MNIST Classification with PyTorch

计86 2018011438 周恩贤

本次作业我们利用 pytorch 实现MLP以及ConvNet 来处理手写数字识别的任务。相关代码写于MNIST.py 中

过程中, 我参考了网上示例程序: https://github.com/pytorch/examples/blob/master/mnist/main.py

问题与解决

- Convolve 后的 shape 改变了?
 原因在于, pytorch 默认使用 valid 卷积模式,没有padding。 如果要和第二次作业一样使用 same 卷积的话,只需要在 Conv2d 的第五个参数传入正确的 padding 大小即可
- 绘图的困扰?

原本想说在终端中调用 matplotlib,发现到环境不支持绘图。我的解决方法是将测试结果的 loss 和 acc 复制下来,黏贴到 jupyter notebook 中绘制。 绘图代码即是作业一的 plot.py, 绘图结果在 plot.ipynb

运行指令

安装好 pytorch 并在命令行中输入 python MNIST.py [--argv] 即可。 可传入的命令行参数如下:

- --batch-size %d , 表示每次训练所使用的 batch_size , 预设为100
- --test-batch-size %d , 表示每次测试所使用的 batch size , 预设为100
- --epoch %d , 表示训练的轮数 , 预设为 10
- --1r %f , 表示 learning rate η , 预设为 0.01
- --momentum %f 表示使用动量法的系数 γ , 预设为 0.5
- --weight_decay %f 表示 weight_decay λ, 预设为0
- --no-cuda bool 表示是否不使用GPU, 预设为 False
- --seed %d 表示随机数的种子, 预设为1
- --log-interval %d 表示训练多少个 batches 后输出训练信息, 预设为60

例如 , 在命令行中输入 [python MNIST.py --epoch 1 --lr 0.15] , 代表用 $\eta=0.15$ 的超参数 (其他用预设值) 进行训练 , 且每个模型只会被训练一轮。

模型架构

实现了四个模型: **单隐藏层MLP、双隐藏层MLP、same卷积网络 (Conv1)、valid卷积网络 (Conv2)** 损失函数采用 CrossEntropyLoss() (等价于参考教程中,用 log_softmax 激活函数 + NLL 损失函数)

MLP1:单隐藏层

Layer Type	Input dim.	Output dim.
FCLayer	784	128
SReLULayer	128	128
FCLayer	128	10

MLP2: 双隐藏层MLP

Layer Type	Input dim.	Output dim.
FCLayer	784	256
ReLULayer	256	256
FCLayer	256	128
ReLULayer	128	128
FCLayer	128	10

Conv1 : Same卷积, stride = 1x1

(卷积以及池化层的维数表示 channel, width, height)

Layer Type	Input dim.	Output dim.	Kernel	Pad
Conv	1 imes28 imes28	8 imes 28 imes 28	3 imes 3	1×1
ReLU	8 imes 28 imes 28	8 imes 28 imes 28		
MaxPool	8 imes 28 imes 28	8 imes 14 imes 14	2 imes 2	0
Conv	8 imes 14 imes 14	16 imes 14 imes 14	3 imes 3	1×1
ReLU	16 imes 14 imes 14	16 imes 14 imes 14		
MaxPool	16 imes 14 imes 14	16 imes7 imes7	2 imes 2	0
ReShape	16 imes 7 imes 7	784		
FCLayer	784	128		
ReLu	128	128		
FCLayer	128	10		

Conv2 : Valid卷积 , stride = 1x1

Layer Type	Input dim.	Output dim.	Kernel	Pad
Conv	1 imes28 imes28	20 imes 24 imes 24	5 imes 5	0
ReLU	20 imes 24 imes 24	20 imes 24 imes 24		
MaxPool	20 imes 24 imes 24	20 imes 12 imes 12	2 imes 2	0
Conv	20 imes 12 imes 12	50 imes 8 imes 8	5 imes 5	0
ReLU	50 imes 8 imes 8	50 imes 8 imes 8		
MaxPool	50 imes 8 imes 8	50 imes 4 imes 4	2 imes 2	0
ReShape	50 imes 4 imes 4	784		
FCLayer	784	128		
ReLu	128	128		
FCLayer	128	10		

不同模型的结果

超参数为预设值 : $\eta=0.01,\;\lambda=0,\;\gamma=0.5,\;epoch=10,\;batch_size=100$

训练结果已经记载在 /log/default.txt 中,测试 accuracy 结果如下:

Epoch	MLP1	MLP2	Conv1	Conv2
#1	0.9163	0.9092	0.9494	0.9605
#2	0.9294	0.9287	0.9656	0.9789
#3	0.9391	0.9402	0.9718	0.9837
#4	0.9466	0.9489	0.9805	0.9838
#5	0.9513	0.9552	0.9778	0.9867
#6	0.9554	0.9601	0.9798	0.9877
#7	0.9595	0.9632	0.9847	0.9883
#8	0.9621	0.9665	0.9845	0.9888
#9	0.9654	0.9698	0.9856	0.9897
#10	0.9653	0.9709	0.9858	0.9891

图形绘制如下:

小结: CNN表现比MLP好, 双隐藏层稍优于单隐藏层模型; valid卷积(且输出channel数提高时)比same卷积更好

改变 learning rate

固定其他超参数: $\lambda=0, \ \gamma=0.5, \ epoch=10, \ batch_size=100$

训练结果已经记载在 /log/lr=xxx.txt 中,最后一个 epoch 测试 accuracy 结果如下:

lr	MLP1	MLP2	Conv1	Conv2
0.01	0.9653	0.9709	0.9858	0.9891
0.10	0.9805	0.9829	0.9896	0.9925
0.15	0.9810	0.9819	0.9864	0.9915
0.30	0.9769	0.9804	0.9837	0.9839

小结 : $\eta=0.10\sim0.15$ 时表现最优, 与第一次作业的结论相符。

改变 weight decay

固定其他超参数: $\eta = 0.1$, epoch = 10, $batch_size = 100$

部份训练结果已经记载在 /log/wd=xxx.txt 中,最后一个 epoch 测试 accuracy 结果如下:

wd	MLP1	MLP2	Conv1	Conv2
0.01	0.9642	0.9647	0.9785	0.9815
0.001	0.9798	0.9826	0.9895	0.9897
0.0001	0.9797	0.9832	0.9904	0.9912

小结: $\lambda = 0.0001$ 时表现最优, 与第一次作业的结论相符。

心得与总结

- 超参数的结论和第一次作业的结论大致相同
- 收回第二次作业对CNN的质疑!主要第二次因为时间问题,没有训练完整,有一种 CNN 比MLP差的错觉。直到这次作业才发现其实在GPU上面跑两者速度几乎没差别,且 CNN 整体表现比 MLP 好
- 这次作业让我深深体会到服务器的强大,**GPU加速**太牛逼了…(同样是ConvNet,第二次作业训了一个晚上只训练了7个完整的epoch,而这次几乎是一分钟一个epoch…)。因此报告也相对完整地多
- 希望之后有机会能尝试上课提到的优化方法: 如 dropout、batch_normalization