Lab 2- Image Warping

By PB17111585 张永停

一、实验内容

- 通过两种不同的算法实现图像变形,并对拉伸之后的图像产生的缝隙进行填充
- 进行内存检漏
- 默认图像的四个顶点固定不变的

二、算法描述

(一) IDW算法

- 找到满足 $f(p) = \sum w_i(p)f_i(p)$ 的局部近似函数
 - 1. $f_i(p_i) = q_i$
 - 2. $\mathbb{H} \sum w_i(\boldsymbol{p}) = 1$
- Shepard提出权重函数 $\omega_i(p)=\dfrac{\sigma_i(p)}{\sum_{j=1}^n\sigma_j(p)}$,其中 $\sigma_j(p)=d(p,p_j)^{-\mu}$, $d(p,p_j)$ 是p与 p_j 的距离, μ 是大于0的任意数
- 本次实验中,取局部近似函数为线性函数,考虑 $f_i(p) = x_i' + (p p_i)T_i$,误差函数 $E(T_i) = \sum_{j=1, j \neq i}^n \sigma_i(p_j)(f_i(p_j) x_j')^2$ 。为使误差函数尽可能小,可对 T_i 求导数,得到线性方程组,从而通过解线性方程组,可以解得 T_i

(二) RBF算法

• RBF给出的坐标变换公式为

$$f(p) = \sum_{i=1}^{n} \alpha_i g_i(d(p_i, p)) + Ap + B$$
, 其中 g_i 为基函数

- 基函数取 $g_i(d)=(d^2+r_i^2)^{rac{1}{2}}, r_i=min_{j
 eq i}d(p_i,p_j)$
- 系数 α_i 可以通过方程组 $f(p_i) = q_i$ 解得

(三) 白缝填充

• 由于变换过程存在拉伸,且像素点是离散的,故有些点可能并没有被别的点变换到。填充方法为在空洞周围3 * 3的矩阵区域中选择任意不为空的像素填补

三、代码框架

(一) Warp类

是虚类, 主要被IDW和RBF所继承

1. IDW

- 使用IDW插值法
- o public

get_input_control_point_weight 获取每个点对应控制点的权重表

get_output_point 获取输入点的变换点

get_image_deal_with_IDW 获取使用IDW算法处理过的图片,同时在该函数中进行白缝填充

set_mu_ 设置参数

o private

double mu_ 参数

2. RBF

- 使用Eigen库来解方程
 - o public

cal_distance_martix 计算距离矩阵

calculate_ri 计算p个数据点的R值

calculate_ai() 计算方程组的ax,ay

get_image_deal_with_RBF 获取使用RBF算法处理过的图片,同时在该函数中进行白缝填充

- o private
 - u_ 参数
 - d_ 距离矩阵
 - r_ Ri数组

(二) ImageWidget类

用于接收信号,是ui与算法的过渡层

四、实验结果

• 交互界面

向外拉

• 向内拉

左: 拉伸示意,中:IDW, 右:RBF

• 旋转拉伸

左: 拉伸示意,中:IDW, 右:RBF