

هوفه المعتبرية

نسم الله الاحمري الاحتم

" إِنَّمَا يَضَقَنَ اللَّهَ مِنْ عِبَادِهِ الْمُلَمَاءُ إِنَّ اللَّهَ عَزِيرٌ غَفُورٌ " [فاطر/35]

منتدى ليبيا للجميع منارة للتعريف بمفكري ليبيا

http://www.libyaforall.com

إن الإرادة و الرغبة هما جناحا الإنجازات العظيمة [هيغل]

عبد الله علي عمران

ALmotanabby2002@yahoo.com

site www.libyaforall.com\e-mail almotanabby2002@yahoo.com

النسبية

النظريةالخاصة والعامة

ناليف: البسرت اينشستين نقسديم: محمود أحمد الشريبنى نرجسمسة: د. رمسيس شحاته مسراجهة: د. محمد مرسى أحمد إعداد وتحرير: د. سمير سرحان د. محمد عنانى

«كتاب لكل مواطن ومكتبة لكل أسرة، تلك الصيحة التى أطلقتها المواطنة المصرية النبيلة «سوزان مبارك» فى مشروعها الرائع «مهرجان القراءة للجميع ومكتبة الأسرة» والذى فجر ينابيع الرغبة الجارفة للثقافة والمعرفة لشعب مصر الذى كانت الثقافة والابداع محور حياته منذ فجر التاريخ.

وفى مناسبة مرور عشر سنوات على انطلاق المشروع الثقافى الكبير وسبع سنوات من بدء مكتبة الأسرة التي أصدرت في سنواتها الست السابقة ١٧٠٠، عنواناً في حوالي ٣٠٠، مليون نسخة لاقت نجاحاً واقبالاً جماهيرياً منقطع النظير بمعدلات وصلت إلى ٣٠٠٠، ألف نسخة من بعض إصداراتها.

وتنطلق مكتبة الأسرة هذا العام إلى آفاق الموسوعات الكبرى فتبدأ بإصدار موسوعة مصر القديمة، للعلامة الاثرى الكبير وسليم حسن، فى ١٦٠ جزءاً إلى جانب السلاسل الراسخة والابداعية والفكرية والعلمية والروائع وامهات الكتب والدينية والشباب، لتحاول أن تحقق ذلك الحلم النبيل الذى تقوده السيدة: سوزان مبارك نحو مصر الأعظم والأجمل.

د. سمیر سرحان

تصدير

إذا كان لنا أن نطلق صفة عامة على القرن العشرين لتمييزه عما سبقه من قرون ، مثلما نطلق عصر العلم على القرن السابع عشر في أوروبا مثلاً ، فلن نجد خيراً من وصفـه بأنه عصر « النسبية » إذ لم تكن نظرية النسبية التى وضعها ألبرت أينشتاين مجرد نظرية علمية تقتصر على التطبيقات المعرووفة في الفيزياء والرياضيات ، بل تعدت ذلك إلى مجال الفكر الإنساني نفسه ، الذي أصبح ينفر من المطلقات ويرى كل شيء تقريباً من وجهة النظر النسبية أي من حيث وضعها بالنسبة لبعضها البعض ، ولم يعد أحد من كبار مفكري هذا العصر قادراً على القطع بشيء دون تحديد موقعه بالنسبة لغيره ، وانتقلت هذه النظرة من العلوم الطبيعية إلى العلوم الإنسانية ، فأصبحت تؤثر في أحكامنا على الأشياء ، حتى كدنا أن نتحرز ونحن نطلق الأحكام المألوفة ، حتى ما يتعلق منها بالقيمة ، أي ما يسمى بأحكام القيمة ، وأحكام الجودة والصلاحية ، وأصبحنا نرى العالم في ضوء ذلك التناسب الرائع بين كل ما فيه ، وقد كتب أحد العلماء في عام ١٩٩٩ كتاباً يقول فيه إن التناسب المفترض في الكون أصبح نفسه نسبياً ، أى إنه أصبح يخضع لقواعد نسبية لا يمكن القطع بشيء دون أخذها في الحسبان! .

ولم يكن ذلك العالم واسمه واتكن J. R. Watkin يشر إلى قيم أو إلى تقديرات بشرية تقبل الصحة والخطأ ، بل كان يتحدث عن نظريات علمية قائمة على أسس رياضية ، وكان اسم كتابه محيراً للقارىء فهو «نسبية النسبية» Relative Relativity (أو إن شئت «السسبية من منظور نسبى») وعلق الصحفى الذى عرض له فى مجلة أمريكية فى مطلع عام منظور نسبى») وعلق الصحفى الذى عرض له فى مجلة أمريكية فى مطلع عام عائلاً : إن علماء القرن الحادى والعشرين لن يهدأ لهم بال حتى يعيدوا تفسير النسبية فيعيدوا رسم صورة الكون بل وصورة الإنسان نفسه!

والغريب أن نظرية النسبية نفسها ظلت ردحاً طويلاً من الزمن مستعصية على الأفهام ومقصورة على العلماء المتخصصين ، ولم تفلح جهود الشارحين في تقريبها من الأذهان ، حتى كتب أينشتاين نفسه هذا الكتاب الذي نقدمه اليوم للقارىء العربي ، واثقين من أنه سوف يعمل على إزالة بعض الغموض وإلقاء الضوء على هذه النظرية العلمية .

وتفخر مكتبة الأسرة بتقديم هذه الترجمة للكتاب ، فهو لاشك من أمهات كتب عصرنا (وأى عصر) ونأمل أن يجد فيه المتخصص بغيته ، مثلما يجد القارىء غير المتخصص فيه مادة علمية يستطيع أن يقرأها على مهل ، وأن يجد فيها الإجابة على الكثير من الأسئلة التي تعن له في هذا المجال .

والله ومن وراء القصد .

مكتية الاسرة

مقدمة

بقلم/ د. محمود احمد الشربيني

ها قبل **فلهور ر النظرية النسبية ،**

حرصت أن أذكر كلمتى « النظرية النسبية » وألا أذكر كلمة «النسبية» بمفردها ، فهم النظرية النسبية : الوصول إلى قوانين تفسر الظواهر الطبيعية ، دون أن تتشكل هذه القوانين تبعيا لتغيير الزميان والمكان والظروف والأحوال ، ولكن قد جرى على لسان القدماء كلمة « النسبية » قبل ظهور « النظرية النسبية » وأفاضوا في الحديث عنها .

ولن أتوغل في القدم ، بل أعود إلى بضع مئات من السنين يوم أن كتب الفيلسوف « جون لوك » كتابه عن المعرفة الإنسانية ، فقد تحدث فيه عن الحركة النسبية ، وصورها لنا تصورا دقيقا ، وتحدث عن رقعة شطرنج وبيادق موضوعة عليها تركها ودعا إليها ، وقال: إن البيادق لم تتحرك من مكانها رغم أن الرقعة وما عليها كل في مربعه قد انتقلت من حجرة إلى أخرى ، ثم جعل الحجرة في سفينة ، وترك الرقعة حيث كانت في موضعها من الحجرة ، وعاد إليها ووجدها في نفس مكانها ، وقال : إنها لم تتحرك رغم أن السفينة كانت تمخر عباب البحر ، وحكم بأن السفينة في مكانها لم تبرحه إذا ماحافظت على موقعها من جزيرة قريبة ، رغم علمه بأن الأرض قد دارت بعضا من دوراتها حتى عودته إلى السفينة وهي ساكنة .

نستنتج من كل هذا أن لابد أن قد غير كل من البيادق ورقعة الشطرنج والسفينة أماكنها بالنسبسة لأجسام بعيدة عن الأرض. ولقد كان «نيوتن» على علم بهذه الحركات النسبية ، حستى إنه أعلن عام ١٦٨٧ ما سمى بمبدأ النسبة لـ« نيوتن » وهو ألا تغير في حركة الأجسام بالنسبة لبعضها مع بعض في مجال ما إذا تحرك هذا المجال الذي يحوى الأجسام حركة منتظمة مستقيمة بعد أن كان ساكنا ، فحركة الأشخاص في القطار لا علاقة لها أبدا بالقطار ساكنا أو متحركا حركة منتظمة ، والقوانين التي تحكم حركة الأشخاص في قطار منتظم الحركة هي نفس القوانين التي تحكم الأشخاص في المحطة ، ولو جاز أن نضع هذا المبدأ في في صيغة -ربما نعود إليها عند التحدث عن النظرية النسبية - لقلنا لا تتشكل القوانين التي تفسر الظواهر الميكانيكية تبعا لتغير منتظم للمكان ، فما طبق على مكان من قوانين ميكانيكية يطبق أيضا بنفس شكله على مكان آخر يتحرك حركة منتظمة بالنسبة للمكان الأول .

ويجمل بى أن أشير إلى ما قلته سابقا من أن النظرية النسبية تبحث عن قوانين تفسر الظواهر الطبيعية ميكانيكية أو غير ميكانيكية ، ولا تتأثر بالزمان والمكان والظروف والأحوال . وتبين أهمية مبدأ النسبية لـ "نيوتن" فى تعميم القوانين الميكانيكية ، فهى لا تسرى على منطقة بذاتها فقط ، بل تسرى على مناطق أخرى فى حركة منتظمة بالنسبة لبعضها مع بعض . وهكذا كان " نسيوتن " ينظر إلى الأرض ويمتلد نظره إلى السماء ويسسيطر

بقانونه على الأرض والسماء ، وخلقه في هذا الخلق العالم الحق :

سقطت تفاحة على رأسه فى الأرض ، وأسقطتها قوة متبادلة بين الأرض ، والتفاحة وكبرت التفاحة فى نظره ، ورآها بعين الخيال ؛ خيال العالم البحاثة رآها فى كبد السماء وكأنها الشمس ، ولم لا تكون الشمس ذاتها ، وتكون هناك قوة متبادلة بين الشمس والأرض ، قوة تتبع قانونا هو القانون الذى تتبعه القوة بين التفاحة والأرض ، لو عرضنا بين المسافات بالمافات وبين الكتل بالكتل ؟

وهكذا خرج « نيوتن » بقانون الجاذبية الأرضية ، وعممه على الكواكب في مداراتها ، والشموس في أفلاكها ، وهذه هي قدرة العالم الملهم ؛ إذا أخرج إلى الوجود قانونا سعى جاهدا إلى تعميمه فما باله وهو يشاهد الحركة تسيطر على الوجود فيرى الأرض في حركة حول نفسها وحول غيرها ، ويرى الكواكب والشمس والعمر وغيرها من شموس وأقمار ومجرات « كل يجرى لمستقر له » ؟

كلها حركات نسبية إذا وصفت حركة جرم لا بد أن تصفه بالمقارنة، فتصف حركة جسم بالنسبة لجسم آخر متحرك ؛ فهل لا يوجد في مكان في هذا العالم الإلهي الكبير نجم ساكن سكونا مطلقا ، وخطورة هذا الكشف أن كل ماينسب إلى المطلق فهو مطلق .

فإذا عــثرنا على هذا النجم أمكننا أن نصل إلى الحركــة المطلقة فكل

site www.libyaforall.com\e-mail almotanabby2002@yahoo.com

حركة بالنسبة لسهذا النجم حركة مطلقة ، وكان هذا النسجم هو الضالة المنشودة لعلماء القرنين الماضيين ؛ تخيلوا وتخيل معهم " نيوتن " أن هذا النجم كالعنقاء يستحيل العثور عليه ، واقتراح " نيوتن " بديلا عنه الفضاء المحيط تسبح فيه الكواكب بما فيها من كائنات أحياء وأموات .

فالفضاء في نظره ساكن سكونا أبديا ، فهو المربط الذي يرجع إليه إذا أردت أن تعرف الحركة المطلقة ، وكل مسانسب إليه فهو مطلق . وزاد هذا التفكير رسوخا أن أمواج الضوء تأتى إلينا عبر الفضاء الخالى ، ولا بد أن تأتى إلينا محمولة في بحر من الأثير تخيله العلماء لتفسير ظاهرة انتقسال الضوء ، وزاد إيمان علماء القرنين الماضيين بالأثير أن للكهرباء والمغناطيسية القسدرة على التأثير من بعيد ، فلا بد أن تكون هناك أيد خفية ، تمتد لتحدث الأثر ، تمتد في وسط يحملها . ولا أحب أن أورد قول بعض الفلاسفة في هذا المضمار ، وأظنه « ديكارت » الذي قال : إن مجرد الوجود وجود جويمين مفصول أحدهما عن الآخر ؛ برهان على وجود وسط بينها ، ولكني أحب أن أورد بعض التجارب التي عملت وجود وسط بينها ، ولكني أحب أن أورد بعض التجارب التي عملت فرض وجود الأثير .

ولقد بنيت أهمَّ تجربة على أن لا بدَّ أن تخوض الأرض أثناء دورانها فى الأثير الساكن ، وكان أن وفق « مايكلسن » فى عسمل جهاز لقسياس التغير الذى يطرأ على سرعة الضوء مستحركا فى اتجاه حركة الأرض ، ثم متعامدا على اتجاه حركتها ، ولعل الفكرة قد خطرت له وهو يتخيل بحر site www.libyaforall.com\e-mail almotanabby2002@yahoo.com

الأثير بحر ماء ، وأن الزمن الذى يأخذه سابح ليقطع مسافة معينة ، سابحا على طول التيار ذهابا وإيابا غيير الزمن الذى يأخذه السابح ونفسه ليقطع المسافة نفسها عبر التيار ذهابا وإيابا ، ومعنى هذا أن سرعة السابح على طول التيار غير سرعته عبر التيار ويمكن من هذا معرفة سرعة التيار بالنسبة للأرض ، وهي تساوى في المقدار وتخالف في الاتجاه سرعة الأرض بالنسبة للتيار .

لذا جعل « مايكلسن » الضوء يخسترق التيسار الأثيرى طولا ، ثم جعله فى الوقت نفسه يختسرقه عرضا ، مع تساوى الطول والعرض من الوجهة المترية . ونظر أيهما يسبق الآخر بعد أن يقطع المسافة ذهابا .

لم ينفرد " مايكلسن " بهذه التجربة ، بل اشترك معه " مورلى " ، سنة ١٨٨٧ ؛ وعرفت التجربة فيما بعد بـ " تجربة مايكلسن و مورلى " ، وأساس التجربة إرسال حزمة ضوء من لون واحد ، ثم وضع لوح نصف شفاف في طريق الحزمة ليقسم الحزمة جزءين؛ حزمة جزئية تتجه غربأ أعني علي امتداد الحزمة الأصلية، وحزمة جزئية أخري تتبجه شمالا أعنى على امتداد متعامد للحزمة الاصلية ، تنعكس كل حزمة جزئية على نفسها بسقوطها على مرآة على مسافة متساوية من اللوح غربا وشمالا .

وللوح وظيفتان: الوظيفة الأولى عسرفناها وهي تجزئة الجنزمة إلى

site www.libyaforall.com/e-mail almotanabby2002@yahoo.com جزءين غربا وشمالا ، والوظيفة الثانية تجميع الجزءين بعد انعكاسهما في حزمة واحدة تتجه جنوبا .

وتظهر نتيجة التجربة من رؤية ما يحدث في « تلسكوب » موضوع في الطريق جنوبا ، وجدا أن الحزمة الساقطة على اللوح .

وقد انقسمت إلى حزمتين تركستا اللوح فى وقت واحد ، وعادتا إليه فى وقت واحد ، وعادتا إليه فى وقت واحد ، وبذلك عجز « مايلكسن » و « مورلى » عن الكشف عن أى اختلاف فى سرعة الضوء نتيجة لاختلاف سرعة الأرض فى الأثير .

لم يقنعا بتجربة واحدة لخرابة النتيجة التي حصلا عليها ومخالفتها للمألوف ، فالمألوف أنك أسرع في الإمساك بكرة مقذوفة إليك لو جريت نحوها للإمساك بها ، لم يقنعا بتجربة واحدة ، وهذا حرص معروف عن العلماء ، فأعادا التجربة في الربيع والخريف أعنى بفارق زمن مقداره ستة أشهر، واختارا أكثر من وضع للجهاز ، ورغم كل هذا الحرص وصلا إلى النتيجة غير المنتظرة : أن لا اختلاف في سرعة الضوء سواء اقترب منك أو ابتعد عنك ، أو أقتربت أنت منه أو ابتعدت عنه .

إذن فالقول بأننا نتحرك فى أثير ساكن قول كانت تعوزه التجربة ، ومعنى هذا أن هناك شكا فى وجود مربط تبدأ منه القياسات ، فالقياسات المطلقة مشكوك فى وجودها ، وهذا لا يتفق ومزاج علماء القرنين

الماضيين، فخير أن تقف الأرض عن دورانها من أن ينكر وجود الأثير .

ثم كان من أراد أن ينقذ الموقف حرصا على سلامة العلم في ذاك الوقت ، فنادى العالم الأيرلندى « فيتز جرالد » عام ١٨٩٢ بانكماش الأطوال في اتجاه حركة الجسم وبقائها كما هي في اتجاه متعامد على الحركة ، وبذلك رأى أن عجز التجارب هو في الواقع إثبات لاختلاف السرعة سرعة الضوء ، والمسئول عن عدم ظهورها هو الانكماش المفروض ، فأرضى كبرياء العلماء بتمسكه بالأثير ، وتمسكه باختلاف سرعة الضوء باختلاف الحركة ، وأعلن تآمر الطبيعة على إخفاء الاختلاف.

وكانت الصيحة التى وضعت الأمور فى مواضعها صيحة « ألبرت أينشتين » عام ١٩٠٥ ، وقبل أن أبداً بذكر طريقة معالجت لهذه الأمور وكيف قاد سفينة العلم إلى حيث يجب أن تقاد ، فأحدث ثورة علمية فسلفية اجتماعية – أتحدث عمن هو « أينشتين » .

اينشتين :

رأيت « ألبرت أينشتين » في لمندن عام ١٩٣٣ ، رأيته رؤيا العين ، وتنبئ النظرة العابرة إليه بأنه رجل ثائر ، فشعره ثائر على رأسه وملابسه ثائرة على جسمه ، والكلمات الإنجليزية تخرج من فمه كلمة إثر كلمة في صعوبة ، وكأن لسانه يبذل مجهوداً فوق الطاقة ، يقذف الكلمة قوية

متكسرة بين الحين والحين ، وتشعر أنه لن يستطيع أن يتم محاضرته ، وإذا به يقولها بتمامها دون أن ينقص منها شيئاً ، ولم أعد أذكر من محاضرته غير نصيحة واحدة بوجوب العكوف على البحث العلمى والإخلاص له مع اختيار أحسن الوظائمة ملاءمة كمرتزق للعالم ، واقتراح وظيفة حارس لفنار في وسط البحر . . كان غريباً أن أسمع هذا من صاحب « النظرية النسبية الخاصة » وصاحب « النظرية النسبية العامة» ، وصاحب البحوث العدة في : الحركة البرونية ، والديناميكا والإحصائية والميكانيكا الموجبة ، والكهرباء الضوئية ، والحرارة النوعية .

إنى أعلم أنه لم يكن حارس فنار ، بل إن الحياة كانت قاسية عليه، ومن يدرى لعله وهو قريب من الحياة بعيد عنها ، ولعله يعانى من الواحدة النفسية ما يعانى ، لكن غاظنى أنى دفعت مالا لحضور هذه المحاضرة، واشتد غيظى من رصد هذا المال لغير العلم ، وما كنت أظن أن عالما عالميا ينادى بالنسك العلمى ، يجمع المال لغير العلم؛ وكان أن أرجع الأمور إلى أصولها فاستقصيت تاريخ حياته .

فإذا به قد ولد في ١٤ من مارس سنة ١٨٧٩ في مدينة « أولم » من جنوب ألمانيا من أسرة يهودية غير مستقرة ، انتقلت بعد عام من ميلاد الطفل إلى ضاحية من ضواحي « ميونخ » وكان أبوه يملك مصنعا كيميائيا كهربيا صغيرا ، وساعد الأب في إدارة المصنع أخ له مهندس وهو عم الطفل ، وكانت هواية أم الطفل الموسيقي ولا سيما موسيقي «بيتهوفن».

فكان من الطبيعى أن تجبره أمه على تلقى دروس على الكمان وهو في السادسة من عمره ، وكان أن أقبل على هذه الدروس كارها ، ثم روض نفسه على مايكره حتى انقلبت الكراهية حبا فأصبح يحب الموسيقى، بل كان يفزع إليها طوال أيام حسياته ، لتهدئ من نفسه وتسبغ عليه نعمة الرضا والطمأنينة وراحة البال بعد عناء العمل ، وكان الأثير عنده من الفنانين « موزارت » .

وكأن الله أراد لـه أن يتأمل قبل أن ينطق ، وأن يخترن في الوعي قبل أن يفيض في الحديث ، فعجز عن أن يفصح عما في نفسه حتى موعد متأخر عن أترابه من الأطفال . فتأخر في النطق حتى ظُن به الشذوذ ، وخشي عليه من البله ، وقد أنف أن يشارك زملاءه ألعابهم ، وانطوى على نفسه ينعم بأحلام البقظة ، وينأى عن أى مجهود عضلي ولو كان لعبا للتسلية ، وبان امتعاضه وعدم استساغته لما يتذوق الطفل العادي من مناظر مشيرة ، فقد كان يتألم عند ما يسرى التدريبات والاستعراضات العسكرية وما أكثرها وقتذاك في شوارع «ميونخ» وما كان يحتمل أن يرى الإنسان يتصرف ولو في مشيته تصرف آلياً كالآلة المكانيكية الصماء .

ثم دخل «أينشتين» الطفل المدرسة ، وكانت مدرسة أولية كاثوليكية ، فقد كانت المدارس في «ميونخ» تحت إشراف هيئات دينية ، ولم تهتم أسرة «أينشتين» كثيراً بالدين، فلم تجد الأسرة غرابة وهي اليهودية دينا أن يكون إبنها كاثوليكيا تعليما .

وانتهى « أينشتين » من دراستة الأولية والتحق بمدرسة ثانوية وهو في العاشرة من عمره ، ودرس في هذه المدرسة تعاليم الديانة اليهودية ، وتفاعلت تعاليم اليهود مع تعالم الكاثوليك التي سبق أن تعلمها في المدرسة الأولية ، وأخرجت منه شابا ملحدا لا يدين بدين ، ويشعر بأن الأديان معوقات تعوق التفكير الحر الطليق ، وكفر بالقيم الروحية التي جاءت بها الأديان ، والإنسان لا يفيق إلى دينه حتى تأتيه القارعة وإلا استبق الحوادث . وأقول قد جاءته القارعة على يد « هتلر » عام ١٩٣٣ فاذا بـ « أينشتين » العالم يعود يهوديا متعصبا لليهود ، ولكني أفضل أن أساير الحسوادث خطوة خطوة ، وأعود إلى المدارس الثانوية ، وأرى الطالب « أينشتين » يخطو خطوات بطيئة في دراستة ، فقد كان يكره استذكار الدروس عن ظهر قلب دون فهم أو تفهم .

ويجمل أن أذكر الأثر الذى تركه عمّه فى نفسه وفى مستقبل حياته ، فقد حبب إليه دراسة الرياضيات وكانت لعمه طريقة ، طريفة فى تقريب العلم إلى ابن أخيه ، فكان يتحدث عن الجيبر بأنه العلم الذى يقلل كمية العمل المطلوب لحل مسألة من المسائل ، ولقد فرح ابن الأخ بهذ العلم واعتبره علما للتسلية، كأن تخرج لصيد حيوان مجهول « س » حتى إذا وقع فى الفخ عرفت ما هو « س » .

ثم ملك عليه تفكيره علم الهندسة ، وشعر بأنه العلم الذى يرغبه ويريده ، فأخذ بلبه التسلسل في المنطق والدقة في التعبير والوصول بمعطيات معلومة إلى الهدف المجهول وهو البرهان المطلوب .

وكثيرا ما كان يذكر بدء دراسته لهندسة "إقبيليدس" كأهم أثر مر عليه في شبابه وفي عامه الثاني عشر على وجه التحديد، بل ذهب إلى أبعد من ذلك بأن تنبأ بفشل الباحث النظرى الذى لم يشعر في شبابه بأهمية هندسة "إقيليدس" وقدر ما كان "أينشتين" مميزا في الرياضيات قدر ما كان متأخرا في العلوم التي تعتمد في دراستها على الاستذكار، ثم زاد الطين بلة أن شعر أساتذته في المدرسة الثانوية بعدم توقيره إياهم وخضوعه لهم خضوعا تاما، مما أدّى إلى فصله من المدرسة، فصل وذهب ليلحق بأبيه في "إيطاليا" فقد اضطر أبوه قبل فصله بعام إلى أن يصفى أعماله في "ميونخ" ويرحل إلى "ميلانو" ليبدأ عملا جديدا تاركا ابنه وهو في الخامسة عشرة من عمره في "ميونخ" ليتم دراسته الثانوية، وكان أن فصل وذهب إلى "ميلانو".

ثم أخذ يفكر في مستقبل حياته وهو يرى أسرته وما وصلت إليه ، واستقر رأية على أن يتخذ من التدريس مهنة له ، قرر أن يؤهل نفسه ليكون مدرسا في الطبيعة النظرية ، واعتزم أن يلحق بمدرسة «البوليتكنيك المفيدرالية» السويسرية الشهيرة بـ « زيورخ » وتقدم إلى الامتحان وخانه الحظ .

وقد استرعت أوراق إجاباته اهتمام مدير « البوليتكنيك » إذ بانت له القدرة الفائقة في الرياضيات والضعف الواضح في اللغات وعلوم الحياة .

فتطوع ليساعده وأدخله مدرسة توطئة لقبوله في « البوليتكنيك »

site www.libyaforall.com/e-mail almotanabby2002@yahoo.com وكانت المدرسة على غير غرار مدرسة "ميونخ " فقد تركت الحرية للطلاب في أن يفكروا بأنفسهم ، ولا يعتمدوا على الاستذكار ، وكان أيضا على اتصال مباشر بالمدرسين يناقشونه ويمحضونه النصح ، وهناك شعر " أينشتين " بحياة أفضل تتفق وميوله ، وكان أن نجح والتحق

بمدرسة « البوليتكنيك الفيدرالية» بـ « زيورخ » .

والدراسة تحتاج إلى مال وقد عجز أبوه عن القيام بأى مساعدة مالية، ولكنه حصل على المال من قريب له ، وأخذ يؤهل نفسه لمهنة التدريس ، فاكتسب الجنسية السويسسرية ، وأصبح مواطنا سويسريا حتى لا تمتنع عليه الوظيفة المرجـوة ، وهو الرجل الممتاز ، والحاصل على خـطابات توصية من أساتذته تشهد بأنه شخص من الطراز الأول ، ورغم كل هذا عزت عليه الوظيمة ، وقبل وظيمة فاحص في مكتب للتسجيل سمويسرى في «برن» وكان ذلك عام ١٩٠٢ ، ولم تمنعه مسهام الوظيفة من أن ينظر في العلم ويبسحث عن المجهول ، فنمال شهادة الدكستوراه عمام ١٩٠٥ ، وقد كانت هذه السنة خصبة أنتة فيها « النظرية النسبية الخاصة» وأبحاثا أخرى عن الحركة البرونية ، والديناميكا الإحـصائية ، الكهرباء الضوئية ، وبدأ يحتل مكانا مكينا بين العلماء ، تهافتت عليه الجامعات تطلبه أستاذا، فكان أستاذا فوق العادة في جامعة « زيورخ » عام ١٩٠٩ ثم أستاذا ذا كرسى في جامعة « براج » عام ١٩١١ واستعادتة جامعـة «زيورخ» مرة أخرة ليشغل كرسي الأستاذية في « البوليتكنيك » حيث كان طالبا وذلك

عام ١٩١٢ ، وحظيت به من بعد ذلك « برلين » أستاذا متفرغا للأبحاث ١٩١٤ ، فأصبح أستاذا في « معهد القيصر ولهلم » وعضوا في الأكاديمية الملكية البروسية ، ولم يمض على تعينه عام واحد حتى أذهل العالم بد النظرية النسبية العامة » عام ١٩١٥ وكان للعالم عليه حق، فقام بجولة علمية لإلقاء محاظرات في « إنجلترا » و «الولايات المتحدة الأمريكية» ثم جرى عليه ماجرى على يهود ألمانيا ١٩٣٣ ، فتحركت فيه النوازع الدينية الكامنة ، فأصبح عضوا للحركة اليهودية ، وإن نادى بوجوب قيام حكومة عالمية ، واعتذر عن أن يكون رئيسا لدولة إسرائيل » المزعومة ، معلنا عجزه عن معالجة الطبائع البشرية ، وإن نجح في معالجة المسائل الطبيعية .

وقد احتضنته « الولايات المتحدة الأصريكية » وعينته صديرا لمدرسة الرياضيات في معهد الدراسات العليا في « برنستين نيوجسرسي » حيث أرسل خطابا إلى الرئيس « فرانكلين روزفلت » في خريف سنة ١٩٣٩ ينبئه بإمكانية عمل قنبلة يدخل في تكوينها « اليورانيوم » ولها فاعلية قوية في الهدم والتدمير ، ثم ندم على مافعل ، وذلك بعد أن ألقيت القنبلة الذرية على « هيروشيما » في ٦ من أغسطس سنة ١٩٤٥ .

وقد قدره العلم والعلماء ، إذ منح عام ١٩٢١ جائزة « نوبل» لأعماله في «الفوتونات» والنظرية الكمية ، وقد حاول أن يذيب القوانين في قانون واحد بأن نشير سنة ١٩٥٠ مـحاولة لذلك ، وسيماها «نظرية المجال الموحد» ، ومات في ١٨ من أبريل سنة ١٩٥٥ .

site www.libyaforall.com\e-mail almotanabby2002@yahoo.com

ويجمل بى قبل أن أخـتتم الحديث عنه أن أذكر مـوقفا له يدل على الدقة وبعد النظر ، مما قـد يفوت أساتذته ومعاصريه من العلـماء المشهود لهم .

وسأذكر من معاصرية « لورنتز الهولندى » وقد اقترن اسمه باسم افيتزجيرالد» الذى نادى بانكماش الأجسام فى اتجاه حركتها ، وأنه كلما ازدادت سرعة الأجسام ازداد انكماشها ، وكلما قلت سرعة الأجسام قل انكماشها . وأمكنه بذلك تفسير تجربة « مايكلسن » و « مورلى » وإثبات أن ما تراءى لهما فى التجربة من عدم وجود اختلاف فى سرعة الضوء فى اتجاه حركة الأرض عن سرعته فى اتجاه متعامد لحركتها ليس بصحيح ، الواقع أن هناك فرقا ، وأن الانكماس المذكور أخفى هذا الفرق ، ويصل الضوء المتعامد والضوء غير المتعامد فى وقت واحد .

ثم اقترح « لورنتز » عام ١٨٩٥ ، أن الانكماش لا يجسرى على الجسسم ككل ولكنه يجرى على مكونات هذا الجسم من « إلكترونات » أثناء حركتها فى الأثير مع الجسم مما ينتج عنه تعديل فى القوى الرابطة بين الذرات والجزئيات لجسم يتحرك فيحدث تقارب بينها بقدر يتفق ، وما قدره « فيتزجيرالد» وكان أن فسر تجربة « مايكلسن » و « مورلى » وسمى الانكماش انكماش « لورينتز فيتزجيرالد » أن كلا منهما كان على غير علم بما عمل الآخر ، ويعتبر رأى « لورينتز » هو الأساس ، إذ يبدأ بداً للكترون» ورأى « فيتزجيرالد » نتيجة حتمية له .

ولعل رأى " لورينتز " وإن اتحدت نتيجته مع " فيتزجيرالد " هو أقرب إلى المنطق العملى ، إذ سبق أن بين في عام ١٨٨٢ العالم "ج. ج طومسن" أن الجسم المكهرب تزداد كتلته لو تحرك ، وسميت زيادة الكتلة بأنها كتلة " إلكترومغناطيسية " ، ومعنى هذا أن الحركة تؤثر في الجسم المكهرب ؛ استنبط " طومسن " ذلك بمناقشة معادلات لـ " ماكسويل " إذ تبين هذه المعادلات العلاقة بين الآثار الكهربائية والآثار المغناطيسية أثناء تغيرها في الأثير ، وقد بان من هذه المعادلات :

أن الآثار تنتقل بسرعة ثابتة قدر سرعة الضوء ، حتى ذهب «ماكسويل» إلى أن الضوء أمواج « إلكترومغناطيسية » وقد أثبتت التجربة فيما بعد كل ما ذهب إليه « ماكسويل » وأصبحت معادلاته هى حجر الزاوية في جميع الاتصالات اللاسلكية ، وحجر الزاوية في جميع الأبحاث الخاصة بحركة « الإلكترونات » حتى أن «لورينتز» استخدم هذه المعادلات في المقارنة بين «إلكترون» متحرك في الأثير بسرعة كبيرة و « الكترون » ساكن في الأثير قصد جعل المعادلات الخاصة بالجسم المتحرك تتفق شكلا والمعادلات الخاصة بالجسم الشابت ، ورغم الاتفاق الشكلي فهناك علاقات بين أمكنة وأزمنة الجسم المتحرك ، وأمنكة وأزمنة الجسم الساكن ، وتسمى هذه العلاقات بتحويلات «لورينتز».

نظر « أينشتين » إلى المعادلات السابقة الخاصة بالجسم المتحرك والجسم الثاتب كما كتبها « لورينتز » ونفذ بثاقب فكره وبعد نظره إلى

مرامى هذه المعادلات ، وكانت المرامى أبعد من أن يصل إليها عالم معاصر له ، واستشف منها أنها تحمل فى طياتها أسباب الاستغناء عن الأثير ، وإمكان التقدم العلمى دون الاحتياج إلى فرض وجود الأثير إذ ثبت الجسم المتحرك ، وحرك الجسم الثابت ، ووصل إلى نفس النتائج . ومعنى هذا أن المعادلات خلو من أى دليل يثبت أى الجسمين هو المتحرك وأيهما هو الثابت ، إذن يمكن اعتبار سرعة الجسم المتحرك بالنسبة للأثير وجود الأثير كعدمه .

النظرية النسبية الخاصة

ثم جاء دور « أينشتين » وهو في السادس والعشرين من صمره ، ويعمل في مكتب لسلتسجيل بـ « برن » ليبدى رأيه في « تجربة مايكلسن ومورلي » تلك التجربة التي أدهشت العلماء وجمعلت « فيتزجرالد » والورينتز » يعلنان تآمر الطبيعة في عدم كشفها اختلاف سرعة الضوء استقبلته مدبرا أو غير مدبر .

هذه التجربة التى قصد بها إثبات وجود الأثير وإثبات وجود السرعة المطلقة ينظر إليها (أيسنشتين) نظرة أخرى ، ويخرج بعد مناقستسها ومناقشة معادلات (ماكسويل) كما طبقها (لورينتز) على جسم متحرك وجسم ثابت ؛ يخرج بأسس (النظرية النسبية الخاصة) وسميت خاصة

لأنها تتعلق بالقوانين الطبيعية المطبقة في مناطق تتحرك بحركات منتظمة، فخصصت الحركات بالانتظام ، أو قسيدت بالانتظام ، لذا تسمى أحيانا به النظرية النسبية المقيدة، ، ويمكن وضع هذه الأسس تحت مبدأين هامين:

الأول - لا وجود للحركة المطلقة من الوجهـة الطبيعية ، ومعنى هذا أنه لا يمكن بوسائلنا الطبيعية الكشف عن وجودها .

الثانى - سرعة الضوء مقدار ثابت لا يتأثر بحركة المصدر أو حركة الراصد ، مسهما كان الاتجاه ، ومسهما كانت الأوضاع ، ومعنى هذا أن سرعة الضوء هى المعيار الوحيد المطلق ، ومقداره فى أى منطقة هو نفس المقدار ، سواء كانت المنطقة متحركة أو ساكنة معتدلة أو مائلة .

وقد أنكر ﴿ أينشتين ﴾ بالمبدأ الأول وجود الأثير ، وبالتالى أنكر وجود مربط ثابت تنسب إليه الحركة التي يتميز بعضها بكونه مطلقا وبعضها الآخر بكونه نسبيا .

وأنكر أيضا بالمبدأ الثانى تآمر الطبيعة على القوانين الطبيعية ، حتى لا يكشف عن اختلاف فيها حسب الحركة . وذهب إلى أن « تجربة مايكلسن و مورلى » صريحة مكشوفة لا خفاء فيها ولا غموض ، وأن سرعة الضوء واحدة في اتجاه حركة الأرض أو في اتجاه متعامد على هذه الحركة جاء الضوء من الشمس مباشرة ، أو منعساً من القمر ، أو من أي كوكب، أو نجم ثابت أو متحرك .

ثم أنتهى إلى أن القوانين الطبيعية يجب أن تكون هي بعينها أو بشكلها في أي منطقة من المناطق المتحركة بحركة منتظمة ، وهذا يبين الفرق بين « نسبية نيوتن » و « نسبية أينشتين » فقد قصد « نيوتن » عدم تغير القوانين الميكانيكية في أي منطقة عن الأخرى ، وقصد « أينشتين » عدم تغير القوانين الطبيعية إطلاقاً ، ميكانيكية أو ضوئية أو كهربائية أو مغناطيسية ، ومنها معادلات « ماكسويل » حيث تظهر سرعة الضوء ثابتة مع تغير الزمان والمكان . وثبات سرعة الضوء له أهميته ، إذ هو لغة التفاهم بين بعض المناطق وبعضها ، إذ يجب أن يراعي ثبات سرعة الضوء إذا ما أردنا أن ننتقل من منطقة إلى منطقة ، أو أن نجعل قوانين منطقة مَّا لأصحابها كقوانين منطقة أخرى لأصحابها الآخرين ، فهناك معادلات تحويل مقيدة بهذا الشرط، ومن العجب أن وجدت المعادلات الجديدة تحت الشرط الجديد هي نفس معادلات التحويل لـ «لورينتز» وهي معادلات تبين العلاقة بين المكان الخاص والزمان ، والمكان غير الخاص، وكذلك بين الزمن الخاص والمكان والزمان غير الخاصين.

ويجمل أن أذكر أن لا فارق بين « نسبية نيوتن » و « نسبية أينشتين» للقوانين الميكانيكية إذا كانت السرعات أقل بكثير من سرعة الضوء ، أما إذا قاربت سرعة الضوء فيخلو الميدان لـ « نسبية أينشتين » دون منازع .

وإذا نظرنا إلى معادلات التحويل التى تجعلنا نحكم على ما يحدث في منطقة أخرى نر أن ما يراه أصحاب المنطقة الأخرى طولا معيناً نراه

نحن طولا أقصر ، إذ انكمش نتيجة للحركة المنتظمة للمنطقة وما عليها .

وكذلك نحكم على أن ما يراه أصحاب المنطقة الأخرى حادثاً في فترة من الزمن معينة نراه نحن حادثاً في فترة أطول، وكذلك نحكم على ما يراه أصحاب المنطقة الأخرى كتلة معينة نراه نحن كتلة أكبر نتيجة للحركة المنظمة للمنطقة ، ولو سألنا المنطقة الأخرى عن رأيها فينا لقالت: إن أطوالنا تقصر في اتجاه حركتها بالنبة لهم ، وأزماننا تطول والكتل تزيد .

وما من تجربة طبيعية تمكننا أن نحكم أيهما الصحيح ، وذلك لأن المقياس الوحيد وهو سرعة الضوء واحد في كل المناطق ، وقد فقدنا بذلك الإحساس بالمقاييس المطلقة ، وتعاملنا بالمقاييس النسبية مع سيادة القوانين المحلية في كل منطقة وكل القوانين متشابهة .

ونظرة أخرى إلى قوانين التحويل نجد بها أن المكان لمنطقة يحدد بمعادلة فيها المكان والزمان للمنطقة الأخرى ، ونجد أن الزمان يحدد بمعادلة فيها الزمان والمكان للمنطقة الأخرى ، إذن اندمج الزمان في المكان وأصبح لا وجود لزمان مستقل عن المكان ، ولا وجود لمكان مستقل عن المكان ، ولا وجود لمكان مستقل عن المران ، فلا زمان مطلق ولا مكان مطلق ، وللتقريب إلى النهن فقط أقول : في الوقت الذي فيه صباح في القاهرة يكون مساء في منطقة

أخرى ، ولكن المسألة أعمق من هذا فربما نجد حادثة في منطقة تحدث أبداً في وقت واحد في غير هذه المنطقة من مناطق متحركة بحركة منتظمة بالنسبة للمنطقة الأولى ، وسألجأ إلى الفكر دون التجربة لبيان ذلك .

افرض أنه قد أنيرت « مدينة المقطم » في الوقت الذي أنيرت فيه «أهرام الجيزة» وهكذا حكم رجل ينظر إليهما من « برج القاهرة » ، فقد وصل الضوء إلى عينيه من المكانين في وقت واحد وهو في منتصف المسافة ، ولنفرض أنه في هذا الوقت بالذات وقت أن رأى رجل البرج تزامن الإنارتين كانت تحلق فوق رأسه طائرة ، ولنفرض جدلا أنها تتجه من « الأهرام » إلى « مدينة المقطم » بسرعة أكبر من سرعة الضوء ، وهذا مستحيل من الوجهة العملية ، إذ أن سرعة الضوء تعتبر سرعة لايصح أن يصل إليها جسم مادى أبداً ، إذ لو كان هناك جسم له سرعة الضوء لازدادت كتلته حتى وصلت إلى مالا نهاية .

نعود ونقول: إن رجل الطائرة يجزم لنا وهو صادق أن مدينة «المقطم» هي المنارة فقط، وأن « الأهرام » غير منارة، إذ يعجز الضوء الصادر عن « الأهرام » عن أن يصل إليه وهو يطير عنه بسرعة أكبر من سرعته ، إذن لا تزامن فهناك إنارة في « المقطم » ولا إنارة في «الأهرام» ولو انخفضت سرعة الطائرة إلى سرعة أقل قليلا من سرعة الضوء لرأى « المقطم » ينار أولا ثم « الأهرام » ثانياً فلا تزامن .

فترى منطقة تزامناً وغيرها لا يرى تزامناً ، فالزمن كالمكان نسبى غير مطلق ، بل إذا نظرت إلى النجوم واخترت نجماً على مسافة يقطعها ضوؤه في شهر من الزمان ، فالضوء الصادر من النجم من شهر مضى هو الضوء الواصل إلى عينيك الآن ، وربما يكون النجم قسد انفجر ، وأصبح لا وجود له بعد أسبوع من إرساله الضوء الذي وصل إلى عينيك ، ولن نركى الانفجار إلا بعد سبعة أيام مقبلة ، فأنت ترى الآن ماضى النجم ، وحاضره ستراه في المستقبل ، وربما يرى مستقبله شخص في مكان آخر.

وقد بين « أينشتين » العالاقة بين الكتلة والطاقة وقدرها تقديراً ، ولعلنا لو بحثنا مكونات الذرة ، فإننا نجد أنها أخف وزناً من مفرداتها ، أعنى عند تكوين « نواة الهليوم » من وحداتها اختىفى جزء من الوزن ، فما من قوة في الوجود تعيد « نواة الهليوم » إلى مكوناتها الأولى حتى تضيف إليها وزناً يعوض ما فقدته أثناء التكوين ، فإن كبر ما اختفى من مادة أثناء تجمعها صعب تفككها وكان ارتباطها وثيقاً .

ولعل الشمس تحافظ على ضوئها باستعمال هذه العلاقة بين الكتلة والطاقة .

وإن الفكر البدائي يتخيل ما يرى ولا يتخيل غير مايرى ، فإذا رأى نار أتخيل الوقود وحسب الفحم ، فلا غرابة لو ظن الأولون أن نار الشمس من احتراق الفحم فهى الموقد الإلهى ، ولكن هذا الفرض لم يصبر طويلا مع العلم فلو كان صحيحاً لكانت الشمس فى خبر كان من قديم الزمان .

ولكن تفتق الفكر العلمي وبان له فساد هذا الفرض ، فتفتق عن فرض آخـر هو: أن الشمس كـرة غازية ملتـهبة تنكمش ببـط، ، وكلما انكمشت زادت حرارتها بحكم الانكماش ، وجادت بالزيادة . وبلغت بهم الدقة أن قدروا انكماشها اليومى ، ولكن هذا الفرض لم يشبت طويلا، وإن تنبأ بعمر للشمس أطول مما تنبأ به الفرض الأول ، فزاد على العمر أربعة أمثاله . ولعلها صدمة جعلت الفكر ينتقل من النقيض إلى النقيض ، فإذا بفرض جديد يطيل من عمر الشمس إطالة تخرج بها عن نطاق المعقول في تكوين العالم ، لأنه يرتفع بعمرها إلى ثمانية أمثال عمرها العلمى الذي قدر بعمر أقدم صخر موجود على ظهر البسيطة ، فلقد ارتفع عمر الشمس في حسبانهم عند ما فكر العلماء في أنها باقية صامدة حتى يفني آخر جزء من مادتها ، أعنى أنها ستبقى متوهجة حتى تتحول مادة الشمس بأجمعها إلى طاقة إشعاعية ؛ فرض أطال ، وفرض قصَّر ، فلا بد أن يكون هناك فرض وسط بين هذا وذاك ، وقد وفقوا في اقتناصه إذ قدر عمر الشمس بفضله بألفى مليون سنة .

وأساس هذا الفرض أن جزءاً من المادة ، وليس كلها ، يتحول إلى وميض وهو الجزء المفائض بعد تعقيد المادة ، ويساعد على تعقيد المادة درجة الحرارة في باطن الشمس ، وهي تبلغ أكثر من ثلاثة آلاف مثل لدرجة حرارة سطحها البالغة ستة آلاف درجة ، ويساعد أيضاً الضغط في باطنها ، إذ يبلغ تسعمائة مليون ضغط جوى .

يكاد الفرض أن يطل في هذا الجو المسلم والضغط الخانق والهيدروجين الذي يبلغ ثلث الشمس كتلة والنسبة الضئيلة من الآزوت والكربون البالغة ما يقرب من الواحد في المائة هذه النسبة الضئيلة في كميتها القوية في مفعولها ، هي المحرّض الذي يشارك في عملية التعقيد ، ويخرج من العملية غير منقوص ، ومن غير سوء . فالمسئول الأول والأخير عن بقاء الشمس كما هي هو الطاقة الإشعاعية الناتجة عن تحول «الهيدروجين» إلى « هيليوم » وقد قدرت وحسبت فجاءت بعمر للشمس هي قدر عمر أقدم صخر يوجد على ظهر البسيطة ولكيلا أفجع الأولين في تفكيرهم سأوافق على أن الشمس هي : الموقد الإلهي ، وقوده «الهيدروجين» ورماده « الهيليوم » .

وعلى هذا الأساس بنيت فكرة استخدام المواد الاندماجية لاستحداث الطاقة .

فهناك ثقيل في المادة وخفيف ووسط بين خفيف وثقيل ، والوسط هو أكثر المواد ثباتاً واستقرار أما الثقيل فهو في طريق الانحلال إلى الثبات والاستقرار بتفككه ، مع تخلصه من فائض من مادة عن طريق الإشعاع . أما الخفيف فهو طيع إلى تعقيد أملا في ثبات على ثبات واستقرار على ستقرار بتجمعه مع تخلصه من فائض من مادة عن طريق الإشعاع .

النظرية النسبية العامة

أمكن لـ النظرية النسبية » الخاصة أن تصوع القوانين ، لتطبيقها على حد سواء في أي من المناطق التي هي حركة منتظمة بعضها بالنسبة لبعض، ومعنى هذا أن المناطق لا تعمل فيها قوى ، إذ لو عملت قوة ما في منطقة لتسارعت هذه المنطقة وفقدت الانتظام في حركتها .

وقد رأى « أينشتين » أن يحرر المناطق من هذا القيد قيد الانتظام في الحركة ، وكان ذلك عام ١٩١٥ عشر سنوات بعد إعلان « النظرية النسبية الخاصة » فكانت « النظرية النسبية العامة » وأمكن لها أن تصوع القوانين لتطبيقها على حدّ سواء ، في أي من المناطق دون اعتبار لحركتها ، وبذلك تحرر « أينشتين » من « نيوتن » إطلاقاً لتغير تحركه ، تساوى التغير في كمية التحرك ، وهذا هو أحد قوانين الحركة لـ « نيوتن » وهناك قانون آخر أوحت به التفاحة التي قيل : إنها سقطت على أم رأسه وهو قانون الجاذبية ، ويسمى بقانون التربيع العكسى للجاذبية التشاقلية ، إذ يتناسب عكسياً مع مربع المسافة بين مركزى ثقل الجسمين ، ويتناسب طردياً مع حاصل ضرب كتلتيهما .

قانونان مختلفان جد الاختلاف مع " نيوتن » جمعهما " أينشتين » في نظرية واحدة هي النظرية العامة ، فسر بها ظاهرة الجاذبية الأرضية ، وشسرح كيف تجذب الشمس الأرض وكانت نظريته أعم وأهم وأدق

وأشمل من " نظرية نيوتن " في وصف هذا التجاذب .

وإذا بـ آينشتين » يـطلق العنان لعلمه ولخبـرته نحو مـثالية علمـية وذلك عام ١٩١٨ إذ عن له أن يـحاول توحيـد القوانين في قـانون واحد يفسر الظواهر كبيرها وصغـيرها ، سواء كانت مادة أو طاقة في ثنايا نوى الذرات ، أو في الأجرام بين السموات .

ولعله قد شغل بالتفكير في القوانين التي تفسر لنا الظواهر الطبيعية للإشعاع ، سواء كان إشعاعاً من محطة الإذاعة أو من ضوء مصباح ، وهذه الإشعاعات ، وإن اختلفت اهتزازاً أو قدرة هي جميعاً تسير سرعة واحدة هي السرعة التي يصل إلينا بها نور الشمس .

ومن غريب أمر هذه الإشعاعات أنها تهئ الجو المحيط بها ليقع تحت تأثيرها ولها أثران متلازمان أثر كهربائي وأثر مغناطيسي ، وحيث يظهر الأثر تكون منطقة النفوذ ويمسبح مجالا حيوياً للإشعاعات مجالا مغناطيسياً كهربائياً أي « إلكترومغناطيسي »

ولأهمية هذا المجال اعتدنا أن نسمى هذه القوانين بقوانين المجال ، إذ يكفى أن يعرف أثر المجال تبعاً للزمان والمكان ، حتى نستنتج الخواص الطبيعية للإشعاع .

ويظهر أن الإشعاعات ليست هي الوحيدة التي تنفرد بمجال « «إلكتروم غناطيسي» بل كل مستحرك من كهرباء له مجال « site www.libyaforall.com\e-mail almotanabby2002@yahoo.com

إلكتروم خناطيسي الذا كانت نظرية المجال خلطاً بين مجال الإشعاعات ومجال الجسيمات المكهربة .

أعود وأقول لعل « أينشتين » قد تأثر تأثراً عميقاً بهذه القوانين ، لأنه وهو يتحدث عن التجاذب جعل للتجاذب مجالا أسوة بمجال هذه القوانين . ولقد ثبت علمياً أن « نظرية أينشتين » للتجاذب قد وافقت التجربة حيث أخفقت « نظرية نيوتن » التي تنادى بالطبيعة . أو ليس من الطبيعي أن تتوهم قوة بين الجاذب والمجذوب ؟ ومن هذه التجارب الفاصلة انحراف الضوء إذا مر بجوار جسم مادى وتأثر بمجاله . وقد ثبت ذلك بما لا يدع سبيلا للشك عندما كسفت الشمس وظهرت النجوم مضئية بجوارها ، فانحرف نورها عند مروره بجوار الشمس المظلمة ، تحقيقاً كما تنبأت به نظرية « أينشتين » .

كذلك حركة الكوكب عطارد وهو أقرب كوكب للشمس تتفق ونظرية « أينشتين » وتختلف و «نظرية نيوتن » ليسبت أهمية « نظرية أينشتين » في مطابقتها للواقع فحسب ، بل في جمالها وبساطتها ، فقد رأت الحيز الحلو من المادة والكهرباء والإشعاعات حيزاً منسطاً ، لو أردت وصفه وتحديد مواقعه استعنت بهندسة « إقليدس » التي درسناها في المدارس ، ولكن إذا أدخلت على الحييز أجساماً مادية أو كهرباء أو إشعاعات التوى الحيز ، وأصبح جزء منه ملتوياً ، لو أردت وصفه وتحديد مواقعه ما أسعفتك هندسة « إقليدس » ولكنك تلجأ إلى هندسة

أخرى غير مألوفة ، هندسة ملتوية لا تعترف باستقامة أقصر خط يصل بين نقطتين ، وكما لا ينبغى للمرء أن يجرى قياسات بالمسطرة على سطح غير منبسط كالكرة ، كذلك لاينبغى أن نستخدم هندسة « إقليدس» في حيز غير منبسط .

ومن خصائص التواء الحيز أن المادة تنحدر إلى أسفل ، ولا أقول تنجذب . وعليه يصبح مجال التجاذب محضاً لا علاقة له بقوى الطبيعة .

وهذا عكس المجال «إلكتومغناطيسية» فله علاقة وثيقة بالقوى الطبيعية فهو مجال طبيعي ، لقد وحد « أينشتين » اتجاه التفكير بأن جعل مجالا للتجاذب نسجاً على منوال المجال « إلكترومغناطيسي » ولكن شخصية هذا المجال غير شخصية ذاك فهناك ازدواج في الشخصية ؛ شخصية هندسية وشخصية طبيعية .

لذا عكف منذ عام ١٩١٨ على التوحيد ليليب الشخصيتين في شخصية واحدة ، شخصية هندسية ؛ ويذيب القوانين في قانون واحد ، عله يصل إلى التوحيد ، ولكنه مات قبل أن يصل إلى نتيجة حاسمة ، بل لعل « النظرية النسبية العامة » تحتاج إلى تعديل وإلى كمال. وإن وصلت « النظرية النسبية الخاصة » إلى الكمال على مانرى ، هناك مسائل كثيرة في النظرية العامة موضع نقاش بينه وبين معاصريه من العلماء أغفلتها رغم أهميتها ، ولكن المقام لا يحتمل أكثر مما احتمل في هذه العجالة .

إن طريق « النسبية » غير طريق الذرة ، وللو نظرنا نظرة عميقة إلى الطبيعة لوجدنا بديع ما صنع البارئ ، فما من ظاهرة إلا أطل منها جمال الاتساق وتناسق التكرار ، ألا ترى الشمس وقد رفعت وجعلت الكواكب تدور حولها « كل في فلك يسبحون » لا تصادم ولا تقارب ولا ابتعاد ، هذه الصورة التي أودعها الله المجموعة الشمسية ارتسمت في أعين العلماء فتصوروها مكررة في الكون بأجمعه ، مكررة في كل كائن في الوجود ، فقد حببت إليهم هذه الصورة حتى فرضوها فرضاً ولكنه فرض موفق .

وما المادة إلا أعداد مكرَّرة لهـذه الصورة كـالحائط ما هـو إلا أعداد مكرَّرة لقالب الطوب ولكننا نرى قالب الطوب ، ولا نرى هذه الصورة . وذلك لأن أعيننا خلقت لتـرى مقاساً معـيناً يصغر إلى حد مقـدر تعجز العين عن رؤية أصغر منه . وهناك مقاس آخر أصغر من هذا الحد نستعين بأدوات التكبير والقريب لنراه ، ويجتاز المقياس الأول والثاني بأنه بلغ من الضخامة مبلغاً يجعله يعكس إلى أعيننا الضوء الساقط عليه ، فتحس بوجوده ، إذ أننا في الواقع لا نرى الجسم ولكنا نستقبل الضوء المنعكس منه على شبكة العين فنراه ، لذا كان وجود الجسم لا يكفى لرؤيته فلا بد من سقوط الضوء عليه وانعكاسه حتى نلمحه ، ولكن هناك أجساماً بلغت من الصغر مبلغاً يجعلها عاجزة عن صدّ الضوء الغامر لها فلا ينكص على عقبيه ، ولا يصل إلى أعيننا لنبصره ، ومن هذه الأجسام الصورة المجسمة التي حدثتك عنها شمس تدور حولها كواكب .

ويحدد ثقل الشمس أو خفتهاعدد الكواكب التي تدور حولها ، وبعد كل كوكب ، ولكن المادة الواحدة شموسها واحدة ، ويصاحب كل شمس عدد من الكواكب واحد ، إذن الفارق بين مادة ومادة هو ضخامة الشمس أو ضالتها ، ولا أقول الفارق عدد الكواكب إذ الشمس هي الأساس والكواكب تبع لها ، فالشمس يمكنها أن تعيش بغير كواكب ولكن الكواكب لا يمكنها أن تدور بغير شمس .

والشمس مكونة من وحدات متماسكة تماسكاً شديداً ، وهي وحدات متساوية بعضها مكهرب والبعض الآخر غير مكهرب .

والشمس بلغة العلم تسمى نواة ، والكواب يسمى « إلكتروناً » والوحدة المكهربة تسمى «نيتروناً» والوحدة غير المكهربة تسمى «نيتروناً» والنواة بإلكتروناتها الدائرة تسمى ذرة .

وربما تنتقل « الإلكترونات » من مدار إلى مدار ولا يكون لها قرار بين مدار ومدار ، لذا يقول « برتراند رسل » في كتابه «هامش الفلسفة»: إن ناموس دنيا الذرة ثورة وليس تطوراً ، يقفز « الإلكترون » من مدار إلى مدار فجاة دون سابق انذار ، فلا اتصال في الحركة ، بل هناك تقطع ، وهذا لا يحدث أبداً في المناطق الخالية حيث تجرى الأمور انسيابياً دون قفزات ، و« النظرية النسبية » لها سيادة على هذه المناطق . بل لها فلسفة خاصة بها لن أحاول أن أخوض فيها ، ولكنى أضع الخطوط العريضة فقط .

جعلت للضوء مركز الامتيار فكانت سرعته في الفراغ مطلقة ثابتة دائماً ، حتى ولو كان للرصد سرعة تقارب سرعة الضوء . ثم أنكرت المركزية في العالم ، وجعلت كل منطقة كفيلة بقوانينها وإن تشابهت القوانين ، وبينت أنه لا يصح أن نستنتج سلوك الأجسام المتحركة بسرعات كبيرة من سلوكها عندما تتحرك بسرعة بطيئة .

وكذلك أنكرت وجود زمان بمفرده ، ووجود مكان مستقل بمفرده ، وبينت أن بساطة العلم في تفسير الظواهر الطبيعية تحتم اندماج الزمان والمكان حيث لا يمكن تمييز شقيه ، وهناك اتحاد لا يقل أهمية عن الاندماج ، فأصبحنا نعجز عن التمييز بين الكتلة والطاقة ، حتى إننا وجدنا طاقة الجسم الساكن هي كتلته الساكنة ، لو اتخذنا سرعة الضوء وحدة للسرعات ، وبذلك وضعت الكتلة تحت وصاية الطاقة .

بل هناك إذابة لا تقل عن الاندماج والاتحاد ، وهى إذابة الطبيعة فى الهندسة ، فأصبح محال التجاذب الطبيعى ليس مجال قوة طبيعية ، بل هو مجال هندسى غير منبسط وغير متزود بقوة ما .

لعل القارئ يلمح بين سطور هذه العجمالة أن « النسبية ، أسلوب له خصائصه في التفكير العلمي ، تعدّاه إلى الفلسفة والاجتماع والاقتصاد .

مقدمة المؤلف

أتمنى لهذا الكتاب أن يوفر للقارئ الذى يهتم بدراسة نظرية النسبية فلسفيا وعمليا وسيلة سهلة يحقق بها أمله في دراستها دراسة تامة حتى ولو لم يكن متمكنا من الجهاز الرياضي الذي تتطلبه دراسة الفيزياء النظرية. وعلى الرغم من قلة صفحات هذا الكتاب فإن قراءته تستلزم عزما لايلين ومشابرة على تعمق الفكر ومستوى ثقافيا يضارع مستوى القبول في الجامعات. ولقد بذلت غاية الجهد في سبيل توضيح الأفكار الأساسية . أحسن إيضاح فوضعتها في أبسط صورة وأسهلها فهما. أما من حيث التسلسل والإرتباط فقد تركتها في مجموعها على سجيتها مثلما خطرت لي أصلا. ولم أدخر وسعاً في سبيل الوضوح الكامل فلم أسلم في كثير من المواقف من التكرار ولم أهتم أي أهتمام ببلاغة الأسلوب وطلاوته فإني مثل ل. بولتزمان - ذلك العالم الفذ - أعتقد أن أمور التألق يجب تركها للترزى والإسكاف. ولست أدعى أنى قد باعدت بين القارئ والصعوبات المتصلة بالموضوع إنما قصدت إلى معالجة الأساس الفيزيائي التجريبي للنظرية بطريقة حانية عمادها التيسير والرفق حتى لا أترك القارئ الذي لا يلم بالفيزياء يشعر بالتيه أو بالضياع كمن أضلته الأشجار عن الغابة. إنى أتمنى أن يهيئ هذا الكتاب للقراء لحظات من التفكير الملهم .

أ. أينشتين

دیسمبر ۱۹۱٦

تعليق بمناسبة الطبعة الخامسة عشر

لقد أضفت في هذه الطبعة الخامسة عشرة ملحقا خامسا يتضمن آرائي في مشكلة المكان عموما والتغيرات التدريجية التي طرأت على تصورنا له نتيجة لوجهة النظر « النسبية » لقد أردت أن أوضح أن المكان ليس بالضرورة شيئا يمكن أن نمنحه وجودا منفصلا بطريقة مستقلة عن الأجسام الموجودة فعلا في دنيا المادة . إن الأجسام المادية ليست «في المكان» بلك هي « امتداد مكاني » وبهذه الطريقة يفقد «تصور المكان الفارغ» معناه .

أ. أينشتين

۹ یونیو سنة ۱۹۵۲

site www.libyaforall.com\e-mail almotanabby2002@yahoo.com

الجزء الاول

نظرية النسبية الخاصة

الفصل الآول المعنى الفيزيائي للقضايا الهندسية

لعل الغالبية الكبرى ممن يقرءون هذا الكتاب قد تعرفوا في حياتهم الدراسية على ما في هندسة إقليدس من منطق نبيل ولعلهم يذكرون -احتراماً لا حباً - ذلك الصرح الشامخ الذي ساقهم في تسلق درجة أساتذة أمناء مهرة طوال ساعات لا حصر لها . ولاشك أن القارئ سينظر بعين الريبة والازدراء إلى كل من يجرؤ على التشكيك في صدق أية قضية من قضايا الهندسة ونظرياتها مهما كانت ثانوية . ولاشك أن السر في ذلك هو ما تولد في نفس القارئ خلال تجربته السابقة مع الهندسة من شعور وطيد بالشقة . ولكن . . . أليس لهـذه الثقة حـدود . . . ؟ لو أن أحدّ سألك أيها القارئ العزيز: ماذا تعنى بتأكيدك أن هذه القضايا صادقة ؟ لعلك لو تأملت قليلا مضمون هذا السؤال والآفاق التي يفتحها أمامنا لرأيت أركان هذه المثقة الكاملة قد اهتزت واكتنفتها الظلال . ولذلك أعتقد أنه لابد لنا أن نتأمل هذا الأمر معا بإمعان وروية .

إن الهندسة تنبع من تصورات معينة مثل تصور المستوى والنقطة والمستقيم . ونحن نستطيع أن نربط بهذه التصورات أفكاراً محددة نوعا ما

نتمـثلها جيــدا . والهندسة تقــوم بجانب ذلك على قضــايا بسيطة مــعينة «بديهـيات» ونحن نميل بسبب حسن تصورنا لتلك الأفكار المحددة إلى التسليم بأن هذه البديهيات صادقة . ثم بطريقة منطقية دامغة لاسبيل إلى إنكار وجاهتها نقيم الدليل على أن كل القضايا الباقية تتسلسل من البديهيات ، أي أننا نقيم بذلك البرهان عليها . ومن هنا نرى أن قضايا الهندسة تكون صحيحة صادقة) عندما تكون مشتقة من البديهيات على النحو المسلم به . وهكذا نجد أن البحث في «صدق» القضية الهندسية الواحدة يتحول في آخر الأمر إلى البحث في «صدق البديهيات» . ولكنا قد عرفنا منذ أمد بعيد أن البحث في صدق البديهيات لا يمكن معالجته بالطرق الهندسية بل إنه لا معنى له بالكلية فلا وجه لأن نتساءل مثلا إن كان صدقاً أنه لا يوجد إلا خط مستقيم واحد يصل بين نقطتين أم لا . كل ما يمكن أن نقوله هو أن هندسة إقيلدس تعالج أشياء تسميها «خطوطا مستسقيمة» وتنسب لأي واحد منها خاصية التعين بذاته بسنقطتين واقعتين عليه : ونحن نعلم أن التصور الذي نعبر عنه بكلمة «صادق» نقصد به عادة شئ له وجود حقيقي . (والهندسة ليست معنية بعلاقات المفاهيم الداخلة فيها بالأشياء الواقعية ولكنها معنية فقط بالصلات المنطقية لهذه المفاهيم فيما بينها .

وليس من العسير أن نرى لماذا كنا على الرغم من هذا مسوقين إلى القول «بصحة» القضايا الهندسية . فالمفاهيم الهندسية تناظر إن كثيرا أو قليلا أشياء بالذات لها وجود في الطبيعة ، وهذه الأشياء دون ريب

السبب الوحيد في نشأة هذه المفاهيم . ولاشك أنه يجب على الهندسة أن تتنكب هذا الطريق إذا أرادت أن يكون لبنائها أكبر وحدة منطقية ممكنة . خذ مثلا تلك العادة المتأصلة في تفكيرنا في أن كل ما في المسافة هو موضع نقطتين على جسم متماسك . أو أيضا ما درجنا عليه من اعتبار ثلاث نقط على استقامة واحدة إذا استطعنا أن نجعل مواضعها الظاهرية تنطبق على مسار شعاع بصرى واحد ، وذلك إذا أحسنا اختيار الموضع الذي نرصد منه هذه النقط الثلاث .

ولكنا نستطيع أن نستعيد ثقتنا الأولى إلى حد ما وذلك إذا أضفنا إلى قضايا هندسة إقليدس القضية التالية: «تناظر نقطتان على جسم جاسئ نفس المسافة دائماً (الفترة الخطية) مهما حدث من تغييرات في موضع الجسم » عند ذلك نجد أن قضايا هندسة إقليدس تتحول فجأة إلى قضايا عن المواضع النسبية الممكنة للأجسام الجاسئة(۱). والهندسة التي أكملت بهذه الصورة يجب أن تعالج على اعتبارها فرعا من الفيزياء(۲).

⁽۱) يتبع هذا أن يرتبط جسم طبيعى بخط مستقيم وهكذا تقع النقط أ ، ب ، ج على جسم جاسى، على خط مستقيم حينما نختار النقطة ب وقد حددنا من قبل النقطتين أ ، ج بحيث يكون مجموع المسافتين أ ب ، ب ج اقصر ما يكون . وسيفى هذا الاقتراح الناقص بالغرض الذي ننشده حاليا .

⁽٢) هذا هو ما يسمى بفيزياء الهندسة وهو حجر الزاوية الذى شاد عليه ريمان هندسة الفضاء الكروى المنحنى مترسما خطى لوياتشفسكى أبو الهندسات اللااقليدية وجاوس الذى اهتدى إلى الوسيلة الرياضية العامة لدراسة المتصلات متعددة الابعاد . وإذا =

site www.libyaforall.com\e-mail almotanabby2002@yahoo.com

ويحق لنا عندئذ أن نتساءل عن صدق قسضايا الهندسة مفسرة على هذا النحو . لأننا أصبحنا نستطيع أن نختبر هل تتفق فعلا هذه القضايا مع الأشياء الحقيقية التي ربطناها فيما سبق بالأفكار الهندسية أم لا . أو بعبارة أخرى - ولو أنها أقل دقة - يمكننا أن نعبر عن ذلك بأن نقول إننا نقصد بصدق قضية هندسية ما بهذا المعنى قابليتها للتنفيذ باستعمال المسطرة والفرجار .

وهكذا نرى بوضوح أن الاقتناع بصدق القضايا الهندسية بهذا المعنى يستند كلية على تجربة لا يمكن اعتبارها بحال من الأحوال كاملة بل هى أقرب ما تكون إلى النقص ولكنا مع ذلك سنسلم الآن بصدق القضايا الهندسية وسنرى فيما بعد (في نظرية النسبية العامة) أن هذا الصدق محدود ، وسنحاول أن نعين مدى هذه الحدود .

اضفنا إلى هذه الأفكار فكرة تساوى الكتلة القصورية والكتلة الجاذبية حصلنا على
 هيكل نظرية النسبية العامة (المترجم) .

الفصل الثانى مجموعة الإحداثيات

لقد شرحنا في الفصل السابق التفسير الفيزيائي للمسافة واستناداً إلى هذا التفسير نستطيع أن نحدد بسهولة المسافة التي تفصل بين نقطتين على جسم جاسيء وذلك بوساطة القياش . وكل ما نحتاج إليه للقيام بعملية القياس هو «مسافة ما» ولتكن «القضيب ل مشلا» نتفق عليها مقدماً ونعتبرها وحدة عيارية للقياس فإذا كانت أ ، ب نقطتين على جسم جاسيء فإننا نستطيع إنشاء الخط الذي يوصل بينهما بالطرق الهندسية ونستطيع ابتداء من أ أن نطبق القضيب على هذا الخط وأن نكرر ذلك بحيث تطابق نقطة ابتدائه في كل مرة نهايته في المرة السابقة إلى أن نصل إلى ب، وعدد مرات تكرار هذه العملية هو القياس العددي للمسافة أ ب.

إن كل وصف لمسرح أية حادثة أو لموضع جسم ما في الفضاء يستند

⁽۱) لقد فرضنا هنا أنه لم يتبق شيء أى نتيجة القياس عدد صحيح ونحن نتغلب على هذه المشكلة أيضا باستعمال قضبان القياس المقسمة إلى أجـزاء واستعمالها على هذه الصورة لا يتطلب تعديلا جوهريا في طريقة القياس .

أساساً إلى تعيين النقطة التى تناظر مسرح الحادثة أو موضع الجسم من نقط مجموعة الإسناد . وليس هذا النحو في وصف مسارح الحوادث ومواضع الأجسام وقفاً على العلم وحده بل إنه في الواقع عين ما نلجأ إليه في حياتنا اليومية . إننا إذا تأملنا تحليلياً التحديد المكانى : «حادثة في ميدان التحرير بالقاهرة مثلا» أمكن أن نصل بسهولة إلى النتيجة التالية : إن الأرض هي مجموعة الإسناد التي تسند إليها التعيين المكانى ، وميدان التحرير نقطة محددة جيداً على سطح الأرض أطلق عليها هذا الاسم وهذه النقطة هي النقطة التي تتفق ومسرح الحادثة في المكان (۱) .

وهذه الطريقة البدائية في تعيين المكان لا تصلح إلا بالنسبة للأماكن التي تقع على سطوح الأجــــام الجاســئة وبــشرط وجــود نقط على هذه الأجسام يمكن تمييزها عن غيرها من النقط . ولكنا نستطيع أن نتحرر من كل هذه القيود دون أن نغير الأساس الذي نعتمد عليه في تعيين المواضع . فإذا كانت هناك سحابة فوق ميدان التحرير مثلا فإننا نستطيع أن نعين مكانها بالنسبة إلى سطح الأرض بأن نقيم عموداً يصل بينها وبين الميدان وطول هذا العمود مقيساً بقضيب القياس العيارى مشتركا مع ما يحدد نقطة قاعدة العمود يعطيانا معاً تحديداً كاملا لموضع السحابة في الفضاء . ومن هذا المثل نرى بوضوح الطريقة التي تم بها تهذيب الفكرة (١) ليس من الضروري هنا أن نشقصي إلى أبعد من ذلك معنى عبارة الاتفاق في المكان فهلذا التبصور واضح الوضبوح الكافي لتجنب اختسلاف الرأى حبول أمكان تطبيبقه عملياً.

الأساسية في عملية تحديد المواضع عموماً . وتتلخص خطوات هذه العملية فيمايلي :

- (أ) أن نتخيل الجسم الجاسىء الذى نسند إليه التعيين المكانى مزوداً على نحو يمكنه من الوصول إلى الجسم المراد تعيين موضعه .
- (ب) نستعمل في تحديد موضع الجسم عدداً بدلا من الالتجاء إلى نقط إسناد معينة (وهو في هذه الحالة طول العمود مقيساً بقضيب القياس «وحدة القياس»).
- (ج) نستطيع أن نحصل على ارتفاع السحابة حتى ولو لم نقم العمود فعلا فنحن إذا رصدنا السحابة ضوئياً من مواقع مختلفة على الأرض. وإذا أدخلنا في حسابنا خواص انتشار الضوء نستطيع أن نعين طول العمود الذي كان علينا أن نقيمه حتى نصل إلى السحابة.

مما تقدم نرى أنه سيكون من المستحسن لو أمكن عند وصف المواقع عموماً أن نتحرر بطريقة القياسات العددية من ضرورة الالتجاء إلى ذكر مواقع معينة لها أسماء خاصة تتميز بها على مجموعة الإسناد التى نرجع إليها . ونحن نحقق ذلك في القياسات الفيزيائية بتطبيق مجموعة إحداثيات ديكارت .

وهى تتكون من ثلاثة سطوح مستوية متعامدة ومرتبطة ارتباطا جاستًا بجسم جاسىء . وبتحديد موقع أية حادثة إذا أسندناه إلى مجموعة الإسناد بتعيين أطوال ثلاثة الأعمدة أو الإحداثيات (س. ص. ع) التي

يمكن إسقاطها من مسرح الحادثة على ثلاثة السطوح المستوية التى تكون مجموعة الإسناد . وأطوال هذه الأعهدة الثلاثة يمكن تحديدها بسلسلة من عمليات القياس تتم باستعمال قضبان القياس تبعاً للقواعد والطرق التى وضعتها هندسة إقليدس .

وليس من المستطاع دائماً في الحساة العملية الحصول على السطوح الجاسئة التي تتكون منها مجموعة الإسناد ، وفوق ذلك فإن مقادير الإحداثيات لاتحدد عملياً بطريق القياس المباشر بقضبان القياس فقط ولكن بطرق غير مباشرة أيضا ، فإذا كنا نريد أن تحتفظ النتائج التي توصلنا إليها في الفيزياء والفلك بوضوحها يجب أن لا يغيب عن بالنا أن تعيين المواقع يفقد معناه الفيزيائي مالم يخضع للاعتبارات التي ذكرناها أنفاً (١) .

وهكذا نصل إلى النتيجة التائية: إن وصف الحوادث التي تتم في الفضاء يحتم علينا الالتحاء إلى مجموعة إسناد جاسئة ننسب إليها هذه الحوادث ، والعلاقة الناتجة تسلم جدلا بأن قوانين الهندسة الإقليدية تنطبق على المسافات باعتبار المسافة يمثلها فيزيائيا اتفاق سابق على علامتين على جسم جاسىء

 ⁽١) لا يصبح اكمال وتحوير هذا الاعتبار ضروريا إلى أن نعالج نظرية النسبية العامة التي سنناقشها في الجزء الثاني من هذا الكتاب .

الفصل الثالث المكان والزمان في الميكانيكا الكلاسيكية

"إن الميكانيكا تهدف إلى وصف كيفية تغيير الأجسام لمواقعها في المكان بمرور الزمن". لاشك أنى لو ألقيت مثل هذا القول على علاته دون تفكير جدى وإيضاحات مفصلة عن أهداف الميكانيكا أكون قد أثقلت ضميرى بآثام جسام ضد روح الوضوح المقدسة.

والآن دعنا نكشف الغطاء عن هذه الآثام وأولها هو عدم وضوح ما نقصده هنا بكلمتى «الموقع» و«المكان». فإذا فرضنا أنى أقف بنافذة عربة قطار يسير بسرعة انتقال منتظمة وأنى أسقطت حجراً على طريق السكة الحديدية دون أن أقذف به فإنى إذا تغاضيت عن أثر مقاومة الهواء أجد أن هذا الحجر يظهر بالنسبة لى كأنه يسقط فى خط مستقيم بينما يراه رجل واقف على جانب الطريق يسقط إلى الأرض فى منحنى يسمى قطع مكافىء وإنى أتساءل الآن هل تقع النقط التى مر بها الحجر « فى الحقيقة» على خط مستقيم أو على منحنى قطع مكافىء ؟ وفوق ذلك ماذا المقيقة على خط مستقيم أو على منحنى قطع مكافىء ؟ وفوق ذلك ماذا المقيقة على خط مستقيم أو على منحنى قطع مكافىء ؟ وفوق ذلك ماذا المقادة فى ضوء الاعتبارات نقصد هنا بعبارة الحركة «فى المكان» . . . ؟ إننا فى ضوء الاعتبارات التى قدمناها فى الفصل السابق نجد أن الجواب على هذا السؤال واضح

للعيان والسبيل إليه هو أن نحذف أولا وقبل كل شيء تلك الكلمة الغامضة «المكان» التي تقتضى الأمانة آن نعترف بأننا لا نستطيع أن نكون عنها أدنى فكرة ، ثم نحل محلها عبارة «الحركة بالنسبة إلى مجموعة إسناد جاسئة» . أما المواقع بالنسبة إلى مجموعة الإسناد (عربة القطار أو قضيب السكة الحديدية) فقد سبق لنا تعريفها تفصيلا في الفصل السابق فإذا وضعنا بدلا من عبارة «مجموعة الإسناد» عبارة «مجموعة الإحداثيات» وهي فكرة رائعة يمكن الاعتماد عليها في الوصف الرياضي - نجد أننا قد أصبحنا في موقف يؤهلنا لأن نقـول : «إن الحجر يقطع عند سقوطه خطأ مستقيما بالنسبة إلى مجموعة إسناد مرتبطة ارتباطأ جاسئا بعربة القطار ولكنه بالنسبة إلى مجموعة إسناد مرتبطة ارتباطأ جاسئا بالأرض قضيب السكة الحديدية) يقطع قطعاً مكافئاً «ونحن نرى بوضوح بفضل هذا المثل أنه لا وجود لشيء مثل «مسار مستقل الوجود» (حرفياً منحني المسار^(۱) » إنما كل ما هناك هو مجرد مسار نسبى بالنسبة إلى مجموعة إسناد خاصة .

ولكى يكون وصفنا للحركة كاملا يجب أن نعين كيف يغير الجسم موقعة بمرور الزمن . أى أننا يجب أن نذكر بالنسبة إلى كل نقطة على المسار وقت وجود الجسم بهذه النقطة . وحتى هذه المدلولات لا تكفى لأن تجعل وصفنا للحركة كاملا إنما يجب أن يضاف إليها تعريف للزمن يجعل من المستطاع اعتبارها - وهي قيم زمانية أصلا - مقادير (نتائج

⁽١) أي المنحني الذي يتحرك عليه الجسم.

للقياس) يمكن معرفتها عن طريق الملاحظة وفي حالة المثل التوضيحي السابق نصل إلى تحقيق هذا الهدف - على أساس الميكانيكا الكلاسيكية - بأن نتصور أن هناك ساعتين متشابهتين في التركيب إحداهما مع الراصد الذي يطل من نافذة القطار والأخرى مع الراصد الذي على جانب الطريق الحديدي وأن نطلب إليهما أن يحدد كل منهما موضع الحجر بالنسبة إلى مجموعة إسناد كل منهما في كل لحظة تعينها الساعة . ونحن نتجاوز في هذا عن الخطأ الذي يترتب على سرعة انتشار الضوء المحددة . وسنتكلم بالتفصيل عن ذلك وعن صعوبة أخرى قائمة هنا في فصول تالية .

الفصل الرابع مجموعة الإحداثيات الجليلية

كلنا نعلم جميداً أننا نستطيع لو شئنا أن نضبع القانون الأسماسي لميكانيكا جاليليو - نيوتن وهو المعسروف بقانون القصور الذاتي على النحو الآتي : « كل جسم معزول بدرجـة كافية عن بقية الأجسام يســتمر ساكناً أو متحركاً بحركة منتظمة في خط مستقيم. وهذا القانون لا يدلنا إلى حد ما على حركة الأجسام فحسب بل إنه يشير أيضاً إلى مجموعات الإسناد أو مجموعات الإحداثيات الممكنة في الميكانيكا والتي يمكن الالتجاء إليها عند الوصف الميكانيكي . فالنجوم الثابُّتة التي يمكن رؤيتها أجسام معزولة بدرجة كافية ، ويمكن أن يطبق عليها قانون القصور الذاتي إلى درجة عالية من التقريب . ولكننا إذا استعملنا مجموعة إحداثيات موتبطة بالأرض ارتباطـ أ جاسئـ أنجد أن كل نجم ثابت يتـحوك بالنسبة إلى هذه المجسموعات في دائرة هائلة القطر خلال يوم فلكي وهذا يجعل هذه المجموعات تتعارض مع نص قانون القصور الذاتي ولذلك إذا أردنا التمسك بهذا القانون وجب علينا قبصر إسناد الحركات عسموما على مجموعات الإحداثيات التي تكون حالتها من الحركة بحيث ينطبق عليها

قانون القصور الذاتي وتسمى «مجموعة إحداثيات جاليلية » ولا تعتبر قوانين ميكانيكا جاليليو - نيوتن صحيحة إلا بالنسبة إلى مجموعات الإحداثيات الجاليلية هذه فقط .

الفصل الخامس مبدا النسبية (بالمعنى المقيد)

ز

دعنا نعود تلمسأ لأقصى وضوح ممكن إلى مثل عربة القطار التي تتحرك بسرعة منتظمة . إننا نسمى حركتها انتقالا منتظماً (متتظماً لأن سرعته واتجاهه ثابتان وانتقالا لأنه بالـرغم من أن العربة تغير موضعها بالنسبة إلى قضيب السكة الحديدية فإنها مع ذلك لا تدور أثناء حركتها) ولنفرض الآن أن غراباً يطير بحيث تبدو حركته لمن يرقبها من فوق قضيب السكة الحديدية منتظمة وفي خط مستقيم . إننا إذا كان علينا أن نرصد نفس الغـراب الطائر ونراقبه من عـربة القطار المتحركــة لوجدنا أن حركته سوف تبدو مختلفة السرعة والاتجاه عنها في الحالة الأولى ولكنها ستظل مع ذلك منتظمة وفي خط مستقيم . ولهذا يمكن أن نقول على وجه التجريد «إذا كانت الكتلة ك تتحرك بانتظام في خط مستقيم بالنسبة إلى مجموعة الإسناد م فإنها تكون أيضا متحركة بحركة منتظمة وفي خط مستقيم بالنسبة إلى مجموعة إسناد أخرى م مادامت مجمعوعة الإسناد الأخيرة تتحرك بحركة انتقال منتظمة بالنسبة إلى المجموعة م » وتبعاً لما ذكرنا في الفصل السابق ترى أنه:

إذا كانت م مجموعة إسناد جاليليلة فإن كل مجموعة إسناد أخرى م تكون جاليلية أيضاً عندما تكون في حالة حركة انتقال منتظمة بالنسبة إلى المجموعة م فتكون قوانين ميكانيكا جاليليو - نيوتن صحيحة بالنسبة إلى المجموعة م مثل ما هي صحيحة بالنسبة إلى مجموعة الإسناد م .

والآن دعنا نتتقدم خطوة أخرى في تعميمنا فنعبر عن المبدأ على هذا النحو: « إذا كانت م مجموعة إسناد تتحرك بحركة منتظمة خالية من الدوران بالنسبة إلى م فإن كل الظواهر الطبيعية بالنسبة إلى م تخضع لنفس القوانين الطبيعية العامة التي تخضع لها في م » ويسمى هذا النص «مبدأ النسبية» (بالمعنى المقيد».

وعندما كنا مقتنعين بأن كل الظواهر الطبيعية يمكن تمثيلها بمساعدة قوانين الميكانيكا الكلاسيكية لم يكن هناك داع إلى الشك في صحة مبدأ النسبية ، ولكنه ظهر شيئاً فشيئاً مع تقدم الديناميكا الكهربائية وعلم البصريات أن الميكانيكا الكلاسيكية لم تعد تقدم أساساً كافياً لوصف كل الظواهر الطبيعية ، وعند ذلك قفز السؤال عن صلاحية مبدأ النسبية وصحته إلى مسرح المناقشة ، ولم يستبعد في ذلك الحين أن تكون الإجابة عليه بالنفي .

ومع ذلك فهناك حقيقتان عامتان ضخمتان تؤيدان تأييداً واضحاً صدق مبدأ النسبية . فالميكانيكا الكلاسيكية بالرغم من أنها أصبحت لا تمدنا بأساس شامل يكفى لأن يفسر نظرياً كل الظواهر الطبيعية فإننا لا

نستطيع أن ننكر عليها قدراً عظيما من «الصدق» حيث إنها تفسر لنا تفسيراً يبلغ حد الروعة في دقته حركات الأجرام السماوية وعلى ذلك يجب أن يصدق مبدأ النسبية بدقة عظيمة في مجال الميكانيكا أيضاً. أما أن يصدق بهذه الدقة العظيمة مبدأ عام كهذا في مسجال من مجالات الظواهر وأن يكبو في غيرهم فأمر يكاد يكون بديهياً أنه غير محتمل.

أما الحجة الأخرى ولو أننا سنعود إليها فيما بعد فتتلخص في أنه إذا كان مبدأ النسبية (بالمعنى المقيد) خطأ فإن مجموعات الإسناد الجاليلية م ، م ، م ، . . . إلخ التي تتحرك بحركة منتظمة بالنسبة لبعضها البعض لن تكون متكافئة من حيث ملاءمتها لوصف الظواهر الطبيعية وفي هذه الحالة سنجد أنفسنا محمولين على الاعتقاد بأن القوانين الطبيعية لا يمكن التعبير عنها بطريقة سهلة إلا في حالة خاصة واحدة وذلك عندما نكون قد اخترنا كمجموعة إسناد لنا من بين كل مجموعات الإحداثيات الجاليلية مجموعة واحدة م لها حالة خاصة من الحركة، وسيحق لنا عندئذ (وذلك بسبب مزايا هذه المجموعة من حيث الملائمة في وصف الظواهر الطبيعية) أن نسمى هذه المجموعة م في حالة «سكون مطلق» وكل المجموعات الجاليلية الأخرى م حالة «حركة» . فإذا كان طريق السكة الحديدية مثلا يناظر المجموعة م فإن عربة القطار تناظر المجموعة مَ وتكون القوانين الخاصة بالمجموعة الأولى م أبسط من قوانين المجموعة الثانية مَ . وهذا التعقيد في قوانين المجموعة الثانية مرجعه أن العربة تتحرك « في الحقيقة

بالنسبة إلى م وسيتلخل مقدار واتجاه سرعة العربة في تحديد القوانين الطبيعية العامة بالنسبة إلى مجموعة الإسناد مَ . لذلك كان علينا أن نتوقع مشلا أن تختلف نغمة صادرة عن أنبوبة أرغن محورها في اتجاه حركة العربة عن نغمة صادرة من نفس أنبوبة الإرغن عندما يكون محورها في اتجاه عمودي على اتجاه حركة العربة . ولما كانت الأرض بسبب حركتها في مدارها حول الشمس تشبه عربة قطار تتحرك بسرعة ٣٠ ك م في الثانية فعلينا إذا أن نتوقع إذا كان مبدأ النسبية غير صحيح أن يتدخل إتجاه حركة الأرض في تكييف القوانين الطبيعية ، وكذلك سوف يعتمد سلوك المجموعات الفيزيائية على اتجاهها في الفضاء بالنسبة للأرض لإنه لما كان اتجاه سرعـة الأرض في دورانها يتغير خلال العـام فإنها لا يمكن أن تكون في حالة سكون بالنسبة إلى مجموعة الإسناد م خلال العام كله . ولكنه لم يحدث أبداً أن كشفت الملاحظة الدقيقة عن أى تأثير أو تدخل للاتجاهات في تحديد القوانين الطبيعية في الفضاء الأرضى ، أي أننا لم نجد أي اختلاف أو فارق بين خواص الإتجاهات المختلفة في الفضاء لأنها كلها متكافئة وهذا تأييد قوى لمبدأ النسبية .

الفصل السادس نظرية تركيب السرعات المستعملة فى الميكانيكا الكلاسيكية

تخيل أيها القارئ العزيز عربة القطار تتحرك على القضبان بسرعة قدرها قدرها ع وتخيل رجلا يعبر العربة طولا في اتجاه سير القطار بسرعة قدرها ع فبأية سرعة يتحرك هذا الرجل بالنسبة إلى قضبان السكة الحديدية ؟ إذا ظل الرجل ساكنا في العربة مدة ثانية فإنه يقطع في هذه الثانية مسافة قدرها ع مساوية عدديا لسرعة العربة ولكنه في الواقع نظراً لسيره في العربة يقطع في هذه الثانية مسافة إضافية قدرها ع بالنسبة للعربة وبالتالي بالنسبة للقضبان أيضاً وتساوى عدديا سرعة سيره . وهكذا يكون مجموع ما يقطعه في الثانية بالنسبة إلى القضبان هو س = ع + ع وسنرى فيمايلي أن هذه النظرية وتسمى في الميكانيكا الكلاسيكية نظرية تركيب السرعات لا يمكن الاحتفاظ بها ، أي أن القانون الذي ذكرناه آنفا لا يمثل الحقيقة ولو أننا سنسلم الآن بصحته إلى حين .

الفصل السابع التناقض الظاهرى بين قانون انتشار الضوء ومبدا النسبية

يصعب أن نجد في الفيزياء قانوناً أبسط من قانون انتشار الضوء في الفراغ ؛ فكل أطفال المدارس يعرفون أو يظنون أنهم يعرفون أن هذا الانتشار يحدث في خط مستقيم بسرعة قدرها ٢٠٠٠, ٢٠٠٠ ك م في الانتشار يحدث نعرف على أية حال بمنتهى الدقة أن هذه السرعة واحدة بالنسبة لكل الألوان ، لأنه لو لم يكن الأمر كذلك لما استطعنا رؤية أقل ومضة من نجم ثابت بالنسبة للألوان المختلفة مترامنة وذلك أثناء كسوف ذلك النجم بوساطة جاره المظلم . ولقد استطاع الفلكي الهولندي دي ستر استناداً إلى اعتبارات عمائلة قائمة على دراسة النجوم المزدوجة أن يثبت أيضاً أن سرعة انتشار الضوء تعتمد على اتجاهه « في الفضاء» والزعم ، القائل بأن سرعة انتشار الضوء تعتمد على اتجاهه « في الفضاء» زعم في حد ذاته غير محتمل .

إنننا باختصار مدعوون إلى أن نسلم مع أطفال المدارس بفانون ثبوت سرعة انتشار الضوء (في الفراغ) جد . من كان يتخيل أن هذا القانون

البسيط قد أوقع علماء الفيزياء أمناء التفكير في أكبر المآزق الفكرية . . . ! دعنا نرى الآن كيف كان ذلك .

إننا نعلم جميعاً أنه يجب علينا أن نسند عسملية انتشار الضوء (وكذلك كل عملية أخرى في الواقع) إلى مجموعة إسناد جاسئة (مجموعة إحداثيات) وليكن طريق السكة الحديدية الذي يمكن أن نتصوره في فراغ تام فإذا أرسلنا شعاعاً ضوئياً على طول الطريق فإن رأس هذا الشعاع يتحرك بالسرعة ح بالنسبة للطريق ولكننا إذا تخيلنا عربة القطار تسير بسرعة ثابتة على الطريق قدرها ع في نفس اتجاه شعاع الضوء فماذا تكون سرعمة انتشار الضوء بالنسبة إلى عربة القطار ؟ من الواضح أننا نستطيع هنا أن نطبق النظرية التي شرحناها في الفصل السابق حيث يلعب شعاع الضوء دور الرجل بالنسبة إلى عربة القطار ونستبدل السرعة ع وهي سرعة الرجل بالنسبة إلى الطريق بسرعة الضوء بالنسبة إلى الطريقة وتكون س هي السيرعة المطلوبة وهي سيرعة الضوء بالنسبة إلى العربة وعلى ذلك يكون لدينا :

س = حـ - ع

وهكذا يكون انتشار الضوء بالنسبة للعربة أقل من حـ

ولكن هذه النتيجة تناقض مبدأ النسبية الذى أوضحناه فى الفصل الخامس والذى ينص على أن قانون انتشار الضوء فى الفراغ ككل قانون طبيعى آخر يجب أن يظل واحدا سواء كانت مجموعة الإسناد هى طريق

السكة الحديدية أو العربة . ولقد رأينا أن هذا يبدو مستحيلا في ضوء ما تقدم لأنه إذا كانت سرعة انتشار الضوء بالنسبة إلى طريق السكة الحديدية هي حد فإنه تبعل لما تقدم يجب أن يكون هناك قانون آخر لسرعة انتشار الضوء بالنسبة إلى العربة وهذه هي نقطة الخلاف مع مبدأ النسبية .

وأمام هذه المشكلة لم يكن هناك بد من الاستغناء عن واحد منهما : مبدأ النسبيـة أو قانون انتشار الضوء في الفراغ والقراء الذين تتبعوا جيداً الفصول السابقة يتوقعون بالتأكيد أننا سنقف في صف النسبية وذلك لأنه شديد الإقناع ، غاية في البساطة وطبينعي جداً وفي هذه الحالة يجب استبدال قانون انتشار الضوء في الفراغ بقانون آخر أكثر تعقيداً ولكنه يتفق ومبدأ النسبية . ولكن تقدم الفيزياء النظرية قد أوضح بجلاء أن هذا التعديل أمسر غير مستطاع فقد أثبتت الأبحاث النظرية التي كان لها آثر بالغ والتي أجراها ه. أ. لورنتز على الظواهر الديناميكية الكهربية والظواهر الضوئية المتعلقة بالأجسام المتحركة أن التجربة في هذا المضمار تؤيد تمامأ تفسيرأ للظواهر الكهرومغناطيسية يستلزم الاحتفاظ بقانون ثبوت سرعة الضوء في الفراغ . وهنا احتدام الصراع بين الرأيين . وقد مال فزيائيون كبار عندما وصلنا إلى هذا الوضع إلى التخلى عن مبدأ السسبية بالرغم من أن أحداً لم يتوصل بأية حال من الأحوال إلى نتائج تجريبية تتعارض مع هذا المبدأ .

وفي هذه الأزمة المستحكمة تقدمت نظرية النسبية إلى الحلبة وأدلت

بدلوها وبدا واضحاً عند ذلك تمام الوضوح نتيجة لتحليل تصورات الفيزياء عن المكان والزمان أنه « لا أثر في الحقيقة لأى تعارض بين مبدأ النسبية وقانون انتشار الضوء » . وإننا بالتمسك بانتظام بكلا هذين القانونين نستطيع الوصول إلى نظرية متماسكة منطقياً . ولقد سميت هذه النظرية بنظرية النسبية الخاصة تمييزاً لها عن النظرية الأوسع التي سنعالجها في أخر هذا الكتاب . أما في الصفحات التالية فسنقدم الأفكار الأساسية في نظرية النسبة الخاصة .

الفصل الثامن فكرة الزمن فى الفيزياء

هب أن صاعقتين جويتين أصابتا قضبان السكة الحديدية المعهودة في مكانين ا ، ب متباعدين جداً . وهب فوق ذلك أنى أكدت لك أن هاتين الصاعقتين قد حدثتا في وقت واحد . إنى لو سألتك أيها القارئ العزيز هل هناك أى معنى لهذا القول ؟ لأجبت على الفور بالإيجاب ولكنى لو طالبتك بأن تشرح لى بإسهاب ودقة معنى هذا الكلام لوجدت بعد قليل من التأمل أن الأمر ليس هيناً كما يبدو لأول وهلة .

وربما خطرت لك بعد قليل هذه الإجابة: "إن معنى هذا الكلام واضح لا يحتاج إلى تفسير وطبيعى أن الأمر سيحتاج إلى بعض التدبر لو كان على أن أقرر عن طريق الملاحظة ما إذا كانت الصاعقتان فى هذه الحالة قد حدثتا فى آن واحد أم لا ». ولكنى شخصيا لا يمكن أن أرضى بهذه الإجابة للسبب التالى: هب أن فلكياً ماهراً استطاع أن يكتشف خلال تأملاته العبقرية أن الصاعقة لابد أن تصيب ا ، ب فى وقت واحد ، فعند ذلك سيكون علينا أن نختبر إذا كانت هذه النتيجة النظرية

تتفق والحقيقة ، وعند ذلك ستجابهنا نفس الصعوبة التي تقابلنا في كل أمور الفيزياء التي تتدخل ، وعند ذلك ستجابهنا نفس الصعوبة التي تقابلنا في كل أمور الفيزياء التي تتدخل فيها فكرة الآنية أو التزامن . إن هذا التصور لا وجود لها بالنسبة إلى عالم الفيزياء ما لم تستح له فرصة اكتشاف ما إذا كان قد تحقق فعلا أم لا . وهكذا نرى أننا في احتياج إلى تعريف الآنية وتحديد معناها تعريف يمدنا بوسيلة نستطيع بها في الحالة الراهنة أن نقرر تجسريبيا هل حدثت الصاعقتان الجويتان فعلا في وقت واحد أم لا . وطالما لم يتوافس هذا الشرط ولم أحقق هذه النتيجة فإنى أنا عالم الفيزياء (وبالطبع أيضا إن لم أكن عالم فيزياء) أخدع نفسى حينما أتصور أنني أستطيع أن أعطى النص على الآنية أي معنى (فشرط التسليم بوجود الآنية هو إمكان التحقق منها عملياً وإلا فليس هناك آنية)(١) وإنسى أسأل القارىء ألا يتابع القراءة ما لم يكن تام الاقتناع بهذه النقطة .

وربما بعد أن تأملت الأمر مليا خطرت لك الفكرة الستالية كسوسيلة عملية للتحقق من الآنية ألا وهي أن نقيس المسافة بين أ ، ب وأن نضع راصداً في نقطة الوسط (و) مزوداً بوسيلة ما (مرآنين متعامدتين مثلا) تمكنه من رؤية أ ، ب معا . فإذا رأى مثل هذا السراصد الصاعقتين في وقت واحد فهما إذا آنيتان .

⁽١) لم ترد هذه العبارة في الأصل اضفناها للشرح (المترجم).

site www.libyaforall.com\e-mail almotanabby2002@yahoo.com

ويسرنى جداً أن أوافق على هذا الرأى ولو أنه فى نظرى لا يحسم الموضوع فانى أسعر أنى ملزم أن أقدم الاعتراض التالى: إن هذا التعريف للآنية صحيح لاشك فى ذلك لو أننى كنت أعلم أن الضوء الذى يرى به الراصد وميض الصاعقة يقطع المسافة (أو) بنفس السرعة التى تقطع بها المسافة (وب) ولا نستطيع اختبار صحة هذا الفرض ما لسم يكن لدينا وسيلة لقياس الزمن وهكذا يبدو أننا ندور فى حلقة مفرغة .

وربمــا بعد تأمل قليل أجبت ســاخرا مني ولديك كل العذر قائلا : إننى متمسك بتعريفي السابق للآنية رغم اعتراضك لأن هذا التعريف لا يتعرض في النواقع للضوء إطلاقاً ، وليس هناك إلا شرط واحد يجب أن يتوافر في تعريف الآنية لكي يكون صحيحا ألا وهو أنه في كل حالة واقعية يجب أن يمكننا هذا التعريف من أن نقرر تجريبياً إذا ما كانت الحالة التي نحن بصددها قد تحققت فعلا أم لم تتحقق . وليس هناك مجال للمناقشة في أن التعريف الذي أقدمه للآنية لاشك يحقق هذا الشرط فكون الضوء يحتاج إلى نفس الزمن لقطع المسافة من (و) إلى (ب) ليس في الحقيقة تخيلا أو افتراضاً حول طبيعة الزمن الفيزيائية ولكنه مجرد « تعويض » لى مطلق الحرية في إجرائمه لكي أصل إلى تعريف الآنية . وواضح أن هذا التعريف يمكن أن يستعمل ليعظى معنى محدداً لا خادثين فقط بل ولأى عدد نختاره من الحوادث أيا كانت مواضع مسارح هذه الحوادث بالنسبة إلى مجموعة الإسناد⁽¹⁾ (وهى هنا طريق السكة الحديدية) وهذا يقودنا أيضا إلى تعريف الزمن في الفيزياء . ولهذا دعنا نتصور ساعات مستماثلة التركيب وضعت في النقط أ ، ب ، ح من طريق السكة الحديدية (مجموعة إحداثيات) بحيث تكون عقاربها في آن واحد بالمعنى السابق في مواضع متماثلة . وفي هذه الظروف نرى أن زمن أية حادثة هو ما تحدده قراءة موضع عقارب أية ساعة من الساعات التي على مقربة من مكان الحادثة . وبهذه الطريقة نجمع بين كل حادثة يمكن رصدها ومقدار زمني بصورة أساسية .

وهذا التعويض يحمل في طياته فرضاً فزيائيا آخر مسلماً به يصعب الشك في صحته ما لم يثبت تجريبيا أن العكس هو الصحيح ذلك هو افتراضنا أن جميع هذه الساعات تتحرك بمعدل واحد مادامت متشابهة التركيب أو بعبارة أدق إذا ضبطت ساعتان في حالة سكون وفي مكانين

⁽۱) ونمون نفرض أبعد من ذلك أنه عندما تحدث الحوادث أ ، ب ، ج في أماكن مختلفة بحيث تكون أ آنية مع ب ، ب آنية مع جه الآنية بالمعنى المذكور آنفا » يكون شرط آنية الحادثتين أ ، جه قد تحقق أيضا . وهذا الزعم فرض فيهزيائي حول قانون انتشار الضوء ولابد من تحققه إذا كنا نريد الاحتفاظ بقانون ثبوت سرعة الضوء في الفراغ .

site www.libyaforall.com\e-mail almotanabby2002@yahoo.com

مختلفين من مجموعة إسناد بحيث يكون موضعاً «خاصاً » لعقربي إحدى الساعة الساعتين « آنياً » (بالمعنى السابق) مع «نفس» موضع عقربي الساعة الأخرى تكون « القراءات» «المتماثلة» للساعتين آنية دائماً (بمعنى التعريف السابق للآنية).

لقد درجنا حتى الآن على إتخاذ طريق السكة الحديدية مجموعة إسناد لنا ولا بأس أن نفرض أن قطاراً طويلا جداً يتحرك على الفضبان بسرعة قدرها ع فى الإتجاه الموضح بالشكل (أ) سيفضل المسافرون بهذا القطار اتخاذه مجموعة إسناد (مجموعة إحداثيات) وسيسندون كل ما يحدث إليه وعلى ذلك فكل حادثة تحدث على طول الطريق تحدث أيضا عند نقطة

خاصة من القطار كذلك . ويمكن أيضا أن نحدد الآنية بالنسبة إلى القطار بنفس الطريقة التى نحددها بها بالنسبة إلى طريقة السكة الحديدية . ويجابهنا السؤال التالى نتيجة طبيعية لما تقدم :

هل تكون الحادثتان الآنيتان بالنسبة إلى طريق السكة الحديدية

(مثل الصاعقتين أ ، ب) آنيتين أيضا بالنسبة إلى القطار ؟ وسنوضح مباشرة فيمايلي أن الإجابة على هذا السؤال يجب أن تكون بالنفى .

إننا حينما نقول إن الصاعقتين أ ، ب آنيـتان بالنسـبة إلى طريق السكة الحديدية نعنى أن أشعة الضوء الصادرة من المكانين أ ، ب حيث تحدث الصاعقتان تتقابل في النقطة (و) (وهي منتصف المسافة أ ، ب على الطريق) ويناظر الحادثتان أيضاً على طريق السكة الحديدية الموضعين أ ، بَ على القطار ولنفرض أن النقطة (وَ) هي نفس نقطة الوسط للمسافة أَ بَ على القطار فإنه عندما يحدث وميض البرق(١) تشفق النقطة (و) مع النقطة (و) لكنها كما في الرسم التوضيحي تتحرك إلى اليمين بسرعة قدرها ع هي سرعة القطار فإذا كان هناك راصد يجلس في (و) في القطار ولا يتحرك بالسرعة ع فإنه سيظل دائماً في (و) وسيصل إليه شعاعا الضوء الصادران من أ ، ب في نفس الوقت حيث يلتقيان عند مكان جلوسه ولكنه في الواقع (بالنسبة إلى طريق السكة الحديدية) يندفع في اتجاه شعاع الضوء الآتي من ب بينما يسبتعد عن الشعاع الآتي من أ وعلى ذلك سيرى الراصد الشعاع الآتي من ب قبل أن يرى الشعاع الآتي من أ وعلى ذلك نصل إلى النتيجة المهمة التالية :

⁽١) كما يظهر من طريق السكة الحديدية .

site www.libyaforall.com\e-mail almotanabby2002@yahoo.com

إن الحوادث الآنية بالنسبة إلى طريق السكة الحديدية ليست آنية بالنسبة إلى القطار والعكس بالعكس (نسبية الآنية) فلكل مجموعة إسناد (مجموعة إحداثيات) زمنها الخاص . وما لم نعين مجموعة الإسناد التى حددنا بالنسبة لها زمن أية حادثة فليس هناك أى معنى لهذا التحديد .

وقبل ظهور نظرية النسبية كانت الفيزياء تسلم تسليما أعمى بأن الزمن أمر مطلق أى أنه مستقل عن حالة الحركة أو السكون التى عليها مجموعة الإسناد . ولقد رأينا الآن أن هذا الزعم لا يتفق مع تصور الآتية الطبيعى جداً وإذا أسقطناه اختفى التناقض الظاهرى بين قانون انتشار الضوء فى الفراغ ومبدأ النسبية (كما أوضحنا فى الفصل السابع) .

ولقد أوقعتنا الاعتبارات التي استعرضناها في الفصل الثالث (وهي اعتبارات بالية لا يمكن التمسك بها) في هذا التناقض ؛ فقد ذكرنا في ذلك الفصل أن الرجل الذي يقطع وهو في العربة المسافة ف بالنسبة للعربة يقطع نفس المسافة في نفس المدة بالنسبة إلى قضيب السكة الحديدية . وها نحن نرى في ضوء ما ذكر في الفصل الحالي أن الزمن الذي تستغرقه حادثة ما بالنسبة إلى عربة القطار لا يجوز أن يعتبر مساوياً للزمن الذي تستغرقه نفس الحادثة بالنسبة إلى طريق السكة الحديدية ،

وعلى ذلك لا يمكن أن نوافق على أن الرجل حينما يمشى في العربة وعلى ذلك الم يمكن أن نوافق على النائية » يقطع نفس المسافة في زمن مساو بالنسبة إلى طريق السكة الحديدية .

وفوق ذلك فإن اعتبارات الفصل السادس تعتمد على زعم آخر يبدو عند التحليل الدقيق حكماً تعسفيا ولو أننا كنا نلجأ إليه ضمنياً بصورة مستمرة حتى قبل مجىء نظرية النسبية .

الفصل العاشر حول نسبية تصور المسافة

دعنا نتخيل نقطتين معينتين على القطار (مثل منتصف العربة الأولى ومنتصف العربة العسرين) الذي يتحرك على قضيب السكة الحديدية بسرعة ع . ودعنا نبحث عن المسافة التي تفصلهما . إننا نعلم مقدماً أنه يجب علينا أن نحصل على مجموعة إسناد نقيس المسافات بالنسبة إليها . وأبسط الأمور هو أن نعتبر القطار نفسه مجموعة الإسناد (مسجموعة إحداثيات) والمسافر في القطار يستطيع أن يقيس المسافة باستعمال قضيب القياس في خط مستقيم (أي بتطبيقه على أرضية العربات العدد الكافى من المرات للوصول من النقطة الأولى إلى الثانية) ويحدد العدد الدال على عدد مرات تطبيق قضيب القياس طول المسافة المطلوبة .

ولكن الأمر يختلف عن ذلك إذا أردنا قياس هذه المسافة بالنسبة إلى طريق السكة الحديدية ويبدو هنا أن الطريقة المثالية لذلك هي : إذا سمينا أ ، ب النقطتين اللتين على القطار الذي يتحرك بالسرعة ع واللتين يراد إيجاد المسافة التي تفصل بينهما فإن هاتين النقطتين تتحركان على طول

الطريق بالسرعة ع أيضا ونحن نحتاج أولا إلى أن نعين النقطتين أ ، ب على طلقطار على طريق السكة الحديدية التي مرت عليهما النقطتان أ ، ب على القطار في زمن معين ز بالنسبة إلى الطريق . وهاتان النقطتان (أ ، ب) على الطريق الحديدي يمكن تحديدهما تبعاً لتعريف الزمن الذي قدمناه في الفصل الثامن والمسافة بين هاتين النقطتين (أ ، ب) يمكن أن تقاس إذا بتكرار عملية تطبيق قضيب القياس على طول الطريق .

وليس هناك أى سبب أولى لأن نؤكد أن عملية القياس الأخيرة تتفق في النتيجة مع عملية القياس الأولى . وهكذا قد يكون طول القطار مقيساً بالنسبة إلى الطريق مختلفاً عن طوله مقيساً بالنسبة إلى القطار نفسه . وهذا الظرف يؤدى بنا إلى إعتراض ثان على آراء الفصل السادس التى تبدو ظاهرياً واضحة ، وهو أنه إذا كان الرجل الذى في العربة يقطع المسافة في (مقيسة بالنسبة إلى القطار) في وحدة الزمن فإن هذه المسافة (مقيسة بالنسبة إلى الطريق) ليست بالضرورة متساوية مع ف .

الفصل الحادى عشر تحويــــــل لورنتــــز

إذا استعرضنا نتائج ثلاثة الفصول الأخيرة نرى أن عدم التوافق الظاهرى الذى نجده بين قانون انتشار الضوء ومبدأ النسبية (الفصل السابع) نشأ عن التسليم في الميكانيكا الكلاسيكية بفرضين لم يقم عليهما أى دليل . وهذان الفرضان هما :

- الفترة الزمانية (الزمن) التي تفصل بين حادثتين مستقلة عن حالة
 الحركة التي عليها مجموعة الإسناد التي نرجع إليها .
- ٢ الفترة المكانية (المسافة) بين نقطـــتين على جسم جاسىء مستقلة عن
 حالة الحركة التي عليها مجموعة الإسناد التي نرجع إليها .

فإذا أسقطنا هذين الفرضين اختفت مشكلة الفصل السابع لأن نظرية محصلة السرعات التي استنتجناها في الفصل السادس تصبح خطأ . وعند ذلك يبدو أن قانون انتشار الضوء في الفراغ قد يكون متفقاً مع مبدأ النسبية . ويصبح المطلوب معرفته هو كيف يجب تعديل الاعتبارات التي أوضحناها في الفصل السادس حتى نزيل التناقض الظاهري بين هاتين النتيجتين التجريبيتين الأساسيتين ؟ وهذا السؤال يقودنا إلى سؤال أعم فقد

كان لدينا في الفصل السادس أمكنة وأزمنة مسئدة إلى كل من القطار والطريق الحديدى فكيف نجد زمن ومكان حادثة بالنسبة إلى القطار إذا كنا نعرف مكانها وزمانها بالنسبة إلى الطريق الحديدى . . ؟ هل من المستطاع الإجابة على هذا السؤال بحيث لا يتعارض قانون انتشار الضوء في الفراغ مع مبدأ النسبية ؟ أو بعبارة أخرى هل من الممكن إيجاد علاقة بين زمان ومكان الحادثة الواحدة بالنسبة إلى كلتا مجموعتى الإسناد بحيث يكون لكل شعاع من أشعة الضوء السرعة حه بالنسبة إلى القطار والطريق معا ؟ إن الإجابة على هذا السؤال هي بالإيجاب وهي إجابة محددة جداً يعبر عنها قانون محدد لتحويل المقادير الزمكانية للحادثة الواحدة تبعاً لتغير مجموعة الإسناد التي تسند إليها .

وقبل أن نتعرض لهذا الموضوع دعنا نقدم له بمايلي :

لقد وجهنا اهتمامنا حتى الآن إلى الحوادث التى تحدث على الطريق الحديدى والتى اعتبرت رياضياً على خط مستقيم وبالطريقة التى أوضحناها فى الفصل الثانى نستطيع أن نتخيل أن هذا المسند إليه مزود جانبيا ورأسياً بهيكل من قضبان القياس المتعامدة بحيث يمكن تحديد مكان أية حادثة بالنسبة إلى هذا الهيكل . وبالمثل فإننا نستطيع أن نتخيل القطار الذى يتحرك بالسرعة ع مستمراً فى كل الفضاء بحيث يمكن تحديد مكان أية حادثة مهما كانت بعيدة بالنسبة لهذا الهيكل الثانى ، ونستطيع دون أن نرتكب أى خطأ أساسى أن نتجاوز عن تداخل هذه الهياكل باستمرار معاً حيث أن الأجسام الجاسئة لا تتداخل فيما بينها .

وفى كل هيكل من هذه الهياكل نتخيل ثلاثة سطوح متعامدة على بعضها البعض تسمى مستويات إحداثية (مجموعة إحداثيات) وعلى ذلك يمثل الطريق الحديدى مجموعة الإحداثيات م وأية حادثة أينما تحدث يمكن تحديد مكانها بالنسبة إلى م بوساطة ثلاثة أعسمدة س ، ص ، ش على المستويات الإحداثية وبالنسبة للزمن بالقيمة الزمنية ز أما بالنسبة إلى م فيحدد مكان نفس الحادثة وزمانها القيم س ، ص ، ش ، ز المقابلة وهى تخثلف عن س ، ص ، ش ، ز وقد أوضحنا بالتفصيل فيما تقدم كيف يجب أن نعتبر هذه المقادير نتائج للقياس الفيزيائى .

من الواضح أننا نستطيع أن نضع المشكلة على النحو الآتى :

ماهى قسيم المقادير س ، ص ، ش ، ز لحادثة ما بالنسبة إلى م إذا كنا نعلم قسيم المقادير س ، ص ، ش ، ز لنفس الحادثة بالنسبة إلى م . . . ؟ ويجب أن نختار العلاقات بين هذه القيم بحيث تحترم قانون انتشار الضوء في الفراغ بالنسبة إلى م ، م وبالرجوع إلى الوضع الموضح في (الشكل ٢) لمجسموع الإحداثيات نجد أن حل المشكلة تقدمه المعادلة :

$$\frac{w - 3 \zeta}{w} = \frac{\sqrt{3}}{\sqrt{3}}$$

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial x}$$

(شکل ۲)

وتعرف هذه المجموعة من المعادلات بتحويل لورنتز ولو جعلنا أساساً لنا بدلا من قانون انتشار الضوء تلك المزاعم الضمنية التي كانت تركن إليها الميكانيكا قديماً والتي ترتكز على فكرة الطابع المطلق للأزمنة والأطوال لحصلنا بدلا من المعادلات السابقة على المعادلات التالية :

س = س - عز ص ً = ص شَىَّ = ش ; = 5

وتسمى غالباً هذه المجـموعة الأخيرة من المعادلات بتـحويل جاليليو. ويمكننا الحصول على تحويل جاليليو من تحويل لورنتز، إذا عوضنا عن سرعة الضوء حـ في التحويل الأخير (تحويل لورنتز) بكمية متناهية الكبر.

وفيمايلي تستطيع أن ترى فوراً أن قانون انتشار الضوء في الفراغ تبعاً لتحويل لورنتز واحد بالنسبة لكل من مجموعة الإسناد م ومجموعة الإسناد مَ . ولذلك نرسل إشارة ضوئيـة على طول المحور الإيجـابي س

وهذا المؤثر الضوئي يتقدم تبعاً للمعادلة : س = حـ زَ

أى بسرعة الضوء حـ وتبعاً لمعادلات تحويل لورنتز نرى أن هذه العلاقة البسيطة بين س ، ز تعنى علاقة بين س ، ز ونحن في الواقع إذا عوضنا عن س بالمقدار حز في المعادلة الأولى والمعادلة الرابعة من معادلات تحويل لورنتز حصلنا على :

$$\frac{\zeta(---3)}{\zeta} = \frac{\zeta(---3)}{\sqrt{\frac{\gamma}{-1}}}$$

$$i\left(1 - \frac{3}{2}\right)$$

$$i\left(1 - \frac{3}{2}\right)$$

$$i\left(1 - \frac{3}{2}\right)$$

$$i\left(1 - \frac{3}{2}\right)$$

ومنها نحصل بالقسمة على المعادلة :

وإذا أسندنا إلى المجموعة م يحدث انتشار الضوء تبعاً لهذه المعادلة . وهكذا نرى أن سرعة انتشار الضوء بالنسبة إلى المجموعة م تساوى أيضا حد ونحصل على نفس النتيجة لأشعة الضوء التي تنتشر في أى اتجاه كان . وطبعا ليس في هذا أى غرابة حيث إن معادلات تحويل لورنتز قد اشتقت وفقاً لهذا الرأى .

الفصل الثانى عشر سلوك الساعات وقضبان القياس المتحركة

هب أننى أضع قبضيباً طوله متر في اتجاه المحور س لمجموعة الإحدثيات م بحيث يتفق أحد طرفيه (البداية) مع نقطة الصفر بينما يتفق الطرف الثانى (النهاية) مع النقطة سَ = ١ فما طول هذا القضيب بالنسبة إلى م ؟ وحتى نحصل على ذلك ما علينا إلا أن نبحث أين يقع مبدأ القضيب ونهايته بالنسبة إلى م عند الزمن ز الخاص بالمجموعة م وبوساطة المعادلة الأولى من تحويل لورنتز نجد أن قيمة هاتين النقطتين عند الزمن ز المعادلة الأولى من تحويل لورنتز نجد أن قيمة هاتين النقطتين عند الزمن ز صفر يمكن إثبات أنها :

س (ابتداء القضيب) = صفر
$$\sqrt{1 - \frac{3^2}{-3^2}} = صفر$$

$$\frac{3}{100} - 1 / 1 = (ight) = 1$$

وتكون المسافة بين النقطتين هي -1 ولكن قضيب القياس يتحرك بالسرعة ع بالنسبة إلى م وعلى ذلك نجد أن طول قضيب قياس

جاسىء طوله متر يتحرك في اتجاه طوله بسرعة قدرها ع هو $\sqrt{1 - \frac{3}{2}}$ من المتر وهكذا يكون القضيب الجاسىء أقسصر في حالة الحركة منه في حالة السكون ، وكلما زادت سرعة حركته زاد قصره بحيث إذا بلغت السرعة

ع = حـ يصبح طوله
$$\left(\sqrt{1 - \frac{3^2}{27}} \right)$$
 = صفر وعند السرعات الأكبر

من حـ يصبح الجذر التربيعي خيالياً . ومن هذا نستنتج أن السرعة حـ في نظرية النسبية تلعب دور السرعـة القصوى التي لا يمكن أن يبلغها أو يزيد عنها أي جسم حقيقي .

وواضح بالطبع أن هذا المظهر للسرعة حـ كسرعـة قصوى جاء نتيجة لمعادلات تحويل لورنتز لأنهـا تصبح لا معنى لها إذا اخترنا قيـماً للسرعة أكبر من حـ وعلى العكس لو أننا تأملنا قضيـب قياس طوله متر فى حالة سكون وفى المحور (س) بالنسبة إلى م لوجدنا أن طوله بالنسبة إلى راصد

وواضح بداهة أن معادلات الـتحويل تهيى، لنا حتـما فرصة مـعرفة الشيء الكثير عن السلوك الفيزيائي لكل من قضبان القياس والساعات لأن المقادير س . ص . ش . ز ليـست إلا نتائج قـياسات لا أكـثر ولا أقل

يمكن الحصول عليها عن طريق قضبان القياس والساعات . ولو أننا جعلنا أساساً لتفكيرنا التحويل الجاليلي لما حصلنا على انكماش القضيب نتيجة لحركته .

دعنا الآن نتأمل ساعة موضوعة دائما عند أصل م (س = صفر) ، ز = صفر ، رَ = ١ هما دقتان متتاليتان لهذه الساعة والمعادلتان الأولى والرابعة من تحويل لورنتز تعطيانا لهاتين الدقتين :

ز = صفر

$$=\frac{\frac{1}{7}}{1-\frac{3}{7}}$$

وكما يبدو من م تتحرك الساعة بالسرعة ع وعلى ذلك تكون فترة

الزمن بين الدقتين بالنسبة إلى م ليست ثانية ولكن
$$=\frac{1}{2}$$
 $=\frac{1}{2}$ $=\frac{1}{2}$

من الثواني أي زمناً أكثر قليلا وعلى ذلك تكون الساعة أبطأ في حالة الحركة منها في حالة السكون . وهنا أيضاً تلعب السرعة حد دور السرعة القصوى التي لا يمكن بلوغها .

الفصل الثالث عشر نظرية محصلة السرعات تجربة فيزو

إننا في الحياة العملية لا نحرك الساعات وقضبان القياس إلا بسرعات ضئيلة إذا ما قورنت بسرعة الضوء وعلى ذلك لن نستطيع أن نتحقق من نتائج الفصل السابق عملياً . ومع ذلك لابد أنه قد لفت نظرك غرابة هذه النتائج ولهذا يسرنا أن نستخلص من النظرية تبعاً لما أوضحناه في الفصل السابق نتيجة قد تم التحقق منها عملياً بصورة شائقة . لقد اشتققنا في الفصل السادس نظرية محصلة السرعات في اتجاه واحد على النحو الذي الفصل السادس نظرية محصلة السرعات في اتجاه واحد على النحو الذي تتبعه الميكانيكا الكلاسيكية ويمكن استنتاج هذه النظرية أيضا من تحويل جاليليو (الفصل الحادي عشر) فبدلا من الرجل الذي يمشي في عربة القطار نتصور نقطة تتحرك بالنسبة إلى مجموعة الإحداثيات م حسب المعادلة :

وبوساطة المعادلة الأولى والرابعة من تحويل جاليليو يمكننا التعبير عن سَ ، زَ بدلالة س ، ز عندئذ نحصل على المعادلة س = (ع+غ) ز . وهذه المعادلة لا تعبر عن شيئ سوى قانون حركة النقطة بالنسبة إلى مجموعة الإسناد م (أو الرجل بالنسبة إلى الطريق الحديدية) وسنرمز إلى هذه السرعة بالرمز عوصينتذ نحصل كما في الفصل السادس على :

$$\mathbf{a}_{-} = (\mathbf{a}_{+} + \mathbf{a}_{+}) \tag{1}$$

ولكننا نستطيع أن نجرى العملية نفسها على أساس نظرية النسبية عند ذلك يجب علينا ن نعبر عن س ، ز في المعادلة :

بدلالة س ، ز وباستعمال المعادلتين الأولى والرابعة من تحويل لورنتز نحصل بدلا من المعادلة (أ) على المعادلة :

$$\frac{3+3}{2} = \frac{3+3}{2} = \frac{3+3}{4}$$

$$\frac{3+3}{4} = \frac{3+3}{4}$$

وهو ما يناظر محصلة السرعات في اتجاه واحد تبعاً لنظرية النسبية . والسؤال الذي يجابهنا الآن هو : أي هاتين النظريتين آكثر اتفاقاً مع التحربة . . . ؟ وفي هذا الموقف تسعفنا وتشد أزرنا تجربة على جانب عظيم من الأهمية أجراها الفيزيائي القدير فيزو منذ أكثر من نصف قرن وأعاد إجراءها منذ ذلك الحين عدد من أحسن الفيزيائيين التجريبيين حتى أصبحت نتيجتها لا يتطرق إليها شك على الإطلاق . والتجربة تدور

حول المسألة التالية: إن الضوء ينتقل في سائل ساكن بالسرعة فبأية سرعة ينتقل في اتجاه السهم في الأنبوبة (انظر الشكل ٣) إذا كان السائل المذكور عالية يندفع هو نفسه في الأنبوبة بالسرعة ع . . . ؟

سيكون علينا تمشياً مع مبدأ النسبية أن نسلم بأن انتشار الضوء سيحدث دائماً بنفس السرعة غ بالنسبة للسائل سواء أكان هذا السائل يتحرك بالنسبة للأجسام الأخرى أم لا وهكذا تصبح سرعة الضوء بالنسبة إلى السائل معروفة وسرعة السائل بالنسبة إلى الأنبوبة معروفة أيضاً ونريد معرفة سرعة الضوء بالنسبة إلى الأنبوبة .

وواضح أن المشكلة التي أمامنا الآن هي نفس مشكلة الفصل السادس حيث تلعب الأنبوبة دور الطريق الحديدية أو مجموعة الإسناد م وأخيراً سنجد أن الضوء يلعب دور الرجل الذي كان يمشى بطول العربة . فإذا رمزنا إلى سرعة الضوء بالنسبة إلى الأنبوبة بالرمزع فإننا يمكن أن نحصل عليها من المعادلتين أ ، ب الأولى باستعمال تحويل جاليليو والثانية باستعمال تحويل لورنتز فأى الجوابين هو الصحيح ؟ ولقد جاءت

التجربة في جانب المعادلة (١) المشتقة من نظرية النسبية والاتفاق بينهما تام جداً ، وتبعاً لأدق القياسات التي قام بها زيمان تعبر المعادلة عن تأثير سرعة جريان السائل غ على انتقال الضوء إلى تقريب يقرب من ١٪.

ومع ذلك يجب أن لا يفوتنا الآن التنبيه إلى أن نظرية تفسر هذه الظاهرة كان قد سبق أن قدمها ه. أ. لورنتز قبل مجىء نظرية النسبية بوقت طويل ، ولكن نظرينه وكانت ديناميكية كهربية بحتة في طبيعتها كسان قد حصل عليها بالالتجاء إلى فروض أخرى حول البناء الكهرومغناطيسي للمادة . وهذا الوضع مع ذلك لا يقلل أبداً من نتيجة التجربة كاختبار مهم يؤيد نظرية النسبية لأن الديناميكا الكهربية التي وضعها ماسكويل لورنتز والتي قامت على أساسها النظرية الأولى لتفسير التجربة لا تتعارض بأى شكل مع نظرية النسبية ، بل إن هذه الأخيرة قد نبعت من الدنياميكا الكهربية كنظرية تجمع وتعمم بطريقة مذهلة الافتراضين اللذين بنيت عليهما الديناميكا الكهربية واللذين كانا قبل ذلك مستقلين الواحد عن الأخر

⁽۱) لقد وجد فيزو أن ع = ع + غ (۱ + $\frac{1}{\sqrt{7}}$) حيث ن = $\frac{2}{3}$ وهو معامل انكسار السائل ومن الناحية الأخري بالنسبة إلى صغر $\frac{3}{3}$ مقارنة بالواحد الصحيح يمكن أن تستبدل (ب) أو لا بالمقدار ع = (ع + غ) (۱ - $\frac{7}{3}$) أو إلى نفس درجة التقريب بالمقدار : ع + غ (۱ + $\frac{1}{3}$) وهي تتفق ونتيجة فيزو .

الفصل الرابع عشر القيمة الكاشفة للنظرية النسبية

نستطيع أن نلخص سلسلة أفكارنا السابقة فيمايلى: لقد أدت بنا التجربة إلى الاقتناع بأمرين: صدق مبدأ النسبية من ناحية وأن سرعة انتقال الضوء فى الفراغ يجب اعتبارها مقداراً ثابتاً من الناحية الأخرى، وبإتخاذ هذين الفرضين الأساسيين حصلنا على قانون تحويل الإحداثيات المتعامدة س. ص. ش والزمن ز للحوادث - وهي لب جميع العمليات الطبيعية - وفى هذه الحالة لم نحصل على تحويل جاليليو ولكننا حصلنا بخلاف الحال فى الميكانيكا الكلاسيكية على تحويل لورنتز.

ولقد لعب قانون انتشار الضوء وصحمته واضحة للعيان دوراً هاماً فى الوصول إلى هذه النتيجة ومادام لدينا تحويل لورنتز فإننا نستطيع أن نجمع بينه وبين مبدأ النسبية لنحصل على النظرية على النحو التالى :

« يجب أن تكون القوانين الطبيعية العامة بحيث لا تستغير إذا استبدلت المتغيرات س . ص . ش . ز المتعلقة بمنجموعة الإحداثيات الأصلية م بالمتغيرات س . ص . ش . ز الخاصة بمجموعة الإسناد م وفى هذه الحالة يحدد العلاقة بين المتغيرات الأولى والثانية تحويلات لورنتز أو

أو بعبارة أخرى مختصرة يجب أن تكون القوانين الطبيعية متغيرات متعدية بالنسبة إلى تحويلات لورنتز » .

هذا هو الشرط الرياضى المحدد الذى تستوجبه نظرية النسبية فى أى قانون طبيعى . ولذلك أصبح للنظرية أثر كاشف عميق فى البحث عن القوانين الطبيعية العامة . فإذا وجد أن قانوناً عاماً من قوانين الطبيعة لا يحقق هذا الشرط فعلى الأقل لابد أن يكون أحد الفرضين الأساسيين للنظرية خاطئاً . والآن دعنا نرى النتائج العامة التى أدت إليها هذه النظرية .

الفصل الخامس عشر النتائج العامة للنظرية

اتضح في سياق ما تقدم أن نظرية النسبية الخاصة قد تبلورت من دراسة الضوء والديناميكا الكهربائية وهي لم تغير النتائج النظرية في هذين المجالين ولكنها بسطت إلى حد بعيد البناء النظري - أي اشتقاق القوانين - والأهم من ذلك بمراحل أنها اختصرت إلى حد بعيد عدد الفروض المستقلة التي كانت تستند إليها وتقوم عليها وجهة النظر السابقة . ولقد جعلت نظرية النسبية الخاصة نظرية ماكسويل لورنتز مرضية بشكل جعل علماء الفيزياء على استعداد لقبولها ولو لم تكن جميع التجارب قد وقفت في صفها وأيدتها تأبيداً كاملا .

واحتاج الأمر إلى تعديل الميكانيكا الكلاسيكية حتى تتفق مع نظرية النسبية الخاصة . ولم تؤثر هذه التعديلات تأثيراً جوهرياً إلا في القوانين التي تتعلق بالسرعات الكبيرة أي عندما تقترب سرعة الأجسام المتحركة من سرعة الضوء حد . وليس لدينا مثال لهذه السرعات إلا ما يتعلق بالإلكترونيات والأيونات أما بالنسبة للسرعات الأخرى فقد كان الاختلاف بين نتائج قوانين الميكانيكا الكلاسيكية ونتائج نظرية النسبية الخاصة أضأل

من أن يظهر عملياً وسوف لا نتعرض لحركة النجوم إلى أن ندرس نظرية النسبية العامة . إن طاقة الحركة لنقطة مادية تتحرك لم يعد يحددها المقدار

المعروف ك $\frac{3}{4}$ بل يعبر عنها بالتعبير :

وهذا المقدار يقترب من مالا نهاية كلما اقتربت السرعة ع من سرعة الضوء ح ، وعلى ذلك يجب أن تظل السرعة دائما أقل من ح مهما كبرت العجلة وإذا وضعنا التعبير عن طاقة الحركة على شكل متسلسلة حصلنا على :

$$2 - \frac{7}{4} = \frac{3}{4} + \frac{7}{4} = \frac{3}{4} = \frac{3}{4} + \frac{7}{4} = \frac{3}{4} + \frac{7}{4} =$$

عندما يكون الحد $\frac{3^7}{4}$ صغيراً مقارناً بالواحد الصحيح فإن الثالث من هذه الحدود يكون دائماً صغيراً مقارناً بالحد الثانى ، وهذا الأخير هو الذى يوضع وحده موضع الاعتبار فى الميكانيكا الكلاسيكية . والحد الأول ك حـ لا يتضمن السرعة وليس هناك محل للنظر إليه الآن إذا كان ما يعنينا هو مسألة كيفية اعتماد طاقة النقطة المادية على السرعة وسنتكلم عن

المعنى الأساسى لذلك الحد فيما بعد .

وأهم النتائج ذات الطابع العام التى أدت إليها نظرية النسبية الخاصة تتعلق بفكرة الكتلة ؛ فقبل مجئ النسبية كانت الفيزياء تسلم بقانونى بقاء لهما أهمية أساسية هما قانون بقاء الطاقة وقانون بقاء الكتلة . وكان هذان القانونان يبدوان مستقلين عن بعضهما البعض تماماً . ولكنهما عن طريق نظرية النسبية قد ادمجا في قانون واحد وسنرى فيمايلى باختصار كيف تم هذا التوحيد وأي معنى يحمله ذلك في طياته .

إن مبدأ النسبية يتطلب أن يكون بقاء الطاقة صحيحاً لا بالنسبة إلى مجموعة الإحداثيات وحدها بل أيضا إلى كل مجموعة إحداثيات و في حالة حركة انتقال منتظمة بالنسبة إلى المجموعة و باختصار بالنسبة إلى كل مجموعة أسناد جاليلية . ويتطلب أيضاً وذلك على عكس ما في الميكانيكا الكلاسيكية أن يكون تحويل لورنتز هو العامل الحاسم في الانتقال من مجموعة كهذه إلى أخرى .

ويقليل من التأمل البسيط نسبياً نجد أننا نصل إلى النتيجة التالية من هذه المقدمات ، وذلك متفق مع المعادلات الأساسية للديناميكا الكهربية لماكسويل : إذا امتص جسم يتحرك بالسرعة ع مقداراً من الطاقة ق(١) على شكل إشعاع دون أن يحدث نتيجة لذلك أى تغيير في سرعته فإن طاقته تزيد نتيجة لذلك بالمقدار :

⁽١) ق هي الطاقة المستمدة كما تبدو بالنسبة إلى مجموعة اسناد تتحرك مع الجسم .

وبتأمل التعبير الذي قدمناه آنفاً لطاقة الحركة للجسم نجد أن طاقة الحركة المطلوبة للجسم تصبح:

$$\frac{Y - \left[\frac{3}{4} + \frac{3}{4}\right] - Y}{\frac{3}{4}}$$

وهكذا تصبح للجسم نفس الطاقة التي لجسم كتلته $\begin{bmatrix} t + \frac{t}{2} \\ -t \end{bmatrix}$ ويتحرك بالسرعة ع . من هنا يمكن أن نقول : إذا اكتسب جسم قدراً من الطاقة ق فإن كتلته القصورية تزيد بالمقدار $\frac{t}{2}$ وليست كتلة المقصور لجسم ما ثابت بل تتغير تبعاً لتغير طاقة الجسم . بل يمكن أن نقول أن كتلة قصور مجموعة من الأجسام يمكن أن تعتبر دليلا على مقدار طاقتها . وعلى ذلك يصبح قانون بقاء كتلة مجموعة ما مطابقا لقانون بقاء الطاقة للمجموعة نفسها . وهو صحيح مادامت المجموعة لا تمتص ولا تشع أية طاقة . وإذا عبرنا عن الطاقة بالتعبير :

وجدنا أن الحد ك حـ ألذى لفت نظرنا من قـ بل ليس إلا مقدار الطاقة (١) التي يملكها الجسم قبل أن يمتص ق

وليس من المستطاع حالياً المقارنة المباشرة بالتجربة لهذه العلاقة (كان ذلك صحيحاً سنة ١٩٢٠ ولكن انظر التعليق في أخر هذا الفصل) بالنسبة لأن تغيرات الطاقة ق التي يمكن أن تعرض لها مجموعة ما ليست كبيرة بالحد الكافي لأن تجعل نفسها محسوسة كتغيير في كتلة قصور المجموعة حيث أن قلم مقدار صغير جداً بالمقارنة بالكتلة ك التي كانت موجودة قبل تغير الطاقة، ولهذا السبب استطاعت الميكانيكا الكلاسيكية بنجاح أن تعتبر قانون بقاء الكتلة قانوناً صحيحاً مستقلا بذاته.

ودعنى أضيف إلى ما تقدم مسلاحظة أخيرة أساسية الجوهر . إن النجاح الذى حققته تفسيرات فرداى - ماكسويل للتأثير الكهرومغناطيسى عن بعد قد جعلت الفيزيائيين أكشر اقتناعا بأنه لا وجود لشىء من نوع «التأثير الفورى عن بعد » (أى الذى لا يتضمن وسطاً بينهما) الذى نجده

⁽١) كما تبدو لمجموعة إحداثيات تتحرك مع الجسم .

فى قانون الجاذبية لنيوتن . وحسب نظرية النسبية يحل التأثير عن بعد بسرعة انتشار بسرعة الضوء دائما محل التأثير الفورى أو التأثير عن بعد بسرعة انتشار لانهائية وهذا مرتبط بحقيقة أن السرعة حر تلعب دوراً أساسياً فى النظرية . وفى الجزء الثانى من هذا الكتاب سنرى بأى شكل ستتعدل هذه النتيجة فى نظرية النسبية العامة .

تعليق :

مع تقدم عمليات التحويل النووية التي تنشأ من قذف العناصر بدقائق ألفا أو البروتونات أو أشعة جاما تأكدت علاقة تكافؤ الكتلة والطاقة حسب المعادلة ق = ك حـ٢ فمجموع الكتل المتبادلة التأثير مضافا إليه مكافىء الكتلة للطاقة الحركية للدقائق المقذوفة (الفوتون) أكبر دائما من مجموع الكتل الناتجة عن التحويل والفرق بينهما هو الكتلة المكافئة لطاقة الحركة للدقائق المتولدة أو الطاقة الكهرومغناطيسية المشعة (فوتونات جاما) . وبنفس الطريقة نجد أن كتلة الذرة المشعة التي تتحلل فجأة أكبر دائما من مجموع كتل الذرات الناشئة بمقدار الكتلة المكافئة لطاقة الحركة للدقائق المتولدة (أو الطاقة الفوتونية) وقياسات الطاقة المتولدة عن النفاعلات النووية هي ومعادلات هذه التفاعلات بجعلان من الممكن تقدير الأوزان الذرية بغاية الدقة .

الفصل السادس عشر نظرية النسبية الخاصة والتجربة

إلى أى مدى تؤيد التجربة نظرية النسبية الخاصة . . . ؟ ليس من السهل الإجابة على هذا السؤال للسبب الذى سبق ذكره عند الكلام عن تجربة فيزو الأساسية . وكلنا نعلم أن نظرية النسبية الخاصة قد تبلورت من نظرية ماكسويل لورنتز عن الظواهر الكهرومغناطسية ، وتبعاً لذلك فإن كل الحقائق التى تؤيد هذه النظرية الأخيرة تـ ؤيد نظرية النسبية . ولكنى أقتصر هنا على ذكر الحقيقة التالية وحدها نظراً لما لها من الأهمية البالغة .

إن نظرية النسبية تتيح لنا أن نعرف مقدما التأثيرات التى تتناول الضوء الآتى إلينا من النجوم الشابتة . ومن الممكن الوقوف على هذه التأثيرات بطريقة متناهية البساطة . وقد وجد أنها وهى راجعة إلى حركة الأرض بالنسبة لهذه النجوم الثابتة تتفق مع التجربة . ونحن نشير هنا إلى الحركة السنوية للموقع الظاهرى للنجوم الثابتة الناشىء عن دوران الأرض حول الشمس الزغ) وإلى تأثير المركبات القطرية لحركات النجوم الثابتة بالنسبة إلى الأرض على لون الضوء الذي يصل إلينا منها ، وهذا التأثير بالنسبة إلى الأرض على لون الضوء الذي يصل إلينا منها ، وهذا التأثير

الأخير عبارة عن انتقال طفيف في خطوط الطيف في الضوء المرسل من النجوم الثابتة إلينا إذا قورن بوضع نفس هذه الخطوط إذا كان مصدر الضوء على الأرض (ظاهرة دوبلر) . والبراهين التجريبية التي تؤيد نظرية مكسويل - لورنتز وتؤيد أيضا نظرية النسبية أكثر من أن تحصى هنا . وهي في الحقيقة تحدد الإمكانيات النظرية بشكل لم تقو على الصمود آمامه غير نظرية ماكسويل لورنتز .

ولكن هناك مجموعة نظرية التجريبية لا يمكن تطبيق نظرية ماكسويل لورنتز عليها إلا إذا أدخلنا على تلك النظرية - وذلك دون أن نلجأ إلى نظرية النسبية - فرضاً يبدو مفتعلا .

فمن المعروف أن أشعة المهبط وكذلك الأشعة المعروفة بأشعة بيتا التى تشعها المواد ذات الإشعاع كليهما تتكون من جسيمات صغيرة مشحونة بشحنة كهربية سالبة (إلكترونيات) لها قصور ذاتى صغير جداً وسرعة كبيرة جداً وإذا درسنا انحراف هذه الإشعاعات تحت تأثير المجالات المعربائية والمجالات المغناطيسية أمكننا أن نعرف بالضبط قانون حركتها .

وتواجهنا عند دراسة هذه الإلكترونيات نظرية في ضوء نظرية الديناميكا الكهربية مشكلة ناشئة عن عجز هذه النظرية نفسها عن تفسير طبيعة الإلكترونات. فلما كانت الكتل الكهربائية المتشابهة النوع تتنافر فيما بينها فإن الكتل الكهربائية السالبة التي تكون الإكترونات يجب أن

تتناثر بفعل تنافرها فيما بينها ما لم تكن واقعة تحت تأثير قوى من نوع آخر لم تتضح لنا حتى الآن^(۱). فإذا فرضنا أن المسافات التى تفصل بين الكتل الكهربائية التى تكون الإلكترونات تظل ثابتة أثناء تحركها بالنسبة لبعضها البعض (اتصال جاسىء بالمعنى الميكانيكى الكلاسيكى) فإن القانون الذى نصل إليه معبراً عن حركة الإلكترون لا يتفق مع التجربة . ولقد كان لورنتز هو أول من افترض من وجهة نظر شكلية بحتة أن شكل الإلكترون يعانى انكماشا فى إتجاه حركته وأن كمية الانكماش تتناسب

مع $\sqrt{1 - \frac{3^7}{-17}}$ وهذا الفرض الذي لا تبرره أي حقائق الديناميكا الكهربية يمدنا بالقانون الخاص بحركة الإلكترون وهو القانون الذي حققته التجربة بدقة فائقة أخيراً.

ونظرية النسبية تؤدى إلى نفس قانون الحركة دون حاجة إلى أى افتراض آخر فيما يتعلق ببناء أو سلوك الإلكترون . وقد وصلنا إلى نتيجة مماثلة لهذا في الفصل الثامن فيما يتعلق بتجربة فينزو التي تنبأت نظرية النسبية بنتيجة مطابقة لها دون حاجة إلى أى افتراض حول طبيعة السائل .

والمجموعة الثانية من الحقائق التي أشرنا إليها تتعلق بمسألة إمكان أو

⁽۱) توضح نظرية النسبية العامة أن الكتل الكهربائية للاكسترونات تتجمع معا تحت تأثير قوى الحذب .

الأثير. وقد نسبت إلى حركة مَ في الأثير (دفع الأثير بالنسبة إلى مَ) أشد القوانين تعقيدا والتي كان يظن أنها تنطبق على مَ وبالتحديد استلزم الأمر أن نفترض دفع الأثير هذا قائمًا بالنسبة للأرض أيضاً . ولمدة طويلة وجه علماء الفيزياء جهودهم صوب محاولة الاستدلال على هذا الدفع على سطح الأرض .

وفي إحدى هذه المحــاولات ابتكر **ميكلسن** محاولة تبــدو حاسمة إذ تصور مرآتين مثبتتين على جسم جاسىء بحيث يتقابل سطحاهما العاكسان (وجها لوجه) . يستغرق شعاع الضوء زمنا محدداً ليقطع المسافة بينهما ذهابا وإيابا إذا كان الجهاز ثابتا بالنسبة للأثير ولكن إذا كان الجهاز متحركا بالنسبة للأثير فقد وجد بالتقدير الحسابي أن الزمن ز اللازم للعملية في هذه الحالة يختلف قليلا عن الزمن ز ، وفوق ذلك فقد أظهر التقدير الحسابي أنه إذا كانت سرعة الجهازع بالنسبة للأثير فإن هذا الزمن زَ يختلف في حالة ما إذا كان اتجاه حركة الجسم عيمودياً على مستوى المرآتين عنه في حالة ما إذا كان اتجاه حركته موازياً لهما . وبالرغم من أن الفرق بين هذين الزمنين ضئيل جداً فقد أجرى ميكلسن - مورلي تجربة على أساس التداخل الضوئي يمكن الاستدلال منها على ذلك الفرق. ومع كل جاءت نتيجة التجربة سلبية وكان هذا أمراً محيراً جداً لعلماء الفيزياء . وقد تغلب لورنتز وفتزجرالد على هذا الموقف المتأزم بأن افترضا أن حركة أى جسم بالنسبة للأثير تحدث انكماشاً في الجسم في اتجاه الحركة . وأن مقدار هذا الانكماش كاف لأن يعادل ذلك الفرق في الزمن الذي أشرنا إليه آنفاً . وبمقارنة هذا بما جاء في الفصل الثاني عشر نرى أنه من وجهة نظر النظرية النسبية كان هذا الحل للمشكلة هو الحل

الصحيح ولكنه تم في نظرية النسبية على أساس أسلم جداً ، فليس في نظرية النسبية شيء مثل مجمعوعة الإحداثيات المميزة أو الفريدة التي استوجبت فكرة الأثير وعلى ذلك فليس هناك دفع في الأثير وليس هناك داع لأية تجربة للاستدلال عليه . إن انكماش الأجسام المتحركة يتبع المبدأين الأساسيين للنظرية دون ما حاجة إلى اصطناع أى فروض خاص والعامل الأول في هذا الانكماش ليس هو الحركة في حد ذاتها فليس لها أى معنى مستقل إنما هو الحركة بالنسبة إلى مجموعة الإسناد التي وقع عليها الاختيار وعلى ذلك فجهاز المرآة لميكلسن - مورلي لا يعاني إنكماشا بالنسبة إلى مجموعة إسناد في حالة سكون بالنسبة إلى الشمس .

الفصل السابع عشر فضاء منكوفسكى رباعى الابعاد

إن القراء من غير الرياضيين ينتابهم الفزع والرعب حينما يقرأون عن الأشياء الرباعية الأبعاد ، وهم يحسون عند ذلك إحساساً لا يختلف كثيراً عما يحسون به في مواجهة السحر والسحرة . ومع ذلك فليس هناك قول أعم من أن العالم الذي نعيش فيه منتصل زماني مكاني رباعي الأبعاد .

إن المكان متصل ثلاثى الأبعاد ، ونعنى بهذا أننا نستطيع أن نحدد موضع النقطة الساكنة بوساطة ثلاثة أعداد (إحداثيات) س . ص . ش وأن هناك عدداً لا نهائياً من النقط المتجاورة يحدد موضع أيا منها الإحداثيات س . ص . ش يمكن أن تكون قريبة بأية درجة نختارها إلى الإحداثيات س . ص . ش الخاصة بالنقط الأولى ولهذا السبب نسميها المتصل . ونظراً لأن له إحداثيات ثلاثا فإننا نقول عنه إنه ثلاثى الأبعاد .

وبالمثل فإن دنيا الظواهر الطبيعية ويسميها منكوفسكى باختسصار «العالم» طبيعى أن تكون رباعية الأبعاد بالمعنى الزماني – المكانى لأنها تتكون من حوادث فردية يعين كل منها أربعة أعداد هي بالأسم ثلاثة

إحداثيات مكانية س . ص . ش وإحداثي زماني ز . والعالم بهذا المعنى متمصل لأنه توجد بالنسبة لكل حادثة حوادث معجاورة (واقعية أو على الأقل يمكن تخيلها) لا حصر لها إحداثياتها سَ ، صَ ، شَ ، زَ . وتختلف بقدر ضئيل جداً عن إحداثيات الحادثة الأولى س ، ص ، ش ، ز أما كوننا لم نتعود على النظر إلى العالم بهذا المعنى على أنه متصل رباعى الأبعاد فذلك راجع إلى أن الزمان كان يلعب في الفيزياء قبل نظرية النسبية دوراً مختلفاً أو أكثر استقلالا إذا قورن بإحداثيات المكان، وهذا هو الأصل في العادة الستي جرينا عليهـا من اعتبـار الزمان متـصلا مستقلا . وفي الواقع يعتبر الزمن في نظر الميكانيكا الكلاسيكية مطلقا بمعنى أنه مستقل عن موضع مجموعة الإسناد وحالتها من الحركة . ونرى تعبيراً عن هذا في المعادلة الأخيرة من التحويل الجاليلي ز = زَ .

والنحو الرباعى الأبعاد فى تصور العالم هو الموضع الطبيعى فى نظرية النسبية حيث تجرد هذه النظرية الزمن من استقلاله . ويظهر هذا فى المعادلة الرابعة .

$$\frac{z}{-\frac{y}{\sqrt{x}}} = \frac{3}{\sqrt{x}}$$

وفوق ذلك فإن الفرق الزمني كئ رَ لحادثتين بالنسبة إلى مَ لا يختفي عادة حتى ولو اختفى الفرق الزمني ئ ز لنفس هاتين الحادثتين بالنسبة إلى م . إن الفاصل المكاني الخالص لحادثتين بالنسبة إلى م ينتج فاصلا زمنيا لنفس الحادثتين بالنسبة إلى م . وليس هذا هو أهم اكتشافات منكوف سكى ، إذ أن اكتشافه الأهم يكمن في الحقيقة في تسليمه بأن المتصل الزماني - المكانى الرباعى الأبعاد بالنسبة للنظرية النسبية يشبه شبهاً بعيداً في خواصه الشكلية الأساسية المتصل المكانى الثلاثي الأبعاد للهندسة الإقليدية(١) وما علينا لإظهار هذا الشبه إلا أن نستبدل إحداثي الزمن العادى ز بالكمية الخيالية ٧-١ حـ ز المتناسبة معه . وبهذا تأخذ القوانين الطبيعية التي تطابق نظرية النسبية الخاصة الشكل الرياضي الذي يلعب فيه إحداثي الزمن نفس دور إحداثيات المكان الثلاث . وتناظر هذه الإحداثيات الأربع من حيث الشكل إحداثيات الهندسة الإقليدية المكانية الثلاث . ويجب أن يكون واضحاً حتى لغير الرياضيين أنه نتيجة لهذه ألإضافة الشكليــة البحتة إلى مــعلوماتنا اكتسبت النظريــة بالطبع وضوحاً لاحدله.

إن هذه الملاحظات العابرة يمكن أن تعطى الفارئ صورة ما عن الفكرة الهامة التي ساهم بها منكوفسكي والتي بدونها لما استطاعت النظرية النسبية العامة – وسندرس أسسها فيمايلي من الكتاب – أن توسع

⁽١) انظر شرح هذه المسألة بتفصيل أكبر في الملحق الثاني .

مجالها وأن يتسع تطبيقها إلى هذا الحد الشامل الأشك أن أبحاث منكوفسكى صعبة المنال على غير الرياضيين ولكنه لما كان يكفى لفهم الأفكار الأساسية لنظرية النسبية الخاصة والعامة إلماما خفيفاً بهذه الأبحاث فإنى سأتركها الآن على أن لا أعود إليها إلا عند نهاية الجزء الثانى من هذا الكتاب .

الجزء الثاني

نظرية النسبية العامة

الفصل الثامن عشر نظريتا النسبية الخاصة والعامة

لقد كان المبدأ الأساسى الذى دارت حوله كل الدراسات السابقة هو مبدأ النسبية الخاصة أى مبدأ النسبية الفيزيائية لكل حركة منتظمة . والآن دعنا مرة أخرى نحلل معناه بعناية ودقة .

لقد كان واضحاً في جميع الأزمان أنه لا مندوحة - من حيث وجهة النظر التي تنقلها لنا - من اعتبار الحركة (كل حركة) حركة نسبية فقط . فإذا عدنا إلى المثل الإيضاحي الذي لجانا إليه كشيراً - مثل الطريق الحديدي وعربة المقطار - فإننا نستطيع أن نعبر عن حقيقة الحركة التي تحدث هنا بالشكلين التاليين :

- (أ) العربة في حالة حركة بالنسبة إلى الطريق الحديدي .
- (ب) الطريق الحديدي في حالة حركة بالنسبة إلى العربة .

ويقوم فى (أ) الطريق الحديدى وفى (ب) عربة القطار مقام مجموعة الإسناد عند تقديرنا لحالة الحركة لحادثة ما ، فإذا كان الأمر ببساطة هو الكشف عن الحركة أو وصفها فلا أهمية من حيث المبدأ إلى أى مجموعة

إسناد نستند فهذا أمر كما سبق أن بينا واضح بنفسه للعميان ولكنه لا يجب الخلط بينه وبين النص الأكثر تعميما وشمولا والذي يسمى مبدأ النسبية الذي اتخذناه أساساً لأبحاثنا .

إن مبدأ النسبية لا ينص فحسب على أننا نستطيع أن نختار على السواء العربة أو الطريق كمجموعة إسناد لوصف أية حادثة (فهذا أيضاً واضح بنفسه للعيان) بل إنه فوق ذلك يؤكد على الأخص مايلى: أننا إذا صغنا القوانين الطبيعية العامة كما نحصل عليها بالتجربة باستعمال:

- (أ) الطريق كمجموعة إسناد.
- (ب) عربة القطار كمجموعة إسناد .

فإن هذه القوانين العامة (أى قوانين الميكانيكا وقانون انتشار الضوء في الفراغ) يكون لها نفس الشكل في كلتا الحالتين . ويمكن التعبير عن هذا على النحو التالى أيضاً : ليس لأى من مجموعتى الإسناد م ، م من حيث الملاءمة للوصف الفيزيائي للعمليات الطبيعية وضع فريد (أو حرفياً ليس لأى منهما ميزة خاصة) بالمقارنة بالمجموعة الأخرى . وعلى خلاف النص الأول فإن هذا النص الأخير ليس بالضرورة صحيحاً بداهة حيث إنه ليس مشمولا في تصورى الحركة أو مجموعة الإسناد أو قابلا للاشتقاق منهما . بل إن التجربة وحدها هي التي يمكن أن تقرر صحته أو مطلانه .

ومع ذلك فإننا حتى الآن لم ندع أبداً تكافؤ جميع مجموعات الإسناد م لصياغة القوانين الطبيعية . فلقد كان كل ما ذهبنا إليه أقرب إلى مايلي:

في أول الأمر ابتدأنا بفرض أن هناك مجموعة إسناد م حالتها من الحركة تجعل القانون الجاليلي التالي صحيحاً بالنسبة لها: إذا عزلت إحدى الجسيمات المادية عزلاً كافيا عن بقية الجسيمات وتركت وشأنها فإنها تتحرك بحركة منتظمة في خط مستقيم . فكانت القوانين الطبيعية كأبسط ما يكون بالنسبة إلى م (مجموعة إسناد جاليلية) ولكن بالإضافة إلى م وجدنا أنه ينسغى أن نعطى كل مجموعات الإسناد نفس الأفضلية في هذا المعنى ؛ ولذلك يجب أن تكون هذه المجموعات مكافئة للمجموعة م من حيث الملاءمة لصياغة القوانين الطبيعية طالما كانت هذه المجموعات في حالة حركة منتظمة في خط مستقيم بالنسبة إلى م وليست في حركة دوران . وعلى ذلك تعتبر كل مجموعات الإسناد هذه مجموعات إسناد جاليلية . ولذلك كانت صحة مبدأ النسبية مفروضة بالنسبة لهذه المجموعات لا لغيرها (أي لتلك التي تتحرك بحركة محتلفة النوع) إن هذا هو المعنى الذى نقصده عندما نتكلم عن مبدأ النسبية الخاصة أو نظرية النسسة الخاصة .

أما الآن فعلى العكس من هذا نود أن نعطى « مبدأ النسبية العامة» النص التالى : « كل مجموعات الإسناد م و م م . . . الخ متكافئة من

حيث ملاءمتها لوصف الظواهر الطبيعية (صياغة القوانين الطبيعية العامة) مهما كانت حالتها من الحركة» ولكن قبل أن نمضى إلى أبعد من هذا يجدر بى أن أشير إلى أن هذه الصيغة هى الأخرى مؤقتة أيضاً وسيصبح من الواجب استبدالها فيما بعد بأخرى أكثر إطلاقاً وشمولا لأسباب ستتضح فى حينها .

ومنذ أن وضح أن مبدأ النسبية الخاصة له ما يبرره كان طبيعياً جداً في يحس كل راغب في فهم أوسع وأعم ميلا في قرارة نفسه إلى التقدم قدماً نحو مبدأ النسبية العامة . ولكن اعتباراً بسيطاً له وزنه يوحى - على الأقل في وضعنا الحالي - بأن الأمل في نجاح هذه المحاولة ضعيف جداً تعترضه صعاب هائلة لابد من التغلب عليها أولا . والآن دعنا نتخيل أننا قد انتقلنا إلى عربة القطار التي تسير بسرعة منتظمة . إن المسافر فيها لا يشعر بحركتها طالما هي تتحرك بانتظام ولهذا السبب يستطيع دون غضاضة أن يفسر الأمر على اعتبار أن العربة ساكنة والطريق هو الذي يتحرك . وفوق ذلك فإننا نجد أن هذا التفسير تبعاً لمبدأ النسبية الخاصة صحيح أيضاً من وجهة النظر الفيزيائية .

ولكن إذا تغيرت الآن حركة العربة إلى حركة غير منتظمة بسبب «فرملة» شديدة مثلا فإن المسافر سيشعر فوراً مقابل ذلك بدفعة قوية إلى الأمام ، وسيترتب على انحباس هذه الحركة آثار أخرى تتناول الأجسام التى فى العربة مما سوف يشاهده المسافر فيها . وسوف يختلف ما يحدث

فى هذه الحالة عما حدث فى الحالة التى تأملناها أولا ؛ ولهذا السبب يبدو أنه من المستحيل أن تكون القوانين الميكانيكية السائدة بالنسبة إلى العربة التى تتحرك بسحركة منتظمة أو الساكنة هى نفس القوانين التى تنطبق فى حالة العربة التى تتحرك بحركة غير منتظمة . وعلى أية حال فإنه واضح جداً أن القوانين الجاليلية لا تنطبق على العربة التى تتحرك بحركة غير منتظمة . ومن أجل هذا نشعر أننا مضطرون فى الوضع الحالى إلى أن نضفى نوعاً من الحقيقة الفيزيائية المطلقة على الحركة غير المنتظمة عا لا يتفق مع مبدأ النسبية العامة . ولكننا سنرى سريعاً أن هذا الرأى الشطط يكن أن يفرض علينا طويلا إذ سنجد لنا منه مخرجا سهلا .

الفصل التاسع عشر مجــــال الجاذبيــــــة

إذا التقطت حجراً ثم تركته وشأنه فلماذا يسقط على الأرض . . . ؟ إن الإجابة المعتادة على هذا السؤال هي أن الأرض تجذب الحجر . والفيزياء الحديثة تجيب إجابة مختلفة للأسباب الآتية : لقد أدت الدراسة المفصلة للظواهر الكهرومغناطيسية إلى اعتبار أن التأثير عن بعد - دون تدخل وسط ما بين الطرفين - عملية مستحيلة ، فإذا جذب مغناطيس قطعة من الحديد مشلا فإننا لا نكتفي بأن نعتبر أن معنى هذا هو أن المغناطيس يؤثر مباشرة على الحديد خلال الفضاء الفارغ . ولكننا نضطر إلى أن نتخيل مع فرداى أن المغناطيس يخلق حوله شيئاً فيزيائياً حقيقياً -هو المجال المغناطيسي يؤثر بدوره على قطعة الحديد بحيث يدفعها إلى الحركة نحو المغناطيس . ولن نناقش هنا مبررات هذه الفكرة العارضة ، وهي في الحقيقة فكرة لا تخلو من التعسف بوجه ما ، ولكننا نكتفي بأن نقول إنه باستخدام هذه الفكرة (فكرة المجال) أمكن تفسير الظواهر الكهرومغناطيسية بطريقة أفضل بكثير مما لو استبعدناها خصوصاً فيما يتعلق بانتـشار الأمواج الكهـرومغناطيسيـة . وآثار الجاذبية أيضـاً تعامل بنفس الطريقة . إن تأثير الأرض على الحجر يحدث بطريقة غير مباشرة . فالأرض تخلق حولها مجالا جاذبيا يؤثر على الحجر مسبباً سقوطه . وتعلمنا التجربة أن شدة التأثير على جسم ما تتناقص كلما ابتعد هذا الجسم عن الأرض ، وذلك تبعا لقانون محدد . وهذا يعنى من وجهة نظرنا أن القانون الذي يحكم خواص مجال الجاذبية في الفضاء لابد أن يكون قانونا تام التجديد حتى يتحدد بالضبط تناقص الأثر الجاذبي تبعاً لبعد الأجسام المؤثرة . وهذا القانون قريب ممايلي : "إن الجسم (أي الأرض) يولد حوله فيما يجاوره مباشرة مجالا ويحدد شدة واتجاه هذا المجال في النقط البعيدة عن الجسم «القانون الذي يحدد خواص المجالات نفسها في الفضاء» .

وعلى العكس من المجالات المغناطيسية والكهربائية نجد أن مجالات الجاذبية تنفرد بميزة خاصة على جانب أساسى من الأهمية . «ذلك أن الأجسام التى تتحرك تحت تأثير مجال الجاذبية فقط تتحرك بعجلة لا تعتمد أبداً على الحالة المادية ولا الفيزيائية للجسم » . مثال ذلك أن قطعة الرصاص وقطعة الخشب تسقطان بنفس الكيفية تحت تأثير مجال الجاذبية في الفراغ سواء بدآ سقوطهما من حالة السكون أو ابتدآه بسرعة واحدة . ويمكن التعبير عن هذا القانون الدقيق بطريقة أخرى تبعا لما يلى : إننا وفقاً لقانون نيوتن للحركة نجد أن : القوة = - (كتلة القصور الذاتي) × وفقاً لقانون كتلة القصور ثابتاً مميزاً للجسم المعجل . فإذا أصبحت الأن الجاذبية سبب العجلة نجد أن :

site www.libyaforall.ppin/e-mail almotanabby2002@yahoocom = القوة

حيث كُتلة الجاذبية ثابت مميز للجسم . ومن هاتين المعادلتين نجد أن :

العجلة = كتلة الجاذبية × شدة مجال الجاذبية كتلة القصور الذاتي

فإذا كانت العجلة مستقلة عن طبيعة الجسم وحالته من السكون أو الحركة كما هو ثابت بالتجربة ، فعلى ذلك لابد أن تكون هذه العجلة واحدة بالنسبة إلى كل الأجسام ، وإذا اخترنا الوحدات المناسبة أمكن أن نجعل هذه النسبة مساوية للوحدة ، وبذلك نحصل على القانون : « كتلة الجاذبية لجسم ما مساوية لكتلة القصور الذاتي للجسم نفسه » .

صحيح أن هذا القانون المهم كان معروفاً من قبل في الميكانيكا ولكن أحداً لم يفسره وقت ذاك ، ولا يمكن الوصول إلى تفسير مرض له ما لم نسلم بالحقيقية التالية : « إن خاصيتي القصور الذاتي والوزن لجسم ما (حرفيا الثقل) هما في الحقيقة شيء واحد يبدو مرة بهذا الشكل والأخرى بالشكل الآخر حسب الظروف ، وسنرى في الفصل التالي لأى مدى يتفق هذا مع الواقع وسنرى كيف ترتبط هذه المسألة بفرض النسبية العامة .

الفصل العشرون تساوى كتلتى القصور والجاذبية كحجة فى صف المبدأ العام للنسبية

دعنا نتخيل حيزاً فارغاً قصياً ومنعنزلاً عن النجوم وعن كل الكتل الأخرى ذات الحجم الذي يعتد به بحيث يتوافر لنا تقريباً في هذا الحيز كل الشروط التي يتطلبها قانون جاليليو الأساسي . وعند ذلك سيكون محكنا أن نختار مجموعة إسناد جاليلية لهذا الحيز (الجزء من العالم) ، وبالنسبة إلي هذه المجموعة ستستمر كل النقط الساكنة في سكونها والنقط المتحركة كذلك ستستمر تتحرك في حركة منتظمة في خط مستقيم . دعنا نتخيل هذه المجموعة على هيئة قفص فسيح يشبه حجرة وبداخله راصد مزود بما يحتاج إليه من الأجهزة ، وطبعاً لا وجود للجاذبية بالنسبة إلى هذا الراصد بل إنه يجب عليه أن يربط نفسه بالحبال بأرضية القفص ، وإلا فإن أقل دفع على هذه الأرضية سيجعله يصعد ببطء نحو سقف القفص .

وقد ثبتـنا وسط غطاء القفص من الخارج خطافاً مـربوطاً به حبل . هب الآن أن كائناً (لا يعنينا هنا نوع هذا الكائن) بـدأ يشد القفص من الحبل بقوة ثابت عند دلك سيدا الفقص والراصد الذي فيه في الصعود إلى أعلى بحركة منتظمة العجلة ومع الزمن ستصل سرعتهما إلى قدر لم يسمع به من قبل ما دمنا نرصد كل هذا من مجموعة إسناد أخرى لا تتأثر بأى دفع .

ولكننا نريد الآن أن نرى كيف ينظر الرجل الذى فى القفص إلى هذه العملية . إن عجلة القفص ستنتقل إلى الرجل عن طريق رد فعل أرضية القفص وينبغى عليه إذاً أن يتحمل هذا الضغط على قدميه إذا كان لا يريد أن يرتمى بكامل قامته على أرضية القفص . إنه يقف فى القفص، بنفس الطريقة التى يقف بها أى إنسان فى حجرة من حجرات منزل على الأرض . وإذا ترك هذا الرجل جسماً كان فى يده من قبل وشأنه عندئذ سيتوقف انتقال العجلة إلى هذا الجسم وسيسقط نحو الأرضية بحركة نسبية ذات عجلة وسيقنع الراصد نفسه بعد ذلك « أن مقدار سقوط الجسم نحو أرضية القيفص سيظل ثابتاً (مقداراً واحداً دائماً) مهما كان نوع الجسم الذي يستخدمه فى التجربة .

واستناداً إلى ما يعلمه الرجل جيد العلم عن المجال الجاذبي (وهو ما قد وضحناه في الفصل السابق) سيصل سريعاً إلى هذه النتيجة :

«إنه والقفص واقعان في مجال جاذبي ثابت على مر الزمن » وبديهي أنه سيتعجب لحظة لماذا لا يسقط القفص في هذا المجال الجاذبي ولكنه سيكتشف فوراً الخطاف الذي يتوسط غطاء القفص والحبل المربوط به

site www.libyaforall.com\e-mail almotanabby2002@yahoo.com

وسيـصل تبعـاً لذلك إلى أن القفص مـعلق في حالة سكـون في المجال الجاذبي .

هل يجدر بنا أن نسخر من الرجل وأن نقول إنه يخطىء الظن وإن تصوره للموقف باطل . . . ؟ لست أعتقد أنه يجوز لنا ذلك إذا كنا نريد أن نكون منصفين ، بل ينبغى علينا أن نسلم بأنه سلك فى فهم الموقف سلوكا لا يتعارض مع العقل أو القوانين الميكانيكية المعروفة . فعلى الرغم من أن القفص يتحرك بعجلة بالنسبة للحيز الجاليلي الذي فرضناه أولا فإننا نستطيع مع ذلك اعتبار القفص ساكناً وهكذا يصبح لدينا أسباب قوية لتوسيع مدى مبدأ النسبية حتى يشمل مجموعات الإستاد التي تتحرك بعجلة .

الفصل الحادى والعشرون ما هى أوجه النقص فى أسس الميكانيكا الكلاسيكية ونظرية النسبية الخاصة ؟

ذكرنا مراراً فى سياق ما تقدم أن الميكانيكا الكلاسيكية تبدأ من هذا القانون: « إن الجسيمات المادية المعزولة عن بعضها البعض عزلا كافياً تستمر إما على الحركة المنتظمة فى خط مستقيم وإما على السكون».

ولقد أكدنا مراراً أن هذا القانون الأساسى لا يمكن أن يكون صحيحاً إلا بالنسبة إلى مجموعات الإسناد (م) ذات حالات فريدة معينة من الحركة والتى فى حالة حركة انتقال منتظمة بالنسبة لبعضها البعض ، أما بالنسبة إلى مجموعات الإسناد الأخرى (م) فإنه غير صحيح . وعلى ذلك فإننا نفرق فى كل من الميكانيكا الكلاسيكية ونظرية النسبية الخاصة بين مجموعات الإسناد (م) التى يمكن أن يقال إن قوانين الطبيعة المعروفة بنطيق عليها وبين مجموعات الإسناد (م) التى عليها هذه القوانين .

site www.libyaforall.com\e-mail almotanabby2002@yahoo.com

ولكن هذا الوضع لا يتفق وسلامة المنطق . إننا سرعان ما نتساءل كيف يكون لبعض مجموعات الإسناد (أو حالاتها من الحركة) أفضلية على بقية المجموعات (أو حالاتها من الحركة) . . . ؟ ولماذا كان هذا التفضيل . . . ؟ ولكى أوضح جيداً معنى هذا السؤال دعنى أضرب لك مثلا :

هب أنني أقف أمام موقد غازي على جانبيـه قدران متشابهان لا تميز العين بينهما ، وكلاهما ملىء حتى منتصفه بالماء وأنى أشاهد البخار يتصاعد باستمرار من أحدهما دون الآخر لا شك في أن ذلك سيكون مدعاة للعجب حتى ولو لم أكن قد رأيت موقداً غازياً وقدرا من قبل ، ولكن لو أنى لا حظيت وجيود شيء أزرق اللون تحت القيدر الأول دون الآخر لما كان هناك داع للاستغمراب حتى ولو لم أكن قد رأيت شعلة غاز من قبل لأننى سوف أستطيع أن أقول إن هذا الشيء الأزرق هو السبب في تصاعد البخار أو على الأقل يحتمل ذلك . وكان حريا بي أن أظل حائراً لو لم أكتشف هذا الشيء الأزرق اللون تحت أحد القدرين إذا كان سيتعين على عندئذ أن أحاول اكتشاف ظرف آخر أسند إليه تصاعد السخار من أحد القدرين دون الآخر .

وبالمثل فإننا نسعى إلى اكتشاف شيء حقيقى في الميكانيكا الكلاسيكية (أو في نظرية النسبية الخاصة) نسند إليه اختلاف سلوك

الاجسام بالنسبة بالمهام عبيره المسلمة وحاول التغلب عليه ولكنه فشل فسى ذلك . ولكن ماك أدركه إدراكاً أوضح من الجمسيع ولهذا طالب بإلحاح بأن توضع الميكانيكا على أسس جديدة ولا يمكن تلافى هذا النقص إلا فى فيزياء تتفق ومبدأ النسبية العامة فمعادلات نظرية النسبية تنطبق على جميع مجموعات الإسناد أياً كانت حالتها من الحركة .

الفصل الثانى والعشرون استنتاجات قليلة من مبدأ النسبية العامة

لقد رأينا في الفصل العشرين كيف أن مبدأ النسبية العامة يضعنا في موقف نستطيع معه أن نشتق صفات المجال الجاذبي بطريقة نظرية محضة. ولنفرض مثلا أننا نعرف كيفية حدوث عملية طبييعية ما ، زماناً ومكانا في حيز جاليلي بالنسبة إلى مجموعة إسناد جاليلية م . إننا نستطيع بطريقة نظرية محضة (أى بمجرد الحساب) أن نحدد كيف تبدو نفس هذه العملية الطبيعية بالنسبة إلى مجموعة الإسناد م التي تتحرك بعجلة بالنسبة إلى مجموعة الإسناد م التي تتحرك بعجلة بالنسبة الى مجموعة الإسناد م المجموعة الجديدة مجال جاذبي فإننا نستطيع أيضاً على ذلك أن نحدد أثر هذا المجال على العملية موضوع الدراسة .

هب أننا نعلم أن جسماً يتحرك بحركة منتظمة في خط مستقيم بالنسبة إلى مجموعة الإسناد م (تبعاً لقانون جاليليو) فإنه يتحرك بعجلة في خط منحن بالنسبة إلى مجموعة الإسناد م التي تتحرك بعجلة (القفص) وهذه العجلة أو الانحناء تقابل تأثير المجال الجاذبي في مَ على الجسم المتحرك ومن المعروف أن مجال الجذب يؤثر على حركة

الأجسام بهذا الشكل وعلى ذلك تكون هذه الأفكار لا جديد فيها .

ولكننا إذا طبقنا مثل هذه الأفكار على شعاع الضوء حصلنا على نتائج جديدة على قدر أساسى من الأهمية فمثل هذا الشعاع ينتقل بالنسبة إلى مجموعة الإسناد الجاليلية م بالسرعة حد فى خط مستقيم ومن السهل أن نرى أن مسار الشعاع لا يصبح خطاً مستقيماً بالنسبة إلى مجموعة الإسناد م التى تتحرك بعجلة . ومن هذا نستخلص الآتى : « تنتشر أشعة الضوء بوجه عام فى خطوط منحنية فى المجال الجاذبي» . ولهذه النتيجة وجهان على جانب كبير من الأهمية :

أولا: أنه يمكن التحقق منها عملياً على الرغم من أن الدراسة النظرية التفصيلية أظهرت أن أنحناء الضوء الذى تستوجبه أو تكشف عنه نظرية النسبية ضئيسل جداً بالنسبة إلى مجالات الجاذبية التى فى متناول أيدينا عملياً. ولكن مقداره بالنسبة للشعاع الذى يمر ملامساً للشمس يبلغ ١,٧ ثانية من القوس وهذا يمكن الاستدلال عليه بالطريقة التالية: بعض النجوم الثابتة تبدو لمن يرصدها من فوق الأرض من مجاورة الشمس ، وعلى ذلك يمكن رصدها في أثناء الكسوف الكلي للشمس وفي مثل هذه الفترات يجب أن تبدو هذه النجوم كأنها بعدت عن

الشمس بالقدر السابق ذكره بالمقارنة مع موضعها الظاهرى حينما تكون الشمس في مكان آخر من السماء ، والتحقق من صحة أو خطأ هذا الاستنتاج مسألة على جانب كبير من الأهمية وحلها العاجل منوط بالفلكيين(١).

ثانيا: تثبت هذه النتيجة أنه تبعاً للنظرية العامة للنسبية لا يمكن أن تكون صحة قانون ثبوت سرعة انتشار الضوء في الفراغ (وهو أحد الفرضين الأساسيين في نظرية النسبية الخاصة والذي رجعنا إليه مراراً) بلا حدود . لأن انحناء أشعة الضوء لا يمكن أن يحدث إلا إذا تغيرت سرعة انتشاره مع موقعه . والآن قد نتوهم أنه تبعاً لذلك تكون نظرية النسبية الخاصة ومعها نظرية النسبية بأكملها قد تمرغت في التراب مع أن هذا في الواقع ليس صحيحاً . إنه لا يثبت إلا أن صحة النسبية الخاصة محدودة الأفق وأن نتائجها صحيحة فيما يتعلق بالظواهر التي يمكن أن تهمل أثر المجال الجاذبي فيها وحدها (أي الضوء) .

لما كان كثير من المعارضين للنظرية النسبية يحتجون بأن نظرية النسبية العامة تتعارض مع نظرية النسبية الخاصة فإنه من المفيد لتوضيح حقائق

⁽۱) لقد ثبت انحراف الضوء بالقدر الذي تحدده النظرية بوساطة تصوير النجوم الذي قامت به بعثة أرسلتها الجمعية الملكية والجمعية الملكية للفلك أثناء كسوف الشمس في ١٩١٩/٥/٢٩ (أنظر الملحق الثالث) .

هذا الموضوع أن نضرب لذلك مثلا مناسباً . لقد كنا قبل تقدم الديناميكا الكهربية ننظر إلى قوانين الكهرباء والإستاتيكية على أنها قوانين الكهرباء عموماً ولكننا الآن نعلم جميعاً أن المجالات الكهربائية يمكن اشتقاقها اشتقاقا صحيحاً من الاعتبارات الإستاتيكية في حالة واحدة فقط وهي حالة لا تتحق أبداً تماماً وهي تلك التي تكون الكتل الكهربائية فيها ساكنة تماماً بالنسبة إلى بعضها البعض وبالنسبة إلى مجموعة الإسناد فهل نكون على حق إذا قلنا استناداً إلى هذا إن معادلات المجالات في الديناميكا الكهربائية لماكسويل تتعارض مع الإستاتيكا الكهربائية، طبعاً لا لأن الإستاتيكا الكهربائية حالة خاصة من الديناميكا الكهربائية، فقوانين الأخيرة تؤدى إلى قوانين الأولى في حالة عدم تغير المجالات مع الزمن .

وليس هناك لأية نظرية فزيائية مصير أسعد من أن تصبح هي نفسها لبنة في بناء نظرية أوسع منها تعيش هي فيها كحالة محدودة خاصة .

وفى مثل انتقال الضوء الذى سقناه رأينا أن نظرية النسبية العامة تمكننا من أن نشتق نظرياً أثر مجال الجاذبية على العمليات الطبيعية التى نعرف قوانينها فى حالة عدم وجود مجال الجاذبية مقدما . ولكن المشكلة التى تلفت النظر أكثر من غيرها والتى تهدينا نظرية النسبية العامة إلى مفتاح حلها هى المشكلة التى تتعلق بالبحث عن القوانين التى يخضع لها مجال الجاذبية نفسه . ودعنا الآن نتأمل ذلك لحظة .

إننا على علم تام بمناطق الزمان - مكان التي تخضع بصفة تقريبية

للطريقة الجاليلية متى اخترنا مجموعة الإسناد المناسبة . وهذه هي النواحي التي تختفي فيها المجالات الجاذبية . فإذا أسندنا الآن ناحية منها إلى مجموعة الإسناد مَ التي تتحرك بأي نوع من الحركة فإنه ينشأ عن ذلك بالنسبة إلى م مجال للجاذبية يتغير بتغير الزمان والمكان(١) وطابع هذا المجال سيتوقف طبعاً على الحركة التمى نختارها للمجموعة مَ . وتبعاً لنظرية النسبية العامة يجب أن ينطبق القانون العام للمجالات الجاذبية على المجالات الى نحصل عليها بهذه الطريقة . وعلى الرغم من أنه ليس هناك وسيلة للحصول على كل المجالات الجاذبية بهذا الشكل يجب مع ذلك أن نتمسك بأمل استخلاص قانون الجـذب العام من مثل مجال الجاذبية هذا . ولقد تحقق هذا الأمل على أكمل وجه ولكن كان علينا مقدماً أن نتغلب على مشكلة كبرى تتصل بأعمق طبائع الأشياء وإننى لا أستطيع أن أخفيها عن القارىء أكثر من هذا . إننا في أمس الحاجة إلى أن نوسع دائرة أفكارنا عن المتصل الزمكاني إلى مدى أبعد مما بلغناه حتى الآن .

⁽١) أن هذا ناتج من تعميم الفكرة التي نوقشت في الفصل العشرين .

الفصل الثالث والعشرون سلوك الساعات وقضبان القياس على مجموعة إسناد تدور

لقد تجنبت عامداً حتى الآن الكلام عن التفسير الفيزيائي لمدلولات الزمان والمكان في حالة نظرية النسبية العامة وعلى ذلك فإنني مسئول عن هذا التقصير خصوصاً والأمر الذي نحن بصدده كما تعلمنا نظرية النسبية الخاصة أشد ما يكون عمقاً وأهمية ولقد آن الأوان لكى نصحح هذا الخطأ ونستكمل هذا النقص ، وأبادر بالقول إن هذا لن يكون بالأمر الهين بالنسبة إلى القارىء إذ سيتطلب منه صبرا جميلا وتأملا عميقاً وقدرة فائقة على التجريد .

ولنبدأ مرة أخرى بحالات خاصة طالما لجأنا إليها من قبل . دعنا نتخيل حيزاً من الزمان – مكان ليس به مجال جاذبي بالنسبة إلى مجموعة الإسناد م التي اخترنا لها حالة مناسبة من الحركة . وفي هذه الحالة تكون م مجموعة إسناد جاليلية بالنسبة إلى هذا الحيز تنطبق عليها نتائج نظرية النسبية الخاصة . والآن دعنا نتخيل نفس الحيز وقد أسندناه إلى مجموعة إسناد أخرى م تدور بانتظام بالنسبة إلى المجموعة م ، ولكن نحدد أفكارنا

ونوضحها دعنا نتخيل م على شكل قرص مستو يدور في مستواه حول مركبزه . فإذا كان هناك راصد على حيافة هذا القرص فيإنه سوف يحس بتأثير قوة طاردة في اتجاه نصف قطر القرص قد يفسرها راصد كان في حالة السكون بالنسبة إلى مجموعة الإسناد م على أنها من تأثير القصور الذاتي (قوة الطرد المركزية) ولكن الراصد الذي على القرص قد يعتبر هذا القرص مجموعة إسناد « ساكنة » وهو على أساس مبدأ النسبية العامة لا تنقيصه المبررات لينفعل ذلك وتكون القبوة التي تؤثر عليبه وعلى كل الأجسام الأخرى الساكنة بالنسبة إلى القرص راجعة في اعتباره إلى تأثير مجال جاذبي . ومع ذلك فإن التوزيع المكاني (في المكان) لهذا المجال الجاذبي من نوع يستحيل تحقيقه على أساس نظرية نيوتن للجاذبية(١) ولكن هذا لا يزعج الراصد الذي يؤمن ويتمسك بنظرية النسبية العامة فهو مصيب حبينما يعتقد أنه من الممكن صبياغة قانون عام للجاذبية لا يفسر فحسب حركات النجوم تفسيراً سليماً بل ينفسر أيضاً مجال القوة التي يتعرض لها في هذه التجربة .

ويجرى الراصد تجاربه على قرصه الدائرى مستعملا الساعات وقضبان القياس وهو حين يفعل ذلك يهدف إلى أن يصل إلى تعاريف مضبوطة لعنى مدلولات الزمان والمكان بالنسبة إلى القرص الدائرى م على أساس ملاحظاته فما عساه فاعل في هذا المضمار ؟

⁽١) ان المجال يختفي عند مركز القرص ويزيد زيادة مضطردة تتناسب مع البعد عن المركز كلما تقدمنا إلى الخارج .

إنه أولاً سينضع ساعتين متماثلتين في التركيب واحدة عند مركز القرص والأخرى عند حافته بحيث تكونان ساكنتين بالنسبة للقرص . ونحن الآن نتساءل هل ستجرى الساعتان بمعدل واحد من وجهة نظر (أي بالنسبة إلى الراصد على) مجموعة الإسناد الجاليلية التي لا تدور م . . ؟ إننا نجد أنه بالنسبة إلى هذا المرجع ستكون الساعة التي في المركز ثابتة لا سرعة لها بينما حصلنا عليها في الفصل الثاني عشر نجد أن الساعة الأخيرة ستكون أبطأ بصفة دائمة من الساعة التي عند مركز القرص الدائري كما يراها الراصد على م ، وواضح أن راصداً على القرص بجانب الساعة التي عند المركز سيرى نفس الشيء . وهكذا ستكون الساعة على قسرصنا الدائري أو في كل مجال جاذبي وذلك لجعل الحالة أكثر شمولاً - أسرع أو أقل إسراعاً تبعاً للموضع الذى توضع فيه الساعة ـ (في حالة السكون) . ولهذا السبب يستحيل علينا أن نحصل على تعريف معقول للزمن بوساطة ساعات ضبطت وهي في حالة السكون لمجموعة الإسناد . وتواجهنا صعوبة مماثلة عندما نحاول أن نطبق تعريفنا السابق للآنية في مـثل هذه الحالة . ولكنني لا أريد أن أخـوض في هذا الموضوع إلى أبعد من هذا .

وفوق ذلك يشير أمامنا - في هذا الطور - تعريف إحداثيات المكان أيضا صعوبات لا يمكن التغلب عليها . فإذا طبق الراصد قضبان قياسه العيارية (قبضيب قياس قصير إذا قورن بنصف قطر القرص) محاسة لحافة القرص فبإن طول هذا القضيب بالنسبة إلى راصد على مجموعة الإسناد

الجاليلية سيكون أقل من الواحد الصحيح لأن الأجسام المتحركة تعانى -تبعا للفصل الثاني عشر - قيصراً في اتجاه الحركة . ومن الناحية الأخرى لا يعانى قبضيب القياس قصرا في طوله كما يبدو من م إذا طبق على القرص في اتجاه نصف قطره . وإذا قياس الراصد أولا محيط القرص بقضيب قياسه ثم قاس قطره فإنه إذا قسم نتيجتى القياس الواحدة على الأخرى لن يحصل كخارج للقسمة على العدد المعتاد ط = ٣,١٤ بل على عدد أكبر(١) بينما يكون ناتج هذه العملية طبعا بالنسبة إلى قرص ساكن بالنسبة إلى م هو ط بالضبط وهذا يثبت أن قبضايا هندسة إقليدس لا تنطبق تماماً على القرص الدائر ولا على المجال الجاذبي بصفة عامة على الأقل إذا اعتبرنا طول قضيب القياس هو الواحد الصحيح في كل الأوضاع والاتجاهات . ومن هذا تفقد فكرة الخط المستقيم أيضاً معناها . ولسنا على ذلك في وضع نستطيع معه أن نعرِّف بدقة الإحداثيات س . ص . ش بالنسبة للقرص بوساطة الطريقة التي اتبعناها في أثناء دراسة نظرية النسبية الخاصة وطالما كما لا نستطيع تحديد إحداثيات أمكنة وأزمنة الحوادث فإننا بالتالى لا نستطيع أن نعطى معنى دقيقا للقوانين الطبيعية التي تذكر فيها هذه الإحداثيات .

⁽۱) علينا أن نستعمل خلال هذا البحث مجموعة الاسناد الجاليلية غير الدوارة لأننا نستطيع التسليم إلا بصحة نتائج نظرية النسبية الخاصة بالنسبة إلى م (فبالنسبة إلى مَ يسود المجال الجاذبي) .

site www.libyaforall.com\e-mail almotanabby2002@yahoo.com

وهكذا تبدو كل استنتاجاتنا السابقة القائمة على النسبية العامة موضع تساؤل ومرجع هذا في الحقيقة إننا أصبحتا في أمس حاجة إلى الالتجاء إلى حركة التفاف بارعة حتى نستطيع أن نطبق مبدأ النسبية العامة تطبيقاً صحيحاً وسأعد القارئ بذلك في الفصول التالية .

الفصل الرابع والعشرون المتصل الإقليدى واللاإقليدى

تخيل أيها الفارى، العزيز أن سطح مائدة رخامية قد بسط أمامنا . ابنا نستطيع أن ننتقل من أية نقطة على هذه المائدة إلى أية نقطة أخرى عليها بأن نتسلل باستمرار من نقطة إلى نقطة «مسجاورة» ونستطيع تكرار هذه العملية ما شئنا . وبعبارة أخرى نقول أننا نستطيع الانتقال دون أن نقوم بأية «قفزات» وإنى واثق أن القارى، يقدر بوضوح تام ما أقصده هنا بلفظى « مجاورة » و « قفزات » ما لم يكن متعنتاً فوق ما ينبغى . ونحن نعبر عن هذه الخاصة للسطح بأن نصفه بأنه متصل .

دعنا نتخيل الآن أن لدينا عدداً كبيراً من القضبان الصغيرة متساوية الطول وأن طولها صغير بالمقارنة بأبعاد قطعة الرخام ، وأعنى حينما أقول متساوية الطول أننا إذا طبقناها الواحد على الآخر تقابلت كل أطرافها تماماً . ثم دعنا ندع أربعة من هذه القضبان على المائدة الرخامية بحيث تكون فيما بينها شكلا رباعياً (مربعاً) قطراه متساويان طولا . ولكى نتأكد من تساوى القطرين نستعمل قضيب اختبار قصير . ثم دعنا نضيف إلى هذا المربع مربعات متشابهة كل منها يشترك مع المربع الأول فى

قضيب . ثم نوالى القيام بهذه العملية مع كل المربعات حتى تغطى أخيراً كل القطعة الرخامية تماما بالمربعات وهذا الترتيب يجعل كل جانب من أى مربع مشتركا بين مربعين وكل ركن مشتركاً بين أربعة مربعات .

وسيكون مدعاة للعجب حقا أن نستطيع الاستمرار في هذه العملية دون أن تكتنفنا الصعاب وما علينا إلا أن نفكر فيمايلي : إذا تقابلت في أية لحظة ثلاثة مربعات في ركن فإن جانبين من المربع الرابع يكونا قد وضعا ويكون تبعاً لذلك وضع الجانبين الآخرين قد تحدد تماما ، ولكنني الآن لم أعد قادراً على ضبط الشكل الرباعي بحيث أن يتساوى قطراه فإذا جاءا متساويين تلقائياً فهذه منحة خاصة تهيئها خواص المائدة الرخامية وقضبان القياس لا أملك حيالها إلا الدهشة شاكراً ، ولابعد لنا من كثير من أمثال هذه المفاجئات إذا كان لابعد من نجاح التركيب .

وإذا مر كل شيء بسلام فإنني يحق لي أن أقول عند ذلك إن نقط المائدة الرخامية متصل إقليدي بالنسبة إلى قضبان القياس التي استعملت «كمسافة» (فترة - خطية) وإني إذا أخذت ركناً من مربع واعتبرته «أصلا» أو نقطة إبتداء فإني أستطيع أن أصف وصفاً تحديدياً كل ركن آخر لاي مربع ما بالنسبة إلى هذا الأصل بوساطة عددين ، فما على إلا أن أذكر عدد القضبان التي يجب أن أصر فوقها ابتداء من الأصل أولا يميناً ثم إلى أعلى بعد ذلك حتى أصل إلى الركن موضع الاعتبار ، وهذان العددان

يكونان عند ذلك «الإحداثيين الكارتيزيين» لهذا الركن بالنسبة إلى «مجموعة الإسناد الكارتيزية» التي يحددها ترتيب قضبان القياس.

ونحن إذا حورنا هذه التجربة المجردة التحوير التالى اهتدينا إلى أنه لابد هناك حالات لا تنتهى فيها التجربة بالنجاح . سوف نتصور أن القضبان تتمدد بمقدار يتناسب مع زيادة درجة حرارتها ثم نسخن وسط المائدة الرخامية دون أطرافها فيفى هذه الحالة يمكن أن يظل قضيبان من قضبان القياس متطابقين في كل موضع على المائدة ولكن التركيب الذي أنشأناه من المربعات لابد وأن يضطرب في أثناء التسخين لأن القضبان التي على وسط المائدة تتمدد بينما تظل تلك التي على الأطراف بلا تمدد .

وبالنسبة إلى قضبان القياس التى أعتبرناها - وحدة الأطوال - لا تعود المائدة الرخامية متصلا إقليدياً ولا نعود نحن أيضاً فى وضع نستطيع معه تحديد الإحداثيات الكارتيزية مباشرة بوساطتها، ولكنه لما كان هناك أجسام أخرى لا تؤثر عليها درجة حرارة المائدة على نحو ما أثرت على قضبان القياس (وربما لا تتأثر إطلاقاً) لذلك قد يكون محكنا أن نتمسك بوجهة النظر التى تعتبر المائدة «متصلا إقليدياً» ويمكننا الوصول إلى هذا وبطريقة مرضية لو أننا أجرينا تعويضاً بارعاً فى عملية قياس أو مقارنة الأطوال .

ولكن إذا كانت القضبان من جميع الأنواع (أى من جميع الأجسام) تسلك جميعها على قطعة الرخام متفاوتة التسخين فيما يتعلق بتأثير الحرارة عليها نفس السلوك ، وإذا لم يكن لدينا أية وسيلة لبيان تأثير الحرارة غير السلوك الهندسي لفضبان القياس في التجارب المماثلة للتجربة التي تقدم وصفها فإن الخطة المثلى لدراسة سطح المائدة هي أن نطلق اسم المسافة واحدة على نقطتين على السطح ما دام يمكن أن نجعل نهايتي قضيب من قضبان القياس تنطبقان على هاتين النقطتين لأنه ليس أمامنا وسيلة أخرى حتى نتفادى أن تكون العملية تعسفية إلى أبعد مدى . وعلى ذلك يجب أن نسقط طريقة الإحداثيات الكارتيزية وأن نبحث عن طريقة أخرى لا تفترض صحة هندسة إقليدس بالنسبة إلى الأجسام الجاسئة (١) ويلاحظ القارىء أن هذا الموقف يناظر الموقف الذي أدى إليه المبدأ العام للنسبية في الفصل الثالث والعشرين

⁽۱) الوضع الرياضى لهذه المشكلة هو . إذا كان لدينا مسطح ما (بيضاوى مثلا) فى فضاء اقليدى ثلاثى الأبعاد فانه يوجد لهذا السطح هندسة ثنائية الأبعاد كما يوجد بالنسبة للمستوى . ولقد قام جاوس بمعالجة هذه الهندسة الثنائية الابعاد من المبادىء الأولى دون أن يلجأ إلى حقيقة كون السطح يتعلق بمتصل اقليدى ثلاثى الأبعاد فإذا تخيلنا أننا نقيم انشاءات بوساطة قضبان جاسئة فى السطح (مشابهة لتلك التي اقمناها فى السطح الرخامى) فإننا سنجد أن القوانين التي تنطبق على هذه الانشاءات تختلف عن القوانين التي تؤدى إليها هندسة اقليدس المستوية فليس السطح متصلا اقليديا بالنسبة الي قضبان القياس ولا نستطيع تعيين الاحداثيات الكارتيزية في السطح . ولقد أوضح جاوس المبادىء التي يمكن تبعا لها معالجة العلاقات الهندسية على السطح وهكذا وضح معالم الطريق إلى طريقة ويمان في معالجة المتصلات اللاإقليدية متعددة الأبعاد . وهكذا كان الرياضيون هم الذين حلوا منذ أمد بعيد المشكلات الشكلية التي يقودنا إليها مبدأ النسبة العامة .

الفصل الخامس والعشرون إحداثيات جاوس

يرى جاوس أن الوسيلة التى تجمع بين التحليل والهندسة والتى تصلح لعلاج المشكلة يمكن بلوغها على النحو الآتى: لذلك نتخيل مجموعة من المنحنيات الاختيارية (انظر الشكل ٤) رسمت على سطح المائدة ونسميها المنحنيات (ى) ونشير إلى كل منها بعدد وقد رسمنا في

(شکل ٤)

الشكل التوضيحي المنحنيات ي = ١ ، ي = ٢ ، ي = ٣ ، ويجب أن نتخيل بين المنحنيين ي = ١ ، ي = ٢ عـداً لا نهائيــاً من المنحنيــات

مرسوماً ، وجميعها شاطر الاعداد المسلومة ، وبذلك ، «ite.www.libyaforall.com/e-mail almoranabby 2002@yahoo.com نحصل علي نظام من المنحنيات ى . وهذا النظام المتناهى الكثافة يغطى سطح المائدة كله وهـذه المنحنيات ي يجب أن لا تتقاطع مع بعـضهـا البعض ، ويجب ألا يمر بالنقطة الواحدة من السطح إلا منحني واحد وواحد فقط . وهكذا يكون لكل نقطة على السطح قيمة (ى) محددة تماماً . وبالمثل يمكن أن نتخيل نظاماً من المنحنيات (و) مرسوماً على السطح وهو يخضع لجميع شروط المنحنيات ى فهو مزود بأعداد بطريقة مماثلة ويمكن أيضاً أن يكون شكله اختيارياً . ويتبع ذلك أن يكون لكل نقطة على سطح المائدة قيمة (ى) وقيمة (و) ويسمى هذان العددان إحداثي سطح المائدة (الإحداثيات الجاوسيان) فالنقطة ف مشلا في الشكل التوضيحي لها الإحداثيان ي = ٣ ، و = ١ ، وتقابل النقطتان المتجاورتان ف ، فَ على السطح الإحداثيات :

> . ف : ى + ءى ، و + ءو

ف : ی ، و

حيث ل، ، ل على عددة جداً على ، و والمقادير ل، ، ل، ، ل، ، ل، ، ل عدد سلوك القضبان بالنسبة للمنحنيات (ى) والمنحنيات (و) وبالتالى بالنسبة لسطح المائدة أيضاً . وفى الحالة التى تكوِّن فيها نقط السطح محل الاعتبار متصلا إقليدياً بالنسبة إلى قضبان القياس يمكن رسم المنحنيات ى ، المنحنيات و وربط أعداد بالنسبة لها وفق المعادلة :

وبهذه الشروط تكون المنحنيات ى ، و خطوطا مستقيما بالمعنى الإقليدى وتكون متعامدة مع بعضها البعض ، وتكون إحداثيات جاوس هنا إحداثيات كارتيزية بكل بساطة . ومن الواضح أن إحداثيات جاوس ليست آكثر من ارتباط مجموعتين من الأعداد مع نقط السطح موضع الاعتبار بحيث تكون القيم العددية التتى تختلف فيما بينها اختلافاً ضئيلا مرتبطة بالنقط المتجاورة « في المكان» .

وحتى الآن كنا نطبق هذه الأفكار على متصل ثنائى الأبعاد ولكن طريقة جاوس هذه بمكن أن تطبق بسهولة على متصل ثلاثى الأبعاد أو رباعيها أو حتى أكثر من ذلك فإذا كان ممكنا الحصول على متصل رباعى الأبعاد فإننا يمكن أن نصوره بالطريقة الآتية : نربط بطريقة اختيارية كل نقطة من نقط هذا المتصل بأربعة أعداد س، س، س، س، س، وتعرف بالإحداثيات ويقابل النقط المتجاورة قيم متقاربة للإحداثيات فإذا كانت

المسافة ع ط مرتبطة بالنقطتين المتجاورتين ف ، ف وهي قابلة للقياس والتحديد فيزيانياً فإن المعادلة التالية تكون صحيحة :

حيث تكون المقاديس ل ١٠٠٠ إلخ قيسماً تتسغيس مع الموقع في المتصل . ولا يمكن أن نربط الإحداثيات س ١٠٠٠ س، مع نقط المتصل بحيث يصبح لدينا ببساطة :

$$\frac{Y}{\xi}$$
 $m + \frac{Y}{\eta}$ $m +$

إلا إذا كان المتصل إقليدياً . وفي هذه الحالة تظل العلاقات في المتصل الرباعي قائمة على النحو الذي تقوم عليه في قاساتنا الشلاثية الأبعاد .

ومع ذلك فليست معالجة جاوس للمقدار عطا التى أوضحناها عاليه عكنة دائما إذ يقتصر ذلك على الحالات التى نضع فيها موضع الاعتبار مناطق من المتصل صغيرة بدرجة تكفى لاعتبارها متصلات إقليدية . وهذا مثل ينطبق بوضوح على حالة المائدة الرخامية ذات التغير المحلى لدرجة الحرارة (متفاوتة التسخين) فإن درجة الحرارة ثابتة عملياً بالنسبة إلى جزء صغير من المائدة ، وهكذا يكون السلوك الهندسى لقضسان القياس تقريبياً كما يجب أن يكون وفق قواعد هندسة إقليدس ، ومن هنا نرى لماذا كان

الخلل في إنشاء المربعات في الفصل السابق لا يتضح جلياً إلا إذا امتد هذا الإنشاء فوق جزء كبير من سطح المائدة .

يمكننا أن نلخص ما تقدم فيمايلى : لقد اخترع جاوس طريقة نستطيع بها معالجة المتصلات عموما علاجا رياضياً وهذه الطريقة تحدد علاقات الحجم أو الكم («المسافات» بين النقط المتجاورة) بأن تختص كل نقطة في المتصل بعدد من الأعداد يساوى ما له من الأبعاد ويتم ذلك بشكل يجعل للمخصصة معنى واحداً ويجعل الأعداد (الإحداثيات الجاوسية) التي تخصص لنقط متجاورة تختلف فيما بينها بمقادير متناهية في الصغر . ومجموعة الإحداثيات الجاوسية تعميم منطقى لمجموعة الإحداثيات الكارتيزية ويمكن تطبيقها أيضاً على المتصلات اللاإقليدية وذلك فقط عندما تسلك - من حيث الحجم أو المسافة المحددان - الأجزاء الصغيرة من المتصل محل الاعتبار سلوكاً يشبه النظام الإقليدي - وذلك كلما صغر الجزء من المتصل الذي نطبقها عليه .

الفصل السادس والعشرون المتصل الزمان والمكان فى نظرية النسبية الخاصة على إعتبار انه متصل إقليدى

إننا الأن في وضع نستطيع معه أن نصوغ فكرة منكوفسكي التي أشرنا إليها مجرد إشارة عابرة في الفصل السابع عشر بدقة أتم . لقد رأينا أنه تبعاً لنظرية النسبية الخاصة تَفضلُ بعض مجموعات الإسناد من حيث الملاءمة لوصف المتصل الزمان والمكان الرباعي الأبعاد غيرها . ولقد سمينا هذه المجموعات المفضلة مجموعات إسناد جاليلية . ولقد أوضحنا في الجزء الأول من هذا الكتاب تفصيلا التعريف الفيزيائي للإحداثيات الأربعة س ، ص ، ش ، ز التي تحدد الحادثة أو بعـبارة أخرى النقطة في المتصل رباعي الأبعاد . وفي حالة الانتقال من مجموعة إسناد جاليلية إلى أخرى تتحرك بحركة منتظمة بالنسبة للأولى تنطبق معادلات تحويل لورنتز . وهذه المعادلات هي الأساس الذي يرتكز عليه اشتقاق الاستنتاجات من نظرية النسبية الخاصة . وهي في حد ذاتها (أي المعادلات) ليست إلا التعبير عن صحة قانون انتشار الضوء بالنسبة إلى مجموعات الإسناد الجاليلية.

ولقد وجد منكوفسكى أن تحويلات لورنتز تحقق الشروط البسيطة الآتية: دبمنا نتخيل حادثتين متجاورتين يحدد مكانهما النسبى فى المتصل رباعى الأبعاد بالنسبة إلى مجموعة الإسناد الجاليلية م الفروق المكانية الإحداثية عس ، عص ، عنش والفرق الزمانى عز ، وسنفرض أن الفروق المقابلة لهاتين الحادثتين بالنسبة إلى مجموعة إسناد جاليلية أخرى هى عس ، عص ، عش ، عز فإنه فى هذه الحالة تحقق هذه المقادير دائماً الشرط التالى (١):

وصحة تحويل لـورنتز مترتبة على هذا الشرط ونسـتطيع أن نعبر عن ذلك كمايلي: - المقدار

وهو يتعلق بنقطتين متجاورتين من نقط المتصل الزماني المكاني رباعي الأبعاد له نفس القيمة بالنسبة إلى كل مجموعات الإسناد المختارة (الجاليلية) وإذا استبدلنا بالمقادير س ، ص ، ش ، لا- احر ز

⁽١) انظر الملحق ١ ، ٢ فالعلاقات التي اشتقت هناك للاحداثيات نفسها صحيحة أيضا لفروق الاحداثيات وكذلك أيضا لتفاضلات الاحداثيات (الفروق المتناهية الصفر) .

site www.libyaforall.com\e-mail almotanabby2002@yahoo.com

ع ف المحموعة الإسناد (أى أياً كانت مجموعة الإسناد) مستقلة عن اختيار مجموعة الإسناد (أى أياً كانت مجموعة الإسناد) ونسمى المقدار ع ف « المسافة » التى تفصل بين الحادث تين أو النقطتين رباعيتى الأبعاد .

وهكذا نجد أننا إذا اخترنا كمتغيير للزمن المتغير الخيالي V- 1 حد ز بدلا من الكمية الحقيقية ز فإننا نستطيع أن نعتبر المتصل الزماني - المكانى المتفق مع نظرية النسبية الخاصة متصلا إقليدياً رباعي الأبعاد وهذه هي النتيجة التي تؤدي إليها اعتبارات الفصل السابق .

الفصل السابع والعشرون المتصل الزمانى والمكانى الخاص بالنظرية النسبية العامة ليس متصلا إقليديا

استطعنا في الجزء الأول من هذا الكتاب أن نستعمل إحداثيات زمكانية كان من المكن تفسيرها تفسيراً فيزيائيا بسيطاً مباشراً وكان من المكن اعتبارها كما وُضح في الفصل السادس والعشرين إحداثيات كارتبزية رباعية الأبعاد . وكان هذا ممكناً استناداً إلى قانون ثبوت سرعة الضوء . ولكننا قد رأينا في الفصل الحادي والعشرين أن نظرية النسبية العامة لا يمكن أن تحتفظ بهذا القانون بل على العكس ظهر أنه تبعاً لهذه النظرية الأخيرة لابد أن تعتمد سرعة الضوء دائماً على الإحداثيات متى وجد مسجال جاذبي . وفي سباق توضيح هذا الأمر في الفيصل الثالث والعشرين وجدنا أن وجود المجال الجاذبي يبطل تحديد الإحداثيات والزمن ذلك التحديد الذي استخدمناه في النظرية النسبية الحاصة .

ونتيجة لهذه الاعتبارات انتهينا إلى الاقتناع بأن المتصل الزمانى المكانى في النظرية النسبية العامة لا يمكن اعتباره متصلا إقليديا بل إننا نجد هنا الحالة العامة التي تمثلها المائدة الرخامية في حالة الاختلاف الموضعي

في درجة الحرارة (متفاونة التسخين) والتي اعتبرناها متصلا تنائي الأبعاد . وكما كان مستحيلا هناك بناء مجموعة إحداثيات كارتيزية من قضبان القياس المتساوية فإنه يستحيل هنا أيضاً أن نتخذ مجموعة من الأجسام الجاسئة والساعات (مجموعة إسناد) بحيث تكون قضبان القياس والساعات التي رتبت ترتيباً جاسئا (متماسكاً) بالنسبة إلى بعضها البعض قادرة على تحديد الموقع والزمن مباشرة . ولقد كان هذا هو لب المشكلة التي واجهتنا في الفصل الثالث والعشرين .

ولكن الاعتبارات التي استعرضناها في الفصلين الخامس والعشرين والسادس والعشرين ترشدنا إلى طريقة التغلب على هذه الصعوبة . ذلك بأن نسند المتصل الزماني المكاني لرباعي الأبعاد إلى إحداثيات جاوس بطريقة حكيمة ونخص كل نقطة من المتصل (حادثة) بأربعة اعداد س، س، س، س، وهي إحداثيات ليس لها أقل معنى فيزيائي مباشر بل لمجرد ترقيم نقط المتصل بطريقة محددة ولكنها اختيارية . ولا يستوجب هدا الترتيب حتى أن نعتبر س، س، س، س، إحداثيات « مكان » و س، إحداثيات « مكان »

وقد يظن القارىء أن تصوير العالم على هذا النحو تصوير مشوه فما معنى أن نخص حادثة ما بالإحداثيات الخاصة س، س ، س، س ، س إذا كانت هذه الإحداثيات في حد ذاتها ليس لها معنى ؟ ولكننا لو تمعنا الموضوع بعناية أكثر لرأينا أنه لا أساس لهذا القلق . فلو تأملنا مثلا نقطة

مادية تتحرك بأية حركمة لوجدنا أنه لو كان وجمود هذه النقطة لحظيا لا يستمر مع الزمن الأمكن وصفها وتحديدها في الزمان - مكان بمجموعة واحدة من القيم س، ، س، ، س، ، س، . وهكذا يجب أن يتـمثل استمرار وجودها بعدد لا نهائي من مثل هذه المجموعات من القيم التي تكون قيمها الإحداثية أيضا متقاربة جداً بحيث توحى بالاستمرار . وعلى ذلك يصبح لدينا مقابل كل نقطة مادية خط كوني (أحادي الأبعاد) في المتصل لرباعي الأبعاد . وهكذا تناظر هذه الخطوط في المتصل نقطأ كثيرة تتحرك والحالة الوحيدة التي تصبح فيها هذه النقط ذات وجود فيزيائي هي في الحقيقة حالة تقابلها . وحالة التقابل هذه نعبر عنها رياضياً بأن يكون الخطان اللذان يمثلان حركتي النقطتين موضوع البحث لهما مجموعة خاصة من القيم الإحداثية س، ، س، ، س، ، س، مشتركة بينهما . وإذا تأمل القارىء هذا الأمر ملياً فلا شك أنه سيسلم بأن مثل هذه التقابلات في الحقيقة هي الشاهد الفعلى الوحيد على الجوهر الزمكاني الذي تتضمنه البيانات الفيزيائية .

إننا إذ نصف حركة نقطة مادية بالنسبة إلى مجموعة إسناد لا نذكر شيئاً أكثر من تقابلات هذه النقطة مع نقط خاصة من مجموعة الإسناد . ونستطيع أيضاً أن نحدد القيم الزمانية المناظرة بوساطة رصد تقابلات الجسم مع الساعات مرتبطة مع رصد تقابل عقارب الساعات مع نقط معينة على ميناء تلك الساعات . وهو نفس ما يحدث في حالة قياسات المكان

بوساطة قيضبان الفياس كيما يتضع دلك جيداً لو تأملناه قليلا ببعض الإمعان .

إن ما يلى صحيح بوجه عام: إن كل وصف فيزيائى يتحلل ذاتياً إلى عدد من النصوص يشير كل منها إلى تطابق زمكانى لحادثتين أ ، ب وإذا عبرنا عن كل نص من هذه النصوص بدلالة إحداثيات جاوس نقول إن الإحداثيات الأربعة س، س، س، لكلا الحادثتين واحدة وهكذا نحل فى الحقيقة بصورة كاملة وصف المتصل الزمكانى بوساطة إحداثيات جاوس محل وصف المتصل بوساطة مجموعات الإسناد ويجنبنا الأول منهما أوجه المنقص التى تنطوى عليها الطريقة الثانية فليس مقيداً بضرورة فرض الطابع الإقليدى على المتصل الذى نريد تمثيله .

الفصل الثامن والعشرون التعبير الدقيق عن مبدأ النسبية العام

إننا الآن في وضع يسمح لنا بأن نستبدل بالتعبير المؤقت عن مبدأ النسبية العام الذي قدمناه في الفصل الثامن عشر تعبيراً آخر دقيقاً جداً . لقد كان تعبيرنا عن ذلك المبدأ على هذه الصورة : كل مجموعات الإسناد م ، م ، . . . إلخ متكافئة من حيث وصف الظواهر الطبيعية (أو صياغة القوانين الطبيعية العامة) مهما كانت حالتها من الحركة . ولا يمكن الآن الاحتفاظ بهذه الصورة لأن استعمال مجموعات الإسناد الجاسئة على الطريقة التي اتبعت في النظرية النسبية الخاصة لم يعد مستطاعاً بوجه عام لوصف الزمان - مكان فلابد من استبدالها بمجموعات إحداثيات جاوس . والنص التالي يعبر عن الفكرة الأساسية في مبدأ النسبية العامة . «كل ومجموعات إحداثيات جاوس مجموعات إحداثيات جاوس محموعات إحداثيات جاوس .

ونستطيع أيضاً أن نضع مبدأ النسبية العامة هذا على نحو جديد آخر يجعله أسهل فهماً حتى عما لو اعتبرناه امتداداً طبيعياً لمبدأ النسبية الخاص . فتبعاً لنظرية النسبية الخاصة كانت المعادلات التي تعبر عن القوانين

الطبيعية العامة فيما قبل النسبية هي نفس المعادلات النسبية بشرط أن نحل المتغيرات الزمكانية س ، ص ، ش ، ز لمجموعة الإسناد الجاليلية م وذلك المتغيرات الزمكانية س ، ص ، ش ، ز لمجموعة الإسناد الجاليلية م وذلك باستخدام تحويل لورنتز . أما تبعاً لمبدأ النسبية العام من الناحية الأخرى فيجب أن تحتفظ المعادلات بنفس الشكل عندما نطبق البديلات التحكمية للمتغيرات الجاوسية س ، س ، س ، وذلك لأن كل تحويل (وليس تحويل لورنتز فقط) يقابل الإنتقال من مجموعة ما من إحداثيات جاوس إلى أخرى .

وإذا أردنا أن نتمسك بنظرتنا القديمة ثلاثية الأبعاد إلى الأشياء فإننا نستطيع أن نصف التجديد أو التقدم الذى تناول الفكرة الأساسية لنظرية النسبية العامة على النحو التالى: إن نظرية النسبية الخاصة تتعلق بالحيز الجاليلى أى المناطق التى لا يوجد بها مجال جاذبى وفى هذه الحالة يستخدم كمجموعة إسناد مجموعة جاليلية أى جسم جاسىء حالته من الحركة مختارة بحيث ينطبق عليها قانون جاليليو لحركة نقطة مادية منعزلة ، أى حركة منتظمة فى خط مستقيم . وبعض الاعتبارات توحى بأننا يحسن بنا أن نرجع أو نسند نفس الحيزات الجاليلية إلى مجموعات إسناد لا جاليلية أيضاً وعندئذ نجد مجالا جاذبياً من نوع خاص بالنسبة إلى هذه المجموعات (انظر الفصل العشرين والثالث والعشرين) .

ولكن شيئاً مثل الأجسام الجاسئة ذات الخواص الإقليدية لأ وجود له

فى المجالات الجاذبية وهكذا لا محل فى نظرية النسبية العامة لمجموعات الإسناد الجاسئة الخيالية هذه . وكذلك حركة الساعات . إنها تتأثر أيضاً بمجال الجاذبية بحيث يصبح تحديد الزمن فيزيائياً ويتم مباشرة بوساطة الساعات أقل قبولاً عما كان فى نظرية النسبية الخاصة .

ولهذا ألسبب نستعمل مجموعات إسناد غير جاسئة لا تتحرك ككل بأى شكل كان فحسب بل تعانى تغيرات في الشكل على هواها أثناء حركتها وتستعمل لتحديد الزمن ساعات لا قيد على قانون حركتها فهو كيفما اتفق مهما كان شاذاً ، ويجب علينا أن نتصور كلا من هذا الساعات مثبتة في نقطة من مجموعة الإساناد غير الجاسئة بشرط واحد فقط هو أن تكون القراءات التي تحددها الساعات المتجاورة في لحظة واحدة مختلفة عن بعضها البعض بقدر ضئيل جداً ، وهذه المجموعة غير الجاسئة والتي يمكن أن نسميها بحق مجموعة إسناد رخوية هي في الأصل ما يكافيء مجموعة إحداثيات جاوس رباعية الأبعاد التي نختارها بطريقة تحكمية . إن ما يجعل الرخويات أقرب تصورا من مجموعة إحداثيات جاوس هو (ولو أنه لا يوجد مبرر حمقيقي لذلك) الأثر الشكلي العالق بأذهاننا عن الكيان المنفصل لإحداثيات المكان في مواجهة إحداثي الزمن . إن كل نقطة على المجموعة الرخوية تعالج على اعتبارها نقطة مكان وكل نقطة مادية ساكنة بالنسبة لها تعتبر ساكنة مادمنا نعتبر القوقعة الرخوة مبجموعة إسناد . ويقضى مبدأ النسبية العامة بأن جميع هذه الرخويات يمكن استخدامها

كمجموعة إسناد لها نفس الحقوق ونفس الأهلية في صياغة القوانين العامة للطبيعة . أما القوانين نفسها فيجب أن تكون مستقلة تماماً عن اختيار المجموعة الرخوية .

إن القوة الهائلة التي ينطوى عليها مبدأ النسبية العامة تكمن في التحديد الشامل الذي يفرض على قوانين الطبيعة تبعاً لما رأينا آنفاً.

الفصل التاسع والعشرون حل مشكلة الجاذبية على اساس المبدا العام للنسبية

أن القارىء الذى استوعب فى أناة وروية كل ما قدمنا من الاعتبارات لن يجد صعوبة ما فى فهم الوسائل المؤدية إلى حل مشكلة الجاذبية .

دعنا نبدأ أولاً بتأمل حيز جالسيلى أى حيز خالى من المجال الجاذبى بالنسبة إلى مسجموعة الإسناد الجاليلية م . ونحن نعلم من نظرية النسبية الخاصة على أى نحو تسلك قضبان القياس والساعات بالنسبة إلى هذه المجمسوعة م وهو يشبه سلوك النقطة المادية المعزولة وهذه تتحرك بحسركة منتظمة في خط مستقيم .

ثم دعنا الآن نسند هذا الحيز إلى مجموعة إحداثيات جاوسية آيا كانت أو إلى مجموعة رخوة على اعتبار أنها مجموعة إسناد ولنسمها م . عندئذ يكون هناك بالنسبة إلى م مجال جاذبى ح (من نوع خاص) ونستطيع أن نقف على كيفية سلوك قضبان القياس والساعات وكذلك النقط المادية التي تتحرك بلا قيد بالنسبة إلى مجموعة الإسناد وذلك

بوساطة التحويل الرياضى ببساطة . ونحن نفسر هذا السلوك بأنه سلوك الساعات وقضبان القياس والنقط المادية تحت تأثير المجال الجاذبى ح . وعند ذلك دعنا نفترض أن أثر المجال الجاذبى على قضبان القياس والساعات والمنقط المادية التي تتحرك بحرية يستمر وفقاً لنفس القوانين حتى في حالة ما إذا كان المجال الجاذبي السائد لا يمكن اشتقاقه من الحالة الجاليلية الخاصة بمجرد تحويل الإحداثيات .

والخطوة التالية لذلك هي أن نبحث السلوك الزمكاني للمجال ح الذي اشتق من الحالة الجاليلية الخاصة بمجرد تحويل الإحداثيات . ويصاغ هذا السلوك في قانون يكون دائماً صحيحاً مهما كان اختيار مجموعة الإسناد الرخوة التي يتم الوصف بالنسبة إليها . وليس هذا القانون مع ذلك هو القانون العام للمجال الجاذبي ما دام المجال الجاذبي الذي وصفناه هنا موضع الاعتبار من نوع خاص .

ومتى أمكن أن نهتدى إلى القانون العام للمجال الجاذبي يظل واجباً علينا أن نحصل على تعميم للقانون الذي حصلنا عليه آنفا ، ولن يكون هذا بالأمر العسير لو أننا وضعنا نصب أعيننا المطالب التالية :

(- أ) يجب أن يتفق التعميم المطلوب مع الفرض العام للنسبية .

(ب) إذا كان في الحيز موضوع البحث أية مادة فإن كتلتها القصورية فقط وبالتالى طاقاتها حسب الفصل الخامس عشر هي التي توضع موضع الاعتبار لأنها هي التي يتسبب عنها المجال وهي التي تبعثه .

(جـ) يجب أن يحقق المجال الجاذبي والمادة معاً قانون بقاء الطاقة (والدفع)

وأخيراً فإن المبدأ العام للنسبية يسمح لنا بأن نحدد أثر المجال الجاذبي على مجرى كل تلك العمليات التي تحدث وفقاً لقوانين معلومة في حالة غياب المجال الجاذبي ، أي تلك التي سبق أن دخلت في إطار نظرية النسبية الخاصة ، ولبيان هذا الأثر نتبع من حيث المبدأ نفس الطريقة التي سبق أن شرحناها بالنسبة إلى قضبان القياس والساعات والنقط المادية التي تتحرك بحرية .

ونظرية الجاذبية التي اشتقت بهذه الطريقة من الفرض العام للنسبية لا تبن غيرها بالنسبة لجمالها ولا من حيث تغلبها على النقص الذي تنطوي عليه الميكانيكا الكلاسيكية والذي أوضحناه في الفصل الحادي والعشرين، ولا من حيث تفسيرها للقانون التجريبي لتساوي كتلة القصور وكتلة الجاذبية فحسب بل لأنها فوق كل هذا قد نجحت في تفسير ظاهرة فلكية عجزت عن تفسيرها الميكانيكا الكلاسيكية .

إننا إذا قـصرنا تطبيق النظرية على الحالة التى يكون فيها المجال الجاذبي صغيرة والتى تتحرك فيها الكتل بالنسبة إلى مجموعة الإحداثيات بسرعات ضعيفاً مقارنة لسرعة الضوء فإننا نحصل كتـقريب أول على نظرية نيوتن . وهـكذا نحصل هنا على هذه النظرية دون حاجة إلى أية فروض خاصة في حين أن نيوتن اضطر إلى إدخال الفرض الذي ينص على أن التجاذب بين نقطتين مـتجاورتين يتناسب عكسياً مع مـربع المسافة

بينهما . وإذا راعينا منتهى الدقة فى التقديرات الحسابية ظهرت الانحرافات والفروق مع نظرية نيوتن ولو أن هذه الفروق جميعها مما لا يمكن اختباره عملياً نظراً لضالتها المتناهية .

ومع ذلك يجب أن نتوقف قليـلاً لنتأمل بإمعان أحــد هذه الفروق ، فتبعاً لنظرية نيوتن يتحرك أي كوكب حول الشمس في قطع ناقص يحتفظ دائماً بموضعه بالنسبة للنجوم الثابتة لو أننا أهملنا حركة النجوم الثابتة نفسها وتأثير الكواكب الأخسري محل الاعتبار . وهكذا إذا صححنا حركة الكواكب الظاهرة وفقا لهذين المؤثرين وإذا كانت نظرية نيوتن صحيحة تمامأ وجب أن نحصل على قطع ناقص كمدار للكواكب يكون ثابتاً بالنسبة إلى النجوم الثابتة . وهذا الاستنتاج الذي يمكن التحقق منه بدقة عظيمة كانت غاية ما يمكن بلوغه من الدقة في حينها ، أمكن التحقق منه بالنسبة إلى كل الكواكب إلا واحداً هو عطارد أقسرب الكواكب إلى الشمس فقمد أصبح معروفا منذ أيام لوفسرييه أن القطع الناقص الذي يمثل مدار عطارد بعد تصحيحه وفقأ للمؤثرين آنفي الذكر ليس ثابتاً بالنسبة إلى النجوم الشابتة بل إنه يدور دوراناً بطيئاً جـداً في مستوى المدار على مثال الحركة المدارية . وكانت القيمة التي حصلنا عليها لهذه الحركة الدورانية للقطع الناقص المدارى تبلغ ٤٣ ثانية من القوس في القرن وقد تأكد صدق هذا التقدير إلى حدود ثوان قليلة من القوس ، ويمكن إيجاد تفسير مقبول لهذا الأثر تبعأ للميكانيكا الكلاسيكية بشرط التسليم بفروض ضعيفة الاحتمال وضعت خصيصاً لهذا الغرض . ولكنه وجد على أساس نظرية النسبية العامة أن كل القطوع الناقصة التى تدور فيها الكواكب حول الشمس يجب أن تدور بنفس الطريقة آنفة الذكر وأن مقدار هذا الدوران بالنسبة إلى كل الكواكب ما عدا عطارد أصغر من أن يمكن اكتشافه بالوسائل الراهنة ولكنه في حالة عطارد لابد أن يبلغ ٤٣ ثانية من القوس في القرن وهي نتيجة تتفق أتم اتفاق مع التجربة .

وبخلاف هذا أمكن الوصول إلى استنتاجين آخرين فقط بمكن وضعهما موضع الاختبار ليسهدا لها وهما انحناء أشعة الضوء بوساطة مجال جاذبية الشمس^(۱) وانتقال موضع خطوط الطيف في الضوء الذي يصل إلينا من النجوم الكبيرة بالمقارنة بموضع نفس هذه الخطوط للأضواء التي يمكن إنتاجها بطريقة مشابهة على الأرض (أي بوساطة نفس الذرة)^(۲) وقد تأيد هذان الاستنتاجان اللذان استنتجا نظرياً من النظرية النسبية العامة بالبرهان العملى.

⁽١) كان ادنجتون وآخرون أول من رصدوا ذلك في سنة ١٩١٩ (انظر الملحق ٣) .

⁽٢) حقق ذلك آذمز سنة ١٩٢٤ (انظر الملحق ٣) .

الجزء الثالث

تا ملات في الكون ككل

الفصل الثلاثون الصعوبات الكونية في نظرية نيوتن

تنطوى ميكانيكا الأجرام السماوية على مشكلة أساسية أخرى بخلاف المشكلة التى سبق مناقشتها فى الفصل الحادى والعشرين . وقد كان الفلكى سيلجر - فيما أعلم - هو أول من تعرض لدراستها بتوسع وتفصيل . وهذه المشكلة هى موضوع الكون ككل وكيف يجب النظر إليه . إن أول ما يتبادر إلى الذهن هو أن الكون من حيث المكان (والزمان) لا نهائى فهناك نجوم فى كل أجزاء الفضاء بحيث تصبح كثافة المادة ولو أنها شديدة التباين فى تفصيلاتها واحدة فى المتوسط فى كل الفضاء أو بعبارة أخرى فإننا إينما نذهب أو مهما استعدنا فى تجوالنا فى الفضاء سنجد فى كل مكان حشوداً مخففة من النجوم الثابتة واحدة النوع والكثافة تقريباً .

ولا تتفق هذه النظرية مع نظرية نيوتن إذ يستوجب هذا أن يكون للكون ما يشبه المركز تبلغ كثافة النجوم فيه أقصاها ثم تأخذ في التناقص كلما ابتعدنا عن المركز إلى أن - وذلك بعد أبعاد شاسعة - تتلاشى

ليتلوها فراغ لا نهائي (١) . إن الكون النجمى لابد أن يكون جزيرة منتهية في محيط لا نهائي من الفضاء.

وهذا التصور للكون ليس مرضياً تماماً في حد ذاته وهو أقل قبولا لأنه يضطرنا إلى التسليم بأن الضوء الذي ينبعث من النجوم وكذلك أفراد من المجموعة النجمية تخرج باستمرار إلى الفضاء اللانهائي دون رجعة وبحيث لا تعود إلى تبادل التأثير على موجودات الطبيعة الأخرى . إن مثل هذا الكون المادي المنتهى محتوم عليه أن يتلاشى تدريجياً وبانتظام .

ولتفادى هذا العيب اقترح سيلجر تعديلا لقانون نيوتن يفرض فيه أنه في حالة المسافات الشاسعة تتناقص قوة الجذب بين كتلتين بأسرع بما تتناقص به هذه القوة تبعاً لقانون عكس المربع . وبهذه الطريقة يصبح محكنا أن يظل متوسط كثافة المادة ثابتاً في كل مكان حتى في اللانهاية . وهكذا نتخلص من تلك الفكرة السقيمة التي تحتم أن يكون للكون شيء

(۱) البرهان على ذلك : تتناسب تبعا لنظرية نيوتن خطوط القوى التى تأتى من مالا نهاية وتنتهى فى الكتلة ك مع الكتلة ك وإذا كان متوسط كثافة المادة ث فى الكون ثابتا فان كرة حجمها ح ستحتوى على متوسط كتلة ح ث وهكذا يصبح عدد خطوط القوى التى تمر خلال السطح س - وهو سطح الكرة - إلى داخلها متناسب مع ث ح وهكذا يتناسب عدد خطوط القوى التى تمر من وحدة مساحات سطح الكرة إلى داخلها مع (ث مل على داخلها مع (ث مل على داخلها مع (ث مل الرا نهائية وهذا أمر مستحيل .

فى طبيعة المركز . ومن الطبيعى أننا هنا نتفادى ذلك العيب السالف الذكر ولكن بشمن باهظ هو تعديل قانون نيوتن وتعقيده دون أن يكون لهذا التعديل أى أساس نظرى أو تجسريبى يستند إليه . إننا نستطيع أن نتخيل عدداً لا حصر له من القوانين التى تؤدى نفس الغرض ولسنا ندرى أيها يجب أن نفضله لأن أياً من هذه القوانين سيستند إلى نفس العدد الضئيل من المبادىء النظرية العامة مثلما يستند قانون نيوتن .

الفصل الحادى والثلاثون إمكان وجود كون منته ولكنه غير محدود

ولكن الآراء في بناء الكون تسير أيضا في اتجاه آخر جد مختلف . فقد دفع بنا تقدم الهندسة اللاإقليدية إلى التسليم بأننا نستطيع أن نلقى الشك على لا نهائية الفضاء حولنا دون أن نرتكب ما يخالف قوانين الفكر أو التجربة (ريمان . هلموهولتن) ولقد عالج تفاصيل هذه المسائل بوضوح لا مزيد عليه كل من هلموهولتن وبوانكاريه ، بينما لا أملك هنا إلا أن أشير إليها في إيجاز شديد .

دعنا نتخيل أولا عالماً ثنائى الأبعاد . كائنات مفرطحة وكل ما يتعلق بها مفرطح خصوصاً أدوات قياس مفرطحة جاسئة وهذه كلها حرة التحرك في «مستوى» وبالنسبة إلى هذه الكائنات لا وجود لشيء خارج المستوى إن كل ما يمكن أن يحدث لها أو لمتعلقاتها المفرطحة سيكون محصوراً حتماً في المستوى الذي هو بمثابة الحقيقة الشاملة بالنسبة لها وعلى الأخص سيكون مستطاعاً هنا تنفيذ إنشاءات الهندسة الإقليدية – أي مثل تلك الإنشاءات الشبكية التي ناقشناها في الفصل الرابع والعشرين بوساطة أشرطة القياس ، وسيكون عالم هذه الكائنات على عكس عالمنا ثنائي

الأبعاد ولكنه مثل عالمنا يمتد إلى ما لا نهاية . إن في عالمها متسع لعدد لا نهاية له من المربعات المكونة من قضبان القياس أى أن حجمه (سطحه) لا نهائى . وإذا قالت هذه الكائنات إن عالمها مستو فإنها تصدق لأنها تعنى بذلك أنها تستطيع تنفيذ إنشاءات الهندسة الإقليدية بأعواد قياسها التي تمثل على الدوام نفس المسافة مهما اختلفت مواضعها .

دعنا الآن نتأمل عالما آخر ثنائى الأبعاد ولكنه هذه المرة على سطح كروى بدلا من أن يكون على سطح مستو . إن الكائنات المفرطحة وقضبان قياسها ومتعلقاتها الأخرى تتلاءم جيدا مع هذا السطح . ولا تستطيع هذه الكائنات أن تعتبر هندسة عالمها هندسة مستوية وقضبان القياس التى معها تحقيقاً للمسافة . . . ؟

إنها لا تستطيع ذلك لأنها إذا حاولت أن تقيم خطأ مستقيماً فإنها ستحصل على منحنى منطو على نفسه ذى طول معين منته يمكن قياسه بوساطة قضبان القياس . وبالمثل نجد أن لهذا مساحة منتهية يمكن مقارنتها بمساحة مربع مكون من قضبان القياس ، وروعة هذا المثل الذى نسوقه تكمن فى أنه يوضح لنا أن « كون هذه الكائنات منته غير محدود » .

ولكن الكائنات التى تعيش على سطح الكرة ليست بحاجة إلى أن تدور حول العالم فى رحلة لكى تتبين أنها لا تعيش فى كون إقليدى . إنها تستطيع أن تجد الدليل على ذلك فى كل جنزء من أجزاء «عالمها» ما دامت لا تتقيد بجزء ضئيل منه . فإذا أخذت فى رسم خطوط مستقيمة

(وهى أقواس من دوائر بالنسبة لنا أصحاب الفضاء ثلاثى الأبعاد) متساوية الطول ابتداء من نقطة واحدة وفى جميع الاتجاهات فإنها ستسمى الخط الذى يربط نهايات هذه المستقيمات دائرة وعلى السطح المستوى تكون النسبة بين محيط الدائرة ونصف قطرها إذا قيس الطولان بقضيب واحد من قضبان القياس ثابتة تبعاً لهندسة إقليدس المستوية ومقدارها ط وهذا المقدار مستقل عن طول قطر الدائرة ولكن مخلوقاتنا المفرطحة ستجد لهذه النسبة المقدار:

جا (نق) ط <u>نق</u> نق

أى أصغر قليلا من ط . ويزداد الفرق كلما زاد نصف قطر الدائرة بالنسبة إلى نصف القطر ف « لكرة العالم» . وبوساطة هذه العلاقة تستطيع المخلوقات الكروية أن تحدد نصف قطر كونها « عالمها » ولو كان جزء صغير نسبياً من كرة عالمها هو الذي يمكن أن تتناوله قياساتها . ولكن إذا كان هذا الجزء صغيراً جداً حقاً فسوف لا تستطيع هذه الكائنات أن تثبت أنها على « عالم » كروى لا على مستوى إقليدى لأن الجزء الصغير جداً من سطح الكرة لا يختلف إلا قليلا عن سطح المستوى المساوى له في الإتساع .

وهكذا إذا كانت المخلوقات التى تعيش على سطح كروى تعيش على كوكب لا تشغل مجموعته الشمسية إلا قدراً ضئيلاً من الفضاء الكروى لن يكون فى مقدورها أن تعرف إن كانت تعيش فى كون منته أم لا نهائى لأن « الجنزء من الكون » المنذى تتناوله أرصاد وأبحاث هنده الكائنات مستوى عملياً فى كلتا الحالتين أى إقليدى . ويتبع ذلك مباشرة أنه بالنسبة للكائنات التى على سطح كروى يتنزايد محيط الدائرة أولا تبعالنصف القطر حتى يصل إلى محيط الكون ولكن إذا استمر نصف القطر فى الازدياد يأخذ عند ذلك المحيط فى التناقص حتى يصل إلى الصفر .

وأثناء هذه العملية تستمر مساحة الدائرة في الازدياد أكثر فأكثر إلى أن تصبح مساوية للمساحة الكلية لكل « كرة العالم » .

ربما تعبجب القارىء لماذا وضعنا «كائناتنا» على كرة لا على أى شكل آخر مغلق . إن لهذا الاختيار سبباً يبرره يتلخص في أن الكرة من بين كل الأشياء المغلقة الأخرى تنفرد بأن جميع النقط التي عليها متكافئة . إنني أسلم بأن النسبة بين محيط الدائرة ح ونصف قطرها ث تتوقف على نصف قطرها ث ولكن فيما يتعلق بالقيمة الواحدة لنصف القطر تكون هذه النسبة واحدة بالنسبة إلى جميع النقط التي على سطح « العالم » أو بعبارة أخرى إن كرة العالم سطح ثابت الانحناء .

ويوجد « لكرة العالم » ثنائية الأبعاد هذه مثل ثلاثى الأبعاد هو الفضاء الكروى ثلاثى الأبعاد الذى أكتشف ريمان ، كل نقطة متكافئة

أيضاً وله حجم منته يحدده النصف قطره الراح الراح الراح الله ولكن هل من الممكن تصور فضاء كروى . . . ؟ إن تصور أى فضاء لا يعنى سوى أن نتصور ملخص تجربتنا فيه ، أى التجربة التي نحصل عليها في حركة الأجسام الجاسئة وعلى هذا النحو نستطيع أن نتصور الفضاء الكروى .

تصور أننا نرسم خطوطا أو نمد أوتاراً من نقطة ما إلى جميع الاتجاهات ثم نضع علامة على كل من هذه الخطوط أو هذه الأوتار على بعد ث من النقطة بوساطة قضيب قياس .

إن كل نهايات هذه الخطوط أو الأوتار عند هذه العلامات تقع على سطح كروى ونستطيع على الأخص أن نقيس المسافة ف على هذا السطح الكروى بوساطة مربع مكون من قضبان القياس فإذا كان الكون أقليديا فإن مساحة السطح تساوى ف = ٤ ط نق وإذا كان كروياً تكون أقل دائما من ٤ ط نق وكلما زادت قيمة نق زادت ف على الصفر إلى أن تصل حد أقصى يحدده « نصف قطر العالم » ولكن إذا زادت قيمة ث أكثر من ذلك أخذت المساحة في التناقص تدريجياً إلى أن تصل أخيراً إلى الصفر ذلك أخذت المساحة في التناقص تدريجياً الى أن تصل أخيراً إلى الصفر الأمر أكثر فأكثر ثم تتقارب بعد ذلك وأخيراً تجرى معا مرة ثانية في نقطة مقابلة لنقطة الابتداء . وفي هذه الظروف تكون قد عبرت كل الفضاء الكروى الثلاثي الأبعاد يشبه الكروى . وهكذا يبدو بسهولة أن الفضاء الكروى الثلاثي الأبعاد يشبه

الفضاء الكروى ثنائى الأبعاد ، إنه منته (أى منتسهى الحجم) وليس له حدود تحده .

ويحسن أن نذكر أنه يوجد نوع آخر من الفضاء المنحنى هو الفضاء المناقصى ، الذى يمكن اعتباره فضاء منحنياً ، النقطتان المتقابلتان فيه متطابقتان ، أى لا يمكن التمييز بينهما بل تامنا التماثل ، وهكذا يمكن اعتبار الكون الناقصى إلى حد ما كوناً منحنياً له تماثل مركزى .

ما تقدم يتضح أنه من الممكن إدراك الفضاءات المقفولة التي ليس لها حد يحدها ومن بينها يعد الفضاء الكروى والفضاء الناقصى أكثرها بساطة لأن جميع نقط أى هذين الفضائين متكافئة . وكنتيجة لما تقدم ينهض أمام الفلكيين وعلماء الفيزياء سؤال على جانب عظيم من الأهمية : هل الكون الذي نعيش فيه لا نهائي أو أنه منته على نحو الكون الكروى . . . ؟ إن تجاربنا أقل جداً من أن تسمح لنا بالإجابة عن هذا السؤال ولكن نظرية النسبية العامة تسمح لنا أن نجيب عنه بقدر معقول من التأكيد وهكذا تجد المشكلة التي قابلتنا في الفصل الثلاثين حلا لها .

الفصل الثانى والثلاثون بناء الفضاء تبعآ للنظرية النسبية العامة

ليست الخواص الهندسية للفضاء تبعاً لنظرية النسبية العامة مستقلة عن المادة بل إن المادة تحدد هذه الخواص . وعلى ذلك لاسبيل لنا إلى دراسة البناء الهندسي للكون ما لم يتوافر لنا مقدماً معرفة حالة المادة فيه كأساس لدراستنا . ونحن نعرف بالتجربة أن سرعات النجوم بالنسبة إلى مجموعة إسناد مناسبة ، صغيرة جداً إذا ما قورنت بسرعة انتشار الضوء . وعلى ذلك نستطيع على وجه التقريب أن نصل إلى رأى عن طبيعة الكون ككل لو عالجنا المادة باعتبارها ساكنة .

ونحن نعلم كما رأينا في الفصول السابقة أن سلوك قضبان القياس والساعات يتأثر بالمجالات الجاذبية أي بتوزيع المادة وهذا في حد ذاته يكفي لاستبعاد احتمال أن تكون هندسة الكون إقليدية . ولكنه آمر ميسور الفهم أن الكون الذي نعيش فيه لا يختلف إلا قليلا عن الكون الإقليدي وهذه الفكرة تبدو أكثر احتمالا ما دامت التقديرات الحسابية تظهر أن قياسات الفضاء المحيط بالمادة لا تتأثر إلا تأثيراً ضعيفاً حتى من أجسام بمثل كتلة الشمس . ويمكن أن نتخيل أن الكون من الناحية الهندسية يسلك سلوك

سطح منحن بغير انتظام في أجزائه الفردية دون أن يبتعد كشيراً في أي مكان فيه عن المستوى . إنه يبدو كسطح بحيرة متموج ، وكون كهذا يمكن أن يقال عنه إنه شبه إقليدى وإنه من حيث فضاؤه لا نهائى . ولكن التقديرات الحسابية تظهر أن كثافة المادة في كون شبه إقليدى لابد أن تكون صفراً . وهكذا لا يمكن أن يكون مثل هذا الكون مأهولا بالمادة في كل أجزائه ، إنه سيعيد أمامنا الصورة غير المرضية التي رسمناها في الفصل الثلاثين .

فإذا كان لابد أن يكون للمادة في الكون متوسط كثافة يختلف عن الصفر مهما كان هذا الاختلاف ضيلا فلابد إذا أن يكون الكون غير إقليدي ولا حتى شبه إقليدي ، وعلى العكس تشبت نتائج التقديرات الحسابية أنه إذا انتظم توزيع المادة فإن الكون يكون بالضرورة كروياً (أو ناقصاً) ولما كان توزيع المادة تفصيلا في الحقيقة ليس منتظماً فإن الكون ناقصاً) ولما كان توزيع المادة تفصيلا في الحقيقة ليس منتظماً فإن الكون الحقيقي سينحرف في أجزائه الفردية عن الكروى أي أن الكون سيكون الحقيقي سينحرف في أجزائه الفردية عن الكروى أي أن الكون سيكون شبه كروى ولكنه سيكون بالضرورة منتهياً . ولكن النظرية تمدنا في الواقع بعلاقة (١) بسيطة بين التمدد الفضائي للكون ومتوسط كثافة المادة فيه .

⁽۱) لنصف القطر نق للكون على المعادلة نق $\frac{Y}{a} = \frac{Y}{a}$ وإذا استخدما النظام سم. جرام. ثانية للقياس في هذه المعادلة حصلنا على $\frac{Y}{a} = X$ × ۱,۰۸ حيث ثهو متوسط كثافة المادة ، هـ ثابت متعلق بثابت ليوتن للجاذبية .

الملاحسق

- ١ اشتقاق بسيط لتحويل لورنتز .
- ٢- فضاء منكوفكس رباعى الأبعاد « عالم » .
 - ٣- التأييد التجريبي لنظرية النسبية العامة .
 - ٤- بناء الفضاء تبعاً لنظرية النسبية العامة .
 - ٥- النسبية ومشكلة الفضاء.

الملحق الأول اشتقاق بسيط لتحويل لورنتز (تكملة للفصل الحادى عشر)

يجب أن نراعى أن يتطابق باستمرار المحوران السينيان لكل من مجموعتى الإحداثيات الموضحتين في شكل - ٢ - . وبذلك يتم بعض التوجيه النسبي لهما . وفي الحالة الحاضرة منستطيع أن نجزىء المسألة إلى أجزاء بأن نضع محل الاعتبار أولا الحوادث التي تقع على المحاور (س) فقط . فأى هذه الحوادث يمثلها بالنسبة إلى مجموعة الإحداثيات (م) الإحداثي س و الزمن ز . وبالنسبة إلى مجموعة الإحداثيات (م) الإحداثي س والزمن ز وعلينا أن نجد س ، ز إذا كنا نعلم س ، ز

إن أية إشارة ضوئية تنتقل على طول المحور الإيجابي س تنتشر وفقاً للمعادلة س = حـز .

ولما كانت نفس الإشارة الضوئية يجب أن تنتشر بالنسبة إلى مَ بالسرعة حد فعلى ذلك سيكون انتشار الضوء بالنسبة إلى المجموعة مَ وفق المعادلة المماثلة

إن تلك النقط الزمكانية (الحوادث) التي تحقق المعادلة (١) لابد أن تحقق المعــادلة (٢) أيضاً . وواضح أن هذا يتحقق عندمــا تتحقق عــموماً العلاقة . (سَ - حـ زَ) = ت (س - حـ ز) **(**Y)

حيث تشير ت إلى ثابت . لأنه تبعاً للمعادلة (٣) نجد أن اختفاء (سَ - حـ زُ) يتضمن اختفاء (سَ - حـ زُ) .

وإذا أجرينا المثل على أشعة الضوء التي تنتشر على المحور السلبي س نحصل على الحالة.

وإذا جمعنا (أو طرحنا) المعادلات (٣)، (٤) وأحللنا للسهولة

$$\frac{\ddot{\upsilon} - \ddot{\upsilon}}{\Upsilon} = \psi$$

نحصل على المعادلات

۱۷۸

وهكذا يجب أن نحصل على حل المشكلة لو كنا نعلم الثوابت أ ، ب : وهذه الثوابت يمكن معرفتها تبعا لمايلي :

بالنسبة إلى أصل م يكون لدينا على الدوام س = صفر وعلى ذلك يكون تبعاً للمعادلة الأولى من المعادلات (٥)

$$\tilde{w} = \frac{\psi - \epsilon_{\perp}}{1}$$

وإذا رمزنا بالرمزع إلى السرعة التي يتحرك بها أصل م بالنسبة إلى م يكون :

$$3 = \frac{\psi - \epsilon_{-}}{1}$$

ونفس القيمة ع يمكن الحصول عليها من المعادلات (٥) إذا حسبنا سرعة نقطة أخرى من م بالنسبة إلى م أو السرعة (الموجهة نحو المحور السينى السلبى) لنقطة على م بالنسبة إلى م . وباختصار نستطيع أن نسمى ع السرعة النسبية للمجموعتين .

وفوق ذلك فإن مبدأ النسبية يعلمنا أن طول وحدة القياس الساكنة بالنسبة إلى م كما يبدو لراصد على م يجب أن يكون هو نفس طول وحدة القياس الساكنة بالنسبة إلى م كما يبدو لراصد على م . ولكى ترى كيف تظهر نقط المحور س لراصد على م فإننا نحتاج فقط إلى التقاط صورة خاطفة (لقطة سريعة) للمجموعة م من المجموعة م . ومعنى هذا

ite www.libyaforali.com/e-mail almotanabby2002@yahoo.com أنه يجب علينا أن ندخل قيمة خاصة ز (ز من م) أى ز = صفر ولهذه القيمة من ز نحصل من المعادلة الأولى (٥) على :

$$\frac{1}{r} = \frac{1}{r} \Delta$$

ولكن إذا أخذت اللقطة السريعة من م (ز = صفر) وإذا استبعدنا زمن المعادلات (٥) وأدخلنا في اعتبارنا التعبير (٦) حصلنا على :

$$m \left(\frac{1}{2} - 1 \right) = \int_{-\infty}^{\infty} dt$$

ومن هذا نستخلص أن نقطتين على المحور س تفصلهما المسافة أ (بالنسبة إلى م) سيمثلهما في الصورة الخاطفة التي أخذناها المسافة:

$$\left(\begin{array}{cc} \frac{7}{5} & 1 \\ -\frac{7}{5} \end{array}\right)^{\frac{1}{5}} = \left(\begin{array}{cc} 1 \\ -\frac{7}{5} \end{array}\right)^{\frac{1}{5}}$$

ولكن لابد تبعاً لما تقدم ذكره أن تكون الصورتان متماثلتين وعلى ذلك لابد أن تكون كأس في (٧) بحيث نحصل على :

$$\frac{1}{\frac{z}{z}-1} = x_1$$

والمعادلتان (٦) ، (٧ ب) تحددان الثابتين أ ب . وإذا أدخلنا قيمة هذين الثابتين في (٥) نحصل على المعادلة الأولى والرابعة اللتين سبق ذكرهما في الفصل الحادي عشر .

وهكذا حصلنا على تحويل لورنتز بالنسبة إلى الحوادث على المحور س وهو يحقق الشرط :

وامتداد هذه النتيجة ليـشمل الحوادث التي تقع خارج المحور س يمكن الحصول عليه بالاحتفاظ بالمعادلات (٨) وتزويدها بالعلاقات :

وبهذه الطريقة تحقق الفرض الذى ينص على أن سرعة الضوء ثابتة فى الفراغ (مهما كان اتجاه اشعته) بالنسبة إلى كــلا المجموعتين م ، م . ويمكن توضيح ذلك كمايلي :

دعنا نتىخيل أن إشارة ضوئية أرسلت من أصل م في الوقت ز = صفر إنها سوف تنتشر تبعاً للمعادلة :

$$z = \sqrt{m^7 + m^7} = -c$$

وإذا ربعنا هذه المعادلة نجد أن الإشارة الضوئية ستنتشر تبعاً للمعادلة

$$(1.) \qquad - \omega = \frac{1}{2} = - \omega + \frac{1}{2} = - \omega = \frac{1}{2}$$

ويستوجب قانون انستشار الضوء مرتبطاً مع فرض النسبية أن يحدث انتقال الإشارة الضوئية - وذلك كما يبدو بالنسبة إلى المجموعة م - تبعاً للتعبير المناظر:

$$(m^{2} + m^{2} - m^{2})$$

ولما كانت المعادلة (٨ أ) يجب أن تنطبق على النقط التي على المحور س فإننا هكذا نحصل على $\phi = 1$ ومن السهل أن نرى أن تحويل لورتنز يحقق فعلا المعادلة (١١) عندما تكون $\phi = 1$ لأن (١١) نتيجة للمعادلات (٨ أ) ، (٩) وعلى ذلك فهى أيضا نتيجة للمعادلات ٨ ، (٩) ، وهكذا نكون قد قمنا باشتقاق تحويل لورنتز .

وتحويل لورنتز الذي تمثله المعادلتان (٨) ، (١٠) لا يزال بحاجة إلى أن يعمم . فمن الواضح أنه ليس محتما أن نختار محاور م بحيث تتوازى مكانياً مع محاور م ، وليس محتما أيضاً أن تكون سرعة انتقال م بالنسبة إلى م في اتجاه المحور س . وإذا أمعنا الفكر قليلا نسرى أننا نستطيع أن نبنى تحويل لورنتز بهذا المعنى العام من نوعين من التحويلات هما تحويلات لورنتز بالمعنى الخاص ، ومن التحويلات المكانية البحتة الأمر الذي يناظر استبدال مجموعة الإحداثيات قائمة الزوايا بمجموعة جديدة تتجمه محاورها في اتجاهات أخرى . ونستطيع رياضياً أن نصف تحويل لورنتز المعمم كمايلى :

site www.libyaforall.com/e-mail-almotanabby2002@yahoe.com أنه يعبر عن س ، ص ، ش ، ز في حدود الدوال الخيطية المتماثلة

للمقادير س ، ص ، ش ، ز بشكل يجعل العلاقة :

تتحقق بذاتها . أى أننا إذا أحللنا تعبيراتها في حدود س ، ص ، ش ، ز في الشق الأيسر من (١١ أ) يتفق مع الشق الأيمن عنذ ذلك .

الملحق الثانى فضاء منكوفسكى رباعى الأبعاد (تكملة الفصل السابع عشر)

من الممكن أن نحدد معالم تحويل لورنتز بطريقة أكثر بساطة مما تقدم إذا نحن أدخلنا الكمية الخيالية $\sqrt{-1}$ حرز محل ز كمتغير الزمن . وإذا أدخلنا متفقا مع هذا :

$$\begin{array}{rcl}
\omega &=& \omega \\
\omega &=& \omega \\
\omega &=& \omega \\
\omega &=& \omega
\end{array}$$

$$\begin{array}{rcl}
\omega &=& \omega \\
\omega &=& \omega \\
\omega &=& \omega
\end{array}$$

وبالمثل للمجموعة م . عند ذلك يمكن التعبير عن الشرط الذي تحقق بالذات هكذا :

أى أنه عن طريق هذا الاختيار للإحداثيات تتحول المعادلة (١١ أ) إلى هذه المعادلة (١٢) .

ونرى من المعادلة ١٢ أن الإحداثي الزمني الخيالي سى يدخل في شرط التحويل بنفس الطريقة التي تدخل بها الإحداثيات س، س، س، س، س، سم ونتيجة لهذه الحقيقة يدخل « الزمن » س، تبعاً لنظرية النسبية في القوانين الطبيعية بنفس شكل إحداثيات المكان س، س، س، س، س، س،

ولقد سمى منكوفسكى المتصل رباعى الأبعاد الذى تصفه «الإحداثيات» س، س، س، س، س، عالماً » كما سمى « نقطة حادثة » « بنقطة عالم » ومن « حدوث » فى فضاء ثلاثى الأبعاد تتحول الفيزياء كما لوكانت « وجوداً » فى « العالم » رباعى الأبعاد .

وهذا «العالم» رباعی الأبعاد یحمل فی طیاته تماثلا قریباً من الفضاء ثلاثی الأبعاد فی هندسة إقلیدس التحلیلیة . فإذا أدخلنا فی هذا الأخیر مجموعة إحداثیات کارتیزیة جدیدة (\overline{m}_{i}) \overline{m}_{i}) بنفس الأصل فإن \overline{m}_{i} ، \overline{m}_{i} ، \overline{m}_{i}) بنفس الأصل فإن \overline{m}_{i} ، $\overline{m$

الملحق الثالث الإثبات التجريبى لنظرية النسبية العامة

نستطيع أن نتخيل من الناحية النظرية المنظمة عملية تطور علم من العلوم الوصفية على أنها في الواقع عملية استقراء مستمرة . إننا نضع النظريات ونصوغها في عبارة وجيزة . وهي تضمينات لعدد كبير من الملاحظات الفردية في صورة قوانين وصفية . ومن هذه النظريات نستطيع تأكيد القوانين العامة عن طريق المقارنة . من هنا نرى أن نمو وتقدم علم من العلوم يشبه شبهاً كبيراً عملية وضع أو إنشاء فهرس مبوب . إنه يبدو كما لو كان أمراً وصفياً محضاً .

لكن هذا الرأى رأى ضيق الأفق فهو لا يحيط أبدأ بكل نواحى العملية في الواقع ؛ لأنه بغض النظر عن الدور الهام الذي يلعبه الحدس والفكر الاستنباطي في نمو علم من العلوم المضبوطة . إذ بمجرد أن يخطو علم ما من هذه العلوم خطواته الأولى لا تعد خطوات تقدمه النظرى التالية تتم عن طريق مجرد التبويب ؛ لأن الباحث متأثرا بالمدلولات التجريبية بميل إلى إتخاذ منهج فكرى يعتمد منطقياً على عدد صغير من الفروض الأساسية التي تسمى بديهيات . ومثل هذا المنهج أو المذهب الفكرى

يسمى نظرية . والمبسرر الوحيد لوجسود النظرية هـ و أنها تنتظم عدداً كبيراً مسن المشاهدات المفردة . وفى هذا الأمر بالذات يكمن « صدق » النظرية .

وقد يقابل المجموعة المتشابكة الواحدة من المعطيات الوصفية عدة نظريات قد تختلف فيما بينها إلى حد بعيد . ولكن هذه النظريات من ناحية الاستنتاجات التى تشتق منها والتى يمكن اختبارها عملياً قد يكون الاتفاق بينها تاماً بحيث يتعذر العثور على استنتاج واحد تختلف حوله هذه النظريات . ومن أمثلة ذلك حالة مشهورة في عالم الحياة يهتم لها الكثيرون هى نظرية داروين في أصل الأنواع وتطورها عن طريق بقاء الأصلح في معترك الوجود . والنظرية الأخرى في تطور الأنواع على أساس انتقال الخواص المكتسبة وراثياً .

وهناك مثال آخر لذلك - هو الاتفاق البعيد المدى فى الاستنتاجات من نظريتين فى الميكانيكا النيوتونية من ناحية ونظرية النسبية العامة من الناحية الأخرى . وهذا الاتفاق يذهب بعيداً إلى حد أننا إلى الآن لم نعثر إلا على استنتاجات قليلة يمكن وضعها موضع البحث والاختبار ولا تؤدى إليها أيضا فيزياء ما قبل النسبية . وهذا على الرغم من الاختلاف العميق بين الفروض الأساسية للنظريتين . وسنتأمل فيمايلي مرة ثانية هذه الاستنتاجات الهامة وسنناقش الشواهد التجريبية الستى حصلنا عليها إلى الآن ، والتي تتعلق بها .

(۱) حرکة حضيض مسار عطارد:

يجب أن يدور الكـوكب الذي يدور حـول الشـمس وذلـك تبـعــأ لميكانيكا نيوتن وقانون نيوتن للجاذبية في قطع ناقص حولها أو بعبارة أصح حول مركز الثقل المشترك للكوكب والشمس . وفي مثل هذه المجموعة تقع الشمس أو مركز الشقل المشترك في إحدى بؤرتي القطع بحيث يأخذ البعد الشمس - الكوكب في التزايد من حد أدنى إلى حد أقصى ثم يتناقص ثانية إلى الحد الأدنى وذلك خــلال سنة كوكبية(١) ولو أننا أحللنا محل قانون نيوتن قانونا آخر للجذب مختلفاً بعض الشيء لوجدنا في التقدير الحسابي أن الحركة ستظل تحدث تبعاً لهذا الفانون الجديد بحيث يظل البعد الكوكب - الشمس دوري التغير . ولكن في هذه الحالة ستكون الزاوية المحصورة بين الخطين الواصلين من الشمس إلى الكوكب في أول هذه الفترة ثم في نهايتها (أي من حضيض - أقرب نقطة إلى الشمس - إلى حضيض تال) تختلف عن ٣٦٠ درجة ولن يكون خط المدار خطأ مقفولا بل إنه مع الزمن سيملأ جزئياً حلقياً من مستوى المدار. أعنى بين دائرة أقل بعد للكوكب ودائرة أكبر بعد له عن الشمس.

وتبعاً لنظرية النسبية العامة التي تختلف طبعاً عن نظرية نيوتن نجد أن تغييراً صغيراً عن حركة نيوتن - كبلر لكوكب ما في مداره يجب أن

⁽١) هذا هو ما يسمى أحيانا بالأوج والحضيض . (المترجم) .

تحدث بحيث تكون الزاوية المحصورة بين القطر الشمس - الكوكب في الحضيض والذي يليه تزيد على الزاوية التي تناظر دورة كاملة بمقدار يحدده

ملاحظة: تقابل دورة كاملة الزاوية ٢ ط في القياس المطلق للزويا المستعمل في الفيزياء . والتعبير عاليه يحدد المقدار الذي يزيد به قطر الشمس - الكوكب على هذه الزاوية خلال الفترة بين حضيض والذي يليه . وفي هذا التعبير ترمز أ لنصف المحور الأكبر للقطع الناقص ، ي إلى بروزه ، حالى سرعة الضوء ، رإلى مدة دورة الكوكب . ويمكن وضع هذه النتيجة على هذا النحو أيضاً : إن المحور الأكبر للقطع الناقص يدور تبعاً لنظرية النسبية العامة حول الشمس على نحو الحركة المدارية للكوكب ، وتستوجب نظرية النسبية أن يكون هذا الدوران بمقدار ٤٣ ثانية من القوس في القرن بالنسبة للكوكب عطارد ، أما بالنسبة للكواكب الأخرى في مجموعتنا الشمسية فإن مقداره تبعاً لنظرية النسبية لابد وأن يكون صغيراً جداً بحيث لا يسهل الاستدلال عليه (١) .

ولقد وجد الفلكيون في الحقيقة أن نــظرية نيوتن ليست كافية لحساب

⁽۱) خصوصاً وان الكوكب التالى وهـو الزهرة له مدار يكاد يطابق الدائرة مما يجعل تحديد الحضيض أمرا بالغ الصعوبة (الحضيض هو الوقع الذى يكون فيه الكوكب أقرب ما يكون إلى الشمس).

حركة عطارد التى كشفت عنها الأرصاد بدقة تناظر الدقة والحساسية التى وصلت إليها الأرصاد حالياً . ولقد وجد كل من لوفرييه سنة ١٨٥٩ ونيوكامب سنة ١٨٩٥ أنه بعد وضع كل عوامل الاضطراب المؤثرة على عطارد بوساطة بقية الكواكب محل الاعتبار قد تبقت حركة حضيضية لا تفسير لها مقدارها لا يختلف كثيراً عن المقدار المذكور عاليه وهو + ٤٣ ثانية القوس في القرن . وكان مقدار التقريب في هذه النتيجة لا يتجاوز ثوان قليلة فقط .

(ب) انحناء الضوء تحت تا ثير مجال الجانبية :

لقد ذكرنا في الفصل الثاني والعشرين أن نظرية النسبية العامة تنص على أن شعاع الضوء ينحرف عن طريقه عند مروره في مجال جاذبي وهذا الانحراف يشبه ما يعانيه مسار جسم قذف في مجال مجاذبي . ولذلك يجب أن نتوقع أن ينحرف شعاع الضوء الذي يم قريباً من جرم سماوي نحو هذا الجسرم . وزاوية الانحراف الذي يعانيه شعاع ضوئي يمر قريباً من الشمس على مسافة كئ نصف قطر الشمس من مركزها يجب أن يكون مقدارها :

ويمكن هنا أن نضيف إلى ما تقدم أنه تبعاً للنظرية يكون نصف هذا

site www.libyaforall.com\e-mail almotanabby2002@yahoo.com

الانحراف ناشئاً عن المجال النيوتوني لجاذبية الشمس والنصف الآخر ناشئاً عن المغدس . عن التغير الهندسي للفضاء (الانحناء) الذي تحدثه الشمس .

وهذه النتيجة مما يمكن التحقق منها عملياً بوساطة التسجيل الفوتوغرافي لمواقع النجوم أثناء الكسوف الكلى للشمس والسبب الوحيد الذي يضطرنا إلى انتظار فترة كسوف الشمس هو أنه في الأوقات الأخرى نكون السماء مضاءة بشدة الشمس لدرجة تجعل النجوم القريبة الموضع من قرص الشمس متعذرة الرؤية . والأثر الذي تتنبأ به نظرية النسبية العامة يمكن فهمه بوضوح من الشكل التوضيحي المرافق لهذا . فإذا لم تكن الشمس ش موجودة فإن نجماً بعيداً لدرجة لا نهائية عمليا يرى في الاتجاه عم إذا رصد من الأرض ولكنه نتيجة لانحراف الضوء الصادر من النجم بوساطة الشمس فإنه سيرى في الاتجاه عملي بعد من

مركز الشمس أكبر قليلا مما يناظر موقعه الحقيقي .

والطريقة العملية لإجراء هذا الاختبار هي تصوير النجوم التي في جوار الشمس أثناء كسوفها ثم تؤخذ صور أخرى لنفس تلك النجوم عندما تكون الشمس في موضع أخرى لنفس تلك النجوم عندما تكون الشمس في موضع أخر من السماء أي بعد أو قبل ذلك بشهور قليلة . فإذا قورنت هذه الصورة بالصورة القياسية فإن مواقع هذه النجوم على الصورة أثناء الكسوف يجب أن تبدو مزحزحة قطرياً (شكل ٥)

إلى الخارج (بعيداً عن مركز الشمس) بمقدار يساوي الزاوية أ .

ونحن مدينون للجمعية الملكية والجمعية الفلكية الملكية باختبار هذا الاستنتاج المهم . فلقد قامت هاتان الجمعيتان ولم تقعدهما الحرب ولا الصعاب المادية أو النفسية التي أثارتها هذه الحرب فأرسلتا بعثتين واحدة إلى سوبر ال (البرازيل) والاخرى إلى جزر برنسيب في غرب أفريقيا . وأرسلتا عدداً من أشهر الفلكيين البريطانيين (ادنجتون وكننجهام وكروملين ودافيدسن) لكي تحصل على الصور الفوتوغرافية لكسوف الشمس يوم ودافيدسن) لكي تحصل على الصور الفوتوغرافية لكسوف الشمس يوم الفوتوغرافية للسود من الصعر حد أجزاء قليلة من المائة من المليمتر فقط ، وهكذا كان لزاماً أن تراعي الدقة البالغة والحساسية الفائقة في التقاط الصور ثم إجراء القياسات بعد ذلك .

ولقد أيدت نتائج هذه القياسات نظرية المنسبية بطريقة تبعث على الرضا والارتياح التامين . والجدول التالى يوضح النتائج وهي تشمل المركبات قائمة الزوايا للانحرافات تبعاً للتقدير الحسابي استناداً إلى النظرية والمقادير التي وجدت عمليا في التجربة بالقياس .

site www.iibyafo الإحداثي الثاني		an.com/e-man annotanaoby 2002 الإحداثي الأول		eyahoo.com .tr :
حسابيا	تجريبيا	حسابيا	تبعا للتجربة	رقم النجم
٠,٠٢+	٠,١٦+	- ۲۲ -	- ۱۹ -	11
+ ۶۳ ب	+ ۶٦, ٠	+ ۳۱,۰	+ ۲۹,۰	٥
+ ٤٧, ٠	۰ ,۸۳ +	.,1.+	٠,١١+	٤
٠,٨٧+	١,٠٠+	+ ۱۲ ,	٠,٢٠+	٣
٠,٤٠+	·, 0Y +	٠,٠٤+	٠,١٠+	٦
+ ۳۲, ۰	+ ۳۵,۰	٠,٠٩+	٠,٠٨+	١٠
٠,٠٩ –	٠,۲٧	٠,٨٥+	.,90+	۲

(ج) انتقال خطوط الطيف نحو الا'حمر :

لقد أوضحنا في الفصل الثالث والعشرين أنه في مجموعة الإسناد م التي في حالة دوران بالنسبة إلى مجموعة إسناد جاليلية م تسير الساعات متماثلة البناء والتي تعتبر في حالة سكون بالنسبة إلى مجموعة الإسناد الدوارة بمعدلات تعتمد على مواقع الساعات وسنختبر الآن مدى هذا الاعتماد ومقداره كمياً. إن الساعة التي توضع على المسافة ف من مركز القرص يكون لها سرعة بالنسبة إلى م يحددها:

حيث تكون عد السرعة الزاوية لدوران القرص م بالنسبة إلى م فإذا كانت غ قمثل عدد دقات الساعة من الزمن (« معدل » الساعة) بالنسبة إلى م عندما تكون الساعة في حالة السكون فإن « معدل » الساعة غ عندما تكون متحركة بالنسبة إلى م بالسرعة ع ولكنها ساكنة بالنسبة إلى القرص سيكون تبعاً للفصل الثاني عشر تبعاً للمعادلة :

$$\frac{y}{2} - 1\sqrt{\frac{2}{x}}$$

أو تحدده بدقة كافية المعادلة

$$\frac{y}{y} = \frac{y}{y} = \frac{y}{y} = \frac{y}{y} = \frac{y}{y}$$

وإذا رمزنا إلى فرق الجهد لقوة الطرد المركزية بين موضع الساعة ومركز القرص بالرمر ش أى الشغل باعتسبار سلبى الذى يجب أن يتم على وحدة الكتلة ضد قوة الطرد المركزى لكى ينقلها من موضع الساعة على القرص الدائر إلى مركز القرص . عند ذلك نحصل على :

$$\frac{3}{4} = \frac{3}{4} = \frac{3}$$

site www.libyaforall.com\e-mail almotanabby2002@yahoo.com

$$\begin{cases} 1 & \frac{\pi}{2} \\ \frac{\pi}{2} \end{cases} = \frac{\pi}{2}$$

ومن هذا التعبير نرى أولا أن ساعتين متماثلتى التركيب تسيران بمعدلين مختلفين عندما توضعان على مسافات مختلفة من مركز القرص وهذه النتيجة صحيحة بالنسبة لراصد يدور مع القرص .

والآن نـجد أن القرص واقع بالنسبة لراصد عليه في مـجال جاذبي جهـده ش ولذلك تنطبق النتيجة التي حـصلنا عليها عاليه على المجالات الجاذبية جيـداً . وفوق ذلك فـإننا نستطيع أن نعتبر الذرة التي تصـدر عنهـا خطـوط الطيف مَثَلُها مـثَلُ الساعـة ولهذا نجـد أن العبـارة التالـية صحيحة :

« تصدر الذرة أو تمتص ضوءاً يوقف تردده على جهد المجال الجاذبي الذي تقع فيه الذرة » .

وتردد ذرة على سطح جرم سـماوى سيكـون أقل قليلا من تردد ذرة من نفس العنصر مـوجودة فى الفضاء الحر أو على سطح جرم سـماوى أصغر) والآن نجد أن ش = - ل ك حيث ل ثابت نيوتن للجاذبية ، ك كتلة الجرم السماوى . وهـكذا نجد أن خطوط الطيف يجب أن تنتقل نحو الأحمـر على سطوح النجـوم مقـارنة بخطوط الطيف لنفس العنصـر على الأرض ومقدار هذا الانتقال هو :

site www.libyaforall.com\e-mail almotanabby2002@yahoo.com

ولقد وجد أن مقدار الانتقال نحو الأحمر بالنسبة للشمس كما تتنبأ به النظرية يبلغ حوالى جزءين من مليون من طول الموجة . وليس من الممكن الحصول على تقدير يوثق به لهذا المقدار بالنسبة للنجوم لأننا على العموم نجهل كل من الكتلة والقطر بالنسبة لها .

ومسألة وجرد هذا الأثر أو عدم وجوده مسألة لم تتقرر بصفة نهائية حتى الآن (سنة ١٩٢٠) ويعمل الفلكيون بهمة عظيمة وحماس بالغ للوصول إلى حلها . وبالنسبة إلى ضآلة الآثر في حالة الشمس نجد أنه من الصعب جداً أن نكون رأياً عن وجوده فبينما يضع جرب وباكم (بون) كنتيجة لقياساتها شخصياً وقياسات أفرشد وشوارتز تمشيلد على الحزم السيانورية وجود هذا الأثر فوق كل شك نجد علماء آخرون على الأخص سانجون قد انتهوا إلى الرأى المضاد تبعاً لقياساتهم .

إن متوسط انتقالات الخطوط الطيفية نحو الجزء الأقل حيوداً من الطيف تكشف عنه بكل تأكيد الأبحاث الإحصائية على النجوم الشابتة ولكن لا يسمح لنا إلى الآن فحص المدلولات الممكن الحصول عليها بإتخاذ قرار محدد فيما إذا كانت هذه الانتقالات واجبا إرجاعها في الحقيقة إلى تأثير الجاذبية أم لا . ولقد جمعت نتائج الأرصاد معا ونوقشت

بالتفصيل من وجهة نظر المسألة التي شعلت التباهنا هنا في بحث متع قام به فرويندنش (۱) .

على أى حال سوف نصل إلى قرار حاسم فى السنوات القليلة القادمة فإذا كان انتقال خطوط الطيف نحو الأحمر بتأثير الجهد الجاذبي غير موجود فإن نظرية النسبية تصبح مرفوضة لا محل لقبولها أما إذا كان سبب هذا الانتقال يمكن إرجاعه بالتحديد إلى الجهد الجاذبي فإن دراسة هذا الانتقال ستمدنا بمعلومات قيمة عن كتلة الأجرام السماوية .

ملحوظة : لقد أثبت آدمز انتقال خطوط الطيف نحو الطرف الآحمر في سنة ٩٢٤ بأرصاد قام بها على سيريس شديد الكثافة حيث تبلغ كثافته ثلاثين ضعفاً لكثافة الشمس .

(١) انظر البحث :

ر Zur Prüfung der allgemeinen Relativitats Theorie

في مجلة :

Julius Springer Ber-; ra., Naturwissenschaften 1919 No. 35, p.

الملحق الرابع بناء الفضاء تبعآ لنظرية النسبية العامة (تكملة الفصل الثانى والثلاثين)

لقد تقدمت معلوماتنا عن الفضاء العام (المشكلة الكونية) منذ صدور الطبعة الأولى من هذا الكتاب تقدماً هاماً يجدر ذكره حتى في عرض مبسط للموضوع .

لقد كانت نظرتي الأولى للموضوع تستند إلى فرضين :

١ - هناك متوسط كثافة للمادة في كل الفضاء وهو واحد في جميع أجزاء الفضاء يختلف مقداره عن الصفر .

٢ - اتساع الفضاء («نصف قطره») مستقل عن الزمن .

ولقد تبين أن هذين الفرضين منسجمان تبعاً لنظرية النسبية العامة ولكن بعد إضافة حد افتراضى إلى معادلات المجال . وهو حد لم تكن النظرية في حد ذاتها في احتياج إليه كما لم يكن يبدو من وجهة النظر النظرية طبيعياً (« الحد الكوني في معادلات المجال ») .

أما الفرض الثاني فقد بدا لي أنه لا مفر منه في ذلك الحين لأنني

ومع ذلك فسقد كان فريدمان الرياضي الروسي قد أوضح في العشرينات من هذا القرن أن فرضاً آخر كان طبيعياً من زاوية نظرية بحتة. لقد أدرك أنه كان ممكناً الاحتفاظ بالفرض الأول دون إدخال الحد الكوني المتكلف في معادلات المجال للجاذبية إذا كنا على استعداد للتخلي عن الفرض الثاني . أي أن معادلات المجال الأصلية تقبل حلا يتوقف فيه « نصف قطر العالم » على الزمن (تمدد الفضاء) وبهذا المعنى يمكن القول مع فريدمان إن نظريته تستوجب تمدد الفضاء .

لم تمض بعد ذلك سوى سنوات قلائل حتى استطاع هبل آثناء بحث خاص عن سدم نهر المجرة أن يوضح أن خطوط الطيف يظهر فيها انتقال نحو الأحمر يزداد بانتظام مع بعد هذه السدم ، ولا يمكن تفسير هذا الأمر تبعاً لمعلوماتنا الراهنة إلا وفق مبدأ دوبلر أى باعتباره حركة تمدد بين النجوم كما تستوجبه - تبعا لفريدمان معدلات الجاذبية . وعلى ذلك يعتبر اكتشاف هبل تأييداً للنظرية ولو إلى حد ما ولو أنه ظهر تبعا لذلك أنه يثير مشكلة على وجه كبير من الغرابة .

إن تفسير انتقال خطوط الطيف نحو الأحمر الذى اكتشفه هبل فى سدم المجرة على أنه تمدد (وليس من السمهل إنكار ذلك من الناحية النظرية) يؤدى بنا إلى الاعتقاد بأن بداية هذا التمدد كانت منذ ٩١٠ سنة

فقط بينما يبدو تبعاً للفلك الفيزيائى أن تكوين النجوم والمجموعات النجمية استغرق وقتا أطول من ذلك بكثير وليس هناك بارقة أمل تشير إلى الطريقة التي سنتغلب بها على النشوز الفريد .

وأود فوق ذلك أن أبدى ملحوظة بأن نظرية الفضاء المتصدد هي والمدلولات التجريبية للفلك معاً لا تسمحان بإتخاذ قرار حول طابع نهاية أولا نهاية الفضاء (ثلاثي الأبعاد) بينما يخضع الفرض «الاستاتيكي» الأصلى للفضاء لإغلاق الفضاء (نهائيته).

الملحق الخاهس النسبية ومشكلة الفضاء

من سمات فيزياء نيوتن البارزة أنه كان عليها أن تعطى كلا من الزمان والمكان وجوداً مستقلا وحقيقياً مثل ما للمادة لأن فكرة العجلة تظهر في قانون نيوتن للحركة . ولكن العجلة لا يمكن أن تشير في هذه النظرية إلا إلى العجلة بالنسبة إلى المكان .

وهكذا لا مندوحة من اعتبار المكان بالنسبة إلى نيوتن كما لو كان ساكناً أو على الأقل ليس معجلا حتى يمكن لنا أن نعتبر العجلة التى نظهر فى قانون الحركة مقداراً له معنى ما . وينطبق هذا أيضاً على الزمن الذى يدخل طبعاً هو الآخر فى تصور العجلة . ولقد شعر نيوتن نفسه وأكثر معاصريه تحرراً بأكبر الحرج من وجوب إعطاء كل من « المكان » نفسه وكذلك حالته من الحركة واقعاً فيزيائيا . ولكنه لم يكن هناك بد من ذلك فى تلك الأيام لكى تحتفظ الميكانيكا بمعنى واضح .

إنه حقاً ضرب من المغالاة والتعنت أن نعطى المكان عموماً حقيقة فيزيائية خصوصاً الفضاء الفارغ ولهذا كان الفلاسفة منذ أقدم العصور يرفضون مراراً وتكراراً مثل هذا الفرض . خذ مثلا ديكارت لقد كان يرى أن الفضاء صنو للإمتداد والامتداد متعلق بالأجسام وعلى ذلك لا يمكن أن يكون هناك فضاء دون أجسام أى أنه ليس هناك فضاء فارغ » وضعف هذه الحجة يكمن أصلا فيمايلي : من المؤكد أن التصور امتداد تولد أصلا عن تجاربنا في إبعاد أو تقسريب الأجسام الجاسئة من بعضها البعض ولكنا لا نستطيع استناداً إلى هذا أن نقطع أن تصور الامتداد لا تؤيده حالات أخرى لم تشترك بذاتها في تكوينه . ومثل هذا التوسيع في التصورات يمكن أن تبرره فائدته وجدواه في تفسير النتائج التجريبية .

من هذا نرى أن التأكيد بأن الامتداد وقف على الأجسام تأكيد في حد ذاته لا أساس له من الصحة . ومع ذلك سوف نرى فيما بعد أن نظرية النسبية العامة تذهب تقريباً إلى ما ذهب إليه ديكارت . إن الدافع الذي حدا بديكارت إلى اتخاذ هذا الرأى الخلاب جداً هو شعوره بأنه لا يجوز أن نعطى جزافاً حقيقة لشئ مثل الفضاء لا يمكن « مكابدته مباشرة»(١) .

إن الأصل السيكولوجى لفكرة الفضاء أو للزومها بعيدا جداً عن الوضوح ولو أننا كثيراً ما نظن انسياقاً مع مألوف عاداتنا الفكرية أنه أمر راضح للعيان . لقد كان القدامى من علماء الهندسة يعالجون أشياء ضورية (الخط المستقيم والنقط والسطح) لا الفضاء بالذات . إنما حدث عذا بعد ذلك في الهندسة التحليلية . وفكرة الفضاء برغم هذا فكرة توحى ها إيحاء قوياً بعض التجارب البدائية البسيطة . تخيل أننا صنعنا

١) يجب أن يؤخذ هذا التغيير على علاته .

صندوقاً . أننا نستطيع أن نرتب الأشياء بطريقة معينة داخل الصندوق حتى يمتلىء وإمكان مثل هذه الترتيبات أمر يتعلق بالشيء المادى الصندوق . إنه شيء ملازم للصندوق وإنه الفضاء الذي يحتويه الصندوق وهو شيء يختلف باختلاف الصناديق . شيء يعتقد طبعاً أنه مستقل عن كون الصندوق به أو ليس به إطلاقاً في أية لحظة أي أجسام وعندما لا يكون في الصندوق أشياء يبدو فضاؤه « فارغا» .

وإلى هنا ارتبط تصورنا للفضاء بالصندوق ولكنه واضح مع ذلك أن إمكانيات التخزين التى تكون فضاء الصندوق مستقلة تماماً عن سمك جوانبه . أليس ممكنا أن نضغط هذه الجدران ونختزلها إلى أن تختفى من الوجود تماماً ومع ذلك يتبقى الفضاء الذى كانت تضمه هذه الجدران ؟ لا مراء فى أن عملية التحديد هذه أمر طبيعى جداً وهكذا يتبقى لدينا فكريا الفضاء – دون ما حاجة إلى الصندوق – شيئاً واضحاً من تلقاء نفسه ، ولو أنه يبدو لنا وهما إذا ما غاب عنا أصل هذا التصور . وهذا يفسر لماذا كره ديكارت أن يعتبر الفضاء شيئاً مستقلا عن الأجسام المادية أعنى شيئاً كره ديكارت أن يوجد دون المادة (١) (وفى نفس الوقت لا يمنع هذا ديكارت من

⁽۱) حاول كانت التخلص من هذه الورطة فأنكر موضوعية الفضاء ، ولكن هذا الأمر لا يمكن أخذه على محمل الجد فامكانيات التخرين في الفضاء وداخل الصندوق وأن كانت ملازمة له لها نفس الوجود الموضوعي الذي للصندوق نفسه وللأجسام التي توضع فيه .

site www.libyaforall.com\e-mail almotanabby2002@yahoo.com

اعتبار الفضاء تصوراً أساسياً في هندسته التحليلية) ولقد جرد اكتشاف وجود فراغ في البارومتر الزئبقي آخر أنصار ديكارت من كل أسلحتهم ومع ذلك فلا سبيل إلى إنكار أنه حتى في هذا الطور البدائي علق كثير من عدم الرضا والارتياب بتصور الفضاء أو بالفضاء على اعتباره شيئاً حقيقاً مستقلا .

إن الطرق التي يمكن تبعاً لها حشد الأجسام في الفضاء (الصندوق) هي في الخقيقة موضوع بحث الهندسة الإقليدية ثلاثية الأبعاد ولو أن بناءها البديهي يخدعنا إذ يجعلنا ننسى أنها تتعلق بمواقف يمكن تحقيقها .

والآن إذا كان تصور الفضاء قد نشأ على هذه الصورة فإنه يكون أصلا في ضوء تجربة ملء الصندوق فضاء « محدوداً » وعلى ذلك فهذا التحديد لا يبدو أساسيا لأنه واضح أنه يمكن دائماً تصور صندوق أكبر يمكن أن يحتوى الصندوق الأصغر وبهذه الطريقة يبدو الفضاء كشيء غير محدود.

ولن أحاول هنا تقصى نشأة تصورى الفضاء ثلاثى الأبعاد وطبيعته الإقليدية راجعاً بهما إلى تجارب بدائية نسبياً إنما أفضل على ذلك أن أستعرض من زوايا أخرى دور تصور الفضاء في تقدم ونمو الفكر الفيزيائي

إننا إذا وضعنا صندوق صغيراً (ص) ساكناً نسبياً داخل صندوق

فارغ أكبر الله (موسي الفيضاء الذي يحويهما ملكاً مشاعباً لهما . وإذا كان الفارغ ويصبح نفس الفيضاء الذي يحويهما ملكاً مشاعباً لهما . وإذا كان (ص) متحركا بالنسبة إلى (ص) يتعقد الأمر ويميل المرء إلى اعتبار (ص) يتضمن دائما نفس الفضاء ولكنه جبزء متغير من فضاء (ص) وعند ذلك يصبح ضروريا أن يختص كل صندوق بفضائه الخاص باعتباره غير محدود وأن نفرض أن هذين الفضاءين يتحركان بالنسبة إلى بعضهما البعض .

ويبدو لنا الفضاء قبل أن نتمثل تماماً هذا التعقيد كأنه وسط غير محدود أو وعاء تهيم فيه الأجسام المادية سابحة . ولكن أصبح الآن لزاماً علينا أن نتذكر أن هناك عدداً لا حصر له من الفضاءات التي تتحرك بالنسبة إلى بعضها البعض . وتصور الفضاء باعتباره شيء موجود موضوعيا ومستقلا عن ببقية الأشياء تصور يرجع إلى فكر ما قبل العلم بخلاف فكرة وجود عدد لا نهائي من الفضاءات تتحرك بالنسبة إلى بعضها البعض . فهذه الفكرة الأخيرة تفرض نفسها منطقياً ولكنها - وهذا أمر في غاية الغرابة - لم تلعب أي دور هام حتى في الفكر العلمي .

الآن وقد وضح أمامنا الأصل السيكولوجي لتصور المكان يحق لنا أن نتساءل : ما هو الأصل السيكولوجي لتصور الزمان . . . ؟ لاشك في أن هذا التصور مرتبط بمسألة « التذكرة» كما هو مرتبط بالتمييز بين التجربة الحسية واستعادة ذكرى هذه التجربة . ومن المشكوك فيه في حد ذاته أن يكون التمييز بين التجارب الحسية واستعادة ذكرى هذه التجارب (أو

التخيل البسيط لها) شيء قد أعطى لنا سيكولوجياً مباشرة . فكل منا قد عانى الشك فيما إذا كان قد كابد فعلا إحساساً أو أنه حلم به فقط ومن المحتمل أن تكون القدرة على التمييز بين هذين البديلين نابعة من القدرة الخلاقة للمخ .

إننا نربط بين التجربة و «الذكرى» ونعتبرها أسبق بالمقارنة «بالتجارب الراهنة» وهذا مبدأ ترتيبي ذهني لذكريات التجارب وإمكان تحقيق هذا المبدأ يعطينا التصور الذاتي للزمن أي ذلك التصور الذي يرجع إلى ترتيب تجارب الفرد.

ولكن ماذا نعنى بجعل تصور الزمن موضوعياً ؟ دعنا نتأمل مثلا يوضح لنا ذلك . هب أن أحداً من الناس أ (أنا) شاهد البرق وأنه فى نفس الوقت شاهد سلوكاً للشخص ب ينم عن ارتباطه بنفس تجربته هو «مشاهدة البرق» هكذا يشترك أ ، ب فى تجربة مشاهدة البرق ، وعلى ذلك تتولد عند أ فكرة أن أشخاصاً آخرين يشتركون معه فى نفس التجربة وهكذا تصبح مشاهدة البرق بعد أن كانت تجربة شخصية محضة ، تجربة للآخرين (أو فى النهاية مجرد تجربة مكنة الوجود) على هذا النحو نجد أن التفسير «أنها تبرق» الذى وعيناه أول الأمر كتجربة شخصية قد أصبح الآن يفسر أيضا على أنه حادثه (موضوعية) وهى بهذا الشكل مثل أو رمز لكل الحوادث التى نعنيها عند الكلام عن «العالم الخارجي الحقيقي »

لقد رأينا أننا مسوقون إلى أن نرتب تجاربنا ترتيباً زمنيا يجرى على هذا النحو: إذا كان (ب) متأخراً بالمنسبة إلى (أ)، (ح) متأخراً بالنسبة إلى (أ) أيضاً (تابع بالنسبة إلى (ب) يكون (ح) متأخراً بالنسبة إلى (أ) أيضاً (تابع التجارب) ولكن ما هو وضع الحوادث التي ربطناها مع المتجارب بهذا الخصوص ... ؟ يبدو واضحاً لأول وهلة أن هناك ترتيباً زمنياً للحوادث يتفق مع الترتيب الزمني للتجارب . لقد كان هذا هو المتبع بوجه عام على غير وعي إلى أن ظهرت في الأفق شكوك خاصة (١) . وحتى نصل إلى فكرة العالم الموضوعي فلا نزال في حاجة إلى تصور بناء آخر . إن الحادثة ليست محددة الموقع بالنسبة إلى الزمن فقط بل وبالنسبة إلى المكان أيضاً .

لقد حاولنا فيما تقدم من السطور أن نصف كيف عكن أن نربط سيكولوجياً بين تصورات: المكان والزمن والحادثة من ناحية والتجارب من الناحية الأخرى. وهذه التصورات من ناحية المنطق ابتكارات حرة للعقل البشرى. إنها أدوات للفكر القصد منها ربط التجارب فيما بينها بصلة حتى يمكن أن نحصيها جيداً. ومحاولة إدراك الأصول التجريبية التي نبعت منها هذه التصورات الأساسية يجد ربها أن توضح لنا مدى تقيدنا بهذه التصورات وبهذا الشكل نصبح على بينه من مدى حريتنا التي يصعب علينا غالباً عند الاقتضاء استغلاها استغلالا معقولاً.

⁽۱) فترتيب التجارب زمنيا تبعا للوسائل السمعية مثلا يمكن أن يختلف عن ترتيبها زمنيا تبعا للوسائل البصرية بحيث يشعذر تطابق التشايع الزمني للحوادث مع التسابع الزمني للتجارب .

ولا زال أمامنا اعتبار أساسى يجب إضافته إلى هذه الصورة وهو يتعلق بالأصل السيكولوجى لتصورات المكان - زمن - حادثة (وسنسميها بالاختصار شبه الفضائية على عكس التصورات من المحيط السيكولوجى) فلقد ربطنا الفضاء مع تجارب تستخدم الصناديق وترتيب الأجسام المادية فيها . وهكذا يفتسرض هذا التكوين لهذه التسصورات سبق وجود تصور الأجسام المادية (أى الصناديق) وكذلك يلعب بنفس الطريقة الأشخاص الذين كان لزاما أن ندخلهم حتى يتكون التصور الموضوعي للزمن دور الأجسام المادية بهذا الخصوص ولذلك يبدو لى أن تكوين تصور الجسم المادي يجب أن يسبق تصوراتنا للمكان والزمان .

وكل هذه التصورات شبه الفضائية تتعلق فعلا بعصر ما قبل العلم جنبا إلى جنب مع تصورات من المجال النفسى مثل الألم والهدف والغرض . . . إلخ ولكنه من سمات الفكر في الفيزياء كما هو من خصائص الفكر في العلم الطبيعي عامة أن يسعى من حيث المبدأ ألا يلجأ إلا إلى التصورات « شبه الفضائية» وحدها ، وأن يجتسهد في التعبير بوساطتها عن كل العلاقات على شكل قوانين . فعالم الفيزياء يجتهد أن يرد الألوان والنغمات إلى اهتزازات كما يجتهد عالم الفسيولوجي في رد الفكر والألم إلى عمليات عصبية بشكل يستبعد العنصر النفسي بذاته (من حيث هو عنصر نفسى) من سلسلة الاتصال السببية للوجود . وهكذا لا يتدخل هذا العنصر في أي مكان كحلقة مستقلة في الإرتباطات السببية .

ولاشك أن هذا الوضع الذى يعتبر أن إمكان فيهم كل العلاقات أمر مرهون باستعمال التصورات «شبه الفضائية» وحدها هو من حيث المبدأ ما يقصد التعبير عنه هذه الأيام «بالمادية» (طالما أن المادة قد فقدت دورها كتصور أساسى).

ولكن: لماذا كان علينا أن ندحرج الأفكار والتصورات الأساسية عن الفكر في العلم الطبيعي من علياء سمائها عند جبال أولمب في أحضان أفلاطون محاولين الكشف عن منبتها الأرضى ... ؟ لعل ذلك كان أفضل وسيلة لتخليص هذه الأفكار وتحريرها من ربقة الطلسم الذي ضرب عليها . وهكذا تحقق حرية أكبر في تكوين الأفكار والتصورات . والفضل الأكبر في ذلك يرجع إلى خالدى الذكر دافيد هيوم وأرنست ماك فهما اللذان سبقا الجميع إلى هذا الفهم الناقد .

لقد أخذ العلم عن فكر ما قبل العلم التصورات فضاء ، زمن ، والجسم المادى (مع الحالة الخاصة الهامة «الجسم الجاسى» ، وحورها وجعلها أكثر دقة فأينعت وكانت أولى ثمراتها المهمة هندسة إقليدس التي يجب أن لا تحجب صيغتها البديهية عن أعيننا منبتها التجريبي (إمكان إزاحة الأجسام عن بعضها البعض أو رصها فوق بعضها البعض) وعلى الأخص طبيعة الفضاء ثلاثية الأبعاد وطابعه الإقليدي فهذا كله أيضا تجريبي الأصل . (يمكن ملؤه كله «بمكعبات» متشابهة البناء) .

وتسامى تصور الفضاء كثيراً بعد أن اكتشفنا أنه ليس هناك أجسام

تامة الجساءة فكل الأجسام مرنة إن قليلاً أو كثيراً وتتغير أحجامها تبعاً لتغير درجة حرارتها أيضاً . وعلى ذلك فالإنشاءات التى يجب وصف تطابقاتها الممكنة بوساطة هندسة إقليدس لا يمكن تمثيلها بعيدا عن التصورات الفيزيائية . ولكن لما كانت الفيزياء آخر الأمر مضطرة إلى استخدام الهندسة في إقامة تصوراتها فإن المضمون التجريبي للهندسة لا يمكن تقريره أو اختباره إلا في إطار الفيزياء كلها .

ويجب أن لا يغيب عن بالنا في هذا الخيصوص الفكرة الذرية (الذريات) وتصورها عن القابلية للانقسام المحدد لأن الفضاءات ذات الامتداد دون الذرى لا يمكن قياسها . وتضطرنا الذريات أيضا إلى التخيلي من حيث المبدأ عن فكرة السطوح المحددة تماماً واستاتيكاً والتي تحد الأجسام الصلبة . وليس هناك إذا راعينا الدقة قوانين دقيقة حتى على مستوى الحيز الكبير للتشكيلات الممكنة للأجسام الجاسئة التي تتلامس .

وعلى الرغم من هذا لم يفكر أحد فى التخلى عن تصور الفضاء لأنه كان يبدو مما لا يمكن الاستغناء عنه فى مجموع نظام العلم الطبيعى ، وكان ، مرضياً جداً . ولقد كان ماك فى القرن التاسع عشر هو الوحيد الذى فكر جدياً فى حذف تصور الفضاء . عندما فكر فى أن يستبدله بفكرة مجموع المسافات اللحظية بين كل النقط المادية (لقد حاول ذلك ابتغاء الوصول إلى فهم أكمل للقصور الذاتى) .

المجال:

يلعب الفضاء والزمن في ميكانيكا نيـوتن دوراً مزدوجاً ، فهماً أولا يؤديان دور الحامل أو الهيكل لما يحدث في الفيزياء والذي تلند إليه وصف الحوادث عن طريق إحداثيات المكان والزمن . وتعتبر المادة من حيث المبدأ مكونة من « نقط مادية » تكوِّن حركاتها الحوادث الفيزيائية . وعندما تسعتبر المادة ملستمرة البناء ، لا يكون ذلك إلا مؤقتا في تلك الحالات التي لا نريد أو لا نلتطيع أن نصف البناء الحبيبي . وفي هذه الحالة تعامل الأجزاء الصغيرة (عناصر الحجم) من المادة معاملة النقط المادية على الأقل طالما كنا نهتم بمجبرد الحركبات لا بالوقبائع التي ليس ممكناً الآن ، أو لا فائدة ترجى من إسنادها للحركات (أي تغيرات درجة الحرارة أو العمليات الكيميائية) أما الدور الثاني للفضاء والزمن فقد كان يتلكص في أنهما «مجموعة قصورية» وكانت المجموعات القصورية تمتاز دائماً على كل مجموعات الإسناد الممكن تصورها بأن قانون القصور الذاتي صحيح بالنلبة لها .

والنقطة الأساسية في كل هذا هي أن الحقيقية الفيزيائية - ونعتبرها ملتقلة عن الأشكاص الذين يكابدونها - تبين أنها تتكون على الأقل من حيث المبدأ من المكان والزمن من ناحية والنقط المادية دائمة الوجود من الناحية الأخرى والتي تتحرك بالنابة للزمن والفضاء . ويمكن التعبير بشكل عنيف عن فكرة الوجود الملتقل للزمن والمكان على هذا النحو .

لو كان لزاماً أن تكتفى المادة لبقى الزمن والمكان وحدهما (كنوع من الملرح للحوادث الفيزيائية).

ولقد جاء تذليل هذه العقبة نتيجة لتقدم كان يبدو لأول وهلة عديم الصلة بمشكلة المكان - زمن . وأعنى به ظهور «تسصور المجال» وغايته الأخيرة هي أن يحل من حيث المبدأ محل فكرة الجليم (النقطة المادية) . ولقد ظهر تصور المجال في هيكل الفيزياء الكلاسيكية على أنه تصور ملاعد في الحالات التي عولجت فيها المادة باعتبارها متصلا . مثال ذلك : عند معالجة توصيل الحرارة في جلم جاسيء توصف حالة الجلم بذكر درجة الحرارة في كل نقطة من نقطة عند كل لحظة محددة . وهذا يعنى رياضياً أن درجة الحرارة ء تصور على أنه تعبير رياضي (دالة) لإحداثيات المكان والزمن ز (مجال درجة الحرارة) ويمثل قبانون توصيل الحرارة على أنه علاقة محلية (معادلة تفاضلية) تضم كل الحالات الخاصة لتوصيل الحرارة . ودرجة الحرارة هنا مثال بليط لتصور المجال فهي كمية (أو مركب كميات) تكون دالة للإحداثيات والزمن . وهناك مثال آخر هو وصف حركة اللائل . ففي كل نقطة من نقطة توجد في أية لحظة سرعة توصف كمياً بمركباتها الثلاث بالنلبة إلى محاور مجموعة إحداثيات (متجه) ومركبات اللرعة في نقطة ما هنا أيضاً (مركبات المجال) دوال للإحداثيات (س ، ص ، ش) والزمن ز .

ومن مميزات المجالات التي ذكرناها أنها تحدث فقط داخل كتلة ذات

وزن . وهي تستخدم فقط لوصف حالة ما لهذه المادة . وتمشياً مع التطور التاريخي لتصور المجال نجد أنه لا يمكن أن يوجد المجال حيث لا توجد المادة . ولكن ظهر في الربع الأول من القرن التاسع عشر أن ظواهر حركة الضوء والتداخل يمكن تفسيرها بوضوح مذهل باعتبار الضوء مجال موجي يشبه تماماً مجال الاهتزاز الميكانيكي في جسم جاسيء مرن . وهكذا نشأت ضرورة إدخال مجال يمكن أيضاً أن يوجد في «الفضاء الفارغ» في غياب المادة ذات الوزن .

ولقد أدت بنا هذه الحالة إلى موقف غاية في الإشكال . ذلك لأن تصور المجال في أول ظهوره كان - تمشيا مع نشأته - مقصوراً على وصف حالات في داخل الجسم ذي الوزن ، وكان هذا يبدو مؤكداً بقدر اقتناعنا بأن كل مجال يجب أن يعتبر حالة قابلة للتفسير الميكانيكي ، وكان هذا الأمر يفترض مقدماً وجود المادة ولهذا أصبحنا مضطرين حتى في الفضاء الذي اعتبرناه حتى الآن خالياً إلى افتراض وجود شكل من المادة في جميع أجزائه وسمى هذا الشكل الأثير .

ولقد كان تخلص تصور المجال من زعم ارتباطه بفكرة حامل ميكانيكي حدثاً من أهم الأحداث سيكولوجيا التي دفعت الفكر الفيزيائي إلى الأمام .

فقد اتضح خلال النصف الشانى من القرن التاسع عشر بوضوح متـزايد مرتبط من أبحاث فـراداى وماكسـويل أن التعـبير عن العـمليات site www.libyaforall.com\e-mail almotanabby2002@yahoo.com

الكهرومغناطيسية في حدود المجال أفضل كثيراً من التعبير عنها على أساس التصورات الميكانيكية للنقط المادية . ولقد نجح ماكسويل بتطبيق فكرة المجال في التنبؤ بوجود الأمواج الكهرومغناطيسية التي لم يكن تماثلها الأساسي مع أمواج الضوء موضع شك نظراً لأن سرعة كليهما واحدة . وتبعاً لهذا ابتلعت من حيث المبدأ الكهرباء الديناميكية علم البصريات ، وكان الأثر السيكولوجي لهذا التقدم الهائل هو أن اكتسب تصور المجال تدريجياً استقلالاً أكبر من مواجهة الهيكل المكيني للفيزياء الكلاسيكية .

ومع هذا فقد كان من المسلم به أول الأمر أن المجالات الكهرومغناطيسية يجب تفسيرها على اعتبارها حالات للأثير وحاول العلماء بكل همة ونشاط تفسير هذه الحالات ميكانيكياً . ولكن بعد أن تعشرت هذه المحاولات وباءت بالفشل بصورة مستمرة أخذ العلم يقلع تدريجياً عن هذه المحاولات . ولو أن الاقتناع بأن المجالات الكهرومغناطيسية لا مناص من اعتبارها حالات للأثير ظل باقيا . وكان هذا هو الموقف حتى مطلع هذا القرن .

ولقد قامت فى أعقاب نظرية الأثير هذه الأسئلة: كيف يسلك الأثير من وجهة النظر الميكانيكية بالنسبة إلى الأجسام ذات الوزن؟ هل يلعب دوراً فى حركات الأجسام أم تظل أجزاؤه فى حالة سكون بالنسبة إلى بعضها البعض؟ . ولقد أجريت تجارب فذة للإجابة على هذه الأسئلة

ولابد لنا أن المحكوم بها المجالة المحكوم المجالة المحكوم المجاز وغان النجوم الثابتة تبعـاً لحركة الأرض اللنوية و «أثر دوبلر» أى تأثير الحركـة النلبية للنجوم الثابتة على تردد الضوء الذي يصل إلينا منها بالمقارنة بالترددات المعروفة للإرسال . ولـقد استطاع هـ . أ لورنتز تفليـر جميع هذه الأمور والتجارب ما عدا واحدة هي تجربة ميكللن – مورلي - على أساس أن الأثير لا يشترك في حركة الأجلام ذات الوزن وأن أجزاءه لا تتحرك إطلاقاً بالنلبة إلى بعضها البعض . وهكذا ظهر الأثير كما لو كان تجليداً للفضاء اللاكن إطلاقاً . ولكن أبحاث لورنتز ذهبت إلى أبعد من ذلك فقد فلرت كل العمليات الكهرومغناطيلية والبصرية داخل المادة ذات الوزن والتي كانت معروفة في ذلك الحين على أساس أن تأثير الأجلام ذات الوزن على المجال الكهربائي - والعكس - راجع إلى مـجرد أن الجليمات التي تكون المادة تحمل شحنات كهربائية تشترك مع الجليمات في الحركة . أما فيما يتعلق بتـجربة ميكللن - مورلي فقد أوضح لورنتز أن نتيجتها لا تتعارض على الأقل مع نظرية الأثير اللاكن .

وعلى الرغم من هذه الإنتصارات الرائعة لم تكن حالة النظرية مرضية تماماً للأسباب التالية . أن الميكانيكا الكلاسيكية - وليس هناك شك في أنها تتفق والواقع - كتقريب أول تعلمنا تكافؤ كل المجموعات القصورية أو «الفضاءات» القصورية لصياغة القوانين الطبيعية أو عدم تغير هذه القوانين عند الانتقال من مجموعة قصورية إلى أخرى. وتعلمنا

«التجارب» الكهرومغناطيلية والبصرية نفس الشيء بدقة فائقة في حين أن أساس النظرية الكهرومغناطيلية يعلمنا أن مجموعة قصورية خاصة يجب أن تعطى الأفضلية وهي الأثير المضيء اللاكن . وهذه النظرة التي انطوى عليها الأساس النظري كانت غير مرضية إلى أبعد الحدود فهل هناك تعديل لهذا الأساس يجعل - كما في الميكانيكا الكلاسيكية - تكافؤ المجموعات القصورية حقيقة واقعية (مبدأ النلبية الخاصة) . . . ؟

إن الجواب على هذا اللؤال هو نظرية النابية الخاصة ، وتحتفظ من نظرية ماكلويل - لورنتز بفرض ثبوت سرعة انتقال الضوء في الفضاء الخالى . وحتى يكون هناك توافق تام بين هذا وبين تكافؤ المجموعات القصورية (مبدأ النابية الخاص) لابد من التكلى عن فكرة الطابع المطلق للآنية . وبالإضافة إلى ذلك لابد من تطبيق تحويلات لورنتز لإحداثيات المكان والزمن عند الانتقال من مجموعة قصورية إلى أخرى . إن كل مضمون النظرية النابية الخاصة يتضمنه هذا الفرض : « جميع قوانين الطبيعة لا تتغير بالنابة لتحويلات لورنتز» . وأهم ما في هذا القيد هو أنه يحد قوانين الطبيعة الممكنة بصورة محددة واضحة المعالم .

والآن مـا هـو وضع نظرية النلبـية الخــاصة بالنلـبة إلى مــشكلة الفضاء ؟

أولاً يجب أن نحذر الرأى القائل بأن رباعية أبعاد الحقيقة أدخلت حديثاً لأول مرة بوساطة هذه النظرية في الفيزياء

الكلاسيكية كانت الحادثة يحدد موقعها باربعة اعداد : ثلاثة إحداثيات مكانية وإحداثي زمني . وعلى ذلك كان مجموع الحوادث الفيزيائية موسداً في متنوع مستمر رباعي الأبعاد ؛ ولكن هذا المتصل الرباعي الأبعاد ينقسم موضوعياً تبعاً للميكانيكا الكلاسيكية إلى زمن أحادى الأبعاد وإلى قطاعات مكانية ثلاثية الأبعاد . ويحتوى الفريق الأخير منها على الحوادث الآنية وهذا الانقسام واحد بالنسبة لكل المجموعات القصورية . وتزامن حادثتين معينتين بالنسبة إلى مجموعة قصورية واحدة يعنى آنية هاتين الحادثتين بالنسبة إلى كل مجموعات الإسناد القصورية . وهذا هو المعنى الذى نقصده عندما نقول إن الزمن في الميكانيكا الكلاسيكية مطلق ولكن الزمن من وجهة نظر نظرية النسبية الخاصة ليس كذلك . صحيح أن جماع الحوادث الآنية مع حادثة مختارة قائم بالنسبة إلى مجموعة قصورية خاصة ولكن لم يعد مستقلا عن اختيار مجموعة الإسناد . إن المتصل الرباعي الأبعاد لم يعلد الآن قابلا للانقسام موضوعياً إلى قطاعات كل منها يحوى حوادث آنية . إن « الآن» تفقد بالنسبة للعالم الذي هو امتداد فضائي ، معناها الموضوعي ولأجل هذا يجب اعتباز الزمن والمكان متصلا رباعي الأبعاد غير قابل للأنقسام موضوعياً . إذا كنا نريد أن نعبر عن مضمون العلاقات الموضوعية دون تعسفات اتفاقية غير ضرورية .

ولما كانت نظرية النسبية الخاصة قد أوضحت التكافؤ الفيزيائي لكل المجموعات القصورية فقد أثبتت أن فرض الأثير الساكن لا محل له .

وعلى ذلك أصبح ضرورياً أن نتخلى عن فكرة أن المجال الكهرومغناطيسى يجب أن يعتبر كمجرد حالة لحامل مادى . وهكذا دخل المجال من أوسع الأبواب وأصبح عنصراً لا يستغنى عنه في الوصف الفينزيائي له نفس الأهمية التي لتصور المادة في نظرية نيوتن .

لقد وجهنا جل اهتمامنا حتى الآن إلى الوقوف على أوجه التحوير والتعديل الذي أدخلته نظرية النسبية الخاصة على تصورى المكان والزمن . ودعنا الآن نلقى نظرة على العناصر التي نقلتها هذه النظرية عن الميكانيكا الكلاسيكية . هنا أيضا لا تكون القوانين الطبيعية صحيحة إلا إذا اتخذنا مجموعة قصورية أساساً لوصف الزمن مكان . إن مبدأ القصور ومبدآ ثبوت سرعـة الضوء صحيحان بالنسـبة إلى مجموعة قـصورية فقط ، ولا يمكن أن تكون قوانين المجال أيضا صحيحة أو ذات معنى إلا بالنسبة إلى المجموعات القصورية فقط ، وهكذا كما في الميكانيكا الكلاسيكية نجد أن المكان هنا أيضاً مركبة مستقلة في تمثيل الحقيقة الفيزيائية فإذا تخيلنا زوال المادة والمجال بقى المكان القصوري أو على الأدق بقى هذا المكان والزمن الذى يتصل به . إن الفكرة السائدة عن البناء الرباعي الأبعاد (فضاء منكوفسكي) هو أنه حامل للمادة والمجال أما الفيضاءات القيصورية مع الأزمنة المتصلة بها فمحرد مجموعات إحداثية ممتازة تتحصل أو تترابط معأ بوساطة تحويلات لورنتز الخطيـة . وحيث إنه لم يعد يوجد في هذا البناء رباعي الأبعاد أي قطاع يمثل «الآن» موضوعياً فإن تصوري الحدوث والصيرورة لم يتوقف أو يلغيا تماما ولكنهما تعقدا للغاية وعلى ذلك يبدو طبيعياً جداً أن نعتبر الحقيقة الفيزيائية وجوداً رباعي الأبعاد بدلا من اعتبارها كما فعلنا حتى الآن تطوراً لوجود ثلاثي الأبعاد .

وهذا الفضاء الجاسىء رباعى الأبعاد فى نظرية النسبية الخاصة هو إلى حد ما نظير رباعى الأبعاد لأثير لورنتز الجاسىء ثلاثى الأبعاد وبالنسبة إلى هذه النظرية أيضا نرى أن مايلى صحيح : إن وصف الحالات الفيزيائية يفترض أن المكان موجود من قبل وأن وجوده مستقل ، وهكذا نجد أنه حتى هذه النظرية لا تبدد ضيق ديكارت فيما يتعلق بالوجود المستقل أو «الأولى» «حقا للفضاء الفارغ» إن الهدف الحقيقى للمناقشة الأولية التى قدمناها هنا هو أن نوضح إلى أى مسدى تغلبت نظرية النسبية العامة على هذه الشكوك .

تصور الفضاء في نظرية النسبية العامة

لقد نشأت هذه النظرية أصلا من محاولة لفهم تساوى الكتلة القصورية والكتلة الجاذبية . والآن دعنا نبدأ من مجموعة قصورية سا فضاؤها من وجهة النظر الفيزيائية فارغ أو بعبارة أخرى لا يواجه فى الجزء من الفضاء محل الاعتبار أية مادة (بالمعنى المعتاد) ولا أى مجال (بالمعنى المقصود فى نظرية النسبية الخاصة) وهب أن هناك بالنسبة إلى سى مجموعة إسناد أخرى سى تتحرك بعجلة منتظمة . وعلى ذلك لا تكون سى بهذا الشكل مجموعة قصورية فبالنسبة إلى سى سوف تتحرك تحرك

كل كتلة اختبارية بعجلة مستقلة عن طبيعتها الفزيائية والكيمائية وعلى ذلك يكون هناك بالنسبة إلى سه حالة هي على الأقبل تقريب أوّل إلى مجال الجاذبية . وهكذا يكون التصور التبالى متفقاً مع الوقائع المشاهدة : إن سه تكافىء أيضا « مجموعة قصورية» ولكن يوجد بالنسبة لها مجال جاذبي (متجانس) (لا داعي للتعرض لمصدره هنا) وهكذا تفقد المجموعة القصورية مغزاها الموضوعي عندما يتدخل المجال الجاذبي في هيكل الموضوع إذا سلمنا بأن «مبدأ التكافؤ» هذا يمكن أن يمتد إلى أية حسركة نسبية كانت لمجموعة الإسناد . إننا إذا استطعنا أن نضع نظرية متماسكة على أساس هذه الأفكار فإنها ستتفق تلقائيا مع حقيقة تساوى الكتلة الجاذبية والكتلة القصورية وهي حقيقة تؤيدها التجربة بقوة .

ومن وجهة النظر رباعية الأبعاد يناظر الانتقال من س، إلى س، تحويلا لا خطيا للإحداثيات الأربعة وهنا يواجهنا هذا السؤال: أى أنواع التحويلات الخطية هو المسموح به ؟ أو كيف يمكن تعميم تحويل لورنتز... ؟ وللإجابة على هذه السؤال يعتبر ما يلى حاسماً:

إننا نخص المجموعة القصورية في النظرية الأسبق بهذه الخاصية تقاس الفروق بين الإحداثيات بقضبان القياس الجاسئة الثابتة وتقاس الفروق في الزمن بالساعات الساكنة . وأول هذين الفرضين يكمله فرض آخر ينص على أن نظريات إقليدس عن الأطوال تنطبق على عمليات القياس بالقضبان الساكنة . ونستطيع أن نستدل بسهولة من نتائج نظرية

النابية الخاصة على أن هذا التفلير السفيزيائي المباشر للإحداثيات يعتبر مفقوداً بالنلبة إلى مجموعة الإسناد سه التي تتحرك بعبجلة بالنلبة إلى المجموعة سه . ولكن إذا كان هذا هو الوضع فإن الإحداثيات الآن لا تعبر إلا عن نظام أو رتبة مماسة أو استمرار الفضاء ، وعلى ذلك أيضا تعبر عن الرتبة البعدية للفضاء ولكنها لا تعبر عن أية خاصية من خواصه القياسية . وهكذا نجد أنفلنا ملاقين إلى أن نمد التحويلات إلى تحويلات عكمية ملتمرة (١) وهذا يلتوجب المبدأ العام للنابية :

« يجب أن تكون القوانين الطبيعية - متعدية التغير مع التحويلات التحكمية الملتمرة للإحداثيات » وهذا المطلب (مرتبطاً مع مطلب توفر أكبر بلاطة منطقية ممكنة للقوانين يحد القوانين الطبيعية العامة محل الاعتبار بأقوى مما كان في مبدأ النابية الخاصة .

وتقوم هذه اللللة من الأفكار أساسا على اعتبار المجال تصوراً ملتقلا لأن الأحوال اللائدة بالنلبة إلى سى تفلر على أنها مجال جاذبى دون أن تثار ملألة وجود الكتل التي ينشأ عنها هذا المجال . وبفضل سلللة الأفكار هذه يمكن أيضاً أن نقف على سبب كون قوانين المجال الجاذبي البحت أقوى من حيث الاتصال المباشر بفكرة النابية العامة من قوانين المجالات التي من نوع عام (عندما يكون مشلا هناك مجال كهرومغناطيلي) .

⁽١) قد تفي طريقة التعبير غير الدقيقة هذه بالغرض المطلوب هنا .

ولدينا سند قوى إذ نفرض أن فضاء منكوفلكى الخالى من المجال عثل حالة خاصة عكنة فى القانون الطبيعى بل إنها فى الحقيقة أبلط حالة خاصة يمكن تصورها . ويتميز مثل هذا الفضاء من حيث طابعه القياسى بأن ء m_1^{Y} + ء m_2^{Y} + ء m_3^{W} هو مربع الفترة المكانية – مقيلاً بوحدة القياس – بين نقطتين متقاربتين إلى ما لانهاية من قطاع ملتعرض لشبه فضاء ثلاثى الأبعاد (نظرية فيثاغورث) بينما ء m_3 هو الفترة الزمنية – مقيلاً بقياس مناسب للزمن – بين حادثتين تشتركان فى الإحداثيات (m_1) ، m_2) ومعنى هذا كله ببلاطة هو أن مغزى موضوعياً قياسياً قد أعطى للكمية :

(1)
$$\frac{1}{2}m = -\frac{1}{2}m = +\frac{1}{2}m = +\frac{1}{2}m = -\frac{1}{2}m = \frac{1}{2}m = \frac$$

كما اتضح ذلك من قبل بملاعدة تحويلات لورنتيز ويقابل هذا الأمر رياضياً شرط كون ء ف Y لا متغير بالنلبة إلى تحويلات لورنتز .

والآن إذا أخضعنا وفقاً للمبدأ العام للنلبية هذا الفضاء (انظر المعادلة (١)) لتحويل تحكمي ملتمر للإحداثيات عندئذ يعبر عن الكمية ذات المغزى الموضوعي ء ف في مجموعة الإحداثيات الجديدة بالعلاقة .

التى يجب التوافيق المحدود حمق في هذه الحالة ثوابتاً بل دوال للإحداثيات يحددها التحويل التحكمي المختار . ومع ذلك فليست الحدود حمق ومع ذلك فليست الحدود حمق ومع ذلك فليست الحدود حمق دوالا تحكمية للإحداثيات الجديدة ولكنها مجرد دوال من نوع يجعل شكل المعادلة (١ أ) من الممكن إعادة تحويله إلى شكل المعادلة (١) بوساطة تحويل مستمر للإحداثيات الأربعة وحبتي يمكن أن يحدث هذا يجب أن تحسقق الدوال حمق معادلات عامة معينة شرطية متعدية التغير المستقيا ريمان منذ أكثر من نصف قرن قبل مجيء نظرية النسبية (شرط ريمان) وتبعاً لمبدأ التكافؤ نصف المعادلة (١ أ) بشكل متعدى التغير عام مجال جاذبي من نوع خاص عندما تحقق الدوال حمق شرط ريمان .

تبعا لما تقدم نجد أن قانون المجال الجاذبي البحت يجب أن يتحقق عندما يتحقق شرط ريمان ولكنه لابد أن يكون أضعف وأقل تعقيداً من شرط ريمان . وبهذه الطريقة يتحدد تماماً عملياً قانون المجال البحت ولن نقدم هنا مبررات هذه النتيجة تفصيلا (خطوات الوصول إليها) .

إننا الآن في وضع يسمح لنا أن نرى إلى أى مدى يحور الانتقال الى نظرية النسبية العامة تصور الفضاء . لقد كان للفضاء (الزمكان) وفقا للميكانيكا الكلاسيكية ونظرية النسبية الخاصة وجوداً مستقلا عن المادة والمجال . وحستى يمكن أن نقوم بأى وصف لذاك الذى يملاء الفضاء ويعتمد على الإحداثيات يجب أن ننظر فوراً إلى الزمكان أو المجموعة

القصورية بخواصها القياسية على اعتباره موجوداً وإلا كان وصف « ذاك الذي يملأ الفضاء » لا معنى له(١) . ولكن تبعا لنظرية النسبية العامة من الناحية الأخرى ليس للفضاء في مواجهة « ما يملأ الفضاء» الذي يعتمد على الإحداثيات وجوداً مستقلاً . وهكذا يمكن أن يوصف مجال جاذبي بحت في حدود حمر (كدوال للإحداثيات) يحل معادلات الجاذبية : إننا إذا تصورنا أن المجال الجماذبي أي الدوال حمق قد أزيل فإنه لا يتبقى هناك فصصاء من النوع (١) بل لا شيء على الإطلاق ولا « فضاء طوبولوجي " أيضا لأن الدوال حمق لا تصف المجال وحده فقط ولكنها تصف في نفس الوقت الخواص البنائية الطبولوجية القياسية للمتنوع . وفضاء من النوع (١) ليس من زاوية نظرية النسبية العامة فضاء بدون مجال بل حالة خاصة من فضاء حمق ليس لها في حد ذاتها معنى موضوعياً - لها قيم لا تعتمد على الإحداثيات - فليس هناك شيء من نوع الفضاء الخالي أي فضاء بدون مجال . أن الزمكان لا يدعى لنفسه وجوداً بذاته بل كمجرد صفة بنائية للمجال .

وهكذا لم يكن ديكارت بعيداً عن الصواب حينما اعتقد أنه يجب استبعاد وجود فضاء فارغ . إن هذه الفكرة تبدو حقاً شديدة السخف طالما أننا لا نرى الحقيقة الفيزيائية إلا في الأجسام ذات الوزن . ولقد رأينا أننا

⁽۱) إذا تخلينا أن ما يملأ القضاء » (أى المجال) قد أزيل يتبقى لنا الفضاء المترى (القياسى) المتفق مع (۱) الذي يمكن أن يحدد السلوك القصوري لجسم اختبار يوضع فيه .

لكى ندرك تماما اللب الحقيقى لفكرة ديكارت وكنهها استوجب الأمر أن نلجأ إلى فكرة المجال كممثل للحقيقة مرتبطة مع مبدأ النسبية العامة إذ ليس هناك مكان « خال من المجال» .

النظرية المعممة للجانبية

وعلى ذلك أصبحت نظرية المجال الجاذبي البحت على أساس النظرية النسبية العامة في متناول اليد لأننا نستطيع الاطمئنان إلى أن فضاء منكوفسكي الخالي من المجال المتفق قياساً مع (أ) بحيث أن يحقق القوانين العامة للمسجال . ومن هذه الحالة الخاصة نحصل على قانون الجاذبية عن طريق تعميم خال عملياً من التحكم والخطوات التالية للنظرية لا يحددها بصورة لا نزاع فيها المبدأ للنسبية . لقد تمت عدة محاولات في اتجاهات مختلفة خلال عشرات السنين القليلة الأخيرة وتشترك كل هذه المحاولات في اعتبار الحقيقة الفيزيائية مجالا بل وأكثر من ذلك مجالا هو تعميم للمجال الجاذبي يكون فيه قانون المجال بل وأكثر من ذلك مجالا هو تعميم تعميم للمجال الجاذبي يكون فيه قانون المجال تعميماً لقانون المجال المجال المحادث . وبعد تمحيص طويل أعتقد أني قد أهتديت الآن (١) إلى

⁽۱) يمكن تصوير التعميم كمايلى : ان المجال الجاذبي البحث حسب اشتقاقه من فضاء منكوفسكى الخالى له خاصية التماثل التي تعبر عنها : ح،ن : ح ن م (ح،، = ح،، منكوفسكى الخالي له خاصية التماثل المعمم من نفس النوع ولكن بدون خاصية التماثل هذه واشتقاق قانون المجال مماثل تماما لاشتقاق الحالة الخاصة للجذب البحث .

الصيغة الطبيعية جداً لهذا التعميم ولكنى لم أستطع حتى الآن أن أقف على حقيقة ما إذا كان هذا القانون المعمم يقوى على الصمود أمام وقائع التجربة أم لا .

ومسألة قانون المجال الخاص ثانوية بالنسبة للاعتبارات العامة السابقة فالسوال الرئيسي الآن هو : هل يمكن أن تصل بنا نظرية مجال من النوع الذي نتطلع إليه هنا إلى الهدف على الإطلاق ؟ ونعنى بالهدف نظرية تصف وصفاً كاملاً الحقيقة الفزيائية بما فيها الفضاء رباعي الأبعاد على اعتبارها مجالاً . والجيل الحالي من علماء الفيزياء يميلون إلى الإجابة بالنفى على هذا السؤال حيث يعتقدون وفقأ للشكل الراهن لنظرية الكم أن حالة أية مجموعة فيسزيائية ما لا يمكن أن تحدد مباشرة بل بطريق غير مباشر فقط بوساطة النص الإحصائي لنتائج القياس الممكن إجراؤها على المجموعة ويسود الاعتقاد بأن ازدواج الطبيعة الذي تؤكده التجارب (البناء الجسيمي والبناء الموجي) لا يمكن إدراك كنهة إلا بإضعاف تصور الحقيقة . وأعبتقد أنه لا مبرر الآن مع معلوماتنا الراهنة لمثل هذا الإنكار النظرى السعيد الأثر وأنه يجدر بنا ألا نقلع عن متابعة المضى في الطريق الذي مهدته أمامنا نظرية المجال النسبية حتى نهايته .

الفهرس

الجزء الاول نظرية النسبية الخاصة

الصفحة	الموضـــوع	
٧		التصدير
٩	بقلم د. محمود أحمد الشربيني	مقدمة
٣٩		لمقدمة
٤٥	المعنى الفيزيائي للقضايا الهندسية	الفصل الأول
٤٩	مجموعة الإحداثيات	الفصل الثاني
٥٣	المكان والزمان في الميكانيكا الكلاسيكية	لفصل الثالث
٥٦	مجموعة الإحداثيات الجاليلية	: لفصل الرابع
٥٨	مبدأ النسبية بالمعنى المقيد	: لفصل الخامس
	نظرية تركيب السرعات المستعملة في	لفصل السادس
77	الميكانيكا الكلاسيكية	
	التناقض الظاهري بين قانون انتشار الضوء	لفصل السابع:
74	ومبدأ النسبية	_

site www.libyaforall.com\e-mail almotanabby2002@yahoo.com

الصفحة

: فكرة الزمن في الفيزياء الفصل الثامن 77 الفصل التاسع : نسبية الآنية 77 الفصل العاشر : حول نسبية تصور المسافة ٧٦ الفصل الحادي عشر : تحويل لورنتز ٧٨ الفصل الثاني عشر: سلوك الساعات وقضبان القياس ٨٤ المتحركة الفصل الثالث عشر: نظرية محصلة السرعات (تجربة فيزو) ۸Y الفصل الرابع عشر : القيمة الكاشفة للنظرية النسبية 91 الفصل الخامس عشر: النتائج العامة للنظرية 94 الفصل السادس عشر : نظرية النسبية الخاصة والتجربة 99 الفصل السابع عشر : فضاء منكوفسكي رباعي الأبعاد 1.0 الجزء الثانى نظرية النسبية العامة الفصل الثامن عشر : نظريها النسبية الخاصة والعامة 111 الفصل التاسع عشر : مجال الجاذبية 111

الصفحة	£ ;	الموض
	تساوى كتلتى القصور والجاذبية	الفصل العشرون :
	(كحجة في صف المبدء العام	
119	للنسبية)	
	ما هي أوجه النقص في أسس	الفصل الحادى والعشرون :
	الميكانيكا الكلاسيكية ونظرية	4
177	النسبية الخاصة ؟	
	استنتاجات قليلـة من مبـدأ	الفصل الثاني والعشرون :
170	النسبية العامة	
	سلوك الساعات وقضبان القياس	الفصل الثالث والعشرون :
۱۳۰	على مجموعة إسنادتدور	
150	المتصل الاقليدى واللاإقليدى	الفصل الرابع والعشرون :
144	إحداثيات جاوس	الفصل الخامس والعشرون :
	المتــصل الزمـــان والمكان في	الفصل السادس والعشرون :
	نظرية النسبية الخاصة على	
128	اعتبار أنه متصل إقليدى	
	المتصل الزماني الخاص بالنظرية	القصل السابع والعشرون :
128	النسبيية العامة ليس متصلا إقليديا	

site www.libyaforall.com\e-mail almotanabby2002@yahoo.com

الفصل الثلاثون

الملحق الأول

الملحق الثاني

الموضوع

الفصل الثامن والعشرون : التعبير الدقيق عن مبدأ النسبية

101 العام

الفصل التاسع والعشرون : حل مـشـكلة الجـاذبيـة على

أساس المبدأ العام للنسبية 100

الجزء الثالث

تا ملات في الكون ككل

: الصعوبات الكونية في نظرية 174 نيوتن

الفصل الحادي والثلاثون : إمكان وجود كون منته ولكنه

177 غير موجود

الفصل الثاني والثلاثون : بناء الفضاء للنظرية النسبية

177 العامة

فضاء منكوفسكي رباعي الأبعاد

الملاحق 177 اشتقاق بسيط لتحويل لورنتز

110

747

الصفحة	الموضيوع			
۱۸۷	الإثبات التجريبي لنظرية النسبية العامة	:	الملحق الثالث	
199	بناء الفضاء تبعأ لنظرية النسبية العامة	:	الملحق الرابع	
7 . 7	النسبية ومشكلة الفضاء	:	الملحق الخامس	