PHY-112 | PRINCIPLES OF PHYSICS-2

Akiful Islam (AZW) Summer 2025 | Class #3

DEPARTMENT OF MATHEMATICS & NATURAL SCIENCES

BRAC

RECAP OF THE PREVIOUS CLASS!

Inspiring Excellence

What we studied in Class #2

REFER TO CLASS #2 SLIDES FOR DETAILS!

- ► What Electric Field Lines are and how they describe electric fields.
- ► How do electric charges accelerate in electric fields.
- ▶ 1D motion of charged particles in uniform electric fields.
- ▶ 2D motion of charged particles in uniform electric fields.

BRAC

THE CURIOUS CASE OF ELECTRIC DIPOLES

Inspiring Excellence

ELECTRIC DIPOLE TWO IN A ONE SYSTEM DEAL

A system consisting of two equal and opposite point charges, typically denoted as $q_+ = +ne$ and $q_- = -ne$, separated by a distance d = 2a.

For calculation purposes, we write $\vec{d} = (2a)\hat{d}$.

Some commonly known dipoles are water molecules, polar molecules in general, dielectric materials, capacitor plates, etc.

ELECTRIC DIPOLE MOMENT

MEASUREMENT OF THE DIPOLE STRENGTH

The direction of \vec{p} indicates the orientation of the dipole. The magnitude of \vec{p} measures the strength/polarity of the dipole.

$$\vec{p} = q\vec{d} = q(2a)\hat{a}.$$

Note: \vec{p} points from the –ve side to the +ve side of the dipole system.

BRAC

ELECTRIC FIELD OF AN ELECTRIC DIPOLE

Inspiring Excellence

ELECTRIC DIPOLE'S ELECTRIC FIELD

BRAC UNIVERSITY 4

MEASUREMENT OF THE FIELD STRENGTH OF A DIPOLE

An electric dipole generates an electric field that follows an *inverse* cube law (see the derivation provided with the slides).

$$\vec{E} = \frac{1}{2\pi\epsilon_0} \frac{p}{r^3} \hat{r}.$$

where r is the distance (parallel to the dipole axis) from the center of the dipole to the observation point.

Note: Try the case when the observation is done perpendicular to the dipole axis.

BRAC

MOTION OF AN ELECTRIC DIPOLE IN ELECTRIC FIELD

Inspiring Excellence

Forces on Electric Dipole in a Uniform \vec{E} -field Move it!

Forces on Electric Dipole in a Uniform \vec{E} -field Move it!

- ► The positive charge experiences a Coulomb force $\vec{F}_+ = +q\vec{E}$ that points along \vec{E}
- The negative charge of the dipole also feels an equal but opposite force $\vec{F}_- = -q\vec{E}$ that points opposite to \vec{E}
- ► The net force on the dipole thus $\vec{F}_{net} = \vec{F}_+ + \vec{F}_- = 0$
- ► This does not mean the dipole is motionless

Torque on Electric Dipole in a Uniform \vec{E} -field Rollit!

► The torque for the positive charge would be

$$\vec{\tau}_+ = \vec{r}_+ \times \vec{F}_+ = a\hat{d} \times q\vec{E} = (qa)\hat{d} \times \vec{E} = \frac{1}{2}\vec{p} \times \vec{E}$$

► The torque for the negative charge would be

$$\vec{\tau}_{-} = \vec{r}_{-} \times \vec{F}_{-} = \left(-L\hat{d}\right) \times \left(-q\vec{E}\right) = (qa)\hat{d} \times \vec{E} = \frac{1}{2}\vec{p} \times \vec{E}$$

► The total torque of the dipole system

$$\vec{\tau} = \vec{\tau}_+ + \vec{\tau}_- = \frac{1}{2}\vec{p} \times \vec{E} + \frac{1}{2}\vec{p} \times \vec{E} = \vec{p} \times \vec{E}$$

INCEPTING IDEAS (1)

HINT: TRY THE EXTREMUM CASES FOR CROSS PRODUCT

Q: An electric dipole in a uniform electric field of magnitude 5.0×10^5 N C⁻¹ that is directed parallel to the plane of the figure. The charges are 1.6×10^{-19} C; both lie in the plane and are separated by 0.125 nm (0.125 \times 10⁻⁹ m). Find (a)] the net force exerted by the field on the dipole; (b) the magnitude and direction of the electric dipole moment; (c) the magnitude and direction of the torque; (d) the potential energy of the system in the position shown.

► Q: The permanent electric dipole moment of a particular molecule is 1.1 × 10⁻³⁰ C m. What is the MAXIMUM possible torque on the molecule in a 8.0 × 10⁸ N C⁻¹ field?

- ► Q: The permanent electric dipole moment of a particular molecule is 1.1 × 10⁻³⁰ C m. What is the MAXIMUM possible torque on the molecule in a 8.0 × 10⁸ N C⁻¹ field?
- ightharpoonup Take $heta=90^\circ$

- ► Q: The permanent electric dipole moment of a particular molecule is 1.1 × 10⁻³⁰ C m. What is the MAXIMUM possible torque on the molecule in a 8.0 × 10⁸ N C⁻¹ field?
- ightharpoonup Take $\theta = 90^{\circ}$
- ► Q: Find the MINIMUM torque

- ► Q: The permanent electric dipole moment of a particular molecule is 1.1 × 10⁻³⁰ C m. What is the MAXIMUM possible torque on the molecule in a 8.0 × 10⁸ N C⁻¹ field?
- ightharpoonup Take $\theta=90^\circ$
- ► Q: Find the MINIMUM torque
- ightharpoonup Take $\theta = 0^{\circ}$

POTENTIAL ENERGY STORED BY AN ELECTRIC DIPOLE ROTATIONAL WORK DONE EXPLAINS THIS ENERGY

$$U_{\text{dipole}} = -\int \tau d\theta$$

$$= -\int pE \sin\theta \ d\theta$$

$$= -pE \cos\theta$$

$$= -\vec{p} \cdot \vec{E}$$

▶ Q: The permanent electric dipole moment of a particular molecule is 1.1×10^{-30} C m. What is the stored energy on the molecule (when placed parallel) in a 8.0×10^8 N C⁻¹?

- ▶ Q: The permanent electric dipole moment of a particular molecule is 1.1×10^{-30} C m. What is the stored energy on the molecule (when placed parallel) in a 8.0×10^8 N C⁻¹?
- ightharpoonup Take $\theta = 0^{\circ}$

- ▶ Q: The permanent electric dipole moment of a particular molecule is 1.1×10^{-30} C m. What is the stored energy on the molecule (when placed parallel) in a 8.0×10^8 N C⁻¹?
- ightharpoonup Take $\theta = 0^{\circ}$
- Q: What is the stored energy on the molecule (when placed perpendicular)

- ▶ Q: The permanent electric dipole moment of a particular molecule is 1.1×10^{-30} C m. What is the stored energy on the molecule (when placed parallel) in a 8.0×10^8 N C⁻¹?
- ightharpoonup Take $\theta = 0^{\circ}$
- Q: What is the stored energy on the molecule (when placed perpendicular)
- ightharpoonup Take $\theta = 90^{\circ}$

INCEPTING IDEAS (4)

HINT: FIND \vec{p} AND THE ANGLE BETWEEN IT AND \vec{E}

Homework Practice Problem: Try it Yourself

- ightharpoonup Q: Rank the \vec{F}_{net} experienced by the dipoles in descending order.
- ightharpoonup Q: Rank the $\vec{\tau}_{\rm net}$ experienced by the dipoles in descending order.
- ightharpoonup Q: Rank the $U_{\rm dipole}$ stored by the dipoles in descending order.

ELECTRIC DIPOLES IN A NON-UNIFORM E-FIELD MAGIC? NO. PHYSICS? YES

- ► Step-1: Orient \vec{p} to \vec{E}
- ► Step-2: Apply Force \vec{F}_E (push/pull) accordingly

INCEPTING IDEAS (5) HINT: PRACTICE! PRACTICE!

Some Problems to Practice at Home on Electric Dipole

Example Problem 21.13, p-732, 21.14, p-733 | Young-Freedman Exercise Problem 21.51, 21.55, p-740 | YF Checkpoint 4, p-649 | Resnick-Halliday Sample Problem 22.02, p-637, 22.05, p-650 | RH Exercise Problem 56, 57, 59 p-657 | RH

► YouTube:

► https://youtu.be/VDFCF1zBY7E

