Práctico 5 de Programación Funcional

UdelaR/FCien/CMat

octubre de 2016

- 1. Implementar el tipo de datos Nat y las funciones plus, times y exp vistas en el teórico (que corresponden resp. a suma, producto y exponenciación). Declarar Nat como instancia de Eq. Ord y Show.
 - (a) Probar que Zero es neutro (bilateral) de plus y que plus es asociativa. Para simplificar la escritura, adoptaremos la notación infija para las operaciones binarias y la simbología usual en matemática: m+n denota plus m n, m×n denota times m n y mⁿ denota exp m n.
 - (b) Para cada natural $n \in \mathbb{N}$ se define $\lceil n \rceil$ (el nombre de n) como: $\lceil 0 \rceil :=$ Zero y $\lceil n + 1 \rceil :=$ Succ $\lceil n \rceil$.

 Definir name :: Integer -> Nat que calcule la función $\lceil _ \rceil$.
 - (c) Probar que $\forall n : : \mathbb{N}$ at $\forall p : : \mathbb{N}$ at parcial p + p = p.

 Probar que $\forall n \in \mathbb{N} \forall p : : \mathbb{N}$ at parcial $p + p = \mathbb{N}$.

 Concluir que todo parcial es de la forma $p + p = \mathbb{N}$.
 - (d) Concluir que + no es conmutativa en todo el tipo Nat. ¿Qué sucede restringiéndola a los miembros finitos de Nat?
 - (e) Probar que * es distributiva frente a + (en todo Nat).
 - (f) Probar que 「1¬ es neutro (bilateral) de * y que * es asociativa.
 - (g) Probar que $\forall n \in \mathbb{N} \forall x:: \mathbb{N} \text{at } x*(\bot + \ulcorner n\urcorner) = \bot + (x*\ulcorner n\urcorner).$ Probar que $\forall m, n \in \mathbb{N} [m \neq 0 \Rightarrow (\bot + \ulcorner n\urcorner)* \ulcorner m\urcorner = \bot + \ulcorner n\urcorner]$
 - (h) Concluir que * no es conmutativa en todo el tipo Nat. ¿Qué sucede restringiéndola a los miembros finitos de Nat?
 - (i) Investigar si x $(y+z) = (x y) \times (x z)$ para todo x, y, z::Nat.
- (a) Definir por pattern mathching la resta (-) en Nat, de modo que para todo n > 0, Zero ¬n¬ = ⊥.
 Probar que ∀ x::Nat ∀ y::Nat (x+y)-y = x.
 - (b) Definir agregando cláusulas a la definición de (-), una versión total
 (-') tal que m -' n = Zero si m < n.

- (c) Consideremos la proposición $\mathcal{P}(\mathbf{n}) \equiv \exists m \in \mathbb{N} \ \mathbf{n} \ -' \lceil m \rceil = \bot$. Demostrar por inducción que $\mathcal{P}(\mathbf{n})$ se cumple para todos los números parciales n. Demostrar que infinity -' \mathbf{m} = infinity para todo \mathbf{m} ::Nat finito. Concluir que $\mathcal{P}(\text{infinity})$ no se satisface.
 - Este ejemplo muestra que una fórmula acerca de listas que contiene cuantificadores existenciales y se cumple para datos parciales, no necesariamente se cumple para datos infinitos.
- 3. Sean e1, e2::b1 \rightarrow ... \rightarrow bk \rightarrow c \rightarrow a funciones computables en la k+1-ésima variable. Las funciones computables son *monótonas y continuas*, esto es, fijados x1::b1, ..., xk::bk:
 - Si y1 \subseteq cy2 entonces e1(x1, ..., xk, y1) \subseteq ae1(x1, ..., xk, y2). Ídem para e2.
 - Sea C una cadena de valores de tipo c y con supremo s::c. Entonces $\sup\{e1(x1,...,xk,y)\}=e1(x1,...,xk,s)$, ídem para e2.

```
\operatorname{Sea} \mathcal{P}(y) \equiv \forall \mathtt{x1::b1...} \ \forall \mathtt{xk::bk} \quad \mathtt{e1(x1,...,xk,y)} \ \sqsubseteq_{\mathtt{a}} \ \mathtt{e2(x1,...,xk,y)}.
```

(a) Probar que para toda cadena \mathcal{C} con supremo s:

si
$$\forall x \in \mathcal{C} \ \mathcal{P}(c)$$
, entonces $\mathcal{P}(s)$.

(b) La igualdad en a viene dada por: x = y si y sólo si $x \sqsubseteq_a y$ e y $\sqsubseteq_a x$ (esto es: dos datos son iguales si tienen la misma información). Una fórmula ecuacional es de la forma:

$$\mathcal{P}(y) \equiv \forall x1::b1...\forall xk::bk \quad e1(x1,...,xk,y) = e2(x1,...,xk,y).$$

Usando la parte anterior, concluir que las fórmulas ecuacionales que son válidas para datos parciales, son válidas para datos infinitos (e.g.: en infinity::Nat, en listas infinitas, etc.)

- 4. Bosquejar el orden de Scott para los tipos Bool, (Bool, Bool), [Bool]. Decir cuáles de las siguientes especificaciones de funciones se pueden programar, haciéndolo en caso afirmativo y justificando la imposibilidad en caso contrario:
 - f(True:⊥) = True y f(True:False:⊥)=False
 - f(True:⊥) = True y f([True,False])=False
 - f(True:\(\percap)\) = True y f([True,False])=True
 - $f(True,False)=\bot y f(False,True)=True:\bot$
 - Se define

¿Es posible definir f::Nat->[Bool] tal que

$$\forall n \in \mathbb{N} \text{ f } (\bot + \lceil n \rceil) = \text{trueFalse n}?$$

- 5. Generalizaciones del principio de recursión. Dados tipos a y b, definimos la notación $a^0 \rightarrow b = b$ y $a^{k+1} \rightarrow b = a \rightarrow (a^k \rightarrow b)$ para todo natural k.
 - (a) El esquema de recursión estructural con parámetros es el siguiente principio de construcción: Dadas $b: \mathbb{N}^k \to \mathbb{N}$ y $h: \mathbb{N}^{k+1} \to \mathbb{N}$, b y h definen una única función $f: \mathbb{N}^{k+1} \to \mathbb{N}$ tal que $f(0, \vec{x}) = b(\vec{x})$ y $f(n+1, \vec{x}) = h(f(n, \vec{x}), \vec{x}).$

Definir $f::Nat^{k+1}$ ->Nat mediante una instancia de foldNat h' b' para una funciones h' y b' convenientes (que dependerán de h y b).

- (b) El esquema de recursión primitiva es el siguiente principio de construcción: Dadas $b: \mathbb{N}^k \to \mathbb{N}$ y $h: \mathbb{N}^{k+2} \to \mathbb{N}$, b y h definen una única función $f: \mathbb{N}^{k+1} \to \mathbb{N}$ que satisface:
 - $f(\vec{x}, 0) = b(\vec{x})$.
 - $f(\vec{x}, y + 1) = h(\vec{x}, y, f(\vec{x}, y)).$

Definir para cada aridad k una función $\texttt{primRec::} (\texttt{Nat}^k -> \texttt{Nat}) -> (\texttt{Nat}^{k+2} -> \texttt{Nat}) -> \texttt{Nat}^{k+1} -> \texttt{Nat} \text{ que implese}$ mente la recursión primitiva. Escribir mediante foldNat una función primRec' tal que primRec=snd.primRec'. ¿Es posible fusionar snd.primRec' en una definición que sólo involucre foldNat? Justificar.

6. En \mathbb{N} se tienen las siguientes igualdades:

$$m+n = \underbrace{\operatorname{succ}(\dots(\operatorname{succ}(m))\dots)}_{n}$$

 $m \times n = \underbrace{m+(\dots(m+0)\dots)}_{n}$
 $m^{n} = \underbrace{m \times (\dots(m\times1)\dots)}_{n}$

Si denotamos $m\uparrow^0 n=\mathrm{succ}(n),\ m\uparrow^1 n=m+n,\ m\uparrow^2 n=m\times n$ y $m\uparrow^3 n=m^n,$ tenemos entonces una sucesión finita de operaciones binarias \uparrow^k que satisfacen

$$m\uparrow^{k+1}(n+1)=m\uparrow^k(a\uparrow^{k+1}n)$$

Si agregamos las condiciones $m \uparrow^k 0 = 1$ para todo $k \geq 3$, tenemos la cláusula anterior define una sucesión infinita de operaciones.

Definir una función hyperexp::Nat->Nat->Nat->Nat tal que hyperexp $\lceil k \rceil$ compute \uparrow^k para todo natural k.

Demostrar que en los enteros finitos, hyperexp $\lceil k \rceil$ con k = 0, 1, 2 y 3coinciden respectivamente con (\x-> Succ), plus, times y exp. ¿Qué sucede para enteros parciales? ¿Qué sucede en infinity?

7. Dos tipos de datos a y b son isomorfos si existen funciones calculabes:

btoa :: b -> a atob :: a -> b

tales que:

btoa . atob = idA,
atob . btoa = idB,

siendo idA e idB las identidades en a y b respectivamente. Demostrar que existen isomorfismos entre:

- (a) (a,b) y data Pair a b = Pair a b
- (b) Bool y Either Bottom Bottom
- (c) Maybe a y Either a Bottom
- (d) String e Integer
- (e) [Bottom] y Nat
- (f) (a,(b,c)) y ((a,b),c)
- (g) (a, Either b c) y Either (a,b) (a,c)

En todos los casos, implementar las dos funciones, (y demostrar que cumplen lo pedido).

- 8. Considerar nuevamente el tipo de datos Nat
 - (a) Definir una función que capture la recursión estructural sobre los naturales (en la literatura, suele llamarse fold o catamorfismo):

$$foldNat :: (t \rightarrow t) \rightarrow t \rightarrow Nat \rightarrow t$$

- (b) Definir las funciones del ejercicio 1 usando foldNat
- (c) Implementar las funciones

dup :: Nat -> Nat,
sum1 :: Nat -> Nat,
sum2 :: Nat -> Nat

que duplican, y suman una o dos unidades a un natural, respectivamente. $\,$

(d) Demostrar por inducción estructural que:

$$dup . sum1 = sum2 . dup$$

(e) Demostrar por inducción estructural que:

foldNat Succ Zero = id