Robotics Introduction

07/07/2025 Dr. Jizhong Xiao MAYFLOWER

Outline

- What is a Robot?
- 2. Why use Robots?
- 3. Robot History
- 4. Robot Applications
- 5. Fundamental Problems in Robotics

What is a robot?

• Hollywood's imagination

R2-D2

What is a robot?

By National Science Foundation (NSF), a "robot" is defined as:

 "Intelligence embodied in an engineered construct, with the ability to process information, sense, plan, and move within or substantially alter its working environment."

Summary of the NSF definition:

- 1. Intelligent Must have computational methods underpinning decision-making.
- **2. Embodied** Exists in a physical, engineered form.
- 3. **Percepts & Action** Should be capable of sensing, planning, and acting—especially in ways that can alter its environment.

Why Use Robots?

Increase product quality

- Superior Accuracies (thousands of an inch, wafer-handling: microinch)
- Repeatable precision
- Consistency of products

Increase efficiency

- Work continuously without fatigue
- Need no vacation

Increase safety

- Operate in dangerous environment
- Need no environmental comfort air conditioning, noise protection, etc.

Why Use Robots?

Reduce Cost

- Reduce scrap rate
- Lower in-process inventory
- Lower labor cost

Reduce manufacturing lead time

Rapid response to changes in design

Increase productivity

Value of output per person per hour increases

Why Use Robots?

Perform 4A Tasks in 4D environments

4A tasks

- Automation
- Augmentation
- Assistance
- Autonomous

4D environments

- Dangerous
- Dirty
- Dull
- Difficult

The History of Robotics

Automata

Ancient Origins

Automata: early mechanical devices mimicked human and animal movements.

— Industrial Revolution

Unimation Inc. was formed in 1962 and took its first multi-robot order from General Motors on an assembly line in 1968, transformed manufacturing forever.

Autonomous Era

The 2004 DARPA Grand Challenge sparked development of self-driving vehicles. It marked a turning point for autonomous systems.

PUMA manipulator

Pioneering milestones

Early

evol obtained first patent of industrial robot

- Joe Engelberger formed Unimation Inc. to commercialize robotic arms

1968 - Unimation takes its first multi-robot order from General Motors

UTTON onda begins development of **humanoid robots** ASIMO

2000 – Sony releases AIBO, a robotic dog with learning capabilities

2002 – iRobot releases the Roomba, cleaning robot

2011 - Curiosity rover lands on Mars with autonomous decision-making features

2020 – NASA's Perseverance rover + Ingenuity drone bring to Mars

Recent Advances (AI + Robotics)

2016 - Boston Dynamics achieves breakthroughs in robot

active Sophia (Hanson Robotics) becomes the first robot granted "citizenship" (Saudi Arabia)

2023–2025 – Explosion in Al-powered general-purpose robots (OpenAI + Figure, 1X, Sanctuary AI, etc.)

Robot History

• The patent and industrial robot

How are they used?

- Industrial robots
 - 70% welding and painting
 - 20% pick and place
 - o 10% others
- Research focus on
 - Manipulator control
 - End-effector design
 - Compliance device
 - Dexterity robot hand
 - Visual and force feedback
 - Flexible automation

Robot Arm Dexterity

The start of Al

Autonomous UGVs

The Honda Humanoid (1997)

Industrial Robots (Manipulators)

- Operate in structured environments, specifically designed to facilitate robotic operations (e.g. production line)
- Programmed to faithfully carry out specific repetitive actions over and over again without variation and with a high degree of accuracy.
- World Robotics 2024 report from the International Federation of Robotics (IFR): There are 4,281,585 industrial robots actively operating in factories around the world by the end of 2023—a 10% increase over the previous year

Industrial Robots Installations

in Top 10 Countries by 2023 Installations of Industry Robots

Rank	Country / Region	Units Installed	Global Share
1	China	276,288	51 %
2	Japan	46,106	8.5 %
3	United States	37,587	7.0 %
4	Republic of Korea	31,444	5.8 %
5	Germany	28,355	5.2 %

Industrial Robot Companies

ABB, Adept, Fanuc Robotics, Kuka, Staubli, etc.

Robotics: a much bigger industry

- Robot Manipulators
 - Assembly, automation
- Field robots
 - Military applications
 - Space exploration
- Service robots
 - Cleaning robots
 - Medical robots
- Entertainment robots

Robot Applications

Robots for Assistive Technology and Health Care

RoboHow Robot Chef

Robotic-Assisted Surgery

Robot Applications

Military Applications

UAV Drones

Boston Dynamic BigDOG

Space Applications

- NASA/DARPA Robonaut:
 - Robonaut: a humanoid robot that can function as an astronaut equivalent for spacewalks.

Space Applications

MARS Exploration:

Mars Rovers: Spirit and Opportunity twin robot geologists landed on Mars: Jan 3, and Jan 24, 2004.

<u>Mars Exploration Rovers: Spirit and</u> <u>Opportunity - NASA Science</u>

Space Applications

- MARS Exploration:
 - Mission: Search for water
 and life on Mars

Mars Rover Curiosity launched in Nov. 2011, landed on Mars, Aug. 6, 2012

Mars Science Laboratory:
Curiosity Rover

Robot Applications

Entertainment Industry

5 Robotics Fundamentals

Industrial Robot (Manipulators)

1. Joint Level Control

2. Task Space Control

Kinematic Model: Given joint variables, what is the end-effector position and orientation?

Research Problems in Mobile Robot

high-level

Abstraction level

low-level

Autonomous Drive: How to explore unknow world -- SLAM (simultaneous localization and mapping)

Motion Planning: Given a known world, how do I get there from here?

Localization: Given sensors and a map, where am I?

Computer vision: If my sensors are eyes, what do I do?

Mapping: Given sensors, how do I create a useful map?

Bug Algorithms: Given an unknowable world but a known goal and local sensing, how can I get there from here?

Kinematics: if I move this motor somehow, what happens in other coordinate systems?

Control (PID): what voltage should I set over time?

Motor Modeling: what voltage should I set now?

Summary

- Robotics--interdisciplinary research
 - Mechanical design
 - Electrical engineering
 - Computer science and engineering
 - Cognitive psychology, perception and neuroscience
- Research open problems
 - Manipulation, Locomotion
 - Control, Navigation
 - Human-Robot Interaction
 - Learning & Adaptation (AI)

Personal Robot?

- Just as the personal computer is used for automated information management even in households, robots can be used to execute domestic tasks.
- Manipulation of bits of information (PC)
- Manipulation of physical objects (PR)

Conclusion: Embracing the Robotic Age

Address

Challenges for responsible robotics.

Invest in Development

Support research, education, and cross-sector collaboration to advance robotic capabilities.

Shape the Future

Ensure robotics serves humanity by creating sustainable, accessible, and beneficial technologies.

