Analyse dünnbesetzter Hauptachsen für Frequenzdaten

Tobias Bork

Geboren am 21. November 1997 in Reutlingen
31. Oktober 2019

Bachelorarbeit Mathematik

Betreuer: Prof. Dr. Jochen Garcke

Zweitgutachter: Prof. Dr. X Y

MATHEMATISCHES INSTITUT FÜR NUMERISCHE SIMULATION

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT DER RHEINISCHEN FRIEDRICH-WILHELMS-UNIVERSITÄT BONN

Danksagung

The acknowledgments and the people to thank go here, don't forget to include your project advisor...

Inhaltsverzeichnis

Da	anksa	ngung	1
1	Einf	führung	1
	1.1	Motivation	1
	1.2	Dimensionsreduktionsverfahren	1
	1.3	Sparse Approximations / Representations	2
	1.4	Interpretierbarkeit	2
	1.5	Compressed Sensing Beispiel	2
2	Mat	hematische Grundlagen	3
	2.1	Normen und deren Effekte	3
		2.1.1 10-Norm	3
		2.1.2 11-Norm	3
		2.1.3 12-Norm	3
	2.2	Regression	3
		2.2.1 LASSO	3
		2.2.2 Ridge Regression	3
	2.3	Orthogonal projektion	3
	2.4	Matrixzerlegungen	4
		2.4.1 Eigenwertzerlegung	4
		Eigenwerte, Eigenvektoren	4
		2.4.2 Singulärwertzerlegung	4
		Singulärwerte	4
	2.5	Signaltheorie	4
		2.5.1 Fouriertransformation	4
		2.5.2 Nyquist-Shannon Abtasttheorem	4
	2.6	Statistik	4
		2.6.1 Empirische Kovarianzmatrix	4
	2.7	Mannigfaltigkeit	4
	2.8	Dictionary Learning	4
3	Hau	ıptkomponentenanalyse	5
	3.1	Konstruktion	5
		3.1.1 Problemformulierung als Varianzmaximierung	7
		3.1.2 Formulierung als Singulärwertzerlegung	8
		3.1.3 Formulierung als beste Rang k Rekonstruktion	8
		3.1.4 Formulierung als Regressionsproblem	8
	3.2	Selektion der Hauptkomponenten	9
	3.3	Grenzen der Anwendbarkeit	10
	3.4	Theoretische Aussagen	11
4	Dür	nnbesetzte Hauptkomponentenanalyse	13
	4.1	Motivation	13

	4.2	Problemformulierung	13
	4.3	Relaxation / Approximation Ideen	
	4.4	Konstruktion	
	4.5	Theoretische Aussagen Sparse PCA	
5	Imp	lementierung	15
	5.1	Implementierung nach original paper	15
	5.2	Implementierung in scikit-learn in python	15
	5.3	Laufzeitvergleich	15
6	Anv	vendung	17
	6.1	Anwendung auf Simulationsdaten	17
	6.2	Der Datensatz	
	6.3	Anwedung auf Frequenzdaten	
	6.4	Auswertung der Ergebnisse	
	6.5	Vergleich mit PCA Resultaten	
	6.6	Hyperparameter	
		6.6.1 Zeit	
		6.6.2 Effekt auf Resultate	
7	Aus	blick / Zusammenfassung	19
	7.1	Einsetzbarkeit	19
	7.2	Übertragbarkeit	19
	7.3	Ongoing Research / Weitere Techniken	19
Li	teratı	ır	21

Einführung

[2] [3] [6] [5] [7] [8] [15] [9] [11] [13] [16] [17] [18] [12]

1.1 Motivation

So ist man meist besonders an der Bildung sog. Cluster, also Gruppierungen, interessiert. Datenpunkte, die im entstehendem Bild nach Anwendung der Hauptkomponentenanalyse nah beieinander liegen, sind in gewisser Weise ähnlich zueinander während Datenpunkte, die weit von einander entfernt liegen, wenig Ähnlichkeit aufweisen. Abbildung CITE zeigt die Entstehung solcher Cluster auf dem Datensatz. Mit diesem Verfahren lässt sich daher eine Art Struktur in den Daten erkennen, die für weitere Analysezwecke ausgenutzt werden kann.

The goals of PCA are to

(1)

extract the most important information from the data table; (2) compress the size of the data set by keeping only this important information; (3) simplify the description of the data set; and (4) analyze the structure of the observations and the variables.

1.2 Dimensionsreduktionsverfahren

CURSE OF DIMENSIONALITY

High dimensionality means that the dataset has a large number of features. The primary problem associated with high-dimensionality in the machine learning field is model overfitting, which reduces the ability to generalize beyond the examples in the training set. Richard Bellman described this phenomenon in 1961 as the Curse of Dimensionality where "Many algorithms that work fine in low dimensions become intractable when the input is high-dimensional."

Let's say that you want to predict what the gross domestic product (GDP) of the United States will be for 2017. You have lots of information available: the U.S. GDP for the first quarter of 2017, the U.S. GDP for the entirety of 2016, 2015, and so on. You have any publicly-available economic indicator, like the unemployment rate, inflation rate, and so on. You have U.S. Census data from 2010 estimating how many Americans work in each industry and American Community Survey data updating

those estimates in between each census. You know how many members of the House and Senate belong to each political party. You could gather stock price data, the number of IPOs occurring in a year, and how many CEOs seem to be mounting a bid for public office. Despite being an overwhelming number of variables to consider, this just scratches the surface. TL;DR — you have a lot of variables to consider. If you've worked with a lot of variables before, you know this can present problems. Do you understand the relationships between each variable? Do you have so many variables that you are in danger of overfitting your model to your data or that you might be violating assumptions of whichever modeling tactic you're using? You might ask the question, "How do I take all of the variables I've collected and focus on only a few of them?" In technical terms, you want to "reduce the dimension of your feature space." By reducing the dimension of your feature space, you have fewer relationships between variables to consider and you are less likely to overfit your model. (Note: This doesn't immediately mean that overfitting, etc. are no longer concerns — but we're moving in the right direction!) Somewhat unsurprisingly, reducing the dimension of the feature space is called "dimensionality reduction." There are many ways to achieve dimensionality reduction, but most of these techniques fall into one of two classes: Feature Elimination Feature Extraction

2. Why is Dimensionality Reduction required? Here are some of the benefits of applying dimensionality reduction to a dataset:

Space required to store the data is reduced as the number of dimensions comes down Less dimensions lead to less computation/training time Some algorithms do not perform well when we have a large dimensions. So reducing these dimensions needs to happen for the algorithm to be useful It takes care of multicollinearity by removing redundant features. For example, you have two variables – 'time spent on treadmill in minutes' and 'calories burnt'. These variables are highly correlated as the more time you spend running on a treadmill, the more calories you will burn. Hence, there is no point in storing both as just one of them does what you require It helps in visualizing data. As discussed earlier, it is very difficult to visualize data in higher dimensions so reducing our space to 2D or 3D may allow us to plot and observe patterns more clearly

- 1.3 Sparse Approximations / Representations
- 1.4 Interpretierbarkeit
- 1.5 Compressed Sensing Beispiel

Mathematische Grundlagen

2.1 Normen und deren Effekte

- 2.1.1 10-Norm
- 2.1.2 11-Norm
- 2.1.3 12-Norm

2.2 Regression

Lineare Regression (Least Squares)

- 2.2.1 LASSO
- 2.2.2 Ridge Regression

2.3 Orthogonalprojektion

Definition 2.1. Zwei Vektoren \vec{a} und \vec{b} sind genau dann orthogonal, wenn ihr Skalarprodukt null ist, also

$$\vec{a} \mid \vec{b} \iff \vec{a} \cdot \vec{b} = 0.$$

Was sind orthogonale, orthonormale Matrizen, orthogonale, orthonormale Basis? Skalarprodukt? Von einem Skalarprodukt induzierte Norm? Projektionsmatrizen?

Allgemeine orthogonale Projektionsmatrix falls keine ONB gegeben ist.

$$\mathbf{P}_{\mathbf{A}} = \mathbf{A}(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}$$

Von Wikipedia:

Definition 2.2. Eine Orthogonalprojektion auf einen Untervektorraum U eines Vektorraums V ist eine lineare Abbildung $P_U \colon V \to V$, die für alle Vektoren $v \in V$ die beiden Eigenschaften

- $P_U(v) \in U$ (Projektion)
- $\langle P_U(v) v, u \rangle = 0$ für alle $u \in U$ (Orthogonalität)

erfüllt.

Allgemeine orthogonale Projektion auf einen affinen linearen Unterraum.

$$P_{U_0}(v) = r_0 + \sum_{i=1}^k rac{\langle v - r_0, w_i
angle}{\langle w_i, w_i
angle} w_i$$

WÖRTLICH VON WIKIPEDIA: Der orthogonal projizierte Vektor minimiert den Abstand zwischen dem Ausgangsvektor und allen Vektoren des Untervektorraums bezüglich der von dem Skalarprodukt abgeleiteten Norm $\|\cdot\|$, denn es gilt mit dem Satz des Pythagoras für Skalarprodukträume

$$||u - v||^2 = ||u - P_U(v)||^2 + ||P_U(v) - v||^2 \ge ||P_U(v) - v||^2$$

2.4 Matrixzerlegungen

Diagonalisierbarkeit?

2.4.1 Eigenwertzerlegung

Eigenwerte, Eigenvektoren

2.4.2 Singulärwertzerlegung

Singulärwerte

- 2.5 Signaltheorie
- 2.5.1 Fouriertransformation
- 2.5.2 Nyquist-Shannon Abtasttheorem

2.6 Statistik

Varianz, Erwartungswert

- 2.6.1 Empirische Kovarianzmatrix
- 2.7 Mannigfaltigkeit
- 2.8 Dictionary Learning

Hauptkomponentenanalyse

To Do: Kovarianzmatrix / Stichprobenkovarianzmatrix einheitlich!

Die Hauptkomponentenanalyse ist ein weitverbreitetes multivariates statistisches Verfahren zur Dimensionsreduktion. Multivariate Verfahren zielen darauf ab, die in einem Datensatz enthaltene Zahl der Variablen zu verringern, ohne die darin enthaltene Information (zu verlieren) / (wesentlich zu reduzieren). Dadurch können umfangreiche Datensätze strukturiert, veranschaulicht und vereinfacht werden. Somit ist das Verfahren Teil der explorativen Statistik, welche Datensätze hinsichtlich ihrer Zusammenhänge analysiert. Die sich ergebende Struktur kann für weitere Analysezwecke ausgenutzt werden.

Aus diesem Grund hat die Hauptkomponentenanalyse in vielen Bereichen erfolgreich Anwendung gefunden. Darunter fällt die Erkennung handgeschriebener Zahlen, welche zum Beispiel zur automatischen Sortierung von Briefen nach Postleitzahl genutzt wird [6]. An diesem Beispiel lässt es sich besonders gut verdeutlichen, was es heißt Zusammenhänge zu analysieren und Strukturen auf den Daten zu finden. Man erhofft, dass nach Anwendung einer Dimensionsreduktion wie PCA auf den Datensatz 10 verschiedene Gruppierungen zu erkennen sind, die für die Ziffern 0 bis 9 stehen (siehe dazu Bild?). Optimalerweise gehören alle Datenpunkte im demselbem Cluster zur selben Ziffer. Außerdem korrespondieren nahe beieinanderliegende Cluster mit Ziffern, die ähnlich aussehen. Weitere Anwendungen findet das Verfahren in der Bildverarbeitung. Hier kann es zum Beispiel zur Rauschunterdrückung [1] oder zur Gesichtserkennung [10] genutzt werden. Um Bilder für solch ein Verfahren nutzbar zu machen, werden einzelne Pixel oder patches, also lokale Gruppierungen von Pixeln, eines Bildes als Variable interpretiert.

Das dahinterstehende mathematische Problem kann auf verschiedene Weisen beschrieben werden. Zunächst wollen wir die Hauptkomponentenanalyse so konstruieren, dass die Idee des minimalen Informationsverlust im Vordergrund steht. Anschließend werden wir das Problem auf eine Singulärwertzerlegung zurückführen, die auch zur effizienten Implementierung genutzt wird. Des Weiteren werden wir die Hauptkomponentenanalyse als Regressionsproblem betrachten und die geometrische Interpretation weiter verdeutlichen. Zu Schluss werden wir einige theoretische Aussagen angeben, die für die folgenden Kapitel relevant sind.

3.1 Konstruktion

Gegeben sei ein Datensatz mit n samples und p Variablen. Die zentrale Idee der Hauptkomponentenanalyse besteht darin, die p bestehenden Variablen in r neue,

unkorrelierte Variablen zu überführen. Um eine Reduktion der Dimension, also r < p zu erreichen, müssen die bestehenden Variablen *zusammengefasst* werden. Idealerweise sollte bei diesem Prozess möglichst wenig Information verloren gehen. Als Maß für den Informationsgehalt der Daten wird hierbei die Varianz verwendet. Das heißt, je größer die Varianz einer Variable, desto mehr Information birgt sie und desto *wichtiger* ist sie. Denn eine Variable, die für alle Beobachtungen ähnliche Werte aufweist, ist nicht von Nutzen bei der Unterscheidung verschiedener samples. PCA sucht also nach Eigenschaften, die hohe Varianz zeigen. Hierbei wählt das Verfahren aber nicht einfach nur bestimmte Eigenschaften mit hoher Varianz aus, sondern konstruiert neue Variablen, die die bestehenden zusammenfassen.

Abbildung Höhe Gewicht mit Eigenvektoren und gedrehtes Bild

Um dieses Prinzip zu veranschaulichen, wenden wir uns nun einem simplem Beispiel zu. Gegeben seien die Größe [cm] und das Gewicht [kg] zu 1000 Personen (Daten sind simuliert, keine real-world-data) (siehe dazu Abbildung). In diesem Fall ist also n=1000 und p=2. Bei Betrachtung der Abbildung fällt schnell auf, dass die beiden Variablen positiv korreliert sind, d.h. prinzipiell erkennt man folgende Tendenz: Je größer eine Person, desto schwerer ist sie.

Konkret suchen wir also sukzessive nach einer Linearkombination der bestehenden Variablen. Diese Linearkombination sei so gewählt, dass der zugehörige Vektor in die Richtung größter Varianz in unserem Datensatz zeigt. Die so entstehenden Vektoren werden Hauptachsen bzw. Hauptrichtungen genannt. Nach der Berechnung der Hauptachsen wollen wir unsere Beobachtungen bezüglich der neuen Variablen darstellen. Dazu projizieren wir die einzelnen Beobachtungen auf die neuen Variablen. Die Werte gemäß der neuen Variablen werden Hauptkomponenten genannt.

DIESE BEIDEN ABSÄTZE GUT ZUSAMMENFASSEN. Orthogonalität mit rein bringen, nach Wichtigkeit sortiert und sukzessive. Anordnung nach absteigender Varianz bzw. Information.

Konkret konstruieren wir Variablen, die sich aus Linerakombinationen der Alten zusammensetzen. Dabei sollen die neuen Variablen der Wichtigkeit nach sortiert sein. In anderen Worten enthält die erste Variable die meiste Information bzw. die größte Varianz, dann die zweite, usw.

Die eigentliche Dimensionsreduktion findet dann durch Selektion statt. Je nach Komplexität des Modells, welches man erreichen möchte, können so mehr oder weniger Hauptkomponenten ausgewählt werden. Es kommt also auf den Anwendungsfall an, wie viele Hauptkomponenten auszuwählen sind. Wir werden uns mit diesem Thema aber weiter in CITE beschäftigen. Insgesamt haben wir somit eine kleinere, neue Zusammenstellung von Variablen konstruiert, die aber trotzdem den Großteil an Information beinhaltet.

Bevor wir die Hauptkomponentenanalyse auf den Datensatz anwenden können, gibt es aber noch einen wichtigen Bearbeitungsschritt zu beachten. Wenn eine Variable weniger variiert als eine Andere aufgrund der verwendeten Einheit oder Skala (meter oder kilo) kann dies zu ungewollten Ergebnissen führen. Ohne eine Vorbehandlung der Daten hat so im obigen Beispiel eine Änderung von 1m die gleiche Bedeutung wie eine Änderung von 1kg. (Satz schöner formulieren) Allerdings sind zwei Menschen, deren Größe 1m variiert, sehr verschieden, während zwei Menschen, die eine Differenz von 1kg haben, sehr ähnlich sind. Daher werden die Daten

3.1. Konstruktion 7

häufig einem sog. preprocessing unterzogen. Ein zu diesem Zweck oft verwendetes Verfahren ist die Standardisierung (auch z-Transformation genannt). In diesem Schritt werden die Variablen so transfomiert, dass sie *vergleichbarer* werden. Seien dazu X_i die Zufallsvariablen mit Erwartungswert $E[X_i] = \mu$ und Varianz $Var[X_i] = \sigma^2$. So erhält man die zugehörigen standardisierten Zufallsvariablen Z_i durch Zentrierung und anschließender Division durch die Standardabweichung $Z = \frac{X-\mu}{\sigma}$. Somit gilt dann:

- $E[Z_i] = 0$ für alle $1 \le i \le p$
- $Var[Z_i] = 1$ für alle $1 \le i \le p$

Mathematisch gesehen wendet man das Verfahren also nicht auf die Kovarianzmatrix, sondern auf die Korrelationsmatrix an.

3.1.1 Problemformulierung als Varianzmaximierung

Wir wollen nun die Intuition des minimalen Informationsverlust mathematisch beschreiben. Gegeben sei dazu eine Matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$, wobei n die Anzahl der Samples bzw. Beobachtungen und p die Anzahl der Variablen ist. Wir nehmen im Folgenden ohne Beschränkung der Allgemeinheit an, dass die Variablen zuvor zentriert wurden. Aufgabe der Hauptkomponentenanalyse ist es nun sukzessive Richtungen größter Varianz zu finden. Die erste Hauptkomponente ist definiert durch $Z_1 = \sum_{j=1}^p v_{1j} X_j = \mathbf{X} v$ wobei die Hauptachse $v_1 = (v_{11}, \dots, v_{1p})^T$ so gewählt wird, dass die Varianz von Z_1 maximiert wird, d.h.

$$v_1 = \mathop{\arg\max}_{\|v\|_2 = 1} \mathop{\mathrm{Var}}[\mathbf{X}v] = \mathop{\arg\max}_{\|v\|_2 = 1} v^T \mathbf{K}_{xx} v$$

mit $\mathbf{K}_{xx} = \frac{\mathbf{X}^T \mathbf{X}}{n-1}$ als Stichprobenkovarianzmatrix. Die restlichen Hauptachsen können nun sukzessive definiert werden.

$$v_{k+1} = \operatorname*{arg\,max}_{\|v\|=1} v^T \mathbf{K}_{xx} v$$

$$v_{k+1}^T v_l = 0 \quad \forall 1 \le l \le k$$

Man sucht also unter den Richtungen, die orthogonal zu allen bisherigen Hauptachsen sind, diejenige, die die Varianz maximiert. Wie oben beschrieben erhält man dann die Hauptkomponenten, also die Darstellung der Daten bezüglich der neu gefundenen Variablen, durch Projektion der Daten $Z_i = \mathbf{X}v_i$. [18] CITE JOLLIFE

Wie wir bereits in THEOREM gesehen haben, entsprechen die Eigenvektoren der Kovarianzmatrix genau den Richtungen maximaler Varianz. Daher können wir anstatt sukzessiver Berechnung einzelner Hauptachsen die Kovarianzmatrix \mathbf{K}_{xx} direkt diagonalisieren. Dies ist möglich, da \mathbf{K}_{xx} symmetrisch ist. Die Diagonalisierung ergibt

$$\mathbf{K}_{rr} = \mathbf{V} \mathbf{L} \mathbf{V}^T$$

wobei **V** die Matrix der Eigenvektoren ist, d.h. jede Spalte entspricht einem Eigenvektor von \mathbf{K}_{xx} und \mathbf{L} eine Diagonalmatrix mit Eigenwerten λ_i ist. Somit können die Hauptachsen direkt aus **V** abgelesen werden. Die Projektion der Daten auf die Hauptachsen wird dann wie zuvor durch Multiplikation der Beobachtungen mit den Eigenvektoren erreicht.

$$\mathbf{Z} = \mathbf{X}\mathbf{V}$$

Die i-te Spalte in **Z** entspricht also der i-ten Hauptkomponente und die einzelnen Beobachtungen bezüglich der neuen Variablen stimmen mit den Zeilen von **Z** überein.

3.1.2 Formulierung als Singulärwertzerlegung

Es gibt einen engen Zusammenhang zwischen der Diagonalisierung der Kovarianzmatrix $\mathbf{K}_{xx} = \mathbf{X}^T \mathbf{X}$ und der Singulärwertzerlegung von \mathbf{X} . Diese Beziehung können wir nutzen, um das Problem neu zu formulieren. Eine Singulärwertzerlegung der Matrix \mathbf{X} ergibt

$$\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^T$$

wobei **D** eine Diagonalmatrix mit Singulärwerten d_1, \ldots, d_p , **U** eine orthogonale $n \times p$ und **V** eine orthogonale $p \times p$ Matrix ist. Nun sieht man aufgrund der Orthogonalität von **U**, dass

$$\mathbf{K}_{xx} = \mathbf{X}^T \mathbf{X} = \mathbf{V} \mathbf{D} \mathbf{U}^T \mathbf{U} \mathbf{D} \mathbf{V}^T = \mathbf{V} \mathbf{D}^2 \mathbf{V}^T$$

Wegen der Eindeutigkeit der Diagonalisierung(stimmt das?) ist V nun wie zuvor die Matrix der Eigenvektoren und somit der Hauptachsen. Ebenso stehen die Singulärwerte durch $\lambda_i = \frac{d_i^2}{n-1}$ in Beziehung mit den Eigenwerten der Kovarianzmatrix. Die Hauptkomponenten kann man somit auch durch XV = UD erhalten.

Computing PCA using Eigen value decomposition of the sample covariance matrix: We first have to compute the covariance matrix, which is $O(p^2n)$ and then compute its eigenvalue decomposition which is $O(p^3)$ giving a total cost of $O(p^2n + p^3)$ (https://arxiv.org/pdf/1503.05214.pdf)

Computing PCA using SVD of the data matrix: Svd has a computational cost of $O(p^2n)$

Numerical Stability? Which method is preferrable in the n << p case?

3.1.3 Formulierung als beste Rang k Rekonstruktion

Further multiplying the first k PCs by the corresponding principal axes $\mathbf{V}^T k$ yields $\mathbf{X}_k = \mathbf{U}_k \mathbf{S}_k \mathbf{V}_k^T$ matrix that has the original $n \times p$ size but is of lower rank (of rank k). This matrix \mathbf{X}_k provides a reconstruction of the original data from the first k PCs. It has the lowest possible reconstruction error

3.1.4 Formulierung als Regressionsproblem

Wir widmen uns nun einer letzten Formulierung der Hauptkomponentenanalyse, die eine geometrische Interpretation ermöglicht. Hierbei versucht man einen k-dimensionalen (k < n) Unterraum zu finden, der die Daten bestmöglich im Sinne der kleinsten Quadrate approximiert. Wir werden diese Problemstellung nun mathematisch formulieren.

Sei dazu x_i die i-te Beobachtung, also die i-te Zeile von \mathbf{X} und $\mathbf{V}_k = [V_1 | \cdots | V_k]$ eine $p \times k$ orthonormale Matrix. Nun projizieren wir jede Beobachtung orthogonal auf den durch $V_1, \ldots V_k$ aufgespannten Unterraum. Die orthogonale Projektion wird wie in REF beschrieben durch Multiplikation mit dem Operator $\mathbf{V}_k \mathbf{V}_k^T$ erreicht. Die auf den linearen Unterraum projizierten Daten ergeben sich also durch $\mathbf{V}_k \mathbf{V}_k^T x_i$. Um

ABBILDUNG 3.1: Die Abbildung zeigt die Äquivalenz von Maximierung der Varianz und Minimierung der Distanz der orthogonalen Projektion

die Daten bestmöglich in diesem niedrigdimensionalen Raum darzustellen minimiert man nun die Distanz zwischen jeder Beobachtung und seiner Projektion. Ein Weg, um die beste Projektion zu definieren is l_2 Approximation erhält man folgendes Problem [17]: (Hier auch noch schreiben warum man den zweiten Term braucht, Eindeutigkeit von PCA)

$$\hat{\mathbf{V}}_k = \underset{\mathbf{V}_k}{\operatorname{arg\,min}} \sum_{i=1}^n \left\| x_i - \mathbf{V}_k \mathbf{V}_k^T x_i \right\|^2 + \lambda \sum_{j=1}^k \left\| \beta_j \right\|^2$$
$$\mathbf{V}_k^T \mathbf{V}_k = I_{k \times k}$$

Man kann zeigen, dass die Lösung des Problems V_k genau den ersten k Hauptachsen entsprechen. Wir haben dies in 3.3 festgehalten. [14] Zum besseren Verständnis hilft 3.1, welches die Äquivalenz von Maximierung der Varianz und Minimierung der orthogonalen Projektion verdeutlichen soll. Jeder Datenpunkt ist hier in 2 Dimensionen dargestellt. Versucht man nun die Daten bestmöglich auf einen 1-dimensionalen Unterraum, also eine Linie, orthogonal zu projizieren erhält man denselben Vektor, den man bei der Maximierung der Varianz zuvor auch erhalten hat.

Aus dieser Interpretation leitet sich auch der Name des linearen Dimensionreduktionsverfahren ab, denn die Daten werden auf den niedrigdimensionaleren Raum linear transformiert. Ausgehend von dieser Formulierung als Regressionsproblem werden wir im nächsten Kapitel die Variante der dünnbesetzten Hauptkomponentenanalyse beschreiben.

3.2 Selektion der Hauptkomponenten

Wie viele Hauptkomponenten sollen wir auswählen?

Abbildung Scree Plot

Optimal singular threshold [4]

3.3 Grenzen der Anwendbarkeit

Obwohl die Hauptkomponentenanalysen in vielen Situationen helfen kann, Datensätze zu veranschaulichen und zu strukturieren, gibt es keine Garantie für sinnvolle Ergebnisse. Im Folgendem werden wir Szenarien beschreiben, bei denen unerwünschte Effekte bei der Verwendung dieses Verfahrens auftreten. Daher gilt es den Datensatz vorest hinsichtlich folgender Gesichtspunkte zu untersuchen:

- Lineare Beziehung zwischen Variablen
- Korrelation der Variablen
- Vollständigkeit des Datensatzes
- Ausreißer in den Daten
- Anzahl an Beobachtungen in Relation zu Anzahl an Variablen

Wie in REF beschrieben versuchen wir Daten in einen niedrigdimensionaleren linearen oder affinen Unterraum zu transformieren. Es kann aber durchaus vorkommen, dass es keine lineare Beziehung zwischen den Variablen gibt. Nichtlineare Strukturen können von PCA nicht erfasst werden und gehen somit verloren. [14] Vidal et al. zeigen diese Grenze konkret am Beispiel von Porträt-Fotos auf. Seit der Entstehung von PCA gab es aber zahlreiche nicht-lineare Erweiterungen. So nutzt zum Beispiel Kernel PCA den Kernel Trick aus, bei welchem man die Daten zuerst durch eine nichtlineare Transformation in ein höherdimensionalen Raum einbettet von dem man sich erhofft, dass die Daten in diesem linear verteilt. Erst anschließend wird dann die eigentliche Reduktion durchgeführt. Hierbei muss man die Daten aber nicht im höherdimensionalen Raum auswerten. CITE. Andere Erweiterungen, die allgemein unter manifold learning zusammengefasst werden können, basieren auf der Idee, dass die Dimension des Datensatz nur künstlich hoch ist. Man versucht die lokale Geometrie der Mannigfaltigkeit (Begriff erklären?) zu approximieren und damit direkt eine niedrigdimensionale Einbettung zu erhalten. Hierunter fallen zum Beispiel die multidimensionale Skalierung oder ISOMAP.

Damit der Datensatz für eine Dimensionsreduktion per PCA geeignet ist, müssen die verschiedenen Variablen einen gewissen Grad an Korrelation aufweisen. Im extremen Fall der Unabhängigkeit der Variablen bewirkt eine Hauptachsentransformation nichts. Reduziert man dann die Anzahl der Hauptkomponenten verliert man mit jeder Variable einen Großteil der Information.

Ein weiterer Gesichtspunkt ist die Vollständigkeit eines Datensatzes. Finden wir fehlende oder korrupte Einträge in unserem Datensatz vor, kann die klassische Hauptkomponentenanalyse Für dieser Art Probleme existieren entsprechende Ergänzungen von PCA wie zum Beispiel in cite und cite. Ausreißer in den Daten können die Resultate drastisch beeinflussen. Genaue Effekte überlegen und CITE. Aus diesem Grund sollten Ausreißer vor der Anwendung von PCA entfernt werden.

Außreiser in den Daten.

Anzahl der Variablen zu hoch.

Darüber hinaus gibt es noch eine Reihe Spezialfälle, bei denen Probleme auftreten können. So kann es zum Beispiel passieren, dass die relevanten Informationen in den Variablen mit niedriger Varianz versteckt sind. Da die Hauptkomponentenanalyse gerade diese Variablen vernachlässigt, wird sich unter Umständen nicht die

erwünschte Struktur auf den Daten ergeben. Es bedarf anderer Methoden mit anderen Ansätzen, um eine Dimensionsreduktion zu ermöglichen. Oftmals weiß man aber im Vorhinein nicht, in welchen Variablen diese Unterscheidungsmöglichkeit versteckt ist.

Das wohl wichtigste/größte Hindernis im Zuge dieser Arbeit ist sicherlich die durch die Transformation entstehenden Interpretationsschwierigkeiten. Jede Hauptkomponente entsteht wie oben beschrieben durch eine Linearkombination der Ausgangsvariablen. Während die Ausgangsvariablen Bedeutungen wie Gewicht oder Größe hatten ist in vor allem in hochdimensionalen Fällen eine Interpretation der Hauptkomponenten nur schwer möglich (Rotation Techniques CITE). Dieser Interpretationsverlust ist Ausgangspunkt der Idee der dünnbesetzten Hauptkomponentenanalyse, genannt sparse PCA. Diesem Verfahren ist das folgende Kapitel gewidmet.

3.4 Theoretische Aussagen

Theorem 3.1. *PCA always gives unique solution.*

Theorem 3.2 ([14]). *Sei* $X \in \mathbb{R}^n$ *und* $A_{p,k} = [\alpha_1, \dots \alpha_k]$

Theorem 3.3. *PCA inconsistent for* $n \ll p$.

Dünnbesetzte Hauptkomponentenanalyse

Ein Nachteil der Hauptkomponentenanalyse ist, dass sich die neuen Variablen meist aus einer Linearkombination aller bestehenden Variablen zusammensetzt. Dies macht es besonders für hochdimensionale Daten schwierig die Hauptachsen zu interpretieren. Oft können somit nicht die relevanten features/Variablen herausgelesen werden. Es kann durchaus passieren, dass nicht alle Variablen relevant zur Strukturerkennung sind.

4.1 Motivation

4.2 Problemformulierung

NP-schwere Formulierung

4.3 Relaxation / Approximation Ideen

4.4 Konstruktion

Sparse PCA Kriterium.

$$(\hat{\mathbf{A}}\hat{\mathbf{B}}) = \arg\min_{\mathbf{A}, \mathbf{B}} \sum_{i=1}^{n} \|x_i - \mathbf{A}\mathbf{B}^T x_i\|^2 + \lambda \sum_{j=1}^{k} \|\beta_j\|^2 + \sum_{j=1}^{k} \lambda_{1,j} \|\beta_j\|_1$$

subject to $\mathbf{A}^T \mathbf{A} = I_{k \times k}$

4.5 Theoretische Aussagen Sparse PCA

z.B. wie werden neue Varianzen berechnet

Implementierung

5.1 Implementierung nach original paper

Eigene Implementierung

- 5.2 Implementierung in scikit-learn in python
- 5.3 Laufzeitvergleich

Anwendung

6.1 Anwendung auf Simulationsdaten

Vergleich Tabelle PCA / Sparse PCA (Loadings)

- 6.2 Der Datensatz
- 6.3 Anwedung auf Frequenzdaten
- 6.4 Auswertung der Ergebnisse
- 6.5 Vergleich mit PCA Resultaten
- 6.6 Hyperparameter

Veränderung des Hyperparameters und dessen Effekte

- 6.6.1 Zeit
- 6.6.2 Effekt auf Resultate

Ausblick / Zusammenfassung

7.1 Einsetzbarkeit

Wann ist die Methode sinnvoll einzusetzen?

7.2 Übertragbarkeit

Übertragbarkeit auf andere Datensätze

7.3 Ongoing Research / Weitere Techniken

Literatur

- [1] Y. Murali Mohan Babu, M. V. Subramanyam und M. N. Giri Prasad. "PCA based image denoising". In: 2012. URL: https://doi.org/10.5121/sipij. 2012.3218.
- [2] Michael Elad. Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing. English. Bd. 1. Springer Science+Business Media, 2010.
- [3] Simon Foucart und Holger Rauhut. *A Mathematical Introduction to Compressive Sensing*. English. Bd. 1. Birkhäuser Basel, 2013.
- [4] Matan Gavish und David L. Donoho. "The Optimal Hard Threshold for Singular Values is $4/\sqrt{3}$ ". In: *IEEE Transactions on Information Theory* 60.8 (2014), S. 5040–5053. URL: https://doi.org/10.1109/TIT.2014.2323359.
- [5] Rémi Gribonval, Rodolphe J Jenatton und Francis R. Bach. "Sparse and spurious: dictionary learning with noise and outliers". In: *IEEE Transactions on Information Theory* (2014). URL: http://arxiv.org/abs/1407.5155.
- [6] Trevor Hastie, Robert Tibshirani und Jerome Friedman. *The Elements of Statistical Learning: Data Mining, Inference, and Prediction*. English. Bd. 2. Springer-Verlag New York, 2009.
- [7] Rodolphe Jenatton, Guillaume Obozinski und Francis R. Bach. "Structured Sparse Principal Component Analysis". In: *Artificial Intelligence and Statistics* (AISTATS) 9 (2010). URL: https://arxiv.org/abs/0909.1440.
- [8] Iain M. Johnstone und Arthur Yu Lu. "On Consistency and Sparsity for Principal Components Analysis in High Dimensions". In: *Journal of the American Statistical Association* 104.486 (2009), S. 682–693. URL: https://doi.org/10.1198/jasa.2009.0121.
- [9] Julien Mairal u.a. "Online Dictionary Learning for Sparse Coding". In: Proceedings of the 26th Annual International Conference on Machine Learning. ICML '09. ACM, 2009, S. 689–696. URL: http://doi.acm.org/10.1145/1553374. 1553463.
- [10] Jiang Tai-Xiang u. a. "Patch-Based Principal Component Analysis for Face Recognition". In: *Computational Intelligence and Neuroscience* (2017). URL: https://doi.org/10.1155/2017/5317850.
- [11] Robert Tibshirani. "Regression Shrinkage and Selection via the Lasso". In: *Journal of the Royal Statistical Society. Series B (Methodological)* 58.1 (1996), S. 267–288. URL: http://www.jstor.org/stable/2346178.
- [12] Robert Tibshirani u. a. "Least angle regression". In: *The Annals of Statistics* 32.2 (2004), S. 407–499. URL: http://dx.doi.org/10.1214/009053604000000067.
- [13] Ryan J. Tibshirani. "The Lasso Problem and Uniqueness". In: (2012). URL: https://arxiv.org/abs/1206.0313.
- [14] R. Vidal, Y. Ma und S. Sastry. *Generalized Principal Component Analysis*. Bd. 1. Interdisciplinary Applied Mathematics. Springer New York, 2016. ISBN: 9780387878119. URL: https://doi.org/10.1007/978-0-387-87811-9.

22 Literatur

[15] Kazuyoshi Yata und Makoto Aoshima. "Effective PCA for high-dimension, low-sample-size data with noise reduction via geometric representations". In: *Journal of Multivariate Analysis* 105.1 (2012), S. 193–215. URL: https://doi.org/10.1016/j.jmva.2011.09.002.

- [16] Hui Zou und Trevor Hastie. "Regularization and Variable Selection via the Elastic Net". In: *Journal of the Royal Statistical Society. Series B (Statistical Methodology)* 67.2 (2005), S. 301–320. URL: http://www.jstor.org/stable/3647580.
- [17] Hui Zou, Trevor Hastie und Robert Tibshirani. "Sparse Principal Component Analysis". In: *Journal of Computational and Graphical Statistics* 15.2 (2006), S. 265–286. URL: https://doi.org/10.1198/106186006X113430.
- [18] Hui Zou und Lingzhou Xue. "A Selective Overview of Sparse Principal Component Analysis". In: *Proceedings of the IEEE* 106.8 (2018), S. 1311–1320. URL: https://ieeexplore.ieee.org/document/8412518.