a master node to the NoC
	 Target NIUs—NTTP-to-third party protocol, used to connect a slave node to the NoC
	Networks-On-Chips Theory and Practice, https://vdoc.pub/download/networks-on-chips-theory-and-practice-embedded-multi-core-systems-6f26qivv11f0 , at 316-317.
	As further example, "Target NIU units enable connection of a slave IP to the NoC by translating NTTP packet sequences into equivalent packet transactions, and transporting requests and responses to and from targets" and includes blocks such as "Data FIFO "and "Packet Assembly":

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	11.3.2.2 Target NIU Units
	Target NIU units enable connection of a slave IP to the NoC by translating NTTP packet sequences into equivalent packet transactions, and transporting requests and responses to and from targets (the architecture of the AHB Target NIU is given in Figure 11.5). For the AHB target NIU, the AHB address space is mapped from the NTTP address space using the slave offset, the start/stop offset, and the slave address fields, when applicable (from the header of the request packet, Figure 11.2). The AHB address bus is always
	32 bits wide, but the actual address space size may be downsized by setting a hardware parameter. Unused AHB address bits are then driven to zero. The NTTP request packet is then translated into one or more corresponding AHB accesses, depending on the transaction type (word aligned or nonaligned access). For example, if the request is an atomic Store, or a Load that can fit an AHB burst of specified length, then such a burst is generated. Otherwise, an AHB burst with unspecified length is generated.

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Ovalcomm Spandragen 8+ Con 1 Mobile Dietform System on Chin 1
oud ratent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip ¹ In the Target NIUs of the Arteris NoC, similar to as described above for the Initiator NIUs, "[a] FIFO memory is inserted in the datapath for AHB accesses. The FIFO memory absorbs data at the AHB rate, so that NTTP packets can burst at NoC rate as soon as a minimum amount of data has been received." "[T]he FIFO depth is defined by the hardware parameter" which "indicates the amount of data required to generate a packet: each time the FIFO is full, a packet is sent on the Tx port":
	A FIFO memory is inserted in the datapath for AHB write accesses. The FIFO memory absorbs data at the AHB initiator rate, so that NTTP packets can
	burst at NoC rate as soon as a minimum amount of data has been received. The width of the FIFO and the AHB data bus is identical, and the FIFO depth is defined by the hardware parameter. This parameter indicates the amount of data required to generate a Store packet: each time the FIFO is full, a Request packet is sent on the Tx port. Of course, if the AHB access ends before the FIFO is full, the NTTP request packet is sent. Because AHB can only tolerate a single outstanding transaction, the AHB bus is frozen until the NTTP transaction has been completed. That is
	 During a read request, until the requested data arrives from the Rx port
	 During a nonbufferable write request, in which case only the last access is frozen and the acknowledge occurs when the last NTTP response packet has been received
	When an internal FIFO is full

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	Networks-On-Chips Theory and Practice, https://vdoc.pub/download/networks-on-chips-theory-and-practice-embedded-multi-core-systems-6f26qivv11f0 , at 317-318.
	As a further illustration, the Arteris NoC uses "a mechanism called rated adaptation, which stalls packets just enough to remove wait states from the packets, preserving a low latency." For other traffic, the "[b]est effort traffic can be left untouched[,]" "[1]atency sensitive traffic may have its urgency modulated as a function of the transaction[,]" "[s]oft real-time traffic may have its hurry level modulated as a function of the bandwidth it receives[,]" and "[o]n the real-time modem data port, the hurry is fixed at a critical level":
	Those effects can be mended by the insertion of buffering. In the case of peak bandwidth reduction, a simple FIFO does the job: Busy states present at the output of the FIFO do not propagate back to the input until the FIFO is full. For a peak bandwidth increase, the situation is a bit more complex. In a FIFO, wait states present at the input are only absorbed when the FIFO is not empty. Arteris proposes a mechanism called rate adaptation, which stalls packets just enough to remove wait states from the packets, preserving a low latency. In this second step, the architecture is modified to introduce some buffering. In our example 760 bytes of memory have been distributed across the topology. Some have been put on existing links; some required the creation of new links.
	See Application driven network-on-chip architecture exploration & refinement for a complex SoC, https://www.arteris.com/hs-fs/hub/48858/file-14363521-pdf/docs/springerappdrivennocarchitecture8.5x11.pdf , at pg.16.
transferring the buffered data from the slave wrapper to the master	The Arteris NoC utilized by the Snapdragon SoC transfers the buffered data from the slave wrapper to the master wrapper when said first optimal amount of data has been buffered by the slave wrapper, either literally or under the doctrine of equivalents.

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
wrapper when said first optimal amount of data has been buffered	For example, the Arteris NoC uses Network Interface Units (NIUs), which "translate[] between third-party [OCP, AMBA AHB, APB, and AXI protocols] and NTTP protocols" and in the Arteris NoC, the NIUs "are at the boundary of the NoC" and there is a NIU connected to each of the master and slave nodes, between the nodes and the network:
by the slave	11.3.1.1 Transaction Layer
wrapper;	The transaction layer is compatible with bus-based transaction protocols used for on-chip communications. It is implemented in NIUs, which are at the boundary of the NoC, and translates between third-party and NTTP protocols. Most transactions require the following two-step transfers:
	A master sends request packets.
	Then, the slave returns response packets.
	As shown in Figure 11.1, requests from an initiator are sent through the master NIU's transmit port, Tx, to the NoC request network, where they are routed to the corresponding slave NIU. Slave NIUs, upon reception of request packets

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	on their receive ports, Rx, translate requests so that they comply with the protocol used by the target third-party IP node. When the target node responds, returning responses are again converted by the slave NIU into appropriate response packets, then delivered through the slave NIU's Tx port to the response network. The network then routes the response packets to the requesting master NIU, which forwards them to the initiator. At the transaction level, NIUs enable multiple protocols to coexist within the same NoC. From the point of view of the NTTP modules, different third-party protocols are just packets moving back and forth across the network.

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	11.3.2 Network Interface Units
	The Arteris Danube IP library includes NIUs for different third party protocols. Currently, three different protocols are supported: AHB (APB), OCP, and AXI. For each protocol, two different NIU units can be instantiated:
	 Initiator NIU—third party protocol-to-NTTP, used to connect a master node to the NoC
	 Target NIUs—NTTP-to-third party protocol, used to connect a slave node to the NoC
	Networks-On-Chips Theory and Practice, https://vdoc.pub/download/networks-on-chips-theory-and-practice-embedded-multi-core-systems-6f26qivv11f0 , at 316-317.
	As further example, "Target NIU units enable connection of a slave IP to the NoC by translating NTTP packet sequences into equivalent packet transactions, and transporting requests and responses to and from targets" and includes blocks such as "Data FIFO "and "Packet Assembly":

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	11.3.2.2 Target NIU Units
	Target NIU units enable connection of a slave IP to the NoC by translating NTTP packet sequences into equivalent packet transactions, and transporting requests and responses to and from targets (the architecture of the AHB Target NIU is given in Figure 11.5). For the AHB target NIU, the AHB address space is mapped from the NTTP address space using the slave offset, the start/stop offset, and the slave address fields, when applicable (from the header of the request packet, Figure 11.2). The AHB address bus is always
	32 bits wide, but the actual address space size may be downsized by setting a hardware parameter. Unused AHB address bits are then driven to zero. The NTTP request packet is then translated into one or more corresponding AHB accesses, depending on the transaction type (word aligned or nonaligned access). For example, if the request is an atomic Store, or a Load that can fit an AHB burst of specified length, then such a burst is generated. Otherwise, an AHB burst with unspecified length is generated.

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	In the Target NIUs of the Arteris NoC, similar to as described above for the Initiator NIUs, "[a] FIFO memory is inserted in the datapath for AHB accesses. The FIFO memory absorbs data at the AHB rate, so that NTTP packets can burst at NoC rate as soon as a minimum amount of data has been received." "[T]he FIFO depth is defined by the hardware parameter" which "indicates the amount of data required to generate a packet: each time the FIFO is full, a packet is sent on the Tx port":
	A FIFO memory is inserted in the datapath for AHB write accesses. The FIFO memory absorbs data at the AHB initiator rate, so that NTTP packets can
	burst at NoC rate as soon as a minimum amount of data has been received. The width of the FIFO and the AHB data bus is identical, and the FIFO depth is defined by the hardware parameter. This parameter indicates the amount of data required to generate a Store packet: each time the FIFO is full, a Request packet is sent on the Tx port. Of course, if the AHB access ends before the FIFO is full, the NTTP request packet is sent. Because AHB can only tolerate a single outstanding transaction, the AHB bus is frozen until the NTTP transaction has been completed. That is
	 During a read request, until the requested data arrives from the Rx port
	 During a nonbufferable write request, in which case only the last access is frozen and the acknowledge occurs when the last NTTP response packet has been received
	When an internal FIFO is full

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	Networks-On-Chips Theory and Practice, https://vdoc.pub/download/networks-on-chips-theory-and-practice-embedded-multi-core-systems-6f26qivv11f0 , at 317-318.
buffering by the master wrapper of the master	The Arteris NoC utilized by the Snapdragon SoC buffers by the master wrapper of the master interface unit data from the master to be transferred over the interconnect until a second optimal amount of data is buffered by the master wrapper, either literally or under the doctrine of
interface unit data from the master to	equivalents.
be transferred over the interconnect until a second optimal amount of	For example, the Arteris NoC uses Network Interface Units (NIUs), which "translate[] between third-party [OCP, AMBA AHB, APB, and AXI protocols] and NTTP protocols" and in the Arteris NoC, the NIUs "are at the boundary of the NoC" and there is a NIU connected to each of the master and slave nodes, between the nodes and the network:
data is buffered by the master	11.3.1.1 Transaction Layer
the master wrapper;	The transaction layer is compatible with bus-based transaction protocols used for on-chip communications. It is implemented in NIUs, which are at the boundary of the NoC, and translates between third-party and NTTP protocols. Most transactions require the following two-step transfers:
	A master sends request packets.
	Then, the slave returns response packets.
	As shown in Figure 11.1, requests from an initiator are sent through the master NIU's transmit port, Tx, to the NoC request network, where they are routed to the corresponding slave NIU. Slave NIUs, upon reception of request packets

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	on their receive ports, Rx, translate requests so that they comply with the protocol used by the target third-party IP node. When the target node responds, returning responses are again converted by the slave NIU into appropriate response packets, then delivered through the slave NIU's Tx port to the response network. The network then routes the response packets to the requesting master NIU, which forwards them to the initiator. At the transaction level, NIUs enable multiple protocols to coexist within the same NoC. From the point of view of the NTTP modules, different third-party protocols are just packets moving back and forth across the network.

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	11.3.2 Network Interface Units
	The Arteris Danube IP library includes NIUs for different third party protocols. Currently, three different protocols are supported: AHB (APB), OCP, and AXI. For each protocol, two different NIU units can be instantiated:
	 Initiator NIU—third party protocol-to-NTTP, used to connect a master node to the NoC
	 Target NIUs—NTTP-to-third party protocol, used to connect a slave node to the NoC
	Networks-On-Chips Theory and Practice, https://vdoc.pub/download/networks-on-chips-theory-and-practice-embedded-multi-core-systems-6f26qivv11f0 , at 316-317.
	In the Arteris NoC "Initiator NIU unitsenable connection between an AMBA-AHB master IP and the NoC" and includes blocks such as "Data FIFO," "Translation Table," "Build Header & Necker," and "Packet Assembly":

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip ¹
	defined by the hardware parameter" which "indicates the amount of data required to generate a
	Store packet: each time the FIFO is full, a Request packet is sent on the Tx port":
	11.3.2.1 Initiator NIU Units
	Initiator NIU units (the architecture of the AHB initiator is given in Figure
	11.4) enable connection between an AMBA-AHB master IP and the NoC.
	It translates AHB transactions into an equivalent NTTP packet sequence,
	and transports requests and responses to and from a target NIU, that is,
	slave IP (slave can be any of the supported protocols). The AHB-to-NTTP
	unit instantiates a Translation Table for address decoding. This table receives
	32-bit AHB addresses from the NIU and returns the packet header and necker
	information that is needed to access the NTTP address space: Slave address,
	Slave offset, Start offset, and the coherency size (see Figure 11.2). Whenever
	the AHB address does not fit the predefined decoding range, the table as-
	serts an error signal that sets the error bit of the corresponding NTTP request
	packet, for further error handling by the NoC. The translation table is fully
	user-defined at design time: it must first be completed with its own hardware
	parameters, then passed to the NIU.
	A FIFO memory is inserted in the datapath for AHB write accesses. The
	FIFO memory absorbs data at the AHB initiator rate, so that NTTP packets can

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	burst at NoC rate as soon as a minimum amount of data has been received. The width of the FIFO and the AHB data bus is identical, and the FIFO depth is defined by the hardware parameter. This parameter indicates the amount of data required to generate a Store packet: each time the FIFO is full, a Request packet is sent on the Tx port. Of course, if the AHB access ends before the FIFO is full, the NTTP request packet is sent. Because AHB can only tolerate a single outstanding transaction, the AHB bus is frozen until the NTTP transaction has been completed. That is
	 During a read request, until the requested data arrives from the Rx port During a nonbufferable write request, in which case only the last access is frozen and the acknowledge occurs when the last NTTP response packet has been received When an internal FIFO is full

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Ovelsomm Chandwagen 91 Can 1 Makila Blatform Createm on Chin 1
800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip ¹ urgency modulated as a function of the transaction[,]" "[s]oft real-time traffic may have its hurry
	level modulated as a function of the bandwidth it receives[,]" and "[o]n the real-time modem data
	port, the hurry is fixed at a critical level":
	Those effects can be mended by the insertion of buffering. In the case of peak bandwidth reduction, a simple FIFO does the job: Busy states present at the output of the FIFO do not propagate back to the input until the FIFO is full. For a peak bandwidth increase, the situation is a bit more complex. In a FIFO, wait states present at the input are only absorbed when the FIFO is not empty. Arteris proposes a mechanism called rate adaptation, which stalls packets just enough to remove wait states from the packets, preserving a low latency. In this second step, the architecture is modified to introduce some buffering. In our example 760 bytes of memory have been distributed across the topology. Some have been put on existing links; some required the creation of new links.
	See Application driven network-on-chip architecture exploration & refinement for a complex SoC,
	https://www.arteris.com/hs-fs/hub/48858/file-14363521-pdf/docs/springerappdrivennocarchitecture8.5x11.pdf, at pg.16.
transferring the	The Arteris NoC utilized by the Snapdragon SoC transfers the buffered data from the master
buffered data from	wrapper to the slave wrapper when said second optimal amount of data has been buffered by the
the master	master wrapper, either literally or under the doctrine of equivalents.
wrapper to the	
slave wrapper	For example, the Arteris NoC uses Network Interface Units (NIUs), which "translate[] between
when said second	third-party [OCP, AMBA AHB, APB, and AXI protocols] and NTTP protocols" and in the Arteris
optimal amount of	NoC, the NIUs "are at the boundary of the NoC" and there is a NIU connected to each of the
data has been	master and slave nodes, between the nodes and the network:
buffered by the	
master wrapper,	

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	11.3.1.1 Transaction Layer
	The transaction layer is compatible with bus-based transaction protocols used for on-chip communications. It is implemented in NIUs, which are at the boundary of the NoC, and translates between third-party and NTTP protocols. Most transactions require the following two-step transfers:
	A master sends request packets.
	Then, the slave returns response packets.
	As shown in Figure 11.1, requests from an initiator are sent through the master NIU's transmit port, Tx, to the NoC request network, where they are routed to the corresponding slave NIU. Slave NIUs, upon reception of request packets
	on their receive ports, Rx, translate requests so that they comply with the protocol used by the target third-party IP node. When the target node responds, returning responses are again converted by the slave NIU into appropriate response packets, then delivered through the slave NIU's Tx port to the response network. The network then routes the response packets to the requesting master NIU, which forwards them to the initiator. At the transaction level, NIUs enable multiple protocols to coexist within the same NoC. From the point of view of the NTTP modules, different third-party protocols are just packets moving back and forth across the network.

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	11.3.2 Network Interface Units
	The Arteris Danube IP library includes NIUs for different third party protocols. Currently, three different protocols are supported: AHB (APB), OCP, and AXI. For each protocol, two different NIU units can be instantiated:
	 Initiator NIU—third party protocol-to-NTTP, used to connect a master node to the NoC
	 Target NIUs—NTTP-to-third party protocol, used to connect a slave node to the NoC
	Networks-On-Chips Theory and Practice, https://vdoc.pub/download/networks-on-chips-theory-and-practice-embedded-multi-core-systems-6f26qivv11f0 , at 316-317.
	In the Arteris NoC "Initiator NIU unitsenable connection between an AMBA-AHB master IP and the NoC" and includes blocks such as "Data FIFO," "Translation Table," "Build Header & Necker," and "Packet Assembly":

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	defined by the hardware parameter" which "indicates the amount of data required to generate a
	Store packet: each time the FIFO is full, a Request packet is sent on the Tx port":
	11.3.2.1 Initiator NIU Units
	Initiator NIU units (the architecture of the AHB initiator is given in Figure
	11.4) enable connection between an AMBA-AHB master IP and the NoC.
	It translates AHB transactions into an equivalent NTTP packet sequence,
	and transports requests and responses to and from a target NIU, that is,
	slave IP (slave can be any of the supported protocols). The AHB-to-NTTP
	unit instantiates a Translation Table for address decoding. This table receives
	32-bit AHB addresses from the NIU and returns the packet header and necker
	information that is needed to access the NTTP address space: Slave address,
	Slave offset, Start offset, and the coherency size (see Figure 11.2). Whenever
	the AHB address does not fit the predefined decoding range, the table as-
	serts an error signal that sets the error bit of the corresponding NTTP request
	packet, for further error handling by the NoC. The translation table is fully
	user-defined at design time: it must first be completed with its own hardware
	parameters, then passed to the NIU.
	A FIFO memory is inserted in the datapath for AHB write accesses. The
	FIFO memory absorbs data at the AHB initiator rate, so that NTTP packets can

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	burst at NoC rate as soon as a minimum amount of data has been received. The width of the FIFO and the AHB data bus is identical, and the FIFO depth is defined by the hardware parameter. This parameter indicates the amount of data required to generate a Store packet: each time the FIFO is full, a Request packet is sent on the Tx port. Of course, if the AHB access ends before the FIFO is full, the NTTP request packet is sent. Because AHB can only tolerate a single outstanding transaction, the AHB bus is frozen until the NTTP transaction has been completed. That is
	 During a read request, until the requested data arrives from the Rx port During a nonbufferable write request, in which case only the last access is frozen and the acknowledge occurs when the last NTTP response packet has been received When an internal FIFO is full

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

"Integrated circuit and method for buffering to optimize burst length in networks on chips"

'800 Patent Claim and the second determination unit is further configured to determine an optimal moment for sending the data in said first wrapper or said second wrapper according to communication properties of the communication between the master and the slave, wherein the communication properties include ordering of data transport, flow control including when a remote buffer is reserved for a connection, then a data producer will be

Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1

the communication between the master and the slave wherein the communication properties include ordering of data transport, flow control including when a remote buffer is reserved for a connection, then a data producer will be allowed to send data only when it is guaranteed that space is available for the produced data at the remote buffer, throughput where a lower bound on throughput is guaranteed, latency where an upper bound for latency is guaranteed, lossiness including dropping of data, transmission termination, transaction completion, data correctness, priority, and data delivery, either literally or under the doctrine of equivalents.

For example, the Arteris NoC uses Network Interface Units (NIUs), which "translate[] between third-party [OCP, AMBA AHB, APB, and AXI protocols] and NTTP protocols" and in the Arteris NoC, the NIUs "are at the boundary of the NoC" and there is a NIU connected to each of the master and slave nodes, between the nodes and the network:

11.3.1.1 Transaction Layer

The transaction layer is compatible with bus-based transaction protocols used for on-chip communications. It is implemented in NIUs, which are at the boundary of the NoC, and translates between third-party and NTTP protocols. Most transactions require the following two-step transfers:

- A master sends request packets.
- Then, the slave returns response packets.

As shown in Figure 11.1, requests from an initiator are sent through the master NIU's transmit port, Tx, to the NoC request network, where they are routed to the corresponding slave NIU. Slave NIUs, upon reception of request packets

allowed to send data only when it

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
is guaranteed that space is available for the produced data at the remote buffer, throughput where a lower bound on throughput is guaranteed, latency where an upper bound for latency is guaranteed, lossiness including dropping of data, transmission termination, transaction completion, data correctness, priority, and data delivery.	on their receive ports, Rx, translate requests so that they comply with the protocol used by the target third-party IP node. When the target node responds, returning responses are again converted by the slave NIU into appropriate response packets, then delivered through the slave NIU's Tx port to the response network. The network then routes the response packets to the requesting master NIU, which forwards them to the initiator. At the transaction level, NIUs enable multiple protocols to coexist within the same NoC. From the point of view of the NTTP modules, different third-party protocols are just packets moving back and forth across the network.

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	11.3.2 Network Interface Units
	The Arteris Danube IP library includes NIUs for different third party protocols. Currently, three different protocols are supported: AHB (APB), OCP, and AXI. For each protocol, two different NIU units can be instantiated:
	 Initiator NIU—third party protocol-to-NTTP, used to connect a master node to the NoC
	 Target NIUs—NTTP-to-third party protocol, used to connect a slave node to the NoC
	Networks-On-Chips Theory and Practice, https://vdoc.pub/download/networks-on-chips-theory-and-practice-embedded-multi-core-systems-6f26qivv11f0 , at 316-317.
	In the Arteris NoC "Initiator NIU unitsenable connection between an AMBA-AHB master IP and the NoC" and includes blocks such as "Data FIFO," "Translation Table," "Build Header & Necker," and "Packet Assembly":

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	defined by the hardware parameter" which "indicates the amount of data required to generate a Store packet: each time the FIFO is full, a Request packet is sent on the Tx port":
	Store packet, each time the FIFO is full, a Request packet is sent on the 1x port.
	11.3.2.1 Initiator NIU Units
	Initiator NIU units (the architecture of the AHB initiator is given in Figure
	11.4) enable connection between an AMBA-AHB master IP and the NoC.
	It translates AHB transactions into an equivalent NTTP packet sequence,
	and transports requests and responses to and from a target NIU, that is,
	slave IP (slave can be any of the supported protocols). The AHB-to-NTTP
	unit instantiates a Translation Table for address decoding. This table receives
	32-bit AHB addresses from the NIU and returns the packet header and necker
	information that is needed to access the NTTP address space: Slave address,
	Slave offset, Start offset, and the coherency size (see Figure 11.2). Whenever
	the AHB address does not fit the predefined decoding range, the table as-
	serts an error signal that sets the error bit of the corresponding NTTP request
	packet, for further error handling by the NoC. The translation table is fully
	user-defined at design time: it must first be completed with its own hardware
	parameters, then passed to the NIU.
	A FIFO memory is inserted in the datapath for AHB write accesses. The
	FIFO memory absorbs data at the AHB initiator rate, so that NTTP packets can

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	burst at NoC rate as soon as a minimum amount of data has been received. The width of the FIFO and the AHB data bus is identical, and the FIFO depth is defined by the hardware parameter. This parameter indicates the amount of data required to generate a Store packet: each time the FIFO is full, a Request packet is sent on the Tx port. Of course, if the AHB access ends before the FIFO is full, the NTTP request packet is sent. Because AHB can only tolerate a single outstanding transaction, the AHB bus is frozen until the NTTP transaction has been completed. That is
	 During a read request, until the requested data arrives from the Rx port During a nonbufferable write request, in which case only the last access is frozen and the acknowledge occurs when the last NTTP response packet has been received When an internal FIFO is full

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	11.3.2.2 Target NIU Units
	Target NIU units enable connection of a slave IP to the NoC by translating NTTP packet sequences into equivalent packet transactions, and transporting requests and responses to and from targets (the architecture of the AHB Target NIU is given in Figure 11.5). For the AHB target NIU, the AHB address space is mapped from the NTTP address space using the slave offset, the start/stop offset, and the slave address fields, when applicable (from the header of the request packet, Figure 11.2). The AHB address bus is always
	32 bits wide, but the actual address space size may be downsized by setting a hardware parameter. Unused AHB address bits are then driven to zero. The NTTP request packet is then translated into one or more corresponding AHB accesses, depending on the transaction type (word aligned or nonaligned access). For example, if the request is an atomic Store, or a Load that can fit an AHB burst of specified length, then such a burst is generated. Otherwise, an AHB burst with unspecified length is generated.

U.S. Patent No. 8,086,800 (Radulescu and Goossens)

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	In the Target NIUs of the Arteris NoC, similar to as described above for the Initiator NIUs, "[a] FIFO memory is inserted in the datapath for AHB accesses. The FIFO memory absorbs data at the AHB rate, so that NTTP packets can burst at NoC rate as soon as a minimum amount of data has been received." "[T]he FIFO depth is defined by the hardware parameter" which "indicates the amount of data required to generate a packet: each time the FIFO is full, a packet is sent on the Tx port":
	A FIFO memory is inserted in the datapath for AHB write accesses. The FIFO memory absorbs data at the AHB initiator rate, so that NTTP packets can
	burst at NoC rate as soon as a minimum amount of data has been received. The width of the FIFO and the AHB data bus is identical, and the FIFO depth is defined by the hardware parameter. This parameter indicates the amount of data required to generate a Store packet: each time the FIFO is full, a Request packet is sent on the Tx port. Of course, if the AHB access ends before the FIFO is full, the NTTP request packet is sent. Because AHB can only tolerate a single outstanding transaction, the AHB bus is frozen until the NTTP transaction has been completed. That is
	 During a read request, until the requested data arrives from the Rx port
	 During a nonbufferable write request, in which case only the last access is frozen and the acknowledge occurs when the last NTTP response packet has been received
	When an internal FIFO is full

(000 Data at Cl	O 1 C 1 0 . C 1 W 1 '1 . Dl . (C Cl Cl 1
'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip ¹
	Networks-On-Chips Theory and Practice, https://vdoc.pub/download/networks-on-chips-
	theory-and-practice-embedded-multi-core-systems-6f26qivv11f0, at 317-318.
	As a further illustration, the "Arteris NTTP protocol is packet-based" and the packets, which have "header and necker cells [that] contain information relative to routing, payload size, packet type, and the packet target address," are "transported to other parts of the NoC to accomplish the transactions that are required by foreign IP nodes":
	11.3.1.2 Transport Layer
	The Arteris NTTP protocol is packet-based. Packets created by NIUs are trans-
	ported to other parts of the NoC to accomplish the transactions that are
	required by foreign IP nodes. All packets are comprised of cells: a header
	cell, an optional necker cell, and possibly one or more data cells (for packet
	definition see Figure 11.2; further descriptions of the packet can be found in
	the next subsection). The header and necker cells contain information relative
	to routing, payload size, packet type, and the packet target address. Formats
	for request packets and response packets are slightly different, with the key
	difference being the presence of an additional cell, the necker, in the request
	packet to provide detailed addressing information to the target.
	packet to provide detailed addressing information to the target.
	<i>Id.</i> at 313.
	As yet a further illustration, packets in the Arteris NoC are "delivered as words that are sent
	along links and "[o]ne link (represented in Figure 11.1) defines the following signals," which
	include "the current priority of the packet used to define preferred traffic class (or Quality of
	Service)" and "[f]low control":

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip ¹
	Data—Data word of the width specified at design-time.
	 Frm—When asserted high, indicates that a packet is being transmitted.
	 Head—When asserted high, indicates the current word contains a packet header. When the link-width is smaller than single (SGL), the header transmission is split into several word transfers. However, the Head signal is asserted during the first transfer only.
	 TailOfs—Packet tail: when asserted high, indicates that the current word contains the last packet cell. When the link-width is smaller than single (SGL), the last cell transmission is split into several word transfers. However, the Tail signal is asserted during the first transfer only.
	 Pres.—Indicates the current priority of the packet used to define preferred traffic class (or Quality of Service). The width is fixed during the design time, allowing multiple pressure levels within the same NoC instance (bits 3–5 in Figure 11.2).
	 Vld—Data valid: when asserted high, indicates that a word is being transmitted.
	 RxRdy—Flow control: when asserted high, the receiver is ready to accept word. When de-asserted, the receiver is busy.
	<i>Id.</i> at 313-314.

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	As a further illustration, the Arteris NoC implements Quality of Service (QoS) to "provide[] a regulation mechanism allowing specification of guarantees on some of the parameters related to the traffic"; "QoS, which includes guarantees of throughput and/or latency, is achieved by exploiting the signal pressure embedded into the NTTP packet definition" where the "pressure signal can be generated by the IP itself and is typically linked to a certain level of urgency with which the transaction will have to be completed"; and the "pressure information will be embedded in the NTTP packet at the NIU level":
	Quality of Service (QoS). The QoS is a very important feature in the interconnect infrastructures because it provides a regulation mechanism allowing specification of guarantees on some of the parameters related to the traffic. Usually the end users are looking for guarantees on bandwidth and/or end-to-end communication latency. Different mechanisms and strategies have been proposed in the literature. For instance, in Æthereal NoC [11,24] proposed by NXP, a TDMA approach allows the specification of two traffic categories [25]: BE and GT. In the Arteris NoC, the QoS is achieved by exploiting the signal pressure embedded into the NTTP packet definition (Figures 11.1 and 11.2). The pressure

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	signal can be generated by the IP itself and is typically linked to a certain level of urgency with which the transaction will have to be completed. For example, we can imagine associating the generation of the pressure signal when a certain threshold has been reached in the FIFO of the corresponding IP. This pressure information will be embedded in the NTTP packet at the NIU level: packets that have pressure bits equal to zero will be considered without QoS; packets with a nonzero value of the pressure bit will indicate preferred traffic class.* Such a QoS mechanism offers immediate service to the most urgent inputs and variables, and fair service whenever there are multiple contending inputs of equal urgency (BE). Within switches, arbitration decisions favor preferred packets and allocate remaining bandwidth (after preferred packets are served) fairly to contending packets. When there are contending preferred packets at the same pressure level, arbitration decisions among them are also fair. The Arteris NoC supports the following four different traffic classes:

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	 Real time and low latency (RTLL)—Traffic flows that require the lowest possible latency. Sometimes it is acceptable to have brief intervals of longer latency as long as the average latency is low. Care must be taken to avoid starving other traffic flows as a side effect of pursuing low latency.
	 Guaranteed throughput (GT)—Traffic flows that must maintain their throughput over a relatively long time interval. The actual bandwidth needed can be highly variable even over long intervals. Dynamic pressure is employed for this traffic class.
	• Guaranteed bandwidth (GBW)—Traffic flows that require a guaranteed amount of bandwidth over a relatively long time interval. Over short periods, the network may lag or lead in providing this bandwidth. Bandwidth meters may be inserted onto links in the NoC to regulate these flows, using either of the two methods. If the flow is assigned high pressure, the meter asserts backpressure (flow control) to prevent the flow from exceeding a maximum bandwidth. Alternatively, the meter can modulate the flows pressure (priority) dynamically as needed to maintain an average bandwidth.
	 Best effort (BE)—Traffic flows that do not require guaranteed latency or throughput but have an expectation of fairness.

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	*Note that in the NTTP packet, the pressure field allows more then one bit, resulting in multiple levels of preferred traffic.
	Networks-On-Chips Theory and Practice, https://vdoc.pub/download/networks-on-chips-theory-and-practice-embedded-multi-core-systems-6f26qivv11f0 , at 315-316.
	In addition, the Arteris Interconnect includes "a mechanism called rated adaptation, which stalls packets just enough to remove wait states from the packets, preserving a low latency." For other traffic, the "[b]est effort traffic can be left untouched[,]" "[l]atency sensitive traffic may have its urgency modulated as a function of the transaction[,]" "[s]oft real-time traffic may have its hurry level modulated as a function of the bandwidth it receives[,]" and "[o]n the real-time modem data port, the hurry is fixed at a critical level."
	Those effects can be mended by the insertion of buffering. In the case of peak bandwidth reduction, a simple FIFO does the job: Busy states present at the output of the FIFO do not propagate back to the input until the FIFO is full. For a peak bandwidth increase, the situation is a bit more complex. In a FIFO, wait states present at the input are only absorbed when the FIFO is not empty. Arteris proposes a mechanism called rate adaptation, which stalls packets just enough to remove wait states from the packets, preserving a low latency. In this second step, the architecture is modified to introduce some buffering. In our example 760 bytes of memory have been distributed across the topology. Some have been put on existing links; some required the creation of new links.
	Application driven network-on-chip architecture exploration & refinement for a complex SoC, https://www.arteris.com/hs-fs/hub/48858/file-14363521-pdf/docs/springer-appdrivennocarchitecture8.5x11.pdf , at p. 16.

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	For the other traffic, the configuration can be done in architecture.
	Best effort traffic can be left untouched.
	• Latency sensitive traffic may have its urgency modulated as a function of the transaction:
	Normal for writes and important for reads.
	 Soft real-time traffic may have its hurry level modulated as a function of the bandwidth it receives: <i>Critical</i> until a specified bandwidth is obtained on a sliding 4 microsecond window, and <i>normal</i> thereafter. These settings are set through configuration registers and may be modified while the interconnect is running. The mechanism is called a bandwidth regulator. On the real-time modem data port, the hurry is fixed at a critical level.
	The same same same part, and same year, and ye
	<i>Id.</i> at 18.
	As a further illustration, the Arteris NoC implements QoS mechanisms that performs arbitration based on "Bandwidth Regulartor (BR)" and "Bandwidth Limiter (BL)":

'800 Patent Claim	Qualcomm Snapdragon 8+ Gen 1 Mobile Platform System on Chip 1
	Bandwidth Limiters and Rate Regulators
	Many times architects will want to implement QoS within their SoC but the QoS prioritization data is not available from the individual IP blocks. In this case, QoS information may be generated from within the NoC interconnect using Arteris' QoS Generator. The QoS Generator can instantiate sophisticated, and software programmable, means to regulate interconnect QoS, including:
	 > Bandwidth Limiters – Bandwidth limiters cause a socket to stop accepting requests when a run-time programmable throughput threshold has been exceeded. > Rate Regulators – Rate regulators cause a socket's transactions to be demoted when a bandwidth threshold is reached. This can be considered a smoother version of the bandwidth limiter because transactions are only demoted
	instead of stalled. https://www.arteris.com/end-to-end-quality-of-service-gos