什么是数学建模

把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题,我们把数学知识的这一应用过程称为数学建模。

建模全过程示意图

数学建模的一般步骤

堂上思考题

如何估计一个人体内血液的总量?

示例3、人口预报

- 一、两个经典模型:
 - 1、指数增长模型: $\frac{dx}{dt} = rx$
 - 2、阻滞增长模型(Logistic模型)

$$\frac{dx}{dt} = rx(1 - \frac{x}{x_m})$$

- 二、两个重要名词: 固有增长率与人口容纳量
- 三、如何估计Logistic模型的参数

课后作业

- (1) 用P11表2的数据,分别确定两个模型的参数。
- (2) 分别对两个模型进行误差分析。
- (3) 将程序附上

作业编号: h01-02

1、模型各项参数的意义

指数增长部分

$$\frac{dx}{dt} = rx\left(1 - \frac{x}{x_m}\right)$$

种群尚未实现部分的比例

固有增长率: 种群数量很少时的增长率

环境容纳量

2、模型的解

方法: 分离变量法 解:

$$x(t) = \frac{x_m}{1 + (\frac{x_m}{x_0} - 1)e^{-rt}}$$

增长最快的地方

S形曲线

一稳定生长阶段 —指数增长阶段 初始生长阶段

3、如何对模型进行参数估计

(1) 将模型变形:

$$\frac{dx/dt}{x} = r - sx, \qquad x_m = \frac{r}{s}$$

(2) 如何根据数据计算 以P14表4为例:

$$\frac{dx}{dt}$$

年	实际人口数	$\frac{dx}{dt} \approx (x_{i+1} - x_i)/\Delta T$
1790	3.9	
1800	5.3	0.14
1810	7.2	0.19

(3)参数估计方法:最小二乘法,用matlab实现

4、logistic模型的应用

- (1) 水稻叶伸长生长变化
- (2) 变形虫细胞重量生长

(1) 水稻叶伸长生长变化

生长观测记录

时间	1	1.8	2.6	3.4	4.1	4.8	5.4	6.1	6.8	7.4	8.1
重量	0.3	0.5	0.9	1.4	2.5	3.2	4.3	7.6	10.1	14.4	18.5
时间	8.8	9.4	10.1	10.8	11.7	12.4	13.1	14.4	15.1	15.7	
重量	23.0	25.2	30.4	33.7	38.8	41.7	43.7	44.8	45.5	45.3	

(2) 变形虫细胞重量生长

观测数据

时间	0	1.25	2.50	3.75	5.00	6.25	7.50	8.75	10.00	11.25	12.50
重量	10.85	11.31	12.30	13.44	13.63	14.19	15.18	15.61	15.90	16.98	17.38
时间	13.75	15.00	16.25	17.50	18.75	20.00	21.25	22.50	23.75	25.00	
重量	17.78	18.66	19.19	18.78	19.21	19.14	19.74	19.96	20.06	19.91	

5、Logistic模型的演变

(1) Logistic模型的特点:

模型具有固定的拐点,只能描述一种特定形状的S曲线。

(2) 面临的问题:

生物在一个完整的时间序列里,生物的总生长量最初比较小,随时间的增加逐渐增长而达到一个快速生长时期,尔后增长速度趋缓,最终达到稳定的总生长量。此生长过程的图象描述称为是一种拉长的S形曲线。

(3) 更合适的模型描述——Richards模型(1951)

$$y(t) = a(1 - be^{-kt})^{\frac{1}{1-m}}$$

注: 当m=2时为Logistic模型

内容

- 一、Logistic模型的性质、参数估计
 - 、应用与模型演变
- 二、Matlab入门

Matlab使用

- 1、matlab使用环境
- 2、一些常用函数
- 3、关于矩阵提取
- 4、图形功能
- 5、M-文件编写

1、Matlab使用环境

开机画面:

Matlab使用

- 1、matlab使用环境
- 2、四则运算与一些常用函数
- 3、关于矩阵提取
- 4、图形功能
- 5、M-文件编写

常用的基本数学函数(1)

abs(x): 纯量的绝对值或向量的长度

sqrt(x): 开平方

round(x): 四舍五入至最近整数

fix(x): 无论正负, 舍去小数至最近整数

floor(x): 地板函数,即舍去正小数至最近整数

ceil(x): 天花板函数,即加入正小数至最近整数

rat(x): 将实数x化为分数表示

rats(x): 将实数x化为多项分数展开

sign(x): 符号函数 (Signum function)。

常用的基本数学函数(2)

sin(x): 正弦函数

cos(x): 馀弦函数

tan(x): 正切函数

asin(x): 反正弦函数

acos(x): 反馀弦函数

atan(x): 反正切函数

atan2(x,y): 四象限的反正切函数

sinh(x): 超越正弦函数

cosh(x): 超越馀弦函数

tanh(x): 超越正切函数

asinh(x): 反超越正弦函数

acosh(x): 反超越馀弦函数

atanh(x): 反超越正切函数

min(x): 向量x的元素的最小值

max(x): 向量x的元素的最大值

mean(x): 向量x的元素的平均值

median(x): 向量x的元素的中位数

std(x): 向量x的元素的标准差

diff(x): 向量x的相邻元素的差

sort(x): 对向量x的元素进行排序(Sorting)

length(x): 向量x的元素个数

norm(x): 向量x的欧氏(Euclidean)长度

sum(x): 向量x的元素总和

prod(x): 向量x的元素总乘积

cumsum(x): 向量x的累计元素总和

cumprod(x): 向量x的累计元素总乘积

dot(x, y): 向量x和y的内积

矩阵函数

det(A): 行列式计算

矩阵的逆

poly(A): 特征多项式

trace(A): 矩阵的迹

inv(A):

ones(m,n): m行n列的全1矩阵

A': 矩阵的转置

orth(A): 正交化

rank(A): 矩阵的秩

zeros(m,n): m行n列的零矩阵

eys(n): n阶单位矩阵

d=eig(A), [v,d]=eig(A): 特征值与特征向量

rand(m,n): m行n列均匀分布随机数矩阵

randn(m,n): m行n列正态分布随机数矩阵

Matlab使用

- 1、matlab使用环境
- 2、四则运算与一些常用函数
- 3、关于矩阵提取
- 4、图形功能
- 5、M-文件编写

Matlab使用

- 1、matlab使用环境
- 2、四则运算与一些常用函数
- 3、关于矩阵提取
- 4、图形功能
- 5、M-文件编写

二维图形功能(一)

plot: x轴和y轴均为线性刻度

注:

- 1、图形颜色: y(黄) k(黑) w(白) b(蓝) g(绿) r(红)
- 2、线条形状: -(实线) -.(点虚线) --(虚线)
- 3、数轴范围调整: axis([xmin,xmax,ymin,ymax])
- 3、图形的各种注解与处理:

x轴注解: xlabel('Input Value')

y轴注解: ylabel('Function Value');

图形标题: title('Two Trigonometric Functions')

图形注解: legend('y = sin(x)','y = cos(x)')

显示格线: grid on

4、画出数个小图形于同一个视窗之中: subplot

更多的二维作图命令

bar 长条图
fplot 较精确的函数图形
hist 累计图
stairs 阶梯图
fill 实心图
compass 罗盘图

errorbar 图形加上误差范围 polar 极座标图 rose 极座标累计图 stem 针状图 feather 羽毛图 quiver 向量场图

x=0:0.1:2*pi; $y1=\sin(x);y2=\cos(x);y3=\log(x+1)-x.^2;$ $subplot(1,2,1),plot(x,y1,'y',x,y2,'rd'),title('y=\sin(x)=y=\cos(x)')$ $subplot(1,2,2),plot(x,y3,'b'),title('y=ln(x+1)-x^2')$

Matlab使用

- 1、matlab使用环境
- 2、四则运算与一些常用函数
- 3、关于矩阵提取
- 4、图形功能
- 5、M-文件编写

M-文件

1、关系运算符

<: 小于 <=: 小于等于

>: 大于 >=: 大于等于

~=: 不等于

2、逻辑运算符

&: 与运算 |: 或运算 ~: 非运算

3、for循环、while循环

4、break语句:跳出上述循环

5、定义函数: function y=new fun(x)

用Logistic模拟水稻叶伸长生长

生长观测记录数据

时间	1	1.8	2.6	3.4	4.1	4.8	5.4	6.1	6.8	7.4	8.1
重量	0.3	0.5	0.9	1.4	2.5	3.2	4.3	7.6	10.1	14.4	18.5
时间	8.8	9.4	10.1	10.8	11.7	12.4	13.1	14.4	15.1	15.7	
重量	23.0	25.2	30.4	33.7	38.8	41.7	43.7	44.8	45.5	45.3	

$$\frac{\frac{dx}{dt}}{x} = r - sx, \qquad x_m = \frac{r}{s}$$

