In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

df=pd.read_csv(r'C:\Users\user\Downloads\6_Salesworkload1.csv')
df

Out[2]:

	MonthYear	Time index	Country	StoreID	City	Dept_ID	Dept. Name	HoursOwn	Hour
0	10.2016	1.0	United Kingdom	88253.0	London (I)	1.0	Dry	3184.764	
1	10.2016	1.0	United Kingdom	88253.0	London (I)	2.0	Frozen	1582.941	
2	10.2016	1.0	United Kingdom	88253.0	London (I)	3.0	other	47.205	
3	10.2016	1.0	United Kingdom	88253.0	London (I)	4.0	Fish	1623.852	
4	10.2016	1.0	United Kingdom	88253.0	London (I)	5.0	Fruits & Vegetables	1759.173	
7653	06.2017	9.0	Sweden	29650.0	Gothenburg	12.0	Checkout	6322.323	
7654	06.2017	9.0	Sweden	29650.0	Gothenburg	16.0	Customer Services	4270.479	
7655	06.2017	9.0	Sweden	29650.0	Gothenburg	11.0	Delivery	0	
7656	06.2017	9.0	Sweden	29650.0	Gothenburg	17.0	others	2224.929	
7657	06.2017	9.0	Sweden	29650.0	Gothenburg	18.0	all	39652.2	

7658 rows × 14 columns

In [3]:

df.head(10)

Out[3]:

	MonthYear	Time index	Country	StoreID	City	Dept_ID	Dept. Name	HoursOwn	HoursLease
0	10.2016	1.0	United Kingdom	88253.0	London (I)	1.0	Dry	3184.764	0.0
1	10.2016	1.0	United Kingdom	88253.0	London (I)	2.0	Frozen	1582.941	0.0
2	10.2016	1.0	United Kingdom	88253.0	London (I)	3.0	other	47.205	0.0
3	10.2016	1.0	United Kingdom	88253.0	London (I)	4.0	Fish	1623.852	0.0
4	10.2016	1.0	United Kingdom	88253.0	London (I)	5.0	Fruits & Vegetables	1759.173	0.0
5	10.2016	1.0	United Kingdom	88253.0	London (I)	6.0	Meat	8270.316	0.0
6	10.2016	1.0	United Kingdom	88253.0	London (I)	13.0	Food	16468.251	0.0
7	10.2016	1.0	United Kingdom	88253.0	London (I)	7.0	Clothing	4698.471	0.0
8	10.2016	1.0	United Kingdom	88253.0	London (I)	8.0	Household	1183.272	0.0
9	10.2016	1.0	United Kingdom	88253.0	London (I)	9.0	Hardware	2029.815	0.0
4									•

In [4]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7658 entries, 0 to 7657
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	MonthYear	7658 non-null	object
1	Time index	7650 non-null	float64
2	Country	7650 non-null	object
3	StoreID	7650 non-null	float64
4	City	7650 non-null	object
5	Dept_ID	7650 non-null	float64
6	Dept. Name	7650 non-null	object
7	HoursOwn	7650 non-null	object
8	HoursLease	7650 non-null	float64
9	Sales units	7650 non-null	float64
10	Turnover	7650 non-null	float64
11	Customer	0 non-null	float64
12	Area (m2)	7650 non-null	object
13	Opening hours	7650 non-null	object

dtypes: float64(7), object(7)

memory usage: 837.7+ KB

In [5]:

df.describe()

Out[5]:

	Time index	StoreID	Dept_ID	HoursLease	Sales units	Turnover	Cu
count	7650.000000	7650.000000	7650.000000	7650.000000	7.650000e+03	7.650000e+03	
mean	5.000000	61995.220000	9.470588	22.036078	1.076471e+06	3.721393e+06	
std	2.582158	29924.581631	5.337429	133.299513	1.728113e+06	6.003380e+06	
min	1.000000	12227.000000	1.000000	0.000000	0.000000e+00	0.000000e+00	
25%	3.000000	29650.000000	5.000000	0.000000	5.457125e+04	2.726798e+05	
50%	5.000000	75400.500000	9.000000	0.000000	2.932300e+05	9.319575e+05	
75%	7.000000	87703.000000	14.000000	0.000000	9.175075e+05	3.264432e+06	
max	9.000000	98422.000000	18.000000	3984.000000	1.124296e+07	4.271739e+07	
4							•

In [6]:

df.columns

Out[6]:

In [7]:

sns.pairplot(df)

Out[7]:

<seaborn.axisgrid.PairGrid at 0x1f5b1ca83a0>

In [8]:

```
sns.distplot(df['HoursLease'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[8]:

<AxesSubplot:xlabel='HoursLease', ylabel='Density'>

In [9]:

sns.displot(df["HoursLease"])

Out[9]:

<seaborn.axisgrid.FacetGrid at 0x1f5acef15e0>

In [10]:

In [11]:

```
sns.heatmap(df1.corr())
```

Out[11]:

<AxesSubplot:>

In [16]:

In [17]:

from sklearn.model_selection import train_test_split

In [18]:

```
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

In [20]:

from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)#ValueError: Input contains NaN, infinity or a value too large for

```
Traceback (most recent call las
ValueError
t)
<ipython-input-20-58bc3c346312> in <module>
      3 lr=LinearRegression()
----> 4 lr.fit(x_train,y_train)#ValueError: Input contains NaN, infinity o
r a value too large for dtype('float64')
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_base.py i
n fit(self, X, y, sample_weight)
                accept sparse = False if self.positive else ['csr', 'csc',
'coo']
    517
                X, y = self._validate_data(X, y, accept_sparse=accept_spar
--> 518
se,
                                            y_numeric=True, multi_output=Tr
    519
ue)
    520
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\base.py in _validate_da
ta(self, X, y, reset, validate_separately, **check_params)
                        y = check_array(y, **check_y_params)
    432
                    else:
--> 433
                        X, y = check_X_y(X, y, **check_params)
    434
                    out = X, y
    435
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py in
inner f(*args, **kwargs)
     61
                    extra_args = len(args) - len(all_args)
     62
                    if extra_args <= 0:</pre>
                        return f(*args, **kwargs)
---> 63
     64
     65
                    # extra_args > 0
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py in
check_X_y(X, y, accept_sparse, accept_large_sparse, dtype, order, copy, fo
rce all finite, ensure 2d, allow nd, multi output, ensure min samples, ens
ure_min_features, y_numeric, estimator)
    812
                raise ValueError("y cannot be None")
    813
--> 814
            X = check_array(X, accept_sparse=accept_sparse,
    815
                            accept_large_sparse=accept_large_sparse,
    816
                            dtype=dtype, order=order, copy=copy,
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py in
inner f(*args, **kwargs)
     61
                    extra_args = len(args) - len(all_args)
     62
                    if extra args <= 0:</pre>
---> 63
                        return f(*args, **kwargs)
     64
     65
                    # extra args > 0
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py in
check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy,
force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_feat
ures, estimator)
    661
                if force all finite:
    662
```

<ipython-input-22-0ff321f0a2a5> in <module> ----> 1 coef= pd.DataFrame(lr.coef) 2 coef

AttributeError: 'LinearRegression' object has no attribute 'coef_'

```
In [23]:
```

```
print(lr.score(x test,y test))
NotFittedError
                                           Traceback (most recent call las
t)
<ipython-input-23-6bc23016a4ce> in <module>
----> 1 print(lr.score(x_test,y_test))
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\base.py in score(self,
X, y, sample_weight)
    551
                from .metrics import r2 score
    552
--> 553
                y_pred = self.predict(X)
                return r2_score(y, y_pred, sample_weight=sample_weight)
    554
    555
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_base.py i
n predict(self, X)
                    Returns predicted values.
    236
    237
--> 238
                return self._decision_function(X)
    239
    240
            _preprocess_data = staticmethod(_preprocess_data)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_base.py i
n _decision_function(self, X)
    216
    217
            def _decision_function(self, X):
                check_is_fitted(self)
--> 218
    219
    220
                X = check_array(X, accept_sparse=['csr', 'csc', 'coo'])
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py in
inner_f(*args, **kwargs)
     61
                    extra_args = len(args) - len(all_args)
     62
                    if extra args <= 0:</pre>
---> 63
                        return f(*args, **kwargs)
     64
     65
                    # extra args > 0
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py in
check is fitted(estimator, attributes, msg, all or any)
   1039
   1040
            if not attrs:
-> 1041
                raise NotFittedError(msg % {'name': type(estimator).__name
 _})
   1042
   1043
NotFittedError: This LinearRegression instance is not fitted yet. Call 'fi
t' with appropriate arguments before using this estimator.
```

```
In [24]:
```

```
prediction = lr.predict(x test)
plt.scatter(y_test,prediction)
NotFittedError
                                           Traceback (most recent call las
t)
<ipython-input-24-10d398fd7dc3> in <module>
----> 1 prediction = lr.predict(x_test)
      2 plt.scatter(y_test, prediction)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_base.py i
n predict(self, X)
    236
                    Returns predicted values.
    237
--> 238
                return self._decision_function(X)
    239
    240
            _preprocess_data = staticmethod(_preprocess_data)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_base.py i
n _decision_function(self, X)
    216
            def _decision_function(self, X):
    217
--> 218
                check_is_fitted(self)
    219
                X = check array(X, accept sparse=['csr', 'csc', 'coo'])
    220
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py in
inner_f(*args, **kwargs)
     61
                    extra_args = len(args) - len(all_args)
     62
                    if extra_args <= 0:</pre>
                         return f(*args, **kwargs)
---> 63
     64
     65
                    # extra_args > 0
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py in
check is fitted(estimator, attributes, msg, all or any)
   1039
   1040
            if not attrs:
-> 1041
                raise NotFittedError(msg % {'name': type(estimator).__name
___})
   1042
   1043
```

NotFittedError: This LinearRegression instance is not fitted yet. Call 'fit' with appropriate arguments before using this estimator.