

Plasma Pedestal-top n_e control using RMP at KSTAR

Minseok Kim¹, SangKyeun Kim², Keith Erickson², Andy Rothstein¹, Youngho Lee³, Hyunsun Han³, ChangMin Shin⁴, JungHoo Hwang^{3,4}, Azarakhsh Jalalvand¹, Peter Steiner¹, Ricardo Shousha², CheolSik Byun¹, Jalal Butt¹, Sang-hee Hahn³, June-Woo Juhn³, Boseong Kim^{3,5}, SeongMoo Yang², Qiming Hu², David Eldon⁶, Nikolas Logan⁷, and Egemen Kolemen^{1,2}

¹Department of Mechanical & Aerospace Engineering, Princeton University, Princeton, NJ, 08540, USA ²Princeton Plasma Physics Laboratory, Princeton, NJ, 08540, USA ³Korea Institute of Fusion Energy, Daejeon 34133, Republic of Korea ⁴Department of Nuclear and Quantum Engineering, KAIST, Daejeon, 34141, Republic of Korea ⁵Department of Nuclear Engineering, Seoul National University, Seoul, 08826, Republic of Korea ⁶General Atomics, San Diego, CA, 92121, USA ⁷Department of Applied Physics, Columbia University, New York, NY, 10027, USA

Control & Operation of Tokamaks 2025, Lausanne, Switzerland, February 03 – 14, 2025

E-mail: mseokim@princeton.edu

Introduction

- 1. Electron density profiles can be reconstructed using five channels of the two-colored interferometer (TCI) [1].
- 2. The reconstruction algorithm can be accelerated by using a neural network, enabling real-time density profile control in KSTAR.
- 3. Pedestal-top electron density can be controlled using RMP.

1. Electron density profile reconstruction model

< Fig.1. Descriptions of the fitting model >

< Fig.2. Sensitivity check of the model >

4. Neural network with 2022 and 2023 KSTAR data

< Fig.8. Prediction results >

5. Controller design

Bode plot

Place pole to be as same as plant pole

< Fig.9. Bode and Nyquist plots of G(s) >

6. PI controller results

7. Conclusion & Future work

- 1. Real-time electron density profile reconstruction algorithm has been implemented in the KSTAR PCS.
- 2. The density at ψ_N =0.9 could be controlled by using RMP.
- 3. Full profile controller with multiple actuators including RMP, Gas, SMBI, and Pellet will be tested.

Acknowledgement

- 1. Lee, S. G., et al. "Overview and recent progress of KSTAR diagnostics." *Journal of Instrumentation* 17.01 (2022): C01065.
- 2. Snyder, P. B., et al. "ELMs and constraints on the H -mode pedestal: peeling -ballooning stability calculation and comparison with experiment." *Nuclear fusion* 44.2 (2004): 320.
- 3. C.W.Rowley, "Introduction to Feedback Control", Princeton University Press, 2024
- 4. Minseok is pleased to acknowledge that the work reported on in this paper was substantially performed using the Princeton Research Computing resources at Princeton University which is consortium of groups led by the Princeton Institute for Computational Science and Engineering (PICSciE) and Office of Information Technology's Research Computing.