数学建模上机实验

姓名	班级	学号	时间	
			2023年11月7日	

一、问题重述

某医院每天各时间段内需要的值班护士数如表1所示:

时间区段	护士数量
$6:00\sim 10:00$	18
$10:00\sim14:00$	20
$14:00\sim18:00$	19
$18:00\sim 22:00$	17
$22:00\sim 6:00$ (次日)	12

该医院护士上班分五个班次,每班8小时,具体上班时间为第一班2:00~10:00,第二班6:00~14:00,第三班10:00~18:00,第四班14:00~22:00,第五班18:00~2:00(次日)。每名护士每周上5个班,并被安排在不同的日子,由一名总护士长负责护士的值班安排。值班方案要做到在人员或经济上比较节省,又做到尽可能合情合理。下面是一些正在考虑中的值班方案:

方案1:每名护士连续上班5天、休息2天、并从上班第一天起按从上第一班到第五班顺序安排。

方案2:考虑到方案1中每名护士在周末(周六、周日)两天内休息安排不均匀,于是规定每名护士在周六、周日两天内安排一天、且只安排一天休息,再在周一至周五期间安排4个班,同样上班的5天内分别顺序安排5个不同班次。

在对方案1、2建立线性规划模型并求解后发现,方案2虽然在安排周末休息上比较合理,但所需值班人员要比方案1有较多增加、经济上不太合算、于是又提出了第3方案。

方案3:在方案2的基础上,动员一部分护士放弃周末休息,即每周在周一至周五间由总护士长给安排三天值班,加周六周日共上五个班,同样五个班分别安排不同班次。作为奖励,规定放弃周末休息的护士,其工资和奖金总额比其他护士增加a%。

根据上述方案,帮助总护士长分析研究:

- (1) 对方案1、2建立使值班护士人数为最少的线性规划模型并求解。
- (2) 对方案3,同样建立使值班护士人数为最少的线性规划模型并求解,然后回答a的值为多大时,第3方案较第2方案更经济。

二、问题分析

从该医院各时间段护士值班表可看出: 五个时间段所需护士人数分别为 18,20,19,17,12。每个护士每周值五个班且安排在不同日子。为了使人员和经济较节省,并且安排合情合理。现制定以下三种方案,通过建立线性规划模型并求解,分析各种方案的最佳安排方式。

方案一:要求每名护士连续工作5天,接着休息两天,从第一天起,按第一班到第五班的顺序依次安排工作。例如从周三起上班,即周三上第一班,周四上第二班....建立线性规划模型并求解使值班护士人数最少。

方案二:由于方案1在周末两天内休息安排不均匀,于是重新规定每名护士在周六周日两天内至少安排一天休息,再通过从第一天起,按第一班到第五班的顺序依次安排工作。同样的建立线性规划模型求解使值班护士人数最少。

方案三:通过方案 1,方案 2 的比较,由于在经济上不太合算,于是又提出了方案 3。首先动员部分护士放弃周末休息,即每周在周一至周五期间工作三天,加周六周日共五个班,同样五个班在不同班次。其他护士每周六周日均休息一天,规定周末不休息的护士其工资和奖金总额比其他护士增加 a%作为奖励。建立线性规划模型求解后,得到 a 的值为多大时,方案三较方案二更经济。

三、模型假设

- 1. 每位护士在一个工作日内只能被安排一个班次。
- 2. 所有护士都有相同的工作效率,即每位护士在任何班次中提供的工作量是相同的。
- 3. 每个班次都必须有足够的护士来满足表格中的需求。
- 4. 护士的工资是根据工作的小时数来计算的,而不考虑具体的班次时间。
- 5. 对于方案3中提到的奖励、假设增加的工资和奖金总额是足够吸引一部分护士放弃周末休息的。

四、模型的建立与求解

4.1 方案一模型的建立与求解

方案一通过顺序安排各个班次的方法来排班的。因此,由题意得出每天各个班次上班的护士人数如下表所示: (xi表示从周 i 开始工作的护工人数)由每个护士上 5 个班次可以看出,每组护士上 5 个班次,而此方案有 35 个班次,共需要 7 组护士。

班次/星期	周一	周二	周三	周四	周五	周六	周日
2:00~10:00	X1	X2	Х3	X4	X5	X6	X7
6:00~14:00	X7	X1	X2	Х3	X4	X5	X6
10:00~18:00	X6	X7	X1	X2	Х3	X4	X5
14:00~22:00	X5	X6	X7	X1	X2	Х3	X4
18:00~2:00(次 日)	X4	X5	X6	X7	X1	X2	Х3

为此,我们可以得到如下的约束关系:

班次/星期	_	=======================================	Ξ	Щ	五	六	日
6: 00-10: 00	X1+x7>=18	X2+x1>=18	x3+x2>=18	x4+x3>=18	X5+x4>=18	X6+x5>=18	X7+x6>=18
10: 00-14: 00	X1+x6>=20	X1+x7>=20	X1+x2>=20	X3+x2>=20	X4+x3>=20	x5+x4>=20	X6+x5>=20
14: 00-18: 00	X6+x5>=19	X7+x6>=19	X1+x7>=19	X2+x1>=19	X3+x2>=19	X4+x3>=19	X5+x4>=19

班次/星期	_	=	三	Щ	£	六	日
18: 00-22: 00	X5+x4>=17	X6+x5>=17	X7+x6>=17	X1+x7>=17	X2+x1>=17	X3+x2>=17	X4+x3>=17
22: 00-6: 00	X4>=12 X2>=12	X5>=12 X3>=12	X6>=12 X4>=12	X7>=12 X5>=12	X1>=12 X6>=12	X2>=12 X7>=12	X3>=12 X1>=12

为了满足题意,我们使用线性规划模型建模如下:

$$egin{aligned} \min f(x) &= x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 \ x_1 + x_7 &\geq 20 \ x_7 + x_6 &\geq 20 \ x_6 + x_5 &\geq 20 \ x_5 + x_4 &\geq 20 \ x_4 + x_3 &\geq 20 \ x_3 + x_2 &\geq 20 \ x_2 + x_1 &\geq 20 \ x_i &\geq 12 (i = 1, 2, \cdots, 7) \end{aligned}$$

使用matlab编写程序求解(源程序见附录),得到结果如下:

```
Solution found:
1
2
     Objective function value: 84
3
     Variables:
         12
4
5
         12
6
         12
7
         12
         12
8
9
         12
         12
1
```

结果表明,最优解为星期一上第一班的班组的人数为12人,星期二上第一班的班组的人数为12人,星期三上第一班的班组的人数为12人,星期四上第一班的班组的人数为12人,星期五上第一班的班组的人数为12人。总人数84人。

4.2 方案二模型的建立与求解

因为每名护士在周六、周日两天里必须工作一天,安排休息一天。周一到周五连续安排4个班,所以可以先安排周末的护士值班情况:周六、周末两天共10个班次,用Xj (j=1,2,3,...10)表示周六周末两天10个班次的护士人数,其中 X1-X5分别代表周六第1个到第5个班次的护士人数,X6-X10分别代表周日从第1个到第5个班次的护士人数。其值班安排表如下:

星期班次	_	=	三	PA	五	六	日
2: 00——10: 00	X ₁₀	X ₅ +X ₉	X ₄ +X ₈	X ₃ +X ₇	X ₂	X ₁	Χ ₆
6: 00——14: 00	X ₆	X ₁ +X ₁₀	X ₅ +X ₉	X ₄ +X ₈	X ₃	X ₂	X ₇
10 : 00——18 : 00	X ₇	X ₂ +X ₆	X ₁ +X ₁₀	X ₅ +X ₉	X ₄	X ₃	X ₈
14: 00——22: 00	X ₈	X ₃ +X ₇	X ₂ +X ₆	X ₁ +X ₁₀	X ₅	X ₄	X ₉

星期班次	_	=	三	四	五	六	H
18: 00——2: 00	X ₉	X ₄ +X ₈	X ₃ +X ₇	X ₂ +X ₆	X ₁	X ₅	X ₁₀

因此,满足如下的约束关系:

星期		二	三	рд	五	六	H
6: 00-10: 00	x10+x6>=18	X1+x5+x9+x10>=1 8	X4+x8+x5+x9>=18	X3+x7+x4+x8>=18	X2+x3>=18	X1+x2>=18	X6+x7>=18
10: 00-14: 00	X6+x7>=20	X1+x2+x6+10>=20	X1+x5+x9+x10>=2 0	X4+x8+x5+x9>=20	X3+x4>=20	X2+x3>=20	X7+x8>=20
14: 00-18: 00	X7+x8>=19	X2+x6+x3+x7>=19	X1+x2+x6+x10>=19	X1+x5+x9+x10>=1 9	X4+x5>=19	X3+x4>=19	X8+x9>=19
18: 00-22: 00	X8+x9>=17	x3+x7+x4+x8>=17	X2+x6+x3+x7>=17	X1+x3+x6+x10>=17	X5+x1>=17	X4+x5>=17	X9+x10>=17
22: 00-6: 00	X9>=12 X5+x9>=12	X4+x8>=12	X3+x7>=12	X3+x6>=12 X2>=12	X1>=12	X5>=12 X6>=12	X10>=12

因此, 我们可以建立下面的数学规划模型:

$$egin{aligned} \min z &= x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{10} \ x_6 + x_{10} &\geqslant 18 \ x_6 + x_7 &\geqslant 20 \ x_3 + x_4 &\geqslant 20 \ x_4 + x_5 &\geqslant 19 \ x_1 + x_5 &\geqslant 17 \ x_1 + x_2 &\geqslant 18 \ x_2 + x_3 &\geqslant 20 \ x_7 + x_8 &\geqslant 20 \ x_8 + x_9 &\geqslant 19 \ x_9 + x_{10} &\geqslant 17 \ x_1 + x_2 + x_6 + x_{10} &\geqslant 20 \ x_1 + x_5 + x_9 + x_{10} &\geqslant 20 \ x_4 + x_5 + x_8 + x_9 &\geqslant 20 \ x_4 + x_8 &\geqslant 12 \ x_3 + x_7 &\geqslant 12 \ x_1 &\geqslant 12 \ x_2 &\geqslant 12 \ x_6 &\geqslant 12 \ x_9 &\geqslant 12 \ x_{10} &\geqslant 12 \ x_1 &\geqslant 12 \ x_2 &\geqslant 12 \ x_1 &\geqslant 12 \ x_2 &\geqslant 12 \ x_1 &\geqslant 12 \ x_1 &\geqslant 12 \ x_1 &\geqslant 12 \ x_2 &\geqslant 12 \ x_1 &\geqslant 12 \ x_1 &\geqslant 12 \ x_1 &\geqslant 12 \ x_2 &\geqslant 12 \ x_1 &\geqslant 12 \ x_1 &\geqslant 12 \ x_2 &\geqslant 12 \ x_1 &\geqslant 12 \ x_1 &\geqslant 12 \ x_2 &\geqslant 12 \ x_1 &\geqslant 12 \ x_1 &\geqslant 12 \ x_2 &\geqslant 12 \ x_1 &\geqslant 12 \ x_2 &\geqslant 12 \ x_1 &\geqslant 12 \ x_1 &\geqslant 12 \ x_2 &\geqslant 12 \ x_2 &\geqslant 12 \ x_3 &\geqslant 12 \ x_1 &\geqslant 12 \ x_2 &\geqslant 12 \ x_3 &\geqslant 12 \ x_1 &\geqslant 12 \ x_2 &\geqslant 12 \ x_2 &\geqslant 12 \ x_3 &\geqslant 12 \ x_3 &\geqslant 12 \ x_3 &\geqslant 12 \ x_1 &\geqslant 12 \ x_2 &\geqslant 12 \ x_3 &\geqslant$$

使用matlab求解,结果如下:

```
Solution found:
2
    Objective function value: 112
    Variables:
3
        12
4
5
        12
        8
6
7
        12
        12
8
9
        12
1
        13
        7
0
1
        12
2
        12
```

4.3 方案三模型的建立与求解

分析方案3的突破口主要有以下几点: 1、一部分护士周末两天都上班,另外一部分护士周末只上一天。 2、连续上班5天,休息2天。3、同样5个班分别安排在不同的班次。因此,先安排周末的值班,设: X1- X5周末两天都上班。X6-X15周末只上一天。对方案3进行分析,以表格的形式将方案3的护士值班安排表示如下表所示:

星期班次	_	=	三	四	五	六	t
2:00-10:00	x4+x15	x3+x14+x10	x2+x13+x9	x12+x8	X7	x1+x6	x5+x11
6:00-14:00	x5+x11	x4+x15+x6	x3+x14+x10	x13+x9	X8	x2+x7	x1+x12
10:00-18:00	x1+x12	x5+x11+x7	x4+x15+x6	x14+x10	X9	x3+x8	x2+x13
14:00-22:00	x2+x13	x1+x12+x8	x5+x11+x7	x15+x6	X10	x4+x9	x3+x14
18:00-2:00	x3+x14	x2+x13+x9	x1+x12+x8	x11+x7	x6	x5+x10	x4+x15

满足下面的约束条件:

星期	_	二	三	四	五	六	日
6: 00-10: 00	X4+x15+x5+x11>=1 8	X3+x14+x10+x4+x1 5+x6>=18	x2+x13+x9+X3+x14 +x10>=18	X12+x8+x13+x9>=1 8	X7+x8>=18	X1+x2+x6+x7>=18	X5+x11+x1+x12>=1 8
10: 00-14: 00	X1+x5+x11+x12>=2 0	X4+x15+x6+x5+x11 +x7>=20	X3+x14+x10+x4+x1 5+x6>=20	X13+x9+x14+x10> =20	X8+x9>=20	X2+x7+x3+x8>=20	X1+x12+x2+x13>=2 0
14: 00-18: 00	X1+x12+x2+x13>=1 9	X5+x11+x7+x1+x12 +x8>=19	X4+x15+x6+x5+x11 +x7>=19	X14+x10+x15+x6> =19	X9+x10>=19	X3+x8+x4+x9>=19	X2+x13++x3+x14> =19
18: 00-22: 00	X2+x13+x3+x14>=1 7	x1+x12+x8+x2+x13 +x9>=17	X5+x11+x7+x1+x12 +x8>=17	X15+x6+x11+x7>=1 7	X10+x6>=17	x4+x9+x5+x10>=1 7	X3+x14+x4+x15>=1 7
22: 00-6: 00	X3+x14>=12 X3+x14+x10>=12	X2+x13+x9>=12	X1+x12+x8>=12 X12+x8>=12	X11+x7>=12 X7>=12	X6>=12 X1+x6>=12	X5+x10>=12 X5+x11>=12	X4+x15>=12

因此, 我们可以建立下面的线性规划模型:

```
\min z = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{10} + x_{11} + x_{12} = x_{13} + x_{14} + x_{15}
x_4 + x_5 + x_{11} + x_{15} \geqslant 18
x_1 + x_5 + x_{11} + x_{12} \geqslant 20
x_4 + x_5 + x_6 + x_7 + x_{11} + x_{15} \geqslant 20
x_1 + x_5 + x_7 + x_8 + x_{11} + x_{12} \geqslant 19
x_3 + x_4 + x_6 + x_{10} + x_{14} + x_{15} \geqslant 20
x_9 + x_{10} + x_{13} + x_{14} \geqslant 20
x_6 + x_{10} + x_{14} + x_{15} \geqslant 19
x_6 + x_7 + x_{11} + x_{15} \geqslant 17
x_7 + x_8 \geqslant 18
x_8 + x_9 \geqslant 20
x_9 + x_{10} \geqslant 19
x_6 + x_{10} \geqslant 17
x_1 + x_2 + x_6 + x_7 \geqslant 18
x_2+x_3+x_7+x_8\geqslant 20
x_1 + x_2 + x_{12} + x_{13} \geqslant 20
x_2 + x_3 + x_{13} + x_{14} \geqslant 19
x_3 + x_4 + x_{14} + x_{15} \geqslant 17
x_8 + x_{12} \geqslant 12
x_5 + x_{11} \geqslant 12
x_3 + x_{14} \geqslant 12
x_2 + x_9 + x_{13} \geqslant 12
x_5+x_{10}\geqslant 12
x_4+x_{15}\geqslant 12
x_6\geqslant 12
x_7 \geqslant 12
x_j\geqslant 0, j=1,2\dots 15
```

使用matlab编程求解,结果如下:

```
Solution found:
1
2
     Objective function value: 84
    Variables:105
3
4
         7
5
6
         0
7
         12
         7
8
9
         12
         12
1
0
         6
1
         14
2
         5
3
         5
         6
4
5
         0
8
         12
          0
7
```

五、结果分析

5.1 方案一的结果

根据前文所述, 方案一的结果如下:

	星期一	星期二	星期三	星期四	星期五	星期六	星期天
第一班	12	12	12	12	12	12	12
第二班	12	12	12	12	12	12	12
第三班	12	12	12	12	12	12	12
第四班	12	12	12	12	12	12	12
第五班	12	12	12	12	12	12	12

5.2 方案二的结果

根据前文所述, 方案二的结果如下:

	星期一	星期二	星期三	星期四	星期五	星期六	星期天
第一班	12	12 + 12	12 + 7	8 + 13	12	12	12
第二班	12	12 + 12	12 + 12	12 + 7	8	12	13
第三班	13	12 + 12	12 + 12	12 + 12	12	8	7
第四班	7	8 + 13	12 + 12	12 + 12	12	12	12
第五班	12	12 + 7	8 + 13	12 + 12	12	12	12

5.3 方案三的结果

	星期一	星期二	星期三	星期四	星期五	星期六	星期天
第一班	12 + 0	0 + 12 + 5	7 + 0 + 14	6+6	12	7+12	7+5
第二班	7+5	12+0+12	0 + 12 + 5	0 + 14	6	7+12	7+6
第三班	7+6	7 + 5 + 12	12+0+12	12 + 5	14	0 + 6	7+0
第四班	7+0	7 + 6 + 6	7+5+12	0 + 12	5	12+14	0+12
第五班	0 + 12	7 + 0 + 14	7 + 6 + 6	5 + 12	12	7 + 5	12 + 0

作为奖励,规定放弃周末休息的护士,其工资和奖金总额比其他护士增加 a%,我们有:

$$33 \times (1 + a\%) + 72 \le 112$$

解得:

$$a \leq 21.2121\%$$

结果表明:放弃周末休息的护士,其工资和奖金总额比其他护士增加的值小于等于21.21%时,方案三较方案二更经济。

6.1 问题一的matlab代码:

```
1
     % Objective function coefficients
2
     f = [1 1 1 1 1 1 1];
 3
     % Inequality constraints
 4
     A = [
 5
 6
        -1 0 0 0 0 0 -1;
7
         -1 -1 0 0 0 0 0;
8
          0 -1 -1 0 0 0 0;
          0 0 -1 -1 0 0 0;
9
          0 0 0 -1 -1 0 0;
10
11
          0 0 0 0 -1 -1 0;
          0 0 0 0 0 -1 -1;
12
     ];
13
     b = [-20; -20; -20; -20; -20; -20; -20];
14
15
     % Bounds
16
     lb = [12; 12; 12; 12; 12; 12; 12];
17
18
     ub = [];
19
     % Integer constraints (all variables are integers)
20
21
     intcon = 1:7;
22
     % Options (optional)
23
24
     options = optimoptions('intlinprog', 'Display', 'off');
25
     % Solve the problem
26
27
     [x,fval,exitflag,output] = intlinprog(f,intcon,A,b,[],[],lb,ub,options);
28
29
     % Display the results
     if exitflag = 1
30
         disp('Solution found:');
31
         disp(['Objective function value: ', num2str(fval)]);
32
33
         disp('Variables:');
34
         disp(x);
35
     else
         disp('No feasible solution found.');
36
37
     end
```

6.2 方案二的matlab代码:

```
1
      A = [
 2
          0, 0, 0, 0, 0, 1, 0, 0, 0, 1;
          0, 0, 0, 0, 0, 1, 1, 0, 0, 0;
 3
 4
          0, 0, 1, 1, 0, 0, 0, 0, 0, 0;
 5
          0, 0, 0, 1, 1, 0, 0, 0, 0, 0;
          1, 0, 0, 0, 1, 0, 0, 0, 0, 0;
 6
 7
          1, 1, 0, 0, 0, 0, 0, 0, 0, 0;
          0, 1, 1, 0, 0, 0, 0, 0, 0, 0;
 8
 9
          0, 0, 0, 0, 0, 0, 1, 1, 0, 0;
10
          0, 0, 0, 0, 0, 0, 0, 1, 1, 0;
11
          0, 0, 0, 0, 0, 0, 0, 0, 1, 1;
12
         1, 1, 0, 0, 0, 1, 0, 0, 0, 1;
13
          1, 0, 0, 0, 1, 0, 0, 0, 1, 1;
14
          0, 0, 0, 1, 1, 0, 0, 1, 1, 0;
          0, 0, 0, 1, 0, 0, 0, 1, 0, 0;
15
          0, 0, 1, 0, 0, 0, 1, 0, 0, 0;
16
17
      ];
18
      b = [18, 20, 20, 19, 17, 18, 20, 20, 19, 17, 20, 20, 20, 12, 12]';
      lb = [12, 12, 0, 0, 12, 12, 0, 0, 12, 12]';
19
20
      f = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]';
21
      % Solve the problem
22
      [x,fval] = linprog(f,-A,-b,[],[],lb);
23
24
      disp('Solution found:');
25
      disp(['Objective function value: ', num2str(fval)]);
26
27
      disp('Variables:');
      disp(x)
28
29
```

8.3 方案三的matlab代码

```
% 定义约束矩阵 A 和向量 b
2
     A = [
         -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1;
3
4
         -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0;
5
         0, 0, 0, -1, -1, -1, -1, 0, 0, 0, -1, 0, 0, 0, -1;
         -1, 0, 0, 0, -1, 0, -1, -1, 0, 0, -1, -1, 0, 0, 0;
6
7
         0, 0, -1, -1, 0, -1, 0, 0, 0, -1, 0, 0, 0, -1, -1;
8
         0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, -1, -1, 0;
9
         0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, -1, -1;
         0, 0, 0, 0, 0, -1, -1, 0, 0, 0, -1, 0, 0, 0, -1;
10
11
         0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0;
         0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0;
12
```

```
13
         0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0;
14
         0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0;
15
         -1, -1, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0;
         0, -1, -1, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0;
16
17
         -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0;
18
         0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0;
19
         0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1;
20
         0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0;
21
         0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0;
22
         0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0;
23
         0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0;
24
         0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0;
25
         0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1;
         0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0;
26
27
         0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0;
28
     ];
29
     b = -[
30
31
         18, 20, 20, 19, 20, 20, 19, 17, 18, 20, 19, 17, 18, 20, 20,
32
         19, 17, 12, 12, 12, 12, 12, 12, 12, 12
33
     ]';
34
35
     % 定义目标函数系数向量 f
     f = ones(15, 1);
36
37
38
     % 定义变量的下界 lb
39
     lb = zeros(15, 1); % 因为所有的 x_j \ge 0
     lb(6) = 12; \% x_6 \ge 12
40
     lb(7) = 12; \% x_7 \ge 12
41
42
     % Options (optional)
43
     options = optimoptions('intlinprog', 'Display', 'off');
44
45
46
     % Solve the problem
47
      [x,fval,exitflag,output] = intlinprog(f,intcon,A,b,[],[],lb,ub,options);
48
     disp('Solution found:');
49
50
     disp(['Objective function value: ', num2str(fval)]);
51
     disp('Variables:');
     disp(x)
52
53
```