深圳大学实验报告

课程名称:	《EDA 技术》	
实验项目名称:	加法器设计	
学院 <u>:</u>	医学院	
专业:	生物医学工程	
指导教师 <u>:</u>	但果、董磊	
报告人:张树鑫	_学号 <u>: 2015222068</u>	班级 03
实验时间:	2017-9-25	
实验报告提交时间:	2017-10-14	

一、实验平台:

- 1. PC 机
- 2.安装好的 ISE Design Suite 软件
- 3.安装好的 Synplify 软件
- 4.医疗电子自动化设计实验平台
- 5.JTAG 下载线

二、实验内容:

- (1) 熟悉加法器原理;
- (2) 学会 ISE 软件的使用,包括对 ISE 软件标准化设置、ISE 软件第三方工具 Synplify 路径设置、新建工程等操作;
 - (3) RTL 级电路综合
 - (4) 电路仿真
 - (5) 引脚约束
 - (6) 生成 bit 文件并烧写到 FPGA

生成 mcs 文件并烧写到 FPGA

最终实验目标如下:

实现两个二进制两位数 a, b 以及其进位 cin_i 的加法功能,输入端由拨位开关控制,置上位 1,置下为 0,所以输出结果,即 a, b 之和为一个二进制两位数,以及一个进位 cout_o,结果通过发光二极管显示,LD6 为输出进位,LD5 和 LD4 构成和的两位,亮表示为 1,灭表示为 0。

三、实验原理:

加法器原理

画出全加器的真值表,根据真值表写出全加器的逻辑表达式,即得到输入与输出的关系表达式。

四、实验方法、步骤:

1、结合算术加法和以上全加器的原理,将两个加法器串联,其中第一个加法器的输出进位作为第二个加法器的输入进位。如下图,a,b 的最低位 $a_i[0]$ 和 $b_i[0]$ 以及输入进位 cin_i 送入第一个加法器,得到和的最低位 $sum_o[1]$,以及向第二位的进位 $s_carry[1]$,接着,将 a,b 的高位 $a_i[1]$ 和 $b_i[1]$ 以及第一位的进位 $s_carry[1]$ 送入第二个加法器,最后得出和的最高位 $sum_o[1]$,还有整个加法器的输出进位 $s_carry[2]$ 。

s_carry 为中间信号,s_carry[0]接收的输入端口 cin_i,s_carry[1]接收第一个加法器的进位,s carry[2]接收最后的输出进位,并传递给输出端口 cout o。

2.输入输出端口以及电路引脚约束

(1)

a_i : in std_logic_vector(1 downto 0); --输入端口定义

b_i : in std_logic_vector(1 downto 0);

cin_i : in std_logic;

sum_o : out std_logic_vector(1 downto 0); --输出端口定义

cout o : out std logic

(2) 引脚约束:根据实验箱的电路图,找出5个拨位开关、LED6/LED5/LED4 连接的芯片引脚。

Net "cin_i" LOC=P96; --第一个拨位开关

Net "a_i<1>" LOC=P97; --第二个拨位开关

Net "a_i<0>" LOC=P93; --第三个拨位开关

Net "b_i<1>" LOC=P94; --第四个拨位开关

Net "b_i<0>" LOC=P91; --第五个拨位开关

Net "cout_o" LOC=P105; --LED6

Net "sum_o<1>" LOC=P98; --LED5

Net "sum o<0>" LOC=P103; --LED4

五、VHDL 代码:

```
library ieee; --库声明
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity adder is --实体,描述加法器电路的所以输入/输出引脚
port (
    a i
             : in std logic vector(1 downto 0);
           : in std_logic_vector(1 downto 0);
    bi
    cin i : in std logic;
    sum_o : out std_logic_vector(1 downto 0);
    cout o : out std logic
    );
end adder;
architecture rtl of adder is --构造体, 描述加法器电路行为和实现功能
  signal s_carry : std_logic_vector(2 downto 0);
  signal s_sum_o_inv: std_logic_vector(1 downto 0);
begin
  s carry (0)
                   \langle = cin i;
  s sum o inv(0) \langle = a i(0) \text{ xor b } i(0) \text{ xor s carry}(0);
  s_carry(1)
                   \langle = (a_i(0) \text{ and } b_i(0)) \text{ or } (a_i(0) \text{ and } s_{carry}(0)) \text{ or } (b_i(0) \text{ and } s_{carry}(0)) \rangle
s carry(0);
  s_sum_o_inv(1) \le a_i(1) \text{ xor } b_i(1) \text{ xor } s_carry(1);
```

六、综合、仿真结果及分析:

RTL 级电路综合:

2. 电路仿真

代码:

stim_proc: process

begin

-- hold reset state for 100 ns.

wait for 100 ns;

-- insert stimulus here

a $i \le 01$;

b_i <= "10";

 $cin i \le '1';$

wait for 100 ns;

a i <= "10";

b_i <= "10";

 $cin i \le '1';$

七、FPGA 板级级验证及结果分析:

1.生成 bit 文件, 电脑连接实验箱,并烧写 bit 文件到 FPGA 中,实现软硬件结合:

- 2.功能验证:改变拨位开关的位置,实现不同 a,b,进位 cin_i 的加法,通过 LED 等验证加法器结果。
- (1) 拨位开关依次为 1,1,0,0,1,所以 a 为 "10", b 位 "01", 进位为 "1", LED 显示结果 为 "00", 输出进位为 1, 计算可知实验结果正确。

(2) 拨位开关依次为 0,1,0,1,1,所以 a 为 "10",b 位 "11",进位为 "0",LED 显示结果为 "01",输出进位为 1,计算可知实验结果正确。

(3) 拨位开关依次为 0,1,0,1,1,所以 a 为 "10", b 位 "11", 进位为 "0", LED 显示结果为 "01", 输出进位为 1,计算可知实验结果正确。

八、实验总结:

通过实验,我熟悉掌握了一个实现组合逻辑功能的 FPGA 实验流程,首先是运用数字电路知识对要实现的加法器功能进行分析,得出逻辑表达式,构建输入输出端口,以及硬件的引脚约束;接着学会使用 ISE 软件编写 VHDL 代码来描述电路行为和功能,生成 RTL 级电路综合,然后进行编写仿真代码在电脑上仿真,初步验证电路设计的正确性;最后编写芯片引脚约束的代码,将生成的 bit 文件烧写到实验箱,测试整个加法器功能。

实验的动手操作非常有趣,将理论课上学习的 VHDL 语言实际引用到实验设计中,利用软硬件结合完成特定的功能。初期接触硬件实验对整个流程比较生疏,但在老师的指导和同学的帮助下,我认真的按照要求完成实验,一步步解决遇到的问题。

指导教师批阅意见:			
1. 实验报告书写规范8 2. 实验原理清晰,有相应的原理图和电路 3. 实验步骤详细17 4. 代码书写比较规范,注释不充分13 5. 有充分和正确的实验结果分析18 6. 完成顺序在前十名(含)10	图27		
成绩评定: 93			
	指导教师签字: 年	月	日
备注:		月	日

- 注: 1、报告内的项目或内容设置,可根据实际情况加以调整和补充。
 - 2、教师批改学生实验报告时间应在学生提交实验报告时间后 10 日内。