1st order reaction

$$-r_i = k^*C_i$$

 $-r_i = k^*C_{io}^*(1-X)$
 $-r_i = k^*(C_{io}^+v_i\xi/V)$ (V = volume of reaction mixture)

Irreversible elementary rxn 2A+B -> 3C

k
 2A+B -> 3C so, $r_{A} = 2 r_{B} = - 2/3 r_{C}$

Assume $r_A = -2 \text{ mol/cm}^3/\text{sec}$, so

$$r_B = ?$$

$$r_C = ?$$

The rate equations must also be consistent, so assuming $r_A = -k[A]^2[B]$, then

$$r_{B} = ?$$

$$r_C = ?$$

Reversible elementary rxn

A+B<-> C
Proposed mechanism: A+B
k_1
 > C
C-> A+B

Note that stoichiometry is correct

$$r_A$$
, r_B , r_C ?

A. First-Order Rate Laws

(1)
$$C_2H_6 \longrightarrow C_2H_4 + H_2$$

$$-r_{A} = kC_{C_{2}H_{6}}$$

(2)
$$N = NCI$$
 CI

$$-r_{\mathsf{A}} = kC_{\phi \mathsf{N} - \mathsf{NC}1}$$

(3)
$$O \longrightarrow CH_2OH$$

 $CH_2 \longrightarrow CH_2 + H_2O \longrightarrow CH_2OH$

$$-r_{\mathsf{A}} = k C_{\mathsf{CH}_2\mathsf{OCH}_2}$$

(4)
$$CH_3COCH_3 \longrightarrow CH_2CO + CH_4$$

$$-r_{\mathsf{A}} = kC_{\mathsf{CH}_3\mathsf{COCH}_3}$$

(5)
$$nC_4H_{10} \rightleftharpoons iC_4H_{10}$$

$$-r_n = k[\,C_{n\mathrm{C}_4} - C_{i\mathrm{C}_4}/K_{\mathrm{C}}]$$

B. Second-Order Rate Laws

(1)
$$\frac{NO_2}{Cl} + 2NH_3 \longrightarrow \frac{NO_2}{NH_2} + NH_4Cl$$

$$-r_{\rm A} = k_{\rm ONCB} C_{\rm ONCB} C_{\rm NH_3}$$

(2)
$$CNBr + CH_3NH_2 \longrightarrow CH_3Br + NCNH_2$$

$$-r_{\rm A} = kC_{\rm CNBr}C_{\rm CH_3NH_2}$$

(3)

$$-r_{A} = k[C_{A}C_{B} - C_{C}C_{D}/K_{C}]$$

Arrhenius' Law

For many reactions, and particularly elementary reactions, the rate expression can be written as a product of a temperature-dependent term and a compositiondependent term, or

$$r_i = f_1(\text{temperature}) \cdot f_2(\text{composition})$$

= $k \cdot f_2(\text{composition})$ (33)

Why do reaction rates depend on temperature, pressure and concentration? (molecular behaviors)

Arrhenius' Law

For such reactions the temperature-dependent term, the reaction rate constant, has been found in practically all cases to be well represented by Arrhenius' law:

$$k = k_0 e^{-\mathbf{E}/\mathbf{R}T}$$
 (34)

where k_0 is called the frequency or pre-exponential factor and \mathbf{E} is called the activation energy of the reaction.* This expression fits experiment well over wide temperature ranges and is strongly suggested from various standpoints as being a very good approximation to the true temperature dependency.

Reaction rate modeling Temperature dependence of collision and transition theories

Using the reaction scheme
$$A + B \xrightarrow{k_1} AB^* \xrightarrow{k_3} C$$

$$k_2$$

-r_A = (% collisions with E [sufficient energy to react]) (collision rate)

$$= k C_A C_B$$

k is proportional to $e^{-E/RT}$, i.e. $k = k_0 * e^{-E/RT}$

For the reaction to occur, the reactants must overcome an energy barrier (activation energy)

Figure 3-2 A diagram of the orbital distortions during the reaction H • + CH₃CH₃ → H₂ + CH₂CH₃ •

The diagram shows only the interaction with the energy state of ethane (the C-H bond). Other molecular orbitals of the ethane also distort. [Courtesy of R. Masel, Chemical Kinetics (McGraw Hill, 2002), p. 594.]

Temperature dependence of collision and transition theories

This simplified dependence on temperature allows us to plot ln k vs. T (absolute temp) and obtain estimates of the energy of activation of the reaction

Note that due to the log scale, reactions are more sensitive to changes at low T vs. high T

$$ln(r_2/r_1) = E/R (1/T_1 - 1/T_2)$$

provided E stays constant

1/T

Reactions with high activation energies are very temperature-sensitive

Table 2.1 Temperature Rise Needed to Double the Rate of Reaction for Activation Energies and Average Temperatures Shown^a

Average Temperature	Activation Energy E			
	40 kJ/mol	160 kJ/mol	280 kJ/mol	400 kJ/mol
0°C	11°C	2.7°C	1.5°C	1.1°C
400°C	65	16	9.3	6.5
1000°C	233	58	33	23
2000°C	744	185	106	74

^a Shows temperature sensitivity of reactions.

Example

Milk is pasteurized if it is heated to 63°C for 30 min, but if it is heated to 74°C it only needs 15 s for the same result. Find the activation energy of this sterilization process.

To ask for the activation energy of a process means assuming an Arrhenius temperature dependency for the process. Here we are told that

$$t_1 = 30 \,\mathrm{min}$$
 at a $T_1 = 336 \,\mathrm{K}$

$$t_2 = 15 \text{ sec}$$
 at a $T_2 = 347 \text{ K}$