

	E INTRODU	JÇÃO AO	ESTUDO DAS ONDAS - EXTENSIVO PLUS - 11/09/2024
FOLHA 09			Q. 4 – SISTEMA MASSA-MOLA
Apostila 5 Oscilações Lista: Movimento Harmônico Simples Introdução ao estudo das ondas Lista: Introdução ao estudo das ondas Reflexão e refração de ondas Lista: Reflexão e refração de ondas Apostila 6 Fenômenos ondulatórios Lista: Fenômenos ondulatórios	p. 1 p. 4 p. 6 p. 7		
OSCILAÇÕES Q. 1 – EXEMPLOS DE SISTEMAS OSCILANTES			
Balanço, folhas em uma árvore quando está ventando objeto flutuando na água quano perturbado, um pêndulo o	o, um etc.		
Q. 2 – OSCILAÇÕES PERIÓDICAS			
Quando o sistema oscilatório possui período e freque bem definidos, dizemos que o sistema é periódico.	ência		
Exemplos: pêndulo simples, sistema massa-mola etc.			
SISTEMA MASSA-MOLA			
			Q. 5 – PERÍODO E FREQUÊNCIA
			Período (T): $T = \frac{\text{tempo para n oscilações}}{n}$ Frequência (f):
			$f = \frac{n}{\text{tempo para n oscilações}}$ Note que a frequência é o inverso do período. Portanto:
			$f = \frac{1}{T} \Leftrightarrow T = \frac{1}{f} \Leftrightarrow f \cdot T = 1$

PROFESSOR DANILO

MHS E INTRODUÇÃO AO ESTUDO DAS ONDAS - EXTENSIVO PLUS - 11/09/202

Q. 6 – ENERGIA NO SISTEMA MASSA-MOLA		

Veja a Figura 1 onde é representada as energias cinética, potencial e mecânica de um sistema em Movimento Harmônico Simples (MHS). Esta figura não é valida apenas para o sistema massa-mola: outro exemplo de sistema em MHS é um pêndulo simples.

Figura 1: Energia no sistema MHS. Note que foi considerada uma amplitude unitária (1 m) e uma energia mecânica igual também a 1 J.

PÊNDULO SIMPLES

Q. 7 – DEFINIÇÃO, PERÍODO E FREQUÊNCIA

REVISÃO DAS EQUAÇÕES DO MCU

Q. 8 - PERÍODO E FREQUÊNCIA

$$f = \frac{1}{T} \Leftrightarrow T = \frac{1}{f} \Leftrightarrow f \cdot T = 1$$

Q. 9 – EQUAÇÃO DA VELOCIDADE LINEAR (CONSTANTE)

$$V = \frac{2\pi R}{T} = 2\pi R f$$

Q. 10 – EQUAÇÃO DA VELOCIDADE ANGULAR (CONSTANTE)

$$\omega = \frac{2\pi}{T} = 2\pi f$$

Q. 11 – RELAÇÃO ENTRE VELOCIDADE LINEAR E VELOCIDADE ANGULAR

$$V = \omega R$$

Q. 12 – EQUAÇÃO DA POSIÇÃO ANGULAR NO MCU

(19) 3251 1012 www.elitecampinas.com.br

PROFESSOR DANILO

MHS E INTRODUÇÃO AO ESTUDO DAS ONDAS - EXTENSIVO PLUS - 11/09/202

Figura 2: O movimento circular e uniforme (MCU)

RELAÇÃO ENTRE AS EQUAÇÕES DO MHS E DO MCU

As grandezas vetoriais do movimento circular uniforme (MCU) podem ser decompostas. As componentes destas grandezas nos eixos horizontal e vertical descrevem o movimento de corpos em MHS. Ou seja, podemos usar o movimento circular uniforme para encontrar as equações do movimento harmônico simples (MHS). Vamos decompor no eixo horizontal.

Q. 13- EQUAÇÃO DA POSIÇÃO x(t) PARA O MHS

Q. 14- EQUAÇÃO DA VELOCIDADE v(t) PARA O MHS

quandos Q. 13, Q. 14 e Q. 15.

Figura 3: Gráficos das funções que descrevem o Movimento Harmônico Simples (MHS)

Nos gráficos da Figura 3 foi considerado que $A=1 \,\mathrm{m}$, $\omega = 1 \text{ rad/s}$ (o mesmo que T = 1 s ou f = 1 Hz) e $\phi_0 = 0 \text{ rad}$.

Por fim, vejamos um formulário do que foi visto até aqui:

Lei de Hooke:

$$F_e = -k \cdot x$$

Energia mecânica:

$$E_{mec} = E_{cin} + E_{Epot}$$

Energia cinética:

$$E_{cin} = \frac{m \cdot v^2}{2}$$

Energia potencial:

$$E_{pot} = \frac{k \cdot x^2}{2}$$

Período e frequência:

$$T=\frac{1}{f}$$

Relação entre velocidade linear V e a velocidade linear no movimento circular:

$$V = \omega \cdot R$$

Velocidade angular no movimento circular ou velocidade de fase no Movimento Harmônico Simples (MHS):

$$\omega = \frac{2\pi}{\tau} = 2\pi f$$

Função horária da posição angular:

$$\varphi(t) = \varphi_0 + \omega \cdot t$$

Função horária da posição:

$$x(t) = A \cdot \cos(\omega \cdot t + \varphi_0)$$

Função horária da velocidade:

$$v(t) = -A\omega \cdot \text{sen}(\omega \cdot t + \varphi_0)$$

Função horária da aceleração:

$$a(t) = -A\omega^2 \cdot \cos(\omega \cdot t + \varphi_0)$$

Colegio

PROFESSOR DANILO

MHS E INTRODUÇÃO AO ESTUDO DAS ONDAS - EXTENSIVO PLUS - 11/09/202

INTRODUÇÃO AO ESTUDO DAS ONDAS

TIPOS DE ONDAS

Q. 16 - O QUE É UMA ONDA

Ondas são perturbações que se movem no espaço e transportam **apenas** energia, sem transportar matéria.

Podemos classificar as ondas, principalmente, em **ondas mecânicas e ondas eletromagnéticas**. Também podemos falar de ondas de matéria e onda gravitacional.

Como a matéria pode se comportar como onda, é natural se perguntar qual é a equação que descreve esta onda. O mais incrível é que tal função de onda deve ser expressa utilizandose de números complexos e o módulo desta função é interpretado como a probabilidade de encontrar a partícula, expressa por esta onda, por unidade de volume.

Ondas gravitacionais foram verificadas experimentalmente em 2016 e se trata da propagação de uma perturbação no tecido do espaço-tempo.

Q. 17 – CLASSIFICAÇÃO DAS ONDAS

Podemos classificar as ondas quanto à:

Natureza

Direção de Oscilação

Vamos considerar apenas as ondas eletromagnéticas e mecânicas no material abaixo.

CLASSIFICAÇÃO QUANTO À NATUREZA

Q. 18 - ONDAS MECÂNICAS

Necessitam de um meio para existir/propagar.

As partículas oscilam, transferindo energia cinética e potencial, sem transferência de matéria.

Exemplos:

- Ondas sonoras
- Ondas na superfície da água
- Ondas sísmicas
- Ondas em cordas (instrumentos musicais)

Figura 4: Acesse a simulação de uma onda mecânica em uma corda observando-se ponto a ponto (Desmos®).

Q. 19 - ONDAS ELETROMAGNÉTICAS

Não necessitam de um meio para se propagar.

A oscilação de cargas elétricas gera uma perturbação de campo elétrico e magnético no espaço: uma onda eletromagnética é a propagação desta perturbação (Figura 4). Exemplos:

- Ondas de rádio (telecomunicação em geral)
- Micro-ondas
- Infravermelho
- Luz visível
- Ultravioleta
- Raios X
- Raios γ

Figura 5: Representação instantânea dos vetores campos elétricos (verticais) e magnéticos (horizontais) de uma onda eletromagnética. A velocidade da onda, representa acima, é na direção e sentido do eixo *x*.

Figura 6: Animação em python/Javascript de uma onda eletromagnética.

CLASSIFICAÇÃO QUANTO À DIREÇÃO DE OSCILAÇÃO

Q. 20 - ONDAS LONGITUDINAIS

A direção de oscilação é na mesma direção que a propagação, como ocorre com ondas sonoras, como é apresentado na Figura 7, ou ondas se propagando em uma mola, como mostrado na Figura 8.

Figura 7: Onda sonora se propagando no ar: um exemplo de onda longitudinal.

Figura 8: Onda longitudinal produzida em uma mola.

Figura 9: Animação no Desmos® de uma onda sonora.

Colegio

PROFESSOR DANILO

MHS E INTRODUÇÃO AO ESTUDO DAS ONDAS – EXTENSIVO PLUS – 11/09/202

Q. 21 - ONDAS TRANSVERSAIS

A direção de oscilação é perpendicular à direção de propagação, como ocorre com ondas eletromagnéticas (Figura 8) e em ondas se propagando em cordas esticadas (Figura 10).

Figura 10: Onda Transversal em uma corda. O QR-code da Figura 4 aponta para um exemplo de uma onda transversal.

Q. 22 - ONDAS MISTAS

As partes oscilantes oscilam tanto na direção da propagação quanto numa direção perpendicular à direção de propagação. Exemplos: ondas na superfície da água de um lago raso e calmo.

Ondas Mistas

Figura 11: Exemplo de uma onda mista: uma onda se propagando nasuperfície de um lago calmo.

ELEMENTOS DAS ONDAS

Figura 12: Elementos das ondas.

Q. 23 – PERÍODO DE UMA ONDA

Q. 24 – FREQUENCIA DE UMA ONDA
Q. 25 – EQUAÇÃO FUNDAMENTAL DA ONDULATÓRIA
Nota importante: quando uma onda muda de meio o que
permanece constante é sua frequência. Sua velocidade e comprimento de onda podem ou não mudar, entretanto se uma
mudar (velocidade ou comprimento de onda) necessariamente o
outro termo muda (comprimento de onda ou velocidade).
Como luz é uma onda eletromagnética, tudo o que foi visto até
o momento em óptica pode, até certa medida, ser relacionado com
ondulatória. Faremos isso revendo os conceitos de:
• reflexão;
 refração (Lei de Snell).
REFLEXÃO E
REFRAÇÃO
REFLEXÃO
Q. 26 – REFLEXÃO DE UMA ONDA TRANSVERSAL EM UMA
CORDA – EXTREMIDADE FIXA
Q. 27 – REFLEXÃO DE UMA ONDA TRANSVERSAL EM UMA
CORDA – EXTREMIDADE LIVRE
1

PROFESSOR DANILO

MHS E INTRODUÇÃO AO ESTUDO DAS ONDAS - EXTENSIVO PLUS - 11/09/2024

REFRAÇAO	Q. 31 – LEI DE SNELL
Q. 28 – REFRAÇÃO DE ONDA NUMA CORDA: INDO DA CORDA MAIS FINA PARA A MAIS GROSSA	Lei de Snell na ondulatória:
	Você pode se lembrar dessa lei partindo da Lei de Snell na ótica. Note, no entanto, que o que vamos desenvolver a seguir não é uma demonstração . Partindo da Lei de Snell na ótica:
	Podemos também demonstrar a Lei de Snell na ondulatória partindo do Q. 30:
Q. 29 – REFRAÇÃO DE ONDA NUMA CORDA: INDO DA CORDA MAIS GROSSA PARA A MAIS FINA	
	VELOCIDADE DE ONDAS MECÂNICAS
	Q. 32 – EQUAÇÃO DE TAYLOR
Q. 30 – refração bidimensional	

Colegio

PROFESSOR DANILO

MHS E INTRODUÇÃO AO ESTUDO DAS ONDAS - EXTENSIVO PLUS - 11/09/2024

Q. 33- VELOCIDADE DE UMA ONDA SE PROPAGANDO NA SUPERFÍCIE DE <u>UM LAGO RASO</u>

Seja um lago de profundidade h em um local onde o campo gravitacional vale g. Sendo a profundidade do lago muito menor que o comprimento de onda da onda, temos:

$$v = \sqrt{g \cdot h}$$

Sendo $\it v$ a velocidade da onda se propagando na superfície da água.

Q. 34– VELOCIDADE DE UMA ONDA SONORA SE PROPAGANDO EM UM GÁS

Quando falamos de ondas mecânicas se propagando no ar com temperatura T e massa molar MM, temos:

$$v = \sqrt{\frac{\gamma \cdot R \cdot T}{MM}}$$

Sendo R a constante dos gases ideais e γ um coeficiente, conhecido como coeficiente de Posson, e que vale 5/3 para gases ideais monoatômicos e 7/5 para gases ideais diatômicos.

Você não precisa decorar esta equação, no entanto é importante notar que a velocidade v da onda sonora depende da pressão (pois $R \cdot T = p \cdot \frac{V}{n}$), da densidade molar ($\frac{n}{V}$) e da massa molar M. Sendo dada a fórmula acima, você deve ser capaz de concluir que aumentando a temperatura a velocidade do som aumenta e aumentando-se a massa molar, a velocidade do som diminui.

Q. 35 - FAIXA DE FREQUÊNCIAS AUDÍVEIS

Nós humanos somos capazes de ouvir sons que vão de 20 Hz até 20.000 Hz (20 kHz).

Frequência abaixo de 20 Hz é chamado de infrassom.

Frequências acima de 20 kHz é chamado de ultrassom.

Q. 36 - ALTURA DE UM SOM

A altura de um som é uma medida da frequência: quanto maior a frequência, mais alto é o som e, consequentemente, mais agudo (ou fino).

Sons de menores alturas são mais graves (menores frequências).

Q. 37 - TIMBRE DE UM SOM

O timbre consiste na forma da onda: um som puro é dito senoidal (como o som de um diapasão, como podemos ver na Figura 13: "Tuning Fork").

Mesmo quando dois instrumentos tocam as mesmas notas, somo s capazes de diferirmos as notas, uma vez que esta contém outras ondas de frequências distintas e menor amplitude. Por exemplo, percebemos o som de um violino como constituídos de sons mais agudos do que um violão e chamamos isso de timbre.

É o timbre também que permite diferenciar a fala de duas pessoas diferentes, mesmo que ambas digam as mesmas coisas, até mesmo na mesma frequência.

Figura 13: Diversos timbres de diversas fontes de ondas sonoras.

Q. 38- RESSONÂNCIA

Um sistema oscilatório possui uma frequência de oscilação natural, como é o caso de um balanço. Quando aplicamos uma força com a mesma frequência que a frequência natural de vibração, dizemos que o sistema entrou em ressonância.

Como exemplo, ao aplicar uma força com frequência específica em um balanço, podemos fazê-lo oscilar com grande amplitude.

Um exemplo muito conhecido é a quebra da ponte de Takoma, nos EUA.

Q. 39- DIFRAÇÃO

A difração é uma propriedade que toda onda possui que consiste na capacidade de contornar objetos com dimensões menores que o comprimento de onda da onda em questão.

Quando passa por um orifício de dimensões da ordem ou menor que o comprimento de onda, ela se espalha, como podemos ver da Figura 14. Tal propriedade explica porque podemos ouvir alguém falando através de uma porta entreaberta mas não podemos ver a pessoa: o comprimento da onda sonora varia de 0,017 m = 17 mm (para 20 KHz) até 17 m (para 20 Hz) enquanto a luz varia de 380 nm (ou 0,00000038 m para o vileta) até 740 nm (ou 0,00000074 m para o vermelho). Portanto, o som pode difratar em uma porta (de alguns metros), mas a luz não.

Figura 14: Uma onda sofrendo difração a) em uma única fenda e b) em uma fenda dupla.