Semaine n° 11: du 25 novembre au 29 novembre

Lundi 25 novembre

- Cours à préparer : Chapitre XII Suites réelles et complexes
 - Partie 1 : Suite réelle, suite réelle constante, stationnaire, monotone, strictement monotone.
 - Partie 2.1 : Suite convergente, suite admettant $+\infty$, $-\infty$ pour limite, unicité de la limite (sous réserve d'existence).
- Exercices à corriger en classe
 - Feuille d'exercices nº 11 : exercice 6.
- Exercices à rendre en fin de TD (liste non exhaustive)
 - Feuille d'exercices nº 11 : exercices 1, 5, 9, 2 ou 3, 11, 12, 17, 4, 10, 7, 14, 15, 19.

Mardi 26 novembre

- Cours à préparer : Chapitre XII Suites réelles et complexes
 - Partie 2.2 : Opérations sur les limites.
- Exercices à corriger en classe
 - Feuille d'exercices nº 11 : exercice 8.

Jeudi 28 novembre

- Cours à préparer : Chapitre XII Suites réelles et complexes
 - Partie 2.3: Suites extraites.
 - Partie 2.4 : Limites et inégalités.
 - Partie 3.1: Composition.
 - Partie 3.2 : Théorème de minoration, de majoration, d'encadrement; théorème de la limite monotone.
- Exercices à corriger en classe
 - Feuille d'exercices nº 11 : exercices 16, 18.

Vendredi 29 novembre

- Cours à préparer : Chapitre XII Suites réelles et complexes
 - Partie 3.2 : Suites adjacentes.
 - Partie 3.3 : Théorème de Bolzano-Weierstrass.
- Exercices à corriger en classe
 - Feuille d'exercices nº 11 : exercice 13.

Échauffements

Mardi 26 novembre

- Soit a = 185236 et b = 3524. Calculer : $a \wedge b$, $a \vee b$ et un couple de Bézout de (a, b).
- Cocher toutes les assertions vraies : Soit $a, b \in \mathbb{R}$ tels que a < b. Soit f une fonction continue et strictement décroissante sur [a, b].
 - \Box f établit une bijection de [a,b] dans [f(a),f(b)].
 - \Box f admet une réciproque f^{-1} , et $f \circ f^{-1} = \mathrm{Id}_{[a,b]}$.
 - \square il existe $y \in [f(b), f(a)]$ tel que pour tout $x \in [a, b], f(x) = y$.
 - \square le théorème de la bijection assure que pour tout $x \in [a, b]$, il existe $y \in [f(b), f(a)]$ tel que f(x) = y.
 - \square il existe un unique $x \in [a, b]$ tel que f(x) = y.

Jeudi 28 novembre

- Montrer que $\forall n \in \mathbb{N}, 3^{2n+1} + 2^{n+2} \in 7\mathbb{Z}$.
- \bullet Cocher toutes les assertions vraies : Soient $a,\,b$ et c des réels.
 - \square si $a \leq 0$ alors $(-a)^2 \geq 0$.
 - \Box Si $a^2 + b^3 < 0$ alors b < 0.
 - \square Si $a^2 + b^2 + c^2 = 0$, alors (a, b, c) = (0, 0, 0).
 - \square Si $a \neq b$, $b \neq c$ et $a \neq c$ alors $(a b + c)^2 \neq 0$.

Vendredi 29 novembre

- Résoudre sur \mathbb{R} l'équation différentielle $y'' + 2y' + y = xe^{-x}$.
- Cocher toutes les assertions vraies : Soit $a, b, c, d \in \mathbb{Z}^*$. Alors :
 - \square si a divise b et c, alors $c^2 2b$ est multiple de a.
 - \square s'il existe u et v entiers tels que au + bv = d alors $\operatorname{pgcd}(a, b) = |d|$.
 - \square si a divise b+c et b-c, alors a divise b et a divise c.
 - \square si 19 divise ab, alors 19 divise a ou 19 divise b.
 - \square si a est multiple de b et si c est multiple de d, alors a+c est multiple de b+d.
 - \square si a divise b et b ne divise pas c, alors a ne divise pas c.
 - \square si 4 ne divise pas bc, alors b ou c est impair.
 - \square si 5 divise b^2 , alors 25 divise b^2 .