CS 726: Homework #1

Posted: 01/28/2020, due: 02/10/2020 in class

Please typeset or write your solutions neatly! If we cannot read it, we cannot grade it.

Q 1. Prove that all isolated minima are strict.

Hint: One way to prove this is by contrapositive.

[7pts]

Q 2. A saddle point is a stationary point (a point \mathbf{x} with $\nabla f(\mathbf{x}) = 0$) that is neither a local minimum nor a local maximum. List all stationary points of the following functions, where $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, and for each stationary point indicate whether it is a local minimum/maximum, a global minimum/maximum, or a saddle point.

(i)
$$f(\mathbf{x}) = \frac{x_1^4}{20} - 10x_1^2 + 10x_2^2$$
; [5pts]

(ii)
$$f(\mathbf{x}) = x_1^2 + x_2^2 + \frac{1}{\pi} \left(\sin(\pi \cdot x_1^2) + \cos(\pi \cdot x_2^2) \right);$$
 [5pts]

(iii)
$$f(\mathbf{x}) = \frac{1}{2}x_1^2 + x_1\cos(x_2)$$
. [5pts]

Q 3. Let **A** be a real symmetric $n \times n$ matrix with eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$. Prove that, $\forall \mathbf{x} \in \mathbb{R}^n$:

(i)
$$\mathbf{x}^T \mathbf{A} \mathbf{x} \ge \lambda_1 \|\mathbf{x}\|_2^2$$
; [5pts]

(ii)
$$\mathbf{x}^T \mathbf{A} \mathbf{x} \le \lambda_n \|\mathbf{x}\|_2^2$$
. [5pts]

Q 4. Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{-\infty, +\infty\}$ be an extended real valued *convex* function. Assume that f is such that for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $f(\mathbf{y}) \leq \lim_{\alpha \downarrow 0} f(\alpha \mathbf{x} + (1 - \alpha) \mathbf{y})$. Prove that:

- (i) If there exists a point \mathbf{x} such that $f(\mathbf{x}) = -\infty$, then f is not real-valued anywhere it equals either $-\infty$ or $+\infty$ everywhere. [5pts]
- (ii) If, $\forall \mathbf{x} \in \mathbb{R}^n$, $f(\mathbf{x}) \leq M$, for some constant $M < \infty$, then f must be a constant function (i.e., taking the same value for all $\mathbf{x} \in \mathbb{R}^n$). [5pts]

Q 5 (Jensen's Inequality). Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function. Prove that for any sequence of numbers $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k \in \mathbb{R}^n$ and any sequence of non-negative scalars $\alpha_1, \alpha_2, \dots, \alpha_k \geq 0$ such that $\sum_{i=1}^k \alpha_i = 1$ we have:

$$f\left(\sum_{i=1}^{k} \alpha_i \mathbf{x}_i\right) \le \sum_{i=1}^{k} \alpha_i f(\mathbf{x}_i).$$
 [8pts]

Q 6. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex continuously differentiable function. Using the definition of convexity from the class and properties of directional derivatives, prove that it must be $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$:

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle$$
. [10pts]

Q 7. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a twice continuously differentiable function. Prove that if f is convex, then it must be

$$\nabla^2 f(\mathbf{x}) \succeq 0, \quad \forall \mathbf{x} \in \mathbb{R}^n,$$

that is, the Hessian of f is positive semidefinite.

[10pts]

Q 8. Let $f(\mathbf{x}) := \mathbf{x}^T \mathbf{A} \mathbf{x} - \mathbf{b}^T \mathbf{x}$, where **b** is the vector of all 1's and **A** is an $n \times n$ matrix defined by: $A_{ii} = 2$ for $1 \le i \le n$, $A_{i,i+1} = -1$, for $1 \le i \le n-1$ and $A_{n,1} = A_{1,n} = -1$. That is, **A** is defined as:

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 0 & 0 & \dots & 0 & -1 \\ -1 & 2 & -1 & 0 & \dots & 0 & 0 \\ 0 & -1 & 2 & -1 & \dots & 0 & 0 \\ 0 & 0 & -1 & 2 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -1 & 0 & 0 & 0 & \dots & -1 & 2 \end{bmatrix}.$$

Is f convex? Justify your answer.

[15pts]

Q 9. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable function that satisfies the following:

$$(\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n): f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{m}{2} \|\mathbf{y} - \mathbf{x}\|_2^2,$$

where m > 0 is some constant.

Prove that f cannot be Lipschitz continuous on the entire \mathbb{R}^n . Would it be possible for f to be Lipschitz continuous if we take the domain to be the unit Euclidean ball (i.e., the set: $\{\mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\|_2 \le 1\}$)? Explain. [15pts]