

What is claimed is:

1 1. A method of loading a trustable operating system comprising:
2 identifying a region in a memory of a computer by a one of a plurality of
3 processors;
4 loading a content into the region;
5 registering an identity of the content of the secured region; and
6 causing the one processor to jump to a known entry point in the content.

1 2. The method of claim 1, further comprising:
2 preventing interference with the identifying, loading, and registering by each of a
3 remaining one of the plurality of processors.

1 3. The method of claim 2, wherein preventing interference comprises halting
2 each of the remaining ones of the plurality of processors until the identifying, loading,
3 and registering is complete.

1 4. The method of claim 2, further comprising:
2 causing each of the remaining ones of the plurality of processors to jump to the
3 known entry point in the content.

1 5. The method of claim 1, wherein identifying comprises receiving a region
2 parameter, the region parameter specifying a location of the region.

1 6. The method of claim 5, wherein the location is a range of addresses in the
2 memory of the computer within which the region is located.

1 7. The method of claim 5, wherein the location comprises a start address and
2 a length of the memory of the computer within which the region is located.

1 8. The method of claim 1, wherein registering comprises:
2 recording a hash digest of the content of the secured region; and
3 signing the hash digest, the signed hash digest being stored in a register in the
4 memory of the computer.

1 9. The method of claim 1 wherein the content is a component of an operating
2 system to operate the computer.

1 10. The method of claim 9, wherein the operating system is one of a
2 Windows operating system, a Windows 95 operating system, a Windows 98 operating
3 system, a Windows NT operating system, a Windows 2000 operating system, a virtual
4 machine monitor, and a privileged software nucleus.

1 11. The method of claim 1 wherein identifying, loading and registering are
2 uninterruptible.

1 12. A article of manufacture comprising:
2 a machine-accessible medium including a data that, when accessed by a machine
3 cause the machine to,
4 halt all but one of a plurality of central processing units (CPU) in a computer;
5 identify a region in a memory of the computer;
6 block access to the identified region by all resources except the non-halted CPU;
7 load a content into the identified region;
8 record a cryptographic hash of the content in the identified region; and

9 cause the non-halted CPU to begin executing at a known entry point in the
10 identified region.

1 13. The article of manufacture of claim 12, wherein the data that causes the
2 machine to halt the all but one of a plurality of CPUs comprises data causing the all but
3 one of a plurality of CPUs to enter a halted state.

1 14. The article of manufacture of claim 13, wherein the data further causes the
2 halted CPUs to exit the halted state after the non-halted CPU has begun executing at the
3 known entry point in the identified region

1 15. The article of manufacture of claim 14, wherein the data further causes the
2 previously halted CPUs to begin executing at the known entry point in the identified
3 region upon exiting the halted state.

1 16. The article of manufacture of claim 13, wherein the data that causes the
2 machine to record the cryptographic hash includes data that further causes the machine
3 to,

4 erase a hash digest area in the memory of the computer;
5 record a required platform information in the hash digest area;
6 compute the cryptographic hash of the identified region; and
7 record the computed cryptographic hash in the hash digest area.

1 17. The article of manufacture of claim 16, wherein the hash digest area is a
2 register in the memory of the computer.

1 18. The article of manufacture of claim 13, wherein the data that causes the
2 machine to identify the region in memory of the computer includes data that further
3 causes the machine to receive at least one region parameter containing a location of the
4 identified region.

1 19. The article of manufacture of claim 13, wherein the location includes an
2 address of the identified region.

1 20. The article of manufacture of claim 13, wherein the location includes a
2 length of the identified region.

1 21. A method of securing a region in a memory of a computer comprising:
2 halting all but one of a plurality of central processing units (CPU) in a computer;
3 blocking access to a region in a memory of the computer by all resources except
4 the non-halted CPU;
5 recording a cryptographic hash of the region; and
6 placing the non-halted CPU into a known privileged state.

1 22. The method of claim 21, further comprising causing the non-halted CPU
2 to jump to a known entry point in the region.

1 23. The method of claim 21, wherein halting comprises causing the all but one
2 of a plurality of CPUs to enter a special halted state.

1 24. The method of claim 23, further comprising causing the halted CPUs to
2 exit the special halted state after the non-halted CPU has been placed into the known
3 privileged state.

1 25. The method of claim 24, further comprising causing the previously halted
2 CPUs to begin executing at a known entry point in the region upon exiting the special
3 halted state.

1 26. The method of claim 21, wherein recording the cryptographic hash
2 comprises:

3 erasing a hash digest area in the memory of the computer; and
4 recording a required platform information in the hash digest area;
5 computing the cryptographic hash of the region's contents; and
6 recording the computed cryptographic hash in the hash digest area.

1 27. The method of claim 26, wherein the hash digest area is a register in the
2 memory of the computer.

1 28. The method of claim 26, wherein computing the cryptographic hash of the
2 region's contents is performed by a digest signing engine coupled to the memory of the
3 computer.

1 29. The method of claim 21, wherein the region is specified in at least one
2 region parameter.

1 30. The method of claim 29, wherein the at least one region parameter is an
2 address of the region in the memory of the computer that is to be secured.

1 31. The method of claim 29, wherein the at least one region parameter is a
2 length of the region in the memory of the computer that is to be secured.

1 32. An apparatus to load a trustable operating system comprising:
2 a first processor having a start secure operation (SSO), the SSO having a memory
3 region parameter, wherein the first processor executes the SSO to block access to a
4 region of memory specified in the memory region parameter and to place a content in the
5 specified region;
6 a hash digest, wherein the first processor further executes the SSO to erase a
7 current content of the hash digest and to record in the hash digest a cryptographic hash of
8 the content of the specified region; and
9 wherein the first processor further executes the SSO to unblock access to the
10 specified region and to jump to a known entry point in the content of the specified region.

1 33. The apparatus of claim 32, further comprising:
2 a second processor, the second processor having a join secure operation (JSO),
3 wherein the second processor executes the JSO to prevent the second processor from
4 interfering with the first processor's execution of the SSO.

1 34. The apparatus of claim 33, wherein the second processor commences
2 execution of the JSO when the first processor commences execution of the SSO.

1 35. The apparatus of claim 33, wherein, to prevent the second processor from
2 interfering with the first processor's execution of the SSO, the JSO causes the second
3 processor to enter a halted state until the first processor's execution of the SSO is
4 complete.

1 36. The apparatus of claim 35, wherein the first processor executes the JSO to
2 further cause the second processor to exit the halted state after the first processor's

3 execution of the SSO is complete and to begin executing at the known entry point in the
4 content of the specified region.

1 37. The apparatus of claim 32, further comprising a digest signing engine
2 having a secure channel to access the hash digest, the digest signing engine computing
3 the cryptographic hash of the content in the specified region in response to a request by
4 the first processor executing the SSO.

1 38. The apparatus of claim 32, wherein the hash digest is a register in a
2 memory of the apparatus outside the specified region.

10000000 - DECODE