

Advisory: Hostile state actors compromising UK organisations with focus on engineering and industrial control companies

5 April 2018

© Crown Copyright 2018

About this document

In the past year, the NCSC has noted widespread targeting of UK infrastructure devices by hostile state actors. This has primarily focused on engineering and industrial control companies and is ongoing.

This advisory provides an update on the current threat and guidance for any organisations affected.

Handling of the Report

Information in this report has been given a Traffic Light Protocol (TLP) of WHITE, which means, subject to standard Copyright rules, it may be distributed without restriction.

Disclaimer

This report draws on reported information, as well as information derived from industry sources.

Introduction

The NCSC is aware of an ongoing attack campaign against multiple companies involved in the Critical National Infrastructure (CNI) supply chain. These attacks have been ongoing since at least March 2017.

The targeting is focused on engineering and industrial control companies and has involved the harvesting of NTLM ¹ credentials via Server Message Block (SMB) using strategic web compromises and spear-phishing.

This advisory highlights the sustained risk to UK companies involved in these sectors, provides further details on the activity and offers guidance for any organisations affected.

Further information on this activity was published on 15 March by the US Department of Homeland Security.² The activity has also been highlighted previously by threat intelligence companies in open sources as Berserk Bear, Energetic Bear, Dragonfly, Havex and Crouching Yeti³.

Details

The NCSC is aware of an attack campaign against multiple companies involved in the CNI supply chain. These attacks have been ongoing since at least March 2017 and are ongoing as of 5 April 2018.

The precise timeline for each compromise may vary. However, in several of the compromises identified, once the attacker interacted with the network, exploitation was typically achieved within a week, with ongoing access maintained over the course of months.

Outline of attack

The following diagrams outline the various steps taken to compromise target networks and propagate through them.

Initial Infection

1. The attacker gets the target PC to communicate with a malicious fileserver under actor control using one of two methods:

¹ Windows Challenge/Response (NTLM) is the authentication protocol used on networks that include systems running the Windows operating system and on stand-alone systems.

² https://www.us-cert.gov/ncas/alerts/TA18-074A

³ https://www.symantec.com/blogs/threat-intelligence/dragonfly-energy-sector-cyber-attacks https://www.baesystems.com/en/feature/havex

https://www.kaspersky.co.uk/resource-center/threats/crouching-yeti-energetic-bear-malware-threat

- a. The attacker carries out a watering hole attack, compromising a website of interest to the target, and adding a link to a resource located on the malicious fileserver.
- b. The attacker sends a spear-phishing email from a compromised account containing a document of interest (sometimes a known contact of the target). In several instances, stolen CVs have been used, which are configured to load a remote template from the malicious fileserver.
- 2. Running Inveigh PowerShell scripts⁴ on the fileserver, the attacker harvests all the NTLM hashes sent to it by the target hosts that are attempting to logon and load the various resources.

Figure 1: Initial Infection

Exploitation and lateral movement

⁴ Publicly available SMB/HTTP man-in-the-middle tool.

- 3. Using the NTLM hash acquired in the previous step, the following actions are possible:
 - a. The attacker uses the Inveigh-Relay PowerShell script to replay the hash against an exposed area of the network.
 - b. The attacker cracks the captured hash offline to obtain user credentials needed to access the network via a VPN/RDP or other remote access protocol that is enabled.
- 4. Once access to the network has been obtained, the attacker will typically enumerate shares they can access, and into these, place shortcut/link files (.lnk) with an icon that is located on the malicious fileserver.
- 5. Each host that views the shortcut in file explorer (even if it is not opened) attempts to load the icon from the malicious fileserver, thus sending their NTLM hashes out to be replayed/harvested.

Figure 2: Exploitation and Lateral Movement

Post exploitation

Once access has been gained on the network, the attacker will pivot between various machines using harvested credentials, penetration testing and network administration tools. In some cases, the actors have also deployed custom malware/downloaders to maintain persistence and they will also take advantage of and actively look for any password stores or VPN/remote access guides. If administrative access is obtained, the attacker will likely add a new domain admin account to the network. Likewise, if access to the webserver is obtained, they will likely deploy a web-shell to facilitate ongoing access.

The attacker will also use cracked or stolen credentials to access the company's mail server and harvest the contact list of the compromised user. The compromised mail server may then be used to send spear-phishing emails emanating from the victim company to additional targets, increasing their perceived legitimacy.

Figure 3: Post-exploitation

Tools used

The following is a list of publicly available and custom tools used by the attacker in each stage of these attacks.

Tool Name	Description	Detail
Angry IP Scanner	Publicly available IP scanning tool.	Used on attacker infrastructure to survey external network endpoints, or on internal victim machines to survey the internal network.
Backdoor.goodor	Custom downloader written in Google Go.	Calls out to one of nine hardcoded IP addresses. Yara and Snort rules provided. SHA256: b5278301da06450fe4442a25dda2d83d 21485be63598642573f59c59e980ad46
CrackMapExec	Publicly available post exploitation tool.	Can be used from attacker infrastructure to reuse credentials on networks that have the appropriate protocols exposed. Otherwise, it may be deployed on the initial network foothold to further pivot around victim machines.
Dorshell	A backdoor downloader built using Shellter.	Yara rules provided. SHA256: b8bc0611a7fd321d2483a0a9a505251e 15c22402e0cfdc62c0258af53ed3658a
Get-GPPPassword	PowerShell script to retrieve passwords of accounts provisioned by group policy.	Used on victim machines.
Inveigh	Publicly available spoofing and man-in-the-middle tool.	Can be used on attacker infrastructure and also on victim networks to facilitate SMB relaying.
Malicious JavaScript downloader	Obfuscated JavaScript that downloads second stage malware.	Executed on victim to download second stage. Yara rule provided. SHA256: 371d8fef7f976bf386cbcbe95358eb92dc 764bdffaf3ced72b931c2e19e94378
Malicious Shortcut File	Windows shortcut file with its icon resource set to be loaded from remote fileserver.	Used to harvest additional credentials from the victim network. Yara rule provided.
Malicious Word document	Word document that loads a template file from a remote fileserver.	Word documents used were legitimate documents that had been acquired and weaponised using Phishery.
Mimikatz	Publicly available multifunction tool primarily used for password extraction.	Used on victim machines.
Phishery	Publicly available framework for spear-phishing.	Used to craft the spear-phishing documents used in these attacks.
Powershell	Inbuilt Windows utility for advanced scripting.	Used on victim machines to facilitate other tools, download additional code etc.

Psexec	Publicly available tool from Sysinternals for remote command execution.	Used on victim machines.
RDP Bruteforcer	RDP brute forcing tool.	Observed as brute.exe. Likely used on both attacker and victim machines. Yara rule provided. SHA256: 8234bf8a1b53efd2a452780a69666d1ae dcec9eb1bb714769283ccc2c2bdcc65
Screenutil	Screenutil command line tool used to capture screenshots.	Used on victim machines.
Z_Webshell	Comprehensive ASPX webshell.	Deployed on customer webserver to maintain persistence. Yara rule provided. SHA256: ace12552f3a980f1eed4cadb02afe1bfb8 51cafc8e58fb130e1329719a07dbf0

Table 1: Malicious Tools used

Infrastructure

The attacker makes use of both compromised infrastructure and purchased VPS infrastructure, and therefore it should be noted that the IP addresses listed below may not be wholly malicious, or may be in use by multiple malicious actors, and should be used for intelligence gathering purposes only.

IP Address	Use
2.229.10.193	Callback for Goodor malware
5.150.143.107	Callback for Goodor malware
5.153.58.45	Fileserver used to capture NTLM hashes
41.205.61.221	Callback for Goodor malware
41.78.157.34	Callback for Goodor malware
62.8.193.206	Fileserver used to capture NTLM hashes
78.47.199.220	Endpoint used to access network
81.149.16.168	Endpoint used to access webshell
82.222.188.18	Callback for Goodor malware
85.25.100.104	Endpoint used to access network
85.255.235.109	Endpoint used to access network
85.255.235.147	Endpoint used to access network
85.185.45.174	Endpoint used to access network
85.159.65.114	Hosting malicious files
91.183.104.150	Staging infrastructure
111.93.118.90	Endpoint used to access network
130.25.10.158	Callback for Goodor malware
139.162.108.53	Endpoint used to access network
139.162.114.70	Endpoint used to access network
149.210.156.198	Endpoint used to Access webshell/mailserver
151.80.163.14	Endpoint used to access network
167.114.44.147	Callback/hoster of malicious files
173.212.212.56	Endpoint used to access network
176.53.11.130	Callback for Goodor malware
184.154.150.66	Fileserver used to capture NTLM hashes
185.22.184.71	Endpoint used to access network

187.130.251.249	Callback for second stage executable	
193.213.49.115	Callback for Goodor malware	
195.250.149.195	Endpoint used to access network	
195.87.199.197	Callback for Goodor malware	
203.113.4.230	Fileserver used to capture NTLM hashes	

Table 2: Infrastructure used

Detection

YARA Rules

Backdoor.goodor

```
rule Bytes_used_in_AES_key_generation {
  meta:
    author = "NCSC"
    hash =
"b5278301da06450fe4442a25dda2d83d21485be63598642573f59c59e980ad46"
  strings:
    $a1 = {35 34 36 35 4B 4A 55 54 5E 49 55 5F 29 7B 68 36 35 67 34 36 64
66 35 68}
    $a2 = {fb ff ff ff 00 00}
  condition:
    all of ($a*)
}
rule Partial_Implant_ID {
  meta:
    author = "NCSC"
    hash =
"b5278301da06450fe4442a25dda2d83d21485be63598642573f59c59e980ad46"
  strings:
    a1 = \{3838313435364643\}
    a2 = \{fb \ ff \ ff \ ff \ 00 \ 00\}
  condition:
    all of ($a*)
}
rule Sleep_Timer_Choice {
  meta:
    author = "NCSC"
    hash =
"b5278301da06450fe4442a25dda2d83d21485be63598642573f59c59e980ad46"
  strings:
    a1 = \{8b0424b90f00000083f9ff743499f7f98d420f\}
    a2 = \{fb \ ff \ ff \ ff \ 00 \ 00\}
  condition:
    all of ($a*)
}
rule User_Function_String {
```

```
meta:
    author = "NCSC"
    hash =
"b5278301da06450fe4442a25dda2d83d21485be63598642573f59c59e980ad46"
    strings:
    $b1 = {fb ff ff f0 0 00}
    $a2 = "e.RandomHashString"
    $a3 = "e.Decode"
    $a4 = "e.Decrypt"
    $a5 = "e.HashStr"
    $a6 = "e.FromB64"
    condition:
    $b1 and 3 of ($a*)
}
```

Dorshell

```
rule generic shellcode downloader specific {
  meta:
    author = "NCSC"
    hash =
"b8bc0611a7fd321d2483a0a9a505251e15c22402e0cfdc62c0258af53ed3658a"
  strings:
    push1 = \{68 \ 6C \ 6C \ 6F \ 63\}
    push2 = \{68 \ 75 \ 61 \ 6C \ 41\}
    $push3 = {68 56 69 72 74}
    $a = {BA 90 02 00 00 46 C1 C6 19 03 DD 2B F4 33 DE}
    $b = {87 C0 81 F2 D1 19 89 14 C1 C8 1F FF E0}
  condition:
    (uint16(0) == 0x5A4D \text{ and } uint16(uint32(0x3C)) == 0x4550) \text{ and } ($a \text{ or } a = 0x4550)
$b) and @push1 < @push2 and @push2 < @push3
}
rule generic_shellcode_downloader {
  meta:
    author = "NCSC"
    hash =
"b8bc0611a7fd321d2483a0a9a505251e15c22402e0cfdc62c0258af53ed3658a"
  strings:
    $push1 = {68 6C 6C 6F 63}
    push2 = \{68\ 75\ 61\ 6C\ 41\}
    push3 = \{68 56 69 72 74\}
  condition:
    (uint16(0) == 0x5A4D \text{ and } uint16(uint32(0x3C)) == 0x4550) \text{ and } @push1 <
@push2 and @push2 < @push3
```

Malicious batch files

```
rule Batch_Script_To_Run_PsExec {
 meta:
    author = "NCSC"
    hash =
"b7d7c4bc8f9fd0e461425747122a431f93062358ed36ce281147998575ee1a18"
    $ = "Tokens=1 delims=" ascii
    $ = "SET ws=%1" ascii
    $ = "Checking %ws%" ascii
    $ = "%TEMP%\\%ws%ns.txt" ascii
    $ = "ps.exe -accepteula" ascii
 condition:
    3 of them
}
rule Batch_Powershell_Invoke_Inveigh {
    author = "NCSC"
    hash =
"0a6b1b29496d4514f6485e78680ec4cd0296ef4d21862d8bf363900a4f8e3fd2"
  strings:
    $ = "Inveigh.ps1" ascii
    $ = "Invoke-Inveigh" ascii
    $ = "-LLMNR N -HTTP N -FileOutput Y" ascii
    $ = "powershell.exe" ascii
  condition:
    all of them
```

Malicious Javascript

```
rule Obfuscated_Javascript {
    meta:
        author = "NCSC"
        hash =
"371d8fef7f976bf386cbcbe95358eb92dc764bdffaf3ced72b931c2e19e94378"
    strings:
        $a1 = "replace(/[^A-Za-z0-9\\+\\/\\=]/g,\"\")"
        $a2 = "(1E3)"
        $a3 = /.=.<<2|.>>4/
        $a4 = /.=(.&15)<<4|.>>2/
        $b1 = /this\[.\(/
        condition:
        all of ($a*) and #b1 > 4
}
```

Malicious Link

```
rule lnk detect {
  meta:
    author = "NCSC"
    description = "malicious lnk properties"
  strings:
    $lnk magic = {4C 00 00 00 01 14 02 00 00 00 00 00 C0 00 00 00 00 00 00
46}
    $lnk target = {41 00 55 00 54 00 4F 00 45 00 58 00 45 00 43 00 2E 00
42 00 41 00 54}
    $s1 = \{5C \ 00 \ 5C \ 00 \ 31 \ 00\}
    $s2 = \{5C \ 00 \ 5C \ 00 \ 32 \ 00\}
    $s3 = \{5C \ 00 \ 5C \ 00 \ 33 \ 00\}
    $s4 = \{5C\ 00\ 5C\ 00\ 34\ 00\}
    $s5 = \{5C \ 00 \ 5C \ 00 \ 35 \ 00\}
    $s6 = \{5C \ 00 \ 5C \ 00 \ 36 \ 00\}
    $s7 = \{5C \ 00 \ 5C \ 00 \ 37 \ 00\}
    $s8 = \{5C \ 00 \ 5C \ 00 \ 38 \ 00\}
    $s9 = \{5C\ 00\ 5C\ 00\ 39\ 00\}
  condition:
     (($lnk_magic at 0) and $lnk_target) and ($s1 or $s2 or $s3 or $s4 or
$s5 or $s6 or $s7 or $s8 or $s9)
```

RDP Bruteforcer

```
rule RDP_Brute_Strings {
 meta:
   author = "NCSC"
   hash =
"8234bf8a1b53efd2a452780a69666d1aedcec9eb1bb714769283ccc2c2bdcc65"
  strings:
   $ = "RDP Brute" ascii wide
   $ = "RdpChecker" ascii
   $ = "RdpBrute" ascii
   $ = "Brute_Count_Password" ascii
   $ = "BruteIPList" ascii
   $ = "Chilkat_Socket_Key" ascii
   $ = "Brute_Sync_Stat" ascii
    = "(\d{1,3}\.\d{1,3}\.\d{1,5})"  wide
   $ = "BadRDP" wide
   $ = "GoodRDP" wide
   = "@echo off{0}:loop{0}del {1}{0}if exist {1} goto loop{0}del
{2}{0}del \"{2}\"" wide
   $ = "Coded by z668" wide
  condition:
   4 of them
```

Z Webshell

```
rule Z_WebShell {
    meta:
        author = "NCSC"
        hash =

"ace12552f3a980f1eed4cadb02afe1bfb851cafc8e58fb130e1329719a07dbf0"
    strings:
        $ = "Z_PostBackJS" ascii wide
        $ = "z_file_download" ascii wide
        $ = "z_WebShell" ascii wide
        $ = "1367948c7859d6533226042549228228" ascii wide
        condition:
        3 of them
}
```

SNORT rules

Backdoor.goodor

```
Alert tcp any any <> any any (flow: established; msg: "backdoor.goodor beacons"; content: "User-Agent|3a|Go-http-client/1.1|0d0a|Accept-Encoding|3a|gzip"; pcre:"/\.(aspx|txt)\?[a-z0-9]{3}=[a-z0-9]{32}&/"; sid: 00000001; rev: 1; priority: 1;)
```

Log artefacts

The following information on open source tools used by the actor was gathered by executing the tools themselves and monitoring their activity.

The information may vary between systems and was collected with enhanced logging enabled. The additional logging was gathered by enabling Audit Policy, which was achieved by auditing both success and failure attempts in all of the policies under 'Audit Policy' in the 'Local Group Policy Editor'.

There was also an auditing entry added to the 'Advanced Security Setting for local Disk' that utilised several of the advanced permissions to enable more in-depth logging of the systems.

CrackMapExecWin

Description	This is the original CrackMapExec tool compiled for Windows. Primary function is as a post-exploitation tool that aids in the automation of assessing the security posture of large active directory networks.
Туре	Command line execution tool
Target OS	Windows
Hashes	SHA1 - F4250B961BD1C8694A949429F739D9F424283612

Attack usage

CrackMapExecWin could be deployed on the infected system and would be used to target other systems on the network. This tool is a python based utility that can interact with other tools such as PowerShell Empire, enabling an attack in further compromising the network.

Installing CrackMapExecWin on Infected system

Scenario Running the crackmapexec.exe executable on the infected system

Log type and name	Acquired information
Event log - Security	Event ID: 4688 - A new process has been created 4689 - A process has exited Process name: [filepath]\crackmapexec.exe
Event log - Security	Event ID: 4690 - An attempt was made to duplicate a handle to an object Same source process ID as previous 4688 event
Event log - Security	Event ID: 4658 - The handle to an object was closed 4656 - A handle to an object was requested 4663 - An attempt was made to access an object Process name: [filepath]\crackmapexec.exe
Execution history - Prefetch	Prefetch file - C:\Windows\Prefetch\CRACKMAPEXEC.EXE-[PREFETCH_TRAILING_HEX].pf
Execution history - Registry entries	HKEY_CURRENT_USER\Software\Microsoft\Windows NT\CurrentVersion\AppCompatFlags\Compatibility Assistant\Store HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Perflib\009 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Perflib\CurrentLanguage HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Microsoft\Windows NT\CurrentVersion\Perflib\009 HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Microsoft\Windows NT\CurrentVersion\Perflib\CurrentLanguage HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\bam\UserSettings\[SID] HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\bam\UserSettings\[SID] HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\bam\UserSettings\[SID] HKEY_USERS\[SID]\Software\Microsoft\Windows NT\CurrentVersion\AppCompatFlags\Compatibility Assistant\Store

Executing PowerShell Command on Infected System

Scenario	Running the following command on the infected system
	.\crackmapexec.exe localhost -u [user] -p ["password"] -lusers
Event log	Event ID: 4688 - A new process has been created
- Security	4689 - A process has exited
	New process name: [filepath]\crackmapexec.exe
	Creator process name:
	C:\Windows\System32\windowsPowershell\v1.0\powershell.exe
Event log	Event ID: 4658 - The handle to an object was closed
- Security	4656 - A handle to an object was requested
	4663 - An attempt was made to access an object
	New process name: [filepath]\crackmapexec.exe
Event log	Event ID: 4690 - An attempt was made to duplicate a handle to an object
- Security	Source process ID matches that of the previous events

Executing PowerShell command on infected system, targeting victim system

Scenario Running the following command on the infected system

.\crackmapexec.exe [target-IP] -u [username] -p ["password"] -lsa

Infected System information

infected System information		
Event log	Event ID: 4658 - The handle to an object was closed	
- Security	4688 - A new process has been created	
	4656 - A handle to an object was requested	
	4663 - An attempt was made to access an object	
	New process name: [filepath]\crackmapexec.exe	
Event log	Event ID: 4690 - An attempt was made to duplicate a handle to an object	
- Security	Source process ID matches that of the previous events	
Event log	Event ID: 4656 - A handle to an object was requested	
- Security	Object name: [filepath]\logs\[Victim-IP]_[date].log	
	Process name: [filepath]\crackmapexec.exe	
Event log	Event ID: 5158 - The Windows filtering platform has permitted a bind to a	
- Security	local port	
	Application name: [filepath]\crackmapexec.exe	
Event log	Event ID: 5156 - The Windows filtering platform has permitted a connection	
- Security	Application name: [filepath]\crackmapexec.exe	
	Destination address: [Victim IP]	
	Destination port: 445	
Event log	Event ID: 4656 - A handle to an object was requested	
- Security	Object name: [filepath]\logs\[Victim IP].secrets	
	Process name: [filepath]\crackmapexec.exe	
Event log	Event ID: 4656 - A handle to an object was requested.	
- Security	There were a number of these events identified that had read and write control	
	accesses and then another set of events with delete accesses.	

Object name:

C:\Users\[username]\AppData\Local\Temp_[8_char_string] C:\Users\[username]\AppData\Local\Temp_[8_char_string]\microsoft.vc90.crt.manifest C:\Users\[username]\AppData\Local\Temp_[8_char_string]\msvcr90.dll C:\Users\[username]\AppData\Local\Temp_[8_char_string]\msvcp90.dll C:\Users\[username]\AppData\Local\Temp_[8_char_string]\msvcm90.dll $C:\Users\[username]\AppData\Local\Temp\[8_char_string]\python27.dll$ C:\Users\[username]\AppData\Local\Temp_[8_char_string]\unicodedata.pyd C:\Users\[username]\AppData\Local\Temp_[8_char_string]\bz2.pyd C:\Users\[username]\AppData\Local\Temp_[8_char_string]_ctypes.pyd $C:\Users\\[username]\AppData\\Local\\Temp\\[8_char_string]_ssl.pyd \\$ $C:\Users\\[username]\AppData\\Local\\Temp\\[8_char_string]\\win32evtlog.pyd$ $C:\Users\\[username]\AppData\\Local\\Temp\\[8_char_string]\\win32api.pyd$ $C:\Users\\[username]\AppData\\Local\\Temp\\[8_char_string]_hashlib.pyd \\$ $\label{local-temp} $$ C:\Users\[username]\AppData\Local\Temp\[8_char_string]_socket.pyd$ $$$ $\label{lem:lemple_schar_string} $$ C:\Users\setminus[username]\AppData\Local\Temp_[8_char_string]\select.pyd $$$ $C:\Users\\[username]\AppData\\Local\\Temp\\[8_char_string]\\pyexpat.pyd \\$ C:\Users\[username]\AppData\Local\Temp_[8_char_string]\Crypto.Hash._MD4.pyd

 $\label{local-temp} $$ C:\Users\[username]\AppData\Local\Temp\[username]\Crypto.Random.OSRNG.winrandom.pyd $$$

 $C:\Users\[username]\AppData\Local\Temp\[8_char_string]\Crypto.Cipher._ARC4.pyd C:\Users\[username]\AppData\Local\Temp\[8_char_string]\gevent._semaphore.pyd C:\Users\[username]\AppData\Local\Temp\[8_char_string]\Crypto.Cipher._DES3.pyd C:\Users\[username]\AppData\Local\Temp\[8_char_string]\gevent._semaphore.pyd C:\Users\Username]\AppData\Username]\AppData\Username]\AppData\Username]\AppData\Username]\AppData\Username]\AppData\Username]\AppData\Username]\AppData\Username]\AppData\Username]\AppData\Username]\AppData\Username]\AppData\Username]\AppData\Username]\AppData\Username]\AppData\Username]\AppData\Username]\AppData\Username]\AppData\Username]\Ap$

C:\Users\[username]\AppData\Local\Temp_[8_char_string]\greenlet.pyd
C:\Users\[username]\AppData\Local\Temp_[8_char_string]\gevent._util.pyd
C:\Users\[username]\AppData\Local\Temp_[8_char_string]\gevent.ares.pyd
C:\Users\[username]\AppData\Local\Temp_[8_char_string]\gevent.core.pyd
C:\Users\[username]\AppData\Local\Temp_[8_char_string]\pywintypes27.dll
C:\Users\[username]\AppData\Local\Temp_[8_char_string]\include\pyconfig.h

 $C:\label{local-$

Execution Prefetch file - history C:\Windows\I

history C:\Windows\Prefetch\CRACKMAPEXEC.EXE-[prefetch_trailing_hex].pf - Prefetch

Victim System Information

victiii systeii	
Event log - Security	Event ID: 5156 - The Windows filtering platform has permitted a connection Source address: [Infected System IP] Destination address: [Victim System IP] Destination port: 445
Event log - Security	Event ID: 4624 - An account was successfully logged on Security ID: ANONYMOUS LOGON Account name: ANONYMOUS LOGON Logon process: NtlmSsp Authentication Package: NTLM
Event log - Security	Event ID: 4627 - Group membership information 4634 - An account was logged off Security ID: ANONYMOUS LOGON Account name: ANONYMOUS LOGON
Event log - Security	Event ID: 5140 - A network share object was accessed 5154 - A network share object was checked to see whether client can be granted desired access Source address: [Infected system IP] Share name: *\IPC\$

Event log
- Security

Event ID: **5154** - A network share object was checked to see whether client can be granted desired access

Source address: [Infected system IP]

Share name: *\ADMIN\$

Share path: \??\C:\WINDOWS

Relative target name: SYSTEM32\laZCxPea.tmp, JggjpEVh.tmp

Accesses: ReadData, WriteData

Event log Event ID: **4656** - A handle to an object was requested

- Security 4659 - A handle to an object was requested with intent to delete

Object name: C:\Windows\System32\laZCxPea.tmp, JggjpEVh.tmp

Angry IP scanner

Description "Fast and friendly network scanner" - Purpose and functionality is to identify live

systems via ping requests. Once a system is identified it will attempt to resolve the hostname along with mac address and will also attempt to scan ports.

Type GUI

Target OS Windows

Hashes SHA1 - EC91544253C4254C290D9C027C63EB46E3C2756A

MD5 - A85161524FA2A891EAF58C71D24F07A8

Attack usage

Infected System Victim System

Angry IP scanner could be deployed on the infected system and would be used to target other systems on the network. This would allow an attack to get a more in-depth understanding of the network and aid further attacks within the

network.

Prerequisites Java runtime environment

Installing Angry IP scanner on Infected system

Scenario Running the ipscan-[version*]-setup.exe executable on the infected system.

*Version used in testing - 3.5.2

HKEY USERS\[SID]\Software\JavaSoft\Prefs\ipscan

Log type and name	Acquired information
Event log	Event ID: 4688 - A new process has been created
- Security	4689 - A process has exited
	Process name: [filepath]\ipscan.exe
Event log	Event ID: 4690 - An attempt was made to duplicate a handle to an object
- Security	Source process ID matches that of the previous events
Event log	Event ID: 4688 - A new process has been created
- Security	Process name: [filepath]\javaw.exe
Event log	Event ID: 4656 - A handle to an object was requested
- Security	4663 - An attempt was made to access an object
•	Process name:
	C:\Windows\Prefetch\IPSCAN.EXE-[prefetch_trailing_hex].pf
Execution	HKEY_CLASSES_ROOT\Local
history	$Settings \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
-Registry	yb3d8bbwe\Children\001\Internet Explorer\DOMStorage\angryip.org
entries	HKEY_CLASSES_ROOT\Local
chines	Settings\Software\Microsoft\Windows\CurrentVersion\AppContainer\Storage\microsoft.microsoftedge_8wek yb3d8bbwe\Children\001\Internet Explorer\EdpDomStorage\angryip.org
	HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\UFH\ARP
	HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Angry IP Scanner
	HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Microsoft\Windows\CurrentVersion\Uninstall\Angry IP
	Scanner
	HKEY_USERS\[SID]\Software\Classes\Local
	Settings\Software\Microsoft\Windows\CurrentVersion\AppContainer\Storage\microsoft.microsoftedge_8wek
	yb3d8bbwe\Children\001\Internet Explorer\DOMStorage\angryip.org
	HKEY_USERS\[SID]\Software\Classes\Local Settings\Software\Microsoft\Windows\CurrentVersion\AppContainer\Storage\microsoft.microsoftedge_8wek
	yb3d8bbwe\Children\001\Internet Explorer\EdpDomStorage\angryip.org
	,

 $HKEY_USERS\setminus [SID]\setminus Software\setminus Microsoft\setminus Windows\setminus Current Version\setminus Search\setminus Jump list Data$

 $HKEY_USERS\setminus[SID]\setminus Software\setminus Microsoft\setminus Windows\ NT\setminus Current Version\setminus App Compatibility$

Assistant\Store

HKEY_USERS\[SID]\Local

 $Settings \ Software \ Microsoft \ Windows \ Current \ Version \ App Container \ Storage \ microsoft . microsoft dge_8 we kyb3d8bbwe \ Children \ Oo1 \ Internet \ Explorer \ DOM \ Storage \ angryip.org$

HKEY_USERS\[SID]_Classes\Local

 $Settings \ Software \ Microsoft \ Windows \ Current \ Version \ App Container \ Storage \ microsoft . microsoft dge_8 wekyb3d8bbwe \ Children \ Oo1 \ Internet \ Explorer \ Edp Dom Storage \ angryip.org$

Initiating scan on Infected system, targeting victim system

Scenario With default settings on the Angry IP Scanner a scan was initiated, targeting the

victim machine.

Infected & Victim System Information

Event log Event ID: **5156** - The Windows filtering platform has permitted a connection

- Security Direction: Inbound & Outbound

Source address: [Infected system IP]
Destination address: [Victim system IP]

With default settings there will be three Inbound & three outbound event logs

seen as by default the number of ping probes to send is set to three

PsExec

Description PsExec is part of the Sysinternals command line tools. PsExec is a legitimate tool

that can be used to launch processes on remote systems on a network.

Type Command line execution tool

Target OS Windows

Hashes SHA1 - E50D9E3BD91908E13A26B3E23EDEAF577FB3A095

MD5 - 27304B246C7D5B4E149124D5F93C5B01

Attack usage

Infected System Victim System

PsExec may be installed on a system for legitimate usage. As PsExec can be used to run processes on other systems, an attacker could utilise the tool for malicious purposes.

Running PsExec on Infected system

Scenario Opening a command prompt on the victim system remotely from the infected

system.

Log type and Acquired information

name

Infected System Information

Event log Event ID: 4688 - A new process has been created

- Security 4689 - A process has exited

New process name: [filepath]\psexec.exe

Event log Event ID: **5156** - The Windows filtering platform has permitted a connection

- Security Direction: Outbound

Source Address: [Infected system IP]
Destination Address: [Victim system IP]

Destination port: 445

Event log Event ID: **5158** - The Windows filtering platform has permitted a bind to a local

- Security port

Application name: [filepath]\psexec.exe

Source port: [#1]

Event log
- Security

Event ID: **5156** - The Windows filtering platform has permitted a connection

Application name: [filepath]\psexec.exe

Direction: Outbound

Source Address: [Infected system IP]

Source port: [#1] (same port number as above, in event 5158)

Destination Address: [Victim system IP]
HKEY_USERS\[SID]\Software\Sysinternals\PsExec

Execution history -Registry entries

Registry

Victim Systen	n Information
Event log -	Event ID: 7045 - A service was installed in the system
System	Path: %SystemRoot%\PSEXESVC.exe
Event log -	Event ID: 7036 - The service state has changed
System	Execution: PSEXESVC
Event log	Event ID: 4697 - A service was install in the system
- Security	Path: %SystemRoot%\PSEXESVC.exe
Event log	Event ID: 4688 - A new process has been created
- Security	Process name: C:\Windows\PSEXESVC.exe
Event log	Event ID: 5145 - A network share object was checked to see whether client can
- Security	be granted desired access
	5156 - The Windows filtering platform has permitted a connection
	Source address: [Infected system IP]
	Relative target name: PSEXESVC
Event log	Event ID: 5140 - A network share object was accessed
- Security	Source address: [Infected system IP]
Event log	Share name: *\Admin\$ Event ID: 4648 - A logon was attempted using explicit credentials
- Security	4624 - An account was successfully logged on
- Security	Process name: C:\Windows\PSEXESVC.exe
	Logon ID: [ID]
Event log	Event ID: 4627 - Group membership information
- Security	Logon ID: [ID] (same as above, in event 4624)
Event log	Event ID: 4703 - A token right was adjusted
- Security	Logon ID: [ID] (same as above, in event 4624)
Event log	Event ID: 4688 - A new process has been created
- Security	New process name: C:\Windows\cmd.exe
	Creator process name: C:\Windows\PSEXESVC.exe
Event log	Event ID: 4656 - A handle to an object was requested
- Security	4663 - An attempt was made to access an object
	Object name:

C:\Windows\Prefetch\PSEXESVC.EXE-[prefetch_trailing_hex].pf

Mitigation

A variety of mitigations will be of use in defending against the attacks detailed in this report:

Defend your organisation against spear-phishing, by taking a multi-layered approach.

See NCSC Guidance: https://www.ncsc.gov.uk/phishing

Protect your devices and networks by keeping them up to date: apply security patches promptly, use anti-virus and scan regularly to guard against known malware threats.

See NCSC Guidance: https://www.ncsc.gov.uk/guidance/mitigating-malware

Prevent and detect lateral movement in your enterprise networks.

See NCSC Guidance: https://www.ncsc.gov.uk/guidance/preventing-lateral-movement

Implement architectural controls for network segregation. This would help mitigate the exposure of the SMB issues described in the report.

See NCSC Guidance: https://www.ncsc.gov.uk/guidance/10-steps-network-security

Protect the management interfaces of your critical operational systems. In particular, use browse-down architecture to prevent attackers easily gaining privileged accesses to your most vital assets.

See NCSC blog post: https://www.ncsc.gov.uk/blog-post/protect-your-management-interfaces

Set up a security monitoring capability so you are collecting the data that will be needed to analyse network intrusions.

See NCSC Guidance: https://www.ncsc.gov.uk/quidance/10-steps-monitoring

Review and refresh your incident management processes.

See NCSC Guidance: https://www.ncsc.gov.uk/guidance/10-steps-incident-

management