Ch 3 : Trigonométrie : exercices : correction

exercice 1 :

- **72 Vrai.** La mesure en radians de l'angle est $\frac{105\pi}{80}$ soit $\frac{7\pi}{12}$.
- 73 Faux. La mesure de l'angle en degrés est 40°.
- 74 Vrai. $-\frac{3\pi}{5} \frac{27\pi}{5} = -6\pi = -3 \times 2\pi$.
- **75** Faux. $-\frac{8\pi}{7} \notin]-\pi ;\pi].$
- **76** Faux. $\sin \frac{2\pi}{3} = \frac{\sqrt{3}}{2}$.
- $\boxed{77} \quad \text{Vrai. } \cos \frac{8\pi}{9} = \cos \left(\pi \frac{\pi}{9} \right) = -\cos \frac{\pi}{9}.$
- **78** Faux. $\sin \frac{17\pi}{6} = \frac{1}{2}$.
- 79 Vrai. Pour tout
- $t \in \left[0; +\infty\left[, f\left(t + 0,02\right) = 2\sin\left[100\pi\left(t + 0,02\right) + \frac{\pi}{3}\right] = 2\sin\left(100\pi t + 2\pi + \frac{\pi}{3}\right) = 2\sin\left(100\pi t + \frac{\pi}{3}\right) = f\left(t\right).$

exercice 2:

- **80** Réponse **b.**
- **81** Réponse **c**.
- **82** Réponse **c**.
- 83 Réponse b.
- **84** Réponse **a.**
- **85** Réponse **a.**

exercice 3:

1. U(0) = 3.

- **2. a.** T = 30.
- **b.** Pour tout $t \in [0; +\infty[, U(t+30)=3\cos\left(\frac{\pi}{15}(t+30)\right)]=3\cos\left(\frac{\pi}{15}t+2\pi\right)=3\cos\left(\frac{\pi}{15}t\right)=U(t)$.

1.
$$U(0) = 3$$
.

2. a.
$$T = 30$$
.

b. Pour tout
$$t \in [0; +\infty[$$
, $U(t+30)=3\cos\left(\frac{\pi}{15}(t+30)\right)]=3\cos\left(\frac{\pi}{15}t+2\pi\right)=3\cos\left(\frac{\pi}{15}t\right)=U(t)$.

exercice 4:

1. A = 4.

2.
$$i(0) = -2\sqrt{2}$$
. $i(0) = -2\sqrt{2} \Leftrightarrow 4\sin(200\pi \times 0 + \phi) = -2\sqrt{2} \Leftrightarrow \sin\phi = -\frac{\sqrt{2}}{2}$. Donc $\phi = -\frac{\pi}{4}$.

3.
$$i(t) = 4\sin\left(200\pi t - \frac{\pi}{4}\right).$$

exercice 5:

a. 150°

b. 105°

c. 324°

d. 225°

e. 280°

f. 272°.

exercice 6:

a. $\frac{\pi}{36}$ **b.** $\frac{11\pi}{10}$ **c.** $\frac{7\pi}{4}$ **d.** $\frac{2\pi}{5}$ **e.** $\frac{2\pi}{9}$ **f.** $\frac{7\pi}{5}$.

exercice 7:

1. La mesure principale de $(\overrightarrow{OI}, \overrightarrow{OA})$ est $\frac{\pi}{4}$, celle de $(\overrightarrow{OI}, \overrightarrow{OB})$ est $\frac{3\pi}{4}$, celle de $(\overrightarrow{OI}, \overrightarrow{OC})$ est $-\frac{3\pi}{4}$, et celle de $(\overline{OI}, \overline{OL})$ est $-\frac{\pi}{2}$.

Dans l'intervalle]0; 2π], la mesure de $(\overrightarrow{OI}, \overrightarrow{OA})$ est $\frac{\pi}{4}$, celle de $(\overrightarrow{OI}, \overrightarrow{OB})$ est $\frac{3\pi}{4}$, celle de $(\overrightarrow{OI}, \overrightarrow{OC})$ est $\frac{5\pi}{4}$, et celle de $(\overline{OI}, \overline{OL})$ est $\frac{3\pi}{2}$.

Dans l'intervalle $\left[-\frac{\pi}{2}; \frac{3\pi}{2}\right]$, la mesure de $\left(\overrightarrow{OI}, \overrightarrow{OA}\right)$ est $\frac{\pi}{4}$, celle de $\left(\overrightarrow{OI}, \overrightarrow{OB}\right)$ est $\frac{3\pi}{4}$, celle de $\left(\overrightarrow{OI}, \overrightarrow{OC}\right)$ est $\frac{5\pi}{4}$, et celle de $(\overrightarrow{OI}, \overrightarrow{OL})$ est $-\frac{\pi}{2}$.

exercice 8:

a. $\sin(-\pi) = 0$ **b.** $\cos \frac{7\pi}{3} = \frac{1}{2}$ **c.** $\cos \frac{5\pi}{3} = 0$

exercice 9:

$$x = -\frac{\pi}{3}$$

$$x = -\frac{\pi}{3}$$

exercice 10:

$$\cos\frac{3\pi}{5} = \cos\left(\pi - \frac{2\pi}{5}\right) = -\cos\frac{2\pi}{5} = -\frac{\sqrt{5-1}}{4}. \qquad \sin\frac{3\pi}{5} = \sin\left(\pi - \frac{2\pi}{5}\right) = \sin\frac{2\pi}{5} = \frac{\sqrt{10 + 2\sqrt{5}}}{4}$$

$$\sin \frac{3\pi}{5} = \sin \left(\pi - \frac{2\pi}{5} \right) = \sin \frac{2\pi}{5} = \frac{\sqrt{10 + 2\sqrt{5}}}{4}$$

$$\cos\frac{12\pi}{5} = \cos\left(2\pi + \frac{2\pi}{5}\right) = \cos\frac{2\pi}{5} = \frac{\sqrt{5} - 1}{4}$$

$$\cos\frac{12\pi}{5} = \cos\left(2\pi + \frac{2\pi}{5}\right) = \cos\frac{2\pi}{5} = \frac{\sqrt{5} - 1}{4}. \qquad \sin\frac{12\pi}{5} = \sin\left(2\pi + \frac{2\pi}{5}\right) = \sin\frac{2\pi}{5} = \frac{\sqrt{10 + 2\sqrt{5}}}{4}$$

$$\cos\frac{\pi}{10} = \cos\left(\frac{\pi}{2} - \frac{2\pi}{5}\right) = \sin\frac{2\pi}{5} = \frac{\sqrt{10 + 2\sqrt{5}}}{4} \qquad \sin\frac{\pi}{10} = \sin\left(\frac{\pi}{2} - \frac{2\pi}{5}\right) = \cos\frac{2\pi}{5} = \frac{\sqrt{5} - 1}{4}$$

$$\sin\frac{\pi}{10} = \sin\left(\frac{\pi}{2} - \frac{2\pi}{5}\right) = \cos\frac{2\pi}{5} = \frac{\sqrt{5} - 1}{4}.$$

$$\cos\frac{9\pi}{10} = \cos\left(\frac{\pi}{2} + \frac{2\pi}{5}\right) = -\sin\frac{2\pi}{5} = -\frac{\sqrt{10 + 2\sqrt{5}}}{4} \quad \sin\frac{9\pi}{10} = \sin\left(\frac{\pi}{2} + \frac{2\pi}{5}\right) = \cos\frac{2\pi}{5} = \frac{\sqrt{5} - 1}{4}$$

$$\sin\frac{9\pi}{10} = \sin\left(\frac{\pi}{2} + \frac{2\pi}{5}\right) = \cos\frac{2\pi}{5} = \frac{\sqrt{5} - 1}{4}$$

exercice 11:

a.
$$\cos x = 0 \Leftrightarrow x = -\frac{\pi}{2} + k2\pi$$
 ou $x = \frac{\pi}{2} + k2\pi$ où $k \in \mathbb{Z}$.

b.
$$\sin x = -\frac{\sqrt{2}}{2} \Leftrightarrow x = -\frac{\pi}{4} + k2\pi$$
 ou $x = -\frac{3\pi}{4} + k2\pi$ où $k \in \mathbb{Z}$

c.
$$\sin x = \frac{1}{2} \Leftrightarrow x = \frac{\pi}{6} + k2\pi$$
 ou $x = \frac{5\pi}{6} + k2\pi$ où $k \in \mathbb{Z}$

exercice 12:

1.
$$T = 0.02$$
.

2. Pour tout
$$t \in [0; +\infty[, f(t+0.02) = 250\sin[100\pi(t+0.02)] = 250\sin(100\pi t + 2\pi) = 250\sin(100\pi t) = f(t)$$
.