Refrigeration

- It is defined as the process of providing and maintaining a temperature well below that of surrounding atmosphere.
- In other words refrigeration is the process of cooling substance.

Refrigerating Effect (N): It is defined as the quantity of heat extracted from a cold body or space to be cooled in a given time.

N= Heat extracted from the cold space

Time taken

Specific Heat of water and ice: It is the quantity of heat required to raise or lower the temperature of one kg of water (or ice), through one kelvin or (1° c) in one second.

Specific heat of water, $C_{pw} = 4.19 \text{ kJ/kg K}$ Specific heat of ice, $C_{pice} = 2.1 \text{ kJ/kg K}$.

Capacity of a Refrigeration Unit:

- Capacity of a refrigerating machines are expressed by their cooling capacity.
- The standard unit used for expressing the capacity of refrigerating machine is ton of refrigeration.
- One ton of refrigeration is defined as, "the quantity of heat abstracted (refrigerating effect) to freeze one ton of water into one ton of ice in a duration of 24 hours at 0° c".

Heat extracted from at 0° c = latent heat of ice

Latent heat of ice = 336 kJ/kg

i.e., 336 kJ of heat should be extracted from one kg of water at 0° C to convert it into ice.

One ton of refrigeration

 $= 336 \times 1000 \text{ kJ/24 hrs.}$

= 336x1000 kJ/min

24x60

One ton of refrigeration

= 233.333 kJ/min

= 3.8889 kJ/sec

Co efficient of Performance: It is defined as the ratio of heat extracted in a given time (refrigerating effect) to the work input.

Co efficient of performance = Heat extracted in evaporator

Work Input

Co efficient of performance = Refrigerating Effect

Work Input

Co efficient of performance = N
W

The COP is always greater than 1 and known as theoretical coefficient of performance.

Refrigerants

Refrigerant: Any substance that absorbs heat through expansion and vaporisation process and loses heat due to condensation is a refrigeration process is called refrigerant.

Some examples of refrigerants are,

- Air
- •Ammoniα (NH₃)
- Carbon dioxide (CO₂)
- Sulphur dioxide (SO₂)
- Freon 12
- Methyl Chloride
- Methylene chloride.

Classification of Refrigerants

Refrigerants are classified as,

- (a) Primary Refrigerants: It is a working medium which is used for cooling the substance by absorption of latent heat.
- E.G Ammonia (NH₃), Carbon dioxide (CO₂), Sulphur dioxide (SO₂), Freon 12, etc.,
- (b) Secondary Refrigerants: Secondary refrigerant is a substance already cooled by primary refrigerant and then employed for cooling purposes.
- E.g Ice, solid carbon dioxide.
- These refrigerants cool the substance by absorption of their sensible heat.

Types of Refrigerators

- <u>Ice Refrigerators</u>: Ice is kept in the cabinet of refrigerators and this acts as the refrigerating means.
- Air Refrigerators: Air is used as working agent in these types of refrigerators.

 E.g., Bell Coleman Cycle.
- <u>Vapour Refrigerators:</u> The working agents employed in this type of refrigerators are ammonia, CO₂, SO₂, freons etc.,

Applications of Refrigeration

- In chemical industries, for separating and liquefying the gases.
- In manufacturing and storing ice.
- For the preservation of perishable food items in cold storages.
- For cooling water.
- For controlling humidity of air manufacture and heat treatment of steels.
- For chilling the oil to remove wax in oil refineries.
- For the preservation of tablets and medicines in pharmaceutical industries.
- For the preservation of blood tissues etc.,
- For comfort air conditioning the hospitals, theatres, etc.,

Properties of Refrigeration

- A good refrigerant should have high latent heat of vapourisation.
- It should have low boiling and low freezing point.
- It should be non toxic and should non corrosiveness
- It should be non flammable and non explosive.
- It should have high thermal conductivity
- It should be easy to handle
- It should have low specific volume of vapour.
- It should have high co efficient of performance

Vapour Compression Refrigeration System

S – entropy means transformation, increases with increase in temperature and decreases with decrease in temperature g = T ds

Vapour Compression Refrigeration System - Construction

- This system consists of a compressor, condenser, a receiver tank, an expansion valve and an evaporator.
- Compressor: Reciprocating compressors generally used. For very big plants centrifugal compressors directly coupled with high speed rotating engines (gas turbine) are used.

Vapour Compression Refrigeration System - Construction

Compressor: For very big plants

Centrifugal compressors
directly coupled with high
speed rotating engines
(gas turbine) are used

Vapour Compression Refrigeration System - Construction

- Condenser: It is a coil of tubes made of copper.
- Receiver tank: It is the reservoir of liquid refrigerant.
- Expansion Valve: This is a throttle valve. High pressure refrigerant is made to flow at a controlled rate through this valve.
- Evaporator: It is the actual cooler and kept in the space to be cooled. The evaporator is a coil of tubes made of copper

Vapour Compression Refrigeration System - Working

Working:

- 1. The low pressure refrigerant vapour coming out of the evaporator flows into the compressor.
- 2. The compressor is driven by a prime mover.
- 3. In the compressor the refrigerant vapour is compressed.
- 4. The high pressure refrigerant vapour from the compressor is then passed through the condenser.
- 5. The refrigerant gives out the heat it had taken in the evaporator (N)

Vapour Compression Refrigeration System - Working

Working:

- 6. The heat equivalent of work done on it (w) on the compressor.
- 7. This heat is carried by condenser medium which may be air or water.
- 8. The high pressure liquid refrigerant then enters the expansion valve.
- 9. This valve allows the high pressure liquid refrigerant to flow at a controlled rate into the evaporator.
- 10. While passing though this valve the liquid partially evaporates.

Vapour Compression Refrigeration System - Working

Working:

- 11.Most of the refrigerant is vapourised only in the evaporator, at a low pressure.
- 12. In the evaporator the liquid refrigerant absorbs its latent heat of vapourisation from the material which is to be cooled.
- 13. Thus the refrigerating effect (N) is obtained.
- 14. Then the low pressure refrigerant enters the compressor and the cycle is repeated.

Layout of Domestic Refrigerator

Layout of Domestic refrigerator

For Support notes, please visit: www.arpradeep.tk

Domestic refrigerator.....

- House hold refrigerators use vapor compression cycle
- Less energy: (90 W to 600 W)
 - Due to small and high efficiency motors and compressors,
 - better insulation materials,
 - large coil surface area,
 - better door seals
- Designed to maintain:
 - Freezer section -18 °C
 - Refrigeration section at 3°C

Domestic refrigerator.....

- Insulation materials:
 - Fiber glass, k= 0.032 W/m °C
 - Urethane foam, k= 0.019 W/m °C
 - Wall thickness for foam
 - For freezer section reduced from 90 to 48 mm
 - For refrigeration section reduced from 70 to 40 mm
- Works better up to the environment of 43°C
- Ice maker (2 to 3 kg/day)
- Vapor absorption is more expensive and less efficient

Domestic refrigerator.....

- Energy consumption can be minimized for practicing good measures
 - Open the refrigeration doors fewest times possible
 - Cool the hot foods to room temperature
 - Clean the condenser coil behind the refrigerator
 - Check the door gaskets for air leaks
 - Avoid unnecessary low temperature settings
 - Avoid excessive ice build up
 - Use the power saver switch
 - Do not block the air flow passages to and from the condenser coil.

AIR CONDITIONING

AIR CONDITIONING:

Air Conditioning is the process of conditioning the air according to the human comfort, irrespective of external conditions.

AIR CONDITIONING

Applications of Air Conditioning

- Used in offices, hotels, buses, cars.,etc
- Used in industries having tool room machines.
- Used in textile industries to control moisture.
- Used in printing press.
- Used in Food industries, Chemical plants.

CLASSIFICATION OF AIR CONDITIONING

Air conditioning systems are classified as

- 1) According to the purpose
 - a) Comfort Air conditioning.
 - b) Industrial Air conditioning.
- 2) According to Season of the year
 - a) Summer Air conditioning.
 - b) Winter Air conditioning.
 - c) Year round Air conditioning.

AIR CONDITIONING

Types of Air conditioners

- a) Room Air conditioners
- b) Winter Air conditioners
- c) Central Air conditioners

Functions of Air conditioners

- a) Cleaning air.
- b) Controlling the temp of air.
- c) Controlling the moisture content.
- d) Circulating the air.

TERMINOLOGIES

- 1) Dry air: The atmospheric air which no water vapour is called dry air.
- 2) Psychrometry: Psychrometry is the study of the properties of atmospheric air.
- 3) Temperature: The degree of hotness (or) Coldness is called the temperature.
- 4) Moisture: Moisture is the water vapour present in the air.

Window Type Air Conditioner

Window Type Air Conditioner

For Support notes, please visit

Window Type Air Conditioner

Window Type Air Conditioner - Working

- The low pressure vapour refigerant from the evaporator is sucked by compressor through the open inlet valve.
- The compressor compresses the vapour refrigerant.
- The high pressure and high temperature vapour refrigerant then flows to the condenser through the open outlet valve.
- In the condenser, the outside atmospheric temperature in summer being around 42° C, air is circulated by fan.
- After condensation, the high pressure liquid refrigerant formed passes through an expansion valve which reduces its pressure

Window Type Air Conditioner - Working

- The low pressure refrigerant then enters the evaporator and evaporates, thus absorbing latent heat of vapourisation from the room air.
- The equipment which is used for evaporating the refrigerant is called evaporator.
- After evaporation, the refrigerant becomes vapour.
- The low pressure vapour is again passed to the compressor. Thus the cycle is repeated.
- A partition separates high temperature side of condenser, compressor and low temperature side of evaporator

Window Type Air Conditioner - Working

- The quantity of air circulated can be controlled by the dampers.
- The moisture in the air passing over the evaporator coil is dehumidified and drip into the trays.
- The unit automatically stops when the required temperature is reached in the room. This is accomplished by the thermostat and control panel.
- Generally, the refrigerant monochloro difluro methane (CHCLF₂) is used in air conditioner. It is called Freon 22.

Merits and Demerits of Window type air conditioner

Merits:

- A separate temperature control is provided in each room.
- Ducts are not required for distribution.
- Cost is less.
- Skilled technician is required for installation.

Demerits:

- It makes noise.
- Large hole is made in the external wall or a large opening to be created in the window panel. This leads to insecurity to inmates.
- Air quantity cannot be varied.

Split Type Air Conditioner - Construction

Split Type Air Conditioner - Layout

Split Type Air Conditioner - Layout

Split Type Air Conditioner - Layout

- In split air type air conditioner noise making components like compressor and condenser are mounted outside or away from room.
- Split type air conditioning system has two main components.
 - (i) Outdoor Unit (ii) Indoor unit.
- The outdoor unit consists of compressor and condenser.
- The indoor unit consists of power cables, refrigerant tube and an evaporator mounted inside the room.

Split Type Air Conditioner - Working

- Compressor is used to compress the refrigerant.
- The refrigerant moves between the evaporator and condenser through the circuit of tubing and fins in the coils.
- The evaporator and condenser are usually made of coil of copper tubes and surrounded by aluminium fins.
- The liquid refrigerant coming from the condenser evaporates in the indoor evaporator coil.
- During this process the heat is removed from the indoor unit air and thus, the room is cooled.
- Air return grid takes in the indoor air.
- Water is dehumidified out of air is drained through the drain pipe.

Split Type Air Conditioner - Working

- The hot refrigerant vapour is passed to the compressor and then to the condenser where it becomes liquid.
- Thus the cycle is repeated.
- A thermostat is used to keep the room at a constant, comfortable temperature avoiding the frequent turning on off.

Fig.1 shows the layout diagram of a split type room air conditioner.

Merits and Demerits of Split type air conditioner

Merits:

- It is compact
- It is energy and money saving.
- Duct is not used.
- Easier to install.
- It is noiseless, because rotary air compressor used is, kept outside.
- It is more efficient and powerful.
- It has the flexibility for zoning.

Merits and Demerits of Split type air conditioner

DeMerits:

- Initial cost is higher than window air conditioner
- Skilled technician is required for installation.
- Each zone or room requires thermostat to control the air cooling.

Applications of air conditioning

- Used in houses, hospitals, offices, computer centres, theatres, departmental stores etc.,
- Air-conditioning of transport media such as buses, cars trains, aeroplanes and ships.
- Wide application in food processing, printing, chemical, pharmaceutical and machine tool, etc.,