

Acoustic Technology for Glider Long-Range Navigation and Communications

Andrey K. Morozov, Thomas W. Altshuler, Clayton P. Jones

Teledyne Webb Research 82 Technology Park Drive East Falmouth MA 02536 E-mail <u>amorozov@teledyne.com</u>

Lee E. Freitag, Peter A. Koski
Applied Ocean Physics and Engineering Department
Woods Hole Oceanographic Institution, 266 Woods Hole Rd.
Woods Hole, MA 02543

ANOGRAPHIC MSTITUTION

Teledyne Low Frequency Sound Sources for Long-Range Underwater Navigation RAFOS and tomography

RAFOS

Frequency range: Standard RAFOS sweep, 261Hz

SPL: 181 dB re 1 micropascal at 1 m

Projector: "Organ-Pipe" free flooded, 36 cm diameter

Controller: SeaScan/Tillier design. Programmable via external connector. Temperature compensated time base. (Delta f)/f = 5 x

10-8

Batteries: Alkaline "D" cell assembly

Endurance: 4000 transmissions Maximum operating depth: 2000 m

Material: Aluminum 6061-T6, End-caps hard anodized

Weight: 360 kg (140 kg submerged)

Mooring Tension Maximum: 4400 kg, (10,000 kg with optional

external tension member)

Broad-band Frequency Sweep

Frequency sweep, 200-300Hz; RAFOS sweep; CW signals 200-300Hz

Max SPL: 195 dB re 1 micropascal at 1 m, efficiency 50%

Directivity index: 3 dB in horizontal direction

Projector: Micro-controller tunable "Organ-Pipe" with a symmetrical Tonpliz transducer, free

flooded, 36 cm diameter

Controller: 32 bit Motorola MC68CK338 micro-controller. Programmable via external SAIL connector. Integrated with 4-channel STAR receiver system (SCRIPPS) with the hybrid

Rubidium low power clock and underwater acoustic navigation. Long term stability: 3 ms for 1

year.

Batteries: Alkaline "D" cell assembly

Endurance: 3000 transmissions

Maximum operating depth: 6000 m for electronic housing, operating depth for projector

unlimited

Material: Aluminum 6061-T6, End-caps hard anodized, weight: 1000 kg

ACOBAR – acoustic system for tomography and Glider navigation

ACoustic technology for OBserving the interior of the ARctic ocean. Courtesy of Stein Sandven and Hanne Sagen

European infra structure:

15-17 standard oceanographic moorings, 2 gliders – one operational at each time, 2 RAFOS sources @ 800 m, 3 tomography transceivers @ 400 m, 1 long vertical receiver array hydrophones @ 300 -1000m, high resolution ocean model (3.2 km) and simulation schemes.

FSO Fram Strait Ocean Observatory
Tomographic and oceanographic moored arrays
across one on main gateways to the Arctic Ocean

ACOBAR Fram Strait Experiment 2010-2012 Three transceiver arrays and one receive array in the middle

Basin Scale Low Frequency Navigation, Tomography, and Communications

Acoustic Navigation and Communications for High-latitude Ocean Research (Anchor) workshop 27 February – 1 March 2006 Applied Physics Laboratory University of Washington Seattle, WA, U.S.A.

200-300 Hz Swept Frequency Sound Source

70-100 Hz Swept Frequency Sound Source

1 meter

50 Hz 6 Hz Bandwidth 1500 m Depth Bubble Sound Source

High Frequency Underwater Modem-Based Navigation Aids Directional Acoustical Transducer (DAT)

- Long Baseline (LBL)
- Extending LBL Underwater GPS
- Ultras-Short baseline (USBL)

Four additional input modules

Underwater Long-Range Communications

694 Hz sound source for glider acoustic

long range communications:

Weight - 6.75 kg in water.

Dimensions of carbon fiber tubing:

Diameter 20.4 cm

Length 47 cm pipe

Wall thickness 4 mm;

Acoustical actuator ITC1007;

Central frequency 694 Hz.

Bandwidth 20 Hz.

SPL 190 dB re 1 micropascal at 1 m,

efficiency > 50%

Directivity gain 3 dB

Communication rate 10 b/s

Transmission of 100 bits -~10 sec

SNR calculated for data rate 10 b/s; and SPL transmitter 190 dB; Knudsen noise level

Joint Channel Estimation and Data Recovery for Long-Range Underwater Acoustic Communications. Errorless SNR 15 dB

Reference:

L.Freitag and M.Stojanovic, "Basin-Scale Acoustic Communication: A Feasibility Study Using Tomography M-Sequences," in Proc. IEEE Oceans'01 Conference, Honolulu, HI, November 2001.

Under-Ice Communications 694 Hz

ACOMMS signal starts at 0822L (0622Z)

694 Hz sound source for glider acoustic Sound pressure level SPL 186 dB re 1 micropascal at 1 m

Acoustical actuator ITC1007;
Central frequency 694 Hz.
Communications rate 10 b/s
Range - 100 km

Transducer depth -100 m

Receiver depth - 100 m

Record from one hydrophone (4 hydrophone array was used)

Under-Ice Sound Propagation

Signal processing for long-range communications

Deep space communications

Long-range underwater acoustic communications

Algorithms for optimal signal processing

- **OJoint Channel Estimation and Data Recovery**
 - •MAP
 - •MLSD with pre-survivor processing
 - Sequential decoding
- **oTurbo** decoding

Comparison pre-survivor processing and dual loop selected pre-survivor processing

- **Channel model**. 3 Raleigh paths with the standard deviation 0.5 1.0 and 0.5 with the delay equal the one single bit duration. 50 realization with 1024 bit bpsk signals.
- Pre-survivor processing was used only in 3 branches with maximum probability.

Glider Mission to the North Pole

Glider equipped to long term under-ice mission:

- •Low frequency communications
- Networking
- •Measurement directions (DAT) and distance (atomic clock) to VLF sound source and another glider

Conclusion

Teledyne Benthos, Webb Research, TapTone, Gavia together with Woods Hole Oceanographic Institution suggest technology for long-range navigation and communications.

That technology allows in a nearest future start regular long-range under-ice glider missions including glider mission to the North Pole