

P(A) = 3! 4! 3!4! = (3.2 4(3.2 3.1 4.3.2 7.2 7.2 7.5 4.3.2 $= \frac{18}{35} \approx 0.5143 \qquad 8-961 \quad P(A) = \frac{18}{35} \approx 0.5143$ 36igay $P(A) = \frac{m}{n} > n = \frac{6}{10}$ $m = \frac{6}{9}$ $\frac{36igay}{70} P(A) = \frac{6}{70} = \frac{9!}{3!} \frac{4!}{70!} = \frac{4}{10} = 0.4$ que a, o $f(x) = \begin{cases} \cos x, & x \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right) \\ o, & x \notin \left(-\frac{\pi}{2}; \frac{\pi}{2}\right) \end{cases}$ Ochinbry cos (x) - p-9 napra, mo immeripanting cyuic ke npoun'kery (a; a) byge pibna 25 na repositiony (0;9) Braigeus sepigionm C: Toward $\int f(x) dx = 1$ - momonchisms φ -i cychoromi B naves very being my expected: TV_2 $\int_{-\pi/2}^{\pi/2} \cos x \, dx = 1$ $\int_{-\pi/2}^{\pi/2} \cos x \, dx = 1$ $\int_{-\pi/2}^{\pi/2} \cos x \, dx = 1$ $\int_{-\pi/2}^{\pi/2} \cos x \, dx = 1$ $C = \frac{1}{2}$ $M(x) = \int_{-\infty}^{\infty} x f(x) dx = \int_{-\frac{\pi}{2}}^{\frac{x}{2}} \frac{\cos x}{\cos x} dx$ Оснільни інтегранд - ср-я непарка, то інтеграньна

ayus ne mouninary (-a; a) pibra o. :. M(x) = 0. $D(x) = \int_{-\infty}^{\infty} x^{2} f(x) dx - M^{2}(x)$ $\Rightarrow D(x) = \int_{-\pi/2}^{\infty} \frac{x^{2}}{2} \omega_{3} x dx - O^{2} = \int_{0}^{\pi/2} x^{2} \cos_{3} x dx$ max-guc $f(x) = \frac{x^2}{2}\cos x \Leftrightarrow f(-x) = \frac{(-x)^2}{2}\cos (-x) = \frac{f(x)}{2}$. $D(x) = \begin{vmatrix} v = x^2 & \delta v = 2x \delta x \\ \delta v = \cos x \delta x & v = \sin x \end{vmatrix} = x^2 \sin x \begin{vmatrix} \sqrt{1}/2 & \sqrt{1}/2 \\ 0 & \delta \end{vmatrix}$ ge $x^2 \sin x \left| \frac{\pi}{2} \right| = \frac{\pi^2}{4}$, $\int_0^{\pi/2} x \sin x \, dx = \left| \begin{array}{c} u = x \\ dv = \sin x \, dx \end{array} \right| = -x \cos x \left| \begin{array}{c} \pi/2 + \sin x \\ 0 \end{array} \right| = 1$ 36igan macous: D(x) = #2-2 $S(x) = \sqrt{D(x)} = \sqrt{\frac{\pi^2}{4} - 2}$ B-96: $C = \frac{1}{2}$, $D(x) = \frac{\pi^2}{4} - 2$ $5(x) = \sqrt{\pi^2 - 2}$ 26.8. 26.8.

3a buznonem $f(x) = \begin{cases} \lambda e^{\lambda x}, x > 0 \\ 0, x < 0 \end{cases}$ Ane a = 3 matins: $f(x) = \int 3e^{3x}, x > 0$ Braingeur ffred x - 3 yersbu zabganne $I = \int_{0}^{2} 3e^{-3x} dx = (-e^{-3x})|_{0}^{2} = 1 - e^{-6}, \quad B-96; \quad 1-e^{-6}.$

26.9. $f(x,y) = \begin{cases} (x \omega_3 y, x \in (0; \frac{\pi}{2}) & \text{n} y \in (0; \frac{\pi}{2}) \\ 0, x \notin (0; \frac{\pi}{2}) & \text{u} y \notin (0; \frac{\pi}{2}) \end{cases}$ Sa buz naverney 5 5 f(x, y) dx dy = 1 36 ig cu maemo: $ty_2 ty_2$ $\int \int f(x, y) dx dy = \int \int c x \cos y dx dy = 1$ $= \frac{1}{c} = \int_{-\infty}^{\pi/2} x \, dx \int_{-\infty}^{\pi/2} \cos y \, dy = \left(\frac{x^2}{2}\right) \left(\frac{\pi}{2}\right) \left(\frac{\pi}{2}\right) \left(\frac{\pi}{2}\right)$ $\frac{1}{C} = \frac{\pi^2}{8}, 1 \Rightarrow C = \frac{8}{\pi^2}$ $F(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy - 3a Buzkovenskau$ mogi, macion: $f(x,y) = \int_{0}^{x} \int_{0}^{y} \frac{g}{\pi^{2}} x \cos y \, dx \, dy = \int_{0}^{y} \int_{0}^{x} x \, dx \int_{0}^{y} \cos y \, dy$ $F(x, y) = \frac{8}{7^2} \left(\frac{x^2}{2} \right)^{x} \left(\frac{1}{2} \ln y \right)^{y} = \frac{8}{7^2} \frac{x^2}{2} \sin y$: $F(x, y) = \frac{1}{4} x^2 \sin y$ $M(Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x,y) dx dy - 3a leaguage processing$ $M(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x, y) dx dy$ $M(x) = \frac{8}{\pi^2} \int_{-\infty}^{N/2} \int_{-\infty}^{N/2} x^2 \cos y \, dx \, dy = \frac{5}{\pi^2} \int_{-\infty}^{T/2} x^2 \, dx \int_{-\infty}^{T/2} \cos y \, dy$ $M(x) = \frac{8}{\pi^2} \left(\frac{x_3}{3} \Big|_{0} \sqrt{y_2} \right) \left(s(n y) \Big|_{0} \sqrt{x_2} \right) = \frac{8}{\pi^2} \left(\frac{x_3}{3} \right) + \frac{\pi}{3}$

	ory dxdy = $\frac{g}{\pi^2} \int_{0}^{\pi/2} x dx \int_{0}^{\pi/2} y \cos y dy$	
$I_{x} = \int_{0}^{\pi/2} x dx = \frac{x^{2}}{2}$	$\frac{\pi}{2} = \frac{\pi^2}{8}$	
$I_y = \int_0^{ry_2} y \omega_3 y dy =$	dv=cosydy v=siny	
$Jy = y \sin y \int_0^{\pi/2} + co$	y T/2 = T - 1	
	$\frac{g}{\pi^2} \cdot \frac{\pi^2}{g} \cdot \left(\frac{\pi}{2} - 1 \right) = \frac{\pi}{2} - 1$	

*:
$$f(x,y) = \begin{cases} 0, & x \in (-\infty,0] \land y \in (-\infty,0] \\ 8, x \mapsto y, & x \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \\ 0, & x \in [\frac{\pi}{2}; +\infty) \land y \in [\frac{\pi}{2}; +\infty) \end{cases}$$

$$\Rightarrow F(x,y) = \begin{cases} 0, & x \in (-\infty,0] \land y \in (-\infty,0] \\ 0, & x \in (-\infty,0] \land y \in (-\infty,0] \end{cases}$$

$$\Rightarrow f(x,y) = \begin{cases} 0, & x \in (-\infty,0] \land y \in (-\infty,0] \\ 0, & x \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \end{cases}$$

$$\Rightarrow f(x,y) = \begin{cases} 0, & x \in (-\infty,0] \land y \in (-\infty,0] \\ 0, & x \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \end{cases}$$

$$\Rightarrow f(x,y) = \begin{cases} 0, & x \in (-\infty,0] \land y \in (-\infty,0] \\ 0, & x \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \end{cases}$$

$$\Rightarrow f(x,y) = \begin{cases} 0, & x \in (-\infty,0] \land y \in (0; \frac{\pi}{2}) \\ 0, & x \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \end{cases}$$

$$\Rightarrow f(x,y) = \begin{cases} 0, & x \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \\ 0, & x \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \end{cases}$$

$$\Rightarrow f(x,y) = \begin{cases} 0, & x \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \\ 0, & y \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \end{cases}$$

$$\Rightarrow f(x,y) = \begin{cases} 0, & x \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \\ 0, & y \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \end{cases}$$

$$\Rightarrow f(x,y) = \begin{cases} 0, & x \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \\ 0, & y \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \end{cases}$$

$$\Rightarrow f(x,y) = \begin{cases} 0, & x \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \end{cases}$$

$$\Rightarrow f(x,y) = \begin{cases} 0, & x \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \end{cases}$$

$$\Rightarrow f(x,y) = \begin{cases} 0, & x \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \end{cases}$$

$$\Rightarrow f(x,y) = \begin{cases} 0, & x \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \end{cases}$$

$$\Rightarrow f(x,y) = \begin{cases} 0, & x \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \end{cases}$$

$$\Rightarrow f(x,y) = \begin{cases} 0, & x \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \end{cases}$$

$$\Rightarrow f(x,y) = \begin{cases} 0, & x \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \end{cases}$$

$$\Rightarrow f(x,y) = \begin{cases} 0, & x \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \end{cases}$$

$$\Rightarrow f(x,y) = \begin{cases} 0, & x \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \end{cases}$$

$$\Rightarrow f(x,y) = \begin{cases} 0, & x \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \end{cases}$$

$$\Rightarrow f(x,y) = \begin{cases} 0, & x \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \end{cases}$$

$$\Rightarrow f(x,y) = \begin{cases} 0, & x \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \end{cases}$$

$$\Rightarrow f(x,y) = \begin{cases} 0, & x \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \end{cases}$$

$$\Rightarrow f(x,y) = \begin{cases} 0, & x \in (0; \frac{\pi}{2}) \land y \in (0; \frac{\pi}{2}) \end{cases}$$

9e P1	m ? (m>) (o ≤	= (2)	O . e	1-	P (n	=	10	000						ehu	رفر		
9e P1	P (m>)	= (2)	O . e	1-	P (n	=	10	000						eres	رفر		
P1	(m>)	2)	=	1 -	P(=>	a	=	2				
P1	(m>)	2)	=	1 -	P(V								
P	(0 5					0 5	M											-
		m	52		-					10	2 ,	9	-2	12 (- 2		E	- 2
>	DCW			100		3												10 A
NY DE LE CONTRACTION	LOB	n > :	2)	=	1-	4 e	2				В	-9	6:	PC	m>	2)	= 1	-5
26.	To II																	
Pm	2	x m	n e	- 2)	A =	Pr	-	30	B	eig	nau	en	بدعر	и,			
ge	p =	0.	005		, ,	1 =	110	000) =	>	2 =	= 5:	5					
P	(m <	60)	¥	60 Z K=	a k	ē	a <u>-</u>	ė	2	(60 K=	a k	1 >	e	2)	~ (9.7	74
B-96:						P	(n	15	60)			2				0	,77

20,4. Kexan A - ninowiems podimunic nations 10 % B- minonieme podimunit [- noi burgui paz prez glunainors pospegy, mugi 17 - sbarantun pozperz P(A) = n, $n = \frac{C_A^2 C_B^2}{C_{A+B}^2}$ $p(A) = \frac{C_A^2 C_B^2}{C_{A+B}^4}$ Nexai X - ninsviens youx posimunis, zoiga waters: X = A+B, ocnisony 10% yeix posimunio vailante la pospegg mature: X = 0.1X + 0.9X, 98: A = 0.1X, B = 0.9 X, 36igen macus: P(A) = Co.1x Co.ox, ocrainora × >10 (3a yourson hours commend gre X=10: $P(A) = \frac{C_{0.1} \cdot 10 \cdot C_{0.9 \cdot 10}}{C_{10}^{4}} = \frac{C_{1}^{2} \cdot C_{9}^{2}}{C_{10}^{4}}$, ochinsky macus: C? - ne Bugnarens, mogi mating X 720, ochinana A = 2 \$ 0.1X = 0.1.20 = 2 - nair manue monembe nucro repassi brusai braiberres so kuacy. 36iga P(A) = $\frac{C_x^2 C_{9x}^2}{C_{9x}^4}$ $\frac{C_{2x}^2 C_{18x}^2}{C_{10x}^4}$ $\frac{C_{20x}^4 C_{18x}^2}{C_{20x}^4}$ $\frac{C_{20x}^4 C_{18x}^4}{C_{20x}^4}$ $\frac{C_{20x}^4 C_{18x}^4}$ $\Rightarrow \frac{27}{5} \cdot \frac{2\times(2\times-1)(18\times-1)}{5(20\times-2)(20\times-3)} = P(A^*)$

			np	u	×	ر ـ ،	3 5	20	w	ine	بعا	o;								1							3 (5
								_			1	2	7	XY	2 X	-1)	1	8 8	-1)							+	-
			A	(A)	X -	12	9)	= (CV	W 2	5	T .		1	100		2/	/		- 15	= [2 2				4
			-	99		2			0	7	2	- 10	10 8	20)	C-1	1(20)X-	2)(20.	XT	3)	. +	~.	2			
			3/ 1				1	= 2	2	7 ,			×3	(2		1)/	1	2	1)		4					-	
			1 +	1 /	X-	-> :	(عد	= 2	5	- u	m	_			X	1		X	1		119			- 2	7.	7	
			4	5.00					4	100			X	(2	0-	=)	(2	0-	$\frac{2}{2}$)(2	0-	3)			2	20
			0/				4) =	1	27		1	2.0)		3	. 9	. 9	1		24	13			45	6	12 13
			11	A	X	7	20) =		5	. 2	3.	20	-20	=	5	0	10	0		50	occ	7		100	200	0
			B-	ar.		- (20	A-)		C	2×-	Cid	X		41	VE	1	,	N	10-6		x -	3	20	P	(1) =
			40	20	236	1	C .	4 7	T		-	4)			-	0		F					10	H	1
			07		-	4		N/ N	6	-	C2	DX							4	1		V			NI		
		- 5	20.	5.																1							
			0		M	2	m	ē 2	M	40	2	Y	To the	.7	-	20	9	R	in h	ios	404	en	eck	4	1	14	3 V
+			m	~		m	1	e		>	^	-	n	,		9			٦.					1			
																										4	25
			30		40	uol	50	n:	n		10	0	00	2	_/			0,	00	D	Y		3			-	
TI TOTAL	D DE MAN	Y		900			-	0		, .	N.	200	250	0	0.0			- 11	4.	4		0	3			10	/_
			1	4	^	-	2	0	, (. 10	0	00		0.	00	5	=		1	0	4	0			100		
			30		94	rot	Sov	0	m	1	(20	;	60)	1	wo	31								-	4	4
																			22				_	5	9		
	100	13	P	(2	0	1	m	< 6	0)) =	= 6			(2	11	+	20	-	4.	- 1	+	27	9/)		M
								1-1		01	-	H				- 1							0	,	/		
-	7 7 7 7	7	nu	pe	au	VI.	u	us		7000	-		-	5	0							3				8	
-			0	(-		,		461	- 1	1000	0	- 50	-	7	1	5	0	- 5	. (3.	9	7	7	34			
		Via	P	(2)	0.4	- 1	n	6	U)	1 3	-			K	-21	1	1										
			0	_ 0.5	0 .		D	/.				1	^				,										
			0	9	0		1	20	4 1	m	. 0)	2	C	1 0	10	+ +	34	1							70	
			20	-								-	F														
		N.D.	20.						+		1	100	15				H				13	1			20		7
		67	V	5	^		2 Y	n , e	- 2		24		-	(6)		0		0		0		77	4.0	2.7	-		
			1	m	2	-	m	1 6		4	2	30		76	us	Got	0	-	- 1	1	>	Y	10	91			
		0		211					1												1	74.4				4/	79
			no	oy	90	JE	u	0 7	304	ron		pe	31	200	100	uj	t	B	361		(3)						
	1		1	1	1	0		,		1	2	-	-	Q	7		4			5	7			. 4	-	n	-
		= K	m		1	- 2	3.0		0	+	-	0	1	3	2	- 2	4	- 2	- 5	-	2		1		- 1	1	2
	P(X=	K)	P	(m)	1	e-		20	4	1:	2 €	4	1 2	18	7	7	, 6	-	2	e	4	*	• •		21	, e	
				1	4	-				-			10	1		7	4	No.	20			100			11		

```
3a buj karenne M(x) = D(t) = 2 gne Pm
              B-96: M(x) = 2, D(x) = 2
              20.7.
              f(x) = \begin{cases} c \cos 3x, & x \in D \end{cases}, \text{ as } D: \begin{cases} x \in (0; \frac{\pi}{6}) \end{cases}
              Oceanore 4-2 windrocomi f(x) 3ago bonomo e equisori
          \int_{-\infty}^{\infty} f(x) dx = 1 , \quad \text{was us} \quad \int_{0}^{\infty} C \cos x dx = 1 \iff \frac{1}{C} = \int_{0}^{\infty} \cos 3x dx
                3bigou \frac{1}{c} = \int \cos 3x \, \frac{d(3x)}{3} \Leftrightarrow \frac{3}{c} = \int \cos \theta \, d\theta = \sin \theta \, \Big|_0^{\pi/2} = 1
           \Rightarrow C = 3
M(x) = \int_{0}^{\infty} x f(x) dx \Rightarrow M(x) = \int_{0}^{\infty} x g(x) \frac{d(3x)}{3dx} = \frac{1}{3} \int_{0}^{\infty} \frac{d(3x)}{
              \Rightarrow (M(x) = \frac{\pi}{6} - \frac{1}{3})
                D(x) = \int x^2 f(x) dx - M^2(x) = M(x^2) - M^2(x)
                   M^{2}(x) = \left(\frac{\pi}{6} - \frac{1}{3}\right)^{2} - \frac{\pi^{2}}{36} - \frac{9}{9} + \frac{1}{9}
\Rightarrow M(x^2) = \frac{\pi^2}{36} - \frac{2}{9} \Rightarrow D(x) = \frac{\pi^2}{36} - \frac{2}{9} - \frac{\pi^2}{36} + \frac{\pi}{9} - \frac{1}{9} = \frac{\pi}{9} - \frac{1}{3}
```

16(x)= VD(x) = 5(x)= V#-1 B-96: C=3, $M(x)=\frac{\pi}{6}-\frac{1}{3}$, $D(x)=\frac{\pi}{9}-\frac{1}{3}$, $\sigma(x)=\sqrt{\frac{\pi}{9}}$ $f(x,y) = \begin{cases} c e^{-(x+y)}, & (x \cap y) \in D \\ o, & (x \cap y) \notin D \end{cases}, & (x \cap y) \in D \end{cases}$ $(x \cap y) \notin D \qquad (x \in (0; +\infty); \\ x \in (0; +\infty); \\$ 39 baynanennen: $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) dxdy = 1$ 36iga, = SSe-xe-rdxdy = (Se-tot)2 ge setdt= - et/= = 0-(-1) =1 1. = 12 = [C=1]. Fix, v) = 5 5 f(x, v) dx dy - 30 Buskanekken. Togi: F(x,y) = SSExe-ydxdy = Sexdx Sexdy $F(x,y) = (-e^{-x})^{x}(-e^{-y})^{y} = (-e^{-x})(-e^{-y}) = e^{-(x+y)}$ 3 biga maçous! 0, xe(-200), ye(-200) $|F(x,y)| = \begin{cases} e^{-(x+y)}, & x \in (0; +\infty), & y \in (0; +\infty) \\ e^{-x}, & x \in (0; +\infty), & y = 0 \\ e^{-y}, & x = 0, & y \in (0; +\infty) \end{cases}$ 1, (x, y) = (0,0)

20.8. 3a oznavennem; N(M, 52) = = 1 exp(-(x-M)2 3 gurden ma Euro: M=20, 5=4 => 5=2 $\Rightarrow f(x) = \frac{1}{2\sqrt{2}\pi} \exp\left(-\frac{(x-20)^2}{4}\right)$ Ocharbus P(1X-11 & 5) = 2 P(5) :. M - napaucomp workens origenumu. 3a yeurson $y = 0.9 \Rightarrow 2P(\frac{5}{5}) = y - iius sipnicomo sigxunenna$: $2 \cdot P(\frac{5}{2}) = 0.9 \Rightarrow P(\frac{5}{2}) = 0.45 \Rightarrow P(1X-20|55)$ Se $P(x) = \frac{1}{12\pi} \int_{0}^{x} e^{-\frac{t^{2}}{2}} dt$, 3a inmerpansing meopenion language. Bzabum gari z madnuyi, neamuneup: 5 21.65 3 biga 8 = 2.1,65 = 3.3 B-96; 8 = 3.3 * Note : P(d < x < B) = p (B-M)-p(d-M) ₩ P(M-S < X < M+S) = P(H) - P(-M) = 2 P(H) P(1x-M(58) = 29(M) 20.3. 9, - icustipuieme éparcy na 1-in 9 2 - ûcuolipniamo ópany Ko 2-i 9,=0.02 92=? gaspuzi 3a yenoboro q = 0.02, 92- nebigouro, are ochinsky nocomelose unausp 3 konensi q- ner pribkourskeurba, matins: $p = \frac{1}{2}q_1 + \frac{1}{2}q_2$, ochimbry goryomunic Span p chuaga & he SiMul 0,03 matus repiblicing:

P = 12(9, +92) < 0.03 \$ 9= 0.02, mogi: $p = \frac{1}{2}(0.02 + 92) < 0.03 \Rightarrow 92 < 2.0.03 - 0.02$ 92 < 0.04 B-96: 92 < 0.04 - garyenning à mobipaions opany gne 2-i gaspuren. 25.6. Beboro Syrogozepil I ma il 3 music pibua 7. I - E. 1-20 muny X - kironicmo dyrogozepole II - 8, 2-20 muny 2-20 muny, capeg 4-x Kab manna Berspanner X1 0 1 2 3 Kab mangre Berbpan P1 12 18 4 P1 35 35 35 35 $P_0 = \frac{G^4G_3^0}{G_3^4} = \frac{1}{7!} \cdot \frac{3! \cdot 4!}{1} = \frac{3 \cdot 2 \cdot 4 \cdot 3 \cdot 2}{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2} = \frac{1}{35}$ $P_1 = \frac{C_4^3 C_3^2}{C_7^4} = \frac{4 \cdot 3}{7!} \cdot \frac{3! \cdot u!}{1} = \frac{12}{35}$ $P_{2} = \frac{C_{4}^{2}C_{3}^{2}}{C_{4}^{4}} = \frac{4!3!}{2!2!7!} = \frac{4!3!}{1} = \frac{4!3!}{2!3!} = \frac{18}{35}$ $P_3 = \frac{c_4' C_3^3}{C_4''} = \frac{4}{7!}, \frac{3! \cdot 4!}{1!} = \frac{4}{35}$ $\sum_{i} p_{i}^{2} = \frac{1}{35} + \frac{12}{35} + \frac{18}{35} + \frac{4}{35} = \frac{1+12+18+4}{35} = \frac{35}{35} = 1$ $M(x) = \sum_{i} x_{i} p_{i} = 0 \cdot \frac{1}{35} + 1 \cdot \frac{12}{35} + 2 \cdot \frac{18}{35} + 3 \cdot \frac{4}{35} = 0$ $= \frac{12}{35} + \frac{36}{35} + \frac{12}{35} = \frac{24+36}{35} = \frac{60}{35} = \frac{12}{7} \Rightarrow 1 < \frac{12}{7} < 2$

 $D(x) = \sum x^2 p_i - M^2(x)$ $\sum_{i} X_{i}^{2} P_{i} = 0^{2} \frac{1}{35} + 1^{2} \frac{12}{35} + 2^{2} \frac{18}{35} + 3^{2} \frac{4}{35} = \frac{12}{35} + \frac{72}{35} + \frac{36}{35}$ $= 90 + \frac{30}{35} = \frac{120}{35} = \frac{2.60}{35} = \frac{12}{7} = \frac{24}{7}$ $D(x) = \frac{24 - \left(\frac{12}{7}\right)^2}{7} = \frac{24 \cdot 7}{79} - \frac{144}{49} = \frac{140 - 144 + 28}{49} = \frac{24}{49}$ B-96: $M(x) = \frac{12}{7}$, $D(x) = \frac{24}{49}$. 20.10. n_i | 2 2 2 2 1 | N_i y = 0.99 x_i 58 59 60 61 62 63 64 11 $M(x) = (\sum x_i n_i): (\sum n_i) = \bar{x}_6$ Z xin; = 58+259+2.60+61.2+62.2+63+64 = 669 $\sum_{i} n_{i} = 1 + 2 + 2 + 2 + 2 + 1 + 1 = 11$ > M(x) = 669 2 60.8182 = Me also x6 D(x) = (= (x; - x6)2ni): (= ni) = 06; [06 = 66 $D(x) = \frac{370}{17} : 11 = \frac{370}{2} = \frac{06}{2} = \frac{3.058}{562} = \frac{3.058}{1.74811}$ Dobipmin inmeplan: $(X_6 - 5; X_6 + 5)$ ge $5 = \frac{t_y}{N}$; ge t_y 3agobononee pibnenne $2 P(t_y) = Y$ Hegen $\varphi(t_V) = 0.99 = 0.495 \Rightarrow t_V \approx 2.58$ Mogi ; $\delta = \frac{2.58 \cdot 1.74871}{\sqrt{11}} \approx 1.36032$: (60.8182-1.36032; 60.8182+1.36032) B-961 (59.45788; 62,17852) ~ 59.4582 a < 62.179

	26.10
	n: 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	X; 0.48 0.49 0.50 0.51 0.52 0.54 0.56 8
	∑n;x;
	$X_6 = \frac{1}{1 - \frac{1}{2}} = \frac{1}{N} \cdot \frac{1}{2} \cdot \frac{1}{N} $
	$\bar{X}_{6} = \frac{\sum_{i} N_{i} \times i}{\sum_{i} n_{i}} = \frac{1}{N_{i}} \sum_{i} n_{i} \times i$
	$D_i = \sum_{i=1}^{n} (x_i - \overline{x}_i)^2 n;$
	$D_{6} = \frac{\sum_{i} (x_{i} - \bar{x}_{6})^{2} n_{i}}{\sum_{i} n_{i}} = \frac{1}{N} \sum_{i} (x_{i} - \bar{x}_{6}) n_{i}$
	36iga x = = [0.48+2.0.49+0.50+0.51+0.52+0.54+
	+0.56] = 0.51125
	Db = 1 (0.48-0.51125)2+2(0.49-0.51125)2+
	+(0.5-0.51125)2+(0.52-0.51125)2+
	+ (0.52-0.51125)2+(0.54-0.51125)2+
	+(0.56-0.51125)2] > D6 = 0.00066
	56 = VD6 ≈ 0.0257
	3a yarobak 7 = 0.99
15000	
12 24 2 4	Abbipauli irmeplant: (x6-8; x6-8),
	ge 8 = tyo + - neginieum gobipu, amin
Y =	ge & = tyo, ty-meginieum gobipu, amui
	визначаеться за Ф-ы: 2 Ф(Ex)=>, Ф-Ф-9
	harrisca.
	3 bigar macons: 29(tx)=0.99 => P(tx)=0.495
	$\Sigma = 2.58 \cdot 0.0257$
	mogi $\delta = \frac{2.58 \cdot 0.0257}{\sqrt{8}} \approx 0.0234427$
	Mobipuni immepban mac Burneg: (0.48 7807; 0.53460
	B-96: 0.488 < a < 0.535