

BAB 3

FILTER PASIF

TTI3H3 - Elektronika RF

- Filter: suatu alat yang memiliki fungsi untuk melewatkan frekuensi tertentu. Filter analog berarti filter yang melewatkan sinyal analog dan pengolahan sinyalnya juga dilakukan secara analog.
- Filter analog banyak digunakan dalam sistem komunikasi, misalnya pada up-down converter, untuk merancang duplekser, filter sinyal audio, filter RF, filter SSB, dsb.
- Berdasarkan komponen penyusunnya, filter analog dibagi:
 - 1. Filter LC pasif dan RC aktif
 - 2. Filter SAW (Surface Acoustic Waves)
 - 3. Filter-filter elektromekanik
 - 4. Filter kristal piezoelektrik

- Berdasarkan daerah frekuensi yang dilewatkan, filter analog dibagi menjadi
 - 1. LPF (Low Pass Filter)
 - 2. **BPF** (Band Pass Filter)
 - 3. HPF (High Pass Filter)
 - 4. BSF/BRF (Band Stop Filter/ Band Reject Filter)
 - 5. All Pass Filter (hanya memperhatikan respon fasa).
- Berdasarkan bentuk respon frekuensi terhadap gain:
 - 1. Filter Bessel (Maximally Flat Time Delay)
 - 2. Filter Cauer (Eliptic)
 - 3. Filter Butterworth (maximally flat)
 - 4. Filter Chebyshev (Tchebycheff)

- Berdasarkan sifat penguatannya, filter bisa diklasifikasikan:
 - Filter aktif: bersifat menguatkan
 - Komponen penyusunnya: penguat, kapasitor dan resistor.
 - **Keuntungan**: ukuran yang lebih kecil, ringan, lebih murah dan lebih fleksibel dalam perancangannya.
 - **Kekurangan**: kebutuhan catu daya eksternal, lebih sensitif terhadap perubahan lingkungan, dan memiliki frekuensi kerja yang tidak terlalu tinggi (hanya sampai ratusan MHz).
 - Filter pasif: bersifat tidak menguatkan
 - Komponen penyusunnya: induktor, kapasitor dan resistor.
 - Kelebihan: dapat digunakan untuk frekuensi tinggi.
 - **Kekurangan**: dimensi lebih besar daripada Filter aktif

Langkah umum merancang Filter:

- Tentukan spesifikasi filter: penguatan, frekuensi cut-off, frekuensi stopband, ripple.
- Lakukan Normalisasi frekuensi, kemudian tentukan orde filter dengan bantuan kurva Redaman vs frekuensi ternormalisasi.
- Tentukan prototype filter LPF dengan bantuan Tabel orde filter dan harga komponen.
- Jika yang dirancang adalah filter HPF dan BPF/BSF Narrowband, lakukan konversi dari prototype LPF ke prototype HPF/BPF/BSF.
- Lakukan denormalisasi untuk mendapatkan harga-harga komponen yang sebenarnya.

Model Filter Ternormalisasi (prototype)

- Bertujuan memudahkan analisis dan perhitungan dalam merancang suatu filter.
- Bila LPF ternormalisasi sudah dibuat, maka dapat dirancang LPF, HPF, BPF maupun BSF riil yaitu pada frekuensi yang sebenarnya dengan transformasi tertentu.
- Untuk mengaplikasikan prototype ternormalisasi pada suatu harga frekuensi tertentu (frekuensi sesungguhnya) diperlukan denormalisasi/penskalaan dengan aturan yang ditentukan, karenanya prototype LPF ternormalisasi ini dirancang saat frekuensi $\omega_{\rm C}=1$ rad/s.

LPF pasif Butterworth ternormalisasi

• Respon magnituda kuadrat LPF Butterworth

$$|H_N(j\omega)|^2 = \frac{1}{1 + \left(\frac{\omega}{\omega_C}\right)^{2N}} \to \frac{\omega}{\omega_C} = \Omega$$

 ω = frekuensi redaman yg diinginkan ω_C = frekuensi cutt off 3 dB.

Grafik respon LPF Butterworth

Filter ini memiliki orde N, (*N Integer*)dan jika N semakin besar maka respon filter mendekati respon filter ideal. Orde filter ini ditentukan oleh jumlah komponen penyimpan energi.

- LPF Butterworth ini memiliki respon flat pada daerah passband maupun stopband.
- Dari Persamaan Filter tersebut, untuk mengetahui redaman perdekade (persepuluh kali) setelah frekuensi cut off, dilakukan pendekatan sebagai berikut:

$$|H_N(j\omega)|^2 = \frac{1}{1 + (10)^{2N}} \approx -20N \log (10) dB = -20N dB/dec$$

• Jadi setelah frekuensi cut off-nya, filter Butterworth ini memiliki respon meredam mendekati 20N dB/ dekade.

• Posisi pole-pole pada bidang s (s-plane) ditentukan dengan menyelesaikan persamaan berikut: (ket : s=j Ω dan Ω = ω/ω_c)

$$|H_N(s)|^2 = |H_N(s)| \cdot |H_N(-s)| = \frac{1}{1 + \Omega^{2N}} \Big|_{\Omega = s/j} = \frac{1}{1 + (s/j)^{2N}}$$

• Dengan membuat harga denominator fungsi tersebut pada harga 0, pole akan diperoleh : $1+(s/j)^{2N}=0$

$$s^{2N} = -1(j)^{2N} = (-1)^{N+1}$$
$$s = \left[(-1)^{N+1} \right]^{1/2N}$$

(N ganjil)
$$S_K = 1/(k\pi/N)$$
 $K = 0,1,2,...,2N-1$
(N genap) $S_K = 1/(\pi/2N + k^{\pi}/N)$ $K = 0,1,2,...,2N-1$

$$S_K = -\sin\left[\frac{(2K-1)^{\pi}}{2N}\right] + j\cos\left[\frac{(2K-1)^{\pi}}{2N}\right]$$
 K= 1,2,3,...,N

• Posisi pole-pole dari fungsi $H_N(s)$ dan $H_N(-s)$ ini ditunjukkan pada gambar berikut ini

yaitu berada pada titik-titik dengan jari-jari = 1 Jarak antara dua buah pole adalah π/N radian.

• Pole-pole dari fungsi $H_N(-s)$ terletak disebelah kanan sumbu vertikal (disebut *Right Half Plane Poles*), sedangkan pole-pole dari fungsi $H_N(s)$ terletak disebelah kiri sumbu vertikal (disebut *Left Half Plane Poles*)

Berikut ini adalah respon frekuensi LPF Butterworth ternormalisasi yang disimulasikan menggunakan MATLAB

TTI3H3 - Elektronika RF

Frequency (normalized)

• Untuk menentukan komponen yang digunakan Persamaan:

$$A_k = 2Sin\left[\frac{(2k-1)\pi}{2N}\right]$$

$$k = 1,2,3 \dots N$$

$$N = Orde Filter (=n)$$

 A_k = Besarnya komponen L dn C

• Harganya dapat dilihat pada tabel berikut :

Tabel harga komponen LPF Butterworth ternormalisasi $(R_s=R_L=1\Omega)$:

И	C_1	L_2	C ₃	L ₄	\mathbb{C}_5	L ₆	C7
2	1.414	1.414					
3	1.000	2.000	1.000				
4	0.765	1.848	1.848	0.765			
5	0.618	1.618	2.000	1.618	0.618		
б	0.518	1.414	1.932	1.932	1.414	0.518	
7	0.445	1.247	1.802	2.000	1.802	1.247	0.445
И	L_1	C_2	L_3	C ₄	L_5	C ₆	L_7

Tabel harga komponen LPF Butterworth ternormalisasi $(R_S \neq R_I)$:

N	Rs/Rl	C_1	\mathbf{L}_2	C_3	L_4	C ₅	L_6	C_7
3	0.6	1.023	0.965	2.702				
	0.5	1.181	0.779	3.261				
	0.4	1.425	0.604	4.064				
	0.3	1.838	0.44	5.363				
	0.2	2.669	0.284	7.91				
	0.1	5.167	0.138	15.455				
	×	1.5	1.333	0.5				
4	1.111	0.466	1.592	1.744	1.469			
	1.25	0.388	1.695	1.511	1.811			
	1.429	0.325	1.862	1.291	2.175			
	1.667	0.269	2.103	1.082	2.613			
	2	0.218	2.452	0.883	3.187			
	2.5	0.169	2.986	0.691	4.009			
	3.333	0.124	3.883	0.507	5.338			
	5	0.08	5.684	0.331	7.94			
	10	0.039	11.094	0.162	15.642			
	oc.	1.531	1.577	1.082	0.383			
5	0.9	0.442	1.027	1.91	1.756	1.389		
	0.8	0.47	0.866	2.061	1.544	1.738		
	0.7	0.517	0.731	2.285	1.333	2.108		
N	Rl/ Rs	\mathbf{L}_1	C_2	\mathbf{L}_3	C_4	L_5	C_6	L_7

N	Rs/Rl	C_1	L_2	C_3	L_4	C ₅	L_6	C_7
5	0.6	0.586	0.609	2.6	1.126	2.552		
	0.5	0.686	0.496	3.051	0.924	3.133		
	0.4	0.838	0.388	3.736	0.727	3.965		
	0.3	1.094	0.285	4.884	0.537	5.307		
	0.2	1.608	0.186	7.185	0.352	7.935		
	0.1	3.512	0.091	14.095	0.173	15.71		
	×	1.545	1.694	1.382	0.894	0.309		
6	1.25	0.245	1.116	1.126	2.239	1.55	1.688	
	1.429	0.207	1.236	0.957	2.499	1.346	2.062	
	1.667	0.173	1.407	0.801	2.858	1.143	2.509	
	2	0.141	1.653	0.654	3.369	0.942	3.094	
	2.5	0.111	2.028	0.514	4.414	0.745	3.931	
	3.333	0.082	2.656	0.379	5.433	0.552	5.28	
	5	0.054	3.917	0.245	8.02	0.363	7.922	
	10	0.026	7.705	0.122	15.786	0.179	15.738	
	× ×	1.553	1.759	1.553	1.202	0.758	0.259	
N	Rl/ Rs	\mathbf{L}_1	\mathbf{C}_2	L_3	C_4	L_5	C_6	L_7

N	Rs/Rl	C_1	L_2	C_3	L_4	C ₅	L_6	C ₇
7	0.9	0.299	0.711	1.404	1.489	2.125	1.727	1.296
	0.8	0.322	0.606	1.517	1.278	2.334	1.546	1.652
	0.7	0.357	0.515	1.688	1.091	2.618	1.35	2.028
	0.6	0.408	0.432	1.928	0.917	3.005	1.15	2.477
	0.5	0.48	0.354	2.273	0.751	3.553	0.951	3.064
	0.4	0.59	0.278	2.795	0.592	4.38	0.754	3.904
	0.3	0.775	0.206	3.671	0.437	5.761	0.56	5.258
	0.2	1.145	0.135	5.427	0.287	8.526	0.369	7.908
	0.1	2.257	0.067	10.7	0.142	16.822	0.182	15.748
	8	1.558	1.799	1.659	1.397	1.055	0.656	0.223
N	Rl/ Rs	\mathbf{L}_1	C_2	L_3	C ₄	L_5	C_6	L_7

Pole-pole Butterworth

n	Bagian riil	Bagian	n	Bagian riil	Bagian Imajiner
	(-α)	Imajiner (±jβ)		(-α)	(±jβ)
2	0.7071	0.7071	8	0.9808	0.1951
3	0.5000	0.8660		0.8315	0.5556
	1.0000			0.5556	0.8315
4	0.9239	0.3827		0.1951	0.9808
	0.3287	0.9239	9	0.9397	0.3420
5	0.8090	0.5878		0.7660	0.6428
	0.3090	0.9511		0.5000	0.8660
	1.0000			0.1737	0.9848
б	0.9659	0.2588		1.0000	
	0.7071	0.7071	10	0.9877	0.1564
	0.2588	0.9659		0.8910	0.4540
7	0.9010	0.4339		0.7071	0.7071
	0.6235	0.7818		0.4540	0.8910
	0.2225	0.9749		0.1564	0.9877
	1.0000				

Urutan Perancangan LPF Butterworth

- Berdasarkan spesifikasi LPF yang diberikan yaitu spesifikasi resistansi sumber (R_S) , resistansi beban (R_L) , frekuensi cutoff (ω_C) , frekuensi stop band (ω_S) dan redamannya (A_S) ,bila $\omega_C \neq 1$ rad/s
 - maka normalisasikan harga $\omega_{\rm C}$ dan $\omega_{\rm S}$ dgn referensi $\omega_{\rm C} = 1$.
- Sesuaikan harga ω_C dan ω_S dengan melihat grafik respon frekuensi LPF Butterworth ternormalisasi.
- Pilih orde filter (N) yang sesuai dengan spesifikasi filter (orde filter diperoleh dengan bantuan kurva "penguatan vs frek ternormalisasi" dan lakukan pembulatan ke atas).
- Dengan harga N, tentukan rangkaian yang digunakan berdasarkan spesifikasi filter dengan cara melihat Tabel harga komponen LPF Butterworth ternormalisasi.
- Lakukan Denormalisasi

Latihan soal:

- Rancanglah suatu filter LPF Butterworth dengan frekuensi cut off 50 MHz, dan filter harus meredam sebesar 50 dB pada 150 MHz, untuk besar hambatan sumber dan beban sebagai berikut:
 - 1. Rs = Rl = 1 ohm
 - 2. Rs = 100 ohm, Rl = 50 ohm
 - 3. Rs = 50 ohm, Rl = 100 ohm

LPF pasif Chebyshev ternormalisasi (Tchebycheff / Чєбышёв)

- Filter ini cocok digunakan bila diinginkan <u>slope</u> yang tajam dan diperbolehkan <u>ripple</u> di passband atau di stopband
- LPF Chebychev ini memiliki respon yang memiliki ripple (disebut *equiripple* pada daerah passband atau daerah stopband)

Respon magnituda kuadrat LPF Chebychev terhadap frekuensi:

$$\left|H_{N}(j\omega)\right|^{2} = \frac{1}{1+\varepsilon^{2}\left[T_{N}\left(\frac{\omega}{\omega_{c}}\right)\right]^{2}}$$

- $T_N\left(\frac{\omega}{\omega}\right)$ disebut polinomial Chebyshev yaitu untuk:
- $-1 \le \left(\frac{\omega}{\omega_c}\right) \le 1$ \rightarrow memiliki nilai $\cos[N\cos^{-1}\left(\frac{\omega}{\omega_c}\right)]$
- •-1 > $\left(\frac{\omega}{\omega_c}\right)$ dan $\left(\frac{\omega}{\omega_c}\right)$ > 1 \rightarrow ada nilai $\cosh[N\cosh^{-1}\left(\frac{\omega}{\omega_c}\right)]$

- Polinomial Chebyshev berosilasi antara +1 dan -1
- koefisien ε dipilih berdasarkan besar kecilnya ripple yang diinginkan.
- ω adalah frekuensi redaman yang diinginkan.
- ω_c adalah frekuensi cut-off 3 dB.
- Filter ini memiliki orde N, N integer.
 - ➤N semakin besar → respon filter mendekati respon filter ideal.

• Polinomial Chebychev dapat juga dihasilkan dari rumus rekursif :

$$T_N(x) = 2x T_{N-1}(x) - T_{N-2}(x)$$

Dimana:

$$N > 2$$

$$T_0(x) = 1$$

$$T_1(x) = x$$

Sepuluh polinomial Chebychev pertama

N	$T_{N}(x)$
0	1
1	X
2	$2x^2-1$
3	$4x^3 - 3x$
4	$8x^4 - 8x^2 + 1$
5	$16x^5 - 20x^3 + 5x$
6	$32x^6 - 48x^4 + 18x^2 - 1$
7	$64x^7 - 112x^5 + 56x^3 - 7x$
8	$128x^8 - 256x^6 + 160x^4 - 32x^2 + 1$
9	$256x^9 - 576x^7 + 432x^5 - 120x^3 + 9x$
10	$512x^{10} - 1280x^8 + 1120x^6 - 400x^4 + 50x^2 - 1$

Pada saat $-1 \le x \le 1$ memiliki respon seperti gambar berikut :

• Untuk N genap (dalam tabel ini N ditulis sebagai n)

• Untuk N ganjil (dalam tabel ini N ditulis sebagai n)

Contoh Respon LPF Chebychev untuk Ω antara 1 sampai 10

Urutan perancangan LPF Chebychev:

- 1. Berdasarkan spesifikasi LPF yang diberikan, yaitu spesifikasi resistansi sumber (R_S) , resistansi beban (R_L) , ripple yang diperbolehkan (dB), frekuensi cut-off (ω_c) , frekuensi stop band (ω_s) dan redamannya (A_S) , bila $\omega_c \neq 1$ rad/s maka normalisasikan harga ω_c dan ω_s dengan referensi $\omega_c = 1$
- 2. Setelah dinormalisasikan, sesuaikan harga ω_c dan ω_s dengan melihat grafik respon frekuensi LPF Chebychev ternormalisasi.
- 3. Pilih orde filter (N) yang sesuai dengan spesifikasi filter (orde filter diperoleh dengan pembulatan ke atas)
- 4. Dengan harga N, tentukan rangkaian yang digunakan berdasarkan spesifikasi filter dengan cara melihat Tabel harga komponen LPF Chebychev ternormalisasi
- 5. Lakukan denormalisasi

Semua tabel harga komponen LPF Chebychev ternormalisasi menggunakan dua alternatif rangkaian:

$$\Omega = \frac{R_{\rm L}}{R_{\rm S}}$$

Tabel harga komponen LPF Chebychev ternormalisasi (ripple

0.01 dB

N	Rs/R1	C_1	L_2	C_3	L_4	C_5	L_6	C_7
2	1.101	1.347	1.483					
	1.111	1.247	1.595					
	1.25	0.943	1.997					
	1.429	0.759	2.344					
	1.667	0.609	2.75					
	2	0.479	3.277					
	2.5	0.383	4.033					
	3.333	0.259	5.255					
	5	0.164	7.65					
	10	0.078	14.749					
	\propto	1.412	0.742					

(ripple 0,01 dB)

N	Rs/R1	C_1	L_2	C_3	L_4	C_5	L_6	C ₇
3	1	1.181	1.821	1.181				
	0.9	1.092	1.66	1.48				
	0.8	1.097	1.443	1.806				
	0.7	1.16	1.228	2.165				
	0.6	1.274	1.024	2.598				
	0.5	1.452	0.829	3.164				
	0.4	1.734	0.645	3.974				
	0.3	2.216	0.47	5.28				
	0.2	3.193	0.305	7.834				
	0.1	6.141	0.148	15.39				
	∞	1.501	1.433	0.591				
N	Rl/ Rs	L ₁	C_2	L ₃	C ₄	L_5	C ₆	L ₇

(ripple 0,01 dB)

N	Rs/R1	C_1	L_2	C_3	L_4	C ₅	L_6	C ₇
4	1	0.95	1.938	1.761	1.046			
	1.111	0.854	1.946	1.744	1.165			
	1.25	0.618	2.075	1.542	1.617			
	1.429	0.495	2.279	1.334	2.008			
	1.667	0.398	2.571	1.128	2.461			
	2	0.316	2.994	0.926	3.045			
	2.5	0.242	3.641	0.729	3.875			
	3.333	0.174	4.727	0.538	5.209			
	5	0.112	6.91	0.352	7.813			
	10	0.054	13.469	0.173	15.51			
	∞	1.529	1.691	1.312	0.523			
N	Rl/ Rs	L_1	C_2	L_3	C ₄	L_5	C ₆	L_7

(ripple 0,01 dB)

N	Rs/R1	C_1	L_2	C_3	L_4	C ₅	L_6	C ₇
5	1	0.977	1.685	2.037	1.685	0.977		
	0.9	0.88	1.456	2.174	1.641	1.274		
	0.8	0.877	1.235	2.379	1.499	1.607		
	0.7	0.926	1.04	2.658	1.323	1.977		
	0.6	1.019	0.883	3.041	1.135	2.424		
	0.5	1.166	0.699	3.584	0.942	3.009		
	0.4	1.398	0.544	4.403	0.749	3.845		
	0.3	1.797	0.398	5.772	0.557	5.193		
	0.2	2.604	0.259	8.514	0.368	7.826		
	0.1	5.041	0.127	16.741	0.182	15.613		
	∞ ∞	1.547	1.795	1.645	1.237	0.488		
N	Rl/ Rs	L_1	C_2	L ₃	C ₄	L_5	C_6	L_7

(ripple 0,01 dB)

N	Rs/R1	C_1	L_2	C_3	L_4	C ₅	L_6	C ₇
6	1.101	0.851	1.796	1.841	2.027	1.631	0.937	
	1.111	0.76	1.782	1.775	2.094	1.638	1.053	
	1.25	0.545	1.864	1.489	2.403	1.507	1.504	
	1.429	0.436	2.038	1.266	2.735	1.332	1.899	
	1.667	0.351	2.298	1.061	3.167	1.145	2.357	
	2	0.279	2.678	0.867	3.768	0.954	2.948	
	2.5	0.214	3.261	0.682	4.667	0.761	3.79	
	3.333	0.155	4.245	0.503	6.163	0.568	5.143	
	5	0.1	6.223	0.33	9.151	0.376	7.785	
	10	0.048	12.171	0.162	18.105	0.187	15.595	
	8	1.551	1.847	1.79	1.598	1.19	0.469	
N	Rl/ Rs	L_1	C_2	L_3	C_4	L_5	C_6	L_7

(ripple 0,01 dB)

7	1	0.913	1.595	2.002	1.87	2.002	1.595	0.913
	0.9	0.816	1.362	2.089	1.722	2.202	1.581	1.206
	0.8	0.811	1.15	2.262	1.525	2.465	1.464	1.538
	0.7	0.857	0.967	2.516	1.323	2.802	1.307	1.91
	0.6	0.943	0.803	2.872	1.124	3.25	1.131	2.359
	0.5	1.08	0.65	3.382	0.928	3.875	0.947	2.948
	0.4	1.297	0.507	4.156	0.735	4.812	0.758	3.79
	0.3	1.669	0.372	5.454	0.546	6.37	0.568	5.148
	0.2	2.242	0.242	8.057	0.36	9.484	0.378	7.802
	0.1	4.701	0.119	15.872	0.178	18.818	0.188	15.652
	8	1.559	1.867	1.866	1.765	1.563	1.161	0.456
N	Rl/ Rs	L_1	C_2	L_3	C_4	L_5	C_6	L ₇

Pole-pole Chebychev (ripple 0,1 dB)

n	Bagian riil (-α)	Bagian Imajiner (±jβ)	n	Bagian riil (-α)	Bagian Imajiner (±jβ)
2	0.6104	0.7106	7	0.3178	0.4341
3	0.3490	0.8684		0.2200	0.7823
	0.6979			0.0785	0.9755
4	0.2177	0.9254		0.3528	
	0.5257	0.3833	8	0.3058	0.1952
5	0.3842	0.5884		0.2592	0.5558
	0.1468	0.9521		0.1732	0.8319
	0.4749			0.06082	0.9812

n	Bagian riil (-α)	Bagian Imajiner (±jβ)	n	Bagian riil (-α)	Bagian Imajiner (±jβ)
6	0.3916	0.2590	9	0.2622	0.3421
	0.2867	0.7077		0.2137	0.6430
	0.1049	0.9667		0.1395	0.8663
				0.04845	0.9852
				0.2790	

Latihan soal:

- Cari harga-harga prototype LPF Chebysev dengan n = 5 dan ripple yang diijinkan pada daerah passband maksimal 0,1 dB. Besar hambatan sumber = 50 ohm dan beban 250 ohm!
- Kemudian cari harga komponen LPF yang sesungguhnya pada frekuensi cutoff = 50 MHz!

Latihan soal:

- Rancanglah LPF dengan spesifikasi sbb:
 - fc = 35 MHz
 - Redaman lebih besar dari 60 dB pada 105 MHz
 - Maximally flat pada daerah passband, tanpa ripple
 - Rs = 50 ohm
 - RL = 500 ohm

Penskalaan Impendansi dan Frekuensi (Denormalisasi)

 Nilai komponen R_n, L_n dan C_n pada rangkaian LPF ternormalisasi (dari tabel yang tersedia) adalah harga komponen saat frekuensi sudut

 $\omega_{\rm C}$ = 1 rad/s, sehingga diperlukan proses denormalisasi kembali agar sesuai dengan spesifikasi (besarnya komponen riil)

Rumus-rumus yang dipakai dalam denormalisasi LPF

$$R = R_n X R_{Ac}$$

$$L = (L_n X R_{Ac}) / (2\pi f_{Co})$$

$$C = C_n / (2\pi f_{Co} X R_{Ac})$$

$$\alpha = \alpha_n X 2\pi f_{Co}$$

$$\beta = \beta_n X 2\pi f_{Co}$$

$$f = f_n X 2\pi f_{Co}$$

dimana:

R : Resistor akhir

R_n : Resistor ternormalisasi

R_{Ac} : Resistor acuan (bisa sumber beban)

L : Induktor akhir

L_n : Induktor ternormalisasi

f_{Co} : Frekuensi cuttoff

C : Kapasitor akhir

C_n : Kapasitor ternormalisasi

 α : Bagian pole riil akhir

 α_n : Bagian pole riil ternormalisasi

 β : Bagian pole imajiner akhir

 β_n : Bagian pole imajiner ternormalisasi

f : Frekuensi akhir

f_n : Frekuensi ternormalisasi

Latihan soal:

- 1. Rancanglah LPF aktif dengan spesifikasi:
 - Redaman 3 dB pada 100 Hz
 - Redaman 70 dB pada 350 Hz
 - Penguatan pada passband = 1
 - Gunakan LPF Chebyshev r=0,5 dB dan Z=50 k Ω
- 2. Rancanglah LPF aktif dengan spesifikasi:
 - Redaman 3 dB pada 75 Hz
 - Redaman min 15 dB pada 150 Hz
 - Penguatan (daya) pada passband = 40 dB
 - Gunakan LPF Butterworth dan Z=100 k Ω
- 3. Rancanglah LPF aktif dengan spesifikasi:
 - Redaman 3 dB pada 60 Hz
 - Redaman 12 dB pada 250 Hz
 - Penguatan (daya) pada passband = 20 dB inverting
 - Gunakan Z=1 Μ΄ Ώ

• Fungsi:

melewatkan sinyal dengan frekuensi di atas frekuensi cutoff dan meredam sinyal dengan frekuensi di bawah frekuensi cutoff.

- Fungsi transfer HPF didapat dengan menggantikan pole-pole pada fungsi transfer LPF yaitu $(s_K)_{LPF} = (1/s_K)_{HPF}$.
- Selain perubahan pole-polenya juga terjadi perubahan pada

$$(\omega_{\rm S})_{\rm HPF} = (1/\omega_{\rm S})_{\rm LPF}$$

 $(\Omega)_{\rm HPF} = (\Omega)_{\rm LPF}$

Pada filter ini juga memiliki respon seperti pada LPF antara lain respon Butterworth dan respon Chebychev.

- Transformasi dari LPF ternormalisasi ke HPF ternormalisasi menyebabkan berubahnya komponen-komponen penyusun filter yaitu:
- Pada HPF pasif ternormalisasi akan terjadi perubahan dari inductor menjadi kapasitor dan sebaliknya, sedangkan pada HPF aktif ternormalisasi terjadi perubahan dari resistor menjadi kapasitor dan juga sebaliknya

- Adapun persamaan yang menunjukkan perubahan nilai komponen adalah sebagai berikut (perubahan dilakukan pada kondisi ternormalisasi):
- HPF pasif ternormalisasi:

$$C_{HPF} = 1/L_{LPF} dan L_{HPF} = 1/C_{LPF}$$

• HPF aktif ternormalisasi:

$$C_{HPF} = 1/R_{LPF} dan R_{HPF} = 1/C_{LPF}$$

• Pada HPF aktif, resistor yang menyebabkan terjadinya penguatan, tidak perlu diganti dengan kapasitor.

Langkah Perancangan HPF

- Berdasar spesifikasi HPF yang diminta yaitu:
 - resistansi sumber (R_s)
 - frekuensi cutoff (ω_c)
 - ripple (untuk Chebychev)
 redamannya (A_s)

- resistansi beban (R₁)
- frekuensi stop band (ω_s)

Bila $\omega_C \neq 1$ rad/s maka normalisasikan harga ω_C dan ω_S dengan referensi $\omega_C = 1$

- 2. Transformasikan HPF ternormalisasi dengan harga $(\omega_C)_{HPF}$ dan $(\omega_S)_{HPF}$ ke LPF ternormalisasi dengan $(\omega)_{HPF} = (1/\omega)_{LPF}$.
- 3. Sesuaikan respon dan orde filter berdasar grafik respon frekuensi LPF ternormalisasi.
- 4. Pilih orde filter (N) yang sesuai dengan spesifikasi filter (diperoleh dengan pembulatan ke atas).

- 5. Bila LPF ternormalisasi telah diperoleh nilai komponennya berdasarkan tabel, transformasikan ke HPF ternormalisasi.
- 6. Lakukan denormalisasi pada HPF ternormalisasi. (gunakan persamaan seperti pada denormalisasi pada LPF).

Latihan soal:

• Rancanglah suatu HPF yang tersusun dari rangkaian LC dengan frekuensi cut off 60 MHz dan redaman minimum 40 dB pada 30 MHz. Hambatan sumber dan beban masing-masing 300 Ω , asumsikan ripple maksimum yang bisa ditoleransi pada daerah pass band sebesar 0,5 dB!

Band Pass Filter

- Fungsi filter yang melewatkan sinyal yang memiliki band frekuensi tertentu.
- BPF dikelompokkan menjadi 2 bagian :
 - 1. Wideband Band Pass Filter (bila perbandingan antara upper cutoff frequency dengan lower cutoff frequency lebih besar dari 2)
 - 2. Narrowband Band Pass Filter (bila perbandingan antara upper cutoff frequency dengan lower cutoff frequency lebih kecil atau sama dengan 2)

Wideband Band Pass Filter

- Dalam desainnya, dapat didekati dengan membuat kaskade antara LPF dan HPF yang diberi rangkaian isolator agar respon masing-masing filter tidak saling mempengaruhi.
- Pada WBPF pasif, isolator berupa peredam yang tersusun atas resistor-resistor (bentuk T atau bentuk π).
- Pada WBPF aktif, isolator berupa voltage follower/buffer atau noninverting amplifier.

Rangkaian isolator untuk filter aktif dan pasif:

Isolator untuk filter pasif (impendansi input-output sepadan yaitu=500 ohm):

dB	R1	R2	Ra	Rb
1	28.8	4330	8700	57.7
2	57.3	2152	4362	116
3	85.5	1419	2924	176
4	113	1048	2210	239
5	140	822	1785	304
6	166	669	1505	374
7	191	558	1307	448
8	215	473	1161	528
9	238	406	1050	616
10	260	351	963	712

Untuk terminasi sepadan, tetapi R ≠ 500 ohm maka kalikan nilai-nilai pada tabel dengan (R/500).

Langkah perancangan WBPF adalah

- 1. Tentukan spesifikasi WBPF yang diinginkan yaitu:
 - resistansi sumber (R_S)
 - frekuensi cutoff (ω_c)
 - ripple (untuk respon Chebychev)

- resistansi beban (R_L)
- frekuensi stop band (ω_s)
- redamannya (A_S)

Kemudian buat spesifikasi masing-masing LPF dan HPF yang dikaskadekan.

- 2. Setelah diperoleh spesifikasi LPF dan HPF, tentukan orde filter dan jenis respon filter.
- 3. Rancang LPF dan HPF tersebut secara terpisah dan tentukan komponen-komponen yang digunakan.
- 4. Tambahkan rangkaian isolator di antara LPF dan HPF tersebut

Narrowband Band Pass Filter

• Fungsi transfer BPF didapatkan dengan menggantikan pole-pole pada fungsi transfer LPF yaitu:

$$(s_K)_{LPF} = (p_K + 1/p_K)_{BPF}$$

dengan
$$p_K = (s_K/2) \pm \sqrt{((s_K/2)^2 - 1)}$$

Pada NBPF juga memiliki respon seperti pada LPF antara lain respon Butterworth dan respon Chebychev.

- Metode perancangan NBPF berdasarkan faktor kualitas filter ($Q = fo/BW_{3dB}$).
 - 1. Untuk $Q \le 10$

Respon NBPF akan merupakan simetri geometrik yaitu berlaku:

$$f_O^2 = f_{CB} X f_{CA} = f_B X f_A$$

 f_O : frekuensi tengah NBPF f_B : frekuensi bawah pada

f_{CB}: frekuensi cutoff bawah redaman X dB tertentu.

f_{CA}: frekuensi cutoffbawah f_A: frekuensi atas pada redaman X dB tertentu.

2. Untuk Q > 10

Respon NBPF akan merupakan simetri aritmatik yaitu berlaku:

$$f_O = 0.5 X (f_{CB} + f_{CA}) = 0.5 (f_B + f_A)$$

f_O: frekuensi tengah NBPF.

f_{CB}: frekuensi cutoff bawah.

f_{CA}: frekuensi cutoff bawah.

f_B: frekuensi bawah pada redaman X dB tertentu.

f_A: frekuensi atas pada redaman X dB tertentu.

• Transformasi dari LPF ke BPF akan menyebabkan berubahnya komponen-komponen penyusun filter yaitu pada NBPF pasif akan terjadi perubahan dari induktor menjadi induktor yang diserikan dengan kapasitor; dan kapasitor menjadi induktor yang diparalel dengan kapasitor (transformasi dilakukan pada saat filter ternormalisasi).

Transformasi NBPF ternormalisasi dari LPI ternormalisasi pasif.

• Paralel $C \rightarrow paralel L dan C$, harganya

$$L_{NBPF} = C_{NBPF} = C_{LPF}$$

• Seri L \rightarrow Seri L dan C, harganya

$$L_{NBPF} = C_{NBPF} = L_{LPF}$$

- Transformasi NBPF ke LPF dilakukan sesuai dengan harga Q-nya (ada dua metode yaitu simetri geometris dan simetri aritmatik).
- Pada tiap metode baik simetri geometrik maupun simetri aritmatik, dipilih rancangan yang memiliki selisih nilai-nilai frekuensi yang lebih kecil dengan spesifikasi yang diberikan.

Transformasi NBPF ke LPF

Urutan perancangan NBPF

- 1. Tentukan spesifikasi BPF yang diinginkan yaitu:
 - resistansi sumber (R_S)
 - frekuensi cutoff ($\omega_{\rm C}$)
 - ripple (untuk respon Chebychev)

- resistansi beban (R_L)
- frekuensi stop band (ω_s)
- redamannya (A_S)

Kemudian tentukan metode perancangan NBPF yang diperlukan, simetri aritmatik atau geometrik?

- 2. Setelah diperoleh harga-harga frekuensi f_O,f_B, f_A, tentukan spesifikasi LPF berdasarkan transformasi NBPF ke LPF.
- 3. Normalisasikan LPF ini, dan tentukan jenis respon maupun orde LPF.
- 4. Lakukan transformasi LPF ternormalisasi ke NBPF ternormalisasi dengan mengganti nilainilai komponen LPF.
- 5. Bila NBPF ternormalisasi telah diperoleh nilainilai komponennya, lakukan denormalisasi ke NBPF sesungguhnya.

Persamaan untuk denormalisasi NBPF:

• Paralel resonant:

$$C = \frac{C_n}{2\pi RB} \qquad \text{dan} \qquad L = \frac{RB}{2\pi f_o^2 L_n}$$

• Seri resonant:

$$C = \frac{B}{2\pi f_o^2 C_n R} \qquad \text{dan} \qquad L = \frac{RL_n}{2\pi B}$$

Dimana:

- R = resistansi beban akhir
- B = Bandwidth 3dB
- f_o = frequency center (geometric atau aritmatik)
- L_n = Induktor ternormalisasi BPF
- $\cdot C_n$ = Kapasitor ternormalisasi BPF

Latihan soal:

1. Rancanglah suatu BPF dengan spesifikasi sbb: fc=75 MHz

BW 3dB = 7 MHz

BW 50dB = 35 MHz

Pass ripple = 1 dB

 $Rs = 50 \Omega$

 $RL = 100 \Omega$

REDAMAN FILTER CHEBYSHEV

$$A_{dB} = 10 \log[1 + \varepsilon^2 C_n^2 \left(\frac{\omega}{\omega_c}\right)']$$

 $C_n^2 \left(\frac{\omega}{\omega_c}\right)'$ Adalah polynomial Chebyshev orde n dievaluasi pada (w/wc)'

$$\varepsilon = \sqrt{10^R dB^{/10} - 1}$$

 R_{dB} adalah ripple dinyatakan dalam dB

REDAMAN FILTER CHEBYSHEV

$$\left(\frac{\omega}{\omega_C}\right)' = \left(\frac{\omega}{\omega_C}\right) \cosh B$$

$$B = \frac{1}{n} cosh^{-1} (\frac{1}{\varepsilon})$$

Cosh x = 0,5
$$(e^x + e^{-x})$$

 $cosh^{-1}x = ln(x \pm \sqrt{x^2 - 1})$

TERIMA KASIH

TTI3H3 - Elektronika RF