Ch 7.4: Cubic splines

Lecture 22 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

..

Dept of Computational Mathematics, Science & Engineering

Weds, Nov 9, 2022

Announcements

Last time:

- 7.2 Step functions
- 7.3 Basis functions

This lecture:

• 7.4 Cubic splines

Announcements:

 Homework # 7 is now (for real) on github

Dr. Munch (MSU-CMSE)

Section 1

Last time

Polynomial regression

$$y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_i^2 + \dots + \beta_d x_i^d + \varepsilon_i$$

4 / 24

Dr. Munch (MSU-CMSE) Weds, Nov 9, 2022

Step function regression

$$C_{0}(X) = I(X < c_{1}),$$

$$C_{1}(X) = I(c_{1} \le X < c_{2}),$$

$$C_{2}(X) = I(c_{2} \le X < c_{3}),$$

$$\vdots$$

$$C_{K-1}(X) = I(c_{K-1} \le X < c_{K}),$$

$$C_{K}(X) = I(c_{K} \le X),$$

$$y_{i} = \beta_{0} + \beta_{1}C_{1}(x_{i}) + \beta_{2}C_{2}(x_{i}) + \dots + \beta_{K}C_{K}(x_{i}) + \varepsilon_{i}$$

5 / 24

r. Munch (MSU-CMSE) Weds, Nov 9, 2022

Classification version

$$\frac{\exp(\beta_0 + \beta_1 x_i + \dots + \beta_d x_i^d)}{1 + \exp(\beta_0 + \beta_1 x_i + \dots + \beta_d x_i^d)}$$

$$Pr(y_i > 250 \mid x_i) =$$

$$\frac{\exp(\beta_0 + \beta_1 C_1(x_i) + \beta_2 C_2(x_i) + \dots + \beta_K C_K(x_i))}{1 + \exp(\beta_0 + \beta_1 C_1(x_i) + \beta_2 C_2(x_i) + \dots + \beta_K C_K(x_i))}$$

Munch (MSU-CMSE) Weds, Nov 9, 2022

Basis Functions Setup

Polynomial and piecewise-constant regression models are special cases of a *basis function* approach.

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \cdots + \beta_K b_K(x_i) + \varepsilon_i$$

r. Munch (MSU-CMSE) Weds, Nov 9, 2022

Section 2

Regression Splines

Piecewise polynomials

• Fit a polynomial regression

$$y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_i^2 + \dots + \beta_d x_i^d + \varepsilon_i$$

• Let the β_i 's be different at different locations of the range.

Dr. Munch (MSU-CMSE)

Example of piecewise polynomial

Piecewise Cubic

Example:

$$y_i = \begin{cases} \beta_{01} + \beta_{11} x_i + \beta_{21} x_i^2 + \beta_{31} x_i^3 + \epsilon_i & \text{if } x_i < c \\ \beta_{02} + \beta_{12} x_i + \beta_{22} x_i^2 + \beta_{32} x_i^3 + \epsilon_i & \text{if } x_i \ge c. \end{cases}$$

10 / 24

Munch (MSU-CMSE) Weds, Nov 9, 2022

The fix

- Fit piecewise polynomial
- Require continuity at knots

Continuous Piecewise Cubic

11 / 24

Dr. Munch (MSU-CMSE) Weds, Nov 9, 2022

The better fix: Cubic splines

- Fit piecewise polynomial
- Require continuity at knots
- Require the first and second derivatives to be continuous at knots

Cubic Spline

12 / 24

Munch (MSU-CMSE) Weds, Nov 9, 2022

Example

We have the following piecewise cubic polynomial:

$$f(x) = \begin{cases} 2 + x + x^2 + 0.1x^3 & x \le 1\\ b_0 + b_1 x + b_2 x^2 - x^3 & x > 1 \end{cases}$$

What are b_1 , b_1 , and b_2 to make this a cubic spline?

13 / 24

Check your answers: desmos.com/calculator/ns4tr7mw0n

Dr. Munch (MSU-CMSE) Weds, Nov 9, 2022

More space for work

$$f(x) = \begin{cases} 2 + x + x^2 + 0.1x^3 & x \le 1\\ 3.1 + -2.3x + 4.3x^2 - x^3 & x > 1 \end{cases}$$

Cubic splines: degrees of freedom

$$f(x) = \begin{cases} \beta_0^1 + \beta_1^1 x + \beta_2^1 x^2 + \beta_3^1 x^3 & x < c \\ \beta_0^2 + \beta_1^2 x + \beta_2^2 x^2 + \beta_3^2 x^3 & x > c \end{cases}$$

Cubic Spline

15 / 24

Munch (MSU-CMSE) Weds, Nov 9, 2022

Spline basis representation

Want to pick b_i so that we represent a cubic spline with K knots as

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \cdots + \beta_{K+3} b_{K+3}(x_i) + \varepsilon_i$$

. Munch (MSU-CMSE) Weds, Nov 9, 2022

Truncated power basis function

$$h(x,z) = (x-z)_+^3 = \begin{cases} (x-z)^3 & \text{if } x > z \\ 0 & \text{else} \end{cases}$$

Desmos link: https://www.desmos. com/calculator/esucuulbgj

The basis for cubic splines

Given knots at z_1, \dots, z_K

- X
- X²
- X³
- $h(X, z_1)$
- \bullet $h(X, z_2)$
- •
- $h(X, z_K)$

$$f(X) = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \beta_4 h(X, z_1) + \beta_5 h(X, z_2) + \dots + \beta_{k+3} h(X, z_K)$$

Dr. Munch (MSU-CMSE)

Coding example

r. Munch (MSU-CMSE) Weds, Nov 9, 2022

Notes on cubic splines

20 / 24

r. Munch (MSU-CMSE) Weds, Nov 9, 2022

Where to put the knots?

How many knots to use?

When in doubt, Cross-Validate.

22 / 24

r. Munch (MSU-CMSE) Weds, Nov 9, 2022

Cubic splines vs Polynomial Regression

Next time

20	F	Nov 4	Polynomial & Step Functions.	7.1,7.2	
21	М	Nov 7	Step Functions	7.2	
22	W	Nov 9	Basis functions, Regression Splines	7.3,7.4	
23	F	Nov 11	Decision Trees	8.1	HW #7 Due
24	М	Nov 14	Ensemble methods	8.2	
25	W	Nov 16	Maximal Margin Classifier	9.1	
26	F	Nov 18	SVC	9.2	HW #8 Due
27	М	Nov 21	SVM	9.3, 9.4, 9.5	
28	W	Nov 23	Single layer NN	10.1	
	F	Nov 25	No class - Thanksgiving		
29	М	Nov 28	Multi Layer NN	10.2	HW #9 Due
30	W	Nov 30	CNN	10.3	
31	F	Dec 2	Unsupervised Learning & Clustering	12.1, 12.4	
32	М	Dec 5	More Clustering	12.4	HW #10 Due
	W	Dec 7	Review		
	F	Dec 9	Midterm #3	Bring your cheat sheet and a non-internet-connected calculator	

Or. Munch (MSU-CMSE) Weds, Nov 9, 2022