# MindFlayer SGD: Efficient Parallel SGD

# in the Presence of Heterogeneous and Random Worker Compute Times





Artavazd Maranjyan, Omar Shaikh Omar, Peter Richtárik

# **Problem Setup: Distributed Training**

We address the nonconvex optimization problem:

$$\min_{x \in \mathbb{R}^d} \Big\{ f(x) := \mathbb{E}_{\xi \sim \mathcal{D}} \left[ f(x; \xi) \right] \Big\},$$

We assume we have access to *n* parallel workers that compute stochastic gradients independently



# **Optimal Method in Deterministic Regime**

Rennala SGD (Tyurin & Richtárik, 2024)



# **Motivation and the Single Device Case**

#### MindFlayer SGD:

- Wait t seconds for gradient response
- If the timeout expires, resend the request



#### MindFlayer SGD

Worker 1



Try computing  $\widehat{\nabla} f(x^k; \xi)$  within  $t_1$  seconds

Try computing  $\widehat{\nabla} f(x^k; \xi)$  within  $t_1$  seconds

Try computing  $\widehat{\nabla} f(x^k; \xi)$  within  $t_1$  seconds  $B_1$  trials

#### Worker 2



Try computing  $\widehat{\nabla} f(x^k; \xi)$  within  $\underline{t_2}$  seconds

#### Worker 3



Try computing  $\widehat{\nabla} f(x^k; \xi)$  within  $t_3$  seconds

Try computing  $\widehat{\nabla} f(x^k; \xi)$  within  $t_3$  seconds  $B_3$  trials

 $B_2 \, {
m trials}$  MindFlayer (Server)



$$x^{k+1} = x^k - \gamma \frac{1}{B} \sum_{i=1}^n \sum_{j=1}^{B_i} I\left(\eta_i^j \le t_i\right) \nabla f\left(x^k; \xi_i^j\right)$$

$$B = \sum_{i=1}^{n} p_i B_i$$
 and  $p_i = F_i(t_i) = P(\eta_i \le t_i)$ 

## **Experiments**

$$f(x) = \frac{1}{2}x^{\top}Ax - b^{\top}x \qquad \forall x \in \mathbb{R}^d$$

# $\eta \sim \text{lognormal}(0, s)$





# **Theoretical Results**

#### **Assumptions**

**Assumption 1.** Function f is differentiable, and its gradient is L-Lipschitz continuous, i.e.,

$$\|\nabla f(x) - \nabla f(y)\| \le L \|x - y\|$$
, for all  $x, y \in \mathbb{R}^d$ .

**Assumption 2.** The function f(x) is bounded below, and we denote its infimum by  $f^{\inf} \in \mathbb{R}$ . Let  $x^0$  be the initial point of the optimization method, define  $\Delta := f(x^0) - f^{\inf}$ .

**Assumption 3.** For all  $x \in \mathbb{R}^d$ , stochastic gradients  $\nabla f(x; \xi)$  are unbiased and  $\sigma^2$ -variance-bounded, i.e.,

$$\mathbb{E}_{\xi} \left[ \nabla f(x; \xi) \right] = \nabla f(x),$$

$$\mathbb{E}_{\xi} \left[ \| \nabla f(x; \xi) - \nabla f(x) \|^{2} \right] \leq \sigma^{2},$$

where  $\sigma^2 \geq 0$ .

## **Iteration Complexity**

Theorem 1. Let

$$B = \sum_{i=1}^{n} p_i B_i \quad and \quad \gamma = \frac{1}{2L} \min \left\{ 1, \frac{\varepsilon B}{\sigma^2} \right\}$$

Then, the method guarantees that  $\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \left[ \left\| \nabla f(x^k) \right\|^2 \right] \leq \varepsilon$  if

$$K \ge \max\left\{1, \frac{\sigma^2}{\varepsilon B}\right\} \frac{8L\left(f(x^0) - f^{\inf}\right)}{\varepsilon}$$

# **Time Complexity**

