Introduction to Machine Learning

Samuel Carton (adapted from Marek Petrik)

8/2025

What is machine learning?

Arthur Samuel (1959, IBM, computer checkers):

Field of study that gives computers the ability to learn without
being explicitly programmed

Creative commons license, Source: http://flickr.com

IBM Watson: Computers Beat Humans in Jeopardy

Fair use, https://en.wikipedia.org/w/index.php?curid=31142331

AlphaFold: Machine Learning for Protein Folding

Predicting Elections

 $\verb|https://economist.com||$

Personalized Product Recommendations

Online retailers mine purchase history to make recommendations

Predicting Strength of Hurricanes

NOAA Models: SHIFOR, SHIPS, DSHIPS, LGEM

Hurricane Isabel, 2003, Source: NOAA.gov

Other Applications

- 1. Health-care: Identify risks of getting a disease
- 2. Detect spam in emails
- 3. Recognize hand-written text
- 4. Create a fake video (https:
 //www.youtube.com/watch?v=cQ54GDm1eL0)

Any other applications?

What is Machine Learning

Discover unknown function *f*:

$$Y = f(X)$$

- f = hypothesis, or model
- X = **features**, or predictors, or inputs
- Y =response, or target

$$\mathsf{MPG} = f(\mathsf{Horsepower})$$

Machine Learning

Purpose: Inference or prediction

Auto Dataset

	mpg	horsepower	name
1	18.00	130.00	chevrolet chevelle malibu
2	15.00	165.00	buick skylark 320
3	18.00	150.00	plymouth satellite
4	16.00	150.00	amc rebel sst
5	17.00	140.00	ford torino
6	15.00	198.00	ford galaxie 500
7	14.00	220.00	chevrolet impala
8	14.00	215.00	plymouth fury iii
9	14.00	225.00	pontiac catalina
10	15.00	190.00	amc ambassador dpl
		• • •	•••

Auto Dataset

Bayes Classifier

What is the MPG of a car with horsepower = 150?

	mpg	horsepower	name
1	18.00	130.00	chevrolet chevelle malibu
2	15.00	165.00	buick skylark 320
3	18.00	150.00	plymouth satellite
4	16.00	150.00	amc rebel sst
5	17.00	140.00	ford torino
6	15.00	198.00	ford galaxie 500
7	14.00	220.00	chevrolet impala
8	14.00	215.00	plymouth fury iii
9	14.00	225.00	pontiac catalina
10	15.00	190.00	amc ambassador dpl

$$f(x) = \mathbb{E}[Y \mid X = x]$$

Bayes Classifier

What is the MPG of a car with horsepower = 150?

	mpg	horsepower	name
1	18.00	130.00	chevrolet chevelle malibu
2	15.00	165.00	buick skylark 320
3	18.00	150.00	plymouth satellite
4	16.00	150.00	amc rebel sst
5	17.00	140.00	ford torino
6	15.00	198.00	ford galaxie 500
7	14.00	220.00	chevrolet impala
8	14.00	215.00	plymouth fury iii
9	14.00	225.00	pontiac catalina
10	15.00	190.00	amc ambassador dpl

$$f(x) = \mathbb{E}[Y \mid X = x]$$

Bayes Classifier

What is the MPG of a car with horsepower = 150?

	mpg	horsepower	name
1	18.00	130.00	chevrolet chevelle malibu
2	15.00	165.00	buick skylark 320
3	18.00	150.00	plymouth satellite
4	16.00	150.00	amc rebel sst
5	17.00	140.00	ford torino
6	15.00	198.00	ford galaxie 500
7	14.00	220.00	chevrolet impala
8	14.00	215.00	plymouth fury iii
9	14.00	225.00	pontiac catalina
10	15.00	190.00	amc ambassador dpl

$$f(x) = \mathbb{E}[Y \mid X = x]$$

Limitation of Bayes Classifier

What is the MPG of a car with horsepower = 200?

	mpg	horsepower	name
1	18.00	130.00	chevrolet chevelle malibu
2	15.00	165.00	buick skylark 320
3	18.00	150.00	plymouth satellite
4	16.00	150.00	amc rebel sst
5	17.00	140.00	ford torino
6	15.00	198.00	ford galaxie 500
7	14.00	220.00	chevrolet impala
8	14.00	215.00	plymouth fury iii
9	14.00	225.00	pontiac catalina
10	15.00	190.00	amc ambassador dpl

Limitation of Bayes Classifier

What is the MPG of a car with horsepower = 200?

	mpg	horsepower	name
1	18.00	130.00	chevrolet chevelle malibu
2	15.00	165.00	buick skylark 320
3	18.00	150.00	plymouth satellite
4	16.00	150.00	amc rebel sst
5	17.00	140.00	ford torino
6	15.00	198.00	ford galaxie 500
7	14.00	220.00	chevrolet impala
8	14.00	215.00	plymouth fury iii
9	14.00	225.00	pontiac catalina
_10	15.00	190.00	amc ambassador dpl

Return the **nearest neighbor**.

Nearest Neighbor Hypothesis

Errors in Machine Learning

Must allow for errors ϵ :

$$Y = f(X) + \epsilon$$

- 1. World is too complex to model precisely
- 2. Many features are not captured in data sets
- 3. Datasets are limited

Errors in Machine Learning

Must allow for errors ϵ :

$$Y = f(X) + \epsilon$$

- 1. World is too complex to model precisely
- 2. Many features are not captured in data sets
- 3. Datasets are limited

How to reduce prediction errors?

KNN: K-Nearest Neighbors

Idea: Use several similar training points when making predictions. Errors will average out.

Example with 2 features (horsepower, model year)

KNN: Effect of different k

Questions ...

- How to choose *k*?
- Are there better methods?

Machine Learning Choices ...

Source: http://scikit-learn.org/stable/tutorial/machinelearningmap/index.html

End of the semester: Know what, when, and why to use, know

This Course: First Steps in Machine Learning

 Foundations: Mathematics necessary to use and understand ML algoirhtms

2. Algorithms: Use common ML algorithms

 Principles: Understand when different algorithms are appropriate

4.

Parametric Prediction Methods

Linear regression:

$$\mathsf{MPG} = f(\mathsf{horsepower}) = \beta_0 + \beta_1 \times \mathsf{horsepower}$$

R Language

- Download and install R: http://cran.r-project.prg
- Try using RStudio as an R IDE
- See class website for more info
- All my R code is in the class git repo
- You can use Python or another language, but at your own risk

Why R (vs Python)

- Language syntax particularly suitable for manipulating tabular data
- Better-quality packages at cran.r-project.org than pypi.org
- Excellent data manipulation and visualization tools: dplyr, ggplot, tidyverse, better than python versions like pandas, matplotlib
- 4. R-notebooks more flexible and git-friendly than Jupyter
- 5. Shiny: a neat web framework to create simple web data interface
- 6. Rcpp: convenient interface with C++
- 7. Easier to install and use particularly on Windows/Mac

Why Python (vs R)

- 1. It is popular
- 2. Better general programming language, good support for data structures
- 3. Better support for numerical algebra: numpy, scipy,
- 4. Much better support for deep learning: tensor flow, keras
- 5. Clean syntax

Logistics

- Website: (get there through mycourses)
 https://gitlab.cs.unh.edu/carton/ml-fall2025
- Grading: See website
- Assignments: posted on myCourses at least a week in advance
- Questions: myCourses Discussion
- Programming language: R, Python