Costruzione di un modello/contromodello \mathcal{D} di un sequente (con spiegazione)

Questa qui è la notazione che la prof.ssa Maietti ha utilizzato durante l'anno accademico 2016/2017. Non assicuro in modo assoluto che sia corretta, ma è quella che ho usato io nelle prove durante il corso dell'anno.

Sia $\neg \forall w \neg \neg G(w) \vdash \neg \exists y F(y)$ il sequente in questione. Esso avrà la seguente derivazione

$$\frac{F(y) \vdash G(w)}{F(y) \vdash \neg \neg G(w)} \neg \neg \neg D$$

$$\frac{F(y) \vdash \forall w \neg \neg G(w)}{F(y) \vdash \forall w \neg \neg G(w)} \forall \neg D \ (w \notin VL(F(y), \forall w \neg \neg G(w)))$$

$$\frac{\exists y F(y) \vdash \forall w \neg \neg G(w)}{\exists y F(y), \neg \forall w \neg \neg G(w) \vdash} \neg \neg \neg S$$

$$\frac{\exists y F(y), \neg \forall w \neg \neg G(w) \vdash}{\neg \forall w \neg \neg G(w), \exists y F(y)} \neg \neg D$$

Il sequente non è valido.

Bisogna, quindi, cercare un contromodello che chiameremo \mathcal{D} . A tale scopo, basta scegliere un dominio \mathbf{D} in cui le funzioni F(y) e G(w) assumano dei valori che rendano l'implicazione $\neg \forall w \, \neg \neg G(w) \rightarrow \neg \exists y \, F(y)$ falsa. Basta selezionare una foglia qualunque (nel nostro caso ne abbiamo una sola) e falsificarla, scegliendo F(y)=1 e G(w)=0 (infatti $1 \rightarrow 0=0$).

Un buon metodo per determinare il numero di elementi del dominio è basarsi sulla quantità di variabili libere presenti nella foglia scelta. In questo caso, ve ne sono due $(y \in w)$. Perciò **D** avrà due elementi.

Mostriamo un contromodello \mathcal{D} . Sia **D** dominio.

Bisogna precisare che \mathbf{D} e \mathcal{D} sono entità differenti (che graficamente vengono distinte dall'uso del corsivo). Il primo è un insieme scelto arbitrariamente come dominio delle funzioni, il secondo è un modello (in questo caso un contromodello), il quale è definito dal dominio \mathbf{D} e da determinati valori delle funzioni (in questo caso di F(y) e G(w)) sugli elementi del dominio \mathbf{D} scelto.

Associamo alle funzioni $F(y)^{\mathcal{D}}$ e $G(w)^{\mathcal{D}}$ dei valori

$$F(y)^{\mathcal{D}}(\text{Mario})=1$$

 $G(w)^{\mathcal{D}}(\text{Gianni})=0$

Notare che si tratta di una vera e propria <u>scelta arbitraria</u> dei valori, ovvero i valori da associare a $F(y)^{\mathcal{D}}(Mario)$ e a $G(w)^{\mathcal{D}}(Gianni)$ sono scelti a vostra discrezione!

La scrittura $F(y)^{\mathcal{D}}(\text{Mario})=1$ significa "letteralmente" il valore di F(y) nel modello \mathcal{D} , quando y=Mario, è uguale a 1.

Dimostriamo adesso che il sequente originario è falsificato dalle scelte operate.

Se $F(y)^{\mathcal{D}}(\text{Mario})=1$, allora vuol dire che esiste un y per cui vale $F(y)^{\mathcal{D}}$. Quindi, $(\exists y \, F(y))^{\mathcal{D}}=1$ e $\neg(\exists y \, F(y))^{\mathcal{D}}=(\neg\exists y \, F(y))^{\mathcal{D}}=0$.

Se $G(w)^{\mathcal{D}}(\text{Gianni})=0$, allora posso dire che $\neg\neg(G(w))^{\mathcal{D}}(\text{Gianni})=(\neg\neg G(w))^{\mathcal{D}}(\text{Gianni})=0$. Ciò comporta che $(\forall w \, \neg\neg G(w))^{\mathcal{D}}=0$ dato che esiste un falsario e, di conseguenza, $(\neg \forall w \, \neg\neg G(w))^{\mathcal{D}}=1$. Quindi, il sequente $\neg \forall w \, \neg\neg G(w) \vdash \neg \exists y \, F(y)$ equivale all'implicazione $\neg \forall w \, \neg\neg G(w) \rightarrow \neg \exists y \, F(y)$. Dunque, nel modello \mathcal{D}

$$(\neg \forall w \, \neg \neg G(w) \to \neg \exists y \, F(y))^{\mathcal{D}} = (\neg \forall w \, \neg \neg G(w))^{\mathcal{D}} \to (\neg \exists y \, F(y))^{\mathcal{D}} = 1 \to 0 = 0$$

Il sequente è, quindi, falsificato.

Per mostrare che sia soddisfacibile, si può procedere in due modi:

- negare il sequente di partenza, effettuare una derivazione e trovare un contromodello del sequente negato (in questo caso, il sequente negato è $\vdash \neg(\neg \forall w \neg \neg G(w) \rightarrow \neg \exists y F(y))$);
- trovare un modello in cui il sequente originario sia vero (questa scelta è consigliabile perché garantisce un risparmio di tempo non indifferente durante l'esame, a patto di continuare la derivazione del sequente fino a che non si ottengono <u>tutte</u> le foglie e di essere <u>assolutamente</u> sicuri di trovarsi di fronte a un sequente soddisfacibile).

Per trovare un modello in cui il sequente sia vero, basta scegliere un dominio \mathbf{D} in cui le funzioni $F(y)^{\mathcal{D}}$ e $G(w)^{\mathcal{D}}$ diano valori per cui l'implicazione $(\neg \forall w \, \neg \neg G(w) \to \neg \exists y \, F(y))^{\mathcal{D}}$ sia vera. Osserviamo, dunque, <u>tutte</u> le foglie dell'albero che abbiamo ottenuto dalla derivazione (in questo caso una sola) e assegnamo dei valori alle funzioni in modo che <u>ogni</u> foglia sia vera. Ciò si ottiene ponendo tutte le conclusioni pari a 1 (infatti $0 \to 1 = 1$ e $1 \to 1 = 1$).

Per il sequente preso in esame, basterà scegliere un valore per la funzione $G(w)^{\mathcal{D}}$ pari a 1.

Quindi, mostriamo un modello \mathcal{D} . Sia \mathbf{D} dominio.

```
\mathbf{D} = \{ \text{ Mario, Gianni } \}
```

Associamo a $G(w)^{\mathcal{D}}$ dei valori

$$G(w)^{\mathcal{D}}(\text{Mario}) = 1$$

$$G(w)^{\mathcal{D}}(Gianni)=1$$

(Avremmo anche potuto scrivere $G(w)^{\mathcal{D}}(x)=1 \ \forall x \in \mathbf{D}$)

Quindi, $G(w)^{\mathcal{D}}(x)=1$ per ogni x in \mathbf{D} , ovvero, per ogni elemento del dominio \mathbf{D} , $G(w)^{\mathcal{D}}$ vale 1. Allora $\neg\neg G(w)^{\mathcal{D}}(x)=(\neg\neg G(w))^{\mathcal{D}}(x)=1$ per ogni x in \mathbf{D} , cioè $(\forall w\,\neg\neg G(w))^{\mathcal{D}}=1$. Consequentemente, $(\neg \forall w\,\neg\neg G(w))^{\mathcal{D}}=0$.

Il sequente $\neg \forall w \neg \neg G(w) \vdash \neg \exists y F(y)$ equivale all'implicazione $\neg \forall w \neg \neg G(w) \rightarrow \neg \exists y F(y)$. Dunque, nel modello \mathcal{D}

$$(\neg \forall w \, \neg \neg G(w) \to \neg \exists y \, F(y))^{\mathcal{D}} = (\neg \forall w \, \neg \neg G(w))^{\mathcal{D}} \to (\neg \exists y \, F(y))^{\mathcal{D}} = 0 \to (\neg \exists y \, F(y))^{\mathcal{D}} = 1.$$

Quindi, il sequente è verificato e, di conseguenza, è soddisfacibile.

Nel caso in cui non sia possibile trovare un modello che renda vera l'implicazione, potremmo aver di fronte un *paradosso* e dovremo necessariamente mostrare che la negazione del sequente è una *tautologia*. In sostanza, abbiamo perso tempo! Perciò, è consigliabile cercare un modello che renda il sequente vero, solo quando si è sicuri che esso sia soddisfacibile.