

המחלקה למדעי המחשב

תשפ"ג 29/11/2312:00-26/11/2312:00

אלגברה 2

מועד ב'

מרצים: ד"ר ירמיהו מילר, ד'ר שי סרוסי.

תשפ"ג סמסטר ק'

השאלון מכיל 12 עמודים (כולל עמוד זה וכולל דף נוסחאות).

בהצלחה!

אחר / הערות

- יש לפתור את כל השאלות.
- המשקל של כל שאלה מפורט להלן:
 - **.** שאלה 1: 30 נקודות *
 - **.** שאלה 2: 20 נקודות *
 - * שאלה 3: 20 נקודות.
 - * שאלה 4: 30 נקודות.
- סדר התשובות אינו משנה, אך יש לרשום ליד כל תשובה את מספרה.
- הסבירו היטב את מהלך הפתרון. תשובה ללא הסבר (גם נכונה) לא תתקבל.
 - אסור לחלוטין לקבל עזרה מסטודנט אחר או מאף אחד.
- עליכם להעלות את הפתרונות שלכם דרך אתר המודל של הקורס אלגברה 2 למדמ"ח לא יאוחר משעה עליכם להעלות את ביום ד' 20-11-23. פתרונות שהוגשו אחרי המועד הזה לא יתקבלו.
- מותר להשתמש בחומר של הקורס, התרגילים של הקורס והספרים של הקורס בלבד, אבל אסור להשתמש בשום מקורות אחרים.
- אחרי הגשת פתרונות אתם תקבלו הזמנה למבחן קצר בעל פה על הפתרונות שלכם. ייתכן שלא תעבור את המבחן או יורידו נקודות במקרה שאתם לא יכולים להסביר הפתרונות שלכם היטב.
 - סטודנט יהיה זכאי להגיש ערעור / בקשות שונות לגבי הבוחן במשך 5 ימים בלבד מיום קבלת הציון.

$$A=\left(egin{array}{cccc}1&2&3&1\2&4&6&1\3&6&9&1\0&0&0&1\end{array}
ight)$$
 המטריצה $A\in\mathbb{R}^{4 imes4}$ תהי

 $A=PDP^{-1}$ -ש כך אלכסונית אם פיכה? אם כן, מצאו אם הפיכה ו- D אלכסונית אם A

$$A^{99} \cdot egin{pmatrix} -8 \ 4 \ 0 \ 0 \end{pmatrix}$$
 חשבו את (ב

ג) הוכיחו כי

$$A^4 = 15A^3 - 14A^2 .$$

שאלה 2 תהי $A\in\mathbb{C}^{4 imes 4}$ מטריצה נורמלית. נניח כי הערכים עצמיים של $A\in\mathbb{C}^{4 imes 4}$

$$\lambda_1 = 1 + i$$
, $\lambda_2 = -1 + i$, $\lambda_3 = 2$, $\lambda_4 = 3$,

ונניח כי המרחבים העצמיים הם

$$V_{1+i} = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}, \quad V_{-1+i} = \operatorname{span} \left\{ \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}, \quad V_2 = \operatorname{span} \left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\} \;.$$

 $a=egin{pmatrix}1\3\4\5\end{pmatrix}$ הווקטור $a\in\mathbb{C}^4$ יהי יהי בכוונה. אימו לב כי המרחב עצמי ששייך לערך עצמי $\lambda_4=3$ לא נתון בכוונה.

- $A \cdot a$ או מצאו את (א
- $A^4 \cdot a$ מצאו את ב
- A מצאו את המטריצה (ג)

-שאלה
$$B$$
 תהי $A\in\mathbb{R}^{5 imes 5}$ המטריצה $A=\left(egin{array}{cccc}0&4&0&0&0\\0&0&0&0&0\\0&3&2&0&0\\0&0&6&0&0\\5&0&0&1&2\end{array}
ight)$ המטריצה הפיכה $A\in\mathbb{R}^{5 imes 5}$ תהי $A\in\mathbb{R}^{5 imes 5}$

 $A = PJP^{-1}$

[-1,1] איזו נוסחה מגדירה מכפלה פנימית במרחב של כל הפונקציות הרציפות בקטע איזו נוסחה מגדירה מכפלה פנימית במרחב של כל הפונקציות הרציפות בקטע

$$\langle f,g\rangle = \int_{-1}^{1} f(x)g^2(x) dx$$
 (x

$$\langle f,g \rangle = \int_{-1}^1 4f(x)g(x)\,dx$$
 (2

$$\langle f,g \rangle = \int_{-1}^1 f(x)g(x) \sin x \, dx$$
 (3)

$$\langle f,g \rangle = \frac{1}{3} \int_{-1}^{1} f(x)g(x)x^8 dx$$
 (7

פתרונות

שאלה 1

א) נחשב את הפולינום האופייני:

$$\begin{aligned} p_A(x) = &|xI - A| = \begin{vmatrix} x - 1 & -2 & -3 & -1 \\ -2 & x - 4 & -6 & -1 \\ -3 & -6 & x - 9 & -1 \\ 0 & 0 & 0 & x - 1 \end{vmatrix} \\ = &(x - 1) \begin{vmatrix} x - 1 & -2 & -3 \\ -2 & x - 4 & -6 \\ -3 & -6 & x - 9 \end{vmatrix} \\ = &(x - 1)(x - 1) \begin{vmatrix} x - 4 & -6 \\ -6 & x - 9 \end{vmatrix} + 2(x - 1) \begin{vmatrix} -2 & -6 \\ -3 & x - 9 \end{vmatrix} - 3(x - 1) \begin{vmatrix} -2 & x - 4 \\ -3 & x - 6 \end{vmatrix} \\ = &(x - 1)^2 ((x - 9)(x - 4) - 36) + 2(x - 1) (-2(x - 9) - 18) - 3(x - 1) (12 + 3(x - 4)) \\ = &(x - 1)^2 (x^2 - 13x) - 4x(x - 1) - 9x(x - 1) \\ = &(x - 1)^2 (x^2 - 13x) - 13x(x - 1) \\ = &(x - 1)^2 (x - 13) - 13x(x - 1) \\ = &(x - 1) ((x - 1)(x - 13) - 13) \\ = &(x - 1) (x^2 - 14x) \\ = &x^2(x - 1) (x - 14) \end{aligned}$$

 $\lambda=0$ מרחב עצמי ששייך לערך עצמי

 $(x,y,z,w)=(-2y-3z,y,z,0)=(-2,1,0,0)y+(-3,0,1,0)z,\ y,z\in\mathbb{R}$ פתרון:

$$V_0 = \operatorname{span} \left\{ \begin{pmatrix} -2\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} -3\\0\\1\\0 \end{pmatrix} \right\}$$

 $\lambda=14$ מרחב עצמי ששייך לערך עצמי

$$(A-14 \cdot I) = \begin{pmatrix} -13 & 2 & 3 & 1 \\ 2 & -10 & 6 & 1 \\ 3 & 6 & -5 & 1 \\ 0 & 0 & 0 & -13 \end{pmatrix} \xrightarrow{R_2 \to 13R_2 + 2R_1 \atop R_3 \to 13R_3 + 3R_1} \begin{pmatrix} -13 & 2 & 3 & 1 \\ 0 & -126 & 84 & 15 \\ 0 & 84 & -56 & 16 \\ 0 & 0 & 0 & -13 \end{pmatrix}$$

$$\xrightarrow{R_4 \to -\frac{1}{13}R_4} \begin{pmatrix} -13 & 2 & 3 & 1 \\ 0 & -126 & 84 & 15 \\ 0 & 21 & -14 & 4 \\ 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_3 \to 126R_3 + 21R_2} \begin{pmatrix} -13 & 2 & 3 & 1 \\ 0 & -126 & 84 & 15 \\ 0 & 0 & 0 & 819 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{R_4 \to 819R_4 - R_3} \begin{pmatrix} -13 & 2 & 3 & 1 \\ 0 & -126 & 84 & 15 \\ 0 & 0 & 0 & 819 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_3 \to \frac{1}{819}R_3} \begin{pmatrix} -13 & 2 & 3 & 1 \\ 0 & -126 & 84 & 15 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{R_2 \to R_2 - 15R_3} \begin{pmatrix} -13 & 2 & 3 & 1 \\ 0 & -126 & 84 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{R_1 \to 28R_1 - R_2} \begin{pmatrix} -364 & 182 & 0 & 0 \\ 0 & -126 & 84 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{R_1 \to 28R_1 - R_2} \begin{pmatrix} -364 & 182 & 0 & 0 \\ 0 & -126 & 84 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{R_1 \to 28R_1 - R_2} \begin{pmatrix} -364 & 182 & 0 & 0 \\ 0 & -126 & 84 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{R_1 \to 28R_1 - R_2} \begin{pmatrix} -364 & 182 & 0 & 0 \\ 0 & -126 & 84 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

 $(x,y,z,w)=(rac{y}{2},rac{2}{3}z,z,0)=(rac{1}{3},rac{2}{3},1,0)z,\,\,z\in\mathbb{R}$ פתרון:

$$V_{14} = \operatorname{span} \left\{ egin{pmatrix} 1 \\ 2 \\ 3 \\ 0 \end{pmatrix}
ight\} \; .$$

 $\lambda=1$ מרחב עצמי ששייך לערך עצמי

$$(A - \cdot I) = \begin{pmatrix} 0 & 2 & 3 & 1 \\ 2 & 3 & 6 & 1 \\ 3 & 6 & 8 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_1 \to \frac{1}{2}R_2 \atop R_2 \to \frac{1}{3}R_3} \begin{pmatrix} 1 & \frac{3}{2} & 3 & \frac{1}{2} \\ 1 & 2 & \frac{3}{8} & \frac{1}{3} \\ 0 & 2 & 3 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{R_2 \to R_2 - R_1} \begin{pmatrix} 1 & \frac{3}{2} & 3 & \frac{1}{2} \\ 0 & \frac{1}{2} & -\frac{1}{3} & -\frac{1}{6} \\ 0 & 2 & 3 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_3 \to R_3 - 4R_2} \begin{pmatrix} 1 & \frac{3}{2} & 3 & \frac{1}{2} \\ 0 & \frac{1}{2} & -\frac{1}{3} & -\frac{1}{6} \\ 0 & 0 & \frac{13}{3} & \frac{5}{3} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{R_1 \to 2R_1 \atop R_2 \to 6R_2 \atop R_3 \to 3R_3} \begin{pmatrix} 2 & 3 & 6 & 1 \\ 0 & 3 & -2 & -1 \\ 0 & 0 & 13 & 5 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_1 \to 5R_1 - R_3 \atop R_2 \to 5R_2 + R_3} \begin{pmatrix} 10 & 15 & 17 & 0 \\ 0 & 15 & 3 & 0 \\ 0 & 0 & 13 & 5 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{R_1 \to 3R_1 - 17R_2 \atop R_2 \to \frac{1}{3}R_2} \begin{pmatrix} 30 & -210 & 0 & 0 \\ 0 & 5 & 1 & 0 \\ 0 & 0 & 13 & 5 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_1 \to \frac{1}{30}R_1} \begin{pmatrix} 1 & -7 & 0 & 0 \\ 0 & 5 & 1 & 0 \\ 0 & 0 & 13 & 5 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

 $(x,y,z,w)=(7y,rac{-1}{5}z,rac{-5}{13}w,w)=(rac{7}{13}w,rac{1}{13}w,rac{-5}{13}w,w)=(rac{7}{13},rac{1}{13},rac{-5}{13},1)w,\ w\in\mathbb{R}$ פתרון:

$$V_1 = \operatorname{span} \left\{ \begin{pmatrix} 7\\1\\-5\\13 \end{pmatrix} \right\} .$$

הריבוי גאומטרי שווה לריבוי אלגברי של כל ערך עצמי לכן A לכסינה.

$$P = \begin{pmatrix} | & | & | & | \\ u_{14} & u_1 & u_0 & u_0' \\ | & | & | & | \end{pmatrix} = \begin{pmatrix} 1 & 7 & -3 & -2 \\ 2 & 1 & 0 & 1 \\ 3 & -5 & 1 & 0 \\ 0 & 13 & 0 & 0 \end{pmatrix} .$$

 $A^{99} \begin{pmatrix} -8\\4\\0\\0 \end{pmatrix} = A^{99} \cdot 4 \cdot u_0 = 4A^{99} \cdot u_0 = 4 \cdot 0 \cdot u_0 = 0.$

המכללה האקדמית להנדסה סמי שמעון

(1

ג) הפולינום האופייני הוא

$$(x-14)(x-1)x^2 = x^4 - 15x^3 + 14x^2$$
.

לכן $p_A(A)=0$ לכן המילטון: $p_A(A)=0$

$$A^4 - 15A^3 + 14A^2 = 0$$
 \Rightarrow $A^4 = 15A^3 - 14A^2$.

שאלה 2

א) משפט הפירוק הספקטרלי:

$$A \cdot a = (1+i)P_{V_{1+i}}(a) + (-1+i)P_{V_{-1+i}}(a) + 2P_{V_2}(a) + 3P_{V_3}(a) .$$

$$P_{V_3}(a) = a - P_{V_{1+i}}(a) - P_{V_{-1+i}}(a) - P_{V_2}(a)$$

לכן

$$P_{V_{1+i}}(a) = \frac{\langle a, u_{1+i} \rangle}{\|u_{1+i}\|^2} u_{1+i} = \frac{\left\langle \begin{pmatrix} 1\\3\\4\\5 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} 1\\0\\0\\0\\1 \end{pmatrix} \right\|^2} \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} = \begin{pmatrix} 3\\0\\0\\3 \end{pmatrix}.$$

$$P_{V_{-1+i}}(a) = \frac{\langle a, u_{-1+i} \rangle}{\|u_{-1+i}\|^2} u_{-1+i} = \frac{\left\langle \begin{pmatrix} 1\\3\\4\\5 \end{pmatrix}, \begin{pmatrix} -1\\0\\1 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} -1\\0\\0\\1 \end{pmatrix} \right\|^2} \begin{pmatrix} -1\\0\\0\\1 \end{pmatrix} = \begin{pmatrix} -2\\0\\0\\2 \end{pmatrix}.$$

$$P_{V_2}(a) = \frac{\left\langle \begin{pmatrix} 1\\3\\4\\5 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} \right\|^2} \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} = \begin{pmatrix} 0\\0\\4\\0 \end{pmatrix}.$$

$$P_{V_3}(a) = a - P_{V_{1+i}}(a) - P_{V_{-1+i}}(a) - P_{V_2}(a) = \begin{pmatrix} 0\\3\\0\\0 \end{pmatrix}.$$

$$A \cdot a = (1+i) \begin{pmatrix} 3 \\ 0 \\ 0 \\ 3 \end{pmatrix} + (-1+i) \begin{pmatrix} -2 \\ 0 \\ 0 \\ 2 \end{pmatrix} + 2 \begin{pmatrix} 0 \\ 0 \\ 4 \\ 0 \end{pmatrix} + 3 \begin{pmatrix} 0 \\ 3 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 5+i \\ 9 \\ 8 \\ 1+5i \end{pmatrix}$$

$$A^4 \cdot a = (1+i)^4 \begin{pmatrix} 3\\0\\0\\3 \end{pmatrix} + (-1+i)^4 \begin{pmatrix} -2\\0\\0\\2 \end{pmatrix} + 2^4 \begin{pmatrix} 0\\0\\4\\0 \end{pmatrix} + 3^4 \begin{pmatrix} 0\\3\\0\\0 \end{pmatrix} = \begin{pmatrix} -4\\243\\64\\-20 \end{pmatrix}$$

$$.e_4=egin{pmatrix} 0 \ 0 \ 0 \ 1 \end{pmatrix}$$
 , $e_3=egin{pmatrix} 0 \ 0 \ 1 \ 0 \end{pmatrix}$, $e_2=egin{pmatrix} 0 \ 1 \ 0 \ 0 \end{pmatrix}$, $e_1=egin{pmatrix} 1 \ 0 \ 0 \ 0 \end{pmatrix}$ (3

$$A \cdot e_1 = (1+i)P_{V_{1+i}}(e_1) + (-1+i)P_{V_{-1+i}}(e_1) + 2P_{V_2}(e_1) + 3P_{V_3}(e_1)$$

$$P_{V_{1+i}}(e_1) = \frac{\langle e_1, u_{1+i} \rangle}{\|u_{1+i}\|^2} u_{1+i} = \frac{\left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\|^2} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 0 \\ 0 \\ 1/2 \end{pmatrix}.$$

$$P_{V_{-1+i}}(e_1) = \frac{\langle e_1, u_{-1+i} \rangle}{\|u_{-1+i}\|^2} u_{-1+i} = \frac{\left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\|^2} \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 0 \\ 0 \\ -1/2 \end{pmatrix}.$$

$$P_{V_2}(e_1) = \frac{\left\langle e_1, u_2 \right\rangle}{\|u_2\|^2} u_2 = \frac{\left\langle \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} \right\|^2} \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} = \begin{pmatrix} 0\\0\\0\\0 \end{pmatrix}.$$

$$P_{V_3}(e_1) = e_1 - P_{V_{1+i}}(e_1) - P_{V_{-1+i}}(e_1) - P_{V_2}(e_1) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

$$A \cdot e_1 = (1+i) \begin{pmatrix} 1/2 \\ 0 \\ 0 \\ 1/2 \end{pmatrix} + (-1+i) \begin{pmatrix} 1/2 \\ 0 \\ 0 \\ -1/2 \end{pmatrix} = \begin{pmatrix} i \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$A \cdot e_2 = (1+i)P_{V_{1+i}}(e_2) + (-1+i)P_{V_{-1+i}}(e_2) + 2P_{V_2}(e_2) + 3P_{V_3}(e_2)$$

$$P_{V_{1+i}}(e_2) = \frac{\langle e_2, u_{1+i} \rangle}{\|u_{1+i}\|^2} u_{1+i} = \frac{\left\langle \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} 1\\0\\0\\0\\1 \end{pmatrix} \right\|^2} \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\0\\0 \end{pmatrix}.$$

$$P_{V_{-1+i}}(e_2) = \frac{\left\langle \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\0\\1 \end{pmatrix} \right\rangle}{\|u_{-1+i}\|^2} u_{-1+i} = \frac{\left\langle \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\1\\0 \end{pmatrix} \right\rangle}{\|\begin{pmatrix} -1\\0\\0\\1 \end{pmatrix}\|^2} \begin{pmatrix} -1\\0\\0\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\0\\0 \end{pmatrix}.$$

$$P_{V_2}(e_2) = \frac{\langle e_2, u_2 \rangle}{\|u_2\|^2} u_2 = \frac{\left\langle \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\|^2} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

$$P_{V_3}(e_2) = e_1 - P_{V_{1+i}}(e_2) - P_{V_{-1+i}}(e_2) - P_{V_2}(e_2) = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}.$$

$$A \cdot e_2 = \begin{pmatrix} 0 \\ 3 \\ 0 \\ 0 \end{pmatrix}$$

$$A \cdot e_3 = (1+i)P_{V_{1+i}}(e_3) + (-1+i)P_{V_{-1+i}}(e_3) + 2P_{V_2}(e_3) + 3P_{V_3}(e_3)$$

$$P_{V_{1+i}}(e_3) = \frac{\left\langle e_3, u_{1+i} \right\rangle}{\|u_{1+i}\|^2} u_{1+i} = \frac{\left\langle \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\|^2} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

$$P_{V_{-1+i}}(e_3) = \frac{\left\langle e_3, u_{-1+i} \right\rangle}{\|u_{-1+i}\|^2} u_{-1+i} = \frac{\left\langle \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\|^2} \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

$$P_{V_2}(e_3) = \frac{\left\langle e_3, u_2 \right\rangle}{\|u_2\|^2} u_2 = \frac{\left\langle \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\|^2} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} .$$

$$P_{V_3}(e_3) = e_3 - P_{V_{1+i}}(e_3) - P_{V_{-1+i}}(e_3) - P_{V_2}(e_3) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

$$A \cdot e_3 = \begin{pmatrix} 0 \\ 0 \\ 2 \\ 0 \end{pmatrix}$$

$$A \cdot e_4 = (1+i)P_{V_{1+i}}(e_4) + (-1+i)P_{V_{-1+i}}(e_4) + 2P_{V_2}(e_3) + 3P_{V_3}(e_4)$$

$$P_{V_{1+i}}(e_4) = \frac{\langle e_4, u_{1+i} \rangle}{\|u_{1+i}\|^2} u_{1+i} = \frac{\left\langle \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\|^2} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 0 \\ 0 \\ 1/2 \end{pmatrix}.$$

$$P_{V_{-1+i}}(e_4) = \frac{\langle e_4, u_{-1+i} \rangle}{\|u_{-1+i}\|^2} u_{-1+i} = \frac{\left\langle \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\|^2} \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1/2 \\ 0 \\ 0 \\ 1/2 \end{pmatrix}.$$

$$P_{V_2}(e_4) = \frac{\left\langle \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\rangle}{\left\| \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\|^2} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

$$P_{V_3}(e_4) = e_4 - P_{V_{1+i}}(e_4) - P_{V_{-1+i}}(e_4) - P_{V_2}(e_4) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

$$A \cdot e_4 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ i \end{pmatrix}$$

$$A = \begin{pmatrix} | & | & | & | \\ Ae_1 & Ae_2 & Ae_3 & Ae_4 \\ | & | & | & | \end{pmatrix} = \begin{pmatrix} i & 0 & 0 & 1 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & i \end{pmatrix}$$

שאלה 3 נחשב את הפולינום האופייני:

המכללה האקדמית להנדסה סמי שמעון

קמפוס באר שבע ביאליק פינת בזל 84100 | **קמפוס אשדוד** ז'בוטינסקי 84, 77245 | www.sce.ac.il | קמפוס באר שבע ביאליק פינת בזל 84100 | **קמפוס אשדוד** קמפוס באר שבע ביאליק פינת בזל 1000 |

:ערכים עצמיים

 $\lambda=2$ מריבוי אלגברי $\lambda=2$

 $\lambda=0$ מריבוי אלגברי

0 המרחב עצמי ששייך לערך עצמי

$$V_0 = \operatorname{span} \left\{ \begin{pmatrix} -2\\0\\0\\0\\5 \end{pmatrix}, \begin{pmatrix} -1\\0\\0\\0\\5 \end{pmatrix} \right\} .$$

:2 המרחב עצמי ששייך לערך עצמי

$$V_2 = \operatorname{span} \left\{ egin{pmatrix} 0 \ 0 \ 0 \ 0 \ 1 \end{pmatrix}
ight\} \; .$$

האפשרויות לפולינום המינימלי הן:

$$x(x-2)$$
, $x^2(x-2)$, $x^3(x-2)$, $x(x-2)^2$, $x^2(x-2)^2$, $x^3(x-2)^2$.

x(x-2) נבדוק

 $x^2(x-2)$ נבדוק

 $x^3(x-2)$ נבדוק

 $x(x-2)^2$ נבדוק

 $x^2(x-2)^2$ נבדוק

לכן הצורת ז'ורדן הינה:

$$J = \begin{pmatrix} J_2(0) & & & \\ & J_1(0) & & \\ & & J_2(2) \end{pmatrix} = \begin{pmatrix} \begin{array}{c|cccc} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2 \end{array} \\ \end{array}$$

0 נסמן הווקטור עצמי ששייך לערך עצמי

$$\mathbf{v}_1 = \begin{pmatrix} -2\\0\\0\\0\\5 \end{pmatrix} , \qquad \mathbf{v}_2 = \begin{pmatrix} -1\\0\\0\\0\\5 \end{pmatrix} .$$

$$u_2 = egin{pmatrix} x \ y \ z \ s \ t \end{pmatrix}$$
 נחשב ווקטור עצמי מוכלל. נסמו

$$(A - 0 \cdot I) u_2 = \alpha \mathbf{v}_1 + \beta \mathbf{v}_2$$

$$\begin{pmatrix}
0 & 4 & 0 & 0 & 0 & -2\alpha - \beta \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 3 & 2 & 0 & 0 & 0 \\
0 & 0 & 6 & 0 & 0 & 5\beta \\
5 & 0 & 0 & 1 & 2 & 5\alpha
\end{pmatrix}$$

$$\xrightarrow{R_1 \to R_5 \atop R_2 \to R_1 \atop R_5 \to R_2}$$

$$\begin{pmatrix}
5 & 0 & 0 & 1 & 2 & 5\alpha \\
0 & 4 & 0 & 0 & 0 & -2\alpha - \beta \\
0 & 3 & 2 & 0 & 0 & 0 \\
0 & 0 & 6 & 0 & 0 & 5\beta \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

לכן נקבל . $\beta = \frac{18\alpha}{11} \Leftarrow 18(-2\alpha - \beta) + 40\beta = 0$ לכן לכן פתרון פתרון פתרון אם

$$\begin{pmatrix}
5 & 0 & 0 & 1 & 2 & 5\alpha \\
0 & 4 & 0x & 0 & 0 & -\frac{1}{11} \cdot 40\alpha \\
0 & 0 & -8 & 0 & 0 & -\frac{1}{11} \cdot 120\alpha \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

ווקטור האפס. כך שהפתרון לא יהיה ווקטור האפס, אז נבחור את הפרמטר lpha כך שהפתרון לא יהיה ווקטור האפס.

נבחור
$$a=0,t=0$$
 נבחור $a=0,t=0$ נבחור $a=0,t=0$ בחור $a=0,t=0$ בחור $a=0,t=0$ בחור $a=0,t=0$ נבחור $a=0,t=0$ ($a=0,t=0$ در $a=0,t=0$

$$u_1=egin{pmatrix} -40 \ 0 \ 0 \ 90 \ 55 \end{pmatrix}$$
 ונקבל $u_1=lpha \mathbf{v}_1+eta \mathbf{v}_2$ בווקטור עצמי $a_1=a$ ונקבל $a_1=a$ ונקבל $a_2=a$ בווקטור עצמי $a_1=a$ בווקטור עצמי $a_2=a$ בווקטור עצמי $a_2=a$ בווקטור עצמי $a_1=a$ ונקבל $a_1=a$

 $u_3=\mathrm{v}_2=egin{pmatrix} -1\ 0\ 0\ 5\ 5\ 0 \end{pmatrix}$ הקט u_2 -ו u_1 ו- u_2 ווקטור עצמי שלישי אשר בלתי תלוי לינארי ביחס ל

:2 נסמן הווקטור עצמי ששייך לערך עצמי

$$u_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} .$$

$$u_5 = egin{pmatrix} x \ y \ z \ s \ t \end{pmatrix}$$
 נחשב ווקטור עצמי מוכלל. נסמו

$$(A-2\cdot I)\,u_5=u_4$$

פתרון:
$$t=0$$
 נבחור $t=0$ נבחור $t=0$ ונקבל . $\begin{pmatrix} x \\ y \\ z \\ s \\ t \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \frac{1}{3} \\ 1 \\ t \end{pmatrix}$

$$u_5 = \begin{pmatrix} 0 \\ 0 \\ \frac{1}{3} \\ 1 \\ 0 \end{pmatrix} .$$

$$P = \begin{pmatrix} | & | & | & | & | \\ u_1 & u_2 & u_3 & u_4 & u_5 \\ | & | & | & | & | \end{pmatrix} = \begin{pmatrix} -40 & 11 & -1 & 0 & 0 \\ 0 & -10 & 0 & 0 & 0 & 0 \\ 0 & 15 & 0 & 0 & \frac{1}{3} \\ 90 & 0 & 5 & 0 & 1 \\ 55 & 0 & 0 & 1 & 0 \end{pmatrix}$$

$$J = \begin{pmatrix} J_2(0) & & & \\ & J_1(0) & & \\ & & J_2(2) \end{pmatrix} = \begin{pmatrix} \begin{array}{c|cccc} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2 \end{array} \end{pmatrix}$$

שאלה 4

 $g(x)=\sqrt{3}x$,f(x)=1 כי נניח הסבר: מכפלה פנימית.

$$\langle f, g \rangle = \int_{-1}^{1} 1 \cdot 3x^2 dx = 2 .$$

$$\langle f, 2g \rangle = \int_{-1}^{1} 1 \cdot 12x^2 dx = 4$$
.

. מכפלה מכפלה לא לכן ליניאריות על שומרת א שומחה לא לכן לכן ליניאריות לכן ל $\langle f,2g\rangle \neq 2\,\langle f,g\rangle$

ב) מכפלה פנימית. הסבר:

1. לינאריות

[-1,1] -ב שרציפות שונקציות פונקציות לכל f,g,h

$$\langle f + h, g \rangle = \int_{-1}^{1} 4(f(x) + h(x))g(x) \, dx = \int_{-1}^{1} 4f(x)g(x) \, dx + \int_{-1}^{1} 4h(x)g(x) \, dx = \langle f, g \rangle + \langle h, g \rangle \ .$$

.[-1,1] -סקלר: [-1,1] -ם טקלר: f,g,hלכל לכל

$$\langle \alpha f, g \rangle = \int_{-1}^{1} 4\alpha f(x)g(x) dx = \alpha \int_{-1}^{1} 4f(x)g(x) dx = \alpha \langle f, g \rangle$$
.

המכללה האקדמית להנדסה סמי שמעון

קמפוס באר שבע ביאליק פינת בזל 84100 | **קמפוס אשדוד** ז'בוטינסקי 84, 77245 | www.sce.ac.il | חיי**ג: ≋⊠הפוםס**

2. סימטריות

$$\langle f, g \rangle = \int_{-1}^{1} 4f(x)g(x) dx = \int_{-1}^{1} 4g(x)f(x) dx = \langle g, f \rangle$$
.

3. חיוביות

$$\langle f,f
angle =\int_{-1}^1 4f^2(x)\,dx\geq 0\ ,$$
ו- $f(x)=0$ אם ורק אם $\langle f,f
angle =0$ -ו

f(x) = (1-x) לא מכפלה פנימית. דוגמה נגדית:

$$\langle f, f \rangle = \frac{1}{2} \int_{-1}^{1} (1-x)^2 \sin x \, dx = 2 \cos(1) - 2 \sin(1) < 0$$
.

כלומר חיוביות לא מתקיימת.

ד) מכפלה פנימית. הסבר:

1. לינאריות

[-1,1] -ב פונקציות שרציפות בf,g,h

$$\langle f+h,g\rangle = \frac{1}{3} \int_{-1}^{1} x^8 (f(x)+h(x))g(x) \, dx = \frac{1}{3} \int_{-1}^{1} x^8 f(x)g(x) \, dx + \frac{1}{3} \int_{-1}^{1} x^8 h(x)g(x) \, dx = \langle f,g\rangle + \langle h,g\rangle \ .$$

.[-1,1] -סקלר: [-1,1] -ם טקלר: f,g,hלכל לכל

$$\langle \alpha f, g \rangle = \frac{1}{3} \int_{-1}^{1} x^8 \alpha f(x) g(x) \, dx = \frac{1}{3} \alpha \int_{-1}^{1} x^8 f(x) g(x) \, dx = \alpha \, \langle f, g \rangle .$$

2. סימטריות

$$\langle f, g \rangle = \frac{1}{3} \int_{-1}^{1} x^8 f(x) g(x) \, dx = \frac{1}{3} \int_{-1}^{1} x^8 g(x) f(x) \, dx = \langle g, f \rangle$$
.

<u>3. חיוביות</u>

$$\langle f,f
angle=rac{1}{3}\int_{-1}^1x^8f^2(x)\,dx\geq 0\;,$$
 $f(x)=0$ אם ורק אם $\langle f,f
angle=0$ -1