X - 49 - 2018

위험물 운송 시 탱크트럭의 정량적 리스크 분석에 관한 기술지침

2018. 11.

한국산업안전보건공단

안전보건기술지침의 개요

○ 작성자 : 사단법인 한국안전학회 리스크관리 연구위원회

기술사사무소 차스텍이엔씨(주) 차순철

○ 개정자 : 안전보건공단 김정덕

- 제·개정 경과
 - 2011년 11월 리스크관리분야 제정위원회 심의(제정)
 - 2018년 10월 리스크관리분야 제정위원회 심의(개정)
- 관련 규격 및 자료
 - KOSHA GUIDE P-31-2010 인화성 액체 이송용 탱크차량의 안전에 관한 기술지침
 - NFPA 385, Standard for Tank Vehicles for Flammable and Combustible LiQuids, 2000
 - 화학물질관리법 시행규칙(환경부령 제647호, 2016.4.7)
- 기술지침의 적용 및 문의
 - 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지(www.kosha.or.kr) 의 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.
 - 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 교정본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

○ 공표일자 : 2018년 11월 05일

○ 제 정 자 : 한국산업안전보건공단 이사장

위험물 운송 시 탱크트럭의 정량적 리스크 분석에 관한 기술지침

1. 목적

이 지침은 탱크트럭을 이용한 위험물 운송 시 화재 및 폭발, 독성물질 누출 등 사고시나리오에 대한 정량적 리스크분석을 수행함으로써 사고발생 시 피해를 최소화할 수 있는 지침을 제공하는데 그 목적이 있다.

2. 적용범위

이 지침은 탱크트럭의 탱크를 비우고 탱크를 채우는 작업을 포함한 위험물 운송 작업에 적용한다.

3. 용어의 정의

- (1) 이 지침에서 사용되는 용어의 정의는 다음과 같다.
 - (가) "탱크트럭"이라 함은 본체 위에 카고 탱크를 장착하고 탱크 내부에 인화성 액체 등을 이송할 수 있도록 자체 엔진을 가지고 있는 차량을 말한다.
 - (나) "탱크트럭의 정량적 리스크분석"이라 함은 위험물 운송을 포함하여 탱크를 비우고 탱크를 채우는 작업에서의 정량적인 리스크 분석을 말한다.
- (2) 이 지침에서 사용하는 용어의 정의는 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙, 산업안전보건기준에 관한 규칙 및 안전보건기술지침 "리스크 관리의 용어 정의에 관한 지침"에서 정하는 바에의한다.

4. 일반사항

X - 49 - 2018

4.1 위험물질 운송에 대한 규정

- (1) 위험물질의 저장, 운송 및 취급하는 자는 산업안전보건법, 화학물질관리법, 위험물안전관리법 등의 관계법령과 KOSHA Guide(인화성 액체 이송용 탱크차량의 안전에 관한 기술지침) 등을 준수하여야 한다.
- (2) 위험물을 운송하려는 경우 위험물을 운반하는 자(운반계획 작성자)는 운반자명, 운반차량, 운반물 정보, 운반시간, 운반경로(도로) 등을 포함한 운반계획을 작성 하여야 한다.

4.2. 운반경로에 대한 정보

- (1) 4.1의 운반계획 작성에 포함되는 운반경로 관련 데이터는 경찰청, 도로교통공단, 환경부, 지방자치단체 등 운반경로 유관기관으로부터 수집한다.
- (2) 작성된 운반경로는 국가교통정보센터, 실시간교통정보 등을 통해 경로 상황, 안전 여부 등을 확인하여야 한다.

5. 정량적 리스크분석 방법

- 5.1. 탱크트럭의 정량적 리스크분석은 다음 단계로 구성한다.
 - (1) 탱크트럭의 정량적 리스크분석의 목적과 범위
 - (2) 유해위험요인 확인(Hazard identification)
 - (3) 도로 분석(Road analysis)
 - (4) 빈도 분석(Frequency analysis)
 - (5) 결과 분석(Consequence analysis)
 - (6) 개인적 리스크 및 사회적 리스크 분석(Individual risk & societal risk analysis)
 - (7) 민감도 분석(Sensitivity analysis)
 - (8) 리스크 평가(Risk assessment)

5.2. 탱크트럭의 정량적 리스크분석의 목적과 범위

리스크분석의 목적과 범위는 운송물질, 탱크를 비우는 시설, 탱크를 채우는 시설, 도로 사정 및 법규 요구사항 등을 포함한다.

X - 49 - 2018

5.3. 유해위험요인 확인

- (1) 이 단계의 목적은 빈도분석과 결과분석에서 모델링하는 사고 시나리오를 규명하는 것이다.
- (2) 유해위험요인의 확인은 탱크를 비우고 탱크를 채우는 작업과정, 운송과정에서의 취급하는 위험물의 물리·화학적 성상과 리스크의 확인을 포함한다.
- (3) 유해위험요인의 확인을 위한 방법은 크게 두 방식으로 구분할 수 있으며, 하향식 (Top-down) 접근방식 및 상향식(Bottom-up) 접근방식이 있다.

5.3.1. 하향식 접근방식

- (1) 하향식 접근방식들은 다음의 한 가지 또는 두 가지 모두를 고려한다.
 - (가) 사업장에서 각각의 잠재적인 사고들의 형태를 확인하기 위해 사용하는 유해 위험요인의 종류별 체크리스트
 - (나) 시스템(즉, 배관, 용기 및 탱크로부터의 누출)의 누출원으로부터 누출의 영향
- (2) 하향식 접근방식은 상대적으로 적은 노력으로 탱크트럭 정량적 리스크 분석수행을 위해 사고 시나리오를 도출하는데 장점이 있다.

5.3.2. 상향식 접근방식

- (1) 상향식 접근방식은 요구되는 분석수준에 상응하면서 구성요소 또는 하위체계 (Sub-system) 수준의 부분을 포함한다.
- (2) 상향식 접근방식은 위험 및 운전분석(HAZOP) 또는 고장모드 및 영향분석 (FMEA)을 포함한다.
- (3) 상향식 접근방식은 잠재적인 사고들의 원인들에 대한 상당한 정보를 제공하지만, 하향식 접근방식에 비하여 적용하는 데 많은 시간이 소요된다.

5.4. 도로 분석

이 단계의 목적은 안전운송, 환경조건, 기상조건, 도로상태, 도로의 혼잡성 특히, 교 량의 허용하중 상태, 터널의 높이와 진입성, 그리고 고속도로, 국도와 지방도의 선 택성을 분석하기 위함이다.

5.5. 빈도 분석

X - 49 - 2018

5.5.1. 사고빈도의 표현

- (1) 빈도분석은 사고 시나리오를 기준하여 사고발생 가능성을 분석하는 단계로서 일 반적으로 연간 발생 회수로 표현한다.
- (2) 예를 들면 사고빈도 $1*10^{-3}$ /년의 의미는 1년에 잠재적으로 발생할 수 있는 사고 1,000 번의 기회 중에서 한 번의 사고를 의미한다.

5.5.2. 빈도 분석방법

빈도 분석에는 3가지 주요 접근법이 있다.

- (1) 최근 사고발생 자료의 분석
 - (가) 사고빈도는 km 당 도로에서 발생하는 사고의 회수로 정의한다.
 - (나) 사고빈도는 사고 회수를 탱크트럭의 이동거리로 나누어서 계산한다.
- (2) 관련 있는 과거자료의 활용
 - (가) 과거자료는 KOSHA 자료를 포함한 사고빈도 또는 특성화된 플랜트와 설비항목에 대한 고장빈도의 정보를 제공한다.
 - (나) 이용하는 과거자료는 사고 시나리오와 유사한 사업장 설비자료를 포함한다.
 - (다) 사업장 및 설비자료를 수집하기 위한 체계가 부족하거나 또는 그 과거자료가 통계적으로 신빙성이 높지 않은 경우에는 일반적으로 발표된 신뢰성 있는 정보를 기준하여 자료를 작성한다.
- (3) 신뢰성 있는 글로벌 자료 활용, 결함수 분석과 같은 분석적 기법 혹은 시뮬레이션 기술을 이용한 빈도 도출
 - (가) 신뢰성 있는 글로벌 자료는 OREDA(Offshore reliability data) 등을 활용한다.
 - (나) 결함수 분석과 같은 분석적 기법은 체계의 실패를 모델링하며, 논리적인 도표 를 이용하여 정량적인 고장빈도를 산출한다.
 - (다) 신뢰성 있는 소프트웨어 프로그램을 이용해 고장빈도를 도출한다.

5.6. 결과 분석

결과분석은 다음과 같은 순서에 따라 수행하며, 이에 관하여는 안전보건기술지침 "누출원 모델링에 관한 기술지침", "사고 피해예측 기법에 관한 기술지침", "최악의 누출 시나리오 선정지침", "화학공장의 피해 최소화대책 수립에 관한 기술지침" 및 "사고피해 영향평가 기법"을 참조한다.

X - 49 - 2018

- (1) 누출원 모델링(Source term modeling)
 - (가) 누출원 모델링은 유해위험요인의 확인에 의해 도출한 위험물의 다양한 누출 의 특성을 의미한다. 누출의 특성은 바람의 속도와 같은 기상조건, 누출량, 누 출속도, 물질상태(액상, 기상 또는 2개 상 등), 물질 온도 및 물질압력과 같은 변수를 포함한다.
 - (나) 결과분석은 통상적으로 소프트웨어 프로그램에 의하여 산출한다.
- (2) 물리적인 효과 모델링(Physical effects modeling)
 - (가) 가스 또는 증기의 확산과 화재 또는 폭발의 규모와 형태는 물리적인 효과 모 델링을 사용하여 결정한다.
 - (나) 누출원의 변수와 영향 기준은 바람의 속도 및 방향과 같은 정보와 함께 공정 조건을 포함한다.
- (3) 영향평가 기준 정의(Definition of impact criteria)

영향평가 기준은 사람에게 위해를 가하는 독성영향, 사람이나 사업장의 설비 등에 피해를 입히는 복사열강도와 폭발 과압의 기준에 대한 것이다.

- (4) 영향평가 모델링(Effect modeling)
 - (가) 물리적인 효과 모델링의 결과는 영향평가 기준을 고려하여 누출원에서 사람, 환경 또는 설비에 대한 모델링의 영향을 평가한다.
 - (나) 영향평가는 사망가능성, 화상가능성, 복사열강도와 폭발과압에 의한 손상정도 를 표현한다.
- 5.7. 개인적 리스크 및 사회적 리스크 분석

리스크 분석의 결과는 개인적 리스크와 사회적 리스크로 구분한다.

- (1) 개인적 리스크는 사고 시나리오를 기준하여 개인 1명에 대하여 도출한 리스크다.
- (2) 사회적 리스크는 사업장 내부 및 외부의 피해범위 내의 사람들에게 피해를 입히는 리스크이며, 이는 F-N(Frequency-Number of fatalities)곡선으로 표현한다.

5.8. 민감도 분석

민감도 분석은 다음을 포함한다.

- (1) 개인과 프로빗 값(Probit value)과의 관계
- (2) 사람들의 인구 분포

X - 49 - 2018

- (3) 누출확률
- (4) 누출 빈도

5.9. 리스크 평가

- (1) 리스크 평가는 '허용 가능한 기준(Tolerable acceptable criteria) '을 토대로 한다.
- (2) 개인적 리스크는 사업장의 내부 및 외부에 대하여 별도의 기준을 설정하여야 한다.
- (3) 사회적 리스크는 사업장의 출하시설, 운송 경로 및 사업장의 입하시설이 사람에 게 영향을 미칠 수 있는 '합리적으로 실행가능한 낮은 수준(ALARP) '을 설정하여야 하며, 이를 기준으로 한다.