EEE 51 Assignment 1

2nd Semester SY 2018-2019

Due: 5pm Tuesday, January 29, 2019 (Rm. 220)

Instructions: Write legibly. Show all solutions and state all assumptions. Write your full name, student number, and section at the upper-right corner of each page. Start each problem on a new sheet of paper. Box or encircle your final answer.

Answer sheets should be color coded according to your lecture section. The color scheme is as follows:

THQ – yellow THU – white WFX – pink

1. BJT DC Biasing

For Figure 1, use the following values: $R_1 = 135k\Omega$, $R_2 = \infty$, $R_C = 800\Omega$, $R_E = 0\Omega$, $I_s = 100fA$, $V_A = \infty$, and $\beta = 120$

Figure 1: BJT Circuit

- (a) Find the base-emitter voltage, V_{BE} , the collector current I_C , and V_{OUT} at T=300K (3 points)
- (b) Suppose R_E is 200 Ω and R_2 is finite but has an unknown value
 - i. Find the collector current I_C such that $V_{OUT} = 5V$ (2 points)
 - ii. Find the base-emitter voltage V_{BE} , and the base current, I_B (2 points)
 - iii. Compute for the voltage across the unknown resistor, V_2 (1 point)
 - iv. Compute for the value of the unknown resistor R_2 (2 points)

2. MOSFET DC Biasing

Shown in Figure 2 is an NMOS circuit with Drain, Source and Load Resistance R_D , R_S , R_L . It is supplied by both positive and negative supply $V_{DD} = 0.8V$ and $V_{SS} = -0.8V$. The NMOS has the following parameters which are $k = 100\mu A/V^2$, $V_{TH} = 0.2V$, $\lambda = 0$.

Figure 2: MOSFET Circuit

Suppose $V_{BIAS}=0.65V,\,I_L=20\mu A,\,{\rm and}\,\,R_D=5k\Omega$

- (a) Find V_{GS} (1.5 points)
- (b) Find I_D . State all necessary assumptions. (2 points)
- (c) Find V_{DS} of M_1 (1.5 point)
- (d) From (a) to (c), is M_1 in saturation or in linear mode? State and verify the condition for the chosen mode of operation. (1.5 points)
- (e) Find V_O (1.5 points)
- (f) Find R_S and R_L (2 points)

TOTAL: 20 points.