Results

May 5, 2015

Tables of Friedman, Bonferroni-Dunn, Holm, Hochberg and Hommel Tests

Table 1: Average Rankings of the algorithms

$\operatorname{Ranking}$	3.1985669200697524	1.4315515769823108	2.6851193902451476	2.684762112699938
Algorithm	"bagging"	"boosting"	"lasso"	"frbs"

Friedman statistic considering reduction performance (distributed according to chi-square with 3 degrees of freedom: 51327.67918425304. P-value computed by Friedman Test: 0.0.

Iman and Davenport statistic considering reduction performance (distributed according to F-distribution with 3 and 151140 degrees of freedom: 25906.72910901185.

P-value computed by Iman and Daveport Test: 5.551115123125783E-16.

Table 2: Holm / Hochberg Table for $\alpha = 0.05$

2000	Holm/Hochberg/Hommel	0.0166666666666666	0.025	0.05
1	d	0.0	0.0	0.0
The state of the s	$z = (R_0 - R_i)/SE$	217.23727159709904	154.11391450588238	154.069990722522
	algorithm	"bagging"	"lasso"	"frbs"
	.2	3	2	_

Hochberg's procedure rejects those hypotheses that have a p-value ≤ 0.05 . Hommel's procedure rejects all hypotheses.

Table 3: Holm / Hochberg Table for $\alpha = 0.10$

	Holm/Hochberg/Hommel	0.0333333333333333	0.05	0.1
0	d	0.0	0.0	0.0
	$z = (R_0 - R_i)/SE$	217.23727159709904	154.11391450588238	154.069990722522
	algorithm	"bagging"	"lasso"	"frbs"
	.2	3	2	-

Hochberg's procedure rejects those hypotheses that have a p-value ≤ 0.1 . Hommel's procedure rejects all hypotheses.

Table 4: Adjusted p-values

algorithm	unadjusted p	pBonf	p_{Holm}	pHoch	pHomm
"bagging"	0.0	0.0	0.0	0.0	0.0
"lasso"	0.0	0.0	0.0	0.0	0.0
"frbs"	0.0	0.0	0.0	0.0	0.0

Holm's procedure rejects those hypotheses that have a p-value ≤ 0.05 . Bergmann's procedure rejects these hypotheses:

• "bagging" vs. "boosting"

Table 5: Holm / Shaffer Table for $\alpha = 0.05$

		33	99	99	99		
	Shaffer	0.008333333333333333333	0.0166666666666666	0.01666666666666666	0.0166666666666666	0.025	1100
	Holm	0.0083333333333333333	0.01	0.0125	0.016666666666666666	0.025	1000
	d	0.0	0.0	0.0	0.0	0.0	0.0040001070101000
•	$z = (R_0 - R_i)/SE$	217.23727159709904	154.11391450588238	154.069990722522	63.167280874577045	63.123357091216654	200000000000000000000000000000000000000
	algorithms	"bagging" vs. "boosting"	"boosting" vs. "lasso"	"boosting" vs. "frbs"	"bagging" vs. "frbs"	"bagging" vs. "lasso"	Nlessen are named
	\dot{i}	9	rO.	4	8	7	

• "bagging" vs. "lasso"

• "bagging" vs. "frbs"

• "boosting" vs. "lasso"

• "boosting" vs. "frbs"

Table 6: Holm / Shaffer Table for $\alpha = 0.10$

<u>.</u>	99999999	333333	333333	333333		
Shaffer	0.01666666666	0.033333333333333	0.033333333333333	0.03333333333333333	0.02	0.1
Holm	0.01666666666666666	0.02	0.025	0.03333333333333333	0.05	0.1
d	0.0	0.0	0.0	0.0	0.0	0.9649651572131228
$z = (R_0 - R_i)/SE$	217.23727159709904	154.11391450588238	154.069990722522	63.167280874577045	63.123357091216654	0.043923783360386805
algorithms	"bagging" vs. "boosting"	"boosting" vs. "lasso"	"boosting" vs. "frbs"	"bagging" vs. "frbs"	"bagging" vs. "lasso"	"lasso" vs. "frbs"
·z	9	n	4	က	7	1

• "bagging" vs. "boosting"

• "bagging" vs. "lasso"

• "bagging" vs. "frbs"

• "boosting" vs. "lasso"

• "boosting" vs. "frbs"

Table 7: Adjusted p-values

pBerg	4.9E-324	4.9E-324	4.9E-324	4.9E-324	4.9E-324	0.9649651572131228
pShaf	0.0	0.0	0.0	0.0	0.0	0.9649651572131228
p_{Holm}	0.0	0.0	0.0	0.0	0.0	0.9649651572131228
p_{Neme}	0.0	0.0	0.0	0.0	0.0	5.789790943278737
unadjusted p	0.0	0.0	0.0	0.0	0.0	0.9649651572131228
hypothesis	"bagging" vs ."boosting"	"boosting" vs ."lasso"	"boosting" vs ."frbs"	"bagging" vs ."frbs"	"bagging" vs ."lasso"	"lasso" vs ."frbs"
i.	1	2	က	4	n	9