Assignment – 4 Name – Sukhmandeep Singh Roll No. – 102003144 Batch – COE7

Probability and Statistics (UCS410)

Experiment 4

(Mathematical Expectation, Moments and Functions of Random Variables)

1. The probability distribution of X, the number of imperfections per 10 meters of a synthetic fabric in continuous rolls of uniform width, is given as

х	0	1	2	3	4
p(x)	0.41	0.37	0.16	0.05	0.01

Find the average number of imperfections per 10 meters of this fabric.

(Try functions sum(), weighted.mean(), c(a %*% b) to find expected value/mean.

2. The time T, in days, required for the completion of a contracted project is a random variable with probability density function f(t) = 0.1 e^(-0.17) for t > 0 and 0 otherwise. Find the expected value of T.

Use function integrate() to find the expected value of continuous random variable T.

```
| Source on Save | Assignmen_2.R × | Source on Save | Assign_4.R × | Assign_4.R ×
```

3. A bookstore purchases three copies of a book at 6.00 each and sells them for 12.00 each. Unsold copies are returned for 2.00 each. Let $X = \{number of copies sold\}$ and $Y = \{net revenue\}$. If the probability mass function of X is

x	0	1	2	3
p(x)	0.1	0.2	0.2	0.5

Find the expected value of Y.

```
| Solitorobal | Source on Save | Save | Source on Save |
```

4. Find the first and second moments about the origin of the random variable X with probability density function $f(x) = 0.5e^{xx}$, 1 < x < 10 and 0 otherwise. Further use the results to find Mean and Variance.

(kth moment = $E(X^k)$, Mean = first moment and Variance = second moment – Mean².

5. Let X be a geometric random variable with probability distribution

$$f(x) = \frac{3}{4} \left(\frac{1}{4}\right)^{x-1}, x = 1,2,3,...$$

Write a function to find the probability distribution of the random variable $Y = X^2$ and find probability of Y for X = 3. Further, use it to find the expected value and variance of Y for X = 1,2,3,4,5.