## Практическая работа №6

## Основы организации последовательного порта

**Цель работы:** изучить использование последовательного порта МК для различных применений.

- 1. Основные сведения о режимах работы последовательного порта
- В структуру МК-51 входит дуплексный канал последовательной связи с буферизацией, который может быть запрограммирован для работы в одном из четырех режимов:
- Режим 0 синхронный, последовательный ввод-вывод со скоростью  $f_{\rm ocu}/12;$
- Режим 1 асинхронный с 10-битовым кадром и переменной скоростью передачи, зависящей от частоты переполнения таймера / счетчика 1 T/C1;
- Режим 2 асинхронный с 11-битовым кадром и фиксированной скоростью передачи  $f_{\text{осц}}/32$  или  $f_{\text{осц}}/64$ ;
- Режим 3 асинхронный с 11-битовым кадром и переменной скоростью передачи, также определяемой частотой переполнения T/C1.

Принятые входные и передаваемые выходные данные в параллельном коде хранятся в буферном регистре SBUF, который располагается в пространстве SFR по адресу 99h. Управление работой приемопередатчиков осуществляется через слово управления и состояния SCON, расположенное в регистре по адресу 98h, имеющем структуру, показанную на рис. 1.

|  | SM0 | SM1 | SM2 | REN | TB8 | RB8 | TI | RI |  |
|--|-----|-----|-----|-----|-----|-----|----|----|--|
|--|-----|-----|-----|-----|-----|-----|----|----|--|

Рис. 1. Структура регистра SCON

SCON.0 – RI. Флаг прерывания приемника.

SCON.1 - TI. Флаг прерывания передатчика.

SCON.2 - RB8. Восьмой бит приемника в режимах 2 и 3. В режиме 1, если SM2 = 0, то отображает стоп-бит. В режиме 0 не используется.

SCON.3 – ТВ8. Восьмой бит передатчика в режимах 2 и 3.

SCON.4 – REN. Разрешение приема.

SCON.5 – SM2. Запрещение приема кадров с нулевым восьмым битом данных. В режиме 0 должен быть сброшен.

SCON.6 – SM1. Младший разряд для кодирования номера режима.

SCON7. – SM0. Старший разряд для кодирования номера режима.

Режим работы последовательного порта определяется следующим образом:

| SM0 | SM1 | Режим | SM0 | SM1 | Режим |
|-----|-----|-------|-----|-----|-------|
| 0   | 0   | 0     | 1   | 0   | 2     |
| 0   | 1   | 1     | 1   | 1   | 3     |

Биты SCON.0 – SCON.2 устанавливаются аппаратно, а сбрасываются программно, биты SCON.3-SCON.7 устанавливаются и сбрасываются программно.

В режиме 0 работы последовательного порта для синхронизации внешних устройств используется линия TxD (P3.1), по которой передаются синхроимпульсы, а прием и передача информации осуществляется по линии RxD (P3.0).

Скорость приема/передачи в режиме 0 определяется как

$$f_0 = f_{\text{осц}}/12$$
,

где  $f_{\text{осц}}$  – частота кварцевого резонатора.

За один машинный цикл МК последовательный порт передает один бит информации.

Скорость приема/передачи последовательного порта в режиме 2 определяется как

$$f_2 = (2^{SMOD}/64)f_{\text{OCII}},$$

где бит SMOD является 7 битом регистра PCON (рис. 2).

Регистр PCON располагается в пространстве SFR по адресу 87h и полностью реализован в микросхемах КМОП технологии для управления режимом энергопотребления.

| SMOD | - | _ | - | GF1 | GF0 | PD | IDL |
|------|---|---|---|-----|-----|----|-----|
|------|---|---|---|-----|-----|----|-----|

Рис. 2. Структура регистра PCON

Назначение бит регистра следующее:

PCON.0 - IDL. Бит холостого хода. При PCON.0 = 1 МК переходит в режим холостого хода.

PCON.1 - PD. Бит пониженной мощности. При PCON.1 = 1 МК переходит в режим пониженного потребления мощности.

PCON.2 – GF0. Флаг, специфицируемый пользователем.

PCOM.3 – GF1. Флаг, специфицируемый пользователем.

PCON.4 Не используется.

PCON.5 Не используется.

PCON.6 Не используется.

PCON.7 - SMOD. Удвоенная скорость работы последовательного порта, если SMOD = 1.

Скорость передачи в режимах 1 и 3 определяется не только битом SMOD, но и частотой переполнения таймера-счетчика T/C1. При настройке порта на эти режимы работы необходимо запретить прерывания по переполнению таймера T/C1.

$$f_{1,3} = (2^{SMOD}/32)f_{OVT1}$$

где  $f_{OVT1}$  — частота переполнения таймера-счетчика T/C1. Наиболее удобно при работе последовательного порта использовать второй режим работы T/C1 — режим 8-битного суммирующего счетчика с автоперезагрузкой. При этом частота передачи определяется выражением:

$$f_{1,3} = (2^{SMOD}/32) \cdot (f_{\text{осц}}/12(256 - (TH1))),$$

где ТН1 – содержимое регистра ТН1 таймера счетчика Т/С1.

Параметры настройки T/C1 для управления частотой работы последовательного порта представлены в таблице 1.

Таблица 1 Настройка МК для управления частотой последовательного порта

|                      |                | Jiipabiieiiiii ie |      |            | - I  |
|----------------------|----------------|-------------------|------|------------|------|
| Частота              | $f_{ m ocu}$ , | SMOD              | C/T1 | Режим Т/С1 | TH1  |
|                      | МΓц            |                   |      |            |      |
| Режим 0: 1 МГц       | 12             | X*                | X    | X          | X    |
| Режим 2: 375 КГц     | 12             | 1                 | X    | X          | X    |
| Режим 1, 3: 62,5 КГц | 12             | 1                 | 0    | 2          | 0FFh |
| 19,2 КГц             | 11,059         | 1                 | 0    | 2          | 0FDh |
| 9,6 КГц              | 11,059         | 0                 | 0    | 2          | 0FDh |
| 4,8 КГц              | 11,059         | 0                 | 0    | 2          | 0FAh |
| 2,4 КГц              | 11,059         | 0                 | 0    | 2          | 0F4h |

| 1,2 КГц  | 11,059 | 0 | 0 | 2 | 0F8h |
|----------|--------|---|---|---|------|
| 137,5 Гц | 11,059 | 0 | 0 | 2 | 1Dh  |
| 110 Гц   | 6      | 0 | 0 | 2 | 72h  |

<sup>\*</sup>Символ X обозначает безразличие в настройке соответствующего параметра.

Передача данных по последовательному порту инициируется всякий раз, когда новые данные заносятся в регистр SBUF, например, по команде MOV SBUF, А. Признаком окончания передачи служит установка флажка прерывания ТІ.

Операция приема данных активизируется только при установленном бите REN = 1, когда флажок RI сброшен. Установка флажка RI свидетельствует о готовности данных для считывания из регистра SBUF, тогда может быть использована, например, команда MOV A, SBUF.

## 2. Порядок выполнения практической работы

Создайте новый проект и разместите на рабочем поле МК MCS-51 и Virtual Terminal.



Puc. 2. Схема подключения Virtual Terminal

Пример С-программы для передачи символов «аbc» из последовательного порта при работе во 2 режиме (11-битовый кадр, фиксированная скорость передачи 375 Кбит/с).

#include <8051.h> //функция отправки символа по последовательному порту

```
void tput(unsigned char c1)
     SBUF=c1; //заносим символ в буфер передачи
     while(!TI); //ожидаем окончания передачи
     TI=0; //сбрасываем флаг окончания передачи
     void main()
     char z;
     int i;
     //объявляем и инициализируем передаваемые символы
     unsigned char src[]={ 'a','b','c'};
     //устанавливаем бит SMOD в 1, для того чтобы скорость
приема / передачи равнялась 1/32 частоты кварцевого резонатора
     PCON=0x80;
     for (i=0; i<3; i++)
     ACC=src[i]; //заносим текущий символ в аккумулятор
     //заносим
                               регистр управления
                значение в
                                                      момижер
приемопередатчика
     SCON = 0x88;
     //передаем текущий символ в функцию отправки
     tput (src[i]);
     while (1) {} //бесконечный цикл
```

3. Задание на практическую работу

Необходимо передать N байт информации, настроив последовательный порт на K-режим работы со скоростью обмена S Кбит/с.

В качестве приемника информации используется Virtual Terminal, который должен быть настроен на ту же скорость передачи /приема, что и МК.

R – прием (вводите символы в Virtual Terminal и пос последовательному порту они записываются в память МК по адресу XX).

T – передача (символы из памяти МК передаются по последовательному порту на Virtual Terminal).

Варианты задания

|           | 1    | 2    | 3   | 4   | 5     | 6   | 7     | 8    | 9   | 10  |
|-----------|------|------|-----|-----|-------|-----|-------|------|-----|-----|
| R/T       | T    | T    | R   | T   | R     | T   | R     | T    | T   | T   |
| K         | 3    | 1    | 2   | 3   | 2     | 1   | 2     | 3    | 1   | 1   |
| S, Кбит/с | 19,2 | 19,2 | 375 | 2,4 | 187,5 | 4,8 | 187,5 | 62,5 | 9,6 | 1,2 |
| XX        | 50h  | 30h  | 40h | 50h | 40h   | 60h | 30h   | 40h  | 30h | 50h |
| N         | 10   | 6    | 15  | 8   | 20    | 10  | 20    | 15   | 20  | 10  |

|           | 11  | 12  | 13  | 14  | 15   | 16  | 17    | 18  | 19  | 20  |
|-----------|-----|-----|-----|-----|------|-----|-------|-----|-----|-----|
| R/T       | T   | T   | R   | T   | T    | T   | R     | T   | T   | T   |
| K         | 1   | 1   | 2   | 3   | 1    | 1   | 2     | 3   | 3   | 3   |
| S, Кбит/с | 2,4 | 4,8 | 375 | 9,6 | 19,2 | 1,2 | 187,5 | 2,4 | 4,8 | 9,6 |
| XX        | 30h | 30h | 30h | 50h | 50h  | 30h | 40h   | 50h | 30h | 30h |
| N         | 20  | 6   | 8   | 10  | 15   | 20  | 15    | 6   | 20  | 8   |

|           | 21   | 22   | 23   | 24  | 25   |
|-----------|------|------|------|-----|------|
| R/T       | T    | T    | T    | T   | T    |
| K         | 1    | 3    | 1    | 1   | 3    |
| S, Кбит/с | 62,5 | 19,2 | 62,5 | 2,4 | 62,5 |
| XX        | 50h  | 40h  | 30h  | 50h | 30h  |
| N         | 10   | 6    | 20   | 8   | 10   |