

SUBSTRATE ASSEMBLY DEVICE

Patent Number: JP6313870
Publication date: 1994-11-08
Inventor(s): YONEDA FUKUO; others: 03
Applicant(s): HITACHI LTD; others: 01
Requested Patent: JP6313870
Application Number: JP19930102203 19930428
Priority Number(s):
IPC Classification: G02F1/13
EC Classification:
Equivalents: JP3170773B2

Abstract

PURPOSE: To enable two substrates to be pasted to each other with a sealant without catching dust during an assembly work, and also enable a gap between the two substrates to be maintained at an accurate size.

CONSTITUTION: A table 4 travelling between a sealant pattern drawing station S1 and a substrate pasting station S2 is provided, and a substrate 13 is placed on a stage 5 travelling above the table 4 in an orthogonal direction. While a sealant is being discharged from a delivery machine at the station S1 with a nozzle end directed down, the stage 5 is caused to move in an orthogonal direction, thereby drawing a sealant pattern. Then, the sealant is temporarily dried between the stations S1 and S2, and the second substrate 14 is horizontally suspended from an adsorption table 15 at the station S2. Furthermore, the table 4 is made to move to the station S2, and the first substrate is laid under the second substrate 14. Then, a facing gap between the first substrate and the second substrate 14 is narrowed and both substrates are pasted to each other.

Data supplied from the esp@cenet database - I2

1

【特許請求の範囲】

【請求項1】 シール剤描画ステーションと基板貼り合わせステーションとの間を移動可能なテーブルと、上記シール剤描画ステーションに設けられシール剤を吐出する先端が下方を向いたノズルと、上記テーブル上に設けられ第1の基板を搭載する少なくとも直交方向に移動可能なステージと、上記ノズルからシール剤を吐出させつつ上記ステージを直交方向に移動させることにより上記第1の基板にシール剤を所望のパターンで描画させる手段と、上記シール剤描画ステーションと基板貼り合わせステーションとの間に設けた第1の基板上に描画されたシール剤を仮乾燥する手段と、上記テーブルが上記基板貼り合わせステーションに移動されたときに第2の基板を上記ステージに搭載された上記第1の基板と平行でその上方になるように支持する手段と、平行に配置された上記第1と第2の両基板の対向間隔を狭めることにより両基板をシール剤で貼り合わせる手段とを備えたことを特徴とする基板組立装置。

【請求項2】 シール剤描画ステーションと基板貼り合わせステーションとの間を移動可能なテーブルと、上記シール剤描画ステーションに設けられシール剤を吐出する先端が下方を向いたノズルと、上記テーブル上に設けられ第1の基板を搭載する少なくとも直交方向に移動可能なステージと、上記ノズルからシール剤を吐出させつつ上記ステージを直交方向に移動させることにより上記第1の基板にシール剤を所望のパターンで描画させる手段と、上記シール剤描画ステーションと基板貼り合わせステーションとの間に設けた第1の基板上に描画されたシール剤を高粘度化する手段と、上記テーブルが上記基板貼り合わせステーションに移動されたときに第2の基板を上記ステージに搭載された上記第1の基板と平行でその上方になるように支持する手段と、平行に配置された上記第1と第2の両基板の対向間隔を狭めることにより両基板をシール剤で貼り合わせる手段とを備えたことを特徴とする基板組立装置。

【請求項3】 請求項1または2に記載の基板組立装置において、上記シール剤描画ステーションと基板を貼り合わせステーションとの間に、さらに上記第1の基板上にスペーサを散布する手段を設けたことを特徴とする基板組立装置。

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明は基板組立装置に係り、特に液晶表示パネルのように2枚の基板を極めて接近させ且つ組立作業中に塵埃を取り込まずに貼り合わすことができる基板組立装置に関する。

【0002】

【従来の技術】 従来の液晶表示パネルは透明電極や薄膜トランジスタアレイを付けた2枚のガラス基板を数 μm 程度の極めて接近した間隔をもってシール剤で貼り合わ

10

2

せ、それによって形成される密閉空間に液晶を封止したものである。この液晶表示パネルのシール剤をガラス基板に設ける手段として、ノズルから基板上に抵抗ペーストを吐出させつつ基板を移動させることにより所定のパターンを描画させて抵抗パターンを設ける技術を利用することができ、このような従来技術として特開平2-52742号公報に記載のものがある。また従来の液晶表示パネルの基板の組立にあたっては、シール剤を設けたガラス基板を搬送手段で貼り合わせ作業台に移し、そこで手作業で2枚のガラス基板の面方向の位置合わせを行ってから、スペーサとなる粒子等をシール剤に含ませておくことによって数 μm 程度の極めて接近した間隔に2枚のガラス基板を貼り合わせていた。

【0003】

【発明が解決しようとする課題】 上記従来技術の液晶表示パネルは、微細な透明電極や薄膜トランジスタアレイがガラス基板に設けられており、それによって構成される画素は極めて小さいものである。したがって組立作業中にガラス基板上に塵埃が積もって密閉空間に塵埃が取り込まれると、その塵埃の存在する箇所は画素欠陥となり、モノクロ表示パネルでは欠陥部が黒点となり、またカラー表示パネルでは欠陥部が赤・緑・青のいずれかの色となって、画面に表示される映像が見にくいものとなる。この液晶表示パネルのシール剤をガラス基板に設ける手段として、上記特開平2-52742号公報に記載のものを利用すると、そこでは基板とノズルが非接触の状態で抵抗ペーストを吐出させ、基板を移動させて所定の抵抗パターンを描画させており、ノズルを固定していることによって基板上に塵埃が積りにくいものとなっている。しかしながら、ここでは抵抗パターン描画後の基板の取扱いについては格別言及されていない。また従来の液晶表示パネルの上記基板の組立にあたっては、シール剤を設けたガラス基板を搬送手段で貼り合わせ作業台に移し、手作業で2枚のガラス基板の位置合わせを行ってから貼り合わせているため、その組立作業中にガラス基板上に塵埃が積もって、密閉空間に塵埃が取り込まれる度合いが非常に高いという問題があった。

【0004】 ここで、シール剤およびスペーサについて簡単に説明する。

【0005】 シール剤としては、熱硬化形や紫外線硬化形の接着性を有する合成樹脂が用いられるが、シール剤の粘度が低いと、シール剤がガラス基板貼り合わせ時の加圧力で逃げてしまい、基板間隔が所定の間隔より狭くなるばかりでなく、予定していない部分までシール剤が拡がって画面に表示される映像がみにくものとなる。

【0006】 スペーサは、2枚の基板間隔を規制し、適当な液晶層の厚さを維持するために必要なもので、液晶パネルが大きくなればなる程必要性が増加する。また、表示面積が大きくなればなる程均一な液晶層を確保するためにスペーサの全面均一散布が要求される。しかしな

40

30

50

—542—

がら、従来スペーサの全面均一散布技術は紹介されていない。

【0007】本発明の目的は、上記従来技術の問題点を解決し、液晶表示パネルのように基板にシール剤、スペーサを設けたのち2枚の基板を極めて接近させて貼り合わせる組立作業中に塵埃を取り込まずに貼り合わすことができ、かつ、2枚の基板の間隔を所望とする正確な寸法に保って貼り合わせができる基板組立装置を提供することにある。

【0008】

【課題を解決するための手段】上記目的を達成するためには、本発明の基板組立装置は、シール剤描画ステーションと基板貼り合わせステーションとの間に移動可能なテーブルと、上記シール剤描画ステーションに設けられシール剤を吐出する先端が下方を向いたノズルと、上記テーブル上に設けられ第1の基板を搭載する少なくとも直交方向に移動可能なステージと、上記ノズルからシール剤を吐出させつつ上記ステージを直交方向に移動させることにより上記第1の基板にシール剤を所望のパターンで描画させる手段と、上記シール剤描画ステーションと基板貼り合わせステーションの間に設けた上記第1の基板上に描画されたシール剤を仮乾燥ないし高粘度する手段と、上記テーブルが上記基板貼り合わせステーションに移動されたときに第2の基板を上記ステージに搭載された上記第1の基板と平行でその上方になるように支持する手段と、平行に配置された上記第1と第2の両基板の対向間隔を狭めることにより両基板をシール剤で貼り合わせる手段とを備えるようにしたものである。

【0009】さらに、上記目的を達成するため、本発明は、上記シール剤描画ステーションと基板貼り合わせステーションの間に、上記第1の基板上にスペーサを散布する手段を設けるものである。

【0010】

【作用】上記基板組立装置は、シール剤描画ステーションで上記ノズルからシール剤を吐出させつつ上記ステージを直交方向に移動させつつ第1の基板にシール剤パターンを描画する工程で第1の基板の上部に動くものが存在しないため第1の基板上に塵埃が落下しないし、またシール剤描画後に第1の基板がステージごと基板貼り合わせステーションに移動して第2の基板の下方に配置されるため、別の搬送手段が介在されることによって第1の基板の上部で動くものが存在しないことによって第1の基板の移動する工程でも第1の基板上に塵埃が落下しないし、さらに両基板の貼り合わせ工程では上下で平行に配置された両基板の対向間隔を狭めることにより両基板が貼り合わされるため両基板の間に動くものが存在しないことによって第1の基板上に塵埃が落下しない。このように組立作業の如何なる工程でも第1の基板上に塵埃が落下しないため両基板のシール剤による貼り合わせで形成される空間内に塵埃が取り込まれることがなく、装

置の構成も簡単にできる。

【0011】また、シール剤描画ステーションと基板貼り合わせステーションとの間に仮乾燥手段あるいは高粘度手段があるので、シール剤は高粘度化して整形されるので、シール剤形状が基板貼り合わせ時に乱れることはない。

【0012】なお、シール剤は、例えは熱硬化形シール剤の場合には熱線や赤外線を照射し、紫外線硬化形シール剤の場合には紫外線を照射して仮乾燥させる。

【0013】スペーサとしては、耐熱性、耐薬品性に優れ、広い温度範囲で弾性体として挙動する眞球形のプラスチック微粒子や、無アルカリガラスを紡糸して所望の長さに切断した繊維状のものがある。眞球状のものは、その直径が両基板の貼り合わせ間隙に近いものが用いられ、繊維状のものの場合は、散布した時に繊維同志が交差して重なることもあるが、両基板の貼り合せ時に押圧すると、加圧力が交差部に集中し、繊維が滑って交差が解けることが多いので、断面直径が基板貼り合わせ間隙に近いものが用いられる。

【0014】スペーサの散布は、スペーサをそのまま散布する乾式や、揮発性液体中にスペーサを搅拌させておいて液体と共に散布する湿式がある。

【0015】

【実施例】以下、本発明の一実施例を図1から図3により説明する。

【0016】図1は本発明による基板組立装置の一実施例を示す液晶表示パネル組立装置のカバーを外した本体の正面図である。図1において、液晶表示パネル組立装置1はシール剤描画ステーションS1と、基板貼り合わせステーションS2との2部分から構成され、この両ステーションS1、S2は隣接して並べられている。基台2の上方に支柱2aで梁持された架台3があり、基台2の上面には両ステーションS1、S2に亘るレール7を備えている。このレール7上をステージ移動テーブル4がステージ駆動モータ6により、図面上で左右に即ち両ステーションS1、S2間を移動できるようになっている。テーブル4上にはXYθステージ5およびその上面で第1のガラス基板13を真空吸着などにより支持する下側吸着テーブル8が載置されている。ここでXYθステージ5について説明するに、第1のガラス基板13が水平に搭載されるとすると、第1のガラス基板13を水平にX軸・Y軸方向に移動させるとともに、第1のガラス基板13を水平に回転すなわちθ軸移動させるものであり、もし第1のガラス基板13がXY方向に正確に配置されるならばθ軸移動は不要である。

【0017】上記レール7と対面するシール剤描画ステーションS1部の架台3にはZ軸駆動モータ9によって上下に移動するZ軸移動テーブル10が設けられている。このテーブル10には光学式非接触変位計11とノズルを持つシール剤吐出機12とが取付けられており、

5

そのノズル先端は下方の第1のガラス基板13を向いている。一方の上記レール7と対面する基板貼り合わせステーションS2部の架台3の上部には、さらに支柱2bで梁持された架台18に加圧用駆動機構17が載置され、その下方に延びたポールねじ17aを介して該駆動機構17で架台3の下側に設けられた加圧吸着テーブル15を上下に移動するようになっている。

【0018】加圧吸着テーブル15はその下面に第2のガラス基板14を上記第1のガラス基板13と平行になるように真空吸着などにより水平に吊り下げる形に支持するようになっている。またこのテーブル15には2箇所に孔15a, 15bが穿けられており、このテーブル15に穿けられた孔15a, 15bに対応する架台3の部署にはCCD内蔵の画像認識用カメラ16a, 16bが取付けられている。この両カメラ16a, 16bは下方を向いており、従ってカメラ16a, 16bはテーブル15の両孔15a, 15bを通して第2のガラス基板14などの下部に存在する物体を確認することができる。なおこの液晶表示パネル組立装置には上記した各駆動部の図示していない制御装置が設けられている。

【0019】図1において、30はシール剤仮乾燥手段、40はスペーサ散布手段で、架台にその下側の吸着テーブル8上の第1のガラス基板13に向けて固定されている。

【0020】その具体的構成を図2により説明すると、シール剤仮乾燥手段30は、第1のガラス基板13の幅方向に伸びた赤外線ランプ31とフード32から構成され、ランプ31のコード33は図示していないスイッチに接続されている。赤外線ランプ31はシール剤の種類に応じて紫外線ランプであっても良い。フード32は赤外線の照射範囲を規定する。フード32の下端は開放されているが、ガラスカバーを配設しても良い。

【0021】スペーサ散布手段40は、一例としてプラスチック真球スペーサ28を散布するもので、貯蔵タンク41から配給弁42を介して配給パイプ43が基板13の幅方向に配設されている。配給パイプ43には複数の支パイプ44があり、支パイプ44はガラス基板13の幅方向に並設されている。支パイプ44から放出されるスペーサ28の落下部にスペーサ受け箱45が設けられている。受け箱45の幅方向の上縁は波形になっている。

【0022】図3は図1の液晶表示パネル組立装置の動作説明用の概略図である。つぎに図2および図3により図1の液晶表示パネル組立装置の動作および機能を説明する。なお図3ではXYθステージ5および下側吸着テーブル8を貼り合わせステーションS2に移動させた場合を2点鎖線で示し、その各々に5φ, 8φの符号を付した。

【0023】図3において、初めに貼り合わせステーションS2にステージ移動テーブル4が基台2上のレール

10

6

7上を図1のステージ駆動モータ6により走行される、XYθステージ5φ上の下側吸着テーブル8φ上にアダプタ14aを介して第2のガラス基板14が載置される。このアダプタ14aは第2のガラス基板14の下面が下側吸着テーブル8φに接触することを阻止するためのもので、第2のガラス基板14の周縁を支持する額縁状のものである。ここで両カメラ16a, 16bで第2のガラス基板14に設けられた図示していない位置合わせマークを読み取りつつ、第2のガラス基板14が貼り合わせステーションS2の所定位位置に置かれるようにXYθステージ5φを制御する。次いで図1の加圧用駆動機構17で加圧吸着テーブル15を下方に移動させて、第2のガラス基板14を該テーブル15で水平に吊り下げる形に吸着支持し、そのまま駆動機構17で加圧吸着テーブル15を介して第2のガラス基板14を上方に移動させて待機させ、そしてアダプタ14aは除去される。この動作で塵埃が遊離しても塵埃を避ける必要のない第2のガラス基板14上面に落下するだけで何等の問題がない。

20

【0024】次に下側吸着テーブル8φ上に第1のガラス基板13を載置し、そして第1のガラス基板13が貼り合わせステーションS2の所定位位置に置かれるようにXYθステージ5φを制御する。ここで第1のガラス基板13の位置合わせが終わったら、今度はXYθステージ5φをシール剤描画ステーションS1に移動させる。次にシール剤描画ステーションS1で、Z軸移動テーブル10上の光学式非接触変位計11の出力により図1のZ軸駆動モータ9を制御して、Z軸移動テーブル10上のシール剤吐出機12のノズル先端と下側吸着テーブル8上の第1のガラス基板13上面とのギャップを設定する。この動作でギャップ設定のためのシール剤吐出機12のノズル移動距離はわずかであり、これによる塵埃の遊離は殆どない。また塵埃の遊離を極度に嫌う場合には、図3中に1点鎖線で示すようにシール剤吐出機12のZ軸移動テーブル10を含む駆動部を密閉し、その密閉空間を真空引きすればよい。そしてXYθステージ5を所定の描画パターンに従ってXY方向に移動させつつ、シール剤吐出機12のノズルからシール剤を吐出させて、シール剤の第1のガラス基板13への塗布を行う。この描きたいシール剤パターンは図示していない。また図示していない制御装置で所謂パソコン描画パターンを格納記憶させておくことによって、同じ描画パターンを何枚もの第1のガラス基板13への塗布を行うことが可能であり、また格納データの変更で各種の描画パターンを得ることもできる。この動作でシール剤の吐出描画中に第1のガラス基板13の上部で動くものが存在しないため、第1のガラス基板13の上面への塵埃の落下はない。

【0025】第1ガラス基板13が廻送されてくると、赤外線ランプ31から赤外線が照射され、ガラス基板1

30

40

50

7

3 上に描画されたシール剤を仮乾燥させて形の乱れを防ぐ。次に、スペーサ散布手段40の下に至ると、配給弁42が開かれ、配給パイプ43、各支パイプ44から受け箱45にスペーサ28が落下される。受け箱45には波形上縁45aには設けられており、受け箱45からのスペーサの落下個所が支パイプ44の数より増加されているので、スペーサ28は基板13上に波形上縁45aより流れる様にオーバフローして均一に散布される。配給弁42を各支パイプ44に設けておくと、スペーサの受け箱45への供給は幅方向で時間差がなくなる。なお、スペーサは、一例として7μmの直径を持つプラスチック微粒子を約1万個1cm²の割合で散布する。

【0026】ランプ31のスイッチは、コード33で基板13の上以外の個所に設け、また、配給弁42は配給パイプ43の内部に配設されるので、基板13上に駆動部材が無く、シール剤仮乾燥手段30、スペーサ散布手段40が作動しても、基板13上に塵芥が落下しない。

【0027】また、図4に示す様に、受け箱45内に螺旋状の回転体46を配設し、受け箱45の幅方向端に設けた電動機46で回転体46を駆動して、受け箱45内でスペーサを移動させ、配給弁42側の支パイプ44と配給パイプ43の末端側の支パイプ44から受け箱45に供給されるスペーサの時間遅れを補完しても良い。図5は、受け箱を省略した形のスペーサ散布手段の変形例を示す。図5において、図4に示したものと同一しない相当物には同一符号を付けて説明を省略する。図5に示す変形例では、配給パイプ43の支パイプ44との各連通孔43aにシャッター49が設けられ、アクチュエータ48で連通孔43aをガラス基板13の廻送に合わせて開閉する様にしている。各支パイプ44の端部44aは未広形にしてあり、個々の支パイプ44から散布する範囲が広域になる様にしている。

【0028】図6は受け箱45の変形例を示している。受け箱45は、ガラス基板13に対して傾斜して配置され、下端部側の上縁部45aが波形になっている。受け箱45には、スペーサ28があふれない程度に供給されている。ガラス基板13が廻送されると、受け箱45は図示していない震動源より振動が加えられる。すると、スペーサ28は自重で受け箱45内を滑落し、波形上縁部45a付近のスペーサは押されてオーバフローし、ガラス基板13上に均一に散布される。

【0029】図5、図6の例は湿式スペーサ散布手段にも適用することができる。なお、図6の例を湿式スペーサ散布手段に適用する場合には、受け箱を回動させて波形上端部45aを下降させると、スペーサを含んだ溶液がオーバーフローする。

【0030】次にXYθステージ5は再び貼り合わせステーションS2に移動されて、初めて第2のガラス基板14を抱えた加圧吸着テーブル15の真下に位置決めされる。この動作でも第1のガラス基板13はXYθステ

8

ージ5および下側吸着テーブル8ごと第2のガラス基板14の下方に配置され、別の搬送手段が介在されないことと、第1のガラス基板13の上部で動くもののが存在しないことによって、第1のガラス基板13の移動に際しても第1のガラス基板13の上面に塵埃が落下しない。さらに別の搬送手段を必要としないので簡単な装置構成となっている。

【0031】次に両カメラ16a、16bの焦点を第1のガラス基板13の図示していない位置合わせマークに合わせ、両カメラ16a、16bでマークを読み取りながらXYθステージ5を駆動制御して、第1のガラス基板13と第2のガラス基板14との凡その位置合わせを行う。そして図1の加圧用駆動機構17で加圧吸着テーブル15を下方に徐々に移動させて、両カメラ16a、16bで第2のガラス基板14の図示していない位置合わせマークが読み取れるようになったら、XYθステージ5を駆動制御して第1のガラス基板13と第2のガラス基板14との正確な位置合わせを行いつつ、加圧吸着テーブル15をさらに徐々に下降させて2枚のガラス基板13、14をシール剤で貼り合わせる。

【0032】この動作で両ガラス基板13、14の貼り合わせでは、両ガラス基板13、14の間に動くもののが存在しないことによって、第1のガラス基板13の上面に塵埃が落下しない。

【0033】以上のように組立作業の如何なる工程でも第1のガラス基板13の上面に塵埃が落下しないため、両ガラス基板13、14のシール剤による貼り合わせで形成される空間内に塵埃が取り込まれることがない。また以上のシール剤描画工程と、基板貼り合わせ工程と、そのシール剤描画と基板貼り合わせの両ステーション間の移動工程とは簡単なシーケンス制御で処理できるので、図示していない制御装置により一連の動作をプログラム化してパソコンで制御してもよい。

【0034】本発明の基板組立装置は以下の態様で実施できる。

【0035】第1の態様は、図1のZ軸移動テーブル10に代えてZ軸移動テーブルをXYθステージ5に設け、シール剤描画ステーションS1部の架台3にノズルを持つシール剤吐出機12および光学式非接触変位計11を直接固定し、該Z軸移動テーブルでシール剤吐出機12のノズル先端と下側吸着テーブル8上の第1のガラス基板13とのギャップを設定するようにしたものである。この態様はシール剤描画ステーションS1では下側吸着テーブル8に載置される第1の基板13の上方に可動部が全く存在しないため、第1の基板13への塵埃の落下が皆無である。第2の態様は、図1の基板貼り合わせステーションS2における加圧用駆動機構17および架台18を省略し、架台3に第2の基板14の吸着テーブル15を直接固定して、Z軸移動テーブルをXYθステージ5に設け、該Z軸移動テーブルで第2の基板1

9

4を上昇させて吸着テーブル15に吸着固定し、また3枚の基板13、14を貼り合わせるようにしたものである。この態様は基板貼り合わせステーションS2では吸着テーブル15の上方に可動部が全く存在せず、塵埃の第1の基板13への落下が皆無であり、また加圧用駆動機構17と架台18の省略により装置構成が一層簡略化できる。

【0036】第3の態様は、基板吸着機能をXYθステージ5に設けて、下側吸着テーブル8を省略したものである。この態様はステージ移動テーブル4上に乗せられる部材が減少して、軽量化によりステージ移動テーブル4の走行が軽快になる。

【0037】第4の態様はシール剤仮乾燥手段30をスペーサ散布手段40の下流側、すなわち基板貼り合わせステーションS2側に配置したものである。このような配置でも、シール剤の仮乾燥は可能である。

【0038】

【発明の効果】以上説明したように、本発明によれば、液晶表示パネルのように2枚の基板を接近させてシール剤で貼り合わせる基板組立装置での組立作業中に塵埃を取り込まずに貼り合わせることができ、かつ、2枚の基板の間隔を所望とする正確な寸法に保って貼り合わせことができる効果がある。

10

【図面の簡単な説明】

【図1】本発明による基板組立装置の一実施例を示す液晶表示パネル組立装置のカバーを外した本体の正面図である。

【図2】図1に示した装置のシール剤仮乾燥手段とスペーサ散布手段の概略構成を示す図である。

【図3】図1に示した装置の動作説明用の概略図である。

【図4】図2に示したスペーサ散布手段の変形例を示す図である。

【図5】図2に示したスペーサ散布手段の他の変形例を示す図である。

【図6】図2に示したスペーサ散布手段のさらに他の変形例を示す図である。

【符号の説明】

4…ステージ移動テーブル、5…XYθステージ、8…下側吸着テーブル、10…Z軸移動テーブル、12…シール剤吐出機、13…第1のガラス基板、15…加圧吸着テーブル、16a、16b…画像認識用カメラ、28…スペーサ、30…シール剤仮乾燥手段、31…赤外線ランプ、40…スペーサ散布手段、43…配給パイプ、48…アクチュエータ、49…シャッタ。

【図1】

【図1】

【図2】

【図3】

【図3】

【図5】

【図4】

【図4】

【図6】

【図6】

フロントページの続き

(72)発明者 石田 茂

茨城県竜ヶ崎市向陽台五丁目2番 日立テ
クノエンジニアリング 株式会社開発研究
所内

(72)発明者 三階 春夫

茨城県竜ヶ崎市向陽台五丁目2番 日立テ
クノエンジニアリング 株式会社開発研究
所内

(72)発明者 近藤 克己

茨城県日立市久慈町4026番地 株式会社日
立製作所日立研究所内