

EPREUVE SPECIFIQUE - FILIERE MP

MATHEMATIQUES 2

Durée: 4 heures

N.B.: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Les calculatrices sont autorisées

Le sujet est composé d'un exercice et d'un problème qui sont indépendants.

EXERCICE

- 1. Déterminer le plus petit entier naturel non nul p tel que $3^p \equiv 1$ modulo 11.
- 2. En utilisant des congruences modulo 11, démontrer que, pour tout entier naturel n, l'entier $3^{n+2012} 9 \times 5^{2n}$ est divisible par 11.

PROBLÈME

Dans tout le problème, n est un entier naturel supérieur ou égal à 2. Cet entier est quelconque sauf dans la partie I, où il est égal à 2.

On note $\mathcal{M}_n(\mathbb{R})$ l'algèbre des matrices carrées d'ordre n à coefficients réels, $(E_{i,j})$ sa base canonique $(1 \le i \le n \text{ et } 1 \le j \le n)$ et I_n sa matrice unité (tous les coefficients de $E_{i,j}$ sont nuls, sauf celui situé à la i-ème ligne et à la j-ième colonne, qui vaut 1).

On note $\mathbb{R}[X]$ l'algèbre des polynômes à coefficients réels.

Dans tout le problème, A est une matrice quelconque de $\mathcal{M}_n(\mathbb{R})$ et u l'endomorphisme de \mathbb{R}^n canoniquement associé à la matrice A.

Pour tout $P = \sum_{k=0}^{d} a_k X^k \in \mathbb{R}[X]$, on note $P(A) = \sum_{k=0}^{d} a_k A^k$. L'ensemble des matrices P(A) pour tout $P \in \mathbb{R}[X]$ est noté $\mathbb{R}[A]$.

On dit que P annule A lorsque P(A) = 0 ce qui équivaut à P(u) = 0. On appelle polynôme minimal de la matrice A le polynôme minimal de l'endomorphisme u; c'est donc le polynôme unitaire de plus petit degré qui annule A.

On note φ_A l'application de $\mathcal{M}_n(\mathbb{R})$ dans $\mathcal{M}_n(\mathbb{R})$ définie par :

$$\varphi_A(M) = AM - MA.$$

L'objet du problème est d'étudier quelques propriétés des éléments propres de φ_A . Les parties I et II étudient la diagonalisabilité de φ_A , les parties III et IV en étudient les vecteurs propres. Les quatre parties sont indépendantes.

Partie I. Étude du cas n=2

Dans toute cette partie, on prendra n=2.

1. Vérifier que l'application φ_A est linéaire et que I_2 et A appartiennent à $\operatorname{Ker}(\varphi_A)$.

Dans la suite de cette partie, on pose $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}).$

2. Donner la matrice de φ_A dans la base $(E_{1,1}, E_{2,2}, E_{1,2}, E_{2,1})$ de $\mathcal{M}_2(\mathbb{R})$.

Dans la suite de cette partie, on suppose que $\varphi_A \neq 0$ (c'est-à-dire que $A \neq \lambda I_2$ pour tout $\lambda \in \mathbb{R}$).

- 3. Donner le polynôme caractéristique de φ_A sous forme factorisée (on pourra utiliser la calculatrice).
- **4.** En déduire que φ_A est diagonalisable si et seulement si $(d-a)^2+4bc>0$.
- 5. Démontrer que φ_A est diagonalisable si et seulement si A est diagonalisable.

Partie II. Étude du cas général

On note $c = (c_1, \ldots, c_n)$ la base canonique de \mathbb{R}^n .

6. On suppose dans cette question que A est diagonalisable.

On note $e = (e_1, \ldots, e_n)$ une base de vecteurs propres de u (défini au début du problème) et, pour tout entier i tel que $1 \le i \le n$, λ_i la valeur propre associée au vecteur e_i . On note

alors
$$P$$
 la matrice de passage de la base c à la base e et $D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}$.

Enfin, pour tout couple (i, j) d'entiers tels que $1 \le i \le n$ et $1 \le j \le n$, on pose :

$$B_{i,j} = PE_{i,j}P^{-1} .$$

- (a) Exprimer, pour tout couple (i, j), la matrice $DE_{i,j} E_{i,j}D$ en fonction de la matrice $E_{i,j}$ et des réels λ_i et λ_j .
- (b) Démontrer que, pour tout couple (i, j), $B_{i,j}$ est un vecteur propre de φ_A .
- (c) En déduire que φ_A est diagonalisable.
- 7. On suppose dans cette question que φ_A est diagonalisable en tant qu'endomorphisme de $\mathcal{M}_n(\mathbb{R})$.

On note $(P_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$ une base de vecteurs propres de φ_A et, pour tout couple (i,j), $\lambda_{i,j}$ la valeur propre associée à $P_{i,j}$.

- (a) Dans cette question, on considère A comme une matrice à coefficients complexes $(A \in \mathcal{M}_n(\mathbb{R}) \subset \mathcal{M}_n(\mathbb{C}))$ et φ_A comme un endomorphisme de $\mathcal{M}_n(\mathbb{C})$ (défini par $\varphi_A(M) = AM MA$ pour tout $M \in \mathcal{M}_n(\mathbb{C})$).
 - i. Justifier que toutes les valeurs propres de φ_A sont réelles.
 - ii. Soit $z \in \mathbb{C}$. Justifier que si z est une valeur propre de A, alors z est aussi une valeur propre de tA .
 - iii. Soit $z \in \mathbb{C}$. On suppose que z et \bar{z} sont deux valeurs propres de la matrice A. On considère alors $X \in \mathcal{M}_{n,1}(\mathbb{C})$ $(X \neq 0)$ et $Y \in \mathcal{M}_{n,1}(\mathbb{C})$ $(Y \neq 0)$, tels que AX = zX et ${}^tAY = \bar{z}Y$.

En calculant $\varphi_A(X^tY)$, démontrer que $z-\bar{z}$ est une valeur propre de φ_A .

- (b) En déduire que la matrice A a au moins une valeur propre réelle.
 - On note λ une valeur propre réelle de A et $X \in \mathcal{M}_{n,1}(\mathbb{R})$ $(X \neq 0)$ une matrice colonne telle que $AX = \lambda X$.
- (c) Démontrer que, pour tout couple (i, j), il existe un réel $\mu_{i,j}$, que l'on exprimera en fonction de λ et $\lambda_{i,j}$, tel que $AP_{i,j}X = \mu_{i,j}P_{i,j}X$.
- (d) En déduire que A est diagonalisable.

Partie III. Étude des vecteurs propres de φ_A associés à la valeur propre 0

Soit m le degré du polynôme minimal de A.

- **8.** Démontrer que la famille (I_n, A, \dots, A^{m-1}) est une base de $\mathbb{R}[A]$.
- **9.** Vérifier que $\mathbb{R}[A]$ est inclus dans $\operatorname{Ker}(\varphi_A)$ et en déduire une minoration de $\dim(\operatorname{Ker}(\varphi_A))$.

10. Un cas d'égalité

On suppose que l'endomorphisme u (défini au début du problème) est nilpotent d'indice n (c'est-à-dire que $u^n = 0$ et $u^{n-1} \neq 0$). On considère un vecteur y de \mathbb{R}^n tel que $u^{n-1}(y) \neq 0$ et, pour tout entier i tel que $1 \leq i \leq n$, on pose $e_i = u^{n-i}(y)$.

- (a) Démontrer que la famille (e_1, e_2, \dots, e_n) est une base de \mathbb{R}^n .
- (b) Soit $B \in \text{Ker}(\varphi_A)$ et v l'endomorphisme de \mathbb{R}^n canoniquement associé à B. Démontrer que si $v(y) = \sum_{i=1}^n \alpha_i e_i \ (\alpha_i \in \mathbb{R})$ alors $v = \sum_{i=1}^n \alpha_i u^{n-i}$.
- (c) En déduire $Ker(\varphi_A)$.

11. Cas où u est diagonalisable

On suppose que u est diagonalisable. On note $\lambda_1, \lambda_2, \ldots, \lambda_p$ $(1 \leq p \leq n)$ les p valeurs propres distinctes de u et, pour tout entier k tel que $1 \leq k \leq p$, $E_u(\lambda_k)$ le sous-espace propre associé à la valeur propre λ_k . On note m_k la dimension de cet espace propre.

- (a) Soit $B \in \mathcal{M}_n(\mathbb{R})$ et v l'endomorphisme de \mathbb{R}^n canoniquement associé à B. Démontrer que $B \in \text{Ker}(\varphi_A)$ si et seulement si, pour tout entier k tel que $1 \le k \le p$, $E_u(\lambda_k)$ est stable par v (c'est-à-dire v ($E_u(\lambda_k)$) $\subset E_u(\lambda_k)$).
- (b) En déduire que $B \in \text{Ker}(\varphi_A)$ si et seulement si, la matrice de v, dans une base adaptée à la décomposition de \mathbb{R}^n en somme directe des sous-espaces propres de u, a une forme que l'on précisera.
- (c) Préciser la dimension de $Ker(\varphi_A)$.
- (d) Lorsque n = 7, donner toutes les valeurs possibles pour cette dimension en envisageant les différentes valeurs possibles de p et des m_k (on ne demande pas de justification).

Partie IV. Étude des vecteurs propres de φ_A associés à une valeur propre non nulle

Dans cette partie, α est une valeur propre non nulle de φ_A et B un vecteur propre associé $(B \in \mathcal{M}_n(\mathbb{R}), B \neq 0)$. On note π_B le polynôme minimal de B et d le degré de π_B .

- 12. Démontrer que, pour tout $k \in \mathbb{N}$, $\varphi_A(B^k) = \alpha k B^k$.
- **13.** Soit $P \in \mathbb{R}[X]$. Exprimer $\varphi_A(P(B))$ en fonction de α , B et P'(B).
- 14. Démontrer que le polynôme $X\pi'_B d\pi_B$ est le polynôme nul $(\pi'_B$ étant le polynôme dérivé du polynôme minimal π_B de la matrice B).
- 15. En déduire que $B^d = 0$.

Fin de l'énoncé