Test deg selv 2

1.1

Forklar programmene nedenfor.

Du kan skrive inn koden i Mu og bruke

a.

```
for n in range(50):

partall = 2*n

print(partall)
```

b.

```
for n in range(50):
oddetall = 2*n + 1
print(oddetall)
```

c.

```
for n in range(0, 101, 2):
print(n)
```

d.

```
for n in range(1, 100, 2):
print(n)
```

e.

```
for n in range(1, 100):
    if n%2 == 0:
        print(n)
```

f.

```
for n in range(1, 100):
    if n%2 != 0:
        print(n)
```

1.2

Du kan skrive inn koden i Mu og bruke


```
sum = 0
for n in range(6):
  partall = 2*n
  sum = sum + partall
print(sum)
```

b.

```
sum = 0
for n in range(5):
  oddetall = 2*n + 1
  sum = sum + oddetall
print(sum)
```

2.1 Fliser

Espen har akkurat nok kvadratiske fliser til å dekke et rutenett som måler $n \cdot n$. Hvor mange fliser blir til overs dersom han bruker flisene til å dekke

- et rutenett på $(n+2) \cdot (n-2)$
- et rutenett på $(n+k)\cdot(n-k)$

2.2 Løkker

- a. Lag et program som skriver ut partallene mellom 1000 og 12000
- b. Lag et program som skriver ut oddetallene mellom 500 og 750

NB: Bare lever koden, ikke resultetet 😃

2.3 Figurtall

- a. Skriv opp de 5 første .tallene
- b. Lag et program som skriver ut de 10 første tallene.

c. Bestem summen av de 10 første tallene.

2.4 Trekanttallene

- a. Skriv opp de 5 første tallene.
- **b.** Lag et program som skriver ut de 10 første tallene.
- c. Bestem summen av de 10 første trekanttallene.

3.1 Gjerde

Lavrans skal sette opp gjerde rundt et område. Området består av to halvsirkler og to rektangler slik figuren viser:

- a Lag et uttrykk for omkretsen av området.
- **b** Han bruker 200 m gjerde. Finn *r*.

3.2 Kvadratrottilnærming

Heron fra Alexandria er en kjent matematiker fra antikken. Han laget blant annet en algoritme for å finne tilnærmingsverdier for kvadratroten av et naturlig tall, n:

- Velg et tall, a, i nærheten av det du tror svaret blir
- Regn ut tallet

$$b = \frac{1}{2}(a + \frac{n}{a})$$

- Gjenta punkt 2 til du får et tall som er så nøyaktig som du ønsker. b blir den nye a-en.
- **a.** Sett a = 1 og n = 4, og utfør algoritmen 3 ganger for hånd. Hva ble svaret?
- **b.** Bruk en for-løkke til å utføre algorithmen i Python for tallet a = 1 og n = 3. Hva er færest antall iterasjoner som trengs og å få en nøyaktighet på 15 desimaler.

Skriv ut svaret og sammenlign med

from math import sqrt
print(sqrt(n))

c. Gjør det samme som i **b**, men med a = 1 og n = 3333333. Hvor mange iterasjoner trengs for å oppnå 15 desimaler nøyaktighet nå?

3.3 Steinheller

Et område av hagen til Mehmet er dekt med kvadratiske steinheller. Det er 5 heller i hver retning og derfor 5² heller til sammen. Mehmet vil legge en ny rad med heller rundt hele området. Figuren nedenfor viser området på 5 · 5 heller med den nye raden omkring markert med farge.

- Hvor mange heller trenger Mehmet for å legge den nye raden?
- **b** Finner du flere måter å regne ut svaret på? Forklar hver regnemåte geometrisk.

Et annet område består av $x \cdot x$ heller. Vi legger en ny rad med heller rundt området.

Hvilke av følgende regnemåter gir oss antall heller vi trenger?

1
$$(x+1)^2$$

4
$$4 \cdot (x+1)$$

2
$$(x+2) \cdot 2 + x \cdot 2$$
 5 $4 \cdot (x+2) - 4$

5
$$4 \cdot (x+2) - 4$$

3
$$4 \cdot (x+2)$$

3 4 ·
$$(x+2)$$
 6 $(x+2)^2 - x^2$

Hvor mange heller er det i det opprinnelige området hvis vi trenger 52 heller til den nye raden omkring?

3.4 Tilnærming av π

Den matematiske konstanten pi (π) er eit irrasjonalt tal definert som omkrinsen til ein sirkel dividert med diameteren til sirkelen.

Du skal i denne oppgaven bestemme en tilnærmet verdi av π .

Vi skal ta utgangspunkt i Gottfried Leibniz sin metode for å finne 1/4 av omkretsen til en sirkel med radius lik 1, altså $\pi/4$.

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots = \frac{\pi}{4}.$$

a. Vi ser at utrykket bytter fortegn for annet hvert ledd.

Bruk egenskapen til $(-1)^n$ og lag et program som skriver ut:

Dette kan du nå bruke som tellerene i brøkleddene.

b. Utvid programmet til også å skrive ut nevnerne fra samme for-løkke som a:

Hint: 1.1 **b**

- c. Sett sammen teller og nevner og skriv ut 1, 0.333, 0.2, ...
- d. Regn ut summen til tallene i c og gang resultatet med 4. Hint: 1.2 b.

Sammenlign resultatet med

from math import pi print(pi)

Øk range til 10 ** 3, 10 ** 4, osv. Hvor mange desimaler klarer du å tilnærme?

Ekstraoppgaver

4.1 Stabel

- a. Skriv opp de 5 første tallene.
- **b.** Lag et program som skriver ut de 10 første tallene.
- c. Bestem summen av de 10 første tallene.

4.2 Kvadrattallene

- a. Skriv opp de 5 første tallene
- **b.** Lag et program som skriver ut de 10 første tallene.
- c. Bestem summen av de 10 første tallene.
- d. Sammenlign resultatene fra 4.1. Hvorfor blir det slik?

4.3 En kombinasjon

- a. Skriv opp de 5 første tallene
- **b.** Lag et program som skriver ut de 10 første tallene.
- c. Bestem summen av de 10 første tallene.