CS294–Fall 2018 — Homework 2Solutions

Jiajian Lu, SID 3033084290

2. Review

(a)

$$\mathbb{E}_{\tau \sim p_{\theta}(\tau)}[\nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t})b(s_{t})] = \mathbb{E}_{\tau \sim p_{\theta}(s_{t},a_{t})p_{\theta}(\tau/s_{t},a_{t}|s_{t},a_{t})}[\nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t})b(s_{t})]$$

$$= \mathbb{E}_{\tau/s_{t},a_{t} \sim p_{\theta}(\tau/s_{t},a_{t}|s_{t},a_{t})}[\mathbb{E}_{s_{t},a_{t} \sim p_{\theta}(s_{t},a_{t})}[\nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t})b(s_{t})|s_{t},a_{t}]]$$

$$= \mathbb{E}_{\tau/s_{t},a_{t} \sim p_{\theta}(\tau/s_{t},a_{t}|s_{t},a_{t})}[b(s_{t})\sum_{a_{t}}\sum_{s_{t}}p_{\theta}(s_{t},a_{t})\nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t})]$$

$$= \mathbb{E}_{\tau/s_{t},a_{t} \sim p_{\theta}(\tau/s_{t},a_{t}|s_{t},a_{t})}[b(s_{t})\sum_{a_{t}}\pi_{\theta}(a_{t}|s_{t})\nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t})]$$

$$= \mathbb{E}_{\tau/s_{t},a_{t} \sim p_{\theta}(\tau/s_{t},a_{t}|s_{t},a_{t})}[b(s_{t})\sum_{a_{t}}\nabla_{\theta}\pi_{\theta}(a_{t}|s_{t})] \quad \text{(convenient identity)}$$

$$= \mathbb{E}_{\tau/s_{t},a_{t} \sim p_{\theta}(\tau/s_{t},a_{t}|s_{t},a_{t})}[b(s_{t})0]$$

$$= 0$$

So

$$\sum_{t=1}^{T} \mathbb{E}_{\tau \sim p_{\theta}(\tau)} [\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) b(s_t)] = 0$$

(b) (a) Because the trajectory is a MDP and the probability of future trajectory only depends on the most recent state.

(b)
$$p(a_{t}, s_{t+1}, \dots, a_{T-1}, s_{T}) = \pi_{\theta}(a_{t}|s_{t})p(s_{t+1}|s_{t}, a_{t}), \dots, p(s_{T}|a_{T-1}, s_{T-1})$$

$$\mathbb{E}_{\tau \sim p_{\theta}(\tau)}[\nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t})b(s_{t})]$$

$$= \mathbb{E}_{s_{1:t}, a_{1:t-1}}[\mathbb{E}_{s_{t+1:T}, a_{t:T}}\nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t})b(s_{t})]$$

$$= \mathbb{E}_{s_{1:t}, a_{1:t-1}}[\sum_{a_{t}} \dots \sum_{s_{T}} p(a_{t}, s_{t+1}, \dots, a_{T-1}, s_{T}|s_{t})\nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t})b(s_{t})]$$

$$= \mathbb{E}_{s_{1:t}, a_{1:t-1}}[\sum_{a_{t}} \dots \sum_{s_{T}} \pi_{\theta}(a_{t}|s_{t})p(s_{t+1}|s_{t}, a_{t}), \dots, p(s_{T}|a_{T-1}, s_{T-1})\nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t})b(s_{t})]$$

$$= \mathbb{E}_{s_{1:t}, a_{1:t-1}}[b(s_{t})\sum_{a_{t}} \pi_{\theta}(a_{t}|s_{t})\nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t})] \quad \text{(other summations are all 1)}$$

$$= \mathbb{E}_{s_{1:t}, a_{1:t-1}}[b(s_{t})0]$$

$$= 0$$

So

$$\sum_{t=1}^{T} \mathbb{E}_{\tau \sim p_{\theta}(\tau)} [\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) b(s_t)] = 0$$

Problem 4

Figure 1: Small Batch size

(a)

Figure 2: Big Batch size

(b)

- (c) Reward to go has better performance.
- (d) Advantage centering does help.
- (e) Yes.
- (f) python train_pg_f18.py CartPole-v0 -n 100 -b 1000 -e 3 -dna --exp_name sb_no_rtg_dna

python train_pg_f18.py CartPole-v0 -n 100 -b 1000 -e 3 -rtg -dna
--exp_name sb_rtg_dna

python train_pg_f18.py CartPole-v0 -n 100 -b 1000 -e 3 -rtg
--exp_name sb_rtg_na

python train_pg_f18.py CartPole-v0 -n 100 -b 5000 -e 3 -dna
--exp_name lb_no_rtg_dna

python train_pg_f18.py CartPole-v0 -n 100 -b 5000 -e 3 -rtg -dna
--exp_name lb_rtg_dna

python train_pg_f18.py CartPole-v0 -n 100 -b 5000 -e 3 -rtg
--exp_name lb_rtg_na

Problem 5

(a)
$$b^* = 500$$
 and $r^* = 0.01$

Figure 3: Inverted Pendulum

(b) python train_pg_f18.py InvertedPendulum-v2 -ep 1000 --discount 0.9 -n 100 -e 3 -l 2 -s 64 -b 600 -lr 0.01 -rtg --exp_name hc_b_r

7. Lunar Lander

Figure 4: Inverted Pendulum

python train_pg_f18.py LunarLanderContinuous-v2 -ep 1000
--discount 0.99 -n 100 -e 3 -l 2 -s 64 -b 40000 -lr 0.005 -rtg
--nn_baseline --exp_name ll_b40000_r0.005

8. HalfCheetah

Figure 5: finding b* and lr*

(a) Larger batch size can have higher average return. Smaller learning rate can reduce the variance of the learning curve.

And I choose batch size = 50000 and learning rate = 0.01.

(b) python train_pg_f18.py HalfCheetah-v2 -ep 150 --discount 0.95 -n 100
-e 3 -l 2 -s 32 -b 50000 -lr 0.01 --exp_name hc_b_r_095_50000_01

python train_pg_f18.py HalfCheetah-v2 -ep 150 --discount 0.95 -n 100
-e 3 -l 2 -s 32 -b 50000 -lr 0.01 -rtg --exp_name hc_b_r_095_50000_01_rtg

python train_pg_f18.py HalfCheetah-v2 -ep 150 --discount 0.95 -n 100
-e 3 -l 2 -s 32 -b 50000 -lr 0.01 --nn_baseline --exp_name hc_b_r_095_50000_01_nn

python train_pg_f18.py HalfCheetah-v2 -ep 150 --discount 0.95 -n 100
-e 3 -l 2 -s 32 -b 50000 -lr 0.01 -rtg --nn_baseline
--exp_name hc_b_r_095_50000_01_rtg_nn

Figure 6: More Task