Section 4.1:

2) Transform the given differential equation or system into an equivalent system of first-order differential equations.

$$x'' + 4x - x^3 = 0$$

For the equation above, we can introduce the following variables:

$$y_1 = x, y_2 = x'$$

Then, we can express the original equation as a system of first-order differential equations:

$$y_1' = y_2$$

$$y_2' = -4y_1 + y_1^3$$

8) Transform the given differential equation or system into an equivalent system of first-order differential equations.

$$t^3x^3 - 2t^2x'' + 3tx' + 5x = \ln(t)$$

Introduce the following variables:

$$y_1 = x, y_2 = x'$$

Then, we can express the original equation as a system of first-order differential equations:

$$y_1' = y_2$$
$$y_2' = \frac{1}{2t^2} (t^3 y_1^3 - 3t y_2 - 5y_1 - \ln(t))$$

- 24)
- 30)

Section 5.1:
6) Let
$$A_1 = \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 1 & 3 \\ -1 & -2 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 4 \\ 1 & 2 \end{bmatrix}$.

a) Show that $A_1B = A_2B$

Both A_1B and A_2B give the matrix:

$$\begin{bmatrix} 5 & 10 \\ -4 & -8 \end{bmatrix}$$

if you do the matrix multiplication.

b) Let $A = A_1 - A_2$ and use part a) to show that AB = 0

$$A = \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}$$

$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0$$

Hence, AB = 0.

The actual matrix arithmetic has been omitted for brevity since it's pretty simple.

12) Write the given system in the form: x' = P(t)x + f(t)x' = 3x - 2y, y' = 2x + y

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Let $x = \begin{bmatrix} x \\ y \end{bmatrix}$. So,

 $x' = \begin{bmatrix} 3 & -2 \\ 2 & 1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

14) Write the given system in the form: x' = P(t)x + f(t) $x' = tx - e^t y + cos(t), y' = e^{-t} x + t^2 y - sin(t)$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} t & -e^t \\ e^{-t} & t^2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} \cos(t) \\ -\sin(t) \end{bmatrix}$$

Let $x = \begin{bmatrix} x \\ y \end{bmatrix}$. So,

$$x' = \begin{bmatrix} t & -e^t \\ e^{-t} & t^2 \end{bmatrix} x + \begin{bmatrix} \cos(t) \\ -\sin(t) \end{bmatrix}$$

24) First verify that the given vectors are solutions of the given system. Then use the Wronskian to show that they are linearly independent. Finally, write the general solution of the system.

$$x' = \begin{bmatrix} 3 & -1 \\ 5 - 3 \end{bmatrix} x; x_1 = e^{2t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, x_2 = e^{-2t} \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$
$$x'_1 = \frac{d}{dt} \left(e^{2t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2e^{2t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Now we multiply the matrix with x_1 :

$$\begin{bmatrix} 3 & -1 \\ 5 & -3 \end{bmatrix} e^{2t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = e^{2t} \begin{bmatrix} 3-1 \\ 5-3 \end{bmatrix} = 2e^{2t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

This confirms that x_1 is a valid solution.

$$x_2' = \frac{d}{dt} \left(e^{-2t} \begin{bmatrix} 1 \\ 5 \end{bmatrix} \right) = -2e^{-2t} \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$

Now multiply the matrix with x_2 :

$$\begin{bmatrix} 3 & -1 \\ 5 & -3 \end{bmatrix} e^{-2t} \begin{bmatrix} 1 \\ 5 \end{bmatrix} = e^{-2t} \begin{bmatrix} 3-5 \\ 5-15 \end{bmatrix} = -2e^{-2t} \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$

This confirms that x_2 is also a valid solution.

Now we'll use the Wronskian to show that they are linearly independent:

$$W(x_1, x_2) = \det \begin{pmatrix} \begin{bmatrix} x_{1_1} & x_{2_1} \\ x_{1_2} & x_{2_2} \end{bmatrix} \end{pmatrix} = \det \begin{pmatrix} \begin{bmatrix} e^{2t} & e^{-2t} \\ e^{2t} & 5e^{-2t} \end{bmatrix} \end{pmatrix} = e^{2t} \cdot 5e^{-2t} - e^{2t} \cdot e^{-2t} = 4 \neq 0$$

Since the Wronskian is non-zero, x_1 and x_2 are linearly independent. Finally, the general solution of the system is:

$$x(t) = c_1 x_1 + c_2 x_2 = c_1 e^{2t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 e^{-2t} \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$

where c_1 and c_2 are arbitrary constants.

26) First verify that the given vectors are solutions of the given system. Then use the Wronskian to show that they are linearly independent. Finally, write the general solution of the system.

$$x' = \begin{bmatrix} 3 & -2 & 0 \\ -1 & 3 & -2 \\ 0 & -1 & 3 \end{bmatrix} x; x_1 = e^t \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}, x_2 = e^{3t} \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}, x_3 = e^{5t} \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$$

We can verify that x_1 , x_2 , and x_3 are valid solutions just like we did in 24. They all will come out as valid solutions if you do this.

The Wronskian is:

$$\det \left(\begin{bmatrix} 2e^t & -2e^{3t} & 2e^{5t} \\ 2e^t & 0 & -2e^{5t} \\ e^t & e^{3t} & e^{5t} \end{bmatrix} \right)$$

If you calculate this determinant, it comes out as non-zero. Therefore, x_1 , x_2 , and x_3 are linearly independent.

Finally, the general solution of the system is:

$$x(t) = c_1 x_1 + c_2 x_2 + c_3 x_3$$

where c_1 , c_2 , and c_3 are arbitrary constants. 36)