Model-based Prediction and Control

Oleksii Hrinchuk

Value function

$$V^{\pi}(\mathbf{s}_t) = \mathbb{E}_{\mathbf{a}_t, \mathbf{s}_{t+1}, \mathbf{a}_{t+1}, \dots} \left[r(\mathbf{s}_t, \mathbf{a}_t) + \gamma r(\mathbf{s}_{t+1}, \mathbf{a}_{t+1}) + \dots \right]$$

Optimal value function

$$V^*(\mathbf{s}_t) = \max_{\pi} V^{\pi}(\mathbf{s}_t), \quad \forall \mathbf{s}_t \in \mathcal{S}$$

Q-function (state-action value function)

$$Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \mathbb{E}_{\mathbf{s}_{t+1}, \mathbf{a}_{t+1}, \dots} \left[r(\mathbf{s}_t, \mathbf{a}_t) + \gamma r(\mathbf{s}_{t+1}, \mathbf{a}_{t+1}) + \dots \right]$$

Optimal Q-function

$$Q^*(\mathbf{s}_t, \mathbf{a}_t) = \max_{\pi} Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t), \quad \forall (\mathbf{s}_t, \mathbf{a}_t)$$

• Connection between V^{π} and Q^{π}

$$V^{\pi}(\mathbf{s}_t) = \mathbb{E}_{\mathbf{a}_t} Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$$
$$Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = r(\mathbf{s}_t, \mathbf{a}_t) + \gamma \mathbb{E}_{\mathbf{s}_{t+1}} V^{\pi}(\mathbf{s}_{t+1})$$

Bellman expectation equation

$$Q^{\pi}(\mathbf{s}_{t}, \mathbf{a}_{t}) = r(\mathbf{s}_{t}, \mathbf{a}_{t}) + \gamma \mathbb{E}_{\mathbf{s}_{t+1} \mathbf{a}_{t+1}} Q^{\pi}(\mathbf{s}_{t+1}, \mathbf{a}_{t+1})$$
$$V^{\pi}(\mathbf{s}_{t}) = \mathbb{E}_{\mathbf{a}_{t}} \left[r(\mathbf{s}_{t}, \mathbf{a}_{t}) + \gamma \mathbb{E}_{\mathbf{s}_{t+1}} V^{\pi}(\mathbf{s}_{t+1}) \right]$$

• Connection between V^* and Q^*

$$V^*(\mathbf{s}_t) = \max_{\mathbf{a}_t \in \mathcal{A}} Q^*(\mathbf{s}_t, \mathbf{a}_t)$$
$$Q^*(\mathbf{s}_t, \mathbf{a}_t) = r(\mathbf{s}_t, \mathbf{a}_t) + \gamma \mathbb{E}_{\mathbf{s}_{t+1}} V^*(\mathbf{s}_{t+1})$$

Bellman optimality equation

$$Q^*(\mathbf{s}_t, \mathbf{a}_t) = r(\mathbf{s}_t, \mathbf{a}_t) + \gamma \mathbb{E}_{\mathbf{s}_{t+1}} \max_{\mathbf{a}_{t+1} \in \mathcal{A}} Q^*(\mathbf{s}_{t+1}, \mathbf{a}_{t+1})$$
$$V^*(\mathbf{s}_t) = \max_{\mathbf{a}_t \in \mathcal{A}} \left[r(\mathbf{s}_t, \mathbf{a}_t) + \gamma \mathbb{E}_{\mathbf{s}_{t+1}} V^*(\mathbf{s}_{t+1}) \right]$$

Model-based prediction and control

- Model-based Transition model $p(\mathbf{s}_{t+1}|\mathbf{s}_t,\mathbf{a}_t)$ and the reward function $r(\mathbf{s}_t,\mathbf{a}_t)$ are available
- Prediction Find V^π for a given policy π in a given MDP $\mathcal M$
- Control Find the optimal policy π^* in a given MDP $\mathcal M$
- ... also known as Dynamic Programming

Iterative policy evaluation

- Problem: how to find V^{π} given the policy π ? (how good is the given policy π ?)
- Solution: use Bellman expectation backup.

$$V_{\mathbf{k+1}}^{\pi}(\mathbf{s}_t) = \mathbb{E}_{\mathbf{a}_t} \left[r(\mathbf{s}_t, \mathbf{a}_t) + \gamma \mathbb{E}_{\mathbf{s}_{t+1}} V_{\mathbf{k}}^{\pi}(\mathbf{s}_{t+1}) \right]$$

Greedy policy improvement

• Assume we estimated V^{π} for some policy π . Can we come up with a better policy? Yes!

$$V^{\pi}(\mathbf{s}) = \sum_{\mathbf{a} \in \mathcal{A}} \pi(\mathbf{a}|\mathbf{s}) \left[r(\mathbf{s}, \mathbf{a}) + \gamma \mathbb{E}_{\mathbf{s}'} V^{\pi}(\mathbf{s}') \right] \mathbf{a}^{1} \mathbf{a}^{2} \mathbf{a}^{3}$$

$$\leq \max_{\mathbf{a} \in \mathcal{A}} \left[r(\mathbf{s}, \mathbf{a}) + \gamma \mathbb{E}_{\mathbf{s}'} V^{\pi}(\mathbf{s}') \right] \mathbf{s}^{1} \mathbf{a}^{2} \mathbf{s}^{2} \mathbf{s}^{3}$$

$$V^{\pi}(\mathbf{s}^{1}) V^{\pi}(\mathbf{s}^{2}) V^{\pi}(\mathbf{s}^{3})$$

$$\hat{\pi}(\mathbf{a}|\mathbf{s}) = \begin{cases} 1, & \mathbf{a} = \arg\max_{\mathbf{a} \in \mathcal{A}} \left[r(\mathbf{s}, \mathbf{a}) + \gamma \mathbb{E}_{\mathbf{s}'} V^{\pi}(\mathbf{s}') \right] \\ 0, & \text{otherwise} \end{cases}$$

Greedy policy improvement

• Assume we estimated V^{π} for some policy π . Can we come up with a better policy? Yes!

$$V^{\pi}(\mathbf{s}) = \sum_{\mathbf{a} \in \mathcal{A}} \pi(\mathbf{a}|\mathbf{s}) \left[r(\mathbf{s}, \mathbf{a}) + \gamma \mathbb{E}_{\mathbf{s}'} V^{\pi}(\mathbf{s}') \right] \mathbf{a}^{1} \mathbf{a}^{2} \mathbf{a}^{3}$$

$$\leq \max_{\mathbf{a} \in \mathcal{A}} \left[r(\mathbf{s}, \mathbf{a}) + \gamma \mathbb{E}_{\mathbf{s}'} V^{\pi}(\mathbf{s}') \right] \mathbf{s}^{1} \mathbf{a}^{2} \mathbf{s}^{2} \mathbf{s}^{3}$$

$$V^{\pi}(\mathbf{s}^{1}) V^{\pi}(\mathbf{s}^{2}) V^{\pi}(\mathbf{s}^{3})$$

$$\hat{\pi}(\mathbf{a}|\mathbf{s}) = \begin{cases} 1, & \mathbf{a} = \arg\max_{\mathbf{a} \in \mathcal{A}} Q^{\pi}(\mathbf{s}, \mathbf{a}) \\ 0, & \text{otherwise} \end{cases}$$

Policy iteration

• Policy evaluation $\pi \to V^\pi$ Iterative policy evaluation

• Policy improvement $\pi, V^{\pi} \to \hat{\pi}$

Greedy policy improvement

$$\pi_0 \to V^{\pi_0} \to \pi_1 \to V^{\pi_1} \to \cdots \to \pi^*$$
 initial guess (e.g. random policy)

Example: Small Gridworld

- Nonterminal states 1, ..., 14
- One terminal state (shown twice as shaded squares)

•	Actions leading out of the grid leave
	state unchanged

Agent follows uniform random policy

	1	2	3
4	5	6	7
8	Ø	10	11
12	13	14	

$$r=-1$$
 on all transitions

Example: Small Gridworld

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

$$k = 1$$

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

$$k = 2$$

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

Example: Small Gridworld

 V_k^π for the random policy greedy policy w.r.t. V_k^π

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

	←	↓	⇆
1	Ĺ	Ţ	+
1	Ļ	Ļ	ţ
₽	→	\rightarrow	

$$k = 10$$

0.0	-6.1	-8.4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0.0

	←	←	← ‡		
Ť	ţ	Ţ	ţ		optimal policy
Ť	t →	₽	1	/	policy
₽	\rightarrow	\rightarrow			
				I 💆	

$$k=\infty$$

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

Source: David Silver's UCL course on reinforcement learning, lecture 3

Generalized policy iteration

- Policy evaluation $\pi \to V^\pi$ ANY policy evaluation algorithm
- Policy improvement $\pi, V^\pi \to \hat{\pi}$ ANY policy improvement algorithm

$$\pi_0 \to V^{\pi_0} \to \pi_1 \to V^{\pi_1} \to \cdots \to \pi^*$$

Value iteration

- Problem: how to find the optimal policy π^* ?
- Solution: use Bellman optimality backup.

$$V_{\mathbf{k+1}}^*(\mathbf{s}_t) = \max_{\mathbf{a}_t \in \mathcal{A}} \left[r(\mathbf{s}_t, \mathbf{a}_t) + \gamma \mathbb{E}_{\mathbf{s}_{t+1}} V_{\mathbf{k}}^*(\mathbf{s}_{t+1}) \right]$$

Asynchronous updates

- In-Place Dynamic Programming
- Prioritized sweeping
- Real-time dynamic programming

In-Place DP

- Synchronous VI stores two copies of value function
 - for all $\mathbf{s}_t \in \mathcal{S}$

$$V_{k+1}(\mathbf{s}_t) \leftarrow \max_{\mathbf{a} \in \mathcal{A}} \left[\mathbf{r}_t + \gamma \mathbb{E}_{\mathbf{s}_{t+1}} V_k(\mathbf{s}_{t+1}) \right]$$

- $-k \leftarrow k+1$
- In-place VI stores one copy of value function
 - for all $\mathbf{s}_t \in \mathcal{S}$

$$V(\mathbf{s}_t) \leftarrow \max_{\mathbf{a} \in \mathcal{A}} \left[\mathbf{r}_t + \gamma \mathbb{E}_{\mathbf{s}_{t+1}} V(\mathbf{s}_{t+1}) \right]$$

Prioritized sweeping

Use magnitude of Bellman error to guide state selection

$$\delta(\mathbf{s}_t) = \left| \max_{\mathbf{a}_t \in \mathcal{A}} \left[\mathbf{r}_t + \gamma \mathbb{E}_{\mathbf{s}_{t+1}} V(\mathbf{s}_{t+1}) \right] - V(\mathbf{s}_t) \right|$$

- Backup the state with the largest remaining BE
- Update BE of affected states after each backup
- Can be implemented efficiently by maintaining a priority queue

Real-Time DP

- Use agent's experience to guide state selection
- After each time-step t backup the state \mathbf{s}_t

$$V(\mathbf{s}_t) \leftarrow \max_{\mathbf{a} \in \mathcal{A}} \left[\mathbf{r}_t + \gamma \mathbb{E}_{\mathbf{s}_{t+1}} V(\mathbf{s}_{t+1}) \right]$$

Applicability of DP

- Effective for medium-sized problems (millions of states) with known dynamics
- For large problems DP suffers Bellman's curse of dimensionality as number of states grows exponentially with number of state variables
- Even one full backup in state space can be too expensive (e.g. in backgammon $|\mathcal{S}| \approx 10^{20}$)

Approximate DP

- Approximate value function $V^*(\mathbf{s}) \approx \hat{V}^*(\mathbf{s}, \theta)$
- Estimate targets $y_t = \max_{\mathbf{a}_t \in \mathcal{A}} \left[\mathbf{r}_t + \gamma \mathbb{E}_{\mathbf{s}_{t+1}} V^*(\mathbf{s}_{t+1}, \theta_k) \right]$
- Fit parameters of neural net to match targets $\{(\mathbf{s}_t, y_t)\}$

