HW2 - Navya Rhat

2.4.1

- (a) Flerible model performs better when n is large and no. of poudidors is small.
- Jerst flerible method like knn, we can find sufficient no. of neighbors to accurately estimate f when n is large & p small.
- 6) When p is large and no. of observation is omall, flexible model performs worke as it suffers from the curse of dimensionality.
- E) When the relationship blu predictors I surposse is highly non linear, ferible method performe better as it can adapt to complex patterns of, reducing bias & MSE.

d) When variance of error terme is high,
d) When variance of error terme is high inflexible method performe better as
flexible models may suffer from overfitting
flexible models may suffer from overfittingiven the higher noise.
J
$2-4-4$ $X_1 = X_2 - X_3 = 0$.
au diden, dictance:
$\sqrt{(x_1-x_1^*)^2+(x_2-x_2^*)^2+(x_3-x_3^*)^2}$
a Gudiden
Obs. X1 X2 X3 4 Dislance
1030R 3
2200R2
3013R VO=316
4 D 1 2 G 15= 2.23
5-1016 52-1.44
$6 R. \sqrt{3} = 1.73$
(B) K=(; only neighbor .) observation 5
(b) K=1; only 1 neighbor sobservation 5 since it has smallest distance.
Pendiction GREEN as P(P(X=5)=1 is manimised for Y-yreen
is manimised for 4- yreen

- (C) $K=3 \rightarrow Neighbors: Obs 5,6,2$ $P(Red | X_1=X_2=X_3=0) = \frac{Q}{3} = 67./.$
 - P manimised & when Y= Red.

 Porediction -> RED
 - (a) If bayes decision boundary is highly non-linear then we need a more flexible model to minimize MSE.

 K -> Small