Chapter 5

Application of Newton's Law

5.1 Examples with tension and normal force

Example 1

Mass m is in equilibrium on the table: R - W = 0, where W = mg. Hence, we know the reaction force from the ground on the mass: R = W = mg. And, the action force from m on the table: R = mg according to the Newton's three law of motion. Note that m' and W' are the mass and the weight of the table respectively.

Example 2

Mass hanged by a string on a frictionless inclined plane

x-direction: $T - mg \sin \theta = 0 \implies T = mg \sin \theta$

y-direction: $R - mg \cos \theta = 0 \implies R = mg \cos \theta$

Example 3

x-direction: $T\cos\alpha - mg\sin\theta = 0 \implies T = mg\sin\theta\sec\alpha$

y-direction: $R + T \sin \alpha - mg \cos \theta = 0 \implies R = mg \cos \theta - mg \sin \theta \tan \alpha$

Example 4

Non-stretchable string, frictionless & weightless pulley

Note that $T_3 = T_1 + T_2$, where

 $T_1 = T_2 = T$. If $T_1 \neq T_2$, there is a non-zero torque τ acting on the pulley and the pulley will has angular acceleration. As the mass of the pulley is zero and thus its moment of inertia I is also zero. Then $\tau = I\ddot{\theta} \neq 0$ implies $\ddot{\theta} \to \infty$ which is impossible.

Analysing the force on the two masses, we find that

$$m_1g - T = m_1a \quad \text{and} \quad T - m_2g = m_2a$$

Then a and T can be found by solving these two equations.

Example 5

Frictionless inclined plane, frictionless & weightless pulley

For the block m_1 :

$$x$$
-direction: $T - m_1 g \sin \theta = m_1 a$
 $\Rightarrow T = m_1 (a + g \sin \theta)$
 y -direction: $R - m_1 g \cos \theta = 0$
 $\Rightarrow R = m_1 g \cos \theta$

For the block m_2 :

$$m_2g-T=m_2a \ \Rightarrow \ T=m_2(g-a)$$

Combining the two expressions of T, we obtain:

$$m_2(g-a) = m_1(a+g\sin\theta) \ \Rightarrow \ a = \frac{(m_2 - m_1\sin\theta)g}{m_1 + m_2}$$

5.2 Frictional force

5.2.1 Static friction

If a mass m is placed on a table with friction. We have experience that we must have large enough force to have it moved.

Before the mass is moved,

$$F = f_s$$

and they have opposite direction. Thus the net force on the mass is zero.

There exists a maximum static friction force $f_{s,\text{max}}$ such that

$$f_s \leq f_{s,\max} = \mu_s N$$

where μ_s is the coefficient of static friction.

5.2.2 Kinetic friction

As a mass m is moving on a frictional surface, there exists a frictional force, for which its direction is against the motion.

Its magnitude is always: $f_k = \mu_k N$.

N. B.: $\mu_k < \mu_s$ for the same surface.

Examples:

$$-\mu_k mg \cos \theta - mg \sin \theta = ma$$

$$\Rightarrow a = -\mu_k g \cos \theta - g \sin \theta$$

i. e. downwards with $\mu_k g \cos \theta + g \sin \theta$

As the mass come to rest, its subsequent motion depends on the coefficient of static friction μ_s :

- a) if $mg \sin \theta < f_{s,\text{max}} = \mu_s mg \cos \theta$ or $\mu_s > \tan \theta$, then it will continue stay at rest.
- b) if $mg \sin \theta > f_{s,\text{max}}$ or $\mu_s < \tan \theta$, it will slide down again.

If $mg\sin\theta > f_{s,\max}$ and on its way down,

$$\mu_k mg \cos \theta - mg \sin \theta = ma$$

 $\Rightarrow a = \mu_k g \cos \theta - g \sin \theta < 0$, accelerate.

5.3 Some examples concerning uniform circular motion

a) Conical pendulum

y-direction:

$$T\cos\theta-mg=ma_y=0$$
 (: no acceleration in y-direction)
$$\Rightarrow T=\frac{mg}{\cos\theta}$$

x-direction:

$$T\sin\theta = ma_x \implies a_x = T\frac{\sin\theta}{m} = \frac{mg}{\cos\theta}\frac{\sin\theta}{m} = g\tan\theta$$

N. B. a_x is pointing towards the circle center and is also perpendicular to \vec{v} . It is thus the centripetal acceleration for the uniform circular motion.

$$\therefore a_x = g \tan \theta = \frac{v^2}{R} \implies v = \sqrt{gR \tan \theta}$$

Period T is given by:

$$T=rac{2\pi R}{v}=2\pi\sqrt{rac{R\cot heta}{g}}$$

b) The rotor

A hollow cylinder is rotating about its axis with uniform circular motion. A person with his hands back on the cylinder wall.

For the person to stick on the wall without falling down,

$$mg < f_{s,\text{max}} = \mu_s N \tag{5.1}$$

The person is also under uniform circular motion and the normal reaction from the wall provides the required centrapetal acceleration.

axis of
$$f_s$$
 rotation f_s cylinder wall

$$\therefore N = \frac{mv^2}{R}$$

Thus, from (5.1),

$$mg < \mu_s rac{mv^2}{R} \quad {
m or} \quad v > \sqrt{rac{gR}{\mu_s}} \quad {
m i.~e.~} v_{
m min} = \sqrt{rac{gR}{\mu_s}}$$

If the rotor spins too slow, the person will fall down.

c) A bicycle moving around a curve on a level road

The bicycle is moving with constant speed v.

$$N = mg$$

and the friction provides the required centrpetal force.

$$\therefore f_s = \frac{mv^2}{R}$$

For the bicycle not slipping,

$$f_s = rac{mv^2}{R} < f_{s, ext{max}} = \mu_s N = \mu_s mg$$
 $\Rightarrow v^2 < \mu_s Rg \quad ext{or} \quad v < \sqrt{\mu_s Rg}$

i. e. if the bicycle runs too fast, it will slip.

d) A bicycle moving around a curve on a banked road

y-direction:

$$N\cos\theta - f_s\sin\theta - mg = 0 \implies N = \frac{mg + f_s\sin\theta}{\cos\theta}$$
 (5.2)

x-direction:

$$N\sin\theta + f_s\cos\theta = ma_x = \frac{mv^2}{R} \tag{5.3}$$

N. B.: Even if there is no friction between the bicycle and the road, the bicycle can also turn around the curve without slipping, i. e.

$$N = \frac{mg}{\cos \theta} \qquad \& \qquad N \sin \theta = \frac{mv^2}{R}$$

$$\Rightarrow v^2 = \frac{R}{m} \frac{mg}{\cos \theta} \sin \theta = Rg \tan \theta$$

$$\Rightarrow v = \sqrt{Rg \tan \theta}$$

For a non-frictionless road and no slipping, (5.2) and (5.3) give

$$\frac{f_s}{\cos \theta} + mg \tan \theta = \frac{mv^2}{R}$$

$$\Rightarrow f_s = \frac{mv^2}{R} \cos \theta - mg \sin \theta \tag{5.4}$$

Case I: $\frac{mv^2}{R}\cos\theta > mg\sin\theta$ or $v > \sqrt{Rg\tan\theta}$

Case II:
$$\frac{mv^2}{R}\cos\theta < mg\sin\theta$$
 or $v < \sqrt{Rg\tan\theta}$

$$\begin{array}{ccc}
 & mg \tan \theta & \frac{f_s}{\cos \theta} \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

The centripetal force required is smaller than the mg term and thus the frictional force has a direction against the mg term.

When will slipping occur?

Case I: $v > \sqrt{Rg \tan \theta}$ (Frictional force points downward)

v is too large such that the frictional force required to provide the centripetal force is larger than the maximum static friction $f_{s,\text{max}}$. Or from (5.2):

$$N = \frac{mg + \mu_s N \sin \theta}{\cos \theta} \quad \Rightarrow \quad N = \frac{mg}{\cos \theta - \mu_s \sin \theta}$$

From (5.3):

$$N \sin \theta + \mu_s N \cos \theta = \frac{m v_{\text{max}}^2}{R}$$

$$\Rightarrow \left(\frac{mg}{\cos \theta - \mu_s \sin \theta}\right) (\sin \theta + \mu_s \cos \theta) = \frac{m v_{\text{max}}^2}{R}$$

$$\Rightarrow v_{\text{max}} = \sqrt{gR \left(\frac{\sin \theta + \mu_s \cos \theta}{\cos \theta - \mu_s \sin \theta}\right)}$$

As $v > v_{\text{max}}$, the bicycle slips outward.

Case II: $v < \sqrt{Rg \tan \theta}$ (Frictional force points upward)

 $\frac{f_s}{\cos \theta}$ is in opposite direction to that of $mg \tan \theta$, i. e.

$$|mg \tan \theta| - \left| \frac{f_s}{\cos \theta} \right| = \left| \frac{mv^2}{R} \right|$$

 $\left|\frac{mv^2}{R}\right|$ may be so small such that

$$\left| mg an heta
ight| - \left| rac{f_{s, ext{max}}}{\cos heta}
ight| = \left| rac{mv_{ ext{min}}^2}{R}
ight|$$

Clearly, the bicycle slips inward when $v < v_{\min}$.

$$|mg an heta| - \left| rac{\mu_s N}{\cos heta}
ight| = \left| m rac{v_{\min}^2}{R}
ight|$$

But from (5.2):

$$N = \frac{mg - \mu_s N \sin \theta}{\cos \theta} \qquad \Rightarrow N = \frac{mg}{\cos \theta + \mu_s \sin \theta}$$

From (5.3):

$$N \sin \theta - \mu_s N \cos \theta = \frac{m v_{\min}^2}{R}$$

$$\Rightarrow \left(\frac{mg}{\cos \theta + \mu_s \sin \theta}\right) (\sin \theta - \mu_s \cos \theta) = m \frac{v_{\min}^2}{R}$$

$$\Rightarrow v_{\min} = \sqrt{gR \left(\frac{\sin \theta - \mu_s \cos \theta}{\cos \theta + \mu_s \sin \theta}\right)}$$

As $v < v_{\min}$, the bicycle slips inward.