TS214 Algorithmes de compression multimédia

Plan

- Débit
 - Définition
 - Exemples de calcul
- Luminance/Chrominance
 - Codage YUV
 - Reconstitution d'une séquence vidéo
- Entropie
 - Définition
 - Image fixe
 - Séquence vidéo (block-matching)
- Standard JPEG (TP évalué)

Débit (1/2)

Définition

Quantité d'information transmise par unité de temps

$$D = \frac{Q}{T}$$

- Unités
 - Bits par seconde (bit/s ou bps)
 - O Bauds (Bd): nombre de symboles transmis par seconde
 - ✓ Usage souvent abusif : correct pour un signal à 2 valeurs possibles.

Débit (2/2)

- Lien « confus » entre bits et octets
 - Définition : 1 octet (o) = 8 bits (bit)
 - Usage « abusif » historique (mémoires, …)
 - \checkmark 1 Ko = 1024 o (2¹⁰ octets)
 - \checkmark 1 Mo = 1024 Ko = 1024² o
 - \checkmark 1 Go = 1024 Mo = 1024² Ko = 1024³ o

- Standard IEC 60027-2 (1999)
 - √ 1024 o = 1 Kio (kibioctet), 1 048 576 o = 1 Mio (mébioctet), ...
- Différence de comptage mathématiques/numériques
 - ✓ 256 Go = 238,42 Gio
 - \checkmark 256x10⁹ o = 238,42x2³⁰ o

Exemples de calcul

- Temps de transmission (sans bits de contrôle)
 - Image binaire 256×256, à 2400 Bd
 - Image 1024×1024 en 256 niveaux de gris, à 2400 Bd
 - o Image couleur RGB (8 bits/plan) 512×512, à
 - √ 9600 Bd (réseau GSM)
 - √ 56 kBd (réseau V.90)
 - √ 10 Mbit/s (réseau Ethernet)
- Débit
 - Séquence d'images couleur RGB (8 bits/plan) 720×576 à 25 images par seconde avec un facteur de compression égal à 100

Facteur et taux de compression

Facteur

$$F = \frac{Q_{initiale}}{Q_{finale}}$$

► Taux (exprimé en %)

$$T = 100 \times \frac{Q_{initiale} - Q_{finale}}{Q_{initiale}} = 100 \left(1 - \frac{1}{F}\right)$$

Luminance/Chrominance (1/2)

- Format YUV 4:2:0 utilisé par les camescopes DV en Europe : images codées sous la forme de blocs de luminance de taille W×H suivis par deux sous-blocs de chrominance de taille (W/2)×(H/2)
 - Écrire une fonction Matlab qui lit une séquence de N images de taille W×H (utiliser fopen, fread, fclose)
 - Valider la fonction sur la séquence news30.yuv (30 images 352×288)
 - Visualiser les différents canaux de luminance et de chrominance (utiliser im2frame et movie)

Luminance/Chrominance (2/2)

• Reconstruire et visualiser la séquence en couleur

$$\begin{cases} R = 1.164(Y - 16) + 1.596(V - 128) \\ G = 1.164(Y - 16) - 0.813(V - 128) - 0.391(U - 128) \\ B = 1.164(Y - 16) + 2.018(U - 128) \end{cases}$$

Rappel : les données lues par *Matlab* sont stockées « en colonne »

Entropie (1/3)

- Entropie : Variabilité/Quantité d'information d'un signal
- Information ~ Innovation

Degré de l'information inversement proportionnel à la probabilité d'apparition il neige à Tahiti

le soleil se lève à l'est

- Notations
 - O Chaîne de symboles (source) à compresser
 - ✓ Exemple : AABCABBCBBCDCCCD
 - Notations
 - \checkmark Dictionnaire et alphabet (symboles) $D = C_i \Big|_{i=1:N}$
 - ✓ Source $S = C_i C_i \subset D$

Entropie (2/3)

Quantité (unitaire) d'information

$$Q(C_i) = -k \times \log(p_i)$$

$$Q(C_i) = -k \times \log(p_i)$$
 nombre d'états différents du codage
$$p_i = \frac{n_i}{M}$$
 nombre d'occurrences du symbole nombre total de symboles de la source

Codage binaire

$$k = \frac{1}{\log(2)} \longrightarrow Q(C_i) = -\log_2\left(\frac{n_i}{M}\right)$$

Entropie (3/3)

Entropie H:

$$H(S) = E[Q(C_i)] = -\sum_{i=1}^{N} \frac{n_i}{M} \log_2\left(\frac{n_i}{M}\right)$$

bits/symbole

→ L'entropie donne la limite basse théorique du minimum de bits sur lequel coder un symbole.

Exemples:

 $H_1=1$ bit/symbole

 H_2 =7.56 bits/symbole

Entropie (3/3)

Entropie H:
$$H(S) = E[Q(C_i)] = -\sum_{i=1}^{N} \frac{n_i}{M} \log_2\left(\frac{n_i}{M}\right)$$

bits/symbole

→ L'entropie donne la limite basse théorique du minimum de bits sur lequel coder un symbole.

Exemples:

$$S = AABCABBCBBCDCCCD$$
 $N = 4$ et $M = 16$

$$N = 4$$
 et $M = 16$

Entropie (3/3)

Entropie H:

$$H(S) = E[Q(C_i)] = -\sum_{i=1}^{N} \frac{n_i}{M} \log_2\left(\frac{n_i}{M}\right)$$

bits/symbole

→ L'entropie donne la limite basse théorique du minimum de bits sur lequel coder un symbole.

Exemples:

$$S = 0011110011$$

Calculs d'entropie (1/2)

- Écrire une fonction qui mesure l'entropie d'une image définie par des entiers non signés codés sur 8 bits et l'appliquer aux images :
 - implant.bmp et lezard.bmp

Rappels

- ✓ La fonction *hist* permet de calculer le tableau des occurrences
- ✓ La syntaxe A(:) permet de convertir une matrice en vecteur
- Comparer les résultats obtenus avec la fonction entropy de Matlab

Calculs d'entropie (2/2)

 Écrire une fonction qui calcule l'entropie de la différence « colonne à colonne » définie par

$$D(i, j) = A(i, j) - A(i, j + 1)$$

Observer l'histogramme de D et expliquer les résultats obtenus

Compression Vidéo

Séquence et mouvement

différence simple

différence avec compensation de mouvement

Block Matching (1/2)

Block Matching (2/2)

- Paramètres
 - Découpe en blocs
 - ✓ 4×4, 8×8, 16×16, ...
 - Fenêtre de recherche de candidats
 - Algorithme de recherche de candidats
 - Exhaustif
 - Diamant
 - **√**
 - Critère de similarité
 - ✓ SAD
 - ✓ SSE
 - **√** ..

$$\sum_{i,j} \left| I_{n+1}(i,j) - I_n(i+u,j+v) \right|$$

$$(u,v) \in \Omega$$

Compensation de mouvement (1/3)

- Lire et afficher deux images consécutives I₁ et I₂ de la séquence « football »
- Ecrire une fonction qui estime le mouvement « backward » de « I_2 vers I_1 » par la méthode « Block Matching »
 - Découpage en blocs de 8×8 pixels
 - Recherche exhaustive sur des fenêtres de taille 15×15
 - Critère SAD
- Afficher le mouvement
 - Images (composantes horizontale et verticale, amplitude, direction)
 - O Vecteurs (flèches) en surimpression (quiver) de l'image traitée

Compensation de mouvement (1/3)

- Lire trois images consécutives I₁, I₂ et I₃
- Calculer et afficher les différences simples I2 I1 et I2 I3
- Calculer les mouvements « backward » de « I₂ vers I₁ » et « forward » de « I₂ vers I₃ »
- Calculer et afficher les images
 - o I_1^c obtenue après compensation de mouvement « backward »
 - o I_3^c obtenue après compensation de mouvement « forward »
- Calculer et afficher les différences « compensées » $I_2 I_1^C$, $I_2 I_3^C$ et $I_2 (I_1^C + I_3^C)/2$

Compensation de mouvement (1/3)

- Réitérer les calculs (mouvements, compensation et différences) avec des mouvements ½ pixel
- Comparer les entropies et les énergies (écart-type de l'intensité) de
 - $0 I_1, I_2, I_3$
 - $0 I_2 I_1, I_2 I_3$
 - $0 l_2 l_1^C, l_2 l_3^C$
 - $0 I_2 (I_1^C + I_3^C)/2$
 - $0 I_2 (I_1^C + I_3^C)_{\text{subpixel}}/2$
- Calculer et afficher les entropies et les énergies sur tous les triplets d'images successives de la séquence « football »