Exercise 18.1. Let $Z[\sqrt{d}] = \{ a + b\sqrt{d} \mid a \ b \in Z \}$, where where d is not 1 and is not divisible by the square of a prime (Note that d needs not to be positive). The norm of $a + b\sqrt{d} \in Z[\sqrt{d}]$ is given by $N(a + b\sqrt{d}) = |a^2 - db^2|$. Verify the following properties:

- 1. N(x) = 0 iff x = 0
- 2. N(xy) = N(x)N(y)
- 3. N(x) = 1 iff x is a unit
- 4. N(x) is prime implies x is irreducible over $Z[\sqrt{d}]$

Proof.

- 1. If N(x) = 0, then $a^2 = db^2$, however, d is not divisible by the square of any prime and a^2 is a product of some squares of prime, therefore a = b = 0.
- 2. Trivial.
- 3. If $N(a+b\sqrt{d})=1$, then $(a+b\sqrt{d})(a-b\sqrt{d})=\pm 1$. If $a+b\sqrt{d}$ is a unit, then $N(1)=N((a+b\sqrt{d})(s+t\sqrt{d}))=1$, by property 2, we know $N(a+b\sqrt{d})N(s+t\sqrt{d})=1$, which implies $N(a+b\sqrt{d})=N(s+t\sqrt{d})=1$.
- 4. Suppose x = ab, then N(x) = N(ab) = N(a)N(b). We know one of N(a) and N(b) is 1 since N(x) is prime, which implies one of a and b is unit, therefore x is irreducible.

Exercise 18.2. In an integral domain, show that a and b are associates iff $\langle a \rangle = \langle b \rangle$.

Proof.

- (\Rightarrow) If a = cb, then $b \in \langle a \rangle$. Similarly, $c^{-1}a = b$, therefore $a \in \langle b \rangle$.
- (\Leftarrow) If $\langle a \rangle = \langle b \rangle$, then $b \in \langle a \rangle$, which implies b = ac for some c. Similarly, $a \in \langle b \rangle$, then a = bd for some d.

Exercise 18.3. Show that the union of a chain $I_0 \subset I_1 \subset \ldots$ of ideals of a ring R is an ideal of ring R.

Proof. Let $I = I_0 \cup I_1 \cup \ldots$, for any $a \in I$, a must belong to some I_i , then for any $b \in R$, we know $ab \in I_i$ since I_i is an ideal, therefore $ab \in I$ since $I_i \subseteq I$.

Exercise 18.4. In an integral domain, let r an irreducible and a unit, show that ar is an irreducible.

Proof. Let D an integral domain, suppose ar = st for some $s \ t \in D$, then $r = a^{-1}st$. Then we know one of $a^{-1}s$ and t is a unit since r is irreducible. If $a^{-1}s$ is a unit, so is s; if t is a unit, so is t.

Exercise 18.5. Let D an integral domain and a $b \in D$ where $b \neq 0$. Show that $\langle ab \rangle \subset \langle b \rangle$ iff a is not a unit.

Proof.

- (\Rightarrow) If a is a unit, then $b = a^{-1}ab$, which implies $\langle b \rangle \subseteq \langle ab \rangle$.
- (\Leftarrow) If $\langle ab \rangle = \langle b \rangle$, then $b \in \langle ab \rangle$ and b = cab for some $c \in D$. Then 1 = ca by cancellation, which means a is a unit with an inverse c.

Exercise 18.6. Let D be an integral domain. Define $a \sim b$ iff a and b are associates. Show that is an equivalence relation on D.

Proof.

- (Reflexivity) $a \sim a$ by a = 1a.
- (Symmetry) If $a \sim b$, then a = cb where c is a unit, then $b = c^{-1}a$, therefore $b \sim a$.
- (Transitivity) If $a \sim b$ and $b \sim c$, then a = sb and b = tc, then a = stc, therefore $a \sim c$.

Exercise 18.8. Let D be an Euclidean domain with measure d. Prove that $u \in D$ is a unit iff d(u) = d(1).

Proof. By $d(u) \le d(uu^{-1}) = d(1)$ (The 1st property of Euclidean domain) and $d(1) \le d(1u) = d(u)$, we know d(u) = d(1).

Exercise 18.9. Let D be an Euclidean domain with measure d. Prove that if a and b are associates in D, then d(a) = d(b).

Proof. We know a=cb, then $d(a) \leq d(c^{-1}a) = d(b)$ and $d(b) \leq d(cb) = d(a)$, therefore d(a) = d(b).

Exercise 18.10. Let D be a principal ideal domain and let $p \in D$. Prove that $\langle p \rangle$ is a maximal ideal in D iff p is irreducible.

Proof.

- (\Rightarrow) If $\langle p \rangle$ is maximal, then it is also prime, therefore p is prime, then p is irreducible by Theorem 18.1.
- (\Leftarrow) If p is irreducible, suppose I an ideal that $I \subseteq \langle p \rangle$. Since D is a principal ideal domain, we know $I = \langle q \rangle$ for some $q \in D$. Then p = qr since $p \in \langle q \rangle$, therefore one of q and r is unit.
 - If q is unit, then I = D.
 - If r is unit, then $q = r^{-1}p$, therefore $\langle p \rangle = \langle q \rangle = I$.

Therefore $\langle p \rangle$ is a maximal ideal in D.

Exercise 18.11. Let d be an integer such that d < 1 and it is not divisible by the square of a prime. Prove that the only units of $Z[\sqrt{d}]$ are +1 and -1.

Proof. Let $a + b\sqrt{d} \in \mathbb{Z}[\sqrt{d}]$ a unit, then $N(a + b\sqrt{d}) = |a^2 - b^2d| = 1$. Note that d < 1, therefore $-b^2d \ge 0$, which means $a^2 - b^2d = 1$.

- If a = 0, then $-b^2d = 1$. We know $b^2 < 1$ by -d > 1, which implies b = 0, but now a = b = 0, and $0 + 0\sqrt{d}$ cannot be a unit.
- If $a \neq 0$, then $a^2 > 0$, which means $-b^2d \leq 0$. But we know $-b^2d \geq 0$, therefore $-b^2d = 0$ and then b = 0, $a^2 = 1$. We can conclude that $a = \pm 1$.

Exercise 18.12. Let D be a principal ideal domain. Show that every proper ideal of D is contained in a maximal ideal of D.

Proof. Let I a proper ideal of D. If there is no any ideal D that properly contains I, then I is a maximal ideal. Let J an proper ideal that properly contains I, if J is not a maximal ideal, then find a maximal ideal that containing J. This algorithm must stop, otherwise it implies an infinite strictly increasing chain $I \subset J \subset \ldots$, which makes nonsense by Lemma 18.1.

Exercise 18.14. Show that 1 - i is irreducible in Z[i].

Proof. Define the norm of a + bi by $N(a + bi) = a^2 + b^2$, then:

- $N((a+bi)(c+di)) = N((ac-bd)+(ad+bc)i) = (ac-bd)^2+(ad+bc)^2 = (ac)^2-2abcd+(bd)^2+(ad)^2+2abcd+(bc)^2 = (ac)^2+(bd)^2+(ad)^2+(bc)^2 = (a^2+b^2)c^2+(a^2+b^2)d^2 = (a^2+b^2)(c^2+d^2) = N(a+bi)N(c+di).$
- If $N(a + bi) = a^2 + b^2 = 1$, we know a^2 and b^2 are nonzero integer, therefore either $a^2 = 1$ or $b^2 = 1$, which means a + bi is one of these: ± 1 and $\pm i$, therefore a + bi is a unit.
- Suppose 1 i = ab, then 2 = (1 + 1) = N(1 i) = N(ab) = N(a)N(b). Since 2 is a prime, then either N(a) = 2 or N(b) = 2, which implies either N(b) = 1 or N(a) = 1, therefore 1 - i is irreducible.

Exercise 18.19. Let $p \in Z$ a prime such that $p = a^2 + b^2$ where $a, b \in Z$. Prove that a + bi is irreducible in Z[i].

Proof. According to Exercise 18.14, we know $N(a+bi)=a^2+b^2=p$ is a prime, therefore a+bi is irreducible.

For example, 5 and 1+2i (or 2+1i), 2 and 1+i, 17 and 1+4i.

Exercise 18.20. Prove that $Z[\sqrt{-3}]$ is not a PID.

Proof. Consider $4 \in \mathbb{Z}[\sqrt{-3}]$, it is easy to see that $2 * 2 = 4 = (1 + \sqrt{-3})(1 - \sqrt{-3})$. Therefore $\mathbb{Z}[\sqrt{-3}]$ is not a UFD, then it is not a PID.

Exercise 18.24. Let F a field, prove that any non-zero prime ideal in F[x] is also a maximal ideal.

<i>Proof.</i> We know $F[x]$ is a principal ideal domain, therefore any prime ideal	ıl in
$F[x]$ has form $\langle p \rangle$ and p is a prime. Then p is an irreducible, finally $\langle p \rangle$	\rangle is
maximal by Exercise 18.10.	

Exercise 18.37. An ideal A of a commutative ring R with unity is said to be finitely generated if there exist elements $a_0, a_1, \dots, a_n \in A$ such that $A = \langle a_0, a_1, \dots, a_n \rangle$.

An integral domain R is said to satisfy the ascending chain condition if every strictly increasing chain of ideals $I_0 \subset I_1 \subset \ldots$ has a finite length.

Show that an integral domain R satisfies the ascending chain condition iff every ideal of R is finitely generated. Note that this is the generialized version of Lemma 18.1, finitely generate instead of principal ideal.

Proof.