

Department of Mathematics Wintersemester 2011/2012

8-th Exercise Sheet in "Computer Algebra"

Deadline: Thursday, 15 December 2011, 10.00 h

Exercise 1. Let $w = (w_1, \ldots, w_n) \in \mathbb{Z}^n$, $w_i \neq 0$ for all i, and let $I \subset K[x_1, \ldots, x_n]$ be an ideal. Moreover, let $I^h \subset K[x_1, \ldots, x_n, t]$ be the ideal generated by the weighted homogenizations of the elements of I with respect to t. Prove the following statements:

- (a) I^h is primary (prime) if and only if I is primary (prime).
- (b) Let $I = Q_1 \cap \ldots \cap Q_r$ be an irredundant primary decomposition, then $I^h = Q_1^h \cap \ldots \cap Q_r^h$ is an irredundant primary decomposition, too.

HINT: For (b), prove that $(I_1 \cap I_2)^h = I_1^h \cap I_2^h$.

Exercise 2. Let $Ass(\langle 0 \rangle) = \{P_1, \dots, P_s\}$. Prove that $\bigcup_{i=1}^s P_i$ is the set of zerodivisors of A.

Exercise 3. Let K be a field of characteristic $0, \overline{K}$ the algebraic closure of K and $I \subset K[x]$ an ideal. Prove the following statements:

- (a) $I\overline{K}[x] \cap K[x] = I$.
- (b) If $f \in K[x]$ is squarefree, then $f \in \overline{K}[x]$ is squarefree.

Exercise 4. Write a SINGULAR procedure to compute the ecart of a given polynomial and use this to implement a normal form algorithm for non-global orderings.