論文のタイトル論文のタイトル

20 〇〇年度 大阪大学大学院基礎工学研究科 機能創成専攻 修士論文公開講演会

阪大 太郎

○○研究室

20〇〇年2月〇〇日

目次

```
研究背景
 乱流現象
 乱流の普遍則
研究目標
解析手法
 室内実験
結果1
 大スケール構造と秩序構造
結果2
 エネルギの自己相関
結言
```

研究背景:乱流現象

乱流

- ▶ 流体が時空間的に乱れたふるまいを示す
- ▶ 決定論的な支配方程式に従うが、 その非線形性から解析が困難

エネルギカスケード機構

- 1. 大スケールへのエネルギ注入
- 2. 大 → 小スケールへのエネルギ伝達
- 3. 小スケールからのエネルギ散逸

「乱流の動力学」はきわめて重要な問題だが, その完全な性質は明らかになっていない

研究背景:乱流現象

1×1 (Original size: 200×200 bp)

乱流

- ▶ 流体が時空間的に乱れたふるまいを示す
- ▶ 決定論的な支配方程式に従うが、 その非線形性から解析が困難

エネルギカスケード機構

- 1. 大スケールへのエネルギ注入
- 2. 大 → 小スケールへのエネルギ伝達
- 3. 小スケールからのエネルギ散逸

「乱流の動力学」はきわめて重要な問題だが, その完全な性質は明らかになっていない

研究背景:乱流現象

1×1

(Original size: 200×200 bp)

乱流

- ▶ 流体が時空間的に乱れたふるまいを示す
- ▶ 決定論的な支配方程式に従うが、 その非線形性から解析が困難

エネルギカスケード機構

- 1. 大スケールへのエネルギ注入
- 2. 大 → 小スケールへのエネルギ伝達
- 3. 小スケールからのエネルギ散逸

「乱流の動力学」はきわめて重要な問題だが, その完全な性質は明らかになっていない

研究背景:乱流の普遍則

相似則

小スケールの統計は平均エネルギ散逸率 ϵ と波数スケールkで決まる:

$$E(k) = C\overline{\epsilon}^{2/3}k^{-5/3}$$

散逸則

 $\bar{\epsilon}(t)$ を大スケールの特徴速度 U(t) と特徴長さ L(t) で評価できる:

$$\overline{\epsilon}(t) = \overline{\Pi_L}(t) \propto \frac{U(t)^3}{L(t)}$$

研究背景:乱流の普遍則

相似則

小スケールの統計は平均エネルギ散逸率 ϵ と波数スケールkで決まる:

$$E(k) = C\overline{\epsilon}^{2/3}k^{-5/3}$$

散逸則

 $\bar{\epsilon}(t)$ を大スケールの特徴速度 U(t) と特徴長さ L(t) で評価できる:

$$\overline{\epsilon}(t) = \overline{\Pi_L}(t) \propto \frac{U(t)^3}{L(t)}$$

研究目標

研究目標研究目標研究目標研究目標研究目標研究目標

対象とする系

- ▶ 対象とする系の説明

研究目標

研究目標研究目標研究目標研究目標研究目標研究目標

 1×1

(Original size: 200×200 bp)

対象とする系

- ▶ 対象とする系の説明

解析手法:室内実験

 16×9

(Original size: 180×320 bp)

実験装置

系の直径 $D=100\,\mathrm{mm}$ 系の高さ $H=300\,\mathrm{mm}$ 系の周期 $T=0.1\sim10\,\mathrm{s}$

実験条件

	条件 A	条件 B
測定領域 A	$(D/2)^2$	$(D/2)^2$
空間解像度 Δx	0.01D	0.02D
時間解像度 Δt	$1.0 \times 10^{-2}T$	$5.0 \times 10^{-3} T$
測定時間 T_{\max}	10T	500T

解析手法:室内実験

 16×9

(Original size: 180×320 bp)

実験装置

系の直径 $D = 100 \, \mathrm{mm}$ 系の高さ $H = 300 \, \mathrm{mm}$ 系の周期 $T = 0.1 \sim 10 \, \mathrm{s}$

実験条件

	│ 条件 A	条件 B
測定領域 A	$(D/2)^2$	$(D/2)^2$
空間解像度 Δx	0.01D	0.02D
時間解像度 Δt	$1.0 \times 10^{-2} T$	$5.0 \times 10^{-3} T$
測定時間 $T_{ m max}$	10T	500T

₽ /¥ ∧

A 14 D

結果1:大スケール構造と秩序構造

▶ 大スケール構造の逆相関 → <mark>秩序的な構造</mark>

結果2:エネルギの自己相関

 16×9 (Original size: 320×180 bp)

- ▶ 自己相関を $C_0 \exp[-\tau/\tau_0]$ でフィッティング
- lacktriangleright 普遍的な時定数 $au_0=12 o$ 三桁の Re で $\mathcal{O}(10T)$ の大スケール運動

結言

閉じた系の乱流の時間変動と空間構造を解析

16×9

(Original size: 180×320 bp)

空間間欠性

✓ 小スケール構造のクラスタ(PIV)

✓ 逆相関する大スケール構造(PIV)

時間非定常性

 \checkmark $\mathcal{O}(10T)$ の長時間相関 (PIV)

非平衡なカスケード

✓ 主流と二次流の間の時間遅れ(DNS)

局所平衡仮説の破れを示唆する結果 → 動力学に基づいた新理論の基礎

結言

閉じた系の乱流の時間変動と空間構造を解析

16×9

(Original size: 180×320 bp)

空間間欠性

✓ 小スケール構造のクラスタ(PIV)

✓ 逆相関する大スケール構造(PIV)

時間非定常性

 \checkmark $\mathcal{O}(10T)$ の長時間相関 (PIV)

非平衡なカスケード

✓ 主流と二次流の間の時間遅れ(DNS)

局所平衡仮説の破れを示唆する結果

→ 動力学に基づいた新理論の基礎

補足スライド

補足スライド:補足トピック1

▶ 補足情報 2

