LABORATORIO 6 - 11 Aprile 2019

Argomento: equazioni non lineari

1. Sia dato il polinomio

$$p_{20}(x) = (x-1)(x-2)(x-3)\dots(x-20)$$

Determinare con comandi Matlab i coefficienti c_i del polinomio nella forma

$$p_{20}(x) = \sum_{i=0}^{20} c_i x^i = x^{20} - 210x^{19} + \dots + 20!$$

utilizzando il formato simbolico. Calcolare le radici del polinomio con il comando roots di Matlab, confrontare i risultati ottenuti con quelli attesi e commentarne la precisione.

2. Si implementi il metodo di Newton per il calcolo delle radici reali di un'equazione non lineare f(x) = 0. Si fissino un numero massimo di iterazioni nmax e una tolleranza relativa tol per definire i seguenti criteri d'arresto: n < nmax e $|x_{n+1} - x_n| < tol |x_{n+1}|$, ove x_{n+1} e x_n denotano due iterate successive.

Si applichi il metodo di Newton (scegliendo nmax = 100 e tol = 1.0e - 10) all'equazione f(x) = 0 con:

- 1. $f(x) = x^2 a \cos a > 0$, per il calcolo della radice positiva di f;
- 2. $f(x) = x^3 x 1$, per il calcolo dell'unica radice reale di f;
- 3. $f(x) = (x 2^{-x})^3$, per il calcolo delle radici di f;
- 4. $f(x) = \exp(x) 2x^2$, per il calcolo della radice negativa di f.

Si osservi l'andamento dell'ordine sperimentale di convergenza e se ne dia una giustificazione per ciascuna funzione assegnata.

3. Si implementi il metodo iterativo $x_{n+1} = g(x_n)$ per la ricerca di un punto fisso della funzione g(x). Si fissino un numero massimo di iterazioni nmax e una tolleranza relativa tol per definire i seguenti criteri d'arresto: n < nmax e $|x_{n+1} - x_n| < tol |x_{n+1}|$, ove x_{n+1} e x_n denotano due iterate successive.

Si applichi il metodo di punto fisso scegliendo nmax = 100, tol = 1.0e - 10 e

- 1. $g(x) = -\sqrt{\frac{\exp(x)}{2}}$ per il calcolo della radice negativa di $f(x) = \exp(x) 2x^2$;
- 2. $g(x) = \frac{2x^3 + 4x^2 + 10}{3x^2 + 8x}$ per il calcolo dell'unica radice reale di $f(x) = x^3 + 4x^2 10$ appartenente all'intervallo [1, 2].

Si osservi l'andamento dell'ordine sperimentale di convergenza e se ne dia una giustificazione per ciascuna funzione assegnata.

4. Determinare la radice $\xi \approx 0.5$ dell'equazione $x + \log(x) = 0$, utilizzando le seguenti formule iterative:

i)
$$x_{n+1} = -\log(x_n);$$

ii)
$$x_{n+1} = \exp(-x_n);$$

iii)
$$x_{n+1} = \frac{x_n + \exp(-x_n)}{2}$$

Quale di queste tre formule produce una successione convergente? Quale delle tre è da preferirsi? Costruirne una quarta migliore di quelle date. Verificare numericamente le risposte fornite.

5. Determinare x tale che

$$\int_0^x e^{-t^2} \, dt = \frac{1}{2}$$

Utilizzare, a tal scopo, la definizione della funzione degli errori di Gauss

$$erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

e il comando erf di Matlab.

6. Sia dato il seguente sistema di equazioni non lineari:

$$\begin{cases} x_1^2 + 2x_1x_2 + x_3 &= 0 \\ x_2^3 + x_3^2 &= 0 \\ x_1x_3 &= 1 \end{cases}$$

la cui soluzione esatta è $x=(x_1,x_2,x_3)^T=(1,-1,1)^T$. Si risolva il sistema con il metodo di Newton usando il vettore $x_0=(0.5,-0.5,0.1)^T$ come approssimazione iniziale. Eseguire un numero massimo di iterazioni $n_{\max}=20$ e arrestare il metodo quando la norma euclidea dell'errore assoluto soddisfa $||x-x_n||_2 \le tol$ con tol=1.0e-10.