Dept. of EE, IIT Tirupati EE3001 : Electromagnetic Fields (Aug - Nov 2018) Instructor : B. K. Das Tutorial Quiz - 3

Note: The tutorial quizzes are part of your assignment. This is an effort to test your learning outcome while solving assignment problems independently.

- 1. Region $y \leq 0$ consists of a perfect conductor while region $y \geq 0$ is a dielectric medium ($\epsilon_{1r} = 2$). If there is a space charge of 2 nC/m² on the conductor, determine \vec{E} and \vec{D} at (a) A(3, -2, 2) and (b) B(-4, 1, 5)
- 2. A normally incident E field has amplitude $E_0=1$ V/m in free space just outside the sea water in which ϵ_r =80, $\mu_r=1$ and $\sigma=2.5$ S/m. For a frequency of 30 MHz, at what depth will the amplitude of E be 1 mV/m.

Conductor Dielectric E = 112,999,69 4=0 Space change = 2 n C/m² (a) A(3,-2,2) \longrightarrow imside the conductor as y = -2. → E=0 Q. D=0 300 => 6 = 80) In the dielectric medium (b) =B (-4,1,5) as y=1. \$ \int \text{ds} = \frac{\quad \text{enc}}{\quad \text{G}} direction will be normal E. A = [8. A] to the surface) $E = \frac{\rho_s}{\epsilon} \quad \text{any}$

$$\frac{1}{2} = \frac{2 \times 10^{-9} \text{ results}}{2 \times 8 \cdot 8 \times 10^{-12}}$$

$$\frac{1}{2} = \frac{112 \cdot 99 \text{ results}}{39}$$

$$\frac{1}{2} = \frac{2}{2}$$

$$\frac{1}{2} = \frac{2 \times 10^{-9} \text{ c/m}^2}{39}$$

$$\frac{1}{2} = \frac{1}{2}$$

$$\frac{1$$

Lauren 20 1 = 377-2 (early 2 = 9.73. 243.5° A. 3

2.

 $\frac{\text{Eo}^{t}}{\text{Eo}^{t}} = \frac{2\eta_{2}}{\eta_{1} + \eta_{2}} = \frac{2}{5.07 \times 10^{-2}} \text{ V/m}$

So, distance at which it reduces to
$$1mV/m \Rightarrow ^{\prime} z'$$

$$=$$
 $=$ 0.243 m.