Corto #3 Cálculo Multivariable

_____ Carnet: 2019 0 43 2

(20 min)

90/100

Resuelva los siguientes problemas:

Nombre: David Corzo

11			
169	1. (50 pts.) Determine el área	del triángulo entre los puntos P	= (0, -2, 0), Q =
+ 496	(4,1,-2) y $R=(5,3,1)$.		
25	To =	= 1/2 x w	
690	TI = PO - //	(-2), $(-2-0)$ = $(4, 3, -2)(-2)$, $(1-0)$ = $(6, 6, 1)$	
	(4-0), (1-((-7), $(-7-0)$ = $(4.3-5)$	2)
‡ 1.4	$\vec{w} = PR = ((5-0), (3-0))$	(-1) (1-0) = (6, 6, 1)	
• 14	(() () ()	(50), (1-6), (5, 5, 1,)
· 14 5 6 4 4			
496	, , ,	F	16 N 1 2 16 5 17 5
	7 3	-2 = [](3·1)-(-2·5) - }	r = [(4.1) - (-2.5)] + r = [(4.3) - (3.5)]
= 185	5 5	1 1	2 45 1
$= \sqrt{(13)^2 + (-13)^2}$	$(14)^{7} + (5)^{2}$	$= \hat{c} \left[3 + 10 \right] - \hat{f} \left[4 \right]$	+10]+ [20-15]
= [110 11	1.1 1.00	/ - 120	1
= 16,9 -(4)	$6 + 25$ $\therefore \frac{1}{2} \sqrt{690}$	- = 132 - 148 + 5R	
$= \sqrt{690}$	—— "ц	O = (33, -14, 5)	

2. (50 pts.) Encuentre el volumen del paralelelípipedo determinado por los vectores $a = \langle 1, 5, -2 \rangle$, $b = \langle 3, -1, 0 \rangle$, y $c = \langle 5, 9, -4 \rangle$.

$$P_{\Box} = \left| c \cdot (a \times b) \right|$$

$$\frac{\frac{2}{54}}{\frac{64}{54}} \frac{\frac{1}{64}}{\frac{1}{1246}} = \hat{c} \left[(5.0) - (-2.1) \right] - \hat{c} \left[(1.0) - (-2.3) \right] + \hat{k} \left$$