CSP334: Computer Networks, Lab Assignment No 2, Assignment on Linux Networking Commands

Rahul Byas Sherwan Entry No. : 2016UCS0028

1: The First Problem

Note: If the screenshot is not available in the subparts below then it is because I am not able to find the file(iam using ubuntu 16.04 lts). So, in that case i have gathered information from internet and wrote that after understanding it.

(a) /etc/hosts:

/etc/hosts is an operating system file that translate hostsname or domain names to IP addresses. This is useful for testing websites changes or the SSL setup before taking a website publicly live.

Figure 1: hosts file

As we can see a hosts file ,in the screenshot above, notice that 127.0.0.1 is written which is an IP address and many other addresses. So,the IP address 127.0.0.1 is a special-purpose IPv4 address called local host or loopback address.

(b) /etc/sysconfig/network:

The /etc/sysconfig/network file is used to specify information about the desired network

configuration on our server. The following entries from /etc/sysconfig/network define that IPv4 networking is enabled, IPv6 networking is not enabled, the host name of the system, and the IP address of the default network gateway:

NETWORKING = yes NETWORKING IPV6 = no HOSTNAME = host20.rahul.comGATEWAY = 192.168.1.1

(c) /etc/sysconfig/network-scripts/ifcfg-eth0:

One of the most common interface files is /etc/sysconfig/network-scripts/ifcfg-eth0, which controls the first Ethernet network interface card or NIC in the system. In a system with multiple NICs, there are multiple ifcfg-ethX files (where X is a unique number corresponding to a specific interface). Because each device has its own configuration file, an administrator can control how each interface functions individually.

(d) /etc/default-route:

The default route is a setting on a computer that defines the packet forwarding rule to use when no specific route can be determined for a given Internet Protocol (IP) destination address. All packets for destinations not established in the routing table are sent via the default route. The default route generally points to another router, which treats the packet the same way: if a route matches, the packet is forwarded accordingly, otherwise the packet is forwarded to the default route of that router.

(e) /etc/resolv.conf:

resolv.conf is the name of a computer file used in various operating systems to configure the system's Domain Name System (DNS) resolver.

Figure 2: resolv.conf

As you can see in the above screenshot, the file resolv.conf typically contains directives that specify the default search domains, in my case it is iitjammu.ac.in.

(f) /etc/nsswitch.conf

The /etc/nsswitch.conf file defines the order in which to contact different name services. For Internet use, it is important that dns shows up in the "hosts" line. This instructs your computer to look up hostnames and IP addresses first in the /etc/hosts file, and to contact the DNS server if a given host does not occur in the local hosts file. Other possible name services to contact are LDAP, NIS and NIS+.

Figure 3: nsswitch.conf

2: The second problem

(a) Screenshots of services file:

Since the file content is quiet large. So, I have clicked 3 important parts of the file. In "service file b." (figure 5) you can notice the port no. of famous server (http.) which is 80.

Figure 4: services file a.

Figure 5: services file b.

Figure 6: services file c.

(b) Use of services file:

It stores information about numerous services that client applications might use on the computer. Within the file is the service name, port number and protocol it uses, and any applicable aliases. The port numbers are mapped to specific services much like the hosts file on Windows computers map a hostname to an IP address. However, the UNIX operating system's services file does not include IP addresses but instead information like whether the service is TCP or UDP and what common names it might go by.

(c) Which layer in the TCP/IP protocol stack do you think would make use of this file ?:

Answer: Application layer.

(d) Are the port numbers shown in this file well-known port numbers or ephemeral port numbers? Why are they so?:

Answer: As we know that well known port numbers are upto 1023 and well registered port numbers are from 1024 - 49000(approx.) and finally comes the dhcp which is from 49000 to 65534. So, as we can see in the screenshots above , we have both well-known port numbers and ephemeral port numbers.

3: The third problem

(a) arp:

Address Resolution Protocol (ARP) is a protocol for mapping an Internet Protocol address (IP address) to a physical machine address that is recognized in the local network.

(b) arping:

arping is a computer software tool for discovering and probing hosts on a computer network. Arping probes hosts on the attached network link by sending Link Layer frames using the Address Resolution Protocol (ARP) request method addressed to a host identified by its MAC address of the network interface.[1] The utility program may use ARP to resolve an IP address provided by the user.

(c) ifconfig:

ifconfig include setting the IP address and netmask of a network interface and disabling or enabling an interface ifconfig is a system administration utility for network interface configuration.

(d) tcpdump:

tcpdump is a common packet analyzer that runs under the command line. It allows the user to display TCP/IP and other packets being transmitted or received over a network to which the computer is attached.

(e) ping:

PING (Packet Internet Groper) command is the best way to test connectivity between two nodes. Whether it is Local Area Network (LAN) or Wide Area Network (WAN). Ping use ICMP (Internet Control Message Protocol) to communicate to other devices. You can ping host name of ip address using below command.

(f) netstat:

netstat (network statistics) is a command line tool for monitoring network connections both incoming and outgoing as well as viewing routing tables, interface statistics etc. netstat is one of the most basic network service debugging tools, telling you what ports are open and whether any programs are listening on ports.

(g) route:

In computer networking, a router is a device responsible for forwarding network traffic. When datagrams arrive at a router, the router must determine the best way to route them to their destination.

4: The fourth problem

Given below are some screenshots of remote connections establishment check. In figure-7 as we can see that ping is working properly. In figure - 9 we can see the packages captured topdump packages (which is further written in a file named as "four.pcap") opened in wireshark.

Figure 7: tcpdump and ping command

Figure 8: tcpdumb packets being saved in four.pcap file

Figure 9: captured pakages written in four.pcap file

5: The fifth problem

QUESTION: Run the command tcpdump enx w exe5.out. Do you see any output on the screen? Why?

ANSWER: After running the command , it says : "tcpdump: listening on wlp6s0, link-type EN10MB (Ethernet), capture size 262144 bytes" and writes the data into exe5.out. Here -enx is used for ethernet network.

Except these things ,we don't see any thing on the screen as the pakages captured are being written to exe5.out file.

Here wlp6s0 is the wireless network interface which enables wifi.

6: The sixth problem

Figure 10: remote accessing

Figure 11: captured packages

Figure 12: headers

7: The seventh problem

(a) What is the value of the frame type field in an Ethernet frame carrying an ARP request and in an Ethernet frame carrying an ARP reply, respectively? Answer: Type: ARP (0X0806)

Figure 13: ethernet frame type

(b) What is the value of the frame type field in an Ethernet frame carrying an IP datagram captured in the previous exercise?

Answer: Type: IPv4 (0X0800)

Figure 14: ethernet frame type

(c) What is the use of the frame type field?

Answer:It carries small but useful information. It allows to recognize the many protocols that may go over Ethernet, be it IPv4, ARP, IPv6, IPX, AppleTalk, and so on.

9: The nineth problem

(a) What are the port numbers used by the remote and the local computer?:

Answer: Remote machine's port number: 23

Local machine's port number: 37838

(b) Which machine's port number matches the port number listed for telnet in the /etc/services file?:

Answer: Remote machine's port number matches the port number listed for telnet. (as you can see in the screenshot below)

10: The tenth problem

(a) When you have two telnet sessions with your machine, what port number is used on the remote machine? Are both sessions connected to the same port number on the remote machine?:

Answer: Even in case of two telnet session , the remort machine has a single port number ,i.e. 23 (remote machine's port number).

Yes, both sessions connected to the same port number on the remote machine. (as one can notice

Figure 15: captured packages

in the screenshot given below).

(b) What port numbers are used in your machine for the first and second telnet, respectively?:

Answer: For our machine,

the first session's port number is: 37860 the first session's port number is: 37862 (one can verify it by the image given below)

Figure 16: captured packages

(c) What is the range of Internet-wide well-known port numbers? What is the range

of well-known port numbers for Unix/Linux specific service? What is the range for a client port number? Compare your answer to the well-known port numbers defined in the /etc/services file. Are they consistent? In case they are not, try to discuss amongst peers and specify your view of the reason why they are not.:

Answer: The well-known ports cover the range of possible port numbers from 0 through 1023. The client ports cover the range of possible port numbers from 49152 to 65535.