Discrete Random Variables

March 24, 2021

Random Variable

- Sample space = set of outcomes of one experiment
- Not only care about the outcomes, some corresponding numerical value of interest
- Random variable = function of outcomes

Random Variable

- Sample space = set of outcomes of one experiment
- Not only care about the outcomes, some corresponding numerical value of interest
- Random variable = function of outcomes

Random Variable

- Sample space = set of outcomes of one experiment
- Not only care about the outcomes, some corresponding numerical value of interest
- Random variable = function of outcomes

Random variable

Tossing 3 dice

- X=times that number 1 shown up
- Y=largest number shown
- Z=sum of 3 numbers

Tossing 3 dice

- X=times that number 1 shown up
- Y=largest number shown
- Z=sum of 3 numbers

Tossing 3 dice

- X=times that number 1 shown up
- Y=largest number shown
- Z=sum of 3 numbers

Three balls are to be randomly chosen without replacement from a box containing 20 balls numbered 1 through 20. If we bet that at least one of the balls that are drawn has a number at least 17, what is the probability that we win the bet?

• X = largest number

• X takes value 3, 4, ..., 20

$$P(X = i) = \frac{\binom{i-1}{2}}{\binom{20}{3}}$$

$$P(X \ge 17) = P(X = 17) + P(X = 18) + P(X = 19) + P(X = 20)$$

=0.508

- X = largest number
- X takes value 3, 4, ..., 20

$$P(X = i) = \frac{\binom{i-1}{2}}{\binom{20}{3}}$$

$$P(X \ge 17) = P(X = 17) + P(X = 18) + P(X = 19) + P(X = 20)$$

= 0.508

- X =largest number
- X takes value $3, 4, \ldots, 20$

$$P(X = i) = \frac{\binom{i-1}{2}}{\binom{20}{3}}$$

•

$$P(X \ge 17) = P(X = 17) + P(X = 18) + P(X = 19) + P(X = 20)$$

=0.508

Random variable

$$X:(\Omega,\mathcal{F},P)\longrightarrow (\mathbb{R},\mathcal{B}(\mathbb{R}))$$

 $\mathcal{B}(\mathbb{R})$ is generated by $(-\infty, x]$ for $X \in \mathbb{R}$

• Cumulative Distribution Function (cdf) of a random variable X is

$$F(x) = P(X \le x) - \infty < x < \infty$$

• $\{\omega \in \Omega : X(\omega) \le x\} \in \mathcal{F}$ for all x then X is \mathcal{F} - measurable

Properties

• cdf is non decreasing

$$\lim_{b \to \infty} F(b) = 1 \quad \lim_{b \to -\infty} F(b) = 0$$

• cdf is right continuous

Properties

• cdf is non decreasing

$$\lim_{b \to \infty} F(b) = 1 \quad \lim_{b \to -\infty} F(b) = 0$$

• cdf is right continuous

- All questions about *X* can be answered in terms of the cdf F(x)
- Example:

$$P(a < X \le b) = F(b) - F(a)$$

- All questions about *X* can be answered in terms of the cdf F(x)
- Example:

$$P(a < X \le b) = F(b) - F(a)$$

Classify Random Variables

- **Discrete RV**: Range of RV is countable
- Continuous RV: Range of RV is not countable

Discrete RV

- Dicrete RV is a RV can take at most countable number of possible values
- the probablity mass function (pmf) of a discrete RV X is

$$p(a) = P(X = a)$$

Discrete RV

- Dicrete RV is a RV can take at most countable number of possible values
- the probablity mass function (pmf) of a discrete RV X is

$$p(a) = P(X = a)$$

Property of pmf

If *X* takes on one of the values x_1, x_2, \ldots then

•

$$p(x_i) \ge 0$$
 for $i = 1, 2, ...$

$$\sum_{i=1}^{\infty} p(x_i) = 1$$

Property of pmf

If *X* takes on one of the values x_1, x_2, \ldots then

•

$$p(x_i) \ge 0$$
 for $i = 1, 2, ...$

$$\sum_{i=1}^{\infty} p(x_i) = 1$$

Calculate pmf of a discrete RV

- Collect all the possible outcomes that give rise to the event $\{X = x\}$.
- Add their probabilities to obtain $p_X(x)$.

Let the experiment consist of two independent tosses of a fair coin, and let *X* be the number of heads obtained. Then the pmf of *X* is

X	0	1	2
outcome	$\{TT\}$	$\{TH, HT\}$	$\{HH\}$
$p_X(x)$	1/4	2/4	1/4

pmf Graph

Example: X = sum of two dice

cdf and pmf

Can write cdf in terms of pmf

$$F(a) = \sum_{x \le a} p(x)$$

For discrete RV, cdf is step function

cdf and pmf

Can write cdf in terms of pmf

$$F(a) = \sum_{x \le a} p(x)$$

For discrete RV, cdf is step function

Suppose *X* has pmf given by

$$p(1) = \frac{1}{4}, \quad p(2) = \frac{1}{2}$$

$$p(3) = \frac{1}{8}, \quad p(4) = \frac{1}{8}$$

then the cdf is

$$F(a) = \begin{cases} 0 & a < 1 \\ \frac{1}{4} & 1 \le a < 2 \\ \frac{3}{4} & 2 \le a < 3 \\ \frac{7}{8} & 3 \le a < 4 \\ 1 & 4 \le a \end{cases}$$

Graph

