Análisis Matemático II – Cuestionario del Final del 09/02/21

P1

Sea
$$f(x,y) = \begin{cases} \frac{x(x^2 - y^2)}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$
Entonces, la cantidad de versores para los cuales la derivada direccional de f en $(0,0)$ resulta nula es:

Seleccione una:

O a. 6 versores

O b. 2 versores

O d. Ninguna de las otras es correcta

 \bigcirc e. 3 versores

O c. 4 versores

P2

Sean $\overline{f}(x,y,z) = (x, x+y^2, z)$ y la superficie abierta Σ de ecuación $x^2+z^2=16$ con $0 \le y \le k$, 1° octante, orientada hacia z^+ . Entonces, para que el flujo de \overline{f} a través de Σ resulte igual a 32, la constante k debe ser: Seleccione una: \bigcirc a. k=4 \bigcirc b. $k=4/\pi$

 \bigcirc c. k=4 π

O d. Ninguna de las otras es correcta

 \bigcirc e. $k = \pi/4$

P3

Sea $D = \{(x,y) \in \mathbb{R}^2 \ / \ -7 \le y \le f(x)\}$, donde y = f(x) es la solución particular de la ecuación diferencial $y'' - 2 \ y' + y = 4 \ x - x^2$ que en el punto (0,2) tiene recta tangente horizontal (paralela al eje X).

Entonces, el área de $\,D\,$ resulta igual a:

Seleccione una:

○ a. $\frac{50}{3}\sqrt{2}$

○ b. $\frac{8}{3}\sqrt{2}$

O c. Ninguna de las otras es correcta

O d. 6

O e. 36

P4

Sea S la superficie de ecuación $z=9-x^2-y^2$ con $y\leq 3-x^2$, $x\geq 0$, $y\geq 0$, $z\geq 0$, cuyo borde es la curva C.

Dado $\overline{f}(x,y,z) = (14 \text{ x z}, x^2 + k x + y + z, 2 - 7 y^2)$, si se desea lograr que la circulación de \overline{f} a lo largo de C en el sentido definido por (0,3,0) → (0,0,9) → ··· → (0,3,0) resulte numéricamente igual al área de la proyección de S sobre el plano XY, entonces el valor de la constante k debe ser:

Sugerencia: aplique el teorema del rotor.

Seleccione una:

○ a. k = -1

O b. Ninguna de las otras es correcta

 \bigcirc c. k=1

 \bigcirc d. k=2

 \bigcirc e. k = -2

Análisis Matemático II – Cuestionario del Final del 09/02/21

P5

```
Sea \overline{f} \in C^1(\mathbb{R}^2) tal que \overline{f}(x,y) = (x^2y^3 + yg(x), x^3y^2 - g(x)) con \overline{f}(0,0) = (0,3).

Sabiendo que \overline{f} admite función potencial, entonces, la circulación de \overline{f} a lo largo de una curva desde (0,2) hasta (-4,0) resulta igual a:

Seleccione una:

a. 0

b. 4

c. 6

d. -6

e. Ninguna de las otras es correcta
```

P6

Dada la superficie S de ecuación $z^2 = 1 + x^2 - y^2$, si se analiza la existencia de punto(s) donde el plano tangente a S es paralelo al plano de ecuación $x + \frac{1}{2}y + z = 3$, se concluye que:

Seleccione una:

O a. Existen dos puntos: $\overline{A} = (-1,1/2,1)$ y $\overline{B} = (1,-1/2,-1)$ O b. Existen dos puntos: $\overline{A} = (-2,1,2)$ y $\overline{B} = (2,-1,-2)$ O c. Existe un único punto: $\overline{A} = (-1,1,1)$ O d. Ninguna de las otras es correcta

O e. Existe un único punto: $\overline{A} = (1,1,-1)$

P7

Considere el campo $\overline{f} \in C^1(\mathbb{R}^3)$ tal que $\overline{f}(x,y,z) = (g(y,z),\ h(x,z),\ 2)$ y la superficie abierta S de ecuación $z = 1 + x^2 + y^2$ con $z \le 2$. Entonces, el flujo de \overline{f} a través de S orientada hacia z^- resulta igual a: Seleccione una:

O a. Ninguna de las otras es correcta

O b. -4π O c. -2π O d. 2π O e. 4π

P8

Sean $\overline{f} \in C^1(\mathbb{R}^2)$ tal que $\overline{f}(x,y) = (y \ g(x \cdot y) - y \ , \ x \ g(x \cdot y) - 3 \ x \)$ y la circunferencia C con centro en (x_0,y_0) y radio R=2. Entonces la circulación en sentido positivo de \overline{f} a lo largo de C resulta igual a: Seleccione una:

o a. -4π o b. 8π o c. 4π o d. -8π o e. Ninguna de las otras es correcta

Análisis Matemático II – Cuestionario del Final del 09/02/21

P9

Dado el campo escalar $f: \mathbb{R}^2 \to \mathbb{R}$ tal que $f(x,y) = 2 \ x^2 + 2 \ y^2 - 2 \ x^2 \ y + 4 \ y$, del análisis de extremos (máximo y mínimos) locales de los valores de f, se concluye que:

Seleccione una:

o a. f(-2,1) = f(2,1) = 6 es máximo local, no produce mínimo(s) loca(es)

o b. f(0,-1) = -2 es máximo local, f(-2,1) = f(2,1) = 6 es mínimo local

o c. f(0,-1) = -2 es el único mínimo local, no produce máximo(s) local(es).

o d. f(0,-1) = -2 es mínimo local, f(-2,1) = f(2,1) = 6 es máximo local

o e. Ninguna de las otras es correcta

P10

```
La función escalar f \in C^1(\mathbb{R}^2) tal que f(2,2)=5, tiene las siguientes derivadas respecto de vector en el punto \overline{A}=(2,2):
f'(\overline{A},(2,5))=16 \quad \text{y} \quad f'(\overline{A},(7,3))=27,
entonces una aproximación lineal para f(2.02,1,99) es:

Seleccione una:

a. Ninguna de las otras es correcta

b. 4.96

c. 4.99

d. 5.04

e. 5.01
```