

Trabalho 2.1: Bobinas de Helmholtz

Departamento de Física Mecânica e Campo Eletromagnético 10/12/2019

Turma PL3:

José Luís nº 92996

Diogo Amaral nº 93228

Guilherme Pereira nº93134

Sumário

Introdução:

Este trabalho tem como objetivo a verificação do princípio da sobreposição através da configuração de Helmholtz, o cálculo da constante de calibração da sonda de Hall e uma estimativa do número de espiras da bobina de Helmholtz.

Esta experiência encontra-se subdividida em 2 partes fundamentais:

- Na 1º parte (Parte A), através da utilização da lei de Ampére, conseguimos calcular um valor aproximado para a constante de calibração, com um solenóide padrão.
- Na 2º parte (Parte B), utilizando várias medições de posição para a sonda, observamos a voltagem e calculamos o campo magnético com a constante de calibração calculada anteriormente.

Para o cálculo da precisão em relação a constante de calibração, utilizando a seguinte fórmula :

$$(1-\left|\frac{\Delta C_c}{C_c}\right|) \cdot 100 \,$$
(%)

chegamos a uma precisão de 92.10 %, que consideramos uma boa precisão para a experiência.

Abstract:

Um campo magnético é gerado quando existem cargas elétricas em movimento, sendo assim, fazendo variar a corrente (I) em uma bobina e com a ajuda de uma sonda de Hall foi possível retirar a constante de calibração cujo valor obtido neste trabalho foi 44.98 ± 3.55 .

Numa segunda parte sabendo a constante de calibração e com a ajuda de um voltímetro, amperímetro e uma sonda de Hall podemos calcular o campo criado para cada uma das bobinas e para a bobina de Helmholtz ao longo de 18 pontos, o que nos permitiu observar o princípio da sobreposição de campos(observar gráfico na página 10), e através do valor máximo obtido para o campo da bobina de HelmHoltz $(1.6 \times 10^{-3}(T))$ foi possível calcular o número de espiras de uma bobina cujo valor obtido foi ≈ 200 espiras.

Introdução Teórica

Nos dias de hoje os campos magnéticos uniformes tem várias aplicações como por exemplo em ressonâncias magnéticas, calibração de equipamentos de navegação, estudos a equipamentos eletrônicos, entre outros.

Uma forma de se obter um campo magnético uniforme é através de uma bobina de Helmholtz,cujo nome é uma homenagem ao físico Hermann von Helmholtz(1821-1894) sendo ele o primeiro a idealizar esta bobina.

A bobina de Helmholtz é constituída por dois enrolamentos circulares, planos, contendo cada enrolamento N espiras onde atravessa uma corrente I sempre no mesmo sentido, a distância entre os enrolamentos é igual ao raio destes.

Figura 1 - Exemplo ilustrativo da bobina de Helmholtz

Estando assim posicionados é possível obter uma expressão para o campo magnético criado pelos enrolamentos num ponto x, genérico, do seu eixo, a partir da expressão do campo magnético no eixo de um anel de corrente.

Equação 1-

$$B(x) = \frac{\mu_0}{2} \frac{I \cdot R^2}{(R^2 + x^2)^{3/2}}$$

Esta expressão permite nos desde já concluir que o valor máximo do campo magnético gerado pelas bobinas se encontra na posição central entre elas considerando que o valor do campo é a soma dos campos gerados por cada uma das bobinas.

Procedimento Experimental

Parte A

Para a realização desta parte, começamos por montar o circuito como apresentado na figura 2, em que ligamos o polo positivo da fonte de alimentação ao reóstato, a saida deste ao solenóide que por sua vez liga-se em série com o amperímetro que volta para o polo negativo da fonte. Introduzimos também a sonda no centro do solenóide, ligado a um comutador calibrado que por sua vez se liga a um voltímetro.

De seguida começamos a variar o valor da intensidade do circuito alterando o valor da resistência do reostato e posteriormente observando e registando a diferença de potencial lida pelo Voltímetro.

Foi alterado o valor da corrente dez vezes e consequentemente o valor da diferença de potencial sendo estes valores registados para em seguida calcular a constante de calibração.

Incerteza da fita métrica: ± 0.0005 (m)

Incerteza do valor lido no Voltímetro: ± 0.001(V) Incerteza do valor lido no Amperímetro : ± 0.01(A)

Material necessário:

- Fonte de alimentação
- Reostato
- Solenóide Padrão
- Amperímetro
- Voltímetro
- Comutador

Figura 2 - Circuito usado na parte A

Parte B

Inicialmente, tal como descrito no guião começamos por medir o diâmetro das bobinas e colocamo-las afastadas com uma distância igual ao raio a fim de ficarem na configuração de Helmholtz, sendo que a posição destas se vai manter inalterada ao longo da experiência. Em seguida ligamos o circuito a uma fonte de 15V.

Começamos por ligar o pólo positivo da fonte ao reostato, e este a uma bobina individual. A essa mesma bobina, conectamos em série o amperímetro que depois em seguida com a saída do reostato liga ao polo negativo da fonte. Colocamos a sonda de Hall que está ligada ao comutador e ao voltimetro.

Variando a distância da sonda à bobine centimetro a centimetro, registámos o valor da diferença de potencial, no total de 18 pontos (18 cm) sendo a posição inicial da sonda sempre a mesma.

Efetuamos este processo de 3 maneiras diferentes, primeiro com a bobine 1 ligada, segundo com a bobine 2 ligada e por fim com as duas bobinas ligadas como apresentado na figura 3.

Incerteza da fita métrica: ± 0.0005 (m)

Incerteza do valor lido no Voltímetro: ± 0.001(V)

Incerteza do valor lido no Amperímetro : ± 0.01(A)

• Material necessário:

- Fonte de alimentação
- Reostato
- bobinas
- Amperímetro
- Voltímetro
- Comutador

Figura 3 - Circuito usado na parte B com as duas

bobinas ligadas em série

Apresentação dos Resultados

Parte A

Nºexp	Intensidade(A)	Voltagem(V)
1º	0	0
2º	0.06	0.0145
3º	0.10	0.0218
4º	0.16	0.0337
5º	0.2	0.0413
6º	0.3	0.0631
7º	0.4	0.0830
85	0.5	0.1015
9º	0.7	0.1401
10º	0.9	0.1783

Apresentação dos resultados

Parte B

Tabela valores para as Bobinas

	Bobine A	Bobine B	Bobine A+B
distância	Voltagem		
(cm)	(v)		
0	0.0111	0.0038	0.014764
1	0.0166	0.0048	0.019855
2	0.0247	0.0063	0.027491
3	0.0349	0.0084	0.0392
4	0.0468	0.0116	0.053455
5	0.0563	0.0160	0.067709
6	0.0564	0.0230	0.074327
7	0.0468	0.0320	0.074327
8	0.0350	0.0444	0.074327
9	0.0245	0.0567	0.074327
10	0.0162	0.0623	0.073309
11	0.0106	0.0558	0.0616
12	0.0066	0.0422	0.045818
13	0.0044	0.0302	0.032582
14	0.0024	0.0209	0.022909
15	0.0011	0.0151	0.0168
16	0.0003	0.0110	0.012218
17	0	0.0082	0.009673
18	0	0.0070	0.008145

Análise de Resultados

Parte A

Neste gráfico podemos observar a variação da diferença de potencial da sonda com a intensidade do circuito do solenóide padrão, em que a regressão linear apresenta a seguinte forma: $V=0.19599\cdot I + 0.002957$ (1).

$$\rightarrow V = 0.19599 \cdot I + 0.002957$$
 (1)

Considerando as seguintes equações:
$$B = \frac{\mu 0 \cdot N \cdot I}{L}$$
, $B = \frac{1}{C_c} \cdot V$
 $\Leftrightarrow \frac{\mu 0 \cdot N \cdot I}{L} = \frac{1}{C_c} \cdot V$
 $\Leftrightarrow V = \frac{\mu 0 \cdot N \cdot C_c}{L} \cdot I \rightarrow \text{Reta apresentada (1)}$
 $\Leftrightarrow 0.196 = \frac{\mu 0 \cdot N \cdot C_c}{L} \rightarrow \text{(m=0.196)}$
 $\Leftrightarrow C_c = \frac{0.196}{4\pi \cdot 10^{-7} \cdot 3467}$
 $\Leftrightarrow C_c = 44.988$

Cálculo do erro associado a constante Cc : (Considerando $n = \frac{N}{L}$)

$$C_{c} = \frac{V}{\mu 0 \cdot n \cdot I}$$

$$\Delta C_{c} = \left| \frac{\delta C_{c}}{\delta V} \right| \cdot \Delta V + \left| \frac{\delta C_{c}}{\delta n} \right| \cdot \Delta n + \left| \frac{\delta C_{c}}{\delta I} \right| \cdot \Delta I$$

$$\Delta C_{c} = \left| \frac{1}{I \cdot \mu 0 \cdot n} \right| \cdot 0.001 + \left| \frac{I \cdot V}{\mu 0 \cdot n^{2}} \right| \cdot 60 + \left| \frac{V}{n \cdot \mu 0 \cdot I^{2}} \right| \cdot 0.01$$

$$\Delta C_{c} = 3.55$$

V=0.19599I + 0.002957 (1)Fontes de erro:

- -> Alinhamento da sonda de Hall
- -> Possibilidade de existência de tensão residual lida pelo voltímetro
- -> Utilização de sensores diferentes para as duas partes do projeto

Análise de Resultados

Parte B

	Bobine A	Bobine B	Bobine A+B
distância	Campo Magnético		
(cm)	(T)		
0	0.000244	0.00008	0.000325
1	0.000365	0.00011	0.000437
2	0.000543	0.00014	0.000605
3	0.000768	0.00018	0.000862
4	0.00103	0.00026	0.001176
5	0.001239	0.00035	0.00149
6	0.001241	0.00051	0.001635
7	0.00103	0.0007	0.001635
8	0.00077	0.00098	0.001635
9	0.000539	0.00125	0.001635
10	0.000356	0.00137	0.001613
11	0.000233	0.00123	0.001355
12	0.000145	0.00093	0.001008
13	9.68E-05	0.00066	0.000717
14	5.28E-05	0.00046	0.000504
15	2.42E-05	0.00033	0.00037
16	6.6E-06	0.00024	0.000269
17	0	0.00018	0.000213
18	0	0.00015	0.000179

Análise de Resultados

Continuação Parte B

Na tabela apresentada acima indicamos o campo magnético (B) calculado para cada valor da diferença de potencial (V) registada, utilizado para isto a constante que calculamos anteriormente na parte A desta experiência e a fórmula $B = \frac{1}{cc} *V. (cc=44.98 \pm 3.55)$.

Este gráfico ilustra melhor o campo calculado para cada distância da sonda, e através da sua observação conseguimos demonstrar o princípio da sobreposição de campos magnéticos, visto que a soma do campo criado pela Bobina 1 com a Bobina 2 é aproximadamente, no gráfico, a linha amarela(Bobine 1+2) que corresponde ao campo criado pelas duas bobinas ligadas.

Para estimar o número de espiras de uma bobina, calculamos o campo magnético para as duas bobinas ligadas com a equação 1 (Introd. Teórica) e para apenas uma bobina individual ligada através da equação $B = \frac{1}{cc} *V$, sendo o V o maior valor medido que é o campo no centro da bobina.

Campo criado por uma bobina no seu centro (x=0):

$$B(x) = \frac{\mu 0}{2} \cdot \frac{IR^2}{(R^2 + x^2)^{\frac{3}{2}}} \iff B(x) = \frac{4\pi \times 10^{-7}}{2} \cdot \frac{0.50 \times (4 \times 10^{-2})^2}{((4 \times 10^{-2})^2 + 0)^{\frac{3}{2}}} \iff B(x) = 8 \cdot 10^{-6} \text{ (T)}$$

Campos criado pelas duas bobina no seu centro:

$$B_{sol} = \frac{1}{cc} \cdot V_n \Leftrightarrow B_{sol} = 0.022 \times 0.074327 = 1.6 \times 10^{-3}$$
 (T)
 $\frac{N}{L} = \frac{1.6 \times 10^{-3}}{8 \cdot 10^{-6}} \approx 200 \ espiras$

Fontes de erro:

- -> Medição do raio de uma bobina
- -> Possibilidade de a posição das bobinas variar um pouco ao longo da experiência
- -> Alinhamento da sonda de Hall
- -> As bobinas podem não estar perfeitamente paralelas
- ->Possibilidade de existência de tensão residual lida pelo voltímetro

Conclusões

No início deste trabalho experimental, estávamos com a expectativa de conseguir obter todos os valores conforme o suposto para assim conseguirmos alcançar os objetivos desta atividade de forma a não existir percalços. Tanto na prova do princípio da sobreposição, como no cálculo da constante de calibração e na estimativa do número de espiras de uma bobina, chegamos a resultados próximos do expectável. Algumas formas de reduzir a diferença entre os valores obtidos e os expectáveis pode ser, por exemplo, no caso do alinhamento da sonda de Hall fixar a sonda para que seja sempre igual para os vários casos, igualmente para o caso das variações das posições das bobinas. No caso da medição do raio da bobina talvez utilizar um paquímetro digital em vez de medir a "olho" com uma régua.

Apesar de tudo, no final da experiência consideramos que conseguimos atingir os objetivos com correção e aproveitamento.

Contribuições dos autores

Com o objetivo de concluir esta atividade experimental com o melhor sucesso, todos os membros do grupo se esforçaram para que tudo estivesse dentro dos prazos previstos e com a melhor qualidade possível. Todos tentámos fazer tudo em conjunto para que assim nenhum de nós se prejudicasse em relação ao outro em termos de tempo empregado nesta atividade.

Aluno coordenador: José Costa № 92996

Bibliografia

- Guião prático
- Material disponibilizado para a UC de Mecânica e Campo Eletromagnéticos