Final Project Data Scientists Recruiting Optimization

Team 7 - Five Guys

Will Jiang, Maggie Meng, Paakhi Srivastava, Yulin Gai, Joe Ebby Karuthedath

Review Key Points of Classification

- Definition of Classification Task
- A supervised learning technique to predict whether an individual belongs to a certain categorical class

- Examples of Classification Algorithms
- Decision Tree
- K-Nearest Neighbors (KNN)
 - Logistic Regression

Review of the Data Mining Process: CRISP

1.Business Understanding

Business Understanding

- US companies spent more than **\$70 billion** on training employees last year
- People with good technical skills are **hard to find** and harder to retain
- Our company is training people to fill up their Data Science Job vacancies
- But not all people who enroll in the training are really looking for a job change!
- This leads to a **loss of** the companies valuable **resources**

Business Understanding: Predict "Who takes up the new JOB?"

- Predicting who takes up the new job with our company to fill up the data science vacancies can lead to significant savings for the company.
- OBJECTIVE: Create a classification model to predict if a person is a potential employee or not.
 - This can help the company to target potential candidates to train
 - This targeted approach means that more of the trainees fill up the vacancies.

2.Data Understanding

Data Understanding: Dataset

- HR Analytics: Job Change of Data Scientists
 - Characteristics of Data Scientists who received training for a job change
 - 19158 Observations
 - 13 Features
 - Mostly categorical: gender, relevant experience, enrolled in university, education level, major discipline, company size and type, etc.
 - Some Numerical: training hours, last new job, city development index

Data Understanding: Exploratory Data Analysis

- Complete EDA on the dataset
 - Summary statistics
 - Missing values
 - Bar Charts for categorical variables
 - Examination of correlation

Exploratory Data Analysis

3.Data Preparation

Data Preparation: Missing Value

- Drop the missing value in "University", "Education Level", "Major Discipline", "Experience" and "Last Job".
- Replace missing value in "Gender" with "Other".
- Replace missing value in "Company Size" and "Type" with mode of those attributes.

Data Preparation: Feature Engineering and Selection

 Less than 5 years, 10 to 14 years, 15 to 19 years, more than 20 years working experience

- Finally, our features include:
 - Numeric: CityDevelopmentIndex, TrainingHour (2)
 - Categorical: Gender,
 RelevantExperience, University,
 Major, CompanySize,
 CompanyType, LastJobs,
 WorkExperience (8)

Data Preparation: Data Balancing

Undersampling

- Randomly sample majority instances and repeat until the dataset contains an equal number of each class
- Final dataset includes more than 8,000 data points, with equal size of both targets

4. Modeling

Modeling

- Try out three different models to determine the best performance one:
 - O Logistic Regression, KNN, Decision Tree
- Utilize a grid search for hyperparameter tuning
- Use nested cross-validation to evaluate generalization performance
 - 5 folds in the inner and outer loops
 - Accuracy scoring metric
- Conduct additional data preparation for the KNN and Logistic Regression model:
 - Use pipeline
 - Standardize numeric features by using training data

Model Comparison

	Decision Tree	Logistic Regression	KNN
pros	- Easy to implement - Computational cheap - Model comprehensibility	- Maximum control - Fast scoring - Robustness	 - "Lazy" model - Easy to implement and use - Robustness - No statistical / distribution assumption required
cons	Tend to overfitting	Not flexible for larger training set	 Take more time to perform estimation Requires a lot of storage Lack of interpretable model Curse of dimensionality

Model Results

	Decision Tree	Logistic Regression	KNN
Hyperparameter Grid Search	criterion: gini, max_depth: 6, min_samples_leaf: 7	C: 0.01, penalty: L2	n_neighbors: 27, weights: uniform
Non-nested CV accuracy	0.744	0.705	0.681

5. Evaluation

Result Evaluation

Model Classifier Type	Accuracy	AUC
K-Nearest Neighbor	0.681	0.73
Logistic Regression	0.705	0.76
Decision Tree 🛨	0.744	0.78

- Decision Tree model has the highest accuracy score and AUC estimator →
 Decision Tree is the best performing model
- The higher the AUC, the better the model is at distinguishing whether the employee will leave after the training session
- Since we have plenty of dummy variables in our data set, and decision trees can effectively handle non-linear data sets, our data mining result is logically feasible

ROI

Cost/Benefit Information

Sources: https://elmlearning.com/how-much-does-employee-training-really-cost/https://smallbusinessmattersonline.com/revenue-per-employee-calculation/

- We can use our Decision Tree expected rates matrix and cost/benefit matrix to calculate our expected value.
- We estimate the cost/benefit information from online sources. (Average revenue per employee = \$200k)
- After multiplying two matrices and summing up all the elements, we can get our expected profit, which is around \$151k.

Deployment

- The predictive model will determine if the candidate will take up the new job with the company to fill up the data science roll or not
- Ethical Considerations- Gender Bias! The data has a bias towards the male candidates, which is reflected in the model. This should be taken into consideration by the HR manager while hiring.
- Risks:
 - It is possible that the model can miss impressive candidates
- The company can use this model to
 - Target potential candidates to train
 - Save significant money spent on training
 - Filter the incoming applications
 - Use the model as a reference, to build more models to fill other positions

Prediction: Will Jarvis leave?

Jarvis

MSBA candidate

Gender: Male

Education_level: Masters

Major_discipline: STEM

City_development_index: 0.9

Relevent_experience: 0

Experience: 0

Last_new_job: 0

Company_size: No

Company_type: No

Training_hours: 65(avg)

Thank You! Questions?

EDA

	df.isna().sum()		
	city_development_index gender	0 4508	
	relevent_experience	9	
	enrolled_university education level	386 460	
	major_discipline	2813	
	experience company size	65 5938	
	company_type	6140	
	last_new_job training_hours	423 0	
	target	0	
	dtype: int64		

EDA Continued

• • • • • • •