Category

Recipe of a Category:

Let C be a category

- Objects are Ob(C)
- Morphisms are Hom(C)
- · Composition exists for morphisms

Need to follow two laws:

- · Associativity in composition
- · Identity morphisms must exist

Finsets: Category with objects: finite sets, morhpisms: functions

Identity Law:

$$f:A o B\implies f\circ 1_A=f ext{ and } 1_B\circ f=f$$

Associative Law:

$$h\circ (f\circ g)=(h\circ f)\circ g$$

Diagrams

Internal:

You get to see the meat of what the map does to the internal components of the object; the focus is on the specific effect that a map has

External:

You don't need to know what goes on inside; you focus on what the maps do and how they are related

Some terms

- 1. **Point**: For a set X, a point is the map f where $f: 1 \to X$ (1 is a set having only 1 element)
- 2. **Isomorphism:** An invertible map (iso = same, morph = form) (has a unique inverse)

$$f:A o B$$
 is isomorphic if $\exists g:B o A$ s.t. $f\circ g=1_B$ and $g\circ f=1_A$

Here A and B are isomorphic

Reflexive: $A \cong A$

Symmetric: If $A \cong B$, then $B \cong A$

Transitive: $A \cong B$ and $B \cong C$ then $A \cong C$

3. Automorphism: An isomorphism whose domain is the same as the co-domain

4. **Retraction:** For a map $f:A\to B$ if there exists a map $g:B\to A$ such that $g\circ f=1_A$ then g is a retraction for f

Such an f is called a **monomorphism** (mono = one) (one-one mapping) (injective) which leads to a property in f

$$f\circ x_1=f\circ x_2 \implies x_1=x_2orall x_1, x_2:T o A$$

Pretty intuitive if you ask me, whenever there is a one-one mapping from A to B going back from B to A shouldn't be a problem, just follow the arrows back and for whichever item in B is not mapped to you can arbitrarily chose how to map it back without stopping the retract from existing. If multiple items in A map to the same item in B then you do not need the inputs to be necessarily equal.

5. **Section:** For a map $f:A\to B$ if there exists a map $g:B\to A$ such that $f\circ g=1_B$ then g is a section for f

Such an f is called an **epimorhpism** (epi = onto, after) (the map's coming after all of the items in B leaving no one alone I suppose) (surjective) which leads to a property in f

$$x_1 \circ f = x_2 \circ f \implies x_1 = x_2 \forall x_1, x_2 : B \to T$$

Pretty intuitive if you ask me, whenever there is a onto mapping from A to B then post-compositions are equal iff the maps composing are equal themselves because every element from B would be mapped further. Composition doesn't care about the intermediate stops you make in the flow of mapping.

6. **Idempotent Map:** A map $e: X \to X$ such that $e \circ e = e$

Often an idempotent is of the form $r \circ s$ where $s: X \to A, r: A \to X$ s.t. $s \circ r = 1_A$

Some results

1. If a map $f:A\to B$ has a section, then $\exists s \text{ s.t. } f\circ s=1_B$. Now pre-compose with y to get $f\circ s\circ y=y\implies f\circ x=y$

There exists such an $x:T\to A$ for any map $y:T\to B$

2. If a map $f:A\to B$ has a retraction, then $\exists r \text{ s.t. } r\circ f=1_A$. Now post-compose with y to get $y\circ r\circ f=y\implies x\circ f=y$

There exists such an $x:B\to T$ for any map $y:A\to T$

"The order of going back is always in reverse" - words to live by?
Sections and retracts show transitivity whenever the objects involved possess sections and retracts.

Determination and Choice Problems

Determination (Falling)

- g is uniquely determined by f where $g \circ f = h$
- The retraction problem is a determination problem in g as the retraction where $h=1_A$ and C=A

Choice (Lifting)

- f is a choice for which $g \circ f = h$
- ullet The retraction problem is a determination problem in g as the retraction where $h=1_A$ and C=A

Misc Fun Stuff

Pick's formula: Area = #(Interior Points) + #(Boundary Points)/2 - 1

Sorting, Stacking, Combining - What maps are often used for if you think about it and determining / choosing boils down to going back