



| 1 | October       | 5 |
|---|---------------|---|
|   | 1.1 Manifolds | 5 |

4 CONTENTS

## 1. October

## 1.1 Manifolds

For a quick review on the manifolds (on 8 October), I am reading through the Lee's text book.

**Proposition 1.1** — Some properties of the Hausdorff spaces. Let  $(X, \mathcal{T})$  be a Hausdorff topological spaces. I.e. for any distinct points  $x, y \in X$  there exists  $U, V \in T$  such that  $x \in U, y \in V$  and  $U \cap V = \emptyset$ . Then we have:

- (a) Any convergent sequence in X has a unique limit point.
- (b)  $(X, \mathcal{T})$  is Hausdorff if and only if the diagonal  $\Delta = \{(x, x) : x \in X\}$  is closed under the product topology.
- (c) Every compact set in X is closed.
- *Proof.* (a) Assume otherwise. I.e. the sequence  $\{x_n\}$  converges to two different distinct points  $p,q\in X$ . Since X is Hausdorff, then there exists disjoint  $U,V\in \mathcal{T}$  such that  $U\cap V=\varnothing$  and  $x\in U,y\in V$ . Since  $x_n\to p$  and  $x_n\to q$  as  $n\to\infty$  then there exists  $N_1,N_2\in\mathbb{N}$  such that  $\forall n>N_1$  we have  $x_n\in U$  and  $\forall n>N_2$  we have  $x_n\in V$ . This is a contradiction as we assume that  $U\cap V=\varnothing$ .
  - (b) Forward direction  $\implies$ : We assume that X is Hausdorff. Let  $(x,y) \in (X \times X) \setminus \Delta$ . Since X is Hausdorff, then there exists  $U, V \in \mathcal{T}$  such that  $x \in U$  and  $y \in V$  and  $U \cap V = \emptyset$ . Thus the set  $U \times V$  is also open in  $X \times X$  with the subspace topology and does not contain (x,x) nor (y,y). Thus for any point that is not on the diagonal we can find a open set in  $X \times X$  that is disjoint with the diagonal. This proves that  $\Delta^c$  is open thus  $\Delta$  is closed.
    - Backward direction  $\sqsubseteq$ : We assume that  $\Delta$  is closed in  $X \times X$ . Then for any  $(x,y) \in (X \times X) \setminus \Delta$  we can find and open set M such that  $M \cap \Delta = \emptyset$ . We can find an open set  $U \times V \in M$  such that  $x \in U$  and  $y \in V$ . Since  $M \cap \Delta = \emptyset$  then  $U \cap V = \emptyset$ . Since the point (x,y) was arbitrary, then X is Hausdorff.
  - (c) Let K be a compact set in X and let  $x \in K^c$ . Since the space is Hausdorff then for any  $q \in K$  we can find  $U_q, V_q$  such that  $x \in U_q$  and  $q \in V_q$ . The collection  $\{V_q\}_{q \in K}$  covers K. Since K is compact, then we have a finite sub-cover, call  $\{V_{q_1}, \dots, V_{q_n}\}$ . Let  $U = U_{q_1} \cap \dots \cap U_{q_n}$ . U is open (finite intersection of open sets) and is disjoint with all of the sets in the finite

sub-cover (i.e.  $U \cap V_{p_i} = \emptyset$  for  $i = 1, \dots, n$ ). Thus  $U \cap K^c = \emptyset$ . This implies that K is closed.

The history behind the following proposition is funny! When I first had analysis course, then had this view that the uniqueness of the limit of a convergent sequence comes from the triangle inequality. Then today, in proposition above, I saw that it comes form the space being Hausdorff. The following proposition and its proof makes my intuition about the limits of the convergent sequences and triangle inequality more clear.

**Proposition 1.2** Every metric space (X, d) is a Hausdorff space.

*Proof.* Let  $x, y \in X$  distinct. Then d(x, y) > 0. let d = d(x, y)/2 and define the open balls

$$U = B_{d/2}(x), \qquad V = B_{d/2}(y).$$

We claim  $U \cap V = \emptyset$ . To see the proof, assume otherwise. Then there exists  $z \in U \cap V$ . By the triangle inequality we have

$$d = d(x, y) \le d(x, z) + d(z, y) < d/2 + d/2 = d,$$

which is a contradiction.

Proposition 1.3 — Properties of first countable space. Let  $(X, \mathcal{T})$  be first countable. I.e. for all  $x \in X$  there is a neighborhood basis at x. Let  $A \subset X$  be any subset, and  $x \in X$ .

- (a)  $x \in A^{\circ}$  if and only if every sequence in X converging to x is eventually in A. (b)  $x \in \overline{A}$  if and only if x is a limit of a sequence of points in A.
- (c) Every metric space is first countable.

*Proof.* (a) First, we prove the forward direction  $\Longrightarrow$ . We prove this by contrapositive. Assume that there exists a sequence  $\{a_n\}$  in X converging to x such that for all  $N \in \mathbb{N}$  we can find n > N such that  $a_n \notin A$ . Since  $a_n \to x$  as  $n \to \infty$  then for all  $U \in \mathcal{N}(x)$  we have  $a_n \in U$ for all n large enough. However, we just observed that for n large enough we can find some  $a_n \notin A$ . Thus for all neighborhood U of x there exists some  $a_n$  that  $a_n \notin A$ , i.e.  $U \cap A^c \neq \emptyset$ for all  $U \in \mathcal{N}(x)$ . Thus  $x \notin A^{\circ}$ .

For the converse direction  $\leftarrow$ , again we use the prove by contrapositive. Let  $x \notin A^{\circ}$ . Then for all neighborhoods  $U \in \mathcal{N}(x)$  we have  $A^c \cap U \neq \emptyset$ . Since the space is first-countable, in particular for all  $\{V_i\}_{i\in\mathbb{N}}\subset\mathcal{N}(x)$  we have  $A^c\cap V_i\neq\emptyset$ . For each such  $V_i$  we choose  $a_i \in A^c \cap V_i$ . Then the sequence  $\{a_n\}$  is converging to x that is not eventually in A.

- (b) First, we prove the forward direction  $\Longrightarrow$ . Let  $x \in \overline{A}$ . Then for all  $U \in \mathcal{N}(x)$  we have  $U \cap A \neq \emptyset$ . In particular for the local base  $\{V_i\}_{i \in \mathbb{N}} = B \subset \mathcal{N}(x)$  we have  $V_i \cap A \neq \emptyset$  for all  $i \in \mathbb{N}$ . Let  $a_n \in V_n \cap A$ . Then by definition  $a_n$  converges to x and this completes the proof. Then we prove the backward direction  $\leftarrow$ . Let  $\{a_n\}$  be a sequence of points in A such that  $a_n \to x$  as  $n \to \infty$ . Then by definition  $\forall U \in \mathcal{N}(x)$  we have  $a_n \in U$  for all n large enough. This implies that  $U \cap A \neq \emptyset$  for all  $U \in \mathcal{N}(x)$ . This implies that  $x \in \overline{A}$ .
- (c) We provide a constructive prove. Let (X,d) be a metric space with  $x \in X$  be some point. Then a local countable basis for x is given by the collection of all open balls with rational radius and centered at x.

1.1. MANIFOLDS 7

**Proposition 1.4** — **Properties of second-countable spaces.** (a) Every second-countable topological space is separable (i.e. admits a countable dense subset).

- (b) Every second-countable space is first-countable.
- Proof. (a) We demonstrate a constructive proof. Since the space X is second-countable, then there exists a countable basis for the topology, call it  $\{U_n\}_{n\in\mathbb{N}}$ . From each  $U_n$  get  $x_n$  (assuming that  $U_n$  is non-empty, otherwise discard it) and call the collection of all such points D. Let V be any open set. Then there exists  $U_n \subseteq V$  and due to construction  $x_n \in V$  thus  $D \cap V \neq 0$ . Since V was arbitrary, then D is dense.
  - (b) For a point  $x \in X$  let B(x) (the local base) be the set of all open sets in the countable topology base such that contains the point x.

■ Remark 1.1 Note that all metric spaces are first-countable, however, only separable metric spaces are second-countable.

Reviewing the nice properties of the second-countable spaces and the Hausdorff spaces reveals the rationale behind our choice that why a topological manifold should be second-countable and Hausdorff. In fact, we want the space be well-behaved when with respect to the sequences (i.e. unique limit of converging sequences, some useful sequencial characterizations, etc).

■ Problem 1.1 — Exercise in Lee. Show that equivalent definitions of topological manifolds are obtained if instead of allowing U to be homeomorphic to any open subset of  $\mathbb{R}^n$ , we require it to be homeomorphic to an open ball in  $\mathbb{R}^n$  or to  $\mathbb{R}^n$  itself.

 $Proof. \Longrightarrow$ .