

Probabilistic Models

- We have considered many probabilistic models
 - Logistic regression
 - Linear Regression
 - Gaussian Mixture Models
- Most of these have been very simple
 - Assume a label (observed or unobserved)
 - Estimate probabilities from data

Model Representations

- No formal language to talk about model
 - We've described the models and given intuition
- Example: Gaussian Mixture Models
 - Assume that we first select a cluster
 - We then generate an example (features) given the cluster
- How can we describe this model formally?

Example Probabilistic System

- A collection of related binary random variables
 - The weather is cloudy
 - The sprinkler is turned on
 - It is raining
 - The grass is wet
- We can ask questions
 - If it is raining, what is the probability the grass is wet?
 - What is the probability that the grass is wet and its not cloudy?
 - Etc

Example

- How do we answer these questions?
 - What is the structure of these variables?
 - What probabilities do I need to compute?
 - Are any of the variables independent of each other?
- We need some representation for these variables

Graphical Models Cloudy Rain Wet Grass

Outline

- Representation
 - What is a graphical model?
 - What does it represent
 - Conditional Independence
 - Types of probabilistic models
- Inference
 - How can we compute probabilities?
 - Message Passing
- Examples
 - Learning and inference

Graphical Models

- Combination of probability theory and graph theory
 - Combines uncertainty (probability) and complexity (graphs)
 - Represent a complex system as a graph
 - Gives modularity
 - Standard algorithms for solving graph problems
- Your favorite algorithms are graphical models
 - Logistic regression, linear Regression, GMMs, etc.

Representation

- A probabilistic system is encoded as a graph
- Nodes
 - Random variables
 - Could be discrete (this lecture) or continuous
- Edges
 - Connections between two nodes
 - Indicates a direct relationship between two random variables
 - Note: the lack of an edge is very important
 - No direct relationship

Graph Types

- Edge type determines graph type
- Directed graphs
 - Edges have directions (A -> B)
 - Assume DAGs (no cycles)
 - Typically called Bayesian Networks
 - Popular in Al and stats
- Undirected graphs
 - Edges don't have directions (A B)
 - Typically called Markov Random Fields (MRFs)
 - Popular in physics and vision

Directed Graphs

• The direction of the edge indicates causation

- Causation can be very intuitive
 - We may know which random variable causes the other
 - Use this intuition to create a graph structure

Advantages?

- What have we gained by this representation?
 - We could just draw a graph where everything is connected

Factorization

- Consider the joint probability of our example
 - p(C,S,R,G)- this is complex
 - What can we do to simplify?
 - Notice that S and R are independent given C

Product Rule

- Can use the product rule to decompose joint probabilities
 - p(a,b,c) = p(c|a,b) p(a,b)
 - p(a,b,c) = p(c|a,b) p(b|a) p(a)
- This is true for any distribution
- Same for K variables

$$p(X_1...X_K) = p(X_K | X_1...X_{K-1})...p(X_2 | X_1)p(X_1)$$

Factorization

- For any graphical model we can write the joint distribution using conditional probabilities
 - We just need conditional probabilities for a node given its parents

$$p(\mathbf{x}) = \prod_{k=1}^{K} p(x_k | \text{parents}_k)$$

Factorization

- Consider the joint probability of our example
 - p(C,S,R,G)- this is complex
 - What can we do to simplify?
 - Notice that S and R are independent given C
- Factor the joint probability according to the graph
 - p(C,S,R,G) = p(G|S,R) p(S|C) p(R|C) p(C)
 - This is much simpler to compute
 - We are likely to have these conditional probabilities

Conditional Probability Tables

Cloudy

Wet Grass

• The CPTs specify the conditional probability distribution at each node

 CPTs reflect local information only

С	P(S=T)	P(S=F)
F	.5	.5
Т	.1	.9

C P(R=T) P(R=F) Sprinkler

P(C=T) P(C=F)

	S	R	P(G=T)	P(G=F)
	F	F	0	1
	Τ	F	.9	.1
	F	Т	.9	.1
į	Т	Т	.99	.01

.8 .2

Conditional Probability Tables

- Graph provides a problem structure that indicates relationships
- We use this structure to break down the problem into many local problems
- What is P(S=T|G=T)?
 - Break down using the network and CPTs

$$p(S=T|G=T) = \frac{p(S=T,G=T)}{p(G=T)} = \frac{\sum_{c.r.} p(C=c,S=T,R=r,G=T)}{\sum_{c.r.s.} p(C=c,S=s,R=r,G=T)} = 0.430$$

Observed Variables

- Variables are either
 - Observed- we observe values in data
 - Hidden- we cannot see values in data
- Indicate observed variables by shading

 Compute the remaining probabilities given shaded value

Plate Notation

- Plates in graphical models
 - When many variables have same structure, we replace them with a plate
 - The plate indicates repetition
 - There are N fields in which we can see if the grass is wet
 - Each conditioned on the same S and R

Example

• A model where we have label Y and example X

- Test time, no Y
 - Estimate Y using X
- What model is this?

Naïve Bayes

- Generative Story
 - Generate a label Y
 - Given Y, generate each feature X independently
- Learning
 - We observe X and Y, maximum likelihood solution
- Prediction
 - Compute most likely value for Y given X

Factorization

$$P(y,x) = P(x \mid y)P(y)$$

$$= \prod_{i=1}^{M} P(x_i \mid y)P(y)$$

Conditional Probability Tables

The parameters correspond to CPTs

P(Y=0)	P(Y=1)	
.4	.6	
K parameters (K-1		

	Υ	P(X=0)	P(X=1)
	0	.2	.8
Ī	1	.6	.4
			N.

KM parameters M Tables

Learning

- We assumed both examples (X) and labels (Y) for learning naïve Bayes
 - Maximum likelihood solution
 - Each entry in table are based on counts
- What if we only have X?
 - General purpose method for maximizing likelihood where we have missing variables

$$\max_{X \in \mathcal{N}} P(X) = \sum_{Y \in Y} P(Y, X)$$

- EM
- Unsupervised NB: clustering
- Some labels: semi-supervised NB

Conditional

- What is p(x|y)?
 - Probability of generating example x given that it has label y
- How hard is this?
 - Remember that x is a vector
 - Equivalent to $p(x_{i1}, x_{i2}, x_{i3}...x_{iM} | y_i)$
 - Assuming binary features and binary label, how many parameters do we need?
 - 2 * (2^M-1) parameters!
 - (2M-1) combinations for x
 - 2 labels

Conditional Independence

- RV (random variable) X is conditionally independent of RV Y given RV Z if the probability of each is independent given Z
- p(x,y|z) = p(x|z)p(y|z)
- Example
 - Probability that I need an umbrella and the ground is wet
 - Not independent! If its wet I probably need an umbrella because it is raining
 - I am told it is raining
 - Given this the probability that I need an umbrella is independent of the ground being wet
 - I gain no new information knowing that the ground is wet

Conditional Independence

- Assume each feature in x is independent given y
 - Once I know y each feature in x is independent
- Why is this helpful?

$$p(x_i \mid y_i) = \prod_{j=1}^{M} p(x_{ij} \mid y_i)$$

This is a naïve assumption (it's very unlikely)

Conditional Independence

- How to estimate $p(x_{ij} | y_i)$?
 - Lots of data- every time feature x_{ii} occurs with y_i
- How many parameters do I need?
 - Before: 2 * (2M-1)
 - Now: 2 * M
 - One parameter for each of M features
- Should be easier to learn so many fewer parameters

Naïve vs. Reality

- Positive: we now can parameterize our model
- Reality: naïve assumption very unlikely to be true
- Example:
 - Document classification: sports vs. finance
 - Each word in a document is a feature
 - Naïve assumption: once I know the topic is sports, every word is conditionally independent
 - Not true! Would be total nonsense.

Naïve vs. Reality

- Reality: works pretty well in practice
- Caution: features that are too dependent are difficult for model
 - Create features that are minimally dependent
 - Limits the expressiveness of features

Assumptions

- Naïve Bayes makes an assumption
 - Features (X) conditionally independent given label (Y)
- How does independence fit in graphical models?

Independence

- The best part of graphical models is what they do not show
- Consider the network

- A and B are independent
 - P(A,B) = P(A) P(B)
 - Variable independence allows us to build efficient models
 - Recall discussion on Naïve Bayes

Conditional Independence

Are A and B independent?

- A and B are conditionally independent given C
 - P(A,B|C) = P(A|C) P(B|C)
 - Once we know the value of C, no amount of information about B will change A
- How do we know if something is independent?
 - It's encoded in the paths of the graph!
 - No mathematical trickery needed

Example 1

- Are A and B independent?
 - Clearly not. Both depend on C
- Are A and B conditionally independent?
 - Yes. Why?
 - The connection of A and B to C is tail-to-tail
 - Creates a dependence
 - When we condition on C, it blocks the path between A and B

Example 2

- Are A and B independent?
 - No. A cause C which causes B

- Are A and B conditionally independent?
 - Yes. Why?

- The connection of A and B to C is head to tail
 - Creates a dependence
- When we condition on C, it blocks the path between A and B

Example 3

- Are A and B independent?
 - Yes. A and B are generated without common parents

- Are A and B conditionally independent given C?
 - No. Why?
 - The connection of A and B to C is head to head
 - Creates a dependence
 - When C is unobserved, the path is blocked
 - When C is observed, the path becomes unblocked

Blocked vs. Unblocked?

- Terminology: y is a descendent of x if there is a path from x to y (following the arrows)
- Tail to tail or head to tail node only blocks a path when it is **observed**
- A head to head node blocks a path when it is unobserved
 - A head to head path will become unblocked if either node, or any of its descendents, is observed

Why?

- Recall the sprinkler/rain example
- The two causes (sprinkler/rain) compete to explain the grass
- Sprin Rain Wet Grass
- Suppose G=T, what is the probability of S=T?
 - P(S=T|G=T) = .430 (from before)
- Suppose we learn that R=T. What is S=T now?
 - P(S=T|R=T,G=T) = 0.1945

Explaining Away

- This makes sense
 - The rain explained the grass, so sprinkler is now less likely
 - The rain explained away the state of the grass
 - Less need to use sprinkler to explain it
- This is why the observed head to head is unblocked
 - Once we know the value, we learn something about A and B

D-Separation

- Two sets of nodes A and B are d-separated given observed set C if all paths between A and B are blocked
 - Blocked paths
 - The arrows on the path meet head to tail or tail to tail at a node in set C
 - OR
 - The arrows meet head to head at a node and neither the node, nor any of its descendants, is in set C
- If sets of nodes are d-separated they are conditionally independent

D-Separation Examples

C is a descendent of head to head E

F is a tail to tail node

D-Separation Example

F is a tail to tail node and block path even though E is unblocked

Isolating Nodes

- How do we isolate a variable in the graph?
 - We know how to make it conditionally independent
 - We want to experiment with a variable in isolation
 - We don't want to enumerate all possible values of the whole network

Markov Blanket

- The Markov blanket of a node is the minimal set of nodes that isolates it from the graph
 - A node conditioned on its Markov blanket is independent from all other nodes in the graph
- What nodes are in the blanket for X?
 - Think about d-separation
 - All of them!
 - A Markov blanket depends on the parents, children, and co-parents

