[PTKB] Kolokwium 2 - opracowanie

1 Zadanie 1.

Treść: Ile razy trzeba wykonać protokół uwierzytelniania Fiata-Shamira by prawdopodobieństwo oszustwa było mniejsze od 10^{-1000} ?

Rozwiązanie: Prawdopodobieństwo udanego oszustwa po wykonaniu n eksperymentów wynosi $(\frac{1}{2})^n$. Rozwiązujemy równanie $(\frac{1}{2})^x = 10^{-1000}$.

$$\begin{array}{rcl} \left(\frac{1}{2}\right)^x & = & 10^{-1000} \\ 2^x & = & 10^{1000} \\ x & = & \log_2 10^{1000} \\ x & = & 1000 \log_2 10 \\ x & \simeq & 3321.928 \end{array}$$

Wybieramy $\lceil x \rceil = 3322$.

2 Zadanie 4.

Treść: Podać przykład liczby pseudopierwszej przy podstawie 2 i 3 jednocześnie. Czy takie liczby w ogóle istnieją?

Rozwiązanie: Liczba naturalna jest liczbą Carmichaela wtedy i tylko wtedy, gdy:

- 1. Jest liczbą złożoną.
- 2. Dla każdego $a \in \mathbb{N}$ z przedziału 1 < a < n, względnie pierwszej z n, liczba $(a^{n-1} 1)$ jest podzielna przez n.

Patrząc na najmniejsze liczby Carmichaela:

$$561 = 3 \cdot 11 \cdot 17$$

 $1105 = 5 \cdot 13 \cdot 17$

widzimy, że liczba Carmichaela 1105 jest względnie pierwsza zarówno z 2, jak również 3, a więc pozwala ona stworzyć liczby pseudopierwsze $2^{1105-1}-1$ oraz $3^{1105-1}-1$.

3 Zadanie 5.

Treść: Podać przykład ciała $GF(3^2)$, czyli ciała o 9 elementach.

Rozwiązanie: Ciało $GF(p^n)$, gdzie p jest liczbą pierwszą oraz $n \in \mathbb{N}$, można wygenerować:

• Znajdując wielomian f(x) stopnia n nierozkładalny w pierścieniu GF(p)[x].

- Znajdując wszystkie możliwe reszty z dzielenia wielomianu f(x) w pierścieniu GF(p)[x].
- Wykorzystując działania dodawania i mnożenia wielomianów modulo f(x).

Wielomianem drugiego stopnia nierozkładalnym w ciele G(3)[x] jest $x^2 + 1$ (patrz: Zadanie 7.). Wszystkie możliwe reszty z dzielenia tego wielomianu w pierścieniu G(3)[x] to: 2x+2, 2x+1, 2x, x+2, x+1, x, x, x, x.

4 Zadanie 7.

Treść: Wykazać, że wielomian x^2+1 jest nierozkładalny w pierścieniu wielomianów GF(3)[x], a jest rozkładalny w pierścieniu wielomianów GF(2)[x].

Rozwiązanie: Wielomian drugiego stopnia można rozłożyć za pomocą dwóch wielomianów pierwszego stopnia, więc:

$$x^{2} + 1 = (ax + b) * (cx + d)$$

 $x^{2} + 1 = (ac)x^{2} + (ad + bc)x + bd$

Dla ciała GF(3)[x], $b,d \in \{0,1,2\}$ oraz $a,c \in \{1,2\}$ (bo wielomian musi być rozkładalny). Rozważmy wszystkie możliwe wartości $(ad+bc) \mod 3$. Jeżeli $(ad+bc) \equiv 0 \mod 3 \Rightarrow a = 0 \land c = 0$, co jest sprzeczne z dziedziną, a więc wielomian nie może być rozkładalny.

Dla ciała GF(2)[x], $b,d \in \{0,1\}$ oraz $a,c \in \{1\}$. Jeżeli $(b+d) \equiv 0 \mod 2 \Rightarrow (b=0 \land d=0) \lor (b=1 \land d=1)$. Dla drugiego przypadku otrzymujemy w GF(2)[x]:

$$x^2 + 1 \equiv (x+1) * (x+1)$$

Zatem wielomian jest rozkładalny.

5 Zadanie 8.

Treść: Wykazać, że w grupie skończonej dla każdego $a \in G$ mamy: $a^{rzG} = 1$, gdzie rzG oznacza rząd grupy G. Wykazać, wykorzystując ten fakt, twierdzenie Eulera. (Wskazówka: wykorzystać twierdzenie Lagrange'a: dla grup skończonych rząd podgrupy jest dzielnikiem rzędu grupy).

Rozwiązanie: W ciągu $a^1, a^2, \cdots, a^{rzG}, a^{rzG+1}$ muszą być dwa elementy równe, tzn. dla pewnych $k', k'' \in [1, rzG+1], k' < k''$ musimy mieć $a^{k'} = a^{k''}$. Zatem $a^{k''-k'} = 1$. Istnieje więc takie $k \in [1, rzG](k = k'' - k')$, że $a^k = 1$. Niech r będzie najmniejszym takim k, że $a^k = 1$, wówczas zbiór $H = \{a^1, a^2, \cdots, a^r\}$ stanowi podgrupę cykliczną rzędu r grupy G. Ponieważ, z twierdzenia Lagrange'a, r jest dzielnikiem rzędu grupy G, więc również $a^{rzG} = 1$.

Twierdzenie Eulera: jeśli $n \in \mathbb{N}$, $n \geqslant 2$ i $a \in \mathbb{N}$ oraz NWD(a,n)=1 to $a^{\phi(n)}\equiv 1 \mod n$, gdzie ϕ jest funkcją Eulera. Rozważmy grupę multiplikatywną Z_n^* . Grupa Z_n^* ma rząd równy $\phi(n)$. Zatem korzystając z $a^{rzG}=1$ dostajemy, że dla każdego $a \in Z_n^*$ mamy $a^{\phi(n)}\equiv 1 \mod n$. Warunek $a \in Z_n^*$ jest równoznaczny warunkowi NWD(a,n)=1. Zatem twierdzenie Eulera jest prostym wnioskiem z ogólnego twierdzenia teoriogrupowego $a^{rzG}=1$.

6 Zadanie 10.

Treść: Załóżmy, że mamy dwie niezależne zmienne losowe X_1 oraz X_2 o wartościach w zbiorze $Z_2 = \{0,1\}$. Wykazać, że jeśli X_1 ma rozkład równomierny, to również $X_1 \oplus X_2$ ma rozkład równomierny. Ten fakt jest podstawą protokołu o nazwie "rzut monetą przez telefon".

Rozwiązanie: Najpierw wykażemy, że odwzorowanie $Y = X_1 \otimes X_2$ jest zmienną losową. Ogólnie rzecz biorąc, jeśli (Ω,\mathfrak{M}) jest przestrzenią mierzalną, $(E_t,\mathfrak{F}_t)_{t\in T}$ jest dowolną rodziną przestrzeni mierzalnych, a odwzorowania $f_t:\Omega\to E_t$ są $(\mathfrak{M},\mathfrak{F}_t)$ mierzalne dla każdego $t\in T$ to odwzorowanie $P_{t\in T}f_t:\Omega\to P_{t\in T}E_t$ jest $(\mathfrak{M},P_{\mathfrak{F}}\mathfrak{F}_t)$ mierzalne. Stosując ten ogólny fakt do naszej sytuacji stwierdzamy, że odwzorowanie (X_1,X_2) jest $(\mathfrak{M},2^{\{0,1\}}\otimes 2^{\{0,1\}})$ mierzalne. Odwzorowanie $S:\{0,1\}\times\{0,1\}\ni (x_1,x_2)\to x_1\oplus x_2\in\{0,1\}$ jest oczywiście $(2^{\{0,1\}}\otimes 2^{\{0,1\}},2^{\{0,1\}})$ mierzalne, zatem $Y=X_1\oplus X_2$ jako superpozycja odwzorowań mierzalnych (X_1,X_2) i S jest $(\mathfrak{M},2^{\{0,1\}})$ mierzalne, jest więc zmienną losową.

Udowodnimy teraz równomierność rozkładu zmiennej losowej $Y=X_1\oplus X_2.$ Oznaczmy:

$$\begin{array}{lcl} A_0 & = & \left\{\omega \in \Omega; X_1(\omega) = 0, X_2(\omega) = 0\right\}, \\ A_1 & = & \left\{\omega \in \Omega; X_1(\omega) = 1, X_2(\omega) = 0\right\}, \\ B_0 & = & \left\{\omega \in \Omega; X_1(\omega) = 1, X_2(\omega) = 1\right\}, \\ B_1 & = & \left\{\omega \in \Omega; X_1(\omega) = 0, X_2(\omega) = 1\right\}. \end{array}$$

Wówczas zdarzenia A_0 , A_1 , B_0 , B_1 są parami rozłączne. Stąd i z niezależności zmiennych losowych X_1 i X_2 oznaczając $P(X_1=0)=p_0$, $P(X_1=1)=p_1$ dostajemy:

$$P(Y = 1) = P(A_1 \cup B_1) = P(A_1) + P(B_1) =$$

$$= P(X_1 = 1) \cdot P(X_2 = 0) +$$

$$+P(X_1 = 0) \cdot P(X_2 = 1) =$$

$$= p_1 \cdot \frac{1}{2} + p_2 \cdot \frac{1}{2} = \frac{1}{2}$$

ponieważ $p_0 + p_1 = 1$. Podobnie:

$$P(Y = 0) = P(A_0 \cup B_0) = P(A_0) + P(B_0) =$$

$$= P(X_1 = 0) \cdot P(X_2 = 0) +$$

$$+P(X_1 = 1) \cdot P(X_2 = 1) =$$

$$= p_1 \cdot \frac{1}{2} + p_2 \cdot \frac{1}{2} = \frac{1}{2}$$

a więc istotnie zmienna losowa $Y = X_1 \oplus X_2$ ma rozkład równomierny.