DSASのあそこ

~ストレージサーバ編~

第2回 KLab 勉強会

http://dsas.blog.klab.org

2007年6月22日

KLab 株式会社 Kラボラトリー ひろせ まさあき

自己紹介

自己紹介

- 名前:ひろせ まさあき
- はてなID:id:hirose31

- KLab株式会社
 - Kラボラトリーに所属

http://d.hatena.ne.jp/hirose31/

アジェンダ

- ストレージサーバの作り方
- 要件の整理
 - データの保全
 - 可用性の確保
- 実装方法の検討
 - とまらないストレージサーバ
 - ストレージへのアクセス方法
- 構築
- 落とし穴
 - DRBD
 - NFS

アジェンダ

- 要件の整理
 - データの保全
 - 可用性の確保
- 実装方法の検討
 - とまらないストレージサーバ
 - ストレージへのアクセス方法
- 構築
- 落とし穴
 - DRBD
 - NFS

こんなストレージサーバが欲しい (1)

こんなファイルを保存することを考えます

- ・サイズ
 - そこそこでかい
 - 数MB~数十MB
- 数
 - とてもたくさん
- 具体的には
 - 画像、音、動画、着メロデータなど

こんなストレージサーバが欲しい (2)

ストレージサービスの要件

データがなくならない

サービスがとまらない

データがなくならない

- ディスク故障からデータを守る方法を考える
- RAIDはどうか?
 - ◎ 有益だが、万能ではない
- バックアップはどうか?
 - フルバックアップ
 - 差分バックアップ
 - ●プファイル数が多いと差分判定に時間がかかる
 - ●バックアップ中は負荷がかかる
 - 定期バックアップは時間が経つと本データと乖離する

サービスがとまらない

- RAIDはどうか?
 - ◎ ディスク故障
 - RAIDコントローラが壊れたら?
 - RAIDと関係ない部分が壊れたら?
 - 電源
 - メモリ
- バックアップはどうか?
 - ●リストアに時間がかかる
 - → 復旧に時間がかかる
 - ♥リカバリできないかもしれない
 - → 障害時データとバックアップデータの乖離

なんかいいのないの?

アジェンダ

- 要件の整理
 - データの保全
 - 可用性の確保
- 実装方法の検討
 - とまらないストレージ
 - ストレージへのアクセス方法
- 構築
- 落とし穴
 - DRBD
 - NFS

DRBDとは?

- DRBD Distributed Replicated Block Device
 - http://www.drbd.org
 - kernel moduel + drbdadm コマンド
- ・しくみ
 - DRBD
 - サーバ対サーバの ネットワーク越しの ミラーリング
 - RAID 1
 - ディスク対ディスクの ローカルバス越しの ミラーリング

DRBDのしくみ

リアルタイムに ミラーリング

writeはプライマリ に対してのみ readもプライマリ rocess に対してのみ

read

write

リアルタイムに ミラーリング

解決したい問題の再確認

データがなくならない

サービスがとまらない

DRBDで解決できる問題 (1)

- データがなくならない
 - リアルタイムに別サーバにミラーリング

DRBDで解決できる問題 (2)

- サービスがとまらない
 - プライマリが故障した場合はセカンダリを昇格すればおk (フェイルオーバ)
 - →ダウンタイムを短くできる

フェイルオーバ(F/O)はどう実装するか?

- DRBD自体には自動F/Oの機構がない
 - いくつかの管理コマンドを実行する必要がある
 - →死活監視+管理コマンド実行が必要
- F/O時にIPアドレスが変わらないようにしたい
 - F/Oをクライアントに意識させない
 - → 浮動する仮想IPアドレスをプライマリに付与すればいい

keepalivedでできるよ

- keepalivedの2つの機能
 - 1) IPVSによるロードバランスとリアルサーバの死 活監視
 - 2) VRRPによるアクティブ/バックアップ構成の冗 長化 ←今日はこっち

- VRRP Virtual Router Redundancy Protocol
 - RFC 3768
- VRRPの概要
 - 2台以上のルータでグループを構成する
 - 1台のマスタルータと1台以上のバックアップルータ
 - マスタルータは、浮動する仮想ルータアドレスを保持する
 - マスタルータが停止すると、バックアップルータのいずれ かがマスタに昇格する
- VRRPの死活監視
 - マスタルータが定期的にマルチキャストする
 - VRRP Advertisement Message

KLab

マスタが、浮動する仮想ルータアドレスを保持する

192.168.0.1

1台のマスタルータと バックアップルータたち

192.168.0.103

2台以上のルータで グループを構成する

マスタがダウンすると...

バックアップルータのどれ かがマスタに昇格する

VRRPはルータじゃないと使えないの?

- ルータじゃなくても使えます!!
 - 複数のノードでグループを構成し、
 - その中の1つのノードがマスタになり
 - なにかしらのサービスを提供する
- VRRPを使う利点
 - マスタに付与される仮想IPアドレスの管理を任せられる
 - ネットワーク的な疎通監視を任せられる
- +keepalivedの利点
 - keepalivedの場合は、VRRPの状態変化をフックして任意 のプログラムを実行できる
 - → ここでDRBDのF/Oの処理を実行すればいい

ここまでのまとめ

DRBDによる リアルタイムミラー

アジェンダ

- 要件の整理
 - データの保全
 - 可用性の確保
- 実装方法の検討
 - とまらないストレージ
 - ストレージへのアクセス方法
- 構築
- 落とし穴
 - DRBD
 - NFS

ストレージサーバへのアクセス – write

- NFSv3
 - 少数のアップロードサーバ(NFSクライアント)がストレージサーバ(NFSサーバ)に書き込む

ストレージサーバへのアクセス – write

- NFSv3
 - でもいいけど、NFSはサーバ間の結合が強いので できれば避けたいのが本音
 - Webサービスの場合、readするHTTPサーバがた くさんいるのでなおさらイヤ

- HTTP
 - readならHTTPでもいいんでないかと
 - 内部のロードバランサ経由でアクセス
 - ◎分散
 - ◎高可用性

NFSのフェイルオーバ時の注意点

- /var/lib/nfs
 - 接続中のNFSクライアントの情報を保持している場所
- F/O時にこの情報が失われてしまう
 - 昇格したNFSサーバは見知らぬNFSクライアントからのアクセスにみえるため拒否してしまう!
- 解決方法
 - (1) DRBDで/var/lib/nfsもミラーリングしちゃう
 - (2) mount -t nfsd nfsd /proc/fs/nfs ←オススメ
 - kernel 2.6以降

アジェンダ

- 要件の整理
 - データの保全
 - 可用性の確保
- 実装方法の検討
 - とまらないストレージ
 - ストレージへのアクセス方法
- 構築
- 落とし穴
 - DRBD
 - NFS

で、実際の構築方法の説明は。。。

6/2x発売のWEB+DB PRESS Vol.39を見てく ださい>

それだけではなんなので。。。

• 過去にハマった落とし穴情報をいくつか...

アジェンダ

- 要件の整理
 - データの保全
 - 可用性の確保
- 実装方法の検討
 - とまらないストレージ
 - ストレージへのアクセス方法
- 構築
- 落とし穴
 - DRBD
 - NFS

落とし穴 (1) - DRBDとXFS

- ちょっと前(kernel 2.6.11か2.6.12ぐらい)のお話
- DRBDをXFSで使うと、ある日突然サーバが何もいわずに落ちる問題が発生
 - 再現性あり:bonnie++で負荷をかけ続けると3日目ぐらいで落ちる
- kernelのスタックサイズを4KBから8KBに変更すればOK
 - Kernel hacking → Use 4Kb for kernel stacks instead of 8Kbのチェックを外す
- 最近のバージョンでは直ってる情報もアリ

落とし穴(2)

drbd.confOon-io-error

- on-io-error:ディスクでIOエラーが発生した 場合の挙動の指定
 - pass_on
 - 上位レイヤ(ファイルシステム)にスロー
 - panic
 - 当該ノードでkernel panicを起こし停止させる
 - detach ←こいつがクセモノ
 - 物理デバイスを切り離す
 - と同時に相方サーバをkernel panicさせる
 - →プライマリもセカンダリもダウン>

落とし穴(3)

- メモリ系のデバイスとDRBD

- tmpfs
 - ★ デバイスに見えないのでDRBDで使えない
- tmpfs+loop back device
 - × フリーズする
- ramdisk
 - 使えるが、1つのramdiskの最大サイズは512MB
- ramdisk+LVM
 - ★ pvcreateできなかった
- ramdisk + md(raid0)
 - ★ 領域を超えるサイズのファイルを作るとOSが落ちる
- ひ現在の最新バージョンでは異なる可能性があります

今日はここまで

ご清聴、 ありがとうございました~ >く