Assignment-Regression Algorithm

Problem Statement or Requirement:

1) Identifying the problem statement:

A client's requirement is, he wants to **predict the insurance charges** based on the several parameters. The Client has provided the dataset of the same.

2) Basic information:

- 1)100 rows
- 2)6-columns

3) **pre-processing method**-→Converting the column 2 & 5 into (converting

string to number –)numerical value by NOMINAL DATA.

Function-→ (get_dummies(dataset,drop_first=True)) using this function to convert.

4)To find the r^2 score value:

Check the and calculate in algorithm for creating the best model.

- -->To find the machine learning regression method using in r2value
- -→For upcoming all algorithm the same DATASET is used.
- -→1.MULTIPLE LINEAR REGRESSION: (R^2 value)= 0.72

-→2.SUPPORT VECTOR MACHINE:

sl.no	Hyper parameter	Linear (r value)	RBF (r value)	Poly (r value)	Sigmoid (r value)
1	C10	0.46	-0.032	0.038	0.039
2	C100	0.62	0.32	0.617	0.52
3	C500	0.76	0.66	0.82	0.44
4	C1000	0.76	0.81	0.85	0.28
5	C2000	0.74	0.85	0.86	-0.59
6	C3000	0.74	0.86	0.85	-2.12

Assignment-Regression Algorithm

---→3.DECISION TREE:

Sl.no	CRITERION	MAX FEATURES	SPLITTER	R VALUE
1	poisson	Sqrt	Best	0.60
2	poisson	sqrt	Random	0.70
3	absolute_error	Sqrt	Best	0.73
4	absolute_error	Sqrt	Random	0.66
5	absolute_error	Log2	Best	0.64
6	absolute_error	Log2	Random	0.66
7	Squared_error	sqrt	random	0.68
8	poisson	Log2	best	0.70
9	Squared_error	Sqrt	Best	0.78
10	Squared_error	Sqrt	Random	0.68
11	Squared_error	Log2	Best	0.74
12	Squared_error	Log2	Random	0.70
13	Friedman_mse	Auto	Best	-
14	Friedman_mse	Auto	Random	-
15	Friedman_mse	Sqrt	Best	0.72
16	Friedman_mse	Sqrt	Random	0.60
17	Friedman_mse	Log2	Best	0.72
18	friedman_mse	Log2	random	0.70

^{-→&}gt;>DECISION TREE (R^2 VALUE) IS 0.78

5)My final model is algorithm of SUPPORT VECTOR MACHINE because it gives accurancy of 0.86

^{---&}gt;4.Random forest value of r_score is 0.84

Assignment-Regression Algorithm