University of Edinburgh, School of Mathematics Incomplete Data Analysis, 2020/2021

EM algorithm for the two-component Gaussian mixture

Vanda Inácio

Here we implement the EM algorithm for the two-component Gaussian mixture model. Remember that for the E-step we have

$$\begin{split} E[Z_i \mid y, \theta^{(t)}] &= E[Z_i \mid y_i, \theta^{(t)}] \\ &= 1 \times \Pr(Z_i = 1 \mid y_i, \theta^{(t)}) + 0 \times \Pr(Z_i = 0 \mid y_i, \theta^{(t)}) \\ &= \frac{p^{(t)} \phi\left(y_i; \mu_1^{(t)}, (\sigma_1^{(t)})^2\right)}{p^{(t)} \phi\left(y_i; \mu_1^{(t)}, (\sigma_1^{(t)})^2\right) + (1 - p^{(t)}) \phi\left(y_i; \mu_2^{(t)}, (\sigma_2^{(t)})^2\right)} \\ &= \widetilde{p}_i^{(t)}, \end{split}$$

and thus

$$Q(\theta \mid \theta^{(t)}) = \sum_{i=1}^{n} \widetilde{p}_{i}^{(t)} \left\{ \log p + \log \phi(y_{i}; \mu_{1}, \sigma_{1}^{2}) \right\} + \sum_{i=1}^{n} \left(1 - \widetilde{p}_{i}^{(t)} \right) \left\{ \log(1 - p) + \log \phi(y_{i}; \mu_{2}, \sigma_{2}^{2}) \right\}.$$

For the M-step we have

$$\begin{split} p^{(t+1)} &= \frac{\sum_{i=1}^{n} \widetilde{p}_{i}^{(t)}}{n}, \\ \mu_{1}^{(t+1)} &= \frac{\sum_{i=1}^{n} \widetilde{p}_{i}^{(t)} y_{i}}{\sum_{i=1}^{n} \widetilde{p}_{i}^{(t)}}, \\ (\sigma_{1}^{(t+1)})^{2} &= \frac{\sum_{i=1}^{n} \widetilde{p}_{i}^{(t)} (y_{i} - \mu_{1}^{(t+1)})^{2}}{\sum_{i=1}^{n} \widetilde{p}_{i}^{(t)}}, \\ \mu_{2}^{(t+1)} &= \frac{\sum_{i=1}^{n} (1 - \widetilde{p}_{i}^{(t)}) y_{i}}{\sum_{i=1}^{n} (1 - \widetilde{p}_{i}^{(t)})}, \\ (\sigma_{2}^{(t+1)})^{2} &= \frac{\sum_{i=1}^{n} (1 - \widetilde{p}_{i}^{(t)}) (y_{i} - \mu_{2}^{(t+1)})^{2}}{\sum_{i=1}^{n} (1 - \widetilde{p}_{i}^{(t)})}. \end{split}$$

```
em.mixture.two.normal <- function(y, theta0, eps){
n <- length(y)

theta <- theta0

p <- theta[1]
mu1 <- theta[2]; sigma1 <- theta[3]</pre>
```

```
mu2 <- theta[4]; sigma2 <- theta[5]</pre>
diff <-1
while(diff > eps){
theta.old <- theta
#E-step
ptilde1 <- p*dnorm(y, mean = mu1, sd = sigma1)</pre>
ptilde2 \leftarrow (1 - p)*dnorm(y, mean = mu2, sd = sigma2)
ptilde <- ptilde1/(ptilde1 + ptilde2)</pre>
#M-step
p <- mean(ptilde)</pre>
mu1 <- sum(y*ptilde)/sum(ptilde)</pre>
sigma1 <- sqrt(sum(((y - mu1)^2)*ptilde)/sum(ptilde))</pre>
mu2 <- sum(y*(1 - ptilde))/sum(1 - ptilde)</pre>
sigma2 \leftarrow sqrt(sum(((y - mu2)^2)*(1 - ptilde))/sum(1 - ptilde))
theta <- c(p, mu1, sigma1, mu2, sigma2)
diff <- sum(abs(theta - theta.old))</pre>
}
return(theta)
}
```

We will now load the old faithful data set.

Time between Old Faithful eruptions

Lastly, we apply the developed function to the old faithful data. For the starting values we have considered

$$p^{(0)} = 0.4, \quad \mu_1^{(0)} = 40, \quad \sigma_1^{(0)} = 4, \quad \mu_2^{(0)} = 90, \quad \sigma_2^{(0)} = 4,$$

while for the stopping criterion we have used

$$|p^{(t+1)} - p^{(t)}| + |\mu_1^{(t+1)} - \mu_1^{(t)}| + |\sigma_1^{(t+1)} - \sigma_1^{(t)}| + |\mu_2^{(t+1)} - \mu_2^{(t)}| + |\sigma_2^{(t+1)} - \sigma_2^{(t)}| < \varepsilon,$$

with $\varepsilon = 0.00001$

```
res <- em.mixture.two.normal(y = waiting, c(0.4, 45, 4, 90, 4), 0.00001)
p <- res[1]
mu1 <- res[2]
sigma1 \leftarrow res[3]
mu2 <- res[4]
sigma2 \leftarrow res[5]
p; mu1; mu2; sigma1; sigma2
## [1] 0.3608862
## [1] 54.61486
## [1] 80.09107
## [1] 5.871224
## [1] 5.867731
hist(waiting, main = "Time between Old Faithful eruptions",
     xlab = "Minutes",
     ylab = "Density",
     cex.main = 1.5, cex.lab = 1.5, cex.axis = 1.4,
```

```
freq = F, ylim = c(0,0.05))
curve(p*dnorm(x, mu1, sigma1) + (1 - p)*dnorm(x, mu2, sigma2),
    add = TRUE, lwd = 2, col = "blue2")
```

Time between Old Faithful eruptions

The package mixtools is capable of handling mixtures of Gaussians through the function normalmixEM. The code follows below.

Time between Old Faithful eruptions

