IIITDM Kancheepuram MAT204T: Linear Algebra

Problem Set 7

- 1. Eigenvalues and eigenspace are invariant under similarity transformation.
- 2. If A = PB for a invertible matrix P, then prove that rank(A) = rank(B). Using this show that similarity matrices have same rank.

Remark: Due to this property we say Rank is a similarity invariant

3. If A and B are similar, then the set of eigenvalues of A is equal to the set of eigenvalues of B. If the similarity transform is P (that is if $A = P^{-1}BP$) and (λ_0, X) is an eigenpair of A, then (λ_0, PX) is an eigenpair of B.

Remark: Due to this property we say eigenvalues are similarity invariants

- 4. Let $\lambda_1, \lambda_2, \dots, \lambda_n$ be the characteristic roots of A and let $f(\lambda)$ be a polynomial. Then show that $f(\lambda_1), f(\lambda_1), \dots, f(\lambda_n)$ are the characteristic roots of f(A).
- 5. If $\lambda^n + c_1 \lambda^{n-1} + c_2 \lambda^{n-2} + \cdots + c_{n-1} \lambda + c_n = 0$ is a characteristic equation for $A_{n \times n}$. Then prove the following
 - (a) Sum of all eigenvalues: $\lambda_1 + \lambda_2 + \cdots + \lambda_n = -c_1 = trace(A)$
 - (b) Product of all eigenvalues: $\lambda_1 \lambda_2 \cdots \lambda_n = (-1)^n c_n = \det(A)$
- 6. Compute

(a)
$$\lim_{n \to \infty} A^n$$
 for $A = \begin{pmatrix} 7/5 & 1/5 \\ -1 & 1/2 \end{pmatrix}$.

- (b) eigenvalue and eigenvectors of $A = \begin{pmatrix} n & 1 & 1 & 1 & 1 \\ 1 & n & 1 & 1 & 1 \\ 1 & 1 & n & 1 & 1 \\ 1 & 1 & 1 & n & 1 \\ 1 & 1 & 1 & 1 & n \end{pmatrix}$, for n = 100 and -4.
- 7. Show that a square matrix is orthogonally diagonalizable if and only if it is symmetric. **Remark:** In case of symmetric matrices the eigenvectors will make the matrix P as orthogonal matrix and the corresponding similarity transformation is $P^TAP = D$.

8. Let

$$A = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}$$
, then answer the following.

- (a) Show that the characteristic polynomial of A is $p(\lambda) = 4 4\lambda + \lambda^2$.
- (b) Show that p(A) = 0
- (c) Using the above result find the matrix A^6 .

Remark: For every square matrix A, we always have p(A) = 0, where $p(\lambda)$ is the characteristic polynomial of A. This is by Cayley-Hamilton Theorem.

Definition:

- (a) The set of all eigenvalues of T is called the eigenspectrum of T and is denoted by $\mathbf{eig}(T)$.
- (b) The subspace $\mathbf{N}(T \lambda I)$ of V is called the **eigenspace** of T with respect to the eigenvalue λ and is denoted by $\mathbf{E}(\lambda)$.
- (c) For $\lambda \in \mathbf{eig}(T), \gamma(\lambda) := \mathbf{dim} \mathbf{E}(\lambda)$ is called the geometric multiplicity of the eigenvalue λ .
- 9. Find eig(T), $E(\lambda)$ and $\gamma(\lambda)$ of the following linear operators
 - (a) $T: \mathbb{F}^2 \to \mathbb{F}^2$ defined by T(a, b) = (b, a).

Solution: Given that

$$T(a,b) = (b,a) \tag{1}$$

If λ is an eigenvalue of T with corresponding eigenvector (α, β) , then

$$T(\alpha, \beta) = \lambda(\alpha, \beta) \tag{2}$$

Using (1) in (2), we get

$$(\beta, \alpha) = \lambda (\alpha, \beta)$$

$$\Rightarrow \quad \beta = \lambda \alpha \text{ and } \alpha = \lambda \beta.$$

From the above two equation one can find the characteristic equation and characteristic roots as

$$(\lambda^2 - 1) = 0, \Rightarrow \lambda = \pm 1.$$

Therefore, $\mathbf{eig}(T) = \{1, -1\}.$

Remark: – To find the eigenvector(v) corresponding to the eigenvalue(λ):

Find N $(T - \lambda I)$, where I is the identity map i.e the set of all such v so that $(T - \lambda I) v = \mathbf{0}$ and then find v.

For $\lambda = 1$: we are looking for the null space of (T - I)

$$(T-I) v = \mathbf{0}$$
, where $v = (x,y) \in \mathbb{R}^2$,
 $(y,x) - (x,y) = (0,0)$
 $\Rightarrow x = y$.

$$v = (x, y) = (x, x) = x(1, 1) = \text{span}\{(1, 1)\}.$$

So,
$$\mathbf{E}(\lambda = 1) = \operatorname{span}\{(1, 1)\}$$
 and $\gamma(1) = \operatorname{\mathbf{dim}}\mathbf{E}(\lambda = 1) = 1$.

Similarly, for $\lambda = -1$: we are looking for the null space of (T + I)

$$(T+I) w = \mathbf{0}$$
, where $w = (x,y) \in \mathbb{R}^2$,
 $(y,x) + (x,y) = (0,0)$
 $\Rightarrow y = -x$.

$$w = (x, y) = (x, -x) = x(1, -1) = \text{span}\{(1, -1)\}\$$

So,
$$\mathbf{E}(\lambda = -1) = \text{span}\{(1, -1)\}$$
 and $\gamma(-1) = 1$.

(b) $T: \mathbb{F}^3 \to \mathbb{F}^3$ defined by T(a, b, c) = (0, 5a, 2c).

Solution: Given that

$$T(a, b, c) = (0, 5a, 2c) \tag{3}$$

If λ is an eigenvalue of T with corresponding eigenvector (α, β, γ) , then

$$T(\alpha, \beta, \gamma) = \lambda(\alpha, \beta, \gamma) \tag{4}$$

Using (3) in (4), we get

$$(0, 5\alpha, 2\gamma) = \lambda (\alpha, \beta, \gamma)$$

Comparing component-wise, $0 = \lambda \alpha, 5\alpha = \lambda \beta$ and $2\gamma = \lambda \gamma$.

The above three equation are reduced as two equations

$$\lambda^2 \left(\frac{\beta}{5} \right) = 0$$
, and $(\lambda - 2)\gamma = 0$

From the above two equations, if we will have $\beta=0$ and $\gamma=0$ simultaneously, that will contradict the fact of nonzero eigenvector, which means the product of λ^2 and $\lambda-2$ is always zero for all nonzero eigenvector. Hence, we have the equation

$$\lambda^2(\lambda - 2) = 0,$$

which is the characteristic equation of the linear operator T. Therefore, $\mathbf{eig}(T) = \{0, 2\}$, and the eigenvalue 0 has multiplicity two.

For $\lambda = 0$: we are looking for the null space of (T - 0I)

$$(T - 0I) v = \mathbf{0}$$
, where $v = (x, y, z) \in \mathbb{R}^3$, $T(x, y, z) = (0, 0, 0)$, $(0, 5x, 2z) = (0, 0, 0)$, $\Rightarrow x = 0$ and $z = 0$.

$$v = (x, y, z) = (0, y, 0) = y(0, 1, 0) = \text{span}\{(0, 1, 0)\}.$$

So,
$$\mathbf{E}(0) = \text{span}\{(0, 1, 0)\}$$
 and $\gamma(0) = 1$.

Similarly, for $\lambda = 2$: we are looking for the null space of (T - 2I)

$$(T-2I) w = \mathbf{0}$$
, where $w = (x, y, z) \in \mathbb{R}^3$, $T(x, y, z) - 2(x, y, z) = (0, 0, 0)$, $(-2x, 5x - 2y, 0) = (0, 0, 0)$, $\Rightarrow x = 0$ and $y = 0$.

$$w = (x, y, z) = (0, 0, z) = z(0, 0, 1) = \text{span}\{(0, 0, 1)\}.$$

So,
$$\mathbf{E}(2) = \text{span}\{(0,0,1)\}$$
 and $\gamma(2) = 1$.

Remark:- The eigenvalue $\lambda = 0$ has algebraic multiplicity 2, geometric multiplicity 1, hence the dimension of eigenspace is 1.

- (c) $T: \mathbb{F}^2 \to \mathbb{F}^2$ defined by T(a, b) = (-b, a).
- (d) $T: \mathbb{F}^4 \to \mathbb{F}^4$ defined by T(a, b, c, d) = (b, -a, d, -c)
- (e) $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(a, b, c) = (a + b, 2b, 3c).

(f)
$$T: \mathcal{P}([a,b], \mathbb{R}) \to \mathcal{P}([a,b], \mathbb{R})$$
, where $(Tp)(t) = \frac{d}{dt}p(t)$ for $p(t) \in \mathcal{P}([a,b], \mathbb{R})$.

- 10. Suppose S and T are linear operators on V, λ is an eigenvalue of S, and μ is an eigenvalue of T. Is it necessary that $\mu\lambda$ is an eigenvalue of ST?
- 11. Let A be an $n \times n$ matrix and α be a scalar such that each row (or each column) sums to α . Show that α is an eigenvalue of A.
- 12. T is a linear operator on a real inner product space, where $(T \alpha I)^2 + \beta^2 I$ is not invertible for some real numbers α and β .
 - (a) If $T: \mathbb{R}^n \to \mathbb{R}^n$ exists, then find 'n',
 - (b) Give an example of such operator T, and find their eigenvalues.
- 13. Give a linear operator whose characteristic polynomial is $(t-5)^2(t-6)^2$.
- 14. Eigenvalues of the special matrices are given in the table(next page):

Let us consider, $A = (a_{i,j})_{n \times n}$ is a square matrix.

Table 1: Prove the following results

Table 1. 1 love the following results		
Matrix	Definition	Eigenvalue
Hermitian	$A^* = A$	Real
Symmetric	$A^T = A$	Real
Skew-hermitian	$A^* = -A$	Either zero or Purely imaginary
Skew-symmetric	$A^T = -A$	Either zero or Purely imaginary
Unitary	$A^*A = I$	modulus is equal to one
Orthogonal	$A^T A = I$	modulus is equal to one
Involutory	$A^2 = I$	±1
Idempotent	$A^2 = A$	0 and 1
Nilpotent (index-k)	$A^r \neq 0$ for $r = 1 \dots (k-1)$ but $A^k = 0$.	0
Diagonal	$\begin{cases} 0 & \text{if } i \neq j \\ a_{ij} & \text{if } i = j \end{cases}$	a_{ii} for $i = 1, 2,, n$
Stochastic matrix	$a_{ij} \ge 0$ and $a_{i1} + a_{i2} + \dots + a_{in} = 1$, for all $1 \le i, j \le n$	If λ is an eigenvalue then, $ \lambda \leq 1$ and at least one eigenvalue is equal to 1