Data Warehousing and Data Mining

Tutorial 1

Student Details

```
Name: Krunal Rank
         Adm. No.: U18CO081
In [56]:
           import pandas as pd
           import math
           from copy import deepcopy
           from pyod.models.hbos import HBOS
           print("Imports loaded")
          Imports loaded
In [57]:
          file name = "Histograms.csv"
          file name
          'Histograms.csv'
Out[57]:
In [58]:
          # load dataset into pandas df
           df = pd.read_csv(file_name)
           df.head()
                             В
                                      С
Out[58]:
                                                D Left Skew Multimodal
                                                                             IQ20
                                                                                      IQ100
          0 48.916926 67.223785 55.917225 45.561471
                                                        23.1
                                                              37.632318 120.459951
                                                                                   93.041368
          1 47.692726 68.175751 30.174288 47.825783
                                                              49.244001 107.418864
                                                                                   93.806158
                                                        18.2
          2 48.629579 61.753451 43.641583 59.699370
                                                             37.780203
                                                                        95.006312 135.339681
                                                        14.6
```

	Α	В	С	D	Left Skew	Multimodal	IQ20	IQ100
3	58.544034	69.783507	53.738745	45.704638	21.2	56.827208	96.522192	100.772632
4	44.821338	70.730153	67.829659	44.254419	24.5	54.513731	108.878563	91.600053

1. Generate the histograms for the frequency of values in the dataset uploaded to the classroom and study statistical characteristics like Mean, Mode, Median, Variance of any sample (Histograms can be generated in Excel/Python/Orange, etc).

```
In [59]: # histograms
hist = df.hist(figsize=[14,7])
```



```
In [60]: # mean, median, mode, variance for all columns
    print(f"Mean\n{df.mean()}")
    print(f"Median\n{df.median()}")
    print(f"Median\n{df.median()}")
    print(f"Variance\n{df.var()}")
```

```
Mean
A 50.632133
B 65.544513
C 50.851334
D 50.211539
```

```
Left Skew
               20.107609
Multimodal
               59.734576
I020
              102.132401
I0100
              102.925179
dtype: float64
Median
               50.673711
               65.898797
В
C
               51.654882
               49.726685
               21.500000
Left Skew
               60.602041
Multimodal
IQ20
              105.608402
I0100
              101.426575
dtype: float64
Variance
Α
               25.635211
В
               25.861999
C
              235.387254
               27.339516
Left Skew
               49.665985
Multimodal
              132.553093
IQ20
              241.831182
I0100
              231.757566
dtype: float64
```

2. Perform skewness analysis for the data and decide the suitable missing valuereplacement for the ratio scale and interval scale numerical data attributes.

1

```
In [61]: # skewness analysis
    print(f"Skewness\n{df.skew()}")
    print("")
    # kurtosis analysis
    print(f"Kurtosis\n{df.kurt()}")

# As you can see in the below data, the absolute skewness of D and Left Skew is fairly high and requires use of median
    # instead of usual mean to fill NaN values
Skewness
```

-0.060298

```
0.166426
В
C
             -0.036257
D
              0.662782
Left Skew
             -0.615309
Multimodal
             -0.043677
I020
              0.274567
I0100
              0.249707
dtype: float64
Kurtosis
             -0.292248
              0.063429
В
             -0.304000
              1.711042
             -0.499210
Left Skew
             -1.164263
Multimodal
IQ20
             -0.297661
             -0.278870
IQ100
dtype: float64
```

3. Perform Missing value replacement by Mean, Mode, Median on the A attributes. Intentionally remove two values from that attribute and find the value of the X and Y for given data using mean value replacement (perform the operation on first 12 records).


```
In [63]: # replacing with median values
    col_a_median = deepcopy(df["A"])
    median = df["A"].median()
    col_a_median = col_a_median.fillna(median)
    median_df = pd.DataFrame({"without replacement":df["A"],"with replacement":col_a_median})
    median_df.hist()

array([[<AyesSubplot:title={|center|:|without replacement|}]>
```

1


```
In [64]: # replacing with mode values
    col_a_mode = deepcopy(df["A"])
    mode = df["A"].mode()[0]
    col_a_mode = col_a_mode.fillna(mode)
    mode_df = pd.DataFrame({"without replacement":df["A"],"with replacement":col_a_mode})
    mode_df.hist()

array([[<AyesSubplot:title={'center':'without replacement'}]>
```

1


```
In [65]:
# filling missing values using mean by replacing 2 known values to None and then calculating RMSE
col_a = deepcopy(df["A"])
col_a[0] = col_a[1] = None

col_a = col_a.fillna(col_a.mean())

rmse = 0
for i in range(2):
    rmse += (col_a[i] - df["A"][i])**2

rmse **= 0.5
rmse /= 2
print(f'Original Values: {df["A"][0]} {df["A"][1]}')
print(f'Generated Values: {col_a[0]} {col_a[1]}')
print(f'RMSE After Mean Replacement for First 2 values : {rmse}")
```

1

Original Values: 48.91692627 47.69272613

Generated Values: 50.67962923000001 50.67962923000001

RMSE After Mean Replacement for First 2 values : 1.7341216691730785

```
In [66]: # filling missing values using mean by replacing 2 known values to None and then calculating RMSE
          col a = deepcopy(df["A"])
          for i in range(12):
              col a[i] = None
          col a = col a.fillna(col a.mean())
          rmse = 0
          for i in range(12):
              rmse += (col a[i] - df["A"][i])**2
          rmse **= 0.5
          rmse /= 2
          print(f'Original Values')
          for i in range(12):
              print(f'df["A"][{i}] : {df["A"][i]}')
          print(f'Generated Values')
          for i in range(12):
              print(f'col a[{i}] : {col a[i]}')
          print(f"RMSE After Mean Replacement for First 12 values : {rmse}")
```

```
Original Values
df["A"][0]: 48.91692627
df["A"][1]: 47.69272613
df["A"][2]: 48.6295795
df["A"][3] : 58.5440342
df["A"][4]: 44.82133762
df["A"][5]: 47.69350376
df["A"][6]: 43.95443412
df["A"][7] : 52.84905452
df["A"][8] : 47.93471606
df["A"][9] : 63.53148348
df["A"][10] : 49.80409903
df["A"][11] : 52.18302422
Generated Values
col a[0] : 50.64384543215909
col a[1]: 50.64384543215909
col a[2] : 50.64384543215909
col a[3] : 50.64384543215909
col a[4] : 50.64384543215909
col a[5] : 50.64384543215909
col a[6]: 50.64384543215909
col a[7] : 50.64384543215909
col a[8] : 50.64384543215909
```

```
col_a[9] : 50.64384543215909
col_a[10] : 50.64384543215909
col_a[11] : 50.64384543215909
RMSE After Mean Replacement for First 12 values : 9.312407456436615
```

4. Perform Noise identification, Outlier detection using histogram and try to remove the outliers and check the statistical characteristics again.

```
In [67]:
          new df = deepcopy(df)
          skewed cols = ["D", "Left Skew"]
          for col in new df.columns:
              if col in skewed cols:
                  new df[col] = new df[col].fillna(new df[col].median())
              else:
                  new df[col] = new df[col].fillna(new df[col].mean())
In [68]:
          record count = len(new df)
          bin size = math.ceil(record count**0.5)
          print(f"No. of Records : {record count}")
          print(f"Bin Size for Histograms : {bin size}")
         No. of Records: 200
         Bin Size for Histograms: 15
In [69]:
          # hbos = Histogram Based Outlier Score
          hbos = HBOS(n bins=bin size)
          hbos.fit(new df)
          output = hbos.decision function(new df)
          new df["Anomaly"] = hbos.predict(new df)
          # Records that are possible Anomalies
          new df[new df["Anomaly"] == 1]
Out[69]:
                                               D Left Skew Multimodal
                                                                          IQ20
                                                                                   IQ100 Anomaly
          1 47.692726 68.175751 30.174288 47.825783
                                                           49.244001 107.418864
                                                      18.2
                                                                               93.806158
                                                                                               1
```

		Α	В	С	D	Left Skew	Multimodal	IQ20	IQ100	Anomaly
	2	48.629579	61.753451	43.641583	59.699370	14.6	37.780203	95.006312	135.339681	1
	3	58.544034	69.783507	53.738745	45.704638	21.2	56.827208	96.522192	100.772632	1
	4	44.821338	70.730153	67.829659	44.254419	24.5	54.513731	108.878563	91.600053	1
	5	47.693504	63.002345	58.796386	58.919273	24.9	47.876070	108.488800	105.969921	1
	6	43.954434	54.451451	63.025524	44.086329	27.4	48.755803	109.344148	93.866104	1
	8	47.934716	74.690423	31.758708	47.967768	24.2	58.907958	84.488598	110.123194	1
	9	63.531483	75.704799	23.780607	48.368597	20.6	58.405534	83.672763	128.924255	1
	11	52.183024	72.933634	71.122767	53.595887	19.1	50.776997	104.137603	130.364024	1
	15	50.250865	59.395780	90.095257	47.120198	12.0	40.333273	100.275924	86.800080	1
	17	49.713332	68.800339	46.285660	56.155408	6.4	41.295937	130.399002	81.836038	1
	18	57.192464	61.795063	63.979316	50.885967	10.7	54.745351	109.176063	97.667278	1
	19	48.523342	77.080420	65.328652	50.948824	17.2	51.976363	78.284920	96.144068	1
	30	47.454810	59.156253	47.151747	61.030881	29.3	46.939871	102.132401	117.147695	1
	32	53.822451	75.121428	72.528756	42.137098	29.5	55.233160	102.132401	91.333411	1
	46	41.600699	61.827355	68.671110	56.311178	12.1	48.138371	102.132401	99.063733	1
	52	47.993737	71.104455	72.533235	46.889732	1.0	43.779643	102.132401	90.410677	1
	56	43.547346	67.971160	57.840796	53.886415	9.0	58.293881	102.132401	92.119592	1
	63	49.316954	63.120633	59.262267	44.061115	11.1	59.764552	102.132401	116.885690	1
	73	40.623255	64.444796	45.286507	54.943578	16.8	45.162762	102.132401	123.992293	1
In [70]:	ne # pr pr pr	<pre>new_df = new_df[new_df.Anomaly != 1] new_df = new_df.drop("Anomaly",axis = 1) # mean, median, mode, variance for all columns print(f"Mean\n{new_df.mean()}") print("") print(f"Median\n{new_df.median()}") print("") print(f"Variance\n{new_df.var()}")</pre>								

Mean A B C D Left Skew Multimodal IQ20 IQ100 dtype: float64	50.785570 65.376997 50.207973 49.883500 21.233889 60.767580 102.196998 102.782607
Median A B C D Left Skew Multimodal IQ20 IQ100 dtype: float64	50.632133 65.544513 50.851334 49.726685 21.500000 63.607973 102.132401 102.925179
Variance A B C D Left Skew Multimodal IQ20 IQ100 dtype: float64	10.536062 9.677995 97.030257 11.597258 17.788063 131.986012 12.676367 100.891334