Лекция 9. ЭКСРЕМУМ ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ

- 1. Понятие экстремума функции многих переменных.
- 2. Некоторые сведения о квадратичных формах.
- 3. Достаточные условия экстремума.

1. Понятие экстремума функции многих переменных.

Пусть дана функция $u = f(x_1; x_2; ...; x_n) = f(P)$, определенная в некоторой δ -окрестности точки $P_0(x_1^0; x_2^0; ...; x_n^0)$.

Определение 1. Точка $P_0(x_1^0; x_2^0; ...; x_n^0)$ называется точкой *покального максимума (минимума)* функции u = f(P), если существует такая δ -окрестность этой точки, что для всех

 $P(x_1; x_2; ...; x_n) \in U(\delta; P_0)$ выполняется неравенство

$$f(P_0) > f(P)$$
$$(f(P_0) < f(P)),$$

значение $f(P_0)$ называют локальным максимумом (минимумом) функции.

Обозначается:

$$\begin{aligned} \max_{P \in \mathring{U}\left(\delta; P_{0}\right)} f(P) &= f(P_{0}) \\ (\min_{P \in \mathring{U}\left(\delta; P_{0}\right)} f(P) &= f(P_{0})). \end{aligned}$$

Точки максимума или минимума функции называют *точка-ми экстремума* функции, а максимумы и минимумы функции – э*кстремумами функции*.

Примеры.

1. Функция $z = 1 - (x - 1)^2 - (y - 1)^2$ имеет локальный максимум в точке $P_0(1;1)$, $z_{\text{max}} = z(1,1) = 1$. Действительно, существует окрестность точки $P_0(1;1)$ (рис.1), в которой выполняется условие $f(1;1) > f(x;y) \ \forall P(x;y) \in \overset{\circ}{U}(\delta;P_0)$.

2. Функция $z=(x-1)^2+(y-2)^2$ имеет локальный минимум в точке $P_0(1;2)$ (рис.2), так как в любой точке P(x;y), принадлежащей достаточно малой окрестности точки P_0 , выполняется условие $f(1,2) < f(x,y) \ \forall P(x;y) \in \overset{\circ}{U}(\delta;P_0)$.

Замечание. Если функция u = f(P) имеет в точке $P_0(x_1^0; x_2^0; ...; x_n^0)$ локальный экстремум, то: в случае *локального максимума* $-f(P) - f(P_0) = \Delta u < 0$,

в случае локального минимума – $f(P) - f(P_0) = \Delta u > 0$.

Из сказанного выше следует, что полное приращение функции не меняет знака в окрестности $\overset{\circ}{U}(\mathcal{S};P_0)$. Однако для всех точек $P\in \overset{\circ}{U}(\mathcal{S};P_0)$ определить знак приращения Δu практически невозможно, поэтому надо искать другие условия, по которым

можно судить о наличии и характере экстремума функции в данной точке.

Теорема 1 (необходимые условия существования локального экстремума). Если в точке $P_0(x_1^0;x_2^0;...;x_n^0)$ дифференцируемая функция $u = f(x_1;x_2;...;x_n)$ имеет локальный экстремум, то ее частные производные в этой точке равны нулю:

$$\frac{\partial u(P_0)}{\partial x_1} = \frac{\partial u(P_0)}{\partial x_2} = \dots = \frac{\partial u(P_0)}{\partial x_n} = 0, \quad (1)$$

или, по крайней мере, одна из них не существует.

▶ Докажем утверждение теоремы для функции двух переменных z = f(x; y).

Пусть $P_0(x_0;y_0)$ — стационарная точка данной функции. Рассмотрим в $U(\delta;P_0)$ лишь те точки, для которых $y=y_0$. Получим функцию $z=f(x,y_0)=\varphi(x)$ одной переменной x. Эта функция имеет в точке x_0 экстремум, следовательно, $\varphi'(x_0)=f_x'(x_0,y_0)=0$.

Аналогично доказывается, что $f_y'(x_0, y_0) = 0$. \blacktriangleleft

Пример. Функция $f(x,y)=1-\sqrt{x^2+y^2}$ имеет максимум в точке $P_0(0;0)$ (рис.3), так как для любой точки $P(x;y)\in \overset{\circ}{U}(\delta;P_0)$ выполняется условие f(0,0)>f(x,y).

$$f'_x = -\frac{x}{\sqrt{x^2 + y^2}}, \ f'_y(x, y) = -\frac{y}{\sqrt{x^2 + y^2}}$$

в точке $P_0(0;0)$ не существуют.

Следствие. Если функция $u = f(x_1; x_2; ...; x_n)$ имеет в точке $P_0(x_1^0; x_2^0; ...; x_n^0)$ локальный экстремум, то ее дифференциал в этой точке $du(P_0)$ равен нулю или не существует.

Точка $P_0(x_1^0; x_2^0; ...; x_n^0)$, в которой выполняется условие (1), называется *точкой возможного экстремума* или *стационарными* (критическими).

Равенство нулю частных производных первого порядка не является достаточным условием существования экстремума функции $u = f(x_1; x_2; ...; x_n)$ в точке $P_0(x_1^0; x_2^0; ...; x_n^0)$.

Пример. Функцию $z=xy^2$. Она задана на всей числовой плоскости \mathbf{R}^2 . Точка O(0;0) будет критической, поскольку частные производные в ней равны нулю. Так как функция равна нулю в точке O, а в любой сколь угодно малой окрестности $U(\delta;P_0)$ она принимает как положительные, так и отрицательные значения, то функция $z=xy^2$ не имеет в точке O экстремума.

2. Некоторые сведения о квадратичных формах.

Определение 2. Функция вида

$$Q(x_1; x_2; ...; x_n) = a_{11}x_1^2 + a_{12}x_1x_2 + ... + a_{1n}x_1x_n + a_{21}x_2x_1 + a_{22}x_2^2 + ... + a_{2n}x_2x_n + ... + a_{nn}x_n^2 = \sum_{i=1}^n \sum_{j=1}^n a_{ij}x_ix_j$$

называется **квадратичной формой** от переменных x_1 , x_2 , ..., x_n , числа a_{ij} , i,j=1,2,...,n, называются **коэффициентами квадратичной формы**, матрица

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

называется матрицей квадратичной формы.

Если $a_{ij} = a_{ji}$ для $\forall i; j \ i \neq j$, то квадратичная форма называется *симметричной*.

Определение 3. Определители

$$\Delta_{1} = a_{11}, \ \Delta_{2} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \dots, \ \Delta_{n} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

называются *главными* минорами матрицы A .

Определение 4. Квадратичная форма $Q(x_1; x_2; ...; x_n)$ называется положительно определенной (отрицательно определенной), если для любых значений переменных $x_1, x_2, ..., x_n$, одновременно не равных нулю, она принимает положительные (отрицательные) значения.

Пример. Квадратичная форма $Q(x_1;x_2)=x_1^2+x_2^2$ является положительно определенной квадратичной формой, так как $Q(x_1;x_2)>0$ во всех точках $(x_1;x_2)$, кроме точки O(0;0).

Определение 5. Квадратичная форма $Q(x_1;x_2;...;x_n)$ называется знакоопределенной, если она является положительно определенной или отрицательно определенной. Квадратичная форма $Q(x_1;x_2;...;x_n)$ называется квазизнакоопределенной, если она принимает либо только неотрицательные, либо только неположительные значении, при этом обращается в нуль не только при $x_1 = x_2 = ... = x_n = 0$. Квадратичная форма $Q(x_1;x_2;...;x_n)$ называется знакопеременной, если она принимает как положительные, так и отрицательные значения.

Примеры.

- **1.** Квадратичная форма $Q(x_1; x_2) = x_1^2 + 2x_1x_2 + x_2^2$ является квазиопределенной квадратичной формой, так как $Q(x_1; x_2) \ge 0$ во всех точках $(x_1; x_2)$, при этом $Q(x_1; x_2) = 0$ не только в точке O(0;0).
- **2.** Квадратичная форма $Q(x_1; x_2) = x_1^2 + 2x_1x_2$ является знакопеременной.

Теорема 2 (критерий Сильвестра).

1) Для того, чтобы квадратичная форма $Q(x_1; x_2; ...; x_n)$ была положительно определенной, необходимо и достаточно, чтобы все ее главные миноры были положительны:

$$\Delta_{1} = a_{11} > 0, \ \Delta_{2} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0, \dots, \ \Delta_{n} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} > 0.$$

2) Для того, чтобы квадратичная форма $Q(x_1; x_2; ...; x_n)$ была отрицательно определенной, необходимо и достаточно, чтобы знаки главных миноров ее матрицы чередовались следующим образом:

$$\Delta_1 < 0$$
, $\Delta_2 > 0$, $\Delta_3 < 0$, $\Delta_4 > 0$,

Без доказательства.

3. Достаточные условия экстремума.

Теорема 3 (достаточные условия существования локального экстремума). Пусть функция $u = f(x_1; x_2; ...; x_n) = f(P)$ дифференцируема в некоторой окрестности точки $P_0(x_1^0; x_2^0; ...; x_n^0)$ и дважды дифференцируема в самой точке P_0 , причем P_0 — точка возможного экстремума, т.е. $du(P_0) = 0$. Тогда 1) если второй дифференциал $d^2u(P_0)$ является положительно определенной (отрицательно определенной) формой от переменных dx_1 , dx_2 , ..., dx_n , то функция u = f(P) имеет в точке P_0 локальный минимум (максимум);

2) если $d^2u(P_0)$ является знакопеременной квадратичной формой, то функция u=f(P) в точке P_0 экстремума не имеет. Без доказательства.

Замечание. Если $du(P_0) = 0$, а $d^2u(P_0)$ является квазиопределенной квадратичной формой, то функция u = f(P) может иметь в точке P_0 локальный экстремум, а может и не иметь.

Теорема 4 (достаточные условия существования локального экстремума). Пусть $P_0(x_0;y_0)$ — стационарная точка, дважды дифференцируемой в окрестности $U(\delta;P_0)$ функции z=f(x;y). И пусть

$$\Delta(P_0) = \begin{vmatrix} f''_{xx}(P_0) & f''_{xy}(P_0) \\ f''_{xy}(P_0) & f''_{yy}(P_0) \end{vmatrix} = \begin{vmatrix} A & B \\ B & C \end{vmatrix} = AC - B^2.$$
 (2)

Тогда стационарная точка $P_0(x_0; y_0)$ является:

- 1) точкой локального максимума, если $\Delta(P_0) > 0$ и $f''_{xx}(x_0, y_0) < 0$;
- 2) точкой локального минимума, если $\Delta(P_0) > 0$ и $f''_{xx}(x_0,y_0) > 0$;
- 3) если $\Delta(P_0)$ <0, то в стационарной точке P_0 экстремума нет,
- 4) если $\Delta(P_0)=0$, то локальный экстремум может быть, а может и не быть.
- ▶ Из определения локального экстремума следует, что если функция z=f(x,y) имеет в точке $P_0(x_0;y_0)$ локальный максимум, то приращение $\Delta z < 0 \ \forall P \in \overset{\circ}{U}(\mathcal{S};P_0);$ если же $P_0(x_0;y_0)$ точка локального минимума, то $\Delta z > 0 \ \forall P \in \overset{\circ}{U}(\mathcal{S};P_0).$

Для определения знака приращения Δz в δ -окрестности стационарной точки $P_0\big(x_0;y_0\big)$ разложим функцию $z=f\big(x,y\big)$ по формуле Тейлора

$$\Delta z = df(x_0, y_0) + \frac{1}{2!}d^2f(x_0, y_0) + \dots + \frac{1}{n!}d^nf(x_0, y_0) + \dots$$

$$+\frac{1}{(n+1)}d^{n+1}f(\xi,\eta)$$

где $df(x_0,y_0),\ d^2f(x_0,y_0),\ \dots$ — дифференциалы соответственно первого, второго и более высоких порядков функции z=f(x,y), вычисленные в точке $P_0(x_0;y_0);\ d^{n+1}f(\xi,\eta)$ — дифференциал (n+1)-го порядка функции z=f(x,y), вычисленный в некоторой точке $P(\xi,\eta)=P(x_0+\theta\Delta x;y_0+\theta\Delta y),$ где $0<\theta<1$. Поэтому $x_0<\xi< x,\ y_0<\eta< y$.

Сохраним в формуле Тейлора только первые два члена, т.е. положим

$$\Delta z \approx df(x_0, y_0) + \frac{1}{2}d^2f(x_0, y_0).$$

Так как P_0 – стационарная точка, то $dz|_{P_0} = 0$. Следовательно,

$$\Delta z \approx \frac{1}{2} d^2 f(x_0, y_0) =$$

$$= \frac{1}{2} \Big(f_{xx}''(x_0, y_0) \Delta x^2 + 2 f_{xy}''(x_0, y_0) \Delta x \Delta y + f_{yy}''(x_0, y_0) \Delta y^2 \Big).$$

Для удобства записей обозначим вторые частные производные в точке $P_0(x_0;y_0)$ через A, B, C: $f''_{xx}(x_0,y_0)=A$, $f''_{xy}(x_0,y_0)=B$, $f''_{yy}(x_0,y_0)=C$. Тогда, считая, что $\Delta y\neq 0$, имеем:

$$\Delta z = \frac{(\Delta y)^2}{2} \left(A \left(\frac{\Delta x}{\Delta y} \right)^2 + 2B \left(\frac{\Delta x}{\Delta y} \right) + C \right) = \frac{(\Delta y)^2}{2} \left(At^2 + 2Bt + C \right).$$

Из последнего равенства видно, что знак Δz определяется знаком трехчлена $At^2+2Bt+C$, где $t=\frac{\Delta x}{\Delta v}$.

Дискриминант данного трехчлена равен $B^2 - AC$.

1. Если $B^2-AC<0$ или $\Delta(P_0)=AC-B^2>0$, то для любого A>0 приращение $\Delta z>0$ и $P_0(x_0;y_0)$ — точка локального минимума, а для любого A<0 приращение $\Delta z<0$ и $P_0(x_0;y_0)$ — точка локального максимума.

- 2. Если $B^2-AC>0$, то трехчлен At^2+Bt+C имеет два действительных корня, и в промежутке изменения $T=\frac{\Delta x}{\Delta y}$ приращение Δz меняет знак. Поэтому при $B^2-AC>0$ или $\Delta(P_0)=AC-B^2<0$ стационарная точка $P_0(x_0;y_0)$ не является
- 3. Если $B^2-AC=0$, то стационарная точка $P_0\big(x_0;y_0\big)$ будет точкой локального минимума при A>0 и точкой локального максимума при A<0 .

точкой экстремума.

Если $B^2-AC=0$ и A=B=0, то $\Delta z\approx \frac{1}{2}C(\Delta y)^2$ и знак Δz определяется знаком C. Поэтому стационарная точка будет точкой локального минимума при C>0 и точкой локального максимума при C<0.

Замечания. 1. Если $\Delta(P_0)=0$, то нельзя определенно ответить на вопрос о существовании экстремума в точке P_0 . В этом случае необходимо произвести дополнительные исследования знака функции z=f(x,y) в $U(\delta;P_0)$. Действительно, если $B^2-AC=0$ и A=B=C=0, то $d^2z=0$ и $\Delta z\approx \frac{1}{3!}d^3z\big|_{P_0}$, т.е. в этом случае знак Δz определяется знаком $d^3z\big|_{P_0}$. Следовательно, требуются дополнительные исследования по определению знака Δz в окрестности стационарной точки P_0 .

2. При выводе достаточных условий экстремума предполагалось, что $\Delta y \neq 0$. Если $\Delta y = 0$ для любого $\Delta x \neq 0$, то получаем экстремум функции одной переменной z = f(x,y). Аналогично если $\Delta x = 0$ для любого $\Delta y \neq 0$, то $z = f(x_0,y)$.

Приращения Δx и Δy не могут равняться нулю одновременно, поскольку в подобном случае точка $P(x+\Delta x;y+\Delta y)$ совпала бы с точкой $P_0(x_0;y_0)$ и функция z=f(x,y) не получила бы никакого приращения.

Примеры.

1. Исследовать на экстремум функцию $z = e^{\frac{x}{2}}(x + y^2)$.

 $Pe\ m\ e\ h\ u\ e$. 1) Вычислим частные производные первого порядка данной функции:

$$z'_{x} = \frac{1}{2}e^{\frac{x}{2}}(x+y^{2}+2), \ z'_{y} = 2ye^{\frac{x}{2}}.$$

2) Находим точки возможного экстремума. Для этого решим систему уравнений:

$$\begin{vmatrix} z_x' = 0 \\ z_y' = 0 \end{vmatrix} \Rightarrow \begin{vmatrix} x + y^2 + 2 = 0 \\ y = 0 \end{vmatrix}.$$

Отсюда $x_0 = -2$, $y_0 = 0$.

Таким образом, существует только одна стационарная точка $P_0(-2;0)$, в которой функция z может достигать экстремума.

3) Исследуем знак приращения Δz в окрестности стационарной точки $P_0(-2;0)$. Для этого вычислим частные производные второго порядка функции z в точке P_0 :

$$A = z''_{xx}(P_0) = \frac{1}{4}e^{\frac{x}{2}}(x + y^2 + 4)\Big|_{(-2;1)} = \frac{1}{2e},$$

$$B = z''_{xy}(P_0) = ye^{\frac{x}{2}}\Big|_{(-2;1)} = 0,$$

$$C = z''_{yy}(P_0) = 2e^{\frac{x}{2}}\Big|_{(-2;1)} = \frac{2}{e}.$$

Так как

$$\Delta(P_0) = \begin{vmatrix} A & B \\ B & C \end{vmatrix} = \frac{1}{e^2} > 0$$

и A>0 , то точка $P_0\left(-2;0\right)$ является точкой локального минимума:

$$z_{\min} = z(-2,0) = -\frac{2}{e}$$
.

2. Исследовать на экстремум функцию $z = e^{-x}(x + y^2)$.

Решение. 1) Вычислим частные производные первого по-

рядка данной функции:

$$z'_{x} = e^{-x}(1-x-y^{2}), \ z'_{y} = 2ye^{-x}.$$

2) Для определения точек возможного экстремума решим систему уравнений:

$$\begin{vmatrix} z_x' = 0 \\ z_y' = 0 \end{vmatrix} \Rightarrow \begin{vmatrix} 1 - x - y^2 = 0 \\ y = 0 \end{vmatrix}.$$

Отсюда $x_0 = 1$ и $y_0 = 0$.

Таким образом, функция имеет только одну стационарную точку $P_0(1;0)$.

3) Исследуем знак приращения Δz в окрестности стационарной точки. Для этого вычислим частные производные второго порядка функции z в точке P_0 :

$$A = z_{xx}''(P_0) = e^{-x} (x + y^2 - 2)_{(1;0)} = -\frac{1}{e},$$

$$B = z_{xy}''(P_0) = -2ye^{-x}|_{(1;0)} = 0,$$

$$C = z_{yy}''(P_0) = 2e^{-x}|_{(1;0)} = \frac{2}{e}.$$

Так как $\Delta(P_0)=AC-B^2=-\frac{2}{e^2}<0$, то в точке $P_0(1;0)$ нет экстремума, т.е. в окрестности $U(\delta;P_0)$ исследуемая функция меняет знак.

3. Исследовать на экстремум функцию $z = x^4 + y^4$.

 ${\it Pe\,ue\,\mu\,u\,e}$. 1) Вычислим частные производные первого порядка функции z :

$$z'_x = 4x^3$$
, $z'_y = 4y^3$.

- 2) Решая систему уравнений $z_{y}'=0$ находим стационарную точку $P_{0}(0;0)$ данной функции.
- 3) Исследуем знак приращения Δz в окрестности стационарной точки $P_0(0;0)$. Так как

$$A = z''_{xx}(P_0) = 0$$
, $B = z''_{xy}(P_0) = 0$, $C = z''_{yy}(P_0) = 0$,

то $\Delta(P_0) = AC - B^2 = 0$. Следовательно, нельзя определенно ответить на вопрос о существовании экстремума в точке $P_0(0;0)$.

В данном случае стационарная точка $P_0(0;0)$ является точкой локального минимума, поскольку $\Delta z>0$ $\forall P\in \dot{U}\big(\mathcal{S};P_0\big);$ $z_{\min}=z(0,0)=0$.

Вопросы для самоконтроля

- 1. Дайте определение локального экстремума функции.
- 2. Сформулируйте и докажите теорему о необходимом условии локального экстремума.
- 3. Какие точки называются точками возможного экстремума функции?
- 4. Какая функция называется квадратичной формой? Что такое матрица квадратичной формы и ее главные миноры?
- 5. Какая квадратичная форма называется 1) положительно определенной, 2) отрицательно определенной, 3) знакоопределенной, 4) квазизнакоопределенной, 5) знакопеременной?
 - 6. Сформулируйте критерий Сильвестра.
- 7. Сформулируйте и докажите достаточное условие экстремума функции двух переменных z = f(x; y).