Histogran Equalipation

1)

CK 1	nk 1	Pr(re) = NE/H
0=0	120	0.03
r4=1	90	0.02
r2=2	55	0.01
13=3	340	0.08
ru = 4	184	0.04
15=5	750	0.18
16=6	1500	0.37
16-8	523	0.13

$$S_0 = 7 \leq pr(r_3) = 4 \times 0.03 = 0.21 \rightarrow 0$$

$$S_1 = 4 \times (0.03 + 0.02) = 0.35 \rightarrow 0$$

$$S_2 = 4 \times (0.03 + - + 0.01) = 0.42 \rightarrow 0$$

$$S_3 = 4 \times (0.03 + - + 0.08) = 0.98 \rightarrow 1$$

$$S_4 = 4 \times (0.03 + - - + 0.08) = 0.98 \rightarrow 1$$

$$S_5 = 4 \times (0.03 + - - + 0.18) = 2.52 \rightarrow 3$$

$$S_6 = 4 \times (0.03 + - - + 0.34) = 5.11 \rightarrow 5$$

$$S_7 = 4 \times (0.03 + - - + 0.13) = 6.02 \rightarrow 6$$

3)
$$\frac{S_2+S}{S_3+S+255} = \frac{r_2+r}{r_3+r+255}$$

$$S_{2}S_{3}+S_{4}+3S_{5}S_{2}+S_{4}+S_{5}+255S=S_{2}S_{3}+S_{3}+5+S_{4}+255S_{2}+255r$$

 $265(S_{2}+S)=255(S_{2}+r)$

1)
$$S = \frac{S_1}{r_1} \cdot r \rightarrow \frac{S}{s+S_1} \cdot r + r_1 \rightarrow \frac{S}{r_1} \cdot r$$

2)
$$\frac{S_1+S}{S_1+S+S_2} = \frac{r_1+r}{r_1+r_1+r_2}$$

$$S_{1}p_{1}^{2} + S_{1}p_{2}^{2} + S_{1}p_{3}^{2} + S_{1}p_{1}^{2} + S_{2}p_{1}^{2} + S_{2}p_{1}^{2} + S_{3}p_{1}^{2} + S_{3$$