

SPECIFICATION FOR APPROVAL

(Preliminar	y Specification
٨	, i i c iiiiiiiiiai	y op e cilication

Title	17.1" WUXGA TFT LCD

BUYER	HP
MODEL	

SUPPLIER	LG.Philips LCD Co., Ltd.		
*MODEL	LP171WU5		
Suffix	TLB1		

^{*}When you obtain standard approval, please use the above model name without suffix

APPROVED BY	SIGNATURE
/	
/	

Please return 1 copy for your confirmation with your signature and comments.

APPROVED BY	SIGNATURE				
G. J. Kwon / S.Manager					
REVIEWED BY					
C. J. Jun / Manager					
PREPARED BY					
H. S. Shin / Engineer					
Products Engineering Dept. LG Display Co., Ltd					

Contents

No	ITEM	Page
	COVER	1
	CONTENTS	2
	RECORD OF REVISIONS	3
1	GENERAL DESCRIPTION	4
2	ABSOLUTE MAXIMUM RATINGS	5
3	ELECTRICAL SPECIFICATIONS	
3-1	ELECTRICAL CHARACTREISTICS	6
3-2	INTERFACE CONNECTIONS	7
3-3	LVDS SIGNAL TIMING SPECIFICATIONS]
3-4	SIGNAL TIMING SPECIFICATIONS	9
3-5	SIGNAL TIMING WAVEFORMS	9
3-6	COLOR INPUT DATA REFERNECE	10
3-7	POWER SEQUENCE	11
4	OPTICAL SFECIFICATIONS	12
5	MECHANICAL CHARACTERISTICS	16
6	RELIABLITY	20
7	INTERNATIONAL STANDARDS	
7-1	SAFETY	21
7-2	EMC	21
8	PACKING]
8-1	DESIGNATION OF LOT MARK	22
8-2	PACKING FORM	22
9	PRECAUTIONS	23
Α	APPENDIX. Enhanced Extended Display Identification Data	25

RECORD OF REVISIONS

Revision No	Revision Date	Page	Description	Note
0.0	16.Oct.2007	-	First draft	-
0.1	29. Feb. 2008	4,6,7	4,6 page: Power Consumption update. 7page: Interface Connections update.	
0.2	10. Apr. 2008	14,15	Changed the optical specification	
0.3	1. May. 2008	31,32,33	Update EDID table	
0.4	22. May. 2008	31,32,33	Update EDID table (ver 1.3 → ver 1.4)	
	22. May. 2008	10	Pin assign change (ADD ALS function)	
0.5	17. Jun. 2008	20, 21	Mechanical drawing (Front / Rear view) update	
[
				<u> </u>

1. General Description

The LP171WU5 is a Color Active Matrix Liquid Crystal Display with an integral RGB LED backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally white mode. This TFT-LCD has 17.1 inches diagonally measured active display area with WUXGA resolution(1920 horizontal by 1200 vertical pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 8-bit gray scale signal for each dot, thus, presenting a palette of more than 16.7M(True) colors.

The LP171WU5 has been designed to apply the interface method that enables low power, high speed, low EMI. The LP171WU5 is intended to support applications where thin thickness, low power are critical factors and graphic displays are important. In combination with the vertical arrangement of the sub-pixels, the LP171WU5(TLB1) characteristics provide an excellent flat display for office automation products such as Notebook PC.

General Features

<u> </u>					
17.1 inches diagonal					
382.7 (H) × 248.0 (V) × 7.0(D) mm					
0.191 mm × 0. 191 mm					
1920 horiz. by 1200 vert. Pixels RGB strip arrangement					
8-bit, 16.7M colors					
300 cd/m²(Typ.), 5 point					
15W(Typ.) [3.3W(Logic, Typ.) + 11.7W(B/L, Typ.)]					
800g					
Transmissive mode, normally white					
Hard coating(3H) Anti-Glare treatment of the front polarizer					

2. Absolute Maximum Ratings

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

Table 1. ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Val	ues	Units	Notes	
Farameter		Min	Max	Offics		
Power Input Voltage	VCC	-0.3	4.0	Vdc	at 25 ± 5°C	
Operating Temperature	Тор	0	50	°C	1	
Storage Temperature	Нѕт	-20	60	°C	1	
Operating Ambient Humidity	Нор	10	90	%RH	1	
Storage Humidity	Нѕт	10	90	%RH	1	

Note: 1. Temperature and relative humidity range are shown in the figure below.

Wet bulb temperature should be 39°C Max, and no condensation of water.

3. Electrical Specifications

3-1. Electrical Characteristics

The LP171WU5(TLB1)requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input which powers the LED, is typically generated by an LED Driver. The LED Driver is an internal unit to the LCD.

Table 2. ELECTRICAL CHARACTERISTICS

Parameter	Cumbal		Linit	Notes		
Parameter	Symbol	Min	Тур	Max	Unit	Notes
MODULE :						
Power Supply Input Voltage	VCC	3.0	3.3	3.6	V_{DC}	
Power Supply Input Current	I _{cc}	850	1000	1150	mA	1
Power Consumption	Pc	-	3.3	3.8	Watt	1
Differential Impedance	Zm	90	100	110	Ohm	2
LED Backlight :						
Power Supply Input Voltage	V_{BL+}	7.5	14.4	21	V_{DC}	
Operating Voltage	V _{LED (R,G,B)}	-	-	42.4	V	3
Operating Current per string	I _{LED (R,G,B)}	-	-	50	mA	3
Power Consumption	P_{BL}		11.7	15.5	Watt	4
Life Time		15,000	-	-	Hrs	5

Note)

1. The specified current and power consumption are under the Vcc = 3.3V, $25^{\circ}C$, fv = 60Hz condition whereas Mosaic pattern (32x32) is displayed and fv is the frame frequency.

- 2. This impedance value is needed to proper display and measured form LVDS Tx to the mating connector.
- 3. RGB LED Operating Voltage and Operating Current per string should be within Max. SPEC.
- 4. The LED power consumption (Typ) shown above does include power of internal LED driver circuit for typical current condition. (Luminance = 300nit condition)
 - The power consumption (Max) condition is R,G,B LED 100% Dimming.
- 5. The life time is determined as the time at which brightness of LED is 50% compare to that of initial value at the typical LED current.

3-2. Interface Connections

This LCD employs two interface connections, a 40 pin connector is used for the module electronics interface and the other connector is used for the integral backlight system.

Table 3. MODULE CONNECTOR PIN CONFIGURATION (CN1)

Pin	Symbol	Description	Notes
1	GND	Ground	1, Interface chips
2	GND	Ground	1.1 LCD : Renesas (MM-TCON)
3	AVDD	Power Supply, 3.3V Typ.	including LVDS Receiver
4	AVDD	Power Supply, 3.3V Typ.	1.2 System :
5	AVDD	Power Supply, 3.3V Typ.	* Pin to Pin compatible with LVDS
6	DVDD	Digital Power supply (3.3V Typ)	2 Connector
7	DVDD	Digital Power supply (3.3V Typ)	2.Connector 2.1 LCD :JAE FI-NXB40SL-HF10
8	Clk EEDID	Two wire serial interface clock	or equivalent
9	DATA EEDID	Two wire serial interface data	(1.0 mm thickness, lock-in type,
10	RXinO0-	- LVDS differential data input, Chan 0-Odd	pin 1 starts from left on the front)
11	RXinO0+	+ LVDS differential data input, Chan 0-Odd	2.2 Mating: JAE or equivalent
12	GND	Ground	2.3 Connector pin arrangement
13	RXinO1	- LVDS differential data input, Chan 1-Odd	LCD rear view
14	RXinO1+	+ LVDS differential data input, Chan 1-Odd	1 40
15	GND	Ground	<u></u>
16	RXinO2-	- LVDS differential data input, Chan 2-Odd	
17	RXinO2+	+ LVDS differential data input, Chan 2-Odd	
18	GND	Ground	[LCD Module Rear View]
19	RXOC-	- LVDS Differential Clock input (Odd)	
20	RXOC+	+ LVDS Differential Clock input (Odd)	
21	GND	Ground	
22	RXinO3-	- LVDS differential data input, Chan 3-Odd	
23	RXinO3+	+ LVDS differential data input, Chan 3-Odd	
24	GND	Ground	
25	RXinE0-	- LVDS differential data input, Chan 0-Even	
26	RXinE0+	+ LVDS differential data input, Chan 0-Even	
27	GND	Ground	
28	RXinE1-	- LVDS differential data input, Chan 1-Even	
29	RXinE1+	+ LVDS differential data input, Chan 1-Even	
30	GND	Ground	
31	RXinE2-	- LVDS differential data input, Chan 2-Even	
32	RXinE2+	+ LVDS differential data input, Chan 2-Even	
33	GND	Ground	
34	RXEC-	- LVDS Differential Clock input (Even)	
35	RXEC+	+ LVDS Differential Clock input (Even)	
36	GND	Ground	
37	RXinE3-	- LVDS differential data input, Chan 3-Even	
38	RXinE3+	+ LVDS differential data input, Chan 3-Even	
39	GND	Ground	
40	NC	No connection	

3-3. LVDS Signal Timing Specifications

3-3-1. DC Specification

Description	Symb ol	Min	Max	Unit	Notes
LVDS Differential Voltage	V _{ID}	100	600	mV	-
LVDS Common mode Voltage	V _{CM}	0.6	1.8	V	-
LVDS Input Voltage Range	V _{IN}	0.3	2.1	V	-

3-3-2. AC Specification

Description	Symbol	Min	Max	Unit	Notes
LVDS Clock to Data Skow Margin	t _{SKEW}	- 400	+ 400	ps	85MHz > Fclk ≥ 65MHz
LVDS Clock to Data Skew Margin	t _{SKEW}	- 600	+ 600	ps	65MHz > Fclk ≥ 25MHz
LVDS Clock to Clock Skew Margin (Even to Odd)	t _{SKEW_EO}	- 1/7	+ 1/7	T _{clk}	-
Maximum deviation of input clock frequency during SSC	F _{DEV}	-	± 3	%	-
Maximum modulation frequency of input clock during SSC	F _{MOD}	-	200	KHz	-

< Clock skew margin between channel >

< Spread Spectrum >

3-3-3. Data Format

1) LVDS Data Port

< LVDS Data Format >

Table 4. BACKLIGHT CONNECTOR PIN CONFIGURATION (CN2)

Pin	Symbol	Description	Notes				
1	GND	Ground					
2	VBL+	7V - 20V LED Power	1. Connector 1.1 LCD : JAE FI-XB20S-HF10				
3	VBL+	7V - 20V LED Power	or equivalent				
4	VBL+	7V - 20V LED Power	1.2 Mating : JAE equivalent. 1.3 Connector pin arrangement				
5	VBL+	7V - 20V LED Power					
6	VBL+	7V - 20V LED Power	<u> </u>				
7	NC	No Connection					
8	VBL-	Ground	[LCD Module Rear View]				
9	VBL-	Ground					
10	VBL-	Ground					
11	VBL-	Ground					
12	VBL-	Ground					
13	NC	No Connection					
14	GND	Ground					
15	I2C_DATA	DATA for RGB control					
16	I2C_CLK	CLK for RGB control					
17	GND	Ground					
18	ALS	Note1)					
19	Reserved	Reserved					
20	GND	Ground					

Note)

1. Do not use ALS : 3.3V DC input Use ALS : PWM or DC(0V~3.3V) input

Ver. 0.5 17. Jun. 2008 10 / 33

3-3. Signal Timing Specifications

This is the signal timing required at the input of the User connector. All of the interface signal timing should be satisfied with the following specifications and specifications of LVDS Tx/Rx for its proper operation.

Table 5. TIMING TABLE

ITEM	Symbol		Min	Тур	Max	Unit	Note
DCLK	Frequency	fclk	147	154	164	MHz	tCLK = 1 / fCLK
	Period	tHP	2016	2080	2144		
Hsync	Width	twн	32	32	32	tclk	
	Active	twha	1920	1920	1920		
	Period	tvp	1213	1235	1278		
Vsync	Width	tw∨	6	6	6	tHP	
	Active	twva	1200	1200	1200		
	Horizontal back porch	tHBP	48	80	112	tour	
Data	Horizontal front porch	tHFP	16	48	80	tCLK	
Enable	Vertical back porch	tvbp	6	26	48	4115	
	Vertical front porch	tvfp	1	3	24	tHP	

3-4. Signal Timing Waveforms (Normal status)

3-5. Color Input Data Reference

The brightness of each primary color (red,green and blue) is based on the 8-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

Table 6. COLOR DATA REFERENCE

													Inpu	ut Co	olor	Data	ì									
	Color					RE	ΕD							GRE	EEN							BLI	JE			
			MS								MS								MS							SB
	<u> </u>								R1										┝							\dashv
	Black		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (255)		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (255)		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue (255)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Color	Cyan		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	-	1	1	1	1	1	1	1
	Magenta		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED (000)	Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (001)		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RED																										
	RED (254)		1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (255)		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (000)	Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (001)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
GREEN																										
	GREEN (254)		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	GREEN (255)		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	BLUE (000)	Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE (001)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
BLUE																										
	BLUE (254)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	BLUE (255)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

3-6. Power Sequence

Table 7. POWER SEQUENCE TABLE

Parameter		Value	Units	
	Min.	Тур.	Max.	
T ₁	-	-	10	(ms)
T ₂	0	-	50	(ms)
T ₃	200	-	-	(ms)
T ₄	200	-	-	(ms)
T ₅	0	-	50	(ms)
T ₆	0	-	10	(ms)
T ₇	400	-	-	(ms)

Note)

- 1. Valid Data is Data to meet "3-3. LVDS Signal Timing Specifications"
- 2. Please avoid floating state of interface signal at invalid period.
- 3. When the interface signal is invalid, be sure to pull down the power supply for LCD VCC to 0V.
- 4. Lamp power must be turn on after power supply for LCD and interface signal are valid.

4. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 30 minutes in a dark environment at 25°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and Θ equal to 0° .

FIG. 1 presents additional information concerning the measurement equipment and method.

FIG. 1 Optical Characteristic Measurement Equipment and Method

Table 8. OPTICAL CHARACTERISTICS

Ta=25°C, VCC=3.3V, fv=60Hz, f_{CLK}= 154MHz, Finished Color Calibration

Devemates	Course Is a I		Values	Llaita	Natas	
Parameter	Symbol	Min	Тур	Max	Units	Notes
Contrast Ratio	CR	600	800	-		1
Dynamic CR		-	3000	-		
Surface Luminance, white	L _{wh}	255	300	-	cd/m ²	2
Luminance Variation	δ _{WHITE}	-	1.4	1.6		3
Response Time						4
Rise Time+Decay Time (W to B)	$Tr_{R +} Tr_{D}$	-	16	20	ms	
Rise Time+Decay Time (G to G)	$Tr_{R +} Tr_{D}$	-	8	16	ms	
Viewing Angle						5
x axis, right(Φ=0°)	Θr	75	80	-	degree	
x axis, left (Φ=180°)	Θl	75	80	-	degree	
y axis, up (Φ=90°)	Θu	55	60		degree	
y axis, down (Φ=270°)	Θd	65	70	-	degree	
Color Shift (@Native Mode $\pm 15^{\circ}$)	ΔE			10		
Gray Scale (@Gamma 2.2)	ΔL			8		6

Table 8. OPTICAL CHARACTERISTICS

Parameter		Symbol		Values	Units	Notes	
Fair	ameter	Symbol	Min	Тур	Max	Ullis	Notes
Color Coordinates (Temperature)							CIE1976
	@ 5000°K	Wu'		0.2092	0.008<△u'v'		
		Wv'		0.4881			
	@ 6500°K	Wu'		0.1978	0.008<△u'v'		
		Wv'		0.4683			
	@ 9300°K	Wu'		0.1888	0.008<△u'v'		
		Wv'		0.4459			
Color Coordinate	s (Color Mode)						
	RED	Ru'		0.5200	0.02<△u'v'	[
		Rv'		0.5200]		
	GREEN	Gu'		0.0721	0.01<△u'v'	l	
@ Native Mode		Gv'		0.5762]		
W Native Mode	BLUE	Bu'		0.1733	0.04<△u'v'	l	
		Bv'		0.1381]		[]
	WHITE	Wu'		0.1978	0.008<△u'v'	l	l
		Wv'		0.4683			
	RED	Ru'		0.4507	0.02<△u'v'	[[]
		Rv'		0.5229]		
	GREEN	Gu'		0.0757	0.01<△u'v'	l	[]
@ Adobe Mode		Gv'		0.5757		 	
Adobe Mode	BLUE	Bu'		0.1754	0.04<△u'v'	l	l
		Bv'	<u> </u>	0.1579	 	 	
	WHITE	Wu'	.	0.1978	0.008<△u'v'	l	l
		Wv'		0.4683		.	[]
	RED	Ru'		0.4507	0.02<△u'v'		
		Rv'		0.5229		 	
	GREEN	Gu'		0.1250	0.01<△u'v'		
@ sRGB Mode		Gv'		0.5625			[
W SKGD WORE	BLUE	Bu'	[0.1754	0.04<△u'v'	[
		Bv'	[0.1579		l	[
	WHITE	Wu'	[0.1978	0.008<△u'v'	[
		Wv'		0.4683			

Note)

1. Contrast Ratio(CR) is defined mathematically as

Surface Luminance with all white pixels

Contrast Ratio =

Surface Luminance with all black pixels

- 2. Surface luminance is the 5point (1~5)average across the LCD surface 50cm from the surface with all pixels displaying white Luminance (300nit). For more information see FIG 2.
- 3. Luminance % uniformity is measured for 13 point For more information see FIG 2. δ WHITE = Maximum(LN1,LN2, LN13) ÷ Minimum(LN1,LN2, LN13)
- 4. Response time is the time required for the display to transition from white to black (rise time, Tr_R) and from black to white(Decay Time, Tr_D). For additional information see FIG 3.
- 5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 4.
- 6. Gray scale specification

* $f_{V} = 60 Hz$

Gray Level	Luminance [%] (Typ)
L0	0.00
L15	0.20
L31	0.97
L47	2.42
L63	4.61
L79	7.59
L95	11.39
L111	16.04
L127	21.58
L143	28.01
L159	35.37
L175	43.68
L191	52.95
L207	63.20
L223	74.45
L239	86.71
L255	100

-. △L Reference Level : 16 steps from gray 0 to gray 255

FIG. 2 Luminance

<measuring point for surface luminance & measuring point for luminance variation>

FIG. 3 Response Time

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white" In condition of RGB LED Duty 100%

In other condition (For example, RGB LED Duty 80%), The response time defined as measurement data which is not lack

FIG. 4 Viewing angle

<Dimension of viewing angle range>

5. Mechanical Characteristics

The contents provide general mechanical characteristics for the model LP171WU5(TLB1). In addition the figures in the next page are detailed mechanical drawing of the LCD.

	Horizontal	382.2 ± 0.5 mm				
Outline Dimension	Vertical	247.5 ± 0.5 mm				
	Depth (Max)	7.0 mm				
Bezel Area	Horizontal	370.6(H)				
bezei Alea	Vertical	232.9(V)				
Active Dieplay Area	Horizontal	367.2 mm				
Active Display Area	Vertical	229.5 mm				
Weight	800 g (MAX)					
Surface Treatment	Hard coating(3H) Anti-Glare treatment of the front polarizer					

<REAR VIEW>

Note) Unit:[mm], General tolerance: ± 0.5mm

[DETAIL DESCRIPTION OF SIDE MOUNTING SCREW]

- * Mounting Screw Length (A) = 2.0(Min) / 2.5(Max)
- * Mounting Screw Hole Depth (B) = 2.5(Min)
- * Mounting hole location: 3.75(typ.)
- * Torque : 2.0 kgf.cm(Max)

(Measurement gauge : torque meter)

Notes: 1. Screw plated through the method of non-electrolytic nickel plating is preferred to reduce possibility that results in vertical and/or horizontal line defect due to the conductive particles from screw surface.

Note) Unit:[mm], General tolerance: ± 0.5mm

LGD Proposal for system cover design.(Appendix)

LGD Proposal for system cover design.

LGD Proposal for system cover design.

6. Reliability

Environment test condition

No.	Test Item	Conditions
1	High temperature storage test	Ta= 60°C, 240h
2	Low temperature storage test	Ta= -20°C, 240h
3	High temperature operation test	Ta= 50°C, 50%RH, 240h
4	Low temperature operation test	Ta= 0°C, 240h
5	Vibration test (non-operating)	Sine wave, 5 ~ 150Hz, 1.5G, 0.37oct/min 3 axis, 30min/axis
6	Shock test (non-operating)	- No functional or cosmetic defects following a shock to all 6 sides delivering at least 200 G in a half sine pulse no longer than 2 ms to the display module - No functional defects following a shock delivering at least 260 g in a half sine pulse no longer than 2 ms to each of 6 sides. Each of the 6 sides will be shock tested with one each display, for a total of 6 displays
7	Altitude operating storage / shipment	0 ~ 10,000 feet (3,048m) 24Hr 0 ~ 40,000 feet (12,192m) 24Hr

[{] Result Evaluation Criteria }

There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition.

7. International Standards

7-1. Safety

a) UL 60950-1:2003, First Edition, Underwriters Laboratories, Inc.,

Standard for Safety of Information Technology Equipment.

b) CAN/CSA C22.2, No. 60950-1-03 1st Ed. April 1, 2003, Canadian Standards Association,

Standard for Safety of Information Technology Equipment.

c) EN 60950-1:2001, First Edition,

European Committee for Electrotechnical Standardization(CENELEC)

European Standard for Safety of Information Technology Equipment.

7-2. EMC

- a) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHZ to 40GHz. "American National Standards Institute(ANSI), 1992
- b) C.I.S.P.R. "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special Committee on Radio Interference.
- c) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electrotechnical Standardization.(CENELEC), 1998 (Including A1: 2000)

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

Α	В	С	D	E	F	G	Н	I	J	K	L	М
---	---	---	---	---	---	---	---	---	---	---	---	---

A,B,C : SIZE(INCH) D : YEAR

E: MONTH $F \sim M$: SERIAL NO.

Note

1. YEAR

Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Mark	1	2	3	4	5	6	7	8	9	0

2. MONTH

	Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Г	Mark	1	2	3	4	5	6	7	8	9	Α	В	С

b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

8-2. Packing Form

a) Package quantity in one box: 20

b) Box Size: 490mmX393mmX327mm

9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1. MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment.
 Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

9-2. OPERATING PRECAUTIONS

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : $V=\pm\ 200mV(Over\ and\ under\ shoot\ voltage)$
- (2) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.

9-3. ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

9-5. STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) The protection film is attached to the polarizer with a small amount of glue. If some stress is applied to rub the protection film against the polarizer during the time you peel off the film, the glue is apt to remain on the polarizer.
 - Please carefully peel off the protection film without rubbing it against the polarizer.
- (3) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the polarizer after the protection film is peeled off.
- (4) You can remove the glue easily. When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

APPENDIX A. Enhanced Extended Display Identification Data (EEDID™) 1/3

	Byte (Dec)	Byte (Hex)	Field Name and Comments	Value (Hex)	Value (Bin)
	0	00	Header	00	00000000
	1	01	Header	FF	11111111
	2	02	Header	FF	11111111
Header	3	03	Header	FF	11111111
lea	4	04	Header	FF	11111111
F	5	05	Header	FF	11111111
	6	06	Header	FF	11111111
	7	07	Header	00	00000000
6	8	08	ID Manufacture Name LGD	30	00110000
EDID	9	09	ID Manufacture Name	E4	11100100
E	10	0A	ID Product Code 0169h	69	01101001
	11	0B	(Hex. LSB first)	01	00000001
n on	12	OC OD	ID Serial No Optional ("00h" If not used, Number Only and LSB First)	00	00000000
roduct Version	14	0E	ID Serial No Optional ("00h" If not used, Number Only and LSB First) ID Serial No Optional ("00h" If not used, Number Only and LSB First)	00	00000000
ro Ve	15	0F	ID Serial No Optional ("00h" If not used, Number Only and LSB First)	00	00000000
1/1	16	10	Week of Manufacture - Optinal May 3th week: 21	15	00010101
Vendor / Product Version	17	11	Year of Manufacture 2008 years 2008 years	12	00010101
ent	18	12	EDID structure version # = 1	01	00000001
Α	19	13	EDID revision # = 4	04	00000100
S			Video input Definition = Input is a Digital Video signal Interface, Colo Bit Depth: 8 Bits per		
ter	20	14	Primary Color, Digital Video Interface Standard Supported: Digital Interface is not defined	A0	10100000
me	21	15	Horizontal Screen Size (Rounded cm) = 37 cm	25	00100101
ıra	22	16	Vertical Screen Size (Rounded cm) = 23 cm	17	00010111
, Pe	23	17	Display Transfer Characteristic (Gamma) = (gamma*100)-100 = Example:(2.2*100)-100=120	78	01111000
Panel Color Coordinates Display Parameters	24	18	Feature Support [Display Power Management(DPM): No_stanby,No_suspend, No_Active Off/Very Low Power., Display Color Type: RGB color display.,Other Feature Support Flags: No_sRGB, Preferred Timing Mode, No_Display is continuous frequency (Multimode_Base EDID and Extension Block).]	0A	00001010
Si	25	19	Red/Green Low Bits (RxRy/GxGy)	EF	11101111
rate	26	1A	Blue/White Low Bits (BxBy/WxWy)	95	10010101
din	27	1B	Red X Rx = 0.640	A3	10100011
201	28	1C	Red Y Ry = 0.330	54	01010100
Ç	29	1D	Green X $Gx = 0.210$	35	00110101
lo	30	1E	Green Y Gy = 0.710	B5	10110101
\mathcal{C}^{c}	31	1F	Blue X $Bx = 0.150$ Blue Y $By = 0.060$	26	00100110
nel	33	20	Blue Y By = 0.060 White X Wx = 0.313	0F 50	00001111
Pa	34	22	White Y $Wx = 0.315$ White Y $Wy = 0.329$	54	01010000
	35	23	Established timing 1 (Optional_00h if not used)	00	00000000
Establ ished Timin gs	36	24	Established timing 2 (Optional_00h if not used)	00	00000000
Esu ish Tin	37	25	Manufacturer's timings (Optional_00h if not used)	00	00000000
	38	26	Standard timing ID1 (Optional_01h if not used)	01	00000001
	39	27	Standard timing ID1 (Optional_01h if not used)	01	00000001
	40		Standard timing ID2 (Optional_01h if not used)	01	00000001
	41	29	Standard timing ID2 (Optional_01h if not used)	01	00000001
a	42	2A	Standard timing ID3 (Optional_01h if not used)	01	00000001
S I	43	2B	Standard timing ID3 (Optional_01h if not used)	01	00000001
nin	44	2C	Standard timing ID4 (Optional_01h if not used)	01	00000001
Standard Timing ID	45	2D	Standard timing ID4 (Optional_01h if not used)	01	00000001
rd	46	2E	Standard timing ID5 (Optional_01h if not used)	01	00000001
rda.	47	2F	Standard timing ID5 (Optional_01h if not used)	01	00000001
tan	48	30	Standard timing ID6 (Optional_01h if not used)	01	00000001
S	49	31	Standard timing ID6 (Optional_01h if not used)	01	00000001
			Standard dinaina ID7 (Ontional Oth if not one 1)	4	0000000
	50	32	Standard timing ID7 (Optional_01h if not used)	01	00000001
	50 51	32 33	Standard timing ID7 (Optional_01h if not used)	01	00000001
	50	32			

APPENDIX A. Enhanced Extended Display Identification Data (EEDID™) 2/3

	Byte (Dec)	Byte (Hex)	Field Name and Comments	Value (Hex)	Value (Bin)
	54	36	Pixel Clock/10,000 (LSB) 154 MHz	28	00101000
	55	37	Pixel Clock/10,000 (MSB)	3C	00111100
	56	38	Horizontal Active (HA) (lower 8 bits) 1920 Pix	80	10000000
	57	39	Horizontal Blanking (HB) (lower 8 bits) 160 Pix	A0	10100000
	58	3A	Horizontal Active / Horizontal Blanking(HA HB) (upper 4:4bits)	70	01110000
I	59	3B	Vertical Avtive (VA) 1200	В0	10110000
<i>r</i> #	60	3C	Vertical Blanking (VB) (DE Blanking typ.for DE only panels) 35 Lin	23	00100011
oto	61	3D	Vertical Active / Vertical Blanking (VA VB) (upper 4:4bits)	40	01000000
rri	62	3E	Horizontal Front Porch in pixels (HF) (lower 8 bits)48 Pixels	30	00110000
Timing Descriptor #1	63	3F	Horizontal Sync Pulse Width in pixels (HS) (lower 8 bits) 32 Pixel	20	00100000
g L	64	40	Vertical Front Porch in lines (VF) (lower 4 bits): Vertical Sync Pluse Width in lines (VS) (l	36	00110110
vin	65	41	Horizontal Front Porch/ Sync Pulse Width/ Vertical Front Porch/ Sync Pulse Width (up)	00	00000000
Ţim.	66	42	Horizontal Vedio Image Size (mm) (lower 8 bits) 367 m	6F	01101111
1	67	43	Vertical Vedio Image Size (mm) (lower 8 bits) 230 n	E6	11100110
	68	44	Horizontal Image Size / Vertical Image Size (upper 4 bits)	10	00010000
	69	45	Horizontal Border = 0 (Zero for Notebook LCD)	00	00000000
	70	46	Vertical Border = 0 (Zero for Notebook LCD)	00	00000000
	71	47	Non-Interlace, Normal display, no stereo, Digital Separate [Vsync_NEG, Hsync_NEG (outside of V-sync)]See the EDID Format	19	00011001
	72	48	Flag	00	00000000
	73	49	Flag	00	00000000
	74	4A	Flag	00	00000000
	75	4B	Data Type Tag (Descriptor Defined by manufacturer)	00	00000000
	76	4C	Flag	00	00000000
7#	77	4D	Descriptor Defined by manufacturer	00	00000000
or ;	78	4E	Descriptor Defined by manufacturer	00	00000000
ipta	79	4F	Descriptor Defined by manufacturer	00	00000000
Timing Descriptor #2	80	50	Descriptor Defined by manufacturer	00	00000000
De,	81	51	Descriptor Defined by manufacturer	00	00000000
s, s,	82	52	Descriptor Defined by manufacturer	00	00000000
mi	83	53	Descriptor Defined by manufacturer	00	00000000
Tin	84	54	Descriptor Defined by manufacturer	00	00000000
	85	55	Descriptor Defined by manufacturer	00	00000000
	86	56	Descriptor Defined by manufacturer	00	00000000
	87	57	Descriptor Defined by manufacturer	00	00000000
	88	58	Descriptor Defined by manufacturer	00	00000000
	89	59	Descriptor Defined by manufacturer	00	00000000
	90	5A	Flag	00	00000000
	91	5B	Flag	00	00000000
	92	5C	Flag	00	00000000
	93	5D	Data Type Tag (Alphanumeric Data String (ASCII String))	FE	11111110
a	94	5E	Flag	00	00000000
Timing Descriptor #3	95	5F	Alphanumeric Data String (ASCII String)	4C	01001100
tor	96	60	Alphanumeric Data String (ASCII String)	47	01000111
rip	97	61	Alphanumeric Data String (ASCII String)	20	00100000
ssci	98	62	Alphanumeric Data String (ASCII String)	44	01000100
D_{ϵ}	99	63	Alphanumeric Data String (ASCII String)	69	01101001
ng.	100	64	Alphanumeric Data String (ASCII String)	73	01110011
imi	101	65	Alphanumeric Data String (ASCII String)	70	01110000
T_i	102	66	Alphanumeric Data String (ASCII String)	6C	01101100
	103	67	Alphanumeric Data String (ASCII String)	61	01100001
	104	68	Alphanumeric Data String (ASCII String)	79	01111001
	105	69	Manufacturer P/N(If<13 char> 0Ah, then terminate with ASC II code 0Ah,set remaining cha	0A	00001010
	106	6A	Manufacturer P/N(If<13 char> 0Ah, then terminate with ASC II code 0Ah,set remaining cha	20	00100000
	107	6B	Manufacturer P/N(If<13 char> 0Ah, then terminate with ASC Π code 0Ah,set remaining characteristics.	20	00100000

APPENDIX A. Enhanced Extended Display Identification Data (EEDID™) 3/3

	Byte (Dec)	Byte (Hex)	Field Name and Comments		Value (Hex)	Value (Bin)
	108	6C	Flag		00	00000000
	109	6D	Flag		00	00000000
	110	6E	Flag		00	00000000
	111	6F	Data Type Tag (Display Product Name, stored as ASCII)		FC	11111100
	112	70	Flag		00	00000000
#4	113	71	Display Product Name, stored as ASCII	L	4C	01001100
Timing Descriptor #4	114	72	Display Product Name, stored as ASCII	P	50	01010000
ipt	115	73	Display Product Name, stored as ASCII	1	31	00110001
scr	116	74	Display Product Name, stored as ASCII	7	37	00110111
De.	117	75	Display Product Name, stored as ASCII	1	31	00110001
81	118	76	Display Product Name, stored as ASCII	W	57	01010111
nir	119	77	Display Product Name, stored as ASCII	U	55	01010101
Tü	120	78	Display Product Name, stored as ASCII	5	35	00110101
	121	79	Display Product Name, stored as ASCII	-	2D	00101101
	122	7A	Display Product Name, stored as ASCII	T	54	01010100
	123	7B	Display Product Name, stored as ASCII	L	4C	01001100
	124	7C	Display Product Name, stored as ASCII	В	42	01000010
	125	7 D	Display Product Name, stored as ASCII	1	31	00110001
Chec,	126	7 E	Extension flag (# of optional 128 panel ID extension block to follow, Typ = 0)		00	00000000
Ch	127	7 F	Check Sum (The 1-byte sum of all 128 bytes in this panel ID block shall = 0)		82	10000010