Porovnávanie reťazcov

Úvod

Porovnávanie reťazcov, presnejšie hľadanie výskytov reťazca v reťazci (string-matching) je pomerne dôležitou súčasťou širokej domény zaoberajúcej sa spracovaním textu. Algoritmy na porovnávanie textov sa využívajú pri implementácií softvérových systémov, ktoré sú reálne nasadené v praxi. Takisto však hrajú dôležitú rolu v teoretickej informatike, kde môžu byť výzvou pre navrhovanie efektívnejších algoritmov.

základné pojmy

- S="AGCTTGA"
- |S|=7, dĺžka reťazca S
- podreťazec: S_{i,i}=S_iS_{i+1}...S_i
- príklad: S_{2,4}="GCT"
- podpostupnosť reťazca S: vymazaním niekoľkých (vrátane žiadneho) znakov z S
 - "ACT" and "GCTT" sú podpostupnosti.

- $\underline{\mathsf{prípona}}\ S:\ S_{h,|S|}$
 - "CTTGA" je prípona S.

základné pojmy

- Uvažujme 2 reťazce:
 - Vzor P[1...m], ktorý má dĺžku m
 - Text T[1...n], ktorý má dĺžku n
- · Vzor P sa nachádza v texte T s posunutím s ak
 - T[s+1...s+m] = P[1...m]
- Príklad: T = abcabaabcabac, P = abaa
 - m=4, n=13, s=3

základné pojmy

- Predpona (prefix): reťazec w je predponou reťazca x, ak (existuje reťazec y taký, že) x = wy, kde y je akýkoľvek reťazec z použitej abecedy Σ, t.j. prvok z množiny Σ*
 - Napr: pre(ab,abcca)
- Prípona (suffix): reťazec w je príponou reťazca x, ak (existuje reťazec y taký, že) x = yw, kde y je akýkoľvek reťazec z použitej abecedy Σ, t.j. prvok z množiny Σ*
 - Napr: suf(cca,abcca)

Lema

- Predpokladajme, že "x", "y" a "z" sú reťazce, pre ktoré platí suf(x, z) a suf(y, z), potom:
 - $ak |x| \le |y|$, tak suf(x,y)
 - $-ak |x| \ge |y|$, tak suf(y,x)
 - -ak|x| = |y|, tak x = y

najznámejšie algoritmy

Algoritmus	fáza predspracovania	Vyhľadávacia fáza
Naivný	0	O((n-m+1)m)
Rabin-Karp	$\Theta(m)$	O((n-m+1)m)
Konečný automat	$O(m \Sigma)$	$\Theta(m)$
Knuth-Morris-Pratt	$\Theta(m)$	$\Theta(m)$
Ďalšie algoritmy, ich o http://www-igm.univ-mlv.	pisy, vizualizácie a zdrojové kódy m fr/~lecroq/string/	íðžete nájsť napr. na :

Naivné hľadanie výskytu reťazca v reťazci

- · Nemá fázu predspracovania
- · Vždy sa posúva len o 1 pozíciu doprava
- Porovnávanie môže prebiehať v akomkoľvek poradí
- Veľká časová zložitosť
- Vykoná sa 2n porovnávaní textu

naivné = hrubou silou

čas: O(mn) kde m=|P| a n=|T|.

Naivné hľadanie výskytu reťazca v reťazci

 Samotný algoritmus pozostáva z porovnávania znakov na všetkých miestach medzi 0 a n-m. Pri každom kroku sa posúva iba o 1 miesto doprava.

```
Naivne porovnavanie (T, P)

n \leftarrow length[T]

m \leftarrow length[P]

for s \leftarrow 0 to n - m

do if P[1 \dots m] = T[s+1 \dots s+m]

then

print "vyskytuje sa s posunutim" s
```

Naivné hľadanie výskytu reťazca v reťazci

Naivné hľadanie výskytu reťazca v reťazci

2 druhy algoritmov hľadania výskytu reťazca

- predspracovanie vzoru P (P sa nemení, T sa mení)
 - napr: dopyt P do databázy T
 - algoritmy:
 - Knuth Morris Pratt
 - Boyer Moore
- predspracovanie textu T (T sa nemení, P sa mení)
 - napr: hľadá sa vzor P v slovníku T
 - algoritmus:
 - · príponový strom

Predspracovanie vzoru

- · dvojfázové algoritmy
 - fáza 1 : vygeneruj pole, ktoré bude indikovať smer pohybu.
 - fáza 2 : použi to pole na pohyb a hľadanie výskytu
- príklady
- algoritmus KMP:
 - navrhli Knuth, Morris a Pratt v 1977.
- algoritmus BM:
- navrhli Boyer a Moore v 1977.

James H. Morris

- 1941, Pittsburgh -
- Bc CMU
- · Master manažment, MIT
- PhD informatika, MIT
- profesor, CMU
- práce
 - Donald Knuth, James H. Morris, Jr., and Vaughan Pratt. Fast pattern matching in strings. SIAM Journal on Computing, 6(2):323– 350. 1977.

Vaughan Pratt

- 1944 -
- · emeritný profesor
- · Stanfordova univerzita
- práce
 - Donald Knuth, James H. Morris, Jr., and Vaughan Pratt. Fast pattern matching in strings. SIAM Journal on Computing, 6(2):323– 350. 1977.

Knuthov-Morrisov-Prattov algoritmus

 KMP algoritmus vychádza z analýzy algoritmu naivného vyhľadávania. V určitých situáciách vie využiť informáciu získanú čiastočným porovnávaním vybraného podreťazca a vzoru a posunúť podreťazec o viac než jeden znak.

prvý prípad v KMP algoritme

- prvý symbol vzoru P sa viac vo vzore P nenachádza.
- možno sa posunúť až ku T_4 , pretože $T_4 \neq P_4$ (a $T_i = P_i$ pre prvé tri pozície i=1,2,3) v (a).
 - 7: AGCCTATCACATTAGTAAAAAAAA

 P: AGCGG

(a)

(b)

druhý prípad v KMP algoritme

- prvý symbol vo vzore P sa v ňom ešte nachádza na niektorom ďalšom mieste
- T₇≠P₇ v (a). treba sa posunúť ku T₆, pretože P₆=P₁=T₆.

P: AGCCTAC

1 2 3 4 5 5 5

(b)

tretí prípad v KMP algoritme

- predpona vzoru P sa vyskytuje v P ešte raz.
- $T_8 \neq P_8$ v (a). Treba sa posunúť k T_6 , pretože $P_{6,7} = P_{1,2} = T_{6,7}$.

základná myšlienka KMP algoritmu

Knuth-Morris-Pratt príklad

Knuth-Morris-Pratt príklad

Knuth-Morris-Pratt príklad

Knuth-Morris-Pratt príklad

m = 11

Knuthov-Morrisov-Prattov algoritmus

KMP algoritmus – pomocná tabuľka

definícia funkcie počítajúcej predponu

```
f(j)= najväčšie k < j také, že P_{1,k}=P_{j-k+1,j} f(j)=0 ak také k neexistuje
```


Knuthov-Morrisov-Prattov algoritmus

Porovnávanie vzoru s reťazcom začína na prvom znaku zľava (vzor je zarovnaný s reťazcom). Algoritmus postupuje, kým nenarazí na nezhodu na štvrtej pozícii medzi znakmi b a g (obr. a). Z predchádzajúcich znakov okamžite vieme, že posun vzoru o jeden alebo dva znaky nemá význam. Preto nastane posun o tři znaky. Tým sa vzor zarovná s textom nad znakom, kde nastala nezhoda. Od tohto miesta môže ďalej pokračovať porovnávane.

Knuthov-Morrisov-Prattov algoritmus

 V tomto príklade vidíme, že vzor je posunutý o s a nastáva nové porovnávanie. Pri ňom sa zistilo, že nezhoda nastala na 6. pozicii retázca, čo indikuje posun o 5 znakov (g). V tomto prípade však takýto posun nie je možný. Posunúť sa môžeme iba o 2 znaky, pretože na 3. znaku sa nachádza zhoda medzi týmto znakom a prvým znakom vzoru (na tomto mieste môže začínať vzor)

Knuthov-Morrisov-Prattov algoritmus

- Posun pri prehľadávaní je nezávislý od prehľadávaného reťazca. Jeho veľkosť určuje tzv. predponová funkcia.
- predponová funkcia (Prefix function)

```
\pi pre P, |P| = m:
```

$$\begin{split} \pi: \{1,\,2,\,\ldots\,,m\} &\to \{0,\,1,\,\ldots\,,m^-\,1\} \\ \pi(q) &= max\{k:\,k < q,\,P_{1,k} \sqsupset P_{q-k+1,q}\}. \end{split}$$

 Jednotlivé posuny sa vypočítavajú vo fáze predspracovania.

Knuthov-Morrisov-Prattov algoritmus

```
KMP POROVNANIE(T, P)
n \leftarrow \text{dizka}(T)
m \leftarrow \text{dizka}(T)
m \leftarrow \text{dizka}(T)
m \leftarrow \text{dizka}(T)
q \leftarrow 0
for i \leftarrow 1 to n //prehľadávaj dalši zľava doprava
do while q > 0 and P[q + 1] \neq T[I]
\text{do } q \leftarrow \pi[q]
\text{if } P[q + 1] = T[I]
\text{then } q \leftarrow q + 1 //zhoduje sa
\text{if } q = m
\text{then } print "Vzor sa v retazci vyskytuje s posunom " <math>i-m
q \leftarrow m[q]
```

Knuthov-Morrisov-Prattov algoritmus

$$\label{eq:proposed} \begin{split} & \textit{PREDPONOVA FUNKCIA}\left(P\right) \\ & \textit{// funkcia sa reprezentuje tabuľkou } \pi, jej \\ & \textit{hodnoty sa tu vypočítavajú a zapisujú do } \pi \\ & m \leftarrow \text{dižka}(P) \\ & \pi[1] \leftarrow 0 \\ & k \leftarrow 0 \\ & \text{for } q \leftarrow 2 \text{ to } m \\ & \text{do while } k > 0 \text{ and } P[k+1] \neq P[q] \\ & \text{do } k \leftarrow \pi[k] \\ & \text{if } F[k+1] = P[q] \\ & \text{then } k \leftarrow k+1 \\ & \pi[q] \leftarrow k \\ & \text{return } \pi \end{split}$$

na začiatku: m = dĺžka[P] = 7 $\pi[1] = 0$

príklad: vypočítať π pre vzor 'P':

k = 0

krok I: q = 2, k=0 $\pi[2] = 0$
 q
 1
 2
 3
 4
 5
 6
 7

 p
 a
 b
 a
 b
 a
 c
 a

 π
 0
 0

 $\frac{\text{krok 2: } q = 3, k = 0,}{\pi[3] = 1}$

 q
 1
 2
 3
 4
 5
 6
 7

 p
 a
 b
 a
 b
 a
 c
 a

 π
 0
 0
 1
 ...
 ...
 ...
 ...

 $\frac{\text{krok 3}}{\pi[4]} = 4, k = 1$

q	1	2	3	4	5	6	7
р	а	b	а	b	а	С	Α
π	0	0	1	2			

 $\frac{\text{krok 4: } q = 5, k = 2}{\pi[5] = 3}$

q	1	2	3	4	5	6	7
р	а	b	а	b	а	С	а
π	0	0	1	2	3		

 $\frac{\text{krok 5: } q = 6, k = 3}{\pi[6] = 1}$

q	1	2	3	4	5	6	7
р	а	b	а	b	а	С	а
π	0	0	1	2	3	1	

krok 6: q = 7, k = 1 π[7] = 1

q	1	2	3	4	5	6	7
р	а	b	а	b	а	С	а
π	0	0	1	2	3	1	1

po 6 opakovaniach je výpočet funkcie π úplný: \rightarrow

q	1	2	3	4	5	6	7
р	а	b	а	b	а	С	а
π	0	0	1	2	3	1	1

príklad: nech sú dané reťazec 'S' a vzor 'P':

S

P ababaca

Na nájdenie výskytu vzoru p v texte S použijeme algoritmus KMP.

najprv sa pre vzor 'P' vypočíta predponová $funkcia \pi daná tabuľkou (pozri prechádzajúci príklad)$

C	1	1	2	3	4	5	6	7
p)	а	b	а	b	а	С	а
Γ	1	0	0	1	2	3	1	1

Vzor 'P' sme našli (jeho úplný výskyt) v texte 'S'. Celkový počet posunov, ktoré sa vykonali, aby sa našiel výskyt je: i - m = 13 - 7 = 6.

odhad času výpočtu

KMP algoritmus – časová zložitosť

- časová zložitosť: O(m+n)
 - O(m) výpočet funkcie f
 - O(n) hľadanie vzoru P

KMP algoritmus a konečný automat

• KMP algoritmus do určitej miery súyisí s konečnými automatmi. Predpokladajme, že máme vzor P dĺžky m. Definujeme si konečný automat, ktorý bude mať m+1 stavov. Prechody medzi jednotlivými stavmi budú postupne určené jednotlivými písmenami vzoru. Teda napr. prechod mezi nultým a prvým stavom bude podľa písmena p₁, prechod mezi prvým a druhým stavom podľa p₂ atď. Ostatné prechody (teda akési chybové) bude určovať práve predponová funkcia. Vstupným stavom bude stav 0 a výstupným stav m. Samotné vyhľadávanie bude realizované ako práca takéhoto automatu so vstupom, ktorý odpovedá zadanému reťazcu. Rozdiel je iba v tom, že pokiaľ sa pomocou predponovej funkcie vrátime do niektorého predchádzajúceho stavu, okamžíte skúsime cez ten istý znak (ktorý spôsobil nezhodu) prejsť do nasledujúceho stavu.

KMP algoritmus a konečný automat

 Príklad konečného automatu pre vzor perpetrate

Knuth-Morris-Pratt

Knuth-Morris-Pratt

Knuth-Morris-Pratt

Knuth-Morris-Pratt

Text

a a b a b b b b b b b cidlory stow

Knuth-Morris-Pratt

Knuth-Morris-Pratt

Knuth-Morris-Pratt

Knuth-Morris-Pratt

Knuth-Morris-Pratt

Knuth-Morris-Pratt

Knuth-Morris-Pratt

Knuth-Morris-Pratt

Knuthov-Morrisov-Prattov algoritmus

Knuthov-Morrisov-Prattov algoritmus - príklad implementácie

Knuthov-Morrisov-Prattov algoritmus - príklad implementácie

```
 \begin{aligned} & \text{void KMP(char}^*x_i \text{ int } n, \text{char}^*y_i \text{ int } n) \\ & & \text{int } l_i \text{ kmpNext[XSZE]:} \\ f' & \text{Preprocessing } f' \\ f' & \text{Preprocessing } f' \\ f' & \text{predkemp(x, m, kmpNext);} \\ f' & \text{Searching } f' \\ & \text{is} & \text{is} & \text{is} \\ \text{while } (i > -1 & & \text{xi}[i] \text{ is yij}] \\ & \text{while } (i > -1 & & \text{xi}[i] \text{ is yij}] \\ & \text{is} & \text{is} & \text{inpNext[i]:} \\ & \text{if } (i > \text{sm}) \\ & \text{is} & \text{is} & \text{is} \\ & \text{OUTPUT(j-i):} \\ & \text{is} & \text{is} \\ & \text{is} & \text{is} \\ \end{pmatrix}
```

Robert S. Boyer

- · emeritný profesor
- Computer Science Department
- The University of Texas at Austin
- práce
 - BOYER R.S., MOORE J.S., 1977, A fast string searching algorithm.
 Communications of the ACM. 20:762-772.

J Strother Moore

- profesor
- Computer Science Department
- The University of Texas at Austin
- práce:
 - BOYER R.S., MOORE J.S., 1977, A fast string searching algorithm.
 Communications of the ACM. 20:762-772.
 - dokazovanie teorém

Boyerov-Moorov algoritmus - príklad

									t[9]	
Α	В	С	Е	F	G	Α	В	С	D	Е

p[0]	p[1]	p[2]	p[3]
Α	В	С	D

N

Vo vzore nie je žiadny znak E: z toho plynie, že vzor nemožno nájsť nikde pred znakom t[3]. Preto sa možno a teda aj treba posunúť o 4 miesta doprava.

Boyerov-Moorov algoritmus - príklad

										t[10]
Α	В	С	Е	F	G	Α	В	С	D	Е

p[0]	p[1]	p[2]	p[3]
Α	В	С	D

N

Nevyskytuje sa. Ale vo vzore sa B vyskytuje. Treba sa posunúť o dve miesta doprava.

Boyerov-Moorov algoritmus - príklad

t[0] t	[1]	t[2]	t[3]	t[4]	t[5]	t[6]	t[7]	t[8]	t[9]	t10]
A E	3	С	Е	F	G	Α	В	С	D	Е

· · · · ·

Boyerov-Moorov algoritmus

- porovnáva sprava doľava
- 2 predvypočítané funkcie
 - posun o dobrú príponu
 - posun o zlý znak

myšlienka č. 1: porovnávať sprava doľava

```
12345678901234567
T: xpbctbxabpqxctbpq
P: tpabxab
```

Boyerov-Moorov algoritmus

```
12345678901234567
T: spbctbsabpqsctbpq
P: tpabsab
P: tpabxab
myšlienka č. 2: pravidlo zlého znaku
```

. R(x): najpravejší výskyt znaku x v P. R(x)=0 ak sa x nevyskytuje. R(t)=1, R(s)=5.

i: miesto, kde došlo k nezhode v P. i=3

k: zodpovedajúce miesto v T. k=5. T[k]=t

pravidlo zlého znaku: Vzor P sa posunie doprava o max{1, i-R{T[k]}}. čiže ak je najpravejší výskyt znaku T[k] v P na mieste j (j<i), tak P[j] sa ocitne pod T[k] po posunutí.

67

Boyerov-Moorov algoritmus

- myšlienkou pravidla zlého znaku je posunúť P o viac než o jeden znak, ak je to možné.
- pravidlo neúčinné, ak j>i
- bohužiaľ, prípad j>i je častý

```
12345678901234567
T: spbctbsatpqsctbpq
P: tpabsat
P: tpabsat
```

Boyerov-Moorov algoritmus

označme x=T[k] znak, ktorý sa nezhoduje so vzorom v T.

myšlienka č. 3: rozšírené pravidlo zlého znaku: P sa posunie doprava tak, že najbližšie x vľavo od miesta i v P bude pod T[K].

```
12345678901234567
T: spbctbsatpqsctbpq
P: tpabsat
P: tpabsat
```

Boyerov-Moorov algoritmus

aby sme mohli používať rozšírené pravidlo zlého znaku, potrebujeme poznať: pre každé miesto i v P, pre každý znak x v abecede, miesto najbližšieho výskytu x vľavo od miesta i.

možný prístup: dvojrozmerným poľom: $n*|\Sigma|$

pamäťovo a časovo príliš náročné

Boyerov-Moorov algoritmus

iný prístup: prezrieť P sprava doľava a pre každý znak x si držať zoznam miest, kde sa x vyskytuje (v klesajúcom poradí).

P: tpabsat t→7,1 a→6,3 ...

ak dôjde k nezhode medzi P[i] a T[k], (označme x=T[k]), prezri zoznam výskytov znaku x, nájdi prvé číslo (označme ho j), ktoré je menšie než i a posuň P doprava tak, aby P[j] sa dostalo pod T[k].

12345678901234567
T: spbctbsatpqsctbpq
P: tpabsat
P: tpabsat

ak také číslo j neexistuje, tak posuň P za T[k]

čas a pamäť: lineárna

myšlienka č. 4: pravidlo dobrej prípony

t je prípona vzoru P taká, že sa zhoduje s podreťazcom t textu T a x≠y t′ je najpravejší výskyt t v P taký, že t′ nie je príponou P a z≠y

Boyerov-Moorov algoritmus

pravidlo dobrej prípony:

(1) ak existuje t' tak posuň P doprava tak, že t' v P je pod t v T

123456789012345678

T: prstabstubabvqxrst
P: qcabdabdab

P: qcabdabdab

: qcabdabdab

Boyerov-Moorov algoritmus

- rozšírené pravidlo zlého znaku sa sústreďuje na znaky.
- pravidlo dobrej prípony sa sústreďuje na podreťazce.
- ako teraz získať informáciu, ktorú treba pre pravidlo dobrej prípony? ako pre nejaké t nájsť t`?

Boyerov-Moorov algoritmus

L'(i): pre každé i, L'(i) je najväčšie miesto menšie než n také, že podreťazec P[i,...,n] sa zhoduje s príponou reťazca P[1,..., L'(i)] a navyše znak predchádzajúci tejto prípone je rôzny od P[i-1].

ak také miesto neexistuje tak L'(i) =0.

nech t= P[i,...,n], potom L'(i) je miesto pravého konca t'.

T: prstabstubabvqxrst

P: qcabdabdab

L'(9)=4, L'(10)=0, L'(8)=?, L'(7)=? L'(6)=?

Boyerov-Moorov algoritmus

nech t= P[i,...,n], potom L'(i) je miesto pravého konca t'.
aby sa dalo používať pravidlo dobrej prípony, treba poznať L'(i) pre
všetky i=1,...,n.

pre vzor P:

 N_i je dĺžka najdlhšieho podreťazca, ktorý končí na mieste j a ktorý je príponou P.

Boyerov-Moorov algoritmus

N_i: dĺžka najdlhšieho podreťazca, ktorý končí na mieste j a ktorý je príponou P.

Z_i: dĺžka najdlhšieho podreťazca, ktorý začína na mieste i a ktorý je predponou P.

N je obrátené Z! Pr je obrátený reťazec P všimnime si, že $N_i(P)=Z_{n\cdot j+1}(P^r)$ 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 P: q c a b d a b d a b N₃: 0 0 0 2 0 0 5 0 0 0 badbadbacq 0005002000

Boyerov-Moorov algoritmus

pre daný vzor P,

 N_i (pre j=1,...,n) sa dá vypočítať v lineárnom čase O(n) algoritmom Z.

prečo treba určiť N; ?

aby sa dalo použiť pravidlo dobrej prípony, treba poznať L'(i) pre všetky i=1,...,n.

Boyerov-Moorov algoritmus

Boyerov-Moorov algoritmus

Ako získať L'(i) z N_i v lineárnom čase?

vstup: vzor P výstup: L'(i) pre i=1,...,n

vypočítaj N, pre j=1,...,n na základe algoritmu Z for i=1; i<=n; i++

L'(i)=0; for j=1; j<n; j++ L'(i) i=n-N_i+1 L'(i)=j;

Boyerov-Moorov algoritmus

Pravidlo dobrej prípony:

(1) ak existuje t', tak posuň P doprava takým spôsobom, že t' v P je pod t v T

123456789012345678 prstabstubabvqxrst T: i=9; L'(9)=4P: gcabdabdab P: qcabdabdab

Boyerov-Moorov algoritmus

Pravidlo dobrej prípony:

- (1) Ak nastáva nezhoda na mieste i-1 v P a L'(i)>0 (t.j. existuje t'), tak podľa pravidla dobrej prípony možno posunúť P o n-L'(i) miest doprava.
- (2) Čo ak nastane nezhoda na mieste i-1 v P a L'(i)=0 (t.j. t' neexistuje)? Možno P posunúť takto

Dá sa však spraviť viac!

Boyerov-Moorov algoritmus

Pozorovanie 1: ak β je predponou P a je tiež príponou P, tak...

Boyerov-Moorov algoritmus

pozorovanie 2: ak je viac kandidátov β , tak posuň P o čo najmenšiu dĺžku

Boyerov-Moorov algoritmus

Pravidlo dobrej prípony: keď nastane nezhoda na mieste i-1 vzoru P
(1) ak t'(i)>0 (t.j. t' existuje), tak podľa pravidla dobrej prípony možno posunúť P o n-t'(i) miest doprava.

(2) inak ak L'(i)=0 (t.j. t' neexistuje)? Možno posunúť P poza ľavý koniec t o najmenší počet miest taký, že predpona posunutého vzoru sa zhoduje s príponou t.

Boyerov-Moorov algoritmus

l'(i): dĺžka najväčšej prípony P[i,...,n] takej, že je aj predponou vzoru P. Ak taká neexistuje, tak l'(i)=0.

l'(i) je dĺžka prekrytia medzi neposunutým a posunutým vzorom.

Boyerov-Moorov algoritmus

l'(i) sa rovná najväčšiemu *j≤*|*P[i,…n]*| takému, že N⊨j

1. N⊨j tak β je predponou P a tiež príponou P

2. a chceme najväčšie j

l'(i) sa rovná najväčšiemu *j*≤|*P[i,…n]*| takému, že N⊨j

```
1 2 3 4 5 6 7 8 9 0
P: abdababdababdab
N<sub>3</sub>: 0 2 0 0 5 0 2 0 0 0
l'(i): 5 5 5 5 5 5 2 2 2 0
```

Boyerov-Moorov algoritmus

Ako vypočítať ľ(i) z N_iv lineárnom čase?

Boyerov-Moorov algoritmus

Čo ak sa nájde zhoda? posuň P o 1 miesto...ale...

Posuň P o najmenší počet miest taký, že predpona posúvaného vzoru sa zhoduje s t, t.j. posuň P doprava o n-/(2)

Boyerov-Moorov algoritmus

Pravidlo dobrej prípony: keď nastane nezhoda na mieste i-1 vzoru P
(1) ak Ľ(i)>0 (t.j. ť existuje), tak podľa pravidla dobrej prípony možno posunúť P o n-Ľ(i)
miest doprava

(2) lnak ak L'(i)=0 (t.j. t' neexistuje)? Možno posunúť P poza ľavý koniec t o najmenší počet miest taký, že predpona posunutého vzoru sa zhodne s t, čiže o n-f(i) miest doprava.

(3)Ak sa nájde nezhoda, tak posuň P doprava o n-/(2)

Boyerov-Moorov algoritmus

rozšírené pravidlo zlého znaku vs. pravidlo dobrej prípony

Boyerov-Moorov algoritmus

Posuň P o najväčší počet miest určený niektorým z oboch pravidiel. To je podstata Boyerovho-Moorovho algoritmu! vstup: text T, vzor P; výstup: nájdi výskyty vzoru P v T

vstup: text T, vzor P; výstup: nájdi výskyty vzoru P v T Algoritmus **Boyer-Moore** vypočítaj Ľ(i), Ľ(i) a R(x)

ypocitaj L (i), L (i) a K(x) k=n; while (k≤m) do i=n

oznám výskyt vzoru P v T končiaci na mieste k;

k=k+n-f (2)
else posuň P (zvýš k) o väčší počet miest z počtu určeného rozšíreným pravidlom zlého znaku a počtu určeného pravidlom dobrej prípony.

- výkonnosť závisí od dĺžky vzoru
- O(n/m)
- Dlhšie vzory = lepšia výkonnosť
- Najmenší vzor = m = 1
 O(n) lineárne hľadanie

porovnávanie pomocou automatu

 Na základe vzoru sa vytvorí minimálny deterministický konečný automat, pomocou ktorého sa rozpoznáva vzor v zadanom reťazci.

porovnávanie pomocou automatu

Def.: Konečný automat (finite automaton) je usporiadaná 5-tica

 $(Q, q_0, A, \Sigma, \delta)$, kde

- Q je konečná množina stavov
- q₀ počiatočný stav
- A množina koncových stavov (akceptujúce)
- Σ je vstupná abeceda
- δ je tzv. prechodová funkcia z Q × Σ do Q.

Rozšírenie δ funkcie - $\delta*: Q \times \Sigma* \longrightarrow Q$ je definované induktívne: $\delta*(q, q) = q$ $\delta*(q, wa) = \delta(\delta*(q, w), a)$

porovnávanie pomocou automatu

funkcia koncového stavu - vracia stav automatu po spracovaní nejakého slova

```
príponová funkcia pre P, |P|=m je \sigma: \Sigma^* \to \{0, 1, \ldots, m\} definovaná ako \sigma(x) = \max\{k: P_k \sqsupset x\}, kde u \sqsupset v znamená, že u je príponou v a P_k = P[1..k].
```

porovnávanie pomocou automatu

Definícia automatu: pre P, |P| = m $Q = \{0, 1, \ldots, m\}, q_0 = 0, A = \{m\}, \delta(q, a) = \sigma(P_q a).$ Vždy, keď sa počas simulácie vstupného slova T na automate dostane automat do stavu m, našiel sa podvýraz P a jeho posun je daný aktuálnym miestom v reťazci zmenšeným o m.

Platí:

- Pre každý reťazec x a znak a platí: σ(xa) ≤ σ(x) +
- Pre každý reťazec x a znak a, ak q = σ(x), tak σ(xa) = σ(P_oa)

porovnávanie pomocou automatu

```
POROVNANIE KONEČNÝM AUTOMATOM(T, \delta, m) n \leftarrow \text{dĺžka}(T) q \leftarrow 0 for i \leftarrow 1 to n do q \leftarrow \delta(q, \mathcal{T}[i]) if q = m then print "Vzor sa v retazci vyskytuje s posunom " i\text{-}m
```

porovnávanie pomocou automatu

- VÝPOČET PRECHODOVEJ FUNKCIE (P, Σ) m:=|P| for q:=0 to m do for každý symbol $a\in\Sigma$ do k:=min(m+1,q+2) repeat k:=k-1 until $P_k\supset P_q$ a $\delta(q,a):=k$
- · Zložitosť algoritmu:
 - Preprocesná fáza: O(m |Σ|)
 - Fáza vyhľadávania: O(n)

porovnávanie pomocou automatu

- · Zložitosť algoritmu:
 - fáza predspracovania: **O**(m.|Σ|)
 - fáza vyhľadávania: O(n)

porovnávanie pomocou automatu

porovnávanie pomocou automatu

• DFA z príkladu:

Michael O. Rabin

- 1931 Breslau (Nemecko) dnes Wroclaw (Poľsko)
- 1953, M.Sc. Hebrew University of Jerusalem
- 1956, Ph.D. Princeton University
- · práce:
 - výpočtová zložitosť,
 - matematická logika
 - Karp, Richard M.; Rabin, Michael O. (March 1987).
 Efficient randomized patternmatching algorithms

Richard M. Karp

- 3.1.1935, Boston -
- Bc 1955, Harvard
- Master 1956, Harvard
- PhD 1959 aplikovaná matematika, Harvard
- International Computer
 Science Institute in Berkeley
- práce
 - Karp, Richard M.; Rabin,
 Michael O. (March 1987).
 Efficient randomized patternmatching algorithms

Rabinov-Karpov algoritmus

 Namiesto priameho porovnávania reťazca so vzorom sa porovnavajú výstupy hešovacích funkcií. Porovnáva sa heš vzoru s hešom vybraného podreťazca (vyberá sa podreťazec taký dlhý ako je dĺžka vzoru). Pokiaľ sa heše zhodujú, uskutočňuje sa porovnávanie jednotlivých znakov.

Rabinov-Karpov algoritmus – príklad 1/1

← Hash(ACDE) = 10 →

p[0]	p[1]	p[2]	p[3]
Α	С	D	В
← H:	sh(ACT)R) = 5	

Rabinov-Karpov algoritmus - príklad 1/2

$$\begin{array}{c|cccc} p[0] & p[1] & p[2] & p[3] \\ \hline A & C & D & B \\ \hline \leftarrow & Hash(ACDB) = 5 & \rightarrow \\ \hline \end{array}$$

Rabinov-Karpov algoritmus

algorithm RabinKarp:
Input pole znakov T, dĺžka n
pole znakov P, dĺžka m

hP := hash(P[1..m])
hT := hash(T[1..m])
for i from 1 to n-m+1
if hT = hP
if T[i..i+m-1] = P
return i
hT := hash(T[i+1..i+m])
return nenašiel sa výskyt

Rabinov-Karpov algoritmus - príklad 2/1

t[0]	t[1]	t[2]	t[3]	t[4]	t[5]	t[6]	t[7]	t[8]	t[9]	t[10]
Α	С	D	Е	Α	С	Α	С	С	D	Е

← Hash(ACDE) = 10 →

Rabinov-Karpov algoritmus – príklad 2/2

Rabinov-Karpov algoritmus

- Hešovacia funkcia by mala mať tieto vlastnosti:
 - jednoducho vypočítateľná
 - s malou pravdepodobnosťou kolízií
 - Heš posunutého podreťazca by mal byť jednoducho odvoditeľný z predchádzajúceho hešu (táto vlastnosť výrazne uľahčí výpočet a algoritmus sa tým stáva omnoho efektívnejší ako naivný)

Rabinov-Karpov algoritmus

· Hešovacia funkcia:

Predpokladáme, že nahradíme reťazec *M* znakov určitým celým číslom. Ak použijeme konštantu *b* - maximálny počet možných znakov v abecede, tak definujeme:

```
-\; x = t[i]b^M + t[i{+}1]b^{M{-}1}{+}...{+}t[i{+}M]
```

Pokročme v texte o jeden znak dopredu a hodnota x' bude:

$$- x' = t[i+1]b^M + t[i+2]b^{M-1}+...+t[i+M+1]$$

ak preskúmame x a x' , tak zistíme, že:

 $- x' = (x - t[i]b^{M})b + t[i+M+1]$

Rabinov-Karpov algoritmus

Hešovacia funkcia:

- Tretej požiadavke vyhovuje napríklad hešovacia funkcia definovaná ako polynóm (m-1). stupňa, kde hodnoty znakov vystupujú ako koeficienty. Aby sme sa vyhli problémom s príliš veľkými číslami pri výpočtoch, používa sa modulo aritmetika:
- $pathash = (f^{n-1} \operatorname{ord}(pat_0) + f^{n-2} \operatorname{ord}(pat_1) + ... + f \operatorname{ord}(pat_{n-2}) + \operatorname{ord}(pat_{n-1})) \operatorname{mod} p$
- $texthash_i = (f^{m-1} \operatorname{ord}(text_i) + f^{m-2} \operatorname{ord}(text_{i+1}) + ... + f \operatorname{ord}(text_{i+m-2}) + \operatorname{ord}(text_{i+m-1}) \mod \rho$
- $texthash_{i+1} = (f^{m-1} \text{ ord}(text_{i+1}) + f^{m-2} \text{ ord}(text_{i+2}) + ... + f \\ \text{ ord}(text_{i+m-1}) + \text{ ord}(text_{i+m}) \text{)} \text{ mod } p$
- = ($f(texthash_i f^{m-1} ord(text_i)) + ord(text_{i+m})) mod p$
- Hešovaciu funkciu ovplyvňujú parametre f a p.

Rabinov-Karpov algoritmus

```
RABIN-KARP POROVNANIE(T, P, d, q)
n \leftarrow dizka(T)
h \leftarrow dizka(P)
h \leftarrow d^{m-1} \mod q
p \leftarrow 0
t_0 \leftarrow 0
for i \leftarrow 1 to m //spracovanie
do \ p \leftarrow (db + P[i]) \mod q
t_0 \leftarrow (db + T[i]) \mod q
for s \leftarrow 0 to n - m //párovanie
do \ if \ p = t_s
then if P[1..m] = T[s+1..s+m]
then print "Vzor sa v retazci vyskytuje s posunom" s
if s < n - m
then t_{s+1} \leftarrow (d(t_s - T[s+1]h) + T[s+m+1]) \mod q
```

Rabinov-Karpov algoritmus

- · Zložitosť algoritmu:
 - fáza predspracovania
 má časovú zložitosť O(m)
 - vyhľadavacia fáza má časovú zložitosť **O**(mn)
 - Očakávaná doba behu algoritmu je O(n+m)

Rabinov-Karpov algoritmus

Rabinov-Karpov algoritmus

• Critical Analysis of the second of the se

aplikácie

- BM textové editory search/replace
- Karp-Rabin vyhľadávanie plagiátov

časová efektívnosť

- Jeden vzor
 - BM O(n/m)
 - KMP O(n)
 - RK O(mn)
- Viac vzorov
 - BM, KMP O(n.k)
 - -RKO(n+k)

prípony

• Prípony reťazca *T*="ATCACATCATCA"

$T_{(1)}$	ATCACATCATCA
$T_{(2)}$	TCACATCATCA
$T_{(3)}$	CACATCATCA
$T_{(4)}$	ACATCATCA
$T_{(5)}$	CATCATCA
T ₍₆₎	ATCATCA
$T_{(7)}$	TCATCA
$T_{(8)}$	CATCA
$T_{(9)}$	ATCA
$T_{(10)}$	TCA
$T_{(11)}$	CA
$T_{(12)}$	A

príponový strom

• príponový strom reťazca T="ATCACATCATCA"

vlastnosti príponového stromu

- každá hrana je ohodnotená nejakým podreťazcom reťazca T.
- každý vnútorný vrchol na najmenej dvoch potomkov.
- každá prípona $T_{(i)}$ má svoju ohodnotenú cestu z koreňa do listu pre 1 \le i \le n .
- príponový strom má n listov.
- hrany vychádzajúce z toho istého vrchola majú ohodnotenia, ktoré sa určite nezačínajú tým istým znakom.

algoritmus vytvorenia príponového stromu

<u>krok 1:</u> rozdeľ všetky prípony do skupín podľa prvého znaku a vytvor vrchol.

krok 2: pre každú skupinu: ak obsahuje len jednu príponu, tak vytvor listový vrchol a hranu ohodnotenú touto príponou, inak nájdi najdlhšiu spoločnú predponu medzi príponami v tejto skupine a vytvor hranu vychádzajúcu z vrchola ohodnotenú najdlhšou spoločnou predponou. Vymaž túto predponu zo všetkých prípon v tejto skupine.

krok 3: opakuj predchádzajúci postup pre každý vrchol, ktorý nie je ukončený.

- T="ATCACATCATCA".
- · druhá rekurzia:

príponový strom – časová zložitosť

- Príponový strom pre textový reťazec T dĺžky n sa dá zostrojiť v čase O(n) time (pomocou zložitého algoritmu).
- Vyhľadanie vzoru P dĺžky m v príponovom strome vyžaduje O(m) porovnaní.
- Hľadanie presného výskytu reťazca: O(n+m) time

príklad vytvorenia príponového stromu

- T="ATCACATCATCA".
- začiatočné znaky: "A", "C", "T"
- v N₃,
 - T(2) ="TCACATCATCA"
 - T(7) ="TCATCA"
- T(10) = "TCA"
- najdlhšia spoločná predpona N₃ je "TCA"

nájdenie podreťazca pomocou príponového stromu

- T = "ATCACATCATCA"
- P ="TCAT"
 - P je na mieste 7 v
- P="TCA"
 - P je na mieste 2, 7
 - a 10 v *T*.
- P ="TCATT"
 - P sa nenachádza
 v T.

Príponové pole

- V príponovom poli sú všetky prípony reťazca T v neklesajúcom lexikálnom poradí.
- napr. T="ATCACATCATCA"

i	1	2	3	4	5	6	7	8	9	10	11	12
A	12	4	9	1	6	11	3	8	5	10	2	7
4	AT	CAC	ATCA	TCA	$T_{(1)}$	1 1	1	А		T ₍₁₂₎		
11	3	CAC	ATCA	TCA	T ₍₂₎	1 1	2	ACA	TCAT	CA		$T_{(4)}$
7		CAC	ATCA	TCA	$T_{(3)}$	1 1	3	ATCA			$T_{(9)}$	
2		AC	ATCA	TCA	$T_{(4)}$	1 1	4	ATC	ACAT	CATO		$T_{(1)}$
9		C	ATCA	TCA	T ₍₅₎	1 1	5	ATCATCA				T ₍₆₎
5		i	ATCA		$T_{(6)}$	1 1	6	CA		$T_{(11)}$		
12			TCA	TCA	$T_{(7)}$		7	CAC	CACATCATCA			
8			CA	TCA	$T_{(8)}$		8	CAT	'CA			T ₍₃₎
3			A	TCA	$T_{(9)}$		9	CAT	CATO	CA		$T_{(5)}$
10				TCA	$T_{(10)}$		10	TCA				$T_{(10)}$
6				CA	$T_{(11)}$		11	TCACATCATCA				$T_{(2)}$
1				A	$T_{(12)}$	ı	12	TCA	TCA			$T_{(7)}$

Hľadanie v príponovom poli

- ak T sa reprezentuje príponovým poľom, vzor P sa dá nájsť v T v čase O(m.logn) binárnym vyhľadávaním.
- príponové pole sa dá určiť v čase O(n) lexikálnym hľadaním do hĺbky v príponovom
- celkový čas: O(n+m.logn)

hľadanie približného výskytu reťazca

- Textový reťazec T, |T|=n vzor (reťazec) P, |P|=mk chýb, kde chybami môžu byť náhrada, vymazanie alebo vloženie znaku.
- napr:

T ="pttapa", P ="patt", k =2, $T_{1,2}$, $T_{1,3}$, $T_{1,4}$ a $T_{5,6}$ sú všetko reťazce vzdialené nie viac než 2 chyby od vzoru P.

vzdialenosť editovania prípony

- Nech sú dané 2 reťazce S₁ a S₂, vzdialenosť editovania prípony je najmenší počet náhrad, vložení a výmazov, ktoré prepíšu nejakú príponu S_1 do S_2 .

- S_1 ="ptt" a S_2 ="pt". Vzdialenosť editovania prípony medzi S_1 a S_2 je 1. S_1 ="pt" a S_2 ="p". Vzdialenosť editovania prípony medzi S_1 a S_2 je 2. S_1 ="pt" a S_2 ="patt". Vzdialenosť editovania prípony medzi S_1 a S_2 je 2.

vzdialenosť editovania prípony

- Nech Ta P sú reťazce, ak aspoň jedna zo vzdialeností editovania prípony medzi $T_{1,1}, T_{1,2}, ...,$ $T_{1,n}$ a P nie je väčšia než k, tak P sa približne vyskytuje v T s chybou nie väčšou než k.
- napr: T ="pttapa", P ="patt", k=2
 - pre $T_{1,1}$ ="p" a P ="patt", vzdialenosť editovania prípony je 3.
 - pre T_{1.2} ="pt" a P ="patt", vzdialenosť editovania prípony je 2.
 - pre $T_{1.5}$ ="pttap" a P ="patt", vzdialenosť editovania prípony je 3.
 - pre T₁₆ ="pttapa" a P = "patt", vzdialenosť editovania prípony je 4.

hľadanie približného výskytu reťazca

- riešenie metódami dvnamického programovania
 - nech E(i,j) označuje najmenšiu vzdialenosť editovania prípony medzi $T_{1,j}$ a $P_{1,j}$
 - nech m = |P| označuje dĺžku vzoru,
 - potom E(m,j) nám pomôže vyriešiť:
- úloha nájsť "najpribližnejší" (t.j. s čo najmenším počtom chýb k) výskyt vzoru P v texte T:
 - vezmi podreťazec textu T, pre ktorý je E(m,j) najmenšie.
- úloha nájsť približný výskyt vzoru P v texte T s najviac k
 - vezmi ľubovoľný podreťazec textu T, pre ktorý je E(m,j) <= k.

najmenšia vzdialenosť editovania prípony

- nech E(i,j) označuje najmenšiu vzdialenosť editovania prípony medzi $T_{1,j}$ a $P_{1,j}$.
- pre všetky miesta i vo vzore P a všetky miesta j v texte T spočítame najmenšiu vzdialenosť editovania medzi prvými i znakmi vzoru P a ľubovoľným podreťazcom $T_{h,i}$ reťazca T, ktorý sa končí na mieste j(t.j. nejakou príponou $T_{1,j}$)
- to znamená prejsť všetky podreťazce T končiace v mieste j a určiť, ktorý z nich má najmenšiu vzdialenosť editovania prípony ku vzoru P. Jeho vzdialenosť je hodnota E(i,j)
- efektívne sa to dá počítať pomocou formuly (porovnaj s počítaním Levensteinovej vzdialenosti medzi reťazcami):

E(i, j) = E(i-1, j-1)if $P_i = T_i$ $E(i, j) = \min\{E(i, j-1), E(i-1, j), E(i-1, j-1)\}+1$ if $P_i \neq T_i$

najmenšia vzdialenosť editovania prípony

E(i,j) = E(i-1,j-1)	if $P_i = T_j$
$E(i, j) = \min\{E(i, j-1), E(i-1, j), E(i-1, j-1)\}+1$	if $P_i \neq T_j$

- výsledok bude matica n x m, n = |T|, m = |P|. Ako ju zrátať? Postupne, podľa formuly. Pomôže pridať 1 riadok s nulami.
- keďže vieme, že výsledok chceme použiť nielen na zistenie najmenšej vzdialenosti, ale aj na určenie približného podreťazca vyskytujúceho sa v texte T (ktorý je toľko vzdialený od vzoru P), je užitočné si zapamätať, ktorú z troch alternatív E(i, j-1) alebo E(i-1, j) alebo E(i-1, j-1) sme v tom-ktorom kroku použili.

počítanie matice E

napr: T="pttapa", P="patt"

						\boldsymbol{T}			
			0	1	2	3	4	5	6
				р	t	t	а	р	а
	0		0	0	0	0	0	0	0
	1	р	1	0					
P	2	а	2						
	3	t	3						
	4	t	4						

• E(1,1) = E(i-1, j-1)

if $P_i = T_j$

počítanie matice E

• napr: T = "pttapa", P = "patt"

~									
					\boldsymbol{T}				
		0	1	2	3	4	5	6	
			р	t	t	а	р	а	
0		0	0	Q	0	0	0	0	
1	р	1	0	1					
2	а	2							
3	t	3							
4	t	4							
	1 2 3	0 1 p 2 a 3 t	$ \begin{array}{c cccc} 0 & & 0 \\ 1 & p & 1 \\ 2 & a & 2 \\ 3 & t & 3 \end{array} $	0 1 p 0 0 0 1 p 1 0 2 a 2 3 t 3	0 1 2 p t 0 0 0 0 1 p 1 0 1 2 a 2 3 t 3	0 1 2 3 p t t 0 0 0 0 0 0 1 p 1 0 1 2 a 2 3 3 t 3 8	0 1 2 3 4 p t t a 0 0 0 0 0 0 1 p 1 0 1 2 a 2 3 3 t 3 8	0 1 2 3 4 5 p t t a p 0 0 0 0 0 0 0 1 p 1 0 1 2 a 2 3 4 5 p t t a p	T 0 1 2 3 4 5 6 p t t a p a 0 0 0 0 0 0 0 0 0 1 p 1 0 1

• $E(1, 2) = \min\{E(i, j-1), E(i-1, j), E(i-1, j-1)\}+1$ if $P_i \neq T_j$

počítanie matice E

• napr: T = "pttapa", P = "patt"

						T			
			0	1	2	3	4	5	6
				р	t	t	a	р	a
	0		0	0 ,	0	0	0	0	0
	1	р	1	0	1				
P	2	а	2						
	3	t	3						
	4	t	4						

alebo

• $E(1,2) = \min\{E(i,j-1), E(i-1,j), \frac{E(i-1,j-1)}{2}\} + 1$ if $P_i \neq T_j$

počítanie matice E

• napr: *T* ="pttapa", *P* ="patt"

						\boldsymbol{T}			
			0	1	2	3	4	5	6
				р	t	t	а	р	а
	0		0	0	0	0	0	0	0
	1	р	1	0	1	1			
P	2	а	2						
	3	t	3						
	4	t	4						

• $E(1,3) = \min\{E(i,j-1), E(i-1,j), E(i-1,j-1)\}+1$ if $P_i \neq T_j$

počítanie matice E

• napr: T = "pttapa", P = "patt"

						T			
			0	1	2	3	4	5	6
				р	t	t	а	р	а
	0		0	0	0	0	0	0	0
	1	р	1	0	1	1	1		
P	2	a	2						
	3	t	3						
	4	t	4						

• $E(1, 4) = \min\{E(i, j-1), E(i-1, j), E(i-1, j-1)\}+1 \text{ if } P_i \neq T_j$

počítanie matice E

• napr: *T* ="pttapa", *P* ="patt"

						T			
			0	1	2	3	4	5	6
				р	t	t	а	р	а
	0		0	0	0	0	0	0	0
	1	р	1	0	1	1	1	0	
P	2	а	2						
	3	t	3						
	4	t	4						

• E(1,5) = E(i-1, j-1)

if $P_i = T_j$

počítanie matice E

napr: T="pttapa", P="patt"

						T			
			0	1	2	3	4	5	6
				р	t	t	а	р	а
	0		0	0	0	0	0	0	0
	1	р	1	0	1	1	1	0	1
P	2	a	2						
	3	t	3						
	4	t	4						

• $E(1, 6) = \min\{E(i, j-1), E(i-1, j), E(i-1, j-1)\}+1 \text{ if } P_i \neq T_j$

počítanie matice E

• napr: T = "pttapa", P = "patt"

-								
					\boldsymbol{T}			
		0	1	2	3	4	5	6
			р	t	t	а	р	а
0		0	0	0	0	0	0	0
1	р	1	0	1	1	1	0	1
2	a	2	1					
3	t	3						
4	t	4						
	1 2	0 1 p 2 a 3 t	$ \begin{array}{c cccc} 0 & & 0 \\ 1 & p & 1 \\ 2 & a & 2 \\ 3 & t & 3 \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1 2 p t 0 0 0 0 1 2 1 1 2 1 2 2 2 1 3 1 3 1 3	0 1 2 3 p t t 0 0 0 0 0 1 p 1 0 1 1 2 a 2 1 3 t 3	T 0 1 2 3 4 p t t a 0 0 0 0 0 0 1 p 1 0 1 1 1 2 a 2 1 3 t 3	0 1 2 3 4 5 p t t a p 0 0 0 0 0 0 0 1 p 1 0 1 1 1 0 2 a 2 1

• $E(2, 1) = \min\{E(i, j-1), E(i-1, j), E(i-1, j-1)\}+1$ if $P_i \neq T_j$

počítanie matice E

• napr: *T* ="pttapa", *P* ="patt"

-	_	_			-				
						\boldsymbol{T}			
			0	1	2	3	4	5	6
				р	t	t	а	р	a
	0		0	0	0	0	0	0	0
	1	р	1	0,	1	1	1	0	1
P	2	а	2	1	1				
	3	t	3						
	4	t	4						

• $E(2, 2) = \min\{E(i, j-1), E(i-1, j), E(i-1, j-1)\}+1 \text{ if } P_i \neq T_j$

počítanie matice E

• napr: *T* ="pttapa", *P* ="patt"

						T			
			0	1	2	3	4	5	6
				р	t	t	а	р	а
	0		0	0	0	0	0	0	0
	1	р	1	0,	1 ,	1	1	0	1
P	2	a	2	1	1	2			
	3	t	3						
	4	t	4						

• $E(2,3) = \min\{E(i,j-1), E(i-1,j), \frac{E(i-1,j-1)}{E(i-1,j-1)}\} + 1$ if $P_i \neq T_j$

počítanie matice E

• napr: *T* ="pttapa", *P* ="patt"

						\boldsymbol{T}			
			0	1	2	3	4	5	6
				р	t	t	а	р	a
	0		0	0	0	0	0	0	0
	1	р	1	0,	1	1	1	0	1
P	2	a	2	1	1	2			
	3	t	3						
 alebo 	4	t	4						

• $E(2,3) = \min\{E(i,j-1), E(i-1,j), E(i-1,j-1)\}+1 \text{ if } P_i \neq T_j$

počítanie matice E • napr: T="pttapa", P="patt"

					T			
		0	1	2	3	4	5	6
			р	t	t	а	р	а
0		0	0	0	0	0	0	0
1	р	1	0,	1	1	1	0	1
2	а	2	1	1←	- 2			
3	t	3						
4	t	4						
	1 2	1 p 2 a 3 t	0 0 1 p 1 2 a 2 3 t 3	0 0 0 0 1 p 1 0 p 2 a 2 1 3 t 3	p t 0 0 0 0 1 p 1 0 1 2 a 2 1 1 3 t 3	0 1 2 3 p t t 0 0 0 0 0 1 p 1 0 1 1 2 a 2 1 1 + 2 3 t 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1 2 3 4 5 p t t a p 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

- $E(2,3) = \min\{E(i,j-1), E(i-1,j), E(i-1,j-1)\}+1 \text{ if } P_i \neq T_i$

počítanie matice E • napr: T="pttapa", P="patt"

						T			
			0	1	2	3	4	5	6
				р	t	t	а	р	a
	0		0	0	0	0	0	0	0
	1	р	1	0,	1	1,	1	0	1
P	2	a	2	1	1	2	1		
	3	t	3						
	4	t	4						

• E(2,4) = E(i-1, j-1)

if $P_i = T_j$

počítanie matice E

• napr: T="pttapa", P="patt"

	~								
						\boldsymbol{T}			
			0	1	2	3	4	5	6
				р	t	t	а	р	a
	0		0	0	0	0	0	0	0
	1	р	1	0,	1	1,	1	0	1
P	2	a	2	1	1	2	1	1	
	3	t	3						
	4	t	4						

• $E(2,5) = \min\{E(i,j-1), E(i-1,j), E(i-1,j-1)\}+1 \text{ if } P_i \neq T_j$

počítanie matice E

• napr: *T* ="pttapa", *P* ="patt"

-	_								
						\boldsymbol{T}			
			0	1	2	3	4	5	6
				р	t	t	а	р	а
	0		0	0	0	0	0	0	0
	1	р	1	0,	1	1,	1	0,	1
\boldsymbol{P}	2	a	2	1	1	2	1	1	0
	3	t	3						
	4	t	4						

• E(2,6) = E(i-1, j-1)

if $P_i = T_i$

počítanie matice E

• napr: *T* ="pttapa", *P* ="patt"

						T			
			0	1	2	3	4	5	6
				р	t	t	а	р	а
	0		0	0	0	0	0	0	0
	1	р	1	0,	1	1 ,	1	0,	1
P	2	a	2	1	1	2	1	1	0
	3	t	3	2					
	4	t	4						

• $E(3, 1) = \min\{E(i, j-1), \frac{E(i-1, j)}{E(i-1, j)}, E(i-1, j-1)\}+1 \text{ if } P_i \neq T_j$

počítanie matice E

• napr: *T* ="pttapa", *P* ="patt"

						T			
			0	1	2	3	4	5	6
				р	t	t	а	р	а
	0		0	0	0	0	0	0	0
	1	р	1	0,	1	1 ,	1	0,	1
P	2	a	2	1	1	2	1	1	0
	3	t	3	2	1				
	4	t	4						

• E(3,2) = E(i-1, j-1)

počítanie matice E • napr: T="pttapa", P="patt"

						T			
			0	1	2	3	4	5	6
				р	t	t	а	р	а
	0		0	0	0	0	0	0	0
	1	р	1	0,	1	1,	1	0,	1
P	2	a	2	1	1	2	1	1	0
	3	t	3	2	1	1			
	4	t	4						

•
$$E(3,3) = E(i-1, j-1)$$

if $P_i = T_j$

počítanie matice E • napr: T="pttapa", P="patt"

						T			
			0	1	2	3	4	5	6
				р	t	t	а	р	а
	0		0	0	0	0	0	0	0
	1	р	1	0,	1	1,	1	0,	1
\boldsymbol{P}	2	a	2	1	1	2	1	1	0
	3	t	3	2	1	1	2		
	4	t	4						

•
$$E(3, 4) = \min\{E(i, j-1), E(i-1, j), E(i-1, j-1)\}+1 \text{ if } P_i \neq T_j$$

počítanie matice E

• napr: *T* ="pttapa", *P* ="patt"

-			-					
					\boldsymbol{T}			
		0	1	2	3	4	5	6
			р	t	t	а	р	a
0		0	0	0	0	0	0	0
1	р	1	0 6	1	1,	1	0,	1
2	а	2	1	1	2	1	1	0
3	t	3	2	1	1	2	2	
4	t	4						
	1 2	1 p 2 a 3 t	0 0 1 p 1 2 a 2 3 t 3	0 0 0 0 1 0 s 2 a 2 1 3 t 3 2	p t 0 0 0 0 1 p 1 0 1 2 a 2 1 1 3 t 3 2 1	0 1 2 3 p t t 0 0 0 0 0 1 p 1 0 1 1 2 2 a 2 1 1 2 3 t 3 2 1 1	0 1 2 3 4 p t t a 0 0 0 0 0 0 0 1 p 1 0 1 1 1 1 2 a 2 1 1 2 1 3 t 3 2 1 1 2	0 1 2 3 4 5 p t t a p 0 0 0 0 0 0 0 0 1 p 1 0 1 1 0 1 0 0 2 a 2 1 1 2 1 1 3 t 3 2 1 1 2 2

• $E(3,5) = \min\{E(i,j-1), \underbrace{E(i-1,j)}_{E(i-1,j)}, E(i-1,j-1)\}+1 \text{ if } P_i \neq T_j$ 159

počítanie matice E

• napr: *T* ="pttapa", *P* ="patt"

						T			
			0	1	2	3	4	5	6
				р	t	t	а	р	а
	0		0	0	0	0	0	0	0
	1	р	1	0,	1	1,	1	0,	1
\boldsymbol{P}	2	a	2	1	1 ,	2	1	1	0
	3	t	3	2	1	1	2	2	1
	4	t	4						

• $E(3, 6) = \min\{E(i, j-1), E(i-1, j), E(i-1, j-1)\}+1 \text{ if } P_i \neq T_j$

počítanie matice E

• napr: *T* ="pttapa", *P* ="patt"

						T			
			0	1	2	3	4	5	6
				р	t	t	а	р	а
	0		0	0	0	0	0	0	0
	1	р	1	0,	1	1,	1	0,	1
P	2	a	2	1	1	2	1	1	0
	3	t	3	2	1	1	2	2	1
	4	t	4	3					

• $E(4, 1) = \min\{E(i, j-1), \frac{E(i-1, j)}{E(i-1, j)}, E(i-1, j-1)\}+1 \text{ if } P_i \neq T_j$

počítanie matice E

• napr: *T* ="pttapa", *P* ="patt"

						T			
			0	1	2	3	4	5	6
				р	t	t	а	р	а
	0		0	0	0	0	0	0	0
	1	р	1	0,	1	1 ,	1	0,	1
P	2	a	2	1	1	2	1	1	0
	3	t	3	2	1	1	2	2	1
	4	t	4	3	2				

• E(4,2) = E(i-1, j-1)

počítanie matice E

• napr: *T* ="pttapa", *P* ="patt"

						\boldsymbol{T}			
			0	1	2	3	4	5	6
				р	t	t	а	р	а
	0		0	0	0	0	0	0	0
	1	р	1	0 ,	1	1,	1	0,	1
P	2	a	2	1	1	2	1	1	0
	3	t	3	2	1	1	2	2	1
	4	t	4	3	2	1			

•
$$E(4,3) = E(i-1, j-1)$$

if $P_i = T_j$

počítanie matice E

• napr: *T* ="pttapa", *P* ="patt"

						T			
			0	1	2	3	4	5	6
				р	t	t	а	р	а
	0		0	0	0	0	0	0	0
	1	р	1	0,	1	1,	1	0,	1
P	2	a	2	1	1	2	1	1	0
	3	t	3	2	1	1	2	2	1
	4	t	4	3	2	1 ←	- 2		

• $E(4, 4) = \min\{E(i, j-1), E(i-1, j), E(i-1, j-1)\}+1$ if $P_i \neq T_j$

počítanie matice E

• napr: T = "pttapa", P = "patt"

	_								
						\boldsymbol{T}			
			0	1	2	3	4	5	6
				р	t	t	а	р	a
	0		0	0	0	0	0	0	0
	1	р	1	0,	1	1,	1	0,	1
P	2	a	2	1	1 ,	2	1	1	0
	3	t	3	2	1	1	2	2	1
	4	t	4	3	2	1 ←	- 2	3	

• $E(4,5) = \min\{E(i,j-1), E(i-1,j), E(i-1,j-1)\}+1$ if $P_i \neq T_j$

počítanie matice E

• napr: T = "pttapa", P = "patt"

						T			
			0	1	2	3	4	5	6
				р	t	t	а	р	а
	0		0	0	0	0	0	0	0
	1	р	1	0,	1	i,	1	0,	1
P	2	а	2	1	1	2	1	1	0
	3	t	3	2	1	1	2	2	1
	4	t	4	3	2	1 ←	- 2	3	2

• $E(4, 6) = \min\{E(i, j-1), E(i-1, j), E(i-1, j-1)\}+1 \text{ if } P_i \neq T_j$

- hľadanie najpribližnejšieho výskytu reťazca

 napr: T="pttapa", P="patt";

 pozrieme sa na posledný riadok. najmenšia vzdialenosť je v 3. stĺpci: E(4,3)=1. Z miesta (4,3) ideme naspať podľa šlpiek až do prvého riadku. Je to miesto (1,1). Stĺpce určuje začiatok podrefazaa v 1, ktorý je najpribližnejším výskytom vzoru P ~ T_{1,3} = ptt. Jediná chyba sa "napraví" jedným vložením znaku a.

						\boldsymbol{T}			
			0	1	2	3	4	5	6
				р	t	t	а	р	а
	0		0	0	0	0	0	0	0
	1	р	1	Q	1	1	1	0_	1
P	2	а	2	1,	1	2	1	1	Q
	3	t	3	2,	1,	1	2	2	1
	4	t	4	3	0	10	9	3	0

hľadanie približného výskytu reťazca s chybou najviac 2

- napr: T="pttapa", P="patt", k=2:
- pozrieme sa na posledný riadok. Hodnoty E(4,j) <= k sú v stĺpcoch 2, 3, 4 a 6. Zodpovedajú približným výskytom $T_{1,2}=pt,\,T_{1,3}=ptt,\,T_{1,4}=ptta,\,T_{5,6}=pa.$

						\boldsymbol{T}			
			0	1	2	3	4	5	6
				р	t	t	а	р	а
	0		0	0	0	0	0	0	0
	1	р	1	Q	1	1	1	0,	1
P	2	a	2	1,	1	2	1	1	Q
	3	t	3	2,	1 ,	1	2	2	1
	4	t	4	3	2	10	-2	3	2

Hľadanie najdlhšej spoločnej podpostupnosti

- · Longest common subsequence (LCS) problém
 - Dané sú dve postupnosti x[1..m] a y[1..n]; máme nájsť najdlhšiu podpostupnosť, ktorá sa vyskytuje v oboch postupnostiach
 - Podpostupnosť: prvky v pôvodnej postupnosti nemusia byť nevyhnutne vedľa seba, ale ich poradie ostáva nezmenené
- x = {A B C B D A B}, y = {B D C A B A}
 - {B B A} je podpostupnosť oboch postupností x a y
- · Algoritmus hrubej sily
 - Pre každú podpostupnosť v x, zisti či nie je podpostupnosťou y. Vráť najdlhšiu.
 - Koľko podpostupností je v x?
 - 2...
 - Aká by bola časová náročnosť?
 - 2^m podpostupností x porovnať s n prvkami postupnosti y
 - O(n 2^m)

Hľadanie najdlhšej spoločnej podpostupnosti

- · Úloha: Porovnanie dvoch DNA reťazcov
- X = {A B C B D A B}, Y = {B D C A B A}
- Algoritmom hrubej sily porovnáme každú podpostupnosť X so znakmi v Y
 - X = A B C B D A B - Y = B D C A B A
- LCS problém má optimálnu subštruktúru: riešenie čiastkových problémov je časť konečného riešenia
- Čiastkový problém
 - Nájsť najdlhšiu spoločnú podpostupnosť párov prefixov X a Y
- Na vyriešenie tohto problému môžeme použiť dynamické programovanie!

Definícia dĺžky najdlhšej spoločnej podpostupnosti

- V prvom rade nájdeme dĺžku LCS. Neskôr zmodifikujeme algoritmus pre nájdenie LCS samotnej.
- Definujeme X_i a Y_j ako predpony X a Y dĺžky i respektíve j
- Definujeme c[i,j] ako dĺžku LCS X, a Y,
- Potom dĺžka LCS X a Y bude c[m,n]
- Rekurzívna definícia c[i,j]

$$c\big[i,j\big] = \begin{cases} c[i-1,j-1] + 1 & ak \ x[i] = y[j], \\ \max(c[i,j-1],c[i-1,j]) & inak \end{cases}$$

počítanie dĺžky najdlhšej spoločnej podpostupnosti

- Začneme s i=j=0 (prázdna podpostupnosť X a Y)
 Pretože X₀ a Y₀ sú prázdne reťazce, ich LCS je vždy prázdna (c[0,0]=0)
- LCS prázdneho reťazca a hocijakého reťazca je pre každé i a j: c[0,j]=c[i,0]=0
- Pre výpočet c[i,j] sa rozhodujeme medzi dvoma prípadmi:
 - x[i] = y[j]
 - Pri zhode symbolu v postupnostiach X a Y je dĺžka LCS X_i a Y_j rovnaká ako dĺžka LCS menšej postupnosti X_{i-1} a Y_{j-1}, plus 1
 - -x[i] = y[j]
 - Ak sa symboly nezhodujú dĺžka ostáva nezmenená (max(c[i-1,j], c[i, j-1]))

Algoritmus na nájdenie dĺžky najdlhšej spoločnej podpostupnosti

- Príklad: X = ABCB; Y = BDCAB
 - LCS(X, Y) = BCB
 - X = A B C B
 - Y = B D C A B

Najdlhšia spoločná podpostupnosť – príklad (inicializácia)

ABCB BDCAB X = ABCB; m = |X| = 4 Y = BDCAB; n = |X| = 5alokácia 2rozmerného poľa c[0..4, 0..5]

Najdlhšia spoločná podpostupnosť – príklad (1)

for i = 1 **to** m c[i,0] = 0ABCB BDCAB **for** j = 1 **to** n c[0,j] = 0

Najdlhšia spoločná podpostupnosť – príklad (2)

if (Xi == Yi)**ABCB** c[i,j] = c[i-1,j-1]+1**B**DCAB **else** c[i,j] = max(c[i-1,j], c[i,j-1])

Najdlhšia spoločná podpostupnosť príklad (3)

ABCB $c[i,j]=c[i\!-\!1,j\!-\!1]\!+\!1$ **BDCAB else** c[i,j] = max(c[i-1,j], c[i,j-1])

Najdlhšia spoločná podpostupnosť príklad (4)

ABCB if (Xi == Yi)c[i,j]=c[i-1,j-1]+1**BDCAB else** c[i,j] = max(c[i-1,j], c[i,j-1])

Najdlhšia spoločná podpostupnosť – príklad (5)

else c[i,j] = max(c[i-1,j], c[i,j-1])

(B C В Y, D Α i 0 X_{i} 0 0 0 0 0 0 I A 0 0 0 0 I I (B 0 2 3 C 0 В 0 if (Xi == Yi)**ABCB B**DCAB

Najdlhšia spoločná podpostupnosť -

príklad (6)

2 3 4 5

0

j

c[i,j] = c[i-1,j-1]+1**else** c[i,j] = max(c[i-1,j], c[i,j-1])

Najdlhšia spoločná podpostupnosť – príklad (7)

ABCB BDCAB

c[i,j] = c[i-1,j-1]+1**else** c[i,j] = max(c[i-1,j], c[i,j-1])

Najdlhšia spoločná podpostupnosť – príklad (8)

ABCB BDCAB if (Xi == Yi) c[i,j] = c[i-1,j-1]+1else c[i,j] = max(c[i-1,j], c[i,j-1])

Najdlhšia spoločná podpostupnosť – príklad (9)

ABCB BDCAB if (Xi == Yi) c[i,j] = c[i-1,j-1]+1else c[i,j] = max(c[i-1,j], c[i,j-1])

Najdlhšia spoločná podpostupnosť – príklad (10)

ABCB BDCAB if (Xi == Yi) c[i,j] = c[i-1,j-1]+1else c[i,j] = max(c[i-1,j], c[i,j-1])

Najdlhšia spoločná podpostupnosť – príklad (11)

ABCB BDCAB if (Xi == Yi) c[i,j] = c[i-1,j-1]+1else c[i,j] = max(c[i-1,j], c[i,j-1])

Najdlhšia spoločná podpostupnosť – príklad (12)

ABCB BDCAB if (Xi == Yi) c[i,j] = c[i-1,j-1]+1else c[i,j] = max(c[i-1,j], c[i,j-1])

Najdlhšia spoločná podpostupnosť príklad (13)

ABCB **BDCAB**

if
$$(Xi == Yi)$$

 $c[i,j] = c[i-1,j-1]+1$
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

Najdlhšia spoločná podpostupnosť príklad (13)

ABCB **BDCAB**

if
$$(Xi == Yi)$$
 $c[4,5]$ obsahuje dizi
 $c[i,j] = c[i-1,j-1] + 1$ podpostupnosti
else $c[i,j] = max(c[i-1,j], c[i,j-1])$

Analýza algoritmu pre nájdenie najdlhšej spoločnej podpostupnosti

- LCS algoritmus vypočíta hodnoty každého vstupu poľa c[m,n]. Aký je teda výpočtový čas?
- O(m*n)
 - Každá hodnota c[i,j] je spočítaná v konštantnom čase, a v poli máme m*n prvkov
- Zatiaľ sme našli len dĺžku najdlhšej spoločnej podpostupnosti.
- Ďalej je potrebné nájsť najdlhšiu spoločnú podpostupnosť.
- Musíme modifikovať algoritmus aby nám dával výstup najdlhšej spoločnej podpostupnosti postupností X a Y

 V poli c[i,j] máme všetko zaznamenané

 - Každá hodnota c[i,j] závisí na c[i-1,j] alebo c[l,j-1]
 - Pre každú hodnotu c[i,j] vieme určiť ako sme ju dosiahli

Hľadanie najdlhšej spoločnej podpostupnosti

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & ak \ x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & inak \end{cases}$$

V tomto pripade c[i,j] = c[i-1,j-1] + 1 = 2 + 1 = 3 V tomto pripade $c[i,j] = \max(c[i,j-1], c[i-1,j]) = \max(2, 1) = 2$

- · Môžeme začať z c[m,n] a ísť späť
- Ak c[i,j] = c[i-1,j-1] + 1, zapamätáme si x[i]x[i] je časť z najdlhšej spoločnej podpostupnosti
- Ak i = 0 alebo j = 0 (dosiahneme začiatok), výstupom sú písmená odpamätané v X, usporiadané v opačnom

Hľadanie najdlhšej spoločnej podpostupnosti

Hľadanie najdlhšej spoločnej podpostupnosti

Najdlhšia spoločná postupnosť (odzadu): B C B Najdlhšia spoločná postupnosť: B C B