

Expressive Performance

MUMT 621: Music Information Acquisition, Preservation, and Retrieval

Rule-based Performance Models

Modeling Performance Data

Automatically Extracting Performance Data

Study of Intonation Practices

* Carl Seashore (1938) studied timing, dynamics, intonation, and vibrato in pianists, violinists, and singers

* Equipment: piano rolls, films of the movement of hammers during performance, phono-photographic

apparatus

* Interest in empirical performance analysis diminished between the Second World War and 1980's, in part due to its labouriousness

Wave recorder for use with disk phonograph; the lever, acting like a pantograph, traces the waves on a revolving smoked drum

The tonoscope for analyzing the pitch of the tones on a disk phonograph record

- * The resurgence in interest in the late 1970s/early 1980s coincided with
 - * a movement by musicologists away from equating scores with music
 - * an increased interest by cognitive psychologists in music.
- * Ingemar Bengtsson and Alf Gabrielsson (1980) undertook a number of systematic experiments on musical rhythm in performance

Bruno Repp

* 1992 Experiment

- * performed extensive evaluations of Beethoven's and Schumann's piano music
- * found that the degree of ritardando could be consistently related to the hierarchical levels of the phrase
- * observed that the higher the structural level the more pronounced the ritardandi were
- * demonstrated the differences in pianists' styles

Bruno Repp

- * 1997 Experiments
 - * Experiment 1 Schumann's "Träumerei"
 - * 10 performances by piano graduate studentsA
 - * An averaged performance
 - * Experiment 2 Chopin's Etude in E major
 - * 9 performances by graduate student pianists
 - * 15 commercial recordings of famous pianists
 - * Averaged performances of each group and a combined average of all of the recordings
 - * 3 performances using the first three principal components of the expert performances

* Repp (1997) Music Examples

Schubert

Example One

Example Two

Example Three

Chopin

Example One

Example Two

Example Three

Example Four

Example Five

Bruno Repp

- * Repp (1997) Results
 - * Experiment One
 - * Examples: Performance 1, Average, Performance 10
 - * Rankings: Performance 10, Average, Performance 3
 - Experiment Two
 - * Examples: Component 2, Student 1, Expert Average, Student Average, Expert 11
 - * Rankings: Expert Average, Expert 11, Student 1, Student 3, Student 9 Student 2, Student Average
- * All of the audio files are available at: http://www.haskins.yale.edu/misc/REPP/AP.html

Popularity of the Piano

* Factors

- * the large amount of solo repertoire
- * the instrument's percussive nature
- * the ease with which one can acquire accurate, minimally intrusive performance measurements from a pianist via MIDI technology
- * the feasibility of using specially equipped pianos to measure performance data

Popularity of the Piano

- * Issues with MIDI-based studies
 - * require a MIDI-rigged piano
 - * typically done in a lab environment
 - * precision is limited for other instruments
- * Music Information Retrieval techniques allow for extraction of performance data from recorded signals
- * We'll return to this later...

Rule-based Performance Models

KTH model

- * Developed at the Royal Institute of Technology in Stockholm
- * Set of performance rules to predict aspects of timing, dynamics, and articulation
 - * ostensibly based on the local musical context
- * "analysis-by-synthesis" approach
 - * pros: models one kind of performer-listener interaction
 - * cons: relies heavily on the performer as only a small number of examples were presented

KTH model

* DURATION-CONTRAST Rule

- * modifies the ration between sequential notes to emphasis difference in their durations
- quality control parameter (k)
 - * 1 full effect
 - * 0 no effect
 - * -1 reverse the effect
- * problems: several rules influence the duration of the note, which makes this rule dependent on these

KTH model: Empirical Evaluation

- * To produce a predictive model the parameters of the model need to be tuned
 - * analysis-by-synthesis approach presents some basic suggestions
- * Empirical evaluation of recorded performances are also necessary
 - * Sundberg et al. (1991) determined the perceptual threshold for the k values
 - * Friberg (1995) used a greedy search method to fit parameters to the PHRASE ARCH rule based on the first nine measures a single piece
 - * Sundberg et al. (2003) fitted PHRASE ARCH k values manually to a single performance of a Mozart sonata movement

KTH model: Empirical Evaluation

- * Empirical evaluations outside of KTH
 - * Zanon and De Poli (2003a; 200b) tested both fixed and time varying k values
 - * Gabrielsson and Juslin (1996) related model to emotional colourings
 - * Juslin et al. (2002) developed a comprehensive computation model of expressive performance
 - * G generative KTH model
 - * E Juslin's earlier work on emotional models
 - * R random variability
 - * M analogies to physical motion

Todd model

- * Developed by Neil Todd from late 1980s to early 1990s
- * Structure-level models of expressive timing and dynamics
- * "analysis-by-measurement" approach
 - * empirical evidence obtained directly from measurements of human performances
 - * assumptions:
 - * direct link between musical structure and performance
 - * relationship can be modeled with a single rule
 - * pros: appeals to a theoretical framework to assess musical context (Lerdahl and Jackendoff 1983)
 - * cons: overly simplistic ("the faster, the louder")

Todd model

- * "the faster, the louder"
- * Intensity is proportional to the squared tempo
- * Used a recursive look-ahead procedure to allow the hierarchical grouping in the music to control the instantaneous tempo
- * Leads to increased dynamics and tempo at the middle of phrases and reduced dynamics/slowing down at points of stability, such as phrase boundaries
 - * this is modeled at each level of the piece's hierarchy

Todd model: Empirical Evaluation

- * Todd (1992) compared the model's output with tempo and dynamic curves of one or two performances of a small number of pieces by Haydn
- * Windsor & Clarke (1997) used regression analysis of several performances generated by Todd's model against two repeated human performances
 - * residuals: idiosyncrasies of human performance not explained by the model
- * Clarke & Windsor (2000) had human listeners evaluate performances generated by Todd's model

Mazzola model

- * Developed by Guerino Mazzola and colleagues in Zurich
- * Mathematical music theory and performance model
- * Applies analysis and performance components
 - * computer-aided analysis tools for musical structure
 - * each aspect implemented in a Rubbette (plugin)
 - * performance is generated with the Rubettes
 - * uses "Stemma/Operator" theory for mapping

Mazzola model

* MetroRUBETTE

- * (inner) metrical analysis
- * result is different than Lerdahl and Jackendoff-esque (outer) metrical analysis
- * used linear mapping between metrical weight and tone intensity to generate a performance
- * Empirical Evaluation
 - * not evaluated against real performances

Modeling Performance Data

Widmer model

- * Developed at Vienna
- * Multi-level model of expressive timing and dynamics
- * Uses large amounts of empirical data extracted from a performance to train a machine learning model to predict local, note-level expressive deviations and higher-level phrasing pattern
 - applies inductive machine learning and data mining techniques

Widmer: Note level model

- * Inductive rule learning algorithm to learn note-level rules for timing, dynamics, and articulation
 - * i.e., how the performer will play a particular note
 - * complementary to higher-level manipulations
- * Training method
 - * recordings of 13 Mozart piano sonatas by one performer
 - * each note melody described by 29 attributes
 - * computer learned a set of 17 simple classification rules

Widmer: Multi-level model

- * Attempts to account for the role of tempo, dynamics, and articulation in shaping abstract structures, such as motifs, groups, and phrases
- * Assumptions
 - * expressive timing or dynamics gestures can be reasonably approximated quadratic curves
 - * a multi-level performance can be represented as a linear combination of these shapes at different hierarchical levels
 - * similar phrases will be played similarly by different pianists

Widmer: Multi-level model

- * Inputs to the system
 - * example performances by musicians
 - * hierarchical phrase analysis of the music
 - tempo and dynamics curves
- * System fits quadratic approximation functions to the curves associated with each phrase
- * Predicts elementary expressive shapes for similar phrases in different pieces
- * Can be combined with the note-level model, such that the note-level model compensates for the "residuals"

Widmer: Empirical Evaluation

- * Widmer and Tobudic (2003a) tested the predictive performance of the multi-level model by measuring how closely the tempo and dynamics curves of the new performances matched those predicted by the model
 - * results were better than chance and mechanical performances
- * Tobudic and Widmer (2003b) optimized the case-based learning algorithm and used first-order logic and structural similarity to model the phrases' hierarchical context
 - * produced some quantitative improvements

Applicable MIR techniques

- * Beat tracking
- * Music Alignment
 - * Real time score following (online)
 - * MIDI-score alignment (offline)

Beat Tracking

- * Works okay for percussive instruments, e.g., piano, for some tasks
 - * though not accurately enough to produce reliable data
- * Generally fails for non-percussive instruments
- * MIREX 2007 Onset Detection Evaluation

Real-time score alignment

- * Hidden Markov Models
 - * Cano, Loscos, Bonada (1999)
 - * Orio and Dechelle (2001)
 - * Schwarz, Orio, and Schnell (20040
- * MIREX 2008 Real-time Audio to Score Alignment Evaluation

Real-time score alignment

- * Christopher Raphael's Music Plus One (2004)
 - * Uses Graphical Models
 - * Task I: Listen
 - * Inputs: sampled acoustic signal musical score
 - * Output: Time at which notes occur
 - * Task 2 : Play
 - * Inputs:output from Listen module musical score rehearsal data from musician performances of accompaniment
 - * Output: Music accompaniment in real time

Dynamic Time Warping (Offline)

- * Orio and Schwarz (2001) peak structural distance
- * Hu et al. 2003 chromagrams, also considered pitch and MFCCs
- * Turetsky and Ellis 2003 a combination of spectral power, first order differences between channels, first order difference in frequency, and noise suppression
- * Kurth et al. 2007 chroma

Similarity matrix with the DTW path indicated in black

Study of Intonation Practices

Goals

- * To reliably extract perceived pitch information from *a cappella* recordings of *a cappella* singing voice (solo and in ensembles)
- * To develop a model of the observed intonation tendencies

INTONATION IN SOLO VOCAL PERFORMANCE

Original

INTONATION IN SOLO VOCAL PERFORMANCE

Original

Quantized

Potential Applications

- * Relate to studies of expressive performance
- * Assess whether there is an observable relationship between intonation and music theories dealing with musical attraction and tension
- * Develop a predictive model for intonation practices
- * Generate more accurate digital re-creations

Project Overview

- * Experiment uses recordings of Schubert's 'Ave Maria' and a composed melody
- * Recordings are analyzed with signal processing techniques
- * Estimated perceived fundamental frequency of each note is related to its musical context

Experiment

- * Subjects
 - * 6 professional sopranos without perfect pitch
 - * 6 undergraduate sopranos with perfect pitch
 - * 6 undergraduate sopranos without perfect pitch
- Experimental material
 - * Schubert's 'Ave Maria' a cappella and with accompaniment
 - * A composed melodic exercise

Signal Processing

* Note onsets and offsets are determined by first aligning a MIDI version of the score to the audio using Dynamic Time Warping

Signal Processing

- * Once the onsets and offsets have been determined, fundamental frequency estimation is done with Alain deChevegine's YIN algorithm (2002)
- * The perceived pitch over the duration of the sustain portion of the note was calculated as the geometric mean

Challenges

Problems with the alignment algorithm

Singers 'sliding' into notes

a cappella vs accompanied

Self-consistency

	a cappella	Accompanied
Undergrad	14.9	19.0
Pro	33.74	10.2

Intra-singer consistency

a cappella	Accompanied	
21.31	16.43	

	Mean	Standard Deviation
Leading tone to tonic (72 instances)	90	15.1
Tonic to leading tone (84 instances)	-89.5	15.5
Eb to D in different keys (24 instances)	-84.3	10
D to Eb in different keys (6 instances)	99.1	6.4

Polyphonic Ensembles

- * the seventh of the home key functions differently in a piece that modulates
- * B is the leading tone of C Major and the mediant of G Major
 - * in C Major it is an unstable pitch that generally resolves to the tonic (C)
 - * in G major it is a stable pitch
- * even within a single chord there are potential tuning conflicts
- * in the context of a G Major chord in C major, B is both the leading-tone of the key and the third of the chord
 - * it is commonly held that leading-tones are tuned sharp
 - * theories of sensory consonance suggest that a vertical major third will be tuned flat

Extracting Pitch Data for Ensembles

- * Robust polyphonic transcription is still an unsolved problem
- * However, there is a workaround when a score is available:
 - * align the MIDI score to audio
 - * use the MIDI score to guide the signal processing analysis to estimate accurate frequency information

Extracting Pitch Data for Ensembles

- * Can use an instantaneous frequency estimation technique to create a special spectrogram with more exact frequency information than a standard spectrogram
- * Aligned MIDI file indicates the frequency-range and time-span for each expected note

Current accuracy rate of pitch estimation

Future Work

- * Improve alignment and pitch estimation accuracy
- * Once accurate pitch estimates have been obtained for a number of recordings have been the collected data can be modelled
 - * Short-term goal is to find if any generalities exist
 - * Longer-term goal is to develop a theory of vocal intonation practices

References

Bengtsson, I., and A. Gabrielsson. 1980. Methods for analyzing performance of Musical rhythm. *Scandinavian Journal of Psychology*. 21. 257-68.

Clarke, E.F., & Windsor, W.L. (2000). Real and simulated expression: A listening study. Music Perception, 17, 277–313.

Friberg, A. (1995). Matching the rule parameters of Phrase Arch to performances of "Träumerei:" A preliminary study. In: A. Friberg, & J. Sundberg (Eds.), Proceedings of the KTH Symposion on Grammars for Music Performance (pp. 37–44). Stockholm, Sweden: Department of Speech Communication and Music Acoustics. Gabrielsson, A., & Juslin, P.N. (1996). Emotional expression in music performance: Between the performer's intention and the listeners experience. Psychology of Music, 24, 68–91.

Juslin, P.N. (2003). Studies of music performance: A theoretical analysis of empirical findings. In: R. Bresin (Ed.), Proceedings of the Stockholm Music Acoustics Conference (SMAC'03), August 6–9, 2003(Vol. II, pp. 513–516). Stockholm, Sweden: Department of Speech, Music, and Hearing, Royal Institute of Technology.

Repp, B. H. 1992. Diversity and commonality in music performance: an analysis of timing microstructure in Schumann's 'Träumerei'. *Journal of the Acoustical Society of America*. 92: 2546–68.

Seashore, C. E. 1938. Psychology of music. New York: Dover Publications.

Repp, B.H. (1992). Diversity and commonality in music performance: an analysis of timing microstructure in Schumann's "Träumerei". Journal of the Acoustical Society of America, 92, 2546–2568.

Stamatatos, E., & Widmer, G. (2002). Music performer recognition using an ensemble of simple classifiers. In: F.V. Harmelen (Ed.), Proceedings of the 15th European Conference on Artificial Intelligence (ECAI'2002), July 21–26, 2003, Lyon(pp. 335–339). Amsterdam: IOS Press.

Sundberg, J., Friberg, A., & Bresin, R. (2003). Attempts to reproduce a pianist's expressive timing with Director Musices performance rules. Journal of New Music Research, 32, 317–325.

References

Sundberg, J., Friberg, A., & Frydén, L. (1991b). Threshold and preference quantities of rules for music performance. Music Perception, 9, 71–92.

Todd, N.P.M. (1992). The dynamics of dynamics: A model of musical expression. Journal of the Acoustical Society of America, 91, 3540–3550.

Widmer, G. (2002). Machine discoveries: A few simple, robust local expression principles. Journal of New Music Research, 31, 37–50.

Widmer, G. (2003). Discovering simple rules in complex data: A meat-learning algorithm and some surprising musical discoveries. Artificial Intelligence, 146, 129–148.

Widmer, G., Dixon, S.E., Goebl, W., Pampalk, E., & Tobudic, A. (2003). In: search of the Horowitz factor. AI Magazine, 24, 111–130.

Widmer, G. & W. Goebl. (2004). Computational models of expressive performance: The state of the art. Journal of New Music Research 33, 203-216.

Widmer, G., & Tobudic, A. (2003). Playing Mozart by analogy: Learning multi-level timing and dynamics strategies. Journal of New Music Research, 32, 259–268.

Windsor, W.L., & Clarke, E.F. (1997). Expressive timing and dynamics in real and artificial musical performances: Using an algorithm as an analytical tool. Music Perception, 15, 127–152.

Zanon, P., & De Poli, G. (2003a). Estimation of parameters in rule systems for expressive rendering in musical performance. Computer Music Journal, 27, 29–46.

Zanon, P., & De Poli, G. (2003b). Time-varying estimation of parameters in rule systems for music performance. Journal of New Music Research, 32, 295–315.

Zanon, P., & Widmer, G. (2003b). Recognition of famous pianists using machine learning algorithms: First experimental results. In: Proceedings of the 14th Colloquium on Musical Informatics (CIM'2003) 84–89. Florence, Italy.