

प्लाज्ञमा अनुसंधान संस्थान Institute for **Plasma Research**

High Performance Computing at **IPR**

13th April 2021

Parallel Computing Workshop at IPR (Online), 13th – 15th April 2021

1 PETA FLOPs HPC System @ IPR

- Institute for Plasma Research, Gandhinagar has ANTYA a 1 PETA FLOPs HPC system with more than 10000 cores.
- ➤ ANTYA is being extensively used by the academic, scientific, and engineering community of the Institute, by exploiting the power of parallel computing for solving their complex tasks.
- ➤ This system can perform 10¹⁵ **FL**oating-point **O**perations **P**er second. In Sanskrit, ANTYA implies 10¹⁵!

System Overview

System Includes

- Login Nodes 02
- CPU Nodes 236
 (40 Cores/Node)
- GPU Nodes 22
 (2XP100 Cards/Node)
- Fat Nodes 02 (80 cores, 1TB RAM/Node)
- Viz. Node 01
- Storage 2 PetaByte (PB)

Performance

- Rpeak per node ~3.072 TF
- Cluster Rpeak ~ 1 PF
- Cluster Rmax ~ 620 TF

Software

- Red Hat (RHEL) 7.5
- Scheduler PBSPro

Login Nodes

- You should be connected to IPR network for accessing ANTYA.
- Login1 and Login2 are configured in round robin for balancing the load of the users.
- Please read the MOTD/flash screen just after the login for basic details about job submission.
- PBS Scheduler is used for job scheduling and monitoring
- Interactive as well as batch jobs can be submitted.

Applications/Libraries/Compilers

ANTYA has 53 libraries and more than 20 different codes installed - several of them indigenously developed or opensource as well as commercial licensed software which are being used for a variety of numerical simulations covering Computational Fluid Dynamics (CFD), Partile-In-Cell (PIC), Molecular Dynamics (MD), MHD, AI etc.

List of major codes being used in ANTYA

Open Source Codes	In-House Developed /Collaboration Codes*	Commercially Licensed Software for Engineering applications
 LAMMPS Multiscale modelling of radiation damage Dusty plasma simulations. PLUTO Recurrent and Non-Recurrent Flow Simulation Astrophysical Dynamo simulation MHD and strongly coupled plasma simulations Studying plasma behaviour on accretion regimes. OpenFOAM Deflagration to Detonation (DDT) Studies Flooding simulations etc. Bout++ ITG instability simulations in a tokamak Magnetic reconnection study in slab geometry Edge and SOL region simulation in tokamak etc. Al/ML/DL packages Darknet yellow for real-time object detection, tensorflow and horowod usage for Al distributed training and development of intrusion detection software 	 GMHD3D (CPU and GPU versions, 3D) Evolution of initial unstable magnetic and vorticity fields for Dynamo Problem, Self-consistent dynamo etc. Study of Alfven wave in the 3D MHD plasma EPPIC (Expanding Plasma PIC, CPU and GPU version) Study the physics of plasma in an expanding magnetic field PEC2PIC (2-D Parallelized Electrostatic Cartesian PIC) Evolution of a pure electron plasma cloud in smartx MPMD 2-D and 3-D (Upgraded Multi-GPU version) Large Scale MD Simulation 3D - MD Code Molecular Dynamics Simulations of Nano-Clusters GTS* (Gyrokinetic Tokamak Simulation) Study of turbulence transport in tokamak Osiris4.0* (3-D, relativistic, object-oriented PIC code) Laser plasma interaction simulations Metis* Discharge scenario studies in a tokamak 	ANSYS Design of mechanical systems (ITER port, blanket module & pebble bed design Thermo structural analysis of pyrolysis system

Applications/Libraries/Compilers

Serial Compilation for Single Core Codes

Language	GNU Compilers	Intel Compilers	PG Compilers
С	gcc	icc	pgcc
C++	g++	ісрс	pgc++
Fortran	gfortran	ifort	pgfortran, pg77, pg90

Parallel Compilation for MPI Codes

Language	GNU Compilers (openmpi, mpich)	Intel Compilers
С	mpicc	mpicc/mpiicc
C++	mpicxx/mpic++/mpiCC	mpiicpc/mpicxx
Fortran	mpif77/mpif90/mpifort	mpif77/mpif90/mpiifort

Availing the Various Software Using the Environment Modules on ANTYA

- Show the available software
- \$ module avail
- Show the available versions of a software
- \$ module avail python
- Show the available versions of a software
- \$ module load python385
- Load the specific versions of a software from the available list
- \$ module switch python385 python371
- Switch to other version of a software
- \$ module show python371

ANTYAQueuing Policy

Queue Name	Max Nodes (cores)	Max. Walltime	Max. Cores/job	Min. Cores/job	Max. R jobs/User	Max Q jobs/User	Max Q jobs/Queue	Relative Priority	Node Sharing	Node Binding	Remarks
debugq	3 (120)	30 min	No limit	No limit	2	1	5	Highest (First)	Yes	No	For the debugging of User- developed codes/applications.
regularq (~18%)	47 (1880)	96 hours	80	8	4	2	30	Second	No	No	Max. 160 cores or 4 running jobs per User at a time are allowed. Further, a User can submit 2 more jobs in the queue. 80 cores for jobs submitted on High Memory Nodes.
mediumq (60%)	156 (6240)	48 hours	1600	80	3	1	20	Third	No	No	Max. 1600 cores or 3 running jobs per User at a time are allowed. Further, a User can submit 1 more job in the queue.
longq (20%)	52 (2080)	120 hours	600	80	2	1	10	Lowest	No	No	Max. 600 cores or 2 running jobs per User at a time are allowed. Further, a User can submit 1 more job in the queue.
serialq (~2%)	5 (200)	15 days	10	1	20	4	20	Lowest	Yes	No	This queue is dedicated for serial code users.