Pre-Layout Simulation Results for 10- Bit Monotonic SAR ADC

Capacitor Sizing For DAC

- → Mismatch limitation
- → Speed Limitation
- → Noise Limitation
- → Architecture Dependence (Switching Techniques)
- → Effects like Charge injection, Kickback noise From Comparator

Sizing of Capacitors (Effect of Mismatch):

For a Binary Weighted DAC:

$$\sigma_{DNL,MAX} = \sqrt{2^N - 1} \frac{\sigma_u}{C_u} LSB$$

 $\sigma_{DNL,MAX} = \sqrt{2^N - 1} \frac{\sigma_u}{C_u} LSB$ \rightarrow $\sigma_{INL,MAX} = \sqrt{2^{N-1}} \frac{\sigma_u}{C_u} LSB$

For a MIM Capacitor,

$$\sigma(\frac{\Delta C}{C}) = \frac{K_{\sigma}}{\sqrt{A}}$$

$$C = K_C \cdot A$$

 K_{σ} = matching Coefficient

 K_c = capacitor density parameter

For High Yield,

$$3\sigma_{DNL.MAX} < 0.5 LSB$$

$$C_U = 18 \cdot (2^N - 1) \cdot K_\sigma^2 \cdot K_C$$

For 65nm Process, $K_c = 1.6f F to 1.9f F/\mu m^2$

For $K_{\sigma} \leq 0.5\%$ µm, we get $C_{\parallel} \approx 1$ fF

Process Sets the lower limit for C₁₁

Ref:- Design of Ultra-Low-Power Analog-to-Digital Converters [D. Zhang, 2012]

Sizing of Capacitors(Effect of Speed and Thermal Noise):

From Track Bandwidth, with settling error < 0.5LSB

$$e^{-\frac{t}{R_{ON}C_S}} < \frac{1}{2^{N+1}}$$

$$f_{3dB} > \frac{\ln 2 \times (N+1)}{\pi} f_S$$

$$f_{3dB} > \frac{\ln 2 \times (N+1)}{\pi} f_S \qquad \qquad \Rightarrow C_S < \frac{1}{2 \cdot R_{sw} \cdot \ln 2 \cdot (N+1) f_S}$$

From Thermal Noise requirement, with Thermal noise < 0.25LSB

$$\overline{V_q^2} = \frac{V_{FS}^2}{12 \cdot 2^{2N}} > 4 \frac{KT}{C_S}$$
 \Rightarrow $C_S > \frac{48 \cdot KT \cdot 2^{2N}}{V_{FS}^2}$

With N = 10, gives $C_s > 208fF$

Sizing of Capacitors(Effect of Charge injection and Clock Feedthrough):

$$\Delta V_{e,N} = -\frac{kW_N L_N C_{OX} (V_{DD} - V_{THN} - V_{IN})}{C_S} - \frac{C_{GD,N}}{C_S + C_{GD,N}} V_{DD}$$

$$\Delta V_{e,P} = \frac{kW_P L_P C_{OX} (V_{IN} - |V_{THP}|)}{C_S} + \frac{C_{GD,P}}{C_S + C_{GD,P}} V_{DD}$$

DAC Switching Techniques (Monotonic):-

- 1. Set and Down Architecture
- 2. ERMS
- 3. V-cm based monotonic switching

Set and Down (Monotonic) Architecture:

- → It is a simple architecture, based on comparison and reducing the Higher node potential by binary weighted V_{REF} , till the binary weighted V_{REF} converge to LSB. It is a differential architecture. Binary weighted capacitor array for bottom DAC is shown below. Once the Input voltage is sampled onto top plate of every capacitor with bottom plate connected to V_{RFF} , then sample switch turns off and comparison phases start.
- → For the MSB phase, let's assume Vip > Vin, so bottom plate of MSB cap of upper DAC array is switched from VREF to gnd. Which Reduces Top plate voltage by V_{REF} / 2.
- → Similarly for the other bits, comparison and conversion are Performed.

Average Switching Energy:-
$$E_{\text{avg,mono}} = \sum_{i=1}^{n-1} (2^{n-2-i})CV_{\text{ref}}^2$$

Example: How Voltage across Top plate of capacitor varies (4-bit DAC)

From Q1 = Q2, (since total charge is not lost during conversion)

8V = 8*Vin -3*V_{REF}

→ V = Vin -
$$\frac{3}{8}$$
* V_{REF}

ERMS: Energy efficient Reference free Monotonic capacitor switching scheme

→ Switching scheme is same as monotonic but reference is converted to C-2C dummy capacitor which helps in adding 1 bit accuracy and reduces overall capacitance and switching energy.

Average Switching Energy:-
$$E = \left(\sum_{i=1}^{n-2} 2^{n-3-i} + \frac{1}{2}\right) \text{CV}_{REF}^2$$

Example: How Voltage across Top plate of capacitor varies (4-bit DAC)

End of Conversion Phase

From Principle of superposition,

We get,
$$\rightarrow V = Vin - \frac{1}{2} * V_{REF} + \frac{1}{8} * V_{REF} = Vin - \frac{3}{8} * V_{REF}$$

Vcm Based Monotonic Switching

Choosing $V_{REF} = 2*V_{CM}$

Average Switching Energy:- $E_{avg} = \sum_{i=1}^{N-2} (2^{N-i-5})CV_{REF}^2$

→ This Scheme has 3 Phases

Phase 1: Sampling Phase

Top plate is connected to Vip/Vin. Bottom Plate is connected to Vcm.

Phase 2: MSB Phase

Perform the comparison and replace the bottom plate of DAC of the lower potential side with V_{REF} . (This increases the lower Potential Top plate Voltage level by V_{REF} / 2).

Phase 3: Other Bits (same as monotonic)

Comparison:

[10bit}	Unit Capacitors	Switches	Avg. Switching Energy (CV ² _{REF})
Conventional (Bi- directional)	2048	68	1363.3
Monotonic [Set and Down]	1024	40	255.5
ERMS	518	40	128
Vcm - Monotonic	512	-	31.88

Block Diagrams And Results

Shift Register For Asynchronous Control Signal Generation

Function:

→ For every valid_d clock cycle it generates a control signal in a sequential fashion.

D-Flipflop with rst For Shift Register

Minimum size transistors : 120n/60n (high V_{th}) Inverters use stack of 2 pmos (minimum size) to reduce leakage.

DAC Control Logic

Function:

- → It is responsible for generating valid digital code word for the sampled differential signal.
- → It generates bit[i] at the rising edge of clk<i>, by identifying the output of comparator and respectively switches the cap_i bottom plate node voltage to gnd if comparator is high, else remains connected to V_{REF}.

Switches[Standard V_{th}]

Delay Cell

Core of delay cell uses low V_{th} MOS cells (W/L =480n/480n).

- → Delay is needed to ensure DAC capacitors settle during switching and to ensure comparator has enough time to compare and regenerate.
- → Generating delay is crucial in Asynchronous SAR ADC.

Dynamic Comparator(Strong Arm Latch)

Pre-amp latch stage MOS devices have W/L = 200n/200n.

Principle of operation:

- → Incoming differential voltage signal is amplified by differential pair to a moderate value, then cross coupled nMOS kicks in and regenerates the X,Y nodes to high/low by the action of positive feedback.
- → This regeneration action takes time, which can be controlled by PMOS current source.

Ramp Up Test (load 10fF with Vin-=400mV):-

Ramp up Test (load 10fF with Vin- =400mV, Monte Carlo with Process and Mismatch):-

Ramp Down Test (load 10fF with Vin-=400mV):-

Ramp Down Test (load 10fF with Vin-=400mV, Monte Carlo with Process and Mismatch):-

Hysterisis:-

Hystersis Window = | μ_{up} - μ_{down} | = 45uV

Hysteris Is centered around Vcm = $V_{DD}/2$

Delay vs input voltage [Simulated with Vcm=400mV and Load =10fF]

[@load10fF,VDD=0.8]	tt	ff	fs	SS	sf
Power (avg) W	124.4n	132.1n	91n	124.6n	146n

ADC Ramp Test: $V_{tune} = 250 \text{mV}$, $V_{REF} = 550 \text{mV}$, VDD = 0.8 V

[VDD=0.8] Ramp Test Results	tt	ff	fs	SS	sf
Power (avg) W	971.2n	986n	986.3n	990n	1080n

DAC ARRAY FLOOR PLANS

Partial Common Centroid Layout (C9-C5), C4-C0 are placed Close to bottom plate switching Network. [1] Shows reduced Mismatches and better DAC Linearity with Partial Common centroid Layout

References:

- [1] Design of Ultra-Low-Power Analog-to-Digital Converters [D. Zhang, 2012]
- [2] A Constant Energy-Per-Cycle Ring Oscillator Over a Wide Frequency Range for Wireless Sensor Nodes [JSSC,2016]

