King Saud University

College of Sciences

Department of Mathematics

106 Math Exercises

(16 & 17)

Area & Volume

By

MALEK ZEIN AL-ABIDIN

 $\frac{1440 H}{2019 G}$

List of Famous Curves

$y = e^{2x}$

AREA BETWEEN CURVES

In the above figure the graphs of f(x) and g(x) intersect at the points x=aand x = b.

The area bounded by the graphs of the curves of f(x) and g(x) equals

$$\int_{a}^{b} f(x) \ dx - \int_{a}^{b} g(x) \ dx = \int_{a}^{b} [f(x) - g(x)] \ dx$$

Examples: Set up integrals to evaluate the areas bounded by the graphs of the curves of:

1.
$$y = \ln x$$
, $y = 0$ and $x = 2$.

2. $y=e^x$, $x=\ln 4$, x=0 and y=0 .

3. $y = x^2$ and $y = -x^2 + 2$

Math 106 Exercises Area & Volume By: Malek Zein AL-ABIDIN 4. Sketch the region R bounded by the graphs $y = x^2 - 8$, $y = -x^2$. Find its area.

5. Sketch the region R bounded by the graphs $y = x^2 + 4$, y = -x + 10 Find the area of the region in the first quadrant.

In the above figure the graphs of x = f(y) and x = g(y) intersect at the points y = c and y = d.

The area bounded by the graphs of the curves of x = f(y) and x = g(y) equals

$$A = \int_{c}^{d} [f(y) - g(y)]dy$$

$$A = \int_{c}^{d} [Right\ bound - Left\ bound]dy$$

6. Find the area bounded by the graphs of the curves of $x=y^2+1$, x=0 , y=-1 and y=2 .

7. Sketch the region R bounded by the curves, and find its area.

$$y=\frac{4}{x}$$
 , $x=0$, $y=1$ and $y=2$.

$$x = y^2$$
 and $x = 4 - y^2$, then, find its area.

$$x = y^2 - 1$$
 and $x = y + 1$, then, find its area.

.

$$y = x^2$$
 and $y = 2x - 1$, $x - axis$. then, find its area.

$$x = y^2 - 1$$
 and $x = y + 1$

then, find its area.

12. Sketch the region R bounded by the graphs of:

 $x=-y^2$, x=y+4 and y=-1 , y=1 then, find its area.

VOLUME OF A SOLID OF REVOLUTION

Disk or Washer method

1. Disk Method

Recall that the volume of a right circular cylinder equals $\pi r^2 h$ where r is the radius of the base (which is a circle) and h is the hight of the cylinder .

In the above figure R_1 is the region bounded by the graphs of the curves of f(x), x = a, x = b and the x-axis.

Using disk method, the volume of the solid of revolution generated by revolving the region R_1 around the x-axis is $V = \pi \int_a^b [f(x)]^2 dx$

In the above figure R_2 is the region bounded by the graphs of the curves of g(y), y=d and the y-axis.

Using disk method , the volume of the solid of revolution generated by revolving the region R_2 around the y-axis is $V=\pi\int_c^d [g(y)]^2\ dy$

2. Washer Method

Volume of a washer = $\pi \left[(outer\ radius)^2 - (inner\ radius)^2 \right]$ (thickness)

In the above figure R_3 is the region bounded by the graphs of the curves of f(x), g(x), x = a and x = b.

Using washer method, the volume of the solid of revolution generated by revolving the region R_3 around the x-axis is $V = \pi \int_a^b \left[(f(x))^2 - (g(x))^2 \right] dx$

In the above figure R_4 is the region bounded by the graphs of the curves of f(y) and g(y), where f(y) and g(y) intersect at the points y = c and y = d. Using washer method, the volume of the solid of revolution generated by revolving the region R_4 around the y-axis is $V = \pi \int_c^d \left[(f(y))^2 - (g(y))^2 \right] dy$ Examples: Use disk or washer method to find the volume of the solid of revolution generated by revolving the region bounded by the graphs of the curves of:

1. $y = \frac{1}{x}$, x = 1 , x = 3 and y = 0 , around the x-axis.

2. $y = x^2$ and $y = 4 - x^2$, around the x-axis .

3. $y = 4x - x^2$ and y = x, around the x-axis.

4. $x=\sqrt{y}$, x=0 and y=4 , around the y-axis

5. $y=x^2+1$, y=0 , x=0 and x=1 , around the y-axis .

6. $x = y^2$ and x = 2y, around the y-axis.

7. $y=x^2$ and y=4 , around the line y=5 .

8. $y + x^2 = 3$ and y + x = 3, around the line x = 3

9. Sketch the region R and find the volume of solid generated by revolving R

around

$$x - axis$$
 : $y = \frac{1}{x}$, $x = 1$, $x = 3$, $y = 0$

10. Sketch the region R bounded by the graphs $x = y^2$, x - y = 2

and find

- (i) The area of the region R.
- (ii) the volume of the solid generated by revolving R around y axis

VOLUME OF A SOLID OF REVOLUTION Cylindrical shells method

Volume of a shell = 2π (average radius) (altitude) (thickness)

In the above figure R_1 is the region bounded by the graphs of the curves of f(x), x=a, x=b and the x-axis.

Using cylindrical shells method, the volume of the solid of revolution generated by revolving the region R_1 around the y-axis is $V = 2\pi \int_a^b x \ f(x) \ dx$

In the above figure R_2 is the region bounded by the graphs of the curves of g(y), y=d and the y-axis.

Using cylindrical shells method, the volume of the solid of revolution generated by revolving the region R_2 around the x-axis is $V = 2\pi \int_c^d y \ g(y) \ dy$

Examples: Use cylindrical shells method to find the volume of the solid of revolution generated by revolving the region bounded by the graphs of the curves of:

1. $y = 2x - x^2$ and y = 0 , around the y-axis .

2. $y=\sqrt{x+4}$, y=0 and x=0 , around the x-axis .

3.

 $y=x^2$ and y=2x , around the x-axis .

4.

 $y=\sqrt{x}$ and $y=x^2$, around the line x=-2.

5.

 $y=1-x^2$ and y=0 , around the line y=2 .

$$y = x^2 - 4$$
 and $y = 2x - 4$

, then find:

- (i) The area of the region R.
- (ii) The volume of solid generated by revolving R around:

 - a) x axis b) y axis c) x = 3
 - d) x = -1 e) y = 2 f) y = -5

then find:

$$y = x^2 - 1$$
 and $y = x - 1$,

- (i) The area of the region R.
- (ii) The volume of solid generated by revolving R around:
 - a) x axis b) y axis c) x = 3
- d) x = -1 e) y = 2 f) y = -2

$$y = \sqrt{x}$$
 and $x = 4$, $y = 0$, then find:

- (i) The area of the region R.
- (ii) The volume of solid generated by revolving R around:

 - a) x axis b) y axis c) x = 4
- - d) x = -1 e) y = 2 f) y = -1

$$y = \sqrt{x}$$
 and $y = x^2$, then find:

- (i) The area of the region R.
- (ii) The volume of solid generated by revolving R around:

 - (a) x axis (b) y axis (c) x = 2
 - (d) x = -1 (e) y = -2 (f) y = 3

 $y = 2x - x^2$ and y = x, then find:

- (i) The area of the region R.
- (ii) The volume of solid generated by revolving R around:

 - (a) x axis (b) y axis (c) x = 1
 - (d) x = -1 (e) y = -2 (f) y = 3

$$y = 3 - x$$
 and $y = 1 + \sqrt{x}$, then find:

- (i) The area of the region R.
- (ii) The volume of solid generated by revolving R around:

 - (a) x axis (b) y axis (c) x = 1

- (d) x = -1 (e) y = -2 (f) y = 4

 $x = y^2$, $x = 2 - y^2$ and the x - axis (y = 0) then find

- (i) The area of the region R.
- (ii) The volume of solid generated by revolving R around:

 - (a) x axis (b) y axis (c) x = 2
 - (d) x = -1 (e) y = -2 (f) y = 2

13. Sketch the region R bounded by the graphs of $y = x^2$ and y = 2xthen find:

- (i) The area of the region R.
- (ii) The volume of solid generated by revolving R around:

 - (a) x axis (b) y axis (c) x = 2
- (d) x = -1 (e) y = -2 (f) y = 4

$$y = 2x - x^2$$
 and $y = x$, then find:

- (i) The area of the region R.
- (ii) The volume of solid generated by revolving R around:

 - (a) x axis (b) y axis (c) x = 2
 - (d) x = -1 (e) y = -1 (f) y = 2

$$y = x^2$$
, $x + y = 2$ and $x = 2$, then find:

- (i) The area of the region R.
- (ii) The volume of solid generated by revolving R around:

 - (a) x axis (b) y axis (c) x = 3

- (d) x = 1 (e) x = -1 (f) y = -1 (g) y = 4