EXAMEN FINAL

8/8/2019

Nombre y Apellido:

1	2	3	4	5	Total

El código python utilizado en la resolución de los ejercicios marcados con "▶" se deberá subir a moodle para su evaluación. El envío deberá contar con las siguientes características

- Enviar un solo archivo, que deberá llamarse apellido_nombre.py
- El mismo deberá contener las funciones necesarias para ejecutar ej2(), ej3(), ej4() y ej5() cuyas salidas muestren los resultados de los ejercicios considerados.
- Está permitido usar los códigos desarrollados en los prácticos. Puede utilizar implementaciones de densidades y probabilidades de masa de scipy.

Ejercicio 1.

- a) Demuestre que si X es una variable aleatoria exponencial con parámetro λ , entonces se cumple que para todo s y t positivos, P(X > s + t | X > s) = P(X > t). ¿Cómo se denomina esta propiedad?
- b) Enuncie las condiciones que definen un proceso de Poisson homogéneo N(t) con tasa λ .

Ejercicio 2. \triangleright Sea X una variable aleatoria con función de densidad f dada por

$$f(x) = \begin{cases} 4xe^{-2x} & x \ge 0\\ 0 & x < 0. \end{cases}$$

Implemente el método de aceptación y rechazo para simular una variable con densidad f. Para esto:

- a) Indique para qué valores de λ es posible simular X a partir de una variable Y de distribución $\mathcal{E}(\lambda)$.
- b) Desarrolle en la hoja los cálculos necesarios para la implementación del método de aceptación y rechazo a partir de una $\mathcal{E}(\lambda)$, con parámetro $\lambda = 1$.
- c) Escriba el código correspondiente.

Ejercicio 3.▶ El gerente de una planta industrial pretende determinar si el número de empleados que asisten al consultorio médico de la planta se encuentran distribuido en forma equitativa durante los 5 días de trabajo de la semana. Con base en una muestra aleatoria de 4 semanas completas de trabajo, se observó el siguiente número de consultas:

Días de la semana	Lunes	Martes	Miércoles	Jueves	Viernes
Cantidad de consultas	49	35	32	39	45

¿Se puede aceptar, a un nivel de confianza del 95 %, que el número de consultas al consultorio de la planta está distribuido uniformemente en los 5 días de la semana? Responder esta pregunta por medio de las siguientes consignas.

- a) Plantear el test de hipótesis pertinente.
- b) Realizar un cálculo a mano del estadístico de test adecuado.
- c) Dar el p-valor de la prueba y la conclusión que este provee
 - i) utilizando un aproximación chi-cuadrada,
 - ii) realizando una simulación con 10000 iteraciones.

Ejercicio 4. ▶ Desea determinarse mediante Monte Carlo el valor de la integral

$$I = \int_{1}^{\infty} x^2 e^{-x} dx.$$

- a) Explicar en qué se basa el método de Monte Carlo para estimar el valor de la integral.
- b) Decir cuál es la desviación estándar del estimador de la integral.
- c) Obtener mediante simulación en computadora un intervalo de confianza del 95% para el valor de la integral mediante 10000 simulaciones. Completar la siguiente tabla según los resultados obtenidos usando 8 decimales:

Nro. de simulaciones	Valor de la integral	Intervalo de confianza	Desvío estándar del estimador
10000			

Ejercicio 5. ► Los tiempos entre arribos de clientes a una estación están dados según los siguientes datos usando el archivo datos.txt o la siguiente lista.

15.22860536	40.60145536	33.67482894	44.03841737	15.69560109
16.2321714	25.02174735	30.34655637	3.3181228	5.69447539
10.1119561	49.10266584	3.6536329	35.82047148	3.37816632
36.72299321	50.67085322	3.25476304	20.12426236	20.2668814
17.49593589	2.70768636	14.77332745	1.72267967	23.34685662
8.46376635	9.18330789	9.97428217	2.33951729	137.51657441
9.79485269	10.40308179	1.57849658	6.26959703	4.74251574
1.53479053	34.74136011	27.47600572	9.1075566	1.88056595
27.59551348	6.82283137	12.45162807	28.01983651	0.36890593
7.82520791	3.17626161	46.91791271	38.08371186	41.10961135

- a) i) Aplique el test de Kolmogorov Smirnov para determinar si los tiempos entre arribos están exponencialmente distribuidos con parámetro $\lambda = 0.05$.
 - ii) Calcule el p-valor, y determine si corresponde o no rechazar la hipótesis para $\alpha = 0.05$.
- b) i) Aplique el test de Kolmogorov Smirnov para determinar si los tiempos entre arribos están exponencialmente distribuidos estimando el valor del parámetro λ.
 - ii) Calcule el p-valor, y determine si corresponde o no rechazar la hipótesis para $\alpha = 0.05$.

En todos los casos describa en la hoja del examen las hipótesis consideradas en el test, el cálculo y valor del estadístico, los parámetros utilizados y/o estimados, la definición del *p*-valor y las respuestas de cada item.