Behavioral Approach to System Theory

Ivan Markovsky

Outline

Classical vs behavioral approaches

Data-driven interpolation and approximation

Convex relaxations and empirical validation

Outline

Classical vs behavioral approaches

Data-driven interpolation and approximation

Convex relaxations and empirical validation

The classical approach views system as input-output map

the system is a signal processor

accepts input and produces output signal

intuition: the input causes the output

The input-output map view of the system is deficient: it ignores the initial condition

example: mass driven by external force

- ▶ input ↔ force
- ▶ output ↔ position

input-output maps assume zero initial condition

how to account for nonzero initial condition?

Taking into account the initial condition leads to the state-space approach

paradigm shift from "classical" to "modern"

classical: scalar transfer function

modern: multivariable state-space

The modern state-space paradigm brought new theory, problems, and methods

state-space theory

- manifests the "finite memory" structure of the system
- brought the concepts of controllability and observability
- deals seamlessly with time-varying and MIMO systems

new problems / solution methods

- linear quadratic optimal control (LQ control)
- optimal state estimation (the Kalman filter)
- balanced model reduction

amenable for numerical computations

A case in point: optimal filtering (signal from noise separation)

Wiener filter (1942)

- transfer functions approach
- assumes stationarity
- no practical real-time method

Kalman filter (1960)

- state-space approach
- non-stationary processes
- recursive real-time solution

There are other awkward things with the input/output thinking

modeling from first principles leads to relations

the input/output partitioning is not unique

interconnection of systems is variables sharing

First principles modeling leads to relations

natural phenomena rarely operate as signal processors the variables of interest satisfy relations, not functions example: planetary orbits

More basic example: Ohmic resistor voltage and current satisfy relation

to-be-modeled variables: voltage V and current I

Ohm's law:

- \triangleright V = RI, with R the resistance
- ▶ I = CV, with C := 1/R the conductance

Q: how to fit the limit cases

- ▶ open circuit $R = \infty$, C = 0
- ▶ short circuit R = 0, $C = \infty$

neatly in a unified framework?

A: *V*, *I* satisfy (linear) relation

The behavioral approach was put forward by Jan C. Willems in the 1980's

3-part, 70-page, 1986-1987 Automatica paper:

Part I. Finite dimensional linear time invariant systems

Part II. Exact modelling

Part III. Approximate modelling

From Time Series to Linear System—
Part I. Finite Dimensional Linear Time Invariant
Systems*

JAN C. WILLEMS†

Dynamical systems are defined in terms of their behaviour, and input/output systems appear as particular representations. Finite dimensional linear time invariant systems are characterized by the fact that their behaviour is a linear shift invariant complete (equivalently closed) subspace of $(\mathbb{R}^{n})^2$ or $(\mathbb{R}^{n})^2+$.

Jan C. Willems (1939-2013)

Critical revision of the input/output thinking

simple idea: the system is set of trajectories

- variables not partitioned into inputs and outputs
- the system is separated from its representations

the input/output approach is a special case

relevant for the emerging data-driven paradigm

The behavior is all that matters

"The operations allowed to bring model equations in a more convenient form are exactly those that do not change the behavior. Dynamic modeling and system identification aim at coming up with a specification of the behavior. Control comes down to restricting the behavior."

J. C. Willems, "The behavioral approach to open and interconnected systems: Modeling by tearing, zooming, and linking," Control Systems Magazine, vol. 27, pp. 46–99, 2007.

Analogy with solution of systems of equations

Q: what operations are allowed?

A: the ones that don't change the solution set (for linear systems, the "elementary operations")

the solution set is all that matters

Classical definition of linear system $S: u \mapsto y$ is linear $\iff S$ is linear function

for all u, v and $\alpha, \beta \in \mathbb{R}$,

$$S: \alpha u + \beta v \mapsto \alpha S(u) + \beta S(v)$$

The classical definition is deficient

(silently) assumes

- zero initial condition
- controllability

doesn't apply to autonomous systems

relaxing the assumptions requires state-space

Behavioral definition of linear system \mathscr{B} is linear $\iff \mathscr{B}$ is subspace

for all
$$w,v\in\mathscr{B}$$
 and $lpha,eta\in\mathbb{R}$ $lpha w+eta v\in\mathscr{B}$

fixes the issues with

- nonzero initial condition
- autonomous systems
- controllable systems

Example: what means that \mathscr{B} is controllable?

controllability is the property of "patching" any past trajectory with any future trajectory

Compare with the classical definition: transfer from any initial to any terminal state

property of a state-space representation of ${\mathscr{B}}$

- is lack of controllability due to a "bad" choice of the state or due to an intrinsic issue with the system?
- in the LTI case, does it make sense to talk about controllability of a transfer function representation?
- how to quantify the "distance" to uncontrollability?

does not apply to infinite dimensional system

Separating problems from solution methods

different representations \rightsquigarrow different methods

- ▶ with different properties (efficiency, robustness, ...)
- their common feature is that they solve the same problem

clarifies links among methods

leads to new methods

Example: back to the controllability example

how to check controllability of an LTI system?

using state-space representation:

- 1. ensure minimality (in the behavioral sense)
- 2. perform rank test for the controllability matrix

using matrix fraction representation:

$$\mathscr{B} = \left\{ w = \Pi \left[\begin{smallmatrix} u \\ y \end{smallmatrix} \right] \in (\mathbb{R}^q)^{\mathbb{N}} \mid N(\sigma)u = D(\sigma)y \right\}$$

- ▶ facts: \mathscr{B} is controllable \iff N and D are co-prime
- ► → rank test for the (generalized) Sylvester matrix

Summary: behavioral approach

detach the system from its representations

- define properties and problems in terms of the behavior
- lead to new, more general, definitions and problems
- avoid inconsistencies of the classical approach

separate problem from solution methods

- different representations lead to different methods
- show links among different methods
- lead to new solutions

naturally suited for the "data-driven paradigm"

Paradigms shifts

1940–1960	classical	SISO transfer function
1960–1980	modern	MIMO state-space
1980–2000	behavioral	the system as a set
2000-now	data-driven	using directly the data

Outline

Classical vs behavioral approaches

Data-driven interpolation and approximation

Convex relaxations and empirical validation

The new "data-driven" paradigm obtains desired solution directly from given data

Data-driven does not mean model-free

data-driven problems do assume model however, specific representation is not fixed the methods we review are non-parametric

A dynamical system \mathcal{B} is a set of signals

$$w \in \mathcal{B} \quad \leftrightarrow \quad "w \text{ is trajectory of } \mathcal{B}" \\ \leftrightarrow \quad "\mathcal{B} \text{ is exact model for } w"$$

 \mathscr{B} is linear system : $\iff \mathscr{B}$ is subspace

$$\mathscr{B}$$
 is time-invariant $:\iff \sigma\mathscr{B}=\mathscr{B}$ $(\sigma w)(t):=w(t+1)$ — shift operator $\sigma\mathscr{B}:=\{\sigma w\mid w\in\mathscr{B}\}$

"good definition should formalize sensible intuition"

The set of linear time-invariant systems $\mathscr L$ has structure characterized by set of integers

the dimension of $\mathscr{B} \in \mathscr{L}$ is determined by

$$\mathbf{m}(\mathscr{B})$$
 — number of inputs

$$\mathbf{n}(\mathscr{B})$$
 — order (= minimal state dimension)

$$I(\mathcal{B})$$
 — lag (= observability index)

J.C. Willems, From time series to linear systems.

Part I, Finite dimensional linear time invariant systems, Automatica, 22(561–580), 1986

\mathscr{B}_1 less complex than $\mathscr{B}_2 \iff \mathscr{B}_1 \subset \mathscr{B}_2$

in the LTI case, complexity ↔ dimension

complexity: (# inputs, order, lag)

 $\boldsymbol{c}(\mathscr{B}) := \big(\boldsymbol{m}(\mathscr{B}), \boldsymbol{n}(\mathscr{B}), \boldsymbol{l}(\mathscr{B})\big)$

 \mathscr{L}_c — bounded complexity LTI model class

Data-driven representation (infinite horizon)

data: exact infinite trajectory w_d of $\mathcal{B} \in \mathcal{L}$

define
$$\widehat{\mathscr{B}} := \operatorname{span}\{ w_{\mathsf{d}}, \sigma w_{\mathsf{d}}, \sigma^2 w_{\mathsf{d}}, \dots \}$$

identifiability condition: $\mathscr{B} = \widehat{\mathscr{B}}$

Data-driven representation (finite horizon)

restriction of
$$w$$
 and \mathscr{B} to finite interval $[1, L]$
$$w|_L := (w(1), \dots, w(L)), \quad \mathscr{B}|_L := \{ w|_L \mid w \in \mathscr{B} \}$$

for
$$w_d = \left(w_d(1), \dots, w_d(T)\right)$$
 and $1 \le L \le T$
$$\mathscr{H}_L(w_d) := \left[(\sigma^0 w_d)|_L \ (\sigma^1 w_d)|_L \ \cdots \ (\sigma^{T-L} w_d)|_L\right]$$

define
$$\widehat{\mathscr{B}}|_L := \operatorname{image} \mathscr{H}_L(w_d)$$

Conditions for informativity of the data

$$\mathscr{B}|_L = \operatorname{image} \mathscr{H}_L(w_d)$$
 if and only if

$$\operatorname{rank} \mathscr{H}_L(w_d) = L\mathbf{m}(\mathscr{B}) + \mathbf{n}(\mathscr{B}) \tag{GPE}$$

I. Markovsky and F. Dörfler, Identifiability in the Behavioral Setting, 2020

sufficient conditions (input design perspective):

- 1. $\mathbf{w}_{d} = \begin{bmatrix} u_{d} \\ v_{d} \end{bmatrix}$
- 2. B controllable
- 3. $\mathscr{H}_{L+\mathbf{n}(\mathscr{B})}(u_d)$ full row rank (PE)

J.C. Willems et al., A note on persistency of excitation Systems & Control Letters, (54)325–329, 2005

PE — persistency of excitation, GPE — generalized PE

Generic data-driven problem: trajectory interpolation/approximation

```
given: "data" trajectory w_d \in \mathcal{B}|_T partially specified trajectory w|_{I_{\text{given}}} (w|_{I_{\text{given}}} selects the elements of w, specified by I_{\text{given}})
```

aim: minimize over
$$\widehat{w} \| w |_{I_{\text{given}}} - \widehat{w} |_{I_{\text{given}}} \|$$
 subject to $\widehat{w} \in \mathcal{B}|_L$

$$\widehat{\mathbf{w}} = \mathscr{H}_{L}(\mathbf{w}_{d})(\mathscr{H}_{L}(\mathbf{w}_{d})|_{I_{\text{given}}})^{+} \mathbf{w}|_{I_{\text{given}}}$$
 (SOL)

Special cases

simulation

- given data: initial condition and input
- to-be-found: output (exact interpolation)

smoothing

- given data: noisy trajectory
- ▶ to-be-found: ℓ_2 -optimal approximation

tracking control

- given data: to-be-tracked trajectory
- ▶ to-be-found: ℓ_2 -optimal approximation

Generalizations

multiple data trajectories
$$w_d^1, \ldots, w_d^N$$

$$\mathscr{B} = \text{image}\left[\mathscr{H}_L(w_d^1) \ \cdots \ \mathscr{H}_L(w_d^N)\right]$$

w_d not exact / noisy

maximum-likelihood estimation

- ightharpoonup Hankel structured low-rank approximation/completion nuclear norm and ℓ_1 -norm relaxations
- --- nonparametric, convex optimization problems

nonlinear systems

results for special classes of nonlinear systems: Volterra, Wiener-Hammerstein, bilinear, ...

Summary: data-driven signal processing

data-driven representation

leads to general, simple, practical methods

interpolation/approximation of trajectories

simulation, filtering and control are special cases assumes only LTI dynamics; no hyper parameters

dealing with noise and nonlinearities

nonlinear optimization convex relaxations

Outline

Classical vs behavioral approaches

Data-driven interpolation and approximation

Convex relaxations and empirical validation

The data w_d being exact vs inexact / "noisy"

w_d exact and satisfying (GPE)

- "system theory" problems
- ▶ image $\mathcal{H}_L(w_d)$ is nonparametric finite-horizon model
- data-driven solution = model-based solution

w_d inexact, due to noise and/or nonlinearities

- naive approach: apply the solution (SOL) for exact data
- ▶ rigorous: assume noise model ~> ML estimation problem
- heuristics: convex relaxations of the ML estimator

The maximum-likelihood estimation problem in the errors-in-variables setup is nonconvex

errors-in-variables setup:
$$w_d = \overline{w}_d + \widetilde{w}_d$$

- $ightharpoonup \overline{w}_d$ true data, $\overline{w}_d \in \mathcal{B}|_T$, $\mathcal{B} \in \mathcal{L}_c^q$
- $\sim \widetilde{w}_{d}$ zero mean, white, Gaussian measurement noise

ML problem: given w_d , c, and $w|_{I_{given}}$

$$\begin{split} & \underset{g}{\text{minimize}} & & \|w|_{I_{\text{given}}} - \mathscr{H}_L(\widehat{w}_{\text{d}}^*)|_{I_{\text{given}}} g \| \\ & \text{subject to} & & \widehat{w}_{\text{d}}^* = \arg\min_{\widehat{w}_{\text{d}},\widehat{\mathscr{B}}} & \|w_{\text{d}} - \widehat{w}_{\text{d}}\| \\ & & \text{subject to} & & \widehat{w}_{\text{d}} \in \widehat{\mathscr{B}}|_{\mathcal{T}} \text{ and } \widehat{\mathscr{B}} \in \mathscr{L}_c^q \end{split}$$

The ML estimation problem is equivalent to Hankel structured low-rank approximation

$$\begin{split} & \underset{g}{\text{minimize}} & & \|w|_{I_{\text{given}}} - \mathscr{H}_L(\widehat{w}_{\text{d}}^*)|_{I_{\text{given}}} g\| \\ & \text{subject to} & & \widehat{w}_{\text{d}}^* = \arg\min_{\widehat{w}_{\text{d}},\widehat{\mathscr{B}}} & \|w_{\text{d}} - \widehat{w}_{\text{d}}\| \\ & & \text{subject to} & & \widehat{w}_{\text{d}} \in \widehat{\mathscr{B}}|_{\mathcal{T}} \text{ and } \widehat{\mathscr{B}} \in \mathscr{L}_c^q \\ & & & \updownarrow \\ \\ & & & & \updownarrow \\ \\ & & & \text{minimize} & \|w|_{I_{\text{given}}} - \mathscr{H}_L(\widehat{w}_{\text{d}}^*)|_{I_{\text{given}}} g\| \\ & & & \text{subject to} & & & & \|w_{\text{d}} - \widehat{w}_{\text{d}}\| \\ & & & & \text{subject to} & & & & \|w_{\text{d}} - \widehat{w}_{\text{d}}\| \\ & & & & & \text{subject to} & & & & \text{rank} \mathscr{H}_{\ell+1}(\widehat{w}_{\text{d}}) \leq (\ell+1)m+n \end{split}$$

Solution methods

local optimization

- choose a parametric representation of $\widehat{\mathscr{B}}(\theta)$
- optimize over \widehat{w} , $\widehat{w_d}$, and θ
- depends on the initial guess

convex relaxation based on the nuclear norm

minimize over
$$\widehat{w}_{\mathsf{d}}$$
 and $\widehat{w} = \|w|_{I_{\mathsf{given}}} - \widehat{w}|_{I_{\mathsf{given}}} \| + \|w_{\mathsf{d}} - \widehat{w}_{\mathsf{d}}\| + \gamma \cdot \| \left[\mathscr{H}_{\Delta}(\widehat{w}_{\mathsf{d}}) - \mathscr{H}_{\Delta}(\widehat{w}) \right] \right\|_{*}$

convex relaxation based on ℓ_1 -norm (LASSO)

minimize over
$$g = \|w|_{I_{\text{given}}} - \mathscr{H}_{L}(w_{\text{d}})|_{I_{\text{given}}} g \| + \lambda \|g\|_{1}$$

Empirical validation on real-life datasets

	data set name	T	m	p
1	Air passengers data	144	0	1
2	Distillation column	90	5	3
3	pH process	2001	2	1
4	Hair dryer	1000	1	1
5	Heat flow density	1680	2	1
6	Heating system	801	1	1

B. De Moor, et al. DAISY: A database for identification of systems. Journal A, 38:4–5, 1997

G. Box, and G. Jenkins. Time Series Analysis: Forecasting and Control, Holden-Day, 1976

ℓ_1 -norm regularization with optimized λ achieves the best performance

$$e_{\mathsf{missing}} \coloneqq \frac{\| \textit{w} |_{\textit{J}_{\mathsf{missing}}} - \widehat{\textit{w}} |_{\textit{J}_{\mathsf{missing}}} \|}{\| \textit{w} |_{\textit{J}_{\mathsf{missing}}} \|} \ 100\%$$

	data set name	naive	ML	LASSO
1	Air passengers data	3.9	fail	3.3
2	Distillation column	19.24	17.44	9.30
3	pH process	38.38	85.71	12.19
4	Hair dryer	12.35	8.96	7.06
5	Heat flow density	7.16	44.10	3.98
6	Heating system	0.92	1.35	0.36

Tuning of λ and sparsity of g (datasets 1, 2)

Tuning of λ and sparsity of g (datasets 3, 4)

Tuning of λ and sparsity of g (datasets 5, 6)

Summary: convex relaxations

w_d exact \rightsquigarrow system theory

- exact analytical solution
- current work: efficient real-time algorithms

*w*_d inexact → nonconvex optimization

- subspace methods
- local optimization
- convex relaxations

empirical validation

- the naive approach works (surprisingly) well
- parametric local optimization is not robust
- $ightharpoonup \ell_1$ -norm regularization gives the best results

Meta conclusions

critical attitude

- ask questions (and search for answers)
- don't trust authorities, instead rediscover
- new ideas start with bothersome inconsistencies

theory-algorithms synergy

- useful ideas lead to algorithms
- algorithms clarify and refine the ideas
- software makes the theory practically useful

rigor vs intuition

- hard real-life problems rarely admit rigorous solutions
- watch out for hidden / unverifiable assumptions
- ▶ the ℓ_1 -norm heuristic is unreasonably effective

Take-home messages

bothersome inconsistencies lead to new ideas

useful ideas lead to algorithms

the ℓ_1 -norm heuristic is (unreasonably) effective

Outline

Constructive proof of the fundamental lemma

Pedagogical example: Free fall prediction

Case study: Dynamic measurement

Nonparametric frequency response estimation

Outline

Constructive proof of the fundamental lemma

Pedagogical example: Free fall prediction

Case study: Dynamic measurement

Nonparametric frequency response estimation

The fundamental lemma gives data-driven finite horizon representation of LTI system ${\mathscr B}$

$$\mathscr{B}|_{L} = \operatorname{image} \mathscr{H}_{L}(w_{d})$$
 (DD-REPR)

assumptions:

A0 $w_d = \begin{bmatrix} u_d \\ v_d \end{bmatrix}$ is a trajectory of an LTI system \mathscr{B}

A1 B is controllable

A2 u_d is persistently exciting of order L+n

Decoding the notation $\mathcal{B}|_L = \text{image } \mathcal{H}_L(w_d)$

$$\mathcal{B}|_L$$
 — restriction of \mathcal{B} to the interval [1, L]

$$w_d := (w_d(1), \dots, w_d(T_d))$$
 — "data" trajectory

$$\mathscr{H}_L(\mathbf{w}_d) := \begin{bmatrix} w_d(1) & w_d(2) & \cdots & w_d(T_d - L + 1) \\ \vdots & \vdots & & \vdots \\ w_d(L) & w_d(L + 1) & \cdots & w_d(T_d) \end{bmatrix}$$

 $PE(u_d) := \max L$, such that $\mathcal{H}_L(u_d)$ is f.r.r.

We address the following issues/questions

proof by contradiction

What is the meaning/interpretation of the conditions?

sufficiency of the conditions

How conservative are they? Can they be improved?

conjecture

The extra PE of order n is generically not needed. What are the nongeneric cases when it is needed?

Answers

constructive proof in the single-input case

$$\mathsf{PE}(u_\mathsf{d}) = n_u \iff u_\mathsf{d} \in \mathscr{B}_u|_{T_\mathsf{d}}, \text{ where } \mathscr{B}_u \text{ is }$$
 autonomous LTI of order n_u

shows that the FL is nonconservative conjecture: it is conservative in the multi-input case

characterizes the nongeneric cases they correspond to special initial conditions

Necessary and sufficient condition for the data-driven representation

$$\operatorname{rank} \mathscr{H}_L(w_d) = mL + n, \qquad \text{(GPE)}$$

nonconservative (necessary and sufficient) general no I/O partitioning and controllability verifiable from w_d with prior knowledge of (m, n)

I. Markovsky and F. Dörfler, Identifiability in the Behavioral Setting, 2020

The fundamental lemma is input design result

input design problem

choose u_d, so that (DD-REPR) holds for any initial cond.

refined problem statement

find nonconservative conditions on u_d and \mathcal{B} , under which

for $\forall w_{d,ini}, w_{d,ini} \land w_d \in \mathscr{B}|_{T_{ini}+T_d}$ satisfies (GPE) (GOAL)

subproblem: find w_{ini} that minimize rank $\mathcal{H}_L(w_d)$

Obvious necessary conditions

A0: exact representation requires exact data and input design requires input/output partition

A1: for uncontrollable $\mathscr{B} = \mathscr{B}_{ctr} \oplus \mathscr{B}_{aut}$

- $ightharpoonup W_d \in \mathscr{B} \implies W_d = W_{d,ctr} + W_{d,aut}, \ W_{d,ctr} \in \mathscr{B}_{ctr}, \ W_{d,aut} \in \mathscr{B}_{aut}$
- $ightharpoonup w_{d,aut}$ is completely determined by $w_{d,ini}$
- ▶ there is $w_{d,ini}$, such that $w_{d,aut} = 0 \implies (GPE)$ doesn't hold

A2': u_d is persistently exciting of order L

- ightharpoonup since u is an input, $\Pi_{u}\mathscr{B}|_{L} = \mathbb{R}^{\mathbf{m}(\mathscr{B})L}$
- ▶ for (GPE) to hold true, image $\mathcal{H}_L(u_d) = \mathbb{R}^{\mathbf{m}(\mathcal{B})L}$
- equivalently, $\mathcal{H}_L(u_d)$ must be full row-rank

Find the minimal k, such that (GOAL) holds under A0, A1, and $PE(u_d) = L + k$

first, we solve the subproblem find w_{ini}^* that minimize $rank \mathcal{H}_L(w_d)$

then, we check (GPE) for w_{ini}^*

 \rightsquigarrow minimal $k \implies$ nonconservative PE condition

The PE condition is equivalent to existence of an LTI input model

$$u_{\mathsf{d}} \in (\mathbb{R})^{T_{\mathsf{d}}}$$
 and $\mathsf{PE}(u_{\mathsf{d}}) = n_{u}$

 $u_{d} \in \mathscr{B}_{u}|_{T_{d}}$ — autonomous LTI, $T_{d} \geq 2n_{u} - 1$ $\mathscr{B}_{u} = \mathscr{B}_{ss}(A_{u}, C_{u})$ with $(A_{u}, x_{u, ini})$ controllable

Augmented system with the input model

$$egin{aligned} \mathscr{B}_{\mathsf{ext}} &= \mathscr{B}_{\mathsf{ss}}(A_{\mathsf{ext}}, C_{\mathsf{ext}}), \ \mathsf{with} \ x_{\mathsf{ext}} &= \left[egin{aligned} x_u \ X \end{aligned}
ight] \ A_{\mathsf{ext}} &= \left[egin{aligned} A_u & 0 \ BC_u & A \end{aligned}
ight] \ C_{\mathsf{ext}} &= \left[egin{aligned} C_u & 0 \ DC_u & C \end{aligned}
ight] \end{aligned}$$

$$\mathscr{B}_{\mathsf{ext}} = \mathscr{B}_{\mathsf{ss}}\left(\mathbf{A}_{\mathsf{ext}}', \mathbf{C}_{\mathsf{ext}}' \right)$$
, where $\mathbf{x}_{\mathsf{ext}}' = \left[\begin{smallmatrix} \mathbf{x}_u \\ V\mathbf{x}_u + \mathbf{x} \end{smallmatrix}
ight]$

V is solution of the Sylvester equation $AV - VA_u = BC_u$

The nongeneric cases correspond to special initial conditions $x_{ini} = -Vx_{u,ini}$

which eliminates from w_d the transient due to \mathscr{B}

then, rank
$$\mathcal{H}_L(w_d) \leq PE(u_d) = n_u$$

next, we show that rank $\mathcal{H}_L(w_d) = n_u$

assume simple eigenvalues $\lambda_{u,1}, \dots, \lambda_{u,n_u}$ of \mathscr{B}_u

$$u_{\mathsf{d}} = \sum_{i=1}^{n_u} a_i \exp_{\lambda_{u,i}}$$

assume simple eigenvalues $\lambda_1, \ldots, \lambda_n$ of \mathscr{B}

$$y_{d} = \sum_{i=1}^{n_{u}} b_{i} \exp_{\lambda_{u,i}} + \underbrace{\sum_{j=1}^{n} c_{j} \exp_{\lambda_{j}}}_{\text{transient}}$$

- \blacktriangleright $b_i = H(e^{i\lambda_{u,i}})a_i$, where $H(z) := C(Iz A)^{-1}B + D$
- $ightharpoonup w_{\text{ini}} = w_{\text{ini}}^* \implies c_j = 0$

using Vandermonde matrix, we rewrite (u_d, y_d)

$$u_{d} = \underbrace{\begin{bmatrix} \lambda_{u,1}^{1} & \cdots & \lambda_{u,n_{u}}^{1} \\ \vdots & & \vdots \\ \lambda_{u,1}^{T} & \cdots & \lambda_{u,n_{u}}^{T} \end{bmatrix}}_{V_{T}(\lambda_{u})} \underbrace{\begin{bmatrix} a_{1} \\ \vdots \\ a_{n_{u}} \end{bmatrix}}_{a} = V_{T}(\lambda_{u})a$$

and

$$y_{d} = V_{T}(\lambda_{u}) \underbrace{\begin{bmatrix} H(e^{i\lambda_{u,1}}) & & & \\ & \ddots & & \\ & & H(e^{i\lambda_{u,n_{u}}}) \end{bmatrix}}_{H(\lambda_{u})} \begin{bmatrix} a_{1} & & \\ \vdots & & \\ a_{n_{u}} \end{bmatrix}$$

$$= V_{T}(\lambda_{u}) \underbrace{H(\lambda_{u})a}_{L} = V_{T}(\lambda_{u})b$$

then, for w_d , we obtain

$$w_{d} = \Pi_{T} \begin{bmatrix} V_{T}(\lambda_{u}) \\ V_{T}(\lambda_{u})H(\lambda_{u}) \end{bmatrix} a$$

 $\Pi_{\mathcal{T}} \in \mathbb{R}^{2\mathcal{T} \times 2\mathcal{T}}$ permutation, such that $\textit{w}_{d} = \Pi_{\mathcal{T}} \left[\begin{smallmatrix} \textit{u}_{d} \\ \textit{y}_{d} \end{smallmatrix} \right]$

finally, the Hankel matrix is expressed as

$$\mathscr{H}_{L}(w_{d}) = \underbrace{\Pi_{L} \begin{bmatrix} V_{L}(\lambda_{u}) \\ V_{L}(\lambda_{u})H(\lambda_{u}) \end{bmatrix}}_{W_{l}} \underbrace{\begin{bmatrix} a & \Lambda_{u}a & \Lambda_{u}^{2}a & \cdots & \Lambda_{u}^{T-L}a \end{bmatrix}}_{\text{controllability matrix of } (\Lambda_{u}, a)}$$

$$\Lambda_u := \operatorname{diag}(\lambda_{u,1}, \ldots, \lambda_{u,n_u})$$

(Λ_u, a) is controllable because $PE(u_d) = n_u$

- 1. $a_i \neq 0$ for all i
- 2. $\lambda_{u,i} \neq \lambda_{u,j}$ for all $i \neq j$

for $k \le n$, W_L is full column rank

- with $W_L = \begin{bmatrix} w^1 & \dots & w^{n_u} \end{bmatrix}$, w^i are trajectories $(w^i \in \mathcal{B}|_L)$
- $ightharpoonup \lambda_{u,i}
 eq \lambda_{u,j}$ for all $i \neq j \implies$ independent responses

$$\operatorname{rank} \mathscr{H}_L(w_d) = \begin{cases} L+k, & \text{for } k=1,\ldots,n \\ L+n, & \text{for } k=n+1,\ldots \end{cases}$$

k = n is the minimal value for (GPE) to hold

Comments

the zeros of \mathcal{B} don't play role in the analysis

simple eigenvalues assumptions can be relaxed

"robustifying" the conditions

exact condition: robust version:

 $a_i \neq 0$, for all i $a_i > \varepsilon$

 $\lambda_{u,i} \neq \lambda_{u,j}$, for all $i \neq j$ the $\lambda_{u,i}$'s are "well spread"

conjecture: in multi-input case, A2 can be tightened, $PE(u_d) = n + \text{controllability index } \mathscr{B}$

Outline

Constructive proof of the fundamental lemma

Pedagogical example: Free fall prediction

Case study: Dynamic measurement

Nonparametric frequency response estimation

The goal is to predict free fall trajectory without knowing the laws of physics

object with mass m, falling in gravitational field

- y position
- $\mathbf{v} := \dot{\mathbf{y}}$ velocity
- \triangleright y(0), v(0) initial condition

task: given initial condition, find the trajectory y

- ▶ model-based approach:
 1. physics → model
 2. model + ini. cond. → y
- ▶ data-driven approach: data $y_d^1, ..., y_d^N$ + ini. cond. $\mapsto y$

Modeling from first principles leads to affine time-invariant state-space model

second law of Newton + the law of gravity

$$m\ddot{y} = m\left[\begin{smallmatrix} 0 \\ 9.81 \end{smallmatrix} \right] + f, \quad \text{where} \quad y(0) = y_{\text{ini}} \text{ and } \dot{y}(0) = v_{\text{ini}}$$

- 9.81 gravitational constant
- $ightharpoonup f = -\gamma v$ force due to friction in the air

state
$$x := (y_1, \dot{y}_1, y_2, \dot{y}_2, x_5)$$
, where $x_5 = -9.81$

initial state
$$x_{\text{ini}} := (y_{\text{ini},1}, v_{\text{ini},1}, y_{\text{ini},2}, v_{\text{ini},2}, -9.81)$$

Modeling from first principles leads to affine time-invariant state-space model

$$\dot{x} = \begin{bmatrix} 0 & 1 & & & \\ 0 & -\gamma/m & & & \\ & & 0 & 1 & \\ & & 0 & -\gamma/m & 1 \\ & & & 0 \end{bmatrix} x, \qquad x(0) = \begin{bmatrix} y_{\text{ini},1} \\ v_{\text{ini},1} \\ y_{\text{ini},2} \\ v_{\text{ini},2} \\ -9.81 \end{bmatrix}$$
$$y = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix} x$$

data: N, T-samples long discretized trajectories

Simulation setup and data

write a function fall that simulates free fall

```
y = fall(y0, v0, t, m, gamma)
```

simulate N=10, T=100-samples long trajectories

```
m = 1; gamma = 0.5;
N = 10; T = 100; t = linspace(0, 1, T);
for i = 1:N,
    y{i} = fall(rand(2,1), rand(2,1), t,gamma,m);
end
```

and to-be-predicted trajectory

```
y_new = fall(rand(2,1), rand(2,1), t, gamma, m);
```

Data-driven free fall prediction method

data "informativity" condition:

$$\operatorname{rank}\underbrace{\begin{bmatrix} y_{\mathsf{d}}^1 & \cdots & y_{\mathsf{d}}^N \end{bmatrix}}_{D} = 5$$

algorithm for data-driven prediction:

1. solve
$$\begin{bmatrix} y_d^1(1) & \cdots & y_d^N(1) \\ y_d^1(2) & \cdots & y_d^N(2) \\ y_d^1(3) & \cdots & y_d^N(3) \end{bmatrix} g = \underbrace{\begin{bmatrix} y(1) \\ y(2) \\ y(3) \end{bmatrix}}_{\text{ini. cond.}}$$

2. define y := Dg

Verify that the data-driven prediction "works"

check the data "informativity" condition

```
[rank(D) rank([vec(y_new') D])] % -> [ 5 5 ]
```

implement the data-driven computation method

verify the computed solution

Summary: prediction of free fall trajectory

first principles modeling

- use the second law of Newton and the law of gravity
- in particular, the Earth's gravitational constant is used
- lead to an autonomous affine time-invariant system

data-driven methods

- bypass the knowledge of the physical laws
- automatically infer and use them
- no hyper-parameters to tune

Outline

Constructive proof of the fundamental lemma

Pedagogical example: Free fall prediction

Case study: Dynamic measurement

Nonparametric frequency response estimation

My interest in dynamic measurement started from a textbook problem

"A thermometer reading 21°C, which has been inside a house for a long time, is taken outside. After one minute the thermometer reads 15°C; after two minutes it reads 11°C. What is the outside temperature?"

According to Newton's law of cooling, an object of higher temperature than its environment cools at a rate that is proportional to the difference in temperature.

Main idea: predict the steady-state value from the first few samples of the transient

textbook problem:

- ► 1st order dynamics
- 3 noise-free samples
- batch solution

generalizations:

- $ightharpoonup n \ge 1$ order dynamics
- ightharpoonup T > 3 noisy (vector) samples
- recursive computation

implementation and practical validation

Thermometer: first order dynamical system

environmental heat transfer thermometer's temperature \bar{u} reading y

measurement process: Newton's law of cooling

$$y = a(\bar{u} - y)$$

heat transfer coefficient a > 0

Scale: second order dynamical system

$$(M+m)\frac{\mathrm{d}}{\mathrm{d}t}y+dy+ky=g\bar{u}$$

The measurement process dynamics depends on the to-be-measured mass

Dynamic measurement: take into account the dynamical properties of the sensor

to-be-measured measurement process measured variable u wariable v assumption 1: measured variable is constant v assumption 2: the sensor is stable LTI system assumption 3: sensor's DC-gain = 1 (calibrated sensor)

The data is generated from LTI system with output noise and constant input

$$y_d$$
 = y + e

measured true measurement noise

 y = u + u + u true true steady-state value response

assumption 4: e is a zero mean, white, Gaussian noise

using a state space representation of the sensor

$$x(t+1) = Ax(t),$$
 $x(0) = x_0$
 $y_0(t) = cx(t)$

we obtain

$$\underbrace{\begin{bmatrix} y_{d}(1) \\ y_{d}(2) \\ \vdots \\ y_{d}(T) \end{bmatrix}}_{Y_{d}} = \underbrace{\begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}}_{T_{T}} \bar{u} + \underbrace{\begin{bmatrix} c \\ cA \\ \vdots \\ cA^{T-1} \end{bmatrix}}_{\mathcal{T}_{T}} x_{0} + \underbrace{\begin{bmatrix} e(1) \\ e(2) \\ \vdots \\ e(T) \end{bmatrix}}_{e}$$

Maximum-likelihood model-based estimator

solve approximately

$$\begin{bmatrix} \mathbf{1}_T & \mathscr{O}_T \end{bmatrix} \begin{bmatrix} \widehat{u} \\ \widehat{x}_0 \end{bmatrix} \approx y_{\mathsf{d}}$$

standard least-squares problem

minimize over
$$\widehat{y}$$
, \widehat{u} , $\widehat{x}_0 \quad \|y_d - \widehat{y}\|$ subject to $\begin{bmatrix} \mathbf{1}_T & \mathscr{O}_T \end{bmatrix} \begin{bmatrix} \widehat{u} \\ \widehat{x}_0 \end{bmatrix} = \widehat{y}$

recursive implementation \rightsquigarrow Kalman filter

Subspace model-free method

goal: avoid using the model parameters (A, C, \mathcal{O}_T)

in the noise-free case, due to the LTI assumption,

$$\Delta y(t) := y(t) - y(t-1) = y_0(t) - y_0(t-1)$$

satisfies the same dynamics as y_0 , *i.e.*,

$$x(t+1) = Ax(t),$$
 $x(0) = \Delta x$
 $\Delta y(t) = cx(t)$

Hankel matrix—construction of multiple "short" trajectories from one "long" trajectory

$$\mathcal{H}(\Delta y) := egin{bmatrix} \Delta y(1) & \Delta y(2) & \cdots & \Delta y(\mathrm{n}) \\ \Delta y(2) & \Delta y(3) & \cdots & \Delta y(\mathrm{n}+1) \\ \Delta y(3) & \Delta y(4) & \cdots & \Delta y(\mathrm{n}+2) \\ \vdots & \vdots & & \vdots \\ \Delta y(T-\mathrm{n}) & \Delta y(T-\mathrm{n}) & \cdots & \Delta y(T-1) \end{bmatrix}$$

fact: if rank $\mathcal{H}(\Delta y) = n$, then

image
$$\mathcal{O}_{T-n} = \text{image } \mathcal{H}(\Delta y)$$

model-based equation

$$\begin{bmatrix} \mathbf{1}_T & \mathscr{O}_T \end{bmatrix} \begin{bmatrix} \bar{u} \\ \widehat{x}_0 \end{bmatrix} = y$$

data-driven equation

$$\begin{bmatrix} \mathbf{1}_{T-n} & \mathscr{H}(\Delta y) \end{bmatrix} \begin{bmatrix} \bar{u} \\ \ell \end{bmatrix} = y|_{T-n} \tag{*}$$

subspace method

solve (*) by (recursive) least squares

Empirical validation

dashed — true parameter value \bar{u}

solid — true output trajectory y_0

dotted — naive estimate $\hat{u} = G^+ y$

dashed — model-based Kalman filter

bashed-dotted — data-driven method

estimation error:
$$e := \frac{1}{N} \sum_{i=1}^{N} \|\bar{u} - \hat{u}^{(i)}\|$$

(for N = 100 Monte-Carlo repetitions)

Simulated data of dynamic cooling process

 $e(t) \rightarrow 0$ as $t \rightarrow \infty$ at different rates

best is the Kalman filter (maximum likelihood estimator)

Simulation with time-varying parameter

Proof of concept prototype

Results in real-life experiment

Summary

dynamic measurement

steady-state value prediction

the subspace method is applicable for

- high order dynamics
- noisy vector observations
- online computation

future work / open problems

- numerical efficiency
- real-time uncertainty quantification
- generalization to nonlinear systems

Outline

Constructive proof of the fundamental lemma

Pedagogical example: Free fall prediction

Case study: Dynamic measurement

Nonparametric frequency response estimation

Problem formulation

given: "data" trajectory $(u_d, y_d) \in \mathcal{B}|_{T_d}$ and $z \in \mathbb{C}$

find: H(z), where H is the transfer function of \mathscr{B}

Direct data-driven solution we are interested in trajectory

$$w = \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} \exp_z \\ \widehat{H} \exp_z \end{bmatrix} \in \mathscr{B}, \text{ where } \exp_z(t) := z^t$$

using the data-driven representation, we have

$$\begin{bmatrix} \mathscr{H}_L(u_\mathsf{d}) \\ \mathscr{H}_L(y_\mathsf{d}) \end{bmatrix} g = \begin{bmatrix} \mathbf{z} \\ \widehat{H} \mathbf{z} \end{bmatrix}, \quad \text{where } \mathbf{z} := \begin{bmatrix} z^\mathsf{1} \\ \vdots \\ z^\mathsf{L} \end{bmatrix}$$

which leads to the system

$$\begin{bmatrix} 0 & \mathcal{H}_{L}(u_{d}) \\ -\mathbf{z} & \mathcal{H}_{L}(y_{d}) \end{bmatrix} \begin{bmatrix} \widehat{H} \\ g \end{bmatrix} = \begin{bmatrix} \mathbf{z} \\ 0 \end{bmatrix}$$
 (SYS)

Solution method: solve (SYS) for \widehat{H}

under (GPE) with
$$L \ge \ell + 1$$
, $\widehat{H} = H(z)$

without prior knowledge of ℓ

$$L = L_{\text{max}} := \lfloor (T_d + 1)/3 \rfloor$$

trivial generalization to

- multivariable systems
- ► multiple data trajectories $\{w_d^1, ..., w_d^N\}$
- evaluation of H(z) at multiple points in $\{z_1, ..., z_K\} \in \mathbb{C}^K$

Comparison with classical nonparametric frequency response estimation methods

ignored initial/terminal conditions \leadsto leakage

DFT grid → limited frequency resolution

improvements by windowing and interpolation

- the leakage is not eliminated
- the methods involve hyper-parameters

Generalization of (SYS) to noisy data

preprocessing: rank-mL + n approx. of $\mathcal{H}_L(w_d)$

- ▶ hyper-parameters $L \ge \ell + 1$ and n
- if the approximation preserves the Hankel structure, the method is maximum-likelihood in the EIV setting

regularization with $||g||_1$

hyper-parameter: the 1-norm regularization parameter

regularization with the nuclear norm of $\mathcal{H}_L(\widehat{w_d})$

hyper-parameters: L and the regularization parameter

Matlab implementation

```
function Hh = dd_frest(ud, yd, z, n)
L = n + 1; t = (1:L)';
m = size(ud, 2); p = size(yd, 2);
%% preprocessing by low-rank approximation
H = [moshank(ud, L); moshank(yd, L)];
[U, \sim, \sim] = svd(H); P = U(:, 1:m * L + n);
%% form and solve the system of equations
for k = 1:length(z)
  A = [[zeros(m*L, p); -kron(z(k).^t, eye(p))] P];
  hg = A \setminus [kron(z(k).^t, eye(m)); zeros(p*L, m)];
  Hh(:, :, k) = hq(1:p, :);
end
 effectively 5 lines of code
```

MIMO case, multiple evaluation points

ightharpoonup L = n + 1 in order to have a single hyper-parameter

52/54

Example: EIV setup with 4th order system

dd_frest is compared with

- ident parametric maximum-likelihood estimator
- ▶ spa nonparameteric estimator with Welch filter

Monte-Carlo simulation over different noise levels and number of samples

