CS 215 : Data Analysis and Interpretation (Instructor : Suyash P. Awate)

Mid-Semester Examination (Closed Book)

Roll Number:
Name:
For all questions, if you feel that some information is missing, make justifiable assumptions state them clearly, and answer the question.

Relevant Formulae

• Poisson: $P(k|\lambda) := \lambda^k \exp(-\lambda)/(k!)$

• Exponential: $P(x; \lambda) = \lambda \exp(-\lambda x); \forall x > 0$

• Univariate Gaussian:

$$P(x; \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-0.5 \frac{(x-\mu)^2}{\sigma^2}\right)$$

1. (15 points)

- [2 points] Define the bias of an estimator. Give a mathematical expression.
- [3 points] Define the variance of an estimator. Give a mathematical expression.
- [5 points] Mathematically derive the bias-variance decomposition for an estimator.

Please check the class notes.

ullet [5 points] Suppose the statistic T is an unbiased estimator of the variance parameter σ^2 of a Gaussian distribution.

Suppose you define $U:=\sqrt{T}$ as an estimator of the standard-deviation parameter σ

Is ${\cal U}$ an unbiased estimator ? If yes, prove it. If not, prove so.

Because T is unbiased, $E[T] = \sigma_{\text{true}}^2$

Jensen's inequality gives: $E[U] = E[\sqrt{T}] \le \sqrt{E[T]} = \sigma_{\text{true}}$

https://en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation

2.	(10 points: 5 + 5)
	Mathematically derive the maximum likelihood estimators for the parameters of the Gaussian probability density function (PDF).

Please check the class notes.

- 3. (20 points) Consider two dependent continuous random variables V and D, where V models petrol volume in the tank of a car and D models the distance travelled by the car. While collecting data, the observations of distance D, i.e., $\{d_i\}_{i=1}^N$, are virtually error-free (because the odometer has high accuracy and precision) but the observations about V have measurement errors (because the system to measure petrol volume in petrol tank has high accuracy and low precision). Thus, instead of the error-free values $\{v_i\}_{i=1}^N$, the measurements are the perturbed values $\{\hat{v}_i:=v_i+\epsilon_i\}_{i=1}^N$, where ϵ_i is a random perturbation caused by measurement error.
 - [5 points] Propose a statistical model for the measurement errors ϵ_i in each v_i , parameterized by a set of parameters θ_1 .

Gaussian with zero mean and positive variance, i.e., each ϵ_i is independently drawn from $G(0,\sigma^2)$

$$\theta_1 = \sigma$$

• [5 points] For the functional dependency between V and D, propose a model parameterized by a set of parameters θ_2 .

linear relationship between distance covered and petrol used, i.e., V=mD+c with $0< m<\infty$

$$\theta_1 = m, c$$

• [2 points] Using the proposed model for measurement errors and the proposed model for the functional dependency, based on concepts covered in class, formulate a strategy to infer the model parameters $\theta:=\theta_1\cup\theta_2$ from the observations $\{(d_i,\widehat{v}_i)\}_{i=1}^N$.

$$\begin{split} \arg \max_{m,c,\sigma} & \prod_{i=1}^{N} P(\widehat{v}_i,d_i) \\ &= \arg \max_{m,c,\sigma} \prod_{i=1}^{N} G(\widehat{v}_i;md_i+c,\sigma^2) \end{split}$$

• [8 points: 4 + 4] Mathematically derive and propose an implementable algorithm to solve for θ_1 and θ_2 given the observations $\{(d_i, \widehat{v}_i)\}_{i=1}^N$.

for m, c, irrespective of σ : linear system of equations obtained by assigning partial derivatives of log-likelihood function to zero; 2 equations; 2 unknowns.

given estimates \widehat{m}, \widehat{c} : solve 1 equation in 1 unknown σ

https://www.math.arizona.edu/~jwatkins/n-mle.pdf

4. (20 points)

Let ${\cal S}$ be a continuous random variable modeling the examination scores of students in a class.

Scores are real-valued within the range [0, 100].

The mean of S is 60.

• [4 points] Mathematically derive a non-trivial upper bound or lower bound (using concepts covered in class) for P(S > 90).

Markov inequality on S gives: $P(S \ge 90) \le 60/90$

• [7 points] Mathematically derive a non-trivial upper bound or lower bound (using concepts covered in class) for $P(S \le 20)$.

Let S' := 100 - S. Then S' also lies within [0, 100].

$$E[S'] = 100 - E[S] = 40$$

Applying Markov inequality to S' gives: $P(S \le 20) = P(S' \ge 80) \le 40/80$

ullet [9 points] Using an additional fact that the standard deviation of S is 10, mathematically derive a non-trivial upper bound or lower bound (using concepts covered in class) for $P(S \leq 20)$.

Let S' := 100 - S. Then S' also lies within [0, 100].

$$E[S'] = 100 - E[S] = 40$$

$$SD(S') = SD(S) = 10$$

 $P(S \le 20) = P(S' \ge 80) = P(S' - 40 \ge 40) = P(|S' - 40| \ge 40)$ (because we know $S' \ge 0$)

Chebyshev's inequality gives $P(|S'-40| \ge 40) \le 10^2/40^2$