Staking: step-wise unlock

April 11, 2018

Ursula stakes her tokens by locking until the time she specifies (t_1) . If the current time is t, and if the function $\text{rate}(t_1 - t)$ calculates the minting rate depending on the time left to unlock, Ursula's reward rate will be $r = S \cdot \text{rate}(t_1 - t)$, where S is her stake (Fig.1a).

(a) Ursula started staking at time=0 and right now is the moment time=t. Ursula commits to end staking at $time=t_1$

(b) Ursula splits her stake S into two parts $S_1+S_2=S$. The part S_1 is staked at the same rate as before, ending at t_1 . The part S_2 is extended in time up to t_2 and has a higher reward rate

At any time, Ursula can divide her stake S into parts $S_1 \dots S_n$ (increasing n by 1 at a time). Each substake should be sufficiently large: $S_i \geq S_{\min}$, and sum of all substakes is equal to S.

Current state of staking can be represented by pairs stake - unlocking time:

Any part of the stake S_i can be split up into two pieces no less than S_{\min} where each piece S'_i and S''_i has unlock time no less than t_i , and $S'_i + S''_i = S_i$.