Diagramas de Decisão Binária (BDDs)

Luiz Carlos Vieira

1 de Outubro de 2015

Instituto de Matemática e Estatística da Universidade de São Paulo

conteúdo

- Representação de Funções Booleanas
 - fórmulas proposicionais e tabelas-verdade
 - diagramas de decisão binária (BDDs)
 - diagramas de decisão binária ordenados (OBDDs)
- Algoritmos para OBDDs Reduzidos
 - algoritmo reduzir
 - algoritmo aplicar
 - algoritmo restringir
 - algoritmo existe

funções booleanas

- Parte fundamental do formalismo descritivo de sistemas de hardware e software
- Que precisa ser computacionalmente representado de forma eficiente

definição: variáveis booleanas

Definição 6.1(a)

Uma variável booleana x é uma variável que só pode assumir os valores 0 e 1. Denotamos variáveis booleanas por $x_1, x_2, ...,$ e x, y e z,

definição: funções booleanas

Definição 6.1(b)

As seguintes funções são definidas no conjunto $\{0,1\}$:

- $\overline{0}\stackrel{\text{\tiny def}}{=} 1$ e $\overline{1}\stackrel{\text{\tiny def}}{=} 0$;
- $ullet x \cdot y \stackrel{ ext{\tiny def}}{=} 1$ se x e y têm valor 1; caso contrário, $x \cdot y \stackrel{ ext{\tiny def}}{=} 0$;
- $ullet x+y\stackrel{ ext{ iny def}}{=} 0$ se x e y têm valor 0; caso contrário, $x+y\stackrel{ ext{ iny def}}{=} 1$;
- $x \oplus y \stackrel{\scriptscriptstyle ext{def}}{=} 1$ se exatamente um entre x e y é igual a 1; caso contrário, $x \oplus y \stackrel{\scriptscriptstyle ext{def}}{=} 0$.

funções e variáveis booleanas

- Uma função booleana f com n variáveis é uma função de $\{0,1\}^n$ para $\{0,1\}$.
- Escreve-se $f(x_1, x_2, \ldots, x_n)$ ou $f(\mathcal{V})$ para indicar que uma representação sintática de f só depende das variáveis booleanas em \mathcal{V} .

alguns exemplos de funções booleanas

1.
$$f(x,y) \stackrel{\text{\tiny def}}{=} x \cdot (y + \overline{x})$$

2.
$$g(x,y) \stackrel{\text{\tiny def}}{=} x \cdot y + (1 \oplus \overline{x})$$

3.
$$h(x,y,z) \stackrel{\text{\tiny def}}{=} x + y \cdot (x \oplus \overline{y})$$

4.
$$k() \stackrel{\text{\tiny def}}{=} 1 \oplus (0 \cdot \overline{1})$$

wffs e tabelas-verdade

As fórmulas proposicionais bem-formadas (wffs) e as tabelas-verdade são duas representações de funções booleanas

- fórmulas proposicionais:
 - $p \wedge q$ denota $p \cdot q$
 - $p \lor q$ denota p+q
 - $\neg p$ denota \overline{p}
 - e \top e \bot denotam, respectivamente, 1 e 0
- tabelas-verdade: representam funções booleanas de maneira óbvia

tabelas-verdade de funções booleanas

Tabela-verdade da função booleana $f(x,y) \stackrel{ ext{def}}{=} \overline{x+y}$

Tabela-verdade da fórmula	
proposicional $\phi \equiv \neg (p \lor q)$)

\boldsymbol{x}	\boldsymbol{y}	f(x,y)
0	0	1
0	1	0
1	0	0
1	1	0

$$egin{array}{c|ccc} p & q & \phi \ \hline F & F & V \ F & V & F \ V & F & F \ V & V & F \ \end{array}$$

sobre o sistema utilizado...

- No contexto desta aula, tabelas-verdade, fórmulas proposicionais e BDDs (em estudo) são diferentes formas de representação computacional de funções booleanas
- Uma vez que tais representações são facilmente traduzíveis entre si, os símbolos da lógica proposicional serão utilizados com o objetivo de facilitar o entendimento
 - a única distinção será a utilização de 0 e 1 no lugar de F e V nas representações de tabelas-verdade e diagramas

vantagens e desvantagens

Há vantagens e desvantagens no uso de tabelas-verdade e fórmulas proposicionais para representar funções booleanas

	Tabelas-Verdade	Fórmulas Proposicionais
Vantagens	verificações ¹ simples	representação compacta
Desvantagens	ineficientes em espaço	verificações ¹ não tão simples

Ambas são computacionalmente caras para muitas variáveis

¹satisfação, validade e equivalência

também nas operações booleanas

As operações booleanas (\land , \lor e \neg) entre duas funções ϕ e ψ também são simples:

- Com tabelas-verdade
 - operação diretamente aplicada a cada linha
 - acrescentando variáveis inexistentes, se necessário
 - mas computacionamente caro $(2^n linhas)$
- Com fórmulas proposicionais
 - manipulação sintática da Lógica Proposicional
 - de realização imediata

$$\phi \equiv \neg p \wedge q$$

$$\psi \equiv r$$

$oldsymbol{p}$	$oldsymbol{q}$	ϕ
0	0	0
0	1	1
1	0	0
1	1	0

$$egin{array}{c|c} r & \psi \ \hline 0 & 0 \ 1 & 1 \ \hline \end{array}$$

$$\phi \equiv \neg p \wedge q$$

$$\psi \equiv r$$

$$\omega \equiv \phi \lor \psi$$

\boldsymbol{p}	\boldsymbol{q}	ϕ
0	0	0
0	1	1
1	0	0
1	1	0

$$egin{array}{c|c} r & \psi \ \hline 0 & 0 \ 1 & 1 \ \end{array}$$

$$\phi \equiv \neg p \wedge q$$

$$\psi \equiv r$$

$$\omega \equiv \phi \lor \psi$$

$oldsymbol{p}$	$oldsymbol{q}$	\boldsymbol{r}	ϕ
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

\boldsymbol{p}	$oldsymbol{q}$	r	$ \psi \>$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

$$\phi \equiv \neg p \wedge q$$

$$\psi \equiv r$$

$$\omega \equiv \phi \lor \psi$$

\boldsymbol{p}	\boldsymbol{q}	r	ϕ
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

\boldsymbol{p}	$oldsymbol{q}$	r	$oldsymbol{\psi}$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

			ı
$oldsymbol{p}$	$oldsymbol{q}$	r	ω
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

utilizando formas normais

- A representação de fórmulas proposicionais em formas normais é facilitada em alguns aspectos
 - mas é dificultada em outros
- De forma geral, elas podem ser muito longas no pior caso

forma normal conjuntiva (CNF)

- Facilità o teste de validade
 - cláusula disjuntiva sem preposições complementares
 - teste de satisfação não é igualmente fácil
- Facilita a operação de conjunção (∧)
 - se ϕ e ψ são CNFs, o resultado de $\phi \wedge \psi$ é CNF
- Dificulta as demais operações (∨ e ¬)
 - aplicação de distributividade para manter CNF

A forma normal disjuntiva (DNF) – disjunção de conjunções – é dual com a CNF em relação a essas propriedades

resumo da eficiência das representações

		teste de		opera	ações boole	eanas
Representação de funções booleanas	compacta?	satisfação	validade	•	+	-
fórmulas proposicionais	muitas vezes	difícil	difícil	fácil	fácil	fácil
fórmulas CNF	algumas vezes	difícil	fácil	fácil	difícil	difícil
fórmulas NDF	algumas vezes	fácil	difícil	difícil	fácil	difícil
tabelas-verdade ordenadas	nunca	difícil	difícil	difícil	difícil	difícil

resumo da eficiência das representações

Representação de funções booleanas	compacta?	teste satisfação		opera	ações boole +	anas –
fórmulas proposicionais	muitas vezes	difícil	difícil	fácil	fácil	fácil
fórmulas CNF	algumas vezes	difícil	fácil	fácil	difícil	difícil
fórmulas NDF	algumas vezes	fácil	difícil	difícil	fácil	difícil
tabelas-verdade ordenadas	nunca	difícil	difícil	difícil	difícil	difícil
OBDDs ² reduzidos	muitas vezes	fácil	fácil	mais ou menos	mais ou menos	fácil

²Diagramas de Decisão Binária Ordenados – que serão explorados a seguir

definição: árvore de decisão binária finita

Definição 6.3

Seja T uma árvore binária cujos nós não-terminais (nós de teste) contêm variáveis booleanas e cujos nós terminais contêm os valores 0 ou 1. Então T é uma árvore de decisão binária finita e determina uma única função booleana f da seguinte forma:

Dada uma atribuição de 0's e 1's às variáveis booleanas que ocorrem em f, começamos pela raiz de T e pegamos a linha tracejada sempre que o valor da variável no nó atual é 0; caso contrário, percorremos a linha sólida. O valor da função é o valor do nó terminal atingido.

• Árvore da função: $\phi \equiv \neg (p \lor q)$

• Árvore da função: $\phi \equiv \neg (p \lor q)$

ullet Para encontrar $[\![\phi]\!]_{v_{(0,1)}}$:

- Árvore da função: $\phi \equiv \neg (p \lor q)$
- ullet Para encontrar $[\![\phi]\!]_{v_{(0,1)}}$:
 - 1. inicia-se pela raiz

- Árvore da função: $\phi \equiv \neg (p \lor q)$
- Para encontrar $\llbracket \phi \rrbracket_{v_{(0,1)}}$:
 - 1. inicia-se pela raiz
 - 2. como p é 0, segue-se pela linha pontilhada

• Árvore da função: $\phi \equiv \neg (p \lor q)$

- Para encontrar $\llbracket \phi \rrbracket_{v_{(0,1)}}$:
 - 1. inicia-se pela raiz
 - 2. como p é 0, segue-se pela linha pontilhada
 - 3. como q é 1, segue-se pela linha sólida

• Árvore da função: $\phi \equiv \neg (p \lor q)$

- Para encontrar $\llbracket \phi \rrbracket_{v_{(0,1)}}$:
 - 1. inicia-se pela raiz
 - 2. como p é 0, segue-se pela linha pontilhada
 - 3. como q é 1, segue-se pela linha sólida
 - 4. chega-se à folha 0; logo $\llbracket \phi \rrbracket_{v_{(0,1)}} = 0$

comparando com a tabela-verdade

Função booleana: $\phi \equiv \neg (p \lor q)$:

\boldsymbol{p}	\boldsymbol{q}	ϕ
0	0	1
0	1	0
1	0	0
1	1	0

outro exemplo comparativo

Função booleana: $\psi \equiv p \rightarrow (q \land r)$:

\boldsymbol{p}	$oldsymbol{q}$	r	ψ
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

semelhanças com tabelas-verdade

- Árvores de Decisão Binárias são semelhantes às tabelas-verdade em relação ao tamanho
 - se f depender de n variáveis booleanas, a árvore correspondente terá pelo menos $2^{n+1}-1$ nós (contra as 2^n linhas da tabela verdade)
- Mas muitas vezes elas contêm redundâncias que podem ser exploradas

primeira simplificação

C1. Remoção de terminais duplicados

Se há mais de um nó terminal $\mathbf{0}$, todas as arestas que apontam para tais nós são redirecionadas para apenas um deles. O processo é então repetido para os nós terminais $\mathbf{1}$

primeira simplificação

C1. Remoção de terminais duplicados

Se há mais de um nó terminal $\mathbf{0}$, todas as arestas que apontam para tais nós são redirecionadas para apenas um deles. O processo é então repetido para os nós terminais $\mathbf{1}$

primeira simplificação

C1. Remoção de terminais duplicados

Se há mais de um nó terminal $\mathbf{0}$, todas as arestas que apontam para tais nós são redirecionadas para apenas um deles. O processo é então repetido para os nós terminais $\mathbf{1}$

segunda simplificação

C2. Remoção de testes redundantes

Se ambas as arestas de um nó n apontam para o mesmo nó m, o nó n é eliminado e todas as arestas que nele chegavam são redirecionadas diretamente para o nó m.

segunda simplificação

C2. Remoção de testes redundantes

Se ambas as arestas de um nó n apontam para o mesmo nó m, o nó n é eliminado e todas as arestas que nele chegavam são redirecionadas diretamente para o nó m.

segunda simplificação

C2. Remoção de testes redundantes

Se ambas as arestas de um nó n apontam para o mesmo nó m, o nó n é eliminado e todas as arestas que nele chegavam são redirecionadas diretamente para o nó m.

terceira simplificação

C3. Remoção de nós não-terminais duplicados

Se dois nós distintos n e m são raízes de subárvores idênticas, um dos nós é eliminado e todas as arestas que nele chegavam são redirecionadas para o outro

terceira simplificação

C3. Remoção de nós não-terminais duplicados

Se dois nós distintos n e m são raízes de subárvores idênticas, um dos nós é eliminado e todas as arestas que nele chegavam são redirecionadas para o outro

terceira simplificação

C3. Remoção de nós não-terminais duplicados

Se dois nós distintos n e m são raízes de subárvores idênticas, um dos nós é eliminado e todas as arestas que nele chegavam são redirecionadas para o outro

exercício 1

Reduza a árvore de decisão binária da função

$$\psi \equiv p
ightarrow (q \wedge r)$$
 apresentada anteriormente:

Resumo das simplificações:

- C1. Remoção de nós terminais duplicados
- C2. Remoção de testes redundantes
- C3. Remoção de nós não-terminais duplicados

solução – 1º passo

solução – 2º passo

solução – 3º passo

comparando com a tabela-verdade

Função booleana: $\psi \equiv p \rightarrow (q \land r)$:

$oldsymbol{p}$	\boldsymbol{q}	r	ψ
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

comparando com a tabela-verdade

Função booleana: $\psi \equiv p
ightarrow (q \wedge r)$:

$rac{oldsymbol{\psi}}{oldsymbol{1}}$
1
1
1
0
0
0
1

comparando com a tabela-verdade

Função booleana: $\psi \equiv p \rightarrow (q \land r)$:

			,
p	$oldsymbol{q}$	r	ψ
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

BDDs

A redução faz com que as árvores se tornem grafos. Por isso, passam a ser chamados de Diagramas de Decisão Binária (BDDs).

definição: DAG

Definição 6.4

Um grafo direcionado é um conjunto G e uma relação binária \rightarrow em $G: \rightarrow \subseteq G \times G$. Um ciclo em um grafo direcionado é um caminho finito no grafo que começa e termina no mesmo nó, isto é, um caminho da forma $v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_n \rightarrow v_1$. Um grafo direcionado acíclico (DAG) é um grafo direcionado que não contém nenhum ciclo. Um nó em um DAG é dito inicial se não há arestas apontando para ele. Um nó é dito terminal se não há arestas saindo dele.

definição: BDDs

Definição 6.5

Um diagrama de decisão binário (BDD) é um DAG finito com um único nó inicial, onde todos os nós terminais são marcados com 0 ou 1 e todos os nós não-terminais são marcados com uma variável booleana. Cada nó não-terminal tem exatamente duas arestas saindo dele, uma marcada com 0 e outra com 1 (representadas como uma linha pontilhada e uma linha sólida, respectivamente).

BDD como DAG

- Por convenção, as linhas sólidas ou pontilhadas de um BDD são sempre consideradas como indo para baixo
 - por isso eles são grafos direcionados
- Os BDDs são acíclicos (DAG) e têm um único nó inicial
- As simplificações C1–C3 preservam essas propriedades
 - BDDs totalmente reduzidos têm 1 ou 2 nós terminais

BDDs elementares

- ullet O BDD B_0 representa a função booleana constante 0
- ullet O BDD B_1 representa a função booleana constante 1
- ullet O BDD B_p representa a variável booleana p

verificações sobre BDDs

- Satisfação. Um BDD representa uma função que pode ser satisfeita se um nó terminal 1 pode ser acessado da raiz por meio de um caminho consistente
- Validade. Um BDD representa uma função válida se nenhum ponto terminal 0 é acessível por um caminho consistente

Um caminho consistente é aquele que, iniciado no nó raiz, segue apenas por uma valoração possível para cada variável booleana e atinge um único nóterminal com valor $\bf 0$ ou $\bf 1$

exemplos óbvios

comparação das representações

Considere a função de paridade par $f_{par}(p_1, p_2, ..., p_n)$ que é definida como 1 se existe um número par de variáveis p_i com valor 1, e como 0 caso contrário.

Bit de paridade (par ou ímpar) é uma das formas mais simples de detecção de erros na comunicação de dados

- Ela tem representação exponencial em outros sistemas (wffs ou tabelas-verdade, por exemplo)
- ullet Enquanto que um BDD precisa de apenas 2n+1 nós para representá-la

ilustração da tabela-verdade para n=4

p_1	p_2	p_3	p_4	ϕ
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Total de linhas:

$$2^n = 2^4 = 16$$

ilustração da wff para n=4

$$\phi \equiv \neg(((p_1 \oplus p_2) \oplus p_3) \oplus p_4)$$

- Lembrando do ou-exclusivo:
 - $(p \oplus q) \equiv ((p \lor q) \land \neg (p \land q))$
- Número de símbolos: 14(n-1)+1=43

ilustração do OBDD para n=4

• Total de nós: 2n + 1 = 9

operações sobre BDDs

- Operação de negação (\neg). Obtem-se um BDD que representa $\neg \phi$ substituindo todos os terminais 0 em B_{ϕ} por terminais 1 e vice-versa
- Operação de conjunção (\land). Obtem-se um BDD que representa $\phi \land \psi$ substituindo todos os nós terminais 1 em B_{ϕ} diretamente por B_{ψ}
- Operação de disjunção (\vee). Obtem-se um BDD que representa $\phi \vee \psi$ substituindo todos os nós terminais 0 em B_{ϕ} diretamente por B_{ψ}

exemplo da negação

exemplo da conjunção

exemplo da disjunção

$$\phi \equiv p \land q$$

$$p$$

$$\psi \equiv \neg p \lor q$$

$$\phi \vee \psi \equiv (p \wedge q) \vee (\neg p \vee q)$$

forma "inocente" de construir BDDs

- 1. Para cada variável booleana em uma função, um BDD de variável (B_{p_i}) é criado
- 2. Tais BDDs são então unidos conforme as operações booleanas na função
- 3. Por fim, o BDD resultante é reduzido com as simplificações C1-C3

exemplo: $(p \land \neg q) \lor (\neg p \land \overline{q})$

Passo 1: criação de $oldsymbol{B}_{p_i}$

exemplo: $(p \land \neg q) \lor (\neg p \land q)$

Passo 2a: união dos BDDs conforme as operações

exemplo: $(p \land \neg q) \lor (\neg p \land q)$

Passo 2b: união dos BDDs conforme as operações

exemplo: $(p \land \neg q) \lor (\neg p \land q)$

Passo 3a: redução do BDD gerado

exemplo: $(p \land \neg q) \lor \overline{(\neg p \land q)}$

Passo 3b: redução do BDD gerado

exemplo: $(p \wedge \neg q) \vee (\neg \overline{p \wedge q})$

Passo 3c: redução do BDD gerado

comparação com a tabela-verdade

$$\phi \equiv (p \land \neg q) \lor (\neg p \land q)$$

$oldsymbol{p}$	\boldsymbol{q}	$\boldsymbol{\phi}$
0	0	0
0	1	1
1	0	1
1	1	0

múltiplas ocorrências de mesma variável

- A definição não impede uma variável de ocorrer mais de uma vez em um caminho
- Mas tal representação pode incorrer em desperdícios
 - linha sólida do $m{p}$ à esquerda (colorida) jamais será percorrida

Esse é um resultado comum após as operações discutidas anteriormente – algoritmos melhores serão apresentados posteriormente

comparação de BDDs

Além de tornar um BDD menos eficiente, ocorrências múltiplas de uma variável também dificultam a comparação de BDDs

Exercício: Os BDDs abaixo são equivalentes?

ordenação de BDDs

- Se a ordem das variáveis de teste nos caminhos que levam da raiz até as folhas fosse a mesma, a comparação seria trivial
 - bastaria verificar se os BDDs têm a mesma estrutura
- Quando a ordem das variáveis de teste é sempre a mesma, o BDD é dito ordenado
 - e passa a ser chamado Diagrama de Busca Binária Ordenado (OBDD)

definição: OBDDs

Definição 6.6

Seja $[p_1, p_2, ..., p_n]$ uma lista ordenada de variáveis sem duplicação e seja B um BDD tal que todas as suas variáveis aparecem em algum lugar da lista. Dizemos que B tem a ordem $[p_1, p_2, ..., p_n]$ se todos os nós de variáveis de B ocorrem na lista, e, para toda ocorrência de p_i seguido de p_j ao longo de qualquer caminho em B temos i < j.

exemplo de BDD ordenado

Ordem: [p,q,r]

outro exemplo de BDD ordenado

Ordem: [p,q,r]

exemplo de BDD não ordenado

Sem ordem definida ([p,q,r] à esquerda e [p,r,q] à direita)

vantagens da ordenação de BDDs

- A comparação de dois BDDs de ordens compatíveis é imediata
- Aplicações das reduções C1-C3 em um OBDD garantidamente mantêm sua ordem original
- Esse compromisso com a ordem produz uma representação única de funções booleanas com OBDDs reduzidos
 - chamada de forma canônica

teorema: OBDDs reduzidos são únicos

Teorema 6.7

A representação em OBDD reduzido de uma função dada ϕ é unica. Isto é, sejam B e B' dois OBDDs reduzidos com ordens compatíveis. Se B e B' representam a mesma função booleana, então eles têm estruturas idênticas.

características de OBDDs

- As simplificações C1-C3 em um OBDD produzem sempre o mesmo OBDD reduzido
 - chamado então de forma canônica
- ODDBs permitem representações compactas de certas classes de funções booleanas
 - que seriam exponenciais em outros formatos/representações
- Por outro lado, as operações ∧ e ∨ apresentadas anteriormente não funcionam
 - pois podem introduzir ocorrências múltiplas de uma mesma variável

impacto da escolha da ordenação

importância da representação canônica

- Ausência de variáveis redundantes. Se o valor de uma função booleana não depende de uma variável, então nenhum OBDD reduzido que a represente contém tal variável:
- Teste de equivalência semântica. Se duas funções são representadas por OBDD com ordem compatível, é possível decidir eficientemente se são equivalentes reduzindo seus OBDD e comparando sua estrutura;
- Teste de validade. Se uma função booleana é válida, seu OBDD reduzido é igual a B₁;
- Teste de implicação. Pode-se testar se uma função ϕ implica em outra ψ calculando o OBDD para $\phi \wedge \psi$ e verificando que ele é igual a B_0 ;
- Teste de satisfação. Se uma função booleana é satisfeita, então seu OBDD reduzido não é igual a ${m B}_0$.