ECON 711 - PS 6

Alex von Hafften*

10/19/2020

Question 1. Rationalizing Demand

Suppose you observe the following data on prices, wealth, and chosen consumption bundles for a certain consumer at four points in time:

w	p	x
100	(5, 5, 5)	(12, 4, 4)
100	(7, 4, 5)	(9, 3, 5)
100	(2, 4, 1)	(27, 9, 10)
150	(7, 4, 5)	(15, 5, 5)

(a) Are the data consistent with Walras Law?

Yes.

$$(5,5,5) \cdot (12,4,4) = 100$$

$$(7,4,5) \cdot (9,3,5) = 100$$

$$(2,4,1) \cdot (27,9,10) = 100$$

$$(7,4,5) \cdot (15,5,5) = 150$$

(b) Can these data be rationalized by a continuous, monotonic and concave utility function?¹

By Afriat's Theorem, we know that if data satisfy GARP, then there exists a LNS, continuous, concave, monotonic utility function that rationalizes the data.

- Consider x^1 and x^2 . $x^1 \cdot p^1 = (12, 4, 4) \cdot (5, 5, 5) = 100$ and $x^2 \cdot p^1 = (9, 3, 5) \cdot (5, 5, 5) = 85$. So $x^1 \succ^D x^2$.
- Consider x^1 and x^3 . Notice $x^3 > x^1$. By the hint, $p \cdot x^3 > p \cdot x^1$ for any p >> 0. So $x^3 >^D x^1$.
- Consider x^1 and x^4 . Notice $x^4 > x^1$. By the hint, $x^4 >^D x^1$.
- Consider x^2 and x^3 . Notice $x^3 > x^2$. By the hint, $x^3 >^D x^2$.
- Consider x^2 and x^4 . Notice $x^4 > x^2$. By the hint, $x^4 >^D x^2$.
- Consider x^3 and x^4 . Notice $x^3 > x^4$. By the hint, $x^3 >^D x^4$.

Thus, $x^3 \succ^D x^4 \succ^D x^1 \succ^D x^2$. The data satisfy GARP.

^{*}I worked on this problem set with a study group of Michael Nattinger, Andrew Smith, Tyler Welch, and Ryan Mather. I also discussed problems with Emily Case, Sarah Bass, and Danny Edgel.

¹Hint: you don't need to calculate the cost of every bundle at every price; if $x^i > x^j$, then $p \cdot x^i > p \cdot x^j$ for any p >> 0.

Question 2. Aggregating Demand

Suppose there are n consumers, and consumer $i \in \{1, 2, ..., n\}$ has indirect utility function $v^i = a_i(p) + b(p)w_i$ where $\{a_i\}_{i=1}^n$ and b are differentiable functions from \mathbb{R}^k_+ to \mathbb{R} .

(a) Use Roy's Identity to calculate each consumer's Marshallian demand $x^{i}(p, w_{i})$.

Since $\{a_i\}_{i=1}^n$ and b are differentiable, v^i is differentiable.

$$\frac{\partial v^i}{\partial w_i} = b(p)$$

$$\frac{\partial v^i}{\partial p} = \frac{\partial a_i}{\partial p} + \frac{\partial b}{\partial p} w_i$$

By Roy's Identity,

$$x^{i}(p, w_{i}) = -\frac{\partial v^{i}/\partial p}{\partial v/\partial w_{i}} = -\frac{\frac{\partial a_{i}}{\partial p} + \frac{\partial b}{\partial p}w_{i}}{b(p)}$$

(b) Calculate the Marshallian demand X(p,W) of a "representative consumer" with wealth W and indirect utility function $V(p,W) = \sum_{i=1}^n a_i(p) + b(p)W$ show that $X(p,\sum_{i=1}^n w_i) = \sum_{i=1}^n x^i(p,w_i)$.

$$\frac{\partial V}{\partial W} = b(p)$$

$$\frac{\partial V}{\partial p} = \sum_{i=1}^{n} \frac{\partial a_i}{\partial p} + \frac{\partial b}{\partial p} W$$

By Roy's identity,

$$X(p,W) = -\frac{\partial V/\partial p}{\partial V/\partial W} = -\frac{\sum_{i=1}^{n} \frac{\partial a_i}{\partial p} + \frac{\partial b}{\partial p}W}{b(p)}$$

$$X\left(p, \sum_{i=1}^{n} w_{i}\right) = -\frac{\sum_{i=1}^{n} \frac{\partial a_{i}}{\partial p}(p) + \frac{\partial b}{\partial p}(p) \sum_{i=1}^{n} w_{i}}{b(p)}$$

$$= -\frac{\sum_{i=1}^{n} \left[\frac{\partial a_{i}}{\partial p}(p) + \frac{\partial b}{\partial p}(p)w_{i}\right]}{b(p)}$$

$$= -\sum_{i=1}^{n} \frac{\frac{\partial a_{i}}{\partial p}(p) + \frac{\partial b}{\partial p}(p)w_{i}}{b(p)}$$

$$= \sum_{i=1}^{n} x^{i}(p, w_{i})$$

Question 3. Homothetic Preferences

Complete, transitive preferences \succeq on \mathbb{R}^k_+ are called homothetic if for all $x, y \in \mathbb{R}^k_+$ and all t > 0, $x \succeq y \iff tx \succeq ty$.

(a) Show that if preferences are homothetic, Marshallian demand is homogeneous of degree 1 in wealth: for any t > 0, x(p, tw) = tx(p, w).

Fix $w \in \mathbb{R}_+$ and $p \in \mathbb{R}_+^k$. Let \succsim_H be a homothetic preference relation. Let $x^* := x(p,w) \in \{x \in B(p,w) : x \succsim_H y \ \forall y \in B(p,w)\}$ and $x' \in B(p,w)$. By definition, $x^* \succsim_H x'$. Since \succsim_H is homothetic, $tx^* \succsim_H tx'$ for t > 0. Since $p \cdot x' \le w \implies p \cdot tx' \le tw$ and $p \cdot x^* \le w \implies p \cdot tx^* \le tw$, $tx^*, tx' \in B(p,tw)$. Since tx' represents an arbitrary element of B(p,tw), $tx^* \in \{x \in B(p,tw) : x \succsim_H y \ \forall y \in B(p,tw)\} \implies tx^* = x(p,tw)$. Therefore, Marshallian demand is homogeneous of degree 1 in wealth.

(b) Show that if preferences are homothetic, monotone, and continuous, they can be represented by a utility function which is homogeneous of degree 1. (Hint try the utility function we used to prove existence of a utility function in class.)

Let \succeq_H be a homothetic, monotone, and continuous preference relation. Since \succeq_H is homothetic, it is also complete and transitive. Thus, \succeq_H can be represented by utility function u such that, for $x \in \mathbb{R}_+^k$, $u(x) = \alpha$ where $x \succeq_H \alpha e$ and $\alpha e \succeq_H x$ and e = (1, ..., 1). Thus, because \succeq_H is homothetic, $tx \succeq_H t\alpha e$ and $t\alpha e \succeq_H tx$ for t > 0, so $u(tx) = t\alpha$.

(c) Show that given (a) and (b), the indirect utility function takes the form v(p, w) = b(p)w for some function b.

Fix $w \in \mathbb{R}_+$ and $p \in \mathbb{R}_+^k$. Since Marshallian demand and utility functions associated with homothetic preferences are homogeneous of degree 1:

$$v(p, w) = u(x(p, w)) = u(wx(p, 1)) = wu(x(p, 1)) = wb(p)$$

where b(p) = u(x(p, 1)).

Question 4. Quasilinear Utility

Let $X = \mathbb{R} \times \mathbb{R}^{k-1}_+$ (allow positive or negative consumption of the first good), suppose utility $u(x) = x_1 + U(x_2, ..., x_k)$ is quasilinear, and fix the price of the first good $p_1 = 1$.

(a) Show that Marshallian demand for goods 2 through k does not depend on wealth.

Notice that u represents LNS preferences; for any $x=(x_1,x_2,...,x_k)\in X$ and $\varepsilon>0$, let $x'=(x_1+\varepsilon,x_2,...,x_k)\in X$.

$$||x'-x|| = ||(x_1+\varepsilon,x_2,...,x_k)-(x_1,x_2,...,x_k)|| = ||(\varepsilon,0,...,0)|| = \varepsilon$$

$$u(x_1 + \varepsilon, x_2, ..., x_k) = x_1 + \varepsilon + U(x_2, ..., x_k) > x_1 + U(x_2, ..., x_k) = u(x_1, x_2, ..., x_k) \implies x' \succ x$$

Because u represents LNS preferences, we know Walras' Law hold and the budget constraint holds with equality. Thus, we can substitute in $x_1 = w - p_2 x_2 - \dots - p_k x_k$ into Marshallian demand:

$$\begin{split} x(p,w) &= \arg\max_{x \in B(p,w)} u(x) \\ &= \arg\max_{x \in B(p,w)} \{x_1 + U(x_2,...,x_k)\} \\ &= \arg\max\{w - p_2x_2 - ... - p_kx_k + U(x_2,...,x_k)\} \\ &= \arg\max\{U(x_2,...,x_k) - p_2x_2 - ... - p_kx_k\} \end{split}$$

So Marshallian demand does not depend on w.

(b) Show that indirect utility can be written as $v(p, w) = w + \tilde{v}(p)$ for some function \tilde{v} .

As we showed in (a), u represents LNS preferences, so Walras' Law holds:

$$\begin{split} v(p,w) &= \max_{x \in B(p,w)} u(x) \\ &= \max_{x \in B(p,w)} \{x_1 + U(x_2,...,x_k)\} \\ &= \max\{w - p_2 x_2 - ... - p_k x_k + U(x_2,...,x_k)\} \\ &= w + \max\{U(x_2,...,x_k) - p_2 x_2 - ... - p_k x_k\} \\ &= w + \tilde{v}(p) \end{split}$$

where $\tilde{v}(p) = \max\{U(x_2, ..., x_k) - p_2 x_2 - ... - p_k x_k\}.$

(c) Show the expenditure function can be written as e(p, u) = u - f(p) for some function f.

Assume that U is continuous, so u is continuous. Thus, the "no excess utility" condition holds, so if $u \ge u(0)$, then for any $x \in h(p, u), u(x) = u$. Thus, $x_1 = u - U(x_2, ..., x_k)$:

$$\begin{split} e(p,u) &= \min_{x} \{x_1 + p_2 x_2 + \ldots + p_k x_k\} \\ &= \min\{u - U(x_2, \ldots, x_k) + p_2 x_2 + \ldots + p_k x_k\} \\ &= u + \min\{p_2 x_2 + \ldots + p_k x_k - U(x_2, \ldots, x_k)\} \\ &= u + f(p) \end{split}$$

where $f(p) = \min_{\{x_2,...,x_k\}} \{p_2x_2 + ... + p_kx_k - U(x_2,...,x_k)\}.$

(d) Show that the Hicksian demand for goods 2 through k does not depend on target utility.

Because the "no excess utility" condition holds,

$$h(p, u) = \arg\min_{x} \{ u - U(x_2, ..., x_k) + p_2 x_2 + ... + p_k x_k \}$$

= $\arg\min_{x} \{ p_2 x_2 + ... + p_k x_k - U(x_2, ..., x_k) \}$

So Hicksian demand does not depend on w.

(e) Show that Compensating Variation and Equivalent Variation are the same when the price of good $i \neq 1$ changes, and also equal to Consumer Surplus.

Suppose that the price of good $i \neq 1$ changes, with $p_i^1 < p_i^0$. Thus, Compensating Variation and Equivalent Variation are equal because Hicksian demand for good i does not depend on target utility:

$$CV = e(p^{0}, u^{0}) - e(p^{1}, u^{0}) = \int_{p_{i}^{1}}^{p_{i}^{0}} h_{i}(p, u^{0}) dp_{i}$$

$$EV = e(p^{0}, u^{1}) - e(p^{1}, u^{1}) = \int_{p_{i}^{1}}^{p_{i}^{0}} h_{i}(p, u^{1}) dp_{i} = \int_{p_{i}^{1}}^{p_{i}^{0}} h_{i}(p, u^{0}) dp_{i}$$

As we saw in (a) and (d), Marshallian demand is the arg max of a function and Hicksian demand is the arg min of the negative of that function:

$$\begin{split} x(p,w) &= \arg\max\{U(x_2,...,x_k) - p_2x_2 - ... - p_kx_k\} \\ &= \arg\min\{p_2x_2 + ... + p_kx_k - U(x_2,...,x_k)\} \\ &= h(p,u) \end{split}$$

for prices p, utility u and wealth w. So, Consumer Surplus equals Compensating Variation and Equivalent Variation because there is no wealth effects:

$$CS = \int_{p_i^1}^{p_i^0} x_i(p, w) dp_i = \int_{p_i^1}^{p_i^0} h_i(p, v(p, w)) dp_i = \int_{p_i^1}^{p_i^0} h_i(p, u^0) dp_i$$