1.5 Inverse Function and its Properties

An **inverse function** means doing the same steps but in a reverse order.

An **inverse function** is not a reciprocal function.

To graph an inverse function:

- 1. Make a table of values for the original function.
- 2. Make a new table for the inverse function by interchanging the x and y values. (i.e. x become y and y becomes x)
- 3. Graph the new table of values.

Example 1: Graph the inverse of f(x) = 4x - 5.

x	y = f(x)	
,		

To determine the rule (equation) for an inverse function:

- 1. Rewrite the relation as an equation (replace the f(x) with y)
- 2. Isolate the *y* variable.
- 3. Interchange the *x* and *y* letters.
- 4. Isolate the <u>new</u> y variable using ALL of your algebraic skills.
- 5. Replace the **new** y with $f^{-1}(x)$.

Example 2: Determine the inverse function for the relation:

f(x) = 5x - 3. Sketch both on the grid.

Something to think about.....

If the relation f(x) is a LINEAR function, if $f^{-1}(x)$ also a function??

