# 데이터베이스 관계형 데이터베이스

01. 데이터베이스 개념과 오라클 설치





# 목차

- 1. 데이터 베이스 개념
- 2. 오라클 설치
- 3. 관계형 데이터 모델



# 1. 데이터베이스 개념과 오라클 설치

# 1.1. 데이터 베이스 개념

# 데이터베이스 개념 이해

- 데이터: 관찰의 결과로 나타난 정량적 혹은 정성적인 실제 값
- 정보: 데이터에 의미를 부여한 것
- 지식 : 사물이나 현상에 대한 이해



# 데이터베이스 개념 이해

• 데이터베이스

: 조직에 필요한 정보를 얻기 위해 논리적으로 연관된 데이터를 모아 구조적으로 통합해 놓은 것

#### 일상생활에서 생성되는 데이터베이스



# 데이터베이스 개념 이해

• 일상생활에서의 데이터 베이스





그림 패스트푸드 체인점과 철도청의 데이터베이스

# 표 - 데이터베이스의 활용 분야

| 종류                                                                                                                     | 특징                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 생활과 문화                                                                                                                 | <ul> <li>기상정보: 날씨 정보를 제공</li> <li>교통정보: 교통상황 정보를 제공</li> <li>문화예술정보: 공연이나 인물에 관한 정보를 제공</li> </ul>                                |
| 비즈니스                                                                                                                   | <ul> <li>금융정보 : 금융, 증권, 신용에 관한 정보를 제공</li> <li>취업정보 : 노동부와 기업의 채용 정보를 제공</li> <li>부동산정보 : 공공기관이나 민간의 토지, 매물, 세금 정보를 제공</li> </ul> |
| • 연구학술정보 : 논문, 서적, 저작물에 관한 정보를 제공 • 특허정보 : 특허청의 정보를 기업과 연구자에게 제공 • 법률정보 : 법제처와 대법원의 법률 정보를 제공 • 통계정보 : 국가기관의 통계 정보를 제공 |                                                                                                                                   |

# 일상생활의 데이터베이스

구축이 쉬움

- 데이터베이스 시스템은 데이터의 검색과 변경 작업을 주로 수행함
- 변경이란 시간에 따라 변하는 데이터 값을 데이터베이스에 반영하기 위해 수행하는 삽입, 삭제, 수정 등의 작업을 말함

#### 표 검색과 변경 빈도에 따른 데이터베이스 유형

| 유형  | 검색 빈도 | 변경 빈도 | 데이터베이스 예         | 특징                                                                       |
|-----|-------|-------|------------------|--------------------------------------------------------------------------|
| 유형1 | 적다    | 적다    | 공룡<br>데이터베이스     | <ul> <li>검색이 많지 않아 데이터베이스를 구축할 필요 없음</li> <li>보존가치가 있는 경우에 구축</li> </ul> |
| 유형2 | 많다    | 적다    | 도서<br>데이터베이스     | <ul><li>사용자 수 보통</li><li>검색은 많지만 데이터에 대한 변경은 적음</li></ul>                |
| 유형3 | 적다    | 많다    | 비행기 예약<br>데이터베이스 | 예약 변경/취소 등 데이터 변경은 많지만 검색은 적음    실시간 검색 및 변경이 중요함                        |
| 유형4 | 많다    | 많다    | 증권<br>데이터베이스     | 사용자 수 많음     검색도 많고 거래로 인한 변경도 많음                                        |



그림 데이터베이스 시스템의 구성 요소와 물리적인 위치

# 정보시스템의 발전

### • 파일 시스템

- 데이터를 파일 단위로 파일 서버에 저장
- 각 컴퓨터는 LAN을 통하여 파일 서버에 연결되어 있고, 파일 서버에 저장된 데이터를 사용하기 위해 각 컴퓨터의 응용 프로그램에서 열기/닫기(open/close)를 요청
- 각 응용 프로그램이 독립적으로 파일을 다루기 때문에 데이터가 중복 저장될 가능성이 있음
- 동시에 파일을 다루기 때문에 데이터의 일관성이 훼손될 수 있음



그림 파일 시스템

# 정보시스템의 발전

### • 데이터베이스 시스템

- DBMS를 도입하여 데이터를 통합 관리하는 시스템
- DBMS가 설치되어 데이터를 가진 쪽을 서버(server), 외부에서 데이터 요청하는 쪽을 클라이언트(client)라고 함
- DBMS 서버가 파일을 다루며 데이터의 일관성 유지, 복구, 동시 접근 제어 등의 기능을 수행
- 데이터의 중복을 줄이고 데이터를 표준화하며 무결성을 유지함



그림 데이터베이스 시스템

### [프로그램 1]

```
Book 데이터 타입 선언;
           BOOK 데이터 구조
프로그램 내에서
  BOOKS[] 배열에 데이터 저장;
            BOOK 데이터
검색 및 데이터 변경 프로그램 수행;
```

- 프로그램에 데이터 정의와 데이터 값을 모두 포함 하는 방식
- 프로그램에 BOOK 데이터 구조를 정의하고 데이 터 값도 직접 변수에 저장함
- 데이터 구조 혹은 데이터 값이 바뀌면 프로그램을 다시 컴파일 해야 함

### [프로그램 2]



- 파일에 데이터 값, 프로그램에 데이터 정의를 포함하는 방식
- 프로그램에 BOOK 데이터 구조만 정의하고, 데이터 값은 book.dat라는 파일에 저장됨
- 데이터 값이 바뀌면 프로그램에 변경이 없지만, 데이터 구조가 바뀌면 프로그램을 다시 컴파일 해야 함

### [프로그램 3]



- DBMS가 데이터 정의와 데이터 값을 관리하는 방식
- BOOK 데이터 구조는 DBMS가 돤리하고, 데이터 값
   은 데이터베이스에 저장됨
- 데이터 값이 바뀌거나 데이터 값이 바뀌어도 프로그 램을 다시 컴파일할 필요 없음

# 데이터베이스 관리 시스템(DBMS)

- 데이터베이스(DataBase)
  - 기업이 지속적으로 유지 관리해야 하는 데이터의 집합
- 데이터베이스 관리 시스템(DataBase Management System)
  - 방대한 양의 데이터를 편리하게 저장하고 효율적으로 관리하고 검색할 수 있는 환경을 제공해주는 시스템 소프트 웨어
  - 데이터를 공유하여 정보의 체계적인 활용을 가능하게 합니다.
  - 응용 프로그램과 데이터베이스의 중재자로서 모든 응용 프로그램들이 데이터베이스를 공용할 수 있게끔 관리해 주는 소프트웨어 시스템입니다.

# 08 관계형 데이터베이스 관리 시스템

- 관계형 데이터베이스 관리시스템(RDBMS: Relational DataBase Management System)은 가장 일
   반적인 형태의 DBMS
   요리코(Oracle), 나이베이스 (Sybase), 이프리스(Infermity), MYSOL, Asses, SOL, Sarver
- 오라클(Oracle), 사이베이스(Sybase), 인포믹스(Infomix), MYSQL, Acess, SQL Server
- 장점
  - 그 그 이 이 이 비그런 시그 회자이 이이쉬다
- 작성과 이용이 비교적 쉽고 확장이 용이하다.
   처음 데이터베이스를 만든 후 관련되는 응용 프로그램들을 변경하지 않고도, 새로운 데이터 항목을 데이터베이스 에 추가할 수 있다.

80

- 관계형 데이터베이스 정보를 테이블 형태로 저장합니다.
- 테이블은 2차원 형태의 표처럼 볼 수 있도록 로우(ROW:행)와 칼럼(COLUMN:열)으로 구성합니다.



 DEPT 테이블은 4개의 로우와 3개의 칼럼(부서번호:DEPTNO, 부서이름:DNAME, 지역:LOC 으로 구성 된 테이블입니다.



- SQL(Structured Query Language)
  - 데이터베이스에 저장된 데이터를 조회, 입력, 수정 삭제하는 등의 조작테이블을 비롯한 다양한 객체(시퀀스. 인덱스 등)를 생성 및 제어하는 역할을 하는 언어.

# • SQL의 종류

- 데이터 정의어(DDL)
  - 데이터베이스의 논리적 구조를 정의하기 위한 언어로서 데이터 사전(Data Dictionary)에 저장.
- 데이터 조작어(DML)
  - 데이터베이스에 저장된 데이터를 조작하기 위해 사용하는 언어로 데이터 검색(Retrieval), 추가(Insert), 삭제(Delete), 갱신 (Update) 작업 수행.
- 데이터 제어어(DCL)
  - 데이터에 대한 접근 권한 부여 등의 데이터베이스 시스템의 트랜잭션을 관리하기 위한 목적으로 사용.

# • SQL 명령문의 유형 별 분류

| 유형                               | 명령문                          |
|----------------------------------|------------------------------|
| DQL: Data Query Language(질의어)    | SELECT(데이터 검색시 사용)           |
| DML:Data Manipulation Language   | INSERT(데이터 입력)               |
| (데이터 조작어)-데이터 변경 시 사용            | UPDATE(데이터 수정)               |
|                                  | DELETE(데이터 삭제)               |
| DDL: Data Definition Language    | CREATE(데이터베이스 생성)            |
| (데이터 정의어)                        | ALTER(데이터베이스 변경)             |
| 객체 생성 및 변경 시 사용                  | DROP(데이터베이스 삭제)              |
|                                  | RENAME(데이터베이스 객체이름 변경)       |
|                                  | TRUNCATE(데이터베이스 저장 공간 삭제)    |
| TCI Transaction Control Longue   | COMMIT(트랜잭션의 정상적인 종료처리)      |
| TCL:Transaction Control Language | ROLLBACK(트랜잭션 취소)            |
| (트랜잭션 처리어)                       | SAVEPOINT(트랜잭션내에 임시 저장점 설정)  |
| DCL: Data Control Language       | GRANT(데이터베이스에 대한 일련의 권한 부여)  |
| (데이터 제어어)                        | REVOKE(데이터베이스에 대한 일련의 권한 취소) |

#### SQL

- 데이터 정의어(DDL, Data Definition Language)
- 데이터 조작어(DML, Data Manipulation Language)
- 데이터 제어어(DCL, Data Control Language)

# SELECT bookname, publisher FROM Book;



#### Book 테이블

| bookid | bookname | publisher | price |
|--------|----------|-----------|-------|
| 1      | 축구의 역사   | 굿스포츠      | 7000  |
| 2      | 축구아는 여자  | 나무수       | 13000 |
| 3      | 축구의 이해   | 대한미디어     | 22000 |
| 4      | 골프 바이블   | 대한미디어     | 35000 |
| 5      | 피겨 교본    | 굿스포츠      | 8000  |

| bookname | publisher |
|----------|-----------|
| 축구의 역사   | 굿스포츠      |
| 축구아는 여자  | 나무수       |
| 축구의 이해   | 대한미디어     |
| 골프 바이블   | 대한미디어     |
| 피겨 교본    | 굿스포츠      |

SELECT bookname, publisher FROM Book
Where price >= 10000;



#### Book 테이블

| bookid | bookname | publisher | price |
|--------|----------|-----------|-------|
| 1      | 축구의 역사   | 굿스포츠      | 7000  |
| 2      | 축구아는 여자  | 나무수       | 13000 |
| 3      | 축구의 이해   | 대한미디어     | 22000 |
| 4      | 골프 바이블   | 대한미디어     | 35000 |
| 5      | 피겨 교본    | 굿스포츠      | 8000  |

| bookname | publisher |
|----------|-----------|
| 축구아는 여자  | 나무수       |
| 축구의 이해   | 대한미디어     |
| 골프 바이블   | 대한미디어     |

# 데이터베이스 사용자

# 일반사용자

- 은행의 창구 혹은 관공서의 민원 접수처 등에서 데이터를 다루는 업무를 하는 사람
- 프로그래머가 개발한 프로그램을 이용하여 데이터베이스에 접근 일반인

### • 응용프로그래머

- 일반 사용자가 사용할 수 있도록 프로그램을 만드는 사람
- 자바, C, JSP 등의 프로그래밍 언어와 SQL을 사용하여 일반 사용자를 위한 사용자 인터페이스와 데이터를 관리하는 응용 로직을 개발

### • SQL 사용자

- SQL을 사용하여 업무를 처리하는 IT 부서의 담당자
- 응용 프로그램으로 구현되어 있지 않은 업무를 SQL을 사용하여 처리

# 데이터베이스 사용자

- 데이터베이스 관리자(DBA, Database Administrator)
  - 데이터베이스 운영 조직의 데이터베이스 시스템을 총괄하는 사람
  - 데이터 설계, 구현, 유지보수의 전 과정을 담당
  - 데이터베이스 사용자 통제, 보안, 성능 모니터링, 데이터 전체 파악 및 관리, 데이터 이동 및 복사 등 제반 업무를
     함

# • 데이터베이스 사용자 별로 갖추어야 할 지식 수준

(× : 없음, ○ : 보통, ◎ : 높음)

|            | SQL 언어 | 프로그래밍 능력 | DBMS 지식 | 데이터 구성 |
|------------|--------|----------|---------|--------|
| 일반 사용자     | ×      | ×        | ×       | ×      |
| SQL 사용자    | 0      | ×        | 0       | 0      |
| 응용 프로그래머   | 0      | ©        | 0       | 0      |
| 데이터베이스 관리자 | 0      | 0        | 0       | 0      |

# 12 DBMS의 기능

# • DBMS가 제공하는 기능

| 데이터 정의(Definition)   | 데이터의 구조를 정의하고 데이터 구조에 대한 삭제 및 변경 기능을 수행함                      |
|----------------------|---------------------------------------------------------------|
| 데이터 조작(manipulation) | 데이터를 조작하는 소프트웨어(응용 프로그램)가 요청하는 데이터의 삽입, 수정, 삭제<br>작업을 지원함     |
| 데이터 추출(Retrieval)    | 사용자가 조회하는 데이터 혹은 응용 프로그램의 데이터를 추출함                            |
| 데이터 제어(Control)      | 데이터베이스 사용자를 생성하고 모니터링하며 접근을 제어함.<br>백업과 회복, 동시성 제어 등의 기능을 지원함 |



ANSI의 3단계 데이터베이스 구조

# 13 3단계 데이터베이스 구조

# 외부단계

- 일반 사용자나 응용 프로그래머가 접근하는 계층으로 전체 데이터베이스 중에서 하나의 논리적인 부분을 의미
- 여러 개의 외부 스키마(external schema)가 있을 수 있음
- 서브 스키마(sub schema)라고도 하며, 뷰(view)의 개념임

### • 개념단계

- 전체 데이터베이스의 정의를 의미
- 통합 조직별로 하나만 존재하며 하나의 데이터베이스에는 하나의 개념 스키마(conceptual schema)가 있음

# • 내부 단계

- 물리적 저장 장치에 데이터베이스가 실제로 저장되는 방법의 표현
- 내부 스키마(intenal schema)는 하나
- 인덱스, 데이터 레코드의 배치 방법, 데이터 압축 등에 관한 사항이 포함됨

# 3 3단계 데이터베이스 구조

- 외부/개념 매핑
  - 사용자의 외부 스키마와 개념 스키마 간의 매핑(사상)
  - 외부 스키마의 데이터가 개념 스키마의 어느 부분에 해당되는지 대응시킴

# • 개념/내부 매핑

- 개념 스키마의 데이터가 내부 스키마의 물리적 장치 어디에 어떤 방법으로 저장되는지 대응시킴



1. 데이터베이스 개념과 오라클 설치

# 1.2. 오라클 설치

- 오라클11g 컴퓨터 시스템에 설치
  - ✓ 오라클은 윈도우XP, 윈도우 비스타, 윈도우7 등에 설치 가능
  - ✓ 오라클 홈페이지(http://www.oracle.com)에 접속하여 오라클 다운로드 페이지를 찾음
  - ✓ 오라클 사이트에 회원으로 가입한 사람만 다운로드 할 수 있음

https://www.oracle.com



### □ 오라클 라이센스 동의 화면



## □ 두 개로 나누어진 오라클 zip 파일을 모두 다운로드



□ database 폴더에 압축을 푼다

□ database 폴더에서 setup.exe를 더블 클릭



#### win64\_11gR2\_database\_2of2



- 오라클 설치 1단계인 보안 갱신 구성 단계
  - ✓ 교육과 개발에 사용하는 오라클은 라이센스 계약 없이 설치하여 사용 가능



- □ 오라클 설치 2단계인 설치 옵션 선택 단계
  - ✓ [데이터베이스 생성 및 구성] 옵션은 샘플 스키마와 함께 새 데이터베이스를 생성



- □ 오라클 설치 3단계인 시스템 클래스 선택 단계
  - ✓ 노트북 또는 데스크톱에 설치하는 경우에는 [데스크톱 클래스] 옵션



- □ 오라클 설치 4단계인 일반 설치 구성 단계
  - ✓ Oracle Base와 소프트웨어가 설치되는 위치, 데이터베이스 파일이 저장되는 위치, 설치할 오라클 데이터베이스 버전, 데이터베이스의 문자 집합, 전역 데이터베이스의 이름, 관리 권한을 갖는 오라클 계정(SYS, SYSTEM)의 비밀번호를 설정
    - ✓ 전역 데이터베이스 이름
      - 형식: database\_name.domain
      - 전역 데이터베이스 이름을 입력하면 자동적으로 SID(시스템 식별자)에도 입력됨
      - 전역 데이터베이스 이름은 네트워크 도메인 안에서 서로 다른 데이터베이스를 고유하게 식별할 수 있는데이터베이스의 완전한 이름
      - SID는 로컬 컴퓨터의 다른 데이터베이스와 이 데이터베이스를 고유하게 식별하는 데이터베이스 이름



- 전역데이터베이스 이름 : orcl
- 관리자 비밀번호 : admin

- □ 오라클 설치 5단계인 필요 조건 검사 수행 단계
  - ✓ 오라클을 설치하는데 필요한 최소 시스템 요구 사항을 충족하는지 확인



- □ 오라클 설치 6단계인 요약 단계
  - ✓ 설치할 정보를 요약



오라클 설치 7단계인 제품 설치 단계



□ 데이터베이스 생성(DBCA: Database Configuration Assistant)



□ 생성된 데이터베이스를 요약한 정보



□ 오라클 설치 8단계인 완료 단계



- □ 오라클이 윈도우즈의 서비스로 등록되어 있는지 확인
  - ✓ [시작] → [제어판] → [시스템 및 보안] → [관리도구] → [서비스]를 차례로 클릭
  - ✓ 오라클 설치 과정에서 전역 데이터베이스 이름을 'ORCL'로 설정한 경우에 서비스 이름은 'OracleServiceORCL'



- □ 오라클 관련 프로그램
  - ✓ [시작] → [모든 프로그램] → [Oracle OraDb11g\_home1]



## 시스템 권한을 데이터베이스 관리자

- 데이터베이스 사용자는 오라클 계정(Account)이라는 용어와 같은 의미로 사용.
- 오라클을 설치하면 한개 이상의 데이터베이스 권한을 갖는 디폴트(기본적인) 사용자가 존재.
- 오라클에서 제공되는 사용자 계정은 다음과 같음.

| 사용자계정  | 설명                                                                                           |
|--------|----------------------------------------------------------------------------------------------|
| SYS    | 오라클 Super 사용자 계정이며 데이터베이스에서 발생하는 모든 문제들을 처리할 수 있는<br>권한을 가지고 있다.                             |
| SYSTEM | 오라클 데이터베이스를 유지보수 관리할 때 사용하는 사용자 계정이며, SYS 사용자와 차이점은 데이터베이스를 생성할 수 있는 권한이 없으면 불완전 복구를 할 수 없다. |
| SCOTT  | 처음 오라클을 사용하는 사용자의 실습을 위해 만들어 놓은 연습용 계정이다.                                                    |
| HR     | 이 역시 오라클에 접근할 수 있도록 샘플로 만들어 놓은 사용자 계정이다.                                                     |

SQL Developer

Downloads and Trials → Developer Download → Developer Tools → SQL Developer



# SQL Developer 다운로드

SQL Developer

압축 풀기



**SQL** Developer

□ SQL Developer
JAVA JDK HOME 설정



# SQL Developer

#### □ SQL Developer





1. 데이터베이스 개념과 오라클 설치

# 1.3. 관계형 데이터 모델

# 1.1 릴레이션

• 릴레이션(relation) : 행과 열로 구성된 테이블

#### 표 릴레이션과 관련된 한글 용어

| 용어                    | 한글 용어     | 비고           |
|-----------------------|-----------|--------------|
| relation              | 릴레이션, 테이블 | "관계"라고 하지 않음 |
| relational data model | 관계 데이터 모델 |              |
| relational database   | 관계 데이터베이스 |              |
| relational algebra    | 관계대수      |              |
| relationship          | 관계        |              |

## 1.1 릴레이션

- 관계(relationship)
  - 릴레이션 내에서 생성되는 관계 : 릴레이션 내 데이터들의 관계
  - ② 릴레이션 간에 생성되는 관계 : 릴레이션 간의 관계





그림 도서 릴레이션

# 1.3 릴레이션 인스턴스

#### • 인스턴스 요소

- 투플(tuple) : 릴레이션의 행 투플이 가지는 속성의 개수는 릴레이션 스키마의 차수와 동일하고, 릴레이션 내의 모든 투플들은 서로 중복되지 않아야 함

- 카디날리티(cardinality) : 투플의 수

| <b>ŀ 관련된 용어</b> |
|-----------------|
|                 |

| <u> </u>      | 할데이션 구조와 관련된 경 | <del>5</del> 0 |             |
|---------------|----------------|----------------|-------------|
|               | 릴레이션 용어        | 같은 의미로 통용되는 용어 | 파일 시스템 용어   |
|               | 릴레이션(relation) | 테이블(table)     | 파일(file)    |
|               | 스키마(schema)    | 내포(intension)  | 헤더(header)  |
|               | 인스턴스(instance) | 외연(extension)  | 데이터(data)   |
|               | 투플(tuple)      | 행(row)         | 레코드(record) |
|               | 속성(attribute)  | 열(column)      | 필드(field)   |
| $\overline{}$ |                |                |             |

# 1.4 릴레이션의 특징

속성은 단일 값을 가진다.

- 각 속성의 값은 도메인에 정의된 값만을 가지며 그 값은 모두 단일 값이어야 함.
  - 속성은 서로 다른 이름을 가진다
  - 속성은 한 릴레이션에서 서로 다른 이름을 가져야만 함.
  - 한 속성의 값은 모두 같은 도메인 값을 가진다
  - 한 속성에 속한 열은 모두 그 속성에서 정의한 도메인 값만 가질 수 있음.

의 삭제, 수정, 삽입에 따라 순서가 바뀔 수 있음.

- 속성의 순서는 상관없다
- 속성의 순서가 달라도 릴레이션 스키마는 같음.
- 예) 릴레이션 스키마에서 (이름, 주소) 순으로 속성을 표시하거나 (주소, 이름) 순으로 표시하여도 상관없음.
- 릴레이션 내의 중복된 투플은 허용하지 않는다

  - 하나의 릴레이션 인스턴스 내에서는 서로 중복된 값을 가질 수 없음. 즉 모든 투플은 서로 값이 달라야 함.
- - 투플의 순서는 상관없다 투플의 순서가 달라도 같은 릴레이션임. 관계 데이터 모델의 투플은 실제적인 값을 가지고 있으며 이 값은 시간이 지남에 따라 데이터

| 02 | 무결성 제약조건     |
|----|--------------|
| •  | 키            |
| •  | 무결성 제약조건     |
| •  | 무결성 제약조건의 수행 |
|    |              |

#### 2.1 키

- 특정 투플을 식별할 때 사용하는 속성 혹은 속성의 집합임.
- 릴레이션은 중복된 투플을 허용하지 않기 때문에 각각의 투플에 포함된 속성들 중 어느 하나(혹은 하나이상)는 값이 달라야 함. 즉 키가 되는 속성(혹은 속성의 집합)은 반드시 값이 달라서 투플들을 서로 구별할 수 있어야 함.
- 키는 릴레이션 간의 관계를 맺는 데도 사용됨.



그림 자동차 1 대당 키는 단 하나

|      |      | X   |            |      | 1    |       | X              |     | _        | X      |
|------|------|-----|------------|------|------|-------|----------------|-----|----------|--------|
| 고객   | 고객번호 | 이름  | 주민         | 번호   |      |       | 주소             |     | 한        | 드폰     |
| •    | 1    | 박지성 | 810101-111 | 1111 |      | 영국 대  | 갠체스타           |     | 000-5000 | -0001  |
| (    | 2    | 김연아 | 900101-222 | 2222 |      | 대한민   | <u>l</u> 국 서울  |     | 000-6000 | -0001  |
|      | 3    | 장미란 | 830101-233 | 3333 |      | 대한민   | <u>l</u> 국 강원도 |     | 000-7000 | -0001  |
|      | 4    | 추신수 | 820101-144 | 4444 | -    | 미국    | 클리블랜드          |     | 000-8000 | -0001  |
|      |      |     |            |      |      |       |                |     |          |        |
| / 도서 | 도서번호 | 도   | 서이름        |      |      | 출판    | 사              |     | 가격       |        |
|      | 1    | 축극  | 구의 역사      |      |      | 굿스포   | <u>大</u>       |     | 7000     |        |
|      | 2    | 축구  | 아는 여자      |      |      | 나무:   | 수              |     | 13000    |        |
| /    | 3    | 축구  | 구의 이해      |      |      | 대한미   | 디어             |     | 22000    |        |
|      | 4    | 골프  | 프 바이블      |      |      | 대한미   | 디어             |     | 35000    |        |
|      | 5 1  | 耳   | 겨 교본       |      |      | 굿스포   | <u>大</u>       |     | 8000     |        |
|      |      |     |            |      |      |       |                |     |          | -<br>I |
| 주문   | 고객번호 | 5   | 서번호        |      | 판매가격 | 격     | 주              | 문일자 |          |        |
|      | 1    |     | 1          |      |      | 7000  |                | 20  | 14-07-01 |        |
| 1    | 1    | 2   | 2          |      |      | 13000 |                | 20  | 14-07-03 |        |
|      | 2    |     | 5          |      |      | 8000  |                | 20  | 14-07-03 |        |
|      | 3    |     | 2          |      |      | 13000 |                | 20  | 14-07-04 |        |
|      | 4    |     | 4          |      |      | 35000 |                | 20  | 14-07-05 |        |

3

22000

22000

그림 마당서점 데이터베이스

2014-07-07

2014-07-07

#### 2.1.1 슈퍼키

- 투플을 유일하게 식별할 수 있는 하나의 속성 혹은 속성의 집합
  - 투플을 유일하게 식별할 수 있는 값이면 모두 슈퍼키가 될 수 있음(고객 릴레이션 예)
    - 고객번호 : 고객별로 유일한 값이 부여되어 있기 때문에 투플을 식별할 수 있음.
    - 이름 : 동명이인이 있을 경우 투플을 유일하게 식별할 수 없음.
    - 주민번호: 개인별로 유일한 값이 부여되어 있기 때문에 투플을 식별할 수 있음.
    - 주소 : 가족끼리는 같은 정보를 사용하므로 투플을 식별할 수 없음.
    - 핸드폰: 한 사람이 여러 개의 핸드폰을 사용할 수 있고 반대로 핸드폰을 사용하지 않는 사람이 있을 수 있기 때문에 투플을 식별할 수 없음.

#### • 고객 릴레이션은 고객번호와 주민번호를 포함한 모든 속성의 집합이 슈퍼키가 됨

EX) (주민번호), (주민번호, 이름), (주민번호, 이름, 주소), (주민번호, 이름, 핸드폰), (고객번호), (고객번호, 이름, 주소), (고객번호, 이름, 주소, 핸드폰) 등

- 투플을 유일하게 식별할 수 있는 속성의 최소 집합 (주문 릴레이션 예)
  - 고객번호: 한 명의 고객이 여러 권의 도서를 구입할 수 있으므로 후보키가 될 수 없음.
  - 고객번호가 1인 박지성 고객은 세 번의 주문 기록이 있으므로 투플을 유일하게 식별할 수 없음.
  - 도서번호 : 도서번호가 2인 '축구아는 여자'는 두 번의 주문 기록이 있으므로 투플을 유일하게 식별할 수 없음.

- 주문 릴레이션의 후보키는 2개의 속성을 합한 (고객번호, 도서번호)가 됨.
- 이렇게 2개 이상의 속성으로 이루어진 키를 복합키(composite key)라고 함.

후보키가 하나뿐이라면 그 후보키를 기본키로 사용하면 되고 여러 개라면 릴레이션의 특성을 반영하여 하나를 선

기본키 선정 시 고려사항

택하면 됨.

릴레이션 내 투플을 식별할 수 있는 고유한 값을 가져야 함.

NULL 값은 허용하지 않음.

- 키 값의 변동이 일어나지 않아야 함.

최대한 적은 수의 속성을 가진 것이라야 함.

향후 키를 사용하는 데 있어서 문제 발생 소지가 없어야 함.

릴레이션 스키마를 표현할 때 기본키는 밑줄을 그어 표시함

릴레이션 이름(속성1, 속성2, ···. 속성N)

EX) 고객(고객번호, 이름, 주민번호, 주소, 핸드폰) 도서(도서번호, 도서이름, 출판사, 가격)

#### 2.1.4 대리키

- 기본키가 보안을 요하거나, 여러 개의 속성으로 구성되어 복잡하거나, 마땅한 기본키가 없을 때는 일련 번호 같은 가상의 속성을 만들어 기본키로 삼는 경우가 있음.
- 이러한 키를 대리키(surrogate key) 혹은 인조키(artificial key)라고 함.
  - 대리키는 DBMS나 관련 소프트웨어에서 임의로 생성하는 값으로 사용자가 직관적으로 그 값의 의미를 알 수 없음.

주문

| 주문번호 | 고객번호 | 도서번호 | 판매가격  | 주문일자       |
|------|------|------|-------|------------|
| 1    | 1    | 1    | 7000  | 2014-07-01 |
| 2    | 1    | 2    | 13000 | 2014-07-03 |
| 3    | 2    | 5    | 8000  | 2014-07-03 |
| 4    | 3    | 2    | 13000 | 2014-07-04 |
| 5    | 4    | 4    | 35000 | 2014-07-05 |
| 6    | 1    | 3    | 22000 | 2014-07-07 |
| 7    | 4    | 3    | 22000 | 2014-07-07 |

대리키를 사용하도록 변경된 주문 릴레이션

- 대체키(alternate key)는 기본키로 선정되지 않은 후보키를 말함.
- 고객 릴레이션의 경우 고객번호와 주민번호 중 고객번호를 기본키로 정하면 주민번호가 대체키가 됨.

# • 외래키의 특징

- 관계 데이터 모델의 릴레이션 간의 관계를 표현함.
- 다른 릴레이션의 기본키를 참조하는 속성임.
- 참조하고(외래키) 참조되는(기본키) 양쪽 릴레이션의 도메인은 서로 같아야 함.
- 참조되는(기본키) 값이 변경되면 참조하는(외래키) 값도 변경됨.
- NULL 값과 중복 값 등이 허용됨.
- 자기 자신의 기본키를 참조하는 외래키도 가능함.
- 외래키가 기본키의 일부가 될 수 있음.

# 2.1.6 외래키

#### • 릴레이션 간의 참조 관계

#### 고객

| 고객번호 | 이름  | 주민번호           | 주소       | 핸드폰           |
|------|-----|----------------|----------|---------------|
| 1    | 박지성 | 810101-1111111 | 영국 맨체스타  | 000-5000-0001 |
| 2    | 김연아 | 900101-2222222 | 대한민국 서울  | 000-6000-0001 |
| 3    | 장미란 | 830101-2333333 | 대한민국 강원도 | 000-7000-0001 |
| 4    | 추신수 | 820101-1444444 | 미국 클리블랜드 | 000-8000-0001 |

#### 도서

| 도서번호 | 도서이름    | 출판사   | 가격    |
|------|---------|-------|-------|
| 1    | 축구의 역사  | 굿스포츠  | 7000  |
| 2    | 축구아는 여자 | 나무수   | 13000 |
| 3    | 축구의 이해  | 대한미디어 | 22000 |
| 4    | 골프 바이블  | 대한미디어 | 35000 |
| 5    | 피겨 교본   | 굿스포츠  | 8000  |

기본키

참조

주문 외래키

참조

기본키

| . –  | i V  | V    |       |            |
|------|------|------|-------|------------|
| 주문번호 | 고객번호 | 도서번호 | 판매가격  | 주문일자       |
| 1    | 1    | 1    | 7000  | 2014-07-01 |
| 2    | 1    | 2    | 13000 | 2014-07-03 |
| 3    | 2    | 5    | 8000  | 2014-07-03 |
| 4    | 3    | 2    | 13000 | 2014-07-04 |
| 5    | 4    | 4    | 35000 | 2014-07-05 |
| 6    | 1    | 3    | 22000 | 2014-07-07 |
| 7    | 4    | 3    | 22000 | 2014-07-07 |

기본키

#### 02 2.1.6 외래키

• 외래키 사용 시 참조하는 릴레이션과 참조되는 릴레이션이 꼭 다른 릴레이션일 필요는 없음. 즉 자기 자신의 기본키를 참조할 수도 있음.

| 기본키 ↓ | 의래키 |          |      |
|-------|-----|----------|------|
| 선수번호  | 이름  | 주소       | 멘토번호 |
| 1     | 박지성 | 영국 맨체스타  | NULL |
| 2     | 김연아 | 대한민국 서울  | 3    |
| 3     | 장미란 | 대한민국 강원도 | 4    |
| 4     | 추신수 | 미국 클리블랜드 | NULL |

멘토 릴레이션

| 78               | 도메인                 |                          | ₹                        |  |
|------------------|---------------------|--------------------------|--------------------------|--|
| 구분               | 도메인 무결성 제약조건        | 개체 무결성 제약조건              | 참조 무결성 제약조건              |  |
| 제약 대상            | 속성                  | 투플                       | 속성과 투플                   |  |
| 같은 용어            | 도메인 제약              | 기본키 제약                   | 외래키 제약                   |  |
| 불근 중이            | (Domain Constraint) | (Primary Key Constraint) | (Foreign Key Constraint) |  |
| 해당되는 키           | -                   | 기본키                      | 외래키                      |  |
| NULL 값 허용 여부     | 허용                  | 불가                       | 허용                       |  |
| 릴레이션 내           | 속성의 개수와 동일          | 1개                       | 0~여러 개                   |  |
| 제약조건의 개수         | ㄱㅇᅴ 개구쇠 ㅇㄹ          | 1711                     | [                        |  |
|                  |                     |                          | • 투플 삽입/수정 시 제약사항 우선     |  |
| 기타               | • 투플 삽입, 수정 시 제약사항  | • 투플 삽입/수정 시 제약사항 우선     | 확인                       |  |
| ,   <del>-</del> | 우선 확인               | 확인                       | • 부모 릴레이션의 투플 수정/삭제      |  |
|                  |                     |                          | 시 제약사항 우선 확인             |  |

## 2.3.1 개체 무결성 제약조건

- 삽입: 기본키 값이 같으면 삽입이 금지됨.
- 수정: 기본키 값이 같거나 NULL로도 수정이 금지됨.
- 삭제: 특별한 확인이 필요하지 않으며 즉시 수행함.

| 학번  | 이름  | 학과코드 |
|-----|-----|------|
| 501 | 박지성 | 1001 |
| 401 | 김연아 | 2001 |
| 402 | 장미란 | 2001 |
| 502 | 추신수 | 1001 |

#### 학생 릴레이션

(501, 남슬찬, 1001)



|   | 학번  | 이름  | 학과코드 |
|---|-----|-----|------|
|   | 501 | 박지성 | 1001 |
|   | 401 | 김연아 | 2001 |
| Г | 402 | 장미란 | 2001 |
|   | 502 | 추신수 | 1001 |

(NULL, 남슬찬, 1001)

삽입 거부

| 441 |                   |
|-----|-------------------|
| 이름  | 학과코드              |
| 박지성 | 1001              |
| 김연아 | 2001              |
| 장미란 | 2001              |
| 추신수 | 1001              |
|     | 박지성<br>김연아<br>장미란 |

개체 무결성 제약조건의 수행 예(기본키 충돌 및 NULL 값 삽입)

# 2.3.2 참조 무결성 제약조건

#### 삽입

- 학과(부모 릴레이션): 투플 삽입한 후 수행하면 정상적으로 진행된다.
- 학생(자식 릴레이션): 참조받는 테이블에 외래키 값이 없으므로 삽입이 금지된다.

#### 학생(자식 릴레이션)

| 학번  | 이름  | 학과코드 |
|-----|-----|------|
| 501 | 박지성 | 1001 |
| 401 | 김연아 | 2001 |
| 402 | 장미란 | 2001 |
| 502 | 추신수 | 1001 |
|     |     |      |

#### 학과(부모 릴레이션)

| 학과코드     | 학과명   |
|----------|-------|
| 1001     | 컴퓨터학과 |
| 2001     | 체육학과  |
| <b>A</b> |       |

참조

학생관리 데이터베이스

#### 삭제

- 학과(부모 릴레이션): 참조하는 테이블을 같이 삭제할 수 있어서 금지하거나 다른 추가 작업이 필요함.
- 학생(자식 릴레이션) : 바로 삭제 가능함.
- ※ 부모 릴레이션에서 투플을 삭제할 경우 참조 무결성 조건을 수행하기 위한 고려사항
- ❶ 즉시 작업을 중지
  - ② 자식 릴레이션의 관련 투플을 삭제
  - ③ 초기에 설정된 다른 어떤 값으로 변경
  - 4 NULL 값으로 설정

# • 수

- 수정
- 삭제와 삽입 명령이 연속해서 수행됨.
- 부모 릴레이션의 수정이 일어날 경우 삭제 옵션에 따라 처리된 후 문제가 없으면 다시 삽입 제약조건에 따라 처리됨.

#### • 참조 무결성 제약조건의 옵션(부모 릴레이션에서 투플을 삭제할 경우)

| 명령어        | 의미                                           | વા                        |
|------------|----------------------------------------------|---------------------------|
| RESTRICTED | 자식 릴레이션에서 참조하고 있을 경우 부모 릴레이션의 삭제 작업을 거부함     | 학과 릴레이션의 투플 삭제 거부         |
| CASCADE    | 자식 릴레이션의 관련 투플을 같이 삭제 처리함                    | 학생 릴레이션의 관련 투플을 삭제        |
| DEFAULT    | 자식 릴레이션의 관련 투플을 미리 설정해둔 값으로 변경함              | 학생 릴레이션의 학과가 다른 학과로 자동 배정 |
| NULL       | 자식 릴레이션의 관련 투플을 NULL 값으로 설정함(NULL 값을 허가한 경우) | 학과 릴레이션의 학과가 NULL 값으로 변경  |

참조 무결성 제약조건에서 부모 릴레이션의 투플을 삭제할 경우



- ① RESTRICTED: 요청한 삭제 작업중지(에러 처리)
- ② CASCADE: 학생 릴레이션의 해당 투플을 같이 연쇄적으로 삭제(CASCADE)
- ③ 기본값으로 변경(미리 설정한 값, DEFAULT)
- ④ NULL 값으로 설정