Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет «Московский институт электронной техники»

Институт микроприборов и систем управления

Отчет по лабораторной работе № 2 «Измерительные сигналы»

	3
	Коломзаров Никита Алексеевич
(подпись)	(Ф.И.О.)
	Гребенников Кирилл Сергеевич
(подпись)	(Ф.И.О.)
	Проверил преподаватель, к.т.н., доцент
	Калеев Дмитрий Вячеславович
(подпись)	(Ф.И.О.)

Выполнили студенты группы ИВТ-32

Оглавление

1 Вводная часть	3
1.1 Цель работы и используемое оборудование	3
1.2 Теоретические сведения	
2. Выполнение лабораторной работы и расчетно-графическая часть	5
2.1 Измерение напряжения переменного тока на выходе генератора сигналов	5
2.2 Измерение методической погрешности из-за подключаемой нагрузки на	
генератора сигналов	9
2.3 Измерение частоты среза апериодического звена	12
2.4 Измерение напряжения переменного тока на выходе ФНЧ	16
3. Выводы	18
Список используемой литературы	19
ПРИЛОЖЕНИЕ А	20
ПРИЛОЖЕНИЕ Б	24

1 Вводная часть

1.1 Цель работы и используемое оборудование

Целью лабораторной работы является постановка экспериментов по оценке параметров измерительных сигналов с использованием функционального генератора, цифрового мультиметра и цифрового осциллографа, с последующей оценкой погрешностей данных измерений.

Необходимое оборудование для достижения данной цели: макетная плата NI ELVIS, цифровой мультиметр DM3058, генератор сигналов DG1000Z, цифровой осциллограф MS05102, источник питания DP811A, кабели, перемычки, щупы и электронные компоненты согласно варианту.

1.2 Теоретические сведения

Измерительный сигнал — это физический процесс, содержащий информацию об объекте измерения. В электро-радиоизмерениях речь идет зачастую об электрических измерительных сигналах.

Электрические измерительные сигналы — это электрические колебания или импульсы во времени, которые используются в процессе измерения для получения количественной информации о физических параметрах исследуемых объектов, процессов или систем. Эти сигналы передаются через измерительные устройства и системы, которые интерпретируют их для оценки таких величин, как напряжение, ток, частота, фаза, сопротивление, мощность и другие параметры. Чаще всего под электрическими измерительными сигналами подразумевают изменение напряжения во времени и если говорить о процессе его измерения, то в случае, если средство измерения не обладает достаточным быстродействием для фиксации значений, то речь идет о динамическом измерении, в противном случае — о статических измерениях.

Измерительные сигналы по наличию априорной информации делят на детерминированные и случайные. К первой категории относятся периодические, непериодические и одиночные сигналы — это сигналы, которые определены математической функцией и мгновенные значения этой функции могут быть определены для любого момента времени. Данные сигналы широко применяются не только в метрологических задачах, но и при разработке новых электронных устройств. Для детерминированных сигналов наилучшим описание является аналитическая запись вида

- U(t) = f(t), но часто используются и отдельные параметры сигналов. Так, например, к ключевым параметрам периодических измерительных сигналов относятся:
- *амплитуда* максимальное отклонение сигнала от среднего значения, характеризующее его интенсивность, для электрических измерительных сигналов измеряется в вольтах;
- *частота* количество полных циклов колебаний за единицу времени, измеряемое в герцах;
 - период длительность полного цикла сигнала, измеряется в секундах;
- фаза величина, определяющая положение сигнала во времени относительно точки отсчета, измеряется в градусах или радианах;
- форма сигнала название функции сигнала описывающая зависимость амплитуды сигнала от времени.

Вне зависимости от того с каким сигналом мы имеем дело, можно выделить следующие его масштабные параметры:

- *среднее значение сигнала* среднее значение сигнала за период времени усреднения T, которое может указывать на наличие постоянной составляющей.
- *амплитудное значение сигнала* наибольшее (для знакопеременных сигналов можно рассматривать и наименьшее) мгновенное значение модуля напряжения за время измерения Т.
- *полный размах сигнала* сумма наибольшего и наименьшего мгновенного значения модуля напряжения за время измерения Т.
- *средневыпрямленное значение сигнала* среднее значение модуля напряжения за время измерения Т:
- *среднеквадратическое значение сигнала* (эффективное значение, действующее значение, root mean square, RMS) корень квадратный из среднего значения квадрата временной зависимости напряжения, за период усреднения Т.

2. Выполнение лабораторной работы и расчетно-графическая часть

2.1 Измерение напряжения переменного тока на выходе генератора сигналов

С помощью кабелей, переходника, перемычек и макетной платы соберём схему (рисунок 2.1) измерения напряжения переменного тока на выходе генератора сигналов.

Рисунок 2.1 — Схема измерения напряжения переменного тока на выходе генератора сигналов

Измерим среднеквадратическое значение напряжения и среднее значение напряжения переменного тока мультиметром для сигналов генератора стандартной формы (гармонический сигнал, треугольный сигнал, меандр и прямоугольный сигнал со скважностью 4).

В результате измерений получены приведённые в таблице 2.1 и приложении Б среднеквадратичные значения напряжения и средние значения напряжения переменного тока.

Таблица 2.1 – Протокол измерения напряжения переменного тока на выходе генератора сингалов

Генератор сигнало	юв: <i>U_{pp}</i> : 2,7 В		U_{DC} : 0,7 В $f_{\text{сигн}}$: 1 к			
Осциллограф:	Осциллограф:		ециллограф: K_{CL}		<i>K_T</i> : 100 мс/дел	
Мультиметр:		Диапазон: 2 В	υ: 2,5 изм/с	<i>R_V</i> : 10 МОм		
Форма сигнала	Показания о	сциллографа	Показания мультиметра			
	U_{pp1} , B	U_{RMS1} , B	U_{RMS2} , B	U_{cp} , B		
Гармонический	2,754	0,96283	0,96	0,702		
Треугольный	2,712	1,049	0,779	0,702		
Меандр	3,1328	1,5203	1,349	0,702		

Продолжение таблицы 2.1

Форма сигнала	Показания осциллографа		Показания мультиметра	
	U_{pp1} , B	U_{RMS1} , B	U_{RMS2} , B	U_{cp} , B
Прямоугольный,	3,1328	1,1669	1,168	0,026
скважность q=4				

Вычислим инструментальную погрешность мультиметра как суммарную систематическую погрешность, включающую основную погрешность и дополнительную погрешность крест-фактор.

Суммарная инструментальная погрешность определяется как доверительная граница с заданной вероятностью (чаще всего 95%) по формуле 2.1.

$$\Theta(\alpha) = \pm k_{\alpha,n} \sqrt{\sum_{i=1}^{n-1} \Delta_{i,\text{доп}}^2 + \Delta_{\text{осн}}^2},$$
(2.1)

где $\Delta_{\text{осн}}$ – предельная основная погрешность средства измерения;

 $\Delta_{i,\text{поп}}$ – дополнительные погрешности;

 $k_{\alpha,n}$ – поправочный коэффициент, зависящий от количества слагаемых под квадратным корнем – n и доверительной вероятности α .

При этом, для 95 % доверительной границы поправочный коэффициент не зависит от числа n и равен $k_{0.95}=1,1.$

Согласно спецификациям на цифровой мультиметр RIGOL DM3058, для диапазона напряжения 2 В действует допускаемый предел абсолютной погрешности, рассчитываемый по формуле 2.2.

$$\Delta_{\text{och}} = \pm (0.002U + 1.0 \text{ MB}), \tag{2.2}$$

где $\Delta_{\text{осн}}$ – допускаемый предел абсолютной погрешности;

U – значение напряжения, полученное с измерительного средства.

Дополнительная погрешность крест-фактор рассчитывается по значениям коэффициента формы несинусоидального сигнала и диапазона измерений по значениям из таблины 2.2.

Таблица 2.2 – Дополнительная погрешность крест-фактор (для негармонических сигналов)

Коэффициент формы	Ошибка (в % от измерения)
1-2	0,05
2-3	0,2

Коэффициент формы вычисляется по формуле (2.3).

$$K_{\Phi} = \frac{U_{RMS}}{|U_{cp}|},\tag{2.3}$$

где K_{Φ} – практическое значение крест-фактора для данного периодического сигнала;

 U_{RMS} – среднеквадратичное значение напряжения;

 $U_{\rm cp}$ — среднее значение напряжения.

Найдём искомые погрешности для всех сигналов, представленных в таблице 2.1.

Для гармонического сигнала (формула 2.4):

$$\Delta_{\text{гарм.осн}} = 0.002 \times 0.96 + 0.001 = \pm 0.00292 \text{ B};$$

$$K_{\Phi.\text{гарм}} = \frac{0.96}{0.702} = 1.3675;$$

$$\Theta_{\text{гарм}} = 1.1 \times \sqrt{(0.00292)^2} = \pm 0.003212 \text{ B}.$$
(2.4)

Для треугольного сигнала (формула 2.5):

$$\Delta_{\text{треуг.осн}} = 0,002 \times 0,779 + 0,001 = \pm 0,002558 \text{ B};$$

$$K_{\phi.\text{треуг}} = \frac{0,779}{0,702} = 1,11;$$

$$\Delta_{\text{треуг.доп}} = 0,05 \% \times 2 \text{ B} = 0,001 \text{ B};$$

$$\Theta_{\text{треуг}} = 1,1 \times \sqrt{(0,002558)^2 + (0,001)^2} = \pm 0,00302 \text{ B}.$$

$$(2.5)$$

Для меандра (формула 2.6):

$$\Delta_{\text{меан.осн}} = 0,002 \times 1,349 + 0,001 = \pm 0,003698 \text{ B};$$

$$K_{\phi.\text{меан}} = \frac{1,349}{0,702} = 1,922;$$

$$\Delta_{\text{меан.доп}} = 0,05 \% \times 2 \text{ B} = 0,001 \text{ B};$$

$$\Theta_{\text{меан}} = 1,1 \times \sqrt{(0,003698)^2 + (0,001)^2} = \pm 0,004213 \text{ B}.$$

$$(2.6)$$

Для прямоугольного сигнала со скважностью q=4 (формула 2.7):

$$\Delta_{\text{меан.осн}} = 0,002 \times 1,168 + 0,001 = \pm 0,0033336 \text{ B};$$

$$K_{\phi.\text{меан}} = \frac{1,168}{0,702} = 1,6638;$$

$$\Delta_{\text{меан.доп}} = 0,05 \% \times 2 \text{ B} = 0,001 \text{ B};$$

$$\Theta_{\text{меан}} = 1,1 \times \sqrt{(0,003336)^2 + (0,001)^2} = \pm 0,03671 \text{ B}.$$

$$(2.7)$$

Оценим пересечение диапазонов измерения среднеквадратичного значения напряжения мультиметром и измерения среднеквадратичного значения напряжения осциллографом, взятого в качестве опорного значения, представим результат в графическом виде для гармонического сигнала (рисунок 2.2).

Рисунок 2.2 – Диапазон измерения среднеквадратичного значения гармонического сигнала

Треугольного сигнала (рисунок 2.3).

Рисунок 2.3 — Диапазон измерения среднеквадратичного значения треугольного сигнала Меандра (рисунок 2.4).

Рисунок 2.4 — Диапазон измерения среднеквадратичного значения меандра Прямоугольного сигнала со скважностью q=4 (рисунок 2.5).

Рисунок 2.5 – Диапазон измерения среднеквадратичного значения прямоугольного сигнала

Среднеквадратичное значение напряжения мультиметра, взятое в качестве опорного значения попадает в диапазон погрешности показаний мультиметра, таким образом проведенные технические измерения обладают допустимой точностью.

2.2 Измерение методической погрешности из-за подключаемой нагрузки на выход генератора сигналов

Измерим мультиметром сопротивление резистора RC-цепи по двухпроводной схеме. Показания мультиметра занесены в таблицу 2.3 и приложение Б.

Таблица 2.3 – Протокол измерения сопротивления резистора R и измерительного преобразователя RC-цепь.

Диапазон	Скорость	Сила исп. тока, мА	Показания
измерений, Ом	измерений, изм/с		мультиметра, Ом
20000	2,5	100	6800

С помощью кабелей 1 и 2, переходника 1, перемычек и макетной платы соберём схему (рисунок 2.6) измерения напряжения переменного тока на выходе генератора сигналов при наличии низкоомной нагрузки. Результаты измерений занесены в таблицу 2.4 и приложение Б.

Рисунок 2.6 — Схема измерения напряжения переменного тока на выходе генератора сигналов при наличии низкоомной нагрузки

Таблица 2.4 – Протокол измерения напряжения переменного тока на выходе генератора сингалов при наличии резистивной нагрузки

Генератор сигналов:	<i>U_{pp}</i> : 2,7 B	<i>U_{DC}</i> : 0,7 B	$f_{ ext{curh}}$: 1 к Γ ц
Осциллограф:	<i>K_{CH1}</i> : 0,5 В/дел	<i>K_T</i> : 100 мкс/дел	
Мультиметр:	Диапазон: 2 В	υ: 2,5 изм/c	R _V : 10 МОм
Форма сигнала -	Показания осциллографа		Показания
гармонический			мультиметра
Настройки нагрузки	U_{pp1} , B	U_{RMS1} , B	U_{RMS2} , B
Высокоомная нагрузка	2,712	1,1922	0,948
Нагрузка: 6800 Ом	2,7587	1,1797	0,95812

Рассчитаем среднеквадратичные значения напряжений на основе измеренных значений U_{nn1} по формуле 2.8.

$$U_{RMS} = \frac{U_{pp1}}{2\sqrt{2}},\tag{2.8}$$

Высокоомная нагрузка:

$$U_{RMS} = \frac{2,712}{2\sqrt{2}} = 0,9588 \text{ B}$$

Нагрузка 6800 Ом:

$$U_{RMS} = \frac{2,7587}{2\sqrt{2}} = 0,9753 \text{ B}$$

Рассчитанные среднеквадратичные значения напряжений практически совпадают с измеренными значениями на мультиметре и осциллографе.

Исходя из измеренных среднеквадратичных напряжений переменного тока на осциллографе и мультиметре, видно, что результаты, представленные на мультиметре, меньше, чем на осциллографе.

Вычислим методическую погрешность показаний генератора по формуле 2.9.

$$\delta U = \frac{R_{\rm H} - R_{\rm BbIX}}{R_{\rm H} + R_{\rm BbIX}} \times 100\%,\tag{2.9}$$

где $R_{\scriptscriptstyle \mathrm{BMX}}$ – собственное внутреннее сопротивление.

Согласно руководству по эксплуатации генератора DG1000Z, собственное внутреннее сопротивление $R_{\rm выx} = 50~{\rm Om}.$

Найдём методическую погрешность генератора:

$$\delta U = \frac{6800 - 50}{6800 + 50} \times 100\% = 98,54\%.$$

Результат означает, что реальное напряжение на выходе генератора составило приблизительно 98 % от номинального, а оставшиеся 2 % «потерялись» на его внутреннем сопротивлении.

2.3 Измерение частоты среза апериодического звена

С помощью кабелей, перемычек и макетной платы измерить мультиметром емкость конденсатора RC-цепи по двух проводной схеме. Показания мультиметра приведены в таблице 2.5 и приложении Б.

Таблица 2.5 – Протокол измерения ёмкости С измерительного преобразователя RC-цепи.

Диапазон измерений, нФ	Сила испытательного тока,	Показания измеренной
	A	ёмкости, нФ
2	0,1	0,32

Вычислим частоту среза RC цепи по формуле 2.10.

$$f_{\rm cp} = \frac{1}{2\pi RC},\tag{2.10}$$

где $f_{\rm cp}$ — частота среза;

R – сопротивление резистора;

С – ёмкость конденсатора.

$$f_{\mathrm{cp}} = \frac{1}{2 \times \pi \times 6800 \times 0.32 \times 10^{-9}} = 70924,66 \ \Gamma \mathrm{u} = 70.92 \ \mathrm{k} \Gamma \mathrm{u}.$$

Соберём схему (рисунок 2.7) измерения напряжения переменного тока на выходе генератора сигналов при наличии резистивной и емкостной нагрузки.

Рисунок 2.7 – Схема измерения напряжения переменного тока на выходе генератора сигналов при наличии резистивной и емкостной нагрузки

Результаты измерений приведены в таблице 2.6 и приложении Б.

Таблица 2.6 – Протокол измерения напряжения переменного тока на выходе генератора сигналов при наличии резистивной и ёмкостной нагрузки

Генератор сигналов:	<i>U_{pp}</i> : 2,7 B	<i>U_{DC}</i> : 0,7 B	$f_{ m curh}$: 1 к Γ ц
Осциллограф:	<i>K_{CH1}</i> : 0,5 В/дел	<i>K_T</i> : 200 мкс/дел	
Мультиметр:	Диапазон: 2 В	υ: 2,5 изм/c	<i>R_V</i> : 10 МОм
Форма сигнала -	Показания о	сциллографа	Показания
гармонический			мультиметра
Настройки нагрузки	U_{pp1} , B	U_{RMS1} , B	U_{RMS2} , B
Высокоомная нагрузка	2,7354	0,97181	0,95532
Нагрузка: 6800 Ом	2,7821	0,98495	0,9662

Измеряемые значения среднеквадратичного напряжения на осциллографе больше, чем значения на мультиметре при установленных настройках нагрузки и при высокоомной нагрузке.

Соберём схему (рисунок 2.8) измерения частоты среза RC-цепи.

Рисунок 2.8 – Схема измерения частоты среза RC-цепи

Мультиметр переведём в режим измерения напряжения переменного тока, установим наилучший диапазон измерений для ожидаемого сигнала. Для 1 и 2 каналов осциллографа включим режим измерения значения размаха сигналов U_{pp} . Настроим на осциллографе коэффициенты развертки по амплитуде и по времени для ожидаемых

параметров сигнала. На генераторе установим гармоническую форму сигнала, значение полного размаха напряжения сигнала, смещение нуля и частоту сигнала $f_{\rm haq}=1~{\rm k\Gamma}$ ц. Включим выдачу сигнала с генератора, убедившись в правильности заданных параметров по изображению на осциллографе.

Увеличиваем частоту сигнала до тех пор, пока отношение размахов напряжения сигнала на входе и выходе RC-цепи не составит значение, равное корню из двух. Установленная частота – частота среза RC-цепи $f_{\rm cp}$, равная 70,3 кГц.

Далее последовательно уменьшаем частоту сигнала на генераторе. Показания средств измерений приведены в таблице 2.7 и приложении Б.

Таблица 2.7 – Протокол измерения частоты среза RC-цепи

Генератор сигналов:	<i>U_{pp}</i> : 2,7 B	<i>U_{DC}</i> : 0,7 B	$R_{\rm H}$: HighZ
Осциллограф:	<i>K_{CH1}</i> : 0,5 В/дел	<i>K_T</i> : 200 мкс/дел	
Мультиметр:	Диапазон: 2 В	υ: 2,5 изм/с	<i>R_V</i> : 10 МОм
Форма сигнала -	Показания осциллог	графа, полный размах	Показания
гармонический			мультиметра
И (-, Г).	II D	и в	II D
Частота (кГц):	$U_{\scriptscriptstyle m BЫX}$, В	$U_{\rm BX}$, B	U_{RMS2} , B
70,3	1,9821	2,8104	0,69181
63,72	2,1205	2,8104	0,71164
56,64	2,1665	2,8104	0,74571
49,56	2,3048	2,8104	0,78038
42,37	2,3970	2,8104	0,81521
35,29	2,4431	2,8104	0,84857
23,21	2,5814	2,8104	0,87391
21,13	2,6796	2,8104	0,90479
14,05	2,6796	2,8104	0,92497
6,47	2,7626	2,8104	0,937
1	2,7651	2,8104	0,9422

На основании экспериментальных данных построим график зависимости отношения полных размахов входного и выходного напряжения от частоты в логарифмическом масштабе (рисунок 2.9).

Рисунок 2.9 – График зависимости усиления от частоты

Для сравнения измеренного значения частоты и расчетного вычислим погрешность косвенного измерения частоты по формуле (2.11).

$$\Delta f = \sqrt{\left(\frac{\partial f}{\partial R}\right)^2 \theta_R^2 + \left(\frac{\partial f}{\partial R}\right)^2 \theta_R^2},\tag{2.11}$$

где θ_R – суммарная погрешность измерения сопротивления;

 $\theta_{\rm C}$ – суммарная погрешность измерения емкости.

Для расчета погрешностей измерений воспользуемся допустимыми значениями абсолютной погрешности мультиметра, которые приведены в приложении A и формуле 2.12. В результате по формуле 2.1 вычисляются значения θ_R и θ_C . Затем, Δf :

$$\Delta C = \pm (3\% C + 1.0 \times 2 \text{ H}\Phi)$$

 $\Delta R = \pm (0.02\% R + 0.003 \times 20 \text{ KOM})$
(2.12)

где ΔC – предел допустимой основной погрешности измерения ёмкости;

ΔR – предел допустимой погрешности измерения сопротивления.

$$\Delta C = 0.32 \times 0.03 + 0.01 \times 2 = \pm 0.0296 \,\mathrm{H}\Phi$$
 $\Delta R = 0.0002 \times 6800 + 0.00003 \times 20000 = \pm 1.96 \,\mathrm{Om}$ $\Delta f = \pm 7.442103 \,\mathrm{k}\Gamma\mathrm{H}.$

Экспериментальное значение частоты среза лежит в диапазоне в пределах погрешности частоты косвенного измерения.

2.4 Измерение напряжения переменного тока на выходе ФНЧ

Соберём схему измерения напряжения переменного тока на входе и выходе RCцепи, включенной в схему в режиме фильтра низких частот; представленную на рисунке 2.11.

Рисунок 2.11 – Схема измерения переменного тока на входе и выходе ФНЧ

Генератор сигналов настроим в режим работы сопряжения двух каналов по фазе. На обоих каналах установим одинаковые параметры сигнала: гармоническую форму, значение полного размаха напряжения сигналов, смещение нуля и начальную частоту, равную $0.01f_{\rm cp}$ RC-цепи. Включим выдачу двух сигналов с выходов генератора и убедимся в правильности заданных параметров по изображению на осциллографе.

Различные показания частоты на втором канале генератора представлены в таблице 2.8.

Таблица 2.8 – Протокол измерения напряжения переменного тока на выходе ФНЧ

Генератор	<i>U_{CH1}</i> : 2,7 B	<i>U_{CH2}</i> : 2,7 B	Показания осц	иллографа
сигналов:	<i>U_{DC1}</i> : 0,2 B	<i>U</i> _{DC2} : 0,2 B		
	f_{CH1} , Гц	f_{CH2} , Гц	$U_{\scriptscriptstyle m BMX}$, B	$U_{\scriptscriptstyle \mathrm{BX}}$, B
Форма сигнала	0,01f _{cp} : 0,708	0,01f _{cp} : 0,708	2,0106	2,7
-	0,01f _{cp} : 0,708	<i>f</i> _{cp} : 70,8	0,094	2,7
гармонический	0,01f _{cp} : 0,708	100f _{cp} : 708	0,016378	2,7

Когда обе частоты значительно ниже частоты среза $f_{\rm cp}$, фильтр пропускает сигнал почти без ослабления. Коэффициент передачи близок к 1, что ожидаемо для ФНЧ в полосе пропускания.

При появлении одной из частот на частоте среза $f_{\rm cp}$, размах выходного сигнала резко уменьшается. Это свидетельствует о том, что компонента сигнала на частоте $f_{\rm cp}$, ослабляется фильтром.

Когда одна из частот значительно превышает частоту среза, наблюдается максимальное ослабление сигнала. Размах выходного напряжения становится минимальным, так как высокочастотная составляющая практически полностью подавляется фильтром.

3. Выводы

В ходе выполнения лабораторной работы были исследованы особенности измерений параметров периодических сигналов различной формы (синусоидального, треугольного, прямоугольного и импеданса), определены инструментальные и методические погрешности измерительных приборов, а также сравнены результаты измерений мультиметром и осциллографом.

В результате была подтверждена корректность работы измерительных приборов на простых формах сигналов и выявлены ограничения при измерении несинусоидальных и импульсных сигналов. Количественные результаты и качественные выводы полностью соответствуют поставленной цели.

Список используемой литературы

- 1. Калеев Д.В. Лабораторный практикум «Метрология и электро-радиоизмерения». М.: МИЭТ, 2025. 201 с.: ил.
- 2. ГОСТ 7.32-2017. Межгосударственный стандарт. Система стандартов по информации, библиотечному и издательскому делу. Отчет о научно-исследовательской работе. Структура и правила оформления.
- 3. ГОСТ 8.41-2002 Государственная система обеспечения единства измерений. Единицы величин. (введен в действие Приказом Росстандарта от 01.09.2003)
- 4. ГОСТ Р 7.0.5-2008 "Система стандартов по информации, библиотечному и издательскому делу. Библиографическая ссылка. Общие требования и правила составления" (утв. приказом Федерального агентства по техническому регулированию и метрологии от 28 апреля 2008 г. N 95-ст).

приложение а

Метрологические характеристики средств измерений

Мультиметр цифровой RIGOL DM3058 — это многофункциональный высокоточный измерительный прибор. Принцип работы этого мультиметра заключается в преобразовании входного аналогового сигнала с помощью аналого-цифрового преобразователя (АЦП), последующей математической обработкой измеренных величин встроенным микропроцессором по алгоритму расчета измеряемой величины и отображении результатов на жидкокристаллическом дисплее. Для проведения измерений мультиметр непосредственно подключают к измеряемой цепи. Измеренные значения отображаются на 5,5 разрядном жидкокристаллическом дисплее с основной и вспомогательной цифровыми шкалами, индикаторами режимов измерения, единиц измерения и предупреждения. Параллельный шунтирующий резистор 1 Ом для 20 мА, 200 мА. Технические характеристики средства измерения приведены в таблице А.1.

Таблица А1 – измерения напряжения переменного тока

Функци	Диапазон	Диапазон	Пределы	Пределы
Я		частот	допускаемой абсолютной погрешности	допускаемой дополнительной погрешности
Напряж	20.0000 B	2045 Гц	±(0,015 U+20,0 мВ)	±(0,0001 U+1,0 мВ)
перемен		45 Гц20 кГц	±(0,002 U+10,0 мВ)	±(0,0001 U+1,0 MB)
ного		2050 кГц	±(0,01 U+10,0 мВ)	±(0,0001 U+1,0 MB)
тока		50100 кГц	±(0,03 U+10,0 мВ)	±(0,0005 U+2,0 MB)
	2.00000 B	2045 Гц	±(0,015 U+2,0 мВ)	±(0,0001 U+1,0 MB)
		45 Гц20 кГц	±(0,002 U+1,0 мВ)	±(0,0001 U+1,0 MB)
		2050 кГц	±(0,01 U+10,0 мВ)	±(0,0001 U+1,0 MB)
		50100 кГц	±(0,03 U+10,0 мВ)	±(0,0005 U+2,0 MB)
Сила	20.0000 мА	2045 Гц	±(0,015 І+20 мкА)	±(0,00015 I+1,0 мкА)
перемен ного тока		45 Гц2 кГц	±(0,005 І+20 мкА)	±(0,00015 І+1,2 мкА)
TORA		от 2 до 10 кГц	±(0,025 І+40 мкА)	±(0,00015 I+1,2 мкА)
Сопроти вление	200.000 Ом		±(0,0003 R+0,01 Ом)	±(0,00003 R+0,0012 Om)

Пределы допускаемых основных и дополнительных погрешностей приведены в таблице A.2

Таблица А.2 – Пределы допускаемых основных и дополнительных погрешностей

Функция	Диапазон	Погрешность(% от	Температурный
		измеренного значения + %	коэффициент от 0°С до
		от полной шкалы) 23°C ±	18°С и от 28°С до 55°С
		5°C	
Напряжение	20.0000 B	0.015 + 0.004	0.0020 + 0.0005
постоянного тока			
	2.00000 B	0.015 + 0.003	0.0010 + 0.0005

Продолжение таблицы А.2.

Функция	Диапазон	Погрешность(% от измеренного значения + % от полной шкалы) 23°C ± 5°C	Температурный коэффициент от 0°C до 18°C и от 28°C до 55°C
Сила постоянного тока	20.0000 мА	0.095 + 0.020	0.008 + 0.001
Сопротивление	2.00000 кОм	0.020 + 0.003	0.0030 + 0.0005
	20.0000 кОм	0.020 + 0.003	0.0030 + 0.0005

Источник питания постоянного тока программируемый DP811 (далее – источник) представляют собой импульсные электронные устройства, формирующие из напряжения переменного тока сети питания регулируемые стабилизированные напряжение и силу постоянного тока. Модель DP811 - одноканальная. Для управления источниками используется встроенный микропроцессор.

Полученные напряжение и сила постоянного тока измеряются и отображаются дисплеем источника в цифровой, графической форме или имитацией стрелочных указателей. Источники имеют режимы стабилизации напряжения, тока и программируемых функций. Регулировки выходных напряжения и силы тока независимы друг от друга. Источники допускают последовательное и параллельное включение выходов.

Источники имеют защиту от перегрузки по напряжению, по току, от перегрева, от неправильного подключения и случайных изменений параметров пользователем. Допускаемые пределы основной и дополнительной погрешностей прибора приведены в таблицах А.3 и А.4.

Таблица А.3 – Зависимость допускаемых основных погрешностей

Величина	Режим	Предел допускаемой погрешности
Напряжение постоянного тока, В	Программирование	± (0,0005 U + 10 мВ)
	Считывание	
Сила постоянного тока, А	Программирование	0,001 I + 10 мА
	Считывание	

Таблица А.4 – Зависимость допускаемых дополнительных погрешностей

Напряжение постоянного тока, В	$\pm (0,0001 \text{ U} + 3 \text{ MB}) / ^{\circ}\text{C}$
Сила постоянного тока, А	$\pm (0,0002 \text{ I} + 3 \text{ MA}) / ^{\circ}\text{C}$

приложение Б

Протоколы измерений к лабораторной работе № 2

Группа:	Достоверность снятых показаний
Бригада: №	подтверждаем.
Ф.И.О. участников бригады:	Подписи участников бригады:
1)	1)
2)	2)
3)	3)
Дата измерений:	Подпись и Ф.И.О. преподавателя:
Вариант задания:	/
1. Подготовка к измерительным экс	периментам
Используемое оборудование:	
1)	4)
2)	5)
3)	6)
Время включения измерительного оборудо	вания:
Время начала работы с измерительным обо	рудованием:

2. Измерение напряжения переменного тока на выходе генератора сигналов

Таблица Б.1 – Протокол измерения напряжения переменного тока на выходе генератора сингалов

Генератор сигнало	Генератор сигналов: U_{pp} : 2,7 В		<i>U_{DC}</i> : 0,7 B	$f_{ m cигн}$: 1 к Γ ц
Осциллограф:		<i>K_{CH1}</i> : 0,5 В/дел	<i>K_T</i> : 100 мс/дел	
Мультиметр: Диапазон:		Диапазон: 2 В	υ: 2,5 изм/с	<i>R_V</i> : 10 МОм
Форма сигнала	орма сигнала Показания ос		Показания мультиметра	
	U_{pp1} , B U_{RMS1} , B		U_{RMS2} , B	U_{cp} , B
Гармонический	2,754	0,96283	0,96	0,702
Треугольный	2,712 1,049		0,779	0,702
Меандр	3,1328 1,5203		1,349	0,702
Прямоугольный,	3,1328 1,1669		1,168	0,026
скважность q=4				

3. Измерение методической погрешности из-за подключаемой нагрузки на выход генератора сигнала

Таблица Б.2 – Протокол измерения сопротивления резистора R и измерительного преобразователя RC-цепь.

Диапазон	Скорость	Сила исп. тока, мА	Показания
измерений, Ом	измерений, изм/с		мультиметра, Ом
20000	2,5	100	6800

Таблица Б.3 – Протокол измерения напряжения переменного тока на выходе генератора сингалов при наличии резистивной нагрузки

Генератор сигналов:	<i>U_{pp}</i> : 2,7 B	<i>U_{DC}</i> : 0,7 B	$f_{ m curh}$: 1 кГц
Осциллограф:	<i>K_{CH1}</i> : 0,5 В/дел	<i>K_T</i> : 100 мкс/дел	
Мультиметр:	Диапазон: 2 В	υ: 2,5 изм/c	R _V : 10 МОм
Форма сигнала -	Показания о	сциллографа	Показания
гармонический			мультиметра
Настройки нагрузки	U_{pp1} , B	U_{RMS1} , B	U_{RMS2} , B
Высокоомная нагрузка	2,712	1,1922	0,948
Нагрузка: 6800 Ом	2,7587	1,1797	0,95812

4. Измерение частоты среза апериодического звена

Таблица Б.4 – Протокол измерения ёмкости С измерительного преобразователя RC-цепи.

Диапазон измерений, нФ	Сила испытательного тока,	Показания измеренной
	A	ёмкости, нФ
2	0,1	0,32

Таблица Б.5 – Протокол измерения напряжения переменного тока на выходе генератора сигналов при наличии резистивной и ёмкостной нагрузки

Генератор сигналов:	<i>U_{pp}</i> : 2,7 B	<i>U_{DC}</i> : 0,7 B	$f_{ m curh}$: 1 кГц
Осциллограф:	<i>K_{CH1}</i> : 0,5 В/дел	<i>K_T</i> : 200 мкс/дел	
Мультиметр:	Диапазон: 2 В	υ: 2,5 изм/c	<i>R_V</i> : 10 МОм
Форма сигнала -	Показания о	сциллографа	Показания
гармонический			мультиметра
Настройки нагрузки	U_{pp1} , B	U_{RMS1} , B	U_{RMS2} , B
Высокоомная нагрузка	2,7354	0,97181	0,95532
Нагрузка: 6800 Ом	2,7821	0,98495	0,9662

Таблица Б.6 – Протокол измерения частоты среза RC-цепи

Генератор сигналов:	<i>U_{pp}</i> : 2,7 B	<i>U_{DC}</i> : 0,7 B	$R_{\rm H}$: HighZ
Осциллограф:	<i>K_{CH1}</i> : 0,5 В/дел	<i>K_T</i> : 200 мкс/дел	
Мультиметр:	Диапазон: 2 В	v: 2,5 изм/с	R _V : 10 МОм
Форма сигнала -	Показания осцилло:	графа, полный размах	Показания
гармонический			мультиметра
Частота (кГц):	$U_{\scriptscriptstyle m BMX}$, B	$U_{\scriptscriptstyle \mathrm{BX}}$, B	U_{RMS2} , B
70,3	1,9821	2,8104	0,69181
63,72	2,1205	2,8104	0,71164
56,64	2,1665	2,8104	0,74571
49,56	2,3048	2,8104	0,78038
42,37	2,3970	2,8104	0,81521
35,29	2,4431	2,8104	0,84857
23,21	2,5814	2,8104	0,87391
21,13	2,6796	2,8104	0,90479
14,05	2,6796	2,8104	0,92497
6,47	2,7626	2,8104	0,937
1	2,7651	2,8104	0,9422

5. Измерение напряжения переменного тока на выходе ФНЧ

Таблица Б.7 – Протокол измерения напряжения переменного тока на выходе ФНЧ

Генератор	<i>U_{CH1}</i> : 2,7 B	<i>U_{CH2}</i> : 2,7 B	Показания осциллографа	
сигналов:	<i>U_{DC1}</i> : 0,2 B	<i>U</i> _{DC2} : 0,2 B		
	f_{CH1} , Гц	f_{CH2} , Гц	$U_{\scriptscriptstyle m BЫX}$, В	$U_{\scriptscriptstyle \mathrm{BX}}$, B
Форма сигнала	0,01f _{cp} : 0,708	0,01f _{cp} : 0,708	2,0106	2,7
-	0,01f _{cp} : 0,708	<i>f</i> _{cp} : 70,8	0,094	2,7
гармонический	0,01f _{cp} : 0,708	100f _{cp} : 708	0,016378	2,7