

GBI Tutorium Nr. 41

Foliensatz 13

Vincent Hahn - vincent.hahn@student.kit.edu | 31. Januar 2013

Outline/Gliederung

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

- Wiederholung
- Unentscheidbare Probleme

Äquivalenzrelationen

2/16

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

- Wiederholung
- 2 Unentscheidbare Probleme
- 3 Äquivalenzrelationen

Wiederholung

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

- Irgendwas zu Turingmaschinen
- Irgendwas zu Codierungen
- Irgendwas zu Relationen
- Reflexiv
- Transitiv
- Symmetrisch

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

1 Wiederholung

Äquivalenzrelationen

Unentscheidbare Probleme

Unentscheidbare Probleme

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Es gibt Probleme, die lassen sich mit einer Turing-Maschine (oder äquivalent: einem Java-Programm) nicht lösen. (Auch nicht mit unendlich viel Zeit und Platz.)

Ein solches Problem ist nicht entscheidbar

Entscheidbarkeit

Für ein entscheidbares Problem gibt es eine Turingmaschine, die für jede Eingabe hält und das Eingabewort entweder akzeptiert oder nicht.

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Codierung von Turingmaschinen

Bisher haben wir eine Turingmaschine formal so geschrieben $T=(Z,Z_0,X,f,g,m)$. Wir bauen uns eine Codierung, die die ganze Turingmaschine in ein Wort w_1 "packt".

Dieses Wort w_1 übergeben wir dann einer universellen Turingmaschine U, die

- übeprüft, ob w₁ eine Turingmaschine T codiert
- dann die Turingmaschine *T* "simuliert" und als Eingabe *w*₂ verwendet
- und schließlich das Ergebnis davon ausgibt

Halteproblem

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Satz

Es ist nicht möglich, eine Turingmaschine U zu bauen, die für jede Turingmaschine T (codiert als w_1) und jede Eingabe w_2 entscheidet, ob T bei der Eingabe von w_2 hält.

Das lässt sich auch beweisen. Halteproblembeweis (verdorbene Diagonale)

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

- 1 Wiederholung
- Unentscheidbare Probleme
- 3 Äquivalenzrelationen

Äquivalenzrelation

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Definition: Äquivalenzrelation

Eine Relation R ist genau dann eine Äquivalenzrelation, wenn sie

- symmetrisch,
- reflexiv und
- transitiv

ist.

Eigenschaften von Relationen

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Welche Eigenschaften haben diese Relationen (stets auf ganze Zahlen)?

- ≤
- >
- **=** =

Eigenschaften von Relationen

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Welche Eigenschaften haben diese Relationen (stets auf ganze Zahlen)?

- \bullet \leq reflexiv, transitiv
- >

Eigenschaften von Relationen

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Welche Eigenschaften haben diese Relationen (stets auf ganze Zahlen)?

- \bullet \leq reflexiv, transitiv
- > transitiv
- =

Eigenschaften von Relationen

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Welche Eigenschaften haben diese Relationen (stets auf ganze Zahlen)?

- ≤ reflexiv, transitiv
- > transitiv
- reflexiv, transitiv, symmetrisch

Äquivalenzklasse

Vincent Hahn – vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Definition: Äquivalenzklasse

Sind zwei Elemente $(x,y) \in R$, so schreibt man auch xRy (Infixschreibweise). Alle Elemente, die miteinander in Relation stehen, befinden sich in der selben **Äquivalenzklasse**:

$$[x]_{\mathbf{R}} = \{y|yRx\}$$

Quiz

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

- Stimmt es, dass auch xRy folgt: $[x]_R = [y]_R$?
- Existiert ein $z \in [x]_R$ und $z \in [y]_R$, so ist $[x]_R = [y]_R$.
- Wieviele Äquivalenzklassen gibt es zu R = mod 6?

Quiz

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

- Stimmt es, dass auch xRy folgt: $[x]_R = [y]_R$? Ja.
- Existiert ein $z \in [x]_R$ und $z \in [y]_R$, so ist $[x]_R = [y]_R$.
- Wieviele Äquivalenzklassen gibt es zu R = mod 6?

Quiz

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

- Stimmt es, dass auch xRy folgt: $[x]_R = [y]_R$? Ja.
- Existiert ein $z \in [x]_R$ und $z \in [y]_R$, so ist $[x]_R = [y]_R$. Ja.
- Wieviele Äquivalenzklassen gibt es zu R = mod 6?

Quiz

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

- Stimmt es, dass auch xRy folgt: $[x]_R = [y]_R$? Ja.
- Existiert ein $z \in [x]_R$ und $z \in [y]_R$, so ist $[x]_R = [y]_R$. Ja.
- Wieviele Äquivalenzklassen gibt es zu R = mod 6? 6

Nerode-Äquivalenzrelation

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Definition: Nerode-Äquivalenzrelation

Sei $L\subseteq A^*$ eine formale Sprache. w_1 und w_2 seien Wörter $\in A^*$. Die Wörter heißen **Nerode-Äquivalent** (\equiv_L) , falls gilt:

$$w_1 \equiv_L w_2 \leftrightarrow (\forall w \in A^* : w_1 w \in L \leftrightarrow w_2 w \in L)$$

Beispiel zur Nerode Äquivalenz

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

• Alphabet $A = \{a, b\}$

■ Sprache $L \subset A*$, L enthält alle Wörter ohne das Teilwort ba: $L = \langle a^*b^* \rangle$

Wie sieht der zugehörige Automat aus?

Beispiel zur Nerode Äquivalenz

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

• Alphabet $A = \{a, b\}$

■ Sprache $L \subset A*$, L enthält alle Wörter ohne das Teilwort ba: $L = \langle a^*b^* \rangle$

Wie sieht der zugehörige Automat aus?

Beispiel zur Nerode Äquivalenz

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

• Alphabet $A = \{a, b\}$

■ Sprache $L \subset A*$, L enthält alle Wörter ohne das Teilwort ba: $L = \langle a^*b^* \rangle$

Wie sieht der zugehörige Automat aus?

Wie kann jeder Zustand erreicht werden?

Beispiel zur Nerode Äquivalenz

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

- Sprache $L \subset A*$, L enthält alle Wörter ohne das Teilwort ba: $L = \langle a^*b^* \rangle$

Wie sieht der zugehörige Automat aus?

Wie kann jeder Zustand erreicht werden?

- a*
- a* bb*
- a*bb*a {a, b}*

Beispiel zur Nerode Äquivalenz

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

- Alphabet $A = \{a, b\}$
- Sprache $L \subset A*$, L enthält alle Wörter ohne das Teilwort ba: $L = \langle a^*b^* \rangle$

Wie sieht der zugehörige Automat aus?

Wie kann jeder Zustand erreicht werden?

- a*
- a* bb*
- $a^*bb^*a\{a,b\}^*$

$$[\epsilon]$$
, $[b]$, $[ba]$.

Faktormenge

Vincent Hahn - vincent.hahn@student.kit.edu

Wiederholung

Unentscheidbare Probleme

Äquivalenzrelationen

Definition: Faktormenge

Die Menge aller Äquivalenzklassen einer Menge zur Relation R bezeichnet man als **Faktormenge** und schreibt $M_{/R}$.

