EEE104 – Digital Electronics (I) Lecture 6

Dr. Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

In This Session

- · Transistors in a Gate
- Digital Integrated Circuits
- Integrated Circuit Logic Gates
 - Types and Series
 - Characteristics

1

Transistors in a Gate

symbol

When a BJT is used as a switch, it operates between the cutoff and saturation modes.

- 1. If v_I is "0" or at a value close to ground, the BJT will be cutoff; $v_O = V_{CC}$ (logic "1").
- 2. If v_I is "1" or at a value close to V_{CC} , the BJT will be saturated; $v_O = V_{CEsat} \cong 0.2 \text{ V (logic "0")}$.
- 3. This is a logic inverter.

10 kΩ 10 kΩ 0 v_Z

Transistors in a Gate

V _X	V _Y	VZ
0.2 V	0.2 V	5 V
0.2 V	5 V	0.2 V
5 V	0.2 V	0.2 V
5 V	5 V	0.2 V

Χ	Υ	Z	
0	0	1	Z = X + Y
0	1	0	NOR Gate
1	0	0	
1	1	0	

4

Digital Integrated Circuits

The Integrated Circuit (IC)

- It is an electronic circuit that is constructed entirely on a single small chip of silicon.
- The pins connect the internal points to allow inputs and outputs.
- Dual-in-line package (DIP) is the common IC package for small or medium-scale ICs.

Digital Integrated Circuits

Pin Numbering for DIP

- Pin 1 is indicated by either a small dot or a notch.
- With the notch oriented upward, pin numbers increase as you go down, then across and up.
- The highest pin number is the top right pin.

5

ь

Digital Integrated Circuits

Complexity Classification

- 1. SSI, small-scale integration, 1~12 gates, used for basic gates and flip-flops.
- **2. MSI**, medium-scale integration, 13~99 gates, used for encoders, counters, registers, multiplexers, etc.
- **3. LSI**, large-scale integration, 100~9,999 gates, used for memories.
- **4. VLSI**, Very large-scale integration, 10,000~99,999 gates.
- **5. ULSI**, ultra large-scale integration, 100,000 or more gates, used for microprocessors and large memories.

Digital Integrated Circuits

Technologies

- **Bipolar junction transistors**, such as TTL (transistor-transistor logic) and ECL (emitter-coupled logic).
- MOSFETs, such as CMOS (complementary MOS) and NMOS (n-channel MOS).
- SSI and MSI circuits are available in both TTL and CMOS.
- LSI, VLSI and ULSI are implemented with CMOS or NMOS, because it is more compact and consumes less power.

IC Logic Gates

Designation

Prefix + series + type, e.g. 74LS04.

- 1. Prefix 74 for commercial grade, 54 for military grade.
- Series a letter or letters to indicate the IC technology used, e.g. TTL or CMOS.
- 3. Type a number to indicate the type of logic device.

a

IC Logic Gates

Series - TTL

74LS — Low-power Schottky TTL

74AS — Advanced Schottky TTL

74F — Fast TTL

Series - CMOS

74HC — High-speed CMOS

74HCT — High-speed CMOS, TTL compatibility

74AC — Advanced CMOS

74LVC — Low-voltage CMOS

IC Logic Gates

IC Logic Gates

Characteristics – Propagation Delay Time

The time interval $t_{\rm p}$ between the application of an input pulse and the occurrence of the output pulse, e.g. $t_{\rm pHL}$ and $t_{\rm pLH}$.

- The shorter t_p, the higher the speed.
- 74LS series 11 ns
 74F series 3.3 ns
 74HCT series 7 ns
 74AC series 5 ns

IC Logic Gates

Characteristics – Input and output Logic Levels (TTL)

13

IC Logic Gates

Characteristics – DC Supply Voltage (V_{CC})

 There are two categories of CMOS: 5V CMOS and 3.3V CMOS (less power dissipation).

	Minimum	Typical	Maximum
TTL	4.5 V	5.0 V	5.5 V
5V CMOS	2.0 V	5.0 V	6.0 V
3.3V CMOS	2.0 V	3.3 V	3.6 V

 The supply voltage of CMOS can vary over a wider range than for TTL.

IC Logic Gates

Characteristics – Input and Output Logic Levels (+5V CMOS)

14

IC Logic Gates

Characteristics - Fan-Out

- The fan-out is the maximum number of inputs that can be connected to a gate's output.
- Most TTL series, such as the 74LS, can drive 20 load gates.
- The fan-out for CMOS gates is very high.

