Домашняя работа 1

September 18, 2020

Задача 1 (5 баллов)

Отрезок длины $a_1 + a_2$ поделён на две части длины a_1 и a_2 соответственно. n точек последовательно бросаются на удачу на отрезок. Найти вероятность того, что ровно m из n точек попадут на часть отрезка длины a_1 .

Решение

Суммарная длина отрезка $=a_1+a_2$. Тогда вероятность попадания в ту или иную его часть равна $\frac{a_1}{a_1+a_2}$ или $\frac{a_2}{a_1+a_2}$. По условию m из n точек попадают в отрезок длины a_1 , остальные n-m попадают мимо. Назовем это событие "A". Найдём $\mathbb{P}(A)$. $\mathbb{P}(A)=(\frac{a_1}{a_1+a_2})^m*(\frac{a_2}{a_1+a_2})^{n-m}$.

Задача 2 (2 балла)

На плоскость нанесены горизонтальные параллельные прямые на одинаковом расстоянии a друг от друга. На плоскость наудачу бросается монета (круг) радиуса R ($R < \frac{a}{2}$). Найти вероятность того, что монета не пересечёт ни одну из прямых.

Решение

Плоскость => координаты x и y. Плоскость бесконечная. Рассмотрим "полоску" бесконечной длины и высоты = a. Куда может упасть центр монеты так, чтобы не пересекать прямые? Найдем "высоту" h этого отрезка. h=a-2R. Этот отрезок нужно бесконечно горизонтально продолжить на плоскости. Сведем задачу к нахождению вероятности попадания в кусок длины h отрезка длины a. $\mathbb{P}(h)=\frac{h}{a}=\frac{a-2R}{a}$.

Задача 3 (3 балла)

На шахматную доску случайным образом ставятся два белых короля. Найти вероятность того, что эти два короля будут бить друг друга.

Решение

Всего 64 клетки. Будем рассмотривать разные варианты положения первого короля. Всего их 3: король стоит где-то в середине поля - 36 клеток; король стоит в углу - 4 клетки; король с краю, но не в углу - 24 клетки. Далее рассмотрим те варианты позиций второго короля, при которых он будет бить первого. 1 - 8 клеток вокруг 1-го короля, 2 - 3 клетки вокруг 1-го, и 3 - 5 клеток вокруг 1-го. Осталось посчитать вероятность. $\mathbb{P} = \frac{36}{64} * \frac{8}{64} + \frac{6}{64} * \frac{3}{64} + \frac{24}{64} * \frac{5}{64} = \frac{36*8+4*3+24*5}{64*64} = \frac{420}{4096}$. Но каждая клетка поля учитывалась 2 раза, поэтому $\mathbb{P} = \frac{210}{4096} = \frac{105}{2048}$

Задача 4 (1.5 балла)

В n ящиках размещают 2n шаров. Найти вероятность того, что ни один ящик не пуст, если шары неразличимы и все различимые размещения имеют равные вероятности.

Решение

Будем размещать каждый раз по 1 шару в новый пустой ящик, пока не останется пустых. $\mathbb{P}=1*\frac{n-1}{n}*\frac{n-2}{n}=*...*\frac{1}{n}=\frac{(n-1)!}{n^{n-1}}.$ То есть при выборе ящика для i-го шара мы можем положить его в n-i+1. Оставшиеся n шаров можно разместить как угодно.

Задача 5 (*продолжение 4*) (1.5 балла)

Найти вероятность того, что заданный ящик содержит ровно m шаров.

Решение

Осталось распределить n шаров по n ящикам. Вероятность отсутствия пустых ящиков посчитана в предыдущей задаче, поэтому найдем вероятность того, что при размещении n шаров по n ящикам в выбранном ящике окажется m-1 шар. Это задача о "шарах и перегородках". n ящиков =>n-1 перегородок. Вероятность попадания m-1 шара в какой-то из n ящиков $=\frac{n}{n^{m-1}}=\frac{1}{n^{m-2}}$. Осталось разместить n-m+1

шар по n ящикам. Сколькими способами это можно сделать? Это будет $C_{2n-m}^{n-1}=\frac{(2n-m)!}{(n-1)!*(n-m+1)!}$. Можем дать ответ на задачу: $\mathbb{P}=\frac{(n-1)!}{n^{n-1}}*\frac{1}{n^{m-2}}*\frac{(2n-m)!}{(n-1)!*(n-m+1)!}=\frac{1}{n^{n-1}}*\frac{1}{n^{m-2}}*\frac{(2n-m)!}{(n-m+1)!}$.

Задача 6 (4 балла)

Пусть A_1, A_2, \ldots – последовательность независимых событий. Доказать, что

$$\mathbb{P}(\bigcap_{k=1}^{\infty} A_k) = \prod_{k=1}^{\infty} \mathbb{P}(A_k)$$

Решение

События A и B независимы $=> \mathbb{P}(A|B) = \mathbb{P}(A); \mathbb{P}(AB) = \mathbb{P}(A)\mathbb{P}(B)$. В условиях задачи переобозначим $(\bigcap_{k=2}^{\infty}A_k)=B$. Тогда имеем дело с выражением $\mathbb{P}(A_1B)=\mathbb{P}(A_1)*\mathbb{P}(B)$, которое верно по определению. Дальше переобозначим B как $A_2*\bigcap_{k=3}^{\infty}A_k=A_2B$. (тут уже $B=\bigcap_{k=3}^{\infty}A_k$). Получим результат $\mathbb{P}(A_1)*\mathbb{P}(A_2*\bigcap_{k=3}^{\infty}A_k)=\mathbb{P}(A_1)*\mathbb{P}(A_2*\bigcap_{k=3}^{\infty}A_k)=\mathbb{P}(A_1)*\mathbb{P}(A_2)*\mathbb{P}(\bigcap_{k=3}^{\infty}A_k)=\mathbb{P}(A_k)*\mathbb{P}(\bigcap_{k=3}^{\infty}A_k)$. Таким образом в итоге придем к выражению $\prod_{k=1}^{\infty}\mathbb{P}(A_k)$.

Задача 7 (3 балла)

В самолете n мест. Есть n пассажиров, выстроившихся друг за другом в очередь. Во главе очереди – «заяц» (пассажир без билета). У всех, кроме «зайца», есть билет, на котором указан номер посадочного билета. Так как «заяц» входит первым, он случайным образом занимает некоторое место. Каждый следующий пассажир, входящий в салон самолета, действует по такому принципу: если его место свободно, то садится на него, если занято, то занимает с равной вероятностью любое свободное. Найдите вероятность того, что последний пассажир сядет на свое место.

Решение

Заяц не занимает место последего пассажира с вероятностью $\mathbb{P}=\frac{n-1}{n}$. Следующий пассажир заходит и смотрит, не занято ли его место. Событие $A_i=$ [i-й пассажир не сел на место последнего], $H_{i1}=$ [его место занято], $H_{i2}=$ [его место свободно]. $\mathbb{P}(A_i)=\sum_{j=1}^2\mathbb{P}(A|H_{ij})\mathbb{P}(H_{ij})$. Дальше не сообржаю, куда прикручивать равновероятный выбор свободного места при занятом своём.

Задача 8 (5 баллов)

Пусть мужик производит эксперимент, который может завершиться любым из N способов, причем i-й результат происходит (независимо от мужика) с вероятностью p_i . Пусть мужик может врать или говорить правду вне зависимости от того, какой результат наблюдает (хотя его ответ, естественно, от наблюдения зависит), причем говорит правду с вероятностью p_{true} , а врет с вероятностью $p_{lie} = 1 - p_{true}$. Если он говорит правду, он называет результат, который имеет место. Если он врет, то он равновероятно говорит любой из оставшихся N-1 вариантов. Требуется найти вероятность того, что произошло условие i, при условии, что мужик сказал, что произошло условие i.

Решение

 $\mathbb{P}(\Pi$ роизошло і|мужик сказал, что произошло і) = $\mathbb{P}(p_i|p_{true}) = \frac{\mathbb{P}(p_i|p_{true})}{\mathbb{P}(p_{true})}$