Notations et rappels : Dans tout le problème, n désigne un entier naturel supérieur ou égal à 2. Si $p \in \mathbb{N}^*$, on note $\mathcal{M}_{n,p}(\mathbb{R})$ l'espace vectoriel des matrices à coefficients réels, à n lignes et p colonnes ; si p=n, $\mathcal{M}_{n,p}(\mathbb{R})$ est noté simplement $\mathcal{M}_n(\mathbb{R})$, c'est l'algèbre des matrices carrées d'ordre n à coefficients réels ; la matrice identité de $\mathcal{M}_n(\mathbb{R})$ sera notée I_n .

Pour toute matrice A de $\mathcal{M}_{n,p}(\mathbb{R})$, tA désigne la matrice transposée de A; si $A \in \mathcal{M}_n(\mathbb{R})$, $\operatorname{Sp}_{\mathbb{R}}(A)$ représente l'ensemble des valeurs propres réelles de A, $\operatorname{Tr}(A)$ sa trace et $\operatorname{rg}(A)$ son rang.

On munit $\mathcal{M}_{n,1}(\mathbb{R})$ de son produit scalaire canonique défini par $\langle X,Y \rangle \longmapsto {}^t\!\! XY$.

1^{ère} Partie

A- Étude d'une matrice

Soit U un vecteur non nul de $\mathcal{M}_{n,1}(\mathbb{R})$, de composantes u_1,\ldots,u_n . On pose $M=U^{\dagger}U$.

- 1. Pour tout couple (i, j) d'éléments de $\{1, \ldots, n\}$, exprimer le coefficient $m_{i,j}$ de la matrice M à l'aide des u_k . Que vaut la trace de M?
- 2. Exprimer les colonnes de M à l'aide de u_1, \ldots, u_n et U.
- 3. Montrer alors que le rang de M est égal à 1.
- 4. Justifier que 0 est valeur propre de M et montrer que le sous-espace propre associé est égale à $\{Y \in \mathcal{M}_{n,1}(\mathbb{R}), \, ^t\!UY = 0\}$. Quelle est sa dimension ?
- 5. Calculer le produit MU et en déduire que UU est une autre valeur propre de M. Déterminer le sous-espace propre associé et donner sa dimension.
- 6. Montrer que la matrice M est orthogonalement semblable à la matrice diagonale D où

$$D = diag(^tUU, 0, \dots, 0).$$

B- Théorème de Courant-Fischer

Soit A une matrice symétrique réelle d'ordre n; on désigne par f l'endomorphisme de $\mathcal{M}_{n,1}(\mathbb{R})$ canoniquement associé à A.

1. Justifier qu'il existe une base orthonormée de l'espace euclidien $(\mathcal{M}_{n,1}(\mathbb{R}),<,>)$ formée de vecteurs propres de f.

Dans la suite, on note $\lambda_1, \lambda_2, \dots, \lambda_n$ les valeurs propres de f rangées dans l'ordre croissant et on désigne par (e_1, \dots, e_n) une base orthonormée de vecteurs propres associés :

$$\lambda_1 \leqslant \lambda_2 \leqslant \ldots \leqslant \lambda_n$$
 et $f(e_i) = \lambda_i e_i, i \in \{1, 2, \ldots, n\}.$

Pour tout $k \in \{1, 2, ..., n\}$, on note V_k le sous-espace vectoriel de $\mathcal{M}_{n,1}(\mathbb{R})$ engendré par les vecteurs $e_1, ..., e_k : V_k = \mathrm{Vect}(e_1, ..., e_k)$, et \mathcal{F}_k l'ensemble de tous les sous-espaces vectoriels de $\mathcal{M}_{n,1}(\mathbb{R})$ qui sont de dimension k.

Si v est un vecteur non nul de $\mathcal{M}_{n,1}(\mathbb{R})$ on pose $R_A(v) = \frac{\langle Av, v \rangle}{\langle v, v \rangle} = \frac{\langle f(v), v \rangle}{\langle v, v \rangle}$.

- 2. Calculer $R_A(e_k)$, pour tout $k \in \{1, 2, ..., n\}$.
- 3. Soit $v=\sum_{i=1}^n x_i e_i$ un élément de $\mathcal{M}_{n,1}(\mathbb{R})$.

Exprimer les quantités < f(v), v> et < v, v> en fonction des x_k et λ_k , $1 \le k \le n$.

- 4. Montrer alors que $\lambda_1 = \min_{v \neq 0} R_A(v)$ et $\lambda_n = \max_{v \neq 0} R_A(v)$.
- 5. Soient $k \in \{1, ..., n\}$ et w un vecteur non nul de V_k . Montrer que $R_A(w) \leqslant \lambda_k$ et conclure que

$$\lambda_k = \max_{v \in V_k \setminus \{0\}} R_A(v).$$

- 6. Soient $k \in \{1, 2, \ldots, n\}$ et $F_1 \in \mathcal{F}_k$.
 - (a) Montrer que la dimension du sous-espace vectoriel $F_1 \cap \operatorname{Vect}(e_k, \dots, e_n)$ est $\geqslant 1$.
 - (b) Soit w un vecteur non nul de $F_1 \cap \text{Vect}(e_k, \dots, e_n)$. Montrer que $R_A(w) \geqslant \lambda_k$.
 - (c) Déduire de ce qui précède que $\lambda_k = \min_{F \in \mathcal{F}_k} \left(\max_{v \in F \setminus \{0\}} R_A(v) \right)$. (Théorème de Courant-Fischer)
- 7. (a) Montrer que l'application $\psi_A: v \longmapsto \langle Av, v \rangle$ est continue sur $\mathcal{M}_{n,1}(\mathbb{R})$ et en déduire la continuité de l'application R_A sur $\mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}$.
 - (b) Montrer que l'ensemble $\mathcal{M}_{n,1}(\mathbb{R})\setminus\{0\}$ est connexe par arcs et conclure que l'image de l'application R_A est un intervalle.
 - (c) Montrer alors que $\{R_A(v),\ v\in\mathcal{M}_{n,1}(\mathbb{R})\setminus\{0\}\ \}=[\lambda_1,\lambda_n]$

2ème Partie

On rappelle qu'une matrice B, symétrique réelle d'ordre n, est dite définie positive si pour tout vecteur non nul X de $\mathcal{M}_{n,1}(\mathbb{R})$, on ait

$${}^t XBX > 0.$$

- 1. Soit *B* une matrice symétrique réelle d'ordre *n*. Montrer que *B* est définie positive si et seulement si ses valeurs propres sont strictement positives.
- 2. Soit $A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$ une matrice symétrique réelle d'ordre 2.
 - (a) On suppose que A est définie positive ; montrer alors que a>0 et $ac-b^2>0$.
 - (b) Soit $X \in \mathcal{M}_{2,1}(\mathbb{R})$ un vecteur de composantes x et y; exprimer tXAX en fonction de a, b, c, x et y et montrer que si a > 0 et $ac b^2 > 0$ alors A est définie positive.

Le but de la suite de cette partie est d'étendre le résultat de cette question à n quelconque.

- 3. Soit A une matrice symétrique réelle d'ordre n; on désigne par f l'endomorphisme de $\mathcal{M}_{n,1}(\mathbb{R})$ canoniquement associé à A et on note $\lambda_1 \leqslant \lambda_2 \leqslant \ldots \leqslant \lambda_n$ les valeurs propres de f. Soient H un hyperplan de $\mathcal{M}_{n,1}(\mathbb{R})$ et p la projection orthogonale sur H; on note g l'endomorphisme induit par $p \circ f$ sur H.
 - (a) Montrer que g est un endomorphisme autoadjoint de H. Soient alors $\mu_1 \leqslant \ldots \leqslant \mu_{n-1}$ les valeurs propres de g.
 - (b) Montrer que pour tout $k \in \{1, ..., n-1\}$, $\lambda_k \leqslant \mu_k$.
 - (c) Soit $k \in \{1, ..., n-1\}$.
 - i. Montrer que pour tout sous-espace vectoriel F, de $\mathcal{M}_{n,1}(\mathbb{R})$, de dimension k+1, le sous-espace vectoriel $F \cap H$ est de dimension $\geqslant k$.
 - ii. Soit F comme à la question précédente et soit donc G un sous-espace vectoriel de $F\cap H$, de dimension k. Comparer < g(v), v> et < f(v), v>, pour $v\in G$, et en déduire que $\max_{v\in G\setminus\{0\}} \frac{< g(v), v>}{< v, v>} \leqslant \max_{v\in F\setminus\{0\}} \frac{< f(v), v>}{< v, v>}.$
 - iii. Conclure que $\mu_k \leq \lambda_{k+1}$.

- 4. On reprend les hypothèses de la question précédente et on écrit $A = \begin{pmatrix} A_{n-1} & b \\ tb & \mu \end{pmatrix}$, avec $\mu \in \mathbb{R}, \ b \in \mathcal{M}_{(n-1),1}(\mathbb{R})$ et $A_{n-1} \in \mathcal{M}_{n-1}(\mathbb{R})$.
 - (a) Que représente la matrice A_{n-1} ? Justifier qu'elle est symétrique.
 - (b) On note $\mu'_1 \leqslant \ldots \leqslant \mu'_{n-1}$ les valeurs propres de la matrice A_{n-1} . Montrer que

$$\lambda_1 \leqslant \mu'_1 \leqslant \lambda_2 \leqslant \ldots \leqslant \lambda_{n-1} \leqslant \mu'_{n-1} \leqslant \lambda_n$$
.

- (c) Conclure que si la matrice A est définie positive, il en est de même de la matrice A_{n-1} .
- 5. Soit A une matrice symétrique réelle d'ordre n; on note $A=(a_{i,j})_{1\leqslant i,j\leqslant n}$ et, pour tout $k\in\{1,2,\ldots,n\}, A_k=(a_{i,j})_{1\leqslant i,j\leqslant k}.$
 - (a) Montrer que si A est définie positive alors les déterminants des matrices A_k sont tous strictement positifs.
 - (b) En utilisant le résultat de la question 4. précédente, montrer par récurrence sur n, que la réciproque de (a) est vraie.
- 6. Un exemple d'utilisation : On considère la matrice $M(t) = \left(t^{|i-j|}\right)_{1 \le i, j \le n}, \ t \in [0,1].$
 - (a) Montrer que, pour tout $t \in [0, 1[$, la matrice M(t) est symétrique définie positive.
 - (b) En déduire que la matrice $M_1 = \left(\frac{1}{1+|i-j|}\right)_{1 \le i,j \le n}$ est symétrique définie positive. (On remarquera que $M_1 = \int_0^1 M(t) dt$).

3ème Partie

A- Une deuxième application

- 1. Soient A et A' deux matrices symétriques réelles d'ordre n. On note $\lambda_1 \leqslant \lambda_2 \leqslant \ldots \leqslant \lambda_n$ (resp. $\lambda_1' \leqslant \lambda_2' \leqslant \ldots \leqslant \lambda_n'$) les valeurs propres de A (resp. A'); on note aussi $\mu_1 \leqslant \mu_2 \leqslant \ldots \leqslant \mu_n$ les valeurs propres de la matrice E = A' A.
 - (a) Montrer que, pour tout $k \in \{1, 2, ..., n\}$,

$$\lambda_k + \mu_1 \leqslant \lambda_k' \leqslant \lambda_k + \mu_n.$$

- (b) Montrer que, pour tout $k \in \{1, 2, ..., n\}$, $|\lambda'_k \lambda_k| \leq ||A A'||$, où ||.|| est la norme sur $\mathcal{M}_n(\mathbb{R})$, subordonnée à la norme euclidienne de $\mathcal{M}_{n,1}(\mathbb{R})$.
- 2. En déduire que l'ensemble S_n^+ des matrices symétriques réelles d'ordre n et définies positives est un ouvert de l'espace vectoriel S_n des matrices symétriques réelles d'ordre n.

B- Une dernière application

Soient A une matrice symétrique réelle d'ordre n et U un vecteur non nul de $\mathcal{M}_{n,1}(\mathbb{R})$; on note $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$ les valeurs propres de A et $\lambda_1' \leq \lambda_2' \leq \ldots \leq \lambda_n'$ celles de la matrice $A_{\varepsilon} = A + \varepsilon M$ avec $M = U^t U$ et $\varepsilon \in \mathbb{R}$.

D'après la section A- de la première partie, il existe une matrice orthogonale R telle que

$${}^{t}RMR = \begin{pmatrix} {}^{t}UU & 0 \\ 0 & 0 \end{pmatrix}.$$

On décompose alors la matrice ${}^t\!RAR$ par blocs comme pour la matrice ${}^t\!RMR$ et on obtient

$${}^{t}RAR = \begin{pmatrix} \alpha & {}^{t}a \\ a & A_{n-1} \end{pmatrix},$$

avec $\alpha \in \mathbb{R}$, $a \in \mathcal{M}_{(n-1),1}(\mathbb{R})$ et $A_{n-1} \in \mathcal{M}_{n-1}(\mathbb{R})$. La matrice A_{n-1} est évidement symétrique réelle, il existe donc une matrice orthogonale S, d'ordre n-1, et des réels $\alpha_2, \ldots, \alpha_n$ tels que

$${}^{t}SA_{n-1}S = diag(\alpha_{2}, \ldots, \alpha_{n}).$$

On pose enfin
$$Q = R \begin{pmatrix} 1 & 0 \\ 0 & S \end{pmatrix}$$
.

- 1. Montrer que la matrice Q est orthogonale.
- 2. Montrer, en effectuant des produits par blocs, que

$${}^t\!QAQ = \begin{pmatrix} lpha & {}^t\!a\,S \ {}^t\!S\,a & D_{n-1} \end{pmatrix} \quad ext{et} \quad {}^t\!QA_{\mathcal{E}}Q = \begin{pmatrix} lpha + arepsilon^t\!U\,U & {}^t\!a\,S \ {}^t\!S\,a & D_{n-1} \end{pmatrix}$$

avec $D_{n-1} = diag(\alpha_2, \ldots, \alpha_n)$.

3. On suppose que $\varepsilon \geqslant 0$. Montrer en utilisant par exemple la question (A-1.) de cette partie que, pour tout $k \in \{1, 2, \dots, n\}$,

$$\lambda_k \leqslant \lambda_k' \leqslant \lambda_k + \varepsilon^t U U.$$

- 4. On suppose ici que ε est quelconque et on note C_1, \ldots, C_n les colonnes de la matrice Q.
 - (a) Vérifier que (C_1,\ldots,C_n) est une base orthonormée de $\mathcal{M}_{n,1}(\mathbb{R})$.
 - (b) Soit $X\in\mathcal{M}_{n,1}(\mathbb{R})$; on désigne par y_1,\ldots,y_n les composantes de X dans la base (C_1,\ldots,C_n) . Montrer alors que

$$^{t}XAX = \alpha y_{1}^{2} + \sum_{i=2}^{n} \alpha_{i}y_{i}^{2} + 2\sum_{j=2}^{n} \beta_{j}y_{1}y_{j},$$

où β_2,\ldots,β_n sont les composantes du vecteur ${}^t\!S\,a$ de $\mathcal{M}_{(n-1),1}(\mathbb{R})$.

(c) Écrire une relation analogue à la précédente et concernant la matrice $A_{\mathcal{E}}$, puis en déduire, lorsque X est non nul, que

$$R_{A_{\mathcal{E}}}(X) = R_A(X) + \varepsilon^t U U \frac{y_1^2}{\langle X, X \rangle}.$$

(d) En choisissant convenablement le X, montrer que $\lambda_2' \geqslant \lambda_1$. On utilisera les formules $\lambda_2' = \min_{F \in \mathcal{F}_2} \left(\max_{v \in F \setminus \{0\}} R_{A_{\mathcal{E}}}(v) \right) \text{ et } \lambda_1 = \min_{v \neq 0} R_A(v).$

FIN DE L'ÉPREUVE