NysADMM:faster composite convex optimization via low-rank approximation

Shipu Zhao, Zachary Frangella, Madeleine Udell

May 2, 2022

Outline

Background

NysADMM

Convergence analysis

Numerical experiments

Composite optimization

minimize
$$\ell(x) + r(x)$$

- ho $\ell: \mathbf{R}^n \to \mathbf{R}$ smooth
- $ightharpoonup r: \mathbf{R}^n \to \mathbf{R}$ proxable
 - easy (often closed form) solution to $\operatorname{prox}_r(x) = \operatorname{argmin}_y r(y) + \frac{1}{2} ||x y||^2$
 - e.g., for $r(x) = ||x||_1$, **prox**_r(x) is soft-thresholding operator

Example: Lasso

minimize
$$\frac{1}{2} ||Ax - b||_2^2 + \gamma ||x||_1$$

- $\ell(x) = \frac{1}{2} ||Ax b||_2^2$ smooth
- $ightharpoonup r(x) = \gamma ||x||_1$ proxable
- ightharpoonup parameter $\gamma>0$ controls strength of regularization

Example: ℓ_1 -regularized logistic regression

minimize
$$\ell_{\text{logistic}}(Ax, b) + \gamma ||x||_1$$

- $\ell(x) = \ell_{\text{logistic}}(Ax, b) = \sum_{i=1}^{n} \log(1 + \exp(-b_i(Ax)_i))$ smooth
- $ightharpoonup r(x) = \gamma ||x||_1$ proxable
- ightharpoonup parameter $\gamma > 0$ controls strength of regularization

Example: SVM

minimize
$$\frac{1}{2}x^T \operatorname{diag}(b)K \operatorname{diag}(b)x - \mathbf{1}^T x$$
 subject to $x^T b = 0$ $0 \le x \le C$.

- $\ell(x) = \frac{1}{2} x^T \operatorname{diag}(b) K \operatorname{diag}(b) x \mathbf{1}^T x$
- ightharpoonup r(x) is convex indicator of $\{x \mid x^T b = 0, \ 0 \le x \le C\}$

Outline

Background

NysADMM

Convergence analysis

Numerical experiments

Our approach

approximate, approximate!

Alternating Directions Method of Multipliers

Algorithm ADMM

```
Input: loss function \ell, regularization r, stepsize \rho, initial z^0, u^0 = 0

for k = 0, 1, \ldots do

x^{k+1} = \operatorname{argmin}_x \{\ell(x) + r(z) + \frac{\rho}{2} || x - z^k + u^k ||_2^2 \}
z^{k+1} = \operatorname{argmin}_z \{\ell(x) + r(z) + \frac{\rho}{2} || x^{k+1} - z + u^k ||_2^2 \}
u^{k+1} = u^k + x^{k+1} - z^{k+1}
return x_* (nearly) minimizing \ell(x) + r(x)
```

problem: x-min involves the (large) data: not easy to solve!

solution: inexact ADMM

- **solve** *x*-min approximately with error ε^k
- converges if $\sum_{k} \varepsilon^{k} < \infty$ [Eckstein and Bertsekas (1992)]

implementation: use Nyström PCG to speed up x-min

Quadratic approximation

if ℓ is twice differentiable, approximate obj near prev iterate x^k

$$\ell(x) \approx \ell(x^k) + (x - x^k)^T A^T \nabla \ell(x^k) + \frac{1}{2} (x - x^k)^T A^T H_{\ell}(x^k) A(x - x^k)$$

where H_{ℓ} is the Hessian of ℓ .

with this approximation, x-min becomes linear system: find x so

$$(A^T H_{\ell}(x^k)A + \rho I)x = r^k$$

where
$$r^k = \rho z^k - \rho u^k + A^T H_{\ell}(x^k) A x^k - A^T \nabla \ell(x^k)$$

Nyström PCG to solve ADMM subproblem

$$(A^T H_{\ell}(x^k)A + \rho I)x = r^k$$

- $ightharpoonup A^T H_{\ell}(x^k) A$ has data in it \implies fast spectral decay
- ightharpoonup stepsize ho regularizes linear system
- ▶ if ℓ is quadratic (e.g., lasso and SVM), $H_{\ell}(x^k) = H_{\ell}$ is constant, so only need to sketch $A^T H_{\ell} A$ once

in theory:

- ▶ solve to tolerance ε^k at iteration k, where $\sum_k \varepsilon^k < \infty$
- ▶ if sketch size $s \approx d_{\mathsf{eff}(\rho)}$, need $\leq O(\log(1/\varepsilon^k))$ CG steps

in practice:

- ightharpoonup set $\varepsilon^k = \text{geomean}(\text{primal resid}, \text{dual resid})$
- \triangleright set sketch size s = 50

Outline

Background

NysADMM

Convergence analysis

Numerical experiments

Question

How many approximations can we make, while ADMM still converges?

- ► linearization
- ▶ inexact subproblem solve

General inexact linearized ADMM

$$minimize_{x \in \mathbb{R}^d} \ \ell(x) + r(Mx), \tag{1}$$

Algorithm General inexact linearized ADMM

Input: loss function ℓ , regularization r, stepsize ρ , psd matrix sequence $\{H^k\}_{k=0}^{\infty}$, positive inexactness sequences $\{\varepsilon_x^k\}_{k=0}^{\infty}$ and $\{\varepsilon_z^k\}_{k=0}^{\infty}$, positive parameter η

repeat

find \tilde{x}^{k+1} that solves $\operatorname{argmin}_x\{\langle x, \nabla \ell(\tilde{x}^k) \rangle + \frac{1}{2}(x - \tilde{x}^k)^T \eta H^k(x - \tilde{x}^k) + \frac{\rho}{2} \| Mx - \tilde{z}^k + \tilde{u}^k \|_2^2 \}$ within tolerance ε_x^k find \tilde{z}^{k+1} that solves $\operatorname{argmin}_z\{r(z) + \frac{\rho}{2} \| M\tilde{x}^{k+1} - z + \tilde{u}^k \|_2^2 \}$ within tolerance ε_x^k

$$\tilde{u}^{k+1} = \tilde{u}^k + M\tilde{x}^{k+1} - \tilde{z}^{k+1}$$

until convergence

Output: solution x_{\star} of problem (1)

Quadratic loss: convergence

Theorem

Consider the problem in (1) with quadratic loss, $\eta=1$, and $\{H^k\}_{k=0}^{\infty}$ is the Hessian sequence. Define initial iterates \tilde{x}^0 , \tilde{z}^0 , and $\tilde{u}^0 \in \mathbb{R}^d$, stepsize $\rho>0$, and summable tolerance sequences $\{\varepsilon_x^k\}_{k=0}^{\infty}$, $\{\varepsilon_z^k\}_{k=0}^{\infty} \subset \mathbb{R}_+$. Assume for all $k\geq 0$, iterates \tilde{x}^{k+1} and \tilde{z}^{k+1} satisfy

$$\|\tilde{\boldsymbol{x}}^{k+1} - \boldsymbol{x}^{k+1}\|_2 \leq \varepsilon_{\boldsymbol{x}}^k \quad \text{and} \quad \|\tilde{\boldsymbol{z}}^{k+1} - \boldsymbol{z}^{k+1}\|_2 \leq \varepsilon_{\boldsymbol{z}}^k,$$

where x^{k+1} and z^{k+1} are the exact solutions of x-subproblem and z-subproblem respectively. Then as $k \to \infty$, $\{\tilde{x}^k\}_{k=0}^\infty$ converges to a solution of the primal (1) and $\{\rho \tilde{u}^k\}_{k=0}^\infty$ converges to a solution of the dual problem of (1) with rate of O(1/t) where t is the t-th iteration.

General non-quadratic loss: assumptions

▶ $\{H^k\}_{k=0}^{\infty}$ is a sequence of psd matrices that satisfies

$$(1 - \zeta^{k-1})H^{k-1} \le H^k \le (1 + \zeta^{k-1})H^{k-1}, \ \forall k \ge 1,$$

where $\{\zeta^k\}_{k=0}^{\infty}$ is a summable sequence, that is $\sum_{k=0}^{\infty} \zeta^k = A_1 < \infty$. Note this condition also implies $\prod_{k \geq 0} (1+\zeta^k) = A_2 < \infty$. Intuitively, this assumption requires H^k do not change too much between iterations.

▶ For all $k \ge 0$, iterates \tilde{x}^{k+1} and \tilde{z}^{k+1} satisfy

$$\|\tilde{\boldsymbol{x}}^{k+1} - \boldsymbol{x}^{k+1}\|_2 \leq \varepsilon_{\boldsymbol{x}}^k \quad \text{and} \quad \|\tilde{\boldsymbol{z}}^{k+1} - \boldsymbol{z}^{k+1}\|_2 \leq \varepsilon_{\boldsymbol{z}}^k,$$

where x^{k+1} and z^{k+1} are the exact solutions of x-subproblem and z-subproblem respectively. Further, the sequences $\{\varepsilon_x^k\}_{k=0}^\infty$ and $\{\varepsilon_z^k\}_{k=0}^\infty$ are summable, that is $\sum_{k=0}^\infty \varepsilon_x^k < A_3$ and $\sum_{k=0}^\infty \varepsilon_y^k < A_4$.

General non-quadratic loss: assumptions contd

▶ Functions ℓ and r are finitely valued, convex, and lower semi-continuous. In addition, ℓ satisfies the following L_{ℓ} -smoothness condition with respect to the H^k -(semi)norm locally for all k,

$$\ell(x) \leq \ell(x^k) + \langle \nabla \ell(x^k), x - x^k \rangle + \frac{L_\ell}{2} \|x - x^k\|_{H^k}^2.$$

Function r is Lipschitz-continuous with constant L_r .

► For all k, iterates $\|\tilde{x}^k\|_2$, $\|\tilde{z}^k\|_2$, $\rho\|\tilde{u}^k\|_2$, $\|x^k\|_2$, and $\|z^k\|_2$ are bounded by a constant C_1 , $\|H^k\|_2$ is bounded by constant C_2 , and $\|\nabla \ell(x^k)\|_2$ is bounded by constant C_3 .

General non-quadratic loss: convergence

Theorem

Let $\eta = L_{\ell}$, and $x^{t+1} = \frac{1}{t} \sum_{k=2}^{t+1} x^k$, where $\{x^k\}_{k \geq 1}$ are the iterates produced by the inexact linearized ADMM with forcing sequences $\{\varepsilon_x^k\}_{k=0}^{\infty}$ and $\{\varepsilon_z^k\}_{k=0}^{\infty}$. Then,

$$\begin{split} &\ell(x^{t+1}) + r(Mx^{t+1}) - f_{\star} \leq \\ &\frac{L_{\ell}}{2} \left(1 + A_{1}A_{2}\right) \left(\|H^{1}\|C_{1} + \|x_{\star}\|_{H^{1}}\right) + D_{u} + D_{z} + CA_{3} + (C_{1} + L_{r})A_{4}}{t} \end{split}$$

Consequently, after $O(\frac{1}{\epsilon})$ iterations

$$\ell(x^{t+1}) + r(Mx^{t+1}) - f_{\star} \le \epsilon.$$

Outline

Background

NysADMM

Convergence analysis

Numerical experiments

Numerical experiments: settings

- **p**ick datasets with n > 10,000 or d > 10,000 from LIBSVM, UCI, and OpenML.
- use random feature map to generate more features
- use same stopping criterion and parameter settings as the standard solver for each problem class
- ightharpoonup constant sketch size s = 50

Numerical experiments: dataset statistics

Name	instances <i>n</i>	features d	nonzero %
STL-10	13000	27648	96.3
CIFAR-10	60000	3073	99.7
CIFAR-10-rf	60000	60000	100.0
smallNorb-rf	24300	30000	100.0
E2006.train	16087	150348	8.0
sector	6412	55197	0.3
p53-rf	16592	20000	100.0
connect-4-rf	16087	30000	100.0
realsim-rf	72309	50000	100.0
rcv1-rf	20242	30000	100.0
cod-rna-rf	59535	60000	100.0

The competition

lasso:

- SSNAL, a Newton augmented Lagrangian method [Li, Sun, and Toh (2018)]
- mfIPM, a matrix-free interior point method
 [Fountoulakis, Gondzio, and Zhlobich (2014)]
- ▶ glmnet, a coordinate-descent method [Friedman, Hastie, and Tibshirani (2010)]

logistic regression:

► SAGA, a stochastic average gradient method [Defazio, Bach, and Lacoste-Julien (2014)]

SVM:

► LIBSVM, a sequential minimal optimization (pairwise coordinate descent) method [Chang and Lin (2011)]

Lasso results

stl10 dataset. stop iteration when

$$\frac{\|x - \mathsf{prox}_{\gamma\|\cdot\|_1}(x - A^{\mathcal{T}}(Ax - b))\|}{1 + \|x\| + \|Ax - b\|} \le \epsilon.$$

Lasso results

Task	Time for $\epsilon=10^{-1}$ (s)			
IdSK	NysADMM	mfIPM	SSNAL	glmnet
STL-10	165	573	467	278
CIFAR-10-rf	251	655	692	391
smallNorb-rf	219	552	515	293
E2006.train	313	875	903	554
sector	235	678	608	396
realsim-rf	193	_	765	292
rcv1-rf	226	563	595	273
cod-rna-rf	208	976	865	324

ℓ_1 -regularized logistic regression results

Table: Results for ℓ_1 -regularized logistic regression experiment.

Task	NysADMM time (s)	SAGA (sklearn) time (s)
STL-10	3012	6083
CIFAR-10-rf	7884	21256
p53-rf	528	2116
connect-4-rf	866	4781
smallnorb-rf	1808	6381
rcv1-rf	1237	3988
con-rna-rf	7528	21513

Support vector machine results

NysADMM is $\geq 5 \times$ faster, although code is pure python!

Table: Results of SVM experiment.

Task	NysADMM time (s)	LIBSVM time (s)	
STL-10	208	11573	
CIFAR-10	1636	8563	
p53-rf	291	919	
connect-4-rf	7073	42762	
realsim-rf	17045	52397	
rcv1-rf	564	32848	
cod-rna-rf	4942	36791	