

## Machine learning applied to population genomics

Manolo Fernandez Perez

Departent of Life Sciences, Imperial College London

@ManoloLearning



sites.google.com/site/manolofperez





### Goals

- Conceive and simulate genetic data under competing demographic scenarios



- Understand deep learning background and how a CNN works



- Use CNN to detect regions with selective sweeps on real genomes
- How to use deep learning to compare demographic scenarios

# **Program**



## **CNN Script**



# Inputs: Scenario 1 Samples Scenario 2 Scenario 3 3-D Numpy array

### **CNN Script**

#### Parameters

|      | Theta | T1 | Т2 | Т3 | Ne |
|------|-------|----|----|----|----|
| Sim1 |       |    |    |    |    |
| Sim2 |       |    |    |    |    |
| Sim3 |       |    |    |    |    |
| Sim4 |       |    |    |    |    |

#### **Practical Exercise 1:**

Go through Section 1 of the Part1 script (Demographic models) and try to recognize all the elements of the network. Do you remember the function of each of those elements? Remember that you can add annotations to the code using # and add information that might help you when you get back to the script in the future.

- Now run all the cells until you reach the end of section 2. Your network will be training, so now we will have some time to discuss

1D

Convolution

Flatten

Ava

Pooling

2 Fully

Connected

Softmax

and do a quick review on the CNN elements.

```
# Define parameters for the CNN run.
batch_size = 200
### how much interations to train the network
epochs = 100
###n of models
num_classes = 3
```



### **CNN Script**



https://jerryan.medium.com/batch-size-a15958708a6

Kirschner et al. (2022) Nat Comm

### **CNN Script**

```
Define the CNN architecture.
ef create_cnn(xtest):
    inputShape = (xtest.shape[1], xtest.shape[2])
## image size. images need to have EXACTLY the same size
    inputs = Input(shape=inputShape)
    x = inputs
## 1D convolution - less computational intensive and also treats snps as independent;
    x = Conv1D(250, kernel_size=2, activation='relu',input_shape=(xtest.shape[1], xtest.shape[2]))(x)
### Enables the network to learn more complex features / shapes.
    x = AveragePooling1D(pool_size=2)(x)
    x = BatchNormalization()(x)
```





https://www.kaggle.com/code/dansbecker/rectified-linear-units-relu-in-deep-learning/notebook

Kirschner et al. (2022) Nat Comm

```
# Define the CNN architecture.
def create_cnn(xtest):
   inputShape = (xtest.shape[1], xtest.shape[2])
   ## image size. images need to have EXACTLY the same size
   inputs = Input(shape=inputShape)
   x = inputs
   ## 1D convolution - less computational intensive and also treats snps as independent;
   x = Conv1D(250, kernel_size=2, activation='relu',input_shape=(xtest.shape[1], xtest.shape[2]))(x)
   ### Enables the network to learn more complex features / shapes.
   x = AveragePooling1D(pool_size=2)(x)
   x = BatchNormalization()(x)
```



https://towardsdatascience.com/batch-normalization-in-3-levels-of-understanding-14c2da90a338

#### Rectified feature map



### **CNN** Script



https://leonardoaraujosantos.gitbook.io/artificialinteligence/machine\_learning/deep\_learning/pooling\_layer

Gholamalinezhad & Khosravi (2020) arXiv

Kirschner et al. (2022) Nat Comm

```
### Linearising the image as in the initial step. From this point on the network behaves as a Multi-Line
x = Flatten()(x)
x = Dense(125, activation='relu', kernel_regularizer=12(1e-3), bias_regularizer=12(1e-3))(x)
x = Dropout(0.5)(x)
x = Dense(125, activation='relu', kernel_regularizer=12(1e-3), bias_regularizer=12(1e-3))(x)
x = Dropout(0.5)(x)
x = Dense(num_classes, activation="softmax")(x)
```



#### Regularization



#### Options:



(a) Standard Neural Net

(b) After applying dropout.

### **CNN** Script

#### Optimizer Comparison





https://towardsdatascience.com/complete-guide-to-adam-optimization-1e5f29532c3d

https://towardsdatascience.com/a-practical-introduction-to-early-stopping-in-machine-learning-550ac88bc8fd

#### Practical Exercise 2:

Now open the Part 2 script. It uses Matteo's software (ImaGene) that is a CNN approach to infer selection at the LCT locus.

It uses a "simulation-on-the-fly"-like approach: training data is continuously generated by simulations to avoid the network to see the same data twice and therefore to reduce overfitting. This is a valuable consideration since, when reliable simulators are available, we have access to theoretically infinite training data, the latter being constrained by computing time only.

There are also functions to automate some of the steps we did in the previous example. You can compare the strategies and the architectures adopted.



https://en.wikipedia.org/wiki/Lactase\_persistence



#### **Deep Learning in Population Genetics**

Kevin Korfmann<sup>1</sup>, Oscar E. Gaggiotti<sup>2</sup>, and Matteo Fumagalli (1) <sup>3,\*</sup>

<sup>1</sup>Professorship for Population Genetics, Department of Life Science Systems, Technical University of Munich, Germany

<sup>2</sup>Centre for Biological Diversity, Sir Harold Mitchell Building, University of St Andrews, Fife KY16 9TF, UK

<sup>3</sup>Department of Biological and Behavioural Sciences, Queen Mary University of London, UK

\*Corresponding author: E-mail: m.fumagalli@qmul.ac.uk.

Accepted: 16 January 2023

# The Unreasonable Effectiveness of Convolutional Neural Networks in Population Genetic Inference

Lex Flagel, 1,2 Yaniv Brandvain, 2 and Daniel R. Schrider\*,3

<sup>1</sup>Monsanto Company, Chesterfield, MO

<sup>2</sup>Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN

<sup>3</sup>Department of Genetics, University of North Carolina, Chapel Hill, NC

\*Corresponding author: E-mail: drs@unc.edu.

Associate editor: Yuseob Kim

Review Article | Published: 04 September 2023

# Harnessing deep learning for population genetic inference

Xin Huang ☑, Aigerim Rymbekova, Olga Dolgova, Oscar Lao ☑ & Martin Kuhlwilm ☑

Nature Reviews Genetics 25, 61–78 (2024) | Cite this article

8148 Accesses | 4 Citations | 41 Altmetric | Metrics



# Deep learning for population size history inference: Design, comparison and combination with approximate Bayesian computation

Théophile Sanchez 🕒 | Jean Cury 🕩 | Guillaume Charpiat | Flora Jay 🕩



Genetics and population analysis

### dnadna: a deep learning framework for population genetics inference

Théophile Sanchez<sup>1†</sup>, Erik Madison Bray<sup>1†</sup>, Pierre Jobic<sup>1,2</sup>, Jérémy Guez<sup>1,3</sup>, Anne-Catherine Letournel<sup>1</sup>, Guillaume Charpiat<sup>1</sup>, Jean Cury (1) 1,4\*\* and Flora Jay (1) 1\*\*



DOI: 10.1111/1/33 0//0.10000



# Automatic inference of demographic parameters using generative adversarial networks

Zhanpeng Wang<sup>1</sup> | Jiaping Wang<sup>1</sup> | Michael Kourakos<sup>2</sup> | Nhung Hoang<sup>2</sup> |

Hyong Hark Lee<sup>2</sup> | Iain Mathieson<sup>3</sup> | Sara Mathieson<sup>1</sup> o







DOI: 10.1111/1/33 0//0.10000



# Automatic inference of demographic parameters using generative adversarial networks

Zhanpeng Wang<sup>1</sup> | Jiaping Wang<sup>1</sup> | Michael Kourakos<sup>2</sup> | Nhung Hoang<sup>2</sup> |

Hyong Hark Lee<sup>2</sup> | Iain Mathieson<sup>3</sup> | Sara Mathieson<sup>1</sup> ©







### **Neural Network for Genomic data**





# **Peer Community Journal**

**Section: Evolutionary Biology** 

Research article

Published 2024-03-18

#### Cite as

Kevin Korfmann, Thibaut Paul Patrick Sellinger, Fabian Freund, Matteo Fumagalli and Aurélien Tellier (2024) Simultaneous Inference of Past Demography and Selection from the Ancestral Recombination Graph under the Beta Coalescent, Peer Community Journal, 4: e33.

### Simultaneous Inference of Past Demography and Selection from the Ancestral Recombination Graph under the Beta Coalescent

Kevin Korfmann<sup>®,#,1</sup>, Thibaut Paul Patrick Sellinger<sup>®,#,2,1</sup>, Fabian Freund<sup>®,3,4</sup>, Matteo Fumagalli<sup>®,5,6</sup>, and Aurélien Tellier<sup>®,1</sup>



### **Integrative** Deep Learning species delimitation





### Deep Learning for phylodynamics and macroevolution

Perez & Gascuel (in prep. for Syst. Biol.)

 $q_{10}$ 

 $q = q_{01} = q_{10}$ 

 $\varepsilon = \mu_0 / \lambda_0 = \mu_1 / \lambda_1$ 



Voznica et al. (2022) Nat Comm



What's next?

Your Project Here



Part III: Wrapup.

### Goals

- Conceive and simulate genetic data under competing demographic scenarios



- Understand deep learning background and how a CNN works



- Use CNN to detect regions with selective sweeps on real genomes



- How to use deep learning to compare demographic scenarios

