3/23/23, 12:30 PM Print Test

PRINTABLE VERSION

Quiz 10

You scored 100 out of 100

Question 1

Your answer is CORRECT.

Use the "Division Algorithm" to compute $2 \div 1$, and then determine which of the following statements is true.

- a) \odot The value of the quotient is q=2 and the value of the remainder is r=0.
- **b)** The value of the quotient is q = 1 and the value of the remainder is r = 2.
- c) \bigcirc The value of the quotient is q = 2 and the value of the remainder is r = 1.
- **d)** The value of the quotient is q=2 and there are two possible remainder values r=0 and r=1.
- e) \bigcirc The value of the quotient is q = 0 and the value of the remainder is r = 2.

Question 2

Your answer is CORRECT.

A mathematician used the division algorithm to divide the number 17 by another number b. Their computation resulted in the facts that the quotient q=8 and the remainder r=3. Determine the value of b.

- **a)** 0 b = 17
- **b)** \bigcirc **b** = 2
- c) There must have been a mistake, as there is no value of b that makes this possible.
- **d)** \bigcirc b = 139
- e) 0 = 1

Ouestion 3

Your answer is CORRECT.

What are the possible values for the remainder r when using the Division Algorithm to divide an integer a by the number 17?

a) \bigcirc The remainder r can take on any integer value.

b)
$$\bigcirc$$
 $r \in \{-17, -16, \dots, -2, -1, 0, 1, 2, \dots, 16, 17\}$

c) \bigcirc There is only one unique value for r, and that is r = 7.

d)
$$\circ$$
 $r \in \{0, 1, 2, \dots, 16\}$

e)
$$r \in \{0, 1, 2, \dots, 16, 17\}$$

Ouestion 4

Your answer is CORRECT.

A mathematician used the division algorithm to divide an integer a by the number 8. Their computation resulted in the facts that the quotient q=18 and the remainder r=0. Determine the value of a.

a)
$$a = 136$$

c)
$$\bigcirc$$
 a = 8

d) There must have been a mistake, as there is no value of a that makes this possible.

e)
$$\bigcirc$$
 a = $\frac{4}{9}$

Question 5

Your answer is CORRECT.

The Fundamental Theorem of Arithmetic states

- a) O Every integer greater than 1 is a prime.
- **b)** O Every prime greater than 1 can be expressed as a product of integers.
- c) Every integer greater than 1 can be uniquely expressed as a product of prime numbers (up to the order of the factors).
- d) Every integer greater than 1 can be expressed as a product of prime numbers.

e) O Every prime greater than 1 can be uniquely expressed as a product of integers.

Question 6

Your answer is CORRECT.

What is the remainder when the Division Algorithm is used to divide 13 by 7?

- a) \odot The remainder is r = 6.
- **b)** \bigcirc The remainder is $r = \frac{6}{7}$.
- c) \bigcirc The remainder is $r = \frac{13}{7}$.
- d) \bigcirc The remainder is r = 7.
- e) \bigcirc The remainder is r = 13.

Question 7

Your answer is CORRECT.

A mathematician used the division algorithm to divide an integer a by the number 8, and they found that the remainder r=3 . Based on this information determine which of the following statements is true.

- a) \bigcirc a is a multiple of 8.
- **b)** \odot a $\in \{8m + 3 : m \in Z\}$
- c) \bigcirc a is a multiple of 11.
- d) \bigcirc The only possible value of a is a = 11.

Question 8

Your answer is CORRECT.

The statement gcd(80, 61) = 8 is false. Which of the following best explains why?

- a) \bigcirc 8 is a common divisor for both 80 and 61, but it is not the greatest one.
- **b)** \bigcirc 8 is not a common divisor. 8|80, but 8 / 61.
- c) \odot 8 is not a common divisor. 8|61, but 8 /| 80.

3/23/23, 12:30 PM Print Test

d)	\bigcirc The	e statement	is false	because	the gcd	(80.)	61) =	4880
u,				~ ~ ~ ~ ~ ~ ~ ~		(~ ~ ,	~ - ,	

e) \bigcirc The statement is false because the gcd(80, 61) = 80.

Question 9

Your answer is CORRECT.

Of the options provided below, which pair of numbers is relatively prime?

- a) 019,38
- **b)** 19, 12
- (c) \bigcirc 77, 49
- **d)** 0 12, 36
- e) One of these pairs are relatively prime.

Question 10

Your answer is CORRECT.

Recall Bezout's Identity:

$$\forall a, b \in \mathbb{Z}, \exists x, y \in \mathbb{Z}, ax + by = \gcd(a, b)$$

If we apply this identity to the pair of integers a = 3 and b = 5 we produce the statement

$$\exists x, y \in \mathbb{Z}, 3x + 5y = \gcd(3, 5).$$

Of the options provided, which values can we use for X and y to show this statement is true? Are there *other* or additional values one can use for X and y?

- a) There are no solutions to this equation. Bezout's Identity does not apply because the two integers are relatively prime.
- **b)** \odot x = 32 and y = -19, and yes there are other solutions!
- c) x = 30 and y = -15, and yes there are other solutions!
- d) x = 32 and y = -19, and this pair is the only *unique* solution!
- e) x = 30 and y = -15, and this pair is the only *unique* solution!