Vote-and-Comment: Modeling the Coevolution of User Interactions in Social Voting Web Sites

Alceu Ferraz Costa¹ Agma Juci Machado Traina¹ Caetano Traina Jr. ¹ Christos Faloutsos² IEEE International Conference on Data Mining

¹University of São Paulo

²Carnegie Mellon University

Outline

- 1. Introduction
- 2. Model
- 3. Experiments

- 4. VnC: Applications
- 5. Conclusions

Social Voting Web Sites

In social voting web sites, users can submit content (e.g. pictures, news articles)

And other users can:

- Up-vote (like)
- Down-vote (dislike)
- Post comments

Examples of social voting web sites: Reddit, Imgur, Hacker-News

Coevolution of User Interactions

For a submission, we have 3 time-series: up-votes $v_+(t)$, down-votes $v_-(t)$ and comments c(t):

Submission

Time-Series

Time after submission (hours)

Problem

Can we explain how $v_+(t)$, $v_-(t)$ and c(t) evolve over time?

Outline

1. Introduction

2. Model

3. Experiments

4. VnC: Applications

5. Conclusions

Vote-and-Comment (VnC) Model

VnC: mathematical model that describes how the volume of up-votes, down-votes and comments changes over time

VnC is composed of 3 submodels that describe the following relationships:

- 1. Up-votes over time
- 2. Up-votes vs. down-votes
- 3. Comments vs. votes

VnC: Up-votes Over Time

The number $v_+(t)$ of up-votes received by a submission at time t is a function of:

- 1. P(t): probability of a user up-voting at time t
- 2. N_+ : population of potential voters
- 3. $V_+(t)$: number of votes accumulated at time t

VnC: Up-votes Over Time

The number $v_+(t)$ of up-votes received by a submission at time t is a function of:

- 1. P(t): probability of a user up-voting at time t
- 2. N_{+} : population of potential voters
- 3. $V_+(t)$: number of votes accumulated at time t

Up-votes over Time $v_{+}(t+1) = \underbrace{[N_{+} - V_{+}(t)]}_{\text{users that can vote}} \cdot P(t)$

Next Step: How can we model the probability P(t)?

ICDM 2016 A. F. Costa et al.

VnC: Modeling the Up-voting Probability

 $P_L(t; \beta_+, \xi_+)$: Probability that a user likes a submission

- Cascading Mechanism: submission popularity affects voting probability
- $P_{L}(t) = \xi_{+} + \beta_{+} \cdot V_{+}(t)/N_{+}$

VnC: Modeling the Up-voting Probability

 $P_L(t; \beta_+, \xi_+)$: Probability that a user likes a submission

- Cascading Mechanism: submission popularity affects voting probability
- $P_{L}(t) = \xi_{+} + \beta_{+} \cdot V_{+}(t)/N_{+}$

 $P_{R}(t; \mu, s)$: Probability that a user reacts at time t

Log-logistic with parameters
u and s Details

VnC: Modeling the Up-voting Probability

 $P_L(t; \beta_+, \xi_+)$: Probability that a user likes a submission

- Cascading Mechanism: submission popularity affects voting probability
- $P_L(t) = \xi_+ + \beta_+ \cdot V_+(t)/N_+$

 $P_{R}(t; \mu, s)$: Probability that a user reacts at time t

• Log-logistic with parameters μ and s Details

- $P_1(t)$

P(*t*): Probability of a user up-voting at time *t*

•
$$P(t) = P_L(t) \cdot P_R(t)$$

$$V_{-}(t+1) = [N_{-} - V_{-}(t)] \cdot P_{L}(t; \beta_{-}, \xi_{-}) \cdot P_{R}(t; \mu, s)$$

ICDM 2016 A. F. Costa et al. 8

$$v_{-}(t+1) = [N_{-} - V_{-}(t)] \cdot \overbrace{P_{L}(t; \beta_{-}, \xi_{-})}^{\text{Cascading}} \cdot \overbrace{P_{R}(t; \mu, s)}^{\text{Reaction Times}}$$

The down-vote time-series $v_{-}(t)$ also follows:

- 1. A cascading mechanism
- 2. Log-logistic reaction times

$$v_{-}(t+1) = \underbrace{[N_{-} - V_{-}(t)] \cdot P_{L}(t; \beta_{-}, \xi_{-})}_{\text{Not-shared Parameters}} \cdot \underbrace{P_{R}(t; \mu, S)}_{\text{Shared}}$$

The down-vote time-series $v_{-}(t)$ also follows:

- 1. A cascading mechanism
- 2. Log-logistic reaction times

Sharing parameters with the up-vote time-series:

- 1. Shared: μ and s
- 2. Not shared: N_{-} , β_{-} and ξ_{-}

VNC: Comments vs. Votes

VNC models the number of comments C(t) as a power law on the number of votes:

$$C(t) = k \cdot [V_{+}(t) + V_{-}(t)]^{\alpha}$$

The power-law — matches the data

ICDM 2016 A. F. Costa et al.

VNC: Comments vs. Votes

VNC models the number of comments C(t) as a power law on the number of votes:

$$C(t) = k \cdot [V_+(t) + V_-(t)]^{\alpha}$$

The power-law — matches the data

· The linear relationship fails to match the data

ICDM 2016 A. F. Costa et al.

Outline

1. Introduction

2. Model

3. Experiments

4. VnC: Applications

5. Conclusions

Experiments: Questions

Our goal is to answer the following questions:

- Q1 Fit Accuracy: Is VNC more accurate than existing models when fitting social voting data?
- Q2 Popularity Decay: Can VNC model the popularity decay of submissions?
- Q3 Coevolution: Can VNC model the coevolution of up-votes, down-votes and comments time-series?

Our crawler tracked Reddit and Imgur submissions:

- · Collected the number of votes and comments every 20 minutes
- · Submissions were tracked for 33 hours after their creation
- · Submissions with less than 100 up-votes were discarded

Digg dataset publicly avaiable (Lerman and Ghosh, 2010):

· Only up-votes (no down-votes and comments data)

Dataset	# Submissions	# User Interactions
Reddit	17,205	113,331,266
Imgur	724	2,107,576
Digg	3,553	5,149,170

Percentage of up-vote time-series that were best fit by each model

· Best fit determined by smaller root-mean-square error Details

Percentage of up-vote time-series that were best fit by each model

· Best fit determined by smaller root-mean-square error Details

A. F. Costa et al.

Percentage of up-vote time-series that were best fit by each model

· Best fit determined by smaller root-mean-square error Details

13

Percentage of up-vote time-series that were best fit by each model

· Best fit determined by smaller root-mean-square error Details

Q2 – Popularity Decay

Up-vote time-series have a heavy-tail decay

Q2 – Popularity Decay

Up-vote time-series have a heavy-tail decay

Bass and SI models generate unrealistic exponential decays

Q2 – Popularity Decay

Up-vote time-series have a heavy-tail decay

Bass and SI models generate unrealistic exponential decays

VNC and Spike-M are able to match the heavy tail decay

Q3 – Coevolution: Up-votes over Time

VnC up-vote time-series fits for the most voted submissions in each dataset

A. F. Costa et al.

Q3 – Coevolution: Up-votes vs. Down-votes

VNC fit for the relationship between up-votes and down-votes received by a submission

Q3 - Coevolution: Votes vs. Comments

VNC fit for the relationship between total votes (up-votes + down-votes) and comments received by a submission

ICDM 2016 A. F. Costa et al. 17

Outline

- 1. Introduction
- 2. Model
- 3. Experiments
- 4. VnC: Applications
- 5. Conclusions

Problem: Given the initial part of a social voting time-series, predict the tail part

Problem: Given the initial part of a social voting time-series, predict the tail part

1. Estimate VNC parameters using the initial part

ICDM 2016 A. F. Costa et al. 19

Problem: Given the initial part of a social voting time-series, predict the tail part

- 1. Estimate VNC parameters using the initial part
- 2. Use the parameters to forecast the tail part

ICDM 2016 A. F. Costa et al. 19

Problem: Given the initial part of a social voting time-series, predict the tail part

- 1. Estimate VNC parameters using the initial part
- 2. Use the parameters to forecast the tail part

Outlier Detection

To detect outliers we use $VNC's R^2$

- R² measures fit accuracy
- R² values closer to 1 indicate better fits

 R^2 vs. R^2 plot:

Outlier Detection

To detect outliers we use $VNC's\ R^2$

- R² measures fit accuracy
- R² values closer to 1 indicate better fits

R^2 vs. R^2 plot:

1. Compute R² for the up-vote time-series

To detect outliers we use $VNC's R^2$

- R² measures fit accuracy
- R² values closer to 1 indicate better fits

R^2 vs. R^2 plot:

- 1. Compute R² for the up-vote time-series
- 2. Compute R² for the down-vote time-series

To detect outliers we use $VNC's\ R^2$

- R² measures fit accuracy
- R² values closer to 1 indicate better fits

R^2 vs. R^2 plot:

- 1. Compute R² for the up-vote time-series
- 2. Compute R² for the down-vote time-series
- 3. Repeat for all submissions

Late-night submissions: 1st peak at night, 2nd peak at morning

ICDM 2016 A. F. Costa et al. 21

Late-night submissions: 1st peak at night, 2nd peak at morning

Over 95% of the submissions

Most are pictures of animals

Late-night submissions: 1st peak at night, 2nd peak at morning

Over 95% of the submissions

Most are pictures of animals

Outline

- 1. Introduction
- 2. Model
- 3. Experiments

- 4. VnC: Applications
- 5. Conclusions

Conclusions

VNC has the following advantages:

- Coevolution Modeling: Describes up-vote, down-vote and comments time-series
- Praticality: Matches data from several social voting web sites
- · Usefulness: Forecasting and outlier detection

Questions?

Vote-and-Comment: Modeling the Coevolution of User Interactions in Social Voting Web Sites

Alceu Ferraz Costa Agma Juci Machado Traina

Caetano Traina Jr. Christos Faloutsos

Dataset and Code: https://github.com/alceufc/vnc_model

Email: alceufc@icmc.usp.br

Funding:

Reaction Probability (Details)

Definition (Reaction Time)

The reaction time corresponds to the time interval between the instant in which a submission is created and the instant in which an interaction (vote or comment) occurs.

Data: Reaction times of up-votes, down-votes and comments from the Reddit, Imgur and Digg datasets.

Log-Logistic PDF

$$f(x) = \frac{(s/\mu)(x/\mu)^{s-1}}{(1+(x/\mu)^s)^2}$$

Parameter Estimation (Details)

To fit the up-vote time-series, VNC uses a set of 6 parameters denoted by $\theta = \{N, \beta_+, \xi_+, \mu, s, t_s\}$:

- · N+: Population
- β_+ and ξ_+ : Cascading and independent coefficients
- \cdot $\,\mu$ and s: Log-logistic scale and shape parameters
- t_s : Share time

Given:

- A time-series $v_+(t)$ of real data
- The VNC estimated values $\hat{v_+}(t;\theta)$

We learn the parameters by minimizing the sum of squared errors between:

$$\min_{\theta} \sum_{t=1}^{N} [v_{+}(t) - \hat{v_{+}}(t; \theta)]^{2}$$

Delayed Up-voting

Some social voting Web sites allow users to create a submission at time t=1 but only share it later at time $t=t_{\rm S}$

VNC models this as follows:

•
$$P(t) = 0$$
 if $t \le t_s$

•
$$P(t) = P_L(t) \cdot P_R(t - t_s)$$
 if $t > t_s$

Forecasting (Details)

APE: Absolute Percentage Error

- APE = |A F|/A, where:
- · A: actual number of up-votes, down-votes or comments
- F: forecasted number of up-votes, down-votes or comments

Table 1: Median forecasting APE.

		Bass	SI	Phoenix-R	Spike-M	VnC
Reddit	V ₊	0.57	0.57	0.82	0.42	0.39
	V_	0.67	0.64	0.86	0.55	0.53
	С	0.62	0.64	0.86	0.73	0.39
Imgur	V_{+}	0.69	0.65	0.81	0.98	0.71
	V_	0.65	0.68	0.84	0.98	0.65
	С	0.59	0.58	0.84	1.15	0.47
Digg	V+	0.87	0.89	0.98	0.52	0.77

Root-Mean-Square Error

- Lower RMSE indicates a better fit
- Points below the diagonal: time-series that were best fit by VNC

Is VNC more accurate than:

- · SI Model? Yes
- Bass Model?
- · Phoenix-R?
- · Spike-M?

VNC vs. SI Model

VNC is more accurate than SI model for 99% of the submissions

Root-Mean-Square Error

- Lower RMSE indicates a better fit
- Points below the diagonal: time-series that were best fit by VNC

Is VNC more accurate than:

- · SI Model? Yes
- Bass Model? Yes
- · Phoenix-R?
- · Spike-M?

VNC vs. Bass Model

VNC is more accurate than Bass Model for 91% of the submissions

Root-Mean-Square Error

- Lower RMSE indicates a better fit
- Points below the diagonal: time-series that were best fit by VNC

Is VNC more accurate than:

- · SI Model? Yes
- Bass Model? Yes
- Phoenix-R? Yes
- · Spike-M?

VNC vs. Phoenix-R

VNC is more accurate than Phoenix-R for 96% of the submissions

Root-Mean-Square Error

- Lower RMSE indicates a better fit
- Points below the diagonal: time-series that were best fit by VNC

Is VNC more accurate than:

- · SI Model? Yes
- Bass Model? Yes
- Phoenix-R? Yes
- Spike-M? Yes

VNC vs. Spike-M

VNC is more accurate than Spike-M for 90% of the submissions