Distribuované a paralelní algoritmy - algoritmy řazení, select

Z FITwiki

Vše vypracováno zde: https://fituska.eu/viewtopic.php?p=306919#p306919

Distribuované a paralelní algoritmy a jejich složitost, algoritmy řazení, select - přednáška (https://www.fit.vutbr.cz/study/courses/PDA/private/www/h003.pdf)

Obsah

- 1 Enumeration sort
- 2 Odd-even transposition sort
- 3 Odd-even merge sort
- 4 Merge-splitting sort
- 5 Pipeline merge sort
- 6 Enumeration sort
- 7 Minimum extraction sort
- 8 Bucket sort
- 9 Median finding and splitting
- 10 Select
 - 10.1 Sequential select
 - 10.2 Parallel select
 - 10.3 Parallel splitting

Enumeration sort

- Princip: výsledná pozice prvku je dána počtem prvků, které jsou menší
 - Ideální algoritmus pro paralelní zpracování (ale drahej)
- Topologie: mřížka n × n
- Časová složitost: t(n) = O(log(n))
- Počet procesorů: $p(n) = O(n^2)$
- Cena: $c(n) = O(n^2 \cdot log(n))$; není optimální
- Algoritmus (zjednodušeně):
 - 1. krok distribuce hodnot na procesory (v řádcích i sloupcích). Složitost kroku O(log n)
 - 2. krok porovnání hodnot a sčítání ve stromové struktuře. Složitost O(log n)
 - 3. krok předání hodnot na správné pozice (procesory)

Odd-even transposition sort

- Princip: paralelní bubble-sort, porovnávají se jen sousedé a mohou se přehodit
- Topologie: lineární pole n procesorů
- Časová složitost: t(n) = O(n)
- Počet procesorů: p(n) = O(n)
- Cena: $c(n) = O(n^2)$; není optimální
- Algoritmus:
 - V prvním kroku se každý lichý procesor p i spojí se svým sousedem p i+1 a porovnají své hodnoty je-li y i >y i+1, pak vymění své hodnoty
 - V druhém kroku se každý sudý procesor ...totéž...
 - Po n krocích (maximálně) jsou hodnoty seřazeny

Odd-even merge sort

- Princip: Řadí se speciální sítí procesorů (Každý procesor má dva vstupní a dva výstupní kanály)
 - Každý procesor umí porovnat hodnoty na svých vstupech, menší dá na výstup L(low), a větší dá výstup H (high)
- Topologie: sítě procesorů 1×1, 2×2, 4×4, 8×8, ... (procesory propojeny tak, aby složením jednotlivých porovnání byla seřazená posloupnost)

- Časová složitost: $t(n) = O(log^2(n))$
- Počet procesorů: $p(n) = O(n * log^2(n))$
- Cena: $c(n) = O(n.log^4(n))$; není optimální

Merge-splitting sort

- Princip: varianta odd-even sortu, každý procesor řadí krátkou posloupnost
 - Porovnání a výměna je nahrazena operacemi merge-split
- Topologie: lineární pole procesorů
- Časová složitost: t(n) = O(n.log(n) / p) + O(n)
- Počet procesorů: p(n) < n
- Cena: c(n) = O(n.log(n)) + O(n.p); optimální pro $p \le log(n)$
- Algoritmus (zjednodušeně):
 - Místo porovnání sousedů se provede spojení posloupností (O(n)) a pak rozdělení na půl

Pipeline merge sort

- Princip: rozděleno na několik kroků, první spojuje posloupnosti délky 1, pak 2, atd.
 - Data nejsou uložena v procesorech, ale postupně do nich vstupují
 - Každý procesor spojuje dvě seřazené posloupnosti délky 2ⁱ⁻²
- Topologie: lineární pole procesorů
- Časová složitost: t(n) = O(n)
- Počet procesorů: p(n) = log(n) + 1
- Cena: c(n) = O(n).O(log(n) + 1) = O(n.log(n)); optimální

Enumeration sort

- Princip: procesorem každého prvku proteče celá posloupnost, tím zjistí pořadí svého prvku a po sdílené sběrnici jej pošle na odpovídající výstup.
- Topologie: lineární pole procesorů a sdílená sběrnice, která muže přenést jednu hodnotu v každém kroku
- Časová složitost: t(n) = O(n)
- Počet procesorů: p(n) = n
- Cena: $c(n) = O(n^2)$; není optimální

Všechny prvky se nechají protéct všemi procesory. Procesory přitom počítají počet prvků menších než jejich prvek. Po protečení všech prvků tak procesor zná pořadí svého prvku - odešle prvek boční sdílenou sběrnicí odpovídajícímu výstupnímu procesoru. (Na sdílené sběrnici vysílá vždy jen procesor kterému právě odtekl konec posloupnosti - nekolidují.)

Legenda:

- C_i počet prvků menších než x_i (t.j. kolikrát byl $Y_i \leq X_i$)
- \blacksquare X_i prvek x_i
- Y_i postupně prvky $x_1...x_n$
- Z_i seřazený prvek Y_i

Enumeration sort (linear) by Fieldy v2

Minimum extraction sort

- Princip: stromem odebírá vždy nejmenší prvek
 - Každý listový procesor obsahuje jeden řazený prvek
 - Každý nelistový procesor umí porovnat dva prvky
- Topologie: strom
- Časová složitost: t(n) = O(n)
- Počet procesorů: p(n) = 2n 1
- Cena: $c(n) = O(n^2)$; není optimální

Bucket sort

- Princip: stromem spojené procesory, které řadí menší posloupnosti a pak spojení
 - Každý listový procesor obsahuje n/m řazených prvků a umí je seřadit optimálním sekvenčním algoritmem (např. heapsort)
 - Každý nelistový procesor umí spojit dvě seřazené posloupnosti optimálním sekvenčním algoritmem
- Topologie: strom
- Časová složitost: t(n) = O(n)
- Počet procesorů: p(n) = 2.log(n) 1
- Cena: c(n) = O(n.log(n)); optimální

Median finding and splitting

- Princip: dělí neseřazenou posloupnost podle mediánu mezi potomky, jednotlivé listy své posloupnosti nakonec seřadí sekvenčním sortem
 - Každý list umí optimální sekvenční sort
 - Každý nelistový procesor umí nalézt medián v optimálním čase (např. algoritmus Select s O(n) složitostí)
 - Ekvivalent Quick Sortu liší se tím, že se jednotlivé stupně provádí paralelně.
- Topologie: strom
- Časová složitost: t(n) = O(n)
- Počet procesorů: p(n) = 2.log(n) 1
- Cena: c(n) = O(n.log(n)); optimální
- Algoritmus (zjednodušene):
 - Nelistový procesor najde medián, rozdělí posloupnost a předá ji níže
 - Až dojde posloupnost do listového procesoru, dojde k jejímu seřazení
 - V listech pak máme postupně celou seřazenou posloupnost

Select

Sequential select

- Princip: hledá k-tý nejmenší prvek v posloupnosti S
 - je-li k=|S|/2, jde o medián
- Algoritmus (zjednodušeně):
 - Rozdělíme vstupní posloupnost na několik pod posloupností, ty seřadíme, najdeme v každé medián a ten vrátíme
 - Dostaneme posloupnost mediánu, tu seřadíme a najdeme v ní medián
 - Původní vstupní posloupnost rozdělíme na tři části podle nalezeného "mediánu mediánů" (L mensi, E rovno, G vetsi)
 - (k je délka vstupní posloupnosti dělena 2)
 - Pokud |L| > k medián musí být v L Zavolej algoritmus znovu tentokrát pro posloupnost L
 - Pokud |L| + |E| > k medián musí být v E Vrať nalezený medián
 - Jinak medián musí být v G Zavolej algoritmus znovu tentokrát pro posloupnost G

Parallel select

- Princip: k-tý nejmenší prvek v posloupnosti S; EREW PRAM s N procesory P1..Pn; používá sdílené pole M o N prvcích
- Složitost: t(n) = O(n/N) pro n > 4, $N < n/\log n$; p(n) = N; c(n) = t(n).p(n) = O(n) optimální
- Problém, který degraduje složitost algoritmus je, že při zpracování posloupností L, E, G nevíme, kam uložit číslo do paměti, dokud tam neuložíme všechny
 předchozí. Toto řeší následující algoritmus Parallel splitting

Parallel splitting

- Využívá se jako součást Parallel select (pro složení Li jednotlivých posloupností do jediného L Krok 4 algoritmu)
- Úkol: Je dána posloupnost S a číslo m; Mají se vytvořit tři posloupnosti:
 - $L = \{ si \in S : si \le m \}$
 - $\blacksquare E = \{ si \in S : si = m \}$
 - $G = \{ si \ \varepsilon \ S : si > m \}$
 - Po tom co se vytvoří se vypočítá, kam mají procesory ukládat své výsledné posloupnosti (suma prefixů), aby mohly ukládat současně a nemuseli čekat, než budou uloženy všechny předchozí hodnoty.
- Složitost sekvenčního algoritmu je O(n)
- Paralelní řešení máme N procesorů, které si sekvenci S rozdělí na podposloupnosti o délce n/N:
 - Každý procesor sestrojí L_i (resp. E_i , G_i) své podposloupnosti
 - Pomocí sumy prefixů jsou vypočítány z_i pozice kde mají jednotlivé L_i začínat ve výsledném L:

$$z_i = \sum_{j=1}^i |L_j|$$

■ Složitost: t(n) = O(log N + n/N) = O(n/N) pro dostatečně malé N; Cena c(n) = O(n) - optimální

Citováno z "http://wiki.fituska.eu/index.php?title=Distribuovan%C3%A9_a_paraleln%C3%AD_algoritmy_-algoritmy_%C5%99azen%C3%AD, select&oldid=13252"

Kategorie: Paralelní a distribuované algoritmy | Státnice 2013 | Státnice MMI

■ Stránka byla naposledy editována 1. 6. 2016 v 22:10.