Assumptions:

- Random sample
- Linearity
- Correlation depends on range of values
- Homoscedastic variances
- Bivariate Normal Distribution
 - X is normally distributed
 - Y is normally distributed
 - X and Y have linear relationship

Non-linearity:

Heteroscedasticity:

Outliers:

This is what **bivariate** looks like:

If data are not bivariate or are not linearly related try **transformation** of data.

If data are heteroscedastic or have outliers... try a **non-parametric method**.....

 Remember: non-parametric methods are more conservative (they have less power) than parametric

Spearman's rank

assumes:

- * random sample
- * linear relationship

Spearman's rank correlation:

 Measures strength and direction of linear association between the **ranks** of two variables

Two variables are ranked separately

Parameter: ρ_s; sample estimate: r_s

Spearman's rank correlation:

Test for correlation in the normal way....

Step 1: declare null and alternate

 H_0 : Zero correlation (ρ_s =0)

 H_A : Some correlation ($\rho_s \neq 0$)

Step 2: test statistic

$$r_{s} = \frac{\sum (R - \overline{R})(S - \overline{S})}{\sqrt{\sum (R - \overline{R})^{2}} \sqrt{\sum (S - \overline{S})^{2}}}$$

Step 3:State α/P-value/Critical value

Table G

Step 4: State conclusion

If n > 100:

$$t = r_s - \rho_s$$

$$SE_{r(s)}$$

where:

$$SE_{r_s} = \sqrt{\frac{1 - r_s^2}{n - 2}}$$

- t is ~t-distributed with n 2 degrees of freedom
- Tricky part: reject null hypothesis if

 - $t \ge t_{0.05(2),n-2}$ $t \le -t_{0.05(2),n-2}$

Attentuation

- measurement error weakens correlation

Publication Bias

Papers that:

- Reject null
- Have large effect

tend to be published

http://www.badscience.net/about-dr-ben-goldacre/