

Al for Augmented Insurers.

Detect, explain & correct data drift in a machine learning system.

November 2021

Agenda

- 1. Introduction
- 2. Detect data drift
- 3. Explain data drift
- 4. Correct data drift
- 5. Demo
- 6. Conclusion

Context

- We consider a ML system answering a binary classification problem where:
 - ∘ $Y \in \{0,1\}$: target ∘ $X \in \chi \subset \mathbb{R}^d$: input
- Let $\hat{f}(x)$ a model which answers the binary classification problem and is already trained on some dataset.

Some idea developed in the presentation requires that \hat{f} is a tree-based model (Gradient Boosting (XGBoost, LightGBM), Random Forest, CART, etc.).

• Let \mathcal{D}_1 : $(X_{i,1}, Y_{i,1})_{i=1,\dots,n_1}$ (i.i.d.) and \mathcal{D}_2 : $(X_{i,2}, Y_{i,2})_{i=1,\dots,n_2}$ (i.i.d.) two datasets corresponding to the binary classification problem. Let P_{X_1,Y_1} and P_{X_2,Y_2} the corresponding distributions.

Our goal is to study the data drift between \mathcal{D}_1 and \mathcal{D}_2

• In a typical situation \mathcal{D}_1 is the training/validation data and \mathcal{D}_2 is the production data.

In practice depending on the use case, $(Y_{i,2})_{i=1,\dots,n_2}$ may not be observed.

What is data drift?

Definition: A data drift between \mathcal{D}_1 and \mathcal{D}_2 corresponds to the case where $P_{X_1,Y_1} \neq P_{X_2,Y_2}$

Two categories of data drift:

- Case 1: Covariate shift
 - the conditional distributions are the same: $P_{Y_1|X_1} = P_{Y_2|X_2}$, but the distribution of inputs changes: $P_{X_1} \neq P_{X_2}$
- Case 2: Concept drift
 - the conditional distributions are not the same: $P_{Y_1|X_1} \neq P_{Y_2|X_2}$

Property: P_X and $P_{Y|X}$ characterize the distribution $P_{X,Y}$

proof. $dP_{X,Y}(x,y) = dP_{Y|X}(y|x) \cdot dP_X(x)$

Property: These 2 cases cover all possible cases

proof: In covariate shift, if P_X is unchanged, then $P_{X,Y}$ is given by P_X and $P_{Y|X}$ which are both unchanged. Hence $P_{X,Y}$ is unchanged -> no data drift

Case 1: Examples of covariate shift

- The distribution of some input variable that changes with time. (e.g. evolution of inbound channel repartition: more digital, less paper)
- Some input variable that may take a new value (e.g. new product, new option, new functionality, etc.)
- Hand-based input with a user error in it (e.g. you're expecting an input to be in M\$, and it's in \$ instead)

Evolution of inbound channel repartition

New product which modifies the input distribution

Case 2: Examples of concept drift

Censoring of some observations

- At training time, we filter the data to keep only the samples for which we know the target Y. Let $D \in \{0,1\}$ be the censoring variable. Training data is (X_i,Y_i,D_i) with $Y_i=\infty$ if $D_i=0$ (training data has the distribution $P_{X,Y|D=1}$).
 - → Typical situation is the **presence of non stated cases** (accepted, rejected and unknown status).

• Non-stationary environment

- o Change of the regulation (e.g. credit agreement).
- o Important events that change behaviors (e.g. propensity to travel during Covid crisis).

Spatial drift

o Model trained on French insurance data and deployed in the Italian market.

Measure of drift - Numerical variables

- Difference of means.
- Wasserstein distance

$$W(V_1, V_2) = \int_{-\infty}^{+\infty} |F_{V_1}(v) - F_{V_2}(v)| dv,$$

with $F_V(t) = P(V \le t)$ the CDF of V .

• Kolmogorov-Smirnov 2 sample test.

Distribution of variable V


```
{'mean_difference': -0.514477079781603,
'wasserstein': 0.5144829964200954,
'kolmogorov_smirnov': KstestResult(statistic=0.13030577961608247, pvalue=0.0)}
```

Measure of drift - Categorical variables

- Wasserstein distance (we assume distance between 2 categories is equal to 1*).
- Chi2 test

Contingency table:

	Cat 1	Cat 2	Cat 3
X1	1152.0	821.0	407.0
X2	1909.0	1154.0	1163.0

^{*} This corresponds to Wasserstein distance between dummy representations, with $\| \ \|_{\infty}$ norm


```
{'wasserstein': 0.10419273246449548,    'chi2_test': {'chi2_stat': 99.2937, 'p_value': 2.74556e-22}}
```

What indicators do we track in the ML system?

- Distribution of predictions of the model
- Distribution of the target
- Performance metrics

Distribution of predictions

{'mean_difference': -0.514477079781603,

'wasserstein': 0.5144829964200954,

'kolmogorov_smirnov': KstestResult(statistic=0.13030577961608247, pvalue=0.0)}

Performance metrics

log_loss valid: 0.17342663278191264 log_loss prod: 0.10822475472437297

AUC valid: 0.8950968405582416 AUC prod: 0.8393885465363519

We focus on data drift that have an impact on the ML system (we don't track data drift on all inputs of the model)

Approach 1: Model based approach

- Ideas:
 - What is the impact of the data drift of a given input on the ML system?
 - Compute **drift values** of each input (i.e. contribution of the feature to the global data drift)
 - Importance of a data drift on some input of the model should be lowered if the given input is not important in the model
 - Need to study the data drift through the lens of the model
 - Model specific approach (here for tree-based model)

the ML system?

Drift values: Calculus ½ (individual tree)

Definition:

- $n_{i,j}$ (i = 1, 2; j = 1, ..., K): proportion of samples of dataset i in node j
- p_j (j = 1, ..., K): predicted value associated to node j
- s_j, u_j (j = 1, ..., K): feature index and value used for split j $(s_j, u_j = -1)$ if node j is a terminal leaf)
- $l_j, r_j \ (j = 1, ..., K)$: indexes of the left and right child nodes of node $j \ (l_j, r_j = -1)$ if node j is a terminal leaf)

Drift values: Calculus 2/2

• Different measure of **split contribution** $S_i(j = 1, ..., K)$ to the data drift:

o node size:
$$S_j = \left| \frac{n_{2,l_j}}{n_{2,j}} - \frac{n_{1,l_j}}{n_{1,j}} \right| * \min(n_{1,j}, n_{2,j})$$

o mean:
$$S_j = c_{2,j} - c_{1,j}$$
, with $c_{i,j} = (n_{i,l_i} * p_{l_i} + n_{i,r_i} * p_{r_i} - n_{i,j} * p_j)$

o mean with normalization:
$$S_j = \left(\frac{c_{2,j}}{n_{2,j}} - \frac{c_{1,j}}{n_{1,j}}\right) * \min(n_{1,j}, n_{2,j})$$

(in all case we set $S_i = 0$ if $l_i = -1$)

• Based on the split contributions, we can compute **drift values**. Let T be number of trees in the model and s_j^t, K_j^t, S_j^t be the above values for the tree t. The feature contribution of the feature k (k = 1, ..., d) is defined as:

$$F_k = \sum_{t=1}^T F_k^t$$
, with $F_k^t = \sum_{j=1,\dots K^t/s_j^t = k} S_j^t$

Drift values: Example

Approach 2: Adversarial approach

- Consider $(X_{i,1})_{i=1,\dots,n_1}$ and $(X_{i,2})_{i=1,\dots,n_2}$ and let:
 - $0 L_{i,1} = 0, w_{i,1} = n_2/n_1$
 - $C_{i,2} = 1, w_{i,2} = 1$
- The **adversarial approach** consists in a building an **adversarial classifier** \hat{c} with target L and covariates X based on the concatenation of datasets $(X_{i,1}, L_{i,1}, w_{i,1})_{i=1,\dots,n_1}$ and $(X_{i,2}, L_{i,2}, w_{i,2})_{i=1,\dots,n_2}$
- Drift values can be calculated by considering the feature importance of the adversarial classifier

Concatenate \mathcal{D}_1 and \mathcal{D}_2

Adversarial approach: Example

Feature importance of the model in production

The drift values obtained with the adversarial approach may be combined with the feature importance of the model. **But it is hard to interpret!**

Correct covariate shift with importance weighting

Property: Assume there is covariate shift between (X_1, Y_1) and (X_2, Y_2) and that $W(x) = \frac{dP_{X_2}(x)}{dP_{X_1}(x)}$ is defined.

Then for any function g:

$$E[W(X_1)g(X_1,Y_1)] = E[g(X_2,Y_2)]$$

proof:
$$E[W(X_1)g(X_1,Y_1)] = \iint W(x)g(x,y)dP_{Y_1|X_1}(y|x) dP_{X_1}(x) = \iint g(x,y)dP_{Y_2|X_2}(y|x) dP_{X_2}(x) = E[g(X_2,Y_2)]$$

Morally, thanks to importance weights W(x), it is possible to estimate the distribution (X_2, Y_2) based on the distribution (X_1, Y_1) .

- Idea
 - o Given the dataset $(X_{i,1}, Y_{i,1})_{i=1,\dots,n_1}$ and $(X_{i,2}, Y_{i,2})_{i=1,\dots,n_2}$, compute sample weights $W_{i,1}$ so that the distribution of $(X_{1,i}, Y_{1,i}, W_{i,1})_{i=1,\dots,n_1}$ approximates the distribution of $(X_{i,2}, Y_{i,2})_{i=1,\dots,n_2}$.
 - Then train, validate, and select model with the dataset $(X_{1,i}, Y_{1,i}, W_{i,1})_{i=1,\dots,n_1}^{i}$ should result in better performance on $(X_{i,2}, Y_{i,2})_{i=1,\dots,n_2}$

Proposed procedure to correct data drift

- 1) Based on model based drift values, **select a subset of input** variables $S \subset \{1, ..., d\}$ for which we will correct the drift.
- 2) Use the adversarial approach to **build an adversarial classifier** \hat{c} **only based on feature** S. Let X^S the restriction of X to the variables in S.
- 3) Compute weights $W_{i,1} = \frac{\hat{c}(X_{i,1}^S)}{1 \hat{c}(X_{i,1}^S)}$:
 - Note that $W(x) = \frac{dP_{X_2}(x)}{dP_{X_1}(x)} = \frac{P(L=1|X=x)}{P(L=0|X=x)} = \frac{P(L=1|X=x)}{1-P(L=1|X=x)}$ and thus W(x) can be estimated by $\frac{\hat{c}(x)}{1-\hat{c}(x)}$
 - \circ Cross validation is used in order to compute weights $W_{i,1}$
- 4) The dataset $(X_{1,i}, Y_{1,i}, W_{i,1})_{i=1,\dots,n_1}$ can then be use for model training, model selection.

Select subset of features *S* based on drift values

Conclusion

- Main ideas
 - Monitoring of the data drift
 - Focus on the data drift that has an impact on the ML system?
 - Detection: Monitor indicators that makes sense from this perspective
 - Explain: Introduce drift values with a Model based approach
 - Correction of the data drift.
 - Proposed methodology to correct covariate shift (using weights computed with adversarial approach) -> need more investigation
- Future work:
 - Closer next steps
 - Write an article about CinnaMon
 - CinnaMon library (add test, add documentation, etc.)
 - Research directions
 - Extend the model approach to other specific models
 - Model agnostic method to compute drift values (only relying on "model.predict" call)
 - Deal with streaming data (add .update() on top of .fit() method). In fact the question is how do you define D1 and D2)
 - Design a live alerting system (with robust alerts) based on the 3 data drift indicators
 - Benchmark the different ways to compute tree-based drift values

Thank you for your attention!

Bibliography

- l) Sugiyama, Masashi, and Motoaki Kawanabe. *Machine learning in non-stationary environments:*Introduction to covariate shift adaptation. MIT press, 2012.
- 2) Sethi, Tegjyot Singh, and Mehmed Kantardzic. "On the reliable detection of concept drift from streaming unlabeled data." *Expert Systems with Applications* 82 (2017): 77-99.

Zelros / [Z EH L R AO S]

Word invented by a recurrent neural network trained on 130k tech company names from crunchbase.com

198 Avenue de France 75013 Paris

France

Balanstraße 73/Haus 10 81541 Munich Germany

Corso di Porta Romana, 61 20122 - Milan Italy

4 Place Ville-Marie, 2e et 3e étages, Montréal, QC H3B 2E7 Canada

Drift values: illustration with tree

Adversarial approach (maths)

- Let (X, L) the random vector given by:
 - \circ $L \sim Bernouilli(1/2)$
 - X follows the mixture distribution with:
 - \blacksquare $X|L=0 \sim X_1$
 - $\blacksquare \qquad X|L=1\sim X_2$
- Let $(X_i, L_i, w_i)_{i=1,\dots,n_1+n_2}$ the concatenation of the datasets:
 - $O \qquad (X_{i,1}, L_{i,1} = 0, w_{i,1})_{i=1,\dots,n_1} \text{ with } w_{i,1} = n_2/n_1$
 - $(X_{i,2}, L_{i,2} = 1, w_{i,2})_{i=1,\dots,n_2} \text{ with } w_{i,2} = 1$

Then $(X_i, L_i, w_i)_{i=1,\dots,n_1+n_2}$ follows the same distribution as (X, L)

- The adversarial approach consists in a building a discrimination model \hat{c} with target L and covariates X (based on data $(X_i, L_i, w_i)_{i=1,\dots,n_1+n_2}$)
- Feature (drift) contributions can be calculated by considering the **feature importance of the** discrimination model