Fiche résumé électromagnétisme

4-5. Équation de Maxwell-Faraday, potentiel électrostatique et tension électrique

 $\overrightarrow{rot}(\vec{E}) = \vec{0}$ a plusieurs conséquences :

• existence du potentiel électrostatique V tel que :

$$\vec{E} = -\overrightarrow{\text{grad}}(V) \tag{1}$$

• circulation indépendante du contour → existence de la tension électrique :

$$u_{AB} = \int_{\Gamma} \vec{E} \cdot d\vec{l} = V(A) - V(B)$$
 avec Γ orienté de A vers B (2)

• circulation nulle le long de tout contour fermé \rightarrow loi des mailles

Régularité

En un point où se trouve une distribution	$ec{E}$ est	<i>V</i> est
Volumique	continu	continu
Surfacique	discontinu 1 ^{re} espèce	continu
Linéique / ponctuelle	discontinu 2 ^e espèce	discontinu 2 ^e espèce

Équations de Poisson et Laplace

Équation de Poisson (Laplace si $\rho = 0$):

$$\begin{cases} \operatorname{div}(\vec{E}) = \frac{\rho}{\varepsilon_0} \\ \vec{E} = -\overline{\operatorname{grad}}(V) \end{cases} \Rightarrow \Delta V = -\frac{\rho}{\varepsilon_0} \quad \text{avec en cartésiennes} \quad \Delta = \vec{\nabla}^2$$
 (3)

Actions mécaniques

Pour une particule ponctuelle de charge q:

$$\begin{cases}
\vec{F} = q\vec{E} \\
E_p = qV
\end{cases}$$
(4)

Condensateur plan

- calculer les champs rayonnés par les armatures, puis les additionner par superposition
- capacité C = q/U > 0, q charge portée par n'importe laquelle des armatures (en valeur absolue) $\Rightarrow C = \frac{\varepsilon_0 S}{e}$
- \vec{E} uniforme et perpendiculaire aux armatures, V affine
- la relation de passage doit être vérifiée sur les armatures

Densité volumique d'énergie électrique $w_e=\frac{1}{2}\,\varepsilon_0\vec{E}^2$, d'où l'énergie totale dans le condensateur :

$$W_e = \iiint_{\text{condensateur}} w_e \, dV \Rightarrow W_e = w_e eS \quad \text{car uniforme}$$
 (5)

$$=\frac{1}{2}CU^2\tag{6}$$