Al and Deep Learning

뉴런과 학습

Jeju National University Yung-Cheol Byun

인간의 고차원 기능은 <mark>단순한 뉴렌</mark>의 수많은 연결로 가능

하지만, 연결만 되었다고 가능?

학습(Learning) 학습이란 무엇인가?

Agenda

- Artificial Intelligence
- Brain and Neurons
- Learning
- Regression
- Deep Neural Networks
- CNN
- RNN
- Unsupervised Learning
- Reinforcement Learning
- Al Applications

엄청난 수의 뉴런들, 그 뉴런들의 수많은 <mark>연결</mark>

신기하게도,

아기는 무엇인가를 경험할 때마다 신경세포 사이의 <mark>연결강도</mark>가 '자동으로' 조정된다.

학습!

두 뉴런의 연결

1개 입력을 갖는 뉴런

뉴런의 동작

$$y = wx$$

뉴런의 동작(출력)은 매우 단순 입력(x) * 연결강도(w)

y = wx

가중치

뉴런의 응용

- . 1시간(x) 공부하면 1시간(y) 게임하게 해 줄게
- . 4시간 공부하면 몇 시간 게임할 수 있을까(prediction)

 $_{\cdot}$ 이를 위한 연결 w 값을 구하라 $_{\cdot}$

공부한 시간	W	뉴런 출력	정답	오차(차이)	대가
1	7	7	1	7-1	크게 야단
1	4	4	1	4-1	보통 야단
1	2	2	1	2-1	조금 야단
1	1.5	1.5	1	1.5-1	아주 조금
1	1.3	1.2	1	1.2-1	매우 조금
1	1.1	1.1	1	1.1-1	굳!

개, 돌고래, 아이, 희한하게도 잘못할 경우 야단을 치면 '자동으로' 연결부위 값이 수정되어 이후 오차(차이)가 줄어듦.

학습이란?

연결 강도 w를 조절하는 것

{강하게, 혹은 약하게}

(Q) Draw a neuron

Representing the following equation:

$$y = 1x$$

연결(시냅스)은 머디에 있을까?

연결(시냅스)은 머디에 있을까?

여러 입력을 갖는 뉴런

입력에 가중치를 곱하여 모두 더해서 (weighted sum) 출력 (x가 각각 1,1,1,1이면 출력 값은?)

입력의 수만큼 연결이 존재

(Synapses, Weights)

사실은..

- 뉴런은 모두 더해서(weighted sum) 일정한 값 이상일 때만 시그널 ON (Fire)
- 그렇지 않으면 시그널 OFF

특정 값(T) 이상이면 ON(1), 아니면 OFF(0)

모두 더해서 특정 값(T) 이상이면 ON(1), 아니면 OFF(0)

모두 더해서 특정 값(T) 이상이면 ON(1), 아니면 OFF(0)

다음 뉴런을 그려보자.

$$(1) y = 1x$$

$$(2) y = x_1 + 2x_2 + x_3 + 2x_4$$

(3)
$$y = \begin{cases} 1 & if \ x_1 + 2x_2 + x_3 + 2x_4 > T \\ 0 & otherwise \end{cases}$$

학습이란 무엇이다?

어떻게 자동으로 학습할 수 있을까?

요약

- 뉴런의 연결 부분, 시냅스
- 학습은 연결을 조정하는 것
- 파라미터(₩) 튜닝
- 뉴런의 동작
- 뉴런 그리기