

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления» Кафедра ИУ5 «Системы обработки информации и управления»

Отчет по РК № 2 Технологии машинного обучения

Студент:

группы ИУ5-64Б

Ведьгун Е.А.

Задание

Для заданного набора данных (по Вашему варианту) постройте модели классификации или регрессии (в зависимости от конкретной задачи, рассматриваемой в наборе данных). Для построения моделей используйте методы 1 и 2 (по варианту для Вашей группы). Оцените качество моделей на основе подходящих метрик качества (не менее двух метрик). Какие метрики качества Вы использовали и почему? Какие выводы Вы можете сделать о качестве построенных моделей? Для построения моделей необходимо выполнить требуемую предобработку данных: заполнение пропусков, кодирование категориальных признаков, и т.д.

Группа: ИУ5-64Б

Метод №1: Линейная/логистическая регрессия

Метод №2: Градиентный бустинг

Импорт библиотек

```
import numpy as np
import pandas as pd
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor
from sklearn.preprocessing import MinMaxScaler, StandardScaler, Normalizer
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error, mean_squared_error, mean_squared_log_error, median_absolute_error, r2_score
%matplotlib inline
sns.set(style="ticks")
```

Загрузка датасета. Разделение выборки на тестовую и обучающую

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	concave	mean symmetry	fractal dimension		worst radius	worst texture	worst perimeter	worst area	smoothr
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14710	0.2419	0.07871		25.380	17.33	184.60	2019.0	0.16
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.07017	0.1812	0.05667		24.990	23.41	158.80	1956.0	0.12
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790	0.2069	0.05999		23.570	25.53	152.50	1709.0	0.14
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.10520	0.2597	0.09744		14.910	26.50	98.87	567.7	0.20
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.10430	0.1809	0.05883		22.540	16.67	152.20	1575.0	0.13
564	21.58	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890	0.1726	0.05623		25.450	26.40	166.10	2027.0	0.14
565	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791	0.1752	0.05533		23.690	38.25	155.00	1731.0	0.11
566	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302	0.1590	0.05648		18.980	34.12	126.70	1124.0	0.11
567	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200	0.2397	0.07016		25.740	39.42	184.60	1821.0	0.16
568	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000	0.1587	0.05884		9.456	30.37	59.16	268.6	0.08
569 rows × 30 columns																
4																•
bc_s X_tr	c = sc. ain, X_	test, \	ansform(b Y_train,	Y_test	= train_te , random_st											

mean

mean

Обучение и тестирование линейной регрессии

(0.06092697018150137, 0.19403126210377075)

Обучение и тестирование градиентного бустинга

```
gr_boost_bc = GradientBoostingRegressor(random_state=1)
gr_boost_bc.fit(X_train, Y_train)
target2 = gr_boost_bc.predict(X_test)
mean_squared_error(Y_test, target2), mean_absolute_error(Y_test, target2)
```

(0.039501125391911175, 0.09537203204500203)

Выводы

Высокая эффективность градиентного бустинга в данном примере обуславливается тем, что выбранный датасет содержит много сложных зависимостей, а линейная регрессия отработала хуже, потому что это модель не ансамблиевая, а также датасет не содержит большое количество линейный зависимостей.