```
#importing module
```

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
```

Load the dataset into the tool

```
data=pd.read_csv("abalone.csv")
data.head()
```

Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera
weight	\					
0 M	0.455	0.365	0.095	0.5140	0.2245	
0.1010						
1 M	0.350	0.265	0.090	0.2255	0.0995	
0.0485						
2 F	0.530	0.420	0.135	0.6770	0.2565	
0.1415						
3 M	0.440	0.365	0.125	0.5160	0.2155	
0.1140						
4 I	0.330	0.255	0.080	0.2050	0.0895	
0.0395	0.550	0.1255	5.000	012030	010033	
0.0000						

Shell	weight	Rings
	0.150	15
	0.070	7
	0.210	9
	0.155	10
	0.055	7
	Shell	0.070 0.210 0.155

#Let's know the shape of the data

data.shape

(4177, 9)

#One additional task is that, we have to add the "Age" column using "Rings" data. We just have to add '1.5' to the ring data

Sex Length Diameter Height Whole_weight Shucked_weight Viscera_weight \

```
0.2245
        0.455
                  0.365
                          0.095
                                       0.5140
0
   М
0.1010
                          0.090
                                       0.2255
       0.350
                  0.265
                                                       0.0995
1
   Μ
0.0485
                  0.420
                                       0.6770
        0.530
                          0.135
                                                       0.2565
2
    F
0.1415
        0.440
                  0.365
                          0.125
                                       0.5160
                                                       0.2155
3
   Μ
0.1140
   Ι
        0.330
                  0.255
                          0.080
                                       0.2050
                                                       0.0895
0.0395
   Shell weight
                 Age
0
          0.150
                 16.5
1
          0.070
                 8.5
2
          0.210
                 10.5
3
          0.155
                 11.5
4
          0.055
                 8.5
```

#Histogram

sns.displot(data["Age"], color='darkorange')

<seaborn.axisgrid.FacetGrid at 0x7f8a1174dd90>

sns.histplot(y=data.Age,color='pink')
<matplotlib.axes._subplots.AxesSubplot at 0x7f8a1174d450>

sns.histplot(x=data.Age,color='green')
<matplotlib.axes._subplots.AxesSubplot at 0x7f8a0e7e6310>

#Boxplot
sns.boxplot(x=data.Age,color='pink')

<matplotlib.axes._subplots.AxesSubplot at 0x7f8a0e648bd0>

#Countplot
sns.countplot(x=data.Age)
<matplotlib.axes._subplots.AxesSubplot at 0x7f8a0e7a42d0>

#Barplot
sns.barplot(x=data.Height,y=data.Age)
<matplotlib.axes._subplots.AxesSubplot at 0x7f8a0e4bd690>

#Linearplot
sns.lineplot(x=data.Age,y=data.Height, color='purple')
<matplotlib.axes._subplots.AxesSubplot at 0x7f8a0e71bcd0>

#Scatterplot
sns.scatterplot(x=data.Age,y=data.Height,color='green')
<matplotlib.axes._subplots.AxesSubplot at 0x7f8a0e70e610>

#Pointplot

sns.pointplot(x=data.Age, y=data.Height, color="blue")
<matplotlib.axes._subplots.AxesSubplot at 0x7f8a0ed61ed0>

#Regplot
sns.regplot(x=data.Age,y=data.Height,color='orange')
<matplotlib.axes._subplots.AxesSubplot at 0x7f8a0e1cbe90>

#Pairplot

sns.pairplot(data=data[["Height","Length","Diameter","Age","Whole_weig
ht","Shucked_weight","Viscera_weight","Shell_weight"]])

<seaborn.axisgrid.PairGrid at 0x7f8a0e1d0c90>

sns.pairplot(data=data[["Height","Length","Diameter","Age","Whole_weig
ht","Shucked_weight","Viscera_weight","Shell_weight"]],kind="kde")

<seaborn.axisgrid.PairGrid at 0x7f8a0c133d90>

Perform descriptive statistics on the dataset data.describe(include='all')

	Sex	Length	Diameter	Height	Whole_weight	\
count	4177	4177.000000	4177.000000	4177.000000	4177.000000	
unique	3	NaN	NaN	NaN	NaN	
top	М	NaN	NaN	NaN	NaN	
freq	1528	NaN	NaN	NaN	NaN	
mean	NaN	0.523992	0.407881	0.139516	0.828742	
std	NaN	0.120093	0.099240	0.041827	0.490389	
min	NaN	0.075000	0.055000	0.000000	0.002000	
25%	NaN	0.450000	0.350000	0.115000	0.441500	
50%	NaN	0.545000	0.425000	0.140000	0.799500	
75%	NaN	0.615000	0.480000	0.165000	1.153000	
max	NaN	0.815000	0.650000	1.130000	2.825500	

	Shucked_weight	Viscera_weight	Shell_weight	Age
count	4177.000000	4177.000000	4177.000000	4177.000000
unique	NaN	NaN	NaN	NaN
top	NaN	NaN	NaN	NaN
freq	NaN	NaN	NaN	NaN
mean	0.359367	0.180594	0.238831	11.433684
std	0.221963	0.109614	0.139203	3.224169
min	0.001000	0.000500	0.001500	2.500000
25%	0.186000	0.093500	0.130000	9.500000
50%	0.336000	0.171000	0.234000	10.500000
75%	0.502000	0.253000	0.329000	12.500000
max	1.488000	0.760000	1.005000	30.500000

#Check for Missing values and deal with them

```
data.isnull().sum()
```

Sex	0
Length	0
Diameter	0
Height	0
Whole_weight	0
Shucked_weight	0
Viscera_weight	0
Shell_weight	0
Age	0
dtype: int64	

#Find the outliers and replace them outliers

```
outliers=data.quantile(q=(0.25,0.75)) outliers
```

```
Length Diameter Height Whole_weight Shucked_weight
Viscera weight \
0.25
       \overline{0}.450
                  0.35
                          0.115
                                       0.4415
                                                         0.186
0.0935
0.75
       0.615
                  0.48
                          0.165
                                       1.1530
                                                         0.502
0.2530
```

```
Shell_weight Age
0.25     0.130     9.5
0.75     0.329     12.5

a = data.Age.quantile(0.25)
b = data.Age.quantile(0.75)
c = b - a
lower_limit = a - 1.5 * c
data.median(numeric_only=True)
```

```
Length
                    0.5450
Diameter
                    0.4250
Height
                    0.1400
Whole weight
                    0.7995
Shucked_weight
                    0.3360
Viscera_weight
                    0.1710
Shell_weight
                    0.2340
                   10.5000
Age
```

dtype: float64

data['Age'] = np.where(data['Age'] < lower_limit, 7, data['Age'])
sns.boxplot(x=data.Age,showfliers = False)</pre>

<matplotlib.axes._subplots.AxesSubplot at 0x7f8a08878110>

Check for Categorical columns and perform encoding

data.head()

Length	Diameter	Height	Whole_weight	Shucked_weight
a_weight	\			
0.455	0.365	0.095	0.5140	0.2245
0.350	0.265	0.090	0.2255	0.0995
0.530	0.420	0.135	0.6770	0.2565
0.440	0.365	0.125	0.5160	0.2155
0.330	0.255	0.080	0.2050	0.0895
	a_weight 0.455 0.350 0.530 0.440	a_weight \	a_weight \	a_weight

```
0.0395
   Shell_weight
                  Age
0
          0.150
                  16.5
          0.070
1
                  8.5
2
          0.210
                 10.5
3
          0.155
                  11.5
          0.055
                   8.5
from sklearn.preprocessing import LabelEncoder
lab = LabelEncoder()
data.Sex = lab.fit_transform(data.Sex)
data.head()
   Sex
        Length
                 Diameter
                           Height
                                   Whole weight
                                                  Shucked weight
0
         0.455
                    0.365
                            0.095
                                          0.5140
                                                           0.2245
     2
     2
         0.350
                            0.090
1
                    0.265
                                          0.2255
                                                           0.0995
2
         0.530
                    0.420
                            0.135
     0
                                          0.6770
                                                           0.2565
3
         0.440
                    0.365
                            0.125
     2
                                                           0.2155
                                          0.5160
4
     1
         0.330
                    0.255
                            0.080
                                          0.2050
                                                           0.0895
   Viscera_weight
                    Shell_weight
                                    Age
0
           0.1010
                           0.150
                                   16.5
1
           0.0485
                           0.070
                                   8.5
2
                           0.210
           0.1415
                                   10.5
3
           0.1140
                           0.155
                                   11.5
                           0.055
           0.0395
                                    8.5
Split the data into dependent and independent variables
y = data["Sex"]
y.head()
0
     2
1
     2
2
     0
3
     2
     1
Name: Sex, dtype: int64
x=data.drop(columns=["Sex"],axis=1)
x.head()
           Diameter
                      Height Whole weight
                                             Shucked weight
   Length
Viscera weight
   0.455
              0.365
                       0.095
                                                      0.2245
                                     0.5140
0.1010
    0.350
              0.265
                       0.090
                                     0.2255
                                                      0.0995
```

```
0.0485
              0.420
                       0.135
    0.530
                                     0.6770
                                                      0.2565
2
0.1415
   0.440
              0.365
                       0.125
                                     0.5160
                                                      0.2155
0.1140
    0.330
              0.255
                       0.080
                                     0.2050
                                                      0.0895
0.0395
   Shell weight
                  Age
0
          0.150
                  16.5
1
          0.070
                  8.5
2
          0.210
                  10.5
3
          0.155
                  11.5
          0.055
                   8.5
#Scale the independent variables
from sklearn.preprocessing import scale
X Scaled = pd.DataFrame(scale(x), columns=x.columns)
X Scaled.head()
     Length Diameter
                          Height
                                   Whole weight
                                                  Shucked weight
Viscera weight \
0 -0.574558 -0.432149 -1.064424
                                      -0.641898
                                                       -0.607685
0.726212
1 -1.448986 -1.439929 -1.183978
                                      -1.230277
                                                       -1.170910
1.205221
2 0.050033 0.122130 -0.107991
                                      -0.309469
                                                       -0.463500
0.356690
3 -0.699476 -0.432149 -0.347099
                                      -0.637819
                                                       -0.648238
0.607600
4 -1.615544 -1.540707 -1.423087
                                      -1.272086
                                                       -1.215968
1.287337
   Shell weight
                       Age
0
      -0.638217
                 1.577830
1
      -1.212987 -0.919022
2
      -0.207139 -0.294809
3
      -0.602294 0.017298
4
      -1.320757 -0.919022
#Split the data into training and testing
from sklearn.model selection import train test split
X Train, X Test, Y Train, Y Test = train test split(X Scaled, y,
test size=\overline{0}.2, random state=\overline{0})
X Train.shape, X Test.shape
((3341, 8), (836, 8))
Y Train.shape, Y Test.shape
```

```
((3341,), (836,))
X Train.head()
                Diameter
                                    Whole weight
                                                   Shucked weight
        Length
                            Height
                                        -1.622870
3141 -2.864726 -2.750043 -1.423087
                                                        -1.553902
3521 -2.573250 -2.598876 -2.020857
                                        -1.606554
                                                        -1.551650
883
      1.132658
                1.230689 0.728888
                                         1.145672
                                                         1.041436
3627
      1.590691
                1.180300
                          1.446213
                                         2.164373
                                                         2.661269
2106
      0.591345
                0.474853
                          0.370226
                                         0.432887
                                                         0.255175
      Viscera weight
                      Shell weight
                                          Age
3141
           -1.583867
                         -1.644065 -1.543234
3521
           -1.565619
                         -1.626104 -1.387181
                                    1.577830
883
            0.286552
                          1.538726
3627
            2.330326
                          1.377072
                                     0.017298
2106
            0.272866
                          0.906479
                                     1.265723
X_Test.head()
                                     Whole weight
        Length
                Diameter
                            Height
                                                   Shucked weight
                                                        -0.368878
668
      0.216591
                0.172519
                          0.370226
                                         0.181016
1580 -0.199803 -0.079426 -0.466653
                                        -0.433875
                                                        -0.443224
3784
      0.799543 0.726798 0.370226
                                         0.870348
                                                         0.755318
463 -2.531611 -2.447709 -2.020857
                                        -1.579022
                                                        -1.522362
2615 1.007740 0.928354
                          0.848442
                                         1.390405
                                                         1.415417
      Viscera_weight
                      Shell weight
                                          Age
668
            0.569396
                          0.690940
                                     0.953617
1580
                         -0.325685 -0.606915
           -0.343004
3784
            1.764639
                          0.565209
                                    0.329404
           -1.538247
463
                         -1.572219 -1.543234
2615
            1.778325
                          0.996287 0.641511
Y Train.head()
3141
        1
3521
        1
        2
883
3627
        2
        2
2106
Name: Sex, dtype: int64
Y Test.head()
668
        2
        1
1580
        2
3784
        1
463
        2
2615
Name: Sex, dtype: int64
```

```
#Build the Model
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n estimators=10,criterion='entropy')
model.fit(X Train,Y Train)
RandomForestClassifier(criterion='entropy', n estimators=10)
y predict = model.predict(X Test)
y predict train = model.predict(X Train)
Train the Model
from sklearn.metrics import
accuracy_score,confusion_matrix,classification_report
print('Training accuracy: ',accuracy score(Y Train,y predict train))
Training accuracy: 0.9832385513319365
#Test the Model
print('Testing accuracy: ',accuracy score(Y Test,y predict))
Testing accuracy: 0.5358851674641149
#Measure the performance using Metrics
pd.crosstab(Y Test,y predict)
col 0
         0
              1
                   2
Sex
       121
                  98
0
             30
1
        41
            214
                  36
2
       126
             57
                 113
print(classification_report(Y_Test,y_predict))
                            recall f1-score
              precision
                                               support
           0
                   0.42
                              0.49
                                        0.45
                                                   249
                   0.71
                              0.74
                                        0.72
                                                   291
           1
           2
                   0.46
                              0.38
                                        0.42
                                                   296
                                        0.54
                                                   836
    accuracy
                              0.53
                                        0.53
                                                   836
                   0.53
   macro avq
weighted avg
                   0.53
                              0.54
                                        0.53
                                                   836
```