Muzaffer Estelik estelik.muzaffer@gmail.com

1. PROBLEM

Prediction and Classification of Cardiac Arrhythmia.

a. Introduction:

Arrhythmia can be diagnosed by measuring the heart activity Electrocardiogram using an instrument called (ECG) and then analyzing the recorded data. The ECG is an established technique in cardiology for the analysis of cardiac condition of the patients. In its basic definition, ECG is the electrical representation of the contractile activity of the heart, and can be recorded fairly easily by using surface electrodes on the limbs or chest of the patient. The ECG is one of the most recognized and used biomedical signal in the field of medicine. The rhythm of the heart in terms of beats per minute (bpm) can be easily calculated by counting the R peaks of the ECG wave during one minute of recording.

Below is a schematic sample of a normal ECG.

Irregularity in heart beat may be life threatening. Hence both accurate detection of presence as well as classification of arrhythmia are important.

Different parameter values can be extracted from the ECG waveforms and can be used along with other information about the patient like age, medical history, etc to detect arrhythmia. However, sometimes it may be difficult for a doctor to look at these long duration ECG recordings and find minute irregularities. Therefore, using machine learning for automating arrhythmia diagnosis can be very helpful.

This project aims using different machine learning algorithms for predicting and classifying arrhythmia into different categories.

2. DATA WRANGLING

a. Examining the Features and Samples

Features:

F.Nu.	Name	Explanation	Lin./Nom.
1	Age	Age in years	Linear
2	Sex	0 = male; 1 = female	nominal
3	Height	Height in centimeters	Linear
4	Weight	Weight in kilograms	Linear
5	QRS duration	Average of QRS duration in msec.	Linear
6	P-R interval	Average duration between onset of P and Q waves in msec.	linear
7	Q-T interval	Average duration between onset of Q and offset of T waves in msec.	Linear
8	T interval	Average duration of T wave in msec.	Linear

9	P interval	Average duration of P wave in msec.	linear
	Vector a	angles in degrees on front plane of	:
10	QRS		linear
11	Т		linear
12	Р		linear
13	QRST		linear
14	J		linear
15	Heart rate	Number of heart beats per minute	Linear
	Of channel DI: Average width,	in msec.	
16	Q wave		linear
17	R wave		linear
18	S wave		linear
19	R' wave	small peak just after R	linear
20	S' wave		linear
21	Number of intrin	sic deflections	linear
22	Existence of rag	ged R wave	nominal
23	Existence of dip	hasic derivation of R wave	nominal
24	Existence of rag	ged P wave	Nominal
25	Existence of dip	hasic derivation of P wave	nominal
26	Existence of rag	ged T wave	nominal
27	Existence of dip	hasic derivation of T wave	nominal
28 39	Of channel DII	(similar to 16 27 of channel DI)	
40 51	Of channels DII	I	
52 63	Of channel AVR		
64 75	Of channel AVL		
76 87	Of channel AVF		
88 99	Of channel V1		
100111	Of channel V2		
112123	Of channel V3		
124135	Of channel V4		

136147	Of channel V	5	
148159	Of channel V	6	
	Of channel D	I Amplitude , * 0.1 milivolt, of	
160		JJ wave	Linear
161		Q wave	Linear
162		R wave	Linear
163		S wave	Linear
164		R' wave	Linear
165		S' wave	linear
166		P wave	linear
167		T wave	linear
168	QRSA	Sum of areas of all segments divided by 10,(Area= width * height / 2)	linear
169	QRSTA	QRSTA = QRSA + 0.5 * width of T wave * 0.1 * height of T wave. (If T is diphasic then the bigger segment is considered)	Linear
170179	Of channel D	II	
180189	Of channel D	III	
190199	Of channel A	VR	
200209	Of channel A	VL	
210219	Of channel A	VF	
220229	Of channel V	1	
230239	Of channel V	2	
240249	Of channel V	3	
250259	Of channel V	4	
260269	Of channel V	5	
270279	Of channel V	6	

b. Class Distribution:

Class code	Class	Number of instances
01	Normal	245

02	Ischemic changes (Coronary Artery Disease)	44
03	Old Anterior Myocardial Infarction	15
04	Old Inferior Myocardial Infarction	15
05	Sinus tachycardy	13
06	Sinus bradycardy	25
07	Ventricular Premature Contraction (PVC)	3
08	Supraventricular Premature Contraction	2
09	Left bundle branch block	9
10	Right bundle branch block	50
11	1. degree AtrioVentricular block	0
12	2. degree AV block	0
13	3. degree AV block	0
14	Left ventricule hypertrophy	4
15	Atrial Fibrillation or Flutter	5
16	Others	22

There are (452) rows, each representing medical record of a different patient. There are 279 attributes like age, weight and patient's ECG related data.

The data set is labeled with 16 different classes. Classes 2 to 15 correspond to different types of arrhythmia. Class 1 corresponds to normal ECG with no arrhythmia and class 16 refers to unlabeled patient.

The data set is heavily biased towards the no arrhythmia case with 245 instances belonging to class 1 and 185 instances being split among the 14 arrhythmia classes and the rest 22 are unclassified.

The main challenges in processing this data set are the limited number of training examples compared to the number of features, heavy bias towards the case of normal ECG, missing feature values and feature values belonging to both continuous and categorical types.

c. Evaluation Strategy

I chose "WEIGHTED RECALL" as evaluation strategy because we are predicting Cardiac Arrhythmia, which is serious medical condition.

No one wants to mis-classify someone having arrhythmia as normal. It is even lot bigger risk than classifying someone normal as having arrhythmia. So I want to maximize true positive rate i.e. Recall.

Weighted recall is used instead of normal recall because it accounts for label imbalance present in data.

3. EXPLORATORY DATA ANALYSIS

With some nice plots, it's becoming much more simple to notice outliers.

I modified some outliers which I can estimate (i.e. weight/heights) but haven't adjusted anything in ECG values due to the high bias of my data as mentioned above.

4. MACHINE LEARNING MODELS

I've tried 13 different models (7 ML models and 6 of them repeated after PCA).

Tried bagging and boosting methods but they generally raised the average training accuracy of the models but the test accuracy got reduced.

PCA generally provided better results.

Train and test accuracy scores of the models listed below.

	Train Recall Score	Test Recall Score
KNN Clasification	0.669271	0.647059
Logistic Regression	0.841146	0.676471
Linear SVM	0.783854	0.720588
Kernelized SVM	0.976562	0.676471
Naive Bayes	0.760417	0.632353
Decision Tree	0.750000	0.661765
Random Forest	0.940104	0.750000
KNN Classification with PCA	0.677083	0.647059
Logistic Regression with PCA	0.825521	0.676471
Linear SVM with PCA	0.776042	0.735294
Kernalised SVM with PCA	0.968750	0.676471
Decision Trees with PCA	0.674479	0.573529
Random Forest with PCA	0.966146	0.632353

With most of the models we can see large difference between train and test scores which is because of overfitting.

The most preferable model looks like Linear SVM with PCA.