Jets at the Frontier of Perturbative QCD

Jesse Thaler

KEK — January 17, 2017

Jet Substructure

Boosting the Search for New Phenomena

[Last Thursday & Friday]

Pushing the Boundaries of Quantum Field Theory

[Monday & Today]

Last Time: Infrared/Collinear Safety

IRC Safe Observable: Insensitive to IR or C emissions

IRC Safe IRC Unsafe

Standard Lore: Calculable in pQCD?

✓

Controlled Λ_{OCD} Effects?

Last Time: Infrared/Collinear Safety

IRC Safe Observable: Insensitive to IR or C emissions

New Lore: Calculable in pQCD? \checkmark \checkmark *

Controlled \land_{QCD} Effects? \checkmark *

Last Time: Infrared/Collinear Safety

Original Jet

Infrared

Collinear

IRC Safe Observable: Insensitive to IR or C emissions

IRC Safe

IRC Unsafe

New Lore:

Calculable in pQCD?

Controlled Λ_{QCD} Effects?

/*

"Sudakov Safety":

[Andrew Larkoski, JDT, 1307.1699, 1406.7011]
[Andrew Larkoski, Simone Marzani, Gregory Soyez, JDT, 1402.2657]
[Andrew Larkoski, Simone Marzani, JDT, 1502.01719]

From New Physics to QCD Calculations

Flashback to 2015: Dijet Excess?

Flashback to 2015: Diboson Excess!

Flashback to 2015: Diboson Excess!

Key Substructure Techniques

ATLAS @ 8 TeV: BDRS Tagging

Grooming: e.g. ISR/UE/pileup

[Mass Drop/Filtering, Trimming, Pruning, Soft Drop, Jet Reclustering...; for pileup: Area Subtraction, Jet Cleansing, SoftKiller, PUPPI, Constituent Subtraction...]

[using Butterworth, Davison, Rubin, Salam, 0802.2470]

Discrimination:

e.g. I-prong vs. N-prong

[p_T Balance, Y-splitter, Angularities, Planar Flow, N-subjettiness, Angular Structure Functions, Jet Charge, Jet Pull, Energy Correlation Functions, Dipolarity, p_T^D , Zernike Coefficients, LHA, Fox-Wolfram Moments, JHU/CMSTopTagger, HEPTopTagger, Template Method, Shower Deconstruction, Subjet Counting, Wavelets, Q-Jets, Telescoping Jets...]

First-Principles Calculations

Jet mass: Dasgupta, Khelifa-Kerfa, Marzani, Spannowsky, 1207.1640; Chien, Kelley, Schwartz, Zhu, 1208.0010;

Jouttenus, Stewart, Tackmann, Waalewijn, 1302.0846

Jet shapes: Ellis, Vermilion, Walsh, Hornig, Lee, 1001.0014; Banfi, Dasgupta, Khelifa-Kerfa, Marzani, 1004.3483;

Li, Li, Yuan, 1107.4535; Larkoski, Neill, JDT, 1401.2158; Hornig, Makris, Mehen, 1601.01319

Angular scaling: Jankowiak, Larkoski, 1201.2688; Larkoski, 1207.1437

Quarks vs. gluons: Larkoski, Salam, JDT, 1305.0007; Larkoski, JDT, Waalewijn, 1408.3122;

Bhattacherjee, Mukhopadhyay, Nojiri, Sakaki, Webber, 1501.04794

QCD grooming: Dasgupta, Fregoso, Marzani, Salam, 1307.0007; Dasgupta, Fregoso, Marzani, Powling, 1307.0013;

Larkoski, Marzani, Soyez, JDT, 1402.2657; Frye, Larkoski, Schwartz, Yan, 1603.06375, 1603.09338

Double differential: Larkoski, IDT, 1307.1699; Larkoski, Moult, Neill, 1401.4458; Procura, Waalewijn, Zeune, 1410.6483

In heavy ions: Chien, Vitev, 1405.4293; Chien, 1411.0741

pt balance: Larkoski, Marzani, JDT, 1502.01719; Chien, Vitev, 1608.07283 Small R jets: Dasgupta, Dreyer, Salam, Soyez, 1411.5182, 1602.01110

Non-pert:

I-prong:

Jet charge: Krohn, Schwartz, Lin, Waalewijn, 1209.2421;

Waalewijn, 1209.3019

Track-only shapes: Chang, Procura, JDT, Waalewijn, 1303.6637, 1306.6630

2-prong:

Signal grooming: Rubin, 1002.4557; Dasgupta, Powling, Siodmok, 1503.01088

2-prong jet shapes: Feige, Schwartz, Stewart, JDT, 1204.3898;

Isaacson, Li, Li, Yuan, 1505.06368

Separation power: Larkoski, Moult, Neill, 1409.6298, 1507.03018;

Dasgupta, Schunk, Soyez, 1512.00516;

Dasgupta, Powling, Schunk, Soyez, 1609.07149

3-prong:

Planar flow: Field, Gur-Ari, Kosower, Mannelli, Perez, 1212.2106

Fractional jets: Bertolini, IDT, Walsh, 1501.01965 Power counting: Larkoski, Moult, Neill, 1411.0665

Combination of fixed-order, direct resummation, SCET, RG evolution, and new techniques (e.g. Sudakov safety, multi-differential projections)

Textbook QCD: Universal Collinear Limit

$$\mathrm{d}P_{i\to jk} = \frac{\mathrm{d}\theta}{\theta}\,\mathrm{d}z\,P_{i\to jk}(z)$$
Collinear Altarelli-Parisi splitting function

Textbook QCD: Universal Collinear Limit

For this talk:
$$\frac{dP_{i\to ig}}{dP_{i\to ig}}\simeq \frac{2\alpha_s}{\pi}C_i\frac{d\theta}{\theta}\frac{dz}{z}$$
 Collinear Soft singularity singularity

QCD Splitting Functions

Basis for DGLAP evolution of PDFs, parton shower generators, fixed-order subtractions, k_t jet clustering...

Jet Substructure Discrimination

[From Gavin Salam FCC talk, March 2015]

Splitting Function 1→2

$$rac{2lpha_s}{\pi}C_irac{\mathrm{d} heta}{ heta}rac{\mathrm{d}z}{z}$$
Collinear Soft singularity singularity

Angular-ordered clustering tree:

Groomed angular-ordered clustering tree:

Groomed angular-ordered clustering tree:

Groomed angular-ordered clustering tree:

$$\frac{2\alpha_s C_i}{\pi} \frac{\mathrm{d}\theta}{\theta} \frac{\mathrm{d}z}{z}$$

One soft subjet

VS.

Balanced subjets

[Butterworth, Davison, Rubin, Salam, 0802.2470; see also Dasgupta, Fregoso, Marzani, Salam, 1307.0007]

$$\frac{\mathrm{d}\sigma}{\mathrm{d}z_g} = \left(\text{ undefined } \right) + \alpha_s \left(\right) + \alpha_s^2 \left(\right) + \dots$$

$$+\alpha_s^2$$

$$\Big) + \dots$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}z_g} = \Big(\text{ undefined } \Big) + \alpha_s \Big(\text{ infinity } \Big) + \alpha_s^2 \Big(\Big) + \dots$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}z_g} = \Big(\text{ undefined } \Big) + \alpha_s \Big(\text{ infinity } \Big) + \alpha_s^2 \Big(\text{ infinity}^2 \Big) + \dots$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}z_{o}} = \left(\text{ undefined } \right) + \alpha_{s} \left(\text{ infinity } \right) + \alpha_{s}^{2} \left(\text{ infinity}^{2} \right) + \dots$$

Zg

Collinear Unsafe*

Can't make prediction from perturbative QCD (?)

Generalizing to Soft Drop with \(\beta \)

BDRS, a.k.a. Mass Drop

[Butterworth, Davison, Rubin, Salam, 0802.2470; Dasgupta, Fregoso, Marzani, Salam, 1307.0007]

Soft Drop

[Larkoski, Marzani, Soyez, JDT, 1402.2657]

First-Principles QCD

$$C_{q} = 4/3$$

$$C_{g} = 3$$

$$\simeq \frac{2\alpha_s C_i}{\pi |\beta|} \frac{1}{z_g} \log \frac{z_g}{z_{\text{cut}}}$$

More Grooming

 $\beta \rightarrow -\infty$

β < 0

$$\beta > 0$$

$$\beta \rightarrow \infty$$

Less Grooming

Introducing Sudakov Safety

[CMS 2011, 2013, 2015; using Kaplan, Rehermann, Schwartz, Tweedie, 2008; Ellis, Vermilion, Walsh, 2009]

N-Prong vs. I-Prong

N-subjettiness

$$\tau_N = \sum_k p_{T,k} \min \left\{ \Delta R_{k,1}, \Delta R_{k,2}, \dots, \Delta R_{k,N} \right\}^{\beta}$$

IRC Safe

N-subjettiness Ratios?

IRC Safe ⇒ Useful Ratio

$$T_N \Rightarrow \frac{T_N}{T_{N-1}}$$

Ubiquitous in jet substructure

N-subjettiness Ratios?

IRC Safe ⇒ Useful Ratio

$$T_N \Rightarrow \frac{T_N}{T_{N-1}}$$

Ubiquitous in jet substructure

IRC Safe Numerator

IRC Safe Denominator

IRC Unsafe Ratio

[Soyez, Salam, Kim, Dutta, Cacciari, 1211.2811]

Safe/Safe = Unsafe?!

Safe/Safe = Unsafe?!

Safe/Safe = Unsafe?!

The Key Realization

$$\frac{\mathrm{d}\sigma}{\mathrm{d}r} = \int \mathrm{d}a\,\mathrm{d}b\,\frac{\mathrm{d}^2\sigma}{\mathrm{d}a\,\mathrm{d}b}\,\delta\left(r - \frac{a}{b}\right)$$

$$\uparrow \qquad \qquad \uparrow$$
IRC Unsafe
Infinity at O(α_s)

IRC Safe
"I can simultaneously measure a and b "

The Key Realization

$$\frac{\mathrm{d}\sigma}{\mathrm{d}r} = \int \mathrm{d}a \,\mathrm{d}b \,\frac{\mathrm{d}^2\sigma}{\mathrm{d}a \,\mathrm{d}b} \,\delta\left(r - \frac{a}{b}\right)$$

"I can simultaneously measure a and b"

[Larkoski, JDT, 1307.1699]

Joint Resummable

"I can find a Sudakov form factor that resums large logarithms in a and b to all orders in α_s (e.g. a parton shower)"

[see Larkoski, Moult, Neill, 1401.4458; Procura, Waalewijn, Zeune, 1410.6483]

Returning to Momentum Balance

Back to BDRS...

$$\frac{\mathrm{d}\sigma}{\mathrm{d}z_g} = \Big(\text{ undefined } \Big) + \alpha_s \Big(\text{ infinity } \Big) + \alpha_s^2 \Big(\text{ infinity}^2 \Big) + \dots$$

Zg

Collinear Unsafe*
Predict using pQCD?

Calculating Momentum Balance?

Calculating Momentum Balance?

$$\xrightarrow{z_g ??} VS. \xrightarrow{z_g} \theta_g$$

Calculating Momentum Balance?

Form factor suppresses singularities at all orders in α_s

[Larkoski, JDT, 1307.1699; Larkoski, Marzani, JDT, 1502.01719]

First-Principles QCD

$$\simeq \frac{2\alpha_s C_i}{\pi |\beta|} \frac{1}{z_g} \log \frac{z_g}{z_{\rm cut}} \qquad \simeq \frac{1}{z_g} \text{ (!)} \qquad \simeq \sqrt{\frac{\alpha_s \, C_i}{\beta}} \, \frac{1}{z_g} \quad \text{Beyond traditional perturbation theory (Sudakov safe)}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad$$

A Standard Candle for Jets

First-Principles QCD

$$\simeq \frac{1}{z_g}$$

$$dP_{i\to ig} \simeq \frac{2\alpha_s}{\pi} C_i \frac{d\theta}{\theta} \frac{dz}{z}$$

- \approx independent of α_s (!)
- ≈ independent of jet energy/radius
- ≈ same for quarks/gluons

cf.
$$\left| -\frac{z}{-z} \theta \right|^2$$

[Larkoski, Marzani, JDT, 1502.01719; using Larkoski, JDT, 1307.1699]

[Larkoski, Marzani, JDT, 1502.01719; using Larkoski, JDT, 1307.1699]

I. Explicit Computation

Master Formula:
$$p(\pmb{z_g}) = \int \mathrm{d}\theta_g \, p(\theta_g) \, p(\pmb{z_g}|\theta_g)$$

$$p(\theta_g) \simeq \frac{\mathrm{d}}{\mathrm{d}\theta_g} \exp\left[-\frac{\alpha_s C_i}{\pi} \left(\beta \log^2 \frac{1}{\theta_g} + 2 \log \frac{1}{\theta_g} \log \frac{1}{2 z_{\mathrm{cut}}}\right)\right]$$

$$p(z_g|\theta_g) \simeq \frac{1}{\text{norm}} \frac{1}{z_g} \Theta(z_g - z_{\text{cut}}\theta_g^{\beta})$$

$$p(z_g) \simeq \sqrt{\frac{\alpha_s C_i}{\beta}} \frac{1}{z_g} \exp\left[\frac{\alpha_s C_i}{\pi \beta} \log^2 \frac{1}{2z_{\text{cut}}}\right] \operatorname{erfc}\left[\sqrt{\frac{\alpha_s C_i}{\pi \beta}} \log \frac{1}{\min[2z_{\text{cut}}, 2z_g]}\right]$$

$$\Rightarrow \frac{1}{\operatorname{norm}} \frac{1}{z_g} \Theta(z_g - z_{\text{cut}}) \quad (\beta = 0)$$

[Larkoski, Marzani, JDT, 1502.01719;

2. Renormalization Group Flow

Collinear Unsafe?

Absorb singularities into universal nonperturbative function (cf. PDFs)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}z_g} = \left(\begin{array}{c} \text{fragmentation} \\ \text{function} \end{array}\right) + \alpha_s \left(\begin{array}{c} \text{collinear} \\ \text{singularities} \end{array}\right) + \mathcal{O}(\alpha_s^2)$$

2. Renormalization Group Flow

Collinear Unsafe?

Absorb singularities into universal nonperturbative function (cf. PDFs)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}z_g} = \left(\begin{array}{c} \text{fragmentation} \\ \text{function} \end{array}\right) + \alpha_s \left(\begin{array}{c} \text{collinear} \\ \text{singularities} \end{array}\right) + \mathcal{O}(\alpha_s^2)$$

$$\mu \frac{\partial}{\partial \mu} F_i(\boldsymbol{z_g}; \boldsymbol{\mu}) \simeq \frac{\alpha_s C_i}{\pi} \Big(p(\boldsymbol{z_g}) - F_i(\boldsymbol{z_g}; \boldsymbol{\mu}) \Big)$$
 UV fixed point

[Larkoski, Marzani, JDT, 1502.01719]

3. Learn from our Elders

3. Learn from our Elders

$$\frac{2\pi}{\sigma_0} \frac{d\sigma}{d\varphi} = 1 + O(\alpha_s(Q^2)) + \frac{\alpha_s(Q^2)}{\pi} (\frac{16}{3} \ln \frac{3}{2} - 2) \cos 2\varphi$$
Born cross section despite ambiguity (!)

Exploits generalized notion of "observable"

CMS Experiment at LHC, CERN Data recorded: Wed Nov 25 12:21:51 2015 CET

Run/Event: 262548 / 14582169

Lumi section: 309

Jet Substructure

Boosting the Search for New Phenomena

Planar Flow, Trimming, Variable R, N-subjettiness, Energy Correlators, Winner-Take-All Axes, Soft Drop, Jets Without Jets, XCone, Generalized Correlators, ...

Pushing the Boundaries of Quantum Field Theory

Boosted Event Shapes, Transverse Velocity Flow, Track Functions, Recoil-Free Observables, Sudakov Safety, Quark/Gluon Mutual Information, ...

