Huygen's Wave Theory/

According to Huygen each point in the primary wavefront acts as secondary source and emits secondary wavelets in all directions.

Wavefront

The locus of all points which are in same phase in a wave is called wavefront.

- → The energy of wave travels in a direction perpendicular to wavefront. point
- **→** Rays are perpendicular to wavefront.
- → The time taken by light to travel from one wavefront to another is the same along anyray.

Types of wavefronts /

Spherical wavefront

Due to point

Plane wavefront

Due to point source Source of light | at large distance

Due to line Source of Light

INTERFERENCE

Interference is a phenomenon of superposition of two coherent waves through which redistribution of intensity of light takes place.

Mathematical Interpretation Of Interference Of Two Waves

Let a₁ and a₂ be amplitudes of the waves and φ the phase difference between them.

Then $y_1 = a_1 \sin \omega t$;

 $y_2 = a_2 \sin(\omega t + \theta);$

 $Y = y_1 + y_2 = A \sin(\omega t + \theta);$

$$A = \sqrt{a_1^2 + a_2^2 + 2a_1a_2\cos\theta}$$

$$\tan \theta = \frac{a_2 \sin \theta}{a_1 + a_2 \cos \theta}$$

10. WAVE OPTICS

Types of Interfrence /

Constructive Interference

- + Phase difference → $(\Delta \phi) = 2n\pi$; n = 0, 1, 2, ...
- → Path difference $\rightarrow \Delta X = 2n \left[\frac{\lambda}{2} \right]$
- + Resultant Amplitude \rightarrow A = $a_1 + a_2$; if $\phi = 0,2\pi \ 4\pi.....2n\pi$
- **→** Resultant Intersity → $I_{\text{max}} = I_1 + I_2 + 2\sqrt{I_1I_2}$ $=(\sqrt{I_1}+\sqrt{I_2})^2$
- $+ I_{\text{max}} = 4I \text{ where } (I_1 = I_2 = I)$

Destructive Interference

- + Phase difference \rightarrow Δ(ϕ) = (2n− 1) π , Where n = 1, 2, 3, ...
- → Path difference $\rightarrow \Delta x = (2n-1)\frac{\Lambda}{2}$
- ★ Resultant Amplitude → A = a₁ a₂; If $\phi = \pi, 3\pi, 5\pi \dots (2n-1)\pi$
- ★ Resultant Intersity $\rightarrow I_{max} = I_1 + I_2 2\sqrt{I_1I_2}$ $=(\sqrt{I_1}-\sqrt{I_2})^2$
- $+ I_{min} = O (When I_1 = I_2 = I)$

Young's Double Slit **Experiment**

(i) For Bright Fringes

$$S_2P-S_1P=n\lambda$$
; d=slitwidth

$$\zeta_n = \frac{n\lambda D}{d}$$

X_n = Distance between Central Fringe and nth Bright fringe;

 λ = wavelength; Bright fringes are also called maxima's

(ii) For Dark Fringes

$$S_2P - S_1P = \frac{(2n-1)\lambda D}{2d}$$

$$\Rightarrow Xn = \frac{(2n-1)\lambda D}{2d}$$

X_n = Distance between central bright and nth dark fringe

= Dark fringes are also called minima's

Fringe Width

Fringe width of dark & bright fringes are same and given by

$$\beta = X_n - X_{n-r} = \frac{\lambda D}{d}$$

Angular width of fringe

DIFFRACTION

Bending of light waves around the sharp edges of opaque obstacles or aperture and their encroachment in the geometrical shadow of obstacles or aperture.

Necessary Condition:- Size of obstacle (a) must be the order of wavelength

(
$$\lambda$$
).i.e $\frac{a}{\lambda} > 1$

Width of Central Maximum

The distance between two secondary minima formed on two sides of Central maximum is known as width of Central maximum.

$$W = \frac{2f\lambda}{\alpha}$$

f = Focal length of Convex lenses α = Slit width

Types of Diffraction /

Fresenel Diffraction:- Fresnel Diffraction involves spherical wavefronts, So that Source 's' and Point 'P' are at finite distance.

Fraunhofer Diffraction:- It deals with plane wavefronts and an effective viewing distance of infinity.

Resolving Power (R.P)

Resolving Power an optical instrument is its ability to distinguish two closely placed objects.

Fraunhofer Diffraction for Single Slit

In this diffraction Pattern Central maxima is bright on the both side of it, maxima & minima occurs symmetrically.

(i) Position of Secondary Maxima in diffraction

$$\alpha \sin \theta = (2n + 1) \frac{\lambda}{2}$$

$$X_n = \frac{(2n+1)}{2a} \lambda$$

(ii) Position of Secondary Minima in diffraction:-

POLARISATION

The Process of Confining the vibrations of unpolarised light in one single plane using polariser is called polarisation.

Unpolarised light

An ordinary beam of light whose electric field vectors vibrates in all possible plane.

Plane Polarised light /

Beam of light in which Vibration of Electric field Vector are perpendicular to wave motion and Confined to Single plane only.

MALUS' LAW /

 $I_2 = I_1 \cos^2 \theta$

BREWSTER'S LAW

This Law state that when light is incident on a transparent sustenance at polarising angle QP, the reflected light is completely plane polarised.

 $\mu = \tan \theta_P$; $\theta_P = \text{Polarising angle}$. $\mu = \text{Refractive Index of medium}$

