Név:	Neptun:
------	---------

Logika és számításelmélet zárthelyi

Mintazh 2015-16-2

- 1. Tekintsük az alábbi függvényeket! $f(n) = 3 \cdot 2^n + 5 \cdot n^5$, $g(n) = 3^n + 4 \cdot n^4$, $h(n) = 2 \cdot n^2 \cdot 3^n$. Az $f(n) = \Omega(g(n))$, $g(n) = \Omega(f(n))$, g(n) = O(h(n)), h(n) = O(g(n)) állítások közül melyek igazak? Röviden indokoljuk is a választ. (8 pont)
- 2. Az $M = \langle \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_i, q_n\}, \{0, 1\}, \{0, 1, \#, \sqcup\}, \delta, q_0, q_i, q_n \rangle$ determinisztikus Turinggép állapotátmenetei az alábbi átmenetdiagrammal vannak megadva. M egy $f : \{0, 1\}^* \to \{0, 1, \#\}^*$ szófüggvényt számít ki (tehát az $u \in \{0, 1\}^*$ input esetén a Turing-gép megállásakor $f(u) \in \{0, 1, \#\}^*$ olvasható a szalagon).

- (a) Adjuk meg a 010 szóra a kezdőkonfigurációból a megállási konfigurációba a konfigurációátmenetek sorozatát! (4 pont)
- (b) Adjuk meg azt az f szófüggyényt, melyet \mathcal{M} kiszámol! A választ röviden indokoljuk is! (6 pont)
- (c) Adjunk meg egy olyan $f: \mathbb{N} \to \mathbb{R}^+$ függvényt, melyre az M Turing-gép időigénye $\Theta(f(n))$. (1 pont)
- 3. Adjunk meg egy Turing-gépet, ami eldönti az $L = \{tutt \mid t \in \{c, d\}, u \in \{c, d\}^*\}$ nyelvet! (5 pont)
- 4. Készítsünk egy- vagy többszalagos, determinisztikus Turing-gépet, mely eldönti az $L=\{u\in\{a,b\}^*\,|\,u\text{-ban kétszer annyi }a\text{ van, mint }b\}$ nyelvet! A gép működéséhez fűzzünk magyarázatot! (10 pont)

Adjunk meg egy olyan $f: \mathbb{N} \to \mathbb{R}_+$ függvényt, melyre a kapott Turing-gép időigénye $\Theta(f(n))$. (1 pont)

- 5. Bizonyítsuk be, hogy eldönthetetlen, hogy egy Turing-gép felismer-e legalább 2 szót! (Feltehető, hogy az input szavak a $\Sigma = \{0,1\}$ ábécé felettiek. A feladatot másképpen úgy is fogalmazhatjuk, hogy bizonyítsuk be, hogy az $L = \{\langle M \rangle \, \big| \, |L(M)| \geq 2\}$ nyelv nem rekurzív, ahol $\langle M \rangle$ Turing-gép szokásos, gyakorlaton és előadáson ismertetett kódolása.) (9 pont)
- 6. Legyen RGI = $\{\langle G, H \rangle | G$ -nek van H-val izomorf részgráfja $\}$. G és H irányítatlan gráfok, $\langle G.H \rangle$ a gráfpáros kellően tömör, dekódolható kódolása. Bizonyítsuk be, hogy IHK \leq_p RGI. (6 pont)