Isomorfismos de Grupos

José Antônio O. Freitas

MAT-UnB

11 de novembro de 2020

Considere o grupo multiplicativo $G = \{1, -1\}$

Considere o grupo multiplicativo $G = \{1, -1\}$ e o grupo S_2 das permutações sobre o conjunto $\{1, 2\}$.

Considere o grupo multiplicativo $G = \{1, -1\}$ e o grupo S_2 das permutações sobre o conjunto $\{1, 2\}$. Aqui

$$S_2 = \begin{cases} f_0 = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}; \end{cases}$$

Considere o grupo multiplicativo $G = \{1, -1\}$ e o grupo S_2 das permutações sobre o conjunto $\{1, 2\}$. Aqui

$$S_2 = \left\{ f_0 = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}; f_1 = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \right\}.$$

G

•	1	-1
1	1	-1
-1	-1	1

G

•	1	-1
1	1	-1
-1	-1	1

S

•	f_0	f_1
f_0	f_0	f_1
f_1	f_1	f_0

G

•	1	-1
1	1	-1
-1	-1	1

S

$$\begin{array}{c|cccc} \cdot & f_0 & f_1 \\ \hline f_0 & f_0 & f_1 \\ \hline f_1 & f_1 & f_0 \\ \hline \end{array}$$

Defina $\sigma: G \rightarrow S_2$ por

G

•	1	-1
1	1	-1
-1	-1	1

 S_2

$$\begin{array}{c|cccc} \cdot & f_0 & f_1 \\ \hline f_0 & f_0 & f_1 \\ \hline f_1 & f_1 & f_0 \\ \end{array}$$

Defina $\sigma: G \to S_2$ por

$$\sigma(1) = f_0$$

G

	1	-1
1	1	-1
-1	-1	1

S

	f_0	f_1
f_0	f_0	f_1
f_1	f_1	f_0

Defina $\sigma: G \to S_2$ por

$$\sigma(1) = f_0$$

$$\sigma(-1)=f_1.$$

3/13

Da definição de σ

$$\sigma(1)\circ\sigma(1)$$

$$\sigma(1)\circ\sigma(1)=f_1$$

$$\sigma(1)\circ\sigma(1)=f_1\circ f_1$$

$$\sigma(1)\circ\sigma(1)=f_1\circ f_1=f_1$$

$$\sigma(1)\circ\sigma(1)=f_1\circ f_1=f_1=\sigma(1)$$

$$\sigma(1)\circ\sigma(1)=f_1\circ f_1=f_1=\sigma(1)=\sigma(1\cdot 1)$$

$$\sigma(1)\circ\sigma(1)=f_1\circ f_1=f_1=\sigma(1)=\sigma(1\cdot 1)$$

$$\sigma(1) \circ \sigma(-1)$$

$$\sigma(1)\circ\sigma(1)=f_1\circ f_1=f_1=\sigma(1)=\sigma(1\cdot 1)$$

$$\sigma(1)\circ\sigma(-1)=f_1$$

$$\sigma(1) \circ \sigma(1) = f_1 \circ f_1 = f_1 = \sigma(1) = \sigma(1 \cdot 1)$$

$$\sigma(1)\circ\sigma(-1)=f_1\circ f_2$$

$$\sigma(1)\circ\sigma(1)=f_1\circ f_1=f_1=\sigma(1)=\sigma(1\cdot 1)$$

$$\sigma(1)\circ\sigma(-1)=f_1\circ f_2=f_2$$

$$\sigma(1)\circ\sigma(1)=f_1\circ f_1=f_1=\sigma(1)=\sigma(1\cdot 1)$$

$$\sigma(1)\circ\sigma(-1)=f_1\circ f_2=f_2=\sigma(-1)$$

$$\sigma(1) \circ \sigma(1) = f_1 \circ f_1 = f_1 = \sigma(1) = \sigma(1 \cdot 1)$$

$$\sigma(1) \circ \sigma(-1) = f_1 \circ f_2 = f_2 = \sigma(-1) = \sigma(1 \cdot -1)$$

$$\sigma(1) \circ \sigma(1) = f_1 \circ f_1 = f_1 = \sigma(1) = \sigma(1 \cdot 1)$$

$$\sigma(1) \circ \sigma(-1) = f_1 \circ f_2 = f_2 = \sigma(-1) = \sigma(1 \cdot -1)$$

$$\sigma(-1) \circ \sigma(1)$$

$$\sigma(1) \circ \sigma(1) = f_1 \circ f_1 = f_1 = \sigma(1) = \sigma(1 \cdot 1)$$

$$\sigma(1) \circ \sigma(-1) = f_1 \circ f_2 = f_2 = \sigma(-1) = \sigma(1 \cdot -1)$$

$$\sigma(-1)\circ\sigma(1)=f_2$$

$$\sigma(1) \circ \sigma(1) = f_1 \circ f_1 = f_1 = \sigma(1) = \sigma(1 \cdot 1)$$

$$\sigma(1) \circ \sigma(-1) = f_1 \circ f_2 = f_2 = \sigma(-1) = \sigma(1 \cdot -1)$$

$$\sigma(-1)\circ\sigma(1)=f_2\circ f_1$$

$$\sigma(1) \circ \sigma(1) = f_1 \circ f_1 = f_1 = \sigma(1) = \sigma(1 \cdot 1)$$

$$\sigma(1) \circ \sigma(-1) = f_1 \circ f_2 = f_2 = \sigma(-1) = \sigma(1 \cdot -1)$$

$$\sigma(-1)\circ\sigma(1)=f_2\circ f_1=f_2$$

$$\sigma(1) \circ \sigma(1) = f_1 \circ f_1 = f_1 = \sigma(1) = \sigma(1 \cdot 1)$$

$$\sigma(1) \circ \sigma(-1) = f_1 \circ f_2 = f_2 = \sigma(-1) = \sigma(1 \cdot -1)$$

$$\sigma(-1)\circ\sigma(1)=f_2\circ f_1=f_2=\sigma(-1)$$

$$\sigma(1) \circ \sigma(1) = f_1 \circ f_1 = f_1 = \sigma(1) = \sigma(1 \cdot 1)$$

$$\sigma(1) \circ \sigma(-1) = f_1 \circ f_2 = f_2 = \sigma(-1) = \sigma(1 \cdot -1)$$

$$\sigma(-1) \circ \sigma(1) = f_2 \circ f_1 = f_2 = \sigma(-1) = \sigma(-1 \cdot 1)$$

$$\sigma(1) \circ \sigma(1) = f_1 \circ f_1 = f_1 = \sigma(1) = \sigma(1 \cdot 1)$$

$$\sigma(1) \circ \sigma(-1) = f_1 \circ f_2 = f_2 = \sigma(-1) = \sigma(1 \cdot -1)$$

$$\sigma(-1) \circ \sigma(1) = f_2 \circ f_1 = f_2 = \sigma(-1) = \sigma(-1 \cdot 1)$$

$$\sigma(-1) \circ \sigma(-1)$$

$$\sigma(1) \circ \sigma(1) = f_1 \circ f_1 = f_1 = \sigma(1) = \sigma(1 \cdot 1)$$

$$\sigma(1) \circ \sigma(-1) = f_1 \circ f_2 = f_2 = \sigma(-1) = \sigma(1 \cdot -1)$$

$$\sigma(-1) \circ \sigma(1) = f_2 \circ f_1 = f_2 = \sigma(-1) = \sigma(-1 \cdot 1)$$

$$\sigma(-1)\circ\sigma(-1)=f_2$$

$$\sigma(1) \circ \sigma(1) = f_1 \circ f_1 = f_1 = \sigma(1) = \sigma(1 \cdot 1)$$

$$\sigma(1) \circ \sigma(-1) = f_1 \circ f_2 = f_2 = \sigma(-1) = \sigma(1 \cdot -1)$$

$$\sigma(-1) \circ \sigma(1) = f_2 \circ f_1 = f_2 = \sigma(-1) = \sigma(-1 \cdot 1)$$

$$\sigma(-1)\circ\sigma(-1)=f_2\circ f_2$$

$$\sigma(1) \circ \sigma(1) = f_1 \circ f_1 = f_1 = \sigma(1) = \sigma(1 \cdot 1)$$

$$\sigma(1) \circ \sigma(-1) = f_1 \circ f_2 = f_2 = \sigma(-1) = \sigma(1 \cdot -1)$$

$$\sigma(-1) \circ \sigma(1) = f_2 \circ f_1 = f_2 = \sigma(-1) = \sigma(-1 \cdot 1)$$

$$\sigma(-1)\circ\sigma(-1)=f_2\circ f_2=f_1$$

$$\sigma(1) \circ \sigma(1) = f_1 \circ f_1 = f_1 = \sigma(1) = \sigma(1 \cdot 1)$$

$$\sigma(1) \circ \sigma(-1) = f_1 \circ f_2 = f_2 = \sigma(-1) = \sigma(1 \cdot -1)$$

$$\sigma(-1) \circ \sigma(1) = f_2 \circ f_1 = f_2 = \sigma(-1) = \sigma(-1 \cdot 1)$$

$$\sigma(-1)\circ\sigma(-1)=f_2\circ f_2=f_1=\sigma(1)$$

$$\sigma(1) \circ \sigma(1) = f_1 \circ f_1 = f_1 = \sigma(1) = \sigma(1 \cdot 1)$$

$$\sigma(1) \circ \sigma(-1) = f_1 \circ f_2 = f_2 = \sigma(-1) = \sigma(1 \cdot -1)$$

$$\sigma(-1) \circ \sigma(1) = f_2 \circ f_1 = f_2 = \sigma(-1) = \sigma(-1 \cdot 1)$$

$$\sigma(-1)\circ\sigma(-1)=f_2\circ f_2=f_1=\sigma(1)=\sigma(-1\cdot -1)$$

$$\sigma(1) \circ \sigma(1) = f_1 \circ f_1 = f_1 = \sigma(1) = \sigma(1 \cdot 1)$$

$$\sigma(1) \circ \sigma(-1) = f_1 \circ f_2 = f_2 = \sigma(-1) = \sigma(1 \cdot -1)$$

$$\sigma(-1) \circ \sigma(1) = f_2 \circ f_1 = f_2 = \sigma(-1) = \sigma(-1 \cdot 1)$$

$$\sigma(-1) \circ \sigma(-1) = f_2 \circ f_2 = f_1 = \sigma(1) = \sigma(-1 \cdot -1)$$

ou seja,
$$\sigma(x \cdot y) =$$

$$\sigma(1) \circ \sigma(1) = f_1 \circ f_1 = f_1 = \sigma(1) = \sigma(1 \cdot 1)$$

$$\sigma(1) \circ \sigma(-1) = f_1 \circ f_2 = f_2 = \sigma(-1) = \sigma(1 \cdot -1)$$

$$\sigma(-1) \circ \sigma(1) = f_2 \circ f_1 = f_2 = \sigma(-1) = \sigma(-1 \cdot 1)$$

$$\sigma(-1) \circ \sigma(-1) = f_2 \circ f_2 = f_1 = \sigma(1) = \sigma(-1 \cdot -1)$$

ou seja, $\sigma(x \cdot y) = \sigma(x) \circ \sigma(y)$

$$\sigma(1) \circ \sigma(1) = f_1 \circ f_1 = f_1 = \sigma(1) = \sigma(1 \cdot 1)$$

$$\sigma(1) \circ \sigma(-1) = f_1 \circ f_2 = f_2 = \sigma(-1) = \sigma(1 \cdot -1)$$

$$\sigma(-1) \circ \sigma(1) = f_2 \circ f_1 = f_2 = \sigma(-1) = \sigma(-1 \cdot 1)$$

$$\sigma(-1) \circ \sigma(-1) = f_2 \circ f_2 = f_1 = \sigma(1) = \sigma(-1 \cdot -1)$$

ou seja, $\sigma(x \cdot y) = \sigma(x) \circ \sigma(y)$ para todos $x, y \in G$.

$$\sigma(1)\circ\sigma(1)=f_1\circ f_1=f_1=\sigma(1)=\sigma(1\cdot 1)$$

$$\sigma(1) \circ \sigma(-1) = f_1 \circ f_2 = f_2 = \sigma(-1) = \sigma(1 \cdot -1)$$

$$\sigma(-1)\circ\sigma(1)=f_2\circ f_1=f_2=\sigma(-1)=\sigma(-1\cdot 1)$$

$$\sigma(-1) \circ \sigma(-1) = f_2 \circ f_2 = f_1 = \sigma(1) = \sigma(-1 \cdot -1)$$

ou seja, $\sigma(x \cdot y) = \sigma(x) \circ \sigma(y)$ para todos $x, y \in G$. Assim função σ é um homomorfismo de G em S_2 .

$$\sigma(1) \circ \sigma(1) = f_1 \circ f_1 = f_1 = \sigma(1) = \sigma(1 \cdot 1)$$

$$\sigma(1) \circ \sigma(-1) = f_1 \circ f_2 = f_2 = \sigma(-1) = \sigma(1 \cdot -1)$$

$$\sigma(-1)\circ\sigma(1)=f_2\circ f_1=f_2=\sigma(-1)=\sigma(-1\cdot 1)$$

$$\sigma(-1) \circ \sigma(-1) = f_2 \circ f_2 = f_1 = \sigma(1) = \sigma(-1 \cdot -1)$$

ou seja, $\sigma(x \cdot y) = \sigma(x) \circ \sigma(y)$ para todos $x, y \in G$. Assim função σ é um homomorfismo de G em S_2 .

Como σ também é bijetora,

$$\sigma(1) \circ \sigma(1) = f_1 \circ f_1 = f_1 = \sigma(1) = \sigma(1 \cdot 1)$$

$$\sigma(1) \circ \sigma(-1) = f_1 \circ f_2 = f_2 = \sigma(-1) = \sigma(1 \cdot -1)$$

$$\sigma(-1) \circ \sigma(1) = f_2 \circ f_1 = f_2 = \sigma(-1) = \sigma(-1 \cdot 1)$$

$$\sigma(-1) \circ \sigma(-1) = f_2 \circ f_2 = f_1 = \sigma(1) = \sigma(-1 \cdot -1)$$

ou seja, $\sigma(x \cdot y) = \sigma(x) \circ \sigma(y)$ para todos $x, y \in G$. Assim função σ é um homomorfismo de G em S_2 .

Como σ também é bijetora, então σ é um isomorfismo

$$\sigma(1)\circ\sigma(1)=f_1\circ f_1=f_1=\sigma(1)=\sigma(1\cdot 1)$$

$$\sigma(1) \circ \sigma(-1) = f_1 \circ f_2 = f_2 = \sigma(-1) = \sigma(1 \cdot -1)$$

$$\sigma(-1)\circ\sigma(1)=f_2\circ f_1=f_2=\sigma(-1)=\sigma(-1\cdot 1)$$

$$\sigma(-1) \circ \sigma(-1) = f_2 \circ f_2 = f_1 = \sigma(1) = \sigma(-1 \cdot -1)$$

ou seja, $\sigma(x \cdot y) = \sigma(x) \circ \sigma(y)$ para todos $x, y \in G$. Assim função σ é um homomorfismo de G em S_2 .

Como σ também é bijetora, então σ é um isomorfismo de G em S_2 .

$$\sigma(1)\circ\sigma(1)=f_1\circ f_1=f_1=\sigma(1)=\sigma(1\cdot 1)$$

$$\sigma(1) \circ \sigma(-1) = f_1 \circ f_2 = f_2 = \sigma(-1) = \sigma(1 \cdot -1)$$

$$\sigma(-1) \circ \sigma(1) = f_2 \circ f_1 = f_2 = \sigma(-1) = \sigma(-1 \cdot 1)$$

$$\sigma(-1) \circ \sigma(-1) = f_2 \circ f_2 = f_1 = \sigma(1) = \sigma(-1 \cdot -1)$$

ou seja, $\sigma(x \cdot y) = \sigma(x) \circ \sigma(y)$ para todos $x, y \in G$. Assim função σ é um homomorfismo de G em S_2 .

Como σ também é bijetora, então σ é um isomorfismo de G em S_2 . Nesse caso, dizemos que G e S_2 são grupos isomorfos

$$\sigma(1)\circ\sigma(1)=f_1\circ f_1=f_1=\sigma(1)=\sigma(1\cdot 1)$$

$$\sigma(1) \circ \sigma(-1) = f_1 \circ f_2 = f_2 = \sigma(-1) = \sigma(1 \cdot -1)$$

$$\sigma(-1) \circ \sigma(1) = f_2 \circ f_1 = f_2 = \sigma(-1) = \sigma(-1 \cdot 1)$$

$$\sigma(-1) \circ \sigma(-1) = f_2 \circ f_2 = f_1 = \sigma(1) = \sigma(-1 \cdot -1)$$

ou seja, $\sigma(x \cdot y) = \sigma(x) \circ \sigma(y)$ para todos $x, y \in G$. Assim função σ é um homomorfismo de G em S_2 .

Como σ também é bijetora, então σ é um isomorfismo de G em S_2 . Nesse caso, dizemos que G e S_2 são grupos isomorfos e denotamos isso escrevendo $G \cong S_2$.

Sejam (G,*) e (H,\triangle) grupos.

Sejam (G,*) e (H,\triangle) grupos. Se existe $f:G\to H$ um isomorfismo,

Sejam (G,*) e (H,\triangle) grupos. Se existe $f:G\to H$ um isomorfismo, diremos que G e H são **grupos isomorfos**

Sejam (G,*) e (H,\triangle) grupos. Se existe $f:G\to H$ um isomorfismo, diremos que G e H são **grupos isomorfos** e denotaremos esse fato escrevendo $G\cong H$.

Sejam (G,*) e (H,\triangle) grupos. Se existe $f:G\to H$ um isomorfismo, diremos que G e H são **grupos isomorfos** e denotaremos esse fato escrevendo $G\cong H$.

Sejam G e H grupos multiplicativos.

Sejam G e H grupos multiplicativos. Se $f: G \to H$ é um isomorfimos de grupos, então

Sejam G e H grupos multiplicativos. Se $f: G \to H$ é um isomorfimos de grupos, então G é comutativo se, e somente se, H é comutativo.

Sejam G e H grupos multiplicativos. Se $f: G \to H$ é um isomorfimos de grupos, então G é comutativo se, e somente se, H é comutativo.

1) Os grupos \mathbb{Z}_6 e S_3

1) Os grupos \mathbb{Z}_6 e S_3 não são isomorfos

1) Os grupos \mathbb{Z}_6 e S_3 não são isomorfos pois \mathbb{Z}_6 é comutativo

1) Os grupos \mathbb{Z}_6 e S_3 não são isomorfos pois \mathbb{Z}_6 é comutativo e S_3 não é comutativo.

- 1) Os grupos \mathbb{Z}_6 e S_3 não são isomorfos pois \mathbb{Z}_6 é comutativo e S_3 não é comutativo.
- 2) Considere o grupo S_6 das permutações em $\{1, 2, \cdots, 6\}$.

- 1) Os grupos \mathbb{Z}_6 e S_3 não são isomorfos pois \mathbb{Z}_6 é comutativo e S_3 não é comutativo.
- 2) Considere o grupo S_6 das permutações em $\{1,2,\cdots,6\}$. Tome

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 6 & 1 \end{pmatrix} \in S_6.$$

- 1) Os grupos \mathbb{Z}_6 e S_3 não são isomorfos pois \mathbb{Z}_6 é comutativo e S_3 não é comutativo.
- 2) Considere o grupo S_6 das permutações em $\{1,2,\cdots,6\}$. Tome

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 6 & 1 \end{pmatrix} \in S_6.$$

Seja
$$h = [f]$$
.

- 1) Os grupos \mathbb{Z}_6 e S_3 não são isomorfos pois \mathbb{Z}_6 é comutativo e S_3 não é comutativo.
- 2) Considere o grupo S_6 das permutações em $\{1,2,\cdots,6\}$. Tome

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 6 & 1 \end{pmatrix} \in S_6.$$

Seja h = [f]. Então $H \cong \mathbb{Z}_6$,

- 1) Os grupos \mathbb{Z}_6 e S_3 não são isomorfos pois \mathbb{Z}_6 é comutativo e S_3 não é comutativo.
- 2) Considere o grupo S_6 das permutações em $\{1,2,\cdots,6\}$. Tome

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 6 & 1 \end{pmatrix} \in S_6.$$

Seja h=[f]. Então $H\cong \mathbb{Z}_6$, onde $\phi: H\to \mathbb{Z}_6$ dada por $\phi(f^k)=\overline{k}$

- 1) Os grupos \mathbb{Z}_6 e S_3 não são isomorfos pois \mathbb{Z}_6 é comutativo e S_3 não é comutativo.
- 2) Considere o grupo S_6 das permutações em $\{1,2,\cdots,6\}$. Tome

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 6 & 1 \end{pmatrix} \in S_6.$$

Seja h = [f]. Então $H \cong \mathbb{Z}_6$, onde $\phi : H \to \mathbb{Z}_6$ dada por $\phi(f^k) = \overline{k}$ é um isomorfimo de grupos.

- 1) Os grupos \mathbb{Z}_6 e S_3 não são isomorfos pois \mathbb{Z}_6 é comutativo e S_3 não é comutativo.
- 2) Considere o grupo S_6 das permutações em $\{1,2,\cdots,6\}$. Tome

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 6 & 1 \end{pmatrix} \in S_6.$$

Seja h = [f]. Então $H \cong \mathbb{Z}_6$, onde $\phi : H \to \mathbb{Z}_6$ dada por $\phi(f^k) = \overline{k}$ é um isomorfimo de grupos.

Sejam G e H grupos multiplicativos.

Sejam G e H grupos multiplicativos. Seja $f: G \to H$ é um isomorfimos de grupos.

Sejam G e H grupos multiplicativos. Seja $f: G \to H$ é um isomorfimos de grupos. Então $x \in G$

Sejam G e H grupos multiplicativos. Seja $f: G \to H$ é um isomorfimos de grupos. Então $x \in G$ é tal que o(x) = h

Sejam G e H grupos multiplicativos. Seja $f: G \to H$ é um isomorfimos de grupos. Então $x \in G$ é tal que o(x) = h se, e somente se, o(f(x)) = h.

Sejam G e H grupos multiplicativos. Seja $f: G \to H$ é um isomorfimos de grupos. Então $x \in G$ é tal que o(x) = h se, e somente se, o(f(x)) = h.

Seja G = [a] um grupo cíclico.

Caso 1: $a^r \neq a^s$

Caso 1: $a^r \neq a^s$ sempre que $r \neq s$.

Caso 1: $a^r \neq a^s$ sempre que $r \neq s$.

Se G = [a] é um grupo cíclico que cumpre a condição do **Caso 1**,

Se G = [a] é um grupo cíclico que cumpre a condição do **Caso 1**, então a função $f: \mathbb{Z} \to G$ por $f(r) = a^r$

Se G = [a] é um grupo cíclico que cumpre a condição do **Caso 1**, então a função $f: \mathbb{Z} \to G$ por $f(r) = a^r$ é um isomorfimo de grupos.

Se G = [a] é um grupo cíclico que cumpre a condição do **Caso 1**, então a função $f: \mathbb{Z} \to G$ por $f(r) = a^r$ é um isomorfimo de grupos. Ou seja, $G \cong \mathbb{Z}$.

Se G = [a] é um grupo cíclico que cumpre a condição do **Caso 1**, então a função $f: \mathbb{Z} \to G$ por $f(r) = a^r$ é um isomorfimo de grupos. Ou seja, $G \cong \mathbb{Z}$.

Caso 2: $a^{r} = a^{s}$

Caso 2: $a^r = a^s$ para algum par de inteiros distintos, $r \in s$.

Caso 2: $a^r = a^s$ para algum par de inteiros distintos, $r \in s$.

Seja G = [a] um grupo cíclico que cumpre a condição do **Caso 2**.

Seja G = [a] um grupo cíclico que cumpre a condição do **Caso 2**. Então existe um inteiro m > 0 tal que

Seja G = [a] um grupo cíclico que cumpre a condição do **Caso 2**. Então existe um inteiro m > 0 tal que

$$i) a^m = e$$

Seja G = [a] um grupo cíclico que cumpre a condição do **Caso 2**. Então existe um inteiro m > 0 tal que

- i) $a^m = e$
- ii) $a^m \neq e$, sempre que 0 < r < m.

Seja G = [a] um grupo cíclico que cumpre a condição do **Caso 2**. Então existe um inteiro m > 0 tal que

- i) $a^m = e$
- ii) $a^m \neq e$, sempre que 0 < r < m.

Nesse caso, a ordem do grupo G é m

Seja G = [a] um grupo cíclico que cumpre a condição do **Caso 2**. Então existe um inteiro m > 0 tal que

- i) $a^m = e$
- ii) $a^m \neq e$, sempre que 0 < r < m.

Nesse caso, a ordem do grupo G é m e

$$G = [a] = \{e, a, a^2, \cdots, a^{m-1}\}.$$

Seja G = [a] um grupo cíclico que cumpre a condição do **Caso 2**. Então existe um inteiro m > 0 tal que

- i) $a^m = e$
- ii) $a^m \neq e$, sempre que 0 < r < m.

Nesse caso, a ordem do grupo G é m e

$$G = [a] = \{e, a, a^2, \cdots, a^{m-1}\}.$$

Seja G = [a] um grupo cíclico de ordem finita igual a m.

Seja G=[a] um grupo cíclico de ordem finita igual a m. Então a função $f\colon \mathbb{Z}_m \to G$

Seja G = [a] um grupo cíclico de ordem finita igual a m. Então a função $f: \mathbb{Z}_m \to G$ dada por $f(\overline{x}) = a^x$

Seja G = [a] um grupo cíclico de ordem finita igual a m. Então a função $f: \mathbb{Z}_m \to G$ dada por $f(\overline{x}) = a^x$ é um isomorfimo de grupos.