Worksheet 2

Math/Stat 561, Algebraic and Geometric Methods in Statistics 23 January 2023

Group members: Write your names here.

1 Conditional independence ideals

Definition

Proposition (4.1.6.) & Definition (4.1.7.): If X is a discrete random vector $X = (X_1, \ldots, X_m)$, then the CI statement $X_A \perp \!\!\! \perp X_B | X_C$ is equivalent to

$$p_{i_A,i_B,i_C,+} \cdot p_{j_A,j_B,i_C,+} - p_{i_A,j_B,i_C,+} \cdot p_{j_A,i_B,i_C,+} = 0$$

for all possible states of the variables i_A, j_A, i_B, j_B , and i_C .

The CI ideal $I_{A \perp \!\!\! \perp B \mid C}$ is the set of polynomials generated by all quadratic polynomials above.

Task

Verify that the following polynomials are the correct polynomials for the ideal of the statement $gender \perp hair|soccer$ from lecture 4.

- $-p_{1,2,1,1}p_{2,1,1,1}-p_{1,2,1,2}p_{2,1,1,1}-p_{1,2,1,1}p_{2,1,1,2}-p_{1,2,1,2}p_{2,1,1,2}+p_{1,1,1,1}p_{2,2,1,1}+p_{1,1,1,1}p_{2,2,1,1}+p_{1,1,1,1}p_{2,2,1,2}+p_{1,1,1,2}p_{2,2,1,2},$
- $-p_{1,2,1,1}p_{3,1,1,1}-p_{1,2,1,2}p_{3,1,1,1}-p_{1,2,1,1}p_{3,1,1,2}-p_{1,2,1,2}p_{3,1,1,2}+p_{1,1,1,1}p_{3,2,1,1}+\\p_{1,1,1,2}p_{3,2,1,1}+p_{1,1,1,1}p_{3,2,1,2}+p_{1,1,1,2}p_{3,2,1,2},$
- $-p_{2,2,1,1}p_{3,1,1,1}-p_{2,2,1,2}p_{3,1,1,1}-p_{2,2,1,1}p_{3,1,1,2}-p_{2,2,1,2}p_{3,1,1,2}+p_{2,1,1,1}p_{3,2,1,1}+\\p_{2,1,1,2}p_{3,2,1,1}+p_{2,1,1,1}p_{3,2,1,2}+p_{2,1,1,2}p_{3,2,1,2},$
- $-p_{1,2,2,1}p_{2,1,2,1}-p_{1,2,2,2}p_{2,1,2,1}-p_{1,2,2,1}p_{2,1,2,2}-p_{1,2,2,2}p_{2,1,2,2}+p_{1,1,2,1}p_{2,2,2,1}+p_{1,1,2,2}p_{2,2,2,2,1}+p_{1,1,2,1}p_{2,2,2,2}+p_{1,1,2,2}p_{2,2,2,2},$
- $-p_{1,2,2,1}p_{3,1,2,1}-p_{1,2,2,2}p_{3,1,2,1}-p_{1,2,2,1}p_{3,1,2,2}-p_{1,2,2,2}p_{3,1,2,2}+p_{1,1,2,1}p_{3,2,2,1}+p_{1,1,2,2}p_{3,2,2,1}+p_{1,1,2,1}p_{3,2,2,2}+p_{1,1,2,2}p_{3,2,2,2},$
- $-p_{2,2,2,1}p_{3,1,2,1}-p_{2,2,2,2}p_{3,1,2,1}-p_{2,2,2,1}p_{3,1,2,2}-p_{2,2,2,2}p_{3,1,2,2}+p_{2,1,2,1}p_{3,2,2,1}+\\p_{2,1,2,2}p_{3,2,2,1}+p_{2,1,2,1}p_{3,2,2,2}+p_{2,1,2,2}p_{3,2,2,2}.$