TAREA2. MÉTODOS NUMÉRICOS

1) Sea
$$f(x) = x^3$$

a. Determine el segundo polinomio de Taylor $P_2(x)$ en torno a $x_0 = 0$.

De manera general, se puede describir la función f(x) por un polinomio de Taylor cuya estructura es

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Como $x_0 = 0$ y se trunca en un polinomio de grado 2,

$$P_2(x) = \frac{f(0)}{0!}x^0 + \frac{f'(0)}{1!}x^1 + \frac{f''(0)}{2!}x^2 = f(0) \cdot x + f'(0) \cdot x + \frac{f''(0)}{2} \cdot x^2$$

Teniendo en cuenta que $f(x) = x^3$, entonces

$$f'(x) = 3x^2 \to f'(0) = 0, \qquad f''(x) = 6x \to f''(0) = 0$$

Encontrando que

$$P_2(x) = 0$$

b. Calcule $R_2(0.5)$ y el error real al usar $P_2(0.5)$ para aproximar f(0.5).

Reemplazando x = 0.5, se obtiene

$$f(0.5) = (0.5)^3 = 0.125$$

Luego, el error absoluto es

$$f(0.5) - P_2(0.5) = 0.125 - 0 = 0.125$$

Ahora, teniendo en cuenta que

$$R(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - x_0)^{n+1}$$

En este caso, como se truncó en el polinomio de grado 2, entonces es necesario calcular

$$f^{(3)}\big(\xi(x)\big) = 6$$

Entonces

$$R(x) = \frac{6}{3!}x^3 = x^3$$

Encontrando que

$$R(0.5) = 0.5^3 = 0.125$$

c. Repita el inciso (a) usando $x_0 = 1$

De manera análoga al procedimiento realizado en el inciso (a)

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

En este caso $x_0 = 1$ y se trunca en un polinomio de grado 2,

$$P_2(x) = \frac{f(1)}{0!}(x-1)^0 + \frac{f'(1)}{1!}(x-1)^1 + \frac{f''(1)}{2!}(x-1)^2$$

Teniendo en cuenta que $f(x) = x^3$, entonces

$$f'(x) = 3x^2 \to f'(1) = 3$$
, $f''(x) = 6x \to f''(1) = 6$

Encontrando que

$$P_2(x) = \frac{1}{0!}(x-1)^0 + \frac{3}{1!}(x-1)^1 + \frac{6}{2!}(x-1)^2$$
$$P_2(x) = 1 + 3(x-1) + 3(x-1)^2$$

d. Repita el inciso (b) con el polinomio del inciso (c).

Reemplazando x = 0.5, se obtiene

$$f(0.5) = (0.5)^3 = 0.125$$
$$P_2(x) = 1 + 3(0.5 - 1) + 3(0.5 - 1)^2 = 0.25$$

Luego, el error absoluto es

$$f(0.5) - P_2(0.5) = 0.125 - 0.25 = -0.125$$

De igual manera

$$R(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - x_0)^{n+1}$$

Donde, seguimos teniendo

$$f^{(4)}\big(\xi(x)\big) = 6$$

Entonces

$$R(x) = \frac{6}{3!}(x-1)^3 = (x-1)^3$$

Encontrando

$$R(0.5) = (0.5 - 1)^3 = -0.5^3 = -0.125$$

- 2) Determine el tercer polinomio de Taylor $P_3(x)$ para la función $f(x) = (x-1) \ln x$ respecto a $x_0 = 1$.
 - a. Use $P_3(0.5)$ para aproximar f(x). Determine una cota superior para el $|f(0.5) P_3(0.5)|$ por medio de la fórmula para el error y compárelo con el error real.

Como se vio anteriormente, el polinomio de grado tres de Taylor que aproxima la función es

$$P_3(x) = \frac{f(1)}{0!}(x-1)^0 + \frac{f'(1)}{1!}(x-1)^1 + \frac{f''(1)}{2!}(x-1)^2 + \frac{f'''(1)}{3!}(x-1)^3$$

Calculando las derivadas observamos en $x_0 = 1$

$$f(x) = (x - 1) \ln x \to f(1) = 0$$

$$f'(x) = \ln(x) + \frac{x - 1}{x} \to f'(1) = 0$$

$$f''(x) = \frac{x + 1}{x^2} \to f'(1) = 2$$

$$f'''(x) = -\frac{x + 2}{x^3} \to f'(1) = -3$$

Luego

$$P_3(x) = \frac{0}{0!}(x-1)^0 + \frac{0}{1!}(x-1)^1 + \frac{2}{2!}(x-1)^2 + \frac{-3}{3!}(x-1)^3 = (x-1)^2 - \frac{1}{2}(x-1)^3$$

Entonces

$$P_3(1) = (0.5 - 1)^2 - \frac{1}{2}(0.5 - 1)^3 = 0.3125$$

Reemplazando en la función de partida x = 0 se obtiene

$$f(0.5) = (0.5 - 1) \cdot \ln(0.5) = 0.34657$$

Y, por tanto,

$$|f(1) - P_3(1)| = 0.0341$$

Como

$$R(x) = \frac{f^{n+1}(c)(x - x_0)^{n+1}}{(n+1)!}$$

En este caso $x_0=1$ la derivada tiene la siguiente estructura

$$f^{(4)}(x) = \frac{2x+6}{x^4}$$

Teniendo en cuenta que

Y, dado que la función es decreciente

$$f^{(4)}(0) > f^{(4)}(c) > f^{(4)}(x)$$

Tomando la cota inferior, es decir, x = 0.5

$$\rightarrow f^{(4)}(0.5) = 112$$

Luego

$$R(x) = \frac{112 \cdot (x-1)^4}{4!} \to R(0.5) = \frac{112 \cdot 0.5^4}{4 \cdot 3 \cdot 2 \cdot 1} = 0.0208$$

b. Calcule una cota para el error $|f(x) - P_3(x)|$ al usar $P_3(x)$ para aproximar f(x) en el intervalo [0.5,1.5].

Como pudimos observar en el inciso anterior, para el polinomio de grado tres que aproxima la función, tenemos

$$R(x) = \frac{f^{(n)}(c)}{4!}(x-1)^4$$

Con

$$f^{(4)}(x) = \frac{2x+6}{x^4}$$

En este caso, $c \in [0.5, 1.5]$ y, como $f^{(4)}(x)$ es decreciente para x > 0, entonces el valor más grande se encuentra en el límite inferior

$$f^{(4)}(0.5) = 112, f^{(4)}(1.5) = 1.78$$

Por tanto, se puede estimar que la cota superior del error en el intervalo propuesto tiene la siguiente forma

$$R(x) = \frac{112}{4!} \cdot (x - 1)^4$$

c. Aproxime $\int_{0.5}^{1.5} f(x) dx$ usando $\int_{0.5}^{1.5} P_3(x) dx$.

Como se pudo observar la aproximación a f(x) por medio de un polinomio de taylor da como resultado

$$P_3(x) = (x-1)^2 - \frac{1}{2}(x-1)^3$$

Luego

$$\int_{0.5}^{1.5} f(x)dx \approx \int_{0.5}^{1.5} P_3(x)dx = \int_{0.5}^{1.5} (x-1)^2 - \frac{1}{2}(x-1)^3 dx = \left(\frac{(x-1)^3}{3} - \frac{(x-1)^4}{8}\right)\Big|_{0.5}^{1.5}$$

$$\int_{0.5}^{1.5} f(x)dx \approx \int_{0.5}^{1.5} P_3(x)dx = 0.0833$$

d. Calcule una cota superior para el error en \odot mediante $\int_{0.5}^{1.5} |R_3(x)| dx$

Como pudimos observar, en este intervalo la cota superior del error es

$$R(x) = \frac{112 \cdot (x-1)^4}{4!}$$

Luego, como este es siempre positivo en el intervalo, tendremos

$$\int_{0.5}^{1.5} |R_3(x)| dx = \int_{0.5}^{1.5} R_3(x) dx = \int_{0.5}^{1.5} \frac{112 \cdot (x-1)^4}{4!} dx = \frac{112}{4!} \cdot \frac{(x-1)^5}{5} \Big|_{0.5}^{1.5} = 0.0042$$

3) Calcule el cuarto polinomio de Taylor $P_4(x)$ para la función $f(x) = xe^{x^2}$ en torno a $x_0 = 0$. a. Calcule una cota superior para $|f(x) - P_4(x)|$, con $0 \le x \le 0.4$.

Como necesitamos el polinomio de grado cuatro, calculamos las derivadas

$$f'(x) = (2x^{2} + 1)e^{x^{2}}$$

$$f''(x) = (4x^{3} + 6x)e^{x^{2}}$$

$$f^{(3)}(x) = (8x^{4} + 24x^{2} + 6)e^{x^{2}}$$

$$f^{(4)}(x) = (16x^{5} + 80x^{3} + 60x)e^{x^{2}}$$

$$f^{(5)}(x) = (32x^{6} + 240x^{4} + 360x^{2} + 60)e^{x^{2}}$$

$$f^{(6)}(x) = (64x^{7} + 672x^{5} + 1680x^{2} + 840x)e^{x^{2}}$$

Como se puede observar $f^{(6)}(x) > 0 \to x > 0$. Es decir que la función $f^{(5)}(x)$ es creciente en el intervalor de $x \in [0,0.4]$, encontrando que la cota superior se encontrará en $f^{(5)}(0.4) = 145.37$. Por tanto,

$$R(x) = \frac{f^{(5)}(c) \cdot (x - 0)^5}{5!} = \frac{145.37}{5!} x^5 = 1.21 \cdot x^5$$

Tomando x = 0.4, se encuentra el error máximo

$$E_{max} = 0.0124$$

b. Approxime
$$\int_0^{0.4} f(x) dx$$
 usando $\int_0^{0.4} P_4(x) dx$.

Como se ven en las derivadas calculadas anteriormente, vemos que cuando se evalúan en 0 se cancelan la mayoría de los términos, entonces

$$P_1(x) = \frac{f(0)}{0!}x^0 + \frac{f'(0)}{1!}x^1 + \frac{f''(0)}{2!}x^2 + \frac{f^{(3)}(0)}{3!}x^3 + \frac{f^{(4)}(0)}{4!}x^4$$

$$\to P_4(x) = 0 + x + 0 + \frac{6}{3!}x^3 + 0 = x + x^3$$

Por tanto,

$$\int_{0}^{0.4} f(x)dx \approx \int_{0}^{0.4} P_3(x)dx = \int_{0}^{0.4} x + x^3 dx = \frac{x^2}{2} + \frac{x^4}{4} \Big|_{0}^{0.4} = 0.0864$$

c. Determine una cota superior para el error en (b) usando $\int_0^{0.4} P_4(x) dx$.

La cota superior se encuentra con la siguiente expresión

$$\int_{0}^{0.4} |R_4(x)| dx = \int_{0}^{0.4} R_4(x) dx = \int_{0}^{0.4} 1.21 \cdot x^5 dx = \frac{1.21}{6} \cdot x^6 \Big|_{0}^{0.4} = \frac{1.21}{6} \cdot 0.4^6 = 0.000826$$

d. Determine f'(0.2) usando $P_4'(0.2)$.

Análogamente a lo visto en el punto con las integrales, vemos que

$$f'(x) \approx P_4'(x) = 1 + 3x^2$$

Por tanto,

$$f'(0.2) \approx P_4'(0.2) = 1 + 3 \cdot 0.2^2 = 1.12$$

4) Aplique el método de bisección para encontrar soluciones exactas dentro de 10^{-5} para los siguientes problemas.

De manera general, el método de bisección de boltzano establece que para una función f(x) que tiene una raíz única en [a,b], es decir que

$$f(a) \cdot f(b) < 0$$

Se puede calcular el siguiente punto de iteración como el valor medio del intervalor

$$c = \frac{a+b}{2}$$

En caso de que $f(a) \cdot f(c) > 0$ significaría que no hay solución en el intervalo [a,c] sino que la raíz se encontraría en el intervalo [c,b]. Por tanto, se restituye el valor del límite inferior con este punto medio (a=c). En caso de que $f(a) \cdot f(c) > 0$ se tiene el caso contrario, es decir que la raíz sí se encuentra en el intervalo [a,c], luego se debe restituir el valor del límite superior (b=c).

El procedimiento anterior se haría repetidas veces hasta que $|b-a| < 10^{-5}$. Encontrando los siguientes resultados:

a.
$$x - 2^{-x}$$
 para $0 \le x \le 1$

i	a	С	b	f(a)	f(c)	f (b)
_						
1	0	0	1	-1	0.5	-0.20711
2	0	0.5	1	-1	0.5	0.1554
3	0.5	0.75	0.75	-0.20711	0.5	-0.02342
4	0.5	0.625	0.75	-0.20711	0.1554	0.066571
5	0.625	0.6875	0.6875	-0.02342	0.1554	0.021725
6	0.625	0.65625	0.65625	-0.02342	0.066571	-0.00081001
7	0.625	0.64063	0.65625	-0.02342	0.021725	0.010467
8	0.64063	0.64844	0.64844	-0.00081001	0.021725	0.0048306
9	0.64063	0.64453	0.64453	-0.00081001	0.010467	0.0020109
10	0.64063	0.64258	0.64258	-0.00081001	0.0048306	0.0006006
11	0.64063	0.6416	0.6416	-0.00081001	0.0020109	-0.00010467
12	0.64063	0.64111	0.6416	-0.00081001	0.0006006	0.00024797
13	0.64111	0.64136	0.64136	-0.00010467	0.0006006	7.1654e-05
14	0.64111	0.64124	0.64124	-0.00010467	0.00024797	-1.6507e-05
15	0.64111	0.64117	0.64124	-0.00010467	7.1654e-05	2.7573e-05
16	0.64117	0.6412	0.6412	-1.6507e-05	7.1654e-05	5.5332e-06
17	0.64117	0.64119	0.64119	-1.6507e-05	2.7573e-05	-5.487e-06

La cantidad de iteraciones fue : 17.000000La raiz de la función en el intervalo dado es x = : 0.641186

b.
$$e^x - x^2 + 3x - 2 = 0$$
 para $0 \le x \le 1$

i	a	С	b	f(a)	f(c)	f (b)
_						
1	0	0	1	-1	2.7183	0.89872
2	0	0.5	0.5	-1	2.7183	-0.028475
3	0	0.25	0.5	-1	0.89872	0.43937
4	0.25	0.375	0.375	-0.028475	0.89872	0.20668
5	0.25	0.3125	0.3125	-0.028475	0.43937	0.089433
6	0.25	0.28125	0.28125	-0.028475	0.20668	0.030564
7	0.25	0.26563	0.26563	-0.028475	0.089433	0.0010664
8	0.25	0.25781	0.25781	-0.028475	0.030564	-0.013699
9	0.25	0.25391	0.25781	-0.028475	0.0010664	-0.0063148
10	0.25391	0.25586	0.25781	-0.013699	0.0010664	-0.0026239
11	0.25586	0.25684	0.25781	-0.0063148	0.0010664	-0.00077867
12	0.25684	0.25732	0.25781	-0.0026239	0.0010664	0.00014387
13	0.25732	0.25757	0.25757	-0.00077867	0.0010664	-0.0003174
14	0.25732	0.25745	0.25757	-0.00077867	0.00014387	-8.6763e-05
15	0.25745	0.25751	0.25757	-0.0003174	0.00014387	2.8553e-05
16	0.25751	0.25754	0.25754	-8.6763e-05	0.00014387	-2.9105e-05
17	0.25751	0.25752	0.25754	-8.6763e-05	2.8553e-05	-2.7598e-07

La cantidad de iteraciones fue : 17.000000

La raiz de la función en el intervalo dado es x = : 0.257534

i	a	С	b	f(a)	f(c)	f (b)
_						
1	-3	0	-2	-9.761	1.6146	-3.6683
2	-3	-2.5	-2	-9.761	1.6146	-0.61392
3	-2.5	-2.25	-2	-3.6683	1.6146	0.63025
4	-2.25	-2.125	-2.125	-0.61392	1.6146	0.038076
5	-2.25	-2.1875	-2.1875	-0.61392	0.63025	-0.28084
6	-2.25	-2.2188	-2.1875	-0.61392	0.038076	-0.11956
7	-2.2188	-2.2031	-2.1875	-0.28084	0.038076	-0.040279
8	-2.2031	-2.1953	-2.1875	-0.11956	0.038076	-0.00098519
9	-2.1953	-2.1914	-2.1875	-0.040279	0.038076	0.018574
10	-2.1914	-2.1895	-2.1895	-0.00098519	0.038076	0.0088019
11	-2.1914	-2.1904	-2.1904	-0.00098519	0.018574	0.0039101
12	-2.1914	-2.1909	-2.1909	-0.00098519	0.0088019	0.0014629
13	-2.1914	-2.1912	-2.1912	-0.00098519	0.0039101	0.00023898
14	-2.1914	-2.1913	-2.1913	-0.00098519	0.0014629	-0.00037308
15	-2.1914	-2.1913	-2.1913	-0.00098519	0.00023898	-6.7041e-05
16	-2.1913	-2.1913	-2.1913	-0.00037308	0.00023898	8.5972e-05
17	-2.1913	-2.1913	-2.1913	-6.7041e-05	0.00023898	9.4656e-06

La cantidad de iteraciones fue : 17.000000La raiz de la función en el intervalo dado es x = : -2.191311

i	a	С	b	f(a)	f(c)	f(b)
_						
1	-1	0	0	0.83229	-1	-0.7903
2	-1	-0.5	-0.5	0.83229	-1	-0.16861
3	-1	-0.75	-0.75	0.83229	-0.7903	0.29631
4	-1	-0.875	-0.75	0.83229	-0.16861	0.052882
5	-0.875	-0.8125	-0.75	0.29631	-0.16861	-0.060814
6	-0.8125	-0.78125	-0.78125	0.052882	-0.16861	-0.0046806
7	-0.8125	-0.79688	-0.79688	0.052882	-0.060814	0.023925
8	-0.8125	-0.80469	-0.79688	0.052882	-0.0046806	0.0095781
9	-0.80469	-0.80078	-0.79688	0.023925	-0.0046806	0.0024376
10	-0.80078	-0.79883	-0.79688	0.0095781	-0.0046806	-0.0011242
11	-0.79883	-0.79785	-0.79785	0.0024376	-0.0046806	0.000656
12	-0.79883	-0.79834	-0.79785	0.0024376	-0.0011242	-0.00023429
13	-0.79834	-0.7981	-0.7981	0.000656	-0.0011242	0.00021081
14	-0.79834	-0.79822	-0.7981	0.000656	-0.00023429	-1.1753e-05
15	-0.79822	-0.79816	-0.79816	0.00021081	-0.00023429	9.9527e-05
16	-0.79822	-0.79819	-0.79816	0.00021081	-1.1753e-05	4.3886e-05
17	-0.79819	-0.79817	-0.79816	9.9527e-05	-1.1753e-05	1.6067e-05

La cantidad de iteraciones fue : 17.000000

La raiz de la función en el intervalo dado es x = : -0.798161

d. $x\cos(x) - 2x^2 + 3x - 1 = 0$ para $0.2 \le x \le 0.3$ y para $1.2 \le x \le 1.3$

Tal como se puede ver la gráfica adjunta, en los intervalos propuestos por el ejercicio no se encuentra una raíz, es decir $f(0.2) \cdot f(0.3) > 0$ y $f(1.2) \cdot f(1.3) > 0$. De hecho, como se puede comprobar en la gráfica, las raíces son x = 0.5 y x = 1, por lo menos en el intervalo de 0 < x < 1.5.

5) Aplique el método de Newton para obtener soluciones con una exactitud de 10^{-4} para los siguientes problemas.

En este caso emplearemos el método de Newton-Raphson, el cual establece la siguiente relación entre las interacciones de la raíz

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Dado que nos están dando el intervalo donde se encuentra la solución, entonces tomaremos como dato inicial

$$x_0 = \frac{a+b}{2}$$

a.
$$x^3 - 2x^2 - 5 = 0$$
 para $1 \le x \le 4$.

i	x(i)	f(x(i))	df(xi))
-			
0	2.5	-1.875	8.75
1	2.7143	0.26239	11.245
2	2.691	0.003332	10.96
3	2.6906	5.6127e-07	10.956
4	2.6906	1.7764e-14	10.956

La cantidad de iteraciones fueron : 4.000000La raiz de la función en el intervalo dado es x = : 2.690647

b. $x^3 + 3x^2 - 1 = 0$ para $-3 \le x \le -2$.

NR =

6×4 <u>table</u>

i	x(i)	f(x(i))	df(xi))
-			
0	-2.5	2.125	3.75
1	-3.0667	-1.627	9.8133
2	-2.9009	-0.16586	7.84
3	-2.8797	-0.0025428	7.6
4	-2.8794	-6.3123e-07	7.5963
5	-2.8794	-3.908e-14	7.5963

La cantidad de iteraciones fueron : 5.000000La raiz de la función en el intervalo dado es x = : -2.879385

c.
$$x - \cos(x) = 0$$
 para $0 \le x \le \frac{\pi}{2}$

NR =

4×4 <u>table</u>

i	x(i)	f(x(i))	df(xi))
-			
0	0.7854	0.078291	1.7071
1	0.73954	0.00075487	1.6739
2	0.73909	7.513e-08	1.6736
3	0.73909	6.6613e-16	1.6736

La cantidad de iteraciones fueron : 3.000000La raiz de la función en el intervalo dado es x = : 0.739085

d.
$$x - 0.8\sin(x) = 0$$
 para $0 \le x \le \frac{\pi}{2}$

5×4 <u>table</u>

i	x(i)	f(x(i))	df(xi))
_			
0	0.7854	0.21971	0.43431
1	0.27951	0.058803	0.23105
2	0.025008	0.0050037	0.20025
3	2.0826e-05	4.1653e-06	0.2
4	1.2044e-14	2.4088e-15	0.2

La cantidad de iteraciones fueron : 4.000000

La raiz de la función en el intervalo dado es x = : 0.000000