${f Autonomous}$

sets that are stable under Lyapunov.

Invariant Set:

A state in an invariant set, you never leave the invariant set. Limit cycles are a classical example of invariant

Local Lyapunov Stability $V(\mathbf{x}) > 0 \ \forall \mathbf{x} \in \Omega$ $\dot{V}(\mathbf{x}) \le 0 \ \forall \mathbf{x} \in \Omega$

Local Asymptotic Stability $V(\mathbf{x}) > 0 \ \forall \mathbf{x} \in \Omega$ $V(\mathbf{x}) < 0 \ \forall \mathbf{x} \in \Omega$

Local Exponential Stability $V(\mathbf{x}) > 0 \ \forall \mathbf{x} \in \Omega$ $\dot{V}(\mathbf{x}) < 0 \ \forall \mathbf{x} \in \Omega$ $\forall t > 0 \; \exists \; \alpha > 0, \exists \; \lambda > 0 \text{ such that:}$ $||\mathbf{x}(t)|| \le \alpha ||\mathbf{x}(0)|| e^{-\lambda t}$

Gloabl Lyapunov Stability $V(\mathbf{x}) > 0 \ \forall \mathbf{x} \neq 0$ $\dot{V}(\mathbf{x}) \le 0 \ \forall \mathbf{x}$ As $||\mathbf{x}|| \to \infty \Rightarrow V(\mathbf{x}) \to \infty$

Globally Asymptotic Stability $V(\mathbf{x}) > 0 \ \forall \mathbf{x} \neq \mathbf{0}$ $\dot{V}(\mathbf{x}) < 0 \ \forall \mathbf{x} \neq \mathbf{0}$ As $||\mathbf{x}|| \to \infty \Rightarrow V(\mathbf{x}) \to \infty$

Global Exponential Stability $V(\mathbf{x}) > 0 \ \forall \mathbf{x} \neq \mathbf{0}$ $\dot{V}(\mathbf{x}) < 0 \ \forall \mathbf{x} \neq \mathbf{0}$ $\forall t > 0 \; \exists \; \alpha > 0, \exists \; \lambda > 0 \text{ such that:}$ $||\mathbf{x}(t)|| \le \alpha ||\mathbf{x}(0)|| e^{-\lambda t}$ As $||\mathbf{x}|| \to \infty \Rightarrow V(\mathbf{x}) \to \infty$

Non-Autonomous

Local / Global

Decrescent V(0,t) = 0 $\forall t \geq 0, \exists V_1(\mathbf{x}) \ni V(\mathbf{x}, t) \leq V_1(\mathbf{x})$

Uniform Function independent of t_0 Local Lyapunov Stability $V(\mathbf{x},t) > 0 \ \forall \mathbf{x} \in \Omega$ $\dot{V}(\mathbf{x},t) \le 0 \ \forall \mathbf{x} \in \Omega$

Local Uniform Stability $V(\mathbf{x},t) > 0 \ \forall \mathbf{x} \in \Omega$ $\dot{V}(\mathbf{x},t) \le 0 \ \forall \mathbf{x} \in \Omega$ V is Decrescent

Local Asymptotic Uniform Stability $V(\mathbf{x}) > 0 \ \forall \mathbf{x} \in \Omega$ $\dot{V}(\mathbf{x}) < 0 \ \forall \mathbf{x} \in \Omega$ V is Decrescent

Local Uniform Exponential Stability $V(\mathbf{x},t) > 0 \ \forall \mathbf{x} \neq \mathbf{0}$ $\dot{V}(\mathbf{x},t) < 0 \ \forall \mathbf{x} \neq \mathbf{0}$ $\forall t > 0 \; \exists \; \alpha > 0, \exists \; \lambda > 0 \text{ such that:}$ $||\mathbf{x}(t)|| \le \alpha ||\mathbf{x}(0)||e^{-\lambda t}|$ V is Decrescent

Global Uniform Asymptotic Stability $V(\mathbf{x},t) > 0 \ \forall \mathbf{x} \neq \mathbf{0}$ $\dot{V}(\mathbf{x},t) < 0 \ \forall \mathbf{x} \neq \mathbf{0}$ V is Decrescent As $||\mathbf{x}|| \to \infty \Rightarrow V(\mathbf{x}, t) \to \infty$

Global Uniform Exponential Stability $V(\mathbf{x},t) > 0 \ \forall \mathbf{x} \neq \mathbf{0}$ $\dot{V}(\mathbf{x},t) < 0 \ \forall \mathbf{x} \neq \mathbf{0}$ $\forall t > 0 \; \exists \; \alpha > 0, \exists \; \lambda > 0 \text{ such that:}$ $||\mathbf{x}(t)|| \le \alpha ||\mathbf{x}(0)||e^{-\lambda t}|$ V is Decrescent As $||\mathbf{x}|| \to \infty \Rightarrow V(\mathbf{x}) \to \infty$

Barbalat's Lemma:

 $V(\mathbf{x},t)$ is lower bounded $\dot{V}(\mathbf{x},t)$ is negative semi-definite $V(\mathbf{x},t)$ is uniformly continuous in time Then: $\dot{V}(\mathbf{x},t) \to 0$ as $t \to \infty$