Korean Patent Application Laid-Open No. 1996-0030373

Published on August 17, 1996. (Appln. No. 10-1995-0000081)

Abstracts

The disclosure is a method of manufacturing metal interconnection of a semiconductor device, without a RIE(Reactive Ion Etching) process, preventing the diffusion of copper between silicon(Si) and silicon-oxide(SiO₂) layers.

(19) 대한민국특허청(KR) (12) 등록특허공보(B1)

(51) Int. CI. ⁶ H01L 21/768		(45) 공고일자 (11) 등록번호 (24) 등록일자	2002년 11월 20일 10-0338109 2002년 05월 13일
(21) 출원번호 (22) 출원일자	10-1995-0000081 1995년01월05일	(65) 공개번호 (43) 공개일자	특 1996-0030373 1996년 08월 17일
(73) 특허권자	주식회사 하이닉스반도체		
(72) 발명자	경기 이천시 부발읍 아미리 류형식	산136-1	
	서울시송파구석촌동53번지 오민록		
	경기도성남시분당구서현동91	성남시분당구서현동91한양APT326동1103호	
(74) 대리인	신영무, 최승민		
_ <i>십사관 : 반성원</i>			

(54) 반도체소자의금속배선제조방법

요약

본 발명은 반도체 소자의 금속배선 제조방법에 관한 것으로, 구리(Cu)를 이 용한 금속배선 형성시 구리가 실리콘(Si) 및 산화 실리콘(SiO₂)막 사이로 확산되는 것을 방지하고, RIE(Reactive Ion Etching)공정의 실시없이 금속배선을 형성할 수 있도록 한 반도체 소자의 금속배선 제조방법에 관해 기술되어 있다.

대표도

年6

명세서

도면의 간단한 설명

제 1 도 내지 제 6 도는 본 발명에 따른 반도체 소자의 금속배선 제조방법을 설명하기 위한 단면도.

* 도면의 주요 부분에 대한 부호의 설명 *

1: 실리콘 기판

2: 소자 절연막

3: 폴리실리콘 전극

4: TEOS막

5: BPSG막

6: 포토레지스트

7: 제 1 포토레지스트 패턴

8: 제 2 포토레지스트 패턴

9, 14: Ti/TiN

10: 제 3 포토레지스트 패턴

11: 제 1 금속배선

12, 16: 산화절화막

15: 제 2 금속배선

20: 그루브

발명의 상세한 설명

발명의 목적

발명이 속하는 기술 및 그 분야의 종래기술

본 발명은 반도체 소자의 금속배선 제조방법에 관한 것으로, 특히 구리(Cu)를 이용한 금속배선 형성시 구리가 실리콘(Si) 및 산화실리콘(SiO₂)막 사이로 확산되는 것을 방지하고, RIE(Reactive Ion Etching)공 정의 실시 없이 금속배선을 형 성할 수 있도록 한 반도체 소자의 금속배선 제조 방법에 관한 것이다.

반도체 제조공정에서 구리를 이용한 금속배선 제조방법에 관해 현재 많은 연구가 진행되고 있으나 구리 가 실리콘 및 산화 실리콘 사이에서 급속하게 확산되는 특성을 가지고 있어 반도체 소자의 신뢰성이 저 하된다. 또한 도포된 구리를 패턴화하기 위해 RIE 공정을 실시하는 것은 매우 어렵기 때문에 실제적으로 구리를 금속배선으로 사용하기가 곤란하다.

따라서 본 발명은 구리(Cu)를 이용한 금속배선 형성시 구리가 실리콘(Si) 및 산화실리콘(SiO₂)막 사이로 확산되는 것을 방지하고, RIE(Reactive Ion Etching)공정의 실시없이 금속배선을 형성하여 상기한 단점

을 해소할 수 있는 반도체 소자의 금속배선 제조방법을 제공하는데 그 목적이 있다.

상술한 목적을 달성하기 위한 본 발명에 따른 반도체 소자의 금속 배선 제조방법은 실리콘 기판상에 산화질화막, 총간절연막 및 포토레지스트를 순차로 형성하고 상기 총간절연막을 평탄화하는 공정과, 상기 총간절연막내에 그루브를 형성한 다음 상기 총간절연막을 예칭하여 제 1 콘택홈을 형성하는 공정과, 상기 제 1 콘택홈의 내부에만 Ti/TiN을 형성시키고 상기 제 1 콘택홈내에 금속을 선택적으로 형성하여 금속배선이 형성되도록 하는 공정과, 상기 금속배선을 포함한 전체구조상부에 산화질화막을 형성하는 공정으로 이루어지는 것을 특징으로 한다.

이하, 첨부된 도면을 참조하여 본 발명을 상세히 설명하기로 한다.

제 1 도 내지 제 6 도는 본 발명에 따른 반도체 소자의 금속배선 제조방법을 설명하기 위한 단면도이다.

제 1 도에 도시된 바와같이 소자 절연막(2)이 형성된 실리콘 기판(1)상에 게이트 전극(3)이 형성된다. 게이트 전극(3)을 포함한 전체구조 상부에 TEOS(4) 및 BPSG(5)가 순차로 도포된 후 BPSG(5) 상부에 평탄화용 포토레지스트(6)가 도포된다. 이 때 BPSG(5)는 최초 형성되는 두께에 후공정에서 형성될 제 1 금속배선의 두께를 합한 두께로 도포된다.

제 2 도와 관련하여 상기 BPSG(5) 및 포토레지스트(6)를 이용한 에치백(Etchback) 공정에 의해 상기 BPSG(5)가 전체적으로 평탄화 된다. 그 후, 콘택형성영역이 개방된 제 1 포토레지스트 패턴(7)이 상기 BPSG(5) 상부에 형성된다.

제 3 도에 도시된 바와같이, 상기 제 1 포토레지스트 패턴(7)을 이용한 콘택 에치 공정을 실시하여 그루 브(Groove: 20)가 형성된다. 그후, 상기 제 1 포토레지스트 패턴(7)이 제거되고 상기 그루브(20)의 폭보 다 큰폭으로 개구된 제 2 포토레지스트 패턴(8)이 상기 BPSG(5)의 상부에 형성된다.

제 4 도에 도시된 바와같이, 상기 제 2 포토레지스트 패턴(8)을 이용한 식각공정에 의해 상기 BPSG(5)가 식각되어 제 1 콘택흡이 형성된다. 제 1 콘택흡을 포함한 상기 BPSG(5)의 상부에 구리 확산 방지용 금속 방어막인 Ti/TiN(9)이 도포되고, 그 위에 네가티브 특성을 가진 포토레지스트가 도포된 후 제 1 금속배 선 형성용 마스크를 이용하여 제 3 포토레지스트 패턴 (10)이 상기 제 1 콘택흡상에 형성되게 한다.

제 5 도와 관련하여, 상기 제 2 포토레지스트 패턴(10)을 마스크로 하여 노출된 상기 Ti/TiN(9)이 선택적 식각에 의해 제거된 후 상기 제 2 포토레지스트 패턴(10)이 제거된다. 이때, 잔류하는 Ti/TiN(9)은 구리의 하부 확산 방지뿐만 아니라 후공정에서 형성될 제 1 금속배선을 형성하기 위한 구리를 선택적 화학기상증착하는 공정의 소스로 사용된다. 상기 제 2 포토레지스트패턴(10)이 제거된 영역에 구리를 선택적으로 화학기상 증착공정에 의해 증착하므로써 제 1 금속배선(11)이 형성된다. 따라서 RIE 공정을 진행하지 않고 구리로 이루어진 금속배선의 형성이 가능하다. 또한 총간절연막인 BPSG(5)내에 금속배선을 형성하므로써 글로벌(Global) 평탄화도 이룰 수 있다.

제 6 도는 상기 제 1 금속배선(11)을 포함하는 상기 BPSG(5) 상부에 제 1 구리금속의 상부확산을 방지하기 위한 산화질화(12)막과 충간절연막(13)을 순차적으로 형성한 후 전술한 제 2 도 내지 제 5 도의 공정을 진행하여 구리로 이루어진 제 2 금속배선(15)을 형성한 후 전체구조 상부에 산화질화막(16)이 형성된 상태의 단면도이다. 이 때 도포되는 상기 충간 절연막(13)은 최초 형성되는 두께에 상기 제 2 구리금속배선(15)의 두께 만큼 추가된 두께가 바람직하다. 따라서 글로벌 단차극복에 효과적이다.

상술한 바와같이 본 발명은 구리 금속배선 공정의 가장 큰 제약조건인 구리의 Si 및 Sio₂막 사이로의 확산을 Ti/TiN막 및 산화질화막을 이용하여 완벽하게 방지하며, 또한 금속배선시 산화질화막의 선택적 식각에 의해 구리의 선택적 화학기 상증착을 수행하므로써 RIE 공정 없이 금속배선을 형성해 구리 금속배선시 RIE 공정의 어려움을 해결할 수 있다. 이와같은 공정 진행으로 금속배선시 노광 및 식각공정을 생략할 수 있어 공정의 단순화와 더불어 금속배선의 노칭(Notching)등의 문제 유발 가능성이 해소되어 미세 다배선 공정 개발시 안정적 공정진행을 보장한다.

또한, 금속배선이 평탄화된 총간 절연막내에 형성되므로 완전한 평탄화를 이룰 수 있다.

본 발명에 의하면 저항성이 낮고, EM 특성이 우수한 구리 금속선을 채용할 수 있게 되어 소자의 동작 특성 및 신뢰성을 향상시켜 향후 미세소자 및 다층배선 기술개발이 가능하게 된다.

(57) 청구의 범위

청구항 1

- (A) 실리콘 기판 상에 제 1 산화질화막 및 총간절연막을 순차적으로 형성하고, 평탄화용 포토레지스트를 이용한 평탄화 공정을 통해 상기 총간 절연막을 평탄화하는 단계;
- (8) 상기 총간절연막내에 그루브를 형성한 후 상기 총간절연막을 식각하여 콘택흡을 형성하는 단계;
- (C) 상기 콘택홈의 내부에만 Ti/TiN을 형성시키고 상기 콘택홈내에 구리를 선택적으로 형성하여 금속배선이 형성되도록 하는 단계; 및
- (D) 상기 금속배선을 포함한 전체 구조 상부에 제 2 산화질화막을 형성하는 단계로 이루어지는 것을 특 징으로 하는 반도체 소자의 금속배선 제조방법.

청구랑 2

제 1 항에 있어서.

상기 총간절연막은 BPSG로 형성되는 것을 특징으로 하는 반도체 소자의 금속 배선 제조방법.

청구항 3

제 1 항에 있어서,

상기 총간절연막의 평탄화 공정은 에치백 공정으로 이루어지는 것을 특징으로 하는 반도체 소자의 금속 배선 제조방법.

청구항 4

제 1 항에 있어서,

상기 총간절연막은 최초 형성되는 두께에 상기 금속배선의 두께를 합한 두께로 형성되는 것을 특징으로 하는 반도체 소자의 금속배선 제조방법.

청구항 5

제 1 항에 있어서,

상기 콘택 흡의 내벽에만 Ti/TiN을 형성시키기 위해 상기 콘택 흡을 포함하는 전체 구조 상부에 Ti/TiN 을 도포하고 네가티브 포토레지스트를 도포한 후 금속 배선 형성용 마스크를 이용하는 것을 특징으로 하 는 반도체 소자의 금속배선 제조방법.

청구항 6

제 1 항에 있어서,

상기 (D) 단계 이후, 전체 구조 상부에 총간절연막을 순차적으로 형성하고, 평탄화용 포토레지스트를 이용한 평탄화 공정을 통해 상기 총간 절연막을 평탄화한 후, 상기 (B) 내지 (D) 단계를 실시하는 것을 더포함하는 것을 특징으로 하는 반도체 소자의 금속배선 제조방법.

도면

도면1

도면2

도면4

도면5

도연6

