

Werk

Titel: Sur un problème concernant les nombres.

Autor: Sierpinski, W.

Jahr: 1960

PURL: https://resolver.sub.uni-goettingen.de/purl?378850199_0015|log24

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires - Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik und zur Förderung des mathematisch-physikalischen Unterrichts Organ für den Verein Schweizerischer Mathematik- und Physiklehrer

> Publiziert mit Unterstützung des Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung

El. Math.

Band XV

Nr. 4

Seiten 73-96

Basel, 10. Juli 1960

Sur un problème concernant les nombres

$$k \cdot 2^n + 1$$

Dans son travail [1] M. R. M. Robinson a donné une table de plusieurs nombres premiers de la forme $k \cdot 2^n + 1$. Il résulte de cette table que pour tout nombre naturel $k \leq 100$, sauf, peut-être, pour les nombres k = 47 et k = 94, il existe au moins un nombre naturel n tel que le nombre $k \cdot 2^n + 1$ est premier (pour k = 47 on a trouvé seulement que tous les nombres $47 \cdot 2^n + 1$ pour n < 512 sont composés). Cela suggère le problème, s'il existe pour tout nombre naturel k au moins un nombre naturel k pour lequel le nombre $k \cdot 2^n + 1$ serait premier.

Je prouverai ici que la réponse à ce problème est négative. Je démontrerai notamtent ce

Théorème: Il existe une infinité de nombres naturels ktels que tous les nombres $k \cdot 2^n + 1$, où n = 1, 2, ..., sont composés.

 $D\acute{e}monstration^1$). Comme on sait, les nombres $F_m = 2^{2^m} + 1$ sont premiers pour m = 0, 1, 2, 3 et 4 et le nombre F_5 est le produit de deux nombres premiers 641 et $p > F_4$. D'après le théorème chinois bien connu sur les restes, il existe une infinité de nombres naturels k satisfaisant aux deux congruences

$$k \equiv 1 \pmod{(2^{32} - 1) \cdot 641}$$
 et $k \equiv -1 \pmod{p}$. (1)

Je démontrerai que, si k est un entier > p satisfaisant aux congruences (1), les nombres $k \cdot 2^n + 1$, où $n = 1, 2, \ldots$, sont composés.

Soit d'abord $n=2^m(2\ t+1)$, où m est un des nombres 0,1,2,3,4 et où t est un entier non négatif. D'après (1) on aura $k\cdot 2^n+1\equiv 2^{2^m(2t+1)}+1$ (mod $2^{32}-1$) et, comme $F_m\mid 2^{32}-1$ et $F_m\mid 2^{2^m(2t+1)}+1$, on conclut que le nombre $k\cdot 2^n+1$ est divisible par F_m et plus grand que $p>F_m$, donc composé.

Soit maintenant $n = 2^5$ (2 t + 1), où t = 0, 1, 2, ... D'après (1) on aura $k \cdot 2^n + 1 \equiv 2^{2^5(2t+1)} + 1$ (mod 641) et, comme 641 | $2^{2^5} + 1$ | $2^{2^5(2t+1)} + 1$, on conclut que le nombre $k \cdot 2^n + 1$ est divisible par 641 et plus grand que 641, donc composé.

Il nous reste évidemment à examiner le cas, où le nombre n est divisible par 2^6 , donc $n=2^6t$, où $t=1,2,3,\ldots$ D'après (1), on aura $k\cdot 2^n+1\equiv -2^{2^6t}+1\pmod{p}$, et comme $p\mid 2^{2^5}+1\mid 2^{2^6}-1\mid 2^{2^6t}-1$, on trouve que le nombre $k\cdot 2^n+1$ est divisible par p et > p, donc composé.

¹⁾ Une simplification de ma démonstration est due à M. A. Schinzel.