

UNIVERSITÀ DEGLI STUDI DI SALERNO

Progetto di Intelligenza Artificiale

Studente	Matricola
Scaparra Daniele Pio	0512116260
Fasolino Pietro	0512116473
Vitulano Antonio	0512116776

Link alla repository GitHub:

https://github.com/dscap02/EmotionsReleave

Documento di Business Understanding

Indice

1	Introduzione	3
2	Scenario	3
3	Metodologia Usata	3
4	Obiettivi	4
5	Criteri di Successo	4
6	Metriche di Successo	4
7	Organizzazione Team e Ruoli	4
8	Analisi Costi e Benefici	5
9	Valutazioni dei Rischi	5

1 Introduzione

Negli ultimi anni, la psicologia ha acquisito una crescente rilevanza grazie all'avanzamento della scienza e della tecnologia. Questa disciplina si sta sempre più integrando con altre aree, come il machine learning, aprendo nuove prospettive per analizzare fenomeni complessi quali emozioni e relazioni interpersonali in contesti digitali.

Il nostro progetto si propone di sfruttare algoritmi di machine learning per analizzare le dinamiche sociali all'interno di chat. In particolare, il modello che proponiamo è in grado di generare un report sull'affinità tra interlocutori, identificando, ad esempio, eventuali atteggiamenti tossici. Questo approccio innovativo coniuga psicologia e tecnologia, offrendo opportunità nel campo della comunicazione digitale e strumenti utili per migliorare rapporti personali o lavorativi.

2 Scenario

Antonio è un ragazzo di 16 anni, appassionato di videogiochi e programmazione. Ha un amico di lunga data, Osvaldo, con cui condivide gran parte del suo tempo. Un giorno, Antonio entra in contatto con un nuovo gruppo di amici online che condivide i suoi interessi. Questo crea un cambiamento nella dinamica tra Antonio e Osvaldo, che inizia a mostrare segni di gelosia e disprezzo per il nuovo gruppo di Antonio.

Le tensioni si riflettono anche nelle loro chat, che diventano progressivamente più tossiche. Antonio, sentendosi sempre più a disagio e confuso, decide di utilizzare il modello di machine learning "Emotions Releave". Analizzando le conversazioni, il modello identifica un aumento di emozioni negative come rabbia, tristezza e disprezzo. Questo aiuta Antonio a comprendere meglio la situazione e lo spinge a confrontarsi con Osvaldo, migliorando il loro rapporto. Lo strumento si rivela quindi un utile supporto per prevenire e risolvere situazioni potenzialmente dannose¹.

3 Metodologia Usata

Abbiamo adottato la metodologia CRISP-DM (Cross-Industry Standard Process for Data Mining), che suddivide il progetto in sei fasi principali:

- 1. Business Understanding: Comprensione degli obiettivi del progetto.
- 2. Data Understanding: Esplorazione e analisi dei dati.
- 3. Data Preparation: Preprocessing e trasformazione dei dati.
- 4. **Modeling**: Sviluppo e test del modello.
- 5. Evaluation: Valutazione delle performance del modello.
- 6. **Deployment**: Implementazione e utilizzo del modello.

 $^{^1\}mathrm{Questo}$ scenario è fittizio e pensato per illustrare l'applicazione del progetto.

Figure 1: Fasi della metodologia CRISP-DM.

4 Obiettivi

Il modello "Emotions Releave" ha come obiettivo l'analisi delle emozioni dominanti nelle conversazioni digitali, fornendo un report oggettivo e imparziale. Il nome, che significa "rilascio di emozioni", sottolinea il ruolo del modello come strumento di supporto preliminare per evidenziare dinamiche tossiche e suggerire, se necessario, l'intervento di uno psicologo².

5 Criteri di Successo

Il framework PEAS definisce i criteri di successo:

- Performance: Massimizzare la precisione nell'individuazione delle emozioni.
- Environment: Chat testuali con eventuali descrizioni fornite dall'utente.
- Actuators: Generazione di un report testuale o in formato PDF.
- Sensors: Analisi del testo fornito dall'utente.

6 Metriche di Successo

Valuteremo il modello con le seguenti metriche:

- F1-Score: Equilibrio tra precisione e recall in scenari complessi.
- Accuracy: Indicatore di previsioni corrette rispetto al numero totale di previsioni totali

7 Organizzazione Team e Ruoli

Il team adotta un approccio collaborativo senza gerarchie. Ogni membro contribuisce equamente, e le decisioni vengono approvate collettivamente attraverso riunioni.

 $^{^2}$ Il modello non si sostituisce a professionisti qualificati, ma funge da supporto iniziale.

8 Analisi Costi e Benefici

Il progetto utilizza il dataset "GoEmotions" di Google, ricco di annotazioni emozionali, e strumenti di NLP per il preprocessing. Grazie all'uso di software community edition, il costo è ridotto al minimo, garantendo comunque risultati di qualità.

9 Valutazioni dei Rischi

Rischi principali:

- Ritardi nella fase di **Data Preparation**, vista la complessità del dataset.
- Scarsa qualità o adeguatezza del dataset, che potrebbe richiedere la selezione di un'alternativa.

Mitigazione:

- Gestione dei tempi: Piano di lavoro agile con revisioni periodiche.
- Valutazione del dataset: Analisi preliminare approfondita.
- Piani di contingenza: Selezione di dataset alternativi.