Curso de Graduação em Engenharia Eletrônica - Faculdade Gama - Universidade de Brasília

Disciplina: Projeto com Circuitos Reconfiguráveis (período 2019.1).

Professor: Daniel Mauricio Muñoz Arboleda

e-mail: damuz@unb.br

Folha de Dados Primeira Lista Exercícios Circuitos Sequenciais e Projeto RTL

Entrega até sexta-feira 09 de maio de 2019 às 23:50 horas

Instruções:

- 1. Organize o repositório em pastas para cada exercício.
- 2. Entregar todos os arquivos necessários para replicar o experimento.
- 3. Preencha os dados solicitados, imprima este documento em PDF e deixe no repositório.

Nome: **Arthur Faria Campos** matrícula: 16/0024242

Exercício 1. Ping-pong leds

1) Diagrama de blocos proposto.

Professor: Daniel Mauricio Muñoz Arboleda

e-mail: damuz@unb.br

2) Diagrama esquemático (Análise RTL pré-síntese)

3) Estimação consumo de recursos lógicos após a síntese lógica:

LUTs	FFs	Pinos de IOs	Blocos DSP	Blocos BRAM
Total:	Total:	Total:	Total:	Total:
115 (0.55 %)	107 (0.26 %)	32 (30.19 %)	0 (0 %)	0 (0 %)

4) Consumo de recursos após implementação (processo *Place and Route - PAR*):

LUTs	FFs	Pinos de IOs	Blocos DSP	Blocos BRAM
Total:	Total:	Total:	Total:	Total:
115 (0.55%)	107 (0.26 %)	32 (30.19 %)	0 (0 %)	0 (0 %)

1) Análise de timming: (Input_Delay: min=3ns max=4ns Output_Delay: min=max=2ns)

Worst negative slack (setup): 0.001 ns Worst negative slack (hold): 0.144 ns

Frequência de operação do circuito: 63.50 MHz

Caminho crítico (net de origem): reset_in

Caminho crítico (net de destino): Display_i/ClockDivider_i/count_reg[29]/CLR

Máximo path delay: 9.887 ns

5) Layout do circuito após a implementação (após processo *Place and Route* – PAR):

6) Estimação do consumo de energia após a implementação do circuito:

Potência total: 94 (mW) Potência estática: 72 (mW) Potência dinâmica: 22 (mW)

Gráfico de consumo de energia:

Exercício 2. Ping-pong leds FSM

1) Diagrama de blocos proposto.

2) Diagrama de estados:

Professor: Daniel Mauricio Muñoz Arboleda

e-mail: damuz@unb.br

3) Diagrama esquemático (Análise RTL pré-síntese)

4) Estimação consumo de recursos lógicos após a síntese lógica:

LUTs	FFs	Pinos de IOs	Blocos DSP	Blocos BRAM
Total:	Total:	Total:	Total:	Total:
120 (0.58 %)	101 (0.24%)	32 (30.19 %)	0	0

5) Consumo de recursos após implementação (processo *Place and Route -* PAR):

LUTs	FFs	Pinos de IOs	Blocos DSP	Blocos BRAM
Total:	Total:	Total:	Total:	Total:
120 (0.58 %)	101 (0.24%)	32 (30.19 %)	0	0

2) Análise de timming: (Input_Delay: min=3ns max=4ns Output_Delay: min=max=2ns)

Worst negative slack (setup): 0.429 ns Worst negative slack (hold): 0.196 ns

Frequência de operação do circuito: 200 MHz

Caminho crítico (net de origem): reset_in

Caminho crítico (net de destino): PingPongLED_FSM_i/ClockDivider_ii/count_reg[27]/CLR

Maximo path delay: 1.473 ns

6) Layout do circuito após a implementação (após processo Place and Route – PAR):

7) Estimação do consumo de energia após a implementação do circuito:

Potência total: 86 (mW)
Potência estática: 72 (mW)
Potência dinâmica: 15 (mW)

Gráfico de consumo de energia:

Professor: Daniel Mauricio Muñoz Arboleda

e-mail: damuz@unb.br

Exercício 3. Neurônio GMBH de segunda ordem usando IP-Cores em ponto flutuante

1) Diagrama de blocos proposto

2) Diagrama esquemático (Análise RTL pré-síntese)

3) Erro quadrático médio usando Matlab como estimador estatístico para 100 amostras.

MSE = 0.01068495259616166

4) Estimação consumo de recursos lógicos após a síntese lógica:

LUTs Total:	FFs Total:	Pinos de IOs Total:	Blocos DSP Total:	Blocos BRAM Total:	
733 (3.52 %)	190 (0.46 %)	58 (54.72%)	3 (3.33%)	0 (0 %)	

5) Consumo de recursos após implementação (processo *Place and Route -* PAR):

LUTs	~	Pinos de IC	Blocos DS	P Blocos BRAM
Total:		Total:	Total:	Total:
741 (3.56	5 %) 217 (0.52	2 %) 37 (34.91%	3 (3.33%)	0 (0 %)

6) Análise de timming(input_delay: min=3ns max=4ns output_delay: min=max=2ns)

Worst negative slack (setup): 0.023 ns Worst negative slack (hold): 0.138 ns

Frequência de operação do circuito: 54.644 MHz

Caminho crítico (net de origem): btnD_in Caminho crítico (net de destino): led_out[15]

Maximo path delay: 12.241 ns

7) Layout do circuito após a implementação (após processo Place and Route – PAR):

Figura 3.4. Layout do circuito

8) Estimação do consumo de energia após a implementação do circuito:

Potência total: 82 (mW) Potência estática: 72 (mW)

Potência dinâmica: 11 (mW) Gráfico de consumo de energia:

