Es02A: Circuito RC – Filtri passivi

Gruppo 1.AC Matteo Rossi, Bernardo Tomelleri

12 ottobre 2021

Filtro passa-basso

1.b Scelta della frequenza di taglio

La frequenza nominale di taglio è stata fissata a $f_1=7337 \text{Hz} \ \Rightarrow |A_v(3\,\text{kHz})|=0.93 \ |A_v(30\,\text{kHz})|=0.23$

Motivare la scelta di f_1

1.c,1.d Scelta dei componenti

I valori nominali scelti sono $R_1=2\mathrm{k}\Omega$ $C_1=10\mathrm{nF}.$

Motivare la scelta dei componenti (è sufficiente anche solo indicare le formule di riferimento)

1.e Misura di C_1

$$C_1 = 10.9 \pm 0.4 \text{nF}$$

1.f Calcolo della frequenza di taglio e delle attenuazioni attese

$$\begin{array}{rcl} f_1 & = & 7.3 \pm 0.3 \\ |A_v(3\,\text{kHz})| & = & 0.93 \pm \dots \\ |A_v(30\,\text{kHz})| & = & 0.23 \pm \dots \end{array}$$

3 Misura A_v

Dalla misura delle ampiezze dei segnali di ingresso/uscita e del loro sfasamento si ottiene:

f	$V_s \pm \sigma(V_s)$	$V_{out} \pm \sigma(V_{out})$	$A_v \pm \sigma(A_V)$	$\phi \pm \sigma(\phi)$

Tabella 1: (3) Amplficazione e sfasamento del filtro passa-basso a bassa ed alta frequenza ed alla frequenza nominale di taglio.

4 Risposta in frequenza

5.a Stima della frequenza di taglio (metodo a)

La nostra stima della frequenza per cui $A_v(dB) = -3 dB$ è

$$f_{1A} = \ldots \pm \ldots$$

(4) Salvare ed inserire l'immagine del Network analyzer

Figura 1: (4) Plot di Bode per il filtro passa-basso.

5.b Misura della frequenza di taglio (metodo b)

Dal fit a bassa frequenza $(f \ll f_1)$ otteniamo

$$A_1(dB) = \dots \pm \dots \quad \chi^2 = \dots \quad d.o.f. = \dots$$

Ad alta frequenza $(f \gg f_1)$ la retta di best-fit al plot di Bode in ampiezza ha i seguenti parametri:

intercetta = ...
$$\pm$$
 ... pendenza = ... \pm ... covarianza = ... χ^2 = ... $d.o.f.$ = ...

Dall' intersezione delle due rette stimiamo per la frequenza di taglio il valore

$$f_{1B} = ... \pm ...$$

5.c Misura della frequenza di taglio (metodo c)

Dal fit complessivo del modulo della funzione di trasferimento otteniamo per l'amplificazione di centro-banda e per la frequenza di taglio i seguenti valori:

$$A_1(dB) = \dots \pm \dots \quad f_{1B} = \dots \pm \dots \quad \chi^2 = \dots \quad d.o.f. = \dots$$

5.d Confronto misure-predizione

Commentare l'accordo tra le varie stime di f_1 ed il valore atteso.

6 Risposta del filtro ad un gradino

Il fronte del segnale di uscita ha un tempo di salita, misurato con i cursori, di

$$t_r = \ldots \pm \ldots$$

da cui

$$f_1 \simeq \frac{2.2}{2\pi t_r} = \ldots \pm \ldots$$

(6) Salvare ed inserire uno screenshot dell' oscillografo.

Figura 2: (6) Risposta del filtro passa-basso ad un gradino di tensione.

7.a Impedenze di ingresso/uscita

(Qui è sufficiente scrivere le espressioni in termini della frequenza e dei componenti)

$$Z_{in} = \dots$$

$$Z_{out} = \dots$$

7.b Effetti dovuti all' accoppiamento con un carico

(Qui è richiesto che valutiate l'amplificazione di centro-banda e la frequenza di taglio nel caso in cui il carico sia rispettivamente 100 e 10 k Ω)

$$R_L = 100 \, k\Omega \quad \Rightarrow A_1 = \dots \quad f_1 = \dots$$

 $R_L = 10 \, k\Omega \quad \Rightarrow A_1 = \dots \quad f_1 = \dots$

Filtro passa-banda

8.a Misura dei componenti

$$C_1 = \ldots \pm \ldots$$

8.b Filtro passa-basso, stima della frequenza di taglio

Dalla risposta in frequenza risulta

$$A_1(dB) = \ldots \pm \ldots, \quad f_1 = \ldots \pm \ldots$$

9.a Misura dei componenti

$$C_2 = \ldots \pm \ldots$$

9.b Filtro passa-alto, stima della frequenza di taglio

Dalla risposta in frequenza risulta

$$A_2(dB) = \ldots \pm \ldots, \quad f_2 = \ldots \pm \ldots$$

10.a Filtro passa-banda, risposta in frequenza

(10.a) Salvare ed inserire l'immagine del Network analyzer per il passa-banda

Figura 3: (4) Plot di Bode per il filtro passa-banda.

La nostra stima dell' amplificazione di centro-banda e delle frequenze di taglio (per cui il guadagno si riduce di 3 dB rispetto a centro-banda) è

$$A(dB) = \dots \pm \dots \quad f_L = \dots \pm \dots \quad f_H = \dots \pm \dots$$

10.b Interpolazione del plot di Bode

Dal fit del plot di Bode in ampiezza si ha

$$A(dB) = \dots \pm \dots \quad f_L = \dots \pm \dots \quad f_H = \dots \pm \dots \quad \chi^2 = \dots \quad d.o.f. = \dots$$

10.c Differenze

Motivare la differenza rispetto ai filtri standalone

10.d Dipendenza dai valori delle resistenze

Commentare la dipendenza dalle resistenze, come da guida

10.e Andamento della fase

Commentare la dipendenza della fase dalla frequenza

Conclusioni e commenti finali

Inserire eventuali commenti e conclusioni finali

Dichiarazione

I firmatari di questa relazione dichiarano che il contenuto della relazione è originale, con misure effettuate dai membri del gruppo, e che tutti i firmatari hanno contribuito alla elaborazione della relazione stessa.