Graph

Chapter 9 of textbook 1

Outline

A graph is an abstract data type for storing adjacency relations

- We start with definitions:
 - Vertices, edges, degree and sub-graphs
- We will describe paths in graphs
 - Simple paths and cycles
- Definition of connectedness
- Weighted graphs
- We will then reinterpret these in terms of directed graphs
- Directed acyclic graphs

Outline

We will define an Undirected Graph ADT as a collection of *vertices*

$$V = \{v_1, v_2, ..., v_n\}$$

- The number of vertices is denoted by

$$|V| = n$$

– Associated with this is a collection E of unordered pairs $\{v_i, v_j\}$ termed *edges* which connect the vertices

There are a number of data structures that can be used to implement abstract undirected graphs

- Adjacency matrices
- Adjacency lists

Graphs

Consider this collection of vertices

$$V = \{v_1, v_2, ..., v_9\}$$

where |V| = 9

Undirected graphs

Associated with these vertices are |E| = 5 edges

$$E = \{\{v_1, v_2\}, \{v_3, v_5\}, \{v_4, v_8\}, \{v_4, v_9\}, \{v_6, v_9\}\}$$

– The pair $\{v_j, v_k\}$ indicates that both vertex v_j is adjacent to vertex v_k and vertex v_k is adjacent to vertex v_j

Undirected graphs

We will assume in this course that a vertex is never adjacent to itself

- For example, $\{v_1, v_1\}$ will not define an edge

The maximum number of edges in an undirected graph is

$$|E| \le {|V| \choose 2} = \frac{|V|(|V|-1)}{2} = O(|V|^2)$$

An undirected graph

Example: given the |V| = 7 vertices

$$V = \{A, B, C, D, E, F, G\}$$

and the |E| = 9 edges

 $E = \{ \{A, B\}, \{A, D\}, \{A, E\}, \{B, C\}, \{B, D\}, \{B, E\}, \{C, E\}, \{C, F\}, \{D, E\} \}$

Degree

The degree of a vertex is defined as the number of adjacent vertices

$$degree(A) = degree(D) = degree(C) = 3$$

$$degree(B) = degree(E) = 4$$

$$degree(F) = 1$$

$$degree(G) = 0$$

Those vertices adjacent to a given vertex are its *neighbors*

Sub-graphs

A *sub-graph* of a graph is a subset of the vertices and a subset of the edges that connected the subset of vertices in the original graph

Paths

A path in an undirected graph is an ordered sequence of vertices

$$(v_0, v_1, v_2, ..., v_k)$$

where $\{v_{j-1}, v_j\}$ is an edge for j = 1, ..., k

- Termed a path from v_0 to v_k
- The length of this path is k

Paths

A path of length 4:

(A, B, E, C, F)

Paths

A path of length 5:

(A, B, E, C, B, D)

Paths

A trivial path of length 0:

Simple paths

A *simple path* has no repetitions other than perhaps the first and last vertices

A *simple cycle* is a simple path of at least two vertices with the first and last vertices equal

- Note: these definitions are not universal

Connectedness

Two vertices v_i , v_j are said to be *connected* if there exists a path from v_i to v_j

A graph is connected if there exists a path between any two vertices

A connected graph

An unconnected graph

Weighted graphs

A weight may be associated with each edge in a graph

- This could represent distance, energy consumption, cost, etc.
- Such a graph is called a weighted graph

Pictorially, we will represent weights by numbers next to the edges

Weighted graphs

The *length* of a path within a weighted graph is the sum of all of the edges which make up the path

- The length of the path (A, D, G) in the following graph is 5.1 + 3.7 = 8.8

Weighted graphs

Different paths may have different weights

– Another path is (A, C, F, G) with length 1.2 + 1.4 + 4.5 = 7.1

Weighted graphs

Problem: find the shortest path between two vertices

Here, the shortest path from A to G is (A, C, F, D, E, G) with length 5.7

Trees

A graph is a tree if it is connected and there is a unique path between any two vertices

- Three trees on the same eight vertices

Consequences:

- The number of edges is |E| = |V| 1
- The graph is acyclic, that is, it does not contain any cycles
- Adding one more edge must create a cycle
- Removing any one edge creates two disjoint non-empty sub-graphs

Trees

Any tree can be converted into a rooted tree by:

- Choosing any vertex to be the root
- Defining its neighboring vertices as its children and then recursively defining:
- All neighboring vertices other than that one designated its parent are now defined to be that vertices children

Given this tree, here are three rooted trees associated with it

Forests

A forest is any graph that has no cycles

Consequences:

- The number of edges is |E| < |V|
- The number of trees is |V| |E|
- Removing any one edge adds one more tree to the forest

Here is a forest with 22 vertices and 18 edges

- There are four trees

Directed graphs

In a *directed graph*, the edges on a graph are be associated with a direction

- Edges are ordered pairs (v_j, v_k) denoting a connection from v_i to v_k
- The edge (v_i, v_k) is different from the edge (v_k, v_i)

Streets are directed graphs:

In most cases, you can go two ways unless it is a one-way street

Directed graphs

Given our graph of nine vertices $V = \{v_1, v_2, ...v_9\}$

- These six pairs (v_i, v_k) are directed edges

$$E = \{(v_1, v_2), (v_3, v_5), (v_5, v_3), (v_6, v_9), (v_8, v_4), (v_9, v_4)\}$$

Directed graphs

The maximum number of directed edges in a directed graph is

 $|E| \le 2 \binom{|V|}{2} = 2 \frac{|V|(|V|-1)}{2} = |V|(|V|-1) = O(|V|^2)$

In and out degrees

The degree of a vertex must be modified to consider both cases:

- The *out-degree* of a vertex is the number of vertices which are adjacent to the given vertex
- The *in-degree* of a vertex is the number of vertices which this vertex is adjacent to

In this graph:

 $in_degree(v_1) = 0$ $out_degree(v_1) = 2$ $in_degree(v_5) = 2$ $out_degree(v_5) = 3$

Sources and sinks

Some definitions:

- Vertices with an in-degree of zero are described as sources
- Vertices with an out-degree of zero are described as sinks

In this graph:

- Sources: v_1 , v_6 , v_7
- Sinks: v_2 , v_9

Paths

A path in a directed graph is an ordered sequence of vertices

$$(v_0, v_1, v_2, ..., v_k)$$

where (v_{j-1}, v_j) is an edge for j = 1, ..., k

A path of length 5 in this graph is

$$(v_1, v_4, v_5, v_3, v_5, v_2)$$

A simple cycle of length 3 is

$$(v_8, v_4, v_5, v_8)$$

Connectedness

Two vertices v_j , v_k are said to be *connected* if there exists a path from v_i to v_k

- A graph is strongly connected if there exists a directed path between any two vertices
- A graph is weakly connected if there exists a path between any two vertices that ignores the direction

In this graph:

- The sub-graph $\{v_3, v_4, v_5, v_8\}$ is strongly connected
- The sub-graph {v₁, v₂, v₃, v₄, v₅, v₈} is weakly connected

Weighted undirected graphs

• Given a weighted undirected graph. In some cases, we can consider the graph as weighted directed graph

Weighted directed graphs

In a weighted directed graphs, each edge is associated with a value

Unlike weighted undirected graphs, if both (v_j, v_k) and (v_j, v_k) are edges, it is not required that they have the same weight

Directed acyclic graphs

A *directed acyclic graph* is a directed graph which has no cycles

- These are commonly referred to as DAGs
- They are graphical representations of partial orders on a finite number of elements

These two are DAGs:

This directed graph is not acyclic:

Directed acyclic graphs

Applications of directed acyclic graphs include:

- The parse tree constructed by a compiler
- A reference graph that can be garbage collected using simple reference counting
- Dependency graphs such as those used in instruction scheduling and makefiles
- Dependency graphs between classes formed by inheritance relationships in object-oriented programming languages
- Information categorization systems, such as folders in a computer
- Directed acyclic word graph data structure to memoryefficiently store a set of strings (words)

Reference: http://en.wikipedia.org/wiki/Directed_acyclic_graph

Representations

How do we store the adjacency relations?

- Binary-relation list
- Adjacency matrix
- Adjacency list

Binary-relation list

The most inefficient is a relation list:

- A container storing the edges

$$\{(1, 2), (1, 4), (3, 5), (4, 2), (4, 5), (5, 2), (5, 3), (5, 8), (6, 9), (7, 9), (8, 4)\}$$

- Requires $\Theta(|E|)$ memory
- Determining if v_j is adjacent to v_k is O(|E|)
- Finding all neighbors of v_i is $\Theta(|E|)$

Adjacency matrix

- The matrix entry (j, k) is set to true if there is an edge (v_i, v_k)

	1	2	3	4	5	6	7	8	9
1		T		T					
2									
3					T				
4		T			T				
5		T	T					T	
6									T
7									T
8				T					
9									
ъ	• • • • • • • • • • • • • • • • • • • •								

- Determining if v_i is adjacent to v_k is O(1)
- Finding all neighbors of v_i is $\Theta(|V|)$

Adjacency list

Most efficient for algorithms is an adjacency list

- Each vertex is associated with a list of its neighbors
 - $1 \quad \bullet \to 2 \to 4$
 - 2.
 - $3 \cdot \rightarrow 5$
 - $4 \cdot \rightarrow 2 \rightarrow 5$
 - $5 \rightarrow 2 \rightarrow 3 \rightarrow 8$
 - $6 \rightarrow 9$
 - $7 \quad \bullet \rightarrow 9$
 - 8 → ∠
 - 9 •
- Requires $\Theta(|V| + |E|)$ memory
- On average:
 - Determining if v_i is adjacent to v_k is O

Finding all neighbors of v_i is

The Graph ADT

The Graph ADT describes a container storing an adjacency relation

- Queries include:
 - The number of vertices
 - The number of edges
 - List the vertices adjacent to a given vertex
 - Are two vertices adjacent?
 - Are two vertices connected?
- Modifications include:
 - Inserting or removing an edge
 - Inserting or removing a vertex (and all edges containing that vertex)

The run-time of these operations will depend on the representation

Some Famous Graph Problems

- s-t Path. Is there a path between vertices s and t?
- **Shortest s-t Path.** What is the shortest path between vertices s and t? (lowest total cost)
- **Minimum spanning tree**: finding the tree formed from graph edges that connects all the vertices of graph at the lowest total cost
- Cycle Detection. Does the graph contain any cycles?
- **Euler Tour.** Is there a cycle that uses every edge exactly once?
- **Hamilton Tour.** Is there a cycle that uses every vertex exactly once?

Summary

In this topic, we have covered:

- Basic graph definitions
 - Vertex, edge, degree, adjacency
- Paths, simple paths, and cycles
- Connectedness
- Weighted graphs
- Directed graphs
- Directed acyclic graphs

Next week: finding a route, shortest path problem