

COMPUTAÇÃO

DISCIPLINA: Cálculo I

Carga Horária Total:80h

Número de Créditos: 04

PROF:LUCAS CAMPOS

Considere a função $f : \mathbb{R} \to \mathbb{R}$ definida por f(x) = 2x + 3. Imagine que você tivesse que responder a seguinte pergunta:

Para que valor a função f se aproxima quando x se aproxima de 1?

f(x)	
4,9	
4,92	. 1
4,94	+
4,96	
4,98	
	4,9 4,92 4,94 4,96

x	f(x)	
1,006	5,012	
1,007	5,014	· •
1,008	5,016	. 1
1,009	5,018	
1,01	5,02	

$$\lim_{x\to 1} f(x) = 5$$

Nós lemos essa notação da seguinte maneira: "Limite de f(x) quando x tende a 1 é igual a 5".

Considere agora a função $f : \mathbb{R} - \{-2, 2\} \to \mathbb{R}$ definida por:

$$f(x) = \frac{x-2}{x^2-4}$$

Para que valor a função f se aproxima quando x se aproxima de 2?

×	f(x)		х	f(x)
1,95	0,25316		2,006	0,24963
1,96	0,25253	- 	2,007	0,24956
1,97	0,25189	- ↓	2,008	0,24950
1,98	0,25126		2,009	0,24944
1,99	0,25063	3	2,01	0,24938

Parece razoável afirmar que:

$$\lim_{x\to 2} f(x) = 0,25$$

Assim, por exemplo, na função

$$f(x) = \begin{cases} 4 - x & \text{se } x < 1 \\ 2 & \text{se } x = 1 \\ x - 2 & \text{se } x > 1 \end{cases}$$

atribuindo a x valores próximos de 1, porém menores que 1, (à esquerda de 1), temos:

×	0	0,5	0,75	0,9	0,99	0,999
f(x)	4	3,5	3,25	3,1	3,01	3,001

e atribuindo a x valores próximos de 1, porém maiores que 1, (à direita e 1) temos:

×	2	1,5	1,25	1,1	1,01	1,001
f(x)	0	-0,5	-0,75	-0,9	-0,99	-0,999

Seja uma função f e um número qualquer c no intervalo (a, b). Suponha que f esteja definida em (a, b), mas não necessariamente em c. Dizemos que o limite de f quando x aproxima-se de c é igual a L, representando por

$$\lim_{x\to c} f(x) = L,$$

se para qualquer número $\varepsilon > 0$ existe um número $\delta > 0$ correspondente de tal modo que:

$$|f(x) - L| < \varepsilon$$
, sempre que $0 < |x - c| < \delta$.

Usando a definição demonstre que lim (3x + 2) = 5. x+1

Se
$$\lim_{x \to a} f(x) = L$$
 e $\lim_{x \to a} g(x) = M$ então:

L₁. $\lim_{x \to a} c = c$

L₂. $\lim_{x \to a} \left[c \cdot f(x) \right] = c \cdot \lim_{x \to a} f(x) = c \cdot L$

L₃. $\lim_{x \to a} \left[(f + g)(x) \right] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = L + M$

L₄. $\lim_{x \to a} \left[(f - g)(x) \right] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x) = L - M$

L₅. $\lim_{x \to a} \left[(f \cdot g)(x) \right] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) = L \cdot M$

L₆. $\lim_{x \to a} \left[(f)^n(x) \right] = \left[\lim_{x \to a} f(x) \right]^n = L^n$

L₇. $\lim_{x \to a} \left[\left(\frac{f}{g} \right)(x) \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{L}{M} \quad (M \neq 0)$

L₈. $\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)} = \sqrt[n]{L} \quad (\text{se } n \in \mathbb{N}^* \text{ e } L \geqslant 0 \text{ ou se } n \text{ é impar e } L \leqslant 0)$

LIMITES LATERAIS

Quando faz-se x tender para a, por valores menores que a, está-se calculando o limite lateral esquerdo. $x \rightarrow a^{-}$ Quando faz-se x tender para a, por valores maiores que a, está-se calculando o limite lateral direito. $x \rightarrow a^{+}$

Para o limite existir, os limites laterais devem ser iguais:

$$\lim_{x \to a} [f(x)] = \lim_{x \to a} [f(x)]$$

LIMITES LATERAIS

Dada a função $f: IR \rightarrow IR$, definida por f(x) = x + 3.

Estudemos o comportamento da função f(x) quando x estiver próximo de 1, mas não for igual a 1.

Pela esquerda

x	f(x) = x + 3
0	3
0,25	3,25
0,75	3,75
0,9	3,9
0,99	3,99
0,999	3,999

X	f(x) = x + 3
2	5
1,5	4,5
1,25	4,25
1,1	4,1
1,01	4,01
1,001	4,001
1,0001	4,0001

$$\lim_{x \to 1+} f(x) = 4$$

LIMITES LATERAIS

Dada a função f: IR
$$\rightarrow$$
 IR, definida por $f(x) = \begin{cases} x+1, \ para \ x \le 1 \\ x+3, \ para \ x > 1 \end{cases}$

Determinar, graficamente, $\lim_{x\to 1} f(x)$

Não existe limite de f(x), quando x tende para 1

CONTINUIDADE

Sejam f uma função definida em um intervalo aberto I e a um elemento de I.

Dizemos que f é contínua em a se $\lim_{x \to a} f(x) = f(a)$.

Notemos que para falarmos em continuidade de uma função em um ponto é necessário que este ponto pertença ao domínio da função.

Da definição decorre que se f é contínua em $a \in I$ então as três condições deverão estar satisfeitas:

- Existe f(a);
- Existe $\lim_{x \to a} f(x)$;
- $\bullet \quad \lim_{x \to a} f(x) = f(a).$

CONTINUIDADE

Uma função f é contínua em um número x₀ se

$$\lim_{x\to x_0} f(x) = f(x_0)$$

Nenhuma destas funções é contínua em $x = x_0$.

NOÇÃO DE LIMITE CONTINUIDADE

EXEMPLO 01

A função f(x) = 2x + 1 definida em R é contínua em 1, pois $\lim_{x \to 1} f(x) = \lim_{x \to 1} (2x + 1) = 3 = f(1)$. Note que f é contínua em R, pois para todo $a \in \mathbb{R}$, temos: $\lim_{x \to a} f(x) = \lim_{x \to a} (2x + 1) = 2a + 1 = f(a)$.

NOÇÃO DE LIMITE CONTINUIDADE

EXEMPLO 02

A função
$$f(x) = \begin{cases} 2x+1, & \text{se } x \neq 1 \\ 4, & \text{se } x = 1 \end{cases}$$
 definida em R é descontínua em 1, pois $\lim_{x \to 1} f(x) = \lim_{x \to 1} (2x+1) = 3 \neq 4 = f(1)$. Note que f é contínua em R – $\{1\}$ pois, para todo $a \in R$ – $\{1\}$, temos: $\lim_{x \to a} f(x) = \lim_{x \to a} (2x+1) = 2a+1 = f(a)$.

NOÇÃO DE LIMITE CONTINUIDADE

EXEMPLO 03

A função $f(x) = \begin{cases} x+1, & \text{se } x \le 1 \\ 1-x, & \text{se } x > 1 \end{cases}$ definida em R é descontínua em 1, pois $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (x+1) = 2$, $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (1-x) = 0$ e, portanto, não existe $\lim_{x \to 1} f(x)$.

