Loan Default Prediction

Based on historical data, we built a set of predictive models to forecast loan default for customers based on their profile. We also investigated how different factors (age, marital status, etc.) could affect the possibility of loan default

Executive Summary

ANN model is the best performing predictive model

Through simulation, ANN model has the strongest ability to predict loan default with AUC 76.31% and 81.78% accuracy

Males and the married are more likely to default loans

Female have more default cases than males, but males have higher loan default probability of 31.87% (female 26.2%). The married default rate is 30.67%, while for 26.47% singles.

Recommendation

- Adopt best performing ANN model
- Adjust higher rates for customers more likely to default
- Grant small amount loans rather than big amount
- Establish creditscore for credit card clients

Agenda

- Understanding data Variables, EAD
- Preprocessing Encode variables
- Model Exploration Build and evaluate models
- Model Comparison Find the best predicting model
- Recommendation More profit, lower default risk

Understanding Data

Customers of different sex and marrital status have varying default rates

- There are **30,000 observations** and **25 variables** in the raw data
- Female has the most defaults
- Male has higher possibility to default
- Married and other marrital status more likely to default

Understanding Data

Age has **no correlation** with loan defaults

- Statistically, Pearsons correlation is **low** at 0.014
- Graphically, default probability is not related to age

Understanding Data

Customers with large amount bills, no matter males or females, they are paying less than they are supposed to.

Preprocessing: Improve Model

Efficiency

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30000 entries, 0 to 29999
Data columns (total 24 columns):

_	Data columns (total 24 columns):							
#	Column	Non-Ni	ıll Count	Dtype				
0	LIMIT BAL	30000	non-null	int64				
1	SEX	30000	non-null	category				
2	EDUCATION	30000	non-null	category				
3	MARRIAGE	30000	non-null	category				
4	AGE	30000	non-null	int64				
5	PAY_1	30000	non-null	category				
6	PAY_2	30000	non-null	category				
7	PAY_3	30000	non-null	category				
8	PAY_4	30000	non-null	category				
9	PAY_5	30000	non-null	category				
10	PAY_6	30000	non-null	category				
11	BILL_AMT1	30000	non-null	int64				
12	BILL_AMT2	30000	non-null	int64				
13	BILL_AMT3	30000	non-null	int64				
14	BILL_AMT4	30000	non-null	int64				
15	BILL_AMT5	30000	non-null	int64				
16	BILL_AMT6	30000	non-null	int64				
17	PAY_AMT1	30000	non-null	int64				
18	PAY_AMT2	30000	non-null	int64				
19	PAY_AMT3	30000	non-null	int64				
20	PAY_AMT4	30000	non-null	int64				
21	PAY_AMT5	30000	non-null	int64				
22	PAY AMT6	30000	non-null	int64				
23	Default	30000	non-null	category				
dtypes: category(10),			int64(14)					

- Keep negative bill amounts
- No Missing Values
- leave the outliers
 - Categorical Variables: Data is in numeric form, we use OneHot encoding to create binary dummy variables eliminating the affect that number order bring to the models
 - Numeric Variables: Normalization the numbers (scale the variables to similar sizes) makes the graphing of the values more efficient for the ML methods

KNN Model

- Best result with 12 class
- Ability to predict that a client defaults next month: 63.22%
- Balance tradeoff of variability and bias
- Performed with 81.08% accuracy

K-means Cluster Model

- Segmented age into 4 clusters
- Best group's ability to predict a client defaults next month is 63.17%
- Best group performed with 80.81% accuracy
- Other group performed with accuracy 77.04%, 82.60%,80.72%
- No group has better classification performance than the non-segmented KNN model (comparing AUC)

ANN Model E

- The best performing model
- Ability to predict that a client defaults next month: 76.31%
- Performed with 81.78% accuracy

ROC curve for ANN

Recommendation

Adopt best
 performing ANN
 model with ability to
 predict 76.21% (AUC)
 and 81.78% accuracy

Improve data quality
 management and
 regularly update
 customer data

- Interest should be adjusted for customer with low credit score and more likely to default
- Grant small amount loans rather than big amount.

Create creditscore
 for each customer
 and use it to drive
 decison-making
 (whether give out
 loan, the amount
 safe to give out)

Appendix (1)

Marrital Status Bar Plot

BILL_AMT1 Boxplot by Sex

Boxplot of Numeric Variables (1)

Appendix (2)

Boxplot of Numeric Variables (2)

Appendix (3)

Boxplot of Numeric Variables (3)

Appendix (4)

Correlation of Numeric Variables

Appendix (5)

Accuracy: 0.810777777777778
Precision: 0.6786492374727668

Misclassification: 0.1892222222222224

True Positive: 0.3067454455933038
False Positive: 0.04233031998852059

Specificity: 0.9576696800114795 Prevalence: 0.2256666666666665

Confusion Table, ROC, Merics of non-segmented KNN Model

Appendix (6)

Accuracy: 0.8260217472815898 Precision: 0.6368421052631579

Misclassification: 0.1739782527184102

True Positive: 0.23449612403100775
False Positive: 0.03207810320781032

Specificity: 0.9679218967921897
Prevalence: 0.19347581552305962

Confusion Table, ROC, Merics of segmented KNN Model (Segment 1)

Appendix (7)

Accuracy: 0.8081113801452785
Precision: 0.6507042253521127

Misclassification: 0.19188861985472155

True Positive: 0.3117408906882591 False Positive: 0.048380803745610615

Specificity: 0.9516191962543894 Prevalence: 0.22427360774818403

Confusion Table, ROC, Merics of segmented KNN Model (Segment 2)

Appendix (8)

Accuracy: 0.7703703703703704
Precision: 0.6788990825688074

Misclassification: 0.22962962962963

True Positive: 0.2578397212543554
False Positive: 0.044136191677175286

Specificity: 0.9558638083228247
Prevalence: 0.2657407407407

Confusion Table, ROC, Merics of segmented KNN Model (Segment 3)

Appendix (9)

Accuracy: 0.8071794871794872 Precision: 0.6494845360824743

Misclassification: 0.19282051282051282

True Positive: 0.2903225806451613
False Positive: 0.044854881266490766

Specificity: 0.9551451187335093
Prevalence: 0.22256410256410256

Confusion Table, ROC, Merics of segmented KNN Model (Segment 4)

Appendix (10)

Accuracy: 0.8177777777778

Missclassification Rate: 0.182222222222223

True Positive Rate: 0.8365542503473538
False Positive Rate: 0.31948291782086796

Confusion Table, ROC, Merics of ANN Model

Appendix (11)

	Segment 1	Segment 2	Segment 3	Segment 4	KNN	ANN
Accuracy	0.826022	0.808111	0.770370	0.807179	0.810778	0.817778
Misclassification	0.173978	0.191889	0.229630	0.192821	0.189222	0.182222
True Positive	0.234496	0.311741	0.257840	0.290323	0.306745	0.836554
False Positive	0.032078	0.048381	0.044136	0.044855	0.042330	0.319483
Specificity	0.967922	0.951619	0.955864	0.955145	0.957670	0.680517
Precision	0.636842	0.650704	0.678899	0.649485	0.678649	0.950352
Prevalence	0.193476	0.224274	0.265741	0.222564	0.225667	0.774333
AUC	0.601209	0.631680	0.606852	0.622734	0.632208	0.763081

Model Merics Comparison