# **Final Report**

Statistical Analysis of mechanical properties of low alloy steel

Ву

**Kumari Shubham Chaudhary (22M1840)** 

# LIST OF CONTENTS

| 1. Introduction              | 3  |
|------------------------------|----|
| 2. Motivation                | 3  |
| 3. Exploratory Data Analysis | 4  |
| 4. Distributional Analysis   | 11 |
| 5. Linear Regression         | 26 |
| 6. Hypothesis Testing        | 31 |
| 7. Conclusion                | 32 |

#### 1. Introduction

We know that Tensile strength is the maximum amount of tensile stress a material can withstand before it fails or breaks. It is a measure of the material's ability to resist deformation under tension or stretching forces. A material's tensile strength is an important factor in determining its suitability for a particular application.

Yield strength is the maximum stress that can be applied before it begins to change shape permanently. This is an approximation of the elastic limit of the steel. If stress is added to the metal but does not reach the yield point, it will return to its original shape after the stress is removed.

As we know that various types of steel with different composition are used in industries. Here, we will be using this dataset will be used to analyse and predict the mechanical properties of steel as there are no precise theoretical methods to predict the mechanical properties of steel.

**Source for the data**: This dataset is taken from kaggle.com Data cleaning: We have checked the data that whether there is any null value is there but, in our data, we could not didn't find any of these. This dataset only contains parameters relevant to our study.

#### 2. Motivation

I have selected the data which relates the effect of various alloying elements on the mechanical properties of the material such as yield strength, Ultimate tensile strength etc. Also, this data set contains the effect of temperature on the mechanical properties for a particular alloy. To compare the temperature effects, 10 data points are taken for each alloy and to compare the alloying effect, 5 compositions namely A,B,C,D,E are taken to analyse the structure property correlation.

#### **Description of the data:**

The dataset contains no missing values.

- As mentioned, the columns with percentage composition of alloying metals and impurities.
- Mechanical properties such as tensile strength and proof stress are given in columns with varying percentage composition of alloying metals and temperature.

#### 3. EDA analysis

In EDA analysis, we have tried to understand the data by plotting various kinds of graphs in order to observe the trends the data follow and to observe if there are any outliers in the data to discard for the analysis.

#### 1. Tensile strength vs %C

Here are the various graphical representations for each alloy content:



#### **Observations:**

From scatter plot, it can be seen that the mostly values are scattered from 0.1 to 0.3%.

From Histogram, it can be seen that peek around 0.15. but some other %C is also there whose frequency is very less. i.e., an outlier. Most of the data lies between 0-0.3.

We have also plotted line plot to see cdf.





## 2. Tensile strength vs % si







- From scatter plot, it can be seen that the mostly values are scattered from 0.2 to 0.5%.
- From Histogram, it can be seen that peek around 0.29-0.30. Here we could not observe any outliers.
- We have also plotted line plot to see cdf.

## 3. Tensile strength vs % Mn







- From scatter plot, it can be seen that the mostly values are scattered from 0.4 to 1.5%.
- From Histogram, it can be seen that peek in the range 0.4-0.5. but some other %Mn is also there whose frequency is very less. i.e., an outlier.
- We have also plotted line plot to see cdf.

## 4. Tensile strength vs % P







- From scatter plot, it can be seen that the mostly values are scattered from 0.005 to 0.03%.
- From Histogram, it can be seen that peek around 0.015. but some other %P is also there whose frequency is very less. i.e., an outlier. Most of the data lies between 0.01-0.015.
- We have also plotted line plot to see cdf.

## 5. Tensile strength vs %S







- From scatter plot, it can be seen that the mostly values are scattered from 0 to 0.02%.
- From Histogram, it can be seen that peek around 0.005. but some other %S is also there whose frequency is very less. i.e., an outlier.
- We have also plotted line plot to see cdf.

#### 6. Variation with other alloy contents





#### Variation of 0.2% proof stress:



#### **Observations:**

From Histogram, it can be seen that peek around 200 and we see that max values are in range of 150-600 MPA, but some other values are there whose frequency is very less i.e.,values less than 100 and more than 650 are very less.

#### **Variation of Tensile strength:**



#### **Observations:**

From Histogram, it can be seen that peek around 450-500. and we see that max values are in range of 200-800 MPA, but some other values are there whose frequency is very less i.e., values less than 200 and more than 800 are very less.

## 4. <u>Distribution Analysis</u>

# 1. % Carbon content







|         | sumsquare_error | aic         | bic         | kl_div |
|---------|-----------------|-------------|-------------|--------|
| lognorm | 8707,542276     | -187.223345 | 2081,970797 | inf    |
| f       | 8747.610958     | -193,470295 | 2092,990533 | inf    |
| gamma   | 8754.969706     | -196.289342 | 2086,941010 | inf    |
| erlang  | 8754,970846     | -196.290956 | 2086.941129 | inf    |
| norm    | 9121.904470     | -184.545181 | 2117.689333 | inf    |

# **Observations:**

From the graph we can see that the best fit is lognormal distribution for this analysis.

## 2. % Si content



From the graph we can see that the best fit is Erlang distribution for this analysis.

## 3. % Mn content



From the graph we can see that the best fit is Erlang distribution for this analysis.

#### 4. % P content



## **Observations:**

From the graph we can see that the best fit is Lognormal distribution for this analysis.

#### 5. % S content



#### **Observations:**

From the graph we can see that the best fit is Gamma distribution for this analysis.

## 5. % Ni content



#### **Observations:**

From the graph we can see that the best fit is Chi square distribution for this analysis.

#### 7. % Cr content



From the graph we can see that the best fit is Lognormal distribution for this analysis.

#### 7. %Mo content



From the graph we can see that the best fit is F distribution for this analysis.

#### 8. % Cu content



From the graph we can see that the best fit is Lognormal distribution for this analysis.

#### 10. % N content



From the graph we can see that the best fit is Lognormal distribution for this analysis.

#### 11. Temperature distribution



From the graph we can see that the best fit is Uniform distribution for this analysis.

## 12. 0.2% Proof Stress distribution



From the graph we can see that the best fit is F distribution for this analysis.

#### 17. Tensile strength distribution



From the graph we can see that the best fit is F distribution for this analysis.

## **Summary of Distribution Analysis**

| Sr. | Columns              | <b>Best Fitting</b> | Sum Square Error |
|-----|----------------------|---------------------|------------------|
| No  |                      | Distribution        |                  |
| 1.  | %C content           | Lognormal           | 8707.542276      |
| 2.  | %Si content          | Erlang              | 2876.659476      |
| 3.  | %Mn content          | Erlang              | 107.286873       |
| 4.  | %P content           | Lognormal           | 968618.550225    |
| 5.  | %S content           | Gamma               | 1.944633e^6      |
| 6.  | %Ni content          | Chi square          | 625.594346       |
| 7.  | %Cr content          | Lognormal           | 87.997160        |
| 8.  | %Mo content          | F                   | 180.345292       |
| 9.  | %Cu content          | Lognormal           | 9437.761240      |
| 10. | % V content          | Erlang              | 18374.997726     |
| 11. | %Al content          | Lognormal           | 180595.506666    |
| 12. | %N content           | Lognormal           | 875767.707415    |
| 13. | %Ceq content         | Gamma               | 18155.078274     |
| 14. | Nb+Ta<br>content     | Beta                | 1.278213e^9      |
| 15. | Temperature          | Uniform             | 0.0022232        |
| 16. | 0.2% Proof<br>Stress | F                   | 0.000079         |
| 17. | Tensile<br>Strength  | Lognormal           | 0.000047         |

# 6. Regression Analysis

## STEPS INVOLVED:

- 1. First I select a feature as target (dependent variable) which is '0.2% Proof Stress (MPa)'.
- 2. Then take single-single feature as variable (independent variable).

- 3. Now split our dataset (variable, target) in to training and testing dataset.
- 4. Then fit 'linear regression model' on training dataset.
- 5. Then predict '0.2% Proof Stress (MPa)' for testing data.
- 6. Then find out "R SQURE" and "ADJUSTED R SQURE" value on testing dataset which is more reliable.
- 7. Repeat same steps for 'Tensile Strength'.

R\_SQURE: it is a statistical measure of fit that indicates how much a dependent variable is explained by the independent variable(s) in a regression model. It's maximum value can be +1 that tell highly dependence on that variable. ADJUSTED R\_SQURE: The adjusted R-squared increases when the new term improves the model more than would be expected by chance. It decreases when a predictor improves the model by less than expected.

Linear Regression is done to see any strong dependency is observed between features and "0.2% Proof Stress".

| Variables | R square value        | adjusted R square value |  |
|-----------|-----------------------|-------------------------|--|
| %C        | 0.03151415000110391   | 0.03161919716777428     |  |
| %Si       | 0.07960078124100323   | 0.07986611717847325     |  |
| %Mn       | 0.15301219092363727   | 0.1535222315600494      |  |
| %P        | -0.009496615503267858 | -0.009528270888278678   |  |
| % S       | -0.015691541834740086 | -0.01574384697418929    |  |
| %Ni       | 0.24085827932807424   | 0.24166114025916785     |  |
| %Cr       | 0.045212454024197934  | 0.045363162204278606    |  |
| %Mo       | 0.12576784960659082   | 0.1261870757719461      |  |
| %Cu       | 0.011607450908954098  | 0.011646142411983917    |  |
| % N       | -0.016259061779242634 | -0.01631325865184019    |  |

| Temperature | 0.1212747282957316 | 0.12167897739005074 |
|-------------|--------------------|---------------------|
|             |                    |                     |

**Conclusion:** It is clearly seen that the R square values are too less for %P, %S, %Cu, %N. Among all of features 0.2% Proof stress depends most on %V content followed by %Ni and %Mn content.

Multiple Linear regression is to see if there is any combined dependency of features with "0.2% Proof Stress".

| Variables                      | R square value | adjusted<br>R square<br>value |
|--------------------------------|----------------|-------------------------------|
| F1,F2                          | 0.22324821657  | 0.22474151568                 |
|                                | 439187         | 191292                        |
| <b>F1,F2</b> ,F3               | 0.29623648807  | 0.29921873460                 |
|                                | 96591          | 3951                          |
| F1,F2,F3,F4                    | 0.34113428214  | 0.34572868325                 |
|                                | 57769          | 211736                        |
| F1,F2,F3,F4,F5                 | 0.35933848101  | 0.36540838779                 |
|                                | 931565         | 329055                        |
| F1,F2,F3,F4,F5,F6              | 0.42371182660  | 0.43232969426                 |
|                                | 316065         | 28859                         |
| F1,F2,F3,F4,F5,F6,F7           | 0.50991853460  | 0.52205945209                 |
|                                | 06612          | 11531                         |
| F1,F2,F3,F4,F5,F6,F7,F8        | 0.54285455600  | 0.55767652340                 |
|                                | 80373          | 75741                         |
| F1,F2,F3,F4,F5,F6,F7,F8,F9     | 0.55338599168  | 0.57044240923                 |
|                                | 45232          | 64434                         |
| F1,F2,F3,F4,F5,F6,F7,F8,F9,F10 | 0.60463316237  | 0.62541093427                 |
|                                | 68232          | 98069                         |

| F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,F11          | 0.59981808624 | 0.62256980675 |
|---------------------------------------------|---------------|---------------|
|                                             | 46374         | 73651         |
| F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,F11,F 12     | 0.60012657396 | 0.62504532443 |
|                                             | 37169         | 9719          |
| F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,F11,F 12,F13 | 0.61488131611 | 0.64263637552 |
|                                             | 5025          | 29949         |
| F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,F11,F        | 0.61844325231 | 0.64861121584 |
| 12,F13,F13,F14                              | 87802         | 65256         |
| F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,F11,F        | 0.85027970175 | 0.89487479100 |
| 12,F13,F14,F15                              | 64021         | 93603         |

**Conclusion:** It is clearly seen that the R square values are increasing with the combined effect of different features. And when we take input as all features then R square value is 0.85(highest) so it is good way to predict 0.2% Proof stress.

Linear Regression is done to see any strong dependency is observed between features and "Tensile Strength".

| Variables | R square value | adjusted R square value |
|-----------|----------------|-------------------------|
|           |                |                         |

| %C           | 0.045053598435921605   | 0.045203777097374664    |
|--------------|------------------------|-------------------------|
| %Si          | 0.011456825255870773   | 0.011495014673390314    |
| %Mn          | 0.0605054449209772     | 0.06070712973738046     |
| %P           | -0.006531072700674434  | -0.006552842943009951   |
| %S           | -0.0035681889834746627 | -0.0035800829467529383  |
| %Ni          | 0.09319549053379161    | 0.0935061421689043      |
| %Cr          | 0.02044865659495476    | 0.020516818783604562    |
| % <b>M</b> o | 0.06366629237556887    | 0.06387851335015404     |
| %Cu          | 0.003936909491447094   | 0.003950032523085234    |
| %N           | -3.694154467948074e-05 | -3.7064683161780465e-05 |
| Temperature  | 0.3086504212364508     | 0.30967925597390566     |
|              |                        |                         |

**Conclusion:** It is clearly seen that the R square values are too less for %P, %S, %Cu, %N. Among all of features Tensile strength depends most on Temperature followed by %V, %Ni and %Mn content.

Multiple Linear regression is to see if there is any combined dependency of features with "Tensile Strength".

| Variables | R square value | adjusted R square |
|-----------|----------------|-------------------|
|           |                | value             |
|           |                |                   |
|           |                |                   |

| F1,F2                                               | 0.104906396054<br>27454 | 0.105608111078<br>0489  |
|-----------------------------------------------------|-------------------------|-------------------------|
| F1,F2,F3                                            | 0.130383768053<br>7625  | 0.131696356322<br>7601  |
| F1,F2,F3,F4                                         | 0.148663846120<br>57149 | 0.150666052802<br>33003 |
| F1,F2,F3,F4,F5                                      | 0.153377099796<br>7281  | 0.155967929185<br>18632 |
| F1,F2,F3,F4,F5,F6                                   | 0.166349398222<br>5972  | 0.169732775813<br>56527 |
| F1,F2,F3,F4,F5,F6,F7                                | 0.204569282457<br>88308 | 0.209439979659<br>2612  |
| F1,F2,F3,F4,F5,F6,F7,F8                             | 0.219207104125<br>64504 | 0.225192281030<br>09947 |
| F1,F2,F3,F4,F5,F6,F7,F8,F9                          | 0.234662933950<br>72424 | 0.241895695613<br>58903 |
| F1,F2,F3,F4,F5,F6,F7,F8,F9,F10                      | 0.253058303867<br>3093  | 0.261754465512<br>234   |
| F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,F11                  | 0.246835675592<br>30646 | 0.256198408114<br>77324 |
| F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,F11,F1 2             | 0.247078002355<br>73107 | 0.257337296571<br>194   |
| F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,F11,F1 2,F13         | 0.249932613418<br>80157 | 0.261214293885<br>62256 |
| F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,F11,F1 2,F13,F14     | 0.271989531357<br>63004 | 0.285257313375<br>0754  |
| F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,F11,F1 2,F13,F14,F15 | 0.669196538082<br>4358  | 0.704294258611<br>235   |

**Conclusion:** It is clearly seen that the R square values are increasing with the combined effect of different features. And when we take input as all features then R square value is 0.669(highest) so it is good way to predict Tensile strength.

#### 7. Hypothesis Testing

#### 1) Hypothesis testing for data under 0.2% proof stress Column

#### Step 1: Create the hypothesis

Null hypothesis: Mean= 340 Alternate hypothesis: Mean  $\neq$  340

#### Step 2 Statistical test used - Z test

To get critical Z value Consider the test as two tailed test with level of significance i.e. alpha as 0.05 then critical value of Z is +1.96 or -1.96.

#### Step 3 Decision making

As calculated Z value i.e. -2.196857118578904 is less than critical Z value i.e. -1.96 so we would reject the Null hypothesis.

By doing so we can conclude that the sample of 50 data we have taken from the population of 0.2% Proof stress column has significant difference from the data of population.

#### 2) Hypothesis testing of data under Tensile Strength Column

#### **Step 1 Create the hypothesis**

Null Hypothesis: Mean = 495 Alternate Hypothesis: Mean  $\neq$  495

#### Step 2 Statistical Test used- Z test

To get critical Z value, Consider the test as two tailed test with level of significance i.e. alpha as 0.05 then critical value of Z is +1.96 or -1.96.

#### **Step 3 Decision making**

As calculated Z value i.e. -0.5268257408811524 is greater than critical Z value -1.96. So we would accept the null hypothesis. By doing so we made the Type II error in hypothesis testing.

## 8. Conclusion:

- Pre-processing of data is learnt, there is no missing or no abnormal values found. So, the data is used still for further analysis.
- Suspecting a dependency and its confirmation or rejection by applying multiple statistical tools is learnt.
- Qualitative Distributional analysis is one important learning from this work and its confirmation by least value of sum square error.
- P-P plots and Q-Q plots along with their significance in confirmation of distribution is learnt.
- Linear regression and Multiple regression applications in analysing the dependency of the variable.