

(DEEMED TO BE UNIVERSITY)
Accredited "A" Grade by NAAC | 12B Status by UGC | Approved by AICTE
www.sathyabama.ac.in

CONTINUOUS ASSESSMENT TEST - II

Program : B.E Max.Marks : 30

Course : Software Engineering Time : 1 Hour

Course code: SCS1305 Sem : V

Batch :2018-2022 Date :05/11/2020

Part-A Answer ALL the questions $(5\times2=10)$

Q.No	Questions	CO(L)
1.	List two principles of good design	3(1)
2.	Distinguish between transform flow and transaction flow	3(4)
3.	'A system must be loosely coupled and highly cohesive'. Justify	3(5)
4.	Between "statement coverage and Branch Coverage", Examine which is a stronger criteria? Why?	4(4)
5.	State the generic characteristics of software testing	4(1)

Part-B Answer ALL the questions $(2\times10=20)$

Q.No	Questions	CO(L)
6.	Illustrate transform mapping analysis with the help of airline reservation example	3(5)
	(OR)	
7.	Generalize on the concept of user interface design and list the characteristics of a good user interface design	3(4)

	Consider the pseudocode for simple subtraction given below:	
	Program 'Simple Subtraction'	
	Input (x,y)	
	Output(y)	
8.	If $x > y$	4(5)
	then DO x-y=z	
	else y-x=z	
	endif	
	output(z)	

	output 'End Program' perform the basic path testing and generate test cases .Explain black box and white box testing.	
	(OR)	
9.	Explain the different types of black box testing strategies with suitable examples	4(3)