```
1)D
      After B is cut, the sphere enters into a circular notion.
                     Before: Those mg coso This into = Tis
                      After: m= TAZ- mycoso one U=0
                                    T_{A2} = mg(0)\theta T_{A} = \frac{mg}{COSO}
                                          \frac{TA^2}{TA} = COSO
2)0
    grading this circuit into parts
                                                     By reflection and symmetry,
                                                      it is obvious that
                                                         the I = Ist long
                                                        anh Tx = I, - (Io-Ii) = 2Ii - Io
                                               By Kirchoff's Law:
               - I_{1}(\theta R) - (\tilde{I}_{0} - I_{1})(\pi - \theta)R + I_{0} - I_{1})(\pi - \theta)R
                            =- Ix (2R)+ (To-I,)(TO-B)R- GOR
                          - I,0 - 10-10-10-00 + I,0 + I = - Ix (2) + (To-I,)(TO) - I,0 P
                                    I, I, = @ 2Ix = Tota - To0 - I, 1 + I, 0 - T, 0
                                                   2I, = Io(n-0)-In
                                                    2 \operatorname{Tx} = \operatorname{To} (\pi - \Theta) - \left( \frac{\operatorname{Tx} + \operatorname{To}}{2} \right) \pi
                                                   4 Ix = 2 Io(17-0) - (Ix+ To) 7
                                 (4+\pi)I_{X} = 2I_{0}(\pi-\theta) - I_{0}\pi
```

.

	10)3
	According to the equation PV=nRT
	At 2: T_=2To
	At 3: $T_3 = 6T_0$
	1() 2
	By plugging in numbers into $\overline{fg} = \frac{\overline{G} \text{Mins}}{\Gamma^2}$
	you can tell the answer
	de l'extern) - 1 - 1
	(2) C- mx(00) + 97(VO) OK x 97 =
,	parallel light ray will pass through the focal point of the cens
	Therefore 3 is the focal length.
	13)C
	The relative velocity $V: \frac{L}{V} = t$
	therefore, (25HV). t = L
	(2540)6 = 300
	25t V = 50
	V = 25M/
	14) E 240 0 6 2000 pt 2-1000 A
	$\frac{1}{4} = \frac{1}{di} + \frac{1}{do}$
v. 1	$0 = (di)^{-2} \cdot di' - (do)^{2} \cdot do'$ $di = do$
111 (SA 94	do' = di' there fore, $di' = 25 km/h$
3101 920 m	
-1 1 20-	8.13
13-5-7389 000	relative velocity = $di' + lo'$ = $50Km/h$
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	15) 0
xp- 00 12	PV=nAT Rond T are constants so the P is proportional to n $By \frac{m}{n} = 0.0000000000000000000000000000000000$
06100 G	J Molestans C 2 3 2 17
2	- 8 = 1 0 × 10 × 10 × 10 × 10 × 10 × 10 × 1
18	0(00) (00)
	2012 = 17 - 10 = 000 12 · xam 2
	6 = 7 V
	3 3 ° ° ′ ′ ′

	(6)3	
	$\frac{1}{2}m_1V_1^2 \pm \frac{1}{2}m_2V_2^2$	
	$\frac{m_1}{m_2} = \left(\frac{v_2}{v_1}\right)^2 \qquad \text{then, hy} \qquad v_{f_y}^2 = v_{iy}^2 - 2gh$	
	$\frac{1}{4} = \left(\frac{V_2}{V_1}\right)^2 \qquad O = V_{11}^2 - 29h$	
	V ₂	
	5 719	
	$\frac{2gh_2 = V_2y^2}{4 = \frac{3h_2}{2gh_1}}$	
	l ba	
	$\frac{4170}{5} = \frac{1}{5}$	
_		
_	nair Knglass when nixnz, the ray is going to	get closer to
	the normal line,	
_	when n2 <n,, deflecting.<="" is="" ray="" th="" the=""><th>from the normal</th></n,,>	from the normal
	lint.	
	18)5	
	Frequency of light is not influenced by the refractive rate.	
	19)	
	There is no external force under free fall, and surface	ten Gon will
	make blood into spherical form.	ς τ,ο. το γ,
	20)(
	t=d-12	
	$t = \frac{100}{1000}$	
	t = 125ns	
İ	2) 3	
İ		
t	ohly magnetic field tean produce a rir cular motion 22) D	
t		
t	This post intuitive that sound convict propagate without a redown.	
t		
t	Equation: by = 2 If dis decreasing then by souther range	e of where
+	electrons hit increase.	
ŀ		
ŀ		
L		

. 1

25)B		-1/2					_	
		T = Tb 9							
		L = 0.8 LE	3	LB = 5	L	LA = L] LA = 0.8 4 LA = 0.8	10.64 L = 4	L	
				_	LA =_	4 L			
					=-	16 4			
								Q. Carl	