TEK 5040/9040 Reinforcement Learning (Supplement)

Narada Warakagoda

Policy gradient improvements

- Disadvantage of simple policy gradients
 - Actions are tied to all rewards including past rewards
 - Solution: Reward-to-go policy gradient
 - Estimation of policy gradients has high variance
 - Solution: Baseline
 - Gradient based parameter update can take the policy too far away
 - Solution 1: Trust Region Policy Optimization
 - Solution2: Proximal Policy Optimization

Reward-to-go policy gradient

Instead of using all rewards, use only future rewards

Baseline

- Any quantity independent of policy network parameters θ
- Usually the value function $b(s_t) = V^{\pi}(s_t)$
- Can show that the modified gradient estimate
 - Is same as the gradient estimate without baseline
 - Has a lower variance

$$\nabla_{\theta} J(\pi_{\theta}) = \underset{\tau \sim \pi_{\theta}}{\mathbf{E}} \left[\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \left(\sum_{t'=t}^{T} R(s_{t'}, a_{t'}, s_{t'+1}) - \underbrace{b(s_{t})} \right) \right]$$

Baseline

Generalized form of policy gradients (PG)

General form of policy gradients

$$\nabla_{\theta} J(\pi_{\theta}) = \mathop{\mathbf{E}}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \Phi_{t} \right],$$

with following possibilities

- Simple PG $\Phi_t = R(\tau)$
- Reward-to-go $\Phi_t = \sum_{t'=t}^T R(s_{t'}, a_{t'}, s_{t'+1})$
- Baseline

$$\Phi_t = \sum_{t'=t}^T R(s_{t'}, a_{t'}, s_{t'+1}) - b(s_t).$$

- Action-value function $\Phi_t = Q^{\pi_{\theta}}(s_t, a_t)$
- Advantage function $\Phi_t = A^{\pi_{\theta}}(s_t, a_t)$ where $A^{\pi}(s_t, a_t) = Q^{\pi}(s_t, a_t) V^{\pi}(s_t)$

$$\Phi_t = A^{\pi_{\theta}}(s_t, a_t)$$
 where

$$A^{\pi}(s_t, a_t) = Q^{\pi}(s_t, a_t) - V^{\pi}(s_t)$$

Actor-Critic

- Many variants
- Generally combines policy gradients and value iteration (eg: Q-learning)
- Example: Advantage Actor Critic
 - Policy gradient

$$abla_{\theta} J(\pi_{\theta}) = \mathop{\mathbf{E}}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \Phi_{t} \right],$$

Where
$$\phi_t = A^{\pi}(s_t, a_t) = Q^{\pi}(s_t, a_t) - V^{\pi}(s_t)$$

- Approximate $\phi_t = r + \gamma V_{\mathbf{w}}^{\pi}(s_{t+1}) V_{\mathbf{w}}^{\pi}(s_t)$
- Two networks
 - ullet Policy network representing π with parameters | heta|
 - Update using the policy gradients
 - Value network representing $\,\, {
 m V}^{\pi} \,$ with parameters ${
 m w}$
 - Update using the gradient of error $E{=}\phi_t^2$

Actor-Critic algorithm

- Input: policy network with parameters $\pi_{\theta}(a_t|s_t)$
- Input: value function with parameters $V_W(s_t)$
- Input: Learning rates η and α
- Initialize policy and value parameters, θ , W
- Loop for each episode:
 - Choose an initial state S
 - Loop while S is not terminal
 - * $A \sim \pi(\cdot|S,\theta)$
 - * Take action A and observe the next state S' and reward r
 - * Calculate $\phi = r + \gamma V_W(S') V_W(S)$
 - * Back-propagate gradient of $E = \phi^2$ through the policy network to get $\nabla_W E$
 - · update $W \leftarrow W + \alpha \nabla_W E$
 - * Back-propagate $C = \log \pi_{\theta}(A|S)$ through the policy network to get $\nabla_{\theta} C$
 - · multiply $\nabla_{\theta} C$ with ϕ to get $\nabla_{\theta} J = \phi \nabla_{\theta} \log \pi_{\theta}(A|S)$
 - · update $\theta \leftarrow \theta + \eta \nabla_{\theta} J$
 - * Update $S \leftarrow S'$

Ratio form of policy gradient

General form of policy gradient

$$abla_{\theta} J(\pi_{\theta}) = \mathop{\mathbb{E}}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \Phi_{t} \right],$$

In practice, we use empirical average over a batch

$$\nabla_{\theta} J(\pi_{\theta}) = \mathop{E}_{a_t, s_t \sim \pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \phi_t]$$

Differentiate log function

$$\nabla_{\theta} J(\pi_{\theta}) = E_{a_t, s_t \sim \pi_{\theta}} \left[\frac{\nabla_{\theta} \pi_{\theta}(a_t | s_t)}{\pi_{\theta}(a_t | s_t)} \phi_t \right]$$

• If we evaluate the gradient at a particular θ_k

$$\nabla_{\theta} J(\pi_{\theta})|_{\theta_k} = E_{a_t, s_t \sim \pi_{\theta_k}} \left[\nabla_{\theta} \left(\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_k}(a_t|s_t)} \right) \Big|_{\theta_k} \phi_t \right]$$

• We can back-propagate $\left(\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_k}(a_t|s_t)}\right)\phi_t$ instead of $\log \pi_{\theta}(a_t|s_t)\phi_t$

Trust Region Policy Optimization (TRPO)

Solves the problem that parameter updates takes the policy too far.

Theoretical update equation

$$\theta_{k+1} = \arg \max_{\theta} \mathcal{L}(\theta_k, \theta)$$

s.t. $\bar{D}_{KL}(\theta||\theta_k) \leq \delta$

where

$$\mathcal{L}(\theta_k, \theta) = \mathop{\mathbb{E}}_{s, a \sim \pi_{\theta_k}} \left[\frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)} A^{\pi_{\theta_k}}(s, a) \right] \quad \text{and} \quad \bar{D}_{KL}(\theta||\theta_k) = \mathop{\mathbb{E}}_{s \sim \pi_{\theta_k}} \left[D_{KL} \left(\pi_{\theta}(\cdot|s) || \pi_{\theta_k}(\cdot|s) \right) \right]$$

$$\bar{D}_{KL}(\theta||\theta_k) = \mathop{\mathbb{E}}_{s \sim \pi_{\theta_k}} \left[D_{KL} \left(\pi_{\theta}(\cdot|s) || \pi_{\theta_k}(\cdot|s) \right) \right]$$

with θ_k and θ are current and next policy parameters

Lot of math required to convert to a practical algorithm

Proximal Policy Optimization (PPO)

- Addresses the same problem as TRPO
- However, much simpler math in the practical algorithm
- Probably the most widely used algorithm
- The update rule is

$$\theta_{k+1} = \arg \max_{\theta} \mathop{\mathbf{E}}_{s,a \sim \pi_{\theta_k}} \left[L(s, a, \theta_k, \theta) \right],$$

$$L(s, a, \theta_k, \theta) = \min \left(\frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)} A^{\pi_{\theta_k}}(s, a), \ g(\epsilon, A^{\pi_{\theta_k}}(s, a)) \right)$$

where

$$g(\epsilon, A) = \begin{cases} (1+\epsilon)A & A \ge 0\\ (1-\epsilon)A & A < 0. \end{cases}$$

PPO cases

Positive advantage

$$L(s, a, \theta_k, \theta) = \min\left(\frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)}, (1+\epsilon)\right) A^{\pi_{\theta_k}}(s, a).$$

Cannot go above $(1+\epsilon)A^{\pi_{\theta_k}}(s,a)$.

Negative advantage

$$L(s, a, \theta_k, \theta) = \max\left(\frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)}, (1 - \epsilon)\right) A^{\pi_{\theta_k}}(s, a)$$

Cannot go below $(1-\epsilon)A^{\pi_{\theta_k}}(s,a)$