INFO116

Models of Semantics

HOW TO REPRESENT SEMANTICS?

- We want semantics to do something for us. What?
- Which precise problems it can help us solve?
 - Less abstract than integration and abstraction
- Prescriptive (formal) vs descriptive (implicit) semantics

PRESCRIPTIVE SEMANTICS

- Special logical languages to encode knowledge
- Logical language provides the tools for representation and reasoning, but the content must be created from scratch
- Allows us to add new information to existing resources in a precise and formal way.

SOME TYPES

- Different expressivity (what it can say)
 - Boolean logic
 - first-order logic
 - modal logics
 - Relational algebra / calculus
 - RDF (Resource Description Framework)
 - description logics
 - OWL

BOOLEAN

- Truth tables
- AND, OR, NAND, NOR, NOT, XOR
- Cats AND Dogs

AND		OR.	NOT
A B		А ВX	A⊳.X
$X = A \cdot B$		X = A + B	$X = \overline{A}$
A B	X	A B X	A X
0 0	0	0 0 0	0 1 1 0
	0	0 1 1 1 1 1	1 0
1 0	0		
1 1	1	1 1 1	
NAND A		NOR A	EOR A
		NOR A B Do-X	
A		A_5~	A
$A \\ B = \bigcirc -X$ $X = \overline{A \cdot B}$	X_	A B⇒⊃>o-X	$_{\mathrm{B}}^{\mathrm{A}}$ \rightarrow X
$ \begin{array}{c} A \\ B = A \\ X = A \cdot B \end{array} $ $ \begin{array}{c} A \\ A \\ B \end{array} $	X	$ \begin{array}{ccc} A & & \\ B & & \\ X & = \overline{A + B} & \\ A & B & X \end{array} $	$ \begin{array}{ccc} A & \longrightarrow X \\ X = A \oplus B \\ A & B & X \end{array} $
$ \begin{array}{c} A \\ B = A \\ X = A \cdot B \end{array} $ $ \begin{array}{c} A \\ A \\ B \end{array} $	X 1 1	A B $X = \overline{A + B}$ A B $X = \overline{A + B}$ A $X = \overline{A + B}$ A $X = \overline{A + B}$ B	$ \begin{array}{c cccc} A & & X & X \\ X & = A \oplus B & X \\ \hline A & B & X \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \end{array} $
$ \begin{array}{ccc} A & & \\ B & & \\ X & = \overline{A \cdot B} \\ A & B & \\ \hline 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{array} $	X 1 1 1 0	$ \begin{array}{ccc} A & & \\ B & \longrightarrow & X \\ X & = \overline{A + B} & \\ A & B & X \\ \hline 0 & 0 & 1 \end{array} $	$ \begin{array}{c cccc} A & & X & & X \\ X & = A \oplus B & & X \\ \hline A & B & X & & 0 \end{array} $

FOL

- First-order logic deals with objects, functions, and relationships
- Boolean operators (and, or, not, implies, etc.)
- quantifiers (universal and existential)
- All things that are cats
 which love (all?) dogs

```
(\forall x.(P(x) \land Q(x)) \leftrightarrow ((\forall x.P(x)) \land (\forall x.Q(x)))
(\exists x.(P(x) \land Q(x)) \rightarrow ((\exists x.P(x)) \land (\exists x.Q(x)))
(\exists x.(P(x) \lor Q(x)) \leftrightarrow ((\exists x.P(x)) \lor (\exists x.Q(x)))
((\forall x.P(x)) \lor (\forall x.Q(x))) \rightarrow (\forall x.(P(x) \lor Q(x))
(\exists x.\forall y.R(x,y)) \rightarrow (\forall y.\exists x.R(x,y))
(\neg(\exists x.P(x))) \leftrightarrow (\forall x.(\neg P(x))
(\neg(\forall x.P(x))) \leftrightarrow (\exists x.(\neg P(x))
(\neg(\exists x\rho t.P(x))) \leftrightarrow (\forall x\rho t.(\neg P(x))
(\neg(\forall x\rho t.P(x))) \leftrightarrow (\exists x\rho t.(\neg P(x))
(\forall x.(x = t \rightarrow F(x))) \leftrightarrow F(t)
(\exists x.(x = t \land F(x))) \leftrightarrow F(t)
```

MODAL LOGIC

- A modal is an expression like necessarily or possibly
- include logics for belief, for tense and other temporal expressions, for the deontic (moral) expressions such as 'it is obligatory that' and 'it is permitted that', and many others.
- Cats which might like dogs at night.

Logic	Symbols	Expressions Symbolized
Modal Logic	0	It is necessary that
	◊	It is possible that
Deontic Logic	0	It is obligatory that
	P	It is permitted that
	F	It is forbidden that
Temporal Logic	\boldsymbol{G}	It will always be the case that
	F	It will be the case that
	H	It has always been the case that .
	P	It was the case that
Doxastic Logic	Bx	x believes that

SUMMARY OF TRADITIONAL LOGICS

- Complex
 - representation
 - reasoning
- Specialized
- Expressivity vs. computability

A SIMPLER CALCULUS

- Relational Algebra / Calculus
- finitary relations and five primitive closure operators
 - selection
 - projection
 - Cartesian product
 - set union
 - set difference
- Joins

RELATIONAL ALGEBRA

Implemented in SQL.

SELECT *

FROM employee NATURAL JOIN department;

Natural join (M) [edit source | edit beta]

"Natural join" redirects here. For the SQL implementation, see Natural join (SQL).

Natural join ([><]) is a binary operator that is written as (R[><] S) where R and S are relations. [6] The result of the natural join is the set of all combinations of tuples in R and S that are equal on their common attribute names. For an example consider the tables Employee and Dept and their natural join:

Employee			
Name	Empld	DeptName	
Harry	3415	Finance	
Sally	2241	Sales	
George	3401	Finance	
Harriet	2202	Sales	

Dept		
DeptName	Manager	
Finance	George	
Sales	Harriet	
Production	Charles	

Employee Dept			
Name	Empld	DeptName	Manager
Harry	3415	Finance	George
Sally	2241	Sales	Harriet
George	3401	Finance	George
Harriet	2202	Sales	Harriet

COMBINATION FRIED RICE

- Relational algebra useful in describing objects, relations
- Very fast retrieval, reasoning
- But limited ...

=>

Description logics, OWL, RDF

DESCRIPTION LOGIC

- family of restricted FOL languages
- useful for discussing worlds that are organized into objects

Axiom	DL Syntax	Example
subClassOf	$C_1 \sqsubseteq C_2$	Human ⊑ Animal □ Biped
sameClassAs	$C_1 \equiv C_2$	Man ≡ Human □ Male
subPropertyOf	$P_1 \sqsubseteq P_2$	hasDaughter ⊑ hasChild
samePropertyAs	$P_1 \equiv P_2$	cost ≡ price
disjointWith	$C_1 \sqsubseteq \neg C_2$	Male ⊑ ¬Female
sameIndividualAs	$\{i_1\} \equiv \{i_2\}$	${President_Bush} \equiv {G_W_Bush}$
differentIndividualFrom	$\{i_1\} \sqsubseteq \neg \{i_2\}$	$\{\text{john}\} \sqsubseteq \neg \{\text{peter}\}$
inverseOf	$P_1 \equiv P_2^-$	hasChild ≡ hasParent ¯
transitiveProperty	$P^+ \sqsubseteq P$	ancestor ⁺ ⊑ ancestor
uniqueProperty	$\top \sqsubseteq \leq 1 P. \top$	T ⊑ ≤ 1 hasMother. T
unambiguousProperty	$T \sqsubseteq \leq 1P^T$	$T \sqsubseteq \leq 1 \text{ isMotherOf}^T$
range	$\top \sqsubseteq \forall P.C$	T ⊑ ∀has Parent. Human
domain	$\top \sqsubseteq \forall P^C$	T ⊑ ∀hasParent .Human
i type C	i:C	john : Man
$i_1 P i_2$	$\langle i_1, i_2 \rangle : P$	(john, peter): has Parent

OWL

- OWL is a family of knowledge representation languages for modelling ontologies
- OWL comes in three flavours
 - OWL-Full
 - OWL-DL
 - OWL-Lite
- Uses RDF / RDFS

RDF

- The Resource Description Framework
- W3C specification
- Data model (for writing metadata)
- Similar to classic conceptual modelling approaches such as entity–relationship or class diagrams
 - making statements about resources

RDF TRIPLES

- The *subject* denotes the resource, and the *predicate* denotes traits or aspects of the resource and expresses a relationship between the subject and the *object*.
- S-P-O
- Sky hasColor Blue
- Serialized as XML, Turtle, N3, N-triples

RDF GRAPHS

RDF TRIPLES

- http://www.w3.org/People/EM/contact#me, http:// www.w3.org/2000/10/swap/pim/contact#fullName, "Eric Miller"
- http://www.w3.org/People/EM/contact#me, http:// www.w3.org/2000/10/swap/pim/contact#mailbox, em@w3.org
- http://www.w3.org/People/EM/contact#me, http:// www.w3.org/2000/10/swap/pim/contact#personalTitle, "Dr."
- http://www.w3.org/People/EM/contact#me, http://www.w3.org/1999/02/22-rdf-syntax-ns#type, http://www.w3.org/2000/10/swap/pim/contact#Person

RDF AND ONTOLOGIES

■ RDF statements can be used to define class (unary relation) instances, property (binary relation) instances, collections, etc.

```
<rdf:Description ID="PassengerVehicle">
```

<rdf:type resource="http://www.w3.org/2000/01/rdfschema#Class"/>

<rdfs:subClassOf rdf:resource="#MotorVehicle"/>

</rdf:Description>

DESCRIPTIVE SEMANTICS

- capture contemporary usages of terms, to eventually promote consensus
- provide some notation which captures the existing use of terms
 - XML
 - Entity-Relationship Model (ERM) and Unified Modelling Language (UML)
 - ControlledVocabulary,Thesaurus,andTaxonomy
 - Folksonomy

FOLKSONOMY

"Bottom up" classification

amsterdam animal animals april architecture art australia baby barcelona beach berlin bird birthday black blackandwhite blue boston building bw California cameraphone camping canada canon car cat cats chicago china christmas church city clouds color concert day dc dog dogs england europe family festival tim florida flower flowers food france friends fun garden geotagged germany girl graffiti green halloween hawali hiding holiday home honeymoon hongkong house india ireland italy japan july kids lake landscape light live london losangeles macro march may me mexico mobiog mountain mountains museum music nature new newyork newyorkcity newzealand night nikon nyc ocean paris park party people photo portrait red river roadtrip rock rome san sanfrancisco school scotland sea seattle show sky snow spain spring street summer sun sunset sydney taiwan texas thailand tokyo toronto travel tree trees trip uk urban usa vacation vancouver washington Water wedding white winter yellow york zoo

CONTROLLED VOCABULARY,THESAURUS, TAXONOMY

- Using words to describe concepts
- Controlled vocabulary mandates the use of preferred/normalized terms to refer to the concept.
 - Libraries, journal publications, etc.
 - Nobody likes them!
- Thesaurus groups words by similarity of meaning

WORDNET

- Lexical database
- Groups words by synset

Noun

- S: (n) dog, domestic dog, Canis familiaris (a member of the genus Canis (probably descended from the common wolf) that has been domesticated by man since prehistoric times; occurs in many breeds) "the dog barked all night"
- S: (n) frump, dog (a dull unattractive unpleasant girl or woman) "she got a reputation as a frump"; "she's a real dog"
- S: (n) dog (informal term for a man) "you lucky dog"
- S: (n) cad, bounder, blackguard, dog, hound, heel (someone who is morally reprehensible) "you dirty dog"
- S: (n) frank, frankfurter, hotdog, hot dog, dog, wiener, wienerwurst, weenie (a smooth-textured sausage of minced beef or pork usually smoked; often served on a bread roll)
- S: (n) pawl, detent, click, dog (a hinged catch that fits into a notch of a ratchet to move a wheel forward or prevent it from moving backward)
- S: (n) andiron, firedog, dog, dog-iron (metal supports for logs in a fireplace)
 "the andirons were too hot to touch"

Verb

• S: (v) chase, chase after, trail, tail, tag, give chase, dog, go after, track (go after with the intent to catch) "The policeman chased the mugger down the alley"; "the dog chased the rabbit"

TAXONOMY

- relations including hypernomy, meronymy, ...
 - dog, domestic dog, Canis familiaris
 - => canine, canid
 - => carnivore
 - => placental, placental mammal, eutherian, eutherian mammal
 - => mammal
 - => vertebrate, craniate
 - => chordate
 - => animal, animate being, beast, brute, creature, fauna
 - => ...

TAXONOMIC INFERENCE "ABSTRACTION"

LEXITAGS

LexiTags

Logout Signup Profile Create a new bookmark

My Bookmarks

Popular Bookmarks

Recent Bookmarks

Friends' Bookmarks

How to Add a User From Terminal Mac OS X Screen Sharing I Chron.com

users

add remote

administration

Created 2013-07-04T07:49:37

java - Simplest method to Convert Json to Xml - Stack Overflow

son xml

lava

a platform-independent object-oriented programming language

Created 2013-07-02T16:02:39

java - Multiple insert in a loop in jdbc - Stack Overflow

mysql

statement flooved

DATA, DATA, DATA

- LOD (Linked Open Data)
 - Use URIs to identify things.
 - Use HTTP URIs so that these things can be referred to and looked up ("dereferenced") by people and user agents.
 - Provide useful information about the thing when the URI is dereferenced, using standard formats such as RDF/XML.
- Include links to other, related URIs in the exposed data to improve discovery of other related information on the Web.
- http://data.dws.informatik.uni-mannheim.de/lodcloud/2014/ISWC-RDB/index.html

LOD CLOUD

