

电磁辐射与加速器束流动力学笔记

Introduction to <u>A</u>ccelerators <u>B</u>eams, <u>C</u>ollective <u>D</u>ynamics,

Electromagnetic Radiation and **F**ree-electron Lasers

作者: 蔡承颖 (Cheng-Ying Tsai, C.-Y. Tsai)

单位:华中科技大学电气学院

时间: 2024年4月

版本: v3.5

特别声明

此笔记/讲义非最终版,内容可能存在笔误、谬误,仍在迭代修改中。此讲义不定期 更新。

前言

粒子加速器是什么? 如果用三句话概括:

- 1. 用电场加速带电粒子、用磁场导引使带电粒子弯转并控制粒子束团的电磁装置。
- 2. 从物理上看,一半讨论"粒子"动力学(经典力学),一半则包含"场"动力学(电磁理论)。
- 3. 从工程上看,粒子加速器是结合电气、机械、控制、光电等领域的跨学科、多学科平台。

这份讲义面向群体: 电气专业、以电磁辐射与粒子加速器束动力学为未来选题方向的大二以上本科生或低年级研究生。对应用物理或光电专业的读者或许略显简单,但仍适用。

编写此讲义的初衷:电气专业的读者对于时变电磁场进阶内容接触较少,部分原因由于电磁场作为必修课的课程学时没有得到足够重视(相比于电气学院的其它课程),另外一部分原因则是本校电气学院属于"强电"专业,由于历史发展原因,高频时变电磁场有时被归类为"弱电"专业。因此,对于时变电磁场理论的一个重要应用 — 电磁辐射 — 着墨就更少了,涉及到相对论电子运动情况下的电磁辐射更是只字未提。特殊或狭义相对论曾经在一年级大学物理介绍过,但是,在电磁场课程中没有接续作为解释磁场来源的素材进行介绍是令人遗憾的。并且,也忽略了在不同惯性坐标系中的时变电磁场形式与洛伦兹变换的讨论。这些都无形地阻断了电气学院学生接触电磁辐射与粒子加速器课题的契机。粒子加速器作为结合电气、机械、物理等领域的跨学科、多学科平台,在二十一世纪的现在应该值得更多重视。

写在开始前,讲义第零章介绍几个术语、惯例、基础知识与单位制转换。术语主要包含狭义相对论的洛伦兹因子、时空坐标的洛伦兹变换、伴随的时慢、尺缩效应、常用来描述粒子能量的电子伏特单位等。惯例则包含工程与物理领域的虚数单元 i,j 符号,与傅里叶变换的 $2\pi,\sqrt{2\pi}$ 惯例。基础知识给出几种加速器的大致样貌,提供读者一个粗略、模糊的认识。此讲义不涉及关于加速器历史发展的介绍。同样并入第零章介绍的还有时常令人困惑的单位制,特别是国际单位制 (SI, MKS) 与高斯单位制 (Gaussian/CGS) 的转换,包含常用物理常数列表。正式进入正题前,一些高等数学基础的内容包含:三种正交坐标系的向量微积分与坐标变换、常用向量恒等式、微分运算、常用积分公式、恒等式、特殊函数、近似展开公式、级数求和公式等整理为附录内容。这部分作为参考素材,已具备这些基础知识或不感兴趣的读者可以直接跳过,等在后面学习需要时再回头查阅。

这份讲义的正式内容从第一个主题 — 时变电磁场与电磁辐射理论 — 开始,不同于多数介绍加速器基础的教科书由介绍带电粒子的经典力学 (哈密顿力学) 开始。这么做对于缺乏经典力学基础知识的电气专业学生而言,有一些好处:

- 时变电磁场理论接续本科电磁场课程,先从复习既有电磁场知识开始 (Chapter 1),接着介绍电磁辐射理论 (Chapter 2-5),属于学生相对熟悉的电磁场知识,可以减少课题陌生感造成的学习困难与抵触情绪。
- 第一部分,即前五章,介绍的电磁辐射理论多为单电子运动产生的辐射,并假设电子运动轨迹是预先给定 (prescribed) 的。下一步便是探讨电子在粒子加速器中的运动如何受外部场支配。由洛伦兹方程开始,将重心由"场"的分析转移至"电子(粒子)"的分析,就进入这份讲义的第二个主题: 束流动力学 (Chapter 6、7、8)。相信对电气专业学生而言,这个转换会比起直接从讨论"电子"的运动(哈密顿力学)至电子辐射的"场"(电磁理论) 更自然。这是此讲义的特色之一。尽管做了内容调整的安排,电气专业的读者在初次接触第二个主题时,觉得陌生、困难是极为正常的。对有志于了解或熟悉加速器课题的读者,应该坚持消化这部分介绍的内容。

第二部分粒子动力学的内容,对单粒子 (Chapter 6-8) 效应与多粒子效应的讨论约各占一半 (Chapter 10-12), Chapter 9 可视为中场休息。在粒子加速器中,许多一成万上亿 (10⁴ ~ 10¹⁰) 个一电子形成束团 (beam 或 bunch),束团内粒子间的 (库仑) 场、电磁辐射场与环境交互作用,产生众多丰富多彩的动力学课题,形成多粒子集体效应 (Chapter 10-13)。集体效应是粒子束流动力学的一个分支,也是这份讲义第二部分的主要组成部分。这里注意到,即使是单粒子束流动力学的研究内容也是多姿多彩的,涉及的研究层面与使用工具既多且广。限于作者水平与知识所限,这份讲义对于单粒子动力学的介绍仅包含最基础部分。对集体效应的介绍,我们选择从自由电子激光 (free-electron laser, FEL)理论开始,算是这份讲义的另一个特色。这么选择的原因一方面是因为描述自由电子激光机制的理论框架相对独立 (self-contained),并且使用的语言与符号与传统加速器集体效应有些不同。在介绍完自由电子激光理论之后,这份讲义接着介绍经典、标准的集体效应理论,从尾场函数、阻抗函数开始 (Chapter 11),然后再是粒子动力学,包含宏粒子模型 (Chapter 12) 与连续体分布函数的动理学模型 (Chapter 13)。

最后,这份讲义的第三个主题简短介绍笔者近年感兴趣的三个课题:超快电子成像的电子动力学(Chapter 14)、相干同步辐射(Chapter 15)、高亮度电子微束团动力学(Chapter 16)等。

综上,此讲义一共包含 17 章,第零章为预备知识,其余 16 章中,第一部分有 5 章,包含时变电磁场基础、同步辐射与波荡器辐射理论;第二部分有 8 章,包含横向与纵向单粒子束流动力学、自由电子激光理论、集体效应的场动力学与束动力学;第三部分有 3 章,分别介绍三个专题。学时所限,一般未必有足够时间覆盖讲义所有内容:

•对32学时、偏电子束动力学的课程,可挑选第六章至第八章内容,其中,第八章 关于同步辐射效应的讨论仅需要非常有限的第四章的内容,在讲义 §8.3、§8.4中已 经提及。如讲授时间有余,可选择一部分第十二章至第十三章的内容,其中,尾场 或阻抗函数作为给定的、已知函数即可。

- 对 32 学时、偏**辐射场**动力学的课程,可挑选第一章至第五章内容。如讲授时间有余,可包含一部分第十一章的内容,介绍如何计算集体效应的尾场函数或阻抗函数。
- 对 64 学时、总论导向的课程,如果学生背景为初学,原则上可包含第一章至第九章内容。如果学生已具备足够电磁学知识,则可考虑跳过第一章,从第二章开始,跳过第十章以外的前十三章内容。或者,从第二章至第十章。
- 对 64 学时、偏电子束动力学的课程,如果学生已具备足够电磁学知识,则可涵盖 第六章至第十三章内容,其中关于同步辐射与波荡器辐射的基础只需要在必要时候 简短回顾第四、五章即可。如讲授时间有余,可选择第三部分的部分内容作为进阶 素材。

此讲义虽假设初学的读者为电气专业,但对应用物理或光电专业等相关专业的读者 仍适用。需要具备的、共同的前置基础知识有:

- 大学物理、微积分;
- 电磁学或电动力学;
- 高等数学(包含:线性代数、复变函数与积分变换、偏微分方程、特殊函数)。

对电气专业的读者,如果具备自动控制理论、信号与系统、概率论与数理统计等背景知识则更好,相信能够帮助对粒子加速器集体效应的更深刻理解。对物理或光电专业的读者,如果具备量子力学、统计力学、激光原理、固体物理或许能更深入理解电子产生辐射的物理过程。经典力学一般作为物理专业的必修课之一,相信这些对理解此讲义第二部分内容具有较大程度帮助。

关于这份讲义的几个特点:

要点以定律、定义、定理、性质形式模块化呈现,尽可能简明地总结,方便复习、查找。定义或定理中的物理量尽量在方格内全部介绍,虽然用到的一些符号可能前面已经定义过而显得啰嗦。但希望这么做能更方便复习、查找。部分定理可能给出证明或思路;如果不在意证明细节,可以略去不看;如果在乎推导细节,将尽量提供参考文献。

定律. ————————————————————————————————————	
物理定律、基本方程、经验定律或数量级尺度以"定律"呈现	
定义.	
专有名词首次出现以"定义"呈现	
定理.	
一些重要结果以"定理"呈现	

性质.

一些重要结果伴随的讨论或实用公式整理成"性质"呈现

除定义、定理、性质外,有时候不免再啰嗦几句,或是给出一些不属于正文的评语、 标注、笔记等,将以散落各处的注、笔记呈现。

注

홫 笔记

此外,有些段落给出延伸的练习。

▲ 练习 0.1

• 每章篇幅尽可能符合一个较明确、特定的主题,做到讲义"精、美"。

此讲义各章之间关联程度不一,可通过图 11体现。

图 1: 此讲义前九章应视为基础章节,主要包含前述第一部分的电磁场理论 (Chapter 1 - Chapter 5) 与第二部分的经典力学前半部 (Chapter 6 - Chapter 9)。后七章则相对进阶,围绕高亮度电子动力学的不同面向展开。

¹此图根据模版修改生成,参考https://www.mathworks.com/matlabcentral/fileexchange/116550-chord-chart。

既然作为"讲义",不是百科全书也不是工具书,就不打算也无法"包山包海"²。在这份讲义不够完整的地方,笔者推荐一些目前市面上较经典的几本教科书或讨论特定专题的参考书:

- 一 电磁理论
 - John David Jackson, Classical Electrodynamics, 3rd ed., John Wiley & Sons (1998)
- Julian Schwinger, Lester L. Deraad Jr., Kimball Milton, and Wu-Yang Tsai, Classical Electrodynamics, Perseus Books (1998)
- Charles A. Brau, Modern Problems in Classical Electrodynamics, Oxford University Press (2004)
- Andrew Zangwill, Modern Electrodynamics, Cambridge University Press (2013)
- Richard Feynman, Robert Leighton, and Mathew Sands, The Feynman Lectures on Physics,
 Volume II, Addison-Wesley Publishing Company (1964). https://www.feynmanlectures.caltech.edu/II_toc.html
- Gennady Stupakov and Gregory Penn, Classical Mechanics and Electromagnetism in Accelerator Physics, Springer (2018)

二 加速器物理基础

- Mathew Sands, The Physics of Electron Storage Rings An Introduction, SLAC-121 (1970). https://www.slac.stanford.edu/pubs/slacreports/reports02/slacr-121.pdf
- Philip J. Bryant and Kjell Johnsen, The Principles of Circular Accelerators and Storage Rings, Cambridge University Press (1993)
- Alexander Wu Chao, Lectures on Accelerator Physics, World Scientific (2020)
- Alexander Wu Chao, Special Topics in Accelerator Physics, World Scientific (2022)
- Simone Di Mitri, Fundamentals of Particle Accelerator Physics, Springer (2022)
- Shyh-Yuan Lee, Accelerator Physics, 4th ed., World Scientific (2019)
- Helmut Wiedemann, Particle Accelerator Physics, 4th ed., Springer (2015)
- Andrzej Wolski, Beam Dynamics in High Energy Particle Accelerators, Imperial College Press (2014)
- Mario Conte and William M. MacKay, An Introduction to the Physics of Particle Accelerators, 2nd ed., World Scientific (2008)
- Klaus Wille, The Physics of Particle Accelerators, Oxford University Press (2005)
- Donald Edwards and Michael Syphers, An Introduction to the Physics of High Energy Accelerators, John Wiley & Sons (2004)
- James Rosenzweig, Fundamentals of Beam Physics, Oxford University Press (2003)
- Martin Reiser, Theory and Design of Charged Particle Beams, Second, Updated and

²此讲义附录 H 给出 CERN CAS 列举的一般课的课程大纲,此讲义内容大概涵盖 80% 以上内容,作为导论应该足够。

- Expanded Edition, Wiley-VCH (2008)
- Rob Appleby, Graeme Burt, James Clarke, and Hywel Owen, The Science and Technology of Particle Accelerators, CRC Press (2021)
- Martin Berz, Kyoko Makino, and Weishi Wan, An Introduction to Beam Physics, CRC Press (2015)
- Alex J. Dragt, Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics. https://www.physics.umd.edu/dsat/dsatliemethods.html
- 金玉明, 电子储存环物理(修订版), 中国科学技术大学出版社(2001)

三 同步辐射理论、自由电子激光理论

- Albert Hofmann, The Physics of Synchrotron Radiation, Cambridge University Press (2004)
- Kwang-Je Kim, Zhirong Huang, and Ryan Lindberg, Synchrotron Radiation and Free-Electron Lasers Principles of Coherent X-Ray Generation, Cambridge University Press (2017). 此书有中文译本: 黄森林、刘克新译, 同步辐射与自由电子激光 相干 X 射线产生原理, 北京大学出版社 (2018)
- Peter Schmuser, Martin Dohlus, Jorg Rossbach, and Christopher Behrens, Free-Electron Lasers in the Ultraviolet and X-Ray Regime, 2nd ed., Springer (2014)
- Evgeny L. Saldin, Evgeny A. Schneidmiller, and Mikhail V. Yurkov, The Physics of Free Electron Lasers, Springer (1999)
- Toshiyuki Shiozawa, Classical Relativistic Electrodynamics Theory of Light Emission and Application to Free Electron Lasers, Springer (2004)
- Henry Freund and Thomas Antonsen Jr., Principles of Free Electron Lasers, 3rd ed.,
 Springer (2018)
- Charles A. Brau, Free-Electron Lasers, Academic Press, Inc. (1990)
- Thomas C. Marshall, Free-Electron Lasers, Macmillan Publishing Company (1985)
- 刘祖平, 同步辐射光源物理引论, 中国科学技术大学出版社 (2009)
- 贾启卡,自由电子激光物理导论,科学出版社(2022)

四 集体效应理论

- Alexander Wu Chao, Physics of Collective Beam Instabilities in High Energy Accelerators,
 John Wiley & Sons (1993). https://www.slac.stanford.edu/~achao/wileybook
 .html
- King-Yuen Ng, Physics of Intensity Dependent Beam Instabilities, World Scientific (2005)
- Bruno W. Zotter and Semyon A. Kheifets, Impedances and Wakes in High-Energy Particle Accelerators, World Scientific (1998)
- Shaukat Khan, Collective Phenomena in Synchrotron Radiation Sources: Prediction, Diagnostics, Countermeasures, Springer (2006)

• J.C. Bergstrom, Jack's Book – On Beam Instabilities and Other Things (2016)

五 束流量测与诊断

- Michiko G. Minty and Frank Zimmermann, Measurement and Control of Charged Particle Beams, Springer (2003)
- Peter Strehl, Beam Instrumentation and Diagnostics, Springer (2006)

六 工具书

- Alexander Wu Chao, Karl Hubert Mess, Maury Tigner, and Frank Zimmermann ed.,
 Handbook of Accelerator Physics and Engineering, 3rd. ed., World Scientific (2023)
- Graham Woan, The Cambridge Handbook of Physics Formulas, Cambridge University Press (2000)

七 高等数学基础

- Jon Mathews and R.L. Walker, Mathematical Methods of Physics, Addison-Wesley (1970)
- George B. Arfken, Hans J. Weber, and Frank E. Harris, Mathematical Methods for Physicists, 7th ed., Elsevier (2013)
- Philip M. Morse and Herman Feshbach, Methods of Theoretical Physics, McGraw-Hill Book Company, Inc. (1953)

此外,在几乎万能的网际网路世界也能找到许多关于粒子加速器的许多的素材,包含科普、教学、综述、科研类的文献。以下列举一些推荐网页:

- 科普: 粒子加速器对人类社会在方方面面的应用 ⇒ http://www.accelerators-for-society.org/里面有许多关于粒子加速器的科普介绍,包含科学、环境、能源、国防安全、工业、医学等面向。
- 教学: CERN Yellow Report ⇒ https://cds.cern.ch/collection/CERN%20Yell ow%20Reports?ln=en 包含许多珍贵的、媲美教科书的加速器基础教程。
- 教学: 美国粒子加速器学校 (U.S. Particle Accelerator School, USPAS) ⇒ https://uspas.fnal.gov/里面有最新办学信息,还有许多过去加速器学校的上课讲义、材料等。此外,早期由美国物理联合会 (American Institute of Physics, AIP) 出版的会议记录文集中,有几卷包含了丰富、珍贵的加速器会议记录,其中许多是长篇教程、前沿综述等:
 - No. 57: Nonlinear Dynamics and the Beam-Beam Interaction (BNL, 1979). https://pubs.aip.org/aip/acp/issue/57/1
 - No. 87: The Physics of High Energy Particle Accelerators (Fermilab, 1981). https://pubs.aip.org/aip/acp/issue/87/1
 - No. 105: The Physics of High Energy Particle Accelerators (SLAC, 1982). https://pubs.aip.org/aip/acp/issue/105/1

- No. 127: The Physics of Particle Accelerators (BNL/SUNY, 1983). https://pubs.aip.org/aip/acp/issue/127/1
- No. 153: The Physics of Particle Accelerators (Fermilab, 1984 & SLAC, 1985). https://pubs.aip.org/aip/acp/issue/153/1
- No. 184: The Physics of Particle Accelerators (Fermilab, 1987 & Ithaca, N.Y. 1988).
 https://pubs.aip.org/aip/acp/issue/184/1
- No. 249: The Physics of Particle Accelerators (Upton, N.Y. 1989). https://pubs.aip.org/aip/acp/issue/249/1
- High Quality Beams Joint US-CERN-JAPAN-RUSSIA Accelerator School, AIP Publishers, 2001. https://pubs.aip.org/aip/acp/issue/592/1

Springer 也出版了一些关于粒子束讲义:

- Lecture Notes in Physics No. 247: Nonlinear Dynamics Aspects of Particle Accelerators, Springer-Verlag Publishers, 1985.
- Lecture Notes in Physics No. 296, Springer-Verlag Publishers, 1986. https://link.springer.com/book/10.1007/BFb0031487
- Lecture Notes in Physics No. 343, Springer-Verlag Publishers, 1988. https://link.springer.com/book/10.1007/BFb0018278
- Lecture Notes in Physics No. 400, Springer-Verlag Publishers, 1990. https://link.springer.com/book/10.1007/3-540-55250-2
- Lecture Notes in Physics No. 425, Springer-Verlag Publishers, 1992. https://link.springer.com/book/10.1007/978-3-662-13972-1

自由电子激光理论早期进展的一些文献 — PQE3 — 也具有借鉴意义:

- Physics of Quantum Electronics, Vol. 5: Novel Sources of Coherent Radiation, Addison-Wesley, 1978.
- Physics of Quantum Electronics, Vol. 7: Free-Electron Generators of Coherent Radiation, Addison-Wesley, 1979.
- Physics of Quantum Electronics, Vol. 8: Free-Electron Generators of Coherent Radiation, Addison-Wesley, 1981.
- Physics of Quantum Electronics, Vol. 9: Free-Electron Generators of Coherent Radiation, Addison-Wesley, 1981.
- 科研: 物理评论 加速器与束物理 (Physical Review Accelerators and Beams, PRAB) ⇒ https://journals.aps.org/prab/ 一个业内高度认可、标准的加速器物理与工程期刊。
- 科研: 核仪器与方法 (Nuclear Instruments and Methods in Physics Research, NIM)
 ⇒ https://www.sciencedirect.com/journal/nuclear-instruments-and-methods-in-physics-research-section-a-accelerators-spectrometers-detec

³https://www.pqeconference.com/pqe-history

- tors-and-associated-equipment 也是一个业内标准的加速器期刊,包含探测器与核技术应用等。
- 科研:联合加速器会议网(Joint Accelerator Conferences Website, JACoW) ⇒ https: //www.jacow.org/ 收录许多过去举办的国际加速器会议与会议论文,也有即将举办的会议信息。
- 综述: 2008 年至 2019 年间,由 World Scientific 出版的年刊"加速器科学与技术回顾" (Reviews of Accelerator Science and Technology, RAST) https://www.worldscientific.com/worldscinet/rast 按十个主题收录了加速器各领域目前最新进展,具有借鉴意义。
 - 1. Alexander Wu Chao and Weiren Chou ed., Reviews of Accelerator Science and Technology Vol. 1: Overview, World Scientific (2008) 总览
 - 2. Alexander Wu Chao and Weiren Chou ed., Reviews of Accelerator Science and Technology Vol. 2: Medical Applications of Accelerators, World Scientific (2009) 医疗应用
 - 3. Alexander Wu Chao and Weiren Chou ed., Reviews of Accelerator Science and Technology Vol. 3: Accelerators as Photon Sources, World Scientific (2010) 先进 光源
 - 4. Alexander Wu Chao and Weiren Chou ed., Reviews of Accelerator Science and Technology Vol. 4: Accelerator Applications in Industry and the Environment, World Scientific (2011) 工业与环境应用
 - Alexander Wu Chao and Weiren Chou ed., Reviews of Accelerator Science and Technology – Vol. 5: Applications of Superconducting Technology to Accelerators, World Scientific (2012) 超导技术
 - 6. Alexander Wu Chao and Weiren Chou ed., Reviews of Accelerator Science and Technology Vol. 6: Accelerators for High Intensity Beams, World Scientific (2013) 强流加速器
 - 7. Alexander Wu Chao and Weiren Chou ed., Reviews of Accelerator Science and Technology Vol. 7: Colliders, World Scientific (2014) 对撞机
 - 8. Alexander Wu Chao and Weiren Chou ed., Reviews of Accelerator Science and Technology Vol. 8: Accelerator Applications in Energy and Security, World Scientific (2015) 能源与国家安全应用
 - 9. Alexander Wu Chao and Weiren Chou ed., Reviews of Accelerator Science and Technology Vol. 9: Technology and Applications of Advanced Accelerator Concepts, World Scientific (2016) 先进加速器技术与应用
 - 10. Alexander Wu Chao and Weiren Chou ed., Reviews of Accelerator Science and Technology Vol. 10: The Future of Accelerators, World Scientific (2019) 加速器的未来

限于作者知之甚少,这份讲义仅简单介绍了电磁辐射理论与加速器理论的基础内容,

讨论的对象也主要限于容易辐射电磁场的电子。虽然有些讨论同样适用于质子或重离子,但是质子不太容易辐射的这个特点导致的一些特殊的束流动力学现象将不在这份讲义目前包含的范围。

无论在科研或教学上,限于学识与经验,讲义里难免存在错误或不妥处,欢迎所有对此讲义任何带有建设性的意见通过我以下的电邮给我指正。最后,讲义基于ElegantLATEX的 ElegantBook 模板,经过部分修改后编辑而成。

蔡承颖 jcytsai@hust.edu.cn 2024 年 3 月于武汉

目录

0	几个	术语、惯例、基础知识与单位制转换	1
	0.1	几个术语	3
	0.2	惯例	8
		$0.2.1 j = -i \dots \dots \dots \dots \dots \dots \dots \dots \dots $	8
		$0.2.2 2\pi, \sqrt{2\pi} \dots \dots$	8
		0.2.3 $q, e, -e, e^{()}$	13
	0.3	基础知识	14
	0.4	单位、量纲、物理常数	17
	0.5	单位制转换	19
	0.6	基础高等数学练习题	26
	第零	[‡] 章 补充习题	27
绀	→ 空(7	分。时变电磁场、电磁辐射理论	30
Ŋν	HР,	万 时文·巴麻(初、尼麻(田))/主化	7 0
1	电磁	场基础: 复习	31
	1.1	基本方程	31
		1.1.1 静电场基本方程	36
		1.1.2 恒定电场基本方程	39
		1.1.3 静磁场或恒定磁场基本方程 4	40
		1.1.4 电磁场分界面边界条件	42
	1.2	无源电磁场方程 4	44
	1.3	趋肤效应 4	46
	1.4	位函数 :	50
	1.5	电磁场能量守恒定律	54
	1.6	求解电磁波方程: 思路 :	59
	1.7	求解电磁波方程:波动问题	60
	1.8	求解电磁波方程:波形问题	61
	1.9	电磁波定向传播的几个类型	65
	1.10	波速	68
	1.11	电磁波的偏振: 极化 (polarization)	69
		1.11.1 在 X 射线波段,物质折射率小于、但非常接近 1	73
	1.12	波导	74
		1.12.1 波导的激励	86
	1.13	谐振腔	87
		1.13.1 真实谐振腔形状	95

			目录
	1.14	金属加速结构的梯度极限: 击穿	96
	1.15	Slater 定理	98
	1.16	四向量的洛伦兹变换	101
	1.17	电、磁场的洛伦兹变换	103
	1.18	相对论多普勒效应	104
	1.19	康普頓散射	105
		1.19.1 逆康普頓散射	106
		1.19.2 激光与电子交互作用: 定性介绍	106
		1.19.3 激光波荡器	107
	1.20	镜像法求解电磁场问题	108
		1.20.1 镜像电荷法	109
		1.20.2 镜像电流法	112
	1.21	电磁超材料	114
		1.21.1 如何构造超材料?	116
	1.22	定向电磁波的高斯束模型	119
	1.23	浅谈: 为什么 Maxwell 电磁理论这么难?	125
	第一	- 章 补充习题	127
2	电磁	辐射的基础理论	133
	2.1	推迟条件	133
	2.2	Lienard-Wiechert 场	135
		2.2.1 粒子匀速运动产生的场 $\dot{\boldsymbol{\beta}} = 0$ 、 $\mathbf{E}(t) \parallel \mathbf{r}_b \ldots \ldots \ldots$	138
	2.3	Jefimenko 公式与 Heaviside-Feynman 公式	141
3	电磁	辐射的定量理论:功率、能量、谱	143
	3.1	Lienard-Wiechert 场的频域表示	143
		3.1.1 关于 Lienard-Wiechert 场的几点讨论	143
		3.1.2 相对论粒子加速运动产生的场的一般结果	144
	3.2	辐射功率、辐射能量、角分布	147
	3.3	横向、纵向加速	152
		3.3.1 横向加速	152
		3.3.2 偶极辐射	154
		3.3.3 纵向加速	156
	3.4	电子加速器的几种电磁辐射机制: 定性介绍	158
		3.4.1 契伦科夫辐射 (Cherenkov radiation)	159
		3.4.2 渡越辐射 (transition radiation)	160
		3.4.3 Smith-Purcell 辐射	161
	第三	E 章 补充习题	164

4	同步	辐射		165
4.1 同步辐射的定性讨论		166		
		4.1.1	同步辐射张角 $ heta pprox rac{1}{\gamma}$	166
		4.1.2	同步辐射特征频率 $\omega_c \approx \frac{3c\gamma^3}{2a}$	167
		4.1.3	同步辐射由横向水平极化主导 $P_{\sigma}: P_{\pi} \approx 7:1$	169
		4.1.4	同步辐射是量子力学效应,不是经典力学效应	169
	4.2	同步辐	a射的定量讨论	171
	4.3	一些计	十算细节	172
	4.4	一些辐	and and a state of the state o	178
		4.4.1	同步辐射功率 <u>频谱 角</u> 分布	178
		4.4.2	同步辐射功率 频谱 分布	180
		4.4.3	同步辐射功率 <u>角</u> 分布	181
		4.4.4	同步辐射 <u>偏振</u> 或 <u>极化</u> 分布	181
		4.4.5	同步辐射 <u>光量子</u> 分布	183
		4.4.6	讨论:中心极限定理	184
	4.5	辐射形	》成长度 (formation length)	186
	4.6	整理:	同步辐射实用公式	189
	第四	宣章 补	充习题	191
5	波荡	器辐射		193
	5.1	四代光	台源大致进展	194
	5.2	波荡器	B辐射的定性讨论	194
		5.2.1	共振条件 $\lambda_1 = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K_u^2}{2} + \gamma^2 \theta^2 \right) \dots \dots \dots \dots$	195
		5.2.2	波荡器辐射像甩动的探照灯,谱宽 $\frac{\Delta\omega}{\omega_1} \approx \frac{1}{N_u}$	199
		5.2.3	平面型波荡器是线偏振主导	200
	5.3	波荡器	緊辐射的定量讨论	201
	5.4	一些辐	a射物理量的分布函数	203
		5.4.1	$K_u \leq 1$ 波荡器辐射功率 <u>频谱</u> 角 分布	204
		5.4.2	$K_u \leq 1$ 波荡器辐射功率 <u>角</u> 分布	205
		5.4.3	$K_u \le 1$ 波荡器辐射功率 <u>频谱</u> 分布	207
		5.4.4	$K_u \le 1$ 波荡器辐射功率 <u>光量子</u> 分布	207
		5.4.5	$K_u \geq 1$ 波荡器辐射分析的两个区别	210
		5.4.6	$K_u \ge 1$ 波荡器辐射功率 <u>频谱</u> 角 分布、 <u>频谱</u> 分布、 <u>光量子</u> 分布 .	210
	5.5	整理:	波荡器辐射实用公式	215
	第王	1章补	充习题	218

第二部分 束流动力学、集体效应 220				
6	6 粒子加速器基础: 综述与哈密顿力学基础 221			
	6.1	经典力学理论: 拉格朗日量、哈密顿量	221	
	6.2	相空间与 Liouville 定理	225	
	6.3	正则变换	229	
		6.3.1 作用量-角度变换	235	
	6.4	磁刚度 $B ho$ 与 Frenet-Serret 坐标系 \dots	238	
		6.4.1 Frenet-Serret 坐标系向量运算	241	
	6.5	加速器哈密顿量	242	
	第六	て章 补充习题	245	
7	粒子	加速器基础: 東流光学 — 横向	247	
	7.1	几种常见的磁铁部件	248	
		7.1.1 真空漂移段	249	
		7.1.2 二极铁	249	
		7.1.3 四极铁	250	
		7.1.4 六极铁	253	
		7.1.5 螺线管	258	
		7.1.6 磁铁的磁场强度极限:饱和、磁滞	262	
	7.2	Hill 方程	264	
	7.3	Courant-Snyder 参量、Twiss 参量	271	
	7.4	传输矩阵概念初探	279	
		7.4.1 浅谈: 光学的 ABCD 传输矩阵	284	
	7.5	发射度: 一个加速器中重要的物理量	287	
	7.6	几种常见的磁聚焦结构单元	295	
	7.7	非参考粒子的几种效应的分类	298	
	7.8	传输矩阵 — Case 1	301	
	7.9	闭轨畸变、共振 — Case 2	311	
	7.10	色散、色品 — Case 3	323	
	7.11	一个用来衡量储存环横向磁聚焦结构设计的物理量:动力学孔径	337	
	第七	T 章 补充习题	342	
8	电子	纵向动力学与同步辐射效应	347	
	8.1	几个描述粒子纵向运动的物理量	348	
		8.1.1 讨论: z, s, ct 与東团头部尾部粒子符号惯例	359	
	8.2	同步加速器稳相原理与纵向动力学	359	
		8.2.1 高次谐波腔、双 RF 系统	378	
	8.3	同步辐射经典效应:辐射阻尼	382	

		The state of the s	目录
	10.5	高增益 FEL: 一维	488
	10.6	回顾: 三种工作模式	493
			493
			496
			496
	10.7	高增益 FEL: 三维	499
	10.8	高增益 FEL 谐波产生与全相干方案	506
			522
11	集体	效应的场动力学: 尾场与阻抗	524
			525
		, = , , , ,	525
		1 4 30.012	526
			529
			531
	11.2		532
			539
	11.3		545
			551
			552
			560
	11.4	圆柱谐振腔的电磁场计算	560
	11.5	尾场	567
		11.5.1 基本定义	567
		11.5.2 特性	572
	11.6	阻抗	573
			573
		11.6.2 同步条件	575
		11.6.3 Panofsky-Wenzel 定理	576
		11.6.4 特性	580
	11.7	尾场与阻抗公式	584
		11.7.1 一个近似、有用的集总化模型 — 等效 RLC 模型	584
		11.7.2 类腔结构的阻抗估算	589
		11.7.3 几何光学近似分析	600
		11.7.4 尾场与阻抗模型公式	600
		11.7.5 能量损耗因子	621
		11.7.6 有效阻抗	625
	11.8	关于宽带阻抗模型的更多讨论	627

			目录
	11.9	关于尾场定义的更多讨论	630
	第十	一 章 补充习题	632
12	集体	效应的粒子动力学: 宏粒子模型	636
	12.1	粒子加速器集体不稳定性年代表	636
	12.2	束流负载基本定理	637
	12.3	几种常见的束团不稳定性	639
		12.3.1 東团崩溃不稳定性	639
		12.3.2 罗宾逊不稳定性	642
		12.3.3 强头尾不稳定性	653
		12.3.4 头尾不稳定性	657
		12.3.5 讨论	662
	第十	一二章 补充习题	663
13	集体	效应的粒子动力学: Vlasov 方程	664
	13.1	无碰撞动理学方程	664
	13.2	线性化 Vlasov 方程: 零阶分析	671
	13.3	线性化 Vlasov 方程: 一阶分析	678
	13.4	积分方程: 思路一	678
		13.4.1 单次经过加速器微束团不稳定性	681
	13.5	色散方程: 思路二	684
		13.5.1 储存环微束团不稳定性	687
	13.6	模式分解: 思路三	688
		13.6.1 微波不稳定性	691
	13.7	三种思路的比较	694
	13.8	几种常见的束团不稳定性:分类与半定量讨论	695
		13.8.1 势阱畸变效应	697
		13.8.2 微波不稳定性	697
		13.8.3 基于相空间模式分解的讨论	699
		13.8.4 头尾不稳定性	701
		13.8.5 耦合東团不稳定性	703
		13.8.6 电阻壁不稳定性	706
		13.8.7 离子导致的集体不稳定性	708
	第十	-三章 补充习题	709
<i>b</i> :/~	— ∻म	ハームを販売	710
邪	二部	分 三个专题	712
14	专题	讨论: 兆伏、超快电子束动力学	713
	14.1	泵浦-探测:一种研究物质结构的技巧	713

方真结果
会因素与估算
- - - - - - - - - - - - - - - - - - -
E律
7
去

		目录
C	目前正在设计、建设或运行的电子加速器参数	909
	C.1 直线加速器	. 909
	C.2 常温、光阴极、射频电子枪的典型参数	. 910
	C.3 自由电子激光	. 911
	C.4 同步辐射储存环	. 912
	C.5 能量循环/回收直线加速器	. 915
	C.6 对撞机	. 916
D	电磁频谱	918
E	Livingston 图	919
F	粒子加速器对人类社会在方方面面的应用	920
G	A-Z、希腊符号用多少?	924
Н	部分教科书使用惯例比较	926
I	CERN 加速器学校课程大纲	928
J	加速器学家小传	944
	J.1 Helmut Wiedemann — 温文儒雅、受崇敬的加速器专家	. 944
	J.2 Shyh-Yuan Lee — 加速器人才树木园	. 946
	J.3 Klaus Halbach — 世界级加速器磁铁专家	. 947
	J.4 Rodolfo Bonifacio — 经典与量子自由电子激光先驱	. 948
	J.5 Kaoru Yokoya — 直线加速的成功道路	. 950
	J.6 Kwang-Je Kim — 细推物理须行乐,何用浮名绊此生	. 951
	J.7 John Madey — 第一位实现自由电子激光器的科学家	. 952
	J.8 Claudio Pellegrini — 高增益自由电子激光不稳定性	. 953
	J.9 Albert Josef Hofmann — 同步辐射理论大师	. 954
	J.10 John Paul Blewett — 几乎为首位见证同步辐射的人之一	. 955
	J.11 Alexander Wu Chao — 加速器百科全书	. 957
	J.12 Kenneth Robinson — 谦逊孤独,卓越天才	. 958
	J.13 Yaroslav Derbenev — 西伯利亚蛇	. 959
	J.14 Ernest Orlando Lawrence — 回旋加速器的发明者	. 960
	J.15 Ernest David Courant — 虎父无犬子、横向强聚焦发明者	. 961
	J.16 Hartland Sweet Snyder — 横向强聚焦发明者、黑洞共同发现者	. 962
	J.17 Milton Stanley Livingston — 横向强聚焦发明者、Livingston 图	. 963
	J.18 Edwin McMillan — 纵向稳相原理提出者	. 964
	J.19 Wolfgang Panofsky — SLAC 首任主任	. 965
	J.20 Robert Wilson — 费米实验室首任主任	. 966

		目录
J.21	Gersh Budker — "相对论"的工程师	967
J.22	Bruno Touschek — 世界上第一台对撞机 AdA 建造者	968
J.23	Matthew Sands — 费曼物理学讲义、SLAC-121	970
J.24	Simon van der Meer — 随机冷却机制的发明者	971
J.25	Nikolay Vinokurov — "OK"	972
J.26	方守贤 — 中国高能加速器事业的开拓者和奠基人	973
J.27	谢明 — 深刻的学识与 19 个拟合系数造就经典公式	974

索引

2×2 transfer matrix	collider, 524		
elements, 302	electron beam, 4D, 719		
elements, cavity, 423	electron beam, 5D, 717		
stability, 306	radiation, 459		
$2\pi, \sqrt{2\pi}$ convention, 9	broadband-narrowband substitution, 677		
6×6 transfer matrix	bunch compression factor, 357		
elements, 425	bunching factor		
δ function, 867	complete random phase, 496		
\mathcal{H} function, 333	definition, 1-D, 445		
i, j convention, 8	definition, 1-D continuum, 680, 814		
$[JJ]_h$ factor, 217	definition, 1-D, ensemble average, 488		
ABCD matrix, 284	definition, 3-D, 446		
accelerator Hamiltonian $\mathcal{H}, 243$	Campbell theorem, 401		
action-angle transform, 235, 322	canonical transformation		
adiabatic damping, 290	generating functions, 230		
Airy function, 879, 884	Cardano formula, 905		
Alfven current, 679	Carlson's elliptic integral, 753		
alternating-gradient focusing, 266	catch-up distance, 530, 630		
anomalous dispersion, 68	Cauchy principal value, 871		
anomalous skin effect, 48, 550, 557	Cauchy's integral formula, 870		
DDCWV1'	Cauchy-Riemann condition, 257		
BBGKY hierarchy, 228	cavity		
beam breakup instability, 695	circular cylindrical modes, 90		
beam breakup, BBU, 640	Landau cavity, 378, 543, 544		
beam matrix Σ , 290	pillbox cavity TM_{010} , 93		
beam rigidity $B\rho$, 238 beam rigidity $E^a\rho$, 239	quality factor Q , 91		
Beer-Lambert law, 556	rectangular modes, 88		
Bessel function, 868, 879, 880, 903	RF breakdown, 96		
betatron resonance, 320	shunt impedance R_S , 92		
Beth representation, 256	Slater theorem, 98		
BNS damping, 641	TE,TM,E,H mode definition, 65		
booster synchrotron, 418	Cayley-Hamilton theorem, 901		
Boussard criterion, 686	central limit theorem, CLT, 185, 215		
breakdown rate (BDR), RF, 97	Chao-Gareyte scaling law, 698		
brightness, 433	Cherenkov radiation, 159		
originacss, 455	chicane, 359		

CSR-induced microbunching gain formula,	fundamental theorem of beam loading, 638
822	Haissinski equation, 674
optics, 819	head-tail instability, 661
Cholesky decomposition, 756	ion trapping instability, 708
chromatic frequency ω_{ξ} , 627	kick factor κ_{\perp} , 623
chromatic frequency ω_{ξ} , 333, 658	Landau damping, 818
chromaticity ξ , 328	longitudinal mode coupling instability, 691
different conventions, 328	loss factor κ_{\parallel} , 623
classical radius of electron, 154	microbunching instability, 817
closed orbit distortion, COD, 311	microwave instability, 691
coasting beam, 336, 679, 697, 813	negative mass instability, 697
unbunched beam, 372	potential well distortion, PWD, 673
coherence	resistive wall instability, 706
longitudinal, 462	Robinson instability, 646
transverse, 463	Sacherer integral equation, 690
coherent synchrotron radiation (CSR)	space charge
Case A, 778	beam dynamics, 748
Case B, 780	field dynamics, 532
Case C, 784	strong head-tail instability, 655
Case D, 786	transverse microwave instability, 655
CSR-induced microbunching gain formula,	transverse mode coupling instability, TMCI,
chicane, 822	655
CSR-induced microbunching gain formula,	turbulent instability, 690
general, 824	Volterra integral equation, 680
definition, wake function, 777	compression factor, 357
overtaking distance, 790	Compton scattering effect, 105
parallel-plate impedance, 795	inverse, 106
point-kick model, 800	conductivity, AC, 47, 552
slippage distance, 790	conductivity, DC, 47, 552
steady-state impedance, 791	configuration space (x, y) , 243
steady-state wakefield, 788	confluent hypergeometric function, 887
collective effects	Constants, 19
beam breakup, BBU, 640	constitutive relation $\mathbf{D}(\mathbf{E}), \mathbf{H}(\mathbf{B}), 33$
CSR, 796	CGS units, 127
definition, 527	convention
dispersion equation, coasting beam, 684,	$2\pi, \sqrt{2\pi}, 9$
833	i, j, 8
fast beam-ion instability, 708	k,Γ , 8

z, s, ct and bunch head vs. tail, 359	bi-Lorentz, 899
capacitive, inductive, 574	elliptical, 899
convolution theorem (faltung theorem), 11	Gaussian, 899
Z-transform, 651	Lorentz, 899
Cornu spiral, 596, 872	normal, 899
correlation function	parabolic, 899
auto-correlation, 462	rectangular, 899
convolution, 464	tri-elliptical, 899
cross-correlation, 464	triangular, 899
cosine integral, 872	water-bag, 899
Coulomb field, 533	distribution width $\Delta\omega$, 900
Coulomb gauge, 52	Doppler effect, 104, 166
coupled bunch instability, 591, 627, 662, 695	Drude model, 47, 552
Courant-Snyder parameters, 272	Drude-Lorentz model, 552
critical angle, 72	dynamic aperture, 337, 705
cyclotron frequency ω_c , 261	Earnshaw's theorem, 348, 371
Darwin width, 508	effective impedance, 625
Dawson function, 874	elliptic functions, 891
de Moivre theorem, 282	elliptic integrals, 887
Debye length	elliptic theta function $\vartheta_3(u,q)$, 706
longitudinal, 533	emittance
transverse, 533	beam, 288
delta function, 867	coupling κ , 407
Derbenev criterion, 790	geometric ϵ , 289
diamagnetic $\mu_r < 1,33$	longitudinal, 376
diffusion, 186	natural ϵ , 289
anomalous diffusion, 186	normalized ϵ_N , 289
sub-diffusion, 186	photon, 450
super-diffusion, 186	single-particle, 279
dipole radiation, 154	statistical definition, continuous distribu-
dispersion equation	tion, 291
1-D high-gain FEL, 489	statistical definition, discrete distribution,
microbunching instability, 684	292
Robinson instability, 652	emittance compensation, 748
dispersion function $D, \eta, R_{16}, 323$	energy acceptance, 339, 372, 543, 544
comparison, 334	energy recovery linac, ERL, 420
distribution	energy spread
δ -function, 899	correlated, bulk, 355

索

incoherent, uncorrelated, slice, 355	amplifier, 496
ensemble, 225	DEHG, 519
ergodic hypothesis, 288	EEHG, 512
error function, 874	HGHG, 511
complementary, 874	inverse FEL, 467
complex, 874	low-gain pendulum equation, 480
imaginary, 874	Madey theorem, 485
Euler-Lagrange equation, 224	Ming Xie fitting formula, 505
exponential integral, 872	oscillator, FELO, 496
extraction, 423	PEHG, 515
for a topical formation, 2006	Pierce parameter, 478
factorial function, 896	SASE, 493
double, 896	self-seeding, 507
Faddeeva function, 874	sideband instability, 495
faltung theorem, 11	Frenet-Serret coordinate
fast beam-ion instability, 708	calculus, 241
fast head-tail instability, 695	definition, 240
FEL parameter, 478	left-hand vs. right-hand, 244
Fermi velocity, 556	frequency map analysis, 339
ferromagnetic $\mu_r \gg 1,33$	Fresnel diffraction, 595
Feynman diagram, synchrotron radiation, 170	Fresnel integrals, 596, 872
Feynman's integration trick, 866	fundamental theorem of beam loading, 638
Feynman-Heaviside formula, 142	gain aviding 500
first recurrence map, 279	gain guiding, 500
fixed point, 367	Gamma function, 884
attractor, repellor, 367	Gauss divergence theorem, 861
SFP, UFP, 367	ghost imaging, 464
Floquet transformation, 267	globatron, 239
Fourier transform	Goos-Hanchen effect, 72
convolution theorem, 11	Gouy phase, 124, 188, 273
definition, 9	Gram-Schmidt process, 67
Parseval theorem, 10, 148	Green's theorem, 862
sine transform, cosine transform, 10	H function, 333
Fraunhoffer diffraction, 595	Haissinski integral equation, 674
free-electron laser (FEL)	Halback formula, 197
1-D $(2N + 1)$ equations, 477	Hamilton's equations of motion, 224
1-D high-gain, 489	Hamiltonian ${\cal H}$
3-D high-gain, guiding effect, 500	definition, 224
ADM, 518	

integrable, 322, 366	metamaterial, 115
KAM theorem, 322	x-ray, 73
quasi-integrable, 322	injection, 423
torus, tori, 237, 366	emittance convention, 289
harmonic cavity, 378, 543, 544	off-axis vs. on-axis, 423
harmonic number h, 368	single-turn vs. multi-turn, 423
head-tail instability, 661, 695	swap-out injection, 423
Heaviside step function, 884	top-up injection, 423
Heaviside-Feynman formula, 142	intrabeam scattering, IBS, 540
Helmholtz equation	inverse Compton scattering, 106
frequency domain, 46	ion trapping instability, 708
time domain, 50	IOTA, Integrable Optics Test Accelerator, 337
Helmholtz theorem, 862	isochronous, 358
Hermite polynomial, 904	L 1. A
higher harmonic cavity, HHC, 378, 543, 544	Jacobi-Anger identity, 510, 879
Hill equation, 267	Jacobian matrix, 235
Huygens principle, 50	Jefimenko formula, 141
hypergeometric function, 886	JJ_h factor, 217
confluent, 887	Jordan's lemma, 13 Joule's law of heating, 39
image charge method, 109	·
image current method, 112	Keil-Schneil criterion, 685
Imbert-Fedorov effect, 72	Keil-Schneil-Boussard criterion, 686
impedance	kick factor κ_{\perp} , 623
broadband, 591	Kilpatrick limit, 97
cavity resonator, 573	Kolmogorov–Arnold–Moser (KAM) theorem,
CSR, 606, 791, 795	322 Vooteenhooden metuiv 284 420
dimensionality, 575	Kostenbauder matrix, 284, 430 Kramers-Kronig relation, 466, 581
impedance function $Z_\parallel, Z_\perp,$ 573	Kramers-Kronig relation, 400, 381 Kummer function, 887
LSC, 603	Runnier function, 667
LSC, low frequency, 573	Lagrangian L
order of magnitude estimate, 590	definition, 223
periodic structure, 607	Landau cavity, 378, 543, 544
resistive wall, ASE, 559	Landau damping, 549, 818
resistive wall, NSE, 573	Langevin equation, 411
RLC, 584	Laplace transform
tables, 608	definition, 12
index of refraction, 70	Larmor frequency ω_L , 261
critical angle, 72	laser heater, 826

laser undulator, 107, 198, 470	Madey theorem, 485
laser-electron modulation, 508	magnet
lattice	dipole, 249
DBA, TBA, MBA, 297	quadrupole, 250
FODO, 296	sextupole, 253
FODO, properties, 308, 332	solenoid, 260
Legendre polynomial, 903	strength, 254
Leibniz Rule, 865	magnetic hysteresis, 262
length contraction, 6	magnetization currents, 41
Leontovich boundary condition, 49, 545, 557	matrix exponential, 906
Lie operator, 233	matrix properties, 900
Lienard-Wiechert formula	Maxwell equations
frequency-domain, 146	boundary conditions, 42, 51
time-domain, 135, 145	CGS units, 127
linear acceleration, 413	covariant form, 103
standing-wave structure, 415	electrostatics, 36
traveling-wave structure, 413	free space, 32
Liouville theorem, 228, 665	magnetostatics, 40
ensemble, 225	material, 33
Livingston plot, 919	mean free path, 555
longitudinal coupled bunch instability, 695	mean transverse kinetic energy, MTE, 719
longitudinal mode coupling instability, 691, 695	metamaterial, 114
rengreeen me de temping me de my, est, est	,
Lorentz force equation, 32	metamaterial $\mu_r < 0,33$
Lorentz force equation, 32	metamaterial $\mu_r < 0,33$
Lorentz force equation, 32 CGS units, 127	metamaterial $\mu_r < 0, 33$ method of steepest descent, 895
Lorentz force equation, 32 CGS units, 127 Lorentz relativistic factor	metamaterial $\mu_r < 0, 33$ method of steepest descent, 895 microbunching instability, 695
Lorentz force equation, 32 CGS units, 127 Lorentz relativistic factor conversion, 17	metamaterial $\mu_r < 0,33$ method of steepest descent, 895 microbunching instability, 695 Microbunching instability (MBI)
Lorentz force equation, 32 CGS units, 127 Lorentz relativistic factor conversion, 17 definition, 4	metamaterial $\mu_r < 0,33$ method of steepest descent, 895 microbunching instability, 695 Microbunching instability (MBI) bunched beam, storage ring, 691
Lorentz force equation, 32 CGS units, 127 Lorentz relativistic factor conversion, 17 definition, 4 Lorentz transformation	metamaterial $\mu_r < 0, 33$ method of steepest descent, 895 microbunching instability, 695 Microbunching instability (MBI) bunched beam, storage ring, 691 coasting beam, single-pass, 680
Lorentz force equation, 32 CGS units, 127 Lorentz relativistic factor conversion, 17 definition, 4 Lorentz transformation E, B, 103	metamaterial $\mu_r < 0,33$ method of steepest descent, 895 microbunching instability, 695 Microbunching instability (MBI) bunched beam, storage ring, 691 coasting beam, single-pass, 680 coasting beam, storage ring, 684
Lorentz force equation, 32 CGS units, 127 Lorentz relativistic factor conversion, 17 definition, 4 Lorentz transformation E, B, 103 Doppler effect, 104	metamaterial $\mu_r < 0,33$ method of steepest descent, 895 microbunching instability, 695 Microbunching instability (MBI) bunched beam, storage ring, 691 coasting beam, single-pass, 680 coasting beam, storage ring, 684 formula, chicane, 822
Lorentz force equation, 32 CGS units, 127 Lorentz relativistic factor conversion, 17 definition, 4 Lorentz transformation E, B, 103 Doppler effect, 104 four-vector, 102	metamaterial $\mu_r < 0,33$ method of steepest descent, 895 microbunching instability, 695 Microbunching instability (MBI) bunched beam, storage ring, 691 coasting beam, single-pass, 680 coasting beam, storage ring, 684 formula, chicane, 822 formula, general, 824
CGS units, 127 Lorentz relativistic factor conversion, 17 definition, 4 Lorentz transformation E, B, 103 Doppler effect, 104 four-vector, 102 length contraction, 6	metamaterial $\mu_r < 0$, 33 method of steepest descent, 895 microbunching instability, 695 Microbunching instability (MBI) bunched beam, storage ring, 691 coasting beam, single-pass, 680 coasting beam, storage ring, 684 formula, chicane, 822 formula, general, 824 klystron analogy, 811
Lorentz force equation, 32 CGS units, 127 Lorentz relativistic factor conversion, 17 definition, 4 Lorentz transformation E, B, 103 Doppler effect, 104 four-vector, 102 length contraction, 6 space-time, 101	metamaterial $\mu_r < 0,33$ method of steepest descent, 895 microbunching instability, 695 Microbunching instability (MBI) bunched beam, storage ring, 691 coasting beam, single-pass, 680 coasting beam, storage ring, 684 formula, chicane, 822 formula, general, 824 klystron analogy, 811 laser heating, 826
Lorentz force equation, 32 CGS units, 127 Lorentz relativistic factor conversion, 17 definition, 4 Lorentz transformation E, B, 103 Doppler effect, 104 four-vector, 102 length contraction, 6 space-time, 101 time dilation, 6	metamaterial $\mu_r < 0,33$ method of steepest descent, 895 microbunching instability, 695 Microbunching instability (MBI) bunched beam, storage ring, 691 coasting beam, single-pass, 680 coasting beam, storage ring, 684 formula, chicane, 822 formula, general, 824 klystron analogy, 811 laser heating, 826 model comparison, 694
Lorentz force equation, 32 CGS units, 127 Lorentz relativistic factor conversion, 17 definition, 4 Lorentz transformation E, B, 103 Doppler effect, 104 four-vector, 102 length contraction, 6 space-time, 101 time dilation, 6 Lorenz gauge, 52	metamaterial $\mu_r < 0,33$ method of steepest descent, 895 microbunching instability, 695 Microbunching instability (MBI) bunched beam, storage ring, 691 coasting beam, single-pass, 680 coasting beam, storage ring, 684 formula, chicane, 822 formula, general, 824 klystron analogy, 811 laser heating, 826 model comparison, 694 microwave instability, 691, 695

Moore's law, 849	population inversion, 454
NACE 220	potential well distortion, PWD, 644, 671, 673,
NAFF, 339	695
narrowband-broadband substitution, 677	Poynting theorem, 57
NEG, non-evaporable getter, 437	Poynting vector, 54
negative mass effect, 354	principle of longitudinal phase stability, 360
negative mass instability, 697	10.6
Newton's law vs. radiation reaction, 528, 642	quality factor Q , 91
nonlinear resonance, 320, 368	radiation reaction vs. Newton's law, 528, 642
normal dispersion, 68	ramp function, 884
numerical aperture, 740, 850	ramping, booster, 418
optical guiding, 500	ramping, linac, 413
orthogonal expansion, 902	Rayleigh length, Rayleigh range, 122, 187, 499
	rectangular function, 869
P.V., definition, 871	Residual Resistance Ratio (RRR), 558
Pade approximant, 894	residue theorem, 870
Panofsky-Wenzel theorem, 577	resistive wall instability, 591, 662, 706
paramagnetic $\mu_r > 1$, 33	resonance, 315
parametric resonance, 320, 368	difference resonance, 320
parasitic energy loss, 644	nonlinear, 320
paraxial approximation, 243	order, 320
paraxial wave equation, 121, 177, 599	parametric, 320
Parseval theorem, 10, 148	sum resonance, 320
phase advance ψ , 278	resonator
phase space (x, p_x) , 226, 243	circular cylindrical modes, 90
photon emittance, 450	pillbox cavity TM ₀₁₀ , 93
Pierce parameter, 478	quality factor Q , 91
plasma frequency, 48, 555	rectangular modes, 88
index of refraction, 70	RF breakdown, 96
plasma oscillation, 605	shunt impedance R_S , 92
Poincare map, 279	Slater theorem, 98
Poincare section, 279	TE,TM,E,H mode definition, 65
point-kick model, see CSR, 800	retardation condition, 52, 134
Poisson bracket, 231	RF breakdown, 97
Poisson noise, 495	figure of merit, 97
Poisson sum formula, 642	Kilpatrick limit, 97
polarization, 69	RF breakdown rate (BDR), 97
polarization charges, 38	RFQ, radio-frequency quadrupole, 347, 760
ponderomotive motion, 107, 468	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7

RFQM, radio-frequency quadrupole magnet,	Airy function, 879
347, 641, 760	Bessel function, 868, 880, 903
Riemann-Lebesgue lemma, 13	Dirac delta function, 867
RLC circuit model, 584	Gamma function, 884
Robinson instability, 646, 695	Hermite polynomial, 904
dispersion equation, 644, 652	Legendre polynomial, 903
secular equation, 644, 652	modified Bessel function, 879
Robinson sum rule $\sum_{i=x,y,z} \mathcal{J}_i = 4$, 395	spectral fluence, 151
rocking curve, 508	split-ring resonator (SRR), 118, 734
	stability condition
Sacherer integral equation, 690	1-D, 2×2 , 306
Sacherer mode coupling theory, 650, 690	n-D, $2n \times 2n$, 308
saddle-point method, 895	stable fixed point, SFP, 367
Schottky effect, 719, 746	steady-state microbunching, SSMB, 840
secular equation, 644, 901	Stirling's formula, 896
shot noise, 495	Stokes curl theorem, 862
shunt impedance R_S , 92, 571, 584	strong focusing, 266
simple harmonic oscillator, SHO, 222	strong head-tail instability, 655, 695
sinc function, 869	surface impedance, 49, 546, 552, 557, 558
sine integral, 872	surface resistivity, 49
single-particle emittance, 279, 388	symplectic condition, 235, 307
single-particle equations	synchrotron
single-pass accelerator, 335	energy ramping, 418
storage ring, 336	synchrotron oscillation
skin effect, skin depth, 48, 550	low-gain FEL, 481
Slater theorem, 98	storage ring, 371
slippage factor $\eta = \alpha_c - \frac{1}{\gamma^2}$, 352	synchrotron radiation
Smith-Purcell radiation, 161	bunch form factor, 445
Snell's law, 70	damping, 383
solid angle, 55, 148	damping partition number $\mathcal{J}_{x,y,z}$, 395
space charge	energy-momentum conservation, 471
beam dynamics, 748	Feynman diagram, 170
definition, 532	formation length — longitudinal, 186, 449
direct space charge field, 534	formation length — transverse, 187, 449
envelope equation, 758	opening angle, 166
field dynamics, 532	practical formula, 189
indirect space charge field, 109, 534	properties, 177
perveance, 753, 763	quantum excitation, 400
special functions	1

quantum lifetime, 410	unit impulse function, 867		
radiation integrals $\mathcal{I}_{1,2,3,4,5,6}$, 385	unstable fixed point, UFP, 367		
shielding, 189, 448, 790	variation of constants, 325		
theta function $\vartheta_3(u,q)$, 706	Vlasov equation, 227, 667		
Thomson scattering, 107	stationary solution, 667		
time dilation, 6	transient solution, 669		
TMCI (transverse mode coupling instability),	Vlasov-Fokker-Planck equation, 666		
655	Volterra integral equation, 680, 817		
total internal reflection, 72	5 1		
Touchard polynomial, 898	wakefield		
Touschek effect, 533, 543	broadband, 591		
trace space (x, x') , 243	catch-up distance, 530, 630		
transit time factor, 416	CSR, 606, 777, 788, 791		
transition γ_t , 352	Derbenev criterion, 790		
transition crossing, 352, 374	cylindrical cavity, 560		
transition radiation, 160	dimensionality, 571		
transparent, 283	No-wake theorem, 531		
transverse deflecting cavity, TDC, 734	order of magnitude estimate, 590		
transverse gradient undulator, TGU, 515	resistive wall, 545		
transverse microwave instability, 655, 695	RLC, 585		
transverse mode coupling instability, 695	space charge, 532		
transverse mode coupling instability, TMCI,	vs. electric field, 571		
655	wake function $W_{\parallel}, W_{\perp}, 567$		
tune ν , 278	wake potential $V_{\parallel}, V_{\perp}, 569$		
tune diagram, 320	wakefield $\mathcal{W}_\parallel, \mathcal{W}_\perp,$ 569		
turbulent instability, 690, 695	water-bag distribution, 764		
Twiss parameters, 272	waveguide		
•	band, 74		
unbunched beam, 697	circular cylindrical mode plots, 83		
undulator radiation	circular cylindrical modes, 82		
formation length — longitudinal, 214	rectangular mode plots, 78		
formation length — transverse, 214	rectangular modes, 77		
practical formula, 215	TE,TM,E,H mode definition, 65		
properties, 202	weak focusing, 266		
Unit & Dimensionality, 19	Weizsacker-Williams approximation, 539		
Unit conversion table	Wiener-Khinchin theorem, 465		
numeric, 24	Wigner distribution, 295		
symbolic, 20, 22	Wronskian, 325		

Z-transform, 651

加速器物理学家

Blewett, John Paul (1910-2000), 加拿大, 165, 855, 955

Bonifacio, Rodolfo (1940-2016), 意大利, 489, 948

Budker, Gersh Itskovich (1918-1977), 俄 国, 398, 967

Chao, Alexander Wu (1949-), 美国, 567, 840, 957

Christofilos, Nicholas Constantine (1916-1972), 希腊, 267, 855

Courant, Ernest David (1920-2020), 美国, 267, 272, 961

Davidson, Ronald Crosby (1941-2016), 加拿大, 749

Derbenev, Yaroslav (1940-), 俄国/美国, 790, 959

Fang, Shouxian (1932-2020), 中国, 973

Gluckstern, Robert L. (1924-2008), 美国, 599

Haissinski, Jacques (1935-), 法国, 674

Halbach, Klaus (1924-2000), 美国/德国, 947

Hofmann, Albert Josef (1933-2018), 瑞士, viii, 954

Kim, Kwang-Je (1944-), 美国, 951

Lawrence, Ernest Orlando (1901-1958), 美国, 855, 960

Lawson, John David (1923-2008), 英国, 596, 749

Livingston, Milton Stanley (1905-1986), 美国, 267, 855, 963

Madey, John M.J. (1943-2016), 美国, 458, 952

McMillan, Edwin Mattison (1907-1991), 美国, 964

Ng, King-Yuen (1949-), 美国, 567

Orlov, Yuri Fyodorovich (1924-2020), 俄国, 396

Panofsky, Wolfgang Kurt Hermann (1919-2007), 德国/美国, 965

Pellegrini, Claudio (1935-), 意大利/美国, 953

Piwinski, Anton (1934-), 德国, 540

Reiser, Martin (1931-2011), 美国, viii

Robinson, Kenneth (1925-1979), 美国, 396, 958

Sacherer, Frank (1940-1978), 美国, 690

Saldin, Evgeny L. (1951-), 俄国, 811

Sands, Matthew Linzee (1919-2014), 美国, viii, 970

Sessler, Andrew Marienhoff (1928-2014), 美国, 818

Snyder, Hartland Sweet (1913-1962), 美国, 267, 272, 962

Touschek, Bruno (1921-1978), 奥地利, 543, 968

Twiss, Richard Quintin (1920-2005), 英国, 272

Vaccaro, Vittorio Giorgio (1941-2023), 意 大利, 575

van der Meer, Simon (1925-2011), 荷兰, 399, 971

Vinokurov, Nikolay Aleksandrovich (1952-), 俄国, 972

Wiedemann, Helmut (1938-2020), 美国, viii, 944

Wilson, Robert Rathbun (1914-2000), 美国, 966

Xie, Ming (1959-2004), 中国, 505, 974 Yokoya, Kaoru (1947-), 日本, 950

数学家

Arnold, Vladimir Igorevich (1937-2010), 俄国, 322

Bessel, Friedrich Wilhelm (1784-1846),

索

1.1		\sim	_	. ~
德	H	9	П	14

Cardano, Gerolamo (1501-1576), 意大利, 905

Cauchy, Baron Augustin-Louis (1789-1857), 法国,870

Cayley, Arthur (1821-1895), 英国, 901 de Moivre, Abraham (1667-1754), 法国, 282

Euler, Leonhard (1707-1783), 瑞士, 224

Floquet, Achille Marie Gaston (1847-1920), 法国,267

Fourier, Jean-Baptiste Joseph (1768-1830), 法国,9

Gauss, Carl Friedrich (1777-1855), 德国, 31,861

Green, George (1793-1841), 英国, 50, 570, 754, 862

Hamilton, William Rowan (1805-1865), 爱尔兰, 224, 901

Heaviside, Oliver (1850-1925), 英国, 142

Helmholtz, Hermann Ludwig Ferdinand (1821-1894), 德国, 46

Hermite, Charles (1822-1901), 法国, 904

Hoene-Wronski, Jozef Maria (1776-1853), 波兰,325

Jacobi, Carl Gustav Jacob (1804-1851), 德 国, 230, 510

Jordan, Marie Ennemond Camille (1838-1922), 法国, 13

Khinchin, Aleksandr Yakovlevich (1894-1959), 俄国, 465

Kolmogorov, Andrey Nikolaevich (1903-1987), 俄国, 322

Lagrange, Joseph-Louis (1736-1813), 法 国,223

Laplace, Pierre-Simon (1749-1827), 法国, 12, 31, 60

Lebesgue, Henri Leon (1875-1941), 法国,

13

Legendre, Adrien-Marie (1752-1833), 法 国,903

Leibniz, Gottfried Wilhelm (1646-1716), 英国,865

Lie, Marius Sophus (1842-1899), 挪威, 232

Liouville, Joseph (1809-1882), 法国, 228 Moser, Jurgen Kurt (1928-1999), 德国/美 国,322

Pade, Henri Eugene (1863-1953), 法国, 894

Parseval, Marc-Antoine (1755-1836), 法 国, 10, 148

Poincare, Jules Henri (1854-1912), 法国,

Poisson, Simeon Denis (1781-1840), 法 国,35

Riemann, Georg Friedrich Bernhard (1826-1866), 德国, 13

Stokes, George Gabriel (1819-1903), 爱尔 兰, 862

Volterra, Vito (1860-1940), 意大利, 680

Wiener, Norbert (1894-1964), 美国, 465

数量级

储存环磁聚焦结构函数,334 电子储存环时间尺度,397 自由电子激光空间尺度,506

物理学家

Ampere, Andre-Marie (1775-1836), 法国,

Beth, Richard Alexander (1906-1999), 美 国,256

Biot, Jean-Baptiste (1774-1862), 法国, 31 Bohr, Niels Henrik David (1885-1962), 丹

麦,170

Boltzmann, Ludwig Eduard (1844-1906), 奥地利, 288, 667

- Campbell, Norman Robert (1880-1949), 英国, 401
- Cherenkov, Pavel Alekseyevich (1904-1990), 俄国, 159
- Coulomb, Charles-Augustin (1736-1806), 法国, 31
- Debye, Peter Joseph William (1884-1966), 荷兰/美国, 533
- Dirac, Paul Adrien Maurice (1902-1984), 英国, 867
- Doppler, Christian Andreas (1803-1853), 奥地利, 104
- Drude, Paul Karl Ludwig (1863-1906), 德 国, 552
- Dyson, Freeman John (1923-2020), 英国/美国, 125
- Earnshaw, Samuel (1805-1888), 英国, 348
- Einstein, Albert (1879-1955), 德国, 31, 465
- Faraday, Michael (1791-1867), 英国, **3**1 Fermi, Enrico (1901-1954), 意大利/美国,
- Feynman, Richard Phillips (1918-1988), 美国, 142
- Feynman, Richard Phillips (1918-1988), 美国, 866
- Fokker, Adriaan Daniel (1887-1972), 荷 兰, 666
- Frank, Ilya Mikhailovich (1908-1990), 俄 国, 159
- Fresnel, Augustin-Jean (1788-1827), 法国, 597
- Gibbs, Josiah Willard (1839-1903), 美国, 31, 226
- Ginzburg, Vitaly Lazarevich (1916-2009), 俄国, 160
- Goos, Hermann Fritz Gustav (1883-1968), 德国, 72

- Gouy, Louis Georges (1854-1926), 法国, 124
- Hanchen, Hilda (1919-2013), 德国, 72 Heaviside, Oliver (1850-1925), 英国, 31, 884
- Heisenberg, Werner Karl (1901-1976), 德 国, 295
- Hertz, Heinrich Rudolf (1857-1894), 德 国, 31
- Hill, George William (1838-1914), 美国, 267
- Huygens, Christiaan (1629-1695), 荷兰, 50
- Jackson, John David (1925-2016), 美国, viii
- Jeans, James Hopwood (1877-1946), 英国, 667
- Jefimenko, Oleg Dmitrovich (1922-2009), 乌克兰, 141
- Kramers, Hendrik Anthony "Hans (1894-1952), 荷兰, 581
- Kronig, Ralph (1904-1995), 德国, 581 Landau, Lev Davidovich (1908-1968), 俄
 - 国,818
- Langevin, Paul (1872-1946), 法国, 411
- Larmor, Joseph (1857-1942), 英国, 261
- Leontovich, Mikhail Aleksandrovich (1903-1981), 俄国, 49, 545
- Lienard, Alfred-Marie (1869-1958), 法国, 135
- Lorentz, Hendrik Antoon (1853-1928), 荷 兰, 31, 101
- Lorenz, Ludvig Valentin (1829-1891), 丹麦, 52
- Maxwell, James Clerk (1831-1879), 英国, 31
- McMillan, Edwin Mattison (1907-1991), 美国, 360

z, s, ct、头部 vs. 尾部粒子, 359 Oersted, Hans Christian (1777-1851), 丹 麦,31,40 Frenet-Serret 坐标系左右手惯例, 244 Panofsky, Wolfgang Kurt Hermann (1919-三种坐标系 2007), 德国/美国, 577 定义,859 Pendry, John Brian (1943-), 英国, 114 梯度、散度、旋度和 Laplace 算子展 Planck, Max Karl Ernst Ludwig (1858-开,863 1947), 德国, 666 三角函数恒等式,876 Poynting, John Henry (1852-1914), 英国, 不同分布函数的定义 $\rho(\omega)$, 899 55 不同分布函数的特征宽度 $\Delta\omega$, 900 Purcell, Edward Mills (1912-1997), 美国, 不同教科书符号惯例比较,926 传统常温磁铁 vs. 超导磁铁, 250 Savart, Felix (1791-1841), 法国, 31 位置向量 r 的微分运算,865 Schott, George Augustus/Adolphus (1868-加速器基础科学问题,770 1937), 英国, 137 加速器应用、模拟与技术难题,770 Schroedinger, Erwin Rudolf Josef Alexan-加速器集体不稳定性年表,637 单位制转换—数值,24 der (1887-1961), 奥地利, 126 单位制转换 — 符号, 20, 22 Schwinger, Julian Seymour (1918-1994), 美国,74,165 单侧傅里叶变换公式,551 Slater, John Clarke (1900-1976), 美国, 98 双曲函数恒等式,878 Strutt, John William (3rd Baron Rayleigh), 同步辐射储存环,912 (1842-1919), 英国, 122 同步辐射实用公式,189 Tamm, Igor Yevgenyevich (1895-1971), 俄 商业激光覆盖频谱,456 国、159 四代光源亮度比较,460 Thomson, William (1824-1907), 英国, 109 四极铁梯度, 266, 386 van Kampen, Nicolaas Godfried (1921-容性、感性阻抗惯例,574 2013), 荷兰, 818 对撞机,916 Veksler, Vladimir Iosifovich (1907-1966), 尾场与阻抗公式,608 俄国,360 常温、光阴极、射频电子枪,910 Veselago, Victor Georgievich (1929-2018), 常用向量恒等式 $\cdot, \times, \nabla, \nabla \cdot, \nabla \times, 861$ 俄国/乌克兰, 114 常用积分公式,873 Vlasov, Anatoly Aleksandrovich (1908-1975), 微波频段定义,74 俄国,227 波荡器辐射实用公式,215 Wiechert, Emil Johann (1861-1928), 德 泰勒展开近似公式, 892 国, 135 物理常数,19 Yang, Chen Ning (1922-), 中国, 855 电子加速器光源形态的束团特性,842 电磁频谱,918 表格 直线加速器,909 $2\pi, \sqrt{2\pi}, 9$ 级数求和公式,897

i, *j* 惯例, 8

能量循环/回收直线加速器,915 自由电子激光,911 贝索函数解,85 量纲,19 铝、铜金属的一些特性参数,556