Exercício 1

Uma fonte de informação \mathcal{X} gera saídas $\{x_1, \ldots, x_n\}$ com as probabilidades $p(x_1), \ldots, p(x_n)$. Lembre que a entropia de Shannon é definida como:

$$H(\mathcal{X}) = \sum_{i=1}^{n} p(x_i) \log_2 \left(\frac{1}{p(x_i)}\right).$$

1.1

Escrever todos os passos do cálculo da entropia de X para as seguintes probabilidades:

• $p(x_1) = 1/4$,

• $p(x_4) = 1/16$,

• $p(x_7) = 1/4$.

• $p(x_2) = 1/16$,

• $p(x_5) = 1/4$,

• $p(x_3) = 1/16$,

• $p(x_6) = 1/16$,

Resolução.

Usando a definição de entropia e aplicando os valores das probabilidades acima, temos ...

1. $E(X) = p(x_1)log_2[\frac{1}{p(x_1)}] + p(x_2)log_2[\frac{1}{p(x_2)}] + p(x_3)log_2[\frac{1}{p(x_3)}] + p(x_4)log_2[\frac{1}{p(x_4)}] + p(x_5)log_2[\frac{1}{p(x_5)}] + p(x_6)log_2[\frac{1}{p(x_6)}] + p(x_7)log_2[\frac{1}{p(x_7)}]$

2. $E(X) = \frac{1}{4}log_2\left[\frac{1}{\left(\frac{1}{4}\right)}\right] + \frac{1}{16}log_2\left[\frac{1}{\left(\frac{1}{16}\right)}\right] + \frac{1}{16}log_2\left[\frac{1}{\left(\frac{1}{16}\right)}\right] + \frac{1}{16}log_2\left[\frac{1}{\left(\frac{1}{16}\right)}\right] + \frac{1}{4}log_2\left[\frac{1}{\left(\frac{1}{4}\right)}\right] + \frac{1}{16}log_2\left[\frac{1}{\left(\frac{1}{16}\right)}\right] + \frac{1}{16}log_2\left[\frac{1}{\left(\frac{$

3. $E(X) = \frac{1}{4}log_2[4] + \frac{1}{16}log_2[16] + \frac{1}{16}log_2[16] + \frac{1}{16}log_2[16] + \frac{1}{4}log_2[4] + \frac{1}{16}log_2[16] + \frac{1}{4}log_2[4]$

4. $E(X) = \frac{1}{4} * 2 + \frac{1}{16} * 4 + \frac{1}{16} * 4 + \frac{1}{16} * 4 + \frac{1}{4} * 2 + \frac{1}{16} * 4 + \frac{1}{4} * 2$

5. $E(X) = \frac{1}{2} * 3 + 4 * \frac{1}{4}$

6. $E(X) = \frac{3}{2} + 1$

7. $E(X) = \frac{5}{2}$

8. E(X) = 2,5

1.2

Para j = 1, 2, ...n, seja $\max_j \lceil log_2[\frac{1}{p(x_j)}] \rceil = C$. Demostrar (i.e., provar matematicamente) que esse valor maximo C e o numero de bits dos x_j : j = 1, 2, ...n.

Resolução.

Supondo que temos n indices na tabela o valor do indice precisa ser pelo menos $\lceil log_2(n) \rceil$.

Para provar $C = \max_{j} \lceil \log_2 \left[\frac{1}{p(x_j)} \right] \rceil \ge \lceil \log_2(n) \rceil$.

Sabendo que o menor \max_j possivel ocorre quando $p(x_i) = \frac{1}{n}$, pois para algum $p(x_i) < \frac{1}{n}$ vai existir $p(x_j) > \frac{1}{n}$ ja que $\sum_{i=1}^n p(x_i) = 1$ e o \max_j aumentaria.

Portanto o menor $\max_{j} \lceil p(x_i) \rceil$ possivel ocorre quando:

 $p(x_i) = \frac{1}{n}$

- 1. $\max_{j} \lceil \log_2 \left[\frac{1}{p(x_j)} \right] \ge \lceil \log_2 \left(\frac{1}{p(x_j)} \right) \rceil$
- 2. $\max_{j} \lceil \log_2 \left[\frac{1}{p(x_j)} \right] \ge \lceil \log_2 \left(\frac{1}{n-1} \right) \rceil$
- 3. $\max_{j} \lceil \log_2 \left[\frac{1}{p(x_j)} \right] \ge \lceil \log_2(n) \rceil$

1.3

Demonstrar que log_2n é a entropia **máxima** de qualquer $X = \{x_1, x_2, ...x_n\}$. Supor dado o Lema: "A função $log_2()$ é estritamente côncava". E aplicar o Teorema de Jensen: "Se $f: \mathbb{R} \to \mathbb{R}$ é uma função contínua estritamente côncava no intervalo I, então $\sum_{i=1}^n a_i f(x_i) \leq f(\sum_{i=1}^n a_i x_i)$

Resolução.

- 1. Sendo a função $log_2()$ côncava, usando o teorema de jensen obtemos: $\sum_{i=1}^n a_i log_2(x_i) \leq \sum_{i=1}^n a_i x_i$
- 2. Relacionando com a formula da entropia: $a_i = p(x_i)$; $x_i = p(x_i)^{-1}$

3.
$$\sum_{i=1}^{n} p(x_i) log_2(p(x_i)^{-1}) \le log_2(\sum_{i=1}^{n} p(x_i) p(x_i)^{-1})$$

4.
$$E(X) \leq log_2(\sum_{i=1}^n p(x_i)p(x_i)^{-1})$$

5.
$$E(X) \leq log_2(\sum_{i=1}^{n} 1)$$

6.
$$E(X) \leq log_2(n)$$

1.4

Para qual conjunto X essa entropia **máxima** ocorre? Demonstrar matematicamente esse fato.

Resolução.

Supondo um conjunto $X = \{x_1, x_2, ...x_n\}$, sendo $\frac{1}{n} = p(x_1) = p(x_2) = ... = p(x_n)$, $\sum_{i=1}^n p(x_i) = 1$ e $E(X) \leq \log_2(n)$. Usando a formula da entropia:

1.
$$E(X) = \sum_{i=1}^{n} \frac{1}{n} log_2(n)$$

2.
$$E(X) = \frac{n}{n} log_2(n)$$

3.
$$E(X) = log_2(n)$$

Portanto o conjunto X tem a entropia máxima.

Exercício 2

2.1.1

Listar sua data de nascimento

Resolução.

29/07/01

2.1.2

Listar o valor de (E_0, D_0) em **hexadecimal**, como definimos anteriormente, para seu NUSP e sua data de nascimento.

Resolução.

 $(E_0, D_0): (0x11796022; 0x11796022)$

K: 0x0209000700010000

2.1.3

Aceitar como entrada (E_0, D_0) e a subchave K_1 , e calcular e listar em **hexadecimal** a saída da primeira iteração (round 1), (E_1, D_1) . conforme o desenho dado de 1 iteração (round). A subchave deve ser gerada com a chave K definida com os seus dados.

Resolução.

 $(E_1, D_1): (0x00ee2288; 0x32a6f73e)$

 $K_1: 0x00000010009$

2.1.4

Complementar apenas o bit mais à esquerda de E0 e calcular e listar em **hexadecimal** a saída da primeira iteração (round 1), (E_1^c, D_1^c)

Resolução.

 $(E_c^c, D_0): (0x91796022; 0x11796022)$

 $(E_1, D_1): (0x01ee2288; 0x76aff62e)$

 $K_1: 0x00000010009$

2.1.5

Calcular e listar o número de bits diferentes entre (E_1, D_1) e (E_1^c, D_1^c) Resolução.

A diferença entre (E_1, D_1) e (E_1^c, D_1^c) é de 7 bits

2.2.1

Efetuar os mesmo passos (2) a (5) para cada iteração j = 2, 3, 4, ...16, ou seja, calcular e listar o número de bits diferentes entre E_j, D_j e E_j^c, D_j^c

Resolução.

Lista 1

$Round_j$	subch. K_j	E_{j}	E_j^c	D_j	D_j^c	bits diff
0	0x000000000000	0x11796022	0x91796022	0x11796022	0x11796022	1
1	0x000000010009	0x00ee2288	0x01ee2288	0x32a6f73e	0x76aff62e	7
2	0×000000200680	0x32a6f73e	0x76aff62e	0x63c30f2a	0xbd7b26f0	24
3	0x000000180003	0x63c30f2a	0xbd7b26f0	0xcc519dad	0x286c8ce8	32
4	0×0000000064000	0xcc519dad	0x286c8ce8	0xde091d5e	0x2470e4f7	35
5	0×000000002140	0xde091d5e	0x2470e4f7	0x8902388e	0xffbb0a71	42
6	$0 \times 0000000 = 08000$	0x8902388e	0xffbb0a71	0xb3fc4207	0x22ac1cb8	38
7	0×0000000400602	0xb3fc4207	0x22ac1cb8	0x3a35e3ac	0x7b588e0a	33
8	$0 \times 0000001 c0008$	0x3a35e3ac	0x7b588e0a	0x3bd3c313	0xcdb83d43	36
9	0×0000000000424	0x3bd3c313	0xcdb83d43	0x284bd431	0xee94f446	38
10	0×0000000480880	0x284bd431	0xee94f446	0x34799fd6	0xaad372a1	39
11	0×0000000004019	0x34799fd6	0xaad372a1	0x4357cdb7	0xed 95 b 64 d	41
12	0×000000031000	0x4357cdb7	0xed 95 b 64 d	0x61f21e01	0x06ed9081	35
13	0×0000000800120	0x61f21e01	0x06ed9081	0xde7ca3e3	0xc3da3f00	32
14	0x0000000000a04	0xde7ca3e3	0xc3da3f00	0x0bd007e4	0xc9985cba	32
15	0x000000500090	0x0bd007e4	0xc9985cba	0xbe348e0f	0x4d2d2eee	30
16	$0 \times 000000080 = 0.04$	0xbe348e0f	0x4d2d2eee	0x41078409	0xdd39c753	31

2.3.1

Listar K em hexadecimal Resolução.

K = 0x0209000700010000

2.3.2

Aceitar como entrada (E_0, D_0) , como definido anteriormente, listar esses valores, e calcular a saída da primreira iteração $(round1), (E_1, D_1)$

Resolução.

 $(E_0, D_0): (0x11796022; 0x11796022)$

 $K_1: 0x00000010009$

 $(E_1, D_1): (0x00ee2288; 0x32a6f73e)$

 $K_1:0x00000010009$

2.3.3

Listar os valores da subchave $K_1, (E_1, D_1)$ em hexadecimal Resolução.

 $(E_1, D_1): (0x00ee2288; 0x32a6f73e)$

 $K_1: 0x00000010009$

2.3.4

Complementar apenas o bit mais à esquerda da **chave** K (Sem alterar a entrada), e listar esse valor em **hexadecimal**

Resolução.

K = 0x8209000700010000

2.3.5

Calcular a subchave K_1^c e a saída da primeira iteração (round 1), (E_1^c, D_1^c)

Resolução.

 $(E_1^c, D_1^c): (0x00ee2288; 0xb2a6e77e)$

 $K_1^c: 0x000010010009$

2.3.6

Listar os valores $K_1^c, (E_1^c, D_1^c)$ em hexadecimal Resolução.

 $(E_1^c, D_1^c): (0x00ee2288; 0xb2a6e77e)$

 $K_1^c: 0x000010010009$

2.3.6

Listar os valores $K_1^c, (E_1^c, D_1^c)$ em hexadecimal Resolução.

A diferença entre (E_1,D_1) e (E_1^c,D_1^c) é de 3 bits

2.4.1

Efetuar os mesmos passos (2) a (7) para cada iteração j=2,3,4,..16, ou seja, calcular e listar K_j em hexadecimal e o número de bits diferentes entre $(E_j, D_j)e(E_j^c, D_j^c)$ Resolução.

Lista 1

R_j	K_{j}	K_j^c	E_{j}	E_j^c	D_j	D_j^c	bits diff
1	0x00000010009	0x000010010009	0x00ee2288	0x00ee2288	0x32a6f73e	0xb2a6e77e	3
2	0×000000200680	0×004000200680	0x32a6f73e	0xb2a6e77e	0x63c30f2a	0x3065e338	18
3	0×000000180003	0x000100180003	0x63c30f2a	0x3065e338	0xcc519dad	$0 \times 0 \text{ac} 7 \text{d} 791$	30
4	0×0000000064000	0x000001064000	0xcc519dad	$0 \times 0 \text{ac} 7 \text{d} 791$	0xde091d5e	0x2eb32c77	30
5	0×000000002140	0x010000002140	0xde091d5e	0x2eb32c77	0x8902388e	0x0d68f79c	29
6	$0 \times 0000000 a08000$	0x000080a08000	0x8902388e	0x 0 d 6 8f 7 9c	0xb3fc4207	0x10a4345b	30
7	0×000000400602	0x100000400602	0xb3fc4207	0x10a4345b	0x3a35e3ac	0x26c7b20c	29
8	0x0000001c0008	0x0000001c0008	0x3a35e3ac	0x26c7b20c	0x3bd3c313	0x8e5a95d4	30
9	0×0000000000424	0×002000000424	0x3bd3c313	0x8e5a95d4	0x284bd431	0xc4488c24	30
10	0×0000000480880	0×000400480880	0x284bd431	0xc4488c24	0x34799fd6	0xf569044f	26
11	0x000000004019	0x400000004019	0x34799fd6	0xf569044f	0x4357cdb7	0xc4bc8f1e	29
12	0×000000031000	0×008000031000	0x4357cdb7	0xc4bc8f1e	0x61f21e01	0x874ed128	35
13	0×000000800120	0×000002800120	0x61f21e01	0x874ed128	0xde7ca3e3	0x7c8f81e0	32
14	0x0000000000a04	0x2000000000a04	0xde7ca3e3	0x7c8f81e0	0x0bd007e4	0x3c6a71e5	29
15	0×000000500090	0x 0 00000500090	$0 \times 0 \text{bd} 007 \text{e} 4$	0x3c6a71e5	0xbe348e0f	0x7ca6e7a4	31
16	$0 \times 00000080 = 0000000000000000000000000$	0x00004080a004	0xbe348e0f	0x7ca6e7a4	0x41078409	0x30797def	36

2.5.1

Supondo a chave K permaneça fixa, o resultado numérico que V obteve indica algum nível de dificuldade de um mal-intencionado calcular a entrada (E_0, D_0) corresponde a uma dada saída de 64 bits? Por que?

Resolução.

Supondo que a chave K permaneça fixa V vai obter vários resultados numéricos criptografados por uma mesma chave, o problema que isso causa é que se V testar a mesma chave em várias mensagens ele vai conseguir decriptografar todas.

2.5.2

A mesma pergunta, se fosse só uma iteração?

Resolução.

Sendo apenas uma iteração, a mensagem criptografada vai estar mais vulnerável ainda. O nível de entropia vai estar bem baixa, consequentemente a difusão e a confusão também, então duas mensagens criptografada com a mesma chave vão estar bem parecidas.

2.5.3

Supondo que a entrada (E_0, D_0) permaneça fixa, o resultado numérico que V obteve indica algum nível de dificuldade de um mal-intencionado calcular a chave K correspondente a uma dada saída de 64 bits? Por quê?

Resolução.

Supondo que a entrada (E_0, D_0) permaneça fixa V vai obter vários resultados numéricos criptografados por chaves diferentes, o problema que isso causa é que várias chaves vão conseguir decriptografar a mensagem.

2.5.4

A mesma pergunta, se fosse só uma iteração?

Resolução.

Sendo apenas uma iteração, a mensagem criptografada vai estar mais vulnerável já que nível de entropia vai estar bem baixa então uma mensagem criptografada com chaves diferentes vão estar bem parecidas.

2.5.5

Qual a relação do resultado numérico que V obteve com o conceito de Entropia de Informação segundo Shannon?

Resolução.

A relação que foi obtida é que a entropia (confusão e difusão) tem uma grande importância em proteger as informações das mensagens e das chaves