Dinâmica

Prof. José Maciel

AULA 2

CONTEÚDO PROGRAMÁTICO DESTA AULA

- 1. Introdução à Mecânica;
- 2. Cinemática de uma partícula Conceitos básicos;
- 3. Velocidade média e instantânea;
- 4. Aceleração média e instantânea;
- 5. Classificação de movimentos;
- 6. Aceleração constante: Queda livre;
- 7. Solução gráfica de problemas de movimento retilíneo.

INTRODUÇÃO À MECÂNICA

- A palavra física tem origem grega (physiké) e significa Natureza.
- Mecânica é o ramo das ciências físicas que trata do estado de repouso ou movimento de corpos sujeitos à ação de forças. A engenharia mecânica é dividida em duas áreas de estudo, a saber, estática e dinâmica. A estática diz respeito ao equilíbrio de um corpo que está em repouso ou se move com velocidade constante. Nesta disciplina, será abordada a dinâmica, que trata do movimento acelerado de um corpo.

A dinâmica será apresentada em duas partes: cinemática, que trata somente dos aspectos geométricos do movimento, e cinética, que é a análise das forças que causam o movimento. Para desenvolver esses princípios, a dinâmica de uma partícula será discutida primeiro, seguida por tópicos em dinâmica de corpos rígidos em duas e em três dimensões.

MECÂNICA GERAL CINEMÁTICA ESCALAR

CINEMÁTICA DE UMA PARTÍCULA

A cinemática de uma partícula é caracterizada ao se especificar, em qualquer instante, posição, velocidade e aceleração da partícula.

CONCEITOS BÁSICOS:

REFERENCIAL

Um corpo está em **movimento** em relação a um determinado referencial quando sua posição, nesse referencial, varia no decurso do tempo.

- Um corpo está em **repouso** a um determinado referencial quando sua posição, nesse referencial, não varia no decurso do tempo.

TRAJETÓRIA DE UM MÓVEL

É o conjunto das posições sucessivas ocupadas pelo móvel no decorrer do tempo em relação a um dado referencial.

- Espaço é a grandeza que determina a posição de um móvel numa determinada trajetória, a partir de uma origem arbitrária (origem dos espaços). As unidades de espaço são: cm, m, km, etc.

TRAJETÓRIA DE UM MÓVEL

O movimento, o repouso e a trajetória são conceitos relativos ou seja: dependem de um referencial adotado.

Algumas definições:

Deslocamento (vetorial) e deslocamento escalar (espaço percorrido) são grandezas diferentes.

В

EXEMPLO

Um avião se desloca com velocidade constante, como mostrado na figura: Ao atingir uma certa altura, deixa-se cair um pequeno objeto.

Desprezando-se a resistência do ar, as trajetórias descritas pelo objeto, vistas por observadores no avião e no solo, estão representadas por:

VELOCIDADE ESCALAR MÉDIA (V_m)

"Velocidade média entre dois pontos é a velocidade constante que um segundo móvel deveria possuir para percorrera mesma distância, no mesmo intervalo de tempo."

É o quociente da variação de espaço (ΔS) pelo intervalo de tempo correspondente (Δt):

$$V_{m} = \frac{\Delta S}{\Delta t}$$

em que: $\Delta S = S - S_0$ $\Delta t = t - t_0$

EXEMPLO

Durante o teste de desempenho de um novo modelo de automóvel, o piloto percorreu a primeira metade da pista na velocidade média de 60 km/h e a segunda metade a 90 km/h. Qual a velocidade média desenvolvida durante o teste completo, em km/h?

VELOCIDADE INSTANTÂNEA

A velocidade instantânea no tempo té um vetor que é determinado tomando-se valores cada vez menores de Δt e valores correspondentes de ΔS cada vez menores, de maneira que

$$V = \lim_{\Delta t \to 0} \left(\frac{dS}{dt}\right)$$
, ou

$$V = \frac{dS}{dt}$$

onde dS/dt é a derivada primeira da função S(t) em relação a t.

ACELERAÇÃO ESCALAR MÉDIA

- Através do valor da aceleração escalar média pode-se saber a rapidez com que o móvel está se deslocando.
- A aceleração é o elemento responsável pela variação da velocidade, quer em intensidade (tangencial), quer em direção (centrípeta).

em que:

$$\Delta t = t - t_0$$

ACELERAÇÃO INSTANTÂNEA

• A aceleração instantânea no tempo t é um vetor que é determinado tomando-se valores cada vez menores de Δt e valores correspondentes de Δv cada vez menores, de maneira que $a = \lim_{\Delta t \to 0} \left(\frac{dv}{dt}\right)$, ou

$$a = \frac{dv}{dt} = \frac{d^2s}{dt^2}$$

- Ambas as acelerações, média e instantânea, podem ser positivas ou negativas.
- Finalmente, uma relação diferencial importante envolvendo deslocamento, velocidade e aceleração ao longo da trajetória pode ser obtida eliminando-se o diferencial de tempo dt entre as equações, resultando em dt = dS / v = dv /a

$$a \cdot dS = v \cdot dv$$

CLASSIFICAÇÃO DOS MOVIMENTOS:

- No movimento progressivo, a velocidade é positiva, e o sentido do movimento coincide com o sentido positivo da trajetória;
- No movimento retrógrado, a velocidade é negativa, e o sentido do movimento é oposto ao sentido positivo da trajetória;
- No movimento acelerado, o valor absoluto da velocidade aumenta, os sinais da velocidade e da aceleração são iguais;
- No movimento retardado, o valor absoluto da velocidade diminui, os sinais da velocidade e da aceleração são opostos.

TIPOS DE MOVIMENTOS DA CINEMÁTICA

Velocidade → Aceleração →

QUADRO RESUMO					
٧	a	CLASSIFICAÇÃO DOS MOVIMENTOS			
+	+	Progressivo e Acelerado			
+	ı	Progressivo e Retardado			
-	+	Retrógrado e Retardado			
-	-	Retrógrado e Acelerado			

EXERCÍCIO DE FIXAÇÃO

01. (P11.2) O movimento de uma partícula é definido pela relação x = 12t³ - 18t² + 2t + 5, onde x e t são expressos em metros e segundos, respectivamente. Determine a posição e a velocidade quando a aceleração for igual a zero.

02. (P11.16) Uma partícula inicialmente em repouso em x = 1 m é acelerada até que sua velocidade dobre de intensidade entre x = 2 m e x = 8 m. Sabendo que a aceleração da partícula é definida pela relação a = k[x - A/x], determine os valores da constante A e k se a partícula tem velocidade de 29 m/s quando x = 16 m.

03. O carro à esquerda na foto e na figura a seguir move-se em uma linha reta de tal maneira que, por um curto período, sua velocidade é definida por $v = (0,6t^2 + t)$ m/s, onde t está em segundos. Determine sua posição e aceleração quando t = 3 s. Quando t = 0, $S_0 = 0$.

Movimento Retilíneo Uniforme

 O movimento retilíneo uniforme é um tipo de movimento em linha reta que é frequentemente encontrado em aplicações práticas. Nesse movimento, a aceleração a da partícula é zero para todo valor de t. A velocidade v é, portanto, constante, e integrando v = ds/dt, supondo que, inicialmente, s = s₀ quando t = 0, tem:

$$\int_{s_0}^s ds = \int_0^t v \, dt$$

$$s = s_0 + v t$$

Velocidade constante

Movimento Retilíneo Uniformemente Variado

Aceleração constante, a = a_c

Quando a aceleração é constante, cada uma das três equações cinemáticas: $a_c = dv/dt$, v = dS/dt e $a_c \cdot dS = v \cdot dv$ pode ser integrada para obter fórmulas que relacionam a_c , v, s e t.

Velocidade como uma função do tempo

Integre $a_c = dv/dt$, supondo que, inicialmente, $v = v_0$ quando t = 0.

$$\int_{v_0}^v dv = \int_0^t a_c dt$$

$$v = v_0 + a_c t$$

Posição como uma função do tempo

Integre $v = dS/dt = v_0 + a_c t$, supondo que inicialmente $S = S_0$ quando t = 0.

•
$$\int_{S_0}^{S} dS = \int_0^t (v_0 + a_c t) dt \implies S = S_0 + v_0 t + \frac{1}{2} a_c t^2$$

$$S = S_0 + v_0 t + \frac{1}{2} a_c t^2$$

Velocidade como uma função da posição

Integre $a_c \cdot dS = v \cdot dv$, supondo que inicialmente $v = v_0$ em $S = S_0$.

•
$$\int_{S_0}^{S} a_c dS = \int_{v_0}^{v} v dv \implies v^2 = v_0^2 + 2a_c (S - S_0)$$

Queda Livre e Lançamento Vertical

Pode se verificar esse fato, se o experimento for feito no vácuo, sem a presença do ar, que vai atrapalhar muito o movimento dos corpos leves. Agora, se os corpos forem pesados. Eles chegam praticamente juntos ao chão, pois nessa situação a resistência do ar tem pouca influência.

A resistência do ar:

Queda Livre e Lançamento Vertical

- Considere uma pedra lançada verticalmente (para cima ou para baixo) ou abandonada de uma certa posição, nas proximidades da superfície da Terra. Desprezando a resistência do ar que se opõe ao movimento, pode-se admitir que a aceleração da pedra é constante, com direção vertical e sentido de cima para baixo; esta aceleração é denominada de aceleração da gravidade. Na realidade, a aceleração da gravidade varia com a altitude e com a latitude, porém, se a altura no movimento for relativamente pequena, pode-se considerar a aceleração da gravidade como sendo constante.
- No nível do mar e à latitude de 45°, a aceleração gravitacional tem módulo de aproximadamente 9,81 m/s².

Equações:

Equação de posições:

$$h = h_0 + V_0 t \pm \frac{1}{2} g t^2$$

Equação de velocidade:

$$V = V_0 \pm gt$$

Equação de Torricelli:

$$V^2 = V_0^2 \pm 2g\Delta h$$

 Na possibilidade de se atirar o corpo verticalmente para baixo, para facilitar o entendimento, as equações de posições, de velocidade e Torricelli devem ser escritas com o sinal positivo para a parcela referente a aceleração pois a mesma atua no sentido da referência.

Deduções importantes:

Tempo de subida: Tempo de descida: Altura máxima:

$$t_s = \frac{V_o}{g}$$

$$\mathbf{t_s} = \mathbf{t_D} = \sqrt{\frac{2\mathbf{H}}{\mathbf{g}}}$$

$$\mathbf{H} = \frac{\mathbf{V_o^2}}{2\mathbf{g}}$$

As duas velocidades de subida e de descida, em módulo, em cada ponto da trajetória são iguais e têm sinais contrários, ou seja: $|\mathbf{V}_{\mathbf{S}}| = |\mathbf{V}_{\mathbf{D}}|$

Coisas que você deve saber!

Movimento sobre um plano inclinado, sem atrito, no vácuo, um corpo possui movimento retilíneo uniformemente variado, e a aceleração é:

$$a = g.sen\theta$$

A velocidade adquirida por um corpo em movimento sobre um plano inclinado depende apenas da distância vertical percorrida, sendo independente da inclinação do plano.

Memorize essa tabela!

Instante	Altura durante	Altura total	Velocidade
0	0	0	0
1 s	5 m	5 m	10 m/s
2 s	15 m	20 m	20 m/s
3 s	25 m	45 m	30 m/s
4 s	35 m	80 m	40 m/s
5 s	45 m	125 m	50 m/s

EXERCÍCIO DE FIXAÇÃO

01. Um móvel efetua um movimento uniformemente variado (MUV), obedecendo à função horária: $S = 10 + 10 t - 5,0 t^2$, em que S é medido em metros e o instante t em segundos. Determine a classificação do movimento desse móvel no instante t = 4 s:

- Quanto ao movimento de um corpo lançado verticalmente para cima e submetido somente à ação da gravidade, é correto afirmar que:
- A velocidade do corpo no ponto de altura máxima é zero;
- () A velocidade do corpo é constante para todo o percurso;
- () A aceleração do corpo no ponto de altura máxima é zero;
- O tempo necessário para a subida é igual ao tempo de descida, sempre que o corpo é lançado de um ponto e retorna ao mesmo ponto;
- A velocidade média do corpo na subida é a metade da velocidade de lançamento;
- A aceleração do corpo é maior na descida que na subida;
- Para um dado ponto da trajetória, a velocidade tem os mesmos valores, em módulo, na subida e na descida.

03. Uma bola é lançada ao longo de um plano inclinado, para cima, com velocidade inicial de 120 m/s. O plano forma um ângulo de 30° com a horizontal.

Calcular a aceleração da bola, desprezando o atrito e sendo g = 9,81 m/s². E depois de quanto tempo a velocidade da bola será de 40 m/s?

O4. Um corpo, abandonado de uma altura H, percorre 25 metros no último segundo de queda. Desprezando a resistência do ar e adotando g = 10 m/s², o valor de H é: **05.** (P11.24) Uma bola de boliche é solta de um barco até que atinja a superfície de um lago com a velocidade de 8 m/s. Considerando que a bola experimenta uma desaceleração de a = 10 - 0,9v² quando na água, determine a velocidade da bola quando ela atinge o fundo do lago.

06. Um pequeno projétil é disparado verticalmente para baixo em um meio fluido com velocidade inicial de 60 m/s. Em virtude da resistência do arrasto do fluido, o projétil experimenta uma desaceleração de a = (-0,4 v³) m/s², em que v é dada em m/s. Determine a velocidade do projétil e a posição 4 s após ele ser disparado.

Métodos Gráficos para a Cinemática

Os gráficos s-t, v-t e a-t

Para construir o gráfico v-t dado o gráfico s-t (figura ao lado), a equação v = ds/dt deve ser usada, visto que ela relaciona as variáveis s e t com v. Essa equação estabelece que:

Por exemplo, medindo-se a inclinação no gráfico s–t quando $t=t_1$, a velocidade é v_1 , a qual está representada graficamente na figura abaixo. O gráfico v–t pode ser construído traçando este e outros valores a cada instante de tempo. O gráfico a–t pode ser construído a partir do gráfico v–t de maneira similar, visto que:

Assim, como já observado, as fórmulas fundamentais:

$$v = \frac{dx}{dt}$$
 e $a = \frac{da}{dt}$

possuem um significado geométrico. A primeira fórmula expressa que a velocidade em qualquer instante é igual à inclinação da curva x-t nesse mesmo instante (Figura a seguir).

A segunda fórmula expressa que a aceleração é igual à inclinação da curva v-t. Essas duas propriedades podem ser usadas para obter-se graficamente as curvas v-t e a-t de um movimento quando a curva x-t é conhecida.

Integrando essas duas fórmulas fundamentais de um instante t₁ a um instante t₂ escreve-se:

$$x_2 - x_1 = \int_{t_1}^{t_2} v \, dt$$
 e $v_2 - v_1 = \int_{t_1}^{t_2} a \, dt$

A primeira fórmula expressa que a área medida sob a curva v-t, de t₁ a t₂ é igual à variação de x durante esse intervalo de tempo. Semelhantemente, a segunda fórmula nos diz que a área medida sob a curva a-t de t1 a t2 é igual à variação de v durante o mesmo intervalo de tempo. Essas duas propriedades podem ser usadas para determinar, graficamente, a curva x-t de um movimento quando sua curva v-t ou sua curva a-t é conhecida.

Outros métodos gráficos

Um outro tipo de curva do movimento, a curva v-x, é algumas vezes usado. Se tal curva tiver sido traçada (figura ao lado), a aceleração a poderia ser obtida, para qualquer instante, desenhando a normal AC à curva e medindo a subnormal BC.

De fato, observando que o ângulo entre AC e AB é igual ao ângulo θ entre a horizontal e a reta tangente em A (cuja inclinação é tg θ = dv/dx), escreve-se:

BC = AB
$$tg \theta = v dv/dx$$

e assim, recordando a fórmula (a dx = v dv), tem-se:

$$BC = a$$

Problema Resolvido

P-11.6: Uma partícula move-se em linha reta com a aceleração mostrada na figura. Sabendo que começa na origem com $v_0 = 3.6$ m/s, (a) desenhe as curvas v - t e x - t curves for 0 < t < 20 s, (b) determina sua velocidade, posição e a distância total percorrida quando t = 12 s.

EXERCÍCIOS DE FIXAÇÃO

01. O gráfico abaixo representa dois corpos **A** e **B**, dotados de movimento uniforme em trajetória retilínea. Determine o instante de encontro dos corpos.

02. Uma partícula, que se move em linha reta, está sujeita à aceleração $\mathbf{a(t)}$, cuja variação com o tempo é mostrada no gráfico. Sabendo-se que no instante $\mathbf{t} = \mathbf{0}$ a partícula está em repouso, na posição $\mathbf{x} = \mathbf{100}$ m, calcule a sua posição no instante $\mathbf{t} = \mathbf{8,0}$ s, em metros.

O3. Uma bicicleta move-se ao longo de uma linha reta de tal maneira que sua posição é descrita pelo gráfico mostrado na figura a seguir. Construa os gráficos v − t e a − t para 0 ≤ t ≤ 30 s.

