For problems 1-3, let $H, K \leq G$.

1. Prove that $H \subseteq K \implies H \leq K$.

Proof. Let $H \subseteq K$. Since K is a group and H is a nonempty subset of K. We are sure it is nonempty because H is a subgroup of G, where it cannot be empty. If we can show H is closed under the group operation and inverses, we can say that H is a subgroup of K.

- (1) Let h_1 and h_2 be elements of H. Since $H \leq G$, H is closed with the group operation and $h_1 * h_2$ is in H. Since $H, K \subseteq G$, they all share the same operation. Therefore, H is closed under the group operaton.
- (2) For each element h in H, its inverse is also in H because H is a group. Therefore, H has inverses for all its elements.

We can conclude that H is a subgroup of K, $H \leq K$.

2. Show that $H \cap K < G$.

Proof. Let $H \cap K \leq G$. Since G is a group and $H \cap K$ is a nonempty subset of G. We are sure the set is nonempty because they are both subgroups of G and hence have to share at least one element, the identity element. Then, if we can show $H \cap K$ is closed under the group operation and inverses, we can say that $H \cap K$ is a subgroup of G.

- (1) We know that for every element x in $H \cap K$, $x \in H$ and $x \in K$. Let x_1 and x_2 be elements of $H \cap K$. $x_1 * x_2$ must be in H as H is a group closed under the operation and x_1 and x_2 are both in H. Similarly, $x_1 * x_2$ must be in K. Hence, $x_1 * x_2$ is in $H \cap K$, it is closed under the operation.
- (2) Let x' be the inverse of x in $H \cap K$. Similarly, since x in both in H and K, its inverse is in both H and K. Hence, $H \cap K$ has inverses for all its elements.

3. Let *G* be an abelian group, and define *HK* as follows:

$$HK = \{hk \mid h \in H \text{ and } k \in K\}$$

Prove that $HK \leq G$.

Proof. To prove that $HK \leq G$, we need to show that (1) HK is a subset of G. (2) HK is closed under the opreation and (3) inverses.

(1) Since $H, K \subseteq G$, all elements in H and K are in G. Also that G is a group, so it is closed under the group opreation, hence, for every $h \in H$ and $k \in K$, hk must also be in G. Hence, HK is a subset of G.

- (2)Let $h_1, h_2 \in H$ and $k_1, k_2 \in K$. $(h_1k_1)(h_2k_2) = (h_1h_2)(k_1k_2)$ because G is abelian group and H, K are also abelian groups. It implies the communitivity. We know that $h_1h_2 \in H$ and $k_1k_2 \in K$ because H and K are groups. Therefore, HK is closed under the group operation.
- (3) Let $hk \in H$, and $(hk)^{-1}$ be its inverse. Since hk is in G its inverse $(hk)^{-1}$ must also be in G. Hence, $(hk)^{-1} = k^{-1}h^{-1} = h^{-1}k^{-1}$, by the communitivity from the abelian group. Since H and K are both groups, $h^{-1} \in H$ and $k^{-1} \in K$. $(hk)^{-1} \in HK.HK$ has inverses for all its elements.
- 4. Suppose a group G is generated by two elements a and b. Prove that $ab = ba \implies G$ is abelian.

Proof. Let ab = ba. We need to prove that group G has communitivity for it to be a abelian group.

Since ab = ba, we can conclude that a and b commute. We can also prove a and b^{-1} commute, $ab^{-1} = b^{-1}bab^{-1} = b^{-1}abb^{-1} = b^{-1}$; a^{-1} and b commute, $a^{-1}b = a^{-1}baa^{-1} = a^{-1}aba^{-1} = ba^{-1}$; a^{-1} and b^{-1} commute, $a^{-1}b^{-1} = a^{-1}b^{-1}aa^{-1} = a^{-1}ab^{-1}a^{-1}$.

Now, we need to prove that $a^x b^y$ commute with $a^q b^p$.

$$(a^x b^y)(a^q b^p) = a^x (b^y a^q) b^p$$
 associative
 $= a^x (a^q b^y) b^p$ are commute with b^y
 $= (a^x a^q)(b^y b^p)$ associative
 $= a^{x+q} b^{y+p}$
 $= a^q a^x b^p b^y$
 $= a^q b^p a^x b^y$ associative
 $= (a^q b^p)(a^x b^y)$

Therefore, we proved that group G has communitivity and hence it is abelian.

5. Define the center of a group to be

$$C = \{ g \in G \mid gx = xg, \forall x \in G \},\$$

that is, the set of all elements of G that commute with every element of G. Prove $C \leq G$.

Proof. We know that C is a subset of the group G because $\forall g \in G$. Then, we need to prove (1) C is closed under the group operation and (2) inverses.

(1) Let $c, d \in C$. We know that cx = xc and dx = xd. Hence, (cd)x = cdx = cxd = xcd = x(cd). Hence, $cd \in C$, C is closed under the group operation.

(2) Let $c \in C$ and c^{-1} be its inverse. $c^{-1}x = c^{-1}xe^{-1} = c^{-1}xcc^{-1} = c^{-1}cxc^{-1} = exc^{-1} = xc^{-1}$. Hence, $c^{-1} \in C$, C is closed under inverses.

Therefore, *C* is a subgroup of *G*, $C \le G$.