5. Para probar este hecho hagamos inducción sobre $\ell(u) - \ell(v)$. Para $w_0 < w_1$ notemos

$$E[w_0, w_1] = \{x \in [w_0, w_1] : \ell(x) \text{ es par}\}\$$

$$O[w_0, w_1] = \{x \in [w_0, w_1] : \ell(x) \text{ es impar}\}\$$

Si $\ell(v) - \ell(u) = 1$, entonces $[u,v] = \{u,v\}$ y ya que $\ell(u) = \ell(v) + 1$, claramente en [u,v] la cantidad de elementos de rango par es igual a la cantidad de elementos de rango impar. Supongamos la afirmación válida cuando $\ell(v) - \ell(u) < k + 1$. Si $\ell(v) - \ell(u) = k + 1$, sea $v = s_1 s_2 \cdots s_n$ una expresión irreducible para v. Existen $1 \le j_1 < j_2 < \cdots < j_m \le n$ t.q $u = s_{j_1} s_{j_2} \cdots s_{j_m}$.

Si $j_1=1$ por hipótesis de inducción en $[s_1u,s_1v]$ hay tantos elementos de rango par como elementos de rango impar. La propiedad de la subpalabra permite afirmar que

$$E[u, v] = s_1 O[s_1 u, s_1 v] \sqcup E[s_1 u, s_1 v]$$

$$O[u, v] = s_1 E[s_1 u, s_1 v] \sqcup O[s_1 u, s_1 v]$$

Es claro que ni la cardinalidad de $O[s_1u,s_1v]$ ni la de $E[s_1u,s_1v]$ se altera por multiplicación a izquierda por s_1 justamente por la propiedad de la subpalabra. Si $j_1>1$ por hipótesis de inducción en $[u,s_1v]$ hay tantos elementos de rango par como elementos de rango impar. La propiedad de la subpalabra permite afirmar que

$$\begin{split} E[u,v] &= s_1 O[u,s_1 v] \sqcup E[u,s_1 v] \\ O[u,v] &= s_1 E[u,s_1 v] \sqcup O[u,s_1 v] \end{split}$$

En cualquier caso |E[u,v]| = |O[u,v]|.