

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SÃO PAULO

Campus São Paulo

SAU PAULU			
Aluno: Igor Domingos da Silva Mozetic		Prontuário: SP3027422	Nota
Curso: Informática matutino - 213	Ano/Semestre: 2020 / 4º Bimestre.	Data: 02.02.2021	
Avaliação: 1ª Lista de Exercícios - QU	Professores: Gouveia	Código Disciplina: QUI	

INSTRUÇÕES:

A resposta deve ser acompanhada da linha de raciocínio utilizada na resolução da questão.

Termoquímica – Lei de Hess, cálculo da variação de entalpia, cálculos químicos aplicados a termoquímica

1. O "besouro bombardeiro" espanta seus predadores, expelindo uma solução quente. Quando ameaçado, em seu organismo ocorre a mistura de soluções aquosas de hidroquinona, peróxido de hidrogênio e enzimas, que promovem uma reação exotérmica, representada por:

$$C_6H_4(OH)_2(aq) + H_2O_2(aq) \xrightarrow{enzimas} C_6H_4O_2(aq) + 2 H_2O(\ell)$$

hidroquinona

O calor envolvido nessa transformação pode ser calculado, considerando-se os processos:

$$C_6H_4(OH)_2(aq) \rightarrow C_6H_4O_2(aq) + H_2(g)$$
 $\Delta H^0 = + 177 \text{ kJ·mol}^{-1}$
 $H_2O(\ell) + 1/2 O_2(g) \rightarrow H_2O_2(aq)$ $\Delta H^0 = + 95 \text{ kJ·mol}^{-1}$
 $H_2O(\ell) \rightarrow 1/2 O_2(g) + H_2(g)$ $\Delta H^0 = + 286 \text{ kJ·mol}^{-1}$

Assim sendo, o calor envolvido na reação que ocorre no organismo do besouro é a) - 558 kJ.mol⁻¹ b) - 204 kJ.mol⁻¹ c) + 177 kJ.mol⁻¹ d) + 558 kJ.mol⁻¹ e) + 585 kJ.mol⁻¹

Resposta:

Dados:

Para tanto, devemos criar um padrão, deixando o H_2O no lado dos produtos, fazendo com que o ΔH de algumas das reações apresentadas mude e troque o sinal, então:

$$\begin{array}{lll} C_6H_4(OH)_{2(aq)} \rightarrow C_6H_4O_{2(aq)} + 2H_2O \ (g) & \Delta H = +177 \ kJ.mol^{-1} \\ H_2O_{2(aq)} \rightarrow H_2O_{(l)} + 1/2 \ O_{2(g)} & \Delta H = -95 \ kJ.mol^{-1} \\ 1/2 \ O_{2 \ (g)} + H_{2(g)} \rightarrow H_2O \ (l) & \Delta H = -286 \ kJ.mol^{-1} \end{array}$$

Com isso, agora devemos somar os ΔH e descobrir qual o calor envolvido na reação que occore no organismo do besouro:

$$\Delta H = +177 + (-95) + (-286) \rightarrow \Delta H = +177 + (-381) \rightarrow \Delta H = 204 \text{ kJ.mol}^{-1}$$
.

Alternativa correta: Letra B.

2. Com base nos valores aproximados de ΔH para as reações de combustão do metano (gás

natural) e do hidrogênio,

CH₄ (g) + 2 O₂ (g)
$$\rightarrow$$
 CO₂ (g) + 2 H₂O (l) Δ H = -900
kJ/mol 2 H₂ (g) + O₂ (g) \rightarrow 2 H₂O (l) Δ H = -600 kJ/mol

e das massas molares: carbono = 12 g/mol, hidrogênio = 1 g/mol e oxigênio = 16 g/mol, calcule a massa de hidrogênio que fornece, na combustão, energia correspondente a 16 kg de metano.

Resposta:

Dados:

$$CH_{4(g)} + 2O_2(g) \rightarrow CO_{2(g)} + 2H_2O_{(l)}$$
 $\Delta H = -900 \text{ kJ/mol}$ $2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(l)}$ $\Delta H = -600 \text{ kJ/mol}$

Com isso, na primeira equação podemos notar que a massa molar do gás metano é 16g/mol (12 do carbono e 1 de cada hidrogênio, totalizando 4, a soma tem o resultado de 16), ou seja, para combustão de cada 16g ou 1 mol de metano, temos uma energia liberada de -900 kJ/mol, com isso, se fizermos a regra de três:

$$0.016 \text{kg de metano} \rightarrow$$
 - $900 \text{kJ/mol} \rightarrow 0.016 \text{x} = -14.400 \rightarrow \text{x} = \frac{-14.400}{0.016} \rightarrow \text{x} = -900.000 \text{kJ/mol}$ 16kg de metano $\rightarrow \text{x}$

Agora analisando a segunda equação, podemos perceber que para a combustão de 4H (4 hidrogênios) temos uma energia liberada de -600kJ/mol, e se realizarmos a regra de três para saber a quantidade de massa liberada para 900.000:

4g/mol de hidrogênio → 600kJ/mol → 600x = 3.600.000 →
$$x = \frac{3.600.000}{600}$$
 → $\frac{x = 6000g}{600}$ ou 6kg x → - 900.000kJ/mol

3. (FEI-SP) Uma das soluções para o problema do lixo é sua utilização na fabricação de gás metano. Este gás é uma matéria-prima para a produção de gás hidrogênio, representada pela equação:

CH4 (g) + H2O (I)
$$\Box$$
 CO(g) + 3 H2 (g)

Determine a entalpia desta reação em kcal, a 25 °C e 1 atm. Dados: Entalpias de formação a 25 °C e 1 atm: CH_{4 (g)} = - 18,0 kcal H₂O _(l) = -

 $68,4 \text{ kcal CO}_{(g)} = -26,4 \text{ kcal}$

Resposta:

Dados:

CH4 (g) + H2O(I)
$$\rightarrow$$
 CO(g) + 3 H2 (g)
CH_{4(g)} = - 18,0 kcal
H₂O_(I) = - 68,4 kcal
CO_(g) = - 26,4 kcal

Dada as entalpias de formação e o questionamento sendo sobre a entalpia principla da reação CH4 (g) + $H2O(I) \rightarrow CO(g)$ + 3 H2(g), sabemos que para achar o ΔH da reação, temos a formula: $\Delta H = Hp - Hr$. Para tanto, nós sabemos que as entalpias de formação de quase todos as substâncias, a única que falta ser descrita pelo enunciado é o H, porém, como H é um elemento simples, sua entalpia de formação é H0, então se substituirmos na fórmula, temos:

$$\Delta H = ((-18,0 \text{ kcal}) + (-68,4 \text{ kcal})) - ((-26,4 \text{ kcal}) + (3.0)) \rightarrow \Delta H = (-86,4 \text{ kcal}) - (-26,4 \text{ kcal}) \rightarrow \Delta H = 60 \text{ kcal/mol}$$

4. (UFF-RJ) A cabeça de palito de fósforo contém uma substância chamada trissulfeto de tetrafósforo. Este composto inflama na presença de oxigênio, ocorrendo, à pressão normal, a liberação de uma quantidade de calor de 3.677 kJ por mol. A reação referente ao processo está representada abaixo:

$$P4S3 (s) + 8 O2 \square P4O10 (s) + 3 SO2 (q)$$

Calcule a entalpia padrão de formação do P₄S_{3 (s)}, considerando a seguinte tabela:

Compost	☐ H ^o f (kJ/mol)	
0		
P4O10 (s)	- 2.940,0	
SO ₂ (g)	- 296,8	

Resposta: Dada as entalpias de formação de algumas substâncias e o requerimento da entalpia de formação da substância P4S3 (s), podemos resolver utilizando a seguinte fórmula: $\Delta H = Hp - Hr$. Para tanto, nós sabemos que as entalpias de formação de quase todos as substâncias, a única que falta ser descrita pelo enunciado é o O, porém, como O é um elemento simples, sua entalpia de formação é 0, então se substituirmos na fórmula, temos:

$$3.677kJ/mol = (x + (8.0kJ/mol)) - ((-2.940,0kJ/mol) + (3.-296,8kJ/mol)) \rightarrow 3.677kJ/mol = x - ((-2.940,0kJ/mol)) + (-890,4kJ/mol)) $\rightarrow 3.677kJ/mol = x - (-3.830,4) \rightarrow x = 3.830,4 - 3.677,0 \rightarrow x^{-1} = 153,4^{-1} \rightarrow x = -153,4kJ/mol$$$

5. Os seguintes valores de □H referem-se às três reações equacionadas a seguir, realizadas sob as mesmas condições experimentais.

a) qual é o fator responsável pela diferença observada nos valores de □H?

Resosta: O fator responsável pela diferença observada nos valores do □H dsa três reações acima, é o estado da água, sendo na primiera equação sólido, na segunda líquido e na terceira gasoso.

b) represente, em um mesmo diagrama, os reagentes e produtos dessas reações.

Resposta:

