

Enhancing Interlayer Charge Transport of Two-Dimensional Perovskites by Structural Stabilization via Fluorine Substitution

Liz Stippell

PhD Candidate: University of Southern California

Advisor: Prof. Oleg Prezhdo

Dana and David Dornsife College of Letters, Arts and Sciences

The Search for Better Energy Materials: Two-Dimensional Perovskites

1

Using Fluorine to Enhance Charge Transfer

Why the para-position?

Question:

HOW does fluorine improve charge transfer and efficiencies?

Understanding Charge Transfer: Marcus Theory

Marcus rate \propto coupling (V_{kl})

Marcus rate \propto site energies⁻¹ $\left(\frac{1}{\lambda}\right)$

$$k_{Marcus} = \left(\frac{V_{kl}^{2}}{\hbar}\right) \sqrt{\frac{\pi}{\lambda k_{B}T}} exp\left(-\frac{(\Delta A + \lambda)^{2}}{4\lambda k_{B}T}\right) - - -$$

$$\lambda = \frac{\sigma^2}{2k_BT}$$
 $\sigma = \langle (dE - \langle dE \rangle)^2 \rangle$

$$\mu_{hopping} = \frac{eD}{k_B T} = \frac{ek_{Marcus}L^2}{k_B T}$$

Charge Carrier Hopping Mobility

Projection Diabatization Method (POD): Computing Nonadiabatic Couplings

Donor Energies

Acceptor Energies

Donor-Acceptor Couplings

Fluorine's Effects on Electronic Structure

$$\lambda = \frac{\sigma^2}{2k_BT}$$
 $\sigma = \langle (dE - \langle dE \rangle)^2 \rangle$

2.5

HOMO ~ -2.5 eV

HOMO ~ -2.75

Fluorinated

Putting the pieces together: charge transfer rates

SELECTIONIC COUDLING COUDLING

Natolis Pate

Oistance Between La

That Se Catriet Hopping

Fluorine as a Structural Stabilizer

Average Displacement (Å)							
Pb	I	N	Н	С	F		Inorganic Crystals

Non-Fluorinated Fluorinated

Displacement decreases with addition of fluorine atoms

Conclusions

Fluorine substitution enhances the PCE of the 2D perovskite **not** through coupling effects but through **reorganization energy and structural stabilization**.

		Inorganic Crystals
BZA	1.25	0.81
F-BZA	1.02	0.72

HOMO ~ -2.5 eV

HOMO ~ -2.75

Thank you!

Collaborators Wei Li

Claudio Quarti David Beljonne

Advisor Oleg Prezhdo

Extra Slides