FACULTAD DE CIENCIAS – E.P. CIENCIA DE LA COMPUTACION INTRODUCCION A LA CIENCIA DE LA COMPUTACION (CC101) - 2011-I 4to. TEST CALIFICADO

NOMBRE:	CODIGO:
SECCION:	

- 1- Usar una unica operacion (logica, aritmetica y/o de desplazamiento) para multiplicar por dos los numeros binarios: 00101101 y -01100101. Indicar el tipo de operacion.
- 2- Usar una unica operacion (logica, aritmetica y/o de desplazamiento) para dividir entre dos los numeros binarios: 00101101 y -01100101. Indicar el tipo de operacion.
- 3- Cuantas y cuales operaciones (logicas, aritmeticas y/o de desplazamiento) y/o mascara se debe ejecutar para obtener el valor del cuartto bit (comenzando por la derecha) de un numero binario de 8 bits?
- 4- Los tres pasos para ejecutar una instruccion de un programa en el computador son ejecutados en el siguiente orden.
 - a) fetch, execute y decode; b) decode, execute y fetch
 - c) fetch, decode y execute; d) decode, fetch y execute
- 5- Usando las intrucciones de un computador "sencillo" ideal, cual es el codigo (hexadecimal) para realizar el siguiente calculo: B < -A 2

Instruction	Code d ₁	Operands			
		d ₂	d ₃	d₄	Action
HALT	0				Stops the execution of the program
LOAD	1	R _D	N	Л _S	$R_D \leftarrow M_S$
STORE	2	M _D R _S		R _S	$M_D \leftarrow R_S$
ADDI	3	RD	R ₅₁	R _{S2}	R _D «- R _{S1} + R _{S2}
ADDF	4	R _D	R _{S1}	R _{S2}	R _D ← R _{S1} + R _{S2}
MOVE	5	R _D	R _S		R _D ← R _S
по⊤	5	RD	Rs		$R_D \leftarrow \overline{R}_S$
AND	7	R _D	R ₅₁	R _{SZ}	$R_D \leftarrow R_{51}$ AND R_{52}
OR	8	R _D	R _{S1}	R ₅₂	$R_D \leftarrow R_{S1} \text{ OR } R_{S2}$
XOR	9	RD	R _{S1}	R ₅₂	R _D ← R _{S1} XOR R _{S2}
INC	А	R			R ← R + 1
DEC	В	R			R ← R – 1
ROTATE	С	R	n	0 or 1	Rot _n R
JUMP	D	R	74	n	IF $R_0 \neq R$ then $PC = n$, otherwise continue

Key: R_S, R_{S1}, R_{S2}: Hexadecimal address of source registers

RD: Hexadecimal address of destination register

Ms: Hexadecimal address of source memory location

M_D: Hexadecimal address of destination memory location

n: hexadecimal number

d₁, d₂, d₃, d₄: First, second, third, and fourth hexadecimal digits