兰州大学 2020~2021 学年第二学期

期末考试试卷 (A卷)

课程名称:	由磁梁	授课教师:	庞力。	王涛.	黄江伟.	 春亭。	李丰伟
PA-47-41-40-1			HILL F. L.				

学院: 物理科学与技术学院 专业: 物理 年级: ____

蹇	号	8000	=	Ξ	四	五	总分
分	數						
闽卷	教师						

一、概念題(共60分)

- (8分)一个处于静电平衡的空腔导体,分析下面三种情况下,腔内是否是等势空间?腔体内壁有无电荷?给出必要的证明过程或说明。
- (1) 腔内有带电体。
- (2) 腔体本身带电荷, 腔内无带电体。
- (3) 腔外有带电体, 腔内和腔体本身不带电荷。
- 2. (8 分)考虑一平行板电容器,试分析在平行板电容器孤立(极板电荷量保持恒定)情况下,在两极板间充满相对介电常数为ε,(ε,>1)的电介质后电场强度、电位移矢量、极板间总电场能量的变化;如果平行板电容器两极板间电压保持不变的情况下呢?
- 3. (8 分)写出电流的连续性方程的表达形式,并说明它的物理含义;写出稳恒电流条件和焦耳定律的微分形式。
- 4. (6分) 写出基尔霍夫定律的表达形式,并说明该定律背后的物理规律。
- 5. (8分) 什么是安培分子电流假说? 已知单质饱和磁化强度 Ms 最高的是纯铁,约为 $1.7*10^\circ A/m$,已知铁的密度为 $7.8~g/cm^\circ$,原子量 55.8,估算铁的分子电流大小?
- 6. (8分) 试筒述物质磁性的分类?
- 7. (6分) 写出麦克斯韦方程组的普遍形式的积分形式。
- 8. (8分) 写出自由空间传播的平面电磁波的五条性质。

二、计算题(共40分)

1. $(10 \, f)$ 半径为 R 的带电细圆环,电荷线密度为 $\lambda = \lambda_0 \cos \phi$, λ_0 为一正常数, ϕ 为半径 R 和 x 轴所形成的夹角,如右图所示,试求环心 O 处的电场强度和电势。

2. (10 分)初始时刻圆面位于纸面内的半径 R 的单匝圈线圈中 通有电流 I, 线圈与垂直纸面向外的长直导线相切,导线中通 有垂直纸面向外的电流 I。求圆线圈相对于过切点和圆心的竖 直轴的力矩。假设圆线圈可绕 y 轴转动,请说明平衡时线圈的 最终位置。

3. (10 分) 如 图 所 示 电 路 中 。 设 $R_1=1$ Ω 、 $L=\frac{1}{\pi}$ mH 。 $R_2=3$ Ω C $=\frac{500}{\pi}$ μ F,若电源频率为 1000 Hz,求电路的总阻抗并判断电路是电感性还是电容性?

4. (10 分) 均匀磁场限定在无限长圆柱体内,如图所示,当 $\frac{dB}{dt} = a$,且

(a>0), MN=R/2, PQ=R 时。求: (1)梯形各边的感生电动势: (2)整个梯形回路的 感生电动势。

