The Implicit Bias of Benign Overfitting

Y Gao

August 26, 2025

Y Gao August 26, 2025 1 / 34

Outline

- Introduction
- 2 Benign Overfitting
- Implicit Bias in Regression
- 4 Implicit Bias in Classification
- 5 Recent Progress

Y Gao

- Introduction
- 2 Benign Overfitting
- Implicit Bias in Regression
- 4 Implicit Bias in Classification
- 5 Recent Progress

Implicit Bias in ML

Standard supervised ML:

- Set of predictors \mathcal{H} ; distribution over examples $(\mathbf{x},\mathbf{y}) \sim \mathcal{D}$
- Goal: For some loss function ℓ ,

$$\min_{\textbf{h} \in \mathcal{H}} \mathbb{E}_{(\textbf{x},\textbf{y})} \ell(\textbf{h}; (\textbf{x},\textbf{y}))$$

• Standard approach: Empirical Risk Minimization (ERM). Sample training set $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^m$, return

$$\arg\min_{h\in\mathcal{H}}\frac{1}{m}\sum_{i=1}^{m}\ell(h;(\mathbf{x}_{i},\mathbf{y}_{i}))$$

Implicit Bias in ML

In modern ML (e.g. deep learning), often many empirical risk minimizers; Choice depends on algorithm used

- Same empirical risk, not same expected loss/other properties
- Properties of returned predictor known as the algorithm's implicit bias

Classical learning theory often doesn't distinguish between ERMs; Raises many new questions

Y Gao

This Talk

Implicit bias of gradient-based methods, in the context of benign overfitting

- Linear Regression with the Square Loss
- 2 Linear Regression Beyond the Square Loss
- Stinear Binary Classification

6/34

- Introduction
- 2 Benign Overfitting
- Implicit Bias in Regression
- 4 Implicit Bias in Classification
- Recent Progress

August 26, 2025 7/34

Benign Overfitting

Classical approach to explain learning with ERMs:

- ullet Algorithm picks predictors from class ${\cal H}$
- ullet ${\cal H}$ satisfies uniform convergence:
 - With high probability, average loss and expected loss are close, simultaneously for all $h \in \mathcal{H}$
- \Rightarrow ERM finds near-optimal predictor in \mathcal{H}

Conversely, if training/test performance differs, can overfit and get bad predictor

Y Gao August 26, 2025 8 / 34

Benign Overfitting

Average/expected loss differs, overfitting, yet learned predictor is good

- Initially, strong empirical evidence from deep learning
- Later: Same in linear/kernel learning
- Emerging understanding under appropriate distributional assumptions

Prior works

Reference	Model
Bartlett, Long, et al (2020)	Linear regression
Liang, Rakhlin (2018)	Kernel ridgeless regression
Mei, Montanari (2019)	Random feature regression
Belkin, Hsu, et al (2018)	Kernel smoothers / nearest neighbors
Rakhlin, Zhai (2019)	Laplace kernel interpolation
Koehler, Zhou, et al (2021)	High-dim linear regression
Ji, Li, et al(2021)	Early-stopped neural networks
Beaglehole, Belkin, et al (2022)	Shift-invariant kernel interpolators

Mallinar N, Simon J B, Abedsoltan A, et al. Benign, tempered, or catastrophic: A taxonomy of overfitting[J]. NIPS, 2022.

Y Gao August 26, 2025

10/34

When will Occur?

Depends on learning algorithm + data distribution

ullet Linear predictors $\mathbf{x}\mapsto\mathbf{x}^{ op}\mathbf{w},\ \mathbf{x}\in\mathbb{R}^d$, squared loss

$$\min_{\mathbf{w}} \frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}_{i}^{\top} \mathbf{w} - \mathbf{y}_{i})^{2}$$

- dimension $d \gg m$.
- Gradient methods on above converge to

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \|\mathbf{w}\| : \frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}_i^{\top} \mathbf{w} - \mathbf{y}_i)^2 = 0$$

11/34

When will Occur?

Depends on learning algorithm + data distribution

ullet Linear predictors $\mathbf{x}\mapsto\mathbf{x}^{ op}\mathbf{w},\ \mathbf{x}\in\mathbb{R}^d$, squared loss

$$\min_{\mathbf{w}} \frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}_{i}^{\top} \mathbf{w} - \mathbf{y}_{i})^{2}$$

- dimension $d \gg m$.
- Gradient methods on above converge to

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \|\mathbf{w}\| : \frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}_i^{\top} \mathbf{w} - \mathbf{y}_i)^2 = 0$$

Benign Overfitting: as $d, m \to \infty$,

$$\mathbb{E}_{(\mathbf{x},\mathbf{y})}(\mathbf{x}^{\top}\hat{\mathbf{w}} - \mathbf{y})^{2} \to \min_{\mathbf{w}} \mathbb{E}_{(\mathbf{x},\mathbf{y})}(\mathbf{x}^{\top}\mathbf{w} - \mathbf{y})^{2} \quad (>0)$$

- Bartlett et al. 2019: Benign overfitting if
 - $\mathbf{y} = \mathbf{x}^{\top} \mathbf{w}^* + \text{noise (well-specified/realizable setting)}$
 - Covariance matrix of x has "many small positive eigenvalues" > August 26, 2025

Intuition

- Distributional assumption: $\mathbf{x} = (\mathbf{x}_{|k}, \mathbf{x}_{|d-k})$
 - $\mathbf{x}_{|k}$: k "important" coordinates (\mathbf{y} depends on $\mathbf{x}_{|k}$)
 - $\mathbf{x}_{|d-k}$: d-k small "junk" coordinates (e.g. $\sim \mathcal{N}(0, \frac{1}{d-k}I_{d-k})$ independently)
- If $d\gg k$, can show that $\hat{\mathbf{w}}=(\hat{\mathbf{w}}_{|k},\hat{\mathbf{w}}_{|d-k})$ where
 - $\hat{\mathbf{w}}_{|k} \approx$ optimum on first k coordinates w.r.t. expected loss
 - $\hat{\mathbf{w}}_{|d-k}$ used to fit training examples
 - $\bullet \ \, \text{On new } \mathbf{x} \sim \mathcal{D} \text{, } \mathbf{x}^\top \hat{\mathbf{w}} \approx \mathbf{x}_{|k}^\top \hat{\mathbf{w}}_{|k}$

Most existing results for regression are extensions of this idea. But, has proven difficult to generalize

- $\bullet \ \mathsf{Agnostic/misspecified} \ \mathsf{setting:} \ \mathbf{y} \neq \mathbf{x}^\top \mathbf{w}^* + \mathsf{noise}$
- Non-linear predictors...

- Introduction
- 2 Benign Overfitting
- 3 Implicit Bias in Regression
- 4 Implicit Bias in Classification
- 5 Recent Progress

13/34

• Slight extension of previous setting: $\mathbf{x} \mapsto \mathbf{x}^{\top}\mathbf{w}$. Non-negative loss $\ell(\mathbf{x}^{\top}\mathbf{w}, \mathbf{y})$, equals 0 for unique prediction value $\ell_{\mathbf{v}}^{-1}(0)$

Y Gao

14/34

- Slight extension of previous setting: $\mathbf{x} \mapsto \mathbf{x}^{\top}\mathbf{w}$. Non-negative loss $\ell(\mathbf{x}^{\top}\mathbf{w}, \mathbf{y})$, equals 0 for unique prediction value $\ell_{\mathbf{y}}^{-1}(0)$
- Theorem: Gradient methods will still converge to

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \|\mathbf{w}\| : \frac{1}{m} \sum_{i=1}^{m} \ell(\mathbf{x}_{i}^{\top} \mathbf{w}, \mathbf{y}_{i}) = 0.$$

14 / 34

- Slight extension of previous setting: $\mathbf{x} \mapsto \mathbf{x}^{\top}\mathbf{w}$. Non-negative loss $\ell(\mathbf{x}^{\top}\mathbf{w}, \mathbf{y})$, equals 0 for unique prediction value $\ell_{\mathbf{y}}^{-1}(0)$
- Theorem: Gradient methods will still converge to

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \|\mathbf{w}\| : \frac{1}{m} \sum_{i=1}^{m} \ell(\mathbf{x}_{i}^{\top} \mathbf{w}, \mathbf{y}_{i}) = 0.$$

• Observation: Also equals

$$\arg\min_{\mathbf{w}} \|\mathbf{w}\| \quad : \quad \frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}_{i}^{\top} \mathbf{w} - \ell_{\mathbf{y}_{i}}^{-1}(0))^{2} = 0.$$

14 / 34

- Slight extension of previous setting: $\mathbf{x} \mapsto \mathbf{x}^{\top} \mathbf{w}$. Non-negative loss $\ell(\mathbf{x}^{\top} \mathbf{w}, \mathbf{y})$, equals 0 for unique prediction value $\ell_{\mathbf{y}}^{-1}(0)$
- Theorem: Gradient methods will still converge to

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \|\mathbf{w}\| : \frac{1}{m} \sum_{i=1}^{m} \ell(\mathbf{x}_{i}^{\top} \mathbf{w}, \mathbf{y}_{i}) = 0.$$

• Observation: Also equals

$$\arg\min_{\mathbf{w}} \|\mathbf{w}\| : \frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}_{i}^{\top} \mathbf{w} - \ell_{\mathbf{y}_{i}}^{-1}(0))^{2} = 0.$$

This is ERM w.r.t. two different statistical learning problems:

$$\mathbb{E}_{(\mathbf{x},\mathbf{y})}[\ell(\mathbf{x}^{\top}\mathbf{w};\mathbf{y})] \quad \text{vs.} \quad \mathbb{E}_{(\mathbf{x},\mathbf{y})}[(\mathbf{x}^{\top}\mathbf{w}-\ell_{\mathbf{y}}^{-1}(0))^2]$$

But algorithm converges to same point \Rightarrow Generally can't have consistency/benign overfitting w.r.t. to both!

Y Gao August 26, 2025 14/34

Conclusion

- The fact that we have benign overfitting on one learning problem precludes benign overfitting on other learning problems
- Implicit bias in the space of learning problems!
- In what follows, use this to prove positive + negative results, going well-specified linear regression

Y Gao August 26, 2025 15 / 34

Baseline result

Model: $\mathbf{x} = (\mathbf{x}_{|k}, \mathbf{x}_{|d-k})$, $\mathbf{x}_{|d-k}$ distributed as $\mathcal{N}(\mathbf{0}, \frac{1}{d-k} \cdot I_{d-k})$

Theorem

As $d,m\to\infty$, min-norm predictor $\hat{\mathbf{w}}$ satisfies

$$\hat{\mathbf{w}}_{|k} \to \mathbb{E}[\mathbf{x}_{|k}\mathbf{x}_{|k}^{\top}]^{-1} \cdot \mathbb{E}[\mathbf{y}\mathbf{x}_{|k}]$$

and

$$\mathbb{E}_{(\mathbf{x},\mathbf{y})}[(\mathbf{x}^{\top}\hat{\mathbf{w}} - \mathbf{x}_{|k}^{\top}\hat{\mathbf{w}}_{|k})^{2}] \to 0.$$

We have benign overfitting

Y Gao

Tweak: $\mathbf{x}_{|d-k}$ distributed as $\mathcal{N}(\mathbf{0}, \frac{g(\mathbf{x}_{|k})}{d-k} \cdot I_{d-k})$ for some bounded positive function $g(\cdot)$

Theorem

As $d, m \to \infty$, min-norm predictor $\hat{\mathbf{w}}$ satisfies

$$\hat{\mathbf{w}}_{|k}
ightarrow \mathbb{E} \left[rac{\mathbf{x}_{|k} \mathbf{x}_{|k}^ op}{g(\mathbf{x}_{|k})}
ight]^{-1} \cdot \mathbb{E} \left[rac{\mathbf{y} \mathbf{x}_{|k}}{g(\mathbf{x}_{|k})}
ight]$$

and

$$\mathbb{E}_{(\mathbf{x},\mathbf{y})}[(\mathbf{x}^{\top}\hat{\mathbf{w}} - \mathbf{x}_{|k}^{\top}\hat{\mathbf{w}}_{|k})^{2}] \to 0.$$

 $\hat{\mathbf{w}}$ no longer consistent!

Y Gao August 26, 2025 17 / 34

Proof: $\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \|\mathbf{w}\| : \frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}_{i}^{\top} \mathbf{w} - \mathbf{y}_{i})^{2} = 0$ is also

$$\arg\min_{\mathbf{w}} \|\mathbf{w}\| : \frac{1}{m} \sum_{i=1}^{m} \left(\frac{\mathbf{x}_{i}^{\top}}{\sqrt{g(\mathbf{x}_{i|k})}} \mathbf{w} - \frac{\mathbf{y}_{i}}{\sqrt{g(\mathbf{x}_{i|k})}} \right)^{2} = 0,$$

which now falls into baseline model

18/34

Proof: $\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \|\mathbf{w}\| : \frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}_{i}^{\top} \mathbf{w} - \mathbf{y}_{i})^{2} = 0$ is also

$$\arg\min_{\mathbf{w}} \|\mathbf{w}\| : \frac{1}{m} \sum_{i=1}^{m} \left(\frac{\mathbf{x}_{i}^{\top}}{\sqrt{g(\mathbf{x}_{i|k})}} \mathbf{w} - \frac{\mathbf{y}_{i}}{\sqrt{g(\mathbf{x}_{i|k})}} \right)^{2} = 0,$$

which now falls into baseline model

• Needs misspecified setting! Otherwise $\hat{\mathbf{w}}_{|k}$ converges to

$$\mathbb{E}\left[\frac{\mathbf{x}_{|k}\mathbf{x}_{|k}^{\top}}{g(\mathbf{x}_{|k})}\right]^{-1} \cdot \mathbb{E}\left[\frac{\mathbf{x}_{|k}\mathbf{x}_{|k}^{\top}\mathbf{w}^{*}}{g(\mathbf{x}_{|k})}\right] = \mathbf{w}^{*}$$

Implication: Cannot generally expect benign overfitting in misspecified/agnostic linear regression

> Y Gao August 26, 2025 18/34

Generalized linear model / single neuron, well-specified setting:

- $\mathbf{y} = \sigma(\mathbf{x}_{|k}^{\top}\mathbf{w}^*) + \xi$, $\sigma(\cdot)$ strictly monotonic
- Want to solve $\min_{\mathbf{w}} \mathbb{E}[(\sigma(\mathbf{x}^{\top}\mathbf{w}) \mathbf{y})^2]$
- Apply gradient method on $\min_{\mathbf{w}} \frac{1}{m} \sum_{i=1}^{m} (\sigma(\mathbf{x}_i^{\top} \mathbf{w}) \mathbf{y}_i)^2$

Y Gao August 26, 2025 19 / 34

Generalized linear model / single neuron, well-specified setting:

- $\mathbf{y} = \sigma(\mathbf{x}_{|k}^{\top} \mathbf{w}^*) + \xi$, $\sigma(\cdot)$ strictly monotonic
- Want to solve $\min_{\mathbf{w}} \mathbb{E}[(\sigma(\mathbf{x}^{\top}\mathbf{w}) \mathbf{y})^2]$
- Apply gradient method on $\min_{\mathbf{w}} \frac{1}{m} \sum_{i=1}^{m} (\sigma(\mathbf{x}_{i}^{\top}\mathbf{w}) \mathbf{y}_{i})^{2}$

Theorem

As $d, m \to \infty$, returned $\hat{\mathbf{w}}$ satisfies

$$\begin{split} \hat{\mathbf{w}}_{|k} &\to \mathbb{E}[\mathbf{x}_{|k}\mathbf{x}_{|k}^{\top}]^{-1} \cdot \mathbb{E}[\mathbf{x}_{|k} \cdot \sigma^{-1}(\mathbf{y})] \\ &= \mathbb{E}[\mathbf{x}_{|k}\mathbf{x}_{|k}^{\top}]^{-1} \cdot \mathbb{E}[\mathbf{x}_{|k} \cdot \sigma^{-1}(\sigma(\mathbf{x}_{|k}^{\top}\mathbf{w}^*) + \xi)] \end{split}$$

expression is generally $\neq \mathbf{w}^*$ for non-linear σ

August 26, 2025

Proof:
$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \|\mathbf{w}\| : \frac{1}{m} \sum_{i=1}^{m} (\sigma(\mathbf{x}_{i}^{\top}\mathbf{w}) - \mathbf{y}_{i})^{2} = 0$$
 is also
$$\arg\min_{\mathbf{w}} \|\mathbf{w}\| : \frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}_{i}^{\top}\mathbf{w} - \sigma^{-1}(\mathbf{y}_{i}))^{2} = 0$$

which now falls into baseline model with target values $\sigma^{-1}(\mathbf{y})$

Y Gao August 26, 2025 20 / 34

Linear regression w.r.t. loss other than the squared loss

- Want to minimize $\mathbb{E}[f(\mathbf{x}^{\top}\mathbf{w} \mathbf{y})]$ for some non-negative $f(\cdot)$ minimized at 0 (e.g. absolute loss)
- Apply gradient method on $\min_{\mathbf{w}} \frac{1}{m} \sum_{i=1}^{m} f(\mathbf{x}_{i}^{\top} \mathbf{w} \mathbf{y}_{i})$

Theorem

As $d, m \to \infty$, returned $\hat{\mathbf{w}}$ satisfies

$$\hat{\mathbf{w}}_{|k} \to \mathbb{E}[\mathbf{x}_{|k}\mathbf{x}_{|k}^{\top}]^{-1} \cdot \mathbb{E}[\mathbf{y}\mathbf{x}_{|k}]$$

This is optimum w.r.t. $\mathbb{E}[(\mathbf{x}^{\top}\mathbf{w} - \mathbf{y})^2]$ not $\mathbb{E}[f(\mathbf{x}^{\top}\mathbf{w} - \mathbf{y})]!$ **Proof**: $\hat{\mathbf{w}}$ is

also
$$\arg\min_{\mathbf{w}} \|\mathbf{w}\| : \frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}_{i}^{\top} \mathbf{w} - \mathbf{y}_{i})^{2} = 0$$

Y Gao

Is Benign Overfitting Bogus?

• Still, does not accord with practice...

Y Gao August 26, 2025 22 / 34

Is Benign Overfitting Bogus?

- Still, does not accord with practice...
- One option: Only happens with hyper-transformer-convnets with 10000000 layers (+ batchnorm)
 - Representation learning: Misspecified ⇒ well-specified
 - Implicit bias: Flat minima

22 / 34

Is Benign Overfitting Bogus?

- Still, does not accord with practice...
- One option: Only happens with hyper-transformer-convnets with 10000000 layers (+ batchnorm)
 - Representation learning: Misspecified ⇒ well-specified
 - Implicit bias: Flat minima
- Another option: Regression is the wrong setting to look at
 - All negative examples relied on prediction value exactly matching target value

Y Gao August 26, 2025 22 / 34

- Introduction
- 2 Benign Overfitting
- Implicit Bias in Regression
- 4 Implicit Bias in Classification
- 5 Recent Progress

Y Gao August 26, 2025 23 / 34

Focus on linear predictors + binary classification: $\mathbf{y} \in \{-1, +1\}$, want to minimize

$$\min_{\mathbf{w}} \Pr(\operatorname{sign}(\mathbf{x}^{\top}\mathbf{w}) \neq \mathbf{y}) = \Pr(\mathbf{y}\mathbf{x}^{\top}\mathbf{w} \leq 0)$$

- Value of $\mathbf{x}^{\mathsf{T}}\mathbf{w}$ doesn't matter, only sign!
- Gradient methods with standard losses known to return max-margin predictor

$$\hat{\mathbf{w}} := \arg\min_{\mathbf{w}} \|\mathbf{w}\| : \min_{i} \mathbf{y}_{i} \mathbf{x}_{i}^{\top} \mathbf{w} \ge 1$$

Y Gao

Focus on linear predictors + binary classification: $\mathbf{y} \in \{-1, +1\}$, want to minimize

$$\min_{\mathbf{w}} \Pr(\operatorname{sign}(\mathbf{x}^{\top}\mathbf{w}) \neq \mathbf{y}) = \Pr(\mathbf{y}\mathbf{x}^{\top}\mathbf{w} \leq 0)$$

- ullet Value of $\mathbf{x}^{\top}\mathbf{w}$ doesn't matter, only sign!
- Gradient methods with standard losses known to return max-margin predictor

$$\hat{\mathbf{w}} := \arg\min_{\mathbf{w}} \|\mathbf{w}\| : \min_{i} \mathbf{y}_{i} \mathbf{x}_{i}^{\top} \mathbf{w} \ge 1$$

- Several previous papers studied benign overfitting for classification
- Challenge: max-margin predictor has no closed-form solution (unlike min-norm predictor in regression)
- Most results considered specific settings where max-margin and min-norm predictors coincide

Y Gao August 26, 2025 24 / 34

Data model (x, y):

- ullet $\mathbf{x}_{|k}, \mathbf{y}$ arbitrary fixed distribution
- $\mathbf{x}_{|d-k} \sim \mathcal{N}(\mathbf{0}, \frac{1}{d-k}I_{d-k})$

Y Gao August 26, 2025 25 / 34

Data model (\mathbf{x}, \mathbf{y}) :

- ullet $\mathbf{x}_{|k}, \mathbf{y}$ arbitrary fixed distribution
- $\mathbf{x}_{|d-k} \sim \mathcal{N}(\mathbf{0}, \frac{1}{d-k} I_{d-k})$

Theorem

Under mild assumptions, max-margin predictor $\hat{\mathbf{w}}$ satisfies:

- $\bullet \ \mathbb{E}_{(\mathbf{x},\mathbf{y})}[(\mathbf{x}^{\top}\hat{\mathbf{w}} \mathbf{x}_{|k}^{\top}\hat{\mathbf{w}}_{|k})^2] \to 0$
- \bullet $\hat{\mathbf{w}}_{|k}$ asymptotically minimizes expected squared hinge loss

$$\mathbf{g}(\mathbf{w}) = \mathbb{E}[\max\{0, 1 - \mathbf{y} \mathbf{x}_{|k}^{\top} \mathbf{w}\}^2]$$

Important: this loss is not the one used for training! \hat{w} is implicitly biased in that manner

Y Gao August 26, 2025 25 / 34

Data model (\mathbf{x}, \mathbf{y}) :

- ullet $\mathbf{x}_{|k}, \mathbf{y}$ arbitrary fixed distribution
- $\mathbf{x}_{|d-k} \sim \mathcal{N}(\mathbf{0}, \frac{1}{d-k} I_{d-k})$

Theorem

Under mild assumptions, max-margin predictor $\hat{\mathbf{w}}$ satisfies:

- $\mathbb{E}_{(\mathbf{x},\mathbf{y})}[(\mathbf{x}^{\top}\hat{\mathbf{w}} \mathbf{x}_{|k}^{\top}\hat{\mathbf{w}}_{|k})^2] \to 0$
- \bullet $\hat{\mathbf{w}}_{|k}$ asymptotically minimizes expected squared hinge loss

$$g(\mathbf{w}) = \mathbb{E}[\max\{0, 1 - \mathbf{y} \mathbf{x}_{|k}^{\top} \mathbf{w}\}^2]$$

Important: this loss is not the one used for training! \hat{w} is implicitly biased in that manner

Corollary

Benign overfitting occurs if $\mathbf{g}(\cdot)$ is a good surrogate for misclassification error

Y Gao August 26, 2025

25/34

Implications

- Similar data model as before
- y equals $sign(\mathbf{x}^{\top}\mathbf{w}^*)$ plus label noise w.p. p

Theorem

For any distribution on $\mathbf{x}_{|k}$, benign overfitting for some p > 0

Theorem

If $\mathbf{x}_{|k}$ mixture of symmetric distributions, benign overfitting for any $\mathbf{p} \in (0, \frac{1}{2})$

Can study other settings as well (and no need to assume max-margin and min-norm predictors coincide)

Y Gao August 26, 2025 26 / 34

Proof Intuition

$$\arg\min_{\mathbf{w}} \|\mathbf{w}\| \quad : \quad \min_{i} \mathbf{y}_{i} \mathbf{x}_{i}^{\top} \mathbf{w} \geq 1$$

• Suppose $\mathbf{y}_i = 1$, $\mathbf{x}_{i|d-k} = \mathbf{e}_i$ for all i

Y Gao August 26, 2025 27 / 34

Proof Intuition

$$\operatorname{arg} \min_{\mathbf{w}} \|\mathbf{w}\| \quad : \quad \min_{i} \mathbf{y}_{i} \mathbf{x}_{i}^{\top} \mathbf{w} \ge 1$$

- Suppose $\mathbf{y}_i = 1$, $\mathbf{x}_{i|d-k} = \mathbf{e}_i$ for all i
- Rewrite problem as

$$\arg\min_{\mathbf{w}} \|\mathbf{w}_{|k}\|^2 + \|\mathbf{w}_{|d-k}\|^2 : (\mathbf{w}_{|d-k})_i \ge 1 - \mathbf{x}_{i|k}^\top \mathbf{w}_{|k}$$

Y Gao August 26, 2025 27 / 34

Proof Intuition

$$\operatorname{arg} \min_{\mathbf{w}} \|\mathbf{w}\| \quad : \quad \min_{i} \mathbf{y}_{i} \mathbf{x}_{i}^{\top} \mathbf{w} \ge 1$$

- Suppose $\mathbf{y}_i = 1$, $\mathbf{x}_{i|d-k} = \mathbf{e}_i$ for all i
- Rewrite problem as

$$\arg\min_{\mathbf{w}}\|\mathbf{w}_{|k}\|^2 + \|\mathbf{w}_{|d-k}\|^2 \quad : \quad (\mathbf{w}_{|d-k})_i \geq 1 - \mathbf{x}_{i|k}^\top \mathbf{w}_{|k}$$

• For any fixed $\mathbf{w}_{|k}$, best to pick $(\mathbf{w}_{|d-k})_i = \max\{0, 1 - \mathbf{x}_{i|k}^{\top} \mathbf{w}_{|k}\}$, leading to

$$\arg\min_{\mathbf{w}_{|k}} \|\mathbf{w}_{|k}\|^2 + \sum_{i=1}^m \max\{0, 1 - \mathbf{x}_{i|k}^\top \mathbf{w}_{|k}\}^2$$

$$= \arg\min_{\mathbf{w}_{|k}} \frac{1}{m} \|\mathbf{w}_{|k}\|^2 + \frac{1}{m} \sum_{i=1}^m \max\{0, 1 - \mathbf{x}_{i|k}^\top \mathbf{w}_{|k}\}^2$$

$$m \to \infty \implies \mathbb{E}[\max\{0, 1 - \mathbf{y} \mathbf{x}_{|k}^\top \mathbf{w}_{|k}\}^2]$$

Y Gao August 26, 2025 27 / 34

- Introduction
- 2 Benign Overfitting
- Implicit Bias in Regression
- 4 Implicit Bias in Classification
- Recent Progress

28 / 34

Recent Progress

- Beyond linear: Extensions to multi-class, kernels, two-layer nets
- Rates & finite-sample: Precise bounds
- **Geometry of noise:** Correlated / anisotropic effects
- Algorithms: How do optimizers change implicit bias?

29 / 34

Beyond Linear

- 2-layer CNN: First characterize the conditions under which benign overfitting can occur in training CNN ¹
- 2-layer ReLU CNN: Establish algorithm-dependent risk bounds for learning 2-layer ReLU CNN with noise ²
- Sparse LR: A new implicit bias effect that combines the benefit of ℓ_1 and ℓ_2 interpolators ³

Y Gao August 26, 2025 30 / 34

¹Cao Y, Chen Z, Belkin M, et al. Benign overfitting in two-layer convolutional neural networks[J]. NIPS, 2022.

²Kou Y, Chen Z, Chen Y, et al. Benign overfitting in two-layer relu convolutional neural networks[C]. PMLR, 2023.

³Zhou M, Ge R. Implicit regularization leads to benign overfitting for sparse linear regression[C]. PMLR, 2023.

Rates & Finite-Sample Guarantees

- Ridge regression: Sharp conditions for benign overfitting with arbitrary covariance, explicit variance and bias rates ⁴
- Nonlinear networks: 2-layer neural networks achieve minimax optimal test error under noisy labels ⁵
- Distribution shift: Characterizations under covariate shift in overparameterized regimes ⁶

Y Gao August 26, 2025

31 / 34

⁴Tsigler A, Bartlett P L. Benign overfitting in ridge regression[J]. JMLR, 2023.

⁵Frei S, Chatterji N S, Bartlett P. Benign overfitting without linearity: Neural network classifiers trained by gradient descent for noisy linear data[C]. PMLR, 2022.

⁶Tang S, Wu J, Fan J, et al. Benign overfitting in out-of-distribution generalization of linear models[J]. arXiv preprint, 2024.

Geometry of Noise

- Linear models: Independence is not required! Benign overfitting can hold under correlated and anisotropic designs ⁷
- Neural networks:
 - Incorporate class-dependent heterogeneous noise ⁸
 - Conditions on signal-to-noise ratio critical for whether margin-maximization still leads to benign overfitting ⁹

Y Gao August 26, 2025 32 / 34

⁷Tsigler A, Bartlett P L. Benign overfitting in ridge regression[J]. JMLR, 2023.

⁸Xu R, Chen K. Rethinking benign overfitting in two-layer neural networks[J]. arXiv preprint, 2025.

⁹Karhadkar K, George E, Murray M, et al. Benign overfitting in leaky relu networks with moderate input dimension[J]. NIPS, 2024.

Algorithms

- Momentum-based: Consider heavy-ball and Nesterov's method of accelerated gradients ¹⁰
- ullet Adam: Iterate align with max ℓ_∞ -margin classifier 11
- Steepest descent family: Converge to solutions maximizing the margin with respect to the classifier matrix's p-norm ¹²

Y Gao August 26, 2025

33 / 34

¹⁰Lyu B, Wang H, Wang Z, et al. Effects of Momentum in Implicit Bias of Gradient Flow for Diagonal Linear Networks[C]. AAAI, 2025.

¹¹Zhang C, Zou D, Cao Y. The implicit bias of adam on separable data[J]. NIPS, 2024.

¹²Fan C, Schmidt M, Thrampoulidis C. Implicit Bias of Spectral Descent and Muon on Multiclass Separable Data[J]. arXiv preprint, 2025.

Thank You For Listening.

Any Questions?