Summary: Lecture 5

Summary for the chapters X and X. [4]

Reduction

Examples of NP-problems:

- Travelling Salesman Problem
- SATISFIABLE
- REACHBILITY (in P)
- CIRCUIT VALUE (in P)

Figure 1: P and NP sets [2]

- reduction: a problem is at least as hard as another
- problem A is at least as hard as problem B if B reduces to A
- B reduces to A if there is a transformation R
 - R produces for every input x of B an equivalent input R(x) of A
 - the answer of input x on B and input R(x) on A have to be the same
- to solve B on input x, A can be solved instead with input R(x)

Reduction

Problem A is at least as hard as problem B if B reduces to A.

Transformation function:

- tranformation function R should not be too hard to compute
 - $\rightarrow R$ should be limited
- efficient reduction R: $\log n$ space bounded

Transformation function

A language L_1 is reducible to L_2 if there is a function R computable by a deterministic Turing Machine in space $O(\log n)$ and $x \in L_1 \Leftrightarrow R(x) \in L_2$.

R is called a reduction from L_1 to L_2 .

- A Turing Machine M that computes a reduction R halts for all inputs x after a polynomial number of steps.
 - there are $O(n \cdot c^{\log n})$ possible configurations for M on an input of length n
 - deterministic: no configuration can be repeated
 - computation of length at most $O(n^k)$

Reduction HAMILTONIAN PATH to SATISFIABLE

Problem: HAMILTON PATH

The Hamiltonian Path problem asks whether there is a route in a directed graph G from a start node to an ending node, visiting each node exactly once. (Is there a path in G that visits each node one?) [1]

Problem: SAT

The SAT (satisfiability) problem is the problem of determining if there exists an interpretation that satisfies a given Boolean formula. [5]

- HAMILTON PATH can be reduced to SAT \rightarrow demonstrates HAMILTON PATH is not significantly harder that SAT
- construct a boolean expression R(G) that is satisfiable only if G has a Hamilton path \rightarrow write a logical formular that only becomes true when HP is true
- instance: Graph G = (V, E) with n nodes (1, 2, ..., n)
- R(G) has n^2 boolean variables $x_{i,j}$ then
- node j is the ith node in the HAMILTON PATH
- R(G) is in conjuctive normal form (CNF: $(a \lor b) \land (\neg a \lor c)$)
- conjuncted clauses of R(x):
 - each node j must appear in the path $x_{1,j} \vee x_{2,j} \vee ... \vee x_{n,j}$ for every node j
 - no node j appears twice in the path: $\neg x_{i,j} \lor \neg x_{k,j}$ for all i,j,k with $i \neq k$
 - every position i on the path must be occupied $-x_{i,1} \vee x_{i,2} \vee ... \vee x_{i,n}$ for each i
 - no two nodes j and k occupy the same position in the path $\neg x_{i,j} \lor \neg x_{i,k}$ for all i, j, k with $j \neq k$
 - nonadjacent nodes i and j cannot be adjacent in the path $-\neg x_{k,i} \lor \neg x_{k+1,j}$ for all $(i,j) \notin E$ and k=1,2,...,n-1

[3]

- log space reduction from HP to S
- 4, 3, 1, 2 as path $x_{1,4} = T, x_{2,3} = T, x_{3,1} = T, x_{4,2} = T,$
- slide is not quite correct
- $(notx_{1,1}ornotx_{2,1})$ and $(notx_{1,1}ornotx_{3,1})$ and $(notx_{1,1}ornotx_{4,1})$ and $(notx_{2,1}ornotx_{3,1})$ and $(notx_{2,1}ornotx_{4,1})$ and $(notx_{3,1}ornotx_{4,1})$ and ... first index: step, second: node

TODO

Questions:

Boolean Circuits

TODO

Questions:

Reduction REACHABILITY PATH to CIRCUIT VALUE

TODO

Questions:

Reduction CIRCUIT SAT PATH to SAT

TODO

Questions:

Further examples

TODO

Questions:

Closedness under Composition

TODO

Questions:

References

- [1] J. Baumgardner, K. Acker, O. Adefuye, and et al. "Solving a Hamiltonian Path Problem with a bacterial computer". In: *J Biol Eng* 3.11 (2009). DOI: https://doi.org/10.1186/1754-1611-3-11.
- [2] Image source: P-NP sets. https://www.techno-science.net/actualite/np-conjecture-000-000-partie-denouee-N21607.html.
- [3] Prof. Yuh-Dauh Lyuu. Lecture slides. https://www.csie.ntu.edu.tw/~lyuu/complexity/2011/20111018.pdf. 2011.
- [4] Christos H. Papadimitriou. *Computational Complexity*. Addison-Wesley Publishing Company, 1994.
- [5] Prof. Dr. Thomas Schwentick. Lecture slides in Grundbegriffe der theoretischen Informatik. https://www.cs.tu-dortmund.de/nps/de/Studium/Ordnungen_Handbuecher_Beschluesse/Modulhandbuecher/Archiv/Bachelor_LA_GyGe_Inf_Modellv/_Module/INF-BfP-GTI/index.html.