Deep Inverse Reinforcement Learning

Matthew Alger

October 21, 2015

1 / 34

Inverse reinforcement learning

Given: Observations of an agent's behaviour in an environment

2 / 34

Inverse reinforcement learning

Given: Observations of an agent's behaviour in an environment

Find: The agent's motivations

Outline

- Preliminaries
- 2 Linear programming formulation
- Maximum entropy formulation
- 4 Deep maximum entropy

Preliminaries — Markov decision processes

Markov decision process

$$\mathcal{M} = (\mathcal{S}, \mathcal{A}, \mathcal{P}_{ss'}^{a}, R, \gamma)$$

- \bullet \mathcal{S} , finite set of states
- \bullet \mathcal{A} , finites set of actions
- ullet $\{\mathcal{P}^{a}_{ss'}\}$, set of transition probabilities
- $R: \mathcal{S} \to \mathbb{R}$, reward function
- $\gamma \in [0,1)$, discount factor

Inverse reinforcement learning

Given: Observations of an agent's behaviour in an MDP ${\mathcal M}$

Find: The agent's motivations

Preliminaries — Policies

Policy

 $\pi: \mathcal{S} \to \mathcal{A}$

Preliminaries — Policies

Policy

 $\pi: \mathcal{S} \to \mathcal{A}$

Trajectory/path

$$\zeta = [(s_1, a_1), (s_2, a_2), \dots, (s_n, a_n)]$$

Preliminaries — Policies

Policy

 $\pi: \mathcal{S} \to \mathcal{A}$

Trajectory/path

$$\zeta = [(s_1, a_1), (s_2, a_2), \dots, (s_n, a_n)]$$

Trajectory reward

$$R(\zeta) = \sum_{s \in \zeta} R(s)$$

Preliminaries — Value

Value function

$$V^{\pi}(s) = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R(s_{t+k+1}) \;\middle|\; s_t = s
ight]$$

Preliminaries — Value

Value function

$$V^{\pi}(s) = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k \mathsf{R}(s_{t+k+1}) \;\middle|\; s_t = s
ight]$$

Bellman equation for V^{π}

$$V^{\pi}(s) = \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{\pi(s)} \left(R(s') + \gamma V^{\pi}(s') \right)$$

Preliminaries — Value

Value function

$$V^{\pi}(s) = \mathbb{E}_{\pi}\left[\left.\sum_{k=0}^{\infty} \gamma^k R(s_{t+k+1})\,\right|\, s_t = s
ight]$$

Bellman equation for V^{π}

$$V^{\pi}(s) = \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{\pi(s)} \left(R(s') + \gamma V^{\pi}(s') \right)$$

Action-value function

$$Q^{\pi}(s, a) = \sum_{s' \in \mathcal{S}} \mathcal{P}^{a}_{ss'} \left(R(s') + \gamma V^{\pi}(s') \right)$$

Preliminaries — Optimal policy

Optimal policy

 π^* s. t. $V^{\pi^*}(s) \geq V^{\pi'}(s)$

Inverse reinforcement learning

```
Given: Ideally \pi and \mathcal{P}^a_{ss'} or minimally \{\zeta\}
Find: R(s) such that \pi is an optimal policy or \{\zeta\} is generated by an optimal policy
```

9 / 34

Outline

- Preliminaries
- 2 Linear programming formulation
- Maximum entropy formulation
- 4 Deep maximum entropy

LP — Notation

$$(oldsymbol{V}^\pi)_i = V^\pi(s_i) \ (oldsymbol{R})_i = R(s_i) \ (oldsymbol{P}^a)_{ij} = \mathcal{P}^a_{s_i s_j} \ a^\pi \equiv \pi(s)$$

LP — Notation

$$(oldsymbol{V}^\pi)_i = V^\pi(s_i) \ (oldsymbol{R})_i = R(s_i) \ (oldsymbol{P}^a)_{ij} = \mathcal{P}^a_{s_i s_j} \ a^\pi \equiv \pi(s)$$

Can now write the value as a matrix equation:

$$oldsymbol{V}^{\pi} = (oldsymbol{R} + \gamma oldsymbol{P}^{oldsymbol{a}^{\pi}} oldsymbol{V}^{\pi})$$

LP — Reward constraint

$$oldsymbol{V}^{\pi} = (oldsymbol{R} + \gamma oldsymbol{P}^{a^{\pi}} oldsymbol{V}^{\pi})$$

LP — Reward constraint

$$oldsymbol{V}^{\pi} = (oldsymbol{R} + \gamma oldsymbol{P}^{oldsymbol{a}^{\pi}} oldsymbol{V}^{\pi})$$

$$= (oldsymbol{I} - \gamma oldsymbol{P}^{oldsymbol{a}^{\pi}})^{-1} oldsymbol{R}$$

An explicit solution for V^{π} !

LP — Reward constraint

$$oldsymbol{V}^{\pi} = (oldsymbol{R} + \gamma oldsymbol{P}^{oldsymbol{a}^{\pi}} oldsymbol{V}^{\pi})$$

$$= (oldsymbol{I} - \gamma oldsymbol{P}^{oldsymbol{a}^{\pi}})^{-1} oldsymbol{R}$$

An explicit solution for V^{π} !

Assuming π is optimal:

$$\forall a \in \mathcal{A} \setminus a^{\pi}$$
. $P^{a^{\pi}}V^{\pi} \geq P^{a}V^{\pi}$

IP — Reward constraint

$$egin{aligned} oldsymbol{V}^{\pi} &= (oldsymbol{R} + \gamma oldsymbol{P}^{oldsymbol{a}^{\pi}} oldsymbol{V}^{\pi}) \ &= (oldsymbol{I} - \gamma oldsymbol{P}^{oldsymbol{a}^{\pi}})^{-1} oldsymbol{R} \end{aligned}$$

An explicit solution for V^{π} !

Assuming π is optimal:

$$\forall a \in \mathcal{A} \setminus a^{\pi}$$
. $P^{a^{\pi}}V^{\pi} \geq P^{a}V^{\pi}$

Using our V^{π} solution:

$$orall a \in \mathcal{A} \setminus a^{\pi}. \quad (\mathbf{\textit{P}}^{a^{\pi}} - \mathbf{\textit{P}}^{a})(\mathbf{\textit{I}} - \gamma \mathbf{\textit{P}}^{a^{\pi}})^{-1}\mathbf{\textit{R}} \geq \mathbf{0}$$

LP — Heuristic

Lots of solutions, so employ a heuristic:

$$\sum_{s \in \mathcal{S}} \left(Q^{\pi}(s, a^{\pi}) - \max_{a \in \mathcal{A} \setminus a^{\pi}} Q^{\pi}(s, a) \right)$$

LP — Linear programming problem

$$\begin{aligned} & \text{maximise } \sum_{i=1}^{|\mathcal{S}|} \min_{a \in (\mathcal{A} \setminus a^{\pi})} ((\boldsymbol{P}^{a^{\pi}})_{i} - (\boldsymbol{P}^{a})_{i}) (\boldsymbol{I} - \gamma \boldsymbol{P}^{a^{\pi}})^{-1} \cdot \boldsymbol{R} - \lambda ||\boldsymbol{R}||_{1} \\ & \text{s.t. } \forall i \in 1, \dots, |\mathcal{S}|. \ \forall a \in (\mathcal{A} \setminus a^{\pi}). - ((\boldsymbol{P}^{a^{\pi}})_{i} - (\boldsymbol{P}^{a})_{i}) (\boldsymbol{I} - \gamma \boldsymbol{P}^{a^{\pi}})^{-1} \cdot \boldsymbol{R} \leq 0 \\ & \text{and } \forall i \in 1, \dots, |\mathcal{S}|. \ |R_{i}| \leq R_{\text{max}} \end{aligned}$$

LP — Gridworld

$$R(s) = \alpha \cdot \phi(s)$$

$$R(s) = \alpha \cdot \phi(s)$$

$$V^{\pi}(s) = \sum_{i} \alpha_{i} V_{i}^{\pi}(s)$$

$$R(s) = lpha \cdot \phi(s)$$
 $V^{\pi}(s) = \sum_{i} lpha_{i} V_{i}^{\pi}(s)$ $orall a \in \mathcal{A} \setminus a^{\pi}. \quad extbf{ extit{P}}_{s}^{a^{\pi}} \cdot extbf{ extit{V}}^{\pi} \geq extbf{ extit{P}}_{s}^{a} \cdot extbf{ extit{V}}^{\pi}$

$$R(s) = lpha \cdot \phi(s)$$
 $V^{\pi}(s) = \sum_{i} lpha_{i} V_{i}^{\pi}(s)$
 $orall a \in \mathcal{A} \setminus a^{\pi}. \quad \mathbf{\textit{P}}_{s}^{a^{\pi}} \cdot \mathbf{\textit{V}}^{\pi} \geq \mathbf{\textit{P}}_{s}^{a} \cdot \mathbf{\textit{V}}^{\pi}$

$$\begin{split} \text{maximise } & \sum_{s \in S_0} \min_{a \in (\mathcal{A} \backslash a^*)} p\left(\boldsymbol{P}_s^{a^\pi} \cdot \boldsymbol{V}^\pi - \boldsymbol{P}_s^a \cdot \boldsymbol{V}^\pi \right) \\ \text{s.t. } & \forall i \in 1, \dots, D. \quad |\alpha_i| \leq 1 \\ & p(x) = \begin{cases} x, & x \geq 0 \\ 2x, & x < 0 \end{cases} \end{split}$$

LP — Summary

```
Given: \pi and \mathcal{P}_{ss'}^a

Maximise: \sum_{s \in S_0} \min_{a \in (\mathcal{A} \setminus a^*)} p\left(\boldsymbol{P}_s^{a^\pi} \cdot \boldsymbol{V}^\pi - \boldsymbol{P}_s^a \cdot \boldsymbol{V}^\pi\right)

Such that: \forall i \in 1, \dots, D. \quad |\alpha_i| \leq 1

Result: R(s) = \alpha \cdot \phi(s)
```

Outline

- Preliminaries
- 2 Linear programming formulation
- Maximum entropy formulation
- Deep maximum entropy

MaxEnt — Feature expectations

Feature counts

$$\phi_{\zeta} = \sum_{s \in \zeta} \phi(s)$$

Feature expectations

$$\tilde{\phi} = \frac{1}{N} \sum_{i=1}^{N} \phi_{\zeta}$$

Good reward functions have optimal policies that generate matching feature expectations.

MaxEnt — Distribution

$$P(\zeta) = \frac{1}{Z} \exp(R(\zeta))$$
 (deterministic)

MaxEnt — Distribution

$$P(\zeta) = \frac{1}{Z} \exp(R(\zeta))$$
 (deterministic)

$$P(\zeta \mid \alpha) pprox rac{\exp(lpha \cdot \phi_{\zeta})}{Z(lpha)} \prod_{s_{t+1}, a_t, s_t \in \zeta} \mathcal{P}_{s_t s_{t+1}}^{a_t} \quad ext{(non-deterministic)}$$

MaxEnt — Optimisation

$$lpha^* = \operatorname*{argmax}_{lpha} \sum_{i=1}^N \log P(\zeta_i \mid lpha)$$

MaxEnt — Optimisation

$$\alpha^* = \underset{\alpha}{\operatorname{argmax}} \sum_{i=1}^N \log P(\zeta_i \mid \alpha)$$

$$\frac{\partial}{\partial \alpha} \sum_{i=1}^{N} \log P(\zeta_i \mid \alpha) = \tilde{\phi}_{\text{obs}} - \sum_{i=1}^{N} P(\zeta_i \mid \alpha) \phi_{\zeta_i} = \tilde{\phi}_{\text{obs}} - \sum_{s \in \mathcal{S}} D(s) \phi(s)$$

Objectworld

MaxEnt — Objectworld

Outline

- Preliminaries
- 2 Linear programming formulation
- Maximum entropy formulation
- Deep maximum entropy

DeepMaxEnt — Removing linearity

$$R(s) = \alpha \cdot \phi(s)$$

DeepMaxEnt — Removing linearity

$$R(s) = \alpha \cdot \phi(s)$$

$$R(s) = \alpha \cdot \varphi(s)$$
 $\varphi(s) = \sigma(\mathbf{W} \cdot \phi(s))$

DeepMaxEnt — Removing linearity

$$R(s) = \alpha \cdot \phi(s)$$

$$R(s) = lpha \cdot arphi(s)$$
 $arphi(s) = \sigma(oldsymbol{W} \cdot \phi(s))$

$$egin{aligned} R(s) &= lpha \cdot arphi_n(s) \ arphi_n(s) &= \sigma(oldsymbol{W}_n \cdot arphi_{n-1}(s)) \ &dots \ arphi_1(s) &= \sigma(oldsymbol{W}_1 \cdot \phi(s)) \end{aligned}$$

$$\partial_{\alpha} \sum_{i=1}^{N} \log P(\zeta_i \mid \alpha) = \tilde{\varphi}_{\text{obs},n} - \sum_{s \in \mathcal{S}} D(s) \varphi_n(s)$$

$$\partial_{\boldsymbol{\alpha}} \sum_{i=1}^{N} \log P(\zeta_i \mid \boldsymbol{\alpha}) = \tilde{\varphi}_{\text{obs},n} - \sum_{s \in \mathcal{S}} D(s) \varphi_n(s)$$

$$\partial_{\alpha} \sum_{i=1}^{N} \log P(\zeta_i \mid \alpha) = \sum_{s \in \mathcal{S}} (D_{\text{obs}}(s) - D(s)) \varphi_n(s)$$

$$\partial_{\alpha} \sum_{i=1}^{N} \log P(\zeta_i \mid \alpha) = \tilde{\varphi}_{\mathsf{obs},n} - \sum_{s \in \mathcal{S}} D(s) \varphi_n(s)$$

$$\partial_{\alpha} \sum_{i=1}^{N} \log P(\zeta_i \mid \alpha) = \sum_{s \in \mathcal{S}} (D_{\text{obs}}(s) - D(s)) \varphi_n(s)$$

$$R(s) = \alpha \cdot \varphi_n(s)$$

$$\partial_{m{lpha}} L = \sum_{m{s} \in \mathcal{S}} (D_{\mathsf{obs}}(m{s}) - D(m{s})) m{arphi}_{m{n}}(m{s})$$

$$\partial_{\mathbf{W}_{i}} L = \sum_{s \in \mathcal{S}} \frac{\partial L}{\partial R(s)} \frac{\partial R(s)}{\partial \mathbf{W}_{i}}$$
$$= \sum_{s \in \mathcal{S}} (D_{\text{obs}}(s) - D(s)) \partial_{\mathbf{W}_{i}} R(s)$$

Results

Results — Wulfmeier

- A. Y. Ng and S. Russell.
 Algorithms for inverse reinforcement learning.
 In *ICML*, pages 663–670, 2000.
- R. S. Sutton and A. G. Barto.
 Reinforcement learning: An introduction, 1998.
- M. Wulfmeier, P. Ondruska, and I. Posner. Deep inverse reinforcement learning. arXiv preprint arXiv:1507.04888, 2015.
 - B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforcement learning. In *AAAI*, pages 1433–1438, 2008.