Existence et unicité de mesures de Gibbs pour des dynamiques hyperboliques.

Dorian

22 décembre 2024

I.

Partition de Markov

Soit f un endomorphisme linéaire bijectif de $E = \mathbf{R}^n$. On pose $\operatorname{Sp}_- f = \{\lambda \in \operatorname{Sp} f \mid |\lambda| < 1\}$ et $\operatorname{Sp}_+ = \{\lambda \in \operatorname{Sp} f \mid |\lambda| > 1\}$. On peut maintenant définir le sous-espace stable E_s et le sous-espace instable E_u de f par

$$\begin{cases} E_s &= \bigoplus_{\lambda \in \operatorname{Sp}_- f} E_{\lambda}(f), \\ E_u &= \bigoplus_{\lambda \in \operatorname{Sp}_+ f} E_{\lambda}(f), \end{cases}$$

On dira qu'une norme $\|\cdot\|$ est adaptée à f si pour tout $v_s \in E_s$ et $v_u \in E_u$ on a

$$||v_s + v_u|| = \max\{||v_s||, ||v_u||\}.$$

On introduit maintenant les endomorphismes linéaires du tore $\mathbf{T}^n = \mathbf{R}^n/\mathbf{Z}^n$. Pour ce faire, dans toute la suite on notera $p \colon \mathbf{R}^n \longrightarrow \mathbf{T}^n$ la projection de \mathbf{R}^N sur le tore. De plus, si $\|\cdot\|$ est une norme sur R^n , on définit la distance quotient d sur le tore donnée par

$$\forall x, y \in \mathbf{T}^n, d(x, y) = \inf \{ ||u - v|| \mid u, v \in \mathbf{R}^n, p(u) = x, p(v) = y \}.$$

Proposition 1. Soit M une matrice de taille $n \times n$ et $f = f_M$ l'endomorphisme associé à M. Si M est à coefficients entiers, alors f se factorise en un endomorphisme du tore \mathbf{T}^n .

Preuve. Si M est à coefficients entiers, si on considère $x \in \mathbf{R}^n, y \in \mathbf{Z}^n$ alors $M(x+y) = Mx + My \in Mx + \mathbf{Z}^n$, et donc $M(x+y) \equiv Mx$ dans \mathbf{T}^n . Ainsi f se factorise sur le tore en $\tilde{f}(x) = Mx \pmod{1}$, de sorte que $p \circ f = \tilde{f} \circ p$.

Proposition 2. Soit $M \in M_n(\mathbf{Z})$. Alors M est inversible dans $M_n(\mathbf{Z})$ si et seulement si det $M = \pm 1$.

Definition 3. Soit M une matrice à coefficients entiers. On dit qu'une matrice inversible M est hyperbolique si elle possède n valeurs propres (comptées avec leur multiplicité) de module différent de 1 ie. Sp $f \cap \mathbf{S}^1 = \emptyset$ et que $E = E_s \oplus E_u$.

On dit qu'un automorphisme $f = f_M$ du tore \mathbf{T}^n est hyperbolique si la matrice M est hyperbolique et de déterminant ± 1 .

Remarque. D'un point de vue géométrique, un automorphisme hyperbolique dilate l'espace E_u et contracte E_s .

Désormais, dans toute la suite on notera f un automorphisme hyperbolique du tore \mathbf{T}^n associé à la matrice M et $\|\cdot\|$ une norme adaptée à la décomposition de cette matrice en somme de sous-espaces stable et instable.

Definition 4. Soit (x_i) une suite de points du tore.

— On dit que (x_i) est une η -pseudo-orbite si

$$\forall i \in \mathbf{Z}, d(f(x_i), x_{i+1}) \le \eta.$$

— On dit que (x_i) est ε -pistée par l'orbite du point $x \in \mathbf{T}^n$ si

$$\forall i \in \mathbf{Z}, d(f^i(x), x_i) < \varepsilon.$$

Lemma 5 (Lemme de pistage). Pour $\varepsilon > 0$, il existe un $\eta > 0$ tel que si (x_i) est une η -pseudoorbite, alors il existe un unique point $x \in \mathbf{T}^n$ tel que (x_i) est ε -pistée par l'orbite de x.

On peut trouver une preuve de ce lemme dans [?]

Definition 6. Soit $\varepsilon > 0$ et $x \in \mathbf{T}^n$. La variété stable locale de f en x, notée $W^s_{\varepsilon}(x)$, est définie par

$$W_{\varepsilon}^{s}(x) = \{ y \in \mathbf{T}^{n} \mid \forall n \geq 0, d(f^{n}(x), f^{n}(y)) \leq \varepsilon \},$$

et la variété instable locale de f en x, notée $W^u_{\varepsilon}(x)$, donnée par

$$W_{\varepsilon}^{u}(x) = \{ y \in \mathbf{T}^{n} \mid \forall n \leq 0, d(f^{n}(x), f^{n}(y)) \leq \varepsilon \}.$$

Remarque. La variété stable de f en un point x donne l'ensemble des points du tore qui ont le même "futur" que x pour la dynamique donnée par f, et la variété instable de f donne les points qui ont le même "passé" que x pour f. On peut alors remarquer que pour que deux points aient le même futur, il est nécessaire que ces deux points soient dans le même sous-espace affine dirigé par E_s . Pour que deux points aient le même passé, il faut qu'ils soient sur le même sous-espace affine dirigé par E_u .

Proposition 7. Soit $\varepsilon > 0$ et deux points x, y du tore et $u, v \in \mathbf{R}^n$ tels que p(u) = x, p(v) = y. Alors $W^s_{\varepsilon}(x) = p(B(u, \varepsilon) \cap (u + E_s))$ et $W^u_{\varepsilon}(x) = p(B(u, \varepsilon) \cap (u + E_u))$.

Proposition 8. Soit $\varepsilon > 0$ et $x, y \in \mathbf{T}^n$. Alors

- 1. $f(W_{\varepsilon}^{s}(x)) \subseteq W_{\varepsilon}^{s}(f(x))$ et $f(W_{\varepsilon}^{u}(x)) \supseteq W_{\varepsilon}^{u}(f(x))$,
- 2. si $d(x,y) \leq \varepsilon$, alors $W^s_{\varepsilon}(x) \cap W^u_{\varepsilon}(y)$ est un singleton, et on note [x,y] son unique élément,

3. l'application $(x,y) \mapsto [x,y]$ est continue et on l'appelle produit local.

Preuve. Soit $y \in W^s_{\varepsilon}(x)$, alors pour tout $n \geq 0$, on a $d(f^n(x), f^n(y)) \leq \varepsilon$. En particulier, pour tout $n \geq 0$, $d(f^n(f(x)), f^n(f(y))) \leq \varepsilon$, d'où $f(y) \in W^s_{\varepsilon}(f(x))$. De même pour l'inclusion pour les variétés instables, ce qui prouve le premier point.

Supposons que $d(x,y) \leq \varepsilon$, on considère alors $u,v \in \mathbf{R}^n$ comme dans la proposition précédente et vérifiant $||u-v|| \leq \varepsilon$. Alors $\{w\} = (u+E_s) \cap (v+E_u)$ est un singleton, car $E_s \oplus E_u = \mathbf{R}^n$ et donc $E_s \cap E_u = \{0\}$. De plus $w \in B(u,\varepsilon) \cap B(v,\varepsilon) \neq \emptyset$ car $u-w \in E_s$ et $v-w \in E_u$

$$||u - w|| \le \max\{||u - w||, ||v - w||\} = ||u - w + w - v|| \le \varepsilon.$$

Ainsi, $p(w) \in W^s_{\varepsilon}(x) \cap W^u_{\varepsilon}(y)$ et c'est le seul élément dans cette intersection.

Pour la continuité du produit local, remarquons pour que $[x,y] \in B(z,\delta)$ alors $x \in B(z,r)$ et $y \in B(z,r)$ où $r = \min\{\varepsilon, \delta\}$, et $d(x,y) \le \varepsilon$.

Definition 9. Soit $\mathcal{R} \subseteq \mathbf{T}^n$. On dit que \mathcal{R} est un rectangle dès lors que

$$\forall x, y \in \mathcal{R}, \ [x, y] \in \mathcal{R}.$$

On dira que \mathcal{R} est un rectangle propre si c'est un rectangle et que $\mathcal{R} = \overline{\mathring{\mathcal{R}}}$.

De plus, quand \mathcal{R} est un rectangle, on notera

$$W^s_{\mathcal{R}}(x) = W^s_{\varepsilon}(x) \cap \mathcal{R} \quad \text{et} \quad W^u_{\mathcal{R}}(x) = W^u_{\varepsilon}(x) \cap \mathcal{R}.$$

Proposition 10. Soit R un rectangle de \mathbf{T}^n . Alors en identifiant par rapport aux sous-espaces stables et instables, on peut décomposer le bord de R sous la forme $\partial R = \partial^s R \cup \partial^u R$, avec $\partial^s R = \{x \in R \mid W^s_{\varepsilon}(x) \cap \operatorname{Int} R = \emptyset\}$ et $\partial^u R = \{x \in R \mid W^u_{\varepsilon}(x) \cap \operatorname{Int} R = \emptyset\}$.

On peut enfin introduire la notion de partition de Markov, qui permet de coder la dynamique de f dans un espace de Bernoulli.

Definition 11. Une partition de Markov de \mathbf{T}^n est un recouvrement fini $\mathcal{R} = (R_i)$ de \mathbf{T}^n par des rectangles propres vérifiant :

- 1. pour tout $i \neq j$, on a $\mathring{R}_i \cap \mathring{R}_j = \emptyset$,
- 2. si $x \in \mathring{R}_i$ et $f(x) \in \mathring{R}_j$, alors

$$\begin{cases} f(W_{R_i}^s(x)) \subseteq W_{R_j}^s(f(x)), \\ f(W_{R_i}^u(x)) \supseteq W_{R_j}^u(f(x)). \end{cases}$$

De plus, la matrice d'incidence A (dont les coefficients sont dans $\{0,1\}$) associé à la partition de Markov \mathcal{R} est donnée par

$$A_{i,j} = 1 \iff f(\mathring{R}_i) \cap \mathring{R}_j \neq \emptyset.$$

Theorem 12. Soit $\mathcal{R} = (R_i)_{1 \leq i \leq m}$ une partition de Markov et (Σ_A, σ) l'espace de Bernoulli associé à la matrice d'incidence A de la partition \mathcal{R} . Alors,

- 1. pour $\omega \in \Sigma_A$, l'intersection $\bigcap_{i \in \mathbf{Z}} f^{-i}(R_{\omega_i})$ est un singleton et on note $\pi(\omega)$ cet unique élément,
- 2. l'application $\pi \colon \Sigma_A \longrightarrow \mathbf{T}^n$ est continue, surjective et $f \circ \pi = \pi \circ \sigma$,
- 3. si $\mu \in \mathcal{M}_{\sigma}(\Sigma_A)$ est ergodique de support Σ_A , alors

$$\mu \left\{ \omega \in \Sigma_A \mid \operatorname{Card} \pi^{-1}(\pi(\omega)) > 1 \right\} = 0.$$

De cette manière, on peut considérer que π est injective quitte à retirer un ensemble de mesure nulle pour certaines mesures (en particulier la mesure de Gibbs de la section précédente). La dynamique de f sur le tore peut alors être codée par un sous-décalage de Σ_m , permettant ainsi une étude plus simple de cette dynamique, et notamment de munir ces systèmes de mesures de probabilités. En effet si μ est la mesure de Gibbs sur Σ_A , alors la mesure $\pi_*\mu$ vérifie des propriétés sur le tore semblable à celle vérifiée sur Σ_A .

Preuve du théorème 12. Soit $\omega \in \Sigma_A$. Posons $K_n(\omega) = \bigcap_{i=-n}^n f^{-i}(R_{\omega_i})$ qui est un compact non vide pour tout $n \geq 1$. De plus la suite $(K_n(\omega))_{n\geq 1}$ est décroissante. Ainsi, en tant qu'intersection décroissante de compact non vide,

$$K = \bigcap_{i \in \mathbf{Z}} f^{-i}(R_{\omega_i}) = \bigcap_{i \ge 1} K_i(\omega)$$

est un compact non vide de \mathbf{T}^n . Reste à vérifier que K contient au plus un élément. Supposons par l'absurde que $x, y \in K$, alors pour tout $i \in \mathbf{Z}$ on a, en supposant que les rectangles de la partition de Markov sont de diamètre au plus ε ,

$$d(f^i(x), f^i(y)) \le \varepsilon,$$

donc les deux points ont des orbites que se ε -pistent, et par le lemme de pistage il ne peut y en avoir qu'un. D'où x = y, et finalement K est un singleton et $\pi(\omega)$ est son unique élément.

Ensuite, π vérifie la relation de semi-conjugaison car

$$K(\sigma\omega) = \bigcap_{i \in \mathbf{Z}} f^{-i}(R_{\omega_{i+1}}) = f(\bigcap_{i \in \mathbf{Z}} f^{-i}(R_{\omega_i})) = f(K(\omega)),$$

et donc $\pi \circ \sigma = f \circ \pi$.

Concernant la surjectivité de π , soit $x \in \mathbf{T}^n$. On pose alors $\omega \in \Sigma_A$ de sorte que $f^i(x) \in R_{\omega_i}$, ce qui est possible car \mathcal{R} est un recouvrement de \mathbf{T}^n et un tel ω est bien dans Σ_A par construction de Σ_A . Ainsi $x \in \bigcap_{i \in \mathbf{Z}} f^{-i}(R_{\omega_i}) = \{\pi(\omega)\}$.

Pour la continuité de π , si on considère une boule B centrée en x et de rayon r>0, alors, il existe $N\in {\bf N}$ tel que

$$\operatorname{diam}\left(\bigcap_{-N\leq i\leq N} f^{-i}(R_{\omega_i})\right) \leq r.$$

Ce dernier ensemble est bien un ouvert de Σ_A donc un voisinage de ω et $\pi(K_N(\omega)) \subseteq B$.

Il reste encore le point (3) à démontrer. Soit μ une mesure de probabilité σ -invariante, ergodique et de support Σ_A . Alors $\nu = \pi_* \mu$ la mesure image de μ par π est aussi ergodique,

f-invariante et de support \mathbf{T}^n . Si on note $Z = \{x \in \mathbf{T}^n \mid \operatorname{Card} \pi^{-1}(x) > 1\}$, alors le point (3) est équivalent à $\nu(Z) = 0$. Nécessairement, $Z \subseteq \bigcup_{i \in \mathbf{Z}} f^i(\partial \mathcal{R})$, il suffit donc de montrer que ce dernier est de mesure nulle pour ν . On note $\partial \mathcal{R} = \partial^u \mathcal{R} \cup \partial^s \mathcal{R}$, où $\partial^s \mathcal{R} = \bigcup_{R \in \mathcal{R}} \partial^s R$ et de même pour $\partial^u \mathcal{R}$. Or par la propriété (2) des partitions de Markov, $f(\partial^s \mathcal{R}) \subseteq \partial^s \mathcal{R}$, et donc la suite $(f^i(\partial^s \mathcal{R}))_i$ est décroissante, d'où par continuité décroissante et invariance de ν par rapport à f:

$$\nu\left(\bigcap_{i\geq 0} f^i(\partial^s \mathcal{R})\right) = \lim_{i\to\infty} \nu\left(f^i(\partial^s \mathcal{R})\right) = \nu(\partial^s \mathcal{R}).$$

Or l'ensemble $F = \bigcap_{i \geq 0} f^i(\partial^s \mathcal{R})$ vérifie $f^{-1}(F) = F$, donc par ergodicité de ν , il est ou bien de mesure nulle ou égale à 1, cette dernière possibilité est exclue car ν est de support \mathbf{T}^n et F est strictement inclus dans le tore. Donc $\nu(F) = 0$, c'est-à-dire que $\nu(\partial^s \mathcal{R}) = 0$. On fait de même pour $\partial^u \mathcal{R}$ et on en conclut que $0 = \nu(\partial \mathcal{R}) \geq \nu(Z)$. Finalement, on a bien $\nu(Z) = 0$.