

Autonomous Systems – Path Planning and Control Lab Project Documentation (2.5 ECTS)

Students: Semyon Kondratev (207612)

Daniel Vetter (190238)

Professor: Prof. Dr.-Ing. Frank Tränkle

Term: Winter term 2021/22

Inhalt

1	Exe	Exercise 5 - Vehicle Dynamics		
	1.1	Exe	rcise 5.1 Longitudinal dynamic model	3
	1.1.1		Exercise 5.1 b) Calculation of the parameters	3
	1.1.2		Exercise 5.1 c) Calculation of the transfer function	3
	1.1.3		Exercise 5.1 d) Bode plot and step response	4
	1.2	Exe	rcise 5.2 vehicle simulation	5
	1.2.1		Exercise 5.2 b) Simulink model of the vehicle	5
	1.2.2		Exercise 5.2 c) Test	5
	1.3	Exe	rcise 6.1 vehicle simulation	10
	1.3.1		Exercise 6.1 a) Parameter calculation	10
	1.3.2		Exercise 6.1 b) Bode plot of G ₀ (s)	12
	1.3.3		Exercise 6.1 c) Step Response of G _w (s)	13
	1.3.4		Exercise 6.1 d) discretization	13
	1.4	Exe	rcise 6.2 Speed Control simulation	14
	1.5	Exe	rcise 8.1 Path definition of straight lines	15
	1.5.1		Exercise 8.1 a) Derivation of parameterized curve definition	15
	1.5	.2	Exercise 8.1 b) Calculation of curvature, tangent vector and normal vector	15
	1.6	Exe	rcise 8.2 MODBAS CAR Function for Clothoids (not required for 2.5 ECTS)	16
	1.6.1		See the following matlab-files:	16
	1.7	Exe	rcise 9.1 Path Following Controller	17
	1.7	.1	Yaw-angle diagram	17

1 Exercise 5 - Vehicle Dynamics

1.1 Exercise 5.1 Longitudinal dynamic model

1.1.1 Exercise 5.1 b) Calculation of the parameters

The following formula was given as a solution to exercise 5) a):

$$\frac{m_{tot}}{k_v}\frac{dv_r(t)}{dt} + v_r(t) = \frac{u_g c_m u_{max}}{rRk_v}(t-T_t) - \frac{1}{k_v}F_{wr}(t)\;; t>0$$

with the starting condition:

$$v_r(0) = 0 \frac{m}{s}$$

calculation of T, k_u , T_t :

$$T = \frac{m}{\frac{c_m^2 u_g^2}{Rr^2} p c_w A \, \bar{v}_r} = 0.361 \, s$$

$$k_{u} = \frac{u_{g}c_{m}u_{max}}{rR\left(\frac{c_{m}^{2}u_{g}^{2}}{Rr^{2}} + pc_{w}A\bar{v}_{r}\right)} = 2.51 \frac{m}{s}$$
$$T_{t} = 0.100 s$$

1.1.2 Exercise 5.1 c) Calculation of the transfer function

With the parameters calculated in 5) b) the transfer function can be calculated as follows.

$$G_s(s) = \frac{Y(s)}{U(s)} = \frac{V_r(s)}{U_n(s)} = \frac{k_u e^{-sT_t}}{Ts+1}$$

1.1.3 Exercise 5.1 d) Bode plot and step response

See the following files:

- ex5_1.m

1.2 Exercise 5.2 vehicle simulation

1.2.1 Exercise 5.2 b) Simulink model of the vehicle

See the following files:

- s6_template.slx (created with version R2020b)
- s6_template_2019a.slx (converted to version R2019a)

1.2.2 Exercise 5.2 c) Test

Below we inserted a few diagrams with different parameters for the pedals, steering and command

1. CarInputsCommandForward, pedals = 1, δ = 0

2. CarinputsCommandSlow, pedals = 1, δ = 0

t [s]

3. CarInputsCommandReverse, pedals = -1, δ = 0

4. CarInputsCommandForward, pedals = 1, δ = -0.5

5. CarInputsCommandForward, pedals = 1, δ = 0.5

1.3 Exercise 6.1 vehicle simulation

1.3.1 Exercise 6.1 a) Parameter calculation

plant transfer function:

$$G_s(s) = \frac{k_u}{Ts+1}e^{-T_t s} = \frac{k_u}{j\omega T+1}(\cos(T_t \omega) - j\sin(T_t \omega))$$

Controller transfer function:

$$G_R(s) = k_R \frac{(T_i s + 1)}{T_i s} \Rightarrow G_R(\omega) = \frac{j \omega k_R T_i + k_R}{j \omega T_i}$$

Open-loop transfer function:

$$G_0(s) = k_u k_R \frac{(T_i s + 1)}{(T_s + 1)T_i s} e^{-T_t s}$$

Phase of plant:

$$\varphi_{S}(\omega) = \arctan\left(\frac{-k_{u}\cos(T_{t}\omega)}{k_{u}\sin(T_{t}\omega)}\right) - \arctan(T\omega)$$

$$= \arctan(-\tan(T_{t}\omega))\arctan(T\omega)$$

$$= -T_{t}\omega - \arctan(T\omega)$$

Phase of controller:

$$\varphi_R(\omega) = arctan\left(\frac{k_R \omega T_i}{k_R}\right) - \left(-\frac{\pi}{2}\right)$$

Open-loop phase:

$$\varphi_0(\omega) = \varphi_S(\omega) + \varphi_R(\omega) = -\omega T_t - \arctan(\omega T) + \arctan(\omega T_i) - \frac{\pi}{2}$$

Phase margin:

$$\varphi_{Res} = \pi + \varphi_0(\omega_D) = \pi - \frac{\pi}{2} - T_t \omega_D - \arctan(\omega_D T) + \arctan(\omega_D T_i)$$
$$= \frac{\pi}{2} - \omega_D T_t - \arctan(\omega_D T) + \arctan(\omega_D T_i)$$

$$T_i = \frac{tan(\varphi_{Res} - \frac{\pi}{2} + \omega_D T_t + arctan(\omega_D T))}{\omega_D} = 0,2468s$$

Open-loop frequency response:

$$G_0(\omega) = k_u k_R \frac{j\omega T_i + 1}{(j\omega T + 1)j\omega T_i} e^{-j\omega T_t} = k_u k_R \frac{j\omega T_i + 1}{-\omega^2 T T_i + j\omega T_i} e^{-j\omega T_t}$$

Open-loop magnitude response:

$$A_{0}(\omega) = k_{u}k_{R} \frac{\sqrt{1 + (\omega T_{i})^{2}}}{\sqrt{(\omega^{2}TT_{i})^{2} + (\omega T_{i})^{2}}}$$

$$A_{0}(\omega_{D}) = 1$$

$$k_{R} = \frac{\sqrt{(\omega_{D}^{2}TT_{i})^{2} + (\omega_{D}T_{i})^{2}}}{\sqrt{1 + (\omega_{D}T_{i})^{2}}k_{u}} = 0,3440 \frac{s}{m}$$

1.3.2 Exercise 6.1 b) Bode plot of G₀(s)

See the following files:

- ex6_1.m

1.3.3 Exercise 6.1 c) Step Response of G_w(s)

RiseTime: 0.3941 SettlingTime: 1.3211 SettlingMin: 0.9046 SettlingMax: 1.0376 Overshoot: 3.7564 Undershoot: 0

> Peak: 1.0376 PeakTime: 0.9594

1.3.4 Exercise 6.1 d) discretization

$$G_R(s) = k_R \cdot \left(1 + \frac{1}{T_i s}\right), \text{ with } s = \frac{1 - z^{-1}}{T_A}$$

$$G_R(z) = \frac{U(z)}{E(z)} = k_R \left(1 + \frac{1}{T_i \frac{1 - z^{-1}}{T_A}}\right)$$

$$G_R(z) = k_r \cdot \left(1 + \frac{T_A}{T_i \cdot (1 - z^{-1})}\right)$$

$$\begin{aligned} u_{p,k} &= e_k \cdot k_r \\ u_{i,k} &= u_{i,k-1} + k_r \frac{T_A}{T_i} \cdot e_k \\ u_k &= u_{p,k} + u_{i,k} = k_r \cdot e_k + k_r \frac{T_A}{T_i} \cdot e_k + u_{i,k-1} \end{aligned}$$

1.4 Exercise 6.2 Speed Control simulation

Step responses of different vehicle speeds

See also the following files:

- s6_data.m
- s7_template.slx (created with version R2020b)
- s7_template.slx (converted to version R2019a)

1.5 Exercise 8.1 Path definition of straight lines

1.5.1 Exercise 8.1 a) Derivation of parameterized curve definition

$$s(x) = \begin{pmatrix} s_1(x) \\ s_2(x) \end{pmatrix} = \begin{pmatrix} s_{0,1} + \cos(\psi_0) \cdot x \\ s_{0,2} + \sin(\psi_0) \cdot x \end{pmatrix}$$

1.5.2 Exercise 8.1 b) Calculation of curvature, tangent vector and normal vector

Tangent vector:

$$t(x) = \frac{ds}{dx} = \begin{pmatrix} s'_1(x) \\ s'_2(x) \end{pmatrix} = \begin{pmatrix} \cos(\psi_0) \\ \sin(\psi_0) \end{pmatrix}$$

Normal vector:

$$n(x) \times t(x) = 0$$

$$\cos(\psi_0) \cdot t_1(x) + \sin(\psi_0) \cdot t_2(x) = 0$$

$$n(x) = \begin{pmatrix} -\sin(\psi_0) \\ \cos(\psi_0) \end{pmatrix} \text{ and } \begin{pmatrix} \sin(\psi_0) \\ -\cos(\psi_0) \end{pmatrix}$$

Curvature:

$$\kappa(x) = \left| \frac{d^2 s}{dx^2} \right| = \sqrt{s''_1 + s''_2} = \sqrt{0 + 0} = 0$$

1.6 Exercise 8.2 MODBAS CAR Function for Clothoids (not required for 2.5 ECTS)

1.6.1 See the following matlab-files:

- mbc_clothoid_create.m
- mbc_clothoid_get_points.m
- s6_data.m

1.7 Exercise 9.1 Path Following Controller

1.7.1 Yaw-angle diagram

See the following files:

- s9_template.slx (created with version R2020b)
- s9_template.slx (converted to version R2019a)
- s6_data.m