

High Temporal Consistency through Semantic Similarity Propagation in Semi-Supervised Video Semantic Segmentation for Autonomous Flight

Taehyoung Kim^{2,*}, Henri Meeß² Cédric Vincent^{1,2,*}, ¹ Télécom Paris, Institut Polytechnique de Paris, ² Fraunhofer IVI

Training

Introduction

Motivation

Aerial autonomous systems rely on temporally consistent predictions, requiring efficient video segmentation tailored for real-time flight.

Challenge

Sparse labels and strict inference constraints make it difficult to achieve consistent, accurate segmentation across frames—posing a challenge for safety-critical onboard perception.

Our Approach

We introduce a lightweight propagation method that augments any image segmentation model with temporal consistency via linear interpolation, guided by learned semantic similarity and global registration — without sacrificing accuracy or efficiency.

Base Training (SSP)

- We compute the usual cross-entropy segmentation loss on the **labelled current frame** *k*.
- We add an optical flow-based temporal-consistency term between the prediction on *k* and the warped prediction from k - 1, down-weighted by a soft occlusion mask $O_{i,i}^{k-1\to k}$.

$$\mathcal{L}(P_k, P_{k-1}, A_k) = \underbrace{\mathcal{L}_{\text{seg}}(P_k, A_k)}_{\text{supervised segmentation}} + \lambda \underbrace{\mathcal{L}_{\text{tc}}(P_k, P_{k-1})}_{\text{temporal consistency}}$$

$$\mathcal{L}_{\text{tc}} = \frac{1}{HW} \sum_{i,j} O_{i,j}^{k-1 \to k} \|P_{i,j}^k - \hat{P}_{i,j}^{k-1}\|_2^2$$

$$O_{i,j}^{k-1 \to k} = \exp(-\|I_{i,j}^k - \hat{I}_{i,j}^{k-1}\|_1)$$

$$P_{i,j}^k : \text{ prediction at pixel } (i,j) \text{ in } \textit{current frame } k$$

 $\hat{P}_{i,j}^{k-1}$: prediction from frame k-1 warped into frame k

Knowledge Distillation Training (KD-SSP)

- A teacher produces logits for every frame. We warp each set of logits to the opposite frame with bidirectional optical flow and fuse them through an occlusion-mask M_{occ} , yielding temporally consistent soft labels T_{k-1}^c and T_k^c
- We supervise the student with KL-divergence loss on both frames, and the optical flowbased temporal-consistency loss ties the two predictions together. Model learn from the all frames while maintaining prediction stability across time.

$$\mathcal{L}(P_{k}, P_{k-1}, T_{k}^{c}, T_{k-1}^{c}) = \underbrace{\mathcal{L}_{kl}(P_{k}, T_{k}^{c})}_{\text{current frame } k} + \underbrace{\mathcal{L}_{kl}(P_{k-1}, T_{k-1}^{c})}_{\text{previous frame } k-1} + \lambda_{kd} \underbrace{\mathcal{L}_{tc}(P_{k}, P_{k-1})}_{\text{temporal consistency}}$$

$$M_{\text{occ}} = \|W_{k \to k-1} + W_{k-1 \to k}\|_{2}^{2} > 0.01 \left(\|W_{k \to k-1}\|_{2}^{2} + \|W_{k-1 \to k}\|_{2}^{2}\right) + 0.5$$

$$T_{k-1}^{c} = \frac{T_{k-1} + (1 - M_{\text{occ}}) \left(W_{k \to k-1} * T_{k}\right)}{2 - M_{\text{occ}}}$$

$$W_{k-1 \to k}: \text{ the optical flow from frame } k - 1 \text{ to } k$$

$$T: \text{ the teacher-model prediction on frame } k$$

$$T: \text{ the student-model prediction on frame } k$$

$$P: \text{ the student-model prediction on frame } k$$

T: the teacher-model prediction on frame k

P: the student-model prediction on frame k

Results

Quantitative Evaluation

	Method	Params	GFLOPs	FPS		UAVid		RuralScapes	
				A100	Orin	mIoU↑	TC ↑	mIoU↑	TC↑
	Teacher Model	101.01M	-	-	-	81.92	84.09	66.65	89.43
	SegFormer - b2	27.36M	204.1	77	-	77.81	83.76	62.75	86.89
Image Models	SegFormer - b3	47.23M	256.7	48	-	78.02	82.59	63.53	86.65
	ConvNeXt-S + UPerNet	81.77M	922.0	96	-	78.35	83.13	63.29	86.70
	Base Image Model	43.17M	310.6	104	21.4	79.23	79.02	63.51	87.34
	KD Base Image Model (Ours)	45.17WI	310.0	104	31.4	80.38	87.15	64.46	90.37
Video Models	DFF [55]	48.43M	137.2	23*	-	77.20	83.28	62.66	88.75
	NetWarp [12]	48.44M	739.9	15*	-	79.31	82.19	63.99	88.48
	TCB_{ppm} [33]	64.56M	1350.3	19	-	79.61	81.35	63.83	87.73
	TCB_{ocr} [33]	63.49M	1379.4	18	-	79.67	82.22	63.56	88.39
	SSP (Ours) KD-SSP (Ours)	43.38M	322.8	95	29.3	79.75 80.63	92.10 91.53	64.00 64.56	94.06 94.00

Contact and further information

Taehyoung Kim Fraunhofer Institute for Transportation and Infrastructure Systems IVI taehyoung.kim@ivi.fraunhofer.de

www.ivi.fraunhofer.de/en

Project

Home