目录

Ι	杂项	8
1	快读快写	8
2	正则表达式	8
3	随机数	8
4	计算 $\log 2$	8
5	快速开根号 牛顿迭代法	9
6	i/k == j 的 k 的个数	9
7	三分法	9
	三维偏序 CDQ 分治 8.1 四维偏序	10
9	某区间操作问题	10
10	分数规划	10
II	计算几何	11
11	向量坐标直线圆 (结构体)	11
12	二维凸包	14
13	平面最近点对	14
14	最小圆覆盖 随即增量法	15
III	数据结构	16
15	堆 15.1 可删堆	16
16	二叉查找树	17
17	平衡树 17.1 Splay	17 17
18	李超线段树	20
19	线段树合并	20
20	线段树分裂	20
21	猫树	22

	吉老师线段树 吉司机线段树 2	
	22.1 区间最值操作	2
	22.3 区间加区间修改	6
	22.4 区间最值探作与历史最值询问问问	9
	K-D Tree KDT	
24	树状数组 3	2
	24.1 一维	2
	24.2.1 单点修改区间查询	3
25	可持久化数组 3	4
26	可持久化线段树 (主席树) 3	4
27	分块 3	7
28	莫队 3	
	28.1 奇偶性排序	
	28.3 值域分块	9
	28.4 二次离线莫队	.(
	ST 表	
	29.1 一维	3
	29.3 反向 ST	3
30	并查集 4	
	30.1 路径压缩	
	30.3 带权并查集	5
	30.4 扩展域并查集	C
	30.5.1 按秩合并	6
	30.5.2 启发式合并	7
	30.6 可持久化并查集	7
31	左偏树 可并堆 4	8
T\/	· · · · · · · · · · · · · · · · · · ·	q
32	回文字符串 manacher 算法 4 32.1 判断 s[l, r] 是否为回文	
33	KMP 5	0
34	扩展 KMP Z 函数	0
35	字典树 5 35.1 求异或	

36	AC 自动机	53
37	后缀数组 SA 37.1 O(nlogn)	56
38	后缀平衡树	58
39	后缀自动机 SAM 39.1 代码	59 59 60 60
40	广义后缀自动机 40.1 离线构造 40.2 在线构造 40.3 多个字符串间的最长公共子串 40.4 根号暴力 40.5 树上本质不同路径数 40.6 循环同构问题	61 62 62 62
41	最小表示法	63
42	Lyndon 分解	63
43	回文树 回文自动机 PAM 43.1 特殊 log 性质	64 65 65 66
44	序列自动机	66
45	Main-Lorentz 算法	66
\mathbf{V}	图论 树论	66
46	DFS 树	67
47		67
48		67
	稳定婚姻匹配	68
50	最小生成树	68

51	二分图 51.1 二分图最大匹配	69
	51.2 二分图最大权匹配	69
52		7 0
	52.1 倍增	70
	52.3 欧拉序	71
53	树上差分	72
54	树链剖分	7 2
55		7 3
	55.1 最大流	73
	55.2 费用流	75
	55.3 上下界网络流	76
56	最短路 56.1 SPFA	77 77
57	负环	77
58	割点	7 8
59	· · · · · · · · · · · · · · · · · · ·	78
60	缩点	7 9
	2-SAT 61.1 SCC Tarjan	
62	虚树	81
63	线段树优化建图	82
64	矩阵树定理 Kirchhoff	83
65	斯坦纳树 65.1 边权最小	83 83 84 84
66		84
67		84
68		86

69	浅谈图模型上的随机游走问题	87
	69.1 网格图	87 87
	$69.1.2$ 直接消元法 $O(R^4)$	87
70	树分治 70.1 点分治	87 87 88
V]	I 数论	88
71	快排	88
72	求第 K 大数	89
7 3	求逆序对 (归并排序)	89
74	线性基	89
7 5	矩阵 75.1 矩阵快速幂	91
7 6	高斯消元 76.1 异或方程组	93 94
77	拉格朗日插值	95
7 8	快速幂	95
7 9	快速乘	95
80	复数	96
81	快速傅里叶变换 FFT	96
82	快速数论变换 NTT	97
83	任意模数 NTT MTT	98
84	分治 FFT	99
85	快速沃尔什变换 FWT 85.1 或运算 85.2 与运算 85.3 异或运算 85.4 code	$\frac{100}{100}$
86	快速子集变换 (子集卷积) FST 86.1 倍增子集卷积	101 102
87	第二类斯特林数	102

88	约 88.1	瑟夫环 l O(n)									 				 ·		 ·		ě	 	 103 103
89	最	小公倍	数 lcm	ı																	103
90	扩	展欧几.	里得(同余	方程	<u>!</u>)															103
91	91.1	法逆元 1 拓展[2 线性]	吹几里 递推	得 . · · ·							 		 •	•	 •		 •			 	 103 103 103
92	92.1	国剩余 1 中国 2 扩展	阿余定	理 (余定	RT(理 E	m _ EXC	互质 CRT) . (m	 不	互.厉	 									 	 104 . 104 . 104
93	排: 93.1	列组合 [奇偶	生								 		 •		 •						 10 4
94	94.1 94.2	拉函数 1 筛法 2 欧拉第 3 扩展[定理								 									 	 . 105
95	莫	比乌斯	函数																		105
96	线	性筛素	数																		105
97	判 97.1	断素数 l Mille	(质数 r-Rabi) n 素 [,]	性测	试					 			•			 •				 106
98	线	性筛 G	CD																		106
99	BS	$\mathbf{s}\mathbf{G}\mathbf{s}$																			106
100	0 拓	展 BSC	GS																		107
10	1 错	排																			107
10:	2 原 102 102	根 .1单位标 .2单位标	很反演 根卷积								 									 	 108 . 108 . 108
10	3 全 103 103 103 103	排 列和 .1根据 .2根据 .3根据 .3根据 .4第 k	逆序对 逆序数 每个数 逆序数 个字典	推排的求是,	列数 序小 手个	(水) 作列 文学	· 出原 · 逆序	· · · 排 · · · · 对	 列 		 	· ·	 		 	 	 	 		 	 108 . 108 . 109 . 109
10	4 = .	次剩余																			109
\mathbf{V}]	\mathbf{I}	动态规	见划]	DP																	110
10	5线	性 DP	л _п. →			~															110
	105	.1最长:	公共子	序列	LC	S.					 									 	 . 110

106 状压 DP 106.1 枚举子集	0 0 0
107 背包问题	1 1
108 SOS DP 11	1
109 WQS 二分 DP 凸优化	1
110 斜率优化 110.1「HNOI2008」玩具装箱 TOY	2 2
111 四边形不等式11111.12D1D111.21D1D111.3满足四边形不等式的函数类	2
112 插头 DP 轮廓线 DP11112.1 一个闭合回路112.2 多个闭合回路112.3 联通块112.4 L型	3 5 5
113 DP 套 DP 116	6
114 动态 DP 114.1 动态线性 DP 11 114.2 动态树形 DP 11	6
VIII 分数 110	6

Part I 杂项

- 1 快读快写
- 2 正则表达式

```
1 char str[];
2 | scanf("%3s", str); // 读取长度为n的字符串
3 | scanf("%[abc]", str); // 读取a,b,c,读到之外的立即停止
4 | scanf("%[a-z0-9]", str); // 同上,读取小写字母和数字
5 | scanf("%*[a-z]%s", str); // 过滤掉小写字母读取
6 | scanf("%[^a-z]", str); // 读取小写字符外字符,^表示非
```

3 随机数

```
1 | #include < random >
2 | // 范围 unsigned int
3 | mt19937 rnd(time(NULL));
  mt19937 rnd(chrono::high_resolution_clock::now().time_since_epoch().
      count());
5
   std::random_device rd; //获取随机数种子
   std::mt19937 gen(rd()); //Standard mersenne_twister_engine seeded
7
      with rd()
   std::uniform int distribution<> dis(0, 9);
8
   std::cout << dis(gen) << endl;</pre>
9
10
   inline ull xorshift128(){
11
     static U SX=335634763,SY=873658265,SZ=192849106,SW=746126501;
12
13
     U t=SX^{(SX<<11)};
     SX=SY;
14
     SY=SZ;
15
     SZ=SW;
16
17
     return SW=SW^(SW>>19)^t^(t>>8);
18 | }
  inline ull myrand(){return (xorshift128()<<32)^xorshift128();}</pre>
```

4 计算 log2

```
#define log(x) (31-__builtin_clz(x))
// lg2[i] = lg2(i) +1
for(int i = 1; i <= n; ++i) lg2[i] = lg2[i>>1]+1;
// lg2[i] = (int)log2(i)
for(int i = 2; i <= n; ++i) lg2[i] = lg2[i>>1]+1;
```

5 快速开根号 | 牛顿迭代法

```
double sqrt(const double &a) {
   double x = a, y = .0;
   while (abs(x-y) > err) {
      y = x;
      x = .5*(x+a/x);
   }
   return x;
}
```

6 **i/k** == **j** 的 **k** 的个数

```
for (int i = 1; i <= n; ++i) {
1
      for (int j = 1, l, r; j <= n; ++j) {
 2
 3
        1 = \max(1, i/(j+1));
 4
        while (1-1 >= 1 \&\& i/(1-1) == j) --1;
        while (i/1 > j) ++1;
 5
        r = i/j;
 6
 7
        while (r+1 \le i \&\& i/(r+1) == j) ++r;
        while (i/r < j) --r;
8
        if (r-l+1 != i/j-i/(j+1)) {
    cout << i << " " << j << endl;</pre>
9
10
        }
11
      }
12
   }
13
```

7 三分法

4

5

示例为凹函数

else l = ml;

```
while (1 < r) {
    int mid = (1+r) >> 1;
2
    if (f(mid) < f(mid+1)) r = mid;
3
    else 1 = mid+1;
4
5
  }
  while (r-1>5) {
1
2
           int ml = (1+1+r)/3;
3
           int mr = (1+r+r)/3;
4
           if(f(ml)<f(mr))r=mr;</pre>
5
           else l=ml;
6
  for (int i = 1; i <= r; ++i) res = min(res, f(i));
  while (r-1 > eps) {
    double ml = 1+(r-1)/3, mr = r-(r-1)/3;
2
3
    if (f(m1) < f(mr)) r = mr;
```

8 三维偏序 | CDQ 分治

```
void cdq(int 1, int r) {
1
     if (l >= r) return;
int mid = (l+r)>>1, i = l, j = mid+1;
2
3
     cdq(l, mid); cdq(mid+1, r);
4
     for (int k = 1; k <= r; ++k) {
5
        if (j > r || (i <= mid && a[i].y <= a[j].y)) {</pre>
6
          tree.add(a[i].z, a[i].w);
7
          b[k] = a[i++];
8
        } else {
9
          a[j].f += tree.query(a[j].z);
10
          b[k] = a[j++];
11
        }
12
13
     for (int k = 1; k \le mid; ++k) tree.add(a[k].z, -a[k].w);
14
     for (int k = 1; k <= r; ++k) a[k] = b[k];
15
16
```

8.1 四维偏序

CDQ 套 CDQ 第一维在第一层 CDQ 合并时标记左右区间 合并后第二维有序,进入第二层 CDQ 此时按照正常 CDQ 合并第三维,用数据结构统计第四维 只有标记左区间的加入数据结构,标记右边区间的更新答案

```
void cdq(int 1, int r) {
  cdq(1, mid); cdq(mid+1, r);
}

void CDQ(int 1, int r) {
  CDQ(1, mid); CDQ(mid+1, r);
  // ...
  cdq(1, r);
}
```

9 某区间操作问题

每次操作可以使一个区间 **+1(**或**-1)**,使得序列为 的操作次数下界 $\frac{\sum\limits_{i=1}^{n+1}|a_i-a_{i-1}|}{2}$

10 分数规划

分数规划用来求一个分式的极值。 形象一点就是,给出 a_i 和 b_i ,求一组 $w_i \in 0,1$,最小化或最大化

$$\frac{\sum\limits_{i=1}^{n}a_{i}\times w_{i}}{\sum\limits_{i=1}^{n}b_{i}\times w_{i}}$$

每种物品有两个权值 a 和 b,选出若干个物品使得 $\frac{\sum a}{\sum b}$ 最小/最大。

例如代价为平均值或乘积开个数次根 (取 1n)

分数规划问题的通用方法是二分。 假设我们要求最大值。二分一个答案 *mid*, 然后推式子(为了方便少写了上下界):

$$\frac{\sum a_i \times w_i}{\sum b_i \times w_i} > mid$$

$$\implies \sum a_i \times w_i - mid \times \sum b_i \cdot w_i > 0$$

$$\implies \sum w_i \times (a_i - mid \times b_i) > 0$$

那么只要求出不等号左边的式子的最大值就行了。如果最大值比 0 要大,说明 mid 是可行的,否则不可行。

Part II 计算几何

向量坐标直线圆 (结构体) 11

```
struct Point {
1
2
     typedef double T;
     T x, y;
3
     int id;
4
5
     Point(){}
     Point(const T &_x, const T &_y, const int &_i = 0) : x(_x), y(_y),
6
        id(_i) {}
     friend Point operator + (const Point &p1, const Point &p2) {
7
       return Point(p1.x+p2.x, p1.y+p2.y, p1.id);
8
9
     friend Point operator - (const Point &p1, const Point &p2) {
10
       return Point(p1.x-p2.x, p1.y-p2.y, p1.id);
11
12
     friend Point operator - (const Point &p) {
13
       return Point(-p.x, -p.y, p.id);
14
15
     // a*b b在a的顺负逆正
16
     friend T operator * (const Point &p1, const Point &p2) {
17
       return p1.x*p2.y-p1.y*p2.x;
18
19
     template <typename TT>
20
     friend Point operator / (const Point &p, const TT &k) {
21
       return Point(p.x/k, p.y/k, p.id);
22
23
     template <typename TT>
24
     friend Point operator * (const Point &p, const TT &k) {
25
       return Point(p.x*k, p.y*k, p.id);
26
27
     Point operator += (const Point &p) { return *this = *this+p; }
28
     Point operator -= (const Point &p) { return *this = *this+p; }
29
     template <typename TT>
30
     Point operator *= (const TT &k) { return *this = *this*k; }
31
```

```
32
     template <typename TT>
     Point operator /= (const TT &k) {    return *this = *this/k; }
33
     friend bool operator < (const Point &p1, const Point &p2) {</pre>
34
       return make pair(p1.x, p1.y) < make pair(p2.x, p2.y);</pre>
35
36
     friend bool operator > (const Point &p1, const Point &p2) {
37
       return make_pair(p1.x, p1.y) > make_pair(p2.x, p2.y);
38
39
     friend bool operator == (const Point &p1, const Point &p2) {
40
       return p1.x == p2.x && p1.y == p2.y;
41
42
     friend bool operator != (const Point &p1, const Point &p2) {
43
       return p1.x != p2.x || p1.y != p2.y;
44
45
     friend istream& operator >> (istream &is, Point &p) {
46
47
       return is >> p.x >> p.y;
48
     friend ostream& operator << (ostream &os, Point &p) {
49
       return os << p.x << " " << p.y << " " << p.id << endl;
50
51
     double length() { return sqrt(1.0*x*x+1.0*y*y); }
52
     friend double dis(const Point &p1, const Point &p2) { return (p2-p1
53
        ).length(); }
     double dis(const Point &p) { return (p-*this).length(); }
54
     friend T dot(const Point &p1, const Point &p2) { return p1.x*p2.x+
55
        p1.y*p2.y; }
     T dot(const Point &p) { return x*p.x+y*p.y; }
56
     friend Point rotate_90_c(const Point &p) { return Point(p.y, -p.x,
57
        p.id); }
     Point rotate 90 c() { return Point(y, -x, id); }
58
     friend double atan(const Point &p) { return atan2(p.y, p.x); }
59
  };
60
61
62 | template < typename T = double >
   struct Vec { // 三维向量
63
     T x, y, z;
64
     Vec(const T \& x = 0, const T \& y = 0, const T \& z = 0) : x(x), y(
65
        _y), z(_z) {}
     double len() { return sqrt(1.0*x*x+1.0*y*y+1.0*z*z); }
66
     friend Vec operator +(const Vec &v1, const Vec &v2) { return Vec(v1
67
        x+v2.x, v1.y+v2.y, v1.z+v2.z); }
     friend Vec operator -(const Vec &v1, const Vec &v2) { return Vec(v1
68
        .x-v2.x, v1.y-v2.y, v1.z-v2.z); }
     friend Vec operator *(const T &k, const Vec &v) { return Vec(k*v.x,
69
         k*v.y, k*v.z; }
     friend Vec operator *(const Vec &v, const T &k) { return k*v; }
70
     friend Vec operator *(const Vec &v1, const Vec &v2) {
71
72
       return Vec(
73
           v1.y*v2.z-v1.z*v2.y,
74
           v1.z*v2.x-v1.x*v2.z,
75
           v1.x*v2.y-v1.y*v2.x
       );
76
77
78
     friend T dot(const Vec &v1, const Vec &v2) {    return v1.x*v2.x+v1.y*
        v2.y+v1.z*v2.z; }
     T dot(const Vec &v) { return dot(*this, v); }
79
     Vec& operator +=(const Vec &v) { return *this = *this+v; }
80
```

```
Vec& operator -=(const Vec &v) { return *this = *this-v; }
81
     Vec& operator *=(const T &k) { return *this = *this*k; }
82
     Vec& operator *=(const Vec &v) { return *this = *this*v; }
83
      friend istream& operator >>(istream &is, Vec &v) { return is >> v.x
84
          >> v.y >> v.z; }
85
   };
86
   inline bool polar_angle1(const Point &p1, const Point &p2) {
87
88
      double d1 = atan(p1), d2 = atan(p2);
      return d1 == d2 ? p1 < p2 : d1 < d2;
89
   }
90
91
   inline bool polar angle2(const Point &p1, const Point &p2) {
92
93
      auto tmp = p1*p2;
94
      return tmp == 0 ? p1 < p2 : tmp > 0;
95
96
   inline long long S(const Point &p1, const Point &p2, const Point &p3)
97
98
      return abs(p1.x*p2.y+p1.y*p3.x+p2.x*p3.y-p1.x*p3.y-p1.y*p2.x-p2.y*
        p3.x);
   }
99
100
   struct Line {
101
      Point p1, p2;
102
103
      Line(){}
104
      Line(const Point &_p1, const Point &_p2) : p1(_p1), p2(_p2) {}
      friend bool cross(const Line &l1, const Line &l2) {
105
        #define SJ1(x) max(11.p1.x, 11.p2.x) < min(12.p1.x, 12.p2.x) || \
106
                 \max(12.p1.x, 12.p2.x) < \min(11.p1.x, 11.p2.x)
107
        if (SJ1(x) || SJ1(y)) return false;
108
        #undef SJ1
109
        #define SJ2(a, b, c, d) ((a-b)*(a-c))*((a-b)*(a-d)) <= 0
110
        return SJ2(l1.p1, l1.p2, l2.p1, l2.p2) &&
111
             SJ2(l2.p1, l2.p2, l1.p1, l1.p2);
112
        #undef SJ2
113
114
115
      friend bool on_line(const Line &1, const Point &p) {
        return abs((1.p1-1.p2)*(1.p1-p)) < eps;
116
117
      friend Point cross_point(const Line &11, const Line &12) {
118
        Point v1 = 11.p2-11.p1, v2 = 12.p2-12.p1;
119
120
        if (abs(v1*v2) < eps) return Point(0, 0); // no cross_point
        double t = (12.p1-11.p1)*v2/(v1*v2);
121
        return l1.p1+v1*t;
122
123
      }
   };
124
125
126
   struct Circular {
      Point o:
127
      double r;
128
      Circular(){}
129
      Circular(const Point &_o, const double &_r) : o(_o), r(_r) {}
130
131
      template <typename T>
132
     Circular(const T & x, const T & y, const double & r) : o(Point(x,
         _y)), r(_r) {}
      friend bool in_cir(const Circular &c, const Point &p) { return dis(
133
```

```
c.o, p) <= c.r; }
      bool in_cir(const Point &p) { return dis(o, p) <= r; }</pre>
134
135
    };
136
137
   inline Circular get cir(const Point &p1, const Point &p2, const Point
        &p3) {
      Circular res;
138
      res.o = cross_point(Line((p1+p2)/2, (p1+p2)/2+(p2-p1).rotate_90_c()
139
                 Line((p1+p3)/2, (p1+p3)/2+(p3-p1).rotate 90 c()));
140
      res.r = dis(res.o, p1);
141
142
      return res;
143
   }
```

12 二维凸包

```
int n;
   int stk[N], used[N], tp;
2
3
   Point p[N];
4
5
   inline void Andrew() {
     memset(used, 0, sizeof used);
6
     sort(p+1, p+n+1);
7
8
     tp = 0;
9
     stk[++tp] = 1;
     for (int i = 2; i <= n; ++i) {
10
       while (tp \ge 2 \&\& (p[stk[tp]]-p[stk[tp-1]])*(p[i]-p[stk[tp]]) <=
11
          0)
         used[stk[tp--]] = 0;
12
       used[i] = 1;
13
14
       stk[++tp] = i;
15
     int tmp = tp;
16
     for (int i = n-1; i; --i) {
17
       if (used[i]) continue;
18
       while (tp >= tmp && (p[stk[tp]]-p[stk[tp-1]])*(p[i]-p[stk[tp]])
19
          <= 0)
         used[stk[tp--]] = 0;
20
       used[i] = 1;
21
       stk[++tp] = i;
22
23
     }
   }
24
```

13 平面最近点对

```
Point a[N];
int n, ansa, ansb;
double mindist;

inline bool cmp_y(const Point &p1, const Point &p2) { return p1.y < p2.y; }</pre>
```

```
void upd_ans(const Point &p1, const Point &p2) {
     double dist = dis(p1, p2);
8
     if (dist < mindist) mindist = dist, ansa = p1.id, ansb = p2.id;</pre>
9
   }
10
11
   void rec(int 1, int r) {
12
     if (r-1 <= 3) {
13
       for (int i = 1; i < r; ++i)
14
          for (int j = i+1; j <= r; ++j)
15
            upd_ans(a[i], a[j]);
16
       sort(a+l, a+r+1, cmp_y);
17
18
       return:
19
     }
20
21
     static Point t[N];
     int m = (1+r)>>1, midx = a[m].x;
22
23
     rec(1, m); rec(m+1, r);
24
     merge(a+l, a+m+1, a+m+1, a+r+1, t, cmp_y);
25
     copy(t, t+r-l+1, a+l);
26
     int tsz = 0;
27
     for (int i = 1; i <= r; ++i)
28
       if (abs(a[i].x-midx) <= mindist) {</pre>
29
30
         for (int j = tsz; j && a[i].y-t[j].y < mindist; --j)</pre>
            upd_ans(a[i], t[j]);
31
         t[++tsz] = a[i];
32
33
   }
34
35
   inline void mindist pair() {
36
     sort(a+1, a+n+1);
37
     mindist = INF;
38
     rec(1, n);
39
40
```

14 最小圆覆盖 | 随即增量法

```
inline Circular RIA() {
1
2
     Circular cir;
3
     random_shuffle(a+1, a+n+1);
4
     for (int i = 1; i <= n; ++i) {
       if (cir.in_cir(a[i])) continue;
5
       cir = Circular(a[i], 0);
6
       for (int j = 1; j < i; ++j) {
7
         if (cir.in_cir(a[j])) continue;
8
9
         cir = Circular((a[i]+a[j])/2, dis(a[i], a[j])/2);
         for (int k = 1; k < j; ++k) {
10
           if (cir.in cir(a[k])) continue;
11
           cir = get_cir(a[i], a[j], a[k]);
12
13
14
15
     return cir;
16
17
```

Part III 数据结构

15 堆

```
struct Heap {
2
     static const int Maxn = 1e6+7;
3
     int sz, a[Maxn];
     Heap() { sz = 0; memset(a, 0, sizeof a); }
4
5
     inline bool cmp(int x, int y) { return x < y; } // 小根堆
     inline int size() { return sz; }
6
     inline bool empty() { return sz == 0; }
7
     inline int top() { return a[1]; }
8
     inline void push(int x) { a[++sz] = x; swift_up(sz); }
9
     inline void pop() { swap(a[1], a[sz--]); swift_down(1); }
10
     inline void swift_up(int p) {
11
       while(p > 1 && cmp(a[p], a[p>>1])) // a[p] < a[p << 1]
12
13
         swap(a[p], a[p>>1]), p >>= 1;
14
     inline void swift_down(int p) {
15
       int 1, r, s;
16
       while(true) {
17
18
         1 = p < < 1; r = p < < 1 | 1;
         if(1 > sz) break;
19
         if(r > sz || cmp(a[l], a[r])) s = l; // a[l] < a[r]
20
21
         else s = r;
         if(cmp(a[s], a[p])) // a[s] < a[p]</pre>
22
23
            swap(a[p], a[s]), p = s;
24
         else break;
       }
25
26
27
   };
```

15.1 可删堆

copyright by axiomofchoice

```
template <typename T>
2
   struct Heap{
3
     priority_queue<T> a,b; // heap=a-b
     void push(T x){a.push(x);}
4
5
     void erase(T x){b.push(x);}
     T top(){
6
7
       while(!b.empty() && a.top()==b.top())
8
         a.pop(),b.pop();
9
       return a.size() ? a.top() : 0; // ???
10
     void pop(){
11
12
       while(!b.empty() && a.top()==b.top())
13
         a.pop(),b.pop();
       a.pop();
14
15
     T top2(){ // 次大值
```

16 二叉查找树

17 平衡树

17.1 Splay

```
1
   struct Splay {
2
     #define root e[0].ch[1]
     typedef int T;
3
4
     struct node {
5
       T v = 0;
       int ch[2] = \{0, 0\};
6
7
       int fa = 0, sum = 0, cnt = 0;
8
     } e[N];
     int n;
9
     void update(int x) { e[x].sum = e[e[x].ch[0]].sum+e[e[x].ch[1]].sum
10
        +e[x].cnt; }
11
     int identify(int x) {    return x == e[e[x].fa].ch[1];    } // check left
         or right child
12
     void connect(int x, int f, int son) { e[x].fa = f; e[f].ch[son] = x
        ; }
13
     void rotate(int x) {
       int y = e[x].fa,
14
            r = e[y].fa,
15
            rson = identify(y),
16
            yson = identify(x),
17
            b = e[x].ch[yson^1];
18
       connect(b, y, yson);
19
20
       connect(y, x, yson^1);
       connect(x, r, rson);
21
       update(y); update(x);
22
23
     void splay(int at, int to) {
24
       to = e[to].fa;
25
       int up;
26
       while((up = e[at].fa) != to) {
27
         if(e[up].fa != to)
28
            rotate(identify(up) == identify(at) ? up : at);
29
         rotate(at);
30
       }
31
32
     int add_point(T v, int fa) {
33
       ++n; e[n].v = v; e[n].fa = fa; e[n].sum = e[n].cnt = 1;
34
35
       return n;
36
     int find(T v) {
37
38
       int now = root, last = 0;
```

17.1 Splay 17 平衡树

```
while (now && e[now].v != v)
39
         last = now, now = e[now].ch[v > e[now].v];
40
       splay((now ? now : last), root);
41
42
       return now;
43
     void insert(T v) {
44
       if (!root) { root = add_point(v, root); return; }
45
       int now = root, last = 0;
46
47
       while (now && e[now].v != v)
         last = now, now = e[now].ch[v > e[now].v];
48
       if (now) ++e[now].cnt;
49
       else now = e[last].ch[v > e[last].v] = add_point(v, last);
50
51
       splay(now, root);
52
     void erase(T v) {
53
       int del = find(v);
54
       if (!del) return;
55
56
       if (e[del].cnt > 1) {
         --e[del].cnt;
57
         --e[del].sum;
58
       } else if (!e[del].ch[0]) {
59
         root = e[del].ch[1];
60
         e[root].fa = 0;
61
       } else {
62
         int oldroot = root;
63
         splay(nex(e[del].ch[0], 1), root);
64
         connect(e[oldroot].ch[1], root, 1);
65
         update(root);
66
       }
67
68
     int rank(T v) { return e[e[find(v)].ch[0]].sum+1; }
69
     T atrank(int x) {
70
       if (x > e[root].sum) return -INF;
71
       int now = root;
72
73
       while (true) {
         if (x \le e[e[now].ch[0]].sum) now = e[now].ch[0];
74
75
         else if ((x -= e[e[now].ch[0]].sum) <= e[now].cnt) break;
76
         else x -= e[now].cnt, now = e[now].ch[1];
77
       splay(now, root);
78
79
       return e[now].v;
80
     // small 0, big 1
81
     int nex(int x, int opt) { while (e[x].ch[opt]) x = e[x].ch[opt];
82
        return x; }
83
     T lower(T v, <u>int</u> opt) {
       insert(v);
84
       T res = e[nex(e[root].ch[opt], opt^1)].v;
85
       erase(v);
86
87
       return res;
88
     #undef root
89
   };
90
```

区间反转

```
struct Splay {
typedef int T;
```

17.1 Splay 17 平衡树

```
3
     struct node {
4
       T v = 0;
       int ch[2] = \{ 0, 0 \};
5
       int fa = 0, sum = 0, cnt = 0, tag = 0;
6
7
     } e[N];
     int sz, &root = e[0].ch[1];
8
     void update(int x) { e[x].sum = e[e[x].ch[0]].sum+e[e[x].ch[1]].sum
9
        +e[x].cnt; }
     int identify(int x) { return x == e[e[x].fa].ch[1]; }
10
     void connect(int x,int f,int son) { e[x].fa = f; e[f].ch[son] = x;
11
     void rotate(int x) {
12
       int y = e[x].fa,
13
14
         r = e[y].fa,
         rson = identify(y),
15
         yson = identify(x),
16
17
         b = e[x].ch[yson^1];
18
       connect(b, y, yson);
19
       connect(y, x, yson^1);
       connect(x, r, rson);
20
       update(y); update(x);
21
22
23
     void splay(int at,int to = 0) {
24
       to = e[to].fa;
       int up;
25
       while((up = e[at].fa) != to) {
26
27
         if(e[up].fa != to)
            rotate(identify(up) == identify(at) ? up : at);
28
29
         rotate(at);
       }
30
31
     int add_point(T v, int fa) {
32
       ++sz; e[sz].v = v; e[sz].fa = fa; e[sz].sum = e[sz].cnt = 1;
33
34
       return sz;
35
     int find(int x) {
36
       if (x > e[root].sum) return -INF;
37
       int now = root;
38
       while (true) {
39
         push down(now);
40
         if (x <= e[e[now].ch[0]].sum) now = e[now].ch[0];</pre>
41
         else if ((x -= e[e[now].ch[0]].sum) \leftarrow e[now].cnt) break;
42
43
         else x -= e[now].cnt, now = e[now].ch[1];
44
45
       return now;
46
     int build(int 1, int r, int fa) {
47
48
       if (1 > r) return 0;
       int mid = (1+r) >> 1,
49
         now = add point(mid, fa);
50
       e[now].ch[0] = build(1, mid-1, now);
51
       e[now].ch[1] = build(mid+1, r, now);
52
       update(now);
53
54
       return now;
55
     void push_down(int x) {
56
57
       if (x && e[x].tag) {
```

```
e[e[x].ch[0]].tag ^= 1;
58
         e[e[x].ch[1]].tag ^= 1;
59
         swap(e[x].ch[0], e[x].ch[1]);
60
         e[x].tag = 0;
61
       }
62
63
     void reverse(int 1, int r) {
64
       int pl = find(l-1+1), pr = find(r+1+1);
65
       splay(pl); splay(pr, pl);
66
       e[e[e[root].ch[1]].ch[0]].tag ^= 1;
67
68
     void print_LMR(int x) {
69
70
       if (!x) return;
       push_down(x);
71
       print_LMR(e[x].ch[0]);
72
       if (e[x].v != 0 && e[x].v != n+1)
73
74
         write(a[e[x].v]), putchar(' ');
75
       print LMR(e[x].ch[1]);
76
   } tree;
77
```

18 李超线段树

李超线段树是一种用于维护平面直角坐标系内线段关系的数据结构。它常被用来处理这样一种形式的问题:给定一个平面直角坐标系,支持动态插入一条线段,询问从某一个位置 (x,+∞)向下看能看到的最高的一条线段(也就是给一条竖线,问这条竖线与所有线段的最高的交点。

19 线段树合并

有 O(m) 棵树 (个操作) 结点数量 $O(m \log n)$, 暴力合并, 均摊复杂度 $O(\log n)$

```
int merge(int x, int y) { // 太难了,现场全重写吧
2
     if (!x || !y) return x+y;
     int &z = x; // int z = new node(); // 新建结点?
3
     lc[z] = merge(lc[x], lc[y]);
4
     rc[z] = merge(rc[x], rc[y]);
5
     if (!lc[z] && !rc[z]) tr[z].first = tr[x].first+tr[y].first;
6
7
     else push_up(z); // tr[z] = giao(x, y);
    // del(y); // del(x); // 保留结点?
8
     return z;
9
10
  }
```

20 线段树分裂

一次分裂复杂度 $O(\log n)$

```
template <typename T>
template <typename T>
truct Tree {
   int tot, lc[NLOG], rc[NLOG];
   T tr[NLOG];
   void init() { tot = 0; }
   T giao(const T &x, const T &y) { return x+y; }
}
```

```
void push_up(int i) { tr[i] = giao(tr[lc[i]], tr[rc[i]]); }
7
     int new_node(T v = 0) {
8
       ++tot; // assert(++tot < NLOG);</pre>
9
       lc[tot] = rc[tot] = 0;
tr[tot] = v;
10
11
       return tot;
12
13
     void add(int x, T v, int l, int r, int &i) {
14
       if (!i) i = new_node();
15
       if (1 == r) return tr[i] += v, void();
16
       int mid = (1+r) >> 1;
17
       if (x <= mid) add(x, v, l, mid, lc[i]);</pre>
18
19
       else add(x, v, mid+1, r, rc[i]);
       push_up(i);
20
21
     void merge(int 1, int r, int &x, int &y) { // merge y to x
22
       if (!x || !y) return x += y, void();
23
       if (1 == r) return tr[x] += tr[y], void();
24
       int mid = (1+r) >> 1;
25
       merge(l, mid, lc[x], lc[y]);
26
       merge(mid+1, r, rc[x], rc[y]);
27
28
       push_up(x); // del(y);
29
     /*
30
     int merge(int l, int r, int x, int y) {    // new node
31
       if (!x \mid | !y) return x += y;
32
       int cur = new_node(), mid = (l+r)>>1;
33
       if (l == r) return tr[cur] = tr[x]+tr[y], cur;
34
35
       lc[cur] = merge(l, mid, lc[x], lc[y]);
       rc[cur] = merge(mid+1, r, rc[x], rc[y]);
36
37
       push up(cur);
       return cur;
38
     }
39
40
     */
     void split(int L, int R, int l, int r, int &x, int &y) { //split x
41
        [L, R] to y
42
       if (!x) return;
       if (L <= 1 && r <= R) return y = x, x = 0, void();</pre>
43
44
       if (!y) y = new_node();
       int mid = (1+r) >> 1;
45
       if (L <= mid) split(L, R, l, mid, lc[x], lc[y]);</pre>
46
       if (R > mid) split(L, R, mid+1, r, rc[x], rc[y]);
47
48
       push_up(x); push_up(y);
49
     T query(int L, int R, int l, int r, int i) {
50
       if (!i) return 0;
51
52
       if (L <= 1 && r <= R) return tr[i];
53
       int mid = (1+r) >> 1;
       if (R <= mid) return query(L, R, l, mid, lc[i]);</pre>
54
       if (L > mid) return query(L, R, mid+1, r, rc[i]);
55
       return giao(query(L, R, l, mid, lc[i]), query(L, R, mid+1, r, rc[
56
          i]));
57
     int query kth(int k, int l, int r, int i) {
58
       if (1 == r) return 1;
59
       int mid = (1+r) >> 1;
60
```

```
62          return query_kth(k-tr[lc[i]], mid+1, r, rc[i]);
63          }
64     };
```

21 猫树

所谓"猫树"就是一种不支持修改,仅仅支持快速区间询问的一种静态线段树。构造一棵这样的静态线段树需要 $O(n \log n)$ 次合并操作,但是此时的查询复杂度被加速至 O(1) 次合并操作。

22 吉老师线段树 | 吉司机线段树

22.1 区间最值操作

- 1. 区间取 min
- 2. 询问区间 min
- 3. 询问区间和

 $O(m \log n)$

```
struct Tree {
1
     struct TreeNode {
2
3
       int 1, r, mx, se, cnt, tag;
4
       ll sum;
5
     } tr[N<<2];</pre>
6
     void push up(int i) {
       tr[i].sum = tr[i<<1].sum+tr[i<<1|1].sum;
7
       if (tr[i<<1].mx > tr[i<<1|1].mx) {</pre>
8
          tr[i].mx = tr[i<<1].mx;
9
          tr[i].cnt = tr[i<<1].cnt;
10
          tr[i].se = max(tr[i<<1].se, tr[i<<1|1].mx);
11
       } else if (tr[i<<1].mx < tr[i<<1|1].mx) {</pre>
12
          tr[i].mx = tr[i << 1|1].mx;
13
          tr[i].cnt = tr[i<<1|1].cnt;
14
          tr[i].se = max(tr[i<<1|1].se, tr[i<<1].mx);
15
       } else {
16
          tr[i].mx = tr[i << 1].mx;
17
          tr[i].cnt = tr[i<<1].cnt+tr[i<<1|1].cnt;
18
          tr[i].se = max(tr[i<<1].se, tr[i<<1|1].se);
19
       }
20
21
22
     void push_tag(int i, int v) {
23
       if (v >= tr[i].mx) return;
       tr[i].sum -= 1ll*(tr[i].mx-v)*tr[i].cnt;
24
       tr[i].mx = tr[i].tag = v;
25
26
     void push_down(int i) {
27
       if (tr[i].tag == -1) return;
28
       push_tag(i<<1, tr[i].tag);</pre>
29
30
       push tag(i<<1|1, tr[i].tag);</pre>
       tr[i].tag = -1;
31
32
33
     void build(int 1, int r, int i = 1) {
       tr[i].l = l; tr[i].r = r; tr[i].tag = -1;
34
35
       if (1 == r) {
```

```
tr[i].sum = tr[i].mx = a[l];
36
          tr[i].cnt = 1;
37
          tr[i].se = -1;
38
39
          return;
40
        int mid = (1+r) >> 1;
41
        build(l, mid, i<<1);
42
        build(mid+1, r, i<<1|1);
43
        push_up(i);
44
45
     void update_min(int l, int r, int v, int i = 1) {
46
47
       if (v >= tr[i].mx) return;
        if (1 <= tr[i].1 && r >= tr[i].r && v > tr[i].se)                            return push tag
48
           (i, v);
        push_down(i);
49
50
        int mid = (tr[i].l+tr[i].r)>>1;
51
       if (1 <= mid) update_min(1, r, v, i<<1);</pre>
        if (r > mid) update_min(l, r, v, i<<1|1);</pre>
52
53
       push up(i);
54
     int query_max(int l, int r, int i = 1) {
55
        if (1 <= tr[i].1 && r >= tr[i].r) return tr[i].mx;
56
57
       push down(i);
        int mid = (tr[i].l+tr[i].r)>>1;
58
        if (r <= mid) return query_max(l, r, i<<1);</pre>
59
        if (l > mid) return query_max(l, r, i<<1|1);</pre>
60
        return max(query_max(l, r, i<<1), query_max(l, r, i<<1|1));</pre>
61
62
     11 query_sum(int 1, int r, int i = 1) {
63
        if (1 <= tr[i].1 && r >= tr[i].r) return tr[i].sum;
64
       push_down(i);
65
        int mid = (tr[i].l+tr[i].r)>>1;
66
67
        if (r <= mid) return query_sum(l, r, i<<1);
68
        if (1 > mid) return query_sum(1, r, i<<1|1);</pre>
       return query sum(1, r, i << 1) + query <math>sum(1, r, i << 1|1);
69
70
71
   };
```

```
    给一个区间 [L,R] 加上一个数 x
    把一个区间 [L,R] 里小于 x 的数变成 x
    把一个区间 [L,R] 里大于 x 的数变成 x
    求区间 [L,R] 的和
    求区间 [L,R] 的最大值
    求区间 [L,R] 的最小值
        O(m log² n)
```

```
struct SegmentTree {
   #define rt tr[i]
2
   #define ls tr[i<<1]</pre>
3
   #define rs tr[i<<1|1]
4
     typedef int T;
5
     struct TreeNode {
6
       int 1, r;
7
       T mn1, mn2, mx1, mx2, cmn, cmx, tag1, tag2, tag3;
8
9
       long long sum;
     };
10
     vector<T> a;
11
```

```
vector<TreeNode> tr;
12
13
     void push_up(int i) {
       rt.sum = ls.sum+rs.sum;
14
       if (ls.mn1 == rs.mn1) {
15
         rt.mn1 = ls.mn1;
16
         rt.cmn = ls.cmn+rs.cmn;
17
         rt.mn2 = min(ls.mn2, rs.mn2);
18
       } else if (ls.mn1 < rs.mn1) {</pre>
19
         rt.mn1 = ls.mn1;
20
         rt.cmn = ls.cmn;
21
         rt.mn2 = min(ls.mn2, rs.mn1);
22
       } else if (ls.mn1 > rs.mn1) {
23
         rt.mn1 = rs.mn1;
24
         rt.cmn = rs.cmn;
25
26
         rt.mn2 = min(ls.mn1, rs.mn2);
27
       if (ls.mx1 == rs.mx1) {
28
         rt.mx1 = ls.mx1;
29
         rt.cmx = ls.cmx+rs.cmx;
30
31
         rt.mx2 = max(ls.mx2, rs.mx2);
32
       } else if (ls.mx1 > rs.mx1) {
         rt.mx1 = ls.mx1;
33
         rt.cmx = ls.cmx;
34
         rt.mx2 = max(ls.mx2, rs.mx1);
35
       } else if (ls.mx1 < rs.mx1) {</pre>
36
37
         rt.mx1 = rs.mx1;
         rt.cmx = rs.cmx;
38
39
         rt.mx2 = max(ls.mx1, rs.mx2);
       }
40
41
     // 1 2 3 -> min, max, other
42
     void push_tag(int i, T add1, T add2, T add3) {
43
       if (rt.mn1 == rt.mx1) {
44
         add1 == add3 ? add1 = add2 : add2 = add1; // 不应被其他值的标记
45
            作用
         rt.sum += 1ll*rt.cmn*add1;
46
47
       } else {
         rt.sum += 1ll*rt.cmn*add1+1ll*rt.cmx*add2
48
49
              +(rt.r-rt.l+1ll-rt.cmn-rt.cmx)*add3;
50
       if (rt.mn2 == rt.mx1) rt.mn2 += add2;
51
       else if (rt.mn2 != INF) rt.mn2 += add3;
52
53
       if (rt.mx2 == rt.mn1) rt.mx2 += add1;
       else if (rt.mx2 != -INF) rt.mx2 += add3;
54
       rt.mn1 += add1; rt.mx1 += add2;
55
       rt.tag1 += add1; rt.tag2 += add2; rt.tag3 += add3;
56
57
58
     void push_down(int i) {
59
       T mn = min(ls.mn1, rs.mn1);
60
       T mx = max(ls.mx1, rs.mx1);
                      , ls.mn1 == mn ? rt.tag1 : rt.tag3, ls.mx1 == mx ?
       push_tag(i<<1
61
           rt.tag2 : rt.tag3, rt.tag3);
       push_tag(i<<1|1, rs.mn1 == mn ? rt.tag1 : rt.tag3, rs.mx1 == mx ?</pre>
62
           rt.tag2 : rt.tag3, rt.tag3);
       rt.tag1 = rt.tag2 = rt.tag3 = 0;
63
64
65
     template <typename TT> void build(int n, TT arr[]) {
```

```
a.resize(1);
66
        a.insert(a.end(), arr+1, arr+n+1);
67
68
        tr.resize(n*4+1);
        build(1, n, 1);
69
70
     void build(int n, T val = 0) {
71
        a.resize(n+1, val);
72
73
        tr.resize(n*4+1);
        build(1, n, 1);
74
75
     void build(int 1, int r, int i) {
76
77
        rt.l = 1; rt.r = r;
78
        rt.tag1 = rt.tag2 = rt.tag3 = 0;
        if (1 == r) {
79
          rt.sum = rt.mn1 = rt.mx1 = a[1];
80
          rt.mn2 = INF; rt.mx2 = -INF;
81
          rt.cmn = rt.cmx = 1;
82
83
         return;
84
85
        int mid = (1+r) >> 1;
        build(1, mid, i<<1); build(mid+1, r, i<<1|1);
86
        push up(i);
87
88
      void update_add(int l, int r, T v, int i = 1) {
89
        if (rt.r < 1 || rt.l > r) return;
90
        if (rt.1 >= 1 && rt.r <= r)</pre>
91
          return push tag(i, v, v, v);
92
        push down(i);
93
        94
95
        push_up(i);
96
97
      void update_max(int 1, int r, T v, int i = 1) {
        if (rt.r < 1 || rt.l > r || rt.mn1 >= v) return;
98
        if (rt.l >= 1 && rt.r <= r && rt.mn2 > v)
99
100
          return push_tag(i, v-rt.mn1, 0, 0);
        push down(i);
101
        update max(l, r, v, i << 1); update max(l, r, v, i << 1|1);
102
        push_up(i);
103
104
     void update_min(int l, int r, T v, int i = 1) {
105
        if (rt.r < 1 || rt.l > r || rt.mx1 <= v) return;</pre>
106
        if (rt.l >= l && rt.r <= r && rt.mx2 < v)
107
108
          return push_tag(i, 0, v-rt.mx1, 0);
109
        push_down(i);
        update_min(l, r, v, i<<1);    update_min(l, r, v, i<<1|1);
110
111
        push up(i);
112
      long long query_sum(int l, int r, int i = 1) {
113
        if (rt.r < 1 || rt.l > r) return 0;
114
        if (rt.1 >= 1 && rt.r <= r) return rt.sum;</pre>
115
        push down(i);
116
        return query_sum(l, r, i<<1)+query_sum(l, r, i<<1|1);</pre>
117
118
      T query_max(int l, int r, int i = 1) {
119
        120
        if (rt.l >= l && rt.r <= r) return rt.mx1;</pre>
121
```

22

22.2 区间历史最值

22.3 区间加区间修改

- 1. 区间加
- 2. 区间修改
- 3. 区间最大值
- 4. 区间历史最大值 $O(m \log n)$

```
struct SegmentTree {
1
   #define rt tr[i]
2
   #define ls tr[i<<1]
3
   #define rs tr[i<<1|1]
     typedef int T;
5
     struct TreeNode {
6
7
       int 1, r;
       bool tag;
8
9
       T add, cov, mx, hadd, hcov, hmx;
     } tr[N<<2];</pre>
10
     void push_up(int i) {
11
       rt.mx = max(ls.mx, rs.mx);
12
       rt.hmx = max(ls.hmx, rs.hmx);
13
14
     void plus(int i, T k, T hk) {
15
       rt.hmx = max(rt.hmx, rt.mx+hk);
16
17
       rt.mx += k;
       rt.tag ? rt.hcov = max(rt.hcov, rt.cov+hk), rt.cov += k
18
            : rt.hadd = max(rt.hadd, rt.add+hk), rt.add += k;
19
20
     void cover(int i, T k, T hk) {
21
       rt.hmx = max(rt.hmx, hk);
22
23
       rt.mx = k;
24
       rt.hcov = max(rt.hcov, hk);
       rt.cov = k;
25
26
       rt.tag = 1;
27
     void push_down(int i) {
28
       if (rt.add) {
29
                     , rt.add, rt.hadd);
          plus(i<<1
30
          plus(i<<1|1, rt.add, rt.hadd);</pre>
31
32
         rt.add = rt.hadd = 0;
```

```
33
       if (rt.tag) {
34
         cover(i<<1 , rt.cov, rt.hcov);</pre>
35
         cover(i<<1|1, rt.cov, rt.hcov);</pre>
36
         rt.tag = 0; rt.hcov = -INF;
37
       }
38
39
40
     void build(int 1, int r, int i = 1) {
       rt.l = 1; rt.r = r; rt.tag = false;
41
       rt.add = rt.hadd = 0;
42
       rt.hcov = -INF;
43
       if (1 == r) return rt.hmx = rt.mx = 0, void();
44
45
       int mid = (1+r) >> 1;
       build(l, mid, i<<1); build(mid+1, r, i<<1|1);
46
47
       push up(i);
48
49
     T query_max(int l, int r, int i = 1) {
       if (rt.r < 1 || rt.l > r) return -INF;
50
51
       if (1 <= rt.1 && rt.r <= r) return rt.mx;</pre>
       push down(i);
52
       return max(query_max(l, r, i<<1), query_max(l, r, i<<1|1));</pre>
53
54
     T query_hmax(int l, int r, int i = 1) {
55
       if (rt.r < 1 || rt.l > r) return -INF;
56
       if (1 <= rt.1 && rt.r <= r) return rt.hmx;</pre>
57
58
       push down(i);
       return max(query_hmax(l, r, i<<1), query_hmax(l, r, i<<1|1));</pre>
59
60
     void update_add(int 1, int r, T v, int i = 1) {
61
       if (rt.r < 1 || rt.l > r) return;
       if (1 <= rt.1 && rt.r <= r) return plus(i, v, v);</pre>
63
       push_down(i);
64
       65
       push up(i);
66
67
     void update cov(int l, int r, T v, int i = 1) {
68
       if (rt.r < 1 || rt.l > r) return;
69
       if (1 <= rt.1 && rt.r <= r) return cover(i, v, v);</pre>
70
71
       push down(i);
       update cov(l, r, v, i << 1); update cov(l, r, v, i << 1|1);
72
73
       push_up(i);
74
   #undef rt
75
   #undef ls
76
   #undef rs
77
78
  };
```

22.4 区间最值操作与历史最值询问同向

单点查询

```
struct SegmentTree {
    #define rt tr[i]
    #define ls tr[i<<1]
    #define rs tr[i<<1|1]
    typedef long long T;</pre>
```

```
struct Tag {
6
       T add, mx;
7
       Tag(T \_add = 0, T \_mx = -INF) : add(\_add), mx(\_mx) {}
8
       Tag operator +(const Tag &t) const { // 合并tag
9
         return Tag(max(-INF, add+t.add), max(mx+t.add, t.mx));
10
11
       Tag operator *(const Tag &t) const { // 取max
12
         return Tag(max(add, t.add), max(mx, t.mx));
13
14
       Tag& operator +=(const Tag &t) { return *this = *this+t; }
15
       Tag& operator *=(const Tag &t) { return *this = *this*t; }
16
17
     struct TreeNode {
18
       int 1, r;
19
       Tag his, cur;
20
     } tr[N<<2];</pre>
21
22
     void push_tag(int i, Tag hk, Tag k) {
23
       rt.his *= rt.cur+hk;
       rt.cur += k;
24
25
     void push_down(int i) {
26
       push_tag(i<<1 , rt.his, rt.cur);</pre>
27
28
       push tag(i<<1|1, rt.his, rt.cur);</pre>
       rt.his = rt.cur = Tag();
29
30
     void build(int 1, int r, int i = 1) {
31
       rt.l = l; rt.r = r; rt.his = rt.cur = Tag();
32
       if (1 == r)    return rt.his = rt.cur = Tag(a[1]),    void();
33
       int mid = (1+r) >> 1;
34
       build(l, mid, i<<1); build(mid+1, r, i<<1|1);
35
36
37
     // add(val, -INF) cov(-INF, val) max(0, val)
     void update(int 1, int r, T a, T x = -INF, int i = 1) {
       if (rt.r < 1 || rt.l > r) return;
39
       if (1 <= rt.1 && rt.r <= r) return push tag(i, Tag(a, x), Tag(a,</pre>
40
          x));
       push_down(i);
41
       42
43
     T query max(int x, int i = 1) {
44
45
       if (rt.1 == rt.r) return max(rt.cur.add, rt.cur.mx);
46
       push down(i);
       int mid = (rt.l+rt.r)>>1;
47
48
       if (x <= mid) return query_max(x, i<<1);</pre>
       else return query_max(x, i<<1|1);</pre>
49
50
     T query_hmax(int x, int i = 1) {
51
       if (rt.l == rt.r) return max(rt.his.add, rt.his.mx);
52
53
       push down(i);
       int mid = (rt.l+rt.r)>>1;
54
       if (x <= mid) return query_hmax(x, i<<1);</pre>
55
       else return query_hmax(x, i<<1|1);</pre>
56
57
58 | #undef rt
59 | #undef ls
60 #undef rs
```

61 | };

22.5 区间最值操作与历史最值询问反向

1. 区间加 2. 区间 max 3. 询问 min 4. 历史 min

int mid = (1+r) >> 1;

47

struct SegmentTree { #define rt tr[i] 2 #define ls tr[i<<1]</pre> 3 #define rs tr[i<<1|1] 5 typedef int T; struct TreeNode { 6 7 int 1, r; T mn, hmn, se, tag1, htag1, tag2, htag2; 8 9 } tr[N<<2]; 10 void push_up(int i) { rt.hmn = min(ls.hmn, rs.hmn); 11 **if** (ls.mn == rs.mn) { 12 rt.mn = ls.mn; 13 rt.se = min(ls.se, rs.se); 14 } else if (ls.mn < rs.mn) {</pre> 15 rt.mn = ls.mn; 16 rt.se = min(ls.se, rs.mn); 17 } else if (ls.mn > rs.mn) { 18 19 rt.mn = rs.mn;rt.se = min(ls.mn, rs.se); 20 21 22 23 void push tag(int i, T add1, T hadd1, T add2, T hadd2) { rt.hmn = min(rt.hmn, rt.mn+hadd1); 24 25 rt.htag1 = min(rt.htag1, rt.tag1+hadd1); 26 rt.mn += add1; rt.tag1 += add1; 27 rt.htag2 = min(rt.htag2, rt.tag2+hadd2); if (rt.se != INF) rt.se += add2; 28 29 rt.tag2 += add2; 30 void push down(int i) { 31 T mn = min(ls.mn, rs.mn); 32 push_tag(i<<1 , ls.mn == mn ? rt.tag1 : rt.tag2,</pre> 33 ls.mn == mn ? rt.htag1 : rt.htag2, rt.tag2, rt.htag2); 34 $push_tag(i << 1|1, rs.mn == mn ? rt.tag1 : rt.tag2,$ 35 rs.mn == mn ? rt.htag1 : rt.htag2, rt.tag2, rt.htag2); 36 rt.tag1 = rt.htag1 = rt.tag2 = rt.htag2 = 0; 37 38 39 void build(int 1, int r, int i = 1) { 40 rt.l = 1; rt.r = r;rt.tag1 = rt.htag1 = rt.tag2 = rt.htag2 = 0; 41 **if** (1 == r) { 42 rt.hmn = rt.mn = a[1];43 44 rt.se = INF; 45 return; 46

```
build(1, mid, i<<1); build(mid+1, r, i<<1|1);
48
49
      push_up(i);
50
    void update_add(int 1, int r, T v, int i = 1) {
51
      if (rt.r < 1 || rt.l > r) return;
52
      53
54
      push down(i);
      55
      push up(i);
56
57
    void update_max(int 1, int r, T v, int i = 1) {
58
      if (rt.r < 1 || rt.l > r || v <= rt.mn) return;</pre>
59
      if (1 <= rt.1 && rt.r <= r && v < rt.se)</pre>
60
        return push tag(i, v-rt.mn, v-rt.mn, 0, 0);
61
      push_down(i);
62
      update max(1, r, v, i << 1); update max(1, r, v, i << 1|1);
63
      push up(i);
64
65
    T query_min(int l, int r, int i = 1) {
66
      if (rt.r < 1 || rt.l > r) return INF;
67
      if (1 <= rt.1 && rt.r <= r) return rt.mn;</pre>
68
      push down(i);
69
      return min(query_min(l, r, i<<1), query_min(l, r, i<<1|1));</pre>
70
71
    T query_hmin(int l, int r, int i = 1) {
72
      if (rt.r < 1 || rt.l > r) return INF;
73
74
      if (1 <= rt.1 && rt.r <= r) return rt.hmn;</pre>
      push_down(i);
75
      return min(query hmin(l, r, i<<1), query hmin(l, r, i<<1|1));
76
77
78
  #undef rt
  #undef ls
79
80 | #undef rs
  };
81
```

23 K-D Tree | KDT

- 1. 将格子 (x,y) 加上 v
- 2. 求 (xl,yl) 到 (xr,yr) 区间和

```
struct Node {
1
2
    int x, y, v;
3
  bool cmpx(int a, int b) { return s[a].x < s[b].x;</pre>
  bool cmpy(int a, int b) { return s[a].y < s[b].y; }</pre>
5
  struct KDTree {
6
    double alpha = 0.725;
7
     int rt, cur, xl, yl, xr, yr; //rt根结点
8
     int d[N], siz[N], lc[N], rc[N]; //d=1竖着砍, sz子树大小
9
     int L[N], R[N], D[N], U[N]; //该子树的界线
10
     int sum[N]; //维护的二维区间信息(二维区间和)
11
    int g[N], gt;
12
    void pia(int x) { //将树还原成序列q
13
      if (!x) return;
14
```

```
15
       pia(lc[x]);
16
       g[++gt] = x;
       pia(rc[x]);
17
18
     void push_up(int x) { //更新信息
19
       siz[x] = siz[lc[x]] + siz[rc[x]] + 1;
20
       sum[x] = sum[lc[x]] + sum[rc[x]] + s[x].v;
21
       L[x] = R[x] = s[x].x;
22
       D[x] = U[x] = s[x].y;
23
       if (lc[x]) {
24
         L[x] = min(L[x], L[lc[x]]);
25
26
         R[x] = max(R[x], R[lc[x]]);
         D[x] = min(D[x], D[lc[x]]);
27
         U[x] = max(U[x], U[lc[x]]);
28
29
       if (rc[x]) {
30
31
         L[x] = min(L[x], L[rc[x]]);
         R[x] = max(R[x], R[rc[x]]);
32
         D[x] = min(D[x], D[rc[x]]);
33
         U[x] = max(U[x], U[rc[x]]);
34
35
36
     int build(int 1, int r) { //以序列g[l..r]为模板重建树,返回根结点
37
38
       if (1 > r) return 0;
       int mid = (1 + r) >> 1;
39
40
       double ax = 0, ay = 0, sx = 0, sy = 0;
       for (int i = 1; i <= r; i++) ax += s[g[i]].x, ay += s[g[i]].y;
41
       ax /= (r - l + 1);
42
       ay /= (r - 1 + 1);
43
       for (int i = 1; i <= r; i++) {
44
         sx'+= (ax - s[g[i]].x) * (ax - s[g[i]].x);
45
         sy += (ay - s[g[i]].y) * (ay - s[g[i]].y);
46
47
       if (sx > sy)
48
         nth_element(g + l, g + mid, g + r + 1, cmpx), d[g[mid]] = 1;
49
       else
50
         nth\_element(g + l, g + mid, g + r + 1, cmpy), d[g[mid]] = 2;
51
       lc[g[mid]] = build(l, mid - 1);
52
       rc[g[mid]] = build(mid + 1, r);
53
       push up(g[mid]);
54
       return g[mid];
55
56
57
     void rebuild(int &x) {
58
       gt = 0;
       pia(x);
59
       x = build(1, gt);
60
61
     bool bad(int x) {
62
       return alpha * siz[x] <= max(siz[lc[x]], siz[rc[x]]);</pre>
63
64
65
     void insert(int x, int y, int v) { //在(x,y)处插入元素
       s[++cur] = \{x, y, v\};
66
       insert(rt, cur);
67
68
     void insert(int &x, int v) {
69
70
       if (!x) return push up(x = v);
       if (d[x]) insert(s[v].x <= s[x].x ? lc[x] : rc[x], v);
71
```

```
else insert(s[v].y <= s[x].y ? lc[x] : rc[x], v);
72
73
       push up(x);
       if (bad(x)) rebuild(x);
74
75
     int query(int xl, int yl, int xr, int yr) { //查询[x1,x2]×[y1,y2]的
76
        区间和
       if (xl > xr) swap(xl, xr);
77
       if (yl > yr) swap(yl, yr);
78
       this->xl = xl; this->yl = yl; this->xr = xr; this->yr = yr;
79
80
       return query(rt);
81
     int query(int x) {
82
       if (!x || xr < L[x] || xl > R[x] || yr < D[x] || yl > U[x])
83
          return 0;
       if (xl <= L[x] && R[x] <= xr && yl <= D[x] && U[x] <= yr)                   return
84
          sum[x];
       int res = 0;
85
       if (x1 \le s[x].x \& s[x].x \le xr \& y1 \le s[x].y \& s[x].y \le yr)
86
87
         res += s[x].v;
       return query(lc[x]) + query(rc[x]) + res;
88
89
   };
90
```

24 树状数组

24.1 一维

单点修改区间查询区间修改单点查询

```
template <typename T>
2
   struct BinaryIndexedTree {
     int n;
3
4
     vector<T> tr;
     void init(const int &n) { this->n = n; tr = vector<T>(n+1, 0); }
5
     void add(const int &x, const T &v) { for (int i = x; i <= n; i += i</pre>
        \&-i) tr[i] += v; }
     void add(const int &x, const int &y, const T &v) { add(x, v); add(y
7
        +1, -v); }
     T query(const int &x) { T res = 0; for (int i = x ; i; i -= i&-i)
8
        res += tr[i]; return res; }
9
     T query(const int &x, const int &y) { return query(y)-query(x-1); }
  };
10
```

区间修改区间查询

```
1
   struct BIT{
2
            static const int SIZE=1e6+5;
3
            11 bit1[SIZE],bit2[SIZE];
4
            int limit;
5
            void init(int n=SIZE-1){
                    limit=n;
6
7
                    for(int i=1;i<=n;i++)bit1[i]=bit2[i]=0;
8
            BIT(){init();}
9
            void add(ll *bit,int x,ll v){
10
```

24.2 二维 24 树状数组

```
while(x<=limit)bit[x]+=v,x+=x&-x;
11
12
            11 query(11 *bit,int x){
13
                     11 res=0;
14
                     while(x)res+=bit[x],x-=x&-x;
15
                     return res;
16
17
            void add(int l,int r,ll v){
18
                     add(bit1,l,v);
19
20
                     add(bit2,1,v*1);
                     add(bit1,r+1,-v);
21
                     add(bit2,r+1,-v*(r+1));
22
23
            11 query(int 1,int r){
24
                     return (r+1)*query(bit1,r)-query(bit2,r)-l*query(bit1
25
                        , l-1)+query(bit2, l-1);
            }
26
27
   }bit;
```

24.2 二维

24.2.1 单点修改区间查询

```
template <typename T>
1
2
   struct BIT 2D {
3
      int n, m;
     T a[N][N], tr[N][N];
BIT_2D() { memset(tr, 0, sizeof tr); }
4
5
      void init(const int & n, const int & m) {
6
7
        n = _n; m = _m;
memset(a, 0, sizeof a);
8
9
        memset(tr, 0, sizeof tr);
10
     void add(const int &x, const int &y, const T &k) {
11
12
        a[x][y] += k;
13
        for (int i = x; i <= n; i += i\&-i)
          for (int j = y; j <= m; j += j&-j)
  tr[i][j] += k;</pre>
14
15
16
      T query(const int &x, const int &y) {
17
        return a[x][y];
18
        // return query(x, y, x, y);
19
20
     T query(int r1, int c1, int r2, int c2) {
21
        if (r1 > r2) swap(r1, r2);
22
23
        if (c1 > c2) swap(c1, c2);
24
        return _query(r2, c2)-_query(r1-1, c2)-_query(r2, c1-1)+_query(r1
           -1, c1-1);
25
         query(const int &x, const int &y) {
26
        \overline{T} res = 0;
27
28
        for (int i = x; i; i -= i\&-i)
          for (int j = y; j; j -= j&-j)
29
             res += tr[i][j];
30
31
        return res;
32
```

```
33 | };
```

25 可持久化数组

```
template <typename T>
1
   struct PersistantArray {
2
3
     static const int NN = N*(log2(N)+3);
     int rt[N], ls[NN], rs[NN], val[NN], tot, n;
4
5
     void build(const int &n) {
6
       this->n = n;
7
       tot = 0;
       rt[0] = build(1, n);
8
9
     int build(const int &l, const int &r) {
10
       int cur = ++tot; assert(tot < NN);</pre>
11
       12
       int mid = (l+r)>>1;
13
       ls[cur] = build(1, mid);
14
       rs[cur] = build(mid+1, r);
15
16
       return cur;
17
     void update(const int &cur, const int &pre, const int &x, const T &
18
       k) {
       rt[cur] = update(rt[pre], x, k, 1, n);
19
20
21
     int update(const int &pre, const int &x, const T &k, const int &l,
       const int &r) {
       int cur = ++tot; assert(tot < NN);</pre>
22
       if (1 == x && r == x) return val[cur] = k, cur;
23
24
       25
       int mid = (1+r) >> 1;
       if (x <= mid) ls[cur] = update(ls[pre], x, k, l, mid);</pre>
26
       else rs[cur] = update(rs[pre], x, k, mid+1, r);
27
       return cur;
28
29
30
     T query(const int &cur, const int &x) {
       return query(rt[cur], x, 1, n);
31
32
     T query(const int &cur, const int &x, const int &l, const int &r) {
33
       if (1 == x && r == x) return val[cur];
34
       int mid = (l+r)>>1;
35
       if (x <= mid) return query(ls[cur], x, l, mid);</pre>
36
       return query(rs[cur], x, mid+1, r);
37
38
  };
39
```

26 可持久化线段树 (主席树)

```
template <typename T>
truct PersistantSegmentTree {
   static const int NN = N*(log2(N)+5);
   int rt[N], sum[NN], ls[NN], rs[NN], tot, n;
```

```
void build(const int &n) {
5
       this -> n = n;
6
       tot = 0;
7
       rt[0] = build(1, n);
8
9
     void update(const int &cur, const int &pre, const T &k) {
10
       rt[cur] = _update(rt[pre], 1, n, k);
11
12
     T query(const int &1, const int &r, const int &k) {
13
       return _query(rt[l-1], rt[r], 1, n, k);
14
15
   private:
16
     int _build(const int &l, const int &r) {
17
18
       int cur = ++tot;
       sum[cur] = 0;
19
       if (1 >= r) return cur;
20
       int mid = (1+r) >> 1;
21
       ls[cur] = _build(1, mid);
rs[cur] = _build(mid+1, r);
22
23
24
       return cur;
25
     int _update(const int &pre, const int &l, const int &r, const int &
26
27
       int cur = ++tot;
       ls[cur] = ls[pre];    rs[cur] = rs[pre];    sum[cur] = sum[pre]+1;
28
       if (1 >= r) return cur;
29
       int mid = (1+r) >> 1;
30
       if (k \le mid) ls[cur] = update(ls[pre], l, mid, k);
31
       else rs[cur] = update(rs[pre], mid+1, r, k);
32
33
       return cur;
34
     int _query(const int &u, const int &v, const int &l, const int &r,
35
        const int &k) {
       if (1 >= r) return 1;
36
       int num = sum[ls[v]]-sum[ls[u]], mid = (l+r)>>1;
37
       if (num >= k) return _query(ls[u], ls[v], l, mid, k);
38
       else return query(rs[u], rs[v], mid+1, r, k-num);
39
40
   };
41
```

动态开点?oj 可以跑本地莫名 re

```
template <class T>
   class PersistantSegmentTree {
2
    public:
3
4
     void init(int n) {
5
       tot = 0;
       this -> n = n;
6
7
       rt = vector<int>(1, 0);
       tr = vector<TreeNode>(1, TreeNode{0, 0, 0});
8
9
     void update(int cur, int pre, int k, T v = 1) {
10
       rt.resize(cur+1); // assert rt.size()+1 <= cur
11
       rt[cur] = update(rt[pre], 1, n, k, v);
12
13
     int update(int pre, int l, int r, int k, T v) {
14
15
       int cur = ++tot; // assert tot == tr.size()
       tr.emplace_back(tr[pre]);
16
```

```
tr[cur].sum += v;
17
18
       if (1 == r) return cur;
       int mid = (l+r)>>1;
19
       if (k <= mid) tr[cur].lc = update(tr[pre].lc, l, mid, k, v);</pre>
20
       else tr[cur].rc = update(tr[pre].rc, mid+1, r, k, v);
21
22
       return cur;
23
     T query(int 1, int r, int q1, int qr) {
24
25
       return query(rt[1-1], rt[r], 1, n, q1, qr);
26
     // [u, v] 段 [ql, qr] 区间和
27
28
     T query(int u, int v, int l, int r, int ql, int qr) {
       if (!u && !v) return 0;
29
       if (1 >= q1 && r <= qr) return tr[v].sum-tr[u].sum;</pre>
30
       int mid = (l+r)>>1;
31
32
       if (qr <= mid) return query(tr[u].lc, tr[v].lc, 1, mid, ql, qr);</pre>
       if (ql > mid) return query(tr[u].rc, tr[v].rc, mid+1, r, ql, qr)
33
       return query(tr[u].lc, tr[v].lc, l, mid, ql, qr)+query(tr[u].rc,
34
          tr|v|.rc, mid+1, r, ql, qr);
35
    private:
36
     struct TreeNode {
37
       int lc, rc;
38
       T sum;
39
     };
40
     int tot, n;
41
42
     vector<int> rt;
     vector<TreeNode> tr;
43
44
   };
```

dingbacode 高地

```
template <typename T>
   struct PersistantSegmentTree {
2
3
     static const int NN = N*(log2(N)+5);
4
     int rt[N], ls[NN], rs[NN], tot, n;
     T sum[NN];
5
     void build(const int &n) {
6
       this -> n = n;
7
       tot = 0;
8
9
       rt[0] = _build(1, n);
10
     void update(const int &cur, const int &pre, const int &k, const T &
11
        v) {
12
       rt[cur] = _update(rt[pre], 1, n, k, v);
13
     T query(const int &1, const int &r, const int &q1, const int &qr) {
14
       return _query(rt[l-1], rt[r], 1, n, ql, qr);
15
16
   private:
17
     int build(const int &l, const int &r) {
18
19
       int cur = ++tot;
       sum[cur] = 0;
20
       if (1 >= r) return cur;
21
       int mid = (1+r) >> 1;
22
       ls[cur] = _build(l, mid);
23
       rs[cur] = _build(mid+1, r);
24
```

```
25
       return cur;
26
     int _update(const int &pre, const int &l, const int &r, const int &
27
        k, const T &v) {
       int cur = ++tot;
28
       ls[cur] = ls[pre]; rs[cur] = rs[pre]; sum[cur] = sum[pre]+v;
29
       if (1 >= r) return cur;
30
       int mid = (1+r)>>1;
31
       if (k <= mid) ls[cur] = _update(ls[pre], l, mid, k, v);</pre>
32
       else rs[cur] = _update(rs[pre], mid+1, r, k, v);
33
       return cur;
34
35
36
     // [u, v] 段 [ql, qr] 区间和
     T _query(const int &u, const int &v, const int &l, const int &r,
37
        const int &ql, const int &qr) {
       if (1 >= q1 && r <= qr) return sum[v]-sum[u];</pre>
38
39
       int mid = (1+r) >> 1;
       if (qr <= mid) return _query(ls[u], ls[v], l, mid, ql, qr);</pre>
40
       if (ql > mid) return _query(rs[u], rs[v], mid+1, r, ql, qr);
41
       return _query(ls[u], ls[v], l, mid, ql, qr)+_query(rs[u], rs[v],
          mid+1, r, ql, qr);
43
   };
44
```

27 分块

例题

```
struct FenKuai {
1
2
     typedef long long T;
3
     int t; // 每组大小
     static const int NN = static_cast<int>(sqrt(N))+7;
4
5
     T a[N], sum[NN], add[NN];
     Fenkuai() {
6
7
       memset(a, 0, sizeof a);
       memset(sum, 0, sizeof sum);
8
9
       memset(add, 0, sizeof add);
10
     void init() {
11
       t = static cast<int>(sqrt(n)+0.5);
12
       for (int i = 0; i < n; ++i) sum[i/t] += a[i];
13
14
     void update(int x, T k) { a[x] += k; sum[x/t] += k; }
15
     void update(int x, int y, T k) {
16
       for (; x \le y \&\& x\%t; ++x) a[x] += k, sum[x/t] += k;
17
18
       for (; x+t-1 \le y; x += t) sum[x/t] += k*t, add[x/t] += k;
       for (; x \le y; ++x) a[x] += k, sum[x/t] += k;
19
20
     T query(int x) { return a[x]+add[x/t]; }
21
22
     T query(int x, int y) {
23
       T res = 0;
       for ( ; x <= y && x%t; ++x) res += a[x]+add[x/t];
24
       for (; x+t-1 \le y; x += t) res += sum[x/t];
25
26
       for (; x \le y; ++x) res += a[x]+add[x/t];
       return res;
27
28
```

```
29 | } B;
```

```
struct FenKuai {
1
2
     typedef int T;
3
     int t; // 每组大小
     T a[N], b[N], add[N];
4
5
     FenKuai() {
       memset(a, 0, sizeof a);
6
       memset(b, 0, sizeof b);
7
       memset(add, 0, sizeof add);
8
9
     void build(int x) {
10
11
       for (int i = x*t; i < min(x*t+t, n); ++i) b[i] = a[i];</pre>
12
       sort(b+x*t, b+min(x*t+t, n));
13
     void init() {
14
15
       t = static cast<int>(sqrt(n)+0.5);
       for (int i = 0; i*t < n; ++i) build(i);</pre>
16
17
18
     void update(int x, int y, T c) {
       int i = x;
19
       for ( ; i <= y && i%t; ++i) a[i] += c;
20
21
       build(x/t);
       for ( ; i+t-1 <= y; i += t) add[i/t] += c;
22
       for ( ; i <= y; ++i) a[i] += c;
23
24
       build(y/t);
25
       query(int x, int y, long long c) {
26
       T res = 0; int i = x;
27
       for ( ; i <= y && i%t; ++i) res += (a[i]+add[i/t] < c*c);
28
               i+t-1 <= y; i += t) res += lower_bound(b+i, b+i+t, c*c-
29
          add[i/t])-(b+i);
       for ( ; i <= y; ++i) res += (a[i]+add[i/t] < c*c);
30
31
       return res;
32
   } B;
33
```

```
1
   struct FenKuai {
     typedef int T;
2
3
     int t, sz;
     static const int NN = static cast<int>(sqrt(N))+7;
4
     T a[N];
5
6
     deque<int> q[NN];
7
     void init(int _n) {
8
       sz = n;
       t = static cast<int>(sqrt(sz*1.5)+0.5);
9
       for (int i = 0; i < sz; ++i) q[i/t].push_back(a[i]);</pre>
10
11
     void update(int x, int k) {
12
       stack<int> tmp;
13
       for (int i = 0; i != x%t; ++i) {
14
         tmp.push(q[x/t].front());
15
         q[x/t].pop front();
16
17
       q[x/t].push front(k);
18
19
       while (tmp.size()) {
20
         q[x/t].push_front(tmp.top());
```

```
21
          tmp.pop();
        }
22
23
       ++SZ;
        if (sz/t == x/t) return;
24
25
        for (int i = x/t, val; i < sz/t; ++i) {</pre>
          val = q[i].back();
26
27
          q[i].pop_back();
          q[i+1].push_front(val);
28
29
30
     T query(int x) {
31
        stack<int> tmp;
32
33
        for (int i = 0; i != x%t; ++i) {
34
          tmp.push(q[x/t].front());
          q[x/t].pop front();
35
36
        int res = q[x/t].front();
37
38
       while (tmp.size()) {
          q[x/t].push_front(tmp.top());
39
40
          tmp.pop();
41
42
        return res;
43
   } B;
44
```

28 莫队

O(1) 一般取 $block = \frac{n}{\sqrt{m}}, O(n\sqrt{m})$ 移动前两步先扩大区间 l--,r++ 后两步缩小区间 l++,r--

28.1 奇偶性排序

28.2 带修改莫队

以 $n^{\frac{2}{3}}$ 为一块,分成了 $n^{\frac{1}{3}}$ 块,第一关键字是左端点所在块,第二关键字是右端点所在块,第三关键字是时间。 复杂度 $O(n^{\frac{5}{3}})$

```
template <typename T> bool cmp(const T &q1, const T &q2) {
  return q1.l/block != q2.l/block ? q1.l < q2.l :
     q1.r/block != q2.r/block ? q1.r < q2.r : q1.t < q2.t;
}</pre>
```

28.3 值域分块

维护块的前缀和以及块内部前缀和, $O(\sqrt{n})$ 修改,O(1) 求区间和

```
template <typename T>
   struct PreSum {
2
3
     int n, block;
     T s[N], t[(int)sqrt(N)+3];
4
     void init(int n) {
5
6
       this->n = n;
7
       block = sqrt(n);
8
     void add(int x, T k) {
9
       for (int i = x; i/block == x/block && i <= n; ++i) s[i] += k;
10
       for (int i = x/block+1; i <= n/block; ++i) t[i] += k;</pre>
11
12
     T query(int x) {
13
       return t[x/block]+s[x];
14
15
   };
16
17
   template <typename T>
18
   struct SufSum {
19
     int n, block;
20
     T s[N], t[(int)sqrt(N)+3];
21
22
     void init(int n) {
23
       this->n = n;
       block = sqrt(n);
24
25
     void add(int x, T k) {
26
       for (int i = x; i/block == x/block && i >= 1; --i) s[i] += k;
27
28
       for (int i = x/block-1; i >= 0; --i) t[i] += k;
29
30
       query(int x) {
       return t[x/block]+s[x];
31
32
33
   };
```

28.4 二次离线莫队

大概是一种需要维护信息具有可减性的莫队。只要具可减性,就可以容斥,就可以二次离线。 所谓『二次离线』,大概是指由于普通莫队无法快速计算贡献,所以第一次离线把询问离线下来, 第二次离线把莫队的转移过程离线下来。

由于信息具有可减性 (比如常见的「点对数」),记 (a,b)(c,d) 表示区间 [a,b] 内的点和区间 [c,d] 内的点对彼此产生的贡献 (区间内部不算)。

$$[l,r] \rightarrow [l+t,r], \sum_{\substack{i=l\\l=1}}^{l+t-1} (i,i)(i+1,r) = \sum_{\substack{i=l\\l=1}}^{l+t-1} (i,i)(1,r) - (i,i)(1,i)$$

$$[l,r] \rightarrow [l-t,r], \sum_{\substack{i=l-t\\i=1}}^{l-1} (i,i)(i+1,r) = \sum_{\substack{i=l-t\\i=l-t}}^{l-1} (i,i)(1,r) - (i,i)(1,i)$$

$$[l,r] \rightarrow [l,r+t], \sum_{\substack{i=r+1\\i=r+1}}^{r+t} (i,i)(l,i-1) = \sum_{\substack{i=r+1\\i=r+1}}^{r+t} (1,i-1)(i,i) - (1,l-1)(i,i)$$

$$[l,r] \rightarrow [l,r-t], \sum_{\substack{i=r-t+1\\i=r-t+1}}^{r} (i,i)(l,i-1) = \sum_{\substack{i=r-t+1}}^{r} (1,i-1)(i,i) - (1,l-1)(i,i)$$

对于 (1,i-1)(i,i) 没什么好说,暴力处理前缀和

对于 (1,l-1)(i,i) 由于莫队的复杂度,至多有 $n\sqrt{m}$ 个不同询问,把每个询问打标记到 左端点 (比如 $[l,r] \to [l,r-t]$ 就打到 l-1 上),最后扫一遍全部 $i \in [1,n]$,处理出询问值, 因为此时 i 枚举 O(n) 次,可以用『值域分块』技巧。这样最终复杂度 $O(n\sqrt{n}+n\sqrt{n})$

求区间逆序对

```
struct Query {
1
2
     int id, l, r;
3
     Query() {}
     Query(int i, int _l, int _r) : id(i), l(_l), r(_r) {}
4
   };
5
6
7
   int n, m, block;
   int a[N];
8
   long long res[N], sumil[N], sumir[N], ans[N];
9
   Query q[N];
10
   SufSum<int> suml;
11
   PreSum<int> sumr;
12
   vector<Query> ql[N], qr[N];
13
14
   inline void calc_sumi() {
15
16
     static BinaryIndexedTree<int> tree;
17
     tree.init(n);
     for (int i = 1; i <= n; ++i) {
18
19
       sumil[i] = sumil[i-1]+i-1-tree.query(a[i]);
       tree.add(a[i], 1);
20
21
     tree.clear();
22
23
     for (int i = n; i; --i) {
       sumir[i] = sumir[i+1]+tree.query(a[i]-1);
24
       tree.add(a[i], 1);
25
26
   }
27
28
29
   signed main() {
30
     read(n); read(m);
     for (int i = 1; i <= n; ++i) read(a[i]);
31
     discrete();
32
     block = n/sqrt(m);
33
34
     for (int i = 1; i <= m; ++i) {
35
       q[i].id = i;
       read(q[i].1);
36
       read(q[i].r);
37
38
39
     sort(q+1, q+m+1, cmp);
40
     calc_sumi();
     q[0] = Query(0, 1, 0);
41
     for (int i = 1, ul, vl, ur, vr; i <= m; ++i) {
42
43
       ul = q[i-1].l; ur = q[i-1].r;
       44
       res[i] = sumil[vr]-sumil[ur]+sumir[vl]-sumir[ul];
45
       if (vl < ul) qr[vr+1].emplace_back(-i, vl, ul-1);</pre>
46
          (vl > ul) qr[vr+1].emplace_back(+i, ul, vl-1);
47
       if (vr < ur) ql[ul-1].emplace_back(+i, vr+1, ur);
48
       if (vr > ur) ql[ul-1].emplace_back(-i, ur+1, vr);
49
50
     suml.init(n+1);
51
52
     for (int i = 1; i <= n; ++i) {
       suml.add(a[i], 1);
53
       for (auto &qq : ql[i])
54
         for (int j = qq.1; j <= qq.r; ++j) {
55
           if (qq.id > 0) res[qq.id] += suml.query(a[j]+1);
56
```

```
else res[-qq.id] -= suml.query(a[j]+1);
57
58
       }
59
60
     sumr.init(n);
61
     for (int i = n; i; --i) {
62
       sumr.add(a[i], 1);
63
       for (auto &qq : qr[i]) {
64
         for (int j = qq.l; j <= qq.r; ++j) {
65
            if (qq.id > 0) res[qq.id] += sumr.query(a[j]-1);
66
            else res[-qq.id] -= sumr.query(a[j]-1);
67
         }
68
       }
69
70
     for (int i = 1; i <= m; ++i) {
71
       res[i] += res[i-1];
72
       ans[q[i].id] = res[i];
73
74
75
     for (int i = 1; i <= m; ++i) write(ans[i]), putchar('\n');
76
     return 0;
77
   }
```

29 ST 表

29.1 一维

```
template <typename T, typename U = std::greater<T>>
   struct ST {
2
3
     static const int NN = 31- builtin clz(N)+3;
     static const T INF = 1e9;
4
5
     int lg2[N];
     U cmp = U()
6
     T rmq[N][NN];
7
     ST() {
8
        fill(rmq[0], rmq[0]+N*NN, cmp(-INF, +INF) ? INF : -INF);
9
        for (int i = 2; i < N; ++i) lg2[i] = lg2[i>>1]+1;
10
11
     T& operator [] (const int &i) { return rmq[i][0]; }
12
     void init(const T &val = 0) { fill(rmq[0], rmq[0]+N*NN, val); }
13
     T mv(const T &x, const T &y) { return cmp(x, y) ? x : y; }
// rmq[i][j] ==> [i, i+2^j-1]
void build(T a[], const int &n) {
14
15
16
        for (int i = n; i; --i) {
17
          rmq[i][0] = a[i];
18
          for (int j = 1; j \leftarrow lg2[n-i+1]; ++j)
19
            rmq[i][j] = mv(rmq[i][j-1], rmq[i+(1<<(j-1))][j-1]);
20
        }
21
22
     T query(const int &1, const int &r) {
23
        if (1 > r) return query(r, 1);
24
        int k = lg2[r-l+1];
25
        return mv(rmq[1][k], rmq[r-(1<<k)+1][k]);</pre>
26
27
   };
28
```

29.2 二维 29 ST 表

29.2 二维

 $O(nm \log n \log m)$

```
template <typename T, typename U = std::greater<T>>
   struct ST {
3
     static const int NN = (int)log2(N)+3;
     static const T INF = 1e9;
4
5
     U cmp = U();
     T rmq[N][N][NN][NN]; // rmq[i][j][k][l] [i, j] [i+2^k-1, j+2^l-1]
6
7
     ST() { init();
     ST(const T &val) { init(val); }
8
     T& operator [] (const int &i) { return rmq[i][0]; }
9
     void init(){ fill(rmq[0][0][0], rmq[0][0][0]+N*N*NN*NN, cmp(-INF, +
10
        INF) ? INF : -INF); }
     void init(const T &val) { fill(rmq[0][0][0], rmq[0][0][0]+N*N*NN*NN
11
     , val); }
T mv(const T &x, const T &y) { return cmp(x, y) ? x : y; }
12
     void build(T a[N][N], const int &n, const int &m) {
13
       for (int k = 0; k <= log_2[n]; ++k)
14
       for (int 1 = 0; 1 <= log_2[m]; ++1)
15
       for (int i = 1; i+(1 << k)-1 <= n; ++i)
16
       for (int j = 1; j+(1<<1)-1 <= m; ++j) {
17
         T \& cur = rmq[i][j][k][1];
18
         if (!k && !l) cur = a[i][j];
19
         else if (!1) cur = mv(rmq[i][j][k-1][l], rmq[i+(1<<(k-1))][j][k
20
            -1][1]);
         else cur = mv(rmq[i][j][k][l-1], rmq[i][j+(1<<(l-1))][k][l-1]);
21
       }
22
23
     T query(const int &r1, const int &c1, const int &r2, const int &c2)
24
       int k = log_2[r2-r1+1], l = log_2[c2-c1+1];
25
       return mv(mv(rmq[r1][c1][k][l], rmq[r2-(1<<k)+1][c2-(1<<l)+1][k][</pre>
26
          1]),
             mv(rmq[r2-(1<< k)+1][c1][k][1], rmq[r1][c2-(1<< 1)+1][k][1]))
27
28
   };
29
```

29.3 反向 ST

```
template <typename T, typename U = std::greater<T>>
1
   struct rST {
2
     static const int NN = (int)log2(N)+3;
3
4
     static const T INF = 1e9;
5
     int n;
     int lg2[N];
6
7
     U cmp = U();
     T rmq[N][NN]; // rmq[i][j] ==> [i, i+2^j-1]
     rST() { for (int i = 2; i < N; ++i) lg2[i] = lg2[i>>1]+1; }
9
10
     T& operator [] (const int &i) { return rmq[i][0]; }
     T mv(const T \delta x, const T \delta y) { return cmp(x, y) ? x : y; }
11
     void init(const int &_n, const T &val = 0) {
12
13
       for (int i = 1; i <= n; ++i) fill(rmq[i], rmq[i]+NN, val);</pre>
14
```

```
15
     void update(const int &l, const int &r, const T &k) {
16
       if (1 > r) return void(update(r, 1, k));
17
       int b = lg2[r-l+1];
18
       rmq[1][b] = mv(rmq[1][b], k);
19
       rmq[r-(1<<b)+1][b] = mv(rmq[r-(1<<b)+1][b], k);
20
21
22
     void build() {
       for (int i = lg2[n]; i >= 0; --i) {
23
         for (int l = 1, r; l <= n; ++1) {
24
            r = 1+(1<<i);
25
            if (r <= n) rmq[r][i] = mv(rmq[r][i], rmq[l][i+1]);</pre>
26
            rmq[l][i] = mv(rmq[l][i], rmq[l][i+1]);
27
28
       }
29
30
31
       query(const int &l, const int &r) {
       if (1 > r) return query(r, 1);
32
       int b = lg2[r-l+1];
33
       return mv(rmq[1][b], rmq[r-(1<<b)+1][b]);</pre>
34
35
   };
36
```

30 并查集

30.1 路径压缩

```
struct DSU {
1
2
     vector<int> fa;
     void init(int n) { fa = vector<int>(n+1); iota(fa.begin(), fa.end()
3
        , 0); }
     int get(int s) { return s == fa[s] ? s : fa[s] = get(fa[s]); }
4
     int& operator [] (int i) { return fa[get(i)]; }
5
     bool merge(int x, int y) { // merge x to y
6
7
       x = get(x); y = get(y);
8
       return x == y? false : (fa[x] = y, true);
9
  };
10
```

30.2 按秩合并

秩的意思就是树的高度,按秩合并过后并查集的结构为树形结构,最坏情况为 $O(m \log n)$

```
struct DSU {
1
     vector<int> fa, rk;
2
     void init(int n) { fa = rk = vector<int>(n+1, 0); iota(fa.begin(),
3
        fa.end(), 0); }
     int get(int s) { return s == fa[s] ? s : get(fa[s]); }
4
     int operator ; }
5
     bool merge(int x, int y) {
6
       x = get(x); y = get(y);
7
       if (x == y) return false;
8
       if (rk[x] < rk[y]) fa[x] = y;</pre>
9
       else fa[y] = x, rk[x] += rk[x] == rk[y];
10
```

30.3 带权并查集 30 并查集

```
11     return true;
12     }
13     };
```

30.3 带权并查集

```
template <typename T = int> struct DSU {
1
2
     vector<int> fa;
3
      vector<T> w;
     void init(int n, T v = 1) {
4
5
        fa = vector<int>(n+1);
6
        iota(fa.begin(), fa.end(), 0);
7
        w = vector < T > (n+1, v);
8
9
     void init(int n, T a[]) {
10
        fa = vector<int>(n+1);
        iota(fa.begin(), fa.end(), 0);
11
        w = vector < T > (a, a+n+1);
12
13
     int get(int s) { return s == fa[s] ? s : fa[s] = get(fa[s]); }
int& operator [] (int i) { return fa[get(i)]; }
14
15
     bool merge(int x, int y) { // merge x to y
16
        x = get(x); y = get(y);
17
        return x == y? false : (w[y] += w[x], fa[x] = y, true);
18
      }
19
   };
20
```

30.4 扩展域并查集

例题: 关押罪犯, 食物链

```
struct DSU {
2
     int n;
     vector<int> fa; // [1, n] partner, [n+1, 2n] enemy
3
4
     void init(int n) {
5
       this->n = n;
       fa = vector < int > (2*n+1, 0);
6
7
       iota(fa.begin(), fa.end(), 0);
8
9
     int get(int s) { return s == fa[s] ? s : fa[s] = get(fa[s]); }
     int& operator [] (int i) { return fa[get(i)]; }
10
     void merge(int x, int y) { fa[get(x)] = get(y); }
11
     bool update(int x, int y) {
12
       if (get(x) == get(y)) return false;
13
14
       merge(x+n, y);
15
       merge(x, y+n);
16
       return true;
17
18
   };
```

30.5 可撤销并查集

用一个栈维护每次操作

30.5 可撤销并查集 30 并查集

30.5.1 按秩合并

```
struct DSU {
1
2
      vector<int> fa, rk;
3
      stack<pair<int&, int>> stk;
      void init(int n) {
4
        stk = stack<pair<int&, int>>();
5
        fa = rk = vector<int>(n+1, 0);
6
        iota(fa.begin(), fa.end(), 0);
7
8
      int get(int s) {            while (s != fa[s])            s = fa[s];            return s;            }
9
     int& operator ]; }
10
11
      int merge(int x, int y) { // return the number push in stack
12
        x = get(x); y = get(y);
        if (x == y) return 0;
if (rk[x] > rk[y]) swap(x, y);
13
14
        stk.push({fa[x], fa[x]});
15
        ta[x] = y;
16
        return rk[x] == rk[y] ? stk.push({rk[y], rk[y]++}), 2 : 1;
17
18
     bool undo() {
19
        if (stk.empty()) return false;
20
        stk.top().first = stk.top().second;
21
        stk.pop();
22
23
        return true;
24
   };
25
```

30.5.2 启发式合并

```
struct DSU {
1
     vector<int> fa, sz;
2
     stack<pair<int, int>> stk;
3
4
     void init(int n) {
5
        stk = stack<pair<int, int>>();
       fa = sz = vector<int>(n+1, 1);
6
7
        iota(fa.begin(), fa.end(), 0);
8
9
     int get(int s) { while (s != fa[s]) s = fa[s]; return s; }
     int& operator ]; }
10
     int merge(int x, int y) {
11
12
       x = get(x); y = get(y);
       if (x == y) return 0;
if (sz[x] > sz[y]) swap(x, y);
13
14
        stk.push({x, y});
15
       fa[x] = y;
16
        sz[y] += sz[x];
17
        return 1;
18
19
     bool undo() {
20
        if (stk.empty()) return false;
21
22
        int x = stk.top().first, y = stk.top().y;
        stk.pop();
23
       fa[x] = x;
24
       sz[y] = sz[x];
25
```

```
26 | return true;
27 | }
28 |}
```

30.5.3 可撤销扩展域并查集

```
struct DSU {
1
2
     int n;
3
     vector<int> fa, rk; // [1, n] partner, [n+1, 2n] enemy
4
     stack<pair<int&, int>> stk;
     void init(int n) {
5
        this->n = n;
6
        stk = stack<pair<int&, int>>();
7
        fa = rk = vector < int > (2*n+1, 0);
8
9
        iota(fa.begin(), fa.end(), 0);
10
     int& operator [] (int i) { return fa[get(i)]; }
11
     int get(int s) {            while (s != fa[s])            s = fa[s];            return s;            }
12
     void undo() { stk.top().first = stk.top().second; stk.pop(); }
13
14
     void merge(int x, int y) {
       x = get(x); y = get(y);
15
        if (x == y) return;
16
        if (rk[x] > rk[y]) swap(x, y);
17
        stk.push({fa[x], fa[x]});
18
19
        stk.push({rk[y], rk[y]});
        fa[x] = y;
20
        rk[y] += rk[x] == rk[y];
21
22
     bool update(int x, int y) {
23
24
        if (get(x) == get(y)) return false;
25
       merge(x+n, y);
26
       merge(x, y+n);
27
        return true;
28
   };
29
```

30.6 可持久化并查集

```
struct PersistantUnionSet {
1
     static const int NN = N*(log2(N)+3);
2
3
     int rt[N], ls[NN], rs[NN], fa[NN], dep[NN], n, tot;
4
     void build(const int &n) {
5
       this -> n = n;
       tot = 0;
6
7
       rt[0] = build(1, n);
8
     int build(const int &1, const int &r) {
9
       int cur = ++tot; assert(tot < NN);</pre>
10
       if (1 == r) return fa[cur] = 1, dep[cur] = 0, cur;
11
       int mid = (1+r) >> 1;
12
       ls[cur] = build(l, mid);
13
       rs[cur] = build(mid+1, r);
14
       return cur;
15
16
```

```
bool query(const int &cur, const int &x, const int &y) {
17
       return fa[getf(rt[cur], x)] == fa[getf(rt[cur], y)];
18
19
     // return the id of fa[], dep[]
20
     int query(const int &cur, const int &x, const int &l, const int &r)
21
       if (1 == r) return cur;
22
       int mid = (1+r)>>1;
23
       if (x <= mid) return query(ls[cur], x, l, mid);</pre>
24
       else return query(rs[cur], x, mid+1, r);
25
26
     // return the id of fa[], dep[]
27
28
     int getf(const int &cur, int x) {
29
       int fi;
       while (fa[(fi = query(cur, x, 1, n))] != x) x = fa[fi];
30
31
       return fi;
32
     void merge(const int &cur, const int &pre, const int &x, const int
33
        &y) {
       rt[cur] = rt[pre];
34
       int fx = getf(rt[cur], x), fy = getf(rt[cur], y);
35
       if (fa[fx] == fa[fy]) return;
36
37
       if (dep[fx] > dep[fy]) swap(fx, fy);
       rt[cur] = update(rt[pre], fa[fx], fa[fy], 1, n);
38
       if (dep[fx] == dep[fy]) add(rt[cur], fa[fy], 1, n);
39
40
     // update fa, merge x to y
41
     int update(const int &pre, const int &x, const int &y, const int &l
42
        , const int &r) {
       int cur = ++tot; assert(tot < NN);</pre>
43
       if (1 == r) return fa[cur] = y, dep[cur] = dep[pre], cur;
44
       ls[cur] = ls[pre]; rs[cur] = rs[pre];
45
       int mid = (l+r)>>1;
46
       if (x <= mid) ls[cur] = update(ls[pre], x, y, l, mid);</pre>
47
       else rs[cur] = update(rs[pre], x, y, mid+1, r);
48
49
       return cur;
50
     // add dep
51
     void add(const int &cur, const int &x, const int &l, const int &r)
52
       if (1 == r) return ++dep[cur], void();
53
       int mid = (1+r) >> 1;
54
       if (x <= mid) add(ls[cur], x, l, mid);</pre>
55
       else add(rs[cur], x, mid+1, r);
56
57
   };
58
```

31 左偏树 | 可并堆

 $1 \times y$: 将第 x 个数和第 y 个数所在的小根堆合并(若第 x 或第 y 个数已经被删除或 x 和第 y 个数在用一个堆内,则无视此操作)。

2 x:输出第 x 个数所在的堆最小数,并将这个最小数删除(若有多个最小数,优先删除先输入的; 若第 x 个数已经被删除,则输出 -1 并无视删除操作)。

```
1 | template <typename T> struct Tree { // 左偏树/可并堆
```

```
#define ls tr[x].son[0]
   #define rs tr[x].son[1]
3
     struct TreeNode {
4
5
       T val;
6
       int dis, rt, son[2];
7
8
     vector<TreeNode> tr;
     template <typename TT> void build(TT a[], int n) {
9
       tr.resize(n+1);
10
       tr[0].dis = -1;
11
       for (int i = 1; i <= n; ++i) {
12
         tr[i].val = a[i];
13
14
         tr[i].rt = i;
       }
15
16
     int get(int x) {
17
       return tr[x].rt == x ? x : tr[x].rt = get(tr[x].rt);
18
19
     void merge(int x, int y) {
20
       if (tr[x].val == -1 || tr[y].val == -1) return;
21
       x = get(x); y = get(y);
22
23
       if (x != y) tr[x].rt = tr[y].rt = _merge(x, y);
24
25
     int _merge(int x, int y) {
       if (!x || !y) return x+y;
26
       if (tr[x].val > tr[y].val || (tr[x].val == tr[y].val && x > y))
27
          swap(x, y);
       rs = _merge(rs, y);
28
       if(tr[ls].dis < tr[rs].dis) swap(ls, rs);</pre>
29
       tr[ls].rt = tr[rs].rt = tr[x].rt = x;
30
       tr[x].dis = tr[rs].dis+1;
31
32
       return x;
33
     T pop(int x) {
34
       if (tr[x].val == -1) return -1;
35
36
       x = get(x);
37
       T res = tr[x].val;
       tr[x].val = -1;
38
       tr[ls].rt = ls;
39
40
       tr[rs].rt = rs;
41
       tr[x].rt = _merge(ls, rs);
       return res;
42
43
44
   #undef ls
   #undef rs
45
   };
46
```

Part IV 字符串

32 回文字符串 |manacher 算法

从 Ø 开始, 第 i 位对应 p[i*2+2]

```
inline int manacher(const char *str, char *buf, int *p) {
     int str_len = strlen(str), buf_len = 2;
2
3
     buf[0] = buf[1] = '#';
     for(int i = 0; i < str_len; ++i)</pre>
4
       buf[buf_len++] = str[i], buf[buf_len++] = '#';
5
6
     int mx = 0, id, ans = 0;
7
     for(int i = 1; i < buf_len; ++i) {</pre>
8
       if(i \le mx) p[i] = min(p[id*2-i], mx-i);
9
       else p[i] = 1;
10
       while(buf[i-p[i]] == buf[i+p[i]]) p[i]++;
11
       if(i+p[i] > mx) mx = i+p[i], id = i;
12
       ans = \max(ans, p[i]-1);
13
14
     return ans;
15
   }
16
```

32.1 判断 s[1, r] 是否为回文

```
1 p[l+r+2]-1 >= r-l+1
```

33 KMP

```
inline void get_next(const char *s, int nex[]) {
     nex[0] = nex[1] = 0;
2
     for (int i = 1, j = 0, l = strlen(s); i < l; ++i) {
3
       while (j && s[i] != s[j]) j = nex[j];
4
5
       nex[i+1] = s[i] == s[j] ? ++j : 0;
6
   }
7
8
9
   inline void kmp(const char *s1, const char *s2, int nex[]) {
     for (int i = 0, j = 0, l1 = strlen(s1), l2 = strlen(s2); i < l1; ++
10
        i){
       while (j && s1[i] != s2[j]) j = nex[j];
11
       if (s1[i] == s2[j]) ++j;
12
       if (j == 12) {
13
         cout << i-12+2 << endl;
14
15
         j = nex[j];
       }
16
     }
17
   }
18
```

nex 数组往上跳为公差为 i-nex[i] 的等差数列直到 i/2

34 扩展 KMP Z 函数

```
vector<int> z_function(string s) {
  int n = (int)s.length();
  vector<int> z(n);
```

```
for (int i = 1, l = 0, r = 0; i < n; ++i) {
4
5
       if (i <= r && z[i - l] < r - i + 1) {
         z[i] = z[i - 1];
6
7
       } else {
         z[i] = max(0, r - i + 1);
8
         while (i + z[i] < n \& s[z[i]] == s[i + z[i]]) ++z[i];
9
10
       if (i + z[i] - 1 > r) l = i, r = i + z[i] - 1;
11
12
13
     return z;
   }
14
```

35 字典树

```
struct TireTree {
1
2
     static const int NN = 5e5+7;
3
     static const int SZ = 26;
4
     char beg;
     int nex[NN][SZ], num[NN], cnt;
5
     bool exist[NN];
6
     TireTree(char _beg = 'a') : beg(_beg) { clear(); }
7
     void clear() {
8
       memset(nex, 0, sizeof(nex[0])*(cnt+1));
9
10
       memset(num, 0, sizeof(int)*(cnt+1));
       memset(exist, 0, sizeof(bool)*(cnt+1));
11
       cnt = 0;
12
13
14
     void insert(const char *s) {
       int len = strlen(s), p = 0;
15
       for (int i = 0, c; i < len; ++i) {
16
         c = s[i]-beg;
17
         if (!nex[p][c]) nex[p][c] = ++cnt;
18
         p = nex[p][c];
19
20
         ++num[p];
21
22
       exist[p] = true;
23
24
     bool find(const char *s) {
       int len = strlen(s), p = 0;
25
       for (int i = 0, c; i < len; ++i) {
26
         c = s[i]-beg;
27
28
         if (!nex[p][c]) return false;
29
         p = nex[p][c];
30
31
       return exist[p];
32
     int count(const char *s) {
33
       int len = strlen(s), p = 0;
34
       for (int i = 0, c; i < len; ++i) {
35
         c = s[i]-beg;
36
         if (!nex[p][c]) return 0;
37
38
         p = nex|p||c|;
39
40
       return num[p];
41
```

35.1 求异或 35 字典树

```
void insert(const string &s) { insert(s.c_str()); }
bool find(const string &s) { return find(s.c_str()); }
int count(const string &s) { return count(s.c_str()); }
};
```

35.1 求异或

最大异或

```
struct TireTree {
1
2
     static const int SZ = 2;
     static const int B = 30;
3
4
     static const int NN = N*B;
     int nex[NN][SZ], cnt;
5
     void init() { clear(); }
6
7
     void clear() {
       memset(nex, 0, sizeof(int)*(cnt+1)*SZ);
8
9
       cnt = 0;
10
     void insert(int x) {
11
       for (int i = B, c, p = 0; i >= 0; --i) {
12
          c = (x>>i)&1;
13
14
          if (!nex[p][c]) nex[p][c] = ++cnt;
15
         p = nex[p][c];
       }
16
17
     int max xor(int x) const {
18
19
       int ans = 0;
       for (int i = B, c, p = 0; i >= 0; --i) {
20
          c = (x>>i)&1;
21
          if (!nex[p][c^1]) p = nex[p][c];
22
         else p = nex[p][c^1], ans = 1 << i;
23
24
25
       return ans;
26
   };
27
```

动态开点 + 支持合并

```
struct TireTree {
2
     static const int SZ = 2;
3
     static const int B = 30;
     typedef array<int, SZ> T;
4
5
     vector<T> nex;
6
     TireTree() { init(); }
     void init() { nex.assign(1, T()); /* nex.reserve(N); */ }
7
     void clear() { nex = vector<T>(); }
8
     size_t size() const { return nex.size(); }
9
     void extend(int &x) {
10
       if (x != 0) return;
11
       x = nex.size();
12
       nex.emplace_back(T());
13
14
     void insert(int x) {
15
       for (int i = B, c, p = 0; i >= 0; --i) {
16
         c = (x>>i)&1;
17
         extend(nex[p][c]);
18
```

```
p = nex[p][c];
19
20
21
     int max_xor(int x) const {
22
       int ans = 0;
23
       for (int i = B, c, p = 0; i >= 0; --i) {
24
          c = (x>>i)&1;
25
          if (!nex[p][c^1]) p = nex[p][c];
26
          else p = nex[p][c^1], ans = 1 << i;
27
       }
28
       return ans;
29
30
31
     void dfs(const TireTree &t, int p = 0, int pt = 0) {
       for (int c = 0; c < SZ; ++c) {
32
          if (t.nex[pt][c] == 0) continue;
33
          extend(nex[p][c]);
34
35
          dfs(t, nex[p][c], t.nex[pt][c]);
       }
36
37
     void join(TireTree &t) {
38
       if (t.size() < size()) swap(*this, t);</pre>
39
       dfs(t);
40
       t.clear();
41
42
     }
   };
43
```

36 AC 自动机

AC 自动机是以 Trie 的结构为基础,结合 KMP 的思想建立的。将所有模式串构成一棵 Trie,再对所有结点构造失配指针如需构造可重建 AC 自动机,每次构造建一个 nex 数组的拷贝

```
struct Aho_Corasick_Automaton {
1
     static const int NN = 5e6+7;
2
3
     static const int SZ = 26;
4
     char beg;
5
     int nex[NN][SZ], num[NN], fail[NN], cnt;
     Aho_Corasick_Automaton(const char & beg = 'a') : beg(_beg) {}
6
     void clear() {
7
       memset(nex, 0, sizeof(nex[0])*(cnt+1));
8
       memset(num, 0, sizeof(int)*(cnt+1));
9
       memset(fail, 0, sizeof(int)*(cnt+1));
10
       cnt = 0;
11
12
     void insert(const char *s) {
13
14
       int len = strlen(s), p = 0;
       for (int i = 0, c; i < len; ++i) {
15
         c = s[i]-beg;
16
         if (!nex[p][c]) nex[p][c] = ++cnt;
17
         p = nex[p][c];
18
19
       ++num[p];
20
21
     void build() {
22
23
       static queue<int> q;
       for (int i = 0; i < SZ; ++i) if (nex[0][i]) q.push(nex[0][i]);</pre>
24
```

```
while (q.size()) {
25
          int u = q.front();
26
          q.pop();
27
          for (int i = 0; i < SZ; ++i) {
28
            if (nex[u][i]) {
29
              fail[nex[u][i]] = nex[fail[u]][i];
30
              q.push(nex[u][i]);
31
              else {
32
              nex[u][i] = nex[fail[u]][i];
33
34
          }
35
       }
36
37
38
     int query(const char *s) {
        int len = strlen(s), p = 0, res = 0;
39
        for (int i = 0; i < len; ++i) {</pre>
40
          p = nex[p][s[i]-beg];
41
          for (int t = p; t && ~num[t]; t = fail[t]) {
42
            res += num[t];
43
            num[t] = -1;
44
          }
45
46
47
        return res;
48
   };
49
```

```
struct Aho Corasick Automaton {
1
2
     static const int NN = 2e5+7;
3
     static const int SZ = 26;
4
     char beg;
     int cnt;
5
     int nex[NN][SZ], fail[NN], vis[NN];
6
     Aho_Corasick_Automaton(const char &_beg = 'a') : beg(_beg) {}
7
     void clear() {
8
       memset(nex, 0, sizeof(nex[0])*(cnt+1));
9
10
       memset(fail, 0, sizeof(int)*(cnt+1));
       memset(vis, 0, sizeof(int)*(cnt+1));
11
12
       cnt = 0;
13
14
     int insert(const char *s) {
       int len = strlen(s), p = 0;
15
       for (int i = 0, c; i < len; ++i) {</pre>
16
         c = s[i]-beg;
17
         if (!nex[p][c]) nex[p][c] = ++cnt;
18
19
         p = nex[p][c];
       }
20
21
       return p;
22
23
     void build() {
       static queue<int> q;
24
25
       for (int i = 0; i < SZ; ++i) if (nex[0][i]) q.push(nex[0][i]);
       while (q.size()) {
26
         int u = q.front();
27
28
         q.pop();
         for (int i = 0; i < SZ; ++i) {
29
            if (nex[u][i]) {
30
              fail[nex[u][i]] = nex[fail[u]][i];
31
```

```
q.push(nex[u][i]);
32
33
            } else {
              nex[u][i] = nex[fail[u]][i];
34
35
         }
36
       }
37
38
     void query(char *s) {
39
       static int deg[NN];
40
41
       static queue<int> q;
       int len = strlen(s);
42
       for (int i = 0, p = 0; i < len; ++i) {
43
         p = nex[p][s[i]-beg];
44
45
         ++vis[p];
         // for (int t = p; t; t = fail[t]) ++vis[t];
46
47
       for (int i = 1; i <= cnt; ++i) ++deg[fail[i]];
48
       for (int i = 1; i <= cnt; ++i) if (!deg[i]) q.push(i);
49
50
       while (q.size()) {
         int u = q.front();
51
         q.pop();
52
         vis[fail[u]] += vis[u];
53
54
         if (--deg[fail[u]] == 0) q.push(fail[u]);
55
     }
56
   } ac;
57
```

37 后缀数组 |SA

```
sa[i] 表示将所有后缀排序后第 i 小的后缀的编号 rk[i] 表示后缀 i 的排名 性质:sa[rk[i]] = rk[sa[i]] = i lcp(i,j) 表示后缀 i 和后缀 j 的最长公共前缀 (的长度) height[i] = lcp(sa[i], sa[i-1]) 引理 height[rk[i]] \geq height[rk[i-1]] - 1 lcp(sa[i], sa[j]) = \min\{height[i+1\cdots j]\} 不同子串数目:\frac{n(n+1)}{2} - \sum_{i=2}^{n} height[i]
```

37.1 O(nlogn)

```
int sa[N], rk[N<<1], height[N];</pre>
   template <typename T> // s start from 1
   inline void SA(const T *s, const int &n) {
   \#define\ cmp(x, y, w)\ oldrk[x] == oldrk[y] \&\&\ oldrk[x + w] == oldrk[y]
      + w|
5
     static int oldrk[N<<1], id[N], px[N], cnt[N], m;</pre>
     // memset(oldrk+n+1, 0, sizeof(int)*n); // multi testcase
6
     memset(cnt, 0, sizeof(int) * (m = 128));
7
     for (int i = 1; i <= n; ++i) ++cnt[rk[i] = s[i]];
8
         (int i = 1; i <= m; ++i) cnt[i] += cnt[i - 1];
9
     for (int i = n; i; --i) sa[cnt[rk[i]]--] = i;
10
     for (int w = 1, p, i; w <= n; w <<= 1, m = p) {
11
```

```
for (p = 0, i = n; i > n - w; --i) id[++p] = i;
12
       for (i = 1; i <= n; ++i) if (sa[i] > w) id[++p] = sa[i] - w;
13
       memset(cnt + 1, 0, sizeof(int) * m);
14
       for (i = 1; i <= n; ++i) ++cnt[px[i] = rk[id[i]]];</pre>
15
       for (i = 1; i <= m; ++i) cnt[i] += cnt[i - 1];
16
       for (i = n; i; --i) sa[cnt[px[i]]--] = id[i];
17
       swap(oldrk, rk); // memcpy(oldrk+1, rk+1, sizeof(int)*n);
18
19
       for (p = 0, i = 1; i \le n; ++i) rk[sa[i]] = cmp(sa[i], sa[i - 1],
           w) ? p : ++p;
20
     for (int i = 1, k = 0; i <= n; ++i) {
21
       if (k) --k;
22
       while (s[i+k] == s[sa[rk[i]-1]+k]) ++k;
23
       height[rk[i]] = k;
24
25
   #undef cmp
26
27
   }
```

37.2 O(n)

```
namespace SuffixArray {
1
   int sa[N], rk[N], ht[N];
3
   bool t[N << 1];</pre>
5
   inline bool islms(const int i, const bool *t) { return i > 0 && t[i]
      && !t[i - 1]; }
7
   template <class T>
8
   inline void sort(T s, int *sa, const int len, const int sz, const int
       sigma, bool *t, int *b, int *cb, int *p) {
     memset(b, 0, sizeof(int) * sigma);
10
     memset(sa, -1, sizeof(int) * len);
11
12
     for (register int i = 0; i < len; i++) b[static_cast<int>(s[i])]++;
     cb[0] = b[0];
13
     for (register int i = 1; i < sigma; i++) cb[i] = cb[i - 1] + b[i];
14
     for (register int i = sz - 1; i >= 0; i--) sa[--cb[static cast<int
15
        >(s[p[i]])]] = p[i];
     for (register int i = 1; i < sigma; i++) cb[i] = cb[i - 1] + b[i -
16
        1];
     for (register int i = 0; i < len; i++)
17
       if (sa[i] > 0 && !t[sa[i] - 1])
18
19
         sa[cb[static_cast<int>(s[sa[i] - 1])]++] = sa[i] - 1;
20
     cb[0] = b[0];
         (register int i = 1; i < sigma; i++) cb[i] = cb[i - 1] + b[i];</pre>
21
     for (register int i = len - 1; i >= 0; i--)
22
       if (sa[i] > 0 && t[sa[i] - 1])
23
         sa[--cb[static_cast<int>(s[sa[i] - 1])]] = sa[i] - 1;
24
   }
25
26
  template <class T>
27
   inline void sais(T s, int *sa, const int len, bool *t, int *b, int *
      b1, const int sigma) {
     register int i, j, x, p = -1, cnt = 0, sz = 0, *cb = b + sigma;
29
     for (t[len - 1] = 1, i = len - 2; i >= 0; i--) t[i] = s[i] < s[i +
30
        1] || (s[i] == s[i + 1] \&\& t[i + 1]);
```

```
for (i = 1; i < len; i++)
31
       if (t[i] && !t[i - 1])
32
         b1[sz++] = i;
33
     sort(s, sa, len, sz, sigma, t, b, cb, b1);
34
     for (i = sz = 0; i < len; i++)
35
       if (islms(sa[i], t))
36
         sa[sz++] = sa[i];
37
38
     for (i = sz; i < len; i++) sa[i] = -1;
     for (i = 0; i < sz; i++) {
39
       for (x = sa[i], j = 0; j < len; j++) {
  if (p == -1 || s[x + j] != s[p + j] || t[x + j] != t[p + j]) {</pre>
40
41
42
           cnt++, p = x;
43
           break;
         } else if (j > 0 \& (islms(x + j, t) || islms(p + j, t))) {
44
45
           break:
46
47
       }
       sa[sz + (x >>= 1)] = cnt - 1;
48
49
     for (i = j = len - 1; i >= sz; i--)
50
       if(sa[i] >= 0)
51
52
         sa[j--] = sa[i];
53
     register int *s1 = sa + len - sz, *b2 = b1 + sz;
     if (cnt < sz)</pre>
54
55
       sais(s1, sa, sz, t + len, b, b1 + sz, cnt);
56
     else
       for (i = 0; i < sz; i++) sa[s1[i]] = i;
57
     for (i = 0; i < sz; i++) b2[i] = b1[sa[i]];
58
59
     sort(s, sa, len, sz, sigma, t, b, cb, b2);
60
61
   template <class T>
62
   inline void getHeight(T s, int n) {
63
     for (register int i = 1; i <= n; i++) rk[sa[i]] = i;
64
     register int j = 0, k = 0;
65
     for (register int i = 0; i < n; ht[rk[i++]] = k)</pre>
66
       67
68
   }
69
70
   template <class T> // s start from 0
71
   inline void init(T s, const int len, const int sigma = 128) {
72
73
     sais(s, sa, len + 1, t, rk, ht, sigma);
74
     getHeight(s, len);
     for (int i = 1; i <= len; ++i) ++sa[i];</pre>
75
     for (int i = len; i; --i) rk[i] = rk[i-1];
76
77
78
      // namespace SuffixArray
79
```

37.3 树上 SA

树上可能出现完全相同的字符串,增加上一轮的有序状态 rk 为"第三关键字"

```
struct SAonTree {
  int n, d[N], cnt[N], sa[N], rk[N<<1], _rk[N<<1], _oldrk[N<<1], tp[N
  <<1];</pre>
```

```
template <typename T>
3
4
     void tsort(int *sa, T *rk, int *tp, int m) {
5
        memset(cnt, 0, sizeof(int)*(m+1));
        for (int i = 1; i <= n; ++i) ++cnt[rk[i]];</pre>
6
        for (int i = 1; i <= m; ++i) cnt[i] += cnt[i-1];
7
        for (int i = n; i; --i) sa[cnt[rk[tp[i]]]--] = tp[i];
8
9
10
     template <typename T>
     void build(int *f, const T *a, const int n) {
11
       this->n = n;
12
        int p = 128, i; // p = n
13
        iota(tp+1, tp+n+1, 1);
14
15
        tsort(sa, a, tp, p);
        for (i = 1, p = 0; i <= n; ++i) {
16
           rk[sa[i]] = a[sa[i-1]] == a[sa[i]] ? p : ++p;
17
          rk[sa[i]] = i;
18
19
       for (int w = 1, t = 0; w < n; w <<= 1, ++t) {
  for (i = 1; i <= n; ++i) _oldrk[i] = rk[f[i]];</pre>
20
21
          tsort(tp, _oldrk, sa, n);
22
          tsort(sa, _rk, tp, p);
swap(_rk, tp);
23
24
          for (i = 1, p = 0; i <= n; ++i) {
25
            _rk[sa[i]] = tp[sa[i-1]] == tp[sa[i]]
26
                 && tp[f[sa[i-1]]] == tp[f[sa[i]]] ? p : ++p;
27
            rk[sa[i]] = i;
28
29
          for (int i = n; i; --i) f[i] = f[f[i]]; // attention special
30
             tree
        }
31
32
   };
33
```

38 后缀平衡树

39 后缀自动机 | SAM

一个状态表示一个 endpos 的等价类 len(v) 为该状态最长的字符串长度

后缀链接 link(v) 连接到对应于该状态最长字符串的最长后缀的另一个 endpos 等价类的状态。

39.1 代码

```
struct SAM { // root 0
1
2
    static const int A = 26;
    static const int M = N<<1;
3
    static const char C = 'a'
4
5
    int sz, last, len[M], link[M], nex[M][A];
6
    void init() {
      memset(nex, 0, sizeof(int)*A*sz);
7
      link[0] = -1; sz = 1; last = 0;
8
9
```

```
int extend(int c) {
10
       int cur = sz++, p = last;
11
       len[cur] = len[last]+1;
12
       for (; ~p && !nex[p][c]; p = link[p]) nex[p][c] = cur;
13
       if (p == -1) return link[cur] = 0, cur;
14
       int q = nex[p][c];
15
       if (len[p]+1 == len[q]) return link[cur] = q, cur;
16
       int clone = sz++;
17
       memcpy(nex[clone], nex[q], sizeof nex[q]);
18
       link[clone] = link[q];
19
       len[clone] = len[p]+1;
20
       for (; \sim p \& nex[p][c] == q; p = link[p]) nex[p][c] = clone;
21
       link[q] = link[cur] = clone;
22
23
       return cur;
24
     void insert(const string &s) {
25
       init(); for (char ch : s) last = extend(ch-C);
26
27
   };
28
```

```
void build() { // topo on parent tree
1
        static int t[M], rk[M];
2
3
       memset(t, 0, sizeof(int)*sz);
       for (int i = 0; i < sz; ++i) ++t[len[i]];</pre>
4
       for (int i = 1; i < sz; ++i) t[i] += t[i-1];
5
       for (int i = 0; i < sz; ++i) rk[--t[len[i]]] = i;</pre>
6
       for (int _ = sz-1, i, j; _; --_) { // assert(rk[0] == 0); i = rk[_];
7
8
          j = link[i];
9
          cnt[j] += cnt[i];
10
       }
11
     }
12
```

39.2 检查字符串是否出现

丢进去转移。这个算法还找到了模式串在文本串中出现的最大前缀长度。

39.3 不同子串个数

不同子串的个数等于自动机中以 t_0 为起点的不同路径的条数-**1(**空串**)**。令 d_v 为从状态 v 开始的路径数量(包括长度为零的路径)

$$d_v = 1 + \sum_{w:(v,w,c)\in DAWG} d_u$$

或利用上述后缀自动机树形结构统计节点对应的子串数量 len(i) - len(link(i)) ps: 若新增一个字符, 其增量为 len(cur) - len(link(cur)) 不包括 clone 结点

39.4 所有不同子串的总长度

$$ans_v = \sum_{w:(v,w,c)\in DAWG} d_w + ans_w$$

法二:每个节点对应的所有后缀长度是 $\frac{len(i)\times(len(i)+1)}{2}$,减去其 link 节点的对应值就是该节点的净贡献

39.5 字典序第 k 大子串

不同位置的相同子串算作一个,每个非 clone 状态的数量记为 1 不同位置的相同子串算作多个,每个状态的数量为 parent 树上求子树和 在 SAM 的 DAG 求和然后字典序搞搞

39.6 两个字符串的最长公共子串

```
1
     int lcs(const string &s) {
        int u = 0, l = 0, res = 0, c;
2
        for (char ch : s) {
    c = ch-C;
3
4
          while (u && !nex[u][c]) 1 = len[u = link[u]];
5
          if (nex[u][c]) u = nex[u][c], ++1;
6
          res = max(res, 1);
7
8
9
       return res;
     }
10
```

39.7 多个字符串间的最长公共子串

记录 f[i][j] 为第 i 个字符串在 sam 上状态 j 的匹配长度 $ans = \max_i (\min_j f[i][j])$

39.8 后缀的最长公共前缀 | height

求两个后缀的最长公共前缀,显然就是两个后缀的节点在 Parent 树上的 LCA

40 广义后缀自动机

广义后缀自动机 (General Suffix Automaton) 是将后缀自动机整合到字典树中来解决对于多个字符串的子串问题

40.1 离线构造

```
struct generalSAM {
     static const int A = 26;
2
3
     static const int M = N<<1;</pre>
4
     static const char C = 'a';
     int sz, len[M], link[M], nex[M][A];
5
     generalSAM() { init(); }
6
7
     void init() {
       // memset(nex, 0, sizeof(int)*A*sz);
8
       link[0] = -1; sz = 1;
9
10
     int insertSAM(int last, int c) {
11
       int cur = nex[last][c];
12
13
       if (len[cur]) return cur;
       len[cur] = len[last]+1;
14
       int p = link[last];
15
       for (; ~p && !nex[p][c]; p = link[p]) nex[p][c] = cur;
```

```
if (p == -1) return link[cur] = 0, cur;
17
       int q = nex[p][c];
18
       if (len[p]+1 == len[q]) return link[cur] = q, cur;
19
       int clone = sz++;
20
       for (int i = 0; i < A; ++i)
21
         nex[clone][i] = len[nex[q][i]] ? nex[q][i] : 0;
22
       len[clone] = len[p]+1;
23
       for (; \sim p \&\& nex[p][c] == q; p = link[p]) nex[p][c] = clone;
24
       link[clone] = link[q];
25
       link[q] = link[cur] = clone;
26
27
       return cur;
28
     int insertTrie(int cur, int c) {
29
       return nex[cur][c] ? nex[cur][c] : nex[cur][c] = sz++;
30
31
     void insert(const string &s) {
32
       int last = 0; for (char ch : s) last = insertTrie(last, ch-C);
33
34
     void insert(const char *s, int n) {
35
       for (int i = 0, last = 0; i < n; ++i) last = insertTrie(last, s[i</pre>
36
          ]-C);
37
     void build() {
38
39
       queue<pair<int, int>> q;
       for (int i = 0; i < A; ++i)
40
         if (nex[0][i]) q.push({0, i});
41
       while (!q.empty()) {
42
         auto item = q.front(); q.pop();
43
         int last = insertSAM(item.first, item.second);
44
         for (int i = 0; i < A; ++i)
45
           if (nex[last][i]) q.push({last, i});
46
       }
47
     }
48
   };
49
```

40.2 在线构造

```
struct generalSAM {
1
2
     static const int A = 26;
     static const int M = N<<1;</pre>
3
     static const char C = 'a';
4
5
     int sz, len[M], link[M], nex[M][A];
     generalSAM() { init(); }
6
7
     void init() {
       memset(nex, 0, sizeof(int)*A*sz);
8
9
       link[0] = -1; sz = 1;
10
     int extend(int last, int c) {
11
       if (nex[last][c]) {
12
         int p = last, cur = nex[p][c];
13
         if (len[p]+1 == len[cur]) return cur;
14
15
         int q = sz++;
         len[q] = len[p]+1;
16
         memcpy(nex[q], nex[cur], sizeof nex[q]);
17
         for ( ; ~p && nex[p][c] == cur; p = link[p]) nex[p][c] = q;
18
```

```
link[q] = link[cur];
19
         link[cur] = q;
20
21
         return q;
22
       int cur = sz++, p = last;
23
       len[cur] = len[p]+1;
24
       for ( ; ~p && !nex[p][c]; p = link[p]) nex[p][c] = cur;
25
       if (p == -1) return link[cur] = 0, cur;
26
27
       int q = nex[p][c];
       if (len[p]+1 == len[q]) return link[cur] = q, cur;
28
       int clone = sz++;
29
       len[clone] = len[p]+1;
30
       memcpy(nex[clone], nex[q], sizeof nex[q]);
31
       for (; \sim p && nex[p][c] == q; p = link[p]) nex[p][c] = clone;
32
33
       link[clone] = link[q];
       link[q] = link[cur] = clone;
34
35
       return cur;
36
     void insert(const string &s) {
37
       int last = 0; for (char ch : s) last = extend(last, ch-C);
38
39
     void insert(const char *s) {
40
       for (int i = 0, last = 0; s[i]; ++i) last = extend(last, s[i]-C);
41
42
43
   };
```

40.3 多个字符串间的最长公共子串

设有 k 个字符串,每个结点建立长度为 k 的标记,在 parent 树自底向上合并,若满足所有标记,则记录

(对于本题而言,可以仅为标记数组,若需要求出此子串的个数,则需要改成计数数组)(可用二进制或 bitset)

40.4 根号暴力

在 parent 树上从字符串的每一个前缀的状态暴力往上跳 (须标记 vis) 例如可用此法记录上述的标记数组

证明: 对于第 i 个字符串,它最多会贡献 $\min(n, |s_i|^2), n = \sum |s_i|, O(n\sqrt{n})$

```
void jump(const string &s, int id) {
1
       int x = 0;
2
       for (char ch : s) {
3
         x = nex[x][ch-C];
4
5
         for (int y = x; y && vis[y] != id; y = link[y]) {
           vis[y] = id;
6
7
           ++k[y]; // 记录信息
8
         }
       }
9
10
     }
```

40.5 树上本质不同路径数

一颗无根树上任意一条路径必定可以在以某个叶节点为根时,变成一条从上到下的路径暴力把所有叶子结点为根的树加入自动机**,**就这?

```
void dfs(int u, int fa = 0, int last = 0) {
  int nex = gsam.extend(last, a[u]);
  for (int v : e[u]) if (v != fa) dfs(v, u, nex);
}
```

40.6 循环同构问题

CF235C:SAM 读入字符串是支持删除首字符的! 将一个字符串所有的循环同构串插入到 sam, 外加 vis 去重

```
ll cyclic_query(const string &s) { // 循环同构
       static int id = 0, vis[M];
2
3
       ++id;
4
       11 \text{ res} = 0;
       for (int i = 0, c, m = s.size(), u = 0, l = 0; i < m*2-1; ++i) {
5
6
         c = s[i%m]-C;
7
         while (u && !nex[u][c]) l = len[u = link[u]];
         if (nex[u][c]) u = nex[u][c], ++1;
8
         if (1 > m && --1 == len[link[u]]) u = link[u]; // 删除首字符
9
         if (l == m && vis[u] != id) res += cnt[u], vis[u] = id; // 去重
10
            ,记录答案
11
12
       return res;
     }
13
```

41 最小表示法

 $S[i\cdots n]+S[1\cdots i-1]=T$ 则称 S 与 T ** 循环同构 ** 字符串 S 的 ** 最小表示 ** 为与 S 循环同构的所有字符串中字典序最小的字符串 O(n)

```
int min_cyclic_string(const string &s) {
1
2
     int k = 0, i = 0, j = 1, n = s.size();
3
     while (k < n && i < n && j < n) {
       if (s[(i + k) % n] == s[(j + k) % n]) {
4
5
         k++;
       } else {
6
         s[(i + k) \% n] > s[(j + k) \% n] ? i = i + k + 1 : j = j + k +
7
         if (i == j) i++;
8
9
         k = 0;
10
11
12
     return min(i, j);
13
   }
```

42 Lyndon 分解

Lyndon 串:对于字符串 s,如果 s 的字典序严格小于 s 的所有后缀的字典序,我们称 s 是简单串,或者 Lyndon 串。

Lyndon 分解: 串 s 的 Lyndon 分解记为 $s=w_1w_2\cdots w_k$,其中所有 w_i 为简单串,并且他们的字典序按照非严格单减排序,即 $w_1\geq w_2\geq \cdots \geq w_k$ 。可以发现,这样的分解存在且唯一。

Duval 可以在 O(n) 的时间内求出一个串的 Lyndon 分解。

```
// duval algorithm
   vector<string> duval(string const& s) {
2
3
     int n = s.size(), i = 0;
4
     vector<string> factorization;
5
     while (i < n) {
       int j = i + 1, k = i;
6
       while (j < n \&\& s[k] <= s[j]) {
7
          if (s[k] < s[j])
8
9
            k = i;
         else
10
11
            k++;
         j++;
12
       }
13
       while (i <= k) {
14
15
         factorization.push_back(s.substr(i, j - k));
16
          i += j - k;
17
18
     return factorization;
19
20
```

43 回文树 | 回文自动机 | PAM

定理: 对于一个字符串 s, 它的本质不同回文子串个数最多只有 |s| 个。状态数,复杂度 O(n)

由于回文树的构造过程中,节点本身就是按照拓扑序插入,因此可以按序枚举所有状态实现 树遍历

```
struct PAM {
1
     static const int A = 26;
2
3
     static const char C = a;
4
     int sz, tot, last;
     int ch[N][A], len[N], fail[N];
5
6
     char s[N];
7
     PAM() { init(); }
8
     int node(int 1) {
9
       ++SZ;
       memset(ch[sz], 0, sizeof ch[sz]);
10
11
       len[sz] = 1;
       fail[sz] = 0;
12
13
       return sz;
14
     void init() {
15
16
       sz = -1;
       last = 0;
17
       s[tot = 0] = '#';
18
19
       node(0);
20
       fail[0] = node(-1);
21
22
     int getfail(int x) {
       while (s[tot-len[x]-1] != s[tot]) x = fail[x];
23
```

```
24
       return x;
25
     void insert(char c) {
26
       s[++tot] = c;
27
       int now = getfail(last);
28
       if (!ch[now][c-C]) {
29
          int x = node(len[now]+2);
30
          fail[x] = ch[getfail(fail[now])][c-C];
31
          ch[now][c-C] = x;
32
33
       last = ch[now][c-C];
34
     }
35
   };
36
```

43.1 特殊 log 性质

记字符串 s 长度为 i 的前缀为 pre(s,i), 长度为 i 的后缀为 suf(s,i)

周期: 若 $0 , <math>\forall 1 \le i \le |s| - p$, s[i] = s[i+p], 就称 p 是 s 的周期。

border: 若 $0 \le r < |s|$, pre(s,r) = suf(s,r), 就称 pre(s,r) 是 s 的 border。

周期和 border 的关系: t 是 s 的 border,当且仅当 |s|-|t| 是 s 的周期。

引理 1: t 是回文串 s 的后缀, t 是 s 的 border 当且仅当 t 是回文串。

引理 2: t 是回文串 s 的 border $(|s| \le 2|t|)$, s 是回文串当且仅当 t 是回文串。

引理 3: t 是回文串 s 的 border,则 |s|-|t| 是 s 的周期,|s|-|t| 为 s 的最小周期,当且仅当 t 是 s 的最长回文真后缀。

引理 4: x 是一个回文串, y 是 x 的最长回文真后缀, z 是 y 的最长回文真后缀。令 u,v 分别为满足 x=uy,y=vz 的字符串,则有下面三条性质

 $|u| \geq |v|$;

如果 |u| > |v|, 那么 |u| > |z|;

如果 |u| = |v|, 那么 u = v。

推论: s 的所有回文后缀按照长度排序后,可以划分成 $\log |s|$ 段等差数列。

回文树上的每个节点 u 需要多维护两个信息,diff[u] 和 slink[u]。diff[u] 表示节点 u 和 fail[u] 所代表的回文串的长度差,即 len[u] - len[fail[u]]。slink[u] 表示 u 一直沿着 **fail** 向上跳到第一个节点 v,使得 $diff[v] \neq diff[u]$,也就是 u 所在等差数列中长度最小的那个节点。

```
diff[x] = len[x]-len[fail[x]];
slink[x] = diff[x] == diff[fail[x]] ? slink[fail[x]] : fail[x];
```

```
1 for (int i = 2; i <= sz; ++i)
2 for (int j = i, k = slink[i]; j; j = k, k = slink[j])
3 // 等差数列[len[k], len[j]] d = diff[j]
```

43.2 最小回文划分

问题描述: 求最小的 k, 使得字符串能分成 k 段且每段都是回文串 暴力: $dp[i] = 1 + \min_{s[j+1\cdots i]} dp[j]$

g[v] 表示 v 所在等差数列的 dp 值之和,且 v 是这个等差数列中长度最长的节点,则 $g[v] = \sum_{x.slink[x]=v} dp[i-len[x]]$,这里 i 是当前枚举到的下标。(该题改求和为取 min)

假设当前枚举到第 i 个字符,回文树上对应节点为 $x \circ g[x] = g[fail[x]] + dp[i - (len[slink[x]] + diff[x])]$

```
void solve() {
1
2
        dp[0] = 1;
        for (int x = 0, i = 1; i <= tot; ++i) {
3
          while (s[i-len[x]-1] != s[i]) x = fail[x];
4
          x = ch[x][s[i]-C];
5
          for (int^{\dagger}j = x; j^{\prime} > 1; j = slink[j]) {
6
            g[j] = dp[i-len[slink[j]]-diff[j]];
7
            if (diff[j] == diff[fail[j]]) update(g[j], g[fail[j]]);
8
            update(dp[i], g[j]);
9
10
        }
11
     }
12
```

43.3 回文级数优化回文树上 dp

问题描述: 把字符串 s 划分成若干个字符串 $t_1t_2\cdots t_k$, 使得 $t_i=t_{k-i+1}$, 求方案数 问题转化:将字符串转为 $s_1s_ns_2s_{n-1}\cdots$,原划分方案恰好对应了对新串进行偶数长度的回 文划分的方案

tips: 只需要考虑偶数下标位置的 dp 值即可

序列自动机 44

序列自动机是接受且仅接受一个字符串的子序列的自动机。

```
struct SeqAutomaton { // suppose string [1, n]
     static const int A = 26;
2
     static const char C = 'a';
3
4
     int nex[N][A];
     void build(const string &s) {
5
       memset(nex[s.size()], 0, sizeof nex[0]);
6
       for (int i = s.size(); i; --i) {
7
         memcpy(nex[i-1], nex[i], sizeof nex[0]);
8
9
         nex[i-1][s[i-1]-C] = i;
       }
10
11
     }
   };
12
```

Main-Lorentz 算法 45

我们将一个字符串连续写两遍所产生的新字符串称为重串 (tandem repetition)。将被重

复的这个字符串称为原串。 如果一个重串的原串不是重串,则我们称这个重串为本原重串 (primitive repetition)。 可以证明,本原重串最多有 $O(n \log n)$ 个。

如果我们把一个重串用 Crochemore 三元组 (i, p, r) 进行压缩,其中 i 是重串的起始位 置,p 是该重串某个循环节的长度(注意不是原串长度!),r 为这个循环节重复的次数。则某字 符串的所有重串可以被 $O(n \log n)$ 个 Crochemore 三元组表示。

Part V 图论 | 树论

- 46 DFS 树
- 47 树的重心

```
void treedp(int cur, int fa) {
2
     s[cur] = c[cur];
     for(int i = fir[cur]; i; i = nex[i]) {
3
4
       if(e[i] == fa) continue;
5
       treedp(e[i], cur);
       s[cur] += s[e[i]];
6
       maxs[cur] = max(maxs[cur], s[e[i]]);
7
8
9
     maxs[cur] = max(maxs[cur], sum-s[cur]);
10
```

48 最大团

最大独立集数 = 补图的最大团

```
struct MaxClique {
1
2
     vector<int> res, tmp, cnt;
3
     bool dfs(int p) {
        for (int i = p+1, flag; i <= n; ++i) {
4
          if (cnt[i]+tmp.size() <= res.size()) return false;
if (!g[p][i]) continue;</pre>
5
6
7
          flag = 1;
          for (int j : tmp)
8
            if (!g[i][j]) flag = 0;
9
          if (!flag) continue;
10
11
          tmp.push_back(i);
          if (dfs(i)) return true;
12
          tmp.pop back();
13
14
        if (tmp.size() > res.size()) {
15
          res = tmp;
16
          return true;
17
18
        return false;
19
20
     void solve() {
21
        vector<int>(n+1, 0).swap(cnt);
22
23
        vector<int>().swap(res);
        for (int i = n; i; --i) {
24
          vector<int>(1, i).swap(tmp);
25
          dfs(i);
26
          cnt[i] = res.size();
27
28
        }
29
   } MC;
30
```

49 稳定婚姻匹配

```
template <typename T = int> struct Stable_Marriage {
     int t[N], b[N], g[N], rkb[N][N], rkg[N][N];
2
     T wb[N][N], wg[N][N];
3
4
     queue<int> q;
     void init(const int &n) {
5
        queue<int>().swap(q);
6
7
       memset(t, 0, sizeof(int)*(n+3));
8
       memset(b, 0, sizeof(int)*(n+3));
       memset(g, 0, sizeof(int)*(n+3));
9
       for (int i = 1; i <= n; ++i) {
10
          q.push(i);
11
          for (int j = 1; j <= n; ++j)
  rkb[i][j] = rkg[i][j] = j;</pre>
12
13
          sort(rkb[i]+1, rkb[i]+n+1,
14
             [&](const int &x, const int &y) { return wb[i][y] < wb[i][x
15
        }
16
17
     bool match(const int &x, const int &y) {
18
19
        if (g[y]) {
          if (wg[y][x] < wg[y][g[y]]) return false;</pre>
20
          b[g[y]] = 0;
21
          q.push(g[y]);
22
23
       b[x] = y; g[y] = x;
24
25
       return true;
26
     void gale_shapely(const int &n) {
27
        init(n);
28
       while (q.size()) {
29
          int x = q.front(); q.pop();
30
          int y = rkb[x][++t[x]];
31
          if (!match(x, y)) q.push(x);
32
33
34
   };
```

50 最小生成树

Prim

```
inline void prim() {
     fill(dis, dis+n+1, INF);
2
3
     dis[1] = 0;
4
     for(int t = 1; t <= n; ++t)
5
6
       int mini = 0;
7
       for(int i = 1; i <= n; ++i)
          if(!vis[i] && dis[i] < dis[mini])</pre>
8
9
            mini = i;
       vis[mini] = 1;
10
       ans += dis[mini];
11
       for(int i = 1; i <= n; ++i)
12
```

```
if(!vis[i]) dis[i] = min(dis[i], calc(mini, i));
if(!vis[i]) dis[i] = min(dis[i], calc(mini, i));
}
```

51 二分图

51.1 二分图最大匹配

增广路算法 Augmenting Path Algorithm O(nm)

```
bool check(int u) {
1
     for (int v : e[u]) {
  if (vis[v]) continue;
2
3
        vis[v] = 1;
4
        if (!co[v] || check(co[v])) {
5
          co[v] = u;
6
7
          return true;
8
9
      return false;
10
   }
11
12
   inline int solve() {
13
      int res = 0;
14
15
     memset(co, 0, sizeof co);
     for (int i = 1; i <= n; ++i) {
16
        memset(vis, 0, sizeof(int)*(n+3));
17
        res += check(i);
18
19
     return res;
20
   }
21
```

网络流 $O(\sqrt{nm})$

51.2 二分图最大权匹配

Hungarian Algorithm (Kuhn-Munkres Algorithm) 匈牙利算法又称为 KM 算法,可以在 $O(n^3)$ 时间内求出二分图的最大权完美匹配。

51.3 二分图最小顶点覆盖

定义:假如选了一个点就相当于覆盖了以它为端点的所有边。最小顶点覆盖就是选择最少的点来覆盖所有的边。 定理:最小顶点覆盖等于二分图的最大匹配。

51.4 最大独立集

定义:选出一些顶点使得这些顶点两两不相邻,则这些点构成的集合称为独立集。找出一个包含顶点数最多的独立集称为最大独立集。

定理: 最大独立集 = 所有顶点数 - 最小顶点覆盖 = 所有顶点数 - 最大匹配

52 最近公共祖先 | LCA

52.1 倍增

```
struct LCA {
1
2
     static const int NN = (int)log2(N)+3;
     int f[N][NN], d[N], lg2[N];
LCA() { for (int i = 2; i < N; ++i) lg2[i] = lg2[i>>1]+1; }
3
4
5
     template <typename TT>
     void build(const TT e[], const int &u = 1, const int &fa = 0) {
6
7
       d[u] = d[fa]+1;
       f[u][0] = fa;
8
        for (int i = 1; (1<<i) <= d[u]; ++i)
9
          f[u][i] = f[f[u][i-1]][i-1];
10
        for (auto v : e[u]) if (v != fa)
11
          build(e, v, u);
12
13
     int get(int x, int y) {
14
15
        if (d[x] < d[y]) swap(x, y);</pre>
       while (d[x] > d[y])
16
          x = f[x][1g2[d[x]-d[y]]];
17
18
        if (x == y) return x;
       for (int i = \lg 2[d[x]]; i >= 0; --i)
19
          if(f[x][i] != f[y][i])
20
            x = f[x][i], y = f[y][i];
21
       return f[x][0];
22
23
     }
   };
24
```

52.2 树剖

```
struct HLD {
1
     int fa[N], d[N], num[N], son[N], tp[N];
2
3
     vector<int> *e;
     void build(vector<int> *e, const int &rt = 1) {
4
5
       this -> e = e;
       fa[rt] = 0;
6
       dfs1(rt);
7
       dfs2(rt);
8
9
     void dfs1(const int &u = 1) {
10
       d[u] = d[fa[u]]+1;
11
12
       num[u] = 1;
       son[u] = 0;
13
       for (const int &v : e[u]) if (v != fa[u]) {
14
15
         fa[v] = u;
         dfs1(v);
16
         num[u] += num[v];
17
         if (num[v] > num[son[u]]) son[u] = v;
18
       }
19
20
     void dfs2(const int &u = 1) {
21
       tp[u] = son[fa[u]] == u ? tp[fa[u]] : u;
22
       if (son[u]) dfs2(son[u]);
23
```

```
for (const int &v : e[u]) if (v != son[u] && v != fa[u])
24
           dfs2(v);
25
26
      int lca(int x, int y) {
  while (tp[x] != tp[y]) {
27
28
           if (d[tp[x]] < d[tp[y]]) swap(x, y);</pre>
29
           x = fa[tp[\bar{x}]];
30
31
32
         return d[x] < d[y] ? x : y;
33
      }
   };
34
```

52.3 欧拉序

dfs 时进入一个节点加入序列,回溯回来也加一次lca 转变为区间深度最小的点

52.4 带权 LCA

```
template <typename T>
   struct LCA {
2
3
     static const int NN = (int)log2(N)+3;
     int f[N][NN], d[N], lg2[N];
4
5
     T w[N][NN], init_val = 0;
     LCA() \
6
7
       for (int i = 2; i < N; ++i) lg2[i] = lg2[i>>1]+1;
       init();
8
9
     // set sum or min or max, and don't forget to set init val
10
     T update(const T &x, const T &y) { return x+y; }
11
     void init(const int &n = N-1) {
12
       fill(w[0], w[0]+(n+1)*NN, init_val);
13
14
     template <typename TT>
15
     void build(const TT e[], const int &u = 1, const int &fa = 0) {
16
17
       d|u| = d|fa|+1;
       f[u][0] = fa;
18
       for (int i = 1; (1<<i) <= d[u]; ++i) {
19
         f[u][i] = f[f[u][i-1]][i-1];
20
         w[u][i] = update(w[u][i-1], w[f[u][i-1]][i-1]);
21
22
23
       for (auto v : e[u]) if (v.first != fa) {
         w[v.first][0] = v.second;
24
         build(e, v.first, u);
25
26
27
       get(int x, int y) {
28
       T res = init val;
29
       if (d[x] < d[y]) swap(x, y);</pre>
30
       while (d[x] > d[y]) {
31
         res = update(res, w[x][lg2[d[x]-d[y]]]);
32
         x = f[x][lg2[d[x]-d[y]]];
33
34
35
       if (x == y) return res;
       for (int i = lg2[d[x]]; i >= 0; --i)
36
```

```
if(f[x][i] != f[y][i]) {
    res = update(res, w[x][i]);
    res = update(res, w[y][i]);
    x = f[x][i], y = f[y][i];
    x = f[x][i], y = f[y][i];
}
return update(res, update(w[x][0], w[y][0]));
}
}
}
```

53 树上差分

```
template <typename T>
1
   struct Tree {
2
3
     T val[N];
4
     void update_point(const int &x, const int &y, const T &k) {
5
       int _lca = lca(x, y);
       val[x] += k; val[y] += k;
6
7
       val[_lca] -= k; val[f[_lca][0]] -= k;
8
     void update_edge(const int &x, const int &y, const T &k) {
9
10
       int _lca = lca(x, y);
       val[x] += k; val[y] += k; val[lca] -= 2*k;
11
12
     void dfs(const int &u = 1, const int &fa = 0) {
13
       for (int v : e[u]) if (v != fa) {
14
15
         dfs(v, u);
         val[u] += val[v];
16
       }
17
18
   };
19
```

54 树链剖分

```
1
   template <typename T>
2
   struct HLD {
3
     int dfn;
     int fa[N], d[N], num[N], son[N], id[N], tp[N];
4
5
     T init_val[N];
     vector<int> *e;
6
7
     SegmentTree ST;
8
     void build(vector<int> *e, T *a, int n, int rt = 1) {
9
       this -> e = e;
       fa[rt] = dfn = 0;
10
       dfs1(rt);
11
       dfs2(rt);
12
13
       for (int i = 1; i <= n; ++i)
          init val[id[i]] = a[i];
14
       ST.build(init_val, n);
15
16
17
     void dfs1(const int &u = 1) {
       d[u] = d[fa[u]]+1;
18
       num[u] = 1;
19
```

```
son[u] = 0;
20
       for (const int &v : e[u]) if (v != fa[u]) {
21
          fa[v] = u;
22
          dfs1(v);
23
          num[u] += num[v];
24
          if (num[v] > num[son[u]]) son[u] = v;
25
26
27
28
     void dfs2(const int &u = 1) {
       tp[u] = son[fa[u]] == u ? tp[fa[u]] : u;
29
       id[u] = ++dfn;
30
       if (son[u]) dfs2(son[u]);
31
       for (const int &v : e[u]) if (v != son[u] && v != fa[u])
32
          dfs2(v);
33
34
     void add sons(const int &x, const T &k) { ST.add(id[x], id[x]+num[x
35
        ]-1, k); }
36
     void add(int x, int y, const T &k, const int &is_edge = 0) {
       while (tp[x] != tp[y]) {
37
          if (d[tp[x]] < d[tp[y]]) swap(x, y);</pre>
38
          ST.add(id[tp[x]], id[x], k);
39
          x = fa[tp[x]];
40
41
       if (d[x] > d[y]) swap(x, y);
42
       ST.add(id[x], id[y], k);
43
       if (is edge) ST.add(id[x], -k);
44
45
     T query_sons(const int &x) { return ST.query(id[x], id[x]+num[x]-1)
46
     T query(const int &x) { return ST.query(id[x]); }
47
48
     T query(int x, int y) {
       T res = 0;
49
       while (tp[x] != tp[y]) {
50
          if (d[tp[x]] < d[tp[y]]) swap(x, y);</pre>
51
          res += ST.query(id[tp[x]], id[x]);
52
53
         x = fa[tp[x]];
54
       if (d[x] > d[y]) swap(x, y);
return res+ST.query(id[x], id[y]);
55
56
57
   };
58
```

55 网络流

55.1 最大流

55.1.1 Dinic

普通情况下 $O(n^2m)$ 二分图中 $O(\sqrt{n}m)$

```
template <typename T>
struct Dinic {
    struct EDGE {
        int v, nex;
        T w;
}
```

55.1 最大流 55 网络流

```
EDGE(const int &_v, const int &_nex, const T &_w) : v(_v), nex(
6
          _nex), w(_w) {}
7
     };
     vector<EDGE> e;
8
9
     int n, s, t;
     int fir[N], dep[N], cur[N];
10
     Dinic() { e.reserve(N<<2); }</pre>
11
     T work(const int &_s, const int &_t) {
12
       s = _s; t = _t;
13
       T ma\overline{x}flow = \overline{0}, flow;
14
       while (bfs())
15
          while ((flow = dfs(s, INF)))
16
            maxflow += flow;
17
       return maxflow;
18
19
     void init(const int &_n) {
20
21
       n = _n;
       e.clear();
22
       memset(fir, -1, sizeof(int)*(n+3));
23
24
25
     void add_edge(const int &u, const int &v, const T &w) {
       e.emplace_back(v, fir[u], w); fir[u] = e.size()-1;
26
       e.emplace_back(u, fir[v], 0); fir[v] = e.size()-1;
27
28
29
     bool bfs() {
       queue<int> q;
30
       memset(dep, 0, sizeof(int)*(n+3));
31
       q.push(s);
32
33
       dep[s] = 1;
       for (int i = 0; i <= n; ++i) cur[i] = fir[i];
34
35
       while (q.size()) {
36
          int u = q.front();
          q.pop();
37
          for (int i = fir[u], v; i != -1; i = e[i].nex) {
38
39
            v = e[i].v;
            if (dep[v] || !e[i].w) continue;
40
41
            dep[v] = dep[u]+1;
            if (v == t) return true;
42
            q.push(v);
43
44
       }
45
46
       return false;
47
     T dfs(const int &u, const T &flow) {
48
       if (!flow || u == t) return flow;
49
       T rest = flow, now;
50
       for (int &i = cur[u], v; i != -1; i = e[i].nex) {
51
         v = e[i].v;
52
          if (dep[v] != dep[u]+1 || !e[i].w) continue;
53
          now = dfs(v, min(rest, e[i].w));
54
          if (!now) {
55
            dep[v] = 0;
56
          } else
57
            e[i].w -= now;
58
            e[i^1].w += now;
59
            rest -= now;
60
            if (rest == flow) break;
61
```

55.2 费用流 55 网络流

55.2 费用流

55.2.1 ZKW_SPFA

```
template <typename T>
   struct ZKW SPFA {
2
3
     struct Edge {
4
       int v, nex;
5
       T w, c; // edge wight and cost
       Edge(const int &_v, const int &_nex, const T &_w, const T &_c) \
6
7
       : v(_v), nex(_nex), w(_w), c(_c) {}
8
     };
9
     vector<Edge> e;
     int n, s, t;
10
     int fir[N], vis[N];
11
     T maxflow, mincost;
12
     T dis[N];
13
     ZKW_SPFA() { e.reserve(N<<4); }</pre>
14
15
     void init(const int &_n) {
       n = n;
16
       maxflow = mincost = 0;
17
       e.clear();
18
19
       memset(fir, -1, sizeof(int)*(n+3));
20
     void add_edge(const int &u, const int &v, const T &w = 1, const T &
21
        c = 0) {
22
       23
       e.emplace_back(u, fir[v], 0, -c); fir[v] = e.size()-1;
24
     pair<T, T> work(const int &_s, const int &_t) {
25
26
       s = s; t = t;
27
       while (spfa()) {
         vis[t] = 1;
28
29
         while (vis[t]) {
           memset(vis, 0, sizeof(int)*(n+3));
30
           maxflow += dfs(s, INF);
31
32
         }
       }
33
34
       return {maxflow, mincost};
35
     private:
36
     bool spfa() {
37
       memset(dis, 0x3f, sizeof(T)*(n+3));
38
       memset(vis, 0, sizeof(int)*(n+3));
39
       deque<int> q;
40
41
       q.push_back(t);
       dis[t] = 0;
42
43
       vis[t] = 1;
44
       while (q.size()) {
         int u = q.front(); q.pop_front();
45
```

55.3 上下界网络流 55 网络流

```
for (int i = fir[u], v; ~i; i = e[i].nex) {
46
            v = e[i].v;
47
            if (!e[i^1].w || dis[v] <= dis[u]+e[i^1].c) continue;</pre>
48
            dis[v] = dis[u]+e[i^1].c;
49
            if (vis[v]) continue;
50
            vis[v] = 1;
51
            if (q.size() && dis[v] < dis[q.front()]) q.push front(v);</pre>
52
53
            else q.push_back(v);
54
         vis[u] = 0;
55
       }
56
57
       return dis[s] < INF;</pre>
58
     T dfs(const int &u, const T &flow) {
59
       vis[u] = 1;
60
       if (u == t || flow <= 0) return flow;</pre>
61
62
       T res, used = 0;
       for (int i = fir[u], v; ~i; i = e[i].nex) {
63
          v = e[i].v;
64
          if (vis[v] || !e[i].w || dis[u] != dis[v]+e[i].c) continue;
65
66
          res = dfs(v, min(e[i].w, flow-used));
          if (!res) continue;
67
          mincost += res*e[i].c;
68
          e[i].w -= res;
69
70
          e[i^1].w += res;
          used += res;
71
          if (used == flow) break;
72
73
74
       return used;
75
     }
76
   };
```

55.3 上下界网络流

55.4 全局最小割 StoerWagner

```
1
   template <typename T>
   T sw(int n, T dis[N][N]) {
2
3
     int s, t;
     T res = INF;
4
5
     vector<int> dap(n+1, 0), ord(n+1, 0), vis;
     vector<T> w;
6
     function<T(int)> proc = & {
7
8
       vis = vector<int>(n+1, 0);
       w = vector < T > (n+1, 0);
9
       w[0] = -1;
10
       for (int i = 1; i <= n-x+1; ++i) {
11
         int mx = 0;
12
         for (int j = 1; j <= n; ++j) {
13
            if (!dap[j] && !vis[j] && w[j] > w[mx]) mx = j;
14
15
         vis[mx] = 1;
16
         ord[i] = mx;
17
         for (int j = 1; j <= n; ++j) {
18
            if (!dap[j] && ! vis[j]) w[j] += dis[mx][j];
19
```

```
}
20
21
       s = ord[n-x];
22
23
       t = ord[n-x+1];
24
       return w[t];
     };
25
     for (int i = 1; i < n; ++i) {
26
        res = min(res, proc(i));
27
       dap[t] = 1;
28
       for (int j = 1; j <= n; ++j) {
29
          dis[s][j] += dis[t][j];
30
          dis[j][s] += dis[j][t];
31
        }
32
33
34
     return res;
35
```

56 最短路

56.1 SPFA

```
inline void SPFA() {
2
     fill(dis+1, dis+n+1, INT_MAX);
3
     dis[S] = 0;
4
     head = tail = 0;
     q[++tail] = S;
5
     while(head < tail) {</pre>
6
7
        int cur = q[++head];
        for(int i = fir[cur], to, tmp; i; i = nex[i]) {
8
          to = ver[i];
9
          tmp = dis[cur]+w[i];
10
          if(tmp >= dis[to]) continue;
11
12
          dis[to] = tmp;
          q[++tail] = to;
13
        }
14
     }
15
   }
16
```

57 负环

```
// 返回true有负环,返回false没负环
2
   inline bool SPFA() {
     q[++tail] = 1;
3
     vis[1] = 1;
4
     cnt[1] = 1;
5
     dis[1] = 0;
6
     while(head < tail) {</pre>
7
       int cur = q[(++head)%Maxn];
8
       vis[cur] = 0;
9
10
       for(int i = fir[cur], to; i; i = nex[i]) {
         to = ver[i];
11
         if(dis[cur]+w[i] < dis[to]) {</pre>
12
```

```
dis[to] = dis[cur]+w[i];
13
            if(!vis[to]) {
14
              q[(++tail)%Maxn] = to;
15
              vis[to] = 1;
16
              if(++cnt[to] > n) return true;
17
            }
18
19
20
21
     return false;
22
   }
23
```

58 割点

```
void tarjan(int cur, int fa) {
1
2
     dfn[cur] = low[cur] = ++_dfn;
     int child = 0;
3
     for(auto i : e[cur]) {
4
       if(!dfn[i]) {
5
6
         child++;
         tarjan(i, fa);
7
         low[cur] = min(low[cur], low[i]);
8
         if(cur != fa && low[i] >= dfn[cur]) flag[cur] = 1;
9
10
       low[cur] = min(low[cur], dfn[i]);
11
12
     if(cur == fa && child >= 2) flag[cur] = 1;
13
   }
14
```

59 SCC 强连通分量 | Tarjan

59.1 递归版本

```
dfn,
              col,
                     top;
   int dfn[N], low[N], vis[N], col[N], sta[N];
2
3
4
   void tarjan(const int &u) {
5
     dfn[u] = low[u] = ++_dfn;
     vis[u] = 1;
6
7
     sta[++_top] = u;
     for (int v : e[u]) {
8
       if (!dfn[v]) {
9
          tarjan(v);
10
11
          low[u] = min(low[u], low[v]);
       } else if (vis[v]) {
12
         low[u] = min(low[u], low[v]);
13
14
15
     if (dfn[u] == low[u]) {
16
17
       ++_col;
       do {
18
          col[sta[_top]] = _col;
19
```

```
20 | vis[sta[_top]] = 0;
21 | } while (sta[_top--] != u);
22 | }
23 |}
```

60 缩点

```
void tarjan(int u) {
2
     dfn[u] = low[u] = ++_dfn;
3
     vis[u] = 1;
4
     sta[++top] = u;
     for (int v : e[u]) {
5
       if (!dfn[v]) {
6
7
          tarjan(v);
          low[u] = min(low[u], low[v]);
8
        } else if (vis[v]) {
9
10
          low[u] = min(low[u], low[v]);
        }
11
12
     if (dfn[u] == low[u]) {
13
14
       w_{col}[++_{col}] = 0;
15
          col[sta[top]] = _col;
16
          vis[sta[top]] = \overline{0};
17
          w_col[_col] += w[sta[top]];
18
        } while (sta[top--] != u);
19
20
   }
21
22
   inline void suodian() {
23
24
     for (int i = 1; i <= n; ++i) {
25
        if (!dfn[i]) tarjan(i);
26
     for (int i = 1; i <= n; ++i) {
27
        for (int j : e[i]) {
28
          if (col[i] == col[j]) continue;
29
          e_col[col[i]].push_back(col[j]);
30
31
32
     }
   }
33
```

61 2-SAT

61.1 SCC Tarjan

```
O(n+m)

struct TWO_SAT { // node start from 0
    int top, _dfn, _scc;
    int dfn[N<<1], low[N<<1], stk[N<<1], scc[N<<1], res[N];
    vector<int> e[N<<1];
    void init(const int &n) {
        top = 0;</pre>
```

61.2 DFS 61 2-SAT

```
memset(dfn, 0, sizeof(int)*n*2);
7
       memset(low, 0, sizeof(int)*n*2);
8
       memset(scc, 0, sizeof(int)*n*2);
9
       for (int i = 0; i < n<<1; ++i) vector<int>().swap(e[i]);
10
11
     // if u then v
12
     void add edge(const int &u, const int &v) {
13
14
       e[u].emplace back(v);
15
     void add_edge(const int &u, const int &uv, const int &v, const int
16
        &vv) {
       e[u<<1^uv].emplace_back(v<<1^vv);
17
18
     // pt i ==> i<<1 && i<<1/1 ==> 0 && 1
19
20
     inline bool work(const int &n) {
       for (int i = 0; i <= n<<1; ++i)
21
         if (!dfn[i]) tarjan(i);
22
       for (int i = 0; i < n; ++i) {
23
24
         if (scc[i<<1] == scc[i<<1|1]) return false;</pre>
25
         res[i] = scc[i<<1] > scc[i<<1|1];
26
27
       return true;
28
     void tarjan(const int &u) {
29
       dfn[u] = low[u] = ++ dfn;
30
31
       stk[++top] = u;
       for (int &v : e[u]) {
32
         if (!dfn[v]) {
33
           tarjan(v);
34
            low[u] = min(low[u], low[v]);
35
         } else if (!scc[v])
36
            low[u] = min(low[u], dfn[v]);
37
38
39
       if (dfn[u] == low[u]) {
40
41
         ++_scc;
         do {
42
            scc[stk[top]] = scc;
43
         } while (stk[top--] != u);
44
45
46
   };
47
```

61.2 DFS

O(nm) 所求结果字典序最小

```
struct TWO SAT {
1
2
   int n, cnt;
   int res[N], mem[N<<1], mark[N<<1];</pre>
3
4
   vector<int> e[N<<1];</pre>
5
   void init(const int & n) {
6
     n = n;
7
     memset(mark, 0, sizeof(int)*n*2);
8
     9
   }
```

```
// if u then v
10
     void add_edge(const int &u, const int &v) {
11
       e[u].emplace_back(v);
12
13
     // pt i ==> i<<1 && i<<1/1 ==> 0 && 1
14
     void add_edge(const int &u, const int &uv, const int &v, const int
15
        &vv) {
       e[u<<1|uv].emplace_back(v<<1|vv);
16
17
     // tag 0 any 1 smallest
18
19
     bool work() {
       for (int i = 0; i < n; ++i) {
20
         if (mark[i<<1] || mark[i<<1|1]) continue;</pre>
21
         cnt = 0;
22
         if (!dfs(i<<1)) {
23
           while (cnt) mark[mem[cnt--]] = 0;
24
            if (!dfs(i<<1|1)) return false;</pre>
25
26
27
       for (int i = 0; i < n<<1; ++i) if (mark[i]) res[i>>1] = i&1;
28
29
       return true;
30
     bool dfs(const int &u) {
31
       if (mark[u^1]) return false;
32
33
       if (mark[u]) return true;
       mark[mem[++cnt] = u] = 1;
34
       for (int v : e[u]) if (!dfs(v)) return false;
35
36
       return true;
     }
37
   };
38
```

62 虚树

```
vector<int> ve[N];
   void virtual_tree_clear(const int &u = 1) {
     for (const int &v : ve[u]) virtual_tree_clear(v);
3
4
     ve[u].clear();
   }
5
6
7
   // return the root of virtual tree
8
   int virtual tree build(int vset[], const int &k) {
9
     static int stk[N], top;
     // id ==> dfn rank, d ==> depth
10
     int *id = hld.id, *d = hld.d;
11
     sort(vset+1, vset+k+1, & {
12
13
       return id[x] < id[y];</pre>
     });
14
15
     top = 0;
     int x, z;
16
17
     for (int i = 1; i <= k; ++i) {
       if (top && (z = hld.lca(vset[i], stk[top])) != stk[top]) {
18
         x = stk[top--];
19
         while (top && d[stk[top]] > d[z]) {
20
           ve[stk[top]].emplace_back(x);
21
           x = stk[top--];
22
```

```
23
          ve[z].emplace_back(x);
24
         if (!top || stk[top] != z) stk[++top] = z;
25
26
       stk[++top] = vset[i];
27
28
     x = stk[top--];
29
30
     while (top) {
       ve[stk[top]].emplace back(x);
31
       x = stk[top--];
32
33
34
     // if (x != 1)    ve[1].emplace_back(x);    // force root at 1
35
     return x;
36
```

63 线段树优化建图

```
template <typename T>
1
2
   struct SegmentTreeGarph {
     struct TreeNode {
3
4
       int 1, r;
5
       int ls, rs;
     } tr[N*3];
6
7
     vector<pair<int, T>> *e;
8
     int tot, root|2|;
9
     // op [down, 0] [up, 1]
     template <typename E>
10
     void build(const int &n, E *_e) {
11
       tot = n;
12
13
       e = e;
       for (int i = 1; i <= n; ++i) tr[i].l = tr[i].r = i;
14
       build(1, n, root[0], 0);
15
16
       build(1, n, root[1], 1);
17
     void build(const int &1, const int &r, int &i, const int &op) {
18
       if (1 == r) return i = 1, void();
19
20
       i = ++tot;
       tr[i].l = l; tr[i].r = r;
21
       int mid = (1+r) >> 1;
22
       build(l, mid, tr[i].ls, op);
23
       build(mid+1, r, tr[i].rs, op);
24
       e[op ? tr[i].ls : i].emplace_back(op ? i : tr[i].ls, 0);
25
       e[op ? tr[i].rs : i].emplace_back(op ? i : tr[i].rs, 0);
26
27
     void insert(const int &o, const int &l, const int &r, const T &w,
28
         const int &op) {
29
       if (1 == r) e[op ? 1 : o].emplace back(op ? o : l, w);
30
       else insert(o, l, r, w, op, root[op]);
31
32
     void insert(const int &o, const int &l, const int &r, const T &w,
33
         const int &op, const int &i) {
34
       if (tr[i].l >= 1 && tr[i].r <= r)
35
         e[op ? i : o].emplace back(op ? o : i, w);
36
37
         return;
       }
38
```

```
int mid = (tr[i].l+tr[i].r)>>1;
if (l <= mid) insert(o, l, r, w, op, tr[i].ls);
if (r > mid) insert(o, l, r, w, op, tr[i].rs);
}

};
```

64 矩阵树定理 |Kirchhoff

解决一张图的生成树个数计数问题 (详情见 oi-wiki)

65 斯坦纳树

给定连通图 G 中的 n 个点 m 条边与 k 个关键点,连接 k 个关键点,使得生成树的所有边的权值和最小。

我们使用状态压缩动态规划来求解。用 f(i,S) 表示以 i 为根的一棵树,包含集合 S 中所有点的最小边权值和。

65.1 边权最小

- 首先对连通的子集进行转移, $f(i,S) \leftarrow \min(f(i,S),f(i,T)+f(i,S-T))$ 。
- 在当前的子集连通状态下进行边的松弛操作, $f(i,S) \leftarrow \min(f(i,S),f(j,S)+w(j,i))$ 复杂度 $O(n\times 3^k + m\log m\times 2^k)$

```
int dp[N][1<<K];</pre>
   vector<pair<int, int>> e[N]; // e[u] = \{w, v\}
3
   priority_queue<pair<int, int>> q;
4
   void dijkstra(int s) {
5
6
     while (q.size()) {
       int ud = -q.top().first;
7
       int u = q.top().second;
8
       q.pop();
9
       if (ud > dp[u][s]) continue;
10
       for (int i = 0, v, w; i < (int)e[u].size(); ++i) {
11
         w = e[u][i].first;
12
         v = e[u][i].second;
13
         if (dp[v][s] <= dp[u][s]+w) continue;</pre>
14
         dp[v][s] = dp[u][s]+w;
15
         q.push({-dp[v][s], v});
16
17
     }
18
   }
19
20
   int steiner_tree(int *p) { // p[] is key point
21
     memset(dp, 0x3f, sizeof dp);
22
     for (int i = 0; i < k; ++i) dp[p[i]][1 << i] = 0;
23
     for (int s = 1; s < 1<<k; ++s) {
24
       for (int i = 1; i <= n; ++i) {
25
         for (int t = s&(s-1); t; t = s&(t-1))
26
            dp[i][s] = min(dp[i][s], dp[i][s^t]+dp[i][t]);
27
28
         if (dp[i][s] != INF) q.push({-dp[i][s], i});
29
       dijkstra(s);
30
```

65.2 点权最小 67 仙人掌

65.2 点权最小

```
- f(i,S) \leftarrow \min(f(i,S), f(i,T) + f(i,S-T) - a_i) 。由于此处合并时同一个点 a_i ,会被加两次,所以减去。
- f(i,S) \leftarrow \min(f(i,S), f(j,S) + w(j,i)) 。
```

65.3 路径输出

```
void dfs(int u, int s){
    if(!pre[u][s].second) return;
    // print
    if(pre[u][s].first == u) dfs(u, s^pre[u][s].second);
    dfs(pre[u][s].first, pre[u][s].second);
}
```

66 树上背包

时间复杂度 $O(n^2)$

```
void dfs(int u) {
2
     num[u] = 1;
3
     for (int &v : e[u]) {
4
       dfs(v);
       for (int i = min(m, num[u]+num[v]); j; --j) {
5
         for (int j = max(0, i-num[u]); j <= min(num[v], i); ++j) { // i
6
            -j >= num[u]
7
            dp[u][i] = max(dp[u][i], dp[u][i-j]+dp[v][j]);
8
9
10
       num[u] += num[v];
     }
11
   }
12
```

67 仙人掌

两点之间最短路

```
1 | namespace Cactus {
2 | #define log(x) (31-__builtin_clz(x))
4 | typedef long long ll;
5 | typedef pair<int, ll> pil;
6 | const int NN = (int)log2(N)+3;
7 | int n, _dfn, cnt;
8 | int f[N<<1][NN], dep[N<<1], dfn[N], from[N];
9 | // od 为仙人掌上距离, dis 为圆方树上距离, cir 为环上边权和
10 | ll od[N], dis[N<<1], cir[N];
```

```
|vector<pil> *e, ce[N<<1];
11
12
   bool dfs(int u) {
13
     dfn[u] = ++_dfn;
14
     for (const pil &edge : e[u]) {
15
       int v = edge.first;
16
       if (v == f[u][0]) continue;
17
       11 w = edge.second;
18
       if (!dfn[v]) {
19
          f[v][0] = u;
20
          dep[v] = dep[u]+1;
21
          od[v] = od[u]+w;
22
          if (!dfs(v)) return false;
23
          if (!from[v]) ce[u].emplace_back(v, w);
24
       } else if (dfn[v] < dfn[u]) {</pre>
25
          cir[++cnt] = od[u]-od[v]+w;
26
          ce[v].emplace back(n+cnt, 0);
27
          for (int x = u; x != v; x = f[x][0]) {
28
            if (from[x]) return false;
29
            from[x] = cnt;
30
            11 \text{ ww} = \text{od}[x] - \text{od}[v];
31
            ce[n+cnt].emplace back(x, min(ww, cir[cnt]-ww));
32
33
34
35
     return true;
36
   }
37
   // 带权倍增LCA
38
   void build_lca(int u) {
39
     for (int i = 1; (1<<i) <= dep[u]; ++i)
40
       f[u][i] = f[f[u][i-1]][i-1];
41
     for (const pil &edge : ce[u]) {
42
       int v = edge.first;
43
       dep[v] = dep[u]+1;
44
       dis[v] = dis[u]+edge.second;
45
       f[v][0] = u;
46
47
       build lca(v);
48
   }
49
50
   bool build(int _n, vector<pil> *_e) {
51
     n = _n; e = _e;
52
      dfn = cnt = 0;
53
     if (!dfs(1)) return false;
54
     dep[1] = 1;
55
56
     build lca(1);
57
     return true;
   }
58
59
60
   11 query(int u, int v) {
     if (dep[u] < dep[v]) swap(u, v);</pre>
61
     int x = u, y = v;
62
     while (dep[x] > dep[y]) x = f[x][log(dep[x]-dep[y])];
63
     if (x == y) return dis[u]-dis[v];
64
65
     for (int i = log(dep[x]); i >= 0; --i)
       if(f[x][i] != f[y][i]) x = f[x][i], y = f[y][i];
66
     if (f[x][0] <= n) return dis[u]+dis[v]-2*dis[f[x][0]];
67
```

67.1 仙人掌 DP 68 补图 DFS

67.1 仙人掌 DP

```
// from[i] 节点i与父亲的边所在环的编号
  // tp[i]环i深度最小的节点编号, bm[i]环i深度最大的节点编号
   int _dfn, cnt, fa[N], dfn[N], from[N], tp[N], bm[N];
4
   bool dfs(int u) {
5
6
     dfn[u] = ++ dfn;
7
     for (const int &v : e[u]) {
       if (v == fa[u]) continue;
8
       if (!dfn[v]) {
9
         fa[v] = u;
10
         dfs(v);
11
12
         // dp
       } else if (dfn[v] < dfn[u]) {</pre>
13
14
         ++cnt;
         tp[cnt] = v; bm[cnt] = u;
15
         for (int x = u; x != v; x = fa[x]) {
16
           if (from[x]) return false;
17
           from[x] = cnt;
18
19
       }
20
     }
21
  }
22
```

68 补图 DFS

```
void bfs(int S = 1) {
2
     static set<int> st[2]; // 存储未访问的点
3
     static queue<int> q;
     memset(dis+1, -1, sizeof(int)*n);
4
5
     dis[S] = 0;
6
     q.push(S);
7
     st[0].clear(); st[1].clear();
     for (int i = 1; i <= n; ++i) if (i != S) st[0].insert(i);
8
9
     while (q.size()) {
       int u = q.front();
10
11
       q.pop();
       for (int v : e[u]) if (st[0].count(v)) {
12
         st[0].erase(v);
13
14
         st[1].insert(v);
15
       for (auto v : st[0]) if (dis[v] == -1) {
16
         dis[v] = dis[u]+1;
17
         q.push(v);
18
       }
19
```

```
20 | swap(st[0], st[1]);
21 | st[1].clear();
22 | }
23 | }
```

69 浅谈图模型上的随机游走问题

69.1 网格图

$$f(i) = \begin{cases} p_1 f(i-1,j) + p_2 f(i,j-1) + p_3 f(i+1,j) + p_4 f(i,j+1) + 1, i^2 + j^2 \le R \\ 0, i^2 + j^2 < R \end{cases}$$

- **69.1.1** 高斯消元 $O(R^6)$
- **69.1.2** 直接消元法 $O(R^4)$
- **69.1.3** 主元法 $O(R^3)$

70 树分治

70.1 点分治

按树的重心分治

```
namespace DFZ {
2
   int vis[N], siz[N], mxs[N], cnt[K];
   vector<int> pset;
   void calc_size(int u, int fa = 0) { // 找重心
5
     siz[u] = 1; mxs[u] = 0;
6
7
     pset.emplace_back(u);
     for (auto p : e[u]) {
8
9
       int v = p.first;
       if (v == fa || vis[v]) continue;
10
       calc_size(v, u);
11
       siz[u] += siz[v];
12
       mxs[u] = max(mxs[u], siz[v]);
13
14
   }
15
16
   void query(int u, int fa, int dis) {
17
     for (int i = 1; i \leftarrow m; ++i) if (q[i] \rightarrow dis) ans [i] = cnt[q[i] - dis)
18
        dis];
     for (auto p : e[u]) {
19
       int v = p.first;
20
       if (v == fa || vis[v]) continue;
21
22
       query(v, u, dis+p.second);
23
   }
24
25
26 | void update(int u, int fa, int dis, int k) {
27 | if (dis < K) cnt[dis] += k;
```

70.2 边分治 71 快排

```
for (auto p : e[u]) {
28
29
       int v = p.first;
       if (v == fa || vis[v]) continue;
30
31
       update(v, u, dis+p.second, k);
     }
32
   }
33
34
35
   void dfz(int u = 1) {
     pset.clear();
36
     calc_size(u);
37
     for (int v : pset) { // get centre
38
       mxs[v] = max(mxs[v], (int)pset.size()-siz[v]);
39
       if (mxs[v] < mxs[u]) u = v;</pre>
40
41
     cnt[0] = 1;
42
     for (auto p : e[u]) {
43
44
       int v = p.first;
       if (vis[v]) continue;
45
       query(v, u, p.second);
46
47
       update(v, u, p.second, 1);
48
     update(u, 0, 0, -1); // clear
49
50
     vis[u] = 1;
     for (auto p : e[u]) {
51
       int v = p.first;
52
       if (vis[v]) continue;
53
54
       dfz(v);
55
56
   } // namespace 点分治
```

70.2 边分治

Part VI 数论

71 快排

```
void quick_sort(int 1, int r) {
1
2
     if(1 >= r) return;
     swap(a[1], a[1+rand()%(r-1)]);
3
4
     int i = 1, j = r, mid = a[1];
     while(i < j) {</pre>
5
       while(i < j && a[j] >= mid) --j;
6
       swap(a[i], a[j]);
7
       while(i < j && a[i] < mid) ++i;</pre>
8
9
        swap(a[i], a[j]);
10
11
     quick_sort(l, i-1);
12
     quick_sort(i+1, r);
   }
13
```

72 求第 K 大数

```
nth_element(a+1, a+k+1, a+n+1);
```



```
void merge_sort(int 1, int r) {
2
     if(1 == r) return;
3
     int mid = (1+r) >> 1;
     merge_sort(1, mid);
4
     merge_sort(mid+1, r);
5
     int i = 1, j = mid+1, k = 1;
6
     while(k <= r) {
7
8
       if(j <= r && (i > mid || a[j] < a[i])) {
9
         ans += mid-i+1;
         b[k++] = a[j++];
10
11
       else b[k++] = a[i++];
12
13
     memcpy(a+l, b+l, sizeof(int)*(r-l+1));
14
15
```

74 线性基

求最大值 Luogu3812 求第 k 大数 HD0J3949

```
template <typename T>
2
   struct LinearBase {
3
     int sz = sizeof(T)*8, zero;
4
     T tot;
     vector<T> b, rb, p;
5
     LinearBase(){ init(); }
6
7
     void init() {
       tot = zero = 0;
8
9
       vector<T>(sz, 0).swap(b);
       vector<T>().swap(rb);
10
       vector<T>().swap(p);
11
12
     template <typename TT>
13
14
     void build(TT a[], const int &n) {
       init();
15
       for (int i = 1; i <= n; ++i) insert(a[i]);
16
17
18
     void merge(const LinearBase xj) {
       for (int i : xj.b) if (i) insert(i);
19
20
     void insert(T x) {
21
       for (int i = sz-1; i >= 0; --i) if ((x>>i)&1) {
22
         if (!b[i]) { b[i] = x; return; }
23
         x ^= b[i];
24
25
```

```
26
       zero = 1;
27
     bool find(T x) {
28
29
       for (int i = sz-1; i >= 0; --i) if ((x>>i)&1) {
         if (!b[i]) { return false; }
30
         x ^= b[i];
31
32
       return true;
33
34
35
     T max_xor() {
       T res = 0;
36
       for (int i = sz-1; i >= 0; --i)
37
         if (~(res>>i)&1) res ^= b[i];
38
         // res = max(res, res^b[i]);
39
       return res;
40
41
     T min xor() {
42
       if (zero) return 0;
43
       for (int i = 0; i < sz; ++i)
44
45
         if (b[i]) return b[i];
46
     void rebuild() {
47
       rb = b;
48
49
       vector<T>().swap(p);
       for (int i = sz-1; i >= 0; --i)
50
         for (int j = i-1; j >= 0; --j)
51
            if ((rb[i]>>j)&1) rb[i] ^= rb[j];
52
       for (int i = 0; i < sz; ++i)
53
         if (rb[i]) p.emplace_back(rb[i]);
54
       tot = ((T)1<<p.size())+zero;
55
56
     T kth_min(T k) {
57
       if (k >= tot | k < 1) return -1;
58
       if (zero && k == 1) return 0;
59
       if (zero) --k;
60
61
       T res = 0;
       for (int i = (int)p.size()-1; i >= 0; --i)
62
         if ((k>>i)&1) res ^= p[i];
63
64
       return res;
65
       kth max(const T &k) {
66
       return kth min(tot-k);
67
68
   };
69
```

前缀和线性基 vector 跑贼鸡儿慢

```
template <class T>
1
2
   struct PreSumLB {
3
     int tot, sz = sizeof(T)*8;
     vector<T> b[N];
4
5
     vector<int> p[N];
     PreSumLB() { init(); }
6
     void init() {
7
       tot = 0;
8
9
       vector<T>(sz, 0).swap(b[0]);
       vector<int>(sz, 0).swap(p[0]);
10
11
```

```
void append(T val) {
12
13
       int pos = ++tot;
14
       vector<T> &bb = b[tot];
       vector<int> &pp = p[tot];
15
       pp = p[tot-1];
16
       bb = b[tot-1];
17
       for (int i = sz-1; i >= 0; --i) if ((val>>i)&1) {
18
          if (bb[i]) {
19
            if (pos > pp[i]) swap(pos, pp[i]), swap(val, bb[i]);
20
            val ^= bb[i];
21
          } else {
22
            bb[i] = val;
23
            pp[i] = pos;
24
25
            return;
26
       }
27
28
       query(const int &l, const int &r) {
29
       T res = 0;
30
       vector<T> &bb = b[r];
31
       vector<int> &pp = p[r];
32
       for (int i = sz-1; i >= 0; --i)
33
          if (pp[i] >= 1) res = max(res, res^bb[i]);
34
35
       return res;
36
     }
37
   };
```

75 矩阵

75.1 矩阵快速幂

75.2 矩阵求逆

```
template <typename T>
2
   struct Martix {
3
     int n, m;
4
     T a[N][N];
5
     Martix(){}
     Martix(const int &_n) : n(_n), m(_n) { init(); }
6
     Martix(const int &_n, const int &_m) : n(_n), m(_m) { init(); }
7
8
     T* operator [] (const int &i) { return a[i]; }
     void init(const int &tag = 0) {
9
       for (int i = 1; i \le n; ++i) memset(a[i], 0, sizeof(T)*(m+1));
10
       if (tag) for (int i = 1; i <= n; ++i) a[i][i] = tag;</pre>
11
12
13
     friend Martix operator * (const Martix &m1, const Martix &m2) {
       Martix res(m1.n, m2.m);
14
       for (int i = 1; i <= res.n; ++i)
15
         for (int j = 1; j <= res.m; ++j)
16
           for (int k = 1; k <= m1.m; ++k)
17
             res.a[i][j] = (res.a[i][j]+m1.a[i][k]*m2.a[k][j])%MOD;
18
19
       return res;
20
     Martix& operator *= (const Martix &mx) { return *this = *this*mx; }
21
```

75.2 矩阵求逆 75 矩阵

```
Martix& operator + (const Martix &mx) const { Martix res(n, m);
22
        return res += mx; }
23
     Martix& operator += (const Martix &mx) {
24
       assert(n == mx.n && m == mx.m);
       for (int i = 1; i <= n; ++i)
25
         for (int j = 1; j <= m; ++j)
26
           a[i][j] += mx.a[i][j];
27
28
       return *this;
29
     Martix& operator - (const Martix &mx) const { Martix res(n, m);
30
        return res -= mx; }
     Martix& operator -= (const Martix &mx) {
31
32
       assert(n == mx.n && m == mx.m);
       for (int i = 1; i <= n; ++i)
33
         for (int j = 1; j <= m; ++j)
34
35
           a[i][j] -= mx.a[i][j];
36
       return *this;
37
38
     template <typename TT>
     Martix pow(const TT &p) const {
39
       Martix res(n, m), a = *this;
40
       res.init(1);
41
42
       for (TT i = p; i; i >>= 1, a *= a) if (i&1) res *= a;
43
       return res;
44
     Martix inv() const {
45
       Martix res = *this;
46
       vector<int> is(n+1), js(n+1);
47
       for (int k = 1; k <= n; ++k) {
48
         for (int i = k; i <= n; ++i)
49
           for (int j = k; j <= n; ++j) if (res.a[i][j]) {
50
             is[k] = i; js[k] = j; break;
51
52
         for (int i = 1; i <= n; ++i) swap(res.a[k][i], res.a[is[k]][i])</pre>
53
         for (int i = 1; i \leftarrow n; ++i) swap(res.a[i][k], res.a[i][js[k]])
54
         if (!res.a[k][k]) return Martix(0);
55
         res.a[k][k] = mul inverse(res.a[k][k]); // get inv of number
56
         for (int j = 1; j <= n; ++j) if (j != k)
57
           res.a[k][j] = res.a[k][j]*res.a[k][k]%MOD;
58
         for (int i = 1; i <= n; ++i) if (i != k)
59
           for (int j = 1; j <= n; ++j) if (j != k)
60
             res.a[i][j] = (res.a[i][j]+MOD-res.a[i][k]*res.a[k][j]%MOD)
61
                %MOD;
         for (int i = 1; i <= n; ++i) if (i != k)
62
           res.a[i][k] = (MOD-res.a[i][k]*res.a[k][k]%MOD)%MOD;
63
64
       for (int k = n; k; --k) {
65
         66
         for (int i = 1; i <= n; ++i) swap(res.a[i][is[k]], res.a[i][k])</pre>
67
68
       return res;
69
70
     T det() {
71
```

```
72
       long long res = 1;
73
       Martix cpy = *this;
       for (int i = 1; i <= n; ++i) {
74
         for (int j = i+1; j <= n; ++j) while (cpy.a[j][i]) {
75
            long long t = cpy.a[i][i]/cpy.a[j][i];
76
            for (int k = i; k <= n; ++k)</pre>
77
              cpy.a[i][k] = (cpy.a[i][k]+MOD-t*cpy.a[j][k]%MOD)%MOD;
78
            swap(cpy.a[i], cpy.a[j]);
79
80
            res = -res;
81
         res = res*cpy.a[i][i]%MOD;
82
83
       return (res+MOD)%MOD;
84
85
     friend ostream& operator << (ostream &os, const Martix<T> &mx) {
86
       for (int i = 1; i <= mx.n; ++i)
87
         for (int j = 1; j <= mx.m; ++j)
88
            os << mx.a[i][j] << " \n"[j==mx.m];
89
90
       return os;
91
   };
92
```

75.3 伍德伯里矩阵恒等式 | Woodbury matrix identity

```
解决矩阵修改求逆问题 hdoj6994 (A+UCV)^{-1}=A^{-1}-A^{-1}U(C^{-1}+VA^{-1}U)^{-1}VA^{-1} A\in R^{n\times n}, U\in R^{n\times k}, C\in R^{k\times k}, V\in R^{k\times n} 矩阵求逆 O(n^3),单次修改 O(n^2) 例如给矩阵 A 的第 i 行第 j 列增加 \Delta ,若 A_{3*3}, (i,j)=(2,3) 则有 UCV=\begin{bmatrix}0&0&0\\0&0&\Delta\\0&0&0\end{bmatrix} 则有 U_{n\times 1}=\begin{bmatrix}0&1&0\end{bmatrix}^T, U_i=1 C_{1\times 1}=[\Delta] V_{1\times n}=\begin{bmatrix}0&0&1\end{bmatrix}, V_i=1
```

注意运算顺序 $(A^{-1}U)(C^{-1}+VA^{-1}U)^{-1}(VA^{-1})$

76 高斯消元

```
struct GaussElimination {
1
2
     double a[N][N];
3
     void init() { memset(a, 0, sizeof a); }
     void init(const int &n) {
4
       for (int i = 1; i <= n; ++i)
5
         for (int j = 1; j <= n+1; ++j)
6
           a[i][j] = 0;
7
8
9
     // ans is a[i][n+1]
     bool solve(const int &n) {
10
```

76.1 异或方程组 76 高斯消元

```
for (int i = 1, j, k; i <= n; ++i) {
  for (j = i+1, k = i; j <= n; ++j)</pre>
11
12
             if (abs(a[j][i]) > abs(a[k][i])) k = j;
13
           if (abs(a[k][i]) < eps) return false;</pre>
14
           swap(a[k], a[i]);
15
           for (j = 1; j <= n; ++j) if (i != j) {
16
             double d = a[j][i]/a[i][i];
17
             for (k = i+1; k <= n+1; ++k)
18
               a[j][k] -= d*a[i][k];
19
           }
20
21
        for (int i = 1; i <= n; ++i) a[i][n+1] /= a[i][i];
22
        return true;
23
24
   };
25
```

76.1 异或方程组

a[i][j] 第 i 个是否对 j 有影响 a[i][n+1] 第 i 个最后被翻转与否

```
// -1 : no solution, 0 : multi , 1 : one
   template <typename T>
   int XorGauss(T a[N], const int &n) {
  for (int i = 1, j, k; i <= n; ++i) {</pre>
 3
 4
        for (k = i; !a[k][i] && k <= n; ++k) {}
 5
        if (k <= n) swap(a[k], a[i]);</pre>
 6
        for (j = 1; j <= n; ++j) if (i != j && a[j][i])
  for (k = i; k <= n+1; ++k) a[j][k] ^= a[i][k];</pre>
 7
8
          // a[j] ^= a[i]; // bitset<N> a[N]
9
10
     for (int i = 1; i <= n; ++i) if (!a[i][i] && a[i][n+1]) return -1;
11
     for (int i = 1; i <= n; ++i) if (!a[i][i]) return 0;
12
      return 1;
13
14
15
   // dfs(n, 0)
   void dfs(const int &u, const int &num) {
17
      if (num >= res) return;
      if (u <= 0) { res = num; return; }</pre>
18
19
      if (a[u][u]) {
        int t = a[u][n+1];
20
        for (int i = u+1; i <= n; ++i) {
21
           if (a[u][i]) t ^= used[i];
22
23
24
        dfs(u-1, num+t);
      } else { // 自由元
25
26
        dfs(u-1, num);
27
        used[u] = 1;
        dfs(u-1, num+1);
28
        used[u] = 0;
29
      }
30
   }
31
```

77 拉格朗日插值

```
template <typename T, typename H, typename P>
   long long Largrange(const T &k, const int &n, const H x[], const P y
 2
       []) {
      k^{-}\% = MOD;
 3
 4
      long long res = 0, s1 = 1, s2 = 1;
      for (int i = 1; i <= n; ++i, s1 = s2 = 1) {
  for (int j = 1; j <= n; ++j) if (i != j) {</pre>
 5
 6
 7
           s1 = s1*(x[i]-x[j]+MOD)%MOD;
           s2 = s2*(k-x[j]+MOD)%MOD;
8
9
        res = (res+y[i]*s2%MOD*mul inverse(s1)%MOD)%MOD;
10
11
12
      return res;
   }
13
```

```
template <typename T, typename P> // x[i] = i \rightarrow y[i] = f(i)
2
   long long Largrange(const T &k, const int &n, const P y[]) {
3
     if (k <= n) return y[k];</pre>
     static long long pre[N], suf[N];
4
5
     long long res = 0;
     k %= MOD;
6
     pre[0] = suf[n+1] = 1;
7
     for (int i = 1; i <= n; ++i) pre[i] = pre[i-1]*(k-i)%MOD;
8
9
     for (int i = n; i >= 1; --i) suf[i] = suf[i+1]*(k-i)%MOD;
     for (int i = 1; i <= n; ++i) {
10
       res = (res+y[i]*(pre[i-1]*suf[i+1]%MOD)%MOD
11
         *mul inverse(((n-i)&1 ? -1 : 1)*fac[i-1]*fac[n-i]%MOD)%MOD)%MOD
12
13
     return (res+MOD)%MOD;
14
15
   }
```

78 快速幂

```
template <typename T, typename H>
inline T qpow(const T &a, const H &p, const int &mo = MOD) {
  long long res = 1, x = a;
  for (H i = p; i; i >>= 1, x = x*x%mo)
    if (i&1) res = res*x%mo;
  return static_cast<T>(res);
}
```

79 快速乘

```
inline long long qmul(long long x, long long y, long long mo) {
   // x*y - floor(x*y/mo)*mo
   typedef unsigned long long ull;
   typedef long double ld;
   return ((ull)x*y-(ull)((ld)x/mo*y)*mo+mo)%mo;
```

6 | }

80 复数

```
struct comp {
1
     typedef double T; // maybe long double ?
2
3
     T real, imag;
     comp (const double & real = 0, const double & imag = 0) : real(
4
        _real), imag(_imag) {}
     friend comp operator + (const comp &c1, const comp &c2) { return
5
        comp(c1.real+c2.real, c1.imag+c2.imag); }
     friend comp operator - (const comp &c1, const comp &c2) { return
6
        comp(c1.real-c2.real, c1.imag-c2.imag); }
     friend comp operator * (const comp &c1, const comp &c2) { return
7
        comp(c1.real*c2.real-c1.imag*c2.imag, c1.real*c2.imag+c1.imag*c2
        .real); }
     comp& operator += (const comp &c) { return *this = *this+c; }
8
     comp& operator -= (const comp &c) { return *this = *this-c;
9
     comp& operator *= (const comp &c) { return *this = *this*c; }
10
     friend istream& operator >> (istream &is, comp &c) { return is >> c
11
        .real >> c.imag; }
     friend ostream& operator << (ostream &os, comp &c) { return os << c
12
        .real << setiosflags(ios::showpos) << c.imag << "i";}</pre>
13
     comp conjugate() { return comp(real, -imag); }
     friend comp conjugate(const comp &c) { return comp(c.real, -c.imag)
14
15
  };
```

81 快速傅里叶变换 |FFT

```
namespace FFT { // array [0, n)
   const int SIZE = (1 << 18) + 3;
2
   int len, bit;
3
   int rev[SIZE];
   // #define comp complex<long double>
   void fft(comp a[], int flag = 1) {
6
7
     for (int i = 0; i < len; ++i)
       if (i < rev[i]) swap(a[i], a[rev[i]]);</pre>
8
     for (int base = 1; base < len; base <<= 1) {</pre>
9
       comp w, wn = {cos(PI/base), flag*sin(PI/base)};
10
       for (int i = 0; i < len; i += base*2) {</pre>
11
         W = \{ 1.0, 0.0 \};
12
          for (int j = 0; j < base; ++j) {
13
            comp x = a[i+j], y = w*a[i+j+base];
14
            a[i+j] = x+y;
15
            a[i+j+base] = x-y;
16
           w *= wn;
17
18
19
20
21
22 | void work(comp f[], const int &n, comp g[], const int &m) {
```

```
len = 1; bit = 0;
23
     while (len < n+m) len <<= 1, ++bit;</pre>
24
     // multi-testcase
25
     for (int i = n; i < len; ++i) f[i] = 0;</pre>
26
     for (int i = m; i < len; ++i) g[i] = 0;
27
     for (int i = 0; i < len; ++i)
28
       rev[i] = (rev[i>>1]>>1)|((i&1)<<(bit-1));
29
30
     fft(f, 1); fft(g, 1);
     for (int i = 0; i < len; ++i) f[i] *= g[i];
31
     fft(f, -1);
32
33
     for (int i = 0; i < n+m; ++i) f[i].real /= len;</pre>
34
   } // namespace FFT
```

82 快速数论变换 | NTT

```
namespace NTT { // array [0, n)
   const int SIZE = (1 << 18) + 3;
   const int G = 3;
   int len, bit;
int rev[SIZE];
5
   long long f[SIZE], g[SIZE];
7
   template <class T>
   void ntt(T a[], int flag = 1) {
8
     for (int i = 0; i < len; ++i)</pre>
9
       if (i < rev[i]) swap(a[i], a[rev[i]]);</pre>
10
     for (int base = 1; base < len; base <<= 1) {</pre>
11
12
       long long wn = qpow(G, (MOD-1)/(base*2)), w;
       if (flag == -1) wn = qpow(wn, MOD-2);
13
       for (int i = 0; i < len; i += base*2) {
14
         w = 1;
15
          for (int j = 0; j < base; ++j) {
16
            long long x = a[i+j], y = w*a[i+j+base]%MOD;
17
            a[i+j] = (x+y)\%MOD;
18
            a[i+j+base] = (x-y+MOD)%MOD;
19
            w = w*wn%MOD;
20
21
       }
22
23
24
   template <class T>
25
   void work(T a[], const int &n, T b[], const int &m) {
26
     len = 1; bit = 0;
27
     while (len < n+m) len <<= 1, ++bit;</pre>
28
29
     for (int i = 0; i < n; ++i) f[i] = a[i];
     for (int i = n; i < len; ++i) f[i] = 0;</pre>
30
     for (int i = 0; i < m; ++i) g[i] = b[i];</pre>
31
     for (int i = m; i < len; ++i) g[i] = 0;</pre>
32
     for (int i = 0; i < len; ++i)
33
       rev[i] = (rev[i>>1]>>1)|((i&1)<<(bit-1));
34
     ntt(f, 1); ntt(g, 1);
35
     for (int i = 0; i < len; ++i) f[i] = f[i]*g[i]%MOD;
36
37
     ntt(f, -1);
38
     long long inv = qpow(len, MOD-2);
```

```
39     for (int i = 0; i < n+m-1; ++i) f[i] = f[i]*inv%MOD;
40     }
41     // namespace NTT</pre>
```

83 任意模数 NTT MTT

```
namespace MTT {
   const int SIZE = (1 << 18) + 7;
   const int Mod = MOD;
   comp w[SIZE];
   int bitrev[SIZE];
   long long f[SIZE];
6
   void fft(comp *a, const int &n) {
7
     for (int i = 0; i < n; ++i) if (i < bitrev[i]) swap(a[i], a[bitrev[
     for (int i = 2, lyc = n >> 1; i <= n; i <<= 1, lyc >>= 1)
9
       for (int j = 0; j < n; j += i) {</pre>
10
         comp *l = a + j, *r = a + j + (i >> 1), *p = w;
11
         for (int k = 0; k < i >> 1; ++k) {
12
           comp tmp = *r * *p;
13
           *r = *l - tmp, *l = *l + tmp;
14
15
           ++1, ++r, p += lyc;
16
17
18
19
   template <class T>
   inline void work(T *x, const int &n, T *y, const int &m) {
20
     static int bit, L;
21
     static comp a[SIZE], b[SIZE];
22
     static comp dfta[SIZE], dftb[SIZE];
23
24
25
     for (L = 1, bit = 0; L < n+m-1; ++bit, L <<= 1);
     for (int i = 0; i < L; ++i) bitrev[i] = bitrev[i >> 1] >> 1 | ((i &
26
         1) << (bit - 1));
     for (int i = 0; i \langle L; ++i) w[i] = comp(cos(2 * PI * i / L), sin(2
27
        * PI * i / L));
28
29
     for (int i = 0; i < n; ++i) (x[i] += Mod) \% = Mod, a[i] = comp(x[i])
        & 32767, x[i] >> 15);
30
     for (int i = n; i < L; ++i) a[i] = 0;
     for (int i = 0; i < m; ++i) (y[i] += Mod) %= Mod, b[i] = comp(y[i]
31
        & 32767, y[i] >> 15);
     for (int i = m; i < L; ++i) b[i] = 0;
32
     fft(a, L), fft(b, L);
33
     for (int i = 0; i < L; ++i) {
34
       int j = (L - i) & (L - 1);
35
       static comp da, db, dc, dd;
36
37
       da = (a[i] + conjugate(a[j])) * comp(.5, 0);
       db = (a[i] - conjugate(a[j])) * comp(0, -.5);
38
       dc = (b[i] + conjugate(b[j])) * comp(.5, 0);
39
       dd = (b[i] - conjugate(b[j])) * comp(0, -.5);
40
       dfta[j] = da*dc + da*dd*comp(0, 1);
41
42
       dftb[j] = db*dc + db*dd*comp(0, 1);
43
     for (int i = 0; i < L; ++i) a[i] = dfta[i];
```

```
for (int i = 0; i < L; ++i) b[i] = dftb[i];</pre>
45
     fft(a, L), fft(b, L);
46
     for (int i = 0; i < L; ++i) {
47
       int da = (long long)(a[i].real / L + 0.5) % Mod;
48
       int db = (long long)(a[i].imag / L + 0.5) % Mod;
49
       int dc = (long long)(b[i].real / L + 0.5) % Mod;
50
       int dd = (long long)(b[i].imag / L + 0.5) % Mod;
51
52
       f[i] = (da + ((long long)(db + dc) << 15) + ((long long)dd << 30)
          ) % Mod;
53
     for (int i = 0; i < n+m-1; ++i) (f[i] += Mod) %= Mod;
54
55
   } // namespace MTT
```

84 分治 FFT

```
// give g[1, n) ask f[0, n)
   ///f[i] = sigma f[i-j] *q[j] (1 <= j <= i)
   template <class T> // [l, r]
 3
   void cdq_fft(T f[], T g[], const int &l, const int &r) {
      if (r-\overline{l} \leftarrow 1) return;
 5
      int mid = (l+r)>>1;
 6
      cdq_fft(f, g, 1, mid);
 7
     NTT::work(f+1, mid-1, g, r-1);
for (int i = mid; i < r; ++i)
8
9
        (f[i] += NTT::f[i-1]) %= MOD;
10
      cdq_fft(f, g, mid, r);
11
12
13 |// f[0] = 1; cdq_fft(f, g, 0, n);
```

85 快速沃尔什变换 | FWT

```
推导详解
公式参考
洛谷例题
复杂度 O(n \log n) | O(n2^n)
FWT(A \pm B) = FWT(A) \pm FWT(B)
FWT(cA) = cFWT(A)
定义 \bigoplus 为任意集合运算
FWT(A \bigoplus B) = FWT(A) \times FWT(B)
求 C_i = \sum_{i=j \bigoplus k} a_j b_k
```

85.1 或运算

```
FWT(A)[i] = \sum_{j|i=i} A[j]
FWT(A) = [FWT(A_0), FWT(A_0 + A_1)]
IFWT(A) = [IFWT(A_0), IFWT(A_1) - IFWT(A_0)]
```

85.2 与运算

```
FWT(A)[i] = \sum_{i \& j=j} A[j]

FWT(A) = [FWT(A_0 + A_1), FWT(A_1)]

IFWT(A) = [IFWT(A_0) - IFWT(A_1), IFWT(A_1)]
```

85.3 异或运算

```
令 d(x) 为 x 在二进制下拥有的 1 的数量 FWT(A)[i] = \sum_{j} (-1)^{d(i\&j)} A[j] FWT(A) = [FWT(A_0 + A_1), FWT(A_0 - A_1)] IFWT(A) = [\frac{IFWT(A_1 - A_0)}{2}, \frac{IFWT(A_1 + A_0)}{2}]
```

85.4 code

```
namespace FWT {
2
   #define forforfor for (int l = 2; l \leftarrow len; l \leftarrow 1)
3
                      for (int i = 0, k = 1>>1; i < len; i += 1) \setminus
                      for (int j = 0; j < k; ++j)
4
5
     const int SIZE = (1 << 17) + 3;
6
7
     int len;
8
     int f[SIZE], g[SIZE];
     template <class T> void init(T a[], const int &n, T b[], const int
9
        &m) {
       len = 1;
10
       while (len < max(n, m)) len <<= 1;</pre>
11
12
       for (int i = 0; i < n; ++i) f[i] = a[i];
       for (int i = n; i < len; ++i) f[i] = 0;
13
       for (int i = 0; i < m; ++i) g[i] = b[i];</pre>
14
       for (int i = m; i < len; ++i) g[i] = 0;
15
16
     template <class T> void fwt_or(T a[], const int x = 1) {
17
       forforfor a[i+j+k] = (a[i+j+k]+1]1*a[i+j]*x)%MOD;
18
19
     template <class T> void fwt_and(T a[], const int x = 1) {
20
       forforfor a[i+j] = (a[i+j]+111*a[i+j+k]*x)%MOD;
21
22
     template <class T> void fwt_xor(T a[], const int x = 1) {
23
       forforfor {
24
         (a[i+j] += a[i+j+k]) \% = MOD;
25
         a[i+j+k] = (a[i+j]-2*a[i+j+k]%MOD+MOD)%MOD;
26
         a[i+j] = 1ll*a[i+j]*x%MOD; a[i+j+k] = 1ll*a[i+j+k]*x%MOD;
27
       }
28
29
     template <class T> void work_or(const T a[], const int &n, const T
30
        b[], const int &m) {
       init(a, n, b, m); fwt_or(f); fwt_or(g);
31
       for (int i = 0; i < len; ++i) f[i] = 1ll*f[i]*g[i]%MOD;
32
33
       fwt_or(f, MOD-1); // fwt_or(x, -1)
34
     template <class T> void work_and(const T a[], const int &n, const T
35
         b[], const int &m) {
```

```
init(a, n, b, m); fwt_and(f); fwt_and(g);
36
       for (int i = 0; i < len; ++i) f[i] = 111*f[i]*g[i]%MOD;
37
       fwt_and(f, MOD-1); // fwt_and(x, -1)
38
39
     template <class T> void work xor(const T a[], const int &n, const T
40
         b[], const int &m) {
       init(a, n, b, m); fwt_xor(f); fwt_xor(g);
41
       for (int i = 0; i < len; ++i) f[i] = 111*f[i]*g[i]*MOD;
42
       fwt xor(f, mul inverse(2)); // fwt xor(x, 1/2)
43
44
  #undef forforfor
45
  |} // namespace FWT
```

86 快速子集变换 (子集卷积) | FST

```
C_k = \sum_{i \& j = 0, i | j = k} A_i B_j
复杂度 O(n \log^2 n) | O(n^2 2^n)
```

```
namespace FST {
1
     const int W = 20;
2
3
     const int N = 1 << W;
4
     int len, bit;
5
     int f[W+1][N], g[W+1][N], h[W+1][N], res[N];
     template <class T> void fwt(T a[], const int x = 1) {
6
        for (int 1 = 2; 1 <= len; 1 <<= 1)
7
8
        for (int i = 0, k = 1>>1; i < len; i += 1)
        for (int j = 0; j < k; ++j)
9
          a[i+j+k] = (a[i+j+k]+111*a[i+j]*x)%MOD;
10
11
     template <class T> void work(const T a[], const int &n, const T b
12
         [], const int &m) {
        len = 1; bit = 0;
13
        while (len < max(n, m)) len <<= 1, ++bit;</pre>
14
        for (int i = 0; i <= bit; ++i)</pre>
15
          for (int j = 0; j < len; ++j)
16
            f[i][j] = g[i][j] = h[i][j] = 0;
17
       for (int i = 0; i < n; ++i) f[__builtin_popcount(i)][i] = a[i];
for (int i = 0; i < m; ++i) g[__builtin_popcount(i)][i] = b[i];</pre>
18
19
        for (int i = 0; i <= bit; ++i) {
20
          fwt(f[i]); fwt(g[i]);
21
          for (int j = 0; j <= i; ++j)
22
            for (int k = 0; k < len; ++k)
23
              h[i][k] = (h[i][k]+111*f[j][k]*g[i-j][k])%MOD;
24
          fwt(h[i], MOD-1); // fwt(h[i], -1)
25
26
        for (int i = 0; i < len; ++i) res[i] = h[__builtin_popcount(i)][i</pre>
27
28
   } // namespace FST
```

86.1 倍增子集卷积

```
设多项式 A = \sum_{i=0}^{2^n-1} a_i x^i, B = \sum_{i=0}^{2^n-1} b_i x^i
        \vec{X} C = A * B = \sum_{i=0}^{2} x^{i} \sum_{d \subseteq i} a_{d} b_{i-d}
        按照每个状态的最高位进行分组, 然后卷 n 次
        复杂度 O(\sum_{i=1}^{n} i^2 2^i) = O(n^2 2^n)
    template <typename T> void vip fst(T a[], const int &n) { // return a
      static int b[1<<B]; // warning: the type of b
 2
      int len = 1; while (len < n) len <<= 1;</pre>
 3
 4
      memcpy(b, a, sizeof(T)*len);
      memset(a, 0, sizeof(T)*len); a[0] = 1;
 5
      for (int i = 1; i < lén; i <<= 1) {
 6
 7
         FST::work(a, i, b+i, i);
         for (int j = 0; j < i; ++j)
   a[i+j] = FST::h[__builtin_popcount(j)][j];</pre>
 8
9
      }
10
11
   }
```

87 第二类斯特林数

```
inline void stirling(const int &n) {
 2
      S[0][0] = 1;
 3
      for (int i = 1; i <= n; ++i)
        for (int j = 1; j <= i; ++j)
  S[i][j] = S[i-1][j-1]+S[i-1][j]*j;</pre>
 4
 5
 6
   void stirling(const int &n) {
 1
      inv[0] = inv[1] = 1;
for(int i = 2; i <= n; ++i)</pre>
 2
 3
        inv[i] = MOD-MOD/i*inv[MOD%i]%MOD;
 4
     for (int i = 1; i <= n; ++i)
  inv[i] = inv[i-1]*inv[i]%MOD;</pre>
 5
 6
 7
     while (len <= (n<<1)) len <<= 1, ++bit;
      for (int i = 0; i < len; ++i)
8
        rev[i] = (rev[i>>1]>>1)|((i&1)<<(bit-1));
9
      for (int i = 0, one = 1; i <= n; ++i, one = MOD-one) {
10
        f[i] = one*inv[i]%MOD;
11
        g[i] = qpow(i, n)*inv[i]%MOD;
12
13
14
     NTT(f, 1); NTT(g, 1);
     for (int i = 0; i < len; ++i) f[i] = f[i]*g[i]%MOD;
15
     NTT(f, -1);
16
      long long invv = qpow(len, MOD-2);
17
      for (int i = 0; i <= n; ++i)</pre>
18
        printf("%lld%c", f[i]*invv%MOD, " \n"[i==n]);
19
20
```

88 约瑟夫环

88.1 O(n)

```
int solve(int n, int v) { return n == 1 ? 0 : (solve(n-1, v)+v)%n; }
// res = solve(num, step)+1
```

89 最小公倍数 1cm

```
\begin{array}{l} LCM(\frac{a}{b},\frac{c}{d}) = \frac{LCM(a,c)}{GCD(b,d)} \\ LCM(\frac{a_1}{b_1},\frac{a_2}{b_2},\ldots) = \frac{LCM(a1,a2,\ldots)}{GCD(b1,b2,\ldots)} \end{array}
```

90 扩展欧几里得 (同余方程)

```
template <typename T>
  T exgcd(const T a, const T b, T &x, T &y) {
   if (!b) return x = 1, y = 0, a;
   T d = exgcd(b, a%b, y, x);
   y -= a/b*x;
   return d;
}
```

91 乘法逆元

91.1 拓展欧几里得

```
template <typename T>
inline T mul_inverse(const T &a, const T &mo = MOD) {
  T x, y;
  exgcd(a, mo, x, y);
  return (x%mo+mo)%mo;
}
```

91.2 线性递推

```
template <typename T>
inline void mul_inverse(T *inv, int mod = MOD) {
  inv[0] = inv[1] = 1;
  for(int i = 2; i <= n; ++i)
    inv[i] = 1ll*(mod-mod/i)*inv[mod%i]%mod;
}</pre>
```

92 中国剩余定理

92.1 中国剩余定理 CRT(m 互质)

```
inline long long CRT(int a[], int m[]) {
  long long res = 0, M = 1;
  for (int i = 1; i <= n; ++i)
        M *= m[i];
  for (int i = 1; i <= n; ++i)
        res = (res + a[i]*(M/m[i])*mul_inverse(M/m[i], m[i]))%M;
  return (res+M)%M;
}</pre>
```

92.2 扩展中国剩余定理 EXCRT(m 不互质)

```
inline long long EXCRT(long long a[], long long m[]) {
     // M*x + m[i]*y = a[i]-res \pmod{m[i]}
2
3
     // res = res + x *M;
     long long M = m[1], res = a[1], x, y, c, d;
4
     for (int i = 2; i <= n; ++i) {
5
       d = exgcd(M, m[i], x, y);
6
7
       c = (a[i]-res%m[i]+m[i])%m[i];
8
       if (c%d != 0) return -1;
       x = (c/d)*x\%(m[i]/d);
9
       res += x*M;
10
       M *= m[i]/d;
11
       res = (res%M+M)%M;
12
13
14
     return res;
   }
15
```

93 排列组合

93.1 奇偶性

C(n,k) 当 n&k == k 为 `奇数反之偶数

94 欧拉函数

```
template <typename T> inline T phi(T x) {
2
     T res = x;
     for (T i = 2; i*i <= x; ++i) {
3
       if (x%i) continue;
4
       res = res/i*(i-1);
5
       while (x\%i == 0) \times /= i;
6
7
     if (x > 1) res = res/x*(x-1);
8
9
     return res;
10
```

94.1 筛法 96 线性筛素数

94.1 筛法

```
struct Euler {
1
2
     int phi[N], check[N];
3
     vector<int> prime;
     void init(int sz) {
4
       for (int i = 1; i <= sz; ++i) check[i] = 1;
5
6
       phi[1] = 1; check[1] = 0;
       for (int i = 2; i <= sz; ++i) {
7
8
          if (check[i]) {
            prime.emplace_back(i);
9
            phi[i] = i-1;
10
11
          for (int j : prime) {
12
13
            if (i*j > sz) break;
            check[i*j] = 0;
14
            if (i%j) {
15
              phi[i*j] = (j-1)*phi[i];
16
            } else {
17
              phi[i*j] = j*phi[i];
18
19
              break;
20
          }
21
       }
22
23
   } E;
24
```

94.2 欧拉定理

a 与 m 互质时, $a^{\phi(m)} \equiv 1 \mod m$

94.3 扩展欧拉定理

无需 a,m 互质 $b > \phi(m), a^b \equiv a^{(b \mod \phi(m)) + \phi(m)} \mod m$

95 莫比乌斯函数

```
template <typename T> inline T miu(T x) {
1
2
     int t = 0;
     for (T i = 2, k; i*i <= x; ++i) {
3
4
       if (x%i) continue;
       for (k = 0, ++t; x \%i == 0; x /= i, ++k) {}
5
       if (k \ge 2) return 0;
6
7
8
     if (x > 1) ++t;
     return t&1 ? -1 : 1;
9
   }
10
```

96 线性筛素数

```
struct Euler {
1
     vector<int> prime;
2
3
     vector<bool> check;
4
     bool operator
                     { return check[i]; }
5
     void init(int n) {
       prime.clear();
6
       check = vector<bool>(n+1, true);
7
8
       check[1] = false;
       for (int i = 2; i <= n; ++i) {
9
         if (check[i]) prime.emplace_back(i);
10
         for (const int &j : prime) {
11
            if (i*j > n) break;
12
            check[i*j] = false;
13
            if (i%j == 0) break;
14
15
       }
16
17
18
   } E;
```

97 判断素数 (质数)

97.1 Miller-Rabin 素性测试

```
inline bool MillerRabin(int x) {
2
     static const int test_time = 10;
3
     if (x < 3) return x == 2;
4
     int a = x-1, b = 0;
5
     while (!(a&1)) a >>= 1, ++b;
     for (int i = 1, j, v; i <= test_time; ++i) {</pre>
6
7
       v = (qpow(rnd()%(x-2)+2, a, x));
       if (v == 1 || v == x-1) continue;
8
       for (j = 0; j < b \&\& v != x-1; ++j)
9
         v = static cast<int>(1ll*v*v%x);
10
11
       if (j >= b) return false;
12
13
     return true;
14
```

98 线性筛 GCD

```
inline void gcd_init(const int &n) {
  for (int i = 1; i <= n; ++i)
  for (int j = 1; j <= n; ++j) if (!g[i][j])
  for (int k = 1; k <= n/i; ++k)
      g[k*i][k*j] = k;
}</pre>
```

99 BSGS

求解关于 t 的方程 $a^t \equiv x(modm), \gcd(a, m) = 1$

```
inline long long BSGS(long long a, long long x, long long m) { // a^n
2
     static map<long long, int> mmp; mmp.clear();
     long long t = sqrt(m)+1, b = 1, c = 1, res;
3
     for(int i = 0; i < t; ++i, b = b*a%m) mmp[x*b%m] = i;
4
     for(int i = 0; i <= t; ++i, c = c*b%m) { // b = a^t
5
6
       if(mmp.count(c)) {
7
         res = t*i-mmp[c];
         if(res > 0) return res;
8
9
10
     return -1;
11
12
```

100 拓展 BSGS

```
\gcd(a,m) \neq 1
```

```
namespace EXBSGS {
1
2
   inline 11 BSGS(11 a, 11 b, 11 mod, 11 qaq){
3
     unordered_map<ll, int> H; H.clear();
4
     ll Q, p = ceil(sqrt(mod)), x, y;
5
     exgcd(qaq, mod, x, y), b = (b * x % mod + mod) % mod,
6
     Q = qpow(a, p, mod), exgcd(Q, mod, x, y), Q = (x % mod + mod) % mod
7
     for (ll i = 1, j = 0; j <= p; ++ j, i = i * a % mod) if (!H.
8
        count(i)) H[i] = j;
     for (11 \ \dot{i} = b, \ \dot{j} = 0)
                            j <= p; ++ j, i = i * Q % mod)
9
                                                               if (H|i|)
        return j * p + H[i];
10
     return -1;
   }
11
12
   inline 11 exBSGS(11 N, 11 P, 11 M){
13
     11 qaq = 1, k = 0, qwq = 1;
14
     if (M == 1) return 0;
15
     while ((qwq = \_gcd(N, P)) > 1) {
16
       if (M%qwq) return -1;
17
       ++k, M /= qwq, P /= qwq, qaq = qaq*(N/qwq)%P;
18
       if (qaq == M) return k ;
19
20
     return (qwq = BSGS(N, M, P, qaq)) == -1 ? -1 : qwq+k ;
21
22
23
  |} using EXBSGS::exBSGS;
```

101 错排

$$D_1 = 0D_2 = 1D_n = (n-1)(D_{n-1} + D_{n-2})$$

102 原根

复杂度 $O(\sqrt{m} + g \times \log^2 m)$

```
inline int getG(const int &m) {
       static int q[100000+7];
 2
      int _phi = phi(m), x = _phi, tot = 0;
for (int i = 2; i*i <= _phi; ++i) {</pre>
 3
 4
 5
         if (x%i) continue;
         q[++tot] = _phi/i;
 6
 7
         while (x\%i == 0) \times /= i;
 8
       if (x > 1) x = q[++tot] = _phi/x;
 9
       for (int g = 2, flag; ; ++g) {
10
         flag = \tilde{1};
11
         if (qpow(g, _phi, m) != 1) continue;
for (int i = 1; i <= tot; ++i) {</pre>
12
13
            if (qpow(g, q[i], m) == 1) {
14
               flag = 0;
15
16
               break;
17
18
         if (flag) return g;
19
20
    }
```

102.1 单位根反演

$$[k|n] = \frac{1}{k} \sum_{i=0}^{k-1} w_k^{ni}$$

$$[a \equiv b \pmod{n}] = [a - b \equiv 0 \pmod{n}] = \frac{1}{n} \sum_{i=0}^{n-1} w_n^{(a-b)k} = \frac{1}{n} \sum_{i=0}^{n-1} w_n^{ak} w_n^{-bk}$$

102.2 单位根卷积

$$\sum\limits_{i=0}^{n}[i\%k=0]f(i)=\sum\limits_{i=0}^{n}\frac{1}{k}\sum\limits_{j=0}^{k-1}(w_{k}^{i})^{j}f(i)$$

103 全排列和逆序对

103.1 根据逆序数推排列数

```
已知一个 n 元排列的逆序数为 m, 这样的 n 元排列有多少种?

1. 对任意 n>=2 且 0<=m<=C(n,2) 时 f(n,m)>=1; 当 m>C(n,2) 时 f(n,m)=0

2. f(n,m)=f(n,C(n,2)-m)

3. f(n+1,m)=f(n,m)+f(n,m-1)+\cdots+f(n,m-n)

4. f(n,0)=f(n,C(n,2))=1

5. f(n,1)=f(n,C(n,2)-1)=n-1(n>1)

6. f(n,2)=f(n,C(n,2)-2)=C(n,2)-1(n>2)
```

103.2 根据每个数的逆序数求出原排列

103.3 根据逆序数求最小排列

- 1. 对于 n 的全排列, 在它完全倒序的时候(也就是 n,n-1,…,2,1 的时候) 逆序数最多。
- 2. 对于一个形如 1,2,3,…,i-1,i,n,…i+1 的排列 q (如 n=5 时的 1,2,5,4,3),即在数 n 前保证首项为 1 且严格以公差为 1 递增而数 n 之后排列任意的数列
 - 当数 n 之后是递减的时候 q 的逆序数最多,为 t=C(n-i,2)。
 - 排列 q 是出现逆序数为 t 的最小排列。
- 3. 在上一条所设定的排列 q 的基础上,我们将数 n 后面的第 k 小数与数 n 的前一个数 (即 i) 交换,然后使数 n 后面保持逆序。这样得到的新排列所含的逆序数为 t=C(n-i,2)+k,且这个排列是逆序数为 t 的最小排列。

103.4 第 k 个字典序每个数的逆序对

104 二次剩余

```
namespace Cipolla {
2
  int mod, _x0, _x1;
  long long I_mul_I; // 虚数单位的平方
   struct complex {
6
7
     long long real, imag;
     complex(long long real = 0, long long imag = 0): real(real), imag(
8
        imag) { }
9
   inline bool operator == (complex x, complex y) {
10
     return x.real == y.real and x.imag == y.imag;
11
12
   inline complex operator * (complex x, complex y) {
13
     return complex((x.real * y.real + I mul I * x.imag % mod * y.imag)
14
        % mod,
         (x.imag * y.real + x.real * y.imag) % mod);
15
16
17
   complex power(complex x, int k) {
18
19
     complex res = 1;
     while(k) {
20
       if(k \& 1) res = res * x;
21
22
       X = X * X;
23
       k >>= 1;
24
     }
```

```
25
    return res;
  }
26
27
  bool check_if_residue(int x) {
28
29
    return power(x, (mod - 1) >> 1) == 1;
  }
30
31
  int solve(int n, int p, int &x0 = x0, int &x1 = x1) {
32
    mod = p;
33
34
    if (power(n, p>>1) == 0) return x0 = x1 = 0;
35
36
    long long a = rand() % mod;
37
38
    while(!a or check_if_residue((a * a + mod - n) % mod))
      a = rand() \% mod;
39
    I mul I = (a * a + mod - n) % mod;
40
41
    x0 = int(power(complex(a, 1), (mod + 1) >> 1).real);
42
43
    x1 = mod - x0;
44
    return x0;
45
    // namespace Cipolla
46
```

Part VII 动态规划 **DP**

105 线性 DP

105.1 最长公共子序列 LCS

106 状压 DP

106.1 枚举子集

```
1 for (int i = s; i; i = (i-1)&s) {}
```

106.2 枚举 n 个元素,大小为 k 的二进制子集

```
int s=(1<<k)-1;
while(s<(1<<n)){
work(s);
int x=s&-s,y=s+x;
s=((s&~y)/x>>1)|y; //这里有一个位反~
}
```

107 背包问题

107.1 多重背包

二进制拆分

```
for(int i = 1, cnt, vi, wi, m; i <= n; ++i) {
     scanf("%d%d%d", &vi, &wi, &m);
2
3
     cnt = 1;
     while(m-cnt > 0) {
4
       m -= cnt;
5
6
       v.push_back(vi*cnt);
7
       w.push back(wi*cnt);
       cnt <<= 1;
8
9
     v.push_back(vi*m);
10
     w.push back(wi*m);
11
12
   for(int i = 0; i < w.size(); ++i)</pre>
13
     for(int j = W; j >= w[i]; --j)
14
       b[j] = max(b[j], b[j-w[i]]+v[i]);
15
```

单调队列

```
for(int i = 1; i <= n; ++i) {</pre>
     scanf("%d%d%d", &v, &w, &m);
for(int u = 0; u < w; ++u) {
2
3
4
        int maxp = (W-u)/w;
5
        head = 1; tail = 0;
        for(int k = maxp-1; k >= max(0, maxp-m); --k) {
6
7
          while(head <= tail && calc(u, q[tail]) <= calc(u, k)) tail--;</pre>
          q[++tail] = k;
8
9
        for(int p = maxp; p >= 0; --p) {
10
          while(head <= tail && q[head] >= p) head++;
11
          if(head <= tail) f[u+p*w] = max(f[u+p*w], p*v+calc(u, q[head]))
12
          if(p-m-1 < 0) continue;
13
14
          while(head <= tail && calc(u, q[tail]) <= calc(u, p-m-1)) tail
          q[++tail] = p-m-1;
15
16
     }
17
18
   int ans = 0;
19
   for(int i = 1; i <= W; ++i)</pre>
20
     ans = max(ans, f[i]);
21
```

108 SOS DP

109 WQS 二分 | DP 凸优化

题目给了一个选物品的限制条件,要求刚好选 m 个,让你最大化(最小化)权值, 其特点是函数的斜率单调

例:给你一个 N 个点 M 条边无向带权连通图,每条边是黑色或白色。让你求一棵最小权的恰好有 K 条白色边的生成树。

记 g(i) 是选了 i 条白边的最小生成树值, 发现 g(i) 斜率单调不增 $g(i) - g(i-1) \le$ g(i+1)-g(i)

则二分斜率 k, 求切点 (截距最大)

设 f(x) 为我在没有固定选多少个点 (但是我已经选了 \times 个点) 时的答案 (也就是截距), f(x) = g(x) - k * x

只要把每个数的 h(x) = k 然后正常求一下在选任意个数的情况下最大 f(x) 是多少 $O(n \log n)$

斜率优化 110

若 dp 方程为 $dp[i] = a[i] \cdot b[j] + c[i] + d[j]$ 时,由于存在 $a[i] \cdot b[j]$ 这个既有 i 又有 j 的 项,就需要使用斜率优化

「HNOI2008」玩具装箱 TOY 110.1

 $dp[i] = min(dp[j] + (sum[i] + i - sum[j] - j - L - 1)^{2})(j < i)$

 $dp[i] = dp[j] + (a[i] - b[j])^2$

 $dp[i] = dp[j] + a[i]^2 - 2a[i]b[j] + b[j]^2$

 $2a[i]b[j] + dp[i] - a[i]^2 = dp[j] + b[j]^2$

将 b[j] 看作 $x, dp[j] + b[j]^2$ 看作 y,这个式子就可以看作一条斜率为 2a[i] 的直线 而对于每个 i 来说**,**a[i] 都是确定的**,**类似线性规划

dp[i] 的含义转化为: 当上述直线过点 $P(b[j], dp[j] + b[j]^2$) 时,直线在 y 轴的截距加上 $a[i]^2$ (一个定值) 而题目即为找这个截距的最小值

四边形不等式 111

111.1 2D1D

 $f_{l,r} = \min_{l,l} \{ f_{l,k} + f_{k+1,r} \} + w(l,r) \quad (1 \le l \le r \le n)$

当 w(l,r) 满足特定性质

- 区间包含单调性: 如果对于任意 $l \leq l' \leq r' \leq r$, 均有 $w(l',r') \leq w(l,r)$ 成立,则称函

数 w 对于区间包含关系具有单调性。 - 四边形不等式: 如果对于任意 $l_1 \leq l_2 \leq r_1 \leq r_2$,均有 $w(l_1,r_1)+w(l_2,r_2)\leq w(l_1,r_2)+w(l_2,r_3)\leq w(l_1,r_2)+w(l_2,r_3)\leq w(l_1,r_3)+w(l_2,r_3)\leq w(l_1,r_3)+w(l_2,r_3)$ $w(l_2,r_1)$ 成立,则称函数 w 满足四边形不等式(简记为"交叉小于包含")。若等号永远成立, 则称函数 w 满足四边形恒等式。

 \rightarrow 引理 **1** : 若满足关于区间包含的单调性的函数 w(l,r) 满足四边形不等式,则状态 $f_{l,r}$ 也满足四边形不等式。

 \rightarrow 定理 $\mathbf{1}$: 若状态 f 满足四边形不等式,记 $m_{l,r} = \min\{k: f_{l,r} = g_{k,l,r}\}$ 表示最优决策点, 则有 $m_{l,r-1} \leq m_{l,r} \leq m_{l+1,r}$

111.2 1D1D

 $f_r = \min_{l=1}^{r-1} \{ f_l + w(l,r) \} \quad (1 \le r \le n)$

> 定理 2 : 若函数 w(l,r) 满足四边形不等式,记 $h_{l,r} = f_l + w(l,r)$ 表示从 l 转移过来 的状态 r , $k_r = \min\{l | f_r = h_{l,r}\}$ 表示最优决策点,则有 $\forall r_1 \leq r_2 : k_{r_1} \leq k_{r_2}$

```
void DP(int 1, int r, int k_1, int k_r) {
    int mid = (1 + r) / 2, k = k_1;
2
    // 求状态f[mid]的最优决策点
3
    for (int i = k_l; i <= min(k_r, mid - 1); ++i)
4
       if (w(i, mid) < w(k, mid)) k = i;</pre>
5
    f[mid] = w(k, mid);
     // 根据决策单调性得出左右两部分的决策区间,递归处理
7
    if (1 < mid) DP(1, mid - 1, k_1, k);</pre>
8
    if (r > mid) DP(mid + 1, r, k, k r);
9
  }
10
```

111.3 满足四边形不等式的函数类

- 性质 **1** : 若函数 $w_1(l,r), w_2(l,r)$ 均满足四边形不等式(或区间包含单调性),则对于任意 $c_1, c_2 \geq 0$,函数 $c_1w_1 + c_2w_2$ 也满足四边形不等式(或区间包含单调性)。
- 性质 **2** : 若存在函数 f(x), g(x) 使得 w(l,r) = f(r) g(l) , 则函数 w 满足四边形恒等式。当函数 f,g 单调增加时,函数 w 还满足区间包含单调性。
- 性质 3: 设 h(x) 是一个单调增加的凸函数,若函数 w(l,r) 满足四边形不等式并且对区间包含关系具有单调性,则复合函数 h(w(l,r)) 也满足四边形不等式和区间包含单调性。
- 性质 4: 设 h(x) 是一个凸函数,若函数 w(l,r) 满足四边形恒等式并且对区间包含关系具有单调性,则复合函数 h(w(l,r)) 也满足四边形不等式。

首先需要澄清一点,凸函数(Convex Function)的定义在国内教材中有分歧,此处的凸函数指的是(可微的)下凸函数,即一阶导数单调增加的函数。

112 插头 DP| 轮廓线 DP

112.1 一个闭合回路

```
const int P = 299987;
   const int M = 1 << 21;
2
3
   const int N = 15;
4
5
   int n, m;
   int a[N][N];
   long long dp[2][M];
7
   int head[2][P], nex[2][M], tot[2], ver[2][M];
   // Long Long dp[2][P];
9
   // int head[2][P], nex[2][P], tot[2], ver[2][P];
10
11
   inline void clear(const int &u) {
12
     for (int i = 1; i <= tot[u]; ++i) {</pre>
13
       dp[u][i] = 0; //
14
       nex[u][i] = 0; //
15
       head[u][ver[u][i]%P] = 0;
16
17
     tot[u] = 0;
18
   }
19
20
   template <typename T, typename U>
21
  |inline void insert(const int &u, const T &x, const U &v) {
22
23
     int p = x%P;
     for (int i = head[u][p]; i; i = nex[u][i]) {
24
```

```
if (ver[u][i] == x) return dp[u][i] += v, void();
25
26
     ++tot[u]; assert(tot[u] < M);
27
     ver[u][tot[u]] = x;
28
     nex[u][tot[u]] = head[u][p];
29
     head[u][p] = tot[u];
30
     dp[u][tot[u]] = v;
31
   }
32
33
   template <typename T>
34
   inline int get_val(const int &u, const T &x) {
35
     int p = x%P;
36
     for (int i = head[u][p]; i; i = nex[u][i]) {
37
       if (ver[u][i] == x) return dp[u][i];
38
39
     return 0;
40
   }
41
42
   inline long long solve() {
43
     int u = 0, base = (1 << m*2+2)-1;
44
45
     long long res = 0;
     clear(u);
46
     insert(u, 0, 1);
47
     for (int i = 1; i <= n; ++i) {
48
       for (int j = 1; j <= m; ++j) {
49
50
         clear(u ^= 1);
         for (int k = 1; k <= tot[u^1]; ++k) {
51
            int state = ver[u^1][k];
52
            long long val = dp[u^1][k];
53
            if (j == 1) state = (state<<2)&base;</pre>
54
            // b1 right b2 down
55
           // 0 no 1 left 2 right
56
            int b1 = (state>>j*2-2)%4, b2 = (state>>j*2)%4;
57
            if (!a[i][j]) {
58
              if (!b1 && !b2) insert(u, state, val);
59
            } else if (!b1 && !b2) {
              if (a[i+1][j] && a[i][j+1]) insert(u, state+(1<<j*2-2)+(2<<</pre>
61
                 j*2), val);
            } else if (!b1 && b2) {
62
              if (a[i][j+1]) insert(u, state, val);
63
              if (a[i+1][j]) insert(u, state+(b2<<j*2-2)-(b2<<j*2), val);</pre>
64
            } else if (b1 && !b2) {
65
              if (a[i+1][j]) insert(u, state, val);
66
              if (a[i][j+1]) insert(u, state-(b1<<j*2-2)+(b1<<j*2), val);</pre>
67
            } else if (b1 == 1 && b2 == 1) { // find 2 turn to 1
68
              for (int k = j+1, t = 1; k <= m; ++k) {
69
                if ((state>>k*2)%4 == 1) ++t;
70
                if ((state>>k*2)%4 == 2) --t;
71
                if (!t) { insert(u, state-(1<<j*2-2)-(1<<j*2)-(1<<k*2),</pre>
72
                   val); break; }
73
            } else if (b1 == 2 && b2 == 2) { // find 1 turn to 2
74
              for (int k = j-2, t = 1; k >= 0; --k) {
75
                if ((state>>k*2)%4 == 1) --t;
76
                if ((state>>k*2)%4 == 2) ++t;
77
78
                if (!t) { insert(u, state-(2<<j*2-2)-(2<<j*2)+(1<<k*2),
                   val); break; }
```

```
79
            } else if (b1 == 2 && b2 == 1) {
80
              insert(u, state-(2 << j*2-2)-(1 << j*2), val);
81
            } else if (i == ex && j == ey) { // b1 == 1, b2 == 2
82
              res += val;
83
84
85
86
87
88
     return res;
   }
89
```

112.2 多个闭合回路

```
else if (b1 == 1 && b2 == 2) {
   if (i == ex && j == ey) res += val;
   else dp[u][bit-(1<<j*2-2)-(1<<j*2+1)] += val;
}</pre>
```

112.3 联通块

```
int n, u, res = -INF;
   int a[N][N];
2
3
   unordered_map<int, int> dp[2];
5
   inline void decode(const int &state, int *const s) {
     for (int i = 1; i <= n; ++i) s[i] = (state>>i*3-3)%8;
6
7
8
9
   inline void insert(const int *const s, const int &val) {
     static int vis[N];
10
11
     int state = 0, cnt = 0;
     memset(vis, 0, sizeof vis);
12
     for (int i = 1; i <= n; ++i) {
13
       if (s[i] && !vis[s[i]]) vis[s[i]] = ++cnt;
14
       state |= (vis[s[i]]<<i*3-3);
15
16
     if (dp[u].count(state)) dp[u][state] = max(dp[u][state], val);
17
     else dp[u].insert({state, val});
18
     if (cnt == 1) res = max(res, val);
19
   }
20
21
   inline void solve() {
22
23
     static int s[N];
     dp[u = 0].clear();
24
     dp[u][0] = 0;
25
     for (int i = 1; i <= n; ++i) {
  for (int j = 1; j <= n; ++j) {</pre>
26
27
          dp[u ^= 1].clear();
28
          for (const auto &p : dp[u^1]) {
29
            decode(p.first, s);
30
31
            int b1 = s[j-1], b2 = s[j];
32
            // not choose
```

```
s[j] = 0;
33
34
            int cnt = 0;
            for (int k = 1; k <= n; ++k) cnt += s[k] == b2;
35
            if (!b2 || cnt) insert(s, p.second);
36
            s[j] = b2;
37
            // choose
38
            if (!b1 && !b2) {
39
40
              s[j] = 7;
            } else {
41
              if (b1 > b2) swap(b1, b2); // in case b2 == 0
42
              s[j] = b2;
43
              if (b1) for (int k = 1; k <= n; ++k) if (s[k] == b1) s[k] =</pre>
44
                  b2;
45
            insert(s, p.second+a[i][j]);
46
47
48
49
50
     cout << res << endl;</pre>
   }
51
```

112.4 L 型

L 型地板: 拐弯且仅拐弯一次。

发现没有,一个存在的插头只有两种状态: 拐弯过和没拐弯过,因此我们这样定义插头: 0 表没有插头, 1 表没拐过的插头, 2 表已经拐过的插头。b1 代表当前点的右插头, b2 代表当前点的下插头

113 DP 套 DP

有 $dp_1, f[i]$ 为 $dp_1[n] = i$ 的方案数**,**求 f 设 $dp_2[dp_1]$ 为 dp_1 状态下的方案数

114 动态 DP

将 dp 转换为线段树可以求解的区间问题, 动态维护

114.1 动态线性 DP

114.2 动态树形 DP

树链剖分, 轻链暴力

Part VIII 分数

```
template <class T>
truct Fraction {
   T a, b;
```

```
void normalize() {
4
       if (a == 0) return (void)(b = 1);
5
       T g = \underline{gcd(a, b)};
6
7
       a /= g; b /= g;
       if (b < 0) a = -a, b = -b;
8
9
     Fraction(const T & a = 0, const T & b = 1) : a(a), b(b) {
10
        normalize(); }
     friend bool operator < (const Fraction &f1, const Fraction &f2) {</pre>
11
        return f1.a*f2.b < f2.a*f1.b; }</pre>
     friend bool operator > (const Fraction &f1, const Fraction &f2) {
12
        return f1.a*f2.b > f2.a*f1.b; }
     friend bool operator == (const Fraction &f1, const Fraction &f2) {
13
        return f1.a*f2.b == f2.a*f1.b; }
     friend bool operator != (const Fraction &f1, const Fraction &f2) {
14
        return f1.a*f2.b != f2.a*f1.b; }
     friend bool operator <= (const Fraction &f1, const Fraction &f2) {</pre>
15
        return f1 < f2 || f1 == f2; }
     friend bool operator >= (const Fraction &f1, const Fraction &f2) {
16
        return f1 > f2 || f1 == f2; }
     friend Fraction operator + (const Fraction &f1, const Fraction &f2)
17
         { return Fraction(f1.a*f2.b+f2.a*f1.b, f1.b*f2.b); }
     friend Fraction operator - (const Fraction &f1, const Fraction &f2)
18
         { return Fraction(f1.a*f2.b-f2.a*f1.b, f1.b*f2.b); }
     friend Fraction operator * (const Fraction &f1, const Fraction &f2)
19
         { return Fraction(f1.a*f2.a, f1.b*f2.b); }
     friend Fraction operator / (const Fraction &f1, const Fraction &f2)
20
         { return Fraction(f1.a*f2.b, f1.b*f2.a); }
     Fraction& operator += (const Fraction &f) { return *this = *this+f;
21
     Fraction& operator -= (const Fraction &f) { return *this = *this-f;
22
     Fraction& operator *= (const Fraction &f) { return *this = *this*f;
23
     Fraction& operator /= (const Fraction &f) { return *this = *this/f;
24
     friend istream& operator >> (istream &is, Fraction &f) {
25
26
       is >> f.a >> f.b;
       f.normalize();
27
       return is;
28
29
     friend ostream& operator << (ostream &os, const Fraction &f) {</pre>
30
       if (f.b == 1) return os << f.a;</pre>
31
       return os << f.a << "/" << f.b;
32
33
  };
34
  using fraction = Fraction<long long>;
```