Assume we have space \mathcal{X} and a class of functions $\mathcal{F} = \{f : \mathcal{X} \mapsto \mathbb{R}\}$, not necessarily bounded. Define

$$Z(x) = Z(x_1, \dots, x_n) = \sup_{f \in \mathcal{F}} \sum f(x_i)$$

(or $\sup_{f \in \mathcal{F}} |\sum f(x_i)|$).

Example 35.1. $f \to \frac{1}{n}(f - \mathbb{E}f)$. $Z(x) = \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} f(x_i) - \mathbb{E}f$.

Consider $x' = (x'_1, \dots, x'_n)$, an independent copy of x. Let

$$V(x) = \mathbb{E}_{x'} \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} (f(x_i) - f(x'_i))^2$$

be "random uniform variance" (unofficial name)

Theorem 35.1.

$$\mathbb{P}\left(Z(x) \ge \mathbb{E}Z(x) + 2\sqrt{V(x)t}\right) \le 4e \cdot e^{-t/4}$$
$$\mathbb{P}\left(Z(x) \le \mathbb{E}Z(x) - 2\sqrt{V(x)t}\right) \le 4e \cdot e^{-t/4}$$

Recall the Symmetrization lemma:

Lemma 35.1. $\xi_1, \xi_2, \xi_3(x, x') : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}, \ \xi_i' = \mathbb{E}_{x'} \xi_i$. If

$$\mathbb{P}\left(\xi_1 \ge \xi_2 + \sqrt{\xi_3 t}\right) \le \Gamma e^{-\gamma t},$$

then

$$\mathbb{P}\left(\xi_1' \ge \xi_2' + \sqrt{\xi_3't}\right) \le \Gamma e \cdot e^{-\gamma t}.$$

We have

$$\mathbb{E}Z(x) = \mathbb{E}_{x'}Z(x') = \mathbb{E}_{x'} \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} f(x'_i)$$

and

$$V(x) = \mathbb{E}_{x'} \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} (f(x_i) - f(x'_i))^2.$$

Use the Symmetrization Lemma with $\xi_1 = Z(x)$, $\xi_2 = Z(x')$, and

$$\xi_3 = \sup_{f \in \mathcal{F}} \sum_{i=1}^n (f(x_i) - f(x_i'))^2.$$

It is enough to prove that

$$\mathbb{P}\left(Z(x) \ge Z(x') + 2\sqrt{t \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} (f(x_i) - f(x_i'))^2}\right) \le 4e^{-t/4},$$

i.e.

$$\mathbb{P}\left(\sup_{f \in \mathcal{F}} \sum_{i=1}^{n} f(x_i) \ge \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} f(x_i') + 2\sqrt{t \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} (f(x_i) - f(x_i'))^2}\right) \le 4e^{-t/4}.$$

If we switch $x_i \leftrightarrow x_i'$, nothing changes, so we can switch randomly. Implement the permutation $x_i \leftrightarrow x_i'$:

$$I = f(x_i') + \varepsilon_i (f(x_i) - f(x_i'))$$

$$II = f(x_i) - \varepsilon_i (f(x_i) - f(x_i'))$$

where $\varepsilon_i = 0, 1$. Hence,

- (1) If $\varepsilon_i = 1$, then $I = f(x_i)$ and $II = f(x'_i)$.
- (2) If $\varepsilon_i = 0$, then $I = f(x_i')$ and $II = f(x_i)$.

Take $\varepsilon_1 \dots \varepsilon_n$ i.i.d. with $\mathbb{P}(\varepsilon_i = 0) = \mathbb{P}(\varepsilon_i = 1) = 1/2$.

$$\mathbb{P}_{x,x'}\left(\sup_{f\in\mathcal{F}}\sum_{i=1}^{n}f(x_i)\geq\sup_{f\in\mathcal{F}}\sum_{i=1}^{n}f(x_i')+2\sqrt{t\sup_{f\in\mathcal{F}}\sum_{i=1}^{n}(f(x_i)-f(x_i'))^2}\right)$$

$$=\mathbb{P}_{x,x',\varepsilon}\left(\sup_{f\in\mathcal{F}}\sum_{i=1}^{n}(f(x_i')+\varepsilon_i(f(x_i)-f(x_i')))\geq\sup_{f\in\mathcal{F}}\sum_{i=1}^{n}(f(x_i)-\varepsilon_i(f(x_i)-f(x_i')))\right)$$

$$+2\sqrt{t\sup_{f\in\mathcal{F}}\sum_{i=1}^{n}(f(x_i)-f(x_i'))^2}$$

$$=\mathbb{E}_{x,x'}\mathbb{P}_{\varepsilon}\left(\sup_{f\in\mathcal{F}}\ldots\geq\sup_{f\in\mathcal{F}}\ldots+2\sqrt{\ldots}\text{ for fixed }x,x'\right)$$

Define

$$\Phi_1(\varepsilon) = \sup_{f \in \mathcal{F}} \sum_{i=1}^n (f(x_i') + \varepsilon_i (f(x_i) - f(x_i')))$$

and

$$\Phi_2(\varepsilon) = \sup_{f \in \mathcal{F}} \sum_{i=1}^n (f(x_i) - \varepsilon_i (f(x_i) - f(x_i'))).$$

 $\Phi_1(\varepsilon), \Phi_2(\varepsilon)$ are convex and Lipschitz with $L = \sup_{f \in \mathcal{F}} \sqrt{\sum_{i=1}^n (f(x_i) - f(x_i'))^2}$. Moreover, $Median(\Phi_1) = Median(\Phi_2)$ and $\Phi_1(\varepsilon_1, \dots, \varepsilon_n) = \Phi_2(1 - \varepsilon_1, \dots, 1 - \varepsilon_n)$. Hence,

$$\mathbb{P}_{\varepsilon}\left(\Phi_1 \le M(\Phi_1) + L\sqrt{t}\right) \ge 1 - 2e^{-t/4}$$

and

$$\mathbb{P}_{\varepsilon}\left(\Phi_2 \le M(\Phi_2) - L\sqrt{t}\right) \ge 1 - 2e^{-t/4}.$$

With probability at least $1 - 4e^{-t/4}$ both above inequalities hold:

$$\Phi_1 \le M(\Phi_1) + L\sqrt{t} = M(\Phi_2) + L\sqrt{t} \le \Phi_2 + 2L\sqrt{t}.$$

Thus,

$$\mathbb{P}_{\varepsilon}\left(\Phi_1 \ge \Phi_2 + 2L\sqrt{t}\right) \le 4e^{-t/4}$$

and

$$\mathbb{P}_{x,x',\varepsilon}\left(\Phi_1 \ge \Phi_2 + 2L\sqrt{t}\right) \le 4e^{-t/4}.$$

The "random uniform variance" is

$$V(x) = \mathbb{E}_{x'} \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} (f(x_i) - f(x'_i))^2.$$

For example, if $\mathcal{F} = \{f\}$, then

$$\frac{1}{n}V(x) = \frac{1}{n}\mathbb{E}_{x'}\sum_{i=1}^{n}(f(x_i) - f(x'_i))^2$$

$$\frac{1}{n}\sum_{i=1}^{n}\left(f(x_i)^2 - 2f(x_i)\mathbb{E}f + \mathbb{E}f^2\right)$$

$$= \bar{f}^2 - 2\bar{f}\mathbb{E}f + \mathbb{E}f^2$$

$$= \underbrace{\bar{f}^2 - (\bar{f})^2}_{\text{sample variance}} + \underbrace{(\bar{f})^2 - 2\bar{f}\mathbb{E}f + (\mathbb{E}f)^2}_{(\bar{f} - \mathbb{E}f)^2} + \underbrace{\mathbb{E}f^2 - (\mathbb{E}f)^2}_{\text{variance}}$$