

# SRM Institute of Science and Technology College of Engineering and Technology

**SET A** 

## **DEPARTMENT OF ECE**

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2022-2023 (EVEN)

Test: CLAT- 3

Course Code & Title: 18ECC206J - VLSI Design

Year & Sem: III & VI

Date: 02.05.2023

Time: 8.00 to 9.40 AM

Max. Marks: 50

## **Course Articulation Matrix:**

| 18ECC206J - VLSI Design |                                                                                                                  |   |                     | Program Learning Outcomes (POs) |   |   |   |   |   |   |    |     |    |   |   |   |
|-------------------------|------------------------------------------------------------------------------------------------------------------|---|---------------------|---------------------------------|---|---|---|---|---|---|----|-----|----|---|---|---|
|                         |                                                                                                                  |   | Graduate Attributes |                                 |   |   |   |   |   |   |    | PSO |    |   |   |   |
| S. No.                  | Course Outcomes (COs)                                                                                            | 1 | 2                   | 3                               | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11  | 12 | 1 | 2 | 3 |
| 1                       | Design and implement digital circuits using Verilog HDL to simulate and verify the designs.                      | - | 3                   | 3                               | - | 3 | - | - | - | - | -  | -   | -  | 2 | - | - |
| 2                       | Design general VLSI system components, adder cells and multipliers to address the design of data path subsystem. | - | 3                   | 3                               | - | 3 | - | - | - | - | -  | -   | -  | 2 | - | - |
| 3                       | Examine the characteristics of MOS transistors                                                                   | 3 | 2                   | -                               | - | - | - | - | - | - | -  | -   | -  | 2 | - | - |
| 4                       | Analyze CMOS inverter and other complex logic gates designed using different logic styles                        | - | 2                   | 2                               | - | - | - | - | - | - | -  | -   | -  | 2 | - | - |
| 5                       | Explain how the transistors are built, and understand the physical implementation of circuits.                   | - | 1                   | 1                               | - | - | - | - | - | - | -  | -   | -  | 2 | - | - |

|      | Answer any 5 Five Questions                                                                                |       |    |     |     |  |  |  |
|------|------------------------------------------------------------------------------------------------------------|-------|----|-----|-----|--|--|--|
| Q.No | Question                                                                                                   | Marks | BL | СО  | РО  |  |  |  |
| 1a   | If nMOS-transistor conducts and has large voltage between source and drain, then it is said to be inregion |       |    | CO4 | PO2 |  |  |  |
|      | b) saturation                                                                                              |       |    |     |     |  |  |  |
| 1b   | i) Implement the Boolean function $\bar{F} = (a.b.c) + d$ using complementary CMOS Logic                   | 4     | 4  | CO4 | PO3 |  |  |  |
|      | ii) Design the Boolean function $\bar{F} = \overline{(d+a.(b+c))}$ using dynamic CMOS logic                | 5     | 4  | CO4 | PO3 |  |  |  |



|          | precharge: high                                                                      |   |   |       |     |
|----------|--------------------------------------------------------------------------------------|---|---|-------|-----|
|          | evaluate: falls (maybe)                                                              |   |   |       |     |
|          |                                                                                      |   |   |       |     |
|          |                                                                                      |   |   |       |     |
|          |                                                                                      |   |   |       |     |
|          |                                                                                      |   |   |       |     |
|          | nfets buffer might                                                                   |   |   |       |     |
|          | be needed                                                                            |   |   |       |     |
|          | in any case                                                                          |   |   |       |     |
|          | CLK -6 - CLK -6 for high fan-out                                                     |   |   |       |     |
|          | '\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                               |   |   |       |     |
|          | A Programment A                                                                      |   |   |       |     |
|          | evaluate rises (maybe) V                                                             |   |   |       |     |
|          | When CLK is low, dynamic node is pre-charged high and buffer inverter                |   |   |       |     |
|          | output is low.                                                                       |   |   |       |     |
|          | NFETs in the next logic block will be off.                                           |   |   |       |     |
|          | When CLK goes high, dynamic node is conditionally discharged and the                 |   |   |       |     |
|          | buffer output will conditionally go high.                                            |   |   |       |     |
|          | Since discharge can only happen once, buffer output can only make one low-           |   |   |       |     |
|          | to-high transition.                                                                  |   |   |       |     |
|          | • When domino gates are cascaded, as each gate "evaluates", if its output rises,     |   |   |       |     |
|          | it will trigger the evaluation of the next stage, and so on like a line of           |   |   |       |     |
|          | dominos falling.                                                                     |   |   |       |     |
|          | • Like dominos, once the internal node in a gate "falls", it stays "fallen" until it |   |   |       |     |
|          | is "picked up" by the pre-charge phase of the next cycle.                            |   |   |       |     |
|          | Thus many gates may evaluate in one eval cycle.                                      |   |   |       |     |
|          |                                                                                      |   |   |       |     |
|          | _ / ' '                                                                              |   |   |       |     |
|          |                                                                                      |   |   |       |     |
|          |                                                                                      |   |   |       |     |
|          | CLK — L                                                                              |   |   |       |     |
|          |                                                                                      |   |   |       |     |
|          |                                                                                      |   |   |       |     |
|          | nfetø                                                                                |   |   |       |     |
|          | . W-1-PET "1" 1 1 11 1 1                                                             |   |   |       |     |
|          | Weak pFET "keeper" keeps dynamic node pulled high during evaluate phase              |   |   |       |     |
|          | if it's not being pulled down through nfets => gate is static in both                |   |   |       |     |
|          | clock phases.                                                                        |   |   |       |     |
|          | "latching" pFET acts like keeper above unless dynamic node gets pulled               |   |   |       |     |
|          | down during evaluate phase. When buffer output goes high it switches                 |   |   |       |     |
|          | keeper off saving static power. Good for leakage current problems                    |   |   |       |     |
|          | Note that you can put an even number of static gates after the inverter and          |   |   |       |     |
|          | before the next domino gate.                                                         |   |   |       |     |
|          | Disadvantages:                                                                       |   |   |       |     |
|          | "charge sharing" between nodes in the pulldown network and the dynamic               |   |   |       |     |
|          | node can unintentionally reduce the voltage of the dynamic node enough to            |   |   |       |     |
|          | switch output buffer.                                                                |   |   |       |     |
|          | The addition of the output inverter makes domino gates non-inverting. One            |   |   |       |     |
|          | can often design around this limitation, but some circuits cannot be                 |   |   |       |     |
|          | implemented solely using domino logic unless both polarities (true and               |   |   |       |     |
|          | complement) of the inputs are available. If both polarities of inputs are            |   |   |       |     |
|          | available then we can generate both polarities of internal signals with two          |   |   |       |     |
|          | domino gates so subsequent stages will have both polarities of their inputs          |   |   |       |     |
|          | available too.                                                                       |   |   |       |     |
| 4a       | Design rules does not specify                                                        | 1 | 1 | CO5   | PO2 |
|          | d) colours                                                                           |   | 1 |       | 102 |
| <u> </u> | · ·                                                                                  |   | _ | G G - | DOI |
| 4b       | i) Draw 2 -input NOR gate using CMOS layout                                          | 4 | 3 | CO5   | PO2 |
|          | Von                                                                                  |   |   |       |     |
|          |                                                                                      |   |   |       |     |
|          | "A — ¶ M3 M4 ■ n-well                                                                |   |   |       |     |
|          | VB —4 €M4                                                                            |   |   |       |     |
|          | Vout                                                                                 |   |   |       |     |
|          |                                                                                      |   |   |       |     |
|          | VA — M1 VB — M2 GND                                                                  |   |   |       |     |
|          |                                                                                      |   |   |       |     |
|          | V <sub>A</sub> V <sub>B</sub>                                                        | ~ | 4 | 007   | DO2 |
|          | ii) Implement the boolean expression using stick diagram                             | 5 | 4 | CO5   | PO2 |
|          |                                                                                      |   |   |       |     |

|    | $\overline{\Gamma} = \overline{(\cdot, +1)}$                                                                                                |   |   |     |     |
|----|---------------------------------------------------------------------------------------------------------------------------------------------|---|---|-----|-----|
|    | $\bar{F} = \overline{(a+b)c}$                                                                                                               |   |   |     |     |
|    | GND B A C                                                                                                                                   |   |   |     |     |
| 5a | In nMOS fabrication, etching is done usinga. plasma                                                                                         | 1 | 1 | CO5 | PO2 |
| 5b | Illustrate n-well CMOS fabrication process                                                                                                  | 9 | 2 | CO5 | PO2 |
|    | Fabrication Process (Theory) - 5 Marks                                                                                                      |   |   |     |     |
|    | Fabrication Process ( Diagram) - 4Marks                                                                                                     |   |   |     |     |
|    |                                                                                                                                             |   |   |     |     |
|    | p substrate                                                                                                                                 |   |   |     |     |
|    |                                                                                                                                             |   |   |     |     |
|    | NVDIANCE CENTRAL STATE SION SION SION SION SION SION SION SION                                                                              |   |   |     |     |
|    | p substrate                                                                                                                                 |   |   |     |     |
|    | SiO,                                                                                                                                        |   |   |     |     |
|    | n well                                                                                                                                      |   |   |     |     |
|    |                                                                                                                                             |   |   |     |     |
|    | Polysilicon Trin gate oxide                                                                                                                 |   |   |     |     |
|    | p auberrate n well                                                                                                                          |   |   |     |     |
|    | n+ n                                                                                                    |   |   |     |     |
|    | p+ n+ p+ n+ Trick field oxide  p substrate  n weit                                                                                          |   |   |     |     |
| 6a | Silicon oxide is patterned on a substrate using: b) Photolithography                                                                        | 1 | 1 | CO5 | PO2 |
| 6b | Discuss how enhancement in CMOS technology can be achieved using                                                                            | 9 | 3 | CO5 | PO2 |
|    | Multiple threshold voltage and high k dielectric                                                                                            |   |   |     |     |
|    | <ul> <li>CMOS Process Enhancements:</li> <li>For real time Analog, Digital or RF CMOS integrated circuits along with</li> </ul>             |   |   |     |     |
|    | transistors, other elements such as interconnects, resistors, capacitors are to                                                             |   |   |     |     |
|    | <ul><li>be integrated on chip.</li><li>In order to achieve this, enhancements in CMOS process technology is</li></ul>                       |   |   |     |     |
|    | required.                                                                                                                                   |   |   |     |     |
|    | The main goals of adding CMOS enhancements are  • To provide on chip capacitors for analog circuits.                                        |   |   |     |     |
|    | <ul> <li>To provide on chip resistors.</li> </ul>                                                                                           |   |   |     |     |
|    | <ul> <li>To provide routing of interconnects</li> <li>Multi-threshold CMOS (MTCMOS) is a variation of CMOS chip technology which</li> </ul> |   |   |     |     |
|    | has transistors with multiple threshold voltages ( $V_{\text{th}}$ ) in order to optimize delay or                                          |   |   |     |     |
|    | <ul> <li>Low V<sub>th</sub> devices switch faster, and are therefore useful on critical delay paths</li> </ul>                              |   |   |     |     |
|    | to minimize clock periods.                                                                                                                  |   |   |     |     |

- The penalty is that low V<sub>th</sub> devices have substantially higher static leakage power.
- High V<sub>th</sub> devices are used on non-critical paths to reduce static leakage power without incurring a delay penalty. Typical high V<sub>th</sub> devices reduce static leakage by 10 times compared with low V<sub>th</sub> devices.



- One method of creating devices with multiple threshold voltages is to apply different bias voltages (V<sub>b</sub>) to the base or bulk terminal of the transistors.
- Other methods involve adjusting the gate oxide thickness, gate oxide dielectric constant (material type), or dopant concentration in the channel region beneath the gate oxide.
- The most common implementation of MTCMOS for reducing power makes use of sleep transistors.
- Logic is supplied by a virtual power rail.
- Low V<sub>th</sub> devices are used in the logic where fast switching speed is important.
- $\bullet$  High  $V_{th}$  devices connecting the power rails and virtual power rails are turned on in active mode, off in sleep mode.
- High V<sub>th</sub> devices are used as sleep transistors to reduce static leakage power.



#### High k-dielectric

- The dielectric constant k, is a parameter defining ability of material to store charge.
- In Si technology the reference value of k of silicon di-oxide, SiO<sub>2</sub>, which is 3.9.
- Dielectrics featuring k > 3.9 are referred to as "high"-k dielectric while dielectric featuring k<3.9 are defined as "low"-k dielectrics.</li>
- In cutting edge silicon nano-electronics both high- and low-k dielectrics are needed to implement fully functional very high-density integrated circuit, although, for drastically different reasons.

### Need for high-k dielectric:

- Silicon di-oxide (SiO<sub>2</sub>) has been used as a gate oxide material for decades.
- As transistors have decreased in size, the thickness of the silicon dioxide gate dielectric has steadily decreased to increase the gate capacitance and thereby drive current, raising device performance.
- As the thickness scales below 2 nm, leakage currents due to tunneling increase drastically, leading to high power consumption and reduced device reliability.
- Replacing the silicon dioxide gate dielectric with a high-k material allows increased gate capacitance without the associated leakage effects.
- In digital circuits, insulating dielectrics separate the conducting parts (wire interconnects and transistors) from one another.
- As components have scaled and transistors are closer together, the insulating dielectrics have thinned to the point where charge build-up and crosstalk adversely affect the performance of the device.
- Replacing the silicon di-oxide with a low-k dielectric of the same thickness reduces parasitic capacitance, enabling faster switching speeds and lower heat dissipation.

| 7a | In stick diagram, which color is used for n-diffusion? d) yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 | 1 | CO5 | PO2 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|-----|-----|
| 7b |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 | 2 | CO4 | PO2 |
| 7b | i) Analyze DC characteristics of CMOS Inverter $V_{DD}$ $V_{in}$ $V_{out}$ As the source of the nMOS transistor is grounded, $V_{gsn} = V_{in}$ and $V_{dsn} = V_{out}$ As the source of the pMOS transistor is tied to $V_{DD}$ , $V_{gsp} = V_{in} - V_{DD}$ and $V_{dsp} = V_{out} - V_{DD}$ $V_{dsn} = -I_{dsp} = V_{dsp}$ $V_{in} = V_{in} + V_{in}$ $V_{in} = V_{in} + V_{in} + V_{in}$ $V_{in} = V_{in} + V_{in} + V_{in} + V_{in}$ $V_{in} = V_{in} + $ | 5 | 2 | CO4 | PO2 |
|    | B $V_{tn} \le V_{tn} \cap V_{tn}$ linear saturated $V_{out} = V_{DD}/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |     |     |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |     |     |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |     |     |
|    | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |     |     |
|    | ii) Discuss the interconnect layers involved in CMOS process The interconnect layers involved in process are:  (1) Metal interconnect (2) Poly-silicon interconnect (3) Local interconnect (4) The second layer of metal interconnect (Metal 2) is required for digital Integrated circuits.  • The connection between first metal layer (Metal 1) and second metal layer (Metal 2) is established with the help of via.  • For high speed chips third metal layer (Metal 3) is also required.  Poly-silicon Interconnect  • Poly-silicon Interconnect layers are used in ICs because of its high melting points as compare to Aluminium (Al).  • But the major problem with poly-silicon interconnect is it has high sheet resistance because of this for long distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 | 2 | CO5 | PO2 |
|    | <ul> <li>interconnects this provides significant delay.         Local Interconnect     </li> <li>If silicide is used as a interconnect layer for connecting different cells—then it is called as local interconnect.</li> <li>The important advantage of local interconnect is it allows direct—connection between poly-silicon and diffusion regions.</li> <li>Due to this metal contacts are eliminated which reduces the chip area.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |   |     |     |