MATH 232 Homework 2

1. Problem 1

SOLUTION:

(a) From (2.43), we have:

$$A = \frac{1}{h^2} \begin{bmatrix} h^2 & 0 & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 & h^2 \end{bmatrix}, \quad U = \begin{bmatrix} u_0 \\ u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix}, \quad F = \begin{bmatrix} \alpha \\ f(x_1) \\ f(x_2) \\ f(x_3) \\ \beta \end{bmatrix}$$

Given $u(0) = u(1) = \alpha = \beta = 0$ and h = 0.25, our A and F become:

$$A = 16 \begin{bmatrix} \frac{1}{16} & 0 & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 & \frac{1}{16} \end{bmatrix}, \quad F = \begin{bmatrix} 0 \\ f(x_1) \\ f(x_2) \\ f(x_3) \\ 0 \end{bmatrix}$$

U remains the same.

(b) To analytically find the inverse of A, we can use the discrete Green's function analog that was covered in class and (2.46) from LeVeque:

$$B_{i,0} = 1 - x_i$$

$$B_{i,j} = hG(x_i; x_j) \begin{cases} h(x_j - 1)x_i, & i = 1, 2, ..., j \\ h(x_i - 1)x_j, & i = j, j + 1, ..., m \end{cases}$$

$$B_{i,m+1} = x_i$$

By substituting our values for h and x_i, x_j , the inverse matrix B is:

$$B = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ \frac{3}{4} & -\frac{3}{64} & -\frac{1}{32} & -\frac{1}{64} & \frac{1}{4} \\ \frac{1}{2} & -\frac{1}{32} & -\frac{1}{16} & -\frac{1}{32} & \frac{1}{2} \\ \frac{1}{4} & -\frac{1}{64} & -\frac{1}{32} & -\frac{3}{64} & \frac{3}{4} \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

We can check that this is in fact the inverse of A by computing the matrix product of AB by hand or in MATLAB to find:

$$AB = 16 \begin{bmatrix} \frac{1}{16} & 0 & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 & \frac{1}{16} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ \frac{3}{4} & -\frac{3}{64} & -\frac{1}{32} & -\frac{1}{64} & \frac{1}{4} \\ \frac{1}{2} & -\frac{1}{32} & -\frac{1}{16} & -\frac{1}{32} & \frac{1}{2} \\ \frac{1}{4} & -\frac{1}{64} & -\frac{1}{32} & -\frac{3}{64} & \frac{3}{4} \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} = I$$

(c) Recall that our system of equations started as AU = F. With B being the inverse of A, we can find our approximate solution by computing:

$$U = BF = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ \frac{3}{4} & -\frac{3}{64} & -\frac{1}{32} & -\frac{1}{64} & \frac{1}{4} \\ \frac{1}{2} & -\frac{1}{32} & -\frac{1}{16} & -\frac{1}{32} & \frac{1}{2} \\ \frac{1}{4} & -\frac{1}{64} & -\frac{1}{32} & -\frac{3}{64} & \frac{3}{4} \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ \frac{1}{4} \\ \frac{1}{2} \\ \frac{3}{4} \\ 0 \end{bmatrix} = \frac{1}{128} \begin{bmatrix} 0 \\ -5 \\ -8 \\ -7 \\ 0 \end{bmatrix}$$

If we plot the approximate solution to u''(x) = f(x) with u(0) = u(1) = 0 for h = 0.25 with the five Green's functions we see the following:

Figure 1: The approximate solution u(x) with the five Green's functions.

However, we note that given our particular choice of $\alpha = \beta = 0$, we don't include the Green's functions b_0 and b_4 . If we re-plot our solution without these, we can see a more accurate representation of u(x) and the five Green's functions.

Figure 2: The approximate solution u(x) with the three contributing Green's functions.

2. Problem 2

SOLUTION:

(a) The modifications made to bvp_2.m that need to be made are changing the parameters in lines 15-18 to match the BVP given, namely, ax = 0, bx = 1, $\alpha = 2$, $\beta = 3$. Similarly, we need to change lines 20 and 21 to be f = 0, and $utrue = 2cos(x) + \frac{3-2cos(1)}{sin(1)}sin(x)$, where utrue is calculated by solving the BVP u''(x) + u(x) = 0, with the given initial conditions:

$$u''(x) + u(x) = 0$$

$$r^{2} + 1 = 0 \longrightarrow r = \pm i$$

$$u(x) = c_{1}cos(x) + c_{2}sin(x)$$

Applying initial conditions:

$$u(0) = c_1 + 0 = 2 \longrightarrow c_1 = 2$$

 $u(1) = 2\cos(1) + c_2\sin(1) = 3 \longrightarrow c_2 = \frac{3 - 2\cos(1)}{\sin(1)}$

Also because we are solving u''(x) + u(x) = 0, we must modify the script since it is intended for the Neumann problem u''(x) = f(x). To do this, change line 47 to only compute the value of A(1,1) and have it be the 0^{th} derivative since we have Dirichlet boundary conditions. Similarly, when forming the bulk of A in the for loop at line 50, we must incorporate that this is u''(x) + u(x) by adding to the current code fdcoeffF(0, x(i), x((i-1):(i+1))), making all the interior rows computed by A(i,i-1:i+1) = fdcoeffF(2, x(i), x((i-1):(i+1))) + fdcoeffF(0, x(i), x((i-1):(i+1))); The rest of the code is left unmodified. Running it as is, we obtain the following error table from the script:

l	h	error	ratio	observed order
	0.05000	8.10848e-05	NaN	NaN
	0.02500	2.02705 e-05	4.00014	2.00005
	0.01250	5.06999e-06	3.99812	1.99932
	0.00625	1.26748e-06	4.00007	2.00002
	0.00313	3.16866e-07	4.00004	2.00002
п				

It has observed order 2, so it checks out with the suspected $O(h^2)$ error as computed in the lecture of 27/01/2022. See q2abvp_2.m in the appendix for the exact script.

(b) See next page

(b) Solving the BVP for the initial conditions $u(0) = \alpha$ and $u(1) = \beta$, we get:

$$u''(x) + u(x) = 0$$

$$r^{2} + 1 = 0 \longrightarrow r = \pm i$$

$$u(x) = c_{1}cos(x) + c_{2}sin(x)$$

Applying initial conditions:

$$u(0) = c_1 + 0 = \alpha \longrightarrow c_1 = \alpha$$

 $u(\pi) = (\pi) = \beta \longrightarrow \alpha = -\beta$

Hence, we see that c_2 is a free variable since there is no constraints on it, and for a solution to exist to this problem, we must have that $\alpha = -\beta$. Since this is the case, we can plot a family of solutions, using the script family.m found in the appendix, with $c_2 = 0$, and produced a family of cosine curves for varying initial conditions that obey $\alpha = -\beta$:

Figure 3: Family of cosine curves to the solution of u''(x) + u(x) = 0 with various initial conditions and $c_2 = 0$.

(c) Changing the conditions to have a = 0, $b = \pi$, $\alpha = 1$, $\beta = -1$, we see that by part (b), our true solution changes to $u(x) = cos(x) + c_2 sin(x)$, where c_2 is a free parameter. Here we see that $\alpha = -\beta$, so we suspect this to be a well-posed problem. Taking $c_2 = 0$, we see that as $h \longrightarrow 0$, the solution approaches to f(x) = cos(x). We see that using 41 grid points in the figure below that our approximate solution approximates f(x) = cos(x) extremely well (approximate in dotted blue, true in red, on next page).

Figure 4: The approximate solution u(x) to u''(x) + u(x) = 0, with boundary conditions $a = 0, b = \pi, \alpha = 1, \beta = -1$

Modifying $\beta = 1$ breaks the condition we solved for in part (b), hence the problem is not well posed, we see that as $h \longrightarrow 0$, the solution behaves completely erratically and does not approximate the true solution at all.

Figure 5: The approximate solution u(x) to u''(x) + u(x) = 0, with boundary conditions $a = 0, b = \pi, \alpha = 1, \beta = 1$

Here we see that due to the problem being ill-posed, our numerical method does not approximate the true solution accurately whatsoever. In the table below (produced from bvp_2.m), we see that as $h \longrightarrow 0$, the error blows up.

error	ratio	observed order
6.17509e + 02	NaN	NaN
2.47520e + 03	0.24948	-2.00301
9.90595e + 03	0.24987	-2.00075
3.96290e+04	0.24997	-2.00019
1.58521e + 05	0.24999	-2.00005
	6.17509e+02 2.47520e+03 9.90595e+03 3.96290e+04	6.17509e+02 NaN 2.47520e+03 0.24948 9.90595e+03 0.24987 3.96290e+04 0.24997

(d) If we compute the eigenvalues of the matrix A from part (c) using MATLAB, we see the following trend as $h \to 0$ using the script q2d.m found in the appendix:

Figure 6: The minimum, absolute value of the eigenvalues of A as $h \to 0$.

We can see from this plot that the minimum, absolute value eigenvalue of A approaches 0 as $h \to 0$. If we compute $||A^{-1}||_2$ as $h \to 0$, we also see that this result blows up.

Figure 7: The result of $||A^{-1}||_2$ as $h \to 0$.

From these two plots, we can see how the discretization error yield a matrix that is not singular. However, the problem is ill-posed as the inverse matrix blows up as $h \to 0$.

Contributions:

Each group member completed the assignment individually, then the team we met together to discuss the answers complete the write up in Latex.

APPENDIX

```
q2abvp_2.m
clear all
% bvp_2.m
% second order finite difference method for the bvp
u''(x) = f(x), u'(ax) = sigma, u(bx) = beta
% Using 3-pt differences on an arbitrary nonuniform grid.
% Should be 2nd order accurate if grid points vary smoothly, but may
\% degenerate to "first order" on random or nonsmooth grids.
% Different BCs can be specified by changing the first and/or last rows of
% A and F.
% From http://www.amath.washington.edu/~rjl/fdmbook/ (2007)
ax = 0;
bx = 1;
sigma = 2; % Neumann boundary condition at ax
beta = 3;  % Dirichlet boundary condtion at bx
f = Q(x) 0; % right hand side function
utrue = Q(x) 2*cos(x) + (3-2*cos(1))/(sin(1)) * sin(x); % true soln
% true solution on fine grid for plotting:
xfine = linspace(ax,bx,201);
ufine = utrue(xfine);
% Solve the problem for ntest different grid sizes to test convergence:
m1vals = [20 \ 40 \ 80 \ 160 \ 320];
ntest = length(m1vals);
hvals = zeros(ntest,1); % to hold h values
E = zeros(ntest,1);  % to hold errors
for jtest=1:ntest
   m1 = m1vals(jtest);
    m2 = m1 + 1;
    m = m1 - 1;
                                                             % number of interior grid points
    hvals(jtest) = (bx-ax)/m1; % average grid spacing, for convergence tests
    % set grid points:
    gridchoice = 'uniform';
                                                                      % see xgrid.m for other choices
    x = xgrid(ax,bx,m,gridchoice);
    % set up matrix A (using sparse matrix storage):
    A = spalloc(m2, m2, 3*m2); % initialize to zero matrix
    % first row for Neumann BC at ax:
    A(1,1) = fdcoeffF(0, x(1), x(1:1));
    % interior rows:
          A(i,i-1:i+1) = fdcoeffF(2, x(i), x((i-1):(i+1))) + fdcoeffF(0, x(i), x
                   x((i-1):(i+1)));
    end
    % last row for Dirichlet BC at bx:
    A(m2,m:m2) = fdcoeffF(0,x(m2),x(m:m2));
```

```
% Right hand side:
 F = f(x);
 F(1) = sigma;
 F(m2) = beta;
 F = transpose(F);
 % solve linear system:
 U = A \setminus F;
 if jtest==1
    U_save1=U;
    uhat1 = utrue(x);
 elseif jtest==2
    U_save2=U;
    V = (1/3)*(4*U_save2(1:2:end) - U_save1);
    uhat2 = utrue(x);
    err2 = V - uhat1;
 elseif jtest==3
    U_save3=U;
    V = (1/3)*(4*U_save3(1:2:end) - U_save2);
    uhat3 = utrue(x);
    err2 = V - uhat2;
 elseif jtest==4
    U_save4=U;
    V = (1/3)*(4*U_save4(1:2:end) - U_save3);
    uhat4 = utrue(x);
    err2 = V - uhat3;
    elseif jtest==5
    U_save5=U;
    V = (1/3)*(4*U_save5(1:2:end) - U_save4);
    uhat5 = utrue(x);
    err2 = V - uhat4;
 end
 % compute error at grid points:
 uhat = utrue(x);
 err = U - uhat;
 E(jtest) = max(abs(err));
 if jtest >=2
       E2(jtest-1) = max(abs(err2));
 end
 disp(' ')
 disp(sprintf('Error with %i points is %9.5e',m2,E(jtest)))
 plot(x,U,'o') % plot computed solution
 title(sprintf('Computed solution with %i grid points',m2));
 plot(xfine,ufine) % plot true solution
 hold off
 % pause to see this plot:
 drawnow
 input('Hit <return> to continue ');
 end
error_table(hvals, E); % print table g of errors and ratios
error_loglog(hvals, E); % produce log-log plot of errors and least squares fit
```

```
family.m
f = Q(x) \cos(x);
g = 0(x) 2*cos(x);
h = 0(x) 1/2 *cos(x);
a = 0(x) 3 * cos(x);
b = 0(x) - \cos(x);
xs = linspace(0,pi);
hold on
plot(xs, f(xs))
plot(xs, g(xs))
plot(xs, h(xs))
plot(xs, a(xs))
plot(xs, b(xs))
hold off
legend('$\alpha$ = 1, $\beta$ = -1', '$\alpha$ = 2, $\beta$ = -2', '$\alpha$ =
    \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}
    -3','$\alpha$ = -1, $\beta$ = 1','Interpreter', 'latex')
xlabel('x')
ylabel('y')
xlim([0,pi])
title('Family of cosine solutions')
saveas(gcf,'family.png')
q2d.m
close all
% run bvp_2_p2d fist to generate the A1 - A5 matrices.
eig_A1 = eig(full(A1));
eig_A2 = eig(full(A2));
eig_A3 = eig(full(A3));
eig_A4 = eig(full(A4));
eig_A5 = eig(full(A5));
% compute min eig(As)
eA_vec = [min(abs(eig_A1)),min(abs(eig_A2)),min(abs(eig_A3))
,min(abs(eig_A4)),min(abs(eig_A5))];
figure
semilogy(1./m1vals,eA_vec)
xlabel 'h'
ylabel 'min(|\lambda_A|)'
grid minor
% compute norm(As)
nA_vec = [norm(inv(full(A1))),norm(inv(full(A2))),norm(inv(full(A3))),
norm(inv(full(A4))),norm(inv(full(A5)))];
figure
semilogy(1./m1vals,nA_vec)
xlabel 'h'
ylabel '||(A)^{-1}||_2'
grid minor
```