

Alexander Lochmann, Nils Kriege Nils Dunker, Felix Homa, Simon Koschel, Sebastian Lau, Benedikt Maus Wintersemester 2018/19

Rechnernetze und verteilte Systeme Übungsblatt 6

Ausgabe: 13. November 2018 Besprechung: 20. November – 23. November 2018

Quizfragen

- Zu welchem Zweck hat TCP mehr verfügbare Sequenznummern als die rdt-Protokolle?
- Welches Fragment der verbindungsorientierten Kommunikation wird durch die rdt-Protokolle nicht abgedeckt?
- Ist es möglich, dass der Datentransfer über UDP fehlerfrei ist?
- Angenommen, die Round-Trip-Zeit ist dem Sender bekannt. Wäre dann im rdt3.0-Protokoll immer noch ein Timer notwendig?

Aufgabe 6.1 (1 Vortragspunkt)

UDP und TCP benutzen das Einerkomplement zur Fehlererkennung.

- (a) Berechnen Sie die 8-Bit-Einerkomplementsumme für die folgenden 8-Bit-Wörter: 00110101, 11110101, 11001001. Bestimmen Sie das Einerkomplement Ihrer Lösung.
- (b) Wie erkennt der Empfänger Fehler anhand des Einerkomplement-Verfahrens? Welche Fehler können erkannt werden, welche nicht?

Aufgabe 6.2 (2 Vortragspunkte)

(a) Welche Fehlerarten können bei einer Nachrichtenübertragung auftreten? Nennen Sie fünf verschiedene Übertragungsfehlerarten mit jeweils einer *Ursache* als Beispiel für eine Fehlerart. Bestimmen Sie außerdem jeweils Mechanismen, die zur Fehlererkennung und Fehlerbehebung eingesetzt werden können. Ergänzen Sie die vorgegebene Tabelle entsprechend.

Fehlerart	Fehlerursache	Fehlererkennung	Fehlerbehebung

(b) Welche Fehlerarten behandeln die in der Vorlesung vorgestellten Protokolle (rdt 1, rdt 2,...)? Ordnen Sie die Fehlerarten sowie die jeweiligen Lösungsansätze der zugehörigen Protokollversion zu.

Aufgabe 6.3 (1 Vortragspunkt)

Zeichnen Sie den erweiterten Mealy-Automaten für den Empfänger von rdt3.0.

Aufgabe 6.4 (1 Vortragspunkt)

In der Vorlesung fand eine kritische Auseinandersetzung mit der von Kurose und Ross verwendeten Syntax für Automaten, die Protokoll-Instanzen beschreiben, statt. Eine konsistente formale Syntax für einen erweiterten Mealy-Automaten finden Sie in den Vorlesungsfolien.

Bearbeiten Sie die Aufgabe aus einer alten Klausur.

Anmerkung: Die angegebenen 15 Punkte waren in der Klausur zu erreichen und werden in den Übungen nicht vergeben :)

Transportsystem und Protokolle, Erweiterter Mealy-Automat

[15 Punkte]

Gegeben ist ein Szenario, in welchem eine Transportprotokoll-Instanz S Nutzdaten an eine entfernte Transportprotokoll-Instanz E zu übertragen hat.

Der Netzdienst kann Pakete verlieren. Die Kombination aus positiver Quittierung, Zeitüberwachung und Wiederholung wird in Stop-and-Go-Version zur Verlust-Fehlerbehandlung eingesetzt. Wenn ein Datum dreimal erfolglos gesendet wurde, bricht die Instanz S ihre Aktivitäten ab. Andere Mechanismen sind nicht vorgesehen. Wir abstrahieren von der Adressierung der Netzdienst-Pakete und betrachten nur deren Nutzdaten *tpdu*. Dort abstrahieren wir von den genauen PDU-Formaten. Für Pakete von S nach E gelte *tpdu=*"zu sendendes Nutzdatum *d*". Für Pakete von E nach S gelte *tpdu=*"ACK". Die Instanz S hat folgende Eingaben:

TDatReq(d) Übergabe des Datums d von Anwendungsprozess an S
NDatInd(tpdu) Übergabe des empfangenen Datums pdu von Netzdienst an S
TimerAlert Der Kurzzeitwecker signalisiert den Ablauf der Weckzeit

Die Instanz S hat folgende Ausgaben:

TAbortInd Abbruch-Anzeige der Instanz S an Anwendungsprozess NDatReq(*tpdu*) Übergabe des zu sendenden Datums *pdu* von S an Netzdienst

TimerStart Befehl zum Start des Kurzzeitweckers (ein aktiver Wecker wird zuvor angehalten)

TimerStop Befehl zum Anhalten des Kurzzeitweckers

Das Verhalten von S soll an Hand von folgendem erweiterten Mealy-Automaten beschrieben werden. Vervollständigen Sie die Variablendefinition, Initialisierungsbedingung und Transitionsklausen im Diagramm!

