esson Objectives

- 1. Zero and negative exponents
- 2. Product, Quotient, and Power Properties for Exponents

A. **ZERO** and **NEGATIVE** exponents

Zero and negative exponents may be better understood by reviewing place value with base 10:

It turns out that **any** base (except zero) that has a zero power is equal to 1.

Property: $a^0 = (a \neq 0)$

Negative exponents do

make

negative numbers! They cause a

Property: $a^{-n} = (a \neq 0)$

$$a^{-n} =$$

and
$$\frac{1}{a^{-n}} =$$

for negative exponents.

Cross the line,

	Powers of 10					
	Power of 10	Standard Form	Fractional Form	Place Value		
	104	10,000	10,000 1	ten thousands		
	10 ³	1,000	<u>1,000</u> 1	thousands		
	10 ²	100	100 1	hundreds		
	10 ¹	10	<u>10</u> 1	tens		
,	100	1	1 1	ones		
-	10 ⁻¹	0.1	<u>1</u> 10	tenths		
	10-2	0.01	1 100	hundredths		
	10 ⁻³	0.001	1 1,000	thousandths		
	10 ⁻⁴	0.0001	1 10,000	ten thousandths		

• Negative Exponents and Fractions – "take the stairs" (reciprocal)

Property: $\frac{a^{-n}}{b^{-m}} =$

Property: $\left(\frac{a}{L}\right)^{-n} =$

Simplifying Exponents Tip #1:

Final answer should have no

exponents.

B. Product, Quotient, and Power Rules for Exponents

Product Rule: $a^m \cdot a^n =$

When multiplying powers w/same base,

exponents.

Quotient Rule: $\frac{a^m}{a^n}$ =

When dividing powers w/same base,

exponents.

Simplifying Exponents Tip #2:	Final answer should have no	varia	bles –
	you should see each variable only		

• Power Rule: $(a^m)^n =$

When raising a power to a power,

exponents.

• Product to Power Rule: $(ab)^n =$

The exponent applies to

factor in the parentheses.

• Quotient to Power Rule: $\left(\frac{a}{b}\right)^n =$

The exponent applies to

factor in numerator and denominator.

Simplifying Exponents Tip #3:	Final answer should have no .
Simplifying Exponents Tip #4:	A factor with no visible exponent has an understood (or implied) exponent of . To reduce errors, consider writing in an exponent of 1 in these situations.
Cinculifying Franciscopes Tip #F	

Simplifying Exponents Tip #5:	Simplify exponents that have a constant (number) base.	
	"	!" For example, don't leave 2^5 – change it to 32.

Other Tips for Success:	Remember to always reduce (simplify) .	
	Use a for any numerical (non-variable) ¡	
	Watch out with the negatives!	
	To get better with exponents, you must PRACTICE!	

• **EXAMPLE:** Evaluate. $(-29)^0$ [R.2.21]

Any base (except zero) raised to the power of 0 equals 1. $(-29)^0 =$ Answer

• **EXAMPLE:** Simplify the following expression.

 6^{-3}

[R.2.27]

There are two common errors with this:

1. Multiplying error

$$6^{-3} = -18$$

(INCORRECT!)

2. Sign error

$$6^{-3} = -6^3 = -216$$

(INCORRECT!)

NOTE: A negative exponent does A negative exponent means make a negative number! (flip it!).

6-3	$=\frac{6^{-3}}{1}$	=	II
Write it as a	Negative exponent means " (reciprocal). BASE (6) is the ; EXPONENT (– 3) changes sign.	Simplify – " ." $6^3 = 216$	Answer

Note also that any time you are dealing with constants (no variables), you can verify the result using your calculator:

• **EXAMPLE:** Use the quotient rule to simplify the expression. $\frac{6^{-5}}{7-2}$ [R.2.33]

$\left(\frac{6^{-5}}{7^{-2}}\right)$	=	=
Negative exponent means "take the stairs" (reciprocal).	Simplify – "do it."	(reduce fraction, if necessary.)
Both bases (6) and (7) will take the stairs – they will places.	$7^2 = 49$ $6^5 = 7776$	Answer

Note also that any time you are dealing with constants (no variables), you can verify the result using your calculator:

((6^(-5))/((7)^(-2)) .0063014403 Ans⊧Frac 49**/**7776

• **EXAMPLE:** Use the product rule to simplify.

 $8^0 \cdot 8^7 \cdot 8^9$

[R.2.39]

(Type exponential notation with positive exponents.)

There are two common errors with this:

- 1. Multiplying
 - error $8^0 \cdot 8^7 \cdot 8^9 = (8 \cdot 8 \cdot 8)^{0+7+9} = 512^{16}$ (INCORRECT!)

2. Multiplying

- error $8^0 \cdot 8^7 \cdot 8^9 = 8^{(0 \cdot 7 \cdot 9)} = 8^0 = 1$

(INCORRECT!)

Product Rule: $a^m \cdot a^n = a^{m+n}$

When multiplying powers w/same base, ADD exponents.

NOTE: because the solution must be in *exponential notation*, using the calculator isn't helpful.

- **EXAMPLE:** Multiply and simplify.
- $3^5 \cdot 3^{-18}$

[R.2.35]

(Simplify your answer. Type exponential notation with positive exponents.)

$3^5 \cdot 3^{-18}$	= =	=)	=
• Product Rule:	Can't have	exponents!	Answer
$a^m \cdot a^n = a^{m+n}$ When multiplying powers	Write as fraction.		solution must be in exponential notation Leave answer with
w/same base, ADD exponents.	"Take the stairs" ((reciprocal).	exponent – don't "do it."

• **EXAMPLE:** Use the product rule to simplify. $5x^{-4} \cdot 3x^8 \cdot x^5$ [R.2.37] (Type exponential notation with positive exponents.)

$5x^{-4}\cdot 3x^8\cdot x^5$	= () · ()	=
	Simplify	/.		
factors	• Product	t Rule:		Answer
to multiply constants	$a^m \cdot a^n$	$a^n = a^{m+n}$		
separately from variables.	When mul	tiplying powers	5	(No negative exponents.)
	w/same ba	ase, ADD expor	nents.	

• **EXAMPLE:** Use the quotient rule to simplify the expression.

[R.2-23]

Use positive exponents to write the answer.

$$\frac{4^{-4}}{4^8}$$

$\frac{4^{-4}}{4^8}$	= 4	= 4 =)	=
Same base (4).			
	Simplify.	Can't have negative exponents!	Solution
• Quotient Rule:			
$\frac{a^m}{a^n}=a^{m-n}$	-4 - (8) = -12	Write as fraction.	Leave
$\frac{1}{a^n} = a$			answer with
		"Take the stairs" (reciprocal).	exponent –
When dividing			don't "do it."
powers w/same			
base, SUBTRACT			
exponents.			

EASIER WAY? - RESET!

• **EXAMPLE:** Use the quotient rule to simplify the expression.

[R.2-23]

Use positive exponents to write the answer.

 $\frac{4^{-4}}{4^{8}}$

Rather than use the quotient rule, focus on the negative exponent in the ______

$\left(\frac{4^{-4}}{4^8}\right)$	=	=
Because of the negative exponent, "take the stairs" (reciprocal). Connect existing	• Product Rule: $a^m \cdot a^n = a^{m+n}$ When multiplying powers w/same base,	Answer Leave answer with exponent – don't "do it."
denominator 4^8 with new piece 4^4 using	ADD exponents.	

- **EXAMPLE:** Simplify the expression. Write the answer with only positive exponents.

All variables are nonzero.

[R.2.69]

$$-\frac{24a^3b^{-2}}{18ab^{-5}}$$

To simplify this expression, work in " $_$ _____" – constants (coefficients), variable a, variable b. Then, $_$ _____(multiply) all the results together.

Constants (coefficients).	Variable α.	Variable <i>b</i> .	Merge.
$-\frac{24}{18} =$	$\frac{a^3}{a}$	$\left(\frac{b^{-2}}{b^{-5}}\right)^{2} =$	Merge together the results from constants (coefficients) and variables.
	"Face-off!"	"Face-off!"	constants
Simplify the	1. Do both have	1. Do both have positive	(coefficients): $=\frac{4}{3}$
fraction of	positive exponents?	exponents?	Variable $a: = a^2$
coefficients, if possible.		"take the stairs"	Variable b : = b^3
ii possibie.	2. Who has more, top	(reciprocal) 2. Who has more, top or	Merged
	or bottom?	bottom?	=
	3. By how much?	3. By how much?	or
	4. Simplifies to a^2 on TOP.	4. Simplifies to b^3 on TOP.	OI
	a^3 a^2	b^5	=
	$\frac{1}{a^1} = \frac{1}{1} = \frac{1}{1}$	$\frac{1}{b^2} = 0$	Answer

• **EXAMPLE:** Use the rules of exponents to simplify the expression. [R.2.77]

$$\left(\frac{3x^6}{5y^{-3}}\right)^2$$

(Type exponential notation with positive exponents.)

$\left(\frac{3x^6}{5y^{-3}}\right)^2$	$= \left(\frac{3x^6}{5(y^{-3})}\right)^2$	=	$=\frac{(3^1) (x^6) (y^3)}{(5^1)}$	=
Try to simplify		 Coefficients 	The POSITIVE	Answer
INSIDE	needs	always have	exponent, 2, applies	
parentheses	fixing	exponent of	to ALL factors.	Carefully
first.	because of	understood	• Power Rule:	merge together
3	the negative		$(a^m)^n = a^{m \cdot n}$	all the separate
• Fraction $\frac{5}{5}$	exponent,	 Quotient to 		calculations.
is already	"take the	Power Rule	When raising a	
simplified.	stairs"	$(a)^n$ a^n	power to a power,	Be careful who
	(reciprocal).	$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$	MULTIPLY	goes in the
• x^6 is fine		ND' D	exponents.	numerator
already		The exponent		(TOP) and who
has		() applies to	Now simplify:	goes in the
positive		numerator and	$(3^1)^2 = 3^2 =$	denominator
exponent		denominator.	$(x^6)^2 =$	(BOTTOM).
		3.3	$(y^3)^2 =$	
			$(5^1)^2 = 5^2 =$	

• **EXAMPLE:** Simplify and write with positive exponents. [R.2.73] $(5x^{-3}y^3)^{-3}$

$(5x^{-3}y^3)^{-3}$ $= (5^1x^{-3}y^3)^{-3}$	$= (5^1) (x^{-3}) (y^3)$ =	$= \underbrace{(5)^{-3}x^{9}(y^{-9})}_{1}$	=
 Coefficients always have exponent of understood 1. 	• Power Rule: $ (a^m)^n = a^{m \cdot n} $	$(5)^{-3}$ and y^{-9} need fixing	Finally, just need to simplify
• Product to Power Rule: $(ab)^n = a^nb^n$ The exponent (-3) applies to each factor in	When raising a power to a power, MULTIPLY exponents.	because of the negative exponent, "take the stairs" (reciprocal).	$5^3 = 125$ in denominator.
the parentheses.	Now, write as fraction.		Answer

Sources Used:

- 1. MyLab Math for *College Algebra with Modeling and Visualization*, 6th Edition, Rockswold, Pearson Education Inc.
- 2. Powers of 10 chart, https://www.eduplace.com/math/mw/background/6/01/te 6 01 overview.html