### **ELECTRONIQUE (ANALOGIQUE)**



G. JACQUEMOD





































# Lab on a Chip







The Verell understee our detect 10 to 12 totalliante plathings to in one lost, that takes have have construy years a calcinostropy.















# Quelle est la différence entre la phase et le neutre ?

A – Leur référence par rapport à la masse

B – Leur référence par rapport à la terre



 $D - 220.\sin(2\pi 50t)$  Volt





### **Transformateur?**



Si  $L_1=L_2$  alors  $V_1=V_2$ , mais que vaut  $V'_1$  ou  $V'_2$ ?

$$A - V'_1 = V_1$$

$$B-V'_1=V_2$$

$$C - V'_2 = V_1$$

D – Aucune des trois propositions



Si E=15V, qu'a-t-on?



$$A - V_1 = 15V$$

$$B - V_1 = -15V$$

$$B - V_1 = -15V$$
  
 $C - V_2 = -15V$ 

D – Aucune des trois propositions

# Quel est l'ordre de grandeur de R<sub>int</sub>?



 $A - qq m\Omega$ 

 $B - qq \Omega$ 

 $C-50 \Omega$ 

 $D-qq\;k\Omega$ 

 $E - qq M\Omega$ 

# Quel est l'ordre de grandeur de R<sub>int</sub> ? Batterie de voiture



# Fréquencemètre

# I – Générateur de fréquence



# Fréquencemètre

### I – Générateur de fréquence



### I – Amplificateur opérationnel idéal



$$v_s = v_{OUT} = V_{OUT_0} + A_{v_d} \cdot \varepsilon + A_{v_c} \cdot v_{in_c}$$

ε : Entrée différentielle

v<sub>inc</sub>: Entrée de mode commun

A<sub>vd</sub>: Gain différentiel

A<sub>vc</sub>: Gain de mode commun

Remarque: Les sources de tensions  $v_{INc}$  et  $\epsilon$  ne sont pas réelles. Elles sont issues d'un artifice mathématique pratique pour l'étude de l'étage différentiel.

$$\begin{cases} V_{OUT_0}: offset \\ v_{in_c} = \frac{1}{2}(e_+ + e_-) \\ \varepsilon = e_+ - e_- \end{cases} \quad Amplificateur \ id\acute{e}al \Rightarrow \begin{cases} V_{OUT_0} = 0 \ (tension \ d'offset) \\ A_{vd} = A_v \rightarrow \infty \\ A_{vc} = 0 \end{cases} \qquad \begin{cases} e_+ = v_{in_c} + \varepsilon/2 \\ e_+ = v_{in_c} - \varepsilon/2 \end{cases}$$



$$Amplificateur\ id\'{e}al \Rightarrow \begin{cases} V_{OUT_0} = 0 \\ A_{vd} = A_v \rightarrow \infty \\ A_{vc} = 0 \end{cases}$$

$$Amplificateur\ id\acute{e}al \Rightarrow \begin{cases} i_{+} = i_{-} = 0 \Rightarrow R\acute{e}sis \tan ces\ d'entr\acute{e}e \rightarrow \infty \\ A_{vd} = A_{v} \rightarrow \infty \\ R_{S} = 0 \end{cases}$$



Amplificateur (linéaire) 
$$\Rightarrow$$
  $\begin{cases} V_s < V_{CC} \\ e_+ = e_- \end{cases}$ 

$$Comparateur \Rightarrow \begin{cases} e_{+} > e_{-} \Rightarrow V_{s} = +V_{CC} \\ e_{+} < e_{-} \Rightarrow V_{s} = -V_{CC} \end{cases}$$

### Amplificateur opérationnel réel

Tout comme il existe plusieurs types de transistors, il existe plusieurs types d'AOPs (logique, puisqu'un AOP est constitué de transistors) :

Bipolaire : constitué uniquement de transistors bipolaires (ex: 741, LM324 etc.)

BiFet : l'étage d'entrée est constitué de transistors à effet de champ JFET (ex : TL 071, TL072, TL074)

Bimos : l'étage d'entrée est constitué de transistors à effet de champ MOS (ex : CA3140)

LinCMOS : constitués de transistors CMOS fonctionnant en zone linéaire (ex : TLV2432, LMC6035 ) particulièremen utilisés pour des systèmes fonctionnant sur batteries.





### Amplificateur opérationnel réel







### AD8541/AD8542/AD8544

#### **FEATURES**

Single-supply operation: 2.7 V to 5.5 V Low supply current: 45  $\mu$ A/amplifier

Wide bandwidth: 1 MHz

No phase reversal

Low input currents: 4 pA

Unity gain stable

Rail-to-rail input and output

Qualified for automotive applications

#### **APPLICATIONS**

ASIC input or output amplifiers

Sensor interfaces

Piezoelectric transducer amplifiers

**Medical instrumentation** 

Mobile communications

**Audio outputs** 

Portable systems

#### PIN CONFIGURATIONS



Figure 1. 5-Lead SC70 and 5-Lead SOT-23
(KS and RJ Suffixes)



Figure 2. 8-Lead SOIC (R Suffix)





















 $V_{s} = e_{-} = e_{+} = V_{e}$ 

### II – Montage de base



$$V_s = V_e \ et \ i_e = 0$$



➤ Montage suiveur (adaptation d'impédances)

➤ Montage Inverseur



$$\frac{V_s}{V_e} = -\frac{R_2}{R_1}$$

Attention:  $R_e = R_1$ 

➤ Montage Inverseur



$$V_e - e_- = V_e - e_+ = V_e = R_1 I_1$$

$$I_2 = I_1$$

$$e_{-} - V_{S} = e_{+} - V_{S} = -V = R_{1}I_{2}$$

$$\frac{V_S}{V_e} = -\frac{R_2 I_2}{R_1 I_1} = -\frac{R_2}{R_1}$$

➤ Montage Non Inverseur



$$\frac{V_s}{V_e} = 1 + \frac{R_2}{R_1}$$

Attention : Contre-réaction sur l'entrée inverseuse (Patte -) et ici  $R_e \to \infty$ 

➤ Montage Sommateur (Inverseur)





Théorème de superposition : V<sub>e1</sub> seule



$$\frac{V_S}{V_{e1}} = -\frac{R_2}{R_1} \qquad V_S = -\frac{R_2}{R_1} V_{e1}$$

 $V_{e2}$  seule : identique  $\rightarrow V_S = -\frac{R_2}{R_1}V_{e2}$ 

Total: 
$$V_{e1}$$
 et  $V_{e2}$   $\longrightarrow$   $V_S = -\frac{R_2}{R_1}V_{e1} - \frac{R_2}{R_1}V_{e2} = -\frac{R_2}{R_1}(V_{e1} + V_{e2})$   $V_S = -(V_{e1} + V_{e2})$ 

### ➤ Montage Soustracteur



Théorème de superposition : V<sub>e1</sub> seule

$$\frac{V_S}{V_{e1}} = -\frac{R_2}{R_1}$$
  $V_S = -\frac{R_2}{R_1}V_{e1}$ 

V<sub>e2</sub> seule

$$V_S = 1 + \frac{R_2}{R_1} e_+$$

$$e_{+} = \frac{R_4}{R_3 + R_4} V_{e2}$$

$$e_{+} = \frac{R_4}{R_3 + R_4} V_{e2}$$
  $V_S = \left(\frac{R_1 + R_2}{R_1}\right) \frac{R_4}{R_3 + R_4} V_{e2} = \frac{R_2}{R_1} V_{e2}$ 

$$R_1 + R_2 = R_3 + R_4$$
 et  $R_2 = R_4$   
 $(R_1 = R_3)$ 

Total : 
$$V_{e2}$$
 et  $V_{e2}$ 

Total: 
$$V_{e2}$$
 et  $V_{e2} - V_{e2} = -\frac{R_2}{R_1} V_{e1} + \frac{R_2}{R_1} V_{e1} = \frac{R_2}{R_1} (V_{e2} - V_{e1})$ 

➤ Montage Soustracteur



$$V_{\rm S} \qquad V_{\rm S} = \frac{R_2}{R_1} (V_{e2} - V_{e1})$$

➤ Montage Intégrateur

$$V_e$$
 $R$ 
 $V_e$ 
 $V_s$ 

$$\frac{V_S}{V_0} = -\frac{Z_2}{Z_1} \qquad Z_2 = \frac{1}{jC\omega} \quad et \quad Z_1 = R$$

$$\frac{V_S}{V_e} = -\frac{1}{jRC\omega} \qquad i(t) = \frac{v_e(t) - e_-}{R} = C\frac{d(e_- - v_s)}{dt} = -C\frac{dv_s}{dt}$$

$$\frac{dv_s}{dt} = -\frac{v_e(t)}{RC} \Rightarrow v_S(t) = \frac{-1}{RC} \int_t v_e(u) du (+v_{s0})$$

➤ Montage Différenciateur (ou Dérivateur)



$$\frac{V_S}{V_e} = -\frac{Z_2}{Z_1} \qquad Z_1 = \frac{1}{jC\omega} \quad et \quad Z_2 = R$$

$$\frac{V_S}{V_e} = -jRC\omega \qquad i(t) = C\frac{d(v_e - e_-)}{dt} = \frac{e_- - v_S(t)}{R} = \frac{-v_S(t)}{R}$$

$$v_{S}(t) = -RC\frac{dv_{e}}{dt}$$

➤ Diode sans seuil





> Trigger de Schmitt



Contre-réaction sur l'entrée + : Comparateur

$$V_{out} = \mp V_{CC} \implies Deux seuils : \mp V_{Th} = \mp V_{CC} \frac{R_1}{R_1 + R_2}$$

Si à t=0 on a 
$$V_e$$
=e\_=- $V_{CC}$  et  $V_{out}$ =+ $V_{CC}$ 

Alors: 
$$e_{+} = \frac{R_{1}}{R_{1} + R_{2}} V_{cc} = V_{Th}$$
 et  $e_{+} > e_{-} \implies V_{out} = V_{cc}$ 



 $V_e$  et si  $V_e \ge V_{Th}$  alors  $e \ge e_+$ 



$$e_{+} = \frac{-R_{1}}{R_{1} + R_{2}} V_{cc} = -V_{Th}$$



> Trigger de Schmitt



Application: fréquencemètre



➤ Multivibrateur



Prenons:  $V_{cc} = 15 \text{ et } V_{S} = 10V \left( Soit \frac{R_{1}}{R_{1} + R_{2}} = \frac{1}{1.5} \right)$ 

On suppose à t=0,  $V_s=V_{cc}$  (donc  $V_+=V_{Th}=10V$ )

Et la capacité est déchargée → V=0V

→ Elle va vouloir se charger « jusqu'à V<sub>cc</sub> »

➤ Multivibrateur



On suppose à t=0,  $V_s=V_{cc}$  (donc  $V_+=V_{Th}=10V$ ) Et la capacité est déchargée  $\rightarrow V_==0V$ 

→ Elle va vouloir se charger « jusqu'à V<sub>cc</sub> »



### ➤ Multivibrateur







$$V_{cc} = 15V$$
  $V_i = V_{Th} = -10V = -V_{cc} \frac{R_1}{R_1 + R_2}$ 

$$V_{-}(t) = V_{f}(1 - e^{-t/\tau}) + V_{i}e^{-t/\tau}$$
  $\tau = RC$ 

$$V_f = V_{cc}$$
  $V_i = -V_{Th} = -V_{cc} \frac{R_1}{R_1 + R_2}$ 

### ➤ Multivibrateur





$$V_{-}(T/2) = V_{cc}(1 - e^{-T/2\tau}) - V_{cc}\frac{R_1}{R_1 + R_2}e^{-T/2\tau} = V_{Th} = V_{cc}\frac{R_1}{R_1 + R_2} \qquad 1 - e^{-T/2\tau} - \frac{R_1}{R_1 + R_2}e^{-T/2\tau} = \frac{R_1}{R_1 + R_2}$$

$$1 - e^{-T/2\tau} - \frac{R_1}{R_1 + R_2} e^{-T/2\tau} = \frac{R_1}{R_1 + R_2}$$

$$e^{-T/2\tau} + \frac{R_1}{R_1 + R_2} e^{-T/2\tau} = 1 - \frac{R_1}{R_1 + R_2}$$

$$e^{-T/2\tau} + \frac{R_1}{R_1 + R_2} e^{-T/2\tau} = 1 - \frac{R_1}{R_1 + R_2} \qquad e^{-T/2\tau} \left( \frac{R_1}{R_1 + R_2} + 1 \right) = \frac{R_2}{R_1 + R_2} \qquad e^{-T/2\tau} \left( \frac{R_1}{R_1 + R_2} + 1 \right) = \frac{R_2}{R_1 + R_2}$$

$$e^{-T/2\tau} (R_1 + R_1 + R_2) = R_2$$
  $-T/2\tau = \ln \left( \frac{R_2}{2R_1 + R_2} \right)$   $T = 2RC \ln \left( 1 + \frac{2R_1}{R_2} \right)$ 

$$-T/2\tau = \ln\left(\frac{R_2}{2R_1 + R_2}\right)$$

$$T = 2RC \ln \left( 1 + \frac{2R_1}{R_2} \right)$$

### III - 741





$$A_{v} = \frac{A_{0}}{1 + j \frac{f}{f_{c}}}$$

$$\begin{cases} f_{c} = 10Hz \\ A_{O}f_{c} = 1MHz \end{cases}$$



$$Si A_v \rightarrow \infty \ alors \frac{V_s}{V_e} = 1 + \frac{R_2}{R_1}$$

Que se passe-t-il si A<sub>v</sub> est fini?

$$A_{v} = \frac{A_{0}}{1 + j\frac{f}{f_{c}}}$$

### ➤ Notions de contre-réaction



$$V_s = A_v (e_+ - e_-) = -A_v \varepsilon = A_v e$$

$$e_{+} = V_{e}$$
  $e_{-} = \frac{R_{1}}{R_{1} + R_{2}} V_{s} = r$ 



$$\left. \begin{array}{l}
 e = V_e - r \\
 r = H.V_s \\
 V_s = G.e
 \end{array} \right\} \Rightarrow \frac{V_S}{V_e} = \frac{G}{1 + GH}$$



$$G = A_V \quad H = \frac{R_1}{R_1 + R_2}$$

> stabilité d'un système contre-réactioné



G(p) : FT du système en boucle ouverte

H(p): FT de la réaction

Q(p) : FT du système en boucle fermée

G(p)H(p): FT de boucle



$$V_{S} = \frac{G}{1 + GH} V_{e} \qquad |GH| \begin{cases} > \\ = 1 \end{cases}$$



Critère de Nyquist!

Stable si les pôles sont à partie réelle négative (pôle dans D\_) : 1+GH(p)=0

## Amplificateur Opérationnel



$$V_s = A_v(e_+ - e_-) = -A_v \varepsilon$$
  $\varepsilon = -V_s / A$ 

$$e_+ = V_e \quad e_- = V_e + \varepsilon$$

$$I_{1} = \frac{0 - e_{-}}{R_{1}} = \frac{-V_{e} - \varepsilon}{R_{1}} = I_{2} = \frac{V_{e} + \varepsilon - V_{s}}{R_{2}} \qquad \left(-V_{e} + \frac{V_{s}}{A_{v}}\right) R_{2} = \left(V_{e} - \frac{V_{s}}{A_{v}} - V_{s}\right) R_{1} \qquad V_{s} \left(\frac{R_{2}}{A_{v}} + \frac{R_{1}}{A_{v}} + R_{1}\right) = V_{e} \left(R_{1} + R_{2}\right) R_{1}$$

$$\frac{V_S}{V_e} = \frac{R_1 + R_2}{\frac{R_2}{A_v} + \frac{R_1}{A_v} + R_1} = \frac{A_v(R_1 + R_2)}{R_1 + R_2 + A_vR_1} = \frac{A_v}{1 + A_v} = \frac{G}{1 + GH}$$

$$\begin{cases} G = A_v \\ GH = A_v \frac{R_1}{R_1 + R_2} \end{cases}$$

$$\frac{V_S}{V_e} = \frac{G}{1 + GH}$$
  $H = \frac{R_1}{R_1 + R_2}$   $\frac{1}{H} = 1 + \frac{R_2}{R_1}$ 

# Amplificateur Opérationnel







$$A_{v} = \frac{A_{0}}{1 + j\frac{f}{f_{c}}}$$

$$\int f = 10Hz$$

$$\begin{cases} f_c = 10Hz \\ A_O f_c = 1MHz \end{cases}$$



$$\frac{V_S}{V_e} = \frac{G}{1 + GH}$$

 $G \gg \frac{1}{H}$  GH>>1

 $G \ll \frac{1}{H}$  GH $\ll 1$ 

ELECTRONIQUE ANALOGIQUE





#### I – Théorie échantillonnage

➤ Rappel Filtre LI

$$v_s(t) = h(t) * v_e(t) = \int h(t - \theta) . v_e(\theta) d\theta$$
  $v_s(t) = h(t) * \delta(t) = h(t)$ 



$$\rightarrow$$
  $v_s(t)$   $V_s(f) = H(f).V_e(f)$   $H(f) = \frac{V_s(f)}{V_e(f)}$ 

➤ Echantillonnage

• Real world signals are continuous 

⇒ Sampling is necessary





#### ➤ Echantillonnage

$$v_s(t) = v_e(t). \sum_{k=-\infty}^{+\infty} \delta(t - kT_e) = v_e(t). \coprod_{T_e} (t) \qquad \coprod_{T_e} (t) \rightleftharpoons \frac{1}{T_e} \coprod_{T_e} (f)$$

$$V_s(f) = V_e(f) * \frac{1}{T_e} \sum_{k=-\infty}^{+\infty} \delta(f - \frac{k}{T_e}) = \frac{1}{T_e} V_e(f) * \coprod_{\frac{1}{T_e}} (f)$$

Echantillonnage dans le domaine temporel 
Périodisation dans le Domaine fréquentiel (Exemple cos et modulation amplitude)

- → Shannon : Echantillonner à deux fois la fréquence maximale du signal
- → Filtre anti-repliement (anti-aliasing) : Filtre Passe-Bas



- 
$$V_s(t)$$
 On pose: 
$$\begin{cases} Interrupteur\ ferm\'e:\ h(t)=1 \Rightarrow v_s(t)=v_e(t).1=v_e(t).h(t) \\ Interrupteur\ ouvert:\ h(t)=0 \Rightarrow v_s(t)=v_e(t).0=v_e(t).h(t) \end{cases}$$

Dans la pratique → Echantillonneur-bloqueur

➤ Echantillonnage → Périodisation du spectre





$$v_s(t) = v_e(t) \cdot \sum_{k=-\infty}^{+\infty} \delta(t - kT_e) = v_e(t) \cdot \bigsqcup_{T_e} (t)$$

$$V_s(f) = V_e(f) * \frac{1}{T_e} \sum_{k=-\infty}^{+\infty} \delta(f - \frac{k}{T_e}) = \frac{1}{T_e} V_e(f) * \coprod_{\frac{1}{T_e}} (f)$$







ELECTRONIQUE ANALOGIQUE

- ➤ Echantillonnage → Périodisation du spectre
  - → Shannon : Echantillonner à deux fois la fréquence maximale du signal
  - → Filtre anti-repliement (anti-aliasing) : Filtre Passe-Bas





> Echantillonneur-bloqueur : Sample and Hold



#### ➤ Quantification

Attention échantillonnage différent de quantification (électronique analogique échantillonnée : filtres à capacités commutées, dispositifs à transfert de charges, ...)

Signal numérique = signal échantillonné puis quantifié

→ Convertisseur analogique-numérique (CAN ou ADC en anglais)



→ Pas de quantification (erreur de conversion) :  $\Delta = \frac{V_{\text{max}} - V_{\text{min}}}{2^N}$ 

Exemple :  $V_{max}$ - $V_{min}$ =5-0=5V et N=8 bits  $\rightarrow \Delta$ =19,5 mV

→ ADC idéal (erreur de conversion → bruit)





- → Possibilité de codage en sortie
  - Entier signé ou non
  - Codage de Gray
  - BCD
  - ...
- ⇒ Bruit de quantification :  $\pm \Delta/2$  (Puissance :  $\Delta^2/12$ )

→ ADC : Exemple Convertisseur Simple Rampe

Conception Mixte: Projet Elec5