スモールサイズ自律移動ロボット 高尾X1号の実機/仮想モデル構築

2045 東京高専ロボティクス連携チーム

〇小渕晴紀, 藤田尊久, 多胡秀哉, 冨沢哲雄, 多羅尾進

発表 2021年2月6日 (土)

目次

- 1. はじめに
- 2. 機体ハードウェア
- 3. 機体ソフトウェア+VTC on Unity
- 4. 実験
- 5. 得られた知見
- 6. まとめと今後について

1. はじめに

2009年から開発してきた高尾シリーズは人の搭乗を想定したミドルサイズ 自律移動ロボット

- ・今年度の目的は以下の2つ
 - 屋内外走行を想定したスモールサイズロボットの社会実装を見据えた開発
 - ・実機開発が容易にできない中での開発法を探る

- ・駆動系はT-Frogプロジェクトのものがベース
 - ・校内の環境に適応するためモータの減速比を変更
 - ・ミドルウェアにはROS2とDockerを使用

2. 機体ハードウェア

高尾x1号のスペック

重量	26kg
幅×奥行×高さ	$550 \text{mm} \times 490 \text{mm} \times 1400 \text{mm}$
モータ	TF-M30-24-3500-G50
	(減速比50:1)
最高速度	0.4m/s (≒1.5km/h)
電池	12V LiFePO4 ×4
LiDAR	Hokuyo UTM-30LX (2D)
	SureStar R-Fans-16 (3D)
ステレオカメラ	Intel Realsense D455
IMU(9軸センサ)	3DM-5GX-25

LiDAR (R-Fans-16)

非常停止スイッチ

デバッグ用コンソール

制御機器スペース

駆動用バッテリー

ロボット外観

2. 機体ハードウェア

電源通信図

3. 機体ソフトウェア + VTC ON UNITY

4. 走行実験

高尾x1号の 走行動画

スモールサイズ自律移動ロボット 高尾x1号の開発

Virtual Tsukuba Challenge on Unity にて 高尾x1号を走行させた動画

実機 仮想機

5. 得られた知見

・モータの減速比を50:1にした場合, 0.4m/sが限界

- ・ros1_bridge利用により、ROS2のパッケージを補うことで一応の動作は可能
 - ・メリットはROS2にないパッケージを扱えること
 - ・デメリットはROS2特有の機能による制御ができないことや保守コストが上がること
 - ・ROS2 to ROS1のtf_staticを通さないため、対策が必要

- · Dockerイメージを作っておくことで実機に素早く導入可能
 - ・Dockerコンテナ内でコード編集をする場合, VSCodeの拡張機能が便利
 - · Dockerのマウント機能を使うことでConfigファイルなどを簡単に差し替え可能

6. まとめと今後について

まとめ

- ROS2とDockerを用いたロボットを開発し、ros1_bridgeで不足パッケージを補い手動走行までは動作させることができた.
- VTC on Unityでもモデルを作成し、同様に手動走行までは動作させることができた.

今後について

- ・2D-SLAMを用いた基本的な自律移動走行
- 3DLiDARによるSLAMのROS2化
- ・東京高専周囲空間の3Dモデル化
- ・Realsenseによる障害物検知
- ・画像処理などのタスクの分散化

改修後の高尾x1号

ご質問や発表を聞きたい方は話しかけてください