MATH 60604 Modélisation statistique § 5c - Formulation du modèle

Léo Belzile

HEC Montréal Département de sciences de la décision

Régression linéaire pour les données vengeance

- Commençons par ajuster un modèle de régression ordinaire, qui nous servira de point de départ pour la suite.
- Ce modèle néglige la possible corrélation intra-personne et fait comme si les observations étaient indépendantes.
 - Le désir de vengeance d'une personne à un temps donné est fort possiblement corrélé avec celui des autres temps car, justement, il s'agit de la même personne.
 - Si c'est le cas, le postulat d'indépendance n'est pas vérifié; il s'ensuit que l'inférence n'est pas valide.
- Le modèle linéaire est

vengeance =
$$\beta_0 + \beta_1$$
sexe + β_2 age + β_3 vc + β_4 wom + β_5 t + ε ,

où les termes d'erreur ϵ sont supposés indépendants.

Modéliser la progression chronologique

- Il y a deux façons naturelles de modéliser la variable temps:
 - soit on suppose un effet linéaire entre t et vengeance (variable continue).
 - Soit on traite t comme variable catégorielle.
- Nous allons utiliser proc mixed pour nous familiariser avec sa syntaxe.

Code SAS pour ajuster un modèle linéaire

```
proc mixed data=modstat.vengeance method=reml;
model vengeance = sexe age vc wom t / solution;
run;
```

Sortie du modèle linéaire avec proc mixed

Informations sur le modèle				
Table	INFSTAT.VENGEANCE			
Variable dépendante	vengeance			
Structure de covariance	Diagonal			
Méthode d'estimation	REML			
Méthode de variance résiduelle	Profil			
Méthode SE des effets fixes	Basé(e) sur le modèle			
Méthode des degrés de liberté	Résidu			

Dimensions				
Paramètres de covariance	1			
Colonnes dans X	6			
Colonnes dans Z	0			
Sujets	1			
Max. obs. par sujet	400			

Valeur estimée du paramètre de covariance				
Param. de cov.	Estimation			
Residual	0.3791			

Tests d'ajustement			
-2 log-vraisemblance restreinte	776.7		
AIC (préférer les petites valeurs)	778.7		
AICC (préférer les petites valeurs)	778.7		
BIC (préférer les petites valeurs)	782.6		

La sortie de proc mixed est plus compliquée que celle deproc glm.

Estimés des coefficients pour la moyenne

Solution pour effets fixes								
Effet	Estimation	Erreur type	DDL	Valeur du test t	Pr > t			
Intercept	-0.1689	0.2249	394	-0.75	0.4532			
sexe	0.1357	0.06748	394	2.01	0.0450			
age	0.04586	0.004507	394	10.18	<.0001			
vc	0.5225	0.01951	394	26.78	<.0001			
wom	0.3989	0.02474	394	16.12	<.0001			
t	-0.5675	0.02177	394	-26.07	<.0001			

Les effets de toutes les variables semblent significatifs, quoique tout juste pour sexe.

Interprétation des paramètres du modèle linéaire

- Plus la personne a eu initialement des comportements de type vc ou wom, plus le désir de vengeance est élevé.
- L'effet du temps est particulièrement d'intérêt ici. On voit qu'il est négatif. À chaque vague successive, la valeur de vengeance diminue de 0.568, en moyenne, lorsque les autres variables demeurent inchangées. C'est ce qu'on avait vu dans les graphes.
- Mais peut-on se fier aux conclusions des tests d'hypothèse? La réponse est non. L'inférence (tests et intervalles de confiances) est faussée lorsqu'on néglige la dépendance entre les observations.

Notations

- Supposons qu'on dispose de *m* groupes d'observations tels que:
 - I. If y a n_i observations dans le groupe i (i = 1, ..., m).
 - 2. Deux observations d'un même groupe sont possiblement corrélées.
 - Deux observations provenant de deux groupes distincts sont indépendantes.
- Les groupes peuvent être formés de plusieurs manières:
 - Plusieurs mesures peuvent être prises sur un même sujet (mesures répétées) et chaque individu forme alors un groupe.
 - Un groupe peut aussi être formé d'individus d'une même école, d'une même unité ou département au travail ou d'une même famille.
- Comme par le passé, nous allons supposer que nous avons une variable réponse et un ensemble de p variables explicatives.
- Pour simplifier la notation, on dénote par X_i l'ensemble des variables aléatoires pour le groupe i.

Notations

- On utilise l'indice i pour indiquer le groupe et j pour indiquer la je observation au sein du groupe i.
 - Si le groupe est une entreprise, i dénote l'entreprise, et j dénote le sujet.
 - Pour des données longitudinales, i représente le sujet et j la mesure à un temps donné.
- On note $\mathbf{Y}_i = (Y_{i1}, ..., Y_{in_i})$ l'ensemble des observations de la variable d'intérêt pour le groupe i.
- Pour les variables explicatives, on a maintenant besoin de trois indices:
 - i pour le groupe
 - j pour le numéro d'observation au sein du groupe
 - k pour la variable explicative.
- On note donc $\mathbf{X}_{ij} = (1, \mathsf{X}_{ij1}, \dots, \mathsf{X}_{ijp})$ l'ensemble des p variables explicatives pour l'observation j du groupe i.

Modèle linéaire avec corrélation sur les erreurs

Le modèle de régression linéaire peut s'écrire

$$Y_{ij} = \beta_0 + \beta_1 X_{ij1} + \dots + \beta_p X_{ijp} + \varepsilon_{ij}$$

pour $i=1,\ldots,m$ et $j=1,\ldots,n_i$, où ε_{ij} est le terme d'erreur de l'observation j du groupe i.

• Comme avant, on suppose que $\mathsf{E}\left(\varepsilon_{ij}\mid \mathbf{X}_{ij}\right)=0$ et donc

$$\mathsf{E}\left(Y_{ij}\mid \mathbf{X}_{i}\right) = \beta_{0} + \beta_{1}\mathsf{X}_{ij1} + \cdots + \beta_{p}\mathsf{X}_{ijp}.$$

Structure de covariance/corrélation

- Puisqu'on assume les variables explicatives X fixes dans le modèle, parler de structure de corrélation des erreurs ε est équivalent à parler de la structure de corrélation des observations Y.
- Nous allons permettre la dépendance entre les observations d'un même groupe.
- On suppose les groupes indépendants, donc Cov $(\varepsilon_{ij}, \varepsilon_{i'j'}) = 0$ si $i \neq i'$.
- On modélise la corrélation intra-groupe en assumant que la matrice de covariance des **Y** du groupe *i* est

$$Cov(\mathbf{Y}_i \mid \mathbf{X}_i) = \mathbf{\Sigma}_i$$

ou, de manière équivalente,

$$Cov(\varepsilon_i \mid \mathbf{X}_i) = \mathbf{\Sigma}_i$$

où $\varepsilon_i = (\varepsilon_{i1}, \dots, \varepsilon_{in_i})$ est le vecteur des erreurs du groupe i.

Covariance par blocs pour données longitudinales

- Supposons sans perte de généralité que les données sont ordonnées par groupe.
- On suppose que les observations d'un groupe *i* sont corrélées, mais que les observations de groupes différents sont indépendantes.
- Alors, la matrice de covariance de toutes les observations est diagonale par blocs:

$$\mathsf{Cov}\left(\boldsymbol{Y}\right) = \begin{pmatrix} \boldsymbol{\Sigma}_1 & \boldsymbol{0} & \cdots & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\Sigma}_2 & \cdots & \boldsymbol{0} \\ \vdots & \ddots & \ddots & \vdots \\ \boldsymbol{0} & \boldsymbol{0} & \cdots & \boldsymbol{\Sigma}_m \end{pmatrix}.$$

- Dans notre exemple vengeance, on a $n = 80 \times 5 = 400$ observations.
- La matrice de covariance intra-groupe, Σ_i , est 5×5 parce que notre échantillon équilibré $(n_1 = \cdots = n_m = 5)$. Le bloc Σ_i est identique peu importe le groupe.
- La covariance inter-groupe est nulle (0) parce qu'on suppose que les données d'individus différents sont indépendantes les unes des autres.

Structure de covariance/corrélation

- En général, la structure de covariance dépendra de quelques paramètres qui seront estimés au même titre que les paramètres β.
- La structure de covariance sera habituellement spécifiée par l'analyste. Il n'est pas rare qu'il faille essayer plus d'une structure de covariance pour déterminer celle qui convient le mieux aux données.
- Nous reviendrons sur le problème du choix de la structure de covariance plus tard, mais nous présentons dès maintenant une structure de covariance, parmi les plus simples.