Graphs

Juan Mendivelso, Assistant Professor

Universidad Nacional de Colombia School of Science Department of Mathematics

Contenido

- Graphs
 - Definitions
 - Paths & Cycles
 - Types
 - Representation
- 2 Exploring Graphs
 - Breadth First Search
 - Depth First Search
 - Topological Sort
 - Strongly Connected Components

Contenido

- Graphs
 - Definitions
 - Paths & Cycles
 - Types
 - Representation
- Exploring Graphs
 - Breadth First Search
 - Depth First Search
 - Topological Sort
 - Strongly Connected Components

Directed Graph (Digraph)

- A directed graph (or digraph) G
 is a pair (V, E), where V is a
 finite set and E is a binary
 relation on V.
- The set V is called the vertex set of G, and its elements are called vertices.
- The set E is called the edge set of G, and its elements are called edges.

Directed Graph (Digraph)

Example 1.

- $V = \{1, 2, 3, 4, 5, 6\}$
- $E = \{(1,2), (2,2), (2,4), (2,5), (4,1), (4,5), (5,4), (6,3)\}$

Undirected Graph

- In an undirected graph
 G = (V, U), the edge set E
 consists of unordered pairs of
 vertices, rather than ordered
 pairs.
- An edge is a set $\{u, v\}$, where $u, v \in V$ and $u \neq v$ (no self-loops).
- By convention, we use the notation (u, v) for an edge, rather than the set notation.

Undirected Graph

Example 2.

•
$$V = \{1, 2, 3, 4, 5, 6\}$$

•
$$E = \{(1,2), (1,5), (2,5), (3,6)\}$$

Weighted Graph

A graph G=(V,E) is **weighted** if there exists a **weight function** $\omega:E\to\mathbb{R}$ that associates a weight $\omega(u,v)$ to each edge $(u,v)\in E$.

Incidence

- Edge (u, v) is incident from vertex u and incident to vertex v.
- Edge (u, v) leaves vertex u and enters vertex v.
- Undirected edge (u, v) is incident on both u and v.

Example 3.

Blue edge leaves vertex 2 and enters vertex 4.

Adjacency

- Given edge (u, v) ∈ E, vertex v is said to be adjacent to vertex u. This is denoted by u → v.
- Adjacency is a symmetric relation for undirected graphs.

Example 4.

Vertex 4 is adjacent to vertex 2.

Out-Degree

The **out-degree** of a vertex is the number of edges leaving it.

Example 5.

The out-degree of vertex 2 is 3.

In-Degree

The **in-degree** of a vertex is the number of edges entering it.

Example 6.

The in-degree of vertex 2 es 2.

Degree

- The degree of a vertex in a digraph is in-degree plus its out-degree.
- The degree of a vertex in an undirected graph is the number of edges incident on it.
- A vertex whose degree is 0 is called isolated.

Example 7.

The degree of vertex 2 es 5.

Contenido

- Graphs
 - Definitions
 - Paths & Cycles
 - Types
 - Representation
- 2 Exploring Graphs
 - Breadth First Search
 - Depth First Search
 - Topological Sort
 - Strongly Connected Components

Path,

A **path** of length k from a vertex u to a vertex u' in a graph G = (V, E) is a sequence $\langle v_0, v_1, v_2, \dots, v_k \rangle$ of vertices such that $u = v_0, u' = v_k$ and $(v_{i-1}, v_i) \in E$ for $i \in \{1, 2, \dots, k\}$.

Characteristics of Path

- Length of a path: Number of edges in it.
- A path **contains** vertices v_0 , v_1 , ..., v_k and edges (v_0, v_1) , (v_1, v_2) , ..., (v_{k-1}, v_k) .

Example 8.

The path $\langle 1, 2, 4, 5 \rangle$ is highlighted in blue. It contains edges (1, 2), (2, 4), (4, 5).

Reachable Vertices

If there is a path p from vertex u to vertex u', we say that u' is **reachable** from u via p. It is denoted by $u \stackrel{\sim}{p} u'$.

Example 9.

Vertex 5 is reachable from vertex 1.

Simple Path

- A path is **simple** if all vertices in the path are distinct.
- Other notation: walk (path) and path (simple path).

Example 10.

The path in blue is simple.

Simple Path

- A path is **simple** if all vertices in the path are distinct.
- Other notation: walk (path) and path (simple path).

Example 11.

The path in green is not simple.

Weight of a Path

Given a weighted digraph G = (V, E), whose weight function is $\omega : E \to \mathbb{R}$, the **weight of the path** $p = \langle v_0, v_1, \dots, v_k \rangle$ is defined as:

$$\omega(p) = \sum_{i=1}^{k} \omega(v_{i-1}, v_i) \qquad (1)$$

Example 12.

The weight of the blue path is 10.

Subpath

Given a path $p = \langle v_0, v_1, \dots v_k \rangle$, a length-k **subpath** of p is a contiguous subsequence $\langle v_i, v_{i+1}, \dots, v_j \rangle$ of its vertices, where 0 < i < j < k.

Example 13.

A subpath of the path in blue is $\langle 2, 4, 5 \rangle$.

Cycle

- In a directed graph, a path
 p = \langle v_0, v_1, \ldots, v_k \rangle forms a
 cycle if v_0 = v_k and the path
 contains at least one edge.
- The cycle is simple if, in addition, v₁, v₂, ..., v_k are distinct.
- A self-loop is a cycle of length

Example 14.

The path in orange is a simple cycle.

Cycle

• Two paths $\langle v_0, v_1, v_{k-1}, v_0 \rangle$ and $\langle v_0', v_1', v_{k-1}', v_0' \rangle$ form the same cycle if there exists an integer j such that $v_i' = v_{(i+j) \mod k}$ for $i = 0, 1, \ldots, k-1$.

Connected Component

- An undirected graph is connected if every vertex is reachable from all other vertices.
- The connected components of a graph are the equivalence classes of vertices under the reachable from relation.

Example 15.

This graph has three components: $\{1,2,5\}$, $\{3,6\}$ and $\{4\}$.

Connected Component

- An undirected graph is connected if it has exactly one connected component.
- The edges of a component are those that are incident only on the components of the component.

Example 16.

The edges of the component $\{1,2,5\}$ are (1,2), (2,5) and (1,5).

Strongly Connected Component (SCC)

- A digraph is strongly connected if every two vertices are reachable from each other.
- The strongly connected components of a digraph are the equivalence classes of vertices under the mutually reachable relation.
- A digraph is strongly connected if has only one strongly connected component.

Example 17.

The SCC are $\{1, 2, 4, 5\}$, $\{3\}$ and $\{6\}$.

Contenido

- Graphs
 - Definitions
 - Paths & Cycles
 - Types
 - Representation
- Exploring Graphs
 - Breadth First Search
 - Depth First Search
 - Topological Sort
 - Strongly Connected Components

Graph Types regarding Number of Edges

Empty Graph

A graph G = (V, E) is **empty** iff $E = \emptyset$.

Complete Graph

A graph G = (V, E) is **complete** iff G is undirected and every pair of vertices is adjacent.

Sparse Graph

A graph G = (V, E) is **sparse** iff |E| is much less than $|V|^2$.

Dense Graph

A graph G = (V, E) is **dense** iff |E| is close to $|V|^2$.

Graph Types regarding Reachability

Connected Graph

- An undirected graph is connected if every vertex is reachable from all other vertices.
- An undirected graph is connected if it has exactly one connected component.

Strongly Connected Graph

- A digraph is strongly connected if every two vertices are reachable from each other.
- A digraph is strongly connected if has only one strongly connected component.

Graph Types regarding Cycles

(Free) Tree

A graph G = (V, E) is a **(free) tree** iff G is a connected acyclic undirected graph.

Forest

A graph G = (V, E) is a **forest** iff G is an acyclic undirected graph.

DAG

A graph G = (V, E) is a **DAG** iff G is a directed acyclic graph.

Other Graph Types

Bipartite Graph

A graph G = (V, E) is **bipartite** iff G is undirected and V can be partitioned into two sets V_1 and V_2 such that $(u, v) \in E$ implies that $(u \in V_1 \land v \notin V_2) \lor (u \notin V_1 \land v \in V_2)$.

Graph Variants

Multigraphs

Similar to undirected graphs but the set of edges can include self-loops and multiple edges between the same pair of vertices.

Hypergraphs

- Similar to undirected graphs, but it contains hyperedges instead of edges.
- A hyperedge connects an arbitrary number of vertices rather than a pair.

Contenido

- Graphs
 - Definitions
 - Paths & Cycles
 - Types
 - Representation
- Exploring Graphs
 - Breadth First Search
 - Depth First Search
 - Topological Sort
 - Strongly Connected Components

Representation of Graphs

Adjacency Matrix

Good for dense graphs or graphs where fast reachability queries are required.

Adjacency List

Ideal for sparse graphs.

Adjacency Matrix

Given the graph G=(V,E), assume vertices in V are numbered: 1, 2, ..., |V|. Then, the adjacency matrix $A=(a_{ij})$ has length $|V|\times |V|$ and it is defined as:

$$a_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise.} \end{cases}$$

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1 0 1 1	0	1	0

Adjacency Matrix

Given the graph G=(V,E), assume vertices in V are numbered: 1, 2, ..., |V|. Then, the adjacency matrix $A=(a_{ij})$ has length $|V|\times |V|$ and it is defined as:

$$a_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise.} \end{cases}$$

			3			
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
			0			
6	0	0	0	0	0	1

Adjacency Matrix

- It requires $\Theta(|V|^2)$ space.
- We can query adjacency in $\Theta(1)$ time.
- It supports weighted graphs by storing w(u, v) at a_{ij} rather than 1.

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0 0 0 0 0	0	0	1

Adjacency Lists

- The adjacency-list representation of a graph G = (V, E) consists of an array Adj of |V| lists, one for each vertex in V.
- For each $u \in V$, the adjacency list Adj[u] contains all the vertices v such that there is an edge $(u, v) \in E$.

Adjacency Lists

- The adjacency-list representation of a graph G = (V, E) consists of an array Adj of |V| lists, one for each vertex in V.
- For each $u \in V$, the adjacency list Adj[u] contains all the vertices v such that there is an edge $(u, v) \in E$.

Adjacency Lists

- They require $\Theta(|V| + |E|)$ space.
- To determine whether vertex u' is adjacent to vertex u, we need to traverse Adj[u].
- We can consider weights by adding an extra field at each node.

Contenido

- Graphs
 - Definitions
 - Paths & Cycles
 - Types
 - Representation
- Exploring Graphs
 - Breadth First Search
 - Depth First Search
 - Topological Sort
 - Strongly Connected Components

Breadth First Tree

Predecessor Subgraph

Given the graph G = (V, E), the **predecessor subgraph** of G is defined as $G_{\pi} = (V_{\pi}, E_{\pi})$, where

- $V_{\pi} = \{ v \in V : v.\pi \neq NIL \} \cup \{ s \}.$
- $E_{\pi} = \{(v.\pi, v) : v \in (V_{\pi} \{s\})\}.$

It is a **tree** that contains a shortest path from s to each reachable vertex $v \in V$.

Lemma 6

When applied to a graph G = (V, E), BFS constructs π so that the predecessor subgraph is a breadth-first tree.

Printing the Shortest Paths

```
PRINT-PATH(G, s, v)

1 if v == s

2 print s

3 elseif v.\pi == \text{NIL}

4 print "no path from" s "to" v "exists"

5 else PRINT-PATH(G, s, v.\pi)

print v
```

Time Complexity

Linear on the number of vertices on the path.

Contenido

- Graphs
 - Definitions
 - Paths & Cycles
 - Types
 - Representation
- Exploring Graphs
 - Breadth First Search
 - Depth First Search
 - Topological Sort
 - Strongly Connected Components

Depth First Search (DFS)

Main Ideas

- It searches deeper in the graph whenever possible.
- In particular, it searches the edges that lead to undiscovered vertices from the most recently discovered vertex v.
- When v has no edges to undiscovered vertices, the search backtracks to explore edges leaving from the vertex from which v was discovered.

Depth First Search (DFS)

About the sources

- In BFS, we start from a single source s to find all the reachable vertices from s. We obtain a Breadth First Tree.
- In DFS, we start from different (unexplored) sources until all vertices in the graph are discovered. We obtain a Depth First Forest with possibly many Depth First Trees.

Colors

Colors

Same meaning as in BFS:

- White: Undiscovered.
- **Gray:** Discovered but not all its neighbors have been explored.
- Black: Finished. All its neighbors have already been explored.

Predecessor Subgraph

Predecessor Subgraph

- The predecessor subgraph of G = (V, E) is defined as $G_{\pi} = (V, E_{\pi})$, where
 - $E_{\pi} = \{(v.\pi, v) : v \in V \land v.\pi \neq NIL\}$
 - \bullet v is a descendant of u was discovered when u was gray.
- It forms a Depth First Forest comprised of possibly many Depth First Trees.
- Each v ends up in exactly one DFS tree.

Timestamps

Timestamps

- Integers from 1 to 2|V| that represent moments in time.
- Each vertex $v \in V$ has two timestamps:
 - v.d: time when v was discovered and grayed.
 - v.f: time when v was blackened, i.e. Adj[v] was fully explored.
- They provide important information about the structure of the graph.
- They are helpful for analizing the behavior of DFS.
- v.d < v.f.
- v is
 - white before *v.d.*
 - gray at v.d and before v.f.
 - black at v.f thereafter.

Pseudocode

```
DFS-VISIT(G, u)
DFS(G)
                                                                   // white vertex u has just been discovered
   for each vertex u \in G.V
                                      time = time + 1
                                     u.d = time
       u.color = WHITE
                                     u.color = GRAY
       u.\pi = NII.
                                     for each v \in G.Adi[u]
                                                                   /\!\!/ explore edge (u, v)
   time = 0
                                          if v.color == WHITE
   for each vertex u \in G.V
       if u.color == WHITE
                                              v.\pi = u
6
            DFS-VISIT(G, u)
                                              DFS-VISIT(G, v)
                                     u.color = BLACK
                                                                   // blacken u: it is finished
                                     time = time + 1
                                     u.f = time
```

Analysis

```
\begin{array}{ll} \operatorname{DFS}(G) \\ 1 & \textbf{for} \ \operatorname{each} \ \operatorname{vertex} \ u \in G.V \\ 2 & u.color = \operatorname{WHITE} \\ 3 & u.\pi = \operatorname{NIL} \\ 4 & time = 0 \\ 5 & \textbf{for} \ \operatorname{each} \ \operatorname{vertex} \ u \in G.V \\ 6 & \textbf{if} \ u.color = \operatorname{WHITE} \\ 7 & \operatorname{DFS-VISIT}(G,u) \end{array}
```

```
DFS-VISIT(G, u)

1  time = time + 1

2  u.d = time

3  u.color = GRAY

4  for each \ v \in G.Adj[u]

5  if \ v.color = WHITE

6  v.\pi = u

7  DFS-VISIT(G, v)

8  u.color = BLACK

9  time = time + 1

10  u.f = time
```

- DFS may vary depending on the order of the adjacency lists.
- DFS-VISIT(u) is called once for each $u \in V$.
- The total complexity is $\Theta(|V| + |E|)$.

Analysis

```
\begin{array}{ll} \operatorname{DFS}(G) \\ 1 & \text{ for each vertex } u \in G.V \\ 2 & u.color = \operatorname{WHITE} \\ 3 & u.\pi = \operatorname{NIL} \\ 4 & time = 0 \\ 5 & \text{ for each vertex } u \in G.V \\ 6 & \text{ if } u.color = \operatorname{WHITE} \\ 7 & \operatorname{DFS-VISIT}(G,u) \end{array}
```

```
DFS-VISIT(G, u)

1  time = time + 1

2  u.d = time

3  u.color = GRAY

4  for each v \in G.Adj[u]

5  if v.color == WHITE

6  v.\pi = u

DFS-VISIT(G, v)

8  u.color = BLACK

9  time = time + 1

10  u.f = time
```

- DFS may vary depending on the order of the adjacency lists.
- DFS-VISIT(u) is called once for each $u \in V$.
- The total complexity is O(|V| + |E|).

Example

Example

Parenthesis Structure

Parenthesis Structure

Theorem 7 (Parenthesis Theorem)

In any DFS of a graph G = (V, E), for any $u, v \in V$, exactly one of the following conditions hold:

- [u.d, u.f] and [v.d, v.f] are entirely disjoint and u and v are not descendant of each other in the forest.
- [u.d, u.f] is entirely contained in [v.d, v.f] and u is a descendant of v in a Depth First tree.
- [v.d, v.f] is entirely contained in [u.d, u.f] and v is a descendant of u in a Depth First tree.

Parenthesis Structure

Corollary 8

Vertex v is a proper descendant of vertex u in the Depth First forest for a graph G if and only if u.d < v.d < v.f < u.f.

White-path Theorem

White-path Theorem

In a Depth First forest of a graph G = (V, E), vertex v is a descendant of vertex u if and only if at the time u.d that the search discovers u, there is a path from u to v consisting entirely of white vertices.

Classification of Edges

- **Tree Edges:** Edges in the Depth First forest. Edge (u, v) is a tree edge if v was discovered by exploring edge (u, v). In particular, u.d < v.d < v.f < u.f.
- Back Edges: Edges (u, v) connecting vertex u to an ancestor v in the Depth First tree. It holds that v.d < u.d < u.f < v.f.
- Forward Edges: Non-tree edges (u, v) connecting a vertex u to a descendant v in the Depth First tree. Like in tree edges, u.d < v.d < v.f < u.f.
- Cross Edges: It holds that v.d < v.f < u.d < u.f.
 - They can go between vertices in the same Depth First tree as long as one of them is not an ancestor of the other.
 - They can go between vertices in different Depth First trees.

Classification of Edges

DFS can classify edges (u, v) according to the color of v:

- White: Tree edge.
- Gray: Back edge.
- Black: Forward Edge (u.d < v.d) or Cross Edge (u.d > v.d).

Classification of Edges

Tree edges Back edges Forward edges Cross edges

(a,b), (b,d), (b,e), (d,h), (a,c), (c,f), (f,g)
(g,c)
(a,g)
(e,h), (c,b)

Classification of Edges in Undirected Graphs

- Ambiguous since (u, v) and (v, u) are the same.
- The first type that applies in the list is taken.
- Forward and Cross edges never occur.

Theorem 10

In a DFS of an undirected graph G = (V, E), every edge is either a tree edge or a back edge.

Contenido

- Graphs
 - Definitions
 - Paths & Cycles
 - Types
 - Representation
- Exploring Graphs
 - Breadth First Search
 - Depth First Search
 - Topological Sort
 - Strongly Connected Components

- A **topological sort** of a dag G = (V, E) is a linear ordering of all its vertices such that if G contains (u, v), the u appears before v in the ordering.
- Put vertices on a line so that edges go from left to right.
- If a graph contains a cycle, such ordering is not possible.
- Time Complexity: $\Theta(|V| + |E|)$.

TOPOLOGICAL-SORT(G)

- 1 call DFS(G) to compute finishing times ν . f for each vertex ν
- 2 as each vertex is finished, insert it onto the front of a linked list
- 3 **return** the linked list of vertices

	m	n	0	p	q	r	s	t	u	v	w	\boldsymbol{x}	y	z
														12
f	20	26	25	28	5	19	24	4	8	17	14	16	18	13

Correctness of Topological Sort

Lemma 11

A directed graph G = (V, E) is acyclic if and only if a DFS of G yields no back edges.

Theorem 12

TOPOLOGICALSORT(G) produces a topological sort of graph G = (V, E).

Exercise of Topological Sort

Exercise

Calculate a topological sort for the following graph.

Contenido

- Graphs
 - Definitions
 - Paths & Cycles
 - Types
 - Representation
- Exploring Graphs
 - Breadth First Search
 - Depth First Search
 - Topological Sort
 - Strongly Connected Components

Strongly Connected Components

- Classical application of DFS.
- Many algorithms on graphs start by decomposing the digraph in strongly connected components.
- They work separately in each component.
- Then, they combine the solutions according to the connections of the components.

Strongly Connected Component

A strongly connected component of a digraph G=(V,E) is a maximal set of vertices $C\subseteq V$ such that for every pair of vertices $u,v\in C$, we have both $u\stackrel{\sim}{p} v$ and $v\stackrel{\sim}{p} u$.

Strongly Connected Components

Transpose of a Graph

Transpose of a Graph

- Given a digraph G = (V, E), the **transpose** of G is defined as $G^T = (V, E^T)$ where
 - $E^T = \{(u, v) : (v, u) \in E\}.$
- G^T can be computed in O(|V| + |E|).
- G and G^T have the same strongly connected components.

Component Graph

Component of a Graph

- Given a digraph G = (V, E) whose strongly connected components are C_1, C_2, \ldots, C_k , the **component graph** of G is defined as $G^{SCC} = (V^{SCC}, E^{SCC})$ where
 - $V^{SCC} = \{v_1, v_2, \dots v_k\}$ contains a vertex v_i for each strongly connected component C_i of G, $i \in \{1, 2, \dots, k\}$.
 - There is an edge $(v_i, v_j) \in E^{SCC}$ if G contains a directed edge (x, y) for some $x \in C_i$ and $y \in C_j$.
- G^{SCC} is the result of contracting each component in a vertex.
- G^{SCC} is a dag.

Properties

Lemma 13

- Let C and C' be distinct strongly connected components in digraph G = (V, E).
- Let $u, v \in C$.
- Let $u', v' \in C'$.
- Suppose that G contains a path $u \stackrel{\leadsto}{p} u'$.

Then, G cannot also contain a path $v' \stackrel{\leadsto}{p} v$.

Pseudocode

STRONGLY-CONNECTED-COMPONENTS (G)

- 1 call DFS(G) to compute finishing times u.f for each vertex u
- 2 compute G^{T}
- 3 call DFS(G^{T}), but in the main loop of DFS, consider the vertices in order of decreasing u.f (as computed in line 1)
- 4 output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component
 - Complexity: $\Theta(|V| + |E|)$.
 - Let u.d and u.f respectively denote the discovery and finishing times of the first call to DFS (line 1).
 - Extend the notion of discovery and finishing times to sets of vertices. If $U \subseteq V$, we define
 - $d(U) = \min_{u \in U} \{u.d\}$ (earliest discovery).
 - $f(U) = \max_{u \in U} \{u.f\}$ (latest finishing).

Strongly Connected Components

Vertices in order of decreasing f_u : b,e,a,c,d,g,h,f

Strongly Connected Components

Vertices in order of decreasing f_u : b,e,a,c,d,g,h,f

Correctness

Lemma 14

- Let C and C' be distinct strongly connected components in digraph G = (V, E).
- Suppose there is an edge $(u, v) \in E$, where $u \in C$ and $v \in C'$.

Then, f(C) > f(C').

Corollary 15

- Let C and C' be distinct strongly connected components in digraph G = (V, E).
- Suppose there is an edge $(u, v) \in E^T$, where $u \in C$ and $v \in C'$.

Then, f(C) < f(C').

Correctness

Theorem 16

STRONGLYCONNECTEDCOMPONENTS(G) correctly computes the strongly connected components of digraph G = (V, E).

Exercise of Strongly Connected Components

Find the SCC of the following graph.

Bibliography

- Cormen TH, Leiserson CH, Rivest RL, Stein C. Introduction to Algorithms, 3rd Edition. The MIT Press. 2009.
- Curso de Algoritmia Avanzada de Yoan Pinzón. 2012.