

Random Variables Anita Wang

Random Variables

- Continuous random variables:
 - Uniform
 - Univariate normal
 - Gamma
 - Beta
 - Exponential
- Discrete random variables:
 - Poisson
 - Binomial

Continuous Random Variable

 A random variable is called continuous if the distribution function is continuous and is differentiable everywhere with the possible exception of a countable number of values.

Properties and Moments

Properties of pdf:

$$-f(x) \ge 0$$
 for all x

$$-\int f(x)dx=1$$

Expectation:

$$E(X) = \int x f(x) \, dx$$

Variance:

$$Var(X) = \int x^2 f(x) dx - [E(X)]^2$$

Uniform Distribution

- The uniform distribution is used to represent a variable that is known to lie in an interval and equally likely to be found anywhere in the interval.
- $X \sim U(\alpha, \beta)$, boundaries α, β with $\beta > \alpha$

•
$$f(X) = \frac{1}{\beta - \alpha}$$

•
$$E(X) = \int_{\alpha}^{\beta} \frac{1}{\beta - \alpha} x \, dx = \frac{\alpha + \beta}{2}$$

•
$$Var(X) = \int_{\alpha}^{\beta} \frac{1}{\beta - \alpha} x^2 dx - \left(\frac{\alpha + \beta}{2}\right)^2 = \frac{(\beta - \alpha)^2}{12}$$

Univariate Normal Distribution

- The normal, or Gaussian, distribution is ubiquitous in statistics. Sample averages are approximately normally distributed by the central limit theorem.
- $X \sim N(\mu, \sigma^2)$, location μ , scale $\sigma > 0$
- $f(X) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{1}{2\sigma^2}(x-\mu)^2)$
- $E(X) = \int_{\alpha}^{\beta} x \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{1}{2\sigma^2}(x-\mu)^2) dx = \mu$
- $Var(X) = \int_{\alpha}^{\beta} x^2 \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{1}{2\sigma^2}(x-\mu)^2) dx \mu^2 = \sigma^2$

Univariate Normal Distribution

Properties:

- The sum of two independent normal random variables is normally distributed. If X_1 and X_2 are independent with $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$ distributions, then $X_1 + X_2 \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.
- If $X_1|X_2 \sim N(X_2, \sigma_1^2)$ and $X_2 \sim N(\mu_2, \sigma_2^2)$. Then $X_1 \sim N(\mu_2, \sigma_1^2 + \sigma_2^2)$

Gamma Distribution

• $X \sim Gamma(\alpha, \beta)$, shape $\alpha > 0$, inverse scale $\beta > 0$

Gamma Distribution

•
$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, x > 0$$

•
$$E(X) = \int_0^{+\infty} x \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} dx = \frac{\alpha}{\beta}$$

•
$$Var(X) = \int_0^{+\infty} x^2 \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} dx - \left(\frac{\alpha}{\beta}\right)^2 = \frac{\alpha}{\beta^2}$$

- Property:
 - If X_1 and X_2 are independent with Gamma(α_1 , β) and Gamma(α_2 , β) distributions, then

$$X_1 + X_2 \sim \text{Gamma}(\alpha_1 + \alpha_2, \beta).$$

Beta Distribution

• $X \sim Beta(\alpha, \beta)$, shape $\alpha > 0$, shape $\beta > 0$

Beta Distribution

•
$$f(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}, x \in [0,1], B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$$

•
$$E(X) = \int x \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)} dx = \frac{\alpha}{\alpha + \beta}$$

•
$$Var(X) = \int x^2 \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)} dx - \left(\frac{\alpha}{\alpha+\beta}\right)^2 = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$$

Exponential Distribution

- The exponential distribution is the distribution of waiting times for the next event in a Poisson process and is a special case of the gamma distribution with $\alpha = 1$.
- $X \sim Expon(\lambda)$, inverse scale $\lambda > 0$

Exponential Distribution

•
$$f(X) = \lambda e^{-\lambda x}, x > 0$$

•
$$E(X) = \int_0^{+\infty} x \lambda e^{-\lambda x} dx = \frac{1}{\lambda}$$

•
$$Var(X) = \int_0^{+\infty} x^2 \lambda e^{-\lambda x} dx - \left(\frac{1}{\lambda}\right)^2 = \frac{1}{\lambda^2}$$

Discrete Random Variable

- The support of a random variable is the set of numbers that are possible values of the random variable.
- A random variable is called discrete if the support contains at most a countable number of values.

Discrete Random Variable

- Properties of probability function
 - For any value x of the random variable, $p(x) \ge 0$
 - The probabilities of all the events in the sample space must sum to 1, that is, $\sum_{all \ x} p(x) = 1$.
- Expectation $E(X) = \sum_{all \ x} xp(x)$
- Variance $Var(X) = \sum_{all \ x} (x E(X))^2 p(x)$

Example

• Let Y be a discrete random variable with probability function given in the following table.

${y_i}$	$f(y_i)$
0	0.20
1	0.15
2	0.25
3	0.35
4	0.05

- Find E(Y)
- Find Var(Y)

Example Solutions

- $E(Y) = 0 \times 0.20 + 1 \times 0.15 + 2 \times 0.25 + 3 \times 0.35 + 4 \times 0.05 =$ 1.90
- $Var(Y) = (0 1.90)^2 \times 0.20 + (1 1.90)^2 \times 0.15 + (2 1.90)^2 \times 0.25 + (3 1.90)^2 \times 0.35 + (4 1.90)^2 \times 0.05 = 1.49$

Poisson Distribution

- The Poisson distribution is commonly used to represent count data, such as the number of arrivals in a fixed time period.
- $X \sim Poisson(\lambda)$
- $p(x) = \frac{1}{x!} \lambda^x \exp(-\lambda), x = 0, 1, 2, ...$
- Expectation

$$E\left(X
ight) = \sum_{k \geq 0} k rac{1}{k!} \lambda^k e^{-\lambda}$$

$$E(X)=rac{\lambda e^{-\lambda}}{k\geq 1}rac{1}{(k-1)!}\lambda^{k-1}$$
 as the $k=0$ term vanishes $=rac{\lambda e^{-\lambda}}{j\geq 0}rac{\lambda^j}{j!}$ putting $j=k-1$

 $=\lambda e^{-\lambda}e^{\lambda}$ Taylor Series Expansion for Exponential Function

Poisson Distribution

Similarly, the variance is

$$Var(X) = E(X)^2 - (EX)^2 = \lambda$$

- Property:
 - if X_1 and X_2 are independent with Poisson(λ_1) and Poisson(λ_2) distributions, then

$$X_1 + X_2 \sim Poisson(\lambda_1 + \lambda_2).$$

Binomial Distribution

- The binomial distribution is commonly used to represent the number of 'successes' in a sequence of n independent and identically distributed Bernoulli trials, with probability of success p in each trial.
- $X \sim Bin(n, p)$

•
$$p(x) = \binom{n}{x} p^x (1-p)^{n-x}, x = 0, 1, 2, ... n$$

Expectation

$$E(X) = np$$

Variance

$$Var(X) = np(1-p)$$

