Reg. No.							

B.Tech. DEGREE EXAMINATION, MAY 2024

Fourth Semester

18CSC266J – OPERATING SYSTEMS

(For the candidates admitted during the academic year 2018-2019 to 2019-2020)

Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed

(ii)		to hall invigilator at the end of 40° : - B & Part - C should be answere						
Time: 3	hours				Max. I	Marl	ks: 1	00
		$PART - A (20 \times 1)$	= 20 N	Marks)	Marks	BL	со	РО
		Answer ALL						
1	Cho	ose the incorrect operating syst	-		1	1	1	1
				Time sharing systems				
	` '	Distributed systems	` '	Desktop systems				
2.		perating system, location of ed at	the nex	xt instruction to be executed	is ¹	1	1	1
	(A)	Open files	(B)	Program counters				
	(C)	Process registers	(D)	Process state				
3.		process in a running state and to	l an int	terrupt occurs. Then, the proces	ss ¹	2	1	1
(2)	_	Terminated state	(B)	Waiting state				
	(C)	Running state	(D)	Ready state				
4.	Nam	ne the concept in which thread l	has its o	own copy of data	1	1	1	1
				Thread pool				
	(C)	Thread cancellation	(D)	Thread polling				
5.	Find	l out the non-preemptive sched	uling		1	2	2	1
	(A)	Round robin	(B)	FIFO				
	(C)	Priority scheduling	(D)	Multilevel queue scheduling				
6.	The	command that prints current w	orking	directory is	1	2	2	3
	(A)	cd	(B)	mk dir				
	(C)	pwd	(D)	cd				
7.	The	Linux command displa	ays bott	tom 10 rows.	1	2	2	1
	(A)	head	(B)	tail				
	(C)	cut	(D)	display				
8.	The	most optimal scheduling algor	ithm is		1	4	2	1
	(A)	FCFS	. ,	Shortest job first				
	(C)	Round Robin	(D)	None of the above				

Note:

(i)

9.	f	cess execute the following code ork (); ork ();	: :	**	1	3	3	2
		fork ();						
		he total number of child process	s crea	ated.				
	(A) 5	5	(B)	6				
	(C) 7	7	(D)	8				
10	Choos	se the hardware based solution f	or cr	itical section	1	2	3	1
10.		Peterson's solutions	(B)			_		•
		Monitor	` .	Test and set				
	(0) 1		(D)	rest and set				
11.	Name	the critical section solution that	t requ	ires busy waiting	1	2	3	1
		Semaphore	(B)	Mutex logic				
	(C) F	eterson's solution	(D)	Monitor				
12	Choos	e the operations of semaphore			I	2	3	1
14.		vait () and signal ()	(B)	test () and set ()	1	2	J	1
		compare () and swap ()		test () and swap ()				
	(0) 0	ompare () and swap ()	(D)	icsi () and swap ()				
13.	Choos	e the single source deadlock av	oidin	g techniques	1	2	4	1
				Bankers algorithm				
	(C) P	rocess termination	(D)	Wait for graph				
14.	(4)	is the solution to external frag			1	2	4	1
		Compaction		Hole				
	(C) R	Reallocation	(D)	Termination				
15.	Choose	e the address generated by CPU	J.		1	2	4	1
		hysical address		Absolute address				
	(C) L	ogical address	(D)	Segment address				
1.0	т	' A DANK C			_	_		
16.	becaus		er t	ypically improves performance	1	2	4	1
		7	(B)	Larger RAM are faster				
				Fewer segmentation faults				
	(-) -	ower page mains boom	(1)	occur segmentation raunts				
17.	After c	completion of DMA transfer, the	e pro		1	2	5	1
	(A) A			Interrupt signal				
	(C) V			I/O signal				
10	The de	to in unalistate a SI/O			,	0	-	
10.		ta in registers of I/O port is	(D)	Dard harris 11	1	2	5	1
		lead by host to get input	(B)	Read by controller to get input				
	(C) W	vincen by nost to get input	(D)	Written by controller to get				
				input				
19.	Name	the disk scheduling policies r	esult	s in minimum amount of head	1	2	5	1
	moven							
	(A) F	CFS	(B)	Circular scan				
	(C) E	levator	(D)	LIFO				

20.	Contiguous allocation of a file is defined by (A) Disk address of the first block (B) Length and size of the block of length (C) Size of the block (D) Total size of the file	1	2	5	1
	PART – B (5 × 4 = 20 Marks) Answer ANY FIVE Questions	Marks	BL	со	PO
21.	Define interrupts and discuss classes of interrupts.	4	2	1	1
22.	Describe about the operations on process.	4	3	1	1
23.	Explain the priority scheduling algorithm with suitable example and write the pros and cons.	4	3	2	2
24.	Compare multiprocessor scheduling with uniprocessor scheduling.	4	3	3	1
25.	What is paging? Discuss basic paging technique in detail.	4	3	2	2
26.	Differentiate fixed length partion with variable length partition.	4	3	2	3
27.	Compare internal fragmentation with external fragmentation.	4	3	2	3
	PART – C ($5 \times 12 = 60$ Marks) Answer ALL Questions	Marks	BL	СО	PO
28. a.	Describe the purpose of system calls and discuss the system calls related to device management and communications in brief.	12	2	1	1
	(OR)	10	2	1	1
b.	Sketch the process control block and detail the various information in the process control block.	12	2	1	1
29. a.i.	Differentiate pre-emptive and non-pre-emptive scheduling.	6	3	3	2
ii.	Differentiate turn around, response time, waiting time in scheduling.	6	3	3	2
	(OR)	12	3	2	3
b.	Describe multiprocessor scheduling with suitable example.	12	J		3
30. a.i.	Discuss necessary conditions for deadlock.	6	3	4	2
ii.	Describe deadlock prevention and deadlock avoidance techniques.	6	3	4	2
b.	(OR) Consider a system with five processes P ₀ through P ₄ and three resources types A, B, C. Resource type A has 10 instances, B has 5 instances, and type C has 7 instances. Suppose time to following snapshot of the system has been taken		3	4	2

Process	Allocation			Max	Available				
	Α	В	\mathbf{C}	A B C	A	ВС			
P_0	0	1	0	7 5 3	3	3 2			
\mathbf{P}_1	2	0	0	3 2 2					
\mathbf{P}_2	3	0	2	9 0 2					
P_3	2	1	1	2 2 2					
P_4	0	2	2	4 3 3					

Find out the need matrix and the safe sequence.

31. a. Discuss about paging and page table structure with suitable example.

(OR)

b. Consider the following page reference string.
1 2 3 4 5 3 4 1 6 7 8 7 8 9 7 8 9 5 4 4 5 3
Find out the number of page faults for the following algorithms. Assume four frames and all frames are initially empty.
(i) LRU (ii) FIFO (iii) Optimal

(OR)

b. Describe different directory implementation methods.

* * * *

Page 4 of 4

12