Лекция 6

8 октября 2024

Теорема 1 – Об арифметических свойствах пределов

Пусть f(x) и g(x) определены в проколотой окрестности точки a. Пусть $\exists \lim_{x \to a} f(x) = b, \exists \lim_{x \to a} g(x) = c$.

- 1. $\exists \lim_{x \to a} (f(x) \pm g(x)) = b \pm c$.
- 2. $\exists \lim_{x \to a} (f(x) \cdot g(x)) = b \cdot c$.
- 3. Если $c \neq 0$, то в некоторой проколотой окрестности точки a определена функция $\frac{f(x)}{g(x)}$, причем $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x)}{g(x)}$.

Доказательство пункта 1.

- 1. В силу леммы 1, $f(x) = b + \alpha(x)$, $g(x) = c + \beta(x)$, где $\alpha(x)$ и $\beta(x)$ бесконечно малые функции в точке a.
- 2. Тогда $f(x) \pm g(x) = b \pm c + (\alpha(x) \pm \beta(x)) = b \pm c + \gamma(x)$, где $\gamma(x)$ бесконечно малая в силу теоремы 2 функция.
- 3. Согласно лемме 2: $\lim_{x\to a}(f(x)\pm g(x))=b\pm c$.

Доказательство пункта 3.

- 1. Без ограничения общности положим c > 0.
- 2. Возьмем $\varepsilon = \frac{c}{2}$. По определению предела: $\exists \delta(\varepsilon) > 0: \forall x \in \{0 < |x-a| < \delta\} \implies |g(x)-c| < \varepsilon$.
- 3. $c-\varepsilon < g(x) < c+\varepsilon \iff \frac{c}{2} < g(x) < \frac{3c}{2} \implies g(x) \neq 0$ в проколотой δ -окрестности определена функция $\frac{f(x)}{g(x)}$.
- 4. Используя равенства $f(x) = b + \alpha(x)$, $g(x) = c + \beta(x)$, получим $\frac{f(x)}{g(x)} \frac{b}{c} = \left(\frac{b + \alpha(x)}{c + \beta(x)}\right) \frac{b}{c} = \frac{\gamma(x)}{c \cdot g(x)}$, где $\gamma(x)$ бесконечно малая функция.
- 5. Функция $\frac{1}{c \cdot g(x)}$ ограничена в проколотой δ-окрестности точки $a.\ g(x) > \frac{c}{2} \implies \frac{1}{c \cdot g(x)} \in \left(0, \frac{2}{c^2}\right) \implies \frac{f(x)}{g(x)} \frac{b}{c} = \xi(x)$ (бесконечно малая).
- 6. В силу леммы 2: $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{b}{c}$.

<u>Замечание:</u> теорема 1 справедлива также и для односторонних пределов и пределов при $x \to \infty$ (в частности она справедлива и для числовых последовательностей).

1

Утверждение 1

$$\lim_{x \to a} (c \cdot f(x)) = c \cdot \lim_{x \to a} f(x).$$

Определение 1

Пусть $P_n(x)$ и $Q_m(x)$ — алгебраические многочлены степеней n и m соответственно. Тогда $f(x) = \frac{P_n(x)}{Q_m(x)}$ называется рациональной функцией или дробью.

Утверждение 2

Если $Q_m(x)$ в точке a отличен от нуля, то $\lim_{x\to a} f(x) = \frac{P_n(a)}{Q_m(a)}$.

Теорема 2 - О предельном переходе в неравенствах

Если в некоторой проколотой окрестности точки a выполянется неравенство $f(x) \ge c$ ($f(x) \le c$), и при этом существует предел $\lim_{x\to a} f(x) = b$, то $b \ge c$ ($b \le c$).

Доказательство.

- 1. Предположим противное: b < c.
- 2. Возьмем $\varepsilon > 0$ столь малым, что $b + \varepsilon < c$.
- 3. По определению предела: $\exists \delta(\varepsilon) > 0 : \forall x \in \{0 < |x a| < \delta\} \implies |f(x) b| < \varepsilon \iff b \varepsilon < f(x) < b + \varepsilon$.
- 4. Тем самым в некоторой проколотой δ -окрестности точки a одновременно $f(x) \geq c$ и $f(x) < b + \varepsilon < c$. Получено противоречие.

<u>Замечание:</u> теорема 2 справедлива также для односторонних пределов и пределов при $x \to \infty$ (в частности она справедлива и для числовых последовательстей).

Теорема 3 - О пределе последовательности

Если $\forall n \in \mathbb{N} : c \leq x_n \leq b$ и $\exists \lim_{n \to \infty} x_n = a$, то $c \leq a \leq b$.

Замечание: из условия f(x) > c не следует, что $\lim_{x \to a} f(x) > c$.

Пример. $f(x) = \frac{1}{x} > 0$ при $x \to 0$, но $\lim_{x \to \infty} f(x) = 0$.

Теорема 4 – О двух милиционерах

Если в проколотой окрестности точки a выполняются неравенства $f(x) \leq g(x) \leq h(x)$ и $\exists \lim_{x \to a} f(x) = \lim_{x \to a} h(x) = c$, то $\exists \lim_{x \to a} g(x) = b$.

Доказательство.

- 1. Зададим произвольное $\varepsilon > 0$.
- 2. По определению предела: $\exists \delta(\varepsilon) > 0: \forall x \in \{0 < |x-a| < \delta\} \implies |f(x)-b| < \varepsilon$ и $|h(x)-b| < \epsilon$.
- 3. $f(x) \leq g(x) \leq h(x) \iff f(x) b \leq g(x) b \leq h(x) b \implies |g(x) b| < \varepsilon$ при $x \in \{0 < |x a| < \delta\} \implies \lim g(x) = b$.

 $\underline{3}$ амечание: теорема справедлива для односторонних пределов, пределов при $x \to \infty$ и числовых последовательностей.

1 Предел монотонной функции

Определение 2

Функця f(x) называется

- (a) возрастающей, если $\forall x_1, x_2 \in D(f) : x_1 < x_2 \implies f(x_1) < f(x_2)$.
- (б) убывающей, если $\forall x_1, x_2 \in D(f) : x_1 < x_2 \implies f(x_1) > f(x_2)$.
- (в) невозрастающей, если $\forall x_1, x_2 \in D(f) : x_1 < x_2 \implies f(x_1) \ge f(x_2)$.
- (г) неубывающей, если $\forall x_1, x_2 \in D(f) : x_1 < x_2 \implies f(x_1) \le f(x_2)$.

Замечание: функции (в) и (г) называеюся монотонными; (а) и (б) — строго монотонными.

Пример 1. $f(x) = x^2$ строго монотонная на $[0, +\infty)$.

Пример 2. f(x) = [x] не убывает на \mathbb{R} .

Теорема 5 – Обобщение теоремы Вейерштрасса

Если функция f(x) монотонна и ограничена на $x \geq a$, то $\exists \lim_{x \to +\infty} f(x)$.

Доказательство.

Без ограничения общности рассмотрим случай, когда f(x) не убывает на $[a, +\infty)$ и ограничена сверху на этом множестве. Область значений такой функции представляет собой ограниченное (сверху) числовое множество \Longrightarrow $\sup_{x \in [a, +\infty)} f(x) = b$.

- 1. Зададим произвольное $\varepsilon > 0$. Рассмотрим число $b \varepsilon$.
- 2. По определению супремума: $\exists A \in [a, +\infty) : f(A) > b \varepsilon$.
- 3. Так как f(x) не убывает, то $f(x) \ge f(A)$ при $x > A \implies f(x) > b \varepsilon$ при x > A.
- 4. Получаем, что $b-f(x)<\varepsilon$ при x>A или $|f(x)-b|<\varepsilon$ при $x>A \implies \lim_{x\to +\infty}f(x)=b$.

Замечание: теорема справедлива для односторонних пределов.