Machine Leaning Time Series

Cyrus Lentin

Time Series - Definition

- A Time Series Is A Set Of Observation Taken At Specified Times, Usually At 'Equal Intervals'
- A Set Of Data Depending On The Time
- A Series Of Values Over A Period Of Time
- Collection Of Data Belonging To Different Time Periods Of Some Variable Or Composite Of Variables
- Example

Production Of Steel Per Capita Income
Gross National Income Price Of Tobacco
Index Of Industrial Production Price Of Share

- Mathematically A Time Series Is Defined By The Values Y1, Y2...of A Variable Y At Times t1, t2
- Thus,Y= F(t)
- In Time Series, Time Act As An Independent Variable To Estimate Dependent Variables

Variations In Time Series

- Social Customs, Festivals Etc.
- Seasons
- The Four Phase Of Business: Prosperity, Decline, Depression, Recovery
- Natural Calamities: Earthquake, Epidemic, Flood, Drought Etc.
- Political Movements/Changes, War Etc.

Importance Of Time Series Analysis

- Popular Tool For Business Forecasting
- Basis For Understanding Past Behavior
- Can Forecast Future Activities; Planning For Future Operations
- Evaluate Current Accomplishments; Evaluation Of Performance
- Facilitates Comparison
- Estimation Of Trade Cycle

Components Of Time Series

What Is Component

Characteristic Movements Or Fluctuations Of Time Series

Components Of Time Series

What Is Component

Characteristic Movements Or Fluctuations Of Time Series

Types of Components

- Trend Secular Trend
- Seasonality Seasonal Variations / Fluctuations
- Cyclical Cyclical Variations / Fluctuations
- Irregular Variations / Movements

Trend

- The General Tendency Of The Data To Grow Or Decline Over A Long Period Of Time.
- The Forces Which Are Constant Over A Long Period (Or Even If They Vary They Do So Very Gradually) Produce The Trend.

Trend – Characteristics

- Downward Trend-declining Death Rate
- Upward Trend-population Growth

Mathematically Trend May Be Linear Or Non-linear

Secular Trend - Examples

- Population Change
- Technological Progress
- Global Temperature
- Improvement In Business
- Better Medical Facility
- Formation Of Rocks

Trends – Why Measure?

- Knowledge Of Past Behavior
- Estimation
- Study Of Other Components

Seasonality

- The Component Responsible For The Regular Rise Or Fall (Fluctuations) In The Time Series
 During A Period Not More Than 1 Year.
- Fluctuations Occur In Regular Sequence The Period Being A Year, A Month, A Week, A Day, Or Even A Fraction Of The Day, An Hour Etc.

Seasonality

- The Component Responsible For The Regular Rise Or Fall (Fluctuations) In The Time Series During A Period Not More Than 1 Year.
- Fluctuations Occur In Regular Sequence (Periodical)
- The Period Being A Year, A Month, A Week, A Day, Or Even A Fraction Of The Day, An Hour Etc.
- Term "Seasonal" Is Meant To Include Any Kind Of Variation Which Is Of Periodic Nature And Whose Repeating Cycles Are Of Relatively Short Duration.
- The Factors That Cause Seasonal Variations Are:
 - Climate & Weather Condition
 - Customs Traditions & Habits

Seasonality - Examples

- The Factors That Cause Seasonal Variations Are:
 - Climate & Weather Condition
 - Customs Traditions & Habits
- Examples
 - Demands for woolen clothes goes up in winter
 - Price increases during festivals
 - Withdraws from banks are heavy during first week of the month.
 - The number of letter posted on Saturday is larger

Seasonality – Characteristics

- Regularity
- Fixed Proportion
- Increase Or Decrease
- Easy To Forecast

Seasonality – Why Measure?

- Analysis Of Past Behavior Of The Series
- Forecasting The Short Time Fluctuations
- Elimination Of The Seasonal Variations For Measuring Cyclic Variations

Cyclicity

- Cycle Refers To Recurrent Variations In Time Series; Variations That Usually Last Longer Than A Year
- Cyclic Fluctuations / Variations Are Long Term Movements That Represent Consistently Recurring Rises And Declines In Activity

Cyclicity - Characteristics

Business Cycle Consists Of 4 Phases

- Prosperity
- Decline
- Depressions
- Recovery

Cyclicity – Why Measure?

- Measures of past cyclical behavior
- Forecasting
- Useful in formulating policies in business

Irregularity

- Also Called Erratic, Random, Or "Accidental" Variations
- Do Not Repeat In A Definite Pattern
- Strikes, Fire, Wars, Famines, Floods, Earthquakes
- Unpredictable

Irregularity - Characteristics

- Irregular & Unpredictable
- No Definite Pattern
- Short Period Of Time
- No Statistical Technique

Handling Missing Values - ffill

 When ffill() is applied across the index then any missing value is filled based on the corresponding value in the previous row.

	Α	В	С	D
0	5.0	NaN	4	5.0
1	3.0	2.0	3	4.0
2	NaN	4.0	8	2.0
3	4.0	3.0	5	NaN

	Α	В	С	D
0	5.0	NaN	4	5.0
1	3.0	2.0	3	4.0
2	3.0	4.0	8	2.0
3	4.0	3.0	5	2.0

Handling Missing Values - bfill

 When bfill() is applied across the index then any missing value is filled based on the corresponding value in the next row.

	Α	В	С
0	NaN	11.0	NaN
1	1.0	5.0	5.0
2	2.0	NaN	10.0
3	3.0	NaN	11.0
4	NaN	NaN	NaN
5	NaN	8.0	8.0

	Α	В	С
0	1.0	11.0	5.0
1	1.0	5.0	5.0
2	2.0	8.0	10.0
3	3.0	8.0	11.0
4	NaN	8.0	8.0
5	NaN	8.0	8.0

Handling Missing Values - interpolate

 When interpolate() is applied across the index then any missing value is filled with mean of the values in the previous and next rows.

	Α	В	С	D		Α	В	С	D
0	12.0	NaN	20.0	14.0	0	12.0	NaN	20.0	14.0
1	4.0	2.0	16.0	3.0	1	4.0	2.0	16.0	3.0
2	5.0	54.0	NaN	NaN	2	5.0	54.0	9.5	4.0
3	NaN	3.0	3.0	NaN	3	3.0	3.0	3.0	5.0
4	1.0	NaN	8.0	6.0	4	1.0	3.0	8.0	6.0

Handling Missing Values – KNN Mean

Compute the mean of K nearest rows up & down

Handling Missing Values – Seasonal Values

Compute the mean of corresponding seasonal periods

Smoothing

- There Are No Proven "Automatic" Techniques To Identify Trend Components In The Time Series
 Data
- However, As Long As The Trend Is Monotonous That Part Of Data Analysis Is Typically Not Very Difficult
- If The Time Series Data Contains Considerable Error, Then The First Step In The Process Of Trend Identification Is Smoothing
- Smoothing Always Involves Some Form Of Local Averaging Of Data Such That The Nonsystematic Components Of Individual Observations Cancel Each Other Out
- The Most Common Technique Is Moving Average Smoothing Which Replaces Each Element Of The Series By Either The Simple Or Weighted Average Of N Surrounding Observations

Moving Average

- Time Series Data Such As Stock Prices, Weather Observations Or Experimental Results Often Contain Random Fluctuations Which Are Referred To As "Noise"
- Noise Can Make It Difficult To Infer Useful Things From The Data Stream Such As Trend And Cycles
- The Simplest Way Of Reducing The Effect Of Noise Is To Use An Historical Average Of N Observations
- Moving Averages Are Described By The Number Of Observations Used In The Calculations
- For Example, MA20 Is An Average Based On The 20 Most Recent Observations

Simple Moving Average

- Simple Moving Average Is Mean / Average Of Last N Readings
- Simple Moving Average Is A Lagging Indicator Since It Uses Historical Data

Rolling average with a window size of 3

Cumulative Moving Average

- The Cumulative Moving Average is unweighted mean of the previous values up to the current time t.
- The simple moving average has a sliding window of constant size M. On the contrary, the window size becomes larger as the time passes when computing the cumulative moving average.

Rolling average with a window size of 3

Exponential Smoothing

- It Bases Its Forecasts On A Weighted Average Of Past Observations, With More Weight Put On The More Recent Observations
- Simple Exponential Smoothing
 For A Series With No Pronounced Trend Or Seasonality

Exponential moving average

Stationarity

- A stationary time series is one whose properties do not depend on the time at which the series is observed.
- Thus, time series with trends, or with seasonality, are not stationary the trend and seasonality will
 affect the value of the time series at different times
- You can check if your time series is stationary by looking at a line plot of the series over time.
- Sign of obvious trends, seasonality, or other systematic structures in the series are indicators of a non-stationary series.
- A more accurate method would be to use a statistical test, such as the Dickey-Fuller test.
- Should you make your time series stationary? Generally, yes.
- If you have clear trend and seasonality in your time series, then model these components, remove them from observations, then train models on the residuals.

Stationarity

Which of these time series is stationary?

Machine Learning – Cyrus Lentin

Stationarity – Why?

- If we fit a stationary model to data, we assume our data are a realization of a stationary process.
- So our first step in an analysis should be to check whether there is any evidence of a trend or seasonal effects and, if there is, remove them.
- Unless Time Series Is Stationary, An ARIMA Model Can Not Be Built
- In Cases Where The Stationary Criterion Are Violated, The First Requisite Becomes To "Stationarize"
 The Time Series
- Only After This, We Can Use ARIMA Time Series Models For Forecasting
- There Are Multiple Ways Of Bringing This Stationarity Like Detrending, Differencing Etc.

Differencing

- One of the most common methods of dealing with both trend and seasonality is differencing.
- In this technique, we take the difference of the observation at a particular instant with that at the previous instant.
- This mostly works well in improving stationarity.

De-Trending With Differencing

- First Order Differencing
 When differencing is done once it is called First Order Differencing
- Second Order Differencing
 When differencing is done on already difference data it is called Second Order Differencing

De-Seasonality With Differencing

Find out the seasonality period

Augmented Dickey-Fuller Test Of Stationarity

- P-value should be less than 0.05
- Small p-values suggest the data is stationary

ACF / PACF For MA

ACF / PACF For ARIMA

ARIMA (Auto Regressive Integrated Moving Averages)

- ARIMA Models Provide Another Approach To Time Series Forecasting
- ARIMA Models Are, In Theory, The Most General Class Of Models For Forecasting A Time Series.
- Arima Models Aim To Describe The Autocorrelations In The Data
- Pre Requisite Of ARIMA Is That The Time Series Needs To Be Stationary.
- A Stationary Series Has No Trend, Its Variations Around Its Mean Have A Constant Amplitude, And It Wiggles In A Consistent Fashion,
 - I.E., Its Short-term Random Time Patterns Always Look The Same In A Statistical Sense
- This is a modeling approach that can be used to calculate the probability of future value lying between two specified limits

Steps For Time Series Models

Simple Moving Average

- Visualize Time Series
- Check Stationarity
- Plot ACF / PACF Charts
- Build SMA Model
- Make Forecast

Auto Regressive Integrated Moving Average

- Visualize Time Series
- Check Stationarity
- Plot ACF / PACF Charts
- Build ARIMA Model
- Make Forecast

Thank you!

Contact:

Cyrus Lentin cyrus@lentins.co.in +91-98200-94236