NOIP 模拟赛

---lwher

题目名	环上的游戏	舞蹈课	数位和乘积
源文件	cycle.cpp/c/pas	dancingLessons. pa	digit.cpp.cpp/ c/pas
输入文件	cycle.in	dancingLessons. in	digit.in
输出文件	cycle.out	dancingLessons. ou	digit.out
时间限制	1000MS	1000MS	1000MS
内存限制	128MB	256MB	256MB
测试点	10	10	10
测试点分值	10	10	10

环上的游戏 (cycle)

有一个取数的游戏。初始时,给出一个环,环上的每条边上都有一个非负整数。 这些整数中至少有一个0。然后,将一枚硬币放在环上的一个节点上。两个玩家 就是以这个放硬币的节点为起点开始这个游戏,两人轮流取数,取数的规则如下:

- (1) 选择硬币左边或者右边的一条边,并且边上的数非0;
- (2) 将这条边上的数减至任意一个非负整数(至少要有所减小);
- (3) 将硬币移至边的另一端。

如果轮到一个玩家走,这时硬币左右两边的边上的数值都是0,那么这个玩家就输了。

如下图,描述的是 Alice 和 Bob 两人的对弈过程,其中黑色节点表示硬币所在节点。结果图(d)中,轮到 Bob 走时,硬币两边的边上都是0,所以 Alcie 获胜。

现在,你的任务就是根据给出的环、边上的数值以及起点(硬币所在位置),判断先走方是否有必胜的策略。

【输入格式】

第一行一个整数 N (N≤20),表示环上的节点数。

第二行 N 个数,数值不超过30,依次表示 N 条边上的数值。硬币的起始位置在第一条边与最后一条边之间的节点上。

【输出格式】

仅一行。若存在必胜策略,则输出"YES",否则输出"NO"。

【样例】

cycle. in cycle. out

4 YES

2 5 3 0

cycle. in cycle. out

3 NO

0 0 0

最后取到数的人获胜

舞蹈课(dancingLessons)

问题描述

有 n 个人参加一个舞蹈课。每个人的舞蹈技术由整数a_i来决定。在舞蹈课的开始,他们从左到右站成一排。当这一排中至少有一对相邻的异性时,舞蹈技术相差最小的那一对会出列并开始跳舞。如果相差最小的不止一对,那么最左边的那一对出列。一对异性出列之后,队伍中的空白按原顺序补上(即:若队伍为 ABCD,那么 BC 出列之后队伍变为 AD)。舞蹈技术相差最小即是a_i的绝对值最小。

你的任务是,模拟以上过程,确定跳舞的配对及顺序。

输入

第一行为正整数 $n(1 \le n \le 2 \cdot 10^5)$: 队伍中的人数。下一行包含 n 个字

符 B 或者 G, B 代表男, G 代表女。下一行为 n 个整数 a_i ($a_i \le 10^7$)。所有信息按照从左到右的顺序给出。在 50%的数据中, $n \le 200$ 。

输出

第一行: 出列的总对数 k。接下来输出 k 行,每行是两个整数。按跳舞顺序输出,两个整数代表这一对舞伴的编号(按输入顺序从左往右1至 n 编号)。请先输出较小的整数,再输出较大的整数。

样例输入

4

BGBG

4 2 4 3

样例输出

2

3 4

1 2

样例输入

4

BGBB

1 1 2 3

样例输出

1

数位和乘积(digit.cpp/c/pas)

【题目描述】

一个数字的数位和乘积为其各位数字的乘积。求所有的 N 位数中有多少个数的数位和乘积恰好为 K。请注意,这里的 N 位数是可以有前导零的。比如 01,02 视为二位数,但是他们的数位和乘积都是 0。

【输入格式】

一行两个整数 N, K

【输出格式】

一个行一个整数表示结果。

【样例输入】

2 3

【样例输出】

2

【样例输入2】

2 0

【样例输出2】

【数据范围】

对于 20%: N <= 6。

对于 50%: N<=16

存在另外 30%: K=0。

对于 100%: N <= 50, 0 <= K <= 10^9。