SoCFlow: Efficient and Scalable DNN Training on SoC-Clustered Edge Servers

Daliang Xu*, Mengwei Xu*, Chiheng Lou, Li Zhang, Gang Huang, Xin Jin, Xuanzhe Liu (*co-primary)

SoC-Cluster

SoC-Cluster

SoC-Cluster

SoC-Cluster is under-utilized

The average CPU usage of more than 95% of SoCs is under 20%

Distributed deep learning training?

Challenges

Scarce network bandwidth.

< 1Gbps

2.3-9.8x latency

104

V11

R18

V11+PS

R18+PS

4 8 12 16 20 24 28 32

Number of Mobile SoCs

Heterogeneous processors with mixed data formats.

INT8 for NPU FP32 for CPU

SoCFlow workflow

- Input the training datasets and the DNN to be trained
- Determines how SoCs will be orchestrated, such as SoC grouping
- Dispatch the training data and model to each SoC
- Perform FP32-based training on CPU, Int8-based training on mobile NPU

SoCFlow

#1: Group-wise parallelism with delayed aggregation.

#2: Data-parallel Mixed- precision Training.

SoCFlow

#1: Group-wise parallelism with delayed aggregation.

#2: Data-parallel Mixedprecision Training.

Group-wise parallelism with delayed aggregation

Key idea: The network capacity of the SoC-Cluster lies somewhere between the high-speed data center and the wireless network

Determine group size (N)

Per-epoch training time is negatively correlated to group number (*N*).

$$T_{epoch} = \frac{NUM_{sample}}{(N*BS_g)} * (T_{train}^{BS_g} * \frac{N}{M} + T_{sync})$$

Convergence accuracy exhibits a negative correlation with group number (N).

- Larger N => A higher convergence accuracy
- > Smaller N => A lower training time

Determine group size

Observation: The training accuracy observed during the initial epoch closely mirrors the behavior of convergence accuracy.

Map logical to physical topologies

Group size != physical PCB SoC size

Map logical to physical topologies

Group size != physical PCB SoC size

The number of logical groups contending for inter-PCB communication.
Inter-

 L_i^{inter}

Mapping goal: find the minimum contention.

$$\min L_i^{\text{inter}}$$
, $\forall i \in PCB$

Integrity-greedy mapping

Key idea: All SoCs of a logical group mapped to a single PCB board will not contend for inter-PCB network communication.

> Step 1: map as many logical groups as possible to physical groups without splitting.

> Step 2: the rest of the logical nodes are mapped in sequence.

> Theorem 1: Integrity-greedy mapping minimizes C.

Theorem 2: Integrity-greedy mapping guarantees that each logical group contends with up to two other logical groups for NIC.

Group-wise communication planning

The maximum value of inter-PCB communication contention is two

Group-wise communication planning

Key idea: We can divide groups with contention into different communication groups (CGs) to communicate separately in sequence to avoid network contention.

Theorem 2 guarantees 2 communication groups at most.

SoCFlow

#1: Group-wise parallelism with delayed aggregation.

#2: Data-parallel Mixed-precision Training.

Data-parallel Mixed-precision Training

Key idea: Compensate the precision loss of INT8-based training by offloading part of the training to the CPU with FP32 format

>Two metrics

 $> \alpha$ – confidence that indicates the error gap between the INT8 model and the FP32 model.

$$\alpha = Cos(< logits_{FP32}, logits_{INT8} >)$$

- $\rightarrow \alpha$ -> 1 => The INT8 Model is more accurate.
- \triangleright α -> 1 => More training data should be fed into the INT8 model.

Data-parallel Mixed-precision Training

Key idea: Compensate the precision loss of INT8-based training by offloading part of the training to the CPU with FP32 format

- >Two metrics
 - $> \beta$ compute power ratio that represents the ratio of compute power for heterogeneous processors

$$\beta = \frac{T_{NPU}}{T_{NPU} + T_{CPU}}$$

- \triangleright β -> 1 => NPU is more powerful.
- \geqslant β -> 1 => More training data should be fed into the INT8 model.

Data-parallel Mixed-precision Training

Key idea: Compensate the precision loss of INT8-based training by offloading part of the training to the CPU with FP32 format

> Jointly consider two metrics

$$> \gamma = \max\{e^{-\alpha}, 1 - \beta\}$$

> Aggregation rule: $w_{i+1} = \gamma * w_{i+1}^{FP32} + (1 - \gamma) * w_{i+1}^{INT8}$

Evaluation: settings

> Models and datasets

Model	Dataset	Learning methods
LeNet	FMNIST and Fashion-MNIST	From scratch
VGG-11	CIFAR-10 and CelebA	
ResNet-18	CIFAR-10 and CelebA	
MobileNet-V1	CIFAR-10	
ResNet-50	CINIC-10	Transfer learning

- > SoC-Cluster
 - > SnapDragon 865 SoC x 60
- > Baselines
 - > 4 Distributed machine learning baselines
 - 2 industry baselines : Parameter server and Ring-AllReduce
 - 2 SOTA research baselines: HiPress [SOSP 21] and 2D parallelism [ASPLOS 23]
 - > 2 Federated learning baselines: FedAvg and Tree FedAvg

Evaluation: End-to-end Performance

Only SoCFlow can guarantee that all training tasks finish within two hours smaller than the SoC-Cluster idle time.

Evaluation: Comparison with Cloud GPUs

SoCFlow are more suitable for training small-to-medium size models (MobileNet) than Cloud GPUs.

Reduce 10.2×
Energy consumption

Simpler cooling system

1/2 volume

Take-away

Propose first efficient DNN training engine for SoC-Clusters

Incorporate group-wise parallelism and data-parallel mixed-precision training

Build prototype and achieve superior performance over existing methods

xudaliang@pku.edu.cn

website https://daliangxu.github.io/

More about our affordable AI systems: http://www.liuxuanzhe.com