3703 - 3J04 PROBABILITY & STATISTICS FOR (CIVIL) ENGINEERING (01 - Lecture 4

PROBABILITY - for now only work with discrete sample spaces

- Subjective best guess e.g. betting odds

- elections, football games - non-repeatable experiments

- Objective: relative frequency of events

- repeating experiments

"Things settledown in the long run"

- function assigned to events of Probability. sample space

represents belief in what the outrome of an experiment will be

Axiomatic approach: mathematical tools & rules to understand chance

Suppose S finite eg. S= {s₁,..., S_N}

Assign weights to Si : a non-negative typically # Pi assigned to Si

where $\sum_{i=1}^{N} P_i = 1.$ so notice 0≤ Pi≤1 for eachi.

For an event
$$E(\subseteq S)$$
, the probability of E

$$P(E) = \sum_{i} P_{i}$$
where $s_{i} \in E$

$$Example S = \{a, b, c\}, \text{ with weights } \underbrace{\{0.1, 0.5, 0.4\}}_{\text{addupto}}$$
If $A = \{a, c\}, B = \{b, c\}, \text{ what is}$

add up to 1 (a) P(A), (b) P(B) (c) P(A n B)?

Solution (a)
$$P(A) = 0.1 + 0.4 = 0.5$$

(b) $P(B) = 0.5 + 0.4 = 0.9$
(c) $P(A \cap B) = P(\{c\}) = 0.4$.

Simplest situation is that all outcomes are equally likely i.e. everything is random i.e.

$$S = \{S_1, ..., S_N\}$$
 all $P_i S_i S_i$ are? $\longrightarrow i.e.$ $P_i = \frac{1}{N}$ for all S_i for any event $E(S)$ $P(E) = \frac{1EI}{N} \in S_i$ size of $E(S)$

Example 100 chips, 75 conforming 25 non-conforming 3 sampled randonly without replacement. E = getting exactly 2 non-conforming dups.

Solution
$$P(E) = \frac{1E1}{N} = \frac{\binom{25}{2} \times \binom{75}{1}}{\binom{100}{3}} = \frac{300 \times 75}{161,700} \approx 0.14$$

A probability distribution tells no the probability associated with each value of X:

e.g. here: $\begin{array}{c|cccc} X & P(X) \\ \hline 0 & 0.42 \\ \hline 1 & 0.43 \\ \hline 2 & 0.14 \\ \hline 3 & 0.01 \\ \hline \hline 1 & & Should add \\ ap to 1: \end{array}$

(3) If $E_1 \cap E_2 = \emptyset$, then $P(E_1 \cup E_2) = P(E_1) + P(E_2)$.

Notice
$$P(E^c) = 1 - P(E)$$
.
(in particular $P(\phi) = 0$.)

) (an extend (3) to as many events asyon like i.e. $E_1, ..., E_k$ and $E_i \cap E_j = \emptyset$ for each pair $i \neq j$ has $P(E_1 \cup ... \cup E_k) = P(E_i) + ... + P(E_k)$.

Question What if $E_1,...,E_K$ are not[mutually exclusive? What is $P(E_1, \dots, E_K)$?

Addition Rule $P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$ En Think area!

Example		Passed	Failed	TOTAL
	Col	123	48	171
	Co2	(115)	32	147
	TOTAL	238	80	318

Person selected at random

(a)
$$P(E_1) = \frac{147}{318}$$
. (b) $P(E_2) = \frac{238}{318}$

(()
$$P(E_1 \cap E_2) = \frac{115}{318}$$

(d) $P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$
 $= \frac{147 + 238 - 115}{318} = \frac{270}{318}$

Addition Rule for 3 events

Example Passwords: 8 characters; upper cose letters (26); digits (10)

What is the prosability of having #2 at start or K in the 5th spot?

Solution

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

$$= \frac{62^7}{62^8} + \frac{62^7}{62^8} - \frac{62^6}{62^8}$$