Couplage leçons-développements

Emeline LUIRARD

Année 2017-2018

Couplage Algèbre et Géométrie

101 : Groupe opérant sur un ensemble. Exemples et applications.

- Nombre d'automorphismes diagonalisables sur un corps fini
- Isométries du tétraèdre et du cube
- Loi de la réciprocité quadratique par les formes quadratiques

102 : Groupe des nombres complexes de module 1. Sous-groupes des racines de l'unité. Applications.

- Irréductibilité des polynômes cyclotomiques
- Théorème de Kronecker

103 : Exemples de sous-groupes distingués et de groupes quotients. Applications.

- Simplicité de SO(3)
- Table de caractères et sous-groupes distingués
- Isométries du tétraèdre et du cube

104: Groupes finis. Exemples et applications.

- Théorème de Burnside
- Automorphisme de Σ_n
- Théorème de structure des groupes abéliens finis

105 : Groupe des permutations d'un ensemble fini. Applications.

- Automorphisme de Σ_n
- Isométries du tétraèdre et du cube
- Théorème de Kronecker

106 : Groupe linéaire d'un espace vectoriel de dimension finie E, sous-groupes de GL(E). Applications.

- Théorème de Burnside
- Nombre d'automorphismes diagonalisables sur un corps fini

107: Représentations et caractères d'un groupe fini sur un $\mathbb{C}\text{-espace}$ vectoriel. Exemples.

- Table de caractères de Σ_4 avec isométrie du cube
- Sous-groupes distingués et tables de caractères
- Théorème de structure de groupes abéliens finis

108 : Exemples de parties génératrices d'un groupe. Applications.

- Automorphismes de Σ_n
- Simplicité de S0(3)
- Isométries du tétraèdre et du cube

110 : Structure et dualité des groupes abéliens finis. Applications.

- Théorème de structure des groupes abéliens finis
- Dual et bidual d'un groupe

120 : Anneaux $\mathbb{Z}/n\mathbb{Z}$. Applications.

Attention, la leçon s'appelle "anneaux".

- Cardinal de $GL_2(\mathbb{Z}/n\mathbb{Z})$
- Théorème de Dirichlet faible

121: Nombres premiers. Applications.

- Théorème de Dirichlet faible
- Théorème des deux carrés pour les nombres premiers.

122: Anneaux principaux. Applications.

- Théorème des deux carrés
- $\mathbb{C}[X,Y]/(XY-1)$ est principal

123 : Corps finis. Applications.

- Etude des polynômes irréductibles sur \mathbb{F}_q
- Loi de la réciprocité quadratique par les formes quadratiques

125 : Extensions de corps. Exemples et applications.

- Irréductibilité des polynômes cyclotomiques
- Etude des polynômes irréductibles sur \mathbb{F}_q

126: Exemples d'équations diophantiennes.

- Théorème des deux carrés
- Equations de Fermat pour n=2 et n=4

141 : Polynômes irréductibles à une indéterminée. Corps de rupture. Exemples et applications.

- Irréductibilité des polynômes cyclotomiques
- Etude des polynômes irréductibles sur \mathbb{F}_q

142: PGCD et PPCM, algorithmes de calcul. Applications.

- Théorème de structure des groupes abéliens finis
- Equations de Fermat pour n=2 et n=4

144 : Racines d'un polynôme. Fonctions symétriques élémentaires. Exemples et applications.

- Théorème de Kronecker
- Etude des polynômes irréductibles sur \mathbb{F}_q

150 : Exemples d'actions de groupes sur les espaces de matrices.

Attention : ne pas mettre le nombre d'automorphismes diagonalisables sur un corps fini car ce n'est pas une action SUR les espaces de matrices.

- Réduction des endomorphismes normaux (c'est une action de O_n)
- Invariants de similitude

151: Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications

- Invariants de similitude
- Théorème des extrema liés

152 : Déterminant. Exemples et applications.

- Calcul du déterminant circulant et application à la suite des polygones des milieux
- Différentielle du déterminant et application au wronskien

153 : Polynômes d'endomorphisme en dimension finie. Réduction d'un endomorphisme en dimension finie. Applications.

- Décomposition de Dunford
- Invariants de similitude
- Réduction des endomorphismes normaux

154 : Sous-espaces stables par un endomorphisme ou une famille d'endomorphismes d'un espace vectoriel de dimension finie. Applications.

- Invariants de similitude
- Réduction des endomorphismes normaux

155 : Endomorphismes diagonalisables en dimension finie.

- Nombre d'automorphismes diagonalisables sur un corps fini
- Décomposition de Dunford

156: Exponentielle de matrices. Applications.

- Homéomorphisme entre H_n et H_n^{++}
- Surjectivité de l'exponentielle matricielle

157: Endomorphismes trigonalisables. Endomorphismes nilpotents.

- Théorème de Burnside
- Décomposition de Dunford

158 : Matrices symétriques réelles, matrices hermitiennes.

- Homéomorphisme entre H_n et H_n^{++}
- Points extrémaux de la boule unité

159 : Formes linéaires et dualité en dimension finie. Exemples et applications.

- Dual de $M_n(\mathbb{K})$
- Invariants de similitude

160 : Endomorphismes remarquables d'un espace vectoriel euclidien (de dimension finie).

Attention: ne pas mettre Dunford (cf rapport agreg)

- Réduction des endomorphismes normaux
- Homéomorphisme entre H_n et H_n^{++}
- Simplicité de SO(3)

161 : Isométries d'un espace affine euclidien de dimension finie. Applications en dimensions 2 et 3.

- Isométries du tétraèdre et du cube
- Simplicité de SO(3)

162 : Systèmes d'équations linéaires ; opérations élémentaires, aspects algorithmiques et conséquences théoriques.

- Méthode du gradient à pas optimal
- Convergence des méthodes itératives

170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.

- Loi de la réciprocité quadratique par les formes quadratiques
- Ellipsoïde de John-Loewner

171 : Formes quadratiques réelles. Coniques. Exemples et applications.

- Ellipsoïde de John Loewner
- Composantes connexes des formes quadratiques réelles

181 : Barycentres dans un espace affine réel de dimension finie, convexité. Applications.

- Points extrémaux de la boule unité
- Suite des polygones des milieux avec sa généralisation

182 : Applications des nombres complexes à la géométrie.

Impasse

183 : Utilisation des groupes en géométrie.

Semi-impasse Attention : la simplicité de SO(3) ne rentre pas.

- Isométries du tétraèdre et du cube
- SO(3) et les quaternions

190 : Méthodes combinatoires, problèmes de dénombrement.

- Nombre de Bell
- Nombre d'automorphismes diagonalisables sur un corps fini
- Cardinal de $GL_2(\mathbb{Z}/n\mathbb{Z})$

Couplage Analyse et Probabilités

201: Espaces de fonctions; exemples et applications.

- Théorème d'Ascoli
- Théorème de Weierstrass
- Théorème de Riesz-Fischer

202 : Exemples de parties denses et applications.

- Théorème de Weierstrass
- Densité des polynômes orthogonaux

203 : Utilisation de la notion de compacité

- Ellispoïde de John-Loewner
- Théorème d'Ascoli

204 : Connexité. Exemples et applications.

- Surjectivité de l'exponentielle matricielle
- Composantes connexes des formes quadratiques réelles
- Simplicité de SO(3)

205: Espaces complets. Exemples et applications.

- Théorème de Riesz-Fischer
- Theorème de Cauchy-Lipschitz global

	207:	Prolongement	de	fonctions.	Exemples	et a	application	ns
--	------	--------------	----	------------	----------	------	-------------	----

- Théorème de Fourier-Plancherel
- Prolongement de la fonction Γ d'Euler

208 : Espaces vectoriels normés, applications linéaires continues. Exemples.

- Théorème de Riesz-Fischer
- Théorème de Fourier-Plancherel

209 : Approximation d'une fonction par des polynômes et des polynômes trigonométriques. Exemples et applications.

- Théorème de Weierstrass
- Densité des polynômes orthogonaux

213 : Espaces de Hilbert. Bases hilbertiennes. Exemples et applications.

- Densité des polynômes orthogonaux
- Théorème de projection sur un convexe fermé

214 : Théorème d'inversion locale, théorème des fonctions implicites. Exemples et applications en analyse et en géométrie.

- Surjectivité de l'exponentielle matricielle
- Théorème des extrema liés

215 : Applications différentiables définies sur un ouvert de \mathbb{R}^n . Exemples et applications.

- Différentielle du déterminant et application au wronskien
- Théorème des extrema liés

218 : Applications des formules de Taylor.

- Méthode de Newton
- Théorème Central Limite

219 : Extremums : existence, caractérisation, recherche. Exemples et applications.

- Ellipsoïde de John-Loewner
- Théorème des extrema liés

220 : Équations différentielles X' = f(t, X). Exemples d'étude des solutions en dimension 1 et 2.

- Théorème de Cauchy Lischitz global
- Equation de Hill-Mathieu

221 : Équations différentielles linéaires.	Systèmes d'équations différentielles
linéaires. Exemples et applications.	

- Théorème de Cauchy Lipschitz global
- Equation de Hill-Mathieu

222 : Exemples d'équations aux dérivées partielles linéaires.

Impasse

- Equation de la chaleur par les séries de Fourier
- 223 : Suites numériques. Convergence, valeurs d'adhérence. Exemples et applications
 - Méthode de Newton
 - Théorème de Glivenko-Cantelli
- 224 : Exemples de développements asymptotiques de suites et de fonctions.
 - Méthode de Newton
 - Séries de Hardy
 - Méthode de Laplace
- 226 : Suites vectorielles et réelles définies par une relation de récurrence $U_{n+1} = f(U_n)$. Exemples. Applications à la résolution approchée d'équations.
 - Convergence des méthodes itératives
 - Méthode de Newton
 - Algorithme du gradient à pas optimal
- 228 : Continuité et dérivabilité des fonctions réelles d'une variable réelle. Exemples et applications.
 - Théorème de Weierstrass
 - Intégrale de Fresnel
 - Ellipsoïde de John-Loewner
 - Simplicité de SO(3)
- 229: Fonctions monotones. Fonctions convexes. Exemples et applications.
 - Théorème de Glivenko Cantelli
 - Processus de Galton Watson
 - Ellipsoïde de John-Loewner
- 230 : Séries de nombres réels ou complexes. Comportement des restes ou des sommes partielles des séries numériques. Exemples.
 - Séries de Hardy
 - Nombre de Bell

233 : Méthodes itératives en analyse numérique matricielle.

- Méthode du gradient à pas optimal
- Convergence des méthodes itératives

234: Espaces L^p , $1 \le p \le +\infty$.

- Théorème de Riesz-Fischer
- Densité des polynômes orthogonaux
- Théorème de Fourier-Plancherel

235 : Problèmes d'interversion de limites et d'intégrales.

- Intégrale de Fresnel
- Equation de la chaleur
- Prolongement de la fonction Γ d'Euler

236 : Illustrer par des exemples quelques méthodes de calcul d'intégrales de fonctions d'une ou plusieurs variables.

- Intégrale de Fresnel
- Calcul de quelques fonctions caractéristiques

239 : Fonctions définies par une intégrale dépendant d'un paramètre. Exemples et applications.

- Prolongement de la fonction Γ d'Euler
- Intégrale de Fresnel
- Densité des polynômes orthogonaux

241 : Suites et séries de fonctions. Exemples et contre-exemples.

- Nombre de Bell
- Equation de la chaleur par les séries de Fourier
- Prolongement de la fonction Γ d'Euler (attention à avoir assez de place pour parler des séries méromorphes)

243 : Convergence des séries entières, propriétés de la somme. Exemples et applications.

- Processus de Galton Watson
- Nombre de Bell

245: Fonctions holomorphes sur un ouvert de $\mathbb C.$ Exemples et applications.

- Calcul de quelques fonctions caractéristiques
- Prolongement de la fonction Γ d'Euler
- Densité des polynômes orthogonaux

246 : Séries de Fourier. Exemples et applications.

- Equation de la chaleur
- Theorème de Féjer

250: Transformation de Fourier. Applications.

- Théorème de Fourier-Plancherel
- Densité des polynômes orthogonaux

253 : Utilisation de la notion de convexité en analyse.

- Processus de Galton Watson
- Ellipsoïde de John Loewner

260 : Espérance, variance et moments d'une variable aléatoire.

- Processus de Galton Watson
- Théorème de Weierstrass
- Calcul de quelques fonctions caractéristiques

261 : Fonction caractéristique d'une variable aléatoire. Exemples et applications.

- Calcul de quelques fonctions caractéristiques
- Théorème Central Limite

262 : Modes de convergence d'une suite de variables aléatoires. Exemples et applications.

- Theorème Central Limite
- Theorème de Glivenko-Cantelli

263 : Variables aléatoires à densité. Exemples et applications.

- Théorème Central Limite
- Calcul de quelques fonctions caractéristiques

264 : Variables aléatoires discrètes. Exemples et applications.

- Théorème de Weierstrass
- Processus de Galton-Watson