Теортест-1 (Вариант 86)

Тема – определенный интеграл

Задача 1

Пусть $f \in R[a,b], a < b$. Выберите все верные утверждения:

- 1. Если $\int_a^b |f(x)| dx = 0$, то $f(x) \equiv 0$ на [a, b];
- 2. Если $f \geq 0$ на [a,b] и $\exists c \in [a,b] \colon f(c) > 0$, то $\int_a^b f(x) dx > 0$;
- 3. Если $\left| \int_a^b f(x) dx \right| = 0$, то $f(x) \equiv 0$ на [a, b];
- 4. Если $\int_a^b |f(x)| dx < A$, то $\left| \int_a^b f(x) dx \right| < A$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Выберите все верные утверждения для данной функции, заданной на отрезке [a,b]:

- 1. При измельчении разбиения верхняя сумма Дарбу уменьшается или не изменяется;
- 2. Верхняя сумма Дарбу не меньше любой интегральной суммы для данного разбиения;
- 3. Верхняя сумма Дарбу является наибольшей из всех интегральных сумм для данного разбиения;
- 4. При измельчении разбиения верхняя сумма Дарбу увеличивается;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Выберите все функции, имеющие дробно-рациональные первообразные:

- 1. $\frac{x^3-3(x-1)^2}{(x-1)^3}$;
- 2. $\frac{x^2-1}{x^2+1}$;
- 3. $\frac{x^9}{x^5+1}$;
- 4. $\frac{2x+1}{x^2+x+1}$;

Задача 4

Выберите все верные утверждения:

- 1. Длина замкнутой кривой равна нулю;
- 2. Длина спрямляемой кривой конечна;
- 3. Длина любой кривой конечна;
- 4. Кусочно-гладкая кривая спрямляема;
- 5. Спрямляемы только кусочно-гладкие кривые;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Функция $f\in R[0,10]$ и $-1\leq f(x)\leq 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_{-\ln 2}^0 \frac{f(x)}{e^x} dx$:

- 1. [-1; 5];
- 2. [-2; 10];
- 3. [0.5; 5];
- 4. [-0.25; 10];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Пусть f интегрируема и $f \geq 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f непрерывна в точке a и f(b) = 1;
- 2. f непрерывна в точке a и f(a) = 1;
- 3. f непрерывна на [a,b] и f((a+b)/2) = 1;
- 4. f непрерывна на [a, b] и f(a + b) = 1;

Задача 7

Пусть f(x), x(t) – дифференцирумые функции. Выберите все верные утверждения (при соответствующей замене) :

- 1. $\int f(x^2)dx = 2 \int f(t)tdt;$
- 2. $\int f(1/x)dx = -\int \frac{f(t)dt}{t^2}$;
- 3. $\int f(x)dx = \int f(\ln t)tdt$;
- 4. $\int f(\sqrt{x})dx = 2 \int f(t)\sqrt{t}dt$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Выберите все верные утверждения (множества А и В имеют площадь):

- 1. $S(A) = S(A \cap B) + S(A \setminus B)$;
- 2. площадь одной точки равна нулю;
- 3. площадь графика любой функции равна нулю;
- 4. площадь графика интегрируемой функции равна нулю;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Пусть $f \in R[a,b]$, $F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. Если f кусочно-непрерывна на [a,b], то F обобщенная первообразная для f на [a,b];
- 2. Если f непрерывна на [a,b], то F первообразная для f на [a,b];
- 3. F ограничена на [a, b];
- 4. F имеет разрывы в точках разрыва функции f;

Задача 10

Пусть функция u=u(t) – первообразная для функции v=v(t) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. u = dv;
- $2. \ v = du + C;$
- 3. du = v;
- 4. vdt = u'dt;