This question paper contains 3 printed page	This	question	paper	contains	3	printed	pages
---	------	----------	-------	----------	---	---------	-------

Roll	No.						
AUOII	. 110.	1			!		ŀ

S. No. of Question Paper: 5643

Unique Paper Code

2533012010

Name of the Paper

Principles of Genetics (DSE)

Name of the Course

Microbiology

Semester

VI, (Part-III)

Duration: 2 Hours

Maximum Marks: 60

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any five questions.

All questions carry equal marks.

- 1. (a) Write the contributions of the following scientists in the field of genetics (any four): $4\times1=4$
 - (i) T.H. Morgan
 - (ii) Mary B. Mitchell
 - (iii) Tracy Sonneborn
 - (iv) Barbara Mc Clintock
 - (v) Hugo de Vries
 - (b) Define the following terms (any four):

 $4 \times 2 = 8$

- (i) Heritability, (ii) Non-dijunction, (iii) Pseudodominance, (iv) Linkage,
- (v) Synteny

2.	(a)	What is incomplete dominance? Explain with an example.	3
	(b)	Explain Polygenic inheritance with a suitable example.	5.
	(c)	Explain maternal inheritance with reference to Limnaea peregre	<i>i</i> . 4
3.	Diff	Perentiate between the following pairs:	3×4=12
	(i)	Backcross and Testcross	
	(ii)	Polygenic inheritance and monogenic inheritance	
	(iii)	Monohybird and dihybrid cross	
	(iv)	Incomplete Penetrance and Variable Expressivity.	
4.	(a)	Define Hardy Weinberg principle. How is it used to calculate all	ele and
		genotype frequencies in population?	5
	(b)	Explain dominant epistasis with an example.	4
	(c)	What are multiple alleles? Explain with one example.	3
5.	(a)	Explain X-Linked inheritance with a suitable example.	4
	(b)	Explain the mechanism of extranuclear inheritance in Mirabilis	jalapa.
			4
	(c)	Which test is done to determine whether the two independently is	solated
		mutations are in the same gene or in separate genes?	4
6.	(a)	Define Epigenetics and explain any one mechanism of epigenetic cl	hanges.
		· •	2
	(\dot{b})	Define kappa particles and its role in infectious heredity with s	suitable
		diagrams	1

(c) Consider Apricot eyes (a), Ebony body color (e) and mini bristles (m) as three recessive mutations in fruit flies. A fly with apricot eyes, ebony body, and mini bristles is crossed with a fly homozygous for the wild-type traits. The resulting F1 females are then test-crossed with males having apricot eyes, abony body, and mini bristles. The following progenies are produced:

Total	1800
$a^+\ e\ m$	13
$a.e^+m^+$	13
$a e m^+$	95
$a^+ e^+ m$	95
$a^+ e m^+$	167
α e+ m	167
, a e m	625
a^+ e^+ m^+	625

- (i) Determine the gene order for the three genes.
- (ii) Construct a genetic map showing the distances between these genes in map units
- (iii) Calculate the coefficient of coincidence (COC) and interference (I).

2+2+2=6