TABULATION

Table 08: Observation data for the earth electrode test

Length (m)	Resistance (Ω)
0	1.2
1.5	1.8
3.0	1.9
4.5	2.5
6.0	3.0
7.5	3.5
9.0	4.0
10.5	4.5
12.0	6.0
13.5	9.5
15.0	200

CALCULATIONS

Resistances of different sizes of wires at 20 °C are:

 $1 \text{ mm}^2 = 18 \text{ m}\Omega/\text{m}$

 $1.5 \text{ mm}^2 = 12 \text{ m}\Omega/\text{m}$

 $2.5 \text{ mm}^2 = 7 \text{ m}\Omega/\text{m}$

Inside the building is 30 °C:

$$R_t = [1 + 0.004(t-20)] \times R_{20}$$

Resistances of different sizes of wires at 30 °C are:

1 mm² wire; $R_{30} = [1 + 0.004(30-20)] \times 18 \text{ m}\Omega/\text{m}$

 $R_{30} = 18.72 \text{ m}\Omega/\text{m}$

1.5 mm² wire; $R_{30} = [1 + 0.004(30-20)] \times 12 \text{ m}\Omega/\text{m}$

 $R_{30} = 12.48 \ m\Omega/m$

2.5 mm² wire; $R_{30} = [1 + 0.004(30-20)] \times 7 \text{ m}\Omega/\text{m}$

 $R_{30} = 7.28 \text{ m}\Omega/\text{m}$

Part 2.1

Figure 05: Circuit 2 with a temporary link between neutral and earth

Since all wires are 2.5mm² and 0.5 m;

$$R_L = R_N = R_E = 7.28 \ m\Omega/m \times 0.5 \ m$$

$$= 3.64 \ m\Omega$$

Resistance between earth(E) and neutral(N);

At the socket outlet 1
$$= (R_N + R_E) // (3 \times R_N + 3 \times R_E)$$
$$= 2 \times 3.64 \text{ m}\Omega // 6 \times 3.64 \text{ m}\Omega$$
$$= \frac{6}{(3+1)} \times 3.64 \text{ m}\Omega$$
$$= 5.46 \text{ m}\Omega$$

At the socket outlet 2
$$= (2 \times R_N + 2 \times R_E) // (2 \times R_N + 2 \times R_E)$$
$$= 4 \times 3.64 \text{ m}\Omega // 4 \times 3.64 \text{ m}\Omega$$
$$= \frac{4 \times 4}{(4 + 4)} \times 3.64 \text{ m}\Omega$$
$$= 7.28 \text{ m}\Omega$$

At the socket outlet 3
$$= (3 \times R_N + 3 \times R_E) // (R_N + R_E)$$
$$= 6 \times 3.64 \text{ m}\Omega // 2 \times 3.64 \text{ m}\Omega$$
$$= \frac{6}{(3+1)} \times 3.64 \text{ m}\Omega$$
$$= 5.46 \text{ m}\Omega$$

<u>Part 2.2</u>

Figure 06: Disconnected circuit 2 with a temporary link between L₁ and N₂

Resistance between
$$N_1$$
 and $L_2 = 4\times\,R_N + 4\times\,R_L$
$$= 8\times 3.64\;m\Omega$$

$$= 29.12\;m\Omega$$

Figure 07: Disconnected circuit 2 with temporary links between L₁ N₂ and L₂ N₁

Resistance between live(L) and neutral(N);

At the socket outlet 1
$$= (1 \times R_L + 3 \times R_N) // (1 \times R_N + 3 \times R_L)$$
$$= 4 \times 3.64 \text{ m}\Omega // 4 \times 3.64 \text{ m}\Omega$$
$$= \frac{4 \times 4}{(4 + 4)} \times 3.64 \text{ m}\Omega$$
$$= \underline{7.28 \text{ m}\Omega}$$

At the socket outlet 2
$$= (2 \times R_L + 2 \times R_N) // (2 \times R_N + 2 \times R_L)$$
$$= 4 \times 3.64 \text{ m}\Omega // 4 \times 3.64 \text{ m}\Omega$$
$$= \frac{4 \times 4}{(4+4)} \times 3.64 \text{ m}\Omega$$
$$= 7.28 \text{ m}\Omega$$

At the socket outlet 3
$$= (1\times R_L + 3\times R_N) // (1\times R_N + 3\times R_L)$$

$$= 4\times 3.64 \text{ m}\Omega // 4\times 3.64 \text{ m}\Omega$$

$$= \frac{4\times 4}{(4+4)}\times 3.64 \text{ m}\Omega$$

$$= 7.28 \text{ m}\Omega$$

Figure 08: Disconnected circuit 2 with temporary links between L₁ E₂ and L₂ E₁

Resistance between live(L) and earth(E);

At the socket outlet 1
$$= (1 \times R_L + 3 \times R_E) // (1 \times R_E + 3 \times R_L)$$
$$= 4 \times 3.64 \text{ m}\Omega // 4 \times 3.64 \text{ m}\Omega$$
$$= \frac{4 \times 4}{(4 + 4)} \times 3.64 \text{ m}\Omega$$
$$= 7.28 \text{ m}\Omega$$

At the socket outlet 2
$$= (2 \times R_L + 2 \times R_E) // (2 \times R_E + 2 \times R_L)$$
$$= 4 \times 3.64 \text{ m}\Omega // 4 \times 3.64 \text{ m}\Omega$$
$$= \frac{4 \times 4}{(4+4)} \times 3.64 \text{ m}\Omega$$
$$= 7.28 \text{ m}\Omega$$

At the socket outlet 3
$$= (1 \times R_L + 3 \times R_E) // (1 \times R_E + 3 \times R_L)$$
$$= 4 \times 3.64 \text{ m}\Omega // 4 \times 3.64 \text{ m}\Omega$$
$$= \frac{4 \times 4}{(4+4)} \times 3.64 \text{ m}\Omega$$
$$= 7.28 \text{ m}\Omega$$

62% of 15 m =
$$15 \times 0.62$$
 m = 9.3 m

Resistance at 9.3 m = $\frac{(9.3-4.5)}{(10\cdot 5-4\cdot 5)} \times (4.5-2.5) + 2.5 \Omega$ (considering the linear region) = 4.1Ω

REFERENCES