Exercise 1: Analyzing an Algorithm

- a) A suitable loop invariant \mathcal{INV} is:
 - (i) A[i, ..., n] is sorted non-descended
 - (ii) $\forall k, l \in \mathbb{N} : 1 \le k < i \land i \le j \le n \implies A[k] \le A[l]$
- b) Prove through Induction:

base case: i = n

- (i) $A[i, \ldots, n] = A[n, \ldots, n] = A[n]$, an one-element array is always sorted
- (ii) $\forall k, l \in \mathbb{N}: 1 \leq k < i \land i \leq l \leq n: A[k] \leq A[l]$ $\iff \forall k, l \in \mathbb{N}: 1 \leq k < n \land n \leq j \leq n \implies A[k] \leq A[l].$ Let A[m] be the greatest element in A, that means $A[(m+1)-1] \geq A[m+1]$, so it would be moved to the next index, after increasing i, j, m, by one this would repeat until j = n and A[m] was moved to the last index.

induction step: $i \sim i - 1$

induction hypothesis

- (i) $A[i, \ldots, n]$ is sorted non-descended
- (ii) $\forall k, l \in \mathbb{N} : 1 \le k < i \land i \le j \le n \implies A[k] \le A[j]$

Because of the induction hypothesis we now that $A[i,\ldots,n]$ is sorted non-descending (i) and that $A[i-1] \leq A[i]$ (ii), so $A[i-1,\ldots,n]$ is sorted non-descending. Let A[m] be the greatest element in $A[1,\ldots,i]$, that means $A[(m+1)-1] \geq A[m+1]$, so it would be moved to the next index, after increasing i,j,m, by one this would repeat until j=i and A[m] was moved to the index i. So that $\forall k \in \mathbb{N} : 1 \leq k < i : A[k] \leq A[i]$. And because we know that $\forall k,l \in \mathbb{N} : 1 \leq k < i \land i \leq j \leq n \implies A[k] \leq A[j]$, because of the induction hypothesis, we have now proven (i) and (ii).

- c) (i) We have proven, that \mathcal{INV} is a loop invariant.
 - (ii) In the beginning the Array is unsorted, but the sorted area is empty, so the \mathcal{INV} is true
 - (iii) after the n-1th iteration the Array $A[1,\ldots,n]$ is sorted non-descending because the Array $A[2,\ldots,n]$ is sorted non-descending and the element A[1] is not greater than every element in the Array $A[2,\ldots,n]$.

(iv) the loop terminates after n-1 iterations

Exercise 2: Hoar-Logic - Analysis

a)
$$x-2 < 0 \iff x < 2$$

b)
$$z - 5 > 5 \iff z > 10$$

Exercise 3: Dynamic Programming - Knapsack

В	0	1	2	3	4	5	6
I_1	0	2	4	6	7	9	11
I_2	0	2	4	6	7	9	11
I_3	0	1	4	5	7	9	10
I_4	0	1	4	5	7	9	10
using only other items	0	1	4	5	7	8	9