DATABASE MANAGEMENT SYSTEM LABORATORY COURSE CODE: BCSE2073

Lab Manual

for

BACHELOR OF

Engineering & Technology

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING GALGOTIAS UNIVERSITY, GREATER NOIDA UTTAR PRADESH

Last revised on 04.08.2022 -Drafted by: Dr. Nabanita Mahata

Department of Computer Science & Engineering

Sr. No.	Title of Lab Experiments	
1.	Implement Data Definition language Statements.	
2.	Implement Data Manipulation Statements.	
3.	Implement SELECT command with different clauses.	
4.	Implement various type of Integrity Constraints on database.	
5.	Implement SINGLE ROW functions (Character, Numeric, Date functions) and GROUP functions (avg, count, max, min, sum).	
6.	Implement various type of SET OPERATORS (Union, Intersect, Minus) and JOINS.	
7.	Implement the concept of grouping of Data and Subqueries.	
8.	Implement the concept of Data Control Language (DCL), Transaction Control Language (TCL).	
9.	Implement Simple and Complex View.	
10.	Write a PL/SQL block to satisfy some conditions by accepting input from the user.	
11.	Write a PL/SQL block for greatest of three numbers using IF AND ELSEIF	
12.	Write a PL/SQL block for summation of odd numbers using for LOOP	
13.	Write a PL/SQL Procedure for GCD Numbers	
14.	Write a PL/SQL Procedure for cursor implementation	
15.	Write a PL/SQL block to implementation of factorial using function	
Value A	Value Added Experiments	
16.	Create a Database for Banking Sector and implement various queries on it.	
17.	Create a Database for Customer Sale/purchase and implement various queries on it.	

EXPERIMENT DETAILS

Experiment 1	
Title	Data Definition Language
Objective	Study of Data Definition language commands Create table, Alter Table, Drop Table,
	Rename Table.
Pre-requis	Knowledge of Basic Database
ite	
Algorithm	The SQL DDL allows specification of not only a set of relations but also information
/Theory	about each relation, including-
	Schema for each relation
	The domain of values associated with each attribute.
	• The integrity constraints.
	The set of indices to be maintained for each relation.
	• The security and authorization information for each relation.
G 4	The physical storage structure of each relation on disk.
Syntax	CREATE TABLE
	Emp1 (EID int, EName Char, Edept char, EDOB date, Salary int)
	Create Table Emp1(EID int, EName varchar(20), Edept varchar(10), EDOB Date, Salary int);
	CREATE TABLE TABLENAME (COLUMN NAME1 DATA TYPE1(SIZE1),
	COLUMN_NAMEN DATA_TYPEN(SIZEN));
	COLOMIV_IVAIMEN DAIN_I II EN(GIZEN)),
	ALTER TABLE
	ALTER TABLE table name ADD column name datatype;
	ALTER TABLE table name MODIFY column name datatype;
	ALTER TABLE table name DROP COLUMN column name;
	ALTER TABLE table name RENAME COLUMN old_column name TO
	new column name;
	<u>DROP TABLE</u>
	DROP TABLE table_name;
	RENAME TABLE
	RENAME old_table_name TO new_table_name;
	<u>TRUNCATE</u>
	TRUNCATE TABLE table_name;
Post Lab	
Assignme	

nt (If	
Any)	
Tilly)	Experiment 2
	Daperiment 2
Title	Data Manipulation Language Statements.
Objective	Study of Data Manipulation Statements.
Pre-requis	Knowledge of ORACLE Queries
ite	
Algorithm /Theory	Data Manipulation Language (DML) statements are used for managing data in database. DML commands are not auto-committed. It means changes made by DML command are not permanent to database, it can be rolled back.
	DML statements are used for managing data within schema objects. Some examples: o SELECT - retrieve data from the a database o INSERT - insert data into a table
	 UPDATE - updates existing data within a table
	 DELETE - deletes all records from a table, the space for the records remain
Syntax	SELECT column1, column2,FROM table_name; INSERT INTO table_name (column1, column2, column3,) VALUES (value1, value2, value3,); UPDATE table_name SET column1 = value1, column2 = value2, WHERE condition; DELETE FROM table_name WHERE condition; Delete from Emp where EID=2;

	T
Post Lab	
Assignme	
nt (If	
Any)	
	Experiment 3
Title	SELECT Command
Objective	Study of SELECT command with different clauses.
Pre-requis	Knowledge of
ite	• ORACLE
Algorithm	SQL SELECT Statement
/Theory	The most commonly used SQL command is SELECT statement. SQL SELECT statement is used to query or retrieve data from a table in the database. A query may retrieve information from specified columns or from all of the columns in the table. To create a simple SQL SELECT Statement, you must specify the column(s) name and the table name. The whole query is called SQL SELECT Statement.
Syntax	Syntax of SQL SELECT Statement: SELECT column_list FROM table-name [WHERE Clause] [GROUP BY clause] [HAVING clause] [ORDER BY clause];

Post Lab	
Assignme	
nt (If	
Any)	
	Experiment 4
Title	Keys
Objective	Study of various type of Integrity Constraints.
Pre-requis	Knowledge of
ite	ORACLE COMMANDS
Algorithm	SQL Constraints
/Theory	SQL constraints are used to specify rules for the data in a table.
	If there is any violation between the constraint and the data action, the action is aborted
	by the constraint.
	Constraints can be specified when the table is created (inside the CREATE TABLE
	statement) or after the table is created (inside the ALTER TABLE statement).
	In SQL, we have the following constraints:
	NOT NULL - Indicates that a column cannot store NULL value
	UNIQUE - Ensures that each row for a column must have a unique value
	PRIMARY KEY - A combination of a NOT NULL and UNIQUE. Ensures that
	a column (or combination of two or more columns) have a unique identity which
	helps to find a particular record in a table more easily and quickly
	• FOREIGN KEY - Ensure the referential integrity of the data in one table to
	match values in another table
	CHECK - Ensures that the value in a column meets a specific condition
	DEFAULT - Specifies a default value for a column
	SQL PRIMARY KEY Constraint
	The PRIMARY KEY constraint uniquely identifies each record in a database table.
	Primary keys must contain UNIQUE values.
	A primary key column cannot contain NULL values.
	Most tables should have a primary key, and each table can have only ONE primary key.
	SQL FOREIGN KEY Constraint
	A FOREIGN KEY in one table points to a PRIMARY KEY in another table.
Syntax	SQL CREATE TABLE + CONSTRAINT Syntax
	CREATE TABLE table_name
	column_name1 data_type(size) constraint_name,
	column_name2 data_type(size) constraint_name,
	column_name3 data_type(size) constraint_name,

```
);
CREATE TABLE PersonsNotNull
P Id int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255)
)
CREATE TABLE Persons
P Id int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255),
PRIMARY KEY (P Id)
)
CREATE TABLE Orders
O_Id int NOT NULL,
OrderNo int NOT NULL,
P Id int,
PRIMARY KEY (O Id),
FOREIGN KEY (P Id) REFERENCES Persons(P Id)
)
```

Post Lab	
Assignme	
nt (If	
Any)	
3,	Experiment 5
Title	SINGLE ROW functions and Group functions
Objective	Study of SINGLE ROW functions (Character, Numeric, Date functions) and GROUP
	functions (avg, count, max, min, sum).
Pre-requis	Knowledge of
ite	• ORACLE
Algorithm	Oracle SQL supplies a rich library of in-built functions which can be employed for
/Theory	various tasks. The essential capabilities of functions can be the case conversion of
	strings, in-string or substring operations, mathematical computations on numeric data,
	and date operations on date type values. SQL Functions optionally take arguments from
	the user and mandatorily return a value.
	Aggregate functions perform a variety of actions such as counting all the rows in a table,
	averaging a column's data, and summing numeric data.
	Aggregates can also search a table to find the highest "MAX" or lowest "MIN" values in
	a column. As with other types of queries, you can restrict, or filter out the rows these
	functions act on with the WHERE clause. For example, if a manager needs to know how
	many employees work in an organization, the aggregate function named COUNT(*) can
	be used to produce this information. The COUNT(*) function shown in the below
Cyratoy	SELECT statement counts all rows in a table. The SELECT guary below demonstrates the use of NVI. function
Syntax	The SELECT query below demonstrates the use of NVL function.
	SELECT first_name, last_name, salary, NVL (commission_pct,0) FROM employees
	WHERE rownum < 5;
	WILKE TOWNUM 5,
	FIRST_NAME LAST_NAME SALARY NVL(COMMISSION_PCT,0)
	Steven King 24000 0
	Neena Kochhar 17000 0
	Lex De Haan 17000 0
	Alexander Hunold 9000 0
	Some of the commonly used aggregate functions are as below -
	SUM([ALL DISTINCT] expression)
	AVG([ALL DISTINCT] expression)

	COLINIT([ALL DISTINICT] avaragion)
	COUNT([ALL DISTINCT] expression)
	COUNT(*)
	MAX(expression)
D	MIN(expression)
Post Lab	
Assignme	
nt (If	
Any)	
	Experiment 6(a)
Title	SET Operators.
Objective	Study of various type of SET OPERATORS (Union, Intersect, Minus) and Various type
	of JOINS.
Pre-requis	Knowledge of
ite	Concept of SET Operators.
Algorithm	Set Operation in SQL
/Theory	SQL supports few Set operations to be performed on table data. These are used to get
J	meaningful results from data, under different special conditions.
	SQL JOIN
	An SQL JOIN clause is used to combine rows from two or more tables, based on a
	common field between them.
	The most common type of join is: SQL INNER JOIN (simple join). An SQL INNER
	JOIN return all rows from multiple tables where the join condition is me. SQL INNER
	JOIN Keyword
	The INNER JOIN keyword selects all rows from both tables as long as there is a match
	between the columns in both table
	SQL LEFT JOIN Keyword
	The LEFT JOIN keyword returns all rows from the left table (table1), with the matching
	rows in the right table (table2). The result is NULL in the right side when there is no
	match.
	SQL RIGHT JOIN Keyword
	The RIGHT JOIN keyword returns all rows from the right table (table2), with the
	matching rows in the left table (table 1). The result is NULL in the left side when there is
	no match.
	SQL FULL OUTER JOIN Keyword
	The FULL OUTER JOIN keyword returns all rows from the left table (table1) and from
	the right table (table2).
	FULL OUTER JOIN keyword combines the result of both LEFT and RIGHT joins.
Syntax	select * from First
Бушах	UNION
	select * from second
	Select If the Second

	SQL INNER JOIN Syntax
	SELECT column_name(s)
	FROM table1
	INNER JOIN table2
	ON table1.column_name=table2.column_name;
Post Lab	
Assignme	
nt (If	
Any)	
	Experiment 7
Title	Subqueries
Objective	Study and implement the concept of sub queries.
Pre-requis	Knowledge of
ite	ORACAL COMMANDS
Algorithm	Subqueries:- A subquery is a form of an SQL statement that appears inside another
/Theory	SQL statement. It also termed as nested query. The statement containing a subquery
	called a parent statement. The rows returned but he subquery are use by the following
	statement.
	It can be used by the following commands:
	1. To insert records in the target table.
	2. To create tables and insert records in this table.
	3. To update records in the target table.
	4. To create view.
	5. To provide values for the condition in the WHERE, HAVING IN, SELECT,
	UPDATE, and DELETE statements.
	Exam:-
	Creating clientmaster table from oldclient master, table
	Create table client master
	AS SELECT * FROM oldclient master;
	_ ′
Syntax	Union Clause:
	The user can put together multiple queries and combine their output using the union
	clause. The union clause merges the output of two or more queries into a single set of
	rows and column. The final output of union clause will be
	Output: = Records only in query one + records only in query two + A single set of
	records with is common in the both queries.
	Syntax:
	Буншл.
	<u> </u>

SELECT columname, columname

FROM tablename 1

UNION

SELECT columnname, columnname

From tablename2;

Intersect Clause: The use can put together multiple queries and their output using the interest clause. The final output of the interest clause will be:

Output =A single set of records which are common in both queries

Syntax:

SELECT columnname, columnname

FROM tablename 1

INTERSECT

SELECT columnname, columnname

FROM tablename 2;

MINUS CLAUSE:- The user can put together multiple queries and combine their output = records only in query one

Syntax:

SELECT columnname, columnname

FROM tablename;

MINUS

SELECT columnname, columnname

FROM tablename;

Post Lab	
Assignme	
nt (If	
Any)	
7 Mily)	Experiment 8
Title	
	Control languages
Objective	Study and implement the concept of Data Control Language (DCL), Transaction Control
	Language (TCL).
Pre-requis	Knowledge of
ite	ORACAL COMMANDS
Algorithm	TCL command
/Theory	Transaction Control Language(TCL) commands are used to manage transactions in
	database. These are used to manage the changes made by DML statements. It also allows
	statements to be grouped together into logical transactions.
	Commit command
	Commit command is used to permanently save any transaaction into database.
	Following is Commit command's syntax,
	Rollback command
	This command restores the database to last committed state. It is also use with savepoint
	command to jump to a savepoint in a transaction.
	Following is Rollback command's syntax,
	Savepoint command
	savepoint command is used to temporarily save a transaction so that you can rollback to
	that point whenever necessary.
	Following is savepoint command's syntax,
Syntax	commit;
	rollback to savepoint-name;
	savepoint savepoint-name;
	surepoint name,

Post Lab	
Assignme	
nt (If	
Any)	
	Experiment 9
Title	Views
Objective	Study of Simple and Complex View.
Pre-requis	Knowledge of
ite	ORACLE COMMANDS CREATE MEN G.
Algorithm	CREATE VIEW Statement
/Theory	In SQL, a view is a virtual table based on the result-set of an SQL statement. A view
	contains rows and columns, just like a real table. The fields in a view are fields from one
	or more real tables in the database. You can add SQL functions, WHERE, and JOIN statements to a view and present the data as if the data were coming from one single
	table.
	Note: A view always shows up-to-date data! The database engine recreates the data,
	using the view's SQL statement, every time a user queries a view.
Syntax	SQL CREATE VIEW Syntax
	CREATE VIEW view name AS
	SELECT column name(s)
	FROM table name
	WHERE condition
	Renaming the columns of a view:-
	Syntax:- CREATE VIEW vioyunama AS
	CREATE VIEW viewname AS SELECT newcolumnname
	FROM tablename
	WHERE columnname=expression_list;
	william columniame expression nst,
	Selecting a data set from a view-
	Syntax:-

	SELECT columnname, columnname
	FROM viewname
	WHERE search condition;
	Destroying a view-
	Syntax:-
	DROP VIEW viewname;
Post Lab	
Assignme	
nt (If	
Any)	
	Experiment 10
Title	PL/SQL Program for Addition of Two numbers
Objective	PL/SQL Control Structure provides conditional tests, loops, flow control and branches
	that let to produce well-structured programs.
Pre-requis	Knowledge of SQL
ite	
Algorithm	STEP 1: Start
/Theory	STEP 2: Initialize the necessary variables.
	STEP 3: Develop the set of statements with the essential operational parameters.
	STEP 4: Specify the Individual operation to be carried out.
	STEP 5: Execute the statements.
	STEP 6: Stop.
Syntax	SQL>set serveroutput on
	SQL>declare
	1 a number;
	2 b number;
	3 c number;
	4 begin
	5 a: =&a
	6 b: =&b
	7 c: =a+b;
	8 dbms_output_line ('sum of' a 'and' b 'is' c);
	9 end;
	10 /
	INPUT
	Enter value for a: 23
	old 6: a:=&a
	new 6: a:=23;

	Enter value for b: 12
	old 7: b:=&b
	new 7: b:=12;
	OUTPUT sum of23and12is35
	PL/SQL procedure successfully completed.
	12/5 \(\alpha\) procedure successionly completed.
Post Lab	
Assignme	
nt (If	
Any)	
	Experiment 11
Title	PL/SQL block for greatest of three numbers using IF AND ELSEIF
Objective	PL/SQL Control Structure provides conditional tests
Pre-requis	Knowledge of SQL
ite	
Algorithm	STEP 1: Start
/Theory	STEP 2: Initialize the necessary variables.
	STEP 3: invoke the if else if condition.
	STEP 4: Execute the statements.
	STEP 5: Stop
Syntax	SQL>set server output on
	SQL> declare
	2 a number;
	3 b number;
	4 c number;
	5 begin
	6 a:=&a
	7 b:=&b
	8 c:=&c
	9 if(a>b)and(a>c) then
	10 dbms_output_line('A is maximum');
	11 else if(b>a)and(b>c)then
	12 dbms_output_line('B is maximum');
	13 else
	14 dbms_output_line('C is maximum');
	15 end if;
	16 end;

	17 / INPUT Enter value for a: 21	
	old 7: a:=&a	
	new 7: a:=21;	
	Enter value for b: 12	
	old 8: b:=&b	
	new 8: b:=12;	
	Enter value for b: 45	
	old 9: c:=&b	
	new 9: c:=45;	
	OUTPUT C is maximum PL/SQL procedure successfully completed.	
Post Lab		
Assignme		
nt (If		
Any)		
Experiment 12		
Title	PL/SQL block for summation of odd numbers using for LOOP	
Objective	PL/SQL Control Structure provides conditional tests, loops, flow control	
	and branches that let to produce well-structured programs.	
Pre-requis	Knowledge of SQL	
ite		
Algorithm	STEP 1: Start	
/Theory	STEP 2: Initialize the necessary variables.	
	STEP 3: invoke the for loop condition.	
	STEP 4: Execute the statements.	
	STEP 5: Stop.	
Syntax	SQL>set server output on	
	SQL> declare	
	2 n number;	
	3 sum1 number default 0;	
	4 end value number;	
	5 begin	
	6 end value:=&end value;	
	7 n:=1;	
	8 for n in 1endvalue	
	9 loop	
	10 if $mod(n,2)=1$	
	11 then	
	12 sum1:=sum1+n;	
	13 end if;	
	14 end loop;	
	17 cha loop,	

	15 dbms_output_line('sum =' sum1);		
	16 end;		
	17 /		
	INPUT		
	Enter value for end value: 4		
	old 6: end value;=&end value;		
	new 6: end value:=4;		
	OUTPUT sum =4		
	PL/SQL procedure successfully completed.		
	The sque procedure successionly completed.		
Post Lab			
Assignme			
nt (If			
Any)			
	Experiment 13		
Title	PL/SQL Procedure for GCD Numbers		
Objective	PL/SQL Control Structure provides conditional tests.		
Pre-requis	Knowledge of SQL		
ite			
Algorithm	Create or replace procedure <pre>procedure_name> (argument {in, out, in out} data type)</pre>		
/Theory	{is, as} Variable declaration		
	Begin		
	PI/SQL Subprogram body.		
	Exception		
	Exception PL/SQL Block.		
	End;		
Syntax	create or replace procedure pro is		
	a number(3);		
	b number(3);		
	c number(3);		
	d number(3);		
	begin a:=&a		
	b:=&b		
	if($a > b$) then c:=mod(a,b);		
	if(c=0) then		
	dbms_output_line('GCD is');		
	dbms_output.put_line(b);		
	else		

```
dbms_output.put_line(c);
end if;
else d:=mod(b,a);
if(d=0) then
dbms output.put line('GCD is');
dbms_output.put_line(a);
else
dbms_output.put_line('GCD is');
dbms_output.put_line(d);
end if;
end if;
end;
Enter value for a: 8
old 8: a:=&a;
new 8: a:=8;
Enter value for b: 16
old 9: b:=&b;
new 9: b:=16;
Procedure created.
SQL> set serveroutput on;
SQL> execute pro;
GCD is 8
PL/SQL procedure successfully completed
```

D (T 1	
Post Lab	
Assignme	
nt (If	
Any)	
TD: 41	Experiment 14
Title	PL/SQL Procedure for cursor implementation.
Objective	To understand the concept of cursor.
Pre-requis	Knowledge of SQL.
ite	
Algorithm	create table st13(regno number(4),name varchar2(20),mark1 number(3),mark2
/Theory	number(3),mark3 numbe r(3),mark4 number(3),mark5 number(3));
Syntax	insert into st13 values(101,'raji',100,90,97,89,91);
	insert into a13 values(102,'kali');
	insert into a13 values(103,'jaya');
	select * from st13;
	REGNO NAME MARK1 MARK2 MARK3 MARK4 MARK5
	101 100 00 07 00 01
	101 raji 100 90 97 89 91 102 kali 99 77 69 81 99 (
	103 jaya 78 88 77 60 89
	SQL>set server output on
	declare
	ave number(5,2);
	tot number(3);
	cursor c_mark is select * from st13 where mark1>=40 and mark2>=40 and mark3>=40
	and mark4>=40 and mark5>=40;
	begin
	dbms output.put line('regno name mark1 mark2 mark3 mark4 mark5 total average');
	dbms_output_line('');
	_ 1 1 _ (

```
for student in c mark
                                        loop
                                        tot:=st13.mark1+st13.mark2+st13.mark3+st13.mark4+st13.mark5;
                                        ave:=tot/5;
                                        dbms_output.put_line(st13.regno||rpad(st13.name,15)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mark1,6)||rpad(st13.mar
                                        k2,6)||rpad(st13.mark3,6)||rpad(st13.mark4,6)||rpad(st13.mark5,6)||rpad(tot,8)||rpad(ave,
                                        5)); end loop;end; /
                                          regno name mark1 mark2 mark3 mark4 mark5 total average
                                           101raji
                                                                             100 90
                                                                                                      97 89 91 467
                                                                                                                                                           93.4
                                           102kali
                                                                                                                                                           85
                                           103jaya
                                                                                                                                                           78.4
                                           PL/SQL procedure successfully completed.
Post Lab
Assignme
nt (If
Any)
                                                                                                                                     Experiment 15
Title
                                        FUNCTION TO FIND FACTORIAL
Objective
                                        To find factorial using function
Pre-requis
                                        Knowledge of SQL
ite
                                        Input An integer.
Algorithm
/Theory
                                        Output Factorial of given number.
                                        Factorial(num)
                                        1 if (num=0 or num=1) then.
                                        2 \text{ fact} = 1;
                                        3 else.
                                        4 for i 1 to n.
                                        SQL> create or replace function fact(n number)
Syntax
                                        2 return number is
                                        3 i number(10);
                                        4 f number:=1;
                                        5 begin
                                        6 for i in 1..N loop
                                        7 f:=f*i;
                                        8 end loop;
                                        9 return f;
                                        10 end;
```

	Function created. SQL> select fact(2) from dual; FACT(2)
Post Lab	
Assignme	
nt (If	
Any)	