Some extra notes on countability

Theorem 1: If there is a 1-1 mapping $g: A \to \mathbb{N}$, then A is countable

Proof: If A is finite we are done. Otherwise, we will use g to define a 1-1 and onto mapping $f: A \to \mathbb{N}$. Let $f(x) = |\{y: g(y) < g(x)\}|$ (i.e. f(x) is the number of "predecessors" of g(x)). We need to show that f is 1-1 and onto.

We first show that f is 1-1. Suppose $x \neq x'$. Then $g(x) \neq g(x')$. Suppose g(x) < g(x') (the case g(x') < g(x) follows the same argument.) Then for any $k, k < g(x) \Rightarrow k < g(x')$, so $f(x) \leq f(x')$. But then since g(x) < g(x'), we in fact have f(x) < f(x'), so $f(x) \neq f(x')$.

Showing that f is onto is a bit trickier. We have to use induction, and also use the fact that any set of natural numbers has a smallest element. If we take x such that $g(x) = \min \{g(y) : y \in A\}$, then f(x) = 0. Now suppose we have an x such that f(x) = k. Take x' such that

$$g(x') = \min\{g(y): y \in A \text{ and } g(y) > g(x)\}\$$

Note that there will always be such an x' if A is infinite and g is 1-1. Then f(x') = k + 1. So by induction, for every $k \in \mathbb{N}$, there is some x such that f(x) = k.

Corollary 1: If A is countable and there is a 1-1 mapping $g:B \to A$, then B is countable.

Proof: Just use the fact that the composition of 1-1 mappings it itself 1-1.

Theorem 2: For any finite alphabet Σ , Σ^* is countable.

Proof: We will describe a 1-1 mapping $g: \Sigma^* \to \{0,1\}^*$. First of all, suppose $\Sigma = \{s_1, s_2, \dots, s_k\}$. Let $\overline{s_i}$ denote the binary representation of i. Define d(0) = 00, d(1) = 01. For $w = w_1w_2 \dots w_n \in \{0,1\}^*$, define $D(w) = d(w_1)d(w_2) \dots d(w_n)$. Then, for $u = u_1u_2 \dots u_m \in \Sigma^*$, define

$$g(u) = D(\overline{u_1})11D(\overline{u_2})11\dots11D(\overline{u_m})$$

It is not hard to see that this is 1-1. (Exercise: think about how to determine u given g(u). What is the purpose of the d mapping and the 11's?)

Example 1: Suppose $\Sigma = \{(,),a,b\}$. So $\overline{(=1,\bar{)}} = 10, \overline{a} = 11$, and $\overline{b} = 100$. Then

$$g(a(b)a) = 0101110111010000110100110101$$

Theorem 3: The set of all Turing-recognizable languages over $\{0,1\}$ is countable.

Proof: Let $\mathfrak{M}(0,1)$ represent the set of all TMs with tape alphabet $\{0,1\}$. In class we argued that there will be an alphabet Σ and a 1-1 mapping $\langle \cdot \rangle$: $\mathfrak{M}(0,1) \to \Sigma^*$. By Theorem 2 Σ^* is countable, so by Corollary 1, $\mathfrak{M}(0,1)$ is countable. Now a language L is Turing-recognizable iff there is a TM that recognizes it, so there is a 1-1 and onto mapping between the Turing-recognizable languages over $\{0,1\}$ and $\mathfrak{M}(0,1)$. So the set of Turing-recognizable is countable.