Types

Outline

- 1. begin with a set of terms, a set of values, and an evaluation relation
- define a set of types classifying values according to their "shapes"
- 3. define a *typing relation* t : T that classifies terms according to the shape of the values that result from evaluating them
- 4. check that the typing relation is sound in the sense that,
 - 4.1 if t : T and t \longrightarrow * v, then v : T
 - 4.2 if t : T, then evaluation of t will not get stuck

Review: Arithmetic Expressions – Syntax

```
terms
                                                 constant true
        true
        false
                                                 constant false
        if t then t else t
                                                 conditional
                                                 constant zero
        succ t
                                                 successor
        pred t
                                                 predecessor
        iszero t
                                                 zero test
                                               values
                                                 true value
        true
                                                 false value
        false
                                                 numeric value
        nν
                                               numeric values
nv :=
                                                 zero value
                                                 successor value
        succ nv
```

Evaluation Rules

Types

In this language, values have two possible "shapes": they are either booleans or numbers.

types type of booleans type of numbers

Typing Rules

```
(T-True)
          true: Bool
                                        (T-False)
         false: Bool
t_1: Bool t_2: T t_3: T
                                             (T-IF)
 if t_1 then t_2 else t_3: T
                                         (T-Zero)
            0 : Nat
            t<sub>1</sub>: Nat
                                         (T-Succ)
         succ t_1 : Nat
            t<sub>1</sub>: Nat
                                         (T-Pred)
         pred t<sub>1</sub>: Nat
            t<sub>1</sub>: Nat
                                       (T-IsZero)
       iszero t<sub>1</sub>: Bool
```

Typing Derivations

Every pair (t,T) in the typing relation can be justified by a derivation tree built from instances of the inference rules.

Proofs of properties about the typing relation often proceed by induction on typing derivations.

Imprecision of Typing

Like other static program analyses, type systems are generally *imprecise*: they do not predict exactly what kind of value will be returned by every program, but just a conservative (safe) approximation.

$$\frac{\mathsf{t}_1 : \mathsf{Bool}}{\mathsf{if} \ \mathsf{t}_1 \ \mathsf{then} \ \mathsf{t}_2 : \mathsf{T} \qquad \mathsf{t}_3 : \mathsf{T}} \qquad \qquad \mathsf{(T-IF)}$$

Using this rule, we cannot assign a type to

```
if true then 0 else false
```

even though this term will certainly evaluate to a number.