Root Finding: Population Study

Many fields of engineering require accurate population estimates. For example, transportation engineers might find it necessary to determine separately the population growth trends of a city and adjacent suburb. The population of the city is over time is expressed by:

$$P_c(t) = P_{c.max}e^{-k_c t} + P_{c.min}$$

Meanwhile, the suburban population adheres to:

$$P_{s}(t) = \frac{P_{s,max}}{1 + \left(\frac{P_{s,max}}{P_{0} - 1}\right)e^{-k_{s}t}}$$

where $P_{c,max}$, k_c , $P_{c,min}$, $P_{s,max}$, P_0 , and k_s are empirically derived parameters.

- a) Just based on the forms of the equations, determine which population grows and which population dwindles over time.
- b) Determine the time (in years) and corresponding values of $P_c(t)$ and $P_s(t)$ when the suburbs are 20% larger than the city.
- c) Determine the time (in years) and corresponding values of $P_c(t)$ and $P_s(t)$ when the suburbs are X% larger than the city, where X ranges from 0: 25:100.
- d) Estimate the maximum possible value of X.

For all parts, use the following parameters:

Parameter	Value
$P_{c,max}$	80,000 people
k_c	$0.05 \frac{1}{year}$
$P_{c,min}$	110,000 people
$P_{s,max}$	320,000 people
P_0	10,000 people
k_s	$0.09\frac{1}{year}$