

Mohamed bin Zayed UCLA Stanford

Hawkeye: Model Collaboration for Efficient Reasoning

Hisportus Short Through Sho

Why reasoning models or your deep research takes so long?

LRMs cosumes lots of <thinking> tokens in CoT reasoning. Why? Majority voting Is it necessary? No - overthinking commonly happens that exhausting inference How many tokens are wasted in reasoning? It could be more than you think!

smaller models (LLaMA3.1-1B, Qwen2.5-0.5B) were guided by larger models (GPT-4o, Claude 3.5 Sonnet, Grok 3) to generate CoTs for GSM8K. The CoTs were refined via LLM-assisted feedback by removing (1) repeated, (2) filler-like, and (3) overly fine-grained tokens

Hawkeye Example

Original Reasoning

Question: The roots of the equation \$2x^2-mx+n=0\$ sum to 6 and multiply to 10. What is the value of \$m+n\$?

%: Okay, so I have this equation here: \(\((2x^2 - mx + n = 0\)\)). They told me that the sum of the roots is 6 and the product is 10. Hmm, I need to find \(m + n\). Alright, let's see how to approach this. First off, I remember something called Vieta's formulas from algebra class.

To connect the problem statement with the quadratic, I'll use Vieta's relations.

Well, the sum of roots corresponds to \(\tfrac{m}{2}\). I also know the product of roots corresponds to \(\tfrac{n}{2}\). That sets up the system of equations we need to solve.

Oh, so the sum of roots = (-b/a = -(-m)/2 = m/2). Product of roots = (c/a = n/2) But wait, in the problem statement, they say the sum of the roots is 6 and the product is 10. So that gives us two equations: 1)Sum: (m/2 = 6) 2) Product: (n/2 = 10) the value is $(\text{boxed{32}})$.

Overthink with more than 600 tokens

An example of HAWKEYE reasoning. The red highlights marks critical tokens that cannot be removed. HAWKEYE generates a high density of critical tokens and reduces token usage by over 70% (600 → 182 tokens).

(step2) Hawkeye Response Expansion

(step1) Hawkeye Instruction Generation

 $Rightarrow \quad n = 20\$ Adding these values together.

🔊: The given solution correctly identifies the values of \(m\) and \(n\) from the equations derived from the properties of the roots of a quadratic equation. Based on the reasoning provided: 1. The roots of the quadratic equation $(2x^2 - mx + n = 0)$ are given by the sum and product of the roots: $[x_1 + x_2] = \frac{h}{a} = \frac{h}{2} \left[x_1 \cdot x_2 = \frac{h}{2} \right]$ know from the problem statement that: $[x_1 + x_2 = 6] = 6$ know from the problem statement that: $[x_1 + x_2 = 6] = 6$ know from the problem statement that: $[x_1 + x_2 = 6] = 6$ know from the problem statement that: $[x_1 + x_2 = 6] = 6$ know from the problem statement that: $[x_1 + x_2 = 6] = 6$ know from the problem statement that: $[x_1 + x_2 = 6] = 6$ know from the problem statement that: $[x_1 + x_2 = 6] = 6$ know from the problem statement that: $[x_1 + x_2 = 6] = 6$ know from the problem statement that: $[x_1 + x_2 = 6] = 6$ know from the problem statement that: $[x_1 + x_2 = 6] = 6$ know from the problem statement that: $[x_1 + x_2 = 6] = 6$ know from the problem statement that: $[x_1 + x_2 = 6] = 6$ know from the problem statement that: $[x_1 + x_2 = 6] = 6$ know from the problem statement that: $[x_1 + x_2 = 6] = 6$ know from the problem statement that: $[x_1 + x_2 = 6] = 6$ know from the problem statement that $[x_1 + x_2 = 6] = 6$ know from the problem statement that $[x_1 + x_2 = 6] = 6$ know from the problem statement that $[x_1 + x_2 = 6] = 6$ know from the problem statement that $[x_1 + x_2 = 6] = 6$ know from the problem statement that $[x_1 + x_2 = 6] = 6$ know from the problem statement that $[x_1 + x_2 = 6] = 6$ know from the problem statement that $[x_1 + x_2 = 6] = 6$ know from the problem statement that $[x_1 + x_2 = 6] = 6$ know from the problem statement that $[x_1 + x_2 = 6] = 6$ know from the problem statement that $[x_1 + x_2 = 6] = 6$ know from the problem statement that $[x_1 + x_2 = 6] = 6$ know from the problem statement that $[x_1 + x_2 = 6] = 6$ know from the problem statement that $[x_1 + x_2 = 6] = 6$ know from the problem statement that $[x_1 + x_2 = 6] = 6$ know from the problem statement that $[x_1 + x_2 = 6] = 6$ know from the problem statement that $[x_1 + x_2 = 6] = 6$ know from the problem statement that $[x_1 + x_2 = 6] = 6$ know from the problem statement that $[x_1 + x_2 = 6] = 6$ know from the pro $\int \frac{1}{2} = 10 \times n = 20$ 3. Therefore, we have: $\int \frac{n+n}{2} = 10 \times n = 12 + 20 = 32$ So, the value of $\int \frac{32}{n} = 10 \times n = 12 + 20 = 12 + 2$

Hawkeye Reasoning

?): The given quadratic equation has roots that sum to \(\frac{m}{2}\) and multiply to \(\frac{n}{2}\). Given that these sums and

products equal (6) and (10), respectively: $[\frac{2} = 6 \quad R]$ and R = 12 $[\frac{10} R]$

Efficient reasoning with only 110 output tokens and 72 tokens for CoT generation

Methodology - Online Model Collaboration! Redundant Ouestion Thinking Slow thinking and responses Responses Frequent interruption by faults CoTs LLM SLM GRPO Thinking Responses Hawkeye Thinking + Responses Question Reward Length penalty Exact match O Low serving cost and less token usage

Hawkeye comprises a model collaboration, where the reasoning model produces precise CoT commands while a response model expands instructions and plans for formatting final summarization. Reasoning model are trained based on GRPO

Algorithm 1 GRPO fine-tuning of Model A for *compressed* Chain-of-Thought generation

Require: Policy model π_{θ} (Model A), frozen response model (Model B), training dataset $\mathcal{D} = \{(q_i, a_i, c_i^{\text{orig}})\}$, instruction prompt *s*, length penalty weight λ , target compression ratio α (set to 0.3) 1: while Model A not converged do **for** each mini-batch $\{(q_i, a_i, c_i^{\text{orig}})\}_{i=1}^N \subset \mathcal{D}$ **do for** each (a, a, c^{orig}) in mini-batch **do** $c \leftarrow \text{ModelA}(a)$

CoT length across training steps. Without a small model, the policy collapses to extremely short CoTs in pursuit of higher rewards

Reward trajectory during training. Both converge to similar reward scores, but a small model can help avoiding reward hacking

Evaluation results

Dataset	Method	Concurrency	Time per Req (s) \downarrow	Avg TBT	Tokens ↓	
GSM8K	Baseline (Full)	10	3.69	0.013	297.0	
	HAWKEYE (CoT only)	10	2.37	0.014	165.7	
	HAWKEYE (Full)	10	2.81	0.009	301.7	
	Baseline (Full)	100	5.13	0.016	331.0	
	HAWKEYE (CoT only)	100	2.93	0.017	171.0	
	HAWKEYE (Full)	100	3.75	0.011	332.0	
Math500	Baseline (Full)	10	14.95	0.013	1136.54	
	HAWKEYE (CoT only)	10	7.11	0.015	471.0	
	HAWKEYE (Full)	10	8.31	0.011	771.4	
	Baseline (Full)	100	36.20	0.021	1463.80	
	HAWKEYE (CoT only)	100	10.74	0.022	474.9	
	HAWKEYE (Full)	100	13.34	0.017	765.8	
Math	Baseline (Full)	10	13.09	0.014	942.08	
	HAWKEYE (CoT only)	10	5.14	0.014	361.23	
	HAWKEYE (Full)	10	6.23	0.011	565.33	
	Baseline (Full)	100	21.26	0.024	908.08	
	HAWKEYE (CoT only)	100	7.48	0.022	332.50	
	HAWKEYE (Full)	100	9.58	0.016	582.10	
AIME	Baseline (Full)	10	93.48	0.016	5943.90	
	HAWKEYE (CoT only)	10	66.60	0.016	4168.20	
	HAWKEYE (Full)	10	68.90	0.015	4722.50	

Benchmark Performance: Time per Req denotes average latency per request and Tokens denotes the token counts

Dataset	Method	Acc	Tokens	Compression Rat
GSM8K	CoT-Valve (QwQ-32B-Preview) Hawkeye (DeepSeek-R1-Distill-Qwen-7B)	$95.1\% \rightarrow 94.0\%$ $90.7\% \rightarrow 88.9\%$	$741.1 \to 352.8 \\ 331.0 \to 171.0$	52.4 48.3
MATH	O1-Pruner (QwQ-32B-Preview) Hawkeye (DeepSeek-R1-Distill-Qwen-7B)	$90.6\% \rightarrow 91.0\%$ $92.3\% \rightarrow 89.4\%$	$2191.0 \rightarrow 1385.0$ $942.0 \rightarrow 361.0$	36.7 61.7
MATH500	Hawkeye (DeepSeek-R1-Distill-Qwen-7B)	80.1% o 75.5%	$1463.0 \rightarrow 474.9$	67.5

Hawkeye v.s. Baseline: 7B models can still perform similar with 32B models

