Coding Exercise 3

- 1. Rewrite the code game_reshape.txt (uploaded in hello iitk portal) by replacing the numpy.reshape commands into a user-defined subroutine. In other words, you need to write a user-defined function that implements numpy.reshape, and test it on the given code.
- 2. Let x be given by the quantity below. Write a code to compute an approximation of x using recursion.

$$x = \sqrt{6 + \sqrt{6 + \sqrt{6 + \sqrt{6 + \cdots}}}}$$

- 3. Write a code to compute $\binom{n}{r}$ using recursion. Do this without computing the factorial of any number.
- 4. (a) Let X be a discrete random variable whose pmf is given by $P_X(X=i)=\frac{i}{10},\ i=1,2,3,4$. Generate X_1,X_2,\ldots,X_{1000} i.i.d. $\sim P_X$ using randint command. Verify if the generated values are according to P_X using histogram.
 - (b) Let $P_X(X=i) = \frac{\sqrt{i}}{\sum_{j=1}^4 \sqrt{j}}$. Repeat what you did in part (a) using rand command. Can you generate the random values using randint command?
- 5. Generate $X_1, X_2, \ldots, X_{1000}$ i.i.d. $\sim f_X$, and verify using a histogram, if

$$f_X(x) = \begin{cases} 1 + x & \text{if } x \in [-1, 0], \\ 1 - x & \text{if } x \in [0, 1]. \end{cases}$$

6. Generate $X_1, X_2, \ldots, X_{1000}$ i.i.d. $\sim f_X$, if $f_X(x) = xe^{-x}$ when x > 0. Verify using a histogram. Note that the inverse of the cdf of this distribution cannot be expressed in closed form; so generate two exponential random variables and add them to generate one data point X_i .