2025-04-09

Modelo de Resultados Potenciales

Plan

- Contexto
- Notación de Resultados Potenciales
- Descomposición de la Diferencia Simple
- Supuesto de Independencia
- Supuesto SUTVA

Causalidad

- Objetivo 1: entender la notación de resultados potenciales
 - Objetivo 2: poder calcular distintos conceptos de resultados potenciales
- Objetivo 3: entender la descomposición de la diferencia simple

Repaso

En la clase pasada aprendimos sobre diagramas causales.

Una herramienta muy útil para modelar el proceso generador de datos y entender qué variación es "buena" o "mala", y qué debe mantenerse constante.

Algunas limitaciones:

- Puede ser difícil trabajar con modelos complejos (en Economía no suele ser gran problema).
- No sirve bien para sistemas con retroalimentación.
 Especialmente complicado para sistemas de oferta y demanda.
- Es simple, pero pierde precisión.

El modelo de resultados potenciales es otra herramienta para pensar la causalidad.

Los DAGs son relativamente nuevos y tienen sus usos, pero los resultados potenciales son fundamentales.

La principal diferencia con la econometría tradicional es un tratamiento explícito de la causalidad y más énfasis en efectos heterogéneos.

• Pensemos en un "tratamiento"

- Pensemos en un "tratamiento"
 - Una nueva medicina, un programa de gobierno, exposición a una campaña publicitaria

- Pensemos en un "tratamiento"
 - Una nueva medicina, un programa de gobierno, exposición a una campaña publicitaria
- Para cada persona hay dos futuros posibles:

- Pensemos en un "tratamiento"
 - Una nueva medicina, un programa de gobierno, exposición a una campaña publicitaria
- Para cada persona hay dos futuros posibles:
 - uno donde recibe el tratamiento

- Pensemos en un "tratamiento"
 - Una nueva medicina, un programa de gobierno, exposición a una campaña publicitaria
- Para cada persona hay dos futuros posibles:
 - uno donde recibe el tratamiento
 - uno donde no lo recibe

- Pensemos en un "tratamiento"
 - Una nueva medicina, un programa de gobierno, exposición a una campaña publicitaria
- Para cada persona hay dos futuros posibles:
 - uno donde recibe el tratamiento
 - uno donde no lo recibe
- Nos interesa cómo el tratamiento afecta alguna variable de interés, el resultado.

 El efecto causal para cada individuo es la diferencia entre su resultado en ambos mundos.

- El efecto causal para cada individuo es la diferencia entre su resultado en ambos mundos.
- ¡Fácil! ¡Solo resta!

- El efecto causal para cada individuo es la diferencia entre su resultado en ambos mundos.
- ¡Fácil! ¡Solo resta!
- Pero: ¡solo observamos un resultado!

- El efecto causal para cada individuo es la diferencia entre su resultado en ambos mundos.
- ¡Fácil! ¡Solo resta!
- Pero: ¡solo observamos un resultado!
- El problema fundamental de la inferencia causal: datos faltantes

Notación

- Y representa los resultados
- El subíndice i denota un individuo
 - Puede ser una persona, empresa, estado, familia
- El superíndice 0 o 1 representa en qué universo estamos

Por lo tanto:

- Y_i^0 es el resultado si i *no recibe* el tratamiento
- Y_j^1 es el resultado si j *recibe* el tratamiento

Notación

- Sin superíndice significa el resultado observado
 - Y_{Joao}^0 es el resultado para Joao, sin tratamiento
 - Y_{Joao}^1 es el resultado para Joao, con tratamiento
 - Y_{Joao} es el resultado observado para Joao

Notación

- D_i representa el estado de tratamiento: 1 si tratado, 0 si no tratado
- Con esta notación:

$$Y_i = D_i Y_i^1 + (1 - D_i) Y_i^0$$

• Efecto del tratamiento:

$$\delta_i = Y_i^1 - Y_i^0$$

Individuo	Y_i^0	Y_i^1	δ_i
Ana	5	4	
Bruno	3	9	
Carla	3	2	
Daniel	7	4	

Individuo	Y_i^0	Y_i^1	δ_i
Ana	5	4	4 - 5 = -1
Bruno	3	9	9 - 3 = +6
Carla	3	2	2 - 3 = -1
Daniel	7	4	4 - 7 = -3

Lamentablemente, no podemos calcular δ_i , porque solo tenemos o Y_i^0 o Y_i^1 .

Individuo	Y_i^0	Y_i^1	Di	δ_i
Ana	?	4	1	4-?=?
Bruno	?	9	1	9-?=?
Carla	3	?	0	? - 3 = ?
Daniel	7	?	0	? - 7 = ?

No podemos calcular el efecto individual, pero *en algunos casos* podemos calcular *efectos promedio*.

Como cada persona tiene su propio efecto causal, no podemos hablar de "el efecto causal". Hay que ser más precisos.

El primer efecto que nos interesa es el *Efecto Promedio del Tratamiento* (ATE):

$$E[\delta_i] = E[Y_i^1 - Y_i^0] = E[Y_i^1] - E[Y_i^0]$$

En palabras, el ATE es simplemente el promedio de todos los efectos.

También podemos calcular efectos promedio para un grupo específico. Por ejemplo, si nos interesan las personas con cierta característica X=x:

$$E[\delta_i|X_i = x] = E[Y_i^1 - Y_i^0|X_i = x] = E[Y_i^1|X_i = x] - E[Y_i^0|X_i = x]$$

X puede ser género, ingreso, empleo, etc.

Una característica que suele importarnos: haber recibido tratamiento.

Efecto Promedio del Tratamiento para los Tratados (ATT):

$$E[\delta_i|D_i=1] = E[Y_i^1 - Y_i^0|D_i=1] = E[Y_i^1|D_i=1] - E[Y_i^0|D_i=1]$$

Individuo	Y_i^0	Y_i^1	D_i	δ_i
Ana	5	4	1	-1
Bruno	3	9	1	+6
Carla	3	2	0	-1
Daniel	7	4	0	-3

¿Cuál es el ATE?

Y_i^0	Y_i^1	D_i	δ_i
5	4	1	-1
3	9	1	+6
3	2	0	-1
7	4	0	-3
	5 3	5 4 3 9 3 2	5 4 1 3 9 1 3 2 0

¿Qué pasa si calculamos el efecto promedio para mujeres?

Y_i^0	Y_i^1	D_i	δ_i
5	4	1	-1
3	9	1	+6
3	2	0	-1
7	4	0	-3
	5 3	5 4 3 9 3 2	5 4 1 3 9 1 3 2 0

¿Qué pasa con el ATT?

Imaginemos un nuevo procedimiento médico.

El tratamiento es este nuevo procedimiento, y el control es seguir el procedimiento tradicional.

El resultado es la cantidad de años de vida del paciente bajo cada procedimiento.

Paciente	Y_i^1	Y_i^0
1	7	1
2	5	6
3	5	1
4	7	8
5	4	2
6	10	1
7	1	10
8	5	6
9	3	7
10	9	8

Paciente	Y_i^1	Y_i^0	δ_i
1	7	1	?
2	5	6	?
2 3 4	5	1	?
	7	8	?
5	4	2	?
6	10	1	?
7	1	10	?
8	5	6	?
9	3	7	?
10	9	8	?

Calculemos los efectos del tratamiento para cada paciente.

Y_i^1	Y_i^0	δ_i
7	1	6
5	6	-1
5	1	4
7	8	-1
4	2	2
10	1	9
1	10	-9
5	6	-1
3	7	-4
9	8	1
	7 5 5 7 4 10 1 5 3	7 1 5 6 5 1 7 8 4 2 10 1 1 10 5 6 3 7

• ¿Cuál es el ATE?

$$E[\delta_i] = \frac{1}{10} \sum_i \delta_i = 0.6$$

Paciente	Y_i^1	Y_i^0	δ_i	Sexo
	' 1	' 1	01	
1	7	1	6	Н
2	5	6	-1	M
3	5	1	4	Н
4	7	8	-1	M
5	4	2	2	Н
6	10	1	9	M
7	1	10	-9	Н
8	5	6	-1	M
9	3	7	-4	Н
10	9	8	1	M

• ¿Cuál es el ATE para hombres? ¿Y para mujeres?

■ Hombres: -0.1

■ Mujeres: +0.7

Imaginemos un médico perfecto que conoce los resultados potenciales de cada paciente.

Prescribe el tratamiento si el efecto es positivo.

	-			
Paciente	Y_i^1	Y_i^0	δ_i	D_i
1	7	1	6	1
2	5	6	-1	0
3	5	1	4	1
4	7	8	-1	0
5	4	2	2	1
6	10	1	9	1
7	1	10	-9	0
8	5	6	-1	0
9	3	7	-4	0
10	9	8	1	1

■ ¿Cuál es el ATT? ¿Y el ATU?

• ATT:
$$E[\delta_i|D_i=1] = \frac{1}{5}\sum_{D_i=1}\delta_i = 4.4$$

• ATU:
$$E[\delta_i|D_i=0] = \frac{1}{5}\sum_{D_i=0}\delta_i = -3.2$$

Pero en la realidad, no observamos todos los resultados potenciales.

Solo vemos el resultado realizado.

Paciente	Y_i^1	Y_i^0	δ_i	D_i	Y_i
1	7	1	6	1	7
2	5	6	-1	0	6
3	5	1	4	1	5
4	7	8	-1	0	8
5	4	2	2	1	4
6	10	1	9	1	10
7	1	10	-9	0	10
8	5	6	-1	0	6
9	3	7	-4	0	7
10	9	8	1	1	9

Paciente	D_i	Y_i
1	1	7
2	0	6
3	1	5
4	0	8
5	1	4
6	1	10
7	0	10
8	0	6
9	0	7
10	1	9

¿Qué pasa si calculamos la diferencia simple?

$$\frac{1}{5} \sum_{D_i=1} Y_i - \frac{1}{5} \sum_{D_i=0} Y_i = 7 - 7.4 = -0.4$$

Sesgo por Diferencia Simple

- Usando la diferencia simple, encontramos un efecto negativo jaunque el efecto promedio verdadero es positivo!
- Vamos a entender qué está pasando.

Sesgo por Diferencia Simple

Partimos de la diferencia simple:

$$\mathbb{E}[Y \mid D = 1] - \mathbb{E}[Y \mid D = 0] = \mathbb{E}[Y^1 \mid D = 1] - \mathbb{E}[Y^0 \mid D = 0]$$

Sesgo por Diferencia Simple

Partimos de la diferencia simple:

$$\mathbb{E}[Y \mid D = 1] - \mathbb{E}[Y \mid D = 0] = \mathbb{E}[Y^1 \mid D = 1] - \mathbb{E}[Y^0 \mid D = 0]$$

Luego sumamos y restamos $\mathbb{E}[Y^0 \mid D=1]$:

$$\mathbb{E}[Y^1 \mid D = 1] - \mathbb{E}[Y^0 \mid D = 0] = \mathbb{E}[Y^1 \mid D = 1] - \mathbb{E}[Y^0 \mid D = 1] + \mathbb{E}[Y^0 \mid D = 1] - \mathbb{E}[Y^0 \mid D = 0]$$

Expresión Final

$$\mathbb{E}[Y\mid D=1] - \mathbb{E}[Y\mid D=0] = \\ \underbrace{\mathbb{E}[Y^1\mid D=1] - \mathbb{E}[Y^0\mid D=1]}_{\text{ATT}} + \underbrace{\mathbb{E}[Y^0\mid D=1] - \mathbb{E}[Y^0\mid D=0]}_{\text{Sesgo de Selección}}$$

Sesgo de Selección

En el ejemplo del médico perfecto, ATT = 4.4 y diferencia simple = -0.4.

Vamos a calcular: $\mathbb{E}[Y^0 \mid D=1] - \mathbb{E}[Y^0 \mid D=0]$

Sesgo de Selección

$$(13 - 37)/5 = -24/5 = -4.8$$

$$\underbrace{\text{Diferencia Simple}}_{-0.4} = \underbrace{ATT}_{4.4} + \underbrace{\text{Sesgo de Selección}}_{-4.8}$$

Descomposición de la Diferencia Simple

- Interpretación: El sesgo de selección mide cuán distintos habrían sido los tratados y no tratados si no hubieran recibido tratamiento.
- En el ejemplo, el sesgo es negativo porque los pacientes que habrían salido peor sin tratamiento fueron los que sí lo recibieron.

- Introducimos un supuesto para corregir el problema.
- Supuesto de independencia:

$$(Y^1, Y^0) \perp D$$

- También se llama asignación aleatoria del tratamiento
- Significa que ser tratado o no no depende de los resultados potenciales

Recordemos: si $A \perp B$, entonces P(A|B) = P(A).

Entonces, el supuesto de independencia nos da:

• El sesgo de selección es cero:

Sesgo
$$=E[Y^0|D=1] - E[Y^0|D=0] = E[Y^0] - E[Y^0] = 0$$

Segundo, la diferencia simple identifica el ATT:

$$ATT = E[Y|D = 1] - E[Y|D = 0]$$
$$= E[Y^{1}|D = 1] - E[Y^{0}|D = 1]$$
$$= E[Y^{1}] - E[Y^{0}]$$

• Tercero, el ATE es igual al ATT:

$$ATE = E[Y^1] - E[Y^0] = ATT$$

Bajo asignación aleatoria:

- No hay sesgo de selección
- La diferencia simple estima el ATT
- ATT = ATE

SUTVA

Asumimos también SUTVA: Asignación Estable del Valor del Tratamiento por Unidad.

SUTVA

Este supuesto excluye tres cosas:

- Dosis distintas. El tratamiento es 0 o 1. Nada de medias dosis ni calidades distintas.
- Efectos indirectos: el tratamiento de uno no afecta el resultado de otro.
- Efectos de equilibrio general.

Resultados de Simulación

```
v1 \leftarrow c(7,5,5,7,4,10,1,5,3,9)
y0 \leftarrow c(1,6,1,8,2,1,10,6,7,8)
simple_diff <- function() {</pre>
  treated indices <- sample(10, 5)
  untreated indices <- setdiff(1:10, treated indices)
  treated_mean <- mean(y1[treated_indices])</pre>
  untreated_mean <- mean(y0[untreated_indices])
  return(treated mean - untreated mean)
}
sim results <- replicate(1000000, simple diff())</pre>
```

Resultados de Simulación

```
mean(sim_results)
## [1] 0.5967486
```

