

Basic data processing of Python

Python基本数据统计

Dazhuang@NJU

Department of Computer Science and Technology

Department of University Basic Computer Teaching

简单数据处理过程

用Python玩转数据

便捷数据获取

用Python获取数据

4644770731904, 74.310000000000002 73. 4800000000000004 74. 0300000000000001 8826526732078, 72. 180000000000000 73. 329999999999998 16715568630494. 73. 01999999999999 0972185178131, 41304763726797, 72. 650000000000000 07416879795403, 73. 590000000000000 73. 40999999999999 00662553393451 73. 200000000000000 88453325720809, 72. 0100000000000005 53881594102742, 6216316415944, 73. 1500000000000006 72. 93999999999998. 9679960043056, 73. 069999999999993 209440323669, 73. 15999999999999 1191323243768, 68188049076034, 74.21999999999999 73.769999999999996 72.879999999999995 9342196994229. 73. 0100000000000005 3733104525377, 72. 3700000000000005 6926763545372, 4417669902929,

本地数据如何获取?

文件的打开,读写和关闭

- 文件打开
- 读文件写文件
- 文件关闭

用Python获取数据

网络数据如何获取 (爬取)?

抓取网页,解析网页内容

- 抓取
 - urllib内建模块
 - urllib.request
 - · Requests第三方库
 - Scrapy框架
- 解析
 - BeautifulSoup库
 - re模块

道指成分股数据

dji quotes

数据形式

0		1	2
0	MMM	3M	195.8
1	AXP	American Express	76.8
2	AAPL	Apple	153.06
3	BA	Boeing	180.76
4	CAT	Caterpillar	102.43
5	CVX	Chevron	106. 52
6	CSC0	Cisco	31. 21
7	KO	Coca-Cola	43.9
8	DIS	Disney	107. 52
9	DD	E I du Pont de Nemours	77.82
10	XOM	Exxon Mobil	81. 93
11	GE	General Electric	28.05
12	GS	Goldman Sachs	215.39
13	HD	Home Depot	156.3
14	IBM	IBM	151.98
15	INTC	Intel	35. 4
16	JNJ	Johnson & Johnson	127
17	JPM	JPMorgan Chase	84. 78
18	MCD	McDonald's	148. 15
19	MRK	Merck	63. 78
20	MSFT	Microsoft	67. 69
21	NKE	Nike	51.77
22	PFE	Pfizer	32.46
23	PG	Procter & Gamble	86. 24
24	TRV	Travelers Companies Inc	120.79
25	UTX	United Technologies	121.16
26	UNH	UnitedHealth	172.59
27	VZ	Verizon	45.42
28	V	Visa	92.48
29	WMT	Wal-Mart	78.77

djidf

	close	date	high	low	open	volume
0	76.8	1495200600	77. 35	76. 3	76. 55	3278200
1	76. 38	1495114200	76.85	75. 97	76. 27	3545700
2	76. 37	1495027800	78. 13	76. 24	78. 13	4441600
3	78. 13	1494941400	78.64	77.84	78.6	2457500
4	78. 33	1494855000	78.62	77.48	77. 48	3327000
5	77. 49	1494595800	77.81	77. 22	77. 7	2865800
6	77. 92	1494509400	78. 45	77. 25	78. 2	3780600
7	78.65	1494423000	78.66	78. 14	78. 28	2396900
8	78. 44	1494336600	78. 74	78. 09	78. 16	2570600
9	78. 16	1494250200	78. 74	77. 95	78. 5	2608600
10	78. 32	1493991000	78. 73	77.88	78.61	2936700
11	78. 33	1493904600	79. 42	77. 99	79. 23	3902200
12	78. 83	1493818200	79. 51	78. 69	79. 23	3800600
13	79. 54	1493731800	79.66	79. 15	79. 15	3334900
14	79. 23	1493645400	79. 49	78. 88	79. 22	3458100
15	79. 25	1493386200	80. 17	79.05	79. 94	5313200
16	80. 33	1493299800	80. 87	80.08	80.77	2922700
17	80. 52	1493213400	80. 92	80. 15	80.62	3661600
18	80.63	1493127000	81.4	80.63	81.06	5061300
19	80.45	1493040600	80. 92	80. 24	80.64	3563200
20	79. 59	1492781400	80. 47	79. 49	79. 88	5837800

quotesdf

便捷网络数据获取

是否能够简单方便并且快速的方式获得财经网站上公司股票的历史数据?

Time Period: May 20, 2016 - May 20, 2017
Show: Historical Prices Frequency: Daily Apply

Currency in USD ____ Download Data

Date	0pen	High	Low	Close	Adj Close	Volume
2016/5/20	63. 16	64. 14	62.95	63.92	63.92	5278200
2016/5/23	63.86	64. 1	63. 56	63. 59	63. 59	3074100
2016/5/24	63. 79	65. 1	63. 79	64.87	64.87	3946100
2016/5/25	65.04	65. 76	65.01	65.31	65.31	5755900
2016/5/26	65. 29	65. 37	64.95	65. 23	65. 23	3593500
2016/5/27	65. 39	65. 7	65. 33	65. 52	65. 52	3925700
2016/5/31	65. 7	65. 92	65. 4	65. 76	65. 76	5256000

Filename: quotes_fromcsv.py
import pandas as pd
quotesdf = pd.read_csv('axp.csv')
print(quotesdf)

便捷网络数据获取

>>> r.text

'{"rating":{"max":10,"numRaters":218148,"average":"9.0","min":0 },"subtitle":"","author":["[法] 圣埃克苏佩里"],"pubdate":"2003-8","tags":[{"count":52078,"name":"小王子","title":"小王子"},{"count":43966,"name":"童话", ... , "price":"22.00元"}'

NLTK语料库

便捷网络数据


```
>>> from nltk.corpus import gutenberg
                                                 brown
>>> import nltk
>>> print(gutenberg.fileids())
['austen-emma.txt', 'austen-persuasion.txt', 'austen-sense.txt', 'bible-kjv.txt', 'blake-
poems.txt', 'bryant-stories.txt', 'burgess-busterbrown.txt', 'carroll-alice.txt',
'chesterton-ball.txt', 'chesterton-brown.txt', 'chesterton-thursday.txt', 'edgeworth-
parents.txt', 'melville-moby dick.txt', 'milton-paradise.txt', 'shakespeare-caesar.txt',
'shakespeare-hamlet.txt', 'shakespeare-macbeth.txt', 'whitman-leaves.txt']
>>> texts = gutenberg.words('shakespeare-hamlet.txt')
>>> print(texts)
['[', 'The', 'Tragedie', 'of', 'Hamlet', 'by', ...]
```

用Python玩转数据

数据准备

数据形式

30支道指成分股 (dji) 股票数据的 逻辑结构

公司代码	公司名	最近一次成交价

美国运通公司 (quotes) 股票历 史数据的逻辑结构

收盘价	日期	最高价	最低价	开盘价	成交量

djidf加列索引 (columns)

```
File
```

```
# Filename: stock.py
import requests
import re
import pandas as pd
def retrieve dji list():
     return dji list
dji list = retrieve dji list()
djidf = pd.DataFrame(dji list)
cols = ['code', 'name', 'lasttrade']
djidf.columns = cols
print(quotesdf)
```

0		1	2
0	MMM	3M	195.8
1	AXP	American Express	76.8
2	AAPL	Apple	153.06
3	BA	Boeing	180. 76
4	CAT	Caterpillar	102. 43
5	CVX	Chevron	106. 52
6	CSC0	Cisco	31. 21
7	KO	Coca-Cola	43. 9
8	DIS	Disney	107. 52
9	DD	E I du Pont de Nemours	77. 82
10	XOM	Exxon Mobil	81. 93
11	GE	General Electric	28. 05
12	GS	Goldman Sachs	215. 39
13	HD	Home Depot	156. 3
14	IBM	IBM	151. 98
15	INTC	Intel	35. 4
16	JNJ	Johnson & Johnson	127
17	JPM	JPMorgan Chase	84. 78
18	MCD	McDonald's	148. 15
19	MRK	Merck	63. 78
20	MSFT	Microsoft	67. 69
21	NKE	Nike	51. 77
22	PFE	Pfizer	32. 46
23	PG	Procter & Gamble	86. 24
24	TRV	Travelers Companies Inc	120. 79
25	UTX	United Technologies	121. 16
26	UNH	UnitedHealth	172. 59
27	VZ	Verizon	45. 42
28	V	Visa	92. 48
29	WMT	Wal-Mart	78. 77

djidf数据:加完 columns的形式

code name lasttrade

MMM

AXP

AAPL

...

WMT

quotesdf数据: 原始数据中已有 columns

close	date	high	low	open	volume
	1464010200				
	1464096600				
	1464183000				
	1495200600				

用1,2,...作为index (行索引)

quotesdf = pd.DataFrame(quotes)

quotesdf.index = range(1,len(quotes)+1)

Г	close	date	high	low	open	volume
0	63.590000	1464010200	64.099998	63.560001	63.860001	3074100
1	64.870003	1464096600	65.099998	63.790001	63.790001	3946100
2	65.309998	1464183000	65.760002	65.010002	65.040001	5755900
3	65.230003	1464269400	65.370003	64.949997	65.290001	3593500
4	65.519997	1464355800	65.699997	65.330002	65.389999	3925700

P.						
	close	date	high	low	open	volume
1	63.590000	1464010200	64.099998	63.560001	63.860001	3074100
2	64.870003	1464096600	65.099998	63.790001	63.790001	3946100
3	65.309998	1464183000	65.760002	65.010002	65.040001	5755900
4	65.230003	1464269400	65.370003	64.949997	65.290001	3593500
5	65.519997	1464355800	65.699997	65.330002	65.389999	3925700

如果可以直接用date作为索引,quotes的时间能否转换成普通日期形式(如下图中的效果)?

1464010200

	close	high	low	open	volume
		•		•	
2016-05-23	63.590000	64.099998	63.560001	63.860001	3074100
2016-05-24	64.870003	65.099998	63.790001	63.790001	3946100
2016-05-25	65.309998	65.760002	65.010002	65.040001	5755900
2016-05-26	65.230003	65.370003	64.949997	65.290001	3593500
2016-05-27	65.519997	65.699997	65.330002	65.389999	3925700
2016-05-31	65.760002	65.919998	65.400002	65.699997	5256000
2016-06-01	65.910004	65.959999	65.180000	65.760002	3816000
2016-06-02	66.410004	66.410004	65.599998	65.860001	3052200
2016-06-03	65.489998	65.820000	64.769997	65.529999	4336100
2016-06-06	65.940002	66.199997	65.500000	65.550003	3915200
2016-06-07	65.889999	66.599998	65.879997	66.150002	3779500
2016-06-08	66.260002	66.580002	65.940002	65.940002	2601100

- >>> from datetime import date
- >>> firstday = date.fromtimestamp(1464010200)
- >>> lastday = date.fromtimestamp(1495200600)
- >>> firstday
- datetime.date(2016, 5, 23)
- >>> lastday
- datetime.date(2017, 5, 19)

时间序列

```
# Filename: quotes_history_v2.py
def retrieve quotes historical(stock code):
   return [item for item in quotes if not 'type' in item]
quotes = retrieve quotes historical('AXP')
list1 = []
for i in range(len(quotes)):
                                                       转换成常规时间
  x = date.fromtimestamp(quotes[i]['date'])
  y = date.strftime(x,'%Y-%m-%d')
                                             转换成固定格式
  list1.append(y)
quotesdf ori = pd.DataFrame(quotes, index = list1)
                                                                     删除原unadjclose列
quotesdf_m = quotesdf_ori.drop(['unadjclose'], axis = 1)
quotesdf = quotesdf m.drop(['date'], axis = 1)
                                                          删除原date列
print(quotesdf)
```

创建时间序列

```
>>> import pandas as pd
>>> dates = pd.date range('20170520', periods=7)
>>> dates
<class 'pandas.tseries.index.DatetimeIndex'>
[2017-05-20, ..., 2017-05-26]
Length: 7, Freq: D, Timezone: None
>>> import numpy as np
>>> datesdf = pd.DataFrame(np.random.randn(7,3), index=dates, columns = list('ABC'))
>>> datesdf
2017-05-20 1.302600 -1.214708 1.411628
2017-05-21 -0.512343 2.277474 0.403811
2017-05-22 -0.788498 -0.217161 0.173284
2017-05-23 1.042167 -0.453329 -2.107163
2017-05-24 -1.628075 1.663377 0.943582
2017-05-25 -0.091034 0.335884 2.455431
2017-05-26 -0.679055 -0.865973 0.246970
```

用Python玩转数据

3

数据显示

1	code	name	lasttrade
0	MMM	3M	195.80
1	AXP	American Express	76.80
2	AAPL	Apple	153.06
3	BA	Boeing	180.76
4	CAT	Caterpillar	102.43
5	CVX	Chevron	106.52
6	CSC0	Cisco	31.21
7	KO	Coca-Cola	43.90
8	DIS	Disney	107.52
9	DD	E I du Pont de Nemours and Co	77.82
10	XOM	Exxon Mobil	81.93
11	GE	General Electric	28.05
12	GS	Goldman Sachs	215.39
13	HD	Home Depot	156.30
14	IBM	IBM	151.98
15	INTC	Intel	35.40
16	JNJ	Johnson & Johnson	127.00
17	JPM	JPMorgan Chase	84.78
18	MCD	McDonald's	148.15
19	MRK	Merck	63.78
20	MSFT	Microsoft	67.69
21	NKE	Nike	51.77
22	PFE	Pfizer	32.46
23	PG	Procter & Gamble	86.24
24	TRV	Travelers Companies Inc	120.79
25	UTX	United Technologies	121.16
26	UNH	UnitedHealth	172.59
27	VZ	Verizon	45.42
28	V	Visa	92.48
29	WMT	Wal-Mart	78.77

djidf

quotesdf

显示方式:

- 显示行索引
- 显示列索引
- 显示数据的值
- 显示数据描述

```
Source
>>> list(djidf.index)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 291
>>> list(djidf.columns)
['code', 'name', 'lasttrade']
>>> dijdf.values
array([['MMM', '3M', 195.8],
       ['WMT', 'Wal-Mart', 78.77]], dtype=object)
>>> djidf.describe
<br/>
<br/>
dound method NDFrame.describe of
                                          code
                                                      name lasttrade
0
                                           MM
                                                               195.80
                                                        3M
...,
29
                                                 Wal-Mart
                                                                78.77>
                                         WMT
```

数据的格式

Name: lasttrade, dtype: float64

78.31

30

查看道指成分股中前5只和后5 只的股票基本信息?

显示方式:

- 显示行
 - 专用方式
 - 切片
- 显示列

	Source)	<u> </u>	
~~.		head(5)		djidf[:5]
//.	code	ileau(<i>3)</i>	name	lasttrade
0	MMM		3M	195.80
1			can Express	76.80
2	AAPL	-	Apple	153.06
3	BA		Boeing	180.76
4	CA	Γ	Caterpillar	102.43
>>:	> djidf.	tail(5)		djidf[-5:]
				<u> </u>
	code	()	name	lasttrade
25		` ,	name Technologies	
25 26		` ,		lasttrade 121.16
	UTX	` ,	Technologies	lasttrade 121.16 172.59
26	UTX UNH	` ,	Technologies UnitedHealth	lasttrade 121.16 172.59 45.42

用Python玩转数据

4

数据选择

	code	name	lasttrade
0	MMM	3M	195.80
1	AXP	American Express	76.80
2	AAPL	Apple	153.06
3	BA	Boeing	180.76
4	CAT	Caterpillar	102.43
5	CVX	Chevron	106.52
6	CSC0	Cisco	31.21
7	KO	Coca-Cola	43.90
8	DIS	Disney	107.52
9	DD	E I du Pont de Nemours and Co	77.82
10	MOX	Exxon Mobil	81.93
11	GE	General Electric	28.05
12	GS	Goldman Sachs	215.39
13	HD	Home Depot	156.30
14	IBM	IBM	151.98
15	INTC	Intel	35.40
16	JNJ	Johnson & Johnson	127.00
17	JPM	JPMorgan Chase	84.78
18	MCD	McDonald's	148.15
19	MRK	Merck	63.78
20	MSFT	Microsoft	67.69
21	NKE	Nike	51.77
22	PFE	Pfizer	32.46
23	PG	Procter & Gamble	86.24
24	TRV	Travelers Companies Inc	120.79
25	UTX	United Technologies	121.16
26	UNH	UnitedHealth	172.59
27	VZ	Verizon	45.42
28	V	Visa	92.48
29	WMT	Wal-Mart	78.77

选择方式:

- 选择行
- 选择列
- 选择区域
- 筛选 (条件选择)

```
high
                                                         volume
                close
                                       low
                                                 open
2016-05-23 63.590000
                      64.099998
                                 63.560001
                                            63.860001
                                                        3074100
2016-05-24 64.870003
                      65.099998
                                 63.790001
                                            63.790001
                                                        3946100
2016-05-25 65.309998
                                                        5755900
                      65.760002
                                 65.010002
                                            65.040001
2016-05-26 65.230003 65.370003
                                 64.949997
                                            65.290001
                                                        3593500
2016-05-27 65.519997 65.699997
                                 65.330002
                                                        3925700
                                            65.389999
2016-05-31 65.760002 65.919998
                                 65.400002
                                            65.699997
                                                        5256000
2016-06-01 65.910004
                      65.959999
                                65.180000
                                            65.760002
                                                        3816000
                                                        3052200
2016-06-02 66.410004
                      66.410004
                                 65.599998
                                            65.860001
2016-06-03 65.489998 65.820000
                                 64.769997
                                            65.529999
                                                        4336100
2016-06-06 65.940002
                      66.199997
                                 65.500000
                                            65.550003
                                                        3915200
2016-06-07 65.889999
                      66.599998
                                 65.879997
                                            66.150002
                                                        3779500
2016-06-08 66.260002 66.580002
                                65.940002
                                            65.940002
                                                        2601100
2016-06-09
           65.709999
                      65.779999
                                 64.900002
                                            65.720001
                                                        3883800
2016-06-10 64.970001
                      65.480003
                                 64.709999
                                            65.260002
                                                        3939100
2016-06-13 63.669998
                      64.889999
                                 63.630001
                                                        5883400
                                            64.800003
2016-06-14 61.070000
                      63.660000
                                 60.380001
                                            63.590000
                                                       12323200
                                60.860001 61.470001
                                                        5979900
2016-06-15 61.419998 62.160000
```


美国运通公司 2017年5月1日至 2017年5月5日间 的股票交易信息?

选择方式:

- 选择行
 - 切片
 - 索引

>>> quotesdf['2017-05-01':'2017-05-05']

```
closehighlowopenvolume2017-05-0179.23000379.48999878.87999779.22000134581002017-05-0279.54000179.66000479.15000279.15000233349002017-05-0378.83000279.51000278.69000279.23000338006002017-05-0478.33000279.41999877.98999879.23000339022002017-05-0578.32000078.73000377.87999778.6100012936700
```


道指成分股公司 代码?

选择方式:

- 选择列
 - 列名


```
>>> djidf['code']
```

0 MMM

1 AXP

2 AAPL

•••

29 WMT

Name: code, dtype: object

>>> djidf.code

0 MMM

1 AXP

2 AAPL

...

29 WMT

Name: code, dtype: object

不支持

djidf['code', 'lasttrade']

djidf['code':'lasttrade']

道指成分股中行索引是1至5的股票信息以及所有股票的代码和最近一次交易价?

选择方式:

- 行、列
 - 标签label (loc)

```
Source
```

```
>>> djidf.loc[1:5,]
  code
                                             lasttrade
                                       name
  AXP
                                                76.80
                            American Express
  AAPL
                                       Apple
                                                153.06
3
    BA
                                               180.76
                                      Boeing
    CAT
                                    Caterpillar
                                               102.43
   CVX
                                      Chevron
                                               106.52
>>> djidf.loc[:, ['code','lasttrade']]
    code lasttrade
            195.80
   MMM
     AXP
             76.80
            153.06
    AAPL
29
              78.77
    WMT
```


道指成分股中行索引 是1至5的股票代码和 最近一次交易价?行 索引是1的股票的最 近一次交易价?

选择方式:

- 行和列的区域
 - 标签label (loc)
- 单个值
 - at

```
Source
```

```
>>> djidf.loc[1:5, ['code', 'lasttrade']]
   code lasttrade
   AXP 76.80
   AAPL 153.06
     BA
          180.76
    CAT
          102.43
    CVX
          106.52
>>> djidf.loc[1, 'lasttrade']
76.79999999999997
>>> djidf.at[1, 'lasttrade']
76.79999999999997
```

选择方式:

- 行、列和区域
 - 用iloc (位 置)
- 取某个值
 - iat

```
Source
```


>>> djidf.iloc[1:6,[0,2]] code lasttrade

1 AXP 76.80 2 AAPL 153.06 3 BA 180.76

4 CAT 102.43

5 CVX 106.52

>>> djidf.loc[1,'lasttrade']
76.7999999999999999
>>> djidf.at[1,'lasttrade']
76.79999999999999

示列索引即第

0和第1列

>>> djidf.iloc[1,2] 76.799999999999999999 >>> djidf.iat[1,2] 76.799999999999999

选择方式:

• 条件筛选

```
>>> quotesdf[(quotesdf.index >= '2017-03-01') & (quotesdf.index <= '2017-
03-31')]
                close
                           high
                                      low
                                                open
                                                       volume
2017-03-01 81.919998 82.000000 81.019997 81.050003 4746400
2017-03-02 80.099998 81.660004 80.059998 81.660004 4409800
2017-03-31 79.110001 79.430000 78.800003 78.930000 5228400
>>> quotesdf[(quotesdf.index >= '2017-01-01') & (quotesdf.index <= '2017-
03-31') & (quotesdf.close >= 80)]
                          close
                                      high
                                                      volume
                open
2017-02-23 80.050003 80.449997 79.769997 79.870003
```

2017-02-27 80.169998 80.309998 79.589996 79.750000 2619400

2017-02-28 80.059998 80.489998 79.769997 80.120003 4415300 2017-03-01 81.919998 82.000000 81.019997 81.050003 4746400 2017-03-02 80.099998 81.660004 80.059998 81.660004 4409800

用Python玩转数据

5 简单统计与处理

简单统计与筛选

公司名?

价大于等于180的

>>> djidf.lasttrade.mean()

101.26500000000001

>>> djidf[djidf.lasttrade >= 180].name

3M

Boeing

12 Goldman Sachs

Name: name, dtype: object

简单统计与筛选

统计美国运通公司近一年股票涨 和跌分别的天数?

统计美国运通公司近一年相邻两天收盘价的涨跌情况?

```
Source
```

>>> len(quotesdf[quotesdf.close > quotesdf.open])

123

>>> len(quotesdf)-123

128


```
>>> status = np.sign(np.diff(quotesdf.close))
>>> status
array([ 1., 1., -1., ..., -1., 1., 1.])
>>> status[np.where( status == 1.)].size
132
>>> status[np.where( status == -1.)].size
118
```

排序

按最近一次成交 价对30只道指成 分股股票进行排 序。根据排序结 果列出前三甲公 司名。


```
>>> tempdf = djidf.sort values(by = 'lasttrade', ascending = False)
                               lasttrade
   code
                      name
12
      GS
              Goldman Sachs
                                 215.39
  MMM
                         3M
                                 195.80
3
      BA
                     Boeing
                                 180.76
26
     UNH
                UnitedHealth
                                 172.59
```

...

>>> tempdf[:3].name
12 Goldman Sachs

0 3M

3 Boeing

Name: name, dtype: object

计数统计

统计2017年度1月份的股票开盘天数?

>>> t = quotesdf[(quotesdf.index >= '2017-01-01') & (quotesdf.index < '2017-02-01')] >>> len(t)
20

计数统计

统计近一年每个月的股票开盘天数?

```
File
```

```
close
                                                             high
                                                                                     volume
# Filename: quotes month.py
                                                        65.099998
                                                                          63.790001
                                                64.870003
                                                                                     3946100
                                                         65.760002
                                                                           65.040001
                                                                                     5755900
import time
                                      2016-05-26
                                                        65.370003
                                                                           65.290001
                                                                                     3593500
                                               65.230003
                                      2016-05-27
                                                65.519997
                                                        65,699997
                                                                 65.330002
                                                                           65.389999
                                                                                     3925700
                                                        65.919998 65.400002
                                      2016-05-31 65.760002
                                                                           65.699997
                                                                                     5256000
listtemp = []
                                      2016-06-01
                                                65.910004
                                                        65.959999
                                                                           65.760002
                                                                                     3816000
                                      2016-06-02 66.410004
                                                        66.410004
                                                                 65.599998
                                                                          65.860001
                                                                                     3052200
for i in range(len(quotesdf)):
  temp = time.strptime(quotesdf.index[i],"%Y-%m-%d")
  listtemp.append(temp.tm mon)
tempdf = quotesdf.copy()
tempdf['month'] = listtemp
print(tempdf['month'].value counts())
```

```
Output:
    23
    23
    22
12
    21
    21
10
    21
    21
    20
    20
    19
    19
Name: month,
dtype: int64
```

用Python玩转数据

GROUPING

Grouping的顺序

- Splitting
- ② Applying
- 3 Combining

volume

统计近一年每个月的股票开盘天数?

low

high

```
2016-05-24 64.870003 65.099998 63.790001
                                                 63.790001
                                                           3946100
                        65.309998
                                65.760002
                                         65.010002
                                                           5755900
               2016-05-26 65.230003 65.370003
                                         64.949997
                                                 65.290001
                                                           3593500
                        65.519997 65.699997 65.330002
                                                           3925700
               2016-05-31 65.760002 65.919998 65.400002
                                                           5256000
               2016-06-01 65.910004 65.959999 65.180000
                                                           3816000
               2016-06-02 66.410004 66.410004 65.599998 65.860001
                                                           3052200
>>> x = tempdf.groupby('month').count()
            close high low open volume
month
              20
                        20
                               20
                                        20
                                                    20
              19
                        19
                               19
                                        19
                                                    19
              23
                        23
                               23
                                                    23
                                        23
11
                       21
                               21
                                                    21
12
              21
                       21
                               21
                                                    21
>>> x.close
```

close

```
Output:
month
    20
23456789
    19
    23
    19
    21
   22
   20
   23
    21
10
    21
11
12
Name: month, dtype: int64
```


统计近一年每个月的总成交量?

```
Source
```

```
>>> tempdf.groupby('month').sum().volume month
```

- 1 103887100
- 2 65816600
- 3 98700800
- 4 77893800

•••

- 10 116243400
- 11 99527200
- 12 75948200

Name: volume, dtype: float64

mean()

min()

max()

•••

如果更高效统计近一年每个月的总成交量?

tempdf.groupby('month').sum().volume

>>> tempdf.groupby('month').volume.sum()

month

- 1 103887100
- 2 65816600
- 3 98700800
- 4 77893800

•••

12 75948200

Name: volume, dtype: float64

Nanjing University

用Python玩转数据

MERGE

合并

Merge的形式

- Append
 - 加行到DataFrame
- Concat
 - 连接pandas对象
- Join
 - SQL类型的连接

Append

把美国运通公司 本年度1月1日 至1月5日间的 股票交易信息合 并到近一年中前 两天的股票信息 中?

```
Source
>>> p = quotesdf[:2]
>>> p
                          close
                                     high
                                                low
                                                      volume
               open
2016-05-23 63.590000 64.099998 63.560001 63.860001
                                                    3074100
2016-05-24 64.870003 65.099998 63.790001
                                          63.790001 3946100
>>> g = quotesdf['2017-01-01':'2017-01-05']
>>> q
                                     high
               open
                          close
                                                      volume
                                                low
          75.349998
                     75.750000 74.739998 74.889999
2017-01-04 76.260002 76.550003 75.059998 75.260002 4635800
2017-01-05 75.320000 76.180000 74.820000 76.000000 3383000
>>> p.append(q)
                          close
                                     high
                                                      volume
                                                low
               open
2016-05-23 63.590000
                     64.099998 63.560001 63.860001
                                                    3074100
           64.870003
                     65.099998
                               63.790001
                                          63.790001 3946100
          75.349998 75.750000
                               74.739998
                                         74.889999 5853900
2017-01-04 76.260002 76.550003 75.059998 75.260002
                                                    4635800
2017-01-05 75.320000 76.180000 74.820000 76.000000 3383000
```

Concat

将美国运通 公司近一年 股票数据中 的前5个和 后5个合并。

- >>> pieces = [tempdf[:5], tempdf[len(tempdf)-5:]]
- >>> pd.concat(pieces)

```
high
                                                 volume month
                         close
                                            low
               open
2016-05-23 63.590000 64.099998 63.560001 63.860001
                                                   3074100
2016-05-24 64.870003 65.099998
                              63.790001
                                         63.790001
                                                   3946100
2016-05-25 65.309998 65.760002 65.010002 65.040001 5755900
2016-05-26 65.230003 65.370003
                              64.949997
                                                   3593500
                                         65.290001
2016-05-27 65.519997 65.699997
                              65.330002 65.389999
                                                   3925700
2017-05-15 78.330002 78.620003 77.480003 77.480003
                                                   3327000
2017-05-16 78.129997 78.639999 77.839996 78.599998 2457500
2017-05-17 76.370003 78.129997 76.239998 78.129997
                                                   4441600
2017-05-18 76.379997 76.849998 75.970001 76.269997
2017-05-19 76.800003 77.349998 76.300003 76.550003
```

Concat

两个不同逻辑结构 的对象能否连接?

objs	axis
join	join_axes
keys	levels
names	verify_integrity
ignore_index	

- >>> piece1 = quotesdf[:3]
- >>> piece2 = tempdf[:3]
- >>> pd.concat([piece1,piece2], ignore_index = True)

	close	high	low	month	open	volume
0	63.590000	64.099998	63.560001	NaN	63.860001	3074100
1	64.870003	65.099998	63.790001	NaN	63.790001	3946100
2	65.309998	65.760002	65.010002	NaN	65.040001	5755900
3	63.590000	64.099998	63.560001	5.0	63.860001	3074100
4	64.870003	65.099998	63.790001	5.0	63.790001	3946100
5	65.309998	65.760002	65.010002	5.0	65.040001	5755900

Join

code	name
AXP	
КО	

volume	code	month
	AXP	
	AXP	
	КО	
	КО	

code	name	volume	month
AXP			
AXP			
КО			
КО			

Join

将美国运通公司 和可口可乐公司 近一年中每个月 的交易总量表 (包含公司代码) 与30只道琼斯 成分股股票信息 合并。

code|name|volume|month

	code	name	lasttrade
0	MMM	3M	195.80
1	AXP	American Express	76.80
2	AAPL	Apple	153.06
3	BA	Boeing	180.76
4	CAT	Caterpillar	102.43
5	CVX	Chevron	106.52
6	CSC0	Cisco	31.21
7	KO	Coca-Cola	43.90
8	DIS	Disney	107.52
9	DD	E I du Pont de Nemours and Co	77.82
10	MOX	Exxon Mobil	81.93
11	GE	General Electric	28.05
12	GS	Goldman Sachs	215.39
13	HD	Home Depot	156.30
14	IBM	IBM	151.98
15	INTC	Intel	35.40
16	ZNZ	Johnson & Johnson	127.00
17	JPM	JPMorgan Chase	84.78
18	MCD	McDonald's	148.15
19	MRK	Merck	63.78
20	MSFT	Microsoft	67.69
21	NKE	Nike	51.77
22	PFE	Pfizer	32.46
23	PG	Procter & Gamble	86.24
24	TRV	Travelers Companies Inc	120.79
25	UTX	United Technologies	121.16
26	UNH	UnitedHealth	172.59
27	VZ	Verizon	45.42
28	V	Visa	92.48
29	WMT	Wal-Mart	78.77

	volume	code	month
month			
1	103887100	AXP	1
2	65816600	AXP	2
3	98700800	AXP	3
4	77893800	AXP	4
5	76209200	AXP	5
6	121788800	AXP	6
7	90064900	AXP	7
8	77514100	AXP	8
9	95572800	AXP	9
10	116243400	AXP	10
11	99527200	AXP	11
12	75948200	AXP	12
1	240321400	KO	1
2	333983800	KO	2
3	339185400	KO	3
4	232465400	KO	4
5	239687800	KO	5
6	265483400	KO	6
7	235959400	KO	7
8	235118300	KO	8
9	251007200	КО	9
10	264839100	KO	10
11	316557000	KO	11
12	283871000	KO	12

AKdf

djidf

Join


```
>>> pd.merge(djidf.drop(['lasttrade'], axis = 1), AKdf, on = 'code')
                             volume
   code
                                       month
                   name
   AXP American Express
                         103887100
                         65816600
   AXP American Express
   AXP American Express
                         98700800
   AXP American Express
                         77893800
   AXP American Express
                          76209200
• • •
19
    KO
              Coca-Cola
                          235118300
                                            8
    KO
              Coca-Cola
                          251007200
20
21
    KO
              Coca-Cola
                          264839100
                                           10
                                           11
22
    KO
              Coca-Cola
                          316557000
23
    KO
              Coca-Cola
                          283871000
                                           12
```

	code	name	volume	month
0	AXP	American Express	103887100	1
1	AXP	American Express	65816600	2
2	AXP	American Express	98700800	3
3	AXP	American Express	77893800	4
4	AXP	American Express	76209200	5
5	AXP	American Express	121788800	6
6	AXP	American Express	90064900	7
7	AXP	American Express	77514100	8
8	AXP	American Express	95572800	9
9	AXP	American Express	116243400	10
10	AXP	American Express	99527200	11
11	AXP	American Express	75948200	12
12	KO	Coca-Cola	240321400	1
13	KO	Coca-Cola	333983800	2
14	KO	Coca-Cola	339185400	3
15	KO	Coca-Cola	232465400	4
16	KO	Coca-Cola	239687800	5
17	KO	Coca-Cola	265483400	6
18	KO	Coca-Cola	235959400	7
19	KO	Coca-Cola	235118300	8
20	KO	Coca-Cola	251007200	9
21	KO	Coca-Cola	264839100	10
22	KO	Coca-Cola	316557000	11
23	KO	Coca-Cola	283871000	12

merge函数的参数

left	right	how
on	left_on	right_on
left_index	right_index	sort
suffixes	сору	