CPSC 406

Tyler Lewis Chapman University

March 21, 2023

Abstract

A very short introduction to type setting in LaTeX for my courses "Programming Languages", "Compiler Construction" and "Algorithm Analysis".

Contents

2	Cor	nclusion	S																				5
		HW 2 HW 6																					
		HW 1																					
1	Ho	${f mework}$																					1

1 Homework

1.1 HW 1

NFA2DFA In order to convert the provided NFA to DFA I considered each possible combination of P, Q, R, and S, and considered each possible combination its own state. The included figure details every possible state the NFA/DFA may find itself in.

17 QRP Q	NO REP
$P \xrightarrow{1} QS \xrightarrow{1} R \xrightarrow{1} P$	RS P
Q - P QR - S S	25
\$ \ \tilde{\pi_{\text{s}}} \ \tilde{\pi_{\text{s}}} \ \tilde{\pi_{\text{s}}} \ \tilde{\pi_{\text{s}}} \ \tag{\text{de}}	

State	0	
ρ	Q S	Q5
R	5	P
R Q S	R	QR
5	Ø	P
Q5	R	QRP
QR	RS	QRP
RS	5	P
QRP	QRS	RRP
ars	R5	QRP

1.2 HW 2

Question 1:

1.
$$f(X, f(X,Y)) \stackrel{?}{=} f(f(Y,a), f(U,b))$$

$$\chi \stackrel{?}{=} f(Y,a) \qquad f(X,Y) \stackrel{?}{=} f(U,b)$$

$$\nabla_{1} = \frac{f(Y,a)}{\chi} \qquad \chi = U \qquad Y = b$$

$$\nabla_{2} = \frac{U}{\chi} \qquad \nabla_{3} = \frac{b}{Y}$$

$$\nabla = \left[\frac{f(Y,a)}{\chi}, \frac{U}{\chi}, \frac{b}{V}\right]$$

2.
$$f(g(U), f(X,Y)) \stackrel{?}{=} f(X, f(Y,U))$$

$$g(v) \stackrel{?}{=} \times \qquad f(x, Y) \stackrel{?}{=} f(Y, v)$$

$$\chi \stackrel{?}{=} Y \qquad Y \stackrel{?}{=} v$$

$$\chi \stackrel{?}{=} v$$

$$\nabla = \frac{q(x)}{x} \quad \text{Fail}$$

3.
$$h(U, f(g(V), W), g(W)) \stackrel{?}{=} h(f(X, b), U, Z)$$

$$V \stackrel{?}{=} f(x,b) \qquad f(g(v),w) \stackrel{?}{=} U \qquad g(w) \stackrel{?}{=} Z$$

$$f(g(v),w) \stackrel{?}{=} f(x,b) \qquad \sigma_3 = \frac{g(w)}{Z}$$

$$g(v) \stackrel{?}{=} x \qquad w \stackrel{?}{=} b$$

$$\sigma_1 = \frac{g(v)}{X} \qquad \sigma_2 = \frac{b}{w}$$

Question 2:

- ?-conn(W,a), conn(a,W)
- $: \operatorname{addr}(W,a), \operatorname{addr}(a,Z), \operatorname{serv}(Z), \operatorname{addr}(Z,W) : \operatorname{twoway}(W,a)$
- ?- conn(W,a), conn(a,W)
- ?- addr(W,a), addr(a,Z), serv(Z), addr(Z,W)

1.3 HW 6

- 1. PV 7 P
- P +P 0 1 1 1 Anss
- 2. (P → Q) → (¬Q →¬P)
- 3. P → (Q -> P)
 - P Q Q >P * 1 0 0 1 1 N Anses
- 4. (P → Q) v (Q → P)
 - P & P > Q & > P *

 0 0 1 1 1 1

 0 1 1 0 1 V PASS
- 5. (P-)a) -> P) ->P
 - P Q R: (P-)Q) R->P V Poss
- 6. (PVQ) A(-PVR) -> QVR
- 7. (PVQ) -> (PAQ)
- P Q x: PVQ g: PAO x ->g
- $\mathfrak{G}. \quad (\rho \to \varrho) \to (\neg \rho \to \neg \varrho)$

2 Conclusions

In this document, to help you getting started, I gave a first succinct example of typesetting in Latex.

References

[ALG] Algorithm Analysis, Chapman University, 2023.