Sciences Industrielles de l'Ingénieur

Modéliser le comportement des systèmes mécaniques dans le but d'établir une loi de comportement ou de déterminer des actions mécaniques en utilisant le PFD

Chapitre 4 - Méthodologie: détermination des équations de mouvement

TD 02

Dynamique d'un Segway de première génération *

Frédéric SOLLNER - Lycée Mermoz - Montpellier

Savoirs et compétences :

Présentation

Objectif L'objectif est de valider l'exigence 1 : permettre à l'utilisateur de se déplacer sur le sol.

Étude du dérapage en virage du véhicule Segway

Question 1 Exprimer la vitesse, notée $\overline{V(G_E/\mathscr{R}_0)}$, du point G_E dans son mouvement par rapport à \mathscr{R}_0 en fonction $de \dot{\theta} et R_C$.

Correction On a
$$\overrightarrow{V(G_E/\mathcal{R}_0)} = -R_C \dot{\theta} \overrightarrow{x_1}$$
.

Question 2 Exprimer l'accélération, notée $\overline{\Gamma(G_E/\mathcal{R}_0)}$, du point G_E dans son mouvement par rapport à \mathcal{R}_0 en fonction de $\dot{\theta}$ et R_C .

Question 3 Exprimer les conditions d'adhérence liant T_A , T_B , N_A , N_B et f traduisant le non glissement du véhicule. En déduire une inéquation liant $T_A + T_B$ à f et $N_A + N_B$.

Correction La direction des efforts normaux et tangentiels est donnée. En utilisant les lois de Coulomb, on a donc, $T_A \le f N_A$ et $T_B \le f N_B$. En sommant les inégalités, on a donc $T_A + T_B \le f (N_A + N_B)$.

Question 4 Isolez E et les roues. Écrire le théorème de la résultante dynamique en projection sur $\overrightarrow{z_0}$. En déduire une inéquation liant $T_A + T_B \ a \ f$, m_F et g.

Correction *E* étant un ensemble indéformable, on a : $\overline{R_d(E/\Re_0)} = -m_E R_C \dot{\theta}^2 \overrightarrow{y_1}$ (pas de projection sur $\overrightarrow{z_0}$. On isole E et les roues et on réalise le BAME :

- pesanteur sur E;
- action du sol sur les roues.

En appliquant le TRD en projection sur $\overrightarrow{z_{01}}$, on a donc : $N_A + N_B - m_E g = 0$.

En conséquence, $T_A + T_B \le f m_E g$.

Question 5 Isolez E et les roues. Écrire le théorème de la résultante dynamique en projection sur $\overrightarrow{y_1}$. En déduire une inéquation donnant la vitesse limite V_L de passage dans un virage qui ne provoque pas le dérapage.

Correction En appliquant le TRD en projection sur $\overrightarrow{y_1}$, on a : $-T_A - T_B = -m_E R_C \dot{\theta}^2 \iff T_A + T_B = m_E R_C \dot{\theta}^2$. En utilisant les résultats de la question précédente, $m_E R_C \dot{\theta}^2 \le f m_E g$. En notant $V_L = R_C \dot{\theta}$ la vitesse limite avant dérapage, on a $\frac{V_L^2}{R_C} \le f g$. On a donc $V_L = \sqrt{R_C f g}$.

1

Question 6 Faire les applications numériques nécessaires et vérifiez la conformité au cahier des charges.

Correction La vitesse limite est donc de 10 m s⁻¹ soient 36 km h⁻¹ ce qui satisfait le cahier des charges.

Étude du renversement en virage du véhicule Segway

Question 7 Calculez le torseur dynamique du système matériel E en G_E dans son mouvement par rapport au référentiel $\mathcal{R}_0 = (O; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$. Exprimez ses composantes dans la base $\mathcal{B}_1 = (\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$.

Question 8 Calculez $\overline{\delta(B, E/\mathcal{R}_0)} \cdot \overrightarrow{x_1}$ le moment dynamique au point B de l'ensemble (E) dans son mouvement par rapport au référentiel $\mathcal{R}_0 = (O; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ en projection sur $\overrightarrow{x_1}$.

Question 9 En appliquant le théorème du moment dynamique au point B à l'ensemble E et les roues dans leur mouvement par rapport à \mathcal{R}_0 , en projection sur $\overrightarrow{x_1}$, écrire l'équation scalaire qui donne N_A en fonction de $\overline{\delta(B, E/\mathcal{R}_0)} \cdot \overrightarrow{x_1}$ et des données du problème.

Correction On a:

- $\overrightarrow{BG_E} \wedge -m_E g \overrightarrow{z_{01}} = (-l \overrightarrow{y_1} + h \overrightarrow{z_0}) \wedge -m_E g \overrightarrow{z_{01}} = l m_E g \overrightarrow{x_1};$
- $\overrightarrow{BA} \wedge (-T_A \overrightarrow{y_1} + N_A \overrightarrow{z_1}) = -2l \overrightarrow{y_1} \wedge (-T_A \overrightarrow{y_1} + N_A \overrightarrow{z_1}) = -2l N_A \overrightarrow{x_1}$.

En appliquent le TMD en B suivant $\overrightarrow{x_1}$, on a : $lm_E g - 2lN_A = (D + hm_E R_C)\dot{\theta}^2$.

Au final,
$$N_A = \frac{l m_E g - (D + h m_E R_C) \dot{\theta}^2}{2l}$$
.

Question 10 Écrire la condition de non renversement du véhicule.

Correction Pour qu'il y ait non renversement, N_A doit rester positif ou nul.

On néglige $I_{G_E}(E)$ pour simplifier l'application numérique.

Question 11 Faire les applications numériques nécessaires et vérifiez la conformité au cahier des charges.

Correction
$$N_A \simeq \frac{l \, m_E g - h \, m_E R_C \dot{\theta}^2}{2l} \ge 0$$
. Ce qui est positif (pas de basculement).