

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
И
ПРОЦЕССЫ УПРАВЛЕНИЯ
N. 3, 2021
Электронный журнал,
per. Эл № ФС77-39410 om 15.04.2010
ISSN 1817-2172

<u>http://diffjournal.spbu.ru/</u> e-mail: <u>jodiff@mail.ru</u>

Общая теория управления

К регулированию неопределенных нелинейных динамических объектов непрерывным управлением

Уланов Б.В.

Тольяттинский государственный университет

bv_ulanov@mail.ru

Аннотация. Предлагается алгоритм синтеза непрерывного скалярного управления, регулирующего неопределенный нелинейный динамический объект так, что все решения системы дифференциальных уравнений, описывающей замкнутую систему, ограничены и вектор состояния объекта асимптотически стремится к нулю. Объект описывается системой нелинейных обыкновенных дифференциальных уравнений с неопределенными правыми частями. Исходное непрерывное нелинейное управление понижает размерность задачи и вводит новую управляющую функцию — адаптивное управление, которое решает задачу регулирования управляемой системы пониженного порядка. Проведено исследование поведения решений замкнутой системы.

Ключевые слова: неопределенный динамический объект, система нелинейных обыкновенных дифференциальных уравнений, непрерывное управление, регулирование, порядок объекта, адаптивное управление.

1. Введение

В [1] задача регулирования неопределенного нелинейного динамического объекта с помощью непрерывного управления решается за счет такого выбора некоторых постоянных параметров, от которых зависит закон управления и их значения определяются из условия устойчивости (что и позволяет решить исходную задачу регулирования) нулевого решения некоторой системы линейных дифференциальных уравнений (системы с меньшим порядком, чем порядок исходного управляемого объекта) с известной матрицей коэффициентов. Описание исходного управляемого динамического объекта может быть настолько неполным, что эти коэффициенты системы линейных дифференциальных уравнений пониженного порядка, используемой в [1], неизвестны.

Для решения задачи регулирования в последнем случае в настоящей работе предлагается и исследуется алгоритм синтеза непрерывного управления с применением методов адаптивного управления [2]. В [3] для обеспечения решения задачи регулирования нелинейного объекта непрерывным управлением предполагается полное знание некоторой системы (с порядком, меньшим, чем порядок динамического объекта) дифференциальных уравнений, которые могут быть нелинейными (в отличие от [1] с использованием линейной системы пониженного порядка) и определяются правыми частями уравнений объекта, но отсутствие полной информации об этой системе может не позволить решить задачу регулирования. В отличие от [1,3], в настоящей работе решается задача регулирования неопределенного нелинейного динамического объекта непрерывным управлением в случае, когда правые части всех дифференциальных уравнений, описывающих объект управления, могут быть не определены полно.

2. Постановка задачи

Рассмотрим управляемый нелинейный динамический объект

$$\frac{dx}{dt} = Ax + bx_{n+1}, \quad \frac{dx_{n+1}}{dt} = f(\overline{x}, t) + h(\overline{x}, t)u, t \ge t_{0}, \tag{1}$$

где вектор-столбец $x \in R^n$, $x_{n+1} \in R$, $\overline{x} = (x^T, x_{n+1})^T$ — вектор состояния объекта (1), $u \in R$ — управление; постоянные $n \times n$ -матрица A, n-вектор b и непрерывные функции f и h неизвестны.

Далее обозначаем
$$\|\Lambda\|=\max_{j=1,\dots,q}\sum_{i=1}^p\left|\lambda_{ij}\right|$$
 для $\Lambda=\left(\lambda_{ij}\right)_{i,j=1}^{i=p,j=q}$.

Сделаем предположения: 1) $\|A\| \le a$, $\|b\| \le d$; 2) $|f(\overline{x},t)| \le \varphi(\overline{x}) \|\overline{x}\|$ и $0 < \Delta \le |h(\overline{x},t)| \le \psi(\overline{x})$ для $\forall \overline{x} \in R^{n+1}$ и $\forall t \ge t_0$; 3) числа a, d, Δ , $\sigma = sgn\ h(\overline{x},t)$ и непрерывные функции φ и ψ известны. Предполагаем, что начальное состояние объекта $\overline{x}(t_0) \in \Omega_0 \subset R^{n+1}$, где Ω_0 — любое заданное ограниченное множество.

Решаемая задача регулирования объекта (1) состоит в синтезе непрерывного управления $u=u(\overline{x},t)$, при котором при любом $\overline{x}(t_0)\epsilon\Omega_0$ решение получаемой при синтезе управления системы дифференциальных уравнений (замкнутой системы) будет ограниченным на $[t_0,\infty)$ и для этого решения $\|\overline{x}(t)\| \to 0$ при $t \to \infty$.

3. Алгоритм управления

Для решения задачи предлагается синтезировать u по алгоритму:

$$u = u_0 = (k(\overline{x}) + l ||c^T(t)|| \cdot ||\overline{x}||)\mu - \lambda s, \tag{2}$$

$$s = x_{n+1} - u_1, \qquad u_1 = c^T(t)x,$$
 (3)

 $c(t)\equiv 0$ на $[t_0,\overline{t}),$ если $|s(t)|>\delta_0\|\overline{x}(t)\|$ на $[t_0,\overline{t})$ (здесь возможно $\overline{t}=\infty$), и c(t) – решение дифференциального уравнения

$$\frac{dc(t)}{dt} = -(g^T x)\Gamma x, c(\overline{t}) = 0, t \ge \overline{t},$$
(4)

начиная с момента времени $\overline{t} \geq t_0$, в который окажется $\left| s(\overline{t}) \right| \leq \delta_0 \|\overline{x}(\overline{t})\|;$

$$\frac{d\mu}{dt} = -\alpha \left(\xi(\overline{x}) + \|c^T(t)\| \zeta_1(\overline{x}) + \|c^T(t)\|^2 \zeta_2(\overline{x}) \right) (\mu + sgn s), \tag{5}$$

причем

$$\mu(t_0) = -sgn \, s(t_0)$$
 при $s(t_0) \neq 0$ и $|\mu(t_0)| \leq 1$ при $s(t_0) = 0$. (6)

В (2) – (5) c(t) – n-вектор-функция со значениями в R^n при всех $t \ge t_0$. В алгоритме (2) – (6) подлежат выбору числа $\alpha > 0$, $\delta_0 > 0$, l, λ , непрерывные функции k, ξ , ζ_1 , ζ_2 (причем ξ , ζ_1 и ζ_2 неотрицательны), постоянные n-вектор g и положительно определенная $n \times n$ -матрица $\Gamma = \Gamma^T$.

Замкнутую систему (1) – (6) обозначим S. Решение $(\overline{x}(t), c(t), \mu(t))$ системы S понимаем в смысле [4] (так как (1) – (6) дают систему дифференциальных уравнений с разрывной правой частью, ввиду наличия в (5) функции $sgn\ s$). В силу (5), (6) и условий на величины, входящие в (5), для всякого решения системы S будет $|\mu(t)| \le 1$ при всех $t \ge t_0$.

В условиях дальнейших теорем и предположений о выборе n-вектора g и $n \times n$ -матрицы Γ решения системы S будут определены на $[t_0, \infty)$ (так как каждое решение системы S будет ограничено на $[t_0, \infty)$).

4. Теорема 1 и ее доказательство

Следующая теорема определяет условия, при которых для решений системы S возможно с некоторого момента времени выполнение неравенства $|s(t)| \le \delta ||\overline{x}(t)||$, где $\delta > 0$ — некоторое число.

Теорема 1. Пусть выполнены предположения 1) - 3) и выполняются условия:

$$\alpha = const > 0, \delta - const > 0, \tag{7}$$

$$\sigma = sgn \ h(\overline{x}, t) - const, \ \lambda = const \ \mu \lambda \sigma > 0, \tag{8}$$

$$0 < \gamma = const < 1, \tag{9}$$

$$k(\overline{x})(1-\gamma)\sigma\Delta \ge |g^Tx| \cdot (x^T \Gamma x) + \varphi(\overline{x})||\overline{x}|| + \delta(a||\overline{x}|| + d||x_{n+1}||); \tag{10}$$

$$l = const$$
 и $l\sigma > 0$, $l(1-\gamma)\sigma\Delta \ge \alpha + d$; (11)

$$|k(\overline{x})| \le p(\overline{x}) \|\overline{x}\|$$
, где $p(\overline{x})$ — некоторая известная функция; (12)

$$\xi(\overline{x}) \ge |g^T x| \cdot ||\Gamma x|| + (1 + \delta)\varphi(\overline{x}) + ((1 + \delta)p(\overline{x}) + |\lambda|\delta)\psi(\overline{x}) + \delta(a + \delta d), \tag{13}$$

$$\zeta_1(\overline{x}) \ge a + 2\delta d + \varphi(\overline{x}) + (p(\overline{x}) + |l|(1+\delta))\psi(\overline{x}),\tag{14}$$

$$\zeta_2(\overline{x}) \ge d + |\lambda|\psi(\overline{x});$$
 (15)

$$\delta_0 - const > 0, \ \delta_0 + \frac{2 - \gamma}{\gamma \alpha} < \delta.$$
 (16)

Тогда для всякого решения системы S будет $\|\overline{x}(t)\| \to 0$ и $s(t) \to 0$ при $t \to \infty$ или $\exists \overline{t} : |s(\overline{t})| \le \delta_0 \|\overline{x}(\overline{t})\|$ и при этом $|s(t)| \le \delta \|\overline{x}(t)\|$ при $t \ge \overline{t}$ (здесь союз «или» не исключающий).

Замечание. Для доказательства утверждения о том, что $|s(t)| \le \delta \|\overline{x}(t)\|$ при $t \ge \overline{t}$, если $|s(\overline{t})| \le \delta_0 \|\overline{x}(\overline{t})\|$, сформулированного в теореме, с целью выбора более простых, на наш взгляд, рассуждений (раскрывающих назначение неравенств в (7) – (16)) будет использоваться метод, примененный в [1], который предложен и разработан в [5], а не метод из [3] с использованием эвристически сконструированной для исследования вспомогательной функции, введенной в [3]. Однако метод из [3] также можно было бы применить для доказательства утверждения теоремы настоящей работы с некоторым изменением неравенств из условий теоремы 1. Отметим также, что используемая норма векторов и матриц в настоящей работе и в [1,5] отлична от используемой нормы в [3].

Доказательство теоремы 1

Далее будем рассматривать производную ds(t)/dt при $t \ge t_0$, вычисляемую вдоль решений системы S. Для каждого решения существует момент времени \overline{t} (конечный или $\overline{t} = \infty$), описанный в задании алгоритма (2) - (6). С целью записи одной формулы для ds(t)/dt на всем промежутке $[t_0, \infty)$ далее будем использовать функцию $\chi(t) = 0$ при $t \in [t_0, \overline{t})$ и $\chi(t) = 1$ при $t \ge \overline{t}$ с \overline{t} , соответствующим конкретному решению, как сказано выше. Функция $\chi(t)$ появляется в слагаемых, в формуле для которых есть g и Γ .

Решение системы S с $\overline{x}(t) \equiv 0$ на $[t_0, \infty)$ существует в силу предположения 2) для $f(\overline{x}(t), t)$, уравнений (1)-(6) и условия (12). Для решения системы S с $\overline{x}(t) \equiv 0$ на $[t_0, \infty)$ доказывать нечего.

Рассмотрим решение $(\overline{x}(t), c(t), \mu(t))$ системы S. Предполагаем, что для него $\|\overline{x}(t)\| \neq 0$ для $\forall t \geq t_0$. Предположим, что для этого решения выполняется свойство $|s(t)| > \delta_0 \|\overline{x}(t)\|$ при всех $t \geq t_0$. Рассмотрим случай, когда s(t) > 0 при $t \geq t_0$ (случай, когда s(t) < 0 при $t \geq t_0$, рассматривается аналогично).

В соответствии с уравнениями движения (1) – (4) найдем производную функции $s(t) = x_{n+1}(t) - u_1(t)$:

$$\frac{ds(t)}{dt} = f(\bar{x}(t), t) + h(\bar{x}(t), t)(\left(k(\bar{x}(t)) + l\|c^{T}(t)\| \cdot \|\bar{x}(t)\|\right)\mu(t) - \lambda s(t) + \chi(t)\left(g^{T}x(t)\right) \cdot \left(x^{T}(t)\Gamma x(t)\right) - c^{T}(t)(Ax(t) + bx_{n+1}(t)).$$

$$(17)$$

Так как рассматривается случай, когда s(t)>0 при $t\geq t_0$, то в силу (5) (с учетом знаков величин, входящих в (5)), (6) будет $\mu(t)=-1$ при $t\geq t_0$. Тогда выражение (17) для производной ds(t)/dt приобретает вид

$$\frac{ds(t)}{dt} = f(\bar{x}(t), t) + h(\bar{x}(t), t)(\left(k(\bar{x}(t)) + l\|c^T(t)\| \cdot \|\bar{x}(t)\|\right) \cdot (-1) - \lambda s(t)) +$$
(18)

$$+\chi(t)\big(g^Tx(t)\big)\cdot\big(x^T(t)\Gamma x(t)\big)-c^T(t)\big(Ax(t)+bx_{n+1}(t)\big)=-\lambda h(\bar x(t),t)s(t)-$$

$$-\left(h(\bar{x}(t),t)\cdot k(\overline{x}(t))-f(\bar{x}(t),t)-\chi(t)\big(g^Tx(t)\big)\cdot \big(x^T(t)\Gamma x(t)\big)\right)-$$

$$-\left(h(\bar{x}(t),t)\cdot l\|c^T(t)\|\cdot\|\overline{x}(t)\|-c^T(t)(Ax(t)+bx_{n+1}(t))\right).$$

В (18) при $t \ge t_0$ будет

$$-\lambda h(\bar{x}(t), t)s(t) \le -(\lambda \sigma \Delta)s(t)$$

в силу предположения 2) на $h(\overline{x},t)$ и условий (8), причем $\lambda \sigma \Delta = const > 0$;

$$h(\bar{x}(t),t) \cdot k(\bar{x}(t)) - f(\bar{x}(t),t) - \chi(t)(g^Tx(t)) \cdot (x^T(t)\Gamma x(t)) \ge 0$$

в силу предположения 2) и условий (8) - (10) (при этом было бы достаточно, когда в (10) множителя $(1 - \gamma)$ нет, но этот множитель понадобится в дальнейшем);

$$h(\bar{x}(t), t) \cdot l \|c^{T}(t)\| \cdot \|\bar{x}(t)\| - c^{T}(t) (Ax(t) + bx_{n+1}(t)) \ge 0$$

в силу предположений 1), 2) и условий (11) (при этом было бы достаточно, когда в (11) множителя $(1-\gamma)$ нет, но этот множитель понадобится в дальнейшем).

В силу фактов, отмеченных выше, и того, что по предположению $|s(t)| > \delta_0 \|\overline{x}(t)\|$ при $t \ge t_0$, получаем, что при всех $t \ge t_0$

$$\delta_0 \|\overline{x}(t)\| < s(t) = s(t_0) + \int_{t_0}^t \frac{ds(\theta)}{d\theta} d\theta \le s(t_0) + \int_{t_0}^t (-\lambda \sigma \Delta) s(\theta) d\theta;$$
(19)

откуда, во-первых, $s(t) \to 0$ при $t \to \infty$ (в силу неравенства Гронуолла-Беллмана) и, во-вторых, $\|\overline{x}(t)\| \to 0$ при $t \to \infty$.

Для доказательства того, что $|s(t)| \le \delta \|\overline{x}(t)\|$ при $\forall t \ge \overline{t}$, если $|s(\overline{t})| \le \delta_0 \|\overline{x}(\overline{t})\|$ при некотором $\overline{t} \ge t_0$, вначале рассмотрим ситуацию, когда $|s(t_1)| = \delta_0 \|\overline{x}(t_1)\|$ при некотором $t_1 \ge t_0$ и $|s(t_2)| = \delta \|\overline{x}(t_2)\|$ при некотором $t_2 > t_1$, причем $\delta_0 \|\overline{x}(t)\| \le |s(t)| < \delta \|\overline{x}(t)\|$ при $\forall t \in [t_1, t_2)$. Докажем, что в этой ситуации $|\mu(t_2)| \ge 1 - \gamma$ и $sgn \mu(t_2) = -sgn s(t_2)$.

Рассмотрим случай s(t)>0 при $\forall t \in [t_1,t_2]$ (случай, когда s(t)<0 при $\forall t \in [t_1,t_2]$, рассматривается аналогично).В этом случае нужно доказать, что $sgn\ \mu(t_2)=-1$ и $|\mu(t_2)|\geq 1-\gamma$, то есть $-1\leq \mu(t_2)\leq -1+\gamma$. Для доказательства этого предположим противное, то есть то, что $-1+\gamma<\mu(t_2)\leq 1$. Но в рассматриваемом случае (s(t)>0 при $t\in [t_1,t_2]$) в соответствии с уравнением (5) имеем $d\mu(t)/dt\leq 0$ для $\forall t\in [t_1,t_2]$ и, следовательно, $\mu(t_2)\leq \mu(t)$ для $\forall t\in [t_1,t_2]$; поэтому при сделанном предположении получаем $-1+\gamma\leq \mu(t)\leq 1$ для $\forall t\in [t_1,t_2]$. Следовательно, в рассматриваемом случае и при сделанном предположении будет $\mu(t)+sgn\ s(t)=\mu(t)+1\geq (-1+\gamma)+1\geq \gamma$ для $\forall t\in [t_1,t_2]$; откуда $-\alpha(\mu(t)+sgn\ s(t))\leq -\alpha\gamma$ для $\forall t\in [t_1,t_2]$; далее, в силу уравнения (5) получаем неравенство при $\forall t\in [t_1,t_2]$

$$\frac{d\mu(t)}{dt} \le -\alpha\gamma \left(\xi(\overline{x}(t)) + \|c^T(t)\|\zeta_1(\overline{x}(t)) + \|c^T(t)\|^2 \zeta_2(\overline{x}(t)) \right). \tag{20}$$

Интегрируя неравенство (20) по отрезку $[t_1, t_2]$, получаем

$$\mu(t_2) - \mu(t_1) \le -\alpha \gamma \int_{t_1}^{t_2} \left(\xi(\overline{x}(t) + \|c^T(t)\| \zeta_1(\overline{x}(t)) + \|c^T(t)\|^2 \zeta_2(\overline{x}(t)) \right) dt. \tag{21}$$

Так как $\mu(t_2) - \mu(t_1) > (-1 + \gamma) - 1 = -2 + \gamma$, то из (21) следует

$$-2 + \gamma < -\alpha \gamma \int_{t_1}^{t_2} \left(\xi(\overline{x}(t) + \|c^T(t)\| \zeta_1(\overline{x}(t)) + \|c^T(t)\|^2 \zeta_2(\overline{x}(t)) \right) dt.$$
 (22)

Из (22) получаем оценку

$$\int_{t_1}^{t_2} \left(\xi(\overline{x}(t) + \|c^T(t)\| \zeta_1(\overline{x}(t)) + \|c^T(t)\|^2 \zeta_2(\overline{x}(t)) \right) dt < \frac{2 - \gamma}{\alpha \gamma}. \tag{23}$$

Оценка интеграла в (23) понадобится нам в дальнейшем.

Продолжая доказательство теоремы, рассмотрим соотношение (напомним, что мы предполагаем, что $\|\overline{x}(t)\| \neq 0$ при $\forall t \geq t_0$; далее $\sigma(\theta) = \left(sgnx_1(\theta), \dots, sgnx_{n+1}(\theta)\right)$)

$$\frac{s(t_2)}{\|\overline{x}(t_2)\|} = \frac{s(t_1)}{\|\overline{x}(t_1)\|} + \int_{t_1}^{t_2} \frac{\frac{ds(\theta)}{dt} - \frac{s(\theta)}{\|\overline{x}(\theta)\|} \cdot (\sigma(\theta) \frac{d\overline{x}(\theta)}{dt})}{\|\overline{x}(\theta)\|} d\theta. \tag{24}$$

В рассматриваемой ситуации в (24) $|s(t_1)|/||\overline{x}(t_1)|| \le \delta_0$ и под интегралом в (24) мы имеем $|s(\theta)/||\overline{x}(\theta)||| \le \delta$. Далее, оценивая сверху $|ds(\theta)/dt|$ (с использованием выражения (17) для этой производной) и $|\sigma(\theta)\cdot(d\overline{x}(\theta)/dt)|$ с учетом всех предположений о величинах в уравнениях динамического объекта (1) и уравнений алгоритма (2) – (5), получаем следующее неравенство

$$\frac{|s(t_2)|}{\|\overline{x}(t_2)\|} \le \delta_0 + \int_{t_1}^{t_2} \left(\xi(\overline{x}(t) + \|c^T(t)\| \zeta_1(\overline{x}(t)) + \|c^T(t)\|^2 \zeta_2(\overline{x}(t)) \right) dt. \tag{25}$$

Далее, применяя неравенство (23) и условие теоремы (16), от неравенства (25) переходим к неравенствам

$$\frac{|s(t_2)|}{\|\overline{x}(t_2)\|} \le \delta_0 + \frac{2-\gamma}{\gamma\alpha} < \delta. \tag{26}$$

Из (26) следует, что $|s(t_2)| < \delta \|\overline{x}(t_2)\|$, а это противоречит тому, что, как предположено выше, $|s(t_2)| = \delta \|\overline{x}(t_2)\|$. Полученное противоречие доказывает, что $|\mu(t_2)| \ge 1 - \gamma$ и $sgn\ \mu(t_2) = -sgn\ s(t_2)$, если $|s(t_2)| = \delta \|\overline{x}(t_2)\|$. Заметим, что для решения имеем $\|\overline{x}(t_2)\| \ne 0$ и поэтому $|s(t_2)| \ne 0$. Тогда при t, достаточно близких к t_2 и $t \ge t_2$, s(t) сохраняет знак и при этих t в силу уравнения (5) и знаков величин, входящих в (5), будет $|\mu(t)| \ge 1 - \gamma$ и $sgn\ \mu(t) = -sgn\ s(t)$. Пользуясь этим доказанным фактом, продолжим доказательство теоремы и покажем, что для $\overline{x}(t)$ не может быть $|s(t)| > \delta \|\overline{x}(t)\|$ при $t > t_2$, если $|s(t_2)| = \delta \|\overline{x}(t_2)\|$. Для этого

рассмотрим функцию $\tilde{s}(\overline{x}(t)) = s(t)sgn\ s(t_2) - \delta\tilde{\sigma}\overline{x}(t)$, где $\tilde{\sigma} = (\sigma_1, ..., \sigma_{n+1})$, причем для i=1,...,n+1 будет $\sigma_i=sgn\ x_i(t_2),$ если $x_i(t_2)\neq 0,$ и $\sigma_i=-1$ или $\sigma_i=1,$ если $x_i(t_2)=0.$ Рассмотрим производную функции $\tilde{s}(\overline{x}(t))$. Используя выражение (17) для ds(t)/dt и выражение для $d\overline{x}(t)/dt$ в силу уравнений (1) и оценивая, как это уже делалось выше, эти производные в случае s(t) > 0 (случай, когда s(t) < 0, рассматривается аналогично) при t, достаточно близких к t_2 и $t > t_2$, а затем оценивая производную $d\tilde{s}(\bar{\chi}(t))/dt$ при всевозможных указанных выше значениях $\tilde{\sigma}$, получим (при этом существенно важным будет наличие множителя $(1-\gamma)$ в условий неравенствах (10)(11)),при выполнении $d\tilde{s}(\overline{x}(t))dt \leq (-\lambda\sigma\Delta)s(t) < 0$ при всех t, достаточно близких к t_2 и $t>t_2$, при которых s(t) не меняет знака, и всевозможных допустимых $\tilde{\sigma}$. Так как $\tilde{s}(\overline{x}(t_2)) = 0$ (ибо $|s(t_2)| = \delta ||\overline{x}(t_2)||$) при всевозможных значениях $\tilde{\sigma}$, то получаем $\tilde{s}(\overline{x}(t)) \leq 0$ для всевозможных допустимых $\tilde{\sigma}$ заведомо при $t(>t_2)$, достаточно близких к t_2 . При таких t в рассматриваемом случае $\tilde{s}(\overline{x}(t)) = |s(t)|$ — $\delta \tilde{\sigma} \overline{x}(t) \leq 0$ для всевозможных допустимых $\tilde{\sigma}$, а отсюда получим, что $|s(t)| \leq \delta \tilde{\sigma} \overline{x}(t) \leq$ $\delta \|\overline{x}(t)\|$ при $t(>t_2)$, достаточно близких к t_2 . Итак, $|s(t)| \le \delta \|\overline{x}(t)\|$ при таких t. Проведенные рассуждение доказывают, что для $\overline{x}(t)$ будет $|s(t)| \le \delta \|\overline{x}(t)\|$ при $t \ge t_2$, если $|s(t_2)| =$ $\delta \| \overline{x}(t_2) \|$.

Все доказанные факты доказывают теорему 1.

Теорема 1 доказана.

4. Выбор g и Γ в алгоритме

Далее будем применять результаты из [2]. Пусть g и Γ в (4) выбраны согласно методике, подробно описанной в [2, стр. 386 — 388] (предполагаем, что условия существования таких g и Γ из теоремы 7.2.1 [2, стр. 387] выполнены; а именно, предполагаем, что для любой неизвестной рассматриваемой нами матрицы A в (1) из множества допустимых матриц A и любого неизвестного рассматриваемого нами вектора b в (1) из множества допустимых векторов b числитель правильной дробно-рациональной функции $g^T(\lambda E - A^{-1})b$ является гурвицевым полиномом степени n-1 с положительными коэффициентами [2]). Тогда в соответствии с результатами [2] для объекта

$$\frac{dx}{dt} = Ax + bu_1 \tag{27}$$

при u_1 из (3) – (4), то есть

$$u_1 = c^T(t)x, \frac{dc(t)}{dt} = -(g^T x)\Gamma x, \tag{28}$$

существует функция Ляпунова в виде квадратичной формы от x и c с постоянными коэффициентами вида (см. [2, стр. 387])

$$V(x,c) = x^{T}Hx + (c - c_{*})^{T}H_{1}(c - c_{*}),$$
(29)

где $H = H^T > 0 - n \times n$ -матрица, $H_1 = H_1^T > 0 - n \times n$ -матрица и вектор c_* , такие, что

$$HA_* + A_*^T H > 0, Hb = g, A_* = A + bc_*^T$$

в соответствии с (2.8) на стр. 386 из [2]; причем для производной функции (29) по t в силу уравнений (27), (28) будет $dV(x(t),c(t))/dt \le -(1/2)x^T(t)Hx(t)$ при всех t [2]. Далее в работе

предполагаем, что g и Γ выбраны (для использования в (4)) с использованием результатов [2], как описано выше, не всегда оговаривая это повторно.

5. Теорема 2 и ее доказательство

Теорема 2. Пусть выполнены условия теоремы 1, а g и Γ выбраны в (4), как описано выше с использованием результатов из [2]. Тогда существует число Δ_0 , $0 < \Delta_0 < 1$, такое, что при любом δ (с которым выполнены условия теоремы 1), $0 < \delta \leq \Delta_0$, для любого решения $(\overline{x}(t), c(t), \mu(t))$ системы S с $\overline{x}(t_0) \epsilon \Omega_0$ будет $\|\overline{x}(t)\| \to 0$ при $t \to \infty$ и тем самым решена рассматриваемая задача регулирования для объекта (1).

Для реального объекта регулирования число δ может быть выбрано с использованием теоремы 1 и моделирования реального объекта или экспериментирования на реальном объекте.

Доказательство теоремы 2

Для доказательства теоремы 2 сформулируем и докажем следующие вспомогательные утверждения.

Лемма 1. При выполнении условий теоремы 1 для любого множества $\Omega_0 \subset R^{n+1}$ существует ограниченное множество $\Omega \subset R^{n+1}$, такое, что для любого решения $(\overline{x}(t), c(t), \mu(t))$ системы S, для которого $\overline{x}(t_0) \in \Omega_0$ и существует конечное \overline{t} , указанное в задании алгоритма (2) - (6) (то есть при котором $|s(\overline{t})| \leq \delta_0 ||\overline{x}(\overline{t})||$ и $\delta_0 ||\overline{x}(t)|| < |s(t)||$ при $\forall t \in [t_0, \overline{t})$, будет $\overline{x}(\overline{t}) \in \Omega$.

Доказательство леммы 1. В самом деле, для всех решений системы S с $\overline{x}(t_0) \in \Omega_0$ при ограниченном множестве Ω_0 значения $s(t_0)$ содержатся в некотором ограниченном числовом множестве и поэтому при выполнении условий теоремы 1 для решения системы S, рассматриваемого в лемме 1, в силу первого неравенства в (19) (для неравенства (19) рассматривался случай $s(t_0) > 0$; случай, когда $s(t_0) < 0$, рассматривается аналогично), рассматриваемого на $[t_0, \overline{t})$, будет $\delta_0 \|\overline{x}(t)\| < |s(t_0)|$ при $t \in [t_0, \overline{t})$; следовательно, $\|\overline{x}(t)\| \le |s(t_0)|/\delta_0$ при $t \in [t_0, \overline{t})$ и в силу непрерывности функций будет $\|\overline{x}(t)\| \le |s(t_0)|/\delta_0$ при $t \in [t_0, \overline{t}]$ а в силу ограниченности возможных значений $|s(t_0)|$ будут ограничены и $\|\overline{x}(\overline{t})\|$ для всех соответствующих решений. Лемма 1 доказана.

Лемма 2. Существуют числа $\varepsilon_0 > 0$ и $C_0 > 0$, такие, что для $\forall \varepsilon, 0 < \varepsilon \leq \varepsilon_0$, и любого решения $(\overline{x}(t), c(t), \mu(t))$ системы $S \subset \overline{x}(t_0) \in \Omega_0$, для которого существует конечное \overline{t} , указанное в задании алгоритма (2) - (6), и $|s(t)| \leq \varepsilon ||x(t)||$ при $t \geq \overline{t}$, будет $||c^T(t)|| \leq C_0$ при $t \geq \overline{t}$.

Доказательство леммы 2. При выбранных g и Γ , как описано выше, рассмотрим решение $(\overline{x}(t),c(t),\mu(t))$ системы S с $\overline{x}(t_0)\epsilon\Omega_0$ и предположим, что для него при некотором конечном \overline{t} ($\overline{t}\geq t_0$) выполняется неравенство $|s(t)|\leq \varepsilon\|x(t)\|$ при $t\geq \overline{t}$, где ε – некоторая положительная постоянная, возможные значения которой будут уточнены далее. Учитывая, что согласно (3) имеем $s=x_{n+1}-u_1$, получаем $x_{n+1}=u_1+s$ и, подставляя это x_{n+1} в первое уравнение из (1), находим, что для компоненты x(t) этого решения при $t\geq \overline{t}$ будет выполняться векторное соотношение

$$\frac{dx(t)}{dt} = Ax(t) + bu_1(t) + bs(t), \tag{30}$$

где $|s(t)| \le \varepsilon ||x(t)||$ при $t \ge \overline{t}$.

Векторное соотношение (30) можно преобразовать к виду

$$\frac{dx(t)}{dt} = \tilde{A}x(t) + bu_1(t),\tag{31}$$

где $\tilde{A}(t)=(\tilde{a}_{ij}(t)),$ причем $\tilde{a}_{ij}(t)=a_{ij}+\Delta a_{ij}(t),\ \Delta a_{ij}(t)=b_i\theta_{ij}(t)$ и $\theta_{ij}(t)$ — некоторые функции, обладающие свойством $\left|\theta_{ij}(t)\right|\leq \varepsilon$ при $t\geq \overline{t}.$ Коэффициенты матрицы

 $\tilde{A}(t)$ можно рассматривать как аддитивное нестационарное возмущение коэффициентов матрицы A с параметрическими возмущениями $\Delta a_{ij}(t)$. Для параметрических возмущений $\Delta a_{ij}(t)$ выполняются следующие неравенства $|\Delta a_{ij}(t)| \leq |b_i| \varepsilon$ (причем правые части в этих неравенствах могут быть сколь угодно малыми при достаточно малом ε поскольку по предположению 1) $||b|| \leq d$ и d – известное число) при всех $t \geq \overline{t}$ и любых $i,j=1,\ldots,n$.

Далее, находим производную функции Ляпунова (29) в силу системы (28), (31), и, пользуясь тем, что в производной функции Ляпунова (29) параметрические возмущения появятся в тех слагаемых, которые содержат dx(t)/dt (а dx(t)/dt появляется только в слагаемых, содержащих множитель H), а также пользуясь свойствами положительно определенных матриц и оценками их значений, получим, что существует число $\varepsilon_0 > 0$ (причем ε_0 могло бы быть оценено, если бы матрицы A, b, H в (27), (29) были бы известны, с использованием наименьшего собственного числа матрицы H) и некоторые положительное число ρ и положительно определенная матрица Q, такие, что для производной функции (29) по t в силу уравнений (28), (31) при любом положительном $\varepsilon \le \varepsilon_0$ будет $dV(x(t), c(t))/dt \le -\rho x^T(t)Qx(t)$ при $t \ge \overline{t}$. Поэтому в силу теоремы 2.4.1 из [2, стр. 84 — 85] для решений системы (28), (31) будет $\|x(t)\| \to 0$ при $t \to \infty$ и, кроме того,

$$V(x(t), c(t)) \le V(x(\overline{t}), c(\overline{t}))$$
 при $t \ge \overline{t}$. (32)

Так как рассматриваем решения $(\overline{x}(t),c(t),\mu(t))$ системы S с $\overline{x}(t_0)\epsilon\Omega_0$, для которых существует конечное \overline{t} , указанное в задании алгоритма (2)-(6), то по лемме 1 $\overline{x}(\overline{t})\epsilon\Omega$, где Ω – некоторое ограниченное множество. Тогда все $x(\overline{t})$, для которых $\overline{x}(\overline{t})\epsilon\Omega$ образуют ограниченное множество W. В силу (32) решения (x(t),c(t)) системы (28), (31), для которых $(x(\overline{t}),c(\overline{t}))\epsilon W\times\{0\}$ будут принадлежать при $t\geq \overline{t}$ некоторому ограниченному множеству Z, а поэтому существует постоянная C_0 , такая, что для всех этих решений будет $\|c^T(t)\| \leq C_0$ при всех $t\geq \overline{t}$. Лемма 2 доказана.

Лемма 3. Существует число Δ_0 , $0<\Delta_0<1$, такое, что при любом δ , $0<\delta\leq\Delta_0$, для которого выполнены условия теоремы 1, и для любого решения $(\overline{x}(t),c(t),\mu(t))$ системы S с $\overline{x}(t_0)\epsilon\Omega_0$, для которого существует конечное \overline{t} , указанное в задании алгоритма (2)-(6), будет выполняться неравенство $|s(t)|\leq \varepsilon ||x(t)||$ при $t\geq \overline{t}$ с некоторым $\varepsilon \epsilon(0,\varepsilon_0]$, где ε_0 — число, существование которого доказано в лемме 2.

Доказательство леммы 3. Рассматриваем решения системы S с $\overline{x}(t_0) \in \Omega_0$. Теорема 1 утверждает, что для любого решения $(\overline{x}(t), c(t), \mu(t))$ системы S, для которого существует конечное \overline{t} , указанное в задании алгоритма (2)-(6), то есть $\exists \overline{t}\colon |s(\overline{t})| \leq \delta_0 \|\overline{x}(\overline{t})\|$, будет при $t \geq \overline{t}$ выполняться неравенство $|s(t)| \leq \delta \|\overline{x}(t)\|$. Рассмотрим такое решение. Для дальнейшего добавим условие $\delta < 1$. Если для этого решения $\|c^T(t)\| \leq C_0$ при $t \geq \overline{t}$, то для него $|u_1(t)| \leq \|c^T(t)\| \cdot \|x(t)\| \leq C_0 \|x(t)\|$ при $t \geq \overline{t}$. Поэтому для этого решения при $t \geq \overline{t}$ получаем следующие неравенства (с учетом того, что $|s(t)| \leq \delta \|\overline{x}(t)\|$ и $x_{n+1} = s + u_1$): $|s(t)| \leq \delta (|x_1(t)| + \cdots + |x_n(t)| + |x_$

$$|s(t)| \le \frac{\delta(1 + C_0)(|x_1(t)| + \dots + |x_n(t)|)}{1 - \delta} \tag{33}$$

при $t \geq \overline{t}$.

Таким образом, для рассматриваемого решения $(\overline{x}(t),c(t),\mu(t))$ системы S в силу (33) выполняется неравенство $|s(t)| \le \varepsilon ||x(t)||$ при $t \ge \overline{t}$, где

$$\varepsilon = \frac{\delta(1 + C_0)}{1 - \delta} \tag{34}$$

В (34) ε может быть сколь угодно малым при достаточно малом δ . Поэтому для числа $\varepsilon_0 > 0$, существование которого доказано в лемме 2, существует число Δ_0 , $0 < \Delta_0 < 1$, такое, что при любом положительном $\delta \leq \Delta_0$ для ε из (34) будет $0 < \varepsilon \leq \varepsilon_0$ (подробно этот факт легко доказывается с помощью монотонно возрастающей на промежутке (0,1) функции $\rho(\delta) = \delta(1 + C_0)/(1-\delta)$). А при таком ε , $0 < \varepsilon \leq \varepsilon_0$, леммой 2 гарантировано существование постоянной C_0 . Поэтому постоянная C_0 правомерно использована выше в доказательстве леммы 3. Лемма 3 доказана.

Леммы 1-3 и теорема 1 доказывают теорему 2.

Теорема 2 доказана.

6. Заключение

В работе для динамического объекта, описываемого системой нелинейных обыкновенных дифференциальных уравнений с неопределенными правыми частями, предложен и исследован алгоритм синтеза непрерывного скалярного управления, обеспечивающего асимптотическое стремление к нулю вектора состояния объекта.

Полученный в работе результат можно проинтерпретировать следующим образом: для решения задачи регулирования исходного объекта исходное управление $u=u_0$, которое назовем управлением глубины 0, понижает размерность задачи (сводя ее к задаче управления системой меньшего порядка, чем порядок исходного неопределенного нелинейного объекта) и вводит новую управляющую функцию u_1 , которую назовем управлением глубины 1, решающую задачу регулирования системы пониженного порядка.

Литература

- [1] Уланов, Б.В. Об управлении нелинейным динамическим объектом, *Автомат. и телемех.*, 1986, № 6, 75–79; *Autom. Remote Control*, **47**:6 (1986), 799–803.
- [2] Фомин, В.Н., Фрадков, А.Л., Якубович, В.А. Адаптивное управление динамическими объектами. М.: Наука, 1981, 448 с.
- [3] Уланов, Б.В. Об управлении нелинейными динамическими системами, Дифференц. уравнения, **24**:8 (1988), 1373–1378; *Differ. Equ.*, **24**:8 (1988), 893–897.
- [4] Филиппов, А.Ф. Дифференциальные уравнения с разрывной правой частью. Математический сборник, 1960, т.51, №1. С. 99 128.
- [5] Уланов, Б. В. Применение координатно-параметрических и параметрических обратных связей в задачах управления динамическими системами, подверженными параметрическим и внешним воздействиям: *Автореф. дис. ... канд. физ.-мат. наук*. М., 1982, 21 с.

To the regulation of indefinite nonlinear dynamic objects by continuous control

Ulanov B.V.

Togliatti State University, Togliatti, Russia

bv_ulanov@mail.ru

Abstract. We propose an algorithm for the synthesis of continuous scalar control that regulates an indefinite nonlinear dynamic object so that all solutions of the system of differential equations describing a closed system are bounded and the state vector of the object asymptotically tends to zero. The object is described by a system of nonlinear ordinary differential equations with indefinite right-hand sides. The original continuous nonlinear control decreases the dimension of the problem and introduces a new control function -- adaptive control, which solves the problem of the regulation for a low-order controlled system. A study of the behavior of the solutions of the closed system is given.

Keywords: indefinite dynamic object, system of nonlinear ordinary differential equations, continuous control, regulation, order of a object, adaptive control.