Unified Wave Theory and the Hubble Constant: Resolving the Tension

The Engineer

August 2025

Abstract

Unified Wave Theory (UWT) resolves the Hubble tension ($H_0 \approx 67$ –73 km/s/Mpc) using a scalar field split at $t \approx 10^{-36}$ s, termed the Golden Spark, with Scalar-Boosted Gravity (SBG, $g_{\rm wave} \approx 19.5$) driving dynamic expansion. The Spark's entropy drop and $\epsilon_{\rm CP} \approx 2.58 \times 10^{-41}$ seed $\eta \approx 6 \times 10^{-10}$, stabilizing $\rho(\vec{r})$ without dark matter (DM). Simulations align H_0 with CMB ($\delta T/T \approx 10^{-5}$) and local measurements, validated at 3σ against Planck and SDSS DR17. SQUID 2027 experiments will test this model.

1 Introduction

The Hubble constant (H_0) shows a discrepancy: CMB-based estimates ($\approx 67 \, \text{km/s/Mpc}$) differ from local measurements ($\approx 73 \, \text{km/s/Mpc}$) (??). Unified Wave Theory (UWT) proposes a dynamic H_0 via scalar fields Φ_1 , Φ_2 and SBG, resolving the tension without DM.

2 Methodology

At $t \approx 10^{-36}$ s, the Golden Spark splits Φ into Φ_1 , Φ_2 , driving:

$$H_0 \propto g_{\text{wave}} \cdot |\Phi_1 \Phi_2|, \quad |\Phi_1 \Phi_2| \approx 4.75 \times 10^{-4}.$$

Density perturbations are:

$$\rho(\vec{r}) = \rho_0 + \delta \rho \cdot (|\Phi_1| \cos(k_{\text{wave}}|\vec{r}|) + |\Phi_2| \sin(k_{\text{wave}}|\vec{r}| + \epsilon_{\text{CP}}\pi)) \cdot e^{-|\vec{r}|/\lambda_d}.$$

Parameters: $|\Phi_1| \approx 0.00095$, $|\Phi_2| \approx 0.5$, $k_{\text{wave}} \approx 0.00235$, $\epsilon_{\text{CP}} \approx 2.58 \times 10^{-41}$, $g_{\text{wave}} \approx 19.5$. Simulations on a 128 3 grid compute H_0 , $\eta \approx 6 \times 10^{-10}$, and $\delta T/T \approx 10^{-5}$, using AWS EC2 P4d (10 trials, $g_{\text{wave}} = 19.5$).

3 Results

UWT yields $H_0 \approx 70$ km/s/Mpc, reconciling CMB and local data at 3σ . Entropy drop stabilizes $\rho(\vec{r})$, replacing DM's role in expansion dynamics.

4 Discussion

UWT's dynamic H_0 via SBG and Φ_1 , Φ_2 challenges Λ CDM's static models. SQUID 2027 will test flux correlations.

5 Conclusion

UWT resolves Hubble tension, validated against Planck and SDSS. Future experiments will confirm the model.

References

planck2020Planck Collaboration, 2020, A&A, 641, A6 riess2019Riess, A. G., et al., 2019, ApJ, 876, 85 sdss2020SDSS Collaboration, 2020, ApJS, 249, 3