Pressão de Vapor

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

1 Pressão de Vapor

- 1. Origem da pressão de vapor.
- 2. Volatilidade e forças intermoleculares.
- 3. Pressão de vapor e temperatura.
- 4. Equação de Clausius Clapeyron:

$$ln\left(\frac{P_2}{P_1}\right) = -\frac{\Delta H_{vap}}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

5. Ebulição.

1.0.1 Habilidades

- a. **Calcular** a pressão de vapor em uma dada temperatura utilizando a Equação de Clausius Clapeyron.
- b. **Calcular** a temperatura de ebulição utilizando a Equação de Clausius Clapeyron.

2 Equilíbrio de Fase Multicomponente

- 1. Pressão de vapor de misturas
- **2.** Lei de Raoult:

$$P_A = x_A P_A^{\star}$$

- 3. Misturas líquidas binárias.
- 4. Destilação.
- 5. Azeótropos.

2.0.1 Habilidades

- a. **Calcular** a pressão de vapor de solvente utilizando a Lei de
- b. Calcular a pressão e composição do vapor para misturas binárias utilizando a Lei de Raoult.

Nível I

PROBLEMA 2.1

2D01

Assinale a alternativa com a substância com *menor* pressão de vapor.

A CCl₄

B CHCl₃

C C_2Cl_6

- D CH₂Cl₂
- $\mathbf{E} \quad \mathbf{C}_2\mathbf{H}_5\mathbf{C}\mathbf{l}$

PROBLEMA 2.2

2D02

Assinale a alternativa com a substância com *maior* pressão de vapor.

- **A** Butano
- **B** Octano
- **c** Propanol
- **D** Glicerol

E Água

PROBLEMA 2.3

2D03

Assinale a alternativa com a ordem de pressão de vapor.

- $A \quad CO_2 > Br_2 > Hg$
- **B** $CO_2 \approx Br_2 > Hg$
- $\mathsf{CO}_2 \approx \mathsf{Br}_2 \approx \mathsf{Hg}$
- $\mathbf{D} \quad \mathsf{Br}_2 > \mathsf{CO}_2 > \mathsf{Hg}$

PROBLEMA 2.4

2D04

Considere as substâncias.

- 1. 2-metil-pentano
- 2. 3-metil-pentano
- 3. 2,2-dimetil-butano
- 4. 2,3-dimetil-butano

Assinale a alternativa com a ordem de pressão de vapor.

- A 1 > 2 > 3 > 4
- B 2 > 1 > 3 > 4
- C 3>4>1>2
- D 4 > 3 > 1 > 2
- E 2 > 1 > 4 > 3

PROBLEMA 2.5

2D05

Um tambor selado contém ar seco e uma quantidade muito pequena de acetona líquida em equilíbrio com a fase vapor. A pressão parcial da acetona é de 180 Torr e a pressão total no tambor é de 760 Torr. Em uma queda durante seu transporte, o tambor foi danificado e seu volume interno diminuiu para 80% do volume inicial, sem que tenha havido vazamento.

Assinale a alternativa que mais se aproxima da pressão total após a queda.

- A 760 Torr
- B 832 Torr
- **c** 905 Torr
- **D** 950 Torr
- **E** 1175 Torr

PROBLEMA 2.6

2D06

Assinale a alternativa que mais se aproxima da pressão de vapor do CCl_4 a 25 $^{\circ}C$.

- A 107 Torr
- **B** 216 Torr
- **c** 325 Torr
- **D** 434 Torr
- E 543 Torr

Dados

- $P_{vap}^{330 \, K}(CCl_4) = 405 \, Torr$
- Hvap(CCl4)=33

PROBLEMA 2.7

2D07

A dependência da pressão de vapor do cloreto-difluoreto de fosforila, OPCIF₂ foi medida em função da temperatura.

() T/K	190	228	250	273
() P _{vap} /Torr	3,2	68	240	672
0				

Assinale a alternativa que mais se aproxima da entalpia de vaporização.

- $\mathbf{A} \quad 14 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- \mathbf{B} 28 kJ mol⁻¹
- \mathbf{C} 42 kJ mol⁻¹
- \mathbf{D} 56 kJ mol⁻¹
- \mathbf{E} 70 kJ mol⁻¹

PROBLEMA 2.8

2D08

A dependência da pressão de vapor da arsina, AsH_3 , foi medida em função da temperatura.

Assinale a alternativa que mais se aproxima da entalpia de vaporização do AsH_3 .

- \mathbf{A} 10 kJ mol⁻¹
- \mathbf{B} 18 kJ mol⁻¹
- \mathbf{c} 42 kJ mol⁻¹
- \mathbf{D} 64 kJ mol⁻¹
- \mathbf{E} 92 kJ mol⁻¹

PROBLEMA 2.9

2D09

A dependência da pressão de vapor do dióxido de cloro foi medida em função da temperatura.

Assinale a alternativa que mais se aproxima da entropia de vaporização do ${\rm ClO}_2$.

- **A** $100 \, \text{J K}^{-1} \, \text{mol}^{-1}$
- $\mathbf{B} \ 200 \, \mathrm{J} \, \mathrm{K}^{-1} \, \mathrm{mol}^{-1}$
- \mathbf{C} 300 J K⁻¹ mol⁻¹
- \mathbf{D} 400 J K⁻¹ mol⁻¹
- **E** $500 \, \text{J K}^{-1} \, \text{mol}^{-1}$

PROBLEMA 2.10

2D10

Assinale a alternativa que mais se aproxima do ponto de ebulição do etanol sob 2 atm.

- A 273 K
- **B** 367 K
- **c** 458 K
- **D** 592 K
- **E** 671 K

Dados

- $\bullet \ P_{vap}^{308\,K}(C_2H_5OH) = 13,3\,kPa$
- Hvap(C2H5OH)=43,5

PROBLEMA 2.11

2D11

Assinale a alternativa que mais se aproxima do ponto de ebulição do BCl₃.

- A 287 K
- **B** 325 K

- **c** 412 K
- **D** 545 K
- **E** 638 K

Dados

- $P_{\text{vap}}^{500 \, \text{K}}(BCl_3) = 17 \, \text{kPa}$
- $\Delta H_{vap}(BCl_3) = 23.8 \, \text{kJ mol}^{-1}$

PROBLEMA 2.12

2D12

Assinale a alternativa que mais se aproxima da pressão necessária para destilar o ácido tricloroacético a 100 °C.

- **A** 1,2 kPa
- **B** 2,4 kPa
- **c** 3,6 kPa
- **D** 4,8 kPa
- **E** 6,0 kPa

Dados

- $\Delta H_{vap}(CCl_3COOH) = 57.8 \text{ kJ mol}^{-1}$
- $\bullet \ \Delta S_{vap}(\text{CCl}_3\text{COOH}) = 124\,\text{J}\,\text{K}^{-1}\,\text{mol}^{-1}$

PROBLEMA 2.13

2D13

Assinale a alternativa que mais se aproxima da pressão de vapor do benzeno a 298 K.

- **A** 10,5 kPa
- **B** 13,5 kPa
- **c** 16,5 kPa
- **D** 19,5 kPa
- **E** 21,5 kPa

Dados

- $\Delta G_f^{\circ}(C_6H_6, g) = 130 \,\text{kJ mol}^{-1}$
- $\Delta G_f^{\circ}(C_6H_6, 1) = 124 \,\text{kJ mol}^{-1}$

Nível II

PROBLEMA 2.14

2D14

Uma solução aquosa de sacarose possui fração molar 0,1 a $100\,^{\circ}\mathrm{C}$.

Assinale a alternativa que mais se aproxima da pressão de vapor dessa solução.

- A 624 Torr
- B 660 Torr
- c 684 Torr
- **D** 760 Torr
- **E** 784 Torr

PROBLEMA 2.15

2D15

Uma solução é preparada pela dissolução de 10 g de sacarose, $C_{12}H_{22}O_{11}$, em 100 g de água a 20 °C.

Assinale a alternativa que mais se aproxima da pressão de vapor dessa solução.

- **A** 7,5 Torr
- B 6,4 Torr
- **c** 5,3 Torr
- **D** 4,3 Torr
- **E** 3,1 Torr

Dados

• $P_{\text{vap}}^{293 \, \text{K}}(\text{H}_2\text{O}) = 17,5 \, \text{Torr}$

PROBLEMA 2.16

2D16

Uma solução é preparada pela adição de um soluto não volátil a 0,3 mol de benzeno líquido a 25 °C. A pressão de vapor do benzeno nessa solução é 75 Torr.

Assinale a alternativa que mais se aproxima da quantidade de soluto nessa solução.

- A 45 mmol
- B 56 mmol
- c 67 mmol
- D 78 mmol
- E 89 mmol

Dados

• $P_{\text{vap}}^{298 \, \text{K}}(C_6 H_6) = 94,6 \, \text{Torr}$

PROBLEMA 2.17

2D17

Uma solução é preparada pela dissolução de 8,05 g de um composto desconhecido em 100 g de benzeno líquido a 25 °C. A pressão de vapor do benzeno nessa solução é 75 Torr.

Assinale a alternativa que mais se aproxima da massa molar do composto desconhecido.

- \mathbf{A} 115 g mol⁻¹
- **B** $145 \, \text{g mol}^{-1}$
- $175 \,\mathrm{g} \,\mathrm{mol}^{-1}$
- \mathbf{D} 205 g mol⁻¹
- \mathbf{E} 235 g mol⁻¹

Dados

• $P_{\text{vap}}^{298 \text{ K}}(C_6 H_6) = 94,6 \text{ Torr}$

PROBLEMA 2.18

2D18

Um reator contem 1 bar de uma mistura de etanol e metanol em equilíbrio com o líquido. A temperatura do sistema é levemente aumentada mantendo a pressão em 1 bar.

Assinale a alternativa *correta*.

- A fração de metanol aumenta na fase líquida e diminui na fase gasosa.
- **B** A fração de metanol aumenta na fase líquida e aumenta na fase gasosa.
- A fração de metanol não se altera em nenhuma das fases.
- **D** A fração de metanol diminui na fase líquida e diminui na fase gasosa.
- A fração de metanol diminui na fase líquida e aumenta na fase gasosa.

PROBLEMA 2.19

2D19

Uma solução é preparada pela mistura de 1 mol de benzeno e $0,4\,\mathrm{mol}$ de tolueno.

Assinale a alternativa que mais se aproxima da pressão de vapor da mistura.

A 58 Torr

B 67 Torr

c 76 Torr

D 85 Torr

E 94 Torr

Dados

- $P_{vap}^{298 \, K}(C_6 H_6) = 94,6 \, Torr$
- $P_{vap}^{298\,K}(C_7H_8) = 29,1\,Torr$

PROBLEMA 2.20

2D20

Em uma solução de benzeno em tolueno a 25 °C, um terço das moléculas do líquido é de benzeno.

Assinale a alternativa que mais se aproxima da fração molar de benzeno no vapor.

A 0,35

B 0,44

c 0,53

D 0,62

E 0,71

Dados

- $P_{\text{vap}}^{298 \, \text{K}}(C_6 H_6) = 94,6 \, \text{Torr}$
- $\bullet \ P_{vap}^{298\,K}(C_7H_8) = 29,1\,Torr$

PROBLEMA 2.21

2D21

Uma solução é preparada pela mistura de pentano e hexano. As frações molares de pentano e hexano são iguais no vapor. **Assinale** a alternativa que mais se aproxima da fração de pentano na fase líquida.

A 0,23

B 0,34

c 0,50

D 0,56

E 0,77

Dados

- $P_{vap}^{298\,K}(C_5H_{12}) = 512\,Torr$
- $P_{vap}^{298 \, K}(C_6 H_{14}) = 151 \, Torr$

PROBLEMA 2.22

2D22

Uma solução é preparada pela mistura de 15 g de benzeno e 64,3 g de tolueno.

Assinale a alternativa que mais se aproxima da fração molar de benzeno no vapor.

A 0,46

B 0,48

c 0,50

D 0,52

E 0,54

Dados

- $P_{vap}^{298\,K}(C_5H_{12}) = 512\,Torr$
- $P_{vap}^{298 \, K}(C_6 H_{14}) = 151 \, Torr$

PROBLEMA 2.23

2D23

Uma solução de 1,2-dibromoeteno e 2,3-dibromopropeno a 85 °C possui fração molar de 1,2-dibromoeteno 0,40.

Assinale a alternativa que mais se aproxima da fração molar de 2,3-dibromopropeno no vapor.

A 0,40

B 0,42

c 0,48

D 0,52

E 0,60

Dados

- $P_{vap}^{360 \, K}(1,2\text{-dibromoeteno}) = 173 \, Torr$
- $P_{vap}^{360 \, K}(2,3\text{-dibromopropeno}) = 127 \, Torr$

PROBLEMA 2.24

2D24

Uma solução de benzeno em tolueno apresenta 50 Torr de pressão de vapor.

Assinale a alternativa que mais se aproxima da fração de benzeno no vapor.

A 10%

B 35%

c 60%

D 85%

E 95%

Dados

- $P_{\text{vab}}^{298 \, \text{K}}(C_6 H_6) = 94,6 \, \text{Torr}$
- $P_{vap}^{298\,K}(C_7H_8) = 29,1\,Torr$

PROBLEMA 2.25

2D27

Considere um dispositivo constituído por dois balões de vidro, **A** e **B**, cada um com capacidade de 894 mL conectados por uma torneira. Dois ensaios independentes foram realizados a 298 K.

- **1.** Os balões foram inicialmente evacuados e, logo a seguir, com a torneira fechada, foram introduzidos 0,3 g de benzeno e 20 g de tolueno em A e B, respectivamente.
- 2. Os balões foram novamente evacuados e, na sequência, uma quantidade de benzeno foi introduzida em A e outra quantidade de tolueno foi introduzida em B. A torneira é aberta e o equilíbrio líquido vapor é atingido. A pressão interna no dispositivo é 76,2 Torr.
- a. Determine a pressão em cada balão, no primeiro ensaio, após o sistema ter atingido o equilíbrio;
- b. **Determine** a fração molar de tolueno na fase líquida no equilíbrio.

Dados

- $P_{\text{vap}}^{298 \text{ K}}(C_6 H_6) = 94,6 \text{ Torr}$
- $P_{vap}^{298 \, K}(C_7 H_8) = 29,1 \, Torr$

PROBLEMA 2.26

2D28

Considere um dispositivo constituído por dois balões de vidro, $\bf A$ e $\bf B$, cada um com capacidade de 1 L conectados por uma torneira. Ao balão $\bf A$ são adicionados 1,50 g de dietiléter, $C_2H_5OC_2H_5$. A pressão de vapor do dietiléter é 57 Torr em $-45\,^{\circ}$ C, 185 Torr em $0\,^{\circ}$ C, 534 Torr em $25\,^{\circ}$ C, e desprezível abaixo de $-86\,^{\circ}$ C.

- a. **Determine** a pressão no dispositivo se a torneira permanece fechada e a temperatura é mantida em $-45\,^{\circ}\text{C}$
- b. **Determine** a pressão no dispositivo se a torneira permanece fechada e a temperatura é mantida em $25\,^{\circ}\text{C}$
- c. **Determine** a pressão no dispositivo se a torneira é aberta e a temperatura é mantida em $-45\,^{\circ}\text{C}$

PROBLEMA 2.27 2D29

Em uma indústria petroquímica deseja-se evaporar a água de uma corrente de 10 m³ de petróleo contendo 15% de água em volume. Para isso a corrente é alimentada em um tambor para a destilação flash. O tambor é equipado com um sistema de aquecimento, que mantém a temperatura constante em 300 K.

- a. **Determine** o volume mínimo do tambor para que toda a água evapore.
- b. **Determine** o calor fornecido pelo sistema de aquecimento.

PROBLEMA 2.28

2D30

Dois frascos abertos A e B, contendo mesmo volume de água líquida e de uma solução aquosa concentrada em sacarose, respectivamente, são colocados em um recipiente que, a seguir, é devidamente fechado.

Assinale a alternativa correta

- Os volumes dos líquidos nos frascos A e B não apresentam alterações visíveis.
- **B** O volume do líquido no frasco **A** aumenta, enquanto que o do frasco B diminui.
- O volume do líquido no frasco A diminui, enquanto que o do frasco **B** aumenta.
- O volume do líquido no frasco A permanece o mesmo, enquanto que o do frasco B diminui.
- **E** O volume do líquido no frasco **A** diminui, enquanto que o do frasco **B** permanece o mesmo.

Gabarito

Nível I

- 11. A

Nível II

- 2. C

- 7. D
- 9. B
- 10. D

- 11. C
- **12.** a. A, 80 Torr e B, 29,1 Torr
 - b. 0,134
- **13.** a. 57 Torr
 - b. 380 Torr
 - c. 57 Torr
- **14.** a. 68,5m3
 - b. 3120MJ
- 15. C