$T_E X$ - $\mathcal{L}AM^{\mathcal{B}}D\lambda$

Introducción

Este paquete permite escribir en el modo de matemáticas de L^ATEX términos bien formados del cálculo lambda sin tipos.

La sintáxis aceptada es:

- § Si x es una secuencia de caracteres sin espacios, entonces x es un término lambda aceptado (átomo).
- § Si x y y son términos lambda, entonces (x y) es un término lambda aceptado (aplicación).
- § Si x es una secuencia de caracteres sin espacios y y es un término lambda aceptado, entonces (x.y) es un término lambda aceptado (abstracción).

Los abusos de notación son:

- § Si x es una aplicación o una abstracción, se pueden ignorar los paréntesis.
- § Si x es una abstracción cuyo cuerpo es otra abstracción, se pueden agrupar los argumentos de ambas abstracciones, e.g (\x.(\y.M)) es equivalente a (\x y.M).
- § Si x es una aplicación anidada con asociación a la izquierda, se pueden escribir los términos en las aplicaciones de manera consecutiva, e.g (((a b)c)d) es equivalente a (a b c d).

Ejemplos

Átomos

```
Escribiendo \label{eq:lc} x se obtiene x.
Escribiendo \label{eq:lc} x se obtiene x.
```

Abstracción lambda

```
Escribiendo \label{eq:lc_xx} se obtiene (\lambda x.x).
Escribiendo \label{eq:lc_xx} se obtiene \lambda x.x.
```

Aplicación lambda

```
Escribiendo \label{eq:lc} x y z se obtiene ((x y) z).
Escribiendo \label{eq:lc} x y z se obtiene x y z.
```

Numerales de Church

```
Escribiendo \label{eq:lcf} \ se obtiene (\lambda f.(\lambda x.(f(f(f(f(x))))))). Escribiendo \label{eq:lc*} f(f(f(f(x)))) \ se obtiene \lambda f(f(f(f(f(x))))).
```

Términos lambda variados

```
Escribiendo \lc{x y z (y x)} se obtiene (((x y) z) (y x)).

Escribiendo \lc*{(((x y) z) (y x))} se obtiene x y z (y x).

Escribiendo \lc*{(\(x . u x y)\) se obtiene (\lambda x. ((u x) y)).

Escribiendo \lc*{(\\x . ((u x) y))} se obtiene (\lambda x. u x y).

Escribiendo \lc*{\(\u . u (\\x . y)\)} se obtiene (\lambda u. (u (\lambda x. y))).

Escribiendo \lc*{(\\u . (u (\\x . y)))} se obtiene (\lambda u. u (\lambda x. y)).

Escribiendo \lc*{(\(\u . u u u)z y)} se obtiene (((\(\lambda u. u (\lambda x. y) u u) z y)).

Escribiendo \lc*{((\(\u . ((v u) u)) z) y)} se obtiene (\(\lambda u. v u u) z y.

Escribiendo \lc*{(((\(\u x)(y z))(\\v . (v y)))} se obtiene (((u x) (y z)) (\lambda v. (v y))).

Escribiendo \lc*{(((\(\u x)(y z))u v w) se obtiene ((((\(\u x (\u x)(x z)(y z)))))u)v)w)} se obtiene (\(\u x y z. x z (y z))u v w).
```

Estilos

Para obtener diferentes estilos de términos, se puede utilizar el comando $\label{lc[x]}$ con argumentos extras: $\label{lc[args]} \{x\}$, donde x es un término lambda como en los anteriores comandos y args son las banderas (o flags) que determinan el formato del término.

Las banderas admitidas son s, v, 1, d y p. Si ejecutas el comando ./texlambda --help obtendrás la siguiente descripción de las banderas:

```
TeX-LaMbDa [ <option> ... ] <str>
where <option> is one of
  -s, --spaced : Spaced terms mode - Introduces spacing
  -v, --bold-variables : Bold variables mode - Make variable names bold
  -l, --bold-lambdas : Bold lambdas mode - Makes lambdas bold
  -d, --bold-dots : Bold dots mode - Makes dots bold
  -p, --bold-parentheses : Bold parentheses mode - Makes parentheses bold
  -e, --explicit : Explicit mode - Removes abuse of notation
  --help, -h : Show this help
  -- : Do not treat any remaining argument as a switch (at this level)
Multiple single-letter switches can be combined after one '-'; for example: '-h-' is the same as '-h --'
```

El modo explícito es controlado por el modificador estrella en el comando 1c, así que no debes utilizar la bandera e.

Ejemplos de modificación de estilos

Por ejemplo, para obtener "negritas" en las lambdas y puntos, se utiliza el comando $\label{eq:ld} \{x\}$, también sirve usar como banderas d1 ya que el orden no importa:

$$((((\boldsymbol{\lambda}x.(\boldsymbol{\lambda}y.(\boldsymbol{\lambda}z.((x\ z)\ (y\ z)))))\ u)\ v)\ w)$$

Si queremos tener únicamente los átomos en "negritas" se escribe $\lower [v] \{x\}$:

$$((((\lambda \boldsymbol{x}.\,(\lambda \boldsymbol{y}.\,(\lambda \boldsymbol{z}.\,((\boldsymbol{x}\;\boldsymbol{z})\;\,(\boldsymbol{y}\;\boldsymbol{z})))))\;\;\boldsymbol{u})\;\;\boldsymbol{v})\;\;\boldsymbol{w})$$

La versión no explícita de este término sería $\label{lc*[v]{x}:}$

$$(\lambda x \ y \ z.x \ z \ (y \ z)) \ u \ v \ w$$

Y si deseamos un término lambda mas espaciado se puede utilizar $\label{eq:continuous} \{x\}$:

$$(\lambda \boldsymbol{x} \boldsymbol{y} \boldsymbol{z} \cdot \boldsymbol{x} \boldsymbol{z} (\boldsymbol{y} \boldsymbol{z})) \boldsymbol{u} \boldsymbol{v} \boldsymbol{w}$$

Si queremos tener todo en "negritas" excepto las variables, utilizamos \lc[pdl]{x}:

$$((((\lambda x.(\lambda y.(\lambda z.((x z) (y z))))) u) v) w)$$

 $Y con \c *[pdl]{x}:$

$$(\lambda x \ y \ z \cdot x \ z \ (y \ z)) \ u \ v \ w$$

Es posible asignar las banderas por defecto utilizando el comando \lcflags{args}, de tal manera que si se asignan banderas utilizando este comando, todos los términos lambda escritos con \lc o \lc* sin argumentos extra, utilizarán estas banderas. Por ejemplo al escribir \lcflags{pld}:

- § Escribiendo $\label{eq:lcf} \$ se obtiene $(\lambda f.(\lambda x.(f(f(f(x)))))))$
- § Escribiendo $\label{eq:lc*} \$ Escribiendo $\$ x.f(f(f(f(x)))) se obtiene $\lambda f x.f (f(f(f(x))))$

Con este comando se pueden redefinir las banderas y escribiendo \lcflags{} se eliminan, regresando a los valores por defecto originales.

Por el momento es lo único que puede estilizar el programa texlambda, sin embargo estoy trabajando en poder realizar con comandos de latex y de manera declarativa β -reducción y α -conversión.

Operaciones y equivalencias

El paquete $T_EX-\mathcal{LM}^3\mathcal{D}_{\lambda}$ también tiene algunos comandos para escribir operaciones y equivalencias utilizadas frecuentemente en la literatura. Por el momento son:

- $\S \ \backslash \mathtt{betaredu} \to \beta\text{-reducci\'on}.$
- $\S \ \text{synteq} \Rightarrow \equiv.$
- $\S \$ termlen{\lc{\x.x}}\$ $\to \|(\lambda x.x)\|.$

Hacen falta muchas para completar las que utilizaré en mi tesis de licenciatura, sin embargo, aún no establezco una notación fija para las operaciones.