Facility location


```
egin{aligned} \min \sum_{i} f_{i} y_{i} + \sum_{i,j} c_{ij} x_{ij} : \ \sum_{i} x_{ij} \geq 1 \quad for \ all \ j \ x_{ij} \leq y_{i} \quad for \ all \ i,j \ x_{ij}, y_{i} \geq 0 \end{aligned}
```

$$\max \sum_{j} \alpha_{j}:$$

$$\sum_{j} \beta_{ij} \leq f_{i} \text{ for all i}$$

$$\alpha_{j} \leq \beta_{ij} + c_{ij} \text{ for all i, j}$$

$$\alpha_{j}, \beta_{ij} \geq 0$$

Algorithm

- 1. Solve the primal and dual LPs: $\mathbf{y_i^*}, \mathbf{x_{ij}^*}, \alpha_j^*, \beta_{ij}^*$
- 2. While some clients are unassigned
 - jc: unassigned client s.t. $\alpha_{\mathbf{j_C}}^*$ is min
 - $i_{\rm C}$: cheapest facility s.t. $x^*_{i_{\rm C},j_{\rm C}}>0$
 - open facility ic
 - assign to ic all unassigned clients s.t.
 - there is a facility $\;$ with $\mathbf{x_{i,j_C}} > 0$ and $\mathbf{x_{i,j}} > 0$

First iteration

Second iteration

Output

Facility location

