Instituto Tecnológico de Costa Rica Área de Ingeniería Mecatrónica MT-5001 Modelos de Sistemas para Mecatrónica Profesor: Ing. Jaime Mora.

Elaborado por: Ing. José Miguel Barboza Retana

Respuestas #5. Series complejas.

- 1) a) $j + z jz^2 z^3 + jz^4 + \cdots$
 - b) $\frac{1}{z} + \frac{j}{z^2} \frac{1}{z^3} \frac{j}{z^4} + \frac{1}{z^5} + \cdots$
 - c) $1 (z 1 j) + (z 1 j)^2 (z 1 j)^3 + \cdots$
- 2) a) $z z^3 + z^5 z^7 + \cdots$ b) $1 + z - z^2 - z^3 + z^4 + z^5 - z^6 - z^7 + \cdots$
- 3) a) $\frac{1}{2} \frac{1}{4}(z-1) + \frac{1}{8}(z-1)^2 \frac{1}{16}(z-1)^3$, radio de convergencia 2
 - b) $\frac{1}{4} \frac{1}{16}(z-1)^2 + \frac{1}{64}(z-1)^4 \frac{1}{256}(z-1)^6$, radio de convergencia 2
 - c) $-j\frac{1}{2} + \frac{1}{2}(1+j)(z-1-j) \frac{3}{4}(z-1-j)^2 + \frac{1}{2}(j-1)(z-1-j)^3$, radio de convergencia $\sqrt{2}$
- 4) a) 1
 - b) 1
 - c) $\sqrt{5}$

Porque z = j es una singularidad de f(z)

- 5) a) $z^3 + z^2 + \frac{z}{2!} + \frac{1}{3!} + \frac{1}{4!z} + \frac{1}{5!z^2} + \cdots$ para $0 < |z| < \infty$
 - b) $a^3 e^{1/a} + (z a) (3a^2 e^{1/a} ae^{1/a}) + \frac{1}{2!} (z a)^2 (6ae^{1/a} 4e^{1/a} \frac{1}{a^2}e^{1/a}) + \cdots$ para |z - a| < |a|
- 6) a) $\frac{1}{z} + 2 + 3z + 4z^2 + \cdots$ para 0 < |z| < 1

b)
$$\frac{1}{(z-1)^2} - \frac{1}{(z-1)} + 1 - (z-1) + (z-1)^2 - \cdots$$
 para $0 < |z| < 1$

7) a) ... +
$$\frac{1}{(5!)z^3} - \frac{1}{(3!)z} + z$$

b) $z - \frac{1}{(3!)z} + \frac{1}{(5!)z^3} - \cdots$
c) $a^2 \sin(\frac{1}{a}) + zf'(a) + \cdots$

9)
$$\frac{1}{3}\sum_{n=1}^{\infty}z^{-n} + \frac{2}{3}\sum_{n=0}^{\infty}(-1)^n\left(\frac{1}{2}\right)^{n+1}z^n$$

10) Tiene 3 posibles regiones de convergencia

a)
$$|z - (1+j)| < 1$$

$$\frac{1}{2} \sum_{n=0}^{\infty} (-1)^n (z - 1 - j)^n + \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{1}{5} + j\frac{2}{5}\right)^{n+1} (z - 1 - j)^n$$

b)
$$1 < |z - (1+j)| < \sqrt{5}$$

 $\frac{1}{2} \sum_{n=0}^{\infty} (-1)^n (z-1-j)^n + \frac{1}{2} \sum_{n=1}^{\infty} (-1)^{n+1} (1+j2)^{n-1} (z-1-j)^{-n}$

c)
$$|z - (1+j)| > \sqrt{5}$$

 $\frac{1}{2} \sum_{n=1}^{\infty} (-1)^{n+1} (z-1-j)^{-n} + \frac{1}{2} \sum_{n=1}^{\infty} (-1)^{n+1} (1+j2)^{n-1} (z-1-j)^{-n}$

11) a) 1) Puntos regulares infinitos.

Cero de orden 2 en z = -3

No hay singularidades esenciales

No hay polos

2) Puntos regulares infinitos

No hay ceros

Singularidad esencial en z = 1

No hay polos

3) Puntos regulares infinitos, no hay ceros

No hay singularidades esenciales

Polo de cuarto orden en z = 1 + j

4) Puntos regulares infinitos, cero de orden 2 en z = -i

No hay singularidades esenciales

No hay polos

a) 1) No aplica, 2) residuo: -1, 3) residuo: $\frac{1}{2}$, 4) No aplica

12) a) No tiene ceros en el plano finito z

Singularidades en $z = \pm 1$ y $z = \frac{1 \pm j}{\sqrt{2}}$, todos son polos simples

b) Singularidad removible en z = 1

No tiene ceros finitos

Singularidades en z = -1 y $z = \sqrt{\frac{1}{2}}(1 \pm j)$, todos son polos simples

c) Singularidad removible en z = 1

Singularidades en z = -1 y $z = \sqrt{\frac{1}{2}}(1 \pm j)$, todos son polos simples

Ceros en $z = 1 + \pi k$, para cualquier $k \in \mathbb{N}, k \neq 0$.

- d) Singularidades en $z = \pm 1$ y $z = \sqrt{\frac{1}{2}}(1 \pm j)$, todos son polos de tercer orden No tiene ceros.
- 13) a) z = 0, polo doble
 - b) z = j, polo simple; z = -j, polo doble
 - c) $z = \pm 1, z = \pm j$, polos simples
 - d) $z = \pm j\pi$, polos simples
 - e) z = 1, singularidad esencial
 - f) z = 1, cero simple; $z = \pm j$, polos simples
 - g) z = -j, cero simple; z = 3, polo simple; z = -2, polo de segundo orden
 - h) $z = 2 \pm j$, cero simple; z = 0, polo de segundo orden
- 14) a) $\frac{z}{2!} \frac{z^3}{4!} + \frac{z^5}{5!} \cdots$ (singularidad removible)
 - b) $\frac{1}{z^3} + \frac{1}{z} + \frac{z}{2!} + \frac{z^3}{3!} + \frac{z^5}{4!} + \frac{z^7}{5!}$... (polo de tercer orden)
- 15) a)
 - b)
 - c)
 - d)
- 16) a)
 - b)
- 17) a) polos simples z = -1, z = 2; residuos $\frac{1}{3}$, $\frac{5}{3}$
 - b) polo simple z = 1, polo doble z = 0; residuos -1, 1
 - c) polos simples z = 1, z = j3, z = -j3; residuos $\frac{1}{2}$, $\frac{5}{12}(3-j)$, $\frac{5}{12}(3+j)$
 - d) polos simples z = 0, z = j2, z = -j2; residuos $-\frac{1}{4}$, $-\frac{3}{8} + j\frac{3}{4}$, $-\frac{3}{8} j\frac{3}{4}$
 - e) polo de quinto orden z = 1; residuo 19
 - f) polo de segundo orden z = 1; residuo 4
 - g) polo simple; residuo $\frac{1}{2}$
 - h) polo simple; residuo $-\pi$
 - i) polo doble; residuo $-\frac{j}{4}$