# Introduction to the dataRetrieval package

# Laura De Cicco¹ and Robert Hirsch¹

 $^1\,United\,\,States\,\,Geological\,\,Survey$ 

# January 21, 2013

# Contents

| 1        | ıntı | roduction to dataketrieval                              | 1  |
|----------|------|---------------------------------------------------------|----|
| <b>2</b> | Get  | ting Started                                            | 1  |
|          | 2.1  | New to R?                                               | 1  |
|          | 2.2  | R User: Installing dataRetrieval from downloaded binary | 2  |
|          | 2.3  | R Developers: Installing dataRetrieval from gitHub      | 2  |
| 3        | Rav  | v Data: USGS Web Retrieval Examples                     | 4  |
|          | 3.1  | USGS Web Retrieval Introduction                         | 4  |
|          | 3.2  | USGS Daily Value Retrievals                             | 5  |
|          | 3.3  | USGS Unit Value Retrievals                              | 6  |
|          | 3.4  | USGS Site Information Retrievals                        | 7  |
|          | 3.5  | USGS Water Quality Retrievals                           | 8  |
| 4        | Fun  | action Details                                          | 11 |
|          | 4.1  | Daily Value Retrievals                                  | 11 |
|          | 4.2  | Water Quality Retrievals                                | 11 |
|          | 4.3  | Site Information Retrievals                             | 11 |

# 1 Introduction to dataRetrieval

The dataRetrieval package was created to simplify the process of getting hydrologic data in the R environment. It has been specifically designed to work seamlessly with the EGRET package: Exploration and Graphics for RivEr Trends (EGRET). See: https://github.com/USGS-R/EGRET/wiki for information on EGRET.

There is a plethora of hydrological data available on the web. This package is designed specifically to load United States Geological Survey (USGS) hydrologic data to the R enviornment. This includes daily values, real-time (unit values), site information, and water quality sample data.

# 2 Getting Started

This section describes the options for downloading and installing the dataRetrieval package.

#### 2.1 New to R?

If you are new to R, you will need to first install the latest version of R, which can be found here: http://www.r-project.org/.

There are many options for running and editing R code, one nice environment to learn R is RStudio. RStudio can be downloaded here: http://rstudio.org/. Once R and RStudio are installed, the dataRetrieval package needs to be installed as described in the next section.

# 2.2 R User: Installing dataRetrieval from downloaded binary

The latest dataRetrieval package build is available for download at https://github.com/USGS-R/dataRetrieval/blob/master/dataRetrieval\_1.2.1.tar.gz. If the package's tar.gz file is saved in R's working directory, then the following command will fully install the package:

```
> install.packages("dataRetrieval_1.2.1.tar.gz",
+ repos=NULL, type="source")
```

If the downloaded file is stored in an alternative location, include the path in the install command. A Windows example looks like this (notice the direction of the slashes, they are in the opposite direction that Windows normally creates paths):

```
> install.packages(
+ "C:/RPackages/Statistics/dataRetrieval_1.2.1.tar.gz",
+ repos=NULL, type="source")
```

A Mac example looks like this:

```
> install.packages(
+ "/Users/userA/RPackages/Statistic/dataRetrieval_1.2.1.tar.gz",
+ repos=NULL, type="source")
```

It is a good idea to re-start the R enviornment after installing the package, especially if installing an updated version (that is, restart RStudio). Some users have found it necessary to delete the previous version's package folder before installing newer version of dataRetrieval. If you are experiencing issues after updating a package, trying deleting the package folder - the default location for Windows is something like this: C:/Users/userA/Documents/R/win-library/2.15/dataRetrieval, and the default for a Mac: /Users/userA/Library/R/2.15/library/dataRetrieval. Then, re-install the package using the directions above. Moving to CRAN should solve this problem.

### 2.3 R Developers: Installing dataRetrieval from gitHub

Alternatively, R-developers can install the latest version of dataRetrieval directly from gitHub using the devtools package. devtools is available on CRAN. Simpley type the following commands into R to install the latest version of dataRetrieval available on gitHub. Rtools (for Windows) and latex tools are required.

```
> library(devtools)
> install_github("dataRetrieval", "USGS-R")
```

To then open the library, simply type:

> library(dataRetrieval)

# 3 Raw Data: USGS Web Retrieval Examples

In this section, we will run through 4 examples, documenting how to get raw data from the web. This includes historical daily values, real-time current values, site information, and water quality data.

#### 3.1 USGS Web Retrieval Introduction

The United States Geological Survey organizes their hydrological data in fairly standard structure. Gage stations are located throughout the United States, each station has a unique ID. Often (but not always), these ID's are 8 digits. The first step to finding data is discoving this 8-digit ID. One potential tool for discovering data is Environmental Data Discovery and Transformation (EnDDaT): http://cida.usgs.gov/enddat/. Follow the example in the User's Guide to learn how to discover USGS stations and available data from any location in the United States. Essentially, you can create a Project Location on the map, set a bounding box (in miles), then search for USGS Time Series and USGS Water Quality Data. Locations, ID's, available data, and available time periods will load on the map and appropriate tabs.

Once the site-ID is known, the next required input for USGS data retrievals is the 'parameter code'. This is a 5-digit code that specifies what measured parameter is being requested. A complete list of possible USGS parameter codes can be found here:

http://nwis.waterdata.usgs.gov/usa/nwis/pmcodes?radio\_pm\_search=param\_group&pm\_group=All+--+include+all+parameter+groups&pm\_search=&casrn\_search=&srsname\_search=&format=html\_table&show=parameter\_group\_nm&show=parameter\_nm&show=casrn&show=srsname&show=parameter\_units

Not every station will measure all parameters. The following is a list of commonly measured parameters:

Table 1: Commonly found USGS Parameter Codes

|   | pCode | $\operatorname{shortName}$ |
|---|-------|----------------------------|
| 1 | 00060 | Discharge [cfs]            |
| 2 | 00065 | Gage height [ft]           |
| 3 | 00010 | Temperature [C]            |
| 4 | 00045 | Precipitation [in]         |
| 5 | 00400 | рН                         |

For real-time data, the parameter code and site ID will suffice. The USGS stores historical data as daily values however. The statistical process used to store the daily data is the final requirement for daily value retrievals. A 5-digit 'stat code' specifies the requested processing. A complete list of possible USGS stat codes can be found here:

http://nwis.waterdata.usgs.gov/nwis/help/?read\_file=stat&format=table

The most common stat codes are:

Table 2: Commonly found USGS Stat Codes

|   | StatCode | shortName |
|---|----------|-----------|
| 1 | 00001    | Maximum   |
| 2 | 00002    | Minimum   |
| 3 | 00003    | Mean      |
| 4 | 00008    | Median    |

We will use the Choptank River near Greensboro, MD as an example. The site-ID for this gage station is 01491000. Daily discharge measurements are available as far back as 1948. Additionally, forms of nitrate and nitrogen have been measured dating back to 1964.

### 3.2 USGS Daily Value Retrievals

To obtain historic daily records of USGS data, use the retrieveNWISData function. The arguments for the function are siteNumber, parameterCd, startDate, endDate, statCd, and a logical (true/false) interactive. There are 2 default argument: statCd defaults to "00003" and interactive defaults to TRUE. If you want to use the default values, you do not need to list them in the function call. Setting the 'interactive' option to true will walk you through the function. It might make more sense to run large batch collections with the interactive option set to FALSE.

The dates (start and end) need to be in the format "YYYY-MM-DD". Setting the start date to "" will indicate to the program to ask for the earliest date, setting the end date to "" will ask for the latest available date.

- > # Using defaults:
- > siteNumber <- "01491000" # Site ID for Choptank River near Greensboro, MD
- > parameterCd <- "00060" # Discharge in cubic feet per second
- > startDate <- ""
- > endDate <- ""
- > discharge <- retrieveNWISData(siteNumber, parameterCd, startDate, endDate)

A dataframe is returned that looks like the following:

|   | agency | site     | dateTime   | value | code |
|---|--------|----------|------------|-------|------|
| 1 | USGS   | 01491000 | 1948-01-01 | 190   | Α    |
| 2 | USGS   | 01491000 | 1948-01-02 | 900   | Α    |
| 3 | USGS   | 01491000 | 1948-01-03 | 480   | Α    |
| 4 | USGS   | 01491000 | 1948-01-04 | 210   | Δ    |

```
5 USGS 01491000 1948-01-05 210 A
6 USGS 01491000 1948-01-06 220 A
```

The structure of the dataframe is:

```
'data.frame': 23762 obs. of 5 variables:

$ agency : chr "USGS" "USGS" "USGS" "USGS" ...

$ site : chr "01491000" "01491000" "01491000" "01491000" ...

$ dateTime: Date, format: "1948-01-01" "1948-01-02" ...

$ value : num 190 900 480 210 210 220 160 130 120 100 ...

$ code : chr "A" "A" "A" "A" ...
```

Note that dateTime is imported as a Date, value is a number, and code is a string. USGS codes are often "A" (approved for publication) or "P" (provisional data subject to revision). A more complete list of qualification codes can be found here: http://waterdata.usgs.gov/usa/nwis/help?codes\_help

An example that doesn't use the defaults would be a request for maximum daily temperature in early 2012:

```
> # Using defaults:
> siteNumber <- "01491000" # Site ID for Choptank River near Greensboro, MD
> parameterCd <- "00010" # Temperature
> statCd <- "00001"
> startDate <- "2012-01-01"
> endDate <- "2012-06-30"
> temperature <- retrieveNWISData(siteNumber, parameterCd, startDate, endDate, StatCd=stat</pre>
```

#### 3.3 USGS Unit Value Retrievals

We can also get real-time, instantaneous measurements using the retrieveUnitNWISData function:

```
> # Using defaults:
> siteNumber <- "01491000" # Site ID for Choptank River near Greensboro, MD
> parameterCd <- "00060" # Discharge in cubic feet per second
> startDate <- as.character(Sys.Date())
> endDate <- as.character(Sys.Date())
> dischargeToday <- retrieveUnitNWISData(siteNumber, parameterCd, startDate, endDate)</pre>
```

Which produces the following dataframe:

```
agency site dateTime tzone value code
1 USGS 01491000 2013-01-21 00:00:00 EST 231 P
```

```
USGS 01491000 2013-01-21 00:15:00
                                        EST
                                              231
                                                     Ρ
   USGS 01491000 2013-01-21 00:30:00
                                              234
3
                                        EST
                                                     Ρ
   USGS 01491000 2013-01-21 00:45:00
                                              231
                                                     Ρ
                                        EST
5
    USGS 01491000 2013-01-21 01:00:00
                                        EST
                                              231
                                                     Ρ
    USGS 01491000 2013-01-21 01:15:00
                                        EST
                                              228
                                                     Ρ
```

The structure of the dataframe is:

```
'data.frame': 66 obs. of 6 variables:

$ agency : chr "USGS" "USGS" "USGS" "USGS" ...

$ site : chr "01491000" "01491000" "01491000" "01491000" ...

$ dateTime: POSIXct, format: "2013-01-21 00:00:00" "2013-01-21 00:15:00" ...

$ tzone : chr "EST" "EST" "EST" ...

$ value : num 231 231 234 231 238 228 228 228 228 ...

$ code : chr "P" "P" "P" "P" ...
```

Note that time now becomes important, so the dateTime is a POSIXct, and the time zone is included.

#### 3.4 USGS Site Information Retrievals

To obtain all of the available site information, use the getSiteFileData function:

```
> # Using defaults:
> siteNumber <- "01491000" # Site ID for Choptank River near Greensboro, MD
> ChopTankInfo <- getSiteFileData(siteNumber)</pre>
```

The available date for these for the USGS sites are:

#### > colnames(ChopTankInfo)

```
[1] "agency.cd"
                              "site.no"
                                                       "station.nm"
 [4] "site.tp.cd"
                              "lat.va"
                                                       "long.va"
 [7] "dec.lat.va"
                              "dec.long.va"
                                                       "coord.meth.cd"
                              "coord.datum.cd"
[10] "coord.acy.cd"
                                                       "dec.coord.datum.cd"
[13] "district.cd"
                             "state.cd"
                                                       "county.cd"
[16] "country.cd"
                             "land.net.ds"
                                                       "map.nm"
                              "alt.va"
[19] "map.scale.fc"
                                                       "alt.meth.cd"
[22] "alt.acy.va"
                              "alt.datum.cd"
                                                       "huc.cd"
                                                       "instruments.cd"
[25] "basin.cd"
                              "topo.cd"
                                                       "drain.area.va"
[28] "construction.dt"
                              "inventory.dt"
[31] "contrib.drain.area.va" "tz.cd"
                                                       "local.time.fg"
```

```
[34] "reliability.cd" "gw.file.cd" "nat.aqfr.cd" [37] "aqfr.cd" "aqfr.type.cd" "well.depth.va" [40] "hole.depth.va" "depth.src.cd" "project.no" [43] "queryTime"
```

# 3.5 USGS Water Quality Retrievals

In this example, we use 3 dataRetrieval functions to get daily streamflow data and inorganic nitrogen sample results, and site information for a USGS gaging station with the ID 06934500. The station is Missouri River at Hermann, MO (which is discovered in the INFO dataset).

```
> Daily <- getDVData("06934500","00060","1970-10-01","2011-09-30")</pre>
```

There are 14975 data points, and 14975 days. There are 0 zero flow days

If there are any zero discharge days, all days had 0 cubic meters per second added to the

## > head(Daily)

|   | Date       | n        | Iulian | Month | Dav | DecVear  | MonthSea | Qualifier | i | LogQ       |
|---|------------|----------|--------|-------|-----|----------|----------|-----------|---|------------|
|   |            | · ·      |        |       | •   |          | -        | -         |   | <b>O</b> 1 |
| 1 | 1970-10-01 | 3879.408 | 44102  | 10    | 274 | 1970.747 | 1450     | A         | 1 | 8.263438   |
| 2 | 1970-10-02 | 3454.655 | 44103  | 10    | 275 | 1970.750 | 1450     | Α         | 2 | 8.147478   |
| 3 | 1970-10-03 | 3029.903 | 44104  | 10    | 276 | 1970.753 | 1450     | Α         | 3 | 8.016286   |
| 4 | 1970-10-04 | 2644.793 | 44105  | 10    | 277 | 1970.755 | 1450     | Α         | 4 | 7.880348   |
| 5 | 1970-10-05 | 2293.665 | 44106  | 10    | 278 | 1970.758 | 1450     | Α         | 5 | 7.737906   |
| 6 | 1970-10-06 | 2072.793 | 44107  | 10    | 279 | 1970.761 | 1450     | Α         | 6 | 7.636652   |
|   | Q7 Q30     |          |        |       |     |          |          |           |   |            |
| 1 | NA NA      |          |        |       |     |          |          |           |   |            |
| 2 | NA NA      |          |        |       |     |          |          |           |   |            |
| 3 | NA NA      |          |        |       |     |          |          |           |   |            |
| 4 | NA NA      |          |        |       |     |          |          |           |   |            |
| 5 | NA NA      |          |        |       |     |          |          |           |   |            |
| 6 | NA NA      |          |        |       |     |          |          |           |   |            |

<sup>&</sup>gt; Sample <-getSampleData("06934500","00631","1970-10-01","2011-09-30")

# > head(Sample)

|   | Date       | ConcLow | ConcHigh | Uncen | ConcAve | Julian | Month | Day | $\mathtt{DecYear}$ | MonthSeq |
|---|------------|---------|----------|-------|---------|--------|-------|-----|--------------------|----------|
| 1 | 1979-09-26 | 1.10    | 1.10     | 1     | 1.10    | 47384  | 9     | 269 | 1979.734           | 1557     |
| 2 | 1979-10-16 | 0.42    | 0.42     | 1     | 0.42    | 47404  | 10    | 289 | 1979.788           | 1558     |
| 3 | 1979-11-27 | 2.00    | 2.00     | 1     | 2.00    | 47446  | 11    | 331 | 1979.903           | 1559     |

```
4 1979-12-18 1.70
                     1.70 1 1.70 47467 12 352 1979.960
                                                              1560
5 1980-01-29 1.30
                     1.30
                           1 1.30 47509
                                             1 29 1980.078
                                                              1561
6 1980-02-21
            1.10
                     1.10
                           1 1.10 47532
                                            2 52 1980.141
                                                              1562
     SinDY
               CosDY
1 -0.9946999 -0.1028210
2 -0.9712570 0.2380333
3 -0.5724040 0.8199718
4 -0.2463613 0.9691781
5 0.4699767 0.8826788
6 0.7733507 0.6339785
```

# > INFO <-getMetaData("06934500","00631", interactive=FALSE)

#### > colnames(INFO)

| [1]  | "agency.cd"     | "site.no"               | "station.nm"         |
|------|-----------------|-------------------------|----------------------|
| [4]  | "site.tp.cd"    | "lat.va"                | "long.va"            |
| [7]  | "dec.lat.va"    | "dec.long.va"           | "coord.meth.cd"      |
| [10] | "coord.acy.cd"  | "coord.datum.cd"        | "dec.coord.datum.cd" |
| [13] | "district.cd"   | "state.cd"              | "county.cd"          |
| [16] | "country.cd"    | "map.nm"                | "map.scale.fc"       |
| [19] | "alt.va"        | "alt.meth.cd"           | "alt.acy.va"         |
| [22] | "alt.datum.cd"  | "huc.cd"                | "basin.cd"           |
| [25] | "topo.cd"       | "construction.dt"       | "inventory.dt"       |
| [28] | "drain.area.va" | "contrib.drain.area.va" | "tz.cd"              |
| [31] | "local.time.fg" | "reliability.cd"        | "project.no"         |
| [34] | "queryTime"     | "drainSqKm"             | "staAbbrev"          |
| [37] | "param.nm"      | "param.units"           | "paramShortName"     |
| [40] | "paramNumber"   | "constitAbbrev"         |                      |

### > INFO\$station.nm

#### [1] "Missouri River at Hermann, MO"

# > Sample <- mergeReport()</pre>

Discharge Record is 14975 days long, which is 41 years First day of the discharge record is 1970-10-01 and last day is 2011-09-30 The water quality record has 437 samples The first sample is from 1979-09-26 and the last sample is from 2011-09-29 Discharge: Minimum, mean and maximum 394 2660 20900 Concentration: Minimum, mean and maximum 0.02 1.3 4.2 Percentage of the sample values that are censored is 1.4 %

In the next section, we will go into detail the available functions in dataRetrieval, their required input and generated output.

- 4 Function Details
- 4.1 Daily Value Retrievals
- 4.2 Water Quality Retrievals
- 4.3 Site Information Retrievals

# References

- [1] Helsel, D.R. and R. M. Hirsch, 2002. Statistical Methods in Water Resources Techniques of Water Resources Investigations, Book 4, chapter A3. U.S. Geological Survey. 522 pages. http://pubs.usgs.gov/twri/twri4a3/
- [2] Hirsch, R. M., Moyer, D. L. and Archfield, S. A. (2010), Weighted Regressions on Time, Discharge, and Season (WRTDS), with an Application to Chesapeake Bay River Inputs. JAWRA Journal of the American Water Resources Association, 46: 857-880. doi: 10.1111/j.1752-1688.2010.00482.x http://onlinelibrary.wiley.com/doi/10.1111/j.1752-1688.2010.00482.x/full
- [3] Sprague, L. A., Hirsch, R. M., and Aulenbach, B. T. (2011), Nitrate in the Mississippi River and Its Tributaries, 1980 to 2008: Are We Making Progress? Environmental Science & Technology, 45 (17): 7209-7216. doi: 10.1021/es201221s http://pubs.acs.org/doi/abs/10.1021/es201221s