Modeling the cumulative incidence function of clustered competing risk data: a multinomial GLMM approach

master thesis defense

Henrique Laureano (.github.io)

April 3, 2021

- 1 Data
- 2 Application
- 3 Mode
- 4 Contributions & challenges
- 5 Template Model Builder

Clustered competing risk data

Key terms:

- Clustered: groups with a dependence structure (e.g. families);
- Causes competing by something.

Something?

- Failure of an industrial or electronic component;
- Occurence or cure of a disease or some biological process;
- Progress of a patient clinic state.

Independent of the application, always the same framework

Cluster	ID	Cause 1	Cause 2	Censorship	Time	Feature
1	1	Yes	No	No	10	Α
1	2	No	No	Yes	8	Α
2	1	No	No	Yes	7	В
2	2	No	Yes	No	5	Α

Data designs

Failure time process

Competing risk process

Multistate process

Data designs

Modeling framework

We have to choose which scale we model the **survival experience**. Usually, the

hazard (failure rate) scale: $\lambda(t \mid \text{features}) = \lambda_0(t) \times c(\text{features})$.

In the competing risk setting ...

a more attractive possibility is to work on the probability scale, focusing on the cause-specific

i.e.

 $CIF = \mathbb{P}[\text{ failure time } \leq t, \text{ a given cause } | \text{ features }]$

- Data
- 2 Application
- Model
- 4 Contributions & challenges
- **5** Template Model Builder

Cancer incidence in twins

Clustered competing risks data

L Clusters? Families

Family studies

Twins data

Family studies ⇒ within-family dependence

That may reflect

- Disease heritability;
- The impact of shared environmental effects;
 - Parental effects: continuity of the phenotype across generations.

- Data
- 2 Application
- 3 Model
- 4 Contributions & challenges
- **5** Template Model Builder

Our contribution: a hierarchical approach

Thinking on two competing causes

... for the outcome y_{ijt} of a subject i, family j, in the time t, we have

$$y_{ijt} \mid \underbrace{\{u_{1j}, u_{2j}, \eta_{1j}, \eta_{2j}\}}_{\text{latent effects}} \sim \text{Multinomial}(p_{1ijt}, p_{2ijt}, p_{3ijt})$$

$$\begin{bmatrix} u_{1j} \\ u_{2j} \\ \eta_{1j} \\ \eta_{2j} \end{bmatrix} \sim \text{Multivariate} \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_{u_1}^2 & \sigma_{u_1, u_2} & \sigma_{u_1, \eta_1} & \sigma_{u_1, \eta_2} \\ \sigma_{u_2}^2 & \sigma_{u_2, \eta_1} & \sigma_{u_2, \eta_2} \\ \sigma_{\eta_1}^2 & \sigma_{\eta_1, \eta_2}^2 \end{bmatrix}$$

$$p_{kijt} = \frac{\partial \text{CIF}}{\partial t}$$

$$= \frac{\partial}{\partial t} \underbrace{\pi_k(X, u_1, u_2 \mid \beta)}_{\text{cluster-specific risk level}} \underbrace{\Phi[w_k g(t) - X^\top \gamma_k - \eta_k]}_{\text{cluster-specific failure time trajectory}}$$

k = 1, 2.

- Data
- 2 Application
- Model
- 4 Contributions & challenges
- **5** Template Model Builder

Contributions & challenges

- A clear and simpler modeling structure;
- There is no free lunch
 Computational challenges overcame via an efficient implementation and estimation routines, the TMB;
- The data is very simple, we just know the outcome (yes or no);
- We have to be able to build the CIF curves;
- And accommodate the within-family dependence properly, that can happen in different manners;
- ...

- Data
- 2 Application
- Model
- 4 Contributions & challenges
- **5** Template Model Builder

TMB: Template Model Builder

Quickly implement complex random effect models through simple $\mathtt{C}++$ templates. The \mathtt{R} package combines

- CppAD: C++ automatic differentiation;
- Eigen: templated matrix-vector library;
- CHOLMOD: sparse matrix routines available from R;

to obtain an efficient implementation of the applied Laplace approximation with exact derivatives.

Also, key features are

- automatic sparseness detection;
- parallelism through BLAS;
- parallel user templates.

Thanks for watching and have a great day

Special thanks to

PPGMNE

Programa de Pós-Graduação em Métodos Numéricos em Engenharia

Joint work with

Wagner H. Bonat http://leg.ufpr.br/~wagner

er h

Paulo Justiniano Ribeiro Jr. http://leg.ufpr.br/~paulojus

@hap laureano