

घर्षा गायेत

BEL 유승은 인소인 전수명

弘

- 1. 星对是 개足 및 7212
- 2. 51101日 年祖 7311
- Single Object Detection
 CNN VGG-16, SeyNet, GoogLeNet
 Feature Map
 CAM
- 4. Multi Object Detection
- 5. 選

型型型是 74亿 2. 明实社 初贵 戏好 1. 7十二岁。但到到一个是。以

经对是 北起

Single Object Detection

经对是 批

型型性 721到

- 1. Single Object Detection 2텔 큐덴
- 107H의 7+구(이赶)되어 소품)多 빞卉
- 기본 모델: VGG-16
- 7HAZ 72121
 - 1) Data Augmentation: zoom, width, height, brightness
 - 2) hyperparameter 2項
 - 3) Input Size 등 데이터 소경
 - 4) model customizing: 似此 layer 和
 - 5) GoogleNet 모델 구현 및 적용

坚烈 7213

- 2. Multi Object Detection 空望 和 以 CAM 智息
- Multi-label dataset 社 (weakly supervised learning 115 7片)
- 如符 1172 Single Object Detection 空에 計
- 일정 수준 이시당 성능 도달성 시 CAM Testst 성능 7H선 영행
- 付告 7H代 はtot
 - 1) SOD에서 조정한 내용들
 - 2) 성능에 체험적인 문제가 있는 경우 → Multi Object Detection 출위한 새로운 모델 적용 (RNN, SPP-Net 등)

Data Acquisition Data preprocessing

Data Acquisition (1) and Preprocessing

- 1. Extreme Picture Finder 3 对 label에 计以计计 데이터 300网 对 介心
- 2. 1단7계 計습 데이터(Single Object Detection)에 걱정한 데이터만 물가내기
 > jpeg 파일만 計습 데이터 사용 > 수작업
- 3. MOIET 72421
 - > 큰 부리는 -> 더이터 214+이징 (PIL, Image 2+이번러리 4+분 500x500 이감+)
- 4. 圣型 지렉트리에 사진 다일 UNZIP -> 計台 等 計分

Data Acquisition (2)

다하는 모델라 연수 조절을 통해 학습해도 경찰도 개선 실패 기존 데이터의 한기기가 경찰도 부진의 문제가 된다고 판단 → 데이터 추가 수집

- 1. 75 class to 150075 0145 午76
- 2. 午福祉 이미지 사이즈를 제한해 전체되 단계 사람
- 3. 小松时的时间补偿处理量时们 train > 对转至 7H位是这时 你是

Single Object Detection Model Design

- 1. VGG-16
- 2. SeyNet
- 3. GoogleNet

CNN (convolutional Neural Network, 하다다 이라시기하)

일정 크기의 질타의 weight를 Input Datast 급해서 더하는(convolutional) 라정을 거쳐 한 직열라고 주면 직열의 관기계를 통해 해당 직열의 특성을 내고적 떠착히 나타낼 수 있어서 이미지데이터를 혼라적으로 보석, 분류할 수 있는 신기장하이다.

에서 길라로 나오는 데이터는 해당 layer에서 Input으로부터 수출하면 이미지의 특성을 보더주는 Feature Mapol 된다.

ILSVRc(ImageNet Large Scale visual Recognition challenge)

다바라의 이미지선을 받아 발유하는 일고리는 성능 되가 다면, 2010년에 시작하였다.

이건 대회들에 비해 훨씬 인간에 가까워진 킥기적인 error rate을 기록한 VGG162+ GoogLeNet을 칼병

1. VGG-16

对은 질타를 이용하고 많은 충을 쌓아 둘은 정확성 확인 가능 IFAL competition session에서 URA 같은 성능을 보더움

加里型化

Refining variation

- dense layer (1024, 512, none)
- data augmentation
- batch size
- learning rate schedule

1. VGG-16

1. VGG-16

VGG-16 Model Refining

Data Augmentation

- shift: 0.3

- brightness: 0.8-1.2

Learning Rate Decaying

- False

나는 사진보다 가구의 위치가 얼라지고 나는의 발기가 다를 수 있기 때문에 한라적이라고 판단 → 실제 Overfitting 문제 해결에 한라적

비호, 조건 등의 입선 설정에 이러움 기위는 adam 외의 optimizer(SGD, RMSProp)로 1천기상나의 사용했지만 또두 길지 않은 결과

VGG-16 Model Refining

Freeze Layer

layers[:-4] trainable Truebatch_n = 128, 256

Dense Layer

- 512
- none

1구차 competition에서 같은 성능을 보더꾸었던 Setting

→ 이미 잘 함습된 모델이기 때문에 데이터셋에 맞춰 격당한 trainable layer 설정이 될요

量り は気む はち

→ VGG는 parameter가 많기 때문에 DenseLayer를 많이 なれい weight 水午 豊川町 parameter가 너무 많아지게 gradient vanishing problemの 性格性 수 있는

loss - val_loss

acc - val acc

Max Acc: 83.93%

Min Loss: 0.9671

>> गारमजा योरेशि देशे संह

2. seyNet(customized Model)

VGG와 비슷한 구조로 직접 설계한 모델

VGG16년다 나는 accuracy를 위해 segNet을 네도

다른 조에서 같은 성능을 보다

UIOIE12+ class= VGG16 쓰기에 단순해서 gradient Vanishingol 방생활 가능성이 있다고 만단 Layer Design

Data Augmentation

- shift: 0.1

- brightness: 0.8-1.2

Batch Size: 200

2. seyNet - Model Design

```
# conv 0
model.add(tf.keras.layers.Conv2D(64,3,padding='same',activation='relu',input shape=(112,112,3)))
model.add(tf.keras.layers.Conv2D(64,3,padding='same',activation='relu'))
model.add(tf.keras.layers.BatchNormalization(momentum=0.85))
model.add(tf.keras.layers.MaxPool2D(pool size=(2,2), strides=(2,2)))
# conv 2
model.add(tf.keras.layers.Conv2D(128, 3, padding='same', activation='relu'))
model.add(tf.keras.layers.Conv2D(128, 3, padding='same', activation='relu'))
model.add(tf.keras.layers.BatchNormalization(momentum=0.85))
model.add(tf.keras.layers.MaxPool2D(pool size=(2,2), strides=(2,2)))
# conv 3
model.add(tf.keras.layers.Conv2D(512, 3, padding='same', activation='relu'))
model.add(tf.keras.layers.BatchNormalization(momentum=0.85))
model.add(tf.keras.layers.MaxPool2D(pool size=(3,3), strides=(2,2)))
# conv 4
model.add(tf.keras.layers.Conv2D(256, 3, padding='same', activation='relu'))
model.add(tf.keras.layers.BatchNormalization(momentum=0.85))
model.add(tf.keras.layers.MaxPool2D(pool size=(3,3), strides=(2,2)))
# conv 5
model.add(tf.keras.layers.Conv2D(64, 3, padding='same', activation='relu'))
model.add(tf.keras.layers.BatchNormalization(momentum=0.85))
model.add(tf.keras.layers.MaxPool2D(pool size=(3,3), strides=(2,2)))
# dense lavers
model.add(tf.keras.layers.Flatten(name='flatten'))
model.add(tf.keras.layers.Dense(len(class name), activation='softmax', name='dense 10'))
```

2. seyNet - Model Design

Max Acc: 78.28%

Min Loss: 0.7809

गारमा योत्राता द्वेट सु

- 01213191 3717+ 32

- contextat 47tj

3. GoogleNet

GoogLeNet Inceptionv3

22 layers DNN

다이 깊고 넓을수록 전사라는, 라격하, vanishing 문제 ↑ 깊고 넓은 많의 찬기계를 Inception module로 귀복 이미지 하습, 예측에 타월찬 성능

加里里里什么

- 또는 layer trainable 설정 → 86%에 가하는 같은 성능

but, CAM TEST 程序 美元号
GoogLeNet customizing 程息

Full Inception module

1. 空型 个对 7世

- > 기존의 정확도를 설리기 위해 최다바라 GoogleNet 모델에서 많은 layer를 취하고자 하
- > Inception module 특성상 mixed layer를 단위로 모델 빌리
- > cAM TEST를 위해 건당한 사이즈의 conv layer를 추가하나 한
- >> (224, 224) image -> (12, 12)의 weight를 추建之 수 있도록 mixed 7 layer 位时

2. 经短引证证券收

- > 기존 GoogLeNet 보다 학교회 적은 layer -> custom layer의 허타와 개수
- > 학습의 경찰도를 7HK간(1717) 위한 hyperparameter

GoogLeNet Model Refining

- > cam을 위함 (12, 12) conv layer를 제내와 하는 참 > 사진 사이즈 유지 불가다
- > 소급 mixed7 layer의 outputol (12, 12, 768)이므로 내로 다음 conv layer에서 256 이시장의 밀티기버수를 사망할 때 80% 이사의 경찰도가 보장된
- > MI 7H 이시하의 conv layer를 쌓아도 검찰도 7HML x -> conv layer 27H 사방

>> $\frac{1}{2}$: conv(256, 3) + conv(64, 3) + batch normalization + flatten + dense(10)

GoogLeNet Model Refining

hyperparameter

- > batch size, epoch 273
- > batch_Size: OOM(Out of Memory) Error3 128, 150, 180时 智知 计常train 이미지 갯午(15299 な)에 비油 batch_Size 비童大叶 크지 吃い
- > epoch: 대부분의 모델이 3~40회 부터 일정수준에서는의 accuracy를 달성하지 됩니다 비슷한 수준에서 수건하다였는

loss - val loss

acc - val acc

Max accuracy = 86%

GoogleNet의 특성사는 그래도가 불한건하다기만
일정 수준으로 수건하는 것을 볼 수 있음

Feature Map

가가의 층에서 추출한 feature map

Layer[1] Laye

Layer[12]

Layer[21]

Layer[-4]

CAM (class Activation Map)

- 1. Single Object Detection
- 2. Multi Object Detection

class activation map

- CNN室 星部科 互至工程的 計合社 叶岩 部门部口水 社
- 마지막 conv layer에서 특정 class로 분류되는데 ማ상등을 게치는 weight들의 feature map을 꺼炬
- classification 計工 位色 化剂에 加性 放電 品計 heatmapes 玉冠 가능

VGG-16 (Single) CAM Test

- Heatmap 紫orun : 水水 Object의 heatmap 幸
- Heatmapを 711はらえ Object Localization 子記

>> 212 2522 'customized GoogLeNet' 1254

GoogleNet (Single) cAM Test

VGGIL Zolt 11/19= Bounding box 12171

- 특정 RGB Th 4511011 壹07十七 55 圣子里의 min, max The box 4591 7176

→ 80% 중비는 이사는 건화로를 보더 heatmap에서 사물의 해타를 적 자아내는 건화된 보이지만 정교하지 못한

만순 소(다, 소)소가 아닌 특정 조나꾼을 당시으로 box 그림 수정

Multi Object Detection

기준 모델 Multi classification 시도

1위 TV강당당당 (99%) 2위 테이블 (0.02%)

191 松叶 (99%) 291 仝파 (0.48%)

기존 모델 Multi classification 11도

1위 TV자시자 (99%) 2위 테이블 (0.02%) 191 九七 (99%)
291 丘丘 (0.48%)

Multi Object Detection with CAM

1~31也双H飞 芸州 四学冠 小量
- curtain, bed, dressing table
Heatmap에서 なな 小量의 위別十 工程気站

Multi Object Detection Test with CAM

Multi Object Detection 铝初程 따라

191 放H

291 社なな

391 红叶

4위 개튼

>> 37H 이사의 물체를 떼측할 시 정밀한 위치 많지가 이러운

Multi Object Detection 铝彻位 따라

1913 四学社 7H社 외의 Heatmapol 提出对社 73年7十 驻岩

원인)

- 특정 개체에 확률 쏠린 현상 → 단일 개체 예측을 위해 착습시키겠기 때문
- 讲学时时1)
- 두 가지 개체의 학습 데이터 이미지를 합체서 multi prediction model 학습시기기
- Multi label 이면로 서로운 loss function(binary cross entropy) 型化

洲型比此2)

- 첫 번째로 확인된 물체를 blur체리하고 that single object prediction 실행하기

计型比心门程的

- 두 가지 개체의 학습 데이터 이미지를 합체서 multi prediction model 학습시기기
- Multi label 이뜨로 대義은 loss function(binary cross entropy) 型

礼智 化红色

- 이미지 하성 5월 완성
- but 시간(상의 제)야도으로 이론적 근거와 모델 수정이 어디워 시도해 보지 못함
- >> == multi object dataset을 넣어 하습시키다면 더 개선될 것으로 기대하

计型比处 2) 程

1위로 예측된 개체를 검확하게 예측한 경우 2위로 예측된 개체도 검확하게 detectic

한7계) 여러 물체를 좀 더 경착하게 예측하지만 Single object detection을 두 변한 것에 불다한

conclusion

의의와 간기기

- 1. Single Object Detection 및 Localization 73年57十 岩色
- 2. GoogleNet 기내는 CAM Test 각분 성류
- 3. Multi Object Detection 73 装立 岩色

- 1. Single Object Detection 기생산을 multi object detection 시기가 무단거친 물체에 weight이 건강되는 건생물 보이는 > localization 한기기
- 2. Multi Object Detection라 localization에 符號한 dataset을 구축하게 그에 맞는 모델로 하습했다던 더 3은 결과를 기대할 수 있었을 것

归他祖

- 1. 이미구축되어 있는 모델을 customing 때 池基計기 이러워서 많은 시간을 씀
- 2. Hyperparameter 公村党 荒 四 例以於刊 721213H 区型党 7H行动 나가 6年 註
- 3. 安全量量的 配空型性量产量计划 化铅计吸管
- 4. 写对是言计时们本付付空上加级时 개号 转发计别 的社会 个 处农台

