

JINJA JOINT EXAMINATION BOARD

MOCK EXAMINATIONS 2022

S475/1 SUB MATHEMATICS

MARKING GUIDE

NO	SOLUTION	MARKS
		&COMMENT
1.	$\alpha + \beta = \frac{a^2}{5}$	
	$\frac{a^2}{5} = 5$	B ₁
	$a^2 = 25$ $a = \sqrt{25}$	M ₁
	$a=\pm 5$	A ₁
	$\alpha\beta = \frac{b}{5}$	B ₁
	$\frac{b}{5} = 10$	
	$\underline{b} = 50$	A ₁
2.	$Var(x) = E(x^2) - (E(x))^2$	
	$= \int_0^2 x^2 \cdot \frac{x^2}{4} dx - \left[\int_0^2 x \cdot \frac{x^2}{4} dx \right]^2$	M ₁
	$ = \frac{1}{4} \int_0^2 x^4 dx - \left[\frac{1}{4} \int_0^2 x^3 dx \right]^2 $	N.4
	$= \frac{1}{4} \left[\frac{x^5}{5} \right] \frac{2}{0} - \left[\frac{1}{4} \cdot \frac{x^4}{4} \right] \frac{2}{0} \right]^2$ $= \frac{1}{20} \left[2^5 - 0^5 \right] - \left[\frac{1}{16} \left(2^4 - 0^4 \right) \right]^2$	M_1
	$\frac{1}{20} \begin{bmatrix} 2 & -0 \end{bmatrix} - \begin{bmatrix} \frac{1}{16} (2 & -0) \end{bmatrix}$ $\frac{-32}{20} - \left(\frac{1}{16} (16)\right)^2$	M ₁
	$=\frac{32}{20}-1^2$	M ₁
	$=\frac{32}{20}-\frac{20}{20}$	
	$= \frac{12}{20}$ $= \frac{3}{5}$	A_1
	5	
L		

3.	$sin A = \frac{-3}{5}$ $Cos A = \frac{-4}{5}$	B ₁
	$Cos A = \frac{-4}{-}$	
	5 (i) $\sin 3A = 3 \sin A - 4 \sin^3 A$ $= 3\left(\frac{-3}{5}\right) - 4\left(\frac{-3}{5}\right)^3$	M_1
	$= \frac{-9}{5} - 4\left(\frac{-27}{125}\right)$ $= \frac{-9}{5} + \frac{108}{125}$ $= \frac{-225 + 108}{125}$ $= \frac{125}{-117}$	
	$=\frac{-117}{125}$	A ₁
	$(i)4\cos^{3}A - 3\cos A$ $= 4\left(\frac{-4}{5}\right)^{3} - 3\left(\frac{-4}{5}\right)$ $= \frac{4(-64)}{125} + \frac{12}{5}$ $= \frac{-25 + 300}{125}$ $= \frac{44}{125}$	M ₁
	$=\frac{1}{125}$	A ₁
4	2	D.
4.	$P = \frac{2}{5}, 1 - P = \frac{3}{5}, \qquad n = 15$ $P(10 \le x \le 13) = P(x = 10) + P(x = 11) + P(x = 12) + P(x = 13)$ $= {15 \choose 10} {2 \choose 5} {10 \choose 5} + {15 \choose 11} {2 \choose 5} {11 \choose 5} + {15 \choose 12} {2 \choose 5} {12 \choose 5} {12 \choose 5} + {15 \choose 13} {2 \choose 5} {13 \choose 5}^{2}$ $= 0.0245 + 0.0074 + 0.0016 + 0.0003$ $= 0.0338$	B_1 M_1M_1 M_1 A_1
5.	$\log_2 x^2 - \log_x 64 = 4$ $2\log_2 x - \log_x 8^2 = 4$ $2\log_2 x - 2\log_x 8 = 4$ $\log_2 x - \log_x 8 = 2$ $\log_2 x - \frac{3\log_2 2}{\log_2 x} = 2$	M ₁

	- 1	
	Let $\log_2 x = m$	
	$m-\frac{3}{m}=2$	
	$m^2-2m-3=0$	B_1
	Using (1,-3)	
	$m^2 + m - 3m - 3 = 0$	M_1
	m(m+1) - 3(m+1) = 0	IVI1
	(m-3)(m+1)=0	M_1
	m = 3 or m = -1	A_1
	$\log_2 x = 3, \log_2 x = -1$	
	$x = 8$, $x = \frac{1}{2}$	
	2	
	7 747 + 747 + 506 + 450 + 220 + 250	
6.	$\frac{\sum x}{n} = \frac{747 + 717 + 596 + 450 + 328 + 370}{6}$	M_1
	n 6	
	$\frac{\sum x}{n} = \frac{1604}{3}$	
	$\frac{1}{n} - \frac{3}{3}$	
	$\frac{\sum x^2}{n} = \frac{747^2 + 717^2 + 596^2 + 450^2 + 328^2 + 370^2}{6}$	M ₁
	$\frac{\sum x^2}{x} = 312383$	1
	κ	
	Standard deviation = $\sqrt{\left(\frac{\sum x^2 f}{\sum f} - \left(\frac{\sum x f}{\sum f}\right)^2\right)}$	
	$=\sqrt{312383-(\frac{1604}{3})^2}$	M_1M_1
	V	14111411
	= 162.8329 (4.dp)	A_1
		-
7.	d = -3	
	$S_{20} = 10u_2$	
	From $S_n = \frac{n}{2}(2a + (n-1)d)$ and $u_n = a + (n-1)d$	
	$S_{20} = \frac{20}{2}(2a + 19(-3))$	
	<u> </u>	B ₁
	=10(2a-57)	
	$u_2 = a + d = a - 3$	B ₁
	10(2a - 57) = 10(a - 3)	M_1
	2a - 57 = a - 3 $2a - 57 = a - 3$	N/
	2u - 5i = u - 5	M_1
	$\underline{a=54}$	A ₁
		71

0		
8.	451 145°	B ₁
	$T \cos 45^{0} = F \cos 45^{0}$ $T = F \dots \dots \dots \dots (i)$ $T \sin 45^{0} + F \sin 45^{0} = 10g \dots \dots (ii)$	B ₁
	$T \sin 45^0 + T \sin 45^0 = 10g$	
	$2T \sin 45^{0} = 10g$ $2T \sin 45^{0} = 10g$	M ₁
	$\frac{T}{\sqrt{2}} = 5g$	
	,	M_1
	$T = 5\sqrt{2gN}$	
	$\underline{\mathbf{F=5}\sqrt{2}gN}$	A_1
		A1
	dv	
9.	$i) \frac{dy}{dx} = 4x + 7$	B_1
	$\int dy = \int (4x + 7)dx$	M_1
		M ₁
	$y = 2x^2 + 7x + c$	A_1
	At(1,12)	1 1
	$12 = 2(1)^2 + 7(1) + c$	M_1
	12 = 9 + c $c = 3$	A_1
	$c = 3$ $\therefore y = 2x^2 + 7x + 3$	B_1
	ii) At turning point, $\frac{dy}{dx} = 0$	
	$4x + 7 = 0$ $x = \frac{-7}{}$	M ₁
	$x = \frac{-7}{4}$ $For \ x = \frac{-7}{4}$	
	$y = 2\left(\frac{-7}{4}\right)^2 + 7\left(\frac{-7}{4}\right) + 3$	
	$y = 2\frac{(49)}{16} - \frac{49}{4} + 3$	
		1

$y = \frac{49}{8} - \frac{49}{4} + 3$	
$y = \frac{49 - 98 + 24}{8}$	M ₁
$y = \frac{-25}{8}$	
\therefore the turning point is $\left(\frac{-7}{4}, \frac{-25}{8}\right)$	A ₁
$from \frac{dy}{dx} = 4x + 7$	
$\frac{d^2y}{dx^2} = 4$	
since $\frac{d^2y}{dx^2} > 0$, then the turning point is a minimum point.	B ₁
i) Finding intercepts For x-intercept, $y = 0$ $2x^2 + 7x + 3 = 0$	
$x = \frac{-7 \pm \sqrt{7^2 - 4(2)(3)}}{2(2)}$	M ₁
$x = \frac{-7 \pm \sqrt{25}}{4}$	
$x = \frac{-7 \pm 5}{4}$ -1	
$x = \frac{-1}{2}, x = -3$ the $x - intercepts$ are $\left(\frac{-1}{2}, 0\right)$ and $(-3,0)$	
For y - intercept x = 0 y = $2(0)^2 + 7(0) + 3$	
$y = 3$ $\therefore \text{ the } y - \text{ intercept is } (0,3)$	A ₁
	B ₁
	B_1

	V -2	
	$\sum_{n=20}^{\infty} D^2$	
	= 20	
$6 \Sigma D^2$		
$\rho = 1 - \frac{6\sum D^2}{n(n^2 - 1)}$		
		M_1
$\rho = 1 - \frac{6 \times 20}{8(8^2 - 1)}$		
8(8 ² -1)		M_1
a = 0.7610(1 dn)		A ₁
$ ho=0.7610(4.dp)$ There is a high position relationship between $x \otimes y$		B_1
$M(\bar{x}, \bar{y})$		
$\sum x$		
$\bar{x} = \frac{1}{n}$		
$\bar{x} = \frac{\sum x}{n}$ $\bar{x} = \frac{512}{8}$		
8		
$\bar{x} = 64$		
$\bar{y} = \frac{\sum y}{n}$		
$\bar{y} = \frac{\sum y}{n}$ $= \frac{1194}{8}$		M_1
		1411
$\bar{y} = 149.25$		
M(64,149.25)		
$M_L(\overline{x_L}, \overline{y_L})$		
$\overline{x_L} = \frac{170}{3}$		
\sim 3		
$\overline{x_L} = 56.67$		
419		
$\overline{y_L} = \frac{419}{3}$		
$\overline{y_L} = 139.67$		
$M_L(56.67, 139.67)$		
		$B_1 B_1$

	ii) $ 30\vec{B} - 20\vec{A} + \vec{OC} = \sqrt{24^2 + (-6)^2}$ = $\sqrt{576 + 36}$	M ₁
	$= \sqrt{612}$ $= 24.74 units(2. dp)$	A ₁
	iii) $\overrightarrow{OA} \cdot \overrightarrow{OC} = \overrightarrow{OA} \overrightarrow{OC} \cos \theta$ $ \binom{-3}{5} \cdot \binom{6}{7} = \sqrt{(-3)^2 + 5^2} \sqrt{6^2 + 7^2} \cos \theta$ $ -18 + 35 = \sqrt{34} \sqrt{85} \cos \theta$	$M_1M_1M_1$
	$17 = \sqrt{2890} \cos \theta$ $\cos \theta = \frac{17}{\sqrt{28901}}$ $\theta = \cos^{-1} \left(\frac{17}{\sqrt{28901}}\right)$ $\theta = 79.52^{\circ}$	M ₁
		A ₁
	et x demote the height of babies	
i)	$)P(\times \le 42) = P\left(Z \le \frac{42 - 45}{\sqrt{16}}\right)$	B_1
=	$= p(z \le -0.75)$	ן 1
3	-0.75 M=0	
P	$P(Z \le -0.75) = 0.5 - P(-0.75 \le Z \le 0)$	
	$= 0.5 - P(0 \le Z \le 0.75)$	M_1
	=0.5-02734	M_1
	= 0.2266	
=	i) $P(40 < x < 44)$	A ₁
1.	$P\left(\frac{40 < x < 44}{\sqrt{16}}\right)$ $P\left(\frac{40 - 45}{\sqrt{16}} < z < \frac{44 - 45}{\sqrt{16}}\right)$	B ₁
P	P(-1.25 < Z < -0.25)	
	-1-25 -0-25 H=0	B ₁

$$P(-1.25 < Z < -0.25) = P(-1.25 < Z < 0) - P(-0.25 < Z < 0)$$

$$= P(0 < Z < 1.25) - P(0 < Z < 0.25)$$

$$= 0.3944 - 0.0987$$

$$= 0.2957$$
iii) $P(x > 52)$

$$P\left(z > \frac{52-4}{\sqrt{10}}\right)$$

$$P(z > 1.75)$$

$$= 0.5 - P(0 < z < 1.75)$$

$$= 0.5 - 0.4599$$

$$= 0.0401$$
The approximate number of babies out of 150 babies with height more than 52cm is 0.0401 x150
$$= 6.015$$

$$\approx 6 \text{ babies}$$
A₁

13. i) price relative = $\frac{P_{2.021}}{P_{2.010}} \times 100$

$$= 120$$
The price of sugar increased by 20%
For maize flour = $\frac{1700}{2.900} \times 100$

$$= 77.27$$
The price of maize flour reduced by 23.27%
For beans = $\frac{2500}{2.900} \times 100$

$$= 77.27$$
The price of beans decreased by 13.79%

	1000	
	For soap = $\frac{4900}{3500} \times 100$	A ₁
	=140	
	The price of soap increased by 40%	
	For rice = $\frac{1950}{2400} \times 100$	A_1
	=81.25 The price of rice reduced by 19.75%	_
	The price of rice reduced by 18.75%	A_1
	ii) Simple aggregate price index = $\frac{\sum P_{2021}}{\sum P_{2016}} \times 100$	
	$= \frac{3600+1700+2500+4900+1950}{3000+2200+2900+3500+240} \times 100$	M_1
	3000+2200+2900+3500+240 14650	M_1
	$=\frac{14650}{14000}\times100$	M_1 M_1
	=104.64	
	The price of items increased by 4.64%	B_1
	i) Value index = $\frac{\sum P_{2021} \cdot Q_{2021}}{\sum P_{2016} \cdot Q_{2016}} \times 100$	
	$\Sigma^{P_{2016}\cdot Q_{2016}}$	
	3600×26+17 ×70+2500×30+4900×15+1950×80	
	$= \frac{3600 \times 26 + 17 \times 70 + 2500 \times 30 + 4900 \times 15 + 1950 \times 80}{3000 \times 20 + 2200 \times 50 + 2900 \times 25 + 3500 \times 10 + 2400 \times 60} \times 100$	M_1M_1
	$=\frac{517100}{421500}\times100$	
	=122.68	M_1
	The prices of the items increased by 22.86%	A ₁
	ı Ç	B_1
14.	95m — 45m	
	P	
	distance	
	a) Average speed = $\frac{distance\ covered}{time\ taken}$	M_1
	time taken	1011
	Average speed = $\frac{45}{6}$	M_1
	$= 7.5 \text{ms}^{-1}$	A ₁
	<u>=7.5ms</u>	7.1
	10 0 50	
	b) Average speed from P to Q = $\frac{50}{t_{PQ}}$	
	50	
	$8 = \frac{50}{t_{PQ}}$	
	$t_{PQ} = \frac{50}{8}$	M ₁
	9	
	<u>=6.25s</u>	
	Average speed from P to $R = \frac{95}{6.25+4}$	
	$=\frac{95}{100}$	
	10.25	M_1

=9.268ms ⁻¹	A ₁
c) Average speed for the whole journey	
$=\frac{PR+RQ}{}$	
$6.25+4+_{RQ}$	
$\frac{6}{9} = \frac{95 + 45}{95 + 45}$	M_1
$\overline{1} = \frac{1}{10.25 + t_{RQ}}$	
$6 = \frac{140}{1025 + tRQ}$	M_1
·	
$61.6 + 6t_{RQ} = 140$	M_1
$6t_{RQ} = 78.5$	
t_{RQ} =13.08 seconds	A_1
	_
d) Average velocity = $\frac{displacement PQ}{T_{out} + t_{out} + t_{out}}$	
Total time taken 50	M_1
= 6.25+4+13.08	M_1
$= 2.14 ms^{-1}$	M_1
	A_1
	1