EPITA	/ InfoS1	Novembre 2020
NOM	: Prénom :	Groupe :

Contrôle Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. Questions de cours (3 points – pas de points négatifs pour le QCM)

Choisissez la bonne réponse :

1.	Une maille d'un	circuit corres	pond à une p	ortion de circu	uit située entre 2	nœuds consécutifs
----	-----------------	----------------	--------------	-----------------	--------------------	-------------------

a- VRAI

b- FAUX

2. Pour mesurer l'intensité du courant qui traverse un dipôle, on utilise un ampèremètre branché en série avec ce dipôle.

a- VRAI

b- FAUX

3. L'intensité du courant qui entre dans un dipôle récepteur est supérieure à l'intensité de celui qui en ressort.

a- VRAI

b- FAUX

4. Une différence de potentiels entre 2 points est aussi appelée :

a- Une intensité

c- Une puissance

b- Une tension

d- Une conductance

5. Si deux dipôles appartiennent à la même branche : on dit qu'ils sont :

a- En série

b- En parallèle

c- On ne peut rien dire

6. Soit le schéma suivant : Que vaut la tension U si l'interrupteur K est ouvert ?

$$\operatorname{a-}\ U=0$$

b-
$$U = \frac{E}{2}$$

$$c-U=E$$

$$d- U = -E$$

EPITA / InfoS1 Novembre 2020

Exercice 2. Association de résistances (4,5 points)

Quelle est la résistance équivalente totale (détaillez votre raisonnement — On imagine que le courant « entre » par le point A et « ressort » en B)

Exercice 3. Généralités et Lois de Kirchhoff (6 points) u_1

Soit le schéma ci-contre. On donne :

- $\bullet \quad E = V_A V_B = 240V$
- $U_1 = V_F V_B = 184V$ $U_4 = V_C V_D = -110V$ $U_5 = U_{AD} = 46V$

1. Placer les points A, B, C, D et F sur la figure.

2	C-1- 1	Landa Landa		.	T T	7 7	7 7	- 1	TT
۷.	Caiculer	les valeur	s aes te	ensions	U2,	Uz,	U6	еτ	U7

3. Déterminer les intensités des courants I_1 , I_2 et I représentés sur le schéma. On prendra $R_1 = R_3 = 100\Omega.$

Exercice 4. Lois de Kirchoff / Ponts Diviseurs (6,5 points)

1. Soit le circuit ci-contre.

Déterminer les expressions des tensions U_1 et U_2 en fonction de E et des résistances. Vous exprimerez votre résultat avec une seule barre de fraction (pas de fractions de fractions !)

2. Soit le circuit ci-contre.

a. Exprimer I_1 et I_2 en fonction de I et des résistances. Vous exprimerez votre résultat avec une seule barre de fraction (pas de fractions de fractions !)

D.	Donner l'expression de I en fonction de E et des résistances. Vous exprimerez votre résultat avec une seule barre de fraction (pas de fractions de fractions !)
C.	Application Numérique : Calculer les 2 intensités I_1 et I_2 si $E=10V$, $r=1\Omega$, $R_1=R_2=R_3=3k\Omega$.
с.	
c.	