Ligningen for en tangent.

Hvordan vi finder ligningen for tangenten i et punkt

Vi husker på, at hældingen af tangenten i et punkt $(x_0, f(x_0))$ for en differentiabel funktion f er givet ved $f'(x_0)$. Ligningen for en ret linje er givet som

$$y = ax + b,$$

så ligningen for tangenten for f i punktet $(x_0, f(x_0))$ må have $a = f'(x_0)$.

En ret linje er entydigt bestemt ved hældningen og et punkt. Vi ved, at tangenten går gennem punktet $(x_0, f(x_0))$, så vi kan finde b i ligningen ved at indsætte dette punkt i ligningen $y = f'(x_0)x + b$:

$$f(x_0) = f'(x_0)x_0 + b \Leftrightarrow b = f(x_0) - f'(x_0)x_0$$

og vi har løst a og b og dermed tangentens ligning.

Eksempel 1.1. Vi ønsker at finde ligningen for tangenten til funktionen x^2 i punktet (1,1). Vi finder først den afledede til x^2 :

$$(x^2)' = 2x.$$

Derfor må hældningen af tangenten i punktet (1,1) være a=f'(1)=2. Vi skal nu finde b i ligningen y=2x+b, så vi indsætter vores kendte punkt:

$$y = 2x + b \Leftrightarrow 1 = 2 \cdot 1 + b \Leftrightarrow b = -1,$$

og derfor må tangentens ligning i punktet (1,1) være givet som

$$y = 2x - 1$$
.

Funktionen x^2 og tangenten i punktet (1,1) til x^2 fremgår af Fig. 1.

Figur 1: Funktion $f(x) = x^2$ og tangentlinjen g(x) = 2x - 1.

Vi kan også bruge differentialregning til at sige noget om, hvad tallet b betyder i et andengradspolynomium

$$f(x) = ax^2 + bx + c.$$

Vi ved allerede, at c er y-værdien for skæringen med y-aksen. Desuden ved vi, at fortegnet på a afgør, om vores parabel for andengradspolynomiet er "sur"eller "glad- peger armene ned eller op. Differentierer vi f får vi

$$f'(x) = 2ax + b,$$

og indsætter vi så x = 0, får vi, at f'(0) = b. b må derfor tilsvare hældningen af f i punktet (0, f(0)), altså der, hvor grafen for f skærer y-aksen. Desuden ved vi, at f(0) = c. Vi kan samle disse betragtninger til en sætning:

Sætning 1.2. Ligningen for tangenten til funktionen $f(x) = ax^2 + bx + c$ i punktet (0,c) er givet ved

$$y = bx + c.$$

Bevis for differentialkvotienten af x^2

Sætning 2.1. Funktionen $f(x) = x^2$ er overalt differentiabel med differentialkvotient

$$\frac{d}{dx}x^2 = (x^2)' = 2x.$$

Bevis. Vi anvender definitionen af differentialkvotienten:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h},$$

hvilket i tilfældet $f(x) = x^2$ giver

$$(x^{2})' = \lim_{h \to 0} \frac{(x+h)^{2} - x^{2}}{h}$$

$$= \lim_{h \to 0} \frac{x^{2} + h^{2} + 2xh - x^{2}}{h}$$

$$= \lim_{h \to 0} \frac{h^{2} + 2xh}{h}$$

$$= \lim_{h \to 0} \frac{h^{2} + \lim_{h \to 0} \frac{2xh}{h}}{h}$$

$$= \lim_{h \to 0} h + \lim_{h \to 0} 2x$$

$$= 2x.$$

Opgave 1

Find ligningen for tangenten til følgende funktioner i de tilhørende punkter:

1)
$$f(x) = x^2$$
, $p = (-1, f(-1))$

2)
$$f(x) = 2x^2 - 1x + 3$$
, $p = (0, f(0))$

1)
$$f(x) = x^2$$
, $p = (-1, f(-1))$ 2) $f(x) = 2x^2 - 1x + 3$, $p = (0, f(0))$
3) $f(x) = \frac{1}{x} - x^3$, $p = (2, f(2))$ 4) $f(x) = \sqrt{x}$, $p = (4, f(4))$

4)
$$f(x) = \sqrt{x}$$
, $p = (4, f(4))$

5)
$$f(x) = 7x + 3$$
, $p = (3, f(3))$

5)
$$f(x) = 7x + 3$$
, $p = (3, f(3))$ 6) $f(x) = -3x^2 + 5x - 1$, $p = (1, f(1))$

7)
$$f(x) = 27$$
, $p = (1000, f(1000))$

7)
$$f(x) = 27$$
, $p = (1000, f(1000))$ 8) $f(x) = 3x^2 - 2\sqrt{x}$, $p = (9, f(9))$

9)
$$f(x) = \frac{10}{x} + 3x^3$$
, $p = (2, f(2))$

9)
$$f(x) = \frac{10}{x} + 3x^3$$
, $p = (2, f(2))$ 10) $f(x) = 5x^3 + 2x^2 + x + 1$, $p = (-2, f(-2))$

Opgave 2

Skitsér følgende polynomier:

1)
$$2x^2 + 2x + 3$$

2)
$$-x^2 + 10$$

4) $-2x^2 - 3c$

3)
$$3x^2 - 2x - 4$$

4)
$$-2x^2-3x-3$$