Généralités sur les matrices

- 1. Soit A une matrice carrée de rang 1. Montrer qu'il existe $\lambda \in \mathbb{K}$ tel que $A^2 = \lambda A$.
- **2.** a) Monter qu'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est non inversible si, et seulement si, elle est équivalente à une matrice nilpotente.
 - b) Soit $f: \mathcal{M}_n(\mathbb{K}) \to \mathbb{K}$ une application vérifiant : $f(O_n) = 0$, $f(I_n) = 1$ et pour tout $A, B \in \mathcal{M}_n(\mathbb{K})$,

$$f(AB) = f(A)f(B)$$

Montrer que $A \in \mathcal{M}_n(\mathbb{K})$ est inversible si, et seulement si, $f(A) \neq 0$.

3. Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ où B est nilpotente et commute avec A. Montrer que A est inversible ssi A + B est inversible.

Commutation de matrices

4. On suppose que $A, B \in \mathcal{M}_n(\mathbb{K})$ commutent et que A est inversible.

Justifier que A^{-1} et B commutent.

- **5.** Quelles sont les matrices de $\mathcal{M}_n(\mathbb{K})$ commutant avec toutes les matrices de $\mathcal{M}_n(\mathbb{K})$? (indication : utiliser les matrices élémentaires)
- **6.** Soit $n \in \mathbb{N}$ avec n > 2.
 - a) Montrer que

$$\{A \in \mathcal{M}_n(\mathbb{R})/\forall M \in \mathrm{GL}_n(\mathbb{R}), AM = MA\} = \{\lambda I_n/\lambda \in \mathbb{R}\}\$$

(indication : utiliser les matrices élémentaires)

b) Soit $A \in \mathcal{M}_n(\mathbb{R})$. On suppose que

$$\forall M, N \in \mathcal{M}_n(\mathbb{K}), A = MN \Rightarrow A = NM$$

Montrer qu'il existe $\lambda \in \mathbb{R}$ tel que $A = \lambda I_n$

7. Soit $T \in \mathcal{M}_n(\mathbb{R})$ une matrice triangulaire supérieure.

Montrer que T commute avec sa transposée si, et seulement si, la matrice T est diagonale.

- 8. Soit $n \geq 2$. Déterminer les matrices de $\mathcal{M}_n(\mathbb{K})$ commutant avec toutes les matrices symétriques.
- 9. Soit $n \geq 2$. Déterminer les matrices de $\mathcal{M}_n(\mathbb{K})$ commutant avec toutes les matrices antisymétriques. (distinguer les cas n = 2 et n > 2.)

Rang d'une matrice

- 10. Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice carrée de rang 1.
 - a) Établir l'existence de colonnes $X, Y \in \mathcal{M}_{n,1}(\mathbb{K})$ vérifiant $A = X^t Y$.
 - b) En déduire l'existence de $\lambda \in \mathbb{K}$ tel que $A^2 = \lambda A$.
- **11.** Déterminer le rang de la matrice $A \in \mathcal{M}_3(\mathbb{R})$ définie par : $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$
- **12.** Déterminer le rang de la matrice $B \in \mathcal{M}_{3,4}(\mathbb{R})$ définie par : $B = \begin{pmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 4 & 2 \\ 3 & 4 & 5 & 2 \end{pmatrix}$

Calculs par blocs

- **13.** Soient $A \in \mathcal{M}_n(\mathbb{K})$, $B \in \mathcal{M}_p(\mathbb{K})$ et M la matrice $M = \begin{pmatrix} A & O_{n,p} \\ O_{p,n} & B \end{pmatrix} \in \mathcal{M}_{n+p}(\mathbb{K})$ Etablir $\operatorname{rg} M = \operatorname{rg} A + \operatorname{rg} B$
- **14.** Soient $B \in \mathcal{M}_{n,p}(\mathbb{K})$ et $C \in \mathcal{M}_p(\mathbb{K})$.

 Montrer

$$\operatorname{rg}\left(\begin{array}{cc} I_n & B \\ O_{p,n} & C \end{array}\right) = n + \operatorname{rg}C$$

Représentations matricielles

- **15.** Soient $A = (a_{i,j})_{1 \le i,j \le n+1} \in \mathcal{M}_{n+1}(\mathbb{R})$ avec $a_{i,j} = \begin{pmatrix} j-1 \\ i-1 \end{pmatrix}$ et $\varphi \in \mathcal{L}(\mathbb{R}_n[X])$ canoniquement représenté par A.
 - a) Exprimer $\varphi(P)$ pour tout $P \in \mathbb{R}_n[X]$.
 - b) Calculer A^m pour tout $m \in \mathbb{N}$.
 - c) Calculer A^{-1} .
- **16.** Soit E un \mathbb{K} -espace vectoriel de dimension 3 muni d'une base $\mathcal{B} = (e_1, e_2, e_3)$.

Soit
$$f \in \mathcal{L}(E)$$
 dont la matrice dans la base \mathcal{B} est $A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ -1 & 1 & 2 \end{pmatrix}$

On pose $\varepsilon_1 = e_1 + e_3$, $\varepsilon_2 = e_1 + e_2$ et $\varepsilon_3 = e_1 + e_2 + e_3$.

- a) Montrer que $\mathcal{B}' = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ forme une base de E et déterminer la matrice de f dans \mathcal{B}' .
- b) Calculer A^n .
- 17. Soit E un \mathbb{K} -espace vectoriel de dimension 3 muni d'une base $\mathcal{B} = (e_1, e_2, e_3)$.

Soit
$$f \in \mathcal{L}(E)$$
 dont la matrice dans la base \mathcal{B} est $A = \begin{pmatrix} 0 & 2 & 1 \\ -1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}$

On pose $\varepsilon_1 = e_1 + e_3$, $\varepsilon_2 = e_1 + e_2$ et $\varepsilon_3 = e_1 + e_2 + e_3$.

- a) Montrer que $\mathcal{B}' = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ forme une base de E et déterminer la matrice de f dans \mathcal{B}' .
- b) Calculer A^n .

Matrices semblables

18. Soient E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}^*$ et $f \in \mathcal{L}(E)$ tel que $f^n = 0$ et $f^{n-1} \neq 0$.

Montrer qu'il existe une base \mathcal{B} de E pour laquelle :

$$\operatorname{Mat}_{\mathcal{B}}(f) = \left(egin{array}{cccc} 0 & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & & 0 \end{array}
ight)$$

19. Soit $A \in \mathcal{M}_n(\mathbb{K})$ vérifiant $A^{n-1} \neq O_n$ et $A^n = O_n$.

Etablir que A est semblable à

$$B = \begin{pmatrix} 0 & 1 & & (0) \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ (0) & & & 0 \end{pmatrix}$$

- **20.** Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice de rang 1.
 - a) Montrer que A est semblable à une matrice dont les n-1 premières colonnes sont nulles.
 - b) En déduire

$$A^{2} = \operatorname{tr}(A).A \text{ et } \det(I_{n} + A) = 1 + \operatorname{tr}A$$

Trace

- **21.** Soient E un \mathbb{K} -espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$ de rang 1. Montrer que $f^2 = \operatorname{tr}(f).f$. A quelle condition un endomorphisme de rang 1 est-il un projecteur?
- **22.** Soient $A \in \mathcal{M}_n(\mathbb{R})$ et φ l'endomorphisme de $\mathcal{M}_n(\mathbb{R})$ défini par $\varphi(M) = MA$ Exprimer la trace de φ en fonction de celle de A.