Notite curs

-Inteligență artificială-

Curs 1: Sisteme inteligente

Tipologie:

- În funcție de experiența acumulată în timpul învățării:
 - o cu învățare supervizată
 - o cu învățare nesupervizată
 - o cu învățare activă
 - o cu învățare cu întărire
- În funcție de modelul învățat (algoritmul de învățare):
 - o Rețele neuronale artificiale
 - Maşini cu suport vectorial (MSV)
 - Algoritmi evolutivi
 - o kNN
 - Arbori de decizie
 - Modele Markov ascunse

Predicții / regresii:

- Scop: predicția output-ului pentru un input nou folosind un model învățat anterior
- Ex.: predicția vânzărilor dintr-un produs pentru un moment de timp viitor în funcție de preț, lună calendaristică, regiune, venit mediu pe economie.

Regresii simbolice:

- Scop: estimarea formei unei funcții uni sau multivariate folosind un model învățat anterior
- Ex.: estimarea funcției care modelează conturul unei suprafețe

Clasificare:

- Scop: clasificarea formei unui obiect într-una sau mai multe categorii (clase) - cunoscute anterior sau nu - pe baza caracteristicilor (atributelor, proprietăților) lui
- Ex.: sistem de diagnoză pentru un pacient cu tumoare: nevasculară, vasculară, angiogenă

Planificare:

- Scop: generarea unei succesiuni optime de acțiuni pentru efectuarea unei sarcini
- Ex.: planificarea deplasării unui robot de la o poziție dată până la o sursă de energie (pentru alimentare)

Învățare automată:

- 1. Învățare supervizată:
 - a. Ex.: regresie, clasificare
 - b. Caracteristici:
 - i. Date etichetate (se cunosc o parte din datele de intrare și ieșire)
 - ii. Feedback direct în timpul învățării (algoritmul se adaptează la datele de intrare și ieșire)
 - iii. Predicție a datelor de ieșire (fiind cunoscute niște date de intrare diferite de cele inițiale)
- 2. Învățare nesupervizată:
 - a. Ex.: clusterizare, reducerea numărului de dimensiuni
 - b. Caracteristici:
 - i. Date neetichetate (se cunosc o parte din datele de intrare)
 - ii. Fără feedback direct în timpul învățării (pentru că nu se cunosc datele de ieșire)

- iii. Identificarea unor structuri în date (generarea de date de ieșire pentru datele de intrare inițiale)
- 3. Învățare prin întărire:
 - a. Caracteristici:
 - i. Predicția unor secvențe de decizii/acțiuni
 - ii. Sistem de recompense (pentru fiecare decizie)
 - iii. Se învață un model de acțiune (o serie de acțiuni ce trebuie efectuate)

Învățare supervizată

- □ Calitatea învăţării → Măsuri de performanţă → Măsuri statistice
 - Eroarea de predicție
 - Suma diferențelor absolute între valorile reale și cele calculate

$$Err = \frac{1}{noSamples} \sum_{i=1}^{noSamples} abs(real_i - computed_i)$$

Suma pătratelor diferențelor între valorile reale și cele calculate

$$Err = \sqrt{\frac{1}{noSamples}} \sum_{i=1}^{noSamples} (real_i - computed_i)^2$$

TP - true positive

FN - false negative

Acuratețea = TP / (TP + TN + FP + FN)

Precizia (P) = TP / (TP + FP)

Rapelul (R) = TP / (TP + FN)

Scorul F1 = 2 * PR / (P + R)

Curs 2: Sisteme care învață singure

Metoda celor mai mici pătrate

- Presupunem cazul unei probleme de regresie
 - □ Date de intrare xⁱ ∈ R^d, i=1,n
 - □ Date de ieşire yⁱ ε R
 - □ Se cere un model **liniar** f care transformă orice xⁱ în yⁱ , i=1,n
 - \Box f(x) = β_0 + β_1 x₁ + β_2 x₂ + ... + β_d x_d
 - □ Se poate defini o funcție de cost
 - □ Loss = $\sum_{i=1,n} (y^i f(x^i))^2$ -- minimizată → valorile optime ale lui β
 - Derivarea loss-ului după β : β = (X^TX)⁻¹X^Ty
 - □ Daca d = 1, β_1 = cov(x,y)/var(x), β_0 = y β_1 x

Metoda gradient descent

- Presupunem cazul unei probleme de regresie
 - Date de intrare x ε Rd
 - Date de ieşire y ε R

- Se cere un model liniar f care transformă x în y
- \Box f(x) = β_0 + β_1 x₁ + β_2 x₂ + ... + β_d x_d
- Invățare supervizată

Modelarea coeficienţilor β:

- □ la iterația 0: valori random (sau 0)
- □ la iterația t + 1 (t = 0, 1, 2, ...)

$$\beta_k(t+1) = \beta_k(t)$$
 - learning_rate * error(t) * x_k , $k=1,2,...,d$
 $\beta_0(t+1) = \beta_0(t)$ - learning_rate * error(t)

- Unde
 - error(t) = computed realOutput
 - error(t) = $\beta_0(t) + \beta_1(t)^*x_1 + \beta_2(t)^*x_2 + ... + \beta_d(t)^*x_d y$

• Stochastic Gradient Descent

- eroarea se calculează pentru fiecare exemplu de antrenament
- modelul se updatează pentru fiecare exemplu de antrenament

• Batch Gradient Descent

- eroarea se calculează pentru fiecare exemplu de antrenament
- modelul se updatează după ce toate exemplele de antrenament au fost evaluate (la finalul unei epoci)
- Mini-Batch Gradient Descent (combinare a celor două)
 - setul de date se împarte în mai multe părți
 - eroarea se calculează pentru fiecare exemplu de antrenament dintr-un mini-batch
 - modelul se updatează pentru fiecare exemplu de antrenament dintr-un mini-batch

Regresie logistică

- Presupunem cazul unei probleme de clasificare
 - □ Date de intrare $x^i \in R^d$, i=1,n
 - □ Date de ieşire yⁱ ∈ {0,1} sau {label1, label2}

- Se cere un model liniar f care separa orice xⁱ în 2 clase (etichetate cu 0 și 1)
- \Box f(x) = β_0 + β_1 x₁ + β_2 x₂ + ... + β_d x_d
- Invățare supervizată
- Regresie Logistică (clasificare)
 - Mapează datele intr-un set discret de clase (label-uri)
 - Tipuri:
 - Binar (Pass/Fail, True/False)
 - Multi (Cat,Dog,Panda)
 - Ordinal (Low, Medium, High)
 - Folosește funcția sigmoid pentru a decide clasa de apartentență
 - Putem folosi gradient descent pentru minimzarea erorii

Funcția sigmoid:
$$S(z) = \frac{1}{1 + e^{-z}}$$
 (mapează orice număr real în (0, 1))

- Modelarea coeficienţilor β:
 - □ la iterația 0: valori random (sau 0)
 - □ la iterația t + 1 (t = 0, 1, 2, ...)

$$\beta_k(t+1) = \beta_k(t)$$
 - learning_rate * error(t) * x_k , k=1,2,...,d $\beta_0(t+1) = \beta_0(t)$ - learning_rate * error(t)

- Unde
 - error(t) = Sigmoid(computed) realOutput
 - error(t) = Sigmoid($\beta_0(t) + \beta_1(t)^*x_1 + \beta_2(t)^*x_2 + ... + \beta_d(t)^*x_d$) y
- Clasificarea rezultatelor
 - \square (0,1) -> [label₀, label₁, .. label_n]

Regresia liniară cu metodele sunt detaliate în PDF-ul "Regresia Liniară"!!!

Curs 3: Mașini cu suport vectorial (MSV)
Definire:

Mașinile cu Suport Vectorial sunt algoritmi de învățare automată supervizată folosiți pentru clasificare și regresie.

Ele construiesc un hiperplan sau un set de hiperplane într-un spațiu cu dimensiuni mari sau infinite, care sunt folosite pentru separarea diferitelor clase.

■ MSV găsește o funcție liniară de forma $f(\mathbf{x}) = \langle \mathbf{w} \cdot \mathbf{x} \rangle + b$, (\mathbf{w} -vector pondere) a.î.

$$y_i = \begin{cases} 1 & if \langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b \ge 0 \\ -1 & if \langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b < 0 \end{cases}$$

• $\langle \mathbf{w} \cdot \mathbf{x} \rangle + b = 0 \rightarrow$ hiperplanul de decizie care separă cele 2 clase

Tipuri de probleme rezolvabile:

- Clasificare binară
 - MSV sunt adesea folosite pentru clasificarea binară, unde scopul este de a separa datele în două clase distincte.
- Clasificare Multiclasă:
 - MSV pot fi extinse pentru clasificarea multiclasă folosind tehnici cum ar fi "one-vs-one" sau "one-vs-rest"

One-Vs-One (OvO):

Se antrenează un clasificator binar pentru fiecare pereche de clase. Dacă există k clase, se vor antrena $\frac{k(k-1)}{2}$ clasificatori.

Construire clasificatori:

- Pentru fiecare pereche de clase, se construiește un clasificator binar care decide între cele două clase.
- De exemplu, pentru clasele A, B și C, se vor construi clasificatori pentru perechile (A, B), (A, C) și (B, C).

 Clasificare:
- Pentru un nou exemplu, fiecare clasificator binar emite o predicție
- Exemplul este clasificat în clasa care primește cele mai multe voturi dintre toți clasificatorii binari.

One-Vs-Rest (OvR):

Se antrenează un clasificator binar pentru fiecare clasă, unde fiecare clasificator învață să distingă o clasă de toate celelalte clase combinate.

Construire clasificatori:

- Pentru fiecare clasă, se construiește un clasificator binar care învață să recunoască acea clasă în contrast cu toate celelalte clase.
- De exemplu, pentru clasele A, B şi C, se vor construi clasificatori pentru A vs (B, C), B vs (A, C) şi C vs (A, B)
 Clasificare:
- Pentru un nou exemplu, fiecare clasificator binar emite o predicție.
- Exemplul este clasificat în clasa care are cel mai mare scor de încredere dintre toți clasificatorii.

MSV structurate

- □ Normală $f: \mathcal{X} \rightarrow \mathbb{R}$
 - Intrări de orice fel
 - Ieşiri numerice (naturale, întregi, reale)
- □ Structurată: X → y
 - Intrări de orice fel
 - Ieşiri de orice fel (simple sau structurate)

Curs 4: Rețele neuronale artificiale (RNA)
RNA detaliată în PDF-ul "Rețele neuronale artificiale (RNA)"!!!

Curs 5: Deep Learning

ANN

Layere:

- Input layer size = input size (features)
- Hidden layer various sizes (layers, neurons/layer)
- Output layer size = output size (classes)

CNN

Mai multe layere (< 10)

Mai multe noduri per layer

Layere:

- Convolutional layer feature map
- Pooling/Aggregation layer size reduction
- Fully-Connected layer answer

Output layer:

- Multiclass SVM:
 - Cel mai mare scor indică rezultatul corect
- Softmax (normalized exponential function):
 - Cea mai mare probabilitate indică rezultatul corect
 - Convertește scoruri în probabilități

□ Sisteme care învaţă singure (SIS)

- Reţele neuronale artificiale
 - Modele computaţionale inspirate de reţelele neuronale artificiale
 - Grafe speciale cu noduri așezate pe straturi
 - Strat de intrare → citeşte datele de intrare ale problemei de rezolvat
 - Strat de ieşire → furnizează rezultate problemei date
 - Strat(uri) ascunse → efectuează calcule
 - Nodurile (neuronii)
 - Au intrări ponderate
 - Au funcţii de activare (liniare, sigmoidale, etc)
 - necesită antrenare → prin algoritmi precum:
 - Perceptron
 - Scădere după gradient
 - □ Algoritm de antrenare a întregii RNA → Backpropagation
 - Informaţia utilă se propagă înainte
 - Eroarea se propagă înapoi

Curs 7: Posibil invitat - Inteligență Artificială Generativă - LLMs

Curs 8: Posibil invitat - Reprezentarea numerică a datelor în Inteligența Artificială

Curs 9: Lanțuri Markov

Un lanț Markov este un model matematic care ne ajută să înțelegem și să prezicem comportamentul unui sistem care evoluează în timp.

sistem = o serie de stări posibile și de tranziții între aceste stări

Fiecare stare este o situație sau o condiție a sistemului într-un anumit moment în timp.

Proprietatea lui Markov:

"Starea viitoare a unui sistem stocastic este determinată exclusiv de starea sa actuală și nu depinde de întreaga istorie a sistemului."

Exemplu: aruncarea cu zarul

Ciclurile Markov pot fi reprezentate în diverse moduri în funcție de tipul de proces Markov și de nivelul de detaliu necesar în modelare:

- Graf orientat / diagramă de stări
- Arbore
- Matricea de tranziție

Curs 10: Reprezentări vectoriale pentru texte Reprezentări rare (sparse):

- Mutual-Information weighted word co-occurrence matrices Reprezentări dense (compacte):
 - Singular Value Decomposition (și Latent Semantic Analysis)
 - Neural-Network-Inspired models (skip-grams, CBOW)
 - Altele (e.g. brown clusters)

Vectorii lungi = lungimea lor este între 20.000 și 50.000.

Vectorii rari = foarte multe elemente sunt 0.

Vectorii scurți = lungimea lor este între 200 și 1.000.

Vectorii denși = multe elemente nu sunt 0.

Vectorii denși pot generaliza mai bine, captând sinonimia termenilor

Modele de predicție:

- Modelul Word2Vec
 - Skip-gram, CBOW (Continuous Bag of Words)
 - Se învață reprezentări, numite embeddings, ca parte din procesul de predicție/generare a textului.
 - Se antrenează o rețea neuronală pentru prezicerea următorului cuvânt

Curs 11: Rețele neuronale convolutive Word embeddings + Transformers

Word embeddings:

- Static (context-free):
 - Word2Vec (2013)
 - o GLoVe (2014)
- Dinamic (context-based):
 - ELMo (2018)
 - o BERT (2019)

Arhitectură:

- Encoder:
 - o Primește cuvinte
 - Construiește reprezentări
 - Modele bazate pe encoder:
 - Clasificare de propoziții
 - Clasificare de sentimente/emoții
 - Ex.: BERT

- Decoder:
 - o Primește reprezentări (features) și alte input-uri
 - o Generează secvențe de cuvinte
 - o Modele bazate pe decoder:
 - Generare de texte
 - Ex.: GPT
- Modele bazate pe encoder-decoder (modele seq-to-seq):
 - Generare de texte care necesită un input (rezumat de text)
 - o Ex.: BART, T5

Sin-based encoding

Exemplu

- O propoziție cu 5 cuvinte și d = 6
- PE(cuv) = valorile functiei sin pentru diferite argumente (frecvențe sau lungimi de undă)
 - E.g. Sin(2 π pos / λ_i), i =0,1,2,..,d-1

pos		$\lambda = \pi$	$\lambda = 2\pi$	$\lambda = 3\pi$	$\lambda = 4\pi$	$\lambda = 5\pi$	$\lambda = 6\pi$
0	\rightarrow	sin(0)	sin(0)	sin(0)	sin(0)	sin(0)	sin(0)
1	\rightarrow	sin(2*1)	sin(1)	sin(2/3*1)	sin(2/4*1)	sin(2/5*1)	sin(2/6*1)
2	\rightarrow	sin(2*2)	sin(2)	sin(2/3*2)	sin(2/4*2)	sin(2/5*2)	sin(2/6*2)
3	\rightarrow	sin(2*3)	sin(3)	sin(2/3*3)	sin(2/4*3)	sin(2/5*3)	sin(2/6*3)
4	\rightarrow	sin(2*4)	sin(4)	sin(2/3*4)	sin(2/4*4)	sin(2/5*4)	sin(2/6*4)

sim(PE(word₀),PE(word_k))=0!!!

Curs 12: Rezolvarea problemelor prin căutare