

Blue Ridge SAF Chapter Meeting 2025

Remote Sensing in AI: Predicting yield of Pinus taeda (L.) plantations with LiDAR and Satellite Data

Gunjan Barua Ph.D. Candidate Forest Resources & Environmental Conservation

Research Questions

- Can LiDAR alone or multispectral satellite data alone be used for predicting the yield of *Pinus taeda* (L.) plantations?
- If machine learning and/or neural network models are used, which methods provide the best results?
- Which variables are important for predicting the yield?
- Do planting density/thinning conditions play any role in the accuracy of the prediction results?

Approach 1
LiDAR-based yield
prediction

Approach 2

Satellite RS-yield prediction

Remote Sensing

Random Forest

Support Vector Regression

Multiple Linear Regression

Yield Modeling

Individual Tree Crown Metrics

Three-dimensional characteristics of individual tree crowns obtained

Distance-dependent Competition Indices

A quantitative measure used to assess the competitive interactions among trees in a forest stand

Important for understanding how tree growth, survival, and yield are influenced by neighboring trees.

Individual tree crown delineation and variable preparation

List of Variables (n =44)

Lidar generated ITC predictors:

- Height
- Crown Diameter
- Crown Area
- Height to Live Crown (HTLC)
- Single-tree LAI
- Crown Volume (top 10%, 20%, 30%, 40%, 50%)
- Crown Surface Area (top 10%, 20%, 30%, 40%, 50%)
- Understory present (1 or 0)
- Understory Proportion (Canopy Returns/Understory Returns)
- Number of neighboring trees

Lidar generated CI predictors:

- CI from the crown area (convex-hull)
- CI from the crown area (alpha-hull)
- Cl using tree height
- Cl using maximum crown diameter
- Clusing LAI
- Cl using height to the live crown
- Clusing understory presence
- Clusing understory proportion
- CI using crown volume (top 10%, 20%, 30%, 40%, 50%)
- Clusing crown surface area (top 10%, 20%, 30%, 40%, 50%)
- Number of neighbors
- Silva competition index value

Random Forest

Support Vector Machine

Validation Metrics

nRMSE MAE RMSE MSE R²

Multiple Linear Regression failed to meet the homoscedasticity assumption

Studentized Breusch-Pagan Test indicates heteroscedasticity (BP = 465.8, df = 7, p < 0.001)

Variable Importance (%IncMSE)

Tend to track the overall shape decently

	Random Forest Model (RF _{full})	Support Vector Machine Model (SVM _{full})	Reduced RF Model (Top 7 Variables)	Reduced SVM Model (Top 7 Variables)	
MAE (m³ tree ⁻¹)	0.08	0.07	0.09	0.07	
MSE (m³ tree ⁻¹)	0.01	0.01	0.01	0.01	
RMSE (m³ tree ⁻¹)	0.11	0.1 0.12		0.1	
nRMSE (%)	10.86	9.59	11.88	9.14	
Accuracy (%)	89.14	90.41	88.12	90.86	
R ²	0.48	0.59	0.37	0.55	
Predicted values (m ³)	898.48	873.33	892.98	880.42	
Field values (m ³)	884.99	886.66	886.66	888.46	
Difference (%)	1.53	-1.5	0.71	-0.9	

- Slightly significant differences in mean absolute error (MAE) across models $(F_{3.64} = 2.95, p = 0.04)$
- Planting density caused significant differences in accuracy across the models ($F_{9.\,11830}$ = 12.06, p < 0.001)
- Overall, both RF and SVM show promise for predicting yield over a 4-year period
- Individual tree-level yields when aggregated at the stand-level, provide a good estimate of timber volume compared to field estimates
- Manuscript submitted to Remote Sensing of Environment

Remote Sensing

- 258 plots
- 3 states: Georgia, Florida and Texas
- Data collected within December 2017 – February 2018
- Contains typical field information (mean height, quadratic mean diameter, number of trees, total volume)

- Sentinel 1
 - C-band SAR data
 - 2 bands: VV and VH
 - January 2016 December 2017 (24 Months)

VV_VH_Ratio	VV/VH
VH_VV_Ratio	VH/VV
VV_VH_Difference	VV - VH
VH_VV_Difference	VH -VV
Normalized_VVVH	(VV - VH)/(VV + VH)
Sum_VVVH	VV + VH
Product_VVVH	VV * VH

DPDD (Dual-polarization difference descriptor)	$(VV + VH) / \sqrt{2}$
Gamma_nought_VH	VH/cos(angle * $(\pi)/180$)
Gamma_nought_VV	$VV/cos(angle * (\pi)/180)$
RVI (Radar Vegetation Index)	(4 * VH) / (VV + VH)
VDDPI (Volume density dual-polarization index)	(VV * VH) / VV

- Sentinel 2
 - Level-1C (Top of Atmosphere)
 - Multispectral bands
 - 13 bands: (B1 to B12)
 - January 2016 December 2017 (24 Months)

NDVI	Normalized Difference Vegetation Index	NIR - Red
		$\overline{NIR + Red}$
EVI	Enhanced Vegetation Index	2.5 ∗ ———————————————————————————————————
		$2.5 * \overline{NIR + 6 \times Red - 7.5 \times Blue + 1}$
SAVI	Soil-adjusted Vegetation Index	NIR-Red
		$\frac{NIR + Red + 0.5}{NIR + Red + 0.5} \times 1 + 0.5$
MSAVI2	Modified Soil-adjusted Vegetation Index 2	$0.5 \times (2 \times NIR + 1)$
		$-\sqrt{(2\times NIR+1)^2-8\times (NIR-Red)})$
OSAVI	Optimized Soil-Adjusted Vegetation Index	NIR - Red
		$\overline{NIR + Red + 0.16}$

NDWI_McFeeters	Normalized Difference Water Index (McFeeters version)	$\frac{Green-NIR}{Green+NIR}$
MSI	Moisture Stress Index	$\frac{SWIR1}{NIR}$
NDRE	Normalized Difference Red Edge Index	$\frac{NIR - RedEdge1}{NIR + RedEdge1}$
SIPI3	Structure Insensitive Pigment Index	$\frac{NIR - Blue}{NIR - Red}$
SR	Simple Ratio Index	$\frac{NIR}{Red}$
DVI	Difference Vegetation Index	NIR-Red
REIP	Red Edge Inflection Point	$700 + 40$ $\frac{Red + RedEdge3}{2} - RedEdge1$ $\times (\frac{2}{RedEdge2 - RedEdge1})$
LCI	Leaf Chlorophyll Index	$\frac{NIR - RedEdge1}{NIR + Red}$

NDII	Normalized Difference Infrared Index	NIR – SWIR1
		$\overline{NIR + SWIR1}$
NDLI	Normalized Difference Lignin Index	$\log(SWIR1) - \log(SWIR2)$
		$\overline{\log(SWIR1) + \log(SWIR2)}$
NMDI	Normalized Multi-band Drought Index	NIR - (SWIR1 - SWIR2)
		$\overline{NIR + (SWIR1 - SWIR2)}$
GNDVI	Green Normalized Difference Vegetation Index	NIR — Green
		$\overline{NIR + Green}$
CVI	Chlorophyll vegetation index	$9 \times \frac{RedEdge1}{Green^2}$
		Green ²
GLI	Green Leaf Index	2Green — Red — Blue
		$\overline{2Green + Red + Blue}$
TC_Brightness	Tasselled Cap – Brightness	$0.3037 \times Blue + 0.2793 \times Green$
		$+ 0.4743 \times Red + 0.5585 \times NIR$
		$+ 0.5082 \times Cirrus + 0.1863 \times SWIR2$
TC_GVI	Tasselled Cap Green Vegetation Index	$-0.283 \times Green - 0.660 \times Red + 0.577$
		\times RedEdge2 + 0.388 \times Water Vapor

		1 st		2 nd		3 rd	
Metrics	SVR	RF	GBM	XGBoost	LightGBM	LSTM	GRU
MAE (m³)	3.02	2.70	2.97	2.94	2.99	3.18	3.30
MSE (m³)	27.13	23.20	28.23	25.92	26.67	26.35	26.79
RMSE (m³)	5.21	4.82	5.31	5.09	5.16	5.13	5.17
nRMSE (%)	21.62	19.99	22.05	21.13	21.43	21.31	21.48
R^2	0.40	0.49	0.38	0.43	0.41	0.42	0.41

Gini importance (Mean decrease in impurity)

- RF model best predicts the plot-level yield of Loblolly Pine using the timeseries bands and indices, followed by XGBoost and LSTM
- The prediction errors are typically lower at lower planting densities
- In the RF model, the planting density significantly affects the accuracy ($F_{4,64}$ = 16.64, p < 0.001)
- Shortwave infrared band 1 (SWIR 1 band 11) and water vapor band (band 9)
 were deemed the most important bands in the RF model. Further
 investigation is required
- Further investigation required to assess the impact of thinning status on the yield prediction

Thank you! I am open to your questions and comments