

Data Sheet

PT880 Pro North Bridge

Revision 1.0 September 27, 2005

VIA TECHNOLOGIES, INC.

Copyright Notice:

Copyright © 2004-2005 VIA Technologies Incorporated. All Rights Reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Technologies Incorporated. The material in this document is for information only and is subject to change without notice. VIA Technologies Incorporated reserves the right to make changes in the product design without reservation and without notice to its users.

Trademark Notices:

VT8235M, VT8237R, VT8237R Plus, VT8251 and PT880 Pro may only be used to identify products of VIA Technologies.

Intel™, Pentium™, MMX™ and SpeedStep™ are registered trademarks of Intel Corporation. Windows XP™. Windows 2000™. Windows ME™. Windows 98™ and Plug and Play™ are registered trademarks of Microsoft Corporation. AGP™ is a trademark of the AGP Implementors Forum. PCI™ and PCI Express™ are trademarks of the PCI Special Interest Group. PS/2™ is a trademark of International Business Machines Corporation.

All trademarks are the properties of their respective owners.

Disclaimer Notice:

No license is granted, implied or otherwise, under any patent or patent rights of VIA Technologies, Incorporated. VIA Technologies makes no warranties, implied or otherwise, in regard to this document and to the products described in this document. The information provided by this document is believed to be accurate and reliable as of the publication date of this document. However, VIA Technologies assumes no responsibility for any errors in this document. Furthermore, VIA Technologies assumes no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.

Offices:

VIA Technologies Incorporated **USA Office:** 940 Mission Court Fremont, CA 94539 USA

Tel: (510) 683-3300

Fax: (510) 683-3301 or (510) 687-4654

Home Page: http://www.viatech.com

VIA Technologies Incorporated Taiwan Office: 1st Floor, No. 531 Chung-Cheng Road, Hsin-Tien Taipei, Taiwan ROC

Tel: (886-2) 2218-5452 Fax: (886-2) 2218-5453

Home page: http://www.via.com.tw

REVISION HISTORY

Document Release	Date	Revision	Initials
1.0	9/27/05	Initial external release	CY

TABLE OF CONTENTS

REVISION HISTORY	II
TABLE OF CONTENTS	
LIST OF FIGURES	vı
LIST OF TABLES	VII
LIST OF TABLES	VII
PRODUCT FEATURES	1
PT880 PRO SYSTEM OVERVIEW	3
PT880 Pro Overview	3
System Power Management	4
SYSTEM RELIABILITY	4
BALLOUT	5
BALL DIAGRAM	5
BALL LISTS	7
BALL DESCRIPTIONS	
CPU Interface Ball Descriptions	
Ultra V-Link Ball Descriptions	
DDR / DDER2 SDRAM Memory Controller Ball Descriptions	
Accelerated Graphics Port Ball Descriptions	
PCI Express Ball Descriptions	
Clock Ball Descriptions	
Reset, Power Control, General Purpose I/O, Interrupt and Test Ball Descriptions	
Compensation and Reference Voltage Ball Descriptions Analog Power Ball Descriptions	
Digital Power Ball Descriptions	
Strap Ball Descriptions	
REGISTER OVERVIEW	
ABBREVIATION	21
REGISTER DESCRIPTIONS	22
MISCELLANEOUS I/O	22
PCI CONFIGURATION SPACE I/O	22
DEVICE 0 FUNCTION 0 (D0F0): HOST CONTROLLER	
Header Registers (0-3Fh)	
AGP Drive Control (40-48h)	
Miscellaneous Control (4A-	
AGP Extended Power Management Control (50-57h)	
AGP 3.0 Configuration (80–Afh)AGP Enhanced Control (B0–FFh)	
DEVICE 0 FUNCTION 0 (D0F0) – EXTENDED SPACE	
Virtual Channel Capability (140–14Fh)	
VC0 Resource Registers (150–15Bh)	
VC1 Resource Registers (15C-16Fh)	39

Virtual Channel Port Arbitration Table for VC1 (180–19Fh)	
VC Arbitration Timer (200–209h)	
Port Arbitration Timer for VC0 (210–229h)	
DRAM Side Upstream Arbitration Timers (240–24Fh)	
- · · · · · · · · · · · · · · · · · · ·	
DEVICE 0 FUNCTION 1 (D0F1): ERROR REPORTING	
Header RegistersV-Link Error Report (50-5Fh)	
Host Bus Error Report (60-7Fh)	
DRAM Bus Error Report (80-8Fh)	
AGP / PCI2 Non Standard Error Reporting (E0-EFh)	
DEVICE 0 FUNCTION 2 (D0F2): HOST BUS CONTROL	
Header Registers (0-3Fh)	
Host CPU Control (50-5Fh)	
Host Interface DRDY Timing Control	
Host AGTL+ I/O Circuit (70–7Fh)	53
DEVICE 0 FUNCTION 3 (D0F3): DRAM BUS CONTROL	58
Header Registers (0-3Fh)	
DRAM Rank (Row) Ending Address (40–4Fh)	
MA Map / Command Rate (50-53h)	
Physical-to-Virtual Rank Mapping (54–57h)	
Virtual Rank Interleave Address Select / Enable (58–5Fh)	
DRAM Timing (60–64h) DRAM Queue / Arbitration (65–67h)	
DRAM Control (68–69h)	
Refresh Control (6A–6Bh)	
DDR SDRAM Control (6C–6Fh)	
DRAM Signal Timing Control (70–7Fh)	
Read-Only Control (7C-7Fh)	
Shadow RAM Control (80–83h)	
DRAM Above 4G Support (84-8D)	
DRAM Clocking Control (90-9F)	
DDR2 - ODT Control (D4-D7h)	
DRAM Driving Control (E0–EFh)	
DEVICE 0 FUNCTION 4 (D0F4): POWER MANAGEMENT CONTROL	
Header Registers	
Power Management Control (A0–EFh)	
DEVICE 0 FUNCTION 5 (D0F5): APIC AND CENTRAL TRAFFIC CONTROL	
Header Registers (0-3Fh)	
Legacy APIC Base I/O Registers (40–5Fh)	
Central Traffic - Downstream Control (60–7Fh)	
Central Traffic - Upstream Control (80h)	
PCIe Message Controller and Power Management (A0-F0h)	84
DEVICE 0 FUNCTION 6 (D0F6): SCRATCH REGISTERS	80
Scratch Registers (40-7Fh)	80
DEVICE 0 FUNCTION 7 (D0F7): V-LINK NORTH BRIDGE AND SOUTH BRIDGE CONTROL	8
Header Registers (0-3Fh)	
V-Link Control Interface (40-B1h)	87
V-Link North Bridge Driving Control (B3-B7h)	
DEVICE 1 FUNCTION 0 (D1F0): PCI TO PCI BRIDGE	93
Header Registers (0-3Fh)	
Second PCI Bus Control (40–6Fh)	
Power Management Capability (70-77h)	98

AGP 3.0 Configuration (80-A3h)	99
AGP 4X / AGP 8X Compensation Circuits (B0-B9h)	102
Miscellaneous Control (BA-BFh)	103
APIC Cycles (C0-C3h)	104
DEVICE 2 FUNCTION 0 (D2F0) - PCI EXPRESS ROOT PORT 0 (PCI-TO-PCI VIRTUAL BRIDGE)	
Header Registers (0-3Fh)	105
PCI Express Capability Registers (40-63h)	
PCI Power Management Capability Structure Registers (68-6Fh)	
PCI Message Signal Interrupt (MSI) Capability Structure Registers (70-87h)	115
PCI Express Transaction Layer Registers (A0-A4h)	116
PCI Express Data Link Layer Registers (B0-B8h)	117
PCI Express Physical Layer Registers (C0-CBh)	
PCI Express Power Management Module Registers (D0-D3h)	123
PCI Express Message Controller Related Registers (D8h)	
PCI Express Electrical PHY Registers (E0-EAh)	124
PCI Express Electrical PHY Test Registers (F0-F7h)	126
DEVICE 2 FUNCTION 0 (D2F0) - PCI EXPRESS ROOT PORT 0 EXTENDED SPACE	
Advanced Error Reporting Capability (100-137h)	128
Virtual Channel Capability (140-14Fh)	130
VC0 Resource (150-15Bh)	131
VC1 Resource (15C-167h)	132
ELECTRICAL SPECIFICATIONS	133
ABSOLUTE MAXIMUM RATINGS	133
DC CHARACTERISTICS	133
MECHANICAL SPECIFICATIONS	134

LIST OF FIGURES

FIGURE 1. SYSTEM BLOCK DIAGRAM	3
FIGURE 2. BALL DIAGRAM, TOP VIEW	
FIGURE 3. BALL DIAGRAM, TOP VIEW (CONTINUED)	
FIGURE 4. DIMM / CHANNEL MAPPING DIAGRAM	
FIGURE 5. MECHANICAL SPECIFICATIONS - FCBGA-1054 FLIP CHIP BALL GRID ARRAY PACKAG	E 134
FIGURE 6. LEAD-FREE MECHANICAL SPECIFICATIONS - FCBGA-1054 FLIP CHIP BALL GRID ARR	AY
PACKAGE	135

LIST OF TABLES

TABLE 1. BALL LIST (LISTED BY BALL NUMBER)	
TABLE 2. BALL LIST (LISTED BY BALL NAME)	. 8
TABLE 3. POWER, GROUND AND VOLTAGE RÉFERENCE BALL LIST	
TABLE 4. GRAPHICS APERTURE BASE ADDRESS TABLE	
TABLE 5. DYNAMIC DEFER SNOOP STALL TABLE 4	
TABLE 6. CPU WRITE REQUEST POLICY5	50
TABLE 7. HOST / DRAM BANDWIDTH POLICY	
TABLE 8. NB V-LINK BUS ARBITRATION	
TABLE 9. ABSOLUTE MAXIMUM RATINGS	
TABLE 10. DC CHARACTERISTICS	

PT880 PRO NORTH BRIDGE

800 / 533 / 400 MHz Intel Pentium 4 Front Side Bus PCI Express Interface AGP v3.0 Bus Dual-Channel DDR2 & DDR SDRAM Controller 1 GB/Sec Ultra V-Link Interface

PRODUCT FEATURES

• Defines Highly Integrated Solutions for Performance Desktop PC Designs

- High performance North Bridge with 800MHz Front Side Bus for Pentium 4 processors plus PCI Express and AGP bus
- Dual-channel, 128-bit, advanced SDRAM controller supporting DDR2 533 / 400 SDRAM
- Combines with VIA VT8235M / VT8237R / VT8237R Plus / VT8251 V-Link South Bridge for integrated 10/100 LAN, AC97 Link, ATA133 IDE, LPC, USB 2.0, Serial ATA (VT8237R / VT8237R Plus & VT8251), PCI-Express (VT8251) and High-Definition Audio (VT8251)
- 1.5V Core and Pentium 4 AGTL+ I/O
- 37.5 x 37.5mm FCBGA package (Flip Chip Ball Grid Array) with 1054 balls and 1mm ball pitch

• High Performance CPU Interface

- Supports Intel 800 / 533 / 400 MHz FSB Pentium 4 and Pentium M processors
- Supports Intel Hyper-Threading Technology
- Supports DBI (Dynamic Bus Inversion) and Data, Address, Response Parity
- Deep In-Order command Queue (IOQ)
- Built-in Phase Lock Loop circuitry for optimal skew control within and between clocking regions

• High Bandwidth 1 GB/Sec "Ultra V-Link" South Bridge Interface Host Controller

- Supports 66 MHz, 4x and 8x transfer modes, Ultra V-Link Host interface with 1 GB/sec total bandwidth
- Full duplex transfers with separate command / strobe for 4x and 8x mode
- Request / Data split transaction
- Transaction assurance for V-Link Host to Client access eliminates V-Link Host-Client Retry cycles
- Intelligent V-Link transaction protocol to minimize data wait-state and throttle transfer latency to avoid data overflow
- Highly efficient V-Link arbitration with minimum overhead

• Advanced High Bandwidth PCI Express Interface

- Supports PCI Express 1.0a
- Supports one 4-Lane PCI Express port for high bandwidth peripheral devices (configurable lane width, either 4 or 1)
- Supports interconnect power management
- Supports polarity reversal
- Supports Hot Plug
- Loop-back testing mode for easy debugging mode for PCI Express

• Full Featured Accelerated Graphics Port (AGP) Controller

- AGP v3.0 compliant with Fast Write support
- 1.5V AGP I/O interface
- Pipelined split-transaction long-burst transfers up to 2.1 GB/sec
- Supports Side Band Addressing (SBA) mode
- Supports Flush / Fence commands
- Supports DBI (Dynamic Bus Inversion)
- Asynchronous AGP and CPU interface
- Thirty-two level request queue for read and write
- One hundred-twenty-eight level (quadwords) of read data FIFO
- Sixty-four level (quadwords) of write data FIFO
- Graphics Address Relocation Table (GART)
 - One level TLB structure
 - Sixteen entry fully associative page table
 - LRU replacement scheme
- VPX-I / VPX-II support (see separate VIA VT8101 and VT8102 data sheets)

Advanced High-Performance 128-bit, Dual-Channel, DDR / DDR2 SDRAM Controller

- Supports two operating modes:
 - DDR2 Mode
 - Supports DDR2 533 / 400 memory
 - Supports mixed 64Mb / 128Mb / 256Mb / 512Mb / 1024Mb / 2048Mb x 8/16 DDR2 SDRAMs
 - Supports 4 unbuffered double-sided DIMMs and up to 4 GB of physical memory
 - Supports CL 3 / 4 / 5 for DDR2 533 / 400
 - DDR Mode
 - Supports DDR 400 / 333 / 266 / 200 memory
 - Supports mixed 64Mb / 128Mb / 256Mb / 512Mb / 1024Mb x 8/16 DDR SDRAMs
 - Supports 4 unbuffered double-sided DIMMs and up to 4 GB of physical memory
 - Supports CL 2 / 2.5 for DDR 266 / 333, CL 2.5 / 3 for DDR 400
- Dual 64-bit data paths and two sets of memory address, data and control signals each of which drives up to two DIMMs
- Supports asymmetric 128-bit, Dual-channel, memory accesses
- Programmable I/O drive capability for memory address, data and control signals
- DRAM interface pseudo-synchronous with host CPU for optimal memory performance
- Concurrent CPU, PCIe, AGP and V-Link access for minimum memory access latency
- Rank interleave and up to 16-bank page interleave (i.e., 16 pages open simultaneously) based on LRU to effectively reduce memory access latency
- Seamless DRAM command scheduling for maximum DRAM bus utilization (e.g., precharge other banks while accessing the current bank)
- CPU Read-Around-Write capability for non-stalled operation
- Speculative DRAM read before snoop result to reduce PCI master memory read latency
- Supports Burst Read and Write operation with burst length 4 or 8
- Integrated CPU-to-DRAM post-write buffers and CPU-to-DRAM pre-fetch buffers
- Supports self-refresh and CAS-before-RAS DRAM refresh with staggered RAS timing

• Advanced System Power Management Support

- ACPI 2.0 and PCI Bus Power Management 1.1 compliant
- Supports Suspend-to-DRAM (STR) and DRAM self refresh
- Supports dynamic Clock Gating for optimal chip power management
- Supports SMI, SMM and STPCLK mechanisms
- Supports Enhanced Intel SpeedStep Technology
- Low-leakage I/O pads

PT880 PRO SYSTEM OVERVIEW

The PT880 Pro is a high performance, cost-effective and energy efficient North Bridge used for the implementation of high-end desktop personal computer systems based on 800 / 533 / 400 MHz FSB Intel Pentium 4 and Pentium M super-scalar processors.

Figure 1. System Block Diagram

The chipset consists of the PT880 Pro North Bridge and the VT8237R Plus V-Link South Bridge. The PT880 Pro "Host System Controller" is an upgrade of VIA's most advanced system controller with dual DDR memory interface and PCI Express support. The PT880 Pro provides superior performance between CPU, DRAM, V-Link bus and PCI Express / AGP bus with pipelined, burst and concurrent operation. The VT8237R Plus is a highly integrated peripheral controller, it includes V-Link-to-PCI / V-Link-to-LPC controllers and integrates Serial ATA and Ultra DMA IDE controllers, USB2.0 host controller, 10/100 Mb networking MAC, AC97 and system power management controllers.

PT880 Pro Overview

The PT880 Pro supports 800 / 533 / 400 MHz FSB Intel Pentium 4 and Pentium M super-scalar processors; it implements deep In-Order Queue and supports Intel Hyper-Threading Technology to maximize system performance for multi-threaded software applications. DBI and Pentium M bus protocol, as well as Enhanced Intel SpeedStep Technology are supported, which effectively reduce overall system power consumption.

The PT880 Pro includes a PCI Express 1.0a compliant PCI Express controller, which supports one high bandwidth PCIe port. This PCIe port can be configured in either 4-Lane or 1-Lane as to serve bandwidth-hungry peripheral devices.

The PT880 Pro implements an AGP v3.0 compliant AGP controller, which supports up to 2.1 GB / second data transfer rate. Asynchronous design between AGP and CPU interface is implemented for flexible system configuration. Deep read (1024 bytes) and write (512 bytes) FIFO are integrated for optimal bus utilization and minimum data transfer latency.

The PT880 Pro supports dual 64-bit memory channels and up to 4 double-sided DIMMs (eight banks) of synchronous DRAMs for 16 GB maximum physical DDR2 memory (8 GB DDR memory). The DRAM controller supports DDR2 533 / 400 or DDR 400 / 333 / 266 / 200 SDRAM. The DDR DRAM interface allows zero wait state data transfer bursting between the DRAM and memory controller's data buffers. The different banks of DRAM can be composed of an arbitrary mixture of 64 / 128 / 256 / 512 / 1024Mb (up to 2048Mb for DDR2 mode) SDRAM in x8 or x16 configurations. The DRAM controller can run either synchronous or pseudo-synchronous with the host CPU bus.

The PT880 Pro North Bridge interfaces to the South Bridge through a high speed (1 GB/sec) 8x 66 MHz Data Transfer interconnect bus called Ultra V-Link. Deep pre-fetch and post-write buffers are included to allow for concurrent CPU and V-Link operation. The combined PT880 Pro North Bridge and VT8237R Plus South Bridge system supports enhanced PCI bus commands such as "Memory-Read-Line", "Memory-Read-Multiple" and "Memory-Write-Invalid" commands to minimize snoop overhead. In addition, advanced features are supported such as CPU write-back forward to PCI master and CPU write-back merged with PCI post-write buffers to minimize PCI master read latency and DRAM utilization. Delay transaction and read caching mechanisms are also implemented for further improvement of overall system performance.

System Power Management

For sophisticated power management, the PT880 Pro supports dynamic Clock Gating to optimize the chip power management. A separate suspend power plane is implemented for the memory control logic for Suspend-to-DRAM state. Enhanced Intel SpeedStep Technology enables minimization of CPU power consumption while sustaining processing power. Coupled with the VT8237R Plus south bridge chip, a complete power conscious PC main board can be implemented with no external glue-logic.

System Reliability

The PT880 Pro provides features required for high-performance commercial and consumer PCs. These features include parity on CPU, AGP, PCIe and V-Link buses.

BALLOUT

Ball Diagram

Figure 2. Ball Diagram, Top View

19 20 21 22 23 25 32 34 24 26 35 36 HDSTB 0N# VTT CPU RST# GND GND H D52# GND H D40# H D13# GND H D8# GND H Dl# H D0# GND \mathbf{A} HDSTB 3P# HDSTB 0P# H D14# H D62# H D50# H D12# H D6# H D4# H D2# VTT H D58# H D41# H DBI2# H D5# H DBI1# В HDSTB 2P# HDSTB 1P# H D57# H D53# H D7# H D26# VTT H D63# H D59# H D61# H D55# H D43# H D35# H D15# H DBI0# GND GND D10# \mathbf{C} H D56# H D48# H D49# H D51# H D42# H D36# H D38# H D3# H D21# H D23# VTT GND GND GND H D27# H D24# D HDSTB 3N# HDSTB 2N# HDSTB 1N# H D44# H D9# H D60# H D54# H D32# H D37# H D29# H D25# VTT DBI3# H D28# E H D39# H D45# H D33# H D11# H D31# H D30# H D16# H D19# VTT H D34# GND GND F H D46# GNDA HCK CLK-RS 2# VTT GND GND GND GND GND H D20# H D18# H D17# DE FER# G VCCA 33HCK VTT GTL VREF1 H D47# GV CLK CLK+ DP WR# HPC REQ# GND HIT# H LOCK# B PRI# Н D BSY# ADS# D RDY# GND VTT J HIT M# HT RDY# VTT K RS 1# VTT VTT VTT VTT VTT H REQ1# REQ0# H A7# H A3# REQ0# L H A4# VTT VTT VTT VTT VTT GTL VREF0 GND H REQ4# GND H A8# GND M H REQ2# HAD STB0# H A12# H A15# GND GND GND GND GND REQ3# H A13# N VCC H A5# H A10# H A11# H A9# H A18# GND GND H A14# H A16# P H A26# VCC H A30# H A20# H A19# GND GND GND GND GND R VCC VCC 15 HAD STB1# H A27# H A17# H A24# H A21# H A23# GND GND T VCC 15 H A28# MCLK OA-GND GND H A29# H A31# H A22# H A25# MCLK OA+ U VCC 15 VCC 15 MCLK IA+ MCLK IA-MCLK OB-MCLK OB+ GND GND GND VCCA 33MCK GND GND GND V VCC 15 GNDA MCK MD B56 DQM B7 MD B62 MD B63 DFT IN# TEST IN# MEM DET GND GND GND GND W MD B60 MD B61 DOS B7-DOS B7+ MD A59 MD B57 MD B58 MD B59 GND GND GND Y VCC MD A63 MD A58 **GND GND** GND GND GND AA DQM A7 MD A62 DOS A7+ DOS A7-MD A57 GND GND ΑB MD A60 MD A61 MD A56 GND GND \mathbf{AC} MEM VREF1 MD B55 MD B51 GND GND GND GND AD MD B52 DQM B6 MD B54 MD B50 MD A51 MD B48 GND **GND** GND GND **GND** GND GND GND GND GND GND ΑE VCC MEM DOS B6-MD A50 MD A54 VCC MEM MD B53 MD B49 DOS B6+ VCC MEM VCC MEM AF VCC MEM GND GND DOS A6+ DOS A6-GND \mathbf{AG} VCC MEM MD A52 MD A53 MD A55 DQM A6 MD A49 MD A48 ΑH CKE B3 DOS B5+ MA B5 VCC MEM VCC MEM VCC MEM VCC MEM DQM B5 MD B43 MD B47 CS B0# MA B13 CS B1# VCC MEM CS B3# ΑJ CKE B1 VCC MEM SRAS B# MA B10 VCC MEM VCC MEM VCC MEM VCC MEM VCC MEM MD B45 MD B41 DOS B5-MD B46 VCC MEM GND GND GND AK SCAS B# MA B1 MA B0 ODT B2 VCC MEM MD B37 MD B33 MD B44 MD B40 MD A42 MD A43 VCC MEM VCC MEM VCC MEM VCC MEM MD A47 ALMA B8 MA B11 MA B4 MA B2 CS B2# VCC MEM VCC MEM VCC MEM VCC MEM VCC MEM MD B36 DOM B4 MD A41 DOS A5-DOS A5+ MD A46 AM MA B7 MA B6 VCC MEM MA B3 BA B0 VCC MEM VCC MEM VCC MEM MD A38 MD B32 MD A45 DQM A5 VCC MEM VCC MEM VCC MEM GND GND GND ANMA A9 MA A5 MA A4 MA Al BA A1 SRAS A# SWE A# ODT A2 CS A1# ODT A3 VCC MEM MD A37 DOM A4 MD A39 DOS B4-DOS B4+ MD A44 MD A40 AP MA A6 MA A2 MA A10 BA A0 ODT A0 MA A13 ODT Al VCC MEM MD A36 MD A33 DOS A4+ MD A34 MD B35 MA All MA A8 CS A2# MD B38 GND AR CS A3# MA A12 MA A7 VCC MEM MA A3 MA A0 VCC MEM CS A0# SCASA# VCC MEM VCC MEM GND MD A32 DOS A4-GND MD A35 MD B39 MD B34 ΑT 19 20 21 22 23 24 25 28 26 27 29 30 31 32 33 34 35 36

Figure 3. Ball Diagram, Top View (continued)

Ball Lists

Table 1. Ball List (Listed by Ball Number)

Ball	Ball Name	Ball	Ball Name	Ball	Ball Name	Ball	Ball Name	Ball	Ball Name	Ball	Ball Name
A02	GD22	E07	GD30		HREQ1#	AB05	VD12	AK34	DQSB5-	AP10	MDB23
A03	GD21	E12	GREQ		HREQ0#	AB32	MDA57	AK35	MDB46	AP11	DQMA2
A04 A05	GD25 GD24	E21 E22	HDBI3# HD60#	L32 L33	HA7# HA3#	AB33 AB34	DQMA7 MDA62	AL02 AL03	DQSB0- DQSB0+	AP12 AP13	MDA19 MDB30
A06	NC	E23	HD54#	L33	RS1#	AB35	DQSA7+	AL04	MDB3	AP14	MDA29
A07	GSBA4#	E24	HDSTB3N#	L35	HEDRDY#	AB36	DQSA7-	AL05	MDB14	AP15	DQSA3-
A08	GSBSTBF	E26	HD44#	L36	BREQ0#	AC02	VD5	AL06	MDB9	AP16	MDA26
A09	GSBSTBS	E27	HDSTB2N#	M31	HREQ4#	AC03	VD4	AL08	MDB16	AP17	CKEA0
A10	GWBF	E28	HD32#		HA6#	AC04	VPAR	AL09	MDB21	AP18	MAA14
A11 A20	GRBF CPURST#	E29 E30	HD37# HD9#	M34 M35	HA4# HA8#	AC05 AC34	VD1 MDA60	AL10 AL11	MDB19 MDA20	AP19 AP20	MAA9 MAA5
A26	HD52#	E32	HD29#	N30	HREQ3#	AC35	MDA61	AL12	MDB24	AP21	MAA4
A28	HD40#	E33	HD28#	N31	HREQ2#	AC36	MDA56	AL13	DQMB3	AP22	MAA1
A29	HD13#	E34	HD25#	N32	HADSTB0#	AD02	VD0	AL14	MDB26	AP23	BAA1
A31	HD8#	E35	HDSTB1N#		HA12#	AD03	VBE#	AL17	MAB14	AP24	SRASA#
A32 A34	HDSTB0N# HD1#	E36 F01	HD22# GDEVSEL	N35 N36	HA13# HA15#	AD04 AD05	DNSTB+ DNSTB-	AL18 AL19	CKEB2 MAB9	AP25 AP26	SWEA# ODTA2
A35	HD0#	F02	GTRDY	P30	HA5#	AD34	MDB55	AL20	BAB1	AP27	CSA1#
B03	GD19	F03	GD15	P31	HA11#	AD36	MDB51	AL21	MAB1	AP28	ODTA3
B04	GADSTBS1	F04	GSERR	P32	HA9#	AE02	UPSTB	AL22	MAB0	AP30	MDA37
B06	GSBA6#	F07	GD31	P33	HA14#	AE03	UPSTB+	AL23	SCASB#	AP31	DQMA4
B07 B10	GSBA7# GSBA0#	F08 F10	GDBIH NC	P34 P35	HA10# HA16#	AE31 AE32	MDB52 MDB48	AL24 AL30	ODTB2 MDB37	AP32 AP33	MDA39 DQSB4–
	HD62#	F11	GST2	P36	HA18#	AE32	DQMB6	AL31	MDB33	AP34	DQSB4+
B21	HD58#	F12	GGNT	R31	HA30#	AE34	MDB54	AL32	MDB44	AP35	MDA44
B24	HDSTB3P#	F26	HD45#	R32	HA26#	AE35	MDB50	AL33	MDB40	AP36	MDA40
B26	HD50#	F27	HD39#	R34	HA20#	AE36	MDA51	AL34	MDA47	AR01	MDA1
	HD41#	F28	HD33#	R35	HA19#	AF02	VD2	AL35	MDA42	AR02	DQMA0
	HDBI2# HD14#	F29 F30	HD34# HD11#	T31 T32	HA27# HADSTB1#	AF03 AF04	VD3 DNCMD	AL36 AM01	MDA43 MDB6	AR03 AR04	DQSA0+ MDA2
	HD12#	F31	HD31#	T33	HA17#	AF05	VD7	AM02	MDB7	AR05	MDA3
	HDSTB0P#	F32	HD30#	T34	HA24#	AF31	MDB53	AM03	MDB2	AR06	MDA8
B32	HD6#	F34	HD16#	T35	HA23#	AF32	MDB49	AM04	MDB8	AR07	DQSA1+
B33.	HD5#	F35	HD19#	T36	HA21#	AF33	DQSB6-	AM05	DQMB1	AR08	MDA11
	HD4# HD2#	G01 G02	GD13 GPAR	U02 U03	PE1RX0- PE1RX0+	AF34 AF35	DQSB6+ MDA50	AM06 AM07	MDB10 MDA9	AR09 AR10	MDB22 MDA16
	HDBI1#	G02	GSTOP		PEITX0-	AF36	MDA54	AM08	MDB17	AR11	DQSA2-
C01	GD17	G04	GD14	U06	PE1TX0+	AG02	VD6	AM09	DQMB2	AR12	MDA23
C02	GD18	G05	GC#BE1	U30	HA29#	AG03	UPCMD	AM10	MDB18	AR13	MDA28
C03	GD20	G08	GDBIL	U31	HA31#	AG05	VD10	AM11	MDA17	AR14	MDA24
C04 C05	GADSTBF1	G10 G11	NC NC	U32 U33	HA28# HA22#	AG06 AG34	VLCOMPP DQSA6+	AM12 AM13	MDB25 DQSB3-	AR16 AR17	MDA30 CKEA3
C06	GD26 GD28	G26	HD46#		HA25#	AG35	DQSA6-	AM14	MDB27	AR18	BAA2
C07	GSBA3#	G29	HCLK-		MCLKOA-	AH02	VD11	AM15	DQMA3	AR19	MAA11
C09	GSBA5#	G31	HD20#	U36	MCLKOA+	AH03	VD14	AM17	BAB2	AR20	MAA8
C10	GSBA1#	G32	HD18#	V02	PE1COMP	AH04	VD15	AM18	MAB12	AR21	MAA6
C12	GST1	G33	HD17#	V03	PEITXI-	AH23	ODTB1	AM19	MAB8	AR22 AR23	MAA2
C20 C21	HD63# HD59#	G34 G35	DEFER# RS2#	V04 V31	PE1TX1+ MCLKIA+	AH24 AH31	ODTB1 MDA52	AM20 AM21	MAB11 MAB4	AR24	MAA10 BAA0
	HD61#	G36	RS0#	V32	MCLKIA-	AH32	MDA53	AM22	MAB2	AR25	CSA2#
	HD57#	H01	GD12		MCLKOB-	AH33	MDA55	AM23	CSB2#	AR26	ODTA0
C24	HD55#	H03	GD9	V35	MCLKOB+	AH34	DQMA6	AM24	SWEB#	AR27	MAA13
C25	HD53#	H04	NC ·	W03 W04	PEIRXI-	AH35	MDA49 MDA48	AM31	MDB36 DQMB4	AR28 AR30	ODTA1 MDA36
C26 C27	HD43# HDSTB2P#	H06 H07	GD10 GD11	W04	PE1RX1+ PECLK-	AH36 AJ01	PWROK	AM32 AM33	MDA41	AR31	MDA33
C28	HD31B2P# HD35#	H09	NC	W07	TCLK	AJ01	PEWAKE#	AM34	DQSA5-	AR32	DQSA4+
C29	HD15#	HII	AGP8XDET#	W30	MDB56	AJ03	SUSST#	AM35	DQSA5+	AR33	MDA34
	HD10#	H26	HD47#	W31	DQMB7	AJ04	MDB5	AM36	MDA46	AR34	MDB38
	HDBI0#	H27	GVCLK		MDB62 MDB63	AJ05	MDB4 MDB29	AN01	MDB13	AR35 AT02	MDB35 DQSA0-
C32 C34	HD7# HD26#	H29 H31	HCLK+ DPWR#	W33 W34	DFTIN#	AJ12 AJ19	CKEB3	AN03 AN05	MDB12 DQSB1-	AT02	MDA6
	HDSTB1P#	H32	HPCREQ#		TESTIN#	AJ20	MAB5		MDB15	AT05	MDA13
D01	GIRDY	H34	BPRI#	W36	MEMDET	AJ21	CSB0#	AN08	MDA14	AT06	DQMA1
D02	GD16	H35	HIT#		PEIREXT	AJ22	CSB3#	AN09	DQSB2-		MDA10
D03	GC#BE2	H36	HLOCK#		PE1RX2+	AJ23	MAB13	ANII	MDA22	AT09	MDA21
D04 D05	GC#BE3 GD27	J01 J02	GD8 GC#BE0		PE1RX2- PE1TX2-	AJ24 AJ32	CSB1# DQMB5	AN12 AN14	DQSB3+ MDB31	AT11 AT12	DQSA2+ MDA18
	GD27 GD29	J03	GD7		PEITX2+	AJ33	MDB43	AN16	MDA27	AT14	MDA25
D07	GSBA2#	J04	GD6	Y07	PECLK+	AJ34	DQSB5+	AN17	CKEA2	AT15	DQSA3+
	NC "	J05	GD2	Y29	MDB60	AJ35	MDB47	AN19	MAB7	AT16	MDA31
	INTR#	J06	GD3	Y30	MDB61		MDB42	AN20	MAB6	AT17	CKEA1
	GST0 HD48#	J32 J33	DBSY# BNR#		MDB57 DQSB7-	AK01 AK02	RESET# DOMB0	AN22 AN23	MAB3 BAB0	AT19 AT20	MAA12 MAA7
	HD49#	J33	ADS#		DQSB7+	AK02 AK03	MDB1	AN31	MDA38	AT22	MAA3
	HD56#	J35	DRDY#		MDB58	AK05	MDB0	AN32	MDB32	AT23	MAA0
D25	HD51#	K01	GD4	Y35	MDB59	AK06	MDB11	AN34	MDA45	AT25	CSA0#
	HD42#	K02	GD5	Y36	MDA59	AK09	MDB20	AN35	DQMA5	AT26	SCASA#
D28 D29	HD36# HD38#	K03 K04	GADSTBF0 GADSTBS0	AA02 AA03	VD13 PE1TX3+		MDB28 DMCOMP	AP01 AP02	MDA4 MDA0	AT28 AT31	CSA3# MDA32
	HD38# HD3#	K04	GADS 1BS0	AA04	PETTX3+ PETTX3-	AK14 AK17	CKEB0	AP02 AP03	MDA5	AT31	DQSA4-
	HD27#	K06	GD0		PE1RX3+	AK19		AP04	MDA7	AT34	MDA35
D34	HD24#	K35	HITM#	AA06	PE1RX3-	AK20	MAB10	AP05	DQSB1+	AT35	MDB39
	HD21#	K36	HTRDY#		MDA63	AK22	SRASB#	AP06	MDA12	AT36	MDB34
D36	HD23#	L01 L03	NC NC	AA35 AB02	MDA58 VD8	AK23	ODTB0 MDB45	AP07 AP08	DQSA1- MDA15	l	
E01	GFRAME			r ADUZ	סע ז	AK31	CACOTAI	AP08 AP09	DQSB2+		1

Table 2. Ball List (Listed by Ball Name)

Ball	Ball Name	Ball	Ball Name	Ball	Ball Name	Ball	Ball Name	Ball #	Ball Name	Ball	Ball Name
J34	ADS#	C04	GADSTBF1	T35	HA23#	C27	HDSTB2P#	AT34	MDA35	Y31	MDB57
H11	AGP8XDET#	K04	GADSTBS0	T34	HA24#	E24	HDSTB3N#	AR30	MDA36	Y34	MDB58
AR24 AP23	BAA0 BAA1	B04 J02	GADSTBS1 GC#BE0	U34 R32	HA25# HA26#	B24 L35	HDSTB3P# HEDRDY#	AP30	MDA37	Y35 Y29	MDB59
AR18	BAA2	G05	GC#BE1	T31	HA27#	H35	HIT#	AN31 AP32	MDA38 MDA39	Y29 Y30	MDB60 MDB61
AN23	BAB0	D03	GC#BE2	U32	HA28#	K35	HITM#	AP36	MDA40	W32	MDB62
AL20	BAB1	D04	GC#BE3	U30	HA29#	H36	HLOCK#	AM33	MDA41	W33	MDB63
AM17	BAB2	K06	GD0	R31	HA30#	H32	HPCREQ#	AL35	MDA42	W36	MEMDET
J33 H34	BNR# BPRI#	K05 J05	GD1 GD2	U31 N32	HA31# HADSTB0#	L31 L30	HREQ0# HREQ1#	AL36 AP35	MDA43 MDA44	A06 D10	NC NC
L36	BREQ0#	J06	GD3	T32	HADSTB1#	N31	HREQ2#	AN34	MDA45	F10	NC
AP17	CKEA0	K01	GD4	G29	HCLK-	N30	HREQ3#	AM36	MDA46	G10	NC
AT17 AN17	CKEA1 CKEA2	K02 J04	GD5 GD6	H29 A35	HCLK+ HD0#	M31 K36	HREQ4# HTRDY#	AL34 AH36	MDA47	G11 H04	NC
AR17	CKEA2	J03	GD7	A34	HD1#	D11	INTR#	AH35	MDA48 MDA49	H09	NC NC
AK17	CKEB0	J01	GD8	B35	HD2#	AT23	MAA0	AF35	MDA50	L01	NC
AK19	CKEB1	H03	GD9	D32	HD3#	AP22	MAA1	AE36	MDA51	L03	NC
AL18 AJ19	CKEB2 CKEB3	H06 H07	GD10 GD11	B34 B33	HD4# HD5#	AR22 AT22	MAA2 MAA3	AH31 AH32	MDA52 MDA53	L04 AR26	NC ODTA0
A20	CPURST#	H01	GD12	B32	HD6#	AP21	MAA4	AF36	MDA54	AR28	ODTA1
AT25	CSA0#	G01	GD13	C32	HD7#	AP20	MAA5	AH33	MDA55	AP26	ODTA2
AP27 AR25	CSA1# CSA2#	G04 F03	GD14 GD15	A31 E30	HD8# HD9#	AR21 AT20	MAA6 MAA7	AC36	MDA56	AP28	ODTA3
AT28	CSA2# CSA3#	D02	GD13 GD16	C30	HD10#	AR20	MAA8	AB32 AA35	MDA57 MDA58	AK23 AH24	ODTB0 ODTB1
AJ21	CSB0#	C01	GD17	F30	HD11#	AP19	MAA9	Y36	MDA59	AL24	ODTB2
AJ24	CSB1#	C02	GD18	B30	HD12#	AR23	MAA10	AC34	MDA60	AH23	ODTB3
AM23 AJ22	CSB2# CSB3#	B03 C03	GD19 GD20	A29 B29	HD13# HD14#	AR19 AT19	MAA11 MAA12	AC35 AB34	MDA61 MDA62	V02 Y02	PE1COMP PE1REXT
J32	DBSY#	A03	GD20 GD21	C29	HD14# HD15#	AR27	MAA12 MAA13	AA34	MDA62 MDA63	U02	PEIRX0-
G34	DEFER#	A02	GD22	F34	HD16#	AP18	MAA14	AK05	MDB0	U03	PE1RX0+
W34	DFTIN#	E04	GD23	G33	HD17#	AL22	MAB0	AK03	MDB1	W03	PE1RX1-
AK14 AF04	DMCOMP DNCMD	A05 A04	GD24 GD25	G32 F35	HD18# HD19#	AL21 AM22	MAB1 MAB2	AM03 AL04	MDB2 MDB3	W04 Y04	PE1RX1+ PE1RX2-
AD05	DNSTB-	C05	GD26	G31	HD20#	AN22	MAB3	AJ05	MDB3	Y03	PE1RX2+
AD04	DNSTB+	D05	GD27	D35	HD21#	AM21	MAB4	AJ04	MDB5	AA06	PE1RX3-
H31 AR02	DPWR# DQMA0	C06 D06	GD28 GD29	E36 D36	HD22# HD23#	AJ20	MAB5	AM01	MDB6	AA05	PE1RX3+
AT06	DQMA1	E07	GD29 GD30	D36	HD23# HD24#	AN20 AN19	MAB6 MAB7	AM02 AM04	MDB7 MDB8	U05 U06	PE1TX0- PE1TX0+
AP11	DQMA2	F07	GD31	E34	HD25#	AM19	MAB8	AL06	MDB9	V03	PE1TX1-
AM15	DQMA3	F08	GDBIH	C34	HD26#	AL19	MAB9	AM06	MDB10	V04	PE1TX1+
AP31 AN35	DQMA4 DQMA5	G08 F01	GDBIL GDEVSEL	D33 E33	HD27# HD28#	AK20 AM20	MAB10 MAB11	AK06 AN03	MDB11 MDB12	Y05 Y06	PE1TX2- PE1TX2+
AH34	DQMA6	E01	GFRAME	E32	HD29#	AM18	MAB12	AN01	MDB13	AA04	PEITX3-
AB33	DQMA7	F12	GGNT	F32	HD30#	AJ23	MAB13	AL05	MDB14	AA03	PE1TX3+
AK02 AM05	DQMB0 DQMB1	D01 G02	GIRDY GPAR	F31	HD31#	AL17	MAB14	AN06	MDB15	W07	PECLK-
AM09	DQMB1 DQMB2	A11	GRBF	E28 F28	HD32# HD33#	V32 V31	MCLKIA- MCLKIA+	AL08 AM08	MDB16 MDB17	Y07 AJ02	PECLK+ PEWAKE#
AL13	DQMB3	E12	GREQ	F29	HD34#	U35	MCLKOA-	AM10	MDB18	AJ01	PWROK
	DQMB4	B10	GSBA0#	C28	HD35#	U36	MCLKOA+	AL10	MDB19	AK01	RESET#
AJ32 AE33	DQMB5 DQMB6	C10 D07	GSBA1# GSBA2#	D28 E29	HD36# HD37#	V34 V35	MCLKOB- MCLKOB+	AK09 AL09	MDB20 MDB21	G36 L34	RS0# RS1#
W31	DQMB7	C07	GSBA3#	D29	HD38#	AP02	MDA0	AR09	MDB21 MDB22	G35	RS2#
AT02	DQSA0-	A07	GSBA4#	F27	HD39#	AR01	MDA1	AP10	MDB23	AT26	SCASA#
AR03 AP07	DQSA0+ DQSA1-	C09 B06	GSBA5# GSBA6#	A28	HD40# HD41#	AR04	MDA2	AL12	MDB24	AL23	SCASB#
AR07	DQSA1+	B07	GSBA7#	B27 D26	HD41# HD42#	AR05 AP01	MDA3 MDA4	AM12 AL14	MDB25 MDB26	AP24 AK22	SRASA# SRASB#
AR11	DQSA2-	A08	GSBSTBF	C26	HD43#	AP03	MDA5	AM14	MDB27	AJ03	SUSST#
AT11	DQSA2+	A09	GSBSTBS		HD44#	AT03	MDA6	AK12	MDB28	AP25	SWEA#
	DQSA3- DQSA3+	F04 D12	GSERR GST0	F26 G26	HD45# HD46#	AP04 AR06	MDA7 MDA8	AJ12 AP13	MDB29 MDB30	AM24 W08	SWEB# TCLK
AT32	DQSA4-	C12	GST1	H26	HD47#	AM07	MDA9	AN14	MDB31	W35	TESTIN#
AR32	DQSA4+	F11	GST2	D20	HD48#	AT08	MDA10	AN32	MDB32	AG03	UPCMD
	DQSA5- DQSA5+	G03 F02	GSTOP GTRDY	D22 B26	HD49# HD50#		MDA11	AL31	MDB33		UPSTB-
	DQSA6-	H27	GVCLK	D25	HD50# HD51#	AT05	MDA12 MDA13	AT36 AR35	MDB34 MDB35	AE03 AD03	UPSTB+ VBE#
AG34	DQSA6+	A10	GWBF	A26	HD52#	AN08	MDA14	AM31	MDB36	AD02	VD0
	DQSA7-	L33	HA3#	C25	HD53#	AP08	MDA15	AL30	MDB37	AC05	VD1
	DQSA7+ DQSB0-	M34 P30	HA4# HA5#	E23 C24	HD54# HD55#	AR10 AM11	MDA16 MDA17	AR34 AT35	MDB38 MDB39	AF02 AF03	VD2 VD3
AL03	DQSB0+	M32	HA6#	D23	HD56#	AT12	MDA17 MDA18	AL33	MDB39 MDB40	AC03	VD3 VD4
AN05	DQSB1-	L32	HA7#	C23	HD57#	AP12	MDA19	AK32	MDB41	AC02	VD5
	DQSB1+	M35	HA8#	B21	HD58#	AL11	MDA20	AJ36	MDB42	AG02	VD6
	DQSB2- DQSB2+	P32 P34	HA9# HA10#	C21 E22	HD59# HD60#		MDA21 MDA22	AJ33 AL32	MDB43 MDB44	AF05 AB02	VD7 VD8
AM13	DQSB3-	P31	HA11#	C22	HD61#	AR12	MDA23	AK31	MDB45	AB03	VD9
	DQSB3+		HA12#	B20	HD62#	AR14	MDA24	AK35	MDB46	AG05	VD10
AP33 AP34	DQSB4- DQSB4+	N35 P33	HA13# HA14#	C20 C31	HD63# HDBI0#	AT14 AP16	MDA25	AJ35	MDB47	AH02	VD11
AK34	DQSB4+ DQSB5-		HA15#	B36	HDBI0# HDBI1#	AN16	MDA26 MDA27	AE32 AF32	MDB48 MDB49	AB05 AA02	VD12 VD13
AJ34	DQSB5+	P35	HA16#	B28	HDBI2#	AR13	MDA28	AE35	MDB50	AH03	VD14
AF33	DQSB6-		HA17#	E21	HDBI3#	AP14	MDA29	AD36	MDB51	AH04	VD15
AF34 Y32	DQSB6+ DQSB7-	P36 R35	HA18# HA19#	A32 B31	HDSTB0N# HDSTB0P#	AR16 AT16	MDA30 MDA31	AE31 AF31	MDB52 MDB53		VLCOMPP
Y33	DQSB7+		HA20#	E35	HDSTB1N#	AT31	MDA31 MDA32	AE34	MDB53 MDB54	1004	VPAR
J35	DRDY#	T36	HA21#	C35	HDSTB1P#	AR31	MDA33	AD34	MDB55		
K03	GADSTBF0	U33	HA22#	E27	HDSTB2N#	AR33	MDA34	. W30	MDB56		

Table 3. Power, Ground and Voltage Reference Ball List

Outer Ring Balls (Intermixed with Signal Balls)

AGPVREF[1:0] GTLVREF[1:0] MEMVREF[1:0] VLVREF J09, J11 H23, M29 AD30, AJ10 AE05

VCCA33HCK GNDAHCK : H28 : G28

VCCA33MCK GNDAMCK

: V29 : W29

VCCA33PE1 GNDAPE1

: Y01 : W01

VCCA33PE GNDAPE V06 W06

VCCMEM

AF17, AF18, AF19, AF20, AF21, AF22, AF23, AF24, AF25, AF26, AF27, AF28, AF29, AG17, AG18, AG19, AG20, AG21, AG22, AG23, AG24, AG25, AG26, AG27, AG28, AG29, AH17, AH18, AH19, AH20, AH21, AH25, AH26, AH27, AH28, AH29, AJ17, AJ18, AJ25, AJ26, AJ27, AJ28, AJ29, AK18, AK21, AK24, AK25, AK26, AK27, AK28, AK29, AL25, AL26, AL27, AL28, AL29, AM25, AM26, AM27, AM28, AM29, AN18, AN21, AN24, AN25, AN26, AN27, AN28, AN29, AP29, AR29, AT18, AT21, AT24, AT27, AT29

VCC15

P18, P19, R17, R18, R21, T16, T17, T20, T21, U16, U19, U20, V14, V15, V18, V19, V22, V23, W13, W14, W17, W18, W21, W22, Y13, Y16, Y17, Y20, Y21, AA08, AA09, AA10, AA13, AA15, AA19, AA20, AB06, AB07, AB08, AB09, AB10, AB11, AB12, AB13, AB14, AB18, AB19, AC06, AC07, AC08, AC09, AC10, AC11, AC12, AC13, AC14, AC16, AC17, AC18, AD06, AD07, AD08, AD09, AD10, AD11, AD12, AD13, AD14, AD16, AD17, AE06, AE07, AE08, AE09, AE10, AE11, AE12, AE13, AE14, AE16, AF06, AF07, AF08, AF09, AF10, AF11, AF12, AF13, AF14, AG07, AG08, AG09, AG11, AG11, AG12, AG13, AH06, AH07, AH08

VCC15VL

Y11, Y12, AA11, AA12

VCC33PE

R01, R02, R03, R04, R05, R06, R07, R08, R09, R10, R11, T01, T02, T03, T04, T05, T06, T07, T08, T09, T10, T11, U07, U08, U09, U10, U11, V10, V11

VCC15AGP

P04, P05, P06, P07, P08, P09, P10, P11

VSUS15

AH05

VSUS15PE

: V01

VTT

A14, A15, A16, A17, A18, A19, B14, B15, B16, B17, B18, B19, C14, C15, C16, C17, C18, C19, D14, D15, D16, D17, D18, D19, E14, E15, E16, E17, E18, E19, F16, F17, F18, F19, G15, G16, G17, G18, G19, H16, H17, H18, H19, J17, J18, J19, K17, K18, K19, L17, L18, L19, L20, L21, L22, L23,

M18, M19, M20, M21, M22, M23

GND

A13, A21, A24, A27, A30, A33, A36, B02, B05, B08, B09, B11, B13, C13, C33, C36, D13, D21, D24, D27, D30, E02, E03, E05, E06, E08, E10, E11, E13, F05, F06, F13, F20, F33, F36, G06, G07, G09, G14, G20, G21, G24, G27, G30, H02, H05, H08, H15, H33, J07, J08, J16, J36, K07, K08, K16, L02, L05, L06, L07, L08, M12, M16, M30, M33, M36, N12, N17, N19, N20, N21, N22, N23, P12, P16, P20, P21, R12, R15, R19, R20, R30, R33, R36, T12, T13, T14, T18, T19, T22, U01, U04, U12, U13, U14, U17, U18, U21, U22, V05, V07, V08, V09, V12, V13, V16, V17, V20, V21, V24, V30, V33, V36, W02, W05, W09, W10, W11, W12, W15, W16, W19, W20, W23, W24, Y08, Y09, Y10, Y14, Y18, Y19, Y22, Y23, AA07, AA17, AA18, AA21, AA22, AA30, AA33, AA36, AB01, AB04, AB16, AB17, AB20, AB21, AC19, AC20, AD18, AD19, AD31, AD33, AD35, AE01, AE04, AE17, AE18, AE19, AE20, AE21, AE22, AE23, AE24, AE25, AE26, AE27, AE28, AE29, AF16, AG04, AG14, AG15, AG16, AG31, AG33, AG36, AH01, AH09, AH10, AH11, AH12, AH13, AH14, AJ06, AJ07, AJ08, AJ09, AK04, AK07, AK10, AK13, AK30, AK33, AK36, AL01, AL15, AM16, AN02, AN04, AN07, AN10, AN13, AN15, AN30, AN33, AN36, AR15, AR36, AT01, AT04, AT07, AT10, AT13, AT30, AT33

Ball Descriptions

CPU Interface Ball Descriptions

41			CPU Interface					
Signal Name	Ball #	I/O	Signal Description					
HA[31:3]#	(see ball lists)	IO	Host CPU Address Bus. Connect to the address bus of the host CPU. Inputs during CPU cycles and driven by the PT880 Pro during cache snooping operations.					
HADSTB [1:0]#	T32, N32	Ю	Host CPU Address Strobe. Source synchronous strobes used to transfer HA[31:3]# and HREQ[4:0]# at a 2x transfer rate. HADSTB1# is the strobe for HA[31:17]# and HADSTB0# is the strobe for HA[16:3] and HREQ[4:0]#.					
HD[63:0]#	(see ball lists)	IO	Host CPU Data. These signals are connected to the CPU data bus.					
DPWR#	H31	0	Data Bus Power Reduction. Request to reduce power on the mobile CPU data bus input buffer. Connect to mobile CPU if used.					
HDBI[3:0]#	E21, B28, B36, C31	IO	Host CPU Dynamic Bus Inversion. Driven along with HD[63:0]# to indicate if the associated signals are inverted or not. Used to limit the number of simultaneously switching signals to 8 for the associated 16-bit data ball group (HDBI3# for HD[63:48]#, HDBI2# for HD[47:32]#, HDBI1# for HD[31:16]#, and HDBI0# for HD[15:0]#). HDBIn# is asserted such that the number of data bits driven low for the corresponding group does not exceed 8.					
HDSTB [3:0]P#	B24, C27, C35, B31	IO	Host CPU Differential Data Strobes. Source synchronous strobes used to transfer HD[63:0]# & HDBI[3:0]# at a 4x transfer rate. HDSTB3P# / HDSTB3N# are the strobes for HD[63:48]# & HDBI3#; HDSTB2P# / HDSTB2N# are the strobes for HD[47:32]# &					
HDSTB [3:0]N#	E24, E27, E35, A32		HDBI2#; HDSTB1P# / HDSTB1N# are the strobes for HD[31:16]# & HDBI1#; and HDSTB0P# / HDSTB0N# are the strobes for HD[15:0]# & HDBI0#.					
ADS#	J34	Ю	Address Strobe. The CPU asserts ADS# in T1 of the CPU bus cycle.					
DBSY#	J32	IO	Data Bus Busy . Used by the data bus owner to hold the data bus for transfers requiring more than one cycle.					
DRDY#	J35	IO	Data Ready. Asserted for each cycle that data is transferred.					
HEDRDY#	L35	0	Early Data Ready. Indicates that data will be returning on the bus exactly two clocks after assertion. Connect to host CPU if it implements this function, otherwise leave unconnected.					
HREQ[4:0]#	M31, N30, N31, L30, L31	Ю	Request Command. Asserted during both clocks of the request phase. In the first clock, the signals define the transaction type to a level of detail that is sufficient to begin a snoop request. In the second clock, the signals carry additional information to define the complete transaction type.					
HTRDY#	K36	IO	Host Target Ready. Indicates that the target of the processor transaction is able to enter the data transfer phase.					
RS[2:0]#	G35, L34, G36	Ю	Response Signals.Indicates the type of response per the table below:RS[2:0]#Response typeRS[2:0]#Response type000Idle State100Hard Failure001Retry Response101Normal Without Data010Defer Response110Implicit Writeback011Reserved111Normal With Data					

Note: Clocking of the CPU interface is performed with HCLK+ and HCLK- (see clock ball description group).

Note: Internal pullup resistors are provided on all AGTL+ interface balls. If the CPU does not have internal pull-ups, these

North Bridge internal pull-ups may be enabled to allow the interface to meet AGTL+ bus interface specifications (see VD3 strop)

strap).

Note: I/O pads for the above balls are powered by VTT.

			CPU Interface (continued)			
Signal Name	Ball#	I/O	Signal Description			
HIT#	H35	IO	Hit. Indicates that a caching agent holds an unmodified version of the requested line. Also driven in conjunction with HITM# by the target to extend the snoop window.			
HITM#	K35	I	Hit Modified . Asserted by the CPU to indicate that the address is modified in the L1 cache and needs to be written back.			
HLOCK#	H36	I	Host Lock. All CPU cycles sampled with the assertion of HLOCK# and ADS# until the negation of HLOCK# must be atomic.			
HPCREQ#	H32	I	PreCharge Request. The CPU asserts this signal to indicate that the next memory access will be off-page. Connect to ground if the CPU does not implement this function.			
BREQ0#	L36	0	Bus Request. Bus request output to CPU.			
BPRI#	H34	Ю	Priority Agent Bus Request. The owner of this signal will always be the next bus owner. This signal has priority over symmetric bus requests and causes the current symmetric owner to stop issuing new transactions unless the HLOCK# signal is asserted. The PT880 Pro drives this signal to gain control of the processor bus.			
BNR#	J33	IO	Block Next Request. Used to block the current request bus owner from issuing new requests. This signal is used to dynamically control the processor bus pipeline depth.			
DEFER#	G34	IO	Defer. The PT880 Pro uses a dynamic deferring policy to optimize system performance. The PT880 Pro also uses the DEFER# signal to indicate a processor retry response.			
CPURST#	A20	0	CPU Reset. Reset output to CPU. External pullup and filter capacitor to ground should be provided per CPU manufacturer's recommendations.			

Note: I/O pads for the above balls are powered by VTT.

The ballouts were defined assuming the ATX PCB layout model shown below (and general ball layout shown) as a guide for PCB component placement. Other PCB layouts (AT, LPX, and NLX) were also considered and can typically follow the same general component placement.

Ultra V-Link Ball Descriptions

	politica La participa		Ultra V-Link Interface
Signal Name	Ball#	I/O	Signal Description
VD15,	AH04	IO	Data Bus. During system initialization, VD[7:0] are used to transmit strap information
VD14,	AH03	IO	from the South Bridge (the straps are not on the VD balls but are on the indicated balls of
VD13,	AA02	IO	the South Bridge chip). Check the strap ball table for details.
VD12,	AB05	IO	
VD11,	AH02	IO	
VD10,	AG05	1O	
VD9,	AB03	IO	
VD8,	AB02	IO	
VD7,	AF05	IO	
VD6,	AG02	IO	
VD5,	AC02	IO	
VD4 ,	AC03	IO	
VD3,	AF03	IO	
VD2,	AF02	IO	
VD1,	AC05	IO	
VD0	AD02	IO	
VPAR	AC04	IO	Parity.
VBE#	AD03	IO	Byte Enable.
UPCMD	AG03	I	Command from Client (South Bridge) to Host (North Bridge).
UPSTB+	AE03	I	Strobe from Client to Host.
UPSTB-	AE02	I	Complement Strobe from Client to Host.
DNCMD	AF04	О	Command from Host (North Bridge) to Client (South Bridge).
DNSTB+	AD04	0	Strobe from Host to Client.
DNSTB-	AD05	0	Complement Strobe from Host to Client.

Note: I/O pads for all balls in the table above are powered by VCC15VL. Input voltage levels are referenced to VLVREF.

DDR / DDER2 SDRAM Memory Controller Ball Descriptions

Mark Bart and Ling Aleman The Mark Bart Bart Bart Bart Bart Bart Bart Bart	DDR	DRAM	I Interface – "A" Data
Signal Name	Ball #	I/O	Signal Description
MDA[63:0]	(see ball lists)	IO	Memory Data. These signals are connected to the DRAM data bus. Output drive strength may be set by Device 0 Function 3 RxE2.
DQMA[7:0]	AB33, AH34, AN35, AP31, AM15, AP11, AT06, AR02	O / IO	Data Mask. Data mask of each byte lane. Output drive strength may be set by Device 0 Function 3 RxE2.
DQSA[7:0]+	AB35, AG34, AM35, AR32, AT15, AT11, AR07, AR03	IO	DDR / DDR2 Memory Data Strobes. Data strobe of each byte lane. Output drive strength may be set by Device 0 Function 3
DQSA[7:0]-	AB36, AG35, AM34, AT32, AP15, AR11, AP07, AT02		RxE0. DQSA[7:0]— are used only for DDR2 differential data strobe.
CSA[3:0]#	AT28, AR25, AP27, AT25	0	Chip Select. Chip select of each bank. Output drive strength may be set by Device 0 Function 3 RxE4.
CKEA[3:0]	AR17, AN17, AT17, AP17	0	Clock Enables. Clock enables for each DRAM bank for powering down the SDRAM or clock control for reducing power usage and for reducing heat / temperature in high-speed memory systems.
ODTA[3:0]	AP28, AP26, AR28, AR26	0	On Die Termination. Enables termination resistance internal to the DDR2 SDRAM. Not used in DDR mode.

	DDR	DRAM	I Interface – "B" Data
Signal Name	Ball #	I/O	Signal Description
MDB[63:0]	(see ball lists)	IO	Memory Data. These signals are connected to the DRAM data bus. Output drive strength may be set by Device 0 Function 3 RxE2.
DQMB[7:0]	W31, AE33, AJ32, AM32, AL13, AM09, AM05, AK02	O / IO	Data Mask. Data mask of each byte lane. Output drive strength may be set by Device 0 Function 3 RxE2.
DQSB[7:0]+	Y33, AF34, AJ34, AP34, AN12, AP09, AP05, AL03	IO	DDR / DDR2 Memory Data Strobes. Data strobe of each byte lane. Output drive strength may be set by Device 0 Function 3
DQSB[7:0]-	Y32, AF33, AK34, AP33, AM13, AN09, AN05, AL02		RxE0. DQSB[7:0]— is used only for DDR2 differential data strobe.
CSB[3:0]#	AJ22, AM23, AJ24, AJ21	0	Chip Select. Chip select of each bank. Output drive strength may be set by Device 0 Function 3 RxE4.
CKEB[3:0]	AJ19, AL18, AK19, AK17	0	Clock Enables. Clock enables for each DRAM bank for powering down the SDRAM or clock control for reducing power usage and for reducing heat / temperature in high-speed memory systems.
ODTB[3:0]	AH23, AL24, AH24, AK23	0	On Die Termination. Enables termination resistance internal to the DDR2 SDRAM. Not used in DDR mode.

DDR DRAM Interface – Address								
Signal Name	Ball #	I/O	Signal Description					
MAA[14:0], MAB[14:0]	(see ball lists)	Ο	Memory Address A and B. Two sets for additional drive. Output drive strength set via Function 3 RxE8 (MAA) and RxEA (MAB).					
BAA[2:0], BAB[2:0]	AR18, AP23, AR24 AM17, AL20, AN23	Ο	Bank Address A and B. Two sets for additional drive. Output drive strength may be set by Device 0 Function 3 RxE8 (BAA) and RxEA (BAB).					
SRASA#, SCASA#, SWEA#, SRASB#, SCASB#, SWEB#	AP24, AT26, AP25 AK22, AL23, AM24	О	Row Address, Column Address and Write Enable Command Indicators A and B. Two sets for additional drive. Output drive strength set via Function 3 Rx E8(A) & EA(B).					

Note: I/O pads for all balls on this page are powered by VCCMEM. MD / DQS input voltage levels are referenced to MEMVREF.

Accelerated Graphics Port Ball Descriptions

AGP Bus Interface								
Ball #	I/O	Signal Description						
F07	Ю	Address / Data Bus. Address is driven with GADSTB assertion.						
F03								
G04								
G01								
H01								
H07								
H06								
H03								
	IO	Command / Byte Enable. For AGP cycles these balls provide command information driven by						
	10	the master (graphics controller). These balls provide valid byte information during AGP write						
	_	transactions and are driven by the master. The target (this chip) drives these lines to "0000" during						
		the return of AGP read data.						
	IO	AGP Parity. A single parity bit is provided over GD[31:0] and GC#BE[3:0].						
		Dynamic Bus Inversion High / Low. Driven by the source to indicate whether the corresponding						
		data bit group (GDBIH for GD[31:16] and GDBIL for GD[15:0]) needs to be inverted on the						
		receiving end (1 on GDBIx indicates that the corresponding data bit group should be inverted).						
		Used to limit the number of simultaneously switching outputs to 8 for each 16-ball group.						
K03	IO	Bus Strobe 0. Source synchronous strobes for GD[15:0] (the agent that is providing the data						
K04	-	drives these signals). GADSTBF0 is "First" strobe, GADSTBS0 is "Second" strobe.						
C04	IO	Bus Strobe 1. Source synchronous strobes for GD[31:16] (i.e., the agent that is providing the data						
B04		drives these signals). GADSTBF1 is "First" strobe, GADSTBS1 is "Second" strobe.						
	IO	Frame. Assertion indicates the address phase of a PCI transfer. Negation indicates that one more						
		data transfer is desired by the cycle initiator.						
F01	IO	Device Select (PCI transactions only). This signal is driven by the North Bridge when a PCI						
- / -		initiator is attempting to access main memory. It is an input when the chip is acting as PCI						
		initiator. Not used for AGP cycles.						
	F07 E07 E07 D06 C06 D05 C05 A04 A05 E04 A02 A03 C03 B03 C02 C01 D02 F03 G04 G01 H01 H07 H06 H03 J01 J03 J04 K02 K01 J05 K05 K06 D04 D03 G05 J05 K06 D04 D03 G05 J05 K06 D04 D03 G05 J05 K06 D04 D05 K06 D06 D06 D06 D06 D06 D06 D06 D06 D06 D	F07 IO E07 D06 C06 D05 C05 A04 A05 E04 A02 A03 C03 B03 C02 C01 D02 F03 G04 G01 H01 H07 H06 H03 J01 J03 J04 K02 K01 J06 J05 K05 K06 D04 IO D03 G05 J02 G02 IO F08 G08 IO G08 IO						

Note: I/O pads for all balls on this page are powered by VCC15AGP. Input voltage levels are referenced to AGPVREF.

The second secon	W.		AGP Bus Interface – continued
Signal Name	Ball #	I/O	Signal Description
GIRDY	D01	IO	Initiator Ready. For write cycles, assertion indicates that the master is ready to provide all write data for the current transaction. Once asserted, the master is not allowed to insert wait states. For read cycles, assertion indicates that the master is ready to transfer a subsequent block of read data. The master is never allowed to insert a wait state during the initial block of a read transaction, however it may insert wait states after each block transfers.
GTRDY	F02	IO	Target Ready. For AGP cycles, indicates that the target is ready to provide read data for the entire transaction (when the transaction can complete within four clocks) or is ready to transfer a (initial or subsequent) block of data when the transfer requires more than four clocks to complete. The target is allowed to insert wait states after each block transfer for both read and write transactions.
AGP8XDET#	H11	I	AGP 8x Transfer Mode Detect. Low indicates that the external graphics card can support 8x transfer mode
GRBF	A11	I	Read Buffer Full. Indicates if the master (graphics controller) is ready to accept previously requested low priority read data. When asserted, the North Bridge will not return low priority read data to the graphics controller.
GWBF	A104	I	Write Buffer Full.
GSBA7#,	B07	I	Side Band Address. Provides an additional bus to pass address and command information from
GSBA6#,	B06		the master (graphics controller) to the target (North Bridge).
GSBA5#,	C09		
GSBA4#,	A07		
GSBA3#,	C07 D07		
GSBA2#, GSBA1#,	C10		
GSBA0#	B10		
GSBSTBF,	A08	I	Side Band Strobe. Driven by the master to provide timing for GSBA[7:0]. GSBSTBF is "First"
GSBSTBS	A09		strobe and GSBSTBS is "Second" strobe.
GST2,	F11	0	Status. Provides information from the arbiter to a master to indicate what it may do. Only valid
GST1,	C12		while GGNT is asserted. GST[2:0] are always outputs from the target (North Bridge logic) and
GST0	D12		inputs to the master (graphics controller).
			(i Indicates that a previously requested low priority read or flush data is being returned to
			the master (graphics controller). (i Indicates that previously requested high priority read data is being returned to the
			master. (i.□. Indicates that the master is to provide low priority write data for a previously enqueued write command.
			(i Indicates that the master is to provide high priority write data for a previously enqueued write command.
			(i.□. Reserved. (arbiter must not issue, may be defined in the future).
			(i.□. Reserved. (arbiter must not issue, may be defined in the future).
			(i.□. Reserved. (arbiter must not issue, may be defined in the future).
			111 Indicates that the master (graphics controller) has been given permission to start a bus
			transaction.
GREQ	E12	I	Request. Master (graphics controller) request for use of the AGP bus.
GGNT	F12	0	Grant. Permission is given to the master (graphics controller) to use the AGP bus.
GSERR	F04	IO	System Error.
GSTOP	G03	IO	Stop. Asserted by the target to request the master to stop the current transaction.

Note: I/O pads for all balls on this page are powered by VCC15AGP. Input voltage levels are referenced to AGPVREF. Note: Separate system interrupts are not provided for AGP. The AGP connector provides interrupts via PCI bus INTA-B#.

Note: A separate reset is not required for the AGP bus (RESET# resets both PCI and AGP buses).

PCI Express Ball Descriptions

	534 P.		PCI Express (PCIe) Port
Signal Name	Ball #	I/O	Signal Description
PE1RX3+	AA05	I	PCI Express Port Receive Data 3.
PE1RX3-	AA06		•
PE1RX2+	Y03	I	PCI Express Port Receive Data 2.
PE1RX2-	Y04		
PE1RX1+	W04	I	PCI Express Port Receive Data 1.
PE1RX1-	W03		
PE1RX0+	U03	I	PCI Express Port Receive Data 0.
PE1RX0-	U02		
PE1TX3+	AA03	0	PCI Express Port Transmit Data 3.
PE1TX3-	AA04		•
PE1TX2+	Y06	0	PCI Express Port Transmit Data 2.
PE1TX2-	Y05		
PE1TX1+	V04	0	PCI Express Port Transmit Data 1.
PE1TX1-	V03		<u> </u>
PE1TX0+	U06	0	PCI Express Port Transmit Data 0.
PE1TX0-	U05		

Note: I/O pads for all balls in the table above are powered by VCC33PE.

Clock Ball Descriptions

	Clock						
Signal Name	Ball #	I/O	Signal Description	Power Plane			
HCLK+	H29	I.	Host Clock. These balls receive the host CPU clock (100 / 133 / 166 /	VTT			
HCLK-	G29		200 MHz) used by all PT880 Pro logic that is in the host CPU domain.				
PECLK+	Y07	I	PCI Express Clock. These balls receive the 100 MHz clock used by the	VCC33PE			
PECLK-	W07		internal PCI Express logic. Multiplied up to 2.5 GHz on-chip for use by				
			the integrated PCI Express PHY to transmit / receive data.				
VGCLK	H27	I	AGP Clock. This ball receives the 66 MHz clock used by the internal	VCC33PE			
			AGP logic.				
MCLKOA+	U36	0	Memory (SDRAM) Clock A. Output from internal clock generator to the	VCCMEM			
MCLKOA-	U35		external clock buffer (if needed for fanout) for memory interface "A".				
MCLKIA+	V31	I	Memory (SDRAM) Clock Feedback A. Input from MCLKOA.	VCCMEM			
MCLKIA-	V32		•				
MCLKOB+	V35	0	Memory (SDRAM) Clock B. Output from internal clock generator to the	VCCMEM			
MCLKOB-	V34		external clock buffer (if needed for fanout) for memory interface "B".				

Reset, Power Control, General Purpose I/O, Interrupt and Test Ball Descriptions

A CONTRACTOR OF THE STATE OF TH	Reset, Power Control, General Purpose I/O, Interrupt and Test				
Signal Name	Ball #	I/O	Signal Description	Power Plane	
RESET#	AK01	I	Reset. Input from the South Bridge chip. When asserted, this signal resets the PT880 Pro and sets all register bits to the default value. The rising edge of this signal is used to sample all power-up strap options.	VSUS15	
PWROK	AJ01	I	Power OK. From Power Good circuitry. Also connected to South Bridge.	VSUS15	
SUSST#	AJ03	I	Suspend Status. For implementation of the Suspend-to-DRAM feature. Connect to an external pull-up to disable.	VSUS15	
PEWAKE#	AJ02	OD	PCI Express Wake. Indicates that a system wake event has occurred on the PCI Express bus. Used to waken the chip from deep sleep mode (S3 / S4 / S5 states). Wire-OR with other system WAKE# signals (including PEWAKE# on the PCI Express bus connector) and connect to the South Bridge PME input. This ball has a weak internal pullup to VSUS15 but the system should also provide an external 10K ohm pullup to VSUS33.	VSUS15	
INTR#	D11	OD	PCI Express Interrupt. Connect to South Bridge interrupt input to indicate that an interrupt condition was detected on PCI Express bus or the internal APIC. This ball has a weak internal pullup in AGP 2.0 mode only (disabled in AGP 3.0 mode).	VCCAGP	
MEMDET	W36	I	Memory Detect. Must be strapped low / high for DDR / DDR2.	VCCMEM	
TCLK	W08	I	Test Clock. This ball is used for testing. It is internally pulled high so may be left unconnected for all board designs.	VCC33PE	
TESTIN#	W35	I	Test In. This ball is used for testing and must be connected to VCCMEM through a 1K-4.7K ohm resistor for all board designs.	VCCMEM	
DFTIN#	W34	I	DFT In. This ball is used for testing and must be connected to VCCMEM through a 1K-4.7K ohm resistor for all board designs.	VCCMEM	

Compensation and Reference Voltage Ball Descriptions

	Compensation					
Signal Name	Ball #	I/O	Signal Description	Power Plane		
DMCOMP	AK14	ΑI	SDRAM Compensation. Connect a 275 Ω 1% resistor to ground.	VCCMEM		
PE1COMP	V02	ΑI	PCI Express Port 0 Compensation. Connect a 250 Ω 1% resistor to ground to calibrate 50 Ω termination.	VCC33PE		
PE1REXT	Y02	AI	PCI Express Port 1. External Resistor. See Design Guide.	VCC33PE		
VLCOMPP	AG06	ΑI	V-Link Bus Compensation. Connect a 360 Ω 1% resistor to ground.	VCC15VL		

Reference Voltages				
Signal Name	Ball #	I/O	Signal Description	Power Plane
GTLVREF[1:0]	H23, M29	P	Host CPU Interface AGTL+ Voltage Reference. 2/3 VTT ±2% typically derived using a resistive voltage divider. See Design Guide.	VTT
MEMVREF[1:0]	AD30, AJ10	P	Memory Voltage Reference. 0.5 VCCMEM ±2% typically derived using a resistive voltage divider. See Design Guide.	VCCMEM
VLVREF	AE05	P	V-Link Voltage Reference. 0.625V ±2% derived using a resistive voltage divider. See PT880 Pro Design Guide.	VCC15VL
AGPVREF[1:0]	J09, J11	Р	AGP Voltage Reference. ½ VCC15AGP (0.75V) for AGP 2.0 (4x transfer mode) and 0.23 VCC15AGP (0.35V) for AGP 3.0 (8x transfer mode). See the Design Guide for additional information and circuit implementation details.	VCC15AGP

Analog Power Ball Descriptions

The second secon	Analog Power / Ground						
Signal Name	Ball #	I/O	Signal Description				
VCCA33HCK	H28	P	Power for Host CPU Clock PLL (3.3V ±5%). 400 MHz for CPU / DRAM frequencies of multiples of 100, 133, and 200 MHz.				
GNDAHCK	G28	P	Ground for Host CPU Clock PLL. Connect to main ground plane through a ferrite bead.				
VCCA33MCK	V29	P	Power for Memory Clock PLL (3.3V ±5%)				
GNDAMCK	W29	P	Ground for Memory Clock PLL. Connect to main ground plane through a ferrite bead.				
VCCA33PE1	Y01	P	Power for PCI Express Port Clock PLL (3.3V ±5%). For PE1[3:0].				
GNDAPE1	W01	P	Ground for PCI Express Port Clock PLL. Connect to main ground plane through a ferrite bead.				
VCCA33PE	V06	P	Power for PCI Express Clock PLL (3.3V \pm 5%). For PECLK clock synthesizer.				
GNDAPE	W06	Р	Ground for PCI Express Clock PLL. Connect to main ground plane through a ferrite bead.				

Digital Power Ball Descriptions

			Digital Power / Ground
Signal Name	Ball#	I/O	Signal Description
VTT	(see ball lists)	P	Power for CPU I/O Interface Logic. Typical 1.65V (CPU dependent).
VCCMEM	(see ball lists)	P	Power for Memory I/O Interface Logic. 1.8 / 2.5V ±5%.
VCC15VL	Y11, Y12,	P	Power for V-Link I/O Interface Logic. 1.5V ±5%
	AA11, AA12		
VCC15AGP	(see ball lists)	P	Power for AGP Bus I/O Interface Logic. 1.5V ±5%
VCC33PE	(see ball lists)	P	Power for PCIe I/O Interface Logic. 3.3V ±5%
VCC15	(see ball lists)	P	Power for Internal Logic. 1.5V ±5%
VSUS15	AH05	P	Suspend Power. 1.5V ±5%. For RESET#, PWROK, SUSST# and PEWAKE# balls
	1		and associated internal circuitry.
VSUS15PE	V01	P	PCI Express Suspend Power. 1.5V ±5%.
GND	(see ball lists)	P	Digital Ground. Connect to main ground plane.

Strap Ball Descriptions

Strap Balls (External pullup / pulldown straps are required to select "H" / "L")						
Signal	Actual Strap Ball	Function	Description	Status Bit		
VD7	VT8235M- CD,CE: SDCS3# VT8237R Plus: PDCS3#	V-Link Compensation Select	L: Auto Mode (Use VLCOMP Resistor) H: Manual Mode (Use internal default setting) VD7 is sampled during system initialization; the actual strapping ball is located on the South Bridge chip. Default Setting: Manual Mode			
VD6	VT8235M- CD,CE: SDA2 VT8237R Plus: PDA2	Auto-Configure (ROMSIP)	 L: Disable H: Enable VD6 is sampled during system initialization; the actual strapping ball is located on the South Bridge chip. Default Setting: Enable 	F2 Rx76[2]		
VD5	VT8235M-CDCE: SDA1 VT8237R Plus: PDA1	V-Link 4X Vref Select	L: 0.9V for 0.22u SB Core Power +2.5V (for VT8237R Plus) H: 0.75V for 0.15u SB Core Power +1.5V (for VT8251) VD5 is sampled during system initialization; the actual strapping ball is located on the South Bridge chip.	F7 RxB4[4]		
VD3	VT8235M-CD: SA19 VT8235M-CE: Strap_VD3 VT8237R Plus: GPIOD	Internal AGTL+ Pullups	L: Enable H: Disable VD3 is sampled during system initialization; the actual strapping ball is located on the South Bridge chip. Default Setting: Enable	F2 Rx52[5]		
VD2	VT8235M-CD: SA18 VT8235M-CE: Strap_VD2 VT8237R Plus: GPIOB	IOQ Depth	L: 12-Level deep H: 1-Level deep VD2 is sampled during system initialization; the actual strapping ball is located on the South Bridge chip. Default Setting: 12-Level deep	F2 Rx50[7]		
VD4, VD1, VD0	VT8235M-CD: SDA0, SA17, SA16 VT8235M-CE: SDA0, Strap_VD1, Strap_VD0 VT8237R Plus: PDA0, GPIOA, GPIOC	FSB Frequency	LLL: 100 MHz LLH: 133 MHz LHL: 200 MHz LHH: 166 MHz HLL: -reserved- HLH: -reserved- HHL: -reserved- HHH: Auto VD4, VD1 and VD0 are sampled during system initialization; the actual strapping balls are located on the South Bridge chip.			

REGISTER OVERVIEW

In the register descriptions, column "Default" indicates the default value of register bit(s). While column "Attribute" indicates access type of register bit(s).

Abbreviation

Attribute definitions are

RW: Read / Write.
RO: Read Only.
RZ: Read as Zero.
R1: Read as 1.

W1: Write Once then Read Only after that.

W1C: Write of "1" clears bit to zero.

ROS: Sticky-Read Only. Registers will not be set or altered by hot reset.
 RWS: Sticky-Read/Write. Registers will not be set or altered by hot reset.
 RW1CS: Sticky-Write-1-to-Clear. Registers will not be set or altered by hot reset.

IW: Ignore Write.

MW: Must Write back what is read.

XW: Backdoor Write.

"—": Reserved (essentially the same as RO).

Bit default value indicated as "dip" means the default value is set by dip switch or strapping.

There are three PCI devices, device 0, device 1, device 2 and up to 10 PCI functions are implemented in this chip. To specifically identify a PCI function, the following abbreviations will be applied in subsequent sections.

D0F0: Device 0, Function0 - AGP and Host Control

DOF1: Device 0, Function1 - Error Reporting

D0F2: Device 0, Function2 - Host Bus Control

DOF3: Device 0, Function3 - DRAM Bus Control

D0F4: Device 0, Function4 - Power Management Control

DOF5: Device 0, Function5 - APIC and Central Traffic Control

DOF6: DeviceO, Function 6 - Scratch Registers

DOF7: Device 0, Function7 - V-Link Control

D1F0: Device 1, Function0 - PCI-to-PCI Bridge - PCI2

 $extsf{D2F0:}$ Device 2, Function0 - PCI-to-PCI Bridge - PCI Express Root Port (x4 with options of x2 and x1 Line Width)

REGISTER DESCRIPTIONS

Miscellaneous I/O

I/O Port Address: 22h PCI Arbiter Disable

Default Value: 00h

Default Value: 0000 0000h

Default Value: 0000 0000h

Bit(s)	Attribute	Default	Description
7:2	RO	0	Reserved
1	RW	0	PCI2 Arbiter Control 0: Enable PCI2 Bus Arbiter 1: Disable PCI2 Bus Arbiter
0	RW	0	PCI Arbiter Control 0: Enable PCI Bus Arbiter (arbiter will respond to REQ# assertion) 1: Disable PCI Bus Arbiter (arbiter will not respond to PCI-1 REQ# and PREQ# assertion)

PCI Configuration Space I/O

All north bridge's PCI space registers are addressed via the following configuration mechanism:

Mechanism #1

These ports respond only to double-word accesses. Byte or word accesses will be passed on unchanged.

I/O Port Address: CFB-CF8h

PCI Configuration Address

Bit(s)	Attribute	Default	Description
31	RW	0	Configuration Space Enable
			0: Disabled
			1: Convert configuration data port writes to configuration cycles on the PCI bus
30:24	RO	0	Reserved (always reads 0)
23:16	RW	0	PCI Bus Number
			Used to choose a specific PCI bus in the system
15:11	RW	0	Device Number
			Used to choose a specific device in the system
10:8	RW	0	Function Number
			Used to choose a specific function if the selected device supports multiple functions
7:2	RW	0	Register Number (also called the "Offset")
			Used to select a specific DWORD in the configuration space
1:0	RW	0	Fixed (always reads 0)

I/O Port Address: CFF-CFCh

PCI Configuration Data

Bit(s)	Attribute	Default	Description
31:0	RW	0	PCI Configuration Data

Note. Refer to PCI Bus Specification Version 2.3 for further details on operation of the above configuration registers.

Device 0 Function 0 (D0F0): Host Controller

Device 0 Function 0, a host controller, is connected to the PCI bus through AD11 as the IDSEL.

All registers are located in PCI configuration space and should be programmed using PCI configuration mechanism 1 through I/O registers CF8 / CFC with bus number 0, device number 0 and function number 0.

Header Registers (0-3Fh)

Offset Address: 1-0h (D0F0)

Vendor ID Default Value: 1106h

Bit	Attribute	Default	Description
15:0	RO	1106h	VIA Technologies ID Code

Offset Address: 3-2h (D0F0)

Device ID Default Value: 0308h

Bit	Attribute	Default	Description
15:0	RO	0308h	Device ID Code

Offset Address: 5-4h (D0F0)

PCI Command Default Value: 0006h

Bit	Attribute	Default	Description	Mnemonic
15:10		0	Reserved	
9	RO	0	Fast Back-to-Back Cycle Enable Hardwired to 0. (Disable)	
8	RO	0	SERR# Enable Hardwired to 0 (Not supported)	
7	RO	0	Address / Data Stepping Hardwired to 0 (Not supported)	
6	RW	0	Parity Checking 0: Ignore parity errors 1: Perform parity check and take normal action on detected parity errors	RPTYERR
5	RO	0	VGA Palette Snooping Hardwired to 0 (Not implemented)	
4	RO	0	Memory Write and Invalidate Hardwired to 0 (Not supported)	
3	RO	0	Respond To Special Cycle Hardwired to 0 (Does not monitor special cycles)	
2	RO	1	PCI Master Function Hardwired to 1 (May behave as a bus master)	
1	RO	1	Memory Space Access Hardwired to 1 (Responds to memory space access)	
0	RO	0	I/O Space Access Hardwired to 0 (Does not respond to I/O space)	

Offset Address: 7-6h (D0F0)

PCI Status Default Value: 0210h

Bit	Attribute	Default	D	escription
15	RW1C	0	Detect Parity Error	
			0: No parity error detected	
			1: Error detected in either address or data phase	
14	RO	0	Signaled System Error (SERR#)	
13	RW1C	0	Set when terminated with Master-Abort, except sp	ecial cycle
			0: No abort received	1: Transaction aborted by the master
12	RW1C	0	Set when received a Target-Abort	
			0: No abort received	1: Transaction aborted by the target
11	RO	. 0	Set when signaled a Target-Abort	
			NB never signals Target Abort	· ·
10:9	RO	01	DEVSEL# Timing	
ł			00: Fast	01: Medium (default)
			10: Slow	11: Reserved
8	RW1C	0	Set when set or observed SERR# and Parity Error	
			(see RPTYERR (Rx04[6]) for details)	
			0: Disable	1: Enable
7	RO	0	Capable of Accepting fast back-to-back as a target	
			Hardwired to 0 (Not implemented)	
6	RO	. 0	User Definable Features	
			Hardwired to 0	
5	RO	0	66 MHz Capable	
			Hardwired to 0 (Not implemented)	
44	RO	11	Support New Capability List	
3:0		0	Reserved	

Offset Address: 8h (D0F0)

Revision ID Default Value: 0nh

Bit	Attribute	Default	Description	
7:0	RO	0nh	North Bridge Chip Revision Code	

Offset Address: 0B-9h (D0F0)

Class Code Default Value: 06 0000h

Bit	Attribute	Default	Description
23:0	RO	060000h	Class Code

Offset Address: 0Dh (D0F0)

PCI Master Latency Timer

Bit	Attribute	Default	Description	Mnemonic
7:3	RW	0	PCI Bus Time Slice for CPU as a Master (in Unit of PCI clocks)	MLT[7:3]
2:0	RO	0	Reserved MLT[2:1] is programmable; however, it's read as 0	MLT[2:0]

Offset Address: 0Eh (D0F0)

Header Type Default Value: —

Bit	Attribute	Default	Description
7	RO		Multi-Function Device 0 if MFUNC (Rx4F[0], the multiple function control bit) is set to 0 1 if MFUNC is set to 1
6:0	RO	0	Reserved

Default Value: 00h

Default Value: 00h

Default Value: 0000 0008h

Offset Address: 0Fh (D0F0)

Built In Self Test (BIST)

Bit	Attribute	Default	Description
7	RO	0	BIST Support
			Hardwired to 0 (Not supported)
6:0	RO	0	Reserved

Offset Address: 13-10h (D0F0)

Graphic Aperture Base Configuration

Bit	Attribute	Default	Description	Mnemonic
31:22	RW	0	Programmable Base Address These bits behave as if hardwired to 0 if GTSZ (Rx94[11:0]) is set to 0.	GTBSA[31:22]
			See the following table for details. (Note: this range is defined as prefetchable)	
21:4		0	Reserved—Hardwired to 0	-
3	RO	1	Prefetchable 0: Non-prefetchable (if RGHDR_A (Rx48[0]) is 0) 1: Prefetchable	_
2:1	RO	0	Type Indicates that the address range is in the 32-bit address space	_
0	RO	0	Memory Space Indicates that the address range is in the memory address space.	_

Table 4. Graphics Aperture Base Address Table

Aperture Base Rx10[31:22]	31	30	29	28			27	26	25	24	23	22	Aperture Size
Aperture Size Rx94[11:0]	11	10	9	8	7	6	5	4	3	2	1	0	Aperture Size
	RW	RW	RW	RW	0	0	RW	RW	RW	RW	RW	RW	4M
	RW	RW	RW	RW	0	0	RW	RW	RW	RW	RW	0	8M
	RW	RW	RW	RW	0	0	RW	RW	RW	RW	0	0	16M
	RW	RW	RW	RW	0	0	RW	RW	RW	0	0	0	32M
	RW	RW	RW	RW	0	0	RW	RW	0	0	0	0	64M
	RW	RW	RW	RW	0	0	RW	0	0	0	0	0	128M
	RW	RW	RW	RW	0	0	0	0	0	0	0	0	256M
	RW	RW	RW	0	0	0	0	0	0	0	0	0	512M
	RW	RW	0	0	0	0	0	0	0	0	0	0	1G
	RW	0	0	0	0	0	0	0	0	0	0	0	2G -Max Size
	0	0	0	0	0	0	0	0	0	0	0	0	4G

Offset Address: 2D-2Ch (D0F0)

Subsystem Vendor ID

Bit	Attribute	Default	Description
15:0	RW1	0	Subsystem Vendor ID

Offset Address: 2F-2Eh (D0F0)

Subsystem ID

Bit	Attribute	Default	Description
15:0	RW1	0	Subsystem ID

Default Value: 00h

Default Value: 00h

Offset Address: 37-34h (D0F0)

Capability Pointer

Default Value: 0000 0080h

Bit	Attribute	Default	Description
31:0	. RO	80h	AGP Capability List Pointer
			An offset address from the start of the configuration space

If RGHDR A (Rx48[0]) = 1:

RX34	RX80	RX50	
80	50	NULL	RX34 -> RX80 AGP/AGP8X -> RX50 PMU ->NULL

If RGHDR A (Rx48[0]) = 0:

		11 11011211 (1111101)) 01
RX34	RX50	
50	NULL	RX34 -> RX50 PMU -> NULL

AGP Drive Control (40-48h)

Offset Address: 40h (D0F0)

AGP Pad Compensation Control / Status

Default Value: 80h

Bit	Attribute	Default	Description
7	RW	1	AGP4X Strobe's Reference Voltage
			0: Strobe signals do not use AGPVREF as input reference voltage (i.e. STB VREF is STB# and vise versa).
			1: Strobe signals use AGPVREF as input reference voltage.
			(Note: This bit is valid only in 4x and 8x mode, otherwise always use AGPVREF as strobe signals)
6	RW	0.	AGP4X Strobe and GD Pad Driving Strength Control
			0: Driving strength is set to compensation circuit defaults
			1: Driving strength is controlled by Rx 41[7:0]
5:3	RO	-	AGP Compensation Circuit N Control Output
2:0	RO	_	AGP Compensation Circuit P Control Output

Offset Address: 41h (D0F0)

AGP Driving Strength Control

Default Value: 63h

Bit	Attribute	Default	Description
7:4	RW	6h	AGP Output Buffer Driving Strength N Control
3:0	RW	3h	AGP Output Buffer Driving Strength P Control

Offset Address: 42h (D0F0)

AGP Pad Driving and Delay Control

Default Value: 08h

Bit	Attribute	Default		Description	
7	RW	0	GD / GADSTBx / GC#BE and GSBSTBx / GSBA# Pad Control		
			GSBSTBx, GSBA# 0 No Cap	GD, GC#BE, GADSTBx No Cap	
		·	1 Cap	Сар	
6:5	RW	00	GD, GC#BE Receive Strobe Delay for	r the First 16 Bits	
		,	00: Delay by -150 ps	01: No delay	
			10: Delay by 150 ps	11: Delay by 300 ps	
4	RW	0	GD[31:16] Output Staggered Delay (l ns)	
			0: No delay	1: GD[31:16] is delayed by 1 ns	
3	RW	1	GD, GADSTBx Slew Rate Control		
			0: Disable	1: Enable	
2	RW	0	GSBA Receive Strobe Delay		
			0: No Delay	1: Delay by 1 ns	
1:0	RW	00	GADSTBx Output Delay for the Firs	t 16 Bits	
			00: No delay	01: Delay by 150 ps	
			10: Delay by 300 ps	11: Delay by 450 ps	
			Note: GADSTB1 and GADSTB1# will	be delayed 1 ns more if RGDLY (bit-4) is set to 1	

Default Value: 00h

Default Value: 00h

Default Value: 01h

Default Value: 1Fh

Default Value: C4h

Offset Address: 43h (D0F0)

AGP Strobe Drive Strength Control

Bit	Attribute	Default	Description
7:4	RW	0	AGP Strobe Output Buffer Driving Strength N Control
3:0	RW	0	AGP Strobe Output Buffer Driving Strength P Control

Offset Address: 44h (D0F0)

AGP GSBA Pads Control

Bit	Attribute	Default	Description
7	RW	0	GD and GC#BE Strobe Delay for Receiving for the First 16 Bits
6:4	RW	00	GSBA Pads Control Signals for Strobe
3		0	Reserved
2:0	RW	0	GSBA Pads Control

Offset Address: 48h (D0F0)

AGP Header Presentation

Bit	Attribute	Default	Description	Mnemonic
7:1	_	0	Reserved	
0	RW	1	AGP Header Presented in Device 0 0: Disable 1: Enable If this bit is set to 0, Rx13-10 will be fixed at 0, and the Rx80 will be taken off from the capability list directed by Rx34 of device 0.	RGHDR_A

Miscellaneous Control (4A-

Offset Address: 4Ah (D0F0)

AGP Hardware Support I - VPX Mode

Bit	Attribute	Default	Description
7:0	RW	1Fh	AGP Request Queue Size
			The value in this register is valid and effective if RAGPHW (Rx4D[1]) is set to 1.

Offset Address: 4Bh (D0F0)

AGP Hardware Support II - VPX Mode

This register is used to re-configure the AGP controller. To change the operating mode of the AGP controller, Rx4D[1] must be set to 1.

Bit	Attribute	Default		Description
7	RW	1	AGP SBA Mode Enable	
			0: Disable	1: Enable
6	RW	1	AGP Enable	
		1	0: Disable	1: Enable
5	RO	0	Set by Strap Ball AGP8XDET#	
			0: AGP2.0 mode (Not support)	1: AGP3.0 mode
4	RW	0	Fast Write Enable	
			0: Disable	1: Enable
3	RW	0	AGP8X Mode Enable	
			0: Disable	1: Enable
2	RW	1	AGP4X Mode Enable	
		ĺ	0: Disable	1: Enable
1	RW	0	AGP2X Mode Enable	
		ĺ	0: Disable	1: Enable
0	RW	0	AGP1X Mode Enable	
		1	0: Disable	1; Enable

Offset Address: 4Dh (D0F0)

AGP Capability Header Control

Default Value: 04h
Mnemonic

Bit	Attribute	Default	Description	Mnemonic
7:6	RW	0	GSBA Strobe Delay for Receiving	
5	RW	0	GART Access Control	RBKGTEN
	,		0: GART access enabled by RGTEN (RxBF[7])	
			1: GART access enabled by either APEREN_A (Rx90[8]) or APEREN_B (Rx90[8])	
			(decided by RAGPCAP1 (D1F0 RxBF[0])	
4		0	Reserved	
3	RW	0	AGP Major / Minor Number Control	RBKMJMN
			0: Major / Minor = 35 1: Major / Minor = 30	
2	RW	1	Select Rx80 as the AGP20 or AGP30 Header	RAGP30CAP
			0: Rx80 is used as the AGP20 capability header even if the chip is powered up in AGP30 mode	
			1: Rx80 is used as the AGP30 capability header when the chip is powered up in AGP30 mode	
1	RW	0	Enable AGP Hardware Registers in Rx4A ~ Rx4B	
			0: AGP hardware is configured by register values defined in AGP header (for 3.0)	
			1: AGP hardware is configured by register values defined in Rx4A ~ Rx4B (for VPX mode)	
0	RW	0	Enable AGP Header Status Register Write	RSTATW
			0: Disable (Status registers in the AGP header cannot be modified)	
			1: Enable (Status registers in the AGP header can be modified)	

Offset Address: 4Fh (D0F0)

Multiple Function Control

Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic
7:1		0	Reserved	
0	RW	0	Multi-Function Support 0: Disable; functions 1, 2, 3, 4, 7 cannot be accessed, and the value returned will be 0FFFFFFFh when accessed 1: Enable; This bit's setting will be reflected on Rx0E[7]	MFUNC

AGP Extended Power Management Control (50-57h)

Offset Address: 50h (D0F0)

Capability ID

Defai			

Bit	Attribute	Default	Description
7:0	RO	01h	Capability ID

Offset Address: 51h (D0F0)

Next Pointer

Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Next Pointer

Offset Address: 52h (D0F0)

Power Management Capabilities

Default Value: 02h

Bit	Attribute	Default	Description
7:0	RO	02h	Power Management Capabilities

Offset Address: 53h (D0F0)

Power Management Capabilities

Default Value: 00h

Bit	Attribute	Default	Description	
7:0	RO	0	Power Management Capabilities	

Default Value: 00h

Default Value: 00h

Default Value: 00h

Default Value: 00355002h

Offset Address: 54h (D0F0)

Power Management Control / Status

Bit	Attribute	Default	Description				
7:2		0	Reserved				
1:0	RW		Power State 00: D0				

Offset Address: 55h (D0F0)

Power Management Status

Bit	Attribute	Default	Description
7:0	RW	0	Power Management Status

Offset Address: 56h (D0F0)

PCI to PCI Bridge Support Extensions

Bit	Attribute	Default	Description
7:0	RW	0	PCI to PCI bridge Support Extensions

Offset Address: 57h (D0F0)

Power Management Data

Bit	Attribute	Default	Description
7:0	RW	0	Power Management Data

AGP 3.0 Configuration (80-Afh)

For registers (e.g. AGP status register) with attribute "XW", it is allowed to write-over the default setting by setting the register RSTATW (status write) at Rx4D[0] to 1.

Offset Address: CAPPTR (D0F0 83-80h)

AGP Capability

Bit	Attribute	Default	Description			
31:24	RZ	0	Always Return 0 (write no effect)			
23:20	R-IW	0011	Major Revision			
19:16	R-IW	5h	(inor Revision ne value of MINOR is determined by RBKMJMN (Rx4D[3]). 1000b: if RBKMJMN = 1 10101b: if Rx4D[3] = 0			
15:8	R-IW	50h	Pointer to Next Item			
7:0	R-IW	02h	Capability ID			

Offset Address: CAPPTR + 04h (D0F0 87-84h)

AGP Status Default Value: 1F00 0A0nh

Bit	Attribute	Default	Description	Mnemonic
31:24	R-XW	1 fh	Max # of AGP Command Requests	
23:18	RZ-IW	0	Reserved	
17	R-XW	0	Isoch Transaction	RISOCH_A
			0: Isoch transaction is not supported	
			1: Supports Isoch transaction	
16	RZ-XW	0	Reserved	
15:13	R-XW	0	Optimum Asynchronous Request Size	
			Suggested setting is 010b or $2^{(2+4)} = 64$ bytes for 8QW access	
12:10	R-XW	010	Calibrating Cycle	
			000 : 4MS 001 : 16MS	
			010 : 64MS 011 : 256MS	
			Valid when RAGP30 (bit 3) is 1.	
9	R1-IW	11	SBA support is always ON	
8	R-XW	0	Coherent Support	
			Not implemented	
7	R-XW	0	64-bit GART Entries	
	L.		Support 32-bit GART entry only	
6	R-XW	0	Host GART Translation	
			0: Support host GART translation 1: Does not support host GART	
			translation	
5	R-XW	0	Over 4GB Support – not implemented	
4	R-XW	0	Fast Write Support	
3	R-XW	0	AGP 3.0 Detected	NC_RAGP30
			0: AGP 2.0 Mode (not supported) 1: AGP 3.0 Mode	
			initial value: set by strap ball AGP8XDET#	
2:0	R-XW	011	If NC RAGP30 (bit 3) is 1, the default value is 011: supports 4X and 8X data transfer rate.	
		111	If NC RAGP30 (bit 3) is 0, the default value is 111: supports 1X, 2X and 4X data transfer rate.	

Offset Address: CAPPTR + 08h (D0F0 8B-88h)

AGP Command Default Value: 0000 0000h

Bit	Attribute	Default	Description				
31:24	RZ-IW	0	Max # of AGP Command Requests				
23:16	RZ-IW	0	Reserved				
15:13	RZ-IW	0	Reserved for Master Devices				
12:10	RW	0	Calibrating Cycle				
9	RW	0	A Enable				
			0: Disable 1: Enable				
8	RW	0	AGP Enable				
			0: Disable 1: Enable				
7	RW	0	64-Bit GART				
			Not supported				
6	RZ-MW	0	Reserved				
5	RW	0	Over 4G Support				
		·	0: Disable 1: Enable				
4	RW	0	Fast Write Enable				
			0: Disable 1: Enable				
3	RZ-MW	0	Reserved				
2:0	RW	0	AGP Data Transfer Rate				
			If NC_RAGP30 (Rx84[3]) = 1 001: 4X data transfer rate 010: 8X data transfer rate				
			If MC_RAGP30 = 0, 001: 1X data transfer rate 100: 4X data transfer rate				

Offset Address: CAPPTR + 0Ch: (D0F0 8F-8Ch)

AGP Isochronous Status

This register can only be accessed if RISOCH (Rx86[2])is set. Otherwise, all registers are RZ.

Default Value: 0000 0028h

Default Value: 0000 0080h

Default Value: 0001 0F00h

Bit	Attribute	Default	Desc	Mnemonic	
31:24	R-XW	0	Reserved		
23:16	R-XW	0	Maximum Bandwidth (in unit of 32 bytes)		
			Shared by both asynchronous and isochronous	transactions	
15:8	R-XW	0	Maximum Number of Isochronus Transacti		
7:6	R-XW	00	Isochronous Payload Size Supported		ISOCH_Y_A
			00: 32,64,128,256 bytes	01: 64,128,256 bytes	
			10: 128,256 bytes	11: 256 bytes	
5:3	R-XW	101	Isochronous Data Transfer Maximum Later	ncy (in unit of 1 us)	ISOCH_L_A
2	R-XW	0	Reserved		
1:0	R-XW	00	Isochronous Error Code		
			00: No error		
			01: Isoch Request Overflow		
			1x: Reserved		

Offset Address: CAPPTR + 10h (D0F0 93-90h)

AGP Control

Bit	Attribute	Default	Description	Mnemonic		
31:10	_	0	Reserved (writable)			
9	RW	0	Disable Calibration Cycle			
8	RW	0	Enable AGP Aperture (Enable CPU/PMSTR GART Access) Set to 1 to enable AGP Aperture. Note: RBKGTEN (Rx4D[5]) must be 1 to enable this function.	APEREN_A		
7	RO	1	GTLB Enable When set to 0, GART TLB entries are invalidated. All AGP aperture accesses need to fetch translation table first.			
6:0		0	Reserved			

Offset Address: CAPPTR + 14h (D0F0 97-94h)

AGP Aperture Size

Bit	Attribute	Default	Mnemonic		
31:28	RW	0000	Aperture Page Size Select		
			The page size is determined by the formula: 2^[n+12]		
			Default, 0000b, 4KB is supported.		
27	_	0	Reserved		
26:16	R-IW	01h	Page Size Supported		
			If bit N is 1, which indicates support of page size of (2^(N+12)).		
			Currently only 4KB page size is supported.		
15:12	-	0	Reserved		
11:0	RW	F00h	Aperture Size – Default size is 256MB	GTSZ_A[11:0]	
			Refer to Table 2 for detailed setting (Maximum aperture size: 2GB)		
			GTSZ[n]=0 forces APBASE[22+n] to 0 when $0 \le n \le 5$		
			GTSZ[n]=0 forces APBASE[22+n-2] to 0 when 8 <= n <=11		
			GTSZ[n]=1 allows APBASE[22+n] to be Read/Write-able.		
			GTSZ[11] is hardwired to 1 and GTSZ[7:6] are hardwired to 00.		
			When NC RAGP30 (Rx84[3]) is 0, only supports 4MB ~ 256MB.		

Default Value: 0000 0000h

Default Value: 0000 0000h

Default Value: 00000040h

Table 2. Aperture Size

Aperture Size \ Rx94[11:0] (GTSZ)	11	10	9	8	7	6	5	4	3	2	1	0
4MB	1	1	1	1	0	0	1	1	1	1	1	1
8MB	1	1	1	1	0	0	1	1	1	1	1	0
16MB	1	1	1	1	0	0	1	1	1	1	0	0
32MB	1	1	1	1	0	0	1	1	1	0	0	0
64M	1	1	1	1	0	0	1	1	0	0	0	0
128M	1	1	1	1	0	0	1	0	0	0	0	0
256M	1	1	1	1	0	0	0	0	0	0	0	0
512M	1	1	1	0	0	0	0	0	0	0	0	0
1G	1	1	0	0	0	0	0	0.	0	0	0	0
2G (Max Aperture Size)	1	0	0	0	0	0	0	0	0	0	0	0
4G	0	0	0	0	0	0	0	0	0	0	0	0

Offset Address: CAPPTR + 18h (D0F0 9B - 98h)

AGP GART Table Pointer

Bit	Attribute	Default	Description			
31:12	RW	0	GART Table Base Address [31:12]			
11:0	_	0	Reserved			

Offset Address: CAPPTR + 1Ch (D0F0 9F- 9Ch)

AGP GART Table Pointer High

Bit	Attribute	Default	Description	
31:0	RW	0	Base Address [63:32]	
		·	nce OVER4G is not supported, OS should program this register to zero.	
			This register is ignored.	

Offset Address: CAPPTR + 20h (D0F0 A3-A0h)

AGP Isochronous Command

Bit	Attribute	Default	Description	
31:8	RZ-IW	0	Reserved	
7:6	RW	01	Isochronous Payload Size Default is ISOCH Y (CAPPTR + 0C [7:6])	
5:0	RZ-IW	0	Reserved	

AGP Enhanced Control (B0-FFh)

Offset Address: B8h (D0F0)

AGP Enhanced Control

Default Value: 00h

Bit	Attribute	Default	Description
7:3	_	0	Reserved
2	RW	0	AGP Pad Power Down
1		0	Reserved (Not used)
0	_	0	Reserved (Not used)

Offset Address: B9h (D0F0)

AGP Mixed Control

Bit	Attribute	Default	Description		
7	RW	0	FIFO Depth Control		
		1	D: Normal FIFO Depth – 64 QW, isochronous FIFO Depth – 32 QW		
			Normal FIFO Depth – 96 QW, isochronous FIFO Depth – 0 QW		
6	RW	0	old GD Signal Level After De-assertion of RTXRDY		
5:0	RW	0	Maximum Number of Isochronous Request Supported		
			(ISOCH_N (Rx8C[15:8]) * ISOCH_L (Rx8C[5:3]))		

Default Value: 00h

Offset Address: Bah (D0F0)

Isochronous Read GPRI Assertion Counter

Bit	Attribute	Default	Description	
7:0	RW	0	GPRI Read Counter	
			GPRI assertion period for Isochronous Read Request	

Offset Address: BB (D0F0)

Isochronous Write GPRI Assertion Counter

Bit	Attribute	Default	Description	
7:0	RW	0	GPRI Write Counter	
			GPRI assertion period for Isochronous Write Request	

Offset Address: BCh (D0F0)

AGP Control Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic			
7	RW	0	AGP Disable				
6	RW	0	AGP Read Synchronization				
			0: Disable 1: Enable				
5	RW	0	AGP Read Snoop DRAM Post-Write Buffer				
			0: Disable 1: Enable				
4	RW	0	PP2REQ (CPU/PCI1-to-PCI2 REQ) / AGP Read Priority				
			0: Disable the function. (PP2REQ's priority become higher when AGPC parking at AGP master)				
			1: PP2REQ has higher priority if MGFIFO is not over 24 QW for low priority read	1: PP2REQ has higher priority if MGFIFO is not over 24 QW for low priority read			
3	RW	0	GRDY 2T Early Control (Not support)				
			0: Disable 1: Enable				
2	RW	0	Enable FENCE / FLUSH RFENCE				
			LPR could be executed in out-of-order mode				
			1: Enable FENCE / FLUSH. All normal priority AGP operations are executed sequentially.				
1	RW	0	GGNT Parking Policy	RPKGNT			
			Non-parking GGNT; GGNT is de-asserted after GFRAME or PIPE assertion				
			Parking GGNT; after the assertion of GFRAME or PIPE, GGNT is kept asserted till GREQ de-				
			asserted or timeout.				
0	RW	0	AGP to PMSTR / C2P Turn Around Cycle	RGDARB			
			0: 2 or 3T 1: 1T				

Notes:

- 1. When RPKGNT (RxBC[1]) is set to 1, GGNT will remain asserted until either GREQ de-asserts or data phase ready
- 2. When RGDARB (RxBC[0]) is set to 0, it allows C2P access when the previous PCI master transaction is a delayed transaction.
- 3: RFENCE (RxBC[2]) when enabled will force all requests executed in-order, which automatically enables FENCE/FLUSH function. When disable, FENCE/FLUSH function is not guaranteed.

Offset Address: BDh (D0F0)

AGP Miscellaneous Control Default Value: 02h

Bit	Attribute	Default		Description		
7	RW	0	AGP GGNT Timing			
			0: Normal	1: 1T earlier		
6	RW	0	PIPE Operating Mode			
			0: Normal	1: Fast mode		
5	RW	0	AGP GD and GCBE Inpu	Pads Control		
			0: Input disable	1: Input enable		
4	RW	0	AGP Operating Mode			
			0: Normal	1: Fast mode		
3:0	RW	02h	AGP Data Phase Latency	GP Data Phase Latency Timer (in unit of 4 GCLKs)		

Offset Address: BEh (D0F0)

AGP Miscellaneous Control

Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic		
7	RW	0	Select NMI / AGPBUSY# Function			
			0: NMI 1: AGPBUSY#			
6	RW	0	Enable PP2 Request Timeout (for Isochronous support)			
5	RW	0	Isochronous Read Snoop DRAM Post-Write Buffer			
	-	,	0: Disable 1: Enable			
4	RW	0	Guard Register for Isochronous Request with Length Inconsistent with the Setting of			
	-		PISOCH_Y (CAPPTR + 20h [7:6])			
			0: ISOCH_Y = PISOCH_Y 1: 1: ISOCH_Y = 2'h3			
			Where ISOCH_Y is located at CAPPTR + 0Ch [7:6]			
3	RW	0	AGP Asynchronous FIFO Sharing with Isochronous Read (when no asynchronous read			
			allocated)			
			0: Disable 1: Enable			
2		0	Reserved			
1	RW	0	Internal Graphics RDY Signal Assertion Policy			
			2: Asserts RDY when the whole transaction data received			
			1: Asserts RDY when one block of data received			
0	RW	0	CPU GART Read and AGP GART Write Coherency Enable			
			0: Disable 1: Enable			

Offset Address: BFh (D0F0)

AGP 3.0 Control

Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic
7	RW	0	Enable CPU/PMSTR GART Access	RGTEN
			0: Disable 1: Enable	
			This control bit is used differently from APEREN of Rx90. Also, Rx4D[5] must be 0 for this	
			control bit to be effective.	
6	RW	0	AGP Calibration Enable	
			0: Disable 1: Enable	
5	RW	0	Mix Coherent / Non-coherent Access Enable	.'
			0: Disable 1: Enable	
4	RW	0	DBI/PIPE Ball Function	
			0: DBIH 1: PIPE	
3	RW	0	DBI Function Enable	
			0: Disable 1: Enable	
			Global DBI enable control – If disabled (set to 0), DBI input is masked, and outputs assume	
			DBI=0.	
2	RW	0	DBI Output for AGP Transaction Enable	
			0: Disable 1: Enable	
1	RW	0	DBI Output for FRAME Transaction Including Fast-Write Enable	
			0: Disable 1: Enable	
0	RW	0	Reserved	

Offset Address: C0h (D0F0)

AGPC CKG Control

Bit	Attribute	Default	Description		
7:6	RW	00	CKG Rising-Time Control (R Port)		
			00: Default timing	01: Delay by 100ps	
			10: Delay by 200ps	11: Delay by 300ps	
5:4	RW	00	CKG Falling-Time Control (R Port)		
			00: Default timing	01: Delay by 100ps	
			10: Delay by 200ps	11: Delay by 300ps	
3:2	RW	00	CKG Rising-Time Control (S Port)		
			00: Default timing	01: Delay by 100ps	
			10: Delay by 200ps	11: Delay by 300ps	
1:0	RW	00	CKG Falling-Time Control (S Port)		
			00: Default timing	01: Delay by 100ps	
			10: Delay by 200ps	11: Delay by 300ps	

Offset Address: C1h (D0F0)

AGPC CKG Control

Default Value: 00h

Bit	Attribute	Default	Description		
7:4		0	Reserved		
3:2	RW	00	CKG Rising-Time Control (D Port)		
			00: Default timing	01: Delay by 100ps	
			10: Delay by 200ps	11: Delay by 300ps	
1:0	RW	00	CKG Falling-Time Control (D Port)		
			00: Default timing	01: Delay by 100ps	
			10: Delay by 200ps	11: Delay by 300ps	

Offset Address: C2h (D0F0)

AGP Miscellaneous Control

Default Value: 00h

Bit	Attribute	Default		Description	
7	RW	0	Sync PIPE / SBA Reque	est	
			0: Disable	1: Enable	
6	RW	0	Fast RMREQ		
			0: Disable	1: Enable	
			Reduce 1T for SBA2X/43	X/8X accessing DRAM cycles when this function is enabled	
5	RW	0	Fast GADS Conversion		
			0: Disable	1: Enable	
4:3	RW	0	AGP Recorder Distance	(Not support)	
			00: 16 QW	01: 24 QW	
			10: 32 QW	11: 48 QW	
2	RW	0	AGPC Recorder Contro	ol (Not support)	
			0: Disable	1: Enable	
1	RW	0	Grant Isochronous Wri	te When Buffers Are Available for the Whole Payload	
			0: Disable	1: Enable	
0	RW	0	GGNT Assertion Contr	ol (Always high)	
			0: Assert GGNT after the	whole requested data is ready	
			1: Assert GGNT when a	block of the requested data is ready	

Offset Address: F0h (D0F0)

PSTATECTL Pulse Width Count (LCLK Domain)

Default '	Value: (JUh
-----------	----------	-----

Bit	Attribute	Default	Description
7:0	RW	00h	Number of LCLK PSTATECTL to LDTC Stay Active

Offset Address: F1h (D0F0)

GD and GC#BE Strobe Delay

Default Value: 01h

Bit	Attribute	Default	Description
7:1	_	0	Reserved
0	RW	1	GD and GC#BE Strobe Delay for Receiving for the Second 16 bits

Offset Address: F2h (D0F0)

AGPC CKG Control - Second 16 Bits

Bit	Attribute	Default		Description	
7:6	RW	00	CKG Rising-Time Control for th	ne Second 16 Bits (R Port)	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
5:4	RW	00	CKG Falling-Time Control for the Second 16 Bits (R Port)		
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
3:2	RW	00	CKG Rising-Time Control for th	ne Second 16 Bits (S Port)	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
1:0	RW	00	CKG Falling-Time Control for t	he Second 16 Bits (S Port)	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	

Offset Address: F3h (D0F0) AGPC CKG Control – Second 16 Bits

Bit	Attribute	Default		Description	
7:6	RW	00	GD, GC#BE Receive Strobe Dela	ay for the Second 16 Bits	
			00: Delay by -150 ps	01: No delay	
		ļ	10: Delay by 150 ps	11: Delay by 300 ps	•
5:4	RW	00	GADSTBx Output Delay for the	Second 16 Bits	
			00: No delay	01: Delay by 150 ps	
		}	10: Delay by 300 ps	11: Delay by 450 ps	
3:2	RW	00	CKG Rising-Time Control for th	ne Second 16 Bits (D Port)	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
1:0	RW	00	CKG Falling-Time Control for t	he Second 16 Bits (D Port)	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	

Default Value: 0001 0002h

Default Value: 0000 0400h

Default Value: 00h

Default Value: 00h

Default Value: 00h

Device 0 Function 0 (D0F0) – Extended Space

Virtual Channel Capability (140–14Fh)

Virtual Channel Capability is defined for Egress direction of the device, including TC/VC mapping, VC arbitration and Port arbitration. Hardware Round-Robin arbitration scheme is applied in both Port and VC arbitration. By default, TC0 is mapped to VC0 while TC1, TC2, TC3, TC4, TC5, TC6 and TC7 are mapped to VC1.

Offset Address: 143-140h (D0F0)

Virtual Channel Enhanced Capability Header

Bit	Attribute	Default	Description
31:20	RO	0	Next Capability Offset
19:16	RO	1	Capability Version
15:0	RO	2h	PCI Express Extended Capability ID

Offset Address: 147-144h (D0F0)

Port VC Capability Register 1

Bit	Attribute	Default	Description
31:12	-	0	Reserved
11:10	RO	01	Port Arbitration Table Entry Size 01: Arbitration entry size is 2 bits.
9:8	RO	0	Reference Clock
7		0	Reserved
6:4	RO	0	Low Priority Extended VC Count
3		0	Reserved
2:0	RO	0	Extended VC Count

Offset Address: 14B-148h (D0F0)

Port VC Capability Register 2

Bit	Attribute	Default	Description
31:24	RO	0	VC Arbitration Table Offset Table is not implemented.
23:8		0	Reserved
7:0	RO	0	VC Arbitration Capability

Offset Address: 14D-14Ch (D0F0)

Port VC Control Register

Bit	Attribute	Default	Description
15:4	_	0	Reserved
3:1	RO	0	VC Arbitration Select
0	RO	0	Load VC Arbitration Table

Offset Address: 14F-14Eh (D0F0)

Port VC Status Register

Bit	Attribute	Default	Description
15:1	_	0	Reserved
0	RO	0	VC Arbitration Table Status (TL) Reserved

Default Value: 00000001h

Default Value: 800200FFh

Default Value: 00h

VC0 Resource Registers (150-15Bh)

Offset Address: 153-150h (D0F0)

VC Resource Capability Register (VC0)

Bit	Attribute	Default	Description
31:24	RO	0	Port Arbitration Table Offset (VC0)
			Table is not implemented.
23		0	Reserved
22:16	RO	0	Maximum Time Slots (TL)
22.10	KO	U	Reserved
15	RO	0	Reject Snoop Transactions
13	RO	0	Reserved
14	RO	0	Advanced Packet Switching
14	RO	0	Reserved
13:8	-	0	Reserved
7:0	RO	01	Port Arbitration Capability
/.0	KO .	UI	01: Non-configurable fixed hardware-fixed Round Robin arbitration scheme.

Offset Address: 157-154h (D0F0)

VC Resource Control Register (VC0)

Bit	Attribute	Default	Description
31	RO	1	VC Enable
30:27		0	Reserved
26:24	RO	0	VC ID
23:20	_	0	Reserved
19:17	RW	001	Port Arbitration Select 01: Non-configurable fixed hardware-fixed Round Robin arbitration scheme
16	RO	0	Load Port Arbitration Table
15:8		0	Reserved
7:0	RW Bit 0: RO	FFh	TC/VC Mapping This field indicates the TCs that are mapped to VC0. If bit [n] is 1, the corresponding traffic class TCn is mapped to VC0 (0 <= n <= 7). Default is TC0, TC1, TC2, TC3, C4, TC5, TC6 and TC7 are all mapped to VC0 (by software). Note: Bit0 is hardwired to 1 (i.e. TC0 is always mapped to VC0).

Offset Address: 15B-158h (D0F0)

VC Resource Status Register (VC0)

Bit	Attribute	Default	Description
31:18	_	0	Reserved
17	RO	0	VC Negotiation Pending (TL) This bit indicates whether the Virtual Channel negotiation is in Pending state (set/clear by hardware) 0: Negotiation is complete 1: Negotiation is on-going.
16	RO	, 0	Port Arbitration Table Status (TL) Reserved
15:0		0	Reserved

Default Value: 1000001Fh

Default Value: 01020000h

Default Value: 00h

VC1 Resource Registers (15C-16Fh)

The following registers exist only when Rx144[0] is programmed to 1. If Rx144[0]=0, all the following registers will be read as 0.

Offset Address: 15F-15Ch (D0F0)

VC Resource Capability Register (VC1)

Bit	Attribute	Default	Description
31:24	RO	10	Port Arbitration Table Offset (VC1)
23		0	Reserved
22:16	RO	0	Maximum Time Slots (TL) Reserved
15	RO	0	Reject Snoop Transaction
14	RO	0	Advanced Packet Switching Reserved
13:8		0	Reserved
7:0	RO	1F	Port Arbitration Capability Supported Time-based WRR up to 128 phases

Offset Address: 163-160h (D0F0)

VC Resource Capability Register (VC1)

Bit	Attribute	Default	Description
31	RO	0	VC Enable
30:27		0	Reserved
26:24	RW	1	VC ID
23:20		0	Reserved
19:17	RW	1	Port Arbitration Select 01: Non-configurable fixed hardware-fixed Round Robin arbitration scheme
16	RO	0	Load Port Arbitration Table
15:8		0	Reserved
7:0	RW Bit 0: RO	OFFh	TC/VC Mapping This field indicates the TCs that are mapped to VC0. If bit [n] is 1, the corresponding traffic class TCn is mapped to VC0 (0 <= n <= 7). Default is TC0, TC1, TC2, TC3, C4, TC5, TC6 and TC7 are all mapped to VC0 (by software). Note: Bit0 is hardwired to 1 (i.e. TC0 is always mapped to VC0).

Offset Address: 167-164h (D0F0)

VC Resource Status Register (VC1)

		• `	,
Bit	Attribute	Default	Description
31:18	_	0	Reserved
17	RO	0	VC Negotiation Pending (TL)
16	RO	0	Port Arbitration Table Status (TL) Reserved
15:0		0	Reserved

Default Value: 00h

Default Value: 00h

Default Value: 00h

Default Value: 00h

Virtual Channel Port Arbitration Table for VC1 (180-19Fh)

Offset Address: 19F-180h (D0F0)

VC1 Port Arbitration Table

Bit	Attribute	Default	Description	
255:254	RW	0	Phase 127	
			00: Time slot to Port 0 01: Time slot to Port 0	
			10: Time slot to Port 1 11: Time slot to Port 2	
	•		Note: The above time slot assignment applies to Phase 0 - Phase 127 of the VCI Port Arbitration T	`able.
2N+1:2N	RW	0	Phase N, where 0< N <127	
1:0	RW	0	Phase 0	

VC Arbitration Timer (200-209h)

PCI Express arbitration scheme is based on the same scheme used in the DRAM Controller. A timer named as Occupancy Timer is used to guarantee the number of time slots one requester will be granted when there is no high priority requesters come in. Another timer named as Promote Timer is used for a requester to upgrade its requests to high priority if it is not served after the Promote Timer times out. However, priority request promoted by the expiration of the Promote Timer will be served once only.

Offset Address: 200h (D0F0)

VC0 Occupancy Timer

Bit	Attribute	Default	Description
7:4	_	0	Reserved
3:0	RW	0	VC0 Occupancy Timer (in unit of 125MHz) 0000: Timer is off (Arbitration will be based on a fair RR scheme) 0nh: 4n T, where 1<= n <= 15

Offset Address: 201h (D0F0)

VC0 Promote Timer

Bit	Attribute	Default	Description
7:4		0	Reserved
3:0	RW	0	VC0 Promote Timer (in unit of 125MHz) 0000: Timer is off 0nh: 4n T, where 1<= n <= 15

Offset Address: 202h (D0F0)

VC1 Port Arbitration Occupancy Timer

Bit	Attribute	Default	Description
7:4	_	0	Reserved
3:0	RW	0	VC1 Occupancy Timer (in unit of 125MHz) 0000: Timer is off (Arbitration will be based on a fair RR scheme) 0nh: 4n T, where 1<= n <= 15

Offset Address: 203h (D0F0)

VC1 Promote Timer

Bit	Attribute	Default	Description
7:4		0	Reserved
3:0	RW	0	VC1 Promote Timer (in unit of 125MHz) 0000: Timer is off 0nh: 4n T, where 1<= n <= 15

Note: Port arbitration timers defined by registers 202h and 203h are not applicable in current VC1 implementation; currently the VC1 arbitration is in strict priority.

Default Value: 00h

Default Value: 00h

Default Value: 00h

Default Value: 00h

Port Arbitration Timer for VC0 (210-229h)

Offset Address: 212h (D0F0)

Root Port 1 (x4) Occupancy Timer

Bit	Attribute	Default	Description
7:4	_	0	Reserved
3:0	RW	0	Occupancy Timer (in unit of 125MHz) 0000: Timer is off (Arbitration will be based on a fair RR scheme) 0nh: 4n T, where 1<= n <= 15

Offset Address: 213h (D0F0)

Root Port 1 (x4) Promote Timer

Bit	Attribute	Default	Description
7:4		0	Reserved
3:0	RW	0	Promote Timer (in unit of 125MHz) 0000: Timer is off 0nh: 4n T, where 1<= n <= 15

Offset Address: 216h (D0F0)

Root Port 2 (x1) Occupancy Timer

Bit	Attribute	Default	Description
7:4	_	0	Reserved
3:0	RW	0	Occupancy Timer (in unit of 125MHz) 0000: Timer is off (Arbitration will be based on a fair RR scheme) 0nh: 4n T, where 1<= n <= 15

Offset Address: 217h (D0F0)

Root Port 2 (x1) Promote Timer

Bit	Attribute	Default	Description
7:4		0	Reserved
3:0	RW	0	Promote Timer (in unit of 125MHz) 0000: Timer is off 0nh: 4n T, where 1<= n <= 15

Host Side Upstream Arbitration Timers (230-23Fh)

A fair arbitration timer is designed for the upstream traffic, which provides a fair arbitration between PCI express devices and other devices like AGP, PCI2 master, IOAPIC and V-Link. The arbitration scheme also used the one currently implemented in the DRAMC.

Offset Address: 230h (D0F0)

PCIe - VC0 Occupancy Timer

Bit	Attribute	Default	Description	
7:4		0	Reserved	
3:0	RW	0	Occupancy Timer (in unit of host frequency) 0000: Timer is off (Arbitration will be based on a fair RR scheme) 0nh: 4n T, where 1<= n <= 15	

Offset Address: 231h (D0F0)

PCIe – VC0 Promote Timer

Bit	Attribute	Default	Description
7:4		0	Reserved
3:0	RW	0	Promote Timer (in unit of host frequency) 0000: Timer is off 0nh: 4n T, where 1<= n <= 15

Offset Address: 232h (D0F0)

PCIe - VC1 Occupancy Timer

Default Value: 00h

Bit	Attribute	Default	Description
7	RW	0	PCIe – VC1 Strict Priority
			0: Disable 1: Enable
6:4		0	Reserved
3:0	RW	, 0	Occupancy Timer (in unit of host frequency) 0000: Timer is off (Arbitration will be based on a fair RR scheme)
			0nh: 4n T, where 1<= n <= 15

Offset Address: 233h (D0F0)

PCIe – VC1 Promote Timer

Default Value: 00h

Bit	Attribute	Default	Description
7:4	_	0	Reserved
3:0	RW	0	Promote Timer (in unit of host frequency) 0000: Timer is off 0nh: 4n T, where 1<= n <= 15

Offset Address: 234h (D0F0)

V-Link Arbitration Control

Default Value: 00h

Bit	Attribute	Default	Description	
7	RW	0	Strict Priority to GPCI or NVC (P	MADS) Request
			0: Disable	1: Enable
6	RW	0	High Priority to GPCI or NVC (wi	th PMSIO) Request
			0: Disable	1: Enable
5:4	_	0	Reserved	
3:0	RW	0	Occupancy Timer (in unit of host f	requency)
		ĺ	0000: Timer is off (Arbitration will b	e based on a fair RR scheme)
			0nh: 4n T, where 1<= n <= 15	

Offset Address: 235h (D0F0)

V-Link Promote Timer

Default Value: 00h

Bit	Attribute	Default	Description
7:4	_	0	Reserved
3:0	RŴ	0	Promote Timer (in unit of host frequency) 0000: Timer is off 0nh: 4n T, where 1<= n <= 15

Offset Address: 236h (D0F0)

V-Link – VC1 Arbitration Control

Bit	Attribute	Default	Description
7	RW	1	Strict Priority to V-Link – VC1 0: Disable 1: Enable
6:4	_	- 0	Reserved
3:0	RW	0	Occupancy Timer (in unit of host frequency) 0000: Timer is off (Arbitration will be based on a fair RR scheme) 0nh: 4n T, where 1<= n <= 15

Default Value: 00h

Default Value: 00h

Default Value: 00h

Default Value: 00h

Offset Address: 237h (D0F0)

V-Link – VC1 Promote Timer

Bit	Attribute	Default	Description
7:4		0	Reserved
3:0	RW	0	Promote Timer (in unit of host frequency) 0000: Timer is off 0nh: 4n T, where 1<= n <= 15

Offset Address: 238h (D0F0)

AGP Arbitration Control

Bit	Attribute	Default	Description	
7	RW	0	Strict Priority to GADS from AGPC	
			0: Disable 1: Enable	
6	RW	0	High Priority to GADS with GISOCH Asserted	
			0: Disable 1: Enable	
5:4	_	0	Reserved	
3:0	RW	0	Occupancy Timer (in unit of host frequency)	
		ĺ	0000: Timer is off (Arbitration will be based on a fair RR scheme)	
			0nh: 4n T, where 1<= n <= 15	

Offset Address: 239h (D0F0)

AGP Promote Timer

Bit	Attribute	Default	Description
7:4		0	Reserved
3:0	RW	0	Promote Timer (in unit of host frequency) 0000: Timer is off 0nh: 4n T, where 1<= n <= 15

Offset Address: 23Ah (D0F0)

PCI2 / NVC Occupancy Timers

Bit	Attribute	Default	Description		
7:6		0	Reserved		
5:4	RW	0	NVC Occupancy Timer (in unit of host frequency)		
		1	00: Timer is off (i.e. 1T Round Robin scheme)	01: 4T	
		1	10: 8T	11: 16T	
3:2	_	0	Reserved		
1:0	. RW	0	PCI2 Occupancy Timer (in unit of host frequency)		
			00: Timer is off (i.e. 1T Round Robin scheme)	01: 4T	
		1	10: 8T	11: 16T	

Offset Address: 23Bh (D0F0)

PCI2 / NVC Promote Timers

Bit	Attribute	Default	Description		
7:6	_	0	Reserved		
5:4	RW	0	NVC Promote Timer (in unit of host frequency)		
			00: Timer is off	01: 4T	
			10: 8T	11: 16T	
3:2	_	0	Reserved		
1:0	RW	0	PCI2 Promote Timer (in unit of host frequency)		
			00: Timer is off	01: 4T	
			10: 8T	11: 16T	

Default Value: 00h

Offset Address: 23Ch (D0F0)

IOAPIC Occupancy Timer Default Value: 00h

Bit	Attribute	Default	Description
7:4		0	Reserved
3:0	RW	0	Occupancy Timer (in unit of host frequency) 0000: Timer is off (Arbitration will be based on a fair RR scheme) 0nh: 4n T, where 1<= n <= 15

Offset Address: 23Dh (D0F0)

IOAPIC Promote Timer

Bit	Attribute	Default	Description
7:4		0	Reserved
3:0	RW	0	Promote Timer (in unit of host frequency) 0000: Timer is off 0nh: 4n T, where 1<= n <= 15

DRAM Side Upstream Arbitration Timers (240-24Fh)

This fair arbitration timer is for upstream traffic to do a fair arbitration between all of the VC1 PCI express devices and AGP.

Offset Address: 240h (D0F0)

PCIe-VC1 Arbitration Control

Bit	Attribute	Default	Description	
7	RW	0	Strict Priority to VC1	
			0: Disable 1: Enable	
6:4	_	0	Reserved	
3:0	RW	0	Occupancy Timer (in unit of DRAMC frequency)	
			0000: Timer is off (Arbitration will be based on a fair RR scheme)	
			0 nh : 4 n T , where $1 \le 1 $	

Offset Address: 241h (D0F0)

PCIe-VC1 Promote Timer Default Value: 00h

Bit	Attribute	Default	Description
7:4	_	0	Reserved
3:0	RW	0	Promote Timer (in unit of DRAMC frequency) 0000: Timer is off
			0nh: 4n T, where 1<= n <= 15

Offset Address: 244h (D0F0)

AGP Occupancy Timer Default Value: 00h

Bit	Attribute	Default	Description
7:4		0	Reserved
3:0	RW	. 0	Occupancy Timer (in unit of DRAMC frequency) 0000: Timer is off (Arbitration will be based on a fair RR scheme) 0nh: 4n T, where 1<= n <= 15

Offset Address: 245h (D0F0)

AGP Promote Timer Default Value: 00h

Bit	Attribute	Default	Description
7:4		0	Reserved
3:0	RW	0	Promote Timer (in unit of DRAMC frequency) 0000: Timer is off 0nh: 4n T. where 1<= n <= 15

Default Value: 00h

Default Value: 00h

Device 0 Function 1 (D0F1): Error Reporting

Header Registers

Offset Address	Attribute	Default	Description
1 – 0h	RO	1106h	Vendor ID
3 – 2h	RO	1308h	Device ID – Error Reporting
5 – 4h	RO	0006h	PCI Command
7 – 6h	RO	0200h	PCI Status
8h	RO	0	Revision ID
0B - 9h	RO	060000h	Class Code
0Dh	RO	0	Latency Timer
0Eh	ŔO	00h	Header Type
0Fh	RO	0	BIST
13 – 10h	_		Reserved
2D – 2Ch	RW1	0	Subsystem Vendor ID
2F – 2Eh	RW1	0	Subsystem ID
33 – 30h			Reserved
37 – 34h	RO	0	Capability Pointer
3F – 38h			Reserved

V-Link Error Report (50-5Fh)

Offset Address: 50h (D0F1)

V-Link Error Status

Bit	Attribute	Default	Description		
7:1		0	Reserved		
0	RW1C	0	V-Link Parity Error Detected		
			0: No V-Link Parity Error being detected	1: V-Link Parity Error detected	

Offset Address: 58h (D0F1)

V-Link Error Command

Bit	Attribute	Default		Description	
7	RW	0	Parity Error / SERR# Report Through NMI		
			0: Disable	1: Enable	
6	RW	0	Parity Error / SERR# Report Through V-Link to SB		
			0: Disable	1: Enable	
5:1	_	0	Reserved		
0	RW	0	V-Link Parity Check Report		
			0: Disable	1: Enable	

Host Bus Error Report (60-7Fh)

Offset Address: 60h (D0F1)

Host Parity Status

Bit	Attribute	Default	Description		
7	RW1C	0	Host Address Parity Error Detected 0: No Address Parity Error being detected	1: Address Parity Error detected	
6	RWIC	0	Host Data Parity Error Detected 0: No Data Parity Error being detected	1: Data Parity Error detected	
5	RWIC	0	AGP Access Above 4G Detected 0: No above 4GB AGP cycles being detected	1: AGP Access Above 4GB detected	
4	RW1C	0	Host LOCK Cycle to PCI Detected 0: No host Lock cycle to PCI being detected	1: Host Lock Cycle to PCI detected	
3	RWIC	0	MC Error Status		
2	RW1C	0	BINIT Error Status		
1:0		0	Reserved		

Offset Address: 68h (D0F1)

Host Parity Command

Default Value: 00h

Default Value: 00h

Bit	Attribute	Default		Description	
7	RW	0	Host Address Parity Generation a	nd Check (AP[1:0]#)	
1			0: Disable	1: Enable	
6	RW	0	Host Data Parity Generation and G	Check (DP[3:0]#)	
			0: Disable	1: Enable	
5	RW	0	Host Response Parity Generation (RSP#)		
			0: Disable	1: Enable	
4	RW	0	Parity Error SERR# / NMI Assertion (see the settings on Rx58[7:6])		
			0: Disable	1: Enable	
3	RW	. 0	Parity Test Mode		
			0: Disable (normal mode)	1: Enable (invert the parity bit)	
2:0		0	Reserved		

DRAM Bus Error Report (80-8Fh)

AGP / PCI2 Non Standard Error Reporting (E0-EFh)

Offset Address: E0h (D0F1)

AGP / PCI2 Error Status

Bit	Attribute	Default	Description
7	W1C		AGP Cycles Data Parity Error Status
			0. No Parity Error being detected
			1: Parity Error detected
6	W1C	0	PCI2 GSERR Error Status
			0: No GSERR being detected
Ü			1: GSERR detected
5:0		0	Reserved

Offset Address: E1h (D0F1)

AGP / PCI2 Error Status Default Value: 00h

Bit	Attribute	Default	Description
7:2		.0	Reserved
1:0	RO	0	Isochronous Error Code (see D0F0 Rx8C[1:0])

Offset Address: E8h (D0F1)

AGP / PCI2 Error Report Control Default Value: 00h

Bit	Attribute	Default	Description
7:5		0	Reserved
4	RW	0	Parity Error Report for AGP Data Parity Error 0: Disable 1: Enable
3:2	 	0	Reserved
1	RW	0	Parity Error Report for PCI2 Data Parity Error 0: Disable 1: Enable
0	RW	0	Parity Error Report for PCI2 Address Parity Error 0: Disable 1: Enable

Device 0 Function 2 (D0F2): Host Bus Control

Header Registers (0-3Fh)

Offset Address	Attribute	Default	Description
1 – 0h	RO	1106h	Vendor ID
3 – 2h	RO	2308h	Device ID – Host Bus
5 – 4h	RO	0006h	PCI Command
7 – 6h	RO	0200h	PCI Status
8h	RO	00	Revision ID
0B – 9h	RO	060000h	Class Code
0Dh	RO	00	Latency Timer
0Eh	RO	00	Header Type
0Fh	RO	00	BIST
13-10h	_	0000	Reserved
2D – 2Ch	RW1	00	Subsystem Vendor ID
2F – 2Eh	RW1	00	Subsystem ID
33 – 30h	RO	00	Reserved
37 – 34h	RO	00	Capability Pointer
3F – 38h		_	Reserved

Host CPU Control (50-5Fh)

Offset Address: 50h (D0F2)

equest	t Phase Co	ntrol		Default Value: 00
Bit	Attribute	Default	Description	Mnemonic
7	RO	dip	IOQ (In-Order Queue) Depth 0: 1 level 1: 12 level Default sets from the inverse of the VD2 signal during system initialization. For strap ball information, check the Strap Ball table for details.	
6	RO	dip	Dual CPU 0: Single CPU 1: Dual CPU Default sets from the VD7 signal during system initialization. For strap ball information, check the Strap Ball table for details.	
5	RW	0	Fast ADS Assertion to DRAM Controller 0: Disable 1: Enable	
4:0	RW	0	Dynamic Defer Snoop Stall Count Value for the Defer Snoop Stall Counter. The timer starts counting at the beginning of the snoop phase of C2P cycle; it increases one for every 2 HCLKs. If the C2P cycle is pending when the timer expired, and there are pending ADS, a Defer/Retry response will be replied to the host.	DEFTIM[4:0]
			For medium decoding PCI slave device; the optimal value for DEFTIM is 8.	

Table 5. Dynamic Defer Snoop Stall Table

Timer Expired	New Pending ADS	PCI Completion	Action
No	-	No	Snoop stall till PCI complete
No	-	Yes	Normal Data Response
Yes	No	No	Snoop stall till either arrival of new pending ADS or PCI complete
Yes	No	Yes	Normal Data Response
Yes	Yes	No	Defer/Retry Response
Yes	Yes	Yes	Normal Data Response

Offset Address: 51h (D0F2)

CPU Interface Control

Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic
7	RW	0	Fast Ready for CPU Memory Read Cycle	
			0: Disable, wait until all 8QWs are received before DRDY assertion	
			1: Enable, DRDY assertion timing is set up through Rx60-67	
6	RW	0	Read Around Write	RAW
			0: Disable 1: Enable	
5	RW	0	Host Controller DRAM Request Queue Control (DRQCTL)	
			0: Disable pipelined DRQCTL	
			1: Enable pipelined DRQCTL	
4	RW.	0	CPU to PCI Read Defer	
	i		0: Disable 1: Enable	
3	RW	0	2 Defer/ Retry Entries	
			0: Disable 1: Enable	
2	RW	0	2 Defer / Retry Entries Sharing	
			0: One entry for each processor	
			1: Each entry is shared by the two processors	
1	-	0	Reserved	
0	RW	0	APIC Logic Modification	
			0: Enable APIC logic modification for PCI Master 8QW Access (Rx54[2]) mode	
		1	1: Do not enable the modification circuit	

Offset Address: 52h (D0F2)

CPU Interface Control

Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic
7	RW	0	CPU Read / Write DRAM 0WS for Back-to-Back Pipeline Access	
			0: Disable 1: Enable	
6	RW	0	HREQ (Host Continuous DRAM Ownership) / HPRI (Host High Priority DRAM	
			Request) Assertion to DRAM Controller	·
			0: Disable	
			1: Enable assertion of HREQ / HPRI to DRAM controller for efficient memory utilization	/
			faster memory data access.	
5	RW	0	AGTL+ Pullup Enable	
			0: Disable 1: Enable	
			Default sets from the inverse of the VD3 signal during system initialization. For strap ball information, check the Strap Ball table for details.	
4	_	0	Reserved	
3	RW	0	Write Retire Policy After 2 Writes	RFRAW
			0: Disable 1: Enable	
2	RW	0	2 Level Defer Queue With Lock Cycle	
			0: Disable 1: Enable	
1	RW	0	Consecutive Speculative Read	
			0: Disable 1: Enable	
0	RW	0	Speculative Read	
			0: Disable 1: Enable	

Offset Address: 53h (D0F2)

Arbitration

Bit	Attribute	Default	Description	Mnemonic
7:4	RW	0	Host Occupancy Timer (in unit of 4 HCLKs)	
			Host Occupancy timer guarantees a time slot of P6TIM * 4 HCLK for pipelined CPU's ADS.	
3:0	RW	0	Master Occupancy Timer (in unit of 4 HCLKs)	PRITIM[3:0]
			Master Occupancy timer guarantees a time slot of PRITIM*4 HCLK for pending master requests.	_

Offset Address: 54h (D0F2)

Miscellaneous Control Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic
7:5	RO	000	CPU FSB Frequency (Powell)	
ĺ			000: 100MHz 001: 133MHz	i i
			010: 200MHz 011: 166MHz	
			100: Reserved	
			Default sets from the VD4, VD1 and VD0 signals during system initialization. For strap ball information, check the Strap Ball table for details.	
4	RO	0	Burst 8QW Host to Memory Access	
			0: Disable 1: Enable	
			This bit must be set to 1 in 128-bit DRAM mode.	
3	RW	0	Host-Memory DRDY Assertion Adjustment	RFASTH
			0: Normal mode, no adjustment 1: Special mode	
			This is a second to the second	
	[This bit's setting should follow RDRDYLPH / RDRDYQPH / RDRDYPH_WS (Rx60 –	
2	RW	0	Rx67) settings. Check Rx55[1] for details of DRDY assertion adjustment.	
2	I KW	U	PCI Master 8QW Memory Access 0: Disable 1: Enable	
1	RW	0	Memory-to-Host Conversion Circuit	
1	KW.	U	0: Transparent mode 1: Sync 1T in certain clock phases	
			1. Sync 11 in certain clock phases	
			Transparent mode (default operating mode) is faster than Sync mode.	
0	RW	0	PCI2 Operating Mode (for EOI message processing)	
			0: AGP mode 1: VPX mode	

Offset Address: 55h (D0F2)

Miscellaneous Control Default Value: 00h

Bit	Attribute	Default	Description
7	RW	0	Set NB Host Interface IOQ Size CPUIOQSZ CPUIOQSZ8 Host IF IOQ Size
			0 x 1
			1 8
			1 0 12
6	RW	0	Disable CPU's HT Option
			0: Enabled HT 1: Disable HT
5		0	Reserved
4	RW		Early read data ready signal for Host Interface DRDY table.
			0: 2T early 1: 3T early
3	RW	0	Fast Command When Dynamic Clock is Enabled
			0: Disable 1: Enable
2	RW	0	Medium Threshold for Write Policy (see ROPTW (RxF9[3:0]) for details)
			0: Disable medium threshold
			1: Add a medium threshold, defined by Rx56, in Write Queue to enable earlier memory write.
			Defeate Def December as live
ļ <u>-</u>	RW	0	Refers to Rx5D for write policy.
1	KW	U	Host-Memory DRDY Assertion 2T Adjustment 0: 2T early 1: 2T late
			0. 21 early
			This bit is effective when RFASTH (Rx54[3]) is 1.
0	RW	0	Request Reorder
	"		0: Disable 1: Enable

Offset Address: 56h (D0F2)

Write Policy Default Value: 00h

Bit	Attribute	Default		Mnemonic
7:4	RW	0	Medium Threshold for Write Policy	ROPTW[3:0]
3:0		0	Reserved	

Offset Address: 59h (D0F2)

CPU Miscellaneous Control

Default Value: 00h

Bit	Attribute	Default	Description	
7:6	RW	0	Reserved	
5:4	RW	0	Warm CPU Reset (CPURST#) Duration Control	
			00= 512us 01= 1024us	
			10= 1532us 11= 2048us	
3	RW	0	Warm CPU Reset (CPURST#) Trigger	
			Write 0 □ 1 transition will trigger warm CPURST#	
			Firmware will have to reset this bit to "0" before trigger another CPURST#.	
2:1		0	Reserved	
0	RW	0	Lowest-Priority IPI (Inter-Processor Interrupt) Support	
			0: Disable 1: Enable	

Offset Address: 5Ch (D0F2)

CPU Miscellaneous Control

Default Value: 00h

Bit	Attribute	Default		Description
7:5	_	0	Reserved	
4	RW	0	Enable patching D11 from re	served to set when logic mode APIC
3	RW	0	APIC Redirection Hint Infor	mation Obtained From
			0: Address filed	1: Data field (not supported)
2	RW	0	APIC Destination Mode Info	rmation Obtained From
			0: Address field	1: Data field (not supported)
1	RW	0	APIC Cluster Mode Support	
			0: Disable	1: Enable
0	_	0	Reserved	

Offset Address: 5Dh (D0F2)

Write Policy Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic
7:4	RW	0	Write Request High Threshold	RWLM[3:0]
3:0	RW	0	Write Request Low Threshold	RWBS[3:0]

Table 6. CPU Write Request Policy

RAW Rx51[6]	RFRAW Rx52[3]	RWLM Rx5D[7:4]	RWBS Rx5D[3:0]	Write Policy
1	0	x	х	Will not handle write request until FIFO is full
1	1	4	2	Will start processing write request when write request count reaches RWLM, and
				stop processing write request when write request count drops to RWBS.

Offset Address: 5Eh (D0F2)

Bandwidth Timers Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic
7:4	RW	0	Host Bandwidth Timer	RHBWTM [3:0]
3:0	RW	0	DRAM Bandwidth Timer	RDBWTM [3:0]

Offset Address: 5Fh (D0F2)

CPU Miscellaneous Control

Bit	Attribute	Default	Description
7	_	0	Reserved
6	RW	0	Reorder Retry Queue Enable
			0: Retried CPU transaction always complete in order
			1: Allow second entry of retried (IOW/MEMW) transaction to complete before first queued entry
5	RW	0	Enable HPCREQ# (pre-charge request) input from CPU
			0: HPCREQ# is disabled 1: HPCREQ# is enabled
4	RW	0	Enable PT894 HEDRDY# (early data ready) output to CPU
			0: HEDRDY# is disabled 1: HEDRDY# is enabled
3		0	Reserved
2	RW	0	Host Bandwidth Restriction
			0: Disable 1: Enable
		İ.	Host Bandwidth Timer is set up by RHBWTM [3:0] (Rx5E[7:4]).
1	RW	0	DRAM Bandwidth Restriction
			0: Disable 1: Enable
			DRAM Bandwidth Timer is set up by RDBWTM [3:0] (Rx5E[3:0]).
0	RW	0	Enable relaxed DBSY# CPU Timing Workaround.
			0: Workaround disabled 1: Workaround enabled

Table 7. Host / DRAM Bandwidth Policy

RHOSTBW Rx5F[2]	RDRAMBW Rx5F[1]	Host / DRAM Bandwidth Setting Policy
0	0	Disable the new DRAM/Host Bandwidth Arbiter
0	1	Use the DRAM Bandwidth Timer only
1	0	Use the HOST Bandwidth Timer only
1	1	Dynamically toggles between the Host and Dram bandwidth timers. Both timers, RHBWTM and RDBWTM are used by the arbitration logic.

Host Interface DRDY Timing Control

Offset Address: 60h (D0F2) Line DRDY Timing Control 1

Bit	Attribute	Default	Description	Mnemonic
7:6	RW	0	Read Line Phase 4 Wait State	RDRDYLPH4
5:4	RW	0	Read Line Phase 3 Wait State	RDRDYLPH3
3:2	RW	0	Read Line Phase 2 Wait State	RDRDYLPH2
1:0	RW	0	Read Line Phase 1 Wait State	RDRDYLPH1

Offset Address: 61h (D0F2)

Line DRDY Timing Control 2 Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic
7:6	RW	0	Read Line Phase 8 Wait State	RDRDYLPH8
5:4	RW	0	Read Line Phase 7 Wait State	RDRDYLPH7
3:2	RW	0	Read Line Phase 6 Wait State	RDRDYLPH6
1:0	RW	0	Read Line Phase 5 Wait State	RDRDYLPH5

Offset Address: 62h (D0F2)

Line DRDY Timing Control 3

Bit	Attribute	Default	Description	Mnemonic
7:4		0	Reserved	
3:2	RW	0	Read Line Phase 10 Wait State	RDRDYLPH10
1:0	RW	0	Read Line Phase 9 Wait State	RDRDYLPH9

Default Value: 00h

Offset Address: 63h (D0F2) **QW DRDY Timing Control 1**

Bit	Attribute	Default	Description	Mnemonic
7:6	RW	0	Read QW Phase 4 Wait State	RDRDYQPH4
5:4	RW	0	Read QW Phase 3 Wait State	RDRDYQPH3
3:2	RW	0	Read QW Phase 2 Wait State	RDRDYQPH2
1:0	RW	0	Read QW Phase 1 Wait State	RDRDYQPH1

Offset Address: 64h (D0F2) **QW DRDY Timing Control 2**

Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic
7:6	RW	0	Read QW Phase 8 Wait State	RDRDYQPH8
5:4	RW	0	Read QW Phase 7 Wait State	RDRDYQPH7
3:2	RW	0	Read QW Phase 6 Wait State	RDRDYQPH6
1:0	RW	0	Read QW Phase 5 Wait State	RDRDYQPH5

Offset Address: 65h (D0F2) **QW DRDY Timing Control 3**

Attribute

Mnemonic

Default Value: 00h

Description 7:4 Reserved 3:2 RW Read QW Phase 10 Wait State RDRDYOPH10 RDRDYQPH9 RW Read QW Phase 9 Wait State 1:0 0

Offset Address: 66h (D0F2)

Read Line Burst DRDY Timing Control 1

Default

Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic
7	RW	0	Phase 8 Wait State	RDRDYPH8_WS
6	RW	0	Phase 7 Wait State	RDRDYPH7_WS
5	RW	0	Phase 6 Wait State	RDRDYPH6_WS
4	RW	0	Phase 6 Wait State	RDRDYPH5_WS
3	RW	0	Phase 4 Wait State	RDRDYPH4_WS
2	RW	0	Phase 3 Wait State	RDRDYPH3_WS
1	RW	0	Phase 2 Wait State	RDRDYPH2_WS
0	RW	0	Phase 1 Wait State	RDRDYPH1_WS

Offset Address: 67h (D0F2)

Read Line Burst DRDY Timing Control 2

Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic
7:6		0	Reserved	
5	RW	0	Phase 10 Wait State	RDRDYPH10_WS
4	RW	0	Phase 9 Wait State	RDRDYPH9_WS
3:0		0	Reserved	_

Note: Check BIOS Porting Guide for RDRDY register settings.

Offset Address: 6F-68h (D0F2)

APIC CPU Priority

Default	Value:	00h
---------	--------	-----

Offset Address	Attribute	Default	Description	Mnemonic
6Fh	RO	0	Priority of CPU ID#7	LDR7_[7:0]
6Eh	RO	0	Priority of CPU ID#6	LDR6_[7:0]
6Dh	RO	0	Priority of CPU ID#5	LDR5_[7:0]
6Ch	RO	0	Priority of CPU ID#4	LDR4 [7:0]
6Bh	RO	0	Priority of CPU ID#3	LDR3_[7:0]
6Ah	RO	0	Priority of CPU ID#2	LDR2 [7:0]
69h	RO`	0	Priority pf CPU ID#1	LDR1_[7:0]
68h	RO	0	Priority of CPU ID#0	LDR0_[7:0]

Default Value: 00h

Default Value: 00h

Default Value: 00h

Default Value: 00h

Host AGTL+ I/O Circuit (70-7Fh)

Offset Address: 70h (D0F2)

Host Address Pad (2x) Pullup Driving

Bit	Attribute	Default	Description	
7	_	0	Reserved	
6:4	RW	0	2X Address Strobe Pad Pullup Driving - (HADSTB1#, HADSTB0#)	
3		0	Reserved	
2:0	RW	0	2X Address Pad Pullup Driving – (HA[31:3], HREQ[4:0])	

Offset Address: 71h (D0F2)

Host Address Pad (2x) Pulldown Driving

Bit	Attribute	Default	Description	
7	_	0	Reserved	
6:4	RW	0	2X Address Strobe Pad Pulldown Driving - (HADSTB1#, HADSTB0#)	
3	_	0	Reserved	
2:0	RW	0	2X Address Pad Pulldown Driving – (HA[31:3], HREQ[4:0])	

Offset Address: 72h (D0F2)

Host Data Pad (4x) Pullup Driving

Bit	Attribute	Default	Description
7		0	Reserved
6:4	RW	0	4X Data Strobe Pad Pulldup Driving – (HDSTB[3:0]N#, HADSTB[3:0]P#)
3		0	Reserved
2:0	RW	0	4X Data Pad Pullup Driving – (D[63:0], DBI[3:0])

Offset Address: 73h (D0F2)

Host Data (4x) Pulldown Driving

Bit	Attribute	Default	Description
7		0	Reserved
6:4	RW	0	4X Data Strobe Pad Pulldown Driving - (HDSTB[3:0]N#, HADSTB[3:0]P#)
3		0	Reserved
2:0	RW	0	4X Data Pad Pulldown Driving – (D[63:0], DBI[3:0])

Offset Address: 74h (D0F2)

Memory Interface Timing Control

Bit	Attribute	Default		Description
7:6	_	0	Reserved	
5	RW	0	HD[63:48], HD[31:16]	, DBI[3,1]# Output Stagger Delay (1 ns)
			0: No delay	1: 1 ns delay
4	RW	0	HA[31:17] Output Sta	gger Delay
•			0: No delay	1: 1 ns delay
3:2	RW	00	HDSTB[3:0]N#, HDST	FB[3:0]P# Extra Output Delay
			00: No delay	01: 150 ps
			10: 300 ps	11: 450 ps
1:0	RW	00	HADSTB1#, HADSTB0# Extra Output Delay	
			00: No delay	01: 150 ps
			10: 300 ps	11: 450 ps

Offset Address: 75h (D0F2)

AGTL+ I/O Circuit Default Value: 00h

Bit	Attribute	Default		Description	
7	RW	0	AGTL+ 4X Input: Add Delay to Filter Noise (TR3 Control)		
			0: Disable	1: Enable	
6	RW	0	AGTL+ 2X Input: Add Delay to F	liter Noise (TR3 Control)	
			0: Disable	1: Enable	
5	RW	0	AGTL+ Slew Rate		
			0: Disable	1: Enable	
4	RW	0	C3 and P4 Driving Control		
			0: C3 mode, weak driving		
			1: P4 mode, strong driving		
3	RW	0	Input Always Pullup (PULLUP)		
			0: Disable	1: Enable	
2	RW	0	AGTL+ TR Function (always pull	up) for STROBE	
			0: Disable	1: Enable	
1	RW	0	AGTL+ TR Function (always pull	up) for DATA	
			0: Disable	1: Enable	
0	RW	0	AGTL+ Dynamic Compensation		
			0: Disable	1: Enable	

Offset Address: 76h (D0F2)

AGTL+ Compensation Status

Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic
7	RW	0	Auto-Compensation Driving	
			1: Enable Auto mode	
6:4	RO	0	AGTL+ Compensation Result	RPOSDRV[2:0]
3	RW	0	AGTL+ POS Function	
			1: Power-down AGTL+ input when idle	
2	RW	0 .	Enable ROMSIP Auto Configure (Powell)	
			0: Disable 1: Enable	
			Default sets from the VD6 signal during system initialization. For strap ball information,	
		1	check the Strap Ball table for details.	
1	RW	0	Disable DBI Function	
			0: Enable DBI	
			1: Disable DBI (DBI always high including DBI double-check)	
0	RW	0	DBI Functional Mode	
			0: Minimize data change count (through data comparison with previous data)	
			1: Minimize AGTL+ pulldown count	1

Offset Address: 77h (D0F2)

AGTL+ Auto Compensation Offset

Bit	Attribute	Default	Description	Mnemonic
7:4	RW	0	2X AGTL+ IO Pad Driving Offset to Compensation Result (Rx76[6:4])	RGTLOST2X[3:0]
3:0	RW	0	4X AGTL+ IO Pad Driving Offset to Compensation Result (Rx76[6:4])	RGTLOST4X[3:0]
			The actual driving to GTL pad is RPOSDRV+RGTLOST2X, or RPOSDRV+RGTLOST4X.	
			RGTLOST2X/RGTLOST4X can be either positive or negative offset; negative offset is	
İ			represented in 2's complement, so the driving offset value ranges from -8 to +7.	

Offset Address: 78h (D0F2)

Output Address / Address Clock Delay Control

Default Value: AAh

Bit	Attribute	Default	Description	
7:6	RW	10	Output Address Delay for Group 0	
			00: Delay = $Td - 0.4ns$	01: Delay = Td -0.2ns
			10: Delay = Td	11: Delay = Td + 0.2ns
			Delay (Td) = 650ps (min), 750	ps (typ), 850ps (max) from CK to CKO0~CKO18, respectively
5:4	RW	10	Output Address Clock Delay	for Group 0
			00: Delay = Td - 0.4ns	01: Delay = $Td - 0.2ns$
			10: Delay = Td	11: Delay = Td + 0.2ns
			Delay (Td) = 650ps (min), 750	ps (typ), 850ps (max) from CK to CKO0~CKO18, respectively
3:2	RW	10	Output Address Delay for Gi	oup 1
1			00: $Delay = Td - 0.4ns$	01: Delay = $Td - 0.2ns$
			10: Delay = Td	11: Delay = $Td + 0.2ns$
			Delay (Td) = 650ps (min), 750	ps (typ), 850ps (max) from CK to CKO0~CKO18, respectively
1:0	RW	10	Output Address Clock Delay for Group 1	
			00: Delay = Td - 0.4ns	01: Delay = Td -0.2 ns
			10: Delay = Td	11: Delay = Td + 0.2ns
			Delay (Td) = 650ps (min), 750	ps (typ), 850ps (max) from CK to CKO0~CKO18, respectively

Offset Address: 79h (D0F2)

Input Address Strobe Delay Control

Default Value: 33h

Bit	Attribute	Default	Description	
7:6		0	Reserved	
5	RW	1	Input Address Strobe Delay for Group 0	
4	RW	1	Input Address Strobe Delay for Group 1	
3:2	RW	00	Input Address Strobe Delay for Group 0 00: Delay = Td -0.4ns 10: Delay = Td Delay (Td) = 240ps (min), 300ps (typ), 360	01: Delay = Td -0.2ns 11: Delay = Td + 0.2ns ops (max) from DI0~DI18 to DO0~DO18, respectively
1:0	RW	00	Input Address Strobe Delay for Group 1 00: Delay = Td -0.4ns 10: Delay = Td	01: Delay = Td -0.2ns 11: Delay = Td + 0.2ns ps (max) from DI0~DI18 to DO0~DO18, respectively

Offset Address: 7Ah (D0F2)

Address CKG Rising / Falling Time Control

Bit	Attribute	Default	Description	
7:6	RW	00	CKG Falling-Time Control for Address Group 0	
			00: Default timing	01: Delay by 100 ps
			10: Delay by 200 ps	11: Delay by 300 ps
5:4	RW	00	CKG Rising-Time Control for Address Group 0	
			00: Default timing	01: Delay by 100 ps
			10: Delay by 200 ps	11: Delay by 300 ps
3:2	RW	00	CKG Falling-Time Control for Address Group 1	
1			00: Default timing	01: Delay by 100 ps
			10: Delay by 200 ps	11: Delay by 300 ps
1:0	RW	00	CKG Rising-Time Control for Address Group 1	
			00: Default timing	01: Delay by 100 ps
			10: Delay by 200 ps	11: Delay by 300 ps

Offset Address: 7Bh (D0F2)

Address CKG Clock Rising / Falling Time Control

	1				
Bit	Attribute	Default		Description	
7:6	RW	00	CKG Falling-Time Control for A	ddress Clock Group 0	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
5:4	RW	00	CKG Rising-Time Control for Ac	ddress Clock Group 0	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
3:2	RW	00	CKG Falling-Time Control for A	ddress Clock Group 1	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
1:0	RW	00	CKG Rising-Time Control for Ac	ddress Clock Group 1	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	

Offset Address: 7Ch (D0F2) Host FSB CKG Control Group 0

Default Value: 00h

Bit	Attribute	Default		Description	
7:6	RW	00	CKG Falling-Time Control for Host	t Interface (S port)	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
5:4	RW	00	CKG Rising-Time Control for Host	Interface (S port)	,
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
3:2	RW	00	CKG Falling-Time Control for Host	t Interface	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
1:0	RW	00	CKG Rising-Time Control for Host	Interface	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	

Offset Address: 7Dh (D0F2)
Host FSB CKG Control Group 1

Bit	Attribute	Default		Description	
7:6	RW	00	CKG Falling-Time Control for Host I	nterface (S port)	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
5:4	RW	00	CKG Rising-Time Control for Host In	iterface (S port)	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
3:2	RW	00	CKG Falling-Time Control for Host I	nterface	,
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
1:0	RW	00	CKG Rising-Time Control for Host In	iterface	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	

Offset Address: 7Eh (D0F2)

Host FSB CKG Control Group 2

Default	Value: 00h	

Bit	Attribute	Default		Description	
7:6	RW	00	CKG Falling-Time Control for Host	Interface (S port)	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
5:4	RW	00	CKG Rising-Time Control for Host	Interface (S port)	
		1	00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
3:2	RW	00	CKG Falling-Time Control for Host	Interface	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
1:0	RW	00	CKG Rising-Time Control for Host	Interface	
	}		00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	

Offset Address: 7Fh (D0F2)

Host FSB CKG Control Group 3

Default Value: 00h

Bit	Attribute	Default		Description	
7:6	RW	00	CKG Falling-Time Control for Host In	iterface (S port)	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
5:4	RW	00	CKG Rising-Time Control for Host In	terface (S port)	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
3:2	RW	00	CKG Falling-Time Control for Host In	iterface	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
1:0	RW	00	CKG Rising-Time Control for Host In	terface	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	

Offset Address: 80h (D0F2)

Input Delay for Group 0/1

Default Value: 44h

Bit	Attribute	Default	Description
7	_	0	Reserved
6:4	RW	100	Control Relative Delay Between Data/Strobe Input for Group 1
3	_	0	Reserved
2:0	RW	100	Control Relative Delay Between Data/Strobe Input for Group 0

Offset Address: 81h (D0F2)

Input Delay for Group 2/3

Default Value: 44h

Bit	Attribute	Default	Description
7	_	0	Reserved
6:4	RW	100	Control Relative Delay Between Data/Strobe Input for Group 3
3:2	_	0	Reserved
1:0	RW	100	Control Relative Delay Between Data/Strobe Input for Group 2

Device 0 Function 3 (D0F3): DRAM Bus Control

Header Registers (0-3Fh)

Offset Address	Attribute	Default	Description		
1 – 0h	RO	1106h	Vendor ID		
3 – 2h	RO	3308h	Device ID – DRAM Control		
5 – 4h	RO	0006h	PCI Command		
7 – 6h	RO	0200h	PCI Status		
8h	RO	00	Revision ID		
0B – 9h	RO	060000h	Class Code		
0Dh	RO	00	Latency Timer		
0Eh	RO	00	Header Type		
0Fh	RO	00	BIST		
13-10h			Reserved		
2D – 2Ch	RW1	00	Subsystem Vendor ID		
2F – 2Eh	RW1	00	Subsystem ID		
33 – 30h	RO	00	Reserved		
37 – 34h	RO	00	Capability Pointer		
3F – 38h			Reserved		

Note: All Function 3, DRAM Controller, registers are implemented in Powell.

DRAM Rank (Row) Ending Address (40-4Fh)

Offset Address: 47-40h (D0F3) DRAM Rank Ending Address

Default Value: 0000 0000 0000 0001h

Offset Address	Attribute	Default	Description
40h	RW	01h	Virtual Rank 0 Ending Address (HA[33:26])
41h	RW	00h	Virtual Rank 1 Ending Address (HA[33:26])
42h	RW	00h	Virtual Rank 2 Ending Address (HA[33:26])
43h	RW	00h	Virtual Rank 3 Ending Address (HA[33:26])
44h	RW	00h	Virtual Rank 4 Ending Address (HA[33:26])
45h	RW	00h	Virtual Rank 5 Ending Address (HA[33:26])
46h	RW	00h	Virtual Rank 6 Ending Address (HA[33:26])
47h	RW	00h	Virtual Rank 7 Ending Address (HA[33:26])

Offset Address: 4F-48h (D0F3)
DRAM Rank Beginning Address

Default Value: 0000 0000 0000 0000h

Offset Address	Attribute	Default	Description
48h	RW	00h	Virtual Rank 0 Beginning Address (HA[33:26])
49h	RW	00h	Virtual Rank 1 Beginning Address (HA[33:26])
4Ah	RW	00h	Virtual Rank 2 Beginning Address (HA[33:26])
4Bh	RW	00h	Virtual Rank 3 Beginning Address (HA[33:26])
4Ch	RW	00h	Virtual Rank 4 Beginning Address (HA[33:26])
4Dh	RW	00h	Virtual Rank 5 Beginning Address (HA[33:26])
4Eh	RW	00h	Virtual Rank 6 Beginning Address (HA[33:26])
4Fh	RW	00h	Virtual Rank 7 Beginning Address (HA[33:26])

Default Value: 2222h

Default Value: 11h

Default Value: 10h

MA Map / Command Rate (50-53h)

Offset Address: 51-50h (D0F3)

DRAM MA Map Type

Bit	Attribute	Default	Description			
15:13	RW	001	Rank 4/5 MA Map Type (see the follo	wing table)		
12	RW	0	Rank 4/5 1T Command Rate			
			0: Disable (2T command)	1: 1T command		
11:9	RW	001	Rank 6/7 MA Map Type			
. 8	RW	0	Rank 6/7 1T Command Rate	NAME		
			0: Disable (2T command)	1: 1T command	•	
7:5	RW	001	Rank 0/1 MA Map Type			
4	RW	0	Rank 0/1 1T Command Rate			
		:	0: Disable (2T command)	1: 1T command		
3:1	RW	001	Rank 2/3 MA Map Type			
0	RW	0	Rank 2/3 1T Command Rate			
			0: Disable (2T command)	1: 1T command		

Table 6. Rank MA Map Type Table

Rank MA Map Type	0	1	2	3	4	5	6	7
Bank Address Bits	2	2	2	2		3	3	3
Row Address Bits	13-12	14-12	15-12	15-13	Rsvd	15-12	15-12	15-13
Column Address Bits	9	10	11	12	Ksvu	10	11	12
DRAM Size (Byte)	128M-64M	512M-128M	2G-256M	4G-1G		2G-256M	4G-512M	8G-2G

Offset Address: 52h (D0F3)

Bank Interleave Address Select

Bit	Attribute	Default	Description	Mnemonic
7		0	Reserved	
6:4	RW	001	BA0 Address Select	RBA0SEL_[2:0]
3	_	0	Reserved	
2:0	RW	001	BA1 Address Select	RBA1SEL_[2:0]

Note: Refer to Bank Interleave Address Table below.

Offset Address: 53h (D0F3)

Bank / Rank Interleave Address Select

Bit	Attribute	Default	Description	Mnemonic
7	RW	0	BA2 Support (turn on if any 8BK-device exists)	RB2AEN
6:4	RW	001	BA2 Address Select	RBA2SEL_[2:0]
3:2	RW	000	Rank Interleave Address Bit 1 (RA1) Select	RINLV1SEL_[1:0]
1:0	RW	00	Rank Interleave Address Bit 0 (RA0) Select	RINLV0SEL_[1:0]

Table 7. DRAM Bank Address Table

RBAxSEL_[2:0] where x=0, 1, 2	0	1	2	3	4	5	6	7
BA2 RBA2SEL_[2:0] (Rx53[6:4])	A14	A15	A18	A19	rsvd	rsvd	rsvd	rsvd
BA1 RBA1SEL_[2:0] (Rx52[2:0])	A12	A14	A16	A18	A20	rsvd	rsvd	rsvd
BA0 RBA0SEL_[2:0] (Rx52[6:4])	rsvd	A13	A15	A17	A19	rsvd	rsvd	rsvd

Default Value: 81h

Default Value: 23h

Default Value: C5h

Default Value: 67h

Table 8. Rank Interleave Address Table

RINLVxSEL_[1:0] where x=0, 1	0	1	2	3
Rank Interleave Address Bit 1 RINLV1SEL_[1:0] (Rx53[3:2])	A14	A16	A18	A20
Rank Interleave Address Bit 0 RINLV0SEL_[1:0] (Rx53[1:0])	A15	A17	A19	A21

Notes. 1. Rank Interleave Address Bit 2 is fixed at A6.

- 2. BA2, BA1, BA0, INLV1, INLV0 should select 5 different address bits for Rx53[7] =1
- 3. BA1, BA0, INLV1, INLV0 should select 4 different address bits for Rx53[7] =0

Physical-to-Virtual Rank Mapping (54-57h)

Offset Address: 54h (D0F3)

Physical-to-Virtual Rank Mapping 1

Bit	Attribute	Default	Description
7	RW	1	Enable Physical Rank 0
			0: Disable 1: Enable the rank
6:4	RW	000	Virtual Rank Number of Physical Rank 0
3	RW	0	Enable Physical Rank 1
			0: Disable 1: Enable the rank
2:0	RW	001	Virtual Rank Number of Physical Rank 1

Offset Address: 55h (D0F3)

Physical-to-Virtual Rank Mapping 2

Bit	Attribute	Default		Description
7	RW	0	Enable Physical Rank 2	
			0: Disable	1: Enable the rank
6:4	RW	010	Virtual Rank Number of Physical Rank 2	
3	RW	0	Enable Physical Rank 3	
ll .			0: Disable	1: Enable the rank
2:0	RW	011	Virtual Rank Number of Physical Rank 3	3

Offset Address: 56h (D0F3)

Physical-to-Virtual Rank Mapping 3

Bit	Attribute	Default		Description		
7	RW	1	Enable Physical Rank 4			
		1	0: Disable	1: Enable the rank		
6:4	RW	100	Virtual Rank Number of Ph	ysical Rank 4		
3	RW	0	Enable Physical Rank 5			
			0: Disable	1: Enable the rank		
2:0	RW	101	Virtual Rank Number of Ph	/irtual Rank Number of Physical Rank 5		

Offset Address: 57h (D0F3)

Physical-to-Virtual Rank Mapping 4

Bit	Attribute	Default		Description	
7	RW	0	Enable Physical Rank 6		
			0: Disable	1: Enable the rank	
6:4	RW	110	Virtual Rank Number of Pl	nysical Rank 6	
3	RW	0	Enable Physical Rank 7		
			0: Disable	1: Enable the rank	
2:0	RW	111	Virtual Rank Number of Pl	nysical Rank 7	

Default Value: 00h

Default Value: 00h

Default Value: 00h

Default Value: 00h

<u>Virtual Rank Interleave Address Select / Enable (58–5Fh)</u>

Offset Address: 58h (D0F3)

Virtual Rank Interleave Address Select / Enable - Rank 0

Bit	Attribute	Default	Description	Mnemonic
7		0	Reserved	
6:4	RW	000	Rank #0 Interleave Address Select (RINLV0AS[2:0]) This 3-bits field determines the Rank Interleave Address of Rank #0. If RINLV0Asn is 1 (where n = 0, 1, 2), the corresponding Rank Interleave Address bit of Rank 0 is 1, and vice versa.	RINLV0AS[2:0]
3		0	Reserved	
2:0	RW	000	Rank #0 Interleave Address Enable (RINLV0AEN[2:0]) 0: Mask 1: Enable This 3-bits field determines if the Rank Interleave Address of Rank #0 to be masked (used) or not. If RINLV0AENn is 0 (where n = 0, 1, 2), the corresponding Rank Interleave Address bit will be masked (ignored), and vice versa.	RINLV0AEN[2:0]

Offset Address: 59h (D0F3)

Virtual Rank Interleave Address Select / Enable - Rank 1

Bit	Attribute	Default	Description Mnemonic	
7		0	Reserved	
6:4	RW	000	Rank #1 Interleave Address Select See the description on Rank 0 (Rx58).	RINLV1AS[2:0]
3		0	Reserved	
2:0	RW	000	Rank #1 Interleave Address Enable See the description on Rank 0 (Rx58).	RINLV1AEN[2:0]

Offset Address: 5Ah (D0F3)

Virtual Rank Interleave Address Select / Enable – Rank 2

Bit	Attribute	Default	Description Mnemonic	
7		0	Reserved	
6:4	RW	000	Rank #2 Interleave Address Select See the description on Rank 0 (Rx58).	RINLV2AS[2:0]
3	_	0	Reserved	
2:0	RW	000	Rank #2 Interleave Address Enable See the description on Rank 0 (Rx58).	RINLV2AEN[2:0]

Offset Address: 5Bh (D0F3)

Virtual Rank Interleave Address Select / Enable - Rank 3

Bit	Attribute	Default	Description	Mnemonic
7		0	Reserved	
6:4	RW	000	Rank #3 Interleave Address Select See the description on Rank 0 (Rx58).	RINLV3AS[2:0]
3	_	0	Reserved	
2:0	RW	000	Rank #3 Interleave Address Enable See the description on Rank 0 (Rx58).	RINLV3AEN[2:0]

Offset Address: 5Ch (D0F3)

Virtual Rank Interleave Address Select / Enable – Rank 4

Bit	Attribute	Default	Description Mnemonic	
7	_	0	Reserved	
6:4	RW	000	Rank #4 Interleave Address Select See the description on Rank 0 (Rx58).	RINLV4AS[2:0]
3		0	Reserved	
2:0	RW	000	Rank #4 Interleave Address Enable See the description on Rank 0 (Rx58).	RINLV4AEN[2:0]

Offset Address: 5Dh (D0F3)

Virtual Rank Interleave Address Select / Enable - Rank 5

Default Value: 00h

Bit	Attribute	Default	Description Mnemonic	
7		0	Reserved	
6:4	RW	000	Rank #5 Interleave Address Select See the description on Rank 0 (Rx58).	RINLV5AS[2:0]
3		0	Reserved	
2:0	RW	000	Rank #5 Interleave Address Enable See the description on Rank 0 (Rx58).	RINLV5AEN[2:0]

Description

Offset Address: 5Eh (D0F3)

Attribute

RW

RW

Bit

7

6:4

3

2:0

Virtual Rank Interleave Address Select / Enable - Rank 6

Reserved

Reserved

Rank #6 Interleave Address Select See the description on Rank 0 (Rx58).

Rank #6 Interleave Address Enable

See the description on Rank 0 (Rx58).

Default

0

000

0

000

Default Value: 00	h
Mnemonic	
RINLV6AS[2:0]	
RINLV6AEN[2:0]	

Default Value: 00h

Offset Address: 5Fh (D0F3)

Virtual Rank Interleave Address Select / Enable – Rank 7

Bit	Attribute	Default	Description Mnemoni	
7		0	Reserved	
6:4	RW	000	Rank #7 Interleave Address Select See the description on Rank 0 (Rx58).	RINLV7AS[2:0]
3	_	0	Reserved	
2:0	RW	000	Rank #7 Interleave Address Enable See the description on Rank 0 (Rx58).	RINLV7AEN[2:0]

Following is an example, which shows a possible register settings for a system with 2 double-sided DIMM installed.

(i. \square . Rx53[3:2] (RINLV1SEL_[1:0]) = 2 and Rx53[1:0] (RINLV0SEL_[1:0])=2 selects A6, A18, A19 as the Rank Interleave Address for the system.

(2) If the settings on the Rank Interleave Address Selection of Rank 0, 1, 2, 3 (Rx58-5B[6:4]) are

Rx58[6:4] (RINLV0AS) = 001b

Rx59[6:4](RINLV1AS) = 000b

Rx5A[6:4] (RINLV2AS) = 010b

Rx5B[6:4] (RINLV3AS) = 011b

And if the Rank Interleave Address Enable of Rank 0, 1, 2, 3 (Rx58-5B[2:0]) are

Rx58[2:0] (RINLV0AEN) = 011b

Rx59[2:0] (RINLV1AEN) = 011b

Rx5A[2:0] (RINLV2AEN) = 011b

Rx5B[2:0] (RINLV3AEN) = 011b

With the above register settings, Rank Interleave Address 2, A6, is ignored for the system, and the four ranks of the system are decided by A18 and A19 as shown in the following table.

A18	A19	Selected Rank
0	0	Rank#1
0	1	Rank#0
1	0	Rank#2
1	1	Rank#3

Figure 4. DIMM / Channel Mapping Diagram

DRAM Timing (60-64h)

Offset Address: 60h (D0F3)

DRAM Pipeline Turn-Around Setting

Default Value: 00h

Bit	Attribute	Default	Description	
7	RW	0	0ws Back-to-Back Write to Different DDR Rank	
			0: Disable	1: Enable
6	RW	0	Fast Read-to-Read Turn Ard	ound
			0: Disable	1: Enable (DQS post-amble overlap with preamble)
5	RW	0	Fast Read-to-Write Turn Ar	ound
ŀ			0: Disable	1: Enable
4	RW	0	Fast Write-to-Read Turn Ar	ound
			0: Disable	1: Enable
3:2		00	Reserved	
1	RW	0	Ows DRAM Channel Switching Between Read Cycles	
			0: Disable	1: Enable
			This function is valid in 64-Bit mode.	
0	RW	0	0ws DRAM Channel Switching Between Write Cycles	
			0: Disable	1: Enable
			This function is valid in 64-bit	mode.

Offset Address: 61h (D0F3)

DRAM Timing for All Ranks

Default Value: 44h

Bit	Attribute	Default	Description	
7:6	RW	01b	Write Recovery Time (tWR) –	
			00: 2T	01: 3T
			10: 4T	11: 5T
5:0	RW	04h	Refresh-to-Active or Refersh-to-Refresh	(tRFC)
	!		00: 8T	01h: 9T
1				0nh: (8+n)T
			3eh: 70T	3f:h: 71T

Default Value: 21h

Offset Address: 62h (D0F3)

DRAM Timing for All Ranks

Bit	Attribute	Default	Description			
7:4	RW	0010b	Active-to-Precharge (tRAS)			
			0000: 5T		0001: 6T	
					0nh: (5+n)T	
			1110: 19T		1111: 20T	
3	RW	0	Enable DDR2 8-Bank Device Timing Constraint (tRRD and tRP).			
2:0	RW	001	CAS Latency			
			000 001 010 011 1xx	DDR 1.5 2 2.5 3 reserved	DDR2 2 3 4 5 reserved	

Offset Address: 63h (D0F3)

DRAM Timer for All Ranks

Default Value: 00h

Default Value: 04h

Bit	Attribute	Default	Description	
7:6	RW	00	Active-to-Active Period (tRRD)	
			00: 2T 01: 3T	
1			10: 4T 11: 5T	
5:4		00	Reserved	
3	RW	0	Read-to-Precharge Delay (tRTP)	
			0: 2T 1: 3T	
2	_	00	Reserved	
1	RW	0	Write to Read Command Delay (tWTR)	
			DDR DDR2	
			0 1T 2T	
			1 2T 3T	
0		0	Reserved	

Offset Address: 64h (D0F3)
DRAM Timer for All Ranks

Bit	Attribute	Default	Description		
7:6	RW	00	Active to Read or Write Delay (tRCD)		
			00: 2T 01: 3T		
			10: 4T		
5	_	00	Reserved		
4	RW	0	CKE Minimum Pulse Width		
			0: 2T 1: 3T		
			This function is valid when RDYNCKE=1 (Fun4 RxA1[6])		
3:2	RW	01	Precharge Period (tPR)		
			00: 2T 01: 3T		
			10: 4T 11: 5T		
1		00	Reserved		
0	RW	0	Exit Precharge/Active Power Down to Any Command Delay		
			0: 1T 1: 2T		
			This function is valid when RDYNCKE=1 (Fun 4 RxA1[6])		

DRAM Queue / Arbitration (65-67h)

Offset Address: 65h (D0F3)

DRAM Arbitration Timer Default Value: 00h

Bit	Attribute	Default	Description			
7:4	RW	0	AGP Timer (unit of 4 DCLKS)			
			DRAMC time slot allocated for AGP device.			
3:0	RW	0	Host Timer (unit of 4 DCLKS)			
			DRAMC time slot allocated for Host.			

Offset Address: 66h (D0F3)
DRAM Queue / Arbitration

Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic	
7	RW	0	DRAMC Queue Size Greater Than 2		
			0: No 1: Yes		
6	RW	0	DRAMC Queue Size Not Equal To 4		
			0: No 1: Yes		
			To setup DRAMC queue size of 2, set Rx66[7:6] to 2'b00; sets Rx66[7:6] to 2'b11 for queue size of 3; sets Rx[7:6] to 2'b10 for queue size of 4.		
5:4	RW	00	Arbitration Parking Policy		
		ľ	00: Park at the last bus owner 01: Park at CPU		
			10: Park at AGP 11: Reserved		
3:0	RW	0000	Priority Promotion Timer (in unit of 4 DCLKs)	PTIM[3:0]	
			A DRAM request is promoted to become a high priority request when it is pending over		
			PTIM*4 DRAM cycles.		

Offset Address: 67h (D0F3)

DIMM Command / Address Selection

Default Value: 00h

Bit	Attribute	Default	Description		
7:6	RW	0	DIMM 3 Command / Address Selection		
1	1		00: SCMD/MA Bus A;	01: SCMD/MA Bus B	
			10: Reserved	11: Reserved	
5:4	RW	0	DIMM 2 Command / Address Selection		
3:2	RW	0	DIMM 1 Command / Address Selection		
1:0	RW	0	DIMM 0 Command / Address Selection		

DRAM Control (68-69h)

Offset Address: 68h (D0F3)

DDR Page Control

Default Value: 00h

Bit	Attribute	Default	Description
7:4	RW	0000	Page Register Life Timer (in unit of 16 DCLKs)
			When timer expired, the expired page will be closed.
3:0	RW	0000	DRAM Expired Page Threshold
			Close expired pages with precharge-all command when the number of expired pages exceeds the value.

Offset Address: 69h (D0F3)

DDR Page Control

Default Value: 00h

Bit	Attribute	Default	Description	
7:6	RW	0	Bank Interleave	
			00: No interleave 01: 2-bank	
			10: 4-bank 11: 8 bank	
5	RW	0	Enable Bank Address Scramble	
			When set to 1, BA0=A13^A15^A17^A19, BA1=A12^A14^A16^A18^A20	
4	RW	0	Auto-Precharge for TLB Read and CPU Write-Back	
			0: Disable 1: Enable	
3:2	_	0	Reserved	
1	RW	0	Keep Page Active When Cross Bank	
			0: Disable 1: Enable	
0	RW	0	Multiple Page Mode	
			0: Disable 1: Enable	

Refresh Control (6A-6Bh)

Offset Address: 6Ah (D0F3)

Refresh Counter

Default Value: 00h

Bit	Attribute	Default	Description
7:0	RW	0	Refresh Counter (in unit of 16 DRAM CLKs)
Į.			When set to 00, DRAM refresh is disabled

Offset Address: 6Bh (D0F3)

DRAM Miscellaneous Control

Bit	Attribute	Default	Description
7	RW	0	DQS Input DLL Adjustment
			0: Disable 1: Enable
6	RW	0	DQS Output DLL Adjustment
			0: Disable 1: Enable
5	RW	0	Burst Refresh
			0: Disable 1: Enable
4	RW	1	DLL Manual Reset
			0: Disable 1: Enable
3	RW	0	Enable Memory Size Detection, MA 32/16 33/17 Swap
			0: Disable 1: Enable
2:0	RW	0	SDRAM Operation Mode Select
			000: Normal SDRAM Mode
			001: NOP Command Enable
			010: All-Banks-Precharge Command Enable.
			011: MRS to SCMD
			100: CBR, CAS-before-RAS refresh, Cycle Enable
			101: Reserved
			11x: Reserved

DDR SDRAM Control (6C-6Fh)

Offset Address: 6Ch (D0F3)

DRAM Type

Default Value: 00h

Bit	Attribute	Default	Description		
7	RW	0	DDR2 DRAM Support		
			0: Disable DDR2	1: Enable DDR2	
6	RO		Memory Type Detected (through ball: MEMD	ET)	
			0: DDR	1: DDR2	
5	RO		128-Bit DRAM Mode		
			0: Disable 128-bit DRAM mode	1: Support 128-bit DRAM mode	
4	RW	0	Disable DQM balls		
3	RW	0	SDRAM Effective Burst Length	SDRAM Effective Burst Length	
			For 128-bit mode ranks, SDRAM MRS		
			0: Not support	Not support 1: BL4	
			For 64-bit mode ranks, SDRAM MRS	or 64-bit mode ranks, SDRAM MRS	
			0: BL4	1: BL8	
2:1		0	Reserved		
0	RW	0	Registered DIMM		
			0: Disable (i.e. supports unbuffered DIMM)	1: Enable	

Offset Address: 6Dh (D0F3)

DQ Channel Select

Default Value: C0h

Bit	Attribute	Default	Description	
7	RW	1	DQ Channel Select for DIMM#3	
			0: Channel A 1: Channel B	
6	RW	1	DQ Channel Select for DIMM#2	
L			0: Channel A 1: Channel B	
5	RW	0	DQ Channel Select for DIMM#1	
			0: Channel A 1: Channel B	
4	RW	0	DQ Channel Select for DIMM#0	
			0: Channel A 1: Channel B	
3:2	_	00	Reserved	
1	RW	0	Enable MA Bus C Inversion (except MAC10)	
0	RW	0	Enable MA Bus B Inversion (except MAB10)	

Note: If ODT is not supported, the registers can be programmed, i.e. the function of MD/CS mapping can work.

Offset Address: 6Fh (D0F3)

Miscellaneous Control

Defau	14	V.	lua.	40h
Detau	It	va	iue:	4Un

Bit	Attribute	Default	Description
7	RW	0	Non-ONBD Protection for GART Table Fetching
			0: Disable 1: Enable
6	RW	1	DRAM-Side-Input-Pointer Non-Return-Zero Mode
			0: Disable 1: Enable
			Enable to avoid overwrite data
5	RW	0	Disallow the 2 nd Cycle of a 2T Command Overlapped with Command of Different Type on a Different
			MA/SCMD Bus
			0: Allow 1: Not allow
			Sets this bit to 1 when read-modify-write mode is enabled (for example, ECC mode).
4	RW	0	Read-Modify-Write (RMW) Option
			When enabled, RMW is processed in relaxed mode.
3	RW		Applying Same-Channel IO Turn-Around Constraints between Different Channels
2	RW	0	Exclusive SCMD Buses
			When enabled, the two SCMD buses are exclusive, do not have commands in the same cycle.
1		0	Reserved
0	RW	0	GART Table Access Option
			When enabled, GART Table accessing is in relaxed mode.
			Set this bit to 1 in DDR400 mode.

DRAM Signal Timing Control (70–7Fh)

Offset Address: 73 – 70h (D0F3) MD / DQS Output Delay Control

Default Value: 00000000h

Offset Address	Attribute	Default	Description
73h	RW	0	Channel B MD Output Delay
72h	RW	0	Channel B DQS Output Delay
71h	RW	0	Channel A MD Output Delay
70h	RW	0	Channel A DQS Output Delay

Note: these delay registers are in unsigned binary format.

Offset Address: 74h (D0F3)

DQS Output Clock Phase Control

Default Value: 00h

Bit	Attribute	Default	Description
7		0	Reserved
6:4	RW	000	Initial Phase of Internal Clocks for DQS Output on Channel B Each steps increase a phase of 1/8 T
3		0	Reserved
2:0	RW	0	Initial Phase of Internal Clocks for DQS Output on Channel A Each steps increase a phase of 1/8 T

Offset Address: 75h (D0F3)

DQ Output Clock Phase Control

Default Value: 00h

Bit	Attribute	Default	Description	
7		0	Reserved	
6:4	RW	000	itial Phase of Internal Clocks for DQ Output on Channel B ach steps increase a phase of 1/8 T	
3		0	served	
2:0	RW	0	Initial Phase of Internal Clocks for DQ Output on Channel A Each steps increase a phase of 1/8 T	

Offset Address: 76h (D0F3)

Write Data Phase Control

Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic
7	RW	0	1 More Pipeline Stage on Write Data Path	RDWPIPE
6	_	0	Reserved	-
5	RW	0	DQ/DQS Output Clocks Bypass Delay Component	
4		0 ·	Reserved	_
3:2	RW	00	Advance Write Phase Signals to Make Room for the Long Bus Delay 00: Normal mode 01: Advance 1 cycle 10: Advance 2 cycle 11: Forbidden The 2 bits must be used with Bit [1:0] (RDWPH[1:0]).	RDWADV[1:0]
1:0	RW	00	Write MD/DQS/CAS Output Timing Range Control Each increased step delays the output range by 1/4 T.	RDWPH[1:0]

Offset Address: 77h (D0F3)

DQS Input Delay Calibration

Bit	Attribute	Default	Description		
7	RW	0	Manual DQS Input Delay Setting 0:Auto 1: Manual		
6		0	Reserved		
5:0	RW	0	DDR DQS Input Delay This is the base delay value of DQS input signal in unsigned binary format. The reading value depends on Rx77[7]. If Rx77[7] = 0 (auto mode), DLL calibration result is returned when read.		

Default Value: 80h

Default Value: 00h

Offset Address: 78h (D0F3)

Channel A DQS Input Capture Range Control

Bit	Attribute	Default	Description		
7	RW	1	Manual DQS Input Capture Range Setting for Channel A		
			0: Auto	1: Manual	
6	RW	0	Enable DQS Input Capture Range Detection for Channel A		
5:0	RW	00	DQS Input Capture Range for Chang Bit [5:4] 00: 1T prior to 1st DQS rising edge 10: 1T after Bit [3:1] 1/8T delay Bit [0] 0.35ns fine tune delay		

Offset Address: 79h (D0F3)

Channel B DQS Input Capture Range Control

Bit	Attribute	Default	Description	
7	RW	1	Manual DQS Input Capture Range Setting for Channel B 0: Auto 1: Manual	
6	RW	0	Enable DQS Input Capture Range Detection for Channel B	
5:0	RW	00	DQS Input Capture Range for Channel B	

Offset Address: 7Ah (D0F3)

DQS Input Capture Range Control

Bit	Attribute	Default	Description
7	RW	0	Select DQS Input Ball as Input Capture Range Detection Signal 0: DQSB0 1: DQSB4
6:4	RW	000	DQS Input Capture Range Offset Value for Channel B 1/8T per step, 2's complement
3	RW	0	Select DQS Input Ball as Input Capture Range Detection Signal 0: DQSA0 1: DQSA4
2:0	RW	000	DQS Input Capture Range Offset Value for Channel A 1/8T per step, 2's complement

Offset Address: 7Bh (D0F3)

Read Data Phase Control

Default Value: 00h

Bit	Attribute	Default	Description	
7	RW	0	Reserved	
6:4	RW	000	1D Input Data Push Timing Control	
			: Start moving data into internal buffer 1T after the 1st DRAM strobe	
			1: 1.5T	
			0: 2T	
			11: 2.5T	
3:1		0	Reserved	
0	RW	0	Extend DQS Input Capture Range 1/2T Earlier	

Read-Only Control (7C-7Fh)

Offset Address: 7Ch (D0F3)

Channel A DQS Input Delay Offset Control

Bit	Attribute	Default	Description
7	RW	0	Reserved
6:0	RW	0	Channel A DQS Input Delay Offset (In two's complement)
			This is the offset values (in 2's complement format) from the base delay value (Rx77[5:0]) for Channel A DIMM.

Offset Address: 7Eh (D0F3)

Channel B DQS Input Delay Offset Control

Default Value: 00h

Bit	Attribute	Default	Description
7		0	Reserved
6:0	RW	0	Channel B DQS Input Delay Offset (In two's-complement). This is the offset values (in 2's complement format) from the base delay value (Rx77[5:0]) for Channel B DIMM.

Shadow RAM Control (80-83h)

Offset Address: 80h (D0F3)

Page-C ROM Shadow Control

Default Value: 00h

Bit	Attribute	Default	Description		
7:6	RW	00	CC000-CFFFFh Memory Space Access Control		
			00: Read / Write Disable 01: Write Enable		
			10: Read Enable 11: Read / Write Enable		
5:4	RW	00	8000-CBFFFh Memory Space Access Control		
3:2	RW	00	C4000-C7FFFh Memory Space Access Control		
1:0	RW	00	C0000-C3FFFh Memory Space Access Control		

Offset Address: 81h (D0F3)

Page-D ROM Shadow Control

Default Value: 00h

Bit	Attribute	Default		Description		
7:6	RW	00	DC000-DFFFFh Memory Space Access Control			
			00: Read / Write Disable	01: Write Enable		
			10: Read Enable	11: Read / Write Enable		
5:4	RW	00	D8000-DBFFFh Memory Space	D8000-DBFFFh Memory Space Access Control		
3:2	RW	00	D4000-D7FFFh Memory Space Access Control			
1:0	RW	00	D0000-D3FFFh Memory Spac	e Access Control		

Offset Address: 82h (D0F3)

Page-E ROM Shadow Control

Bit	Attribute	Default	Description
7:6	RW	00	EC000-EFFFFh Memory Space Access Control
			00: Read / Write Disable 01: Write Enable
			10: Read Enable 11: Read / Write Enable
5:4	RW	00	E8000-EBFFFh Memory Space Access Control
3:2	RW	00	E4000-E7FFFh Memory Space Access Control
1:0	RW	00	E0000-E3FFFh Memory Space Access Control

Offset Address: 83h (D0F3)

Page-F ROM, Memory Hole and SMI Decoding

Bit	Attribute	Default	Description	Mnemonic
7:6	_	0	Reserved	
5:4	RW	00	F0000-FFFFFh Memory Space Access Control	
			00: Read / Write Disable 01: Write Enable	
2.2			10: Read Enable 11: Read / Write Enable	
3:2	RW	00	Memory Hole	
			00: None	
1	RW	0	Disable Data Access on SMRAM (Page A, B) in SM Mode 0: In SM mode, page A,B CPU Data R/W cycles are forwarded to the memory controller. 1: In SM mode, page A,B CPU Data R/W cycles are forwarded to the PCI bus Notes: (i.□. This bit is effective when Rx83[0] is set to 0. 2. SMRAM page A,B Code R/W cycles are always forwarded to the memory controller in	RABKDOFF
0	RW	0	SM mode. Enable Page A, B DRAM Access In Normal Mode 0: Page A, B CPU R/W cycles could be forwarded to memory controller or PCI bus depends on the setting of RABKDOFF (bit 1), the CPU operating mode (Normal or SM mode) as well as the type (Code or Data) of the CPU cycle. 1: Page A, B CPU R/W cycles (Code and Data) are always (in either Normal or SM mode) forwarded to the memory controller. Check the following table for details.	RRWABK

Table 10. CPU-to-SMRAM Cycle Flow

RABKDOFF (Rx83[1])	RRWABK (Rx83[0])	CPU MODE	Target of CODE Access Cycle	Target of DATA Access Cycle
х	0	Normal	PCI	PCI
0	0	SMM	DRAM	DRAM
1	0	SMM	DRAM	PCI
X	1	Normal / SMM	DRAM	DRAM

DRAM Above 4G Support (84-8D)

Offset Address: 84h (D0F3) Low Top Address – Low

Bit	Attribute	Default	Description				
7:4	RW	0000	Low Top Address - A[23:20]				
3:0		0000	Reserved				

Offset Address: 85h (D0F3)

Low Top Address - High

Bit	Attribute	Default	Descriptio	n
7:0	RW	FFh	Low Top Address – A[31:24]	

Default Value: 00h

Default Value: FFh

Offset Address: 86h (D0F3)

SMM and APIC Decoding

Default Value: 01h

Bit	Attribute	Default	Description	Mnemonic
7:6		0	Reserved	
5	RW	0	APIC Lowest Interrupt Arbitration	
			0: Disable 1: Enable	
4	RW	0	IO APIC Decoding	RAPIC2
			0: Cycles accessing FECx_xxxxh are passed to PCI1	
			1: Cycles accessing FEC7_FFFFh – FEC0_0000h are passed to PCI1; cycles accessing	
			FECF_FFFFh - FEC8_0000h access cycles are passed to PCI2.	
3	RW	0	MSI Support (Processor Message Enable)	
			0: Cycles accessing FEEx_xxxxh from masters are passed to PCI1 (PCIC will not claim)	
			1. Cycles accessing FEEx_xxxxh from masters are passed to the Host side for snooping	
2	RW	0	Top 1MB SM Memory Enable	RTSMMEN
i			0: Disable 1: Enable	
			$TSMMA[31:20] = \{LOWTOPA[31:24],4'h0\} - \{FBSZ[2:0],1'b0\};$	
			OSLOWTOPA[31:20] = TSMMA[31:20] – RTSMMEN	
1		0	Reserved	
0	RW	1	Compatible SMM Enable	RCSMMEN
			0: Disable 1: Enable	

Offset Address: 89-88h (D0F3)

Misc. DRAM Address Setting

Default Value:0000h

Bit	Attribute	Default	Description
15:11		0	Reserved
10:0	RW	0	The Address Next to the Last Valid DRAM Address

Offset Address: 8Ch (D0F3)

DQS Output Control

Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic
7:2		0	Reserved	
1	RW	0	MD/DQS Earlier Output Enable MDOE 1/2T earlier DQSOE 1/2T earlier if Bit 0 (RDSOLNGPRE)=0	RDSOLNGPRE2
0	RW	0	DQS Earlier Output Enable DQSOE 1/4T earlier if Bit 1 (RDSOLNGPRE2)=1	RDSOLNGPRE

DRAM Clocking Control (90-9F)

Offset Address: 90h (D0F3)

DRAM Clock Operation Mode and Frequency

Bit	Attribute	Default	Description	Mnemonic
7	RW	0	DCLK Switch to Non-Feedback Mode	RNODCLKIN
			0: Feedback mode 1: Non-feedback mode (feed-forward mode).	
			There is no need to feed DCLKO back through MCLKIN port.	
6:3		0	Reserved	
2:0	RW	000	DRAM Operating Frequency	
			000: 100MHz 001: 133MHz	
		,	010: 166MHz 011: 200MHz	
			100: 266MHz 101: Reserved	
			110/111: Reserved	·

Default Value: 00h

Default Value: 00h

Default Value: 01h

Default Value: 00h

Default Value: 00h

Offset Address: 91h (D0F3)

DCLK (MCLK) Phase Control

Bit	Attribute	Default	Description
7		0	Reserved
6:4	RW	000	DCLKOB Phase Select for Rx90[7] (RNODCLKIN) =1 Mode Each step increases 1/8T
3		0	Reserved
2:0	RW	000	DCLKOA Phase Select Each step increases 1/8T

Offset Address: 92h (D0F3)

CS/CKE Clock Phase Control

Bit	Attribute	Default	Description	
7:6		0	Reserved	
6:4	RW	0	Channel B Sampling Clock Phase Select for CS/CKE Each step increases a phase of 1/8 T	
3	RW	0	Reserved	
2:0	RW	0	Channel A Sampling Clock Phase Select for CS/CKE Each step increases a phase of 1/8 T	

Offset Address: 93h (D0F3)

SCMD/MA Clock Phase Control

Bit	Attribute	Default	Description	
7:6		0	Reserved	
6:4	RW	0	Channel B Sampling Clock Phase Select for SCMD/MA Each step increases a phase of 1/8 T	
3		0	Reserved	
2:0	RW	0	Channel A Sampling Clock Phase Select for SCMD/MA Each step increases a phase of 1/8 T	

Offset Address: 94h (D0F3)

DCLKO Feedback Mode Output Control

Bit	Attribute	Default	Description
7		0	Reserved
6:4	RW	000	DCLKO Feedback Mode Output Control For Rx90[6] (RNODCLKIN) = 0 mode, if DCLKOA is fed back to DCLKIA, each increased step delays DCLKOB; if DCLKOB is fed back to DCLKIA, each increased step makes DCLKOA earlier (1/8T per step).
3	_	0	Reserved
2:0	RW	001	DCLKO Feedback Mode Output Control For Rx90[6] (RNODCLKIN) = 0 mode, if DCLKOA is fed back to DCLKIA, each increased step makes DCLKOB earlier; if DCLKOB is fed back to DCLKIA, each increased step delays DCLKOA (1/8T per step).

DDR2 - I/O Pad Control (D0-D3h)

Offset Address: D0h (D0F3)

DQ / DQS Termination Strength Manual Control

Bit	Attribute	Default	Description
7:4	RW	0	DQ/DQS Pull-up Termination Strength Manual Setting
3:0	RW	0	DQ/DQS Pull-down Termination Strength Manual Setting

Offset Address: D1h (D0F3)

DQ / DQS Termination Strength Status

Bit	Attribute	Default	Description
7:4	RO	0	DQ/DQS Pull-up Termination Strength Auto-comp Value
3:0	RO	0	DQ/DQS Pull-down Termination Strength Auto-comp Value

Default Value: 00h

Default Value: 00h

Offset Address: D2h (D0F3)

DQ Driving Strength Status

Bit	Attribute	Default	Description
7:4	RO	0	DQ Pull-up Driving Strength Auto-comp Value
3:0	RO	0	DQ Pull-down Driving Strength Auto-comp Value

Offset Address: D3h (D0F3)

Compensation Control

Compens					
Bit	Attribute	Default	Description		
7:2	_	0	Reserved		
1	RW	0	DDR Compensation Auto Mode 1: Disable Auto Mode 1: Disable Auto Mode 1: DDR Compensation and DDR Auto Compensation are both enabled, the ODT settings for all DRAM pads are from auto-comp circuit (RxD1); otherwise, if Auto Compensation is disabled, the ODT settings are from manual setting (RxD0).		
0	RW	0	DDR Compensation 1: Enable 0: Disable Disable DDR Compensation provides a power saving mode, however, the values of RxD1 and RxD2 should be ignored.		

Note: The DQ driving bits of RxD2 is the result of the auto-comp circuit; however, there is no "auto-mode" for the DQ/DQB driving control since it depends on the actual number of ranks in the DRAM data channel

DDR2 - ODT Control (D4-D7h)

Offset Address: D4h (D0F3)

ODT Pullup / Pulldown Control

Bit	Attribute	Default	Description	
7	RW	0	NB Pad ODT	
			1: Enable ODT when reading data	
			0: Disable ODT unless RxD4[3:0] is not equal to 0	
6:4		0	Reserved	
3	RW	0	ODT Pullup Enable	
2	-	0	Reserved	
1	RW	0	ODT Pulldown Enable	
0		0	Reserved	

Offset Address: D5h (D0F3) ODT Driving and Range Select

T Driving and Range Select Default Value: 00h

Bit	Attribute	Default		Description		
7	RW	0	Channel-A DQ ODT Driving Select			
			0: Weak driving, for DDR or DDR2 without series resistance on MB			
			1: Strong driving for DDR2 with series re	esistance on MB		
6	RW	0	Channel-B DQ ODT Driving Select			
5	RW	0	Channel-A DQS ODT Driving Select			
4	RW	0	Channel-B DQS ODT Driving Select			
3	RW	0	Channel-A DQ ODT Range Select			
			1: 75 ohm	0: 150 ohm		
2	RW	0	Channel-B DQ ODT Range Select			
			1: 75 ohm	0: 150 ohm		
1	RW	0	Channel-A DQS ODT Range Select			
			1: 75 ohm	0: 150 ohm		
0	RW	0	Channel-B DQS ODT Range Select			
			1: 75 ohm	0: 150 ohm		

Default Value: 00h

Offset Address: D6h (D0F3)

ODT Driving and Range Select Default Value: 00h

Bit	Attribute	Default	Description	
7	RW	0	DCLKOA ODT Driving Select (DS)	
6	RW	0	DCLKOB ODT Driving Select (DS)	
5	RW	0	SCMD/MAA Driving Select	
4	RW	0	SCMD/MAB Driving Select	
3	RW	0	CKEA Driving Select	
2	RW	0	CKEB Driving Select	
1	RW	0	CKEA ODT Range Select (RS)	
0	RW	0	CKEB ODT Range Select (RS)	

Offset Address: D8h (D0F3)

ODT Lookup Table for Channel A

Bit	Attribute	Default	Description		
7:6	RW	0	Rank 3 ODT Signal Selection		
			00:ODTA0	01: ODTA1	
			10:ODTA2	11: ODTA3	
5:4	RW	0	Rank 2 ODT Signal Selection		
3:2	RW	0	Rank 1 ODT Signal Selection		
1:0	RW	0	Rank 0 ODT Signal Selection		

Offset Address: D9h (D0F3)

ODT Lookup Table for Channel B

Bit	Attribute	Default		Description	
7:6	RW	0	Rank 7 ODT Signal Selection		
			00:ODTB0	01: ODTB1	
			10:ODTB2	11: ODTB3	
5:4	RW	0	Rank 6 ODT Signal Selection		
3:2	R.W	0	Rank 5 ODT Signal Selection		
1:0	RW	0	Rank 4 ODT Signal Selection		

Offset Address: Dah (D0F3)

SDRAM ODT Control Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic
7	RW	0	DDR2 SDRAM ODT Control	RODTEN
			0: Disable 1: Enable	
6	RW	0	2T Write Command when Rx50 (RCMDIT) =1	RODTCMD2T
			0: Disable 1: Enable	
5	RW	0	Add MD Bus Turn Around Wait State for DDR2 ODT	RODTTAR
			0: Disable 1: Enable	
4:2	_	0	Reserved	
1	RW	0	Channel B Differential DQS Input	RDQSDFB
			0: Disable 1: Enable	
0	RW	0	Channel A Differential DQS Input	RDQSDFA
			0: Disable 1: Enable	

Offset Address: DCh (D0F3)

Channel A DQ/DQS CKG Output Delay Control

Bit	Attribute	Default	Description
7:6	RW	00	DQ/DQS Delay Control for Group A3
			00: Default 01: Delays100ps
			10: Delays 200ps 11: Delays 300ps
5:4	RW	00	DQ/DQS Delay Control for Group A2
3:2	RW	00	DQ/DQS Delay Control for Group A1
1:0	RW	00	DQ/DQS Delay Control for Group A0

Offset Address: DDh (D0F3)

Channel A DQ/DQS CKG Output Delay Control

Default Value: 00h

Bit	Attribute	Default	Description		
7:6	RW	00	DQ/DQS Delay Control for Group A7		
			00: Default 01: Delays100ps		
			10: Delays 200ps 11: Delays 300ps		
5:4	RW	00	DQ/DQS Delay Control for Group A6		
3:2	RW	00	DQ/DQS Delay Control for Group A5		
1:0	RW	00	DQ/DQS Delay Control for Group A4		

Offset Address: Deh (D0F3)

Channel B DQ/DQS CKG Output Delay Control

Default Value: 00h

Bit	Attribute	Default	Description		
7:6	RW	00	DQ/DQS Delay Control for Group B3		
		*	00: Default 01: Delays100ps		
			10: Delays 200ps 11: Delays 300ps		
5:4	RW	00	DQ/DQS Delay Control for Group B2		
3:2	RW	00	DQ/DQS Delay Control for Group B1		
1:0	RW	00	DQ/DQS Delay Control for Group B0		

Offset Address: DFh (D0F3)

Channel B DQ/DQS CKG Output Delay Control

Default Value: 00h

Bit	Attribute	Default	Description
7:6	RW	00	DQ/DQS Delay Control for Group B7
			00: Default 01: Delays100ps
			10: Delays 200ps 11: Delays 300ps
5:4	RW	00	DQ/DQS Delay Control for Group B6
3:2	RW	00	DQ/DQS Delay Control for Group B5
1:0	RW	00	DQ/DQS Delay Control for Group B4

DRAM Driving Control (E0-EFh)

Table 11. Physical Ball to Driving Group Mapping Table

Physical Balls	DCLK[A, B]	CKE[A, B]	CS[A, B]	MA[A, B]	DQ[A, B]	DQS[A, B]	MPD/DQM[A, B]
Driving Group	DCLK[A, B]	CS[A, B]	CS[A, B]	MA[A, B]	DQ[A, B]	DQS[A, B]	DQ[A, B]

Offset Address: E0h (D0F3)
DRAM Driving – Group DQSA

Default Value: 00h

Bit	Attribute	Default	Description
7:4	RW	0	DQSA – PMOS Driving
3:0	RW	0	DQSA – NMOS Driving

Offset Address: E1h (D0F3)

DRAM Driving - Group DQSB

Default Value: 00h

Bit	Attribute	Default	Description	
7:4	RW	0	DQSB – PMOS Driving	
3:0	RW	0	DQSB – NMOS Driving	

Offset Address: E2h (D0F3)

DRAM Driving - Group DQA (MD, MPD, DQS, DQM)

Bit	Attribute	Default	Description
7:4	RW	0	DQA – PMOS Driving
3:0	RW	0	DQA – NMOS Driving

Default Value: 00h

Offset Address: E3h (D0F3)

DRAM Driving - Group DQB (MD, MPD, DQS, DQM)

Bit	Attribute	Default	Description
7:4	RW	0	DQB – PMOS Driving
3:0	RW	0	DOB – NMOS Driving

Offset Address: E4h (D0F3)

DRAM Driving - Group CSA (CS, DQM, MPD)

Bit	Attribute	Default	Description
7:4	RW	0	CSA – PMOS Driving
3:0	RW	0	CSA – NMOS Driving

Offset Address: E5h (D0F3)

DRAM Driving – Group CSB (CS, DQM, MPD)

Bit	Attribute	Default	Description
7:4	RW	0	CSB – PMOS Driving
3:0	RW	0	CSB – NMOS Driving

Offset Address: E6h (D0F3)

DRAM Driving - Group DCLKA

Bit	Attribute	Default	Description
7:4	RW	0	DCLKA – PMOS Driving
3:0	RW	0	DCLKA – NMOS Driving

Offset Address: E7h (D0F3)

DRAM Driving - Group DCLKB

Bit	Attribute	Default	Description
7:4	RW	0	DCLKB – PMOS Driving
3:0	RW	0	DCLKB – NMOS Driving

Offset Address: E8h (D0F3)

DRAM Driving – Group MAA

Default Value: 00h

Bit	Attribute	Default	Description
7:4	RW	0	MAA – PMOS Driving
3.0	RW	0	MAA – NMOS Driving

Offset Address: E9h (D0F3)

DRAM Driving - Group MAB

Bit	Attribute	Default	Description	
7:4	RW	0	MAB – PMOS Driving	
3:0	RW	0	MAB – NMOS Driving	

Default Value: 00h

Default Value: 00h

Default Value: 00h

Offset Address: Ech (D0F3)

Channel-A DQS / DQ CKG Duty Cycle Control

Bit	Attribute	Default	Description		
7:6	RW	00	DQS CKG Falling Edge Control		
			00: Default	01: Falling edge delays 100 ps	
			10: Falling edge delays 200 ps	11: Falling edge delays 300 ps	
5:4	RW	00	DQS CKG Rising Edge Control	DOS CKG Rising Edge Control	
			00: Default	01: Rising edge delays 100 ps	
			10: Rising edge delays 200 ps	11: Rising edge delays 300 ps	
3:2	RW	00	DQ CKG Falling Edge Control	DQ CKG Falling Edge Control	
			00: Default	01: Falling edge delays 100 ps	
			10: Falling edge delays 200 ps	11: Falling edge delays 300 ps	
1:0	RW	00	DQ CKG Rising Edge Control		
			00: Default	01: Rising edge delays 100 ps	
			10: Rising edge delays 200 ps	11: Rising edge delays 300 ps	

Offset Address: Edh (D0F3)

Channel-B DQS / DQ CKG Duty Cycle Control

Bit	Attribute	Default		Description	
7:6	RW	00	DQS CKG Falling Edge Control		
		ļ	00: Default	01: Falling edge delays 100 ps	
			10: Falling edge delays 200 ps	11: Falling edge delays 300 ps	
5:4	RW	00	DOS CKG Rising Edge Control		
			00: Default	01: Rising edge delays 100 ps	
			10: Rising edge delays 200 ps	11: Rising edge delays 300 ps	
3:2	RW	00	DQ CKG Falling Edge Control		
			00: Default	01: Falling edge delays 100 ps	
			10: Falling edge delays 200 ps	11: Falling edge delays 300 ps	
1:0	RW	00	DQ CKG Rising Edge Control		
			00: Default	01: Rising edge delays 100 ps	
			10: Rising edge delays 200 ps	11: Rising edge delays 300 ps	

Offset Address: Eeh (D0F3)
DCLK Output Duty Control

Attribute Default Description 7:6 RW 00 **Duty Control for DCLKA** 00: Default 01: Falling edge delays 100 ps 10: Falling edge delays 200 ps 11: Falling edge delays 300 ps 5:4 RW 00 **Duty Control for DCLKA** 00: Default 01: Rising edge delays 100 ps 10: Rising edge delays 200 ps 11: Rising edge delays 300 ps 3:2 RW 00 **Duty Control for DCLKB** 00: Default 01: Falling edge delays 100 ps 10: Falling edge delays 200 ps 11: Falling edge delays 300 ps 1:0 RW 00 **Duty Control for DCLKB** 00: Default 01: Rising edge delays 100 ps 10: Rising edge delays 200 ps 11: Rising edge delays 300 ps

Offset Address: EFh (D0F3)
DQS CKG Input Delay Control

Bit	Attribute	Default		Description
7:6		0	Reserved	
5:4	RW	00	Duty Control for DQSA	
			00: -150 ps	01: 0 ps
			10: 150 ps	11: 300 ps
3:2	_	0	Reserved	
1:0	RW	00	Duty Control for DQSB	
			00: -150 ps	01: 0 ps
			10: 150 ps	11: 300 ps

Device 0 Function 4 (D0F4): Power Management Control

Header Registers

Offset Address	Attribute	Default	Description
1 – 0h	RO	1106h	Vendor ID
3 – 2h	RO	4308h	Device ID – Power Management Control
5 – 4h	RO	0006h	PCI Command
7 – 6h	RO	0200h	PCI Status
8h	RO	00	Revision ID
0B – 9h	RO	060000h	Class Code
0Dh	RO	00	Latency Timer
0Eh	RO	00	Header Type
0Fh	RO	00	BIST
13-10h			Reserved
2D – 2Ch	RW1	00	Subsystem Vendor ID
2F – 2Eh	RW1	00	Subsystem ID
33 – 30h	RO	00	Reserved
37 – 34h	RO	0000	Capability Pointer
3F – 38h			Reserved

Power Management Control (A0-EFh)

Offset Address: A0h (D0F4)

Power Management Mode Default Value: 00h

Bit	Attribute	Default	Description		
7	RW	0	Dynamic Power Management		
			0: Disable	1: Enable	
6	RW	0	Power Management during HALT	SHUTDOWN	
			0: Disable	1: Enable	
5	RW	0	Power Management during STPCL	K	
			0: Disable	1: Enable	
4	RW	0	Power Management during SUSST	AT	
			0: Disable	1: Enable	
3:0		0	Reserved	•	

Offset Address: A1h (D0F4)

DRAM Power Management Default Value: 00h

Bit	Attribute	Default	I	Description
7	RW	0	Enable DRAM Self-Refresh During Power-Mana	gement Mode
ł			0: Disable	1: Enable
6	RW	0	Dynamic CKE When DRAM Idle	
			0: Disable	1: Enable
			Note: Before entering STR Mode, please turn off this	s bit
5	RW	0	Dynamic DRAM I/O Pad Power-Down (i.e. float)	
l l			0: Disable	1: Enable
4:0		0	Reserved	

Note: The DRAM power management mode is defined as HALT / SHUTDOWN, STPCLK and SUSSTAT triggered

Offset Address: A2h (D0F4)

Dynamic Clock Stop Control

Default Value: 00h

Bit	Attribute	Default		Description	
7	RW	0	Host Interface Power Management		
			0: Disable	1: Enable	
6	RW	0	DRAM Interface Power Manageme	ent .	
			0: Disable	1: Enable	
5	RW	0	V-Link Interface Power Manageme	ent	
			0: Disable	1: Enable	
4	RW	0	AGP Interface Power Management		
			0: Disable	1: Enable	
3	RW	0	PCI2 Interface Power Managemen		
			0: Disable	1: Enable	
2	RW	0	Graphics Interface (GMINT) Powe	r Management	
			0: Disable	1: Enable	
1	RW	0	VKCFG Interface Power Managen	ent	
			0: Disable	1: Enable	
0	RW	0	Host Fast Power-Management (DA	DS Fast Timing)	
1			0: Disable	1: Enable	,

Offset Address: A3h (D0F4)

Attribute

RW

7

6:0

MA / SCMD Pad Toggle Reduction

Default

MA / SCMD Toggle Reduction

0: Disable

Reserved

(i.e. do not switch MA / SCMD if not accessed)

Offset Address: A8h (D0F4)

PCIe Dynamic Clock Stop

Default Value: 00h

Default Value: 00h

Bit	Attribute	Default	Description	
7	RW	0	Enable Dynamic Clock STOP of PEG Port for PHY	
6		0	Reserved	
5	RW	0	Central Traffic Controller Dynamic Clock STOP	
			0: Disable 1: Enable	
4	RW	0	Enable Dynamic Clock STOP for PEG Port	
3:0		0	Reserved	

Description

1: Enable

Offset Address: DF-D0h (D0F4)

BIOS Extended Scratch Registers D

Default Value: 00h

Offset Address	Attribute	Default	Description
DF – D0h	RW		BIOS Extended Scratch Registers D

Offset Address: EF-E0h (D0F4)

BIOS Extended Scratch Registers E

Offset Address	Attribute	Default	Description
EF – E0h	RW		BIOS Extended Scratch Registers E

Device 0 Function 5 (D0F5): APIC and Central Traffic Control

Header Registers (0-3Fh)

Offset Address	Attribute	Default	Description
1 – 0h	RO	1106h	Vendor ID
3 – 2h	RO	5308h	Device ID – for Power Management Control
5 – 4h	RO	0006h	PCI Command
7 – 6h	RO	0000h	PCI Status
8h	RO	00	Revision ID
0B - 9h	RO	080020h	Class Code
0Dh	RO	00	Latency Timer
0Eh	RO	80	Header Type
0Fh	RO	00	BIST
13-10h		-	Reserved
2D – 2Ch	RW1	00	Subsystem Vendor ID
2F – 2Eh	RW1	00	Subsystem ID
33 – 30h	RO	00	Reserved
37 – 34h	RO	00	Capability Pointer
3F – 38h			Reserved

Legacy APIC Base I/O Registers (40-5Fh)

Offset Address: 40h (D0F5)
APIC Legacy Configuration

Default Value: 4Ch

Bit	Attribute	Default	Description
7	RW	0	Legacy APIC
			0: Disable
			1: Enable; Range FECxyz00 to FECxyzFF, where x,y,z are defined in Rx40[3:0] and Rx41[7:0]
6	RW	1	Reserved
5	RW	0	Issues MSI Cycle for the Interrupt Deassertions
			0: Disable, there will be no corresponding MSI cycle for IRQ deassertion
			1: Enable, IRQ assertion and de-assertion will both issue MSI cycle out
4		0	Reserved
3:0	RW	0Ch	APIC Legacy Address Range - x

Offset Address: 41h (D0F5)

APIC Legacy Address Range - y / z

lange – y	•	
Default	Description	

Bit	Attribute	Default	Description
7:4	RW		APIC Legacy Address Range - y
3:0	RW	0	APIC Legacy Address Range - z

Offset Address: 42h (D0F5)

APIC BT_INTR Control

Bit	Attribute	Default		Description
7:4		0	Reserved	
3	RW	0	Disable INTx Transparent Mode 0: Enable Transparent mode 1: Disable Transparent mode	
2	RW	0	APIC Nonshare Mode Enable	
1	RW	1	BTIDIS Function of the APIC Module 0: Disable	1: Enable
0	RW	1	BT_INTR Function 0: Disable	1: Enable

Offset Address: 44h (D0F5)

Miscellaneous Control

Default Value: 00h

Bit	Attribute	Default	Description	
7:1		0	Reserved	
0	RW	0	APIC Data Voltage for CPU Voltage Select	
ł			0: 2.5V 1: 1.5V	

Central Traffic - Downstream Control (60-7Fh)

Offset Address: 60h (D0F5)

Extended CFG Address Support

Default Value: 20h

Bit	Attribute	Default	Description
7:6	_	0	Reserved
5	RW	1	Convert Device2 CF8 Cycles to Device1 while Passing it to the SB (in PCIe Mode)
	· ·		0: CF8 access cycles are passed to the SB normally
			1: CF8 with data[15:11]=00010 will be changed to data[15:11]=00001
4	RW	0	CF8 Byte Write Enable
			0: Only supports CF8 write with all BE active
			1: Allow CF8 write with partial BE active
3	RW	0	For Device 2 and Device 3, Configuration Cycles to the Secondary Bus behind the P2P Bridge
			0: Configuration cycles for all the devices will be passed through.
			1: Only configuration cycles for device 0 will be passed to the secondary bus.
2	_	0	Reserved
1:0	RW	0	Extended CFG Mode
			00: Extended CFG mode is off
		1	01: Reserved
			10: Capability header for extended configuration address support
			11: Memory mapped extended CFG address supported (Rx61[7:0] should also be programmed.)

Offset Address: 61h (D0F5)

Memory Mapped Extended CFG Address

Default Value: 00h

Bit	Attribute	Default	Description
7:0	_	0	Extended Configuration Address: A[35:28] 00h: No extended configuration address Else: Extended configuration address A[35:28] from host side

Offset Address: 62h (D0F5)

Memory Mapped Extended RCRB Base Address

Bit	Attribute	Default	Description
7:0	_	0	RCRB Base Address
			00h: no RCRB is supported

Offset Address: 64h (D0F5)

Miscellaneous Default Value: 13h

Bit	Attribute	Default	Description
7:5	_	0	Reserved
4	RW	1	Downstream C2P Forces Flush of the Upstream P2C Write to the Host Side before Return LRDY to the
			Host Side
			0: Disable 1: Enable
			Note: C2P Downstream cycles include MEMR, IOR and IOW
3:2		0	Reserved
1	RW	1	Downstream Write Request Timing
			0: Wait for the write data to issue downstream request
			1: Issue downstream request once request from the host is received
0	RW	1	Traffic Controller Downstream Cycles Are Processed in Order
			0: Disable; Downstream post write transaction won't be issued out until the data phase of the previous read
1			transaction is finished
			1: Enable; Downstream post write transaction can be issued out before the completion of the data phase of the
			previous read transaction

Central Traffic - Upstream Control (80h)

Offset Address: 80h (D0F5)

Central 7	Traffic-Upsti	ream Cont	trol Default Value: 18h
Bit	Attribute	Default	Description
7		0	Reserved
6	RW	0	VC1 Upstream Path
			0: VC1 requests are forwarded to the host side (snoop)
			1: VC1 requests are forwarded to the DRAMC side. Those required snoops are reported as MalFunction TLPs.
5	RW	0	CPU-to-Memory FIFO Snoop Policy for Upstream Request to DRAMC
			0: Upstream requests are sent to DRAMC directly
			1: Upstream requests to DRAMC have to wait for the snoop result from CPU-to-Memory FIFO. When hit,
			DRAMC will postpone handling these upstream requests till cycles in the CMFIFO been flushed to the DRAM.
4	RW	1	AGP Upstream Path
			0: AGP requests are forwarded to the host side (snoop)
			1: AGP requests are forwarded to the DRAMC side
3	RW	1	TPQPush, TPQPop 1T early
			0: Normal latency for upstream request
			1: Reduced 1T latency for upstream request
2	RW	0	Host Side Upstream Write
			Transaction end with 1T earlier notice
			0: Disable 1: Enable
1	RW	0	Host Side Upstream Read Data Returning Path
			0: 2 levels of synchronous FIFO 1: 1 level synchronous FIFO.
0	RW	0	Host Side Upstream Write, Data Return With a 1T Notice
			0: Disable 1: Enable

Offset Address: 82h (D0F5)

Central Traffic-Upstream Control

Attribute Default Description Bit RO 7:6 0 Reserved RW PCIe VC1 Read/Write Ordering Rule 0: Obey PCIe VC1 read/write ordering rule 1: PCIe VC1 read cycle can pass VC1 write cycle RW 0 4 **PCIe VC1 Command Rate** 0: PCIe VC1 read/write 2T command rate 1: PCIe VC1 read 2T command rate, but write 1T command rate 3 RW 0 AGP Read/Write Ordering Rule 0: Obey AGP read/write ordering rule 1: AGP read cycle can pass AGP write cycle 2 RW 0 **AGP Command Rate** 0: AGP read/write 2T command rate 1: AGP read 2T command rate, but, write 1T command rate RW 0 Fair arbitration latency for the host side arbitration unit at D0F0 extended register space Rx230 ~ Rx23D. 1: 1T 0 RW 0 Port arbitration latency for the port arbitration unit at D0F0 extended register space Rx210 ~ Rx219. 0: 2T

PCIe Message Controller and Power Management (A0-F0h)

Offset Address: A0h (D0F5)

PCIe PMU Control and Status

Bit	Attribute	Default	Description	
7	RWS	0	PEWAKE# Activation Control	
			0: PEWAKE# function is disabled.	
			1: PEWAKE# function is enabled.	
6:5		0	Reserved	
4			PEG, a x4 Root Port, L2L3 PME Acknowledge Status	
			0: Disable	
			1: 1 indicates that upon set RxF0[7] to 1, PEG goes to L2L3 ready state and PME TO ACK message has been	
			returned from the device at PEG.	
3:0	_	0	Reserved	

Offset Address: A1h (D0F5)

PCIe PMU Status Default Value: 00h

Bit	Attribute	Default	Description
7	RO	0	PM_PME Message Status 0: No PM_PME message 1: At least one PM_PME message was received at the PCIe ports. Note: Wake up the system through either PEWAKE# depends on the settings on RxA0[7].
6:0	-	0	Reserved

Offset Address: A2h (D0F5)

PMU Downstream Address [15:8]

Default Va	lue: 4	0h
------------	--------	----

Bit	Attribute	Default	Description	
7:0	RW	40h	Downstream Address Bits [15:8] This register is used for monitoring S3/S4/S5 downstream command. Refers to RxA3[7] for address [7].	

Offset Address: A3h (D0F5)

PMU Control

Default Value: 00h

Bit	Attribute	Default	Description
7	RW	0	Downstream Address Bit [7] This bit is used for monitoring S3/S4/S5 downstream command. Refers to RxA2 for address [15:8].
6:1		0	Reserved
0	RW	0	Monitor S3/S4/S5 Command 0: Disable 1: Enable When enable, the controller will monitor S3/S4/S5 commands (e.g. IOW 4005, 'h24 or 'h28) in the following procedure: 1. The controller receives the STPGNT cycles from the CPU 2. The controller triggers MSGC to issue PME_TURNOFF message to PCIe devices (D2F0, D2Fx) 3. The controller waits for the acknowledge from all the devices to issue the STPGNT cycle received in step 1 to SB.

Offset Address: F0h (D0F5)

PMU Control

Bit	Attribute	Default	Description	
7	RW	0	PCIe Device Power Management Control	
			0: Disable 1: Enable	
			Programmed this bit to 1 will trigger a PME_TURNOFF message sent to PCIe Root Ports, where devices are activated. This bit has to be programmed to 0 before it can be programmed to 1 again.	
6		0	Reserved	
5	RW	1	DV2 Exist or Not	
4:1	_	0	Reserved	
0	RW	0	Capability/Status Write of the P2P Header (D2F0, D3F0 and D3F2)	
			0: Disable 1: Enable	

Device 0 Function 6 (D0F6): Scratch Registers

Scratch Registers (40-7Fh)

Offset Address	Attribute	Default		Description
40-4Fh	RW	00000000	BIOS Scratch Register	·
50-5Fh	RW	00000000	BIOS Scratch Register	
60-6Fh	RW	00000000	BIOS Scratch Register	
70-7Fh	RW	00000000	BIOS Scratch Register	

Default Value: 51h

Default Value: 3Bh

Device 0 Function 7 (D0F7): V-Link North Bridge and South Bridge Control

Header Registers (0-3Fh)

Offset Address	Attribute	Default	Description
1 – 0h	RO	1106h	Vendor ID
3 – 2h	RO	7358h	Device ID – for V-Link Control
5 – 4h	RO	0006h	PCI Command
7 – 6h	RO	0200h	PCI Status
8h	RO	00	Revision ID
0B – 9h	RO	060000h	Class Code
0Dh	RO	00	Latency Timer
0Eh	RO	00	Header Type
0Fh	RO	00	BIST
13-10h		-	Reserved
2D – 2Ch	RW1	00	Subsystem Vendor ID
2F – 2Eh	RW1	00	Subsystem ID
33 – 30h	RO	00	Reserved
37 – 34h	RO	00	Capability Pointer
3F – 38h	pp	_	Reserved

V-Link Control Interface (40-B1h)

Offset Address: 40h (D0F7)

V-Link Specification ID

Bit	Attribute	Default	Description
7:4	RO	5h	North Bridge V-Link Revision ID
3:0	RO	1h	South Bridge V-Link Revision ID
			0, 0Fh: 8-bit V-Link, the operating mode is determined by Rx48[0].
			1h: Support V-Link capability up to mode 1.
			2h: Support V-Link capability up to mode 2.
			3h: Support V-Link capability up to mode 3.
			4h: Support V-Link capability up to mode 4.
1		}	5h: Support high priority upstream read.
			6h: Support high priority upstream read / write.

Offset Address: 41h (D0F7)

NB V-Link Capability

Bit	Attribute	Default	Desc	Mnemonic	
7:6		0	Reserved		-
5	RO	1	16-Bit Bus Width		NVK_16bit
	1		0: Not supported	1: Supported	_
4	RO	1	8-Bit Width		NVK_8bit
			0: Not supported	1: Supported	
3	RO	1	4X Rate		NVK_4X
			0: Not supported	1: Supported	
2	RO	0	2X Rate		NVK_2X
			0: Not supported	1: Supported	
1	RO	1	V-Link Bus Split (native 8X mode)		NVK_VDSP
			0: Not supported	1: Supported	
0	RO	1	8X Rate		NVK_8X
			0: Not supported	1: Supported	

Default Value: 88h

Default Value: 82h

Default Value: 82h

Offset Address: 42h (D0F7)

NB Downlink (C2P) Configuration

Bit	Attribute	Default	Description
7:4	RW	8h	C2P, DNCMD, Maximum Pending Request Depth Maximum # of pending DNCMD, C2P, requests. 0000: 1 level
			 1111: 16 levels
3:0	RW	8h	C2P Maximum Write Buffer Size (from 1 to 16 DW)

Offset Address: 43h (D0F7)

NB Uplink (P2C) Status I

Bit	Attribute	Default		Description
7:4	RO	8h	P2C, UPCMD, Maximum Pending Requ	est Depth
			0: 16 levels	1: 1 level
				n: n levels, where $0 < n \le 0$ Fh
3:2	_	0	Reserved	
1:0	RO	10	High Priority P2C Request Depth	
		J	00: 1 level	01: 4 levels
			10: 8 levels	11: 16 levels

Offset Address: 44h (D0F7)

NB Uplink (P2C) Status II

Bit	Attribute	Default	Description		
7:4	RO	8h	P2C Write Buffer Size (max # of lines) 0000: 16 lines (64QW) 0001: 1 lines (4QW)	1000: 8 lines(32QW) 1111: 15 lines (60QW)	
3:0	RO	2h	P2P Write Buffer Size (max # of lines)		

Offset Address: 45h (D0F7)

NB V-Link Arbiter Timer

NB V-Li	nk Arbiter T				Default Value: 44h
Bit	Attribute	Default		Description	
7:4	RW	4h	V-Link Arbiter Timer for Norma	Priority Request from SB	
			0000: 0 VCLK	1000: 8*4 VCLK	
	1		0001: 1*4 VCLK	1001: 16*4 VCLK	
			0010: 2*4 VCLK	1010: 32*4 VCLK	
			0011: 3*4 VCLK	1011: 64*4 VCLK	
			0100: 4*4 VCLK		
			11: NB holds the bus as long as th	ere is pending downstream request	
3:0	RW	4h	V-Link Arbiter Timer for High P	riority Request from SB	
			0000: 0 VCLK	1000: 8*2 VCLK	
			0001: 1*2 VCLK	1001: 16*2 VCLK	
			0010: 2*2 VCLK	1010: 32*2 VCLK	
		:	0011: 3*2 VCLK	1011: 64*2 VCLK	
			0100: 4*2 VCLK		
			11: NB holds the bus as long as th	ere is pending downstream request	
			Note: see Table for more details		

Table 8. NB V-Link Bus Arbitration

RNNTM[3:0] (Rx45[7:4))	RNHTM[3:0] (Rx45[3:0])	SB Request Priority	NB When to Relinquish the Occupied V-Link Bus
0000	xxxx	Normal / high	Immediately
0001,0010,	0000	High	Immediately
0001,0010,	0001,0010,	High	Wait for either Normal or High timer expired
0001,0010,	00xx	Normal	Wait for Normal timer expired
0001,0010,	11xx	Normal / high	Wait for Normal timer expired
11xx	0000	High	Immediately
11xx	0000	Normal	Wait until no more pending downstream request
11xx	0001,0010,	High	Wait for High timer expired
11xx	0001,0010,	Normal	Wait until no more pending downstream request
11xx	11xx	Normal / high	Wait until no more pending downstream request

Offset Address: 46h (D0F7)
NB V-Link Miscellaneous Control

Bit	Attribute	Default	Description	Mnemonic
7	RW	0	Downstream Read Data Return High Priority	RNHIRQ
			0: NB will not issue preamble command to SB.	
			1: Enable NB to issue preamble command to inform SB release V-Link for P2C Read-Request data	
			return	
6	RW	0	C2P Request Priority	
			0: NB will not issue preamble command to SB.	
			1: Enable NB to issue preamble command to inform SB release V-Link for downstream C2P request.	
			Note: To enable this function, RNHIRQ (bit7) must be set to 1.	
5:4	RW	0	Options of Combining Multiple STPGNT Cycles Into a V-Link Command	
			00: Compatible mode: a V-Link command per STPGNT cycle	
			01: Combines 2 STPGNT cycles into a V-Link command	
			10: Combines 3 STPGNT cycles into a V-Link command	
			11: Combines 4 STPGNT cycles into a V-Link command	
3:2	RW	0	V-Link Master Read/Write Access Ordering Rules	RINORDER
			00: High Priority Read allows to pass Normal Read (but not pass Write)	RHRPW
			01: Read (High/Normal) allows to pass Write (High Priority R>Normal Priority R>Write)	
			1x: Read / Write are executed in order	
1	RW	0	Read Around Write	
			0: Read always pass Write, if RINORDER (bit3) is 0	
			1: Allows up to 8 Read-Around-Write cycles before flushing the pending write, if RINORDER is 0	
			D. 14. LW '4. ' P. 11 L'CD'42 (DINODED) ' 44. 1	
	- DIV		Read Around Write is disabled if Bit 3 (RINODER) is set to 1	
0	RW	0	Downstream DAC (Double Address Cycle) Cycle	
			0: Disable 1: Enable	

Default Value: 18h

Offset Address: 47h (D0F7)

NB V-Link Control

Default Value: 00h

Bit	Attribute	Default	Description
7	RW	0	Upstream High-Priority Write Request Stream
			0: No high-priority write request stream.
			1: Enable support of high-priority write request stream
			When V-Link is not operated at 8X (and above), the high-priority write request is always disabled no matter what
			the setting of this bit is.
6	RW	0	Upstream High-Priority Read Request Stream
			0: No high-priority read request stream.
			1: Enable high-priority read request stream.
5	RW	0	C2P Read ACK Return Priority
			0: V-Link decodes C2P Read ACK command right when it's received
			1: C2P Read ACK command will be handled till pending P2C write cycles are all flushed
4	RW	0	0CF8h Configuration Cycle Address Bit[27:24] Usage
			0: Normal PCI usage
			1: Address bit[27:24] are used as extended register address bit[11:8]
3	RW	0	Dynamic STOP on Down Strobe
			0: Disable 1: Enable
2	RW	0	Auto-Disconnect
			0: Disable 1: Enable
1	RW	0	V-Link Disconnect Sequence for STPGNT Cycle
			0: Disable 1: Enable
0	RW	0	V-Link Disconnect Sequence for HALT cycle
			0: Disable 1: Enable

Offset Address: 48h (D0F7)

V-Link Configuration – NB / SB

This register is used to configure V-Link bus controller on both North and South bridge chips.

Bit	Attribute	Default		Description	Mnemonic
7	RW	0	Parity Check		
			0: Disable	1: Enable	
6		0	Reserved		
5	RW	0	16-Bit Width		RX16VK
			0: Disable	1: Enable	
4	RW	1	8-Bit Width		RX8VK
			0: Disable	1: Enable	
3	RW	1	4X Rate		
			0: Disable	1: Enable	
2	RW	0	2X Rate		
			0: Disable	1: Enable	
1	RW	0	V-Link Split Bus		RVKSPLT
			0: Disable	1: Enable	
0	RW	0	8X Rate		
			0: Disable	1: Enable	

	X: Multiples of 66MHz cycle	Bus Width	R8XVK - 8X (D0F7 Rx48[0])	RX16VK - 16bit (D0F7 Rx48[5])	RVKSPLT – Split Bus (D0F7 Rx48[1])
Mode0 - 8-bit VD Half Duplex	4X	8-bit □	0	0	0
Mode1 – 8-bit VD Full Duplex	8X	4-bit □□	1	0	1
Mode2 – 8-bit VD Half Duplex	8X	8-bit □	1	0	0
Mode3 – 16-bit VD Half Duplex	4X	16-bit □	0	1	0
Mode4 – 16-bit VD Full Duplex	8X	8-bit 🗆	1	1	1

Procedure to Enable / Disable V-Link-8X Mode:

- 1. BIOS sets Rx48[0] to 1
- 2. Hardware will automatically enter a disconnect sequence, and then both NB/SB will start V-Link 8X mode. Then normal operation is then resumed.
- 3. To return to V-Link 4X mode, BIOS sets Rx48[0] to 0
- 4. Step 2 is then repeated.

Offset Address: A0h (D0F7)

NVC Configure

Default Value: 00h

Bit	Attribute	Default	Description
7:4		0	Reserved
3	RW	0	While returning the P2C read ACK to SB, the NVC start to issue the next read request to reduce the P2C read latency
			0: Disable 1: Enable
2:0	_	0	Reserved

Offset Address: B0h (D0F7)

V-Link CKG Control

Default Value: 00h

Bit	Attribute	Default	Description	
7:6	RW	00	Rising-Time Control for V-Link (R-Port)	
5:4	RW	00	Falling-Time Control for V-Link (R-Port)	
3:2	RW	00	Rising-Time Control for V-Link (S-Port)	
1:0	RW	00	Falling-Time Control for V-Link (S-Port)	

Offset Address: B1h (D0F7)

V- Link CKG Control

Default Value: 00h

Bit	Attribute	Default	Description	
7:4	RW		Reserved	
3:2	RW	00	Rising-Time Control for V-Link (D-Port)	
1:0	RW	00	Falling-Time Control for V-Link (D-Port)	

V-Link North Bridge Driving Control (B3-B7h)

Offset Address: B3h (D0F7)

V-Link Auto Compensation Termination Resistor Status

Bit	Attribute	Default	Description
7	RO	0	P Resistor Check Flag for the NB Termination Resistor
			0: Abnormal condition occurred 1: Normal operation
6	RO	0	N Resistor Check Flag for the NB Termination Resistor
			0: Abnormal condition occurred 1: Normal operation
5	RO	0	P Pull Down Driving Check Flag for the NB Termination Resistor
			0: Abnormal condition occurred 1: Normal operation.
4	RO	0	N Pull Down Driving Check Flag for the NB Termination Resistor
			0: Abnormal condition occurred 1: Normal operation.
3		0	Reserved
2:0	RO	0	NB V-Link Autocomp Termination Resistor Value
			000: Largest Resistor
			···.
	1		111: Smallest Resistor

Default Value: 00h

Default Value: 00h

Default Value: 04h

Offset Address: B4h (D0F7)

NB V-Link Compensation Control

Bit	Attribute	Default	Description	
7:5	RO	0	V-Link Auto-compensation PMOS Output Value	
4	RW	0	Reference Voltage of the VKCOMP in 4X V-Link Mode	
			0: VREF4X=0.75V 1: VREF4X=0.9V	
3:1	RO	0	V-Link Auto-compensation NMOS Output Value	
0	RW	0	Compensation Option	
			0: Use Auto Compensation (value is kept in bits 7:5)	
			1: Use Manual setting (use the values of RxB5 and RxB6)	

Offset Address: B5h (D0F7)

NB V-Link Manual Driving Control - Strobe

Bit	Attribute	Default	Description
7:5	RW	0	Manual Setting - NB V-Link Strobe Pullup (PMOS)
4		0	Reserved
3:1	RW	0	Manual Setting - NB V-Link Strobe Pulldown (NMOS)
0		0	Reserved

Offset Address: B6h (D0F7)

NB V-Link Manual Driving Control - Data

Bit	Attribute	Default	Description
7:5	RW	0	Manual Setting - NB V-Link Data Pullup (PMOS)
4		0	Reserved
3:1	RW	0	Manual Setting - NB V-Link Data Pulldown (NMOS)
0		0	Reserved

Offset Address: B7h (D0F7)

NB V-Link Receiving Strobe Delay

Bit	Attribute	Default		Description
7:5	RW	0	V-Link Manual Termination Resistor Value	
1			000: Largest Resistor	
			···.	
			111: smallest Resistor	
4:3		0	Reserved	
2	RW	1	NB V-Link Strobe Delay for Receiving	
1:0	RW	0	NB V-Link Receiving Strobe Delay	
			00: 0.15ns earlier	01: No delay
			10: Delay 0.15ns	11: Delay 0.3ns

Device 1 Function 0 (D1F0): PCI to PCI Bridge

This configuration is provided to facilitate the configuration of the second PCI bus (AGP) without requiring new enumeration code. This function is represented as device number 1, function 0.

Header Registers (0-3Fh)

Offset Address	Attribute	Default	Description
1 – 0h	RO	1106h	Vendor ID
3 – 2h	RO	B198h	Device ID

Offset Address: 5 - 4h (D1F0)

PCI Command Default Value: 0007h

Bit	Attribute	Default	Description
15:10		0	Reserved
9	RO	0	Fast Back-to-Back Cycle Enable
			Hardwired to 0.
8	RO	0	SERR# Enable
			Hardwired to 0.
7	RO	0	Address / Data Stepping
			Hardwired to 0.
6	RW	0	Parity Checking
			0: Ignore parity errors
			1: Perform parity check and take normal action on detected parity errors
5	RO	0	VGA Palette Snooping
			Hardwired to 0.
4	RO	0	Memory Write and Invalidate
			Hardwired to 0
3	RO	0	Respond To Special Cycle
			Hardwired to 0.
2	RW	1	Bus Master
			0: Never behaves as a bus master
			1: Enable to operate as a bus master on the secondary interface
1	RW	1	Memory Space Access
			0: Does not respond to memory space access
			1: Responds to memory space access
0	RW	1	I/O Space Access
			0: Does not respond to I/O space access
			1: Responds to I/O space access

Offset Address: 7-6h (D1F0)

PCI Status Default Value: 0230h

Bit	Attribute	Default	Description	
15:14		0	Reserved	
13	RO	0	Set When Terminated with Master-Abort, Except Special Cycle	
			0: No abort received	
			1: Transaction aborted by the master	
12	RO	0	Set When Received a Target-Abort	
			0: No abort received	
			1: Transaction aborted by the target	
11	RO	0	Set When Signaled a Target-Abort	
			NB never signals Target Abort	
10-9	RO	01	DEVSEL# Timing	
			00: Fast 01: Medium (default)	
			10: Slow 11: Reserved	
8		0	Reserved	
7	RO	0	Capable of Accepting Fast Back-to-Back as a Target	
			Reserved	
6	RO	0	User Definable Features	
5	RO	1	66 MHz Capable	
4	RO	1	Support New Capability List	
3:0		0	Reserved	

Default Value: 00000000h

Default Value: 00h

Default Value: 00h

Default Value: 00h

Offset Address: 0E - 08h (D1F0)

PCI Header Registers

Offset Address	Attribute	Default	Description
08h	RO	00h	Revision ID
0B - 09h	RO	060400h	Class Code
0D-0Ch	RO	00h	Reserved
0Eh	RO	01h	Header Type
			It adheres to the PCI-PCI Bridge Configuration
0F	RO	00h	Built In Self Test (BIST)

Offset Address: 13-10h (D1F0)

Graphic Aperture Base Configuration

Bit	Attribute	Default	Description	Mnemonic
31:22	RW	0	Programmable Base Address The aperture base address bit acts as if hardwired to 0 if the corresponding (D1F0 Rx94[11:0]) bit is 0.	GTBS1[31:22]
			Note: this range is defined as prefetchable	
21:4		0	Reserved (Hardwire to 0)	_
3	RO	0	Prefetchable Read as 1 when D1F0 Rx48[0] is 1	_
2:1	RO	0	Type Indicates that the address range is in the 32-bit address space	_
0	RO	0	Memory Space	_

Offset Address: 18h (D1F0)

Primary Bus Number

Bit	Attribute	Default	Description
7:0	RW	0	Primary Bus Number
			Primary Bus Number is fixed at 0 internally; this register setting is ignored.

Offset Address: 19h (D1F0)

Secondary Bus Number

Bit	Attribute	Default	Description
7:0	RW	0	Secondary Bus Number Secondary Bus Number is used when converting Tyne#1 configuration cycles to TYPF#0 configuration cycles.

Offset Address: 1Ah (D1F0)

Subordinate Bus Number

Bit	Attribute	Default	Description
7:0	RW	0	Subordinate Bus Number PCI2 uses Subordinate Bus Number to decide if Type#1 command is passed to the PCI2 Bus.

Offset Address: 1Ch (D1F0)

IO Base Default Value: F0h

Bit	Attribute	Default	Description
7:4	RW	Fh	IO Address Bit[15:12] – inclusive
3:0	RO	0	IO Addressing Capability

Offset Address: 1Dh (D1F0)

IO Limit Default Value: 00h

Bit	Attribute	Default	Description
7:4	RW	0	IO Address Bit[15:12] – inclusive
3:0	RO	0	IO Addressing Capability

Default Value: 0000h

Default Value: FFF0h

Default Value: 0000h

Default Value: 70h

Offset Address: 1F-1Eh (D1F0)

Secondary Status

Bit	Attribute	Default	Description	
15:0	RW	0	Secondary Status	
			If R2NDSTAT = 0 (Rx44[4]): Read this register has 0 returned	
			If R2NDSTAT = 1: Read this register has contents of Rx7-Rx6 (PCI Status Register) returned	

Offset Address: 21-20h (D1F0)

Memory Base Default Value: FFF0h

Bit	Attribute	Default	Description
15:4	RW	0FFFh	Memory Address Bit[31:20] - inclusive (address [19:0] is not decoded)
3:0		0	Reserved

Offset Address: 23-22h (D1F0)

Memory Limit

Bit	Attribute	Default	Description
15:4	RW	0	Memory Address Bit[31:20] - inclusive (address [19:0] is not decoded)
3:0	_	0	Reserved

Offset Address: 25-24h (D1F0)

Prefetchable Memory Base

Bit	Attribute	Default	Description
15:4	RW	0FFFh	Memory Address Bit[31:20] - inclusive
3:0		0	Reserved

Offset Address: 27-26h (D1F0)

Prefetchable Memory Limit

Bit	Attribute	Default	Description
15:4	RW	0	Memory Address Bit[31:20] - inclusive
3:0		0	Reserved

Offset Address: 34h (D1F0)

Capability Pointer

Bit	Attribute	Default	Description
7:0	RO	70h	AGP Capability List Pointer
:			70h, if RX48[0] is 0
			80h, if RX48[0] is 1

Offset Address: 3F-3Eh (D1F0)

PCI-to-PCI Bridge Control

Bit	Attribute	Default	Description
15:7	_	0	Reserved
6	RW	0	Secondary Bus Reset
5		0	Reserved
4	RW	0	Enable Base VGA 16 bits Decode 0: All VGA alias range will be forwarded 1: Only forward base VGA range (Alias range will not be forwarded)
3	RW	0	Enable VGA Compatible I/O and Memory Address Range 0: Do not forward VGA compatible memory and I/O cycles to PCI2 1: Forward VGA compatible memory and I/O cycles to PCI2
2	RW	0	Block ISA I/O Cycles 0: Forward all I/O cycles with address in the range defined by the I/O Base and I/O Limit to PCI2. 1: Do not forward ISA I/O cycles with address in the top 768 bytes of each 1Kbyte block
1	RW	0	Forward Lower Side PCI SERR# to Upper Side Status is reported on Rx7[6]
0	RW	0	Parity Error Response Enable

Second PCI Bus Control (40-6Fh)

Offset Address: 40h (D1F0) CPU to PCI Flow Control I

Bit	Attribute	Default	Description	Mnemonic
7	RW	0	CPU to PCI Post-Write 0: Disable 1: Enable	
			C2P posted cycle could be delayed by PCI master cycles (i.e. PCI master access is allowed even if C2P buffer is not flushed).	
6	RW	0	CPU to PCI 1-Wait State Burst Write 0: Disable 1: Enable	
5:4	RW	0	Read Prefetch Control	
3.4	KW		x0: Always prefetch x1: Disable prefetch	
3	_	0	Reserved	_
2	RW	0	MDA Resource Location (Note: the setting on this register bit overwrites the settings on the IO/Memory's Base and Limit of the other devices) 0: AGP/PCI2; forward MDA access cycles to AGP/PCI2 1: PCI1; forward MDA access cycles to PCI1	RMDA
			MDA Resources include: Memory: B0000h-B7FFFFh, I/O: 3B4h, 3B5h, 3B8h, 3B9h, 3BAh, 3BFh. Check the following table for the function of register bits, RVGA2 and RMDA.	
1	RW	0	PCI2 Master Read Caching 0: Disable 1: Enable	
0	RW	0	PCI2 Delay Transaction 0: Disable 1: Enable	

Address	RVGA2 Rx3E[3]	RMDA Rx40[2]	Cycle Destination
Memory: AFFFFh-A0000h	0	-	PCI1
	1	-	PCI2
Memory: MDA (BFFFFh-B0000h)	1	0	PCI2
	1	1	PCI1
	0	•	PCI1
IO:[3BBh,3B0h] except MDA	0	-	PCI1
	1	-	PCI2
IO: MDA	1	0	PCI2
	0	-	PCI1
	1	1	PCI1
IO: [3DFh,3C0h]	1	-	PCI2
	0 -	-	PCI1

Notes:

If RISA2 (Rx3E[2]) is set to 1, NB will not forward cycles to AGP if A[9:0] is in the range of 3ffh-100h even if address are within the range defined by the RIOBS and RIOLM.

If both RVGA2 and RMDA are set to 1, VGA is on PCI2 and MDA is put on PCI1. VGA palette snooping is not supported in PCI2.

Offset Address: 41h (D1F0)

CPU to PCI Flow Control II

Default Value: 08h

Bit	Attribute	Default	Description		
7	RO	0	Retry Status		
		l	0: No retry occurred		
1			1: Retry occurred (write 1 to clear)		
6	RW	0	Action When Retry Timeout		
			0: No action taken except recording status		
			1: Flush buffer (write) or return 0FFFFFFFFh (read)		
5:4	RW	0	Retry Count		
			00: Retry 2 times, back off CPU 01: Retry 4 times, back off CPU		
			10: Retry 16 times, back off CPU 11: Retry 64 times, back off CPU		
3	RW	1	C2P Burst Timeout Enable		
1	1		0: Disable 1: Enable		
2		0	Reserved		
1	RW	0	Invalidate PCI1/PCI2 Read Buffer Data (read caching data) when C2P Cycle Arrived		
			0: Disable 1: Enable		
0		0	Reserved		

Offset Address: 42h (D1F0)

PCI Master Control

Default Value: 00h

Bit	Attribute	Default	Description
7		0	Reserved
6	RW	0	PCI Master 1-Wait State Write 0: Disable 1: Enable
5	RW	0	PCI Master 1-Wait State Read
4	RW	0	0: Disable 1: Enable Break Consecutive PCI Master Access
			0: Disable 1: Enable
3	RW	0	Reserved
2	RW	0	PCI2 Claims the IO R/W and Memory Read Cycles 0: Disable 1: Enable
1	RW	0	PCI2 Claims the Local APIC FEEx_xxxx Cycles 0: Disable 1: Enable
0			Reserved

Offset Address: 43h (D1F0)

PCI2 Timer

Default Value: 22h

Bit	Attribute	Default	Description		
7:4	RW	2h	Host to PCI2 Time Slot		
			0: Disable (no timer)		
			1: 16 GCLKs		
			2: 32 GCLKs		
ļ					
			0Fh: 128 GCLKs		
3:0	RW	2h	PCI2 Master Time Slot		
l	1		0: Disable (No timer)		
			1: 16 GCLKs		
			2: 32 GCLKs		
			0Fh: 128 GCLKs		

Default Value: 00h

Offset Address: 44h (D1F0)

PCI2 Miscellaneous Control

Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic
7:5		0	Reserved	
4	RW	0	Rx1F-Rx1E Read Returned Value 0: Rx1F-Rx1E always read as 00 1: Rx1F-Rx1E read will receive the values in Rx07-Rx06	R2NDSTAT
3:0	_	0	Reserved	

Offset Address: 45h (D1F0)

Fast Write Control Default Value: 72h

Bit	Attribute	Default	Description		
7	RW	0	Force Fast Write Cycle QW Aligned (if Rx45[6] = 0)		
			0: Disable (DW aligned)	1: Enable (force QW aligned)	
6	RW	1	Merge Multiple Host Transac	ctions into A Fast Write Transaction (Burst)	
			0: Disable	1: Enable (QW aligned)	
5:3		110	Reserved		
2	RW	0	Fast Write Burst Length Lim	it: 4T	
			0: Disable	1: Enable	
1	RW	1	Fast Write: Fast Back to Bac	k	
			0: Disable	1: Enable	
0	RW	0	Fast Write Initial Block: 1 W	ait State	
			0: Disable	1: Enable	ŀ

Offset Address: 46h (D1F0)

PCI-to-PCI Bridge Device ID (Low Byte)

	Bit	Attribute	Default	Description
1	7:0	RW		Device ID for P2P Bridge Low Byte (ID[7:0])

Offset Address: 47h (D1F0)

PCI-to-PCI Bridge Device ID (High Byte)

Bit	Attribute	Default	Description	
7:0	RW	0	Device ID for P2P Bridge High Byte (ID[15:8])	

Offset Address: 48h (D1F0)

Miscellaneous Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic
7:1	_	0	Reserved	
0	RW		Report AGP Capability in Device 1 0: Disable (Device 0) 1: Enable (Device 1). D1F0 Rx13-10 will be programmable, and the Rx80 AGP Capability Header will be added into the capability list directed by D1F0 Rx34.	RGHDR_B

Power Management Capability (70-77h)

Offset Address: 73-70h (D1F0)
Power Management Registers

Offset Address	Attribute	Default	Description
70h	RO	01h	Capability ID
71h	RO	00h	Next Pointer
72h	RO	02h	Power Management Capabilities
73h	RO	00h	Power Management Capabilities

Offset Address: 74h (D1F0)

Power Management Control / Status

Bit	Attribute	Default		Description	
7:2		00	Reserved		
1:0	RW	00	Power State	11: D3 hot	

Offset Address: 75h (D1F0)

Power Management Registers Default Value: 00h

Offset Address	Attribute	Default	Description
75h	RO	00h	Power Management Status
76h	RO	00h	PCI to PCI Bridge Support Extensions
77h	RO	00h	Power Management Data

AGP 3.0 Configuration (80-A3h)

Offset Address: CAPPTR (D1F0 83-80h)

AGP Identifier Default Value: 0035 000Eh

Bit	Attribute	Default	Description	
31:24	RZ	0	Always Return 0, write has no effect	
23:20	R-IW	3h	Major Revision	
19:16	R-IW	5h	Minor Revision If RxBD[3] (RBKMJMN1) is 0: 5h If RxBD[3] (RBKMJMN1) is 1: 0h	
15:8	R-IW	70h	Pointer to Next Item	
7:0	R-IW	0Eh	Capability ID	

Offset Address: CAPPTR + 04h (D1F0 87-84h)

AGP Status Default Value: 1F00 0A0Bh

Bit	Attribute	Default	Description	Mnemonic
31:24	R-XW	1Fh	Max # of AGP Requests	
23-18	RZ-IW	0	Reserved	
17	RZ-XW	0	Isoch Transaction	
			0: Does not support Isoch transaction	
			1: Support Isoch transaction	
16	_	0	Reserved	
15:13	RZ-XW	0	Optimum Asynchronous Request Size	
12:10	RZ-XW	010	Calibration Cycle	
			Set if RAGP30 (bit3) is 1	
			000 – 4ms 001 – 16ms	
			010 – 64ms 011 – 256ms	
9	R1-XW	1	SBA Support	
			Always on.	
8	RZ-XW	0	Reserved	
7	R-XW	0	64-bit GART Entry	
			Support 32-bit GART entry only.	
6	R-XW	0	Host GART Translation	
			0: Support host GART translation	
			1: No GART translation on host cycles	
5	R-XW	0	Over 4GB Support	
			Not Supported	
4	R-XW	0	Fast Write Support	
3	R-XW	0	AGP 8x Detected	RAGP30_B
			Set by strap ball AGP8XDET#	
			0: AGP 2.0 Mode (not supported)	
			1: AGP 3.0 Mode	
2:0	R-XW	011	AGP Data Rate	_
		111	If Bit 3(RAGP30) is 1, default is 011: supports 4X and 8X data transfer rate.	
			If Bit 3 (RAGP30) is 0, default is 111: supports 1X, 2X and 4X data transfer rate.	

Default Value: 0000 0028h

Offset Address: CAPPTR + 08h (D1F0 8B-88h)

Default Value: 0000 0000h **AGP Command**

Bit	Attribute	Default	Description
31:24	RZ-IW	0	Max # of AGP Command Requests
23:17	RZ-IW	0	Reserved
16	RZ-MW	0	Reserved
15:13	RZ-IW	0	Reserved for Master Device
12:10	RW	0	Calibration Cycle
9	RW	0	SBA Enable
8	RW	0	AGP Enable
			0: Disable 1: Enable
7	RO	0	64-bit GART
			Not supported
6	RZ-MW	0	Reserved
5	RW	0	Over 4G Support
			Not Supported
4	RW	0	Fast Write Enable
			0: Disable 1: Enable
3		0	Reserved
2:0	RW	0	Data Rate If RAGP30 (D1F0 Rx87-84[3])) = 1, 001: 4X data transfer rate 010: 8X data transfer rate If RAGP30 (D1F0 Rx87-84[3])) = 0, 001: 1X data transfer rate 010: 2X data transfer rate 100: 4X data transfer rate

Offset Address: CAPPTR + 0Ch (D1F0 8F-8Ch)

AGP Isochronous Status

Bit	Attribute	Default	Description
31:24		0	Reserved
23:16	R-XW	0	Maximum Bandwidth (In unit of 32bytes)
1			Shared by both asynchronous and isochronous.
15:8	R-XW	0	Maximum Number of Isochronous Transactions in a Single Isochronous Period
7:6	R-XW	0	Isochronous Payload Sizes Supported
			00: 32,64,128,256 bytes 01: 64,128,256 bytes
			10: 128,256 bytes 11: 256 bytes
5:3	R-XW	5h	Maximum Isochronous Data Transfer Latency (In unit of 1 us)
2	_	0	Reserved
1:0	R-XW	0	Isochronous Error Code
			00: No error 01: Isoch Request Overflow
			1x: Reserved

Offset Address: CAPPTR + 10h (D1F0 93-90h) AGP Control Default Value: 0000 0000h

Bit	Attribute	Default	. Description
31:10		0	Reserved
9	RW	0	Disable Calibration Cycle
8	RW	0	Enable AGP Aperture Set to 1 to enable AGP Aperture. Note: Both must be 1 to enable this function.
7	RW	0	GTLB Enable When set to 0, GART TLB entries are invalidated. All AGP aperture access needs to fetch the translation table first.
6:0	_	0	Reserved

Default Value: 0000 0000h

Default Value: 0000 0000h

Default Value: 0000 0000h

Offset Address: CAPPTR + 14h (D1F0 97-94h)

AGP Aperture Size

Bit	Attribute	Default	Description	Mnemonic
31:28	RW	0	Aperture Page Size Select	
	1		Where n is the value of this register.	
			Only 4KB page size, PAGESZ1=0000h, is supported.	
27	_	0	Reserved	
26:16	R-IW	01	Page Size Supported	
			Currently only 4KB page size is supported.	
15:12	_	0	Reserved	
11:0	RW	0F00h	Aperture Size (Default size is 256M)	GTSZ_B [11:0]
			For 0<=n=<5,	
			APSZ1[n]=0 forces Aperture Base Address [22+n] to 0	
			APSZ1[n]=1 allows Aperture Base Address [22+n] R/W	
			For 8<= n <= 11,	
			APSZ1[n]=0 forces Aperture Base Address [22+n-2] to 0	
			APSZ1[n]=1 allows Aperture Base Address [22+n-2] R/W	

Table 13. Aperture Size

Aperture Size \ APSZ1[11:0]	11	10	9	8	7	6	5	4	3	2	1	0
4MB	1	1	1	1	0	0	1	1	1	1	1	1
8MB	1	1	1	1	0	0	1	1	1	1	1	0
16MB	1	1	1	1	0	0	1	1	1	1	0	0
32MB	1	1	1	1	0	0	1	1	1	0	0	0
64M	1	1	1	1	0	0	1	1	0	0	0	0
128M	1	1	1	1	0	0	1	0	0	0	0	0
256M	1	1	1	1	0	0	0	0	0	0	0	0
512M	1	1	1	0	0	0	0	0	0	0	0	0
1G	1	1	0	0	0	0	0	0	0	0	0	0
2G (Maximum Aperture Size)	1	0	0	0	0	0	0	0	0	0	0	0
4G	0	0	0	0	0	0	0	0	0	0	0	0

Offset Address: CAPPTR + 18h (D1F0 9B-98h)

AGP GART Table Pointer

Bit	Attribute	Default	Description
31:12	RW	0	GART Table Base Address [31:12]
11:0	_	0	Reserved

Offset Address: CAPPTR + 1Ch (D1F0 9F-9Ch)

AGP GART Table Pointer High

Bit	Attribute	Default	Description
31:0	RW	0	GART Table Base Address [63:32] Since OVER 4G is not supported, OS should write all zeros to this register. This register is ignored.

Offset Address: CAPPTR + 20h (D1F0 A3-A0h)

AGP Isochronous Command

Bit	Attribute	Default	Description
31:8	_	0	Reserved
7:6	RW	0	Isochronous Pay Load Size Default is set up in register "CAPPTR + 0Ch [7:6]"
5:0		0	Reserved

Default Value: 63h

Default Value: 08h

AGP 4X / AGP 8X Compensation Circuits (B0-B9h)

Offset Address: B0h (D1F0)

AGP PAI) Compensa	rol / Status Default Value: 80h	
Bit	Attribute	Default	Description
7	RW	1	AGP4X Strobe's Reference Voltage 0: Strobe signals do not use AGPVREF as input reference voltage (i.e. STB VREF is STB# and vise versa). 1: Strobe signals use AGPVREF as input reference voltage. (Note: this bit is valid only when internal signal, RX4EN or RX8EN, is set to 1; otherwise always use AGPVREF as Strobe signals' reference voltage)
6	RW	0	AGP4X Strobe and GD Pad Driving Strength Control 0: Driving strength is set by compensation circuit's defaults 1: Driving strength is controlled by Rx B1[7:0]
5:3	RO	xxx	AGP Compensation Circuit N Output Strength
2:0	RO	XXX	AGP Compensation Circuit P Output Strength

Offset Address: B1h (D1F0)

AGP Compensation Driving Strength Control

Bit	Attribute	Default	Description
7:4	RW	6h	AGP Output Buffer Driving Strength - N
3:0	RW	3h	AGP Output Buffer Driving Strength - P

Offset Address: B2h (D1F0)

AGP Pad Driving and Delay Control

Bit	Attribute	Default	Description			
7	RW	0	GD / GADSTBx / GC#BE and GSB	STBx / GSBA# Pad Control		
			GSBSTBx, GSBA	GD, GC#BE, GADSTBx		
			0 No Cap	No Cap		
			1 Cap	Cap		
6:5	RW	0	GD, GC#BE Receive Strobe Delay			
		İ	00: Delay by -150 ps	01: No delay		
			10: Delay by 150 ps	11: Delay by 300 ps		
4	RW	0	GD[31:16] Output Staggered Delay	(1 ns)		
			0: No delay	1: GD[31:16] is delayed by 1 ns		
3	RW	1	GD, GADSTBx Slew Rate Control			
			0: Disable	1: Enable		
2	RW	0	GSBA Receive Strobe Delay			
			0: No Delay	1: Delay by 1 ns		
1:0	RW	00	GADSTBx Output Delay			
			00: No delay	01: Delay by 150 ps		
			10: Delay by 300 ps	11: Delay by 450 ps		
			Note: GADSTB1 and GADSTB1# w	ill have 1ns extra delayed if bit-4 is set to 1.		

Offset Address: B3h (D1F0)

AGP Strobe Driving Strength

Bit	Attribute	Default	Description
7:4	RW	0	AGP Strobe Output Buffer Driving Strength N
3:0	RW	0	AGP Strobe Output Buffer Driving Strength P

Offset Address: B4h (D1F0)

AGP GSBA Pads Control

Bit	Attribute	Default	Description
7	RW	1	GD, GCBE Strobe Delay for Receiving
6:4	RW	0	SBA Pads Control Signals for Strobe
3		0	Reserved
2:0	RO	0	GSBA Pads Control

Default Value: 00h

Default Value: 80h

Miscellaneous Control (BA-BFh)

Offset Address: BAh (D1F0)

AGP Hardware Support - VPX Mode

Bit	Attribute	Default	Description	
7:0	RW	1Fh	AGP Request Queue Size	
		ľ	This register is effective if RxBD[11 is set to 1.	ı

Offset Address: BBh (D1F0)

AGP Hardware Support - VPX Mode

Default Value: C4h

Default Value: 1Fh

This register is used to re-configure the AGP controller. To reconfigure the AGP controller, RxBD[1] must be set to 1.

Bit	Attribute	Default		Description	
7	RW	1	AGP SBA Mode Enable		
			0: Disable	1: Enable	
6	RW	1	AGP Enable		
			0: Disable	1: Enable	
5		0	Reserved		
4	RW	0	Fast Write Enable		
			0: Disable	1: Enable	
3	RW	0	AGP8X Mode Enable		
			0: Disable	1: Enable	
2	RW	1	AGP4X Mode Enable		
			0: Disable	1: Enable	
1	RW	0	AGP2X Mode Enable		
			0: Disable	1: Enable	
0	RW	0	AGP1X Mode Enable		
			0: Disable	1: Enable	

Offset Address: BDh (D1F0)

AGP Capability Header Control

Default Value: 84h

Bit	Attribute	Default	Description	Mnemonic
7:6	RW	10	SBA Strobe Delay for Receiving	
5:4		0	Reserved	
3	RW	0	AGP Major / Minor Number Control 0: Major/Minor = 35h 1: Major/Minor = 30h	RBKMJMN1
2	RW	1	Select Rx80 as the AGP20 or AGP30 Header 0: Rx80 is used as the AGP20 capability header even if the chip is powered up in AGP30 mode 1: Rx80 is used as the AGP30 capability header when the chip is powered up in AGP30 mode	
1	RW	0	Enable AGP Hardware Registers in RxBA ~ RxBB 0: AGP hardware is configured by registers of the AGP header (for 3.0) 1: AGP hardware is configured by registers RxBA ~ RxBB (used in VPX mode)	
0		0	Reserved	

Offset Address: BFh (D1F0)

Miscellaneous Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic
7:1		0	Reserved	
0	RW	0	AGP Capability Header 0: AGP capability header is in Device0 Function0; D1F0 Rx80 ~ RxA0 are hidden. 1: AGP capability header is as described in D1F0 Rx80 ~ RxA0.	RAGPCAP1

Default Value: 0Ch

APIC Cycles (C0-C3h)

Offset Address: C0h (D1F0)

APIC Legacy

Bit	Attribute	Default	Description
7	RW	0	APIC Legacy 0: Disable 1: Enable, Range FECxyz00 to FECxyzFF, x,y,z are defined in {Rx41[7:0], Rx40[3:0]} – {Rx43[7:0], Rx42[3:0]}
6:4		0	Reserved
3:0	RW	1000	x bytes in the APIC legacy address Range, base address

Offset Address: C1h (D1F0)

Attribute

RW

RW

Default

0000

0000

APIC Legacy

Bit

7:4

3:0

D	efault	Value:	00h

Offset Address: C2h (D1F0)

APIC Legacy

Default V	alue: 0Bh
-----------	-----------

Bit	Attribute	Default	Description
7:4	_	0	Reserved
3:0	RW	1011	x bytes in the APIC legacy address Range, limit

y byte in the APIC legacy address Range, base address

z byte in the APIC legacy address Range, base address

Description

Offset Address: C3h (D1F0)

APIC Legacy

Defau	lt V	/a	lue:	FFh
-------	------	----	------	-----

Bit	Attribute	Default	Description
7:4	RW	Fh	y byte in the APIC legacy address Range, limit
3:0	RW	Fh	z byte in the APIC legacy address Range, limit

Default Value: 0000h

<u>Device 2 Function 0 (D2F0) – PCI Express Root Port 0 (PCI-to-PCI Virtual Bridge)</u>

Device 2 Function 0, a 4-Lane PCI Express Root Port, is connected to the PCI bus through AD13 as the IDSEL. All registers are located in PCI configuration space and should be programmed using PCI configuration mechanism 1 through I/O registers CF8 / CFC with bus number 0, device number 2 and function number 0.

Header Registers (0-3Fh)

Offset Address	Attribute	Default	Description
1 – 0h	RO	1106h	Vendor ID
3 – 2h	RO	A208h	Device ID

Offset Address: 5-4h (D2F0)

Command Register

Bit	Attribute	Default	Description	Mnemonic
15:11	_	0	Reserved	
10	RW	0	Interrupt Disable	
		****	Set when the device is prevented from generating INTx messages	
9		0	Reserved	
8	RW	0	SERR# Enable	RSERR_PEG
			0: Disable error report	
			1: Enable reporting of non-fatal and fatal errors	
7	_	0	Reserved	
6	RW	0	Parity Error Response	RPTYERR_PEG
			0: Ignore parity errors & continue	
			1: Take normal action on detected parity errors	
5:3		0	Reserved	
2	RW	0	Bus Master Enable	
			0: Disable 1: Enable	
			Controls the ability to forward Memory and I/O Read/Write requests in the upstream direction.	
	DIII		Disabling this bit disables MSI messages.	
1	RW	0	Memory Space	
			0: Ignore downstream memory transactions; memory cycles with address falling in the claimed	
			range will be forwarded to the SB 1: Enable downstream memory cycle to this port if its address falling in the claimed range of this	
			device.	
0	RW	0	I/O Space	
U	I KW	0	0: Ignore downstream I/O transactions; I/O cycles with address falling in the claimed range will	
			be forwarded to the SB.	
			1: Enable downstream I/O cycle to this port if its address falling in the claimed range of this	
			device.	

Offset Address: 7-6h (D2F0)

Status Register Default Value: 0010h

Bit	Attribute	Default	Description
15	- RW1C	0	Detected Parity Error
			This bit is set whenever a poisoned TLP is received, regardless the state of Parity Error Enabled (Rx4[6])
14	RW1C	0 \	Signaled System Error
		*	This bit is set when:
			A device sends an ERR_FATAL or ERR_NONFATAL message
			Rx4[8] = 1
13	RW1C	0	Received Master Abort
			This bit is set when receiving a completion with Unsupported Request Completion Status
12	RW1C	0	Received Target Abort
			This bit is set when receiving a completion with Completer Abort Completion Status
11	RW1C	0	Signaled Target Abort
			This bit is set when completing a Request with Completer Abort Completion Status
10:9	-	0	Reserved
			Always reads 0
8	RW1C	0	Master Data Parity Error
			This bit is set if Parity Error Enable bit (Rx4[6]) is set and either one of the following two conditions occurs:
			Requestor receives a Completion marked poisoned
			Requestor poisons a write Request
7:5	_	0	Reserved
4	RO	1	Capabilities List
			Indicate the presence of an extended capability list item. Always set to 1 for PCI Express device
3	RO	0	Interrupt Status
			Indicate an INTx message is pending internally
2:0	_	0	Reserved

Offset Address: 8h (D2F0)

Revision ID Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	00h	Revision Code

Offset Address: 0B-9h (D2F0)

Class Code Default Value: 06 0400h

Bit	Attribute	Default	Description
23:0	RO	060400h	Class Code

Offset Address: 0Ch (D2F0)

Cache Line Size Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	00h	Cache Line Size - Reserved (No impact on functionality)

Offset Address: 0Dh (D2F0)

Master Latency Timer Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	00h	Reserved (Hardwired to 0)

Offset Address: 0Eh (D2F0)

Header Type Default Value: 01h

Bit	Attribute	Default	Description
7:0	RO	01h	Header Type Code D1: PCI-PCI Bridge

Offset Address: 0Fh (D2F0)

Built In Self Test (BIST)

Def	ault	Val	ne.	กก	h
DCI	auit	v aı	uc.	vvi	ш

Bit	Attribute	Default	Description
7:0	RO	00h	BIST Support

Offset Address: 17-10h (D2F0)

Base Address Register

Defaul	lt 🔨	/alıı	e· (M

Bit	Attribute	Default	Description
63:0	RO	00h	Base Address

Offset Address: 18h (D2F0)

Primary Bus Number

Default Value: 00h

Bit	Attribute	Default	Description
7:0	RW	00h	Primary Bus Number

Offset Address: 19h (D2F0)

Secondary Bus Number

Default Value: 00h

Bit	Attribute	Default	Description
7:0	RW	00h	Secondary Bus Number

Offset Address: 1Ah (D2F0)

Subordinate Bus Number

Default Value: 00h

Bit	Attribute	Default	Description
7:0	RW	00h	Subordinate Bus Number

Offset Address: 1Ch (D2F0)

I/O Base

Default Value: F0h

Bit	Attribute	Default	Description
7:4	RW	1111	I/O Base (AD[15:12] - inclusive)
1			This bridge will forward the cycles from primary side to PCI if the IO address AD[15:12] is between IO base and
			IO limit (Rx1D[7:4])
3:0	RO	0	I/O Addressing Capability
	j		0 means IO addressing is 16-bit only.

Offset Address: 1Dh (D2F0)

I/O Limit

Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic
7:4	RW	0	I/O Limit (AD[15:12] - inclusive)	RIOLM_PEG[15:12]
3:0	RO	0	I/O Addressing Capability	
			0 means IO addressing is 16-bit only.	

Offset Address: 1F-1Eh (D2F0)

Secondary Status Default Value: 0000h

Bit	Attribute	Default	Description
15	RW1C	0	Detected Parity Error
			This bit is set when secondary side receives a poisoned TLP regardless of Rx4[6]
14	RW1C	0	Received System Error
			This bit is set when Rx4[8] is 1 and a device sends an ERR_FATAL or ERR_NONFATAL message
13	RW1C	0	Received Master Abort
12	RW1C	0	Received Target Abort
11	RW1C	0	Signaled Target Abort
10:9	_	0	Reserved
8	RW1C	0	Master Data Parity Error
			This bit is set if Parity Error Enable bit (Rx4[6]) is set and either one of the following two conditions occurs: 1.
			Requestor receives a Completion marked poisoned. 2. Requestor poisons a write Request
7:0	_	0	Reserved

Offset Address: 21-20h (D2F0)

Memory Base Default Value: FFF0h

Bit	Attribute	Default	Description
15:4	RW	FFFh	Memory Base (AD[31:20] - inclusive) The address bits [19:0] is not decoded.
3:0	RO	0000	Reserved
			Always reads 0.

Offset Address: 23-22h (D2F0)

Memory Limit Default Value: 0000h

Bit	Attribute	Default	Description
15:4	RW	000h	Memory Limit (AD[31:20] – inclusive) The address [19:0] is not decoded.
3:0	RO	0000	Reserved
			Always reads 0.

Offset Address: 25-24h (D2F0)

Prefetchable Memory Base Default Value: FFF0h

Bit	Attribute	Default	Description
15:4	RW	FFFh	Prefetchable Memory Base AD[31:20]
3:0	_	0000	Reserved
			Always reads 0.

Offset Address: 27-26h (D2F0)

Prefetchable Memory Limit Default Value: 0000h

Bit	Attribute	Default	Description
15:4	RW	000h	Prefetchable Memory Limit AD[31:20]
3:0	_	0000	Reserved
			Always reads 0.

Offset Address: 31-30h (D2F0)

I/O Base Upper Default Value: 0000h

Bit	Attribute	Default	Description
15:0	RO	00h	I/O Base Upper 16 bits Address

Offset Address: 33-32h (D2F0)

I/O Limit Upper Default Value: 0000h

Bit	Attribute	Default	Description
15:0	RO	00h	I/O Limit Upper 16 bits Address

Offset Address: 34h (D2F0)

Capability Pointer Default Value: 40h

This register contains the offset address from the start of the configuration space.

Bit	Attribute	Default	Description
7:0	RO	40h	Capability Pointer
			Always reads 40h.
			Capability Pointer link list: Rx34 □ Rx40 □ Rx68 □ Rx70 □ NULL

Offset Address: 3Ch (D2F0)

Interrupt Line Default Value: 00h

Bit	Attribute	Default	Description
7:0	RW	00h	INT Line (For Software Use Only)

Offset Address: 3Dh (D2F0)

Interrupt Ball Default Value: 01h

Bit	Attribute	Default	Description
7:0	RW	01h	INT Ball
			01: INTA

Offset Address: 3F-3Eh (D2F0)

Bridge Control Default Value: 0000h

Bit	Attribute	Default	Description
15:7	_	00h	Reserved
6	RW	0	Secondary Bus Reset
			0: No reset
		ĺ	1: Triggers a warm reset on the corresponding PCI Express Port
5	_	0	Reserved
4	RW	0	Base VGA 16 bits Decode
			0: All VGA alias range will be forwarded
			1: Only forward base VGA range (Alias range will not be forwarded)
3	RW	0	VGA Compatible I/O and Memory Address Range
			0: Do not forward VGA compatible memory and I/O
			1: Forward VGA compatible memory and I/O
	}		Note: VGA addresses are memory A0000-BFFFFh and I/O addresses 3B0-3BBh, 3C0-3CFh and 3D0-3DFh (10-
			bit decode). "Mono" text mode uses B0000-B7FFFh and "Color" Text Mode uses B8000-BFFFFh. Graphics
			modes use Axxxxh. Mono VGA uses I/O addresses 3Bx-3Cxh and Color VGA uses 3Cx-3Dxh. If an MDA is
			present, a VGA will not use the 3Bxh I/O addresses and B0000-B7FFFh memory space; if not, the VGA will use
			those addresses to emulate MDA modes.
2	RW	0	Block/Forward ISA I/O Cycles
			0: Forward all I/O cycles with address in the range defined by the I/O Base and I/O Limit
			1: Do not forward ISA I/O that are in the top 768 bytes of each 1K byte block address range
1	RW	0	SERR Enable
			Controls the forwarding of ERR_COR, ERR_NONFATAL and ERR_FATAL from secondary to primary
			0: Disable 1: Enable
0	RW	0	Parity Error Response Enable
			0: Ignore the response to poisoned TLPs
			1: Enable the response to poisoned TLPs

PCI Express Capability Registers (40-63h)

Offset Address: 40-41h (D2F0)

PCI Express List Default Value: 6810h

Bit	Attribute	Default	Description
15:8	RO	68h	Next Pointer
7:0	RO	10h	Capability ID

Default Value: 0141h

Default Value: 0000 0nn1h

Default Value: 0000h

Offset Address: 43-42h (D2F0) PCI Express Capabilities

Bit	Attribute	Default	Description
15:14	_	0	Reserved
13:9	RO	0	Interrupt Message Number
8	RO	1	Slot Implemented This bit when set indicates that the PCI Express Link associated with this Port is connected to a slot (as compared to being connected to an integrated component or being disabled),
7:4	RO	0100	Device / Port Type 0100b: Root Port of PCI Express Root Complex
3:0	RO	1	Capability Version

Offset Address: 47-44h (D2F0)

Device Capabilities

Bit	Attribute	Default	Description
31:12	_	0	Reserved
11:9	RO	111	Endpoint L1 Acceptable Latency 111b: more than 64us
8:6	RO	xxx	Endpoint L0s Acceptable Latency This field is set up through PHY negotiation process.
5	RO	0	Extended Tag Field Supported 0: 5-bit Tag field supported 1: 8-bit Tag field supported
4:3	_	00	Reserved
2:0	RO	001	Max Payload Size Supported 001b: 32QW (256 bytes)

Offset Address: 49-48h (D2F0)

Device Control

Bit	Attribute	Default	Description
15	_	0	Reserved
14:12	RO	000	Max Read Request Size 000b: 128 bytes
			This field sets the maximum Read Request size for the device as a Requestor.
11	RW	0	Enable No Snoop
			If this bit is set to 1, the device is permitted to set the No Snoop bit in the Requestor Attributes of the transactions it initiate that do not require hardware enforced cache coherency.
10	RWS	0	Auxiliary Power PM Enable
			This bit when set enables device to draw AUX power independent of PME AUX power.
9	RO	0	Phantom Functions Enable
			Not supported.
8	RO/RW	. 0	Extended Tag Field Enable
			When Rx47-44[5] ((DAXTAGF_PEG)) is set to 0, Rx44[5] is RO
7:5	RW	000	When Rx47-44[5] ((DAXTAGF_PEG)) is set to 1, Rx44[5] is RW
1:3	, KW	000	Max Payload Size Maximum TLP payload size.
4	RW	0	Enable Relaxed Ordering
	1000		If this bit is set to 1, the device is permitted to set the Relaxed Ordering bit in the Requestor Attributes of the
			transactions it initiate that do not require strong write ordering.
3	RW	0	Unsupported Request Reporting Enable
2	RW	0	Fatal Error Reporting Enable
			For a Root Port, the reporting of Fatal errors is internal to the root. No external ERR_FATAL message is
	D.111		generated.
1	RW	0	Non-Fatal Error Reporting Enable
			For a Root Port, the reporting of Non-Fatal errors is internal to the root. No external ERR_NONFATAL message is generated.
0	RW	0	Correctable Error Reporting Enable
ľ			For a Root Port, the reporting of correctable errors is internal to the root. No external ERR COR message is
			generated.

Offset Address: 4B-4Ah (D2F0)

Device Status Default Value: 0010h

Bit	Attribute	Default	Description
15:6	_	0	Reserved
5	RO	0	Transactions Pending This bit when set indicates that the Port has issued Non-Posted Requests on its own behalf (using the Port's own Requestor ID) which have not been completed.
4	RO	1	AUX Power Detected
3	RW1C	0	Unsupported Request Detected
2	RW1C	0	Fatal Error Detected
1	RW1C	0	Non-Fatal Error Detected
0	RW1C	0	Correctable Error Detected

Offset Address: 4F-4Ch (D2F0) Link Capabilities Default Value: 0010 0C41h

Bit	Attribute	Default	Description
31:24	RO	00h	Port Number
			This field indicates the PCI Express Port number for the given PCI Express Link.
23:21	_	0	Reserved
20	RO	1	Link Capabilities Register
			Data Link Layer Link Active Reporting Capable
19:18	_	0	Reserved
17:15	RO	000	L1 Exit Latency
			000: less than 1us.
			The value reported indicates the length of time this Port requires to complete transition from L1 to L0.
14:12	RO	000	L0s Exit Latency
			000: less than 64ns.
			The value reported indicates the length of time this Port requires to complete transition from L0s to L0.
11:10	RO	11b	Active State Link PM (ASPM) Support
			11b: L0s and L1 supported.
			This field indicates the level of ASPM supported on the PCI Express Link.
9:4	RO	04h	Maximum Link Width
			010000b: x16 Link width
3:0	RO	1h	Maximum Link Speed
l			0001b: 2.5Gb/s Link speed

Offset Address: 51-50h (D2F0)

Link Control Default Value: 0000h

Bit	Attribute	Default	Description	Mnemonic
15:8	_	0	Reserved	
7	RW	0	Extended Synch	LCES_PEG
			0: FCU Timer limit is 30us 1: FCU Timer limit is 120us.	
6	RW	0	Common Clock Configuration 0: Indicates that this Port and the component on the opposite end of the Link are operating with asynchronous reference clock. 1: Indicates that this Port and the component on the opposite end of the Link are operating with a distributed common reference clock.	
5	WIC	0	Retrain Link A write of 1 to this bit initiates Link retrained by directing the Physical Layer LTSSM to the Recovery state.	
4	RW	0	Link Disable This bit disables the Link when set to 1.	
3	RO	0	Read Completion Boundary 0: 64 byte	
2	_	0	Reserved	
1:0	RW	00	Link Active State PM (ASPM) Control 00b: Disabled 01b: L0s Entry Enabled 10b: L1 Entry Enabled 11b: L0s and L1 Entry Enabled	

Offset Address: 53-52h (D2F0) Link Status

ink Status Default Value: 0nn1h

Bit	Attribute	Default	Description
15:14	_	0	Reserved
13	RO	0	Data Link Layer Link Active
12	RO	0	Slot Clock Configuration
		,	0: Use an independent clock irrespective of the presence of a reference on the connector.
			1: Use the same physical reference clock that the platform provides on the connector.
11	RO	0	Link Training
			This bit indicated that Link training is in progress (Physical Layer LTSSM is in Configuration or Recovery state) or that
			1b was written to the Retrain Link bit but Link training has not yet begun. Hardware clears this bit once Link training is
			complete.
10	RO	0	Training Error
			Set when a Link training error occurred. Cleared by hardware upon successfully training of the Link to the L0 Link state.
9:4	RO	HwInitxxxxxx	
			000001: x1 000010: Reserved
			000100: x4
			010000: Reserved
3:0	RO	0001	Link Speed
			0001: 2.5Gb/s negotiated Link speed.

Offset Address: 57-54h (D2F0)

Slot Capabilities Default Value: 0000 0060h

Bit	Attribute	Default	Description
31:19	RO	00h	Physical Slot Number Physical slot number attached to the Port.
18:17	_	0	Reserved
16:15	RO	0	Slot Power Limit Scale Write to the field causes the Port to send the Set Slot Power Limit message.
14:7	RO	00h	Slot Power Limit Value Write to the field causes the Port to send the Set Slot Power Limit message.
6	RO	1	Hot-plug Capable
5	RO	1	Hot-plug Surprise
4	RO	0	Power Indicator Present
3	RO	0	Attention Indicator Present
2	RO	0	MRL Sensor Present
1	RO	0	Power Controller Present
0	RO	0	Attention Button Present

Offset Address: 59-58h (D2F0)

Slot Control Default Value: 0000h

Bit	Attribute	Default	Description
15:13	_	0	Reserved
12	RW	0	Slot Control
			Data Link Layer State Changed Enable
			0:Disable 1: Enable
11		0	Reserved
9:8	RW	0	Power Indicator Control
			00: Reserved 01: On 10: Blink 11: Off
			Writes to this field cause the Port to send the appropriate POWER_INDICATOR_* Message.
7:6	RW	0	Attention Indicator Control
			00: Reserved 01: On 10: Blink 11: Off
			Writes to this field cause the Port to send the appropriate ATTENTION_INDICATOR_* Message.
5	RW	0	Hot-Plug Interrupt Enable
			This bit when set enables generation of Hot-Plug interrupt on enabled Hot-Plug events.
4	RW	0	Command Completed Interrupt Enable
			This bit when set enables the generation of Hot-Plug interrupt when a command is completed by the Hot-Plug
			controller.
3	RW	0	Presence Detect Changed Enable
	7.0		This bit when set enables the generation of Hot-Plug interrupt or Wakeup event on a presence detect changed event.
2	RO	0	MRL Sensor Changed Enable
1	RO	0	Power Fault Detected Enable
0	RW	0	Attention Button Pressed Enable
			This bit when set enables the generation of Hot-Plug interrupt or Wakeup event on an Attention Button pressed
			event.

Offset Address: 5B-5Ah (D2F0)

Slot Status Default Value: 0000h

Bit	Attribute	Default	Description
15:9	_	0	Reserved
8	RW1C	0	Slot Status
ļ			Data Link Layer State Changed
7		0	Reserved
6	RO	0	Presence Detect State
			0: Slot empty 1: Card present in slot
5	RO	0	MRL Sensor State
4	W1C	0	Command Completed
3	WIC	0	Presence Detect Changed
2	RO	0	MRL Sensor Changed
1	RO	0	Power Fault Detected
0	W1C	0	Attention Button Pressed

Offset Address: 5D-5Ch (D2F0) Root Control

Root Control Default Value: 0000h

Bit	Attribute	Default	Description
15:4	_	0	Reserved
3	RW	0	PME Interrupt Enable 0: Disable 1: Enable interrupt generation upon receipt of a PME message as reflected in the PME status register bit. A PME interrupt is also generated if the PME status register bit is set when this bit is set from a cleared state.
2	RW	0	System Error on Fatal Error Enable 0: Disable 1: Enable generation of a System Error if a Fatal Error (ERR_FATAL) is reported by any of the devices in the hierarchy associated with the Root Port, or by the Root Port itself.
1	RW	0	System Error on Non-Fatal Error Enable 0: Disable 1: Enable generation of a System Error if a Non-Fatal Error (ERR_NONFATAL) is reported by any of the devices in the hierarchy associated with the Root Port, or by the Root Port itself.
0	RW	0	System Error on Correctable Error Enable 0: Disable 1: Enable generation of a System Error if a Correctable Error (ERR_COR) is reported by any of the devices in the hierarchy associated with the Root Port, or by the Root Port itself.

Offset Address: 63-60h (D2F0)

Root Status Default Value: 0000 0000h

Bit	Attribute	Default	Description	
31:18	_	0	Reserved	
17	RO	0	PME Pending	
			0: No pending PME	
			1: Indicates that another PME is pending when the PME Status (bit 16) is set.	
16	W1C	0	PME Status	
			Indicates that the PME was asserted by the Requestor ID indicated in PME Requestor ID (bit[15:0]).	
15:0	RO	0	PME Requestor ID	
			The Requestor ID of the last PME Requestor.	

Default Value: C802 7001h

Default Value: 0000 0000h

Default Value: 0180 0005h

PCI Power Management Capability Structure Registers (68-6Fh)

Offset Address: 6B-68h (D2F0)

Power Management Capabilities

Bit	Attribute	Default	Description	
31:27	RO	19h	PME Support	
			Bit 31, 30 and 27 are set to 1b (PME Message will be forwarded).	
26	RO	0	D2 Support	
25	RO	0	D1 Support	
24:22	RO	0	AUX Current	
21	RO	1	Device Specific Initialization	
20:19	_	0	Reserved	
18:16	RO	010	Version	
15:8	RO	70h	Next Capability Pointer	
7:0	RO	01h	Capability ID	

Offset Address: 6F-6Ch (D2F0)

Power Management Status/Control

Bit	Attribute	Default	Description	
31:24	RO	0	Power Management Data	
23:16	RO		Reserved	
15	RW1CS	0	PME Status	
			This bit's setting is not modified by hot, warm or cold reset.	
14:13	RO	0	Data Scale	
12:9	RW	0	Data Select	
8	RWS	0	PME Enable	
			This bit's setting is not modified by hot, warm or cold reset.	
7:2	RO	0	Reserved	
1:0	RW	0	Power State	

PCI Message Signal Interrupt (MSI) Capability Structure Registers (70-87h)

Offset Address: 73-70h (D2F0)

MSI Capability Support

Bit	Attribute	Default	Description				
31:25	_	0	Reserved				
24	RO	1	This MSI capability supports pr	e-vector masking capability			
23	RO	1	This MSI capability supports 64				
22:20	RW	000	Multiple Message Enable				
			000: 1message allocated	001: 2 message allocated			
			010: 4 message allocated	011: 8 message allocated			
			100: 16 message allocated	101: 32 message allocated			
			11x: Reserved	-			
19:17	RO	000	Multiple Message Capable	,			
			000: 1message requested	001: 2 message requested			
			010: 4 message allocated	011: 8 message allocated			
			100: 16 message requested	101: 32 message requested			
			11x: Reserved				
16	RW	0	MSI Enable				
			0: This Port is prohibited from using MSI to request service				
			1: This Port is permitted to use MS	SI to request service.			
15:8	RO	0	Next Capability Pointer				
7:0	RO	05h	Capability ID				

Default Value: 0000 0000h

Offset Address: 77-74h (D2F0)

System-Specified Message Address - Low

Bit	Attribute	Default	Description	
31:2	RW	00h	System-Specified Message Address Bit [31:2]	
1:0	RO	00	System-Specified Message Address Bit [1:0]	
			These bits will always read as 0	

Offset Address: 7B-78h (D2F0)

System-Specified Message Address - High

Bit	Attribute	Default	Description
31:0	RW	0	System-Specified Message Address Bit [63:32]

Offset Address: 7D-7Ch (D2F0)

Message Data Default Value: 0000h

Bit	Attribute	Default	Description	
15:0	RW	0	Message Data	
			The message data is to be put on data [15:0] of MSI cycles	

Offset Address: 83-80h (D2F0)

Message Mask Control Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:1	RO	00h	Mask Bit
0	RW	0	Mask Bit for Message 0

Offset Address: 87-84h (D2F0)

Message Pending Status Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:1	RO	00h	Pending Bit
0	RO	0	Pending Bit for Message 0

PCI Express Transaction Layer Registers (A0-A4h)

Offset Address: A0h (D2F0)

Downstream Control I Default Value: 01h

Bit	Attribute	Default	Description		
7	RW	0	Downstream Cycles Have Traffic Class TC1		
			0: Disabled		
6	RW	0	Downstream Cycles Have Attribute "No Snoop" Set		
			0: Disabled 1: Enabled		
5	RW	0	Downstream Cycles Have Attribute "Relaxed Ordering" Set		
			0: Disabled 1: Enabled		
4	RW	0	Downstream Lock Cycle Support		
			0: Disabled 1: Enabled		
3	RW	0	Downstream Arbitration Scheme		
			0: Fixed priority: VC1 CPL > VC0 CPL > Down Stream Command		
			1: Round Robin arbitration priority between VC1 CPL, VC0 CPL and Down Stream Command		
2	RW	0	Downstream Post-Write Allowed to Pass IOW		
			0: Not allowed 1: Allowed		
1	RW	0	Downstream Post-Write Allowed to Pass Read		
			0: Not allowed 1: Allowed		
0	RW	1	Downstream Pipeline		
			0: Disabled 1: Enabled		

Offset Address: A1h (D2F0)

Downstream Control II Default Value: 04h

Bit	Attribute	Default	Description			
7	RW1C	0	Downstream Configuration Completion Status			
1			0: Normal completion.			
			1: At least one configuration request ended with a CRS (Configuration Request Retry Status) completion.			
6	RW	0	TRANS Assert Wait State at Receiving	DownsTream Write Data		
			0: Disable	1: Enable		
5:4	_	0	Reserved			
3	RW	0	C2P Read Completion Timer for Vector Development Mode			
l			When this bit is set to 1, the timer in RxA1[2:0] becomes:			
1			000: 1us	001: lus		
l			010: lus 011: lus			
			100: 3us 101: 3us			
			110: 3us	111: 3us		
2:0	RW	100	C2P Read Completion Timeout Timer			
			000: Reserved 001: 1ms			
)			010: Reserved	010: Reserved 011: 10ms (Spec. lower bound)		
1			100: 30ms	101: 50ms (Spec. higher bound)		
			110: 100ms	111: Reserved		

Offset Address: A4h (D2F0)

Upstream Control

Upstream Control			Default Value: 5Ch
Bit	Attribute	Default	Description
7	RW	0	Upstream Address A35~A31 Forced to 0
			0: Disabled
			1: Enabled for system testing or loop back mode test. The upcoming data may be checked in the system memory
6	_	1	A Guard bit for Improving Tming to Prevent Upstream write FIFO from Begin Overwritten
5	RW	0	Upstream Checking Malformed TLP through "Byte Enable Rule" And "Over 4K Boundary Rule"
			0: Disabled 1: Enabled
4	RW	1	Downstream Read Wait Till The Upstream Write Data Flushed
			0: Disabled 1: Enabled
3	RW	1	Infinite Flow Control
			0: Current Design
			1: CPLH & CPLD & NPD Become Infinite mode
2	RW	1	Flow Control Update for Each Header
			0: Current Design (update header credit whenever received two TLPHs
			1: Update header credit whenever received TLPH(include PH,NPH and CPLH)
1	RW	0	VC1 Request Queue Usage (when VC1 is disabled in the capability header; i.e. Rx144[0] = 0)
			0: Disabled
			1: Enabled, it allows Transaction Layer map non-snoop upstream request through VC1 Request Queue to the
			Central Traffic Controller (Note that when this bit is 1, bit-0 has to be 0)
0	RW	0	Disable Virtual Channel 1 Support
			0: Enable VC1, data FIFO of VC1 is used by VC1.
			1: Disable VC1, data FIFO of VC1 is reallocated to VC0, which doubles the size of VC0 data FIFO.

PCI Express Data Link Layer Registers (B0-B8h)

Offset Address: B0h (D2F0) Ack/Nak Latency Timer Limit

k/Nak	Latency Ti	mer Limit	Default Value: 0Ch	
Bit	Attribute	Default	Description	

Bit	Attribute	Default	Description		
7:0	RW	0Ch	Timer Limit for Ack/Nak Latency Timer and Update FC Latency Timer (in unit of 2	250MHz)	
			00: 4 x 1 Clocks 01: 4 x 2 Clocks		
l			02: 4 x 3 Clocks		
			On: 4 x (n+1) Clocks FF: 4 x 256 Clocks.		

Default Value: 40h

Offset Address: B1h (D2F0)

Replay Timer Limit Default Value: 12h

Bit	Attribute	Default	Description		
7:0	RW	12h	Replay Timer Limit (In unit of 250MHz) 00: 8 x 1 Clocks 02: 8 x 3 Clocks 0n: 8 x (n+1) Clocks	01: 8 x 2 Clocks FF: 8 x 256 Clocks.	

Offset Address: B2h (D2F0) FCU Control and Status

Bit	Attribute	Default	Description		
7	RW1C	0	FCU Timeout Status		
			1 Means the FCU timeout has occurred		
6	RW	1	FCU Receive Timer Enable Control		
			0: Disable the timeout mechanism		
			1: Enable the timeout mechanism		
5	RW	0	FCU Receive Timer Limit		
			0: Timeout limit of 200us		
			1: Timeout limit of 300us		
4	RW	0	FCU Receive Timer Reset Control		
			0: Timer reset by FCI/FCU only		
			1: Timer reset by any received DLLPs		
3:1	_	0	Reserved		
0	RW	0	DL and TL Gard Bit		
		l	Reset upstream related logic when retrain is going on.		

Offset Address: B3h (D2F0)

Replay Timer Control

Default Value: 80h

Bit	Attribute	Default	Description
7:6	RW	10	Replay Timer Control while Rewind (resend those DLLPs which do not have corresponding ACK/NAK received) 00: Hold Replay Timer during rewind 01: During rewind, if ACK/NAK comes in, reset and hold the Replay Timer 10: During rewind, reset and hold the Replay Timer as long as the Retry Buffer is empty 11: Reserved
5:3		0	Reserved
2:0	RW	000	Count of Replay Timer Expired During RXL0s (Receiving Physical in L0s state) Before Resend the TLP
			When Rx50[7], LCES PEG, is set to 0:
			000: Wait forever for the Acknowledge from the device side
			001: Resend the TLP after 1 x Replay timer expired
		'	010: Resend the TLP after 2 x Replay timer expired
			011: Resend the TLP after 4 x Replay timer expired
			100: Resend the TLP after 8 x Replay timer expired
			101: Resend the TLP after 16 x Replay timer expired
			110: Resend the TLP after 32 x Replay timer expired
			111: Resend the TLP after 64 x Replay timer expired
			When RX50[7], LCES PEG, is set to 1:
			000: Wait forever for the Acknowledge from the device side
			001: Resend the TLP after 16 x Replay timer expired
1			010: Resend the TLP after 32 x Replay timer expired
			011: Resend the TLP after 64 x Replay timer expired
			100: Resend the TLP after 128 x Replay timer expired
			101: Resend the TLP after 256 x Replay timer expired
			110: Resend the TLP after 512 x Replay timer expired
	ļ		111: Resend the TLP after 1024 x Replay timer expired

Default Value: 00h

Default Value: 10h

Offset Address: B4h (D2F0)

Arbitration Control

Bit	Attribute	Default	Description			
7:4	_	0	eserved			
3	RW	0	TLP vs. Flow Control Initialization for VC0 in Arbitration 0: TLP is not allowed to pass FCI2 for VC0 1: TLP is allowed to pass FCI2 for VC0			
2:0	RW	000	Data Link TX Packets Arbitration Scheme 000: Round Robin 001: Reserved 010: Strict priority: TLP > ACK/NAK > FCU 011: Strict priority: TLP > FCU > ACK/NAK 100: Strict priority: ACK/NAK > TLP > FCU 101: Strict priority: ACK/NAK > FCU > TLP 110: Strict priority: FCU > TLP > ACK/NAK 111: Strict priority: FCU > ACK/NAK > TLP			

Offset Address: B5h (D2F0)

FCU Control

Bit	Attribute	Default	Description
7	_	0	Reserved
6	RW	0	FCU (Flow Control Unit) Timer Control

-			-		
7		0	Reserved		
6	RW	0	FCU (Flow Control Unit) Timer Control		
1			0: Update flow control credit when either Transaction Layer requested packets being sent or when FCU timer		
			expired		
			1: Update flow control credit only when FCU timer expired		
5:4	RW	01	ACK DLLP Collapse Method		
			00: Send ACK when the latency timer RACKLTLM (RxB0) expired.		
			01: Send ACK every 4 correct TLP has been received		
			10: Send ACK every 8 correct TLP has been received		
			11: Send ACK every 16 correct TLP has been received		
3:2	_	0	Reserved		
1	RW	0	FCI (Flow Control Initialization) Process End Condition		
			0: Complete FCI process when TLP/FCU has been received		
			1: Do not complete FCI process even when TLP/FCU has been received		
0	RW	0	VC1 FCI DLLP Transmission Scheme		
			0: Transmit FCI DLLP only when FCI timer expired		
			1: Transmit FCI DLLP continuously as long as the FCI process is not finished		

Offset Address: B6h (D2F0)
Transaction / Link Layer Checking Control

n .	C	14	T 7 -	1	021.
IJе	เมเ	ш	va	nue:	03h

Bit	Attribute	Default	Description			
7:5		0	Reserved			
4	RW	0	VC Negotiate Pending Control for VC1 0: Assert VC negotiation pending after VC1 is enabled 1: Assert VC negotiation pending after RESET is de-asserted			
3		0	Reserved			
2	RW	0	ECRC Checking Control for the Case of TD equals to 1 but no ECRC field in TLP 0: Ignore the error 1: Report error to Transaction Layer, which will mark the TLP as a Malformed TLP			
1	RW	1	Length Malform Report Control 0: Do not report length malform to Transaction Layer 1: Report length malform to Transaction Layer			
0	RW	1	LCRC Checking Control 0: Do not check LCRC 1: Check LCRC			

Default Value: 0023 0003h

Default Value: 00h

Offset Address: B8h (D2F0)

Data Link Layer Header Position

Bit	Attribute	Default	Description		
7:1	_	0	Reserved		
0	RW	0	Data Link Layer Header Position 0: SDP (Start DLLP) can be in Lane0/4/8/12 1: SDP (Start DLLP) always at Lane0.		

PCI Express Physical Layer Registers (C0-CBh)

Offset Address: C3-C0h (D2F0)

PHY Control

Bit	Attribute	Default	Description		
31:24	RO	0	PHYLS State Mapping		
23:22	_	0	Reserved		
21	RW	1	Lane Enable 0: Enable lanes based on LTSSM negotiation results 1: Enable lanes based on receiver detection's results		
20	RW	0 -	Bypass PHYES Receiver Detect Function 0: RCVOUT is derived from PHYES 1: Bypass receiver detect: RCVOUT = 1		
19:18	_	0	Reserved		
17	RW	1	Disparity Check Enable 0: Disable 1: Enable		
16	RW	1	State Machine LTSSM 0: Wait for the electrical idle signal from the PHYES or 12ms after RESET# become inactive. 1: Always wait for 12ms after the RESET# become inactive.		
15:13		0	Reserved		
12:8	RW	00h	PHY Lane Configuration Setting 10000-01000: Reserved 00100: x4 with normal connection 00010: Reserved 00001: x1 with normal connection 01111-10111: Reserved 10111: x8 with reverse connection 11011: x4 with reverse connection 11101: Reserved 11110: x1 with reverse connection 10101: force into L0s state (for testing and measurement used only) 00000: Use phy negotiation Other values are not allowed.		
7	RW	0	Quick Timeout Counter Setting When set to 1, following timeout counters will be shorter: TIMEOUT_2MS □ TIMEOUT_4US TIMEOUT_12MS □ TIMEOUT_24US TIMEOUT_24MS □ TIMEOUT_48US TIMEOUT_48MS □ TIMEOUT_96US TIMEOUT_1024TS □ TIMEOUT_32TS Receiver Detection: 15x1024ns □ 1x1024ns		
6	RW	0	Disable Data Scrambling/Descrambling 0: Enable 1: Disable		
5:3	RW	000	Loopback Mode Selection (Applies to All 16 Lanes) 000: No loop back 001: PHYLS loopback from TX end to RX end 010: PHYES loopback from TX end to RX end 011: Reserved 100: Reserved 101: PHYLS loopback from RX end to TX end 111: PHYLS loopback from RX end to TX end 111: Reserved		
2:0	RW	011	COMMA Detection Window 000, 001: Illegal values Others: Delay number of T to determine correct lane-to-lane deskew value		

Default Value: 4444 4444h

Offset Address: C7-C4h (D2F0) Elastic Buffer Base Registers for Lane 0 to 7

Bit	Attribute	Default	Description
31	_	0	Reserved
30:28	RW	4h	Elastic Buffer Base Register for Lane 7
			0, 1, 7: Illegal values
			Others: delay numbers of T for elastic buffer operations
27		0	Reserved
26:24	RW	4h	Elastic Buffer Base Register for Lane 6
			0, 1, 7: Illegal values
			Others: delay numbers of T for elastic buffer operations
23	_	0	Reserved
22:20	RW	4h	Elastic Buffer Base Register for Lane 5
			0, 1, 7: Illegal values
10		-	Others: delay numbers of T for elastic buffer operations
19		0	Reserved
18:16	RW	4h	Elastic Buffer Base Register for Lane 4
			0, 1, 7: Illegal values
1.5			Others: delay numbers of T for elastic buffer operations
15	_	0	Reserved
14:12	RW	4h	Elastic Buffer Base Register for Lane 3
			0, 1, 7: Illegal values Others: delay numbers of T for elastic buffer operations
11		0	Reserved
10:8	RW	4h	
10.8	KW	411	Elastic Buffer Base Register for Lane 2 0, 1, 7: Illegal values
		1	Others: delay numbers of T for elastic buffer operations
7	_	0	Reserved
6:4	RW	4h	Elastic Buffer Base Register for Lane 1
0.4	KW	711	0, 1, 7: Illegal values
		ļ	Others: delay numbers of T for elastic buffer operations
3		0	Reserved
2:0	RW	4h	Elastic Buffer Base Register for Lane 0
			0, 1, 7: Illegal values
			Others: delay numbers of T for elastic buffer operations

Default Value: 4444 4444h

Offset Address: CB-C8h (D2F0) Elastic Buffer Base Registers for Lane 8 to 15

Bit	Attribute	Default	Description
31	_	0	Reserved
30:28	RW	4h	Elastic Buffer Base Register for Lane 15 0, 1, 7: Illegal values Others: delay numbers of T for elastic buffer operations
27	_	0	Reserved
26:24	RW	4h	Elastic Buffer Base Register for Lane 14 0, 1, 7: Illegal values Others: delay numbers of T for elastic buffer operations
23	_	0	Reserved
22:20	RW	4h	Elastic Buffer Base Register for Lane 13 0, 1, 7: Illegal values Others: delay numbers of T for elastic buffer operations
19	_	0	Reserved
18:16	RW	4h	Elastic Buffer Base Register for Lane 12 0, 1, 7: Illegal values Others: delay numbers of T for elastic buffer operations
15	_	0	Reserved
14:12	RW	4h	Elastic Buffer Base Register for Lane 11 0, 1, 7: Illegal values Others: delay numbers of T for elastic buffer operations
11	_	0	Reserved
10:8	RW	4h	Elastic Buffer Base Register for Lane 10 0, 1, 7: Illegal values Others: delay numbers of T for elastic buffer operations
7	_	0	Reserved
6:4	RW	4h	Elastic Buffer Base Register for Lane 9 0, 1, 7: Illegal values Others: delay numbers of T for elastic buffer operations
3	_	0	Reserved
2:0	RW	4h	Elastic Buffer Base Register for Lane 8 0, 1, 7: Illegal values Others: delay numbers of T for elastic buffer operations

PCI Express Power Management Module Registers (D0-D3h)

Offset Address: D3-D0h (D2F0)

PMC Control Default Value: 0000 0050h

Bit	Attribute	Default	Description
31:24	RW	OOh	Idle Period to Enter ASL1 Minimum time period is 128ns 00: 128ns 01: 2x128ns 02: 3x128ns FF: 256x128ns
23:16	RW	00h	Idle Period to Enter L0s Minimum time period is 128ns (L0SLIM_PEG = 00) 00: 128ns 01: 2x128ns 02: 3x128ns FF: 256x128ns
15	W1C	0	Error Status Report This bit is set when device cannot have electrical idle after the waiting period programmed at RxD1[5:4] expired.
14	_	0	Reserved
13:12	RW	0	Electrical Idle Waiting Period before Move to L1 State (after issue ACK to the L1 request from the device). 00: Always wait for electrical idle 01: Wait 32 clock 10: Wait 64 clock 11: Reserved
11:10		0	Reserved
9:8	RW	0	Downstream Cycles Triggered C2P Cycles, Period of Staying at L0 Before Returned to L1 for PHY (when PMU is in non-D0 state) 00: Immediately 01: 1 cfgW or message + delay10T 10: 1 32QW +1cfgW or message+ delay10T 11: 2 32QW +1 cfgW or message + delay10T
7	_	0	Reserved
6:4	RW	101	Timeout Period This timer is used when waiting for ACK from a device after issued PME_TURNOFF message to notify the device to move to power down mode. 000: 1us
3:2		0	Reserved
1	RW	0	Link Loopback 0: Normal operation 1: Direct device to enter Loopback mode, receiving data in the device will be sent to the transmit side
0	RW	0	LTSSM State During Link Reconfigure Link Width 0: When reconfigure link width, LTSSM must be in Detect state 1: When reconfigure link width, LTSSM can be in Configuration state

PCI Express Message Controller Related Registers (D8h)

Offset Address: D8h (D2F0)

PMC Express Message Status

Bit	Attribute	Default	Description
7	W1C	0	Excessive Errors Occurred But Not Reported in MSGC 0: Normal operation. 1: There are errors not reported to the system
6:0	_	0	Reserved

Default Value: 00h

Bit

7:4

3:1

0

PCI Express Electrical PHY Registers (E0-EAh)

Offset Address: E0h (D2F0)

PHYES Module Control (For x4 Root Ports)

Default

0

0

Reserved

Charge Pump Current Control

Charge Pump Style Control

Delauit	vaiuc.	0211
		- 1
		1

Offset Address: E1h (D2F0)

PHYES Module Related Control

Attribute

RW

RW

Default Value: 08h

Default Value: 02h

Bit	Attribute	Default	Description
7:5	_	0	Reserved
4	RW	0	Receiving Polarity Change Control 0: Have the same polarity on the loop-back/received data 1: Have reverse polarity on the loop-back/received data
3:2	RW	10	Squelch Window Select (64~175mv)
1	RW	0	Electrical Idle State Exit Condition: Number of Non Idle Signal Detected Before Exit Idle State 0: 2 bits 1: 10 bits
0	RW	0	Electrical Idle State Enter Condition: Number of Idle Signal Detected Before Enter Idle State 0: 2 bits 1: 10 bits

Description

Offset Address: E2h (D2F0)

First 8 Lanes PHYES Module Control - Rx/Tx I

Default Value: 00h

Bit	Attribute	Default	Description
7:6	_	0	Reserved
5	RW	0	PHYES Clock Buffer Power Down on Lane 0-7
			0: All enable.
			1: Power down
4	RW	0	Lane 4-7 Clock Buffer Power Down
			0: All enable
			1: Lane 4-7 power down
3:2	RW	00	Receiver Input Rise Delay (duty cycle adjustment for the first 8 lanes)
			00: 0 ps
			01: 10 ps
			10: 40 ps
			11: 80 ps
1:0	RW	00	Receiver Input Fall Delay (duty cycle adjustment for the first 8 lanes)
			00: 0 ps
			01: 10 ps
			10: 40 ps
			11: 80 ps

Default Value: 42h

Default Value: 44h

Default Value: 00h

Default Value: 02h

Offset Address: E3h (D2F0)

First 8 Lanes PHYES Module Control - Rx/Tx II

Bit	Attribute	Default	Description
7	RW	0	PCIe Pads Driving Control
			0: Autocomp
		1	1: Manual setting through bits [2:0]
6:5	RW	10b	Filter Depth Valid Only When CDR Type is set to 0
			00: filter depth = 1
		1	01: filter depth = 4
			10: filter depth = 8
			11: filter depth = 12
4	RW	0	CDR Type
			0: 1/N type
			1: Pseudo 6X scheme
3	RW	0	Reserved / CDR filter Depth
			0: filter depth = 3 1: filter depth = 2
2:0	RW	010b	First 8 Lanes, Lane 0 -7, Termination Resistance Selection
		l	Resistance Range: 62Ω (000b) ~ 43Ω (111b)
			Default: 50Ω (010b)

Offset Address: E4h (D2F0)

First 8 Lanes PHYES Module Control - Rx/Tx III

Bit	Attribute	Default	Description
7:4	RW	4h	Pre/De-Emphasis Level Selection
3:0	RW	4h	Driver Current Source Selection

Offset Address: E8h (D2F0)

Second 8 Lanes PHYES Module Control – Rx/Tx I

Bit	Attribute	Default	Description
7:5		0	Reserved
4	RW	0	Lane 12-15 Clock Buffer Power 0: All enable 1: Lane 12~15 power down
3:2	RW	00	Receiver Input Rise Delay (duty cycle adjustment for the second 8 lanes) 00: 0 ps 01: 10 ps 10: 40 ps 11: 80ps
1:0	RW	00	Receiver Input Fall Delay (duty cycle adjustment for the second 8 lanes) 00: 0 ps 01: 10 ps 10: 40 ps 11: 80 ps

Offset Address: E9h (D2F0)

Second 8 Lanes PHYES Module Control - Rx/Tx II

Bit	Attribute	Default	Description
7	RW	0	PCIe Pads Driving Control
			0: Autocomp
			1: Manual setting through bits [2:0]
6	_	0	Reserved
5	RW	0	PHYES Clock Buffer Power Down on Lane 8-15
			0: All enable
			1: Power down
4:3	_	0	Reserved
2:0	RW	010	Second 8 Lanes, Lane 8 –15, Termination Resistance Selection
			Resistance Range: $62\Omega (000b) \sim 43\Omega (111b)$
			Default: 50Ω (010b)

Offset Address: EAh (D2F0) Second 8 Lanes PHYES Module Control – Rx/Tx III

Default Value: 44h

Bit	Attribute	Default	Description
7:4	RW	4h	Pre/De-Emphasis Level Selection
3:0	RW	4h	Driver Current Source Selection

PCI Express Electrical PHY Test Registers (F0-F7h)

Offset Address: F3-F0h (D2F0)

PHY Test

Bit	Attribute	Default	Description	Mnemonic
31	RW	0	Electrical PHY Test Mode Enable	EPHYTST_PEG
			Program this bit to 1 to start Electrical PHY test	
30:28	_	0	Reserved	
27:24	RW	6h	Test Pattern Check Length	
			Number of T when the receiving side starts to check transmitted and received patterns	
		}	Suggested Value Settings: (Lane 0 for example)	
			RxC0[5:3] = 001b: RxC4[2:0] + 2	
			[RxC0[5:3] = 010b: RxC4[2:0] + 2 + (Loopback Path Latency/4ns) + 1]	
23:20	RW	0	Select Test Pattern	
			0000: SKP order-set	
		ĺ	0001: User define, use RxF6[9:0]	
			0010: K28.5 test bit sequence	
l		1	0011: K28.7 test bit sequence	
			0100: K test for differential pair current	
			0101: J test for differential pair current	
		ĺ	0110: D21.5 test bit sequence	
			0111: D30.3 test bit sequence	
			1000: Ten contiguous run of 3 test bit sequence	
1			1001: Low transition density test bit sequence	
			1010: Half-rate/quarter-rate test bit sequence	
			1011: Low frequency spectral test bit sequence	
			1100: Simultaneous switching test bit sequence	
			1101: D 10.2 test bit sequence	
			1110: D 24.3 test bit sequence	
			1111: Compliance test bit sequence	
19:16	RW	0	Select Lane for Loop Back Test	
			0000: Loop back test on lane0	
			0001: Loop back test on lane1	
1				
15.0	DIII	001	1111: Loop back test on lane15	
15:8	RW	00h	Repeated Count of the Test Pattern (as selected in RxF2[7:4])	
			When using loopback mode to test electrical PHY, the following should be satisfied:	
			RXF1 '8 > loopback latency/4ns	
			00~0Bh: Illegal.value	
1			OCh: Test pattern repeats 12 times	
			0Dh: Test pattern repeats 12 times	
			obn. Test pattern repeats 15 times	
			FFh: Test pattern repeats 255 times	
7:0		0	Reserved	
7.0			ACSCIPCU	

Offset Address: F7-F4h (D2F0)

PHY Test Symbol

Default Value: 0000 0000h

Bit	Attribute	Default	Description	
31	RO	0	Electrical PHY Test Error	
		İ	1: An error occurred in loop back test mode receiving side	
30	RO	0	Electrical PHY Built-In Self Test Error of Symbol Comparison	
			That same errors happen or COMMA symbols are never detected during PHYBIST period; reported from PTNCMP	
29:26	_	0	Reserved	
25:16	RW	00h	Transmitted Symbol when EPHYTST_PEG (RxF0[31]) is set to 1 00 when EPHYTST_PEG is 0	
15:0	_	0	Reserved	

Offset Address: F9-F8h (D2F0) PHY BIST Counter Test Mode

Default Value: 0000h

Bit	Attribute	Default	Description
15:0	RO	0000	PHY BIST Period Electrical PHY Test Error

Default Value: 1401 0001h

Default Value: 0000 0000h

Default Value: 0000 0000h

Device 2 Function 0 (D2F0) - PCI Express Root Port 0 Extended Space

Registers defined in the Extended Space can be accessed through PCI Express Enhanced Configuration Access Mechanism, which utilizes a flat memory-mapped address space to access the configuration registers. Please check PCI Express Specification for the detail information.

Advanced Error Reporting Capability (100-137h)

Offset Address: 103-100h (D2F0)

Advance Error Reporting Enhanced Capability Header

Bit	Attribute	Default	Description
31:20	RO	140h	Next Capability Offset
19:16	RO	1	Capability Version
15:0	RO	0001h	PCI Express Extended Canability ID

Offset Address: 107-104h (D2F0)

Uncorrectable Error Status

Bit	Attribute	Default	Description			
31:21	_	0	Reserved			
20	· RW1CS	0	Unsupported Request Error Status (TL)			
19	RW1CS	0	ECRC Error Status (TL)			
18	RW1CS	0.	Malformed TLP Status (TL)			
17	RW1CS	0	Receiver Overflow Status (TL)			
16	RW1CS	0	Unexpected Completion Status (TL)			
15	RW1CS	0	Completer Abort Status (TL)			
14	RW1CS	0	Completion Timeout Status (TL)			
13	RW1CS	0	Flow Control Protocol Error Status (TL)			
12	RW1CS	0	Poisoned TLP Status (TL)			
11:5	_	0	Reserved			
4	RW1CS	0	Data Link Protocol Error Status (DLL)			
3:1		0	Reserved			
0	RW1CS	0	Training Error Status (PHY)			

Offset Address: 10B-108h (D2F0)

Uncorrectable Error Mask

Bit	Attribute	Default	Description		
31:21		0	Reserved		
20	RWS	0	Unsupported Request Error Mask (TL)		
19	RWS	0	ECRC Error Mask (TL)		
18	RWS	0	Malformed TLP Mask (TL)		
17	RWS	0	Receiver Overflow Mask (TL)		
16	RWS	0	Unexpected Completion Mask (TL)		
15	RWS	0	Completed Abort Mask (TL)		
14	RWS	0	Completion Timeout Mask (TL)		
13	RWS	0	Flow Control Protocol Error Mask (TL)		
12	RWS	0	Poisoned TLP Mask (TL)		
11:5	_	0	Reserved		
4	RWS	0	Data Link Protocol Error Mask (DLL)		
3:1	_	0	Reserved		
0	RWS	0	Training Error Mask (PHY)		

Default Value: 0006 0011h

Default Value: 0000 0000h

Default Value: 0000 0000h

Default Value: 0000 0000h

Offset Address: 10F-10Ch (D2F0)

Uncorrectable Error Severity

Bit	Attribute	Default	Description			
31:21	_	0	Reserved			
20	RWS	0	Unsupported Request Error Severity (TL)			
19	RWS	0	ECRC Error Severity (TL)			
18	RWS	1	Malformed TLP Severity (TL)			
17	RWS	1	Receiver Overflow Error Severity (TL)			
16	RWS	0	Unexpected Completion Error Severity (TL)			
15	RWS	0	Completed Abort Error Severity (TL)			
14	RWS	0	Completion Timeout Error Severity (TL)			
13	RWS	0	Flow Control Protocol Error Severity (TL)			
12	RWS	0	Poisoned TLP Severity (TL)			
11:5	_	0	Reserved			
4	RWS	1	Data Link Protocol Error Severity (DLL)			
3:1		0	Reserved			
0	RWS	1	Training Error Severity (PHY)			

Offset Address: 113-110h (D2F0)

Correctable Error Status

Bit	Attribute	Default	Description		
31:13	_	0	Reserved		
12	RW1CS	0	Replay Timer Timeout Status (DLL)		
11:9		0	Reserved		
8	RW1CS	0	REPLAY_NUM Rollover Status (DLL)		
7	RW1CS	0	Bad DLLP Status (DLL)		
6	RW1CS	0	Bad TLP Status (DLL)		
5:1	_	0	Reserved		
0	RW1CS	0	Receiver Error Status (PHY)		

Offset Address: 117-114h (D2F0)

Correctable Error Mask

Bit	Attribute	Default	Description			
31:13	-	0	Reserved			
12	RWS	0	Replay Timer Timeout Mask (DLL)			
11:9	_	0	Reserved			
8	RWS	0	REPLAY_NUM Rollover Mask (DLL)			
7	RWS	0	Bad DLLP Mask (DLL)			
6	RWS	0	Bad TLP Mask (DLL)			
5:1	_	0	Reserved			
0	RWS	0	Receiver Error Mask (PHY)			

Offset Address: 11B-118h (D2F0)

Advanced Error Capabilities and Control

Bit	Attribute	Default	Description			
31:9	_	0	Reserved			
8	RWS	0	ECRC Check Enable (TL)			
7	RO	0	ECRC Check Capable (TL)			
6	RWS	0.	ECRC Generation Enable (TL)			
5	RO	0	ECRC Generation Capable (TL)			
4:0	ROS	0	First Error Pointer (TL)			

Default Value: 0000 0000h

Default Value: 0000 0000h

Default Value: 0001 0002h

Offset Address: 12B-11Ch (D2F0)

Header Log (TL)

Offset	Attribute	Default	Description
11F – 11C	ROS	00h	Header Log Register 1st DW
123 – 120	ROS	00h	Header Log Register 2nd DW
127 – 124	ROS	00h	Header Log Register 3rd DW
12B – 128	ROS	00h	Header Log Register 4th DW

Offset Address: 12F-12Ch (D2F0)

Root Error Command

Bit	Attribute	Default	Description			
31:3	_	0	Reserved			
2	RW	0	Fatal Error Reporting Enable			
1	RW	0	Non-Fatal Error Reporting Enable			
0	RW	0	Correctable Error Reporting Enable			

Offset Address: 133-130Ch (D2F0)

Root Error Status

Bit	Attribute	Default	Description	
31:27	RO	00h	Advanced Error Interrupt Message Number (TL)	
26:7		0	Reserved	
6	RW1CS	0	Fatal Error Messages Received (TL)	
5	RW1CS	0	Non-Fatal Error Messages Received (TL)	
4	RW1CS	0	First Uncorrectable Fatal Error Message Received (TL)	
			Set to 1 when the first Uncorrectable Error Message received is for a Fatal Error	
3	RW1CS	0	Multiple ERR_FATAL/NONFATAL Received (TL)	
2	RW1CS	0	ERR_FATAL/NONFATAL Received (TL)	
1	RW1CS	0	Multiple ERR_COR Received (TL)	
0	RW1CS	0	ERR_COR Received (TL)	

Offset Address: 137-134Ch (D2F0)

Error Source Identification

This register is updated regardless of the settings of Root Control register and the Root Error Command register.

Bit	Attribute	Default	Description		
31:16	ROS	0000	ERR_FATAL/NONFATAL Source Identification		
15:0	ROS	0000	ERR COR Source Identification		

Virtual Channel Capability (140-14Fh)

Virtual Channel Capability is defined for Egress direction of the device. For Root Port, since only VC0 is defined, there is no implementation of VC Arbitration Table and Port Arbitration Table.

Offset Address: 140-143h (D2F0)

Virtual Channel Enhanced Capability

Bit	Attribute	Default	Description		
31:20	RO	000h	Next Capability Offset		
19:16	RO	1h	Capability Version		
15:0	RO	0002h	PCI Express Extended Capability ID		

Default Value: 0000 0000h

Default Value: 0000 0000h

Default Value: 8000 00FFh

Default Value: 0000 0000h

Offset Address: 147-144h (D2F0)

Port VC Capability I

Bit	Attribute	Default	Description	Mnemonic		
31:12	_	0	Reserved			
11:10	RO	0	Port Arbitration Table Entry Size Reserved for root port			
9:8	RO	0	Reference Clock Reserved for root port			
7	_	0	Reserved			
6:4	RO	0	Low Priority Extended VC Count			
3	-	0	Reserved			
2:0	RO	0	Extended VC Count	VCAEVCC_PEG_[2:0]		

Offset Address: 14B-148h (D2F0)

Port VC Capability II

Bit	Attribute	Default	Description	
31:24	RO	00h	VC Arbitration Table Offset 00 since only VC0 is defined	
23:8		0	Reserved	
7:0	RO	00h	VC Arbitration Capability;	

VC0 Resource (150-15Bh)

Offset Address: 150-153h (D2F0)

VC Resource Capability (VC0)

Bit	Attribute	Default	Description			
31:23	_	0	Reserved			
22:16	RO	00h	Maximum Time Slots (TL) Indicates the maximum number of time slot (minus one) that the VC resource is capable of supporting when it is configured for time-based WRR port arbitration.			
15	RO	0	Reject Snoop Transactions			
14:0	_	0	Reserved			

Offset Address: 157-154h (D2F0)

VC Resource Control (VC0)

Bit	Attribute	Default	Description	
31	RO	1	VC Enable	
		ļ	Hardwired to 1	
30:27	_	0	Reserved	
26:24	RO	0	VC ID	
			Hardwired to 0 for VC0.	
23:8	_	0	Reserved	
7:0	RW	FFh	TC/VC Mapping	
	Bit 0: RO		This field indicates the TCs that are mapped to VC0. If bit [n] is 1, the corresponding traffic class TCn is	
			mapped to VC0 (0 <= n <= 7). Default is TC0, TC1, TC2, TC3, C4, TC5, TC6 and TC7 are all mapped to	
			VCO.	
ľ			Note: Bit0 is hardwired to 1 (i.e. TC0 is always mapped to VC0).	

Offset Address: 15B-158h (D2F0)

VC Resource Status (VC0)

Bit	Attribute	Default	Description		
31:18	_	0	Reserved		
17	RO	0	VC Negotiation Pending (TL) This bit indicates whether the Virtual Channel negotiation is in Pending state (set/clear by hardware) 0: Negotiation is complete 1: Negotiation is on-going		
16:0	_	0	Reserved		

Default Value: 0010 0000h

Default Value: 0000 0000h

VC1 Resource (15C-167h)

The following registers exist only when Rx144[0] is programmed to 1. If Rx144[0]=0, all the following content will be read as 0.

Offset Address: 15F-15Ch (D2F0)

VC Resource Capability (VC1)

Bit	Attribute	Default	Description
31: 23	_	0	Reserved
22:16	RO	00h	Maximum Time Slots (TL) Indicates the maximum number of time slot (minus one) that the VC resource is capable of supporting when it is configured for time-based WRR port arbitration.
15	RO	0	Reject Snoop Transactions
14:0		0	Reserved

Offset Address: 163-160h (D2F0)

VC Resource Control (VC1)

Bit	Attribute	Default	Description		
31	RW	0	VC Enable		
30:27	_	0	Reserved		
26:24	RW	1	VC ID.		
23:8	_	0	Reserved		
7:0	RW Bit 0: RO	00	TC/VC Mapping This field indicates the TCs that are mapped to VC1. If bit [n] is 1, the corresponding traffic class TCn is mapped to VC1 (0 <= n <= 7). Default is TC0, TC1, TC2, TC3, C4, TC5, TC6 and TC7 are all mapped to VC0. Note: Bit0 is hardwired to 0 (i.e. TC0 is always mapped to VC0).		

Offset Address: 167-164h (D2F0)

VC Resource Status (VC1)

Bit	Attribute	Default	Description		
31:18	_	0	Reserved		
17	RO	0	VC Negotiation Pending (TL) This bit indicates whether the Virtual Channel negotiation is in Pending state (set/clear by hardware) 0: Negotiation is complete 1: Negotiation is on-going.		
16:0	_	0	Reserved		

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Table 9. Absolute Maximum Ratings

Symbol	Parameter	Parameter Min		Unit	Notes
T_{C}	Case Operating Temperature	0	85	°C	1
T_{S}	Storage Temperature	-55	125	°C	1
$V_{\rm IN}$	Input Voltage	-0.5	V _{RAIL} + 10%	Volts	1, 2
V_{OUT}	Output Voltage	-0.5	V _{RAIL} + 10%	Volts	1, 2

Note 1. Stress above the conditions listed may cause permanent damage to the device. Functional operation of this device should be restricted to the conditions described under operating conditions.

Note 2. V_{RAIL} is defined as the V_{CC} level of the respective rail. The CPU interface is CPU dependent (CPU V_{CORE} or VTT). Memory is 2.5V or 1.8V. V-Link is 1.5V. AGP can be 1.5V (4x transfer mode) or 0.8V (8x transfer mode).

DC Characteristics

 $T_C = 0-85^{\circ}C$, $V_{RAIL} = V_{CC} \pm 5\%$, $V_{CORE} = 1.5V \pm 5\%$, GND = 0V

Table 10. DC Characteristics

Symbol	Parameter	Min	Max	Unit	Condition
V_{IL}	Input Low Voltage	-0.50	0.8	V	
V_{IH}	Input High Voltage	2.0	$V_{CC} + 0.5$	V	
V _{OL}	Output Low Voltage	-	0.55	V	$I_{OL} = 4.0 \text{ mA}$
V_{OH}	Output High Voltage	2.4	_	V	$I_{OH} = -1.0 \text{ mA}$
I_{IL}	Input Leakage Current	_	±10	uA	$0 < V_{IN} < V_{CC}$
I_{OZ}	Tristate Leakage Current	_	±20	uA	$0.55 < V_{OUT} < V_{CC}$

Drive strength for selected output balls is programmable. See Device 0 RxB0[6], B1, B3, B5, B6, B9, BA, D8-DB, E8-EB and straps VD4-5 for details.

MECHANICAL SPECIFICATIONS

Figure 5. Mechanical Specifications – FCBGA-1054 Flip Chip Ball Grid Array Package

Figure 6. Lead-Free Mechanical Specifications – FCBGA-1054 Flip Chip Ball Grid Array Package

