PART II: Practical

- 1. Test bfastSpatial function with different parameters on a prepared dataset
- 2. Post-processing and exploring results
- 3. Discuss results and the process of applying the algorithm
- 4. Discuss the future of BFAST: a faster algorithm for larger AOIs (SciDB)

Go to:

https://github.com/rosca002/FAO_Bfast_workshop

Input data:

- NDMI time stack (2000-2016)
- NDVI time stack (2000-2016)

Aditional data:

- Forest mask 2010
- Valodation Forest 2016

Parameters to test:

- Vegetation index
- History period
- Monitoring approach
- Regression model

How to get from Landsat scenes to a time stack:

Online tutorial

http://www.loicdutrieux.net/bfastSpatial/

		Example 1	Example 2	Example 3	Example 4	Example 5	Example 6	Example 7	Example 8	Example 9	Example 10
Vegetation index		NDMI	NDVI	NDVI	NDMI						
History period	from-to	2000-2010	2000-2010	2005-2010	2005-2010	2000-2010	2008-2010	2005-2010	2005-2010	2000-2010	2008-2010
	option	"all"	"ROC"	c(2005,1)	"all"						
	stack subset	no	no	no	yes (2005)	no	yes (2008)	yes (2005)	yes(2005)	no	yes(2008)
Monitoring period	from-to	2010-2016	2010-2016	2010-2016	2010-2016	2010-2016	2010-2016	2010-2016	2010-2016	2010-2016	2010-2016
	approach	Full mon	Full mon	Full mon	Full mon	Seq mon	Seq mon	Seq mon	Seq mon	Full mon	Full mon
Regression model		Harm ord. 1									
Trend		no									
											-

To open the tutorial for each example: https://github.com/rosca002/FAO_Bfast_workshop

Results:

Example 1

- time to proccess on 6 CPU cores:
- Accuracy assessment:

Step by step towards detecting deforestation in your next AOI

- 1. Understand how Bfast works
- 2. Read the <u>Bfast guide</u> on how to choose the parameters of the bfastSpatial function
- 3. Assess your AOI. What is the phenology of the forest? How frequent/ many cloud free scenes are in that area?
- 4. Based on this information choose the appropriate VI, length of history period, monitoring approach, and regression model.
- 5. Decide on the data that needs to be acquired and acquire the data.
- 6. Test the algorithm with the above decided settings on just some sample pixels or/and a small test area (e.g.10 x 10 km) in your AOI following the <u>Introduction to bfastSpatial tutorial</u>.
- 7. Depending on the results, if needed, change and test again settings.
- 8. Apply algorithm with final settings on entire AOI.

Discuss the future of BFAST: a faster algorithm for larger AOIs (SciDB)

https://github.com/appelmar/scalbf-wur/

Thank you for your attention!

