Оглавление

- 1 Отчет. Бабак Артем. 201 группа
 - 1.1 Функции и классы для обучения, тестирования, получения датасета
 - 1.1.1 Датасет
 - 1.1.2 Рисование графиков
 - 1.1.3 Обучение + валидация
 - 1.1.4 Обучения на всей выборке + получение предсказаний
- 2 Модель, чтобы пробить 10%
 - 2.1 Модель + параметры
 - 2.2 Результаты
- 3 ResNet18 из PyTorch
 - 3.1 Модель + параметры
 - 3.2 Результаты
- 4 Самописный ResNet
 - 4.1 Модель + параметры
 - 4.2 Результаты
- 5 Меньше каналов
 - 5.1 Модель + параметры
 - 5.2 Результаты
- 6 Добавим аугментации
 - 6.1 Модель + параметры
 - 6.2 Результаты
- 7 Поменяем шедулер
 - 7.1 Модель + параметры
 - 7.2 Результаты
- 8 Увеличимм начальный Ir
 - 8.1 Модель+параметры
 - 8.2 Результаты
- 9 Меняем оптимизатор на Adam
 - 9.1 Модель + параметры
 - 9.2 Результаты
- 10 Weight Decay
 - 10.1 Модель + параметры
 - 10.2 Результаты
- 11 Resize 224x224
 - 11.1 Модель + параметры
 - 11.2 Результаты
- 12 Итоги ResNet базовый
- 13 ResNet для Cifar-10
 - 13.1 Модель + параметры
 - 13.2 Результаты
- 14 Уменьшаем MileStone
 - 14.1 Модель + параметры

- 14.2 Результаты
- 15 Resize 32x32
 - 15.1 Модель + параметры
 - 15.2 Результаты
- 16 Уберем DropOut
 - 16.1 Модель + параметры
 - 16.2 Результаты
- 17 32 слоя без dropout
 - 17.1 Модель+параметры
 - 17.2 Результаты
- 18 32 слоя + dropout
 - 18.1 Модель + параметры
 - 18.2 Результаты
- 19 Попробуем LeakyReLu
 - 19.1 Модель + параметры
 - 19.2 Результаты
- 20 Итоги

Отчет. Бабак Артем. 201 группа

Функции и классы для обучения, тестирования, получения датасета

Код взят с семинара с некоторыми изменениями

Датасет

```
In [ ]: class MyDataset(Dataset):
            TEST SIZE = 0.20
            SPLIT_RANDOM_SEED = 42
            def __init__(self, root, final_test=False, final_train=False, train=Tru
                super().__init__()
                self.root = root
                self.transform = transform
                self.train = train
                self.final_test = final_test
                self.final_train = final_train
                self.load_to_ram = load_to_ram
                self.to_tensor = T.ToTensor()
                self.all_files = []
                self.all_labels = []
                self.images = []
                self.classes = []
                if self.final_test:
                    self.data_root = self.root + "/test"
                     self.data_root = self.root + "/trainval"
                     self.labels_root = self.root + "/labels.csv"
                    all_labels = list(pd.read_csv(self.labels_root)['Label'])
                all_files = sorted(os.listdir(self.data_root))
                if not self.final_test and not self.final_train:
                    train_files, test_files, train_labels, test_labels = train_test
                                                                 test_size=self.TEST_
                if self.final_test:
                    self.files = all_files
                elif self.final_train:
                    self.files = all_files
                    self.labels = all_labels
                elif self.train:
                    self.files = train_files
                    self.labels = train_labels
                else:
                    self.files = test_files
                    self.labels = test_labels
                if not self.final_test:
                     self.classes = sorted(pd.unique(all_labels))
                if self.load_to_ram:
                     self.images = self._load_images(self.files)
            def _load_images(self, image_files):
                 images = []
                for filename in image_files:
                     image = Image.open(os.path.join(self.data_root, filename)).conv
                     images += [image]
                return images
            def __len__(self):
```

```
return len(self.files)

def __getitem__(self, item):
    if not self.final_test:
        label = self.labels[item]
    filename = self.files[item]
    image = Image.open(os.path.join(self.data_root, filename)).convert(

    if self.transform is not None:
        image = self.transform(image)

    if self.final_test:
        return image
    else:
        return image, label
```

Рисование графиков

```
In [ ]: import seaborn as sns
        import matplotlib.pyplot as plt
        from IPython.display import clear_output
        from tqdm.notebook import tqdm
        sns.set_style('whitegrid')
        plt.rcParams.update({'font.size': 15})
        def plot_losses(train_losses, test_losses, train_accuracies, test_accuracie
            clear_output()
            fig, axs = plt.subplots(1, 2, figsize=(13, 4))
            axs[0].plot(range(1, len(train_losses) + 1), train_losses, label='train
            axs[0].plot(range(1, len(test_losses) + 1), test_losses, label='test')
            axs[0].set_ylabel('loss')
            axs[1].plot(range(1, len(train_accuracies) + 1), train_accuracies, labe
            axs[1].plot(range(1, len(test_accuracies) + 1), test_accuracies, label=
            axs[1].set_ylabel('accuracy')
            for ax in axs:
                ax.set_xlabel('epoch')
                ax.legend()
            plt.show()
```

Обучение + валидация

```
In [ ]: def training_epoch(model, optimizer, criterion, train_loader, tqdm_desc):
            train_loss, train_accuracy = 0.0, 0.0
            model.train()
            for images, labels in tqdm(train_loader, desc=tqdm_desc):
                images = images.to(device) # images: batch_size x num_channels x h
                labels = labels.to(device) # labels: batch_size
                optimizer.zero grad()
                logits = model(images) # logits: batch_size x num_classes
                loss = criterion(logits, labels)
                loss.backward()
                optimizer.step()
                train_loss += loss.item() * images.shape[0]
                train_accuracy += (logits.argmax(dim=1) == labels).sum().item()
            train_loss /= len(train_loader.dataset)
            train_accuracy /= len(train_loader.dataset)
            return train_loss, train_accuracy
        @torch.no_grad()
        def validation_epoch(model, criterion, test_loader, tqdm_desc):
            test_loss, test_accuracy = 0.0, 0.0
            model.eval()
            for images, labels in tqdm(test_loader, desc=tqdm_desc):
                images = images.to(device) # images: batch_size x num_channels x h
                labels = labels.to(device) # labels: batch_size
                logits = model(images) # logits: batch_size x num_classes
                loss = criterion(logits, labels)
                test_loss += loss.item() * images.shape[0]
                test_accuracy += (logits.argmax(dim=1) == labels).sum().item()
            test_loss /= len(test_loader.dataset)
            test_accuracy /= len(test_loader.dataset)
            return test_loss, test_accuracy
        def train(model, optimizer, scheduler, criterion, train_loader, test_loader
            train_losses, train_accuracies = [], []
            test_losses, test_accuracies = [], []
            for epoch in range(1, num_epochs + 1):
                train_loss, train_accuracy = training_epoch(
                    model, optimizer, criterion, train_loader,
                    tqdm_desc=f'Training {epoch}/{num_epochs}'
                test_loss, test_accuracy = validation_epoch(
                    model, criterion, test loader,
                    tqdm_desc=f'Validating {epoch}/{num_epochs}'
                if scheduler is not None:
                    scheduler.step()
                train_losses += [train_loss]
                train_accuracies += [train_accuracy]
                test_losses += [test_loss]
```

```
test_accuracies += [test_accuracy]
    plot_losses(train_losses, test_losses, train_accuracies, test_accur
return train_losses, test_losses, train_accuracies, test_accuracies
```

Обучения на всей выборке + получение предсказаний

```
In []: def train_only(model, optimizer, scheduler, criterion, train_loader, num_ep
            train_losses, train_accuracies = [], []
            test_losses, test_accuracies = [], []
            for epoch in range(1, num epochs + 1):
                train_loss, train_accuracy = training_epoch(
                    model, optimizer, criterion, train_loader,
                    tqdm_desc=f'Training {epoch}/{num_epochs}'
                if scheduler is not None:
                    scheduler.step()
                train_losses += [train_loss]
                train_accuracies += [train_accuracy]
                plot_train_loss(train_losses, train_accuracies)
            return train_losses, train_accuracies
        def plot_train_loss(train_losses, train_accuracies):
            clear_output()
            fig, axs = plt.subplots(1, 2, figsize=(13, 4))
            axs[0].plot(range(1, len(train_losses) + 1), train_losses, label='train
            axs[0].set_ylabel('loss')
            axs[1].plot(range(1, len(train_accuracies) + 1), train_accuracies, labe
            axs[1].set_ylabel('accuracy')
            for ax in axs:
                ax.set_xlabel('epoch')
                ax.legend()
            plt.show()
        def make_predictions(model, test_loader):
            predictions = []
            model.eval()
            for images in tqdm(test_loader):
                images = images.to(device) # images: batch_size x num_channels x h
                logits = model(images) # logits: batch_size x num_classes
                predictions += (torch.argmax(logits, dim=1).tolist())
            return predictions
```

Модель, чтобы пробить 10%

Код взят с семинара

```
In [ ]: |model = nn.Sequential(
            nn.Conv2d(in_channels=3, out_channels=16, kernel_size=5), #60*60
            nn.LeakyReLU(),
            nn.MaxPool2d(kernel_size=2), #30*30
            nn.Conv2d(in_channels=16, out_channels=16, kernel_size=5), # 26x26
            nn.LeakyReLU(),
            nn.MaxPool2d(kernel_size=2), # 13x13
            nn.Flatten(),
            nn.Linear(13 * 13 * 16, 256),
            nn.LeakyReLU(),
            nn.Linear(256, 200))
In [ ]: test transform = T.Compose([
            T.ToTensor()
        ])
        train_transform = T.Compose([
            T.ToTensor()
        ])
        train_dataset = MyDataset(root=root, final_test=False, final_train=False, t
        val_dataset = MyDataset(root=root, final_test=False, final_train=False, tra
        train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, pin_m
        val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False, pin_memo
        device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
        model = model.to(device)
        num_epochs = 5
        optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
        criterion = torch.nn.CrossEntropyLoss()
        scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, num_epoch
        train_losses, test_losses, train_accuracies, test_accuracies = train(
            model, optimizer, scheduler, criterion, train_loader, val_loader, num_e
```


ResNet18 из PyTorch

Модель + параметры

Во-первых, ResNet из PyTorch преполагает картинки 224x224, так что сделаем сначала Resize(256), а затем CenterCrop(224), как часто делается и как показывали на лекции.

Во-вторых, нормализуем стандартными значениямию. Так рекомендуется в документации PyTorch и так же рекомендовали на лекциию.

В-третьих, расписание, оптимизатор, гиперпараметры оставим из предыдущей модели. Лишь увеличим количество эпох до 20, так как нам уже надо не 10%, а как можно лучше

```
In [ ]: | test_transform = T.Compose([
                T.Resize(256),
                T.CenterCrop(224),
                T.ToTensor(),
                T.Normalize(
                mean=[0.485, 0.456, 0.406],
                std=[0.229, 0.224, 0.225]
            )])
        train_transform = T.Compose([
                T.Resize(256),
                T.CenterCrop(224),
                T.ToTensor(),
                T.Normalize(
                mean=[0.485, 0.456, 0.406],
                std=[0.229, 0.224, 0.225]
            )])
        train_dataset = MyDataset(root=root, final_test=False, final_train=False, t
        val_dataset = MyDataset(root=root, final_test=False, final_train=False, tra
        train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, pin_m
        val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False, pin_memo
        model = models.resnet18()
        device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
        model = model.to(device)
        num_epochs = 20
        optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
        criterion = torch.nn.CrossEntropyLoss()
        scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, num_epoch
        train_losses, test_losses, train_accuracies, test_accuracies = train(
            model, optimizer, scheduler, criterion, train_loader, val_loader, num_e
```

Результаты

Получили хороший результат немногим больше 0.4

Самописный ResNet

Модель + параметры

Код реализован на основе изначальной статьи про ResNet. Peaлusyem BasicBlock - основной блок ResNet. StartingBlock - Начальный блок модели ResNet. FinalBlock - блок с полносвязным линейным блоком.

Параметры оставим такие же. Добавим DropOut с вероятностью 0.15. Не будем ресайзить картинки до 224x224

```
In [ ]: class BasicBlock(nn.Module):
            def __init__(self, in_channels, out_channels, is_dims_changed=False):
                super(BasicBlock, self).__init__()
                self.is_dims_changed = True
                stride = 2
                self.dropout_percantage = 0.15
                if in channels == out channels:
                    stride = 1
                    self.is_dims_changed = False
                self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, st
                self.bn1 = nn.BatchNorm2d(out channels)
                self.relu1 = nn.ReLU()
                self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, s
                self.bn2 = nn.BatchNorm2d(out_channels)
                self.drop = nn.Dropout(p=self.dropout_percantage)
                self.dims_change = nn.Conv2d(in_channels=in_channels, out_channels=
                self.relu2 = nn.ReLU()
            def forward(self, x):
                identity = x
                x = self.drop(self.bn2(self.conv2(self.relu1(self.bn1(self.conv1(x))))
                if self.is_dims_changed:
                    identity = self.dims_change(identity)
                x += self.relu2(x + identity)
                return x
        class StartingBlock(nn.Module):
            def __init__(self, out_channels):
                super(StartingBlock, self).__init__()
                self.conv = nn.Conv2d(3, out_channels, kernel_size=7, stride=2, pad
                self.bn = nn.BatchNorm2d(out_channels)
                self.relu = nn.ReLU()
                self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            def forward(self, x):
                x = self.conv(x)
                x = self.bn(x)
                x = self.relu(x)
                x = self.maxpool(x)
                return x
        class FinalBlock(nn.Module):
            def __init__(self, in_channels, num_classes):
                super(FinalBlock, self).__init__()
                self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
                self.fc = nn.Linear(in_channels, num_classes)
            def forward(self, x):
                x = self.avgpool(x)
                x = x.view(x.shape[0], -1)
                x = self.fc(x)
                return x
        class ResNet18(nn.Module):
```

```
def __init__(self, num_classes):
    super(ResNet18, self).__init__()
    self.start = StartingBlock(64)
    self.layer1 = self.make_basic_layer(64, 64)
    self.layer2 = self.make_basic_layer(64, 128)
    self.layer3 = self.make_basic_layer(128, 256)
    self.layer4 = self.make_basic_layer(256, 512)
    self.final = FinalBlock(512, num_classes)
def make_basic_layer(self, in_channels, out_channels):
    return nn.Sequential(
        BasicBlock(in_channels, out_channels),
        BasicBlock(out_channels, out_channels)
    )
def forward(self, x):
    x = self.start(x)
   x = self.layer1(x)
    x = self.layer2(x)
   x = self.layer3(x)
   x = self.layer4(x)
    x = self.final(x)
    return x
```

```
In [ ]: test transform = T.Compose([
                T. ToTensor(),
                T.Normalize(
                mean=[0.485, 0.456, 0.406],
                std=[0.229, 0.224, 0.225]
            )])
        train_transform = test_transform = T.Compose([
                T.ToTensor(),
                T.Normalize(
                mean=[0.485, 0.456, 0.406],
                std=[0.229, 0.224, 0.225]
            )])
        train_dataset = MyDataset(root=root, final_test=False, final_train=False, t
        val_dataset = MyDataset(root=root, final_test=False, final_train=False, tra
        train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, pin_m
        val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False, pin_memo
        model = ResNet18(len(train_dataset.classes))
        device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
        model = model.to(device)
        num_epochs = 20
        optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
        criterion = torch.nn.CrossEntropyLoss()
        scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, num_epoch
        train_losses, test_losses, train_accuracies, test_accuracies = train(
            model, optimizer, scheduler, criterion, train_loader, val_loader, num_e
```


Стало похуже немного, но все еще хорошо. Возможно надо все-таки сделать ресайз до 224х224

Меньше каналов

Уменьшим количество каналов на каждоем слое в 2 раза. Возможно у нас слишком много параметров и уменьшение количества каналов поможет

Параметры оставим такие же

```
In [ ]: class BasicBlock(nn.Module):
            def __init__(self, in_channels, out_channels, is_dims_changed=False):
                super(BasicBlock, self).__init__()
                self.is_dims_changed = True
                stride = 2
                self.dropout_percantage = 0.15
                if in channels == out channels:
                    stride = 1
                    self.is_dims_changed = False
                self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, st
                self.bn1 = nn.BatchNorm2d(out channels)
                self.relu1 = nn.ReLU()
                self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, s
                self.bn2 = nn.BatchNorm2d(out_channels)
                self.drop = nn.Dropout(p=self.dropout_percantage)
                self.dims_change = nn.Conv2d(in_channels=in_channels, out_channels=
                self.relu2 = nn.ReLU()
            def forward(self, x):
                identity = x
                x = self.drop(self.bn2(self.conv2(self.relu1(self.bn1(self.conv1(x))))
                if self.is_dims_changed:
                    identity = self.dims_change(identity)
                x += self.relu2(x + identity)
                return x
        class StartingBlock(nn.Module):
            def __init__(self, out_channels):
                super(StartingBlock, self).__init__()
                self.conv = nn.Conv2d(3, out_channels, kernel_size=7, stride=2, pad
                self.bn = nn.BatchNorm2d(out_channels)
                self.relu = nn.ReLU()
                self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            def forward(self, x):
                x = self.conv(x)
                x = self.bn(x)
                x = self.relu(x)
                x = self.maxpool(x)
                return x
        class FinalBlock(nn.Module):
            def __init__(self, in_channels, num_classes):
                super(FinalBlock, self).__init__()
                self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
                self.fc = nn.Linear(in_channels, num_classes)
            def forward(self, x):
                x = self.avgpool(x)
                x = x.view(x.shape[0], -1)
                x = self.fc(x)
                return x
        class ResNet18(nn.Module):
```

```
def __init__(self, num_classes):
    super(ResNet18, self).__init__()
    self.start = StartingBlock(32)
    self.layer1 = self.make_basic_layer(32, 32)
    self.layer2 = self.make_basic_layer(32, 64)
    self.layer3 = self.make_basic_layer(64, 128)
    self.layer4 = self.make_basic_layer(128, 256)
    self.final = FinalBlock(256, num_classes)
def make_basic_layer(self, in_channels, out_channels):
    return nn.Sequential(
        BasicBlock(in_channels, out_channels),
        BasicBlock(out_channels, out_channels)
    )
def forward(self, x):
    x = self.start(x)
    x = self.layer1(x)
    x = self.layer2(x)
    x = self.layer3(x)
    x = self.layer4(x)
    x = self.final(x)
    return x
```


Не помогло, стало хуже

Добавим аугментации

Известно, что аугментации улучшают качество на тесте и помогает бороться с переобучением, которое мы наблюдаем. Добавим RandomCrop и HorizontalFlip, которые являются простыми.

Количество каналов оставим как до уменьшения

Количество эпох увеличим в 2 раза, так как аугментации это шум и скорее обучаться будем медленнее

Результаты

На тестовой выборке стало немного лучше. Но зато переобучение сильно уменьшилось

Поменяем шедулер

Модель + параметры

Попробуем поменять расписание на MultiStep. Он попроще, что может помочь. Milestones выберем 25 и 35. Аугментации оставим.

```
In [ ]: scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[25,
```


Ничего не поменялось, кроме вида графиков

Увеличимм начальный Ir

Модель+параметры

Так как мы довольно сильно уменьшаем начальный Ir возможно стоит сделать его больше. Например 0.1. Шедулер оставим MultiStep

In []: optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)

Результаты

Стало заметно хуже. Плохая была идея

Меняем оптимизатор на Adam

Модель + параметры

Попробуем поменять оптимизатор на Adam. Во всех домашних заданиях Adam лично у меня показывал хорошие результаты и лучше SGD. Уберем аугментации и вернем шедулер CosineAnnealingLR

In []: optimizer = torch.optim.Adam(model.parameters())

Результаты

Стало хуже по сравнению с моделью 4 (Самописный ResNet). Почитав статьи я выяснил, что для классификации изображений лучше все-таки SGD

Weight Decay

Модель + параметры

Попробуем бороться с переобучением путем добавления weight decay равного 1е-3. Остальные параметры из Самописного ResNet.

In []: optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weig

Результаты

Результат примерно такой же, но зато переобучение меньше

Resize 224x224

Вообще архитектура ResNet из исходной статьи работает на картинках 224х224. Сделаем resize 224. Остальные параметры возьмем как Самописного ResNet

```
In [ ]: test_transform = T.Compose([
                 T.Resize(256),
                 T.CenterCrop(224),
                 T.ToTensor(),
                 T.Normalize(
                 mean=[0.485, 0.456, 0.406],
                 std=[0.229, 0.224, 0.225]
            )])
        train_transform = T.Compose([
                 T.Resize(256),
                 T.CenterCrop(224),
                 T.ToTensor(),
                 T.Normalize(
                 mean=[0.485, 0.456, 0.406],
                 std=[0.229, 0.224, 0.225]
            )])
```

Результаты

Резульат даже лучше, чем у ResNet из PyTorch

Итоги ResNet базовый

Если взять resize 224x224, weight_decay и аугментации, то гарантировано можно получить 0.45 и возможно даже больше. Но этого мало. Будем пробовать дальше

ResNet для Cifar-10

Возьмем архитектуру из исходный статьи про ResNet, но в этот раз для Cifar-10. Должно помочь, так как Cifar-10 сравним по размеру с нашим датасетом и гораздо меньше ImageNet для которого написан изначальный ResNet. Само собой поменяем число классов в модели. Остальные параметры возьмем как в статье. Лишь добавим DropOut(0.15), так как в статье сказано, что хоть DropOut и не использован, но сказано, что DropOut может помочь. Так же сделаем лишь 40 эпох и будем уменьшать Ir после 30 и 35 эпох. Будем использоваь 20 слоев

```
In [ ]: class BasicBlock(nn.Module):
            def __init__(self, in_channels, out_channels):
                super(BasicBlock, self).__init__()
                self.is_dims_changed = True
                stride = 2
                self.dropout_percantage = 0.15
                if in channels == out channels:
                    stride = 1
                    self.is_dims_changed = False
                self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, st
                self.bn1 = nn.BatchNorm2d(out_channels)
                self.relu1 = nn.ReLU()
                self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, s
                self.bn2 = nn.BatchNorm2d(out_channels)
                self.drop = nn.Dropout(p=self.dropout_percantage)
                self.dims_change = nn.Conv2d(in_channels=in_channels, out_channels=
                self.relu2 = nn.ReLU()
            def forward(self, x):
                identity = x
                x = self.drop(self.bn2(self.conv2(self.relu1(self.bn1(self.conv1(x))))
                if self.is_dims_changed:
                    identity = self.dims_change(identity)
                x += self.relu2(x + identity)
                return x
        class StartingBlock(nn.Module):
            def __init__(self, out_channels):
                super(StartingBlock, self).__init__()
                self.conv = nn.Conv2d(3, out_channels, kernel_size=3, stride=1, pad
                self.bn = nn.BatchNorm2d(out_channels)
                self.relu = nn.ReLU()
            def forward(self, x):
                x = self.conv(x)
                x = self.bn(x)
                x = self.relu(x)
                return x
        class FinalBlock(nn.Module):
            def __init__(self, in_channels, num_classes):
                super(FinalBlock, self).__init__()
                self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
                self.fc = nn.Linear(in_channels, num_classes)
            def forward(self, x):
                x = self.avgpool(x)
                x = x.view(x.shape[0], -1)
                x = self.fc(x)
                return x
        class ResNet18(nn.Module):
            def __init__(self, num_classes):
                super(ResNet18, self).__init__()
```

```
self.in_channels = 16
    self.start = StartingBlock(16)
    self.layer1 = self.make_layer(16, 3)
    self.layer2 = self.make_layer(32, 3)
    self.layer3 = self.make_layer(64, 3)
    self.final = FinalBlock(64, num_classes)
def make_layer(self, out_channels, num_blocks):
    layers = []
    for _ in range(num_blocks):
        layers.append(BasicBlock(self.in_channels, out_channels))
        self.in_channels = out_channels
    return nn.Sequential(*layers)
def forward(self, x):
    x = self.start(x)
    x = self.layer1(x)
   x = self.layer2(x)
    x = self.layer3(x)
    x = self.final(x)
    return x
```

```
In [ ]: test_transform = T.Compose([
                T. ToTensor(),
                T.Normalize(
                mean=[0.485, 0.456, 0.406],
                std=[0.229, 0.224, 0.225]
            )])
        train transform = test transform = T.Compose([
                T.RandomCrop(64, 4),
                T.RandomHorizontalFlip(),
                T. ToTensor(),
                T.Normalize(
                mean=[0.485, 0.456, 0.406],
                std=[0.229, 0.224, 0.225]
            )])
        train_dataset = MyDataset(root=root, final_test=False, final_train=False, t
        val_dataset = MyDataset(root=root, final_test=False, final_train=False, tra
        train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True, pin_
        val_loader = DataLoader(val_dataset, batch_size=128, shuffle=False, pin_mem
        model = ResNet18(len(train_dataset.classes))
        device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
        model = model.to(device)
        num_epochs = 40
        optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weigh
        criterion = torch.nn.CrossEntropyLoss()
        scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[30,
        train_losses, test_losses, train_accuracies, test_accuracies = train(
            model, optimizer, scheduler, criterion, train_loader, val_loader, num_e
```


Получилось пробить 50%. Успех

Уменьшаем MileStone

Заметим, что после 20 эпохи особо изменения нет, а лишь колебания. Возможно в этот момент Ir уже большой и его надо в этот момент уменьшать

```
In [ ]: scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[20,
```

Результаты

Стало хуже. Идея не оправдалась

Resize 32x32

Модель + параметры

В оригинальной статье использовались картинки 32x32. Давайте сделаем Resize 32

```
In [ ]: test_transform = T.Compose([
                T.Resize(36),
                T.CenterCrop(32),
                T.ToTensor(),
                T.Normalize(
                mean=[0.485, 0.456, 0.406],
                std=[0.229, 0.224, 0.225]
            )])
        train_transform = test_transform = T.Compose([
                T.RandomCrop(32, 4),
                T.RandomHorizontalFlip(),
                T.ToTensor(),
                T.Normalize(
                mean=[0.485, 0.456, 0.406],
                std=[0.229, 0.224, 0.225]
            )])
```

Результаты

Очень плохо

Уберем DropOut

Модель + параметры

В исходной статье нет DropOut. Давайте попробуем убрать

In []: self.dropout_percantage = 0.0

Результаты

Результат не поменяется. Но переобучение стало немного больше

32 слоя без dropout

Модель+параметры

Давайте попробуем углубить модель до 32 слоев. И также пусть будет без dropout

```
In [ ]: class BasicBlock(nn.Module):
            def __init__(self, in_channels, out_channels):
                super(BasicBlock, self).__init__()
                self.is_dims_changed = True
                stride = 2
                self.dropout_percantage = 0.0
                if in channels == out channels:
                    stride = 1
                    self.is_dims_changed = False
                self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, st
                self.bn1 = nn.BatchNorm2d(out_channels)
                self.relu1 = nn.ReLU()
                self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, s
                self.bn2 = nn.BatchNorm2d(out_channels)
                self.drop = nn.Dropout(p=self.dropout_percantage)
                self.dims_change = nn.Conv2d(in_channels=in_channels, out_channels=
                self.relu2 = nn.ReLU()
            def forward(self, x):
                identity = x
                x = self.drop(self.bn2(self.conv2(self.relu1(self.bn1(self.conv1(x))))
                if self.is_dims_changed:
                    identity = self.dims_change(identity)
                x += self.relu2(x + identity)
                return x
        class StartingBlock(nn.Module):
            def __init__(self, out_channels):
                super(StartingBlock, self).__init__()
                self.conv = nn.Conv2d(3, out_channels, kernel_size=3, stride=1, pad
                self.bn = nn.BatchNorm2d(out_channels)
                self.relu = nn.ReLU()
            def forward(self, x):
                x = self.conv(x)
                x = self.bn(x)
                x = self.relu(x)
                return x
        class FinalBlock(nn.Module):
            def __init__(self, in_channels, num_classes):
                super(FinalBlock, self).__init__()
                self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
                self.fc = nn.Linear(in_channels, num_classes)
            def forward(self, x):
                x = self.avgpool(x)
                x = x.view(x.shape[0], -1)
                x = self.fc(x)
                return x
        class ResNet18(nn.Module):
            def __init__(self, num_classes):
                super(ResNet18, self).__init__()
```

```
self.in_channels = 16
    self.start = StartingBlock(16)
    self.layer1 = self.make_layer(16, 5)
    self.layer2 = self.make_layer(32, 5)
    self.layer3 = self.make_layer(64, 5)
    self.final = FinalBlock(64, num_classes)
def make_layer(self, out_channels, num_blocks):
    layers = []
    for _ in range(num_blocks):
        layers.append(BasicBlock(self.in_channels, out_channels))
        self.in_channels = out_channels
    return nn.Sequential(*layers)
def forward(self, x):
    x = self.start(x)
    x = self.layer1(x)
    x = self.layer2(x)
    x = self.layer3(x)
    x = self.final(x)
    return x
```


Стало лучше

32 слоя + dropout

Модель + параметры

Попробуем не убирать dropout

```
In [ ]: self.dropout_percantage = 0.15
```

Результаты

Результат такой же как и без dropout, но переобучение меньше

Попробуем LeakyReLu

Модель + параметры

Еще не пробовал менять функцию активации. Вдруг поможет. Оставим глубину в 32 слоя и также пусть будет без dropout

In []: self.relu = nn.LeakyReLU()

Результаты

Стало хуже

Итоги

Самый лучший результат для модели ResNet32 для Cifar-10 из исходной статьи про ResNet без изменения размера изображений до 32x32 и с DropOut с вероятностью 0.15

In []: