Sécurité des mécanismes cryptographiques

(source : D. Boneh)

Chiffrement symétrique

Définition

Une paire d'algorithmes (E, D) efficaces définis sur (K, M, C) où $E: \mathcal{K} \times \mathcal{M} \to \mathcal{C} \quad \mathcal{D}: \mathcal{K} \times \mathcal{C} \to \mathcal{M}$ tq $\forall m \in \mathcal{M}, k \in \mathcal{K}$,

$$D(k,E(k,m))=m$$

E est (souvent) randomisée

D est déterministe

One time pad (Vernam 1917)

$$\mathcal{M} = \mathcal{C} = \mathcal{K} = \{0, 1\}^n$$

$$\mathbf{c} = E(k, m) = k \oplus m$$

$$D(k, c) = k \oplus c$$

Très rapide mais pas pratique car la clé doit être aussi longue que le message

Comment prouver sa sécurité?

Idée : le chiffré ne doit révéler aucune information sur le texte clair

Notion de sécurité parfaite...

2014

Sécurité parfaite (Perfect secrecy)

Définition

(E,D) sur $(\mathcal{K},\mathcal{M},\mathcal{C})$ a une sécurité parfaite si $\forall m_0,m_1\in\mathcal{M},\ |m_0|=|m_1|,\ \forall c\in\mathcal{C}$

$$Pr_k[E(k,m_0)=c]=Pr_k[E(k,m_1)=c]$$

où $k \stackrel{R}{\leftarrow} \mathcal{K}$ (k est choisi aléatoirement dans \mathcal{K})

- c donné, impossible de savoir s'il est le chiffré de m₀ ou de m₁
- L'adversaire n'apprend rien du chiffré
- Donc une attaque utilisant seulement le chiffré n'est pas possible

2014

Exercice

Soit *m*, *c*, combien de clés permettent de chiffrer *m* en *c* par OTP?

- dépend de m
- une infinité
- aucune
- 1
- 2

Que vaut $\#\mathcal{K}$?

$$\forall m \in \mathcal{M}, \forall c \in \mathcal{C}$$

Que vaut : $\#\{cles\ k\ tq\ E(k,m)=c\}$?

OTP a une sécurité parfaite

Preuve

 $\forall m \in \mathcal{M}, \forall c \in \mathcal{C}$

$$Pr_k[E(k, m) = c] = \frac{\#\{cles \ k \ tq \ E(k, m) = c\}}{|\mathcal{K}|} = 1/2^n$$

Avec OTP, une attaque par chiffrés n'est pas possible

Mais d'autres attaques sont possibles ...

Peut-on garder une sécurité parfaite si on réduit la taille des clés?

Théorème

Sécu parfaite $\Rightarrow |\mathcal{K}| = |\mathcal{M}|$

OTP non pratique!!

Stream cipher: rendre pratique OTP

Les Stream Ciphers ne peuvent pas avoir de sécurité parfaite

- Besoin d'une autre définition de sécurité
- La sécurité dépendra du PRG
- Le PRG doit être imprédictible

Supposons PRG prédictible k = seed, G = PRG

$$\exists i \ G(k)|_{1,...,i} \xrightarrow{Algo} G(k)|_{i+1,...,n}$$

Alors

Le fait de pouvoir prédire le prochain bit est un problème !

PRG prédictible ou imprédictible

Définition : PRG prédictible

 $G: \mathcal{K} \to \{0,1\}^n$ est prédictible si $\exists \mathcal{A}$ Algo efficace et $\exists 1 \leq i \leq n-1$ tq

$$Pr_{k \leftarrow \mathcal{K}}[\mathcal{A}(G(k))|_{1,\dots,i} = G(k)|_{i+1}] \ge 1/2 + \epsilon$$

pour ϵ "non négligeable" c.a.d. $\epsilon \geq 1/2^{30}$

Définition : un PRG est imprédictible s'il n'est pas prédictible

 $\Rightarrow \forall i,$ aucun adversaire ne peut prédire le prochain bit pour un ϵ non négligeable

Exercice : $G: \mathcal{K} \to \{0,1\}^n$ tq $\forall k \in \mathcal{K}, XOR(G(k)) = 1$. G est-il prédictible ?

- Oui, le 1er bit donné, je peux prédire le 2eme
- G est imprédictible
- Ca dépend de n
- ① Oui car si je connais les n-1 premiers bits, je peux prédire le nième

Que veut dire négligeable?

En pratique ϵ est un scalaire

- ϵ non négligeable : $\epsilon \ge 1/2^{30}$ (l'événement peut survenir sur 1GB de données)
- ϵ négligeable : $\epsilon \le 1/2^{88}$ (l'événement n'arrivera jamais dans toute la vie de la clé)

En théorie ϵ est une fonction

$$\epsilon \ : \ \mathbb{Z}^{\geq 0} \to \mathbb{R}^{\geq 0}$$

- ϵ non négligeable : $\exists d : \epsilon(\lambda) \ge 1/\lambda^d \ (\epsilon \ge 1/Poly$, pour beaucoup de λ)
- ϵ négligeable : $\forall d$, $\exists \lambda_d$, $\lambda \geq \lambda_d$: $\epsilon(\lambda) \leq 1/\lambda^d$ ($\epsilon \leq 1/Poly$, pour λ grand)

Exercice : négligeable ou non négligeable ?

- $\epsilon(\lambda) = 1/2^{\lambda}$
- $\epsilon(\lambda) = 1/\lambda^{1000}$
- $\bullet \ \epsilon(\lambda) = \{ \begin{array}{c} 1/2^{\lambda} \ {\rm si} \ \lambda \ {\rm impair} \\ 1/\lambda^{1000} \ {\rm si} \ \lambda \ {\rm pair} \end{array}$
- $\epsilon(\lambda) = 1/2^{\lambda} + 1/\lambda^{1000}$
- $\epsilon(\lambda) = 1/1000^{\lambda}$

PRG sûr

Un bon PRG doit se comporter (presque) comme un générateur aléatoire (RG)

Qu'est-ce que cela signifie?

Soit
$$G: \mathcal{K} \to \{0,1\}^n$$
 un PRG,

$$[k \stackrel{R}{\leftarrow} \mathcal{K}, \text{ output } G(k)]$$

doit être "indistinguable" de

$$[r \xleftarrow{R} \{0,1\}^n, \text{ output } r]$$

Remarque : L'espace des outputs de G() est beaucoup plus petit que $\{0,1\}^n$

Tests statistiques (voir NIST)

Un test sur $\{0,1\}^n$ est un algo (distingueur)

$$\{0,1\}^n o \left\{ egin{array}{l} 0 ext{ l'output n'est pas aléatoire} \\ 1 ext{ le test est passé avec succès} \end{array}
ight.$$

Exemples de tests :

- nombre de 1 dans la séquence
- nombre de runs
- longueur du plus grand run de 1
- ...

Avantage

Soit $G: \mathcal{K} \to \{0,1\}^n$ un PRG, A un test stat. sur $\{0,1\}^n$

Définition

$$Adv_{PRG}[A,G] := |Pr_{k \xleftarrow{R} \mathcal{K}}[A(G(k)) = 1] - Pr_{r \xleftarrow{R} \{0,1\}^n}[A(r) = 1]|$$

- L'avantage donne une valeur entre 0 et 1
- Adv proche de $1 \Rightarrow A$ peut distinguer G d'un RG
- Adv proche de 0 ⇒ A ne peut pas distinguer G d'un RG

Exemple

Soit $G: \mathcal{K} \to \{0,1\}^n$ un PRG, A un test stat. sur $\{0,1\}^n$ G satisfait msb(G(k)) = 1 pour 2/3 des clés de \mathcal{K}

Définissons le test stat A par :

$$A(x) = 1$$
 si $msb(x) = 1$

$$A(x) = 0$$
 si $msb(x) = 0$

Quel est l'avantage de A?

$$Adv_{PRG}[A, G] := |Pr_{k \leftarrow \mathcal{K}}[A(G(k)) = 1] - Pr_{r \leftarrow \mathcal{K}}[A(r) = 1]| = ?$$

Exemple

Soit $G: \mathcal{K} \to \{0,1\}^n$ un PRG, A un test stat. sur $\{0,1\}^n$ G satisfait msb(G(k)) = 1 pour 2/3 des clés de \mathcal{K}

Définissons le test stat A par :

$$A(x) = 1 \text{ si } msb(x) = 1$$

 $A(x) = 0 \text{ si } msb(x) = 0$

Quel est l'avantage de A?

$$Adv_{PRG}[A,G]:=|Pr_{k \xleftarrow{R} \mathcal{K}}[A(G(k))=1]-Pr_{r \xleftarrow{R} \{0,1\}^n}[A(r)=1]|=1/6$$

L'avantage n'est pas négligeable donc A casse G avec avantage 1/6

PRG sûr

Définition: PRG sûr

 $G: \mathcal{K} \to \{0,1\}^n$ est sûr si pour tout test stat A, $Adv_{PRG}[A,G]$ est négligeable.

Existe-t-il des PRG dont la sécurité est prouvable ? on ne sait pas (P=?NP)

Un PRG sûr est imprédictible

Preuve : par contraposé

On montre que PRG prédictible ⇒ PRG non sûr

Un PRG sûr est imprédictible : preuve

Soit A un algo efficient tq

$$Pr_{k \leftarrow \mathcal{K}}[A(G(k))|_{1,\dots,i} = G(k)|_{i+1}] \ge 1/2 + \epsilon$$

pour ϵ "non négligeable" (par exemple $\epsilon=1/1000$) Définissons un test stat B :

$$B(x) = \begin{cases} \text{if } A(x)|_{1,\dots,i} = x_{i+1} \text{ output 1} \\ \text{else output 0} \end{cases}$$

$$r \stackrel{R}{\leftarrow} \{0,1\}^n$$
: $Pr[B(r) = 1] = 1/2$
 $k \stackrel{R}{\leftarrow} \mathcal{K}$: $Pr[B(G(k) = 1)] = 1/2 + \epsilon$
 $\Rightarrow Adv_{PBG}[B,G] = \epsilon$

avec ϵ non négligeable

Yao'82 : Un PRG imprédictible est sûr

Théorème

Soit $G: \mathcal{K} \to \{0,1\}^n$ un PRG. Si $\forall i \in \{0,\dots,n-1\}$, G est imprédictible à la position i, alors G est sûr.

Cela signifie que si les prédicateurs du prochain bit ne peuvent pas distinguer G d'un RG, alors aucun test statistique ne peut le faire.

Exemple

Soit $G: \mathcal{K} \to \{0,1\}^n$ un PRG tq à partir des derniers n/2 bits de G(k), il est facile de calculer les n/2 premiers bits

G est-il prédictible pour certains $i \in \{0, ..., n-1\}$?

Indistinguabilité (calculatoire)

Soit P_1 et P_2 deux distributions sur $\{0,1\}^n$

Définition

On dit que P_1 et P_2 sont calculatoirement indistinguable ($P_1 \approx_p P_2$) si pour tout test statistique A

$$|Pr_{k \stackrel{R}{\leftarrow} P_1}[A(x) = 1] - Pr_{r \stackrel{R}{\leftarrow} P_2}[A(x) = 1]| < negl.$$

Ex : un PRG est sûr si $\{k \stackrel{R}{\leftarrow} \mathcal{K} : G(k)\} \approx_p uniform(\{0,1\}^n)$

Sécurité sémantique

Qu'est-ce qu'un chiffrement sûr?

puissance de l'attaquant (pour l'instant) : il connait le chiffré

Possibles exigences de sécurité :

- l'attaquant ne peut pas retrouver la clé Exemple : E(k, m) = m le chiffrement n'est pas sûr et pourtant on ne peut pas retrouver la clé
- l'attaquant ne peut retrouver le clair en entier Exemple : $E(k, m_0 || m_1) = m_0 || E(k, m_1)$
- Shannon : le chiffré ne doit donner aucune info sur le clair H(m|c) = H(m) (H est l'entropie = degré d'incertitude)

Sécurité sémantique (suite)

Soit (E, D) un syst. de chiffrement sur (K, M, C)Au lieu de considérer la définition

Définition

(E,D) sur $(\mathcal{K},\mathcal{M},\mathcal{C})$ a une sécurité parfaite si $\forall m_0,m_1\in\mathcal{M},\ |m_0|=|m_1|$

$${E(k, m_0)} = {E(k, m_1)} \text{ où } k \stackrel{R}{\leftarrow} K$$

on préfère la définition

Définition

(E,D) sur $(\mathcal{K},\mathcal{M},\mathcal{C})$ a une sécurité parfaite si $\forall m_0,m_1\in\mathcal{M},\ |m_0|=|m_1|$

$$\{E(k, m_0)\} \approx_p \{E(k, m_1)\} \text{ où } k \xleftarrow{R} \mathcal{K}$$

ET l'adversaire doit choisir explicitement m_0 et m_1

Sécurité sémantique (one time key)

$$\mathbb{E} = (E, D)$$

Un adversaire (attaquant) A, un challenger Chal.

Chal. choisit une clé aléatoire dans ${\cal K}$

A choisit m_0 et m_1 dans \mathcal{M} de même taille

Chal. choisit b au hasard dans $\{0,1\}$ et envoie le chiffré de $m_b = c$ à A A doit deviner $b \in \{0,1\}$

Pour b = 0, 1 on définit 2 expérimentations

- EXP(0): le challenger a chiffré m₀
- EXP(1): le challenger a chiffré m₁

 W_b = événement tq EXP(b) = 1 (Chal. a chiffré m_b et A répond 1)

$$Adv_{SS}[A,\mathbb{E}] := |Pr[W_0] - Pr[W_1]| \in [0,1]$$

Sécurité sémantique

Définition

 $\mathbb{E} = (E, D)$ est sémantiquement sûr si pour tout algo A efficient,

$$Adv_{SS}[A, \mathbb{E}]$$

est négligeable

 \Rightarrow les distributions des chiffrés $\{E(k, m_0)\}$ et $\{E(k, m_1)\}$ sont indistinguables

Exemple

Soit un algo A efficient qui peut toujours déduire LSB du clair à partir du chiffré Montrer que $\mathbb E$ n'est pas sémantiquement sûr

Preuve

Challenger Adv. B EXP(0), EXP(1)Pr[EXP(0) = 1]?, Pr[EXP(1) = 1]?

 $Adv_{SS}[B,\mathbb{E}]$?

OTP est sémantiquement sûr

Preuve

Challenger

Adv. A

 $Pr[A(k \oplus m_0) = 1]$?, $Pr[A(k \oplus m_1) = 1]$?

Rappel : les distributions de $\{k \oplus m_0\}$ et de $\{k \oplus m_1\}$ sont identiques

 $Adv_{SS}[A,\mathbb{E}]$?

OTP est sémantiquement sûr contre n'importe quel attaquant car les distributions des chiffrés sont égales (pas possible de les distinguer)

Sécurité lorsque la clé est réutilisée

Exemple : Système de fichiers : plusieurs fichiers chiffrés par la même clé AES

→ l'adversaire peut obtenir plusieurs chiffrés d'une même clé

Puissance de l'attaquant : chosen-plaintext attack (CPA) il peut obtenir le chiffré de n'importes quels clairs But de l'adversaire : casser la sécurité sémantique

Le jeu est identique au précédent mais l'attaquant peut répéter le jeu plusieurs fois

CPA \Rightarrow si l'attaquant veut connaître m tq c = E(k, m), requête avec $m_0 = m_1$

 ${\mathbb E}$ est sémantiquement sûr sous CPA

si pour tout algo A

$$Adv_{CPA}[A, \mathbb{E}] = |Pr[EXP(0) = 1] - Pr[EXP(1) = 1]|$$

est négligeable

Sous CPA, un chiffrement déterministe n'est pas sûr

Preuve en exercice

Chiffrement authentifié

Définition

Un système de chiffrement authentifié (E, D) est tq

$$E : \mathcal{K} \times \mathcal{M} \times \mathbf{N} \to \mathcal{C}$$

$$\textit{D} \; : \; \mathcal{K} \times \mathcal{C} \times \textit{N} \rightarrow \mathcal{M} \cup \{\bot\}$$

où N est l'ensemble des nonces pour un chiffrement non déterministe (\bot = chiffré rejeté)

Sécurité : le système doit assurer

- la sécurité sémantique sous CPA
- l'intégrité du chiffré (l'attaquant ne peut pas créer de nouveaux chiffrés qui permettent le déchiffrement)

Intégrité du chiffré (ciphertext integrity)

Soit (E, D) un système de chiffrement et \mathcal{M} l'espace des messages

$$\begin{array}{|c|c|c|}\hline & Chal. & & & & & \\ \hline & k \xleftarrow{R} \mathcal{K} & & & & \\ & b \in \{0,1\} & & & & & \\ \hline \end{array}$$

$$b=1$$
 si $D(k,c) \neq \bot$ et $c \notin \{c_1,\ldots,c_q\}$
 $b=0$ sinon

(E, D) a "l'intégrité du chiffré" si pour tout algo efficace A

 $Adv_{Cl}[A, E] = Pr[Chal. outputs 1]$ est négligeable

Chiffrement authentifié

Définition

Un système de chiffrement (E, D) assure le chiffrement authentifié (AE) si

- 1 il est sémantiquement sûr sous CPA
- il a la propriété de l'intégrité du chiffré (ciphertext integrity)

Exemple: CBC avec random IV assure-t-il AE?

AE ⇒ authenticité (mais attaques par rejeu possibles)

Attaques par chiffrés choisis (CCA)

Dans certaines situations, l'adversaire arrive à connaître le clair de certains chiffrés. Cela peut l'aider à décrypter son message

Puissance de l'adversaire : CPA et CCA

- Obtenir le chiffrement des messages de son choix
- Obtenir le déchiffrement des chiffrés de son choix (autre que le challenge)

But de l'adversaire : casser la sécurité sémantique

Modèle de sécurité : Chosen ciphertext security

Soit $\mathbb{E} = (E, D)$ un syst. de chiffrement sur $(K, \mathcal{M}, \mathcal{C})$

Chosen ciphertext security

$\mathbb E$ est sûr si pour tout algo A efficient :

$$Adv_{CPA}[A, \mathbb{E}] = |Pr[EXP(0) = 1] - Pr[EXP(1) = 1]|$$
 est négligeable

Exemple : CBC avec IV aléatoire n'est pas CCA-sûr

Chosen ciphertext security

\mathbb{E} est sûr si pour tout algo A efficient :

$$Adv_{CPA}[A, \mathbb{E}] = |Pr[EXP(0) = 1] - Pr[EXP(1) = 1]|$$
 est négligeable

Exemple : CBC avec IV aléatoire n'est pas CCA-sûr

Chiffrement authentifié ⇒ CCA-sûr

Théorème

Soit (E,D) un système de chiffrement qui assure AE, alors (E,D) est CCA-sûr

AE assure la confidentialité contre des adversaires qui peuvent décrypter des chiffrés

Mais inefficace contre les attaques par rejeu

Sécurité pour le chiffrement à clé publique

Sécurité contre l'espionnage

Exemple : Alice génère une paire de clés, envoie à Bob sa clé publique et Bob utilise cette clé pour envoyer un message chiffré à Alice

Définition

Un système de chiffrement à clés publiques est un triplet d'algos (G, E, D)

- G(): Algo randomisé, outputs (pk, sk)
- E(pk, m): algo randomisé, outputs $c \in C$
- D(sk, m): algo déterministe outputs $m \in \mathcal{M}$ ou \bot

Consistance : pour toute paire de clés et tout message

$$D(sk, E(pk, m)) = m$$

Sécurité pour l'espionnage

Pour b = 0, 1 définissons EXP(0) et EXP(1)

 $\mathbb{E} = (G, E, D)$ est sûr sémantiquement (IND-CPA) si pour tout algo A efficient : $Adv_{CPA}[A, \mathbb{E}] = |Pr[EXP(0) = 1] - Pr[EXP(1) = 1]|$ est négligeable

Relation avec le chiffrement symétrique

Chiffrement symétrique

2 notions de sécurité : one-time security et CPA

Chiffrement asymétrique

l'attaquant peut chiffrer par lui-même puisqu'il connait la clé de chiffrement

One time security \Rightarrow CPA

Sécurité contre des attaques actives

Un adversaire peut modifier un chiffré

Exemple : il modifie l'entête d'un mail chiffré pour changer le nom du destinataire

Nouveau modèle

L'attaquant peut demander le clair de certains chiffrés (autre que le challenge)

Chosen ciphertext security

Soit $\mathbb{E} = (G, E, D)$ un syst de chiffrement à clés publiques. Pour b = 0, 1, on définit EXP(b):

 $\mathbb{E} = (\textit{G}, \textit{E}, \textit{D})$ est sûr sémantiquement (IND-CCA) si pour tout algo A efficient :

$$Adv_{CCA}[A, \mathbb{E}] = |Pr[EXP(0) = 1] - Pr[EXP(1) = 1]|$$
 est négligeable

Exemple : On considère un système de chiffrement \mathbb{E} . Supposons qu'il existe un algo A qui permette de modifier le chiffré de (to :Alice , Body) en le chiffré de (to :Iwan , body).

E est-il CCA-sûr?

L'adversaire retrouve b!