GIT & MARKDOWN

2021.09.22

LI WANG

WANGLIO3@CAAS.CN

WHAT WILL YOU LEARN THROUGH THIS CLASS?

- Understand what is git, why we use git, and how it works
 - Copy the github repository of our course material to your local computer, and update it by "git pull origin master"
- Create your own GitHub/bitbucket repository for your group, share with group members and begin to add files into it (readme.md).
- Learn how to write Markdown files

Optional: set up a personal webpage with GitHub template

TRACKING YOUR SCIENCE

Saving revisions is very important. What kind of versioning do most of you use?

Many biologists use the "multiple-file" system with cloud-based file sharing (e.g., Dropbox, Google Drive, Box)

```
Wangli-NCFC 2020面上.doc
Wangli-NSFC 2020面上-V1.docx
Wangli-NSFC 2020面上-V2.docx
Wangli-NSFC 2020面上-V3.docx
Wangli-NSFC 2020面上-V4.docx
Wangli-NSFC 2020面上.docx
lvyaqing简历.docx
lvyaqing简历.pdf
sFig2SNPintersection.pdf
sFig7GeneIntersection.pdf
wangli-nsfc_2020面上-v5-zqwu.docx
wangli-nsfc 2020面上-v5-李诚.docx
wangli-nsfc 2020面上-v5-王海洋.docx
wangli-nsfc 2020面上-v5.docx
wangli-nsfc 2020面上-v5 BBWang.docx
wangli-nsfc 2020面上-v6.docx
wangli-nsfc 2020面上-v6 LL edits.docx
wangli-nsfc 2020面上-v6 hgj.docx
wangli-nsfc 2020面上-v7-孙成.docx
wangli-nsfc 2020面上-v7.docx
wangli-nsfc 2020面上-v8.docx
wangli-nsfc 2020面上-v8.pdf
wangli-nsfc 2020面上-v9.pdf
wangli-nsfc 2020面上.pdf
```

TRACKING YOUR SCIENCE

What are the potential shortcomings of this approach?

TRACKING YOUR SCIENCE

With a version control system, the file history looks a lot different.

```
lwang at Benjamins-MacBook-Air in ~/Wang_Private/demography/manuscript/GB on mas
ter [!$]
💲 ls
Cover_letter_Genome_Biology.pdf
                                     bmc_article_nofiguresTwoAddFile.pdf
Reference.bib
                                     bmc_article_nofiguresTwoAddFile.tex
bioRxivRevision.pdf
                                     bmcart-biblio.sty
bioRxivRevision.tex
                                     bmcart.cls
bmc-mathphys.bst
bmc article.bib
bmc_article.pdf
                                     spbasic.bst
bmc article.tex
                                     supplements
bmc_article_nofigures.pdf
                                     vancouver.bst
bmc_article_nofigures.tex
```

VERSION CONTROL

A version control system improves organization and collaboration

VERSION CONTROL SYSTEMS

What options are there for versioning projects?

- The most common in biology are Git and SVN (and historically CVS).
- Many other options: https://en.wikipedia.org/wiki/
 Comparison of version-control software

Version Control Systems

What do they allow you to do?

- Track changes made to each file
- Revert the entire project or a single file to a previous version
- Review changes made over time
- View who modified the file (and blame them for something if necessary)
- Collaborate with others without overwriting their work or risk file corruption, etc.
- Have multiple independent branches of the same repository and make changes without effecting others' work.
- And more...

WHY GIT IS NECESSARY?

- Git Allows You to Keep Snapshots of Your Project
- Git Helps You Keep Track of Important Changes to Code
- Git Helps Keep Software Organized and Available After People

Leave

Git manages a filesystem as a set of snapshots

Snapshots are called *commits*

(image source https://git-scm.com)

Almost every interaction with Git happens locally

(image source https://git-scm.com)

A remote host adds an additional level to a Git repository

Also, allows for collaboration and back-up.

USAGE OF GIT

- Sharing of bioinformatics scripts
- Bioinformatic Program development
- Documentation of bioinformatic analyses
- Collaborating on a manuscript

Remote Git repository hosting services

There are several options for remote hosts

- You can set up your own server and host all of your repositories privately using Gitolite or Gitosis (not recommended)
- You can use a web-based Git host
 - GitHub Drawing: free public repositories & paid private repositories, with repositories over 1 GB discouraged
 - Bitbucket : unlimited free public & free private repositories, limited at 1-2 GB/repo (register with your .edu email to get unlimited collaborators on private repositories)

Despite the 🖤, Git does have some limitations

Most relevant to this course and our fields are:

- Repository size: If your repository gets very large, working within it can be a problem. The network speed will be the main bottleneck. This is why the online Git hosts discourage repos over 1-2 GB.
- File size: A single large file can be problematic, particularly if it is frequently being modified. This can also lead to swollen repositories. GitHub will not allow any file over 100 MB.
- File type: Git works best with text files, you can have binary files in your repository, but you lose some functionality of version control (like diff).
 Binary files are also often very large. Thus, it is recommended that you keep binary files to a minimum. (This means that it is not practical to use Git to collaborate on MS Word documents.)

Demo: Clone a Repository

- You become familiar with the concepts by using Git. We will start by cloning the GitHub repository of our course.
- Start by going to https://github.com/lepisorus/agisPracticalBioinformatics2021 to get the URL.

```
lwang at Benjamins-MacBook-Air in ~/new
[$ git clone https://github.com/WangliLab/CAAS_PracticalBioinformat
Cloning into 'CAAS_PracticalBioinformatics_2020Aut'...
remote: Enumerating objects: 20, done.
remote: Counting objects: 100% (20/20), done.
remote: Compressing objects: 100% (18/18), done.
remote: Total 20 (delta 5), reused 0 (delta 0), pack-reused 0
Unpacking objects: 100% (20/20), done.
```

• Note that using the url git@github... instead of https://github...

Some helpful commands for this cloned repository

Always pull from the repository before doing anything with the contents

\$ git pull origin master

Check the status of your local files

\$ git status

See the log of the snapshots and their commit messages

\$ git log

Compare the differences a file you have modified and the last commit

\$ git diff README.rst

Some helpful commands for this cloned repository

Replace a file you modified with the most recent commit using checkout

\$ git checkout README.rst

Find out which branch you're on

\$ git branch

Change to a different branch

\$ git checkout h5step7

Pull to update from h5step7

\$ git pull origin h5step7

What can you do with someone else's GitHub repository?

If you do not have *push rights*

- You can only clone the repository and make changes locally
- You can fork their repository and develop it independently
- You can submit a pull request to their repository if you want to contribute to the original project
- You can contact the owner of the repository and ask them to include you as a contributor and give you push rights (it is recommended that you discuss the nature of your collaboration with them first)

Demo: Clone a Repository

Let's create a new Git repository and host it on GitHub using your own accounts.

But first, let's tell Git who you are

```
lwang at Benjamins-MacBook-Air in ~
[$ git config --global user.name "lepisorus"

lwang at Benjamins-MacBook-Air in ~
[$ git config --global user.email "lilepisorus@gmail.com"
```


Some helpful commands for your new repository

Initialize a new Git repository

\$ git init

After a file has been added or modified, you can stage the file

```
$ git add README.md
```

Commit the file to your local repository and write a message

```
$ git commit -m "initial commit (README.md)"
```


Some helpful commands for your new repository

After you have made your commit, the repository is up-to-date locally. Next you need to connect your local repo to the remote.

Add the remote

\$ git remote add origin git@github.com:username/repo-name.git

Push your snapshot to the remote

\$ git push -u origin master

Git can be challenging

- What do you find confusing?
- What did you struggle with when creating a repository?
- What do you think would be helpful to overcome these challenges?

Git Best Practices

- Commit often. Keep commits small and frequent. This also helps you have informative commit messages
- Make sure every commit "works". Never commit if it doesn't compile, runs with errors, or requires files that only exist in your workspace. Since commits are snapshots, this should mean a working snapshot.
- Write commit messages that will be readable and useful to others and future-you. (This is really difficult.) Also, remember when your repository is public, anyone can see your commit messages.

Git Best Practices

- Pull from the remote before you do anything in your repository. This
 reduces potential merge conflicts. So before you make changes to any files
 git pull, after you make a commit and before you push git pull.
- Don't commit unnecessary files. Often these are files that may be generated by your project and can lead to merge conflicts. You can keep these files in your working directory without being tracked using the .gitignore file (or the ~/.gitignore_global file in your home directory).
- Review your changes before committing.
- Use aliases. You can add specific aliases for Git commands in the .gitconfig file that lives in your home directory.

```
[alias]
hist = log --graph --pretty=format:'%h %ad | %s%d [%an]' --date=short
last = log -1 HEAD
ci = commit
st = status
```

Markdown

Markdown is a text-based mark-up language that is easily rendered into HTML

- It has become a staple of reproducible science:
 - it can be rendered on GitHub (also Bitbucket & GitLab) and makes online repositories more readable and accessable
 - it is used as a notebook interface for R (Rmarkdown)
 - it is used as the markup language for Jupyter notebooks, which provide a notebook interface for many languages, including Python and R
- There are some freely available editors that make writing in Markdown pretty easy
 - Windows and Linux: TYPORA https://typora.io/#download
 - Mac OSX: MacDown

Markdown

Let's see some Markdown

- It is recommended that all README files on web-based Git hosts be written using Markdown
- The file extension for a Markdown file is .md

```
# Welcome to `Practical Bioinformatics`
course
A graduate course covering critical computational skills and
practical bioinformatic packages.
## AGIS, CAAS
A graduate course covering _**critical computational skills**_ for
working with biological data
**Instructors:** [Yuwen Liu](http://www.), [Li Wang]
(wanglilab.github.io)
**Time/Location:** Wednesday evenings 6.30--9:10pm; D104
**Web View:** [Practical Bioinfomatics 2020 Autumn](https://
github.com/WangliLab/CAAS_PracticalBioinformatics_2020Aut)
## Reading Material
* [*Practical Computing for Biologists*](http://
practicalcomputing.org/)
## Course Schedule
**[Week 1](https://github.com/WangliLab/
CAAS_PracticalBioinformatics_2020Aut/week1)**
```

Welcome to

Practical Bioinformatics course

A graduate course covering critical computational skills and practical bioinformatic packages.

AGIS, CAAS

A graduate course covering *critical computational skills* for working with biological data

Instructors: Yuwen Liu, Li Wang

Time/Location: Wednesday evenings 6.30--9:10pm; D104

Web View: Practical Bioinformatics 2020 Autumn

Reading Material

Practical Computing for Biologists

Course Schedule

Week 1

Week

Get Help

No matter the problem (with Git or anything else in this class), someone else has encountered it already.

- Google is an immensely powerful tool for troubleshooting computational problems.
- If you can articulate your problem in the form of a Google search query, you will likely find the answer online.
- If your problem is unique, you can always submit a question on **Stack Overflow**, such as **"github markdown cheat sheet"**.

Git Collaboration

Now that we all have repositories on GitHub, let's collaborate!

- Get into groups
- Give your collaborators access (push rights) to your repository
- Clone your collaborator's repository
- Add and edit files in your collaborator's repository
- Commit and push those changes to the remote

How to add collaborators to your GitHub repository?

GitHub Help

- Ask for the username of the person you're inviting as a collaborator.
- Under your repository name, click Settings.
- 3. In the left sidebar, click Collaborators. manage access
- Under "Collaborators", start typing the collaborator's username.
- Select the collaborator's username from the drop-down menu.
- Click Add collaborator.

GIT GUI (GRAPHICAL USER INTERFACES)

- GUI tools: https://git-scm.com/download/gui/linux
- These tools may be very helpful for doing things that you don't do every day (when it's difficult to remember the command)
- They also provide nice ways to visualize your repository tree and diff commits, etc.

SUMMARY

create the repository on the cloud:

git clone ***
git pull origin master
git add .
git commit -m "edits to the file"
git pull origin master
git push origin master

SUMMARY

create the repository in the local:

- git init
- git add README.md
- git commit -m "first commit"
- git remote add origin git@github.com:username/ IamGreat.git
- git push origin master

WHAT WILL YOU LEARN THROUGH THIS CLASS?

- Understand what is git, why we use git, and how
 - Copy the Github repository of our course material to your local computer, and update it by "git pull origin master"
- Create your own GitHub repository for your group, share with group members and add at least one markdown file into it.

Optional: set up a personal webpage with GitHub template

ASSIGNMENTS

Chapters 3 & 7

Next Wednesday