MATH 350-2 Advanced Calculus

W.R. Casper

Department of Mathematics California State University Fullerton

October 21, 2024

Outline

- Real Analysis Lecture 14
 - More on limits
 - Cauchy sequences

Outline

- Real Analysis Lecture 14
 - More on limits
 - Cauchy sequences

Theorem

If a sequence $\{x_n\}$ in a metric space (M, d) converges to a value $L \in M$, then the range

$$X = \{x_1, x_2, \dots\} \subseteq M$$

is a bounded set and L is an adherent point of X.

Theorem

If a sequence $\{x_n\}$ in a metric space (M, d) converges to a value $L \in M$, then the range

$$X = \{x_1, x_2, \dots\} \subseteq M$$

is a bounded set and L is an adherent point of X.

When the range of a sequence is bounded, we call the sequence $\{x_n\}$ bounded.

Proof.

Suppose that $\lim_{n\to\infty} x_n = L$.

Proof.

Suppose that $\lim_{n\to\infty} x_n = L$. Let $\epsilon = 2024$.

Proof.

Suppose that $\lim_{n\to\infty} x_n = L$.

Let $\epsilon = 2024$.

Then there exists $N \in \mathbb{Z}_+$ with $d(x_n, L) \leq 2024$ for all $n \geq N$.

Proof.

Suppose that $\lim_{n\to\infty} x_n = L$.

Let $\epsilon = 2024$.

Then there exists $N \in \mathbb{Z}_+$ with $d(x_n, L) \leq 2024$ for all $n \geq N$. If we take

$$R = \max\{d(x_1, L), d(x_2, L), \dots, d(x_{N-1}, L), 2024\},\$$

Proof.

Suppose that $\lim_{n\to\infty} x_n = L$.

Let $\epsilon = 2024$.

Then there exists $N \in \mathbb{Z}_+$ with $d(x_n, L) \leq 2024$ for all $n \geq N$. If we take

$$R = \max\{d(x_1, L), d(x_2, L), \dots, d(x_{N-1}, L), 2024\},\$$

then $d(x_n, L) \leq R$ for all N.

Proof.

Suppose that $\lim_{n\to\infty} x_n = L$.

Let $\epsilon = 2024$.

Then there exists $N \in \mathbb{Z}_+$ with $d(x_n, L) \leq 2024$ for all $n \geq N$. If we take

$$R = \max\{d(x_1, L), d(x_2, L), \dots, d(x_{N-1}, L), 2024\},\$$

then $d(x_n, L) \leq R$ for all N.

Therefore $X \subseteq B_M(L, R)$ and in particular X is bounded.

Sort of a converse of the previous theorem.

Sort of a converse of the previous theorem.

Theorem

If S is a subset of a metric space (M, d) and $L \in M$ is an adherent point of S, then there exists a sequence $\{x_n\}$ of elements of S which converges to L.

Proof.

Suppose L is an adherent point of S.

Proof.

Suppose *L* is an adherent point of *S*.

Then for all $n \in \mathbb{Z}_+$, the ball $B_M(x, \frac{1}{n})$ contains at least one element of S.

Proof.

Suppose *L* is an adherent point of *S*.

Then for all $n \in \mathbb{Z}_+$, the ball $B_M(x, \frac{1}{n})$ contains at least one element of S.

For each $n \in \mathbb{Z}_+$, choose $x_n \in S \cap B_M(x, \frac{1}{n})$.

Proof.

Suppose L is an adherent point of S.

Then for all $n \in \mathbb{Z}_+$, the ball $B_M(x, \frac{1}{n})$ contains at least one element of S.

For each $n \in \mathbb{Z}_+$, choose $x_n \in S \cap B_M(x, \frac{1}{n})$.

We claim $\lim x_n = L$.

Proof.

Suppose L is an adherent point of S.

Then for all $n \in \mathbb{Z}_+$, the ball $B_M(x, \frac{1}{n})$ contains at least one element of S.

For each $n \in \mathbb{Z}_+$, choose $x_n \in S \cap B_M(x, \frac{1}{n})$.

We claim $\lim x_n = L$.

To see this, let $\epsilon > 0$.

Proof.

Suppose L is an adherent point of S.

Then for all $n \in \mathbb{Z}_+$, the ball $B_M(x, \frac{1}{n})$ contains at least one element of S.

For each $n \in \mathbb{Z}_+$, choose $x_n \in S \cap B_M(x, \frac{1}{n})$.

We claim $\lim x_n = L$.

To see this, let $\epsilon > 0$.

Then choose $N \in \mathbb{Z}_+$ with $N > 1/\epsilon$.

Proof.

Suppose *L* is an adherent point of *S*.

Then for all $n \in \mathbb{Z}_+$, the ball $B_M(x, \frac{1}{n})$ contains at least one element of S.

For each $n \in \mathbb{Z}_+$, choose $x_n \in S \cap B_M(x, \frac{1}{n})$.

We claim $\lim x_n = L$.

To see this, let $\epsilon > 0$.

Then choose $N \in \mathbb{Z}_+$ with $N > 1/\epsilon$.

It follows that for all n > N

$$d(x_n, L) < 1/n < 1/N < \epsilon.$$

Proof.

Suppose *L* is an adherent point of *S*.

Then for all $n \in \mathbb{Z}_+$, the ball $B_M(x, \frac{1}{n})$ contains at least one element of S.

For each $n \in \mathbb{Z}_+$, choose $x_n \in S \cap B_M(x, \frac{1}{n})$.

We claim $\lim x_n = L$.

To see this, let $\epsilon > 0$.

Then choose $N \in \mathbb{Z}_+$ with $N > 1/\epsilon$.

It follows that for all n > N

$$d(x_n, L) < 1/n < 1/N < \epsilon.$$

Since $\epsilon > 0$ was arbitrary, this proves convergence.

Recall a **subsequence** of a sequence $\{x_n\}$ is a sequence of the form $\{x_{k(n)}\}$, for $k(1) < k(2) < \dots$ positive integers.

Recall a **subsequence** of a sequence $\{x_n\}$ is a sequence of the form $\{x_{k(n)}\}$, for $k(1) < k(2) < \dots$ positive integers.

Theorem

A sequence $\{x_n\}$ in a metric space (M,d) converges to a value $L \in M$ if and only if every subsequence $\{x_{k(n)}\}$ also converges to L.

Proof.

Suppose that every subsequence $\{x_{k(n)}\}$ of $\{x_n\}$ converges to L.

Proof.

Suppose that every subsequence $\{x_{k(n)}\}$ of $\{x_n\}$ converges to L.

A sequence is a subsequence of itself! Thus $\{x_n\}$ will converge to L.

Proof.

Suppose that every subsequence $\{x_{k(n)}\}$ of $\{x_n\}$ converges to L.

A sequence is a subsequence of itself! Thus $\{x_n\}$ will converge to L.

Conversely, suppose that $\{x_n\}$ converges to L.

Proof.

Suppose that every subsequence $\{x_{k(n)}\}$ of $\{x_n\}$ converges to L.

A sequence is a subsequence of itself! Thus $\{x_n\}$ will converge to L.

Conversely, suppose that $\{x_n\}$ converges to L.

Let $\{x_{k(n)}\}$ be a subsequence of $\{x_n\}$.

Proof.

Suppose that every subsequence $\{x_{k(n)}\}$ of $\{x_n\}$ converges to L.

A sequence is a subsequence of itself! Thus $\{x_n\}$ will converge to L.

Conversely, suppose that $\{x_n\}$ converges to L.

Let $\{x_{k(n)}\}$ be a subsequence of $\{x_n\}$.

To show it limits to L, let $\epsilon > 0$.

Proof.

Suppose that every subsequence $\{x_{k(n)}\}$ of $\{x_n\}$ converges to L.

A sequence is a subsequence of itself! Thus $\{x_n\}$ will converge to L.

Conversely, suppose that $\{x_n\}$ converges to L.

Let $\{x_{k(n)}\}$ be a subsequence of $\{x_n\}$.

To show it limits to L, let $\epsilon > 0$.

Then there exists $N \in \mathbb{Z}_+$ such that $n \geq N$ implies $d(x_n, L) < \epsilon$.

Proof.

Suppose that every subsequence $\{x_{k(n)}\}$ of $\{x_n\}$ converges to L.

A sequence is a subsequence of itself! Thus $\{x_n\}$ will converge to L.

Conversely, suppose that $\{x_n\}$ converges to L.

Let $\{x_{k(n)}\}$ be a subsequence of $\{x_n\}$.

To show it limits to L, let $\epsilon > 0$.

Then there exists $N \in \mathbb{Z}_+$ such that $n \geq N$ implies $d(x_n, L) < \epsilon$.

Moreover, $k(n) \ge n$ so $k(n) \ge N$ and therefore $d(x_{k(n)}, L) < \epsilon$.

Proof.

Suppose that every subsequence $\{x_{k(n)}\}$ of $\{x_n\}$ converges to L.

A sequence is a subsequence of itself! Thus $\{x_n\}$ will converge to L.

Conversely, suppose that $\{x_n\}$ converges to L.

Let $\{x_{k(n)}\}$ be a subsequence of $\{x_n\}$.

To show it limits to L, let $\epsilon > 0$.

Then there exists $N \in \mathbb{Z}_+$ such that $n \geq N$ implies $d(x_n, L) < \epsilon$.

Moreover, $k(n) \ge n$ so $k(n) \ge N$ and therefore $d(x_{k(n)}, L) < \epsilon$.

Since $\epsilon > 0$ was arbitrary, this proves convergence.

Definition

Definition

A sequence $\{x_n\}$ of real numbers is called **increasing** or **monotone increasing** if $x_n \le x_{n+1}$ for all n.

Definition

A sequence $\{x_n\}$ of real numbers is called **increasing** or **monotone increasing** if $x_n \le x_{n+1}$ for all n. It is called **strictly increasing** if $x_n < x_{n+1}$ for all n.

Definition

A sequence $\{x_n\}$ of real numbers is called **increasing** or **monotone increasing** if $x_n \le x_{n+1}$ for all n. It is called **strictly increasing** if $x_n < x_{n+1}$ for all n. A sequence $\{x_n\}$ of real numbers is called **decreasing** or **monotone decreasing** if $x_n \ge x_{n+1}$ for all n.

Definition

A sequence $\{x_n\}$ of real numbers is called **increasing** or **monotone increasing** if $x_n \le x_{n+1}$ for all n. It is called **strictly increasing** if $x_n < x_{n+1}$ for all n. A sequence $\{x_n\}$ of real numbers is called **decreasing** or **monotone decreasing** if $x_n \ge x_{n+1}$ for all n. It is called **strictly decreasing** if $x_n > x_{n+1}$ for all n.

Definition

A sequence $\{x_n\}$ of real numbers is called **increasing** or **monotone increasing** if $x_n \le x_{n+1}$ for all n. It is called **strictly increasing** if $x_n < x_{n+1}$ for all n. A sequence $\{x_n\}$ of real numbers is called **decreasing** or **monotone decreasing** if $x_n \ge x_{n+1}$ for all n. It is called **strictly decreasing** if $x_n > x_{n+1}$ for all n. In any of these cases, we call the sequence **monotone**.

Bounded monotone sequences always converge (with Euclidean metric)!

Bounded monotone sequences always converge (with Euclidean metric)!

Theorem (Monotone convergence theorem)

Bounded monotone sequences always converge (with Euclidean metric)!

Theorem (Monotone convergence theorem)

Consider the metric space formed by \mathbb{R} with Euclidean distance.

Bounded monotone sequences always converge (with Euclidean metric)!

Theorem (Monotone convergence theorem)

Consider the metric space formed by \mathbb{R} with Euclidean distance.

A monotone increasing sequence $\{x_n\}$ of real numbers which is bounded above converges to $L = \sup\{x_1, x_2, \dots\}$.

Bounded monotone sequences always converge (with Euclidean metric)!

Theorem (Monotone convergence theorem)

Consider the metric space formed by \mathbb{R} with Euclidean distance.

A monotone increasing sequence $\{x_n\}$ of real numbers which is bounded above converges to $L = \sup\{x_1, x_2, \dots\}$.

A monotone decreasing sequence $\{x_n\}$ which is bounded below converges to $L = \inf\{x_1, x_2, \dots\}$.

Proof.

Proof.

Suppose that $\{x_n\}$ is a monotone increasing sequence which is bounded above and let $X = \{x_1, x_2, \dots\}$.

Proof.

Suppose that $\{x_n\}$ is a monotone increasing sequence which is bounded above and let $X = \{x_1, x_2, \dots\}$. Then by the Completeness Axiom $L = \sup X$ exists.

Proof.

Suppose that $\{x_n\}$ is a monotone increasing sequence which is bounded above and let $X = \{x_1, x_2, \dots\}$. Then by the Completeness Axiom $L = \sup X$ exists. Let $\epsilon > 0$.

Proof.

Suppose that $\{x_n\}$ is a monotone increasing sequence which is bounded above and let $X = \{x_1, x_2, \dots\}$. Then by the Completeness Axiom $L = \sup X$ exists.

Let $\epsilon > 0$.

Then $L - \epsilon$ is not a supremum of X, so there exists $x_N \in X$ such that $x_N > L - \epsilon$.

Proof.

Suppose that $\{x_n\}$ is a monotone increasing sequence which is bounded above and let $X = \{x_1, x_2, \dots\}$. Then by the Completeness Axiom $L = \sup X$ exists.

Let $\epsilon > 0$.

Then $L - \epsilon$ is not a supremum of X, so there exists $x_N \in X$ such that $x_N > L - \epsilon$.

Since the sequence is increasing, for any n > N, we have that $L - \epsilon < x_N \le x_n < L$.

Proof.

Suppose that $\{x_n\}$ is a monotone increasing sequence which is bounded above and let $X = \{x_1, x_2, \dots\}$. Then by the Completeness Axiom $L = \sup X$ exists.

Let $\epsilon > 0$.

Then $L - \epsilon$ is not a supremum of X, so there exists $x_N \in X$ such that $x_N > L - \epsilon$.

Since the sequence is increasing, for any n > N, we have that $L - \epsilon < x_N \le x_n < L$.

It follows that

$$d(x_n, L) = |x_n - L| = L - x_n < \epsilon.$$

Proof.

Suppose that $\{x_n\}$ is a monotone increasing sequence which is bounded above and let $X = \{x_1, x_2, \dots\}$. Then by the Completeness Axiom $L = \sup X$ exists.

Let $\epsilon > 0$.

Then $L - \epsilon$ is not a supremum of X, so there exists $x_N \in X$ such that $x_N > L - \epsilon$.

Since the sequence is increasing, for any n > N, we have that $L - \epsilon < x_N \le x_n < L$.

It follows that

$$d(x_n, L) = |x_n - L| = L - x_n < \epsilon.$$

Since $\epsilon > 0$ was arbitrary, this proves x_n converges to L.

Outline

- Real Analysis Lecture 14
 - More on limits
 - Cauchy sequences

A sequence $\{x_n\}$ in a metric space (M, d) is called Cauchy if the terms get arbitrarily close together as n gets arbitrarily large.

A sequence $\{x_n\}$ in a metric space (M, d) is called Cauchy if the terms get arbitrarily close together as n gets arbitrarily large.

More formally:

A sequence $\{x_n\}$ in a metric space (M, d) is called Cauchy if the terms get arbitrarily close together as n gets arbitrarily large.

More formally:

Definition

A sequence $\{x_n\}$ is called a **Cauchy sequence** if

 $\forall \epsilon > 0$, there exists $N \in \mathbb{Z}_+$ with $m, n \geq N \Rightarrow d(x_m, x_n) < \epsilon$.

A sequence $\{x_n\}$ in a metric space (M, d) is called Cauchy if the terms get arbitrarily close together as n gets arbitrarily large.

More formally:

Definition

A sequence $\{x_n\}$ is called a **Cauchy sequence** if

 $\forall \epsilon > 0$, there exists $N \in \mathbb{Z}_+$ with $m, n \geq N \Rightarrow d(x_m, x_n) < \epsilon$.

every convergent sequence is Cauchy

A sequence $\{x_n\}$ in a metric space (M, d) is called Cauchy if the terms get arbitrarily close together as n gets arbitrarily large.

More formally:

Definition

A sequence $\{x_n\}$ is called a **Cauchy sequence** if

 $\forall \epsilon > 0$, there exists $N \in \mathbb{Z}_+$ with $m, n \geq N \Rightarrow d(x_m, x_n) < \epsilon$.

- every convergent sequence is Cauchy
- is every Cauchy sequence convergent?

Problem

Prove that if $\{x_n\}$ is a Cauchy sequence in a metric space (M, d), then it is bounded.

Problem

Prove that if $\{x_n\}$ is a Cauchy sequence in a metric space (M, d), then it is bounded.

Solution

Problem

Prove that if $\{x_n\}$ is a Cauchy sequence in a metric space (M, d), then it is bounded.

Solution

Suppose $\{x_n\}$ is Cauchy.

Problem

Prove that if $\{x_n\}$ is a Cauchy sequence in a metric space (M, d), then it is bounded.

Solution

Suppose $\{x_n\}$ is Cauchy.

Let $\epsilon = 2024$.

Problem

Prove that if $\{x_n\}$ is a Cauchy sequence in a metric space (M, d), then it is bounded.

Solution

Suppose $\{x_n\}$ is Cauchy.

Let $\epsilon = 2024$.

Then $\exists \ N \in \mathbb{Z}_+$ with $d(x_m, x_n) < 2024$ for all $m, n \geq N$.

Problem

Prove that if $\{x_n\}$ is a Cauchy sequence in a metric space (M, d), then it is bounded.

Solution

Suppose $\{x_n\}$ is Cauchy.

Let $\epsilon = 2024$.

Then $\exists N \in \mathbb{Z}_+$ with $d(x_m, x_n) < 2024$ for all $m, n \geq N$.

Therefore for all $n \ge N$, we have $d(x_n, x_N) \le 2024$.

Problem

Prove that if $\{x_n\}$ is a Cauchy sequence in a metric space (M, d), then it is bounded.

Solution

Suppose $\{x_n\}$ is Cauchy.

Let $\epsilon = 2024$.

Then $\exists N \in \mathbb{Z}_+$ with $d(x_m, x_n) < 2024$ for all $m, n \geq N$.

Therefore for all $n \ge N$, we have $d(x_n, x_N) \le 2024$.

So if we define

$$R = \max\{d(x_1, x_N), d(x_2, x_N), \dots, d(x_{n-1}, x_N), 2024\},\$$

Problem

Prove that if $\{x_n\}$ is a Cauchy sequence in a metric space (M, d), then it is bounded.

Solution

Suppose $\{x_n\}$ is Cauchy.

Let $\epsilon = 2024$.

Then $\exists N \in \mathbb{Z}_+$ with $d(x_m, x_n) < 2024$ for all $m, n \geq N$.

Therefore for all $n \ge N$, we have $d(x_n, x_N) \le 2024$.

So if we define

$$R = \max\{d(x_1, x_N), d(x_2, x_N), \dots, d(x_{n-1}, x_N), 2024\},\$$

then $d(x_n, x_N) \le 2024$ for all $n \ge 1$.

Problem

Prove that if $\{x_n\}$ is a Cauchy sequence in a metric space (M, d), then it is bounded.

Solution

Suppose $\{x_n\}$ is Cauchy.

Let $\epsilon = 2024$.

Then $\exists N \in \mathbb{Z}_+$ with $d(x_m, x_n) < 2024$ for all $m, n \geq N$.

Therefore for all $n \ge N$, we have $d(x_n, x_N) \le 2024$.

So if we define

$$R = \max\{d(x_1, x_N), d(x_2, x_N), \dots, d(x_{n-1}, x_N), 2024\},\$$

then $d(x_n, x_N) \le 2024$ for all $n \ge 1$.

Hence $X = \{x_1, x_2, \dots\} \subseteq B_M(x_N, R)$, and is bounded.