# 2020年计算机学科专业基础综合试题参考答案

# 一、单项选择题

| C | 2.          | D                       | 3.                            | A                                         | 4.                                              | C                                                           | 5.                                                                | В                                                                                                                                                                                                                     | 6.                                                                                  | В                                                                                                                                                                                                                                                                           | 7.                                                                                                    | A                                                                                                                                                                                                                                                                                                                                 | 8.                                                                                                                      | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---|-------------|-------------------------|-------------------------------|-------------------------------------------|-------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C | 10.         | В                       | 11.                           | Α                                         | 12.                                             | В                                                           | 13.                                                               | A                                                                                                                                                                                                                     | 14.                                                                                 | D                                                                                                                                                                                                                                                                           | 15.                                                                                                   | D                                                                                                                                                                                                                                                                                                                                 | 16.                                                                                                                     | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| В | 18.         | Α                       | 19.                           | C                                         | 20.                                             | $\mathbf{C}$                                                | 21.                                                               | В                                                                                                                                                                                                                     | 22.                                                                                 | C                                                                                                                                                                                                                                                                           | 23.                                                                                                   | В                                                                                                                                                                                                                                                                                                                                 | 24.                                                                                                                     | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D | 26.         | D                       | 27.                           | В                                         | 28.                                             | D                                                           | 29.                                                               | В                                                                                                                                                                                                                     | 30.                                                                                 | D                                                                                                                                                                                                                                                                           | 31.                                                                                                   | В                                                                                                                                                                                                                                                                                                                                 | 32.                                                                                                                     | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C | 34.         | В                       | 35.                           | C                                         | 36.                                             | D                                                           | 37.                                                               | A                                                                                                                                                                                                                     | 38.                                                                                 | D                                                                                                                                                                                                                                                                           | 39.                                                                                                   | C                                                                                                                                                                                                                                                                                                                                 | 40.                                                                                                                     | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | C<br>B<br>D | C 10.<br>B 18.<br>D 26. | C 10. B<br>B 18. A<br>D 26. D | C 10. B 11.<br>B 18. A 19.<br>D 26. D 27. | C 10. B 11. A<br>B 18. A 19. C<br>D 26. D 27. B | C 10. B 11. A 12.<br>B 18. A 19. C 20.<br>D 26. D 27. B 28. | C 10. B 11. A 12. B<br>B 18. A 19. C 20. C<br>D 26. D 27. B 28. D | C       10.       B       11.       A       12.       B       13.         B       18.       A       19.       C       20.       C       21.         D       26.       D       27.       B       28.       D       29. | C 10. B 11. A 12. B 13. A<br>B 18. A 19. C 20. C 21. B<br>D 26. D 27. B 28. D 29. B | C       10.       B       11.       A       12.       B       13.       A       14.         B       18.       A       19.       C       20.       C       21.       B       22.         D       26.       D       27.       B       28.       D       29.       B       30. | C 10. B 11. A 12. B 13. A 14. D<br>B 18. A 19. C 20. C 21. B 22. C<br>D 26. D 27. B 28. D 29. B 30. D | C       10.       B       11.       A       12.       B       13.       A       14.       D       15.         B       18.       A       19.       C       20.       C       21.       B       22.       C       23.         D       26.       D       27.       B       28.       D       29.       B       30.       D       31. | C 10. B 11. A 12. B 13. A 14. D 15. D<br>B 18. A 19. C 20. C 21. B 22. C 23. B<br>D 26. D 27. B 28. D 29. B 30. D 31. B | C       2.       D       3.       A       4.       C       5.       B       6.       B       7.       A       8.         C       10.       B       11.       A       12.       B       13.       A       14.       D       15.       D       16.         B       18.       A       19.       C       20.       C       21.       B       22.       C       23.       B       24.         D       26.       D       27.       B       28.       D       29.       B       30.       D       31.       B       32.         C       34.       B       35.       C       36.       D       37.       A       38.       D       39.       C       40. |

# 1. 解析:

上三角矩阵按列优先存储,先存储仅 1 个元素的第一列,再存储有 2 个元素的第二列,以此类推。 $m_{2,7}$ 位于左下角,对应右上角的元素为 $m_{2,7}$ ,在 $m_{2,7}$ 之前存有

第1列:1 第2列:2

第6列:6 第7列:1

前面共存有 1+2+3+4+5+6+1=22 个元素(数组下标范围为  $0\sim21$ ),注意数组下标 从 0 开始,故  $m_{2,7}$  在数组 N 中的下标为 22,即  $m_{7,2}$  在数组 N 中的下标为 22。

# 2. 解析:

按题意, 出入栈操作的过程如下:

| 操作   | 栈内元素  | 出栈元素 |
|------|-------|------|
| Push | a     |      |
| Push | a b   |      |
| Pop  | a     | ъ    |
| Push | ас    |      |
| Pop  | а     | c    |
| Push | a d   |      |
| Push | a d e |      |
| Pop  | a d   | e    |

故出栈序列为 b, c, e。

# 3. 解析:

二叉树采用顺序存储时,用数组下标来表示结点之间的父子关系。对于一棵高度为 5 的二叉树,为了满足任意性,其 1~5 层的所有结点都要被存储起来,即考虑为一棵高度为 5 的满二叉树,总共需要存储单元的数量为 1+2+1+2+4+8+16=31。

# 4. 解析:

森林 F 的先根遍历序列对应其二叉树 T 的先序遍历序列,森林 F 的中根遍历序列对应其二叉树 T 的中序遍历序列。即 T 的先序遍历序列为 a, b, c, d, e, f, 中序遍历序列为 b, a, d,

f, e, c。根据二叉树 T 的先序序列和中序序列可以唯一确定它的结构,构造过程如下:



可以得到二叉树T的后序序列为b, f, e, d, c, a.

# 5. 解析:

每个选项都逐一验证,选项 B 生成二叉排序树的过程如下:



显然选项B错误。

# 6. 解析:

DFS 是一个递归算法,在遍历过程中,先访问的顶点被压入栈底。设在图中有顶点  $\nu_i$ ,它有后继顶点  $\nu_j$ ,即存在边< $\nu_i$ , $\nu_j$ 。根据 DFS 的规则, $\nu_i$ 入栈后,必先遍历完其后继顶点后  $\nu_i$ 才会出栈,也就是说  $\nu_i$ 会在  $\nu_j$ 之后出栈,在如题所指的过程中, $\nu_i$ 在  $\nu_j$ 后打印。由于  $\nu_i$  和  $\nu_j$  具有任意性,从上面的规律可以看出,输出顶点的序列是逆拓扑有序序列。

# 7. 解析:

Kruskal 算法: 按权值递增顺序依次选取 n-1 条边,并保证这 n-1 条边不构成回路。初始构造一个仅含 n 个顶点的森林;第一步,选取权值最小的边(b,f)加入最小生成树;第二步,剩余边中权值最小的边为(b,d),加入最小生成树,第二步操作后权值最小的边(d,f)不能选,因为会与之前已选取的边形成回路;接下来依次选取权值 9、10、11 对应的边加入最小生成树,此时 6 个顶点形成了一棵树,最小生成树构造完成。按照上述过程,加到最小生成树的边依次为(b,f),(b,d),(a,e),(c,e),(b,e)。其生成过程如下所示。



# 8. 解析:

关键路径是指权值之和最大而非边数最多的路径,故选项 A 错误。选项 B 正确,是关键路径的概念。无论是存在一条还是存在多条关键路径,增加任一关键活动的时间都会延长工程的工期,因为关键路径始终是权值之和最大的那条路径,选项 C 错误。仅有一条关键路径时,减少关键活动的时间会缩短工程的工期;存在多条关键路径时,缩短一条关键活动的时间不一定会缩短工程的工期,缩短了路径长度的那条关键路径不一定还是关键路径,选项 D 错误。

# 9. 解析:

这是一道简单的概念题。堆是一棵完全树,采用一维数组存储,故 I 正确,II 正确。大根堆只要求根结点值大于左右孩子值,并不要求左右孩子值有序,III 错误。堆的定义是递归的,所以其左右子树也是大根堆,所以堆的次大值一定是其左孩子或右孩子,IV 正确。

# 10. 解析:

一个 4 阶 B 树的任意非叶结点至多含有 m-1=3 个关键字,在关键字依次插入的过程中,会导致结点的不断分裂,插入过程如下所示。



得到根结点包含的关键字为 6, 9。

#### 11. 解析:

考虑较极端的情况,对于有序数组,直接插入排序的比较次数为n-1,简单选择排序的比较次数始终为 $1+2+\cdots+n-1=n(n-1)/2$ ,I 正确。两种排序方法的辅助空间都是 O(1),无差别,II 错误。初始有序时,移动次数均为 0;对于通常情况,直接插入排序每趟插入都需要依次向后挪位,而简单选择排序只需与找到的最小元素交换位置,后者的移动次数少很多,III 错误。

## 12. 解析:

机器字长是指CPU内部用于整体运算的数据通路的宽度。CPU内部数据通路是指CPU内部的数据流经的路径及路径上的部件,主要是CPU内部进行数据运算、存储和传送的部件。这些部件的宽度基本上要一直才能相互匹配。因此,机器字长等于CPU内部用于整体运算的运算器位数和通用寄存器宽度。

# 13. 解析:

 $C800\ 0000H = 1100\ 1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000$ 

将其转换为对应的 float 型或 int 型:

- 1) 若为 float 型,则尾数隐藏最高位 1,数符为 1 表示负数,阶码  $1001\ 0000 = 2^7 + 2^4 = 128 + 16$ ,再减去偏置值  $127\ 491\ 17$ ,算出 x 值为 $-2^{17}$ 。

# 14. 解析:

在 32 位计算机中,按字节编址,根据小端方式和按边界对齐的定义,给出变量 a 的存放方式如下:

| 地址 | 2020 FE00H | 2020 FE01H | 2020 FE02H | 2020 FE03H |
|----|------------|------------|------------|------------|
|    | 未知         |            |            | 780        |
| 说明 | x1 (LSB)   | x1 (MSB)   |            |            |
| 地址 | 2020 FE04H | 2020 FE05H | 2020 FE06H | 2020 FE07H |
|    | 00H        | H00        | 34H        | 12H        |
| 说明 | x2 (LSB)   |            |            | x2 (MSB)   |

于是,34H 所在存储单元的地址为2020 FE06H。

# 15. 解析:

Cache 由 SRAM 组成; TLB 通常由相联存储器组成, 也可由 SRAM 组成。DRAM 需要不断刷新,性能偏低,不适合组成 TLB 和 Cache。选项 A、B 和 C 都是 TLB 和 Cache 的特点。

## 16. 解析:

48 条指令需要 6 位操作码字段  $(2^5 < 48 < 2^6)$ , 4 种寻址方式需要 2 位寻址特征位  $(4 = 2^2)$ , 还剩16-6-2=8 位作为地址码,故直接寻址范围为  $0\sim225$ 。注意,主存地址不能为负。

# 17. 解析:

CPI 表示执行指令所需的时钟周期数。对于一个程序或一台机器来说,其 CPI 指执行该程序或机器指令集中的所有指令所需的平均时钟周期数。对于单周期 CPU,令指令周期 = 时钟周期,CPI = 1,I 正确。对于多周期 CPU,CPU 的执行过程分成几个阶段,每个阶段用一个时钟去完成,每种指令所用的时钟数可以不同,CPI > 1,II 错误。对于基本流水线 CPU,让每个时钟周期流出一条指令,CPI = 1,III 正确。超标量流水线 CPU 在每个时钟周期内并发执行多条独立的指令,每个时钟周期流出多条指令,CPI < 1,IV 错误。

# 18. 解析:

自陷是一种内部异常,A 错误。在 80x86 中,用于程序调试的"断点设置"功能是通过"自陷"方式实现的,选项 B 正确。执行到自陷指令时,无条件或有条件地自动调出操作系统内核程序进行执行,选项 C 正确。CPU 执行"陷阱指令"后,会自动地根据不同"陷阱"类型进行相应的处理,然后返回到"陷阱指令"的下一条指令执行,选项 D 正确。

## 19. 解析:

每个时钟周期传送 2 次, 故每秒传送的次数 = 时钟频率×2 = 2.4G×2/s。

总线带宽 = 每秒传送次数×2B×2 = 2.4G×2×2B×2/s = 19.2GB/s。

题中已给出总线带宽公式,降低了难度。公式中的"×2B"是因为每次传输 16 位数据,"×2"是因为采用点对点全双工总线,两个方向可同时传输信息。

#### 20. 解析:

访存时缺页属于内部异常, I 错误; 定时器到时描述的是时钟中断, 属于外部中断, II 正确; 网络数据包到达描述的是 CPU 执行指令以外的事件, 属于外部中断, III 正确。

# 21. 解析:

由 CPU 内部产生的异常称为内中断,内中断都是不可屏蔽中断。通过中断请求线 INTR 和 NMI,从 CPU 外部发出的中断请求为外中断,通过 INTR 信号线发出的外中断是可屏蔽中断,而通过 NMI 信号线发出的是不可屏蔽中断。不可屏蔽中断不受中断标志位的影响,即使在关中断的情况下也会被响应,选项 A 正确。不可屏蔽中断的处理优先级最高,任何时候只要发生不可屏蔽中断,都要中止现行程序的执行,转到不可屏蔽中断处理程序执行,选项 C 正确。CPU响应中断需要满足 3 个条件:①中断源有中断请求;②CPU 允许中断及开中断;③一条指令执行完毕,且没有更紧迫的任务。故选项 B 错误。

# 22. 解析:

周期挪用法由 DMA 控制器挪用一个或几个主存周期来访问主存,传送完一个数据字后立即释放总线,是一种单字传送方式,每个字传送完后 CPU 可以访问主存,选项 C 错误。停止CPU 访存法则是指在整个数据块的传送过程中,使 CPU 脱离总线,停止访问主存。

# 23. 解析:

多个进程可同时以"读"或"写"方式打开文件,操作系统并不保证写操作的互斥性,进程可通过系统调用对文件加锁,保证互斥写(读者-写者问题),选项 A 错误。整个系统只有一个系统打开文件表,同一个文件打开多次只需改变引用计数,选项 B 正确。用户进程的打开文件表关于同一个文件不一定相同,例如读写指针位置不一定相同,选项 C 错误。进程关闭文件时,文件的引用计数减 1,引用计数变为 0 时才删除系统打开文件表中的表项,选项 D 错误。

# 24. 解析:

索引分配支持变长的文件,同时可以随机访问文件的指定数据块,选项 A 正确。链接分配不支持随机访问,需要依靠指针依次访问,选项 B 错误。连续分配的文件长度固定,不支持可变文件长度(连续分配的文件长度虽然也可变,但是需大量移动数据,代价较大,相比之下不太合适),选项 C 错误。动态分区分配是内存管理方式,不是磁盘空间的管理方式,选项 D 错误。

# 25. 解析:

当 C PU检测到中断信号后,由硬件自动保存被中断程序的断点(即程序计数器 PC), I 错误。之后,硬件找到该中断信号对应的中断向量,中断向量指明中断服务程序入口地址(各中断向量统一存放在中断向量表中,该表由操作系统初始化,III 正确)。接下来开始执行中断服务程序,保存 PSW、保存中断屏蔽字、保存各通用寄存器的值,并提供与中断信号对应的中断服务,中断服务程序属于操作系统内核,II 和 IV 正确。

### 26. 解析:

多级反馈队列调度算法需要综合考虑优先级数量、优先级之间的转换规则等,就绪队列的数量会影响长进程的最终完成时间,I 正确;就绪队列的优先级会影响进程执行的顺序,II 正确;各就绪队列的调度算法会影响各队列中进程的调度顺序,III 正确;进程在就绪队列中的迁移条件会影响各进程在各队列中的执行时间,IV 正确。

# 27. 解析:

首先求出需求矩阵:

Need = Max - Allocation = 
$$\begin{bmatrix} A & B & A & B \\ 4 & 4 \\ 3 & 1 \\ 3 & 4 \end{bmatrix} - \begin{bmatrix} 2 & 3 \\ 2 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 0 \\ 2 & 2 \end{bmatrix}$$

由 Allocation 得知当前 Available 为(1,0)。由需求矩阵可知,初始只能满足 P2 的需求,选项 A 错误。P2 释放资源后 Available 变为(3,1),此时仅能满足 P1 的需求,选项 C 错误。P1 释放资源后 Available 变为(5,4),可以满足 P3 的需求,得到的安全序列为 P2, P1, P3,选项 B正确,选项 D 错误。

# 28. 解析:

I 影响缺页中断的频率,缺页率越高,平均访存时间越长; II 和 IV 影响缺页中断的处理时间,中断处理时间越长,平均访存时间越长; II 影响访问页表和访问目标物理地址的时间,故 I、II、III 和 IV 均正确。

#### 29. 解析:

父进程与子进程当然可以并发执行,选项 A 正确。父进程可与子进程共享一部分资源,但不能共享虚拟地址空间,在创建子进程时,会为子进程分配资源,如虚拟地址空间等,选项 B 错误。临界资源一次只能为一个进程所用,选项 D 正确。进程控制块 PC B是进程存在的唯一标志,每个进程都有自己的 PC B,选项 C 正确。

# 30. 解析:

设备可视为特殊文件,选项 A 正确。用户使用逻辑设备名来访问物理文件,有利于设备独

立性,选项 B 正确。通过逻辑设备名访问物理设备时,需要建立逻辑设备和物理设备之间的映射关系,选项 C 正确。应用程序按逻辑设备名访问设备,再经驱动程序的处理来控制物理设备,若更换物理设备,则只需更换驱动程序,而无须修改应用程序,选项 D 错误。

## 31. 解析:

在总长为 64 字节的目录项中,索引结点占 4 字节,即 32 位。不同目录下的文件的文件名可以相同,所以在考虑系统创建最多文件数量时,只需考虑索引结点的个数,即创建文件数量上限 = 索引结点数量上限。整个系统中最多存储 2<sup>32</sup>个索引结点,因此整个系统最多可以表示 2<sup>32</sup>个文件,选项 B 正确。

# 32. 解析:

实现临界区互斥需满足多个准则。"忙则等待"准则,即两个进程不能同时访问临界区,I 正确。"空闲让进"准则,若临界区空闲,则允许其他进程访问,II 正确。"有限等待"准则, 即进程应该在有限时间内访问临界区,III 正确。I、II 和 III 是互斥机制必须遵循的原则。 IV 是"让权等待"准则,不一定非得实现,如皮特森算法。

# 33. 解析:

协议由语法、语义和时序(又称同步)三部分组成。语法规定了通信双方彼此"如何讲",即规定了传输数据的格式。语义规定了通信双方彼此"讲什么",规定了所要完成的功能,如通信双方要发出什么控制信息、执行的动作和返回的应答。时序规定了信息交流的次序。由图可知发送方与接收方依次交换信息,体现了协议三要素中的时序要素。

## 34. 解析:

虚电路服务需要有建立连接过程,每个分组使用短的虚电路号,属于同一条虚电路的分组按照同一路由进行转发,分组到达终点的顺序与发送顺序相同,可以保证有序传输,不需要为每条虚电路预分配带宽

# 35. 解析:

网络层设备路由器可以隔离广播域和冲突域;链路层设备普通交换机只能隔离冲突域;物理层设备集线器、中继器既不能隔离冲突域又不能隔离广播域。因此,题中共有2个广播域、4个冲突域。



#### 36. 解析:

发送数据帧和确认帧的时间均为  $t = 1000 \times 8b/10 \text{kbps} = 800 \text{ms}$ 。

发送周期 T = 800ms + 200ms + 800ms + 200ms = 2000ms。

信道利用率 = t/T×100% = 800/2000×100% = 40%。

# 37. 解析:

为了尽量避免碰撞,802.11 规定,所有站在完成发送后,必须等待一段很短的时间(继续监听)才能发送下一帧。这段时间称为帧间间隔(InterFrame Space, IFS)。帧间间隔的长短取

决于该站要发送的帧的类型。IEEE 802.11 使用 3 种帧间间隔:

DIFS (分布式协调 IFS): 最长的 IFS, 优先级最低, 用于异步帧竞争访问的时延。

PIFS (点协调 IFS): 中等长度的 IFS, 优先级居中, 在 PCF 操作中使用。

SIFS (短 IFS): 最短的 IFS, 优先级最高, 用于需要立即响应的操作。

网络中的控制帧及所接收数据的确认帧都采用 SIFS 作为发送之前的等待时延。当结点要发送数据帧时,载波监听到信道空闲时,需等待 DIFS 后发送 RTS 预约信道,图中 IFS1 对应的是帧间间隔 DIFS,时间最长,图中 IFS2、IFS3、IFS4 对应 SIFS。

# 38. 解析:

由于慢开始门限 ssthresh 可以根据需求设置,为了求拥塞窗口从 8KB 增长到 32KB 所需的最长时间,可以假定慢开始门限小于等于 8KB,只要不出现拥塞,拥塞窗口就都是加法增大,每经历一个传输轮次(RTT),拥塞窗口逐次加 1,因此所需最长时间为(32-8)×2 ms = 48 ms。

# 39. 解析:

甲与乙建立 TCP 连接时发送的 SYN 段中的序号为 1000,则在数据传输阶段所用的起始序号为 1001;断开连接时,甲发送给乙的 FIN 段中的序号为 5001,在无任何重传的情况下,甲向乙已经发送的应用层数据的字节数为 5001 - 1001 = 4000。

# 40. 解析:

最短时间,即本地域名服务器存在域名与 IP 地址的映射关系,仅需主机向本地域名服务器 递归查询一次 10ms,传送数据 10ms,最短时间共需 20ms。最长时间即本地域名服务器不存在 域名与 IP 地址的映射关系,需向本地域名服务器递归查询一次 10ms,迭代查询各级域名服务器 3 次 30ms,传送数据 10ms,最长时间共需 50ms。

#### 二、综合应用题

# 41. 解答:

分析。由 D = |a - b| + |b - c| + |c - a| ≥ 0 得:

- ① 当 a = b = c 时, 距离最小。
- ② 其余情况。不失一般性, 假设 a≤b≤c, 观察下面的数轴:



 $L_1 = |a - b|$ 

 $L_2 = |b - c|$ 

 $L_3 = |c - a|$ 

 $D = |a - b| + |b - c| + |c - a| = L_1 + L_2 + L_3 = 2L_3$ 

由 D 的表达式可知, 事实上决定 D 大小的关键是 a 和 c 之间的距离,于是问题就可以简化为每次固定 c 找一个 a 使得  $L_3 = |c - a|$ 最小。

- (1) 算法的基本设计思想
- ① 使用 Dmin 记录所有已处理过的三元组的最小距离,初值为一个足够大的整数。
- ② 集合 S1、S2 和 S3 分别保存在数组 A、B、C 中。数组的下标变量 i=j=k=0,当 i<|S1|、j<|S2|且 k<|S3|时(|S|表示集合 S 中的元素个数),循环执行 a) $\sim$ c)。
  - a) 计算(A[i], B[j], C[k]) 的距离 D; (计算 D)
  - b) 若 D < D<sub>min</sub>, 则 D<sub>min</sub> = D; (更新 D)
  - c) 将 A[i], B[j], C[k]中的最小值的下标+1; (对照分析: 最小值为 a, 最大值为 c, 这里 c

不变而更新 a, 试图寻找更小距离 D)

- ③ 输出 D<sub>min</sub>, 结束。
- (2) 算法实现:

```
#define INT MAX 0x7fffffff
int abs (int a) {//计算绝对值
    if(a<0) return -a;
   elss return a;
1
bool xls min(int a, int b, int c) {//a 是否是三个数中的最小值
    if(a<=b&&a<=c) return true;
    return false:
int findMinofTrip(int A[], int n, int B[], int m, int C[], int p) {
    //D min 用于记录三元组的最小距离, 初值赋为 INT MAX
    int i=0, j=0, k=0, D min=INT MAX, D;
    while(i<n&&j<m&&k<p&&D min>0){
        D=abs (A[i]-B[j])+abs (B[j]-C[k])+abs (C[k]-A[i]); //计算D
        if(D<D min) D min=D;
                                           //更新 D
        if(xls_min(A[i],B[j],C[k])) i++;
                                           //更新 a
       else if (xls min(B(j],C[k],A[i])) j++;
       else k++;
    return D min;
```

- (3) 设 n = (|S1| + |S2| + |S3|), 时间复杂度为 O(n), 空间复杂度为 O(1)。
- 42. 解答:
- (1) 使用一棵一叉树保存字符集中各字符的编码,每个编码对应于从根开始到达某叶结点的一条路径,路径长度等于编码位数,路径到达的叶结点中保存该编码对应的字符。
- (2) 从左至右依次扫描 0/1 串中的各位。从根开始,根据串中当前位沿当前结点的左子指针或右子指针下移,直到移动到叶结点时为止。输出叶结点中保存的字符。然后从根开始重复这个过程,直到扫描到 0/1 串结束,译码完成。
- (3) 工义树既可用于保存各字符的编码,又可用于检测编码是否具有前缀特性。判定编码是否具有前缀特性的过程,也是构建二叉树的过程。初始时,二叉树中仅含有根结点,其左子指针和右子指针均为空。

依次读入每个编码 C, 建立/寻找从根开始对应于该编码的一条路径, 过程如下:

对每个编码,从左至右扫描 C 的各位,根据 C 的当前位 (0 或 1) 沿结点的指针 (左子指针或右子指针)向下移动。当遇到空指针时,创建新结点,让空指针指向该新结点并继续移动。沿指针移动的过程中,可能遇到三种情况:

- ① 若遇到了叶结点(非根),则表明不具有前缀特性,返回。
- ② 若在处理 C 的所有位的过程中,均没有创建新结点,则表明不具有前缀特性,返回。
- ③ 若在处理 C 的最后一个编码位时创建了新结点,则继续验证下一个编码。

若所有编码均通过验证,则编码具有前缀特性。

# 43. 解答:

- (1)乘法运算可以通过加法和移位来实现。编译器可以将乘法运算转换为一个循环代码段, 在循环代码段中通过比较、加法和移位等指令实现乘法运算。
  - (2) 控制逻辑的作用是控制循环次数,控制加法和移位操作。
  - (3) a) 最长, c) 最短。对于 a), 需要用循环代码段(即软件)实现乘法操作, 因而需要反

复执行很多条指令,而每条指令都需要取指令、译码、取数、执行并保存结果,所以执行时间很长;对于 b)和 c),都只需用一条乘法指令实现乘法操作,不过 b)中的乘法指令需要多个时钟周期才能完成,而 c)中的乘法指令可以在一个时钟周期内完成,所以 c)的执行时间最短。

(4) 当 n=32、 $x=2^{31}-1$ 、y=2 时,带符号整数和无符号整数乘法指令得到的 64 位乘积都是 0000 0000 FFFF FFFEH。int型的表示范围为 $[-2^{31}, 2^{31}-1]$ ,故函数 imul()的结果溢出; unsigned int型的表示范围为 $[0,2^{32}-1]$ ,故函数 umul()的结果不溢出。对于无符号整数乘法,若乘积高 n 位全为 0,即使低 n 位全为 1 也正好是  $2^{32}-1$ ,不溢出,否则溢出。

# 44. 解答:

- (1)主存块大小为  $64B = 2^6$ 字节,故主存地址低 6 位为块内地址,Cache 组数为  $32KB/(64B \times 8) = 64 = 2^6$ ,故主存地址中间 6 位为 Cache 组号,主存地址中局 32 6 6 = 20 位为标记,采用 8 路组相联映射,故每行中的 LRU 位占 3 位,采用直写方式,故没有修改位。
- (2) 0080 00C0H = 0000 0000 1000 0000 0000 1100 0000B,主存地址的低 6 位为块内地址,为全 0,故 s 位于一个主存块的开始处,占  $1024 \times 4B/64B = 64$  个主存块;在执行程序段的过程中,每个主存块中的 64B/4B = 16 个数组元素依次读、写 1 次,因而对每个主存块,总是第一次访问缺失,此时会将整个主存块调入 Cache,之后每次都命中。综上,数组 s 的数据 Cache 访问缺失次数为 64 次。
- (3) 0001 0003H = 0000 0000 0000 0001 0000 000011B,根据主存地址划分可知,组索引为 0,故该地址所在主存块被映射到指令 Cache 的第 0 组;因为 Cache 初始为空,所有 Cache 行的有效位均为 0,所以 Cache 访问缺失。此时,将该主存块取出后存入指令 Cache 的第 0 组的任意一行,并将主存地址高 20 位(00010H)填入该行标记字段,设置有效位,修改 LRU 位,最后根据块内地址 000011B 从该行中取出相应的内容。

# 45. 解答:

本题要求实现操作的先后顺序,没有互斥关系,是一个简单的同步问题。

本题虽然有 5 个操作,但是只有 4 个同步关系,因此分别设置信号量  $S_{AC}$ 、 $S_{BC}$ 、 $S_{CE}$ 和  $S_{DE}$  对应 4 个同步关系。

```
Semaphore SAC = 0;
                      //控制 A 和 C 的执行顺序
                      //控制 B 和 C 的执行顺序
  Semaphore SBC = 0;
  Semaphore SCE = 0;
                    //控制 C 和 E 的执行顺序
                       //控制 D和 E的执行顺序
  Semaphore SDE = 0;
5 个操作可描述为如下。
  CoBegin
  A() (
     完成动作 A:
                   //实现 A、C 之间的同步关系
     V(SAC);
  B() (
     完成动作 B;
              //实现 B、C 之间的同步关系
      (SBC);
  C() (
     //C 必须在 A、B 都完成后才能完成
     P(SAC);
     P(SBC);
     完成动作 C;
                   //实现 C、E 之间的同步关系
     V(SCE);
```

#### CoEnd

# 46. 解答:

- (1) ① 页面大小 =  $2^{12}$ B = 4096B = 4KB。每个数组元素 4B,每个页面可以存放 4KB/4B = 1024 个数组元素,正好是数组的一行,数组 a 按行优先方式存放。 $1080\,0000$ H 的虚页号为 10800H,因此 a[0]行存放在虚页号为 10800H 的页面中,a[1]行存放在页号为 10801H 的页面中。a[1][2]的虚拟地址为  $10801\,000$ H + 4×2 =  $10801\,008$ H。
- ② 转换为二进制 0001000010 0000000001 00000001000, 根据虚拟地址结构可知, 对应的页目录号为 042H, 页号为 001H。
- ③ 进程的页目录表起始地址为 0020 1000H,每个页目录项长 4B,因此 042H 号页目录项的物理地址是 0020 1000H +  $4 \times 42H = 0020 1108H$ 。
- ④ 页目录项存放的页框号为 00301H, 二级页表的起始地址为 00301 000H, 因此 a[1][2] 所在页的页号为 001H, 每个页表项 4B, 因此对应的页表项物理地址是 00301 000H + 001H×4 = 00301 004H。
- (2) 根据数组的随机存取特点,数组 a 在虚拟地址空间中所占的区域必须连续,由于数组 a 不止占用一页,相邻逻辑页在物理上不一定相邻,因此数组 a 在物理地址空间中所占的区域可以不连续。
- (3)由(1)可知每个页面正好可以存放一整行的数组元素,"按行优先方式存放"意味着数组的同一行的所有元素都存放在同一个页面中,同一列的各个元素都存放在不同的页面中,因此数组 a 按行遍历的局部性较好。

# 47. 解答:

(1) 两个子网使用了相同网段,且路由器开启了 NAT 功能,加上题干给出了 NAT 表的结构,因此需要配置 NAT 表。路由器 R2 开启 NAT 服务,当路由器 R2 从 WAN 口收到 H2 或 H3 发来的数据时,根据 NAT 表发送给 Web 服务器的对应端口。外网 IP 地址应该为路由器的外端 IP 地址,内网 IP 地址应该为 Web 服务器的地址,Web 服务器的默认端口为 80,因此内网端口号固定为 80,当其他网络的主机访问 Web 服务器时,默认访问的端口应该也是 80,但是访问的目的 IP 是路由器的 IP 地址,因此 NAT 表中的外部端口最好也统一为 80。题目中并未要求对 H1 进行访问,因此 H1 的 NAT 表项可以不写。R2 的 NAT 表配置如下:

| 夕          | 网   | 内网          |     |  |  |
|------------|-----|-------------|-----|--|--|
| IP地址       | 端口号 | IP 地址       | 端口号 |  |  |
| 203.10.2.2 | 80  | 192.168.1.2 | 80  |  |  |

(2) 由于启用了 NAT 服务, H2 发送的 P 的源 IP 地址应该是 H2 的内网地址,目的地址应该是 R2 的外网 IP 地址,源 IP 地址是 192.168.1.2,目的 IP 地址是 203.10.2.2。R3 转发后,将 P 的源 IP 地址改为 R3 的外网 IP 地址,目的 IP 地址仍然不变,源 IP 地址是 203.10.2.6,目的 IP 地址是 203.10.2.2。R2 转发后,将 P 的目的 IP 地址改为 Web 服务器的内网地址,源地址仍然不变,源 IP 地址是 203.10.2.6,目的 IP 地址是 192.168.1.2。