## Теория кодирования

<u>МФТИ</u>, осень 2013

Александр Дайняк

www.dainiak.com

### Теория кодирования

Теория кодирования изучает модели хранения и передачи «дискретной» информации и предлагает способы оптимального её кодирования.











## Алфавитное кодирование

Как хранить в компьютере тексты на естественном языке?

Нужно их кодировать!

Простейший подход:

- каждой букве языка, а также знакам препинания сопоставим по двоичному слову,
- и тогда текст закодируем, записав друг за другом коды отдельных букв.

## Алфавитное кодирование

#### Математическая модель:

Даны алфавиты

$$\mathbb{A} = \{a_1, ..., a_n\}$$
 и  $\mathbb{B} = \{b_1, ..., b_q\}$ 

Алфавит  $\mathbb{A} - \kappa o \partial u p y e m b \ddot{u}$ , «естественный»;

алфавит  $\mathbb{B} - \kappa o \partial o b b \ddot{u}$  (например,  $\mathbb{B} = \{0,1\}$ ).

Алфавитное кодирование — это отображение

$$\phi: \mathbb{A}^* \to \mathbb{B}^*$$

такое, что для любых  $a_{i_1}$ , ...,  $a_{i_r}$  выполнено

$$\phi(a_{i_1} ... a_{i_r}) = \phi(a_{i_1}) ... \phi(a_{i_r})$$

## Алфавитное кодирование

Достаточно определить  $\phi$  на отдельных символах алфавита A:

$$\phi(a_1) = B_1$$

$$\vdots$$

$$\phi(a_n) = B_n$$

Слова  $B_1$ , ...,  $B_n$  называются *кодовыми*, совокупность  $\{B_1, ..., B_n\}$  называется *кодом*.

Везде далее считаем, что все  $B_i$  различны, иначе кодирование не однозначное.

Но этого в общем случае недостаточно...

## Однозначность алфавитного кодирования

Кодирование  $\phi$  *однозначное*, если  $\phi(w') \neq \phi(w'')$  при  $w' \neq w''$ 

Однозначность никак не зависит от алфавита  $\mathbb{A}$ , а целиком определяется набором  $\{B_1, \dots, B_n\}$ .

Кодирование однозначное т. и т.т., когда никакое слово  $b_{i_1}b_{i_2}\dots b_{i_r}$  нельзя двумя разными способами разбить на кодовые слова:



 $a_3a_8$  или  $a_5a_1a_3$  ???

#### Достаточные условия однозначности

- Равномерность:  $|B_1| = |B_2| = \cdots = |B_n|$
- Свойство префикса:

$$\exists i, j \ (i \neq j \text{ и } B_i = B_j w, \text{где } w \in \mathbb{B}^*)$$

• Свойство суффикса:

$$\exists i, j (i \neq j \text{ и } B_i = w B_j, \text{где } w \in \mathbb{B}^*)$$

При этом такой ситуации не возникнет:



#### Префиксные коды — «мгновенные»

Префиксные коды называют ещё *мгновенными*, так как закодированные с их помощью сообщения можно декодировать по мере приёма, без задержек:



## Нужен критерий однозначности!

Равномерность, префиксность и суффиксность не являются необходимыми условиями для однозначности. Пример:

$$A = \{a_1, a_2\}, B = \{0,1\}$$
  
 $\phi(a_1) = 0$   
 $\phi(a_2) = 010$ 

Полезно было бы получить критерий однозначности кода.

Код неоднозначен, если найдётся слово  $B \in \mathbb{B}^*$ , которое не менее чем двумя разными способами можно разбить на кодовые слова.

Рассмотрим самое короткое такое «неоднозначное» B и два его различных разбиения на кодовые слова:



Заметим, что точки «верхнего» и «нижнего» разбиений, кроме крайних, все различны, иначе слово B можно было бы укоротить:



Также, среди отрезков B, концы которых принадлежат разным разбиениям, нет кодовых слов, иначе B также можно было бы укоротить:



Минимальные отрезки слова B, концы которых принадлежат разным разбиениям, назовём *промежуточными*.



Первый пром. отрезок получается, если из начала некоторого кодового слова «отнять» некоторую последовательность кодовых слов.

Любой из остальных отрезков получается, если из некоторого кодового слова отнять предыдущий отрезок и последовательность (возможно, пустую) кодовых слов.



Последний пром. отрезок таков, что если его отнять из начала некоторого кодового слова, получится последовательность кодовых слов.

Обозначим через  $w_1, ..., w_k$  все промежуточные отрезки.

Через  $\beta$  будем обозначать последовательность (возможно, пустую) кодовых слов. Имеем:

$$\exists i, \beta(B_i = \beta w_1)$$

$$\exists i, \beta(B_i = w_1 \beta w_2)$$

$$\vdots$$

$$\exists i, j(B_i = w_{k-1} \beta w_k)$$

$$\exists i, j(B_i = w_k \beta)$$

Наоборот, пусть нашлись непустые слова  $w_1, \dots, w_k \in \mathbb{B}^*$ , кодовые слова  $B_{i_1}, \dots, B_{i_{k+1}}$  и последовательности кодовых слов  $\beta_1, \dots, \beta_{k+1}$ , такие, что выполнены соотношения

Тогда слово  $\beta_1 w_1 \beta_2 w_2 \dots w_{k-1} \beta_k w_k \beta_{k+1}$  можно разбить на кодовые слова двумя способами.

$$B_{i_1} = \varepsilon \beta_1 w_1$$

$$B_{i_2} = w_1 \beta_2 w_2$$

$$\vdots$$

$$B_{i_{k+1}} = w_k \beta_{k+1} \varepsilon$$

#### Пример:



## Критерий однозначности алфавитного кодирования

Код  $C=\{B_1,\dots,B_n\}$  не однозначный т. и т.т., когда найдутся непустые слова  $w_1,\dots,w_k\in\mathbb{B}^*\setminus C$ , кодовые слова  $B_{i_1},\dots,B_{i_{k+1}}$  и последовательности кодовых слов  $\beta_1,\dots,\beta_{k+1}$ , такие, что  $k\geq 1$  и выполнены соотношения

(или k=0 и  $B_{i_1}=\beta_1$ , где  $\beta_1$  составлено не менее чем из двух кодовых слов).

# Ещё одна формулировка критерия однозначности

Через  $\varepsilon$  будем обозначать пустое слово.

Пусть  $C = \{B_1, \dots, B_n\}$  — код, который нужно проверить на однозначность.

Построим орграф  $G_{\mathcal{C}}=(V,E)$ , где  $V=\{\varepsilon$ , а также все слова из  $\mathbb{B}^*\setminus \mathcal{C}$ , являющиеся началами и концами

кодовых слов},

$$E = \left\{ (\alpha', \alpha'') \mid \exists \beta \in C^* \left( \alpha' \beta \alpha'' \in C \text{ и при этом } \left[ \begin{matrix} \beta \neq \varepsilon \\ \alpha' \neq \varepsilon \text{ и } \alpha'' \neq \varepsilon \end{matrix} \right] \right\}.$$

Код C однозначный т. и т.т., когда в орграфе  $G_C$  нет орцикла, проходящего через вершину  $\varepsilon$ .

## Оценка длины неоднозначно декодируемого слова

 $V = \{ \varepsilon, \text{ а также все слова из } \mathbb{B}^* \setminus C, \text{ являющиеся началами и концами кодовых слов} \},$ 

$$E = \left\{ (\alpha', \alpha'') \mid \exists \beta \in C^*(\alpha'\beta\alpha'' \in C) \text{и при этом } \begin{bmatrix} \beta \neq \varepsilon \\ \alpha' \neq \varepsilon \text{ и } \alpha'' \neq \varepsilon \end{bmatrix} \right\}.$$

Имеем

$$|V| \le 1 + \sum_{B \in C} (|B| - 1) \le |C| \cdot \max_{B \in C} |B|$$

Получим отсюда оценку длины минимального неоднозначно декодируемого слова...

## Оценка длины неоднозначно декодируемого слова

Если в  $G_C$  есть цикл через  $\varepsilon$ , то есть и цикл, число вершин в котором не больше, чем

$$|C| \cdot \max_{B \in C} |B|$$

Рассмотрим соответствующее этому циклу неоднозначно декодируемое слово

$$W_{\text{неодн.}} = \beta_1 w_1 \beta_2 w_2 \dots w_{k-1} \beta_k w_k \beta_{k+1}$$

Каждая пара  $\beta_i w_i$  умещается в некотором кодовом слове, поэтому

$$\left|W_{\text{неодн.}}\right| \le (k+1) \cdot \max_{B \in C} |B| \le |C| \cdot \left(\max_{B \in C} |B|\right)^2$$

# Оценка длины неоднозначно декодируемого слова

Из предыдущих рассуждений вытекает оценка на длину неоднозначно декодируемого слова:

#### Теорема. (А.А. Марков)

Если C — неоднозначный код, длина слов которого не превосходит l, то найдётся слово длины не более  $|C| \cdot l^2$ , декодируемое неоднозначно.

#### Коды с минимальной избыточностью

Обычно, кодируемые символы  $a_1, \dots, a_n$  встречаются в кодируемых сообщениях не одинаково часто, а с разными частотами.

Например, в английском языке буква e встречается примерно в 180 раз чаще, чем z.

Естественно при построении кодирования  $\phi$  кодировать более частые буквы более короткими словами.

Поставим задачу математически...

#### Коды с минимальной избыточностью

Пусть в кодируемых сообщениях символы  $a_1, ..., a_n$  встречаются с частотами  $p_1, ..., p_n$  соответственно. Считаем  $\sum p_i = 1$  и  $\forall i \ p_i > 0$ . Пусть символ  $a_i$  кодируется словом  $B_i$ .

Рассмотрим сообщение  $A \in \mathbb{A}^*$ .

Каждый из символов  $a_i$  встретится в |A| примерно  $|A| \cdot p_i$  раз. Отсюда

$$|\phi(A)| \approx \sum_{i} |A| \cdot p_i \cdot |B_i| = |A| \cdot \sum_{i} p_i \cdot |B_i|$$

#### Коды с минимальной избыточностью

То есть, «среднестатистическое» сообщение A при кодировании «разбухает» примерно в  $\sum_i p_i |B_i|$  раз.

Величина  $\sum_i p_i |B_i|$  называется коэффициентом избыточности кода.

#### Задача построения кода с минимальной избыточностью:

По заданным  $p_1, \dots, p_n$  построить (однозначно декодируемый!) код  $B_1, \dots, B_n \in \mathbb{B}^*$ , для которого коэффициент избыточности минимален.

Такой код называется кодом с минимальной избыточностью для набора частот  $p_1, \dots, p_n$ .

### Неравенство Крафта-Макмиллана

Все слова кода не получится взять слишком короткими, иначе код не будет однозначным. Количественно это выражает

Теорема. (L.G. Kraft, B. McMillan)

Пусть  $l_1, ..., l_n$  — длины слов однозначного кода в алфавите  $\mathbb{B}$ , где  $|\mathbb{B}|=q$ .

Тогда выполнено неравенство

$$\sum_{i=1}^{n} q^{-l_i} \le 1$$

#### Неравенство Крафта—Макмиллана

Доказательство теоремы:

Пусть  $B_1, \dots, B_n$  — однозначный код в q-значном алфавите, и пусть  $|B_i| = l_i$ .

Пусть  $t \in \mathbb{N}$ . Обозначим  $L \coloneqq t \cdot \max_i l_i$ .

Рассмотрим выражение

$$\left(\sum_{i=1}^{n} q^{-l_i}\right)^t = \sum_{1 \le i_1, \dots, i_t \le n} q^{-(l_{i_1} + \dots + l_{i_t})} = \sum_{l=1}^{L} s_l q^{-l},$$

где  $s_l$  — количество наборов  $(i_1, \dots, i_t)$ , таких, что  $l_{i_1} + \dots + l_{i_t} = l$ .

### Неравенство Крафта—Макмиллана

$$S_l = |S_l|$$
, где  $S_l = \left\{ (i_1, \dots, i_t) \mid l_{i_1} + \dots + l_{i_t} = l \right\}$ 

Каждому набору  $(i_1, ..., i_t) \in S_l$  поставим в соответствие слово  $B_{i_1} ... B_{i_t} \in \mathbb{B}^*.$ 

Тогда разным наборам из  $S_l$  соответствуют разные слова (т.к. код однозначный).

Отсюда  $s_l \leq q^l$  и следовательно

$$\left(\sum_{i=1}^{n} q^{-l_i}\right)^t = \sum_{l=1}^{L} s_l q^{-l} \le \sum_{l=1}^{L} 1 = L.$$

### Неравенство Крафта—Макмиллана

Получили, что для любого  $t \in \mathbb{N}$  выполнено

$$\sum_{i=1}^{n} q^{-l_i} \le \left(t \cdot \max_i l_i\right)^{1/t}$$

Устремляя t к бесконечности, получаем

$$\sum_{i=1}^{\infty} q^{-l_i} \le 1$$

Докажем обратное утверждение:

#### Теорема.

Пусть натуральные числа  $l_1, \dots, l_n$  и q таковы, что

$$\sum_{i=1}^{N} q^{-l_i} \le 1$$

Тогда существует префиксный код  $B_1, \dots, B_n$  в q-значном алфавите, такой, что  $|B_i| = l_i$ .

Пусть натуральные числа  $l_1$ , ...,  $l_n$  и q таковы, что

$$\sum_{i=1} q^{-l_i} \le 1$$

Будем считать, что среди  $l_1, \dots, l_n$  всего m различных, и при этом  $l_1 < \dots < l_m$ . Для каждого  $j \in [1, m]$  положим

$$n_j \coloneqq \left| \left\{ i \in [1, n] \mid l_i = l_j \right\} \right|$$

Тогда из условия теоремы следует неравенство

$$\sum_{j=1}^{m} n_j q^{-l_j} \le 1$$

Имеем неравенство  $\sum_{j=1}^{m} n_j q^{-l_j} \leq 1$ .

Отсюда  $\sum_{j=1}^k n_j q^{-l_j} \le 1$  для любого  $k \in [1, m]$ .

Домножив обе части на  $q^{l_k}$ , получим

$$q^{l_k} \ge \sum_{j=1}^k n_j q^{l_k - l_j} = n_k + \sum_{j=1}^{k-1} n_j q^{l_k - l_j}$$

Следовательно, для любого  $k \in [1, m]$  имеем

$$n_k \le q^{l_k} - \sum_{j=1}^{\infty} n_j q^{l_k - l_j}$$
.

Будем строить префиксный код, сначала выбирая  $n_1$  слов длины  $l_1$ , затем  $n_2$  слов длины  $l_2$ , и т.д.

Пусть уже набраны все кодовые слова с длинами  $l_1, \dots, l_{k-1}$ .

Слов длины  $l_k$ , для которых выбранные кодовые слова являются префиксами, не более  $n_1q^{l_k-l_1}+\cdots+n_{k-1}q^{l_k-l_{k-1}}$ , то есть «пригодных для выбора» слов длины  $l_k$  не меньше, чем

$$q^{l_k} - (n_1 q^{l_k - l_1} + \dots + n_{k-1} q^{l_k - l_{k-1}})$$

Пусть уже набраны все кодовые слова с длинами  $l_1,\dots,l_{k-1}.$  «Пригодных для выбора» слов длины  $l_k$  не меньше, чем

$$q^{l_k} - (n_1 q^{l_k - l_1} + \dots + n_{k-1} q^{l_k - l_{k-1}}).$$

Из условия теоремы мы ранее вывели, что

$$n_k \le q^{l_k} - (n_1 q^{l_k - l_1} + \dots + n_{k-1} q^{l_k - l_{k-1}}),$$

то есть мы сможем выбрать  $n_k$  слов длины  $l_k$ , так, чтобы никакие из ранее выбранных слов не были их префиксами.

По индукции получаем утверждение теоремы.

#### Универсальность префиксных кодов

#### Следствие из двух доказанных теорем.

Для любого однозначного кода существует префиксный код в том же алфавите и с теми же длинами кодовых слов.

Значит, к.м.и. можно искать только среди префиксных кодов.

### Свойства оптимальных кодов

Вернёмся к задаче построения к.м.и.

#### Лемма.

Если 
$$B_1, \dots, B_n$$
 — к.м.и. для набора частот  $p_1, \dots, p_n$ , то  $\forall i, j \ ig(p_i > p_j \ \Rightarrow |B_i| \leq |B_j|ig)$ 

#### Доказательство:

В противном случае, поменяв  $B_i$  и  $B_j$  местами, получили бы код с коэффициентом избыточности

$$\sum_{i=1}^{n} p_i |B_i| - (p_i - p_j)(|B_i| - |B_j|) < \sum_{i=1}^{n} p_i |B_i|$$

### Теорема «о редукции»

#### Теорема «о редукции». (D.A. Huffman)

```
Пусть p_1 \ge \cdots \ge p_{n-1} \ge p_n и p \coloneqq p_{n-1} + p_n. Если B_1, \ldots, B_{n-2}, B \in \{0,1\}^* — префиксный к.м.и. для частот p_1, \ldots, p_{n-2}, p,
```

то  $B_1$ , ...,  $B_{n-2}$ , B0, B1 — префиксный к.м.и. для частот  $p_1$ , ...,  $p_n$ .

#### Доказательство теоремы о редукции

Пусть к.и. кода  $B_1, \dots, B_{n-2}, B$  для частот  $p_1, \dots, p_{n-2}, p$  равен k.

К.и. кода 
$$B_1,\dots,B_{n-2},B0,B1$$
 для частот  $p_1,\dots,p_n$  равен 
$$\sum_{i=1}^{n-2}p_i|B_i|+(p_{n-1}+p_n)(|B|+1)=\sum_{i=1}^{n-2}p_i|B_i|+p|B|+p=k+p$$

Допустим, что нашёлся код  $B_1', \dots, B_n'$ , к.и. которого для частот  $p_1, ..., p_n$  равен k' < k + p.

### Доказательство теоремы о редукции

Допустим, что нашёлся код  $B_1'$ , ...,  $B_n'$ , к.и. которого для набора частот  $p_1$ , ...,  $p_n$  равен k' < k + p.

Б.о.о. будем считать код  $\{B_i'\}_{i=1}^n$  префиксным к.м.и. для набора  $p_1$ , ...,  $p_n$ .

Т.к. 
$$p_1 \geq \cdots \geq p_n$$
, то  $|B_1'| \leq \cdots \leq |B_n'|$ .

Пусть  $B_n' = B'0$ , где B' — некоторое слово.

Заметим, что

- $B' \notin \{B_i'\}_{i=1}^n$
- B' является префиксом одного из слов  $B_1'$ , ...,  $B_{n-1}'$ .

Б.о.о. будем считать, что  $B'_{n-1}=B'1$ . Тогда код  $B'_1$ , ...,  $B'_{n-2}$ , B' префиксный.

#### Доказательство теоремы о редукции

К.и. кода  $B_1',\dots,B_{n-2}',B'$  для набора частот  $p_1,\dots,p_{n-2},p$  равен  $(p_{n-1}+p_n)|B'|+\sum_{i=1}^np_i|B_i'|=\sum_{i=1}^np_i|B_i'|-(p_{n-1}+p_n)=k'-p< k$ 

— противоречие с тем, что код  $B_1, \dots, B_{n-2}, B$  является к.м.и. для частот  $p_1, \dots, p_{n-2}, p$ .

#### Коды, исправляющие ошибки

#### Основные требования к кодам:

- Однозначность обязательное требование. Есть критерий, алгоритм проверки.
- Минимальная избыточность. Есть алгоритм построения для произвольного заданного набора частот.
- Устойчивость к ошибкам. Возможность расшифровать закодированное сообщение даже при возникновении ошибок при его передаче.

### Коды, исправляющие ошибки

Естественный язык весьма устойчив к ошибкам:

«Веть Ву мжте прчтттть эт ткст п поняц го!»

#### Причины:

- избыточность: гласные и т.д.
- разреженность: «вблизи» слов обычно нет других слов если есть, то ошибки исправлять тяжело:

чемодан зарыт vs. чемодан закрыт

#### Коды, исправляющие ошибки

#### Основная модель канала связи:



## Что было и что будет

На лекции мы рассмотрели:

- Алфавитное кодирование
- Префиксные коды, однозначность
- Коды с минимальной избыточностью