Chapter 1 – Measurement

1.1 What is Physics?

Physics: study of natural world

- Major topics:
 - 1. General Physics
 - 2. Thermal Physics
 - 3. Light
 - 4. Waves and Sound
 - 5. Electricity and Magnetism
- Related to 2 main ideas
 - 1. Matter
 - 2. Energy

1.2 Physical Quantities and SI Units

Physical quantity consists of:

- 1. Numerical magnitude
- 2. Unit

7 base quantities

SI units: from International System of Units

Base quantity	SI unit	Symbol
Length	metre	m
Mass	kilogram	kg
Time	second	S
Electric current	ampere	Α
Thermodynamic temperature	kelvin	K
Luminous intensity	candela	cd
Amount of substance	mole	mol

Derived quantities

- physical quantities derived from base quantities
- Examples
 - (a) Speed (m/s)
 - (b) Area (m²)
 - (c) Volume (m³)
 - (d) Density (kg/m³)
 - (e) Force (N/m²)

Prefixes - more convenient, less risk of miscounting

Factor	Prefix	Symbol
10 ⁹	giga	G
10 ⁶	mega	М
10 ³	kilo	k
10 ⁻¹	deci	d
10 ⁻²	centi	С
10 ⁻³	mili	m
10 ⁻⁶	micro	μ
10 ⁻⁹	nano	n

Standard form:

a x 10ⁿ where $1 \le a < 10$

1.3 Measurement of LengthMagnitudes of sizes of common objects

Common objects	Magnitude in size (m)
Planet Earth (diameter)	10 ⁷
Moon (diameter)	10 ⁶
Height of tall mountain	10 ³
Length of football field	10 ²
Height of chair	10 ⁻¹
Width of paper	10 ⁻⁴
Size of human cell	10 ⁻⁶
Size of large molecule	10 ⁻⁹
Size of an atom	10 ⁻¹⁰

Measuring instruments

Instrument	Range	Precision (cm)
1. Measuring tape	0 – 5 m	0.1
2. Metre rule	0 – 1 m	0.1
3. Vernier calipers	0 – 15 cm	0.01
4. Micrometer screw gauge	0 – 2.5 cm	0.001

Metre rule and tape measure

Precision: smallest unit an instrument can measure

Avoid measurement errors:

- 1. Parallax errors: line of sight perpendicular to rule
- 2. Wear and tear: zero mark unsuitable for measuring purposes
 - → measure from another point, subtract from final reading
- 3. Take several readings, calculate average

Measurement errors

Types

Random error	Systematic error
Unpredictable	Predictable
Minimised by taking average of multiple	Eliminated by mitigating against sources of
readings	error
Parallax error	Parallax error
Estimate last digit of instrument reading	2) Zero error

Explanation

Type of error	Explanation	Causes
1. Random error	 Occur in all measurements Unpredictable Reduced by repeating measurements, obtain average 	 Estimation of last figure of reading (inadequate/low precision) Limitation in experimental techniques human reaction error – stopwatch improper alignment of optical pin with image formed by glass block Unpredictable conditions / changes in experiment Manufacturing inconsistency – thickness of test tube vary along length
2. Systematic error	Consistent of underestimation / overestimation of reading	 Error / imperfection of equipment → Zero error of instrument check before & after measuring account it when calculating actual length Wrong method / technique Wrong meniscus level when obtaining burette readings Parallax error – reading instrument at angle (consistently high / low reading)

Vernier calipers

inside jaws

•

Parts

Part	Usage	
1. Main scale	Read measurement	
2. Sliding vernier scale	Read fraction of smallest interval	
3. Inside jaws	Measure internal diameter of object	
4. Outside jaws	Measure external diameter of object	
5. Tail	Measure depth of object	

How to use:

- 1. Read main scale which is immediate left of zero mark on vernier scale
 - → reading: x cm
- 2. Find the $y^{t\bar{h}}$ vernier mark which coincides with marking on main scale
 - \rightarrow reading: 0.0y cm
- 3. Diameter = (x + 0.0y) cm

Check and correct zero errors

→ corrected reading = observed reading - zero error

Micrometer screw gauge

How to use:

- 1. Read main scale reading to the immediate left of thimble edge
 - \rightarrow reading: x mm
- 2. Find thimble reading y in line with datum line
 - → reading: 0.y mm
- 3. Length = (x + 0.y) mm

Check and correct zero errors

→ corrected reading = observed reading - zero error
 Type Observation
 1. No zero error
 2. Positive zero error
 3. Negative zero error

1.4 Measurement of Time

How to measure time

Observation of natural events – repeat at regular intervals

Observation	Period	Explanation	
1. Seasons	year	 Spring Summer Autumn Winter 	
2. Phases of the Moon	month	Full moon → crescent → full moon	
3. Sunsets	day	Sun sets each day	
4. Position of the Sun	time of day	Sundial: position of shadow cast by Sun differs according to time of day Noon: Sun high in sky Evening: Sun low in western sky	

Pendulum

Pendulum swings freely → move back and forth at regular intervals

- oscillation: complete to-and-fro motion
- **period**: time taken for 1 complete oscillation

Formula for period of pendulum

$$T=2\pi\sqrt{rac{l}{g}}$$

T = period

 $\pi = pi$

l = length of pendulum

g = gravitational field strength

string θ

Factors affecting period

- 1. length of pendulum
- 2. gravitational field strength

[mass does not affect period]

Procedure to measure period of pendulum

- 1. Set the pendulum into oscillation displace pendulum bob to one side by angle θ , release it
- 2. Start recording time when the pendulum passes the equilibrium
- 3. Measure the time taken twice, t_1 and t_2 for the pendulum to make 20 oscillations
- 4. Determine the average time, t for 20 oscillations

$$t = \frac{t_1 + t_2}{2}$$

5. Determine period of pendulum, T

$$T = \frac{t}{20}$$

Atomic clock: precise timekeeping device which modern timepieces are calibrated using

Instruments to measure time

Instruments

Instrument	Explanation
1. Pendulum clock	Keep time using pendulum's periodic swing
2. Clocks	Use quartz crystals 1) Small
3. Stopwatches	2) Accurate 3) Little electrical energy

Human reaction time

- Take stopwatch reading to 1 d.p.
 - Stopwatch precision: 0.01s
 - Stopwatch started & stopped by hand
- 0.3 0.5 s

Ticker tape timer: study motion of moving object

- Constant interval: 50 dots / second
- Speed measurement
 - 1. Calculate total distance travelled, d
 - 2. Calculate <u>number of intervals</u>, *n* and thus the total time interval, *t*

$$t = 0.02 n$$

$$v = \frac{d}{t}$$

Determine tape pattern of trolley

	Motion of trolley		
Tape pattern	Distance per unit interval	Speed	
direction of movement	same	constant	
direction of movement	increasing	increasing (accelerating)	
direction of movement	decreasing	decreasing (decelerating)	

