Recap: perfect secrecy

Informal description

An encryption method is perfectly secret if it is unbreakable

- no matter how much time you have
- no matter how powerful resources you have

One-time pad

- message and key: equal length
- throw away key after use
- the key is unknown to the attacker
- key: true random bits

Random sequences

What to expect from a random sequence?

- distribution of 0 and 1 (or other alphabet): uniform
- inability to predict future values based on the past/present
- no correlation between characters at different positions

Question

How do we define the randomness of a sequence?

Random sequence

Definition

Denote by d(s) the minimal description of sequence s using some universal language \mathcal{L} . The length of this description is called the Kolmogorov complexity of s: K(s) = |d(s)|.

Definition

Sequence s is algorithmically random if |s| < K(s).

Interpretation

Think of Kolmogorov complexity as the length of the shortest (python/C++/whatever) program that generates s as output. Randomness: no "easy" description/compression/program available.

- - Short description of s_1 : e.g. [1] * 42
- - s_4 Looks random, *looks* uncompressible.

Kolmogorov complexity: the caveat

Theorem

No program exists that would compute K(s) for any input s.

Proof by contradiction (sketch) Suppose a program KolmogorovComplexity(s) does the job. Suppose it has length 100000. Now, what's the shortest program that generates the output of the following algorithm?

```
for i=1\to\infty do for each sequence s with length \forall i do if KolmogorovComplexity(s)\geq 200000 then return s end if end for end for
```

Generating random sequences

Quote

"Anyone who attempts to generate random numbers by deterministic means is, of course, living in a state of sin." – John von Neumann

Corollary of impossibility theorem

No mathematical algorithm to be expected that generates provably random sequences.

Properties of randomness needed

- physical source
- poor randomness implies software vulnerailities

Computational security

Kerckhoffs's principles

- Make the cryptosystem secure in practice if not mathematically.
- 2

Idea

Relax the conditions on perfect secrecy. No breaking of cipher

- in "reasonable" time
- with "reasonable" probability of success

Computational secrecy

Reasonable time = ???

- efficient adversary
- efficient algorithms

Definition

An algorithm A has **polynomial running time** if $\exists p(.)$, a polynomial s.t. $\forall x \in \{0,1\}^*$ computation of A(x) terminates in $\leq p(|x|)$ steps.

Definition

An algorithm A is **probabilistic** if it has access to a source generating uniformly random and independent bits.

Efficient adversary

Using only probabilistic polynomial time (PPT) algorithms

Computational secrecy

Reasonable time = ???

- efficient adversary
- efficient algorithms

Definition

An algorithm A has **polynomial running time** if $\exists p(.)$, a polynomial s.t. $\forall x \in \{0,1\}^*$ computation of A(x) terminates in $\leq p(|x|)$ steps.

Definition

An algorithm A is **probabilistic** if it has access to a source generating uniformly random and independent bits.

Efficient adversary

Using only probabilistic polynomial time (PPT) algorithms

Computational secrecy

Reasonable success

- very small probability
- negligible probability

Definition

Function f is **negligible** if $\forall p(.)$, a polynomial $\exists N \in \mathbb{R}^+$ with $\forall n \in \mathbb{N}, n > N : f(n) < \frac{1}{p(n)}$.

Reasonable probability of success

Negligible function as the probability of successful break.

Computational secrecy: two approaches

Concrete approach

A scheme is (t, ε) -secure if \forall adversaries with at most t time, the prob. of success is at most ε .

Asymptotic approach

A scheme is secure if \forall PPT adversaries have only negligible probability of successfully breaking the scheme.

Security proofs by reduction

- Unconditional security: has its limits
- we need some assumption for computational security
- a "basic" problem being hard
- based on that, we can argument for the difficulty of breaking the scheme

Reduction pattern

- If we suppose a PPT adversary: $\exists A$ breaks the scheme with non-negl. prob.
- then there's an algorithm $\exists \mathcal{A}'$ solving the (by assumption) hard problem

(Computationally) secure encryption scheme

Definition

An encryption scheme is a triple $\Pi = (Gen, Enc, Dec)$ where :

- Gen is key generation, a probabilistic algorithm that returns a key $k \in_R \mathcal{K}$ (maybe using an input called the security parameter)
- Enc is encryption, a probabilistic algorithm that returns a ciphertext $c \in \mathcal{C}$ on inputs $k \in \mathcal{K}$ and $m \in \mathcal{M}$, i.e. $c := Enc_k(m)$.
- Dec is decryption a deterministic algorithm that returns a plaintext upon inputs k and $c \in C$: the return value is $Dec_k(c)$ $in\mathcal{M}$.

Threat model

Passive attacker: eavesdropping, has acces to a single encrypted text.

(Computationally) secure encryption scheme

Attack

- A: eavesdropping
- a single instance of an encrypted message
- passive attack
- goal: A learns nothing about the plaintext m
 - semantic security
 - hard to handle
- instead: indistinguishability

(Computationally) secure encryption scheme

Definition (Indistinguishablity experiment with eavesdropper $PrivK^{eav}_{\mathcal{A},\Pi}(n)$)

- Adversary \mathcal{A} returns two messages m_0, m_1 with $|m_0| = |m_1|$ upon input 1^n .
- 2 $k = Gen(1^n), b \in_R \{0,1\} : c = Enc_k(m_b)$. The ciphertext c is sent to A
- \odot \mathcal{A} outputs $b' \in \{0,1\}$
- $PrivK_{\mathcal{A},\Pi}^{eav}(n) = 1$, if b = b', otherwise 0.

Definition

The scheme $\Pi = (Gen, Enc, Dec)$ has the indistinguishability property aginst one eavesdropping if all PPT adversaries A, a negligible function e(.) exists for which

$$P(PrivK_{\mathcal{A},\Pi}^{eav}(n) = 1) \le \frac{1}{2} + e(n).$$

Idea

- one-time pad idea
- replace perfect security by computational security
- replace random key by ???

Pseudorandom sequence

- PR for short
- relaxed, computational version of randomness
- looks random to a PPT observer
- generated from a short truly random sequence (seed)

Idea

- one-time pad idea
- replace perfect security by computational security
- replace random key by ???

Pseudorandom sequence

- PR for short
- relaxed, computational version of randomness
- looks random to a PPT observer
- generated from a short truly random sequence (seed)

Intuition

- has some physical randomness in it, but the sequence is much longer
- in reasonable time: indistinguishable from true randomness

Definition

Let l(.) be a polynomial (called expansion factor) and $G: \{0,1\}^n \to \{0,1\}^{l(n)}$ a DPT (deterministic PT) algorithm. Then G is a pseudorandom generator if

- ② $\forall D$ PPT distinguisher, $\exists e(.)$, a negligible function with $\forall s \in_R \{0,1\}^n, \forall r \in_R \{0,1\}^{l(n)}$:

$$|Pr(D(r) = 1) - Pr(D(G(s)) = 1)| \le e(n)$$

Intuition

- has some physical randomness in it, but the sequence is much longer
- in reasonable time: indistinguishable from true randomness

Definition

Let l(.) be a polynomial (called expansion factor) and $G: \{0,1\}^n \to \{0,1\}^{l(n)}$ a DPT (deterministic PT) algorithm. Then G is a pseudorandom generator if

- ② $\forall D$ PPT distinguisher, $\exists e(.)$, a negligible function with $\forall s \in_R \{0,1\}^n, \forall r \in_R \{0,1\}^{l(n)}$:

$$|Pr(D(r) = 1) - Pr(D(G(s)) = 1)| \le e(n)$$

Properties

- PRG no "real" randomness
- Brute force always works in principle
- Seed:
 - true randomness
 - secret
 - not TOO short
- PRG exists, assuming ... is hard
- statistical tests

Example: next-bit test

Next-bit test

A sequnece passes the next-bit test if for all positions i, the attacker

- knowing the first i bits
- can NOT guess the bit at position (i+1) with probability higher than $50\% + \epsilon$.

Statistical tests

- NIST test (National standards intitute of US)
- DIEHARD test (academic origins Marsaglia '95)

PRG example: Fortuna

Fortuna

- Schneier, Fergusson 2003
- PRG family with 3 main components:
- 1 **Generator**: generate PR stream after seeding
- 2 Entropy accumulator: collect randomness
- 3 **Seeding**: ensure randomness in a bootstrapping phase

A secure scheme (against 1 eavsedropping)

Scheme using PRG

Let G be a PRG with expansion factor l, and

Gen
$$k \in_R \{0,1\}^n$$

Enc For
$$k \in \{0,1\}^n$$
 and $m \in \{0,1\}^{l(n)}$, let $c = Enc_k(m) = G(k) \oplus m$.

Dec For $k, c \in \{0,1\}^{l(n)}$, let $Dec_k(c) = c \oplus G(k)$.

Theorem

If G has the PRG properties, the $\Pi = (Gen, Enc, Dec)$ is secure in the presence of an eavesdropper (with one intercepted message).

A secure scheme (against multiple eavesdropping)

Definition (Indistinguishability experiment $PrivK_{\mathcal{A},\Pi}^{meav}(n)$)

Same as above, except:

Adversary A issues a sequence

$$M_0 = (m_{01}, \dots, m_{0t}), M_1 = (m_{11}, \dots, m_{1t})$$
 with $\forall i : |m_{0i}| = |m_{1i}|$

- 2 $k = Gen(1^n), b \in_R \{0, 1\} : C = (c_1, \dots, c_t) : c_i = Enc_k(m_{bi})$ received by A
 - ∃ scheme secure for exactly 1 eavesdropping attempt
 - deterministic algo never good \Rightarrow randomization needed (IV)
 - synchronization issues
 - $Enc_k(m) = (IV, G(k, IV) \oplus m)$

A secure scheme (against multiple eavesdropping)

Definition (Indistinguishability experiment $PrivK_{\mathcal{A},\Pi}^{meav}(n)$)

Same as above, except:

Adversary A issues a sequence

$$M_0 = (m_{01}, \dots, m_{0t}), M_1 = (m_{11}, \dots, m_{1t})$$
 with $\forall i : |m_{0i}| = |m_{1i}|$

- 2 $k = Gen(1^n), b \in_R \{0, 1\} : C = (c_1, \dots, c_t) : c_i = Enc_k(m_{bi})$ received by A
 - ∃ scheme secure for exactly 1 eavesdropping attempt
 - deterministic algo never good \Rightarrow randomization needed (IV)
 - synchronization issues
 - $Enc_k(m) = (IV, G(k, IV) \oplus m)$

Chosen plaintext attack

Attack

Active adversary: has access to arbitraty pairs (c, m)

Definition (CPA indistinguishability experiment $PrivK_{\mathcal{A},\Pi}^{cpa}(n)$)

- 2 Adversary \mathcal{A} has oracle (black box) access to $Enc_k(.)$ -hez, issues two plaintexts m_0, m_1 with $|m_0| = |m_1|$
- **3** $b \in_R \{0,1\} : c = Enc_k(m_b)$ given to A
- **4** A has further oracle access $Enc_k(.)$, outputs $b' \in \{0,1\}$
- $PrivK^{cpa}_{\mathcal{A},\Pi}(n) = 1$, if b = b', 0 otherwise.

Chosen plaintext attack

Definition

A scheme $\Pi = (Gen, Enc, Dec)$ is CPA-secure if for any PPT adversary $\mathcal{A} \exists e(.)$, a negligible function with

$$P(PrivK_{\mathcal{A},\Pi}^{cpa}(n) = 1) \le \frac{1}{2} + e(n).$$

- Cannot be deterministic
- Secure against one eavesdropping ⇒ secure against multiple eavesdropping
- Can be fulfilled by PRG

Wrap-up

Summary

- Sequence is random if hard to describe/compress
- Relax perfect secrecy: computational security
- PPT adversary + negligible success probability
- Pseudorandom sequence: computational difficulty formulation