Theoretical Computer Science Tutorial Week 11

Prof. Andrey Frolov

nnoboria

Agenda

Non-determinism:

- NDFSA = DFSA
 - $\bullet \ \mathsf{RegExp} \to \mathsf{NDFSA} \to \mathsf{DFSA} \ (\mathsf{the} \ \mathsf{previous} \ \mathsf{week})$
 - DFSA → RegExp (Kleene's Algorithm)
 - Chomsky Grammars Hierarchy (Regular grammars)
- NDPDA
 - Definition & Example
 - Chomsky Grammars Hierarchy (Context-Free grammars)
- TM
 - Definition & Example
 - Chomsky Grammars Hierarchy (Unrestricted grammars)

Kleene's Algorithm

Let $M = (Q, A, \delta, q_0, F)$ an FSA, where $Q = \{q_0, \dots, q_n\}$.

Step k = -1

$$R_{ij}^{-1} = \begin{cases} a_1 \mid \dots \mid a_m, & \text{if } i \neq j, \text{where } \delta\left(q_i, a_t\right) = q_j \\ a_1 \mid \dots \mid a_m \mid \epsilon, & \text{if } i = j, \text{where } \delta\left(q_i, a_t\right) = q_j \\ \emptyset, & \text{otherwise} \end{cases}$$

Step $k = 0, \ldots, n$

$$R_{ij}^{k} = R_{ik}^{k-1} \left(R_{kk}^{k-1} \right)^{*} R_{kj}^{k-1} \mid R_{ij}^{k-1}$$

Answer

 $R^n_{0i_1}\mid\ldots\mid R^n_{0i_f}$, where $F=\{q_{i_1},\ldots,q_{i_f}\}$ is the set of accept states

$$R_{ij}^{-1} = \begin{cases} a_1 \mid \ldots \mid a_m, & \text{if } i \neq j, \text{where } \delta\left(q_i, a_t\right) = q_j \\ a_1 \mid \ldots \mid a_m \mid \epsilon, & \text{if } i = j, \text{where } \delta\left(q_i, a_t\right) = q_j \\ \emptyset, & \text{otherwise} \end{cases}$$

$$R_{00}^{-1} = 0 \mid \epsilon$$

$$R_{01}^{-1} = 1$$

$$R_{10}^{-1} = 0$$

$$R_{11}^{-1} = \epsilon$$

$$R_{ij}^{k} = R_{ik}^{k-1} (R_{kk}^{k-1})^{*} R_{kj}^{k-1} \mid R_{ij}^{k-1}$$

$$R_{00}^{-1} = 0 \mid \epsilon \mid R_{10}^{0} = 0 \mid \epsilon \mid R_{ik}^{0} = 0 \mid \epsilon \mid R_{ik}^{k-1} R_{ik}^{k-1} \mid R_{ij}^{k-1} \mid R_$$

$$R_{ij}^{k} = R_{ik}^{k-1} \left(R_{kk}^{k-1} \right)^{*} R_{kj}^{k-1} \mid R_{ij}^{k-1}$$

$$R_{00}^{0} = (0 \mid \epsilon)(0 \mid \epsilon)^{*}(0 \mid \epsilon) \mid (0 \mid \epsilon) = 0^{*}$$

$$R_{01}^{0} = (0 \mid \epsilon)(0 \mid \epsilon)^{*}1 \mid 1 = 0^{*}1$$

$$R_{10}^{0} = 0(0 \mid \epsilon)^{*}(0 \mid \epsilon) \mid 0 = 00^{*}$$

$$R_{11}^{0} = 0(0 \mid \epsilon)^{*}1 \mid \epsilon = 00^{*}1 \mid \epsilon$$

$$R_{00}^{1} = 0^{*}1(00^{*}1 \mid \epsilon)^{*}00^{*} \mid 0^{*} = 0^{*}1(00^{*}1)^{*}00^{*} \mid 0^{*} = 0^{*}1$$

$$R_{ij}^{k} = R_{ik}^{k-1} \left(R_{kk}^{k-1} \right)^{*} R_{kj}^{k-1} \mid R_{ij}^{k-1}$$

$$R_{00}^{0} = (0 \mid \epsilon)(0 \mid \epsilon)^{*}(0 \mid \epsilon) \mid (0 \mid \epsilon) = 0^{*}$$

$$R_{01}^{0} = (0 \mid \epsilon)(0 \mid \epsilon)^{*}1 \mid 1 = 0^{*}1$$

$$R_{10}^{0} = 0(0 \mid \epsilon)^{*}(0 \mid \epsilon) \mid 0 = 00^{*}$$

$$R_{11}^{0} = 0(0 \mid \epsilon)^{*}1 \mid \epsilon = 00^{*}1 \mid \epsilon$$

$$R_{00}^1 = 0^*1(00^*1 \mid \epsilon)^*00^* \mid 0^* = 0^*1(00^*1)^*00^* \mid 0^* = (0^*100^*)^*$$

Kleene's Algorithm: from FSA to Regular Expression

Description: Given an FSA $M = (Q, A, \delta, q_0, F)$ with $Q = \{q_0, \dots, q_n\}$,

- R_{ij}^k are the sets of all strings that take M from state q_i to q_j without going through any state numbered lower than k,
- each set R_{ij}^k is represented by a regular expression,
- the algorithm computes R_{ij}^k step by step for $k=-1,0,\ldots,n$,
- since there is no state numbered higher than n, the regular expression R_{0j}^n represents the set of all strings that take M from its start state q_0 to q_j .
 - If $F = \{q_{i_1}, \ldots, q_{i_f}\}$ is the set of accept states, the regular expression $R_{0i_1}^n \mid \ldots \mid R_{0i_f}^n$ represents the language accepted by M.

Kleene's Algorithm: Example 2 (-1)

Kleene's Algorithm: Example 2 (0)

Kleene's Algorithm: Example 2 (1)

Kleene's Algorithm: Example 2 (2)

$$R_{00}^{1} = a^{*} \qquad R_{10}^{1} = \emptyset \qquad R_{20}^{1} = \emptyset$$

$$R_{01}^{1} = a^{*}bb^{*} \qquad R_{11}^{1} = b^{*} \qquad R_{21}^{1} = (a \mid b)b^{*}$$

$$R_{02}^{1} = a^{*}bb^{*}a \qquad R_{12}^{1} = b^{*}a \qquad R_{22}^{1} = (a \mid b)b^{*}a \mid \epsilon$$

$$R_{01}^{2} = a^{*}bb^{*}a((a \mid b)b^{*}a \mid \epsilon)^{*}(a \mid b)b^{*} \mid a^{*}bb^{*} =$$

$$= a^{*}bb^{*}(a(a \mid b)b^{*})^{*}$$

$$R_{01}^2 = a^*bb^*(a(a \mid b)b^*)^*$$

 $R_{02}^2 = a^*bb^*(a(a \mid b)b^*)^*a$

Answer: $R_{01}^2 \mid R_{02}^2 = a^*bb^*(a(a \mid b)b^*)^*(\epsilon \mid a)$

Agenda

Non-determinism:

- NDFSA = DFSA
 - ullet RegExp o NDFSA o DFSA (the previous week)
 - DFSA → RegExp (Kleene's Algorithm)
 - Chomsky Grammars Hierarchy (Regular grammars)
- NDPDA
 - Definition & Example
 - Chomsky Grammars Hierarchy (Context-Free grammars)
- TM
 - Definition & Example
 - Chomsky Grammars Hierarchy (Unrestricted grammars)

Grammar: definition

Definition

A grammar is a tuple

$$\langle V_N, V_T, P, S \rangle$$

where

- V_N is the non-terminal alphabet;
- V_T is the terminal alphabet;
- $P \subseteq (V^* \cdot V_N \cdot V^*) \times V^*$ is the (finite) set of rewriting rules of production, where $V = V_N \cup V_T$;
- $S \in V_N$ is a particular element called axiom or initial symbol.

Right regular grammar

A right regular grammar is a formal grammar $\langle V_N, V_T, P, S \rangle$ such that all the production rules in P are of one of the following forms:

- 1) $A \rightarrow s$, where $A \in V_N$ and $s \in V_T^*$;
- 2) $A \rightarrow sB$, where $A, B \in V_N$ and $s \in V_T^*$;

Left regular grammar

2*) $A \rightarrow Bs$, where $A, B \in V_N$ and $s \in V_T$;

$$A o a_1 A_1', A_1' o a_2 A_2', \dots, A_{k-1}' o a_k A_k', A_k' o \epsilon B \leftrightharpoons A o s B$$
, where $s = a_1 a_2 \dots a_k$.

Example 1

$$L_1 = \{(ab)^n \mid n \in \mathbb{N}\}$$

Rules

$$S \rightarrow \epsilon A$$

$$A \rightarrow abA$$

$$A \rightarrow \epsilon$$

$$S \to \epsilon A \to \epsilon \epsilon = \epsilon$$

$$S \rightarrow \epsilon A \rightarrow \epsilon abA \rightarrow \epsilon ab\epsilon = ab$$

$$S o \epsilon A o abA o ababA o \cdots (ab)^n A o (ab)^n$$

Example 2

$$L_2 = \{xaay \mid x, y \in \{a, b\}^*\}$$

Rules

$$\begin{array}{ccccc} S \rightarrow \epsilon A & A \rightarrow aA & B \rightarrow aB \\ & A \rightarrow bA & B \rightarrow aB \\ & A \rightarrow aaB & B \rightarrow \epsilon \end{array}$$

Fact

$$DFSA = NFSA = RG$$

Agenda

Non-determinism:

- NDFSA = DFSA
 - ullet RegExp o NDFSA o DFSA (the previous week)
 - DFSA → RegExp (Kleene's Algorithm)
 - Chomsky Grammars Hierarchy (Regular grammars)
- NDPDA
 - Definition & Example
 - Chomsky Grammars Hierarchy (Context-Free grammars)
- TM
 - Definition & Example
 - Chomsky Grammars Hierarchy (Unrestricted grammars)

Non-deterministic Pushdown Automaton (NDPDA)

Definition: NDPDA

A NDPDA is a tuple $\langle Q, I, \Gamma, \delta, q_0, Z_0, F \rangle$, where $Q, I, \Gamma, q_0, Z_0, F$ are defined as in (D)PDA and the transition function is defined as

$$\delta: Q \times (I \cup \{\epsilon\}) \times \Gamma \to \mathbb{P}_{\mathbf{F}}(Q \times \Gamma^*)$$

where \mathbb{P}_{F} indicates finite subsets.

Deterministic PDA

$$L_1 = \{wcw^R \mid w \in \{a,b\}^*\}$$

$$b, B/BB$$

$$b, A/BA$$

$$a, A/AA$$

$$a, B/AB$$

$$b, B/\epsilon$$

$$c, Z_0/Z_0$$

$$c, A/A$$

$$c, B/B$$

$$d_1$$

$$e, Z_0/Z_0$$

$$d_2$$

$$e, Z_0/Z_0$$

$$d_1$$

$$e, Z_0/Z_0$$

$$d_2$$

$$d_2$$

$$d_1$$

$$e, Z_0/Z_0$$

$$d_2$$

$$d_2$$

$$d_1$$

$$d_2$$

$$d_2$$

$$d_2$$

$$d_3$$

$$d_4$$

NDPDA

$$L_{2} = \{ww^{R} \mid w \in \{a, b\}^{*}\}$$

$$b, B/BB$$

$$b, A/BA$$

$$a, A/AA$$

$$a, B/AB$$

$$b, B/\epsilon$$

$$f(x) = \{a, b\}^{*}\}$$

$$b, B/\epsilon$$

$$f(x) = \{a, b\}^{*}\}$$

Agenda

Non-determinism:

- NDFSA = DFSA
 - ullet RegExp o NDFSA o DFSA (the previous week)
 - DFSA → RegExp (Kleene's Algorithm)
 - Chomsky Grammars Hierarchy (Regular grammars)
- NDPDA
 - Definition & Example
 - Chomsky Grammars Hierarchy (Context-Free grammars)
- TM
 - Definition & Example
 - Chomsky Grammars Hierarchy (Unrestricted grammars)

Regular grammar (Recall)

- 1) $A \rightarrow s$, where $A \in V_N$ and $s \in V_T^*$;
- 2) $A \rightarrow sB$, where $A, B \in V_N$ and $s \in V_T^*$;

Context-Free grammar

A Context-Free grammar is a formal grammar $\langle V_N, V_T, P, S \rangle$ such that all the production rules in P are the following forms:

$$A \rightarrow \beta$$
,

where $A \in V_N$, $\beta \in (V_T \cup V_N)^*$.

Example 1

$$L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$$

Rules

$$S \rightarrow \epsilon$$

$$S \rightarrow aSb$$

$$S \rightarrow \epsilon$$

$$S \rightarrow aSb \rightarrow ab$$

$$S o aSb o aaSbb o \cdots a^nSb^n o a^nb^n$$

Example 2

$$L_2 = \{ww^R \mid w \in \{a, b\}^*\}$$

Rules

$$S \rightarrow \epsilon$$

$$S \rightarrow aSa$$

$$S \rightarrow bSb$$

$$S o aSa o abSba o abbSbba o \cdots$$

Fact

 $DPDA \subsetneq NDPDA = CFG$

Agenda

Non-determinism:

- NDFSA = DFSA
 - ullet RegExp o NDFSA o DFSA (the previous week)
 - DFSA → RegExp (Kleene's Algorithm)
 - Chomsky Grammars Hierarchy (Regular grammars)
- NDPDA
 - Definition & Example
 - Chomsky Grammars Hierarchy (Context-Free grammars)
- TM
 - Definition & Example
 - Chomsky Grammars Hierarchy (Unrestricted grammars)

Turing Machine

Formal Definition

A Turing Machine (TM) with k-tapes is a tuple

$$T = \langle Q, I, \Gamma, \delta, q_0, Z_0, F \rangle$$

where

Q is a finite set of states; I is the input alphabet; Γ is the memory alphabet; δ is the transition function; $q_0 \in Q$ is the initial state; $Z_0 \in \Gamma$ is the initial memory symbol; $F \subset Q$ is the set of final states.

Deterministic & Non-Deterministic TM

Deterministic:

$$\delta: (Q-F)\times (I\cup\{_\})\times (\Gamma\cup\{_\})^k \to Q\times (\Gamma\cup\{_\})^k\times \{R,L,S\}^{k+1}$$

Definition: Non-Deterministic TM (NDTM)

A NDTM is a tuple $\langle Q, I, \Gamma, \delta, q_0, Z_0, F \rangle$, where $Q, I, \Gamma, q_0, Z_0, F$ are defined as in (D)TM and the transition function is defined as

$$\delta: (Q - F) \times (I \cup \{_\}) \times (\Gamma \cup \{_\})^k \to \mathbb{P}_{F} \left(Q \times (\Gamma \cup \{_\})^k \times \{R, L, S\}^{k+1} \right)$$

Example

The TM₁ recognises the language $L_1 = \{a^{2n}b^{2n}c^{2n} \mid n > 0\}$

Example

The TM₂ recognises the language $L_2 = \{a^{3n}b^{3n}c^{3n} \mid n > 0\}$

Example

The TM recognises the language

$$L = \{a^{2n}b^{2n}c^{2n} \mid n > 0\} \cup \{a^{3n}b^{3n}c^{3n} \mid n > 0\}$$

Agenda

Non-determinism:

- NDFSA = DFSA
 - ullet RegExp o NDFSA o DFSA (the previous week)
 - DFSA → RegExp (Kleene's Algorithm)
 - Chomsky Grammars Hierarchy (Regular grammars)
- NDPDA
 - Definition & Example
 - Chomsky Grammars Hierarchy (Context-Free grammars)
- TM
 - Definition & Example
 - Chomsky Grammars Hierarchy (Unrestricted grammars)

Unrestricted grammars (type 0)

Unrestricted grammar

A Unrestricted grammar is a formal grammar $\langle V_N, V_T, P, S \rangle$ such that all the production rules in P are the following forms:

$$\alpha \to \beta$$
,

where $\alpha, \beta \in (V_T \cup V_N)^*$.

$$AaB \rightarrow baC$$

Unrestricted grammars (type 0)

Fact

$$NDTM = URG$$

Question

What about DTM = NDTM?

Thank you for your attention!