Homework 3

Mark Schulist

1) 1.12

We want to show that

$$|r_1 + r_2 + \dots + r_n| \le |r_1| + |r_2| + \dots + |r_n| \tag{1}$$

Proof. We can use induction on n to show this is true regardless of the number of terms in our sum.

When n = 1, this is trivially true as $|r_1| \leq |r_1|$.

Suppose Equation 1 holds when n = k. If n = k + 1 then:

$$|r_1 + r_2 + \dots + r_k + r_{k+1}| \le |r_1 + r_2 + \dots + r_k| + |r_{k+1}| \tag{2}$$

by the triangle inequality.

We can break up the RHS further using the inductive hypothesis:

$$|r_1 + r_2 + \ldots + r_k| + |r_{k+1}| \le |r_1| + |r_2| + \ldots + |r_k| + |r_{k+1}| \tag{3}$$

This above equation is essentially the inductive hypothesis plus a constant positive term, so the above inequality holds for any value of n.

2) 1.13

For $x, y \in \mathbb{R}$, show that $||x| - |y|| \le |x - y|$.

Proof. We can start with the LHS and square it. We know that abs always returns a positive value, so we do not need to worry about square rooting and squaring negative values.

$$\|x| - |y\|^2 = x^2 + y^2 - 2|x||y| \tag{4}$$

And now do the same to the RHS.

$$|x - y|^2 = x^2 + y^2 - 2xy (5)$$

We can observe that $2|x||y| \ge 2xy$. Hence $-2|x||y| \le -2xy$. We can add $x^2 + y^2$ to both sides:

$$|x^2 + y^2 - 2|x||y| \le x^2 + y^2 - 2xy \tag{6}$$

From Equation 4 and Equation 5 we can see

$$||x| - |y||^2 \le |x - y|^2$$

 $\implies ||x| - |y|| \le |x - y|$ (7)

We can take this last square root because both elements inside of it have absolute value signs, meaning they must be positive. \Box

3) 1.15

When does equality hold for the Cauchy-Schwartz inequality?

$$\left| \sum_{i=1}^{n} a_i b_i \right|^2 \le \sum_{i=1}^{n} |a_i|^2 \cdot \sum_{i=1}^{n} |b_i|^2 \tag{8}$$

If we treat \vec{a} and \vec{b} as vectors in \mathbb{R}^n , the equality holds if $\vec{a} = \lambda \vec{b}$ for some $\lambda \in \mathbb{R}$. In other words, if they are scalar multiples of each other then equality holds in Equation 8.

Looking at each component, this means that $a_i = \lambda b_i$ for all $i \in \{1, ..., n\}$.

The LHS of Equation 8 becomes:

$$\left|\sum_{i=0}^{n} \lambda a_i^2\right|^2 = \lambda^2 \left(\sum_{i=0}^{n} a_i^2\right)^2 \tag{9}$$

And the RHS of Equation 8:

$$\sum_{i=1}^{n} a_i^2 \cdot \sum_{i=1}^{n} \lambda^2 a_i^2 = \lambda^2 \left(\sum_{i=1}^{n} a_i^2 \right)^2$$
 (10)

Hence we can see that Equation 9 and Equation 10 are equal, so equality holds when $a_i = \lambda b_i$.

If all of the $b_i = 0$ or all of the $a_i = 0$, then we trivially get equality as 0 = 0.

4) 1.16

$$k \ge 3 \quad x, y \in \mathbb{R}^k \quad |x - y| = d > 0 \quad r > 0$$
 (11)

Intuitively, we can think of this problem as 2 (hyper) spheres of radius r that may or may not intersect (as determined by the constraints of r). If the 2 spheres intersect at more than one (infinite) points, then there are ∞ solutions to z. If they intersect at a single point (the midpoint of the spheres), then there is a single solution for z. If they do not intersect at all, then there are no solutions to z.

4.a)

We can think about the possible values for z with a *cartoon picture* for the case when $2r > d \Longrightarrow r > \frac{d}{2}$.

Figure 1: Cartoon picture of all of the possible z vectors with a fixed r in \mathbb{R}^3

Because $r > \frac{d}{2}$, we know that all of the possible vectors z will not lie on the purple vector in Figure 1. We can generalize to higher dimensions below.

We know that in \mathbb{R}^k , $k \geq 3$ there are an infinite number of vectors orthogonal to any other vector. Let us write this orthogonal vector as v. Then:

$$v \cdot (x - y) = 0 \tag{12}$$

has infinite solutions to v.

Let us define $z = m + \delta v$ where m is the midpoint between x and $y\left(\frac{x+y}{2}\right)$ and $\delta = \sqrt{r^2 - \frac{d^2}{4}}$. δ is found using the Pythagorean Theorem, where r is the distance from z to x, y and d = |x - y|.

Now we can define $z = m + \delta v$. We know that z is equidistant from x and y by definition of m and v. m is the midpoint and v is orthogonal to v, so adding them will retain the equal distance between z and x, y.

Examining δ we can see that when $r > \frac{d}{2}$, we get a positive value for δ meaning that there are infinite solutions to z. This is because there are infinite solutions to our vector v, and our definition of z will have infinite solutions if the coefficient in front of v (δ in this case) is nonzero (which it is in this case, as we showed above).

Hence, z has infinite solutions when $r > \frac{d}{2}$.

4.b)

When $r=\frac{d}{2}$, then the only possible z vector is the one that lies on the purple vector in Figure 1, half way between the tip of the red and blue vectors (because of the constraint that |z-x|=|z-y|). Any other point would either not be equidistant from x and y or have a $r>\frac{d}{2}$.

Generalizing to higher dimensions, we know that |x-y|=d so there must exist a unique midpoint z such that $|x-z|=\frac{d}{2}=r$ and $|x-y|=\frac{d}{2}=r$. The triangle inequality only holds when the triange made

by x, y, z as vertices is degenerate. So z must live on the line segment connecting x and y and must be equidistant from x and y, hence z is unique (as the midpoint between x and y).

4.c)

When $r < \frac{d}{2}$, it is clear that no z can satisfy the constraints of the problem. The distance between x and y is d, so if 2r < d then z would have nowhere to lie.

We know that the x, y, z form a triangle in \mathbb{R}^n , so hence the lengths of the 3 sides must satisfy the triangle inequality.

$$d = |x - y| \le |x - z| + |y - z| < \frac{d}{2} + \frac{d}{2}$$

$$\implies d < d \tag{13}$$

Which is a contradiction, so the three sides cannot form a triangle and hence there is no possible value for z that works with $r < \frac{d}{2}$.

5) 1.18

$$k \ge 2 \quad x \in \mathbb{R}^k \tag{14}$$

We need to show that there exists $y \in \mathbb{R}^k$ with $y \neq 0$ such that $x \cdot y = 0$.

Proof. We need to prove that we can always find an orthogonal vector to x in \mathbb{R}^k , $k \geq 2$.

If x = 0, then $y \cdot x = 0$ for any $y \in \mathbb{R}^k$.

If $x \neq 0$ but at least a single component of x is zero (say, the jth component), then we set all components in y to be zero except for the jth component which we set to any nonzero value.

If $x \neq 0$ and all components of x are nonzero, then we cook up y according to the following rules:

$$y = \begin{pmatrix} -x_2 \\ x_1 \\ 0 \\ \dots \\ 0 \end{pmatrix} \tag{15}$$

We know that $x \cdot y = 0$ in this case because we are essentially doing the following computation:

$$-x_1 \cdot x_2 + x_2 \cdot x_1 = 0 \tag{16}$$

And we know that all of the $x_i \neq 0$ because we have already handled that case above (this is, the case where one of the $x_i = 0$ is handled above).

This is not true when k=1 because in \mathbb{R}^1 , there is no nonzero "vector" that, when multiplied by any other vector, gives us zero. For example, $1 \cdot x \neq 0$ if $x \neq 0$.

6) 1.20

Property 3 of cut: If $p \in \alpha$, then p < r for some $r \in \alpha$.

We will remove this requirement of a cut and see what it does to

- (1) LUB property (this should still hold)
- (2) Satisfies (A1-4) of addition axioms, but fails (A5).

We will refer to this new set without property 3 of cuts as R.

(1)

Let A be a nonempty subset of R bounded above by $\beta \in R$.

$$\gamma = \bigcup_{\alpha \in A} \alpha \tag{17}$$

Claim: $\gamma \in R = \sup A$.

We first need to show that γ is a cut.

- 1. A is nonempty, so there exists $\alpha_0 \in A$. α_0 is a cut so $\alpha_0 \neq \emptyset$. So there exists $p \in \mathbb{Q}$ such that $p \in \alpha_0$. Then $p \in \gamma$. So $\gamma \neq \emptyset$. β is a cut, so $\beta \neq \mathbb{Q}$. So there exists $q \in \mathbb{Q}$ such that $q \notin \beta$. Since β is an upper bound of A, then for all $\alpha \in A$, $\alpha \leq \beta \iff \alpha \subset \beta$. Hence $q \notin \alpha \forall \alpha \in A \implies q \notin \gamma$. Hence $\gamma \neq \mathbb{Q}$.
- 2. Choose $p \in \gamma$ then $p \in \alpha$ for some $\alpha \in A$. Since α is a cut, then any q < p is in α . Then all $q \in \mathbb{Q}$ such that q < p are elements of γ .

Now we can show that $\gamma = \sup A$.

Claim: $\gamma \leq \alpha \forall \alpha \in A$.

 $\gamma \subset \alpha$ is true by the definition of γ as a union of all $\alpha \in A$.

Claim: If $s < \gamma$ then δ is not an upper bound of A.

Since $\delta < \gamma$, then there exists $s \in \gamma$ such that $s \notin \delta$. But since $\gamma = \bigcup_{\alpha \in A} \alpha$, then $s \in \alpha_0$ for some $\alpha_0 \in A$. Hence $\alpha_0 > \delta$ then δ is not an upper bound of A. Hence γ is the least upper bound of A.

(2)

(A1)
$$x, y \in R \Longrightarrow x + y \in R$$

We need to show that is $\alpha, \beta \in R$, then $\alpha + \beta \in R$. Being in R means that $\alpha + \beta$ is a cut.

- 1. It is clear that $\alpha + \beta \subset Q$, $\alpha + \beta \neq \emptyset$. Take $r' \notin \alpha, s' \notin \beta$. Then r' + s' > r + s for all $r \in \alpha, s \in \beta$. Hence $r' + s' \notin \alpha + \beta$ so $\alpha + \beta \neq \mathbb{Q}$ (which is a requirement of property 1 of cut).
- 2. Pick $p \in \alpha + \beta \iff p = r + s$ for some $r \in \alpha, s \in \beta$. If q < p then $q < r + s \implies q s < r \implies q s \in \alpha$. But $q = \underbrace{(q s)}_{\in \alpha} + \underbrace{s}_{\in \beta} \implies q \in \alpha + \beta$.

$$(A2) x, y \in R \Longrightarrow x + y = y + x$$

WTS: $\alpha + \beta = \beta + \alpha$

Since any element in $\alpha + \beta$ is of the form r + s (due to the definition of addition of cuts), r + s = s + r.

(A3)
$$x, y, z \in R \Longrightarrow (x+y) + z = x + (y+z)$$

WTS:
$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$

Using the same logic as above, we know that $\alpha+\beta$ can be written in the form r+s, so $(\alpha+\beta)+\gamma$ can be written as (s+r)+p=s+(r+p), where $s\in\alpha,r\in\beta,p\in\gamma$. We know addition on $\mathbb Q$ is associative, so we can clearly see that addition on R is also associative.

(A4) There exists a $0 \in R$ such that $0 + x = x \forall x \in R$.

We can define the zero element as $\{p \mid p \in \mathbb{Q}, p \leq 0\}$. This is different from the "normal" definition of the zero element as now we need to include $0 \in \mathbb{Q}$ in the set (where "the set" refers to $0 \in R$).

We can see that $0 + \alpha$ where $0, \alpha \in R$ is equal to zero for any $\alpha \in R$.

To show the first inclusion: If $r \in \alpha$ and $s \in 0$, then $r + s \le r$. Hence $\alpha + 0 \subset \alpha$.

Now the second inclusion: Pick $r, p \in \alpha$ with r > p. Then $p - r \in 0$ and $p = r + (p - r) \in \alpha + 0$. Hence $\alpha \subset \alpha + 0$.

Hence $\alpha + 0 = \alpha$.

(A5) If
$$x \neq 0, \exists ! -x \in R$$
 such that $x + (-x) = 0$

We want to show that this is FALSE without the third property of cuts.

Because we do not have the third property of cuts, the following set is in R.

$$\alpha = \{ p \mid p \in \mathbb{Q}, p \le 2 \} \in R \tag{18}$$

The definition of $-\alpha$ yields:

$$-\alpha = \{ p \mid \exists r > 0, -p - r \notin \alpha \} \tag{19}$$

We can also think about $-\alpha$ as $-\alpha = \{t \mid t \in \mathbb{Q}, t < -2\}$. We can see that $\alpha + (-\alpha)$ does not include $0 \in \mathbb{Q}$, but $0 \in \mathbb{Q}$ is an element of the cut corresponding to zero. Hence, this property does not hold.

If we were to change the definition of $-\alpha$ to:

$$-\alpha = \{ p \mid \exists r \ge 0, -p - r \notin \alpha \}$$
 (20)

we would still run into the same problem with $\alpha - \alpha \neq 0$. Because now we are allowed to both have set with and without maximum elements but we still need to have a single zero element, we conclude it is impossible to satisfy (A5).