COMP41680

Numerical Computing

Slides by Derek Greene

UCD School of Computer Science Spring 2019

Overview

- NumPy Array Basics
 - 1-dimensional Arrays
 - Multidimensional Arrays
- Array Creation and Reshaping
- Array Operations
- Basic Statistics on Arrays
- Storing NumPy Data
- Using Matplotlib with NumPy
- Pandas v NumPy

Introduction to NumPy

- Standard Python containers are convenient but not designed for large scale data analysis.
- NumPy is the standard Python package for scientific computing:
 - Provides support for multidimensional arrays (i.e. matrices).
 - Implemented closer to hardware for efficiency.
 - Designed for scientific computation, useful for linear algebra and data analysis.
- NumPy can "turn Python into the equivalent of a free and more powerful version of Matlab".

http://www.numpy.org

NumPy included in the Anaconda distribution.
 General convention to import numpy is using:

import numpy as np

NumPy Arrays

- The fundamental NumPy data structure is an array: a memoryefficient container that provides fast numerical operations.
- Unlike standard Python lists, a NumPy array can only contain a single type of value (e.g. only floats; only integers etc).
- The simplest type of array is 1-dimensional i.e. a vector.
- We can manually create an array from an existing Python list:

```
a = np.array([1,2,3,4])
a
array([1, 2, 3, 4])
```

```
a.dtype
dtype('int64')
```

```
a.shape
(4,)
```

```
A 1-dimensional array of 4 ints
```

```
b = np.array([0.1,1.45,0.04])
b
array([ 0.1 ,  1.45,  0.04])
```

```
b.dtype
dtype('float64')
```

```
b.shape (3,)
```

A 1-dimensional array of 3 floats

Basic Numerical Operations

- We can apply standard numerical operations to arrays using scalars (numbers). The operations are applied element-wise - i.e. applied separately to every element (entry) in the array.
- The operations are much faster than if run in pure Python on a standard list structure.

```
c = np.array([2,4,6,8])
c
array([2, 4, 6, 8])
```

```
c + 1
array([3, 5, 7, 9])
```

```
c - 2
array([0, 2, 4, 6])
```

```
c * 10
array([20, 40, 60, 80])
```

```
c / 10
array([ 0.2, 0.4, 0.6, 0.8])
```

These numerical operations create a new array of the same size as the original.

Accessing Values in 1D Arrays

 We can access entries in a 1dimensional array using the same position-based notation as standard Python lists.

Access individual entries in the array

d[1] 6.7

d[4] 0.0

d[-1] 0.0

Apply slicing to an array using the using the [i:j] notation

d[:2]
array([3.5, 6.7])

d[0:2]
array([3.5, 6.7])

d[2:]
array([1.1, 0.6, 0.])

Accessing Values in 1D Arrays

Important: Slicing creates a "view" on the original array, not a copy.

[2:4] Start at position 2, end before 4

[1:] From position 1 onwards

print(a[:3])
[4 7 3]

[:3] Stop before position 3

Multidimensional Arrays

- An array can have > 1 dimension. A 2-dimensional array can be viewed as a matrix, with rows and columns. It has these properties:
 - Rank of array: Number of dimensions it has.
 - Shape of array: A tuple of integers giving the length of the array in each dimension.
 - Size of array: Total number of entries it contains.

0.4	2.3	4.5
1.5	0.1	1.3
3.2	0.4	3.2
2.7	2.3	6.3
0.1	0.1	0.9

Example:

```
Rank = 2
i.e. 2 dimensions: rows, columns

Shape = 5x3
i.e. 5 rows x 3 columns

Size = 15
i.e. 5 x 3 = 15 total elements
```

Multidimensional Arrays

- As well as creating 1-dimensional and 2-dimensional arrays, we can also create arrays with > 2 dimensions.
- Axes are defined for arrays with more than one dimension e.g. a
 2-dimensional array has two corresponding axes.

Multidimensional Arrays

- We can create 2D arrays from a list of Python lists.
- Note: Make sure to include the outer [] brackets!

```
d = np.array([[0,4,3], [9,8,6]])
print(d)

[[0 4 3]
  [9 8 6]]
```

Pass in a list containing 2 nested lists

Create a 2D array, with 2 rows and 3 columns. Total of 2x3 = 6 values

Pass in a list containing 3 nested lists

m.ndim m.shape m.size (3, 4) 12

Create a 2D array, with 3 rows and 4 columns. Total of 3x4 = 12 values

We can can check the rank, shape, and size of the new array.

Array Creation Functions

- Rather than using Python lists, a variety of functions are available for conveniently creating and populating arrays.
- Use the zeros() function to create an array full of zeros with required shape

```
np.zeros(4)
array([ 0., 0., 0., 0.])
```

Default type is float. For multi-dimensional arrays, specify shape as a tuple. Use the ones() function to create an array full of ones with required shape

```
np.ones((2,4))
array([[ 1., 1., 1., 1.],
       [ 1., 1., 1., 1.]])
```

Use the dtype parameter to tell NumPy we want an array of ints, not floats.

Array Creation Functions

- We can create an array corresponding to a sequence using the arange() function.
- We can also specify a step size for the values. The default step is 1.
- The range and step sizes do not have to be integers. We can also specify floats:

```
Start at 2, end before 7
```

```
np.arange(2,7)
array([2, 3, 4, 5, 6])
```

```
np.arange(2,7,2)
array([2, 4, 6])
```

```
x = np.arange(0.5, 9.4, 1.3)
print(x)

[0.5 1.8 3.1 4.4 5.7 7. 8.3]
```

Start at 0.5, increment in steps of 1.3, end before 9.4

 The linspace() function creates an array with a specified number of evenly-spaced samples in a given range:

```
y = np.linspace(1, 10, 4)
print(y)
[ 1. 4. 7. 10.]
```

Divides up the range [1,10] into 4 evenly-spaced values, including the endpoints.

Array Shape Manipulation

- The previous functions all created 1D arrays. What if we want to create multidimensional arrays?
- We can change array shape. The original values are copied to a new array with the specified shape.

```
x = np.arange(2,8)
print(x)
[2 3 4 5 6 7]
```

Original 1D array with 6 values

```
m1 = x.reshape(3,2)
print(m1)

[[2 3]
  [4 5]
  [6 7]]
```

New 2D array with 3 rows and 2 columns, same values.

```
m2 = x.reshape(2,3)
print(m2)

[[2 3 4]
  [5 6 7]]
```

New 2D array with 2 rows and 3 columns, same values.

The <u>size</u> of the reshaped array has to be same as the original.
 e.g. we cannot reshape a 1D array with 6 values into 2D arrays of size 2x2, 4x2, etc.

Accessing Multidimensional Arrays

- To access a value in a 1D array, specify the <u>position</u> [i] counting from 0, just like a Python list.
- We can also use this notation to change the values in an existing array.
- When working with arrays with more than one dimension, use the notation [i,j], where the position in each dimension is separated by commas.
- Axis 0 refers to the rows, Axis 1 refers to the columns.

```
a = np.array([8,6,12])
a[1]
6
```

```
a[2] = 25
print(a)
[ 8 6 25]
```

A 1	
$\Lambda \mathbf{v}$	
Axi	5

) 1 2

0	0,0	0,1	0,2
1	1,0	1,1	1,2
2	2,0	2,1	2,2

Accessing Multidimensional Arrays

 When working with arrays with more than 1 dimension, use the notation [i,j], where the <u>position</u> in each dimension is separated by commas.

Same notation applies to higher dimensional arrays (e.g. 3D, etc).

COMP47670 (COMP41680)

Slicing Multidimensional Arrays

 For multidimensional arrays, we specify the slices for each dimension, separated by commas - e.g. for 2D [i:j,p:q]

```
d = np.array([[4,2,1],[6,9,4],[5,7,8]])
```

0	4	2	1
1	6	9	4
2	5	7	8
	0	1	2

Rows: Start at 0, end before 2 Columns: Start at 1, end before 3

```
0
4
2
1
6
9
4
2
5
7
8
0
1
2
```

```
d[1:3,0:2]

array([[6, 9],
[5, 7]])
```

Rows: Start at 1, end before 3 Columns: Start at 0, end before 2

```
d[1,:]
array([6, 9, 4])
```

Full row at position 1

Full column at position 2

Iterating Over Arrays

- Generally, we want to avoid iterating over the individual elements of arrays as it is extremely slow.
- NumPy arrays are designed to be used for vectorised operations
 i.e. applying one operation to every value in an array at once.
- Sometimes it might be unavoidable.
 We can use a for loop...

```
v = np.array([1,2,3,4])
for x in v:
    print( x * 10 )
10
20
30
40
```

```
M = np.array([[1,2], [3,4]])
for row in M:
    print("row", row)
    for x in row:
        print(x)

row [1 2]
1
2
row [3 4]
3
4
```

 But, better to apply an operation to all values in an array whenever possible, unless running time does not matter.

Numerical Operations

 We can run batch operations on multidimensional arrays without for loops. These operations create a new copy of the original array.

• We can also apply functions to all elements in an array.

```
d * d

array([[ 1, 16, 4],
        [81, 64, 4]])
```

Note that * between arrays multiplies corresponding elements together, does not perform matrix multiplication.

Function np.log() is applied to every element in the array.

Comparison Operations

 We can use standard boolean expressions in batch to all elements in an array. The result is a new boolean array of the same shape.

Is each element > 2?

Which elements are equal to 1?

Which elements are not equal to 1?

We can also use this approach to change certain values in arrays.

```
d[d < 5] = 0
d
```

```
array([[5, 0],
[0, 0]])
```

Modify the original array to change all elements < 5 to 0

Basic Statistics

NumPy arrays also have basic descriptive statistics functions.

```
a = np.array([0.1,0,1.4,0.04])
a.sum()

1.54
```

```
a.min()
0.0
```

```
a.max()
1.4
```

```
a.mean()
0.3850000000000001
```

```
a.std()
0.58709028266528129
```

Can compute the mean (average), standard deviation (std), and min/max

 For multidimensional arrays, the above can also take an optional axis parameter. If this is specified, calculations are only performed along that axis (dimension) and the result is a new array.

```
d = np.array([[5,4,0],[0,1,2]])
d.mean()
2.0
```

Mean based on all elements in the array

```
d.mean(axis=0)
array([ 2.5, 2.5, 1. ])
```

Average over rows, to get mean for each of the 3 columns

Average over columns, to get Mean for each of the 2 rows

Storing NumPy Data

 The np.savetxt() function can be used to save CSV formatted version of NumPy arrays.

```
x = np.arange(1,4,0.5)
m1 = x.reshape(3,2)
print(m1)

[[ 1.     1.5]
     [ 2.     2.5]
     [ 3.     3.5]]
```

```
np.savetxt("out.txt",m1)
```

File: out.txt

Output file shows full precision for float values

We can also specify extra parameters specifying a format string to control the output and a separator for values.

```
np.savetxt("res.csv",m1,"%.1f",",")
```

```
File: out2.txt

1.0,1.5

2.0,2.5

3.0,3.5
```

Output file shows values are comma-separated, and only written to 1 decimal place.

Storing NumPy Data

- The np.loadtxt() function can be used to read CSV data from a file and create a multidimensional NumPy array from the data.
- Each line is a row, and should contain the same number of values.
 By default values are separated by spaces.

 We can also load files with other separators, by specifying the delimiter parameter.

```
File: scores.csv

0.74,0.63,0.58,0.89
0.91,0.89,0.78,0.99
0.43,0.35,0.34,0.45
0.56,0.61,0.66,0.58
0.50,0.49,0.76,0.72
0.88,0.75,0.61,0.78
```

Using Matplotlib with NumPy

- Matplotlib can be used in conjunction with NumPy arrays to visualise numeric data, in the same way we saw with Python lists.
- For example, a scatter plot of one 1D array against another:

Create the X and Y values

```
xvalues = np.array([1, 5, 8, 3, 7])
yvalues = np.array([0.4, 0.25, 0.65, 0.7, 0.2])
```

Create a scatter plot of X versus Y values

```
import matplotlib
import matplotlib.pyplot as plt
%matplotlib inline
```

```
plt.figure(figsize=(8,5))
plt.scatter(xvalues,yvalues)
plt.axis([0,10,0,1])
plt.xlabel("My X Numbers")
plt.ylabel("My Y Numbers")
```


COMP47670 (COMP41680)

Using Matplotlib with NumPy

 For 2D NumPy arrays, a common type of visualisation is a colour plot, which can be produced using plt.pcolor().

Create a 5x4 2D array of random numbers

```
v = np.random.randn(20)
a = v.reshape(5,4)
```

Create the figure

```
plt.figure(figsize=(8,6))
plt.pcolor(a)
plt.colorbar()
```

Each entry in the coloured matrix corresponds to an entry in the original 2D arra.y

Pandas and NumPy

- NumPy is primarily useful for working with arrays. Highly optimised for efficient operations on numeric arrays.
- Pandas provides higher level data manipulation tools built on top of NumPy arrays, along with more semantics (e.g. indexes).
- Some operations are not as efficient, but Pandas provides additional functionality - e.g dictionary-style access via row or column index to tabular data.
- Since Pandas is built on top of NumPy, we can easily convert values between a NumPy array and a Pandas Series or Data Frame.

Create a 1D array, then construct a Series from it.

```
import numpy as np
import pandas as pd
a = np.array([0.1,0,1.4,0.04])
s = pd.Series(a)
print(s)
```

```
0 0.10
1 0.00
2 1.40
3 0.04
dtype: float64
```

Pandas and NumPy

 Since NumPy arrays do not have row or column indices, we may need to specify these if we convert an array to a Data Frame.

Create a 4x3 2D array of random numbers

```
v = np.random.randn(12)
m = v.reshape(4,3)
```

Create a corresponding number of row and column index labels

```
col_index = ["A","B","C"]
row_index = ["r1","r2","r3","r4"]
```

Now use this to create a Data Frame

```
df = pd.DataFrame(m,
columns=col_index,
index=row_index )
```

```
ABCr10.780167-1.5305710.677197r20.7817101.299400-0.470133r3-1.286723-0.554812-0.954621r41.3354041.812202-2.057155
```