$\begin{array}{c} 18.100 \mathrm{B} \\ \mathrm{PROBLEM~SET~2} \end{array}$

JOHN WANG

1. Problem 2.11

Theorem 1.1. The distance $d_1(x,y) = (x-y)^2$ is not a metric.

Proof. Here, the third requirement for a metric does not hold, namely that $d(x,y) \leq d(x,r) + d(r,y)$. This is because $d_1(x,y) = (x-y)^2 = x^2 - 2xy + y^2$ and $d_1(x,r) + d_1(r,y) = x^2 - 2xr + r^2 + r^2 - 2ry + y^2 = x^2 + y^2 + 2r^2 - 2xr - 2ry$. Thus, one must have $-2xy \leq 2r^2 - 2xr - 2ry$ for all $r \in \mathbb{R}^1$ for d_1 to be a metric. This is the same as $xy \geq r(x+y-r)$. However, if one sets x=2 and y=0, this inequality does not hold for all values of r. For instance, $0 \not\geq 1(2-1) = 1$ which shows that d_1 is not a metric.

Theorem 1.2. The distance $d_2(x,y) = \sqrt{|x-y|}$ is a metric.

Proof. The first two properties of a metric are easy to prove. We know $d_2(x,y)>0$ holds for all $x\neq y$ and $d_2(x,x)=0$ because square roots of positive numbers are always positive. Next, $d_2(x,y)=d_2(y,x)$ because |x-y|=|y-x|. Finally, we have $d_2(x,y)\leq d_2(x,r)+d_2(r,y)$ for all $r\in\mathbb{R}^1$. This is because the triangle inequality for absolute values states that $|x-y|\leq |x-r|+|r-y|$, which means $d_2(x,y)\leq \sqrt{|x-r|+|r-y|}=\sqrt{d_2(x,r)^2+d_2(r,y)^2}$. However, by the triangle inequality, we know that $\sqrt{d_2(x,r)^2+d_2(r,y)^2}\leq d_2(x,r)+d_2(r,y)$ because $\sqrt{|x-r|+|r-y|}\leq \sqrt{|x-y|}+\sqrt{|r-y|}$. This means that $d_2(x,y)\leq d_2(x,r)+d_2(r,y)$ for all $r\in\mathbb{R}^1$. Thus, d_2 is a metric.

Theorem 1.3. The distance $d_3(x,y) = |x^2 - y^2|$ is not a metric.

Proof. The first property of metrics does not hold. For instance, if x = 1 and y = -1, then $x \neq y$, but $d_3(x, y) = 0$, which means d_3 is not a metric.

Theorem 1.4. The distance $d_4(x,y) = |x-2y|$ is not a metric.

Proof. We know that a metric must have the property $d_4(x,y) > 0$ if $x \neq y$. However, this property does not hold for x = 2 and y = 1, where $d_4(x,y) = 0$ and $x \neq y$. Thus, d_4 is not a metric.

Theorem 1.5. The distance $d_5(x,y) = \frac{|x-y|}{1+|x-y|}$ is a metric.

Proof. We see that $d_5(x,y) = 0 \iff x = y$, and that $d_5(x,y) > 0$ for all $x, y \in \mathbb{R}^1$. Also, we see that since |x - y| = |y - x|, that $d_5(x,y) = d_5(y,x)$. Now, we must prove that $d_5(x,y) \le d_5(x,r) + d_5(r,y)$. This can be done by looking at the quantity

$$(1.6) d_5(x,r) + d_5(r,y) - d_5(x,y) = \frac{|x-r|}{1+|x-r|} + \frac{|r-y|}{1+|r-y|} - \frac{|x-y|}{1+|x-y|}$$

By expanding out the denominator, one finds that this expression is equal to the following

$$|x-r|(1+|x-y|)(1+|r-y|) + |r-y|(1+|x-y|)(1+|x-r|)$$

- $|x-y|(1+|x-r|)(1+|r-y|)$

$$(1.7) = |x - r||r - y||x - y| + 2|r - y||x - r| + |r - y| + |x - r| - |x - y|$$

The first two terms are non-negative because they are products of absolute values. The last term is also non-negative because the triangle inequality states that $0 \le |x-r|+|r-y|-|x-y|$, which means that the entire expression is non-negative. This shows that the final property of metrics is true, namely that $0 \le d_5(x,r) + d_5(r,y) - d_5(x,y)$. This shows that d_5 is a metric.

2. Problem 2.12

Theorem 2.1. If $K \subset \mathbb{R}^1$ consist of 0 and the numbers $\frac{1}{n}$ for n = 1, 2, 3, ..., then K is compact (directly from the definition).

Proof. We must show that for every open cover of K, there exists a finite subcover. To do this, let $\{G_{\alpha}\}_{\alpha\in A}$ be an open cover of K. There must exist an index α_0 such that $0\in G_{\alpha_0}$. Since G_{α_0} is open, we know that there exists an r>0 such that $N_r(0)\subset G_{\alpha_0}$. Moreover, by the archimedean principle, we know there exists some n such that $\frac{1}{n}< r$. Thus, we have that $N_{\frac{1}{n}}(0)\subset N_r(0)\subset G_{\alpha_0}$, which means that $N_{\frac{1}{n}}(0)\subset G_{\alpha_0}$. Correspondingly, we know that $\frac{1}{n}\in G_{\alpha_0}$. We can apply the above argument to each member of K such that $n=1,2,3,\ldots$ and obtain $\frac{1}{n}\in G_{\alpha_n}$. Thus, for all N>n, we have $\frac{1}{N}<\frac{1}{n}< r$, meaning that we also have $\frac{1}{N}\in G_{\alpha_0}$. Because of this, for all $N\leq n$, there exist indices $\alpha_N\in A$ such that $\frac{1}{N}\in G_{\alpha_N}$. Thus, we know that $K\subset G_{\alpha_0}\cup\cdots\cup G_{\alpha_N}$ for some finite N. This shows that every open cover $\{G_{\alpha}\}_{\alpha\in A}$ of K has a finite subcover, and that K is compact.

3. Problem 2.13

Theorem 3.1. It is possible to construct a compact set of real numbers whose limit points form a countable set.

Proof. Consider the set E_i for $0 \le i \le 1$ and $i \in \mathbb{Q}$ that is defined as $E_i := \{i + \frac{1}{p} : p \in \mathbb{N}\} \cup \{i\}$. In the case of i = 0, E_i is the set consisting of $\frac{1}{n}$ for all $n = 1, 2, \ldots$ joined with 0. Now, we can create a set E that is compact and whose limit points form a countable set by defining for all $i \in \mathbb{Q}$ the following

$$(3.2) E := \bigcup_{0 \le i \le 1} E_i$$

This means that the set is closed, because it contains all its limit points. One can see that in this case, all the limit points of E are given by the union of all the limit points of E_i . There is only one limit point of E_i by construction, which is i. Thus, all the limit points of E are the set of all $0 \le i \le 1$ for $i \in \mathbb{Q}$, which is definitely a subset of E. Moreover, we can show that the set is bounded. To do this, we must show that there is a real number M and a point $q \in \mathbb{R}$ such that d(p,q) < M for all $p \in E$. This is clearly the case because all elements of E are confined to the closed interval [0,2]. By the archimedean principle, there exists an $M \in \mathbb{R}$ such that 2*q < M for all $p \in E$. Since |p-q| < M for all $p \in [0,2]$, we know that d(p,q) < M for all $p \in E$ and $q \in \mathbb{R}$, as $E \subset [0,2]$. This shows that E is both closed and bounded, and since $E \subset \mathbb{R}$, we know by Heine-Borel that E is compact.

Now, it is easy to show that the limit points of E form a countable set. We have already shown that E' is the set $\{i: 0 \le i \le 1, i \in \mathbb{Q}\}$. We also know that the

rationals are countable and that E' is an infinite subset of \mathbb{Q} . Since every infinite subset of a countable set is countable, we know that E' is countable.

18.100B

4. Problem 2.14

Theorem 4.1. There is an open cover of the segment (0,1) which has no finite subcover.

Proof. All we must do is show that there exists a single open cover without any finite subcovers. To do this, consider the open cover $\{G_{\alpha}\}$, where $\alpha \in \mathbb{N}$. Now define each interval as follows $G_{\alpha} := (\frac{1}{\alpha}, 1)$. Therefore, we have $\bigcup_{\alpha \in \mathbb{N}} G_{\alpha} = (0, 1)$. Thus, $(0,1) \subset \bigcup_{\alpha \in \mathbb{N}} G_{\alpha}$, and we have an open cover of the interval (0,1). However, this open cover has no finite subcover. We will show this by contradiction. If there does exist a finite subcover of $\{G_{\alpha}\}$, then there is some largest number $N \in \mathbb{N}$ such that $(0,1) \subset G_{\alpha_1} \cup \cdots \cup G_{\alpha_N}$. This means that $(0,1) \subset (1,1) \cup \cdots \cup (\frac{1}{N},1)$ and that $(0,1) \subset (\frac{1}{N},1)$ for $N \in \mathbb{N}$. This is a contradiction, which means there does not exist a finite subcover of $\{G_{\alpha}\}$. Thus, we have provided an example of an open cover of the segment (0,1) which has no finite subcover.

5. Problem 2.16

Theorem 5.1. Regard \mathbb{Q} , the set of all rational numbers, as a metric space, with d(p,q) = |p-q|. Let E be the set of all $p \in \mathbb{Q}$ such that $2 < p^2 < 3$. Show that E is closed and bounded in \mathbb{Q} , but that E is not compact. In addition, E is open in \mathbb{Q} .

Proof. To show that E is closed in \mathbb{Q} , it is sufficient to show that $E = \mathbb{Q} \cap G$ for some $G \subset \mathbb{R}$ such that G is closed in \mathbb{R} . Let $G = \{x : 2 \le x^2 \le 3, x \in \mathbb{R}\}$, then it is easy to see that $E = \mathbb{Q} \cap G$. Now we must show that G is closed in \mathbb{R} . To do this, note that $\sqrt{3}$ is an upper bound of G because $p \le \sqrt{3}$ for every $p \in G$. Thus, $\sqrt{3} = \sup G$ because for every h > 0, $\sqrt{3} - h \in G$. Moreover, we can see that $\sqrt{3} \in G$, which means $\sup G \in G$ and that G is closed. Since we have shown that G is closed in \mathbb{R} , we now know that $E = \mathbb{Q} \cap G$ is closed in \mathbb{Q} .

To show that E is bounded in \mathbb{Q} , we must show that there exists an $M \in \mathbb{R}$ and a $q \in \mathbb{Q}$ such that d(p,q) < M for all $p \in E$. For p > 0, pick any $q \in \mathbb{Q}$ such that 0 < q < p, and it is clear that |p-q| < p. For p < 0, pick any $q \in \mathbb{Q}$ such that p < q < 0, and we have |p-q| < -p. Thus, there exists an $M \in \mathbb{R}$ and a $q \in \mathbb{Q}$ such that d(p,q) < M for all $p \in E$, showing that E is bounded in \mathbb{Q} .

We have now shown that E is closed and bounded in \mathbb{Q} , but have yet to prove that E is not compact. To do this, we will use the Heine-Borel theorem, and show that E is not closed and bounded in \mathbb{R} . To do this, we will show that E is not closed in \mathbb{R} , which can be seen if one examines $y = \sup E$. One can see that $y = \sqrt{3} = \sup E$, because for each $p \in E$, $p \le \sqrt{3}$, and for every h > 0, $\sqrt{3} - h \in E$. However, since $\sqrt{3} \notin E$, we can see that $\sup E \notin E$, showing that E does not contain all of its limit points. Thus, E is open in \mathbb{R} . This implies that E is not compact by Heine-Borel.

Now we want to know whether E is open in \mathbb{Q} . To do this, we must know whether every point $p \in E$ is an interior point. In other words, does there exist an r > 0 such that $N_r(p) \subset E$? If one picks $r = \min\{|-\sqrt{3}-p|, |-\sqrt{2}-p, |\sqrt{2}-p|, |\sqrt{3}-p|\}$, then one will always be able to find a distance $\frac{r}{2}$ such that $N_{\frac{r}{2}}(p) \subset E$ for every $p \in E$. Thus, E is open in \mathbb{Q} .

6. Problem 2.22

Theorem 6.1. A metric space is called separable if it contains a countable dense subset. We shall show that \mathbb{R}^k is separable.

JOHN WANG

Proof. First, consider the set $\{P\}$ of points $p \in \mathbb{R}^k$ such that $p = (p_1, p_2, \dots, p_k)$ and $p_n \in \mathbb{Q}$ for all n = 1, ..., k. In other words, $\{P\}$ is the set of points with only rational coordinates, \mathbb{Q}^k . We know that $\{P\}$ is countable because \mathbb{Q} is countable, and $\{P\}$ is a finite grouping of rational coordinates.

Now, we must show that $\{P\}$ is dense in \mathbb{R}^k . In other words, each $x \in \mathbb{R}^k$ must have every neighborhood contain a point $q \neq x$ such that $q \in \mathbb{Q}^k$, or x must be an element of \mathbb{Q}^k . Given r>0, there exists some $q_n\in\mathbb{Q}$ such that $d(x_n,q_n)<\frac{r}{k}$ for $k \in \mathbb{N}$ by the archimedean property. Thus, we know that

$$(6.2) d(x,q) = \sqrt{d(x_1,q_1)^2 + d(x_2,q_2)^2 + \ldots + d(x_k,q_k)^2}$$

(6.2)
$$d(x,q) = \sqrt{d(x_1, q_1)^2 + d(x_2, q_2)^2 + \ldots + d(x_k, q_k)^2}$$

$$< \underbrace{\sqrt{\left(\frac{r}{k}\right)^2 + \ldots + \left(\frac{r}{k}\right)^2}}_{k}$$

Since the expression in (6.3) is equal to $\sqrt{\frac{kr^2}{k^2}} = \frac{r}{\sqrt{k}} \leq r$, where the last inequality comes from the fact that $k \in \mathbb{N}$, we have that d(x,q) < r for each $x \in \mathbb{R}^k$. This shows for all $x \in \mathbb{R}^k$, each neighborhood of x contains a $q \neq x$ such that $q \in \{P\}$. This means that $\{P\}$ is dense in \mathbb{R}^k , and since we have already shown countability, $\{P\}$ is also separable.