Homework 3

Due Thursday, October 20, 2016

Exercise 1. Let A_1, A_2, \ldots be \mathcal{F} -sets. Show that $P(A_n \ i.o._n) = 1$ if and only if $\sum_{n=1}^{\infty} P(A_n|A)$ diverges for every \mathcal{F} -set A of nonzero probability. Hint: show $P(A_n \ i.o._n) < 1 \iff \sum_{n=1}^{\infty} P(A_n|A) < \infty$ for some \mathcal{F} -set A with P(A) > 0.

Exercise 2. Let P and Q be probability measures on a σ -field \mathcal{F} of subsets of a sample space Ω .

• P and Q are said to be singular, denoted $P \perp Q$, if and only if there exists a set $F \in \mathcal{F}$ such that

$$P(F^c) = 0 = Q(F).$$

• P is said to be absolutely continuous with respect to Q, denoted $P \ll Q$, if and only if

$$P(F) = 0$$
 for every \mathcal{F} -set F for which $Q(F) = 0$.

Show that

$$P \perp Q \iff \left[\begin{array}{c} \textit{there exists } \mathcal{F}\textit{-sets } F_1, F_2, \dots \textit{ such that } \\ P(F_n^c) \to 0 \textit{ and } Q(F_n) \to 0 \textit{ as } n \to \infty \end{array}\right]$$

and

$$P \ll Q \Longleftrightarrow \lim_{\delta \downarrow 0} \Bigl(\sup \{ P(F) \colon F \in \mathcal{F} \ \textit{with} \ Q(F) \leq \delta \} \Bigr) = 0.$$