

블록도를 참고하여 다음 레지스터 전송문을 구현하는 블록도를 작성하라.

P: R2←R1

 yT_2 : R2 \leftarrow R1, R1 \leftarrow R2

다음의 물음에 답을 하라.

어떤 시스템이 32비트 크기의 16개 레지스터에 대한 공통 버스 시스템을 가지고 있으며, 이 버스는 MUX로 구현되어 있을 때,

- 1. 각 MUX는 몇 개의 선택 입력이 있는가?
- 2. MUX의 규격은 무엇인가?
- 3. 버스 구성을 위해 필요한 MUX의 수는 몇개인가?

다음에서 제시하는 로직 다이어그램을 작성하라.

R0, R1, R2, R3의 출력이 4X1 MUX를 통해 R5에 연결되어 있다. 각 레지스터는 1 bit이고, T_0 에서 T_3 까지의 타이밍 변수에 의해 다음과 같이 동작한다.

> $T_0:R5 \leftarrow R0$ $T_1:R5 \leftarrow R1$ $T_2:R5 \leftarrow R2$ $T_3:R5 \leftarrow R3$

타이밍 변수는 한 순간에 1개만 1이 되며, R5의 로드(load)입력과 MUX의 선택 입력에 연결되는 타이밍 변수도 표시하라.(Hint. 인코더를 이용하라.)

다음의 기능을 수행하는 ALU를 설계하라.

두개의 2-bit 레지스터인 A, B를 저장된 데이터를 대상으로 다음의 기능을 수행하는 ALU를 설계하라. 단, 다음에 제시된 것을 참고하라.

Ε	D	기능
0	0	A+B
0	1	A - B
1	0	$A \wedge B$
1	1	$A \vee B$

Q&A

