Topología de variedades: Entrega 1

Arnau Mas

4 de octubre de 2019

El espacio de matrices reales n por n, es una variedad de dimensión n^2 difeomorfa a $\mathbb{R}^{n\times n}$. Sobre $M_n(\mathbb{R})$ está definida la función determinante,

$$\det \colon M_n(\mathbb{R}) \to \mathbb{R}$$

que es una función lisa por ser polinomial. Por lo tanto existe su diferencial en una matriz A, es decir la aplicación lineal

$$T_A \det : T_A M_n(\mathbb{R}) \to T_{\det A} \mathbb{R}.$$

Calcularemos su diferencial en la matriz identidad, que denotaremos simplemente por 1.

En primer lugar, el espacio tangente a $M_n(\mathbb{R})$ en cualquier punto es difeomorfo a $M_n(\mathbb{R})$ y igualmente, el espacio tangente a \mathbb{R} en cualquier punto es también \mathbb{R} . Por lo tanto la diferencial del determinante en la identidad es una aplicación lineal T_1 det: $M_n(\mathbb{R}) \to \mathbb{R}$. Puesto que es lineal queda determinada por su acción sobre una base del espacio de salida $M_n(\mathbb{R})$. Las matrices con ceros en todas sus entradas salvo un 1 en la posición i, j, E_{ij} son una base de $M_n(\mathbb{R})$. Por definición de la aplicación diferencial se tiene

$$T_1 \det(E_{ij}) = \lim_{t \to 0} \frac{\det(1 + tE_{ij}) - \det(1)}{t} = \lim_{t \to 0} \frac{\det(1 + tE_{ij}) - 1}{t}.$$

Distinguimos ahora dos casos. Cuando i = j la matriz $1 + tE_{ii}$ es diagonal y todas entradas son 1 salvo la de la posición i, i que es 1 + t. El determinante de esta matriz es 1 + t por lo que

$$T_1 \det(E_{ii}) = \lim_{t \to 0} \frac{1+t-1}{t} = 1.$$

Por otro lado, cuando $i \neq j$ la matriz $1 + tE_{ij}$ es la que resulta de sumar t veces la fila j-ésima de la matriz identidad a su fila i-ésima. Puesto que el determinante es multilineal y alternado en las filas, esta operación no altera el valor del determinante de una matriz, por lo que $\det(1 + tE_{ij}) = \det(1) = 1$. Luego

$$T_1 \det(E_{ij}) = \lim_{t \to 0} \frac{1-1}{t} = 0.$$

Es decir, $T_1 \det(E_{ij})$ es 1 cuando i = j y 0 en caso contrario. Así podemos escribir $T_1 \det(E_{ij} = \delta_{ij})$ donde δ_{ij} es la delta de Kronecker.

Por linealidad podemos calcular T_1 det para cualquier matriz. Si $A = \sum_{i=1}^n \sum_{j=1}^n a_{ij} E_{ij}$ entonces

$$T_1 \det(A) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} T_1 \det(E_{ij}) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} \delta_{ij} = \sum_{i=1}^n a_{ii} = \operatorname{tr} A.$$

Es decir, la diferencial del determinante en la identidad es precisamente la traza.