IILM University, Greater Noida

Unit-II

Short Answer Questions

- 1. If $u = x^3 + e^{xy} + y^{-3}$, find $\partial u/\partial x$ and $\partial u/\partial y$.
- 2. Find 1^{st} order partial derivatives of function $u = \cos^{-1}\left(\frac{x}{y}\right)$.
- 3. If $f = x^3y xy^3$, find $[\partial f/\partial x + \partial f/\partial y]_{x=1,y=2}$.
- 4. If $u = \sin^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{y}{x}\right)$, then find the value of $xu_x + yu_y$.
- 5. If $u = \sin^{-1}\left(\frac{\sqrt{x} \sqrt{y}}{\sqrt{x} + \sqrt{y}}\right)$, show that $\frac{\partial u}{\partial x} = -\frac{y}{x}\frac{\partial u}{\partial y}$.
- 6. If $u = x^3 + y^3$, where $x = 2\cos t$, $y = 3\sin t$, find $\frac{\partial u}{\partial t}$.
- 7. If z = f(x, y), $x = e^{u} + e^{-v}$, $y = e^{-u} e^{v}$, prove that

$$\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial u}$$

Long Answer Questions

1. If $v = (x^2 + y^2 + z^2)^{m/2}$, then find the value of $m \ (m \neq 0)$ which will satisfy

$$v_{xx} + v_{yy} + v_{zz} = 0.$$

 $v_{xx} + v_{yy} + v_{zz} = 0.$ 2. If $x^x y^y z^z = c$, show that at x = y = z

$$\frac{\partial^2 z}{\partial x \partial y} = -(x \log ex)^{-1}$$

- 3. Verify Euler's theorem for $z = \frac{x^{1/3} + y^{1/3}}{x^{1/2} + y^{1/2}}$.
- 4. If $u = x^2 \tan^{-1} \left(\frac{y}{x} \right) y^2 \tan^{-1} \left(\frac{x}{y} \right)$, prove that

(a)
$$xu_x + yu_y = 2u$$

(b)
$$u_{xy} = \frac{x^2 - y^2}{x^2 + y^2}$$

5. State Euler's theorem on homogeneous function. Using it show that

(a)
$$xu_x + yu_y = \sin 2u$$

(b)
$$x^2 u_{xx} + 2xy u_{xy} + y^2 u_{yy} = 2\sin u \cos 3u$$

if
$$u = \tan^{-1}(x^2 + 2y^2)$$
.

IILM University, Greater Noida

6. If $u = f(e^{y-z}, e^{z-x}, e^{x-y})$, then prove that

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0.$$

7. If $u = f(x^2 + 2yz, y^2 + 2xz)$, then find the value of

$$(y^2 - xz)\frac{\partial u}{\partial x} + (x^2 - yz)\frac{\partial u}{\partial y} + (z^2 - xy)\frac{\partial u}{\partial z}.$$