Group 1 Elements (Alkali Metals)

- · Atomic and Ionic Radii: Increases with increase in atomic number.
- ·I.E: Decreases down the group.
- · Hydration Enthalpy: Decreases with increase in ionic sizes.
- · Physical Properties:
- · Silvery White, soft and light metals.
- · Low m.p. and b.p.
- · Alkali metals and their salts impart colour to an oxidizing flame.

Chemical Properties:

 $\begin{array}{lll} \textrm{4Li} + O_2 & \longrightarrow \textrm{2Li}_2O; \textrm{2Na} + O_2 & \longrightarrow & \textrm{Na}_2O_2; \; \textrm{M} + O_2(\; \textrm{MO}_2\; (\textrm{M= K,Rb}, \textit{Cs}) \\ \textrm{2M} + \textrm{2H}_2O & \longrightarrow & \textrm{2M} + \textrm{2OH}; + \textrm{H}_2 \end{array}$

2M+H, - 2M+H

React vigorously with halogens to form ionic halides

 $M + (x + y) NH_2 \longrightarrow [M(NH_3) \longrightarrow [M(NH_3)_x]^2 + [\varepsilon(NH_3)_y]^2$

Hene

- ·Li is used to make useful alloys.
- ·Li is used in thermonuclear reactions and making electrochemical cells.
- · Na is used to mack Na/Pb alloy.
- ·Liquid Na metal is used as coolent in nuclear reactors.
- KCl is used as fertilizers.
- · Cs is used in devising photoelectric cells.

Characterisitics of Compound of alkali Metals:

Oxides and Hydroxides

- · Alkali metals halides (MX) have high melting, colourless crystalline solids.
- Preparation: Reaction of Oxides, hydroxide or carbonate with ag Hx.
- · High negative enthalopies of formation.
- · Melting and boiling points: F> Cl> Br> I
- · Slouble in water.

Salts of Oxo-acids:

- · Alkali metals form salts with all oxo-acids.
- · Slouble in water and thermally stable.
- · Stablility of carbonates and hydrogencarbonates increases.

Anamolies properties of Li: Due to

- (i) Exceptionally small size of its atom and ion.
- (ii) High polarising power.

Biological Importance of Na and K:

Na ions participate in Nuclear signal transmission, regulator of flow of water across cell membranes. K ions activate many enzymes and oxidation of glucose to produce ATP.

Electronic Configuration

ns: : Alkali metals; ns: : Alkaline Earth Metals

Important Compound of Sodium:

(i) Sodium Carbonate (washing Soda): Preparation: By Solvay process

2NH₃ + H₂O + CO₂ (NH₄)2CO₃ (NH₄)₂CO₃ + H₂O + CO₂ 2NH₄HCO₃ NH₄HCO₁ + NaCl NH₄Cl + NaHCO₃

2NH,CI + Ca(OH), ----- 2NH, + CaCl, + H,O

Properties

(a) White, crystalline solid.

(b) Readily soluble in water

Uses: Water softening, laundering cleaning, manufacture as laboratory

(i) Sodium Chloride (NaCl)

Preparation:

Crude NaCl by Crystalline of Brine Solution.

-Pure NaCl is Obtained by dissolving crude salt in minimum water and filtered to remove inslable impurities. Solution is saturated with HCl gas.

Uses: As common salt

(ii) Sodium Hydroxide (NaOH)

Preparation: By electrolysis of NaCl in Castner-Kellner cel.
Uses: In manufacture of Soaps, papaer, petroleum refining.

(iii) Sodium Hydrogencarbonate (NaHCO₃)

Preparation: Na₂CO₃ + H₂O + CO₂ ----- 2NaHCO₃

Group Z elements (Alkali Earth Metals)

· Atomic and ionic Radii: Smaller than corresponding alkali in group, inceases with increase in atomic number.

·I.E: IE, higher than corresponding group 1 metals.

IE, Smaller than corresponding alkali metals.

· Hydration Enthalpies: Decreases with increase in ionic size down the group.

Physical Properties:

- · Slivery white, lustrous and relative soft but harder than alkali metals.
- · M.P and B.P higher than corresponding alkali metals.
- · Electropositive character increases down the group.

Chemical properties:

- · Be and Ma are kinetically inert to O and H.O
- · Mg is more electropositive and burns in Air.
- · Ca, Sr and Ba with air form oxide and nitride.

2BeCl₂ + LiAH₄ --- + 2BeH₂ + LiCl + ACl₃

 $M + 2HCI \longrightarrow MCI_z + H_z$

 $M + (x+y)NH_3 - [M(NH_3)_x]^{2+} + 2[e(NH_3)_y]^{-}$

Lene

- Be is used in the manufacture of Alloys
- · Metallic Be is used for making windows of X-Rays tubes.
- · Mg-Al Alloys are used in air craft construction.
- · Ca in extration of metals.
- · Ra is used in radiotherapy.

Characteristics of compounds of Alkali Earth Metals:

Oxides and Hydrides

- · Alkaline earth metals burn oxygen to form MO
- · All Oxides except BeO are basic in nature.

· Be(OH), is atmospheric in nature

Halides:

- · Except for Be Halides, all other halide are ionic.
- · Tendency to form halide hydrates decrease gradually.
- · Salts of Oxoacids: Forms carbonates, sulphates and nitrates.
- · Anomalous behavior of Be: Small atomic and Ionic sizes, does not exihibit C.N. More than four, its oxidesand hydroxide are atmosphire
- · Be shows diagonal relationship with Al

Biological importance of Ma and Ca

· All enzymes that utilize ATP in PO₄ transfer requires Mg as cofactor.

Chlorophyll contains Mg. Ca is present in bones and teeth. Important in Neuromuscular function, intraneuronal transmission and blood Coagulation

Important Compund of Calcium

(i) CaO, Quick Lime

Preparation: CaCO, CaO + CO,

Properties: White amorphous solid with m.p. 2870K $CaO + H,O \longrightarrow Ca(OH)_{p}$, $CaO + CO_{2} \longrightarrow CaCO_{3}$

(ii) Ca(OH), Calcium Hydroxide: Preparation: Addition of water to CaO.

Quick Lime

Plaster

