MAT223 Linear Algebra Tophat Chapter 4

Tianyu Du

November 20, 2017

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

1 The Rank Theorems

1.1 Subspaces of \mathbb{R}^n

Theorem 1 (Subspace Theorem). Let S be a subspace of \mathbb{R}^n . If S is spanned by m vectors, and contains k linearly independent vectors, then $k \leq m$.

1.2 Bases

Theorem 2. Let $S \neq \{\vec{0}\}$ be a subspace $pf \mathbb{R}^n$. Then there's a basis for S.

Theorem 3. A basis for a subspace $S \subseteq \mathbb{R}^n$ can only have one size.

Definition 1 (Dimension). The dimension dimS of a nonzero subspace v is $\sharp B$ for any basis B of S.

1.3 Expansions and Orthogonalization

Theorem 4 (Gram-Schmidt Orthonormalization Procedure). Let $\vec{b}_1, \ldots, \vec{b}_k \subseteq \mathbb{R}^n$ be a basis for a subspace S. Define

$$ec{w_1} = \hat{b_1}$$
 $ec{w_2} = \hat{x_2}, ec{x_2} = ec{b_2} - proj_{ec{w_1}} ec{b_2}$
 $ec{w_k} = \hat{x_k}, ec{x_k} = ec{b_k} - \sum_{i=1}^{k-1} proj_{ec{w_i}} ec{b_k}$

The vectors $\{\vec{w_i}\}_{1}^k$ produced as above are an **orthonormal basis** for S.

1.4 Rank Unification

Definition 2 (Rank). The rank of a matrix A, denoted rank(A) is the number of pivots in A.

Theorem 5 (Rank Theorem). Let A be an $m \times n$ matrix with rank r. Then

$$dim(col(A)) = dim(row(A)) = r$$

Moreover, if A R where R is in row-echelon form then

- 1. The r nonzero rows of R form a basis for row(A).
- 2. The r pivot columns of A form a basis for col(A).

Theorem 6 (Rank-Nullity Theorem). Let A be a $m \times n$ matrix. Then

$$rank(A) + dim(ker(A)) = n$$

We call dim(ker(A)) as **nullity** of A.

Note The rank-nullity theorem is a way to quantitatively characterize how far a given matrix might be from having $A\vec{x} = \vec{b}$ be uniquely solvable.

Note To find a basis for kernel space, we write all basic variables of system $A\vec{x} = \vec{0}$ in terms of free variables.

Theorem 7 (Rank Inequalities). Let A be a $m \times n$ matrix, we have

Definition 3 (Maximal Rank). A $m \times n$ matrix has **full rank** or **maximal** rank when rank(A) = min(m, n)

Note A square matrix with full rank must be invertible.

Theorem 8. Let A, B and C be matrices such that the products below are well-defined. Then

- 1. $col(AB) \subseteq col(A)$
- 2. $row(CA) \subseteq row(A)$

In the above \subseteq will simply be = when B or C respectively is invertible.

Theorem 9. If A and B are two matrices whose product is defined then

$$rank(AB) \le min(rank(A), rank(B))$$

1.5 Maximal Rank

Note If A were square, then A having full rank ensures that system $A\vec{x} = \vec{b}$ is always uniquely solvable.

Theorem 10 (Rank = \sharp of Columns). Let A be a $m \times n$ matrix, the following statements are equivalent.

- 1. rank(A) = n.
- 2. $row(A) = \mathbb{R}^n$.
- 3. Columns of A are linearly independent.
- 4. A^T A is invertible.
- 5. $\exists C \in \mathbb{M}_{n \times m} \text{ such that } C * A = I_n$.
- 6. $A\vec{x} = \vec{0}$ has only trivial solution.

Theorem 11 (Rank = \sharp of rows). Let A be $m \times n$. The following are equivalent statements.

- 1. rank(A) = m.
- 2. $col(A) = \mathbb{R}^m$.
- 3. Rows of A are linearly independent.
- 4. AA^T is invertible.
- 5. $\exists D \in \mathbb{M}_{n \times m} \text{ such that } A * D = I_m$.
- 6. $A\vec{x} = \vec{b} \text{ holds for all } \vec{b} \in \mathbb{R}^m$.

2 The Fundamental Theorem of Linear Algebra

2.1 Prelude: Orthogonal Complements

Definition 4. Let $S \subseteq \mathbb{R}^n$ be a subspace, define $S^{\perp} \in \mathbb{R}^n$ as

$$S^\perp = \{ \vec{u} \in \mathbb{R}^n | \vec{u} \cdot \vec{v} = 0, \forall \vec{v} \in S \}$$

 S^{\perp} is the the **orthogonal complement** of S in \mathbb{R}^n .

Theorem 12. Let $\vec{v} \in \mathbb{R}^n$, and let $S \subseteq \mathbb{R}^n$ be a subspace.

Then there are vectors

$$\vec{s} \in S$$
$$\vec{s_{\perp}} \in S^{\perp}$$

such that,

$$\vec{v} = \vec{s} + \vec{s}$$

Explanation Vectors can be expressed in terms of pieces in orthogonal space.

Note This fact is expressed as $\mathbb{R}^n = S \bigoplus S^{\perp}$ (direct sum).

Proof. Since $S \in \mathbb{R}^n$ is a subspace, and every subspace has basis. Let B_1 be a basis of S.

Let $B = \{\vec{s_i}\}_{1}^{dimS}$ be the orthonormal basis of S generated from B_1 via GSO.

So that,
$$\vec{s_i} \cdot \vec{s_j} = \begin{cases} 1, i = j \in \mathbb{Z}_1^{dimS} \\ 0, i \neq j \in \mathbb{Z}_1^{dimS} \end{cases}$$

For a vector $\vec{v} \in \mathbb{R}^n$

Let $\vec{s} = \sum_{i=1}^{\dim S} (\vec{v} \cdot \vec{s_i}) \vec{s_i}$. \vec{s} is a linear combination of vectors in the orthonormal basis B of space S, so obviously, $\vec{s} \in S$.

Define $\vec{s_{\perp}} = \vec{v} - \vec{s}$.

 $\forall j \in \mathbb{Z}_1^{dimS}$, Consider $\vec{s_{\perp}} \cdot \vec{s_j}$.

$$\vec{s_{\perp}} \cdot \vec{s_{j}} = (\vec{v} - \vec{s}) \cdot \vec{s_{j}} = \vec{v} \cdot \vec{s_{j}} - \sum_{i=1}^{dimS} (\vec{v} \cdot \vec{s_{i}} \cdot \vec{s_{i}} \cdot \vec{s_{j}}) = \vec{v} \cdot \vec{s_{j}} - \vec{v} \cdot \vec{s_{j}} = 0$$

So that, $\vec{s_{\perp}} \in S^{\perp}$.

By definition of $\vec{s_{\perp}}$ above, $\vec{v} = \vec{s} + \vec{s_{\perp}} \in \mathbb{R}^n$, where $\vec{s} \in S \land \vec{s_{\perp}} \in S^{\perp}$. \square

2.2 The Fundamental Theorem of Linear Algebra

Proposition 1. Let $A \in \mathbb{M}_{m \times n}(\mathbb{R})$. Then,

$$Col(A^T)^{\perp} = Ker(A)$$

Proof. Part1

Let $\vec{v} \in Ker(A)$, we have $A\vec{v} = \vec{0}$

So that,
$$\begin{bmatrix} Row_1(A)\vec{v} \\ Row_2(A)\vec{v} \\ \vdots \\ Row_m(A)\vec{v} \end{bmatrix} = \vec{0}$$

So that, \vec{v} is orthogonal to all rows of A.

So that, $\vec{v} \in Row(A)^{\perp} \wedge Row(A) = Col(A^T)$

$$\vec{v} \in Col(A^T)^{\perp}$$

We have, $\vec{v} \in Ker(A) \implies \vec{v} \in Col(A^T)^{\perp}$

So that, $Ker(A) \subseteq Col(A^T)^{\perp}$

Part2

Let $\vec{v} \in Col(A^T)^{\perp}$

Since $Col(A^T) = Row(A)$, we have $\vec{v} \in Row(A)^{\perp}$

So that, $Row_j(A) \cdot \vec{v} = 0, \forall j \in \mathbb{Z}_1^m$

So that, $A\vec{v} = \vec{0}$, which implies $\vec{v} \in Ker(A)$.

We have, $\vec{v} \in Col(A^T)^{\perp} \implies \vec{v} \in Ker(A)$

Equivalently, $Col(A^T)^{\perp} \subseteq Ker(A)$

Now we have $Ker(A) \subseteq Col(A^T)^{\perp} \wedge Col(A^T)^{\perp} \subseteq Ker(A) \iff Ker(A) = Col(A^T)^{\perp} \iff Ker(A)^{\perp} = Col(A^T)$

Theorem 13 (The Fundamental Theorem of Linear Algebra). Let $A \in \mathbb{M}_{m \times n}(\mathbb{R})$

Then, (i) $Col(A^T) = Ker(A)^{\perp}$

(ii)
$$\mathbb{R}^n = Col(A^T) \bigoplus Ker(A)$$

And, $\forall \vec{v} \in Col(A)$, we have, $A\vec{x} = \vec{b}$ solved by $\vec{x} = \vec{p} + \vec{v_h}$, where $\vec{p} \in Row(A)$ and $\vec{v_h} \in Ker(A)$.

Explanation (ii): **Orthogonal decomposition** of \mathbb{R}^n into the *null space* and the *row space* of matrix A.

Note For the counter part of this theorem over \mathbb{R}^m , consider matrix $B = A^T$ and proof via the same vein.

2.3 The Diagrams

Let matrix $A \in \mathbb{M}_{m \times n}(\mathbb{R})$.

2.3.1 Decomposition of \mathbb{R}^n

Representation $\mathbb{R}^n = Row(A) \bigoplus Ker(A)$.

Figure 1: The decomposition of \mathbb{R}^n

2.3.2 Decomposition of \mathbb{R}^m

Representation $\mathbb{R}^m = Col(A) \bigoplus Ker(A^T)$.

Figure 2: The decomposition of \mathbb{R}^m