Analysis of Variance Single Factor Part 2

Dr. Supaporn Erjongmanee

Department of Computer Engineering Kasetsart University fengspe@ku.ac.th

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications

Outline

- Single-Factor ANOVA:
 - Review: Equal sample size
 - F-test
 - Multiple comparison
 - Unequal Sample Size
 - F-test
 - Multiple comparison
 - Random Effects Model

Supaporn Erjongmanee fengspe@ku.ac.th

Single-Factor ANOVA: Equal Sample Size

- Compare two or more populations on one factor
- Let
 - μ_1 = mean of treatment (population) 1
 - μ_2 = mean of treatment (population) 2
 - ..
 - μ_I = mean of treatment (population) I

I = number of compared treatments

- Hypothesis
 - H_0 : $\mu_1 = \mu_2 = ... = \mu_1$
 - H_a : Not all μ_i 's are equal (at least two of the μ_i 's are different)

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 3

Two population -> Can perform

hypothesis test on two data sets

F-Test

Test statistic:

$$F_{I-1,I(J-1)} = \frac{\frac{SSTr}{\sigma^2}/(I-1)}{\frac{SSE}{\sigma^2}/(I(J-1))} = \frac{SSTr/(I-1)}{SSE/(I(J-1))} = \frac{MSTr}{MSE}$$

F distribution

If test statistic > $F_{\alpha, v1, v2}$, reject H_0

Image source: http://www.unc.edu/~nielsen/soci708/m16/m2009.gif

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 4

Summary: ANOVA

· Test statistic:

$$F_{I-1,I(J-1)} = \frac{\frac{SSTr}{\sigma^2}/(I-1)}{\frac{SSE}{\sigma^2}/(I(J-1))} = \frac{SSTr/(I-1)}{SSE/(I(J-1))} = \frac{MSTr}{MSE}$$

When f is large, we are about to reject H₀

	df	Sum of Squares (SS)	Mean Square (MS)	f
Treatment	I-1	SSTr	SSTr/(I-1)	MSTr / MSE
Error	I(J-1)	SSE	SSE/(I(J-1))	
Total	IJ-1	SST		

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications

Summary: ANOVA (cont.)

$$\sum_{i} \sum_{j} (x_{ij} - \bar{x})^2 = \sum_{i} \sum_{j} (x_{ij} - \bar{x}_i + \bar{x}_i - \bar{x})^2$$

Test statistic:

$$F_{I-1,I(J-1)} = \frac{\frac{SSTr}{\sigma^2}/(I-1)}{\frac{SSE}{\sigma^2}/(I(J-1))} = \frac{SSTr/(I-1)}{SSE/(I(J-1))} = \frac{MSTr}{MSE}$$

	df	Sum of Squares (SS)	Mean Square (MS)	f
Treatment	I-1	$\int \sum_i (\overline{x_i} - \overline{x})^2$	SSTr/(I-1)	MSTr / MSE
Error	I(J-1)	$\sum_{i} \sum_{j} (x_{ij} - \overline{x_i})^2 = SST - SSTr$	SSE/(I(J-1))	
Total	IJ-1	$\sum_{i}\sum_{j}(x_{ij}-\bar{x})^{2}$		

Supaporn Erjongmanee fengspe@ku.ac.th

Test statistic:

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications

Another option: Sample-based

Example 1

- Experiment degree of soiling on 3 mixtures of fabric and polymer
- Prove whether 3 mixture means are the same at α = 0.01

Mixture		Degree of soiling						
1:	0.56	0.56 1.12 0.90 1.07 0.94						
2:	0.72	0.69	0.87	0.78	0.91			
3:	0.62	1.08	1.07	0.99	0.93			

- Let
 - μ_1 = mean of mixture 1
 - μ_2 = mean of mixture 2
 - μ₃ = mean of mixture 3
 - I = 3, J = 5
- Hypothesis
 - H_0 : $\mu_1 = \mu_2 = \mu_3$
 - H_a : Not all μ_i 's are equal (at least two of the μ_i 's are different)

Supaporn Erjongmanee fengspe@ku.ac.th

Example 1 (cont.)

	df	Sum of Squares (SS)	Mean Square (MS)	f
Treatment	2	0.0608	0.0304	0.99
Error	12	0.3701 = 0.4309 - 0.0608	0.0308	
Total	14	0.4309		

- Rejection region: given α = 0.01
 - F _{0.01, 2, 12} = 6.93
- H₀ is not rejected.
- · All mixture means are equals.

Supaporn Erjongmanee fengspe@ku.ac.th

 $\begin{array}{c} \textbf{Statistics in Computer Engineering Applications} \\ \textbf{Slide 9} \end{array}$

Example 2

Experiment consistency lab measurements from 7 labs

	Lab 1	Lab 2	Lab 3	Lab 4	Lab 5	Lab 6	Lab 7
ĺ	4.13	3.86	4.00	3.88	4.02	4.02	4.00
ĺ	4.07	3.85	4.02	3.88	3.95	3.86	4.02
	4.04	4.08	4.01	3.91	4.02	3.96	4.03
	4.07	4.11	4.01	3.95	3.89	3.97	4.04
	4.05	4.08	4.04	3.92	3.91	4.00	4.10
	4.04	4.01	3.99	3.97	4.01	3.82	3.81
	4.02	4.02	4.03	3.92	3.89	3.98	3.91
	4.06	4.04	3.97	3.90	3.89	3.99	3.96
	4.10	3.97	3.98	3.97	3.99	4.02	4.05
	4.04	3.95	3.98	3.90	4.00	3.93	4.06

Supaporn Erjongmanee fengspe@ku.ac.th

- Experiment consistency lab measurements from 7 labs
- Let
 - μ_1 = mean of measurements from lab 1
 - μ_2 = mean of measurements from lab 2
 - ...
 - μ_7 = mean of measurements from lab 7
 - I = 7, J = 10
- Hypothesis
 - H_0 : $\mu_1 = \mu_2 = ... = \mu_7$
 - H_a : Not all μ_i 's are equal (at least two of the μ_i 's are different)

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 11

Example 2

• Experiment consistency lab measurements from 7 labs

Lab 1	Lab 2	Lab 3	Lab 4	Lab 5	Lab 6	Lab 7
4.13	3.86	4.00	3.88	4.02	4.02	4.00
4.07	3.85	4.02	3.88	3.95	3.86	4.02
4.04	4.08	4.01	3.91	4.02	3.96	4.03
4.07	4.11	4.01	3.95	3.89	3.97	4.04
4.05	4.08	4.04	3.92	3.91	4.00	4.10
4.04	4.01	3.99	3.97	4.01	3.82	3.81
4.02	4.02	4.03	3.92	3.89	3.98	3.91
4.06	4.04	3.97	3.90	3.89	3.99	3.96
4.10	3.97	3.98	3.97	3.99	4.02	4.05
4.04	3.95	3.98	3.90	4.00	3.93	4.06
\bar{x}_1	\bar{x}_2	\bar{x}_3	\bar{x}_4	\bar{x}_5	\bar{x}_6	\bar{x}_7
4.062	3.997	4.003	3.92	3.957	3.955	3.998

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 12

	df	Sum of Squares (SS)	Mean Square (MS)	f		
Treatment	6	0.125	0.0208	5.66		
Error	63	0.356-0.125 = 0.231	0.0037			
Total	69	0.356				
 F_{0.1, 6, 60} = F_{0.1, 6, 70} = For comm H₀ is rejected 	osest F (1.8747, F 1.8600, F on value ed.	critical values: 60 vs. 70 $F_{0.05, 6, 60} = 2.2541$, $F_{0.01, 6, 60} = 3.1187$ $F_{0.05, 6, 70} = 2.2312$, $F_{0.01, 6, 70} = 3.0712$ s of α , $F_{\alpha, 6, 63} < f$	> qf(0.99 [1] 3.102 > qf(0.95 [1] 2.246 > qf(0.90 [1] 1.869	767 , dfl=6, 408 , dfl=6,	df2=63)	
• There are d		es in 7 means.	2			

Outline

- Single-Factor ANOVA:
 - Review: Equal sample size
 - F-test
 - Multiple comparison
 - Unequal Sample Size
 - F-test
 - Multiple comparison
 - Random Effects Model

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 15

Multiple Comparisons

- Question:
 - When H₀ for ANOVA is rejected, how many means are different from each other?
- Procedures:
 - Find confidence interval of pairwise difference $\mu_i \mu_j$
 - If confidence interval for any pairwise difference $\mu_i \mu_j$ does <u>not include</u> <u>zero</u>, we determine that μ_i , μ_j are significantly different from each other

Supaporn Erjongmanee fengspe@ku.ac.th

Studentized Range Distribution (cont.)

$$\begin{aligned} 1 - \alpha &= P\left(\frac{|\bar{X}_i - \bar{X}_j - (\mu_i - \mu_j)|}{\sqrt{MSE/J}} \leq Q_{\alpha,I,I(J-1)} \ for \ all \ i,j\right) \\ &= P\left(-Q_{\alpha,I,I(J-1)} \sqrt{\frac{MSE}{J}} \leq \bar{X}_i - \bar{X}_j - (\mu_i - \mu_j) \leq Q_{\alpha,I,I(J-1)} \sqrt{\frac{MSE}{J}} \ for \ all \ i,j\right) \\ &= P\left(\bar{X}_i - \bar{X}_j - Q_{\alpha,I,I(J-1)} \sqrt{\frac{MSE}{J}} \leq \mu_i - \mu_j \leq \bar{X}_i - \bar{X}_j + Q_{\alpha,I,I(J-1)} \sqrt{\frac{MSE}{J}} \ for \ all \ i,j\right) \end{aligned}$$

Confidence intervals between one pair of true mean difference $\mu_i - \mu_j$

• There are $\binom{I}{2} = \frac{I(I-1)}{2}$ confidence intervals of $\mu_i - \mu_j$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 17

Studentized Range Distribution (cont.)

$$1 - \alpha = P\left(\overline{X_i} - \overline{X_j} - Q_{\alpha,I,I(J-1)} \sqrt{\frac{MSE}{J}}\right) \leq \mu_i - \mu_j \leq \overline{X_i} - \overline{X_j} + Q_{\alpha,I,I(J-1)} \sqrt{\frac{MSE}{J}} \text{ for all } i,j$$

Expect difference between sample mean difference $(\bar{X}_i - \bar{X}_j)$ and true mean difference $(\mu_i - \mu_j)$ is not more than this value $Q_{\alpha,I,I(J-1)}\sqrt{\frac{MSE}{J}}$

• The value w = $Q_{\alpha,I,I(J-1)}\sqrt{\frac{MSE}{J}}$ is called Tukey's honestly significantly difference (HSD)

Supaporn Erjongmanee fengspe@ku.ac.th

- For another data set:
 - \bar{x}_1 = 79.28, \bar{x}_2 = 61.54, \bar{x}_3 = 47.92, \bar{x}_4 = 32.76

$$HSD_{\alpha}$$
=4.05 $\sqrt{\frac{932.9625}{5}}$ = 17.47

Sort sample means:

$$\bar{x}_4$$
 \bar{x}_3 \bar{x}_2 \bar{x}_1 32.76, 47.92, 61.54, 79.28

- · 2 groups of means
 - \bar{x}_4 , \bar{x}_3 , \bar{x}_2 are not significantly different from each other
 - \bar{x}_1 is significantly different from each other

upaper Confidence intervals of $(\bar{X}_2 - \bar{X}_3)$ and $(\bar{X}_3 - \bar{X}_4)$ include zero. This means $\bar{X}_2 \approx \bar{X}_3 \approx \bar{X}_4$

)

neering

More on Multiple Comparison

- Is it possible that H₀ is not rejected but result to multiple group of means?
- Is it also possible that H₀ is rejected but have one group of means?

Measured by MSE

ANOVA tests on <u>ALL means</u> whether they are identical

Multiple comparison tests on PAIRWISE means

Not measured by MSE

ANOVA detects variability among all means

ANOVA test is more sensitive than multiple comparison

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 22

More on Multiple Comparison (cont.)

ANOVA tests on <u>ALL means</u> whether they are identical Multiple comparison tests on <u>PAIRWISE</u> means

ANOVA detects lower variability among all means ANOVA test is more sensitive than multiple comparison

Image source: http://blog.minitab.com/blog/adventures-in-statistics-2/understanding-analysis-of-variance-anova-and-the-f-test

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 23

Outline

- Single-Factor ANOVA:
 - Review: Equal sample size
 - F-test
 - Multiple comparison
 - Unequal Sample Size
 - F-test
 - Multiple comparison
 - Random Effects Model

Supaporn Erjongmanee fengspe@ku.ac.th

- Measure strength of Mg-based alloys from 3 processes
- Show that alloys from 3 processes are the same are the same at α = 0.001

Process		Observations						
Permanent Molding (1)	45.5	45.3	45.4	44.4	44.6	43.9	44.6	44.0
Die casting (2)	44.2	43.9	44.7	44.2	44.0	43.8	44.6	43.1
Plaster molding (3)	46.0	45.9	44.8	46.2	45.1	45.5		

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 25

Single ANOVA with Unequal Size

- ANOVA table:
 - N = Number of all samples = $\sum_{i=1}^{I} J_i$
 - I = Number of treatments
 - J_i = Number of samples for treatment i, i = 1, 2, ..., I

$$SST_r = \sum_{i=1}^{I} \sum_{j=1}^{J_i} (\bar{x}_{ij} - \bar{x})^2 = \sum_{i=1}^{I} \frac{1}{J_i} (\sum_{j=1}^{J_i} X_{ij})^2 - \frac{1}{n} (\sum_{i=1}^{I} \sum_{j=1}^{J_i} X_{ij})^2 \quad \text{df = I-1}$$

$$SST = \sum_{i=1}^{I} \sum_{j=1}^{J_i} (x_{ij} - \bar{x})^2 = \sum_{i=1}^{I} \sum_{j=1}^{J_i} X_{ij}^2 - \frac{1}{n} (\sum_{i=1}^{I} \sum_{j=1}^{J_i} X_{ij})^2$$
 df = N-1

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Application
Slide 26

Single ANOVA with Unequal Size

- ANOVA table:
 - N = Number of all samples = $\sum_{i=1}^{I} J_i$
 - *I* = Number of treatments
 - J_i = Number of samples for treatment i, i = 1, 2, ..., I

	df	Sum of Squares (SS)	Mean Square (MS)	f	
Treatment	<i>I</i> - 1	$\sum_{i=1}^{l} \sum_{j=1}^{J_i} (\bar{x}_{ij} - \bar{x})^2$	SSTr/(I -1)	MSTr / MSE	
Error	N - I	SSE = $\sum_{i=1}^{I} \sum_{j=1}^{J_i} (x_{ij} - \bar{x}_i)^2$ = SST - SSTr	SSE/(N - <i>I</i>)		
Total	N - 1	$\sum_{i=1}^{I} \sum_{j=1}^{J_i} (x_{ij} - \bar{x})^2$			er Engineering

Single ANOVA with Unequal Size ANOVA table: Another option: • N = Number of all samples = $\sum_{i=1}^{I} J_i$ Sample-based computation • *I* = Number of treatments • J_i = Number of samples for treatment i, **2**, 2, ..., **I** df Sum of Squares Mean f (SS) Square (MS) SSTr/(*I*-1) MSTr / MSE Treatment **I** - 1 Error N - *I* SSE/(N - I) Total N - 1 Sup eering

- Measure strength of Mg-based alloys from 3 processes
- Show that alloys from 3 processes are the same are the same at α = 0.001

Process		Observations						
Permanent Molding (1)	45.5	45.3	45.4	44.4	44.6	43.9	44.6	44.0
Die casting (2)	44.2	43.9	44.7	44.2	44.0	43.8	44.6	43.1
Plaster molding (3)	46.0	45.9	44.8	46.2	45.1	45.5		

Let

- μ_1 = mean of alloy 1, μ_2 = mean of alloy 2, μ_3 = mean of alloy 3
- I = 3, $J_1 = J_2 = 8$, $J_3 = 6$, N = 22
- Hypothesis
 - H_0 : $\mu_1 = \mu_2 = \mu_3$
 - H_a : Not all μ_i 's are equal (at least two of the μ_i 's are different)

Supaporn Erjongmanee fengspe@ku.ac.th

Process				Obsei	rvations				$\sum_{j=1}^{J_i} x_{ij}$		
Permanent Molding (1)	45.5	45.3	45.4	44.4	44.6	43.9	44.6	44.0	357.7		
Die casting (2)	44.2	43.9	44.7	44.2	44.0	43.8	44.6	43.1	352.5		
Plaster molding (3)	46.0	45.9	44.8	46.2	45.1	45.5			273.5		
• Fill ANO	VA ta	ble	•			•			·	1	
	df		Sum of S (SS)	quares				Mean Squar	re(MS)	f	
Treatment	2		7.93					3.97		12.56	
Error	19		13.93 - = 6.00	7.93		_		0.32			1
_											1

	df	Sum of Squares (SS)	Mean Square(MS)	f	
Treatment	2	7.93	3.97	12.56	
Error	19	13.93 – 7.93 = 6.00	0.32		
Total	21	13.93			
• F _{0.001}	., 2, 19 ected.	n: given $\alpha = 0.001$ Not exist in f Use R. ocesses are not the same.		(0.999, d	f1=2, df2=19)

Multiple Comparisons: Unequal Sample Size

- When some means are not all equal, how to specify which mean is different from others
- Procedure
 - 1. Find Tukey's Honestly Significant Difference (HSD)

$$HSD_{\alpha} = q_{\alpha,I,N-I} \sqrt{\frac{MSE}{2}} \left(\frac{1}{J_i} + \frac{1}{J_j}\right)$$

- $q_{\alpha, I, N-I} = q$ -value from studentized range distribution with 2 degrees of freedom I, N-I
- 2. Sort sample means in increasing order
- 3. Underline pairs that differ less than HSD_{α}
- 4. Any pair without underline are considered as significantly different.

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 33

Example 1: Mg-based Alloy (cont.)

$$HSD_{\alpha,ij} = q_{\alpha,I,N-I} \sqrt{\frac{MSE}{2} (\frac{1}{J_i} + \frac{1}{J_j})}$$

• \bar{x}_1 = 44.71, \bar{x}_2 = 44.06, \bar{x}_3 = 45.58

$$\mathbf{w_{12}} = HSD_{\alpha} = q_{\alpha,I,N-I} \sqrt{\frac{MSE}{2} (\frac{1}{J_i} + \frac{1}{J_j})} = q_{0.05,3,19} \sqrt{\frac{0.32}{2} (\frac{1}{8} + \frac{1}{8})} = 3.59 \sqrt{\frac{0.32}{2} (\frac{1}{8} + \frac{1}{8})} = 0.718$$

$$w_{13} = w_{23} = HSD_{\alpha} = q_{\alpha,I,N-I} \sqrt{\frac{MSE}{2}(\frac{1}{J_i} + \frac{1}{J_j})} = q_{0.05,3,19} \sqrt{\frac{0.32}{2}(\frac{1}{8} + \frac{1}{6})} = 3.59 \sqrt{\frac{0.32}{2}(\frac{1}{8} + \frac{1}{6})} = 0.775$$

$$\bar{x}_2$$
 \bar{x}_1 \bar{x}_3

Sort sample means: 44.06, 44.71, 45.58

2 groups of means

Supaporn Erjongmanee fengspe@ku.ac.th

Example 1: Mg-based Alloy (cont.)

• \bar{x}_1 = 44.71, \bar{x}_2 = 44.06, \bar{x}_3 = 45.58

$$\mathbf{w_{12}} = HSD_{\alpha} = q_{\alpha,I,N-I} \sqrt{\frac{MSE}{2} (\frac{1}{J_i} + \frac{1}{J_j})} = q_{0.05,3,19} \sqrt{\frac{0.32}{2} (\frac{1}{8} + \frac{1}{8})} = 3.50$$

$$w_{13} = w_{23} = HSD_{\alpha} = q_{\alpha,I,N-I} \sqrt{\frac{MSE}{2}(\frac{1}{J_i} + \frac{1}{J_j})} = q_{0.05,3,19} \sqrt{\frac{0.32}{2}(\frac{1}{8} + \frac{1}{6})}$$

Sort sample means:

$$\bar{x}_2$$
 \bar{x}_1 \bar{x}_3

44.06, 44.71, 45.58

2 groups of means

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications Slide 35

0.32 1 1

Outline

- Single-Factor ANOVA:
 - Review: Equal sample size
 - F-test
 - Multiple comparison
 - Unequal Sample Size
 - F-test
 - Multiple comparison
 - Random Effects Model

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 36

Random Effects Model

- Single factor can be considered as fixed-effects ANOVA model
- The single-factor fixed-effects model is defined as

$$X_{ij} = \mu + \alpha_i + \varepsilon_{ij} \qquad \sum \alpha_i = 0$$

- X_{ii} = random sample j of treatment i
- μ = overall mean of all treatment i's
- α_i = effect of treatment i
- ε_{ij} = random error in sample j of treatment i
 - Assumed to be independent and normally distributed with mean = 0, variance = σ^2

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 37

Random Effects Model (cont.)

$$X_{ij} = \mu + \alpha_i + \varepsilon_{ij} \qquad \boxed{\sum \alpha_i = 0}$$

- Explanations of the single-factor fixed-effects model:
 - Sample is corrupted by random errors
 - Error in one sample is independent from error of other samples
 - Expected response of treatment i

$$E(X_{ij}) = \mu + \alpha_i$$

ullet If $lpha_i=0$, then all treatment i's have the same response

$$E(X_{ij}) = \mu$$
 That's what we try to prove in single-factor ANOVA

Supaporn Erjongmanee fengspe@ku.ac.th

Null Hypothesis: Single-Factor ANOVA

$$E(X_{ij}) = \mu + \alpha_i$$

- Besides the prior null hypothesis in single-factor ANOVA
 - H_0 : $\mu_1 = \mu_2 = ... = \mu_I$
- Sometimes, the following null hypothesis is also used instead:
 - H_0 : $\alpha_1 = \alpha_2 = ... = \alpha_I = 0$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications Slide 39

References

- 1. J.L. Devore and K.N.Berk, Modern Mathematical Statistics with Applications, Springer, 2012.
- S. Few, Now You See It: Simple Visualization Techniques for Quantitative Analysis, Analytics Press, 2009

Supaporn Erjongmanee fengspe@ku.ac.th

 $\begin{array}{c} \textbf{Statistics in Computer Engineering Applications} \\ \textbf{Slide } 40 \end{array}$

