Exercise

1. Find f(x) for the following functions.

a)
$$f'(x) = 1 - 6x$$
, $f(0) = 8$

b)
$$f'(x) = 8x^3 + 12x + 3$$
, $f(1) = 6$

c)
$$f'(t) = \sqrt{t(6+5t)}$$
, $f(1) = 10$

d)
$$f'(x) = 3\cos x$$
, $f(0) = 1$

2. Evaluate the integrals.

a)
$$\int_{-1}^{3} x^5 dx$$

c)
$$\int_{2}^{8} (4x+3) dx$$

e)
$$\int_{1}^{5} \frac{1}{x} dx$$

g)
$$\int_0^{\frac{\pi}{2}} \cos\theta \, d\theta$$

i)
$$\int_{2}^{2} (3u+1)^{2} du$$

b)
$$\int_{-2}^{5} 6 \, dx$$

d)
$$\int_0^4 (1+3y-y^2) dy$$

f)
$$\int_0^{-1} 5e^x dx$$

h)
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin x \, dx$$

j)
$$\int_0^2 (2v+5)(3v-1) dv$$

3. Find the integral using technique of substitution.

a)
$$\int 2x(x^2+4)^4 dx$$

c)
$$\int_0^2 x^2 (x^3 + 5)^9 dx$$

e)
$$\int \frac{1+4x}{\sqrt{1+x+2x^2}} \, dx$$

g)
$$\int \cot x \, dx$$

$$\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{-\cos x}{\sin^2 x} \, dx$$

$$k) \qquad \int (2x-2)e^{-x^2+x}dx$$

b)
$$\int (3x-2)^{20} dx$$

d)
$$\int_0^2 (2-x)^6 dx$$

f)
$$\int_{-3}^{0} \frac{x}{\left(x^2 + 1\right)} dx$$

h)
$$\int 2\sin x \cos^4 x \, dx$$

$$\int_{0}^{\frac{\pi}{3}} \sec^{3} x \tan x \, dx$$

1)
$$\int_0^4 \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$$

- 4. Find the integrals using integration by parts.
 - (a) $\int x \cos 5x \ dx$

(b) $\int_0^{\pi/2} x \sin x \, dx$

(c) $\int xe^{-x}dx$

(d) $\int_0^2 xe^{2x} dx$

(e) $\int \ln x \ dx$

(f) $\int_{1}^{4} x \ln x dx$

(g) $\int x^2 \sin 5x \ dx$

- (h) $\int (2x-1)\cos x \ dx$
- 5. Find the integrals using integration by partial fractions.
 - (a) $\int \frac{5x-5}{x^2+2x-3} dx$

 $\int \frac{3x+11}{\left(x^2-x-6\right)} \, dx$

(c) $\int \frac{x}{x^2 + 2x - 3} dx$

- (d) $\int \frac{x+4}{x^2-3x+2} \ dx$
- 6. Sketch the region corresponding to each definite integral. Then evaluate each integral.
 - (a) $\int_{-1}^{1} x^2 dx$
- (b) $\int_0^4 (x+1) dx$ (c) $\int_1^3 2x dx$

Find the area of the shaded region.

- 8. Sketch the region bounded by the curves. Find the area of the region by integrating respect to x.
 - (a) y = x + 1, $y = 9 x^2$, x = -1, x = 2
 - (b) $y = \sin x$, y = x, $x = \pi/2$, $x = \pi$
 - (c) $y = (x-2)^2$, y = x
 - (d) $y = x^2 2x$, y = x + 4
- Find the **volume** of the solid obtained by rotating the region enclosed by the curves $y = \sqrt{x}$, x = 9 and y = 0 is rotated about the x-axis.
- 10. Sketch the region bounded by $y = x^3$, y = 27 and x = 0. Hence, find the **volume** of the solid obtained by rotating the region about y - axis.

Exercise: Topic 5

1. (a)
$$f(x) = x - 3x^2 + 8$$

(b)
$$f(x) = 2x^4 + 6x^2 + 3x - 5$$

(a)
$$f(x) = x - 3x^2 + 8$$

(c) $f(t) = 4t^{3/2} + 2t^{5/2} + 4$

$$(d) f(x) = 3\sin(x) + 1$$

(b) 42

(d) 20/3

(f) = 5/e - 5

(h) 0

$$(i)$$
 Correct: 52

(i) 32

3. (a)
$$\frac{(x^2+4)^5}{5} + c$$

(c) $\frac{13^{10}-5^{10}}{30}$

(b)
$$\frac{(3x-2)^{21}}{63} + c$$

(c)
$$\frac{13^{10}-5^{10}}{30}$$

(e)
$$2\sqrt{1+x+2x^2} + 6$$

$$(f) - \frac{1}{2} \ln 10$$

(g)
$$\ln |\sin x| + c$$

(f)
$$-\frac{1}{2}\ln 10$$

(h) $-\frac{2}{5}\cos^5 x + c$

(i) 1/2

(i)
$$1/2$$
 (j) $7/3$ (k) Correction: $\int (2x-2)e^{(-x^2+2x)} dx$ ans: $-e^{(-x^2+2x)} + c$ (l) $2e^2 - 2$

ans:
$$-e^{(-x^2+2x)}+a$$

4. (a)
$$\frac{1}{5}x\sin 5x + \frac{1}{25}\cos 5x + c$$
 (b) $[-x\cos x + \sin x]_0^{\pi/2} = 1$

(b)
$$\left[-x \cos x + \sin x \right]_0^{\pi/2} = 1$$

(c)
$$-xe^{-x} - e^{-x} + c$$

(c)
$$-xe^{-x} - e^{-x} + c$$
 (d) $\left[\frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x}\right]_0^2 = \frac{3}{4}e^4 + \frac{1}{4}e^{2x}$

(e)
$$x \ln x - x + c$$

(f)
$$\left[\frac{1}{2}x^2 \ln x - \frac{1}{4}x^2\right]_1^4 = 8 \ln x - \frac{15}{4}$$

$$(g) - \frac{1}{5}x^2 \cos 5x + \frac{2}{25}x \sin 5x + \frac{2}{125}\cos 5x + c$$

(h)
$$(2x - 1) \sin x + 2 \cos x + c$$

5. (a)
$$5 \ln |x + 3| + c$$

(b)
$$4 \ln |x - 3| - \ln |x + 2| + c$$

(a)
$$5 \ln|x+3| + c$$
 (b) $4 \ln|x-3| - \ln|x+2| + c$ (c) $\frac{1}{4} \ln|x-1| + \frac{3}{4} \ln|x+3| + c$ (d) $-5 \ln|x-1| + 6 \ln|x-2| + c$

(d)
$$-5 \ln|x-1| + 6 \ln|x-2| + 6 \ln|x-2|$$

Note: Sketch region as in the example page 16

- (a) 2/3
- (c) 8

7. Area = $32/3 \, unit^2$, Area = $36 \, unit^2$

- (a) $39/2 \ unit^2$ (b) $\frac{3\pi^2}{9} 1 \ unit^2$ (c) $\frac{9}{9} \ unit^2$ (d) $\frac{125}{6} \ unit^2$

1

9. $\frac{81}{2}\pi \ unit^3$

10.
$$\frac{729}{5}\pi \ unit^3$$