Pohyb kyvadla byl měřen pomocí automatického měřiče vzdálenosti a doby kmitů byly poté vyhodnoceny pomocí počítače. Jelikož časový krok při měření činil 0,05 s, byla tato hodnota také zvolena jako chyba měřidla.

	1	2	3	průměr	σ_{stat}	$\sigma_{ ext{m}reve{ ext{e}}reve{ ext{r}}}$	σ_{abs}
$5T_0[s]$	9,40	9,40	9,40	9,40	0,00	0,05	0,05
$T_0[s]$	1,88	1,88	1,88	1,88	0,00	0,01	0,01

Tabulka 1: Naměřené hodnoty T_0

	1	2	3	průměr	σ_{stat}	$\sigma_{ ext{m}\check{ ext{e}}\check{ ext{r}}}$	σ_{abs}
$ \begin{array}{c} \hline 6T_1[\mathbf{s}] \\ T_1[\mathbf{s}] \end{array} $	11,20	11,25	11,20	11,22	0,017	0,05	0,05
	1,87	1,88	1,87	1,87	0,003	0,01	0,01
$ \begin{array}{c} $	10,80	10,70	10,75	10,75	0,029	0,05	0,06
	1,80	1,78	1,79	1,79	0,005	0,01	0,01
$5T_3[s]$ $T_3[s]$	$9,20 \\ 1,84$	$9,20 \\ 1,84$	$9,20 \\ 1,84$	9,20 1,84	$0,000 \\ 0,000$	$0,05 \\ 0,01$	$0,05 \\ 0,01$
$T_s/2[s]$ $T_s[s]$	42,10	41,25	41,10	41,48	0,311	0,05	0,32
	84.20	82.50	82.20	82.97	0.623	0.10	0.63

Tabulka 2: Naměřené hodnoty pro slabší pružinu

	1	2	3	průměr	σ_{stat}	$\sigma_{ m m\check{e}\check{r}}$	σ_{abs}
$6T_1[s]$	11,20	11,25	11,20	11,22	0,017	0,05	0,05
$T_1[s]$	1,87	1,88	1,87	1,87	0,003	0,01	0,01
$6T_2[s]$	10,40	10,35	10,35	10,37	0,017	0,05	0,05
$T_2[s]$	1,73	1,73	1,73	1,73	0,003	0,01	0,01
$5T_3[s]$	7,20	$7,\!25$	$7,\!25$	7,23	0,017	0,05	0,05
$T_3[s]$	1,80	1,81	1,81	1,81	0,004	0,01	0,01
$T_s/2[s]$	22,10	21,50	21,95	21,85	0,180	0,05	0,19
$T_s[s]$	44.20	43.00	43.90	43.70	0.361	0.10	0.37

Tabulka 3: Naměřené hodnoty pro silnější pružinu

Následující tabulka obsahuje měření kmitů kyvadel se shodnou a protilehlou fází pro několik vzdáleností pružiny od závěsu kyvadel. Vzdálenost l byla měřena pásovým měřidlem, jedná se o vzdálenost od dolní hrany závěsu kyvadla po vrchní hranu úchytu pružiny.

l[mm]		1	2	průměr	σ_{stat}	$\sigma_{ ext{m}\check{ ext{e}}\check{ ext{r}}}$	σ_{abs}
266	$6T_1[s]$	11,20	11,20	11,20	0,000	0,05	0,05
	$T_1[s]$	1,87	1,87	1,87	0,000	0,01	0,01
	$6T_2[s]$	$10,\!25$	10,20	10,23	0,025	0,05	0,06
	$T_2[s]$	1,71	1,70	1,70	0,004	0,01	0,01
247	$6T_1[s]$	11,20	11,20	11,20	0,000	0,05	0,05
	$T_1[\mathrm{s}]$	1,87	1,87	1,87	0,000	0,01	0,01
	$6T_2[s]$	10,30	$10,\!55$	10,43	$0,\!125$	0,05	$0,\!13$
	$T_2[s]$	1,72	1,76	1,74	0,021	0,01	0,02
218	$6T_1[s]$	11,20	11,25	11,23	$0,\!025$	0,05	0,06
	$T_1[\mathrm{s}]$	1,87	1,88	1,87	0,004	0,01	0,01
	$6T_2[s]$	$10,\!50$	10,50	10,50	0,000	0,05	0,05
	$T_2[s]$	1,75	1,75	1,75	0,000	0,01	0,01
195	$6T_1[s]$	11,20	11,20	11,20	0,000	0,05	0,05
	$T_1[\mathrm{s}]$	1,87	1,87	1,87	0,000	0,01	0,01
	$6T_2[s]$	$10,\!65$	$10,\!55$	10,60	0,050	0,05	0,07
	$T_2[s]$	1,78	1,76	1,77	0,008	0,01	0,01
173	$6T_1[s]$	11,25	11,30	11,28	0,025	0,05	0,06
	$T_1[s]$	1,88	1,88	1,88	0,004	0,01	0,01
	$6T_2[s]$	10,65	10,70	10,68	$0,\!025$	0,05	0,06
	$T_2[s]$	1,78	1,78	1,78	0,004	0,01	0,01

Tabulka 4: Závislost dob kmitů na poloze pružiny

Úkol 1

Z tabulky 1 vyčteme

$$T_0 = (1,88 \pm 0,01) \text{ s.}$$

$\acute{\mathbf{U}}\mathbf{kol}\ \mathbf{2}$

Z tabulky 2 zjistíme hodnoty pro slabší pružinu

$$T_{sl_1} = (1, 87 \pm 0, 01) \text{ s},$$

 $T_{sl_2} = (1, 79 \pm 0, 01) \text{ s},$
 $T_{sl_3} = (1, 84 \pm 0, 01) \text{ s},$
 $T_{sl_4} = (41, 48 \pm 0, 32) \text{ s}$

a z tabulky 3 pak

$$T_{si_1} = (1,87 \pm 0,01) \text{ s},$$

 $T_{si_2} = (1,73 \pm 0,01) \text{ s},$
 $T_{si_3} = (1,81 \pm 0,01) \text{ s},$
 $T_{si_4} = (21,85 \pm 0,19) \text{ s}.$

Úkol 3

Dosazením hodnot z tabulky 2 a 3 do (??) dostaneme

$$\omega_{sl_1} = (3,361 \pm 0,016) \text{ s}^{-1},$$

$$\omega_{sl_2} = (3,507 \pm 0,019) \text{ s}^{-1},$$

$$\omega_{sl_3} = (3,415 \pm 0,019) \text{ s}^{-1},$$

$$\omega_{sl_4} = (0,076 \pm 0,001) \text{ s}^{-1},$$

$$\omega_{si_1} = (3,361 \pm 0,016) \text{ s}^{-1},$$

$$\omega_{si_2} = (3,637 \pm 0,019) \text{ s}^{-1},$$

$$\omega_{si_3} = (3,475 \pm 0,025) \text{ s}^{-1},$$

$$\omega_{si_4} = (0,144 \pm 0,001) \text{ s}^{-1}.$$

Použitím vztahu (??) a (??) získáme

$$\omega_{sl_3} = (3, 434 \pm 0, 012) \text{ s}^{-1},$$

$$\omega_{sl_4} = (0, 073 \pm 0, 012) \text{ s}^{-1},$$

$$\omega_{si_3} = (3, 499 \pm 0, 012) \text{ s}^{-1},$$

$$\omega_{si_4} = (0, 138 \pm 0, 012) \text{ s}^{-1}.$$

Úkol 4

Podle vztahu (??) dostaneme stupeň vazby pro slabší pružinu

$$\kappa_{sl} = (0,042 \pm 0,007)$$

a silnější pružinu

$$\kappa_{si} = (0,079 \pm 0,007).$$

$\acute{\mathrm{U}}\mathrm{kol}\ 5$

Obrázek 1: Graf závislosti stupně vazby na vzdálenosti \boldsymbol{l}