LLM HW1 Report

Hosna Oyarhoseini - 402212503

Table1: Accuracy for each method:

Note book	Full	Soft prompt			Adapte r-1	Ada	Adapter-2		LoRA	
			N_SOFT_P ROMPT_T OKENS=1	N_SOFT_PR OMPT_TOKE NS=10		BOTTLEN ECK_SIZ E =8	BOTTLENE CK_SIZE =1		RANK=1	RANK=8
Accuracy%	90.0	87.1	84.8	86.6	90.6	90.4		89.5	88.8	88.9

Table2: number of parameters for each method:

Fine-tuning method	Full fine-tuning	Soft prompt	Adapter	LoRA
Number of parameters	60,506,624	60,511,744	60,611,168	60,801,536
Trained parameters	60,506,624	5120	104,544	294,912

Reasoning behind the number of parameters trained in each method:

- Full fine-tuning:

We train all the parameters of model again, which is 60,506,624

- Soft prompt:

T5 has 512 hidden units we add 10 tokens to each and train only them in finetuning so we would have **512*10 = 5120** parameters which trained during soft prompt fine tuning

- Adapter:

T5-small has 12 blocks (6 blocks for encoder and 6 blocks for decoder) each block needs an adapter and we use bottle neck with size 8, so each of our adapter has:

So for the whole model we would have:

- LoRA:

T-5 small has 18 layers (6 block for encoder each have 1 layer, and 6 block for decoder each with 2 layer) each has one key and value, we use a network like a picture below for each of them:

$$B = 0$$

$$R = \mathcal{N}(0, \sigma^2)$$

Where input and output are 512 and r = RANK = 8 so each of these networks has: 512*8 parameters. So for each key or value in each layer, we have (8*512) + (8*512) parameters

Thus for each layer we have: 2 * 8 * 512 * 2 parameters

And for the whole network we added:

18 * 2 * 2 * 8 * 512 parameters

To finetune using LoRA, which means **294,912** parameters trained.