Problem set 2 Due Thursday January 30 at 11pm

Exercise 2.1 (5 points; Rudin 1.5). Let $A \subset \mathbb{R}$ be nonempty and bounded below. Define

$$-A = \{-x \mid x \in A\}.$$

Prove that $\inf A = -\sup(-A)$.

Exercise 2.2 (5 points). Let $A \subset \{x \in \mathbb{R} \mid x > 0\}$ be nonempty and bounded above. Define

$$A^{-1} = \{x^{-1} \mid x \in A\}.$$

Prove that $\inf(A^{-1}) = (\sup A)^{-1}$.

Exercise 2.3 (5 points). Suppose A, $B \subset \mathbb{R}$ are both nonempty and bounded above. Define

$$A + B = \{a + b \mid a \in A, b \in B\}.$$

Prove that $\sup(A + B) = \sup A + \sup B$.

Exercise 2.4 (15 points). In each of the following, *S* is an ordered set, and $A \subset S$. Answer the following in each case, and prove your answers:

- Is *A* bounded above?
- Does *A* have a maximum element, and if so, what is it?
- Does *A* have a supremum in *S*, and if so, what is it?
- (1) $S = \mathbb{Z}$, $A = \{2, 3\}$.
- (2) $S = \mathbb{Q}$, $A = \{-\frac{2n}{5} \mid n \in \mathbb{N}\}$.
- (3) $S = \mathbb{Q}, A = \{-\frac{1}{n} \mid n \in \mathbb{N}\}.$
- (4) $S = \mathbb{Q}, A = \{\frac{1}{n} \mid n \in \mathbb{N}\}.$
- (5) $S = \mathbb{Q}$, $A = \{x \in \mathbb{Q} \mid 0 < x \le 1\}$.
- (6) $S = \mathbb{Q}$, $A = \{x \in \mathbb{Q} \mid 0 < x < 1\}$.
- (7) $S = \mathbb{Q}$, $A = \{x \in \mathbb{Q} \mid 0 < x^3 < 2\}$.

Exercise 2.5 (10 points). Suppose F is an ordered field and $x, y, z \in F$.

- (1) Prove that 0 < 1.
- (2) Prove that if x > 0, then $x^{-1} > 0$.
- (3) Prove that if x > 0, then y > z if and only if xy > xz.
- (4) Recall we defined the field $\mathbb{F}_3 = \{0,1,2\}$ on class. Prove that there does not exist an order on \mathbb{F}_3 such that it is an ordered field.

Exercise 2.6 (optional, not for credit; Rudin 1.8 and 1.9). Define the complex numbers as the set

$$\mathbb{C} = \{ a + bi \mid a, b \in \mathbb{R} \}$$

with the addition and multiplication rules given by

- (a + bi) + (a' + b'i) = (a + a') + (b + b')i,
- (a + bi)(a' + b'i) = (aa' bb') + (ab' + a'b)i.

- (1) Prove that C with these operations (and an appropriate 0, 1, negation, inversion) is a field.
- (2) Prove that \mathbb{C} with these operations cannot be made into an ordered field.
- (3) Define the *lexicographic order* on \mathbb{C} by defining

$$a + bi < c + di \iff a < c \text{ or } (a = c \text{ and } b < d).$$

Prove that this makes C into an ordered *set* (though not an ordered *field*).

(4) Does the lexicographic order on C have the least upper bound property?