

SELECTED DIRECTION LIGHTING DEVICE

BACKGROUND OF THE INVENTION

There are many requirements for lighting devices which are needed to project light in a substantially horizontal direction so that a distant observer can locate the light. A typical use would be a navigation light on a ship. These red or green lights are required on ships so that other ships will know of their location and avoid potential accidents. Navigation lights are normally constructed to provide a light beam of a specification intensity and a specification vertical beamwidth above and below the horizontal plane. Unfortunately, ships and other craft such as sailboats roll in the water beyond the vertical specification beamwidth of the lights such that the navigation lights misdirect their projected beam either upward or downward. This misdirection of light can create a substantial hazard as other ships are denied the lighting signal that can alert them to a potential accident.

For uses other than as navigation lights such as buoy lights the lighting device may be flashing. A flashing requirement intensifies the problem of misdirected light because for the light to be visible to a horizontal observer during a

2

rolling motion the light must flash at substantially the exact time that the light is projecting light in the horizontal direction. Normally this requires the lighting device to be disposed substantially in the vertical position. If the light 5 flashes when the projected beam is misdirected above or below the horizontal, virtually all of the light energy will miss the observer. If the light continues to flash at the time its beam is directed away from the horizontal, it can remain unseen for an unacceptable length of time. A misdirected steady light also has 10 its visibility decreased by a rolling movement of the lighting device however, as the lighting device oscillates about the vertical it will at least, for a short period of time, direct some of its light in the direction of a horizontal observer.

SUMMARY OF THE PRESENT INVENTION

15 It is an object of the current invention to provide a lighting device which, throughout angular movement about a vertical reference plane, maximizes the percentage of light it emits that is concentrated within a vertical angular beamspread about a selected direction.

20 It is a further objective of the current invention to provide a lighting device that, at a first angular displacement about a vertical, projects a first beam of light including within that beam light parallel to a selected direction and which at a

second angular displacement about the vertical, projects a second beam of light that includes within that beam light parallel to the selected direction.

The present invention will find application whenever a lighting device is required to project a beam of light in a selected direction relative to a vertical even though the lighting device cannot be disposed at a fixed angular position relative to the vertical. Uses for the present invention include a navigation light on a ship where the lighting device rolls relative to the vertical but its projected light beam is required to be directed along the horizontal.

The present invention can also be employed as a buoy light which oscillates in the water but is required to project a substantially horizontal beam.

Another use can be found as a headlight for a vehicle whereby the projected beam from the lighting device should remain directed in a selected direction angularly below the horizontal even as the vehicle and light mounted thereon rotate relative to the vertical due to bumps or rocks on the road.

In accordance with the teaching of the present invention, there is disclosed an electrical lighting device having a plurality of light beam means connectable to a source of electrical power having a voltage and a plurality of light beam means. Each of said light beam means has a light source for

projecting a respective light beam upon application of the voltage to said respective light source. A circuit assembly includes said plurality of light beam means and a power control means. Said circuit assembly is at least partially disposed on a support such that said light beams are diverging from one another. Said power control means selectively applies the voltage to at least one of said light beam means in response to an angular divergence between said light beam and said horizontal plane.

In another aspect, there is disclosed an electrical lighting device having a plurality of component lighting devices connectable to a source of electrical power having a voltage. Each of said component lighting devices projects a respective light beam upon application of the voltage to said respective component lighting devices. A circuit assembly said plurality of component lighting devices and a power control. Said circuit assembly is at least partially disposed on a support such that said light beams are diverging from one another. Said power control has a respective tilt switch connected between each said component lighting device and said source of electrical power. Said power control is responsive to the vertical angular disposition of said support relative to a vertical plane. Said power control switches each of said tilt switches at a preselected vertical angular disposition of said support such

that power is provided to at least one of the component lighting devices depending upon the vertical angular disposition of said support.

A method is disclosed of providing a beam of light in a horizontal plane irrespective of the vertical angular disposition of a support upon which an electrical lighting device generating the beam of light is mounted.

These and other objects of the present invention will become apparent from a reading of the following specification, taken in conjunction with the enclosed drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of lighting device 50.

FIG. 2 is a front view of lighting device 50.

FIG. 3 is a plan view of lighting device 50.

FIG. 4 is a side view of lighting device 50 with all three of the beam means energized.

FIG. 5 is a partial cross-sectional view of lighting device 50 taken across line 5-5' of FIG. 2.

FIG. 6 is a partial cross-sectional view of lighting device 50 taken across line 6-6' of FIG. 2.

FIG. 7 is a front view of circuit assembly 10 from FIG. 5 of lighting device 50.

FIG. 8 is a perspective view of tilt switch 20 from circuit assembly 10.

FIG. 9 is a plan view of tilt switch 20.

FIG. 10 is a side view of tilt switch 20 disposed in the vertical position.
5

FIG. 11 is a side view of tilt switch 20 rotated counterclockwise about the vertical tilt plane.

FIG. 12 is a side view of tilt switch 20 rotated clockwise about the vertical tilt plane.

10 FIG. 13 is an electrical schematic of circuit assembly 10.

FIG. 14 is a side view of lighting device 50 disposed in the vertical position with only the central beam means energized.

15 FIG. 15 is a side view of lighting device 50 disposed rotated counterclockwise about the vertical tilt plane with only the downward beam means energized.

FIG. 16 is a side view of lighting device 50 disposed rotated clockwise about the vertical tilt plane with only the upward beam means energized.

20 FIG. 17 is a side view of alternate lighting device 50A disposed in the vertical position with both of the beam means energized.

FIG. 18 is an electrical schematic of circuit assembly 10A from lighting device 50A.

FIG. 19 is a side view of lighting device 50A disposed in the vertical position with only the upward beam means energized.

FIG. 20 is a side view of tilt switch 20A from FIG. 19 of lighting device 50A.

5 FIG. 21 is a side view of lighting device 50A disposed rotated clockwise about the vertical with only the upward beam means energized.

FIG. 22 is a side view of tilt switch 20A from FIG. 21 of lighting device 50A.

10 FIG. 23 is a side view of lighting device 50A disposed rotated counterclockwise about the vertical with only the downward beam means energized.

FIG. 24 is a side view of tilt switch 20A from FIG. 21 of lighting device 50A.

15 FIG. 25 is a perspective view of an incandescent light source and a reflector.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention emits a light beam which directs light in a selected direction relative to a vertical line or vertical plane. It further maintains a projected light beam in the selected direction even when the lighting device is angularly displaced or rotated about the vertical plane. It achieves this objective by providing a plurality beam means to project a

plurality of oblique light beams. If the selected direction is along a horizontal plane and the lighting device is in its vertical position each of the projected light beams is directed either along the horizontal plane, diverging upward about the 5 horizontal plane or diverging downward about the horizontal plane. Each of the potentially projected light beams includes a vertical beamwidth to cooperate with the beamwidths of the other projected light beams to form a composite light beam having a vertical beamspread approximately equal to the range of angular movement the lighting device is expected to experience. The 10 lighting device should also provide the minimum intensity required for the intended use. One method of achieving this objective is for the composite beam to provide the minimum intensity throughout its vertical beamspread. A power control means which selectively illuminates one or more of the beam means at the time that at least a portion of the projected light from 15 that selected beam means is projected parallel to the horizontal, is also included. The power control means can illuminate the selected beam means when the lighting device attains an established angular orientation relative to a vertical line or 20 plane. Alternatively, it can illuminate the selected beam means when the axis of that beam means attains an established angular orientation relative to the selected direction. Alternatively, it can illuminate a selected beam means when some other reference

such as the axis of any beam attains an established angular orientation relative to the selected direction.

For the current application, the components necessary to project one of the plurality of the beams of light from the lighting device are identified as a beam means. A beam means is simply a lighting device which projects a concentrated light beam. The present invention requires a plurality of component lighting devices or beam means. The individual component lighting device employed in the current invention can be assembled from readily available components. They are also available as complete assemblies such as sealed beam bulbs. A beam means can be formed from a large variety of combinations of a light source and an optic. Since most light sources including LED elements emit light which comprises a widely diverging spatial radiation pattern the emitted light is normally concentrated by an optical system such as a reflector, encapsulating refractor or separate lens. The reflector is commercially known as a successful light collection device and in its most common form will collect the light into a concentrated beam pattern. The encapsulating refractor also commercially known is usually a transparent epoxy cast around the LED element into a curved aspheric shape to form a LED lamp. The curved aspheric shape refracts the light from the LED element as it passes through the refractor to concentrate the light into

a concentrated round beam pattern. This design is found in the commercially available T 1 3/4 LED lamp. Finally, the separate light condensing plano convex lens is currently commercially employed to function with a LED lamp to collect the light into a 5 concentrated projected light beam. The beam means can also include an electroluminescent source and a curved condensing lens. The current invention requires at least two beam means. For some uses to be hereinafter described, a larger number of beam means will represent an improved design.

Also the present description employs the term projected light beam. Projected light beams are defined in a number of ways. A common system which is employed in this disclosure defines a central axis which indicates the direction of maximum intensity. Directions within a vertical reference plane drawn coincident with the central axis representing directions indicating intensities of a percentage of the maximum intensity (usually fifty but any percentage can be employed) define the vertical boundaries of the vertical beamspread. Directions within a horizontal plane drawn coincident with the central axis 15 representing directions indicating intensities of a percentage of the maximum intensity (usually fifty but any percentage can be employed) define the horizontal boundaries of the horizontal beamspread. The included angle between the vertical beamspread boundaries is the vertical angular beamspread. The included 20

angle between the horizontal beamspread boundaries is the horizontal angular beamspread.

As part of this disclosure when the angular divergence between two light beams is discussed, this can be considered to 5 be the angular divergence between the central axes of the respective light beams. Also, normally the central axis of a projected light beam is a bisector of the vertical angular beamspread. It is also usually a bisector of the horizontal angular beamspread. The location of the central axis of the projected beams is helpful in describing some embodiments of the 10 current invention but the invention can be constructed using almost any projected light beams regardless of their intensity profiles.

FIGS. 1, 2, 3, and 4 are perspective, front, plan and side views respectively of lighting device 50 which represents a 15 preferred embodiment of the current invention used as a navigation light on a ship.

FIG. 3 is a plan view of lighting device 50 with vertical reference plane V1 and perpendicular vertical reference tilt 20 plane V2 both coincident with switch axis SA to be later described.

FIG. 5 is a partial cross-sectional view of lighting device 50 taken across line 5-5' of FIG. 2. FIG. 6 is a partial cross-sectional view of lighting device 50 taken across line 6-6'

of FIG. 2. Lighting device 50 comprises housing 1, usually injection molded, of a transparent plastic such as polycarbonate. Housing 1, which is the only component shown cross-sectioned, includes top flange 2 with top mount hole 3 and bottom flange 4 with bottom mount hole 5. Top flange 2 and bottom flange 4 permit lighting device 50 to be bolted to a vertical surface such as a bulkhead on a ship thereby establishing a vertical position. Housing 1 further is molded into a shape which includes an upward optic UO, central optic CO, downward optic DO and surrounding wall 6 forming cavity 7. Cavity 7 accepts circuit assembly 10 which is fastened to housing 1 by threading upper screw 11 into upper housing rib 12 and lower screw 13 into lower housing rib 14.

Referring to FIGS. 4 thru 6, previously described, and to FIG. 7, which is a front view of circuit assembly 10 from FIG. 5, it can be seen that circuit assembly 10 comprises upward LED lamp UL, central LED lamp CL, downward LED lamp DL, mercury tilt switch 20 and NOR gate 15 all mounted on circuit board 16.

Positive power line P1 and negative power line P2 bring a power supply voltage VCC to circuit assembly 10. In place of an external source of power connected to power lines P1 and P2, lighting device 50 can alternatively be energized by a battery potentially stored within cavity 7 of housing 1. Circuit board 16 has upper hole 17 and lower hole 18 provided to accept upper

screw 11 and lower screw 13 respectively to facilitate fastening circuit assembly 10 to housing 1. Either circuit board 16 or housing 1 can be considered as a full or partial support means for power control means 8 and circuit assembly 10.

FIGS. 8 and 9 are perspective and plan views respectively of a standard commercially available two direction mercury tilt switch 20. Tilt switch 20 comprises a metal body 19, common electrical terminal TC, downward terminal T1 and upward terminal T2. Switch axis SA passes through geometric center 9 of metal body 19.

Now looking at FIGS. 1 thru 7, lighting device 50 comprises three beam means. Upward beam means UM includes upward LED lamp UL positioned approximately at upward focal point UF of upward optic UO such that when energized they cooperate to emit upward beam UB. Upward horizontal reference plane UH is a horizontal reference plane coincident with upward focal point UF. This reference plane as well as all other horizontal reference planes maintain their horizontal disposition regardless of the angular tilt of lighting device 50. Upward beam UB comprises upward beam axis UA which represents the direction of maximum intensity within upward beam UB, upward boundary top UBT and upward boundary bottom UBB represent directions indicating intensities at fifty percent of the maximum intensity. Central beam means CM includes central LED lamp CL positioned near central focal

point CF of central optic CO positioned such that, when energized, they cooperate to emit central beam CB. Central horizontal reference plane CH is a horizontal reference plane coincident with central focal point CF. Central beam CB comprises central beam axis CA which is a direction of maximum intensity within central beam CB. Downward beam means DM includes downward LED lamp DL positioned near downward focal point DF of downward optic DO such that, when energized, they cooperate to emit downward beam DB. Downward horizontal reference plane DH is a horizontal reference plane coincident with downward focal point DF. Downward beam DM comprises downward axis DA which is a direction of maximum intensity within downward beam DB. Lighting device 50 therefore comprises three beam means which are substantially identical with identical components and beam profiles. Each of the three beam means however projects its light beam in a different direction. Therefore, the three beams diverge from one another or equivalently their beam axes diverge. Also the boundary of one beam ends where the boundary of the next beam begins such that the beams means if simultaneously illuminated, would form a substantially continuous composite light beam. The composite light beam would for most embodiments of the current invention, comprise a vertical beamspread which was larger than the vertical beamspread of any of the component beams. For some embodiments, the

vertical beamspread of the composite beam could be large enough whereby it was almost equal to the sum of the vertical beam-spreads of the component light beams. For lighting device 50, the upper boundary bottom UBB of upper beam UB is coincident with 5 the central boundary top CBT of central beam CB, the central boundary bottom CBB of central beam CB is coincident with the downward boundary top DBT of downward beam DB. Upward beam axis UA forms angle 2A1 with central beam axis CA. Central beam axis CA forms angle 2A1 with downward beam axis DA. The similar beam means, relative angular disposition among the beams, fifty percent intensity differential between each beam axis and its related beam boundaries, are all parameters which are shown in lighting device 50 describing the present embodiment. However, alternative lighting devices can easily be constructed employing 10 the concepts described in this disclosure and achieving the objectives of the invention even with dissimilar beam means, different relative angular dispositions of the beam axes and alternate intensity differentials between the maximum beam 15 intensity and boundary intensities.

FIG. 10 is a side view of tilt switch 20 from FIG. 5 with switch axis SA coincident with tilt plane V2. In this position tilt switch 20 is in the vertical position and common terminal TC is not connected to downward terminal T1 or to upward terminal T2. Tilt switch 20 actually comprises two internal switches,

each of which will selectively switch or connect its respective terminal to common terminal TC when tilt switch 20 is rotated relative to tilt plane V2 such that switch axis SA attains at least a specified angle of divergence and a specified rotational 5 direction relative to tilt plane V2. In FIG. 11 tilt switch 20 is rotated counterclockwise about tilt plane V2 so that switch axis SA is at counterclockwise angle DA1 relative to tilt plane V2. In this position in which tilt switch 20 has a counterclockwise tilt of at least counterclockwise angle DA1, common terminal 10 TC is connected to downward terminal T1 and common terminal TC is not connected to upward terminal T2. In FIG. 12 tilt switch 20 is rotated clockwise about tilt plane V2 so that switch axis SA is at clockwise angle UA1 relative to tilt plane V2. In this position in which tilt switch 20 has a clockwise tilt of at 15 least clockwise angle UA1 relative to tilt plane V2 common terminal TC is connected to upward terminal T2 and common terminal TC is not connected to downward terminal T1. In the present embodiment, counterclockwise angle DA1 is equal to clockwise angle UA1 however, lighting device 50 can also function 20 with unequal values of counterclockwise angle DA1 and clockwise angle UA1 as long as the other components of lighting device 50 are correspondingly designed to achieve the disclosed objectives of the current invention. A designer with the current disclosure in hand can easily configure an unbalanced design.

FIG. 13 is a schematic of the circuit comprising the components of circuit assembly 10. For the present embodiment the primary components of circuit assembly 10 include:

- 1 each tilt switch part number CM415
- 5 mfg. by Comus International
- 1 each NOR gate
- 3 each LED lamps commercial type T 1 3/4
- 1 each resistor R1
- 10 1 each resistor R2
- 1 each resistor R3

These are readily available components which function acceptably. There are numerous alternate components that can be successfully substituted for those identified. Circuit board 16 comprises circuit tracks 22 formed by standard commercial procedures for electrically connecting the components according to the schematic of FIG. 13. In this embodiment supply voltage VCC is 6 volts DC however the present invention can be made to function with almost any supply voltage by changing one or more components using classical engineering design procedures.

20 FIG. 14 is a side view of lighting device 50 in the vertical position it would assume if the ship were in perfectly calm water. In FIG. 14, only central beam means CM is energized, emitting central beam CB having central axis CA. Central axis CA is coincident with central horizontal reference plane CH as well

as selected direction SD. Selected direction SD represents the direction along which light is required to be projected from lighting device 50. The selected direction SD does not change with an angular tilt of lighting device 50. Light projected 5 parallel to the selected direction SD will be considered directed in the selected direction SD. Selected direction SD forms angle A2 with tilt plane V2. For this embodiment, angle A2 is 90 degrees making the selected direction parallel to the central horizontal reference plane CH, however, the selected direction can have a different value for other embodiments of the current 10 invention.

FIG. 15 is a side view of lighting device 50 as it would appear if it were rotated counterclockwise to angle DA1 about tilt plane V2 due to a rolling of the ship in a first direction.

15 FIG. 16 is a side view of lighting device 50 as it would appear if it were rotated clockwise to angle UA1 about tilt plane V2 due to a rolling of the ship in a second and opposite direction.

Referring to all of FIGS. 1 thru 16 but especially FIGS. 5, 20 10, 13 and 14, it can be seen that when lighting device 50 is in the vertical position as shown in FIG. 14 switch axis SA of tilt switch 20 is coincident with vertical plane V1 as well as tilt plane V2 as shown in FIG. 10. For this position of tilt switch 20, supply voltage VCC is not applied to downward terminal T1 or

upward terminal T2. In this case, resistor R1 brings NOR input terminal T3 to ground potential and resistor R2 brings NOR input terminal T4 to ground potential. Therefore, both NOR input terminal T3 and NOR input terminal T4 are at ground potential
5 making NOR output terminal T5 high, thus energizing central LED lamp CL. Resistor R3 is disposed between each LED lamp and ground to assure that each LED lamp draws the appropriate current. Neither upper LED lamp UL or downward LED lamp DL will be energized since neither downward terminal T1 or upward terminal T2 are connected to supply voltage VCC. Central LED lamp CL of central beam means CM is thus illuminated directing light into central optic CO. Central optic CO is typically a classical aspheric plano convex condensing lens with central LED lamp CL positioned substantially at its focal point CF. Thus
10 light emerging from central optic CO will be formed into a central beam CB concentrated about central horizontal plane CH and about central beam axis CA.

15

Central beam CB comprises central beam axis CA representing the direction of maximum beam intensity. Central beam CB further comprises central boundary top CBT and central boundary bottom CBB each representing directions equal to fifty percent of the maximum beam intensity. This embodiment would comply with a specification that required a minimum intensity which was fifty percent of the beam intensity of central beam CB. Central

boundary top CBT and central boundary bottom CBB define the vertical beamspread of central beam CB which for the present embodiment is $2A_1$ degrees. Central beam axis CA bisects the vertical beamspread forming angle A_1 between central beam axis CA and central boundary top CBT and angle A_1 between central beam axis CA and central boundary bottom CBB. It is to be noted that in FIG. 14 central boundary top CBT comprises a positive slope (i.e. it increases in value with distance along central horizontal plane CH and away from central optic CO). Also central boundary bottom CBB has a negative slope (i.e. it decreases in value with distance along central horizontal plane CH and away from central optic CO).

Finally, central horizontal plane CH has a zero slope. If as in the current embodiment the selected direction SD is along the central horizontal plane then lighting device 50 must project light in the horizontal direction or equivalently parallel to any horizontal plane. For this objective power control means 8 should selectively energize the beam means which, for an existing angular disposition of lighting device 50 relative to tilt plane V2, will direct light along a horizontal direction. This is achieved for the FIG. 14 disposition of lighting device 50 if power control means 8 energizes central beam means CM because the zero slope of central horizontal plane CH has a value between the positive slope of central boundary top CBT and the negative slope

of central boundary bottom CBB. In lighting device 50,
counterclockwise angle DA1, clockwise angle UA1 and angle A1 are
all equal. The current invention can still be constructed if
they are unequal however, the equality of angles simplifies the
5 design.

Thus the current embodiment discloses a design which energizes the central beam means CM whenever the disposition of lighting device 50 is such that either the central boundary top CBT, or the central boundary bottom CBB, has a zero slope (i.e. it is horizontal). The central beam means CM continues to be energized as lighting device 50 rotates until the remaining boundary achieves a zero slope (i.e. it becomes horizontal). This represents one of many methods of constructing the current invention. The power control means 8 could, in fact, illuminate a selected beam means other than at the disposition of lighting device 50 where a boundary of the beam aligned with the selected direction. Alternatively, a selected beam means could be illuminated only after the selected direction was within the boundaries of the light beam. The current embodiment could also simultaneously illuminate more than one of the beam means. For other embodiments, especially those experiencing dynamic motion, the design could possibly be improved if the power control means energized the selected beam means when selected direction was exterior to the beam. Actually, a number of factors can affect
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9

the relationship between the disposition of lighting device 50 and the appropriate time to energize a selected beam means by power control means 8. These factors include, but are not limited to: response time of the beam means, response time of the 5 power control means, tolerances of components, desirability of overlapping beams, etc. In the current embodiment, the central beam means CM will remain lighted only as long as the disposition of lighting device 50 is such that either a clockwise rotation does not equal or exceed angle UA1 or a counterclockwise rotation 10 does not equal or exceed angle DA1. This configuration is easy to describe, however it can be modified for other embodiments of the current invention if the aforementioned design factors so indicate.

The functioning of the current invention can be described 15 from another perspective. The current invention would be employed if power control means 8 extinguishes at least one of the beam means when that beam means is positioned such that its projected light beam would not include the selected direction within its boundaries. The power control means 8 can also be 20 identified as a power control or a power control device.

Now referring especially to FIGS. 5, 11, 13, and 15, it can be seen that when lighting device is 50 rotated counterclockwise to angle DA1 about tilt plane V2 as shown in FIG. 15, switch axis SA of tilt switch 20 is disposed as shown in FIG. 11. For this

position of tilt switch 20 common, terminal TC is connected to downward terminal T1 thus applying supply voltage VCC to NOR input terminal T3. Common terminal TC is not connected to upward terminal T2. Therefore, with resistor R2, NOR input terminal T4 5 is brought to ground potential.

Looking at FIG. 13 for this situation, NOR gate 15 has NOR input terminal T3 connected to supply voltage VCC and NOR input terminal T4 at ground. This will cause NOR output terminal T5 to remain low and central LED lamp CL will not be energized. Since downward terminal T1 is connected to supply voltage VCC, downward LED lamp DL will be energized. Resistor R1 is of a relatively high value and therefore will not create excess current or prevent supply voltage VCC from illuminating downward LED lamp DL. Since upward terminal T2 is not connected to supply voltage VCC, upward LED lamp UL will not be energized.

Looking back at FIG. 15, downward beam DB comprises downward beam axis DA representing the direction of maximum beam intensity. Downward beam DB further comprises downward boundary top DBT and downward boundary bottom DBB, each representing directions equal to fifty percent of the maximum beam intensity. Downward boundary top DBT and downward boundary bottom DBB define the vertical beamspread of downward beam DB, which for the present embodiment, is $2A_1$ degrees. Downward beam axis DA bisects the vertical beamspread forming angle A_1 between downward

beam axis DA and downward boundary top DBT and angle A1 between downward beam axis DA and downward boundary bottom DBB. It is to be noted that at the FIG. 15 disposition of lighting device 50, downward boundary top DBT comprises a zero slope making it 5 directed parallel to the selected direction SD. Also downward boundary bottom DBB has a negative slope (i.e. it decreases in value with distance along the downward horizontal reference plane DH and away from downward optic DO). Thus, when lighting device 10 50 is rotated counterclockwise to angle DA1 relative to vertical tilt plane V2, as shown in FIG. 15, power control means 8 will energize downward beam means DM. At this position, downward boundary top DBT of downward beam DB is parallel to selected direction SD. Upon further counterclockwise rotation of lighting device 50 relative to tilt plane V2, power control means 8 will 15 continue to energize downward beam means DM. It can be seen that throughout a further counterclockwise rotation of lighting device 50 through angle 2A1 degrees, the slope of downward horizontal reference plane DH will be between the slope of downward boundary top DBT and downward boundary bottom DBB of downward beam DB. 20 Thus, throughout a further counterclockwise rotation of lighting device 50, it will continue to project light from downward beam means DM which includes light projected parallel to downward horizontal reference plane DH and parallel to selected direction SD.

Referring now to FIGS. 5, 12, 13, and 16, it can be seen that when lighting device 50 is rotated clockwise to angle UA1 about tilt plane V2, as shown in FIG. 16, switch axis SA of tilt switch 20 is as shown in FIG. 12. For this position of tilt switch 20, common terminal TC is connected to upward terminal T2 thus applying supply voltage VCC to NOR input terminal T4. Common terminal TC is not connected to downward terminal T1. Therefore, with resistor R1, NOR input terminal T3 is at ground potential. Looking at FIG. 13 for this situation, NOR gate 15 has NOR input terminal T4, connected to supply voltage VCC with NOR input terminal T3 connected to ground. This will cause NOR output terminal T5 to remain low and central LED lamp CL will not be energized. Since upward terminal T2 is connected to power supply VCC, upward LED lamp UL will be energized. Resistor R2 is of a relatively high value and therefore will not create excess current drain or prevent supply voltage VCC from illuminating upward LED lamp UL. With downward terminal T1 at ground potential, downward LED lamp DL will not be energized.

Looking back at FIG. 16, upward beam UB comprises upward beam axis UA representing the direction of maximum beam intensity. Upward beam UB further comprises upward boundary top UBT and upward boundary bottom UBB, each representing directions equal to fifty percent of the maximum beam intensity. Upward boundary top UBT and upward boundary bottom UBB define the

vertical beamspread of upward beam UB which, for the present embodiment, is $2A_1$ degrees. Upward beam axis UA bisects the vertical beamspread forming angle A_1 between upward beam axis UA and upward boundary top UBT, and angle A_1 between upward beam axis UA and upward boundary bottom UBB. It is to be noted that upward boundary top UBT comprises a positive slope (i.e. it increases in value with distance along upward horizontal reference plane UH and away from the upward optic UO). Also upward boundary bottom UBB has a zero slope making it parallel to the selected direction SD. Thus, when lighting device 50 is rotated clockwise to angle UA_1 relative to tilt plane V2, power control means 8 will energize upward beam means UM. At this position, upward boundary bottom UBB of the upward beam UB is parallel to selected direction SD. Upon further clockwise rotation of lighting device 50 relative to tilt plane V2, power control means 8 will continue to energize upward beam means UM. It can be seen that throughout a further clockwise rotation of lighting device 50 through angle $2A_1$ degrees, the zero slope of upward horizontal reference plane UH will be between the slope of upward boundary top UBT and upward boundary bottom UBB of upward beam UB. Thus, throughout a further clockwise rotation of lighting device 50, it will continue to project light from upward beam means UM which includes light projected parallel to upward

horizontal reference plane UH or equivalently along selected direction SD.

Referring back to FIG. 4, it can be seen that when all three beam means are illuminated, the vertical beamspread of the composite projected light beam is between upward boundary top UBT and downward boundary bottom DBB comprising a vertical beamspread of six times angle A1. The minimum intensity of the composite light beam will be fifty percent of the maximum intensity. Now referring to the entire function of lighting device 50, it can be seen that although only one beam means is energized at any point in time, lighting device 50 can be rotated counterclockwise up to three times angle A1 and clockwise up to three times angle A1 while continuously projecting a beam of light that includes selected horizontal direction SD.

During deployment, if the lighting device is maintained in the vertical position, the power control means energizes only the central beam means which is designed to project a light beam substantially centered about the horizontal plane. This horizontal light beam is desirable because it is visible to a distant observer on the horizontal plane. However, if the lighting device is tilted upward the power control means turns "off" the central beam means and energizes, in its place, the downward beam means. The downward beam means is designed to project a light beam downwardly diverging about the horizontal.

This downward light beam would normally be useless as it would be directed into the water, however, due to the fact that the lighting device is tilted upward, the downwardly directed light beam compensates for the upward tilt of the light to project the 5 desired horizontal light beam. If the lighting device is subsequently tilted downward, the power control means responds by turning "off" the downwardly directed beam means and energizes in its place the upwardly directed beam means. This upward beam means is designed to project a light beam upwardly diverging from the horizontal plane. This upwardly directed beam is normally 10 useless as it would be directed into the sky and miss a horizontal observer. However, due to the fact that the lighting device is tilted downward, the upward direction of the projected light beam compensates for the downward tilt of the light to 15 maintain a projected light beam which is horizontal and thus visible to a distant observer.

It would be possible to energize all of the beam means all of the time as a method of assuring the visibility of the ship or buoy regardless of the angle of roll or tilt of the lighting 20 device. This concept would avoid the need for a power control means to selectively energize one of the plurality of beam means in response to its light beam being directed along the horizontal. Unfortunately energizing all of the beam means all of the time would consume a large amount of electrical energy.

For some ships such as sailboats or for battery powered lighting devices, the need for extra power would be unacceptable. An unacceptable amount of electrical power would similarly be required if a single beam means with a very large angular vertical beamspread were employed. A single beam means having a very large angular beamspread in compliance with a specification minimum intensity, would also require an unacceptable amount of power. The current invention employs a plurality of beam means disposed such that if they were simultaneously energized, they would emit a plurality of light beams which would - due to their adjacent locations - combine to form a composite projected light beam of acceptable intensity throughout an acceptable vertical beamspread. In order to avoid an unacceptable drain of electrical power, some of the beam means are not energized. Specifically those beam means which at a particular angular disposition of the lighting device about the vertical reference plane do not reasonably add to the visibility of the lighting device in the selected direction, are turned "off" by the power control means.

In some embodiments of the current invention, it is possible for several beam means to be simultaneously energized. This is acceptable if at least some of the beam means are - at times - turned "off" or extinguished resulting in a reduction in the power consumed by the lighting device. The power saved by

extinguishing some of the beam means can, by itself, remain as a benefit of the current invention. Alternatively, the power saved can be used to increase the intensity of the horizontal light.

The intensity of the horizontal light can be increased by 5 increasing the intensity of a single selectively energized beam means by using a more powerful light source or by employing a group of beam means all projecting light substantially within the same vertical angular beamspread and all simultaneously energized by the power control means. Increasing the intensity of the horizontal light can substantially add to the visibility of the lighting device and can be a greater benefit than a reduction in power.

It is noteworthy to realize that additional beam means can be employed to possibly save additional power. For the current 15 lighting device, the term angular range represents the roll or vertical angular tilt that the lighting device is expected to experience. Once the angular range is established, the beam means used to form the lighting device can be designed. If a single beam means is employed to cover the entire angular range, 20 the design is classical prior art. If on the other hand a plurality of beam means, each of which lights a portion of the vertical angular range, is cooperatively employed with a power control means designed to selectively energize one or more - but not all - of the beam means in response to the angular tilt of

the lighting device, then the current invention is employed. Generally, when the current invention is employed, each of the beam means is required to project its beam of light into a portion of the vertical angular range. For example, if the 5 angular range is ten degrees and there are two beam means, then a first beam means would be designed to project a first light beam to fill the range of vertical beamspread extending from zero to five degrees and a second beam means would be designed to project a second light beam to fill the range of vertical beamspread extending from five to ten degrees.

In a second design, the vertical angular range could be filled by a larger number of beam means. For example if there were ten beam means, each of these would be designed to fill only one vertical degree of the ten degree vertical angular range. Thus the first beam means would only be designed to project its 15 light beam extending from zero to one degree. The second beam means would be designed to project its light beam extending from one to two degrees. The design would continue until the ten beam means, when energized would fill the entire ten degree range of 20 vertical angular beamspread. However, for some embodiments of the current invention, at least some of the beam means which were not disposed to project light parallel to the selected direction, would at times, not be energized so that power would be saved.

A review of the energy required for both prior art and the current invention would help identify the advantages of the current invention. If a classical prior art design with one beam means is employed to fill an angular range of ten degrees, it can 5 be considered as continuously requiring a normalized power of 1. The current invention employing two beam means, each with a five degree vertical beamspread would only require a normalized power of .5. This results from the fact that only one of the two beam means would be energized at any point in time. Finally, an 10 embodiment of the current invention employing ten beam means, each with a one degree vertical beamspread, would only require a normalized power of .1. This results from the fact that only one of the ten beam means would need to be energized at any moment in time. Nine of the ten beam means, specifically those not 15 disposed to direct light in the selected direction, could be extinguished at any time thereby requiring only 10 percent of the energy of prior art.

The preferred embodiment shows LED lamps as the light sources, however other electronic light sources such as 20 electroluminescent panels or LED elements, or even incandescent lamps can be employed. Electronic light sources are especially useful when the lighting device is rocking back and forth about a vertical reference plane. In this instance, in order to avoid a lagging effect whereby the selected beam means is energized on

time but - due to its slow response time - only lights after its projected light beam has moved past the horizontal direction, it is desirable that the light source illuminate rapidly upon receiving the appropriate "on" voltage from the power control means. Solid state electronic lamps respond almost instantaneously and are an excellent means of assuring that each light source commences emitting its projected light beam in the selected direction almost at the instant that the power control means energizes the lamp. For some dynamic applications, it would be difficult and expensive to provide a power control means which could correct for the slow response time characteristic of some incandescent lamps. Other dynamic applications could not employ an incandescent lamp.

The current invention can be successfully constructed by using a variety of components other than those identified herein.

The LED lamps disclosed have a lens top body or encapsulating refractor which concentrates the light emitted by the internal LED element. In the disclosed embodiment, each LED lamp projected its light into a lens which further concentrated the light in the vertical plane. LED elements can be used without the encapsulating refractor employed in the disclosed commercial T 1 3/4 lens top LED lamp. Also other lens shapes can be used. Additionally, electroluminescent strips can be employed as the light sources. Finally, incandescent lamps with

reflectors or refractors can be acceptable for some uses. Actually, many beam means which project a beam of light can function acceptably with the power control means of the current invention.

5 A similar situation exists for the power control means which was disclosed as a mercury tilt switch. In fact, many devices which respond to a tilting about the vertical can be successfully substituted for the mercury tilt switch. There are other 10 commercially available liquid tilt switches, tilt sensors or mechanical gravity switches which can be the most desirable power control means for the current invention depending upon the end purpose of the current invention.

The preferred embodiments of the current invention described a lighting device that maintained a horizontally directed light beam throughout an angular displacement of the lighting device about the vertical plane. This would be a frequent objective of the current invention. However, the invention is not limited to designs requiring a horizontally projected light beam. In fact the design can be easily modified to maintain a projected light 20 beam at any angle relative to the vertical. FIGS. 17 thru 24 to be hereinafter presented, describe lighting device 50A which comprises a selected direction angled downward about the horizontal.

FIGS. 17 thru 24 represent lighting device 50A, an alternate embodiment of the current invention, which employs two beam means in place of the three beam means employed in lighting device 50. Additionally, each of the two beam means each create their respective projected light beams without employing the separate optical lens employed in lighting device 50. Also in lighting device 50A, upward LED lamp ULA and downward LED lamp DLA each have an integral refracting lens molded around their LED elements as found in standard commercial LED lamps such as the T 1 3/4 package. For some uses, this type of lamp or other lamps of similar construction, can be used without a separate optic. Lighting device 50A additionally represents an embodiment which does not require the housing employed in lighting device 50. Components of lighting device 50A which are similar in function to components described for lighting device 50, are identified with the suffix A added to the basic identifying number used for lighting deice 50. Components not previously employed have a new identification number also with the suffix A. In general, lighting device 50A functions in a fashion similar to lighting device 50 previously described. However a brief description of the operation of lighting device 50A discloses some additional features not previously disclosed.

FIG. 17 is a side view of lighting device 50A in a vertical position.

FIG. 18 is an electrical schematic of the circuit employed to energize lighting device 50A. Lighting device 50A comprises circuit assembly 10A mounted on or supported by circuit board 16A. Circuit board 16A comprises upper hole 17A. Upper screw 5 11A passes through upper hole 17A and can be threaded into a ships bulkhead - not shown - to secure or fasten lighting device 50A to the bulkhead. As the ship rolls the angular position of lighting device 50A relative to vertical tilt plane V2A will change.

10 Circuit assembly 10A comprises upward LED lamp ULA, downward LED lamp DLA, battery 23A, resistor R4A and power control means 8A. Power control means 8A includes tilt switch 20A, resistor R5A and exclusive OR gate 21A. Circuit board 16A comprises circuit tracks 22A for electrically connecting the components of 15 circuit assembly 10A in accordance with the schematic of FIG. 18. A 6 volt battery 23A is soldered to circuit tracks 22A of circuit board 16A using positive power line P1A and negative power line P2A. Circuit board 16A thus acts as a means to electrically connect circuit assembly 10A and also as a support means for its 20 components. Circuit board 16A also supports the upward beam means UMA and downward beam means DMA in a fixed relationship such that each of their projected light beams is positioned to cooperate to achieve the objective of the current invention which

is to efficiently project light parallel to or in a selected direction SDA.

Lighting device 50A is constructed to project light in a selected direction SDA throughout a range of angular displacement of lighting device 50A relative to tilt plane V2A resulting from the rolling of the ship. The selected direction SDA for the lighting device 50A embodiment of the current invention, intersects vertical tilt plane V2A forming obtuse angle A4. The selected direction SDA of lighting device 50A has a negative slope or is directed below upward horizontal reference plane UHA. In lighting device 50A, upward beam means UMA projects an upward (relative to the other beam means) light beam UBA with a vertical angular beamspread of angle 2A3. Upward beam axis UAA bisects upward beam UBA forming angle A3 between upward beam axis UAA and upward boundary top UBTA. Upward beam axis UAA similarly forms angle A3 between upward beam axis UAA and upward boundary bottom UBBA. Upward beam axis UAA is coincident with selected direction SDA. Downward beam means DMA is similar to upward beam means UMA except that it is directed at an oblique angle relative to upward beam means UMA. Downward beam means DMA projects a downward beam DBA also with a vertical angular beamspread of angle 2A3. Downward beam axis DAA bisects downward beam DBA forming angle A3 between downward beam axis DAA and downward boundary top DBTA. Downward beam axis DAA similarly forms angle A3 between downward

beam axis DAA and downward boundary bottom DBBA. Upward boundary bottom UBBA of upward beam UBA overlaps downward boundary top DBTA of downward beam DBA to form overlap zone ZA. Overlap zone ZA can be a desirable feature to avoid dark zones between projected beams which can result from manufacturing tolerances relating to the vertical beamspread, the actual positions of the plurality of beam means, variations within the power control means or time lags between the energizing and illuminating of a beam means. Downward beam axis DAA forms angle A5 with upward beam axis UAA. Angle A5 is slightly less than angle 2A3 with the difference related to the magnitude of the overlap zone ZA.

Lighting device 50A is constructed with a consistency and symmetry of beamwidths. This facilitates the construction and description. The current invention can also be constructed with each beam means having unbalanced vertical beamspreads about its beam axis and with different beamspreads for each of the plurality of projected light beams. Also the selected direction SDA is shown as coincident with the upward beam axis UBA. This is also a parameter that can be changed within the scope of the current invention. Contingent upon factors including the intensity required to be maintained along the selected direction and the vertical intensity profile of each projected beam pattern, the location of the selected direction within a particular projected beam for a particular angular disposition of

the lighting device about tilt plane V2A can be varied. As long as the selected direction SDA falls between the top boundary and the bottom boundary of the projected light beam, some light will be projected along the selected direction. The intensity of that 5 projected light must be adequate to comply with the particular specification if the overall design is to be acceptable. For the current embodiment we are considering the intensity of the projected light along the selected direction as adequate if the selected direction is within the boundaries of any of the light 10 beams which lighting device 50A can emit. If both beam means are illuminated, the projected light beams combine to form a composite light beam diverging above and below the selected direction SDA. Of course the current embodiment of the current invention employs a power control means 8A which selectively energizes only one of the beam means. The power control means 8A 15 selectively energizes the beam means which will - when energized - project light along or parallel to the selected direction.

FIG. 19 is a side view of lighting device 50A similar to FIG. 17 except in FIG. 19 only upward beam means UMA is energized. 20

FIG. 20 is a side view of tilt switch 20A from FIG. 19.

Referring to FIGS. 17, 18, 19 and 20, when lighting device 50A is in the vertical position as shown in FIG. 17 the metal body 19A of tilt switch 20A is disposed such that switch axis SAA

of tilt switch 20A is coincident with tilt plane V2A. In this position of tilt switch 20A, power supply voltage VCCA is not applied to downward terminal T1A or upward terminal T2A.

Actually, for lighting device 50A, upward terminal T2A of tilt switch 20A is not employed. Also exclusive OR input terminal T3A of exclusive OR gate 21A, is continuously connected to supply voltage VCCA. Resistor R5A is of a relatively high value such that it brings exclusive OR input terminal T4A to ground when

supply voltage VCCA is not applied to exclusive OR input terminal T4A but does not draw enough current to prevent supply voltage VCCA from energizing LED lamp DLA when it is applied to downward terminal T1A. Exclusive OR output terminal T5A will be high when only one of the exclusive OR gate 21A input terminals T3A and T4A is high. Therefore for the FIG. 19 disposition of lighting

device 50A output terminal T5A of exclusive OR gate 21A, is high and upward LED lamp ULA is energized. Since downward terminal T1A is not connected to supply voltage VCCA, downward LED lamp DLA is not energized. Resistor R4A is in series with upward LED lamp ULA and downward LED lamp DLA to assure that they draw the appropriate current for their type of lamp.

Referring to FIGS. 21 and 22 where FIG. 21 is a side view of lighting device 50A rotated clockwise about tilt plane V2A to clockwise angle DA3A and FIG. 22 is a side view of tilt switch

20A from FIG. 21. For this embodiment clockwise angle DA3A is equal to angle A3.

Referring to FIGS. 17, 18, 21 and 22, with tilt switch 20A rotated clockwise to angle DA3A, supply voltage VCCA is connected 5 to upward terminal T2A and not connected to downward terminal T1A. Since upward terminal T2A is not connected to other current components, the circuit assembly 10A responds as described for FIG. 19 and only upward beam means UMA is energized. It should be noted that due to the rotation of lighting device 50A in FIG. 10 21, the selected direction SDA substantially aligns with upper boundary top UBTA of upper beam means UMA.

FIG. 23 is a side view of lighting device 50A rotated counterclockwise about tilt plane V2A to counterclockwise angle UA3A and FIG. 24 is a side view of tilt switch 20A from FIG. 23. For this embodiment counterclockwise angle UA3A is equal to angle 15 A3.

Referring to FIGS. 17, 18, 23 and 24, with tilt switch 20A rotated counterclockwise to angle UA3A, supply voltage VCCA is connected to downward terminal T1A and not connected to upward 20 terminal T2A. Since upward terminal T1A is connected to exclusive OR input terminal T4A, exclusive OR gate 21A with both input terminals high does not energize exclusive OR output terminal T5A or upward LED lamp ULA. However, downward terminal T1A is connected to downward LED lamp DLA, thereby energizing and

illuminating downward LED lamp DLA. Resistor R4A limits the current so that downward LED lamp DLA does not draw too much current. Downward beam means DMA thus emits downward beam DBA with selected direction SDA within downward beam DBA and adjacent to downward boundary top DBTA. A further counterclockwise rotation of lighting device 50A of approximately 2A3 degrees will not alter the current flow in circuit assembly 10A and downward beam means DMA will remain energized. Also throughout most, but not necessarily all, of this additional counterclockwise rotation selected direction SDA will fall between downward boundary top DBTA and downward boundary bottom DBBA of downward beam DBA. Thus lighting device 50A will project a light beam which includes light directed along the selected direction SDA throughout a vertical range of movement of slightly less than four times angle A3.

FIG. 25 is a perspective view of a type of commercially available incandescent lamp 24 and reflector 25 which can substitute for the upward means UMA and the downward means DMA of FIG. 23.

Having now fully set forth the preferred embodiments and certain modifications of the concept underlying the present invention, various other embodiments as well as certain variations and modifications of the embodiment herein shown and

Docket No. 98175-PA
Inventor: McDermott

described will obviously occur to those skilled in the art upon becoming familiar with said underlying concept.

It is to be understood, therefore, that within the scope of the appended claims, the invention may be practiced otherwise than as specifically set forth herein.
5

SEARCHED SERIALIZED INDEXED