Homework 2

Due: April 23, 2021

1. Consider

$$v'''(t) + v'(t)v(t) - \frac{\beta_1 + \beta_2 + \beta_3}{3}v'(t) = 0,$$

where $\beta_1 < \beta_2 < \beta_3$. It follows that

$$v(t) = \beta_2 + (\beta_3 - \beta_2) \text{cn}^2 \left(\sqrt{\frac{\beta_3 - \beta_1}{12}} t, \sqrt{\frac{\beta_3 - \beta_2}{\beta_3 - \beta_1}} \right)$$

is a solution where cn(x, k) is the Jacobi cosine function and k is the elliptic modulus. Some notations use cn(x, m) where $m = k^2$. The corresponding initial conditions are

$$v(0) = \beta_3, v'(0) = 0, v''(0) = -\frac{(\beta_3 - \beta_1)(\beta_3 - \beta_2)}{6}.$$

Derive a third-order Runge-Kutta method and verify the order of accuracy on this problem using the methodology in Lecture 6 & 7 — produce a plot and and a table.

Solution.

Recall that a r-stage explicit RK method can have order at most r, we will try to derive a three-stage third-order RK method. This has the general form

$$Y_{1} = U^{n} + k \sum_{j=1}^{3} a_{1j} f(Y_{j}, t_{n} + c_{j}k)$$

$$Y_{2} = U^{n} + k \sum_{j=1}^{3} a_{2j} f(Y_{j}, t_{n} + c_{j}k)$$

$$Y_{3} = U^{n} + k \sum_{j=1}^{3} a_{3j} f(Y_{j}, t_{n} + c_{j}k)$$

$$U^{n+1} = U^{n} + k \sum_{i=1}^{3} b_{i} f(Y_{i}, t_{n} + c_{i}k)$$

Let $t = t_n$ and undo the approximation

$$u(t + k) = u(t) + k \sum_{i=1}^{3} b_i f(y_i, t + c_i k)$$

Taylor expand u(t+k) and rearrange

$$u'(t) + \frac{k}{2}u''(t) + \frac{k^2}{6}u'''(t) + O(k^3) = \sum_{i=1}^3 b_i f(y_i, t + c_i k)$$
 (1)

Taylor expand $f(y_i, t + c_i k)$ around (u(t), t) and let f = f(u(t), t)

$$f(y_i, t + c_i k) = f + f_u \left(k \sum_{j=1}^3 a_{ij} f(y_j, t + c_j k) \right) + f_t c_i k$$

$$+ \frac{1}{2} f_{uu} \left(k \sum_{j=1}^3 a_{ij} f(y_j, t + c_j k) \right)^2 + \frac{1}{2} f_{tt} (c_i k)^2 + f_{ut} c_i k \left(k \sum_{j=1}^3 a_{ij} f(y_j, t + c_j k) \right)$$

Note that

$$y_j = u(t) + O(k)$$
$$t + c_j k = t + O(k)$$

We can rewrite $f(y_i, t + c_i k)$ as

$$f(y_i, t + c_i k) = f + k f_t c_i + \frac{1}{2} k^2 f_{tt} c_i^2 + k^2 f_{ut} f c_i \sum_{j=1}^3 a_{ij} + k f_u f \sum_{j=1}^3 a_{ij} + \frac{1}{2} k^2 f_{uu} f^2 (\sum_{j=1}^3 a_{ij})^2 + O(k^3)$$

Plugging this into (1). Matching the coefficients gives the conditions

$$\sum_{i=1}^{3} b_i = 1$$

$$\sum_{i=1}^{3} b_i c_i = \frac{1}{2}$$

$$\sum_{i=1}^{3} b_i c_i^2 = \frac{1}{3}$$

$$\sum_{i=1}^{3} \sum_{j=1}^{3} b_i a_{ij} c_i = \frac{1}{6}$$

This is a system of nonlinear equations with 15 unknowns. For an explicit method, the elements on and above the diagonal in the a_{ij} portion of the Butcher tableau is 0. This eliminates 6 unknowns. We also know that $c_1 = 0$ for all RK methods. Thus we are left with 8 unknowns. Solving with initial guess $c_2 = 1/3$ yields

$$a_{21} = 1/3$$
, $a_{31} = 0$, $a_{32} = 2/3$
 $b_1 = 1/4$, $b_2 = 0$, $b_3 = 3/4$
 $c_2 = 1/3$, $c_3 = 2/3$

Finally, the RK method is

$$U^{n+1} = U^n + \frac{k}{4}(f(Y_1, t_n) + 3f(Y_3, t_n + 2k/3))$$

We implement this method in MATLAB as $jacobi_cos.m.$ We observe that the error reduction ratio is approximately $2^3 = 8$, which indicates that our method is indeed third order.

Figure 1: Error of third order RK against step size

k	3rd RK
0.005000	8.2161
0.002500	8.1097
0.001250	8.0556
0.000625	8.0311
0.000313	7.9561
0.000156	7.0955

Table 1: Error reduction ratio of third order RK

- 2. Which of the following Linear Multistep Methods are convergent? For the ones that are not, are they inconsistent, or not zero-stable, or both?
 - (a) $U^{n+3} = U^{n+1} + 2kf(U^n)$
 - (b) $U^{n+2} = \frac{1}{2}U^{n+1} + \frac{1}{2}U^n + 2kf(U^{n+1}),$
 - (c) $U^{n+1} = U^n$,
 - (d) $U^{n+4} = U^n + \frac{4}{3}k(f(U^{n+3}) + f(U^{n+2}) + f(U^{n+1})),$
 - (e) $U^{n+3} = -U^{n+2} + U^{n+1} + U^n + 2k(f(U^{n+2}) + f(U^{n+1})).$

Solution.

Recall the general form of LMMs

$$\sum_{j=0}^{r} \alpha_{j} U^{n+j} = k \sum_{j=0}^{r} \beta_{j} f(U^{n+j}, t_{n+j})$$

Consistency requires that

$$\sum_{j=0}^{r} \alpha_j = 0, \quad \sum_{j=0}^{r} j\alpha_j = \sum_{j=0}^{r} \beta_j$$
 (2)

(a) We find the coefficients as

$$\alpha_0 = 0, \ \alpha_1 = -1, \ \alpha_2 = 0, \ \alpha_3 = 1$$

 $\beta_0 = 2, \ \beta_1 = 0, \ \beta_2 = 0, \ \beta_3 = 0$

Clearly (1) is satisfied, thus this method is consistent. The characteristic polynomial of this method is $z^3 - z = 0$, which has roots $z = 0, \pm 1$. Since all roots are distinct and have absolute values ≤ 1 , this method is zero-stable. Thus it is convergent.

(b) We find the coefficients as

$$\alpha_0 = -\frac{1}{2}, \ \alpha_1 = -\frac{1}{2}, \ \alpha_2 = 1$$
 $\beta_0 = 0, \ \beta_1 = 2, \ \beta_2 = 0$

- (1) is not satisfied because $\alpha_1 + 2\alpha_2 = \frac{3}{2} \neq 2$, thus this method is inconsistent. The characteristic polynomial of this method is $z^2 \frac{z}{2} \frac{1}{2} = 0$, which has roots $z = -\frac{1}{2}, 1$. Since all roots are distinct and have absolute values ≤ 1 , this method is zero-stable. Thus it is not convergent.
- (c) Clearly this method is inconsistent because f does not appear anywhere. The

characteristic polynomial of this method is z - 1 = 0, which has a root z = 1. Since it has absolute values ≤ 1 , this method is zero-stable. Thus it is not convergent.

(d) We find the coefficients as

$$\alpha_0 = -1$$
, $\alpha_1 = 0$, $\alpha_2 = 0$, $\alpha_3 = 0$, $\alpha_4 = 1$
 $\beta_0 = 0$, $\beta_1 = \frac{4}{3}$, $\beta_2 = \frac{4}{3}$, $\beta_3 = \frac{4}{3}$, $\beta_4 = 0$

Clearly (1) is satisfied, thus this method is consistent. The characteristic polynomial of this method is $z^4 - 1 = 0$, which has roots $z = \pm 1, \pm i$. Since all roots are distinct and have absolute values ≤ 1 , this method is zero-stable. Thus it is convergent.

(e) We find the coefficients as

$$\alpha_0 = -1, \ \alpha_1 = -1, \ \alpha_2 = 1, \ \alpha_3 = 1$$

 $\beta_0 = 0, \ \beta_1 = 2, \ \beta_2 = 2, \ \beta_3 = 0$

Clearly (1) is satisfied, thus this method is consistent. The characteristic polynomial of this method is $z^3 + z^2 - z - 1 = 0$, which has repeated roots z = -1 and a simple root z = 1. Since the repeated roots have absolute values equal to 1, this method is not zero-stable. Thus it is not convergent.

3. For the one-step method (6.17), with Ψ given in (6.18), show that the Lipschitz constant is $L' = L + \frac{k}{2}L^2$ where L is the Lipschitz constant for f.

Solution.

Let

$$a = u + \frac{1}{2}kf(u)$$
$$b = v + \frac{1}{2}kf(v)$$

By Lipschitz condition and triangular inequality

$$\begin{split} |f(a) - f(b)| &\leq L|a - b| \\ |\Psi(u) - \Psi(v)| &\leq L|u - v + \frac{1}{2}k(f(u) - f(v))| \\ &\leq L(|u - v| + \frac{1}{2}k|f(u) - f(v)|) \\ &\leq L(|u - v| + \frac{1}{2}kL|u - v|) \\ &= (L + \frac{1}{2}kL^2)|u - v| \end{split}$$

4. The Fibonacci numbers

- (a) Determine the general solution to the linear difference equation $U^{n+2} = U^{n+1} + U^n$.
- (b) Determine the solution to this difference equation with the starting values $U^0 = 1$, $U^1 = 1$. Use this to determine U^{30} . (Note, these are the *Fibonacci numbers*, which of course should all be integers.)
- (c) Show that for large n the ratio of successive Fibonacci numbers U^n/U^{n-1} approaches the "golden ratio" $\phi \approx 1.618034$.

Solution.

(a) The characteristic polynomial of this equation is $z^2 - z - 1 = 0$, which has roots $z = \frac{1 \pm \sqrt{5}}{2}$. Thus the general solution is

$$U^{n} = c_{1} \left(\frac{1 + \sqrt{5}}{2} \right)^{n} + c_{2} \left(\frac{1 - \sqrt{5}}{2} \right)^{n}$$

(b) $U_0 = 1$ gives $c_1 + c_2 = 1$. $U_1 = 1$ gives $c_1 \frac{1+\sqrt{5}}{2} + c_2 \frac{1-\sqrt{5}}{2} = 1$. Solving yields $c_1 = \frac{5+\sqrt{5}}{10}$, $c_2 = \frac{5-\sqrt{5}}{10}$. Then

$$U^{30} = \frac{5 + \sqrt{5}}{10} \left(\frac{1 + \sqrt{5}}{2} \right)^{30} + \frac{5 - \sqrt{5}}{10} \left(\frac{1 - \sqrt{5}}{2} \right)^{30} = 1346269$$

(c) Let n be large and realizing that $\left|\frac{1-\sqrt{5}}{2}\right| < 1$

$$\frac{U^n}{U^{n-1}} = \frac{c_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + c_2 \left(\frac{1-\sqrt{5}}{2}\right)^n}{c_1 \left(\frac{1+\sqrt{5}}{2}\right)^{n-1} + c_2 \left(\frac{1-\sqrt{5}}{2}\right)^{n-1}}$$

$$= \frac{\frac{1+\sqrt{5}}{2} \left(c_1 \left(\frac{1+\sqrt{5}}{2}\right)^{n-1} + c_2 \left(\frac{1-\sqrt{5}}{2}\right)^n \frac{2}{1+\sqrt{5}}\right)}{c_1 \left(\frac{1+\sqrt{5}}{2}\right)^{n-1} + c_2 \left(\frac{1-\sqrt{5}}{2}\right)^n \frac{2}{1-\sqrt{5}}}$$

$$\approx \frac{1+\sqrt{5}}{2} = 1.618034$$

5. Explicit solution of leapfrog: Consider the difference equation

$$U^{n+1} + U^{n-1} = 2xU^n, \quad n \ge 0,$$

 $U^0 = 1, \quad U^{-1} = 0.$

Provided that $-1 \le x \le 1$ perform the following steps:

(a) Argue that this can be replaced with

$$U^{n+1} + U^{n-1} = (e^{i\theta} + e^{-i\theta})U^n, \quad n \ge 0,$$

 $U^0 = 1, \quad U^{-1} = 0, \quad \theta \in \mathbb{R}.$

- (b) Define $V^n = U^n e^{i\theta}U^{n-1}$ and find a simpler recurrence relation for V^n . Solve it.
- (c) With V^n known, $V^n = U^n e^{i\theta}U^{n-1}$ gives an inhomogeneous recurrence relation for U^n . Find a formula for U^n . For which value(s) of $x \in [-1, 1]$ is U^n largest?

Note: In this problem you can make the ansatz $U^n = \lambda^n$ and find a quadratic equation to determine two possible values for λ , say, λ_1, λ_2 . Then the general solution is a sum of these, $U^n = c_1 \lambda_1^n + c_2 \lambda_2^n$. This approach will give another representation of the same solution. You are encouraged to do so and derive this remarkable identity!

Solution.

- (a) We have $e^{i\theta} + e^{-i\theta} = \cos\theta + i\sin\theta + \cos\theta i\sin\theta = 2\cos\theta$, observing that $-1 < \cos\theta < 1$.
- (b) We start with some simple relations

$$V^{n-1} = U^{n-1} - e^{i\theta}U^{n-2}$$

$$U^n = (e^{i\theta} + e^{-i\theta})U^{n-1} - U^{n-2}$$

Multiplying the first relation by $e^{-i\theta}$, have this in mind

$$e^{-i\theta}V^{n-1} = e^{-i\theta}U^{n-1} - U^{n-2}$$

Plugging the second relation into V^n

$$V^{n} = (e^{i\theta} + e^{-i\theta})U^{n-1} - U^{n-2} - e^{i\theta}U^{n-1} = e^{-i\theta}V^{n-1}$$

The characteristic polynomial of this is $1-e^{-i\theta}z^{-1}=0$ which has a root $z=e^{-i\theta}$. The solution takes the form $V^n=ce^{-in\theta}$. The conditions $U^0=1,\ U^{-1}=0$ give $V^0=1$. Solving yields c=1. Thus $V^n=e^{-in\theta}$.

(c) We have the inhomogeneous relations

$$e^{-in\theta} = U^n - e^{i\theta}U^{n-1}$$

 $e^{-i(n+2)\theta} = U^{n+2} - e^{i\theta}U^{n+1}$

Let $e^{-i\theta} = r$, the homogeneous problem

$$\lambda^2 - r^{-1}\lambda = 0$$

has solution $\lambda_1 = r^{-1}$ and $\lambda_2 = 0$. Thus $U_h^n = c_1 r^{-n}$. For the inhomogeneous problem, we assume that the solution takes the form $\lambda = a r^n$. Plugging into the difference equation

$$ar^n = r^{-1}ar^{n-1} + r^n$$

Solving yields $a = \frac{1}{1-r^{-2}}$. Thus the particular solution is $U_p^n = c_2 \frac{r^n}{1-r^{-2}}$. The general solution is

$$U^n = c_1 r^{-n} + c_2 \frac{r^n}{1 - r^{-2}}$$

Using $U^0 = 1$ and $U^{-1} = 0$ gives $c_1 = \frac{-1}{r^2 - 1}$ and $c_2 = 1$, thus

$$U^{n} = \frac{r^{n+1} - r^{-(n+1)}}{r - r^{-1}}$$
$$= \frac{-2i\sin(n+1)\theta}{-2i\sin\theta}$$
$$= \frac{\sin(n+1)\theta}{\sin\theta}$$

By L'Hopital's Rule,

$$\lim_{\theta \to 0} \frac{\sin(n+1)\theta}{\sin \theta} = \lim_{\theta \to 0} \frac{(n+1)\cos(n+1)\theta}{\cos \theta} = n+1$$

This the largest value of U^n , taken at $x = \cos(0) = 1$.

6. Any r-stage Runge-Kutta method applied to $u' = \lambda u$ will give an expression of the form

$$U^{n+1} = R(z)U^n$$

where $z = \lambda k$ and R(z) is a rational function, a ratio of polynomials in z each having degree at most r. For an explicit method R(z) will simply be a polynomial of degree r and for an implicit method it will be a more general rational function.

Since $u(t_{n+1}) = e^z u(t_n)$ for this problem, we expect that a pth order accurate method will give a function R(z) satisfying

$$R(z) = e^z + O(z^{p+1})$$
 as $z \to 0$.

This indicates that the one-step error is $O(z^{p+1})$ on this problem, as expected for a pth order accurate method.

The explicit Runge-Kutta method of Example 5.13 is fourth order accurate in general, so in particular it should exhibit this accuracy when applied to $u'(t) = \lambda u(t)$. Show that in fact when applied to this problem the method becomes $U^{n+1} = R(z)U^n$ where R(z) is a polynomial of degree 4, and that this polynomial agrees with the Taylor expansion of e^z through $O(z^4)$ terms.

We will see that this function R(z) is also important in the study of absolute stability of a one-step method.

Solution.

We apply a fourth-order Runge-Kutta method to this problem

$$\begin{split} Y_1 &= U^n \\ Y_2 &= (1 + \frac{z}{2})U^n \\ Y_3 &= (\frac{z^2}{4} + \frac{z}{2} + 1)U^n \\ Y_4 &= (\frac{z^3}{4} + \frac{z^2}{2} + z + 1)U^n \\ U^{n+1} &= U^n + \frac{k}{6} \left[f(Y_1) + 2f(Y_2) + 2f(Y_3) + f(Y_4) \right] \\ &= U^n + \frac{z}{6} [Y_1 + 2Y_2 + 2Y_3 + Y_4] \\ &= U^n + \frac{z}{6} U^n [1 + 2(1 + \frac{z}{2}) + 2(\frac{z^2}{4} + \frac{z}{2} + 1) + \frac{z^3}{4} + \frac{z^2}{2} + z + 1] \\ &= U^n + \frac{z}{6} (6 + 3z + z^2 + \frac{z^3}{4})U^n \\ &= (1 + z + \frac{z^2}{2} + \frac{z^3}{6} + \frac{z^4}{24})U^n \end{split}$$

Clearly, R(z) is the Taylor expansion of e^z through $O(z^4)$.

7. Determine the function R(z) described in the previous exercise for the TR-BDF2 method given in (5.37). Note that this can be simplified to the form (8.6), which is given only for the autonomous case but that suffices for $u'(t) = \lambda u(t)$. (You might want to convince yourself these are the same method).

Confirm that R(z) agrees with e^z to the expected order.

Note that for this implicit method R(z) will be a rational function, so you will have to expand the denominator in a Taylor series, or use the Neumann series

$$1/(1-\epsilon) = 1 + \epsilon + \epsilon^2 + \epsilon^3 + \cdots.$$

Solution.

We apply a TR-BDF2 method to this problem

$$Y_1 = U^n$$

$$Y_2 = U^n + \frac{z}{4}(Y_1 + Y_2)$$

$$Y_3 = U^n + \frac{z}{3}(Y_1 + Y_2 + Y_3)$$

$$U^{n+1} = Y_3$$

Rearranging

$$Y_2 = \frac{U^n + \frac{z}{4}U^n}{1 - \frac{z}{4}}$$

$$Y_3 = U^{n+1} = \frac{U^n + \frac{z}{3}(U^n + \frac{U^n + \frac{z}{4}U^n}{1 - \frac{z}{4}})}{1 - \frac{z}{3}}$$

Simplifying

$$U^{n+1} = \frac{5z+12}{(z-4)(z-3)}U^n = \left(\frac{27}{3-z} - \frac{32}{4-z}\right)U^n$$

$$= \left(9\left(\frac{1}{1-\frac{z}{3}}\right) - 8\left(\frac{1}{1-\frac{z}{4}}\right)\right)U^n$$

$$= (9(1+\frac{z}{3}+\frac{z^2}{9}+\cdots) - 8(1+\frac{z}{4}+\frac{z^2}{16}+\cdots))U^n$$

$$= (1+z+\frac{z^2}{2}+\cdots)U^n$$

Clearly this matches e^z through $O(z^2)$.