AFRL-MN-EG-TP-2006-7402

ROTATIONAL DYNAMICS OF SMALL MOLECULES IN QUANTUM SOLIDS AND LIQUIDS (BRIEFING CHARTS)

Mario E. Fajardo Air Force Research Laboratory Munitions Directorate AFRL/MNME Eglin AFB, FL 32542-6810

JULY 2006

CONFERENCE PAPER

This paper was presented at the 61st Ohio State University International Symposium on Molecular Spectroscopy, Ohio State University, Columbus, OH, 19-23 June 2006. This paper will be published in the proceedings. The author is a U.S. Government employee working within the scope of this position. Therefore, this is a work of the U.S. Government and is not subject to copyright in the United States.

This paper is published in the interest of the scientific and technical information exchange. Publication of this paper does not constitute approval or disapproval of the ideas or findings.

DISTRIBUTION A: Approved for public release; distribution unlimited. Approval Confirmation #AAC/PA 06-02-0-272.

AIR FORCE RESEARCH LABORATORY, MUNITIONS DIRECTORATE

■ Air Force Materiel Command

■ United States Air Force

■ Eglin Air Force Base

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)
	Conference Paper	
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER	
	cules in Quantum Solids and Liquids (BRIEFING	
CHARTS)		
		5b. GRANT NUMBER
		5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)		5d. PROJECT NUMBER
		2502
Mario E. Fajardo		
		5e. TASK NUMBER
		10
		5f. WORK UNIT NUMBER
		15
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION REPORT NUMBER
Air Force Research Laboratory,		AFRL-MN-EG-TP-2006-7402
Munitions Directorate		
AFRL/MNME		
Eglin AFB, FL 32542-6810		
9. SPONSORING / MONITORING AGENCY	NAME(S) AND ADDRESS(ES)	10. SPONSOR/MONITOR'S ACRONYM(S)
		AFRL-MN-EG
Same as Block 7		
		11. SPONSOR/MONITOR'S REPORT
		NUMBER(S)
		Same as Block 8

12. DISTRIBUTION / AVAILABILITY STATEMENT

DISTRIBUTION A: Approved for public release; distribution unlimited. Approval Confirmation #AAC/PA 06-02-06-272

13. SUPPLEMENTARY NOTES This paper was presented at the 61st Ohio State University International Symposium on Molecular Spectroscopy, Ohio State University, Columbus, OH, 19-23 June 2006. This paper will be published in the proceedings. The author is a U.S. Government employee working within the scope of this position. Therefore, this is a work of the U.S. Government and is not subject to copyright in the United States.

14. ABSTRACT

- High resolution IR absorption spectra of diatomic dopants in solid pH₂ provide rigorous tests of theories describing
 molecular rotations in solids.
- Leading candidate theories cannot explain strong linear correlation.

15. SUBJECT TERMS

Molecular Rotational Dynamics in Solids, Matrix Isolation Spectroscopy, IR Absorption Spectra of CO Isotopomers, Center of Interaction, Quantum Liquids, Quantum Solids

16. SECURITY CLASS	SIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON Mario E. Fajardo
a. REPORT	b. ABSTRACT	c. THIS PAGE	0.4.5	40	19b. TELEPHONE NUMBER (include area code)
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	SAR	16	

Rotational Dynamics of Small Molecules in Quantum Solids and Liquids

Mario E. Fajardo

AFRL/MNME, Energetic Materials Branch, Ordnance Division, U.S. Air Force Research Laboratory, 2306 Perimeter Road, Eglin AFB, FL 32542-5910. mario.fajardo@eglin.af.mil

- * Molecular rotational dynamics in solids
- * Matrix Isolation Spectroscopy in solid parahydrogen (pH₂)
- * IR absorption spectra of CO isotopomers in solid pH₂
- * "Center-Of-Interaction" (C.I.) for CO in pH₂
- * Similarities between CO/pH₂ and CO/lHe
- * Speculations on quantum solids vs. quantum liquids

This paper is published in the interest of the scientific and technical information exchange. Publication of this report does not constitute approval or disapproval of the ideas or findings.

Models of Molecular Rotations in the Solid Phase

Z (C.M.)

Crystal Field Theory:

- * Molecular center-of-mass (C.M.) remains fixed at trapping site center.
- * Rigid, undistorted trapping site.

A.F. Devonshire, Proc. Roy. Soc. (London) **A153**, 601 (1936).

Rotation-Translation Coupling:

- * Molecular "center-of-interaction" (C.I.) occupies trapping site center at equilibrium.
- * Molecular C.M. moves relative to trapping site center during rotation.

M.T. Bowers, G.I. Kerley, and W.H. Flygare, J. Chem. Phys. **45**, 3399 (1966).

Pseudorotating Cage Model:

- * Molecular rotation is coupled to synchronous pseudorotation of matrix cage atoms.
- J. Manz, J. Am. Chem. Soc. **102**, 1801 (1980).

ortho- and para-hydrogen

I.F. Silvera, Rev. Mod. Phys. 52, 393 (1980).

Rapid vapor deposition of solid pH₂

M.E. Fajardo and S. Tam, J. Chem. Phys. **108**, 4237 (1998). S. Tam and M.E. Fajardo, Rev. Sci. Instrum. **70**, 1926 (1999).

- * Mixed fcc/hcp microstructure in asdeposited samples; can anneal to nearly pure hcp.
- * High-symmetry trapping sites in weakly interacting host solid;
- \Rightarrow 1st solid matrix host in which non-hydride dopants (CO, N₂, NO...) are observed to rotate!
- * Small post-annealing residual inhomogeneities; ⇒ often observe sharp IR absorption lines (~0.01 cm⁻¹); widths limited by rotational dephasing/relaxation.

¹²C¹⁶O/pH₂ IR absorptions

13 ppm ${}^{12}C^{16}O/pH_2$, d=2.9 mm.

Assignments from Crystal Field Theory analysis (T. Momose) with adjustable $\omega_{\rm e}$, B_e, D_e, $\alpha_{\rm e}$, $\epsilon_{\rm 2}$, $\epsilon_{\rm 3}$.

" \bot , ||" \Rightarrow polarization vs. hcp c-axis " \downarrow " \Rightarrow CO in metastable fcc sites

- (c) T=2.4K, annealed.
- (b) T=4.8K.
- (a) T=2.4K, as deposited.

CO isotopomers in pH₂

Annealed samples at T = 2.4 K.

Spectra shifted by subtracting gas-phase R(0) line.

isotopomer	B _{pH2} (cm ⁻¹)	B _{gas} (cm ⁻¹)	B_{pH2}/B_{gas}
¹² C ¹⁶ O	1.577	1.9313	0.8165
13C16O	1.538	1.8462	0.8331
¹² C ¹⁸ O	1.469	1.8391	0.7988
¹³ C ¹⁸ O	1.437	1.7540	0.8193

Matrix effect on rotational constant B depends on CO isotopic composition.

CO/pH₂ vibrational origin shift

isotopomer	ν ₀ (pH ₂) (cm ⁻¹)	ν ₀ (gas) (cm ⁻¹)	$\Delta v_0 / v_0$
¹² C ¹⁶ O	2140.280	2143.254	-0.001388
¹² C ¹⁷ O	2113.345	2116.279	-0.001386
¹³ C ¹⁶ O	2093.142	2096.051	-0.001388
¹² C ¹⁸ O	2089.204	2092.106	-0.001387
¹³ C ¹⁷ O	2065.567	2068.437	-0.001388
¹³ C ¹⁸ O	2040.843	2043.677	-0.001387

Normalized matrix shift: $\Delta v_0/v_0 = -0.001387(1)$ does <u>not</u> depend on CO isotopic composition.

$B_{eff}(pH_2) / B_{avg}(gas) vs. C.M.$

¹² C	C.M.	¹⁶ O
		l l
0	0.65	1.14 Å

gas phase isotopomer	B _{avg} (cm ⁻¹)	R _{avg} (Å)	C - C.M. (Å)
¹² C ¹⁶ O	1.9313	1.1371	0.6497
13C16O	1.8462	1.1370	0.6271
¹² C ¹⁸ O	1.8391	1.1370	0.6822
¹³ C ¹⁸ O	1.7540	1.1368	0.6600

Excellent <u>linear</u> correlation between matrix effect and location of C.M. (plotted relative to C atom); $r^2 = 0.9963$ for fcc, 0.9959 for hcp.

But, Rotation-Translation Coupling and Pseudorotating Cage models predict curvature in $B_{\rm eff}/B$ vs. C.M.!

Center of Interaction for CO/pH₂

0

- * Extrapolation of linear correlations back to $B_{\rm eff}/B_{\rm avg}=1$ (*i.e.* vanishing matrix effect on rotations) yields "experimentally determined" C.I. located 0.402 Å from C atom, or 0.248 Å from C.M. of $^{12}C^{16}O$.
- * Excellent (fortuitous?) agreement with 0.24-0.27 Å C.I. C.M separation calculated by energy minimization in linear pH_2 -CO- pH_2 construct for $R_{nn} = 3.8-4.1$ Å.
- * Caveat! For N_2/pH_2 : C.I. \equiv C.M. and $B_{eff}/B_{avg} = 0.90(\pm 0.02)$, not unity.
- S. Moroni, M. Botti, S. DePalo, and A.R.W. McKellar, J. Chem. Phys. **122**, 094314 (2005).
- P. Jankowski and K. Szalwicz,J. Chem. Phys. **108**, 3554 (1998).
- P. Jankowski, potH2CO_V04.f, private communication (2004).

Relevance to rotations in IHe?

Slightly-hindered rotation regime, where insights from studies in quantum solids may be valuable.

M. Y. Choi, G. E. Douberly, T. M. Falconer, W. K. Lewis, C. M. Lindsay, J. M. Merritt, P. L. Stiles, and R. E. Miller, International Reviews in Physical Chemistry **25**, 15 (2006).

CO / IHe alternative analysis

FIG. 7. Rotational energies of CO isotopomers plotted versus the ratios of the reduced masses (squares). μ_i is the reduced mass of the isotopomer i, with i=1 denoting the reference 12 C 16 O species.

Assumes:
$$B_{IHe}/B_{gas} = constant = 0.63$$

 $\Rightarrow \Delta v_0 = -0.214 \text{ to } -0.317 \text{ cm}^{-1}$

K. von Haeften, S. Rudolph, I. Simanovski, M. Havenith, R.E. Zillich, and K.B. Whaley, Phys. Rev. B **73**, 054502 (2006).

Assumes $\Delta v_0 / v_0 = -0.0002$ ($\Delta v_0 = -0.429$ cm⁻¹ for ¹²C¹⁶O)

Chosen to give best straight line correlation B_{IHe}/B_{gas} vs. C.M.

General applicability?

Analysis of HCN / IHe rotational and ro-vibrational spectra via our approach is <u>inconclusive</u>.

Need more/better experimental data to test for linear correlation between B_{IHe}/B_{gas} and position of C.M.

K. Nauta, Ph.D. Dissertation, U. North Carolina, Chapel Hill (2000).

A. Conjusteau, C. Callegari, I. Reinhard, K.K. Lehmann, and G. Scoles, J. Chem. Phys. 113, 4840 (2000).

Quantum Solids vs. Liquids

Radial pair distribution functions in quantum solids appear quite "liquid-like" due to large amplitude ZPM.

He: S.A. Vitiello and K.E. Schmidt, Phys. Rev. B 46, 5442 (1992).

H₂: F. Operetto and F. Pederiva, Phys. Rev. B **73**, 184124 (2006).

Ne: M.E. Fajardo, J. Chem. Phys. 88, 119 (1993).

Summary

- * High resolution IR absorption spectra of diatomic dopants in solid pH₂ provide rigorous tests of theories describing molecular rotations in solids.
- * Leading candidate theories cannot explain strong <u>linear</u> correlation of B_{eff}/B vs. |C.M. C.I.|.
- * Physical significance and general applicability of these correlations still under investigation.
- * Are the similarities between CO/pH₂ and CO/lHe just due to large amplitude ZPM of nearest neighbors?