Monetary Policy & Anchored Expectations An Endogenous Gain Learning Model

Laura Gáti

Boston College

April 15, 2020

Puzzling US business cycle fall 2019

This project

Model anchored expectations as an endogenous gain learning scheme

ightarrow How to conduct optimal monetary policy in interaction with the anchoring expectation formation?

Preview of results

 intertemporal tradeoff: short-run costs vs. long-run benefits of anchoring expectations

optimal monetary policy time-inconsistent

 \rightarrow illustrate in special case: target criterion

Related Literature

Optimal monetary policy in New Keynesian models
 Clarida, Gali & Gertler (1999), Woodford (2003)

Econometric learning

Evans & Honkapohja (2001), Preston (2005), Molnár & Santoro (2014)

Anchoring / endogenous gain

Carvalho et al (2019), Svensson (2015), Hooper et al (2019), Milani (2014)

STRUCTURE OF TALK

1 Model

2 Special case

STRUCTURE OF TALK

1 Model

2 Special case

Thank you!

DERIVATIONS

Household FOCs

$$\hat{C}_t^i = \hat{\mathbb{E}}_t^i \hat{C}_{t+1}^i - \sigma(\hat{i}_t - \hat{\mathbb{E}}_t^i \hat{\pi}_{t+1})$$
 (1)

$$\hat{\mathbb{E}}_{t}^{i} \sum_{s=0}^{\infty} \beta^{s} \hat{C}_{t}^{i} = \omega_{t}^{i} + \hat{\mathbb{E}}_{t}^{i} \sum_{s=0}^{\infty} \beta^{s} \hat{Y}_{t}^{i}$$
(2)

where a hat denotes log-linear approximation and $\omega_t^i \equiv \frac{(1+i_{t-1})B_{t-1}^i}{P_tY^*}$.

- Solve (1) backward to some date t, take expectations at t
- ② Sub in (2)
- Aggregate over households i
- \rightarrow Obtain (??)

Compact notation

$$z_t = \mathsf{A}_1 \mathsf{f}_{a,t} + \mathsf{A}_2 \mathsf{f}_{b,t} + \mathsf{A}_3 \mathsf{s}_t$$

$$s_t = hs_{t-1} + \epsilon_t$$

$$a \equiv \begin{pmatrix} \pi_t \\ \mathsf{x}_t \\ \mathsf{i}_t \end{pmatrix}$$

$$z_t \equiv \begin{pmatrix} \pi_t \\ x_t \\ i_t \end{pmatrix}$$
 $s_t \equiv \begin{pmatrix} r_t^n \\ \overline{i}_t \\ u_t \end{pmatrix}$

$$\equiv \begin{pmatrix} \bar{i}_t \\ u_t \end{pmatrix}$$

$$f_{a,t} \equiv \hat{\mathbb{E}}_t \sum_{T=t}^{\infty} (\alpha \beta)^{T-t} \mathsf{z}_{T+1}$$
 $f_{b,t} \equiv \hat{\mathbb{E}}_t \sum_{T=t}^{\infty} (\beta)^{T-t} \mathsf{z}_{T+1}$

(3)

(4)

(5)

(6)