Image Recognition

Humpback Whale Identification Challenge

DATS 6203 SP2021 Group 2 Yuan Meng

Contents

O1 Introduction to Problem & Dataset

02 Experiment & Performance

Q3 Result Analysis

D4 Conclusion

Problem & Dataset

- Shape of whales' tails
- Unique markings
- ❖ 25,000 images
 - > Happy Whale
- 9850 training images
- **♦** 4246 IDs
 - ➤ W_1287fbc
 - > new_whale

```
Id
             Image
      00022ela.jpg
                    w e15442c
      000466c4.jpg
                    w 1287fbc
      00087b01.jpg
                    w da2efe0
      001296d5.jpg
                    w 19e5482
      0014cfdf.jpg
                    w f22f3e3
9845
      ffe5c306.jpg
                    w 2ceab05
                    w b067417
      ffeaa7a4.jpg
      ffecec63.jpg
                    w 8b56cb1
9847
9848
      fff04277.jpg
                    w 2dcbf82
      fffd4260.jpg
                    w b9bfd4e
[9850 rows x 2 columns]
```

Some sample pictures:

00022e1a.jpg Size 29.19 KB

000466c4.jpg Size 24.74 KB

00087b01.jpg Size 19.91 KB

001296d5.jpg Size 4.87 KB

0014cfdf.jpg Size 15.15 KB

0025e8c2.jpg Size 57.23 KB

0026a8ab.jpg Size 13.11 KB

0031c258.jpg Size 32.96 KB

0035632e.jpg Size 23.28 KB

0037e7d3.jpg Size 72.38 KB

00389cd7.jpg Size 50.51 KB

0042dcc4.jpg Size 16.88 KB

Evaluation metric: Mean Average Precision (MAP)

$$MAP = \frac{\sum_{q=1}^{Q} AveP(q)}{Q}$$
Means
$$\frac{Average number of precision per query}{Total number of queries}$$

Here, Q is the number of queries.

	1st label	2nd label	3rd label	4th label	5th label
AP	1	1/2	1/3	1/4	1/5

Model Section

- → Why transfer learning?
 - pre-trained networks
 - sufficient training datasets
 - reasonable architectures:
- → Why ResNets?
 - Residual Block
 - Skip Connections
 - Identity Mapping

Experiment Workflow

Step 1.

Step 2.

Step 3.

Data Processing

Network Setting

Parameter Tuning

Step 4.

Step 5.

Step 6.

Model Training

Model Testing

ID Predicting

Data Processing 1

Explore data information

	Image	Id	Hash	Shape	Mode	New_Whale	Id_Count
0	00022e1a.jpg	w_e15442c	b362cc79b1a623b8	(699, 500)	L	False	1
1	000466c4.jpg	w_1287fbc	b3cccc3331cc8733	(1050, 700)	RGB	False	34
2	00087b01.jpg	w_da2efe0	bc4ed0f2a7e168a8	(1050, 368)	RGB	False	11
3	001296d5.jpg	w_19e5482	93742d9a2ab35b86	(397, 170)	RGB	False	1
4	0014cfdf.jpg	w_f22f3e3	d4a1dab1c49f6352	(700, 398)	L	False	2

1. Duplicate Image Detection

There are 780 duplicate images. bb8ec43039cb663c 3 bcccd3346b342d0b 2 b619898ea6a6e1e9 2 e89a85e3b661d871 2 8f90e168da67b4c9 2 Name: Hash, dtype: int64

Duplicate Image Samples

Data Processing 2

Class Distribution

Method: Oversampling

Data Processing 3

Data Augmentation & Normalization

- Resize
- Central Crop
- Convert to Grayscale
- Random/Horizontal Flip
- Random Vertical Flip
- Random Rotation
- To Tensor
- Normalize
 - o per-channel mean [0.485, 0.456, 0.406]
 - per-channel standard deviation [0.229, 0.224, 0.225]

ResNet-50

Parameter Tuning

- Batch size = 128,
- Number of epochs = 20,
- Learning rate = 0.01
 - Annealed learning rate scheme
 - 0.001 after 17 epochs
 - 0.0001 after 19 epochs

Loss function & Optimizer

Cross Entropy Loss function

$$\mathrm{loss}(x, class) = -\log \left(rac{\mathrm{exp}(x[class])}{\sum_{j} \mathrm{exp}(x[j])}
ight) = -x[class] + \log \left(\sum_{j} \mathrm{exp}(x[j])
ight)$$

- SGD/optimizer
 - 0.9 momenta
 - 1e-4 weight decay

Loss & Mean Average Precision

Mean average precision: 0.9344610007358328

- **Training Loss: 0.01**
- **Validation Loss: 0.06**
- Mean average precision: 0.9987398822663722

ID Prediction

Test in Validation data

Perfect Prediction

Final Submission

	Image	Id		
0	00029b3a.jpg	w_711aaa1 w_67de30b w_d382236 w_fd1cb9d w_59349ea		
1	0003c693.jpg	w_2863d51 w_b4369cc w_731e3aa new_whale w_89e159a		
2	000bc353.jpg	w_da63cba w_1287fbc w_7311fe4 new_whale w_b34793e		
3	0010a672.jpg	w_701972b w_8c605d2 w_9d65e55 w_e548eb7 w_9a4bd76		
4	00119c3f.jpg	w_b6689cc w_9ceb05d w_44cccf6 w_bb2d34d w_abe383e		
15605	fff31d26.jpg	w_aa16da4 w_d4eb9ed w_cae7677 w_c58b474 w_2f6a962		
15606	fff3d049.jpg	new_whale w_fe87f0a w_987a36f w_03c84ef w_d88328d		
15607	fffa5100.jpg	w_dad23fa w_654a5bb w_392bee3 w_63d1ea6 new_whale		
15608	fffa6215.jpg	new_whale w_326e389 w_7e8b270 w_ec87420 w_06e47e3		
15609	ffffdd7f.jpg	w_67de30b w_d6a9529 w_fd1cb9d w_fc7cc24 w_b0b275e		
15610 rows × 2 columns				

Result Analysis

		40.1	241	50.1	101.1	452.1	
layer name	output size	18-layer	34-layer 50-layer 101-laye		101-layer	152-layer	
conv1	112×112	7×7, 64, stride 2					
	56×56	3×3 max pool, stride 2					
conv2_x		$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$ \left[\begin{array}{c} 1 \times 1,64 \\ 3 \times 3,64 \\ 1 \times 1,256 \end{array} \right] \times 3 $	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$ \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $	
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 4 $	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$	
conv4_x	14×14	$\left[\begin{array}{c} 3\times3, 256\\ 3\times3, 256 \end{array}\right]\times2$	$ \begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 6 $	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$	
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $	
	1×1	average pool, 1000-d fc, softmax					
FLOPs		1.8×10^9	3.6×10^9	3.8×10^{9}	7.6×10^9	11.3×10 ⁹	

- Customized Resnet
 - Layers not enough
- Resnet-152
 - Architecture too complex
- Resnet-50
 - Best fit

Conclusion

WHAT I LEARNED FROM THIS PROJECT

- **□** Hands on experience
- ☐ "Residual Block" concept
- **□** Data processing techniques

POTENTIAL FUTURE DIRECTION

- **□** Different pre-trained networks
- **□** /Better oversampling methods

References

- https://www.kaggle.com/c/whale-categorization-playground/overview
- https://arxiv.org/pdf/1512.03385.pdf
- https://www.researchgate.net/figure/The-representation-of-model-architect ure-image-for-ResNet-152-VGG-19-and-two-layered_fig2_322621180
- https://pytorch.org/hub/pytorch_vision_resnet/
- https://www.researchgate.net/figure/Left-ResNet50-architecture-Blocks-with -dotted-line-represents-modules-that-might-be_fig3_331364877
- https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
- https://pytorch.org/docs/master/generated/torch.optim.\$GD.html
- https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.
 py
- https://www.kaggle.com/stehai/duplicate-images
- https://www.kaggle.com/stehai/duplicate-images-data-cleaning