Задача 1. Даден е детерминираният краен автомат

$$\mathcal{A} = \langle \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}, \{a, b, c\}, q_0, \delta, \{q_0, q_3, q_4, q_5, q_7\} \rangle$$

с функция на преходите δ , определена както следва:

q	a	b	c
q_0	q_7	q_0	q_6
q_1	q_2	q_2	q_5
q_2	q_1	q_6	q_0
q_3	q_5	q_3	q_7
q_4	q_7	q_5	q_4
q_5	q_3	q_5	q_6
q_6	q_6	q_1	q_4
q_7	q_0	q_7	q_3

Да се построи минимален детерминиран краен автомат \mathscr{A}' , еквивалентен на \mathscr{A}

Решение.

Прилагаме аллгоритъмът за минимизация. Разбиваме множествата от състояния на: $P_1 = \{q_1,\,q_2,\,q_6\}$ – нефинални и

$$P_2 = \{q_0,\,q_3,\,q_4,\,q_5,\,q_7\}$$
 – финални

състояние	преход с а	преход с b	преход с с
q_0	P_2	P_2	P_1
q_1	P_1	P_1	P_2
q_2	P_1	P_1	P_2
q_3	P_2	P_2	P_2
q_4	P_2	P_2	P_2
q_5	P_2	P_2	P_1
q_6	P_1	P_1	P_2
q_7	P_2	P_2	P_2

Разбиваме P_2 на $P_3=\{q_0,\,q_5\}$ и $P_4=\{q_3,\,q_4,\,q_7\}.$ Имаме:

- $P_1 = \{q_1, q_2, q_6\}$
- $P_3 = \{q_0, q_5\}$
- $P_4 = \{q_3, q_4, q_7\}$

състояние	преход с а	преход с b	преход с с
q_0	P_4	P_3	P_1
q_1	P_1	P_1	P_3
q_2	P_1	P_1	P_3
q_3	P_3	P_4	P_4
q_4	P_4	P_3	P_4
q_5	P_4	P_3	P_1
q_6	P_1	P_1	P_4
q_7	P_3	P_4	P_4

Разбиваме P_1 на $P_5=\{q_1,\,q_2\}$ и $P_6=\{q_6\}$ и разбиваме P_4 на $P_7=\{q_3,\,q_7\}$ и $P_8=\{q_4\}.$

До тук имаме състоянията:

- $P_3 = \{q_0, q_5\}$
- $P_5 = \{q_1, q_2\}$
- $P_6 = \{q_6\}$
- $P_7 = \{q_3, q_7\}$ $P_8 = \{q_4\}$

състояние	преход с а	преход с b	преход с с
q_0	P_7	P_3	P_6
q_1	P_5	P_5	P_3
q_2	P_5	P_6	P_3
q_3	P_3	P_7	P_7
q_4	P_7	P_3	P_8
q_5	P_7	P_3	P_6
q_6	P_6	P_5	P_8
q_7	P_3	P_7	P_7

Разбиваме P_5 на $P_9 = \{q_1\}$ и $P_{10} = \{q_2\}$. Имаме състоянията:

- $P_3 = \{q_0, q_5\}$
- $P_6 = \{q_6\}$
- $P_7 = \{q_3, q_7\}$
- $P_8 = \{q_4\}$
- $P_9 = \{q_1\}$
- $P_{10} = \{q_2\}$

състояние	преход с а	преход с b	преход с с
q_0	P_7	P_3	P_6
q_1	P_{10}	P_{10}	P_3
q_2	P_9	P_6	P_3
q_3	P_3	P_7	P_7
q_4	P_7	P_3	P_8
q_5	P_7	P_3	P_6
q_6	P_6	P_9	P_8
q_7	P_3	P_7	P_7

Алгоритъмът за минимизация терминира, тъй като състоянията от всяко множество имат еднакво поведение и не може да разбиваме повече. Финални състояния са тези, които в множеството си имат поне едно от състоянията, които са били финални в автомата, който минимизираме, а именно $q_0,\,q_3,\,q_4,\,q_5$ или $q_7.$ Това са съответно новите състояния $P_3,\,P_6,\,P_7$ и $P_8.$

