# Bayesian non-parametric approaches for dependent processes

Kaspar Märtens Xenia Miscouridou Paul Vanetti

11th March 2016

#### Random Measures

#### Completely Random Measures

- $\triangleright$  Distributions over random measures defined on a measurable space  $\Theta$ .
- ► For disjoint subsets  $A_1, ..., A_r \in \Theta$  and a realization  $G \sim CRM$ , the rv's  $G(A_1), ..., G(A_r)$  are independent.
- ▶ Poisson Process representation
- ▶ e.g. Gamma Process, Beta Process

#### Normalized Random Measures

- ▶ obtained via normalization of a CRM
- ▶ G is a NRM if  $G = \frac{G'}{G'(\Theta)}$ , for  $G' \sim CRM$
- e.g. Dirichlet Process is a Normalized Gamma Process

#### Dirichlet Process

- ▶  $DP(\alpha; G_0)$ , on  $\Theta$ concentration parameter  $\alpha > 0$ , base measure  $G_0$  on  $\Theta$
- ▶ A realization  $G \sim DP$  can be written as

$$G = \sum_{i=1}^{\infty} \pi_i \delta_{\theta_i}$$
 (i.e. a.s. atomic)

where  $\theta_k \sim G_0$  and  $\pi_k$  obtained via stick breaking:

$$\pi_k = V_k \prod_{l < k} (1 - V_l), V_k \sim \text{Beta}(1, \alpha)$$

► For measurable disjoint sets  $\{A_1, ..., A_r\} \in \Theta$ ,  $(G(A_1), ..., G(A_r)) \sim \text{Dir}(\alpha G_0(A_1), ..., \alpha G_0(A_r))$ 



## Exchangeable Priors for Bayesian nonparametric models

- ▶ Dirichlet Process
- ► Chinese Restaurant Process
- ▶ Pitman Yor Process
- ► Indian Buffet Process

#### EXCHANGEABILITY ASSUMPTION

For a sequence  $\{x_1, x_2...\}$  to be exchangeable:

$$\mathbb{P}\{(x_1,...x_n)\} = \mathbb{P}\{(x_{\sigma(1)},...,x_{\sigma(n)})\},\$$

for any  $\sigma$  permutation of  $\{1,..,n\}$ 

#### Dependent non-parametric random processes

- ► Model data containing spatial or time dependencies.
- ► Extent nonparametric processes from distributions over random measures to distributions over **collections** of random measures.
- Families of random measures indexed by some **covariate**.  $\{G^{(x)}: x \in \mathbb{X}\}$  e.g.  $\mathbb{X} = \mathbb{R}^+$  for time or  $\mathbb{X} = \mathbb{R}^2$  for space

$$G = \sum_{i=1}^{\infty} \pi_i \delta_{\theta_i} \rightarrow G^{(x)} = \sum_{i=1}^{\infty} \pi_i^{(x)} \delta_{\theta_i^{(x)}}$$

▶ The closer two covariates are in covariate space the greater amount of overlap among the corresponding processes .

#### Construction

- ▶ Different forms of dependencies
  - 1. dependence on atom location; the weights are shared  $\forall x \ \pi_k^{(x)} = \pi_k$
  - 2. dependence on atom weight; the locations are shared  $\forall x \; \theta_k^{(x)} = \theta_k$

- ▶ Different constructions; many are based on extensions of the Dirichlet process and we focus on two of those namely
  - 1. spatial normalized gamma process
  - 2. probit stick-breaking process

▶ Properties of gamma process:

- ▶ Properties of gamma process:
  - ightharpoonup Subset of gamma process ightharpoonup gamma process

- ▶ Properties of gamma process:
  - ightharpoonup Subset of gamma process ightharpoonup gamma process
  - $\blacktriangleright$  Marginalized gamma process  $\rightarrow$  gamma process

- ▶ Properties of gamma process:
  - ightharpoonup Subset of gamma process ightharpoonup gamma process
  - ightharpoonup Marginalized gamma process ightharpoonup gamma process
  - $\blacktriangleright$  Normalized gamma process  $\rightarrow$  Dirichlet process

- ▶ Properties of gamma process:
  - ightharpoonup Subset of gamma process ightharpoonup gamma process
  - ightharpoonup Marginalized gamma process ightharpoonup gamma process
  - $\blacktriangleright$  Normalized gamma process  $\rightarrow$  Dirichlet process
- ▶ Define gamma process on extended space  $\Theta \times \mathcal{Y}$

- ▶ Properties of gamma process:
  - ▶ Subset of gamma process  $\rightarrow$  gamma process
  - ightharpoonup Marginalized gamma process ightharpoonup gamma process
    - $\blacktriangleright$  Normalized gamma process  $\rightarrow$  Dirichlet process
- ▶ Define gamma process on extended space  $\Theta \times \mathcal{Y}$
- ▶ For each observation:

- ▶ Properties of gamma process:
  - ightharpoonup Subset of gamma process ightharpoonup gamma process
  - $\blacktriangleright$  Marginalized gamma process  $\rightarrow$  gamma process
    - $\blacktriangleright$  Normalized gamma process  $\rightarrow$  Dirichlet process
- ▶ Define gamma process on extended space  $\Theta \times \mathcal{Y}$
- ▶ For each observation:
  - ightharpoonup Choose subset of  $\mathcal Y$  based on some covariate (time, space)

- ▶ Properties of gamma process:
  - ightharpoonup Subset of gamma process ightharpoonup gamma process
  - ightharpoonup Marginalized gamma process ightharpoonup gamma process
  - $\blacktriangleright$  Normalized gamma process  $\rightarrow$  Dirichlet process
- ▶ Define gamma process on extended space  $\Theta \times \mathcal{Y}$
- ▶ For each observation:
  - $\triangleright$  Choose subset of  $\mathcal{Y}$  based on some covariate (time, space)
  - Marginalize and normalize to yield DP

► Example: time series.

- ► Example: time series.
  - Set extended space over time and duration (t, d)

- ► Example: time series.
  - $\triangleright$  Set extended space over time and duration (t,d)
  - ▶ Region for time  $t_i$ :  $\{(t,d) : t d < t_i < t + d\}$











## Dependence via stick-breaking

Recall the stick-breaking construction

$$\pi_k = V_k \prod_{i < k} (1 - V_i)$$

Idea: introduce dependence on x, by replacing  $V_k$  with  $V_k^{(x)}$ 

## Dependence via stick-breaking

Recall the stick-breaking construction

$$\pi_k = V_k \prod_{i < k} (1 - V_i)$$

Idea: introduce dependence on x, by replacing  $V_k$  with  $V_k^{(x)}$ 

Several ways to model  $V_k^{(x)}$ , e.g.

- ▶ Kernel stick-breaking process
- ▶ Probit stick-breaking process

#### Kernel stick-breaking process

Idea: associate each stick to a covariate location  $\mu_k$ , and specify

$$V_k^{(x)} = U_k K(x, \mu_k)$$

for some kernel function  $K(\cdot, \cdot)$ 

#### Kernel stick-breaking process

Idea: associate each stick to a covariate location  $\mu_k$ , and specify

$$V_k^{(x)} = U_k K(x, \mu_k)$$

for some kernel function  $K(\cdot, \cdot)$ 



### Probit stick-breaking process

Idea: specify

$$V_k^{(x)} = \Phi(\alpha_k^{(x)})$$

where  $\alpha_k^{(x)}$  is a latent Gaussian process.

#### Probit stick-breaking process

Idea: specify

$$V_k^{(x)} = \Phi(\alpha_k^{(x)})$$

where  $\alpha_k^{(x)}$  is a latent Gaussian process.



#### References



Vinayak Rao and Yee W Teh.

Spatial normalized gamma processes.

In Advances in neural information processing systems, pages 1554–1562, 2009.