

复旦微电子

FM33XX 编程器使用说明

版本 2.0

2019/06

目录

1	编程器接口	1
2	编程器配置说明	3
3	在线使用说明	8
4	脱机使用说明	11
5	编程器在线升级说明	13
6	版本说明	15

1. 编程器接口

编程器供电: USB 供电(正常 500mA, 5V 供电即可)。 指示灯状态: 编程器上电后, RUN 灯每秒闪烁一次。 RUN 灯 红灯闪烁 为脱机工作模式。 RUN 灯 绿灯闪烁 为在线工作模式。

编程接口:编程器有2路编程接口。

8PIN 端子为 FM331X 系列 C251 核芯片编程器接口。1-8 依次为: VCC、TM、TDO、GND、TMS、TCK、TDI、PROG。 如图所示:

6PIN 端子为 FM33A/G/L 等 ARM 核芯片编程器接口。1-6 依次为: RST、SWDIO、SWCLK、GND、TM、VCC。 如下图所示:

备注: TM 脚为时钟调教接口,如果不需要高精度的时钟调校功能,可以不接 TM 引脚。

内部硬件硬接口如下:

PCB 上的排线默认为 FM33A0XX 系列的标准接口 VCC,TM (若不需要调校可不接),GND,SCLK,SDO,NRST,也可客户自定义。

如需自定义,或者选择 FM3316 和 FM3312 bootloader 接口时,需自行从右边的双排 2*7 的接口上接线出来。具体接线如下选择:

STM407		385		3316		3316 BOOTLAODER				
		GBI	SWD	FM385 pin	GBI	JTAG	3316pin	BOOTLOADER	3312pin	
101	CH1	PA8	TCLK	SWDCLK	PG8	STROBE	TDI	PG0	SELECT	PE0
102	CH2	PC7	TESTN	TESTN	TESTN		TMS	PG1	TX	PD3
103	CH3	PC6	TDIO	SWDIO	PG9				RX	PD2
104	CH4	PD14	STROBE		PG7					
105	CH5	PA7				TDIO	TDO	PG3		
106	CH6	PA6				TCLK	TCK	PG2		
107	CH7	PA5				TESTN	TESTN	TEST_N	TESTN	TEST_N
108	CH8	PA0	TM	TM	PG6	TM		PG4		
CPUIO-	CPUIO-1	PD10		KEY			KEY		KEY	

2. 编程器配置说明:

1. 打开编程器上位机,最下面可显示编程器固件版本以及通信串口号等。

2. 选择配置-编程器配置

3. 编程器配置

单击主菜单"配置"---"编程器配置",打开如下窗口:

制造商名:	Manufactur			器序列号: FFFFFFFF	下发
编程密码:			(8位密码) 最大(扁程次数: │10000000	0
R户信息配置——					
客户名:	ClientName		(最长16字符,数字	字符下划线均可)	
编程信息配置一					
芯片类型:	FM33A0X	X	▼ 算法:	1 BLOC	K擦写测试
FLASH大小:	512K		▼		
	址(6位16进制)			
编程起始地址			编程结束地址:	02FFFF	
		9(十进制)	· 序列号位数:	6 (2-32偶数值)	
序列号增量:			J		I TIMBU I
序列号起始地	pt朮: o	(地址为村	即d 0 的十六位偏移均	地址,为4字节倍数,且2	不可大于编程结束地址)
一最长32位序列	· 号				
序列号起始	信			_	
	IB: 112340			Z DCDZŪ	
	1			● BCD码	
序列号趋束	1			● BCD码○ 十六进制	
序列号结束	值:				
序列号结束脱机编程模式配	值: [C +20#			
序列号结束	值:	C按键			
序列号结束脱机编程模式配	值: [○按键			
序列号结束 脱机编程模式配 启动模式: 蜂鸣器:	值: 置 • 自动	〇无			
序列号结束 脱机编程模式配 启动模式: 蜂鸣器: LED指示:	值: 置 • 自动 • 有	〇 无		C 十六进制	下发
序列号结束 脱机编程模式配 启动模式: 蜂鸣器: LED指示: 脱机项目:	值: 置 • 自动 • 有 • 有	〇无	□ 调校		下发
序列号结束 脱机编程模式配 启动模式: 蜂鸣器: LED指示:	值: 置 • 自动 • 有	〇 无	□ 调校	C 十六进制	下发
序列号结束 脱机编程模式配 启动模式: 蜂鸣器: LED指示: 脱机项目: 编程电压:	值: 置 • 自动 • 有 • 有	〇 无	□ 调校	C 十六进制	下发
序列号结束 脱机编程模式配 启动模式: 蜂鸣器: LED指示: 脱机项目: 编程电压:	值: 置 • 自动 • 有 • 有	〇 无	□ 调校	C 十六进制	下发
序列号结束 脱机编程模式配 启动模式: 蜂鸣器: LED指示: 脱机项目: 编程电压:	值: ☐ 自动	○无○无□編程	□ 调校	□ 加密	
序列号结束 脱机编程模式配 启动模式: 蜂鸣器: LED指示: 脱机项目: 编程电压: 辑程信息 已编程次数:	值: 置 • 自动 • 有 • 有 ▼ 擦写 5.00 V	○无○无□編程	□ 调校	C 十六进制 「加密 已成功次数:	0 0

- a) 制造商信息(由编程器生产厂商下发),包括:
 - ▶ 编程器制造商名: 最长 16 位字符
 - ▶ 编程器序列号: 4字节十六进制数
 - ▶ 编程密码(扩展预留): 为将来编程次数限制等预留
 - ▶ 最大编程次数:单次配置编程次数限制,后续和编程配合使用,最大999999999.

- b) 客户信息配置——客户名: 最长 16 位字符
- c) 客户信息配置——编程信息配置
 - ▶ 芯片类型:
 - ➤ FLASH 大小

芯片类型	FLASH大小	芯片型号	编程接口
FM33A0XX	256K	FM33A04X	
	512K	FM33A06X	
FM33A0XXB	128K	FM33A02XB	
	256K	FM33A04XB	
FM33G0XX	128K	FM33G02X	SWD
	256K	FM33G04X	300
FM33M0XX	128K	预留	
	256K	预留	
FM33L0XX	64K	预留	
	128K	预留	
FM3316bootloader	64K(63.5K用户可用)		BOOTLOADER
RM3316	64K(63.5K用户可用)		JTAG

- d) 客户信息配置——自定义编程地址
 - ▶ 选中自定义编程地址为功能有效,否则编程地址为 FLASH 大小。
 - ▶ 编程起始地址: 3 字节十六进制数,最小值 0,最大值小于结束地址,有效起始地址为 512 字节的倍数
 - ▶ 编程结束地址: 3 字节十六进制数,最小值大于起始地址,最大值为 FLASH 大小,有效结束地址为 512 字节的倍数-1

- e) 客户信息配置——序列号
 - ▶ 此功能表示,客户可自定义最长 16 字节数据写在自定义的程序空间里面,可所有的芯片固定(序列号增量为 0),也可每颗芯片的序列号以自定义的方式变化(例如加 1,或者加 2······)
 - ▶ 选中自定义序列号功能
 - ▶ 序列号增量: 0-99(0表示所有烧写芯片的序列号一致)
 - ▶ 序列号位数: 2-32 位,只支持偶数值,每两位用一个 byte 存于 FLASH 空间中
 - ▶ 序列号起始地址:序列号存放地址,此地址必须保证包含在有效编程地址内,并且写序列号的地址必须保证没有程序,否则会发生空间覆盖不可编程。另外此地址必须为 4 字节的倍数。
 - ▶ 序列号起始值: 最长 32 位十进制数,以 BCD 码格式存放于 FLASH 空间内,为编程序列号的最小值。
 - ▶ 序列号结束值:最长 32 位十进制数,以 BCD 码格式存放于 FLASH 空间内,为编程序列号的最大值。

- f) 脱机编程模式
 - ▶ 启动模式:
 - i. 自动: 脱机模式下芯片接入自动编程
 - ii. 按键: 脱机模式下按键 KEY(如第一页中硬件接口所示)自动编程
 - ▶ 蜂鸣器:
 - i. 有:有蜂鸣器,流程正确长鸣一声,流程出错短鸣三声
 - ii. 无:没有蜂鸣器

上海复旦微电子集团股份有限公司

- LED 指示: (预留)
- ▶ 脱机项目:
 - i. 擦写:擦写 FLASH,不可单独选择
 - ii. 编程:编程 FLASH
 - iii. 调校: 1s 秒时标调校,目前仅支持 FM33A0XX,FM33A0XXB,FM33G0XX(并且选用 此功能时必须配置调校信息,编程器硬件必须有 16.368M 基准电路)
 - iv. 加密: 脱机编程完毕 FLASH 加密。
- ▶ 编程电压: 3-5V 支持
- g) 编程信息
 - ▶ 已编程次数:最大编程次数配置完成后已编程总次数,包括失败和成功;
 - 剩余次数:最大编程次数扣除成功次数之后的剩余次数;
 - ▶ 已成功次数:最大编程次数配置完成后已编程成功次数;
 - ▶ 已失败次数:最大编程次数配置完成后已编程失败次数;
 - ▶ 当前有效序列号: 脱机编程将写入的序列号;
 - ▶ 当前程序校验和:编程器 FLASH 中错存储的待编程的程序 CRC 校验和。

客户可按照自己的需求配置,然后下发。要求: 先发下制造商信息,再下发客户信息。下发完成后关闭配置窗口回到主界面,主界面显示操作完成,表示下发成功,为确保可重新打开编程配置界面读取配置。

4. 时钟调校配置

单击主菜单"配置"---"编程器配置" ,打开如下窗口:

以上参数,如无必要客户,除了 **16.368M** 实测频率请务必由代理商校准,其他值请尽量不要更改。

3. 在线使用说明

在线编程:

打开上位机,启动 "FM33A0XX 编程器上位机 VXX.exe"上位机,连接目标板(请注意在线操作一定要先启动上位机,USB 连接好再连接目标板,否则会启动脱机操作),然后单击左上角 "文件"---"打开 hex 的程序文件"加载需要下载的 hex 文件,加载完成后点击"编程"按钮即可。

编程器配置说明:

1. 打开编程器上位机,最下面可显示编程器固件版本以及通信串口号等。

版本 2.0

2. 读芯片 NVR

点击"读芯片 NVR"可读芯片 NVR。 然后保存 NVR 数据。

3. 读文件名

点击"读文件名"可读保存在编程器中的文件名。

4. 读文件内容

点击"读文件内容"可读保存在编程器中的文件内容,并保存为bin文件。

5. 操作——加密解密

SWD 接口系列

芯片加密解密: 单击芯片主菜单"操作"---"加解密"可对芯片进行加密解密操作

点击"读芯片 NVR"可判断芯片是否是加密模式,如果是加密芯片显示"FLASH 已加密:请解密"

JTAG 接口(3316),仅做了 FLASH 全擦解密 FLASH

4. 脱机使用说明

断开上位机或者没有连接过上位机开始使用脱机功能, COM 灯红灯闪烁。

若上位机配置编程功能:

编程器与芯片连接后启动编程;

PROG 灯闪烁;

编程成功, PROG 灯亮绿色, 且蜂鸣器响一声;

编程失败, PROG 灯亮红色, 且蜂鸣器快速响 3声。

若上位机配置编程调校功能:

编程器与芯片连接后启动编程:

PROG 灯闪烁;

编程完成后启动调校, PROG 灯灭, ADJ 闪烁;

调校完成,成功 ADJ 灯亮绿色,且蜂鸣器响一声;

调校完成,失败 ADJ 灯亮红色,且蜂鸣器快速响 3 声。

注意:编程器每次升级完成后电表程序要重新下载,编程器配置只需要第一次下发或者改变的时候下发。

脱机使用说明:

1. 更新待下载的 HEX

启动 "FM33A0XX 编程器上位机 VXX.exe"上位机,界面如下图:

单击左上角"文件"---"打开 hex 的程序文件"加载需要下载的 hex 文件,加载完成后点击"下传",如下图

点击"通讯口ON/OFF"关闭上位机串口,如下图编程器开始脱机编程

5. 编程器在线升级说明

打开编程器外壳,如下图:

USB接口连接电脑(请用正常的编程器上位机确保 USB接口通信正常),然后打开上位机 升FM33A0XX升级 exe ,打开后界面如下图所示:

主菜单选择"打开文件"打开文件,或者快捷图标打开文件 ● FM3XX_PROGER_VO8. hex (目前版本为

V08), 弹出窗口:

选择全空间直接确认。

然后长按编程器靠近 USB 接口附近的 K2 按键,上位机显示:

烧写完成即更新完毕。

版本说明

ARM 版 FM33XX 编程器修订记录

固件		上位机			
版本	修订时间	版本	修订时间	修订功能描述	补充说明
V00	2017.08.08			初版,包括 FM33A048 编程	
T 70.1	2017 00 17	-		在 V00 基础上修改 I2C stop 子程序中增加 1us 延	
V01	2017.08.17			时,修正 24C512A 可用, 24C512D 不可用的问题。	
		V00	2017.08	在 V01 基础上修改:	
V02	2017.08.25			1. 脱机编程结束后退出编程模式	
V 02	2017.08.25			2. 增加检测 NVR1——未成测的芯片以及制造商	
				模式的芯片不可编程。	
V03	2017.09.08	V01	2017.09.07	在 V02 的基础增加 FM3316 的 bootloader 接口编程	
				在 V03 的基础上修改:	
				1. 脱机芯片接入判断模式,增加去抖,修改判断	
				test 脚电平 8*100us 为 8*500us,并连续判断两	
V04	2018.01.18			次。	
		V02	2018.1.18	2. 增加在 NVRO 中写入编程成功标志及编程器版	
			2018.1.18	本号以及程序名等编程信息	
		_		3. 增加调校功能	
				在 V04 的基础上修正当程序过大(烧写程序时间大	
V05	2018.02.07			于 30s) 时引起编程器进入低速模式增加编程时间	
			- /	的问题	
V06	2018.03.28		X编程器上位	金柏定制	
		机 For st	<u>≳阳</u> T	*************************************	
	2018.04.04			在 V05 的基础上修改一些程序的写法,主要是因为	因此后续
V07				当时南京飞腾所做编程器 407 一直发生	此版本作
				HARDFAULT,当初采用软件修改有效,最后证明 是硬件焊接器件错误导致的	废
				在 V05 的基础上修改	
				在 V05 的基础工序以 1. 增加 FM33A0XXB,并所有的 NVR1 命名改成	
	2018.06.29			NVR6, NVR0 命名改成 NVR5, 并增加 NVR5 最	
				开始 8byte 的成测信息检测。	
				2. 继续增加芯片接入去抖时间为 32*1ms	
V08		V05	2018.06.23	3. 修改脱机编程时电源上下电从直接上下电为上	
***		103	2010.00.23	次状态和当前不一致时才需要设置,否则不执	
				行保持状态	
			4. 增加 FM33A0XXB 和 FM33A0XX 的区分		
			5. 修改 flash 校验从 ARM 中读 0x4000 长度保存在		
				buffer 中改为用指针边读边计算	
				在 V08 的基础上修改,去掉脱机编程开始时检测	
1700	2018.08.16	2019 09 16		NVR5 信息检测,修正客户批量烧写程序时有可能	
V09	2018.08.16			发生的写编程信息时擦掉NVR5之后没有及时刷新	
	<u> </u>			NVR5 信息失败之后,无法重复编程的问题。	
				在 V09 的基础上修改	
V10	2018.10.24	V06		1. 脱机编程读 EE 数据调校参数调校顶点误差允	
				许值 ee_adjust_top_ppm 时多除了了一个 100,	

上海复旦微电子集团股份有限公司 Shanghai Fudan Microelectronics Group Company Limited

				€ FM	
				导致上位机下发的的 top_ppm 缩小到了 1/100, 超误差。 2. 增加 G 版芯片的识别以及与 FM33A0XXB 的区分。	
V11	2018.11.05			在 V10 的基础上去掉 FM33A0XX 与 FM33A0XXB 的区分	仅 供 晨 泰,不发 布
V12	2018.11.30			在 V10 的基础上上修改脱机时编程信息微调(程序名长度变短),主要因为 FM33G0XX 的 G042 用了 NVR5 中 0xFFFFFB00 开始的 4bytes 作为无晶体配置。	
V13	2019.01.10	- V07		在 V12 的基础上修改: 1. 增加 FM33M0XX 的编程,主要因 FM33M0XX 的 CRC 功能和 FM33A0XX 等不一样 2. 增加 FM3316 的脱机编程功能 3. 增加编程信息 NVR5 不需要更新的部分可保留	
V14	2019.03.13	V07		在 V13 的基础上修改 1. 修正 G 版进入编程模式 RST 的复位信号,解决 G 版无法编程问题 2. 调整脱机调校 16M 采样值误差最大值从±2 到 ±20	
V15	2019.04.12	V08	2019.04.12	在 V14 的基础上,修改脱机调校时采样值误差最大值从±20 为上位机下发	客户最新 使用版本
V20	2019.03.20	V10		在 V14 的基础上修改,并重新规划编程配置 EE 定义,因此 V20 和之前的版本均不兼容,上位机需要 V10 配合。配置定义主要修改了 1. 编程次数上位机可设定,读取 2. 可自定义编程地址 3. 可设定序列号,序列号起始地址,序列号增加 step 等 4. 修改脱机调校时采样值误差最大值从±20 为上位机下发	
V21	2019.04.25	V11	2019.04.25	在 V20 的基础上继续完善功能 1. 修正上位机加密和解密错误 2. 修改进入编程模式为低 30ms haltcore 和低 30ms 再高 haltcore 都尝试一下,若不能进入则报错。 3. 完善序列号不可增加问题,并且上位机也同时有序列号的功能;并增加若序列号有效功能未打开(序列号和 step,位数等需定义,然后再DISABLE 功能)时,序列号的存放地址为 FM3316 放在最后一个扇区,ARM 系列放在 NVRO 中。 4. 完善脱机自动和按键(Pin57:PD10=CPUIO1)的选项功能。 5. 上位机打开程序增加 bin 文件有效。	客使本需编或号的
V22	2019.06.10	V12	2019.06.10	1. 修正 3316 带序列号脱机编程出错; 2. ARM 系列调剂调校时钟信号从 1s 采样修改为	

32768Hz 采样,提高调校速度从 9s 左右->3.5s 左	
右;	
3. 调整 SWD 编程时序以及编程方式,提高编程	
速度,512K 从 45s->38s;	
4. 增加检测 Foundry/圆片/成品测试信息判断;	
5. 增加单独脱机调校可选;	
6. 修正了上位机部分输入非法或者配置中数据非	
法导致的闪退现象。	

上海复旦微电子集团股份有限公司销售及服务网点

上海复旦微电子集团股份有限公司

地址: 上海市国泰路 127 号 4 号楼

邮编: 200433

电话: (86-021) 6565 5050 传真: (86-021) 6565 9115

上海复旦微电子 (香港) 股份有限公司

地址: 香港九龙尖沙咀东嘉连威老道 98 号东海商业中心 5 楼 506 室

电话: (852) 2116 3288 2116 3338

传真: (852) 2116 0882

北京办事处

地址:北京市东城区东直门北小街青龙胡同1号歌华大厦B座423室

邮编: 100007

电话: (86-10) 8418 6608 传真: (86-10) 8418 6211

深圳办事处

地址: 深圳市华强北路 4002 号圣廷苑酒店世纪楼 1301 室

邮编: 518028

电话: (86-0755) 8335 0911 8335 1011 83352011 83350611

传真: (86-0755) 8335 9011

台湾办事处

地址: 台北市 114 内湖区内湖路一段 252 号 12 楼 1225 室

电话: (886-2) 7721 1889 传真: (886-2) 7722 3888

新加坡办事处

地址: 237, Alexandra Road, #07-01, The Alexcier, Singapore 159929

电话: (65) 6472 3688 传真: (65) 6472 3669

北美办事处

地址: 2490 W. Ray Road Suite#2 Chandler, AZ 85224 USA

电话: (480) 857-6500 ext 18

公司网址: http://www.fmsh.com/