Communicating Analytical Results and Interpreting your ML Models with SAS Viya – 5 Tips and Tricks that will make your life as data scientist easier

Gerhard Svolba Analytic Solutions Architect SAS Austria

Credits for Input to: Martin Schütz, Tamara Fischer

Twitter: https://github.com/gerhard1050
https://gerhardsv

We (data scientists) want to communicate our results

- Acceptance of our results
- Better understanding better usage in the business process
- Less "last minute" misunderstandings

THE SAS DECISIONING PROCESS

ANALYTICS — IT — BUSINESS

5 Tips (featuring SAS Visual Analytics, SAS Model Studio and SAS Coding)

- 1. Perform interactive cutoff analysis
- 2. Quantify the importance of explanatory variables
- 3. Turn on the model interpretability charts
- 4. Use a decision tree to "explain"
- 5. Display the (hidden) regression coefficient

Tip #1:

Perform interactive cutoff analysis to illustrate the consequences on the Good/Bad classification

Illustrate the outcome (deliverable) of a predictive model

- A predictive model
- creates predictions.
- (In case of a binary classification task it outputs the probability the that event takes place.)
- You want to show this!
- And illustrate the consequences of different cutoff values for the business decision.

Select "Derive Predicted" in a predictive model created with SAS Visual Analytics

Name your output variables

You receive new variables in the data

Also allows you to interactively "play" with the cutoff point

- Important to illustrate the outcome of a predictive model
- What are the consequences of a certain cutoff point on
 - Number of customers, transactions flagged with YES
 - Expected false positives, false negatives, ...

Tip #2:

Quantify the importance of explanatory variables in a predictive model with a business case

Variable importance chart in a gradient boosting model

What happens, if we do not have variable "AFFLUENCE" available?

- Will other variables substitute the missing content?
- Will the model quality go down?
- Create a copy of your model
- 2. Remove the variable of interest
- 3. Compare the old and the new model

Gradient boosting - TargetBuy 1

∨ Response

⋒ TargetBuy

∨ Predictors

□ DemClusterGroup

⋒ DemReg

M Gender

Age

PromSpend

PromTime

+ Add

Compare the old and the new model

• Lift drops from 3.47 to 3.07

 What does that mean in €?

Calculating a business case

- Assume we have 2 Mio customers
- A campaign offer is sent to the top 5 % (100,000)
- A responding customer contributes a profit of € 35
- Assuming a baseline (autonomous) response of 12 %
 - A lift of 3.47 \rightarrow 41.64 %
 - A lift of 3.07 → 36.84 %
- Not having variable AFFLUENCE costs us 4.8 % response
 - 100,000 * 4.8 % = 4800 missed responders * €35 = € 168,000

Quantify the effect of data quality on your business results

- Part III contains simulation case studies for data availability, data quantity, data correctness and data completeness
- Illustrated in € (\$) values based on a business case study
- http://support.sas.com/svolba
- https://github.com/gerhard1050/Data-Quality-for-Data-Science-Using-SAS

How much does it cost to use a simpler (better explainable) model for my predictions

Tip #3:

Turn on the model interpretability charts in SAS Model Studio

✓ Model Interpretability
 ✓ Global Interpretability
 ✓ Variable importance
 ✓ PD plots
 Maximum number of variables:

Partial Dependency Plot (PD)

Individual Conditional Expectation (ICE)

Local Interpretable Model-Agnostic Explanation (LIME)

SHAP (SHapley Additive exPlanations)

(using CAS-Action "linearExplainer")

- based on game theory's Shapley values:
 - method for assigning payouts to players (depending on their contribution to the total payout)
 - Shapley values explain how to fairly distribute the payout among the players

Tip #4:

Use a decision tree to "explain" why customers received a high/low predicted probability

General Idea

Decision Tree creates segments with high/low predicted probability

You can interpret the segments

Young affluent ladies → PredictedProb = 93 %

Young non-affluent men→
PredictedProb = 20 %

Tip #5:

Display the (hidden) regression coefficient of the reference category

Survival analysis performed for employee headcount data

- Observe Careers per Employee
 - Different length
 - "Left company" or "censored"

How long will Gerhard still stay in our company?

Given certain risk factors, what is the expected survival in 6 months and the probability to resign within the next 6 months. TechKnowH... EM SURVFCST **EM SURVEVENT** T FCST EmpNo Department Gender 1003 TECH SUPPORT YES 128 0.240 0.000 134 1010 TECH SUPPORT YES 109 0.240 0.011 115 SALES ENGINEER YES 90 0.108 0.313 M TECH SUPPORT M YES 83 0.386 0.13389 TECH SUPPORT YES 82 0.1770.219 88 ADMINSTRATION 0.471 NO 74 0.066 80 M 1045 ADMINSTRATION Μ NO 70 0.494 0.053 76 1054 TECH SUPPORT YES 59 0.316 0.102 65 1055 SALES ENGINEER YES 0.313 0.103

Modeling the survival with the PHREG Procedure

```
proc phreg data=employees;
CLASS department gender TechKnowHow / PARAM=reference REF=first;
MODEL Duration*Status(1) = department gender TechKnowHow / SELECTION=stepwise;
run;
```

Class Level Information					
Class	Value	Design Variables			
Department	ADMINSTRATION	0	0	0	0
	MARKETING	1	0	0	0
	SALES_ENGINEER	0	1	0	0
	SALES_REP	0	0	1	0
	TECH_SUPPORT	0	0	0	1
Gender	F	0			
	М	1			
TechKnowHow	NO	0			
	YES	1			

Parameter		DF	Parameter Estimate
Department	MARKETING	1	-0.50141
Department	SALES_ENGINEER	1	1.47708
Department	SALES_REP	1	1.28348
Department	TECH_SUPPORT	1	1.00944
TechKnowHow	YES	1	-1.26948

ADMINISTRATION = ?

ADMINISTRATION = 0

(the reference category)

Comparing the EFFECT and REFERENCE Coding

How can we calculate the the (hidden) value of the reference category in effect coding

Analysis of Maximum Likelihood Estimates								
			Parameter	Standard			Hazard	
Parameter		DF	Estimate	Error	Chi-Square	Pr > ChiSq	Ratio	
Department	MARKETING	1	-1.15513	0.47794	5.8414	0.0157	0.606	
Department	SALES_ENGINEER	1	0.82336	0 52244	2.4838	0.1150	4.380	
Department	SALES_REP	1	0.62976	0.25224	4.6436	0.0312	3.609	
Department	TECH_SUPPORT	1	0.35572	0.29940	1.4117	0.2348	2.744	
TechKnowHow	YES	1	-0.63474	0.27370	5.3781	0.0204	0.281	
-[(-1.155)+0.823+0.630+0.356] = -0.654								
[(-1.200) (0.020 (0.000)]								

How can we automate this calculation?

https://github.com/gerhard1050/Applying-Data-Science-Using-SAS

Macro Parameters

The following parameters can be specified with the macro.

ParmEst

The name of the data set that contains the ParameterEstimates, created with the ODS OUTPUT statement. Default = ParameterEstimates.

ClassLevels

The name of the data set that contains the ClassLevelInfo, created with the ODS OUTPUT statement. Default = ClassLevelInfo.

OutputDS

The name of the data set that shall contain the output data set. Default = ParmEst XT.

The output format of ParmEst and ClassLevels varies between different regression procedures in SAS. Please contact the author (Email: sastools.by.gerhard@gmx.net) in case your output file does not match the requirements of the macro.

Copyright © SAS Institute Inc. All rights reserve

Bonus Tip:

Use sparklines and bars to illustrate properties of customer segments and clusters

Cluster Profiling

- Create a crosstab in SAS Visual Analytics
- Add barcharts to illustrate the values

Clust erID ▼	Frequency	Frequency Percent	Age	Female	Affluence	PromSpend	PromTime	Response%
5	19,463	19.42%	63	0.55	11	6071	6	21.60%
4	29,902	29.84%	42	0.56	8	2475	6	28.52%
3	9,459	9.44%	42	0.67	15	2588	6	66.48%
2	24,192	24.14%	63	0.50	6	5798	6	7.71%
1	4,727	4.72%	67	0.51	8	7525	21	14.13%

Use a Parallel Coordinate plot to illustrate cluster features

Parallel Coordinates of Selected Variables

More affluent customers buy more often

Non-Buyers are older and less affluent

Conclusion

- Communicating model results has many dimensions
- SAS Viya offers you a broad range of tools and methods to illustrate your findings
- Machine learning models that are understood are likely to have a higher business impact

Communicating Analytical Results and Interpreting your ML Models with SAS Viya – 5 Tips and Tricks that will make your life as data scientist easier

Gerhard Svolba Analytic Solutions Architect SAS Austria

Credits for Input to: Martin Schütz, Tamara Fischer

Twitter: https://github.com/gerhard1050
https://gerhardsv

