

# OB-OB DE DOBENINU AIGHTESTORIA AND BELEGION DE DOGENSIA AIGHTESTORIA MAIGHTESTRE DI AIGHTESTRE DI AI

ASIGNATURA : CÁLCULO II CÓDIGO : 240035

## I. IDENTIFICACIÓN

1.1 CAMPUS : CHILLÁN

1.2 FACULTAD : CIENCIAS

1.3 UNIDAD : CIENCIAS BÁSICAS

1.4 CARRERA : INGENIERÍA CIVIL EN INFORMÁTICA

1.5 N° CRÉDITOS : 5

1.6 TOTAL DE HORAS: 06 HT: 04 HP: 02 HL:

1.7 PRERREQUISITOS DE LA ASIGNATURA: Sin prerrequisitos

1.7.1 CÁLCULO I, 240012

#### II. DESCRIPCIÓN

En este curso se estudia la Integral Definida y sus aplicaciones, continua con el importante concepto de sucesión, serie y el de convergencia. Finalmente se dan los elementos básicos del Cálculo Diferencial e Integral en varias variables y una introducción a las ecuaciones diferenciales ordinarias.

#### III. OBJETIVOS

#### a) Generales:

Conocer y comprender el concepto de la Integral Definida y sus aplicaciones.

### b) Específicos

- Conocer y comprender los conceptos de sucesiones y series como asimismo que adquiera un dominio de los criterios de convergencia.
- Aplicar el Cálculo Integral a problemas de economía y negocios.
- Conocimiento del Cálculo Diferencial en varias variables.
- Destreza en el uso de Software pertinente.

### IV. UNIDADES PROGRAMÁTICAS

| UNIDADES                                                                 | HORAS |
|--------------------------------------------------------------------------|-------|
| Unidad 1: La Integral Indefinida.                                        | 30    |
| Unidad 2: La Integral Definida y sus Aplicaciones. Integrales Impropias. | 30    |
| Unidad 3: Sucesiones y Series.                                           | 36    |
| TOTAL:                                                                   | 96    |

# V. CONTENIDO UNIDADES PROGRAMÁTICAS

| UNIDADES                          | CONTENIDO                                                     |  |
|-----------------------------------|---------------------------------------------------------------|--|
| Unidad 1: La Integral Indefinida. | Antiderivada. Aplicación: PVI.                                |  |
|                                   | 2. Integrales indefinidas y reglas de integración.            |  |
|                                   | 3. Integración por sustitución.                               |  |
|                                   | 4. Integración por partes.                                    |  |
|                                   | 5. Integrales trigonométricas y sstituciones trigonometricas. |  |
|                                   | 6. Integración por fracciones parciales.                      |  |

| Unidad 2: La Integral Definida y sus | 7. Sumas de Riemann.                    |
|--------------------------------------|-----------------------------------------|
| Aplicaciones. Integrales impropias.  | 8. La Integral Definida (Como Area bajo |
| P   11   11   11   11   11   11   11 | una curva.).                            |
|                                      | 9. Propiedades.                         |
|                                      | 10. Teorema fundamental del Cálculo.    |
|                                      | 11. Aplicaciones.                       |
|                                      | 12. Áreas y valor promedio.             |
|                                      | 13. Cálculo de volúmenes.               |
|                                      | 14. Longitud de arco.                   |
|                                      | 15. Aplicaciones a la economía y los    |
|                                      | negocios.                               |
|                                      | 16. Integrales Impropias.               |
| Unidad 3: Sucesiones y Series.       | Definición de sucesión.                 |
|                                      | 2. Sucesión convergente.                |
|                                      | 3. Sucesiones monótonas y acotadas.     |
|                                      | 4. Criterios de convergencia: raíz y de |
|                                      | la razón.                               |
|                                      | 5. Definición de serie y serie          |
|                                      | convergente.                            |
|                                      | 6. Series de términos no negativos:     |
|                                      | criterios de convergencia.              |
|                                      | 7. Series alternadas. Convergencia      |
|                                      | condicional y absoluta.                 |
|                                      | 8. Presentación del problema y sus      |
|                                      | diferentes formas.                      |
|                                      | 9. Criterios de convergencia.           |
|                                      | 10. Series de potencias.                |
|                                      | 11. Serie de Taylor.                    |

# VI. METODOLOGÍA

- Clases teóricas expositivas. Utilización de TIC.
- Clases prácticas orientadas por el profesor.
- Talleres.

# VII. TIPOS DE EVALUACIÓN (PROCESO Y PRODUCTO)

- Certámenes.
- Test o Pruebas.

#### VIII. BIBLIOGRAFÍA:

# a) Básica

- LARSON, R. ET AL. Cálculo y Geometría Analítica. México. 2006. Mc Graw-Hill. Tomo I y II.
- FRALEIGH, J. Cálculo con Geometría Analítica. Fondo Educativo Interamericano. 1984.
- THOMAS y FINNEY. Cálculo y Geometría Analítica. Addison Wesley. 1987.

# b) Complementaria

- KOLMAN, B. Calculus for the Management, Life and Social. 1981. Academic Press.
- TAYLOR y WADE. Cálculo Diferencial e Integral. 1980. Limusa.
- BAUMOL, W. Teoría Económica y Análisis de Operaciones. 1980. Prentice Hall International.