CN4004: Maths for Computing: Tutorial

Mathematical Logic (Part 1)

If P, Q and R represent the following statements: 1.

Q: Germany is in Asia.

R: 3.65 is an integer

What is the value of:

a)
$$P \wedge R$$

a)
$$P \wedge R$$
 b) $P \vee Q$ c) $Q \vee R$?

c)
$$Q \vee R$$
?

2. Let P be "It is summer" and O be "Leon is playing tennis". Give simple sentences which represent the following statements:

b)
$$P \wedge \neg Q$$

c)
$$\neg P \lor Q$$

d)
$$\neg \neg Q$$

Let P be "She is a scientist" and Q be "She is intelligent". Express each of 3. the following statements symbolically:

- She is intelligent, but she is not a scientist. a)
- She is a scientist, and she is intelligent.
- She is a scientist, or she is not intelligent.
- It is not true that she is a scientist or that she is intelligent.

Construct a truth table for the following expression: 4.

$$\neg (P \land Q) \lor \neg Q$$

Show that the expression $P \Rightarrow (P \lor Q)$ is a tautology by constructing a 5. truth table.

6. Consider the following statement: $P \Rightarrow \neg Q$

What is

- a) the converse;
- b) the inverse;
- c) the contrapositive?
- 7. Use De Morgan's law to show that:

$$\neg(\neg P \land (P \lor Q)) \equiv P \lor (\neg P \land \neg Q)$$

8. Use the distributive law to simplify the following expression:

$$\neg Q \land (\neg P \lor Q)$$

9. Negate the following expression, and simplify your answer (hint: use De Morgan's Law):

$$(P \Rightarrow Q) \wedge Q$$

- 10. In question 5 you drew a truth table to show that $P \Rightarrow (P \lor Q)$ is a tautology. Now do this using algebra.
- 11. (If there is time)

Draw a truth table for the following expression, using **3-valued** logic: $P \lor \neg Q$