

TEMA 2. CORRIENTE ELÉCTRICA. CIRCUITOS DE CORRIENTE CONTINUA (II)

- 1. Circuitos con mallas. Leyes de Kirchoff.
- 2. Condensadores. Comportamiento en CC
- 3. Bobinas (autoinducciones). Comportamiento en CC.

CIRCUITOS CON MALLAS, LEYES DE KIRCHOFF. 1.

Algunas definiciones:

Malla: Bucle o "subcircuito" cerrado que podemos establecer dentro de un circuito más complejo.

Rama: Parte del circuito entre un nudo y otro. Es una línea sin ramificar, que incluye elementos (resistencias, generadores, motores...). Por todos los elementos de una rama del circuito, circula la misma intensidad.

Nudo: Un nudo es un punto del circuito donde este se bifurca o ramifica, o donde se unen varias ramas. Por cada rama que confluye en el nudo circulará una determinada intensidad. Se cumple siempre, por el principio de conservación de la carga, que la suma de las intensidades que entran en el nudo, es igual a la suma de las intensidades que salen del nudo.

Ley de Kirchoff (método de las corrientes de rama)

Veamos este método aplicándolo a un ejemplo concreto. El circuito de la derecha.

Pasos:

- Numerar cada una de las ramas, estableciendo el sentido en que creemos que circulará la corriente en esa rama.
- Numerar las mallas (con letras o números romanos, para no confundirse con las ramas), estableciendo el sentido que consideraremos positivo a la hora de recorrer cada una.

1 O (I) 3Ω В

Ecuaciones de nudo: La corriente total que entra en un nudo debe ser igual a la que sale de ese nudo ($\Sigma I_{entran} = \Sigma I_{salen}$). si el circuito tiene N nudos, debemos plantear las ecuaciones de N-1 nudos (todos menos uno).

Ecuaciones de malla: Planteamos la ley de Ohm generalizada ($\Sigma \varepsilon = \Sigma R \cdot I$) en cada una de las mallas, teniendo en cuenta el sentido que hemos establecido para cada una y el sentido que hemos dado a cada corriente en cada rama.

Generadores: La fem del generador se coloca como positiva si su polaridad "coincide" con el sentido que hemos dado a la malla (si al recorrer la malla, entramos en el generador por el polo - y salimos por el +. en caso contrario, se coloca como negativa.

Resistencias (incluidas las resistencias internas de los generadores): A la hora de hacer la suma de R·I, multiplicaremos cada resistencia por la intensidad de la rama en la que se encuentre (que serán las incógnitas de nuestro sistema). Se colocarán con signo + aquellas en las que el sentido de la corriente de rama coincida con el sentido de la malla, y signo - (restadas) aquellas en las que los sentidos sean opuestos.

El circuito tiene dos nudos. Planteamos la ecuación en el nudo A, por ejemplo.

$$\boxed{I_1 = I_2 + I_3}$$

$$\begin{aligned} 5V - 3V &= \\ &= 3\Omega \cdot I_1 + 1\Omega \cdot I_1 + 1\Omega \cdot I_2 + 4\Omega \cdot I_2 \\ &\boxed{2 = 4 \cdot I_1 + 5 \cdot I_2} \end{aligned}$$

Malla II:

$$\begin{aligned} 3V - 2V &= \\ -4\Omega \cdot I_2 - 1\Omega \cdot I_2 + 1\Omega \cdot I_3 + 4\Omega \cdot I_3 \\ \hline I &= -5 \cdot I_2 + 5 \cdot I_3 \end{aligned}$$

Con todo esto obtenemos un sistema con el mismo número de ecuaciones que de incógnitas, que tendremos que resolver. De esta forma calculamos el valor de cada una de la intensidad que circula por cada rama.

Interpretación del resultado: Si la intensidad de una rama sale positiva, es que el sentido que hemos supuesto para la misma es el correcto. Si sale negativa, es que la intensidad circula en sentido contrario al que hemos supuesto en esa rama, y hemos de cambiarlo en el esquema final.

Cálculo de la diferencia de potencial entre dos puntos.

Normalmente nos pedirán la caída de tensión entre dos nudos, pero esto puede hacerse también con dos puntos cualesquiera.

Escogemos una de las ramas, y la recorremos desde un punto a otro siguiendo el sentido de la intensidad de corriente que circula por la misma.

- En cada resistencia (incluidas las resistencias internas de las pilas), se produce siempre una caída de tensión, igual a $R \cdot I$.
- Los generadores producen una subida de tensión igual a su ε si en ellos la corriente entra por el polo negativo y sale por el positivo. En caso contrario funcionan como receptores, y producen una caída de tensión igual a su ε.

De esta forma, vemos que $V_F = V_I - \Sigma R \cdot I + \Sigma \varepsilon_{generadores} - \Sigma \varepsilon_{receptores}$.

La diferencia de potencial suele darse en valor absoluto (potencial mayor - potencial menor)

$$\begin{cases} I_1 = I_2 + I_3 & I_1 = 0.385A \\ 2 = 4 \cdot I_1 + 5 \cdot I_2 & \to I_2 = 0.092A \\ 1 = -5 \cdot I_2 + 5 \cdot I_3 & I_3 = 0.292A \end{cases}$$

Si escogemos la rama 1, por ejemplo. Siguiendo el sentido de la corriente I₁, empezamos en B y terminamos en A. La fuente de 5 V actúa como generador.

$$V_A = V_B - 3\Omega \cdot I_1 + 5V - 1\Omega \cdot I_1 =$$

$$= VB - 1,155V + 5V - 0,385V \rightarrow$$

$$\rightarrow V_A - V_B = 3,46V$$

Si escogemos la rama 2, y seguimos el sentido de la corriente 2, empezamos en A v terminamos en B. La fuente de 3 V actúa como receptor.

$$V_{B} = V_{A} - 1\Omega \cdot I_{2} - 3V - .4\Omega \cdot I_{2} =$$

$$= V_{A} - 0.092V - 3V - 0.369V \rightarrow$$

$$\rightarrow V_{B} - V_{A} = -3.46V$$

$$\rightarrow V_{A} - V_{B} = 3.46V$$

CONDENSADORES. COMPORTAMIENTO EN CC. 2.

Capacidad (capacitancia) de un conductor:

Definimos la Capacidad (o capacitancia) de un conductor (C) como la relación entre carga acumulada y potencial almacenado por el conductor. Es decir, la capacidad nos indica cuánta carga almacena el conductor por cada voltio de potencial al que se le somete.

$$C = \frac{Q}{V}$$
 Unidades: $[C] = \frac{Coulombio}{Voltio} = Faradio(F)$

El faradio es una unidad muy grande. Los condensadores normalmente tienen capacidades de microfaradios ($\mu F = 10^{-6} F$) nanofaradios (nF = 10^{-9} F) picofaradios (pF = 10^{-12} F)

Como ejemplo, calcularemos la capacidad de un conductor esférico al que hemos suministrado una carga Q. Dicha carga se distribuirá por su superficie, quedando ésta con un potencial V dado por $V = \frac{K \cdot Q}{R} = \frac{Q}{4\pi\varepsilon \cdot R}$

La capacidad será
$$C = \frac{Q}{V} = \frac{Q}{\frac{Q}{4\pi\varepsilon \cdot R}} = 4\pi\varepsilon \cdot R$$

Como vemos, la capacidad sólo depende de las características del conductor (de su geometría y del material dieléctrico que lo rodee) No depende de la cantidad de carga que le hayamos suministrado. Esto ocurre para cualquier conductor, sea cual sea su forma.

Condensadores:

Un condensador es un dispositivo formado por dos placas conductoras +Q separadas por un "dieléctrico" o aislante (vacío, aire, papel, parafina, plástico, cerámica...) entre los que se establece una diferencia de potencial. La placa conectada a mayor potencial acumulará carga positiva y la placa conectada a menor potencial acumulará carga negativa. Se establece así un campo eléctrico entre las placas, que va almacenando energía eléctrica conforme se carga

Para un <u>condensador</u>, la capacidad se define como $C = \frac{Q}{\Delta V}$ (ΔV es la diferencia de potencial entre las placas)

Cuando menor es el espesor del dieléctrico (la distancia de separación entre las placas), mayor es la capacidad del condensador. Vemos esto claramente, por ejemplo, en la expresión de la capacidad de un condensador plano $C = \frac{S - \varepsilon}{d}$, donde S es la superficie de las placas, d la distancia entre ambas, y ϵ es la permitividad eléctrica del aislante que hay entre ellas. $\varepsilon = \varepsilon_0 \cdot \varepsilon_r$, donde ε_0 es la permitividad del vacío, y ε_r la permitividad relativa, un número que nos dice cuántas veces es mayor la permitividad en el medio que en el vacío. Es el número que suele aparecer en las tablas.

Algunos valores de \mathcal{E}_r Vacío: 1,0006 Aire: Policarbonato: 2,8 Papel: 3,5 5 - 10 Vidrio: Sal común: 6,1 Porcelana. 6,5 Mica Óxido de tántalo 26 Alcohol: 28.4 Aqua(20°C): 81

$\varepsilon_0 = 8.8 \cdot 10^{-12} \text{ F/m}$

Energía almacenada por un condensador:

Se calcula con la expresión $E = \frac{1}{2}C \cdot V^2$

Tipos de condensadores:

Según la geometría de los condensadores y de los materiales de los que están hechos, distinguimos diversos tipos

Nombre	Características	Valores eléctricos típicos	Foto
Electrolíticos	Papel impregnado de electrólito como dieléctrico	Tienen polaridad y C > 1 μF	1
Electrolíticos de tántalo o de gota	Película de óxido de tantalio amorfo como dieléctrico	Tienen polaridad y C > 1 μF	
Poliéster metalizado MKT	Dos capas de policarbonato recubiertas por una banda metálica que se enrollan juntas	Valores aprox < 1 μF	ONT MICT 1996 400V
Poliéster	Similares a los anteriores variando la fabricación, que da como resultado estructuras planas	Valores aprox < 470 nF	
Poliéster tubular	Similares a los anteriores pero con estructura en forma de tubo	Valores aprox < 470 nF	
Cerámico de lenteja / de disco	Cerámicos más corrientes	Valores aprox 0,5 pF < C < 47 nF	95
Cerámico de tubo	No se suelen emplear ya que su valor varía mucho según a la temperatura a la que sea sometido	Del orden de pF	0/

CONDENSADORES EN SERIE Y EN PARALELO:

Asociación en serie:

Todos los condensadores de la asociación en serie acumulan la misma carga, pero cada uno mantiene un voltaje entre sus extremos. Los voltajes se suman.

R

$$\Delta V = \Delta V_1 + \Delta V_2 + \Delta V_3 + \dots \rightarrow \Delta V = \frac{Q}{C_1} + \frac{Q}{C_2} + \frac{Q}{C_3} + \dots = \frac{Q}{C_{eq}} \rightarrow \boxed{\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots}$$

Asociación en paralelo:

Todos los condensadores están conectados al mismo voltaje. Cada uno almacena una carga diferente, según su capacidad.

La carga total almacenada será

$$Q = Q_1 + Q_2 + Q_3 + \dots \rightarrow Q = C_1 \cdot \Delta V + C_2 \cdot \Delta V + C_3 \cdot \Delta V + \dots = \Delta V \cdot (C_1 + C_2 + C_3 + \dots) = \Delta V \cdot C_{eq} \rightarrow C_{eq} = C_1 + C_2 + C_3 + \dots$$

COMPORTAMIENTO DE UN CONDENSADOR EN CORRIENTE CONTINUA. CARGA **DESCARGA.**

El comportamiento de un condensador en corriente continua es, a primera vista, muy sencillo y aparentemente inútil. El condensador se carga pero, una vez cargado, no deja pasar la corriente, debido al aislante entre las placas. En CC se comporta como un circuito abierto.

Carga del condensador:

Sin embargo, si analizamos el circuito en el momento de conectar el interruptor y comenzar a circular corriente, vemos que el condensador tarda un tiempo (aunque muy pequeño) en cargarse. Durante ese tiempo sí circula corriente por el circuito, y esta va cambiando conforme el condensador se carga.

Inicialmente la carga del condensador es nula y, por tanto, la diferencia de potencial V_C ente sus placas también es cero. Entonces, la tensión V_R en la resistencia será igual a e, y

la intensidad que recorre el circuito será $I_0 = \frac{\mathcal{E}}{R}$

Conforme el condensador se va cargando, V_C aumenta y, en consecuencia, V_R disminuye y también la intensidad I. Esto hace que el condensador se cargue cada vez más lentamente, y que I disminuya cada vez más lentamente. Matemáticamente, esta variación es exponencial (decreciente). Cuando V_C se hace prácticamente igual a ε, la intensidad es casi nula.

La función que describe la variación de V_C es $V_C = \varepsilon \cdot (1 - e^{-\frac{t}{RC}})$ Y la de la intensidad: $I = \frac{\varepsilon}{R} \cdot e^{-\frac{t}{RC}}$

Descarga del condensador:

Si desconectamos un condensador ya cargado del generador y dejamos que se descargue a través de una resistencia, inicialmente la tensión $V_R = V_C = \epsilon$, y la intensidad que circula será máxima. Conforme el condensador se descarga, V_R se hace menor y la intensidad también disminuye, lo que a su vez hace que el condensador se descargue cada vez más lentamente, siguiendo una exponencial decreciente, al igual que la intensidad.

La función que describe la variación de V_C es $V_C = \varepsilon \cdot e^{-\frac{t}{RC}}$

Y la de la intensidad: $I = \frac{\mathcal{E}}{R} \cdot e^{-\frac{i}{RC}}$

Tanto en la carga como en la descarga, el producto $\tau = R \cdot C$ marca un tiempo característico, llamado tiempo de relajación o constante de tiempo, y que nos da una idea de lo rápida o lenta que es la carga o descarga. Es el tiempo en que la intensidad se ha reducido a 1/e (36,78%) del valor inicial. Transcurrido 5 veces ese tiempo, la intensidad se ha reducido a menos del 1% del valor inicial.

Este efecto de subida o caída "amortiguada" de tensión e intensidad hace que un uso de los condensadores sea el de evitar subidas o bajadas bruscas (picos) de tensión en los circuitos, ya que durante esos picos pueden circular intensidades muy elevadas por el circuito, dañándolo.

2 A

8Ω≶

EJERCICIOS.

- El circuito de la figura consta de dos fuentes de tensión reales de corriente continua A y B. Rg_A y Rg_B representan sus respectivas resistencias internas. Si por la resistencia de carga exterior circulan 2 A, calcule:
 - La potencia de pérdidas de cada fuente.
 - La potencia útil de la fuente de 20 V. b)
 - El rendimiento de la fuente de 20 V.
- 2. Dado el circuito de corriente continua de la figura, calcule las intensidades que circulan por cada uno de los generadores y las potencias que éstos suministran en los siguientes casos:
 - a) Con el interruptor k abierto.
 - b) Con el interruptor k cerrado.

10 V

- 3. En el circuito eléctrico de la figura, calcule:
 - Las intensidades representadas.
 - La tensión en los extremos de R₁. b)
 - c) La potencia de cada una de las resistencias.
 - La potencia de cada uno de los generadores.

Rg_B≥3Ω

- 4. En el circuito de la figura, cada una de las resistencias consume 75 W.
 - a) El valor de la tensión de cada uno de los generadores para que V₁ actúe como receptor.
 - El valor de la tensión de cada generador para que la potencia de V2 sea cero.

- a) El valor de V_x para que la potencia en V₁ sea
- b) El valor de las intensidades l₁, l₂ e l₃ cuando el valor de V_x es igual a 10 V.

R₂=4 Ω

R₃=2 Ω

- a) La intensidad que circula por cada rama.
- b) La diferencia de potencial entre A y B.
- c) La potencia suministrada por la fuente de 5 V.

- 7. En el circuito de la figura, calcule:
 - a) La intensidad que circula por cada rama del circuito.
 - b) La potencia en cada elemento del circuito. Verifique que la suma total de las potencias en el circuito es nula.

- En el circuito de la figura todas las resistencias son de 10 Ω, excepto R6 que es de 15 Ω. Calcule:
 - a) Las intensidades en cada rama.
 - b) La tensión entre A y B.
 - c) La potencia disipada en cada resistencia.
- 9. Para el circuito de corriente continua de la figura:
 - a) Calcule la intensidad de corriente que circula por cada resistencia.
 - b) Calcule la potencia aportada por la fuente.
 - c) Compruebe que la potencia aportada por
 - d) la fuente es la misma que la consumida en todas las resistencias.
- 10. En el circuito de la figura se sabe que la resistencia R₃ consume 18 W mientras que la fuente E₂ no cede ni consume potencia alguna. En estas condiciones, calcule:
 - a) Las intensidades I₁, I₂ e I₃.
 - b) Las resistencias R₁ y R₄.
 - c) La potencia en cada elemento del circuito.

- **11.** Las placas de un condensador plano tienen un área de 25 mm², y 0,5 mm de espesor de porcelana como dieléctrico entre las placas. Calcula la capacidad del condensador, y la carga y la energía que almacena cuando se conecta a un voltaje de 5 V.
- 12. Calcular la capacidad equivalente para las siguientes asociaciones de condensadores, todos ellos de 400 nF.

- **13.** Para cada una de las situaciones anteriores ¿Qué carga almacena cada condensador cuando el conjunto se conecta a una diferencia de potencial de 120 V?
- **14.** Calcula el tiempo de relajación (constante de tiempo) de un circuito RC que consta de una fuente de 12 V, un condensador de 470 nF y una resistencia de 230 k Ω en serie. Si inicialmente el condensador está descargado, ¿cuánto tiempo tarda en estar cargado a la mitad? ¿y al 75 %? ¿Yal 63,21%?

SOLUCIONES A LOS EJERCICIOS

1. a) 16 W, 12 W

b) 64 W

c) 80%

2. a) k abierto

1) I = 0, P = 0 W

2) I = 1.2 A, P = 21.6 W

b) k cerrado 1) I = 3 A, P = 27 W 2) I = 3 A, P = 54 W

3. a) $I_1 = 2 \text{ A}$, $I_2 = 0$, $I_3 = 2 \text{ A}$ b) 4 V c) $P_{R1} = 8 \text{ W}$, $P_{R2} = 16 \text{ W}$ d) $P_1 = 20 \text{ W}$, $P_2 = 0 \text{ W}$, $P_3 = 4 \text{ W}$

4. a) $V_1 = 15 \text{ V}$, $V_2 = 30 \text{ V}$ b) $V_1 = 45 \text{ V}$, $V_2 = 30 \text{ V}$

5. a) 20 V b) $I_1 = I_2 = 1,67 \text{ A}$, $I_3 = 3,33 \text{ A}$,

6. a) $I_1 = 0.385 \text{ A}$, $I_2 = 0.092 \text{ A}$, $I_3 = 0.292 \text{ A}$,

b) 3,46 V

c) 1.92 W

7. a) $I_1 = 10.5 \text{ A}$, $I_2 = 9 \text{ A}$, $I_3 = 1.5 \text{ A}$,

b) Resistencias: 810 W, 56,25 W, 33,75 W

Fuentes: 945 W, 45 W

8. a) $I_1 = 0.167 \text{ A}$, $I_2 = 0.777 \text{ A}$, $I_3 = 0.611 \text{ A}$,

b) 18,32 W

c) $P_1 = P_2 = 0.28 \text{ W}$, $P_3 = P_4 = P_5 = 3.73 \text{ W}$

 $P_6 = 9,06 \text{ W}$,

9. a) 14 A, 13 A, 10 A, 9 A, 1 A b) 2438 W c) 392 W + 1014 W + 700 W + 324 W + 8 W = 2438 W

10. a) $I_1 = 3 A$, $I_2 = 0 A$, $I_3 = 3 A$,

b) $R_1 = 2 \Omega$, $R_4 = 1 \Omega$

c) Fuentes: $P_1 = 27 \text{ W}$, $P_2 = 0 \text{ W}$, $P_3 = 18 \text{ W}$ d) Resistencias $P_1 = 18 \text{ W}$, $P_2 = 0 \text{ W}$, $P_3 = 18 \text{ W}$, $P_4 = 9 \text{ W}$

11. C = 2,86 pF

Q = 14.3 pC

E = 35,75 pJ

12. a) 133,3 nF b) 1,2 μ F c) 266,7 nF d) 600 nF e) 267 nF

13. a) $Q_1 = Q_2 = Q_3 = 16 \ \mu\text{C}$ b) $Q_1 = Q_2 = Q_3 = 48 \ \mu\text{C}$ c) $Q_1 = 32 \ \mu\text{C}$, $Q_2 = Q_3 = 16 \ \mu\text{C}$

d) $Q_1 = 48 \mu C$, $Q_2 = Q_3 = 24 \mu C$

e) $Q_1 = 32 \mu C$, $Q_2 = Q_3 = 16 \mu C$

14. $\tau = R \cdot C = 0.1034 \text{ s}$ 0.0717 s

0,1433 s 0,1034 s (el tiempo de relajación)