Oops All Algebra: Homework IV

Mathcamp 2025

Problem 1 (recommended). Complete the proof that equivalence defines an equivalence relation on the set of morphisms from $x \to y$ in a quasicategory C.

Problem 2 (recommended). Verify that the one-truncation $\tau_1 C$ of a quasicategory C is a category. In particular, convince yourself that composition is well-defined and associative.

Problem 3 (optional). Find a quasicategory C which is not isomorphic to the nerve of a category.

Problem 4 (optional). Convince yourself that there is a bijection

$$Cat_1(\tau_1C, \mathcal{D}) \cong Cat(C, N\mathcal{D})$$

for any quasicategory C and category \mathcal{D} .

Problem 5 (optional). Given a simplicial set X and zero-cells x and y, let $Map_X(x, y)$ be the simplicial set with

$$Map_X(x, y)_n = \{f : \Delta^{n+1} \to X : f(0) = x, f(n+1) = y\}.$$

- (a) Define the face and degeneracy maps on $\mathrm{Map}_X(x,y)$, and convince yourself that they satisfy the simplicial identities.
- (b) Describe $Map_X(x, y)_n$ more explicitly in the case where X = NC is the nerve of a category.
- (c) Convince yourself that a morphism $f: y \to z$ in a quasicategory C induces a simplicial map $f_*: \operatorname{Map}_C(x,y) \to \operatorname{Map}_C(x,z)$. Convince yourself that a morphism $g: z \to x$ induces a simplicial map $g^*: \operatorname{Map}_C(x,y) \to \operatorname{Map}_C(z,y)$.
- (d) Convince yourself that, if C is a quasicategory, then $\operatorname{Map}_C(x,y)$ is a quasicategory. (In fact it is a quasigroupoid, but this proof is outside our scope.)