Metric Space Review with Luke and Evan

Jason Schuchardt

June 24, 2019

1 Metric Spaces

Just as rings are abstractions of the properties of numbers, metric spaces are the abstraction of the concept of distance.

Definition 1.1. A metric space is a set X of elements, called points, equipped with a distance function, $d: X \times X \to \mathbb{R}$ such that

- $1 \ d(x,x) = 0.$
- 2 If $x \neq y$, d(x, y) > 0.
- $3 \ d(x,y) = d(y,x).$
- $4 \ d(x,z) \le d(x,y) + d(y,z).$

Example 1.1. Examples include the line, \mathbb{R} , the plane, \mathbb{R}^2 , euclidean space, \mathbb{R}^3 , and so on. Notice that we're ignoring a lot of structure on \mathbb{R}^n .

Example 1.2. Another example is a subspace.

We can measure the distance between points in a subspace using the metric of the ambient space.

Example 1.3. If $X = \{\text{subway stations}\}\$, we can let d(x, y) = length of the shortest path from x to y in the subway network **Example 1.4.** The continuous functions on the interval,

$$X = C[0, 1] := \{ \text{cts fns } f | f : [0, 1] \to \mathbb{R} \}.$$

$$d(f,g) = \max_{0 \le x \le 1} |f(x) - g(x)|$$

Similarly, we have

$$X=C^1[0,1]:=\{\text{continuously differentiable fns }f|f:[0,1]\to\mathbb{R}\},$$

and we can give it the distance

$$d_{C^1}(f,g) = \max_{x} |f(x) - g(x)| + \max_{x} |f'(x) - g'(x)|.$$

Question: Can we use the C[0,1] metric for continuously differentiable functions? Answer: Yes, but notice that they can be very different.

Consider $g(x) = \sin(100x)$ and f(x) = 0 the distance $d_C(f,g) \le 1$, whereas $d_{C^1}(f,g) \approx 100$.

2 Properties of metric spaces

Definition 2.1. The (open) ball with center x and radius r > 0 is the set

$$B_d(x,r) = \{ y \in X | d(x,y) < r \}$$

Example 2.1. A ball in \mathbb{R}^2 is a disc, and a ball in \mathbb{R}^3 is the interior of a sphere of radius r.

Definition 2.2. A subset U of X is open if for all $x \in U$, there exists r > 0 such that

$$B_d(x,r) \subset U$$

Example 2.2. Open intervals and open balls are open subsets.

Proposition 2.1. The open ball, $B_d(x,r)$ is open.

Proof. Let $y \in B_d(x,r)$. By definition d(x,y) < r. Let R = r - d(x,y).

Then we claim that $B_d(y,R) \subseteq B_d(x,r)$. To see this, let $z \in B_d(y,R)$. Thus d(y,z) < R, so

$$d(x,z) \le d(x,y) + d(y,z) < d(x,y) + R = d(x,y) + r - d(x,y) = r$$

and therefore $z \in B_x(r)$.

Hence $B_d(y,R) \subseteq B_d(x,r)$ as desired.

This is why we also call balls open balls.

Exercise: An arbitrary union of open sets is open, and a finite intersection of open sets is open.

Note that

$$\bigcap_{r>0} B_d(x,r) = \{x\},\,$$

and single point sets are not open in \mathbb{R}^n for example. so arbitrary intersections of open sets are not generally open. They may be in weird metrics, like the subway metric.

Definition 2.3. A subset F of X is *closed* if its complement is open.

Warning! Despite the terminology, it is possible for sets to be neither open nor closed or even both open and closed.

Definition 2.4. If A is a subset of X, $x \in X$ is a limit point of A if for all $\epsilon > 0$, $B_d(x, \epsilon) \cap A$ contains a point other than x.

In other words, every ball around x contains another point of A. Intuitively, there is no space between x and $A \setminus \{x\}$.

Example 2.3. The limit points of (0,1) are [0,1], and the set

$$\left\{\frac{1}{n}: n \in \mathbb{N}_{>0}\right\} = \{1, 1/2, 1/3, \dots, 1/n\}$$

has only the limit point 0.

Definition 2.5. In contrast to a limit point, an *isolated point* of a subset A is a point $a \in A$ which is not a limit point of A.

Definition 2.6. A Cauchy sequence in a metric space (X, d) is a sequence $\{x_n\}_{n \in \mathbb{N}} = x_0, x_1, x_2, \ldots$ in X such that for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all n, m > N,

$$d(x_n, x_m) < \epsilon$$
.

Example 2.4. $3, 3.1, 3.14, \ldots \epsilon = 10^{-k}, N = k + 2.$

Not a Cauchy sequence: $a_k = \sum_{j \in \mathbb{N}_{>0}} \frac{1}{j}$.

Exercise: Cauchy sequences are bounded.

Definition 2.7. A sequence $\{x_n\}_{n\in\mathbb{N}}=x_0,x_1,\ldots$ in a metric space (X,d) is *convergent*, and we say it converges to a limit y if for every $\epsilon>0$, there exists a $N\in\mathbb{N}$ such that for all n>N,

$$d(x_n, y) < \epsilon$$
.

Exercise: Convergent sequences are Cauchy sequences.

An example with function spaces.

Question: Is $f_n = x^n \in C[0,1]$ Cauchy?

Definition 2.8. A metric space (X, d) is *complete* if every Cauchy sequence converges.

Example 2.5. \mathbb{Q} is not complete, but \mathbb{R} is. (0,1) is not complete, but [0,1] is.

Question: Is C[0,1] complete?

3 Maps of metric spaces

If (X, d_X) and (Y, d_Y) are metric spaces, we don't want to consider all maps from X to Y, but ones with special properties.

Definition 3.1. $f: X \to Y$ is *continuous* if for all convergent sequences $x_0, x_1, \ldots \to x$, the image sequence

$$f(x_0), f(x_1), \ldots \to f(x).$$

Intuitively a function is continuous it has no gaps.

Definition 3.2. f is a homeomorphism if f^{-1} exists both f and f^{-1} are continuous.

Note: If X and Y are homeomorphic (i.e., there is a homeomorphism from one to the other) then X and Y have the same topology (the open sets are the same), but they may have different metrics.

Definition 3.3. We say f is an isometry if f^{-1} exists, and f preserves distances in the sense that for all $x_1, x_2 \in X$,

$$d_X(x_1, x_2) = d_Y(f(x_1), f(x_2)).$$

Definition 3.4. We say f is a contraction if there exists a constant β , with $0 < \beta < 1$ such that f shrinks distances in the sense that for all $x_1, x_2 \in X$,

$$d_Y(f(x_1), f(x_2)) < \beta d_X(x_1, x_2).$$

Note that contractions and isometries are continuous.

Theorem 3.1. A contraction $f: X \to X$ on a complete metric space (X, d) has a unique fixed point. I.e. there is a unique point $x \in X$ such that f(x) = x.