

Classification: K-Nearest Neighbors - Instance Based Learning

Lifu Huang

Computer Science, Virginia Tech

Feb. 9, 2021

Slides adapted from Luke Zettlemoyer, David Sontag, Bert Huang

Simple Analogy

Tell me about your friends(who your neighbors are) and I will tell you who you are.

The closer you are, the more characteristics you share

Instance based learning — K-Nearest Neighbors (KNN)

• Idea:

- Similar examples have similar label.
- Classify new examples like similar training examples.

• Algorithm:

- Given some new example x for which we need to predict its class y
- Find most similar training examples
- Classify *x* "like" these most similar examples

• Questions:

- How to determine similarity?
- How many similar training examples to consider?
- How to resolve inconsistencies among the training examples?

What is KNN?

- A powerful classification algorithm used in pattern recognition
- One of the top data mining algorithms used today
- A non-parametric lazy learning algorithm
- An object (a new instance) is classified based on majority votes for its neighbor classes
- The object is assigned to the most common class amongst its K nearest neighbors

Distance (Similarity) Metric

• Given a data instance with p features

$$X^{i} = (X_{1}^{i}, X_{2}^{i}, ..., X_{p}^{i})$$

Most common distance metric is Euclidean Distance

$$d_{E}(x^{i}, x^{j}) = \left(\sum_{k=1}^{p} (x_{k}^{i} - x_{k}^{j})^{2}\right)^{\frac{1}{2}}$$

- Euclidean Distance makes sense when different data instances are with the same feature attributes
 - e.g., length and weight are not comparable

Distance Metrics

Minkowsky:

Manhattan / city-block:

$$D(x,y) = \left(\sum_{i=1}^{m} |x_i - y_i|^r\right)^{1/r} \qquad D(x,y) = \sqrt{\sum_{i=1}^{m} (x_i - y_i)^2} \qquad D(x,y) = \sum_{i=1}^{m} |x_i - y_i|$$

$$D(x,y) = \sqrt{\sum_{i=1}^{m} (x_i - y_i)}$$

$$D(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^{m} |x_i - y_i|$$

$$D(x,y) = \sum_{i=1}^{m} \frac{|x_i - y_i|}{|x_i + y_i|}$$

Camberra:
$$D(x,y) = \sum_{i=1}^{m} \frac{|x_i - y_i|}{|x_i + y_i|}$$
 Chebychev: $D(x,y) = \max_{i=1}^{m} |x_i - y_i|$

adratic: $D(x,y) = (x - y)^{T} Q(x - y) = \sum_{j=1}^{m} \left(\sum_{i=1}^{m} (x_{i} - y_{i}) q_{ji} \right) (x_{j} - y_{j})$ Q is a problem-specific positive **Quadratic:**

definite $m \times m$ weight matrix

Mahalanobis:

$$D(x,y) = [\det V]^{1/m} (x - y)^{\mathrm{T}} V^{-1} (x - y)$$

V is the covariance matrix of $A_1..A_m$, and A_i is the vector of values for attribute *j* occuring in the training set instances 1..n.

orrelation: $D(x,y) = \frac{\sum_{i=1}^{m} (x_i - \overline{x_i})(y_i - \overline{y_i})}{\sqrt{\sum_{i=1}^{m} (x_i - \overline{x_i})^2 \sum_{i=1}^{m} (y_i - \overline{y_i})^2}}$

 $\overline{x_i} = \overline{y_i}$ and is the average value for attribute i occuring in the training set.

Chi-square: $D(x,y) = \sum_{i=1}^{m} \frac{1}{sum_i} \left(\frac{x_i}{size_x} - \frac{y_i}{size_y} \right)^2$

 sum_i is the sum of all values for attribute *i* occurring in the training set, and $size_x$ is the sum of all values in the vector x.

Kendall's Rank Correlation: $D(x,y) = 1 - \frac{2}{n(n-1)} \sum_{i=1}^{m} \sum_{j=1}^{i-1} \operatorname{sign}(x_i - x_j) \operatorname{sign}(y_i - y_j)$ sign(x)=-1, 0 or 1 if x < 0,x = 0, or x > 0, respectively.

Figure 1. Equations of selected distance functions. (x and y are vectors of m attribute values).

KNN Example

	Food	Chat	Fast	Price	Bar	BigTip
	(3)	(2)	(2)	(3)	(2)	
1	great	yes	yes	normal	no	yes
2	great	no	yes	normal	no	yes
3	mediocre	yes	no	high	no	no
4	great	yes	yes	normal	yes	yes

Similarity metric: Number of matching attributes (k=2)

- •New examples:
 - Example 1 (great, no, no, normal, no)

• Example 2 (mediocre, yes, no, normal, no)

KNN Example

	Food	Chat	Fast	Price	Bar	BigTip
	(3)	(2)	(2)	(3)	(2)	
1	great	yes	yes	normal	no	yes
2	great	no	yes	normal	no	yes
3	mediocre	yes	no	high	no	no
4	great	yes	yes	normal	yes	yes

Similarity metric: Number of matching attributes (k=2)

- •New examples:
 - Example 1 (great, no, no, normal, no) Yes
 - → most similar: number 2 (1 mismatch, 4 match) → yes
 - → Second most similar example: number 1 (2 mismatch, 3 match) → yes
 - Example 2 (mediocre, yes, no, normal, no)

KNN Example

	Food	Chat	Fast	Price	Bar	BigTip
	(3)	(2)	(2)	(3)	(2)	
1	great	yes	yes	normal	no	yes
2	great	no	yes	normal	no	yes
3	mediocre	yes	no	high	no	no
4	great	yes	yes	normal	yes	yes

Similarity metric: Number of matching attributes (k=2)

- •New examples:
 - Example 1 (great, no, no, normal, no) Yes
 - \rightarrow most similar: number 2 (1 mismatch, 4 match) \rightarrow yes
 - \rightarrow Second most similar example: number 1 (2 mismatch, 3 match) \rightarrow yes
 - Example 2 (mediocre, yes, no, normal, no) Yes/No
 - \rightarrow Most similar: number 3 (1 mismatch, 4 match) \rightarrow no
 - \rightarrow Second most similar example: number 1 (2 mismatch, 3 match) \rightarrow yes

Selecting the number of neighbors

- Increase k:
 - Makes KNN less sensitive to noise
- Decrease k:
 - Allows capturing finer structure of space
- → Pick k not too large, but not too small (depends on data)

KNN Feature Weighting and Normalization

Feature Weighting

Scale each feature by its important for classification

$$D(a,b) = \sqrt{\sum_{k} w_k (a_k - b_k)^2}$$

- Can use our prior knowledge about which features are more important
- Can learn the weights using cross-validation

Feature Normalization

- Distance between neighbors could be dominated by some attributes with large values
 - e.g., income of customers
- Normalize features: mapping values to 0-1

$$a_i = \frac{v_i - \min(v_i')}{\max(v_i') - \min(v_i')}$$

Advantages and Disadvantages of KNN

Advantages

- Very simple and intuitive
- Requires little tunning
- Often performs quite well!

Disadvantages

- Takes more time to classify a new example
 - Need to calculate and compare distance from new example to all other examples
- Choosing K may be tricky
- Need large number of samples to achieve good performance
- Easily fooled by irrelevant attributes

