第二章 基础知识

修贤超

https://xianchaoxiu.github.io

目录

- 2.1 范数
- 2.2 导数
- 2.3 广义实值函数
- 2.4 凸集
- 2.5 凸函数
- 2.6 共轭函数
- 2.7 次梯度

向量范数的定义

- 令记号 $\|\cdot\|: \mathbb{R}^n \to \mathbb{R}^+$ 是一种非负函数, 如果它满足
 - \blacksquare 正定性 对于 $\forall v \in \mathbb{R}^n$, 有 $||v|| \ge 0$, 且 $||v|| = 0 \Leftrightarrow v = 0_{n \times 1}$
 - \square 齐次性 对于 $\forall v \in \mathbb{R}^n$ 和 $\alpha \in \mathbb{R}$, 有 $\|\alpha v\| = |\alpha| \|v\|$
 - \square 三角不等式 对于 $\forall v, w \in \mathbb{R}^n$, 均成立 $||v+w|| \leq ||v|| + ||w||$

则称 $\|\cdot\|$ 是定义在向量空间 \mathbb{R}^n 上的向量范数

■ 最常用的向量范数

$$\|v\|_p = \left(\sum_{i=1}^n |v_i|^p\right)^{\frac{1}{p}}, \quad \|v\|_\infty = \max_{1 \le j \le n} |v_j|$$

向量范数的定义

■ 不同范数所度量的距离分别具有怎样的特征

矩阵范数

- ℓ_1 范数 $||A||_1 = \sum_{i,j} |A_{ij}|$
- Frobenius 范数 $\|A\|_F = \sqrt{\sum_{i,j} A_{ij}^2} = \sqrt{\operatorname{Tr}(AA^\top)}$
- 算子范数是一类特殊的矩阵范数, 由向量范数诱导得到

$$||A||_{(m,n)} = \max_{x \in \mathbb{R}^n, ||x||_{(n)} = 1} ||Ax||_{(m)}$$

- p = 1 时, $||A||_{p=1} = \max_{||x||_1 = 1} ||Ax||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|_1$
- p=2 时, $\|A\|_{p=2}=\max_{\|x\|_2=1}\|Ax\|_2=\sqrt{\lambda_{\max}(A^{\top}A)}$, 又称为 A 的谱范数
- $p = \infty$ 时, $\|A\|_{p=\infty} = \max_{\|x\|_{\infty}} \|Ax\|_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|$

矩阵范数

■ 核范数

$$||A||_* = \sum_{i=1}^r \sigma_i$$

■矩阵内积

$$\langle A, B \rangle = \operatorname{Tr} \left(A B^{\top} \right) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} b_{ij}$$

设 $A, B \in \mathbb{R}^{m \times n}$, 则

$$|\langle A, B \rangle| \leq ||A||_F ||B||_F$$

等号成立当且仅当 A 和 B 线性相关, 即柯西不等式

■ 同一矩阵空间内, 矩阵范数彼此之间是相互等价的

目录

- 2.1 范数
- 2.2 导数
- 2.3 广义实值函数
- 2.4 凸集
- 2.5 凸函数
- 2.6 共轭函数
- 2.7 次梯度

梯度

■ 给定函数 $f: \mathbb{R}^n \to \mathbb{R}$,且 f 在点 x 的一个邻域内有意义,若存在向量 $g \in \mathbb{R}^n$ 满足

$$\lim_{p \to 0} \frac{f(x+p) - f(x) - \langle g, p \rangle}{\|p\|} = 0$$

其中 $\|\cdot\|$ 是任意的向量范数,就称 f 在点 x 处<mark>可微(或 Fréchet 可微),g 为 f 在点 x 处的梯度,记作</mark>

$$\nabla f(x) = \left[\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \cdots, \frac{\partial f(x)}{\partial x_n}\right]^{\top}$$

■ 如果对区域 D 上的每一个点 x 都有 $\nabla f(x)$ 存在,则称 f 在 D 上可微

海瑟矩阵

■ 如果函数 $f(x): \mathbb{R}^n \to \mathbb{R}$ 在点 x 处的二阶偏导数 $\frac{\partial^2 f(x)}{\partial x_i \partial x_j}$ $i,j=1,2,\cdots,n$ 都存在,则 f 在点 x 处的海瑟矩阵为

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_3} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} & \frac{\partial^2 f(x)}{\partial x_2 \partial x_3} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \vdots & & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \frac{\partial^2 f(x)}{\partial x_n \partial x_3} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{bmatrix}$$

- 当 $\nabla^2 f(x)$ 在区域 D 上的每个点 x 处都存在时,称 f 在 D 上二阶可微.若 $\nabla^2 f(x)$ 在 D 上还连续,则称 f 在 D 上二阶连续可微
- 海瑟矩阵是一个对称矩阵

矩阵变量函数的导数

■ 对于以 $m \times n$ 矩阵 X 为自变量的函数 f(X),若存在矩阵 $G \in \mathbb{R}^{m \times n}$ 满足

$$\lim_{V \to 0} \frac{f(X+V) - f(X) - \langle G, V \rangle}{\|V\|} = 0$$

其中 $\|\cdot\|$ 是任意矩阵范数,就称矩阵变量函数 f 在 X 处 Fréchet 可微,G 为 f 在 Fréchet 可微意义下的梯度,记为

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_{11}} & \frac{\partial f}{\partial x_{12}} & \cdots & \frac{\partial f}{\partial x_{1n}} \\ \frac{\partial f}{\partial x_{21}} & \frac{\partial f}{\partial x_{22}} & \cdots & \frac{\partial f}{\partial x_{2n}} \\ \vdots & \vdots & & \vdots \\ \frac{\partial f}{\partial x_{m1}} & \frac{\partial f}{\partial x_{m2}} & \cdots & \frac{\partial f}{\partial x_{mn}} \end{bmatrix}$$

矩阵变量函数的导数

■ 设f(X) 为矩阵变量函数,如果对任意方向 $V \in \mathbb{R}^{m \times n}$,存在矩阵 $G \in \mathbb{R}^{m \times n}$ 满足

$$\lim_{V \to 0} \frac{f(X+V) - f(X) - \langle G, V \rangle}{\|V\|} = 0$$

$$\lim_{t \to 0} \frac{f(X+tV) - f(X) - t\langle G, V \rangle}{t} = 0$$

则称 f 关于 X Gâteaux 可微, G 为 f 在 X 处 Gâteaux 可微意义下的梯度

 \blacksquare 当 f 是 Fréchet 可微函数时, f 也是 Gâteaux 可微的, 且梯度相等

例子

■ 线性函数 $f(X) = \text{Tr}(AX^{\top}B)$

$$\lim_{t \to 0} \frac{f(X + tV) - f(X)}{t} = \lim_{t \to 0} \frac{\text{Tr}(A(X + tV)^{\top}B) - \text{Tr}(AX^{\top}B)}{t}$$
$$= \text{Tr}(AV^{\top}B) = \langle BA, V \rangle$$
$$\Rightarrow \quad \nabla f(X) = BA$$

■ 二次函数
$$f(X,Y) = \frac{1}{2} \|XY - A\|_F^2$$

$$f(X,Y+tV) - f(X,Y) = \frac{1}{2} \|X(Y+tV) - A\|_F^2 - \frac{1}{2} \|XY - A\|_F^2$$

$$= \langle tXV, XY - A \rangle + \frac{1}{2} t^2 \|XV\|_F^2$$

$$= t\langle V, X^\top (XY - A) \rangle + \mathcal{O}(t^2)$$
 ⇒ $\frac{\partial f}{\partial Y} = X^\top (XY - A)$, $\frac{\partial f}{\partial Y} = (XY - A)Y^\top$

目录

- 2.1 范数
- 2.2 导数
- 2.3 广义实值函数
- 2.4 凸集
- 2.5 凸函数
- 2.6 共轭函数
- 2.7 次梯度

广义实值函数与适当函数

- ullet 令 $\mathbb{R}:=\mathbb{R}\cup\{\pm\infty\}$ 为广义实数空间,则映射 $f:\mathbb{R}^n\to\mathbb{R}$ 称为广义实值函数
- 给定广义实值函数 f 和非空集合 \mathcal{X} , 如果存在 $x \in \mathcal{X}$ 使得 $f(x) < +\infty$, 且对任意的 $x \in \mathcal{X}$ 都有 $f(x) > -\infty$, 则称 f 是关于集合 \mathcal{X} 的适当函数
 - □ 至少有一处取值不为正无穷
 - □ 处处取值不为负无穷
- 对于适当函数 f, 规定其定义域

$$dom f = \{x \mid f(x) < +\infty\}$$

闭函数

- 设f 为广义实值函数,称 $C_{\alpha} = \{x \mid f(x) \leq \alpha\}$ 为 α -下水平集
- $lue{lue{r}}$ 设 f 为广义实值函数,称 epi $f=\{\,(x,t)\in\mathbb{R}^{n+1}\,|f(x)\leq t\}$ 为上方图
- $lacksymbol{\bullet}$ 设 f 为广义实值函数,若 $\mathrm{epi}\ f$ 为闭集,则称 f 为闭函数

下半连续函数

■ 设f 为广义实值函数,若对任意的 $x \in \mathbb{R}^n$,有

$$\liminf_{y \to x} f(y) \ge f(x)$$

则 f(x) 为下半连续函数

闭函数与下半连续函数

- 设广义实值函数 $f: \mathbb{R}^n \to \overline{\mathbb{R}}$,则以下命题等价

 - □ f(x) 是下半连续的
 - □ f(x) 是闭函数
- 闭(下半连续)函数的性质
 - □ 若 f 与 g 均为适当的闭(下半连续)函数,并且 $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$,则 f+g 也是闭(下半连续)函数
 - \square 若 f 为闭(下半连续)函数,则 f(Ax+b) 也为闭(下半连续)函数
 - \square 若每一个函数 f_{α} 均为闭(下半连续)函数,则 $\sup_{\alpha}f_{\alpha}(x)$ 也为闭(下半连续)函数

目录

- 2.1 范数
- 2.2 导数
- 2.3 广义实值函数
- 2.4 凸集
- 2.5 凸函数
- 2.6 共轭函数
- 2.7 次梯度

凸集的几何定义

■ 若过集合 C 中的任意两点的直线都在 C 内, 则称 C 为<mark>仿射集</mark>, 即

$$x_1, x_2 \in \mathcal{C} \Rightarrow \theta x_1 + (1 - \theta) x_2 \in \mathcal{C}, \forall \theta \in \mathbb{R}$$

■ 若连接集合 C 中的任意两点的线段都在 C 内, 则称 C 为<mark>凸集</mark>, 即

$$x_1, x_2 \in \mathcal{C} \Rightarrow \theta x_1 + (1 - \theta) x_2 \in \mathcal{C}, \forall 0 \leqslant \theta \leqslant 1$$

凸集的性质

- 若S 是凸集,则 $kS = \{ks \mid k \in \mathbb{R}, s \in S\}$ 是凸集
- 若S和T均是凸集,则 $S+T=\{s+t\mid s\in S,t\in T\}$ 是凸集
- 若 S 和 T 均是凸集, 则 $S \cap T$ 是凸集

证明 设 $x, y \in S \cap T$ 且 $\theta \in [0, 1]$. 由于 S 和 T 均为凸集, 则

$$\theta x + (1 - \theta)y \in \mathcal{S} \cap \mathcal{T}$$

■ 凸集的内部和闭包都是凸集

凸组合和凸包

■形如

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

$$\theta_1 + \dots + \theta_k = 1, \theta_i \geqslant 0, i = 1, \dots, k$$

的点称为 x_1, \cdots, x_k 的凸组合

■ 集合 S 的所有点的凸组合构成的点集为 S 的<mark>凸包</mark>, 记为 convS

■ convS 是包含 S 的最小凸集

仿射组合和仿射包

■形如

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

$$\theta_1 + \dots + \theta_k = 1, \theta_i \in \mathbb{R}, i = 1, \dots, k$$

的点称为 x_1, \dots, x_k 的<mark>仿射组合</mark>

■ 集合 S 的所有点的仿射组合构成的点集为 S 的<mark>仿射包</mark>, 记为 affine S

■ affine S 是包含 S 的最小仿射集

锥组合和凸锥

■形如

$$x= heta_1x_1+\cdots+ heta_kx_k, heta_i>0 (i=1,\cdots,k)$$

的点称为 x_1,\cdots,x_k 的锥组合

■ 若集合 S 中任意点的锥组合都在 S 中, 则称 S 为凸锥

■ 锥组合不要求系数的和为 1, 因此一般而言锥组合都是开放的

超平面和半空间

- 任取非零向量 $a \in \mathbb{R}^n$, 称 $\left\{x \mid a^\top x = b\right\}$ 为超平面, $\left\{x \mid a^\top x \leqslant b\right\}$ 为半空间
- 满足线性等式和不等式组的点的集合 $\{x \mid Ax \leq b, Cx = d\}$ 称为多面体

■ 超平面是仿射集和凸集, 半空间是凸集但不是仿射集, 多面体是有限个半空间和超平面的交

范数球和椭球

■ 设空间中到某一定点 x_c 的距离小于等于定值 r 的点的集合为(范数) \vec{x} , 即

$$B(x_c, r) = \{x \mid ||x - x_c|| \le r\} = \{x_c + ru \mid ||u|| \le 1\}$$

■设形如

$${x \mid (x - x_c)^{\top} P^{-1} (x - x_c) \leq 1} = {x_c + Au \mid ||u||_2 \leq 1}$$

的集合为椭球, 其中 x_c 为椭球中心, P 对称正定, 且 A 非奇异

■ 球和椭球的范围取决于 x 的范围

范数锥

■形如

$$\{(x,t) \mid ||x|| \leqslant t\}$$

的集合为范数锥

■ 使用 ||·||₂ 度量距离的锥为二次锥, 也称冰淇淋锥

(半) 正定锥

- 记 S^n 为对称矩阵的集合, 即 $S^n = \{X \in \mathbb{R}^{n \times n} \mid X^\top = X\}$
- 记 S_+^n 为半正定矩阵的集合, 即 $S_+^n = \{X \in S^n \mid X \succeq 0\}$
- 记 S_{++}^n 为正定矩阵的集合, 即 $S_{++}^n = \{X \in S^n \mid X \succ 0\}$

对于矩阵 $\begin{pmatrix} x & y \\ y & z \end{pmatrix}$, 其特征值应全 部大于等于 0

$$\left\{ (x,y,z) \mid x \geqslant 0, z \geqslant 0, xz \geqslant y^2 \right\}$$

仿射变换的保凸性

■ 设 $f: \mathbb{R}^n \to \mathbb{R}^m$ 是仿射变换, 即 $f(x) = Ax + b, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$, 则

$$S \subseteq \mathbb{R}^n$$
是凸集 $\Rightarrow f(S) = \{f(x) \mid x \in S\}$ 是凸集 $\mathcal{C} \subset \mathbb{R}^m$ 是凸集 $\Rightarrow f^{-1}(\mathcal{C}) = \{x \mid f(x) \in \mathcal{C}\}$ 是凸集

- 线性矩阵不等式的解集 $\{x \mid x_1A_1 + \cdots + x_mA_m \leq B\}$ 是凸集
- 双曲锥 $\left\{x \mid x^\top P x \leqslant \left(c^\top x\right)^2, c^\top x \geqslant 0, P \in \mathcal{S}^n_+\right\}$ 是凸集

证明 双曲锥可以转化为二阶锥

$$\left\{x \mid \|Ax\|_2 \leqslant c^\top x, c^\top x \geqslant 0, A^\top A = P\right\}$$

而二阶锥可由二次锥 $\{(x,t) \mid ||x||_2 \le t, t \ge 0\}$ 经过仿射变换得到

分离超平面定理

■ 如果 C 和 D 是不相交的凸集,则存在非零向量 a 和常数 b,使得

$$a^{\top}x \leq b, \forall x \in \mathcal{C} \quad \exists \quad a^{\top}x \geq b, \forall x \in \mathcal{D}$$

即超平面 $\left\{x \mid a^{\top}x = b\right\}$ 分离了 $\mathcal C$ 和 $\mathcal D$

■ 如果 \mathcal{C} 和 \mathcal{D} 是不相交的凸集, 且 \mathcal{C} 是闭集, \mathcal{D} 是紧集, 则存在非零向量 a 和 常数 b, 使得

$$a^{\top}x < b, \forall x \in \mathcal{C} \quad \exists \quad a^{\top}x > b, \forall x \in \mathcal{D},$$

即超平面 $\left\{x \mid a^{\top}x = b\right\}$ 严格分离了 \mathcal{C} 和 \mathcal{D}

分离超平面的示意

■ 在ℝ² 中的 2 个凸集使用超平面即可轻松划分, 但遇到非凸集合就必须使用更加复杂的平面

支撑超平面

■ 给定集合 \mathcal{C} 以及边界上的点 x_0 , 如果 $a \neq 0$ 满足 $a^{\top}x \leqslant a^{\top}x_0, \forall x \in \mathcal{C}$, 则称

$$\left\{x\mid a^{\top}x=a^{\scriptscriptstyle 0}\right\}$$

为 C 在边界点 x_0 处的支撑超平面

■ 若 C 是凸集, 则 C 的任意边界点处都存在支撑超平面

目录

- 2.1 范数
- 2.2 导数
- 2.3 广义实值函数
- 2.4 凸集
- 2.5 凸函数
- 2.6 共轭函数
- 2.7 次梯度

凸函数的定义

 $lacksymbol{\bullet}$ 设 $f: \mathbb{R}^n \to \mathbb{R}$ 为适当函数,如果 $\mathrm{dom}\ f$ 是凸集,且

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

对所有 $x, y \in \text{dom } f, 0 \le \theta \le 1$ 都成立,则称 f 是凸函数

■ 若对所有 $x, y \in \text{dom } f$, $x \neq y$, $0 < \theta < 1$, 有

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

则称 ƒ 是严格凸函数

一元凸函数的例子

- 仿射函数 对任意 $a,b \in$, ax + b 是 \mathbb{R} 上的凸函数
- 指数函数 对任意 $a \in e^{ax}$ 是 \mathbb{R} 上的凸函数
- 幂函数 对 $\alpha \geq 1$ 或 $\alpha \leq 0$, x^{α} 是 \mathbb{R}_{++} 上的凸函数
- 绝对值的幂 对 $p \ge 1$, $|x|^p$ 是 \mathbb{R} 上的凸函数
- 仿射函数 对任意 $a,b \in \mathbb{R}$, ax + b 是 \mathbb{R} 上的凹函数
- 幂函数 对 $0 \le \alpha \le 1$, x^{α} 是 \mathbb{R}_{++} 上的凹函数
- 对数函数 $\log x$ 是 \mathbb{R}_{++} 上的凹函数

多元凸函数的例子

■ 所有的仿射函数既是凸函数,又是凹函数

$$f(x) = a^{\top} x + b$$
$$f(X) = \text{Tr}(A^{\top} X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} X_{ij} + b$$

■ 所有的范数都是凸函数

$$f(x) = ||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} \ (p \ge 1)$$
$$f(X) = ||X||_2 = \sigma_{\max}(X) = (\lambda_{\max}(X^\top X))^{1/2}$$

强凸函数

■ 若存在常数 m>0, 使得

$$g(x) = f(x) - \frac{m}{2} ||x||^2$$

为凸函数,则称 f(x) 为强凸函数,其中 m 为强凸参数

■ 若存在常数 m>0, 使得对任意 $x,y\in \mathrm{dom}\ f$ 以及 $\theta\in(0,1)$, 有

$$f(\theta x + (1 - \theta y)) \le \theta f(x) + (1 - \theta)f(y) - \frac{m}{2}\theta(1 - \theta)||x - y||^2,$$

则称 f(x) 为强凸函数, 其中 m 为强凸参数

- 为了方便也称 f(x) 为 m-强凸函数
- $lacksymbol{\bullet}$ 设 f 为强凸函数且存在最小值,则 f 的最小值点唯一

凸函数判定定理

■ 设 $f: \mathbb{R}^n \to \mathbb{R}$ 是凸函数,当且仅当对每个 $x \in \text{dom } fv \in \mathbb{R}^n$,函数 $g: \mathbb{R} \to \mathbb{R}$ 是关于 t 的凸函数

$$g(t) = f(x+tv), \quad \text{dom } g = \{t \mid x+tv \in \text{dom } f\}$$

■ $f(X) = -\log \det X$ 是凸函数, 其中 $\operatorname{dom} f = \mathcal{S}_{++}^n$

证明 任取 $X \succ 0$ 以及方向 $V \in S^n$, 将 f 限制在直线 X + tV (t 满足 $X + tV \succ 0$) 上,那么

$$g(t) = -\log \det(X + tV) = -\log \det X - \log \det(I + tX^{-1/2}VX^{-1/2})$$
$$= -\log \det X - \sum_{i=1}^{n} \log(1 + t\lambda_i)$$

其中 λ_i 是 $X^{-1/2}VX^{-1/2}$ 第 i 个特征值. 对每个 $X\succ 0$ 以及方向 V , g 关于 t 是凸的,因此 f 是凸的

一阶条件

■ 凸集上的可微函数 ƒ 是凸函数当且仅当

$$f(y) \ge f(x) + \nabla f(x)^{\top} (y - x) \quad \forall x, y \in \text{dom } f$$

■ 设 f 为可微函数,则 f 为凸函数当且仅当 $\operatorname{dom} f$ 为凸集且 ∇f 为单调映射

$$(\nabla f(x) - \nabla f(y))^{\top}(x - y) \ge 0, \quad \forall \ x, y \in \text{dom } f$$

二阶条件

 $lacksymbol{\bullet}$ 设f 为定义在凸集上的二阶连续可微函数, f 是凸函数当且仅当

$$\nabla^2 f(x) \succeq 0 \quad \forall x \in \text{dom } f$$

如果 $\nabla^2 f(x) \succ 0 \ \forall x \in \text{dom } f$, 则 f 是严格凸函数

■ 最小二乘函数 $f(x) = ||Ax - b||_2^2$

$$\nabla f(x) = 2A^{\mathsf{T}}(Ax - b), \quad \nabla^2 f(x) = 2A^{\mathsf{T}}A$$

对任意 A, 函数 f 都是凸函数

■ 二次函数 $f(x) = (1/2)x^{\top}Px + q^{\top}x + r$ (其中 $P \in S^n$)

$$\nabla f(x) = Px + q, \qquad \nabla^2 f(x) = P$$

f 是凸函数当且仅当 $P \succeq 0$

上方图

■ 函数 f(x) 为凸函数当且仅当其上方图 epif 是凸集

必要性 若 f 为凸函数,则对任意 $(x_1,y_1),(x_2,y_2) \in epi f, t \in [0,1]$,

$$ty_1 + (1-t)y_2 \ge tf(x_1) + (1-t)f(x_2) \ge f(tx_1 + (1-t)x_2),$$

故
$$(tx_1 + (1-t)x_2, ty_1 + (1-t)y_2) \in epif, t \in [0, 1]$$

充分性 若 epif 是凸集,则对任意 $x_1, x_2 \in \text{dom } f, t \in [0, 1]$,

$$(tx_1 + (1-t)x_2, tf(x_1) + (1-t)f(x_2)) \in epif \Rightarrow$$

 $f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2).$

凸函数的判断方法

- 用定义验证(通常将函数限制在一条直线上)
- 利用一阶条件、二阶条件
- 直接研究 *f* 的上方图 epi *f*
- 说明 ƒ 可由简单的凸函数通过一些保凸的运算得到
 - □ 非负加权和
 - □ 与仿射函数的复合
 - □ 逐点取最大值
 - □ 与标量、向量函数的复合

非负加权和与仿射函数的复合

- 若f 是凸函数,则 αf 是凸函数,其中 $\alpha \geq 0$
- 若 f_1, f_2 是凸函数,则 $f_1 + f_2$ 是凸函数
- 若 f 是凸函数,则 f(Ax+b) 是凸函数
- 线性不等式的对数障碍函数

$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^{\top} x), \quad \text{dom } f = \{x \mid a_i^{\top} x < b_i, i = 1, ..., m\}$$

■ 仿射函数的(任意)范数 f(x) = ||Ax + b||

逐点取最大值

- 若 f_1, \dots, f_m 是凸函数,则 $f(x) = \max\{f_1(x), \dots, f_m(x)\}$ 是凸函数
- 分段线性函数

$$f(x) = \max_{i=1,\dots,m} (a_i^{\top} x + b_i)$$

■ $x \in \mathbb{R}^n$ 的前 r 个最大分量之和

$$f(x) = x_{[1]} + x_{[2]} + \dots + x_{[r]}$$

事实上, f(x) 可以写成如下多个线性函数取最大值的形式

$$f(x) = \max\{x_{i_1} + x_{i_2} + \dots + x_{i_r} \mid 1 \le i_1 < i_2 < \dots < i_r \le n\}$$

逐点取上界

■ 若对每个 $y \in A$, f(x,y) 是关于 x 的凸函数,则

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

是凸函数

■ 集合 C 的支撑函数

$$S_C(x) = \sup_{y \in C} y^{\top} x$$

 \blacksquare 集合 C 点到给定点 x 的最远距离

$$f(x) = \sup_{y \in C} ||x - y||$$

■ 对称矩阵 $X \in S^n$ 的最大特征值

$$\lambda_{\max}(X) = \sup_{\|y\|_2 = 1} y^{\top} X y$$

与标量函数的复合

■ 给定函数 $g: \mathbb{R}^n \to \mathbb{R}$ 和 $h: \mathbb{R} \to \mathbb{R}$,

$$f(x) = h(g(x))$$

 $m{m{g}} = m{\mathcal{G}}$ 是凸函数, h 是凸函数, $ilde{h}$ 单调不减 $m{g}$ 是凹函数, h 是凸函数, $ilde{h}$ 单调不增 $m{f}$

证明 对 n=1, g,h 均可微的情形

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

- 如果 g 是凸函数,则 $\exp g(x)$ 是凸函数
- 如果 g 是正值凹函数,则 1/g(x) 是凸函数

与向量函数的复合

■ 给定函数 $g: \mathbb{R}^n \to \mathbb{R}^k$ 和 $h: \mathbb{R}^k \to \mathbb{R}$:

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), ..., g_k(x))$$

若 g_i 是凸函数, h 是凸函数, \tilde{h} 关于每个分量单调不减 g_i 是凹函数, h 是凸函数, \tilde{h} 关于每个分量单调不增 g_i 是凹函数, h 是凸函数, h 关于每个分量单调不增 g_i

证明 对 n=1, g,h 均可微的情形

$$f''(x) = g'(x)^{\top} \nabla^2 h(g(x)) g'(x) + \nabla h(g(x))^T g''(x)$$

- $lacksymbol{\blacksquare}$ 如果 g_i 是正值凹函数,则 $\sum_{i=1}^m \log g_i(x)$ 是凹函数
- 如果 g_i 是凸函数,则 $\log \sum_{i=1}^m \exp g_i(x)$ 是凸函数

取下确界

■ 若 f(x,y) 关于 (x,y) 整体是凸函数, C 是凸集,则

$$g(x) = \inf_{y \in C} f(x, y)$$

是凸函数

■ 考虑函数 $f(x,y) = x^{T}Ax + 2x^{T}By + y^{T}Cy$, 海瑟矩阵满足

$$\begin{bmatrix} A & B \\ B^{\top} & C \end{bmatrix} \succeq 0, \quad C \succ 0,$$

则 f(x,y) 为凸函数. 对 y 求最小值得

$$g(x) = \inf_{y} f(x, y) = x^{\top} (A - BC^{-1}B^{\top})x,$$

因此 g 是凸函数. 进一步地, A 的 Schur 补 $A - BC^{-1}B^{\top} \succeq 0$

■ 点 x 到凸集 S 的距离 $\operatorname{dist}(x,S) = \inf_{y \in S} \|x - y\|$ 是凸函数

透视函数

■ 定义 $f: \mathbb{R}^n \to \mathbb{R}$ 的透视函数 $g: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$,

$$g(x,t) = tf(x/t), \quad \text{dom } g = \{(x,t)|x/t \in \text{dom } f, t > 0\}$$

若 f 是凸函数,则 q 是凸函数

- ullet $f(x)=x^{ op}x$ 是凸函数,则 $g(x,t)=x^{ op}x/t$ 是区域 $\{(x,t)\mid t>0\}$ 上的凸函数
- $lacksquare f(x) = -\log x$ 是凸函数,则 $g(x,t) = t\log t t\log x$ 是 \mathbb{R}^2_{++} 上的凸函数
- 若 f 是凸函数,则

$$g(x) = (c^{\mathsf{T}}x + d)f\left((Ax + b)/(c^{\mathsf{T}}x + d)\right)$$

是区域 $\{x \mid c^{\top}x + d > 0, (Ax + b)/(c^{\top}x + d) \in \text{dom } f\}$ 上的凸函数

目录

- 2.1 范数
- 2.2 导数
- 2.3 广义实值函数
- 2.4 凸集
- 2.5 凸函数
- 2.6 共轭函数
- 2.7 次梯度

共轭函数

■ 适当函数 f 的共轭函数定义为

$$f^*(y) = \sup_{x \in \text{dom } f} (y^\top x - f(x))$$

例子

■ 负对数 $f(x) = -\log x$

$$f^*(y) = \sup_{x>0} (xy + \log x)$$
$$= \begin{cases} -1 - \log(-y) & y < 0\\ \infty &$$
其他

■ 强凸二次函数 $f(x) = (1/2)x^{\top}Qx, \ Q \in \mathcal{S}_{++}^n$

$$f^*(y) = \sup_{x} (y^{\top}x - (1/2)x^{\top}Qx)$$
$$= \frac{1}{2}y^{\top}Q^{-1}y$$

目录

- 2.1 范数
- 2.2 导数
- 2.3 广义实值函数
- 2.4 凸集
- 2.5 凸函数
- 2.6 共轭函数
- 2.7 次梯度

次梯度

■ 可微凸函数 f 的一阶条件

$$f(y) \ge f(x) + \nabla f(x)^{\top} (y - x)$$

■ 设 f 为适当凸函数, $x \in \mathbf{dom}\ f$, 若向量 $g \in \mathbb{R}^n$ 满足

$$f(y) \ge f(x) + g^{\mathsf{T}}(y - x), \quad \forall y \in \text{dom } f,$$

则称 g 为函数 f 在点 x 处的一个次梯度

■ 进一步地, 称集合

$$\partial f(x) = \{ g \mid g \in \mathbb{R}^n, f(y) \ge f(x) + g^{\top}(y - x), \forall y \in \text{dom } f \}$$

为 f 在点 x 处的<mark>次微分</mark>

次梯度

- $\mathbf{M}f(x) + g^{\mathsf{T}}(y x)$ 是 f(y) 的一个全局下界
- g 可以诱导出上方图 epi f 在点 (x, f(x)) 处的一个支撑超平面

$$\begin{bmatrix} g \\ -1 \end{bmatrix} \left(\begin{bmatrix} y \\ t \end{bmatrix} - \begin{bmatrix} x \\ f(x) \end{bmatrix} \right) \le 0 \quad \forall (y, t) \in \text{epi } f$$

- 如果 f 是可微凸函数, 那么 $\nabla f(x)$ 是 f 在点 x 处的一个次梯度
- ullet g_2,g_3 是点 x_2 处的次梯度, g_1 是点 x_1 处的次梯度

次梯度存在性

- 设f 为凸函数,dom f 为其定义域. 如果 $x \in int dom f$, 则 $\partial f(x)$ 是非空的,其中 int dom f 的含义是集合 dom f 的所有内点.
- 绝对值函数 f(x) = |x|

■ 欧几里得范数 $f(x) = ||x||_2$

如果
$$x \neq 0, \partial f(x) = \frac{1}{\|x\|_2} x$$
, 如果 $x = 0, \partial f(x) = \{g | \|g\|_2 \le 1\}$

次梯度的性质

- 对任何 $x \in \text{dom } f$, $\partial f(x)$ 是一个闭凸集(可能为空集)
- 如果 $x \in \text{int dom } f$, 则 $\partial f(x)$ 非空有界集
- 设凸函数 f(x) 在 $x_0 \in \text{int dom } f$ 处可微,则 $\partial f(x_0) = \{\nabla f(x_0)\}$
- **设** $f: \mathbb{R}^n \to \mathbb{R}$ 为凸函数, $x, y \in \text{dom } f$, 则 $(u-v)^\top (x-y) \ge 0$, 其中 $u \in \partial f(x)$, $v \in \partial f(y)$
- 设 f(x) 是闭凸函数且 ∂f 在点 \bar{x} 附近存在且非空. 若序列 $x^k \to \bar{x}$, $g^k \in \partial f(x^k)$ 为 f(x) 在点 x^k 处的次梯度,且 $g^k \to \bar{g}$,则 $\bar{g} \in \partial f(\bar{x})$

方向导数

ullet 设f 为适当函数,给定点 x_0 以及方向 $d\in\mathbb{R}^n$,方向导数(若存在)定义为

$$\lim_{t \downarrow 0} \phi(t) = \lim_{t \downarrow 0} \frac{f(x_0 + td) - f(x_0)}{t}$$

其中 $t \downarrow 0$ 表示 t 单调下降趋于 0

- 若 f 是凸函数,则 $\phi(t)$ 在 $(0,+\infty)$ 上是单调不减的, \lim 可替换为 \inf
- 对于凸函数 f,给定点 $x_0 \in \text{dom } f$ 以及方向 $d \in \mathbb{R}^n$,其方向导数定义为

$$\partial f(x_0; d) = \inf_{t>0} \frac{f(x_0 + td) - f(x_0)}{t}.$$

方向导数有限

■ 设f(x) 为凸函数, $x_0 \in \text{int dom } f$, 则对任意 $d \in \mathbb{R}^n$, $\partial f(x_0; d)$ 有限

证明 首先 $\partial f(x_0;d)$ 不为正无穷是显然的. 由于 $x_0 \in \operatorname{int\ dom\ } f$, 根据次梯度 的存在性定理可知 f(x) 在点 x_0 处存在次梯度 g. 根据方向导数的定义,有

$$\partial f(x_0; d) = \inf_{t>0} \frac{f(x_0 + td) - f(x_0)}{t}$$
$$\geq \inf_{t>0} \frac{tg^{\top} d}{t} = g^{\top} d$$

其中的不等式利用了次梯度的定义. 这说明 $\partial f(x_0;d)$ 不为负无穷

方向导数和次梯度

型设 $f: \mathbb{R}^n \to (-\infty, +\infty]$ 为凸函数, $x_0 \in \text{int dom } f$, d 为 \mathbb{R}^n 中任一方向,则 $\partial f(x_0; d) = \max_{g \in \partial f(x_0)} g^\top d$

- $\partial f(x;y)$ 是 $\partial f(x)$ 的支撑函数
- $\partial f(x_0;d) = \nabla f(x_0)^{\top} d$, 切对所有的 $x_0 \in \text{int dom } f$ 以及所有的 d 都存在

次梯度的计算规则

- 若凸函数 f 在点 x 处可微,则 $\partial f(x) = \{\nabla f(x)\}$
- **设凸函数** f_1, f_2 满足 int dom $f_1 \cap \text{dom } f_2 \neq \emptyset$, 而 $x \in \text{dom } f_1 \cap \text{dom } f_2$. 若

$$f(x) = \alpha_1 f_1(x) + \alpha_2 f_2(x), \quad \alpha_1, \alpha_2 \ge 0$$

则 f(x) 的次微分

$$\partial f(x) = \alpha_1 \partial f_1(x) + \alpha_2 \partial f_2(x)$$

② 设 h 为适当凸函数,f 满足 f(x) = h(Ax + b). 若存在 $x^{\sharp} \in \mathbb{R}^{m}$,使得 $Ax^{\sharp} + b \in \text{int dom } h$,则

$$\partial f(x) = A^{\top} \partial h(Ax + b), \quad \forall \ x \in \text{int dom } f$$

两个函数之和的次梯度

 $lacksymbol{\bullet}$ 设 $f_1,f_2:\mathbb{R}^n o (-\infty,+\infty]$ 是两个凸函数,则对任意的 $x_0\in\mathbb{R}^n$,

$$\partial f_1(x_0) + \partial f_2(x_0) \subseteq \partial (f_1 + f_2)(x_0).$$

进一步地, 若 int dom $f_1 \cap \text{dom } f_2 \neq \emptyset$, 则对任意的 $x_0 \in \mathbb{R}^n$,

$$\partial (f_1 + f_2)(x_0) = \partial f_1(x_0) + \partial f_2(x_0).$$

证明 对于任意给定的 x_0 , 设 $g \in \partial (f_1 + f_2)(x_0)$. 如果 $f_1(x_0) = +\infty$, 则 $(f_1 + f_2)(x_0) = +\infty$. 由次梯度的定义,我们有

$$(f_1 + f_2)(x) \ge (f_1 + f_2)(x_0) + g^{\top}(x - x_0)$$

对任意 $x \in \mathbb{R}^n$ 成立,故 $f_1 + f_2 \equiv +\infty$. 这与 int **dom** $f_1 \cap \text{dom } f_2 \neq \emptyset$ 矛盾,因此以下我们假设 $f_1(x_0), f_2(x_0) < +\infty$

函数族的上确界

 $lacksymbol{\bullet}$ 设 $f_1, f_2, \cdots, f_m: \mathbb{R}^n \to (-\infty, +\infty]$ 均为凸函数,令

$$f(x) = \max\{f_1(x), f_2(x), \dots, f_m(x)\}, \quad \forall x \in \mathbb{R}^n$$

对 $x_0 \in \bigcap_{i=1}^m \text{ int dom } f_i$, 定义 $I(x_0) = \{i \mid f_i(x_0) = f(x_0)\}$, 则

$$\partial f(x_0) = \operatorname{conv} \bigcup_{i \in I(x_0)} \partial f_i(x_0)$$

- $I(x_0)$ 表示点 x_0 处 "有效" 函数的指标
- lacksquare $\partial f(x_0)$ 是点 x_0 处 "有效" 函数的次微分并集的凸包
- 如果 f_i 可微, $\partial f(x_0) = \operatorname{conv}\{\nabla f_i(x_0) \mid i \in I(x_0)\}$

例子

■ 分段线性函数

■ 点 x 处的次微分是一个多面体

$$\partial f(x) = \operatorname{conv}\{a_i \mid i \in I(x)\}\$$

其中
$$I(x) = \{i \mid a_i^{\top} x + b_i = f(x)\}$$

例子

■ ℓ1-范数

$$f(x) = ||x||_1 = \max_{s \in \{-1,1\}^n} s^\top x$$

$$\partial f(x) = J_1 \times \dots \times J_n, \quad J_k = \begin{cases} [-1,1], & x_k = 0\\ \{1\}, & x_k > 0\\ \{-1\}, & x_k < 0 \end{cases}$$

$$\frac{1}{1-1} \qquad \frac{1}{1-1} \qquad \frac{1}{1-1} \qquad \frac{(1,1)}{1-1}$$

$$\partial f(0,0) = [-1,1] \times [-1,1] \qquad \partial f(1,0) = \{1\} \times [-1,1] \qquad \partial f(1,1) = \{(1,1)\}$$

复合函数

■ 设 $f_1, f_2, \dots, f_m : \mathbb{R}^n \to (-\infty, +\infty]$ 为 m 个凸函数, $h : \mathbb{R}^m \to (-\infty, +\infty]$ 为 关于各分量单调递增的凸函数, 令

$$f(x) = h(f_1(x), f_2(x), \cdots, f_m(x))$$

- $\mathbf{z}=(z_1,z_2,\cdots,z_m)\in\partial h(f_1(\hat{x}),f_2(\hat{x}),\cdots,f_m(\hat{x}))$ 以及 $g_i\in\partial f_i(\hat{x})$
- $gz_1g_1 + z_2g_2 + \dots + z_mg_m \in \partial f(\hat{x})$

证明

$$f(x) \ge h\left(f_1(\hat{x}) + g_1^{\top}(x - \hat{x}), f_2(\hat{x}) + g_2^{\top}(x - \hat{x}), \cdots, f_m(\hat{x}) + g_m^{\top}(x - \hat{x})\right)$$

$$\ge h(f_1(\hat{x}), f_2(\hat{x}), \cdots, f_m(\hat{x})) + \sum_{i=1}^m z_i g_i^{\top}(x - \hat{x})$$

$$= f(\hat{x}) + g^{\top}(x - \hat{x})$$

Q&A

Thank you!

感谢您的聆听和反馈