## TIAM+

extending the Tool for Integrative Analysis of Motility  ${\tt https://github.com/r-medina/TIAM-}$ 

Ricardo Medina Sakellarios Zairis Jan-Willem van de Meent

May 23, 2013

#### Task



Using data from Vivek Mayya and Willie Neiswanger's TIAM tool, which performs detection and tracking of cells from multi-channel time lapse microscopy videos, build an algorithm that will classify track segments. Two initial decisions:

- 2 classes
- .: supervised

#### Goals:

- √ collect supervised data
  - Vivek used GUI Ricardo Medina developed to label each position of 126 cell tracks with IRM channel data as being in one of the two classes
- √ engineer/discover useful features for trajectory classification
- √ find a supervised machine learning model that will work for the task at hand and
  that will properly segment the cell tracks
- ? develop an unsupervised generative model (HMM) with the help of Sakellarious Zairis and Jan-Willem van de Meent

# Supervised Histograms





### **SVM** Performance

Running the classifier on all data for which we have supervised labels (110 full trajectories with IRM channel data) gives the following result:

| true unconfined  | 5048 | 454  | false confined |
|------------------|------|------|----------------|
| false unconfined | 487  | 8714 | true confined  |

sensitivity: 0.917specificity: 0.947

accuracy: 0.936

Woo!

# **SVM Histograms**



