## Пример: линейная регрессия

Линейный случай с m объектами и n признаками:  $f(\boldsymbol{X}, \boldsymbol{w}) = \boldsymbol{X} \boldsymbol{w};$   $\boldsymbol{y} \sim \mathcal{N}(f(\boldsymbol{X}, \boldsymbol{w}), \beta^{-1}), \boldsymbol{w} \sim \mathcal{N}(0, \boldsymbol{A}^{-1}).$  Запишем интеграл:

$$p(\mathfrak{D}|\boldsymbol{h}) = p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{A}, \beta) = \frac{\sqrt{\beta \cdot |\boldsymbol{A}|}}{\sqrt{(2\pi)^{m+n}}} \int_{\boldsymbol{w}} \exp\left(-0.5\beta(\boldsymbol{y} - \boldsymbol{f})^{\mathsf{T}}(\boldsymbol{y} - \boldsymbol{f})\right) \exp\left(-0.5\boldsymbol{w}^{\mathsf{T}}\boldsymbol{A}\boldsymbol{w}\right) d\boldsymbol{w} =$$

$$= \frac{\sqrt{\beta \cdot |\boldsymbol{A}|}}{\sqrt{(2\pi)^{m+n}}} \int_{\boldsymbol{w}} \exp(-S(\boldsymbol{w})) d\boldsymbol{w}$$

Для линейного случая интеграл вычисляется аналитически:

$$\int_{\mathbf{w}} \exp(-S(\mathbf{w})) d\mathbf{w} = (2\pi)^{\frac{n}{2}} \exp(-S(\hat{w})) |\mathbf{H}^{-1}|^{0.5},$$

где

$$\mathbf{H} = \mathbf{A} + \beta \mathbf{X}^{\mathsf{T}} \mathbf{X},$$
$$\hat{\mathbf{w}} = \beta \mathbf{H}^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

Вывод: для линейных моделей Evidence считается аналитически.