

## Mensuration-I area of a trapezium and a polygon Ex 20.2 Q9

## Answer:

The given figure is:



In the given figure, we have a rectangle of length  $50~\mathrm{cm}$  and width  $10~\mathrm{cm}$ , and two similar

## Mensuration-I area of a trapezium and a polygon Ex 20.2 Q10 Answer:

The given figure is:



Lengths of the parallel sides are  $1.2~\mathrm{m}$  and  $1~\mathrm{m}$  and the perpendicular distance between them  $\therefore$  Area of the trapezium shaped surface= $\frac{1}{2}$  ×(Sum of the parallel sides)×(Perpendicular dis

$$= \frac{1}{2} \times \left(1.2 + 1\right) \times \left(0.8\right)$$
$$= \frac{1}{2} \times 2.2 \times 0.8$$

$$=\frac{1}{2}\times 2.2\times 0.6$$

 $=0.88 \text{ m}^2$ 

## Mensuration-I area of a trapezium and a polygon Ex 20.2 Q11 Answer:

Let the depth of canal be d.

Given:

Lengths of the parallel sides of the trapezium shape canal are  $10~\mathrm{m}$  and  $6~\mathrm{m}$ .

And, the area of the cross section of the canal is  $72 \text{ m}^2$ .

Area of trapezium= $\frac{1}{2}$  ×(Sum of the parallel sides)×(Perpendicular distance between the

$$72 = \frac{1}{2} \times (10+6) \times \left(d\right)$$

$$72 = 8 \times d$$

$$d = \frac{72}{8} = 9 \text{ m}$$

\*\*\*\*\*\*\*\*\* END \*\*\*\*\*\*\*