Feuille d'exercices 9

Exercice 1. Soit $K = \mathbf{Q}[\sqrt{d}]$ avec d < 0. Montrer que, pour tout $n \ge 2$, K n'est pas contenu dans une extension galoisienne cyclique de degré 2^n de \mathbf{Q} .

Exercice 2. (Théorème d'Artin-Schreier)

Soient K un corps de caractéristique zéro, p un nombre premier et a un élément de K qui n'est pas une puissance p-ième dans K.

- (i) Montrer que $X^p a$ est irréductible dans K[X].
- (ii) Si $r \ge 0$, montrer que $X^{p^r} a$ est irréductible dans K[X], sauf si p = 2 et a est de la forme $-4x^4$ avec $x \in K$.

Supposons maintenant K algébriquement clos et soit $k \subset K$ une extension finie.

- (iii) Montrer que si -1 est un carré dans k, alors K = k (se ramener au cas où $k \subset K$ est de degré premier).
 - (iv) Montrer qu'en général $K = k[\sqrt{-1}]$.

Plus généralement le théorème d'Artin-Schreier caractérise les corps K tels que $[\overline{K}:K]<+\infty$ comme étant les corps réels clos, des généralisations du corps des nombres réels.

Exercice 3. (Théorème de Hilbert 90). Soit L/K une extension galoisienne. La norme d'un élément $x \in L$ est définie par la formule

$$N_{L/K}(x) = \prod_{\sigma \in Gal(L/K)} \sigma(x)$$

- (i) Montrer que, si $x \in L$, alors $N_{L/K}(x) \in K$.
- (ii) Soient $\sigma_1, \ldots, \sigma_n$ des morphismes distincts de groupes de L^{\times} vers L^{\times} . Montrer qu'ils forment une famille libre dans le L-espace vectoriel des applications de L^{\times} dans L.

On suppose désormais que L/K est une extension cyclique de degré n. Soit σ un générateur de $\mathrm{Gal}(L/K)$.

- (iii) Soit $x \in L$. Montrer que $N_{L/K}(x) = 1$ si et seulement s'il existe $y \in L^{\times}$ tel que $x = y\sigma(y)^{-1}$ (on pourra considérer l'application $\mathrm{Id} + x\sigma + x\sigma(x)\sigma^2 + \cdots + x\cdots\sigma^{n-2}(x)\sigma^{n-1}$ de L^{\times} dans L).
- (iv) Si $\mu_n(K)$ est de cardinal n, fixons ζ un générateur de $\mu_n(K)$. Calculer $N_{L/K}(\zeta)$ et retrouver le résultat de classification des extensions cycliques.

Exercice 4. Soit L|K une extension galoisienne de groupe G = Gal(L/K).

- (i) La trace d'un élément $x \in L$ est définie par $\operatorname{tr}_{L/K}(x) = \sum_{\sigma \in G} \sigma(x)$. Vérifier que $\operatorname{tr}_{L/K}$ est un morphisme de groupes additifs de L vers K.
 - (ii) Montrer qu'il existe $x \in L$ tel que $\operatorname{tr}_{L/K}(x) = 1$ (utiliser la question (ii) de l'exercice 3).
 - (iii) On note

$$Z^{1}(G, L) = \{(c_{\sigma})_{\sigma} \in L^{G} \mid \forall \sigma, \tau \in G \ c_{\sigma\tau} = c_{\sigma} + \sigma(c_{\tau})\}.$$

Vérifier que, pour $x \in L$ et $c_{\sigma} = \sigma(x) - x$, on a $(c_{\sigma})_{\sigma} \in Z^{1}(G, L)$. Réciproquement, montrer que tout $(c_{\sigma})_{\sigma} \in Z^{1}(G, L)$ est de cette forme là (regarder pour $y \in L$ la quantité $\sum_{\tau \in G} \tau(y) c_{\tau}$).

On suppose maintenant que K est un corps parfait de caractéristique p dont on note \overline{K} une clôture algébrique et on suppose $L \subset \overline{K}$.

(iv) Soit $y \in L$ tel que $y^p - y \in K$. Vérifier que

$$\sigma \longmapsto \sigma(y) - y$$

définit un morphisme de groupes $\operatorname{Gal}(L/K) \to \mathbf{Z}/p\mathbf{Z}$ et montrer qu'en faisant varier de tels y on obtient ainsi tous les morphismes $\operatorname{Gal}(L/K) \to \mathbf{Z}/p\mathbf{Z}$.

(v) Montrer qu'il existe une bijection entre les sous- \mathbf{F}_p -espaces vectoriels de dimension finie de $K/(F-\mathrm{Id})(K)$ et les extensions finies galoisiennes de K dans \overline{K} dont le groupe de Galois est un groupe abélien de p-torsion, où $F:\overline{K}\to\overline{K}$ désigne le Frobenius $x\mapsto x^p$ (par un groupe abélien de p-torsion, on entend un groupe isomorphe à $(\mathbf{Z}/p\mathbf{Z})^k$ pour un certain entier k).

Exercice 5. Soit $n \geq 2$ un entier. Montrer que le discriminant du polynôme $X^n + aX + b$ est

$$(-1)^{\frac{n(n-1)}{2}} \left(n^n b^{n-1} + (1-n)^{n-1} a^n \right).$$

Exercice 6. Soient k un corps parfait et $P = X^3 + aX + b \in k[X]$ un polynôme irréductible dont on note $\alpha_1, \alpha_2, \alpha_3$ les racines dans un corps de décomposition K de P. On rappelle que le discriminant $\Delta(P)$ de P est $\left(\prod_{i < j} (\alpha_i - \alpha_j)\right)^2$. (On peut vérifier, cf. exercice 5, qu'il est égal à $-4a^3 - 27b^2$.)

- 1. Supposons que $\Delta(P)$ soit un carré dans k. Que peut-on dire du groupe de Galois G de P?
- 2. Soit $f = Z_1Z_2^2 + Z_2Z_3^2 + Z_3Z_1^2 \in k[Z_1, Z_2, Z_3]$. Montrer qu'une permutation $\sigma \in \mathfrak{S}_3$ est paire si et seulement si $\sigma(f) = f$. (On fait agir \mathfrak{S}_3 par permutation des variables.)
- 3. Montrer que $R_f(P) = \prod_{\sigma \in S_3/A_3} (T \sigma(f)(\alpha_1, \alpha_2, \alpha_3))$ appartient à k[T] et l'exprimer en fonction de a et b.
- 4. En déduire que si k est de caractéristique 2, le groupe de Galois de P est contenu dans A_3 ou pas selon que $1 + a^3b^{-2}$ est de la forme $x^2 + x$ ($x \in k$) ou pas.