МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №4
по дисциплине «Искусственные нейронные сети»
Тема: Распознавание рукописных символов

Студентка гр. 8383	Гречко В.Д.
Преподаватель	Жангиров Т.Р.

Санкт-Петербург 2021

Цель работы.

Реализовать классификацию черно-белых изображений рукописных цифр (28x28) по 10 категориям (от 0 до 9).

Набор данных содержит 60,000 изображений для обучения и 10,000 изображений для тестирования.

Задачи и требования.

- Ознакомиться с представлением графических данных
- Ознакомиться с простейшим способом передачи графических данных нейронной сети
- Создать модель
- Настроить параметры обучения
- Написать функцию, позволяющая загружать изображение пользователи и классифицировать его
- ▶ Найти архитектуру сети, при которой точность классификации будет не менее 95%
- Исследовать влияние различных оптимизаторов, а также их параметров, на процесс обучения
- Написать функцию, которая позволит загружать пользовательское изображение не из датасета

Выполнение работы.

1. Поиск архитектуры сети, при которой точность классификации будет не менее 95%

Первоначальная архитектура:

```
model = Sequential()
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dense(10, activation='softmax'))

model.compile(optimizer='adam', loss='categorical_crossentropy',
metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=5, batch size=128)
```

Точность: 97.939% - как видно из полученного результата, мы достигли требуемой точности.

2. Исследование влияние различных оптимизаторов, а также их параметров, на процесс обучения

Adam:

это метод стохастического градиентного спуска, основанный на адаптивной оценке моментов первого и второго порядков.

<pre>learning_rate=0.001,beta_1=0.9, beta_2=0.999, epsilon=1e-7</pre>	test_acc in %: 97.64999
<pre>learning_rate=0.01, beta_1=0.9, beta_2=0.999, epsilon=1e-7</pre>	test_acc in %: 97.43
<pre>learning_rate=0.0001, beta_1=0.8, beta_2=0.996, epsilon=1e-9</pre>	test_acc in %: 94.29
<pre>learning_rate=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1e-8</pre>	test_acc in %: 94.3499
<pre>learning_rate=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-8</pre>	test_acc in %: 85.5099
<pre>learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-8</pre>	test_acc in %: 97.79

RMSprop:

Суть RMSProp заключается в том, чтобы:

- Поддерживать скользящее (дисконтированное) среднее значение квадрата градиентов
- > Разделите градиент на корень этого среднего

Эта реализация RMSProp использует простой импульс, а не нестеровский импульс. Центрированная версия дополнительно поддерживает скользящее среднее градиентов и использует это среднее значение для оценки дисперсии

<pre>learning_rate=0.001, rho=0.9 momentum=0.0, epsilon=1e-7</pre>	test_acc in %: 97.64999
<pre>learning_rate=0.01,</pre>	test_acc in %: 96.45
<pre>learning_rate=0.0001, rho=0.9 momentum=0.0, epsilon=1e-9</pre>	test_acc in %: 94.45999
<pre>learning_rate=0.001, rho=0.8 momentum=0.0, epsilon=1e-9</pre>	test_acc in %: 97.6599
<pre>learning_rate=0.001, rho=0.7 momentum=0.0, epsilon=1e-9</pre>	test_acc in %: 97.69999
<pre>learning_rate=0.01, rho=0.7 momentum=0.0, epsilon=1e-8</pre>	test_acc in %: 97.64

SGD:это метод стохастического градиентного спуска, основанный на адаптивной оценке моментов первого и второго порядков.

<pre>learning_rate=0.01, momentum=0.0, nesterov=False</pre>	test_acc in %: 91.009
<pre>learning_rate=0.01, momentum=0.0, nesterov=True</pre>	test_acc in %: 91.119
<pre>learning_rate=0.001, momentum=0.3, nesterov=True</pre>	test_acc in %: 84.17
<pre>learning_rate=0.0001, momentum=0.0, nesterov=True</pre>	test_acc in %: 32.78
<pre>learning_rate=0.1,</pre>	test_acc in %: 96.02
<pre>learning_rate=0.1,</pre>	test_acc in %: 97.1899

Adadelta:

это стохастический метод градиентного спуска, основанный на адаптивной скорости обучения на измерение для устранения двух недостатков:

- Постоянное снижение скорости обучения на протяжении всего обучения
- ➤ Необходимость в выбранном вручную глобальном уровне обучения

Adadelta - это более надёжное расширение Adagrad, которое адаптирует скорость обучения на основе движущегося окна обновлений градиента, а не накапливает все прошлые градиенты. Таким образом, Adadelta продолжает учиться, даже когда было сделано много обновлений.

<pre>learning_rate=0.001, epsilon=1e-07</pre>	rho=0.95,	test_acc in %: 53.619
<pre>learning_rate=1.0, epsilon=1e-07</pre>	rho=0.95,	test_acc in %: 97.86
<pre>learning_rate=1.2, epsilon=1e-09</pre>	rho=0.95,	test_acc in %: 94.9299
<pre>learning_rate=1.0, epsilon=1e-07</pre>	rho=0.89,	test_acc in %: 97.64
<pre>learning_rate=1.3, epsilon=1e-07</pre>	rho=0.73,	test_acc in %: 97.509
<pre>learning_rate=1.3, epsilon=1e-07</pre>	rho=0.99,	test_acc in %: 97.790

Adagrad:

это оптимизатор с определенными параметрами скорости обучения, которые адаптируются относительно того, как часто параметр обновляется во время обучения. Чем больше обновлений получает параметр, тем меньше обновлений.

learning_rate=0.001,	
<pre>initial_accumulator_value=0.1,</pre>	test_acc in %: 87.5
epsilon=1e-07	

learning_rate=0.001,	
initial_accumulator_value=0.3,	test_acc in %: 84.8999
epsilon=1e-07	
learning_rate=0.01,	
initial_accumulator_value=0.01,	test_acc in %: 95.34
epsilon=1e-07	
learning_rate=0.001,	
initial_accumulator_value=0.001,	test_acc in %: 91.7599
epsilon=1e-08	
<pre>learning_rate=0.1,</pre>	
<pre>initial_accumulator_value=0.01,</pre>	test_acc in %: 98.0199
epsilon=1e-07	
learning_rate=0.1,	
initial_accumulator_value=0.1,	test_acc in %: 97.63
epsilon=1e-07	

Adamax:

это вариант Адама, основанный на норме бесконечности. Adamax иногда превосходит Adam, особенно в моделях с вложениями.

<pre>learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07</pre>	test_acc in %: 96.3599
<pre>learning_rate=0.001, beta_1=0.8, beta_2=0.888, epsilon=1e-07</pre>	test_acc in %: 97.64
<pre>learning_rate=0.01, beta_1=0.8, beta_2=0.779, epsilon=1e-07</pre>	test_acc in %: 96.10
<pre>learning_rate=0.01, beta_1=0.9, beta_2=0.999, epsilon=1e-08</pre>	test_acc in %: 97.68
<pre>learning_rate=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1e-08</pre>	test_acc in %: 92.11999
<pre>learning_rate=0.01, beta_1=0.5, beta_2=0.999, epsilon=1e-08</pre>	test_acc in %: 97.99

Nadam:

Подобно тому, как Adam по существу является RMSProp с импульсом, Nadam – это Adam с нестеровским импульсом.

<pre>learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07</pre>	test_acc in %: 97.5199
<pre>learning_rate=0.001, beta_1=0.7, beta_2=0.999, epsilon=1e-08</pre>	test_acc in %: 97.829
<pre>learning_rate=0.001, beta_1=0.7, beta_2=0.777, epsilon=1e-08</pre>	test_acc in %: 97.9399
<pre>learning_rate=0.001, beta_1=0.6, beta_2=0.666, epsilon=1e-08</pre>	test_acc in %: 97.61
<pre>learning_rate=0.01, beta_1=0.8, beta_2=0.787, epsilon=1e-08</pre>	test_acc in %: 96.9399
<pre>learning_rate=0.001, beta_1=0.8, beta_2=0.787, epsilon=1e-08</pre>	test_acc in %: 98.00

Ftrl:

Алгоритм "Follow the Regularized Leader" проистекает из настройки онлайнобучения, где процесс обучения является последовательным. В этой ситуации онлайн-игрок принимает решение в каждом раунде и терпит поражение. В частности, множество решений является выпуклым множеством в евклидовом пространстве, которое мы можем обозначить через $\mathcal{M} \in \mathbb{R}^n$, а потеривыпуклыми функциями над \mathcal{M} .

<pre>learning_rate=0.001, learning_rate_power=-0.5,</pre>	
<pre>initial_accumulator_value=0.1,</pre>	test_acc in %: 18.960
<pre>11_regularization_strength=0.0,</pre>	
12_regularization_strength=0.0,	
12_shrinkage_regularization_strength=0.0,beta=0.0	
<pre>learning_rate=0.01, learning_rate_power=-0.5,</pre>	
initial_accumulator_value=0.6,	
11_regularization_strength=0.7,	test_acc in %:
12_regularization_strength=0.7,	11.349
12_shrinkage_regularization_strength=0.9,	
beta=0.4	
<pre>learning_rate=0.0001, learning_rate_power=-</pre>	
10.0001, initial_accumulator_value=1.9,	test acc in %: 9.65
l1_regularization_strength=19.000001,	test_acc in %: 9.05
12_regularization_strength=0.0000007,	

12_shrinkage_regularization_strength=8.9,	
beta=0.6	

Результаты крайне низки, поэтому дальнейшее исследование было прервано.

3. Написать функцию, которая позволит загружать пользовательское изображение не из датасета

Функция predictNumber получает путь к файлу (вводимый пользователем).

Полученные результаты:

Цифра на картинке	Результат
	[1]
1	Second:
	[1]
	[2]
2	Second:
	[2]
	[3]
3	Second:
	[3]
	[4]
4	Second:
	[4]
	[5]
5	Second:
	[5]
	[6]
6	Second:
	[6]
	[7]
7	Second:
	[7]
	[8]
8	Second:
	[8]
	[9]
9	Second:
	[9]

Выводы.

В ходе выполнения работы была создана искусственная нейронная сеть, осуществляющая распознавание черно-белых изображений цифр от 0 до 9. Также было проведено исследование влияния различных оптимизаторов и их параметров на работу нейронной сети.