

哈爾濱工業大學

第4章 多维随机变量及其分布

第19讲二维离散型随机变量

二维离散型随机变量

- 定义1 若二维随机变量(*X*, *Y*)所有可能取值是有限对或可列无限多对,则称(*X*, *Y*)为二维离散型随机变量.
- **定义2**设(X,Y)的所有可能取值为(x_i , y_j), $(i, j = 1, 2, \cdots)$, 称

$$P(X = x_i, Y = y_j) = p_{ij}, (i, j = 1, 2, \cdots),$$
为 (X,Y) 的分布列或 X 和 Y 的联合分布列.

二维离散型随机变量

(X,Y)的分布列也可用列表法表示:

$$XY$$
 y_1 $y_2 \cdots y_j \cdots$ $\rightarrow (X,Y)$ 分布列的性质:
 x_1 p_{11} p_{12} $\cdots p_{1j}$ \cdots x_2 p_{21} p_{22} $\cdots p_{2j}$ \cdots p_{2j} \cdots p_{i1} p_{i2} $\cdots p_{ij}$ \cdots p_{ij} p_{i

例1 一盒中有4个球,分别标有数字1, 2, 2, 3, 现无放回地取两次, 每次取一个, 以X,Y分别表示第一次和第二次取出的球的标号, 求(X,Y)的分布列和 $P(X \ge 3,Y \ge 2)$.

解 X, Y的可能取值均为1,2,3,

由乘法定理
$$P(AB) = P(A)P(B|A)$$
得

$$P(X = 1, Y = 1) = P(X = 1)P(Y = 1 | X = 1) = 0;$$

同理
$$P(X=1,Y=2) = \frac{1}{4} \times \frac{2}{3} = \frac{1}{6}$$
,
 $P(X=1,Y=3) = \frac{1}{4} \times \frac{1}{3} = \frac{1}{12}$, $P(X=2,Y=1) = \frac{2}{4} \times \frac{1}{3} = \frac{1}{6}$,

例1 一盒中有4个球,分别标有数字1, 2, 2, 3, 现无放回地取两次, 每次取一个, 以X,Y分别表示第一次和第二次取出的球的标号, 求(X,Y)的分布列和 $P(X \ge 3,Y \ge 2)$.

解

$$P(X = 2, Y = 2) = \frac{2}{4} \times \frac{1}{3} = \frac{1}{6},$$

$$P(X = 2, Y = 3) = \frac{2}{4} \times \frac{1}{3} = \frac{1}{6},$$

$$P(X = 3, Y = 1) = \frac{1}{4} \times \frac{1}{3} = \frac{1}{12},$$

$$P(X = 3, Y = 2) = \frac{1}{4} \times \frac{2}{3} = \frac{1}{6},$$

$$P(X = 3, Y = 3) = 0.$$

Y	1	2	3
1	0	1/6	1/12
2	1/6	1/6	1/6
3	1/12	1/6 1/6 1/6	0
D(V > 2, V > 2)			

$$P(X \ge 3, Y \ge 2)$$

= 1/6+0=1/6.

X,Y的边缘分布列

设离散型随机变量(X,Y)的分布列为

$$P(X = x_i, Y = y_i) = p_{ij}, (i, j = 1, 2, \dots),$$

■ X的边缘分布列为

$$P(X = x_i) = \sum_{j=1}^{+\infty} P(X = x_i, Y = y_j) = \sum_{j=1}^{+\infty} p_{ij} = p_{i}$$

 $(i = 1, 2, \cdots),$

■ Y的边缘分布列为

$$P(Y = y_j) = \sum_{i=1}^{+\infty} P(X = x_i, Y = y_j) = \sum_{i=1}^{+\infty} p_{ij}^{\Delta} = p_{.j}$$

$$(j = 1, 2, \cdots).$$

X,Y的边缘分布列

_	X^{Y}	y_1	$\mathbf{y}_2 \cdots \mathbf{y}_j \cdots$	$P(X=x_i)$
	x_1	p_{11}	$p_{12} \cdots p_{1j} \cdots p_{2j} \cdots p_{2j} \cdots p_{2j} \cdots p_{ij} \cdots p$	$p_{1.}$
	\boldsymbol{x}_{2}	p_{21}	$p_{22} \cdots p_{2j} \cdots$	p ₂ .
		•••	•••	
	x_i	p_{i1}	$p_{i2} \cdots p_{ij} \cdots$	p_{i}
_				
P(Y	$(=y_j)$	$p_{\cdot 1}$	$p_{\cdot 2} \ \cdots \ p_{\cdot j} \ \cdots$	1

例2 某箱装有100件产品,其中一、二和三等品分别为80、10和10件,现在从中随机抽取一件,

记

$$X_i = \begin{cases} 1, & \text{抽到}i$$
等品, $(i = 1, 2, 3). \end{cases}$

求(1)
$$P(X_1=1|X_3=0)$$
;

- (2) (X_1, X_2) 的分布列及边缘分布列;
- (3) $P(X_1=X_2)$, $P(X_1+X_2=1)$, $P(X_1+X_2<1)$.

$$\mathbf{P}(X_1=1|X_3=0)=80/90=8/9$$
,

例2 某箱装有100件产品,其中一、二和三等品分别为80、10和10件,现在从中随机抽取一件,记 〔1. 抽到*i*等品,

 $X_i = \begin{cases} 1, & \text{抽到}i \oplus \mathbb{H}, \\ 0, & \text{其他.} \end{cases}$ (i = 1, 2, 3).

求 $(2)(X_1,X_2)$ 的分布列及边缘分布列;

解(2) X₁,X₂的取值均为0,1.

$$P(X_1 = 0, X_2 = 0) = P(X_3 = 1) = 0.1,$$

 $P(X_1 = 0, X_2 = 1) = P(X_2 = 1) = 0.1,$
 $P(X_1 = 1, X_2 = 0) = P(X_1 = 1) = 0.8,$
 $P(X_1 = 1, X_2 = 1) = 0.$

$X_2^{X_1}$	0	1	$m{p}_{\cdot j}$
0	0.1	0.8	0.9
1	0.1	0	0.1
$p_{i\cdot}$	0.2	0.8	1

例2 某箱装有100件产品,其中一、二和三等品分别为80、10和10件,现在从中随机抽取一件,

记
$$X_i = \begin{cases} 1, \text{ 抽到}i \oplus \mathbb{A}, \\ 0, \text{ 其它.} \end{cases}$$
 $(i = 1, 2, 3).$

$$\Re(3) P(X_1=X_2), P(X_1+X_2=1), P(X_1+X_2<1);$$

$X_2^{X_1}$	0	1	$m{p}_{\cdot j}$
0	0.1	0.8	0.9
	0.1	0	0.1
$p_{i\cdot}$	0.2	0.8	1

 \blacksquare 二维离散型随机变量(X,Y)的分布函数

$$F(x,y) = P(X \le x, Y \le y)$$

$$= \sum_{x_i \le x} \sum_{y_j \le y} P(X = x_i, Y = y_j)$$

$$= \sum_{x_i \le x} \sum_{y_j \le y} p_{ij}$$

$$= \sum_{x_i \le x} \sum_{y_j \le y} p_{ij}$$

和式是对所有满足 $x_i \leq x, y_j \leq y$ 的i, j 求和.

谢 谢!