# COVID-19 VISUALIZATION AND PREDICTION

```
DATASET USED:
"C:\Users\nivet\Downloads\corona tested individuals ver 006.english.csv"
Import the dataset:
>library(readr)
>my data1<-read.csv("C:/Users/nivet/Downloads/corona tested individuals ver 006.english.csv")
Now,
Exploratory data analysis:
>str(my_data1)
This gives the no. of rows and no. of columns in the dataset and the column names.
'data.frame': 278848 obs. of 10 variables:
$ test date
               : chr "30-04-2020" "30-04-2020" "30-04-2020" "30-04-2020" ...
          : chr "0" "1" "0" "1" ...
$ cough
$ fever
         : chr "0" "0" "1" "0" ...
                : chr "0" "0" "0" "0" ...
$ sore_throat
$ shortness_of_breath: chr "0" "0" "0" "0" ...
                   : chr "0" "0" "0" "0" ...
$ head ache
$ age_60_and_above : chr "None" "None" "None" "None" ...
                 : chr "female" "female" "male" "female" ...
$ gender
  test_indication : chr "Other" "Other" "Other" "Other" ...
 corona_result
                   : chr "negative" "negative" "negative" "negative" ...
```



- We can see that our dataset contains 278848 rows of 10 columns.
- Now,
- >View(my\_data1)

- REMOVING UNWANTED COLUMNS:
- my\_data1<-subset(my\_data1,select=-age\_60\_and\_above)#my\_data1\$age\_60\_and\_above<-NULL
- my\_data1<-subset(my\_data1,select=-gender)</pre>
- my\_data1<-subset(my\_data1,select=-test\_indication)</pre>
- Now,

```
>str(my_data1)
'data.frame': 278848 obs. of 7 variables:
$ test_date
            : chr "30-04-2020" "30-04-2020" "30-04-2020" "30-04-2020" ...
                : chr "0" "1" "0" "1" ...
$ cough
$ fever
        : chr "0" "0" "1" "0" ...
$ sore_throat : chr "0" "0" "0" "0" ...
$ shortness_of_breath: chr "0" "0" "0" "0" ...
$ head_ache : chr "0" "0" "0" "0" ...
```

\$ corona\_result : chr "negative" "negative" "negative" "negative" ...

We can see that, the columns "age\_60\_and\_above", "gender", and "test\_indication" are removed.

- We can see this:
- > >View(my\_data1)



>summary(my\_data1)#This gives the column names and their length and their type.

- test\_date cough fever sore\_throat shortness\_of\_breath head\_ache corona\_result
- Length: 278848 Length
- ▶ Class:character Class:chara
- ▶ Mode :character Mode :chara
- We can see that all columns are of character type. So, let us convert this into numeric type to perform statistical analysis using ifelse function.

```
>my_data1$fever<-ifelse(my_data1$fever=="1",1,0)
>my_data1$cough<-ifelse(my_data1$cough=="1",1,0)
>my_data1$sore_throat<-ifelse(my_data1$sore_throat=="1",1,0)
>my_data1$shortness_of_breath<-ifelse(my_data1$shortness_of_breath=="1",1,0)
>my_data1$head_ache<-ifelse(my_data1$head_ache=="1",1,0)
>my_data1$corona_result<-ifelse(my_data1$corona_result=="positive",1,0)
By doing this, the null values also get replaced by 0.</pre>
```

- Now,
- > >str(my\_data1)
- We can see that except "test\_date" column, all other columns have been converted to numeric type.



Checking if there is Null values:

>sum(is.na(my\_data1))#we get 0=>No NULL values

**DESCRIPTIVE STATISTICAL ANALYSIS:** 

1.Mean:



#### ► 2.MEDIAN:



# 3. MODE:

>table(as.vector(my\_data1\$cough))

0 1

236620 42228

Interpretation:

We can see that 0 occurs most times=>0 is the mode for this column. Similarly, we can find the mode for other columns.

#### 4. VARIANCE:

```
>var(my_data1$sore_throat)
0.006859307
```

Similarly, we can find the varaince of other columns

# **5.STANDARD DEVIATION:**

>sqrt(var(my\_data1\$corona\_result))

0.2236762

Similarly, we can find the standard deviation for other columns

# 6. RANGE:

range() gives min and max value of that column

>range(my\_data1\$shortness\_of\_breath)#we get min=0 and max=1

>range(my\_data1\$fever)#we get min=0 and max=1

Similarly we can find the range of other columns

TO USE skewness() and kurtosis() method, install moments package:

- >install.packages("moments")
- >library(moments)

# 7. SKEWNESS:

> skewness(my\_data1\$head\_ache)

10.60762

We get 10.60762=>positively skewed

# 8. KURTOSIS:

>kurtosis(my\_data1\$cough)

4.781854

We get 4.781854=>Leptokurtic

# DATA VISUALIZATION:

Install the packages "tidyverse" and "ggfortify"

- >install.packages("tidyverse")
- >library(tidyverse)
- >install.packages("ggfortify")
- >library(ggplot2)

# **BAR PLOT:**

```
Bar plot w.r.t "corona_result" column
ggplot(my_data1,aes(x=corona_result))+
geom_bar()+
xlab("Corona result")+
ylab("Count")+
ggtitle("Bar plot to find no.of positive and negative cases")
```

# INTERPRETATION:

From the graph, we can see that, in the dataset, only few have been tested positive



# **SCATTER PLOT:**

```
>ggplot(data=my_data1,aes(x=head_ache,y=sore_throat))+
geom_point()
```

Since, all our values are either 0 or 1 in our dataset, scatter plots are not useful.



- HISTOGRAM:
- (For variable corona result)

```
>ggplot(my_data1,aes(x=corona_result))+
  geom_histogram(aes(fill=head_ache))+
  xlab("Corona result")+
  ylab("Count")+
  ggtitle("Histogram of corona_result")
```

We can see that ,most of the people's corona\_Result is 0=>negative.



- ► HISTOGRAM: (For variable cough)
- ggplot(data=my\_data1,aes(x=cough))+
- geom\_histogram(aes(col="red"))+
- xlab("Cough")+
- ylab("count")+
- ggtitle("Histogram of cough")



# STATISTICAL ANALYSIS:

For hypothesis testing, we need these packages: ("tidyverse", "ggpubr", "rstatix")

Installing the packages:

install.packages("tidyverse")

library(tidyverse)

install.packages("ggpubr")

ibrary(ggpubr)

install.packages("rstatix")

library(rstatix)

- ▶ 1.T-TEST
- Single-t-test
- i) H0:mean of cough column is 0
- t.test(my\_data1\$cough,mu=0,alt="two.sided",var.equal = F,conf.level = 0.95)
- ► INTERPRETATION:
- From the analysis, we get p< 2/2e-16 <0.05 =>reject H0=>mean of cough column is not 0



- ▶ ii) H0:mean of fever column is 0
- t.test(my\_data1\$fever,mu=0,alt="two.sided",var.equal = F,conf.level = 0.95)
- INTERPRETATION:
- From the analysis, we get p<2.2e-16 < 0.05 => H0 is rejected => mean of fever column is not 0



- iii) H0:mean of sore throat column is 0
- t.test(my\_data1\$sore\_throat, mu=0, alt="two.sided", var.equal = F, conf.level = 0.99)
- ► INTERPRETATION:
- From the analysis ,we get p<2.2e-16 < 0.05 => H0 is rejected => mean of sore throat column is not 0



- iv)H0:mean of shortness of breath column is 0
- t.test(my\_data1\$shortness\_of\_breath, mu=0, alt="two.sided", var.equal = F, conf.level = 0.95)
- ► INTERPRETATION:
- From the analysis ,we get p<2.2e-16 < 0.05 => H0 is rejected => mean of shortness of breath column is not 0



- PAIRED t-test
- i)H0:Difference in mean of cough and fever is 0
- t.test(my\_data1\$cough,my\_data1\$fever,mu=0,alt="two.sided",var.equal = F,paired=T,conf.level=0.99)
- ► INTERPRETATION:
- From the analysis ,we get t = 115.32, df = 278847, p-value < 2.2e-16 which is less than 0.05.
- ▶ So H0 rejected ,alternative hypothesis: true difference in means is not equal to 0



- ▶ ii)H0: Difference in Mean of cough and shortness of breath is equal to 0
- t.test(my\_data1\$cough,my\_data1\$shortness\_of\_breath,mu=0,alt="two.sided",var.equal = F,paired=T,conf.level=0.99)
- INTERPRETATION:
- From the analysis, we get = 214.84, df = 278847, p-value < 2.2e-16 which is less than 0.05.
- ▶ So H0 rejected ,alternative hypothesis: true difference in means is not equal to 0



- ▶ iii)H0: Difference in Mean of cough and corona result is equal to 0
- t.test(my\_data1\$cough, my\_data1\$corona\_result, mu=0, alt="two.sided", var.equal = F, paired=T, conf.level=0.99)
- ► INTERPRETATION:
- From the analysis, we get t = 135.68, df = 278847, p-value < 2.2e-16 which is less than 0.05.
- So H0 rejected ,alternative hypothesis: true difference in means is not equal to 0



- iv)H0: Difference in Mean of cough and headache is equal to 0
- t.test(my\_data1\$cough, my\_data1\$head\_ache, mu=0, alt="two.sided", var.equal = F, paired=T, conf.level=0.99)
- INTERPRETATION:
- From the analysis, we get t = 209.63, df = 278847, p-value < 2.2e-16 which is less than 0.05.
- So H0 rejected ,alternative hypothesis: true difference in means is not equal to 0



- ▶ 2.CORRELATION:
- ► For performing correlation we need these packages: ("devtools", "ggpubr")
- Installing the packages:
- install.packages("devtools")
- library(devtools)
- install.packages("ggpubr")
- library(ggpubr)
- ▶ 1.Testing correlation for fever and cough using pearson Method
- ► H0:there is no correlation btw fever and cough
- cor(my\_data1\$fever,my\_data1\$cough,method="pearson")
- INTERPRETATION:
- we get rho=0.454386 which is not equal to 0.so H0 rejected=>there is correlation bw fever and cough
- ▶ 2. Testing correlation for fever and sore throat using pearson Method
- ▶ H0:there is no correlation bw fever and sore throat
- cor(my\_data1\$fever,my\_data1\$sore\_throat,method="pearson")
- ► INTERPRETATION:
- From the analysis ,we get rho=0.1228317 which is not equal to 0.so H0 rejected=>there is correlation btw fever and sore\_throat



Performing correl Method Using agricolae package:

install.packages("agricolae")

library(agricolae)

# Correlation using correl Method:

H0: there is no correlation btw fever and headache

- correl(my\_data1\$fever,my\_data1\$head\_ache,method="pearson")
- ► INTERPRETATION:
- From the analysis ,we get rho=0.1688408 which is not equal to 0.so H0 rejected=>there is correlation btw fever and headache
- Prforming cor.test Using stats package:
- install.packages("stats")
- library(stats)
- ▶ H0:there is no correlation bw fever and corona result
- cor.test(my\_data1\$fever,my\_data1\$corona\_result,method="pearson",conf.level = 0.95)
- ► INTERPRETATION:
- From the analysis ,we get cor=0.2636491 which is not equal to 0.so H0 rejected=>There is correlation between fever and corona\_result



- ► 3.ANOVA
- one-way anova
- i)H0:head\_ache has no impact on corona\_result
- aov1<-aov(my\_data1\$corona\_result~my\_data1\$head\_ache)</p>
- summary(aov1)
- INTERPRETATION:
- From the analysis, we get p<2e-16<0.05=>H0 rejected=>head\_ache has impact on corona\_result
- ▶ ii)H0:cough has no impact on corona\_Result
- aov2<-aov(my\_data1\$corona\_result~my\_data1\$cough)</p>
- summary(aov2)
- ► INTERPRETATION:
- From the analysis, we get p<2e-16<0.05=>H0 rejected=>cough has impact on corona\_result
- iii)H0:fever has no impact on corona\_result
- aov3<-aov(my\_data1\$corona\_result~my\_data1\$fever)</p>
- summary(aov3)
- ► INTERPRETATION:
- From the analysis, we get p<2e-16<0.05=>H0 rejected=>fever has impact on corona\_result



- 2 way anova
- i)H0:fever and sore\_throat has no impact on cough
- str(my\_data1)
- aov4<-aov(cough~fever+sore\_throat,data=my\_data1)</pre>
- aov4
- summary(aov4)
- ► INTERPRETATION:
- From the analysis, we get p<2e-16<0.05,so H0 rejected=>fever and sore\_throat has impact on cough
- ▶ ii)H0:fever,sore\_throat,head\_Ache,shortness\_of\_breath and cough together have no impact on corona\_result
- aov5<aov(corona\_result~fever+sore\_throat+head\_ache+shortness\_of\_breath+cough,data=my\_data1)</pre>
- summary(aov5)
- ► INTERPRETATION:
- From the analysis, we get p<2e-16<0.05,so H0 rejected=>fever, sore\_throat, head\_Ache, shortness\_of\_breath and cough together have impact on corona\_result



Since our dataset contains class label, we perform classification.

# **LOGISTIC REGRESSION:**

```
Install caTools package:
    >install.packages("caTools")
    >library(caTools)
Split the dataset into train and test:
    >split<-sample.split(my_data1,SplitRatio = 0.7)
    >train<-subset(my_data1,split=="TRUE")
    >test<-subset(my_data1,split=="FALSE")</pre>
```



We build the logistic regression model w.r.t the dependent variable corona\_result and independent variables-cough+fever+sore\_throat+shortness\_of\_breath+head\_ache.

i.e corona\_result will depend upon cough, fever, sore\_throat, shortness\_of\_breath and head\_Ache.

Use data to be entire data and give family attribute to be "binomial"=>gives 1 out of 2 results only. >model<-

glm(formula=corona\_result~cough+fever+sore\_throat+shortness\_of\_breath+head\_ache,data=my\_d ata1,family="binomial")

# Use predict() method to predict the value based on the model.

- >res<-predict(model,data=my\_data1,type="response")
- >res[1:5]#gives predicted result for first 5 records
- >pred <- ifelse(res > 0.5, 1, 0)#gives 1 if res>0.5 else gives 0

>pred #give:

| onsole | Termin   | ial × J | lobs × |       |         |         |       |        |        |       |         |          |       |         |          |        |         |          |          |          |            |       |       |         |         |        |      |         |         |  |
|--------|----------|---------|--------|-------|---------|---------|-------|--------|--------|-------|---------|----------|-------|---------|----------|--------|---------|----------|----------|----------|------------|-------|-------|---------|---------|--------|------|---------|---------|--|
|        | 1.1 · ~/ |         | ressi  | on mo | an I I  |         |       |        |        |       |         |          |       |         |          |        |         |          |          |          |            |       |       |         |         |        |      |         |         |  |
|        |          |         |        |       |         | cul+.   | cough | fovo   | nicon  | o the | oatic   | hontn    | 055 0 | f hno   | athib    | and a  | cho d   | 2+2-11   | v dat    | al fa    | milv_      | "hino | mial" | )       |         |        |      |         |         |  |
|        |          |         |        |       |         |         | type= |        |        |       | Ual+3   | HOT LII  | C35_0 | _bre    | a LII+II | icau_a | crie, u | a La-III | y_uat    | ar, ra   | iii i i y= | DITIO | miai  | ,       |         |        |      |         |         |  |
|        |          |         |        |       |         |         |       |        |        |       |         |          |       |         |          |        |         |          |          |          |            |       |       |         |         |        |      |         |         |  |
| es     | [1:3]    | #give   | s pre  | 2     | a res   | 2       | or fi | rst J  | reco   | rus   |         |          |       |         |          |        |         |          |          |          |            |       |       |         |         |        |      |         |         |  |
| 177    | 12615    | 0.05    | E2440  | 0 0 1 | 00026   | 24.0    | 05534 | 400 0  | ۸۲۲۶   | 1100  |         |          |       |         |          |        |         |          |          |          |            |       |       |         |         |        |      |         |         |  |
|        |          |         |        |       |         |         | 03334 | 400 0  | .0333  | 4400  |         |          |       |         |          |        |         |          |          |          |            |       |       |         |         |        |      |         |         |  |
|        |          | Heis    | e(res  | > 0.  | 5, 1,   | U)      |       |        |        |       |         |          |       |         |          |        |         |          |          |          |            |       |       |         |         |        |      |         |         |  |
| re     | 1        | 2       | 4      |       | 6       | 7       | 0     | Λ      | 10     | 11    | 10      | 12       | 1/    | 10      | 16       | 17     | 10      | 10       | 20       | 21       | 22         | 22    | 24    | 25      | 26      | 27     | 20   | 29      | 20      |  |
| U.     | 0        | 0       | 4      | 0     | 6       | ^       | 8     | 9      | 10     | 11    | 12      | 13       | 14    | 15      | 16<br>0  | 17     | 18      | 19       | 20       | 21       | 22         | 23    | 24    | 25<br>0 | 26<br>0 | 27     | 28   | 0       | 30<br>0 |  |
| 1      | 32       | 33      | 34     | 35    | 36      | 37      | 38    | 39     | 40     | 41    | 0<br>42 | 0<br>43  | 44    | 0       | 46       | 47     | 0<br>48 | 49       | 50       | 51       | 52         | 2.775 | 54    | 55      | 56      | 57     | 58   | 59      | 72335   |  |
| 1      | 0        | 0       | 0      | 23    | 0       | 0/      | 0     | 0      | 0      | 0     | 0       | 0        | 0     | 45<br>0 | 0        | 4/     | 0       | 0        | 0        | 0        | 0          | 53    | 04    | 0       | 00      | 0      | 20   | 0       | 60      |  |
| 1      |          | V. 20   | 64     | 65    | 10/10/0 | 67      | 68    | 500500 | 60,000 | 71    | 72      | M. 25.53 | 74    | 75      | 76       | 77     | 78      | 79       | 333/57/5 | 33,925.0 | 82         | 200   | 84    | 2000    | 06      | 100000 | 00   | 0300.00 | 1000000 |  |
| 0      | 62       | 63      | 04     | 65    | 66      | 67<br>0 | 0     | 69     | 70     | /1    | / 2     | 73<br>0  | /4    | / 3     | 70       | //     | / 0     | /9       | 80       | 81       | 02         | 83    | 04    | 85      | 86      | 87     | 88   | 89      | 90      |  |
| 1      | 92       | 93      | 94     | 95    | 0<br>96 | 97      | 98    | 99     | 100    | 101   | 102     | 102      | 104   | 105     | 106      | 107    | 100     | 109      | 110      | 111      | 112        | 112   | 114   | 115     | 116     | 117    | 118  | 119     | 120     |  |
| 0      | 92       | 93      | 94     | 93    | 90      | 9/      | 90    | 99     | 100    | 101   | 102     | 103      | 104   | 103     | 100      | 107    | 100     | 109      | 110      | 111      | 112        | 113   | 114   | 113     | 110     | 11/    | 110  | 119     | 120     |  |
| 1      | 122      | 123     | 124    | 125   | 126     | 127     | 128   | 129    | 130    | 131   | 132     | 133      | 134   | 135     | 136      | 137    | 138     | 139      | 140      | 141      | 142        | 143   | 144   | 145     | 146     | 147    | 148  | 149     | 150     |  |
| 0      | 122      | 123     | 124    | 123   | 120     | 127     | 120   | 129    | 120    | TOT   | 132     | T 2 2    | 134   | 122     | 130      | 13/    | 130     | T 2 2    | 140      | 141      | 142        | 143   | 144   | 143     | 140     | 147    | 140  | 149     | 130     |  |
| 1      | 152      | 153     | 154    | 155   | 156     | 157     | 158   | 159    | 160    | 161   | 162     | 163      | 164   | 165     | 166      | 167    | 168     | 169      | 170      | 171      | 172        | 173   | 174   | 175     | 176     | 177    | 178  | 179     | 180     |  |
| 0      | 172      | T 2 2   | 134    | T))   | T 20    | T 2 /   | 100   | 139    | 100    | 101   | 102     | T02      | 104   | T03     | 100      | 10/    | 100     | 103      | T/0      | 1/1      | 1/2        | T/ 2  | 1/4   | T/2     | 1/0     | T//    | T/ 0 | 1/9     | 0       |  |
| 1      | 182      | 183     | 184    | 185   | 186     | 187     | 188   | 189    | 190    | 191   | 192     | 193      | 194   | 195     | 196      | 197    | 198     | 199      | 200      | 201      | 202        | 203   | 204   | 205     | 206     | 207    | 208  | 209     | 210     |  |
| U      | 102      | 192     | 104    | 193   | 100     | 10/     | 100   | 103    | 130    | 131   | 132     | T 3.2    | 194   | 193     | 130      | 13/    | 130     | 199      | 0        | 0        | 0          | 0     | 0     | 0       | 200     | 0      | 0    | 209     | 0       |  |
| 1      | 212      | 213     | 214    | 215   | 216     | 217     | 218   | 219    | 220    | 221   | 222     | 223      | 224   | 225     | 226      | 227    | 228     | 229      | 230      | 231      | 232        | 233   | 234   | 235     | 236     | 237    | 238  | 239     | 240     |  |
| 0      | 712      | 713     | 214    | 213   | 210     | 717     | 210   | 513    | 0      | 221   | 0       | 0        | 0     | 223     | 220      | 0      | 0       | 0        | 2.30     | 7.71     | 2.32       | 0     | 0     | 0       | 230     | 23/    | 230  | 7 29    | 0       |  |
| 41     | 242      | 243     | 244    | 245   | 246     | 247     | 248   | 249    | 250    | 251   | 252     | 253      | 254   | 255     | 256      | 257    | 258     | 259      | 260      | 261      | 262        | 263   | 264   | 265     | 266     | 267    | 268  | 269     | 270     |  |
| 0      | 0        | 747     | 0      | 0     | 0       | 0       | 0     | 0      | 0      | 0     | 0       | 0        | 0     | 0       | 0        | 0      | 0       | 0        | 0        | 0        | 0          | 0     | 0     | 0       | 0       | 0      | 200  | 203     | 2/0     |  |

#### FINDING CONFUSION MATRIX:

Confusion matrix tells you how much values are predicted correctly.

# Method used:

table(Predicted\_Value, Actual\_Value)

# Code:

>table(pred,my\_data1\$corona\_result)



#### INTERPRETATION:

We can see that 263455 values are correctly predicted as 0 to be 0 and 3454 values are predicted 1 to be 1 correctly.

### CHECKING ACCURACY PF PREDICTION:

First find misclasserror, which is got by taking mean of predicted values which are not equal to the actual value.

- >misclasserror <- mean(pred != my\_data1\$corona\_result)
  Accuracy is got by subtracting misclasserror from 1.</pre>
- >print(paste('Accuracy=', 1-misclasserror))



We get accuracy to be 0.957184559329814=>95.7% data are predicted correctly=>Model works very well.

#### PREDICTING FOR NEW DATA:

Import the dataset containing the new data. The new dataset should not have the dependent variable column.

Based on the independent variables values, the value for the dependent variable will be predicted.



USE predict() method to predict for new data:

Inside predict() method, assign the name of new dataset to
"newdata" attribute.

# CODE:

>predict(model,newdata=pred\_data,type="response")

# **OUTPUT:**

0.9965705

# **INTERPRETATION:**

We get 0.9965705 which is approximately equal to 1=>The person has been tested covid positive.

```
Console Terminal × Jobs
 [ reached getoption( max.print ) -- omitted 277040 entries
> #to find confusion matrix
> table(pred.my_datal$corona_result)
   0 263455 11275
> #checking accuracy
> misclasserror <- mean(pred != my_datal$corona_result)</pre>
> print(paste('Accuracy=', 1-misclasserror))
[1] "Accuracy= 0.957184559329814"
 > #import the dataset containing data to be predicted
 > library(readxl)#to read excel files
 pred_data<-read_excel("C:/Users/nivet/Downloads/Book 1.xlsx")</pre>
 > View(pred_data)
 > str(pred_data)
 tibble [1 x 5] (S3: tbl_df/tbl/data.frame)
 $ fever
                       : num 1
                      : num 1
 $ sore_throat
 $ shortness of breath: num 0

    predict(model,newdata=pred_data,type="response")#gives predicted value=0.9965705 for new data

0.9965705
```

# TEAM MEMBERS:

NIVETHA C- E7121015

NIVETHA K- E7321002

MAHA LAKSHMI P- E7321003

BRINDA G- E7321004

KUSHITHA G- E7321007

# **THANK YOU**