1 Hestenes Operator

1.1 Construction

We construct the Hestenes operator for domains $\Omega \subset \mathbb{R}^n$ with C^m boundary mainly following paragraphs 6.2,6.3 of [2]. First we consider a simple case where Ω is a C^m half strip.

Lemma 1. Let $l, n, m \in \mathbb{N}, m \geq l, 1 \leq p \leq \infty$ and $W = \prod_{i=1}^{n-1} a_i, b_i$ be an open cuboid of \mathbb{R}^{n-1} . Moreover define

$$S = W \times \mathbb{R}$$

$$\Omega = \{(\overline{x}, x_n) | \overline{x} \in W, x_n < \phi(\overline{x})\}$$

where $\phi \in C^m(\overline{W}), m \geq l$, and $||D^{\alpha}\phi|| \leq M < \infty$ for every $1 \leq |\alpha| \leq l$. Then there exists a bounded extension operator T from $W^{l,p}(\Omega)$ to $W^{l,p}(S)$.

To prove Lemma 1 we prove first the case $\phi \equiv 0$ in the following result, that is a generalization of Lemma 9.2 in [1].

Lemma 2. Let $l, n \in \mathbb{N}, 1 \leq p \leq \infty$ and $W = \prod_{i=1}^{n-1} a_i, b_i$ be an open cuboid of \mathbb{R}^{n-1} . There exists a bounded extension operator

$$T: W^{l,p}(S^-) \to W^{l,p}(S)$$

where

$$S = W \times \mathbb{R}$$
$$S^{-} = W \times \mathbb{R}^{-}.$$

Proof. Let $f \in W^{l,p}(S^-)$. We define

$$Tf(\overline{x}, x_n) = \begin{cases} f(x), & \text{if } x_n < 0, \\ \sum_{k=1}^{l} \alpha_k f(\overline{x}, -\beta_k x_n), & \text{if } x_n > 0, \end{cases}$$

where α_k, β_k are real numbers that satisfy $\beta_k > 0$ and

$$\sum_{k=1}^{l} \alpha_k (-\beta_k)^s = 1 \tag{1}$$

for every s = 0, ..., l-1. Notice that given $\beta_1, ..., \beta_l > 0$ pairwise distinct, we can always find $\alpha_1, ..., \alpha_l$ that satisfy the condition by solving a Vandermonde square system of linear equations. First we prove that $Tf \in W^{l,p}(S)$. We take any $\phi \in C_c^{\infty}(S)$ and consider the integral

$$\int_{S} Tf(x)D^{\alpha}\phi(x)dx = \int_{S^{+}} Tf(x)D^{\alpha}\phi(x)dx + \int_{S^{-}} Tf(x)D^{\alpha}\phi(x)dx$$

where $S^+ = \{(\overline{x}, x_n) \mid \overline{x} \in W, x_n > 0\}$ and $\alpha \in \mathbb{N}_0^n, 1 \leq |\alpha| \leq l$. Let's write $\alpha = (\overline{\alpha}, \alpha_n)$, with $\overline{\alpha} \in \mathbb{N}_0^{n-1}$ and $\alpha_n \in \mathbb{N}_0$. By changing variables in the integrals we get

$$\int_{S} Tf(x)D^{\alpha}\phi(x)dx = \int_{S^{+}} \sum_{k=1}^{l} \alpha_{k} f(\overline{x}, -\beta_{k}x_{n}) D^{\alpha}\phi(x)dx + \int_{S^{-}} f(x)D^{\alpha}\phi(x)dx
= \int_{S^{-}} f(\overline{y}, y_{n}) D^{\alpha}\psi(\overline{y}, y_{n})dy$$
(*)

where $\psi(\overline{x}, x_n) = \sum_{k=1}^l -\alpha_k (-\beta_k)^{\alpha_n-1} \phi(\overline{x}, -x_n/\beta_k) + \phi(\overline{x}, x_n)$. Note that ψ belongs to $\in C^{\infty}(S^-)$ but does not have compact support in S^- . To bypass this problem we use an auxiliary function $\nu \in C^{\infty}(\mathbb{R})$ that satisfies

$$\begin{cases} \nu(x) = 0, & \text{if } x > -1/2, \\ \nu(x) = 1, & \text{if } x < -1, \end{cases}$$

and we define the functions $\nu_k(t) = \nu(kt)$ for $k \in \mathbb{N}$. It's clear that $\psi(x)\nu_k(x_n) \in C_c^{\infty}(S^-)$, hence we can integrate by parts

$$\int_{S^{-}} f(x) D^{\alpha}(\psi(x)\nu_{k}(x_{n})) dx = (-1)^{|\alpha|} \int_{S^{-}} D_{w}^{\alpha} f(x)\psi(x)\nu_{k}(x_{n}) dx \qquad (2)$$

By the Leibniz rule

$$D^{\alpha}(\psi(x)\nu_{k}(x_{n})) = \frac{\partial^{\alpha_{n}}}{\partial x_{n}^{\alpha_{n}}} D^{\overline{\alpha}}(\psi(x)\nu_{k}(x_{n}))$$
$$= \nu(kx_{n})D^{\alpha}\psi(x) + \sum_{i=1}^{\alpha_{n}} {\alpha_{n} \choose i} k^{i}\nu^{(i)}(kx_{n}) \frac{\partial^{\alpha_{n}-i}}{\partial x_{n}^{\alpha_{n}-i}} D^{\overline{\alpha}}\psi(x).$$

By the Dominated Convergence Theorem

$$\int_{S^{-}} f(x)\nu(kx_n)D^{\alpha}\psi(x)dx \to \int_{S^{-}} f(x)D^{\alpha}\psi(x)dx \text{ as } k \to \infty,$$

because $f \in L^1(S^- \cap \operatorname{supp} \psi)$ since $\operatorname{supp} \psi$ is bounded. Next, we claim that for every $i = 1, ..., \alpha_n$

$$\int_{S^{-}} f(x)k^{i}\nu^{(i)}(kx_{n}) \frac{\partial^{\alpha_{n}-i}}{\partial x_{n}^{\alpha_{n}-i}} D^{\overline{\alpha}}\psi(x)dx \to 0$$
(3)

as $k \to \infty$. To prove this first we notice that since α_k, β_k satisfies (1) we have that

$$\frac{\partial^{j}}{\partial x_{n}^{j}}D^{\overline{\alpha}}\psi(\overline{x},0) = 0 \; ; \; j = 0,...,\alpha_{n} - 1,$$

hence by Taylor formula

$$\left| \frac{\partial^{\alpha_n - i}}{\partial x_n^{\alpha_n - i}} D^{\overline{\alpha}} \psi(\overline{x}, x_n) \right| \le \frac{C|x_n|^i}{i!},$$

for all $i=1,...,\alpha_n$, where $C=\sup_{x\in S^-}|D^{\alpha}\psi(x)|$. Therefore we get the following estimate

$$\int_{S^{-}} \left| f(x)k^{i}\nu^{(i)}(kx_{n}) \frac{\partial^{\alpha_{n}-i}}{\partial x_{n}^{\alpha_{n}-i}} D^{\overline{\alpha}}\psi(x) \right| dx \leq \frac{\widetilde{C}C}{i!} \int_{\{x \in S^{-} \cap \text{supp } f , -1/k < x_{n} < 0\}} |f(x)|k^{i}|x_{n}|^{i} dx$$

$$\leq \frac{\widetilde{C}C}{i!} \int_{\{x \in S^{-} \cap \text{supp } f , -1 < x_{n} < 0\}} |f(x)| dx$$

where $\widetilde{C} = \sup_{\mathbb{R}} |\nu^{(i)}|$. The second inequality comes from the fact that $\nu^{(i)}(x) = 0$ for x < -1 and $i \ge 1$. Hence we get (3) by Dominated Convergence Theorem. Passing to the limit in (2) we obtain

$$\int_{S^{-}} f(x) D^{\alpha} \psi(x) dx = (-1)^{|\alpha|} \int_{S^{-}} D_{w}^{\alpha} f(x) \psi(x) dx.$$

which, combined with (*), implies

$$\int_{S} Tf(x) D^{\alpha} \phi(x) dx = \int_{S^{-}} f(x) D^{\alpha} \psi(x) dx = (-1)^{|\alpha|} \int_{S^{-}} D_{w}^{\alpha} f(x) \psi(x) dx.$$

Finally going back to the original coordinates and using the definition of ψ we get

$$\int_{S} Tf(x)D^{\alpha}\phi(x)dx = (-1)^{|\alpha|} \int_{S^{-}} D_{w}^{\alpha}f(x) \left[\sum_{k=1}^{l} -\alpha_{k}(-\beta_{k})^{\alpha_{n}-1}\phi\left(\overline{x}, -\frac{x_{n}}{\beta_{k}}\right) + \phi(\overline{x}, x_{n}) \right] dx =$$

$$= (-1)^{|\alpha|} \int_{S^{+}} \sum_{k=1}^{l} \alpha_{k}(-\beta_{k})^{\alpha_{n}} D_{w}^{\alpha}f(\overline{y}, -\beta_{k}y_{n})\phi(y) dy + (-1)^{|\alpha|} \int_{S^{-}} D_{w}^{\alpha}f(y)\phi(y) dy$$

that implies that $D_w^{\alpha}Tf$ exists and

$$D_w^{\alpha} T f(x) = \begin{cases} D_w^{\alpha} f(x), & \text{if } x \in S^-, \\ \sum_{k=1}^l \alpha_k (-\beta_k)^{\alpha_n} D_w^{\alpha} f(\overline{x}, -\beta_k x_n) \phi(x), & \text{if } x \in S^+. \end{cases}$$

It remains to prove the boundedness of T. It's immediate to verify that

$$||Tf||_{L^p(S^+)} \le \sum_{i=1}^l |\alpha_k|\beta_k^{-1/p}||f||_{L^p(S^-)}$$

and that we have similar bounds for the norm of the weak derivatives of Tf. Hence there exists a constant C depending only on β_k , α_k , l such that $||Tf||_{W^{l,p}(S^+)} \leq C||f||_{W^{l,p}(S^-)}$. Observing that $||Tf||_{W^{l,p}(S)}^p = ||Tf||_{W^{l,p}(S^+)}^p + ||f||_{W^{l,p}(S^-)}^p$ the proof is concluded.

Lemma 3. Let $l \in \mathbb{N}$ and Ω be a domain in \mathbb{R}^n . Suppose that $f \in L^1_{loc}(\Omega)$ admits all the weak derivatives up to order l and that $g: \Omega' \to \Omega$ is a diffeomorphism of class C^l with bounded derivatives $|D^{\alpha}g_k| \leq M$ for all $1 \leq |\alpha| \leq l$. Then $f \circ g$ admits weak derivative up to order l. Moreover for every $1 \leq |\alpha| \leq l$ we have to following bounds

$$|D^{\alpha}(f \circ g)(x)| \le C \sum_{1 \le |\beta| \le |\alpha|} |D^{\beta} f(g(x))|$$

where C depends only on M and l.

Proof. We prove the statement by induction on l. For l=1 we know that exists a sequence of functions $\{f_k\}_k \in C^{\infty}(\Omega)$ such that

$$f_k \to f$$
 in $L^1_{loc}(\Omega)$
$$\frac{\partial f_k}{\partial x_i} \to \frac{\partial f}{\partial x_i}$$
 in $L^1_{loc}(\Omega)$.

Take $\phi \in C_c^{\infty}(\Omega')$ and integrate by parts

$$\int_{\Omega'} f_k(g(x)) \frac{\partial \phi}{\partial x_i}(x) dx = -\int_{\Omega'} \left(\sum_{j=1}^n \frac{\partial f_k}{\partial x_j}(g(x)) \frac{\partial g_j}{\partial x_i}(x) \right) \phi(x) dx.$$

Since $\phi(g^{-1}) \in C_c^l(\Omega)$ and the derivatives of g and g^{-1} are bounded, we can pass to the limit in the above equation

$$\int_{\Omega'} f(g(x)) \frac{\partial \phi}{\partial x_i}(x) dx = -\int_{\Omega'} \left(\sum_{j=1}^n \frac{\partial f}{\partial x_j}(g(x)) \frac{\partial g_j}{\partial x_i}(x) \right) \phi(x) dx.$$

Hence the case l=1 is proved. Now suppose that the statement is true for l. We prove the case l+1, so we suppose that f admits weak derivatives up to order l+1 and that g is of class C^{l+1} . From the case l=1 we know that $\frac{\partial (f \circ g)}{\partial x_i}$ exists and that

$$\frac{\partial (f \circ g)}{\partial x_i} = \sum_{j=1}^n \left(\frac{\partial f}{\partial x_j} \circ g\right) \frac{\partial g_j}{\partial x_i}$$

Since $\frac{\partial f}{\partial x_j}$ admits weak derivatives up to order l, by induction hypothesis the functions $\frac{\partial f}{\partial x_j} \circ g$ admit weak derivatives up to order l. Moreover $\frac{\partial g_j}{\partial x_i}$ is of class C^l , thus by the Leibniz rule the functions $(\frac{\partial f}{\partial x_j} \circ g)\frac{\partial g_j}{\partial x_i}$ admits weak derivatives of order l. In conclusion $\frac{\partial (f \circ g)}{\partial x_i}$ admits derivatives up to order l and this conclude the proof of the case l+1.

To prove the bounds we notice that the weak derivatives $D^{\alpha}(f \circ g)$ can be computed using the chain rule for usual derivatives. Such formula can be found in [3, formula B]:

$$D_w^{\alpha}(f(g))(x) = \sum_{1 \le |\beta| \le |\alpha|} D_w^{\beta}(f(g(x))Q_{\alpha,\beta}(g,x))$$

In this formula $Q_{\alpha,\beta}(g,x)$ are homogeneous polynomials of degree $|\beta| \leq l$ in the derivatives of order less than l of the components of g. Moreover the coefficients of these polynomials depend only on α, l, n . Hence there exists a constant C depending only on l, n, M such that $|Q_{\alpha,\beta}(g,x)| \leq C$ uniformly on x. This concludes the proof.

Proof of Lemma 1 . Let $f \in W^{l,p}(\Omega)$. Consider the function g from S^- onto Ω defined by

$$g(\overline{x}, x_n) = (\overline{x}, x_n + \phi(\overline{x}))$$

for all $(\overline{x}, x_n) \in S^-$ and its inverse g^{-1}

$$g^{-1}(\overline{x}, x_n) = (\overline{x}, x_n - \phi(\overline{x}))$$

where $S^- = W \times \mathbb{R}^-$. For all $f \in W^{l,p}(\Omega)$ we set

$$Gf = f \circ q$$

Since g is a diffeomorphism between S^- and Ω of class C^m , Lemma 3 guarantees that Gf admits weak derivatives up to order l. We claim that G defines a bounded operator from $W^{l,p}(\Omega)$ to $W^{l,p}(S^-)$, with bounded inverse. To prove this, first we compute the Jacobian matrix of g^{-1}

$$Jg^{-1}(x) = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & & \ddots & \vdots \\ \vdots & & \ddots & \vdots \\ -\frac{\partial \phi(\overline{x})}{\partial x_1} & -\frac{\partial \phi(\overline{x})}{\partial x_2} & \dots & \dots & 1 \end{bmatrix}$$

from which $|\det(Jg^{-1}(x))| \equiv 1$. Moreover, again by Lemma 3, we have

$$|D_w^{\alpha}(f(g))| \le C(l, M) \sum_{1 \le |\beta| \le |\alpha|} |D_w^{\beta} f(g)|$$

where C(l, M) depends only on l and M, with $M = \sup_{1 \le |\alpha| \le l} ||D^{\alpha}\phi||$. Next by the change of variable formula and Minkowski's inequality we get

$$\left(\int_{S^{-}} |D_{w}^{\alpha}(f(g))(x)|^{p} dx \right)^{\frac{1}{p}} \leq \sum_{1 \leq |\beta| \leq |\alpha|} C(l, M) \left(\int_{S^{-}} |D_{w}^{\beta}f(g(x))|^{p} dx \right)^{\frac{1}{p}} \\
= \sum_{1 \leq |\beta| \leq |\alpha|} C(l, M) \left(\int_{\Omega} |D_{w}^{\beta}f(y)|^{p} |\det Jg^{-1}|_{g(y)} |dy \right)^{\frac{1}{p}} \\
= \sum_{1 \leq |\beta| \leq |\alpha|} C(l, M) ||D_{w}^{\beta}f||_{L^{p}(\Omega)}$$

Thus, using the estimates for the intermediate derivatives, that

$$||Gf||_{W^{l,p}(S^-)} = ||f(g)||_{W^{l,p}(S^-)} \le C||f||_{W^{l,p}(\Omega)}$$

for a constant C independent of f. In a similar way we can also prove that

$$||G^{-1}f||_{W^{l,p}(\Omega)} = ||f(g^{-1})||_{W^{l,p}(\Omega)} \le D||f||_{W^{l,p}(S)}.$$

Now we can just define the operator T as

$$T = G^{-1} \circ \overline{T} \circ G$$

where \overline{T} is the extension operator from $W^{l,p}(S^-)$ to $W^{l,p}(S)$ defined in Lemma 2. Therefore T is bounded as composition of bounded operators. An explicit for for T is

$$Tf(x) = \begin{cases} f(x), & \text{if } x \in \Omega, \\ \sum_{i=1}^{l} \alpha_k f(\overline{x}, \phi(\overline{x}) - \beta_k (x_n - \phi(\overline{x}))), & \text{if } x \in S \setminus \overline{\Omega}. \end{cases}$$

We are now ready to define the Hestenes operator for a general domain Ω with C^m boundary. First we write the precise definition for this kind of domains.

Definition 1. Let $0 < d \le D < \infty, M > 0, \varkappa > 0$ We say that an open set Ω in \mathbb{R}^n has a resolved boundary with parameters d, D, \varkappa if there exists a family of open cuboids $V_i, i = 1, ..., s$ (where $s \in \mathbb{N}$ if Ω is bounded and $s = \infty$ otherwise) such that

- 1. $(V_i)_d \cap \Omega \neq \emptyset$
- 2. $\Omega \subset \bigcup_{i=1}^{s} (V_i)_d$
- 3. The multiplicity of the cover $\{V_i\}_{i=1}^s$ is less than \varkappa .
- 4. There exist isometries λ_i of \mathbb{R}^n such that

$$\lambda_j(V_j) = \prod_{i=1}^n]a_{ij}, b_{ij}[$$

and, if $\partial V_i \cap \Omega \neq \emptyset$.

$$\lambda_j(V_j \cap \Omega) = \{ (\overline{x}, x_n) \in \mathbb{R}^n | \overline{x} \in W_j, a_{nj} + d < x_n < \phi_j(\overline{x}) \}$$

where
$$W_j = \prod_{i=1}^{n-1} a_{ij}, b_{ij} [$$
 and $\phi_j : W_j \to \mathbb{R}$.

Moreover

- if $\phi_j \in C^m(\overline{W}_i)$ with $||D^{\alpha}\phi_j|| \leq M < \infty$, for every $1 \leq |\alpha| \leq m$, we say that Ω has a resolved C^m boundary with parameters d, D, \varkappa, M .
- if $\phi_j \in \text{Lip}(\overline{W}_i)$ with $\text{Lip}(\phi) = M$, we say that Ω has a resolved Lipschitz boundary with parameters d, D, \varkappa, M .

Finally we will say that a domain Ω has a resolved C^m (or Lipschitz) boundary if there exist parameters d, D, \varkappa, M for which Ω has a C^m (or Lipschitz) boundary.

Remark 1. In the notation of Lemma 1, let $a,b \in \mathbb{R}$ such that $a < \phi(\overline{x}) < b$ for every $\overline{x} \in W$. We define $S^{a,b} = W \times (a,b)$, $\Omega_a = \Omega \cap (W \times (a,\infty))$ and $\widehat{W}^{l,p}(\Omega_a) = \{f \in W^{l,p}(\Omega_a) | \text{supp } f \subset S\}$. Then exists a bounded extension operator

$$T: \widehat{W}^{l,p}(\Omega_a) \to W^{l,p}(S^{a,b}).$$

To see this we can just extend $f \in \widehat{W}^{l,p}(\Omega_a)$ naturally by 0 to $f_0 \in W^{l,p}(\Omega)$ and then define

$$Tf = (\widetilde{T}f_0)\big|_{S^{a,b}}$$

where \widetilde{T} is the operator of the previous Lemmma .

Theorem 1. Let $m, l \in \mathbb{N}, l \leq m$ and $1 \leq p \leq \infty$. If Ω is a domain in \mathbb{R}^n has a C^m resolved boundary then there exists a bounded extension operator

$$T: W^{l,p}(\Omega) \to W^{l,p}(\mathbb{R}^n).$$

Proof Sketch. Let $f \in W^{l,p}(\Omega)$. Let $\{V_i\}_{i=1}^s$ be the covering of cuboids for Ω as in Definition 1. It's possible to construct functions $\{\psi_i\}_{i=1}^s \subset C_c^{\infty}(\mathbb{R}^n)$ such that the functions $\{\psi_i^2\}_{i=1}^s$ form a partition of the unity corresponding to the covering $\{V_i\}_{i=1}^s$ and satisfying $\|D^{\alpha}\psi_i\|_{L^{\infty}} \leq M_1$ with M_1 depending only on n, l, d. If $\partial \Omega \cap V_i \neq \emptyset$ by Remark 1 there exists a bounded operator

$$T_i: \widehat{W}^{l,p}(\lambda_i(\Omega \cap V_i)) \to W^{l,p}(\lambda_i(V_i))$$

where $\widehat{W}^{l,p}(\lambda_i(V_i \cap \Omega)) = \{ f \in W^{l,p}(V_i \cap \Omega) | \text{supp } f \subset \lambda_i(V_i) \}$. If $V_i \subset \Omega$ the operator T_i is defined to be just the identity. We set

$$Tf = \sum_{i=1}^{s} \psi_i T_i(\psi_i f(\lambda_i^{-1}))(\lambda_i).$$

assuming $(\psi_i T_i(\psi_i f(\lambda_i^{-1}))(\lambda_i)) = 0$ outside V_i . The functions $\psi_i f \in W^{l,p}(V_i \cap \Omega)$ are such that supp $\psi_i f \subset \overline{\Omega} \cap V_i$, hence $\psi_i f(\lambda_i) \in \widehat{W}^{l,p}(\lambda_i (V_i \cap \Omega))$ and so T is well defined. To see that T is an extension operator, take $x \in \Omega$: if $x \in \text{supp } \psi_i$ then $\psi_i(x) T_i(\psi_i f(\lambda_i^{-1}))(\lambda_i(x)) = \psi_i(x)^2 f(x)$; if $x \notin \text{supp } \psi_i$ then $0 = \psi_i(x) T_i(\psi_i f(\lambda_i^{-1}))(\lambda_i(x)) = \psi_i(x)^2 f(x)$. So $T f(x) = \sum_{i=1}^s \psi_i^2(x) f(x) = f(x)$.

We omit the proof of the boundedness of T, the details of which can be found in the proofs of Lemma 13-14 in [2].

1.2 Hestenes operator on Morrey spaces

Definition 2. Let $1 \leq p < \infty$, ϕ a function from \mathbb{R}^+ to \mathbb{R}^+ and Ω be a domain in \mathbb{R}^n . For a function $f \in L^p_{loc}(\Omega)$ we define the Morrey space as

$$M_p^{\phi}(\Omega) = \{ f \in L_{loc}^p(\Omega) \mid ||f||_{M_n^{\phi}(\Omega)} < \infty \}$$

where

$$||f||_{M_p^{\phi}(\Omega)} := \sup_{B_r(x), x \in \Omega, r > 0} \left(\frac{1}{\phi(r)} \int_{B_r(x) \cap \Omega} |f(y)|^p dy \right)^{\frac{1}{p}}.$$

Lemma 4. Let $k \geq 1$ and Ω be set in \mathbb{R}^n with diameter D > 0. Then there exists an integer $C_{n,k}$ depending only on k and n such that Ω can be covered by a collection of open balls $B_1, ..., B_h$ centered in Ω with radius D/k and $h \leq C_{k,n}$.

Proof. We start by claiming that if S is a set of points in \mathbb{R}^n satisfying

- i) $S \subset \Omega$,
- ii) $||z_1 z_2|| \ge D/k$ for every $z_1, z_2 \in \Omega$ with $z_1 \ne z_2$,

then $\#S \leq C_{n,k}$ where $C_{k,n}$ is an integer depending only on k and n. To see this, first note that Ω is contained in some closed cube Q of side 2D. Then we choose $m \in \mathbb{N}$ such that $2^{m-1} > \sqrt{n}k$. Next we cover Q with $(2^m)^n$ smaller closed cubes of side $2D/2^m$. The diagonal of a smaller cube measures $2D/2^m \cdot \sqrt{n} < D/k$. Thus each of these cubes can contain at most one point of S, so $\#S \leq (2^m)^n$. Therefore it's enough to choose $C_{n,k} = 2^{mn}$. Set r := D/k, we'll prove that we can cover Ω with a collection of balls B_1, \ldots, B_h centered in Ω of radius r and such that $k \leq C_{n,k}$. Choose $x_1 \in \Omega$ and take $B_1 = B_r(x_1)$,

the ball centered in x_1 of radius r. If $\Omega \subset B_1$ we are done, if not there exists $x_2 \in \Omega \setminus B_1$ and we take $B_2 = B_r(x_2)$. Again, if $\Omega \subset (B_1 \cup B_2)$ we stop, otherwise we can pick $x_3 \in \Omega \setminus (B_1 \cup B_2)$ and take $B_3 = B_r(x_3)$. We iterate this procedure: given $B_1, ..., B_i$ balls, if $\Omega \subset (B_1 \cup ... \cup B_i)$ we stop, otherwise we can choose $x_{i+1} \in \Omega \setminus (B_1 \cup ... \cup B_i)$ and take $B_{i+1} = B_r(x_{i+1})$. We claim that this procedure stops with $i \leq C_{n,k}$. Suppose it doesn't, then we can find $B_1, ..., B_{C_{n,k}+1}$ balls centered respectively at $x_1, ..., x_{C_{n,k}+1}$. Setting $S = \{x_1, ..., x_{C_{n,k}+1}\}$, it's immediate to see that S satisfies i) and ii), but $\#S = C_{n,k} + 1$, that is a contradiction.

Lemma 5. Let $W \subset \mathbb{R}^{n-1}$ be open connected and define

$$\Omega = \{ (\overline{x}, x_n) \mid \overline{x} \in W, x_n \le \psi(\overline{x}) \}$$

$$\Omega^{+} = \{ (\overline{x}, x_n) \mid \overline{x} \in W, x_n > \psi(\overline{x}) \}$$

where $\psi \in \text{Lip}(\overline{W})$. Let $\beta > 0$ and consider the function A_{β} from $W \times \mathbb{R}$ to Ω defined by

$$A_{\beta}(\overline{x}, x_n) = \begin{cases} (\overline{x}, \psi(\overline{x}) - \beta(x_n - \psi(\overline{x}))), & \text{if } (\overline{x}, x_n) \in \Omega^+, \\ (\overline{x}, x_n), & \text{if } (\overline{x}, x_n) \in \Omega. \end{cases}$$

Then for every $x_0 \in W \times \mathbb{R}$ and r > 0

$$A(B_r(x_0) \cap \Omega^+) \subset B_{cr}(A(x_0)) \cap \Omega$$

where $c \geq 1$ is a constant depending only on Lip ψ and β .

Proof. Notice that it is sufficient to prove that for every $x, y \in W \times \mathbb{R}$ we have

$$||A(x) - A(y)|| \le c||x - y||. \tag{4}$$

Set $M=\operatorname{Lip}\psi.$ We distinguish three cases: 1. $x,y\in\Omega$: in this case A(x)=x and A(y)=y, so $\|x-y\|=\|A(x)-A(y)\|$ and there is nothing to prove.

2. $x, y \in \Omega^+$: we have

$$|A(x)_n - A(y)_n| = |\psi(\overline{x}) - \beta(x_n - \psi(\overline{x})) - \psi(\overline{y}) + \beta(y_n - \psi(\overline{y}))|$$

$$\leq (1 + \beta)|\psi(\overline{x}) - \psi(\overline{y})| + \beta|x_n - y_n|$$

$$\leq M(1 + \beta)||\overline{x} - \overline{y}|| + \beta|x_n - y_n|$$

Hence

$$||A(x) - A(y)||^{2} = ||\overline{A(x)} - \overline{A(y)}||^{2} + |A(x)_{n} - A(y)_{n}|^{2}$$

$$\leq ||\overline{x} - \overline{y}||^{2} + [M(1+\beta)||\overline{x} - \overline{y}|| + \beta|x_{n} - y_{n}|]^{2}$$

$$\leq (1 + 2M^{2}(1+\beta)^{2})||\overline{x} - \overline{y}||^{2} + 2\beta^{2}|x_{n} - y_{n}|^{2}$$

$$\leq c_{1}^{2}(M, \beta)||x - y||^{2}$$

for some constant $c_1(M, \beta)$.

3. $x \in \Omega^+, y \in \Omega$: first notice that, since $\psi(\overline{x}) < x_n$, then $x_n - y_n > \psi(\overline{x}) - y_n$. Moreover $\psi(\overline{y}) > y_n$, hence $M \|\overline{x} - \overline{y}\| \ge \psi(\overline{y}) - \psi(\overline{x}) > y_n - \psi(\overline{x})$. This implies

$$|\psi(\overline{x}) - y_n| < |x_n - y_n| + M||\overline{x} - \overline{y}||.$$

Now

$$|A(x)_n - A(y)_n| = |\psi(\overline{x}) - \beta(x_n - \psi(\overline{x})) - y_n|$$

$$= |(1+\beta)(\psi(\overline{x}) - y_n) + \beta(y_n - x_n)|$$

$$\leq M(1+\beta)||\overline{x} - \overline{y}|| + (1+2\beta)|x_n - y_n|$$

and

$$||A(x) - A(y)||^{2} = ||\overline{A(x)} - \overline{A(y)}||^{2} + |A(x)_{n} - A(y)_{n}|^{2}$$

$$\leq ||\overline{x} - \overline{y}||^{2} + [M(1+\beta)||\overline{x} - \overline{y}|| + (1+2\beta)|x_{n} - y_{n}|]^{2}$$

$$\leq (1 + 2M^{2}(1+\beta)^{2})||\overline{x} - \overline{y}||^{2} + 2(1+2\beta)^{2}|x_{n} - y_{n}|^{2}$$

$$\leq c_{2}^{2}(M,\beta)||x - y||^{2}.$$

for some constant $c_2(M,\beta)$. Then (4) by taking $c = \max(\sqrt{c_1}, \sqrt{c_2}, 1)$.

Lemma 6. Let $l, n, m \in \mathbb{N}, m \geq l, 1 \leq p \leq \infty, W = \prod_{i=1}^{n-1} a_i, b_i$ be an open cuboid of \mathbb{R}^{n-1} and ϕ a function from \mathbb{R}^+ to \mathbb{R}^+ . Moreover define

$$S = W \times \mathbb{R}$$

$$\Omega = \{(\overline{x}, x_n) | \overline{x} \in W, x_n < \psi(\overline{x})\}$$

where $\psi \in C^m(\overline{W})$ and $||D^{\alpha}\psi|| \leq M < \infty$ for every $1 \leq |\alpha| \leq l$. Then for every $f \in W^{l,p}(\Omega)$ and $1 \leq |\alpha| \leq l$

$$||Tf||_{M_n^{\phi}(S)} \le C||f||_{M_n^{\phi}(\Omega)},$$
 (5)

П

$$||D_w^{\alpha} T f||_{M_p^{\phi}(S)} \le C \sum_{1 \le |\beta| \le |\alpha|} ||D_w^{\beta} f||_{M_p^{\phi}(\Omega)}, \tag{6}$$

where T is the Hestenes operator defined in Lemma 1 and C is a constant independent of f.

Proof. Define $\Omega^+ = \{(\overline{x}, x_n) \mid \overline{x} \in W, x_n > \psi(\overline{x})\}$. We recall the definition of T

$$Tf(x) = \begin{cases} f(x) & x \in \Omega \\ \sum_{i=1}^{l} \alpha_k f(\overline{x}, \psi(\overline{x}) - \beta_k (x_n - \psi(\overline{x}))) & x \in \Omega^+ \end{cases}$$

and observe that we can rewrite it as

$$Tf(x) = \begin{cases} f(x), & \text{if } x \in \Omega, \\ \sum_{i=1}^{l} \alpha_k f(G_k(x)), & \text{if } x \in \Omega^+, \end{cases}$$

where $G_k(\overline{x}, x_n) = (\overline{x}, \psi(\overline{x}) - \beta_k(x_n - \psi(\overline{x})))$. Note that $G_k : \Omega^+ \to \Omega$ defines a diffeomorphism from Ω^+ to Ω of class C^m and satisfying $|\det JG_k^{-1}| \equiv 1/\beta_k$. First we prove ii). Let's fix $x_0 \in S$ and a radius r > 0. We want to estimate the quantity

$$I = \left(\frac{1}{\psi(r)} \int_{B_r(x_0) \cap S} |D_w^{\alpha} T f(x)|^p dx\right)^{\frac{1}{p}}$$

for $1 \leq |\alpha| \leq l$. To do this we estimate the integral as follows

$$I \leq \underbrace{\left(\frac{1}{\phi(r)} \int_{B_r(x_0) \cap \Omega^+} |D_w^{\alpha} T f(x)|^p dx\right)^{\frac{1}{p}}}_{I_1} + \underbrace{\left(\frac{1}{\phi(r)} \int_{B_r(x_0) \cap \Omega} |D_w^{\alpha} T f(x)|^p dx\right)^{\frac{1}{p}}}_{I_2}.$$

Since Tf(x) = f(x) when $x \in \Omega$, we have immediately

$$I_2 \le \|D_w^{\alpha} f\|_{M_p^{\phi}(\Omega)}.$$

It remains to estimate I_1 . We start by observing that from Lemma 3 there exists a constant C_k depending only on G_k and l such that

$$|D_w^{\alpha}(f \circ G_k)| \le C_k \sum_{1 \le |\beta| \le |\alpha|} |D_w^{\beta} f(G_k)|.$$

By the previous inequality and Lemma 5 we are able to produce the following

bound

$$\frac{\|D_{w}^{\alpha}(f \circ G_{k})\|_{L^{p}(B_{r}(x_{0})\cap\Omega^{+})}}{\phi(r)^{\frac{1}{p}}} \leq C_{k} \sum_{1\leq|\beta|\leq|\alpha|} \left(\phi(r)^{-1} \int_{G_{k}(B_{r}(x_{0})\cap\Omega^{+})} |D_{w}^{\beta}f(y)|^{p} |\det JG_{k}^{-1}|_{G_{k}(y)} |dy\right)^{\frac{1}{p}} \\
\leq C_{k} \beta_{k}^{-\frac{1}{p}} \sum_{1\leq|\beta|\leq|\alpha|} \left(\phi(r)^{-1} \int_{B_{c_{k}r}(A_{\beta_{k}}(x_{0}))\cap\Omega} |D_{w}^{\beta}f(y)|^{p} dy\right)^{\frac{1}{p}}$$

where A_{α_k} is defined as in Lemma 5 and c_k depends only on β_k and M. By Lemma 4 the set $B_{c_k r}(A_{\beta_k}(x_0)) \cap \Omega$ can be covered with a collection of open balls $B_1, ..., B_h$ centered in Ω with radius r and $h \leq m_k$, where m_k depends only on c_k . Hence we get

$$\frac{\|D_w^{\alpha}(f \circ G_k)\|_{L^p(B_r(x_0) \cap \Omega^+)}}{\phi(r)^{\frac{1}{p}}} \le C_k \beta_k^{-\frac{1}{p}} m_k \sum_{1 \le |\beta| \le |\alpha|} \|D^{\beta} f\|_{M_p^{\phi}(\Omega)}$$

Next we estimate I_1 :

$$I_{1} = \phi(r)^{-\frac{1}{p}} |D_{w}^{\alpha} T f|_{L^{p}(B_{r}(x_{0}) \cap \Omega^{+})} \leq \phi(r)^{-\frac{1}{p}} \sum_{k=1}^{l} \alpha_{k} ||D_{w}^{\alpha} f(G_{k})||_{L^{p}(B_{r}(x_{0}) \cap \Omega^{+})}$$

$$\leq \sum_{k=1}^{l} \alpha_{k} C_{k} \beta_{k}^{-\frac{1}{p}} m_{k} \left(\sum_{1 \leq |\beta| \leq |\alpha|} ||D_{w}^{\beta} f||_{M_{p}^{\phi}(\Omega)} \right).$$

Finally putting the estimates of I_1 , I_2 together

$$\begin{split} \|D_{w}^{\alpha}Tf\|_{M_{p}^{\phi}(S)} &= \sup_{x_{0} \in S, r > 0} \left(\frac{1}{\phi(r)} \int_{B_{r}(x_{0}) \cap S} |D_{w}^{\alpha}Tf(x)|^{p} dx\right)^{\frac{1}{p}} \\ &\leq \|D_{w}^{\alpha}f\|_{M_{p}^{\phi}(\Omega)} + \sum_{k=1}^{l} \alpha_{k} C_{k} \beta_{k}^{-\frac{1}{p}} m_{k} \left(\sum_{1 \leq |\beta| \leq |\alpha|} \|D_{w}^{\alpha}f\|_{M_{p}^{\phi}(\Omega)}\right) \\ &\leq \widetilde{C} \sum_{1 \leq |\beta| \leq |\alpha|} \|D_{w}^{\alpha}f\|_{M_{p}^{\phi}(\Omega)} \end{split}$$

where \widetilde{C} depends only on $\{b_k\}_k$, $\{\alpha_k\}_k$, l, M, p. This proves ii). The proof of i) is exactly analogous to the proof of ii).

Definition 3. Let $1 \leq p < \infty$, ϕ a function from \mathbb{R}^+ to \mathbb{R}^+ and Ω be a domain in \mathbb{R}^n . For every $\delta > 0$ and every function $f \in L^p_{loc}(\Omega)$ we define the norm $\|f\|_{M^{\delta,\phi}_n}$ as

$$||f||_{M_p^{\delta,\phi}} := \sup_{B_r(x), x \in \Omega, 0 < r < \delta} \left(\frac{1}{\phi(r)} \int_{B_r(x) \cap \Omega} |f(y)|^p dy \right)^{\frac{1}{p}}.$$

Theorem 2. Let $m, l \in \mathbb{N}, l \leq m, 1 \leq p \leq \infty$, ϕ a function from \mathbb{R}^+ to \mathbb{R}^+ and Ω a domain in \mathbb{R}^n with C^m resolved boundary. Let also T be the Hestenes operator defined in Theorem 1. Then if Ω is bounded, for every $f \in W^{l,p}(\Omega)$ and $1 \leq |\alpha| \leq l$ we have

$$||Tf||_{M_p^{\phi}(\mathbb{R}^n)} \le C||f||_{M_p^{\phi}(\Omega)},$$
 (7)

$$||D_w^{\alpha} T f||_{M_p^{\phi}(\mathbb{R}^n)} \le C \sum_{1 \le |\beta| \le |\alpha|} ||D_w^{\beta} f||_{M_p^{\phi}(\Omega)},$$
 (8)

where C doesn't depend on f. If instead Ω is unbounded, for every $f \in W^{l,p}(\Omega)$ and $\delta > 0$ we have

$$||Tf||_{M_p^{\phi,\delta}(\mathbb{R}^n)} \le C_\delta ||f||_{M_p^{\phi}(\Omega)},\tag{9}$$

$$||D_w^{\alpha} T f||_{M_p^{\phi,\delta}(\mathbb{R}^n)} \le C_{\delta} \sum_{1 \le |\beta| \le |\alpha|} ||D_w^{\beta} f||_{M_p^{\phi}(\Omega)}, \tag{10}$$

where C_{δ} depends on δ but not on f.

Proof. Let $f \in W^{l,p}(\Omega)$ and $\{V_i\}_{i=1}^s$ be the covering of cuboids for Ω as in the definition of set with resolved boundary. We recall the definition of T:

$$Tf = \sum_{i=1}^{s} \psi_i T_i(\psi_i f(\lambda_i^{-1}))(\lambda_i)$$

where $\{\psi_i^2\}_{i=1}^s$ form a partition of the unity corresponding to the covering $\{V_i\}_{i=1}^s$ and satisfying $\|D^{\alpha}\psi_i\|_{L^{\infty}} \leq M_1$, with $|\alpha| \leq l$ and M_1 depending only on n, l, d. To make the notation simpler we will rewrite T as

$$Tf = \sum_{i=1}^{s} \psi_i \widetilde{T}_i(\psi_i f)$$

where the operator \widetilde{T}_i is defined as $\widetilde{T}_i f = T_i(f(\lambda_i^{-1}))(\lambda_i)$. Before starting the proof we remark some facts that will be justified at the end:

a) Let C_i the constant such that

$$||T_i g||_{M_p^{\phi}(\lambda_i(V_i))} \le C_i ||g||_{M_p^{\phi}(\lambda_i(\Omega \cap V_i))},$$

$$||D_w^{\alpha} T_i g||_{M_p^{\phi}(\lambda_i(V_i)))} \le C_i \sum_{1 \le |\beta| \le |\alpha|} ||D_w^{\alpha} g||_{M_p^{\phi}(\lambda_i(\Omega \cap V_i)))},$$

for $1 \leq |\alpha| \leq l$ and $g \in \widehat{W}^{l,p}(\lambda_i(\Omega \cap V_i))$. Then $\sup_{i=1,\dots,s} C_i \leq M_2$, where M_2 depends only on Ω, l, n .

b) We have

$$\|\widetilde{T}_{i}g\|_{M_{p}^{\phi}(V_{i})} \leq M_{2}\|g\|_{M_{p}^{\phi}(\Omega \cap V_{i})},$$

$$\|D_{w}^{\alpha}\widetilde{T}_{i}g\|_{M_{p}^{\phi}(V_{i})} \leq M_{3}M_{2} \sum_{1 \leq |\beta| \leq |\alpha|} \|D_{w}^{\alpha}g\|_{M_{p}^{\phi}(\Omega \cap V_{i})},$$

for $1 \leq |\alpha| \leq l$ and $g \in \widehat{W}^{l,p}(\Omega \cap V_i)$ and where M_3 doesn't depend on i.

Let now $x_0 \in \mathbb{R}^n$, $0 < r < \delta$ and $B_r(x_0)$ the ball centered in x_0 of radius r. Let's consider the set $J = \{i = 1, ..., s \mid V_i \cap B_r(x_0) \neq \emptyset\}$. We notice that there exists an integer \tilde{s} depending only on the covering $(V_i)_{i=1}^s$ and on δ such that $\#J \leq \tilde{s}$. We also recall that if Ω is bounded then $\tilde{s} \leq s < \infty$. We have

$$\left(\frac{1}{\phi(r)} \int_{B_{r}(x_{0})} |Tf(x)|^{p} dx\right)^{\frac{1}{p}} = \left(\frac{1}{\phi(r)} \int_{B_{r}(x_{0})} |\sum_{i=1}^{s} \psi_{i}(x) \widetilde{T}_{i}(\psi_{i}f))(x)|^{p} dx\right)^{\frac{1}{p}} \\
\leq \sum_{i \in J} \left(\frac{1}{\phi(r)} \int_{B_{r}(x_{0}) \cap V_{i}} |\widetilde{T}_{i}(\psi_{i}f)(x)|^{p} |dx\right)^{\frac{1}{p}} \\
\stackrel{b)}{\leq} \widetilde{s} M_{2} \|\psi_{i}f\|_{M_{p}^{\phi}(V_{i} \cap \Omega)} \leq M_{2} \widetilde{s} \|f\|_{M_{p}^{\phi}(\Omega)}.$$

This proves (7) and (9). Let now $\alpha \in \mathbb{N}_0^n$ with $1 \leq |\alpha| \leq l$. We have

$$\left(\frac{1}{\phi(r)} \int_{B_{r}(x_{0})} |D_{w}^{\alpha} T f(x)|^{p} dx\right)^{\frac{1}{p}} = \left(\frac{1}{\phi(r)} \int_{B_{r}(x_{0})} |D_{w}^{\alpha} \sum_{i=1}^{s} \psi_{i}(x) \widetilde{T}_{i}(\psi_{i} f))(x)|^{p} dx\right)^{\frac{1}{p}} \\
\leq C_{\alpha} \sum_{i \in J} \left(\frac{1}{\phi(r)} \int_{B_{r}(x_{0}) \cap V_{i}} \sum_{\beta \leq \alpha} |D^{\alpha - \beta} \psi_{i}(x) D_{w}^{\beta} \widetilde{T}_{i}(\psi_{i} f)(x)|^{p} dx\right)^{\frac{1}{p}} \\
\leq C_{\alpha} M_{1} \widetilde{s} \sum_{i \in J} \left(\frac{1}{\phi(r)} \int_{B_{r}(x_{0}) \cap V_{i}} \sum_{\beta \leq \alpha} |D^{\beta} \widetilde{T}_{i}(\psi_{i} f)(x)|^{p} dx\right)^{\frac{1}{p}} \\
\leq C_{\alpha} M_{1} \widetilde{s} \sum_{\beta \leq \alpha} M_{2} M_{3} \sum_{|\gamma| \leq |\beta|} ||D^{\gamma}_{w} f||_{M_{p}^{\phi}(V_{i})} \\
\leq \widetilde{C}_{\alpha} M_{1} M_{2} M_{3} \widetilde{s} \sum_{|\beta| \leq |\alpha|} ||D^{\beta}_{w} f||_{M_{p}^{\phi}(V_{i})}$$

This proves (8) and (10). Let's now prove a) and b). a) Ω has a resolved C^m boundary with parameters \varkappa, d, D, M . Hence, if ϕ_i are the C^m functions of Definition 1, we have $\|D^{\alpha}\phi_i\|_{L^{\infty}} \leq M$ for every i and for every $1 \leq |\alpha| \leq l$. Therefore by the proof of Lemma 6 we deduce that C_i depends only on l, n, M and on the choice of the constants α_k, β_k , which can be chosen to be the same for every T_i . b) We notice that since λ_i are isometries, they are smooth and their derivatives are uniformly bounded with a bound depending only on n. Then the result follows from a) and from a straightforward computation using a change of variable and Lemma 3.

2 Stein operator

2.1 Construction

In this section we will define the Stein extension operator for Lipschitz domains in \mathbb{R}^n . The details of the construction and the proofs of all the results in this subsection can be found in [4, Section 2-3, Ch. VI]. We start by introducing the notion of regularized distance with the following theorem.

Theorem 3. Let F be a closed set in \mathbb{R}^n and denote d(x, F) the distance of x from F. Then there exists a function $\Delta(x) = \Delta(x, F)$ defined in F^c such that

- a) $c_1d(x,F) \leq \Delta(x) \leq c_2d(x,F)$,
- b) $\Delta(x)$ is C^{∞} in F^c and

$$|D^{\alpha}\Delta(x)| \le B_{\alpha}d(x,F)^{1-|\alpha|},$$

where B_{α} , c_1,c_2 are constants independent of F and d(x,F) is the distance of x from F.

Next we give the definition of a special Lipschitz domain.

Definition 4. A domain Ω of \mathbb{R}^n it's said to be a special Lipschitz domain if exists a Lipschitz function ψ defined from \mathbb{R}^{n-1} to \mathbb{R} such that

$$\Omega = \{ (\overline{x}, y) \in \mathbb{R}^n \mid \psi(\overline{x}) < y \}.$$

Moreover the constant Lip ψ is said to be the Lipschitz bound of Ω .

It's convenient to define first the Stein extension operator in the case of a special Lipschitz domain, to do this we need the following two lemmas.

Lemma 7. Let Ω be a special Lipschitz domain of \mathbb{R}^n and set $F = \overline{\Omega}$. Suppose $\Delta(\overline{x}, y)$ is the regularized distance from F as given in Theorem 3. Then there exists a constant a, which depends only on the Lipschitz bound of Ω , so that if $(\overline{x}, y) \in F^c$, then $a\Delta(\overline{x}, y) \geq \psi(\overline{x}) - y$.

Lemma 8. There exists a continuous function τ defined in $[1,\infty)$ satisfying

- i) $\tau(\lambda) = O(\lambda^N)$, as $\lambda \to \infty$ for every N,
- ii) $\int_1^\infty \tau(\lambda) d\lambda = 1$, $\int_1^\infty \lambda^k \tau(\lambda) d\lambda = 0$, for every k = 1, 2, ...

Theorem 4. Let Ω be a special Lipschitz domain of \mathbb{R}^n with Lipschitz bound M. Moreover let τ be the function in Lemma 8 and a the constant of Lemma 7. For every function f that is C^{∞} in $\overline{\Omega}$ and bounded in $\overline{\Omega}$ together with all its partial derivatives, define

$$Tf(\overline{x}, y) = \begin{cases} f(\overline{x}, y), & \text{if } y \ge \psi(\overline{x}) \\ \int_{1}^{\infty} f(\overline{x}, y + \lambda \delta^{*}(\overline{x}, y)) \tau(\lambda) d\lambda, & \text{if } y < \psi(\overline{x}), \end{cases}$$

where $\delta^*(\overline{x}, y) = 2a\Delta(\overline{x}, y)$. Then $Tf \in C^{\infty}(\mathbb{R}^n)$ and

$$||Tf||_{W^{l,p}(\mathbb{R}^n)} \le C_{n,l}(M)||f||_{W^{l,p}(\Omega)},$$

where $C_{l,n}(M)$ is a constant depending only on n, l and M.

Theorem 5. Let $l \in \mathbb{N}, 1 \leq p \leq \infty$ and Ω be a special Lipschitz domain of \mathbb{R}^n with Lipschitz bound M. Denote with Γ the cone with vertex at the origin given by $\Gamma = \{(\overline{x}, y) \in \mathbb{R}^n \mid M|\overline{x}| < |y|, y < 0\}$. Suppose now that $\eta \in C_c^{\infty}(\mathbb{R}^n)$ is a non-negative function with total integral 1 and which support is contained in Γ . For every $f \in W^{l,p}(\Omega)$ and every $x \in \overline{\Omega}$ define $f_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \int_{\mathbb{R}^n} f(x-y) \eta(y/\varepsilon) dy$. Then Tf_{ε} is well defined and the sequence $\{Tf_{\varepsilon}\}_{\varepsilon>0}$ converges in $W^{l,p}(\mathbb{R}^n)$ if $p < \infty$ and in $W^{l-1,p}(\mathbb{R}^n)$ if $p = \infty$, as $\varepsilon \to 0$. Moreover setting

$$Sf = \lim_{\varepsilon \to 0} Tf_{\varepsilon}$$

we have that Sf extend f to \mathbb{R}^n and

$$||Sf||_{W^{l,p}(\mathbb{R}^n)} \le C_{l,n}(M)||f||_{W^{l,p}(\Omega)},$$

where $C_{l,n}(M)$ is a constant depending only on n, l and M.

2.2 Stein operator in Sobolev-Morrey spaces

Definition 5. Let x be a point in \mathbb{R}^n and r > 0. We define the open cube centered in x of side l as the set

$$Q_l(x) = (x_1 - l/2, x_1 + l/2) \times (x_2 - l/2, x_2 + l/2) \times \cdots \times (x_n - l/2, x_n + l/2)$$

where $x = (x_1, ..., x_n)$.

Definition 6. Let $1 \leq p < \infty$, ϕ a function from \mathbb{R}^+ to \mathbb{R}^+ and Ω be a domain in \mathbb{R}^n . For a function $f \in L^p_{loc}(\Omega)$ we define the norm $\|.\|_{M^\phi_{n,\Omega}(\Omega)}$ as

$$||f||_{M^{\phi}_{p,Q}(\Omega)} := \sup_{Q_{2r}(x), x \in \Omega, r > 0} \left(\frac{1}{\phi(r)} \int_{Q_r(x) \cap \Omega} |f(y)|^p dy \right)^{\frac{1}{p}}$$

where $Q_{2r}(x)$ is the open cube centered in x of side 2r.

Lemma 9. Let $1 \leq p \leq \infty$, ϕ a function from \mathbb{R}^+ to \mathbb{R}^+ and Ω be a domain in \mathbb{R}^n . Then then norm $\|.\|_{M^{\phi}_{p,Q}(\Omega)}$ is equivalent to the classical Morrey norm $\|.\|_{M^{\phi}_{p}(\Omega)}$. In particular

$$\|.\|_{M_p^{\phi}(\Omega)} \le \|.\|_{M_{p,Q}^{\phi}(\Omega)} \le C_n\|.\|_{M_p^{\phi}(\Omega)}$$

where C_n is a constant depending only on n.

Proof. We prove first the second inequality of the statement. Let $x \in \Omega$, r > 0, $Q_{2r}(x)$ be the cube centered in x of side 2r and $f \in L^p_{loc}(\Omega)$. Since the set $Q_{2r}(x) \cap \Omega$ has diameter less than $2r\sqrt{n}$ by Lemma 4 there exists a collection of balls $B_1, ..., B_k$ centered in $Q_{2r}(x) \cap \Omega$ of radius r, with $k \leq C_n$ where C_n depends only on n. Hence

$$\int_{Q_{2r}(x)\cap\Omega} |f(y)|^p dy \le \sum_{i=1}^k \int_{B_i\cap\Omega} |f(y)|^p dy$$

and

$$||f||_{M_{p,Q}^{\phi}(\Omega)} = \sup_{Q_{2r}(x), x \in \Omega, r > 0} \left(\frac{1}{\phi(r)} \int_{Q_{2r}(x) \cap \Omega} |f(y)|^p dy \right)^{\frac{1}{p}} \le C_n ||f||_{M_p^{\phi}(\Omega)}.$$

To prove the first inequality we observe that for every $x \in \Omega$ and r > 0, $(B_r(x) \cap \Omega) \subset (Q_{2r}(x) \cap \Omega)$, where $Q_{2r}(x)$ is the cube centered in x with side 2r and $B_r(x)$ is the ball of radius r centered in x. Therefore for every $f \in L^p_{loc}(\Omega)$

$$\int_{B_r(x)\cap\Omega} |f(y)|^p dy \le \int_{Q_{2r}(x)\cap\Omega} |f(y)|^p dy$$

and this concludes the proof.

Lemma 10. Let Ω be an open set in \mathbb{R}^n and let $f, h \in C^{\infty}(\mathbb{R}^n)$. Define the function $g \in C^{\infty}(\mathbb{R}^n)$ as $g(x) = f(\overline{x}, x_n + \lambda h(x))$ where $\overline{x} = x_1, ..., x_{n-1}$ and $0 \neq \lambda \in \mathbb{R}$. Then for every $\alpha \in \mathbb{N}_0^n$ and $x \in \mathbb{R}^n$ the number $D^{\alpha}g(x)$ is a finite sum of terms of the following form

$$c\lambda^s D^{\beta} f(\overline{x}, x_n + \lambda h(x)) (D^{\gamma_1} h(x))^{n_1} \cdots (D^{\gamma_k} h(x))^{n_k}$$

for some constant c, with $\beta, \gamma_i \in \mathbb{N}_0^n$, $k, s, n_i \in \mathbb{N}_0$ and $\beta, \gamma_i \neq 0$, $k, s \geq 0$, $n_i > 0$. Moreover every term satisfies the following conditions

a)
$$n_1(|\gamma_1|-1) + n_2(|\gamma_2|-1) + ... + n_k(|\gamma_k|-1) = |\alpha|-|\beta|$$
,

b) s = 0 if and only if k = 0.

Proof. We will prove the result by induction on $l = |\alpha|$. Let's prove the case l = 1. For every i = 1, ..., n we have

$$\frac{\partial g}{\partial x_i}(x) = \frac{\partial f}{\partial x_i}(\overline{x}, x_n + \lambda h(x)) + \lambda \frac{\partial f}{\partial x_n}(\overline{x}, x_n + \lambda h(x)) \frac{\partial h}{\partial x_i}(x)$$

that clearly satisfies the statement. We assume now that the result is true for l, and suppose $|\alpha| = l + 1$. We write $D^{\alpha}g(x) = \frac{\partial D^{\beta}g}{\partial x_i}(x)$ for some $|\beta| = l$. Hence by induction hypothesis and linearity of the derivative we have that $D^{\alpha}g(x)$ is a finite sum of terms of the form

$$\frac{\partial}{\partial x_i} [c\lambda^s D^{\gamma} f(\overline{x}, x_n + \lambda h(x)) (D^{\gamma_1} h(x))^{n_1} \cdots (D^{\gamma_k} h(x))^{n_k}].$$

Suppose first that $k \geq 1$, so by induction we know that

$$n_1(|\gamma_1|-1) + n_2(|\gamma_2|-1) + \dots + n_k(|\gamma_k|-1) = |\beta|-|\gamma|$$
 (11)

and that $s \geq 1$. Now expanding the derivation using the chain rule we get

$$\frac{\partial}{\partial x_{i}} \left[c\lambda^{s} D^{\gamma} f(\overline{x}, x_{n} + \lambda h(x)) (D^{\gamma_{1}} h(x))^{n_{1}} \cdots (D^{\gamma_{k}} h(x))^{n_{k}} \right] = \\
= c\lambda^{s} \frac{\partial D^{\gamma} f}{\partial x_{i}} (\overline{x}, x_{n} + \lambda h(x)) (D^{\gamma_{1}} h(x))^{n_{1}} \cdots (D^{\gamma_{k}} h(x))^{n_{k}} + \\
+ c\lambda^{s+1} \frac{\partial D^{\gamma} f}{\partial x_{n}} (\overline{x}, x_{n} + \lambda h(x)) (D^{\gamma_{1}} h(x))^{n_{1}} \cdots (D^{\gamma_{k}} h(x))^{n_{k}} \frac{\partial h}{\partial x_{i}} (x) + \\
+ \sum_{i=1}^{k} c\lambda^{s} n_{j} D^{\gamma} f(\overline{x}, x_{n} + \lambda h(x)) (D^{\gamma_{1}} h(x))^{n_{1}} \cdots (D^{\gamma_{k}} h(x))^{n_{k}} \frac{\partial D^{\gamma_{j}} h}{\partial x_{i}} (x) \\
+ \sum_{i=1}^{k} c\lambda^{s} n_{j} D^{\gamma} f(\overline{x}, x_{n} + \lambda h(x)) (D^{\gamma_{1}} h(x))^{n_{1}} \cdots (D^{\gamma_{k}} h(x))^{n_{k}} \frac{\partial D^{\gamma_{j}} h}{\partial x_{i}} (x).$$

Let's see that every term satisfies a). By (11) we have

$$n_1(|\gamma_1|-1) + n_2(|\gamma_2|-1) + \dots + n_k(|\gamma_k|-1) = |\beta| - |\gamma| = |\alpha| - |\gamma + e_i|$$

where $e_i = (0, ..., \frac{1}{i}, ..., 0)$, hence that first summand satisfies a). Again by (11)

$$n_1(|\gamma_1|-1) + n_2(|\gamma_2|-1) + \ldots + n_k(|\gamma_k|-1) + (|e_i|-1) = |\alpha| - |\gamma + e_n|$$

and this proves a) for the second term. Now we consider the final sum, we will prove a) just for j=1, the other terms are dealt in the same way. We need to prove that

$$n_1(|\gamma_1|-1)+\ldots+(n_j-1)(|\gamma_j|-1)+\ldots+n_k(|\gamma_k|-1)+(|\gamma_j+e_i|-1)=|\alpha|-|\gamma|.$$

Expanding the left-hand side we get

$$n_1(|\gamma_1|-1) + n_2(|\gamma_2|-1) + \dots + n_k(|\gamma_k|-1) + 1$$

and since $|\beta| = |\alpha| - 1$ we conclude using (11). We observe that, since $k, s \ge 1$, all the terms also satisfies b). Suppose know that k = 0, hence we need to consider

 $\frac{\partial}{\partial x_i} [cD^{\gamma} f(\overline{x}, x_n + \lambda h(x))]$

that becomes

$$c\frac{\partial D^{\gamma} f}{\partial x_i}(\overline{x}, x_n + \lambda h(x)) + c\lambda \frac{\partial D^{\gamma} f}{\partial x_n}(\overline{x}, x_n + \lambda h(x)) \frac{\partial h}{\partial x_i}(x).$$

By induction and by a) we know that $|\gamma| = |\beta|$, therefore it's immediate that both the above terms satisfies a) and b).

Remark 2. Let Ω a special Lipschitz domain and let $\delta^*(\overline{x}, y)$ be the function defined in Theorem 4. Then for every (\overline{x}, y) with $\psi(\overline{x}) > y$ the following holds

$$c(\psi(\overline{x}) - y) \ge \delta^*(\overline{x}, y) \ge 2(\psi(\overline{x}) - y),$$

where c is some constant depending only on n. The second inequality follows directly from the definition of δ^* and Lemma 7. Next we notice that $(\psi(\overline{x}) - y) \ge d(x, \overline{\Omega})$, hence the first inequality follows from a) of Theorem 3.

Lemma 11. Let $1 \leq p < \infty, n \geq 2$, ϕ a function from \mathbb{R}^+ to \mathbb{R}^+ and Ω be a special Lipschitz domain of \mathbb{R}^n with Lipschitz bound M. Moreover let T be the operator defined in Theorem 4 and $f \in C^{\infty}(\overline{\Omega})$ be a function bounded in $\overline{\Omega}$ together with all its partial derivatives. Then for every $\alpha \in \mathbb{N}_0^n$

$$||D^{\alpha}Tf||_{M_{p}^{\phi}(\mathbb{R}^{n})} \le C_{l,n}(M) \sum_{|\beta|<|\alpha|} ||D^{\beta}f||_{M_{p}^{\phi}(\Omega)}$$
 (12)

where $l = |\alpha|$ and $C_{l,n}(M)$ is a constant depending only on l, n and M.

Proof. Let's start by proving the case l=0. By Lemma 9 it's enough to prove that for an arbitrary open cube Q of side r in \mathbb{R}^n with sides parallel to the axis we have

21

$$\left(\frac{1}{\phi(r/2)} \int_{Q} |Tf(x)|^{p} dx\right)^{\frac{1}{p}} \le C_{n}(M) ||f||_{M_{p,Q}^{\phi}(\Omega)}$$
(13)

for a constant $C_n(M)$ depending only on n, M. Let's define $\Omega^- = \{(\overline{x}, y) \in \mathbb{R}^n \mid \overline{x} \in \mathbb{R}^{n-1}, \ y < \psi(\overline{x})\}$. There are three cases: 1. $Q \subset \Omega$ 2. $Q \subset \Omega^-$ 3. $Q \cap \{y = \psi(\overline{x})\} \neq \emptyset$.

1. Since Tf = f in Ω

$$\left(\frac{1}{\phi(r/2)} \int_{Q} |Tf(x)|^{p} dx\right)^{\frac{1}{p}} = \left(\frac{1}{\phi(r/2)} \int_{Q} |f(x)|^{p} dx\right)^{\frac{1}{p}} \le ||f||_{M_{p,Q}^{\phi}(\Omega)}$$

and we are done.

2. Let's write Q as $Q = \{(\overline{x}, y) \in \mathbb{R}^n \mid \overline{x} \in F, y \in (a - r, a)\}$ where F is an open cube of \mathbb{R}^{n-1} of side r and $a < \phi(\overline{x})$ for every $\overline{x} \in F$. Fix now $(\overline{x}, y) \in Q$. By Lemma 8 there exists a constant A_3 such that $|\tau(\lambda)| \leq A_3/\lambda^3$ for every $\lambda \geq 1$. From the definition of Tf we have

$$|Tf(\overline{x},y)| \stackrel{(\bullet)}{\leq} \int_{1}^{\infty} |f(\overline{x},y+\lambda\delta^{*}(\overline{x},y))| |\tau(\lambda)| d\lambda \leq A_{3} \int_{1}^{\infty} |f(\overline{x},y+\lambda\delta^{*}(\overline{x},y))| \frac{1}{\lambda^{3}} d\lambda$$

Let's apply the change of variable $s = y + \lambda \delta^*(\overline{x}, y)$

$$|Tf(\overline{x},y)| \stackrel{(\bullet \bullet)}{\leq} A_3 \int_{y+\delta^*}^{\infty} |f(\overline{x},s)| \frac{(\delta^*)^2}{(s-y)^3} ds \leq A_3 c^2 \int_{2\psi(\overline{x})-y}^{\infty} |f(\overline{x},s)| \frac{(\psi(x)-y)^2}{(s-y)^3} ds$$

because $c(\psi(x) - y) \ge \delta^* \ge 2(\psi(x) - y)$ as seen in Remark 2. Let's now decompose the last integral as follows

$$|Tf(\overline{x},y)| \le \sum_{k=0}^{\infty} A_3 c^2 \int_{2\psi(\overline{x})-y+kr}^{2\psi(\overline{x})-y+(k+1)r} |f(\overline{x},s)| \frac{(\psi(\overline{x})-y)^2}{(s-y)^3} ds.$$

Now by applying Minkowski's inequality for an infinite sum we get

$$\left(\int_{a-r}^{a} |Tf(\overline{x},y)|^{p} dy\right)^{\frac{1}{p}} \leq A_{3}c^{2} \sum_{k=0}^{\infty} \left(\int_{a-r}^{a} \left(\int_{2\psi(\overline{x})-y+kr}^{2\psi(\overline{x})-y+(k+1)r} \frac{|f(\overline{x},s)|(\psi(x)-y)^{2}}{(s-y)^{3}} ds\right)^{p} dy\right)^{\frac{1}{p}} (*)$$

Next we plan to estimate each summand. In the right-hand side of (*) we apply the change of variable $y = \psi(\overline{x}) - z$

$$\left(\int_{\psi(x)-a}^{\psi(x)-a+r} \left(\int_{\psi(x)+z+kr}^{\psi(x)+z+(k+1)r} |f(\overline{x},s)| \frac{z^2}{(s-\psi(x)+z)^3} ds \right)^p dz \right)^{\frac{1}{p}}$$

and the change of variable $u = s - \psi(x)$

$$\left(\int_{\psi(x)-a}^{\psi(x)-a+r} \left(\int_{z+kr}^{z+(k+1)r} |f(\overline{x}, u+\psi(x))| \frac{z^2}{(u+z)^3} du\right)^p dz\right)^{\frac{1}{p}}.$$

Then we apply the change of variable t=u/z

$$\left(\int_{\psi(\overline{x})-a}^{\psi(\overline{x})-a+r} \left(\int_{1+kr/z}^{1+(k+1)r/z} |f(\overline{x},tz+\psi(x))| \frac{1}{(t+1)^3} dt\right)^p dz\right)^{\frac{1}{p}}.$$

that can be rewritten as

$$\left(\int_{\psi(\overline{x})-a}^{\psi(\overline{x})-a+r} \left(\int_{1+kr/(\psi(\overline{x})-a+r)}^{1+(k+1)r/(\psi(\overline{x})-a)} |f(\overline{x},tz+\psi(x))| \mathbb{1}_{(1+kr/z,1+(k+1)r/z)}(t) \frac{1}{(t+1)^3} dt \right)^p dz \right)^{\frac{1}{p}}.$$

By Minkowsi's integral inequality and setting $\alpha = r/(\psi(\overline{x}) - a)$

$$\left(\int_{a\psi(\overline{x})-a}^{\psi(\overline{x})-a+r} \left(\int_{1+k\alpha/(\alpha+1)}^{1+(k+1)\alpha} |f(\overline{x},tz+\psi(x))| \mathbb{1}_{(1+kr/z,1+(k+1)r/z)}(t) \frac{1}{(t+1)^3} dt \right)^p dz \right)^{\frac{1}{p}}.$$

$$\leq \int_{1+k\alpha/(\alpha+1)}^{1+(k+1)\alpha} \left(\int_{\psi(\overline{x})-a}^{\psi(\overline{x})-a+r} |f(\overline{x},tz+\psi(x))|^p \mathbb{1}_{(1+kr/z,1+(k+1)r/z)}(t) \frac{1}{(t+1)^{3p}} dz \right)^{\frac{1}{p}} dt.$$

We notice that for every $t, z \in \mathbb{R}$ with $\psi(\overline{x}) - a \le z \le \psi(\overline{x}) - a + r$

$$\mathbb{1}_{(1+kr/z,1+(k+1)r/z)}(t) \le \mathbb{1}_{(\psi(\overline{x})-a+kr,\psi(\overline{x})-a+(k+2)r)}(tz)$$

hence using the change of variable w = tz

$$\begin{split} & \int_{1+k\alpha/(\alpha+1)}^{1+(k+1)\alpha} \left(\int_{\psi(\overline{x})-a+kr}^{\psi(\overline{x})-a+kr} |f(\overline{x},tz+\psi(x))|^p \mathbbm{1}_{(1+kr/z,1+(k+1)r/z)}(t) \frac{1}{(t+1)^{3p}} dz \right)^{\frac{1}{p}} dt \\ & \leq \int_{1+k\alpha/(\alpha+1)}^{1+(k+1)\alpha} \left(\int_{\psi(\overline{x})-a+kr}^{\psi(\overline{x})-a+(k+2)r} |f(\overline{x},w+\psi(\overline{x}))|^p \frac{1}{t(t+1)^{3p}} dw \right)^{\frac{1}{p}} dt \\ & = \int_{1+k\alpha/(\alpha+1)}^{1+(k+1)\alpha} \frac{1}{t^{\frac{1}{p}}(t+1)^3} dt \left(\int_{\psi(\overline{x})-a+kr}^{\psi(\overline{x})-a+(k+2)r} |f(\overline{x},w+\psi(\overline{x}))|^p dw \right)^{\frac{1}{p}} \\ & \leq \int_{1+k\alpha/(\alpha+1)}^{1+(k+1)\alpha} \frac{1}{(t+1)^3} dt \left(\int_{\psi(\overline{x})-a+kr}^{\psi(\overline{x})-a+(k+2)r} |f(\overline{x},w+\psi(\overline{x}))|^p dw \right) \\ & = \frac{1}{2} \left[\frac{1}{(1+(k+1)\alpha)^2} - \frac{1}{(1+k\alpha/(\alpha+1))^2} \right] \left(\int_{\psi(\overline{x})-a+kr}^{\psi(\overline{x})-a+(k+2)r} |f(\overline{x},w+\psi(\overline{x}))|^p dw \right)^{\frac{1}{p}} \\ & = \frac{s_k(\alpha)}{2} \left(\int_{\psi(\overline{x})-a+kr}^{\psi(\overline{x})-a+(k+2)r} |f(\overline{x},w+\psi(\overline{x}))|^p dw \right)^{\frac{1}{p}}. \end{split}$$

Plugging this estimate inside (*) we get

$$\left(\int_{a-r}^{a} |Tf(\overline{x},y)|^{p} dy\right)^{\frac{1}{p}} \leq A_{3} \frac{c^{2}}{2} \sum_{k=0}^{\infty} s_{k}(\alpha) \left(\int_{\psi(\overline{x})-a+kr}^{\psi(\overline{x})-a+(k+2)r} |f(\overline{x},w+\psi(\overline{x}))|^{p} dw\right)^{\frac{1}{p}}$$

$$= A_{3} \frac{c^{2}}{2} \sum_{k=0}^{\infty} s_{k}(\alpha) \left(\int_{2\psi(\overline{x})-a+kr}^{2\psi(\overline{x})-a+(k+2)r} |f(\overline{x},y)|^{p} dy\right)^{\frac{1}{p}}.$$

Taking the L^p norm on F on both sides and applying again Minkowski inequality we obtain

$$\left(\int_{F} \int_{a-r}^{a} |Tf(\overline{x}, y)|^{p} dy d\overline{x} \right)^{\frac{1}{p}} \leq A_{3} \frac{c^{2}}{2} \sum_{k=0}^{\infty} s_{k}(\alpha) \left(\int_{F} \int_{2\psi(\overline{x})-a+kr}^{2\psi(\overline{x})-a+(k+2)r} |f(\overline{x}, y)|^{p} dy d\overline{x} \right)^{\frac{1}{p}} \\
= A_{3} \frac{c^{2}}{2} \sum_{k=0}^{\infty} s_{k}(\alpha) ||f||_{L^{p}(S_{k})}. \tag{**}$$

where $S_k = \{(\overline{x}, y) \in \mathbb{R}^n \mid \overline{x} \in F, \ 2\psi(\overline{x}) - a + kr < y < 2\psi(\overline{x}) - a + (k+2)r\}$. Clearly the set S_k has diameter less than dr, where d is a constant depending only on n and M. Hence by Lemma 4 there exists a collection of open cubes $Q_1, ..., Q_m$ centered in S_k of side r that covers S_k , with $m \in \mathbb{N}$ depending only on M and n. Moreover for every $(\overline{x}, y) \in S_k$ we have $y > 2\psi(\overline{x}) - a > \psi(\overline{x})$, so $S_k \subset \Omega$. This implies that

$$S_k \subset \bigcup_{i=1}^m (Q_i \cap \Omega)$$

and that every cube Q_i is centered in Ω . Therefore by (**)

$$||Tf||_{L^p(Q)} \le \frac{c^2}{2} \sum_{k=0}^{\infty} s_k(\alpha) (||f||_{L^p(Q_1 \cap \Omega)} + \dots + ||f||_{L^p(Q_m \cap \Omega)}),$$

then dividing in both sides by $\psi(r/2)^{\frac{1}{p}}$ we obtain

$$\left(\frac{1}{\phi(r/2)} \int_{Q} |Tf(x)|^{p} dx\right)^{\frac{1}{p}} \leq \frac{A_{3}c^{2}m}{2} \sum_{k=0}^{\infty} s_{k}(a, r) ||f||_{M_{p,Q}(\Omega)}$$

We want now to estimate the series $\sum_{k=0}^{\infty} s_k(\alpha)$. First we notice that can be rewritten as as

$$\sum_{k=0}^{\infty} s_k(\alpha) = \sum_{k=1}^{\infty} \frac{\alpha(\alpha+2)}{(k\alpha+1)^2}.$$

To bound this series we distinguish two cases, when $\alpha \leq 1$ and when $\alpha > 1$. In the first case we can bound the series using a Riemann Sum

$$\sum_{k=1}^{\infty} \frac{\alpha(\alpha+2)}{(k\alpha+1)^2} \le 3\sum_{k=1}^{\infty} \frac{\alpha}{(k\alpha+1)^2} = 3\sum_{k=1}^{\infty} \int_{\mathbb{R}} \mathbb{1}_{(\alpha(k-1),\alpha k)}(t) \frac{1}{(\alpha k+1)^2} dt \le 3\int_{\mathbb{R}} \frac{1}{(t+1)^2} dt = 3.$$

In the second case

$$\sum_{k=1}^{\infty} \frac{\alpha(\alpha+2)}{(k\alpha+1)^2} \le \sum_{k=1}^{\infty} \frac{\alpha(\alpha+2)}{k^2 \alpha^2} = \sum_{k=1}^{\infty} \frac{1 + \frac{2}{\alpha}}{k^2} \le 3\frac{\pi^2}{6} < 5.$$

Hence we get

$$\left(\frac{1}{\phi(r/2)} \int_{Q} |Tf(x)|^{p} dx\right)^{\frac{1}{p}} \le A_{3} 5c^{2} ||f||_{M_{p,Q}^{\phi}(\Omega)}$$

that shows (1).

3. We write Q as $F \times (a-r,a)$ and and we define $Q^+ = Q \cap \Omega$ and $Q^- = Q \cap \Omega^-$. Then

$$||Tf||_{L^p(Q)} \le ||f||_{L^p(Q^+)} + ||Tf||_{L^p(Q^-)}.$$

Moreover Q^+ can be written as $\{(\overline{x}, y) \mid \overline{x} \in S, a - r < y < \min(\psi(\overline{x}), a)\}$ for some set $S \subset F$. Hence

$$\int_{Q^{-}} |Tf(x)|^{p} dx = \int_{S} \int_{a-r}^{\min(\psi(\overline{x}),a)} |Tf(\overline{x},y)|^{p} dy d\overline{x}.$$

We can then proceed as in 2. to obtain

$$\left(\int_{S} \int_{a-r}^{a} |Tf(\overline{x}, y)|^{p} dy d\overline{x}\right)^{\frac{1}{p}} \leq A_{3} \frac{c^{2}}{2} \sum_{k=0}^{\infty} s_{k}(\alpha) \left(\int_{S} \int_{2\psi(\overline{x}) - \min(a, \psi(\overline{x})) + kr}^{2\psi(\overline{x}) - a + (k+2)r} |f(\overline{x}, y)|^{p} dy d\overline{x}\right)^{\frac{1}{p}}$$

$$= A_{3} \frac{c^{2}}{2} \sum_{k=0}^{\infty} s_{k}(\alpha) ||f||_{L^{p}(S'_{k})}.$$

One can observe that the sets S'_k have the same property as the sets S_k in 2. Therefore

$$\frac{1}{\psi(r/2)^{\frac{1}{p}}} \|Tf\|_{L^p(Q^-)} \le c_1 \|f\|_{M_p^{\phi}(\Omega)}$$

for some constant c_1 depending only on n and M. Finally it's immediate to verify that $||f||_{L^p(Q^+)} \leq \phi(r/2)^{\frac{1}{p}} ||f||_{M_p^{\phi}(\Omega)}$. This concludes the proof of case 3.

We consider now the case l > 0. By Lemma 9 it's again enough to prove that for an arbitrary open cube Q of side r contained in \mathbb{R}^n we have

$$\left(\frac{1}{\phi(r/2)} \int_{Q} |D^{\alpha}Tf(x)|^{p} dx\right)^{\frac{1}{p}} \leq C_{l,n}(M) \sum_{|\beta| \leq |\alpha|} \|D^{\beta}f\|_{M_{p,Q}^{\phi}(\Omega)}$$
(14)

for a constant $C_{l,n}(M)$ depending only on l, n, M. We will consider the same three cases that appeared with l = 0. Since $D^{\alpha}Tf = D^{\alpha}f$ in Ω , the first case is trivial as before. We will see that the cases 2 and 3 also follow from the computations done with l = 0. We start observing that by the boundedness of f and all its derivatives we can differentiate under the integral sign to get

$$D^{\alpha}Tf(\overline{x},y) = \int_{1}^{\infty} D^{\alpha}g_{\lambda}(\overline{x},y)\tau(\lambda)d\lambda$$

for every $(\overline{x}, y) \in \Omega^-$, where $g_{\lambda}(\overline{x}, y) = f(\overline{x}, y + \lambda \delta^*(\overline{x}, y))$. By Lemma 10 $D^{\alpha}g_{\lambda}(\overline{x}, y)$ is a finite sum of terms of the type

$$\widetilde{c}\lambda^s D^{\beta} f(\overline{x}, y + \lambda \delta^*(\overline{x}, y)(D^{\gamma_1}\delta^*(x))^{n_1} \cdots (D^{\gamma_k}\delta^*(x))^{n_k}$$

For each of these terms we also set

$$T_{s,\beta,(\gamma_1,n_1),\dots,(\gamma_k,n_k)}(x) = \int_1^\infty \lambda^s D^{\beta} f(\overline{x},y+\lambda \delta^*(\overline{x},y)(D^{\gamma_1}\delta^*(x))^{n_1} \cdots (D^{\gamma_k}\delta^*(x))^{n_k} \tau(\lambda) d\lambda.$$

Now, since the constants \tilde{c} and the number of terms of the sum depend only on l and n, we just need to estimate the quantities

$$\left(\frac{1}{\phi(r/2)}\int_{Q}\left|T_{s,\beta,(\gamma_{1},n_{1}),\dots,(\gamma_{k},n_{k})}(x)\right|^{p}dx\right)^{\frac{1}{p}}.$$

We start by assuming that $|\beta| = |\alpha|$. By the property a) in Lemma 10 and by the estimates of the derivatives of $\delta^*(=2a\Delta)$ given in Theorem 3 we have that

$$|T_{s,\beta,(\gamma_1,n_1),\dots,(\gamma_k,n_k)}(x)| \le c_2 \int_1^\infty |D^{\beta}f(\overline{x},y+\lambda\delta^*(\overline{x},y))||\tau(\lambda)|d\lambda$$

where c_2 depends only on n and M. We are now in the same situation as in the inequality (\bullet) of case l=0. Hence we can proceed the estimate in the same way to get

$$\left(\frac{1}{\phi(r/2)} \int_{Q} \left| T_{s,\beta,(\gamma_{1},n_{1}),\dots,(\gamma_{k},n_{k})}(x) \right|^{p} dx \right)^{\frac{1}{p}} \leq c_{3} \|D^{\beta}f\|_{M_{p}^{\phi}(\Omega)}$$

for every Q in case 2 and

$$\left(\frac{1}{\phi(r/2)} \int_{Q \cap \Omega^{-}} \left| T_{s,\beta,(\gamma_{1},n_{1}),\dots,(\gamma_{k},n_{k})}(x) \right|^{p} dx \right)^{\frac{1}{p}} \leq c_{4} \|D^{\beta} f\|_{M_{p}^{\phi}(\Omega)}$$

for every Q in case 3, where c_3, c_4 depend only on n and M. Suppose now that $|\alpha| > |\beta|$. Arguing as above, by Theorem 3 and Lemma 10 we get

$$|T_{s,\beta,(\gamma_{1},n_{1}),...,(\gamma_{k},n_{k})}(x)|$$

$$\leq c_{5} \frac{1}{d(x,\overline{\Omega})^{|\alpha|-|\beta|}} \left| \int_{1}^{\infty} \lambda^{s} D^{\beta} f(\overline{x}, y + \lambda \delta^{*}(\overline{x}, y) \tau(\lambda) d\lambda \right|$$

$$\leq c_{5} \frac{1}{(\psi(\overline{x}) - y)^{|\alpha|-|\beta|}} \left| \int_{1}^{\infty} \lambda^{s} D^{\beta} f(\overline{x}, y + \lambda \delta^{*}(\overline{x}, y) \tau(\lambda) d\lambda \right|. \tag{15}$$

Where c_5 depends only on n, l and M. We now write the Taylor expansion with integral remainder of the function $D^{\beta} f(\overline{x}, y + t)$ centered in $\delta^*(\overline{x}, y)$ up to order $m = |\alpha| - |\beta|$ and evaluated at $\lambda \delta^*(\overline{x}, y)$

$$D^{\beta}f(\overline{x}, y + \lambda \delta^*) = \sum_{i=0}^{m-1} \frac{(\lambda \delta^* - \delta^*)^i}{i!} \frac{\partial^i D\beta f}{\partial x_n^i}(\overline{x}, y + \delta^*) + \int_{\delta^*}^{\lambda \delta^*} \frac{(\lambda \delta^* - t)^{m-1}}{m!} \frac{\partial^m D\beta f}{\partial x_n^m}(\overline{x}, y + t) dt.$$

We observe that the terms inside the sum doesn't give any contribution in (8), since

$$\begin{split} & \int_{1}^{\infty} \frac{\lambda^{s} (\lambda \delta^{*} - \delta^{*})^{i}}{i!} \frac{\partial^{i} D\beta f}{\partial x_{n}^{i}} (\overline{x}, y + \delta^{*}) \tau(\lambda) d\lambda \\ & = \frac{\partial^{i} D\beta f}{\partial x_{n}^{i}} (\overline{x}, y + \delta^{*}) \frac{(\delta^{*})^{i}}{i!} \int_{1}^{\infty} \lambda^{s} (\lambda - 1)^{i} \tau(\lambda) d\lambda = 0 \end{split}$$

by the properties of τ , since s > 0 by Lemma 10. Hence combining this with (15) we obtain

$$|T_{s,\beta,(\gamma_1,n_1),\dots,(\gamma_k,n_k)}(x)| \leq \frac{c_5}{(\psi(\overline{x})-y)^m} \left| \int_1^\infty \int_{\delta^*}^{\lambda \delta^*} \frac{(\lambda \delta^* - t)^{m-1}}{m!} \frac{\partial^m D\beta f}{\partial x_n^m} (\overline{x}, y+t) dt \lambda^s \tau(\lambda) d\lambda \right|.$$

Observing that $(\lambda \delta^* - t)^{m-1} \leq (\lambda \delta^*)^{m-1}$, recalling that $\psi(\overline{x}) - y \geq c\delta^*$ and using the change of variable u = y + t we get

$$|T_{s,\beta,(\gamma_1,n_1),\dots,(\gamma_k,n_k)}(x)| \leq \frac{c_5}{c^m m! \delta^*} \int_1^\infty \int_{u+\delta^*}^{u+\lambda\delta^*} \left| \frac{\partial^m D\beta f}{\partial x_n^m}(\overline{x},u) \right| \lambda^{s+m-1} |\tau(\lambda)| du d\lambda.$$

Perform a changing of order of integration we deduce

$$|T_{s,\beta,(\gamma_1,n_1),\dots,(\gamma_k,n_k)}(x)| \leq \frac{c_5}{c^m m! \delta^*} \int_{y+\delta^*}^{\infty} \left| \frac{\partial^m D\beta f}{\partial x_n^m}(\overline{x},u) \right| \int_{(u-y)/\delta^*}^{\infty} |\lambda^{s+m-1} \tau(\lambda)| d\lambda du.$$

Finally recalling that that $|\tau(\lambda)| \leq A_{m+s}/\lambda^{s+m+3}$ for some constant A_{m+s} we can write

$$|T_{s,\beta,(\gamma_1,n_1),\dots,(\gamma_k,n_k)}(x)| \le \frac{c_5 A_{m+s}}{3c^m m!} \int_{y+\delta^*}^{\infty} \left| \frac{\partial^m D\beta f}{\partial x_n^m} (\overline{x}, u) \right| \frac{(\delta^*)^2}{(u-y)^3} du.$$

We observe that we are now in the same situation as in the inequality $(\bullet \bullet)$ of the case l = 0 and the same computations lead us to

$$\left(\frac{1}{\phi(r/2)}\int_{Q}\left|T_{s,\beta,(\gamma_{1},n_{1}),\dots,(\gamma_{k},n_{k})}(x)\right|^{p}dx\right)^{\frac{1}{p}} \leq c_{6}\left\|\frac{\partial^{m}D\beta f}{\partial x_{n}^{m}}\right\|_{M_{p}^{\phi}(\Omega)}$$

for every Q in case 2 and

$$\left(\frac{1}{\phi(r/2)} \int_{Q \cap \Omega^{-}} \left| T_{s,\beta,(\gamma_{1},n_{1}),\dots,(\gamma_{k},n_{k})}(x) \right|^{p} dx \right)^{\frac{1}{p}} \leq c_{7} \left\| \frac{\partial^{m} D\beta f}{\partial x_{n}^{m}} \right\|_{M_{p}^{\phi}(\Omega)}$$

for every Q in case 3, where c_6, c_7 depend only on n, l and M. This concludes also the proof of the case l > 0.

Theorem 6. Let $1 \leq p < \infty, n \geq 2$, ϕ a function from \mathbb{R}^+ to \mathbb{R}^+ and Ω be a special Lipschitz domain of \mathbb{R}^n with Lipschitz bound M. Moreover let S be the Stein extension operator. Then for every $f \in W^{l,p}(\Omega)$ and every $\alpha \in \mathbb{N}_0^n$ with $|\alpha| \leq l$

$$||D^{\alpha}Sf||_{M_{p}^{\phi}(\mathbb{R}^{n})} \le C_{l,n}(M) \sum_{|\beta| < |\alpha|} ||D^{\beta}f||_{M_{p}^{\phi}(\Omega)}$$
(16)

where $C_{l,n}(\Omega)$ depends only on n, l and M.

Proof. We recall definition of the operator S. Set Γ to be the cone $\Gamma = \{(\overline{x}, y) \in \mathbb{R}^n \mid M | \overline{x} | < |y|, y < 0\}$ and let $\eta \in C_c^{\infty}(\mathbb{R}^n)$ be a function with total integral 1 and which support is contained in Γ . Then, given $f \in W^{l,p}(\Omega)$, Sf is defined to be the limit in $W^{l,p}(\mathbb{R}^n)$ of Tf_{ε} as $\varepsilon \to 0$, where $f_{\varepsilon}(x) = 1/\varepsilon^n \int_{\mathbb{R}^n} f(x-y)\eta(y/\varepsilon)$ for every x in an appropriate neighborhood of $\overline{\Omega}$. We claim that for every $f \in W^{l,p}(\Omega)$ and $|\alpha| \le l$

$$||D_w^{\alpha} f_{\varepsilon}||_{M_p^{\phi}(\Omega)} \le ||D_w^{\alpha} f||_{M_p^{\phi}(\Omega)}. \tag{17}$$

To see this first we notice that $D_w^{\alpha} f_{\varepsilon}(x) = 1/\varepsilon^n \int_{\mathbb{R}^n} D_w^{\alpha} f(x-y) \eta(y/\varepsilon) dy$ for every $x \in \Omega$. Let now $B_{x_0}(r)$ a ball centered in Ω of radius r, by Minkowski's integral inequality

$$\left(\frac{1}{\phi(r)} \int_{B_{r}(x_{0})\cap\Omega} |D^{\alpha}f_{\varepsilon}(x)|^{p}\right)^{\frac{1}{p}} = \left(\frac{1}{\phi(r)} \int_{B_{r}(x_{0})\cap\Omega} \left| \frac{1}{\varepsilon^{n}} \int_{\mathbb{R}^{n}} D_{w}^{\alpha} f(x-y) \eta(\frac{y}{\varepsilon}) dy \right|^{p} dx\right)^{\frac{1}{p}} dy \\
\leq \frac{1}{\varepsilon^{n}} \int_{\mathbb{R}^{n}} \eta(\frac{y}{\varepsilon}) \left(\frac{1}{\phi(r)} \int_{B_{r}(x_{0})\cap\Omega} |D^{\alpha}f(x-y)|^{p} dx\right)^{\frac{1}{p}} dy \\
\leq \frac{1}{\varepsilon^{n}} \int_{\mathbb{R}^{n}} \eta(\frac{y}{\varepsilon}) \left(\frac{1}{\phi(r)} \int_{B_{r}(x_{0}-y)\cap\Omega} |D^{\alpha}f(x)|^{p} dx\right)^{\frac{1}{p}} dy \\
\leq \frac{1}{\varepsilon^{n}} \int_{\mathbb{R}^{n}} \eta(\frac{y}{\varepsilon}) ||D^{\alpha}f||_{M_{p}^{\phi}(\Omega)} dy = ||D^{\alpha}f||_{M_{p}^{\phi}(\Omega)}$$

because $B_r(x_0) \cap \Omega - y \subset B_r(x_0 - y) \cap \Omega$ and $x_0 - y \in \Omega$ for every $x_0 \in \Omega$ and $y \in \Gamma$. This proves (17). Now combining (17) with (12) we get

$$||D^{\alpha}Tf_{\varepsilon}||_{M_{p}^{\phi}(\mathbb{R}^{n})} \leq C_{l,n}(M) \sum_{|\beta| \leq |\alpha|} ||D^{\beta}f||_{M_{p}^{\phi}(\Omega)},$$

for every $\varepsilon > 0$ and every $|\alpha| \leq l$, with $C_{l,n}(M)$ independent of ε . In particular, for every ball B in \mathbb{R}^n of radius r > 0 we have

$$\left(\frac{1}{\phi(r)}\int_{B}|D^{\alpha}Tf_{\varepsilon}(x)|^{p}dx\right)^{\frac{1}{p}} \leq C_{l,n}(M)\sum_{|\beta|\leq |\alpha|}\|D^{\beta}f\|_{M_{p}^{\phi}(\Omega)}$$
(18)

Since Tf_{ε} converges to Sf in $W^{l,p}(\mathbb{R}^n)$, then $D^{\alpha}Tf_{\varepsilon}$ converges to $D^{\alpha}Sf$ in $L^p(\mathbb{R}^n)$ for every $|\alpha| \leq l$ and as a consequence also in $L^p(B)$ for every ball B. Hence we can pass to the limit as $\varepsilon \to 0$ in (18) and obtain

$$\left(\frac{1}{\phi(r)}\int_{B}|D^{\alpha}S(x)|^{p}dx\right)^{\frac{1}{p}} \leq C_{l,n}(M)\sum_{|\beta|\leq |\alpha|}\|D^{\beta}f\|_{M_{p}^{\phi}(\Omega)}$$

for every ball B of radius ε . This concludes the proof.

References

- [1] Haim Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, 2011.
- [2] Victor I. Burenkov. Sobolev spaces on domains. Teubner-Texte zur Mathematik. 1998.
- [3] L. E. Fraenkel. Formulae for high derivatives of composite functions. Mathematical Proceedings of the Cambridge Philosophical Society, 1978.
- [4] Elias M. Stein. Singular Integrals and Differentiability Properties of Functions. Princeton University Press, 1970.