Universidade de Brasília

Engenharia de Reatores Químicos - IQD0048

Avaliação HW_2 – Turma 01 - 2022/2 - 03/02/2023 – Prof. Alexandre Umpierre

Instruções Gerais:

Esta avaliação pode ser realizada **individualmente ou em duplas**. Não serão consideradas avaliações realizadas por grupos maiores.

A avaliação deve ser entregue **impreterivelmente até às 23h59 de 05/02/2023**. Respostas enviadas posteriormente serão desconsideradas.

A avaliação deve ser elaborada **rigorosamente de acordo com os** *templates* e com as instruções disponibilizados na página da disciplina. Desvios do *tempate* e das regas implicarão em descontos na nota final, de acordo com cada caso.

O documento com as respostas deve ser entregue por um membro do grupo, de seu email institucional para aumpierre@unb.br, exclusivamente. Avaliações enviadas por outras vias serão desconsideradas.

O documento de resposta deve ser entregue anexo em formato .pdf,

intitulado "ERQ_T01_20222_HW2_20230203_nomecompletodeummembro.pdf". Não serão aceitos links de repositórios em nuvem.

O documento de resposta está limitado a 12 páginas (incluindo o cabeçalho do tempalate).

A correção levará em consideração a adequação e consistência das respostas com relação ao conteúdo abordado.

- 1) A reação $A + B \rightarrow P$ deve ser conduzida em um sistema de dois CSTR's consecutivos. O volume do primeiro reator da sequência é 1,5 L e o do segundo, 3 L. A taxa volumétrica de geração de P é dada por $kc_Ac_B^2$, em que k é a constante cinética e c_A e c_B são as concentrações de A e de B, respectivamente. A alimentação é uma corrente de 5 L/h com 1,8 mol/L de A e 1,3 mol/L de B. A concentração de A na saída do segundo reator deve ser 0,31 mol/L. Determinar o valor da constante cinética k. (2,0 pontos)
- 2) A reação $A + B \rightarrow P$ é conduzida em um CSTR de 1 L. A corrente de alimentação tem 8,5 L/h com 7 mol/L de A e 5,5 mol/L de B e 0,65 mol/L de C (espécie inerte) e é introduzida no reator a 42 °C. A entalpia de reação pode ser assumida como -285 kJ/mol de A e as capacidades térmicas de A, B, C e P são, respectivamente, 19 cal/mol/K, 21 cal/mol/K, 26 cal/mol/K e 25 cal/mol/K. Calor é removido do reator por uma camisa de resfriamento de 400 cm² a 3 °C com coeficiente de troca térmica global estimado em 370 W/m²/K. A reação é de primeira ordem para A e de segunda ordem para B e obedece ao modelo de Arrhenius, com energia de ativação igual a 38 kJ/mol e fator préexponencial igual a 325 (mol $^{-1}$ L) 2 s $^{-1}$. Determinar em qual temperatura a reação deve ser conduzida para produzir a maior conversão de A. (2,0 pontos)
- 3) Um CSTR de 1,5 L é usado para realizar a reação $A \rightarrow P$. A taxa de geração de P é dada por kc_A , em que k é a constante cinética e c_A é a concentração de A. A alimentação é uma corrente de 5 L/h com 1,8 mol/L de A. A concentração de A na saída do reator é 0,35 mol/L. Determine quanto tempo o sistema precisa para cobrir 99 % da diferença de concentração entre os estados estacionários anterior e posterior se a concentração e A na alimentação passar 1,5 mol/L. (2,0 pontos)

- 4) Um CSTR de 2 L, inicialmente cheio e sem reagentes, foi alimentado com 0,15 L/min com 1145 mg/L de um traçador. A Tabela 1 apresenta a concentração do traçador à saída do reator. Determine a conversão esperada para a reação $2A \rightarrow B$ para uma alimentação de 0,15 L/min com 0,87 mol/L de A. A taxa de geração de B é dada por $r_B = 0,63 \, (\text{mol/L})^{-0.4} \text{min}^{-1} c_A^{1.4}$. (2,0 pontos)
- 5) A Tabela 2 apresenta a concentração registrada à saída de um PFR alimentado com um pulso de um traçador. Avalie o ajuste do modelo de CSTR's em cascata aos dados experimentais e determinar a conversão estimada de A na reação $A \rightarrow B$ no mesmo reator. A constante cinética da reação é dada por $k = 0.25 \text{ (mol/L)}^{-0.7} \text{min}^{-1}$. Assuma que a alimentação seja isenta de B com 1 mol/L de A. (2,0 pontos)

Tabela 1. Concentração do traçador registrada à saída do reator a partir do início da alimentação.

t (min)	c (mg/L)
0	115,8
2	254,3
4	388,8
6	496,4
8	568,7
10	676,2
12	743,5
14	771,4
16	837,0
18	881,0
20	899,1

Tabela 2. Concentração *c* do traçador à saída do PFR injetado como pulso.

t (min)	c (mg/L)
0	0
1	1
2	5
3	8
4	10
5	8
6	6
7	4
8	3
9	2,2
10	1,5
12	0,6
14	0