Dérivation globale

Premières Spécialité Mathématiques

1 Fonction dérivée

Remarque. On rappelle qu'une fonction f définie sur un intervalle I est dite dérivable en $a \in I$ si et seulement si le taux de variation

 $T_a(h) = \frac{f(a+h) - f(a)}{h}$

admet une limite finie quand h tend vers 0. La valeur de cette limite $\lim_{h\to 0} T_a(h)$ est alors appelé **nombre dérivé de** f en a et est noté f'(a).

En résumé, la notion de dérivation est un processus dépendant de f qui à tout nombre a associe, quand c'est possible, un autre nombre f'(a). Il s'agit donc d'une **fonction**.

Définition 1. Soit f une fonction définie sur un intervalle I. On dit que f est **dérivable sur** I si pour tout nombre $a \in I$, la fonction f est dérivable en a. Dans ce cas, on pose f' la fonction définie sur I qui à tout $x \in I$ associe le nombre dérivé f'(x).

a)	Après avoir vérifié que f est dérivable en -3 , calculer $f'(-3)$.
b)	La valeur -3 a-t-elle eu spécifiquement un impact dans votre démonstration?
c)	En reprenant votre démonstration pour calculer $f'(x)$, où x est une indéterminée, en déduire que f est dérivable sur \mathbb{R} .

Proposition 1.

- 1. Soit $c \in \mathbb{R}$. La fonction constante définie sur \mathbb{R} $f: x \mapsto c$ est dérivable sur \mathbb{R} , et sa dérivée est $f': x \mapsto 0$.
- 2. La fonction identité définie sur \mathbb{R} par $f: x \mapsto x$ est dérivable sur \mathbb{R} , et sa dérivée est $f': x \mapsto 1$.
- 3. La fonction carré définie sur \mathbb{R} par $f: x \mapsto x^2$ est dérivable sur \mathbb{R} , et sa dérivée est $f': x \mapsto 2x$.
- 4. La fonction puissance $n \in \mathbb{N}$ définie sur \mathbb{R} par $f: x \mapsto x^n$ est déribale sur \mathbb{R} , et sa dérivée est $f': x \mapsto nx^{n-1}$
- 5. La fonction inverse définie sur $]-\infty;0[\cup]0;+\infty[$ par $f:x\mapsto \frac{1}{x}$ est dérivable sur $]-\infty;0[\cup]0;+\infty[$, et sa dérivée est $f':x\mapsto -\frac{1}{x^2}$.
- 6. La fonction racine carrée définie sur $[0; +\infty[$ par $f: x \mapsto \sqrt{x}$ est dérivable sur $]0; +\infty[$, et sa dérivée est $f': x \mapsto \frac{1}{2\sqrt{x}}$.

Remarque.

Démonstration.

- Avant de dériver une fonction, il faut s'assurer qu'elle est bien dérivable.
- La fonction racine carrée est dérivable sur $]0; +\infty[$ (ouvert en 0), tandis qu'elle sur définie sur $[0; +\infty[$ (fermé en 0). En effet, la fonction n'est pas dérivable en 0.

1		
1		
1		
1		

2 Opération algébriques

Proposition 2. Soient u et v deux fonctions définies et dérivables sur un intervalle I ouvert.

- La fonction somme de u et v définie sur I par s(x) = u(x) + v(x) est dérivable sur I, et sa dérivée vérifie, pour tout $x \in I$, s'(x) = u'(x) + v'(x). ((u+v)' = u'+v')
- La fonction produit de u et v définie sur I par $p(x) = u(x) \times v(x)$ est dérivable sur I, et sa dérivée vérifie, pour tout $x \in I$, p'(x) = u'(x)v(x) + u(x)v'(x). ((uv)' = u'v + uv')
- En particulier, le produit p d'une fonction u définie sur I par une constante $a \in \mathbb{R}$, définie par $p(x) = a \times u(x)$, est dérivable sur I, et sa dérivée vérifie, pour tout $x \in I$, p'(x) = au'(x).
- Si la fonction v ne s'annule pas sur l'intervalle I, alors la fonction inverse de v définie sur I par $i(x)=\frac{1}{v(x)}$ est dérivable sur I, et sa dérivée vérifie, pour tout $x\in I$, $i'(x)=-\frac{v'}{v^2(x)}$. $\left(\left(\frac{1}{v}\right)'=-\frac{v'}{v^2}\right)$
- Si la fonction v ne s'annule pas sur l'intervalle I, alors la fonction quotient de u et de v définie sur I par $q(x) = \frac{u(x)}{v(x)}$ est dérivable sur I, et sa dérivée vérifie, pour tout $x \in I$, $q'(x) = \frac{u'(x)v(x) u(x)v'(x)}{v^2(x)}$. $\left(\left(\frac{u}{v}\right)' = \frac{u'v uv'}{v^2}\right)$

Exemple. Soient u et v deux fonctions définies sur \mathbb{R}_+^* par :

$$\begin{cases} u(x) = x^2 - 5x & \textit{pour tout } x \in \mathbb{R}_+^* \\ v(x) = \sqrt{x} + 1 & \textit{pour tout } x \in \mathbb{R}_+^* \end{cases}$$

En déduire la dérivée de la somme, du produit et du quotient de u et v.

3 Composition de fonctions

Définition 2. Soit f une fonction définie sur un intervalle I. On pose aussi a et b deux nombres réels. Enfin, on pose J l'intervalle des réels x tels que $ax + b \in I$.

Alors on appelle la fonction g définie pour tout $x \in J$ par

$$g(x) = f(ax + b)$$

la fonction composée de f par la fonction $x \mapsto ax + b$.

Proposition 3. Soit f une fonction définie et dérivable sur un intervalle I, a et b deux réels et J l'intervalle des x vérifiant $ax + b \in I$. Alors la fonction composée de f par $x \mapsto ax + b$, c'est-à-dire la fonction définie pour tout $x \in J$ par g(x) = f(ax + b) est dérivable sur J, et sa dérivée vaut pour tout $x \in J$,

$$g'(x) = af'(ax + b)$$

Exemple. Soit la fonction g définie sur un certain intervalle J par la formule

$$g(x) = \sqrt{3x - 2}$$
 pour tout $x \in J$

a)	Identifier le plus grand intervalle $ouvert$ J sur lequel cette fonction est définie.
b)	De quelles fonctions g est-elle la composée?
c)	En déduire que g est dérivable sur J, et calculer sa dérivée.

4 Variations de fonctions dérivables

Proposition 4. Soit f une fonction définie et dérivable sur un intervalle I.

- La fonction f est **croissante** sur I si et seulement si f' est **positive** sur I.
- La fonction f est **décroissante** sur I si et seulement si f' est **négative** sur I.
- La fonction f est **constante** sur I si et seulement si f' est **nulle** sur I

Remarque. • Cela correspond à l'intuition grâce à laquelle la dérivée a été construite, c'est-à-dire que f'(x) est la pente de la tangente à la courbe représentative de f en le point (x; f(x)).

• Ce sont des équivalences. Si la fonction est croissante, alors sa dérivée est positive. Si la dérivée d'une fonction est positive, alors cette fonction est croissante.

Exemple. Soit $f: x \mapsto x^2 - 2x + 1$ définie sur \mathbb{R} .

- a) Donner l'expression de la dérivée de f.
- b) Étudier le signe de f' à l'aide d'un tableau de signe.

x	$-\infty$	• • •	$+\infty$
Signe de f'			

c) En déduire le tableau de variations de f.

$-\infty$		$+\infty$
	$-\infty$	$-\infty$

5 Extremums de fonctions dérivables

Définition 3. Soit f une fonction définie sur un intervalle I, et $a \in I$. On dit que f atteint un **extremum local** en a s'il existe un intervalle (non restreint à un point) J tel que : $a \in J$; $J \subseteq I$ et la restriction de f sur J atteint un extremum en a.

Remarque. Autrement dit, f(a) est un extremum local de f sur I si l'image de a est supérieure ou inférieure à l'image de ses voisins « proches ».

Exemple. Soit f une fonction définie sur [-6; 6] dont la courbe représentative C_f est représentée sur le repère suivant (en bas à gauche):

- a) Quel est le maximum et le minimum de f? En quelles valeurs sont-elles atteintes?
- b) On a représenté sur le repère à droite la restriction de f sur l'intervalle [-6; -1]. En déduire que en quel abscisse f admet un extremum local.

Proposition 5. Soit f une fonction définie et dérivable sur un intervalle **ouvert** I, et soit $a \in I$. Si f atteint un extremum local en a, alors

$$f'(a) = 0$$

Remarque.

- L'hypothèse d'intervalle ouvert est importante : cette proposition devient fausse sinon. Par exemple, la fonction carrée $f: x \mapsto x^2$ restreinte sur [1;2] admet un extremum en 1, mais sa dérivée en 1 est non-nulle.
- La réciproque de cette proposition est fausse : ce n'est pas forcément parce que f'(a) = 0 que f atteint un extremum local en a. Par exemple, si $f: x \mapsto x^3$ sur \mathbb{R} , on a bien f'(0) = 0, et pourtant f(0) = 0 n'est ni un minimum ou un maximum local.
- Cette proposition donne néanmoins une liste des candidats envisageables pour lex extremums d'une fonction dérivable sur un intervalle I: il suffit de chercher parmi les points a tels que f'(a) = 0. C'est ce qu'on appelle une condition nécessaire.