Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Лабораторная №14

Предмет: Проектирование реконфигурируемых гибридных вычислительных систем

Тема: Указатели

Задание 2

Студенты:

Соболь В.

Темнова А.С.

Группа: 13541/3

Преподаватель:

Антонов А.П.

Содержание

1.	Задание	3
2.	Исходный код	4
3.	Скрипт	5
4.	Решение 1а	6
	4.1. Моделирование	6
	4.2. Синтез	6
5 .	Решение 2а	9
	5.1. Моделирование	
	5.2. Синтез	10
6.	Вывод	13

1. Задание

- 1. Создать проект lab14 2
- 2. Микросхема: xa7a12tcsg325-1q
- 3. В папке source текст функции pointer_cast_native Познакомьтесь с ним.
- 4. Познакомьтесь с тестом.
- 5. Исследование:
- 6. Solution 1a
 - Создать версию pointer_cast_, в которой будет убран Кастинг
 - Осуществить моделирование (при необходимости изменить тест)
 - задать: clock period 10; clock uncertainty 0.1
 - установить реализацию ПО УМОЛЧАНИЮ
 - осуществить синтез для:
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile
 - * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
 - Выполнить cosimulation и привести временную диаграмму

7. Solution_2a

- Использовать исходную функцию pointer cast native
- Осуществить моделирование
- задать: clock period 10; clock uncertainty 0.1
- установить реализацию ПО УМОЛЧАНИЮ
- осуществить синтез
 - привести в отчете:
 - * performance estimates=>summary (timing, latency)
 - * utilization estimates=>summary
 - * performance Profile
 - * Resource profile

- * scheduler viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
- * resource viewer (выполнить Zoom to Fit)
 - · На скриншоте показать Latency
 - · На скриншоте показать Initiation Interval
- Выполнить cosimulation и привести временную диаграмму
- 8. Сравнить два решения (solution_1a и solution_2a) и сделать выводы

2. Исходный код

Ниже приведен исходный код устройства и теста.

```
#include "pointer cast native.h"
3
  data t pointer_cast_native (data_t index, data_t A[N]) {
4
     dint_t* ptr;
     data_t i = 0, result = 0;
5
6
     #ifdef TYPE CAST
7
       ptr = (\overline{dint} \ t*)(&A[index]);
8
     #else
9
       ptr = &A[index];
10
     #endif
11
     // Sum from the indexed value as a different type
12
     for (i = 0; i < 4*(N/10); ++i) {
13
       result += *ptr;
14
       ptr+=1;
15
16
     return result;
17
```

Рис. 2.1. Исходный код устройства

```
#ifndef _POINTER_CAST_NATIVE_H_
#define _POINTER_CAST_NATIVE_H_

#include <stdio.h>

#define N 1024

typedef int data_t;

typedef char dint_t;

data_t pointer_cast_native (data_t index, data_t A[N]);

#endif
```

Рис. 2.2. Заголовочный файл

```
1 #include "pointer cast native.h"
 2
 3
   int main () {
      data\_t \ din [N] \ , \ idx \ , \ dout \ ;
 4
 5
 6
     int i, retval=0;
 7
     FILE
                      *fp;
 8
 9
      // Create Input Data
10
       for(i=0; i<N;++i) {
           din[i] = i;
11
12
13
      // Save the results to a file
14
      fp = fopen("result.dat", "w");
15
16
17
      // Call the function
18
     idx = 136;
19
      dout=pointer_cast_native (idx, din);
20
      \label{eq:continuity} \texttt{fprintf}(\texttt{fp}\;,\;\; \texttt{"%d\_} \backslash \texttt{n"}\;,\;\; \texttt{dout}\,)\;;
21
22
      fclose (fp);
23
24
      // Compare the results file with the golden results
      retval = system("diff_--brief_-w_result.dat_result.golden.dat");
25
26
      if (retval != 0) {
27
         printf("Test_failed__!!!\n");
28
         retval=1;
29
      } else {
30
         printf("Test_passed_!\n");
31
32
33
     // Return 0 if the test passed
     return retval;
34
35|}
```

Рис. 2.3. Исходный код теста

3. Скрипт

Ниже приводится скрипт, для автоматизации выполнения лабораторной работы.

```
open project -reset lab14 2
2
3 add_files pointer_cast_native.c
4 add_files -tb pointer_cast_native_test.c
  add\_files\ -tb\ result.golden.dat
  set top pointer cast native
7
8
  open_solution -reset solution_1a
9
10 set part \{xa7a12tcsg325-1q\}
  create clock -period 10ns
11
  set clock uncertainty 0.1
12
13
14
  csim design
  csynth design
15
16
17 add files pointer cast native.c -cflags "-DTYPE CAST"
18 open_solution -reset solution_2a
19
20 | \text{set part } \{ \text{xa7a12tcsg325} - 1 \text{q} \}
21
  create clock -period 10ns
22
  set clock uncertainty 0.1
23
24 csim_design
25 csynth design
```

Рис. 3.1. Скрипт

4. Решение 1а

4.1. Моделирование

Ниже приведены результаты моделирования.

Рис. 4.1. Результаты моделирования

По результатам моделирования видно, что устройство работает корректно.

4.2. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Performance Estimates

□ Timing (ns)

□ Summary

Clock	Target	Estimated	Uncertainty		
ap_clk	10.00	8.205	0.10		

□ Latency (clock cycles)

□ Summary

Late	ency	Inte	rval	
min	max	min	max	Туре
1225	1225	1225	1225	none

□ B-4-31

Рис. 4.2. Performance estimates

Utilization Estimates

Summary

Name	BRAM_	18K	DSP4	8E	FF	LUT
DSP	-		-		-	-
Expression	-		-		0	513
FIFO	-		-		-	-
Instance	-		-		-	-
Memory	-		-		-	-
Multiplexer	-		-		-	45
Register	-		-		92	-
Total		0		0	92	558
Available		40		40	16000	8000
Utilization (%)		0		0	~0	6

Рис. 4.3. Utilization estimates

Рис. 4.4. Performance profile

Рис. 4.5. Scheduler viewer

	Resource\Control Step	C0	C1	C2	C3
1	⊡I/O Ports				
2	index	read			
3	A(p0)		re	ad	
4	ap_return		ret		
5	∃Memory Ports				
6	A(p0)		re	ad	
7	∃Expressions				
8	result_phi_fu_92		phi_mux		
9	ptr_0_rec_phi_fu_81		phi_mux		
10	p_rec_fu_137		+		
11	mem_index_gep9_fu_122		+		
12	gepindex2_fu_159		select		
13	icmp_fu_153		icmp		
14	exitcondl_fu_131		icmp		
15	tmp_9_fu_221			-	
16	tmp_13_fu_251			-	
17	tmp_7_fu_209			-	
18	end_pos_fu_179			I	
19	tmp_16_fu_261			lshr	
20	tmp_10_fu_227			select	
21	tmp_12_fu_243			select	
22	tmp_11_fu_235			select	
23	tmp_8_fu_215			^	
24	tmp_3_fu_185			icmp	
25	result_1_fu_289				+
26	tmp_17_fu_270				lshr
27	tmp_18_fu_276				&

Рис. 4.6. Resource viewer

Функция состоит из цикла суммирующего значения массива. Как видно из диаграммы, дольше всего выполняется операция чтения. На выполнение одного цикла требуется 3 тактов, количество циклов = (1024/10)*4=408 тактов откуда Latency = 408*3=1224+1 такт для инициализации цикла. Данные будут готовы на выходе через 1 такт, Initiation interval = 1226 тактов.

5. Решение 2а

5.1. Моделирование

Ниже приведены результаты моделирования.

Рис. 5.1. Результаты моделирования

По результатам моделирования видно, что устройство работает корректно.

5.2. Синтез

По оценке производительности видно, что устройство соответствует заданным критериям.

Рис. 5.2. Performance estimates

Utilization Estimates

∃ Summary

Name	BRAM_18	βK	DSP48	E	FF	LUT
DSP	-		-		-	-
Expression	-		-		0	513
FIFO	-		-		-	-
Instance	-		-		-	-
Memory	-		-		-	-
Multiplexer	-		-		-	45
Register	-		-		92	-
Total		0		0	92	558
Available	4	10	4	0	16000	8000
Utilization (%)		0		0	~0	6

Рис. 5.3. Utilization estimates

Рис. 5.4. Performance profile

Рис. 5.5. Scheduler viewer

	Resource\Control Step	C0	C1	C2	C3
1	⊡I/O Ports		,		
2	index	read			
3	ap_return		ret		
4	A(p0)		read		
5	⊡Memory Ports				
6	A(p0)		read		
7	⊡Expressions				
8	result_phi_fu_92		phi_mux		
9	ptr_0_rec_phi_fu_81		phi_mux		
10	mem_index_gep9_fu_122		+		
11	p_rec_fu_137		+		
12	gepindex2_fu_159		select		
13	icmp_fu_153		icmp		
14	exitcondl_fu_131		icmp		
15	tmp_13_fu_251			-	
16	tmp_7_fu_209			-	
17	tmp_9_fu_221			-	
18	tmp_12_fu_243			select	
19	tmp_11_fu_235			select	
20	tmp_10_fu_227			select	
21	tmp_16_fu_261			lshr	
22	end_pos_fu_179			I	
23	tmp_8_fu_215			^	
24	tmp_3_fu_185			icmp	
25	result_1_fu_289				+
26	tmp_17_fu_270				lshr
27	tmp_18_fu_276				&

Рис. 5.6. Resource viewer

Результаты, получеггые для текущего решения, полностью идентичны результатам предыдущего решения.

6. Вывод

В ходе лабораторной работы не было выявлено разницы, между использованием явного приведения типов указателей и использованием неявного приведения типов указателей.