Let

 $Y = \{w \mid w = t_1 \# t_2 \# \cdots \# t_k \text{ for } k \ge 0, \text{ each } t_i \in 1^*, \text{ and } t_i \ne t_j \text{ whenever } i \ne j\}.$

Here $\Sigma = \{1, \#\}$. Prove that Y is not context free.

Step-by-step solution

Step 1 of 6

CFG:

- A fixed set of grammar rules is known as CFG (context free grammar). It consisting of that is augment (N, T, P, S).
- · Where, N is set of non-terminal symbol.
- **T** is set of terminal $N \cap T = NULL$
- **P** is set of rule, $P: N \to (N \cup T)^*$
- S is start symbol.

Comment

Step 2 of 6

Consider the following details:

 $\text{The language is } Y = \left\{ w \mid w = t_1 \# t_2 \# \# t_k \text{ where } k \geq 0, t_i \in 1 \text{ * and } t_i \neq t_j \text{ when } i \neq j \right\} \text{ with the terminals being } \Sigma = \left\{ 1, \# \right\}.$

Comment

Step 3 of 6

Proof:

Theorem 2.34: Any string s in A, the pumping lemma p is the minimum length such that It could make part under five ends s = uvxyz. The string s also satisfies the following conditions for a context-free language A:

1. The string what's to come for uv^ixy^iz only those context-free dialect A, the point when every $i \ge 0$.

$$uv^i xv^i z \in A$$

2. Those strings that need aid pumped, $\ ^{\mathcal{V}}$ furthermore $\ ^{\mathcal{Y}}$, can't both make the void string $\ ^{\mathcal{E}}$.

3. The joined together period of the strings lying inside what's to come for u Also z must not a chance to be more stupendous that those pumping length p.

 $|vxy| \le p$

Comment

Step 4 of 6

This problem is solved by the proof of contradiction.

- ullet The language Y is supposed to be a context-free language.
- Theorem 2.34 is shown not to hold for the language.

	Assume language Y is a context-free language. Now it can be seen that either x or y cannot have any $\#$'s.
	This is as when user pump the string then user will get strings of the form $s = t_1 \# t_2 \# \# t_k$ where $t_i = t_j$ when $i \neq j$.
. (Such strings do not lie in A . Consequently, to get $v, y = 1^*$.
C	omment
	Step 5 of 6
C	onstruction:
C	onsider the string $s = uv^i x y^i z_{\text{with }} v = 1^*, y = 1^*$. The two cases possible for the substring vxy are:
	The substring contains $\#$: as the $\#$ symbol cannot lie in either v or y , it must lie in x .
١	When the string $s = uv^i x y^i z$ is pumped with $x = 1^* \# 1^*$, the case $t_i = t_j$ when $i \neq j$ can occur.
	Thus, pumping this string does not necessarily produce strings that lie in Y_{\cdot}
۱ ٠	It does not contain #: the substring XYZ will be just be a sequence of 1s. As was argued for the previous case, on applying the condition 1 of theorem
2.	34 to pump the string will result in strings wherein $t_i = t_j$ in cases when $i \neq j$. As has been seen these strings are not part of language Y .
C	omments (1)
	Step 6 of 6
C	onclusion:
Τŀ	he language Y does not satisfy the pumping lemma. Consequently, it is not a CFL.
 D(omment