CM146, Fall 2018

Problem Set 02: Jonathan Chu

November 11, 2018

- 1 (on CCLE)
- 2 (on CCLE)

3 Understanding Linear Separability

(a) **Solution:** If $\delta = 0$, we have:

$$y_i(\boldsymbol{w^T}\boldsymbol{x_i} + \theta) \ge 1$$

Trivially, this inequality holds when $sgn(y_i) = sgn(\boldsymbol{w^T}\boldsymbol{x_i} + \theta)$ and $|\boldsymbol{w^T}\boldsymbol{x_i} + \theta| \ge 1$.

The matching signs of y_i and $\boldsymbol{w^T}\boldsymbol{x_i}$ indicate these values of \boldsymbol{w} and θ satisfy equation (1). Therefore D is linearly separable.

(b) **Solution:** For $0 < \delta < 1$, it still holds that $sgn(y_i) = sgn(\boldsymbol{w^T}\boldsymbol{x_i} + \theta)$, meaning that D remains linearly separable, and $|\boldsymbol{w^T}\boldsymbol{x_i} + \theta| < 1$ for some i, which is not of any concern.

However, if the minimum $\delta \geq 1$, we have

$$y_i(\boldsymbol{w^T}\boldsymbol{x_i} + \theta) \ge c, \ c \le 0$$

and D is not linearly separable.

(c) **Solution:** The minimum value we can achieve for δ is 0. If this is the case, we seek \boldsymbol{w} and \boldsymbol{x} that satisfy the following:

$$y_i(\boldsymbol{w^T}\boldsymbol{x_i} + \theta) \ge 0$$

Trivially, $\mathbf{w} = \mathbf{0}$, $\theta = 0$ satisfy the above inequality yet clearly will not separate D.

(d) **Solution:** Trivially, we see that $\boldsymbol{w} = [1, 1, 1], \ \theta = 0, \ \delta = 0$ is an optimal solution.

In fact, any solution with

$$\begin{split} \delta &= 0 \\ | \boldsymbol{w^T} \boldsymbol{x_i} + \boldsymbol{\theta} | = |w_1 x_1 + w_2 x_2 + w_3 x_3 + \boldsymbol{\theta}| \geq 1 \\ \Longrightarrow |w_1 + w_2 + w_3 + \boldsymbol{\theta}| \geq 1 \text{ and } |-w_1 + -w_2 + -w_3 + \boldsymbol{\theta}| \geq 1 \end{split}$$
 is optimal.

4 Implementation: Polynomial Regression

(a) By inspection, linear regression would not model the data very accurately. Although lines with negative slope on both the training and test data seem like they would perform moderately well, there would still be high training and test error, since the square distance from points to the line would be somewhat large for many of the data points.

- $(b) \ Phi = np.concatenate ((np.ones(np.shape(X)), \ X), \ 1)$
- (c) $y = np.dot(self.coef_, np.transpose(X))$
- (d) Investigating linear regression...

-The model cost with zero weights is 40.233847

η	# Iter.	Final Coefficients	Final $J(\theta)$	Time Taken (s)
0.00407	10000	-9.4047e+18, -4.6523e+18	2.7109e + 39	0.187604
10^{-4}	764	2.4464, -2.8164	3.9126	0.0144
10^{-5}	7020	2.4465, -2.8164	3.9126	0.1290
10^{-6}	10000	2.2704, -2.4606	4.0864	0.1850

For $\eta=0.00407$ and 10^{-6} , the gradient descent algorithm stops when it reaches max iterations, meaning that it wasn't able to find a minimum. For 0.00407, the coefficients are very large, implying that the step size was too large, and the algorithm overstepped the minimum.

For 10^{-4} and 10^{-5} , the final coefficients match and the number of iterations is less than 10,000, meaning that in both cases, the algorithm

found a minimum. However, we see that with 10^{-4} , the algorithm converged after much fewer iterations, about a factor of ten less, so we know that the ideal step size is closer to 10^{-4} .

For 10^{-6} , the final coefficients are close to the final coefficients for 10^{-4} and 10^{-5} , but not quite there, implying that the step size was too small and the algorithm was taking too long to converge.

- (e) Fitting with closed-form solution:
 - -Final Coefficients: 2.446407, -2.816354
 - -Final value of objective function: 3.912576
 - -Time taken: 0.000306

The closed form solution method produces the same coefficients and final objective function value as gradient descent with a good step size. However, the time taken is much less than even the fastest gradient descent run, by a factor of about 10^2 .

- (f) Fitting with varied step size
 - -number of iterations: 1779
 - -final coefficients: 2.446407, -2.816353
 - -final value of objective function: 3.912576
 - -time taken: 0.034152

The algorithm takes longer with varied step size than with a constant step size of 10^{-4} , but takes less time than a constant step size of 10^{-5} .

(g)

(h) We prefer E_{RMS} over J(w) because it accounts for the number of training examples in addition to error. For less training examples and some given cost, E_{RMS} will be higher, indicating more chance of overfitting. For the same cost but more training examples, E_{RMS} will be lower, since the model is generalizing to more training data and thus has less chance of overfitting.

(i)

The 10th degree polynomial clearly fits the **training** data best, with the lowest training error. However, the 9th and 10th degree polynomials overfit the data, as illustrated by the very high test errors and low train errors.

As such, the best degree polynomial would be one with low training and test error, which appears to be somewhere in the range m=3 to m=6, which all seem to perform with similar error rates.