Claims Investigation Committee Multi-Testing Input Device

ECE-4820: Electrical and Computer Engineering Design II

Dylan-Matthew Garza Daniel Baker Rohullah Sah

Department of Electrical and Computer Engineering Western Michigan University

> ZF Group Auburn Hills, MI

Fall 2024

Faculty Advisor: Dr. Janos Grantner Sponsor Manager: Patrick McNally

Table of Contents

Introduction

- 2 Design and Implementation
 - Project Specifications and Overview
 - Hardware Design
 - Cortex-M4 Firmware to Test Devices
 - Embedded Linux With Yocto Project

Project Specifications

What this project aims to accomplish:

- 1 Device Interfacing
 - Properly read Device Signals using the ARM Cortex-M4 on the onboard microcontroller on the STM32MP157F-DK2:
 - PWM Duty Cycle
 - Frequency
 - Voltages through an analog-to-digital converter (ADC)
 - CAN frames
- 2 Physical Components and Hardware
 - Printed Circuit Board (PCB) for interfacing with DUT
 - 2 PCB for scaling and managing power for the DUT and to the microcontroller
 - 3 Enclosure for PCBs and STM32MP157F-DK2 board
- 3 Software
 - Custom embedded Linux distribution that will run on the onboard ARM Cortex-A7 microprocessor on the STM32MP157F-DK2
 - 2 Simple user interface web-based application
 - 3 Custom Webserver to process information from web application to microcontroller
 - 4 Communicate collected information from ARM Cortex-M4 to ARM Cortex-A7
 - 5 Ability to download measured data, formatted as a CSV, through the web application

Project Specifications and Overview

Gantt Chart

Project Specifications and Overview

Budget Projection

Custom Hardware Design

Cortex-M4 Firmware to Test Devices

Firmware to Test Brake Signal Transmitter (BST)

Cortex-M4 Firmware to Test Devices

Firmware to Test Continuous Wear Sensor (CWS)

Cortex-M4 Firmware to Test Devices

Firmware to Test Pressure Sensor

Embedded Linux

Why use embedded Linux?

- Industry standard for any embedded operating system
- Access to free and open-source software (FOSS) and tools
- Networking and connectivity made easy
- Easily save/access data with filesystem

Figure 1: Source: https://bootlin.com/ Embedded Linux system architecture