W(s) =

In entrambi i grafici indicare:

- a fianco di ogni punto della spezzata il corrispondente valore (in dB o gradi)
- a fianco di ogni segmento con pendenza non nulla il corrispondente valore di pendenza (in dB/dec o gradi/decade)

COGNOME: SOLUZIONE NOME: TIPO MATRICOLA: 0

Fondamenti di elettronica

Corso di laurea in Ingegneria Biomedica

terzo appello - 05/09/2024 - A (0)

DA LEGGERE CON ATTENZIONE PRIMA DI INIZIARE LA PROVA

- 1) Verificare che nome e cognome siano corretti. Scrivere cognome e nome anche su tutti i fogli protocollo
- 2) Bisogna consegnare il testo del compito anche in caso di ritiro
- 3) Risposte non chiare o non adequatamente giustificate saranno penalizzate
- 4) Nei conti e nei risultati, i valori numerici **<u>DEVONO</u>** essere accompagnati dalla <u>relativa unità di misura</u>. I risultati senza unità di misura saranno considerati sbagliati.
- 5) L'elaborato deve essere scritto e consegnato in forma ORDINATA e COMPRENSIBILE.
- 6) Il tempo a disposizione è di 2 ore

Problema 1

Dato il circuito amplificatore in figura di cui sono noti:

- I parametri dei MOSFET:

 \circ M₁: $k_1 = 2mA/V^2$, $V_{TN} = 1V$

 \circ M₂: k₂ = 5mA/V², V_{TP} = -1V

- I valori delle resistenze: $R_2 = 2k\Omega$, $R_3 = 3k\Omega$, $R_4 = 500\Omega$ $R_i = 5k\Omega$, $R_L = 4.5k\Omega$.

NOME: TIPO

La tensione di alimentazione: V_{DD} = 5V

- 1) Trovare il valore di R_1 sapendo che la corrente attraverso M_1 è I_{DS} = 1mA.
- 2) Trovare la polarizzazione di M₁ e M₂ in condizioni DC.
- 3) Determinare i potenziali dei nodo A, B e C
- 4) Disegnare il modello ai piccoli segnali del circuito e calcolare le transconduttanze di M_1 e M_2 . Dall'analisi ai piccoli segnali, calcolare:
- 5) La resistenza di ingresso e di uscita dell'amplificatore, come mostrato in figura
- 6) Il guadagno dall'ingresso v_i all'uscita v_o.

Problema 2

Dato il circuito in figura, realizzato con un amplificatore operazionale ideale, un diodo con V_{ON} = 1V e resistenze di valore R = 1k Ω . Tracciare la transcaratteristica di v_O in funzione di v_S . Disegnare il grafico usando il diagramma a pagina seguente. (A fianco di ciascun punto di spezzamento indicare i valori di tensione v_S e v_O corrispondenti. A fianco di ciascun segmento indicare il valore della pendenza (dv_O/dv_S) e la regione di funzionamento del diodo)

Problema 3

DATI: $R_1 = 1k\Omega$, $R_2 = 4k\Omega$, $R_L = 10k\Omega$

Dato il circuito in figura realizzato con un amplificatore operazionale reale. Sapendo che la tensione di uscita dell'amplificatore operazionale ha limiti -5V e +5V e che la massima corrente erogata o assorbita dal terminale di uscita è 2mA, calcolare la tensione vo con:

1.
$$v_1 = 5V$$
, $v_2 = 3V$

2.
$$v_1 = -2V$$
, $v_2 = -4V$

Problema 4

DATI: R_1 = 0.5k Ω , C_1 = 200nF, R_2 = 4.5k Ω , R_3 = 1k Ω , C_3 = 1 μ F, R_4 = 99k Ω Dato il filtro in figure.

- 1. Calcolare il guadagno a bassa frequenza ($\omega \rightarrow 0$)
- 2. Calcolare il guadagno ad alta frequenza $(\omega \rightarrow \infty)$
- 3. Trovare la funzione di trasferimento (riportare l'espressione della funzione di trasferimento nella scheda della quarta pagina)
- 4. Tracciare i diagrammi di bode asintotici di modulo e fase (usando i grafici in quarta pagina).

