- 1. Лабораторная работа №3 по теме: «Вычисление определенного интеграла».
- 2. Цель лабораторной работы: рассмотреть численные методы определения интеграла и реализовывать алгоритмы детерминированных циклических вычислительных процессов средствами компилятора PascalABC.
- 3. Используемое оборудование: ПК, PascalABC, draw.io.

Задание 1

4. Написать программу для вычисления определенного интеграла методом прямоугольника левых частей. Протестировать программу на определенном интеграле.

Переменная	Смысл	Тип данных	
n	количество разбиений	real	
h	шаг	real	
S	сумма	real	
a	нижний предел	real	
	интегрирования		
b	верхний предел	real	
	интегрирования		
X	аргумент	real	
m	замена выражения	real	
r	замена выражения	real	
I	значение интеграла	real	

```
program 13;
  var a,b,s,h,n,m,x,I, r: real;
  writeln ('Введите количество разбиений:');
  readln (n);
  a:=0.8;
  b:=1.8;
  h := (b-a)/n;
  s:=0;
  x:=a;
  while x <= b-h do
  begin
  m:=x*x;
  r:=(sqrt(0.8*m+1)/(x+sqrt(1.5*m+2)));
  x := x + h;
  end;
  I:=h*s;
  writeln ('Результат вычисления = ', I:3:5);
8.
  Введите количество разбиений:
9. Результат вычисления = 0.41066
```

10. В алгоритме вводится нижний и верхний пределы интегрирования, после высчитывается шаг по формуле "(b-a)/n", где n-это число разбиений, сумма приравнивается к нулю, после при помощи цикла "while" высчитывается сумма, цикл не прекращается пока "x <= b-h", и последующее действие-высчитывание интеграла методом прямоугольника левых частей, и выводится его результат.

Задание 2

4. Написать программу для вычисления определенного интеграла методом прямоугольника правых частей. Протестировать программу на определенном интеграле.

$$\int_{0.8}^{1.8} \frac{\sqrt{0.8x^2 + 1} \, dx}{x + \sqrt{1.5x^2 + 2}};$$

Переменная	Смысл	Тип данных	
n	количество разбиений	real	
h	шаг	real	
S	сумма	real	

a	нижний предел	real
	интегрирования	
b	верхний предел	real
	интегрирования	
X	аргумент	real
m	замена выражения	real
r	замена выражения	real
_		real

```
program 13;
  var a,b,s,h,n,m,x,I, r: real;
  writeln ('Введите количество разбиений:');
  readln (n);
  a:=0.8;
  b:=1.8;
  h:=(b-a)/n;
  s:=0;
  x:=a+h;
  while x <= b do
  begin
  m:=x*x;
  r:=(sqrt(0.8*m+1)/(x+sqrt(1.5*m+2)));
  s:=s+r;
  x := x + h;
  end;
  I:=h*s;
  writeln ('Результат вычисления = ', I:3:5);
8.
  Введите количество разбиений:
9. Результат вычисления = 0.40503
```

10. В алгоритме вводится нижний и верхний пределы интегрирования, после высчитывается шаг по формуле "(b-a)/n", где n-это число разбиений, сумма приравнивается к нулю, после при помощи цикла "while" высчитывается сумма, цикл не прекращается пока "x <= b", и последующее действие-высчитывание интеграла методом прямоугольника правых частей, и выводится его результат.

Задание 3

4. Написать программу для вычисления определенного интеграла методом трапеций. Протестировать программу на определенном интеграле.

5.

Переменная	Смысл	Тип данных	
n	количество разбиений	real	
h	шаг	real	
S	сумма	real	
a	нижний предел	real	
	интегрирования		
b	верхний предел	real	
	интегрирования		
X	аргумент	real	
m	замена выражения	real	
r	замена выражения	real	

значение интеграла	real
--------------------	------

8.

I

```
program 13;
var a, b, s, h, n, m, x, I, r: real;
begin
writeln ('Введите количество разбиений');
readln (n);
a:=0.8;
b:=1.8;
h:=(b-a)/n;
s:=0;
x:=a+h;
while x <= b-h do
begin
m:=x*x;
r:=(sqrt(0.8*m+1)/(x+sqrt(1.5*m+2)));
s:=s+r;
x:=x+h;
end;
I:=h*((sqrt(0.8*a*a+1)/(a+sqrt(1.5*a*a+2))+sqrt(0.8*b*b+1)/(b+sqrt(1.5*b*b+2)))/2 +s);
writeln ('Результат вычисления = ', I:3:5);
end.

Введите количество разбиений
10
Pезультат вычисления = 0.40771
```

10. В алгоритме вводится нижний и верхний пределы интегрирования, после высчитывается шаг по формуле "(b-a)/n", где n-это число разбиений, сумма приравнивается к нулю, после при помощи цикла "while" высчитывается сумма, цикл не прекращается пока "x <= b-h", и последующее действие-высчитывание интеграла методом трапеций, и выводится его результат.

Задание 4

4. Написать программу для вычисления определенного интеграла методом парабол. Протестировать программу на определенном интеграле.

$$\int_{0.8}^{1.8} \frac{\sqrt{0.8x^2 + 1} \, dx}{x + \sqrt{1.5x^2 + 2}};$$

Переменная	Смысл	Тип данных	
n	количество разбиений	real	
h	шаг	real	
s1	сумма	real	
s2	сумма	real	
a	нижний предел	real	
	интегрирования		
b	верхний предел	real	
	интегрирования		
X	аргумент	real	
m	замена выражения	real	
r	замена выражения	real	
I	значение интеграла	real	

```
8.
program 13;
var a, b, s1, s2, h, n, m, x, I, r: real;
writeln ('Введите количество разбиений');
readln(n);
a:=0.8;
b:=1.8;
h := (b-a)/n;
x:=a+h;
81:=0:
s2:=0;
while x <= b-h do
begin
m:=x*x;
r:=sqrt(0.8*m+1)/(x+sqrt(1.5*m+2));
x := x + 2 * h :
end;
x := a + 2 * h;
while x <= b-2*h do
m:=x*x:
r:=sqrt(0.8*m+1)/(x+sqrt(1.5*m+2));
s2:=s2+r:
end:
I := (h/3) * ((sqrt(0.8*a*a+1) / (a+sqrt(1.5*a*a+2)) + sqrt(0.8*b*b+1) / (b+sqrt(1.5*b*b+2))) + 4*s1+2*s2);
writeln ('Результат вычисления = ', I:3:5);
end.
      Введите n
      10
      Результат вычисления = 0.45079
```

10. В алгоритме вводится нижний и верхний пределы интегрирования, после высчитывается шаг по формуле "(b-a)/n", где n-это число разбиений, сумма приравнивается к нулю, после при помощи цикла "while", вводится два цикла и высчитывается сумма(четная и нечетная), циклы не прекращается пока " $x \le b-h$ " и " $x \le b-2h$ ", и последующее действиевысчитывание интеграла методом параболы, и выводится его результат.

11. Вывод: я научился реализовывать алгоритмы, используя методы вычисления определенного интеграла для решения выражений при помощи PascalABC.

n	h	Метод левых	Метод правых	Метод	Метод
количество	шаг	частей	частей	трапеций	парабол
разбиений		прямоугольников	прямоугольников		
10	0.1	0.41066	0.40503	0.40771	0.45079
100	0.01	0.44679	0.44620	0.44650	0.44220
1000	0.001	0.45082	0.45076	0.45079	0.44993
10000	0.0001	0.45079	0.45078	0.45079	0.45079