

Ayudantía 7 - Relaciones

4 de octubre de 2024

Martín Atria, José Thomas Caraball, Caetano Borges

Resumen

Relación Binaria

Una relación binaria es un conjunto de pares ordenados que establece una conexión o asociación entre elementos de dos conjuntos distintos.

R es una relación binaria entre A y B si $R \subseteq A \times B$.

Propiedades de una Relación Binaria

Refleja

Una relación R es refleja si para todo elemento x en el conjunto, el par (x, x) está en R.

$$\forall x \in A, (x, x) \in R$$

Irrefleja

Una relación R es irrefleja si ningún par (x,x) está en R para cualquier x en el conjunto.

$$\forall x \in A, (x, x) \notin R$$

Simétrica

Una relación R es simétrica si para cada par (x, y) en R, también está presente el par (y, x).

$$\forall x, y \in A, (x, y) \in R \to (y, x) \in R$$

Antisimétrica

Una relación R es antisimétrica si para cualquier par (x,y) en R, si $x \neq y$, entonces el par (y,x) no está en R.

$$\forall x, y \in A, (x, y) \in R \land x \neq y \rightarrow (y, x) \notin R$$

Transitiva

Una relación R es transitiva si para cada par (x, y) y (y, z) en R, el par (x, z) también está en R.

$$\forall x, y, z \in A, (x, y) \in R \land (y, z) \in R \rightarrow (x, z) \in R$$

Conexidad

Una relación R es conexa si para cada par de elementos x,y podemos encontar a (x, y) en R, o a (y, x) en R.

$$\forall x, y \in A, (x, y) \in R \lor (y, x) \in R$$

Relación de Equivalencia

Una relación de equivalencia es una relación binaria que cumple **reflexividad**, **simetría** y **transitividad**.

A la relación se le denota como $x \sim y$.

Orden Parcial

Una relación R sobre un conjunto A es un orden parcial si es **reflexiva**, **antisimétrica** y **transitiva**.

A la relación se le denota como $x \leq y$. Y diremos que el par (A, \leq) es un **orden parcial**.

Orden Total

Una relación \leq sobre un conjunto A es un orden total si es una relación de orden parcial y además es conexa.

Elemento mínimo y máximo

Sean (A, \preceq) un orden parcial, $S \subseteq A$ y $x \in A$. Diremos que:

- 1. x es una **cota inferior** de S si para todo $y \in S$ se cumple que $x \leq y$.
- 2. x es un **elemento minimal** de S si $x \in S$ y para todo $y \in S$ se cumple que $y \leq x \Rightarrow y = x$.
- 3. x es un **mínimo** en S si $x \in S$ y es cota inferior de S.

Análogamente, se definen los conceptos de cota superior, elemento maximal y máximo.

Sea (A, \preceq) un orden parcial, y sean $S \subseteq A, x \in A$.

Ínfimo y supremo

Sea (A, \preceq) un orden parcial y $S \subseteq A$. Diremos que s es un ínfimo de S si es una cota inferior, y para cualquier otra cota inferior s' se tiene que $s' \preceq s$. Es decir, el ínfimo es la mayor cota inferior. Análogamente se define el supremo de un conjunto.

1. Relaciones

Decimos que un conjunto $X \subseteq \mathbb{R}$ es **bueno para la suma** si satisface las siguientes condiciones:

- 1. $0 \in X$
- $2. \ \forall x, y \in X, x + y \in X.$

Dado un conjunto $X \subseteq \mathbb{R}$, se define en \mathbb{R} la relación \mathcal{R}_X como:

$$x\mathcal{R}_X y \leftrightarrow (x-y) \in X$$

Demuestre que si X es bueno para la suma, entonces \mathcal{R}_X es una relación refleja y transitiva.

Solución

1. Refleja:

Para que la relación sea refleja, se debe cumplir que para todo $x \in X, x\mathcal{R}_X x$. Se tiene que X es bueno para la suma, por lo que $0 \in X$. Luego, $0 = x - x \in X$, por lo que $x\mathcal{R}_X x$, y concluímos que la relación es refleja.

2. Transitiva:

Para que la relación sea transitiva, se debe cumplir que $(x\mathcal{R}_X y \wedge y\mathcal{R}_X z) \rightarrow x\mathcal{R}_X z$. Supongamos que $x\mathcal{R}_X y \wedge y\mathcal{R}_X z$. Luego, por definición de \mathcal{R}_X , se tiene que $x-y\in X, y-z\in X$. Por la segunda propiedad de un conjunto bueno para la suma, se tiene que para cualquier par de elementos $a,b\in X, a+b\in X$. Como $x-y\in X \wedge y-z\in X$, se tiene que $(x-y)+(y-z)=x-z\in X$, con lo que $x\mathcal{R}_X z$, y concluímos que la relación es transitiva.

2. Conjuntos & Relaciones de equivalencia

Sea A un conjunto cualquiera, y sean R_1 y R_2 relaciones de equivalencia sobre A. Demuestre que $R_1 \cup R_2$ es una relación de equivalencia si y solo si $R_1 \cup R_2 = R_1 \circ R_2$.

Nota: La composición de dos relaciones definidas sobre un conjunto A, denotada por $R_1 \circ R_2$, es una relación definida como

$$R_1 \circ R_2 = \{(a_1, a_2) \in A^2 \mid \exists a' \in A \text{ tal que } a_1 R_2 a' \land a' R_1 a_2 \}$$

Solución

- (\Rightarrow) Supongamos que $R_1 \cup R_2$ es una relación de equivalencia. Demostraremos que $R_1 \cup R_2 = R_1 \circ R_2$ haciendo la contención en ambas direcciones:
 - (\subseteq) Sea $(x,y) \in R_1 \cup R_2$. Tenemos dos casos:
 - \circ $(x,y) \in R_1$: Como R_2 es una relación de equivalencia, es refleja, y

- entonces $(x, x) \in R_2$. Luego, por definición de composición, tenemos que $(x, y) \in R_1 \circ R_2$.
- \circ $(x,y) \in R_2$: Como R_1 es una relación de equivalencia, es refleja, y entonces $(y,y) \in R_1$. Luego, por definición de composición, tenemos que $(x,y) \in R_1 \circ R_2$.
- (\supseteq) Sea $(x,y) \in R_1 \circ R_2$. Por definición de composición, $\exists z \in A.(x,z) \in R_2 \land (z,y) \in R_1$. Luego, tenemos que $(x,z) \in R_1 \cup R_2 \land (z,y) \in R_1 \cup R_2$. Como $R_1 \cup R_2$ es una relación de equivalencia, es transitiva, por lo que $(x,y) \in R_1 \cup R_2$.
- (\Leftarrow) Supongamos que $R_1 \cup R_2 = R_1 \circ R_2$. Para demostrar que $R_1 \cup R_2$ es una relación de equivalencia debemos demostrar que es refleja, simétreica y transitiva:
 - Refleja: Sea $x \in A$. Como R_1 es refleja por ser relación de equivalencia, tenemos que $(x, x) \in R_1$, y entonces $(x, x) \in R_1 \cup R_2$.
 - Simétrica: Sean $x, y \in A$ tales que $(x, y) \in R_1 \cup R_2$. Se debe tener que $(x, y) \in R_1 \vee (x, y) \in R_2$. SPDG, supongamos que $(x, y) \in R_1$, como R_1 es una relación de equivalencia, se tiene que $(y, x) \in R_1$, por lo que $(y, x) \in R_1 \cup R_2$.
 - Transitiva: Sean $x, y, z \in A$ tales que $(x, y) \in R_1 \cup R_2 \land (y, z) \in R_1 \cup R_2$. Debemos demostrar que $(x, z) \in R_1 \cup R_2$. Tenemos 4 casos en cuanto a la pertenencia de cada par a R_1 o a R_2 :
 - o $(x,y) \in R_1 \land (y,z) \in R_1$: Como ambas relaciones perteneces a R_1 y esta es una relación transitiva $(R_1$ es relación de equivalencia), $(x,z) \in R_1$, por lo que $(x,z) \in R_1 \cup R_2$.
 - o $(x,y) \in R_2 \land (y,z) \in R_2$: Análogo al anterior.
 - $(x,y) \in R_2 \land (y,z) \in R_1$: Por definición de composición, tenemos que $(x,z) \in R_1 \circ R_2$, como $R_1 \circ R_2 = R_1 \cup R_2$, se cumple que $(x,z) \in R_1 \cup R_2$.
 - \circ $(x,y) \in R_1 \land (y,z) \in R_2$: Como R_1 y R_2 son relaciones simétricas (son relaciones de equivalencia), se tiene que $(y,x) \in R_1 \land (z,y) \in R_2$, luego por definición de composición se tiene $(z,x) \in R_1 \circ R_2$ y como $R_1 \circ R_2 = R_1 \cup R_2$, $(z,x) \in R_1 \cup R_2$. Por último, como $R_1 \cup R_2$ es una relación simétrica, se tiene que $(x,z) \in R_1 \cup R_2$.

3. Relaciones de orden

Sea \mathbb{R} el conjunto de los números reales, se define la relación \mathcal{R} sobre \mathbb{R}^2 de la siguiente forma:

$$(a,b)\mathcal{R}(c,d) \leftrightarrow a < c \lor (a = c \land b < d)$$

Demuestre que $(\mathbb{R}^2, \mathcal{R})$ es un orden parcial.

Solución

Se demostrará que \mathcal{R} es refleja, antisimétrica y transitiva.

- Refleja: Sea $(a, b) \in \mathbb{R}^2$ un par arbitrarios. Puesto que a = a y $b \le b$ se cumple que $(a, b)\mathcal{R}(a, b)$.
- Antisimétrica: Sean $(a,b),(c,d) \in \mathbb{R}^2$ pares arbitrarios. Notar que si $(a,b)\mathcal{R}(c,d)$ y a < c luego no puede cumplirse que $(c,d)\mathcal{R}(a,b)$. Analogamente si $(c,d)\mathcal{R}(a,b)$ y c < a entonces $(c,d)\mathcal{R}(a,b)$ no puede ser verdad. Por consecuencia si ambas relaciones se cumplen necesariamente a = c y por ende

$$b < d \land d < b$$

De lo anterior se concluye que (a, b) = (c, d).

- Transitividad: Sean $(a,b), (c,d), (e,f) \in \mathbb{R}^2$ pares arbitrarios. Se supondrá $(a,b)\mathcal{R}(c,d)$ y $(c,d)\mathcal{R}(e,f)$ y se demostrará que $(a,b)\mathcal{R}(e,f)$. Considerar el universo de casos posibles:
 - $(a < c) \land (c < e)$: $a < c < e \rightarrow (a, b)\mathcal{R}(e, f)$.
 - $(a < c) \land (c = e \land d \le f)$: $a < c = e \rightarrow (a, b)\mathcal{R}(e, f)$.
 - $(a = c \land b \le d) \land (c < e)$: $a = c < e \rightarrow (a, b)\mathcal{R}(e, f)$.
 - $(a = c \land b \le d) \land (c = e \land d \le f)$: $a = c = e \land b \le d \le f \rightarrow (a, b)\mathcal{R}(e, f)$.

Como para todo caso posible se cumple que $(a,b)\mathcal{R}(e,f)$, luego \mathcal{R} es transitiva. Queda entonces demostrado que $(\mathbb{R}^2,\mathcal{R})$ es un orden parcial.