-U-A-S-H-P

MPSI3 Corrigé DS08 05 mai 2023

EXERCICE 1 : Étude d'une pile à combustible au méthanol :

(D'après CCINP TSI 2022)

I – Etude de la combustion de l'éthanol liquide dans l'air :

$$CH_3OH_{(l)} + \frac{3}{2}O_{2(g)} = CO_{2(g)} + 2H_2O_{(l)}.$$

Q2. Pour <u>une mole de méthanol brûlée, on obtient 2 moles d'eau.</u>

Déterminons la quantité de matière de méthanol n_{CH_3OH} contenue dans 5,0 L: $n_{CH_3OH} = \frac{m_{CH_3OH}}{M_{CH_3OH}} = \frac{\rho_{CH_3OH} V}{M_{CH_3OH}}$

De plus, $d = \frac{\rho_{CH_3OH}}{\rho_{eau}}$; Donc $\rho_{CH_3OH} = d \rho_{eau}$; Ainsi : $n_{CH_3OH} = \frac{d \rho_{eau} V}{M_{CH_3OH}}$ avec $\rho_{eau} = 1 \text{ kg.L}^{-1} = 1000 \text{ g.L}^{-1}$.

 $\underline{AN}: n_{CH_3OH} = \frac{0.8 \times 1000 \times 5}{32}$; On obtient: $\underline{n_{CH_3OH}} = 125$ moles d'éthanol

On va donc fabriquer 250 moles d'eau qui ont un volume : $V_{eau} = \frac{m_{eau}}{\rho_{eau}} = \frac{n_{eau} M_{eau}}{\rho_{eau}}$

 $\underline{AN}: V_{eau} = \frac{250 \times 18}{1000}$; On obtient $\underline{V_{eau}} = 4.5 L$

II – Etude d'une pile à combustible au méthanol :

Q3. A l'anode, il y a une oxydation du réducteur. L'oxydant a le nombre d'oxydation le plus grand.

Ici, dans CO_2 , le no(C)=IV et dans CH_3OH , le no(C)= - II

A l'anode, on considère donc le couple CO_2/CH_3OH (IV/-II).

Sur le même principe, à la cathode, il y a une réduction de l'oxydant.

A la cathode, on considère donc le couple O_2/H_2O (0/-II).

Q5. Pour obtenir l'équation bilan, on multiplie la deuxième demi-équation par 3 et on les ajoute.

On obtient : $CH_3OH + \frac{3}{2}O_2 = CO_2 + 2H_2O$

Q6. Utiliser des gants et lunettes de protection lors de la manipulation du méthanol.

Se placer **sous hotte** ou à défaut dans un espace bien ventilé.

Éviter toute source de flamme/de chaleur à proximité. Ne pas fumer.

Appeler un centre anti-poison en cas d'ingestion.

En cas de contact cutané, enlever les vêtements et rincer/se doucher.

Stocker dans un endroit ventilé.

EXERCICE 2 : Etude de la solubilité du diiodate de baryum ;

2s

Q1. Réaction de dissolution du précipité :

 $Ba(IO_3)_{2(s)} = Ba^{2+}_{(aq)} + 2IO_{3(aa)}^{-}$

Pour exprimer la solubilité, on met le précipité en excès ;

Excès EI:

(D'après Banque PT 2022)

Excès

Alors $K_s = [Ba^{2+}]_{eq} [IO_3^2]_{eq}^2 = s \times (2s)^2$; Soit : $K_s = 4s^3$.

Q2. Dispositif expérimental ci-contre

Réaction du dosage : $Ba^{2+}_{(aq)} + SO_4^{2-}_{(aa)} = Ba(SO_4)_{(s)}$.

On travaille avec un excès d'eau dans le bécher, de façon à pouvoir négliger le volume ajouté devant le volume initial.

Q3. Avant l'équivalence, on consomme Ba^{2+} et on ajoute $2Na^{+}$. Les ions SO_4^{2-} réagissent.

En utilisant la loi de Kohlrausch : $\sigma = \sum_{i} \Lambda^{\circ}_{i} [A_{i}]$,

 $\Lambda^{\circ}(Ba^{2+}) = 13 > 2 \Lambda^{\circ}(Na^{+}) = 2 \times 5 = 10.$

Ainsi, la conductivité et la conductance de la solution diminuent avant l'équivalence.

Après l'équivalence, on ajoute des ions 2 Na^{++} et SO_4^{2-} en excès.

Ainsi, la conductivité et la conductance de la solution augmentent

fortement après l'équivalence.

D'où allure de la courbe de dosage ci-contre :

Q4. A l'équivalence les réactifs sont versés dans les proportions stæchiométriques. 🗳

Soit $n_0(Ba^{2+}) = n_{eq}(SO_4^{2-}) = C_1 V_{ea1}$

Ou encore : $[Ba^{2+}] V_1 = C_1 V_{eq1}$; Ainsi : $[Ba^{2+}] = \frac{C_1 V_{eq1}}{V_1}$.

<u>AN</u>: $[Ba^{2+}] = \frac{0,05 \times 11}{50}$; On obtient: $[Ba^{2+}] = s = 1, 10 \cdot 10^{-2} \text{ mol.L}^{-1}$.

II - Dosage redox des ions iodates :

Dans I^- : no(I)= - I; **Q5.** Dans $I_2 : \text{no}(I) = 0$ Let \downarrow Diagramme primitif: no = f(pH).

Dans IO_3^- : no(I) =**V**.

pН 14 10^{-2}

D'où la correspondance : $2 \leftrightarrow I_{2 \text{ (aq)}}$ $\mathfrak{J} \leftrightarrow I^-_{(aq)}$ \bigcirc $\leftrightarrow IO_3^-$ (aq)

Q6. Frontière séparant les domaines (2) et (3): Couple I_2 / I^- .

Demi-équation redox : $\frac{1}{2}I_{2 \text{ (aq)}} + 1 e^{-} = I^{-} \text{ (aq) ou } I_{2 \text{ (aq)}} + 2 e^{-} = 2 I^{-} \text{ (aq)}$

Relation de Nernst : $E(I_{2 \text{ (aq)}}/I^{-}_{\text{ (aq)}}) = E^{\circ}(I_{2}/I^{-}_{\text{ (aq)}}) + 0.03 \log \frac{[I_{2}]}{I_{1}-I_{2}};$

A la frontière : $\mathbf{E}_{23} = \mathbf{E}^{\circ} (I_{2 \text{ (aq)}} / I^{-}_{\text{ (aq)}} - \mathbf{0,03 \log } c_T$.

<u>AN</u>: $E_{23} = 0.62 - 0.03 \log(0.1)$; On trouve: $E_{23} = 0.65 \text{ V}$

 $\sqrt{\sqrt{97}}$ Q7. D'après la description qui est faite du dosage, on obtient la coloration marron en **mélangeant 10^{-3} et** milieu acide.

D'après le diagramme E-pH, on remarque que ces deux espèces ont des domaines de prédominance disjoints en milieu acide, d'où la formation de $I_{2(qq)}$ de couleur marron.

C'est une réaction de médiamutation.

Demi-équation redox : IO_3^- (aq) + 5 e^- + 6 H^+ = $\frac{1}{2}I_2$ (aq) + 3 H_2O ou 2 IO_3^- (aq) + 10 e^- + 12 H^+ = I_2 (aq) + 6 H_2O

 \blacksquare Couple I_2 / I^- .

Demi-équation redox : $\frac{1}{2}I_{2 \text{ (aq)}} + 1 e^- = I^- \text{ (aq) ou } I_{2 \text{ (aq)}} + 2 e^- = 2 I^- \text{ (aq)}$ Mais attention au sens car I^- est réactif : $2I^-_{(aq)} = I_2_{(aq)} + 2e^- \times 5$

Réaction de médiamutation :

 $2 I O_{3}^{-}_{(aq)} + 10 I_{(aq)}^{-} + 12 H^{+} = 6 I_{2}_{(aq)} + 6 H_{2}O \text{ ou encore} : I O_{3}^{-}_{(aq)} + 5 I_{(aq)}^{-} + 6 H^{+} = 3 I_{2}_{(aq)} + 3 H_{2}O$ Constante d'équilibre : $K = \frac{[I_{2}]_{eq}^{3}}{[IO_{3}^{-}]_{eq}[I^{-}]_{eq}^{5}[H^{+}]_{eq}^{6}}.$

Relation de Nernst au 1^{er} couple : $E(IO_3^-/I_2) = E_2^0 + \frac{0.06}{10} \log \left(\frac{[IO_3^-]^2 [H^+]^{12}}{\Gamma_{\Gamma_1}} \right)$

Relation de Nernst au $2^{\text{ème}}$ couple : $E(I_2/I^-) = E_1^{\circ} + \frac{0.06}{2} \log \left(\frac{[I_2]}{[I^{-1}]^2} \right) = E_1^{\circ} + 0.06 \log \left(\frac{\sqrt{[I_2]}}{[I^{-1}]} \right)$

A l'équilibre, les potentiels sont égaux, soit : $E_{eq}(IO_3^-/I_2) = E_{eq}(I_2/I^-)$

D'où: $E_2^{\circ} + \frac{0.06}{10} \log \left(\frac{[IO_3^{-}]_{eq}^2 [H^+]_{eq}^{-12}}{[I_2]_{eq}} \right) = E_1^{\circ} + 0.06 \log \left(\frac{\sqrt{[I_2]_{eq}}}{[I^-]_{eq}} \right)$

Q8. En exploitant la réaction de médiamutation et en supposant que 10^-_3 est réactif limitant, on obtient :

 $n(IO_3^-) = \frac{n(I_2)}{2}$

D'autre part, le diiode I_2 est dosé par les ions thiosulfates : $S_2O_3^{2-}$

(Réaction entre l'oxydant le plus fort et le réducteur le plus fort)

Première demi équation redox : $I_{2 \text{ (aq)}} + 2 e^{-} = 2 I^{-}_{\text{(aq)}}$

Deuxième demi équation redox : $2S_2O_3^{2-}$ $= S_4O_6^{2-}$ = (aq)

A l'équivalence, les réactifs sont versés dans les proportions stœchiométriques.

Soit $n_0(I_2) = \frac{n_{eq}(s_2 o_3^{2-})}{2} = \frac{c_2 v_{eq2}}{2}$

Or, on a vu que $n(IO_3^-) = \frac{n(I_2)}{3}$, ainsi ; $n(IO_3^-) = \frac{c_2 V_{eq2}}{6}$.

EXERCICE 3 : Étude de traitements de quelques effluents :

(D'après CCINP PSI 2022)

I - Déchromatation :

Q1. De bas en haut du diagramme, les espèces sont placées par ordre croissant de nombre d'oxydation. Le chrome est au nombre d'oxydation :

- lacksquare 0 dans $Cr_{(s)}$ et +II dans Cr^{2+}
- + HIII dans Cr^{3+} et $Cr(OH)_{3(s)}$.
- + VI dans $Cr_2O_7^{2-}$ et CrO_4^{2-} .

♣ D'autre part, l'espèce acide est majoritaire à pH faible par rapport à l'espèce basique : Réaction acido-basiques : $Cr_2O_7^{2-} + H_2O_{4-} = 2 CrO_4^{2-} + 2 H^+$: Couple $Cr_2O_7^{2-} / CrO_4^{2-}$, car c'est $Cr_2O_7^{2-}$ qui libère les protons.

 \blacksquare Enfin, l'espèce $Cr(OH)_{3(s)}$ est plus basique que Cr^{3+} .

D'où diagramme primitif : no = f(pH) :

no pH	0	14
+VI	$Cr_2O_7^{2-}$ CrO_4^{2-}	
+III	Cr^{3+} $Cr(OH)_{3(s)}$	
+II	Cr^{2+}	
0	$Cr_{(s)}$	

Et par identification:

	Espèce	A	В	С	D	E	F	
	Domaine	$Cr_{(s)}$	Cr ²⁺	Cr ³⁺	$Cr(OH)_{3(s)}$	$Cr_2O_7^{2-}$	CrO_4^{2-}	

Q2. Soit la réaction de dissolution du précipité : $Cr(OH)_{3(s)} = Cr^{3+} + 3OH^{-}$.

A la limite de précipitation $Q_{r lim} = [Cr^{3+}]_0 [OH^-]_{lim}^3 = C_0 \times [OH^-]_{lim}^3 = K_s$ Avec $[H_3O^+]_{lim} = 10^{-pH_{lim}}$ et $[OH^-]_{lim} = \frac{Ke}{[H_3O^+]_{lim}} = \frac{Ke}{10^{-pH_{lim}}} = Ke \times 10^{pH_{lim}}$;

Doù $K_s = C_0 \times Ke^3 \times 10^{3pH_{lim}}$

Sur la frontière entre Cr^{2+} et $Cr_{(s)}$, $[Cr^{2+}] = C_0$.

Soit $E_{Front}(Cr^{2+}/Cr_{(s)}) = E^{\circ}(Cr^{2+}/Cr_{(s)}) + 0.03 \log(C_0)$; Ainsi, $E^{\circ}(Cr^{2+}/Cr_{(s)}) = E_{Front}(Cr^{2+}/Cr_{(s)}) - 0.03 \log(C_0)$ On nous indique que $E_{Front}(Cr^{2+}/Cr_{(s)}) = -0.94 \text{ V.}$

<u>AN</u>: $E^{\circ}(Cr^{2+}/Cr_{(s)}) = -0.94 - 0.03 \log(10^{-1}) = -0.94 + 0.03$; On obtient: $\underline{E^{\circ}(Cr^{2+}/Cr_{(s)})} = -0.91$

Q4. On nous donne $E^{\circ}(Cr_2O_7^{2-}/Cr^{3+}) = E_1^{\circ} = 1,33 \text{ V et } E^{\circ}(SO_4^{2-}/HSO_3^{-}) = E_2^{\circ} = 0,17 \text{ V}$

Réaction entre l'oxydant le plus fort et le réducteur le plus fort, donc entre $Cr_2O_7^{2-}$ et HSO_3^{-}

Couple $Cr_2O_7^{2-}/Cr^{3+}$: ½ équation redox: $\frac{1}{2}Cr_2O_7^{2-} + 3e^- + 7H^+ = Cr^{3+} + \frac{7}{2}H_2O$. Couple SO_4^{2-}/HSO_3^{-} (VI/IV): ½ équation redox : $SO_4^{2-} + 2e^{-} + 3H^{+} = HSO_3^{-} + H_2O_3^{-}$

Dans le sens inverse, il vient : $HSO_3^- + H_2O = SO_4^{2-} + 2e^- + 3H^+$. (× 3) Il vient l'équation <u>bilan d'oxydoréduction</u> : $Cr_2O_7^{2-} + 3HSO_3^- + 5H^+ = 2Cr^{3+} + 3SO_4^{2-} + 4H_2O$

 $(\times 2)$

$$K_1 = \frac{\left[cr^{3+} \right]_{eq}^{2} \left[so_{4}^{2-} \right]_{eq}^{3}}{\left[cr_{2}o_{7}^{2-} \right]_{eq} \left[Hso_{3}^{-} \right]_{eq}^{3} \left[H^{+} \right]_{eq}^{5}}.$$

Q4 (suite). Calcul de la constante d'équilibre : $K_1 = \frac{[cr^{3+}]_{eq}^2 [so_4^{2-}]_{eq}^3}{[cr_2o_7^{2-}]_{eq}[Hso_3^{-}]_{eq}^3 [H^+]_{eq}^5}$ Demi-équation redox : $\frac{1}{2} Cr_2O_7^{2-} + 3e^- + 7H^+ = Cr^{3+} + \frac{7}{2}H_2O$.

Nernst au couple $Cr_2O_7^{2-}/Cr^{3+}$: $E_1 = E_1^{\circ} + 0$, $02\log\left(\frac{[cr_2O_7^{2-}]^{1/2}[H^+]^7}{[cr^{3+}]}\right)$

$$S\left(\frac{\left[Cr_2O_7^{2-}\right]^{1/2}[H^+]^7}{\left[Cr^{3+}\right]}\right)$$

♣ Demi-équation redox : $SO_4^{2-} + 2e^- + 3H^+ = HSO_3^- + H_2O_3^-$

Nernst au couple $SO_4^{2-}/HSO_3^-: \mathbf{E_2} = \mathbf{E}_2^{\circ} + \mathbf{0}, \mathbf{03} \log \left(\frac{[SO_4^{2-}][H^+]^3}{[HSO_2^-]} \right)$

A l'équilibre : $E_{1eq} = E_{2eq}$;

Soit:
$$E_{1}^{\circ} + 0.02 \log \left(\frac{\left[cr_{2}o_{7}^{2-} \right]^{1/2} eq^{\left[H^{+}\right]^{7}} eq}{\left[cr^{3+} \right]_{eq}} \right) = E_{2}^{\circ} + 0.03 \log \left(\frac{\left[So_{4}^{2-} \right]_{eq}^{\left[H^{+}\right]^{3}} eq}{\left[HSO_{3}^{-} \right]_{eq}} \right)$$

$$(\times 6) ; \text{D'où} : 6 E_1^{\circ} + 0.06 \log \left(\frac{[cr_2 o_7^{2-}]_{eq} [H^+]^{14}_{eq}}{[cr^{3+}]_{eq}^2} \right) = 6 E_2^{\circ} + 0.06 \log \left(\frac{[so_4^{2-}]_{eq}^3 [H^+]^9_{eq}}{[Hso_2^-]_{eq}^3} \right)$$

Soit:
$$6(E_1^\circ - E_2^\circ) = 0.06 \log \left(\frac{\left[SO_4^{2^-}\right]_{eq}^3 \left[Cr^{3^+}\right]_{eq}^2}{\left[HSO_3^-\right]_{eq}^3 \left[Cr_2O_7^{2^-}\right]_{eq}\left[H^+\right]_{eq}^5} \right) = 0.06 \log (K_1)$$

Ainsi: $K_1 = 10^{\frac{6}{0.06}(E_1^\circ - E_2^\circ)}$; Ou encore: $K_1 = 10^{\frac{(E_1^\circ - E_2^\circ)}{0.01}}$

<u>AN</u>: $K_1 = 10^{\frac{(1,33-0,17)}{0,01}}$; On obtient: $K_1 = 10^{116} \gg 10^3$

Réaction totale qui permet bien l'élimination des ions chrome VI, classés cancérogènes.

II - Décyanuration :

Q5. Détermination du pKa du couple : $HClO / ClO^-$: Réaction A/B : $HClO = ClO^- + H^+$;

Ainsi : $pH = pKa + \log\left(\frac{[ClO^-]}{[HClO]}\right)$.

Et à la frontière : [ClO] = [HClO]; Soit $pKa = pH_{Front}$; 2CS

On lit $pKa(HClO / ClO^-) \approx 7.5$.

Q6. Il faut superposer les diagrammes E-pH

du chlore et du cyanure :

L'énoncé donne

$$E^{\circ}(CNO^{-}/CN^{-}) = E^{\circ}_{3} = -0.13 \text{ V}.$$

Il faut déterminer l'équation de la frontière :

Couple CNO^-/CN^- (I/-I):

½ équation redox :

$$CNO^- + 2e^- + 2H^+ = CN^- + H_2O$$

Nernst au couple CNO^-/CN^- :

$$E_3 = E^{\circ}_3 + 0.03 \log \left(\frac{[CNO^{-}][H^{+}]^2}{[CN^{-}]} \right)$$

A la frontière : $[CN^{-}] = [CNO^{-}]$

Soit : $E_{3Front} = E^{\circ}_{3} + 0.03 \log([H^{+}]^{2})$ Ou encore : $E_{3Front} = E^{\circ}_{3} - 0.06 pH$ Ainsi, en pH = 12, $E_{3Front} = -0.13 - 0.06 \times 12$

Soit E = - 0,59 V. On ajoute cette équation sur le diagramme figure 2 ainsi que les DP de CNO et CN-.

0

-0,13

-0,59

Les **domaines de stabilité de** *CN* **et** *ClO* **sont vraiment disjoints** (écart supérieur à 0,5 V à tout pH).

Ainsi, ClO^- oxyde CN^- de façon quasi-totale suivant la réaction : $CN^- + ClO^- = CNO^- + Cl^-$.

pН

CNO

Q7. Point de vue thermodynamique :

Pour $pH < pH_{lim} \approx 2 \ ou \ 2.5$ (cf diagramme E-pH), les domaines de prédominance de HClO et $Cl^$ sont disjoints. Il y a média-mutation de HClO et Cl^- en Cl_2 .

Etude de la réaction de médiamutation :

Couple $HClO / Cl_2 : (I/0)$; 1/2 équation redox: $HClO + 1e^- + 1$ $H^+ = \frac{1}{2}Cl_2 + H_2O$

Ou encore : $2 HClO + 2 e^- + 2 H^+ = Cl_2 + 2 H_2O$

Couple Cl_2 / Cl^- : (0/-I); 1/2 équation redox : $Cl_2 + 2e^- = 2Cl^-$; Sens réel : **2** $Cl^- = Cl_2 + 2e^-$. Bilan par addition il vient : 2 $HClO \pm 2Cl^- + 2ll^+ = 2Cl^-$

Bilan par addition, il vient : $2 HClO + 2 Cl^- + 2 H^+ = 2 Cl_2 + 2 H_2 O$

Et par simplification, on obtient : $HClO + Cl^- + H^+ = Cl_2 + H_2O$; Réaction de médiamutation ; On peut aussi proposer : $Clo^{-} + Cl^{-} + 2H^{+} = Cl_{2} + H_{2}O$.

Conclusion: Cl2 étant très toxique, il ne faut pas acidifier une solution d'eau de Javel.

 $(\approx 50 pts)$

10,3

На

(D'après Centrale Supelec TSI 2022)

grative

I - Formation de tartre dans la bouche :

Q1. <u>Analyse</u>: Il y a formation de tartre, si <u>la c</u>ondition de précipitation est satisfaite,

donc si: $Q_{rEI} > K_s(CaCO_{3(s)}) = 10^{-8.4}$

Réaction susceptible de se produire : $Ca^{2+} + CO_3^{2-} = CaCO_{3(s)}$

D'après la réaction de précipitation : $Q_{rEI} = [Ca^{2+}]_i [CO_3^{2-}]_i$

On connait $[Ca^{2+}]_i = 3.10^{-2} \text{ mol.L}^{-1}$, mais pas celle en CO_3^{2-} .

Et d'après l'énoncé, $[CO_2]_{(aa)} = 2.10^{-3} \text{ mol.L}^{-1}$. Il nous faut $[CO_3^{2-}]_i$:

Domaines de prédominances acido-basiques des couples liés à CO_2 : D'après les données, on obtient :

Or
$$K_{a1} = \frac{[HCO_3^-]_{aq} [H_3O^+]}{[CO_2]_{aq}}$$
 et $K_{a2} = \frac{[CO_3^{2-}]_{aq} [H_3O^+]}{[HCO_3^-]_{aq}}$

Ainsi,
$$K_{a1}K_{a2} = \frac{[\mu e o_3]_{aq} [H_3 o^+]}{[co_2]_{aq}} \frac{[co_3^{2^-}]_{aq} [H_3 o^+]}{[\mu co_3]_{aq}}$$
Alors $\left[CO_3^{2^-} \right]_{aq} = \left[CO_2 \right]_{aq} \frac{K_{a1} \times K_{a2}}{[H_3 o^+]^2}$.

Alors
$$[CO_3^{2-}]_{aq} = [CO_2]_{aq} \frac{K_{a1} \times K_{a2}}{[H_3O^+]^2}$$
.

Le pH est égal à 6,75 donc $[H_3O^+] = 10^{-6,75}$ mol.L⁻¹.

 $\underline{AN}: [CO_3^2]_{aq} = \frac{2.10^{-3}}{3.2.10^{-14}} \ 10^{-6.4} \times 10^{-10.3} ; \text{ On obtient } [\underline{CO_3^{2-}}]_{mq} = 1.25.10^{-6} \ \text{molL}^{-1}$

Alors $Q_{rEI} = 3.10^{-2} \times 1,25.10^{-6}$; On obtient: $Q_{rEI} = 3.75.10^{-8} > K_s(caco_{3(s)}) = 10^{-8.4} \approx 4.10^{-9}$

Conclusion: Il peut y avoir formation de tartre dans la bouche.

II - Produit de blanchiment pour les dents :

- / Q2. Couple $H_2O_{2(aq)}/H_2O_{(l)}$: (-I;-II); Attention, dans $H_2O_{2(aq)}$, no(0) = -I; c'est une exception!!
 - $\frac{1}{2}$ équation redox : $\frac{1}{2}H_2O_{2(aq)} + 1e^- + 1H^+ = H_2O_{(l)}$ ou $H_2O_{2(aq)} + 2e^- + 2H^+ = 2H_2O_{(l)}$.
 - \leftarrow Couple $O_{2(a)}/H_2O_{2(aa)}$: (0:-I)
 - $\frac{1}{2}$ équation redox : $\frac{1}{2} O_{2(g)} + 1 e^{-} + 1 H^{+} = \frac{1}{2} H_{2} O_{2(aq)}$ ou $O_{2(g)} + 2 e^{-} + 2 H^{+} = H_{2} O_{2(aq)}$.
- Q3. Comme le potentiel standard du couple $H_2O_{2(aq)}/H_2O_{(l)}$ (E_1°) est bien supérieur à celui du couple $O_{2(q)}/H_2O_{2(aq)}$, (E_2°) la <u>réaction se fait entre l'oxydant le plus fort sur le réducteur le plus fort</u> selon la réaction d'oxydoréduction : $2 H_2 O_{2(aq)} = 2 H_2 O_{(l)} + O_{2(g)}$, Ainsi, le nombre d'oxydation de l'oxygène augmente et diminue dans la même réaction, il s'agit d'une réaction de dismutation.
- Q4. Couple acidobasique $H_2O_{2(aq)}/HO_2^-_{(aq)}$: $H_2O_{2(aq)} + H_2O_{(l)} = HO_2^-_{(aq)} + H_3O_{(aq)}^+$. La constante d'équilibre est $K_{eq} = Ka3 = 10^{-pKa3} = 2, 5. 10^{-12}$.
- On reprend la réaction précédente : **Réaction négligeable** car $K_{eq} = Ka3 = 2,5.10^{-12}.<10^{-3}$ **Q5.**

 $H_2O_{2(aq)} + H_2O_{(l)} = HO_2^{-}_{(aq)} + H_3O_{(aq)}^{+}$; Avec $K_{eq} = Ka3 = 2.5.10^{-12}.< 10^{-3}$

EIExcès

EE C ε ; $Ka3 = \frac{[Ho_2^{-}]_{eq}[H_3O^{+}]_{eq}}{[H_2O_{C(2)}]} = \frac{[H_3O^{+}]_{eq}^{2}}{C}; \text{Soit} : [H_3O^{+}]_{eq} = \sqrt{C \times K_{a3}}$

Et $pH = -\log [H_3O^+]_{eq} = \frac{1}{2}(pK_{a3} - \log C)$; AN: pH 7,3

CO2 12420 = HCO3 + HB KO2 CO2+340 = CO3+2450 =

HCO2+ H2O = CO32- + H3OF Kay

Q5 (suite). Vérification avec un diagramme de prédominance : Vérification: pH = 7,3<u>Conclusion</u>: A pH = 7,3, c'est bien $H_2O_{2(aq)}$ qui prédomine, mais le **pH devrait être inférieur à 7** (pour un acide faible mis en solution). pΗ Q6. Bilan des acides et des bases présents : $HO_2^{-}_{(\underline{a}\underline{a})}$ $H_2O_{2(aq)}$ Bilan des Acides Bilan des bases $H_2O_{2(aq)} (H_2O_{2(aq)}/HO_2^-_{(aq)}) \text{ de } pKa3 = 11,6 \blacktriangleleft$ $H_2O (H_2O / HO^-) \text{ de } pk_A = 14$ $H_2O(H_3O^+/H_2O)$ de pK_A = 0 Il faudrait donc tenir compte de la réaction secondaire : L'autoprotolyse de l'eau : $2 H_2 O_{(l)} = H_3 O_{(aq)}^+ + OH_{(aq)}^-$ III - Utilisation d'un autoclave : Q7. Tant que la soupape est fermée, le système est fermé et l'air est assimilé à un gaz parfait. A l'instant initial, $P_0 = \frac{nR T_0}{V}$ et juste avant que la soupape ne s'ouvre : $P_1 = \frac{nR T_1}{V}$; En faisant le rapport, il vient : $\frac{P_1}{P_0} = \frac{T_1}{T_0}$; Soit $P_1 = P_0 \frac{T_1}{T_0}$; $\frac{273+85}{293}$; On obtient $P_1 \approx 1.22$ bar. Le mélange air et vapeur d'eau est supposé idéal, les pressions partielles des sous-systèmes s'additionnent. Ainsi $P_{air} + P_{eau} = P_0 + \Delta P$ avec $P_f =$ Alors $P_{eau} = P_0 + \Delta P - P_{air} = P_0 + \Delta P - P_1$.

AN: $P_{eau} = 1,69 - 1,22$; On obtient $P_{eau} = 0,47$ bar au moment où la soupape se soulève. Q8. Lorsque tout l'air a été chassé $P_{sat} = P_0 + \Delta P = 1,69$ bar et d'après la loi de Duperray $P_{sat} = P_0 \left(\frac{t}{100}\right)^4$. Alors $\frac{t}{100} = \left(\frac{P_{sat}}{P_0}\right)^{1/4}$; Ainsi $t = 100 \left(\frac{P_{sat}}{P_0}\right)^{1/4}$; On obtient $t = 100 \left(\frac{1,69}{1}\right)^{1/4}$; On obtient $t = 100 \left(\frac{1,69}{1}\right)^{1/4}$; On obtient $t = 100 \left(\frac{1,69}{1}\right)^{1/4}$ Q9. On ne souhaite pas travailler avec des pressions plus élevées pour des raisons de sécurité (et peut-être aussi de coût). Autoclave à usage médical : Q10. Il faut évacuer l'air présent dans l'autoclave pour ne plus garder que la vapeur d'eau. Q11. On reprend la loi de Duperray : $P'_{sat} = P_0 \left(\frac{t}{100}\right)^4$ avec $t = 134^{\circ}C$. Alors $P'_{sat} = 1 \left(\frac{134}{100}\right)^4$; On obtient $P'_{sat} \approx 3.22 \text{ bar.}$ Cette **pression est bien superieure** à celle obtenue avec un autocuiseur. Q12. Le test c a échoué, car le centre de la feuille n'a pas atteint la température requise et est resté gris, contrairement au test b (réussi) qui, lui, présente une teinte noire homogène. L'image a sert de référence.