

	WYPEŁNIA ZDAJĄCY	Miejsce na naklejkę.
KOD	PESEL	Sprawdź, czy kod na naklejce to E-100 .
		Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.

EGZAMIN MATURALNY Z INFORMATYKI

Poziom rozszerzony Część I

DATA: 20 maja 2022 r.
GODZINA ROZPOCZĘCIA: 9:00
CZAS PRACY: 60 minut

LICZBA PUNKTÓW DO UZYSKANIA: 15

WYPEŁNIA ZDAJĄCY	WYBRANE:
	(system operacyjny)
	(program użytkowy)
	(środowisko programistyczne)

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 9 stron (zadania 1–3). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zapisz w miejscu na to przeznaczonym przy każdym zadaniu.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 6. Wpisz zadeklarowane (wybrane) przez Ciebie na egzamin system operacyjny, program użytkowy oraz środowisko programistyczne.
- 7. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 8. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

Zadanie 1. n-permutacja

Dla dodatniej liczby całkowitej *n*, *n-permutacją* nazywamy taki *n*-elementowy ciąg liczb całkowitych, który zawiera każdą z liczb 1, 2, ..., *n* dokładnie jeden raz.

Przykład:

ciąg (4,2,1,3) jest *4-permutacją*, ciąg (6,5,4,1,2,3) jest *6-permutacją*, ciągi (1,3,1,2) i (2,3,4,5) nie są *4-permutacjami*.

W ciągu *n* liczb całkowitych, który nie jest *n-permutacją*, można podmienić niektóre elementy tak, aby otrzymać *n-permutację*.

Przykład:

w ciągu (1,3,1) wystarczy podmienić jeden element – pierwszą lub ostatnią jedynkę (1) – na dwójkę (2), aby powstały ciąg był *3-permutacją*.

Zadanie 1.1. (0-2)

Uzupełnij poniższą tabelę – dla każdego z podanych ciągów podaj najmniejszą liczbę elementów, które trzeba podmienić, aby dany ciąg był *n-permutacją*. Jeśli ciąg jest już *n-permutacją*, wpisz 0.

n	ciąg	liczba elementów do podmiany
3	(1, 3, 1)	1
4	(1, 4, 2, 5)	
5	(2, 2, 2, 2, 2)	
4	(4, 2, 3, 1)	
6	(5, 4, 1, 5, 6, 8)	
6	(8, 4, 9, 6, 5, 7)	

Zadanie 1.2. (0-4)

Zapisz w pseudojęzyku lub wybranym języku programowania algorytm, który dla danego ciągu *n* dodatnich liczb całkowitych zapisanego w tablicy *A* obliczy najmniejszą liczbę elementów, które trzeba w nim podmienić, aby otrzymać *n*-*permutację*.

Uwaga: W zapisie algorytmu możesz korzystać tylko z instrukcji sterujących, operatorów arytmetycznych: dodawania, odejmowania, mnożenia, dzielenia, dzielenia całkowitego i reszty z dzielenia; operatorów logicznych, porównań, odwoływania się do pojedynczych elementów tablicy i instrukcji przypisania lub samodzielnie napisanych funkcji i procedur wykorzystujących powyższe operacje. **Zabronione** jest używanie funkcji wbudowanych oraz operatorów innych niż wymienione, dostępnych w językach programowania.

Specyfikacja:

Dane:

n – dodatnia liczba całkowita

A[1..n] – tablica n dodatnich liczb całkowitych, gdzie A[i] jest i-tym elementem ciągu Wynik:

k – minimalna liczba elementów, które trzeba podmienić w ciągu zapisanym w tablicy A, aby otrzymać n-permutację

Algorytm:

	Nr zadania	1.1.	1.2.
Wypełnia egzaminator	Maks. liczba pkt.	2	4
	Uzyskana liczba pkt.		

Zadanie 2. ab-słowo

Niech n będzie dodatnią liczbą całkowitą i niech s będzie słowem o długości n zbudowanym z liter a lub b. Zapis s[i] oznacza i-tą literę w tym słowie $(1 \le i \le n)$.

Dla słowa s wykonujemy poniższy algorytm. Wynikiem działania algorytmu jest wartość zmiennej *k*.

Algorytm

$$A[0] \leftarrow 0$$

dla $i = 1, 2, ..., n$

jeżeli $s[i] = 'a'$
 $A[i] \leftarrow A[i-1] + 1$

w przeciwnym razie

 $A[i] \leftarrow A[i-1]$
 $B[n+1] \leftarrow 0$

dla $j = n, n-1, ..., 1$

jeżeli $s[j] = 'b'$
 $B[j] \leftarrow B[j+1] + 1$

w przeciwnym razie

 $B[j] \leftarrow B[j+1]$
 $k \leftarrow 1$

dla $i = 0, 1, 2, ..., n$

jeżeli $A[i] + B[i+1] > k$
 $k \leftarrow A[i] + B[i+1]$

Zadanie 2.1. (0-2)

Uzupełnij tabelę – wpisz wynik działania algorytmu dla podanych wartości s.

n	s	Wynik działania algorytmu (wartość <i>k</i>)
5	aabab	4
2	ab	2
3	aaa	3
6	aababb	
9	baabbaaab	

Miejsce na obliczenia:

Zadanie 2.2. (0-2)

Podaj przykłady dziesięcioliterowych słów złożonych z liter *a* lub *b*, dla których wynik działania powyższego algorytmu (wartość *k*) jest równy odpowiednio 10 i 5.

n	s	Wynik działania algorytmu (wartość <i>k</i>)
10		10
10		5

Miejsce na obliczenia:

	Nr zadania	2.1.	2.2.
Wypełnia egzaminator	Maks. liczba pkt.	2	2
	Uzyskana liczba pkt.		

Zadanie 2.3. (0-2)

Dla uproszczenia będziemy pisać a^2 zamiast aa, a^3 zamiast aaa i tak dalej. Innymi słowy: dla dowolnej dodatniej liczby całkowitej m, zapis a^m oznacza literę a powtórzoną m razy, natomiast b^m oznacza literę b powtórzoną m razy.

Podaj wynik działania (wartość k) powyższego algorytmu dla słowa $a^{300}b^{550}a^{300}b^7a^{280}b^{110}$.

k =

Miejsce na obliczenia:

Zadanie 3. Test

Oceń prawdziwość podanych zdań. Zaznacz \mathbf{P} , jeśli zdanie jest prawdziwe, albo \mathbf{F} – jeśli jest fałszywe.

W każdym zadaniu punkt uzyskasz tylko za komplet poprawnych odpowiedzi.

Zadanie 3.1. (0-1)

Dany jest algorytm:

$$s \leftarrow 0$$

dla $i = 1, 2, ..., n$
dla $j = i, i + 1, ..., n$
 $s \leftarrow s + 1$

Złożoność obliczeniowa powyższego algorytmu oceniona liczbą wykonań instrukcji $s \leftarrow s + 1$, w zależności od dodatniej liczby całkowitej n, jest

1.	liniowa.	Р	F
2.	kwadratowa.	Р	F
3.	$n \log n$.	Р	F
4.	nie większa niż sześcienna.	Р	F

Zadanie 3.2. (0-1)

Po dodaniu liczb 1324 oraz 31114 zapisanych w systemie czwórkowym otrzymamy:

1.	11110112	Р	F
2.	3628	Р	F
3.	F3 ₁₆	Р	F
4.	33034	Р	F

	Nr zadania	2.3.	3.1.	3.2.
Wypełnia egzaminator	Maks. liczba pkt.	2	1	1
	Uzyskana liczba pkt.			

Zadanie 3.3. (0-1)

W bazie danych istnieje tabela *mandaty*(*numer*, *id_osoby*, *punkty*) zawierająca następujące dane:

numer	id_osoby	punkty
1	1	5
2	1	14
3	2	20
4	3	21
5	2	1
6	1	2

1.	Wynikiem zapytania: SELECT id_osoby, sum(punkty) FROM mandaty GROUP BY id_osoby HAVING sum(punkty) > 5 jest zestawienie: 1 14 2 20 3 21	Р	F
2.	Wynikiem zapytania: SELECT id_osoby, sum(punkty) FROM mandaty GROUP BY id_osoby jest zestawienie: 1 21 2 21 3 21	P	F
3.	Wynikiem zapytania: SELECT numer + punkty FROM mandaty jest 86	P	F
4.	Wynikiem zapytania: SELECT count(punkty) FROM mandaty WHERE punkty = 21 jest 1	Р	F

	Nr zadania	3.3.
Wypełnia	Maks. liczba pkt.	1
egzaminator	Uzyskana liczba pkt.	

BRUDNOPIS (nie podlega ocenie)