Calculus II quiz 1 第十章选择填空题

1. Multiple (Theire Our	ational (anl	r one comment	anarron fan	anah af t	ha fallarring	amostions)
1. Multiple (onoice Que	stions: (oni	v one correct	answer for	eacn of t	ne ionowing	questions.)

(1) If
$$\sum_{n=1}^{\infty} a_n$$
 converges, then ()

A.
$$\sum_{n=1}^{\infty} |a_n|$$
 converges. B. $\sum_{n=1}^{\infty} (-1)^n a_n$ converges.

C.
$$\sum_{n=1}^{\infty} a_n a_{n+1}$$
 converges. D. $\sum_{n=1}^{\infty} \frac{a_n + a_{n+1}}{2}$ converges.

(2) When
$$\lim_{n\to\infty} a_n = 0$$
, then

A. If
$$\sum_{n=1}^{\infty} b_n$$
 converges, then $\sum_{n=1}^{\infty} a_n b_n$ converges.

B. If $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n b_n$ diverges.

D. If
$$\sum_{n=1}^{\infty} |b_n|$$
 diverges, then $\sum_{n=1}^{\infty} a_n^2 b_n^2$ converges.

D. If $\sum_{n=1}^{\infty} |b_n|$ diverges, then $\sum_{n=1}^{\infty} a_n^2 b_n^2$ diverges.

D. If $\sum_{n=1}^{\infty} |b_n|$ diverges, then $\sum_{n=1}^{\infty} a_n^2 b_n^2$ diverges.

(3) Let
$$a_n > 0$$
 for all n. Which of the following statements must be true?

(A) If
$$\lim_{n\to\infty} na_n = 0$$
, then the series $\sum_{n=1}^{\infty} a_n$ converges.

(B) If
$$\lim_{n\to\infty} na_n = l$$
 and $l \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ converges.

(C) If
$$\lim_{n\to\infty} na_n = l$$
 and $l \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ diverges.

(4) Let
$$a$$
 be a constant, the series
$$\sum_{n=2}^{\infty} \left(\frac{\sin(n+a)}{n^{1.01}} - \frac{1}{n \ln n} \right)$$

- (B) converges conditionally. (A) converges absolutely.
- (D) converges or not depending on the value of a.

(5) The interval of the convergence for the power series
$$\sum_{n=1}^{\infty} x^n$$
 is

(5) The interval of the convergence for the power series
$$\sum_{n=1}^{\infty} \frac{x^n}{n3^n}$$
 is () (A) $\left[-\frac{1}{3}, \frac{1}{3}\right]$. (B) $\left[-\frac{1}{3}, \frac{1}{3}\right]$. (C) $\left[-3, 3\right]$. (D) $\left[-3, 3\right)$.

(6) Let a be a constant. Then the series
$$\sum_{n=1}^{\infty} \left(\frac{\sin(an)}{n^2} + \frac{(-1)^n}{n+1} \right) (-1)^n$$

(B) converges conditionally. (C) diverges. (A) converges absolutely. (D) converges or not depending on the value of a.

(7) Which one of the following series diverges? () (A)
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$
. (B) $\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$. (C) $\sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{\sqrt{n}}$. (D) $\sum_{n=1}^{\infty} \frac{(-1)^n (3+(-1)^n \cdot 2)^n}{6^n}$.

(8) Suppose
$$0 \le a_n < \frac{1}{n}$$
, $(n = 1.2 \cdots)$, then which of the following series converges ()

(8) Suppose
$$0 \le a_n < \frac{1}{n}$$
, $(n = 1.2 \cdots)$, then which of the following series converges () (A) $\sum_{n=1}^{\infty} a_n$. (B) $\sum_{n=1}^{\infty} (-1)^n a_n$. (C) $\sum_{n=1}^{\infty} \sqrt{a_n}$. (D) $\sum_{n=1}^{\infty} (-1)^n a_n^2$.

- 2. Fill in the blanks.
- (1) If $\sum_{n=1}^{\infty} (\tan \frac{1}{n} k \ln(1 \frac{1}{n}))$ converges, then k =
 - (2) $\lim_{x\to 0} \frac{\sin x x}{(\cos x 1)(e^{2x} \cos x)} =$
 - (3) The sum of the series $\frac{1}{2} + \frac{1}{4 \cdot 2!} + \frac{1}{8 \cdot 3!} + \frac{1}{16 \cdot 4!} + \cdots + \frac{1}{2^n \cdot n!} + \cdots$ is

- 3. Determine whether the following statements are true or false? No justification is necessary. $\sum \mathcal{Q}_{n} \not = \sum \mathcal{Q}_{n} \not= \sum \mathcal{$