

Congruent Triangles Ex 10.1 Q5

Answer:

In $\triangle ABC$, it is given that

$$\angle A = 120^{\circ}$$
, and $AB = AC$

We have to find $\angle B$, and $\angle C$

Since $\angle A = 120^{\circ}$ and AB = AC

Then
$$\angle B = \angle C$$
 (as AB = AC)

Now

 $\angle A + \angle B + \angle C = 180^{\circ}$ (By property of triangle) Thus,

$$120^{\circ} + \angle B + \angle C = 180^{\circ}$$
, as $\angle A = 120^{\circ}$ (given)

So,
$$\angle B + \angle C = 60^{\circ}$$

Since,
$$\angle B = \angle C$$
, so

$$2\angle B = 60^{\circ}$$

$$\angle B = 30^{\circ}$$

Hence
$$\angle B = \angle C = 30^{\circ}$$

Congruent Triangles Ex 10.1 Q6

Answer:

In $\triangle ABC$ it is given that

$$\angle B = 70^{\circ}$$
, and $AB = AC$

We have to find $\angle A$.

Since AB = AC

Then $\angle B = \angle C$ (isosceles triangles)

Now

$$\angle B = \angle C = 70^{\circ} (\text{As } \angle B = 70^{\circ} \text{ given})$$

Thus

$$\angle A + \angle B + \angle C = 180^{\circ}$$
 (Property of triangle)

$$\angle A + 70^{\circ} + 70^{\circ} = 180^{\circ}$$

$$\angle A + 140^{\circ} = 180^{\circ}$$

$$\angle A = 180^{\circ} - 140^{\circ}$$

$$\angle A = 40^{\circ}$$

Hence
$$\angle A = 40^{\circ}$$

Congruent Triangles Ex 10.1 Q7

Answer:

Suppose in the isosceles triangle \triangle ABC it is given that $\angle A = 100^{\circ}$ We have to find the base angle.

Now vertical angle $\angle A = 100^{\circ}$ (given)

And
$$AB = AC$$

Since
$$AB = AC$$
 then $\angle B = \angle C$

Now

$$\angle A + \angle B + \angle C = 180^{\circ}$$
 (By property of triangle)

So

$$100^{\circ} + 2 \angle B = 180^{\circ}$$

$$2\angle B = 180^{\circ} - 100^{\circ}$$

$$2\angle B = 80^{\circ}$$
$$\angle B = 40^{\circ}$$

Hence the base angle is $\angle B = 40^{\circ}$

******* END ******