SEQUENCE LISTING

<110> MBARI DeLong, Edward Beja, Oded <120> Light-driven energy generation using proteorhodopsin <130> MBA-101 <150> 60/201,602 2000-05-03 <170> PatentIn version 3.0 <210> 1 <211> 105184 <212> DNA <213> Naturally occurring gamma proteobacterium <220>

<221> CDS(complement)

```
(50866)..(51615)
  <222>
         light-driven proton pump; has the properties of a light-driven
  <223>
         proton pump when expressed with retinal in Escherichia col
  <300>
         Beja, O., Aravind, L., Koonin, E.V., Suzuki, M.T.,
  Hadd, A., Nguyen, L.P.,
                                   Jovanovich, S.B., Gates, C.M.,
  Feldman, R.A., DeLong, E.F
  <302> Bacterial rhodopsin: evidence for a new type of phototrophy in
  the sea
  <303>
         Science
  <304>
         289
<305>
         5486
         1902-1906
  <306>
         2000-09-15
  <307>
AF279106
  <308>
<309>
         2000-06-15
         (50866)..(51615)
  <313>
  <400>
                                                                          60
  ttgttatatc agtaatggct attgctccaa taacttaata ctaatatata attagtttat
                                                                         120
  gaataaattt tatatatttg ggttattgtt ttttacacta aatgcatttt cttgctcaga
                                                                         180
  tcttctagat acagacatga gagttcttga ttccgctgag tcaagaaacc tttgcgagtt
                                                                         240
  tgaaggaaaa gctttactag ttgtgaatgt tgcaagtaga tgtggttaca cttatcaata
                                                                         300
  tgctggcctt caaaagttat atgaaagtta taaagatgaa gattttctag taattgggat
                                                                         360
  cccatctaga gattttcttc aagaatactc tgatgaaagc gatgttgcag aattttgttc
  tacagaatac ggtgttgaat ttcctatgtt ctcaactgct aaagtcaaag gaaaaaaagc
                                                                         420
```

480 acacccattt tataaaaaac ttattgcaga atcaggtttt actccctcat ggaactttaa 540 taaatactta atctcaaaag agggcaaggt tgtatccaca tatggatcaa aggtaaagcc 600 tgattcaaaa gagcttatat cagctataga aggcttgctg taaaattatt acttagaaac 660 taatacagtt ttaggettgt ttgetgeaaa tatteeatta tetaeaacte caggaatatt 720 attaatcaaa gcttccattt cagtggggtt tgaaatatcc atattagaga tatctaaaat 780 gtgattacct tggtctgtta taaatccagt tctatatgtg ggtattccac cgatcgagat 840 tatttttctt gcaacaaggc tcctactttc aggtatcacc tctataggca gtggaaaagc 900 tcccaaaaga ttaaccatct ttgactgatc aactatacat ataaactcgt tagaggcaga 960 agcaactatc ttttctctag tatgtgcgcc accaccacct ttaataagac aattttcagg 1020 agacacctca tctgcaccat ctatgtaata agctatatca actacatcat taaggctaaa 1080 gacctctatc ccattttcat ttaataattt tgatgaagca tctgaactag aaacagctcc 1140 agcaaatttg tgcctatgct cctttagttc ttctataaaa aaattaactg ttgagccggt 1200 tccaatacct aaaatcatct caggatgaag attatttttg atatattcta tagcttgttt 1260 agcaacattt atctttgagc cactcataga gttataatac aagaaaatat aggtagttaa 1320 ttattttgag actaaaaatt aaaaaaacag gttcttttaa gaattcccag aagtacctaa □ ⊨ agcttattcc taatgcatct gtttatgacg tagcattaaa atcacctata acatttgctc 1380 1440 taaatatttc ttcaaagctg gggaataaag ttttcctaaa aagagaggat ctgcaaccta 1500 tattttcttt taaaaacaga ggagcgtata acaagattgt aaatttatcc gatgccgaaa 1560 agaagagggg ggttattgct gcatcagcag gaaatcatgc tcaaggggta gccagtgcat 1620 gtaagaaatt aaaaattaat tgcttgatag ttatgccaat aacaactcca gaaataaaaa 1680 taaaagatgt aaaaagattt ggagccaaaa tactccaaca tggggacaac gtagatgcag cattaaaaga ggcactgttt attgcaaaga aaaaaaaatt gtcttttgtt catccttttg 1740 1800 acgaccctct aacaattgct ggccaaggga ctataggaca agaaattctt gaagataaaa 1860 ataattttga tgttgtcttt gttccggtgg gaggaggagg tattctagct ggtgtatctg

1920 cctggatagc acagaataat aagaaaataa aaattgttgg tgttgaggtt gaggattccg 1980 cttgtcttgc tgaggccgta aaagctaata aaagagttat tttaaaaagaa gtgggcctct 2040 ttgctgatgg ggtggcagta tcaagggttg gaaaaaataa ttttgatgtt attaaagagt 2100 gcgtagatga agtcattaca gttagcgttg atgaggtctg caccgctgta aaagatatct 2160 ttgaagatac aagggttcta tcagaacctg ctggggcatt agcacttgca gggttaaaag 2220 cctacqcaaq qaaaqttaaa aataaaaaac ttattgctat aagttctggc gctaatgtaa 2280 atttccaaag acttaatttt attgttgagc gatcagagat tggtgaaaat agagaaaaaa 2340 tattaagtat caaaatccca gagatacctg gaagttttct taagctttca aggatgtttg 2400 gcagctctca agttacagag tttaactaca ggaaatctag cttaagcgat gcatatgttt 2460 tagttggtgt tagaactaaa actgaaaaat catttgaaat cttaaagtcc aaattaaaaa 2520 2580 atatggttgg tggcagaaat agtgactcag gctctcataa caatgaaaga atatttaggg 2640 gagagtttcc tgagaagccg ggcgcgctgt taaattttct agagaaattt ggaaataaat 2700 ggmatatttc cttatttcat tacaggaacc taggttcagc ttttggaaag atattaattg 2760 gcatcgagag taaggataaa gacaagctaa taaatcattt aaataagtca ggnactattt 2820 ttacagaaga aacctctaac aaggcataca aagatttttt aaaatgaaag gttaatactt 2880 taatctaaat ttaattgaaa aaagctcatc gctagggttt tcccacggct ctttgaacaa 2940 ctcggattga gatctatcat cctcctcgtc gtaaattctc ccacctttag aatagaccaa 3000 aaatagatat gacaaaggag cgagctcata tttatatcta atttggaacg aagctacgcc 3060 agtattaaat tcattaacta tattatttcc tttataaagg tatccattag catctgaaaa 3120 aatactaata ggattttttg ctttcaaagc aacaaattga ctcttaagtc tgatctcatg 3180 3240 ggcaagatta ttattatcct gccatatcag ccattcattt tcctttctta ttctatattg 3300 cgcattgatt cttaagttat catttggaaa tattgaacct gctatcttgt aaaattttct

accataccca ttcgaatccc accgattatc tttctctccc ttaaagaagc taactctcca 3360 3420 gtcatatgtc cagaatgaat agttctttgc ctcaaagtct gctgtaatac ctattcttct 3480 ttttgatttg ataaaggggt aggcttcatt ttttcttgtg atagttgtat ttttcccaga 3540 agatctaaag ttaaaatcta attgaaattt agagttgtcc ttaaaactaa aagaattttt 3600 ttgatcgatg cctattggat ttgaattacc agctgtgtca gcatcataat ttagatcaat tccataatct atttgtttta atatcgagct attatcaaat tcatttattt ttcgatttcc 3660 3720 tccaatacca gcatgaatcc agtctcttct ttgcagataa ccaaagtcat ttaactcgaa 3780 gtcgtcttca aaataaagaa ggcttccact tatgttagat agtttatttg gaagatatgt 3840 aaactgagtc ctatacccaa gcccattttt accatctttt tctgaggcta acagatctga atatgtaatt aattette aacgaatatt gatgtaatca ataacattga ctgttgatga
ttcgcctgtc atttcattct caacattcgt taccatgaag ccaagcgttt tatttccaag
ctttgttcga gatcgaagag cataatagtc tcttccaact gaaaaggctt catcagcctc
acttgctaca aatactccaa attcattatt attacttttt tgagtaagtc ttaatgcaaa
atcaatatca gaatagtttt ttttagctgc ctcgcaacct tcttcattac tttcttctga
gcaattatag ctgggggcag ctccaatcct ccgcgtattt ataaccgagt atctatcata
attactaata tcaaatagtg attggtttc attgaaaaat gctcttttt ctgagtaaaa 3900 3960 4020 4080 4140 4200 4260 4320 agtttcttga gcagaaaagt taataaccac atcatcactc tcagcttgtc cgaaatctgg 4380 attaatagct aaatttattt gacgaccttt tccagtgcta taaaagattt cagccccaat 4440 atctgaccct tcttggtttg taactgaatt tttatttgaa gatatatatg gaaaaaaagt 4500 aagctttgat tttgtatagt tttgtatttc taagctatct aactcttgaa agtagtcatt 4560 tctactagcc attgttccgg cactgctaac ccatgactca ttttcggcac tataacgtaa tgcggtgtaa ttaattttc ttatatcacc atcaggctgt ttcattaacg ttacatccca 4620 4680 tccatcccag tctgtcttaa agtctcctgc ttgcgttttt atggcatcga aaagcgagtt 4740

4800 cccaagattt atagcaagaa tgaaagcttt gttaccatca ccatcaaagt ctatatttat 4860 agagttttta tcgctaagtg aatttatttg atctctaagc gtcttcctgg agaacataga 4920 atcattactt tgaaaattct taaatccaac atatatacca tccttatttg agaaaattaa 4980 agccgttgta agaagttcat ttttcttaag agtaaaagga gatgtttcat aaaaatctgt 5040 aatttcaaat gcattattcc actcaggctc atcaagagag ccatcaataa caattgagtt 5100 tqaccaaatc aqcacagagg taagtaaaag tgataatgag gctaaagtta ttttcataga tagatttaat tcagagtatt ttaatctatg aagagtagga aatcatccga tcattctcag 5160 5220 aaaaaacata atcatattta aggtcatgtt tttctccaaa atgcatatta caaatctggt 5280 attgataaca cagtccaacc aataaaggtc ttgatacctc ctcgtttata gagccaataa 5340 ttctatcgaa atatccagag ccatagccaa gcctgtatcc atttaaatca actcctgtca 5400 taggaataaa cattaaatca atttcattta tgttgacata atcttcactt ttaacctctt 5460 tgatcccaaa ttgatttata aagaagttag gctgctcatc cagcaaatta aaagccatca 5520 tttcgtcatc aattactttt ggaatataaa tattcttttt aagtttagta aaagcttgaa 5580 ttaacaaatt tgtattgact tcatttcgaa aaggaaaata taaggcaatg ttttgcattt 5640 catgagtatt gattttttct aatacatttt cttggattaa aaaacttata ttgctcttag 5700 ataaatcaga aatagactgc ccctgctcaa agagtgattt tcgtatttta tttttcacca 5760 taaattgtgc cgaggctaac aaaccaaatc accgccatgt gctatacctg aaccgatggg 5820 tcaggtggtg aatttcataa caaatcaggc ttccctgtaa aggtactgcg caacaatgct 5880 agaggaatat cacctattta attgtatcgg ttcaaattta ttaacacatt agcgtatgaa 5940 ccagaatgca gttaattata aaatatatag gtattaagta aaagttaatt tttagagagc 6000 agactctatt ttttgtatta gcttttcgat atctttatta tttaaagcag agtcagtatt 6060 ctcggttggc ttggataaaa gcttactagc catagttaga ccagctatca ccaaggcatt 6120 attettatea etgatgeeat caageteate atttaataat tttgeagete taatgagttg 6180 gtctttctct tctggcggac aggctaacgt cagatctcgg ccaaaaattc ttaaagatag

6240 cgtttccatt tctgacatta ttttttgagt ttagttattt ctttatttag tatgagctta 6300 tctttttcc agtctctttc cctttgcaca taagaatcta ttattccttt ttgctcatca 6360 aatcttttta tcaaaagatc taccttatcc tctagttcaa ataatgatga tttttttct 6420 tctgacattg tataagttta attgtactag aatgaattgg aaagtttctt taataaaaga 6480 gtaaaataag gcatggaaaa aataattttt aaaaacagaa gagattcact tataaaacac 6540 ctacctaaga attcagcctt aattgtacct ggtgcagatt tgcaatatag aaatgctgac 6600 tcatcttata atttaagaca ggaaagtagc ttctactatc tgtctggctt ttgtgagccc 6660 tcttctctaa tggttttagt taataatgga aaaagcattg attcaataat ttttgttcct 6720 gaaaaagata aacttaaaga aatctgggat ggttatcgag ctggccctga gggcgcaata 6780 datgattttc tttttgatca agcttttgaa aataataaat cagatgcttt aatgcctgaa 6840 accttcaag ggctagaaaa agttttttat tcaataggga agaaaaatgg ctttgatcag aaagtaattg actggacatg cgcagcaaat tctaaagata ggcacagcaa atcaattgat 6900 6960 attattgatg gctcttcgat ggtaggaaat ttaaggctta tcaaagataa gcatgaaatt 7020 gatattatga agagagettg tgaaatttea getgaateat atattgaggt eatgaaatet 7080 ațaaagcctg gggacaatga gcaggaaata gaggcgctat ttttatatga attcgccaaa 7140 aggggaggaa ggtttccagc ttatacacct atagttgctg gaggtgaggg tgcttgtgta 7200 ttgcattata ttgaaaatga taaagagtta gcttcatcag atttaatttt ggtagacgca 7260 ggatgtgaat acaaaatgta tgcatctgat atcacaagaa ccttcccagt aagtggaaaa 7320 ttttcagatg aacagctaca aatttataat attgtccaca aagccaatct tgctgcaatc 7380 gatgctgtaa aaactggtaa tagcataatg gagccccaaa tggtttcaga aaaagtaatt 7440 actgaaggtc ttgtagagtt gggtattcta tctggcgatg ttaatcagct tcataaaaat ggtgcattca aggactttta tatgcataag gtgggacatt ggcttggact tgatgttcat 7500 gatgttggtg actacatgga gggagatgag tttatgaagt ttaagccagg gatgataacc 7560 7620 acaatcgagc caggcatcta tatcagtagc gcaatggatg tagatgacaa atggaaaggc

7680 atcggcataa gaatagagga cgacatcctt gtaacagatt caggcaatat taatctaaca gagaaggtgc catctaatcc tcaagaaata gaatcattga tggcttagac tatggaggtt 7740 7800 ccaattgtta tttctggcgg agggataata ggtaattaca tttctcttag gcttgaaaaa 7860 aataatatca aaaccgttat tgtcgaaaaa gctagtagtt tcaaagccct agataagggt 7920 ataagaacag tcactctcaa tgagcattct atgcaaatgc taaaaaatat tggtatttgc ccatcaattg ctcaaatcaa cagcatcgac gtattagatg gtgagggtac aggcaaaatt 7980 caatttctag caaaggacgt aggcagcgaa aacctttcat atgtaaccta tttcaatgaa 8040 8100 ttacaaaaac taatttctga tccatgtaaa gaaagaacct tatttaataa tgagattgat 8160 tcagttcaga atcttaatac agaatctgat ccagagatca tgcttaaaga tggcatgacc 8220 ataaaaacga atctaattgc tggatgtgat ggaagaaatt caaatattgc aaaaattgct tcacttacaa gcagcttcga tgactactta caaacagctt taacttttgt cgttgatatt 8280 gataatgatt cacatggcaa agctcaccaa gtttttctg aaaaaggaat atttgcactt 8340 atgccactcc cagaaggcaa gggtgagatg aataaatgca cagtggtttg gtcaataaaa 8400 aatcaagttt tgggagatga gcctgtatct gagtttgtaa aaaataacat ttctttttt 8460 gaatcaaagc ttaatgttag tctcagggtt aagtcagaaa ttttaagttt taaattatcg 8520 8580 aaccatcatt ttgaaaacta tattagcgga cctattgttc ttcttggtga tgctgctcac 8640 Etcaattcacc ccttagcagg tcaaggtatt aatctaggat ttgcagatgc agatactttt 8700 tgtgaagagg taattagttc ttataaaaaa gggattgcct ttaatgagaa atcagtttta 8760 aaaagatatg agattagaag aaaaagtatg aactttttaa tgttgaagtc tatggacttt 8820 tttgtggatt tatttggttc agaaaattta tatctaaggc tgatcagaaa tttaggtatt 8880 tcttcgttaa ataaatcaaa gtttgttaaa gcattcttta taagacatgc ctctggaatg 8940 aataagtttt aaatttgtat taaacttttt gacctttagc tctaagttct ttaagaactt 9000 cactaatgcc ttttttatca atgattctca taccttttgc agatacttta agatttacga 9060 acctgttctc agattcaacc caaaatttgt gtgtgtgaag attaggaaaa aactttcttt

9120 tagtcctatt tttagcgtga gaaacattgt ttcctgactg tggtatctta cctgttactt 9180 gacatatttt actcattgaa acgcgatttt atagaacact gaggaactta gcaatactat 9240 tgtgaaacaa atttatttat tacggcatgc acaatctgac tgggagagct ctaatcagaa 9300 agattttgat agaccattag caagaaaagg cattgaagaa gcaaataaaa tatcatgtta 9360 ctgcaaatct cattcaattt tagtagataa aatattctgt agcactgcag aaagaactaa qcaqactttt qatatatgca gtgatgggct taattatcca atagctgaag cagtctatac 9420 9480 tgatgagctt tacttttctg gccctggtga gatcgttaag cttatccaaa gtttaagtga 9540 attcatttcc tctgttttaa taataggcca caatccatca atgcaaatgt acatagatgc 9600 tatttcagaa aatcctcata ttacgtattc aacatgcggg ctggcagaaa ttctcgttga aagttcatgg aaagacttat ctttaaaaaa atgtaagtta aaatctttta ttcaaccagg 9660 9720 agagetttaa aaattgaaaa acataaaaat taagateatt aacceactaa tgggateeaa gataccctta cctcaatatg aaacaaaggg ctcggcagga ttggatttaa gggcatgcct 9780 9840 agatagtaat ctcagccttc aagcaggaac atctcagttg atacctattg gttttgcaat 9900 gtacttagaa gatcccggtc ttgcagcaat ggttatacct agatcaggtt taggttctaa 9960 Ingcatggaatc gttcttggta atctggttgg gttgattgat tcagactatc aaggagagct 10020 Haatggttcct gcctggaata gatcagatac agattttgag attaatcctg gagacaggat 10080 itgcacaaatg attatagttc cagtgattca agcagatttt gaaattgtag acgagttcaa 10140 tgagactcag aggggagaaa agggttttgg aagttcaggt ataaattgat aaatttactt 10200 tttcttgcca aatctttctt caaatttctg aactcttccg ccagtatcaa taattttttg 10260 cttaccggta taaaaaggat gagaagcaga ggatatatca agagggtagt atgggtatgt 10320 ttttccatct tcccattctt tcgtttgagt cgtatctaat gttgaacgaa tgagaaagaa 10380 cttatcagca ctagcgtcat ggaataaaac ttcacggtat tcaggatgta tatcttttt 10440 cataataaaa tcaaaatttg gatgagaact ataacaaaaa acaacttctt ttcaatcaaa 10500 acatgaaaat tttttactat gacatagctg tttcattgcc tctaaggcaa tgctttactt

10560 atagttctga gcttaaaatt acaaaaggaa cccgcgtgtc agttcctttt ggtaaaagga agattgtagg agtggttata aaaaatattc aaaagccaga tttcctaaaa aaagcgggag 10620 10680 ctataaaaaa aattatcgct gtacttgatg aatatccttt gttcgacaag ccaatttttg 10740 attctatatt gtggtcttct gattactatc atcatcctat tggtgaggtt tttaatacct 10800 ttatacccac cgaattaaga aaaattaata ataaaaaaat tgaagcttta agagaatttt ctgaatattc agtaaatgag gatgataaga aattcgattt aaccaaggat caagaaaaag 10860 cagtcaaggc gctttctaaa tctaaaggat tttcacccac tttattatat ggagttacag 10920 ggtctggaaa aacagaagtt tacttaagag ttgccgaaac ttttattaaa aataataagt 10980 11040 cagtattagt tttagttcca gaaataaatt taacccccca attgctctcg cgatttgaga 11100 atagatttaa tggtgaaatt ggcatatatc attctaagca aacagcagct aagagattaa agacttggct aaaagctaaa tttggttcta taaaaataat agtaggaact cgatcttcgg

ctttagtgcc tttagataac attggtttaa taattatcga tgaagagcat gaccaatcat 11160 11220 ttaggcagtc agaagggttt aaattctctg ctagagactt aagtataaaa agggcacagc 11280 11340 ttgcagatat tccaattatt ttgggatcag caaccccttc gctgcaaact ttaaaacttg 11400 Intaaaagaaaa taaatttata agagttgata ttcctaatcg agttgatgga aacaagcctc 11460 ⊭ctaaattaat agccttagat atcaataaca gccctttaat aggcggagtt gctaaagaga 11520 Hecaattgaage aatgeaatea accatagaea gaggagaaea ggttetagtt tttattaata 11580 gacgaggatt cgctccactc tatcaatgta gtagttgtgg gtgggtagca gattgtaaat 11640 cttgtgatac aaatttagtc ttccaccagg caagaaatag attaatttgt cataggtgtg 11700 aatctgccta ctctgttaat ttgtcttgtc cggcatgcaa gtctaatgac tttaatatgt 11760 atggagctgg aacagagaga gttgaagaag ttcttaaaag cagctttgta aagactccaa 11820 taattagagt tgatcatgac tcaacaaaaa aagtgggagc tatggaggct atagttaaaa 11880 aaattcattc ctcagacgca gcaattttag ttggaactca aatgcttgca aaaggacatg 11940 attttcctaa agtcacctta agcgttattt taaatgctga taatggcctt ataagcccag

12000 aaattaatgc attagagaaa atatctcaat tgcttattca ggtctctgga agagcaggaa 12060 gaaataataa tottgcaaaa gttattatto aaacaagata tootgatgat ataaatotta 12120 ataaaattaa gacaggagat tatatgaaat ttgcttctca atgcctaagt accaatgagc 12180 aaatgaactt acctccattt actactttat gtctgcttag gtgctcatca ccaactcaaa 12240 agagtaatgt agatttccta gagaaagctg ttttaatttt atccaatagg actgatataa atgttattgg tcccttgcct tcattagttt cgaagtcgaa aggaaattat aggcaccaag 12300 tctatatcca tgcaccaaag aagacttttt taaataaggt attaaagttt ttgacaacag 12360 12420 agtttgaaaa atggccggaa tctaataagg ttaagtggtc tttcgacatt gatccaatag 12480 acttaagcta aatattaatc ttaattaatt gtcctgggta tattggttta ttgtttagtt tattctctgt attaatttct tctacagtca ccccaaatct tatcgctatt tctgataaga 12540 12600 catccccttt ttgtattttg taagtcacaa agcctggatc aatactcata aaggtatttg ctttaggttt gtccttaaaa tagttatgta ttcctaggaa aacagatctt gcaatcattc 12660 ttctccctgg cttgcccttt aatctttgtg cgtcttcagg gttggttata aaccctgact 12720 12780 caaccaatac agaaggtata tcaatagact taagaactct gaaatcagcg tactcaacat 12840 Interttttatg aatttttgtg aaagggtete ttttaagttg atccaatate ttagtteeta 12900 ⊨aaattttact ttcagaaatt tttttcttat atatttctgg ataggtttgt cttgccgcat 12960 Ecctcatcaaa atcaactggc tttagatttt ttatatcagc ctgtattctt tccctttgtt 13020 ttttagataa gttcctagca acagtacttg aagcttcatc tgaccatata aaaacagaag 13080 caccetttac ggaagataat etaaaceeat cagcatggat tgaaacaaaa atatetgete 13140 catatttcct agcatcctgg tatctattat ttaaatctaa tgtctcatct ccatctctaa 13200 tcatcaccgg tctgtaccca taagtatctc ttaaggttct ttctaactcc ttcgcaataa 13260 gtaacgtcac atctttttct aaaatattat ttgggccaac cgcaccaggg tatttaccac 13320 cgtgacccgc atctatagca acaacaatat ctctaatact tttattgagg tttttatttc 13380 ttttcacctt aagctctaat tttatatttt ctgtatttat agtctgagtt gggttttgcc

aatggactga ttcatataaa tcaacaacga ttctggtaag acttccatcc tgagatgctc 13440 13500 ttactttttt gattggatag ttgtatggaa catttatctc ggtcggaagg ctcgattgat 13560 taatttccat gacaattcta gagggatttt taaagaataa gaccttacca atgaaacttt 13620 atctagacta aagttaatac taatttcatt gttacccatg tcttgtattt catcgaagaa 13680 aacatcattt ccgctgataa aaaaagatag aaaaccaagg attgccaatc tattcataag tttttaacca ttctttaaag ccattgtcac cagaaattaa agaaacctct cttccttcag 13740 gaagatggct gaaaattatt tttagatcaa aacttctttc atgttgaagc ctttcaggcc 13800 13860 actcaattag cactactttc ttagagttta tttttctact tagatcaaat atatcaatat 13920 cttctgcttc gttagttcta taaagatcaa tatgcaaaaa cattaaatta ttaaaatcat 13980 attcctcgca gagagtgtaa gttggacttt ttacaagatc cttccatcca caatttttta 14040 taatagatct agatataaag gttttgcctg ctcctaagtc tccctcaaga tgtatttcaa tttcttgcga agaagattta agtatctcca tagctatttt tgaccctagt tggtttgtag 14100 14160 cctcgtcatt tataagagta agttttttca tcgatttatt aattgtctta ttataggtat 14220 taaactagag gcatttaagc ctatttcacc aatatctacc ttaaatttta aacctgcctc 14280 Incgaatgaaca gcaacagcaa taatgctcgc atttcttata tcaagacctt gggcaagaag 14340 ⊭agcagtcaaa acaccagcca gaacgtcacc agttcctcct gaagcaagtt caggtccgcc 14400 ⊭gcacgcgcat ataaaagact tgttatttgt tgagtcaaag accaccgttc ccattccttt taatatgaca atagaagccc cataagtgtc tgcaatttgc ttggcagcag aaatcctatc 14460 tctttgaact tcttcaatag atatgtttag taatatagcg gcctctcctg gatggggcgt 14520 14580 catcaagatt gttttattgg attttttgat taaagatttt gatgatgcca cgatgtgtaa agcacctgca tctaatataa tttttgaatt atttgcagac tttaatattt tacccaatat 14640 14700 agtttttgca aaagcagtat tagcaattcc tggtccatac aatataacgc tatgatcttt 14760 aatttttaaa totatatoga cocottoaac catatoaaca coaattgoca ttacotoagg gtttcttaat aaagatgggc ttacattaga cgtgtctgtg acgagagtta ctagtccaga 14820

14880 gccacaaaat aaacttgcct cagatgcaag tattccggcg ccacccatgc ctggggagcc 14940 agggcatatc aaaacttttc caaaattacc tttatggcta tcctttgctc tattgggcag 15000 aagatttttt aattcttgaa aggtaaaact ttgcaatata gacatgaaat tacttaagct 15060 aaattatgtt gaatgctaaa aattcattct tcagcgaaat aaccaatcct atcggaatgg 15120 aatqatccca taaaaatttt ttcgtcatga ggcactgcaa tagtgggtag gccaaaaact gttctagaaa atgaaaactt atcttctctc ttaagtgttt tttgattaag tttatgaatg 15180 15240 gagaagggta gagaacaatt tgttttttct gcacaattac caaaatcatt agcctgtaaa 15300 tctaaagaag ttaaccaaac cgaaccgtct tttaaaaaaga tattatctgg actctgaata 15360 aaataactac ctgttttagt attttgatta atatcgtaaa cagataaatt gtcaccttga 15420 <u>ttatagttaa</u> cataaagaag tccagagccc tcatctagca aaattccatt aggcccactt 15480 聞ccatctgttc catcaacttt attaaaatta ttgtcactcc aaagtactac atgccctgaa 15540 atacttttaa ataatgaatt cattaaccat tettteatge tgatatetet tttatacata 15600 Htgagatgcat aaaaacttcc atcttttta agggcaacat cattgaaata atattggtca 15660 gggaccctaa tacagccccg ccatatcata tcccatgaag attcattttt tataatttca aacatttcaa tcgactcaaa tggcgaatga ttaattacag ctagttgata gaagccttca 15720 tcattttcaa caagatctat tccgtgggga ttgaatatgt ctagctcgcc tcttatgcat 15780 gaagcgtcac cccaagagct ttctccaaaa gtaatttttg gtaccttttt ttcataggta 15840 15900 tttaaatcca ttaaggcaaa gtaaccaggg gtatgttctg catatggacc gatccctcca 15960 aattcagaaa taaagaagaa tttattatca ggcgtaatca caatatcttc tgggtttgag 16020 aaattacaaa taaccttgat acggtcatcg gattcacact tactaatatc catttggggg 16080 cctatatagt cagtagatac gacagttaca gaaataaata aataaagaat agaaaccggg 16140 acggtaatct tataatagtg ctttataaaa atttctaaaa tctttgaagc atgatttgga 16200 agtgcgatca gccaaacccc ttttaaaaaa gatagagccc ccataacaac aaaaattact gaccatagcc tgtcagacca ttccggctga agaagaccag ttaaaaaaag aatcatccca 16260

16320 aagaataaag ctaaatagcc tgagattttg actttcgatc caacaaattt cgaaaagaga 16380 tatgtataaa gaggctttat aagaactagt aaaccacagg ccaagaaaaa gaatgctaag tagtaattca taagttagtt tttatataaa tgctccttaa taatactaac aagttctaag 16440 ggcttgtcca atggaacatg gtgagcagct ccaggaaccc cctcaaaagt cataatgtca 16500 16560 ccatatgtat ttttaatatt gtccaagata cttccggagg ttaataagct gtcttcaccg tggatgaaca aagcagggca gccaaatgaa aatgtgtaac cgaataacct ttcaagactg 16620 16680 ctaaacatga catcatcaaa tttccatctc cacccagcct caatattttt tactgagtgc 16740 tcagcaatgt atcttaagta ccaatcattc gtacaatctt gcttaggcat taacctaaac 16800 cttttaataa tatctgtctt gtcttgatag tgcttgatca ttctgagagg agaagagtgt _tgattcgggt cataatccgg tggtcttata aatgtatcaa taataataat attatttatt 16860 16920 magateettte tttcagatge aacgtaacca geaacatgte egeegaggga gtgtccaaca 16980 ataaaaatat ttgaaatatt ttttttatcc ttttcctttt caattacaga gacaatacat 17040 ⊭tctccaaaat ctttaatgcc atatgaatct ctaaaagaag agtcacccat gccaggaaga 17100 tctattgcaa ctatatttgc gcagtctcta aagtggggcg caataggatc ccaccatttt Intratgageae etgtteegtg aataagaatt attaaatett tgettteate tttggagtte 17160 17220 Ecagetagaat aggatatate eccatgagga ttettgataa tetetgaget aggettgtee tcaatggcat ctttgaacca ctgtggggca tgaataatgt cttgatttag attgttagtt 17280 atttccataa acagtattct aagctataaa aaataaaaat atgaataaac ttaatttaac 17340 17400 gccagcagca actgttttag tcctaaagga ttctcctgat gggatggaag ttttgatggt 17460 aaaaagatca agtaggcctc ccttcggaga cctttttgtt ttcccgggcg gcaagattga 17520 cgaaggtgat ttcaataata agatagaaga tttttgtgag ggcgtgactg ataaagaggc 17580 ctccataaat cttggattag attctggagg tctagcatat tgggttgcat gtattagaga 17640 atgctttgag gaggttggaa ttttacttgc taaaaaaaag agtggggaag atcttgatct 17700 agatggagtc gataaacata aatatcaaaa atatagagag atgttgttaa ataatgaaat

17760 tgatttatat aaaatctgtt tagaagaaaa tttaattcta atgcctcaac aaatagcccc 17820 tttctcgcat tggataaccc ctgaaataga aactaggaga tttgatacac gtttttttat tgcccacctc cccaagcatc agaccggaga acatgatggt agtgagctca tagacagtgt 17880 17940 ttggatttca ccaaaagaag cgctcaaaaa atctcgttcg ggtgagatgc ctatgattat 18000 gcctacaata aaaaatttgg aacaatgtgc acaatttgat tcgggctcta agcttttaga aaatcagagg aatctctcaa atgaggatat cccaccaatc ctgccaaagt tttttaaaga 18060 agatggtgag tggaggggtc tattgcctgg agataaaggg tatgaggatc attaaataat 18120 atggacttaa ttactaaaat aacagctccc aaccctggtg ttttcactgg gggtgggact 18180 18240 aatacttatt tgattggcaa agatgatata acccttgtcg accctggtcc aaatatatct gagcatctag atgaaattat caaagcaggg gatgggaaaa taaaaagaat ctttgttact 18300 _catacccata cagatcattc cccagccgca ttgcctttat caaaaactct taatgttcca 18360 18420 atgtacggaa ggctagtaga tggtgaatcc tcatgggagg atgaaacatt tatcccagat 18480 Hattattttaa atgataaaga tattattgag acagacgaat atacgttaga agtaatacat 18540 actcctgggc acgcatctaa tcatttatgc tttttaataa aagatacgaa atgccttcta 18600 Macaggegate acattatgga egggtetaeg gttgttattg ggeeaceaga tggeaatatg 18660 Hacaagctata tcaattcatt agaaaagtta ctagattttg atattgattg ctttgcgcct 18720 gggcatggaa attatattca tgagcctgag aaaaccattc aatcaattat taggcacaga 18780 ctaacaagag aaagaaaagc tcttagaaag ctaggagagg caggaatctc atcattagat 18840 aaacttacta agcttgttta tgatgatgtg tcagagatgc tccatcctat agctaaatat 18900 agtctagaag cacatttatt aaagcttata gatgaaaaga aagttaaatt agataaagat 18960 ctattcgaaa taatttaatc ctttttattt ttatgtaaga ctttctcctc aatagcttct atatcaatat catcaattga gtcttcgtta ttatcaggta tcttttttac atcttttca 19020 attttaaggt cgataggaga ggctccaaga tcaaaagtta gctcccttac attttttgaa 19080 19140 atagtatect caacacagte atettgateg tatgeeteac gggtetetee tttateatta

19200 atgggaaagg gtctttgggg agggcccatt tgcatgcatt taatagtagc aactggtgag 19260 tagtaatcgt cactagaata taacttatca agttcttttg gtgatattga gcaaccaata 19320 attccaaata gaataaatgg cgctaagagt cttttcataa actttgtttg ttttctataa 19380 gagactcaac aaccgaagga tcggcaaggg ttgtcgtgtc tcctaaatta gatagatcat 19440 tctcagcaat ctttctaaga attctgcgca taatttttcc cgatcttgtt ttaggcaagc 19500 ctggagcatt ttgaattaaa tctggttttg caatagctcc aatttcttta gcaacaaatt 19560 gtttcaattc ataactaaag ttgtcatcaa atgattcatt tatcattaaa gtaacaaaag 19620 catatattcc ttgcccctta attggatgat caaaaccaac aacagctgct tcagcaattt 19680 tagggtggag cacaagagca ctttcaattt cagctgtacc tagtctgtgg ccagaaacat __taagaacatc atcaactctt ccggttatcc agaagtatcc atcctcgtct cgcctggctc 19740 catcaccagt aaagtaaata totttataca taccaaaata ggtgtcgatc attotttggt 19800 gatcaccata aatacttcta atttgactag gccaagattg ctcaataact aaattacctg 19860 19920 cattagagcc ttctagcgta tttccatgct cgtcatagag agatggctta actccgaaga 19980 agggcagagt tgctgaccca ggttttgttg gagtaatacc cgctattgga gagataagta 20040 fagaaccagt ttcggtttgc caccaagtat caataacctc gcaattagat ttaccgacaa 20100 Ecactgtagta ccaatcccac gcctctggat taattggctc tccaactgta cctaaaattc 20160 Httaggctatc tctttttgtc tttttaacag gatcatcgcc ttgggccatc agagctctaa 20220 tggcagttgg agctgtataa aaaatactaa tgtcatgctt atcgcatatc tcccaacacc 20280 ttgatgctga agggtaggtt ggcactcctt caaacataag tgttgttgct ccatttgaaa 20340 gaggtccgta caagatataa gtatgtcctg ttatccatcc cacatctgca gtacaccagt 20400 atttgtcctc tggccttatt ccaaaaagat atttgaaact aatatgagcg cctaatagat 20460 aacctgcagt agtatgtaga acaccctttg gcttgcctgt agagcctgat gtatagagaa 20520 tgaaaagagg gtcttcggaa tccataggct ctggagcaca cttattagaa acatctttaa 20580 caagatette ataccaaaca tettettat cateccaatt aatteegeea ecagttette

20640 ttataaccag tgtattttta acatctggac agcccagaag agcctcatct acattagatt 20700 taagtggcac ttttttgccg cccttaaac cttcatcagc agttataaca attttacaat 20760 cagcatcaag aattctatct ttgagtgatt ctggagaaaa gccaccaaag acaacagagt 20820 gcacggcacc tattcgcgtg caagcaagca ttgcgaacgc agtctcaatg atcataggca 20880 tataaataca aactctcgag cccttttgaa cacccaggtc ttttaaaaaca ttagcgaact tacatacttc gtcatggagc tctttgtagg tcaattcttt agaatcagca gggtcatctc 20940 21000 cttcccatat taatgctatt ttgtttggat cattttctaa atgcctatcg atgcagttta 21060 agetaatatt tgttttaeca ceetcaaace aettegeatt attaaattga ttattgaatg 21120 ttgttttgaa gtcttccatc cagcttatgt tttcgtttgc tagattttta aaaaatttag aaggatette tatggattge ttgtaaagtt etttgtatte atcaaagtet tttatataag 21180 gattacttga atgttttggg ctataaagct ttcgaggcat tcttaaataa ttgaaggttg 21240 ggggttaatg aaattettte etttgggatt ggacattatt tttgtaatga gegattegta 21300 atcgctatca ttggtttcta aattaatatc tgcagcatta attattaata aaggggcaga 21360 21420 actatagtct aagaaaaacc ttgagtatgc atcattcagt ctttccaggt agtcaagagt 21480 intagatattgt tcgttaatat ttcctctctt agtaatcctg tcttttaaca catcaatagg 21540 ⊨tgcctgaaga tagattacta ggtcgggtgt tggcgcgtcc agggttagat ggtcatatac 21600 21660 ttctattaaa aaatcagcaa ccctcactgt ttcaaaaagg cttctttgtt taagatcttg 21720 aatttgttgc attctttgaa acaagaagaa aagctgagtg gctagagctg attggcttgg 21780 gtttttataa aaattcttta agaagggatt ctctgccggt tgttctaaaa aagaatcata 21840 attaaatgtt tcggctatct tatttgctaa agtagttttc ccaacaccta tcggtccttc 21900 aattgcgata tattttggaa gtggtacttc tttaatagct gggttcattt ataacgtata 21960 gtttttatcc tagattatct caactcgtta tagaagccaa atatttttgc agattcttca 22020 tcactttttt cattcatctc agcaataatg gttcctctca atgagtcatc atttttttgg

22080 aaatcagtcc accacttccc aataccactc ttgtctccag aagctctctc tcttacaagg agaaaatcat atgcagctct aaaccttgga tgtcgaagag ttttatatgg ctggctacca 22140 attctgctat gaagttttaa ttgaagtacc caaatatcct taatatagct tgaaaatttt 22200 22260 cttggtattg ctgtgatttt ttgttgttcg cgaagtacac catccataga tcggaaaaat tttctcacat taatttctcc attcttagaa cactttttca ataacgaggg ccataacaat 22320 gcagccataa gaaagcctgg tgtaattgac tgttggtttt taaccctatc atcagtattt 22380 22440 cttagagcat gtgtcataac attgctggca aagtcattcc tacttggatc agaaaggata 22500 22560 aaaaatattt tgcagaactc atcaaacaat ctagcgtttg agatgcctga taaaagatgg cctttatcat agatggcatc cttaaccaga ttatctatct taaaattgag tttgttacta 22620 aatcttatag ctcttaagct tctcactgga tcttcttcga atcgtctttg gggatctcca 22680 atagatacaa taaccttctt gtgtatatgc ttaagcccat cgttatgatc ttctattttt 22740 22800 tttgtaacag gacagtagta aagggcattc acagtaaaat ctcttctatg acaatcttgt tcaagagtgc cccaattatt atctctaaga atctttcctg tcgaatcagt aacaatattt 22860 22920 Intraccatett cetgateact teetgatetg aaagttgeta etteaageaa tteacteeta 22980 Httaaaaacat gaaccaattt aaatcttttg ccaattattc ttgaagcttt aaatgttttc 23040 Hectgatetget caggegtgge attagtgget atategaaat ettttggete tagteeegtt 23100 agtgcatcgc gaacgcaccc accaaccaga taggcctgaa aattattttt ttgaaggtct tgaacgacag atatagcaaa tttacttatc ttattattat ctatcaaatc taattatgaa 23160 tttttatgat ttaagggcat tagccattta gctgcttttc tttaatttcg tcaagtgttt 23220 23280 tgcaatgaat gcaatgagtt gcagttggtc tagcttcaag cctcttaatt ccaatttcat 23340 caccacagga ttcgcaccaa ccataatcat cttgcttaat ttgttcaata gatagaccta 23400 ttttgctgat aagttttctc tctctatctc tggttcttaa ttcaaaagca aactcttcct cttgagaagc cctgtctact gggtctgcat aggtttcacc tttagctcta agatgatcaa 23460

23520 aagttttttg catttcatcc ttaagatgtt ctttccaaag aagaagaacg gcaacaaaat 23580 gtttcttcat tgctgcactc atatattttt cacccttctt agatttataa ggtgcaattt 23640 tagatttatt attagctatt gttgcttttg cagacttctt ggctgcaact tttttaactg 23700 gagctttttt ggtaacagtt tttttaactg tagctttttt ggcaacagtt tttttaactg 23760 gagctttttt tactgtcttg gatttttttt cgaccatgta agattttata gaattttagg 23820 gtggagaaaa tatcagatac tgacaaaatt agctagtcat tttttaattt atttaatact 23880 ttcaagtacc catccgagct aagtcttggc ccaaatgtct caacaacctt ggaagatgca 23940 tagtttgcaa acttagcaca tgcttcaata ttattccctt gaaggtaggc atgcataaac 24000 gatccggcaa acatatcacc agctccattg gtatctattg gagttatttc ttctgcttga gcatgcttct caacccttt atctataaca acacttccat cggcgccttt tgtaatagca 24060 24120 mgtcatatagg gcttttcttt ataaaagcta acagcatcat caaggctttc tttaccagaa 24180 aaagcaacag cttcatcatc attacagaag atcatatcta ttccatatga ctctattaaa 24240 Htcaaattttt ctttaaaacc atgaacaata cctgcatcag aaagagacaa ggctttcttt 24300 acgtecttgt etttaaggtg etetaagaet gaaataacag eattaaagtt ategteaett Ugttaccatgt agccttcgat ataaaaaatt tttgaatttt ctacaacatc aaaatctata 24360 tctgatttac caagatacgc actaactcca agcatgctgc tcatagttct cttagcgtca 24420 24480 ggagtaacta aaattaagca tttcccagtt ggttgatctg tattttcaga gctgacacca 24540 atatgtttga ctccagccga cctgagacta tcaagatagt ttcttccatc ttcatcatca gaaactctgc atacatgatg gcaattcgaa ccataatttg ctgcagcaac aagagaattg 24600 gttgcagagc caccgcaatc agaaatcgat tcggctccca tttcaataag tttgctaatt 24660 24720 ataggtgcct gttcttcaga agatgaaaga gtcatagagt cggctacaag gcctacactt 24780 gataaaaatt catggctgac tttatattga gtatctacta aagcatttcc aagggcgcta 24840 atatcatatt tcatgtgtta ttcctttttg tattatttgt tttactgttt ctaacgttct 24900 attaatttct tgatccttat gcattgctga aatgaagcct gcttcatatt tagagggggc

24960 aaagtatatt ccacttctaa tacatgaatt taaaaaaattt gaaaatagta catcatcagt 25020 ttttgcaaca tcattaatat tattagggag ttcttctgaa aaaaagaatc cgaacattcc 25080 accaattctg tttatagaaa acggaatacc tgactcaatc attaaggttt tcatcccatc 25140 caaaagcaca gatgcatttc tttctaactc tttaaacgga ttttctttaa tcaacaattg 25200 caacaaagca gttcctccag ccatagctag tggattgcca gacaaagttc ctgcttgata 25260 gacaggacca gaaggagcta gatagttcat aatttcttct ttgcctccaa aagctccaac 25320 aggaagaccg ccacctatta ctttccccaa agcagttaag tcaggagtaa tattataaat 25380 ttcttgagct ccgcctagcg aaactctaaa gccgctcatg acctcatcaa atattaaaat 25440 agaattattg gctgaggtgg tttccctcaa taactttaag aaatcttcat gacctggaac aaagcccata ttccctgcta ctggttcgac tattacggcc gctaagtcat cttttatctc 25500 mattaaatatt totaaaaact gttotttatt attgtattog caactaaatg tatattttgo 25560 25620 accege icaaatetgea ggaaceeetg gagagteagg taageeaaag gtggeaacee cagaaceege 25680 ⊭cttaattaaa agagagtcaa catgaccgtg ataacagcca tcaaatttaa taattttatt 25740 ccttcctgta aaacctctgg ccaatctaat cgttgtcatg gttgcttcag tacctgaatt Vaaccattett attttteaa ttgaaggaat geattttta attageetgg eeacateaga 25800 25860 ttcaagactt gtcggggcgc cataactagt tccaagcgca acttgatttt taattgcacc 25920 tacaatgtct gggtgtgaat gacccattat catcggaccc caagacccaa tataatcaat 25980 atattcatta tgatcagcat cataaaggta tgcgccggat gctctttcaa aaaatatagg 26040 attgccattg atatttttga atgcccttac tggtgaattt acccctccag gcataagagt 26100 cttggcctct ttgaataagg ctatggattt atcaatttta ttatgtgtca aagctaattc 26160 ttcttaattt ttaatttcga tatgatatca acttaattct tattatgtat ttaattgttt 26220 tgaaaattca tccacagtat tccagttggt gaactcataa gtatttgtaa catctgtagg 26280 accetttgta atccacataa tcaatctaat catgtgttta tctataaatt tatattttgg 26340 ataatctatt ttgcctgcaa agactgctaa tttcattggg ttccaaggag acagctctaa

26400 aaatttttgc atatacgggt ttgtttcagg tgtatttttt tcaggctttc tcgcaactac attaactgaa aagaaggcat tttcttttgt ttcaagacaa gcaacatttt tttgaataaa 26460 26520 ttcataaagt tctggtttgt gtttgccata cctaatgctc gcaccaataa taattttatc 26580 aaattgatat aaatctaact ctactgcttt tgcaatatgt attatttttg aagattcaga 26640 cacatctaat ttagagaaaa ttttttaca aatttccaga gtttgcccat cggttgtaga gtagattagt agagttgatt tcataaatat attttatatt gttaattaaa aaatttcatg 26700 26760 ttatcgcttt attcatcagc aactttgcat atgcaaatat tgatgcagct aggtgcgcag 26820 26880 ggattagttc agatcaagaa agacttgatt gctatgattt aatttttaaa gctaatgatg agetacettt agatagtaat attaaaacte teateacace agetateaag getgtgacee 26940 cagctgattc aataaaaatt gaaaataaag caacaaaaga aaaggatttc gggcttccaa 27000 aaacaaaaat caaaaactct gcaaagaact caataaaaac ctcggtagta aggattaaaa 27060 27120 ⊫aaacaaaaag tggtaaatta atttttactt tagaaaatga gcaagaatgg actgctgaaa 27180 # cttcttatag agcaaggaat atgtttaaac cagaaaccgc agtcatttta gaagaggccc 27240 #tggttagtgg tttttatatg attaatataa gtaataaaca gaaaattaga ataaagaggt 27300 Htgaaatagca atgaccatac agagtatagc aacgaccgag ggtgccatga aaagaataag 27360 🔤 atctgttctg gggtcccaag atggctcaag cttcagggtt tatgttaccg gaggtgggtg ctctgggttt caatatggct tcaagtttga taacgatatt gcattcgatg atgatgttat 27420 27480 aaattgtgga gatttctcgc ttttaataga ctctatgtcg tacccctatc tttatggatc 27540 aactctggat tttgttgaag atctctcagg ggctaaattc gttattaaaa acccaaatgc 27600 caaaacaaca tgcgggtgtg gagagtcatt tacagtttag attttgtaat tgaacccaaa 27660 agtcctttta cattcttgct tgatgtctga actatcagag cctcattact gactctttta 27720 tatcccatcc aggcaaatgc catggactca atagcaaaaa catcatggcc taaatcactt 27780 gagaggacga tatcattact agccatctca gaaattcttt ttaccagata cttgttatgg

27840 gcaccaccgc cacaaatgac aatgtcacaa ttattatgac catttttatg gattgaattt 27900 attatagatt ttgctgaaaa ttcaaccagg gtacatagaa tatcttcagc tttcttttt 27960 aagaatttct tggataatat ttttatatta aagagctctt tgcctgttga ttttggacat 28020 tttcttttaa aaaaattatt ttgaagcaat cttcctaact caatgtgatc tacttttcct 28080 ttggctgcaa ttgcaccatt tttatcaaaa ggaatctgaa gaaaatcact acaatatgca tctaaaattg cattaccagg gcctacatca gttccccata tgtcatttct atttttaca 28140 aatgagtaat ttgaaatccc ccctatattt aaaataattc gtgggtttct agctttataa 28200 28260 aataattgat tatggaattc cggaacaaga ggggcgcctt cgccacccag agcaatatgc 28320 atatttctaa aatcacttac caccagaagg cccgtttctt ttgcaacaat atttggatca 28380 ccaatttgca tagaaaatgg aaatctctta ttaatttcat gcctaatggt ttgtccagaa 28440 Vatagcaacac actctataga tgatttctta attttactaa atccaatcgc ctcattaata gattttgaaa ataagaatcc tatctcttta ttgatagtgc ctaaatctga caacgagctt 28500 tcgttatttt caataagttt ttttactttt aatcttaggg attttgggaa tttaattgaa 28560 tggaaatact caagatgtat ttttgtacca atgctaagaa atgaaatatc aatagcgtca 28620 tgactagttc ctgtcattgc tccaatatag atctttttac tcattactac ttggagaaag 28680 28740 tttattgaac tectecattg ataatttatt attetttaat agtgtateaa aacttgeeet 28800 staaattttt ggtactggtt cagctgatgg taattttact tttataggat ctattcttt cttacctatc ttaaactcat aatgtaaatg aggccctgtt gccagtcctg aactcccaac 28860 gaaaccaata gtatcgccct gagaaacttt tttgcctttt cttataccct tactaaattt 28920 28980 ttctaaatga caatatctag tcgaatactc atttgtatga tttataacta tctcattacc acatccattc ctttgaccag aaaaagaaac aatcccatcg cctgtagttc tcaccggcga 29040 tcctcttttt gctgcataat cgactccatt gtgagctctt attgtatgaa gaacaggatg 29100 29160 cattctgttt ggattaaaat gagaactaat atatgcaaaa tctaaagggg ctcttaaaaa 29220 ggccttttgc atattatttc cattttcatc aaagtactgt tttttactgg cttcagtgaa

29280 aaacctattt gcaaaatagg tattaccatt gttaataaac ttagcaatta cgatatcgcc 29340 attttttact ttctctccat cactataagg agtgtcataa attacatgaa attcgtcacc 29400 ctctctaata tcaaaaacga agtctacatc ccagccaaag atataagcaa agtccataat cacactttcg ggaatatttg catctagagc tgcctcataa aatgaggatt gaataatccc 29460 29520 gctattgtaa gattcaatta actcaatact tttgcttata ttcttaaata ctatttctgg agtaaggcta attgaaatag aatttatttg atctttcatg atctcaattc tggttagctc 29580 29640 ctcaccagaa tattcaaaga gcatttttc ccctggttta atgttagcaa tgatatttt ggagtctaat ctaaaaattt tataagcagt atttaaaggc actgaaaagt tttcaaaaat 29700 29760 tattgaaaga ttttctccat cttgcacctc atgcatctga tatgttttcg tttgctcgag 29820 aggtatagag aatttttcag taatctcaat ttcttcaact ggcaaagatt catatgtttc #tatatcaata taaagcatta atattaagac aatagaaaca gcaaaagaaa caagtaccgc 29880 tctttttgga acttttttaa aacctatcat tagtcctctt gaatatttaa gagttcagtg 29940 Interpretation in the state of 30000 taattaggcc caccagcctt ataaccgctg ccggatagat tttgtccacc aaaaggctga 30060 gaaccaacaa cagctcccac catatctcta tttatgtaaa tatttccaac attacacttg 30120 30180 tcactaaata tgtcggccct tttttctact ctagtatgaa tacccattgt aaggccgaag 30240 ccactatcat taatattttc aattagtgca tccatttcat ttgatttaaa tctaacgata tgaagtattg gtccaaattg ctcgtctttt agatcagaaa tattatcaat ctcaattatt 30300 30360 gttggagcta caaaattttc atctacatta tcagcagacc taaaaataga ataattctta tcttcaaaac ctttgacgta agcattgaga ctatcaagag atgttttgct aattattgga 30420 30480 ccgatatctg tgtcaagatt ttgagggttt ccaattttta gttctttcat accaccctta 30540 atcattgata aaagatcgtc atatatttcg tcttgtacac agagaactct caaggcagag 30600 catcgctgtc cagagctatc aaatgctgaa cgaataatat catcggttgc ttgctcgaga 30660 agtgcgcttg aatcaacaat cattgaattt atgcctcctg tctctgcaat caaaggaata

attgattcat ggttacttgc aaggctgctt tgaatttttt ttgctgtttt taaagacccg 30720 30780 gtgaatgcaa cccctttgat gttattaacc tttgaaagca tgtcaccatg aatgccgtct 30840 cctaggatta aatttaaagc atcttttggg accccaatct catgaaattt gttcacaatg 30900 atgtagccaa gaattgaagt atgttctgag ggcttaactg ttactttatt tccacatgca 30960 agggctgcac ttatttgccc tataagtatt gcaacaggaa agttccatgg actaatacat aaaatatggc cttttggtga gtaagatagg gcattgatct cgccggtggg accctcaaga 31020 31080 atatggtctt ctgtttggag gccaacagct tgttttgcat agtatctgag aaaatctata gcttctctaa tttcatcaat agtattttgt actgtttttc cggcttcatt cataaggtaa 31140 taaattagct cagaaggatt tgcttcaatg tcgtctgcaa ttttttctaa aatggatgct 31200 31260 ctttttcaa catgcatcaa agaccattca ctaatatttt gttcttcaag gctgcccttt 31320 atataatcta gatcatcata tgaggctgta ccaatatttc ttccatctgc aagagatgag 31380 #atgtcatgag tattggtttt cttataatcc tttgctttat aaatcgatga agcctttatt 31440 #tottttgaat caaactttcc aageteetet teaageattt etaaatteae eettteaett Haaatcaaatc ctttagagtt cggtctgtca ttaaatatat ttcttggcat tggtatctct 31500 Etttttttcat cctcaatttt taaatggggc cctctggcaa gccaagcaga atctgtttca 31560 ggatcaagta acctattaat aaatgagctg tttgctccat tttctaatag tcttcttaca 31620 31680 agatagggta gcaagtcttt atatttgcca atcggcgcat aaattgaggt attttttca gtatttaaga ttttgtttgc ggacttataa agcagctctc ccattccaaa tagtctttga 31740 31800 aattcataat ccttatttga gccaagatga tggattgcag aaatggtatg tgcattatgt 31860 gtagcaaatt tagggtaaat tttttccaca ttaaaaaattc tttttgcaca ggctaaataa 31920 gctaagtctg taacagattt ttttgtatag acaggataac catcatagcc atagatttga 31980 gcatgcttaa tttcataatc ccaatatgct ccttttacga gccgaacatg cataggtgct 32040 ctgttttcta gtagctcttc taaccaatct attgtggcta tagctctttt gccatatgcc 32100 tgaacagcaa taccaaatcc tttccagttt ttaatatttg gtgaaagggc catctcttta

32160 ataatctcta aactaacggc cagtctgtct tgctcctcag catcgattgt aatttctaca 32220 tctttagact ttgcatactc tgtgagctga ataagttttg gaagtagatc agactttatg tcttttagct ttttcatttc atatctagga gataaagctg atatttttat tgagacacca 32280 32340 ttaattgtat tttttgtcag atttatcttg ccgacttcat ctatagcatt cttataagac 32400 tgataataag tgtcggcttg ttcagcgttt cttgctgcct ctccaagcat gtcaaatgaa taaatttcat tttctatatt cttaattttt tttatgtcat caaaatctct gcccataaca 32460 32520 aattcttgac tgagaatatg catggcacca actacagcat ttctaattgg aaactcgcca 32580 gattttgaga ttaaagaact taatagggcg cttgggtttt tggtccactc atcgggtgta 32640 gaaactacct tgcctgcaag aagaagaccc catgttgatg cattaacgaa aacactatcc 32700 gctttgttta aatgctctat ccacgcaccc tcagataact tctcagatat tattagatcc 32760 Ecttgtttttt tgtctgggat tcttagtatt gattcggcta aacacatcag agcaacacct Ftctttattat ctagcccata ttcgcttaga aatgcatcta gttttgttct ctcgctctta 32820 Uttctctctgc aagcatcaat tattttattg agcatttttt gaaatcgaag ggtcatttaa 32880 Laaaatcagaa ttactaataa gatctgaaac tatttcttgt tcaggataaa acttgttact 32940 tgttaatgtc atagctatta ttttaatctt atagtgccaa gtatcaactt actgattcta 33000 Ltaatgactt aaaaacatta tgatagtcat atgagtgatg cacttaaatt aattaaacga 33060 33120 ggaaccgacg agatcctcac agagtctgat ttaaaaaaga aattagattc tggaaaacag 33180 ctaatcatta aggcggggtt tgatccaaca gctccagacc ttcatttggg tcataccgta 33240 ttattaaata agctaagaca ttttcaagat cttgggcata aagtaatttt tctaattggt 33300 gattttactg gtcaaattgg agatccctcc ggtaaaaata aaactaggcc aacacttact 33360 tcagaagaat taatttcaaa tgcaaaaaca tatgagaaac aagtttttaa aattcttaaa 33420 aaagaattaa cagaagttaa atttaattct gagtggtgca acaagcttgg tgcagatggt 33480 ttgattggtc ttgcatcaaa atataatgtt gcaagaatgc tggagcgtga tgattttaat 33540 aaacgttata gcgcaaatca aagcatagct attcatgaat ttttataccc ccttgttcaa

33600 ggatatgact ctgtagccct agaggctgat gtcgaatgcg gaggaacaga tcaaaaattt 33660 aatttgctag tagggagaga gctacaaaga tcctatggtc aagaacctca ggttgtttta 33720 actgtaccca ttctagaagg cttggacgga ataaataaaa tgtccaaatc attaaataac 33780 tttatagcaa tagatgaaga gcctaatgat atgttcggta aaataatgtc tatttcagac 33840 gagttaatgt ggagatggtt tgagttactc agctttacct cagagaaaga aataggagtt cttaagaaga aaatggaaga agggaccaac ccaagagata ttaagtttct tttagcagaa 33900 gagttagtag atagattcca ttcagagggt gatggttcga aatgcaagga agcttttctt 33960 34020 caaagatttc aaaaaggtca aatgcctgat gacattcctt ccatgtcagt tgatgttggg 34080 gctgagggca ttccattagt aaacctttta aagaattgtg agatgacatc aagtacatct 34140 gaggcgatga gacttgttaa acaaggcgga gttaaaatcg actctgtaaa aatagaagat 34200 cctaaaatgc taatttcaaa aggccaggag tctatttatc aggttggcaa aagaaaattt Ettaaaaatta aaacataatg aaaaataaat tagtccaaat atttcttctt ctttttatag 34260 ttgcgtgtaa tcaggatagc cctaatatta aacaaattag taatatgcag tattttattg 34320 ataatgaaat aagggaagga atctattctg ttgaaccagg cttgcaatac tcaattatcc 34380 aaaatggaga tcaaagttct gaatcaccat tgctgcagga tacaattaca gctcattttc 34440 acgggaccct cactgatggc tcagtttttt ggagttctgt tgaaatgggt gagcccttaa 34500 34560 cagtcgaact atcaggtcta atagttgggt gccaaaaaat aatctctatg atgaagaaag 34620 gtgatgaatg gagagtttat atcgacccaa gtatggccta tggcgatgag ggccggcctg 34680 ggataccttc aaactcaatt cttatttttg atattgagtt attagatatc caaaaaaact aacccttatc tataacggat agagcgtatc cataaacctc agcaacctgg ttaataattt 34740 34800 tatttttagg tgttccggct ccatgaccag ctcttccttc aattctaatt aatattggat 34860 tatcacaccc ctgggactct tgaagttttg ctgcaaactt gaatgaatga gagggtacta 34920 ctctatcatc tcttttagct gtagtaatca gagtagttgg atagcactca ccttcaacaa tattatgcag aggcgaataa gctaataagt tttcaaactc atctttctta tctggagagc 34980

35040 catagtcact ttcccaggcc cagcctatag taaatttatg aaatctaagc atgtccaaga 35100 cgccaacttg tggaattgcg actttaaata aattaggatt ttgcaacatg gtcgcagcca 35160 ctagcaaacc tccattagag ccaccttgaa tagcggttga tgatggagaa ccaatttctt 35220 gtgcgtgtaa aaatttagca gaatatgcaa agtcatcaaa aacattttgt ttattaaaaa 35280 gcctgcctgc atcatgccag ttatcaccat attcaccacc acctcttaga ttaactacag caactattcc cccttggttc atccaagtga ggtagctttt actaaagcca ggtagtcttg 35340 agatattaaa gccaccatat ccatataaaa gtattggagt attactgtct atttttaagg 35400 actttttgta actaagatgg atgggtattt gtgttccatc tttggatgga aagaatttaa 35460 35520 agtcagatgt aaataaagtt gagtcgtgtc ctttaagatc ttctttccaa aaaagttctt gtgacatatc agttagatta attttgtata tttctcgagg agttacaaaa tttgtaaatg 35580 35640 maaaataaga tacctcatct tcaatttcac caccaaaacc acccattgtt ccttttcttt 35700 etgttgctag cttattttta tatgctcctt ttaaatcaaa gaagtgaacc tcagtaaaag 35760 🖹 atcaacgag ataagaaact acaatagaat tatttataaa gctaacacta ctaatagaat 35820 tagtactttc accaacgact tcattccaaa caaatgagcc attttttatt gtaagtgata 35880 etacttttcc gttcgcagca ttttcagttg agtaaaacca aaaagtatca ttcttgcttt 35940 taaaaagct ataagcgcct attagctcat ctattaaagg aataaaaggc tgatcagggc 36000 ttagctgaac atagagteta tttettteat etgtgeette accaatagat agaaaettaa ttttagaatc ttttacaaca cttattcccc aactccatct tggcttttca ggattctcat 36060 aaacaatcac atcctcatct tgagcagtac caattttatg aaacattaac tttggagctg 36120 tattaatatc ttttaaaagc tcttccgatg gctcgtcgta tttttggtaa taaaatccag 36180 36240 aatcatcatt ttcccatgaa gcaccagaaa atttagccca ttcaatccta tcatcaagag 36300 tttttcctga ttcaatatca agtactttcc aggttctcca atcagaccca ccatctgata ttgagaaagc tagaagagat gcatcattac taacgctggt acttgcaaga gagatagttc 36360 36420 catcttctga gaactgattt ggatcaagta aaactctatc ttggcattct tcacagtcct

36480 taatcatcag cttgctttgt tgccatgacc catcattgaa ataataaaaa gtttttttgt 36540 taacctgata aggcatgctt atcgaatctg tatcccaaac ctcatctaaa ttcttagcaa 36600 tagatttttt atatttattt tggcctataa atttttgtgt gaaattattt tgtctctcga 36660 cccagtctgt tgagtcctca cttgtaaaat cctccatcca tctataagca tcttcgatta 36720 ggtatccatg gacttcttca ctaaaaggaa ctttatttga ttcagggtat tcaaaattat 36780 ctgtttgatt tgagcaacta actagaatta atagagctgc catgtatatg tatttattgc 36840 gcataaaaaag cataatactt tacaattacc ttatgaatca attcaatcga gcatggcaac 36900 ttttacgcaa aaaattggaa gttttttatt gtacttgccg cacccatcat gatgcttgaa 36960 atagcaatgg catcaatggt aaccccaata caaaacgtta ctcagcctga ggatattcta 37020 gaatttttca atgagaatat agcctttcta ggctctgtta gtctcttagg cgtagtttta 37080 🛱 agtatggett ttatgggage getttttgtt tegtatgeat ecatagaate agaaaatgag 🛂 attgagcctc taaatgcctt atttttaggc ataagaaaat tctttccact tctgggggct 37140 u tatcttatag cttcagttgg tgtctttttt ggtatcttat tattaatact cccagctttt 37200 37260 tatgtagcag caaggctttg catttttcct gcatttatta tgcttgaaga caaaggagct atagaatete ttaaattate ttgggaaaag acggatgage atggcaccae tttgtttggg 37320 cttaccatta ccttctttc tttaacaatg atttttgcat cagttgccca atccattata 37380 agtccgggat taatgcaatt agttgttctt gcaattattg aatatgtaat agtaattcca 37440 37500 tggggctatg tatattttag tttatacaag tcattaaaaa gatattaggc agattaacta 37560 gaataaatta atacgaagct tttcgtttac aaaaaaacac accactctta taatccttcc 37620 tccgaagatt tgcactttgt taattcatgc aaacaacttt gggtctgtag ctcagcttgg 37680 ttagagcgca cccctgataa gggtgaggtc ggtggttcga gtccacccag acccaccatt 37740 ctttgaacat taacttttat ttcctttata cttattctta actaaataag gatagtatta 37800 tggctaaagg tttagacaag caaaaaaacg acaagaagaa aggcaaaact ctaaaagaaa 37860 aaagagcggc aaaaaaagaa aaaaagaaat agttttttgt agaagactat tattatctag

37920 tcgacctagg gccatcttta aaatctattt taaagaacaa cattattccg gtcactgagc 37980 ttactaaagc taaaatagaa aatattttta aaagaaggtt gtcgatatta tctctttctt 38040 tccaatccat aatatgaaac ccccacatca gatcccatat tttccattta ttagatctaa 38100 tggccacaac ctctgctgag taaacattaa tgtaaacatt taattcagta cctttaacat 38160 ttttactttt tactctataa attggcaatg atctgcctct atattcagat cctgattttt 38220 catttacaac ttcttcggta gcaaatggca aaagagttgt ttggcttgaa actgaatcta tagcatcttc catagaaatc tttgttaaag gctgcccaag catattcaga tacttagttg 38280 38340 agccctttgt tgtgatgata acaatctctt gacctaatct ttttttgaat ttaacttctt 38400 tagctttctc tatttcaaaa tttaacttac ttaaatcaaa agatgtttca acatgattaa 38460 ggtattgctc gcctcttacg agctcaatct tattaaaagc aaagtatatg cctgagatag 38520 tccaaagtaa taactgaaga gagataaaaa aacttaggta cttatgaatt ttcctaacta 38580 aaaagttcat cttttcataa tcttcattat ttcatcaatt tttacatcaa attcgtcatc 38640 Haccttttaaa gattccttaa tgcattcacg caaatgggtt tttagaattt tgccctcaac 38700 agtaataatt gaattettaa gtgettttat ttgattaaga atateaaege agtattgaee Intercance attection egected attettita agettatian 38760 38820 ttgctcttta tgacatggat gtttcatttt ataaaaacct cggaactata tacgtaaaaa 38880 ttgtagcgaa taaaaaaatt gctacagatg catagtacag atacctagat ttttttctag 38940 tttctgaaca tgctctgcct agttctgggt cagcagggca aggcatatga taagttttgt 39000 agttgatata tcctgcaatg acaatcatta ctaatgcaaa tagtgttatg taaagcttat 39060 attgagatag ggtaattaag aatggaaata cagttaccag gcttgcaaaa cttgccccag 39120 caccaagagc aacaaaata gctggcaagg cacaacatat caaagtagaa gaagatgcaa ataatgaaaa aaaattcgac gccttatcat tcatagttat taaatttcta ggatttgaag 39180 atcagacata ttttggccat tagaaagaat cttcttttcg atctcagaga aggtgatttc 39240 ttttgcctta gaaaaggcaa tcactacttt tccattatca agatcaacat ctattctttt 39300

39360 gacatcttta tcttttagaa aagtttttga aatacctctt gcacagaaat cacaaaccat 39420 tcccttcacg cttacgatcg ctatatttac atttgagagt ccttcaacaa atgcatcaaa 39480 cctctcaggg tttacatcaa gatcttttcc atcaaccatg gtttcatgta aatgaccttc 39540 atgagaatgc ccatgcatac cactatggtc attctccgcc gcaataaggc cgcttgaaag 39600 caaagtaatt aataataatt ttttcatatt tttctccttt taaaatctgt acataaaatg taaatcccag ctcgtatctg cgtcatagcc aaactcaaca agggcattac cataaaaaaa 39660 39720 tttcaattct ggatacgtag atgatttatt tgttacagta ttttttttgg ttttaaccat 39780 aacccatgta tgtaaatcat tgtagtcagc aacgtaagga gcaaatccaa gttgaatata 39840 ttcttcttta tagtctttgc taaatttact gttaatatcc tttaacccaa agcccgcata 39900 ccacttccgg gtttcccagt ctccatggat accataaaaa ttattttaa tacttccagg 39960 cacaatteet gattgaaaat ataaatteet ttgggatgta aaagtatttt ttetatteac 40020 caaataagta aaacgaaaat agttttctgt gttcttataa aatttatttt tagccctttc 40080 taggccaatg gaatatttgt aggttggaga gtagtggaaa taaatagaat cattaaaggt 40140 atctgattta tacattatgg ttgttccgcc agagtaggat atcggtcttg catcagcatt maaagaccatt aaaaaaacta aaatgattat tttatatata cccatggggg gtatcttacc 40200 40260 #ataggattat aaattaattt caggcatctc tccaagcgcc cattttcaat gaaatcacca 40320 #tcagaattcc aaaaataacc atagctatag cagatgcata aaaaatacta actagcccat atgagagcca gtaaacagct accaatgcta taacagaaaa tactataagc ctgatggccg 40380 40440 tgattataat tggccatttc attgcattgg ctccctgaga tgcaaaatac agggaaagcc 40500 catatecttg aaatacataa catacaccaa ggatttgaat atactgettt gtaactaata 40560 aggtctctgg atccgatgta aaaatactaa tccaaagatt tggtgttagt gctaaagcta 40620 gaccgataac agccgaaagc aatccagctg ttgttgcacc aaccatgcct atttttctg 40680 ctcgctctat atttttggca cctatatttg ttccaaccat ggctgtcata gcagtcccaa tgccgaacac aattgggatt aataagaact ctacccttga accaattcca taaccggcaa 40740

40800 tagcagacgt tccaaattga ccaatgagtc ctgtcagtaa aagaactgtt gcaactgtca 40860 ttattggcga aagagatgcg ggtaaggcaa cagaaaaaat atcttcgaat aattctcttt 40920 caattgttag tettttgage ttaageetta caggegatga agggetegaa atttttatta 40980 aagttactaa tgccataaaa cctgaagtaa ctatcattga ccaagcagat cccacaagcc 41040 caagtttagg tagaccgaat gatcctaata taaatccagc agagaaaaaa acttgtatac 41100 ctgcacaaat taccgttagg actgcaggaa attgcatatc tcccatccct cttagggcgg 41160 cggttaagct acctgatagc caaacaacta ttgctcccaa taaatagaca aaacaataag 41220 ctaaagactc ctctaataat gcacctgttc cacctaatat tcttaataga ggctctccaa 41280 aaataaaaaa gataattaaa aaagctaaag ctccaaagca agatatatac aaagaatgcc 41340 ataataattt ttcagcccta ggcttgtctg cggctccaag acttcttgca atagaagatg 41400 tgaccgctcc tccaagagca ccaaatgcca tctgctgagt cagcatgatt gcaggaaatg 41460 ccaaagtaac agcagctaat ggagttatgc caagttgact aataaaccag aattcagcaa 41520 gaacaaccac agcatttatt aaaaatgcaa cagtattagg tgctgacatt ttaatcagca 41580 aaggaaatat tggatctttt aaaaattgct ctgttctctt gtccataacc ttctcattta 41640 ttaatattta tttggttaaa gggtgaaaga gaacacgttc tcaggattca cgaatcttta 可 aataataata acagcttta gttaatttaa tttttaaaaa caaccaaatc tattatctgc 41700 41760 tagattttat tttttaaaca tattaatatc taatttaatt gcaaaggggt ggccatttcg gcctgagatc cttggaaact ctttgaacct gatccataca ataatggcgg aggaattgca 41820 41880 tgaaaatcat taaaaatcat ttattttatt caataatctt actatatttt tttagtctag 41940 agacgagete teaagetata gaagaagtta ttateaaagg agactggaga gaaactagte 42000 tgtcagcaga agactcaagc attgcagtcc ttgatagtaa attaatagaa tcccaggctt 42060 taaagcactt tgaaaacctt tcgtacctag taccaaattt aaattttgct gcaagtgatt 42120 ctagagcaag acatttccag ataagaggaa ttggagaaag atctggctat gaaagaactc 42180 caaactctgc agtaggttta ctgattgatg atatagactt ttctgggcaa ggtggaattg

42240 ccacaacttt tgatgttgat caaattgaag ttcacagagg cccccaagga gcaagaatag 42300 ggtctagcgc aatggcgggg ctcatatata tttctacaaa agacccaaca gaaagctttg 42360 aagggaaggg tgaaatagtt atggggtcat atggaacttt taataccgga attgctgttg 42420 gcggtcctgt aaattttaat aaagacctca cttataggtt agctataaag aaagattatt 42480 ctgacggatt taggaagaat atttttctca acaagtctga tacttctaag aaagatgaga 42540 gcacatttag attaaaagtg aattgggtaa ctgataacca aaccacttat aagtttctta 42600 tatctcaaat agagttagat gatcctgcag atatatggac tatagatggg agtcttaata 42660 cattatctga taagcctgga atggactctc aaaaaagtaa tgcctatggg gtaaaaattt 42720 atcatcaatt taaaaaattt gaatttcaaa gcctatcaag cttaacgaat actgatgtca 42780 ttcttagtta tgatgctgat tggggcaacc ctgagtcgca ttcacccttt atttatgact 42840 atttttcaga aactacaaga aaaagagata cttttagtca agaatttaga cttgtatccc 42900 aatttgcaga taaaaataca gaaaaaagca tcgaatgggt cgttggggct agttttgtag 42960 atataaatga aacaaatgct aaaaaagata ctggtattta tggagatcca tcagacccat 43020 atggtcctta ttttagtaac tcttcttctt tgagtgactt ttcttcttca agctattctt 43080 tatttggaaa tattgattat ttaattaatg aaacaataaa aatttcaatt ggtggaagat 43140 gggagaattt taaatctaat tattttgatt cttatgacga atcattttca ccatcaaata 43200 aaatgtctgg tggtaagttg tcactagtta aaactcttaa taataattct aatatttatt 43260 ttaatattgc taagggctat aaccagggtg gatttaattt aggtcttggt cttgataaaa 43320 attcatcaaa tagaaattta tattatgatc cagaattttt aactaattac gaagttggaa 43380 ttaatagtaa atttttccag tcaaaattaa atcttggagc agtcctgttt tattctgatc 43440 gaaaagatca acaggtctta atttcaaccc aggttgatcc ttcagatccc aacacttttt 43500 tatacttaac ccaaaatgct gcagaaggaa ttaataatgg cttagagtta aatatagatt 43560 atgcactgaa taaatctcta ggtatatttg ctaattttgg attgctaaat acagaaataa 43620 aaaattggat ttcaagacca gatatagaag gtagagaaca ggcgcatgct ccaaaaaata

43680 gtttttcaat aggcatcaat tggaagccaa caaaccaatc ttatttatca ttgaatgttg 43740 ttggtaaaag tgagttctat tactctgatt cccataacaa tacttctgag tcatacaact 43800 taacaaacat taattatgga tatgaacatg gacaatggac ttattcatta tgggcaagaa atatttttga taagtactat tcagtaagag gtttttactt tggtaacgag gcacctgatt 43860 43920 ttatagatac gctctacaga agacatggag atccaaggca tataggagtc atggtccaat atgatttcta actttataag tgaattttgg atggaaatag cagctgttgt atttgctatt 43980 atttatttat tacttgctgt aaaacaagac gtaaagtgtt ggtttgcggc tataattagc 44040 44100 tcaatattat atttctttat tatgtatgac gcaggcttat atatggaagc ttacctgcaa 44160 attttttata tcatgatggc cttttatggg cttcaacagt ggagaagtgt cgatactgat 44220 44280 atagttatca tgactttaat ctctggattt ttattagaaa aatataccaa tgctatcttg 44340 cctttcatag atggactaac aacatgggga gcaatagttg cgacatatat ggttgccaaa 44400 agacttcttg aaaattggat atattggttt gttatagatt ttatttctat ctttttattc 44460 atgtccagag gacttttatt aacctcagga ttattcttta tttatcttgt aataatatat 44520 tttggttaca tgtcatgggt aaaaataaga gacgatatta gtgcagaatc ttcataacaa 44580 tctagatata aaaaatcata atctagagat tattaaaaca attaaatcag gccctgtatc 44640 tgaaatatct atttgtaatt ttgataacat caaagcaatc ttaagagttg atcatccatg cgcacacaaa ataaatgtag atcgagaaaa tgaaattttt atactcagcc aactaaaaat 44700 44760 tttagatttt agtccagagg ttttatttag tgatttgtct tatggaattt tagtatggag 44820 atatatcgag ggtattgaat tttcacttgg taaggattcc aatgaagttt ttttaaaaac 44880 acttggaacc gaattaaaaa aaattcatga tattgatctc cccaaaagta agaaaaaata 44940 ttttagcaat gacataaatt tttacagaaa tttactaaag gaggttcctg aaaatataat 45000 tcttcataga ggatttgatt tatacgacaa actcaataac tctgataatt atgttctctc tcataatgac ttgaataaga caaaccttct ttggagggat aggttatttt ttttagactg 45060

45120 ggagtactcg agttttaaca atccttttt tgatattgcc tcgttatcga atgcttataa 45180 cttatcaaaa gttgataggg caattttatg gaaagcttat acaaataatg aatattcagt 45240 attaaatgat acaaatctta gagaatggat gcatttttgt cattatttag agtacatgtg 45300 gagtatttcg ctcatacaaa atggaaaaat tgatcagaac accctaaatt taaaaaaatt 45360 agagaaaaaa ttaaaaaata ttatttaaac aacaagtatt gcgcattctt tagttgttgt 45420 tttactatta tgtaagaaat ttacatttaa atgggggttt gatatgaaaa ttttatgtgt cttatatgat gatccaaaaa caggtatgcc agaaaggtat gcaagagatg atttaccaaa 45480 gttagataag tatcctgatg gaatgacact tccatcccca aaatctatag attttactcc 45540 45600 tggtgagtta cttggttgtg tatctggaga actagggctt cgaaagtttc ttgaagatgc 45660 tggccataca ctagttgtta cttctgataa ggatggagat ggatgtgagg ctgataaaga 45720 attagtagat gctgatattg ttatatcaca acctttcttc ccatattatt taacaagaga 45780 caagatgaaa acagcgccta atttaaaaat ggcaattaca gctggcattg ggtctgatca 45840 tgttgatctt caggcagcca tggataatag cgtggatgtt gttgaagtta cttactgtaa 45900 ttctcgttca gtcgccgaac acattgtgat gatgatccta tcgatggttc gtgattatca 45960 tacccaacat agaattgtaa aagagggagg atggaatata gctgatgctg tacaaaggtc 46020 atatgatgta gagggcatgc atgttggtac tgtagctgca ggtagaattg gtattgatat 46080 gctaagaaaa atgaaaccct ttgatgtgca tttgcattac tttgatattc ataaactctc 46140 tgatgaaata gaagcagaac taaacctcac ctatcatgat tctgtagagt cattagttgc 46200 tgtgtgtgat gtagttaata ttagttgccc attgcatcct aaaactgagc acttattcga 46260 tgatgaaatg attagtaaaa tgaaaagagg tgcatatatc atcaatactg ctcgtggcaa 46320 gatttgtgat aaagatgcta ttgcaagagg cttagagtca ggccagctaa gtggttatgc tggtgatgtt tggttcccac aaccagctcc aaatgatcac gtatggagaa caatgcctaa 46380 46440 ccacggcatg actcctcata cttcaggtac ttcgctatct gctcaaacaa gatatgccgc 46500 tggggttaga gaaattctag aatgttattt tgcaggcgaa ccaattagag acccatattt

46560 gattgttcaa aatggtgatc ttgcaggtat gggtgcgcac tcgtacacaa agggtacagc cacagatggc tcagaagagg ccgctaagta taaaaaataa gttttagaac ttacttagcc 46620 46680 tttccttaat aatagagtct gcctctgcca taatgctatg cattaattct tccactgtcg 46740 ggatgtcatt aaccagtcca gcaaccattc cacatgacca ggctccaacc tccatagttc 46800 cttcatgcat aatttttgga tagactcctg caacctcatc cacaatatca gcaaaagtta 46860 attcatcacc aagagctttt tctttttcaa tcaatctctc aacagcttca ttattaagaa 46920 ccctttctgt atttgttaat gatctcatga tgagtctagt atctaactca gaagcattta cgatagcctc tttcacattt tgatgaacag gtgcatcttg agtagcaata aacctagttc 46980 ccatattcat tccctcagca cctagtgaca tggcagcaac caaacttctt ccatctgcca 47040 47100 ttccacccga ggcaacaaat ggtatttcaa gctcatctgc tgctctaggt aagagtatga 47160 aattaggaat gtcatcttct cctgggtgtc cgccacactc aaaaccatct acagaaaccg 47220 catcgcaacc tattgcttgt gcttttaatg agtgccttac agaggtgcat ttatgaataa 47280 cttttattcc tgcttctttt aaagctggga ggtattctgc aggatttctt ccagcagtct 47340 ctacaacagg aacccctgca tcaataatta cttttatcaa accaggatag tctgggggtg 47400 ttagtgatgg taaaaatgtt aaattaacag caaatggctt attggtcatt tctttgcatc 47460 tggcaatttc atttgctaat ttctcaggcg taccctgtgt tagaccagta attgttccaa 47520 gtccacccgc atttgatact gccgctgcaa gctcggcaaa accaacatgg tgcattccac 47580 cttgaatgat tggatgttct ataccaaata attcagttat tttagttttc ataatactct 47640 cctatttatc ttccattggg gttaaaaaat cttcatattg agtttgaagt ctttgcatgc 47700 cacttatcca tctatctctg tcattacctt ttcttttaac atattctaga acctcactat 47760 gaggggttac taaaaacctc tcctcctcta tggcgttaag aacatccttt gcaacaatat cagcttccat cattccatca actcctgcta caccaggacc atttgcagtc atagcagttc 47820 47880 taactgcttg agggcataaa caggaaacgc cgataccttt atttccatat gtaattttta 47940 tccattcagc aaaactcaca gctgcagctt ttgtaactgc atatccagcc gcacctagtt

gagttaaaag accggctgct gaggatgtat tcataagata gccttcacct tgttctatca 48000 tttgaggaag cacatgtttt gcagcatgaa tatgagactg aacatttaca ccccatatca 48060 48120 tgtcccaatc cgaagtatct gcttcaaaaa atcctggctt tccaccgata cctgcatttg 48180 aacaaaatat atcaatacca ccagaaaatt cattagcctt ttgtataaca tttataatgt 48240 cgttttcttt ggaaacatca gcacttactg caagcccatt aacactcttg gctgtttcct ccgccccatt taaattcata tcaacacata ctatagaact tgccccagat gcatagaact 48300 cttcacataa agccttacca attccactgg cagcccctgt aaccacaact cttttattat 48360 48420 taattttcat aaattgacca cttttttaat tttttattta actttattgc ttagatagtt 48480 tattacaaaa caacaatact taatattgca aaatcgcata cccatcttta taaatttatt 48540 gctattatta gtgctagaaa atgaaatact gagatttaat atgaagaatg ttgttgttat 48600 tggctcgtcc ggggcaatag gaaaagcctt tattgatagc tatatcaaag atgatgatgt 48660 tgaaaatata ttttcatttt caagaacagg cctttccatt gaggataaaa aactccatag 48720 tttttttatt gatattgagg atgaaactag tatttgtgat gccgcagaga agatagacaa 48780 gtcctcaata gatgaaatta tcgtcgcaag tggaatactt cataataaag attttgggcc 48840 agaaaaaagt attagagatt taaatgcaga taacctttta aaggtcatta aggttaatac 48900 tatcggccca acaattgttg gaaagtattt cattccattg ctaaataaaa aagaaaaaag 48960 cgtcttagca tttttaagtg caagagtcgg cagcatttct gataataaaa caggtggttg gtatgcctat agagcgagta aaactgcact taatcaaatc attaaaagtt ttagtattga 49020 49080 attacgaaga accaatccaa atgccattat ttttggtcta cagccaggaa cagtagatag 49140 tgaattaagc gaacctttta aaagaaatgt aaaagaaggt aatttattta ctccagaata 49200 tagtgtattg cagctaaaaa atattattga tacagcaagt ccatctgatt caggcaaact 49260 aatttcttgg gatggggaag agattcagcc atagttggtt atgaatatat tttcatatta 49320 gaataaattt ttaggggaaa aaatgagtat taaatattat gactggtcta aatttcaggc 49380 caacactagg ccaaataaag ttgccataag agagctagat aataacaaga tctatactta

49440 cggagaattg gataaaagat catcaaggct tgcatcacat ctccaaagtt caggaataaa 49500 aaaaggagat cgtattgcga tactatcgct aaattgttca gaattttttg agctagaatt tgcttgcgga aagattgggg caatagagat accattaaat tggagattaa caaaacccga 49560 gctcagttat attcttaatg atagtgagcc aaaaactcta atttatgaca atcagtttga 49620 agaaatggtg aaagagctaa aagaagaatg taatatttct gaaatcatag ctcttgatca 49680 49740 atttgaccaa gaaagtgatt atgaaaaagt tttgagtaat gcttcaggca tttattatca ggaagaagtt gatctagaag ataacattat gattatgtat acctctggaa caaccggtca 49800 49860 ccctaagggc gccatgatca cgcacaaaat gcagcttttt aatgttatta atttaggtat 49920 ttcagcagct gtttcccctg aatcagtcca tttagttgtc cttcctttat ttcatacagg 49980 cggaatgaat tgttattcaa atccaattct tcatgcaggt ggcgagttaa tattacttaa 50040 agagtttgag cctgggaaag ttctatcaat tatcggcagc tctgactatg gagttactca 50100 tctgtttgca gttccagccc cttatcaatt tatgatgaat catccagatt ttgaatcaac 50160 aaatttatca ggagttaagt atgctggagt tgggggcgca ccttgtgcag aggctatttt gaagacttat ataagcaagg gtgtttcgat gcagcaagga tggggtatga cagaaactag 50220 50280 tccaggtgct actggtcttg aatcgtccga ggctgaaaga aaaataggat ctgctggaaa 50340 accgcttctt catactgagg tcaaggtggt tggagatgat gggaatgaac tgcctgctgg 50400 agaagtaggc gagatttata ttaaaggccc aaatattaca cctggctatt ggaagaaaga 50460 agaggetact agagattett ttgaagaegg gtggttaaaa acaggtgatg etgettaett 50520 tgatgacgag ggttttttat acatagttga tcgatggaag gatatgtata tctcaggtgg 50580 agaaaatgtt tatccagctg aagttsaaaa tgttatctat cagttaccac aaatcgcaga 50640 agttggagtt attggtattg atagccctaa gtggggtgag actggtaaag cctttgttgc 50700 tttaaagccc gatcatgaat tgacggcaga agaagtcata gatcattgtt taaaaaatct 50760 agcaaagtac aaaattccag agaaagttga gtttattgca gctcttccaa gaaatgctac aggtaaagtt ttaaaaagaa cattaagaga tatgtaatat ttttaagcca aaaaaaaccc 50820

50880 agcctaagct gggtttttta tttaactatt taaagttatc taatgttaag cattagaaga 50940 ttctttaaca gcaacattcc atataattaa accaaataga atcttgttaa caaagtcagc 51000 aaggttatag ataaggttta agttaagagc tgatccaccg tcacccatca ggtaacctgt 51060 gaaataacct acaggataaa tcgcccaacc aaagatgata atatacatca ttgtgttgta 51120 agctgattgc acagcaggac ttgcagtatt acatgcagat tttccttctc cagcccataa 51180 ttcataaatc atgtataccc aagctaaaca cccaataatg aatgcaggcc atgcagccat 51240 gattcctgct tcacccatgt aaccaaacac aagcataaca agagaaccaa ctagtaattt 51300 cttaaataat gatccagcaa cattagttgc agcagcaaga attaagtaga attcacatat 51360 taatagagga actgttagta accaatcaat gtatctaaat acagttggcg aatcaccagt 51420 ttcaatccat acccctctca tgtacatgta atgccagaaa gcaataccag taacaagacc 51480 agatacagtt aatgatgttt tccattttgc agaaactcta tctctttcaa caaagaaaaa 51540 tacagtagat gctaataaag cagcagtaac taaccaaaaa gaaacaccag tgtaatcact 51600 agcatcaagg tcaccaccac ctgcagcaaa tgtaggaagt gcaataacac tacctaatat 51660 cagtaataat ttcatatata actcctatat taatgacaaa gaagcataat tgcctcccc 51720 ctaattaaat atgaaattta atagtaacca atattaatag aggttacaaa taaaaagcat 51780 ctattttttt aatagaaaat atgtgtaata aaacaccata ctttaaatta atatttattt 51840 tgcataagta gacttgttta gtatcatatt taacatgaaa gttgcaattt atcctggttc ctttgacccc atcacaaatg gtcacacgga tattattgat aggggttgcg gactctttga 51900 51960 caaggttgtt gttgcaatag ctaagagtga atcgaaaaac cctcttttta gcctagagga 52020 tagaattaat ttagcccaat ctatttttaa aggaaatgaa aaagtagagg ttgttggttt 52080 tccaagaaag ttaacagttg atcttgcaaa agactatgga gcttgtgcaa ttataagagg 52140 cctacgagca gtttctgatt ttgaatatga atttcagtta gcaacaatga ataggtcgct 52200 ggctcccaat attgaaagca tttttttaac accaaaagaa agtctcattt atgtatcttc 52260 tagcttaatt aaagaaatat cagacttaaa aggcgatata tcgaagtttg ttcatcctat

52320 agtagagcag gcacttcgag cgagtagaca cttagctctg acaagcttca caaaaaaaag 52380 tagctctttg attgacgatc gttttacaaa tagtgccttt gcatttattg cagggctcgc 52440 cttctcttcc atatacattt aatttaaatt taaaatatcc tggactacca tcagctgagt 52500 agaagtettt taatgtagtt cetecaacet etattgettg etetagtate tttttteeag 52560 cagctactaa tcttttacaa gcatctaaat ctaactcatt ggcatttttt agcggatgaa ttttagctaa gaaaaggctt tcagacgcat aaatattgcc gataccgact acatttttt 52620 52680 gattcattaa atagctttta atatttgttt tagagtgact gcatcctgaa aaaaaatcct ttgcattaaa atttttagaa agaggttcag gcccaaggtt ttttattaac ttatgtttat 52740 52800 cgatatcaga agtaagatgc attgatccaa accttctggg atcattataa ataattcttt 52860 cctcatcaaa aattaattca atatgatcat gtttgataaa gaagttttca ttattttttg 52920 caattctaag actcccagac attcctaaat gaagaataat ttttttatca ttagatagtt 52980 taaaaattat atattttgct cttctttcta agctttcgac aacttgatct tttactgagg 53040 tttcaaagct atccaccact ttccatctaa ggtttctgtt gtgtatcctt gcttctttca 53100 gcaaagagcc tttaaatttt ttaattgctc tcagggttgt ttcaacctct ggaagttcag 53160 gcatttttaa ctgagtaaat tattaatttt tactatgtca gctggagtaa ttgttcccga 53220 tgcgagccct agtcttagat tggcaagtat gtaatcatat tttgcattag caagattttt 53280 ttccgcgctg tataagtttt tttctgcctg caagagatca acaacgtttc ttgttccaac tctgtagcca acttgagtcg cttccagggc actagtggcc gaaatcactg cttgtttttg 53340 53400 agcatttaca tttgcaacta atgttaaaac atttgaaaac tgggatctga cttcttgaat aatccttctt tctgtaaata gagtattttc atttgctctt tcatactgtg aatatgcttg 53460 53520 cttccttctt gagttaacgg cgccgccttg aaagagtggc atacttagct gaattgcata 53580 attecttett cetgttactg atggaactgg aatacettgg ceattgatat taaaacette 53640 atagttaaat tggtttgttt cagattctga ctgacttcca acaatgtcta tcttaggtaa 53700 atgatttgaa gctacacttc ttgcactgct tttcgctgct ttctttctca aatatgctgc

53760 ttttaactgg tagttatttt ccaatgctaa ttcaacccat gtctcttttg aacttggtgt 53820 tggcaggtca ataagcaaac catctcccaa ttcatttaag ctgaatattt ctctaccaat 53880 cagagcattt aaagactctc ttgcagaata aagtgatcct tctgttctaa ttcttgaggc 53940 tttacttaga tcaaatgcca attgagcctc ttgaactcca gttatggctg ataacccaac 54000 atcgaatctt tgttttgctt gatcaagttg ttttttaata gctttttctt cagatattgc 54060 tgcatttaga ttatcaatag ctctaagtac gccaaaataa agctcagcag ttcttactaa 54120 aagattttgc tgctcaaatg caaagtctgc ttcagcagca tctgtaagag atttagattg cctatattga aaccatgtat ctagtctaaa gagcggctga gtaaccctgg cagatgtaga 54180 54240 aaaagagtta tattgctgct gcagttcttt gttttgatag tattcgttcc agttagttga 54300 tccactcaag gtaatactcg ggagaagcgc agctcttcct tgaaccttaa gctctttatc 54360 tgctaaatat gaatattccg ctgctttata tgtagggtca ttctcaagcg cttcattata 54420 gatatccaaa agactttcag atgaaatatt aaatgagata aaaagtgcta aaaatgattt 54480 tgtgtaaatt ttcataactt attttaacct attaataatg tttgcagtgc aaacatttat 54540 tttttttaat tttattgaat ttattttata tttcttagag tagaatatct ctaacaagtt 54600 caataatttt ttataataaa aaggctttaa aaattggcta aaaattcata tgacgctcag 54660 gcaattgaag tettatetgg aetagateet gteaaaaaaa gaeetgggat gtataeggat 54720 acatctaacc caaatcattt aattcaagaa gttcttgata attcggttga tgaagctctt 54780 tcaggttatt gttcaaacat aaaagtatct gttctaaaag atggctttat taaggtctct 54840 gatgatggaa ggggtatgcc aattgatgag cacccggaac ataaagtttc aggtgttgag 54900 ctcatccttt gtaaacttca tgctggagcg aaattctctg gagatgatta taatttctct 54960 ggtggccttc atggtgttgg agtttctgtt gtaaatgccc tatctgatga attagaggtt agagtaaaaa gagattctaa agaataccaa atcactttta ataatggaga taagtcttct 55020 55080 gaattaaagc caattgggga agtggggctc agaaattctg ggacatcaat taaattcaaa 55140 ccaaatccta catattttga aactatagag attcagataa aacagcttaa gcatttatta

55200 aaggccaaag cagttctctg tcctggatta acgatagagt tcgttaatga aaaaaagact 55260 gatgataaac aaaagtggta ttttgaagat gggctcaaaa gctatttgat tgattcttcc 55320 gagggagcag acttggtttt gctagattca attgtatgct ctaaaaaaatc tcaagctcaa 55380 gagcttgaat ttgcaatcaa ttggtcatta agacccccaa aaaataaact cgatgaaacc 55440 tatgtgaatc tcataccaac tgctcagggt ggctcacatt taaatggctt taaggctggg cttttagatt cattaaaaga attttgtgaa tacagaaatc tattgcctaa aggtttaaaa 55500 attaatgcag atgatgttct taataatgca atttttataa tttcatctaa gcttcagaat 55560 55620 cctcaatttg cagggcaaac caaggaaaga ctagattcaa aagatcacat gtcgttcgtc 55680 tcaagtacca caaaagacat tttaagtatt tggcttaaca ctcatacaga agagggcgaa 55740 agaatagcag aacttgcaat tatgtctgct cagacgagag caaaagtttc caatatagtt 55800 gaaagaaaga aaacttttag aggcccagcc ttacctggaa aactttcgga ctgtaatagt 55860 caggacttaa atgaaacaga gctttttta gttgaggggg actcagccgg agggtccgca 55920 aaacaagcaa gagaaagatc tttccaggca atcatgcctt tgagagggaa gattttaaat 55980 acttgggact tagaaagtgc agaaataata aaatctcagg agataaaaaa cctatcaact 56040 gcaattgggg ttctgccagg aaataatgac ctttcatcac taagatacgg aaaaatttgt 56100 attettgeag atgetgatte agatggtetg catattgeaa etttaetttg tgeattgttt 56160 ctaaggcatt ataaatcttt agttcaagag ggaaggatat atatttcaat gcctcctcta tatagaatcg attctggtaa agatgttcta tatgcacttg atgataaaca gcgagatgaa 56220 56280 atagttactg aatttaaaaa gaagaagggc aagcctaaag taaacattca aaggtttaaa ggacttggtg aaatgaatcc acctcaacta agagagactg tgatggaccc tgctactcgt 56340 56400 cagcttgttc agctttctat cagctcaagc gataatgcaa attctatgat ggacttactt ttgtccaaaa agaacgcacc agcaagaaaa gaatggcttg aaaagaaagg gtctctagca 56460 56520 aaaatataaa tatgaaagaa caaataacct caattagcct caagcaatat gctgaagagt 56580 cttatcttaa ctatgcaatg tatgtcattt tagatagagc tttgcctaat attggagatg

56640 gccttaagcc tgttcaaaga agaatactct atgcaatgtc agagcttggg cttgatgctg 56700 gctcaaagta caaaaaatca gcaagaactg ttggagatgt tataggaaaa tttcatcccc atggagacgg cgctgcatat gaagctatgg ttttaatggc tcaaaatttc tcattcaaat 56760 56820 accettttgt agatggtcaa ggtaactggg gttctcagga tgatccaaaa tettttgctg 56880 caatgaggta tacagaatct aagttaacta aatttgcaaa tcttttaatc tctgaattga agtctggaac agtcgattgg cagcctaatt ttgatggctc tcttttagag ccagtaattt 56940 57000 ttccagccaa actcccatct attttattga atggcacttc tggaattgct gtaggaatgg caacagatat tccatctcat aatattaatg aaattattga tgccacagta catcttattg 57060 57120 ataatccaaa atcacagttg gttgatttac tcaagataat taatggtcct gatttctcaa 57180 ataattcgcc aataattgct agcaaagatg agctgaatga aatttattcg actggaaaag 57240 gcggcttcaa agctcaagcc caatgggcgc aggataagaa tcaaatcatt atcaacgcat 57300 taccttatca agcatctggg tctaaaattt tagagcaaat agctgatcaa atgcttaaga 57360 aaaaaattcc aatggtggtt gatcttactg atgaaggaga ccacaaggag ccagtaaggc 57420 ttgtcataac tttaaaatcg aacagagtaa atgctgaaga tgtaatgaat cacctttttg 57480 catcaactga tttacaaaaa aattatagag taaatatgaa tttgatttca ttgaaaggtg 57540 57600 ctgtaataag aaaactagaa catagactcg accaggtaaa cgataggctg catatccttg 57660 aggggttatt aattgtttat ttagatttag ataaagtaat aaagattatt agagaatcag 57720 atgagccaaa aaaagatatt attacagctt ttaaactttc tgatatccag gcaaatgcaa 57780 tccttgagat taggttaagg caactagcca agctagaaca aatcaagtta gaacaagaaa 57840 57900 ttaaaacatt aattaaaaat gagcttattg aaataaaaga tgagtttgga gaagtaagam 57960 aatctccaat aagagaagca acagaagcca aagttttttc tgaagaagaa actcttgtca 58020 ctgagcctat tacagtagtc ttgtctgcag ctggctggat cagaagtgca aaaggccatg

58080 agatagaccc cagctcactt tcctatagag gagaagatgt acttcaagat tatggaagag 58140 gaaagagcaa tcaagtttca gtttttcttg actcaaatgg gaaggcttac tcacttgcaa 58200 gtcactctct tccatctgct agaggaatgg gtgatcctat tacaggaagg gtatctgcag 58260 attctggagt aaagttcatt tcttcattga ttgggaatga tgaagataaa ttcatgatta 58320 tgaatactgc tggatatggc tatatttcag agtttaaaaa tatggtttct aataagaaat caggaaaagc atttatgaaa atccctcatg aagcagacct tcttaaagcc attaaagtaa 58380 58440 gagacgatca tttgtatata gcagcagttt caaatattgg cagactttta atttttaaga 58500 ttgatgaatt gccaactctt ggaaagggca aagggaataa aataataaat ataccaaccg 58560 ctaaatttat agcaaaagaa gagttaatga cccatgcgca acttgtttct gaggctagct 58620 ctttaaggat tgaaagcgga aagagattcc tcactttaaa actcaaagat ctagaaaact 58680 atatttctac aagagcaaaa aggggaaata tgcttccaca aggatatagg aaggtagata 58740 aaatgattga agaggttgag ttagaagtta aagaagactg attatagatt tctcaaaaat 58800 ttttaatccc tcatcaacta gctcattttc tattattagg cttggagaaa acctaacagt 58860 agatgcattc gccttaagaa tcattaaccc attatgatgg gattttttta ttaaatcatc 58920 tatttgaatt ttgctatcct tgcttacttc cactccgacc cataaaccag cagaagttat 58980 tttttcaaaa catttgtgct tctcatttat tttattcaac aaattgataa atctaacttc 59040 tttctttaaa accttattta aaaatgattt tttagaaatg gtatctataa cttcattacc tatggcacat gcaattgggc ctcctccaaa agtcgtgcca tgagaccctg ccgacatatg 59100 59160 ttttgaaact ttatctgaag taagaatgcc tcctagtggg aagccattag atataccttt 59220 agcaaaacaa agaatatcag gagtaatgtt aaattgctca taagcaaaga gtgttccagt 59280 cctgccaatc ccggattgaa cttcatcaat tatgacaagt gccttatgtt tttttgcaag 59340 tttctttatt tttgctataa attttttatc tgcttttgtt attccagatt gccattgaac 59400 cagttctaat ataaccgctg cagtcttatc tgaaaaaacc ttttctagat tagtaatgtc 59460 attatatgga tgattttta tccctctagg cagaggcgca aaaccgtctg taagatgctt

59520 agetttaget aaagetatae caageatagt tetteeatga aatgaegttg aaaatgaaat 59580 gacctcattt ttattttat taactgttga tgagcaaaat tttcttgcta tcttaactgc 59640 agecteaatt gattetgeee etgaattgea aaaaaataet ttatetgeaa aagaattett 59700 gcataacttt cttgccaaag taactgaggg ctcatttatg tagagatttg ataaatgcca 59760 aagctcctca gattgctttt taagaatttt tattagatct ttatttgaat gaccaaggtt agtgacggca atgcctgctg tgaaatcaat atatttctta ttatttaggt cccatacatg 59820 59880 cgatccactc gcttttttta caacaaaatc tgcaggagcg taaaaaggca ccatataatt 59940 agtatattct ttaattatct ctttcataaa tatattgtat cgtggtttca gttcaaaaat 60000 taaatgacca aaaatttcta gtatctttaa aaccaaacag ctcactcatt ggctttaata 60060 gaataatatt tatatctagt atatctattg tatgcggtgg catagcattg atatttttct 60120 tttttggagc aacgctcatt ttgccttttg ctggtttaga gcttggtatt ctattcactg 60180 60240 ttgtaactat agaaaaaggc tctaattatg ctgaatataa atgggaagag ttcaggtcat 60300 60360 aaggcgagga tgttgaggtt ggcagctttc taaatgaaga tgataaaaat gtattaatag 60420 aagagctaac tcagatcata gatacattaa atcacgattc cttctcaaag ccagagcttt 60480 aatttetttt taacttettt tagetttaat tettttattt cagggatgee atttetaaaa 60540 tttggaaatg attctccctg tattaatggc ataagatatg caattgcttt tggggtaacg 60600 tccattccat ttttagctat aaaagatttt ggtaattttt tttctaaatt agctattttt 60660 gccagtggag ctggttcaat tttccaccta tattttttag ctttacctct aactattatg 60720 ggcataacac cattcatgcc ttctactgca tactgaactg ccttggcccc aacagccata gcttgctcta ggtctgtttt ggaggcaata tgtcgtgcac ttctttgtag atagtcagaa 60780 60840 acagcccaat gattttttag ttttaattta tcagtaatta agttggcaat gtaaggcgca 60900 actccaccaa gttgagcatg accaaatgca tctattgttg ctgattcaga aagaaatctg

60960 ttcttattat ttttcaaccc ttcggatacc acaacaacac agtagccatt tttttaaca 61020 acacttttaa cttctgctag aaattttttt tgattgaagg ttatttcagg taataaaatt atatgaggtg catctccttt ttctttctt gcaagagaag atgcagccgc catccagcca 61080 61140 gcatgcctgc ccataacttc taatataaaa acttttgttg atgttgctgc cattgaccga 61200 acatctaatg aggcttctag agttgatgtt gctatatatt tagccgccga cccaaatcca 61260 ggacaacagt ctgttaatac caaatcgtta tcaacagttt ttgggatggc tatacagtta attggataat ttaattttt acttatctgc gaaactttaa atgcagtatc agctgaatca 61320 ttaccgccat tgtaaaaaaa atatcctata ttgtgcgctt taaaaacatc aataagcctt 61380 61440 ttgtactctc tttcgcttga ctcaagatct tttaacttaa acctacatga cccaaaagcc 61500 ccaccaggcc tatatttcaa tgactctaat gcagatattg attcttttga tgtatctatt 61560 agttcctcat tcagcgcgcc caatattcca ttcttgcctg cataaatttt accgatgtct 61620 ttatgcttct tggcctctaa aatcagagcg ccagctgtag catttataac tgcggtaacg 61680 ccgccggatt gagcataaaa cgcattttt ttcattttt ctccatcaaa tgtactgaaa 61740 taaaaatatg taaagtatta taactaatat gcgaatacat atcttaggga tctgtggrac 61800 ctttatgggc ggccttgcta agatacttaa agagtcaggg catgaaatat ctggatcaga 61860 tattcaattt tatcctccca tgtcagacta tcttgatagc tttgatattg aaatgatcaa 61920 gggctatgac ataaaaagca tgccagatgc tgacttgtat gtgattggta atgcactttc 61980 tagaggaaat gaatccgttg agcatatttt gtccaattct cttccgttta agtcaggccc 62040 tgaaatgctt ggagaaattt taaaaaataa aaaggtttta gctatatctg gaacacatgg 62100 taaaacaacg acttcatata tgttgactca tattatgtta gatcagggta gggatgtcgg 62160 ttttctagtt ggtggaatat caaataatat atctggctct gcatgtcttg ggtcagatgg 62220 aacttttgtg attgaggcag atgaatatga ttctgcattt tttgataaaa gatcaaaatt 62280 tattcactat tcaccaagca ctatagtcat caataatatc gaatttgatc atgctgatat 62340 ttttaataat ttagatgaca ttaaaagaca attccatcat ctaattaaaa taattccatc

62400 aaatggaaat gttgtttatt ttgctgatga taaaaatata agagatctta tcgatatggg aatttggtca aatcagatag caatcaataa taatgctcat tcaattgagg cagtttattc 62460 tgataagact ctaaaatatg aagaaagtat ttattcatta aatgagttac ctttaatagg 62520 agaacataat tttaaaaact acatttcggc tattttggcg gcaaagacag atggaattca 62580 62640 aattcaggat tctatcaaat cattagctag ctttgatggc gtaaaaagaa gattagaata 62700 taaaggaagt tttgatggca tagaaattta tgatgatttt gctcatcatc caaccgcaat 62760 agaattttct tctaatgccc tcgtaacaca aaatccatca aaaaaaatac ttggtctcat 62820 tgagctaggc tcaaacacta tgtctggggg ttctcatggc ttgtctttgg ttgaatctgc 62880 aaaatcttta actcatgtta tctggctaga tcgcaataat gttttgtcag agaatgctag 62940 cattgaatct actaacacta ctgaagattt tatttctgca gcgatatctg ctttctcaga 63000 ttatgatatt gttattttga tgaccaataa agacagccaa aaaatattaa aacccattgt 63060 agatcacttt gaaaaataat aatttaccag tttttccttt aggaatagtc gccctcccag 63120 gtagcatcca atctcttcaa atttttgagc ctaggtatat acagatggtt aaaacatgtc 63180 tatccaagaa ccatggattt gtaattgttt ttaatgccaa taatgagtct caaggcgatt 63240 tcactttttc taagaaggga agttttgttg aaattataga ctttaataat ttgccaaatg 63300 gccttcttgg gataactgta aaatctataa ataaggtgat aatcagtaat atatgtcaat 63360 tagaagatgg actgcatatt gctgatatta aggcacagat agatccagag gtagatgatc 63420 aagctgtttt ggcagaatat cctgagatat ctagcattct ttctcagctt gtaaagcatc 63480 ctaagattag tgacctgccc atccaggttg actttggctc tgctgattca gttgcatacc 63540 acttagcagg ccttatacct ctaagctcaa atgagaaaca aaaactatta gaagcattcg 63600 atgcagcaca gcggatgaga attctttcag actatattga aagaatatct actacataaa 63660 ttatttattt taatattatt ggcggcttat tagattttgc tctaagccaa ttgatggact 63720 taaaaaccgt agggatttct acaaaccttt tttcaatata gtatttgcct ggatagttac 63780 taagcattag cccaataata atagtgaaca aacctggcca ggtaacacca gcatcatgat

teccecaata ataagggaat aacetaaaat atttttaate agtaaaacta aataccacaa 63840 63900 caacgggtta ttggtcttaa atttcgagac atctttcttt ataaaatagt cacttggaat 63960 taatccagca agccacctca tactaacgag actaaataaa aaaataaata aagatattga 64020 gctcagccaa agtataagaa ctttataaga ttcaaaaaaa attatgatgg catttagggt 64080 attaaattcc ataattaccc acctttttat ttaataatga tttagtatag caatgtctaa 64140 aaataaattt aaacattaaa taaatataca ataattttgc caaaaaaagc cttaaatgat 64200 atttgcactg aaaccctcag tgataataaa gccgaaaatg ttctatcact tgatatcaaa 64260 ggtatttctt cttttgctga caacatcatt attgcaactg caaattcgaa taggcatgca 64320 aagtetttat eegaaaagtt agttgaggag ataaaageta ataaaattag tateatgggt 64380 gtagagggca agacagaatc aggttggata ttagtagact gtggtgaggt tgtagtaaat 64440 attatgaaga atgacataag agagttttat gatttagaag gtctttgggg tgaaaacacc 64500 ctcatcgatt cttcgaaata aatgctatta aatatcataa gtgttggaaa ctcaccttca 64560 tcttgggagt taacaggaat agaatattac acaaagcaaa tccctaaaga agtaagtcta 64620 aattttatta acgtaaaagg gcagcaacac ccaaaaagat ctacagaaga ggtcttaaaa 64680 cttgaatcta agttaatctc gtccaaaata gattctaatg gatatattgt ttgctgggac 64740 tcaagtggcg agtcgttgaa taattttgaa tttagtaaat tttttgaaaa atccatgctg 64800 gaaaatatga agctttactt tgtaattggt ggttcatttg gcatacctcg agatattctt 64860 gataaateta ataagataat etegatetea agteteacee taceteacag getttteaag 64920 attgttctta tagagcaaat ctataggtca ttttcaattc tcaaaaatct tccctaccac 64980 aaatgattga totgaatgag aggtttgttg aaaaaagaag otttttcaat agattgttgo 65040 ttatatattt tttctttggg gccctgtttt tattcttgct tttcaagacc tattcttac 65100 aggtttctag ctattctgac tatgaactag cagcactaaa gaataaaaca aaagaagtgc 65160 tagttcagcc tgttcgagga gtcatctatg acaggaatgg aaatattcta gttaataatg 65220 tccctacata tgacctaata atccaaccat caaaaattaa aaacttagat gatttcatta

65280 ttaatatttc taaaataata gagctatcag attcagaaat tgaaaacatt attaaaaatt 65340 ttaaaaggag tgcaacttat aatagagagc taacaattaa aaaagatctc tcgaaagaag 65400 aaatagcaaa atttgaagta agaagctacc aatttcagaa tgcatttata gatgttaggt 65460 atagtagaga aaataaatat ccttacttat tttcacacgc actcggttat gtaggtggtg 65520 taagtaatga taaggtttta tcaattttaa aaaatcaaga tttgaagcaa tctgaaacaa 65580 cttttaagta ttcaggtggt tttattgctg gaaaaacagg attggaaaat atttatgatt 65640 cagctttaag agggtccttt ggaaaaaagt tatttgaagt tgatgcaagg ggaaggcttt 65700 taaaagagct aagttttgaa aaacctatta atggaaaaag cctttttact catttagatt 65760 taaattcaca aaaaaaagcc tttgaacaaa tgaataatag aaggggtgct gttgttgcct 65820 tagagettaa atetggttet atagttaeet aeetaageae teeaagettt aatgtaaatg 65880 gtctttctaa tggcatgtcg tcggtagagt tcgaaaaact gattaatgat gtagacaagc cattttttga tagggccggt caaggtcggt actctccagc ttctacaata aagccagcaa 65940 66000 tagcattgtt tggtattaaa gaaaaaatag tagactggaa ctttacactt aaagatcctg gattttttgt attaccagag gatcagagga tttatagggg atggaagaaa ggaggtcatg 66060 66120 gaacaattga tatgaagggt gcaatcatag aaagttctaa tacttttttc ttttctcttg 66180 cttataaggc tgatattaat aatttaatca gccatctttc tgagtttggt tttggcagga 66240 atgtttgtaa agattgtttt aatccagatt ctggattatt gcctacgcct gaatggaaaa 66300 tgaataatet taattttgge tggtttaaag gagataeegt taatttaggt gttggteagg 66360 gctatatgag tgccactcca gttcaattag catattactc tgcatttctg gcaaaaaaag 66420 gaaatcttca agagctatca tttgtcgaga gtgacagcct aagcaatact gcttttataa 66480 ataatttaag catagataac tcagactggg atcaaattca ctcaagcatg attggagtta 66540 ttgaagatcc gagaggcact gctaaaagat taaaaccttt aaaatcatat gttgttgctg 66600 caaaatctgg aacggttgag cttgtcagca cacaaacaaa ggaagattac aaactagtaa 66660 ggcaaaatat tggtaacaga gaccatgcaa tcattgtggc ttttggtcca atgcctgatc

66720 cagagtatgc agtaagtgtt gttattgaaa atggtgaaag cggcggttct gttgcaggtc 66780 ctgttgctat tgctgtttta aatgagctta tcaataaatg aagaaaaaat tagactttaa 66840 aaactttagc atttattttg atcaatattt atttattgcg ataaccctgt tgtcggtcat 66900 gggtttattt tttttataca gcgcatcaca agaagatatc agcactgttg ctaagcaagc 66960 tgtattcgtt ggttttggtt tgctgttaat gtttgtagtt agccaacctg accctgattt 67020 ttataataca ttttctgggt tattttttgg ggggggastt gtattgattt ttctaactat gatttttggt aaagaaataa atggagccaa aagatggctt gatttaggat tttttaccct 67080 gcaatcctct gagattatta aaatatcatt gccaattttt ttatcatcat atttatataa 67140 67200 taagccactt ccaataagca ctaggcatac ttttattaca ttgatattaa taggttttat 67260 atttgcactt gtagctagac aacctgactt gggaaccagt ttagtagtat ttatgtcagg 67320 gggttatgta ttatttttag caggattaag ccgccgttta ttggatctgc aatagcctta 67380 tttttattat ccttacctbt tttatggaat aactttctag agccatttca acaacagaga 67440 gttttaactt atttgaaccc agacgcagac ccttatggta ctgcatggaa tataactcaa 67500 tcaaaaatag caattggatc aggcggaatt aatggaaaag gttatcagga gggctcccaa 67560 gcccatcttg atdttttacc agagacagaa acagatttta tttttgctgt tattgctgaa 67620 gagtttggtt ttattggagt ctgtattttg ttatcagtat ttdtctttat atkactcaga tgtttatatt tagcatttaa tgcaagagat agattttgca ggttaactat aggaggccta 67680 agtttagttt ttgcctctac attatttatt aatttagcaa tggttgttgg tgtagttcct 67740 67800 gtagttggta tgcctcttcc atttatcagc aaaggcggct catctttgct atcctkttat 67860 atagettttg ggattataat ttetatggea acacataaaa aattaatgea aagatgaaaa 67920 aaattatatt tataacttta atattcacta tttcaattac tgcggattat tcgaatcatg 67980 aagatagcca aatggtaata aatgaactcg tcacaaaaca cggttttgag gaatcttatg 68040 ttactgcaat cttaaaaaat gcaaaaaagc gtgatgagat gcttaaatct gttgctaatc 68100 ctgctgaaaa aacaaaaaca tgggatgaat atagggctat ctttataaaa acaaaaagag

68160 tttcagaagg caaaaaattt ataaaaaaaa atattaatgc tttagagagg gctgagaaag 68220 aatttggagt tcctaaagaa ataattactg ctattttagg cgtagaaact aattatggca 68280 gcaataaagg tggatacaga gttttagata gtcttactac tttaggtttt gatgacccgc 68340 gaagatctaa tttttttaga agagaactta tagagttctt ccttttaaca agagaaaata 68400 atttagatat caaaacaaca aaaggctcat atgcgggagc catgggatat gcacaattta 68460 tttcgtcaag ctaccgagcc tatgctgtag attttgatga agatggttac gttgatttat 68520 ttaattctgt tgatgatgca attgggagta ttgcaaatta tctttatgtt catggatgga 68580 agagagaagg aaagatcgta acaaaaactt atccaaacaa tgttagaaaa ttttataaac 68640 ctcatgagtc tctaacaagg ttcatacctt taatctttaa tgaagatgga aaagatcttt 68700 tttttattgg tgatgataac tttagggcta ttgctaagta taatattagc gatgtctatg 68760 caatggcggt ttattactta tcagaagagt taaaaaaatg aaaaaattat tattcacatt 68820 actatcaact tcaatattta ttcaagcaca gagttttgtt ccagattctc ctgagttaga 68880 tctgaagagc tatatcctaa ttgagccaaa caccaatact gttattgcag aatttaattc 68940 agatttggaa atagaaccag ctagcatgac taaaattatg actagctatg ttgtggctga 69000 tcagattgca aatggtttaa tatctcttga tgacgaagta ctaattagtg aaaaagcatg 69060 gagaatgcaa gggtctaaga cctttataga agctggaaaa aaagttacgg tatctgatct 69120 tttaaaaggt attatgattc agtcaggcaa tgatgcctct gttgcaattg cagaatatgc 69180 aggcggcact gaaagaggct tcgttgactt aatgaactct tatgctgcct ctttggagat 69240 gaataatacg atctttcaga attcaacagg gcttccagat gaaaatcatt tttcatcagc 69300 aaaagattta gccaatctga cagctaacta cattaataaa tttccagaag aatatgcttt 69360 atataagcag aagcaattta cttttaacaa tattaagcaa ttaaatagaa ataagctttt 69420 atggagagac gactcagcag atggtgttaa aactggtcat acagaagctg ctggatactg 69480 tttagttggc tcagcaaaaa ggggcggtat gaggcttatt acagttgttg caggaagtaa 69540 gtcagataat gatcgttttt tatcttccca aagattactt gagtatggat ttagattttt

69600 tacaacacag aagatgttaa gtgcagaaaa agaatatcag aatattacag tttggggtgg acaagaaaag atacttggcg tgggagttct agaggatata tctattactc ttcctagaac 69660 aagtttcaaa aatgttgaaa ctgtttataa agttaataac aatatccagg ctcctatcgt 69720 69780 agttggtcaa aaagtcggga ctctagaaat aattagtaat gatgagattg ttctagttac 69840 ggatttggtt gctttaaaaa atattgaagc taaaggtttt tttggaagaa tatggtcaaa 69900 gttcgttctt tggatattta gcttatttgg tctaacagat gaaaacacca cttaaaggcg 69960 tttttaatgg ggcttttgat actgtagata acataaaaat atcacctttt tctcgagctt 70020 atactttttc tgatagcgta tatgaagtag ttcctttctt taattcaact gcaattgctt 70080 ttgatgatca tataaaaaga ttagaatttt ctgctagtca actagcgatg gccgtagatt 70140 taaaagaagt tatatttgaa attaattett taataacate atetgaattt agtaatgget 70200 atgtctatta tcaagttact cgaggcgttg atccattaag gtctcatatt catgagccaa 70260 atttaaaaat agaaaccttt ggctatgcaa aggcgcactt attccaatgg aaaccattaa 70320 gagtatcagt atgtgatgat attaggtggg ggaggtgtga tattaaatca acatcattgc ttggtaatgt tatgaacatg aatgcagcaa aactagataa ttgtgatgaa gttattatgc 70380 acaaagataa tttgttgacc gagggtggcg catctaatct tttttttgta aaaaatgatt 70440 70500 caatctgcac cccagctcta aatggaaata tacttcccgg cataaccaga gcattactaa 70560 ttaatgaatt aaaaaattat agtatagagg tcatcgaaga taacttcagg ctagaagatt 70620 tatcaaatgc ttettgegeg tggeteaeaa gegeaaegaa agggetggee eecatttetg aaattagtaa cctagaatct cacttggatt tataccatcc tcttttcaaa aagagtgaag 70680 70740 aaatttttaa taagaagttc cttagttaga agtcagttta ataactatat tatcaagctc 70800 gtaccaaaaa totttatcac taagacottt atttgcaaga tcaagotcaa atacattttt 70860 ttggagctgt attaagtttt gtagtttatg atttttaata aaatgcatat attcagaagt 70920 tttatttttc caaaccccag atttaattag actatctaca ggatttttac tttgtctagc 70980 attggctgca ctgttaataa ttttaccaac tatccaaact agaagaggtg cataatgatc

71040 ttccgctgat tttattgaat ggataatttt taaagcttgc ttggtattat ttgaaataat 71100 tttatcttca agetcaaatg geataaatte tgeagaetee acagaaggtt ttetttettg gccatcacca tctttataag tcagtcttag aagctttact tcattctgtt gggcaactaa 71160 71220 gtttccagag ttcatttcag atatattttg cactaaagag ggcctatctt tttcagaaat 71280 aaaaqatagt tgatgcttaa gccaaatctt ttcttcaaaa gatttaagtt ttccacaatc aatqatqagq gctatctcat ccatctgttt tacccactta gttgtgaaat taagcttttc 71340 attgcttgaa ttaataatta ttgcaatatt atccatatgg ttaatatttt caatttgaga 71400 71460 tattttaatt atttggtcag gtatttttcc ttgatcatga ttaatctcaa ctattatttt 71520 tgagccaaat aaagatccag aagcattttc aataatagtc tgatctattt tatcaaaccc atctttatta ataattgttt tttctttgaa ccctttattt gataaatgtt tgagcaaaag 71580 atctttagag ttattttta agacaacctc agatccaaaa ataaagaaga tattttgtga 71640 71700 tgtgatctaaa tatttttgag ttgtcattgc ctcacatttc aaaagcatgc acctcaaaaa 71760 Ltatttgatc aattaattcc ttctgcattt cagactcaag agatttaatc atttgatctt 71820 gtgcaaatgg attaagttca ttcgatttat atctcttgta gctaacaagc tttttactta 71880 Ettgtttatt tccaatcatt tttatatgta tttctaaatt aatttctcct tcaagagctc 71940 Htagagaaga gcctccatag atatcatatt tatttaaaat atagtcttgt attagaatct 72000 👆 attttgacg attctcagct tctttttctg tattgaagag gattgctaac ttttgctcaa 72060 aagaattagg gacactacta tcaaaccgaa aattaaatag atctttttta tctagatcta 72120 tatttagttg attaaattgg cagccagtta aagatatcaa caagcaagtg tataaaaaga 72180 aaggtettag ttteataace teatagtate tatetgaaga atatatatea aagattaatt 72240 ttaaataaca aaatttatta ttttttcttt aatataaata gtttttttaa tagccgagtt 72300 gtttattgtt gatgccacat tgtcgatagc cagtgctaaa gcttctatat ctttttgctc 72360 aaggtttttg tctatcatta ccttacctct cacctttcca tttacttgaa ctattaaatt aaattcagaa acttctaata actcctctct aagaacaggc caagaagatt caatttcttc 72420

72480 ttgtgcaaag tcaaagtaaa aattattcca taaatgttgt gagatatgag gcgcaatagg attgagagtt ttaagaataa ttattattgc ttcattaaga caatattgat ttgagatcga 72540 72600 cgcattacct tctttaaaag aatcaggtat aaagttaact agctccatta tcgaagcaat 72660 ggctgtatta aatgaatatc ttgtttcaaa gtcatttgta acctttttaa gagtattatg 72720 cqattttctt cqgagctcta cttcttgttt cgaaggatcc ttgggctcct ctaagtcaat aaattttcta ttgctgacta agttccatat ttttttcata aatcttgagg caccttctac 72780 72840 agatgactct gaccattcta gactttgctc agggggagct gtaaacatca tgtaaagcct tacagtgtca gcgccatact tttctatata agattgagga tctacagtat ttccttttga 72900 72960 tttggacatt ttagccccat ctttaagaac catgccttgt gtaagaagct ttttaaaagg 73020 tcattgcct tcaactaaat ccatatctct aagcgcctta tgaaaaaatc ttgaatatag 73080 鏈aagtgcagt atcgcatgct caatacctcc tatatataaa tcaacaggca gccaatattt 73140 tgaattttta tcaaacattt catctgcatt gtcagatgaa gtaaatcttg cgtaatacca 73200 tgatgagtcc ataaatgtat caaaagtatc tgtctctctt tttagtcgat cagaaatatt ataaaaatct tcattttgac ttaagggaat aggtgccgag ttctttttta gctctggaag 73260 cactataggc atatectttt cateaataac tettggttea eeatttteat aaacaacegg 73320 atagggcaa ccccaatatc tttgtctgct cacaccccag tctcttaatc tgaactggat 73380 73440 taactgctca ccaaggtttg cgtctgctaa atctttaata atttcaagag atgcctcatc agagtccatg ccatcatatt tatcagagtt tattaatttg cctttttgta caactggaag 73500 ttcattatta ttatcaaaac taataacttg aggaatctct agattatatt tagatgcaaa 73560 ttcgaaatct ctttgatcat gagcaggaac acccatcact actccagttc cataatcaag 73620 aagtacaaaa tttccaatcc atacgggtat cttcttcttt gtaattggat gaattacatg 73680 73740 cattccacta ttaattccaa gtttttcagc tttagccata tcagcttcag cagctttcac 73800 ttctttgcat ttgtttagaa agtcttttat cgattcatta ttttttgaca accctattga 73860 tatagagtga tttggtgata ttgctaaaaa agaaacacca aaaattgtat caggtcgtgt

73920 tgaaaatacc tttaaagaat catcggaatc ctcaatcatg tatttaattt ctgctccctg 73980 agatttccca atccaattcc tttgcattgt tttaacattt tcaggccaat ccacctcatc 74040 caaagatgtt aaaagttcct cagcgtagtc tgtaattttt ataaaccatt gatcaatttc ttttatttca acttgcgccc cagacctcca tccttttcca tctataactt gctcatttgc 74100 74160 tttatcataa aactttttaa atattaactg ctcccactta tagtattccg gttcacatgt 74220 tctaagctct tttgaccaat catacccaag gcccaaagat ataagttgct gtttcatatg 74280 74340 ttcaatattt tgattcgtcc aatcttttgg gctaacttta ttagcaatcg ctgcgttttc agcaggaagc ccaaatgcat cccagcccat aggctgaaaa acattaaagt tattcattct 74400 74460 tttatatcta gatatgacat caccgatcgt atagtttctt acatggccca tatgtaattt 74520 acctgatgga tatggaaaca ttgataggca ataaaatttt tctctaccat caggattagc #tttaaatttg tcttctttta accattcatc ttgaatggtt ttctctattt gacttgggtt 74580 74640 Matattcagga ttcattttt taggaactca ttttctaagt aattaatagt atgtttattt tctttaaagg tatcatcatg cagaatcctt tgatgaagag ggtgatttgt tttaatgccc 74700 tctataaaaa attcatctaa agcactcagc attctcttaa tagccgagct tctagaattt 74760 gcctgagtaa tgatttttgc tagaagtgaa tcatagttag ggggaactct atatcctcca 74820 74880 taaatatgtg agtcatatct tatgccaaaa ccgccaggtg tatgcatttt tgtaattgtt 74940 cctggggatg gttgaaaatt atcaggatct tctgcattaa ttctgcattc tagtgagtgg 75000 ccatgaaaat taatatcatc ttgatttagc tcaattggca tttcaagagc aattcttagt 75060 tgtgctttta ctaaatcaaa gccagttatc atttctgtta ccggatgttc aacctgaatt 75120 cttgtattca tttctataaa atagaattga ttatcttcgt ataaaaattc aatagtgcca 75180 accccttcgt aatttatttc ttcacataaa ttgacacaag ctattagtgt tttattaaga 75240 gcttcttgat ttatattaag tgctggagct tcctcaatta ttttttgatg tctcctctgc 75300 atactgcaat cccttgtacc taaatgtatc gcctttcctt taccatcacc aactatttga

75360 acttcaatat gtctagggtt cccaataaat ttttctagat aaatggtttc attgccgaat ccatttttag cttcctgcat tgttatttct gcatgtccaa taagatcttc ctctcttca 75420 75480 acaactetca tteetettee acegecacea geegttgeet taateataat tggatageeg 75540 atatctctag caatttttt aaactcatca ttatcagatg gaatctcatc tttataacct 75600 ggaacgattt gaattccaga tttttcagcc agtgtttttg ctgttatttt gtcgcccatt ttttggattg tttctgaggt tggcccaata aatttaaatc cacttttttc acacatttct 75660 gcaaaattat gatcttctgc aaggaaccca tatccaggat atatagcatt agcacttgta 75720 75780 agttctgcag ctgagagaat ggcaggtata tttaggtagc tttgagttgg agatgcaggc 75840 ccaatacaaa cagtttcatc agagaatctt aaatgtttta gatctttatc agcttctgag 75900 taaacagata ctgtcttgat accaagctct ttacaagctc ttatagctcg aagagcaatc 75960 fraccacgat tggcaataag aactttataa ctcattttaa ttgacagtta taattttttg Etccaaattca accggacttc catcttccac gtcaatactt gaaatcttgc catcaaattc 76020 tgatttaatt tcattcatca ttttcatggc ttcaactata cagagcacat cacctacttt 76080 tatattgtct cctactttta caaatggatc tttttcggga cttgggcttc tataaaaagt 76140 76200 tcctactatt ggagaggtaa caacatcccc tatgacagtt tgcttagcct catccaattg atgagttgtt ggtgagatag ctggctcatt tttgacaatg attggttttg aaacaaattc 76260 76320 ttgattagag ccgttatctc ttgaaattct tactgactca tctccttgac ttacttctat ttcttttaaa tcagactctt gaagcatttc tataagtttt tttattttcc taatatccat 76380 ttatttaccc ctgtatttta atatgccctt aagcatcgcc tcttcataac ccttagcacc 76440 76500 aataccagtt atcacttctt cagctatatc agatagatat gagacatgtc taaattcctc 76560 tcttgtatat atgtctgaaa ggtgaacctc atagaatggt atgttgacac caagaaatgc 76620 atcccttata gctatgctcg tatgagtata tgcagcagga tttattatta caaagtctat 76680 tttttcttca atagtgctat gtattgattc tattatttca tgctccgcat tactttgaaa 76740 agatattaaa ttgcattgat tttgatttgc taagactaat aaatcttgtt gaatatcttc

76800 aagtgatttg ctgccatata cttccttttc tctagttccg agaagattga ggttggggcc 76860 atttataagc aatatattca tataatagat tttaacagaa atttacagat tttttaggat 76920 tttaaagata tttttataag agttgatttt tttgcatggg atagcaaaaa cccgcttcag 76980 agcatccctg atagtatatt aaaacctccg ataagttcaa tgaagaattt atttcaatgc 77040 ttataataaa ttcatctcta agaatctcag tctcgccaaa aaattcatcc ctatatagat ctttacttga ctcaagcgtc ttaaatggga gcactttatc tttaaatttg agctctatac 77100 tatccaagta catataataa ccatctctta tttgccaagt tatatatgct gcttgttttt 77160 caacattggt tgttaaagca aatacttcat tggcttctgg gaccctattt gagttttcaa 77220 77280 aaagatttgc tgaattcaat tcacctgcaa tcacattgga tagtagtata attattaaac 77340 ttttgatcat gaagacttaa gaataaaccc ctaagtactt aaaataaaga ttttattaaa 77400 faacacggta gttaaaaatt tatgttccag actttcgcac taaaaatttt cttttatatg Fcctatttggc ttttaaaaat aatttttat agaaaaagaa cagtaataag agggcatcaa 77460 # tttgatgctc aatctgctgc attattgtct ttgcttccaa agaaagattt atctgaatta 77520 ttagatggtg aaattgcaaa agctagaatt actcttgaag aagcaagaat tcaaaataaa 77580 gtttctttaa caccgtctat acaagtcaga aaagtagatc atattttacc aaagcatgat 77640 ttaattotoa gagaatacaa googoatoaa gaggatttaa aaaaagttat tototatttt 77700 catggaggag gttatgtcct taactcagtc aatacacatg atgatatggt ttcatatatg 77760 77820 tcagataaaa taggagtaaa gttttattct ctagactata gactatcgcc tgagagcaaa 77880 tatcctgatt ctcttgatga tgctctagat gctttttctt ggctcatcgg ccagggatat 77940 ggaccaggtg atatttcagt ttgtggagac agcgcaggcg ctcatctagc tgcttctttg 78000 tgccattacc tagctgaaca aaataaagat ttgcctagta gccagctact aatatacca 78060 atgtgtgatc cgtcctgttc atctgagtct tataatttat tatcttcagg atatcttcta 78120 actaaaaaaa ctatgatttg gttttgggat aagcttagaa cttccgaagt aaacaataac 78180 gattcggcct ttaatctctt aaaatttaat tttgaaaaaa ctttaccgcc aacaattatc

78240 gttacaggtg gctttgatcc tctatgcgat gatggagaaa aatatgcata tttattacat 78300 aaaggtaaac ataatgtgaa acaattacat tatccaacaa tgtttcatgg gtttgcatca 78360 atgactaaat tgaaagcagc gcagatagcc gttgaagatt ttttaaaaaga atataagaaa 78420 atactatgag taaaatttta gaagtaagtg acttaagcat caatttttca acaagggatg 78480 gattgtttaa tgcagtggat aatataagtt ttgatataga aaaaaatcaa accttggcct tggttggtga gtcaggttct ggtaagtcgg taactgctat gtcaattctt cagctccttc 78540 78600 aaaaaccaca agcatcatat tccaaagagt cttctattaa gtttaatggc gatgagataa 78660 taaatgccaa gtatgaaaag ttactttcct tgagaggaaa tattatatct atgatatttc 78720 aagagccgat gacctcacta aacccttatc acagagtagg taatcagata actgaatcaa 78780 tactacttca ctcaaaaagc tcaaaaaaag atgcaataga tgaagcaaaa aaattaatgg Cacttgttga gattgatgat gttgaaagac ggttctatgc ataccctcat gagctttctg 78840 Ø gagggcagcg acaaagagtt atgattgcta tggcccttgt taataaacct gagctattga 78900 ttgctgacga gccaacaacc gctcttgatg taactatcca agcccagata ttagatctca 78960 tgtctaagct taaaaatgaa ctaggcatgt caatactttt tattactcat gatctaggcc 79020 tcgttcaaga attttctgac aatgtttgtg ttatgaagaa tggcaagata gttgaacaag 79080 79140 gaaatactgt tgaggtattt aacaacccct ctcacgaata tacaaaaaaa cttttagatg 79200 cagaacctca gcccaaatta gataaccctg taagtgatga gccaataatt gagatcaatg acttaaatgt ttactactca ataccttcaa ctaatttttt taaaaagaat acttttcatg 79260 79320 ctgttaaaaa tacttccttt agtatttata aaaatactac aattggcctg gttggggaat 79380 ctggatctgg aaagtcaact ttgggtaagg ctatagcaaa cttagtttct tataagggga 79440 atattaaatt tgagggaaga gatatcaact caaattccca aaaagaaaat aaagaattga aaaaaaatgt ccaaattgtt tttcaagatc cttatgggtc attatcacca cgaatgacag 79500 79560 tgggggagat agttggtgaa ggtttaggtg ttcactttaa gcttacaaaa aaagaaagag acgaaaggat agataaggtt ctgtcagatg tcggtatcga aatagtagct aagaataaat 79620

79680 atccgcatga gttttctgga ggccaaaggc agagaattgc aattgctaga tctttaataa 79740 tgaatcctgc ttttatgatt cttgatgagc caacatcagc attagatagg tctattcaaa 79800 ttcaggtaat cgatttattg aaagagatac aaaatgaata tgggcttact tatctttta 79860 taagtcatga tttaaaggtt attagatcga tgtcagactt tatttttgtt atgaaaaatg 79920 gagaaatcgt agagtcagga ccttctcaca aggtctttga aagcccagag caagactata 79980 ctaaaaaatt actatcagct gctttaaagt atgcatctga ataattaaat atatymcmtm 80040 tggcaaatag aaartattca aaagagctcg ttgacggtcc taatcaagct gcttctagat 80100 caatgcttag aggagtaggt ttcacatctg aggmtttcac aaaaccattt gttgggattg 80160 cttccacagg agcaaaagta accccatgca atatgcacat aaatgcactt tcagagatcg ttgagaaatc agttgatagt tcaggaggaa agggtgttct ttttaatact attactgttt 80220 80280 ccgatggaat ttctatgggt acacagggta tgaaatattc tcttgtttct cgagaggtaa fttgcagattc aatagaaact gttgtgggat gtcttggtta tgatggagtt attgctgtcg 80340 80400 ∰gtggttgtga taaaaatatg cctggatgca ttattggaat ggcaagatta aatagaccat Caatatttat atatggtggt tctatcaaac ctagtaaaga aaataccgac tatgttactg 80460 Ctttgtgagaa aactggagag tactcaaaag gcgatcttaa agaatctgaa ttaattcatg 80520 Lagaaaaaat ttccgtaaaa gggcctggat cttgtggggg aatgtatacg gcaaatacta 80580 80640 Ltggcttctgc gattgaagct ctaggcatga gtcttcctgg aagcagcagt caagatgcaa 80700 tttcacacga caaagaagat gattgtttta aggctggcga agcgataatg aatttattag 80760 aaaaagatat taagccttca gatattatga ctaagaatgc ttttgagaat gctataacaa 80820 tggtaattgc tctaggaggt tcaactaatg cagttctgca tttattggcc atggcgcatt 80880 caataggggt tgatttagag ctagatgact ttacaagaat aggaaaaaaa acacccgtta 80940 tggcagatct taagcccttt ggttctcatt atatgtctga actcaatgct aatggcggta 81000 ttcagccact aatgaaaact ttgcttgaga agggattact acacggcaat tgtcttaccg 81060 ttaccggtca gacgcttgct gaaaatcttt ctggaataaa accttacgag cctgatcaag

81120 agataattaa atcatttgat aatccaatta aatcaaatag ccatcttaga attctgtatg 81180 gcaacttagc gaaagatggt gcagttgcaa aaattacggg taaagaagga acttcctttg 81240 aaggaagtgc tcgtgtattt gattcagaag aagaaggggt taaagcaatc ctatctaaat 81300 ctataaaagc tggagatgtt gttgtaatta gatatgaagg gccaaaagga ggtccaggca 81360 tgagagaaat gctaaaacca acatctgcca taatgggtca aggtcttggc gatcaggtag 81420 cttttataac agacggtcgt ttttcaggag gcactcatgg atttgttgtt gggcacatta 81480 ctccagaggc tgcagatggc ggcttaattg caataattaa agatggcgac tctatattaa ttgatgcaga ttctgataag ttaattctta atatttctga ggatgaaatt tcaaatagac 81540 81600 taagtagatg ggtaaaccca aaaacgcctc ccaaaaaagg agtcttagca aaatttgcaa 81660 aaagtgttaa atcagctagt cttggagcgg taacagatta aatatgtatt ttaaaaagaaa datttccaaat agtagactaa gaagaatgcg tctcaattca aacctcagag acttgcttgc 81720 Œ tgaagttagg ttgtctacaa atgatctaat tcagccatta tttataaaag aaggcttgag 81780 #tggaaaagag gctattgaaa gcatgcccaa tattaataga tatggacaag attcaatttt 81840 ttcagaaata gaagagctac tagagcatga tataaatacg attgccctat ttccagttat 81900 Taatgattcc aagaaaaca gcactggaga tgaggctatc aatgcatcta atttgatgtg 81960 82020 82080 itctagaccca tataccgatc atgggcatga cggtatttta aaaaatgatt atgttgataa tgatgagact ttagctgttt taaggaagca atcactaaca ttagctcagg ctgggacaga 82140 82200 cataattgca ccatcagata tgatggatgg aagaataggc tctataagag aggcattgga 82260 cgaaatggat tataaaaata caatcctact atcatatgca gcaaaatata attcaaagtt 82320 ttatggtcca tttagagatg ctgttaattc agcttcaagt ctaggcaagt cttcaaaatc 82380 cagttatcaa atgtcaccaa aaaatataaa tgaagctcta catgaagttg ctatggatat 82440 taatgaaggt gcagacatag tcatggttaa gccaggtatg ccttatctag atataatttc 82500 aaaagtaaaa gaaaccttca aagtacctac ctttgcatac caggttagtg gtgaatatag

82560 catgcttaaa ctggcgattg ataaaggatg gcttgaaagc gatgttatgt tagaatcatt 82620 aataagtttt aaaagagcgg gagctgatgc aattctaacg tacgcagcta aagaaatttc 82680 caaggagata actaacaaat gagcaatgtg atagaaattc gtgatgaaga aagctttaat 82740 agcgacgtct taaattcaga aaaacctgta ttggttgatt tttgggctga gtggtgtgga 82800 ccttgtaaac agcttgcacc aactgttgaa acagttgcag cagaaaaatc agaaacatta 82860 aaggtttgca aaatggatgt tgattcaaat agagagattg ctgctaaata tggaataagg 82920 tcaatccctt cattaattat atttaaaaac ggagagcctg caggagttga agtaggtgct ctaaccaaac aacaattaga ggactttata agtacagtag tttaactttg caaagacttc 82980 83040 tttgcatatt gcaagaaata ggattatcat ttcgacttct aaggctgaaa gccactcaaa 83100 acaaaaaccc accttttcaa tcataaaaac aacaactaga acggaaataa ctaaatgaac 83160 ficttactgaaa ttaaaataaa accaataaat gaacttgtag atatagctac tgagcttggg Ecttgaggatg ttggaaggct gaaaaagcaa gagataatat ttagaatatt taagcataag 83220 Ugcttctgaag gtgttgatat ctatggtggc ggagttcttg agattttaaa tgatggtttt 83280 ugggtttttgc gatccccaga aggctcttat tgcgctggcg aagatgatat ctatgtttca 83340 ccaagccaaa taagaaagtt tagcctcagg aagggagact cagttgctgg gaagataagg 83400 acccctaaag ataaagagcg ctattttgca ttaatccaag ttgatactat taatggtgaa 83460 gagccaagaa agactaaaaa caagattett tttgaaaatt taacteetet tttteecaat 83520 83580 gaaagactaa teettgaaca aggaacaggg tetaatgaag atettteate tegaataatt 83640 gatttgattg ctccaatagg aaaaggtcag cgtggactta tcgtttctcc acccaaggct ggtaaaacct taatgcttca aagcatagct cattctatta aaagcaataa tccagaagta 83700 83760 gagcttatag ttcttttgat tgatgaaaga cctgaagagg taacagagat gtcaagaact gtaaaaggag aggttgtagc tagtactttt gacgagccac ctactcgaca cgttcaagta 83820 gcaaatatgg ttattgaaaa agcaaaaaga cttgtagaac ataagaaaga tgtagttatc 83880 ttattagatt ctattactcg tcttggaaga gcatataact cagttcagcc tgcatcagga 83940

84000 aagatattga gtggtggagt tgactccaat gctcttgaaa ggccaaaaag gttttttggt 84060 gctgctagaa atcttgaaga gggtggaagt ctcactattc ttgctactgc tctagttgaa 84120 acaggctcaa agatggatga agttatttat gaggaattca aaggtacggg taatatggag 84180 attcaccttg aaagaaaaat agccgaaaaa agaatatatc ctgctattaa tattagaaga 84240 tcgggaacaa gaagagaaga tttacttact gctgaagatg aattacaaag aatgtgggtc 84300 ttaaggaaaa ttttagacga tatggaagat gctcagtcaa ttcagttcct aatagataga ttgaaatctc ataaaacaaa cgatgagttc tttacttcaa tgaaaggggg taatggcaag 84360 84420 aagactagat aaagtttttt gccatatcaa tcatcatctt atcagttggg ctttgcgata 84480 cgtgaatttc taattcttta aactcatttt gacatctatc ctttatattt tctgaagcaa 84540 caataaatat ttttttctt aaaactgcat cgtccagatt tgttattaag aatttaagag # tactaaaatt atagattaaa aaaatttcat tattatctgt aacttttggt atttgctcca 84600 gcaaatagat tacttcatag caaactatct catctagact agccttaagt ttttgttgaa 84660 gaaaaccatt tgaattttcg ccgcaaaata aaagactctt tcctagaaaa tttttctcta 84720 ttaacttaag aatteettea gatgaatgge tttgtggaaa atgagatttt atgeeacttt 84780 caagaagttt attggaagtt gcgggcccaa cagacaaaaa attgtgtgga agatcatcta 84840 aatcgaaaaa agattttaaa atatcaagtc cgtacgaagc agcagcttgg ctagtaaaaa 84900 84960 ttaagtttga atatgaatga atatttttaa ttttatcgat agcgattttt gaagggtcga 85020 ttgaattaat tttagaaaga taaatatttt taagagctat ttcttgagct tcacataaag 85080 atattaggtt tcctgataaa tttttgggcc tcgtattaat tatcattttt taaaattaaa 85140 gatttcgctc cttccaaaat aaactcatca gcaaataaca taatatctat tgcaatatct 85200 tgaaaggaag atatcttttc tttataaatt ttttcgttgc cttcataaga taatattttc 85260 cctgatattt ttatttggcc atttttatct tcacataaaa tagctattgg agacaggcaa 85320 gtaccttcca tggcagcaac aaaagatcgc tctgcactgg caagaattaa ttctttaggg 85380 tcaccaatat tttctaaaag ctcaataata tcttttttat ctgacagaca ttcaattgct

atatatccct gagatgcaga aggtaacatt tcttcaattg agaattcata tgaattttgt 85440 85500 tttaaaccaa gcctttttat agcagcctta gcaactacca gcccatcaaa cagaccatca ttgagtttct ttattctagt agctatgttg cctcttactg gaatagtttt tatatcaggt 85560 85620 cttaagttat taatttgtgc ttttcttctt ggaccagaag taccaatagt tgaatttcta 85680 gcaaattcag aaaatgattt cccatcctta gatagaagca ggtcttctgg agattcccta ctaaaaacac ttattatttt aaactttgga tcaagctttg ctggaacatc ttttaaacta 85740 tgcactgcaa tatctgcttc atcagcctct agagaggact caagtgtaga aatgaatagg 85800 ccctttccac caatttcatg aagaggttta tctgtttggt ctccttctga tgtcatagga 85860 85920 acaagctcaa ccttaatatt attgatctta gctaataact catctgcaac aaattttgcc 85980 tgatacattg ctagttctga ttgccttgta gctattctta ttttcatttt gtttccaata aaagagcctt cacatcgcca acactctttt ctttcaagat agtgaattcc tcaggaattt 86040 ccaaggtagt aaatttacta tactcaaggt agattttaca agatggcttt atttcattct 86100 #ttcgaattat agattttaga acttttaatt catattcttc gccaaaagga ggatcaagaa 86160 86220 gaattaaatc aaaacgagat aagtcatttt ttttaatcca actaaatgca tccttaaaaa aaactttaga tttatccttg atgccaagaa gttgaatatt ttttgctaac acagaatagt 86280 tttttttatt aagttcaacg aacacaactt tttttgactg tctggatatt gcttcaatac 86340 86400 ₽caagcgcacc cgttccggca aacaaatcaa gacatattaa attttcaatc tcaaattgaa 86460 qccaattaaa aattatttct tttaatttat ttgaagttgg tcttaaggaa tccttaaatt 86520 cgaaaggtat ttttttacct tttaaataac ctccagtgat tctgatattg tttttcattt 86580 tttttgcaaa atgggtatgc ctatttatta aataaatata attamaaata catttaaact 86640 aagttataat tcatccatgm gtcctacaag ataattttag aaaagcaatg aggagctata 86700 tttactctgt cagtgtgatg tcaaatgttg acgagaataa aaagtttagt gctataacag 86760 tttcttcagt tacctctgtt tctttagatc ctcctagttt gctcgtttgt atcaataaat cagctggaat tcacaactca ataaaagaag ggtcctcttt ttgcataaac cttttaaata 86820

86880 aaaatcaaga agatatttct aatctatgca gttcatttaa gaccgaaggt gatagattta 86940 ataqtgqtga ctgggattta agcggcactc cgtttttaaa aagtgcccag gctaatattt 87000 tttgtactgt tgatcaatta atttcatacc acacacatac tattgtgatt ggtcatgtca 87060 caaactctct tagcgatgag aaaattaata cactgacata tgttgatggt agctatgaat 87120 aaattttcaa aaaatgtatt ttttatttta ataatactca actctttttt tcttgcctct aacatttttg ctagccagga agagtgtgaa gaaaagccaa gtgtttttat tatctctcct 87180 87240 caagacggtt ttatctcaga atctaataat gtaaaagtct tatttggatc aaaaaatatt 87300 gaaataaatc cagctggcaa aggtgagatt gcaaaaaata aatgttttgc aagcgggcat 87360 caccatcttt tagttaatat cgaagcattg ccagagagct ttattccttt tgacaagggt 87420 tatttacatt ttggaggagg tcaaactgaa acaattcttg atcttgatcc tggaacctat 87480 ftctctccaac taattcttgg atcttatgtg cataattcaa aaatgcaggt aaataacttt 87540 Faaaggtcaag gacccttttt atcagaaaaa ataacaatta cagttaatta gagattagac 87600 Mcagttataac tttatctaga tgttcatcta agttattagc aattatattt gcactagaaa Wtaggaccaga attatcgtca taatcatcac caactacatt cacctttctt attatcccaa 87660 Caagaccatg caacatagac caaagagtta tacatttaaa ggcaatcact tcctcaggct 87720 cgtctgctag attagcaaaa ctttttctca tattatcgta tgttccattt gcagatttaa 87780 87840 gaagatctgg gtaatcggca aagttaccaa cagctgttcc aaacatcaaa tcatatgtat 87900 gtgcattttt taaaccaaac cctatatatt tgcttgcatt agtaacaagt tttttctttg 87960 taatttttt tggattctca aaaaaaacaa gctcattaag ttttttaaag ccaacggttg 88020 caacagcggc atatacacat tcttttgttt caaaatgcct ataaggagca gtttgagaaa 88080 88140 gcctgcatgc gcattctata agttcttcct ttaagtttcc gtgatgatag ttattcataa 88200 tttaatttta atgttgacac tgctaacata tatcatgtta ttatgtatac accgcataca 88260 ttaagttgat tacatattaa agtcaaatac agatatatga acataacaaa aataaataac

88320 acceptcatag ctcttttatt aggcaatgcg tttctatcaa atcttgaggc tttagaagtt 88380 cttgaggtta aaatgcttga tgaatatgct gtaactagag aatttcctgg aaagctcatt 88440 ccatcagacc agtctaagct agcatttgaa atacctggaa agataaactc tattaatgtt 88500 gatatcggag atgaggtcat cttaggggat gaacttgcct cattggatga tagagaagct 88560 ttagcacaat taaatcaatc aaaggctaaa tttgatttag ctgaacaagt actagcaaga tatataaatc tcagagcaga tgggcatatt tctattcaag atcttgataa ggctgaatct 88620 gatcaaatag tagctaagtc gcagtatgat ttttatagag ttaaatttga gcaaactaag 88680 88740 ttactagctc cttttaatgg agttattcaa aatagatttc tagatacagg atcagtaatc 88800 aatgcaggtg tccaagtttt agaaatttta ggctctagca atgttgaagc aagaatttct 88860 attccaatga actatatgaa caaggttaag attggagatg agtatgaatt tgatatcaga ggaatatcta caaaagctac gttagagaga ctggctccca tgtcaaccgg aggctccaat 88920 m Faataggttag caatttttag atttgatacc ttttttaatc caggatcaat agtaaagctc 88980 89040 maaactaagca tcactgagaa agcaaaaggt acatgggttc caattaagtc actgtcccag 89100 tccgaacaag gtatttgggc catatatacc attaacgagc aacaagtagt tgttagagat 89160 Cttgttgatg ttatttattt tgaagacgaa tatgcttttg tcagcggaac acttaataat 89220 aatgaatgtt attaattttc taatagaaaa gcctaggata ttatttctaa ctttagcatt 89280 89340 tatattactt tctggaattt cttctgggct ttcagttcca attcaagaaa accctgaact 89400 ggctgagaga tggggaggtg ttcgtatttt tcttcccggg gcatccccag aaagaattga 89460 aacagagata gtaaatgatc tagaaatcaa acttagagaa gttgaagaaa tcgatgagct 89520 tgaatcaatt attactcaag gtttttcaac aattgtagtt gaattaaatc aaagtgtacc 89580 tcctatactt attgaagaga cttggtccaa ggttcaagac aagctcaatc aaatagttat 89640 tcctcaaggt gcagaaatat ttcttgatag aagcagtggt ccgcctatca ctgttcagta 89700 tgctgtaacc tggaacggca gtggagatgc tccactaata atgatgtcca gactagcaag

89760 89820 aacagatgaa gaaattttaa ttgaactaga ttcatcaaaag ctatcttcgc ttggattatc 89880 atttcaagat atcgcaagtg ctattcaagc cctagatgca aaaaaaccta ttggtgtatc 89940 ctcaaacaac aattctgagc ttttatatag actcaaagat aatatacaga gcattcaaaa 90000 actctcagaa atacctatca aggttattaa taaatcagag atcatacagc tagatgatgt 90060 ggcatttatt tcaaaaatcc cggtttctcc tattgaagac atattcttgt ttaatggaaa 90120 tgtagttatt tctgttgctg gaaccggatc attttctcaa agagtccatg attatgtaga 90180 acgcgcaaca attgttgtag atgagatgag agaaactctg ccgactgaga tcactataga 90240 tttagtttat gacgaatctg cttacacaac taaaaaattt aatgagcttg taaaaagttt 90300 ttcattagca atattttttg ttttagcttt aagtcttttt tttcttggaa ttagatcagc aataattgtt actcttatcc tgccattttc tatttgcctg gttatgattg gttgtaggtt 90360 tataggetta ecettgeata tgacatetat eactggaatt attattgeae taggattget 90420 Intatagataat gggattattg ttgttgaaga ttataagaat agaagagcat ctggattaaa 90480 tatcaatgat tcaatttcac aaggactaaa aaacttatgg gctccattag ctgctgcaac 90540 agcaacaacc gtcttctctt ttcttcctat tgttactgga gaagggtcga gtattgaatt 90600 90660 cgtaggcggc atggcaatga cagtcattat gtctataaca tcttcattag ttttggcgtt 90720 attaatggtt ccagttctga tgagttatat ggaaaaaatt ccgttcttta aggatgtgga 90780 tattagcaag gaagggtata gaaatgaaaa aatccttaat aaatataggg cctttttaaa 90840 ctgggcgttc ttagttccta gaagagcaat catgatatcg cttgcattgc ctgttctagg 90900 attettett tttaattett tacctaaaga tttettteet geteaagata gagatatgtt 90960 tagagttaat atagaactgc cttctaacgc ctcatcactt actacaatgc agagagttaa ggaaattaga gaagatattc tagatagtga tttaatttca atagaaaaag attattcgtt 91020 tatcggcaga atgatgccta gagttttgat gaatgttgtt ggtggagaag aaaaacaagg 91080 atccaataat attgcgcagt ctgtattttt tgctactgat tattatgaaa tgattgaaaa 91140

91200 ccttccagat ttatcaagaa gactggttaa aaataaccct gacattatag ttaatattga 91260 tagtttctcg tctggccccc cggttttttc agatgttagt tatgtaattt ttggagatga tccagattta ctaaaatcac ttggtgagga gctagagcta attattaaca attctcctga 91320 91380 tgtgagtctt acgaaatctg caacttcaaa ctcaataacc aatgttgagt ttgaacttaa 91440 cagctcaaat atttcactgt ctggtcaaaa tgccaattat cttgtaaatg aaatgtttac tgcaaacaat ggaatatttg ttggcactat gttggattca aacaaagaaa taccagtcag 91500 91560 gctgaaaggg ctgtctaata aaaacaatat tacgggaaat actagtttta taacaatgcc 91620 ctctcaaggt ggttttgagt attttgatag tttcggaaaa agctcactaa caaacaaatc 91680 gtcaacaatt actaggcttg atggccaaag aacaaatgat gttgagggct ggatttggac 91740 aggtacgete cegtetgeta etgaaaaate tattaaaaaa gatgttaaag attttgaatt 91800 faagattgcca ataggctatt cattaaaaca acttggcgag gctgaaagca ggggccaatc 91860 #tcaagcctca ttatactctt cagcttttat gtatttcatt cttataatag taggcttggt 91920 #tatggcgctt aattctttca gagaggctgg tctaattttg tctgttgcat tcttatcaat 91980 Utggactatcc tttcttggtt tatttatagg ccagcaaaat tatggattta ttggaactat aagtgcaata gggttaattg gcttatcaat aaatgattca attattgtct tatctcacat 92040 aaaagaagag gctgagaaga aatcactaac caaagctgag cttgttgaag ttgttatcag 92100 gtctacacgt catataatca ctacctcttt gacaacactt ggtggttttc ttccacttat 92160 ttttgcaagt gtattcttca aaccgcttgc ttgggcaatg agcattggag tattaggcgc 92220 92280 gactattaca gccttattat atattcctgc aatgtttatg ataatgagaa aggttaagta 92340 ctagaacaac tttccgagca ataatttctt cctagctttt ttacaataag tgattcatga 92400 gtataggtct cgcaagaatc acatttaatc atagagttat caatcttttt tttatgaggt 92460 cctgatatga gagatctgaa aaagaatacc gcagttatta tcaatataaa tatgaccaat 92520 ggaatcaaaa gtaatatcga ttttaataag aacatttttt agtcactaga tgctggctta 92580 ctatttctta taaaattcca agaccagcca gacttatctt cagatttttt tgattgctca

92640 tcttggtagt taatagaaat tatttttta gtatcttcaa gcaattcaat atatcccaaa gattcatatg aagcctctaa gatcttaaga gctctataat tttcactaga gttaggaata 92700 92760 ttttcaatta cataatttgc tcttcttatt gctgctatat gcgcatcaac actaacgtaa 92820 taatcagctg ccgcaagctc atttcttgca atcatatttc ttaaatagat atttctttgt 92880 ttagcatatg tagaatattg gctatcagga aatcttgtta agaattcagt tagttctgaa aatgattcct tagctcctga gatatctcta tttgatagat cagtatctgt cattcttaca 92940 ataaagctat tatctctcgt atagctagaa aggcctttca taaaatatgc ataatcaata 93000 93060 tttggatgcc taggatgaag tcttataaat ttttctgctg cagcatgcgc agcctcagtt 93120 tcagcattca taaattgagc ataaataagc tctacttgcg cctgttcagc atatttgcca 93180 aaaggatatc ttgattcaat tgcttctaat gaatcaatag caccaaaata atttttcca 93240 直gccatccttc tttgggcttg atcgtaataa attttttcag gctgttctat ttctgggcca 93300 Etcagaattac aactaaccaa taacagagtt acaattggca atactataaa tagttttaaa 93360 Mattagtttat ctttcattat ttgcacattc tacctgcatt atcgtaattt aagcttgaaa 93420 Wacatctattt agattaattt ttttataata agttcatatg attgttaaaa atgttccaaa 93480 tgatctatct tcaatgaggc tagacaaagc tacagcagaa atgtttacag attattccag Paactcagata aaaaaatgga tagaagaagg cagagttett ataaatggag aggtateeca 93540 gccaagagat aaagtttatg agaatgatca gattgaatta agccctaaag aagaacaaaa 93600 93660 agtatcatgg gaagctcaag atatagattt tgaaattcac tttgaaaatg aagattttat 93720 tataattaat aaacctgctg gtttaataat gcatccaggt tctggttgct atgatggaac 93780 tctcgcaaat gggctcattt ataaatttcc agaattgatc aatattccaa ggtcgggaat 93840 tgttcatcga ttagacaaag atacttctgg cattctgctc gtagcaagaa atgagtcttt 93900 taggaacttt tttattaatg aaatgcagga gaggagagtt gtaaaaaaat atacgtctat 93960 tgttattggt tctacactag gaagcttttc tatagaagag ccaattggaa gagataaaaa 94020 taatagaacc aaaatggcaa ttcgagaaga tggcaaagat gctttaacat ttgtaaagct

94080 taaagaaaat attggaaact actctgtgtt ggatataaga atagagacag gaagaactca 94140 tcagattagg gtccatctat catcaaaaaa actaccaata attggagata aaacctatga 94200 cccaagcagg tctattgcaa gagatacccc tgaagagcta attaatatta tccgaggttt 94260 tccaaggcag gcattacatg caacacct ctcattcaat gaccaaaaaa caaataatat 94320 tttttctttt gatattccca ctccaaatga tatggaggaa ctacttctag aattaagaaa attgatctaa tagtaactaa aaacttgttt tttgattaat aaaataatat aaaccttatt 94380 94440 cctaagagtt ttttggtaag aaattgaaat tatctggcgc agacatgcta atgcaagcac 94500 ttcatgatga aggtgttgag ctaatctttg gctacccagg tggagccgcg cttcatatct 94560 atgatgcaat ttttagacaa gataaaatag atcatatttt agtaaggcat gagcaaggtg 94620 caacccatgc agcagatgga tattcaaggg cgacaggtaa gccaggagtt gtcttagtca 94680 __cttctggacc tggtgcaaca aatgctatta caggaatcgc gactgcattt atggattcca 94740 #taccaatggt agttatttca gggcaggttg ctagccattt aataggtact gatgcttttc 94800 Maagaaactga tatgattggt gtttcaagac caattgttaa gcatagctat acagttttta 94860 Hatgctgaaga aatacctaag ataattaaag aagcttttta tgtcgcaact tcaggcagac Ctggacctgt tgttatagat atcccaaaag acatgacagc tccggataat ctttttgatt 94920 94980 actcgtatcc tgaagaagcc aagataagat catacaatcc tccgattgag ccagaaaaaa atcaaataga tagagcagtc gaagctatat tgatatcaaa aaaaccagtt atatatgctg 95040 95100 gtggtggggc aattgctagt aatgccgaaa aagaattact tgaacttaat gaaattattg 95160 atgctcctgt tacaaatact ttaatgggat tgggtattta ccctgctagt catcatagat ttcttgggat gttagggatg catggaacat atcaggcaaa tatggcaatg cataatgcag 95220 95280 acttaataat tgctattggc gccagatttg atgacaggat taccaataaa ccatcaaagt ttgcacctaa tgccaaagtg gttcatctag atgttgatca ctcatctgta tcaaaaatta 95340 95400 tagaagcaaa tgtagctgtt tttgggcaag taaaaaattc cttaaaaatta ataaaagaaa 95460 ctcttgaaaa aaaattagac tcttacgatt ctttcgctct tcagccttgg cacgatcaga

95520 taaaagaatg gaaatcacta catggtttaa attatgagct ttataaagat gaatctgatg 95580 atcatcccat tttaccccag gctgtagtcc agcatgtcca tgagattaca aatggggaag 95640 catatgtgac ttccgatgtt ggtcagcatc aaatgtttgc tgctcaatat tatcattttg 95700 ataagcctag aagatggatc aattctggtg gtctaggaac tatgggtttt ggtttgccag 95760 cagcaatggg tgtaaaactc gcttttccaa aagatgaggt tgtttgcatt actggtgagg 95820 gtagtatcca aatgtgcatc caagaattgt ctacatgtct tcaatataat ctcccaataa 95880 aaataattaa tatcaataac gaagctcttg gtatggttaa acaatggcag gatatgaatt 95940 atggaggaag gcactctgaa agtacctatc aaaactcgtt accggatttt ataaaactgg 96000 ctgaatcata tggtcatata ggaattaaaa ttacaaaaaa ttctgattta agtgaaggct 96060 taaaaaaaagc ttttgaaatg aaagataaac ttgtctttgt tgatatttat gtagatcctt 96120 cagagcatgt ttatccaatg caggttgcaa atggcagcct agaaaatatg tggctatcaa 96180 Faggatgaaca aacatgatta aaagaaaact aattttaatt atggaaaata aaccaggagc tctagtaaga gtagttggac tgtttcatca aagaggctac aacattgaaa cccttcatgt 96240 Wagatactgtt aaagactttt ctacttacaa atcgatattg aaaaaaaact tgaaaccaaa 96300 Lttgaggata atcaaatatc tagactgacc atagaaacaa tggtttcaga tgaccttatg 96360 aggcagattt tgagacagct caataaatta atagatgtta tagctgtaag caatgaagag 96420 acaacctatt taaaaggagt attattagat gaaaatttat tatgacgaag atgcaaacat 96480 96540 agaaattatt aaagggatga atgtctcaat aattggctat ggatctcaag ggaatgctca 96600 tgcaaataat cttcatgaat ctggtgtaag tgttactgta ggtttaagag aagggtcttc 96660 ttcatgggca aaggcagaag aagcaggctt aaaagttcaa acagttgctg attcggtaat 96720 ccaagcagat ttggttatga ttttggcacc agatgaattc caaaaaaata tatatgaaac 96780 cgaaatcaag ccaaacttaa aaaccagtgc aattcttgca tttgcacatg gctttaatat 96840 tcattttgaa aaaatagttc ctgaagcaac taacagcgta attatgattg caccaaaagg tccaggccat actgttagaa gtacttatac caatggtgga ggcgttccat ctctcatagc 96900

96960 tatatatgaa gatgctttaa gtgatgaaga ttattcagca aaagatgtag ctctatctta 97020 tgcaaaagca aatggcggca cgagggctgg tgttcttgaa acatctttta aagaagaaac 97080 agaaacagat ttatttggcg aacaagcagt tttatgtggc gggcttaccg ctttaattaa 97140 agctgggttt gaaactctag ttgaggcagg ctacagtgaa gagatggcat attttgaatg 97200 ccttcatgaa acaaaactaa tcacagactt aattcaagaa ggtggcattg ctaatatgca 97260 ttactcaata tcaaatactg ctgagtatgg tgattatgtg agtggaccca aagtaattac tagcgatacc aaaaaagcaa tgaaaggaat actagaaaat atacagtcag gaaaattcgc 97320 97380 agatgacttc ttgaatgact gtcgacaaag caatgatggc actggcggac ctgttatgaa aagcaataga gaagctacaa aaattcatcc aatagagtcg gtaggggctg agctaaggtc 97440 97500 97560 aaaaaaaaagg tatcttcttc ggaataactt cgttaagata cgcgtccgca caaagaggcg 97620 Egttgttcttt aaaaatattt ggttactcgt gtgggtgttc aaaatacgag aaaaaataat 97680 #ttagattttt tataaaaatc aacaaaacat gatattaatt gaagagtttg atcatggctc 97740 🖳 agattgaacg ctggcggtag gcttaacaca tgcaagtcgt gcgagaaagt atcttcggat atgagtagag cggcggacgg gtgagtaacg cgtaggaatc tacctagtag aaggggatag 97800 cccggggaaa cccggattaa taccgtatac ctccttcggg agaaagaagg cctctctttg 97860 aagctttcgc tactagatga gcctgcgtaa gattagcttg ttggtgaggt aaaggctcac 97920 97980 caaggcgacg atctttagct ggtctgagag gacgatcagc cacattggga ctgagacacg 98040 gcccagactc ctacgggagg cagcagtggg gaatattgga caatgggcgc aagcctgatc 98100 cagccatacc gcgtgtgtga agaaggcctt cgggttgtaa agcactttaa gcagggagaa 98160 aaagttataa gttaatacct tataaccctg atgttacctg cagaataagc accggctaat 98220 tccgtgccag cagccgcggt aatacggaag gtgcaagcgt taatcggaat tactgggcgt 98280 aaagcgcgcg taggtggttt gttaagttgg atgtgaaagc cctgggctca acctaggaac 98340 tgcatccaaa actaactcac tagagtacga tagagggagg tagaattcat agtgtagcgg

98400 tggaatgcgt agatattatg aagaatacca gtggcgaagg cggcctcctg gatctgtact 98460 gacactgagg tgcgaaagcg tgggtagcga acaggattag ataccctggt agtccacgcc 98520 gtaaacgatg acaactagct gttgggagac tatgtctttc agtggcgcag ctaacgcttt 98580 aagttgtccg cctggggagt acggccgcaa ggctaaaact caaatgaatt gacggggacc 98640 cgcacaagcg gtggagcatg tggtttaatt cgatgcaacg cgaaaaacct tacctactct 98700 tgacatactt ggaggctctt gtaatgagag tgtgcctttt ggaaccaaga tacaggtgct gcatggctgt cgtcagctcg tgtcgtgaga tgttccgtta agtcggataa cgagcgcaac 98760 98820 ccttaccctt atttgccagc gattcggtcg ggaactataa ggggactgcc ggtgataaac 98880 cggaggaagg tgaggacgac gtcaagtcat catggccctt acgagtaggg ctacacacgt 98940 gctacaatgg gagatacaga cggacgctaa gccgcgaggt ggtgctaatc ctaaaaagtc 99000 🦸 tttcgtagtc cggattggag tctgcaactc gactccatga agtcggaatc gctagtaatc 99060 Figcggatcage atgeogoggt gaatacgtte tegggtettg tacacacege eegteacace 99120 🖟 atggaagtgg attgcaccag aagtagatag tctaacctta gggagggcgt ttaccacggt Ugtgcttcatg actggggtga agtcgtaaca aggtagccgt aggggaacct gtggctggat 99180 Cacctcctta acgataaatc gcgttttaaa cgcccacacg agtaatcaaa tattaaaaaa 99240 aagaacattt agatatgtaa aatcattggt atgtaatttt ctagtgtata catttatgta 99300 Tacataagat cactgcaatt aaaaagtaac atatgcattt atgtgtatgt taaaaaagta 99360 99420 attaatatat tttattaagt tactctcaaa aatgaagata aaacttcaaa aaaaatatgt 99480 aacctttttt aaggttatat gatcaagtaa aggaagagca caaggcggat gccttggcag 99540 cataaggcga tgaaggacgt aataacctgc gataagcctc ggggagctgg taaataagct 99600 tcgatccgag gatttccgaa tgggaaaacc caatacacat aagtgtatta tcttatactg 99660 aatacatagg tataagaggc aaacctaggg aactgaaaca tctaagtacc tagaggaaaa 99720 gaaatcaaca gagattccgg tagtagcggc gagcgaaacc ggaccagccc ttaagcttat 99780 tttagtccag caaaatattc tggaaagttt agccatagta ggtgatagcc ctgtatgcga

99840 aagactaatt taagtgaaat cgagtaggtc gggacacgag aaatcttgac tgaacatggg gggaccatcc tccaaggcta aatactctat gctgaccgat agtgaaccag taccgtgagg 99900 gaaaggcgaa aagaaccccg gcgaggggag tgaaatagaa cctgaaacct tgtgcttaca 99960 agcagtcgga gcagacttgt tctgtgacgg cgtacctttt gtataatggg tcaacgactt 100020 aatttcagta gcaagcttaa ccatttaggg taggcgtagg gaaaccgagt cttaataggg 100080 cgctcagttg ctggaattag acccgaaacc gggtgatcta tccatggcca gtgtgaaggt 100140 cgagtaacat cgactggagg cgcgaaccca cttatgttga aaaatgaggg gatgagctgt 100200 ggataggagt gaaaggctaa tcaaacccgg agatagctgg ttctcttcga aaactattta 100260 ggtagtgcct cgtgtattac tgtagggggt agagcactgt ttcggctagg gggtcatccc 100320 gacttaccaa accgatgcaa actccgaata cctacaagta tgagcacggg agacagactg 100380 cgggtgctaa cgtccgtagt cgagagggaa acaacccaga ctgtcagcta aggtcccaaa 100440 ttatgattaa gtgggaaaca atgtgggaag gcacaaacag ctaggaggtt ggcttagaag 100500 cagccatcct ttaaagaaag cgtaatagct cactagtcga gtcggcctgc gtggaagata 100560 taacggggct aaatcataaa ccgaagctac agatcttaaa tttatttaag atggtagaag 100620 agcgttctgt aagcggttga aggtaagctg agaggcgaac tggacgtatc agaagtgcga 100680 atgttgacat gagtaacgat caaagaggtg aaaaacctct tcgccgaaaa accaagggtt 100740 cctgtccaac gctaatcgag gcagggtgag gcggccccta aggcgagggc gaaagccgta 100800 gtcgatggga aacaggttaa tattcctgta ctttttataa ctgcgatggg gtgacggaga 100860 aggttagact agcacggcga cggttgtccg tgttcaaggt tgtaggctgg tgttctaggt 100920 aaatccggaa cgctaaggct gagaactgat aacgaccact ctacgagtgg gaagtagtcg 100980 ataccatgct tccaggaaaa acctctaagc ttcaggttat aagaaaccgt accctaaacc 101040 gacacaggtg gttaggtcga gtagaccaag gtgtttgaga gaactatggt gaaggaacta 101100 ggcaaaatag caccgtaact tcgggagaag gtgcgccgcg tttggtgatg agacttgctc 101160 tctaagctga acgtggtcga agataccagg tggctgcgac tgtttactaa aaacatagca 101220

ctctgcaaac tcgtaagagg aagtataggg tgtgacgcct gcccggtgcc ggaaggttaa 101280 ttgatggggt tagcttatgc gaagctcttg atcgaagccc cggtaaacgg cggccgtaac 101340 tataacggtc ctaaggtagc gaaattcctt gtcgggtaag ttccgacctg cacgaatggc 101400 gtaacgatgg ccacactgtc tccaccatag actcagtgaa attgaaatcg ctgttaagat 101460 gcagtgtacc cgcagctaga cggaaagacc ccgtgcacct ttactatagg ttcgcactgg 101520 actttgacct tacttgtgta ggataggtgg gagactttga agcagagacg ccagtctttg 101580 tggagtcatc cttgaaatac cacccttgta agattgaagt tctaacctag gtccattatc 101640 tggatcaggg acagtgcgtg ctgggtagtt tgactggggc ggtctcctcc taaagagtaa 101700 cggaggagta cgaaggtatc cttatcacgg tcggacatcg tgaggtaagt ataaaggcag 101760 aaggatgett gaetgegaga tegaeggate gageaggtag gaaaetaggt ettagtgate 101820 cggtggttct gaatggaagg gccatcgctc aacggataaa aggtacgccg gggataacag 101880 面 = gctgataccg cccaagagtt catatcgacg gcggtgtttg gcacctcgat gtcggctcat 101940 ந்cacatectgg ggetggagea ggteecaagg gtatggetgt tegecattta aagtggtaeg 102000 ⊯cgagctgggt ttagaacgtc gtgagacagt tcggtcccta tctgctgtgg gcgtttggag 102060 atttgaggga agctgattct agtacgagag gaccgaattg gacgaacctc tggtgttccg 102120 gttgtcacgc cagtggcatt gccgggtagc tatgttcgga aaggataacc gctgaaagca 102180 tataagcggg aagcctctcc caagattaaa tctcccagag actttatgtc tcctaaagag 102240 tcgtcataga ctatgacgtt gataggcaag atgtgtaagc gctgcgaggc gttgagctaa 102300 cttgtactaa taactcgtga ggcttgatca tgtaacctta agcaaggttc ataatttgag 102360 taaaacattg tagtgagaat taaaaaataa aaagttacat accagtttgc ctgatgacaa 102420 tagcaacttg gaaccacctg atcccatctc gaactcagaa gtgaaacgag ttaacgccaa 102480 tggtagtgca gggtctccct gtgtgagagt aggaaatcgt caggcttttt tctttaaggc 102540 ttccagttta ctggaagcct tttttttat ctcaagtata atacccagat gattattgga 102600 ttaacaggag gcattggttc tggcaaatct gccgctgcag acttctttat tgatttaggt 102660

atatcagtct tagatgcaga tcaagttgct aaagaagctt tatctacaaa ttctcctgga 102720 tatactgatt ttatttctca atttggtgaa gtgtatttaa ataataatcg tgaggttgat 102780 aggctgaaat tgcgcgaact tattttttca aatccttcaa aaaaaaagga tcttgagaat 102840 attattcatc ccatagttcg gtctgctatt agtaatttta ttattacatc aacatcacca 102900 tattctattg ttatggtgcc actcattttt gaaacaaatt catataaaaa ttacgataag 102960 attattactg ttgactgtga tttagaactt cagatagtaa gggcctcaag tagagatgct 103020 caaaataaat cgcagattaa gaatattatt aataagcaag cctctagaga ggagaggcta 103080 agtatttctg atgacgtact tatcaataac agcaccctat ctgatctaaa aaaacaagtt 103140 aatgttttac atactaaata tatggagtta ttaaatgagt agttgcccta gatgtgaaaa 103200 acctgtcaaa ctttctactg acaatattta tagacctttc tgctctgaga aatgcaaact 103260 C tatagatttt ggtgattggg ctaatgaaga taataaaatt tcaagaccaa ttcaatctga 103320 agatttttac gaagattaaa tttaagaaag tctccattca ccactttcaa tcatcggttt 103380 ∰ggctttttta tacttcattt cttgcgtatc ttgaccgtta gtaattttta caagatcatt 103440 tctgcctaac ttaggttcgt ttcttgtcac agtacttgtt tttactatag gagtggcttg 103500 Etttttcattt tgaaagatat cagaattaat ttcctctttt tccaatttta attcttgaga 103560 actattttgt ttgtttatgc tctctagctc agattctgtc gatatttgta atgagaaaag 103620 tattettata gttteaacat etattteega aageatagat teaaacattg aatatgeete 103680 tcttttgaat tcattttttg gatttttttg agcataagcc cttagaccaa cactatttct 103740 taaatgatct atttctgata aatgctcttt ccaatggaca tcaagtactt gcagcataac 103800 ctgcttctca agaagcaatc tattttcacc aagatcacta aacttttttg aatatttatt 103860 ttttgcttgc agaacaattt cttcggcaat tgtatttggt acaagttttt tattactatt 103920 aattttattg gctatatctg tttctagtcc atagctctct tttaaataat catcgagctg 103980 cctacttttc cattgagact ctattgattc ttcaggtaca tataaattag atattccttt 104040 gaattgctgc tcgatgagtg actcaatggt actgctaata tcttcctctt ctagtaattg 104100

attecttaaa gaatatatag ettgtetttg ateatttgat acategtegt actetaaaag 104160 atttttcctt gcatcaaagt ttctgctctc aattcttttt tgcgcatttt ctattcctct 104220 tgaaagcatt ttagcttcaa tatgatcatc tcccatgccc agcctttcaa aagtagccct 104280 tettecatee gaaataaaaa gteteaagag ategtettet aaagataaga agaattttga 104340 ataacctgga tcaccttgtc tgcctgatct cccccttaac tgattatcta ttcttcttga 104400 ttcatgcctt tctgttccaa gtatatgaag cccaccagat tctataactt ttttattatt 104460 ttctttccac tctatatcgc tttggtcttc tttttttccg ccaagaacta tatccgtccc 104520 ccttcctgcc atattcgtag caatagttac cattccaggt ttacctgcat tggcaattat 104580 ctctgcttct ttttcgtgat gcttggcatt taaaatttga tgaggtattt ttttgttatt 104640 taaatatget gataettett etgaagatte aacegaaaet gtteeaacaa gaatgggaga 104700 agatttttt cttaattgtt caatttcttc aattagagct ttatatttcg attctgttgt 104760 aagaaatact aagtcattaa gatcagctct agccatagga acatttgttg ggatgatgat 104820 ☐ gacatttagg ccatagattt gactaaactc tactgcttca gtatctgctg ttcctgtcat 104880 ⊯cccagaaagt tttttaaata atctaaaaaa gttttggaat gtggtggatg ctagtgtttg 104940 agactetett tggatageaa cattttettt geatteeagt geetggtgaa caeetteaet 105000 Cattettett cegggeattg ttetacetgt atgeteatea ateaaaagaa ceteacegtt 105060 cctaaccaaa taatccacat tctttttaaa taagaagctt gctctaagtg ttgcttgaac 105120 aaatttcata atttttaaat tagaaacaga gtaagcccat ctgaggctcc aagccgattc 105180 105184 cagc

<210> 2

<211> 29

<212> DNA

<213> pcr primer

```
<220>
        oligo-nucleotide-primer
  <221>
  <222> (1)..(29)
  <300>
        Beja, O., Aravind, L., Koonin, E.V., Suzuki, M.T., Hadd, A.,
 Nguyen, L.P., Jovanovich, S.B., Gates, C.M., Feldman, R.A., Spudich, J.L.,
  Spudich, E.N. and DeLong, E.F.
  <302> Bacterial rhodopsin: evidence for a new type of phototrophy in
  the sea
  <303>
        Science
289
        5486
1902-1906
₩<307> 2000-09-15
4309>
<del>4</del>00> 2
 accatgggta aattattact gatattagg
                                                                        29
  <210> 3
  <211> 24
  <212> DNA
  <213> pcr primer
```

```
<220>
        oligo-nucleotide-primer
 <221>
 <222> (1)..(24)
 <300>
 <301> Beja, O., Aravind, L., Koonin, E.V., Suzuki, M.T., Hadd, A.,
 Nguyen, L.P., Jovanovich, S.B., Gates, C.M., Feldman, R.A., Spudich, J.L.,
 Spudich, E.N. and DeLong, E.F.
 <302> Bacterial rhodopsin: evidence for a new type of phototrophy in
 the sea
 <303> Science
 <304>
        289
□<305> 5486
负
= <306> 1902-1906
<sup>[]</sup><307>
        2000-09-15
-
|
|
|
|
|
|
[
| 400> 3
agcattagaa gattetttaa cage
                                                                           24
 <210> 4
 <211> 750
 <212>
        DNA
 <213> Naturally occurring gamma proteobacterium
 <220>
```

```
<221>
        CDS
 <222>
        (1)..(750)
        light-driven proton pump; has the properties of a light-driven pr
 <223>
        oton pump when expressed with retinal in Escherichia coli.
        that additional three nucleotide residues incorporated by pcr pri
        ming with reference to the original 31A08 DNA sequence (DNA resid
        ues 4-6, ggt), adding a new restriction site for cloning
 <300>
        Beja, O., Aravind, L., Koonin, E.V., Suzuki, M.T.,
 Hadd, A., Nguyen, L.P., Jovanovich, S.B., Gates, C.M.,
 Feldman, R.A., Spudich, J.L., Spudich, E.N. and DeLong, E.F.
 <302> Bacterial rhodopsin: evidence for a new type of phototrophy in
 the sea
 <303>
        Science
面
年<304>
以
以<305>
        289
        5486
<u>u</u><306>
        1902-1906
□<307>
        2000-09-15
≧308>
        AAG10475
₹309>
        2000-06-15
1=
 <313>
         (1)..(750)
 <400> 4
                                                                           48
 atg ggt aaa tta tta ctg ata tta ggt agt gtt att gca ctt cct aca
 Met Gly Lys Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr
                                                            15
                                       10
 1
                  5
                                                                           96
 ttt gct gca ggt ggt gac ctt gat gct agt gat tac act ggt gtt
 Phe Ala Ala Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val
```

20

					act Thr											144
	_	_	_	_	aga Arg	_		-								192
					act Thr 70											240
					gaa Glu											288
					aca Thr											336
att ülle ü	ctt Leu	gct Ala 115	gct Ala	gca Ala	act Thr	aat Asn	gtt Val 120	gct Ala	gga Gly	tca Ser	tta Leu	ttt Phe 125	aag Lys	aaa Lys	tta Leu	384
Ficta																432
y gga Gly U145																480
Hgta Wal																528
aat Asn	act Thr	gca Ala	agt Ser 180	cct Pro	gct Ala	gtg Val	caa Gln	tca Ser 185	gct Ala	tac Tyr	aac Asn	aca Thr	atg Met 190	atg Met	tat Tyr	576
					tgg Trp											624
					ggt Gly											672

720 aac ctt gct gac ttt gtt aac aag att cta ttt ggt tta att ata tgg Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 240 230 235 225 750 aat gtt gct gtt aaa gaa tct tct aat gct Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 <210> 5 <211> 250 <212> PRT Naturally occurring gamma proteobacterium <213> <400> 5 Met Gly Lys Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 15 **#**1 10 5 IPhe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 25 30 20 Ш Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 45 35 40 Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 60 50 55 Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 80 70 75 65 Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 95 90 85 Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 110 100 105

Ile Leu Ala Ala Ala Thr Asn Val Ala Gly Ser Leu Phe Lys Lys Leu 120 125 115 Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130 135 Gly Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 160 145 150 155 Val Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ser Ala Cys 165 170 Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr 180 185 190 Ile Ile Ile Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly 195 200 205 ũ Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 220 210 215 Ì₽₽. Ш Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp **J** 225 235 240 230 🗖 Asn Val Ala Val Lys Glu Ser Ser Asn Ala 250 245 <210> 6 <211> 747 <212> DNA <213> Naturally occurring gamma proteobacterium

```
<220>
  <221>
         CDS
  <222>
          (1)...(747)
         Native proteorhodpsion DNA sequence from BAC clone 31A08
  <223>
  <300>
         Beja, O., Aravind, L., Koonin, E.V., Suzuki, M.T., Hadd, A.,
  Nguyen, L.P., Jovanovich, S.B., Gates, C.M., Feldman, R.A., Spudich, J.L.,
  Spudich, E.N. and DeLong, E.F.
  <302> Bacterial rhodopsin: evidence for a new type of phototrophy in
  the sea
  <303>
         Science
つ <304>
の <305>
「 <306>
          289
          5486
         1902-1906
는
실 <307>
          2000-09-15
  <309>
         (1)..(747)
  <313>
  <400> 6
  atg aaa tta tta ctg ata tta ggt agt gtt att gca ctt cct aca ttt
                                                                            48
  Met Lys Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr Phe
                                                             15
                                        10
  1
  gct gca ggt ggt gac ctt gat gct agt gat tac act ggt gtt tct
                                                                            96
  Ala Ala Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val Ser
                                                         30
               20
                                    25
                                                                           144
  ttt tgg tta gtt act gct gct tta tta gca tct act gta ttt ttc ttt
  Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe
                                40
                                                     45
           35
```

	_	_	_	_	aga Arg	_		_									192
					act Thr												240
					gaa Glu 85												288
					aca Thr												336
		_	-	-	act Thr		-										384
					gtt Val												432
					tgg Trp												480
21	tac Tyr	atg Met	att Ile	tat Tyr	gaa Glu 165	tta Leu	tgg Trp	gct Ala	gga Gly	gaa Glu 170	gga Gly	aaa Lys	tct Ser	gca Ala	tgt Cys 175	aat Asn	528
3 3	act Thr	gca Ala	agt Ser	cct Pro 180	gct Ala	gtg Val	caa Gln	tca Ser	gct Ala 185	tac Tyr	aac Asn	aca Thr	atg Met	atg Met 190	tat Tyr	att Ile	576
					tgg Trp												624
	-	_			ggt Gly												672
					gtt Val												720

gtt gct gtt aaa gaa tct tct aat gct Val Ala Val Lys Glu Ser Ser Asn Ala 245

<210> 7

<211> 249

<212> PRT

<213> Naturally occurring gamma proteobacterium

<400> 7

Ü

W

Met Lys Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr Phe 1 5 10 15

Ala Ala Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val Ser 20 25 30

Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe He 35 40 45

Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met Arg 65 70 75 80

Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr Ile 85 90 95

Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu Ile 100 105 110

Leu Ala Ala Thr Asn Val Ala Gly Ser Leu Phe Lys Lys Leu Leu 115 120 125

```
Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala Gly
                           135
                                                140
      130
  Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp Val
  145
                       150
                                                                160
  Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ser Ala Cys Asn
                   165
                                       170
                                                            175
  Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr Ile
               180
                                   185
                                                        190
  Ile Ile Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly Tyr
          195
                               200
                                                    205
  Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr Asn
210
                           215
                                                220
Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp Asn
                                           235
                                                                240
  225
                       230
Val Ala Val Lys Glu Ser Ser Asn Ala
                   245
  <210>
         8
  <211>
         750
  <212>
         DNA
  <213> Naturally occurring gamma proteobacterium
  <220>
  <221> CDS
```

<222> (1)..(750)

<223> proteorhodopsin variant from clone EBAC40

)> 8																
	_													ctt Leu				48
														act Thr 30				96
														gta Val			-	144
														tca Ser			:	192
The the three of the														atg Met			2	240
E .														ttt Phe			2	288
														ttc Phe 110			:	336
														aag Lys			;	384
														ggt Gly			4	432
														tta Leu			4	480
	gta	tac	atg	att	tat	gaa	cta	tgg	gct	gga	gaa	ggc	aag	gct	gca	tgt	į	528

Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu Ile Leu Ala Ala Ala Thr Asn Val Ala Ala Gly Leu Phe Lys Lys Leu Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala Gly Ile Met Asn Ala Trp Gly Ala Phe Val Ile Gly Cys Leu Ala Trp Val Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ala Ala Cys Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr Ile Ile Ile Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr

Asp Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp

	Asn	Val	Ala	Val	Lys 245	Glu	Ser	Ser	Asn	Ala 250							
	<210)> [LO														
	<211	.> 7	750														
	<212	:> I	ONA														
	<213	> 1	Vatur	cally	7 000	curri	ng g	gamma	a pro	teok	acte	eriun	n				
	<220)>															
	<221	.> (CDS														
7.E.	<222	: >	(1).	. (750))												
7	<223	;> I	prote	eorho	odpsi	in va	ariar	ıt fı	com c	clone	e EBA	AC41					
7 7 1	<400		LO														4.0
Ų	atg Met			tta Leu	Leu					Ser					Pro		48
	1				5					10					15		
				ggt Gly					Asp					Thr			96
10 May 1				20					25					30			
			Trp	tta Leu				Ala					Thr				144
			35					40					45				
		Val		aga Arg			Val					Lys					192
		50					55					60					
	Val			ctt Leu		Thr					Trp					Met	240
	65					70					75					80	

288

95

aga ggg gta tgg att gaa act ggt gat tcg cca act gta ttt aga tac

Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr

				aca Thr							336
				act Thr							384
	_			gtt Val	_						432
				tgg Trp 150							480
				gaa Glu							528
				gct Ala							576
				tgg Trp							624
				ggt Gly							672
				gtt Val 230							720
	-	_		gaa Glu							750

<210> 11

<211> 250

<212> PRT

<213> Naturally occurring gamma proteobacterium

<400> 11

Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 1 5 10 15

Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20 25 30

Ser Phe Trp Leu Ala Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35 40 45

Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 55 60

Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 65 70 75 80

Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 85 90 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 100 105 110

Ile Leu Ala Ala Ala Thr Asn Val Ala Gly Ser Leu Phe Lys Lys Leu 115 120 125

Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130 135 140

Gly Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 145 150 155 160

Val Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ser Ala Cys 165 170 175

```
210
                           215
                                                220
   Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp
                                            235
                                                                240
   225
                       230
   Asn Val Ala Val Lys Glu Ser Ser Asn Ala
                                        250
                   245
<210>
          12
   <211>
          750
   <212>
          DNA
<213> Naturally occurring gamma proteobacterium
   <220>
   <221>
          CDS
   <222>
         (1)..(750)
   <223> Proteorhodopsin variant from clone EBAC64
   <400> 12
   atg ggt aaa tta tta ctg ata tta ggt agt gtt att gca ctt cct aca
   Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr
```

Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr

Ile Ile Ile Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly

Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr

200

185

190

48

96

15

205

180

195

1

5

ttt gct gca ggt ggc ggt gac ctt gat gct agt gat tac act ggt gtt

	Phe	Ala	Ala	Gly 20	Gly	Gly	Asp	Leu	Asp 25	Ala	Ser	Asp	Tyr	Thr 30	Gly	Val	
					gtt Val												144
		_	-	_	gat Asp		_										192
					gtt Val												240
					att Ile 85												288
					cta Leu												336
den ipe gre hae je mil tim					gca Ala												384
					ctt Leu												432
					gct Ala												480
					tat Tyr 165												528
					cct Pro												576
	atc Ile	ata Ile	gtc Val 195	ttc Phe	ggt Gly	tgg Trp	gca Ala	att Ile 200	tat Tyr	cct Pro	ata Ile	ggt Gly	tat Tyr 205	ttc Phe	aca Thr	ggt Gly	624
	tac	cta	atg	ggt	gac	ggt	gga	tca	gct	ctt	aac	tta	aac	ctt	att	tat	672

Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 210 aac ctt gct gac ttt gtt aac aag att cta ttt ggt tta att ata tgg 720 Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 240 225 230 235 750 aat gtt gct gtt aaa gaa tct tct aat gct Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 250 <210> 13 <211> 250 <212> PRT Naturally occurring gamma proteobacterium <400> 13 Met Gly Lys Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 10 15 Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 30 20 25 Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 45 35 Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 60 50 55 Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 80 70 75 65 Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 95 90 85

Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 100 105 110

Ile Leu Ala Ala Ala Thr Asn Val Ala Gly Ser Leu Phe Lys Lys Leu 115 120 125

Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130 135 140

Gly Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 145 150 155 160

Val Tyr Met Ile Tyr Glu Leu Tyr Ala Gly Glu Gly Lys Ser Ala Cys 165 170 175

Asn Thr Ala Ser Pro Ser Val Gln Ser Ala Tyr Asn Thr Met Met Ala 180 185 190

Ile Ile Val Phe Gly Trp Ala Ile Tyr Pro Ile Gly Tyr Phe Thr Gly 195 200 205

Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 210 215 220

Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 225 230 235 240

Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 250

<210> 14

<211> 750

<212> DNA

<213> Naturally occurring gamma proteobacterium

<220>

<221> CDS

<222> (1)..(750)

<223> Proteorhodopsin variant from pcr clone HOT01m: GenBank# AF349978

<400	L4								
						att Ile			48
						gat Asp			96
						tct Ser			144
						aaa Lys 60			192
						cat His			240
						act Thr			288
						tgt Cys			336
						ctg Leu			384
						tac Tyr			432

		130													
			atg Met												480
	_		atg Met			-					-				528
			gca Ala												576
			atc Ile 195				-								624
HUUM			atg Met												672
			gct Ala	_		_		_							720
		_	gct Ala	_		-									750
	<210)> :	15												
ļ	<211	L> :	250												
	<212	2> 1	PRT												
	<213	3> 1	Natui	rally	y oca	curr	ing (gamma	a pro	oteol	oacte	eriur	n		

135

130

<400> 15

5

Phe Ala Ala Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val

Met Gly Lys Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr

10

Ph Va 65 Ar II

Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35 40 45

25

Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 55 60

Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 65 70 75 80

Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 85 90 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 100 105 110

Ile Leu Ala Ala Ala Thr Asn Val Ala Ala Gly Leu Phe Lys Lys Leu 115 120 125

Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130 135 140

Gly Ile Met Asn Ala Trp Gly Ala Phe Val Ile Gly Cys Leu Ala Trp 145 150 155 160

Val Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ala Ala Cys 165 170 175

Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr 180 185 190

Ile Ile Ile Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly 195 200 205

Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr

```
TOTOTO, ETELTINATED
```

210

Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 225 230 235 240 Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 250 <210> 16 <211> 753 <212> DNA Naturally occurring gamma prtoeobacterium <220> <221> CDS <222> (1)..(753)Proteorhodopsin variant from pcr clone HOT75m1: GenBank#AF349979 <223> <400> 16 atg ggt aaa tta tta ctg ata tta ggt agt gct att gca ctt cca tca 48 Met Gly Lys Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser 10 15 1 5 ttt gct gct ggt ggc gat cta gat ata agt gat act gtt ggt gtt 96 Phe Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val 30 20 25 144 tca ttc tgg ctg gtt aca gct ggt atg tta gcg gca act gtg ttc ttt Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe 40 45 35

220

215

60

ttt gta gaa aga gac caa gtc agc gct aag tgg aaa act tca ctt gct Phe Val Glu Arg Asp Gln Val Ser Ala Lys Trp Lys Thr Ser Leu Ala

55

					ggt Gly						2	240
					act Thr						2	288
					gtt Val						3	336
					agt Ser						3	384
					atg Met 135						Ų.	432
					cct Pro						4	480
					cta Leu						į	528
					gtt Val						į	576
÷					gca Ala					ggt Gly	6	624
					ggt Gly 215						(672
					gtt Val						•	720
		_	_	_	gaa Glu						•	753

```
<210> 17
```

<211> 251

<212> PRT

<213> Naturally occurring gamma prtoeobacterium

<400> 17

Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser 1 5 10 15

Phe Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val 20 25 30

Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe 35 40 45

Phe Val Glu Arg Asp Gln Val Ser Ala Lys Trp Lys Thr Ser Leu Ala 50 55 60

Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met 65 70 75 80

Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr 85 90 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu
100 105 110

Ile Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu 115 120 125

Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 130 135 140

```
Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp
                                                              160
145
                    150
                                         155
Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val
                                                          175
                165
                                     170
Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met
            180
                                 185
Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly
                                                  205
        195
                             200
Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile
                         215
                                             220
    210
Tyr Asn Leu Ala Asp Leu Val Asn Lys Ile Leu Phe Gly Leu Ile Ile
                    230
                                         235
                                                              240
225
Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala
                                     250
                245
<210>
       18
<211>
       753
<212>
       DNA
<213>
      Naturally occurring gamma proteobacterium
<220>
<221>
       CDS
<222>
       (1)..(753)
       Proteorhodopsin variant from pcr clone HOT75m3; GenBank#AF349980
<223>
```

<400)> 1	L8															
				tta Leu 5													48
				ggt Gly													96
				gtt Val													144
				gac Asp												,	192
				att Ile												;	240
				ata Ile 85													288
				tta Leu													336
				tgt Cys													384
cta Leu	gct Ala 130	ggt Gly	tca Ser	tta Leu	gta Val	atg Met 135	tta Leu	ggt Gly	gct Ala	gga Gly	ttt Phe 140	gca Ala	ggc Gly	gaa Glu	gct Ala		432
				gta Val													480
tta Leu	tac Tyr	atg Met	att Ile	tat Tyr 165	gag Glu	cta Leu	cat His	atg Met	ggt Gly 170	gaa Glu	ggt Gly	aag Lys	gct Ala	gct Ala 175	gta Val		528

		gca Ala														576
		gtt Val 195														624
		atg Met														672
		ctt Leu														720
		gtt Val														753
<210)> :	19														
<211	L> 2	251														
<212	2> 1	PRT														
<213	3> 1	Natui	rally	7 oc	curri	ing g	gamma	a pro	oteol	oacte	eriun	n				
<400)> :	19														
Met 1	Gly	Lys	Leu	Leu 5	Leu	Ile	Leu	Gly	Ser 10	Ala	Ile	Ala	Leu	Pro 15	Ser	
Phe	Ala	Ala	Ala 20	Gly	Gly	Asp	Leu	Asp 25	Ile	Ser	Asp	Thr	Val 30	Gly	Val	
Ser	Phe	Trp 35	Leu	Val	Thr	Ala	Gly 40	Met	Leu	Ala	Ala	Thr 45	Val	Phe	Phe	
Phe	Val 50	Glu	Arg	Asp	Gln	Val 55	Ser	Ala	Lys	Trp	Lys 60	Thr	Ser	Leu	Thr	

Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu Ile Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp Leu Tyr Met Ile Tyr Glu Leu His Met Gly Glu Gly Lys Ala Ala Val Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Lys Ile Ile Val Ile Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly Tyr Leu Met Ser Gly Asp Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala

```
<210>
          20
   <211>
          753
   <212>
          DNA
         Naturally occurring gamma proteobacterium
   <213>
   <220>
   <221>
          CDS
   <222>
          (1)...(753)
          Proteorhodopsin variant from pcr clone HOT75m4; GenBank #AF349981
   <223>
<400> 20
   atg ggt aaa tta tta ctg ata tta ggt agt gct att gca ctt cca tca
                                                                           48
  Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser
                                        10
                                                             15
U
   1
<u>}_i</u>
                                                                           96
  ttt gct gct ggt ggc gat cta gat ata agt gat act gtt ggt gtt
   Phe Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val
                                                         30
20
U
   tca ttc tgg ctg gtt aca gct ggt atg tta gcg gca act gtg ttc ttt
                                                                          144
   Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe
45
           35
                                40
<u>__</u>
                                                                          192
   ttt qta qaa aga gac caa gtc agc gct aag tgg aaa act tca ctt act
   Phe Val Glu Arg Asp Gln Val Ser Ala Lys Trp Lys Thr Ser Leu Thr
       50
                            55
                                                                          240
   gta tct ggt tta att act ggt ata gct ttt tgg cat tat ctc tat atg
   Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met
                                                                 80
                                            75
   65
                       70
                                                                          288
   aga ggt gtt tgg ata gac act ggt gat acc cca aca gta ttc aga tat
   Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr
                                                             95
                   85
                                                                          336
   att gat tgg tta tta act gtt cca tta caa gtg gtt gag ttc tat cta
```

O

Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Val Val Glu Phe Tyr Leu

			100					105					110		
		gct Ala 115	_	_					_						384
	_	ggt Gly			_	_									432
		gct Ala													480
		atg Met													528
		gca Ala													576
		gtt Val 195													624
		atg Met													672
		ctt Leu													720
		gtt Val													753
<210)>	21													
<211	L>	251													
<212	2>	PRT													
<213	3> :	Natu	rally	7 000	curri	ing g	gamma	a pro	oteol	oacte	eriun	n			

<400> 21 Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser Phe Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe Phe Val Glu Arg Asp Gln Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 🔟 Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met 4 🖟 Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr W Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Val Val Glu Phe Tyr Leu Ile Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val

```
Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met
                                                       190
              180
                                   185
  Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly
                                                   205
          195
                              200
  Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile
      210
                          215
                                               220
  Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile
                                           235
                                                               240
  225
                      230
  Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala
                  245
  <210>
         22
  <211>
         753
  <212>
         DNA
        Naturally occurring gamma proteobacterium
<u>u</u> <213>
□ <220>
ļ
□ <221>
         CDS
  <222>
         (1)..(753)
        Proteorhodopsin variant from pcr clone HOT75m8: GenBank#AF349982
  <223>
  <400> 22
                                                                         48
  atg ggt aaa tta tta ctg ata tta ggt agt gct att gca ctt cca tca
  Met Gly Lys Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser
                                                           15
                                       10
                                                                         96
  ttt gct gct gct ggc gat cta gat ata agt gat act gtt ggt gtt
  Phe Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val
```

												gca Ala					144
												aaa Lys 60					192
												cat His					240
	aga Arg	ggt Gly	gtt Val	tgg Trp	ata Ile 85	gac Asp	act Thr	ggt Gly	gat Asp	acc Thr 90	cca Pro	aca Thr	gta Val	ttc Phe	aga Arg 95	tat Tyr	288
	att Ile	gat Asp	tgg Trp	tta Leu 100	tta Leu	act Thr	gtt Val	cca Pro	tta Leu 105	caa Gln	atg Met	gtt Val	gag Glu	ttc Phe 110	tat Tyr	cta Leu	336
	Ile	ctt Leu	gct Ala 115	gct Ala	tgt Cys	aca Thr	aat Asn	gtt Val 120	gct Ala	gct Ala	tca Ser	tta Leu	ttt Phe 125	aag Lys	aag Lys	ctt Leu	384
	Leu	gct Ala 130	ggt Gly	tca Ser	tta Leu	gta Val	atg Met 135	tta Leu	ggt Gly	gct Ala	gga Gly	ttt Phe 140	gca Ala	ggc Gly	gaa Glu	gct Ala	432
	gga Gly 145	ttg Leu	gct Ala	cct Pro	gta Val	tgg Trp 150	cct Pro	gct Ala	ttc Phe	att Ile	att Ile 155	ggt Gly	atg Met	gct Ala	gga Gly	tgg Trp 160	480
•	tta	tac Tyr	atg Met	att Ile	tat Tyr 165	gag Glu	cta Leu	tat Tyr	atg Met	ggt Gly 170	gaa Glu	ggt Gly	aag Lys	gct Ala	gct Ala 175	gta Val	528
	agt Ser	act Thr	gca Ala	agt Ser 180	cct Pro	gct Ala	gtt Val	aac Asn	tct Ser 185	gca Ala	tac Tyr	aac Asn	gca Ala	atg Met 190	atg Met	gtg Val	576
	att Ile	att Ile	gtt Val 195	gtt Val	gga Gly	tgg Trp	gca Ala	att Ile 200	tat Tyr	cct Pro	gct Ala	gga Gly	tat Tyr 205	gct Ala	gct Ala	ggt Gly	624
	tac Tyr	cta Leu	atg Met	ggt Gly	ggc Gly	gaa Glu	ggt Gly	gta Val	tac Tyr	gct Ala	tca Ser	aac Asn	tta Leu	aac Asn	ctt Leu	ata Ile	672

720 tat aac ctt gcc gac ctt gtt aac aag att cta ttt ggt ttg atc att Tyr Asn Leu Ala Asp Leu Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 225 230 235 240 753 tgg aat gtt gct gtt aaa gaa tct tct aat gct Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala 250 245 <210> 23 <211> 251 <212> PRT <213> Naturally occurring gamma proteobacterium <400> 23 Met Gly Lys Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser 15 **I** 1 5 10 <u>|</u> ■ Phe Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val 30 20 25 Ш Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe 35 40 45 Phe Val Glu Arg Asp Gln Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 55 60 Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met 75 80 65 70 Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr 85 90 95 Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu

220

215

210

Ile Leu Ala Ala Cys Thr Asn Val Ala Ala Ser Leu Phe Lys Lys Leu

Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala

Gly Leu Ala Pro Val Trp Pro Ala Phe Ile Ile Gly Met Ala Gly Trp

Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val

■ Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile Uī

Figr Asn Leu Ala Asp Leu Val Asn Lys Ile Leu Phe Gly Leu Ile Ile **□**225

Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala

<210>

<211>

<212> DNA

<213> Naturally occurring gamma proteobacterium

<220> <221> CDS <222> (1)..(750)Proteorhodopsin variant from pcr clone MB0m1: GenBank#AF349983 <223> <400> 24 48 atg ggt aaa tta tta ctg ata tta ggt agt gtt att gca ctt cct aca Met Gly Lys Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 10 15 1 ttt gct gca ggt ggt gac ctt gat gct agt gat tac act ggt gtt 96 Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 25 20 144 tct ttt tgg tta gtt act gct gct cta tta gca tct act gta ttt ttc Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 45 35 40 ttt gtt gaa aga gat aga gtt tct gca aaa tgg aaa aca tca tta act 192 Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 55 60 240 Ingta tot ggt ott gtt act ggt att got tto tgg cat tac atg tac atg Tal Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 80 <u>₩</u>65 70 75 Haga ggg gta tgg att gag act ggt gat tcg cca act gta ttt aga tac 288 Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 85 90 95 336 att gat tgg tta cta aca gtt cct cta ttg ata tgt gaa ttc tac tta Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 100 105 110 384 att ctt gct gca gca aca aat gtt gct gct ggc ctg ttt aag aaa tta Ile Leu Ala Ala Ala Thr Asn Val Ala Ala Gly Leu Phe Lys Lys Leu 120 125 115 432 ttg gtt ggt tct ctt gtt atg ctt gtg ttt ggt tac atg ggt gag gca Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130 135 140

			atg Met														480
			atg Met														528
			gca Ala														576
			gtc Val 195														624
			atg Met														672
			gct Ala														720
U		_	gct Ala	-		_											750
	<210)> 2	25														
	<211	L> 2	250														
	<212	2> 1	PRT														
	<213	3> 1	Natur	cally	7 000	curri	.ng g	gamma	n pro	teok	oacte	erium	า				
	<400)> 2	25							_							
	Met 1	Gly	Lys	Leu	Leu 5	Leu	Ile	Leu	Gly	Ser 10	Val	Ile	Ala	Leu	Pro 15	Thr	
	Phe	Ala	Ala	Gly 20	Gly	Gly	Asp	Leu	Asp 25	Ala	Ser	Asp	Tyr	Thr 30	Gly	Val	

Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35 40 45

Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 55 60

Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 65 70 75 80

Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 85 90 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 100 105 110

Ile Leu Ala Ala Ala Thr Asn Val Ala Ala Gly Leu Phe Lys Lys Leu 115 120 125

Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130 135 140

Gly Ile Met Asn Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 145 150 155 160

Val Tyr Met Ile Tyr Glu Leu Tyr Ala Gly Glu Gly Lys Ser Ala Cys 165 170 175

Asn Thr Ala Ser Pro Ser Val Gln Ser Ala Tyr Asn Thr Met Met Ala 180 185 190

Ile Ile Val Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly 195 200 205

Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 210 215 220

```
Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp
225
                    230
                                        235
Asn Val Ala Val Lys Glu Ser Ser Asn Ala
                245
                                    250
<210>
       26
<211>
       750
<212>
      DNA
<213>
      Naturally ocurring gamma proteobacterium
<220>
<221>
      CDS
<222>
       (1)...(750)
      Proteorhodopsin variant from pcr clone MB0m2
<223>
<400> 26
                                                                       48
atg ggt aaa tta tta ctg ata tta ggt agt gtt att gca ctt cct aca
Met Gly Lys Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr
ttt gct gca ggt ggt ggt gac ctt gat gct agt gat tac act ggt gtt
                                                                       96
Phe Ala Ala Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val
            20
                                25
                                                     30
                                                                      144
tct ttt tgg tta gtt act gct gct tta tta gca tct act gta ttt ttc
Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe
        35
                                                 45
                                                                      192
ttt gtt gaa aga gat aga gtt tct gca aaa tgg aaa aca tca tta act
Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr
    50
                        55
                                             60
```

gta tet ggt ett gtt act ggt att get tte tgg eat tae atg tae atg

240

Val 65	Ser	Gly	Leu	Val	Thr 70	Gly	Ile	Ala	Phe	Trp 75	His	Tyr	Met	Tyr	Met 80	
						act Thr										288
	_					gtt Val										336
						aat Asn										384
						atg Met 135										432
						ggt Gly										480
						ctt Leu		Leu								528
						gtt Val										576
						gca Ala										624
						gga Gly 215										672
		_	_		_	aac Asn	_									720
	-	_	_		_	tct Ser										750

<210> 27

<211> 250

<212> PRT

<213> Naturally ocurring gamma proteobacterium

<400> 27

Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 1 5 10 15

Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20 25 30

Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35 40 45

Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 55 60

Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 65 70 75 80

Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 85 90 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 100 105 110

Ile Leu Ala Ala Ala Thr Asn Val Ala Ala Gly Leu Phe Lys Lys Leu 115 120 125

Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130 135 140

```
Gly Ile Met Asn Ala Trp Gly Ala Phe Val Ile Gly Cys Leu Ala Trp
                                                              160
145
                    150
Val Tyr Met Ile Tyr Glu Leu Trp Leu Gly Glu Gly Lys Ala Ala Cys
                165
                                     170
                                                          175
Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Met
                                 185
            180
Ile Ile Ile Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly
                             200
                                                  205
        195
Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr
                                              220
                         215
    210
Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp
                                                              240
                                         235
                    230
225
Asn Val Ala Val Lys Glu Ser Ser Asn Ala
                245
<210>
       28
<211>
       750
<212>
       DNA
      Naturally occuring gamma proteobacterium
<213>
<220>
<221>
       CDS
<222>
       (1)..(750)
       Proteorhodopsin variant from pcr clone MB20m2; GenBank #AF349985
<223>
```

	<400)> 2	28															
												att Ile					4	48
												gat Asp					<u> </u>	96
												tct Ser					14	44
												aaa Lys 60					19	92
												cat His					24	40
												act Thr					28	88
: Cl												tgt Cys					33	36
												ctg Leu					38	84
												tac Tyr 140					43	32
												ggg Gly					48	80
												ggc Gly					52	28
	aat	act	gca	agt	cct	gct	gtg	caa	tca	gct	tac	aac	aca	atg	atg	tat	5′	76

Asn	Thr	Ala	Ser 180	Pro	Ala	Val	Gln	Ser 185	Ala	Tyr	Asn	Thr	Met 190	Met	Tyr		
					tgg Trp	_				_						ı	624
		_			ggt Gly											(672
		-	_		gtt Val 230											,	720
	_	_	-		gaa Glu												750
<210)> 2	29															
<211	L> 2	250															
<212	2> I	PRT															

<400> 29

Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 1 5 10 15

<213> Naturally occuring gamma proteobacterium

Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20 25 30

Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35 40 45

Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 55 60

Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu Ile Leu Ala Ala Ala Thr Asn Val Ala Ala Gly Leu Phe Lys Lys Leu Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala Gly Ile Met Asn Ala Trp Gly Ala Phe Val Ile Gly Cys Leu Ala Trp Val Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ala Ala Cys Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr Ile Ile Ile Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala

```
<210>
       30
<211>
       750
<212>
       DNA
      Naturally occurring gamma proteobacterium
<213>
<220>
<221>
       CDS
<222>
       (1)...(750)
      Proteorhodopsin variant from pcr clone MB20m5; GenBank#AF349986
<223>
<400> 30
                                                                        48
atg ggt aaa tta tta ctg ata tta ggt agt gtt att gca ctt cct aca
Met Gly Lys Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr
                                                         15
                                     10
                                                                        96
ttt gct gca ggt ggc ggt gac ctt gat gct agt gat tac act ggt gtt
Phe Ala Ala Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val
            20
                                 25
                                                     30
tct ttt tgg tta gtt aca gct gct cta tta gca tct act gta ttt ttc
                                                                       144
Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe
                                                 45
        35
ttt gtt gaa aga gat aga gtt tct gca aaa tgg aaa aca tca tta act
                                                                       192
Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr
                        55
                                             60
    50
                                                                       240
gta tct ggt ctt gtt act ggt att gct ttc tgg cat tac atg tac atg
Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met
                                                             80
                                         75
                    70
65
aga ggg gta tgg att gaa act ggt gat tcg cca act gta ttt aga tac
                                                                       288
Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr
                                                         95
                                     90
                85
                                                                       336
att gat tgg tta cta aca gtt cct cta tta ata tgt gaa ttc tac tta
Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu
```

L

100

105

110

		_	-	-		aat Asn		-					384
	_				_	atg Met 135				_	_		432
						cct Pro							480
_						cta Leu							528
						gtt Val							576
						gca Ala							624
						ggg Gly 215							672
						aac Asn							720
	_	_	_		_	tct Ser							750

<210> 31

<211> 250

<212> PRT

<213> Naturally occurring gamma proteobacterium

Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 1 5 10 15

Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20 25 30

Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35 40 45

Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 55 60

Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 65 70 75 80

Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 85 90 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 100 105 110

Ile Leu Ala Ala Ala Thr Asn Val Ala Gly Ser Leu Phe Lys Lys Leu 115 120 125

Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130 135 140

Gln Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 145 150 155 160

Val Tyr Met Ile Tyr Glu Leu Tyr Ala Gly Glu Gly Lys Ser Ala Cys 165 170 175

Asn Thr Ala Ser Pro Ser Val Gln Ser Ala Tyr Asn Thr Met Met Ala 180 185 190

```
Ile Ile Val Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly
                                                 205
                            200
        195
Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr
                        215
                                             220
    210
Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Leu Gly Leu Ile Ile Trp
                                                             240
225
                    230
                                        235
Asn Val Ala Val Lys Glu Ser Ser Asn Ala
                245
                                    250
<210>
       32
<211>
       750
<212>
      DNA
<213> Naturally occurring gamma proteobacterium
<220>
<221>
       CDS
<222>
       (1)...(750)
      Proteorhodopsin variant from pcr clone MB20m12; GenBank #AF349987
<400> 32
                                                                       48
atg ggt aaa tta tta ctg ata tta ggt agt gtt att gca ctt cct aca
Met Gly Lys Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr
                                     10
ttt gct gca ggt ggt ggt gac ctt gat gct agt gat tac act ggt gtt
                                                                       96
Phe Ala Ala Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val
            20
                                25
                                                     30
                                                                      144
tct ttt tgg tta gtt act gct gct tta tta gca tct act gta ttt ttc
```

	Ser	Phe	Trp	Leu	Val	Thr	Ala	Ala	Leu	Leu	Ala	Ser	Thr	Val	Phe	Phe	
			35					40					45				
		_	_	_	_	_						aaa Lys 60					192
	_				_				_			cat His					240
												act Thr					288
		_					-					tgt Cys					336
			_	_	_	_		_	-			tta Leu					384
U H												tac Tyr 140					432
u			_	_	_			-				ggg Gly					480
	_		_			_			_		-	gga Gly					528
												aac Asn					576
												ggt Gly					624
												tta Leu 220					672
	aac	ctt	gct	gac	ttt	gtt	aac	aag	att	cta	ttt	ggt	tta	att	ata	tgg	720

```
Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 225 230 235 240
```

aat gtt gct gtt aaa gaa tct tct aat gct Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 250 750

<210> 33

<211> 250

<212> PRT

<213> Naturally occurring gamma proteobacterium

<400> 33

Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 1 5 10 15

Phe Ala Ala Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20 25 30

Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35 40 45

Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 55 60

Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 65 70 75 80

Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 85 90 . 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu
100 105 110

<u>I</u>
Ū
루

Ų.
<u> </u>
13
큀
L

Ile Leu Ala Ala Ala Asn Val Ala Gly Ser Leu Phe Lys Lys Leu 115 120 125

Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130 135 140

Gly Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 145 150 155 160

Val Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ser Ala Cys 165 170 175

Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr 180 185 190

Ile Ile Ile Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly
195 200 205

Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 210 215 220

Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 225 230 235 240

Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 250

<210> 34

<211> 750

<212> DNA

<213> Naturally occurring gamma proteobacterium

<220>

<221> CDS

<222> (1)..(750)

<223> Proteorhodopsin variant from pcr clone MB40m1; GenBank #AF349988

<40		34											
		aaa Lys											48
		gca Ala											96
		tgg Trp 35											144
	_	gaa Glu	_	_	_	_							192
_		ggt Gly		-				_					240
_		gta Val			_			_	_				288
		tgg Trp											336
		gct Ala 115											384
		ggt Gly											432
		atg Met	_	_			_						480

	145					150					155					160		
	_		_			_					_	gga Gly					52	28
			-	_		_	_			_		aac Asn					5′	76
			_								-	ggt Gly					6:	24
												tta Leu 220					6'	72
												ggt Gly					7:	20
		_	_	gtt Val		_											7!	50
i Li	<210)> 3	35															
	<211	.> 2	250															
	<212	!> I	PRT															
	<213	> 1	Natui	rally	, oca	curri	ing g	gamma	a pro	oteok	oacte	eriun	n					
	<400)> 3	35															
	Met 1	Gly	Lys	Leu	Leu 5	Leu	Ile	Ile	Gly	Ser 10	Val	Ile	Ala	Leu	Pro 15	Thr		
	Phe	Ala	Ala	Gly 20	Gly	Gly	Asp	Leu	Asp 25	Ala	Ser	Asp	Tyr	Thr 30	Gly	Val		

Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe

W

1

·45

Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 55 60

Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 65 70 75 80

Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 85 90 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 100 105 110

Ile Leu Ala Ala Ala Thr Asn Val Ala Gly Ser Leu Phe Lys Lys Leu 115 120 125

Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130 135 140

Gly Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 145 150 155 160

Val Tyr Met Ile Tyr Glu Leu Tyr Ala Gly Glu Gly Lys Ser Ala Cys 165 170 175

Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr 180 185 190

Ile Ile Val Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly 195 200 205

Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 210 215 220

Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp

Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 250

<210> 36

<211> 750

<212> DNA

<213> Naturally occurring gamma proteobacterium

<220>

 <221> CDS

<222> (1)..(750)

<223> Proteorhodopsin variant from pcr clone MB40m5;p GenBank #AF349989

<400> 36

atg ggt aaa tta tta ctg ata tta ggt agt gtt att gca ctt cct aca 48
Met Gly Lys Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr
1 5 10 15

ttt gct gca ggt ggt ggt gac ctt gat gct agt gat tac act ggt gtt 96
Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val
20 25 30

tct ttt tgg tta gtt act gct gct cta tta gca tct act gta ttt ttc

Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe

35

40

45

ttt gtt gaa aga gat aga gtt tct gca aaa tgg aaa aca tca tta act
Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr
50 55 60

gta tcg ggt ctt gtt act ggt att gct ttc tgg cat tac atg tac atg
Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met
65 70 75 80

_		_			gag Glu			_	_			_		_		288
	_				aca Thr											336
					aca Thr											384
					gtt Val											432
					tgg Trp 150											480
					gaa Glu											528
					gct Ala											576
					tgg Trp											624
tac Tyr	cta Leu 210	atg Met	ggt Gly	gac Asp	ggt Gly	gga Gly 215	tca Ser	gct Ala	ctt Leu	aac Asn	tta Leu 220	aac Asn	ctt Leu	atc Ile	tat Tyr	672
		_	_		gtt Val 230		_									720
	-	_	_		gaa Glu											750

<210> 37

<211> 250

<212> PRT

<213> Naturally occurring gamma proteobacterium

<400> 37

Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 1 5 10 15

Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20 25 30

Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35 40 45

Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 55 60

Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 65 70 75 80

Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 85 90 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 100 ' 105 110

Ile Leu Ala Ala Ala Thr Asn Val Ala Ala Gly Leu Phe Lys Lys Leu 115 120 125

Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130 135 140

Gly Ile Met Asn Ala Trp Gly Ala Phe Val Ile Gly Cys Leu Ala Trp 145 150 155 160

```
Val Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ala Ala Cys
                165
                                     170
Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr
            180
                                 185
                                                      190
Ile Ile Ile Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly
                             200
                                                  205
        195
Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr
                                             220
    210
                         215
Asn Leu Ala Asp Phe Val Asn Lys Asn Leu Phe Gly Leu Ile Ile Trp
                                                              240
                                         235
                     230
225
Asn Val Ala Val Lys Glu Ser Ser Asn Ala
                                     250
                245
<210>
       38
<211>
       750
<212>
       DNA
<213>
       Naturally occurring gamma proteobacterium
```

<220>

<221> CDS

<222> (1)..(750)

<223> Proteorhodopsin variant from pcr clone MB40m12; GenBank # AF34999

<400> 38

_											att Ile					48
											gat Asp					96
											tct Ser					144
											aaa Lys 60					192
											cat His					240
											act Thr					288
											tgt Cys					336
											tta Leu					384
	_				_	_					tac Tyr 140					432
											ggg Gly					480
											gga Gly					528
aat Asn	act Thr	gca Ala	agt Ser 180	cct Pro	gct Ala	gtg Val	caa Gln	tca Ser 185	gct Ala	tac Tyr	aac Asn	aca Thr	atg Met 190	atg Met	tat Tyr	576

		-					tat Tyr 205		6	524
_	_						aac Asn		6	672
	_	_	_	_			tta Leu		 7	720
_	_	_	-	tct Ser	_				7	750

<210> 39

<211> 250

<212> PRT

<213> Naturally occurring gamma proteobacterium

<400> 39

Met Gly Lys Leu Leu Arg Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 1 5 10 15

Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20 25 30

Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35 40 45

Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 55 60

Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 65 70 75 80

Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 85 90 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 100 105 110

Ile Leu Ala Ala Ala Thr Asn Val Ala Gly Ser Leu Phe Lys Lys Leu 115 120 125

Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130 135 140

Gly Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 145 150 155 160

Val Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ser Ala Cys 165 170 175

Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr 180 185 190

Ile Ile Ile Val Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly 195 200 205

Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 210 215 220

Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 225 230 235 240

Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 250

<210> 40

```
<222>
          (1)..(750)
          Proteorhodopsin variant from pcr clone MB100m5; GenBank #AF349991
   <223>
   <400> 40
                                                                          48
   atq qqt aaa tta tta ctq ata tta ggt agt gtt att gca ctt cct aca
   Met Gly Lys Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr
10
                                                            15
   ttt gct gca ggt ggc ggt gac ctt gat gct agt gat tac act ggt gtt
                                                                          96
   Phe Ala Ala Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val
               20
Ш
                                                                         144
   tet ttt tgg tta gtt aca get get eta tta gea tet act gta ttt tte
Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe
U
                                                    45
           35
                               40
C
                                                                         192
   ttt gtt gaa aga gat aga gtt tct gca aaa tgg aaa aca tca tta act
   Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr
       50
                           55
   gta tct ggt ctt gtt act ggt att gct ttc tgg cat tac atg tac atg
                                                                         240
   Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met
                       70
                                           75
                                                                80
   65
                                                                         288
   aga gga gta tgg att gaa act ggt gat tcg cca act gta ttt aga tac
   Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr
                                                                         336
   att gat tgg tta cta aca gtt cct tta tta ata tgt gaa ttc tac tta
```

Naturally occurring gamma proteobacterium

750

DNA

CDS

100

<211>

<212>

<213>

<220>

<221>

110

384

Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu

att ctt gct gct gca act aat gtt gcc ggc tca tta ttt aag aaa ctt

105

4
Ш
F
ᅰ
LT.
▙
W
₽.
H
H

Ile	Leu	Ala 115	Ala	Ala	Thr	Asn	Val 120	Ala	Gly	Ser	Leu	Phe 125	Lys	Lys	Leu	
	_				_	_					tac Tyr 140	-	_	-		432
		_	_								gly ggg					480
											gga Gly					528
											aac Asn					576
		_									ggt Gly					624
											tta Leu 220					672
		_	_		_		_				ggt Gly					720
	_	gct Ala	_		_											750

<210> 41

<211> 250

<212> PRT

<213> Naturally occurring gamma proteobacterium

<400> 41

Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu Ile Leu Ala Ala Ala Thr Asn Val Ala Gly Ser Leu Phe Lys Lys Leu Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala Gly Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp Val Tyr Met Ile Tyr Glu Leu Tyr Ala Gly Glu Gly Lys Ser Ala Cys Asn Thr Ala Ser Pro Ser Val Gln Ser Ala Tyr Asn Thr Met Met Ala

```
Ile Ile Val Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly
          195
  Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr
      210
                           215
                                               220
  Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp
                                           235
                                                                240
  225
                       230
  Asn Val Ala Val Lys Glu Ser Ser Asn Ala
                  245
                                       250
  <210>
         42
  <211>
         750
<212>
         DNA
         Naturally occurring gamma proteobacterium
  <213>
  <220>
<221> CDS
  <222>
         (1)..(750)
Proteorhodopsin variant from pcr clone MB100m7; GenBank #AF349992
  <223>
  <400> 42
                                                                          48
  atg ggt aaa tta tta ctg ata tta ggt agt gtt att gca ctt cct aca
  Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr
                                                            15
  1
                   5
                                       10
                                                                          96
  ttt gct gca ggt ggt gac ctt gat gct agt gat tac act ggt gtt
  Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val
                                                        30
                                   25
               20
                                                                         144
  tot ttt tgg tta gtt act gct gct tta tta gca tct act gta ttt ttc
  Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe
          35
                               40
                                                   45
```

	_	_	_	-	aga Arg						192
_				_	act Thr 70						240
					gaa Glu						288
					aca Thr						336
					act Thr						384
					gtt Val						432
					tgg Trp 150						480
					gaa Glu						528
					tcg Ser						576
					tgg Trp						624
					ggt Gly						672
					gtt Val 230						720

aat gct gct gtt aaa gaa tct tct aat gct Asn Ala Ala Val Lys Glu Ser Ser Asn Ala 245 250

<210> 43

<211> 250

<212> PRT

<213> Naturally occurring gamma proteobacterium

<400> 43

Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 1 5 10 15

Phe Ala Ala Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val
20 25 30

Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35 40 45

Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 55 60

Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 65 70 75 80

Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 85 90 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu
100 105 110

Ile Leu Ala Ala Ala Thr Asn Val Ala Gly Ser Leu Phe Lys Lys Leu 115 120 125

```
Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala
130 135 140
```

Gly Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 145 150 155 160

Val Tyr Met Ile Tyr Glu Leu Tyr Ala Gly Glu Gly Lys Ser Ala Cys 165 170 175

Asn Thr Ala Ser Pro Ser Val Gln Ser Ala Tyr Asn Thr Met Met Ala 180 185 190

Ile Ile Val Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly 195 200 205

Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 210 215 220

Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 225 230 230 235

Asn Ala Ala Val Lys Glu Ser Ser Asn Ala 245 250

<210> 44

<211> 750

<212> DNA

<213> Naturally occurring gamma proteobacterium

<220>

<221> CDS

<223> Proteorhodopsin variant from pcr clone MB100m9; GenBank #AF349993

	<400)> 4	14															
	_				tta Leu 5	_				_								48
					ggt Gly													96
					gtt Val												:	144
		_	-	-	gat Asp												:	192
L L. L. 4.	_				gtt Val												:	240
					att Ile 85												:	288
		_			cta Leu		_										;	336
			_	_	gca Ala			_										384
					ctt Leu												4	432
					gca Ala												•	480
	gta	tac	atg	att	tat	gaa	cta	tgg	gct	gga	gaa	gga	aaa	tct	gca	tgt	!	528

Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu Ile Leu Ala Ala Ala Thr Asn Val Ala Gly Ser Leu Phe Lys Lys Leu Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala Gly Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp Val Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ser Ala Cys Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr Ile Ile Ile Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr

Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp

Asn V	al	Ala	Val	Lys 245	Glu	Ser	Ser	Asn	Ala 250								
<210>	4	16															
<211>	7	50															
<212>	· I	NA															
<213>	N	Jatur	ally	000	urri	.ng g	gamma	a pro	teok	pacte	eriun	n					
<220>																	
<221>		DS															
<222>	. ((1)	(750))													
<223>	· E	rote	orho	dops	sin v	varia	ant i	Erom	pcr	clor	ne ME	3100r	n10;	GenI	Bank	#AF34999	
			tta	tta	ctg	ata	tta	ggt	agt	gtt	att	gca	ctt	cct	aca	48	
Met G				Leu													
	ct	aca	aat		aat	gac	ctt	gat		agt.	gat.	tac	act	aat	att	96	
	<210><211><211><212><212><221><223> 400 <atg 1<="" a="" g="" met=""> ttt g</atg>	<210> 4 <211> 7 <212> I <213> N <220> <221> C <222> I <223> II <400> 4 atg ggt Met Gly 1 ttt gct	<pre><210> 46 <211> 750 <212> DNA <213> Natur <220> <221> CDS <222> (1) <223> Prote <400> 46 atg ggt aaa Met Gly Lys 1 ttt gct gca</pre>	<pre><210> 46 <211> 750 <212> DNA <213> Naturally <220> <221> CDS <222> (1)(750 <223> Proteorho <400> 46 atg ggt aaa tta Met Gly Lys Leu 1 ttt gct gca ggt Phe Ala Ala Gly</pre>	<pre> <pre></pre></pre>	<pre> <pre> <210> 46 <211> 750 <212> DNA <213> Naturally occurri <220> <221> CDS <222> (1)(750) <223> Proteorhodopsin v <400> 46 atg ggt aaa tta tta ctg Met Gly Lys Leu Leu Leu 1 5 ttt gct gca ggt ggc ggt Phe Ala Ala Gly Gly Gly</pre></pre>	<pre> <pre> <pre> <210> 46 </pre> <pre> <211> 750 </pre> <pre> <212> DNA </pre> <pre> <213> Naturally occurring of </pre> <pre> <220> </pre> <pre> <221> CDS </pre> <pre> <222> (1)(750) </pre> <pre> <223> Proteorhodopsin variation </pre> <pre> <400> 46 atg ggt aaa tta tta ctg ata Met Gly Lys Leu Leu Leu Ile 1</pre></pre></pre>	<pre> <pre> <215 </pre> </pre> <pre> <210> 46 </pre> <pre> <211> 750 </pre> <pre> <212> DNA </pre> <pre> <213> Naturally occurring gamma </pre> <pre> <220> </pre> <pre> <221> CDS </pre> <pre> <222> (1)(750) </pre> <pre> <223> Proteorhodopsin variant to the the the the the the the the the the</pre>	<pre> </pre> <pre> <210> 46 </pre> <pre> <211> 750 </pre> <pre> <212> DNA </pre> <pre> <213> Naturally occurring gamma pro </pre> <pre> <220> </pre> <pre> <221> CDS </pre> <pre> <222> (1)(750) </pre> <pre> <223> Proteorhodopsin variant from </pre> <pre> <400> 46 atg ggt aaa tta tta ctg ata tta ggt Met Gly Lys Leu Leu Leu Ile Leu Gly 1 5 ttt gct gca ggt ggc ggt gac ctt gat Phe Ala Ala Gly Gly Gly Asp Leu Asp</pre>	<pre><210> 46 <211> 750 <212> DNA <213> Naturally occurring gamma proteon <220> <221> CDS <222> (1)(750) <223> Proteorhodopsin variant from pcr <400> 46 atg ggt aaa tta tta ctg ata tta ggt agt Met Gly Lys Leu Leu Leu Ile Leu Gly Ser 1 5 10 ttt gct gca ggt ggc ggt gac ctt gat gct Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala</pre>	<pre>245 250 <210> 46 <211> 750 <212> DNA <213> Naturally occurring gamma proteobacted <220> <221> CDS <222> (1)(750) <223> Proteorhodopsin variant from pcr clor <400> 46 atg ggt aaa tta tta ctg ata tta ggt agt gtt Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val 1 5 10 ttt gct gca ggt ggc ggt gac ctt gat gct agt Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser</pre>	<pre>245 250 <210> 46 <211> 750 <212> DNA <213> Naturally occurring gamma proteobacterium <220> <221> CDS <222> (1)(750) <223> Proteorhodopsin variant from pcr clone ME <400> 46 atg ggt aaa tta tta ctg ata tta ggt agt gtt att Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile 1 5 10 ttt gct gca ggt ggc ggt gac ctt gat gct agt gat Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp</pre>	<pre>245 250 <210> 46 <211> 750 <212> DNA <213> Naturally occurring gamma proteobacterium <220> <221> CDS <222> (1)(750) <223> Proteorhodopsin variant from pcr clone MB100r <400> 46 atg ggt aaa tta tta ctg ata tta ggt agt gtt att gca Met Gly Lys Leu Leu Ile Leu Gly Ser Val Ile Ala 1 5 10 ttt gct gca ggt ggc ggt gac ctt gat gct agt gat tac Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr</pre>	<pre>245 250 <210> 46 <211> 750 <212> DNA <213> Naturally occurring gamma proteobacterium <220> <221> CDS <222> (1)(750) <223> Proteorhodopsin variant from pcr clone MB100m10; <400> 46 atg ggt aaa tta tta ctg ata tta ggt agt gtt att gca ctt Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu 1 5 10 ttt gct gca ggt ggc ggt gac ctt gat gct agt gat tac act Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr</pre>	<pre></pre>	<pre>245 250 <210> 46 <211> 750 <212> DNA <213> Naturally occurring gamma proteobacterium <220> <221> CDS <222> (1)(750) <223> Proteorhodopsin variant from pcr clone MB100m10; GenBank <400> 46 atg ggt aaa tta tta ctg ata tta ggt agt gtt att gca ctt cct aca Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 1 5 10 15 ttt gct gca ggt ggc ggt gac ctt gat gct agt gat tac act ggt gthe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val</pre>	<pre>245 250 <210> 46 <211> 750 <212> DNA <213> Naturally occurring gamma proteobacterium <220> <221> CDS <222> (1)(750) <223> Proteorhodopsin variant from pcr clone MB100m10; GenBank #AF34999 <4400> 46 atg ggt aaa tta tta ctg ata tta ggt agt gtt att gca ctt cct aca Met Gly Lys Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 1 5 10 15 ttt gct gca ggt ggc ggt gac ctt gat gct agt gat tac act ggt gtt Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val</pre>

	1		5			10			15		
				gac Asp							96
•				gct Ala						1	44
				gtt Val 55						1	.92
				ggt Gly						2	240
				act Thr						2	88

				aca Thr						336
				act Thr						384
				gtt Val						432
				tgg Trp 150						480
				gaa Glu						528
				gct Ala						576
				tgg Trp						624
				ggt Gly						672
				gtt Val 230						720
	_	_	_	gaa Glu						750

90

95

85

<211> 250

47

<210>

<212> PRT <213> Nat

<213> Naturally occurring gamma proteobacterium

<400> 47

Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 1 5 10 15

Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20 25 30

Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35 40 45

□ Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr
□ 50 55 60
□
□
□

口 Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 切 85 90 95 口

Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu
100 105 110

Ile Leu Ala Ala Ala Thr Asn Val Ala Gly Ser Leu Phe Lys Lys Leu 115 120 125

Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130 135 140

Gly Ile Met Ala Ala Trp Pro Ala Phe Ile Val Gly Cys Leu Ala Trp 145 150 155 160

```
Val Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ser Ala Cys
                  165
                                                            175
  Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr
              180
                                   185
                                                        190
  Ile Ile Ile Val Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly
          195
  Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr
                                               220
      210
                           215
  Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp
                                                                240
                                           235
  225
                       230
📮 Asn Val Ala Val Lys Glu Ser Ser Asn Ala
245
                                       250
  <210>
         48
  <211>
         753
  <212>
         DNA
         Naturally occurring gamma proteobacterium
  <213>
  <220>
  <221>
         CDS
  <222>
         (1)..(753)
         Proteorhodopsin variant from pcr clone PALB1; GenBank #AF349995
  <223>
  <400> 48
                                                                          48
  atg ggt aaa tta tta ctg ata tta ggt agt gct att gca ctt cca tca
  Met Gly Lys Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser
                                                            15
  1
```

												gat Asp						96
												gca Ala					1	44
												aaa Lys 60					1	L92
												cat His					2	240
												aca Thr					2	288
												gtt Val					3	336
Harman Harman												tta Leu					3	384
												ttt Phe 140					4	132
												ggt Gly					4	180
												ggt Gly					Ę	528
												aat Asn					Ę	576
	att Ile	att Ile	gtt Val 195	att Ile	gga Gly	tgg Trp	gca Ala	att Ile 200	tat Tyr	cct Pro	gct Ala	gga Gly	tat Tyr 205	gct Ala	gct Ala	ggt Gly	(524

tac cta atg agt ggt gac ggt gta tac gct tca aac tta aac ctt ata

Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr

Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu 100 105 110

Ile Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu 115 120 125

Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 130 135 140

Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Leu Gly Met Ala Gly Trp 145 150 155 160

Leu Tyr Met Ile Tyr Glu Leu His Met Gly Glu Gly Lys Ala Ala Val 165 170 175

Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Lys 180 185 190

Ile Ile Val Ile Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly 195 200 205

Tyr Leu Met Ser Gly Asp Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210 215 220

Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 225 230 235 240

Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 250

<210> 50

<211> 753

<212> DNA

```
<220>
   <221>
         CDS
          (1)..(753)
   <222>
         Proteorhodopsin variant from pcr clone PALB2; GenBank #AF349996
  <223>
  <400>
         50
                                                                          48
  atg ggt aaa tta tta ctg ata tta ggt agt gct att gca ctt cca tca
  Met Gly Lys Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser
                                                                          96
  ttt get get get ggt gge gat eta gat ata agt gat act gtt ggt gtt
  Phe Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val
25
                                                        30
               20
                                                                         144
  tca ttc tgg ctg gtt aca gct ggt atg tta gcg gca act gtg ttc ttt
  Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe
U
1
U
                                                                         192
  ttt gta gaa aga gac caa gtc agc gct gag tgg aaa act tca ctt act
  Phe Val Glu Arg Asp Gln Val Ser Ala Glu Trp Lys Thr Ser Leu Thr
50
                           55
                                               60
  gta tct ggt tta att act ggt ata gct ttt tgg cat tat ctc tat atg
                                                                         240
  Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met
  65
                       70
                                                                         288
  aga ggt gtt tgg ata gat act ggt gat acc cca aca gta ttc aga tat
  Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr
                   85
                                                            95
                                                                         336
  att gat tgg tta tta act gtt cca tta caa atg gtt gag ttc tat cta
  Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu
               100
                                   105
                                                        110
                                                                         384
  att ctt gct gct tgt aca agt gtt gct gct tca tta ttt aag aag ctt
   Ile Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu
                                                   125
           115
                               120
                                                                         432
  cta gct ggt tca tta gta atg tta ggt gct gga ttt gca ggc gaa gct
```

Leu	Ala 130	Gly	Ser	Leu	Val	Met 135	Leu	Gly	Ala	Gly	Phe 140	Ala	Gly	Glu	Ala	
		gct Ala		_			_									480
		atg Met														528
		gca Ala														576
		gtt Val 195														624
		atg Met														672
		ctt Leu														720
		gtt Val	_	_												753
<210)>	51														
<211	L> .	251														
<212	2>	PRT														
<213	3> :	Natui	rally	, occ	curri	ing g	gamma	a pro	teok	oacte	eriun	n				
<400)>	51														
Met 1	Gly	Lys	Leu	Leu 5	Leu	Ile	Leu	Gly	Ser 10	Ala	Ile	Ala	Leu	Pro 15	Ser	

Phe Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val 30 20 25 Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe 45 35 40 Phe Val Glu Arg Asp Gln Val Ser Ala Glu Trp Lys Thr Ser Leu Thr 50 Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met 75 80 65 70 Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr 85 90 Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu 105 110 100

Ile Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu 115 120 125

Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 130 135 140

Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 145 150 155 160

Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 165 170 175

Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Met 180 185 190

Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly
195 200 205

```
Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile
      210
                           215
                                               220
  Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile
                                                               240
  225
                       230
                                           235
  Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala
                  245
  <210>
         52
  <211> 753
  <212>
         DNA
  <213> Naturally occurring gamma proteobacterium
  <220>
  <221>
         CDS
<222>
         (1)..(753)
IJ
<223> Proteorhodopsin variant from pcr clone PALB5; GenBank#AF349997
  <400> 52
  atq qqt aaa tta tta ctg ata tta ggt agt gct att gca ctt cca tca
                                                                          48
  Met Gly Lys Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser
                                       10
                                                           15
                                                                         96
  ttt gct gct ggt ggc gat cta gat ata agt gat act gtt ggt gtt
  Phe Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val
                                   25
                                                       30
              20
  tca ttc tgg ctg gtt aca gct ggt atg tta gcg gca act gtg ttc ttt
                                                                         144
  Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe
                                                   45
          35
                               40
                                                                         192
  ttt gta gaa aga gac caa gtc agc gct aag tgg aaa act tca ctt act
  Phe Val Glu Arg Asp Gln Val Ser Ala Lys Trp Lys Thr Ser Leu Thr
      50
                           55
                                               60
```

WHT.

					act Thr 70											240
_		_			gac Asp			_								288
					act Thr											336
					aca Thr											384
					gta Val											432
		_		_	tgg Trp 150											480
Leu	Tyr	Met	Ile	Tyr 165	gag Glu	Leu	Tyr	Met	Gly 170	Glu	Gly	Lys	Ala	Ala 175	Val	528
agt Ser	act Thr	gca Ala	agt Ser 180	cct Pro	gct Ala	gtt Val	aac Asn	tct Ser 185	gca Ala	tac Tyr	aac Asn	gca Ala	atg Met 190	atg Met	atg Met	576
att	att	gtt	gtt	gga	tgg Trp	gca	att	tat	cct	gct	gga	tat	gct	gct	ggt	624
					gaa Glu											672
					ttt Phe 230											720
					aaa Lys											753

```
<210> 53
```

<213> Naturally occurring gamma proteobacterium

<400> 53

Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser 1 5 10 15

Phe Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val 20 25 30

Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe 35 40 45

Phe Val Glu Arg Asp Gln Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 55 60

Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met

65 70 75 80

Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr 85 90 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu 100 105 110

Ile Leu Ala Ala Cys Thr Asn Val Ala Ala Ser Leu Phe Lys Lys Leu 115 120 125

Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 130 135 140

```
Gly Leu Ala Pro Val Trp Pro Ala Phe Ile Ile Gly Met Ala Gly Trp
  145
                       150
                                            155
  Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val
                                       170
                                                            175
                   165
  Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met
               180
                                   185
                                                        190
  Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly
                               200
                                                    205
           195
  Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile
      210
                           215
                                                220
  Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile
                       230
                                           235
                                                                240
  225
Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala
Ш
                                       250
                   245
<210> ,54
   <211>
         753
   <212>
         DNA
         Naturally occurring gamma proteobacterium
  <213>
  <220>
   <221>
         CDS
   <222>
          (1)..(753)
         Proteorhodopsin variant from pcr clone PalB7; GenBank #AF349999
```

		ggt					ata Ile											48
							gat Asp											96
							gct Ala											144
							gtc Val 55											192
							ggt Gly											240
							act Thr											288
							gtt Val											336
-							agt Ser											384
							atg Met 135											432
							cct Pro											480
							cta Leu											528
	agt	act	gca	agt	cct	gct	gtt	aac	tct	gca	tac	aac	gca	atg	atg	atg	٠	576

	Ser	Thr	Ala	Ser 180	Pro	Ala	Val	Asn	Ser 185	Ala	Tyr	Asn	Ala	Met 190	Met	Met	
				gtt Val													624
				ggt Gly													672
				gct Ala													720
				gct Ala													753
	<210)> 5	55														
	<211	L> 2	251														
1,4,5	<212	2> I	PRT														
	<213	3> 1	Natui	rally	7 oca	curr	ing g	gamma	a pro	oteol	oacte	erium	n				
E																	
	<400)> 5	55														
	Met 1	Gly	Lys	Leu	Leu 5	Leu	Ile	Leu	Gly	Ser 10	Ala	Ile	Ala	Leu	Pro 15	Ser	
	Phe	Ala	Ala	Ala 20	Gly	Gly	Asp	Leu	Asp 25	Ile	Ser	Asp	Thr	Val 30	Gly	Val	
	Ser	Phe	Trp 35	Leu	Val	Thr	Ala	Gly 40	Met	Leu	Ala	Ala	Thr 45	Val	Phe	Phe	
	Phe	Val 50	Glu	Arg	Asp	Gln	Val 55	Ser	Ala	Lys	Trp	Lys 60	Thr	Ser	Leu	Thr	

Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu Ile Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Ser Ala Gly Glu Ala Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala

```
<211>
         753
  <212>
         DNA
  <213>
         Naturally occurring gamma proteobacterium
  <220>
  <221>
         CDS
  <222>
          (1)..(753)
         Proteorhodopsin variant from pcr clone PalB6; GenBank # AF349998
  <223>
<400> 56
  atg ggt aaa tta tta ctg ata tta ggt agt gct att gca ctt cca tca
                                                                          48
  Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser
                                       10
                                                            15
U
  ttt gct gct ggt ggc gat cta gat ata agt gat act gtt ggt gtt
                                                                          96
  Phe Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val
                                                        30
               20
                                   25
U
  tca ttc tgg ctg gtt aca gct ggt atg tta gcg gca act gtg ttc ttt
                                                                         144
  Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe
                               40
                                                    45
          35
  ttt gta gaa aga gac caa gtc agc gct aag tgg aaa act tca ctt act
                                                                         192
  Phe Val Glu Arg Asp Gln Val Ser Ala Lys Trp Lys Thr Ser Leu Thr
                                               60
       50
                                                                         240
  gta tct ggt tta att act ggt ata gct ttt tgg cat tat ctc tat atg
  Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met
                                                                80
  65
                       70
                                           75
                                                                         288
  aga ggt gtt tgg ata gac act ggt gat acc cca aca gta ttc aga tat
  Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr
                   85
                                                            95
                                                                         336
  att gat tgg tta tta act gtt cca tta caa atg gtt gag ttc tat cta
  Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu
```

<210>

56

				100					105					110		
			-	-										aag Lys		384
														ggc Gly		432
			_		-									gct Ala		480
٠														gct Ala		528
														atg Met 190		576
			_	_			_							gct Ala		624
														aac Asn		672
														ttg Leu		720
-						aaa Lys										753
	<210)> !	57													
	<213	l> 2	251													
	<212	2> 1	PRT													
	<213	3> 1	Natu	rally	y oc	curri	ing g	gamma	a pro	oteol	oacte	eriun	n			

<400> 57

Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser 1 5 10 15

Phe Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val 20 25 30

Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe 35 40 45

Phe Val Glu Arg Asp Gln Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 55 60

Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met
65 70 75 80

Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr 85 90 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu 100 105 110

Ile Leu Ala Ala Cys Thr Asn Val Ala Ala Ser Leu Phe Lys Lys Leu 115 120 125

Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 130 135 140

Gly Leu Ala Pro Val Trp Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 145 150 155 160

Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 165 170 175

```
Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Val
               180
                                    185
   Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly
           195
                               200
                                                    205
   Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile
       210
                           215
   Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile
   225
                       230
                                           235
                                                                240
   Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala
                   245
<210>
          58
   <211>
          753
   <212>
          DNA
         Naturally occurring gamma proteobacteria
   <213>
<220>
   <221>
          CDS
          (1)..(753)
   <222>
         Proteorhodopsin variant from pcr clone PalB8; GenBank #AF350000
   <223>
   <400> 58
   atg ggt aaa tta tta ctg ata tta ggt agt gct att gca ctt cca tca
                                                                          48
   Met Gly Lys Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser
                                                            15
   1
                   5
                                        10
                                                                          96
   ttt gct gct gct ggc gat cta gat ata agt gat act gtt ggt gtt
   Phe Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val
                                   25
                                                        30
               20
```

				aca Thr								144
_	_	_	-	caa Gln	_	_	_	_				192
				act Thr 70								240
				gac Asp								288
				act Thr								336
				aca Thr								384
				gta Val								432
	_		_	tta Leu 150								480
				gag Glu								528
				gct Ala								576
				tgg Trp								624
				gaa Glu								672

<210> 59

<211> 251

<212> PRT

<213> Naturally occurring gamma proteobacteria

<400> 59

Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser 1 5 10 15

Phe Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val 20 25 30

Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe 35 40 45

Phe Val Glu Arg Asp Gln Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 55 60

Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met 70 75 80

Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr 85 90 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu 100 105 110

Ile Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu 115 120 125

Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 130 135 140

Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 145 150 155 160

Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 165 170 175

Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Met 180 185 190

Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly 195 200 205

Tyr Leu Met Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210 215 220

Tyr Asn Leu Ala Asp Leu Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 225 230 235 240

Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 250

<210> 60

<211> 753

<212> DNA

<213> Naturally occurring gamma proteobacteria

<220>

<221> CDS

<222> (1)..(753)

<223> Proteorhodopsin variant from pcr clone PalE1;GenBank# AF350001

	0>																
_		aaa Lys			_				_								48
	_	gct Ala	_			_		_		_	_		-		-		96
		tgg Trp 35		-												1	44
	_	gaa Glu				_	_									1	92
		ggt Gly														2	40
_		gtt Val			_		~ ~	_				_		_		2	88
	_	tgg Trp				_					_	_				3	36
		gct Ala 115	_	_		_	_	_								3	84
	-	ggt Gly			_	_										4	32
gga	tta	gct	cct	gta	tta	cct	gct	ttc	att	att	ggt	atg	gct	gga	tgg	4	80

	1y 45	Leu	Ala	Pro	Val	Leu 150	Pro	Ala	Phe	Ile	Ile 155	Gly	Met	Ala	Gly	Trp 160	
			_			gag Glu			_		_		_	_	_	_	528
	_		-	_		gct Ala	_			_			_	_	_	_	576
			_	_		tgg Trp	_				_			_	_		624
			_			gaa Glu											672
\mathbf{T}				_	_	ttt Phe 230	-		_					_			720
						aaa Lys											753
<210> 61																	
	011		1														

<211> 251

<212> PRT

<213> Naturally occurring gamma proteobacteria

<400> 61

Met Gly Lys Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser 5 10 15

Phe Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val 20 25 30

Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe 35 40 45

Phe Val Glu Arg Asp Gln Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 55 60

Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met 65 70 75 80

Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr 85 90 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Val Val Glu Phe Tyr Leu 100 105 110

Ile Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu 115 120 125

Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 130 135 140

Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 145 150 155 160

Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 165 170 175

Ser Thr Ala Ser Pro Ala Val Asn Pro Ala Tyr Asn Ala Met Met Met 180 185 190

Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly
195 200 205

Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210 215 220

Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 225 230 235 240

Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 250

<210> 62

<211> 753

<212> DNA

<213> Naturally occurring gamma proteobacterium

<220>

<221> CDS

<222> (1)..(753)

<223> Proteorhodopsin variant from pcr clone PalE6; GenBank#AF350002

<400> 62 48 atg ggt aaa tta tta ctg ata tta ggt agt gct att gca ctt cca tca Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser 10 15 1 96 ttt gct gct gct ggc gat cta gat ata agt gat act gtt ggt gtt Phe Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val 20 25 30 144 tca ttc tgg ctg gtt aca gct ggt atg tta gcg gca act gta ttc ttt Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe 45 35 40 192 ttt gta gaa aga gac caa gtc agc gct aag tgg aaa act tca ctt act Phe Val Glu Arg Asp Gln Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 60 50 55 240 gta tct ggt tta att act ggt ata gct ttt tgg cat tat ctc tac atg Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met 80 65 70 75

				gat Asp						288
				act Thr						336
	_		_	aca Thr						384
				gta Val						432
				tta Leu 150						480
				gag Glu						528
				gct Ala						576
				tgg Trp						624
	_	-		gac Asp						672
				ttt Phe 230						720
				aaa Lys						753

<210> 63

<211> 251

<212> PRT

<213> Naturally occurring gamma proteobacterium

<400> 63

Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser 1 5 10 15

Phe Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val 20 25 30

Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe 35 40 45

Phe Val Glu Arg Asp Gln Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 55 60

Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met 65 70 75 80

Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr 85 90 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu 100 105 110

Ile Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu 115 120 125

Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 130 135 140

Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 145 150 155 160 Leu Tyr Met Ile Tyr Glu Leu His Met Gly Glu Gly Lys Ala Ala Val 165 170 175

Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Lys 180 185 190

Ile Ile Val Ile Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly
195 200 205

Tyr Leu Met Ser Gly Asp Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210 215 220

Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 225 230 235 240

Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 250

<210> 64

<211> 753

<212> DNA

<213> Naturally occurring gamma proteobacterium

<220>

<221> CDS

<222> (1)..(753)

<223> Proteorhodopsin variant from pcr clone PalE7; GenBank# AF350003

<400> 64 atg ggt aaa tta tta ctg ata tta ggt agt gct att gca ctt cca tca

48

Met 1	Gly	Lys	Leu	Leu 5	Leu	Ile	Leu	Gly	Ser 10	Ala	Ile	Ala	Leu	Pro 15	Ser	
					ggc Gly											96
					aca Thr											144
	_	_	_	_	caa Gln	_	_	_	_							192
					act Thr 70											240
					gat Asp											288
					act Thr											336
		_	-	_	aca Thr	-	_	_	-						ctt Leu	384
Leu		Gly	Ser	Leu	gta Val	Met	Leu	Gly	Ala	Gly	Phe	Ala				432
					tta Leu 150											480
		_			gag Glu											528
_					gct Ala											576
att	att	gtt	gtt	gga	tgg	gca	att	tat	cct	gct	gga	tat	gct	gct	ggt	624

Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly 195 200 205	
tac cta atg ggt ggc gaa ggc gta tac gct tca aac tta aac ctt ata Tyr Leu Met Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210 215 220	2
tat aac ctt gct gac ttt gtt aac aag att cta ttt ggt ttg atc att Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 225 230 235 240)
tgg aat gtt gct gtt aaa gaa tct tct aat gct Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 250	3
<210> 65	
<211> 251	
<212> PRT	
<213> Naturally occurring gamma proteobacterium	
<400> 65	
<pre><400> 65 Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser 1</pre>	
Met Gly Lys Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser	
Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser 10 Phe Ala Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val	
Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser 15 Phe Ala Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val 25 Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe	

Arg Gly Val Trp ,Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu Ile Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile

Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 250

tttt cttgctcaga 120	aacc tttgcgagtt 180	taca cttatcaata 240	ctag taattgggat 300	gcag aattttgttc 360	aaag gaaaaaagc 420	tcat ggaactttaa 480	tcaa aggtaaagcc 540	tatt acttagaaac 600	actc caggaatatt 660	gaga tatctaaaat 720	ccac cgatcgagat 780	ggca gtggaaaagc 840
a aatgcatttt	y tcaagaaacc	a tgtggttaca	a gattttctag	s gatgttgcag	t aaagtcaaag	t actccctcat	a tatggatcaa	y taaaattatt	a tctacaactc	c atattagaga	g ggtattccac	c tctataggca
ttttacacta	ttccgctgag	tgcaagtaga	taaagatgaa	tgatgaaagc	ctcaactgct	atcaggttt	tgtatccaca	aggcttgctg	tattccatta	tgaaatatcc	tctatatgtg	aggtatcacc
ggttattgtt	gagttcttga	ttgtgaatgt	atgaaagtta	aagaatactc	ttcctatgtt	ttattgcaga	agggcaaggt	cagctataga	ttgctgcaaa	cagtggggtt	taaatccagt	tcctactttc
tatatatttg	acagacatga	gctttactag	caaaagttat	gattttcttc	ggtgttgaat	tataaaaaac	atctcaaaag	gagcttatat	ttaggcttgt	gcttccattt	tggtctgtta	gcaacaaggc
gaataaattt	tcttctagat	tgaaggaaaa	tgctggcctt	cccatctaga	tacagaatac	acacccattt	taaatactta	tgattcaaaa	taatacagtt	attaatcaaa	gtgattacct	tatttttctt

1680	gtagatgcag	tggggacaac	tactccaaca	ggagccaaaa	aaaaagattt	taaaagatgt
1620	gaaataaaaa	aacaactcca	ttatgccaat	tgcttgatag	aaaaattaat	gtaagaaatt
1560	gccagtgcat	tcaagggggta	gaaatcatgc	gcatcagcag	ggttattgct	agaagaggg
1500	gatgccgaaa	aaatttatcc	acaagattgt	ggagcgtata	taaaaacaga	tattttcttt
1440	ctgcaaccta	aagagaggat	ttttcctaaa	gggaataaag	ttcaaagctg	taaatatttc
1380	acatttgctc	atcacctata	tagcattaaa	gtttatgacg	taatgcatct	agcttattcc
1320	aagtacctaa	gaattcccag	gttcttttaa	aaaaaaacag	actaaaaatt	ttattttgag
1260	aggtagttaa	aagaaaatat	gttataatac	cactcataga	atctttgagc	agcaacattt
1200	tagcttgttt	atatattcta	attatttttg	caggatgaag	aaaatcatct	tccaatacct
1140	ttgagccggt	aaattaactg	ttctataaaa	cctttagttc	tgcctatgct	agcaaatttg
1080	aaacagctcc	tctgaactag	tgatgaagca	ttaataattt	ccattttcat	gacctctatc
1020	taaggctaaa	actacatcat	agctatatca	ctatgtaata	tctgcaccat	agacacctca
096	aattttcagg	ttaataagac	accaccacct	tatgtgcgcc	ttttctctag	agcaactatc
006	tagaggcaga	ataaactcgt	aactatacat	ttgactgatc	ttaaccatct	tcccaaaaga

MBA-101

Page 2/126

2520	catctgaggc	atccaatgat	gaaatgaaat	gactttactc	cacctttagc	aagcaggctt
2460	aaattaaaaa	cttaaagtcc	catttgaaat	actgaaaaat	tagaactaaa	tagttggtgt
2400	gcatatgttt	cttaagcgat	ggaaatctag	tttaactaca	agttacagag	gcagctctca
2340	aggatgtttg	taagctttca	gaagttttct	gagatacctg	caaaatccca	tattaagtat
2280	agagaaaaaa	tggtgaaaat	gatcagagat	attgttgagc	acttaatttt	atttccaaag
2220	gctaatgtaa	aagttctggc	ttattgctat	aataaaaac	gaaagttaaa	cctacgcaag
2160	gggttaaaag	agcacttgca	ctggggcatt	tcagaacctg	aagggttcta	ttgaagatac
2100	aaagatatct	caccgctgta	atgaggtctg	gttagcgttg	agtcattaca	gcgtagatga
2040	attaaagagt	ttttgatgtt	gaaaaaataa	tcaagggttg	ggtggcagta	ttgctgatgg
1980	gtgggcctct	tttaaaagaa	aaagagttat	aaagctaata	tgaggccgta	cttgtcttgc
1920	gaggattccg	tgttgaggtt	aaattgttgg	aagaaaataa	cctggatagc acagaataat	cctggatagc
1860	ggtgtatctg	tattctagct	gaggaggagg	gttccggtgg	tgttgtcttt	ataattttga
1800	gaagataaaa	agaaattctt	ctataggaca	ggccaaggga	aacaattgct	acgaccctct
1740	catccttttg	gtcttttgtt	aaaaaaatt	attgcaaaga	ggcactgttt	cattaaaaga

3360	taactctcca	ttaaagaagc	tttctctccc	accgattatc	ttcgaatccc	accataccca
3300	aaaattttct	gctatcttgt	tattgaacct	catttggaaa	cttaagttat	cgcattgatt
3240	ttctatattg	tcctttctta	ccattcattt	gccatatcag	ttattatcct	ggcaagatta
3180	aatcatatga	tcttgtcttg	agataaggta	ttagatcaaa	ttaaaccaat	tttattattt
3120	tgatctcatg	ctcttaagtc	aacaaattga	ctttcaaagc	ggattttttg	aatactaata
3060	catctgaaaa	tatccattag	tttataaagg	tattatttcc	tcattaacta	agtattaaat
3000	aagctacgcc	atttggaacg	tttatatcta	cgagctcata	gacaaaggag	aaatagatat
2940	aatagaccaa	ccacctttag	gtaaattctc	cctcctcgtc	gatctatcat	ctcggattga
2880	ctttgaacaa	tcccacggct	gctagggttt	aaagctcatc	ttaattgaaa	taatctaaat ttaattga
2820	gttaatactt	aaaatgaaag	aagatttttt	aaggcataca	aacctctaac	ttacagaaga
2760	ggnactattt	aaataagtca	taaatcattt	gacaagctaa	taaggataaa	gcatcgagag
2700	atattaattg	ttttggaaag	taggttcagc	tacaggaacc	cttatttcat	ggmatatttc
2640	ggaaataaat	agagaaattt	taaattttct	ggcgcgctgt	tgagaagccg	gagagtttcc
2580	atatttaggg	caatgaaaga	gctctcataa	agtgactcag	tggcagaaat	atatggttgg

4200	atctatcata	ataaccgagt	ccgcgtattt	ctccaatcct	ctgggggcag	gcaattatag
4140	tttcttctga	tcttcattac	ctcgcaacct	ttttagctgc	gaatagtttt	atcaatatca
4080	ttaatgcaaa	tgagtaagtc	attacttttt	attcattatt	aatactccaa	acttgctaca
4020	catcagcctc	gaaaaggctt	tcttccaact	cataatagtc	gatcgaagag	ctttgttcga
3960	tatttccaag	ccaagcgttt	taccatgaag	caacattcgt	atttcattct	ttcgcctgtc
3900	ctgttgatga	ataacattga	gatgtaatca	aacgaatatt	aatttttttg	atatgtaatt
3840	acagatctga	tctgaggcta	accatctttt	gcccattttt	ctatacccaa	aaactgagtc
3780	gaagatatgt	agtttatttg	tatgttagat	ggcttccact	aaataaagaa	gtcgtcttca
3720	ttaactcgaa	ccaaagtcat	ttgcagataa	agtctcttct	gcatgaatcc	tccaatacca
3660	ttcgatttcc	tcatttattt	attatcaaat	atatcgagct	tccataatct atttgtttta	tccataatct
3600	ttagatcaat	gcatcataat	agctgtgtca	ttgaattacc	ttgatcgatg cctattggat	ttgatcgatg
3540	aagaattttt	ttaaaactaa	agagttgtcc	attgaaattt	ttaaaatcta	agatctaaag
3480	tttcccaga	atagttgtat	ttttcttgtg	aggcttcatt	ataaagggggt	ttttgatttg
3420	ctattcttct	gctgtaatac	ctcaaagtct	agttctttgc	cagaatgaat	gtcatatgtc

D9847513 DSO101

5040	caattgagtt	ccatcaataa	atcaagagag	actcaggctc	gcattattcc	aatttcaaat
4980	aaaaatctgt	gatgtttcat	agtaaaagga	ttttcttaag	agaagttcat	agccgttgta
4920	agaaaattaa	tccttatttg	atatatacca	taaatccaac	atcattactt tgaaaattct	atcattactt
4860	agaacataga	gtcttcctgg	atctctaagc	aatttatttg	agagttttta tcgctaagtg	agagttttta
4800	ctatatttat	ccatcaaagt	gttaccatca	tgaaagcttt	atagcaagaa	cccaagattt
4740	aaagcgagtt	atggcatcga	ttgcgttttt	agtctcctgc	tctgtcttaa	tccatcccag
4680	caatccaatc	tgtgtttttg	atcaaatttt	cccaataccc	aactcagaga	aggaataaaa
4620	ttacatccca	ttcattaacg	atcaggctgt	ttatatcacc	ttaatttttc	tgcggtgtaa
4560	tataacgtaa	ttttcggcac	ccatgactca	cactgctaac	attgttccgg	tctactagcc
4500	agtagtcatt	aactcttgaa	taagctatct	tttgtatttc	tttgtatagt	aagctttgat
4440	gaaaaaagt	gatatatatg	tttatttgaa	taactgaatt	atctgaccct tcttggtttg	atctgaccct
4380	cagccccaat	taaaagattt	tccagtgcta	gacgaccttt	aaatttattt	attaatagct
4320	cgaaatctgg	tcagcttgtc	atcatcactc	taataaccac	gcagaaaagt	agtttcttga
4260	ctgagtaaaa	gctcttttt	attgaaaaat	attggttttc	tcaaatagtg	attactaata

D9847513 OSO101

5880	agcgtatgaa	ttaacacatt	ttcaaattta	attgtatcgg	cacctattta	agaggaatat
5820	caacaatgct	aggtactgcg	ttccctgtaa	caaatcaggc	aatttcataa	tcaggtggtg
5760	aaccgatggg	gctatacctg	accgccatgt	aaaccaaatc	cgaggctaac	taaattgtgc
5700	ttttcacca	tcgtatttta	agagtgattt	ccctgctcaa	aatagactgc	ataaatcaga
5640	ttgctcttag	aaaacttata	cttggattaa	aatacatttt	gattttttct	catgagtatt
5580	ttttgcattt	taaggcaatg	aaggaaaata	tcatttcgaa	tgtattgact	ttaacaaatt
5520	aaagcttgaa	aagtttagta	tattcttttt	ggaatataaa	aattactttt	tttcgtcatc
5460	aaagccatca	cagcaaatta	gctgctcatc	aagaagttag	ttgatttata	tgatcccaaa
5400	ttaacctctt	atcttcactt	tgttgacata	atttcattta	cattaaatca	taggaataaa
5340	actcctgtca	atttaaatca	gcctgtatcc	ccatagccaa	atatccagag	ttctatcgaa
5280	gagccaataa	ctcgtttata	ttgatacctc	aataaaggtc	cagtccaacc	attgataaca
5220	caaatctggt	atgcatatta	tttctccaaa	aggtcatgtt	atcatattta	aaaaaacata
5160	tcattctcag	aatcatccga	aagagtagga	ttaatctatg	tcagagtatt	tagatttaat
5100	ttttcataga	gctaaagtta	tgataatgag	taagtaaaag	agcacagagg	tgaccaaatc

6720	gggcgcaata	ctggccctga	ggttatcgag	aatctgggat	aacttaaaga	gaaaaagata
0999	ttttgttcct	attcaataat	aaaagcattg	taataatgga	tggttttagt	tcttctctaa
0099	ttgtgagccc	tgtctggctt	ttctactatc	ggaaagtagc	atttaagaca	tcatcttata
6540	aaatgctgac	tgcaatatag	ggtgcagatt	aattgtacct	attcagcctt	ctacctaaga
6480	tataaaacac	gagattcact	ааааасадаа	aataattttt	gcatggaaaa	gtaaaataag
6420	taataaaaga	aaagtttctt	aatgaattgg	attgtactag	tataagttta	tctgacattg
6360	tttttttct	ataatgatga	tctagttcaa	taccttatcc	tcaaaagatc	aatcttttta
6300	ttgctcatca	ttattccttt	taagaatcta	cctttgcaca	agtctctttc	tctttttcc
6240	tatgagctta	ctttatttag	ttagttattt	ttttttgagt	tctgacatta	cgtttccatt
6180	ttaaagatag	ccaaaaattc	cagatctcgg	aggctaacgt	tctggcggac	gtctttctct
6120	taatgagttg	tttgcagctc	atttaataat	caagctcatc	ctgatgccat	attcttatca
0909	ccaaggcatt	ccagctatca	catagttaga	gcttactagc	ttggataaaa	ctcggttggc
0009	agtcagtatt	tttaaagcag	atctttatta	gcttttcgat	ttttgtatta	agactctatt
5940	tttagagagc	aaagttaatt	gtattaagta	aaatatatag	gttaattata	ccagaatgca

D9847513.OSO1

7560	gatgataacc	ttaagccagg	tttatgaagt	gggagatgag	actacatgga	gatgttggtg
7500	tgatgttcat	ggcttggact	gtgggacatt	tatgcataag	aggactttta	ggtgcattca
7440	tcataaaaat	ttaatcagct	tctggcgatg	gggtattcta	ttgtagagtt	actgaaggtc
7380	aaaagtaatt	tggtttcaga	gagccccaaa	tagcataatg	aaactggtaa	gatgctgtaa
7320	tgctgcaatc	aagccaatct	attgtccaca	aatttataat	aacagctaca	ttttcagatg
7260	aagtggaaaa	ccttcccagt	atcacaagaa	tgcatctgat	acaaaatgta	ggatgtgaat
7200	ggtagacgca	atttaatttt	gcttcatcag	taaagagtta	ttgaaaatga	ttgcattata
7140	tgcttgtgta	gaggtgaggg	atagttgctg	ttatacacct	ggtttccagc	aggggaggaa
7080	attcgccaaa	ttttatatga	gaggcgctat	gcaggaaata	gggacaatga	ataaagcctg
7020	catgaaatct	atattgaggt	gctgaatcat	tgaaatttca	agagagcttg	gatattatga
0969	gcatgaaatt	tcaaagataa	ttaaggctta	ggtaggaaat	gctcttcgat	attattgatg
0069	atcaattgat	ggcacagcaa	tctaaagata	cgcagcaaat	actggacatg	aaagtaattg
6840	ctttgatcag	agaaaaatgg	tcaataggga	agttttttat	ggctagaaaa	atccttcaag
6780	aatgcctgaa	cagatgcttt	aataataaat	agcttttgaa	tttttgatca	aatgattttc

DOBHYSIB . OSOIOI

7620	7680	7740	7800	7860	7920	7980	8040	8100	8160	8220	8280	8340	8400
atggaaaggc	taatctaaca	tatggaggtt	gcttgaaaaa	agataagggt	tggtatttgc	aggcaaaatt	tttcaatgaa	tgagattgat	tggcatgacc	aaaaattgct	cgttgatatt	atttgcactt	gtcaataaaa
tagatgacaa	caggcaatat	tggcttagac	tttctcttag	tcaaagccct	taaaaaatat	gtgagggtac	atgtaaccta	tatttaataa	tgcttaaaga	caaatattgc	taacttttgt	aaaaaggaat	cagtggtttg
gcaatggatg	gtaacagatt	gaatcattga	ggtaattaca	gctagtagtt	atgcaaatgc	gtattagatg	aacctttcat	gaaagaacct	ccagagatca	ggaagaaatt	caaacagctt	gttttttctg	aataaatgca
tatcagtagc	cgacatcctt	tcaagaaata	agggataata	tgtcgaaaaa	tgagcattct	cagcatcgac	aggcagcgaa	tccatgtaaa	agaatctgat	tggatgtgat	tgactactta	agctcaccaa	gggtgagatg
caggcatcta	gaatagagga	catctaatcc	tttctggcgg	aaaccgttat	tcactctcaa	ctcaaatcaa	caaaggacgt	taatttctga	atcttaatac	atctaattgc	gcagcttcga	cacatggcaa	cagaaggcaa
acaatcgagc	atcggcataa	gagaaggtgc	ccaattgtta tttctggcgg	aataatatca	ataagaacag	ccatcaattg	caatttctag	ttacaaaaac	tcagttcaga	ataaaaacga	tcacttacaa	gataatgatt	atgccactcc

8820 8880 8940 9060 9120 9180	tttaggtatt ctctggaatg agatttacga aactttcttt cctgttactt gcaatactat ctaatcagaa	tgatcagaaa taagacatgc tctaagttct agatacttta attaggaaaa tggtatctta gaggaactta	tatctaaggc gcattcttta gacctttagc taccttttgc gtgtgtgaag ttcctgactg atagaacact	agaaaattta gtttgttaaa taaacttttt atgattctca caaaatttgt gaaacattgt acgcgatttt tacggcatgc	tttgtggatt tatttggttc tcttcgttaa ataaatcaaa aataagtttt aaatttgtat cactaatgcc tttttttatca acctgttctc agattcaacc tagtcctatt tttagcgtga gacatatttt actcattgaa tgtgaaacaa atttatttat
8880	ctctggaatg ttaagaactt	taagacatgc tctaagttct	gcattcttta	gtttgttaaa taaacttttt	atcaaa ttgtat
8820	tttaggtatt	tgatcagaaa	tatctaaggc	agaaaattta	tggttc
8760	tatggacttt	tgttgaagtc	aactttttaa	aaaaagtatg	agattagaag
8700	atcagtttta	ttaatgagaa	gggattgcct	ttataaaaaa	taattagttc
8640	agatactttt	ttgcagatgc	aatctaggat	tcaaggtatt	ccttagcagg
8580	tgctgctcac	ttcttggtga	cctattgttc	tattagcgga	ttgaaaacta
8520	taaattatcg	ttttaagttt	aagtcagaaa	tctcagggtt	ttaatgttag
8460	ttctttttt	aaaataacat	gagtttgtaa	gcctgtatct	tgggagatga

10080	acgagttcaa	gaaattgtag	agcagatttt	cagtgattca	attatagttc	tgcacaaatg
10020	gagacaggat	attaatcctg	agattttgag	gatcagatac	gcctggaata	aatggttcct
0966	aaggagagct	tcagactatc	gttgattgat	atctggttgg	gttcttggta	gcatggaatc
0066	taggttctaa	agatcaggtt	ggttatacct	ttgcagcaat	gatcccggtc	gtacttagaa
9840	gttttgcaat	atacctattg	atctcagttg	aagcaggaac	ctcagccttc	agatagtaat
9780	gggcatgcct	ttggatttaa	ctcggcagga	aaacaaaggg	cctcaatatg	gataccctta
9720	tgggatccaa	aacccactaa	taagatcatt	acataaaaat	aaattgaaaa	agagctttaa
0996	ttcaaccagg	aaatcttta	atgtaagtta	ctttaaaaaa	aaagacttat	aagttcatgg
0096	ttctcgttga	ctggcagaaa	aacatgcggg	ttacgtattc	aatcctcata	tatttcagaa
9540	acatagatgc	atgcaaatgt	caatccatca	taataggcca	tctgttttaa	attcatttcc
9480	gtttaagtga	cttatccaaa	gatcgttaag	gccctggtga	tacttttctg	tgatgagctt
9420	cagtctatac	atagctgaag	taattatcca	gtgatgggct	gatatatgca	gcagactttt
9360	aaagaactaa	agcactgcag	aatattctgt	tagtagataa	cattcaattt	ctgcaaatct
9300	tatcatgtta	gcaaataaaa	cattgaagaa	caagaaaagg	agaccattag	agattttgat

TOS47513 OSCIO1

10320 10380 10440 10500 10560 10620 10680 10740 10800 10860 10920 10140 10200 10260 tttattatat ggagttacag agagaatttt caagaaaag taattttttg tgagaaagaa tatcttttt ttcaatcaaa tgctttactt ggtaaaagga ccaatttttg tttaatacct aaatttactt atgggtatgt aaagcgggag gatgataaga aattcgattt aaccaaggat tcaggatgta ccagtatcaa gttgaacgaa gttcgacaag gattactatc atcatcctat tggtgaggtt tgaagcttta ataaattgat agagggtagt acaacttctt tctaaggcaa agttcctttt tttcctaaaa ggaataaaac ttcacggtat aaaattaata ataaaaaat ttcacccac aaaagccaga gtacttgatg aatatccttt agggttttgg aagttcaggt aactcttccg ggatatatca ttttccatct tcccattctt tcgtttgagt cgtatctaat gacatagctg tttcattgcc ataacaaaaa acaaaaggaa cccgcgtgtc gctttctaaa tctaaaggat caaatttctg gagaagcaga gatgagaact aaaaatattc aggggagaaa aatctttctt agtggttata gtggtcttct taaaaaggat ctagcgtcat tcaaaatttg gcttaaaatt aattatcgct cgaattaaga agtaaatgag tttttactat tgagactcag tttcttgcca cttaccggta cttatcagca cataataaaa attctatatt ttatacccac ctgaatattc cagtcaaggc acatgaaaat atagttctga agattgtagg ctataaaaaa

14/126

MBA – 101

11460 11580 10980 11040 11100 11160 11220 11280 11340 11400 11520 11640 aataataagt attgctctcg cgatttgaga aagagattaa cgatcttcgg gaccaatcat ttaaaacttg aacaagcctc gctaaagaga tttattaata attaatttgt cataggtgtg tttaatatgt cagctttgta aagactccaa agggcacagc gattgtaaat ttttattaaa agtaggaact gtctaatgac ggttctagtt aacagcagct tgaagagcat aagtataaaa gctgcaaact agttgatgga gtgggtagca aggcggagtt ggtctggaaa aacagaagtt tacttaagag ttgccgaaac taacccccca ggcatatatc attctaagca tttggttcta taaaaataat attggtttaa taattatcga aaattctctg ctagagactt gtagttgtgg ctctgttaat ttgtcttgtc cggcatgcaa gttgaagaag ttcttaaaag caaccccttc agagttgata ttcctaatcg gccctttaat gaggagaaca caagaaatag gaaataaatt ttccaccagg ttgggatcag atcaataaca accatagaca tatcaatgta aaaagctaaa aaatttagtc cgctccactc tggtgaaatt tttagataac aatgcaatca atggagctgg aacagagaga tttagttcca agaagggttt tccaattatt taaatttata agccttagat atagatttaa cagtattagt ctttagtgcc aatctgccta agacttggct caattgaagc gacgaggatt ttaggcagtc taaaagaaaa cttgtgatac ttgcagatat ctaaattaat

11820 11880 11940 12000 12060 12120 12180 12240 12300 12360 12420 12480 12540 12600 atagttaaaa ataagcccag agagcaggaa ataaatctta ttgacaacag ttgtttagtt tctgataaga aaggtatttg aaaggacatg accaatgagc ccaactcaaa actgatataa aggcaccaag gatccaatag aatactcata ggtctctgga tattggttta tatcgctatt tcaacaaaaa aagtgggagc tatggaggct taatggcctt aatgcttgca tcctgatgat atgcctaagt gtgctcatca atccaatagg aggaaattat attaaagttt tttcgacatt tattctctgt attaatttct tctacagtca ccccaaatct agcgttattt taaatgctga atatctcaat tgcttattca aaacaagata ttgcttctca ttaagtggtc ttaattaatt gtcctgggta catccccttt ttgtattttg taagtcacaa agcctggatc taaataaggt ttggaactca ttttaatttt cgaagtcgaa gtctgcttag aagacttttt tctaataagg gcaattttag gttattattc gagaaagctg tcattagttt tatatgaaat actactttat taattagagt tgatcatgac agtcacctta gacaggagat agatttccta tecettgeet aatattaatc ctcagacgca attagagaaa tcttgcaaaa acctccattt tgcaccaaag atggccggaa atgttattgg gaaataataa tctatatcca aaattcattc attttcctaa aaattaatgc ataaaattaa aaatgaactt agagtaatgt agtttgaaaa acttaagcta

DSW47513.DSC1D1

ctttaggttt gtccttaaaa t	tagttatgta	ttcctaggaa	aacagatctt	gcaatcattc	12660
ttctccctgg cttgcccttt a	aatctttgtg	cgtcttcagg	gttggttata	aaccctgact	12720
caaccaatac agaaggtata t	tcaatagact	taagaactct	gaaatcagcg	tactcaacat	12780
tctttttatg aatttttgtg a	aaagggtctc	ttttaagttg	atccaatatc	ttagttccta	12840
aaattttact ttcagaaatt t	tttttcttat	atatttctgg	ataggtttgt	cttgccgcat	12900
cctcatcaaa atcaactggc t	tttagatttt	ttatatcagc	ctgtattctt	tccctttgtt	12960
ttttagataa gttcctagca <i>ə</i>	acagtacttg	aagcttcatc	tgaccatata	aaaacagaag	13020
caccetttac ggaagataat c	ctaaacccat	cagcatggat	tgaaacaaaa	atatctgctc	13080
catatttcct agcatcctgg t	tatctattat	ttaaatctaa	tgtctcatct	ccatctctaa	13140
tcatcaccgg tctgtaccca t	taagtatctc	ttaaggttct	ttctaactcc	ttcgcaataa	13200
gtaacgtcac atctttttct 8	aaaatattat	ttgggccaac	cgcaccaggg	tatttaccac	13260
cgtgacccgc atctatagca a	acaacaatat	ctctaatact	tttattgagg	tttttatttc	13320
ttttcacctt aagctctaat t	tttatatttt	ctgtatttat	agtctgagtt	gggttttgcc	13380
aatggactga ttcatataaa t	tcaacaacga	ttctggtaag	acttccatcc	tgagatgctc	13440

Ø,

APPENDIX

14280 13500 13560 13620 13680 13740 13800 13860 13920 13980 14040 14100 14160 14220 ttataggtat aacctgcctc catcgaagaa tattcataag ctttcaggcc tgtatttcaa tggtttgtag taatgctcgc atttcttata tcaagacctt gggcaagaag atgaaacttt cttccttcag atatcaatat ttaaaatcat caatttttta ctcgattgat ctatttcacc aatatctacc ttaaatttta agtatctcca tagctatttt tgaccctagt agttttttca tcgatttatt aattgtctta attgccaatc tcttgtattt agaaacctct atgttgaagc cttccatcca gttttgcctg ctcctaagtc tccctcaaga ttgtatggaa catttatctc ggtcggaagg gaccttacca tagatcaaat cattaaatta taatttcatt gttacccatg aaaaagatag aaaaccaagg ccattgtcac cagaaattaa aacttctttc tttttctact tatgcaaaaa ttacaagatc gagggatttt taaagaataa tttagatcaa taaagatcaa gttggacttt ttagagttta ttctttaaag gattggatag gacaattcta aagttaatac ccgctgataa gaaaattatt agaagattta cctcgtcatt tataagagta gcatttaagc cactactttc gttagttcta gagagtgtaa gcaacagcaa agatataaag ttacttttt cgaatgaaca taatttccat atctagacta aacatcattt tttttaacca gaagatggct actcaattag attcctcgca tttcttgcga taaactagag cttctgcttc taatagatct

MBA - 101

æ

APPENDIX

COELTET OSCIOI

15180	15240	15300	15360	15420	15480	15540	15600	15660	15720	15780	15840	15900	15960
tttatgaatg	agcctgtaaa	actctgaata	gtcaccttga	aggcccactt	atgccctgaa	tttatacata	atattggtca	tataatttca	gaagccttca	tcttatgcat	ttcataggta	gatccctcca	tgggtttgag
tttgattaag	caaaatcatt	tattatctgg	cagataaatt	aaattccatt	aaagtactac	tgatatctct	cattgaaata	attcattttt	ctagttgata	ctagctcgcc	gtaccttttt	catatggacc	caatatcttc
ttaagtgttt	gcacaattac	tttaaaaaga	atatcgtaaa	tcatctagca	ttgtcactcc	tctttcatgc	agggcaacat	tcccatgaag	ttaattacag	ttgaatatgt	gtaatttttg	gtatgttctg	ggcgtaatca
atcttctctc	tgtttttct	cgaaccgtct	attttgatta	tccagagccc	attaaaatta	cattaaccat	atcttttta	ccatatcata	tggcgaatga	tccgtgggga	ttctccaaaa	gtaaccaggg	tttattatca
atgaaaactt	gagaacaatt	ttaaccaaac	ctgttttagt	cataaagaag	catcaacttt	ataatgaatt	aaaaacttcc	tacagccccg	tcgactcaaa	caagatctat	cccaagagct	ttaaggcaaa	taaagaagaa
gttctagaaa	gagaagggta	tctaaagaag	aaataactac	ttatagttaa	ccatctgttc	atacttttaa	tgagatgcat	gggaccctaa	aacatttcaa	tcattttcaa	gaagcgtcac	tttaaatcca	aattcagaaa

ogetysis oscioi

16020	16080	16140	16200	16260	16320	16380	16440	16500	16560	16620	16680	16740	16800
catttggggg	agaaaccggg	atgatttgga	aaaaattact	aatcatccca	cgaaaagaga	gaatgctaag	aagttctaag	cataatgtca	gtcttcaccg	ttcaagactg	tactgagtgc	taacctaaac	agaagagtgt
tactaatatc	aataaagaat	tctttgaagc	ccataacaac	ttaaaaaaag	caacaaattt	ccaagaaaaa	taatactaac	cctcaaaagt	ttaataagct	cgaataacct	caatatttt	gcttaggcat	ttctgagagg
gattcacact	gaaataaata	atttctaaaa	gatagagccc	agaagaccag	actttcgatc	aaaccacagg	tgctccttaa	ccaggaaccc	cttccggagg	aatgtgtaac	cacccagcct	gtacaatctt	tgcttgatca
acggtcatcg	gacagttaca	ctttataaaa	ttttaaaaaa	ttccggctga	tgagattttg	aagaactagt	tttatataaa	gtgagcagct	gtccaagata	gccaaatgaa	tttccatctc	ccaatcattc	gtcttgatag
taaccttgat	cagtagatac	tataatagtg	gccaaacccc	tgtcagacca	ctaaatagcc	gaggctttat	taagttagtt	atggaacatg	ttttaatatt	aagcagggca	catcatcaaa	atcttaagta	tatctgtctt
aaattacaaa	cctatatagt	acggtaatct	agtgcgatca	gaccatagcc	aagaataaag	tatgtataaa	tagtaattca	ggcttgtcca	ccatatgtat	tggatgaaca	ctaaacatga	tcagcaatgt	cttttaataa

COSHIST OSOIOI

aatgtatcaa taataataat gcaacatgtc cgccgaggga
ctaaaagaag agtcacccat
aagtggggcg caataggatc
attaaatctt tgctttcatc
ttcttgataa tctctgagct
tgaataatgt cttgatttag
aaataaaaat atgaataaac
ttctcctgat gggatggaag
cctttttgtt ttcccgggcg
tttttgtgag ggcgtgactg
tctagcatat tgggttgcat
taaaaaaag agtggggaag

aaatagccc

tttaattcta atgcctcaac

tagaagaaaa

aaaatctgtt

tgatttatat

ataatgaaat

aatatcaaaa atatagagag atgttgttaa

gataaacata

agatggagtc

17820

gttttttat

tttgatacac

ctgaaataga aactaggaga

tttctcgcat tggataaccc

17880

tagacagtgt

agaccggaga acatgatggt agtgagctca

cccaagcatc

tgcccacctc

17940

ggtgagatgc ctatgattat

cgctcaaaaa atctcgttcg

ccaaaagaag

ttggatttca

18000

agcttttaga

tegggeteta

acaatttgat

aacaatgtgc

aaaatttgg

gcctacaata

18060

tttttaaaga

ctgccaaagt

cccaccaatc

atgaggatat

aatctctcaa

aaatcagagg

18120

attaaataat

tatgaggatc

agataaaggg

tattgcctgg

tggaggggtc

agatggtgag

18180

gggtgggact

tttcactgg

aaccctggtg

aacagctccc

ttactaaaat

atggacttaa

18240

aaatatatct

agatgatata accettgteg accetggtee

tgattggcaa

aatacttatt

18300

ctttgttact

taaaaagaat

gatgggaaaa

caaagcaggg

atgaaattat

gagcatctag

18360

taatgttcca

caaaaactct

cccagccgca ttgcctttat

cagatcattc

catacccata

18420

tatcccagat

atgaaacatt

tggtgaatcc tcatgggagg

ggctagtaga

atgtacggaa

18480

agtaatacat

atacgttaga

acagacgaat

tattattgag

atgataaaga

attatttaa

22/126

<u>P</u>age

DSHYSla OSCic

18540	18600	18660	18720	18780	18840	18900	18960	19020	19080	19140	19200	19260	19320
atgccttcta	tggcaatatg	ctttgcgcct	taggcacaga	atcattagat	agctaaatat	agataaagat	aatagcttct	atctttttca	attttttgaa	tttatcatta	aactggtgag	gcaaccaata	ttttctataa
aagatacgaa	ggccaccaga	atattgattg	aatcaattat	caggaatctc	tccatcctat	aagttaaatt	ctttctcctc	tctttttac	gctcccttac	gggtctctcc	taatagtagc	gtgatattga	actttgtttg
tttttaataa	gttgttattg	ctagattttg	aaaaccattc	ctaggagagg	tcagagatgc	gatgaaaaga	ttatgtaaga	ttatcaggta	tcaaaagtta	tatgcctcac	tgcatgcatt	agttcttttg	cttttcataa
tcatttatgc	cgggtctacg	agaaaagtta	tgagcctgag	tcttagaaag	tgatgatgtg	aaagcttata	ctttttattt	gtcttcgtta	ggctccaaga	atcttgatcg	agggcccatt	taacttatca	cgctaagagt
acgcatctaa	acattatgga	tcaattcatt	attatattca	aaagaaaagc	agcttgttta	cacatttatt	taatttaatc	catcaattga	cgataggaga	caacacagtc	gtctttgggg	cactagaata	gaataaatgg
actcctgggc	acaggcgatc	acaagctata	gggcatggaa	ctaacaagag	aaacttacta	agtctagaag	ctattcgaaa	atatcaatat	attttaaggt	atagtatcct	atgggaaagg	tagtaatcgt	attccaaata

COCHYSIE, OSCIOI

19380	19440	19500	19560	19620	19680	19740	19800	19860	19920	19980	20040	20100	20160
gatagatcat	ttaggcaagc	gcaacaaatt	gtaacaaaag	tcagcaattt	ccagaaacat	cgcctggctc	attctttggt	aaattacctg	actccgaaga	gagataagta	ttaccgacaa	cctaaaattc	agagctctaa
tcctaaatta	cgatcttgtt	aatttcttta	tatcattaaa	aacagctgct	tagtctgtgg	atcctcgtct	ggtgtcgatc	ctcaataact	agatggctta	cgctattgga	gcaattagat	tccaactgta	ttgggccatc
ttgtcgtgtc	taatttttcc	caatagctcc	atgattcatt	caaaaccaac	cagctgtacc	agaagtatcc	taccaaaata	gccaagattg	cgtcatagag	gagtaatacc	caataacctc	taattggctc	gatcatcgcc
tcggcaaggg	attctgcgca	tctggttttg	ttgtcatcaa	attggatgat	ctttcaattt	ccggttatcc	tctttataca	atttgactag	tttccatgct	ggttttgttg	caccaagtat	gcctctggat	tttttaacag
aaccgaagga	ctttctaaga	ttgaattaaa	ataactaaag	ttgcccctta	cacaagagca	atcaactctt	aaagtaaata	aatacttcta	ttctagcgta	tgctgaccca	ttcggtttgc	ccaatcccac	tctttttgtc
gagactcaac	tctcagcaat	ctggagcatt	gtttcaattc	catatattcc	tagggtggag	taagaacatc	catcaccagt	gatcaccata	cattagagcc	agggcagagt	cagaaccagt	cactgtagta	ttaggctatc

COSTILL OSCIOL

20220	20280	20340	20400	20460	20520	20580	20640	20700	20760	20820	20880	20940	21000
tcccaacacc	ccatttgaaa	gtacaccagt	cctaatagat	gtatagagaa	acatctttaa	ccagttcttt	acattagatt	attttacaat	acaacagagt	atcataggca	ttagcgaact	gggtcatctc	atgcagttta
atcgcatatc	tgttgttgct	cacatctgca	aatatgagcg	agagcctgat	cttattagaa	aatttcgcca	agcctcatct	agttataaca	gccaccaaag	agtctcaatg	ttttaaaaca	agaatcagca	atgcctatcg
tgtcatgctt	caaacataag	ttatccatcc	atttgaaact	gcttgcctgt	ctggagcaca	catcccaatt	agcccagaag	cttcatcagc	ctggagaaaa	ttgcgaacgc	cacccaggtc	tcaattcttt	cattttctaa
aaaatactaa	ggcactcctt	gtatgtcctg	ccaaaaagat	acaccctttg	tccataggct	tctttttat	acatctggac	ccccttaaac	ttgagtgatt	caagcaagca	cccttttgaa	tctttgtagg	ttgtttggat
agctgtataa	agggtaggtt	caagatataa	tggccttatt	agtatgtaga	gtcttcggaa	ataccaaaca	tgtattttta	tttttgccg	aattctatct	tattcgcgtg	aactctcgag	gtcatggagc	taatgctatt
tggcagttgg	ttgatgctga	gaggtccgta	atttgtcctc	aacctgcagt	tgaaaagagg	caagatcttc	ttataaccag	taagtggcac	cagcatcaag	gcacggcacc	tataaataca	tacatacttc	cttcccatat

agctaatatt tgttttacca ccctcaaacc acttcgcatt attaaattga ttattgaatg

21060

21120

aaaaatttag

21180

tttatataag

21240

ttgaaggttg

gattacttga atgttttggg

aaggatcttc tatggattgc

ttgttttgaa

ggggttaatg

atcgctatca

actatagtct

tagatattgt

21300

gcgattcgta

21360

aaggggcaga

21420

agtcaagagt

21480

catcaatagg

21540

ggtcatatac

21600

atcgatctt

21660

taagatcttg

		appendix a	. A.	
+	ccaacaccta	agtagttttc	tatttgctaa	tcggctatct
·O	tgttctaaaa	ctctgccggt	agaagggatt	aaattcttta
10	gctagagctg	aagctgagtg	acaagaagaa	attctttgaa
+	cttctttgtt	ttcaaaaagg	ccctcactgt	aaatcagcaa
10	tcagcgaata	aagagtaacc	cctcgttaga	agatccattt
Oi	agggttagat	tggcgcgtcc	ggtcgggtgt	tagattacta
O	tcttttaaca	agtaatcctg	ttcctctctt	tcgttaatat
10	ctttccaggt	atcattcagt	ttgagtatgc	aagaaaaacc
10	attattaata	tgcagcatta	aattaatatc	ttggtttcta
Oi	tttgtaatga	ggacattatt	ctttgggatt	aaattctttc
+	tcttaaataa	ttcgaggcat	ctataaagct	atgttttggg
+	atcaaagtct	ctttgtattc	ttgtaaagtt	tatggattgc
10	tagattttta	tttcgtttgc	cagcttatgt	gtcttccatc

tgcctgaaga

tttgtcatat agatccattt

ttctattaaa

MBA-101

attaaatgtt tcggctatct tatttgcta

gtttttataa aaattcttta

aatttgttgc attctttgaa

21720

attggcttgg

21780

aagaatcata

21840

teggteette

DOSLYBLE CEOICE

22500 22560 22620 22680	cattccattc taaaagatgg tttgttacta gggatctcca	tcttttcacc agatgcctga taaaattgag atcgtctttg	ttttcaaaat ctagcgtttg ttatctatct tcttcttcga	tgagcagagt atcaaacaat cttaaccaga tctcactgga	ttaaatgaaa tgcagaactc agatggcatc ctcttaagct	agatatttat aaaaatattt cctttatcat aatcttatag
22440	agaaaggata	tacttggatc	aagtcattcc	attgctggca	gtgtcataac	
22380	atcagtattt	taaccctatc	tgttggtttt	tgtaattgac	gaaagcctgg	gcagccataa
22320	ccataacaat	ataacgaggg	cactttttca	attcttagaa	taatttctcc	tttctcacat
22260	tcggaaaaat	catccataga	cgaagtacac	ttgttgttcg	ctgtgatttt	cttggtattg
22200	tgaaaatttt	taatatagct	caaatatcct	ttgaagtacc	gaagttttaa	attctgctat
22140	ctggctacca	ttttatatgg	tgtcgaagag	aaaccttgga	atgcagctct	agaaaatcat
22080	tcttacaagg	aagctctctc	ttgtctccag	aataccactc	accacttccc	aaatcagtcc
22020	atttttttgg	atgagtcatc	gttcctctca	agcaataatg	cattcatctc	tcactttttt
21960	agattcttca	atatttttgc	tagaagccaa	caactcgtta	tagattatct	gtttttatcc
21900	ataacgtata	gggttcattt	tttaatagct	gtggtacttc	tattttggaa	aattgcgata

DOBLIEL DEGLOI

22740	22800	22860	22920	22980	23040	23100	23160	23220	23280	23340	23400	23460	23520
ttctattttt	acaatcttgt	aacaatattt	ttcactccta	aaatgttttc	tagtcccgtt	ttgaaggtct	taattatgaa	tcaagtgttt	ccaatttcat	gatagaccta	aactcttcct	agatgatcaa	gcaacaaaat
cgttatgatc	ctcttctatg	tcgaatcagt	cttcaagcaa	ttgaagcttt	cttttggctc	aattatttt	ctatcaaatc	tttaatttcg	cctcttaatt	ttgttcaata	ttcaaaagca	tttagctcta	aagaagaacg
ttaagcccat	acagtaaaat	atctttcctg	aaagttgcta	ccaattattc	atatcgaaat	taggcctgaa	ttattattat	gctgcttttc	tagcttcaag	cttgcttaat	tggttcttaa	aggtttcacc	ctttccaaag
gtgtatatgc	aagggcattc	atctctaaga	tcctgatctg	aaatcttttg	attagtggct	accaaccaga	tttacttatc	tagccattta	gcagttggtc	ccataatcat	tctctatctc	gggtctgcat	ttaagatgtt
taaccttctt	gacagtagta	cccaattatt	cctgatcact	gaaccaattt	caggcgtggc	gaacgcaccc	atatagcaaa	ttaagggcat	gcaatgagtt	ttcgcaccaa	aagttttctc	cctgtctact	catttcatcc
atagatacaa	tttgtaacag	tcaagagtgc	tcaccatctt	ttaaaaacat	ctgatctgct	agtgcatcgc	tgaacgacag	tttttatgat	tgcaatgaat	caccacagga	ttttgctgat	cttgagaagc	aagttttttg

OOG+7519.OSO10:

tcttcat	gtttcttcat tgctgcactc	atatatttt	cacccttctt	agatttataa	ggtgcaattt	23580
tagatttatt	attagctatt	gttgcttttg	cagacttctt	ggctgcaact	tttttaactg	23640
gagcttttt	ggtaacagtt	tttttaactg	tagcttttt	ggcaacagtt	tttttaactg	23700
ttttt	gagetttttt tactgtettg	gattttttt	cgaccatgta	agattttata	gaattttagg	23760
gtggagaaaa	tatcagatac tgacaaaatt	tgacaaaatt	agctagtcat	tttttaattt	atttaatact	23820
ttcaagtacc	catccgagct	aagtcttggc	ccaaatgtct	caacaacctt	ggaagatgca	23880
tagtttgcaa	acttagcaca	tgcttcaata	ttattccctt	gaaggtaggc	atgcataaac	23940
gatccggcaa	acatatcacc	agctccattg	gtatctattg	gagttatttc	ttctgcttga	24000
gcatgcttct	caaccccttt	atctataaca	acacttccat	cggcgccttt	tgtaatagca	24060
gtcatatagg	gcttttctt	ataaaagcta	acagcatcat	caaggctttc	tttaccagaa	24120
aaagcaacag	cttcatcatc	attacagaag	atcatatcta	ttccatatga	ctctattaaa	24180
latttt	tcaaattttt ctttaaaacc	atgaacaata	cctgcatcag	aaagagacaa	ggctttcttt	24240
acgtccttgt	ctttaaggtg	ctctaagact	gaaataacag	cattaaagtt	atcgtcactt	24300
gttaccatgt	agccttcgat	ataaaaaatt	tttgaatttt	ctacaacatc	aaaatctata	24360

24420	24480	24540	24600	24660	24720	24780	24840	24900	24960	25020	25080	25140	25200
cttagcgtca	gctgacacca	ttcatcatca	aagagaattg	tttgctaatt	gcctacactt	aagggcgcta	ctaacgttct	tagagggggc	catcatcagt	cgaacattcc	tcatcccatc	tcaacaattg	ctgcttgata
tcatagttct	tattttcaga	ttcttccatc	ctgcagcaac	tttcaataag	cggctacaag	aagcatttcc	tttactgttt	gcttcatatt	gaaaatagta	aaaaagaatc	attaaggttt	ttttctttaa	gacaaagttc
agcatgctgc	ggttgatctg	tcaagatagt	ccataatttg	teggetecea	gtcatagagt	gtatctacta	tattatttgt	aatgaagcct	taaaaaattt	ttcttctgaa	tgactcaatc	tttaaacgga	tggattgcca
actaactcca	tttcccagtt	cctgagacta	gcaattcgaa	agaaatcgat	agatgaaaga	tttatattga	ttcctttttg	gcattgctga	tacatgaatt	tattagggag	acggaatacc	tttctaactc	ccatagctag
caagatacgc	aaattaagca	ctccagccga	atacatgatg	caccgcaatc	gttcttcaga	catggctgac	tcatgtgtta	tgatccttat	ccacttctaa	tcattaatat	tttatagaaa	gatgcatttc	gttcctccag
tctgatttac	ggagtaacta	atatgtttga	gaaactctgc	gttgcagagc	ataggtgcct	gataaaaatt	atatcatatt	attaatttct	aaagtatatt	ttttgcaaca	accaattctg	caaaagcaca	caacaaagca

25260	25320	25380	25440	25500	25560	25620	25680	25740	25800	25860	25920	25980	26040
aagctccaac	tattataaat	atattaaaat	gacctggaac	cttttatctc	tatattttgc	cagaacccgc	taattttatt	tacctgaatt	ccacatcaga	taattgcacc	tataatcaat	aaaatatagg	gcataagagt
ttgcctccaa	tcaggagtaa	acctcatcaa	aaatcttcat	gctaagtcat	caactaaatg	gtggcaaccc	tcaaatttaa	gttgcttcag	attagcctgg	acttgatttt	caagacccaa	gctctttcaa	accctccag
aatttcttct	agcagttaag	gccgctcatg	taactttaag	tattacggcc	attgtattcg	taagccaaag	ataacagcca	cgttgtcatg	gcatttttta	tccaagcgca	catcggaccc	tgcgccggat	tggtgaattt
gatagttcat	ctttccccaa	aaactctaaa	tttccctcaa	ctggttcgac	gttctttatt	gagagtcagg	catgaccgtg	ccaatctaat	ttgaaggaat	cataactagt	gacccattat	cataaaggta	atgcccttac
gaaggagcta	ccacctatta	ccgcctagcg	gctgaggtgg	ttccctgcta	tctaaaaact	ggaacccctg	agagagtcaa	aaacctctgg	attttttcaa	ttcaagactt gtcggggggg	gggtgtgaat	tgatcagcat	atatttttga
gacaggacca	aggaagaccg	ttcttgagct	agaattattg	aaagcccata	attaaatatt	caaatctgca	cttaattaaa	ccttcctgta	aaccattctt	ttcaagactt	tacaatgtct	atattcatta	attgccattg

aagctaattc

cttggcctct ttgaataagg ctatggattt atcaatttta ttatgtgtca

26160

ttaattgttt

tatgatatca acttaattct tattatgtat

ttaatttcga

ttcttaattt

26220

catctgtagg

gtatttgtaa

tccagttggt gaactcataa

tgaaaattca tccacagtat

26280

tatattttgg

tcaatctaat catgtgttta tctataaatt

atccacataa

accettegta

26340

acagctctaa

ttccaaggag

tttcattggg

agactgctaa

ttgcctgcaa

ataatctatt

26400

tegeaactae

tcaggctttc

tgtattttt

ttgtttcagg

atatacgggt

aaatttttgc

26460

tttgaataaa

gcaacatttt

ttcaagacaa

tttctttgt

aagaaggcat

attaactgaa

26520

taattttatc

gcaccaataa

gtttgccata cctaatgctc

tctggtttgt

ttcataaagt

26580

aagattcaga

attattttg

ctactgcttt tgcaatatgt

aaatctaact

aaattgatat

26640

cggttgtaga

gtttgcccat

tttttttaca aatttccaga

ttagagaaaa

cacatctaat

26700

aaatttcatg

gttaattaaa

attttatatt

tcataaatat

agagttgatt

gtagattagt

26760

tatttattta

aatgattaaa

aaaatatagt atatttaaaa

aatataaaca

gcacgcgcaa

26820

aggtgcgcag

tgatgcagct

aactttgcat atgcaaatat

attcatcagc

ttatcgcttt

ggattagttc agatcaagaa

26880

gctaatgatg

agacttgatt gctatgattt aatttttaaa

TOHOUGH WHACH

26940	27000	27060	27120	27180	27240	27300	27360	27420	27480	27540	27600	27660	27720
gctgtgaccc	gggcttccaa	aggattaaaa	actgctgaaa	gaagagccc	ataaagaggt	aaagaataag	gaggtgggtg	atgatgttat	tttatggatc	acccaaatgc	tgaacccaaa	gactctttta	taaatcactt
agctatcaag	aaaggatttc	ctcggtagta	gcaagaatgg	agtcatttta	gaaaattaga	ggtgccatga	tatgttaccg	gcattcgatg	tacccctatc	gttattaaaa	attttgtaat	cctcattact	catcatggcc
tcatcacacc	caacaaaaga	caataaaaac	tagaaaatga	cagaaaccgc	gtaataaaca	aacgaccgag	cttcagggtt	taacgatatt	ctctatgtcg	ggctaaattc	tacagtttag	actatcagag	atagcaaaaa
attaaaactc	gaaaataaag	gcaaagaact	atttttactt	atgtttaaac	attaatataa	agagtatagc	atggctcaag	tcaagtttga	ttttaataga	atctctcagg	gagagtcatt	tgatgtctga	catggactca
agatagtaat	aataaaaatt	caaaaactct	tggtaaatta	agcaaggaat	tttttatatg	atgaccatac	gggtcccaag	caatatggct	gatttctcgc	tttgttgaag	tgcgggtgtg	cattcttgct	aggcaaatgc
agctaccttt	cagctgattc	aaacaaaaat	aaacaaaaag	cttcttatag	tggttagtgg	tgaaatagca	atctgttctg	ctctgggttt	aaattgtgga	aactctggat tttgttga	caaaacaaca	agtcctttta	tatcccatcc

27780	27840	27900	27960	28020	28080	28140	28200	28260	28320	28380	28440	28500	28560
cttgttatgg	gattgaattt	tttattttt	ttttggacat	tacttttcct	acaatatgca	attttttaca	agctttataa	agcaatatgc	atttggatca	ttgtccagaa	ctcattaata	caacgagctt	tttaattgaa
ttaccagata	catttttatg	tatcttcagc	tgcctgttga	caatgtgatc	gaaaatcact	tgtcatttct	gtgggtttct	cgccacccag	ttgcaacaat	gcctaatggt	atccaatcgc	ctaaatctga	attttgggaa
gaaattcttt	ttattatgac	gtacatagaa	aagagctctt	cttcctaact	ggaatctgaa	gttccccata	aaaataattc	ggggcgcctt	cccgtttctt	ttaatttcat	attttactaa	ttgatagtgc	aatcttaggg
agccatctca	aatgtcacaa	ttcaaccagg	ttttatatta	ttgaagcaat	tttatcaaaa	gcctacatca	ccctatattt	cggaacaaga	caccagaagg	aaatctctta	tgatttctta	tatctcttta	ttttactttt
tatcattact	cacaaatgac	ttgctgaaaa	tggataatat	aaaaattatt	ttgcaccatt	cattaccagg	ttgaaatccc	tatggaattc	aatcacttac	tagaaaatgg	actctataga	ataagaatcc	caataagttt
gagaggacga	gcaccaccgc	attatagatt	aagaatttct	tttcttttaa	ttggctgcaa	tctaaaattg	aatgagtaat	aataattgat	atatttctaa	ccaatttgca	atagcaacac	gattttgaaa	tcgttatttt

a 28620	ıg 28680	t 28740	t 28800	c 28860	t 28920	28980	ra 29040	g 29100	la 29160	la 29220	c 29280	c 29340	t 29400
aatagcgtca	ttggagaaag	aacttgccct	ctattcttt	aactcccaac	tactaaattt	tctcattacc	tcaccggcga	gaacaggatg	ctcttaaaaa	cttcagtgaa	cgatatcgcc	attcgtcacc	agtccataat
atgaaatatc	tcattactac	agtgtatcaa	tttataggat	gccagtcctg	cttataccct	tttataacta	cctgtagttc	attgtatgaa	tctaaagggg	tttttactgg	ttagcaatta	attacatgaa	atataagcaa
atgctaagaa	atctttttac	attctttaat	taattttact	aggccctgtt	tttgcctttt	atttgtatga	aatcccatcg	gtgagctctt	atatgcaaaa	aaagtactgt	gttaataaac	agtgtcataa	ccagccaaag
ttttgtacca	tccaatatag	ataatttatt	cagctgatgg	aatgtaaatg	gagaaacttt	tcgaatactc	aaaaagaaac	cgactccatt	gagaactaat	cattttcatc	tattaccatt	cactataagg	agtctacatc
caagatgtat	ctgtcattgc	tcctccattg	taaatttttt ggtactggtt	ttaaactcat	gtatcgccct	caatatctag	acatccattc ctttgaccag	gctgcataat	ggattaaaat	ggccttttgc atattatttc	gcaaaatagg	ttctctccat	tcaaaaacga
tggaaatact	tgactagttc	tttattgaac	taaattttt	cttacctatc	gaaaccaata	ttctaaatga	acatccattc	tectetttt	cattctgttt	ggccttttgc	aaacctattt	attttttact	ctctctaata

COSTINE CECTOT

29460	29520	29580	29640	29700	29760	29820	29880	29940	30000	30060	30120	30180	30240
gaataatccc	ctatttctgg	tggttagctc	tgatattttt	tttcaaaaat	tttgctcgag	catatgtttc	caagtaccgc	gagttcagtg	ttgcagaagg	aaaaggctga	attacacttg	aaggccgaag	tctaacgata
aatgaggatt	ttcttaaata	atctcaattc	atgttagcaa	actgaaaagt	tatgttttcg	ggcaaagatt	gcaaaagaaa	gaatatttaa	cgttaagaaa	tttgtccacc	tatttccaac	tacccattgt	ttgatttaaa
tgcctcataa	tttgcttata	atctttcatg	ccctggttta	atttaaaggc	atgcatctga	ttcttcaact	aatagaaaca	tagtcctctt	acaacctttt	ccggatagat	tttatgtaaa	ctagtatgaa	tccatttcat
catctagagc	actcaatact	aatttatttg	gcattttttc	tataagcagt	cttgcacctc	taatctcaat	atattaagac	aacctatcat	gttctttgag	ataaccgctg	catatctcta	tttttctact	aattagtgca
ggaatatttg	gattcaatta	attgaaatag	tattcaaaga	ctaaaaattt	ttttctccat	aatttttcag	taaagcatta	actttttaa	atgctaccga	caccagcctt	cagctcccac	tgtcggccct	taatattttc
cacactttcg	gctattgtaa	agtaaggcta	ctcaccagaa	ggagtctaat	tattgaaaga	aggtatagag	tatatcaata	tctttttgga	ttgccaccaa	taattaggcc	gaaccaacaa	tcactaaata	ccactatcat

DOSKYSIE . OSOHOL

30300	30360	30420	30480	30540	30600	30660	30720	30780	30840	30900	30960	31020	31080
ctcaattatt	ataattctta	aattattgga	accaccctta	caaggcagag	ttgctcgaga	caaaggaata	taaagacccg	aatgccgtct	gttcacaatg	tccacatgca	actaatacat	accctcaaga	aaaatctata
tattatcaat	taaaaataga	atgttttgct	gttctttcat	agagaactct	catcggttgc	tctctgcaat	ttgctgtttt	tgtcaccatg	catgaaattt	ttactttatt	agttccatgg	cgccggtggg	agtatctgag
agatcagaaa	tcagcagacc	ctatcaagag	ccaattttta	tcttgtacac	cgaataatat	atgcctcctg	tgaatttttt	tttgaaagca	accccaatct	ggcttaactg	gcaacaggaa	gcattgatct	tgttttgcat
ctcgtcttt	atctacatta	agcattgaga	ttgagggttt	atatatttcg	aaatgctgaa	cattgaattt	aaggctgctt	gttattaacc	atcttttggg	atgttctgag	tataagtatt	gtaagatagg	gccaacagct
gtccaaattg	caaaattttc	ctttgacgta	tgtcaagatt	aaagatcgtc	cagagctatc	aatcaacaat	ggttacttgc	cccctttgat	aatttaaagc	gaattgaagt	ttatttgccc	cttttggtga	ctgtttggag
tgaagtattg	gttggagcta	tcttcaaaac	ccgatatctg	atcattgata	catcgctgtc	agtgcgcttg	attgattcat	gtgaatgcaa	cctaggatta	atgtagccaa	agggctgcac	aaaatatggc	atatggtctt

OOGHYSLE OSGICE

31140	31200	31260	31320	31380	31440	31500	31560	31620	31680	31740	31800	31860	31920
cataaggtaa	aatggatgct	gctgcccttt	aagagatgag	agcctttatt	cctttcactt	tggtatctct	atctgtttca	tcttcttaca	atttttttca	tagtctttga	tgcattatgt	ggctaaataa	atagatttga
cggcttcatt	ttttttctaa	gttcttcaag	ttccatctgc	aaatcgatga	ctaaattcac	ttcttggcat	gccaagcaga	tttctaatag	aaattgaggt	ccattccaaa	aaatggtatg	tttttgcaca	catcatagcc
actgtttttc	tcgtctgcaa	ctaatatttt	ccaatatttc	tttgctttat	tcaagcattt	ttaaatatat	cctctggcaa	tttgctccat	atcggcgcat	agcagctctc	tggattgcag	ttaaaaattc	acaggataac
agtattttgt	tgcttcaatg	agaccattca	tgaggctgta	cttataatcc	aagctcctct	cggtctgtca	taaatggggc	aaatgagctg	atatttgcca	ggacttataa	gccaagatga	ttttccaca	ttttgtatag
tttcatcaat	cagaaggatt	catgcatcaa	gatcatcata	tattggtttt	caaactttcc	ctttagagtt	cctcaatttt	acctattaat	gcaagtcttt	ttttgtttgc	ccttatttga	tagggtaaat	taacagattt
gcttctctaa	taaattagct	ctttttcaa	atataatcta	atgtcatgag	tcttttgaat	aaatcaaatc	tttttttcat cctcaatt	ggatcaagta	agatagggta	gtatttaaga	aattcataat	gtagcaaatt	gctaagtctg

31980 32040 32100 32340 32400 32460 32520 32580 32640 taaccaatct attgtggcta tagctctttt gccatatgcc catctcttta aatttctaca agactttatg tgagacacca aacactatcc tattagatcc tcttagtatt gattcggcta aacacatcag agcaacact gcatgcttaa tttcataatc ccaatatgct ccttttacga gccgaacatg cataggtgct cttataagac gtcaaatgaa gcccataaca aaactcgcca atcgggtgta tgtgagctga ataagttttg gaagtagatc gotttgttta aatgotctat ccacgcaccc tcagataact tctcagatat cagtctgtct tgctcctcag catcgattgt taatagggcg cttgggtttt tggtccactc tttccagttt ttaatatttg gtgaaagggc atatttttat ttcagcgttt cttgctgcct ctccaagcat ttctaattgg cattaacgaa ctatagcatt caaaatctct gataaagctg catggcacca actacagcat aagaagaccc catgttgatg atttatcttg ccgacttcat tttatgtcat atatctagga cttaattttt taccaaatcc aactaacggc gtagctcttc ttgcatactc tttcatttc cttgtttttt tgtctgggat tttttgtcag tgtcggcttg tttctatatt tgagaatatg ttaaagaact gaaactacct tgcctgcaag tctttagact ctgttttcta tgaacagcaa taaatttcat gattttgaga ataatctcta tcttttagct ttaattgtat tgataataag aattcttgac

COSTANT CENTROP

ctagcccata	ttcgcttaga aat tattttattg agg		gttttgttct	ctcgctctta	32820
င်ခ gခ		agcartttt tatttcttgt	gaaatcgaag tcaggataaa	ggtcatttaa acttgttact	3288 3294
tt	ttttaatctt ata	atagtgccaa	gtatcaactt	actgattcta	33000
tg	tgatagtcat atg	atgagtgatg	cacttaaatt	aattaaacga	33060
age	agagtctgat tta	ttaaaaaaga	aattagattc	tggaaaacag	33120
tga	tgatccaaca gct	gctccagacc	ttcatttggg	tcataccgta	33180
tt	ttttcaagat ctt	cttgggcata	aagtaatttt	tctaattggt	33240
agé	agatccctcc ggt	ggtaaaaata	aaactaggcc	aacacttact	33300
tg(tgcaaaaaca tat	tatgagaaac	aagtttttaa	aattcttaaa	33360
att	atttaattct gag	gagtggtgca	acaagcttgg	tgcagatggt	33420
ato	atataatgtt gca	gcaagaatgc	tggagcgtga	tgattttaat	33480
aac	aagcatagct att	attcatgaat	ttttataccc	ccttgttcaa	33540
agi	agaggctgat gtc	gtcgaatgcg	gaggaacaga	tcaaaaattt	33600

33960 34200 34260 33660 33720 33780 33840 33900 34020 34080 34140 34320 34380 34440 ggttgtttta attaaataac tatttcagac aataggagtt tttagcagaa agcttttctt aagtacatct aagaaattt atttcttctt ctttttatag tattttattg tacaattaca gctcattttc tgatgttggg aatagaagat tcaattatcc cagagaaaga aaataatgtc cttgcaatac taatatgcag gctacaaaga tcctatggtc aagaacctca tgtccaaatc ttaagtttct agatgacatc actctgtaaa aggttggcaa aatgcaagga ccatgtcagt gcctaatgat atgttcggta tgagttactc agctttacct ccaagagata tctatttatc tagtccaaat aacaaattag atctattctg ttgaaccagg tgctgcagga ataaataaaa gatggttcga gacattcctt aagaattgtg gttaaaatcg ttcagagggt aggccaggag gaatcaccat agggaccaac aaacctttta aaaaataaat cctaatatta cttggacgga acaaggcgga aatgcctgat ggagatggtt atagattcca gacttgttaa aatttgctag tagggagaga ttctagaagg tagatgaaga aaatggaaga aaaaaggtca ttccattagt aaacataatg tcaggatagc aagggaagga tcaaagttct taatttcaaa ttgcgtgtaa aaaatggaga tttatagcaa cctaaaatgc ataatgaaat actgtaccca gagttaatgt cttaagaaga gagttagtag caaagatttc gctgagggca gaggcgatga ttaaaaatta

34500	34560	34620	34680	34740	34800	34860	34920	34980	35040	35100	35160	35220	35280
gagcccttaa	atgaagaaag	ggccggcctg	caaaaaaact	ttaataattt	aatattggat	gagggtacta	ccttcaacaa	tctggagagc	atgtccaaga	gtcgcagcca	ccaatttctt	ttattaaaaa	ttaactacag
tgaaatgggt	aatctctatg	tggcgatgag	attagatatc	agcaacctgg	aattctaatt	gaatgaatga	atagcactca	atctttctta	aaatctaagc	ttgcaacatg	tgatggagaa	aacattttgt	acctcttaga
ggagttctgt	gccaaaaaat	gtatggccta	atattgagtt	cataaacctc	ctcttccttc	ctgcaaactt	gagtagttgg	tttcaaactc	taaatttatg	aattaggatt	tagcggttga	agtcatcaaa	attcaccacc
tcagtttttt	atagttgggt	atcgacccaa	cttatttttg	agagcgtatc	ccatgaccag	tgaagttttg	gtagtaatca	gctaataagt	cagcctatag	actttaaata	ccaccttgaa	gaatatgcaa	ttatcaccat
cactgatggc	atcaggtcta	gagagtttat	aaactcaatt	tataacggat	tgttccggct	ctgggactct	tcttttagct	aggcgaataa	ttcccaggcc	tggaattgcg	tccattagag	aaatttagca	atcatgccag
acgggaccct	cagtcgaact	gtgatgaatg	ggataccttc	aacccttatc	tatttttagg	tatcacaccc	ctctatcatc	tattatgcag	catagtcact	cgccaacttg	ctagcaaacc	gtgcgtgtaa	gcctgcctgc

COMPTELL CECTUL

35340	35400	35460	35520	35580	35640	35700	35760	35820	35880	35940	36000	36060	36120
ggtagtcttg	atttttaagg	aagaatttaa	aaaagttctt	tttgtaaatg	ccttttcttt	tcagtaaaag	ctaatagaat	gtaagtgata	ttcttgcttt	tgatcagggc	agaaacttaa	ggattctcat	tttggagctg
actaaagcca	attactgtct	tttggatgga	ttctttccaa	agttacaaaa	acccattgtt	gaagtgaacc	gctaacacta	attttttatt	aaaagtatca	aataaaaggc	accaatagat	tggcttttca	aaacattaac
ggtagctttt	gtattggagt	gtgttccatc	ctttaagatc	tttctcgagg	caccaaaacc	ttaaatcaaa	tatttataaa	caaatgagcc	agtaaaacca	ctattaaagg	ctgtgccttc	aactccatct	caattttatg
atccaagtga	ccatataaaa	atgggtattt	gagtcgtgtc	attttgtata	tcaatttcac	tatgctcctt	acaatagaat	tcattccaaa	ttttcagttg	attagctcat	tttctttcat	cttattcccc	tgagcagtac
cccttggttc	gccaccatat	actaagatgg	aaataaagtt	agttagatta	tacctcatct	cttattttta	ataagaaact	accaacgact	gttcgcagca	ataagcgcct	atagagtcta	ttttacaaca	atcctcatct
caactattcc	agatattaaa	actttttgta	agtcagatgt	gtgacatatc	aaaaataaga	ctgttgctag	tatcaacgag	tagtactttc	ctacttttcc	ctaaaaagct	ttagctgaac	ttttagaatc	aaacaatcac

æ

APPENDIX

38040

ttagatctaa

tttccattta

ccccacatca gatcccatat

aatatgaaac

tccaatccat

38100

cctttaacat

taattcagta

taaacattaa tgtaaacatt

ctctgctgag

tggccacaac

38160

cctgattttt

atctgcctct atattcagat

attggcaatg

tactctataa

ttttactttt

38220

actgaatcta

ttggcttgaa

aaagagttgt

gcaaatggca

ttcttcggta

catttacaac

38280

tacttagttg

catattcaga

gctgcccaag

tttgttaaag

catagaaatc

tagcatcttc

37860

aaaaagaaat agttttttgt agaagactat tattatctag

37920

gtcactgagc

cattattccg

aaatctattt taaagaacaa

gccatcttta

tcgacctagg

aaagagcggc aaaaaaagaa

37980

tctcttctt

gtcgatatta

aatattttta aaagaaggtt

taaaatagaa

ttactaaagc

38340

ttaacttctt

ttttttgaat

gacctaatct

acaatctctt

tgtgatgata

agccctttgt

38400

acatgattaa

agatgtttca

ttaaatcaaa

tttaacttac

tatttcaaaa

tagctttctc

38460

cctgagatag

aaagtatatg

agctcaatct tattaaaagc

gcctcttacg

ggtattgctc

38520

ttcctaacta

38580

attcgtcatc

tcttcattat ttcatcaatt tttacatcaa

gagataaaaa aacttaggta cttatgaatt

,
æ
X
H
혤
Ø

tgcattcacg caaatgggtt tttagaattt tgccctcaac

gattccttaa

accttttaaa

ctttcataa

aaagttcat

taactgaaga

tccaaagtaa

46/126

ළිකුගුල

38640

COMFIGHU. OUGHOR

38700	38760	38820	38880	38940	39000	39060	39120	39180	39240	39300	39360	39420	39480
agtattgacc	agcttattaa	tacgtaaaaa	ttttttctag	taagttttgt	taaagcttat	cttgccccag	gaagatgcaa	ggatttgaag	aggtgatttc	ctattctttt	cacaaaccat	atgcatcaaa	aatgaccttc
atatcaacgc	attctttta	cggaactata	atacctagat	aggcatatga	tagtgttatg	gcttgcaaaa	caaagtagaa	taaatttcta	atctcagaga	agatcaacat	gcacagaaat	ccttcaacaa	gtttcatgta
ttgattaaga	ctggccctct	ataaaaacct	catagtacag	cagcagggca	ctaatgcaaa	cagttaccag	cacaacatat	tcatagttat	cttcttttcg	tccattatca	aatacctctt	atttgagagt	atcaaccatg
gtgcttttat	cgcctcgcac	gtttcatttt	gctacagatg	agttctgggt	acaatcatta	aatggaaata	gctggcaagg	gccttatcat	tagaaagaat	tcactacttt	aagtttttga	ctatatttac	gatcttttcc
gaattcttaa	attccttgaa	tgacatggat	taaaaaaatt	tgctctgcct	tcctgcaatg	ggtaattaag	aacaaaaata	aaaattcgac	ttttggccat	gaaaaggcaa	tcttttagaa	cttacgatcg	tttacatcaa
agtaataatt	ttcctcaacc	ttgctcttta	ttgtagcgaa	tttctgaaca	agttgatata	attgagatag	caccaagagc	ataatgaaaa	atcagacata	ttttgcctta	gacatcttta	tcccttcacg	cctctcaggg

39540 39600 39660 39720 39780 39840 39900 39960 40020 40080 40140 40200 gtatcttacc acataaaatg cataaaaaa ttttaaccat gttgaatata tacttccagg ttctattcac tagccctttc gaaatcacca actagcccat cgcttgaaag agcccgcata cattaaaggt catcagcatt gcaataaggc agggcattac tttttttgg aaagtatttt aaaaatacta taaaatctgt gcaaatccaa ttatttttaa aatttatttt atcggtcttg cccatggggg cattttcaat tttaacccaa taaatagaat atgagaatgc ccatgcatac cactatggtc attctccgcc ttttcatatt tttctccttt atgatttatt tgttacagta aaattaattt caggcatctc tccaagcgcc gtagtggaaa aaatgattat tttatatata atagctatag cagatgcata aaactcaaca aacgtaagga gttaatatcc accataaaaa ataaattcct ttgggatgta gttcttataa agagtaggat cgtcatagcc tgtagtcagc taaatttact agttttctgt aggttggaga ttgttccgcc ctccatggat ctcgtatctg ggatacgtag aaaaataacc aataataatt tgtaaatcat tacattatgg aaaaaacta tagtctttgc gtttcccagt gaatatttgt gattgaaaat aaacgaaat caaagtaatt taaatcccag tttcaattct aacccatgta ttcttcttta atctgattta aaagaccatt ataggattat tcagaattcc ccacttccgg cacaattcct caaataagta taggccaatg

DUSHYSIE DEDIDI

40380	40440	40500	40560	40620	40680	40740	40800	40860	40920	40980	41040	41100	41160
ctgatggccg	agggaaagcc	gtaactaata	gctaaagcta	attttttctg	gcagtcccaa	taaccggcaa	gcaactġtca	aattctcttt	atttttatta	cccacaagcc	acttgtatac	cttagggcgg	aaacaataag
tactataagc	tgcaaaatac	atactgcttt	tggtgttagt	aaccatgcct	ggctgtcata	accaattcca	aagaactgtt	atcttcgaat	agggctcgaa	ccaagcagat	agagaaaaaa	tcccatccct	taaatagaca
taacagaaaa	ctccctgaga	ggatttgaat	tccaaagatt	ttgttgcacc	ttccaaccat	ctacccttga	ctgtcagtaa	cagaaaaaat	caggcgatga	ctatcattga	taaatccagc	attgcatatc	ttgctcccaa
accaatgcta	attgcattgg	catacaccaa	aaaatactaa	aatccagctg	cctatatttg	aataagaact	ccaatgagtc	ggtaaggcaa	ttaagcctta	cctgaagtaa	gatcctaata	actgcaggaa	caaacaacta
gtaaacagct	tggccatttc	aaatacataa	atccgatgta	agccgaaagc	atttttggca	aattgggatt	tccaaattga	aagagatgcg	tcttttgagc	tgccataaaa	tagaccgaat	taccgttagg	acctgatagc
atgagagcca	tgattataat	catatccttg	aggtctctgg	gaccgataac	ctcgctctat	tgccgaacac	tagcagacgt	ttattggcga	caattgttag	aagttactaa	caagtttagg	ctgcacaaat	cggttaagct

1126
N 0
Page

41220	41280	41340	41400	41460	41520	41580	41640	41700	41760	41820	41880	41940	42000
ggctctccaa	aaagaatgcc	atagaagatg	gcaggaaatg	aattcagcaa	ttaatcagca	ttctcattta	cgaatcttta	tattatctgc	ggccatttcg	aggaattgca	tttagtctag	gaaactagtc	tcccaggctt
tcttaataga	agatatatac	acttcttgca	cagcatgatt	aataaaccag	tgctgacatt	gtccataacc	tcaggattca	caaccaaatc	gcaaaggggt	ataatggcgg	actatatttt	agactggaga	attaatagaa
cacctaatat	ctccaaagca	cggctccaag	tctgctgagt	caagttgact	cagtattagg	ctgttctctt	gaacacgttc	tttttaaaaa	taatttaatt	gatccataca	caataatctt	ttatcaaagg	ttgatagtaa
gcacctgttc	aaagctaaag	ggcttgtctg	ccaaatgcca	ggagttatgc	aaaaatgcaa	aaaaattgct	gggtgaaaga	gttaatttaa	tattaatatc	ctttgaacct	ttattttatt	gaagaagtta	attgcagtcc
ctctaataat	gataattaaa	ttcagcccta	tccaagagca	agcagctaat	agcatttatt	tggatctttt	tttggttaaa	acagctttta	tttttaaaca	cttggaaact	taaaaatcat	tcaagctata	agactcaagc
ctaaagactc	aaataaaaa	ataataattt	tgaccgctcc	ccaaagtaac	gaacaaccac	aaggaaatat	ttaatattta	aataataata	tagattttat	gcctgagatc	tgaaaatcat	agacgagctc	tgtcagcaga

42060	42120	42180	42240	42300	42360	42420	42480	42540	42600	42660	42720	42780	42840
gcaagtgatt	gaaagaactc	ggtggaattg	gcaagaatag	gaaagctttg	attgctgttg	aaagattatt	aaagatgaga	aagtttctta	agtcttaata	gtaaaaattt	actgatgtca	atttatgact	cttgtatccc
aaattttgct	atctggctat	ttctgggcaa	cccccaagga	agacccaaca	taataccgga	agctataaag	tacttctaag	aaccacttat	tatagatggg	tgcctatggg	cttaacgaat	ttcacccttt	agaatttaga
taccaaattt	ttggagaaag	atatagactt	ttcacagagg	tttctacaaa	atggaacttt	cttataggtt	acaagtctga	ctgataacca	atatatggac	aaaaaagtaa	gcctatcaag	ctgagtcgca	cttttagtca
tcgtacctag	ataagaggaa	ctgattgatg	caaattgaag	ctcatatata	atggggtcat	aaagacctca	atttttctca	aattgggtaa	gatcctgcag	atggactctc	gaatttcaaa	tggggcaacc	aaaagagata
tgaaaacctt	acatttccag	agtaggttta	tgatgttgat	aatggcgggg	tgaaatagtt	aaattttaat	taggaagaat	attaaaagtg	agagttagat	taagcctgga	taaaaaattt	tgatgctgat	aactacaaga
taaagcactt	ctagagcaag	caaactctgc	ccacaacttt	ggtctagcgc	aagggaaggg	gaggtaatgt	ctgacggatt	gcacatttag	tatctcaaat	cattatctga	atcatcaatt	ttcttagtta	atttttcaga

DOMFIELD DOMEL

43740	43800	43860	43920	43980	44040	44100	44160	44220	44280	44340	44400	44460	44520
tcatacaact	tgggcaagaa	gcacctgatt	atggtccaat	atttgctatt	tataattagc	ttacctgcaa	cgatactgat	cattacatta	tgctatcttg	ggttgccaaa	ctttttattc	aataatatat	ttcataacaa
tacttctgag	ttattcatta	tggtaacgag	tataggagtc	cagctgttgt	ggtttgcggc	atatggaagc	ggagaagtgt	atattaagat	aatataccaa	cgacatatat	ttatttctat	tttatcttgt	gtgcagaatc
cccataacaa	gacaatggac	gtttttactt	atccaaggca	atggaaatag	gtaaagtgtt	gcaggcttat	cttcaacagt	aaaaggatgc	ttattagaaa	gcaatagttg	gttatagatt	ttattcttta	gacgatatta
tactctgatt	tatgaacatg	tcagtaagag	agacatggag	tgaattttgg	aaaacaagac	tatgtatgac	cttttatggg	aacatgggat	ctctggattt	aacatgggga	atattggttt	aacctcagga	aaaaataaga
tgagttctat	taattatgga	taagtactat	gctctacaga	actttataag	tacttgctgt	atttctttat	tcatgatggc	ttattgttag	tgactttaat	atggactaac	aaaattggat	gacttttatt	tgtcatgggt
ttggtaaaag	taacaaacat	atatttttga	ttatagatac	atgatttcta	atttatttat	tcaatattat atttctttat	attttttata	gctcctcaat	atagttatca	cctttcatag	agacttcttg	atgtccagag	tttggttaca

APPENDIX A

45360	tagttgttgt	gcgcattctt	aacaagtatt	ttatttaaac	ttaaaaaata	agagaaaaaa
45300	taaaaaaatt	accctaaatt	tgatcagaac	atggaaaaat	ctcatacaaa	gagtatttcg
45240	agtacatgtg	cattatttag	gcatttttgt	gagaatggat	acaaatctta	attaaatgat
45180	aatattcagt	acaaataatg	gaaagcttat	caattttatg	gttgataggg	cttatcaaaa
45120	atgcttataa	tcgttatcga	tgatattgcc	atccttttt	agttttaaca	ggagtactcg
45060	ttttagactg	aggttattt	ttggagggat	caaaccttct	ttgaataaga	tcataatgac
45000	atgttctctc	tctgataatt	actcaataac	tatacgacaa	ggatttgatt	tcttcataga
44940	aaaatataat	gaggttcctg	tttactaaag	tttacagaaa	gacataaatt	ttttagcaat
44880	agaaaaaata	cccaaaagta	tattgatctc	aaattcatga	gaattaaaaa	acttggaacc
44820	ttttaaaaac	aatgaagttt	taaggattcc	tttcacttgg	ggtattgaat	atatatcgag
44760	tagtatggag	tatggaattt	tgatttgtct	ttttatttag	tttagatttt agtccagagg	tttagatttt
44700	aactaaaaat	atactcagcc	tgaaattttt	atcgagaaaa	ataaatgtag	cgcacacaaa
44640	atcatccatg	ttaagagttg	caaagcaatc	ttgataacat	atttgtaatt	tgaaatatct
44580	gccctgtatc	attaaatcag	tattaaaaca	atctagagat	aaaaatcata	tctagatata

COBHISLE OEDICE

tgatgaaatg attagtaaaa	tgaaaagagg	tgcatatatc	atcaatactg	ctcgtggcaa	46260
gatttgtgat aaagatgcta	ttgcaagagg	cttagagtca	ggccagctaa	gtggttatgc	46320
tggtgatgtt tggttcccac	aaccagctcc	aaatgatcac	gtatggagaa	caatgcctaa	46380
ccacggcatg actcctcata	cttcaggtac	ttcgctatct	gctcaaacaa	gatatgccgc	46440
tggggttaga gaaattctag	aatgttattt	tgcaggcgaa	ccaattagag	acccatattt	46500
gattgttcaa aatggtgatc	ttgcaggtat	gggtgcgcac	tcgtacacaa	agggtacagc	46560
cacagatggc tcagaagagg	ccgctaagta	taaaaaataa	gttttagaac	ttacttagcc	46620
tttccttaat aatagagtct	gcctctgcca	taatgctatg	cattaattct	tccactgtcg	46680
ggatgtcatt aaccagtcca	gcaaccattc	cacatgacca	ggctccaacc	tccatagttc	46740
cttcatgcat aatttttgga	tagactcctg	caacctcatc	cacaatatca	gcaaaagtta	46800
attcatcacc aagagctttt	tctttttcaa	tcaatctctc	aacagcttca	ttattaagaa	46860
ccctttctgt atttgttaat	gatctcatga	tgagtctagt	atctaactca	gaagcattta	46920
cgatagcctc tttcacattt	tgatgaacag	gtgcatcttg	agtagcaata	aacctagttc	46980
ccatattcat tccctcagca	cctagtgaca	tggcagcaac	caaacttctt	ccatctgcca	47040

57/126

Page Page

Ø MBA-101

aagagtatga ggtatttcaa gctcatctgc tgctctaggt ggcaacaaat

ttccacccga

47160 acagaaaccg aaaaccatct gtcatcttct cctgggtgtc cgccacactc aattaggaat 47220 ttatgaataa agaggtgcat gcttttaatg agtgccttac tattgcttgt catcgcaacc 47280 ccagcagtct aaagctggga ggtattctgc aggatttctt cttttattcc tgcttcttt 47340 tctgggggtg accaggatag tcaataatta cttttatcaa aacccctgca ctacaacagg 47400 tctttgcatc attggtcatt caaatggctt aaattaacag taaaaatgtt ttagtgatgg 47460 attgttccaa tagaccagta taccctgtgt ttctcaggcg atttgctaat tggcaatttc

47520 tgcattccac accaacatgg gccgctgcaa gctcggcaaa atttgatact gtccacccgc

47580 ataatactct tttagttttc attcagttat ataccaaata tggatgttct cttgaatgat

47640 ctttgcatgc agtttgaagt cttcatattg gttaaaaaat ttccattggg cctatttatc

47700 acctcactat atattctaga tcattacctt ttcttttaac tctatctctg cacttatcca

47760 gcaacaatat aacatccttt taaaaacctc tcctcctcta tggcgttaag gaggggttac 47820 atagcagttc actcctgcta caccaggacc atttgcagtc cagettecat cattecatea

47880 gtaattttta atttccatat cgataccttt caggaaacgc taactgcttg agggcataaa

48420 47940 48000 48060 48120 48180 48240 48300 48360 48480 48540 48600 48660 48720 gcacctagtt tgttctatca cccatatca cctgcatttg tttataatgt atgatgatgt aactccatag agatagacaa gctgtttcct gcatagaact cttttattat ttagatagtt ttgttgttat taaatttatt gccttcacct aacatttaca atcctggctt tccaccgata ttgtataaca aacactcttg actttattgc cccatcttta atgaagaatg tatatcaaag gaggataaaa gccgcagaga gctgcagctt ttgtaactgc atatccagcc tgccccagat aaccacaact ccagaaatt cattagcctt tttttattta gaaaagcctt tattgatagc caagaacagg cctttccatt tatttgtgat aaatcgcata tatgagactg gcacttactg caagcccatt ctatagaact cagcccctgt tcataagata gagatttaat gaggatgtat attccactgg atgaaactag gcagcatgaa gcttcaaaaa tcaacacata taatattgca cttttttaat atgaaatact tccattcagc aaaactcaca cacatgtttt cgaagtatct aaattgacca accggctgct atcaatacca ggaaacatca agccttacca tttcatttt gatattgagg taaattcata caacaatact gtgctagaaa ggggcaatag tgaaaatata tgtcccaatc tttttttatt gagttaaaag tttgaggaag aacaaaatat cgttttcttt ccgccccatt cttcacataa taattttcat tattacaaaa gctattatta tggctcgtcc

MBA - 101

48780 48840 48900 48960 49020 49080 49140 49200 49260 49320 49380 49440 49500 49560 aggttaatac ttagtattga caggaataaa caaaacccga attttgggcc aagaaaaag caggtggttg cagtagatag ctccagaata caggcaaact tttcatatta aatttcaggc tctatactta agctagaatt aaggtcatta gataataaaa gaattttttg tggagattaa cataataaag ctaaataaaa attaaaagtt cagccaggaa aatttattta atgaatatat aataacaaga ctccaaagtt ccatctgatt gactggtcta catcaaggct tgcatcacat tactatcgct aaattgttca caatagagat accattaaat tegtegeaag tggaataett gaaagtattt cattccattg taacctttta caagagtcgg cagcatttct taatcaaatc ttttggtcta taaatattat aaaagaaggt tacagcaagt atagttggtt agagctagat taaatgcaga aaactgcact atgccattat atattattga aaatgagtat agattcagcc ttgccataag aaagaaatgt gatgaaatta acaattgttg tttttaagtg agagcgagta cgtattgcga attagagatt accaatccaa ccaaataaag gataaaagat aagattgggg gatggggaag ttaggggaaa gaacctttta cagctaaaaa gtcctcaata tatcggccca cgtcttagca gtatgcctat aatttcttgg gaataaattt caacactagg cggagaattg aaaaggagat tgcttgcgga agaaaaagt attacgaaga tagtgtattg tgaattaagc

DOBLYSIS COCIOI

49620	49680	49740	49800	49860	49920	49980	50040	50100	50160	50220	50280	50340	50400
atcagtttga	ctcttgatca	tttattatca	caaccggtca	atttaggtat	ttcatacagg	tattacttaa	gagttactca	ttgaatcaac	aggctatttt	cagaaactag	ctgctggaaa	tgcctgctgg	ggaagaaaga
atttatgaca	gaaatcatag	gcttcaggca	acctctggaa	aatgttatta	cttcctttat	ggcgagttaa	tctgactatg	catccagatt	ccttgtgcag	tggggtatga	aaaataggat	gggaatgaac	cctggctatt
aaaaactcta	taatatttct	tttgagtaat	gattatgtat	gcagcttttt	tttagttgtc	tcatgcaggt	tatcggcagc	tatgatgaat	tgggggcgca	gcagcaagga	ggctgaaaga	tggagatgat	aaatattaca
atagtgagcc	aagaagaatg	atgaaaaagt	ataacattat	cgcacaaaat	aatcagtcca	atccaattct	ttctatcaat	cttatcaatt	atgctggagt	gtgtttcgat	aatcgtccga	tcaaggtggt	ttaaaggccc
attcttaatg	aaagagctaa	gaaagtgatt	gatctagaag	gccatgatca	gtttcccctg	tgttattcaa	cctgggaaag	gttccagccc	ggagttaagt	ataagcaagg	actggtcttg	catactgagg	gagatttata
gctcagttat	agaaatggtg	atttgaccaa	ggaagaagtt	ccctaagggc	ttcagcagct	cggaatgaat	agagtttgag	tctgtttgca	aaatttatca	gaagacttat	tccaggtgct	accgcttctt	agaagtaggc

agagattett qqttttttat	gtggttaaaa acaggtgatg tcqatqqaaq qatatqtata		50460
acatagttga aagttsaaaa	tcgatggaag gatatgtata tgttatctat cagttaccac	tctcaggtgg aaatcgcaga	
atagccctaa	gtggggtgag actggtaaag		50640
tgacggcaga	agaagtcata gatcattgtt	taaaaaatct	50700
agaaagttga	gtttattgca gctcttccaa	gaaatgctac	50760
cattaagaga	tatgtaatat ttttaagcca	aaaaaaaccc	50820
tttaactatt	taaagttatc taatgttaag	cattagaaga	50880
atataattaa	accaaataga atcttgttaa	caaagtcagc	50940
agttaagagc	tgatccaccg tcacccatca	ggtaacctgt 5	
tegeccaace	aaagatgata atatacatca	ttgtgttgta	51060
ttgcagtatt	acatgcagat tttccttctc	cagcccataa	51
aagctaaaca	cccaataatg aatgcaggcc	atgcagccat	51
aaccaaacac	22775 BY 227588	ctagtaattt	512

COCKTOLO CECTOL

51300	51360	51420	51480	51540	51600	51660	51720	51780	51840	51900	51960	52020	52080
attcacatat	aatcaccagt	taacaagacc	caaagaaaaa	tgtaatcact	tacctaatat	tgcctcccc	taaaaagcat	atatttattt	atcctggttc	gactctttga	gcctagagga	ttgttggttt	ttataagagg
attaagtaga	acagttggcg	gcaataccag	tctctttcaa	gaaacaccag	gcaataacac	gaagcataat	aggttacaaa	ctttaaatta	gttgcaattt	aggggttgcg	cctcttttta	aaagtagagg	gcttgtgcaa
agcagcaaga	gtatctaaat	atgccagaaa	agaaactcta	taaccaaaaa	tgtaggaagt	taatgacaaa	atattaatag	aaacaccata	taacatgaaa	tattattgat	atcgaaaaac	aggaaatgaa	agactatgga
cattagttgc	accaatcaat	tgtacatgta	tccattttgc	cagcagtaac	ctgcagcaaa	actcctatat	atagtaacca	atgtgtaata	gtatcatatt	gtcacacgga	ctaagagtga	ctatttttaa	atcttgcaaa
gatccagcaa	actgttagta	accctctca	aatgatgttt	gctaataaag	tcaccaccac	ttcatatata	atgaaattta	aatagaaaat	gacttgttta	atcacaaatg	gttgcaatag	ttagcccaat	ttaacagttg
cttaaataat	taatagagga	ttcaatccat	agatacagtt	tacagtagat	agcatcaagg	cagtaataat	ctaattaaat	ctatttttt	tgcataagta	ctttgacccc	caaggttgtt	tagaattaat	tccaagaaag

æ

APPENDIX

52980	53040	53100	53160	53220	53280	53340	53400	53460	53520	53580	53640	53700	53760
tttactgagg	gcttctttca	ggaagttcag	ttgttcccga	caagattttt	ttgttccaac	cttgtttttg	cttcttgaat	aatatgcttg	gaattgcata	taaaaccttc	tcttaggtaa	aatatgctgc	aacttggtgt
aacttgatct	gtgtatcctt	ttcaacctct	gctggagtaa	tttgcattag	acaacgtttc	gaaatcactg	tgggatctga	tcatactgtg	atacttagct	ccattgatat	acaatgtcta	ttctttctca	gtctcttttg
agctttcgac	ggtttctgtt	tcagggttgt	tactatgtca	gtaatcatat	caagagatca	actagtggcc	atttgaaaac	atttgctctt	aaagagtggc	aataccttgg	ctgacttcca	tttcgctgct	ttcaacccat
cttctttcta	ttccatctaa	ttaattgctc	tattaatttt	tggcaagtat	tttctgcctg	cttccagggc	atgttaaaac	gagtattttc	cgccgccttg	atggaactgg	cagattctga	ttgcactgct	ccaatgctaa
atattttgct	atccaccact	tttaaatttt	ctgagtaaat	agtcttagat	tataagtttt	acttgagtcg	tttgcaacta	tctgtaaata	gagttaacgg	cctgttactg	tggtttgttt	gctacacttc	tagttatttt
taaaaattat	tttcaaagct	gcaaagagcc	gcatttttaa	tgcgagccct	ttccgcgctg	tctgtagcca	agcatttaca	aatccttctt	cttccttctt	attccttctt	atagttaaat	atgatttgaa	ttttaactgg

53820	53880	53940	54000	54060	54120	54180	54240	54300	54360	54420	54480	54540	54600
ctctaccaat	ttcttgaggc	ataacccaac	cagatattgc	ttcttactaa	atttagattg	cagatgtaga	agttagttga	gctctttatc	cttcattata	aaaatgattt	aaacatttat	ctaacaagtt	tgacgctcag
ctgaatattt	tctgttctaa	gttatggctg	gctttttctt	agctcagcag	tctgtaagag	gtaaccctgg	tattcgttcc	tgaaccttaa	ttctcaagcg	aaaagtgcta	tttgcagtgc	tagaatatct	aaaattcata
ttcatttaag	aagtgatcct	ttgaactcca	ttttttaata	gccaaaataa	ttcagcagca	gagcggctga	gttttgatag	agctcttcct	tgtagggtca	aaatgagata	attaataatg	tttcttagag	aaattggcta
catctcccaa	ttgcagaata	attgagcctc	gatcaagttg	ctctaagtac	caaagtctgc	ctagtctaaa	gcagttcttt	ggagaagcgc	ctgctttata	atgaaatatt	attttaacct	ttattttata	aaggctttaa
ataagcaaac	aaagactctc	tcaaatgcca	tgttttgctt	ttatcaatag	tgctcaaatg	aaccatgtat	tattgctgct	gtaatactcg	gaatattccg	agactttcag	ttcataactt	tttattgaat	ttataataaa
tggcaggtca	cagagcattt	tttacttaga	atcgaatctt tgttttgctt	tgcatttaga	aagattttgc	cctatattga	aaaagagtta	tccactcaag	tgctaaatat	gatatccaaa	tgtgtaaatt	tttttttaat	caataatttt

54660

gtatacggat

gacctgggat

actagatcct gtcaaaaaaa

gcaattgaag tcttatctgg

54720

tgaagctctt

attcggttga

gttcttgata

aattcaagaa

caaatcattt

acatctaacc

54780

taaggtctct

atggctttat

aaaagtatct gttctaaaag

gttcaaacat

tcaggttatt

gatgatggaa

54840

aggtgttgag

ataaagtttc

ggggtatgcc aattgatgag cacccggaac

54900

taatttctct

gagatgatta

tgctggagcg aaattctctg

gtaaacttca

ctcatccttt

54960

attagaggtt

tatctgatga

agtttctgtt gtaaatgccc

atggtgttgg

ggtggccttc

55020

taagtcttct

ataatggaga

atcactttta

agaataccaa

gagattctaa

agagtaaaaa

55080

taaattcaaa

ggacatcaat

agaaattctg

agtggggctc

caattgggga

gaattaaagc

55140

gcatttatta

aacagcttaa

attcagataa

aactatagag

catattttga

ccaaatccta

55200

aaaaagact

tcgttaatga

acgatagagt

tcctggatta

cagttctctg

aaggccaaag

55260

tgattcttcc

gctatttgat

gggctcaaaa

ttttgaagat

aaaagtggta

gatgataaac

55320

tcaagctcaa

attgtatgct ctaaaaaatc

gctagattca

acttggtttt

gagggagcag

55380

cgatgaaacc

ttggtcatta agaccccaa aaaataaact

ttgcaatcaa

gagcttgaat

tcataccaac

tatgtgaatc

55440

tgctcagggt ggctcacatt taaatggctt taaggctggg

66/126

ළිකුගුල

æ

APPENDIX

MBA-101

55620 55980 56220 55500 55560 55680 55740 55800 55860 55920 56040 56100 56160 56280 aggtttaaaa gtcgttcgtc caatatagtt gcctcctcta gcgagatgaa aaggtttaaa gcttcagaat agagggcgaa ctgtaatagt agggtccgca gattttaaat cctatcaact aaaatttgt tgcattgttt ctttactttg taaacattca atatttcaat attttgtgaa tacagaaatc tattgcctaa caaaagtttc agatgttcta tatgcacttg atgataaaca tttcatctaa aagatcacat ctcatacaga aactttcgga actcagccgg agataaaaa taagatacgg tgagagggaa atttttataa tttaagtatt tggcttaaca aagcctaaag caaggaaaga ctagattcaa tatgtctgct cagacgagag ctttcatcac agatggtctg catattgcaa ggaaggatat atcatgcctt ttacctggaa aaatctcagg gttgaggggg aaataatgac taataatgca aggcccagcc agaaataata gaagaagggc gctttttta tttccaggca agttcaagag atgatgttct attctggtaa cttttagatt cattaaaaga cagggcaaac caaaagacat gagaaagatc ataaatcttt aacttgcaat aaacttttag tagaaagtgc ttctgccagg atgctgattc atagttactg aatttaaaaa atgaaacaga cctcaatttg tcaagtacca tatagaatcg acttgggact gcaattgggg ctaaggcatt attaatgcag agaatagcag gaaagaaga caggacttaa aaacaagcaa attcttgcag

COELTETE DECICA

ggacttggtg aaatgaatcc acctcaacta	a agagagactg	tgatggaccc	tgctactcgt	56340
cagcttgttc agctttctat cagctcaagc	c gataatgcaa	attctatgat	ggacttactt	56400
ttgtccaaaa agaacgcacc agcaagaaaa	a gaatggcttg	aaaagaaagg	gtctctagca	56460
aaaatataaa tatgaaagaa caaataacct	t caattagcct	caagcaatat	gctgaagagt	56520
cttatcttaa ctatgcaatg tatgtcattt	t tagatagagc	tttgcctaat	attggagatg	56580
gccttaagcc tgttcaaaga agaatactct	t atgcaatgtc	agagcttggg	cttgatgctg	56640
gctcaaagta caaaaaatca gcaagaactg	g ttggagatgt	tataggaaaa	tttcatcccc	56700
atggagacgg cgctgcatat gaagctatgg	g ttttaatggc	tcaaaatttc	tcattcaaat	56760
acccttttgt agatggtcaa ggtaactggg	g gttctcagga	tgatccaaaa	tcttttgctg	56820
caatgaggta tacagaatct aagttaacta	a aatttgcaaa	tcttttaatc	tctgaattga	56880
agtctggaac agtcgattgg cagcctaatt	t ttgatggctc	tcttttagag	ccagtaattt	56940
ttccagccaa actcccatct attttattga	a atggcacttc	tggaattgct	gtaggaatgg	57000
caacagatat tccatctcat aatattaatg	g aaattattga	tgccacagta	catcttattg	57060
ataatccaaa atcacagttg gttgatttac	c tcaagataat	taatggtcct	gatttctcaa	57120

57240	57300	57360	57420	57480	57540	57600	57660	57720	57780	57840	57900	57960
atcaacgcat	atgcttaaga	ccagtaaggc	cacctttttg	ttgaaaggtg	agaaaagaaa	catatccttg	agagaatcag	gcaaatgcaa	gaacaagaaa	aagacaagac	gaagtaagam	actcttgtca
tcaaatcatt	agctgatcaa	ccacaaggag	tgtaatgaat	tttgatttca	gctagtcttt	cgataggctg	aaagattatt	tgatatccag	aatcaagtta	actaagctct	tgagtttgga	tgaagaagaa
aggataagaa	tagagcaaat	atgaaggaga	atgctgaaga	taaatatgaa	tgaaagaatg	accaggtaaa	ataaagtaat	ttaaactttc	agctagaaca	ttgaaaaaat	aaataaaaga	aagttttttc
caatgggcgc	tctaaaattt	gatcttactg	aacagagtaa	aattatagag	gttgatttat	catagactcg	ttagatttag	attacagctt	caactagcca	caaacagata	gagcttattg	acagaagcca
agctcaagcc	agcatctggg	aatggtggtt	tttaaaatcg	tttacaaaaa	tttctcccta	aaaactagaa	aattgtttat	aaaagatatt	taggttaagg	ggtagcagaa	aattaaaaat	aagagaagca
gcggcttcaa	taccttatca	aaaaaattcc	ttgtcataac	catcaactga	gaccaaaagt	ctgtaataag	aggggttatt	atgagccaaa	tccttgagat	gagatacttt	ttaaaacatt	aatctccaat
	agctcaagcc caatgggcgc aggataagaa tcaaatcatt atcaacgcat 5724	agctcaagcc caatgggcgc aggataagaa tcaaatcatt atcaacgcat agcatctggg tctaaaaattt tagagcaaat agctgatcaa atgcttaaga	agctcaagcc caatgggcgc aggataagaa tcaaatcatt atcaacgcat agcatctggg tctaaaaattt tagagcaaat agctgatcaa atgcttaaga aatggtggtt gatcttactg atgaaggaga ccacaaggag ccagtaaggc	agctcaagcc caatgggcgc aggataagaa tcaaatcatt atcaacgcat 5724 agcatctggg tctaaaattt tagagcaaat agctgatcaa atgcttaaga 5730 aatggtggtt gatcttactg atgaaggaga ccacaaaggag ccagtaaggc 5736 tttaaaaatcg aacagagtaa atgctgaaga tgtaatgaat cacctttttg 5742	agctcaagcc caatgggcgc aggataagaa tcaaatcatt atcaacgcat 5724 agcatctggg tctaaaattt tagagcaaat agctgatcaa atgcttaaga 5730 aatggtggtt gatcttactg atgaaggaga ccacaaaggag ccagtaaggc 5736 tttaaaaatcg aacagagtaa atgctgaaga tgtaatgaat cacctttttg 5742 tttacaaaaa aattatagag taaatatgaa tttgatttca ttgaaaaggtg 5748	agctcaagcc caatgggcgc aggataagaa tcaaatcatt atcaacgcat 5724 agcatctggg tctaaaattt tagagcaaat agctgatcaa atgcttaaga 5730 aatggtggtt gatcttactg atgaaggaga ccacaaggag ccagtaaggc 5736 tttaaaaatcg aacagagtaa atgctgaaga tgtaatgaat cacctttttg 5742 tttacaaaaa aattatagag taaatatgaa tttgatttca ttgaaaaggtg 5748 tttctcccta gttgatttat tgaaagaatg gctagtcttt agaaaagaaa	agctcaagcc caatgggcgc aggataagaa tcaaatcatt atcaacgcat 5724 agcatctggg tctaaaattt tagaagcaaat agctgatcaa atgcttaaga 5736 tttaaaaatcg aacagagtaa atgctgaaga ccacaaggag ccagtaaggc 5736 tttaaaaatcg aacagagtaa atgctgaaga tgtaatgaat cacctttttg 5742 tttacaaaaa aattatagag taaatatgaa tttgatttca ttgaaaaggtg 5748 tttctcccta gttgatttat tgaaagaatg gctagtcttt agaaaagaaa	agctcaagcc caatgggcgc aggataagaa tcaaatcatt atcaacgcat 5724 agcatctggg tctaaaatt tagagcaaat agctgatcaa atgcttaaga 5730 aatggtggtt gatcttactg atgaaggaga ccacaaggag ccagtaaggc 5736 tttaaaaatcg aacagagtaa atgctgaaga tgtaatgaat cacctttttg 5742 tttacaaaaa aattatagag taaatatgaa tttgatttca ttgaaaaggtg 5748 tttctcccta gttgatttat tgaaaagaatg gctagtcttt agaaaagaaa	agctcaagcc caatgggcgc aggataagaa tcaaatcatt atcaacgcat 5724 agcatctggg tctaaaattt tagagcaaat agctgatcaa atgcttaaga 5736 tttaaaatcg aacagagtaa atgctgaaga ccacaaggag ccagtaaggc 5742 tttaaaaatcg aacagagtaa atgctgaaga tgtaatgaat cacctttttg 5748 tttacaaaaa aattatagag taaatatgaa tttgatttca ttgaaaggtg 5748 tttctcccta gttgatttat tgaaagaatg gctagtcttt agaaaagaaa	agctcaagcc caatgggcgc aggataagaa tcaaatcatt atcaacgcat 5724 agcatctggg tctaaaattt tagagcaaat agctgatcaa atgcttaaga 5730 aatggtggtt gatcttactg atgaaggaga ccacaaggag ccactaggag 5742 tttaaaaatcg aacagagtaa atgctgaaga tgtaatgaat cacctttttg 5742 tttaccaaaaa aattatagag taaatatgaa tttgatttca ttgaaaggtg 5748 tttctcccta gttgatttat tgaaagaatg gctagtcttt agaaaagaaa	agcatctaggc caatgggcgc aggataagaa tcaaatcatt atcaacgcat 5724 agcatctggg tctaaaatt tagaagcaaat agctgatcaa atgcttaaga 5736 tttaaaaatcg aacagagtaa atgctgaaga ccacaaggag ccagtaaggc 5742 tttacaaaaa aattatagag taaatatgaa tttgatttca ttgaaaggtg 5748 tttctcccta gttgatttat tgaaagaatg gctagtcttt agaaaagaaa	agcatcaagcc caatgggcgc aggataagaa tcaaatcatt atcaacgcat 5724 agcatctggg tctaaaatt tagagcaaat agctgatcaa atgcttaaga 5730 aatggtggtt gatcttactg atgaaggaga ccacaaggag ccacaaggag cagtaaaggc 5742 tttaaaaatcg aacagagtaa atgctgaaga tgtaatgaat cacctttttg 5742 tttacaaaaa aattatagag taaatatgaa tttgatttca ttgaaaaggtg 5748 tttctcccta gttgatttat tgaaagaatg gctagtcttt agaaaagaaa

ogetysle cschol

58020	58080	58140	58200	58260	58320	58380	58440	58500	58560	58620	58680	58740	58800
aaaggccatg	tatggaagag	tcacttgcaa	gtatctgcag	ttcatgatta	aataagaaat	attaaagtaa	atttttaaga	ataccaaccg	gaggctagct	ctagaaaact	aaggtagata	tctcaaaaat	acctaacagt
cagaagtgca	acttcaagat	gaaggcttac	tacaggaagg	tgaagataaa	tatggtttct	tcttaaagcc	cagactttta	aataataaat	acttgtttct	actcaaagat	aggatatagg	attatagatt	cttggagaaa
ctggctggat	gagaagatgt	actcaaatgg	gtgatcctat	ttgggaatga	agtttaaaaa	aagcagacct	caaatattgg	aagggaataa	cccatgcgca	tcactttaaa	tgcttccaca	aagaagactg	tattattagg
ttgtctgcag	tcctatagag	gtttttcttg	agaggaatgg	tcttcattga	tatatttcag	atccctcatg	gcagcagttt	ggaaagggca	gagttaatga	aagagattcc	aggggaaata	ttagaagtta	gctcattttc
tacagtagtc	cagctcactt	tcaagtttca	tccatctgct	aaagttcatt	tggatatggc	atttatgaaa	tttgtatata	gccaactctt	agcaaaagaa	tgaaagcgga	aagagcaaaa	agaggttgag	tcatcaacta
ctgagcctat	agatagaccc	gaaagagcaa	gtcactctct	attctggagt	tgaatactgc	caggaaaagc	gagacgatca tttgtata	ttgatgaatt	ctaaatttat	ctttaaggat	atatttctac	aaatgattga	ttttaatccc

58860	58920	58980	59040	59100	59160	59220	59280	59340	59400	59460	59520	59580	59640
ttaaatcatc	cagaagttat	atctaacttc	cttcattacc	ccgacatatg	atataccttt	gtgttccagt	tttttgcaag	gccattgaac	tagtaatgtc	taagatgctt	aaaatgaaat	tcttaactgc	aagaattctt
gattttttta	cataaaccag	aaattgataa	gtatctataa	tgagaccctg	aagccattag	taagcaaaga	gccttatgtt	attccagatt	ttttctagat	aaaccgtctg	aatgacgttg	tttcttgcta	ttatctgcaa
attatgatgg	cactccgacc	tttattcaac	tttagaaatg	agtcgtgcca	tcctagtggg	aaattgctca	tatgacaagt	tgcttttgtt	tgaaaaaacc	cagaggcgca	tcttccatga	tgagcaaaat	aaaaaatact
tcattaaccc	tgcttacttc	tctcatttat	aaaatgattt	ctcctccaaa	taagaatgcc	gagtaatgtt	cttcatcaat	attttttatc	cagtcttatc	tccctctagg	caagcatagt	taactgttga	ctgaattgca
gccttaagaa	ttgctatcct	catttgtgct	accttattta	gcaattgggc	ttatctgaag	agaatatcag	ccggattgaa	tttgctataa	ataaccgctg	tgatttttta	aaagctatac	ttatttttat	gattctgccc
agatgcattc	tatttgaatt	tttttcaaaa	tttctttaaa	tatggcacat	ttttgaaact	agcaaaacaa	cctgccaatc ccggattgaa	tttctttatt	cagttctaat	attatatgga	agctttagct	gacctcattt	agcctcaatt

OOSTALE OSCIOL

59700	59760	59820	59880	59940	00009	09009	60120	60180	60240	60300	60360	60420	60480
ataaatgcca	gaccaaggtt	cccatacatg	ccatataatt	gttcaaaaat	ggctttaata	atatttttct	ctattcactg	tctcaagatc	ttcaggtcat	tttaggtcta	gtattaatag	ccagagcttt	atttctaaaa
tagagatttg	ttatttgaat	ttatttaggt	taaaaaggca	cgtggtttca	ctcactcatt	catagcattg	gcttggtatt	aatatttatt	atgggaagag	taagctaagc	tgataaaaat	cttctcaaag	cagggatgcc
ctcatttatg	tattagatct	atatttctta	tgcaggagcg	tatattgtat	aaccaaacag	tatgcggtgg	ctggtttaga	aaaaagaaaa	ctgaatataa	gagatcttct	taaatgaaga	atcacgattc	tcttttattt
taactgaggg	taagaatttt	tgaaatcaat	caacaaaatc	ctttcataaa	gtatctttaa	atatctattg	ttgccttttg	tggagtgata	tctaattatg	aaagacagaa	ggcagctttc	gatacattaa	tagctttaat
cttgccaaag	gattgctttt	atgcctgctg	gctttttta	ttaattatct	aaaatttcta	tatatctagt	aacgctcatt	aagttttaaa	agaaaaaggc	ccaggtttca	tgttgaggtt	tcagatcata	taacttcttt
gcataacttt cttgccaaa	aagctcctca	agtgacggca	cgatccactc gctttttt	agtatattct	taaatgacca	gaataatatt	tttttggagc	cattctattt	ttgtaactat	ttacctcttt ccaggtttc	aaggcgagga	aagagctaac	aatttctttt

MBA-101

Page 72/126

19847513.OSO101

tttggaaatg	attctccctg	tattaatggc	ataagatatg	caattgcttt	tggggtaacg	60540
tccattccat	tttagctat	aaaagatttt	ggtaattttt	tttctaaatt	agctatttt	00909
gccagtggag	ctggttcaat	tttccaccta	tattttttag	ctttacctct	aactattatg	09909
ggcataacac	cattcatgcc	ttctactgca	tactgaactg	ccttggcccc	aacagccata	60720
	gcttgctcta ggtctgtttt	ggaggcaata	tgtcgtgcac	ttctttgtag	atagtcagaa	60780
acagcccaat	gattttttag	ttttaattta	tcagtaatta	agttggcaat	gtaaggcgca	60840
actccaccaa	gttgagcatg	accaaatgca	tctattgttg	ctgattcaga	aagaaatctg	00609
ttcttattat	ttttcaaccc	ttcggatacc	acaacaacac	agtagccatt	tttttaaca	09609
acacttttaa	cttctgctag	aaatttttt	tgattgaagg	ttatttcagg	taataaaatt	61020
atatgaggtg	catctccttt	ttcttttctt	gcaagagaag	atgcagccgc	catccagcca	61080
	gcatgcctgc ccataacttc	taatataaaa	acttttgttg	atgttgctgc	cattgaccga	61140
acatctaatg	aggcttctag	agttgatgtt	gctatatatt	tagccgccga	cccaaatcca	61200
ggacaacagt	ctgttaatac	caaatcgtta	tcaacagttt	ttgggatggc	tatacagtta	61260
	attggataat ttaatttttt	acttatctgc	gaaactttaa	atgcagtatc	agctgaatca	61320

COMFYKIE OFCICE

ttaccgccat tgtaaaaaa	aa atatcctata.	ttgtgcgctt	taaaaacatc	aataagcctt	61380
ttgtactctc tttcgcttg	ga ctcaagatct	tttaacttaa	acctacatga	cccaaaagcc	61440
ccaccaggcc tatatttca	aa tgactctaat	gcagatattg	attcttttga	tgtatctatt	61500
agttcctcat tcagcgcgc	cc caatattcca	ttcttgcctg	cataaatttt	accgatgtct	61560
ttatgcttct tggcctcta	aa aatcagagcg	ccagctgtag	catttataac	tgcggtaacg	61620
ccgccggatt gagcataaa	aa cgcattttt	ttcatttttt	ctccatcaaa	tgtactgaaa	61680
taaaaatatg taaagtatt	ta taactaatat	gcgaatacat	atcttaggga	tctgtggrac	61740
ctttatgggc ggccttgct	ta agatacttaa	agagtcaggg	catgaaatat	ctggatcaga	61800
tattcaattt tatcctccc	ca tgtcagacta	tcttgatagc	tttgatattg	aaatgatcaa	61860
gggctatgac ataaaaagc	ıca tgccagatgc	tgacttgtat	gtgattggta	atgcactttc	61920
tagaggaaat gaatccgtt	tg agcatattt	gtccaattct	cttccgttta	agtcaggccc	61980
tgaaatgctt ggagaaatt	tt taaaaaataa	aaaggtttta	gctatatctg	gaacacatgg	62040
taaaacaacg acttcatat	ıta tgttgactca	tattatgtta	gatcagggta	gggatgtcgg	62100
ttttctagtt ggtggaatat	at caaataatat	atctggctct	gcatgtcttg	ggtcagatgg	62160

MBA - 101

COMFIGURE CECHOL

62220	62280	62340	62400	62460	62520	62580	62640	62700	62760	62820	62880	62940	63000
gatcaaaatt	atgctgatat	taattccatc	tcgatatggg	cagtttattc	ctttaatagg	atggaattca	gattagaata	caaccgcaat	ttggtctcat	ttgaatctgc	agaatgctag	ctttctcaga	aacccattgt
tttgataaaa	gaatttgatc	ctaattaaaa	agagatctta	tcaattgagg	aatgagttac	gcaaagacag	gtaaaaagaa	gctcatcatc	aaaaaaatac	ttgtctttgg	gttttgtcag	gcgatatctg	aaaatattaa
ttctgcattt	caataatatc	attccatcat	taaaaatata	taatgctcat	ttattcatta	tattttggcg	ctttgatggc	tgatgatttt	aaatccatca	ttctcatggc	tcgcaataat	tatttctgca	agacagccaa
atgaatatga	ctatagtcat	ttaaaagaca	ttgctgatga	caatcaataa	aagaaagtat	acatttcggc	cattagctag	tagaaattta	tcgtaacaca	tgtctggggg	tctggctaga	ctgaagattt	tgaccaataa
attgaggcag	tcaccaagca	ttagatgaca	gttgtttatt	aatcagatag	ctaaaatatg	tttaaaaact	tctatcaaat	tttgatggca	tctaatgccc	tcaaacacta	actcatgtta	actaacacta	gttattttga
aacttttgtg	tattcactat	ttttaataat	aaatggaaat	aatttggtca	tgataagact	agaacataat	aattcaggat	taaaggaagt	agaattttct	tgagctaggc	aaaatcttta	cattgaatct	ttatgatatt

09089	63120	63180	63240	63300	63360	63420	63480	63540	63600	63660	63720	63780	63840
gccctcccag	aaaacatgtc	caaggcgatt	ttgccaaatg	atatgtcaat	gtagatgatc	gtaaagcatc	gttgcatacc	gaagcattcg	actacataaa	ttgatggact	ggatagttac	gcatcatgat	aataccacaa
aggaatagtc	acagatggtt	taatgagtct	ctttaataat	aatcagtaat	agatccagag	ttctcagctt	tgctgattca	aaaactatta	aagaatatct	tctaagccaa	gtatttgcct	ggtaacacca	agtaaaacta
tttttccttt	ctaggtatat	ttaatgccaa	aaattataga	ataaggtgat	aggcacagat	ctagcattct	actttggctc	atgagaaaca	actatattga	tagattttgc	tttcaatata	aacctggcca	atttttaatc
aatttaccag	atttttgagc	gtaattgttt	agttttgttg	aaatctataa	gctgatatta	cctgagatat	atccaggttg	ctaagctcaa	attctttcag	ggcggcttat	acaaaccttt	atagtgaaca	aacctaaaat
gaaaaataat	atctcttcaa	ccatggattt	taagaaggga	gataactgta	actgcatatt	ggcagaatat	tgacctgccc	ccttatacct	gcggatgaga	ttatttattt taatattatt	agggatttct	cccaataata	ataagggaat
agatcacttt	gtagcatcca	tatccaagaa	tcactttttc	gccttcttgg	tagaagatgg	aagctgtttt	ctaagattag	acttagcagg	atgcagcaca	ttatttattt	taaaaaccgt	taagcattag	tcccccaata

rotorum muser

63900	09689	64020	64080	64140	64200	64260	64320	64380	64440	64500	64560	64620	64680
cacttggaat	aagatattga	catttagggt	caatgtctaa	cttaaatgat	tgatatcaaa	taggcatgca	tatcatgggt	tgtagtaaat	tgaaaacacc	ctcaccttca	agtaagtcta	ggtcttaaaa	ttgctgggac
ataaaatagt	aaaataaata	attatgatgg	tttagtatag	caaaaaagc	ttctatcact	caaattcgaa	ataaaattag	gtggtgaggt	gtctttgggg	gtgttggaaa	tccctaaaga	ctacagaaga	gatatattgt
atctttcttt	actaaataaa	ttcaaaaaaa	ttaataatga	ataattttgc	gccgaaaatg	attgcaactg	ataaaagcta	ttagtagact	gatttagaag	aatatcataa	acaaagcaaa	ccaaaaagat	gattctaatg
atttcgagac	tactaacgag	ctttataaga	acctttttat	taaatataca	tgataataaa	caacatcatt	agttgaggag	aggttggata	agagttttat	aatgctatta	agaatattac	gcagcaacac	gtccaaaata
ttggtcttaa	agccacctca	agtataagaa	ataattaccc	aaacattaaa	aaaccctcag	cttttgctga	ccgaaaagtt	agacagaatc	atgacataag	cttcgaaata	taacaggaat	acgtaaaagg	agttaatctc
caacgggtta	taatccagca	gctcagccaa	attaaattcc	aaataaattt	atttgcactg	ggtatttctt	aagtctttat ccgaaaag	gtagagggca	attatgaaga	ctcatcgatt	tcttgggagt	aattttatta	cttgaatcta

DOBLYSIE BOOLDI

64740	64800	64860	64920	64980	65040	65100	65160	65220	65280	65340	65400	65460	65520
atccatgctg	agatattctt	gcttttcaag	tccctaccac	agattgttgc	tattctttac	aaagaagtgc	gttaataatg	gatttcatta	attaaaaatt	tcgaaagaag	gatgttaggt	gtaggtggtg	tctgaaacaa
tttttgaaaa	gcatacctcg	tacctcacag	tcaaaaatct	ctttttcaat	tttcaagacc	gaataaaaca	aaatattcta	aaacttagat	tgaaaacatt	aaaagatctc	tgcatttata	actcggttat	tttgaagcaa
tttagtaaat	ggttcatttg	agtctcaccc	ttttcaattc	aaaaaagaag	tattcttgct	cagcactaaa	acaggaatgg	caaaaattaa	attcagaaat	taacaattaa	aatttcagaa	tttcacacgc	aaaatcaaga
taattttgaa	tgtaattggt	ctcgatctca	ctataggtca	aggtttgttg	gccctgttt	tatgaactag	gtcatctatg	atccaaccat	gagctatcag	aatagagagc	agaagctacc	ccttacttat	tcaattttaa
agtcgttgaa	agctttactt	ataagataat	tagagcaaat	tctgaatgag	tttctttggg	ctattctgac	tgttcgagga	tgacctaata	taaaataata	tgcaacttat	atttgaagta	aaataaatat	taaggtttta
tcaagtggcg	gaaaatatga	gataaatcta	attgttctta	aaatgattga	ttatatattt	aggtttctag	tagttcagcc	tecetacata	ttaatatttc	ttaaaaggag	aaatagcaaa	atagtagaga	taagtaatga

DOMENGIS, OSCICI

65580	65640	65700	65760	65820	65880	65940	00099	09099	66120	66180	66240	00899	66360
atttatgatt	ggaaggcttt	catttagatt	gttgttgcct	aatgtaaatg	gtagacaagc	aagccagcaa	aaagatcctg	ggaggtcatg	tttctcttg	tttggcagga	gaatggaaaa	gttggtcagg	gcaaaaaag
attggaaaat	tgatgcaagg	cctttttact	aaggggtgct	tccaagcttt	gattaatgat	ttctacaata	ctttacactt	atggaagaaa	tacttttttc	tgagtttggt	gcctacgcct	taatttaggt	tgcatttctg
gaaaaacagg	tatttgaagt	atggaaaaag	tgaataatag	acctaagcac	tcgaaaaact	actctccagc	tagactggaa	tttatagggg	aaagttctaa	gccatctttc	ctggattatt	gagataccgt	catattactc
tttattgctg	ggaaaaaagt	aaacctatta	tttgaacaaa	atagttacct	tcggtagagt	caaggtcggt	gaaaaaatag	gatcagagga	gcaatcatag	aatttaatca	aatccagatt	tggtttaaag	gttcaattag
ttcaggtggt	agggtccttt	aagttttgaa	aaaaaagcc	atctggttct	tggcatgtcg	tagggccggt	tagcattgtt tggtattaaa	attaccagag	tatgaagggt	tgatattaat	agattgtttt	taattttggc	tgccactcca
cttttaagta	cagctttaag	taaaagagct	taaattcaca	tagagcttaa	gtctttctaa	cattttttga	tagcattgtt	gattttttgt	gaacaattga	cttataaggc	atgtttgtaa	tgaataatct	gctatatgag

DOKKYSIB DEOLOI

a 66420	a 66480	g 66540	a 66600	c 66660	c 66720	a 66780	t 66840	c 66900	t 66960	t 67020	t 67080	a 67140	t 67200
gcttttataa	attggagtta	gttgttgctg	aaactagtaa	atgcctgatc	gttgcaggtc	tagactttaa	tgtcggtcat	ctaagcaagc	accctgattt	ttctaactat	tttttacct	atttatataa	taggttttat
aagcaatact	ctcaagcatg	aaaatcatat	ggaagattac	ttttggtcca	cggcggttct	aagaaaaaat	ataaccctgt	agcactgttg	agccaacctg	gtattgattt	gatttaggat	ttatcatcat	ttgatattaa
gtgacagcct	atcaaattca	taaaaccttt	cacaaacaaa	tcattgtggc	atggtgaaag	tcaataaatg	atttattgcg	agaagatatc	gtttgtagtt	ggggggastt	aagatggctt	gccaattttt	ttttattaca
tttgtcgaga	tcagactggg	gctaaaagat	cttgtcagca	gaccatgcaa	gttattgaaa	aatgagctta	atcaatattt	gcgcatcaca	tgctgttaat	tattttttgg	atggagccaa	aaatatcatt	ctaggcatac
agagctatca	catagataac	gagaggcact	aacggttgag	tggtaacaga	agtaagtgtt	tgctgtttta	atttattttg	tttttataca	ggttttggtt	ttttctgggt	aaagaaataa	gagattatta	ccaataagca
gaaatcttca	ataatttaag	ttgaagatcc	caaaatctgg	ggcaaaatat	cagagtatgc	ctgttgctat	aaactttagc	gggtttattt	tgtattcgtt	ttataataca	gatttttggt	gcaatcctct	taagccactt

CORHYGLE OSCIOL

agg 67260	tta 67320	aga 67380	.caa 67440	caa 67500	gaa 67560	aga 67620	cta 67680	.cct 67740	tat 67800	.aaa 67860	atg 67920	atg 67980	atc 68040
ttatgtcagg	aatagcctta	acaacagaga	tataactcaa	gggctcccaa	tattgctgaa	atkactcaga	aggaggccta	tgtagttcct	atcctktta	aagatgaaaa	tcgaatcatg	gaatcttatg	gttgctaatc
ttagtagtat	ttggatctgc	agccatttca	ctgcatggaa	gttatcagga	tttttgctgt	ttdtctttat	ggttaactat	tggttgttgg	catctttgct	aattaatgca	tgcggattat	cggttttgag	gcttaaatct
gggaaccagt	ccgccgttta	aactttctag	ccttatggta	aatggaaaag	acagatttta	ttatcagtat	agattttgca	aatttagcaa	aaaggcggct	acacataaaa	tttcaattac	tcacaaaaca	gtgatgagat
aacctgactt	caggattaag	tttatggaat	agacgcagac	aggcggaatt	agagacagaa	ctgtattttg	tgcaagagat	attatttatt	atttatcagc	ttctatggca	atattcacta	aatgaactcg	gcaaaaagc
gtagctagac	ttatttttag	ccttacctbt	atttgaaccc	caattggatc	atdttttacc	ttattggagt	tagcatttaa	ttgcctctac	tgcctcttcc	ggattataat	tataacttta	aatggtaata	cttaaaaaat
atttgcactt gtagctaga	gggttatgta	tttttattat	gttttaactt atttgaacc	tcaaaaatag caattggat	gcccatcttg	gagtttggtt ttattggag	tgtttatatt tagcattta	agtttagttt ttgcctcta	gtagttggta	atagcttttg ggattataa	aaattatatt	aagatagcca	ttactgcaat

acaaaaagag

atagggctat ctttataaaa

tgggatgaat

aacaaaaca

ctgctgaaaa

68160

gctgagaag

tttagagagg

atattaatgc

ataaaaaaa

caaaaaattt

tttcagaagg

68220

aattatggca

tcctaaagaa ataattactg ctattttagg cgtagaaact

aatttggagt

gcaataaagg

tggatacaga gttttagata gtcttactac tttaggtttt

68280

gatgacccgc

68340

agagaaata

ccttttaaca

agagaactta tagagttett

ttttttaga

gaagatctaa

68400

gcacaattta

catgggatat

atgcgggagc

aaaggctcat

caaaacaaca

atttagatat

68460

gttgatttat

agatggttac

attttgatga

tatgctgtag

ctaccgagcc

tttcgtcaag

68520

catggatgga

tctttatgtt

attgggagta ttgcaaatta

tgatgatgca

ttaattctgt

82/126

68580

ttttataaac

tgttagaaaa

atccaaacaa

acaaaaactt

aaagatcgta

agagagaagg

68640

aaagatcttt

tgaagatgga

ttcatacctt taatctttaa

tctaacaagg

ctcatgagtc

68700

gatgtctatg

taatattagc

tttagggcta ttgctaagta

tgatgataac

tttttattgg

68760

tattcacatt

aaaaaattat

tcagaagagt taaaaaaatg

ttattactta

caatggcggt

actatcaact

68820

ctgagttaga

tcaatattta ttcaagcaca gagttttgtt ccagattctc

68880

aatttaattc

ttgagccaaa caccaatact gttattgcag

tatatcctaa

tctgaagagc

ngerzs.esol

68940	00069	09069	69120	69180	69240	69300	69360	69420	69480	69540	00969	09969	69720
ttgtggctga	aaaaagcatg	tatctgatct	cagaatatgc	ctttggagat	tttcatcagc	aatatgcttt	ataagctttt	ctggatactg	caggaagtaa	ttagattttt	tttgggggtgg	ttcctagaac	ctcctatcgt
actagctatg	ctaattagtg	aaagttacgg	gttgcaattg	tatgctgcct	gaaaatcatt	tttccagaag	ttaaatagaa	acagaagctg	acagttgttg	gagtatggat	aatattacag	tctattactc	aatatccagg
taaaattatg	tgacgaagta	agctggaaaa	tgatgcctct	aatgaactct	gcttccagat	cattaataaa	tattaagcaa	aactggtcat	gaggcttatt	aagattactt	agaatatcag	agaggatata	agttaataac
ctagcatgac	tatctcttga	cctttataga	agtcaggcaa	tcgttgactt	attcaacagg	cagctaacta	cttttaacaa	atggtgttaa	ggggcggtat	tatcttccca	gtgcagaaaa	tgggagttct	ctgtttataa
atagaaccag	aatggtttaa	gggtctaaga	attatgattc	gaaagaggct	atctttcaga	gccaatctga	aagcaattta	gactcagcag	tcagcaaaaa	gatcgttttt	aagatgttaa	atacttggcg	aatgttgaaa
agatttggaa	tcagattgca	gagaatgcaa	tttaaaaggt	aggcggcact	gaataatacg	aaaagattta	atataagcag	atggagagac	tttagttggc	gtcagataat	tacaacacag	acaagaaaag	aagtttcaaa

69780	a 69840	00669 £	09669	70020	70080	70140	a 70200	a 70260	2 70320	70380	70440	a 70500	. 70560
ttctagttac	tatggtcaaa	cttaaaggcg	tctcgagctt	gcaattgctt	gccgtagatt	agtaatggct	catgagccaa	aaaccattaa	acatcattgc	gttattatgc	aaaaatgatt	gcattactaa	ctagaagatt
gatgagattg	tttggaagaa	gaaaacacca	atcacctttt	taattcaact	actagcgatg	atctgaattt	gtctcatatt	attccaatgg	tattaaatca	ttgtgatgaa	ttttttgta	cataaccaga	taacttcagg
aattagtaat	taaaggtttt	tctaacagat	acataaaaat	ttcctttctt	ctgctagtca	taataacatc	atccattaag	aggcgcactt	ggaggtgtga	aactagataa	catctaatct	tacttcccgg	tcatcgaaga
ctctagaaat	atattgaagc	gcttatttgg	actgtagata	tatgaagtag	ttagaatttt	attaattctt	cgaggcgttg	ggctatgcaa	attaggtggg	aatgcagcaa	gagggtggcg	aatggaaata	agtatagagg
aaagtcggga	gctttaaaaa	tggatattta	ggcttttgat	tgatagcgta	tataaaaaga	tatatttgaa	tcaagttact	agaaaccttt	atgtgatgat	tatgaacatg	tttgttgacc	cccagctcta	aaaaaattat
agttggtcaa	ggatttggtt	gttcgttctt	tttttaatgg	atactttttc tgatagcgt	ttgatgatca	taaaagaagt	atgtctatta tcaagttact	atttaaaaat	gagtatcagt	ttggtaatgt tatgaacat	acaaagataa	caatctgcac	ttaatgaatt

ctg 70620	aag 70680	ctc 70740	ttt 70800	agt 70860	agc 70920	atc 70980	aat 71040	ttg 71100	taa 71160	aat 71220	atc 71280	ttc 71340	aga 71400
cccatttctg	aagagtgaag	tatcaagctc	atacatttt	attcagaagt	tttgtctagc	cataatgatc	ttgaaataat	ttctttcttg	gggcaactaa	tttcagaaat	ttccacaatc	taagcttttc	caatttgaga
agggctggcc	tcttttcaaa	ataactatat	tcaagctcaa	aaatgcatat	ggatttttac	agaagaggtg	ttggtattat	acagaaggtt	tcattctgtt	ggcctatct	gatttaagtt	gttgtgaaat	ttaatattt
gcgcaacgaa	tataccatcc	agtcagttta	atttgcaaga	atttttaata	actatctaca	tatccaaact	taaagcttgc	tgcagactcc	aagctttact	cactaaagag	ttcttcaaaa	tacccactta	atccatatgg
tggctcacaa	cacttggatt	cttagttaga	taagaccttt	gtagtttatg	atttaattag	ttttaccaac	ggataatttt	gcataaattc	tcagtcttag	atatattttg	gccaaatctt	ccatctgttt	ttgcaatatt
ttcttgcgcg	cctagaatct	taagaagttc	tctttatcac	attaagtttt	caaaccccag	ctgttaataa	tttattgaat	agctcaaatg	tctttataag	ttcatttcag	tgatgcttaa	gctatctcat	ttaataatta
tatcaaatgc	aaattagtaa	aaatttttaa	gtaccaaaaa	ttggagctgt	tttatttttc	attggctgca	ttccgctgat	tttatcttca	gccatcacca	gtttccagag	aaaagatagt	aatgatgagg	attgcttgaa

71460	71520	71580	71640	71700	71760	71820	71880	71940	72000	72060	72120	72180	72240
ctattatttt	tatcaaaccc	tgagcaaaag	tattttgtga	acctcaaaaa	atttgatctt	tttttactta	tcaagagctc	attagaatct	ttttgctcaa	tctagatcta	tataaaaaga	aagattaatt	tagccgagtt
ttaatctcaa	tgatctattt	gataaatgtt	ataaagaaga	aaaagcatgc	agatttaatc	gctaacaagc	aatttctcct	atagtcttgt	gattgctaac	atcttttta	caagcaagtg	atatatatca	gtttttttaa
ttgatcatga	aataatagtc	ccctttattt	agatccaaaa	ctcacatttc	cagactcaag	atctcttgta	tttctaaatt	tatttaaaat	tattgaagag	aattaaatag	aagatatcaa	tatctgaaga	aatataaata
gtatttttcc	aagcattttc	tttctttgaa	agacaacctc	ttgtcattgc	ttctgcattt	ttcgatttat	tttatatgta	atatcatatt	tcttttctg	tcaaaccgaa	cagccagtta	tcatagtatc	tttttctt
atttggtcag	aaagatccag	ataattgttt	ttatttttta	tatttttgag	aattaattcc	attaagttca	tccaatcatt	gcctccatag	attctcagct	gacactacta	attaaattgg	tttcataacc	aaatttatta
tattttaatt	tgagccaaat	atctttatta	atctttagag	ctgatctaaa	ttatttgatc	gtgcaaatgg	tttgtttatt tccaatca	ttagagaaga	gattttgacg	aagaattagg	tatttagttg	aaggtcttag	ttaaataaca

72300	72360	72420	72480	72540	72600	72660	72720	72780	72840	72900	72960	73020	73080
ctttttgctc	ctattaaatt	caatttcttc	gcgcaatagg	ttgagatcga	tcgaagcaat	gagtattatg	ctaagtcaat	caccttctac	tgtaaagcct	ttccttttga	ttttaaaagg	ttgaatatag	gccaatattt
gcttctatat	tttacttgaa	caagaagatt	gagatatgag	caatattgat	agctccatta	acctttttaa	ttgggctcct	aatcttgagg	gtaaacatca	tctacagtat	gtaagaagct	tgaaaaaatc	tcaacaggca
cagtgctaaa	cacctttcca	aagaacaggc	taaatgttgt	ttcattaaga	aaagttaact	gtcatttgta	cgaaggatcc	ttttttcata	agggggagct	agattgagga	catgccttgt	aagcgcctta	tatatataaa
tgtcgatagc	ccttacctct	actcctctct	aattattcca	ttattattgc	aatcaggtat	ttgtttcaaa	cttcttgttt	agttccatat	gactttgctc	tttctatata	ctttaagaac	ccatatctct	caatacctcc
gtttattgtt gatgccacat	tctatcatta	acttctaata	tcaaagtaaa	ttaagaataa	tctttaaaag	aatgaatatc	cggagctcta	ttgctgacta	gaccattcta	gcgccatact	ttagccccat	tcaactaaat	atcgcatgct
gtttattgtt	aaggtttttg	aaattcagaa	ttgtgcaaag	attgagagtt	cgcattacct	ggctgtatta	cgattttctt cggagctc	aaattttcta	agatgactct	tacagtgtca	tttggacatt	ctcattgcct	taagtgcagt

73140	73200	73260	73320	73380	73440	73500	73560	73620	73680	73740	73800	73860	73920
cgtaatacca	cagaaatatt	gctctggaag	aaacaaccgg	tgaactggat	atgcctcatc	caactggaag	tagatgcaaa	cataatcaag	gaattacatg	cagctttcac	accctattga	caggtcgtgt	ctgctccctg
gtaaatcttg	tttagtcgat	ttcttttta	ccattttcat	tctcttaatc	atttcaagag	cctttttgta	agattatatt	actccagttc	gtaattggat	tcagcttcag	ttttttgaca	aaaattgtat	tatttaattt
gtcagatgaa	tgtctctctt	aggtgccgag	tcttggttca	cacaccccag	atctttaata	tattaatttg	aggaatctct	acccatcact	cttcttcttt	tttagccata	cgattcatta	agaaacacca	ctcaatcatg
catctgcatt	caaaagtatc	ttaagggaat	catcaataac	tttgtctgct	cgtctgctaa	tatcagagtt	taataacttg	gagcaggaac	atacgggtat	gtttttcagc	agtcttttat	ttgctaaaaa	catcggaatc
tcaaacattt	ataaatgtat	tcattttgac	atatcctttt	ccccaatatc	ccaaggtttg	ccatcatatt	ttatcaaaac	ctttgatcat	tttccaatcc	ttaattccaa	ttgtttagaa	tttggtgata	tttaaagaat
tgaattttta	tgatgagtcc	ataaaaatct	cactataggc	aatagggcaa	taactgctca	agagtccatg	ttcattatta	ttcgaaatct	aagtacaaaa	cattccacta	ttctttgcat	tatagagtga	tgaaaatacc

73980	74040	74100	74160	74220	74280	74340	74400	74460	74520	74580	74640	74700	74760
ccacctcatc	gatcaatttc	gctcatttgc	aaaccaaacc	gttcacatgt	gtttcatatg	ctgcgttttc	tattcattct	tatgtaattt	caggattagc	gacttgggtt	atgtttattt	tttaatgccc	tctagaattt
tcaggccaat	ataaaccatt	tctataactt	tttttcctat	tagtattccg	ataagttgct	ttagcaatcg	acattaaagt	acatggccca	tctctaccat	ttctctattt	aattaatagt	ggtgatttgt	tagccgagct
tttaacattt	tgtaattttt	tccttttcca	cactaatgat	ctcccactta	gcccaaagat	gctaacttta	aggctgaaaa	atagtttctt	ataaaatttt	ttgaatggtt	ttttctaagt	tgatgaagag	attctcttaa
tttgcattgt	cagcgtagtc	cagacctcca	gatcccagtt	atattaactg	catacccaag	aatcttttgg	cccagcccat	caccgatcgt	ttgataggca	accattcatc	taggaactca	cagaatcctt	agcactcagc
atccaattcc	aaaagttcct	acttgcgccc	tcatcaactg	aactttttaa	tttgaccaat	tgattcgtcc	ccaaatgcat	gatatgacat	tatggaaaca	tcttctttta	ttcatttttt	tatcatcatg	attcatctaa
agatttccca	caaagatgtt	ttttatttca	taaaactgtc tcatcaactg	tttatcataa	tctaagctct	ttcaatattt	agcaggaagc	tttatatcta	acctgatgga	tttaaatttg	atattcagga	tctttaaagg	tctataaaaa

atatcctcca 74820	tgtaattgtt 74880	tagtgagtgg 74940	aattcttagt 75000	aacctgaatt 75060	aatagtgcca 75120	tttattaaga 75180	tetectetge 75240	aactatttga 75300	attgccgaat 75360	ctctcttca 75420	tggatagccg 75480	tttataacct 75540	gtcgccatt 75600
ggggaactct atat	tatgcatttt tgta	ttctgcattc tagt	tttcaagagc aatt	ccggatgttc aacc	ataaaaattc aata	ctattagtgt ttta	ttttttgatg tcto	taccatcacc aact	aaatggtttc attg	taagatcttc ctct	taatcataat tgga	gaatctcatc ttta	ctgttatttt gtcg
tcatagttag	a ccgccaggtg	t tctgcattaa	c tcaattggca	c atttctgtta	a ttatcttcgt	a ttgacacaag	t tcctcaatta	c gcctttcctt	t ttttctagat	t gcatgtccaa	a gccgttgcct	a ttatcagatg	c agtgtttttg
c tagaagtgaa	t tatgccaaaa	t atcaggatct	c ttgatttagc	a gccagttatc	a atagaattga	c ttcacataaa	g tgctggagct	c taaatgtatc	t cccaataaat	t tgttatttct	c accgccacca	t aaactcatca	a tttttcagcc
gcctgagtaa tgatttttgc	g agtcatatct	og gttgaaaat	at taatatcatc	tgtgctttta ctaaatcaaa	sa tttctataaa	yt aatttatttc	gcttcttgat ttatattaag	at cccttgtacc	at gtctagggtt	ag cttcctgcat	sa tteetettee	ag caatttttt	ct gaattccaga
gcctgagte	taaatatgtg	cctggggatg	ccatgaaaat	tgtgcttt	cttgtattca	accccttcgt	gcttcttge	atactgcaat	acttcaatat	ccatttttag	acaactctca	atatctctag	ggaacgattt

19847513.0SO101

gagagaat ggcaggtata tttaggtagc tttgagttgg agatgcaggc 75780		gtttcatc agagaatctt aaatgtttta gatctttatc agcttctgag 75840	gtcttgat accaagctct ttacaagctc ttatagctcg aagagcaatc 75900	rgcaataag aactttataa ctcattttaa ttgacagtta taattttttg 75960	eggactte catettecae gteaataett gaaatettge cateaaatte 76020	attcatca ttttcatggc ttcaactata cagagcacat cacctacttt 76080	tactttta caaatggatc tttttcggga cttgggcttc tataaaaagt 76140	jagaggtaa caacatcccc tatgacagtt tgcttagcct catccaattg 76200	rtgagatag ctggctcatt tttgacaatg attggttttg aaacaaattc 76260	gttatctc ttgaaattct tactgactca tctccttgac ttacttctat 76320	agactett gaageattte tataagtttt tttattttee taatateeat 76380	gtatttta atatgecett aageategee tetteataae eettageaee 76440
gcaaaattat gatcttctgc aaggaaccca	ctgagagaat	ccaatacaaa cagtttcatc agagaatct	taaacagata ctgtcttgat accaagctc	tcaccacgat tggcaataag aactttata	tccaaattca accggacttc catcttcca	tgatttaatt tcattcatca ttttcatgg		tcctactatt ggagaggtaa caacatccc	atgagttgtt ggtgagatag ctggctcat	ttgattagag ccgttatctc ttgaaattc	ttcttttaaa tcagactctt gaagcattt	ttatttaccc ctgtatttta atatgccct

2 76500	76560	76620	٦ 76680	2 76740	2 76800	16860	y 76920	76980	77040	3 77100	2 77160	a 77220	3 77280
taaattcctc	caagaaatgc	caaagtctat	tactttgaaa	gaatatcttc	ggttggggcc	tttttaggat	cccgcttcag	atttcaatgc	ctatatagat	agctctatac	gcttgtttt	gagttttcaa	attattaaac
gagacatgtc	atgttgacac	tttattatta	tgctccgcat	aaatcttgtt	agaagattga	atttacagat	atagcaaaaa	tgaagaattt	aaattcatcc	tttaaatttg	tatatatgct	gaccctattt	tagtagtata
agatagatat	atagaatggt	tgcagcagga	tattatttca	taagactaat	tctagttccg	tttaacagaa	tttgcatggg	ataagttcaa	tctcgccaaa	gcactttatc	tttgccaagt	tggcttctgg	tcacattgga
cagctatatc	ggtgaacctc	tatgagtata	gtattgattc	tttgatttgc	cttccttttc	tataatagat	agttgatttt	aaaacctccg	agaatctcag	ttaaatggga	ccatctctta	aatacttcat	tcacctgcaa
atcacttctt	atgtctgaaa	gctatgctcg	atagtgctat	ttgcattgat	ctgccatata	aatatattca	tttttataag	atagtatatt	ttcatctcta	ctcaagcgtc	catataataa	tgttaaagca	tgaattcaat
aataccagtt	tcttgtatat	atcccttata	tttttcttca	agatattaaa	aagtgatttg	atttataagc	tttaaagata	agcatccctg	ttataataaa	ctttacttga	tatccaagta	caacattggt	aaagatttgc

77340	77400	77460	77520	77580	77640	77700	77760	77820	77880	77940	78000	78060	78120
ttttattaaa	cttttatatg	agggcatcaa	atctgaatta	tcaaaataaa	aaagcatgat	tctctatttt	ttcatatatg	tgagagcaaa	ccagggatat	tgcttctttg	aatatatcca	atatcttcta	aaacaataac
aaaataaaga	taaaaatttt	cagtaataag	agaaagattt	aagcaagaat	atattttacc	aaaaagttat	atgatatggt	gactatcgcc	ggctcatcgg	ctcatctagc	gccagctact	tatcttcagg	cttccgaagt
ctaagtactt	actttcgcac	agaaaaagaa	ttgcttccaa	actcttgaag	aaagtagatc	gaggatttaa	aatacacatg	ctagactata	gctttttctt	agcgcaggcg	ttgcctagta	tataatttat	aagcttagaa
gaataaaccc	tatgttccag	aattttttat	attattgtct	agctagaatt	acaagtcaga	gccgcatcaa	taactcagtc	gttttattct	tgctctagat	ttgtggagac	aaataaagat	atctgagtct	gttttgggat
gaagacttaa	gttaaaaatt	ttttaaaaat	aatctgctgc	aaattgcaaa	caccgtctat	gagaatacaa	gttatgtcct	taggagtaaa	ctcttgatga	atatttcagt	tagctgaaca	cgtcctgttc	ctatgatttg
ttttgatcat	taacacggta	cctatttggc	tttgatgctc	ttagatggtg	gtttctttaa	ttaattctca	catggaggag gttatgtcct	tcagataaaa	tatcctgatt	ggaccaggtg	tgccattacc	atgtgtgatc	actaaaaaaa

MBA-101

Page 93/126

78180	78240	78300	78360	78420	78480	78540	78600	78660	78720	78780	78840	78900	78960
aacaattatc	tttattacat	gtttgcatca	atataagaaa	acaagggatg	accttggcct	cagctccttc	gatgagataa	atgatatttc	actgaatcaa	aaattaatgg	gagctttctg	gagctattga	ttagatctca
ctttaccgcc	aatatgcata	tgtttcatgg	ttttaaaaga	caatttttca	aaaaaatcaa	gtcaattctt	gtttaatggc	tattatatct	taatcagata	tgaagcaaaa	ataccctcat	taataaacct	agcccagata
tttgaaaaaa	gatggagaaa	tatccaacaa	gttgaagatt	acttaagcat	ttgatataga	taactgctat	cttctattaa	tgagaggaaa	acagagtagg	atgcaataga	ggttctatgc	tggcccttgt	taactatcca
aaaatttaat	tctatgcgat	acaattacat	gcagatagcc	gaagtaagtg	aatataagtt	ggtaagtcgg	tccaaagagt	ttactttcct	aacccttatc	tcaaaaaag	gttgaaagac	atgattgcta	gctcttgatg
ttaatctctt	gctttgatcc	ataatgtgaa	tgaaagcagc	taaaatttta	tgcagtggat	gtcaggttct	agcatcatat	gtatgaaaag	gacctcacta	ctcaaaaagc	gattgatgat	acaaagagtt	gccaacaacc
gattcggcct	gttacaggtg	aaaggtaaac	atgactaaat	atactatgag	gattgtttaa	tggttggtga	aaaaaccaca	taaatgccaa	aagagccgat	tactacttca	cacttgttga	gagggcagcg	ttgctgacga

oserzs.osolol

rcc 79020	1ag 79080	ıtg 79140	ıtg 79200	1tg 79260	lat 79320	ıga 79380	ga 79440	tag 79500	yag 79560	lat 79620	aa 79680	1aa 79740	ta 79800
gatctaggcc	gttgaacaag	cttttagatg	gagatcaatg	actttcatg	gttggggaat	tataagggga	aaagaattga	cgaatgacag	aaagaaagag	aagaataaat	tctttaataa	tctattcaaa	tatcttttta
tattactcat	tggcaagata	tacaaaaaaa	gccaataatt	taaaaagaat	aattggcctg	cttagtttct	aaaagaaaat	attatcacca	gcttacaaaa	aatagtagct	aattgctaga	attagatagg	tgggcttact
caatactttt	ttatgaagaa	ctcacgaata	taagtgatga	ctaatttttt	aaaatactac	ctatagcaaa	caaattccca	cttatgggtc	ttcactttaa	tcggtatcga	agagaattgc	caacatcagc	aaaatgaata
ctaggcatgt	aatgtttgtg	aacaacccct	gataaccctg	ataccttcaa	agtatttata	ttgggtaagg	gatatcaact	tttcaagatc	ggtttaggtg	ctgtcagatg	ggccaaaggc	cttgatgagc	aaagagatac
taaaaatgaa	attttctgac	tgaggtattt	gcccaaatta	ttactactca	tacttccttt	aaagtcaact	tgagggaaga	ccaaattgtt	agttggtgaa	agataaggtt	gttttctgga	ttttatgatt	cgatttattg
tgtctaagct	tcgttcaaga	gaaatactgt	cagaacctca	acttaaatgt	ctgttaaaaa	ctggatctgg	atattaaatt tgagggaaga	aaaaaaatgt	tgggggagat	acgaaaggat	atccgcatga	tgaatcctgc	ttcaggtaat

COELTELE OSCIOI

79860	79920	79980	80040	80100	80160	80220	80280	80340	80400	80460	80520	80580	80640
atgaaaaatg	caagactata	atatymcmtm	gcttctagat	gttgggattg	tcagagatcg	attactgttt	cgagaggtaa	attgctgtcg	aatagaccat	tatgttactg	ttaattcatg	gcaaatacta	caagatgcaa
tatttttgtt	aagcccagag	ataattaaat	taatcaagct	aaaaccattt	aaatgcactt	ttttaatact	tcttgtttct	tgatggagtt	ggcaagatta	aaataccgac	agaatctgaa	aatgtatacg	aagcagcagt
tgtcagactt	aggtctttga	atgcatctga	ttgacggtcc	aggmtttcac	atatgcacat	agggtgttct	tgaaatattc	gtcttggtta	ttattggaat	ctagtaaaga	gcgatcttaa	cttgtggggg	gtcttcctgg
attagatcga	ccttctcaca	gctttaaagt	aaagagctcg	ttcacatctg	accccatgca	tcaggaggaa	acacagggta	gttgtgggat	cctggatgca	tctatcaaac	tactcaaaag	gggcctggat	ctaggcatga
tttaaaggtt	agagtcagga	actatcagct	aaartattca	aggagtaggt	agcaaaagta	agttgatagt	ttctatgggt	aatagaaact	taaaaatatg	atatggtggt	aactggagag	ttccgtaaaa	gattgaagct
taagtcatga	gagaaatcgt	ctaaaaaatt	tggcaaatag	caatgcttag	cttccacagg	ttgagaaatc	ccgatggaat	ttgcagattc	gtggttgtga	caatatttat	tttgtgagaa	tagaaaaaat	tggcttctgc

COLOSO ETSZASGO

80700	80760	80820	80880	80940	81000	81060	81120	81180	81240	81300	81360	81420	81480
aatttattag	gctataacaa	atggcgcatt	acacccgtta	aatggcggta	tgtcttaccg	cctgatcaag	attctgtatg	acttcctttg	ctatctaaat	ggtccaggca	gatcaggtag	gggcacatta	tctatattaa
agcgataatg	ttttgagaat	tttattggcc	aggaaaaaa	actcaatgct	acacggcaat	accttacgag	ccatcttaga	taaagaagga	taaagcaatc	gccaaaagga	aggtcttggc	atttgttgtt	agatggcgac
aggctggcga	ctaagaatgc	cagttctgca	ttacaagaat	atatgtctga	agggattact	ctggaataaa	aatcaaatag	aaattacggg	aagaaggggt	gatatgaagg	taatgggtca	gcactcatgg	caataattaa
gattgtttta	gatattatga	tcaactaatg	ctagatgact	ggttctcatt	ttgcttgaga	gaaaatcttt	aatccaatta	gcagttgcaa	gattcagaag	gttgtaatta	acatctgcca	tttcaggag	ggcttaattg
caaagaagat	taagccttca	tctaggaggt	tgatttagag	taagcccttt	aatgaaaact	gacgcttgct	atcatttgat	gaaagatggt	tcgtgtattt	tggagatgtt	gctaaaacca	agacggtcgt	tgcagatggc
tttcacacga	aaaaagatat	tggtaattgc	caataggggt	tggcagatct	ttcagccact	ttaccggtca	agataattaa	gcaacttagc	aaggaagtgc	ctataaaagc	tgagagaaat	cttttataac	ctccagaggc

MBR-101

DOBHYSTE OSOLOL

81540	81600	81660	81720	81780	81840	81900	81960	82020	82080	82140	82200	82260	82320
tcaaatagac	aaatttgcaa	ttaaaagaaa	acttgcttgc	aaggcttgag	attcaattt	ttccagttat	atttgatgtg	ctgatgttgc	atgttgataa	ctgggacaga	aggcattgga	attcaaagtt	cttcaaaatc
ggatgaaatt	agtcttagca	aatatgtatt	aacctcagag	tttataaaag	tatggacaag	attgccctat	aatgcatcta	atcttaatat	aaaaatgatt	ttagctcagg	tctataagag	gcaaaatata	ctaggcaagt
atatttctga	ccaaaaaagg	taacagatta	tctcaattca	tcagccatta	tattaataga	tataaatacg	tgaggctatc	ccctgaaata	cggtatttta	atcactaaca	aagaataggc	atcatatgca	agcttcaagt
ttaattctta	aaaacgcctc	cttggagcgg	gaagaatgcg	atgatctaat	gcatgcccaa	tagagcatga	gcactggaga	agaaacgatt	atgggcatga	taaggaagca	tgatggatgg	caatcctact	ctgttaattc
ttctgataag	ggtaaaccca	atcagctagt	agtagactaa	ttgtctacaa	gctattgaaa	gaagagctac	aagaaaaca	agtaacataa	tataccgatc	tgatgagact ttagctgttt	ccatcagata	tataaaaata	tttagagatg
ttgatgcaga	taagtagatg	aaagtgttaa	atttccaaat	tgaagttagg ttgtctacaa	tggaaaagag	ttcagaaata	taatgattcc	tgaaactatc	tctagaccca	tgatgagact	cataattgca	cgaaatggat	ttatggtcca

rotral a carater

82380	82440	82500	82560	82620	82680	82740	82800	82860	82920	82980	83040	83100	83160
ctatggatat	atataatttc	gtgaatatag	tagaatcatt	aagaaatttc	aagctttaat	gtggtgtgga	agaaacatta	tggaataagg	agtaggtgct	caaagacttc	gccactcaaa	ctaaatgaac	tgagcttggg
catgaagttg	ccttatctag	caggttagtg	gatgttatgt	tacgcagcta	gtgatgaaga	tttgggctga	cagaaaaatc	ctgctaaata	caggagttga	tttaactttg	aaggctgaaa	acggaaataa	atatagctac
tgaagctcta	gccaggtatg	ctttgcatac	gcttgaaagc	aattctaacg	atagaaattc	ttggttgatt	acagttgcag	agagagattg	ggagagcctg	agtacagtag	ttcgacttct	aacaactaga	gaacttgtag
aaaatataaa	tcatggttaa	aagtacctac	ataaaggatg	gagctgatgc	gagcaatgtg	aaaacctgta	aactgttgaa	tgattcaaat	atttaaaaac	ggactttata	ggattatcat	tcataaaaac	accaataaat
atgtcaccaa	gcagacatag	gaaaccttca	ctggcgattg	aaaagagcgg	actaacaaat	taaattcaga	agcttgcacc	aaatggatgt	cattaattat	aacaattaga	gcaagaaata	accttttcaa	ttaaaataaa
cagttatcaa	taatgaaggt	aaaagtaaaa	catgcttaaa	aataagtttt	caaggagata	agcgacgtct	ccttgtaaac	aaggtttgca	tcaatccctt	ctaaccaaac	tttgcatatt	acaaaaaccc	cttactgaaa

MBA-101

APPENDIX A

Page 101/126

gctgctagaa	atcttgaaga	gggtggaagt	ctcactattc	ttgctactgc	tctagttgaa	84060
acaggctcaa	agatggatga	agttatttat	gaggaattca	aaggtacggg	taatatggag	84120
attcaccttg	aaagaaaaat	agccgaaaaa	agaatatatc	ctgctattaa	tattagaaga	84180
tcgggaacaa	gaagagaaga	tttacttact	gctgaagatg	aattacaaag	aatgtgggtc	84240
ttaaggaaaa	ttttagacga	tatggaagat	gctcagtcaa	ttcagttcct	aatagataga	84300
ttgaaatctc	ataaaacaaa	cgatgagttc	tttacttcaa	tgaaaggggg	taatggcaag	84360
aagactagat	aaagtttttt	gccatatcaa	tcatcatctt	atcagttggg	ctttgcgata	84420
cgtgaatttc	taattcttta	aactcatttt	gacatctatc	ctttatattt	tctgaagcaa	84480
caataaatat	tttttttctt	aaaactgcat	cgtccagatt	tgttattaag	aatttaagag	84540
tactaaaatt	atagattaaa	aaaatttcat	tattatctgt	aacttttggt	atttgctcca	84600
gcaaatagat	tacttcatag	caaactatct	catctagact	agccttaagt	ttttgttgaa	84660
gaaaaccatt	tgaattttcg	ccgcaaaata	aaagactctt	tcctagaaaa	tttttctcta	84720
ttaacttaag	aattccttca	gatgaatggc	tttgtggaaa	atgagatttt	atgccacttt	84780
caagaagttt	attggaagtt	gcgggcccaa	cagacaaaaa	attgtgtgga	agatcatcta	84840

COBHYSII OSCIOI

aatcgaaaaa	agattttaaa	atatcaagtc	cgtacgaagc	agcagcttgg	ctagtaaaaa	84900
ttaagtttga	atatgaatga	atatttttaa	ttttatcgat	agcgattttt	gaagggtcga	84960
ttgaattaat	tttagaaaga	taaatatttt	taagagctat	ttcttgagct	tcacataaag	85020
atattaggtt tcctgataa	tcctgataaa	ttttgggcc	tcgtattaat	tatcattttt	taaaattaaa	85080
gatttcgctc cttccaaaa	cttccaaaat	aaactcatca	gcaaataaca	taatatctat	tgcaatatct	85140
tgaaaggaag	atatcttttc	tttataaatt	ttttcgttgc	cttcataaga	taatattttc	85200
cctgatattt	ttatttggcc	atttttatct	tcacataaaa	tagctattgg	agacaggcaa	85260
gtaccttcca tggcagcaa	tggcagcaac	aaaagatcgc	tctgcactgg	caagaattaa	ttctttaggg	85320
tcaccaatat	tttctaaaag	ctcaataata	tctttttat	ctgacagaca	ttcaattgct	85380
atatatccct	gagatgcaga	aggtaacatt	tcttcaattg	agaattcata	tgaattttgt	85440
tttaaaccaa	gcctttttat	agcagcctta	gcaactacca	gcccatcaaa	cagaccatca.	85500
ttgagtttct ttattctag	ttattctagt	agctatgttg	cctcttactg	gaatagtttt	tatatcaggt	85560
cttaagttat	taatttgtgc	ttttcttctt	ggaccagaag	taccaatagt	tgaatttcta	85620
gcaaattcag	aaaatgattt	cccatcctta	gatagaagca	ggtcttctgg	agattcccta	85680

OGBH7512.OSO101

ctaaaaacac ttattattt	ttattatttt	aaactttgga	tcaagctttg	ctggaacatc	ttttaaacta	85740
tgcactgcaa	tatctgcttc	atcagcctct	agagaggact	caagtgtaga	aatgaatagg	85800
ccctttccac	caatttcatg	aagaggttta	tctgtttggt	ctccttctga	tgtcatagga	85860
acaagctcaa	ccttaatatt	attgatctta	gctaataact	catctgcaac	aaattttgcc	85920
tgatacattg ctagttctg	ctagttctga	ttgccttgta	gctattctta	tttcatttt	gtttccaata	85980
aaagagcctt	cacatcgcca	acactctttt	ctttcaagat	agtgaattcc	tcaggaattt	86040
ccaaggtagt	aaatttacta	tactcaaggt	agattttaca	agatggcttt	atttcattct	86100
ttcgaattat	agattttaga	acttttaatt	catattcttc	gccaaaagga	ggatcaagaa	86160
gaattaaatc	aaaacgagat	aagtcatttt	ttttaatcca	actaaatgca	tccttaaaaa	86220
aaactttaga	tttatccttg	atgccaagaa	gttgaatatt	ttttgctaac	acagaatagt	86280
tttttttatt	aagttcaacg	aacacaactt	tttttgactg	tctggatatt	gcttcaatac	86340
caagcgcacc	cgttccggca	aacaaatcaa	gacatattaa	attttcaatc	tcaaattgaa	86400
gccaattaaa	aattatttct	tttaatttat	ttgaagttgg	tcttaaggaa	tccttaaatt	86460
cgaaaggtat	ttttttacct	tttaaataac	ctccagtgat	tctgatattg	tttttcattt	86520

) † † †
٠		† † () () ()
		, , , , ,
		† † † † †
		1 1 1
		(

86580	86640	86700	86760	86820	86880	86940	87000	87060	87120	87180	87240	87300	87360
catttaaact	aggagctata	gctataacag	atcaataaat	cttttaaata	gatagattta	gctaatattt	ggtcatgtca	agctatgaat	tcttgcctct	tatctctcct	aaaaaatatt	aagcgggcat	tgacaagggt
attamaaata	aaaagcaatg	aaagtttagt	gctcgtttgt	ttgcataaac	gaccgaaggt	aagtgcccag	tattgtgatt	tgttgatggt	actcttttt	gtgtttttat	tatttggatc	aatgttttgc	ttattccttt
aataaatata	ataattttag	acgagaataa	ctcctagttt	ggtcctcttt	gttcatttaa	cgtttttaaa	acacacatac	cactgacata	ataatactca	gaaaagccaa	gtaaaagtct	gcaaaaaata	ccagagagct
ctatttatta	gtcctacaag	tcaaatgttg	tctttagatc	ataaaagaag	aatctatgca	agcggcactc	atttcatacc	aaaattaata	ttttatttta	agagtgtgaa	atctaataat	aggtgagatt	cgaagcattg
atgggtatgc	tcatccatgm	cagtgtgatg	tacctctgtt	tcacaactca	agatatttct	ctgggattta	tgatcaatta	tagcgatgag	aaaatgtatt	ctagccagga	ttatctcaga	cagctggcaa	tagttaatat
tttttgcaaa	aagttataat	tttactctgt	tttcttcagt	cagctggaat	aaaatcaaga	atagtggtga	tttgtactgt	caaactctct	aaattttcaa	aacatttttg ctagccag	caagacggtt	gaaataaatc	caccatcttt

tggaacctat

acaattcttg atcttgatcc

tcaaactgaa

ttggaggagg

tatttacatt

87480

aaataacttt

aaatgcaggt

cataattcaa

taattcttgg atcttatgtg

tctctccaac

87540

gagattagac

cagttaatta

ataacaatta

gaccettttt atcagaaaa

aaaggtcaag

cagttataac

87600

gcactagaaa

aattatattt

tttatctaga tgttcatcta agttattagc

87660

attatcccaa

cacctttctt

caactacatt

taatcatcac

attatcgtca

taggaccaga

87720

tcctcaggct

ggcaatcact

tacatttaaa

caaagagtta

caacatagac

caagaccatg

87780

gcagatttaa

tgttccattt

tattatcgta

ctttttctca

attagcaaaa

cgtctgctag

87840

tcatatgtat

aaacatcaaa

cagctgttcc

aagttaccaa

gtaatcggca

gaagatctgg

87900

tttttcttg

agtaacaagt

cctatatatt tgcttgcatt

taaaccaaac

gtgcattttt

87960

ccaacggttg

ttttttaaag

gctcattaag

aaaaaacaa

tggattctca

taatttttt

88020

gtttgagaaa

ataaggagca

caaaatgcct

tcttttgttt

atatacacat

caacagcggc

88080

ctatcacaaa

gtaaccatct

gatctaatac ttagtttagt

ctttgcaagg

caccactttc

88140

ttattcataa

gtgatgatag

agttcttcct ttaagtttcc

gcattctata

gcctgcatgc

88200

accgcataca

ttatgtatac

tgctaacata tatcatgtta

atgttgacac

tttaatttta

Æ.	3
X L C	
(A)	

1126
105
Page

aaa aataaataac 88260	ygc tttagaagtt 88320	egg aaagctcatt 88380	stc tattaatgtt 88440	sga tagagagct 88500	agt actagcaaga 88560	caa ggctgaatct 88620	ggctgaatct gcaaactaag	ggctgaatct gcaaactaag atcagtaatc	ggctgaatct gcaaactaag atcagtaatc aagaatttct	ggctgaatct 886 gcaaactaag 886 atcagtaatc 887 aagaatttct 888 tgatatcaga 888	ggctgaatct 886 gcaaactaag 886 atcagtaatc 887 aagaatttct 888 tgatatcaga 888	ggctgaatct 886 gcaaactaag 886 atcagtaatc 887 aagaatttct 888 tgatatcaga 888 aggctccaat 889 agtaaagctc 889
agatatatga acataacaaa	tttctatcaa atcttgaggc	gtaactagag aatttcctgg	atacctggaa agataaactc	gaacttgcct cattggatga	tttgatttag ctgaacaagt	tctattcaag atcttgataa						
agtcaaatac	aggcaatgcg	tgaatatgct	agcatttgaa	cttaggggat	aaaggctaaa	tgggcatatt	tgggcatatt gcagtatgat	tgggcatatt gcagtatgat agttattcaa	tgggcatatt gcagtatgat agttattcaa agaaatttta	tgggcatatt gcagtatgat agttattcaa agaaatttta caaggttaag	tgggcatatt gcagtatgat agttattcaa agaaatttta caaggttaag gttagagaga	tgggcatatt gcagtatgat agttattcaa agaaatttta caaggttaag gttagagaga
ttaagttgat tacatattaa	accgtcatag ctcttttatt	cttgaggtta aaatgcttga	ccatcagacc agtctaagct	gatatcggag atgaggtcat	ttagcacaat taaatcaatc	tatataaatc tcagagcaga						

OSSTATE SECTOR

tccgaacaag gtatttgggc	catatatacc	attaacgagc	aacaagtagt	tgttagagat	89100
cttgttgatg ttatttattt	. tgaagacgaa	tatgcttttg	tcagcggaac	acttaataat	89160
ggtgatttag taattttagg	r cggagctcaa	aaaattattg	aaggaaaaat	aataaaataa	89220
aatgaatgtt attaattttc	: taatagaaaa	gcctaggata	ttatttctaa	ctttagcatt	89280
tatattactt tctggaattt	. cttctgggct	ttcagttcca	attcaagaaa	accctgaact	89340
ggctgagaga tggggaggtg	ttcgtatttt	tcttcccggg	gcatccccag	aaagaattga	89400
aacagagata gtaaatgatc	: tagaaatcaa	acttagagaa	gttgaagaaa	tcgatgagct	89460
tgaatcaatt attactcaag	gtttttcaac	aattgtagtt	gaattaaatc	aaagtgtacc	89520
tcctatactt attgaagaga	. cttggtccaa	ggttcaagac	aagctcaatc	aaatagttat	89580
tcctcaaggt gcagaaatat	. ttcttgatag	aagcagtggt	ccgcctatca	ctgttcagta,	89640
tgctgtaacc tggaacggca	. gtggagatgc	tccactaata	atgatgtcca	gactagcaag	89700
ccagctaaaa agaaaattaa	. gctcaatagg	ctcatctcat	caaactgcaa	tttttggtga	89760
aacagatgaa gaaattttaa	. ttgaactaga	ttcatcaaag	ctatcttcgc	ttggattatc	89820
atttcaagat atcgcaagtg	ctattcaagc	cctagatgca	aaaaaaccta	ttggtgtatc	89880

	c tagatgatgt 90000	t ttaatggaaa 90060	g attatgtaga 90120	a tcactataga 90180	g taaaaagttt 90240	a ttagatcagc 90300	g gttgtaggtt 90360	c taggattgct 90420	t ctggattaaa 90480	g ctgctgcaac 90540	a gtattgaatt 90600	g ttttggcgtt 90660	a aggatgtgga 90720
1	atcatacagc	atattcttgt	agagtccatg	ccgactgaga	aatgagcttg	tttcttggaa	gttatgattg	attattgcac	agaagagcat	gctccattag	gaagggtcga	tcttcattag	ccgttcttta
	taaatcagag	tattgaagac	attttctcaa	agaaactctg	taaaaaattt	aagtctttt	tatttgcctg	cactggaatt	ttataagaat	aaacttatgg	tgttactgga	gtctataaca	ggaaaaaatt
	aggttattaa	cggtttctcc	gaaccggatc	atgagatgag	cttacacaac	ttttagcttt	tgccattttc	tgacatctat	ttgttgaaga	aaggactaaa	ttcttcctat	cagtcattat	tgagttatat
	atacctatca	tcaaaaatcc	tctgttgctg	attgttgtag	gacgaatctg	atatttttg	actcttatcc	cccttgcata	gggattattg	tcaatttcac	gtcttctctt	atggcaatga	ccagttctga
	actctcagaa	ggcatttatt	tgtagttatt tctgttgctg	acgcgcaaca	tttagtttat	ttcattagca	aataattgtt	tataggctta	tatagataat	tatcaatgat	agcaacaacc	cgtaggcggc	attaatggtt ccagttctga

APPENDIX A

tattagcaag gaagggtata	gaaatgaaaa	aatccttaat	aaatataggg	cctttttaaa	90780
ctgggcgttc ttagttccta	gaagagcaat	catgatatcg	cttgcattgc	ctgttctagg	90840
attctttctt tttaattctt	tacctaaaga	tttctttcct	gctcaagata	gagatatgtt	00606
tagagttaat atagaactgc	cttctaacgc	ctcatcactt	actacaatgc	agagagttaa	09606
ggaaattaga gaagatattc	tagatagtga	tttaatttca	atagaaaaag	attattcgtt	91020
tatcggcaga atgatgccta	gagttttgat	gaatgttgtt	ggtggagaag	aaaaacaagg	91080
atccaataat attgcgcagt	ctgtatttt	tgctactgat	tattatgaaa	tgattgaaaa	91140
ccttccagat ttatcaagaa	. gactggttaa	aaataaccct	gacattatag	ttaatattga	91200
tagtttctcg tctggccccc	cggtttttc	agatgttagt	tatgtaattt	ttggagatga	91260
tccagattta ctaaaatcac	ttggtgagga	gctagagcta	attattaaca	attctcctga	91320
tgtgagtctt acgaaatctg	. caacttcaaa	ctcaataacc	aatgttgagt	ttgaacttaa	91380
cagctcaaat atttcactgt	ctggtcaaaa	tgccaattat	cttgtaaatg	aaatgtttac	91440
tgcaaacaat ggaatatttg	. ttggcactat	gttggattca	aacaaagaaa	taccagtcag	91500
gctgaaaggg ctgtctaata	. aaaacaatat	tacgggaaat	actagtttta	taacaatgcc	91560

caaacaaatc

ggttttgagt attttgatag tttcggaaaa agctcactaa

ctctcaaggt

91680

ggatttggac

gttgagggct

aacaaatgat

atggccaaag

actaggcttg

gtcaacaatt

91740

attttgaatt

gatgttaaag

tattaaaaaa

ccgtctgcta ctgaaaaatc

aggtacgctc

91800 91860 91920 91980 92040 92100 92160 92220 92280 92340 92400 ggggccaatc tattaggcgc aggttaagta atagagttat caatcttttt tttatgaggt taggcttggt tcttatcaat ttggaactat tatctcacat ttgttatcag ttccacttat tgattcatga cttataatag ggtggttttc ttacaataag gctgaaagca tctgttgcat attattgtct cttgttgaag agcattggag ataatgagaa tatggattta ataatttctt cctagctttt acttggcgag tctaattttg gtatttcatt ccagcaaaat aaatgattca caaagctgag gacaacactt ttgggcaatg aatgtttatg gtattcttca aaccgcttgc acatttaatc ataggctatt cattaaaaca ttatactctt cagcttttat gagaggctgg aatcactaac gccttattat atattcctgc ctacctcttt tatttatagg gcttatcaat tttccgagca gtataggtct cgcaagaatc catataatca aattcttca tttcttggtt gggttaattg gctgagaaga aagattgcca tcaagcctca ctagaacaac tggactatcc gtctacacgt gactattaca tatggcgctt aagtgcaata aaaagaagag ttttgcaagt

OSHYSIS CSOLOI

cctgatatga	gagatctgaa	aaagaatacc	gcagttatta	tcaatataaa	tatgaccaat	92460
ggaatcaaaa	gtaatatcga	ttttaataag	aacatttttt	agtcactaga	tgctggctta	92520
ctatttctta	taaaattcca	agaccagcca	gacttatctt	cagattttt	tgattgctca	92580
tcttggtagt	taatagaaat	tatttttta	gtatcttcaa	gcaattcaat	atatcccaaa	92640
gattcatatg	aagcctctaa	gatcttaaga	gctctataat	tttcactaga	gttaggaata	92700
ttttcaatta	cataatttgc	tcttcttatt	gctgctatat	gcgcatcaac	actaacgtaa	92760
taatcagctg	ccgcaagctc	atttcttgca	atcatatttc	ttaaatagat	atttctttgt	92820
ttagcatatg	tagaatattg	gctatcagga	aatcttgtta	agaattcagt	tagttctgaa	92880
aatgattcct	tagctcctga	gatatctcta	tttgatagat	cagtatctgt	cattcttaca	92940
ataaagctat	tatctctcgt	atagctagaa	aggcctttca	taaaatatgc	ataatcaata	93000
tttggatgcc	taggatgaag	tcttataaat	ttttctgctg	cagcatgcgc	agcctcagtt	93060
tcagcattca	taaattgagc	ataaataagc	tctacttgcg	cctgttcagc	atatttgcca	93120
aaaggatatc	ttgattcaat	tgcttctaat	gaatcaatag	caccaaaata	attttttcca	93180
gccatccttc	tttgggcttg	atcgtaataa	attttttcag	gctgttctat	ttctgggcca	93240

Page 112/126

tcagaattac	aactaaccaa	taacagagtt	acaattggca	atactataaa	tagttttaaa	93300
attagtttat	cttcattat	ttgcacattc	tacctgcatt	atcgtaattt	aagcttgaaa	93360
acatctattt	agattaattt	ttttataata	agttcatatg	attgttaaaa	atgttccaaa	93420
tgatctatct	tcaatgaggc	tagacaaagc	tacagcagaa	atgtttacag	attattccag	93480
aactcagata	aaaaaatgga	tagaagaagg	cagagttctt	ataaatggag	aggtatccca	93540
gccaagagat	aaagtttatg	agaatgatca	gattgaatta	agccctaaag	aagaacaaaa	93600
agtatcatgg	gaagctcaag	atatagattt	tgaaattcac	tttgaaaatg	aagattttat	93660
tataattaat	aaacctgctg	gtttaataat	gcatccaggt	tctggttgct	atgatggaac	93720
tctcgcaaat	gggctcattt	ataaatttcc	agaattgatc	aatattccaa	ggtcgggaat	93780
tgttcatcga	ttagacaaag	atacttctgg	cattctgctc	gtagcaagaa	atgagtcttt	93840
taggaacttt	tttattaatg	aaatgcagga	gaggagagtt	gtaaaaaaat	atacgtctat	93900
tgttattggt	tctacactag	gaagcttttc	tatagaagag	ccaattggaa	gagataaaaa	93960
taatagaacc	aaaatggcaa	ttcgagaaga	tggcaaagat	gctttaacat	ttgtaaagct	94020
taaagaaaat	attggaaact	actctgtgtt	ggatataaga	atagagacag	gaagaactca	94080

Page 1		appendik a	A		MBA-101
ctttttgatt	tccggataat	acatgacagc	atcccaaaag	tgttatagat	ctggacctgt
tcaggcagac	tgtcgcaact	aagcttttta	ataattaaag	aatacctaag	atgctgaaga
acagttttta	gcatagctat	caattgttaa	gtttcaagac	tatgattggt	aagaaactga
gatgcttttc	aataggtact	ctagccattt	gggcaggttg	agttatttca	taccaatggt
atggattcca	gactgcattt	caggaatcgc	aatgctatta	tggtgcaaca	cttctggacc
gtcttagtca	gccaggagtt	cgacaggtaa	tattcaaggg	agcagatgga	caacccatgc
gagcaaggtg	agtaaggcat	atcatatttt	gataaaatag	ttttagacaa	atgatgcaat
cttcatatct	tggagccgcg	gctacccagg	ctaatctttg	aggtgttgag	ttcatgatga
atgcaagcac	agacatgcta	tatctggcgc	aaattgaaat	ttttggtaag	cctaagagtt
aaaccttatt	aaaataatat	tttgattaat	aaacttgttt	tagtaactaa	attgatctaa
aattaagaaa	ctacttctag	tatggaggaa	ctccaaatga	gatattccca	tttttcttt
caaataatat	gaccaaaaaa	ctcattcaat	caacacacct	gcattacatg	tccaaggcag
tccgaggttt	attaatatta	tgaagagcta	gagataccc	tctattgcaa	cccaagcagg

94380

94140

tcagattagg gtccatctat catcaaaaaa actaccaata attggagata aaacctatga

94200

94260

94440

94500

94560

94620

94680

94740

94800

94860

94920

Page 114/126

actcgtatcc tgaagaagcc	gaagaagcc	aagataagat	catacaatcc	tccgattgag	ccagaaaaaa	94980
atcaaataga t	tagagcagtc	gaagctatat	tgatatcaaa	aaaaccagtt	atatatgctg	95040
gtggtggggc a	aattgctagt	aatgccgaaa	aagaattact	tgaacttaat	gaaattattg	95100
atgctcctgt t	tacaaatact	ttaatgggat	tgggtattta	ccctgctagt	catcatagat	95160
ttcttgggat g	gttagggatg	catggaacat	atcaggcaaa	tatggcaatg	cataatgcag	95220
acttaataat t	tgctattggc	gccagatttg	atgacaggat	taccaataaa	ccatcaaagt	95280
ttgcacctaa t	tgccaaagtg	gttcatctag	atgttgatca	ctcatctgta	tcaaaaatta	95340
tagaagcaaa t	tgtagctgtt	tttgggcaag	taaaaaattc	cttaaaatta	ataaaagaaa	95400
ctcttgaaaa a	aaaattagac	tcttacgatt	ctttcgctct	tcagccttgg	cacgatcaga	95460
taaaagaatg g	gaaatcacta	catggtttaa	attatgagct	ttataaagat	gaatctgatg	95520
atcatcccat t	tttaccccag	gctgtagtcc	agcatgtcca	tgagattaca	aatggggaag	95580
catatgtgac t	ttccgatgtt	ggtcagcatc	aaatgtttgc	tgctcaatat	tatcattttg	95640
ataagcctag a	aagatggatc	aattctggtg	gtctaggaac	tatgggtttt	ggtttgccag	95700
cagcaatggg t	tgtaaaactc	gcttttccaa	aagatgaggt	tgtttgcatt	actggtgagg	95760

D9847513 DEO101

gtagtatcca	aatgtgcatc	caagaattgt	ctacatgtct	tcaatataat	ctcccaataa	95820
aaataattaa	tatcaataac	gaagctcttg	gtatggttaa	acaatggcag	gatatgaatt	95880
atggaggaag	gcactctgaa	agtacctatc	aaaactcgtt	accggatttt	ataaaactgg	95940
ctgaatcata	tggtcatata	ggaattaaaa	ttacaaaaaa	ttctgattta	agtgaaggct	00096
taaaaaaagc	ttttgaaatg	aaagataaac	ttgtctttgt	tgatatttat	gtagatcctt	09096
cagagcatgt	ttatccaatg	caggttgcaa	atggcagcct	agaaaatatg	tggctatcaa	96120
aggatgaaca	aacatgatta	aaagaaaact	aattttaatt	atggaaaata	aaccaggagc	96180
tctagtaaga	gtagttggac	tgtttcatca	aagaggctac	aacattgaaa	cccttcatgt	96240
agatactgtt	aaagactttt	ctacttacaa	atcgatattg	aaaaaaact	tgaaaccaaa	96300
tttgaggata	atcaaatatc	tagactgacc	atagaaacaa	tggtttcaga	tgaccttatg	96360
aggcagattt	tgagacagct	caataaatta	atagatgtta	tagctgtaag	caatgaagag	96420
acaacctatt	taaaaggagt	attattagat	gaaaatttat	tatgacgaag	atgcaaacat	96480
agaaattatt	aaagggatga	atgtctcaat	aattggctat	ggatctcaag	ggaatgctca	96540
tgcaaataat	cttcatgaat	ctggtgtaag	tgttactgta	ggtttaagag	aagggtcttc	00996

116/126

<u></u>Page

97020 97440 09996 96720 96780 96840 00696 09696 97080 97140 97200 97260 97320 97380 aagtaattac gaaaattcgc aaattcatcc aatagagtcg gtaggggctg agctaaggtc attcggtaat tatatgaaac gctttaatat caccaaaagg ctctcatagc ctctatctta aagaagaac attttgaatg ctaatatgca ctgttatgaa ctttaattaa attatgattg ggcgttccat gggcttaccg ggtggcattg atacagtcag gtcgacaaag caatgatggc actggcggac acagttgctg caaaaaata aaaccagtgc aattcttgca tttgcacatg aaagatgtag gagatggcat acatctttta agtggaccca aagcaggctt aaaagttcaa agatgaattc aaaatagttc ctgaagcaac taacagcgta tgaaaggaat actagaaaat gtacttatac caatggtgga ttattcagca tgttcttgaa tttatgtggc ctacagtgaa aattcaagaa tgattatgtg ctgagtatgg gtgatgaaga ttttggcacc cgagggctgg aacaagcagt ttgaggcagg tcacagactt gaagctacaa aaggcagaag ttggttatga ccaaacttaa actgttagaa gaaactctag tcaaatactg ttgaatgact acaaaactaa aaaaaagcaa gatgctttaa aatggcggca ttatttggcg agatgacttc ttcatgggca ccaagcagat cgaaatcaag tcattttgaa tccaggccat agaaacagat agctgggttt ttactcaata tagcgatacc aagcaataga tatatagaa ccttcatgaa tgcaaaagca

aaaattaatt

gaaattaatt

ggtggataaa

ttcctaaatt cacaaaatt

taaaatgaag

97560

caaagaggcg

cgcgtccgca

cgttaagata

ggaataactt

tatcttcttc

aaaaaaagg

97620

aaaaaataat

aaaatacgag

gtgggtgttc

aaaaatattt ggttactcgt

gttgttcttt

97680

atcatggctc

gaagagtttg

gatattaatt

aacaaaacat

tataaaaatc

ttagattttt

97740

atcttcggat

gcgagaaagt

tgcaagtcgt

gcttaacaca

ctggcggtag

agattgaacg

97800

aaggggatag

tacctagtag

cgtaggaatc

gtgagtaacg

cggcggacgg

atgagtagag

97860

cctctcttg

agaaagaagg

ctccttcggg

taccgtatac

cccggattaa

cccggggaaa

97920

aaaggctcac

ttggtgaggt

gattagcttg

gcctgcgtaa

tactagatga

aagctttcgc

97980

ctgagacacg

cacattggga

gacgatcagc

ggtctgagag

atctttagct

caaggcgacg

98040

aagcctgatc

caatgggcgc

gaatattgga

cagcagtggg

ctacgggagg

gcccagactc

98100

gcagggagaa

agcactttaa

cgggttgtaa

agaaggcctt

gcgtgtgtga

cagccatacc

98160

accggctaat

cagaataagc

atgttacctg

gttaatacct tataaccctg

aaagttataa

98220

tactgggcgt

taatcggaat

gtgcaagcgt

aatacggaag

cagccgcggt

tccgtgccag

acctaggaac

cctgggctca

atgtgaaagc

gttaagttgg

taggtggttt

aaagcgcgcg

MBA-101

Æ APPENDIX

y 98340	98400	98460	98520	98580	98640	98700	98760	98820	98880	98940	00066 5	09066	99120
agtgtagcgg	gatctgtact	agtccacgcc	ctaacgcttt	gacggggacc	tacctactct	tacaggtgct	cgagcgcaac	ggtgataaac	ctacacacgt	ctaaaaagtc	gctagtaatc	ccgtcacacc	ttaccacggt
tagaattcat	cggcctcctg	ataccctggt	agtggcgcag	caaatgaatt	cgaaaaacct	ggaaccaaga	agtcggataa	ggggactgcc	acgagtaggg	ggtgctaatc	agtcggaatc	tacacaccgc	gggagggcgt
tagagggagg	gtggcgaagg	acaggattag	tatgtctttc	ggctaaaact	cgatgcaacg	tgtgccttt	tgttccgtta	ggaactataa	catggccctt	gccgcgaggt	gactccatga	tegggtettg	tctaacctta
tagagtacga	aagaatacca	tgggtagcga	gttgggagac	acggccgcaa	tggtttaatt	gtaatgagag	tgtcgtgaga	gattcggtcg	gtcaagtcat	cggacgctaa	tctgcaactc	gaatacgttc	aagtagatag
actaactcac	agatattatg	tgcgaaagcg	acaactagct	cctggggagt	gtggagcatg	ggaggctctt	cgtcagctcg	atttgccagc	tgaggacgac	gagatacaga	cggattggag	atgccgcggt	attgcaccag
tgcatccaaa	tggaatgcgt	gacactgagg	gtaaacgatg	aagttgtccg	cgcacaagcg	tgacatactt	gcatggctgt	ccttaccctt	cggaggaagg	gctacaatgg	tttcgtagtc	gcggatcagc	atggaagtgg

Page 118/126

Page 119/126

actggggtga agtcgtaaca
gcgttttaaa aatcattggt
aaaaagtaac
tactctcaaa
gatcaagtaa
aataacctgc
tgggaaaacc
aaacctaggg
tagtagcggc
tggaaagttt
cgagtaggtc
aatactctat
gcgagggag

DOG47515.DSC101

tcaacgactt 100020 100080 100140 gatgagctgt 100200 100320 100380 100440 100500 100560 100620 100680 accaagggtt 100740 100800 gaaagccgta cttaataggg gtgtgaaggt aaactattta gggtcatccc agacagactg aggtcccaaa ggcttagaag gtggaagata atggtagaag agaagtgcga aaaatgaggg aaaaacctct tcgccgaaaa gtataatggg gaaaccgagt gggtgatcta tccatggcca ttctcttcga ttcggctagg ctgtcagcta ctaggaggtt tggacgtatc gtcggcctgc tttatttaag aggcgagggc tgagcacggg cgactggagg cgcgaaccca cttatgttga gcggccccta gcagacttgt tctgtgacgg cgtacctttt agagcactgt cactagtcga agatcttaaa agaggcgaac taggcgtagg agatagctgg cctacaagta acaacccaga gcacaaacag acccgaaacc cgtaatagct caaagaggtg ccatttaggg tcaaacccgg cgagagggaa ccgaagctac agcgttctgt aagcggttga aggtaagctg gcagggtgag tgtagggggt actecgaata atgtgggaag gagtaacgat gcaagcttaa gaaaggctaa gctaatcgag ctggaattag cgtgtattac cgtccgtagt gtgggaaaca ttaaagaaag aaatcataaa accgatgcaa cgagtaacat agcagtcgga cgctcagttg cgggtgctaa cagccatcct ggtagtgcct cctgtccaac aatttcagta ggataggagt gacttaccaa ttatgattaa taacggggct atgttgacat

120/126

<u>P</u>කුගුල

100920 101040 aaacatagca 101220 101340 101400 101640 gtgacggaga 100860 100980 101100 101160 101280 101460 101520 101580 ccagtctttg tgttctaggt gaaggaacta agacttgctc ggaaggttaa cggccgtaac cacgaatggc ctgttaagat ttcgcactgg gtccattatc gaagtagtcg accctaaacc ggataggtgg gagactttga agcagagacg caccettgta agattgaagt tetaacetag ttccgacctg cggaaagacc ccgtgcacct ttactatagg cggttgtccg tgttcaaggt tgtaggctgg aagaaaccgt tttggtgatg tgtttactaa attgaaatcg gagaactgat aacgaccact ctacgagtgg gaactatggt gcccggtgcc cggtaaacgg aacaggttaa tattcctgta ctttttataa ctgcgatggg gaaattcctt gtcgggtaag gaagctcttg atcgaagccc tccaccatag actcagtgaa acctctaagc ttcaggttat gtgtttgaga agataccagg tggctgcgac tgtgacgcct gtgcgccgcg aagtataggg gtagaccaag tcgggagaag cgctaaggct tccaggaaaa caccgtaact ccacactgtc actttgacct tacttgtgta tggagtcatc cttgaaatac agcacggcga gttaggtcga cgcagctaga tagcttatgc ctaaggtagc acgtggtcga tcgtaagagg gtcgatggga aggttagact aaatccggaa ataccatgct gacacaggtg tataacggtc gtaacgatgg gcagtgtacc ggcaaaatag tctaagctga ctctgcaaac ttgatggggt

taaagagtaa 101700 101760 101820 101880 101940 102000 102060 102120 102180 102240 102300 102360 ataaaggcag cttagtgatc gggataacag gtcggctcat tggtgttccg gttgagctaa ataatttgag ctgatgacaa ttaacgccaa aagtggtacg gcgtttggag gctgaaagca tcctaaagag acagtgcgtg ctgggtagtt tgactggggc ggtctcctcc aggtacgccg gacgaacctc accagtttgc tgaggtaagt gaaactaggt gcacctcgat tegecattta actttatgtc agcaaggttc gtgaaacgag aaggataacc gctgcgaggc tctgctgtgg tcggacatcg gccatcgctc aacggataaa gtatggctgt teggteeta aaagttacat gaactcagaa gagcaggtag gaggtgtttg gaccgaattg tatgttcgga caagattaaa tctcccagag atgtgtaagc ggcttgatca tgtaacctta gaaccacctg atcccatctc cttatcacgg tcgacggatc gccgggtagc taaaaaataa catatcgacg ggtcccaagg gtgagacagt agtacgagag gataggcaag tagtgagaat aagcctctcc cgaaggtatc gactgcgaga gaatggaagg taactcgtga cccaagagtt ggctggagca ttagaacgtc agctgattct cagtggcatt ctatgacgtt aaggatgctt aggtggttat gctgataccg cttgtactaa taaaacattg tagcaacttg gttgtcacgc tcgtcataga tggatcaggg cggaggagta cacatcctgg cgagctgggt atttgaggga tataagcggg

DOUTZELE LEGILEI

103020 103200 102540 102600 102660 102720 102780 102840 102900 102960 103080 103140 103260 103320 ttctcctgga aaaacaagtt gatgtgaaaa aatgcaaact ttcaatctga tgatttaggt tgaggttgat aacatcacca ttacgataag tagagatgct ggagaggcta aggaaatcgt caggcttttt tctttaaggc gattattgga tcttgagaat acttctttat tcaagaccaa tatctacaaa agttgcccta atacccagat ataataatcg aaaaaagga ttattacatc catataaaaa gggcctcaag cctctagaga tgctctgaga ctgatctaaa acaatattta tagacettte tagatgcaga tcaagttgct aaagaagctt taataaaatt ttaaatgagt tggcaaatct gccgctgcag gaaacaaatt agcaccctat ttttttttat ctcaagtata aatccttcaa agtaatttta cagatagtaa aataagcaag gtgtatttaa tatggagtta atttggtgaa ctaatgaaga gggtctccct gtgtgagagt tatttttca actcattttt tttagaactt tatcaataac gtctgctatt gaatattatt ctggaagcct gcattggttc atgacgtact cttctactg ttatttctca tgcgcgaact ttatggtgcc ttgactgtga atactaaata ggtgattggg ccatagttcg cgcagattaa atatcagtct tggtagtgca ttccagttta tatactgatt aggctgaaat tattctattg attattactg caaaataaat aatgttttac acctgtcaaa tatagatttt ttaacaggag attattcatc agtatttctg

tttaagaaag tctccattca ccactttcaa tcatcggttt

gaagattaaa

agatttttac

tacttcattt

ggctttttta

tctgcctaac

103440

caagatcatt

cttgcgtatc ttgaccgtta gtaattttta

103500

gagtggcttg

103560

attcttgaga

cagaattaat ttcctctttt tccaatttta

tttttcattt tgaaagatat

ttaggttcgt ttcttgtcac agtacttgtt tttactatag

atgagaaag

gatatttgta

tctctagctc agattctgtc

ttgtttatgc

actattttgt

cttgtctttg atcatttgat acatcgtcgt actctaaaag gaatatag attccttaaa

104040 104100 103800 103860 103920 103980 aatatttatt atattccttt actcaatggt actgctaata tcttcctctt ctagtaattg gcagcataac catcgagctg tattactatt tttctagtcc atagctctct tttaaataat aacttttttg acaagttttt cttagaccaa tcaagtactt tataaattag tgtatttggt ctattgattc ttcaggtaca aatgctcttt ccaatggaca tattttcacc aagatcacta agcataagcc cttcggcaat gatttttttg agaagcaatc agaacaattt gctatatctg cattgagact gaattgctgc tcgatgagtg atttctgata tcattttttg cctacttttc taaatgatct ctdcttctca ttttgcttgc aattttattg

103680

aatatgcctc

tcaaacattg

ctatttccga aagcatagat

gtttcaacat

tattcttata

tctttgaat

103740

cactatttct

gcatcaaagt ttctgctctc aattcttttt tgcgcatttt ctattcctct 104220 104280 104340 ttcttcttga 104400 104460 104520 104580 104640 104700 104760 104820 104880 gtggtggatg ctagtgtttg 104940 agaattttga aagtagccct caccttcact ttttattatt tatccgtccc gaatgggaga ggatgatgat ttcctgtcat ttttgttatt attctgttgt tggcaattat tgattatcta gttccaacaa gtatctgctg gcctggtgaa agcctttcaa atcgtcttct aaagataaga tctataactt ccaagaacta ttacctgcat tgaggtattt ttatatttcg acatttgttg tatgatcatc tcccatgccc tcaccttgtc tgcctgatct cccccttaac ttttttccg taaaatttga gactaaactc tactgcttca gttttggaat gcattccagt cccaccagat cattccaggt aaccgaaact aattagagct agccatagga gaaataaaa gtctcaagag gcttggcatt tggatagcaa cattttcttt gtatatgaag tttggtcttc caatagttac gatacttctt ctgaagattc caatttcttc gatcagctct atctaaaaaa cttaattgtt tttttaaata ccatagattt ttagcttcaa tctgttccaa tctatatcgc atattcgtag ttttcgtgat aagtcattaa atttttcctt ataacctgga ttcatgcctt cccagaaagt agactctctt tgaaagcatt tcttccatcc ctctgcttct agatttttt aagaaatact gacatttagg ttctttccac acttactgaa taaatatgct

cattettett eegggeattg ttetacetgt atgeteatea ateaaaagaa eeteaeegtt 105060 cctaaccaaa taatccacat tctttttaaa taagaagctt gctctaagtg ttgcttgaac 105120 aaatttcata atttttaaat tagaaacaga gtaagcccat ctgaggctcc aagccgattc 105180 105184 cagc Page 126/126