Consumo

- sostituire: MRS_{x_1,x_2} con: MRS.
- Esercizio 2, pag. 7 <u>sostituire</u>: (b) Il reddito aumenta del 50%, il prezzo delle sigarette aumenta del 10% e il prezzo delle pizze si riduce del 70%?

 <u>con</u>:
 - (b) Il reddito aumenta del 50%, il prezzo delle sigarette aumenta del 10% e il prezzo delle pizze si riduce del 70%? E se il prezzo delle sigarette aumentasse del 50%?
- Esercizio 2, pag. 9 sostituire: (b) con: (c) ed inserire soluzione punto (b) ossia:
 b) Un aumento del reddito del 50% determina un nuovo reddito: m' = 3000(1 + 0, 50) = 4500.

Un aumento del prezzo delle sigarette del 10% implica $p'_1 = 5(1+0,10) = 5.5$.

Una riduzione del prezzo delle pizze del 70% implica $p_2'=15(1-0,70)=4.5$.

Quindi poichè l'aumento del reddito è maggiore dell'aumento di p_1 l'intercetta orizzontale aumenta ossia $m'/p'_1 = 818.18$. L'intercetta verticale aumenta poichè il reddito aumenta ed p_2 si riduce ossia $m'/p'_2 = 1000$. Pertanto la retta di bilancio trasla verso l'alto e l'inclinazione aumenta in quanto p_1 aumenta e p_2 si riduce ossia $p'_1/p'_2 = 1.2$.

Se il prezzo delle sigarette aumenta del 50%, la retta di bilancio ruota verso l'esterno facendo perno sull'intercetta orizzontale. L'intercetta orizzontale, infatti, non cambia in quanto le sigarette aumentano nella stessa proporzione del reddito, ossia $m'/p'_1 = 600$. L'inclinazione della retta di bilancio aumenta ossia $p'_1/p'_2 = 1.6$.

• Esercizio 9, p.18 e p.19, sostituire:

– Se
$$MRS_{x_1,x_2} = -\frac{p_1}{p_2}$$
 con: Se $|MRS| = \frac{p_1}{p_2}$

– Se
$$MRS_{x_1,x_2}<-\frac{p_1}{p_2}$$

 con: Se $|MRS|<\frac{p_1}{p_2}$

– Se
$$MRS_{x_1,x_2} > -\frac{p_1}{p_2}$$
 con: Se $|MRS| > \frac{p_1}{p_2}$

- Esercizio 9, p.20, <u>sostituire</u>: $MRS_{x_1,x_2} = \frac{1}{2}$ <u>con</u>: $|MRS| = \frac{1}{2}$.
- Esercizio 10, p.21, <u>sostituire</u>: $MRS_{x_1,x_2} = \frac{10}{5}$ <u>con</u>: |MRS| = 2.
- Esercizio 10, p.21, <u>sostituire</u>: $MRS_{x_1,x_2} > \frac{p_1}{p_2}$ <u>con</u>: $|MRS| > \frac{2}{3}$.
- Esercizio 12, p.23 sostituire:

Panieri Prezzi	X = (6, 2, 8)	Y = (4, 10, 6)	Z = (8, 8, 8)
(1,3,10)	92	94	92
(4,3,6)	78	82	92
(1,1,5)	48	44	46

con:

Panieri Prezzi	X = (6, 2, 8)	Y = (4, 10, 6)	Z = (8, 8, 6)
(1,3,10)	92	94	92
(4,3,6)	78	82	92
(1,1,5)	48	44	46

- Esercizio 15, p. 32 sostituire: $MRS_{x_1,x_2}=\frac{3}{2}$ con: $|MRS|=\frac{3}{2}$
- Esercizio 15, p. 33 sostituire: $MRS_{x_1,x_2}=\frac{3}{2}$ con: $|MRS|=\frac{3}{2}$
- Esercizio 15, p. 33 sostituire: $\frac{p_1}{p_2} < MRS_{x_1,x_2},$ con: $|MRS| > \frac{p_1}{p_2}$
- Esercizio 15, p. 33 sostituire: $\frac{p_1}{p_2}>MRS_{x_1,x_2},$ con: $|MRS|<\frac{p_1}{p_2}$
- Esercizio 15, p. 33 sostituire: $\frac{p_1}{p_2} < MRS_{x_1,x_2}$, con: $|MRS| > \frac{p_1}{p_2}$
- Esercizio 19, p.40 sostituire: U(C,R) = CR con: U(R,C) = CR.
- Esercizio 20, p.43 <u>sostituire</u>: $U(C,R) = C^{\frac{1}{2}}R^{\frac{1}{2}}$ <u>con</u>: $U(R,C) = C^{\frac{1}{2}}R^{\frac{1}{2}}$.
- Esercizio 21, p.45 sostituire: Calcolare il risparmio del consumatore con: Calcolare il risparmio del consumatore assumendo che non ci sia inflazione e che il prezzo del bene di consumo nei due periodi sia uguale ad 1.
- Esercizio 22, p.48 sostituire: Calcolare ed illustrare graficamente il vincolo di bilancio del consumatore. con: Calcolare ed illustrare graficamente il vincolo di bilancio del

consumatore. assumendo che non ci sia inflazione e che il prezzo del bene di consumo nei due periodi sia uguale ad 1.

- p.52 inserire il seguente esercizio:

Esercizio 24

Un agente ha una ricchezza m ed è soggetto al rischio di subire una perdita pari ad L con probabilità p. L'agente può decidere di sottoscrivere un'assicurazione pagando il premio γ per ogni euro assicurato ossia deve pagare la somma γA per ricevere dall'assicurazione la somma A se l'evento dannoso si verifica. Data la sua funzione di utilità è $u(c) = \log(1+c)$ dove c rappresenta il consumo dell'agente:

- 1. Determinare la domanda ottimale di assicurazioni del consumatore.
- 2. In quale caso l'agente avverso al rischio sceglie di assicurarsi completamente?

Soluzione

1. Il consumo dell'agente nei due stati di natura ("non si verifica il danno" (na), "si verifica il danno" (a)) è:

$$\begin{cases} c_{na} = m - \gamma A \\ c_a = m - L + A - \gamma A. \end{cases}$$

da cui ricaviamo:

$$c_{na} = \frac{m - \gamma L}{1 - \gamma} - \frac{\gamma}{1 - \gamma} c_a \tag{1}$$

La scelta ottima del consumatore relativamente ad A è determinata dalla condizione di uguaglianza tra il saggio marginale di sostituzione tra i consumi nelle due situazioni e l'inclinazione del vincolo di bilancio:

$$-\frac{pMU(c_a)}{(1-p)MU(c_{na})} = -\frac{\gamma}{1-\gamma}$$
 (2)

Data la funzione di utilità $U = \log(1+c)$ dove $c = c_a$ con probabilità $p \in c = c_{na}$ con probabilità 1 - p si ha:

$$\begin{cases} MU(c_a) = \frac{1}{1+m-L+A-\gamma A} \\ MU(c_{na}) = \frac{1}{1+m-\gamma A} \end{cases}$$

Quindi la condizione di tangenza diventa:

$$\frac{p(1+m-\gamma A)}{(1-p)(1+m-L+A-\gamma A)} = \frac{\gamma}{1-\gamma}$$
 (3)

da cui ricaviamo la scelta ottima di A:

$$A^* = \frac{(1+m)(p-\gamma) + \gamma(1-p)L}{\gamma(1-\gamma)} \tag{4}$$

2. L'agente avverso al rischio si assicura completamente ossia A=L solo se la compagnia di assicurazione offre un tasso equo ossia $p=\gamma$. Se l'assicurazione non è equa ossia $\gamma>p$ allora $c_a< c_{na}$ poichè l'individuo è avverso al rischio. Sostituendo infatti A^* in c_a e c_{na} otteniamo:

$$\begin{cases} c_a^* = \frac{p(m-\gamma L) + p - \gamma}{\gamma} \\ c_{na}^* = \frac{(1-p)(m-\gamma L) - (p-\gamma)}{1-\gamma} \end{cases}$$

Da cui ricaviamo che se $\gamma > p$ allora $c_a < c_{na}$.

Domanda di Mercato, equilibrio, informazione asimmetrica

• Esercizio 3, p.62 sostituire:

$$\frac{\partial RT(p)}{\partial p} = 0 \Longrightarrow \quad q + p * \frac{dq}{dp} = 0 \Longrightarrow \quad q \left[1 + \frac{p}{q} \frac{dq}{dp} \right] = 0 \Longrightarrow \quad q \left[1 + \frac{1}{\epsilon} \right] = 0 \Longrightarrow \epsilon = -1.$$

(5)

con:

$$\frac{\partial RT(p)}{\partial p} = 0 \Longrightarrow q + p * \frac{dq}{dp} = 0 \Longrightarrow q \left[1 + \frac{p}{q} \frac{dq}{dp} \right] = 0 \Longrightarrow q(1 + \epsilon) = 0 \Longrightarrow \epsilon = -1.$$
(6)

Tecnologia, costi ed offerta dell'industria

- Esercizio 2, p.80 sostituire: $K^* = \frac{2Y}{Y\sqrt{2}}$ con: $K^* = \frac{2Y}{\sqrt{2}}$
- Esercizio 2, p.80 sostituire:

$$TC(Y) = p_K K(L) + p_L L(Y) = 4\sqrt{2}Y$$

con:

$$TC(Y) = p_K K(Y) + p_L L(Y) = 4\sqrt{2}Y$$

• Esercizio 4, p.85 <u>sostituire</u>: Per determinare le funzioni di costo totale, medio e marginale dobbiamo calcolare in primo luogo le quantità di lavoro e capitale scelte dall'impresa al fine di massimizzare il proprio profitto.

con:

Per determinare le funzioni di costo totale, medio e marginale dobbiamo calcolare in primo luogo le quantità di lavoro e capitale scelte dall'impresa al fine di minimizzare il proprio costo.

• Esercizio 5, p.87 sostituire:

$$\begin{cases} TRS_{L,K} = \frac{p_L}{p_K} \\ 20 = \sqrt{L} + \sqrt{K} \end{cases} \implies \begin{cases} \frac{K}{L} = 1 \\ 20 = 2\sqrt{L} \end{cases} \implies \begin{cases} L^* = 100 \\ K^* = 100 \end{cases}$$

con:

$$\begin{cases} TRS_{L,K} = \frac{p_L}{p_K} \\ 20 = \sqrt{L} + \sqrt{K} \end{cases} \implies \begin{cases} \frac{\sqrt{K}}{\sqrt{L}} = 1 \\ 20 = 2\sqrt{L} \end{cases} \implies \begin{cases} L^* = 100 \\ K^* = 100 \end{cases}$$

• Esercizio 5, p.87 <u>sostituire</u>: Per determinare le funzioni di costo totale, medio e marginale dobbiamo calcolare in primo luogo le quantità di lavoro e capitale scelte dall'impresa al fine di massimizzare il proprio profitto.

<u>con</u>:

Per determinare le funzioni di costo totale, medio e marginale dobbiamo calcolare in primo luogo le quantità di lavoro e capitale scelte dall'impresa al fine di minimizzare il proprio costo.

• Esercizio 6, p.88 sostituire:

In questo caso K e L sono perfetti sostituti e quindi si determina la loro combinazione ottimale confrontando il $TRS_{L,K}$ con $\frac{p_L}{p_k}$. Poichè $TRS_{L,K} = 2$ e $\frac{p_L}{p_k} = 1$ allora $TRS_{L,K} > \frac{p_L}{p_k}$

con:

In questo caso K e L sono perfetti sostituti e quindi si determina la loro combinazione ottimale confrontando il $|TRS_{L,K}|$ con $\frac{p_L}{p_k}$. Poichè $|TRS_{L,K}| = 2$ e $\frac{p_L}{p_k} = 1$ allora $|TRS_{L,K}| > \frac{p_L}{p_k}$.

• Esercizio 8, p.91 sostituire:

$$C(q) = \frac{1}{2}q^2 + 4q$$

con:

$$C(q_i) = \frac{1}{2}q_i^2 + 4q$$

con i = 1...100.

• Esercizio 8, p.91 sostituire:

- La funzione di offerta della singola impresa.
- La funzione di offerta di mercato.

con:

- La funzione di offerta della singola impresa nel breve periodo.
- La funzione di offerta di mercato nel breve periodo.

• Esercizio 8, p.91 sostituire:

La funzione di offerta della singola impresa si ottiene imponendo la condizione di massimizzazione dei profitti per ciascuna impresa operante sul mercato ossia p = MC(q). Dato MC(q) = q + 4 la condizione p = MC(q) è p = q + 4, da cui ricaviamo la funzione di offerta dell'impresa:

$$S_i(p) = p - 4.$$

con:

• In concorrenza perfetta, l'impresa offre la quantità di output che rende massimo il proprio profitto ossia tale che $p = MC(q_i)$. Tuttavia solo i punti che appartengono al tratto della curva del costo marginale al di sopra del costo medio variabile appartengono alla curva di offerta.

Pertanto dato $MC(q_i) = q_i + 4$ e poichè $MC(q_i) > AVC(q_i)$, otteniamo la quantità offerta dall'impresa risolvendo la condizione di massimo profitto $p = MC(q_i)$ ossia $p = q_i + 4$. Da questa condizione ricaviamo che l'offerta dell'impresa è:

$$q_i = S_i(p) = p - 4.$$

- Esercizio 8, p.92 sostituire: 4q con: $4q_i$
- Esercizio 8, p.92 sostituire:

$$C(q) = \frac{1}{2}q^2 + 4q - 4q = \frac{1}{2}q^2$$

Dato MC(q)=q, la curva di offerta di ogni impresa è: <u>con</u>:

$$C(q_i) = \frac{1}{2}q_i^2 + 4q_i - 4q_i = \frac{1}{2}q_i^2$$

Dato $MC(q_i) = q_i$, la curva di offerta di ogni impresa è:

• Esercizio 9, p.92 sostituire: $C_1(q) = 2q^2 + q$ e 25 la funzione di costo totale: $C_2(q) = \frac{1}{2}q^2$.

 $C(q_i) = 2q_i^2 + q_i$ e 25 la funzione di costo totale: $C(q_j) = \frac{1}{2}q_j^2$.

• Esercizio 9, p.93 sostituire: ossia MC(q) = 4q + 1, da cui, utilizzando la condizione di massimo profitto p = MC(q), otteniamo:

con:

ossia $MC(q_i) = 4q_i + 1$. Dato $MC(q_i) > AVC(q_i)$, dalla condizione di massimo profitto $p = MC(q_i)$, otteniamo:

- Esercizio 9, p.93 sostituire: Ripetiamo lo stesso procedimento per il secondo gruppo. Quindi dato MC(q) = q si ha: con: Ripetiamo lo stesso procedimento per il secondo gruppo. Quindi dato $MC(q_j) = q_j$ e $MC(q_j) > AVC(q_j)$ si ha:
- Esercizio 9, p.93 sostituire:

$$S(p) = D(p) \Rightarrow \frac{125p - 25}{4} = 105 - 5p \Rightarrow p^* = 3,07; q^* = 358,7$$

con:

$$S(p) = D(p) \Rightarrow \frac{125p - 25}{4} = 105 - 5p \Rightarrow p^* = 3,07; q^* = 89.65$$

• Esercizio 9, p.93 Eliminare:

Per ogni $0 \le p \le 1$ si ha:

$$S(p) = D(p) \Rightarrow 25p = 105 - 5p \Rightarrow p^* = 3, 5; q^* = 87, 5$$

• Esercizio 10, p.95 Sostituire figura con questa:

Figura 1: Curva di offerta di lungo periodo

• Esercizio 11, p.95 sostituire:

$$C(q) = \frac{1}{4}q^2 + 16$$

con:

$$C(q_i) = \frac{1}{4}q_i^2 + 16$$

con i = 1...50.

- Esercizio 11, p.95 sostituire: D(p) = 60 4p con: D(p) = 72 4p.
- Esercizio 11, p.95 sostituire: Per definire la funzione di offerta delle singole imprese appartenenti al primo gruppo calcoliamo in primo luogo il costo marginale di ogni impresa ossia $MC(q) = \frac{1}{2}q$, da cui, utilizzando la condizione di massimo profitto p = MC(q), otteniamo:

con: Per definire la funzione di offerta delle singole imprese calcoliamo in primo luogo il costo marginale di ogni impresa ossia $MC(q_i) = \frac{1}{2}q_i$, dato $MC(q_i) > AVC(q_i)$, dalla condizione di massimo profitto $p = MC(q_i)$, otteniamo:

• Esercizio 11, p.96 sostituire:

$$S(p) = D(p) \Rightarrow 100p = 60 - 4p \Rightarrow p^* = \frac{15}{26}; q^* = \frac{75}{13}$$

 $\underline{\operatorname{con}}$:

$$S(p) = D(p) \Rightarrow 100p = 72 - 4p \Rightarrow p^* = \frac{9}{13}; q^* = 69.23$$

• Esercizio 11, p.96 sostituire:

$$D(p) = 60 - 4p^* \Rightarrow D(p) = 44$$

con:

$$D(p) = 72 - 4p^* \Rightarrow D(p) = 56$$

• Esercizio 12, p.97 sostituire:

$$C(q) = \alpha q^2 + \beta q + 4$$

La quantità ed il prezzo di equilibrio di lungo periodo sono rispettivamente q=4 e p=4. con:

$$C(q_i) = \alpha q_i^2 + \beta q_i + 4$$

con i=1...n. La quantità ed il prezzo di equilibrio di lungo periodo sono rispettivamente $q_i=4$ e p=4.

• Esercizio 12, p.97 <u>sostituire</u>: Trovare il n imprese nel mercato nel lungo periodo se la domanda aggregata à D(p) = 52 - 2p. <u>con</u>: Trovare il n imprese nel mercato nel lungo periodo se la domanda aggregata è D(p) = 52 - 2p.

Monopolio, Oligopolio, teoria dei giochi

- p.107 <u>Eliminare esercizio 4</u>.
- Esercizio 6 p.110 <u>sostituire</u>: massizza <u>con</u>: massimizza.
- Esercizio 13, p. 122, <u>sostituire</u>: eliminando la seconda riga e la seconda colonna <u>con</u>: eliminando la seconda riga e la terza colonna. Svolgere i calcoli successivi nello stesso modo ma con la nuova matrice dei payoff.