LECTURE 3: DATA AND DESCRIPTIVE STATISTICS

ECON 480 - ECONOMETRICS - FALL 2018

Ryan Safner

September 5, 2018

Data Basics

Basic Statistics

• Data are information with context

- · Data are information with context
- · Data values, or observations describe information about some entity

- · Data are information with context
- · Data values, or observations describe information about some entity
- · Metadata describe the process about how data is collected

· Individuals are the entities described by a set of data

- · Individuals are the entities described by a set of data
 - e.g. persons, households, firms, countries

- · Individuals are the entities described by a set of data
 - e.g. persons, households, firms, countries
- · Variables are particular characteristics about an individual

- · Individuals are the entities described by a set of data
 - e.g. persons, households, firms, countries
- · Variables are particular characteristics about an individual
 - $\boldsymbol{\cdot}$ e.g. age, income, profits, population, GDP, marital status, type of legal institutions

- · Individuals are the entities described by a set of data
 - e.g. persons, households, firms, countries
- · Variables are particular characteristics about an individual
 - e.g. age, income, profits, population, GDP, marital status, type of legal institutions
- Observations are the individuals described by a collection of variables

- · Individuals are the entities described by a set of data
 - e.g. persons, households, firms, countries
- · Variables are particular characteristics about an individual
 - e.g. age, income, profits, population, GDP, marital status, type of legal institutions
- · Observations are the individuals described by a collection of variables
 - e.g. for one individual, we have their age, sex, income, education, etc.

- · Individuals are the entities described by a set of data
 - e.g. persons, households, firms, countries
- · Variables are particular characteristics about an individual
 - e.g. age, income, profits, population, GDP, marital status, type of legal institutions
- · Observations are the individuals described by a collection of variables
 - e.g. for one individual, we have their age, sex, income, education, etc.
 - individuals and observations are *not necessarily* the same:

- · Individuals are the entities described by a set of data
 - e.g. persons, households, firms, countries
- · Variables are particular characteristics about an individual
 - e.g. age, income, profits, population, GDP, marital status, type of legal institutions
- · Observations are the individuals described by a collection of variables
 - e.g. for one individual, we have their age, sex, income, education, etc.
 - individuals and observations are *not necessarily* the same:
 - $\boldsymbol{\cdot}$ e.g. we can have separate observations on the same individual over time

· Categorial variables place an individual into one of several possible categories

Question	Categories or Responses			
Do you invest in the stock market?	Yes No			
What kind of advertising do you use?	Newspapers Internet Direct mailings			
What is your class at school?	Freshman Sophomore Junior Senior			
I would recommend this course to another student.	Strongly Disagree Slightly Disagree Slightly Agree Strongly Agree			
How satisfied are you with this product?	Very Unsatisfied Unsatisfied Satisfied Very Satisfied			

- · Categorial variables place an individual into one of several possible categories
 - e.g. sex, season, political party

Question	Categories or Responses		
Do you invest in the stock market?	Yes No		
What kind of advertising do you use?	Newspapers Internet Direct mailings		
What is your class at school?	Freshman Sophomore Junior Senior		
I would recommend this course to another student.	Strongly Disagree Slightly Disagree Slightly Agree Strongly Agree		
How satisfied are you with this product?	Very Unsatisfied Unsatisfied Satisfied Very Satisfied		

- · Categorial variables place an individual into one of several possible categories
 - e.g. sex, season, political party
 - · may be responses to questions

Question	Categories or Responses			
Do you invest in the stock market?	Yes No			
What kind of advertising do you use?	Newspapers Internet Direct mailings			
What is your class at school?	Freshman Sophomore Junior Senior			
I would recommend this course to another student.	Strongly Disagree Slightly Disagree Slightly Agree Strongly Agree			
How satisfied are you with this product?	Very Unsatisfied Unsatisfied Satisfied Very Satisfied			

- · Categorial variables place an individual into one of several possible categories
 - · e.g. sex, season, political party
 - · may be responses to questions
 - · can be quantitative (e.g. age, zip code)

Question	Categories or Responses			
Do you invest in the stock market?	Yes No			
What kind of advertising do you use?	Newspapers Internet Direct mailings			
What is your class at school?	Freshman Sophomore Junior Senior			
I would recommend this course to another student.	Strongly Disagree Slightly Disagree Slightly Agree Strongly Agree			
How satisfied are you with this product?	Very Unsatisfied Unsatisfied Satisfied Very Satisfied			

REPRESENTING CATEGORICAL VARIABLES

Cut	Fair	Good	Very Good	Premium	Ideal
Count	1610	4906	12082	13791	21551
Proportion	0.030	0.091	0.224	0.256	0.400

Cut characteristics of 53,940 diamonds

 $\boldsymbol{\cdot}$ A good way to represent categorical variables is with a frequency table

REPRESENTING CATEGORICAL VARIABLES

Cut	Fair	Good	Very Good	Premium	Ideal
Count	1610	4906	12082	13791	21551
Proportion	0.030	0.091	0.224	0.256	0.400

Cut characteristics of 53,940 diamonds

- $\boldsymbol{\cdot}\,$ A good way to represent categorical variables is with a frequency table
- Count: frequency (total number) of individuals in a category

REPRESENTING CATEGORICAL VARIABLES

Cut	Fair	Good	Very Good	Premium	Ideal
Count	1610	4906	12082	13791	21551
Proportion	0.030	0.091	0.224	0.256	0.400

Cut characteristics of 53,940 diamonds

- A good way to represent categorical variables is with a frequency table
- · Count: frequency (total number) of individuals in a category
- Proportion: relative frequency (percentage of all individuals) in a category

REPRESENTING CATEGORICAL VARIABLES II

```
ggplot(diamonds, aes(x=cut))+
geom_bar(fill="indianred", color="black")
```


· Charts and graphs are always better ways to visualize data

REPRESENTING CATEGORICAL VARIABLES II

ggplot(diamonds, aes(x=cut))+
 geom_bar(fill="indianred", color="black")

- · Charts and graphs are *always* better ways to visualize data
- A bar chart represents categories as bars, with lengths proportional to the count or relative frequency fo each category

· Quantitative variables take on numerical values of equal units that describe an individual

- · Quantitative variables take on numerical values of equal units that describe an individual
 - · Units: points, dollars, inches

- · Quantitative variables take on numerical values of equal units that describe an individual
 - · Units: points, dollars, inches
 - · Context: GPA, prices, height

- · Quantitative variables take on numerical values of equal units that describe an individual
 - · Units: points, dollars, inches
 - · Context: GPA, prices, height
- We mathematically manipulate quantitative variables *only* (even if categorical variables are numbers!)

- · Quantitative variables take on numerical values of equal units that describe an individual
 - · Units: points, dollars, inches
 - · Context: GPA, prices, height
- We mathematically manipulate quantitative variables only (even if categorical variables are numbers!)
 - e.g. sum, average, standard deviation

CONTEXT!

 \cdot How variables are classified depends on the $\it purpose$ of collecting and using the data

CONTEXT!

• How variables are classified depends on the *purpose* of collecting and using the data

Example

· Age, measured in years (quantitative) vs. categories of child, adult, senior, etc.

Example

What kind of data (categorical or quantitative) does each variable describe?

1. The number of pairs of shoes you own

Example

- 1. The number of pairs of shoes you own
- 2. The type of car you drive

Example

- 1. The number of pairs of shoes you own
- 2. The type of car you drive
- 3. Where you go on vacation

Example

- 1. The number of pairs of shoes you own
- 2. The type of car you drive
- 3. Where you go on vacation
- 4. The amount of money spent on a Super Bowl ad

Example

- 1. The number of pairs of shoes you own
- 2. The type of car you drive
- 3. Where you go on vacation
- 4. The amount of money spent on a Super Bowl ad
- 5. Customer ratings

Example

- 1. The number of pairs of shoes you own
- 2. The type of car you drive
- 3. Where you go on vacation
- 4. The amount of money spent on a Super Bowl ad
- 5. Customer ratings
- 6. The date a purchase was made

CATEGORICAL OR QUANTITATIVE?

Example

What kind of data (categorical or quantitative) does each variable describe?

- 1. The number of pairs of shoes you own
- 2. The type of car you drive
- 3. Where you go on vacation
- 4. The amount of money spent on a Super Bowl ad
- 5. Customer ratings
- 6. The date a purchase was made
- 7. Transaction ID

CATEGORICAL OR QUANTITATIVE?

Example

What kind of data (categorical or quantitative) does each variable describe?

- 1. The number of pairs of shoes you own
- 2. The type of car you drive
- 3. Where you go on vacation
- 4. The amount of money spent on a Super Bowl ad
- 5. Customer ratings
- 6. The date a purchase was made
- 7. Transaction ID
- 8. Number of correct answers on an exam

DISCRETE DATA

· Discrete data are finite, with a countable number of alternatives

DISCRETE DATA

- · Discrete data are finite, with a countable number of alternatives
 - · Categorical: e.g. letter grades A, B, C, D, F

DISCRETE DATA

- · Discrete data are finite, with a countable number of alternatives
 - · Categorical: e.g. letter grades A, B, C, D, F
 - · Quantitative: integers, e.g. SAT Score, number of children

· Continuous data are infinitely divisible, with an uncountable number of alternatives

- · Continuous data are infinitely divisible, with an uncountable number of alternatives
 - · e.g. weights, temperature, GPA

- · Continuous data are infinitely divisible, with an uncountable number of alternatives
 - e.g. weights, temperature, GPA
- \cdot Many discrete variables may be treated as if they are continuous

- · Continuous data are infinitely divisible, with an uncountable number of alternatives
 - e.g. weights, temperature, GPA
- · Many discrete variables may be treated as if they are continuous
 - e.g. SAT scores, wages

Example

What kind of data (discrete or continuous) does each variable describe?

1. Weight in pounds

Example

- 1. Weight in pounds
- 2. Price in dollars

Example

- 1. Weight in pounds
- 2. Price in dollars
- 3. Grade (Letter)

Example

- 1. Weight in pounds
- 2. Price in dollars
- 3. Grade (Letter)
- 4. Temperature

Example

- 1. Weight in pounds
- 2. Price in dollars
- 3. Grade (Letter)
- 4. Temperature
- 5. Amazon Star Rating

Example

- 1. Weight in pounds
- 2. Price in dollars
- 3. Grade (Letter)
- 4. Temperature
- 5. Amazon Star Rating
- 6. Number of customers

Example

- 1. Weight in pounds
- 2. Price in dollars
- 3. Grade (Letter)
- 4. Temperature
- 5. Amazon Star Rating
- 6. Number of customers
- 7. Transaction ID

Example

- 1. Weight in pounds
- 2. Price in dollars
- 3. Grade (Letter)
- 4. Temperature
- 5. Amazon Star Rating
- 6. Number of customers
- 7. Transaction ID
- 8. Number of correct answers on an exam


```
Name Age Sex Income
##
    ID
## 1
          John
               23
                    Male
                          41000
## 2
     2
         Emile 18
                    Male
                          52600
## 3
     3 Natalya
               28 Female
                          48000
## 4
     4 Lakisha 31 Female
                          60200
                          81900
## 5
     5
         Cheng
               36
                    Male
```

• The most common data structure we use is a spreadsheet


```
Name Age Sex Income
##
    ID
## 1
          John
               23
                    Male
                          41000
## 2
     2
         Emile 18
                    Male
                          52600
## 3
     3 Natalya 28 Female
                          48000
## 4
     4 Lakisha 31 Female
                          60200
## 5
     5
         Cheng
               36
                    Male
                          81900
```

- The most common data structure we use is a spreadsheet
 - · Note: R calls this a data frame


```
##
    ID
          Name Age
                    Sex Income
          John
               23
                    Male
                          41000
## 1
## 2
     2
         Emile 18
                    Male
                          52600
## 3
     3 Natalya 28 Female
                          48000
## 4
     4 Lakisha 31 Female
                          60200
## 5
     5
         Cheng
               36
                    Male
                          81900
```

- The most common data structure we use is a spreadsheet
 - · Note: R calls this a data frame
- · A row contains data about all variables for a single individual


```
##
    ID
           Name Age
                     Sex Income
## 1
          John
                23
                     Male
                           41000
## 2
     2
         Fmile
                18
                     Male
                           52600
## 3
     3 Natalya
                28 Female
                           48000
## 4
      4 Lakisha 31 Female
                           60200
## 5
      5
         Cheng
                36
                     Male
                           81900
```

- The most common data structure we use is a spreadsheet
 - · Note: R calls this a data frame
- · A row contains data about all variables for a single individual
- · A column contains data about a single variable across all individuals


```
##
     ID
           Name Age
                       Sex Income
           John
                      Male
## 1
                 23
                            41000
## 2
     2
          Fmile
                 18
                      Male
                            52600
## 3
      3 Natalya
                 28 Female
                            48000
## 4
      4 Lakisha 31 Female
                            60200
## 5
      5
          Cheng
                 36
                      Male
                            81900
```

- The most common data structure we use is a spreadsheet
 - Note: R calls this a data frame
- · A row contains data about all variables for a single individual
- · A column contains data about a single variable across all individuals
- \cdot It is good practice to have an ID variable to count and keep track of each observation

Some Notation

• It is common to some notation like the following:

- \cdot It is common to some notation like the following:
- · Let $\{x_1, x_2, \dots, x_n\}$ be a simple data series

- \cdot It is common to some notation like the following:
- · Let $\{x_1, x_2, \dots, x_n\}$ be a simple data series
 - *n* individual observations

- \cdot It is common to some notation like the following:
- · Let $\{x_1, x_2, \dots, x_n\}$ be a simple data series
 - n individual observations
 - x_i is the value of the i^{th} observation for $i = 1, 2, \dots, n$

- \cdot It is common to some notation like the following:
- · Let $\{x_1, x_2, \dots, x_n\}$ be a simple data series
 - n individual observations
 - · x_i is the value of the i^{th} observation for $i = 1, 2, \cdots, n$

Example

• Let x represent the score on a homework assignment:

- \cdot It is common to some notation like the following:
- · Let $\{x_1, x_2, \dots, x_n\}$ be a simple data series
 - n individual observations
 - · x_i is the value of the i^{th} observation for $i=1,2,\cdots,n$

Example

• Let x represent the score on a homework assignment:

• What is *n*?

- \cdot It is common to some notation like the following:
- · Let $\{x_1, x_2, \dots, x_n\}$ be a simple data series
 - n individual observations
 - · x_i is the value of the i^{th} observation for $i=1,2,\cdots,n$

Example

• Let x represent the score on a homework assignment:

- What is *n*?
- What is x_1 ?

- \cdot It is common to some notation like the following:
- · Let $\{x_1, x_2, \dots, x_n\}$ be a simple data series
 - n individual observations
 - x_i is the value of the i^{th} observation for $i = 1, 2, \cdots, n$

Example

• Let x represent the score on a homework assignment:

- What is *n*?
- What is x_1 ?
- What is x_6 ?


```
##
    ID
          Name Age Sex Income
## 1
          John
               23
                    Male
                          41000
## 2
     2
         Emile
               18
                    Male
                          52600
## 3
     3 Natalva 28 Female
                          48000
## 4
     4 Lakisha 31 Female
                          60200
## 5
         Cheng
                36
                    Male
                          81900
     5
```

· Cross-sectional data: observations of individuals at a given point in time


```
##
    ID
          Name Age
                    Sex Income
## 1
          John
                23
                     Male
                           41000
     2
         Emile
                18
                     Male
## 2
                           52600
## 3
     3 Natalva
                28 Female
                           48000
## 4
     4 Lakisha 31 Female
                           60200
## 5
                36
                     Male
     5
         Cheng
                           81900
```

- · Cross-sectional data: observations of individuals at a given point in time
 - · Each observation is a unique individual


```
##
     ID
           Name Age
                      Sex Income
           John
                23
                      Male
                            41000
## 1
     2
          Emile
                 18
                      Male
## 2
                            52600
## 3
      3 Natalva
                28 Female
                            48000
## 4
      4 Lakisha 31 Female
                            60200
## 5
                      Male
      5
          Cheng
                 36
                            81900
```

- · Cross-sectional data: observations of individuals at a given point in time
 - · Each observation is a unique individual
 - \cdot Simplest and most common data


```
##
     ID
           Name Age
                       Sex Income
           John
                23
                      Male
## 1
                            41000
## 2
     2
          Emile
                 18
                      Male
                            52600
## 3
     3 Natalva
                28 Female
                            48000
## 4
      4 Lakisha 31 Female
                            60200
                      Male
## 5
     5
          Cheng
                 36
                            81900
```

- · Cross-sectional data: observations of individuals at a given point in time
 - · Each observation is a unique individual
 - \cdot Simplest and most common data
 - · A "snapshot" to compare differences across individuals

DATASETS: TIME SERIES

##		Year	GDP	Unemployment	CPI
##	1	1950	8.2	0.06	100
##	2	1960	9.9	0.04	118
##	3	1970	10.2	0.08	130
##	4	1980	12.4	0.08	190
##	5	1985	13.6	0.06	196

• Time-series data: observations of the same individuals over time

DATASETS: TIME SERIES

```
## Year GDP Unemployment CPI
## 1 1950 8.2 0.06 100
## 2 1960 9.9 0.04 118
## 3 1970 10.2 0.08 130
## 4 1980 12.4 0.08 190
## 5 1985 13.6 0.06 196
```

- · Time-series data: observations of the same individuals over time
 - · Each observation is an individual-year

DATASETS: TIME SERIES

##		Year	GDP	Unemployment	CPI
##	1	1950	8.2	0.06	100
##	2	1960	9.9	0.04	118
##	3	1970	10.2	0.08	130
##	4	1980	12.4	0.08	190
##	5	1985	13.6	0.06	196

- · Time-series data: observations of the same individuals over time
 - · Each observation is an individual-year
 - \cdot Often used for macroeconomics, finance, and forecasting

DATASETS: TIME SERIES

##		Year	GDP	Unemployment	CPI
##	1	1950	8.2	0.06	100
##	2	1960	9.9	0.04	118
##	3	1970	10.2	0.08	130
##	4	1980	12.4	0.08	190
##	5	1985	13.6	0.06	196

- Time-series data: observations of the same individuals over time
 - · Each observation is an individual-year
 - \cdot Often used for macroeconomics, finance, and forecasting
 - · Unique challenges for time series

DATASETS: TIME SERIES

##		Year	GDP	Unemployment	CPI
##	1	1950	8.2	0.06	100
##	2	1960	9.9	0.04	118
##	3	1970	10.2	0.08	130
##	4	1980	12.4	0.08	190
##	5	1985	13.6	0.06	196

- · Time-series data: observations of the same individuals over time
 - · Each observation is an individual-year
 - \cdot Often used for macroeconomics, finance, and forecasting
 - · Unique challenges for time series
 - · A "moving picture" to see how individuals change over time

##		City	Year	Murders	Population	Unemployment	Police
##	1	Philadelphia	1986	5	3.700	8.7	440
##	2	Philadelphia	1990	8	4.200	7.2	471
##	3	Washington D.C.	1986	2	0.250	5.4	75
##	4	Washington D.C.	1990	10	0.275	5.5	85
##	5	New York	1986	3	6.400	9.6	102

· Panel dataset, or longitudinal dataset: a time-series for each cross-sectional entity

##		City	Year	Murders	Population	Unemployment	Police
##	1	Philadelphia	1986	5	3.700	8.7	440
##	2	Philadelphia	1990	8	4.200	7.2	471
##	3	Washington D.C.	1986	2	0.250	5.4	75
##	4	Washington D.C.	1990	10	0.275	5.5	85
##	5	New York	1986	3	6.400	9.6	102

- · Panel dataset, or longitudinal dataset: a time-series for each cross-sectional entity
 - · Must be the same cross-sectional entities over time

##		City	Year	Murders	Population	Unemployment	Police
##	1	Philadelphia	1986	5	3.700	8.7	440
##	2	Philadelphia	1990	8	4.200	7.2	471
##	3	Washington D.C.	1986	2	0.250	5.4	75
##	4	Washington D.C.	1990	10	0.275	5.5	85
##	5	New York	1986	3	6.400	9.6	102

- · Panel dataset, or longitudinal dataset: a time-series for each cross-sectional entity
 - · Must be the same cross-sectional entities over time
 - \cdot More common today for serious researchers

##		City	Year	Murders	Population	Unemployment	Police
##	1	Philadelphia	1986	5	3.700	8.7	440
##	2	Philadelphia	1990	8	4.200	7.2	471
##	3	Washington D.C.	1986	2	0.250	5.4	75
##	4	Washington D.C.	1990	10	0.275	5.5	85
##	5	New York	1986	3	6.400	9.6	102

- · Panel dataset, or longitudinal dataset: a time-series for each cross-sectional entity
 - · Must be the same cross-sectional entities over time
 - More common today for serious researchers
 - · Unique challenges for panel data

##		City	Year	Murders	Population	Unemployment	Police
##	1	Philadelphia	1986	5	3.700	8.7	440
##	2	Philadelphia	1990	8	4.200	7.2	471
##	3	Washington D.C.	1986	2	0.250	5.4	75
##	4	Washington D.C.	1990	10	0.275	5.5	85
##	5	New York	1986	3	6.400	9.6	102

- · Panel dataset, or longitudinal dataset: a time-series for each cross-sectional entity
 - · Must be the same cross-sectional entities over time
 - More common today for serious researchers
 - · Unique challenges for panel data
 - $\cdot\,$ A combination of "snapshot" comparisons and differences over time

VARIABLES AND DISTRIBUTIONS

 Variable shave a distribution of different individual values (and how frequently they take these values)

VARIABLES AND DISTRIBUTIONS

- Variable shave a distribution of different individual values (and how frequently they take these values)
- We want to visualize and analyze distributions to search for meaningful patterns using statistics

Two Types of Statistics

· Two main categories or uses of statistics:

TWO TYPES OF STATISTICS

- · Two main categories or uses of statistics:
 - 1. Descriptive Statistics: describes or summarizes the properties of a sample

TWO TYPES OF STATISTICS

- · Two main categories or uses of statistics:
 - 1. Descriptive Statistics: describes or summarizes the properties of a sample
 - 1.2 Inferential Statistics: uses a sample in order to infer properties about a larger population

HISTOGRAMS

- A common way to present a variable's distribution is a $\ensuremath{\mathsf{histogram}}$

HISTOGRAMS

- A common way to present a variable's distribution is a histogram
 - $\boldsymbol{\cdot}$ The quantitative analog to the bar graph for a categorical variable

HISTOGRAMS

- · A common way to present a variable's distribution is a histogram
 - The quantitative analog to the bar graph for a categorical variable
- We divide up the data values into **bins** of a certain size, and count the number of values falling within each bin, representing them visually as bars

HISTOGRAMS: EXAMPLE

Example

A class of 13 students takes a quiz (out of 100 points) with the following results:

 $\{0,62,66,71,71,74,76,79,83,86,88,93,95\}$

HISTOGRAM: EXAMPLE

 \cdot We are often interested in the *shape* or *pattern* of a distribution, particularly:

- We are often interested in the *shape* or *pattern* of a distribution, particularly:
 - Measures of central tendency

- We are often interested in the *shape* or *pattern* of a distribution, particularly:
 - Measures of central tendency
 - Measures of dispersion

- We are often interested in the *shape* or *pattern* of a distribution, particularly:
 - Measures of central tendency
 - Measures of dispersion
 - Shape of distribution

 $\boldsymbol{\cdot}$ The $\underline{\mathsf{mode}}$ of a variable is simply its most frequent value

- The mode of a variable is simply its most frequent value
- · A variable can have multiple modes

- The mode of a variable is simply its most frequent value
- · A variable can have multiple modes

- The mode of a variable is simply its most frequent value
- · A variable can have multiple modes

MULTI-MODAL DISTRIBUTIONS

- Looking at a histogram, the modes are often the "peaks" of the distribution - May be **unimodal**, **bimodal**, **trimodal**, etc

 $\boldsymbol{\cdot}$ A distribution is $\boldsymbol{symmetric}$ if it looks roughly the same on either side of the "center"

SYMMETRY

- A distribution is **symmetric** if it looks roughly the same on either side of the "center"
- The thinner ends (far left and far right) are called the **tails** of a distribution

SYMMETRY AND SKEW

- If one tail stretches farther than the other, distribution is skewed in the direction of the longer tail

· An extreme value that does not appear part of the general pattern of a distribution is an outlier

 $\boldsymbol{\cdot}$ Outliers can strongly affect descriptive statistics about a dataset

- · Outliers can strongly affect descriptive statistics about a dataset
- · Outliers can be the most informative part of the data

- · Outliers can strongly affect descriptive statistics about a dataset
- · Outliers can be the most informative part of the data
- · Outliers could be the result of errors

- · Outliers can strongly affect descriptive statistics about a dataset
- · Outliers can be the most informative part of the data
- Outliers could be the result of errors
- · Outliers should always be discussed in presentations about data

ARITHMETIC MEAN (POPULATION)

• The natural measure of the center of a *population*'s distribution is its "average" or arithmetic mean (μ)

$$\mu = \frac{x_1 + x_2 + \dots + x_N}{N} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

ARITHMETIC MEAN (POPULATION)

• The natural measure of the center of a *population*'s distribution is its "average" or arithmetic mean (μ)

$$\mu = \frac{x_1 + x_2 + \dots + x_N}{N} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

• For N values of variable x, "mu" is the sum of all individual x values (x_i) from 1 to N, divided by the N number of values

ARITHMETIC MEAN (SAMPLE)

• When we have a sample, we compute the sample mean (\bar{x})

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

-For n values of variable x, "x-bar" is the sum of all individual x values (x_i) from 1 to n, divided by the n number of values

SAMPLE MEAN EXAMPLE

$$\{0,62,66,71,71,74,76,79,83,86,88,93,95\}$$

$$\bar{x} = \frac{1}{13}(0 + 62 + 66 + 71 + 71 + 74 + 76 + 79 + 83 + 86 + 88 + 93 + 95)$$

$$= \frac{944}{13}$$

$$= 72.61$$

· Note the mean need not be an actual value of the data!

SAMPLE MEAN AND OUTLIERS

$$\{62, 66, 71, 71, 74, 76, 79, 83, 86, 88, 93, 95\}$$

• If we drop the outlier (0)

$$\bar{x} = \frac{1}{12} (62 + 66 + 71 + 71 + 74 + 76 + 79 + 83 + 86 + 88 + 93 + 95)$$
 = 78.67

$$\{0, 62, 66, 71, 71, 74, 76, 79, 83, 86, 88, 93, 95\}$$

• The median is the midpoint of the distribution

$$\{0, 62, 66, 71, 71, 74, 76, 79, 83, 86, 88, 93, 95\}$$

- The median is the midpoint of the distribution
- $\cdot\,$ 50% to the left of the median, 50% to the right of the median

$$\{0, 62, 66, 71, 71, 74, 76, 79, 83, 86, 88, 93, 95\}$$

- The median is the midpoint of the distribution
- $\cdot\,$ 50% to the left of the median, 50% to the right of the median
- · Arrange values in numerical order

$$\{0, 62, 66, 71, 71, 74, 76, 79, 83, 86, 88, 93, 95\}$$

- The median is the midpoint of the distribution
- $\cdot\,$ 50% to the left of the median, 50% to the right of the median
- · Arrange values in numerical order
 - For odd n: median is middle observation

$$\{0, 62, 66, 71, 71, 74, 76, 79, 83, 86, 88, 93, 95\}$$

- The median is the midpoint of the distribution
- \cdot 50% to the left of the median, 50% to the right of the median
- · Arrange values in numerical order
 - For odd n: median is middle observation
 - For even *n*: median is average of two middle observations

MEDIAN AND OUTLIERS

$$\{0,62,66,71,71,74,76,79,83,86,88,93,95\}$$

- The median is *robust* to outliers (if 0 changes to 62)

$$\{62, 62, 66, 71, 71, 74, \textcolor{red}{76}, 79, 83, 86, 88, 93, 95\}$$

MEAN, MEDIAN, SYMMETRY, SKEW

• Mean: $\frac{64}{16} = 4$

Mean, Median, Symmetry, Skew

- Mean: $\frac{64}{16} = 4$
- · Median: 4

Mean, Median, Symmetry, Skew

- Mean: $\frac{64}{16} = 4$
- · Median: 4
- · For a symmetric distribution, mean=median

х

Mean, Median, Symmetry, Skew II

• Median: 5

· Median: 5

• For a left-skewed distribution, mean<median

Mean, Median, Symmetry, Skew III

Mean, Median, Symmetry, Skew III

· Median: 3

MEAN, MEDIAN, SYMMETRY, SKEW III

· Median: 3

MEASURES OF SPREAD

 $\boldsymbol{\cdot}$ The more variation in the data, the less helpful a measure of central tendency will tell us

MEASURES OF SPREAD

- \cdot The more variation in the data, the less helpful a measure of central tendency will tell us
- $\boldsymbol{\cdot}$ Beyond just the center, we also want to measure the spread

MEASURES OF SPREAD

- \cdot The more variation in the data, the less helpful a measure of central tendency will tell us
- $\boldsymbol{\cdot}$ Beyond just the center, we also want to measure the spread
- Simplest metric is range=max-min

FIVE NUMBER SUMMARY

Once we know the values of the quartiles, we can construct a five-number summary of a distribution, including: 1. Minimum 2. Q_1 (25%) 3. Median (50%) 4. Q_3 (75%) 5. Maximum

FIVE NUMBER SUMMARY II

```
summary(quizzes$scores)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 71.00 76.00 72.62 86.00 95.00
```


- Graphical way to visualize five number summary is a ${\color{blue}\mathsf{boxplot}}$

- Graphical way to visualize five number summary is a ${\color{blue}\mathsf{boxplot}}$

- Graphical way to visualize five number summary is a boxplot
 - \cdot The length of the box is the IQR (Q1-Q3)

- Graphical way to visualize five number summary is a boxplot
 - The length of the box is the IQR (Q1-Q3)
 - · The line within the box is the median

· Graphical way to visualize five number summary is a boxplot

- The length of the box is the IQR (Q1-Q3)
- · The line within the box is the median
- The "whiskers" identify data within 1.5 \times IQR

· Graphical way to visualize five number summary is a boxplot

- The length of the box is the IQR (Q1-Q3)
- · The line within the box is the median
- The "whiskers" identify data within 1.5 \times IQR
- · Points beyond the whiskers are outliers

BOXPLOTS II

Quiz 1: {0, 62, 66, 71, 71, 74, 76, 79, 83, 86, 88, 93, 95} Quiz 2: {50, 62, 72, 73, 79, 81, 82, 82, 86, 90, 94, 98, 99}

BOXPLOTS II

Quiz 1: {0, 62, 66, 71, 71, 74, 76, 79, 83, 86, 88, 93, 95}

Quiz 2: {50, 62, 72, 73, 79, 81, 82, 82, 86, 90, 94, 98, 99}

Quiz 1

Min	Q_1	Median	Q_3	Max
0	71	76	86	95

BOXPLOTS II

Quiz 1: {0, 62, 66, 71, 71, 74, 76, 79, 83, 86, 88, 93, 95} Quiz 2: {50, 62, 72, 73, 79, 81, 82, 82, 86, 90, 94, 98, 99}

Quiz 1

Min	Q_1	Median	Q_3	Max
0	71	76	86	95

Quiz 2

Min	Q_1	Median	Q_3	Max
50	73	82	90	99

DEVIATIONS

• Each observation deviates from the mean of the data:

deviation =
$$x_i - \mu$$

DEVIATIONS

• Each observation deviates from the mean of the data:

$$deviation = x_i - \mu$$

 \cdot There are as many deviations as there are data points (n)

DEVIATIONS

• Each observation deviates from the mean of the data:

$$deviation = x_i - \mu$$

- There are as many deviations as there are data points (n)
- We can measure the *average* or standard deviation from the mean

VARIANCE

• The population variance (σ^2) of a *population* distribution measures the average of the *squared* deviations from the population mean

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \mu)^{2}$$

• The population variance (σ^2) of a population distribution measures the average of the squared deviations from the population mean

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \mu)^{2}$$

· Why do we square deviations?

STANDARD DEVIATION

-Square root the variance to get the population standard deviation (σ), the average deviation from the mean (in x units)

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

SAMPLE VARIANCE

• The sample variance (s^2) of a sample distribution measures the average of the squared deviations from the sample mean

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

-Why divide by n-1?

SAMPLE STANDARD DEVIATION

• Square root the variance to get the sample standard deviation (s), the average deviation from the mean (in x units)

$$s = \sqrt{s^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

SAMPLE STANDARD DEVIATION: EXAMPLE

Example Calculate the sample standard deviation for the following series:

$$\{2,4,6,8,10\}$$

DESCRIPTIVE STATISTICS: POPULATION VS. SAMPLE

Population Parameters

- · Population Size: N
- Mean: μ
- Variance: $n = 1 \sum_{N} (x)$

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

· Standard Deviation:

$$\sigma = \sqrt{\sigma^2}$$

Sample Statistics

- · Sample Size: n
- Mean: \bar{x}
- · Variance:

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

· Standard Deviation: $s=\sqrt{s^2}$

