

<u>TRABAJO DE LABORATORIO № 2 Materiales eléctricos – Ley de Ohm</u>

Nombre: Carrera:

Repaso de conceptos

Un circuito eléctrico básicamente está formado por una fuente de energía (pila, batería, generador), que entrega una **diferencia de potencial** V_{ab} entre sus bornes, y un conductor que une dichos bornes. Al cerrar el circuito, las cargas comienzan a moverse al polo de carga opuesta, provocando una **corriente eléctrica** I.

<u>La diferencia de potencial V_{ab} es la energía entregada(o consumida) a cada carga</u> para que se mueva de un punto a otro del campo eléctrico. Se mide en voltios V.

<u>La intensidad de corriente</u> <u>I es el caudal de cargas</u>, es decir, la cantidad de cargas que atraviesa una sección del conductor en un determinado tiempo. Se mide en amperes A.

La resistencia eléctrica R, es la propiedad de los materiales a oponerse al movimiento de cargas, de modo que al entrar a dicho elemento, las cargas ceden, pierden o gastan parte de la energía que llevaban, produciendo una **caída de potencial.** Se mide en ohms Ω .

El **voltímetro**, con el que medimos la diferencia de potencial, **tensión o voltaje**, se conecta en <u>paralelo</u>, para que compare la energía de las cargas antes y después de entrar en un elemento.

El **amperímetro,** con el que medimos intensidad de corriente, se conecta en <u>serie,</u> abriendo el circuito, e intercalando el medidor, porque debe "contar", la cantidad de cargas que circulan en ese lugar y en ese instante.

CÓDIGO DE COLORES

Es el código con el que se calcula el valor nominal y tolerancia para resistencias fijas de carbón y metálicas de capa fundamentalmente.

Código de colores para tres o cuatro bandas

COLOR	1ª CIFRA	2ª CIFRA	Nº DE CEROS	TOLERANCIA (+/-%)
PLATA	-	-	0,01	10%
ORO	-	-	0,1	5%
NEGRO	-	0	-	-
MARRÓN	1	1	0	1%
ROJO	2	2	00	2%
NARANJA	3	3	000	-

AMARILLO	4	4	0000	-
VERDE	5	5	00000	-
AZUL	6	6	000000	-
VIOLETA	7	7	-	-
GRIS	8	8	-	-
	9	9	-	-

Tolerancia: sin indicación +/- 20%

Objetivos

- Reconocer materiales aislantes y conductores
- Reconocer las distintas magnitudes eléctricas.
- Observar y analizar la ley de Ohm.
- Utilizar correctamente el téster.

Materiales

Elementos de distintos materiales, resistencias, fuente de energía, conectores, téster

Recomendaciones

Escucha atentamente las recomendaciones del profesor, para cuidar los elementos eléctricos. Dibuja los circuitos e indica en el informe todo lo que te llame la atención, o que no sabías.

Parte A. Resistencia eléctrica

1. Completa el cuadro midiendo la resistencia eléctrica de cada elemento con el tester

Elemento	material	Lectura de la resistencia en Ώ	¿Es conductor?
Mina de lápiz	grafito		
Regla de plástico	plástico		
Trozo de madera	madera		
Goma de borrar	goma		
Papa			
Limón			
Cable	cobre		
Varilla de aluminio	aluminio		
Varilla de vidrio	vidrio		

2. Observa la tabla e indica qué materiales son conductores y cuáles aislantes

3. Lee y mide el valor de cada resistencia fija de carbón en ohm.

	-	
Res. Leída en Ω		
Res. Med en Ω		

¿Hay diferencias? ¿Por qué?

Parte B: LEY DE OHM

- 4. Arma un circuito con la fuente y una de las resistencias. Grafica.
- 5. En esas condiciones, lleva la tensión de la fuente a 5 V, y mide el voltaje con un voltímetro conectado a los bornes de la fuente.
- 6. Intercala el amperímetro, en serie, con la resistencia y mide la intensidad de corriente I.
- 7. Realiza lo mismo variando la tensión de la fuente de 5 en 5V, midiendo cada vez la I. Calcular la resistencia del circuito como R = V/I.

		•
V [V]	I [A]	R $[\Omega]$

- 8. Grafica I = f(V), en un par de ejes. La resistencia debería dar constante en todos los casos. ¿Qué representa la resistencia en el gráfico? Observa el gráfico ¿Cómo es la I con respecto a la V?
- 9. Realiza lo mismo, pero cambiando la resistencia, manteniendo constante la tensión. Intercala el amperímetro para medir la I en cada caso. Grafica el circuito

V [V]	I [A]	$R\left[\Omega ight]$

- 10. Realiza el gráfico de I=f(R)
- 11. ¿Cómo son las dos magnitudes R e I? ¿Qué significa?
- 12. Observando el gráfico, ¿qué pasaría con la intensidad si la resistencia tendiera a cero? En la vida diaria, ¿cuándo sucede esto?