

Tutorium 17, #3

Max Göckel- uzkns@student.kit.edu

Institut für Theoretische Informatik - Grundbegriffe der Informatik

Aussagen beweisen

In sonstigen Naturwissenschaften (Biologie, Chemie, ...): Versuch oft genug durchführen, wenn sich das Ergebnis sich während des Versuches nicht ändert ist es wohl richtig.

Lösung: Ein Experiment mehrfach und in verschiedenen Zuständen durchführen

In der Mathematik und Informatik: Beweis von Aussagen für unendlich viele Zustände (am besten: alle.)

Aber wie?

Vollständige Induktion

Lösung für das Problem ist die vollständige Induktion.

z.B.: Zeige dass $\forall n \in \mathbb{N}_+ : \exists m \in \mathbb{N}_0 : m < n$. Möglich, da *n* durchzählbar sind (1, 2, 3,...)

Überlegung

An n=0 n anfangen, Behauptung zeigen, weiterzählen, somit Behauptung für alle n zeigen.

Induktion: Vorgehen

Drei Schritte:

- Induktionsanfang (IA): Den kleinsten Wert nehmen und die Behauptung für diesen zeigen. Manchmal noch die Behauptung für den ersten Schritt zeigen.
- 2. Induktionsvoraussetzung: Die Behauptung <Behauptung> gilt für ein beliebiges aber festes $n \in \mathbb{N}_+$ (oder worüber man die Induktion anwendet).
- 3. Induktionsschritt (IS): wenn die Behauptung für n gilt, soll sie auch für n+1 gelten. Das zeigen wir jetzt.

Induktionsschritt: Vorgehen

Der Induktionsschritt soll zeigen, dass unsere Behauptung für n + 1 gilt, wenn sie für n gilt.

- 1. n+1 in die Behauptung einsetzen.
- 2. Neue Behauptung so umformen, dass Behauptung mit *n* wieder "auftaucht"...
- 3. Nach der IV gilt die Aussage für unser *n* welches gerade "aufgetaucht" ist...
- 4. Die aufgelöste Aussage in den Induktionsschritt einsetzen...
- 5. noch etwas umformen und den "n + 1"-Fall zeigen.
- 6. Freuen:)

Induktion: Aufgaben

- \mathbb{Z}_2 dass $n^2 + n \forall n \ge 0$ gerade ist
- $Z_{\underline{Z}} (1+2+3+...+n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \forall n \ge 1$

Die Lösungen und weitere Aufgaben sind im ILIAS.

Formale Sprachen

Sprache: Aussprache, Stil, Satzbau, Wortwahl

In der Informatik: Aufbau vom Befehlen, Compiler, WWW-Seiten

Problem

Woher weiß der Computer ob das (Sprach-)Gebilde korrekt ist?

Formale Sprachen

Sprache: Aussprache, Stil, Satzbau, Wortwahl

In der Informatik: Aufbau vom Befehlen, Compiler, WWW-Seiten

Lösung

Eine formale Sprache als Teilmenge von A* definiert was richtig ist und was nicht

 $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \cup \{., -, +\}, F \subseteq A^*$ Formalsprache der Dezimaldarstellung aller Zahlen $\in \mathbb{Q}$

 $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \cup \{., -, +\}, F \subseteq A^*$ Formalsprache der Dezimaldarstellung aller Zahlen $\in \mathbb{Q}$

- +1234567890.0
- +236.1
- -310.25
- **+-5**
- 3+
- **31..**
- -.+.-.+.-.+.-.+.-

 $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \cup \{., -, +\}, F \subseteq A^*$ Formalsprache der Dezimaldarstellung aller Zahlen $\in \mathbb{Q}$

- 1. Plus oder Minus (+/-)
- 2. Mindestens eine Ziffer (0..9)
- 3. Dezimalpunkt (.)
- 4. Mindestens eine Ziffer (0..9)
- +1234567890.0
- +236.1
- -310.25

 $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \cup \{., -, +\}, F \subseteq A^*$ Formalsprache der Dezimaldarstellung aller Zahlen $\in \mathbb{Q}$

- 1. Plus oder Minus (+/-)
- 2. Mindestens eine Ziffer (0..9)
- 3. Dezimalpunkt (.)
- 4. Mindestens eine Ziffer (0..9)

$$A_{num} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \subset A$$

$$F = \{ + \cdot w_1 \cdot . \cdot w_2 | w_1, w_2 \in A^*_{num} \land |w_1|, |w_2| \ge 1 \} \cup \{ - \cdot w_1 \cdot . \cdot w_2 | w_1, w_2 \in A^*_{num} \land |w_1|, |w_2| \ge 1 \}$$

Formale Sprachen: Aufgaben

Wie sehen Wörter aus den Sprachen aus?

- $L_1 = \{w_1 abw_2 | w_1, w_2 \in \{a, b\}^*\}$
 - Alle Wörter aus A die Das Teilwort ab enthalten (z.B. ab, aaaab, bababab, aaaaabbb)
- $L_2 = \{ w_1 w_2 | w_1 \in \{a\}^* \land w_2 \in \{b\}^* \}$
 - Beliebige Anzahl an a's gefolgt von einer beliebigen Zahl an b's (z.B. aaaab, abb, aaaaaabbbbb)
- $L_3 = \{w_1 w_2 | w_1, w_2 \in \{a, b\}^* | w_1 | = 0 \land |w_2| < |w_1| \}$
 - Nichts, da $|w_2|$ < 0 nicht möglich ist

Formale Sprachen: Produkt

Definition

Seien L_1 , L_2 formale Sprachen über A, so ist das Produkt $L_1 * L_2 = \{w_1 w_2 | w_1 \in L_1 \land w_2 \in L_2\}$

Zum Beispiel mit $L_1 = \{a, aa, ab\}, L_2 = \{b, ba, bb\}$:

- $L_1 * L_2 = \{ab, aab, ab, aaba, aabb, abb, abba, abbb\}$

Formale Sprachen: Potenz

Definition

Sei L_1 formale Sprache über A, so ist die Potenz L_1^n die n-fache Verkettung von L_1 mit sich selbst

Zum Beispiel mit $L_1 = \{a, b\}$

- $L_1^0 = \{\epsilon\}$
- $L_1^2 = \{aa, ab, ba, bb\}$

Formale Sprachen: Konkatenationsabschluss

Definition

Sei F formale Sprache über A, so ist $F^* = \bigcup_{i \in \mathbb{N}} F^i$ der Konkatenationsabschluss von F

Jede unendlich häufige Konkatenation von Wörtern aus F liegt in F^* .

Formale Sprachen: ϵ -freier Konkatenationsabschluss

Definition

■ Sei F formale Sprache über A, so ist $F^+ = \bigcup_{i \in \mathbb{N}_+} F^i$ der ϵ -freie Konkatenationsabschluss von F

Selbes wie F^* , nur ohne $F^0 = \{\epsilon\}$