OLIMPIADA DE FÍSICA DE LA COMUNIDAD DE MADRID

17 de febrero de 2006

c) $9,5x10^5$

1.- Si el radio del átomo de hidrógeno es $5,29177x10^{-11}\,\text{m}$, el número de átomos puestos en línea recta que serían necesarios para cubrir la distancia de $1,00\,\mu\text{m}$ es:

b) 1,9x10⁵

a) $1,89 \times 10^4$

a) 8,0 m/s

b) 10,2 m/s

una pieza cilíndrica se una balanza de tres	on: diámetro = 6,5±0,	1 cm, y altura = 1,2±),1 g. El valor de la de	entra que las dimensiones de 0,1 cm. La masa medida en nsidad de este metal con su	
a) 2,7±0,3	b) 8,10±0,03	c) 1,70±0,25	d) 2,70±0,50	
3 Un astronauta en la superficie de la Luna se encuentra a una distancia media de Tierra, de 3.84×10^8 m. Se comunica con su base terrestre mediante radioondas, y sabe que la atmósfera terrestre, con una altura media de 160 km, afecta a la velocidad de las señale en algo menos del 0.1% . El tiempo medio que el astronauta tarda en oír la respuesta a un pregunta que realice a su controlador terrestre, si éste comienza a responderla 2.00 0 después de escucharla, es: 2.00×10^8 0 m/s				
a) 2,6 s	b) 2,8 s	c) 4,6 s	d) 4,8 s	
4 Un pequeño automóvil eléctrico alcanza una velocidad máxima de 57,6 km/h, media una aceleración uniforme de 4,00 m/s², y puede frenar uniformemente hasta con —6 m/s². El tiempo más corto en que puede recorrer 500 m, partiendo del reposo y finaliza				
en reposo, es: a) 32,5 s	b) 34,6 s	c) 39,2 s	d) 41,5 s	
5 Una partícula de masa 0,200 kg describe una trayectoria circular horizontal de 3,0 m radio. Desprecie el peso de la partícula y considere que la ecuación temporal que relacion el ángulo girado con el tiempo es θ = 2,7 (rad s ⁻²) t ² . La fuerza que actúa sobre la partícula en el instante t = 2,0 s es:				
a) 40 N	b) 50 N	c) 60 N	d) 70 N	
6 Una persona atraviesa un río de 50 m de anchura con una motora, que en agua tranquilas alcanza una velocidad de 10 m/s; la corriente del río, paralela a las orillas, llev una velocidad de 3,0 m/s. Si la motora "rema" perpendicularmente a la orilla, el punto de l orilla opuesta al que llega, medido desde el punto justo enfrente del de salida, estará a un distancia de:				
a) 10 m	b) 15 m	c) 20 m	d) 25 m	
debajo de su posici inmediatamente, lan	ión. El roedor comie	nza a correr a 2,0 ito rectilíneo y unifori	uelo horizontal, a 50 m por m/s y el halcón reacciona me hacia el mamífero. Si lo	

c) 12,0 m/s

d) 12,5 m/s

rozamiento, con los inicialmente una acel	polos idénticos frente eración de 0,10 m/s²	e a frente. Se sueltar durante 1,0 s que se	situados en una recta sin n y el más masivo alcanza e hace nula a partir de ese recorrido una distancia de: d) 22,5 cm
a la mitad. El momer		la tenía un valor de:	s, y su velocidad se reduce d) 4.0×10^{-3} kg m/s
velocidad de 10 m/s. que comprime 10 cm	Después de deslizar u n. Si la constante elá	una distancia 13 m im	zamiento partiendo con una pacta en un muelle ideal, al k = 200 N/m, el valor del) d) 0,38
11 Desde de la parozamiento (μ_c =0,20)	arte inferior de un pl) se lanza un bloque	lano inclinado de 30º con velocidad v = 4,7 a con una velocidad de	y de altura 0,96 m, con m/s. El bloque sube y cae
12 Sobre una partíc fuerza en el sentido	cula que se encuentra del movimiento, da	en el eje OX, cuya ma	asa es 0,500 kg, actúa una unidades SI). Si la energía
min para que el agua se vaporice es: Dato = 2257x10 ³ J kg ⁻¹	o comience a hervir, e os: Calor específico ag	I tiempo necesario pa gua = 4180 J kg ⁻¹ K ⁻¹ ;	nornillo estable. Si pasan 15 ra que la totalidad del agua Calor de ebullición agua =
-		c) 80 min Ω da una corriente d La resistencia interna c) 2,0 Ω	d) 90 min le 3,0 A y al acoplarla a una de la pila es: d) 2,5 Ω
15 Un trozo de hier	ro pesa en agua 9,81	, ,	agua es 1,0x10 ³ kg/m ³ y la ²) d) 147 cm ³
Si para sacar el cor	cho, de sección 2,0		o la temperatura es de 7°C. ar una fuerza de 25 N, la el corcho es: d) 144°C

17 Un péndulo sir velocidad de la mas a) 0,18 m/s	nple se separa de la vo a cuando pasa por la p b) 0,30 m/s	ertical 5° y se suelta. S posición de equilibrio e c) 0,36 m/s	Si su frecuencia es $3/4 \text{ s}^{-1}$, la es: $(g = 9.81 \text{ m s}^{-2})$ d) 0.45 m/s
movimiento armónio		a es 10 Hz. Si otro obj	rtical y se le hace oscilar con un eto de masa m ₂ se cuelga junto a relación m ₂ /m ₁ es: d) 3/4
	y una frecuencia de 0	•	ositivo del eje OX, con una de un punto del medio a 50
a) 5,8 cm/s		c) 16,2 cm/s	d) 25,4 cm/s
1,47x10 ⁸ km y el a perihelio, respecto a	felio a 1,53x10 ⁸ km. I su valor en el afelio e	El módulo del momer es:	yo perihelio se encuentra a nto lineal de la Tierra en el
a) 4% menor	b) 4% mayor	c) Faltan datos	d) Igual
	Halley la distancia m Sol (posición no visible b) 7,8 UA	- -	JA y su período 75 años, la a media Tierra-Sol) d) 35 UA
diciembre de 2005	-	8 km de altura. El núm	en órbita circular el 28 de nero de vueltas que cada 10
a) 17	b) 24	c) 28	d) 33
través de su anteoj circular de radio r =	o. Hoy día se sabe q	ue uno de ellos, Gan su período de 7,16 día	yores de Júpiter mirando a ímedes, describe una órbita as. ¿Cuánto vale la masa del
a) 1,20x10 ²⁶ kg	b) 6,50x10 ²⁶ kg	c) 1,90x10 ²⁷ kg	d) 2,50x10 ²⁷ kg
			recta unidas por dos hilos los hilos son: (en unidades
a) 4/5	b) 3/4	c) 4/3	d) 5/4
164 V; si en ese pu	into se dejase una cai I con la que llegaría a	rga idéntica a la anter	al eléctrico tiene un valor de rior con masa de 1 µg, y en cm de la carga inmóvil es:
a) 12 m/s	b) 18 m/s	c) 24 m/s	d) 30 m/s

PROBLEMAS EXPERIMENTALES

(La puntuación de cada problema es de 2,5 puntos)

1. Para determinar la velocidad de disparo v_0 de un cañoncito se realizan varios disparos en posición horizontal desde una altura $h=80\,\pm 1$ cm. Los alcances que la bola consigue con relación a la vertical que pasa por la posición de disparo, medidos en metros son:

Obtenga el valor de v_0 con su correspondiente incertidumbre.

Realice los cálculos de forma suficientemente explícita indicando los criterios que utiliza.

2.- La aceleración de la gravedad, g´, se midió a diferentes alturas, h, por encima de la superficie terrestre, obteniéndose la siguiente tabla de datos:

h (x10 ⁴ m)	1	2	3	4	5	6
g'(m s ⁻²)	9,76	9,74	9,70	9,69	9,66	9,62

Si la relación teórica que liga g´con h es, g´= g_o (1-2h/ R_T), donde g_o es la gravedad en la superficie terrestre y R_T es el radio de la Tierra, calcule estos parámetros por medio del ajuste de mínimos cuadrados de los datos de la tabla, mediante resolución gráfica.