#### Smart Contracts and Blockchain Technology

Lecture 6. Cryptographic underpinnnings

Christian Ewerhart

University of Zurich

Fall 2022

Copyright © 2022, Christian Ewerhart.

All rights reserved.

Without permission of the author, it is not allowed to distribute this script or parts of it.

#### Introduction and overview

#### Last lecture

- Equilibrium in the blockchain game
- Selfish mining

#### This lecture: Cryptographic underpinnings

- Binary and hexadecimal numbers
- Hash functions
- Private and public keys
- Finite fields
- Discrete logarithm problem

#### Cryptographic underpinnings (1)

Basics on binary and hexadecimal numbers

A **binary number** is a technical representation of a number based on powers of 2 (rather than 10 which is used for decimal numbers).

Each **binary digit** is taken from the set  $\{0,1\}$ .

**Example:**  $0b10100011 = 1 \cdot 2^7 + 1 \cdot 2^5 + 1 \cdot 2^1 + 1 \cdot 2^0 = 163$ , where the **prefix** 0b indicates a binary number.

**Bits** are the units of information. For instance, a die with six faces bears information

$$I = \log_2(6) = \frac{\ln 6}{\ln 2} = 2.585$$
 bit,

i.e., somewhat less than three bits.

#### Cryptographic underpinnings (2)

Basics on binary and hexadecimal numbers (continued)

A **hexadecimal number** is, in complete analogy, a technical representation of a number based on powers of 16.

Each **hexadecimal digit** is taken from the set  $\{0,1,2,\ldots,9,a,\ldots,f\}$ .



**Example:**  $0xc03 = 12 \cdot 16^2 + 0 \cdot 16^1 + 3 \cdot 16^0 = 3075$ , where the **prefix** 0x indicates a hexadecimal number.

### Cryptographic underpinnings (3)

Basics on binary and hexadecimal numbers (continued)

Hexadecimal numbers are useful because they are both compact and easily transformed into binary numbers:

- 0x0 = 0b0000,
- o 0x1=0b0001,
- 0x2=0b0010,
- ...
- 0xf=0b1111.

Two hexadecimal numbers correspond to **one byte** (8 bits), which has been, in particular, the word length of the first commerically successful microprocessors (e.g., Intel 8080, Motorola 6800).

### Cryptographic underpinnings (4)

**Cryptography** is a branch of mathematics used extensively in computer security.

The term means "secret writing" in Greek, and refers originally to the encryption of messages.

However, cryptographic methods are also used:

- to identify, and prove the integrity of, data (with a digital fingerprint, also known as hash),
- to prove the authenticity of a message (e.g., with a digital signature).

These methods are critical, in particular, to the operation of blockchain systems and smart contract applications.

#### Cryptographic underpinnings (5)

Digital fingerprints

**Definition.** A hash function maps data of arbitrary size to data of fixed size.



# Cryptographic underpinnings (6)

Hash functions on bit strings

Denote by  $\mathcal{A}=\{0,1\}$  the **alphabet** consisting of the set of binary values, and by

$$\mathcal{A}^* = \{\text{``''}, \text{``0''}, \text{``1''}, \text{``00''}, \text{``01''}, \text{``10''}, \text{``11''}, \text{``000''}, \text{``001''}, \dots \}$$

the set of words over A. Then, a hash function is any mapping

$$\psi: \mathcal{A}^* \to \mathcal{A}^N = \underbrace{\mathcal{A} \times \ldots \times \mathcal{A}}_{N \text{ times}}, \tag{1}$$

where N > 1 is the length of the hash.

#### Cryptographic underpinnings (7)

Use cases of digital fingerprints

**Data integrity.** Comparing hash values can determine whether any changes have been made to a given data set.

**Proof of work.** Winning the block reward requires finding a hash with given properties.

**Password verification.** To prevent password theft, only a hash of a user password is communicated to the backend system.

# Cryptographic underpinnings (8)

Check bits

For a word  $w \in \mathcal{A}^*$ , denote by

$$\psi(w) = \begin{cases} 0 & \text{if the number of 1's in } w \text{ is even} \\ 1 & \text{if the number of 1's in } w \text{ is odd} \end{cases}$$
 (2)

the parity bit.

For example,  $\psi(\text{"1010111"}) = 1$ .

#### **Examples**

 American Standard Code for Information Interchange (ASCII):
 7 bits for the code plus one parity bit, corresponding to one byte (8 bits)

#### Cryptographic underpinnings (9)

|          |     |     |                |     |     | US    | ASCII | code | chart |       |     |     |        |
|----------|-----|-----|----------------|-----|-----|-------|-------|------|-------|-------|-----|-----|--------|
| D7 D6 D5 |     |     |                |     |     | ۰۰,   | °0 ,  | ٥ ,  | ٥,    | ' ° ° | ۱۰, | 1,0 | ١,,    |
|          | b,4 | b 3 | b <sub>2</sub> | Ь , | Row | 0     | 1     | 2    | 3     | 4     | 5   | 6   | 7      |
| ``       | 0   | 0   | 0              | 0   | 0   | NUL . | DLE   | SP   | 0     | 0     | Р   | '   | Р      |
|          | 0   | 0   | 0              | -   |     | SOH   | DC1   | !    | 1     | Α.    | Q   | 0   | q      |
|          | 0   | 0   | 1              | 0   | 2   | STX   | DC2   | "    | 2     | В     | R   | , b | r      |
|          | 0   | 0   | 1              |     | 3   | ETX   | DC 3  | #    | 3     | С     | S   | С   | 8      |
|          | 0   | 1   | 0              | 0   | 4   | EOT   | DC4   |      | 4     | D     | Т   | d   | t      |
|          | 0   | 1   | 0              | 1   | 5   | ENQ   | NAK   | %    | 5     | E     | U   | e   | u      |
|          | 0   | 1   | 1              | 0   | 6   | ACK   | SYN   | 8    | 6     | F     | ٧   | f   | ٧      |
|          | 0   | 1   | 1              | 1   | 7   | BEL   | ETB   |      | 7     | G     | w   | g   | w      |
|          | Ŀ   | 0   | 0              | 0   | 8   | BS    | CAN   | (    | 8     | н     | ×   | h   | ×      |
|          | Ŀ   | 0   | 0              | 1   | 9   | нт    | EM    | )    | 9     | 1     | Y   | i   | у      |
|          |     | 0   | <u> </u>       | 0   | 10  | LF    | SUB   | *    | _:    | J     | Z   | j   | Z      |
|          | 1   | 0   | 1              | 1   | 11  | VT    | ESC   | +    |       | к     | C   | k . | (      |
|          |     | Ī   | 0              | 0   | 12  | FF    | FS    |      | <     | L     | \   | 1   | 1      |
|          |     | 1   | 0              | _   | 13  | CR    | GS    | -    | =     | М     | )   | m   | }      |
|          |     | 1   | I              | 0   | 14  | so    | RS    |      | >     | N     | ^   | n   | $\sim$ |

The **eigth bit** was used to check if the data was correct, e.g., on a punched tape for printer data.

#### Cryptographic underpinnings (10)

The Luhn Algorithm for credit card numbers



Also, payment operators use simple methods for payment card identification:

$$\psi$$
("4362 3245 2314 0012") = "\*\*\*\* \*\*\*\* \*012"

# Cryptographic underpinnings (11)

Properties of hash functions used in blockchain systems

- **Determinism.** A given input message always produces the same hash output.
- Verifiability. Computing the hash of a message is efficient (linear complexity).
- **Noncorrelation.** A small change in the message (e.g., a 1-bit change) should change the hash output so extensively that it cannot be correlated to the hash of the original message.
- Irreversability. Computing the message from its hash is infeasible, equivalent to a brute-force search through all possible messages.
- Collision protection. It should be infeasible to calculate two different messages that produce the same hash output.

#### Cryptographic underpinnings (12)

Secure Hash Algorithm

The **SHA-256** falls into the class SHA-2, which was created by the United States National Security Agency (NSA) as a successor to SHA-1 in 2001.<sup>1</sup>



<sup>&</sup>lt;sup>1</sup>Irrespective of the size of input data, the hash will always consist of **256 bits**.

#### Cryptographic underpinnings (13)

Private keys

**Definition.** A **private key** is an element of a finite set of feasible keys,  $\pi \in \Pi = \{\pi_1, \dots, \pi_N\}$ , where  $N = \#\Pi$  denotes the cardinality of the set of feasible keys.

#### Cryptographic underpinnings (14)

Examples of private keys

#### PIN for payment card (4 digits):

 $\Pi = \{$  "0000", "0001",  $\cdots$ , "9999" $\}$ , with  $N = 10^4 = 10'000$ .

#### Phone PIN (between 4 and 6 digits):

```
\begin{split} \Pi &= \{\text{``0000''}, \cdots, \text{``9999''}\} \cup \{\text{``00000''}, \cdots, \text{``99999''}\} \cup \\ \{\text{``000000''}, \cdots, \text{``999999''}\}, \text{ with } N &= 10^4 + 10^5 + 10^6 = 1'110'000. \end{split}
```

**Alphanumeric password** (e.g., between 8 and 12 symbols, at least one upper-case and one-lower case letter, at least one symbol): "#qwerty123", with  $N\approx 10^{24}$ .

### Cryptographic underpinnings (15)

Risks of private keys

Possession of a private key is the root of user control. Therefore, holders of private keys are exposed to the following risks:

- Private key loss. If a private key is lost, it cannot be recovered and control may be lost forever. Therefore, a private key must be backed up and protected from accidential loss.
- Private key compromise. A private key must remain secret at all times. Revealing it to a third party is equivalent to sharing control (then, it may not be feasible to disentangle who authenticated a transaction).
  - The key has been revealed to an unauthorized party (stolen key)
  - The key may have been revealed to an unauthorized party (uncertainty)
  - An attacker has identified the private key by guesswork and/or trial-and-error techniques.

### Cryptographic underpinnings (16)

Most common passwords

| Rank | 2021       |
|------|------------|
| 1    | 123456     |
| 2    | 123456789  |
| 3    | 12345      |
| 4    | qwerty     |
| 5    | password   |
| 6    | 12345678   |
| 7    | 111111     |
| 8    | 123123     |
| 9    | 1234567890 |
| 10   | 1234567    |

Source: nordpass.com.

#### Cryptographic underpinnings (17)

Generation of a private key

- Offline and not chosen by a human
- Secure source of randomness, e.g.:
  - Mouse-wiggling
  - Cosmic radiation noise from microphone channel
  - Quantum random generator
- Pseudo random number generator must be cryptographically secure (CSPRNG)<sup>2</sup>

<sup>&</sup>lt;sup>2</sup>CSPRNG requirements fall into two groups: (i) they pass statistical randomness tests, (2) they hold up well under serious attack, even when part of their initial or running state becomes available to an attacker.

### Cryptographic underpinnings (18)

Ethereum private keys

A private key in the Ethereum system is a binary number with 256 digits (corresponding to a hexadecimal number with 64 digits).

#### Example:

 $N=16^{64}=2^{256}\approx 1.1579\cdot 10^{77}$  (the estimated number of atoms in the visible universe is  $10^{80}$ ).

### Cryptographic underpinnings (19)

Public keys

The public key is generated from the private key using a function that is easy to compute but practically irreversible. Such functions are called **one-way functions** or **trapdoor functions**.

#### **Examples:**

- Exponentiation in a finite field (discrete logarithm problem)
- Scalar multiplication on elliptic curves

**Note:** Also hash functions are one-way functions. However, in contrast to the functions considered here, they take data of arbitrary size and lack the mathematical properties (homomorphy) needed to run digital signature protocols.

### Cryptographic underpinnings (20)

Finite fields

Finite fields are finite mathematical structures that are the basis for cryptographic proofs. An important example are **residue class fields** with prime characteristic.<sup>3</sup>

**Example.** The residue class field  $\mathbb{F}_7$  consists of

- the set of residue classes  $\{0, 1, 2, 3, 4, 5, 6\}$
- the operation of addition modulo 7, e.g.,

$$2 + 6 \equiv 1 \operatorname{mod} 7 \tag{3}$$

the operation of multiplication modulo 7, e.g.,

$$5 \cdot 4 \equiv 6 \operatorname{mod} 7. \tag{4}$$

<sup>&</sup>lt;sup>3</sup>For any prime power  $p^m$ , there exists precisely one finite field. Residue class fields (where m=1) are of an elementary nature.

#### Cryptographic underpinnings (21)

Primitive roots

**Example.** In the residue class field  $\mathbb{F}_7$ , consider the powers of 3:

$$3^{0} \equiv 1 \mod 7$$

$$3^{1} \equiv 3 \mod 7$$

$$3^{2} \equiv 2 \mod 7$$

$$3^{3} \equiv 6 \mod 7$$

$$3^{4} \equiv 4 \mod 7$$

$$3^{5} \equiv 5 \mod 7$$

Note that each nonzero residue class corresponds to some power of 3 (this property makes 3 a **primitive root** or **generator** of the multiplicative group  $\mathbb{F}_7^* = \mathbb{F}_7 \setminus \{0\}$ ).

### Cryptographic underpinnings (22)

Table of primitive roots

Analogously, one defines  $\mathbb{F}_p$  for any prime number  $p \in \{2, 3, 5, 7, 11, 13, 17, 19, 23, \ldots\}$ .

| p  | Primitiv<br>wurzeln modulo $\boldsymbol{p}$ |
|----|---------------------------------------------|
| 2  | 1                                           |
| 3  | 2                                           |
| 5  | 2,3                                         |
| 7  | 3,5                                         |
| 11 | 2,6,7,8                                     |
| 13 | 2,6,7,11                                    |
| 17 | 3,5,6,7,10,11,12,14                         |
| 19 | 2,3,10,13,14,15                             |
| 23 | 5,7,10,11,14,15,17,19,20,21                 |

#### Cryptographic underpinnings (23)

The discrete logarithm problem

The **discrete logarithm problem** is to find, for a given residue class r, the exponent m such that  $g^m \equiv r \mod p$ .

For large primes p, this can be a very difficult problem.

#### Cryptographic underpinnings (24)

Bibliographic notes

This chapter is loosely based on Antonopoulos and Wood (2018, Ch. 4).



### Cryptographic underpinnings (25)

References

Antonopoulos, A.M., Wood, G. (2018), *Mastering Ethereum:* Building Smart Contracts and Dapps, O'Reilly Media.