Tuesday Reading Assessment: Unit 0, Review of 135A

Prof. Jordan C. Hanson

January 23, 2024

1 Memory Bank

- $\vec{a} = a_x \hat{i} + a_y \hat{j}$... Component notation for 2D vector
- $\vec{a} + \vec{b} = (a_x + b_x)\hat{i} + (a_y + b_y)\hat{j}$... Adding vectors
- $\vec{a} \vec{b} = (a_x b_x)\hat{i} + (a_y b_y)\hat{j}$... Subtracting vectors
- $a_x = |\vec{a}| \cos \theta$... x-component of a 2D vector
- $a_y = |\vec{a}| \sin \theta$... y-component of a 2D vector
- $\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y$... Dot product of two vectors

2 Warm-Up Exercises

- 1. Perform the following unit conversions:
 - Convert 320 gm to kg:
 - Convert 2.4×10^5 cm s⁻¹ to km hr⁻¹:
 - One "atmosphere" of pressure, or 1 atm, is equal to 101325 Pascals, or Pa. A Pascal is defined as 1 N m⁻². Convert 610 Pa to atm. (This is roughly the air pressure on Mars).
- 2. Let $\vec{x} = 0.5\hat{i} 0.5\hat{j}$, and $\vec{y} = -0.5\hat{i} + 0.5\hat{j}$. (a) Calculate $\vec{x} + \vec{y}$. (b) Calculate $\vec{x} \vec{y}$. (c) What is the magnitude of \vec{a} ? (d) What is the magnitude of \vec{b} ?
- 3. Let \vec{F} be a 10 N force that makes a 60 degree angle with the x-axis. (a) What is the x-component of this force? (b) What is the y-component? (c) Suppose this force displaces a system 3 m along the x-axis. What is the work done? Recall that $W = \vec{F} \cdot \Delta \vec{x}$.