Seat No.: _____

Enrolment No.____

Total Marks: 70

07

03

04

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- I & II (NEW) EXAMINATION - WINTER 2019

Subject Code: 3110014 Date: 17/01/2020 **Subject Name: Mathematics – I**

Time: 10:30 AM TO 01:30 PM

Instructions:

(c)

(a)

(b)

Q.4

(1,1), (1,2)

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a)	Find the equations of the tenagent plane and normal line to the surface $x^2 + y^2 + z^2 = 3$ at the point $(1,1,1)$	MARKS 03
	(b)	Evaluate $\lim_{x\to 0} \frac{xe^x - log(1+x)}{x^2}$	04
	(c)	Using Gauss Elimination method solve the following system $-x+3y+4z=30$ 3x+2y-z=9 2x-y+2z=10	07
Q.2	(a)	Test the convergence of the series $\frac{1}{3} + \left(\frac{2}{5}\right)^2 + \left(\frac{3}{7}\right)^3 + \dots + \left(\frac{n}{2n+1}\right)^n + \dots$	03
	(b)	Discuss the Maxima and Minima of the function $3x^2 - y^2 + x^3$	04
	(c)	Find the fourier series of $f(x) = \frac{(\pi - x)}{2}$ in the interval $(0,2\pi)$	07
	(c)	OR Change the order of integration and evaluate $\int_0^1 \int_x^1 \sin y^2 dy dx$	07
Q.3	(a)	Find the value of $\beta\left(\frac{7}{2}, \frac{5}{2}\right)$	03
	(b)	Obtain the fourier cosine series of the function $f(x) = e^x$ in the range $(0,l)$	04
	(c)	Find the maximum and minimum distance fom the point (1,2,2) to the sphere $x^2 + y^2 + z^2 = 36$	07
		OR	
Q.3	(a)	Test the convergence of the series $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$	03
	(b)	Evaluate $\iint (x^2 - y^2) dx dy$ over the triangle with the vertices (0,1),	04

Find the volume of the solid generated by rotating the plane region

bounded by $y = \frac{1}{x}$, x=1 and x=3 about the X axis. Evaluate $\int_0^{\pi} \int_0^{\sin \theta} r \, dr \, d\theta$

Express $f(x) = 2x^3 + 3x^2 - 8x + 7$ in terms of (x-2)

	(c)	Using Gauss-Jordan method find A^{-1} for $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$	07
Q.4	(a)	OR Using Cayley-Hamilton Theorem find A^{-1} for $A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$	03
	(b)	Evaluate $\int_0^\infty \frac{dx}{x^2+1}$	04
	(c)	Test the convergence of the series $\frac{x}{1\cdot 2} + \frac{x^2}{3\cdot 4} + \frac{x^3}{5\cdot 6} + \frac{x^4}{7\cdot 8} + \cdots$	07
Q.5	(a)	Evaluate $\int_0^1 \int_1^2 xy dy dx$	03
	(b)	Find the eigen values and eigenvectors of the matrix $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & 2 \end{bmatrix}$	04
	(c)	If $u = f(x-y, y-z, z-x)$ then show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$	07
0.5	(a)	OR Find the directional derivatives of $f = xy^2 + yz^2$ at the point (2,-1,1), in	03
Q.S	(a)	the direction of $i+2j+2k$.	03
	(b)	Test the convergence of the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2+1}$	04
	(c)	Evaluate $\iiint xyz dx dy dz$ over the positive octant of the sphere $x^2 + y^2 + z^2 = 4$	07
