Instituto Politécnico do Porto, Instituto Superior de Engenharia

Licenciatura em Eng. Electrotécnica e de Computadores, Teoria dos Sistemas, 18-Junho-2010

Todas as perguntas devem ser respondidas unicamente na folha de respostas.

Seleccione apenas uma das 4 alternativas assinalando-a na matriz de respostas.

O teste é sem consulta. Duração da prova: 0:30

1. Considere o seguinte diagrama de blocos de um sistema de controlo representado na figura. Sejam $s \in \mathcal{L}$, respectivamente a variável e o operador de Laplace e sejam $R(s) = \mathcal{L}[r(t)]$ e $Y(s) = \mathcal{L}[y(t)]$, repectivamente, as transformadas de Laplace do sinais de entrada e de saída. Simplificando o diagrama de blocos de modo a obter a função de transferência do sistema $\frac{Y(s)}{R(s)}$, resulta:

2. Considere o sistema hidráulico representado na figura seguinte, onde $q_1(t)$, $q_2(t)$ e $q_3(t)$ são caudais e $h_1(t)$ e $h_2(t)$ a altura de liquido nos reservatórios 1 e 2, respectivamente. As áreas dos reservatórios 1 e 2, são designadas por A_1 e A_2 e a resistências hidráulicas são repesentadas R_1 , R_2 e R_3 . Sejam s e \mathcal{L} , respectivamente a variável e o operador de Laplace e sejam $Q_1(s)=\mathcal{L}[q_1(t)]$ e $Q_3(s)=\mathcal{L}[q_3(t)]$. A função de transferência do sistema $Q_3(s)$, resulta: A) $\frac{Q_3(s)}{Q_1(s)} = \frac{1+A_1R_1s}{1+(A_1R_1+A_2R_1+A_2R_2)s+A_1R_1A_2R_2s^2}$ B) $\frac{Q_3(s)}{Q_1(s)} = \frac{1+A_1R_2s}{1+(A_1R_1+A_2R_1+A_2R_2)s+A_1R_1A_2R_2s^2}$ C) $\frac{Q_3(s)}{Q_3(s)} = \frac{1+A_2R_1s}{1+(A_1R_1+A_2R_1+A_2R_2)s+A_1R_1A_2R_2s^2}$ D) $\frac{Q_3(s)}{Q_1(s)} = \frac{1+A_2R_2s}{1+(A_1R_1+A_2R_1+A_2R_2)s+A_1R_1A_2R_2s^2}$

3. Considere a resposta temporal c(t) de um sistema de segunda ordem para um sinal de entrada u(t) em degrau unitário que se encontra representada na figura. Sejam s e \mathcal{L} , respectivamente a variável e o operador de Laplace, na figura. Sejam s e \mathcal{L} , respectivamente a variavel e o operador de Laplace, sejam $U(s)=\mathcal{L}[u(t)],\ C(s)=\mathcal{L}[c(t)].$ Assim, pode dizer-se que a função de transferência $\frac{C(s)}{U(s)}=\frac{\omega_n^2}{s^2+2\zeta\omega_ns+\omega_n^2}$ vem dada por:

A) $\frac{C(s)}{U(s)}=\frac{1}{1+0.5s+s^2}$ B) $\frac{C(s)}{U(s)}=\frac{3}{3+0.5s+s^2}$ C) $\frac{C(s)}{U(s)}=\frac{0.5}{0.5+s+s^2}$ D) $\frac{C(s)}{U(s)}=\frac{1}{1+3s+s^2}$

Formulário: $t_p = \frac{\pi}{\omega_n \sqrt{1-\zeta^2}}, c(t_p) = 1 + e^{-\frac{\zeta\pi}{\sqrt{1-\zeta^2}}}$

- 4. Considere um sistema cuja função de transferência (em malha aberta) tem como denominador o polinómio $D(s) = s^3 + 2s^2 + Ks + 1$, $K \in \Re$. Pelo critério de estabilidade de Routh-Hurwitz sabe-se que o sistema é estável para:
- A) K > 1
- B) $K > \frac{1}{2}$ C) $K > \frac{1}{4}$
- D) K > 0

5. Considere um sistema com função de transferência G(s) = $\frac{K}{s(s^2+s+1)^2(s+2)}$ cujo lugar de raízes directo se encontra representado na figura. Sabe-se que o ponto σ de intersecção das assimptotas (também chamado de centróide) no eixo real vem:

- C) $\sigma = -\tilde{1}$ D) $\sigma = -\frac{4}{3}$
- ${\bf 6.}\,$ Considere um sistema cuja função de transferência em malha aberta é dada por $G(s) = \frac{s+2}{s(s+1)^2}$. O correspondente diagrama polar bem como um círculo de raio unitário encontram-se representados na figura. MFé dada por:

- B) MF = 18,76 graus
- C) MF = 24,49 graus
- D) MF = 32,01 graus

	Re	al
	G(jw)	
_	/	

Turma	Aluno Nº:	'	
Nome:			
			-1.8

Respostas

	Α	В	С	D	
1.					1.
2.					2.
3.					3.
4.					4.
5.					5.
6.					6.

Teoria dos Sistemas

$$Q_{1} = A_{1} \cdot R_{1} Q_{2} + R_{1} Q_{3} \qquad \frac{1}{1 + Q_{2}}$$

$$Q_{2} \qquad \frac{R_{2} + \frac{1}{A_{2}} a}{A_{1} + Q_{2} + Q_{2} A_{1} + 1} \qquad \frac{1 + Q_{2} A_{2} + Q_{2} A_{2} A_{2}}{4 + Q_{2} A_{2} + Q_{2} A_{2} A_{2}}$$

$$Q_{3} \qquad \frac{1}{1 + Q_{2} + Q_{2} A_{2} A_{2}} \qquad \frac{1}{1 + Q_{2} A_{2} + Q_{2} A_{2} + Q_{2} A_{2} A_{2}} \qquad \frac{1}{1 + Q_{2} A_{2} + Q_{2} A_{2} A_{2}} \qquad \frac{1}{1 + Q_{2} A_{2} + Q_{2} A_{2} A_{2}} \qquad \frac{1}{1 + Q_{2} A_{2} + Q_{2} A_{2} A_{2}} \qquad \frac{1}{1 + Q_{2} A_{2} + Q_{2} A_{2}} \qquad \frac{1}{1 + Q_{2} A_{2} A_{2} A_{2}} \qquad \frac{1}{1 + Q_{2} A_{2} A_{2}} \qquad \frac{1}{1 + Q_{2} A_{2} A_{2}} \qquad \frac{1}{1 + Q_{2} A_{2}} \qquad \frac{1}{1 + Q_{2}} \qquad \frac{$$