AMENDMENTS TO THE CLAIMS

This listing of claims replaces all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS

1. (previously presented) A method of electroplating an alloy comprising nickel, cobalt, and boron comprising:

providing an electroplating bath comprising an anode, a cathode, water, ionic nickel, ionic cobalt, an amine-borane compound selected from the group consisting of dimethylamine borane, t-butylamine borane, and hydrates thereof, and at least one acetylenic brightener; and

applying a current to the electroplating bath whereby the alloy comprising nickel, cobalt, and boron forms on the cathode.

- 2. (previously presented) The method of claim 1, wherein the electroplating bath further comprises at least one sulfur containing brightener selected from the group consisting of sulfinic acids, sulfonic acids, aromatic sulfonates, aromatic sulfinates, sulfonamides, sulfonimides, sulfimides, and sulfo-betaines.
- 3. (previously presented) The method of claim 1, wherein the acetylenic brightener is selected from the group consisting of acetylenic alcohols, acetylenic amines, acetylenic esters, acetylenic sulfonic acids and sulfonates, alkoxylated acetylenic alcohols, and acetylenic carboxylic acids.
- 4. (currently amended) The method of claim 1, wherein the electroplating bath comprises about 40 g/l or more and about 100 g/l or less of ionic nickel, about 1 g/l or more and about 30 g/l or less of ionic cobalt, about 0.2 g/l or more and about 10 g/l or

less of the amine-borane compound, and from about 0.001 % to about 5 % by weight of the at least one acetylenic brightener.

- 5. (previously presented) The method of claim 1, wherein the electroplating bath has a pH from about 2 to about 6 and a temperature from about 10 °C to about 90 °C, and a current density of about 1 ASF or more and about 500 ASF or less is applied to the electroplating bath.
- 6. (currently amended) The method of claim 1, wherein the electroplating bath is provided by combining water; at least one nickel compound selected from the group consisting of nickel acetate, nickel acetylacetonate, nickel ethylhexanoate, nickel carbonate, nickel formate, nickel nitrate, nickel oxalate, nickel sulfate, nickel sulfamate, nickel sulfide, nickel chloride, nickel fluoride, nickel iodide, nickel bromide, nickel oxide, nickel tetrafluoroborate, nickel phosphide, and hydrates thereof; at least one cobalt compound selected from the group consisting of cobalt acetate, cobalt acetylacetonate, cobalt ethylhexanoate, cobalt carbonate, cobalt nitrate, cobalt oxalate, cobalt sulfate, cobalt chloride, cobalt fluoride, cobalt hydroxide, cobalt iodide, cobalt bromide, cobalt oxide, cobalt boride, cobalt tetrafluoroborate, and hydrates thereof; an the amineborane compound selected from the group consisting of dimethylamine borane, t-butylamine borane, and hydrates thereof; and the at least one acetylenic brightener.
- 7. (original) The method of claim 1, wherein the anode comprises at least one of nickel, cobalt, boron, iridium oxide, platinum, titanium, graphite, carbon, and platinum-titanium.
- 8. (original) The method of claim 1, wherein the nickel cobalt boron alloy comprises about 2 % by weight or less of components other than nickel, cobalt, and boron.

9. (previously presented) A method of forming an alloy comprising nickel, cobalt, and boron comprising:

providing an electroplating bath comprising an anode, a cathode, water, about 40 g/l or more and about 100 g/l or less of ionic nickel, about 1 g/l or more and about 30 g/l or less of ionic cobalt, and about 0.1 g/l or more and about 10 g/l or less of platable boron from an amine-borane compound selected from the group consisting of dimethylamine borane, t-butylamine borane, and hydrates thereof, and from about 0.005 % to about 2.5 % by weight of at least one acetylenic brightener; and

applying a current to the electroplating bath whereby the alloy comprising nickel, cobalt, and boron forms on the cathode.

- 10. (previously presented) The method of claim 9, wherein the electroplating bath has a pH from about 3 to about 5 and a temperature from about 30 °C to about 80 °C, and a current density of about 10 ASF or more and about 200 ASF or less is applied to the electroplating bath.
- 11. (previously presented) The method of claim 9, wherein the electroplating bath further comprises at least one sulfur containing brightener selected from the group consisting of sulfinic acids, sulfonic acids, aromatic sulfonates, aromatic sulfinates, sulfonamides, sulfonimides, sulfinides, and sulfo-betaines.
- 12. (previously presented) The method of claim 9, wherein the acetylenic brightener is selected from the group consisting of acetylenic alcohols, acetylenic amines, acetylenic esters, acetylenic sulfonic acids and sulfonates, alkoxylated acetylenic alcohols, and acetylenic carboxylic acids.
- 13. (previously presented) The method of claim 11, wherein the sulfur containing brightener is a sulfo-betaine brightener.

14. (canceled)

15. (previously presented) The method of claim 9, wherein the electroplating bath further comprises at least one organic brightener selected from the group consisting of ethylenic alcohols, coumarins, aldehydes, compounds containing a $C \equiv N$ linkage, and heterocyclics.

16. - 22. (canceled)

- 23. (previously presented) The method of claim 1, wherein the acetylenic brightener is selected from the group consisting of ethoxylated butynediol; 2-butyne-1,4-diol; propargyl alcohol; ethoxylated propargyl alcohol; hydroxyethyl propynyl ether; beta-hydroxypropyl, propynyl ether; gamma-propynyloxy, bis-beta-hydroxyethyl ether 2-butyn-1,4-diol; bis-beta-hydroxypropyl ether 2-butyn-1,4-diol; 1,4-di-(beta-hydroxyethoxy)-2-butyne:
- 1,4-di-(beta-hydroxy-gamma-chloropropoxy)-2-butyne:
- 1,4-di-(beta-gamma-epoxypropoxy)-2-butyne;
- 1,4-di-(beta-hydroxy-gamma-butenoxy)-2-butyne;
- 1,4-di-(2'-hydroxy-4'-oxa-6'-heptenoxy)-2-butyne; 2,4,6-trimethyl N-propargyl pyridinium bromide; 2-methyl-3-butyn-2-ol; 1-(beta-hydroxyethoxy)-2-propyne; and 1-(beta-hydroxypropoxy)-2-propyne.
- 24. (previously presented) The method of claim 9, wherein the acetylenic brightener is selected from the group consisting of ethoxylated butynediol; 2-butyne-1,4-diol; propargyl alcohol; ethoxylated propargyl alcohol; hydroxyethyl propynyl ether; beta-hydroxypropyl, propynyl ether; gamma-propynyloxy, bis-beta-hydroxyethyl ether 2-butyn-1,4-diol; bis-beta-hydroxypropyl ether 2-butyn-1,4-diol; 1,4-di-(beta-hydroxyethoxy)-2-butyne;
- 1,4-di-(beta-hydroxy-gamma-chloropropoxy)-2-butyne:

- 1,4-di-(beta-gamma-epoxypropoxy)-2-butyne;
- 1,4-di-(beta-hydroxy-gamma-butenoxy)-2-butyne;
- 1,4-di-(2'-hydroxy-4'-oxa-6'-heptenoxy)-2-butyne; 2,4,6-trimethyl N-propargyl pyridinium bromide; 2-methyl-3-butyn-2-ol; 1-(beta-hydroxyethoxy)-2-propyne; and 1-(beta-hydroxypropoxy)-2-propyne.

25. (canceled)

26. (previously presented) A method of electroplating an alloy comprising nickel, cobalt, and boron comprising:

providing an electroplating bath comprising an anode, a cathode, water, ionic nickel, ionic cobalt, an amine-borane compound selected from the group consisting of dimethylamine borane, t-butylamine borane, and hydrates thereof, and at least one acetylenic brightener, the electroplating bath has a pH from about 3 to about 5 and a temperature from about 30 °C to about 80 °C; and

applying a current to the electroplating bath whereby the alloy comprising nickel, cobalt, and boron forms on the cathode.

- 27. (previously presented) The method of claim 26, wherein the amine-borane compound comprises dimethylamine borane.
- 28. (currently amended) The method of claim 26, wherein the electroplating bath comprises about 40 g/l or more and about 100 g/l or less of ionic nickel, about 1 g/l or more and about 30 g/l or less of ionic cobalt, about 0.2 g/l or more and about 10 g/l or less of the amine-borane compound, and from about 0.001 % to about 5 % by weight of the at least one acetylenic brightener, and the electroplating bath further comprises at least one sulfur containing brightener selected from the group consisting of sulfinic acids, sulfonic acids, aromatic sulfonates, aromatic sulfinates, sulfonamides, sulfonimides, and sulfo-betaines.

29. (previously presented) The method of claim 26, wherein a current density of about 1 ASF or more and about 500 ASF or less is applied to the electroplating bath.