

Introduction to Operations Management

Inventory Management

2024 - 25

Anas Iftikhar

- Slack et al, chapter 13
- What is inventory?
- Why do we get it?
- Why not have a lot more of it?
- How do we determine how much to have?

And when do we get it?

- Economic Batch Quantity
- Inventory classification
- Re-order levels

Economic batch quantity

- Replenishment is not instantaneous
- Inventory is received over a period of time
- E.g., Units are produced and sold simultaneously (Contract manufacturer of bread for a local Superstore).
- White bread, Wholemeal, Seeded, Super seeded.
- Take into account the daily production rate and daily demand rate.

Economic batch quantity

- Cost at start of each replenishment = 'setup' cost
 - Analogous to 'order' cost
 - Sometimes also called a 'changeover' cost
 - Typically being the costs of switching product types
- Aim is now to calculate optimal 'batch quantity'
 - Rather than 'order quantity'
- But a similar trade-off
 - Large batches mean large inventory holding costs
 - Small batches mean many costly setups

cost

Economic batch quantity

- Now $Q_{min} = \sqrt{(2 C_o D / C_h (1 d/p))}$ (the economic batch quantity EBQ)
- Compare EOQ $Q_{min} = \sqrt{(2 C_o D/ C_h)}$
- le multiply the holding cost by factor (1 d/p)
- To reflect the fact inventory never reaches total produced

EBQ,
$$Q_{min} = \sqrt{(2 C_o D/ C_h (1 - d/p))}$$

C_h holding cost *per unit per year*

C_o changeover cost *per changeover*

Q size of batch

d is rate of depletion (demand)

p is rate of replenishment (production)

Solved example

Example (Slack et al p. 462)

•What is the optimal batch length for a bottling plant? There is a constant demand of 80 000 / month, a month has 160 hours, bottles fill at 3000 / hour, the line takes 1 hour to clean and reset, the changeover cost is £100 / hour, and holding costs are £0.1 / bottle / month.

- A) 205
- B) 9 798
- C) 13 856
- D) 78 333

EBQ,
$$Q_{min} = \sqrt{(2 C_o D/ C_h (1 - d/p))}$$

D =
$$80000 / 160 = d = 500 / hour$$

C_o = £100 / 1 hour
EBQ = $\sqrt{(2 \times 100 \times 80,000)/0.1(1 - 500/3000)} = 13,856$

Solved example

Example (Slack et al p. 462)

If the changeover reduced from 1 to .5 hours what would the EBQ now be?

- A) 205
- B) 9798
- C) 13 856
- D) 78 333

EBQ,
$$Q_{min} = \sqrt{(2 C_o D/ C_h (1 - d/p))}$$

Hint: Changeover time reduction means a change in C_o

EBQ = 9798

Solved example (p. 449)

How long does it take to *use* up a batch, and how long to *produce* a batch in this case?

- A) 20 hours, 3 hours
- B) 15 hours, 1 hour
- C) 5 hours, 15 hours
- D) None of the above

```
EBQ = 9 798
Rate of demand d = 500 /hour
So time to use up = 9 798 / 500 \approx 20 hours
Rate of production p = 3000 /hour
So time to produce = 9 798 / 3000 \approx 3.3 hours
```

Cycle time CT = EBQ/d (time to use up a batch)
Batch time BT = EBQ/p (time to produce a batch)

Some criticisms

- Assumptions about stability
 - Demand typically irregular
- Assumptions about linearity
 - Costs can fluctuate
- Assumptions about what's fixed
 - Costs can be influenced e.g. by rapid setup, more efficient machines
- Assumption that this is worth doing for anything
 - Need for prioritisation

Inventory control – ABC **Analysis**

 A mechanism through which inventory is prioritised and categorised.

 ABC analysis is an inventory application of Pareto principle that states:

a "critical few and trivial many"

⇒ It is not realistic to monitor inexpensive items (the many trivial) with the same intensity as very expensive items (the few critical).

% of total no. of items

ABC Analysis

- A method for dividing on-hand inventory into three classifications based on value
- Pareto law: 80% of the value from 20% of inventory
 - Class A: low volume (20%) high value (80%). Very tight control & tracking.
 - Class B: medium volume (30%) and medium value (10%).
 Tight control & moderate tracking.
 - Class C: high volume (50%) and very low value (10%). little control & tracking.

Note: No need for this classification to be exact, but it is important to recognise the levels of control that match the risk

Benefits: Better forecasting, physical control, supplier reliability, and an ultimate reduction in inventory

ABC Analysis - exam

You're a bike retailer and the profit you make on the top 18 road bikes are shown in the table. Which items account for 80% of the profit? Is it 20% of the stock?

A) A ·	to	В	(2/:	L8 (of '	total	items	5)
---	-------	----	---	------	------	------	-------	-------	----

- B) A to E (5/18 of total items)
- C) A to G (7/18 of total items)
- D)A to I (9/18 of total items)

Bike	Profit £
Α	3120
B (-	2020
C D	1080
D	840
Е	800
F	680
G	510
Н	440
	440
J	240
K	220
L	210
М	180
N	170
0	170
P	160
Q	110
R	30
Total	11420

ABC Analysis - exar

You're a bike retailer and the profit you make on the top 18 road bikes are shown in the table. Which items account for 80% of the profit? Is it 20% of the stock?

- A) A to B (2/18 of total items)
- B) A to E (5/18 of total items)
- C) A to G (7/18 of total items)
- D)A to I (9/18 of total items)

Bike	Profit £	Acc £	%	
MA)	312 0	3120	27.32%	
В	2020	5140	45.01%	
С	1080	6220	54.47%	
D	840	7060	61.82%	
E	800	7860	68.83%	
F	680	8540	74.78%	
G	510	9050	79.25%	
Н	440	9490	83.10%	
I	440	9930	86.95%	
J	240	10170	89.05%	
К	220	10390	90.98%	
L	210	10600	92.82%	
М	180	10780	94.40%	
N	170	10950	95.88%	
0	170	11120	97.37%	
Р	160	11280	98.77%	
Q	110	11390	99.74%	
R	30	11420	100.00%	
Total	11420			

ABC Exercise: How to do ABC analysis?

	Exercise								
Item stock number	Annual volume	Unit cost	Annual value	Percentage of annual value	Cumulative value %	Class	%value	%volume	Policy
#10286	1000	90							
#11526	500	154							
#12760	1550	17							
#10867	350	42.86							
#10500	1000	12.5							
#12572	600	14.17							
#14075	2000	0.6							
#01036	100	8.5							
#01307	1200	0.42							
#10572	250	0.6							

Prioritisation for concern

- Usage value is not the only means of prioritisation
- Also need to attend to items which become:
 - In rare demand
 - Over-stocked
 - Constantly at risk of shortage...
- So two measures commonly monitored:
 - Stock cover SC = Mean inventory/Mean demand
 - (fraction of a period's stock requirements on hand)
 - Stock turns = ST = 1/SC
 - (times per period the stock is renewed)

Example

Which are the problem bikes?

Bike	Mean	Mean	
DIKE	inventory	demand	
Α	4	1	
В	4	1	
С	7	6	
D	9	4	
E	6	1	
F	1	0	

Example

Which are the problem bikes?

- Depends on context
- Anticipated demand, reliability of supplies, cost
- E &F (possibly low SC with C)

Bike	Mean inventory	Mean demand	sc	ST
Α	4	1	4	25%
В	4	1	4	25%
С	7	6	1.2	86%
D	9	4	2.3	44%
E	6	1	6	17%
F	1	0	#	#

- There's a timing decision to go with the volume decision
- Given a finite time to deliver an order (the lead time)
- Typically firms set a re-order level

- There's a timing decision to go with the volume decision
- Given a finite time to deliver an order (the lead time)
- Typically firms set a re-order level
- If demand is D per unit time
- And order lead time is L
- Reorder level R = DL

E.g. if D =
$$1000 / y$$

And L = $1 w = 1/52 y$
Then R = $1000 x 1/52 \approx 19$

But there is usually variation in lead times

So plan for safety inventory level

But there is variation in rate of demand as well

- Not only manufacturing LT but also logistics and local LT
- Forward looking forecast

Questions

Thank you for attending, email questions to a.lftikhar@Lancaster.ac.uk