Mathématique - Corrigé DS n°7

Exercice 1

 $1. \ \ \text{On a } \ln(1+u)\mathop{\sim}\limits_0 u, \ \text{alors } \ln\left(1+\frac{1}{\sqrt{n}}\right)\mathop{\sim}\limits_\infty \frac{1}{\sqrt{n}} \ \text{car } \lim_{n\to+\infty} \frac{1}{\sqrt{n}} = 0.$

Or la série $\sum \frac{1}{\sqrt{n}}$ est une série de Riemann de la forme $\sum \frac{1}{n^{\alpha}}$ avec $0 < \alpha < 1$ alors elle diverge.

D'après le théorème d'équivalence des séries à termes positifs,

la série
$$\sum \ln \left(1 + \frac{1}{\sqrt{n}}\right)$$
 est divergente.

2. Montrer que la série $\sum \frac{1}{|\operatorname{ch}(n)|+1}$ est convergente.

On a pour tout $n \in \mathbb{N}$, $\operatorname{ch}(n) \geqslant 1$ alors $\lfloor \operatorname{ch}(n) \rfloor + 1 > 0$ et on a l'encadrement suivant :

 $\operatorname{ch}(n) \leqslant \lfloor \operatorname{ch}(n) \rfloor + 1$ Ce qui donne $0 \leqslant \frac{1}{|\operatorname{ch}(n)| + 1} \leqslant \frac{1}{\operatorname{ch}(n)}$.

Par ailleurs, on a $\frac{1}{\operatorname{ch}(n)} = \frac{2}{e^n + e^{-n}}$.

 $\text{Comme } e^{-n}>0 \text{ pour tout entier } n \text{, on a } \frac{2}{e^n+e^{-n}}<\frac{2}{e^n} \text{, d'où } 0\leqslant \frac{1}{|\operatorname{ch}(n)|+1}\leqslant \frac{2}{e^n}.$

La série $\sum 2e^{-n}$ est une série géométrique de raison $\frac{1}{e}$. On a $0 < \frac{1}{e} < 1$, alors la série $\sum 2e^{-n}$ est convergente.

D'après le théorème de comparaison des séries à termes positifes, comme $\forall n \in \mathbb{N}, \quad 0 \leqslant \frac{2}{e^n + e^{-n}} < \frac{2}{e^n}, \quad \text{la série } \sum \frac{1}{|\operatorname{ch}(n)| + 1} \text{ est convergente}.$

Exercice 2

1. La fonction $f_n: x \mapsto x^5 + nx^3$ est continue et strictement croissante sur $\mathbb R$ alors, d'après le théorème de bijection, f_n est une bijection de $\mathbb R$ dans $\left|\lim_{x\to-\infty}x^5+nx^3,\lim_{x\to+\infty}x^5+nx^3\right|=|-\infty,+\infty|$.

Alors, 1 a un unique antécédent x_n :

pour tout entier $n\in\mathbb{N}$, il existe un unique réel x_n tel que $x^5+nx^3=1$.

De plus, $f_n(0)=0<1=f_n(x_n)$ et la fonction f_n est strictement croissante alors pour tout $n\in\mathbb{N},\quad 0< x_n$

2. On a pour tout $n \in \mathbb{N}, x_n^5 + nx_n^3 = 1$ (*).

On calcule $f_{n+1}(x_n)=x_n^5+(n+1)x_n^3=1-nx_n^3+nx_n^3+x_n^3=1+x_n^3>0.$

On a pour tout $n \in \mathbb{N}$, $f_{n+1}(x_n) > f_{n+1}(x_{n+1})$ et la fonction f_{n+1} est strictement croissante alors, $x_n > x_{n+1}$ ce qui prouve que la suite (x_n) est strictement décroissante.

3. (x_n) est décroissante et minorée par 0, alors (x_n) est convergente vers une limite réelle ℓ . Par produit de limites, on a $\lim_{n\to +\infty} x_n^3 = \ell^3$ et $\lim_{n\to +\infty} n^5 = \ell^5$.

On a pour tout $n\in\mathbb{N},\quad x_n^3=rac{1-x_n^5}{n}$ qui donne par passage à la limite $\ell^3=0$ soit $\boxed{\ell=0}$

4. On a pour tout
$$n\in\mathbb{N}$$
, $x_n^3=rac{1-x_n^5}{n}\Longleftrightarrow x_n=\sqrt[3]{rac{1-x_n^5}{n}}=rac{1}{\sqrt[3]{n}}\sqrt[3]{1-x_n^5}$

On a $\lim_{n \to +\infty} 1 - x_n^5 = 1$ alors par continuité de la racine cubique, $\lim_{n \to +\infty} \sqrt[3]{1 - x_n^5} = 1$.

Donc,
$$\lim_{n \to +\infty} \sqrt[3]{n} x_n = 1$$
 ce qui prouve que $x_n \sim \frac{1}{\sqrt[3]{n}}$

5. On déduit de l'équivalent précédent :
$$x_n = \frac{1}{n^{1/3}} + o\left(\frac{1}{n^{1/3}}\right)$$

On injecte cette égalité dans la relation (*) : pour tout $n\in\mathbb{N},\ x_n=rac{1}{n^{1/3}}(1-x_n^5)^{1/3}$

Et,
$$x_n \mathop{\sim}\limits_{+\infty} \frac{1}{n^{1/3}}$$
 qui donne $x_n^5 \mathop{\sim}\limits_{+\infty} \frac{1}{n^{5/3}}$

Cet équivalent nous donne le développement $x_n^5 = \frac{1}{n^{5/3}} + o\left(\frac{1}{n^{5/3}}\right)$

Puis,
$$x_n = \frac{1}{n^{1/3}} \left(1 - \left(\frac{1}{n^{5/3}} + o\left(\frac{1}{n^{5/3}} \right) \right) \right)^{1/3}$$

On utilise la formule $(1+u)^{1/3} = 1 + \frac{u}{3} + o(u)$ ce qui donne : $x_n = \frac{1}{n^{1/3}} \left(1 - \frac{1}{3n^{5/3}} + o\left(\frac{1}{n^{5/3}}\right)\right)$

$$\operatorname{soit}\left[x_n = rac{1}{n^{1/3}} - rac{1}{3n^2} + o\left(rac{1}{n^2}
ight)
ight]$$

Exercice 3

1. f est définie pour $1 + \frac{1}{2x} > 0 \iff \frac{2x+1}{2x} > 0 \iff 2x(2x+1) > 0$.

C'est un trinôme du second degré dont les racines sont 0 et $-\frac{1}{2}$ alors $1+\frac{1}{2x}>0 \iff x\in \left]-\infty, -\frac{1}{2}\right[\cup]0, +\infty[.$ Alors, $\left[f \text{ est définie sur }\right]-\infty, -\frac{1}{2}\left[\cup]0, +\infty[.$

$$\left]-\infty,-rac{1}{2}
ight[\cup]0,+\infty[. \hspace{1cm} ext{Alors,} \left|f ext{ est définie sur }
ight]-\infty,-rac{1}{2}
ight[\cup]0,+\infty[
ight]$$

$$\text{2. On a } f(x) = x(x-1) \left(\ln(2x+1) - \ln(2x) \right) \quad \text{Alors,} \quad \frac{f(x)}{x \ln(x)} = (x-1) \left(\frac{\ln(2x+1)}{\ln(x)} - 1 - \frac{\ln(2)}{\ln(x)} \right)$$

Ce qui donne $\lim_{x \to 0^+} \frac{f(x)}{x \ln(x)} = -1 imes -1 = 1$, alors $f(x) \mathop{\sim}_{0^+} x \ln(x)$.

On en déduit, par croissance comparée, que $\lim_{x o 0^+} f(x) = 0$

3. On calcule
$$\frac{f(x)}{x}=(x-1)(\ln(2x+1)-\ln(2x))$$
 ce qui donne $\lim_{x\to 0^+}\frac{f(x)}{x}=+\infty$ on a donc $\lim_{x\to 0^+}\frac{f(x)-\lim_{0^+}f(x)}{x-0}=+\infty$ ce qui prouve que $\underline{\mathcal{C}}$ a une demi-tangente verticale en 0^+ .

$$egin{split} f(x) &= (1+h)h\ln\left(1+rac{1}{2(1+h)}
ight) = (1+h)h\left(\ln\left(3+2h
ight) - \ln(2) - \ln\left(1+h
ight)
ight) \ &= (1+h)h\left(\ln\left(1+rac{2h}{3}
ight) + \ln(3) - \ln(2) - \ln\left(1+h
ight)
ight) \end{split}$$

Puis, on utilise la formule $\ln(1+u) = v + o(v)$

$$f(x) = h(1+h)\left(rac{2h}{3} + o(h) + \ln(3) - \ln(2) - h + o(h)
ight) = (1+h)\left(\ln(3/2)h - rac{h^2}{3} + o(h^2)
ight)$$

Alors,
$$f(x) = \ln(3/2)h + \left(\ln(3/2) - \frac{1}{3}\right)h^2 + o(h^2)$$

soit
$$f(x) = \ln\left(\frac{3}{2}\right)(x-1) + \left(\ln\left(\frac{3}{2}\right) - \frac{1}{3}\right)(x-1)^2 + o((x-1)^2)$$

5. D'après le DL à l'ordre 1 de f est 1:f(x)=1 $\ln\left(\frac{3}{2}\right)(x-1)+o(x-1),$

$$ext{la droite } y = \ln \left(rac{3}{2}
ight) (x-1) ext{ est tangente à \mathcal{C} en $x=1$}.$$

De plus,
$$f(x) - \ln\left(\frac{3}{2}\right)(x-1) = \left(\ln\left(\frac{3}{2}\right) - \frac{1}{3}\right)(x-1)^2 + o((x-1)^2)$$

On a
$$\ln(3/2) - 1/3 > 0$$
, alors $\left(\ln\left(\frac{3}{2}\right) - \frac{1}{3}\right)(x-1)^2 \geqslant 0$ au voisinage de 1.

Donc la courbe C est au-dessus de sa tangente au voisinage de 1.

6. On a
$$\ln(1+v) = v - \frac{v^2}{2} + \frac{v^3}{3} + o(v^3)$$
 Alors, $\ln\left(1 + \frac{u}{2}\right) = \frac{u}{2} - \frac{u^2}{8} + \frac{u^3}{24} + o(u^3)$

On en déduit
$$(1-u)\ln\left(1+\frac{u}{2}\right) = (1-u)\left(\frac{u}{2}-\frac{u^2}{8}+\frac{u^3}{24}+o(u^3)\right)$$

soit
$$(1-u)\ln\left(1+\frac{u}{2}\right) = \frac{u}{2} - \frac{5u^2}{8} + \frac{u^3}{6} + o(u^3)$$

7. On pose $u=rac{1}{x}$ ce qui donne $x o +\infty \Longleftrightarrow u o 0^+$ et $x o -\infty \Longleftrightarrow u o 0^-.$

On a
$$f(x)=rac{1}{u}\left(rac{1}{u}-1
ight)\ln\left(1+rac{u}{2}
ight)$$
 Alors, $f(x)\mathop{=}\limits_{\pm\infty}rac{1}{u^2}\left(rac{u}{2}-rac{5u^2}{8}+rac{u^3}{6}+o(u^3)
ight)$

$$\text{soit} \quad f(x) \mathop{=}\limits_{\pm \infty} \frac{1}{2u} - \frac{5}{8} + \frac{u}{6} + o(u) \qquad \text{Et finalement, } \boxed{f(x) \mathop{=}\limits_{\pm \infty} \frac{x}{2} - \frac{5}{8} + \frac{1}{6x} + o\left(\frac{1}{x}\right)}$$

8. On a $f(x) - \frac{x}{2} + \frac{5}{8} = \frac{1}{6x} + o\left(\frac{1}{x}\right)$, alors, $\lim_{x \to \pm \infty} f(x) - \frac{x}{2} + \frac{5}{8} = 0$ donc la droite $y = \frac{x}{2} - \frac{5}{8}$ est asymptote à la courbe de f.

De plus, on a $\frac{1}{x} > 0$ au voisinage de $+\infty$ et $\frac{1}{x} < 0$ au voisinage de $-\infty$ alors, \mathcal{C} est au-dessus de l'asymptote de $+\infty$ et en-dessous au voisinage de $-\infty$.

Exercice 4

1. On a $G \subset \mathbb{R}_3[X]$ par définition.

Le polynôme nul 0 vérifie l'équation $(2X-1)0'=0=6\times 0$ et est de degré au plus 3, donc G est non vide.

Soit
$$(P,Q) \in G^2$$
, $\lambda \in \mathbb{R}$, $(2X-1)(\lambda P+Q)' = (2X-1)(\lambda P'+Q') = \lambda(2X-1)P' + (2X-1)Q' = \lambda 6P + 6Q$ car $P \in G$ et $Q \in G$ Alors,

$$(2X-1)(\lambda P+Q)'=6(\lambda P+Q)$$
 Donc $\lambda P+Q\in G:G$ est stable par combinaison linéaire.

On en déduit que \boxed{G} est bien un sev de $\mathbb{R}_3[X]$

Soit $P \in \mathbb{R}_3[X]$. P peut s'écrire $P = aX^3 + bX^2 + cX + d$ avec a, b, c, d réels. On a

$$P \in G \Longleftrightarrow (2X-1)(3aX^2+2bX+c)=6aX^3+6bX^2+6cX+6d$$

$$\iff \left\{egin{array}{lll} 6a&=&6a \ 4b-3a&=&6b \ 2c-2b&=&6c \ -c&=&6d \end{array}
ight. \iff \left\{egin{array}{lll} 3a+2b&=&0 \ 2b+4c&=&0 \ c+6d&=&0 \end{array}
ight. \iff \exists lpha \in \mathbb{R}: \left\{egin{array}{lll} a&=&-8lpha \ b&=&12lpha \ c&=&-6lpha \ d&=&lpha \end{array}
ight.$$

$$\Longleftrightarrow \exists \alpha \in \mathbb{R} : (a,b,c,d) = \alpha(-8,12,-6,1) \Longleftrightarrow \exists \alpha \in \mathbb{R} : P = \alpha(-8X^3 + 12X^2 - 6X + 1)$$

Alors, $G = \text{Vect}(-8X^3 + 12X^2 - 6X + 1)$: G est une droite vectorielle, on a dim G = 1 et

$$(-8X^3 + 12X^2 - 6X + 1)$$
 est une base de G

2. La famille \mathcal{F} est échelonnée en degré donc $\boxed{\mathcal{F}}$ est libre.

C'est une famille de 3 polynômes, or $\dim(\mathbb{R}_3[X])=4$, donc $\boxed{\mathcal{F}}$ ne peut pas être une base de $\mathbb{R}_3[X]$

- 3. Soit $P, Q \in \mathbb{R}_3[X]$ et $\lambda \in \mathbb{R}$, $\varphi(\lambda P + Q) = (\lambda P + Q)(X^2) (X^2 + 1)(\lambda P + Q) = \lambda P(X^2) + Q(X^2) \lambda(X^2 + 1)P (X^2 + 1)Q = \lambda P(X^2) (X^2 + 1)P + Q(X^2) (X^2 + 1)Q = \lambda \varphi(P) + \varphi(Q)$ Alors, φ est linéaire.
- 4. Soit $P \in \mathbb{R}_3[X]$. Si $P \in \text{Ker}(\varphi)$, avec $\deg(P) = n \in \mathbb{N}$, alors $P(X^2) (X^2 + 1)P = 0$ donne 2n (n+2) = 0 donc $\deg(P) = 2$.

On pose $P=aX^2+bX+c$, avec $a,b,c\in\mathbb{R}$. On a $P\in \mathrm{Ker}(\varphi)\Longleftrightarrow P(X^2)-(X^2+1)P=0$ $\Longleftrightarrow aX^4+bX^2+c-aX^4-bX^3-(a+c)X^2-bX-c=0$

Or, un polynôme est nul si et seulemnent si tous ses coefficients sont nuls, donc

$$P \in \operatorname{Ker}(arphi) \Longleftrightarrow \left\{egin{array}{ccc} b & = & 0 \ b - (a+c) & = & 0 \end{array}
ight. \Longleftrightarrow \left\{egin{array}{ccc} b & = & 0 \ a & = & -c \end{array}
ight. \Longleftrightarrow P = a(X^2-1)$$

 $\operatorname{\mathsf{Donc}}\left[\operatorname{\mathsf{Ker}}(arphi)=\operatorname{\mathsf{Vect}}(X^2-1)
ight]$

5. Comme $Ker(\varphi) \neq \{0\}$, φ n'est pas injective.

On a $\dim(\operatorname{Ker}(\varphi))=1$, alors d'après le théorème du rang $\dim\mathbb{R}_3[X]=\dim(\operatorname{Ker}(\varphi))+\dim(\operatorname{Im}(\varphi))$ d'où $\dim(\operatorname{Im}(\varphi))=4-1=3$.

On a $\operatorname{Im}(\varphi)$ qui est de dimension finie et $\mathbb{R}[X]$ qui est de dimension infinie, donc $\operatorname{Im}(\varphi) \neq \mathbb{R}[X]$ et φ n'est pas surjective.

Alors φ n'est pas un isomorphisme, car elle n'est pas bijective. Et, ce n'est pas non plus un endomorphisme car les espaces de départ et d'arrivée sont différents.

6. Montrons que $\operatorname{Vect}(\mathcal{F})$ et $\operatorname{Ker}(\varphi)$ sont en somme directe. Soit $P \in \operatorname{Vect}(\mathcal{F}) \cap \operatorname{Ker}(\varphi)$.

On a $P=\lambda(X^2-1)$ avec $\lambda\in\mathbb{R}$ car $P\in\mathrm{Ker}(arphi)$

et $P=\mu(2X-1)+
u(3)+\gamma(3X^3+1)$ avec $(\mu,\nu,\gamma)\in\mathbb{R}^3$ car $P\in \mathrm{Vect}(\mathcal{F}).$

Par unicité de l'écriture polynomiale, le coefficient de degré 2 vaut $\lambda=0$, donc P=0

Ainsi $\mathrm{Vect}(\mathcal{F})\cap\mathrm{Ker}(\varphi)\subset\{0\}$ et l'inclusion réciproque est toujours vraie.

On a bien montré que ces espaces sont en somme directe.

De plus $\dim(\operatorname{Vect}(\mathcal{F})) = 3$ car la famille de 3 vecteurs qui l'engendre est libre et $\dim(\operatorname{Ker}(\varphi)) = 1$ car cet espace est engendré par un vecteur non nul.

Alors, $\dim(\operatorname{Vect}(\mathcal{F})) + \dim(\operatorname{Ker}(\varphi)) = 3 + 1 = 4 = \dim(\mathbb{R}_3[X])$.

Ainsi, par théorème, nous avons montré $\Big[\operatorname{Vect}(\mathcal{F}) \oplus \operatorname{Ker}(arphi) = \mathbb{R}_3[X]\Big].$

7. On calcule d'abord les projections sur $Ker(\varphi)$ parallèlement à $Vect(\mathcal{F})$.

Soit $P \in \mathbb{R}_3[X], \quad P = aX^3 + bX^2 + cX + d$, avec $a,b,c,d \in \mathbb{R}.$

On cherche $F \in \operatorname{Vect}(\mathcal{F})$ et $K \in \operatorname{Ker}(\varphi)$ telles que P = F + K.

$$F \in \mathrm{Vect}(\mathcal{F})$$
, donc $F = \lambda(2X-1) + 3\mu +
u(3X^3+1)$ avec $(\lambda,\mu,
u) \in \mathbb{R}^3$

 $K \in \operatorname{Ker}(arphi)$, donc $K = \gamma(X^2 - 1)$ avec $\gamma \in \mathbb{R}$.

Ainsi, par unicité de l'écriture polynômiale,

$$P = F + K \iff aX^3 + bX^2 + cX + d = \lambda(2X - 1) + 3\mu + \nu(3X^3 + 1) + \gamma(X^2 - 1)$$

$$\Longleftrightarrow aX^3+bX^2+cX+d=3
u X^3+\gamma X^2+2\lambda X+3\mu-\lambda+
u-\gamma$$

$$\iff \left\{ egin{array}{ccccc} 3
u & = & a & & = & a/3 \ \gamma & = & b & & = & b \ 2 \lambda & = & c & & & \lambda & = & c/2 \
u - \gamma - \lambda + 3 \mu & = & d & & \mu & = & -a/9 + b/3 + c/6 + d/3 \end{array}
ight.$$

On a donc trouvé les expressions pour les vecteurs K et F. Sachant que K est la projection sur $\mathrm{Ker}(\varphi)$ parallèlement à $\mathrm{Vect}(\mathcal{F})$ et F est la projection sur $\mathrm{Vect}(\mathcal{F})$ parallèlement à $\mathrm{Ker}(\varphi)$.

Le symétrique de P est donc $K-F=\gamma(X^2-1)-\lambda(2X-1)-3\mu-\nu(3X^3+1)$ ce qui donne

$$K-F=b(X^2-1)-rac{c}{2}(2X-1)-\left(-rac{a}{3}+b+rac{c}{2}+d
ight)-rac{a}{3}(3X^3+1)$$

$$K-F = -aX^3 + bX^2 - cX + (-b+c/2-d-b-c/2+a/3-a/3) = -aX^3 + bX^2 - cX + -d-2b$$

Donc la symétrie par rapport à $Ker(\varphi)$ parallèlement à $Vect(\mathcal{F})$ est l'application

$$egin{array}{lll} \sigma: \mathbb{R}_3[X] & \longrightarrow & \mathbb{R}_3[X] \ aX^3 + bX^2 + cX + d & \longmapsto & -aX^3 + bX^2 - cX + -d - 2b \end{array}$$

- 8. On a $\operatorname{Im}(\varphi) = \operatorname{Vect}(\varphi(1), \varphi(X), \varphi(X^2), \varphi(X^3)) = \operatorname{Vect}(-X^2, X^2 X^3 + X, -X^2, X^6 X^5 + X^3) = \operatorname{Vect}(-X^3 + X^2 + X, -X^2, X^6 X^5 + X^3)$ Or cette famille est échelonnée en degré donc libre, et c'est une famille génératrice de $\operatorname{Im}(\varphi)$ donc c'est bien une base de $\operatorname{Im}(\varphi)$.
- 9. La restriction à un sev d'une application linéaire est linéaire, donc φ est linéaire. $\dim(\operatorname{Vect}(\mathcal{F})) = 3 = \dim(\operatorname{Im}(\varphi))$, ces espaces étant isomorphes, l'application est bijective si et seulement si elle est injective.

Or $u \in \operatorname{Ker}(\widetilde{\varphi}) \iff u \in \operatorname{Ker}(\varphi)$ et $u \in \operatorname{Vect}(\mathcal{F})) \iff u = \overrightarrow{0}$ car ces espaces sont supplémentaires. Donc $\operatorname{Ker}(\widetilde{\varphi}) = \{\overrightarrow{0}\}$.

Donc l'application est bijective et linéaire, $\overline{\widetilde{\varphi}}$ est bien un isomorphisme

Exercice 5

1. (a) On écrit un développement limité de sin en 0 :

 $\sin(t) = t - \frac{t^3}{6} + t^3 \varepsilon(t)$ avec $\varepsilon(t) \xrightarrow[]{t \to 0} 0$ qui donne par soustraction :

 $\sin(t) - t = -\frac{t^3}{6} + t^3 \varepsilon(t)$ qui donne par quotient :

$$rac{\sin(t)-t}{t^2} = rac{0}{16} + tarepsilon(t).$$

On remarque que $\lim_{t \to 0} \frac{\sin(t) - t}{t^2} = 0 = g(0)$ alors on peut écrire $g(t) = -\frac{t}{6} + t \varepsilon(t)$

La fonction g a donc un développement limité d'ordre 0 en 0 et g est définie en 0, alors g est continue en 0.

Comme $t\mapsto \dfrac{\sin(t)-t}{t^2}$ est continue sur \mathbb{R}^* en tant que quotient de fonctions continues sur

 \mathbb{R}^* dont le dénominateur ne s'annule pas, g est continue sur \mathbb{R}^* donc g est continue sur \mathbb{R} .

- (b) g est continue sur le segment [-2,2] alors sur [-2,2], g est majorée par $M: \forall t \in [-2,2]$, $|g(t)| \leq M$.
 - Pour $x \in]0,1]$, on a pour tout $t \in [x,2x]$, $|t| \le 2$ donc $|g(t)| \le M$. L'intégrale est croissante et les bornes sont dans le bon sens, alors

$$\left|\int_{x}^{2x}g(t)\;\mathrm{d}t
ight|\leqslant\int_{x}^{2x}\left|g(t)
ight|\;\mathrm{d}t\leqslant\int_{x}^{2x}M\;\mathrm{d}t$$

On trouve après calculs

$$\left|\int_{x}^{2x}g(t)\;\mathrm{d}t
ight|\leqslant Mx$$

— Pour $x \in [-1, 0[$, on a pour tout $t \in [2x, x]$, $|t| \le 2$ donc $|g(t)| \le M$. L'intégrale est croissante et les bornes sont dans le bon sens, alors

$$\left|\int_{2x}^x g(t)\;\mathrm{d}t
ight|\leqslant \int_{2x}^x |g(t)|\;\mathrm{d}t\leqslant \int_{2x}^x M\;\mathrm{d}t$$

On trouve après calculs :

$$\left| \int_x^{2x} g(t) \; \mathrm{d}t
ight| \left| \int_{2x}^x g(t) \; \mathrm{d}t
ight| \leqslant -Mx$$

Alors
$$oxed{ ext{pour tout } x \in [-1,1], \quad \left| \int_x^{2x} g(t) \; \mathrm{d}t
ight| \leqslant M|x|}$$

L'intervalle [-1,1] est un voisinage de 0 et $\lim_{x\to 0} M|x|=0$, alors par théorème d'encadrement

$$\left[\lim_{x o 0}\int_x^{2x}g(t)\;\mathrm{d}t=0
ight].$$

 $\text{(c) On a pour } x \neq 0, \ f(x) - f(0) = \int_x^{2x} \frac{\sin(t)}{t^2} \, \mathrm{d}t - \ln(2) = \int_x^{2x} \frac{\sin(t)}{t^2} \, \mathrm{d}t - \int_x^{2x} \frac{1}{t} \, \mathrm{d}t \\ \text{soit pour tout } x \in \mathbb{R}^*, \quad f(x) - f(0) = \int_x^{2x} g(t) \, \mathrm{d}t.$

De plus, l'égalité est vraie pour x=0 : $orall x\in \mathbb{R}, \quad f(x)-f(0)=\int_x^{2x}g(t)\;\mathrm{d}t.$

 $\text{Comme}\lim_{x\to 0}\int_x^{2x}g(t)\ \mathrm{d}t=0, \text{ on a}\lim_{x\to 0}f(x)-f(0)=0 \text{ ce qui prouve que} \boxed{f \text{ est continue en }0}.$

2. Soit $x \in \mathbb{R}^*$. On effectue le changement de variables u = -t qui est licite car la fonction $t \mapsto -t$ est de classe \mathcal{C}^1 sur \mathbb{R} . On calcule l'élément différentiel $\mathrm{d} u = -\mathrm{d} t$. Les bornes deviennent t = x $\iff u = -x$ et $t = 2x \iff u = -2x$

Alors, d'après le théorème de changement de variables :

$$f(x)=-\int_{-x}^{-2x}rac{\sin(-u)}{(-u)^2}\,\mathrm{d}u$$
 $f(x)=\int_{-x}^{-2x}rac{\sin(u)}{u^2}\,\mathrm{d}u\,\mathrm{car}\,\sin(-u)=-\sin(u)\mathrm{x}$

On trouve donc f(x) = f(-x) pour tout $x \in \mathbb{R}^*$ et comme f(0) = 0, on a f(0) = f(-0). Alors, $\forall x \in \mathbb{R}$, f(-x) = f(x) donc f(x) = f(x) for f(x) = f(x) for

3. (a) La fonction $t\mapsto \frac{\sin(t)}{t^2}$ est continue sur \mathbb{R}_+^* , alors elle possède des primitives : soit F_1 une de ces primitives sur \mathbb{R}_+^* .

Alors pour tout $x\in\mathbb{R}_+^*$, on a $F_1'(x)=rac{\sin(x)}{x}$ et $f(x)=[F_1(t)]_x^{2x}=F_1(2x)-F_1(x).$

Comme $t\mapsto \frac{\sin(t)}{t^2}$ est continue sur \mathbb{R}_+^* , F_1 est de classe \mathcal{C}^1 sur \mathbb{R}_+^* . De plus, $x\mapsto 2x$ est \mathcal{C}^1 sur \mathbb{R}_+^* , alors par composition, f est \mathcal{C}^1 sur \mathbb{R}_+^* et $f'(x)=2F_1'(2x)-F_1'(x)=2\frac{\sin(2x)}{(2x)^2}-\frac{\sin(x)}{x^2}$

De la même manière, la fonction $t\mapsto \frac{\sin(t)}{t^2}$ est continue sur \mathbb{R}_-^* , alors elle possède des primitives : soit F_2 une de ces primitives. Pour tout $x\in\mathbb{R}_+^*$, on a $F_2'(x)=\frac{\sin(x)}{x}$ et $f(x)=[F_2(t)]_x^{2x}=F_2(2x)-F_2(x)$.

 F_2 est de classe \mathcal{C}^1 sur \mathbb{R}^*_- et $x\mapsto 2x$ est \mathcal{C}^1 sur \mathbb{R} , alors par composition, f est \mathcal{C}^1 sur \mathbb{R}^*_- et $f'(x)=2F_2'(2x)-F_2'(x)=2rac{\sin(2x)}{(2x)^2}-rac{\sin(x)}{x^2}$

On en conlut que $\int f$ est de classe \mathcal{C}^1 sur \mathbb{R}^* et $orall x \in \mathbb{R}^*, \quad f'(x) = rac{\sin(2x)}{2x^2} - rac{2\sin(x)}{2x^2}$

(b) On calcule un DL de f' en 0 :

$$\sin(x) = 0x - \frac{x^3}{6} + o(x^4)$$
 et $\sin(2x) = 2x - \frac{8x^3}{6} + o(x^4)$

Alors, $\sin(2x) - 2\sin(x) = -x^3 + o(x^4)$ qui donne par quotient, $f(x) = -x + o(x^2)$

Alors $\lim_{x\to 0} f'(x) = 0$.

f est continue sur \mathbb{R} et dérivable sur \mathbb{R}^* et f' a une limite finie en 0, alors d'après le théorème de la limite de la dérivée, f est dérivable en 0 et $f'(0) = \lim_{x \to 0} f'(x) = 0$ et f' est continue en 0.

- (c) On a pour $x>0,\ f'(x)>0\Longleftrightarrow\sin(2x)>2\sin(x)\Longleftrightarrow2\sin(x)\cos(x)>2\sin(x).$
 - Pour $x\in]2k\pi,$ $(2k+1)\pi[$ avec $k\in \mathbb{N},$ on a $\sin(x)>0$ donc $f'(x)>0\Longleftrightarrow \cos(x)>1$ ce qui est impossible donc $f'(x)\leqslant 0$.
 - Pour $x \in](2k+1)\pi$, $(2k+2)\pi$ avec $k \in \mathbb{N}$, on a $\sin(x) < 0$ donc $f'(x) > 0 \iff \cos(x) < 1$ ce qui est toujours vrai donc f'(x) > 0.
 - Et $f'(k\pi) = 0$.
- $\text{4. On a pour } x>0 \text{ et } t\in[x,2x], \ |\sin(t)|\leqslant 1 \text{ donc } \left|\frac{\sin(t)}{t^2}\right|\leqslant \frac{1}{t^2} \text{ car } t^2>0.$

L'intégrale est croissante et les bornes x et 2x sont dans l'ordre croissant alors

$$\left|\int_x^{2x} rac{\sin(t)}{t^2} \; \mathrm{d}t
ight| \leqslant \int_x^{2x} \left| rac{\sin(t)}{t^2}
ight| \; \mathrm{d}t$$

Et, à nouveau par croissance de l'intégrale

$$egin{aligned} \int_x^{2x} \left| rac{\sin(t)}{t^2}
ight| \, \mathrm{d}t &\leqslant \int_x^{2x} rac{1}{t^2} \, \mathrm{d}t \ \left| \int_x^{2x} rac{\sin(t)}{t^2} \, \mathrm{d}t
ight| &\leqslant \left[-rac{1}{t}
ight]_x^{2x} = -rac{1}{2x} + rac{1}{x} = rac{1}{2x} \end{aligned}$$

On calcule :

On obtient

$$orall x \in]0,+\infty[, \quad |f(x)| \leqslant rac{1}{2x}]$$

On a $\lim_{x \to +\infty} \frac{1}{2x} = 0$, alors, d'après le théorème d'encadrement, $\lim_{x \to +\infty} f(x) = 0$.

5. (a) On pose $x=rac{\pi}{2}.$ Pour $t\in\left[rac{\pi}{2},\pi
ight],\quad \sin(t)\geqslant 0$ donc $\dfrac{\sin(t)}{t^2}\geqslant 0.$

L'intégrale est croissante et les bornes $\frac{\pi}{2}$ et π sont dans l'ordre croissant. Alors,

$$\int_{\pi/2}^{\pi} \frac{\sin(t)}{t^2} dt \geqslant \int_{\pi/2}^{\pi} 0 dt \qquad \text{Donc } \underline{f\left(\frac{\pi}{2}\right)} \geqslant \underline{0}.$$

La fonction $t\mapsto \frac{\sin(t)}{t^2}$ est continue, positive sur $[\frac{\pi}{2},\pi]$ et ne s'annule pas en $\frac{\pi}{2}$ donc elle n'est pas identiquement nulle sur $[\frac{\pi}{2},\pi]$ alors son intégrale ne peut pas être nulle :

$$f\left(rac{\pi}{2}
ight)
eq 0.$$
 On en déduit $f\left(rac{\pi}{2}
ight) > 0$

On pose $x=\pi.$ Pour $t\in [\pi,2\pi], \quad \sin(t)\leqslant 0 \; \mathrm{donc} \; \dfrac{\sin(t)}{t^2}\leqslant 0.$

L'intégrale est croissante et les bornes π et 2π sont dans l'ordre croissant. Alors,

$$\int_{\pi}^{2\pi} \frac{\sin(t)}{t^2} \, \mathrm{d}t \leqslant 0 \qquad \text{ Donc } \underline{f\left(\frac{\pi}{2}\right)} \leqslant \underline{0}.$$

La fonction $t\mapsto \frac{\sin(t)}{t^2}$ est continue, négative sur $[\pi, 2\pi]$ et n'est pas identiquement nulle sur $[\pi, 2\pi]$ alors son intégrale ne peut pas être nulle : $f(\pi) \neq 0$.

Donc
$$f(\pi) < 0$$

(b) On a

$$f(2\pi) = \int_{2\pi}^{4\pi} \frac{\sin(t)}{t^2} dt = \int_{2\pi}^{3\pi} \frac{\sin(t)}{t^2} dt + \int_{3\pi}^{4\pi} \frac{\sin(t)}{t^2} dt$$
 par relation de Chasles Dans la deuxième intégrale, on pose $u = t - \pi$ alors $du = dt$ et $u \in [3\pi, 4\pi] \iff [2\pi, 3\pi]$

On peut changer de variables dans l'intégrale :

$$\int_{3\pi}^{4\pi} rac{\sin(t)}{t^2} \; \mathrm{d}t = \int_{2\pi}^{3\pi} rac{\sin(u+\pi)}{(u+\pi)^2} \; \mathrm{d}u$$

On a $\sin(u+\pi) = -\sin(u)$. D'où

$$\int_{3\pi}^{4\pi} rac{\sin(t)}{t^2} \, \mathrm{d}t = \int_{2\pi}^{3\pi} -rac{\sin(u)}{(u+\pi)^2} \, \mathrm{d}u = \int_{2\pi}^{3\pi} -rac{\sin(t)}{(t+\pi)^2} \, \mathrm{d}t$$

Alors,
$$f(2\pi)=\int_{2\pi}^{3\pi}rac{\sin(t)}{t^2}\,\mathrm{d}t-\int_{2\pi}^{3\pi}rac{\sin(t)}{(t+\pi)^2}\,\mathrm{d}t$$

$$\operatorname{soit} \left[f(2\pi) = \int_{2\pi}^{3\pi} \left(rac{1}{t^2} - rac{1}{(t+\pi)^2}
ight) \sin(t) \; \mathrm{d}t
ight]$$

On a pour tout $t\in[2\pi,3\pi]$, $\sin(t)\geqslant 0$ et $\frac{1}{t^2}-\frac{1}{(t+\pi)^2}>0$. L'intégrale est croissante et les bornes sont $2\pi<3\pi$, alors, on a $\int_{2\pi}^{3\pi}\left(\frac{1}{t^2}-\frac{1}{(t+\pi)^2}\right)\sin(t)\,\mathrm{d}t\geqslant 0$.

On a donc $f(2\pi) \geqslant 0$.

La fonction à intégrer $t \longmapsto \left(\frac{1}{t^2} - \frac{1}{(t+\pi)^2}\right) \sin(t)$ est continue et positive sur $[2\pi, 3\pi]$ et n'est pas nulle en $\frac{5\pi}{2}$, alors son intégrale ne peut pas être nulle.

On a donc $f(2\pi) > 0$.

(c)

