Automne 2020

Série 2

Tous les exercices seront corriges. La correction sera postee sur le moodle apres 2 semaines.

Vous etes fortement encourages a essayer de resoudre (eventuellement a plusieurs) l'exercice (\star) et a rendre votre solution (eventuellement a plusieurs) avant le dimanche de la semaine suivante celle ou la serie a ete postee. Il faudra transmettre votre solution sur moodle, sous forme de fichier pdf (eventuellement tape en LaTeX) en suivant le lien a cet effet dans la semaine de la serie.

Exercice 1. (une variante de l'exercice 1 de la serie 1) On considere l'application

$$f: x \in \mathbb{R}_{\geq -2} \mapsto x^3 - x \in \mathbb{R}.$$

- 1. Que vaut $f([-2, +\infty[)]$? Que vaut $f([0, +\infty[)]]$?
- 2. Que vaut $f^{-1}([0,+\infty[)])$? Que vaut $f^{-1}([-6,+\infty[)])$?
- 3. Cette application est elle injective?
- 4. Cette application est elle surjective?
- 5. Comment modifier l'espace d'arrivee pour la rendre surjective?
- 6. Trouver x_0 le plus petit possible pour cette application avec l'espace de depart $\mathbb{R}_{\geq x_0}$ soit injective.

Exercice 2. (Groupe produit) Soient (G, \star) et (H, *) deux groupes. On considere le produit cartesien $G \times H$ muni de la loi de composition interne :

$$(g,h)\boxtimes (g',h'):=(g\star g',h\ast h').$$

1. Trouver un element neutre $e_{G\times H}$ et une inversion $(\bullet, \bullet)^{-1}$ de sorte que

$$(G \times H, \boxtimes, e_{G \times H}, (\bullet, \bullet)^{-1})$$

forme un groupe.

- 2. On suppose dans cette question que G = H. Montrer que la diagonale $\Delta G = \{(g,g), g \in G\}$ est un sous-groupe de $G \times G$.
- 3. Soient $G' \subset G$ et $H' \subset H$ des sous-groupes. Montrer que $G' \times H'$ est un sous-groupe de $G \times H$.

4. Est ce que la reciproque est vraie? C'est a dire est ce que tout sous-groupe de $G \times H$ est de la forme $G' \times H'$?

Exercice 3. (Le centre d'un groupe) Soit (G, .) un groupe et

$$Z(G) = \{z \in G, \text{ pour tout } g \in G, z.g = g.z\}.$$

Montrer que Z(G) est un sous-groupe commutatif de G. On l'appelle le centre de G.

Exercice 4. (*) Soit X un ensemble et $\mathrm{Bij}(X)$ le groupe des bijections de X sur lui-meme. Soit $Y \subset X$ un sous-ensemble de $\mathrm{Bij}(X)$. On introduit le sous-ensemble de $\mathrm{Bij}(X)$

$$Bij(X)_Y := \{ \sigma \in Bij(X), \ \sigma(Y) = Y \}.$$

- 1. Montrer que $Bij(X)_Y$ est un sous-groupe de Bij(X). On l'appelle le *stabilisateur* de Y dans Bij(X).
- 2. On suppose que X possede au moins 3 elements distincts, x_1, x_2, x_3 et on veut montrer que Bij(X) n'est pas commutatif. En les cherchant dans un stabilisateur convenable, trouver deux bijections $\sigma, \tau \in Bij(X)$ qui ne commutent pas :

$$\sigma \circ \tau \neq \tau \circ \sigma$$
.

3. Montrer que si X possde 1 ou deux elements Bij(X) est commutatif.

Exercice 5. Soit X un ensemble et (G, \star) un groupe. Soit

$$\mathcal{F}(X,G) = \{ f : X \mapsto G \}$$

l'ensemble des fonctions de X a valeurs dans G (les applications de X vers G).

On muni $\mathcal{F}(X,G)$ de la loi de composition interne suivante : etant donne $f_1, f_2 \in \mathcal{F}(X,G)$ on defini la fonction $f_1 \star f_2$ par

$$\forall x \in X, f_1 \star f_2(x) := f_1(x) \star f_2(x).$$

(ici on abuse les notations en notant la loi de composition sur $\mathcal{F}(X,G)$ de la meme maniere que celle sur G).

- 1. Trouver un element neutre $e_{\mathcal{F}(X,G)}$ et une inversion \bullet^{-1} de sorte que $(\mathcal{F}(X,G),\star,e_{\mathcal{F}(X,G)},\bullet^{-1})$ forme un groupe.
- 2. Soit $U \subset G$ un sous-ensemble de G. Donner une condition necessaire et suffisante pour que le sous-ensemble des fonctions a valeurs dans U

$$\mathcal{F}(X,U) \subset \mathcal{F}(X,G)$$

forme un sous groupe de $\mathcal{F}(X,G)$.

Exercice 6. Soit X un ensemble et $\mathscr{P}(X)$ l'ensemble des sous-ensembles de X. On definit une loi de composition sur $\mathscr{P}(X)$ par

$$\Delta: \frac{\mathscr{P}(X) \times \mathscr{P}(X)}{(A,B)} \ \mapsto \ A\Delta B := A \cup B - A \cap B$$

ou $A\Delta B$ est la difference symetrique des sous-ensembles A et B

$$A\Delta B = \{x \in A \cup B, \ x \notin A \cap B\}$$

(les elements de X qui sont dans la reunion de A et B et qui ne sont pas dans leur intersection).

- 1. Montrer que $A\Delta B = (A B) \cup (B A)$.
- 2. Calculer $\emptyset \Delta A$, $A \Delta A$, $A \Delta X$.
- 3. Trouver un element neutre $e_{\Delta} \in \mathscr{P}(X)$ et une application d'inversion

$$\bullet^{-1}: \mathscr{P}(X) \mapsto \mathscr{P}(X)$$

de sorte que $(\mathscr{P}(X), \Delta, e_{\Delta}, \bullet^{-1})$ forme un groupe commutatif.

Exercice 7. Soit le groupe $(\mathbb{Z}, +)$. On rappelle que tous les sous-groupes de \mathbb{Z} sont de la forme $q.\mathbb{Z}$ pour $q \in \mathbb{Z}$.

- 1. Quel est le sous-groupe engendre par 1?
- 2. Montrer que le groupe engendre par 2 et 3 vaut $\langle 2, 3 \rangle = \mathbb{Z}$. (on montrera que ce sous-groupe contient 1).
- 3. Meme question pour 3 et 73.
- 4. Montrer (en utilisant Bezout) que pour $m, n \in \mathbb{Z}$,

$$\langle m, n \rangle = pgcd(m, n).\mathbb{Z}.$$