ArsDigitaUniversity Month2:DiscreteMathematics -ProfessorShaiSimonson

ProblemSet4 -InductionandRecurrenceEquations

- 1. What's wrong with the following proofs by induction?
 - a. Everybinarystringcontainsidenticalsymbols. The proof is by induct ion on the size of the string. For n=0 all binary strings are empty and therefore identical. Let $X=b_nb_{n-1}...b_1b_0$ be an arbitrary binary string of length n+1. Let $Y=b_nb_{n-1}...b_1$ and $Z=b_{n-1}...b_1b_0$. Since both Y and Z are strings of length less than n+1, by induction each contains identical symbols. Since the two strings overlap, X must also contain identical symbols.
 - b. Anyamountofchangegreaterthanorequaltotwentycanbegottenwitha combinationoffivecentandsevencentcoins. The proof is by induction on the amount of change. For twenty cents use four five -cent coins. Let n > 20 be the amount of change. Assume that n=7 x+5 y for some non -negative integers x and y. For any n > 20, either x > 1, or y > 3. If x > 1, then since 3(5) -2(7) = 1, n+1=5(y+3)+7(x-2). If y > 3, then since 3(7) -4(5)=1, n+1=7(x+3)+5(y-4). In either case, we showed that n+1=7 y+5 y where y=1 and y=1 are non-negative integers.
- 2. Provebyinductionthat:
 - a. The *n*thFibonaccinumberequals $(1/\sqrt{5})[(1/2+\sqrt{5/2})^n (1/2-\sqrt{5/2})^n]$, where $F_0 = 0$ and $F_1 = 1$.
 - b. The sum of the geometric series $1+a+a^2+...+a^n$ equals $(1-a^{n+1})/(1-a)$, where a does not equal one.
 - c. $21 \text{divides 4}^{n+1} + 5^{2n-1}$
 - d. The determinant of the n by n square matrix below is equal to the determinant of B, where B is a matrix of m by m (m < n), and I is the m-n identity matrix.

- e. Thenumberofdifferentbinarystringswith *n*bitsis2 ⁿ.
- f. Thenumberofleavesinacompletebinarytreeisonemorethanthenumberof internalnodes.(Hint:Splitthetreeupi ntotwosmallertrees).
- g. Anyamountofchangegreaterthanorequalto24canbegottenwithacombination offiveandsevencentcoins.
- h. Agraph's edges can be covered by n edge disjoint paths, each one starting and ending indistincted d-degree vertices, if and only if the graph has n pairs of odd degree vertices. (Euler discussed the case for n=1).
- 3. Solvethefollowing recurrence equations using the techniques for linear recurrence relations with constant coefficients. State whether or not each recurrence is homogeneous.
 - a. $a_n=6$ $a_{n-1}-8$ a_{n-2} , and $a_0=4$, $a_1=10$.
 - b. $a_n = a_{n-1} + 2$ a_{n-2} , and $a_0 = 0$, $a_1 = 1$.
 - c. $a_n=7$ $a_{n-1}-10a_{n-2}+3$,and $a_0=0$, $a_1=1$.
 - d. $a_n = a_{n-1} + a_{n-2}$, and $a_0 = 2$, $a_1 = 1$. (These are called Lucas numbers, see P.330 #11).
 - e. $a_n=3$ -6 a_{n-1} -9 a_{n-2} , and $a_0=0$, $a_1=1$.

- 4. Aparticular graph matching algorithm on n nodes, works by doing n^2 steps, and then solving a new matching problem on a graph with one vertex less.
 - a. Showthatthenumberofstepsittakestorunthealgorithmonagraphwith n nodesis equaltothesumofthefirst nperfectsquares.
 - b. Deriveth eformulaforthesumofthefirst *n* perfectsquaresbyconstructingan appropriatelinearnon -homogeneousrecurrenceequationandsolvingit.
 - c. Showthatthetimecomplexityofthisalgorithmis $\theta(n^3)$.
- 5. Writearecurrencerelationtocomputethenumberofb inarystringswith *n* digitsthatdonothave twoconsecutive1's.Solvetherecurrence,anddeterminewhatpercentageof8 -bitbinarystrings donotcontaintwoconsecutive1's.
- 6. Strassen's algorithms how show to multiply two n by n matrices by multiply in g7 pairs of n/2 by n/2 matrices, and then doing n^2 operations to combine them. Write the recurrence equation for this algorithm, and calculate the complexity of Strassen's algorithm, by solving the recurrence by repeated substitution.
- 7. Writeandsolveth erecurrenceequationsforthetimecomplexityofthefollowing recursive algorithms. Explain why your equations are correct.
 - a. Tosearchforavalueinasortedlist, compareittothemiddlevalue, and searchtheright half of the listifitislarger, and the lefthalf if it is smaller.
 - b. Themaximumofalistofnumbersisthelargerofthemaximumofthefirsthalfandthe maximumofthesecondhalf.
 - c. Tosortalistofnumbers, divide the list into four equal parts. Sorteach part. Merge these sorted four lists into two sorted lists, and then merge the two into one.
- 8. Solvingrecurrences by a change of variable.

a. Given
$$a_n=2$$
 $a_{n-1}+$ a_{n-2} and $a_0=0$, $a_1=1$, note that: $a_n=(1+\sqrt{2})a_{n-1}+(1-\sqrt{2})[a_{n-1}-(1+\sqrt{2})a_{n-2}]=(1-\sqrt{2})a_{n-1}+(1+\sqrt{2})[a_{n-1}-(1-\sqrt{2})a_{n-2}]$ Let $b_n=$ $a_n-(1+\sqrt{2})a_{n-1}=(1-\sqrt{2})[a_{n-1}-(1+\sqrt{2})a_{n-2}]$, and $c_n=$ $a_n-(1-\sqrt{2})a_{n-1}=(1+\sqrt{2})[a_{n-1}-(1-\sqrt{2})a_{n-2}]$.

Constructtwosimplerecurrenceequations for b_n and c_n and solve each one. Then note a connection between a_n , b_n and c_n , and solve the original equation.

- b. Usethistechniquetocomputeaclosedformforthe *n*thFibonaccinumber.
- c. $a_n = 2 a_{\sqrt{n}} + \lg n$, $a_2 = 1$ (Solvebysetting $m = \lg n$). Youmayassumethat n is 2 to the power of 2^k .

9. ParenthesizedExpressions

- a. As equence of n+1 matrices $A_1A_2...A_{n+1}$ can be multiplied to gether in many different ways dependent on the way n pairs of parentheses are inserted. For example for n+1=3, there are two ways to insert the parentheses: $((A_1A_2)A_3)$ and $(A_1(A_2A_3))$. Write a recurrence equation for the number of ways to insert k pairs of parenthesis. Do not solve it. (Hint: Concentrate on where the last multiplication occurs).
- b. Writealistofthedifferentwaystoparenthesizeasequenceof n+1 matrices for n+1=2,3,4.
- c. Abalancedarrangementofparenthesi sisdefinedinductivelyasfollows: Theemptystringisabalancedarrangementofparentheses. If x is balanced arrangementofparentheses then so is x is x in x are each abalancedarrangement of parentheses, then so is x is x in x is x in x in x are each abalancedarrangement of parentheses, then so is x in x is x in x in
 - Writealistofstr ingsthatrepresentabalancedarrangement of n pairsofparentheses for n=1,2,3.
- d. Describe a 1-1 correspondence between the strings that are balanced arrangements of n pairs of parentheses, and the number of ways to multiply a sequence of n+1 matrices.
- 10. Solvethefollowing recurrence equation using linear algebrate chiques of diagonalization. $a_n=2$ $a_{n-1}+$ a_{n-2} , where $a_0=0$ and $a_1=1$.
- 11. Provethatany O(/E/)timealgorithmonaplanarsimplegraphisalso O(/V/). (Hint: Usethe factthateveryfaceha satleastthreevertices and edges, and a counting argument, to calculate a relationship between the number of faces and the number of edges. The nuse Euler's Theorem to derive a linear relationship between the number of edges and the number of vertices.
- $12. \ The following recurrence cannot be solved using the master theorem. Explain why. Solve it directly by substitution, and calculate its order of growth.$

$$T(n)=4T(n/2)+(nlogn)^{-2}$$
 and $T(1)=1$.