OPTIMIERUNG VON JOB-SHOP PROBLEMEN MIT REINFORCEMENT LEARNING

TOM KLEIN & KAI KLEMMER IM RAHMEN DES PROJEKTS ZUR DATENANALYSE (WS 19/20)

AGENDA

- Recap
 - Was ist nochmal ein Job-Shop?
 - Was ist nochmal Reinforcement Learning?
- Zielsetzung
- Modellierung
 - ▶ I/O via JSON
 - Q-Learning via Multi-Agent Learning
 - Reward-Funktion
- Probleme
- Demo
- Reflexion
- Quellen

DAS JOB-SHOP PROBLEM

- $\alpha = Jm, m \in \mathbb{N}$
- $n \in \mathbb{N}$ viele Aufträge
- Jeder Auftrag auf jeder Maschine
- Reihenfolge der Aufträge auf Maschinen ist vorgegeben
- Nicht alle Aufträge müssen die gleiche Reihenfolge haben

BEISPIEL

j	1	2	3	4	$oldsymbol{j}$	1	2	3	4
$\overline{p_{1j}}$	5	7	1	2	1. zu besuchende Maschine	1	2	4	3
p_{2j}	3	4	6	1	2. zu besuchende Maschine	2	1	3	4
p_{3j}					3. zu besuchende Maschine	3	3	2	2
p_{4j}	2	6	3	7	4. zu besuchende Maschine	4	4	1	1

ABLAUF

Q-TABELLE, Q-FUNKTION

Q-Tabelle (Zustand x Aktion)

$$Q'(s_t, a_t) = (1 - \alpha) \cdot Q(s_t, a_t) + \alpha \cdot \left(r_t + \gamma \cdot \max_{a} Q(s_{t+1}, a_{t+1})\right)$$

- $\alpha = \frac{1}{1 + count(s, a)}$ (Lernrate)
- $ightharpoonup \gamma$ ist "Discount"-Faktor

ZIELSETZUNG

- Programm zur Lösung von Job-Shop Problemen
- Verwendung von Q-Learning zum Lernen von besten Aktionen
- I/O für Probleme und Lösungen
- Visualisierung der Lösung

MODELLIERUNG

- Programmiersprache: Python
- File-gesteuertes I/O-System mit JSON
- Aufruf über Konsole

```
"name": "4M4T",
"kommentar": "",
"reihenfolge": [
    [0, 1, 3, 2],
    [1, 0, 2, 3],
    [2, 2, 1, 1],
    [3, 3, 0, 0]
"bearbeitungszeiten": [
    [5, 7, 1, 2],
    [3, 4, 6, 1],
    [3, 8, 5, 4],
    [2, 6, 3, 7]
"zielfunktion": "Cmax"
```

WORKFLOW

OUTPUT

MULTI-AGENT REINFORCEMENT LEARNING

- Wahl der Dimensionen
 - Jobs, Maschinen, Zeit
- Eine Q-Table pro Maschine
- Random-Werte vs. Nullen
- Maximierung vs. Minimierung

DIE REWARD-FUNKTION

- Schätze Fertigungszeitpunkt für Maschine
- Infimum für Maschine = $\sum Bearbeitungszeiten$
- > x = Schätzung Infimum

$$r = \frac{1000}{x^2}$$

PSEUDOCODE

Lese JSON **Solange i < maximale Iterationen:** Solange Ablaufplan nicht fertig: wähle zulässiges Job-Maschinen-Paar **Update Q-Table** Wenn neuer Ablaufplan besser als bester Ablaufplan: Setze i = 0bester Ablaufplan = neuer Ablaufplan

Visualisiere besten Ablaufplan und schreibe ihn in JSON

PROBLEME

- Job-Shops mit mehren optimalen Lösungen
 - Eindeutigkeit der Q-Table

 Optimale Lösung pro Maschine vs. Optimale globale Lösung

REFLEXION

- Finden von zulässigen Lösungen
- Gelerntes oft nicht eindeutig
- Modellierung Q-Table nicht optimal
- Reward-Funktion zu spezifisch

QUELLEN

- Dörn, Sebastian (2018): Programmieren für Ingenieure und Naturwissenschaftler. Berlin, Heidelberg: Springer Berlin Heidelberg
- Jaehn, Florian; Pesch, Erwin (2019): Ablaufplanung. Berlin, Heidelberg: Springer Berlin Heidelberg
- Beke, Tom (2013): Multi-Agent Reinforcement Learning in a flexible Job-Shop Environment: The VCST Case. Universiteit Gent
- Zhang, Wei; Diettrich, Thomas G. (1995): A Reinforcement Learning Approach to Job-Shop Scheduling. Oregon State University

VIELEN DANK FÜR HRE **AUFMERKSAMKEIT!**