System zarządzania procesem dostaw betonu

life site: https://bit.ly/holcim_lista

Opis programu

Program jest narzędziem do kompleksowego zarządzania procesem dostaw betonu. Umożliwia analizę, synchronizację i wizualizację danych operacyjnych w czasie rzeczywistym. Działa poprzez stronę internetową oraz integrację z chatbotem, co pozwala na szybkie aktualizowanie informacji i komunikację z kierowcami.

Program automatycznie synchronizuje dane z arkusza Google Sheet oraz odbiera wiadomości od kierowców na temat realizacji zamówień.

Strona główna programu prezentuje dane dla bieżącego dnia oraz dwóch kolejnych dni roboczych.

Aktualizacja danych

Informacje są aktualizowane poprzez:

- synchronizację zamówień z pliku Google Sheets (co 20 minut);
- wiadomości od kierowców przez chatbot o odbiorze konkretnego zamówienia do dostawy.

△ Aktualizacja poprzez chatbot działa wyłącznie na Zawodzie 14.

Opis

https://docs.google.com/document/d/e/2PACX-1vQ3R6GDubGMQDwwADf3Z07PDDSC52q0jPKsbN3lzpgiDClotoj5cgo2tcgbM7ti4lEH6T6tNSq0i42A/pub

GitHub

https://github.com/nafanius/beton_bot

Funkcjonalność strony

Przycisk zmiany oddziału (wytwórni betonu).

- Wyświetlanie danych na trzy dni robocze:
 - 1. bieżący dzień (zielone tło),
 - 2. następny dzień roboczy (żółte tło),
 - 3. kolejny dzień roboczy (różowe tło).

- Informacje są podzielone na trzy sekcje:
 - 1. ROZKŁAD harmonogram pracy kierowców, analiza ich dostępności i planowanie.
 - 2. ZAMÓWIENIA lista zamówień i ich zmiany.
 - 3. HARMONOGRAM ZAŁADUNKÓW plan załadunków betonomieszarek oraz statystyki.

1. ROZKŁAD:

Lista ROZKŁAD

Harmonogram jest tworzony przez dyspozytora pod koniec dnia roboczego na kolejny dzień (źródło – Google Sheets).

ROZKŁAD: 1. 06:00 Tomasz Kryszak WT1926G do godz. 16:00 2. 06:10 ES TRANS Olek Przeniczny WPI 4444F 3. 06:20 Konrad Chomiuk WG4625Ľ 4. 06:30 Wojtek Rosiński Man WGM 8XF3 5. 06:40 Olech Ivasenko WG6635L 6. 06:50 Ilin Maksim Mercedes WD 1727U 7. 07:00 Mibet WWL 2800P Rusłan Hlotov 8. 07:10 Robert Henczel Mercedes WD4163T 9. 07:20 Mateusz Kobierski MAN TGS 35.260 WG1824L 10. 07:30 Vitalii Ushakou MAN CWL00829 11. 12:30 Grzegorz Skowron WU8890H 12. 12:40 Igor Hovorukha MAN TGS 32.400 WG8255K 13. 13:00 Kosior 14. 13:10 MAN WJ2931G Rusłan Skubi15. 13:20 Marcin Zapora WD4163T16. 13:30 WZ3193X - Kobiałka Zenon 17. 13:40 Piotr Świeczka WZ568JA 18. 13:50 Tadeusz Malinowski WT5728E 719 19. 14:00 WG3122L Roman Gołędowski 20. 14:10 Tadeusz Podłog WT86086 21. 14:20 Oleksii Storchak WR835GX

Prognoza czasu pierwszego załadunku i liczby kursów

- Analizuje harmonogram i prognozuje liczbę kursów dla każdego kierowcy.
- Pokazuje, kiedy kierowca odbierze pierwsze zamówienie.
- Jest korygowany w trakcie pracy (opóźnienia, anulowania, przyspieszenia itp.).
- Aktualizuje się na podstawie zmian w Google Sheets oraz wiadomości od kierowców w chatbot.

Prognoza czasu pierwszego załadunku i liczby kursów:							
time	time Kierowca						
1 06:30	Tomasz Kryszak WT1926G do godz. 16:00	[1, 10]					
2 06:30	ES TRANS Olek Przeniczny WPI 4444F	[2, 9]					
3 06:30	Konrad Chomiuk WG4625L	[3, 24]					
4 06:46	Wojtek Rosiński Man WGM 8XF3	[4, 25]					
5 07:02	Olech Ivasenko WG6635L	[5, 26]					
6 07:18	Ilin Maksim Mercedes WD 1727U	[6, 27]					
7 07:30	Mibet WWL 2800P Rusłan Hlotov	[7]					
8 07:34	Robert Henczel Mercedes WD4163T	[8]					
9 12:30	Mateusz Kobierski MAN TGS 35.260 WG1824	L [11]					
10 12:30	Vitalii Ushakou MAN CWL00829	[12]					
11 12:46	Grzegorz Skowron WU8890H	[13]					
12 13:20	Igor Hovorukha MAN TGS 32.400 WG8255K	[14]					
13 14:10	Kosior	[15]					
14 14:30	MAN WJ2931G Rusłan Skubi	[16]					
15 14:30	Marcin Zapora WD4163T	[17]					
16 14:30	WZ3193X - Kobiałka Zenon	[18]					
17 14:30	Piotr Świeczka WZ568JA	[19]					
18 15:00	Tadeusz Malinowski WT5728E 719	[20]					
19 15:20	WG3122L Roman Gołędowski	[21]					
20 15:20	Tadeusz Podłog WT86086	[22]					
21 15:20	Oleksii Storchak WR835GX	[23]					

<u>Jeśli harmonogram od dyspozytora nie jest jeszcze dostępny:</u>

 Program automatycznie generuje go na podstawie HARMONOGRAMU ZAŁADUNKÓW oraz liczby dostępnych kierowców.

Prognoza czasu pierwszego załadunku i liczby kursów: time Kierowca kursy 1 06:30 Kierowca_1 [1, 12, 23] 2 07:20 Kierowca_2 [2, 13, 24] 3 08:10 Kierowca_3 [3, 14, 25] 4 09:30 Kierowca_4 [4, 15, 26] 5 09:46 Kierowca_5 [5, 16, 27] 6 10:02 Kierowca_6 [6, 17, 28] 7 10:18 Kierowca_7 [7, 18, 29] 8 10:34 Kierowca_8 [8, 19] 9 10:50 Kierowca_9 [9, 20, 30] 10 11:06 Kierowca_10 [10, 21, 31] 11 12:30 Kierowca_11 [11, 22]

 Jeśli brakuje kierowców, system podświetla problematyczne okresy na czerwono i tworzy tabelę z ich szczegółami.

Prognoza czasu pierwszego załadunku i liczby kursów:							
time	Kierowca	kursy					
1 06:00	Tima Tsimafeyeu WGM1776L	[1, 6, 18, 33]					
2 06:30	WU 0189E - Tomasz Gołębiowski 729	[2, 3, 8, 20, 30]					
3 11:30	WU0050H - Rafał Wiśniewski 727	[4, 16, 28]					
4 11:30	WU0954P - Mariusz Kamiński 728	[5, 17, 29]					
5 11:46	Czesław Kaczyński \nWJ95295	[7, 19, 34]					
6 11:46	BRAK_KIEROWCA1	[9]					
7 11:50	WGM8XF5- Mikołajczuk Leszek	[9, 21, 31]					
8 12:02	Krystian Klekotko WU 0049H	[10, 22, 37]					
9 12:02	BRAK_KIEROWCA2	[11]					
10 12:10	Bogdan Szulim WU0364P	[11, 23, 32]					
11 12:18	BRAK_KIEROWCA3	[12]					
12 12:20	Dymytro Cherkaska WR 4935V	[12, 24]					
13 12:34	WU 0032C - Jarosław Niewiadomski 726	[13, 25]					
14 13:30	Szymos Michał TK0479N	[14, 26, 35]					
15 13:46	Dominik Żochowski WU 0126H	[15, 27, 36]					
16 16:10	BRAK_KIEROWCA4	[31]					
17 16:10	BRAK_KIEROWCA5	[32]					
18 16:26	BRAK_KIEROWCA6	[33]					
19 16:42	BRAK_KIEROWCA7	[35]					
20 16:58	BRAK_KIEROWCA8	[36]					

	kurs	start	end	oczekiwanie	dostępny kierowca
BRAK KIER_1	9	11:46	11:50	00:04	WGM8XF5- Mikołajczuk Leszek
BRAK KIER_2	11	12:02	12:10	80:00	Bogdan Szulim WU0364P
BRAK KIER_3	12	12:18	12:20	00:02	Dymytro Cherkaska WR 4935V
BRAK KIER_4	31	16:10	16:15	00:05	WGM8XF5- Mikołajczuk Leszek
BRAK KIER_5	32	16:10	16:31	00:21	Bogdan Szulim WU0364P
BRAK KIER_6	33	16:26	16:35	00:09	Tima Tsimafeyeu WGM1776L
BRAK KIER_7	35	16:42	16:47	00:05	Szymos Michał TK0479N
BRAKKIER 8	36	16:58	17:03	00:05	Dominik Żochowski WU 0126H

Wykres "Harmonogram dostępnych kierowców"

- Pokazuje liczbę dostępnych kierowców w ciągu dnia.
- Jeśli w danym momencie brakuje kierowców, wykres spada poniżej zera (czerwony).

Optymalna liczba kierowców i czas pierwszego załadunku

- Analizuje zamówienia (ZAMÓWIENIA) oraz harmonogram załadunków (HARMONOGRAM ZAŁADUNKÓW).
- Określa minimalną wymaganą liczbę kierowców.
- Wskazuje, o której godzinie kierowcy powinni rozpocząć pracę, aby uniknąć braków kadrowych.

```
        Optymalna liczba kierowców i czas pierwszego załadunku do wykonania pracy(w pomoc logistyka) :)

        time
        kierowca
        kursy

        1
        06:30
        kierowca,1
        [1, 8, 18, 29, 40]

        2
        06:46
        kierowca,2
        [2, 9, 20, 31, 42]

        3
        07:02
        kierowca,3
        [3, 10, 21, 32, 45]

        4
        07:18
        kierowca,4
        [4, 13, 24, 34, 46]

        5
        07:30
        kierowca,6
        [6, 14, 25, 36, 47]

        7
        07:50
        kierowca,7
        7, 16, 27, 38, 49]

        8
        08:38
        kierowca,8
        [11, 22, 33, 43]

        9
        09:10
        kierowca,9
        [5, 26, 37, 48]

        10
        09:30
        kierowca,10
        [17, 28, 39, 50]

        11
        09:46
        kierowca,11
        [19, 30, 41]

        12
        14:30
        kierowca,12
        [44]
```

2. ZAMÓWIENIA

- Wyświetla listę zamówień klientów.
- Aktualizuje się co 20 minut w godzinach pracy (synchronizacja z Google Sheets).
- Ostatnie zmiany (z 4 godzin) są wyróżnione kolorami:
 - X Czerwony, przekreślony usunięte zamówienia.
 - Zielony nowe lub dodane pozycje

15:00 24.0 wezeł 1 ERBUD Warszawa Warszawa ul.Siennicka 8m3/h Klient chce przyśpieszyć piony na 12:00 brak aut na realizacje o tej godzinie 734409844 694724846 dzwig 15:00 16.0 wezeł 1 Skanska Park Skandynawia, etap E10, E11 (wjazd od ul. Jana Nowaka-Jeziorańskiego 8) piony E10 8m3 rec 16060024 na godzinę 14:30+ na 15:30 8m3 rec 16044897 piony E10 6 m3 rec 16060024 na godzinę 15:30+ na 15:30 8m3 rec 16044897 Jedna gruszka na 10:00 8m3 gęstego 510023529 dzwig

3. HARMONOGRAM ZAŁADUNKÓW

- Pokazuje szczegóły załadunków: godzina, ilość produktu, numer załadunku, pozostałości i inne informacje.
- Podlicza całkowitą liczbę kursów i ilość produktu przeznaczonego do załadunku.
- Dynamicznie aktualizuje się poprzez Google Sheets i wiadomości od kierowców w chatbot.
- Na pomarańczowo oznaczone są zamówienia aktualnie załadowywane.

HARMONOGRAM ZAŁADUNKÓW												
ilosć kursów 45												
metrów betonu bez wywrotek 394.2												
time m3 k	budowa		w	p/c								
1 06:30 3.0 1	Park Skandynawia, etap E10, E1	0.0	1	d								
2 06:30 2.0 1	Chyliczki – ul. Budowlana 6	0.0	1	d								
3 06:30 1.0 1	Sycylijska	0.0	1	d								
4 10:00 5.0 1	Ruczaj 59	0.0	1	p								
5 11:15 6.0 1	BUDOWA RUCZAJ 14b	0.0	1	p								
6 11:36 8.0 1	Warszawa ul.Siennicka	172.0	1	p								
7 12:00 8.0 2	Warszawa ul.Siennicka	164.0	1	p								
8 12:24 8.0 3	Warszawa ul.Siennicka	156.0	1	p								
9 12:48 8.0 4	Warszawa ul.Siennicka	148.0	1	p								
10 13:12 8.0 5	Warszawa ul.Siennicka	140.0	1	p								
11 13:36 8.0 6	Warszawa ul.Siennicka	132.0	1	p								
12 14:00 8.0 1	ul. Skalnicowa	8.0	1	p								
13 14:00 8.0 7	Warszawa ul.Siennicka	124.0	1	p								
14 14:24 8.0 2	ul. Skalnicowa	0.0	1	p								
15 14:24 8.0 8	Warszawa ul.Siennicka	116.0	1	p								
16 14:30 8.0 1	Park Skandynawia, etap E10, E1	8.0	1	d								

Wykres "INTENSYWNOŚĆ PRACY"

- Niebieski pokazuje ilość betonu ładowanego na godzinę.
- Pomarańczowy ilość betonu pozostała do załadunku w bieżących zamówieniach.

Wykres "STOSUNEK DŹWIG/POMPA"

• Przedstawia proporcje załadunków wykonanych pompą lub dźwigiem.

Perspektywy rozwoju

Możliwe jest wprowadzenie następujących funkcjonalności:

• Monitorowanie i analiza ruchu pojazdów na terenie zakładu

- Automatyczne skanowanie tablic rejestracyjnych pojazdów wjeżdżających i wyjeżdżających z terenu zakładu za pomocą kamer monitoringu.
- Analiza godzin wyjazdów i powrotów kierowców oraz przypisanie ich do konkretnych zamówień.
- Integracja z danymi GPS pojazdów, co pozwoli na śledzenie trasy oraz dokładniejsze monitorowanie czasu dostawy.
- Analiza szybkości rozładunku u poszczególnych klientów w zależności od pory dnia (rano, południe, wieczór), co umożliwi lepsze planowanie pracy.
- Na podstawie zebranych danych zostanie przeprowadzona analiza efektywności kierowców, obejmująca liczbę kursów w tygodniu, miesiącu i roku, czas postoju na terenie zakładu, liczbę przepracowanych godzin oraz ilość przetransportowanych metrów w przeliczeniu na jednostkę czasu (godzinę, dzień, tydzień, miesiąc).

• Lokalizacja obiektów klientów i optymalizacja tras

- Dodanie współrzędnych GPS placów budowy klientów.
- Obliczanie czasu dojazdu kierowcy do obiektu i powrotu na zakład.
- Uwzględnianie aktualnej sytuacji drogowej (np. za pomocą Google Maps) w celu precyzyjniejszego planowania harmonogramu dostaw.

• Monitorowanie kolejek do rozładunku u klienta

- Śledzenie liczby pojazdów oczekujących na rozładunek za pomocą GPS.
- Analiza danych w czasie rzeczywistym oraz dynamiczna korekta tempa załadunku kolejnych kursów.
- Optymalne planowanie podziału wolnych kierowców w zależności od obciążenia na placach budowy.

• Elektroniczna kolejka do załadunku na terenie zakładu

- Wdrożenie systemu informowania kierowców o kolejności załadunku poprzez tablice elektroniczne, chatboty lub SMS.
- Automatyczna organizacja kolejki w oparciu o analizowane dane, co usprawni logistykę oraz skróci czas oczekiwania na załadunek.

Analiza zapotrzebowania na kierowców

- Prognozowanie optymalnej liczby kierowców niezbędnych do realizacji zaplanowanych zamówień.
- Automatyczne dopasowanie harmonogramu pracy kierowców do dostępnych kursów, minimalizując przestoje i maksymalizując efektywność.

 Wskazywanie momentów, w których może zabraknąć kierowców, co pozwoli na wcześniejsze reagowanie i organizację dodatkowych zasobów.

Analiza dostawy materiałów

- Na podstawie zebranej analizy dotyczącej ilości dostarczanego materiału na różnych etapach procesu budowlanego (fundamenty, część cokołowa i piwniczna, konstrukcja i kondygnacje, dach) dla konkretnej firmy budowlanej, przygotowywany jest szczegółowy raport analityczny oraz prognoza wolumenów dostaw materiałów (prognozowanie zapasów).
- Dodatkowo przeprowadzana jest analiza jakości organizacji rozładunku po stronie klienta (placu budowy) — średnia prędkość rozładunku z wykorzystaniem pompy lub dźwigu. Dane te pozwolą precyzyjniej określać czas zaangażowania kierowców przy dostawach do konkretnej firmy budowlanej lub inwestycji.

GitHub https://github.com/nafanius/list_holcim **GitHub static site** https://nafanius.github.io/list_holcim/ **Email** ilin1980maks@gmail.com