

Placement Empowerment Program

Cloud Computing and DevOps Centre

Host a Static Website on a Cloud VM Install Apache on your cloud VM and host a simple HTML website.

Name:DEFIN TN Department:CSE

Introduction

A static website delivers pre-written HTML, CSS, and JavaScript files directly to users without requiring server-side processing. Hosting such websites on a cloud-based Virtual Machine (VM) is a popular choice for individuals and businesses due to its flexibility, scalability, and cost-effectiveness. Cloud-based deployment enables developers to launch websites quickly, ensuring global accessibility with minimal effort.

Overview

Hosting a static website on a cloud VM involves the following key steps:

- **1. Provisioning a Cloud VM:** Setting up a virtual machine on a cloud provider (like AWS, Azure, or GCP).
- **2. Installing a Web Server:** Configuring a web server such as Apache to serve the website's static files.
- **3.** Uploading Website Files: Placing HTML, CSS, and JavaScript files in the web server's root directory.
- **4. Configuring Network Access:** Ensuring that the web server is accessible via HTTP (port 80) from anywhere.
- **5. Testing and Launching:** Verifying the functionality of the website to make it publicly accessible

Objectives

The primary objectives of hosting a static website on a cloud VM include:

1. Learning Cloud Computing Fundamentals: Understanding how virtual machines operate in a cloud environment.

- **2. Practical Web Hosting Skills:** Gaining hands-on experience in setting up and configuring web servers like Apache or Nginx.
- **3. Website Deployment:** Successfully deploying and making a static website live on the internet.
- **4. Understanding Networking Basics:** Learning about firewall rules, security groups, and HTTP protocol configurations.
- **5. Cost-Effective Hosting:** Exploring affordable methods to host lightweight websites without needing managed services.

Importance

- **1. Hands-On Cloud Experience:** Hosting a static website on a cloud VM is an excellent starting point for understanding the capabilities of cloud platforms and virtual machine operations.
- **2. Scalability:** Cloud-based hosting provides flexibility to scale resources up or down as the traffic to the website grows.
- **3. Global Accessibility:** By deploying on the cloud, the website becomes accessible from any part of the world with minimal latency.
- **4. Customization and Control:** Cloud VMs allow complete control over the hosting environment, enabling advanced configurations and optimizations.
- **5. Foundation for Advanced Hosting:** It lays the groundwork for more advanced projects, such as hosting dynamic websites, APIs, or using load balancers.
- **6. Professional Development:** Learning to host websites on the cloud adds significant value to your skill set, making you proficient in real-world deployment scenarios.

Step-by-Step Overview

Step 1:

Have an HTML file (with any related assets like CSS/JavaScript) that you want to host in your GitHub repository

Step 2:

Launch an EC2 instance, select Ubuntu as the OS, configure security groups to allow all network traffic, create a key pair (e.g., new.pem), and download it for SSH access

Step 3:

Click the 'Connect' option on your launched instance, go to the SSH client section, and copy the command provided under the 'Example' section.

Step 4:

Open PowerShell, navigate to the 'Downloads' directory where the downloaded key pair is located using the **cd Downloads** command

```
Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

PS C:\Users\admin>
PS C:\Users\admin\Downloads
PS C:\Users\admin\Downloads> __
```

Step 5:

Paste the command copied from the EC2 Connect's SSH client section, replace the key pair name with your downloaded key (e.g., new.pem), press Enter, and type 'yes' when prompted.

```
Windows PowerShell

Copyright (C) Microsoft Corporation. All rights reserved.

PS C:\Users\admin>
PS C:\Users\admin> cd Downloads
PS C:\Users\admin\Downloads> ssh -i "new.pem" ubuntu@ec2-44-246-26-137.us-west-2.compute.amazonaws.com
The authenticity of host 'ec2-44-246-26-137.us-west-2.compute.amazonaws.com (44.246.26.137)' can't be established.

ECDSA key fingerprint is SHA256:bToH04+3QbNHYkcvdGBgk4idL2kuIv1UNvm6uoZ/Mq0.

Are you sure you want to continue connecting (yes/no)? ____
```

Step 6:

Run the command **sudo apt update** to update the package list.

```
Copyright (C) Microsoft Corporation. All rights reserved.
PS C:\Users\admin>
PS C:\Users\admin> cd Downloads
F3 C:\Users\admin>Co Downloads
PS C:\Users\admin\Downloads> <mark>ssh -i "new.pem" ubuntu@ec2-44-246-26-137.us-west-2.compute.amazonaws.com</mark>
The authenticity of host 'ec2-44-246-26-137.us-west-2.compute.amazonaws.com (44.246.26.137)' can't be established.
ECDSA key fingerprint is SHA256:bToH04+3QbNHYkcvdGBgk4idL2kuIv1UNvm6uoZ/Mq0.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'ec2-44-246-26-137.us-west-2.compute.amazonaws.com,44.246.26.137' (ECDSA) to the list of
Welcome to Ubuntu 24.04.1 LTS (GNU/Linux 6.8.0-1021-aws x86_64)
 * Documentation: https://help.ubuntu.com

* Management: https://landscape.canonical.com

* Support: https://ubuntu.com/pro
 System information as of Sat Feb 1 06:40:18 UTC 2025
  System load: 0.0 Processes:
Usage of /: 24.9% of 6.71GB Users logged in: 0
IPv4 address for enX0: 172.31.27.51
Expanded Security Maintenance for Applications is not enabled.
0 updates can be applied immediately.
Enable ESM Apps to receive additional future security updates.
See https://ubuntu.com/esm or run: sudo pro status
The list of available updates is more than a week old.
To check for new updates run: sudo apt update
The programs included with the Ubuntu system are free software;
 the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.
Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.
To run a command as administrator (user "root"), use "sudo <command>".
See "man sudo_root" for details.
 ubuntu@ip-172-31-27-51:~$ sudo apt update_
```

Step 7:

Run the command **sudo apt upgrade**, and press 'Y' to confirm and continue the upgrade process.

```
untu@ip-172-31-27-51: $ sudo apt upgrade
ading package lists... Done
ilding dependency tree... Done
ading state information... Done
lculating upgrade... Done
culating upgrade... Done
e following packages will be upgraded:
bind9-dnsutils bind9-host bind9-libs bpftrace bsdextrautils bsdutils eject fdisk kmod libaio1t64 libattr1 li
libfdisk1 libgmp10 libgpg-error-l10n libgpg-error0 libidn2-0 libkmod2 libmd0 libmount1 libmpfr6 libnghttp2-1
libpam-systemd libpcre2-8-0 libper15.38t64 libpolkit-agent-1-0 libpolkit-gobject-1-0 libpython3.12-minimal l
libsystemd-shared libsystemd0 libudev1 libunistring5 libuuid1 libxm12 linux-tools-common mount perl perl-bas
systemd systemd-dev systemd-resolved systemd-sysv tzdata tzdata-legacy udev util-linux uuid-runtime vim vim-
upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
standard LTS security updates
ed to get 60.0 MB of archives.
ter this operation, 37.7 MB of additional disk space will be used.
you want to continue? [Y/n] yy^H^H^[[Djj]^H^H^H^H[3~^[[3~^[[C^H^H^H^H^H^H^H^H^H]]])
```

Step 8:

Install the Apache server by running the command **sudo apt install apache2**, and press 'Y' to confirm the installation

```
systemeth restart serial-getty@tty50.service
systemeth restart systemd-logind.service
systemeth restart systemd-logind.service
systemeth restart unattended-upgrades.service

No containers need to be restarted.

User sessions running outdated binaries:
ubuntu @ session #2: apt[1536], sshd[1042]
ubuntu @ user manager service: systemd[1049]

No VM guests are running outdated hypervisor (qemu) binaries on this host.
ubuntu@ip-172-31-27-51:~$ sudo apt install apache2_
```

Step 9:

Insert your files by running the command **git clone** <**repository_link>** to clone your repository containing the website files

Step 10:

Run the command **cd /var/www/html** to navigate to the web server's root directory, then type ls to verify that your HTML files from the GitHub repository are present.

```
Receiving objects: 100% (3/3), done.

ubuntu@ip-172-31-27-51:~$ ccd /var/www/html

ubuntu@ip-172-31-27-51:/var/www/html$ lls

index.html

ubuntu@ip-172-31-27-51:/var/www/html$ _
```

Step 11:

Copy the Public IPv4 DNS from the instance details page in the EC2 console, as shown in the image below.

Step 12:

Open Chrome and paste the copied Public IPv4 DNS in the address bar to view the content of your index.html file.

My Static Website

Successful!...

Outcome

By completing this PoC of deploying a static website using an EC2 instance, you will:

- 1. Launch and configure an EC2 instance with Ubuntu as the OS.
- 2. Install and configure Apache web server to serve your static website.
- 3. Clone your GitHub repository containing your static website files (HTML, CSS, JavaScript) onto your EC2 instance.
- 4. Upload and place the website files in the Apache root directory (/var/www/html).
- 5. Access your static website live on the web using the EC2 instance's Public IPv4 DNS.