COSE436

Lecture 13: Colors

Oct 24, 2024
Won-Ki Jeong
(wkjeong@korea.ac.kr)

Outline

- Properties of light and colors
- Color models

 $\texttt{CMP} \leftarrow \textbf{COMPANY I.D.}$

Electromagnetic Spectrum

 λ : wavelength, f : frequency, c : speed of light Wavelength unit is easier to use for visible spectrum. We use wavelength in vacuum.

Spectral Color

 Each frequency (wavelength) in visible spectrum corresponds to a single color

Color of Light

- Light source emits all frequencies within visible range
- Dominant frequency determines the color of light

red light

Color Characteristics

- Hue (color)
 - Dominant frequency
- Brightness (luminance)
 - Total energy of the light
- Saturation (purity)
 - How close to a pure spectral color
- Chromaticity
 - Hue & Saturation

Color Characteristics

Perceiving Colors

- Interaction between light and materials
 - Reflection
 - Red apple reflects red spectrum of light
 - Transmission
 - Green glass transmits green spectrum of light
- Photoreceptors in the eye
 - Retina (rods & cones)

Reflectance Spectra

Wavelength-by-wavelength Multiplication

Spectrum of Reflected Light

Reflectance Spectra

The Eye

Rods and Cones

Rods

- 120 million cells
- Monochromatic, night vision

Cones

- 6~7 million cells
- Color sensitive
- Three types of cones
 - Red (64%)
 - Green (32%)
 - Blue (2%)

The Retina

UNIVERSITY

Rod and Cone Density

Primary Colors

Tristimulus theory

Three types of cone

Short, Middle, Long wavelength types

Luminous-Sensitivity of human eye

Hunters vs. Gatherer

Color Mixing

Yellow = Red + Green

Color Mixing

• Spectral Yellow

Color Mixing

Yellow as Red & Green mixture

Color Matching Experiment

- Need a precise way to describe colors
 - Use monochromatic (single wavelength) primaries
 - 700nm (red), 546. Inm(green), 435.8nm(blue)

Find matching parameters for each spectral color!

Color Matching Experiment

- Not all visible colors can be expressed using R/G/B primary colors
 - -R required

Image courtesy of Van Dam

RGB Color Matching Functions

• R (700 nm), G (546.1 nm), B (435.8 nm)

$$R = k \prod (\lambda) f_R(\lambda) d\lambda$$

$$G = k \prod (\lambda) f_G(\lambda) d\lambda$$

$$B = k \prod (\lambda) f_B(\lambda) d\lambda$$

$$C(\lambda) = R\mathbf{R} + G\mathbf{G} + B\mathbf{B}$$

(R,G,B) is uniquely defined per primary

RGB Color Matching Function

 Inner product of spectral radiance function and color matching function

CIE rg Chromaticity Space

Can we design new primaries?

Construction of XYZ Color Space

- New primaries X,Y, Z (and normalized x, y, z)
- Goals
 - New color matching functions should be non-negative everywhere
 - Historical reason, positive computations are easier
 - Y represents photopic luminous efficient function
 - Perceived brightness over different wavelength
 - White point : x = y = z = 1/3
 - All visible colors should be within the x-y triangle of [1,0],[0,0],[0,1]

CIE Standard Primaries

- XYZ system
 - Coordinate transform
 - Synthetic primaries

$$C(\lambda) = XX + YY + ZZ$$

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \frac{1}{0.17697} \begin{bmatrix} 0.49 & 0.31 & 0.20 \\ 0.17697 & 0.81240 & 0.01063 \\ 0.00 & 0.01 & 0.99 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Image courtesy of Hoffmann

CIE Primary Matching Functions

- Positive matching functions
- XYZ color model
 - xy (chromatic) & Y(luminance)

$$X = k \prod (\lambda) f_X(\lambda) d\lambda$$

$$Y = k \prod (\lambda) f_Y(\lambda) d\lambda$$

$$Z = k \prod (\lambda) f_Z(\lambda) d\lambda$$

$$C(\lambda) = XX + YY + ZZ$$

$$x = \frac{X}{X + Y + Z}, y = \frac{Y}{X + Y + Z}, z = \frac{Z}{X + Y + Z}$$

$$X = \frac{x}{y}Y, \ Z = \frac{z}{y}Y, \ z = 1 - x - y$$

CIE Chromaticity Diagram

- 2D x/y plot
- No luminance
 - Colors with same chromaticity map to same point
- Useful for
 - Comparing color gamut for different primaries
 - Identifying complementary color:
 - Determine purity and dominant wavelength for a given color

Color Gamut

- Range of color represented by primaries
- Straight line or polygon

Complementary Colors

Two colors collinear with white

Complementary Colors

Dominant Wavelength and Purity

Magenta (Pink)

- Not a spectral color
 - No corresponding single wavelength
 - (Full spectrum (white) green spectrum) = addition of red and blue spectra

700 nm

Additive Colors

- Colors are combined by adding their spectra
- Light

Subtractive Colors

- Colors are combined by multiplying their spectra
- Ink, paint

RGB Color Model

Additive

CMY Color Model

Subtractive

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} C \\ M \\ Y \end{bmatrix}$$

CMYK Color Model

- Use K for richer black
 - Black by CMY is dark gray
 - Use less ink
- K = min(C, M,Y)
 C' = C K
 M' = M K
 Y' = Y K
 (one of C',Y', M' will be 0)

HSV Color Model

- Intuitive color selection
 - Hue, saturation, value (brightness)
 - Rearrangement of RGB

HSV Color Model

Image courtesy of Hearn

HSV Color Models

- Colors on V=I plane are not perceptually uniform (not equally bright)
- Complementary colors are 180° opposite
- S=I is not pure spectral color
 - HSV color space is a subset of CIE space

HSL Color Model

Similar to HSV except double-cone model

White: L=1 Black: L=0

Pure color: L=0.5, S=1

LAB / HCL Color Model

- Perceptually uniform
 - L: luminance
 - -a: green to red
 - b : blue to yellow
- HCL is a cylindrical transformation of LAB

Questions?

