MA 225 Worksheet: Useful Logical Facts

The following logical facts can be deduced by looking at appropriate truth tables, by formulating a tautologous propositional formula, or by just thinking it through.

	1	2	3	4	5
a	P	Q	$P \Rightarrow Q$	$P \wedge Q$	$P \vee Q$
b	True	True	True	True	True
$^{\rm c}$	True	False	False	False	True
d	False	True	True	False	True
е	False	False	True	False	False

(a) If $P \Rightarrow Q$ is true and P is true, then Q must be true.

Proof: Using the proof table above, we can use rows b and c which show when P is true. Then, looking on row b and c in columns 2 and 3, we can see that the only value which results in P \Rightarrow Q being True is Q being True.

(b) If $P \Rightarrow Q$ is true and Q is false, then P must be false.

Proof: Looking at the proof table, we can see based off column 2 and 3, the only row which satisfies this is row e.

(c) If $P \wedge Q$ is true, then P is true; if P is true, then $P \vee Q$ is true.

Proof: We can prove the statement by looking at columns 1 2 and 4 of the truth table above to see that the only time $P \land Q$ is True is when P and Q are true, therefore P is True. Next, we can look at rows b and c where P are true and column 5 to see that when P is true, so is $P \lor Q$.

	1	2	3	4	5	6
	P	Q	R	$P \Rightarrow Q$	$Q \Rightarrow R R$	$P \Rightarrow R$
a	True	True	True	True	True	True
b	True	True	False	True	False	False
\mathbf{c}	True	False	True	False	True	True
d	True	False	False	False	True	False
е	False	True	True	True	True	True
f	False	True	False	True	False	True
g	False	False	True	True	True	True
h	False	False	False	True	True	True

(d) If $P \Rightarrow Q$ and $Q \Rightarrow R$ are both true, then $P \Rightarrow R$ is true.

Proof: Looking at the proof directly above in rows a g e and h, which represent all combinations of P Q and R in which P \Rightarrow Q and Q \Rightarrow R are true, we can see that in column 6 that $P \Rightarrow R$ is always true.

(e) $P \Rightarrow (Q \lor R)$ is equivalent to $(P \land (\sim Q)) \Rightarrow R$ and $(P \land (\sim R)) \Rightarrow Q$. Proof:

	1	2	3	4	5	6	
	Р	Q	R	$P \Rightarrow (Q \vee R)$	$(P \land (\sim Q)) \Rightarrow R$	$(P \land (\sim R)) \Rightarrow Q$	
a	True	True	True	True	True	True	
b	True	True	False	True	True	True	
c	True	False	True	True	True	True	
d	True	False	False	False	False	False	
е	False	True	True	True	True	True	
f	False	True	False	True	True	True	
g	False	False	True	True	True	True	
h	False	False	False	False	False	False	

We can see from the Truth table directly above that for all values in columns 4 5 and 6, all values are equal, therefore the three statements are equivalent.

(f) $P \Rightarrow (Q \land R)$ is equivalent to $(P \Rightarrow Q) \land (P \Rightarrow R)$. Proof:

	1	2	3	4	5
	P	Q	R	$P \Rightarrow (Q \land R)$	$(P \Rightarrow Q) \land (P \Rightarrow R)$
a	True	True	True	True	True
b	True	True	False	False	False
c	True	False	True	False	False
d	True	False	False	False	False
е	False	True	True	True	True
f	False	True	False	True	True
g	False	False	True	True	True
h	False	False	False	False	False

Observing columns 4 and 5 of the truth table directly above, we can see that all the values are the same, therefore $P \Rightarrow (Q \land R)$ and $(P \Rightarrow Q) \land (P \Rightarrow R)$ are equivalent.

(g) If $P \Rightarrow R$ is true and $Q \Rightarrow R$ is true, then $(P \lor Q) \Rightarrow R$ is true.

Proof: First, we must realize that in order for wither statement to be false, R would have to be false. For the first statement $P \Rightarrow R$, P would have to be True, and in order for the second statement $Q \Rightarrow R$ to be False, Q would have to be True. Therefore, the only way both could be True while R is False is if P and Q were false, which we can see that for $(P \lor Q) \Rightarrow R$, the only way the statement could be False is if P or Q were True, which was shown to set former equations to false.

(h) If $(P \lor Q) \Rightarrow R$ is true, then $P \Rightarrow R$ is true.

Proof: According to truth table 1, $P \vee Q$ is true whenever P is true. Therefore, since the R remianed constant in the two propositions, it is therefore shown that when $(P \vee Q) \Rightarrow Q$ is true, then so is $P \vee Q$.

- 1. For statements (a)-(d), give a proof by just looking at the truth table for \Rightarrow , \vee , or \wedge .
- 2. For statements (e) and (f), give a proof by making truth tables for the claimed equivalences.

- 3. For statements (g) and (h), give a proof as follows:
 - (a) Rewrite the \Rightarrow in the formula $(P \lor Q) \Rightarrow R$ using \lor and \sim , to get a formula that only involves \lor and \sim .

(b) Do the same for $P \Rightarrow R$ and $Q \Rightarrow R$.

(c) After possibly doing some arithmetic, apply fact (c).

- 4. The logical facts above will each prove to be useful in writing proofs. Below are a list of names or shorthands which correspond to logical facts (a)-(h). Match the logical fact to the name or shorthand. For some of these you will need to consult an outside source.
 - $(I) \Rightarrow is transitive d$
 - (II) specialization c
 - (III) prove each separately f
 - (IV) modus tollens a
 - (V) a fortiori h
 - (VI) rule out the undesirable case e
 - (VII) modus ponens / direct proof b
 - (VIII) proof by cases g