Analyzing NYPD Shooting Incidents

Punam Paul

2023-08-20

NYPD Shooting Incident Data (Historic)

Load the CSV data from *url* into *nypd_data* variable.

```
url <- "https://data.cityofnewyork.us/api/views/833y-fsy8/rows.csv"
nypd_data <- read_csv(url)</pre>
```

Tidying and Transforming the Data

Tidy up the data. Remove x-y coordinates, latitude/longitude and convert $OCCUR_DATE$ from chr to date datatype.

```
nypd_data <- nypd_data %>% select(-(X_COORD_CD:Lon_Lat)) %>% mutate(OCCUR_DATE = mdy(OCCUR_DATE))
```

Analyzing Shooting Incidents by Borough Over the Years

Extract $OCCUR_YEAR$ from $OCCUR_DATE$, calculate counts of shooting incidents for each borough and year.

```
nypd_data_by_boro <- nypd_data %>% mutate(OCCUR_YEAR=year(OCCUR_DATE)) %>% group_by(BORO, OCCUR_YEAR) % ggplot(nypd_data_by_boro, aes(x=OCCUR_YEAR, y=COUNT, colour=BORO)) + geom_point() + geom_line() + theme
```


Visualizing Murders for Every Borough Over the Years

Extract $OCCUR_YEAR$ from $OCCUR_DATE$. Then we filter incidents where $STATISTICAL_MURDER_FLAG$ is set to TRUE. Then calculate counts of murders for each borough and year.

```
nypd_data_by_boro_murders <- nypd_data %>% filter(STATISTICAL_MURDER_FLAG) %>% mutate(OCCUR_YEAR=year(Occur_YEAR=year(Occur_YEAR)) + geom_point() + geom_point() + geom_line()
```


Visualizing Shooting Incidents by Location (Inside/Outside)

Drop NA values for $LOC_OF_OCCUR_DESC$ column. Then do a bar chart on $LOC_OF_OCCUR_DESC$ column.

```
nypd_data_by_location <- nypd_data %>% drop_na(LOC_OF_OCCUR_DESC)

ggplot(nypd_data_by_location, aes(LOC_OF_OCCUR_DESC)) + geom_bar() + theme_minimal() + ggtitle("Shooting")
```


Location

Visualizing Shooting Incidents by Victim Age Group

Drop NA values from VIC_AGE_GROUP column. Then do a bar chart on VIC_AGE_GROUP column. Then we filter out the invalid values for VIC_AGE_GROUP . Afterwards, we plot bar chart on VIC_AGE_GROUP over the years.

```
nypd_data_by_vic <- nypd_data %>% drop_na(VIC_AGE_GROUP) %>% filter(VIC_AGE_GROUP != 1022) %>% mutate(Outline of the control o
```


Visualizing Shooting Incidents by Perp Age Group

Drop NA values from $PERP_AGE_GROUP$ column. Then do a bar chart on $PERP_AGE_GROUP$ column. Then we filter out the invalid values for $PERP_AGE_GROUP$. Afterwards, we plot bar chart on $PERP_AGE_GROUP$ over the years.

```
nypd_data_by_perp <- nypd_data %>% drop_na(PERP_AGE_GROUP) %>% filter(PERP_AGE_GROUP != 1020 & PERP_AGE_group) ggplot(nypd_data_by_perp, aes(x=as.factor(OCCUR_YEAR), fill=PERP_AGE_GROUP)) + geom_bar() + theme_minim
```


Visualizing Sex of Victims

Drop NA values and plot a bar chart over the years.

```
nypd_data_by_vic_sex <- nypd_data %>% drop_na(VIC_SEX) %>% mutate(OCCUR_YEAR=year(OCCUR_DATE))
ggplot(nypd_data_by_vic_sex, aes(x=as.factor(OCCUR_YEAR), fill=VIC_SEX)) + geom_bar() + theme_minimal()
```


Visualizing Sex of Perp

Drop NA values and plot a bar chart over the years.

```
nypd_data_by_perp_sex <- nypd_data %>% drop_na(PERP_SEX) %>% mutate(OCCUR_YEAR=year(OCCUR_DATE)) %>% fi
ggplot(nypd_data_by_perp_sex, aes(x=as.factor(OCCUR_YEAR), fill=PERP_SEX)) + geom_bar() + theme_minimal
```


Visualizing Time of Shooting

Drop NA values from OCCUR_TIME column, extract the hour value and then plot a line chart.

```
nypd_data_by_time <- nypd_data %>% drop_na(OCCUR_TIME) %>% mutate(OCCUR_HOUR=hour(OCCUR_TIME)) %>% group ggplot(nypd_data_by_time, aes(OCCUR_HOUR, COUNT)) + geom_point() + geom_line(colour="RED") + theme_minimum.
```

Shooting Incidents by Time of the Day

Data Modeling: Predict Sex of the Victim Based on the Sex of the Perp

We are modeling the data using decision tree with rpart library. We are predicting VIC_SEX based on PERP_SEX and VIC_AGE_GROUP features. First, we will remove unknown and NA values from PERP_SEX and VIC_SEX columns, and drop NA values from VIC_AGE_GROUP column. Then we do a test-train split and create a decision tree. We predict the VIC_SEX_PREDICTED column for nypd_test dataset.

```
nypd_test$VIC_SEX_PREDICTED <- predict(mytree, newdata = nypd_test, type = "class")</pre>
```

Model Bias

Based on the histogram, we can see that the model predicted all victims to be of male sex. We can see in the second histogram that in the $nypd_train$ dataset, over 80% of the victims are of male sex. The decision tree model showed bias while predicting the VIC_SEX to show all the victims as men. We can either use more complex models or do model tuning to reduce the model bias.

histogram(as.factor(nypd_test\$VIC_SEX_PREDICTED), col=c("skyblue"), xlab="Histogram of VIC_SEX_PREDICTED")

Histogram of VIC_SEX_PREDICTED for nypd_test

histogram(as.factor(nypd_train\$VIC_SEX), col=c("pink", "skyblue"), xlab="Histogram of VIC_SEX for nypd_"

