Title

D. Zack Garza

Tuesday 15^{th} September, 2020

Contents

1 Tuesday, September 15 1.1 Review	1
1 Tuesday, September	r 15
1.1 Review	
Let $k = \bar{k}$, we're setting up correspondences	
Polynomial functions	Affine space
Ç.	$\mathbb{A}^n/k := \{ [a_1, \cdots, a_n] \in k^n \}$
Maximal ideals $\langle x_1 - a_1, \cdots, x_n - a_n \rangle$	
Radical ideals $I \leq k[x_1, \cdots, x_n]$	Affine varieties $X \subset \mathbb{A}^n/k$, vanishing locii of polynomials
I	$\mapsto V(I) \coloneqq \left\{ a \;\middle \; f(a) = 0 \forall f \in I \right\}$
$I(X) := \left\{ f \mid f _X = 0 \right\}$	$\leftarrow \!$
Radical ideals containing $I(X)$, i.e. ideals in $A(X)$	closed subsets of X , i.e. affine subvarieties
A(X) is a domain	X irreducible
A(X) is not a direct sum	X connected
Prime ideals in $A(X)$	Irreducible closed subsets of X
Krull dimension n (longest chain of prime ideals)	$\dim X = n$, (longest chain of irreducible closed subsets)
Ring Theory	Geometry/Topology of Affine Varieties.

Recall that we defined the coordinate ring $A(X) := k[x_1, \cdots, x_n]/I(X)$, which contained no nilpotents.

We had some results about dimension

- 1. $\dim X < \infty$ and $\dim \mathbb{A}^n = n$.
- 2. $\dim Y + \operatorname{codim}_X Y = \dim X$ when $Y \subset X$ is irreducible.
- 3. Only over $\bar{k} = k$, $\operatorname{codim}_X V(f) = 1$.

Example 1.1. Take $V(x^2 + y^2) \subset \mathbb{A}^2/\mathbb{R}$