Bounds on Reliable Boolean Function Computation with Noisy Gates

- R. L. Dobrushin & S. I. Ortyukov, 1977
- N. Pippenger, 1985
- P. Gács & A. Gál, 1994

Presenter: Da Wang 6.454 Graduate Seminar in Area I EECS, MIT

Oct. 5, 2011

Question

Given a network of noisy logic gates, what is the redundancy required if we want to compute the a Boolean function reliably?

- **noisy:** gates produce the wrong output independently with error probability no more than ε .
- reliably: the value computed by the entire circuit is correct with probability at least $1-\delta$
- redundancy:

minimum #gates needed for reliable computation in noisy circuit minimum #gates needed for reliable computation in noiseless circuit

- noisy/noiseless complexity
- may depend on the function of interest
- upper bound: achievability
- lower bound: converse

Part I

Lower Bounds for the Complexity of Reliable Boolean Circuits with Noisy Gates

History of development

- [Dobrushin & Ortyukov 1977]
 - Contains all the key ideas
 - Proofs for a few lemmas are incorrect
- [Pippenger & Stamoulis & Tsitsiklis 1990]
 - Pointed out the errors in [DO1977]
 - Provide proofs for the case of computing the parity function
- [Gács & Gál 1994]
 - Follow the ideas in [DO1977] and provide correct proofs
 - Also prove some stronger results

In this talk

We will mainly follow the presentation in [Gács & Gál 1994].

Problem formulation System Model

Boolean circuit C

- a directed acyclic graph
- node ~ gate
- lacksquare edge \sim in/out of a gate

Gate g

- **a** function $g: \{0,1\}^{n_g} \to \{0,1\}$
 - $ightharpoonup n_g$: fan-in of the gate

Basis Φ

- a set of possible gate functions
- \blacksquare e.g., $\Phi = \{AND, OR, XOR\}$
- complete basis
- for circuit C: Φ_C
- maximum fan-in in C: $n(\Phi_C)$

Assumptions

- each gate g has constant number of fan-ins n_g .
- f can be represented by compositions of gate functions in Φ_C .

Problem formulation Error models (ε, p)

Gate error

- A gate fails if its output value for $\mathbf{z} \in \{0,1\}^{n_g}$ is different from $g(\mathbf{z})$
- gates fail independently with
 - fixed probability ε
 - used for lower bound proof
 - probability at most ε
- $\varepsilon \in (0, 1/2)$

Circuit error

- $C(\mathbf{x})$: random variable for output of circuit C on input \mathbf{x} .
- A circuit computes f with error probability at most p if

$$\mathbb{P}\left[C(\mathbf{x}) \neq f(\mathbf{x})\right] \leq p$$

for any input x.

Problem formulation Sensitivity of a Boolean function

Let $f: \{0,1\}^n \to \{0,1\}$ be a Boolean function with binary input vector $\mathbf{x} = (x_1, x_2, \dots, x_n)$.

Let x^l be a binary vector that differs from x only in the l-th bit, i.e.,

$$\mathbf{x}_i^l = \begin{cases} x_i & i \neq l \\ \neg x_i & i = l \end{cases}.$$

- \blacksquare f is sensitive to the lth bit on \mathbf{x} if $f(\mathbf{x}^l) \neq f(\mathbf{x})$.
- Sensitivity of f on x: #bits in x that f is sensitive to.
 - "effective" input size
- Sensitivity of f: maximum over all x.

Asymptotic notations

$$\limsup_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| < \infty,$$

$$f(n) = \Omega(g(n))$$
:

$$\liminf_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| \ge 1,$$

$$f(n) = \Theta(g(n)):$$

$$\begin{split} f(n) &= O\left(g(n)\right) \\ \text{and} \\ f(n) &= \Omega\left(g(n)\right) \end{split}$$

Main results

Theorem: number of gates for reliable computation

- Let ε and p be any constants such that $\varepsilon \in (0, 1/2), p \in (0, 1/2)$.
- ▶ Let *f* be any Boolean function with sensitivity *s*.

Under the error model (ε, p) , the number of gates of the circuit is $\Omega\left(s\log s\right)$.

Corollary: redundancy of noisy computation

For any Boolean function of n variables and with O(n) noiseless complexity and $\Omega(n)$ sensitivity, the redundancy of noisy computation is $\Omega(\log n)$.

- e.g., nonconstant symmetric function of n variables has redundancy $\Omega\left(\log n\right)$

Equivalence result for wire failures

Lemma 3.1 in Dobrushin&Ortyukov

- Let $\varepsilon \in (0, 1/2)$ and $\delta \in [0, \varepsilon/n(\Phi_C)]$.
- Let y and t be the vector that a gate receives when the wire fail and does not fail respectively.

For any gate g in the circuit C there exists unique values $\eta_g(\mathbf{y},\delta)$ such that if

- the wires of C fails independently with error probability δ , and
- ▶ the gate g fails with probability $\eta_g(\mathbf{y}, \delta)$ when receiving input \mathbf{y} , then the probability that the output of g is different from $g(\mathbf{t})$ is equal to ε .

Insights

- Independent gate failures can be "simulated" by independently wire failures and corresponding gate failures.
- These two failure modes are equivalent in the sense that the circuit C computes f with the same error probability.

"Noisy-wires" version of the main result

Theorem

- Let ε and p be any constants such that $\varepsilon \in (0, 1/2), p \in (0, 1/2)$.
- ▶ Let *f* be any Boolean function with sensitivity *s*.

Let C be a circuit such that

- \blacktriangleright its wires fail independently with fixed probability δ , and
- each gate fails independently with probability $\eta_q(\mathbf{y}, \delta)$ when receiving \mathbf{y} .

Suppose C computes f with error probability at most p. Then the number of gates of the circuit is $\Omega\left(s\log s\right)$.

Error analysis

Function and circuit inputs

Maximal sensitive set S for f

- \blacksquare s > 0: sensitivity of f
- \mathbf{z} : an input vector with s bits that f is sensitive to
 - ▶ an input vector where f has maximum sensitivity
- S: the set of sensitive bits in z
 - key object

B_l : edges originated from l-th input

- $m_l \triangleq |B_l|$
- e.g.
 - l = 3
 - \triangleright B_1
 - $m_l = 3$

Error analysis Wire failures

- For $\beta \subset B_l$, let $H(\beta)$ be the event that for wires in B_l , only those in β fail.
- Let

$$\beta_l \triangleq \underset{\beta \subset B_l}{\operatorname{arg\,max}} \mathbb{P}\left[C(\mathbf{z}^l) = f(\mathbf{z}^l) \mid H(\beta)\right]$$

- ightharpoonup the best failing set for input \mathbf{z}^l
- Let $H_l \triangleq H(B_l \setminus \beta_l)$

input
$$l \stackrel{w_1}{\longleftarrow} w_2$$
 w_3

- $B_l = \{w_1, w_2, w_3\}$
- $\beta = \{w_2\}$

Fact 1

$$\mathbb{P}\left[C(\mathbf{z}) \neq f(\mathbf{z}) \mid H_l\right] = \mathbb{P}\left[C(\mathbf{z}^l) = f(\mathbf{z}^l) \mid H(\beta_l)\right]$$

- Proof
 - f is sensitive to z_l
 - $ightharpoonup \neg z_l \Leftrightarrow$ "flip" all wires in B_l
- lacksquare eta_l is the worst non-failing set for input ${f z}$

Error analysis Error probability given wire failures

Fact 2

$$\mathbb{P}\left[C(\mathbf{z}^l) = f(\mathbf{z}^l) \mid H(\beta_l)\right] \ge 1 - p$$

- Proof
 - $\mathbb{P}\left[C(\mathbf{z}^l) = f(\mathbf{z}^l)\right] \ge 1 p$
 - $\blacktriangleright \ \beta_l \ \text{maximizes} \ \mathbb{P}\left[C(\mathbf{z}^l) = f(\mathbf{z}^l) \ \middle| \ H(\beta)\right]$

Fact 1 & 2 \Rightarrow Fact 3

For each $l \in S$,

$$\mathbb{P}\left[C(\mathbf{z}) \neq f(\mathbf{z}) \mid H_l\right] \ge 1 - p$$

where $\{H_l, l \in S\}$ are independent events. Furthermore, Lemma 4.3 in [Gács&Gál 1994] shows

$$\mathbb{P}\left[C(\mathbf{z}) \neq f(\mathbf{z}) \middle| \bigcup_{l \in S} H_l\right] \ge (1 - \sqrt{p})^2$$

■ The error probability given H_l or $\bigcup_{l \in S} H_l$ is relatively large.

Error analysis

Bounds on wire failure probabilities

Note

$$p \ge \mathbb{P}\left[C(\mathbf{z}) \ne f(\mathbf{z})
ight] \ \ge \mathbb{P}\left[C(\mathbf{z}) \ne f(\mathbf{z}) \left| igcup_{l \in S} H_l
ight] \mathbb{P}\left[igcup_{l \in S} H_l
ight]$$

Fact 3 implies

Fact 4

$$\mathbb{P}\left|\bigcup_{l\in S} H_l\right| \le \frac{p}{(1-\sqrt{p})^2}$$

which implies (via Lemma 4.1 in [Gács&Gál 1994]),

Fact 5

$$\mathbb{P}\left[\bigcup_{l \in S} H_l\right] \ge \left(1 - \frac{p}{(1 - \sqrt{p})^2}\right) \sum_{l \in S} \mathbb{P}\left[H_l\right]$$

Error analysis

Bounds on the total number of sensitive wires

Fact 6

$$\mathbb{P}\left[H_l\right] = (1 - \delta)^{|\beta_l|} \delta^{m_l - |\beta_l|} \ge \delta^{m_l}$$

Fact 4 & 5 ⇒

$$\frac{p}{1 - 2\sqrt{p}} \ge \sum_{l \in S} \delta^{m_l}$$

$$\ge s \left(\prod_{l \in S} \delta^{m_l} \right)^{1/s}$$

which leads to

$$\sum_{l \in S} m_l \ge \frac{s}{\log(1/\delta)} \log \left(s \frac{1 - 2\sqrt{p}}{p} \right)$$

lower bound on the total number of "sensitive wires"

Lower bound on number of gates

Let N_C be the total number of gates in C:

$$n(\Phi_C)N_C \ge \sum_g n_g$$

$$\ge \sum_{l \in S} m_l$$

$$\ge \frac{s}{\log(1/\delta)} \log \left(s \frac{1 - 2\sqrt{p}}{p} \right)$$

Comments:

- The above proof is for $p \in (0, 1/4)$
- The case $p \in (1/4, 1/2)$ can be shown similarly.

Block Sensitivity

Let x^S be a binary vector that differs from x in the S subset of indices, i.e.,

$$\mathbf{x}_i^S = \begin{cases} x_i & i \notin S \\ \neg x_i & i \in S \end{cases}.$$

- f is (block) sensitive to S on \mathbf{x} if $f(\mathbf{x}^S) \neq f(\mathbf{x})$.
- Block sensitivity of f on x: the largest number b such that
 - ▶ there exists b disjoint sets S_1, S_2, \cdots, S_b
 - for all 1 < i < b, f is sensitive to S_i on \mathbf{x}
- Block sensitivity of *f*: maximum over all x.
 - ▶ block sensitivity ≥ sensitivity

Theorem based on block sensitivity

- Let ε and p be any constants such that $\varepsilon \in (0, 1/2), p \in (0, 1/2)$.
- ▶ Let *f* be any Boolean function with block sensitivity *b*.

Under the error model (ε, p) , the number of gates of the circuit is $\Omega(b \log b)$.

Discussions Lower bound for specific functions

Given an explicit function f of n variables, is there a lower bound that is stronger than $\Omega(n \log n)$?

Open problem for

- unrestricted circuit C with complete basis
- function f that have $\Omega\left(n\log n\right)$ noiseless complexity for circuit C with some incomplete basis Φ

Discussions

Computation model

Exponential blowup

A noisy circuit with multiple levels

- The output of gates at level l goes to a gate at level l+1
- Level 0 has n inputs
 - Level 0 has $N_0 = n \log n$ output gates
 - Level 1 has N₀ inputs
 - Level 1 has $N_1 = N_0 \log N_0$ output gates, ...

Why?

"The theorem is generally applicable only to the very first step of such a fault tolerant computation"

- If the input is not the original ones, we can choose them to make the sensitivity of a Boolean function to be 0.
 - $f(x_1, x_2, x_3, x_4, x_1 \oplus x_2 \oplus x_4, x_1 \oplus x_3 \oplus x_4, x_2 \oplus x_3 \oplus x_4)$
 - Lower bound does not apply: sensitivity is 0. How about block sensitivity?
- Problem formulation issue on the lower bound for coded input
 - coding is also computation!

Part II

Upper Bounds for the Complexity of Reliable Boolean Circuits with Noisy Gates

[Pippenger, "On Networks of Noisy Gates", 1985]

Overview

Achievability schemes in reliable computation with a network of noisy gates.

- 1. System modeling
 - various types of computations
- 2. Change of basis and error levels
 - will skip
- Functions with logarithmic redundancy
 - with explicit construction
 - for specific system parameters only
- 4. Functions with bounded redundancy
 - Presents a class of functions with "bounded redundancy"
 - Construction for reliable computation

System model: a revisit Weak vs. strong computation

perturbation and approximation

Let $f, g : \{0, 1\}^k \Rightarrow \{0, 1\},\$

- lacksquare g is a arepsilon-perturbation of f if $\mathbb{P}\left[g(\mathbf{x})=f(\mathbf{x})
 ight]=1-arepsilon$ for any $\mathbf{x}\in\{0,1\}^k$
- lacksquare g is a arepsilon-approximation of f if $\mathbb{P}\left[g(\mathbf{x})=f(\mathbf{x})
 ight]\geq 1-arepsilon$ for any $\mathbf{x}\in\{0,1\}^k$

weakly (ε, δ) -computes

- **gates**: ε -perturbation
- output: δ -approximation

strongly (ε, δ) -computes

- **gates:** ε -approximation
- \blacksquare output: δ -approximation

Why bother?

ullet ε -perturbation may be helpful in randomized algorithms.

Functions with logarithmic redundancy Main theorem

Theorem 3.1

If a Boolean function is computed by a noiseless network of size c, then it is also computed by a noisy network of size $O(c\log c)$.

Comments

- Provides explicit construction for some ε and δ values.
 - ε = 1/512
 - $\delta = 1/128$

Functions with logarithmic redundancy Construction

Strategy

Given a noiseless network with 2-input gates, construct a corresponding noisy network with 3-input gates.

Transformations

 $\begin{array}{lll} \text{noiseless} & \text{noisy} \\ \text{each wire} & \rightarrow & \text{cable of } m \text{ wires} \\ \text{gate} & \rightarrow & \text{module of } O(m) \\ & & \text{noisy gates} \end{array}$

Additions

- coda: computes the majority of m wires with at most some error probability
 - ► Corollary 2.6: exists coda with size $O(c \log c)$

- $\bullet \ \, \mathsf{Choose} \,\, m = O(\log c)$
- **a** cable is correct if at least $(1 \theta)m$ component wires are correct

Overview

Module requirement

If the input cables are "correct", then the output cable will be correct except for some small error probability.

Idea:

- Use "modular redundancy" and majority voting
- Binomial $(1, 1 \varepsilon)$ vs. $\frac{1}{m}$ Binomial $(m, 1 \varepsilon)$

Module construction

Executive organ

 Construction: m noisy gates that compute the same function as the corresponding gate in noiseless network

Restoring organ

- Construction: a (m, k, α, β) -compressor
 - if at most αm inputs are incorrect, then at most βm outputs will be incorrect.
- $k = 8^{17}, \ \alpha = 1/64, \ \beta = 1/512$

Then

Choose system parameters properly, such that the resulting circuit has logarithmic redundancy.

Functions with bounded redundancy Main results

Functions with bounded redundancy

For $r \ge 1$, let $s = 2^r$. Let

$$g_r(x_0,\ldots,x_{r-1},y_0,\ldots,y_{s-1})=y_t$$

where $t = \sum_{i=0}^{r-1} 2^i x_i$ i.e., t has binary representation $x_{r-1} \cdots x_1 x_0$.

Theorem 4.1

For every r and $s=2^r,\ g_r$ can be computed by a network of O(s) noisy gates.

Comments

- \blacksquare g_r : "indicator function"
- Any noiseless networks that computes g_r has $\Omega\left(2^r\right)$ gates.
 - bounded redundancy
- Proof
 - ▶ Construct a network that strongly $(\varepsilon = 1/192, \delta = 1/24)$ -computes g_r .

Construction

 g_1

$$g_1(x_0, y_0, y_1) = \begin{cases} y_0 & x_0 = 0 \\ y_1 & x_1 = 1 \end{cases}$$

 g_r

$$g_2(x_0, x_1, y_0, y_1, y_2, y_3) = \begin{cases} y_0 & x_1 x_0 = 00 \\ y_1 & x_1 x_0 = 01 \\ y_2 & x_1 x_0 = 10 \\ y_3 & x_1 x_0 = 11 \end{cases}$$

. .

- \blacksquare g_r can be implemented by a binary tree with 2^r-1 elements of g_1 .
 - ▶ level r-2: root
 - level 0: leaves
 - $\triangleright y_t$: corresponds to a path from level 0 to r-2

Construction (cont.)

- Each path only contains one gate at each level
- If each gate at level $k, 0 \le k \le r 2$ fails with probability $\Theta\left((a\varepsilon)^k\right)$, then the failure probability for a path is $\Theta\left(\varepsilon\right)$.

Construction: replace wires by cables, gates by modules

- \blacksquare cable at level k
 - ▶ input: 2k 1 wires
 - output: 2k + 1 wires
- module at level k
 - ▶ 2k + 1 disjoint networks
 - lacktriangle each compute the (2k-1)-argument majority of the input wires
 - then apply g_1
 - ▶ noiseless complexity: O(k) ⇒ noisy complexity: $O(k \log k)$
 - $O(k^2 \log k)$ noisy gates at level k
 - lacktriangle error probability for each noisy network: 2arepsilon
 - \blacksquare error probability for module: $4\varepsilon(8\varepsilon)^k = \Theta\left((8\varepsilon)^k\right)$
- use coda at the root output for majority vote
- total #gate: $O(s) = O(2^r)$

Networks with more than one input

A network with outputs w_1, w_2, \ldots, w_m strongly (ε, δ) -computes f_1, f_2, \ldots, f_m if, for every $1 \leq j \leq m$, the network obtained by ignoring all but the output w_j strongly (ε, δ) -computes f_j .

Theorem 4.2

For every $a \ge 1$ and $b = 2^{2^a}$, let $h_{a,0}(z_0, \cdots, z_{a-1}), \cdots, h_{a,b-1}(z_0, \cdots, z_{a-1})$ denote the b Boolean functions of a Boolean argument.

Then $h_{a,0}(z_0,\cdots,z_{a-1}),\cdots,h_{a,b-1}(z_0,\cdots,z_{a-1})$ can be strongly computed by a network of O(b) noisy gates.

Proof: similar to Theorem 4.1

Boolean function with n Boolean arguments

Theorem 4.3

Any Boolean function of n Boolean arguments can be computed by a network of $O\left(2^n/n\right)$ noisy gates.

Proof

- Let $a = \lfloor \log_2(n \log_2 n) \rfloor$, $b = 2^{2^a} = 2^n/n$, r = n a and $s = 2^r = 2^n/n$.
- Theorem 4.2: M strongly computes $h_{a,0}(z_0, \cdots, z_{a-1})$, \cdots , $h_{a,b-1}(z_0, \cdots, z_{a-1})$
 - $ightharpoonup O(b) = O(2^n/n)$ gates
- Theorem 4.1: N strongly computes

$$g_r(x_0, \dots, x_{r-1}, y_0, \dots, y_{s-1})$$
 $O(s) = O(2^n/n)$ gates

M and N: strongly computes any Boolean function with n Boolean arguments $x_0, x_1, \dots, x_{r-1}, z_0, z_1, \dots, z_{a-1}$.

Bounded redundancy for Boolean functions

Implication of Theorem 4.3

- Muller, "Complexity in Electronic Switching Circuits", 1956]: "Almost all" Boolean functions of n Boolean arguments are computed only by noiseless networks with $\Omega(2^n/n)$ gates
- "Almost all" Boolean functions have bounded redundancy.

Set of Boolean linear functions

- A set of m Boolean functions $f_1(x_1, \dots, x_n), \dots, f_m(x_1, \dots, x_n)$ is linear if each of the functions is the sum (modulo 2) of some subset of the n Boolean arguments x_1, \dots, x_n .
- "Almost all" sets of n linear functions of n Boolean arguments have bounded redundancy.
 - Similar approach
 - ► Theorem 4.4

Further readings...

- N. Pippenger, "Reliable computation by formulas in the presence of noise", 1988
- T. Feder, "Reliable computation by networks in the presence of noise", 1989