3. ヒープ (ソートの基礎)

水谷 健太郎

非常勤講師 東京大学 大学院新領域創成科学研究科 特任助教

mizutani-kentaro@aoni.waseda.jp

2019年10月21日

前回の内容

- 「リスト構造」と呼ばれるデータ構造について学習した
 - データ+ポインタ
- 「配列」と「リスト構造」との違いを学習した
 - 配列:添え字を使ってデータにランダムにアクセスできるリスト:先頭(または末尾)から順に辿っていくことしかできない→シーケンシャルアクセス
 - 配列: データの追加、削除の処理負荷が大きい リスト: データの追加、削除が容易

本日の内容

- ソートについて学びます
- 木構造の観点からアルゴリズムを見ていきます
 - 2進木
 - ・ヒープ
- クイックソート
- ・ヒープソート

• その他のソートアルゴリズム(一部は来週説明します)

で

ソート(sort)

• n 個の実数 $(x_1, x_2, ..., x_n)$ が与えられたとき、 それらを小さい順に並べた $(y_1, y_2, ..., y_n)$ を作ること

• 例:

- (5, 4, 9, 10, 2)をソートすると
- (2, 4, 5, 9, 10)となる
- いろいろな局面で出現する基本的な問題

• 本日は木構造とソートについて勉強する

2進木/2分木(binary tree)

- 本日のスライドでは「根付木」を 単に「木」と呼ぶ
- 2進木(2分木)とは、木の中でそれぞれの頂点が持つ子の数が2以下のもの
- 1つの頂点に2つの子供を持つとき
 - 左の子
 - 右の子 という名前を付けて区別する
 - •「順序」2進木
- 各頂点に格納した実数を、その 頂点の値(value)と呼ぶ

それより下に枝が伸び ていない頂点⇒葉

ソートのための2進木の構築

 x_1, x_2, \ldots, x_n が与えられている

- (1) まず x_1 を根の頂点に置く.
- (2) $i=2,3,\cdots,n$ の順に x_i を読み込んだら,それを根の値と比べ x_i のほうが小さかったら左の子へ進み,そうでなければ右の子へ進む.以下,同じように,進んだ先の頂点の値と比べて, x_i のほうが小さかったら左の子へ進み,そうでなければ右の子へ進む.これをくり返すと,いずれ進んだ先に子の頂点が存在しない場所へたどり着く.そうしたらそこに頂点を設けて x_i を格納する.
 - 理解できましたか?
 - 例を見てみましょう

例:2進木の構築とソート

 $\{8, 5, 7, 3, 10, 9, 6, 1, 20\}$

左の子-自分-右の子 の順に読み出す

この方法はソートを行うのに効率的な方法か? ⇒木のバランスがよければ(左右均等に広がる)効率的

深さと高さ

- 深さ(頂点に対して定義)
 - 木の一つの頂点 ν に対して、根からνまでたどるとき通過する枝の数
 - 右図の頂点vの深さは3
- 高さ(木に対して定義)
 - 全ての頂点の深さの最大値
 - 右図の木の高さは4
- ・二進木では、
 - 子の数が2:完全頂点
 - 子の数が1 or 0: 不完全頂点

強平衡2進木

 すべての不完全頂点の深さが高々1しか違わない2進 木を強平衡2進木(strongly balanced binary tree)という

 強平衡2進木の高さには次の定理が成り立つ 定理:n 個の頂点をもつ強平衡2進木の高さは O(log n) である

定理の証明

T を高さ k の強平衡 2 進木とする. $i=0,1,2,\cdots,k-1$ に対して,T は深さ i の頂点を 2^i 個もつ. そして深さ k の頂点は 1 個以上, 2^k 個以下である. したがって,T の頂点数 n は

$$1 + 2 + 2^{2} + \dots + 2^{k-1} + \underline{1} \le n \le 1 + 2 + 2^{2} + \dots + \underline{2^{k}}$$
 (3.1)

を満たす. 一方

$$1 + 2 + 2^2 + \dots + 2^k = 2^{k+1} - 1 \tag{3.2}$$

である (演習問題 3.1) から,式 (3.1) は $2^k \le n \le 2^{k+1} - 1$ と書くことができる.左の不等号から $k \le \log_2 n$ が得られ,右の不等号から $k \ge \log_2 (n+1) - 1$ が得られるから $k = O(\log_2 n)$ である.

オーダの対数の底は省略可能(cf 底の変換公式とオーダの定義)

強平衡2進木の頂点数

高さkの強平衡2進木では、i = 0, 1, 2, ..., k-1に対して、

- ★深さ*i* (< *k*)の頂点数は 2ⁱ
- ★深さ k の頂点数は 1以上2k以下

2進木の構築(例)―再掲

 $\{8, 5, 7, 3, 10, 9, 6, 1, 20\}$

もし2進木の深さが $O(\log n)$ であるならば、2進木の構築、 値の読み出しの計算オーダは $O(n \log n)$ となる

最悪の場合

• 値が最初から小さい順に並んでいた場合

頂点の格納時間

$$1 + 2 + 3 + \cdots + n - 1 = O(n^2)$$

クイックソート

- 入力をシャッフルした後で2進木を作れば、非常に高い 確率で O(n log n)の計算時間を達成できる
- 値の読み出しもO(n log n)
- ●「クイックソート」(quick sort)とよばれる
- ただし、最悪の計算オーダはO(n²)となる
 - ⇒最悪の計算オーダもO(n log n)とできないか?
 - ⇒ヒープの登場
 - 特別な2進木を構築する

ヒープの定義

定義 3.2(ヒープ) 頂点 v に値 f(v) が格納された高さ k の 2 進木 T が 次の (i), (ii) を満たすとき, T をヒープ (heap) という.

- (i) T では、深さ k-1 以下の可能な頂点はすべて使われ、深さ k の頂点は左から順に使われている。 木の形に対する条件
- (ii) 頂点 u が頂点 v の親ならば $f(u) \ge f(v)$ を満たす。値に対する条件

注意)

メモリ管理におけるヒープ領域(heap memory)とは別物である(関係ない!)

練習:ヒープ or Notヒープ

• 以下の木はヒープの条件を満たすか?

(ポイント)頂点数が決まると、ヒープの形は一意に決定する

ヒープの構築の仕方

 $\{8, 5, 7, 3, 10, 9, 6, 1, 20\}$

ヒープ構築の計算量

• $O(n \log n)$

- なぜなら、ヒープは強平衡2進木であるから高さは O(log n)
- 各ノードの修正は高々O(log n)回
- すなわち、ヒープを構築する計算量はO(n log n)

ヒープからソート結果を得る方法

まず根の「20」を読み出す

- =最大値
- =ソート結果の最後の値

ヒープの条件を満たすように「3」を根に移動

 \Rightarrow

ヒープの条件を満たすようにさらに修正

ポイント: 子の値の大きい 頂点と交換する

根の「10」を読み出す =2番目に大きい数

読み出しの計算量は $O(n \log n)$ この方法に従ってソートをする方法を「ヒープソート」と呼ぶ

ヒープソート

この番号の付け方から、高さk(>j)のヒープでは、

- ★深さ*j* の最も左の頂点の番号は 2*j*
- ★深さ*j* の最も右の頂点の番号は 2^(j+1) 1

ヒープは「配列」を使って簡単に表せる

配列を用いたヒープソート

空間計算量: O(n)

プログラム設計とアルゴリズム

[参考]その他のソートアルゴリズム

- バブルソート: O(n²)
- 双方向バブルソート(シェーカーソート): O(n²)
- 挿入ソート: O(n²)
- 選択ソート: O(n²)
- マージソート: O(n log n)
 - 次々回
- 基数ソート(バケットソート): O(n) ただし、特別な場合にのみ
 - 次回

利用可能

一般的なソートの時間複雑 度の最速オーダは?

(参考)Wikipedia ソート

https://ja.wikipedia.org/wiki/%E3%82%BD%E3%83%BC% E3%83%88

バブルソート

初期データ: 8 4 3 7 6 5 2 1

左から順に見ていき、大小が逆だったら数字を入れ替える。

結果が確定した部を太字で示す。

```
4 3 7 6 5 2 1 8 (1回目の外側ループ終了時交換回数:7)
```

```
3 4 6 5 2 1 7 8 (2回目の外側ループ終了時 交換回数:5)
```

1 2 3 4 5 6 7 8 (7回目の外側ループ終了時交換回数:1)

交換回数の合計: 7+5+3+2+2+2+1=22

- O(n²) のアルゴリズム
- 実装が簡単
- https://ja.wikipedia.org/wiki/%E3%83%90%E3%83%96%E3%83%AB%E3%82%BD%E3%83%BC%E3%83%88

演習課題・レポート課題

- •ソートのアルゴリズムを2つ以上を実装する
- Course N@viからファイルをダウンロードする
 - Report3.java or report3.c
 - ランダムに整数列を生成するコード、ソートをチェックするコード、実行時間を計測するコードも入っています
- 実装ができたら計算量の理論値と実測値の関係について考察する
 - O(n²)のアルゴリズムとO(n log n)のアルゴリズムを実装し、 速度の違いを調べる
 - 最悪のケースを再現してみる •••等
- 〆切:10月27日(日)23:59
 - ソースコードとレポートを提出すること
 - 動作確認は自分でもちゃんと行う