Longitudinal control

- Design a PID controller for a linear system
- Decompose a coupled nonlinear vehicle model and extract a linear decoupled longitudinal model
- Develop a feedforward controller for longitudinal vehicle control

REFERENCES

Control Theory: https://www.youtube.com/watch?v=lBC1nEq0_nk

PID control

· In the time domain:

$$u(t) = K_P e(t) + K_I \int_0^t e(t)dt + K_D \dot{e}(t)$$

where K_P , K_I , K_D are the proportional, integral and derivative gains

· In the Laplace domain:

$$U(s) = G_c(s)E(s) = \left(K_P + \frac{K_I}{s} + K_D s\right)E(s)$$
$$= \left(\frac{K_D s^2 + K_P s + K_I}{s}\right)E(s)$$

Characteristics P, I, and D gains

Closed Loop Response	Rise Time	Overshoot	Settling Time	Steady State Error
Increase K _P	Decrease	Increase	Small change	Decrease
Increase K _I	Decrease	Increase	Increase	Eliminate
Increase K _D	Small change	Decrease	Decrease	Small change

Supplementary Reading: Proportional-Integral-Derivative (PID) Control

The previous lecture on Proportional-Integral-Derivative (PID) Controls uses Laplace transforms. If you need to review Laplace transforms, check out these videos on Coursera:

- <u>DifferentialEq: Laplace</u> (Georgia Tech)
- <u>Laplace transform. Calculation of an expectation of a counting process 1</u> (Higher School of Economics)
- <u>Laplace transform. Calculation of an expectation of a counting process 2</u> (Higher School of Economics)
- <u>Laplace transform. Calculation of an expectation of a counting process 3</u> (Higher School of Economics)
- <u>Classical control: Textbook</u> by Prof. Bruce Francis (University of Toronto), covers Laplace Transforms, Bode Diagrams, Nyquist Plots

Architecture of vehicle control strategy

High level controller

 Determines the desired acceleration for the vehicle (based on the reference and actual velocity).

Low level controller

- Lower Level Controller:
 - Throttle input is calculated such that the vehicle track the desired acceleration determined by the upper level controller
- Assumptions:
 - Only throttle actuations is considered (no braking)
 - The torque converter is locked (gear 3+)
 - The tire slip is small (gentle longitudinal maneuvers)

Low level controller

Supplementary Reading: Longitudinal Speed Control with PID

For a deeper dive into longitudinal control, read Chapter 5 (pp. 123-150) in the textbook below:

R. Rajamani, "Introduction to Longitudinal Control" In: *Vehicle Dynamics and Control*, Mechanical Engineering Series, https://link.springer.com/chapter/10.1007%2F0-387-28823-6 (2006).

Combine with a feedforward controller

- Feedforward and feedback are often used together:
 - o Feedforward controller provides predictive response, non-zero offset
 - Feedback controller corrects the response, compensating for disturbances and errors in the model

Controller actuators

- Actuators (throttle angle):
 - \circ The feedforward controller generates the actuator signal (u_{ff}) based on the predefined table and the feedback controller generates the actuator signal (u_{fb}) based on the velocity error.

Feedforward table

Supplementary Reading: Feedforward Speed Control

To learn more about the feedforward speed control, read the PDF below:

Sailan, K., Kuhnert, K.D., "Modeling and Design of Cruise Control System with Feedforward For All Terrain Vehicles", Computer Science & Information Technology (CS & IT). 2013.

https://airccj.org/csecfp/library/Search.php?title=MODELING+AND+DESIGN+OF+CRUISE+CONTROL+SYSTEM.

Next

Module 7: Lateral control

https://docs.google.com/presentation/d/1ZkkvW7bkH4KTVpUEcf4SJg2W5gJR93X 1fD2nxwR4GKg/edit#slide=id.p