EE204 - Analog Circuits

Electrical Engineering Department IIT-Bombay Autumn 2023

Quiz 1

Total Marks: 10

Date: 2^{th} September 2023, Time: 9.30 am to 10.30 am.

Q1)

(a) Q1(a) circuit diagram

(b) Q1(b) circuit diagram

In the circuit shown in figure 1(a): $R_1 = 1k\Omega$, $R_2 = 9k\Omega$. OpAmp is ideal.

- (a) Derive V_{out} as a function of V_1 and V_2 if $V_{DD} = -V_{SS} = 2V$. [2 marks]
- (b) In the circuit diagram shown in figure 1(b), $V_{DD} = 3V$ and $V_{SS} = 0V$. $V_1 = 1.5 + V_x$, $V_2 = 1.5 + V_y$. Derive an expression for V_{out} as a function of V_x and V_y . [2 marks]
- (c) In the question 1(b), if $V_1 = V_2 = 1.5$ V and resistors R_1 and R_2 are 5% tolerance resistors, i.e. $R_1 \to R_1(1 \pm \epsilon)$ and $R_2 \to R_2(1 \pm \epsilon)$ where $\epsilon = 0.05$, determine the value of V_{out} . [1 mark]

Q2)

- (a) In the circuit diagram shown in figure 2(a), $R_D = 15 \text{k}\Omega$, $V_{GST} = 0.3 \text{V}$, $I_D = 0.1 \text{mA}$. Find minimum value of V_{DD} for which transistor M_1 will be in saturation (pinch-off) region. [1 mark]
- (b) Repeat (a) if resistor as $R_S = 2k\Omega$ is added to the circuit as shown in circuit shown in figure 2(b). (Rest of the values will be same as the corresponding values in (a).) [1 mark]

(a) Q2(a) circuit diagram

(b) Q2(b) circuit diagram

Q3)

Figure 3: Q3 circuit diagram

In the circuit diagram shown in figure 3, **OpAmp** is ideal.

- (a) Use left side of the circuit, i.e. V_{in} , R_1 and R_2 to derive V_A as a function of V_{in} . [1 mark]
- (b) Use right side of the circuit, i.e. V_{out} , R_3 , R_4 and R_2 to derive V_A as a function of V_{out} . [1 mark]
- (c) Use (a) and (b) to derive V_{out} as function of V_{in} .

[0.5 mark]

(d) In your opinion, what is the feature of the circuit?

[0.5 mark]

All the Best!

$$\begin{array}{c|c}
R_{0} = g & K \Sigma \\
V_{1} & & V_{0D} \\
V_{2} & & V_{0U} \\
V_{3} & & V_{0U}
\end{array}$$

$$\begin{array}{c|c}
R_{1} = 1 & K \Sigma & & R_{2} = g & K \Sigma \\
\end{array}$$

Vout =
$$\left(\frac{R_2}{R_1 + R_2}\right)\left(1 + \frac{R_2}{R_1}\right)V_2 + \left(\frac{R_2}{R_1}\right)V_1 = \frac{R_2}{R_1}\left(V_2 - V_1\right)$$
 — <1 mark>

 $\langle b \rangle$

$$Y_1 = V_X + 1.5$$
 $V_2 = V_Y + 1.5$
 $V_{cm} = \frac{V_{00} - V_{SS}}{2} = \frac{3 - 0}{2} = 1.5\gamma$

Cos mark)

Vow =
$$V_{cm} + \frac{R_2}{R_1} (V_2 - V_1)$$

= $V_{cm} + \frac{R_2}{R_1} (V_{\gamma} - V_{\alpha})$ $\sim \langle 0.5 \text{ mark} \rangle$

c)
$$R_1 \rightarrow R_1 \pm 0.05 R_1$$
 & $R_2 \rightarrow R_2 \pm 0.05 R_2$

have
$$V_{out} = \left(\frac{R_2'}{R_1' + R_2'}\right) \left(1 + \frac{R_2''}{R_1''}\right) V_2 + \left(\frac{R_2''}{R_1''}\right) V_1 + V_{cm}$$

Lets consider worst case mismatch R' = (1+6) R, R, R' = (1-6) R, R' = (1+6) R, & R'' = (1-6) R1

$$V_{out} = \frac{(1+\xi)}{R_1+R_2} \times \frac{(R_1+R_2)}{(1-\xi)} V_2 + \frac{(1+\xi)}{(1-\xi)} \frac{R_2}{R_1} \cdot V_1 + V_{cm}$$

$$= \left(\frac{1+\xi}{1-\xi}\right) (V_2 - V_1) + V_{cm}$$

Your due to mismatch is

Vout =
$$\left(\frac{1\pm \varepsilon}{1\mp \varepsilon}\right)(v_1-v_2) + v_{cm} - \langle 0.5 \text{ max}\rangle$$

We have $V_1 = V_2 = 1.57$ Hence

No matter how mismatched the resistors are, the output rollage remains the same value of Vem

Note*

The consideration of specific worst care is optional, students can directly write that Vout Will remain at Vom irrespective of mismatch

$$V_0 = 15 \text{ kD} \qquad V_{08} = 0.3Y$$

$$V_0 = 15 \text{ kD} \qquad V_{08} = 0.3Y$$

for M, to remain in Saluration region

for m, to remain in Saturation

Q3>

$$\langle a \rangle V_A = -\frac{R_2}{R_1} V_{in}$$
 / mark

$$\langle b \rangle$$
 Vout = $\left(1 + \frac{R_3}{R_4 || R_2}\right) VA$ — $\langle 1 || mosek \rangle$

$$\langle c \rangle$$
 $Vout = -\left(\frac{R_2}{R_1}\right)\left(1 + \frac{R_3}{R_4|1|R_2}\right) Vin - \langle 0.5 \text{ mark} \rangle$

(d) As R411R2 < R2, adding R4 improves the gain of the inventing amplifies without the need of using wide range of resistance values. < < 0.25 months

. Alternate Answer