Formler för Europisk Baccalaureate-examen

Utgår från kursplan för läsåret 2019-2020 (översatt och redigerat från nederländska) Mail: bengt.andersson@teahcer.eursc.eu

Avsnitt 1: Gravitation

Avstånd/sträcka	r/s/h	m
Arbete	W	J el. Nm
Radie	r el. R	m
Energi	E	J
Gravitationskraft	F _g	N

Massa	m el. M	kg
Periodtid	Т	S
Hastighet	v	m/s
Acceleration	g	m/s ²

Höjd över yta och totalt avstånd	r = R + h
Hastighet i omloppsbana	$v = \frac{2\pi \cdot r}{T} = 2\pi \cdot r \cdot f$
Allmäna gravitationslagen	$F_g = G \frac{Mm}{r^2}$
Rörelseenergi	$E_{\rm kin} = \frac{1}{2} \cdot m \cdot v^2$
Centripetalkraft	$F_{c} = \frac{mv^{2}}{r}$
Potentiell gravitationsenergi	$E_{pot} = -G \frac{Mm}{r}$
Tyngdkraft på ytan av himlakropp	$F_g = m \cdot g$

Kepler tredje lag	$F_c = F_g$
	$\frac{mv^2}{r} = G \frac{Mm}{r^2}$
	$\left(\frac{2\pi r}{T}\right)^2 = G\frac{M}{r}$
	$\frac{4\pi^2 r^2}{T^2} = G \frac{M}{r}$
	$\frac{\mathrm{r}^3}{\mathrm{T}^2} = \frac{\mathrm{GM}}{4\pi^2}$

Hastighet i cirkulär bana	$F_c = F_g$
	$\frac{mv^2}{r} = G \frac{Mm}{r^2}$
	$r - \frac{d}{r^2}$
	$v^2 = \frac{GM}{r}$
	$\frac{v_1^2}{v_2^2} = \frac{r_2}{r_1}$
Total energi i cirkulära bana	$E_{tot} = E_{pot} + E_{kin}$
(=mekanisk energi)	$E_{tot} = -G\frac{Mm}{r} + \frac{1}{2}mv^2 $ 1)
	$F_c = F_g$
	$\frac{mv^2}{r} = G\frac{Mm}{r^2}$
	$v^2 = \frac{GM}{r}$ 2)
	1) + 2)
	$E_{tot} = -G\frac{Mm}{r} + \frac{1}{2}m\frac{GM}{r} = -\frac{1}{2}G\frac{Mm}{r}$
Tyngdfaktor på himlakropp	$\mathbf{m} \cdot \mathbf{g} = \mathbf{G} \frac{\mathbf{M} \mathbf{m}}{\mathbf{r}^2}$
	Om himlakroppens radie är R:
	$g = G \frac{M}{R^2}$

Flykthastighet	För $r \to \infty$ gäller att $E_{pot} = 0$ och $v = 0$
	$E_{f\ddot{o}re} = E_{efter}$
	$E_{pot} + E_{kin} = 0 + 0$
	$-G\frac{Mm}{r} + \frac{1}{2}mv_{flykt}^2 = 0$
	$\frac{1}{2}v_{flykt}^2 = G\frac{M}{r}$
	För r = R:
	$v_{flykt} = \sqrt{\frac{2GM}{R}}$

Avsnitt 2: Elektromagnetism

Avstånd	r el. s	m
Arbete	W	J of Nm
Radie	r	m
Elektrisk kraft	F _e	N
Elektrisk fältstyrka	${\mathcal E}$ el. ${f E}$	N/C of V/m
Laddning	q	С
Elektrisk ström	I	Α

Längd	1	m
Magnetisk fältstyrka	В	Т
Massa	m	kg
Potential	V el. U	J/C = V
Hastighet	v	m/s
Spänning (Potentialskillnad)	U el. ΔU	V

Arbete i ett elektriskt fält	$W = F \cdot s$
Hastighet i omloppsbana	$v = \frac{2\pi \cdot r}{T} = 2\pi \cdot r \cdot f$
Elektrisk potentialskillnad (=spänning)	$U = \frac{W}{q} = \mathbf{E} \cdot \mathbf{s}$
Elektrisk kraft	$F = q \cdot E$
Elektrisk potential	$V = \frac{E}{q}$
Elektrisk fältstyrka (plattkondensator)	$\mathbf{E} = \frac{U}{\mathrm{d}}$
Magnetisk kraft på partikel	$F_{m} = q \cdot v \cdot B$
Magnetisk kraft på ledare	$F_m = B \cdot I \cdot l$
Centripetalkraft	$F_{c} = \frac{mv^{2}}{r}$
Newtons andra lag	$F_{res} = m \cdot a$

Avböjning (kaströrelse) i elektriskt fält	$y = \frac{1}{2}a_y \cdot t^2$	1)
$\bullet \mathbf{v_{0y}} = 0$	$l = v_x \cdot t$	2)
l = elektriska fältets längd	$F_{res} = F_{e}$	
	$\mathbf{m} \cdot \mathbf{a_v} = \mathbf{q} \cdot \mathbf{E}$	3)

	$a_{y} = \frac{q \cdot \mathbf{E}}{m} = \frac{q \cdot U_{AB}}{d \cdot m}$
	2) och 3) tillsammans med 1):
	$y = \frac{q \cdot U_{AB}}{2 \cdot d \cdot m} \cdot \left(\frac{l}{v_x}\right)^2$
Hastighet i ett hastighetsfilter	$F_e = F_m$
	$\mathbf{q} \cdot \mathbf{E} = \mathbf{q} \cdot \mathbf{v} \cdot \mathbf{B}$
	$v = \frac{\mathbf{E}}{B}$

Banradie för laddad partikel i ett	$F_c = F_m$	
magnetfält	·	
	$\frac{mv^2}{r} = q \cdot v \cdot B$	
	r	
	$r = \frac{m \cdot v}{q \cdot B}$	1)
	d · B	
	När $v_0 \approx 0$:	
	$\mathbf{q}\cdot\mathbf{U}=$	
	$\mathbf{q} \cdot \mathbf{U} = \frac{1}{2} \mathbf{m} v^2 - 0$	
	$q = 2^{m\nu}$	
	$v^2 = \frac{2 \cdot U}{m}$	2)
	m m	,
	1) + 2):	
	2 2 q·U	
	$r^{2} = \frac{m^{2} \cdot v^{2}}{B^{2} \cdot q^{2}} = \frac{m^{2} \cdot (\frac{2 \ q \cdot U}{m})}{B^{2} \cdot q^{2}}$	
	2m · II	
	$r = \sqrt{\frac{2m \cdot U}{B^2 \cdot q}}$	
	·	

Avsnitt 3: Mekaniska vågor

Absolut temperatur	Т	K
Amplitud	Α	m
Frekvens	f	Hz
Våglängd	λ	m
Utbredningshastighet	V	m/s

Fjäderkonstant	k	N/m
Massa per längdenhet	μ	kg/m
Massa	m	kg
Period	Т	S
Spännkraft	F	N
Tyngdacceleration	g	m/s ²

Frekvens	$f = \frac{1}{T}$
Utbredningshastighet i en gas	$v = k \cdot \sqrt{T}$
Utbredningshastighet I en sträng	$v = \sqrt{\frac{F}{m/l}} = \sqrt{\frac{F}{\mu}}$
Vågekvationen	$v = f \cdot \lambda$
Fortskridande våg	$y(x,t) = A \cdot \sin\left(\frac{2\pi}{T} \cdot t - \frac{2\pi}{\lambda} \cdot x\right)$
Maximal hastighet för harmonisk svängning	$v_{max} = \omega \cdot A = \frac{2\pi}{T} \cdot A$
Period för harmonisk svängning (fjäder)	$T=2\pi\sqrt{\frac{m}{k}}$
Stående våg i öppen pipa	$L = (n + 1) \cdot \frac{\lambda}{2}$ (n = 0, 1, 2 etc)
Stående våg i halvöppen pipa	$L = (2n + 1) \cdot \frac{\lambda}{4}$ (n = 0, 1, 2 etc)
Energi för harmonisk svängning	$E_{kin,max} = \frac{1}{2}m \cdot v_{max}^2$
Energi för harmonisk svängning (fjäder)	$E_{\text{pot,max}} = \frac{1}{2} \mathbf{k} \cdot \mathbf{A}^2$

Frekvenser för grundton och övertoner i öppen pipa	$f = \frac{v}{\lambda}$
	$f = \frac{v}{2L} \cdot (n+1)$
Frekvenser för grundton och övertoner i halvöppen pipa	$f = \frac{v}{\lambda}$

$f = \frac{v}{4L} \cdot (2n+1)$

Avsnitt 4: Elektromagnetiska vågor

Brytningsindex	n	-
Frekvens	f	Hz
Infallsvinkel/brytningsvinkel /gränsvinkel	α, β, α_g	0
Ljushastighet i vakuum	С	m/s

Spaltbredd	b	m
Period	Т	s
Utbredningshastighet	v	m/s
Gitterkonstant/spaltbredd	d	m

Avstånd mellan ljusmaxima för dubbelspalt/gitter (små vinklar, D = avstånd till skärm)	$y = \tan \alpha \cdot D$
Interferens i dubbelspalt/Gitterformel (maximum)	$n \cdot \lambda = \sin \alpha \cdot d$ $(n = 0, 1, 2, 3)$
Diffraktion i enkelspalt (minimum)	$n \cdot \lambda = \sin \alpha \cdot b$ $(n = 1, 2, 3)$
Dopplereffekt	$\frac{\Delta f}{f_{\text{sändare}}} = \frac{v_{\text{sändare}}}{v_{\text{våg}}}$
Brytningslagen	$\frac{\sin \alpha}{\sin \beta} = \frac{v_1}{v_2} = \frac{n_2}{n_1}$

Maximalt antal synliga max vid	$\mathbf{n} \cdot \mathbf{\lambda} = \sin \alpha \cdot \mathbf{d}$
interferens	$n_{\text{max}} \cdot \lambda = \sin 90^{\circ} \cdot d$
	d d
	$n_{max} = \frac{1}{\lambda}$
	Antal maxima: $(2 \cdot n + 1)$
Avstånd mellan max för små	$\mathbf{n} \cdot \mathbf{\lambda} = \sin \alpha \cdot \mathbf{d}$
vinklar	$\sin \alpha = \frac{\mathbf{n} \cdot \lambda}{\mathbf{d}}$
(mindro #n 100)	G.
(α mindre än 10°)	$y = \tan \alpha \cdot D \approx \sin \alpha \cdot D$
	$n \cdot \lambda$
	$y \approx \frac{n \cdot \lambda}{d} \cdot D$
	u

Avsnitt 5: Atomfysik och fotoelektrisk effekt

Avstånd	r	m	Laddning	Q	С
Plancks konstant	h	J·s	Ljushastighet	С	m/s
Dielektricitetskonstant	ϵ_0	F/m	Massa	m	kg
Frekvens	f	Hz	Hastighet	v	m/s
Energi	Е	J	Våglängd	λ	m
			Rörelsemängd	р	kg · m/s

Arbete i elektrisk fält	$W = q \cdot U$
Fotonenergi	$E_{foton} = h \cdot f = \frac{h \cdot c}{\lambda}$
De Broglie våglängd	$\lambda = \frac{h}{p}$
Fotoelektrisk effekt	$E_{foton} \ge W_u + E_{kin}$ $E_{foton} = W_u + E_{kin,max}$
Rörelsemängd, foton	$p = \frac{E_{foton}}{c}$
Vågekvationen	$v = \lambda \cdot f$
Dopplereffekt elektromagnetiska vågor	$\frac{\Delta f}{f} = \frac{\Delta v}{c}$
Elektrisk potentiell energi	$E_{pot} = \frac{1}{4\pi\epsilon_0} \frac{Q_1 Q_2}{r}$
Energinivåer väteatomen	$E_{tot,n} = -\frac{13.6}{n^2} \text{ (eV)}$
Emitterad energi	$E_{foton} = E_p - E_q$
Coloumbs lag	$ F_e = \frac{1}{4\pi\epsilon_0} \frac{ Q_1 Q_2 }{r^2}$

Energinivåer i en väteatom (klassisk)	$F_c = F_e$
	$mv^2 1 0_1 0_2$
	$\frac{mv^2}{r} = \frac{1}{4\pi\epsilon_0} \frac{Q_1 Q_2}{r^2}$
	$mv^2 = \frac{1}{4\pi\epsilon_0} \frac{e^2}{r}$
	$mv^2 = \frac{1}{4\pi\epsilon_0} \frac{1}{r}$
	$E_{tot} = E_{el} + E_{kin}$
	$E_{tot} = -\frac{1}{4\pi\epsilon_0} \frac{Q_1 Q_2}{r} + \frac{1}{2} mv^2$
	$4\pi\epsilon_0$ r 2 $^{-101}$
	1 2 1 (1 2)
	$E_{tot} = -\frac{1}{4\pi\epsilon_0} \frac{e^2}{r} + \frac{1}{2} \left(\frac{1}{4\pi\epsilon_0} \frac{e^2}{r} \right)$
	$E_{tot} = -\frac{1}{8\pi\epsilon_0} \frac{e^2}{r}$
Banradie i väteatom	8πε ₀ r
Damadie i vateatom	$\lambda = \frac{n}{mv}$
	$2\pi \cdot r_n = n \cdot \lambda = n \cdot \frac{h}{mv}$
	$v = \frac{n \cdot h}{2\pi \cdot m \cdot r_n}$
	$F_c = F_e$
	$\frac{mv^2}{r_n} = \frac{1}{4\pi\epsilon_0} \frac{Q_1 Q_2}{r^2}$
	$r_n = 4\pi\epsilon_0 r^2$
	$mv^2 = \frac{1}{4\pi\epsilon_0} \frac{e^2}{r_n}$
	$4\pi\epsilon_0 r_n$
	$m\left(\frac{\mathbf{n}\cdot\mathbf{h}}{2\boldsymbol{\pi}\cdot\mathbf{m}\cdot\mathbf{r}_{\mathbf{n}}}\right)^{2} = \frac{1}{4\pi\epsilon_{0}}\frac{\mathbf{e}^{2}}{\mathbf{r}_{\mathbf{n}}}$
	$r_n = n^2 \cdot \frac{\varepsilon_0 \cdot h^2}{\pi \cdot m \cdot e^2}$

]
Energinivåer i en väteatom	
	$E_{tot} = -\frac{1}{8\pi\epsilon_0} \frac{e^2}{r} $ 1)
	$r_n = n^2 \cdot \frac{\epsilon_0 \cdot h^2}{\pi \cdot m \cdot e^2} $ 2)
	1) in 2):
	$E_{tot,n} = -\frac{1}{8\pi\epsilon_0} \frac{e^2}{\left(n^2 \cdot \frac{\epsilon_0 \cdot h^2}{\pi \cdot m \cdot e^2}\right)}$
	$E_{tot,n} = -\frac{1}{8\pi\epsilon_0} \frac{e^2 \cdot \pi \cdot m \cdot e^2}{n^2 \cdot \epsilon_0 \cdot h^2}$
	$E_{tot,n} = -\frac{1}{n^2} \left(\frac{e^4 \cdot m}{8 \cdot \epsilon_0^2 \cdot h^2} \right)$
	$E_{\text{tot,n}} = -\frac{13.6}{n^2} \text{ (eV)}$
	$E_{\text{foton}} = E_{\text{p}} - E_{\text{q}}$
	$\frac{hc}{\lambda} = \left(\frac{e^4 \cdot m}{8\epsilon_0^2 \cdot h^2}\right) \left(\frac{1}{n_q^2} - \frac{1}{n_p^2}\right)$
Rydbergs formel för väteatomen	$\frac{1}{\lambda} = \left(\frac{e^4 \cdot m}{8\epsilon_0^2 \cdot h^3 c}\right) \left(\frac{1}{n_q^2} - \frac{1}{n_p^2}\right)$
	$\frac{1}{\lambda} = R_H \left(\frac{1}{n_q^2} - \frac{1}{n_p^2} \right)$

Avsnitt 6: Kärnfysik

Aktivitet	Α	Bq
Antal kärnor	N	-
Energi	E	J
Halveringstid	τ of $t_{1/2}$	S

Ljushastighet	С	m/s
Massa	m	kg
Tid	t	S
Sönderfallskonstant	λ	1/s

Sönderfallslagen (antal kärnor)	$N(t) = N_0 \cdot \left(\frac{1}{2}\right)^{t/\tau}$ $N(t) = N_0 \cdot e^{-\lambda \cdot t}$
Energi-mass ekvivalens	$E = m \cdot c^2$
Aktivitet	$A = -\frac{dN(t)}{dt} = \lambda \cdot N(t)$ $A = -\left(\frac{\Delta N}{\Delta t}\right)_{\text{rätlinjig}}$
Söndefallskonstant	$\lambda = \frac{\ln(2)}{\tau}$

Omskrivning av sönderfallslagen	$N(t) = N_0 \cdot \left(\frac{1}{2}\right)^{t/\tau}$
	$\frac{N(t)}{N_0} = 2^{-t/\tau}$
	$\frac{N(t)}{N_0} = e^{\ln(2^{-t/\tau})} = e^{-t/\tau \cdot \ln(2)} = e^{-(\ln(2)/\tau) \cdot t}$
	$N(t) = N_0 \cdot e^{-\lambda \cdot t}$
	$\lambda = \frac{\ln(2)}{\tau}$