

Ассоциативные правила – алгоритм Apriori [M.102]

При практической реализации систем поиска ассоциативных правил используют различные методы, которые позволяют снизить пространство поиска до размеров, обеспечивающих приемлемые вычислительные и временные затраты, например *алгоритм Apriori* (Agrawal и Srikant, 1994).

Частые предметные наборы и их обнаружение

В основе алгоритма Apriori лежит понятие *частого набора* (frequent itemset), который также можно назвать частым предметным набором, часто встречающимся множеством (соответственно, он связан с понятием частоты). Под *частотой* понимается простое количество транзакций, в которых содержится данный предметный набор. Тогда частыми наборами будут те из них, которые встречаются чаще, чем в заданном числе транзакций.

Определение

Частый предметный набор — предметный набор с поддержкой больше заданного порога либо равной ему. Этот порог называется минимальной поддержкой.

Методика поиска ассоциативных правил с использованием частых наборов состоит из двух шагов.

- Следует найти частые наборы.
- 2 На их основе необходимо сгенерировать ассоциативные правила, удовлетворяющие условиям минимальной поддержки и достоверности.

Чтобы сократить пространство поиска ассоциативных правил, алгоритм Apriori использует свойство антимонотонности. Свойство утверждает, что если предметный набор Z не является частым, то добавление некоторого нового предмета A к набору Z не делает его более частым. Другими словами, если Z не является частым набором, то и набор $Z \cup A$ также не будет являться таковым. Данное полезное свойство позволяет значительно уменьшить пространство поиска ассоциативных правил.

Пусть имеется множество транзакций D, представленное в таблице 2.

Таблица 2 – Множество транзакций

№ транзакции	Предметные наборы
1	Капуста, перец, кукуруза
2	Спаржа, кабачки, кукуруза
3	Кукуруза, помидоры, фасоль, кабачки
4	Перец, кукуруза, помидоры, фасоль
5	Фасоль, спаржа, капуста
6	Кабачки, спаржа, фасоль, помидоры
7	Помидоры, кукуруза
8	Капуста, помидоры, перец
9	Кабачки, спаржа, фасоль
10	Фасоль, кукуруза
11	Перец, капуста, фасоль, кабачки
12	Спаржа, фасоль, кабачки
13	Кабачки, кукуруза, спаржа, фасоль
14	Кукуруза, перец, помидоры, фасоль, капуста

Будем считать частыми наборы, которые встречаются в выборке более чем f = 4 раза. Сначала найдем частые однопредметные наборы. Для этого представим базу данных транзакций из таблицы 2 в нормализованном виде, который демонстрируется в таблице 3.

Таблица 3 – Нормализованный вид множества транзакций

№ транзакции	Спаржа	Фасоль	Капуста	Кукуруза	Перец	Кабачки	Помидоры
1	0	0	1	1	1	0	0
2	1	0	0	1	0	1	0
3	0	1	0	1	0	1	1
4	0	1	0	1	1	0	1
5	1	1	0	0	0	0	1
6	1	1	0	0	0	1	1
7	0	0	0	1	0	0	1
8	0	0	1	0	1	0	1
9	1	1	0	0	0	1	0
10	0	1	0	1	0	0	0
11	0	1	1	0	1	1	0
12	1	1	0	0	0	1	0
13	1	1	0	1	0	1	0
14	0	1	1	1	1	0	1

На пересечении строки транзакции и столбца предмета ставится 1, если данный предмет присутствует в транзакции, и 0 — в противном случае. Тогда, просуммировав значения в

каждом столбце, мы получим частоту появления каждого предмета. Поскольку все суммы равны или превышают 4, все предметы можно рассматривать как частые однопредметные наборы. Обозначим их в виде множества $F_1 = \{cnap x a, \phi acoль, \kappa anycma, \kappa y \kappa y p y 3 a, nepeu, \kappa aбaчкu, nomudopы\}.$

Теперь переходим к поиску частых 2-предметных наборов. Вообще, для поиска F_k , то есть k-предметных наборов, алгоритм Apriori сначала создает множество F_k кандидатов в k-предметные наборы путем связывания множества F_k — 1 с самим собой. Затем F_k сокращается с использованием свойства антимонотонности. Предметные наборы множества F_k , которые остались после сокращения, формируют F_k . Множество F_2 содержит все комбинации предметов, представленные в таблице F_k

Таблица 4 – Предметные наборы

Набор	Количество	Набор	Количество
Спаржа, фасоль	5	Капуста, кукуруза	2
Спаржа, капуста	1	Капуста, перец	4
Спаржа, кукуруза	2	Капуста, кабачки	1
Спаржа, перец	0	Капуста, помидоры	2
Спаржа, кабачки	5	Кукуруза, перец	3
Спаржа, помидоры	1	Кукуруза, кабачки	3
Фасоль, капуста	3	Кукуруза, помидоры	4
Фасоль, кукуруза	5	Перец, кабачки	1
Фасоль, перец	3	Перец, помидоры	3
Фасоль, кабачки	6	Кабачки, помидоры	
Фасоль, помидоры	4		

Поскольку f=4, из таблицы 4 в множество F_2 (то есть множество 2-предметных наборов) войдут только те наборы, которые встречаются в исходной выборке 4 раза или более. Таким образом,

```
{спаржа, фасоль}
{спаржа, кабачки}
{фасоль, кукуруза}

F<sub>2</sub> = {фасоль, кабачки}
{фасоль, помидоры}
{капуста, перец}
{кукуруза, помидоры}.
```

Далее мы используем частые 2-предметные наборы из множества F_2 для генерации множества F_3 3-предметных наборов. Для этого нужно связать множество F_2 с самим собой, где предметные наборы являются связываемыми, если у них первые k-1 предметов общие (предметы должны следовать в алфавитном порядке). Например, наборы {спаржа, фасоль} и

 $\{$ спаржа, кабачки $\}$, для которых k=2, чтобы быть связываемыми, должны иметь k-1=1 общий первый элемент, которым и является спаржа. В результате связывания пары 2-предметных наборов мы получим:

```
\{cnapжa, фacoль\} + \{cnapжa, кабачки\} = \{cnapжa, фacoль, кабачки\}.
```

Аналогично $\{\phi acoль, кукуруза\}$ и $\{\phi acoль, кабачки\}$ могут быть объединены в 3-предметный набор $\{\phi acoль, кукуруза, кабачки\}$. И наконец, так же формируются остальные 3-предметные наборы $\{\phi acoль, кабачки, nomudopы\}$ и $\{\phi acoль, кукуруза, nomudopы\}$. Таким образом:

```
\{ c n a p ж a, \phi a c o л ь, к a б a ч к u \}
F_3 = \begin{cases} \{ \phi a c o л ь, к y к y p y 3 a, к a б a ч к u \} \\ \{ \phi a c o л ь, к a б a ч к u, n o м u д o p ы \} \end{cases}
\{ \phi a c o л ь, к y к y p y 3 a, n o м u д o p ы \}.
```

Затем F_3 также сокращается с помощью свойства антимонотонности. Для каждого предметного набора s из множества F3 создаются и проверяются поднаборы размером k-1. Если любой из этих поднаборов не является частым и, следовательно, наборы s также не могут быть частыми (в соответствии со свойством антимонотонности), то он должен быть исключен из рассмотрения. Например, пусть $s=\{cnap x a, \phi aconb, \kappa abauku\}$. Тогда поднаборы размера k-1=2, сгенерированные на основе набора $s,-\{cnap x a, \phi aconb\}$, $\{cnap x a, \kappa abauku\}$ и $\{\phi aconb, \kappa abauku\}$.

Из таблицы 4 можно увидеть, что все эти поднаборы являются частыми, значит, и набор $s = \{cnap x a, \phi aconb, \kappa aбav \kappa u\}$ будет частым и сокращению не подлежит. Таким же образом можно убедиться, что и набор $s = \{\phi aconb, \kappa y \kappa y p y 3a, nomu dop bi\}$ является частым.

Рассмотрим набор $s = \{ \phi acoль, \, \kappa y \kappa y py 3a, \, \kappa aбaч \kappa u \}$. Поднабор $\{ \kappa y \kappa y py 3a, \, \kappa aбaч \kappa u \}$ появляется всего три раза (см. таблицу.4), поэтому не является частым. Тогда в соответствии со свойством антимонотонности и набор $s = \{ \phi acoль, \, \kappa y \kappa y py 3a, \, \kappa aбaч \kappa u \}$ не будет частым — мы должны его отбросить.

Теперь рассмотрим набор {фасоль, кабачки, помидоры}. Поскольку поднабор {кабачки, nомидоры} не является частым (частота его появления — всего 2), набор {фасоль, кабачки, nомидоры} также не является частым и вследствие этого будет исключен из рассмотрения.

Таким образом, в множество F_3 3-предметных частых наборов попадают два набора — $\{cnap \varkappa ca, \varphi acoль, \kappa aбau \kappa u\}$ и $\{\varphi acoль, \kappa y \kappa y py 3a, no mudopы\}$. Их уже нельзя связать, поэтому задача поиска частых предметных наборов на исходном множестве транзакций решена.

Генерация ассоциативных правил

После того как все частые предметные наборы найдены, можно переходить к генерации на их основе ассоциативных правил. Для этого к каждому частому предметному набору s, полученному на основе множества транзакций D, нужно применить процедуру, состоящую из двух шагов:

1 Генерируются все возможные поднаборы s.

2 Если поднабор ss является непустым поднабором s, то рассматривается ассоциативное правило R: ss $\rightarrow (s-ss)$, где s-ss представляет собой набор s без поднабора ss. R будет считаться ассоциативным правилом, если будет удовлетворять условию заданного минимума поддержки и достоверности. Данная процедура повторяется для каждого подмножества ss из s.

Таблица 5 – Ассоциативные правила с двумя предметами в условии

Если условие, то следствие	Поддержка	Достоверность	Если условие, то следствие
Если { <i>спаржа</i> и <i>фасоль</i> }, то { <i>кабачки</i> }	4/14 = 28,6 %	4/5 = 80 %	Если <i>{спаржа</i> и <i>фасоль}</i> , то <i>{кабачки}</i>
Если $\{ cnap $ жабачки $\},$ то $\{ \phi acoль \}$	4/14 = 28,6 %	4/5 = 80 %	Если <i>{спаржа</i> и <i>кабачки}</i> , то <i>{фасоль}</i>

Для первого ассоциативного правила в таблицы 5 предположим, что $ss = \{cnap x ca, \phi aconb\}$, и тогда $(s - ss) = \{\kappa a \delta a v \kappa u\}$.

Поддержка, показывающая долю транзакций, которые содержат как условие $\{cnap x a, \phi acoлb\}$, так и следствие $\{kabauku\}$, в общем наборе транзакций, имеющихся в базе данных, составляет 28,6% (4 из 14 транзакций). Чтобы найти достоверность, мы должны учесть, что набор $\{cnap x a, \phi acoлb\}$ появляется в 5 из 14 транзакций, 4 из которых также содержат $\{kabauku\}$. Тогда достоверность будет 4/5 = 80%. Аналогично определяются поддержка и достоверность для остальных правил в таблице 5.

Если предположить, что минимальная достоверность для правила составляет $60\,\%$, то все ассоциации, представленные в таблице 5, будут правилами. Если порог установить равным 80 %, то правилами будут считаться только первые две ассоциации.

Наконец, рассмотрим кандидатов в правила, содержащих одно условие и одно следствие. Для этого применим описанную выше методику генерации ассоциативных правил к множеству F_2 2-компонентных предметных наборов, и результаты представим в таблице 6.

Таблица 6 – Ассоциативные правила с одним предметом в условии

Если условие, то следствие	Поддержка	Достоверность
Если {спаржа}, то {фасоль}	5/14 = 35,7 %	5/6 = 83,3 %
Если {фасоль}, то {спаржа}	5/14 = 35,7 %	5/10 = 50 %
Если {спаржа}, то {кабачки}	5/14 = 35,7 %	5/6 = 83,3 %
Если {кабачки}, то {спаржа}	5/14 = 35,7 %	5/7 = 71,4 %
Если $\{фасоль\}$, то $\{кукуруза\}$	5/14 = 35,7 %	5/10 = 50 %
Если $\{кукуруза\}$, то $\{фасоль\}$	5/14 = 35,7 %	5/8 = 62,5 %
Если $\{фасоль\}$, то $\{кабачки\}$	6/14 = 42,9 %	6/10 = 60 %
Если {кабачки}, то {фасоль}	6/14 = 42,9 %	6/7 = 85,7 %
Если {фасоль}, то {помидоры}	4/14 = 28,6 %	4/10 = 40 %
Если {помидоры}, то {фасоль}	4/14 = 28,6 %	4/6 = 66,7 %
Если {капуста}, то {перец}	4/14 = 28,6 %	4/5 = 80 %
Если {перец}, то {капуста}	4/14 = 28,6 %	4/5 = 80 %
Если {кукуруза}, то {помидоры}	4/14 = 28,6 %	4/8 = 50 %
Если {помидоры}, то {кукуруза}	4/14 = 28,6 %	4/6 = 66,7 %

Чтобы проверить значимость сгенерированных правил, обычно перемножают их значения поддержки и достоверности, что позволяет аналитику ранжировать правила в соответствии с их значимостью и достоверностью. В таблице 7 представлен список правил, сгенерированных на основе исходного множества транзакций (см. таблицу 2) при заданном уровне минимальной достоверности $80\,\%$.

Таблица 7 – Ассоциативные правила

Если условие, то следствие	Поддержка, S	Достоверность, С	C x S
Если {кабачки}, то {фасоль}	6/14 = 42,9 %	6/7 = 85,7 %	0,3677
Если {спаржа}, то {фасоль}	5/14 = 35,7 %	5/6 = 83,3 %	0,2974
Если {спаржа}, то {кабачки}	5/14 = 35,7 %	5/6 = 83,3 %	0,2974
Если {капуста}, то {перец}	4/14 = 28,6 %	4/5 = 80 %	0,2288
Если {перец}, то {капуста}	4/14 = 28,6 %	4/5 = 80 %	0,2288
Если {спаржа и фасоль}, то {кабачки}	4/14 = 28,6 %	4/5 = 80 %	0,2288
Если {спаржа и кабачки}, то {фасоль}	4/14 = 28,6 %	4/5 = 80%	0,2288

Таким образом, в результате применения алгоритма Аргіогі нам удалось обнаружить 7 ассоциативных правил, с достоверностью не менее $80\,\%$ показывающих, какие продукты из исходного набора чаще всего продаются вместе. Это знание позволит разработать более совершенную маркетинговую стратегию, оптимизировать закупки и размещение товара на прилавках и витринах.