BRUTE UDESC

Eduardo Scharwz Moreira, Eliton Machado da Silva, Enzo de Almeida Rodrigues, Eric Grochowicz, Igor Froehner, João Vitor Frölich, João Marcos de Oliveira, Rafael Granza de Mello e Vinicius Gasparini

24 de fevereiro de 2024

Índice

1	STI	$\mathbf{C}_{\mathbf{C}}$ (Standard Template Library - $\mathbf{C}++$)	7
	1.1	Vector	7
	1.2	Pair	7
	1.3	Set	8
	1.4	Multiset	8
	1.5	Map	8
	1.6	Queue	8
	1.7	Priority Queue	ć
		Stack	
	1.9	Funções úteis	ć
	1.10	Funções úteis para vetores	ć
2	Тот	wlet ea	1.
2		aplates	1.
		Template $C++$	
		Template Debug	
	2.3	Vimrc	12
	2.4	Run	12

	2.5	Stress Test	12
	2.6	Números aleatórios em C++ \dots	12
	2.7	Custom Hash	13
3	Teó	rico	14
	3.1	Alguns Números Primos	14
		3.1.1 Primo com Truncamento à Esquerda	14
		3.1.2 Números Primos de Mersenne	14
	3.2	Constantes em C++ \dots	15
	3.3	Operadores Lineares	15
		3.3.1 Rotação no sentido anti-horário por θ°	15
		3.3.2 Reflexão em relação à reta $y=mx$	15
		3.3.3 Inversa de uma matriz 2x2 A	15
		3.3.4 Cisalhamento horizontal por K	15
		3.3.5 Cisalhamento vertical por K	15
		3.3.6 Mudança de base	15
		3.3.7 Propriedades das operações de matriz	16
4	Est	ruturas de Dados	17
	4.1	Disjoint Set Union	17
		4.1.1 DSU	17
		4.1.2 DSU Bipartido	17
		4.1.3 DSU Rollback	18
		4.1.4 DSU Rollback Bipartido	19
		4.1.5 Offline DSU	19
	4.2	Fenwick Tree	20

ÍNDICE 3

	4.2.1 Fenwick	20
	4.2.2 Kd Fenwick Tree	21
4.3	Interval Tree	22
4.4	LiChao Tree	22
4.5	MergeSort Tree	23
4.6	Operation Queue	26
4.7	Operation Stack	26
4.8	Ordered Set	26
4.9	Segment Tree	28
	4.9.1 Segment Tree	
	4.9.2 Segment Tree 2D	28
	4.9.3 Segment Tree Beats Max And Sum Update	30
	4.9.4 Segment Tree Beats Max Update	31
	4.9.5 Segment Tree Esparsa	33
	4.9.6 Segment Tree Kadane	33
	4.9.7 Segment Tree Lazy	34
	4.9.8 Segment Tree Persisente	36
4.10	Sparse Table	37
	4.10.1 Disjoint Sparse Table	37
	4.10.2 Sparse Table	37
Gra	for	39
	2 SAT	
5.2	Binary Lifting	40
5.3	Bridge	41
F 4		40

5

ÍNDICE 4

	5.5	Graph Center	44
	5.6	HLD	45
	5.7	Inverse Graph	47
	5.8	Kruskal	47
	5.9	LCA	48
	5.10	Matching	49
		5.10.1 Hungaro	49
	5.11	Shortest Paths	50
		5.11.1 Dijkstra	5(
		5.11.2 SPFA	51
	5.12	Stoer-Wagner Min Cut	52
6	Stri	\log	53
	6.1	Aho Corasick	53
		Aho Corasick	
			54
		Hashing	54 54
	6.2	Hashing	54 54 55
	6.2	Hashing	54 54 55 56
	6.2 6.3 6.4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	54 54 55 56
	6.2 6.3 6.4 6.5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	54 54 55 56 56 57 58
	6.2 6.3 6.4 6.5	Hashing 6.2.1 Hashing Dinâmico 6.2.2 Hashing Estático Lyndon Manacher Patricia Tree	54 54 55 56 56 57 58
	6.2 6.3 6.4 6.5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	54 54 55 56 56 57 58
	6.2 6.3 6.4 6.5 6.6	Hashing 6.2.1 Hashing Dinâmico 6.2.2 Hashing Estático Lyndon Manacher Patricia Tree Prefix Function KMP 6.6.1 Automato KMP	54 54 55 56 57 58 58 58

ÍNDICE 5

7	Par	radigmas	61
	7.1	All Submasks	61
	7.2	Busca Binaria Paralela	61
	7.3	Busca Ternaria	62
	7.4	Convex Hull Trick	63
	7.5	DP de Permutacao	64
	7.6	Divide and Conquer	64
	7.7	Exponenciação de Matriz	66
	7.8	$\ Mo\ \dots$	67
8	Pri	mitivas	70
	8.1	Modular Int	70
	8.2	Ponto 2D	71
9	Geo	ometria	72
	9.1	Convex Hull	72
10) Ma	temática	7 3
	10.1	Eliminação Gaussiana	73
		10.1.1 Gauss	73
		10.1.2 Gauss Mod 2	74
	10.2	Exponenciação Modular Rápida	75
	10.3	FFT	75
	10.4	Fatoração	76
	10.5	GCD	77

ÍNDICE	6

10.7 NTT	79
10.8 Primos	81
10.9 Sum of floor (n div i)	82
10.10Teorema do Resto Chinês	82
10.11Totiente de Euler	83

Capítulo 1

STL (Standard Template Library - C++)

Os templates da STL são estruturas de dados e algoritmos já implementadas em C++ que facilitam as implementações, além de serem muito eficients. Em geral, todas estão incluídas no cabeçalho
bits/stdc++.h>. As estruturas são templates genéricos, podem ser usadas com qualquer tipo, todos os exemplos a seguir são com int apenas por motivos de simplicidade.

1.1 Vector

Um vetor dinâmico (que pode crescer e diminuir de tamanho).

- vector<int> v(n, 0): Cria um vetor de inteiros com n elementos, todos inicializados com 0 $\mathcal{O}(n)$
- v.push_back(x): Adiciona o elemento x no final do vetor $\mathcal{O}(1)$
- v.pop_back(): Remove o último elemento do vetor $\mathcal{O}(1)$
- v.size(): Retorna o tamanho do vetor $\mathcal{O}(1)$
- v.empty(): Retorna true se o vetor estiver vazio $\mathcal{O}(1)$
- v.clear(): Remove todos os elementos do vetor $\mathcal{O}(n)$
- v.front(): Retorna o primeiro elemento do vetor $\mathcal{O}(1)$

- v.back(): Retorna o último elemento do vetor $\mathcal{O}(1)$
- v.begin(): Retorna um iterador para o primeiro elemento do vetor $\mathcal{O}(1)$
- v.end(): Retorna um iterador para o elemento seguinte ao último do vetor $\mathcal{O}(1)$
- v.insert(it, x): Insere o elemento x na posição apontada pelo iterador it $\mathcal{O}(n)$
- v.erase(it): Remove o elemento apontado pelo iterador it $\mathcal{O}(n)$
- v.erase(it1, it2): Remove os elementos no intervalo [it1, it2) $\mathcal{O}(n)$
- v.resize(n): Redimensiona o vetor para n elementos $\mathcal{O}(n)$
- v.resize(n, x): Redimensiona o vetor para n elementos, todos inicializados com x $\mathcal{O}(n)$

1.2 Pair

Um par de elementos (de tipos possivelmente diferentes).

- pair<int, int> p: Cria um par de inteiros $\mathcal{O}(1)$
- \bullet p.first: Retorna o primeiro elemento do par $\mathcal{O}(1)$
- p.second: Retorna o segundo elemento do par $\mathcal{O}(1)$

1.3 Set

Um conjunto de elementos únicos. Por baixo, é uma árvore de busca binária balanceada.

- set<int> s: Cria um conjunto de inteiros $\mathcal{O}(1)$
- s.insert(x): Insere o elemento x no conjunto $\mathcal{O}(\log n)$
- s.erase(x): Remove o elemento x do conjunto $\mathcal{O}(\log n)$
- s.find(x): Retorna um iterador para o elemento x no conjunto, ou s.end() se não existir $\mathcal{O}(\log n)$
- s.size(): Retorna o tamanho do conjunto $\mathcal{O}(1)$
- s.empty(): Retorna true se o conjunto estiver vazio $\mathcal{O}(1)$
- s.clear(): Remove todos os elementos do conjunto $\mathcal{O}(n)$
- s.begin(): Retorna um iterador para o primeiro elemento do conjunto $\mathcal{O}(1)$
- s.end(): Retorna um iterador para o elemento seguinte ao último do conjunto $\mathcal{O}(1)$

1.4 Multiset

Basicamente um set, mas permite elementos repetidos. Possui todos os métodos de um set.

Declaração: multiset<int> ms.

Um detalhe é que, ao usar o método erase, ele remove todas as ocorrências do elemento. Para remover apenas uma ocorrência, usar ms.erase(ms.find(x)).

1.5 Map

Um conjunto de pares chave-valor, onde as chaves são únicas. Por baixo, é uma árvore de busca binária balanceada.

- map<int, int> m: Cria um mapa de inteiros para inteiros $\mathcal{O}(1)$
- m[key]: Retorna o valor associado à chave key $\mathcal{O}(\log n)$
- m[key] = value: Associa o valor value à chave key $\mathcal{O}(\log n)$
- m.erase(key): Remove a chave key do mapa $\mathcal{O}(\log n)$
- m.find(key): Retorna um iterador para o par chave-valor com chave key, ou
 m.end() se não existir O(log n)
- m.size(): Retorna o tamanho do mapa $\mathcal{O}(1)$
- m.empty(): Retorna true se o mapa estiver vazio $\mathcal{O}(1)$
- m.clear(): Remove todos os pares chave-valor do mapa $\mathcal{O}(n)$
- m.begin(): Retorna um iterador para o primeiro par chave-valor do mapa $\mathcal{O}(1)$
- m.end(): Retorna um iterador para o par chave-valor seguinte ao último do mapa $\mathcal{O}(1)$

1.6 Queue

Uma fila (primeiro a entrar, primeiro a sair).

- queue<int> q: Cria uma fila de inteiros $\mathcal{O}(1)$
- q.push(x): Adiciona o elemento x no final da fila $\mathcal{O}(1)$
- q.pop(): Remove o primeiro elemento da fila $\mathcal{O}(1)$
- q.front(): Retorna o primeiro elemento da fila $\mathcal{O}(1)$
- q.size(): Retorna o tamanho da fila $\mathcal{O}(1)$
- q.empty(): Retorna true se a fila estiver vazia $\mathcal{O}(1)$

1.7 Priority Queue

Uma fila de prioridade (o maior elemento é o primeiro a sair).

- priority_queue<int> pq: Cria uma fila de prioridade de inteiros $\mathcal{O}(1)$
- pq.push(x): Adiciona o elemento x na fila de prioridade $\mathcal{O}(\log n)$
- pq.pop(): Remove o maior elemento da fila de prioridade $\mathcal{O}(\log n)$
- pq.top(): Retorna o maior elemento da fila de prioridade $\mathcal{O}(1)$
- pq.size(): Retorna o tamanho da fila de prioridade $\mathcal{O}(1)$
- pq.empty(): Retorna true se a fila de prioridade estiver vazia $\mathcal{O}(1)$

Para fazer uma fila de prioridade que o menor elemento é o primeiro a sair, usar priority_queue<int, vector<int>, greater<> pq.

1.8 Stack

Uma pilha (último a entrar, primeiro a sair).

- stack<int> s: Cria uma pilha de inteiros $\mathcal{O}(1)$
- s.push(x): Adiciona o elemento x no topo da pilha $\mathcal{O}(1)$
- s.pop(): Remove o elemento do topo da pilha $\mathcal{O}(1)$
- s.top(): Retorna o elemento do topo da pilha $\mathcal{O}(1)$
- s.size(): Retorna o tamanho da pilha $\mathcal{O}(1)$
- s.empty(): Retorna true se a pilha estiver vazia $\mathcal{O}(1)$

1.9 Funções úteis

- min(a, b): Retorna o menor entre a e b $\mathcal{O}(1)$
- max(a, b): Retorna o maior entre a e b $\mathcal{O}(1)$
- abs(a): Retorna o valor absoluto de a $\mathcal{O}(1)$
- swap(a, b): Troca os valores de a e b $\mathcal{O}(1)$
- sqrt(a): Retorna a raiz quadrada de a $\mathcal{O}(\log a)$
- ceil(a): Retorna o menor inteiro maior ou igual a a $\mathcal{O}(1)$
- floor(a): Retorna o maior inteiro menor ou igual a a $\mathcal{O}(1)$
- round(a): Retorna o inteiro mais próximo de a $\mathcal{O}(1)$

1.10 Funções úteis para vetores

Para usar em std::vector, sempre passar v.begin() e v.end() como argumentos pra essas funções.

Se for um vetor estilo C, usar $v \in v + n$. Exemplo:

```
1 int v[10];
2 sort(v, v + 10);
```

- fill(v.begin(), v.end(), x): Preenche o vetor v com o valor x $\mathcal{O}(n)$
- sort(v.begin(), v.end()): Ordena o vetor v $\mathcal{O}(n \log n)$
- reverse(v.begin(), v.end()): Inverte o vetor v $\mathcal{O}(n)$
- accumulate(v.begin(), v.end(), 0): Soma todos os elementos do vetor v $\mathcal{O}(n)$
- max_element(v.begin(), v.end()): Retorna um iterador para o maior elemento do vetor v $\mathcal{O}(n)$

- min_element(v.begin(), v.end()): Retorna um iterador para o menor elemento do vetor v $\mathcal{O}(n)$
- count(v.begin(), v.end(), x): Retorna o número de ocorrências do elemento x no vetor v $\mathcal{O}(n)$
- find(v.begin(), v.end(), x): Retorna um iterador para a primeira ocorrência do elemento x no vetor v, ou v.end() se não existir $\mathcal{O}(n)$
- lower_bound(v.begin(), v.end(), x): Retorna um iterador para o primeiro elemento maior ou igual a x no vetor v (o vetor deve estar ordenado) $\mathcal{O}(\log n)$
- upper_bound(v.begin(), v.end(), x): Retorna um iterador para o primeiro elemento estritamente maior que x no vetor v (o vetor deve estar ordenado) $\mathcal{O}(\log n)$
- next_permutation(a.begin(), a.end()): Rearranja os elementos do vetor a para a próxima permutação lexicograficamente maior $\mathcal{O}(n)$

Capítulo 2

Templates

2.1 Template C++

```
1 #include <bits/stdc++.h>
2 #define endl '\n'
3 using namespace std;
4 using l1 = long long;
5
6 void solve() {
7
8 }
9
10 signed main() {
11    cin.tie(0)->sync_with_stdio(0);
12    solve();
13 }
```

2.2 Template Debug

Template para debugar variáveis em C++. Até a linha 17 é opcional, é pra permitir que seja possível debugar pair e vector. Para usar, basta compilar com a flag -DBRUTE (o run já tem essa flag). E no código usar debug(x, y, z).

```
1
2 template<typename T, typename U>
3 ostream& operator<<(ostream& os, const pair<T, U>& p) { // opcional
4    os << "(" << p.first << ", " << p.second << ")";</pre>
```

```
5
       return os;
 6 }
 7 template<typename T>
 8 ostream& operator<<(ostream& os, const vector<T>& v) { // opcional
       os << "{";
      int n = (int)v.size();
11
       for (int i = 0; i < n; i++) {</pre>
          os << v[i];
13
          if (i < n - 1) os << ", ";</pre>
14
      }
15
       os << "}":
16
       return os;
17 }
18
19 void _print() {}
20 template <typename T, typename... U> void _print(T a, U... b) {
      if (sizeof...(b)) {
22
          cerr << a << ", ";
23
           _print(b...);
24
      } else cerr << a;</pre>
25 }
26 #ifdef BRUTE
27 #define debug(x...) cerr << "[" << #x << "] = [", _print(x), cerr << "]" << endl
28 #else
29 #define debug(...)
30 #endif
```

CAPÍTULO 2. TEMPLATES

2.3 Vimrc

Template de arquivo \$HOME/.vimrc para o vim.

Recomendado copiar o arquivo /etc/vim/vimrc, e adicionar as linhas abaixo no final.

```
1 set nu ai si cindent et ts=4 sw=4 so=10 nosm nohls
2 inoremap {} {}<left><return><up><end><return>
```

2.4 Run

Arquivo útil para compilar e rodar um programa em C++ com flags que ajudam a debugar. Basta criar um arquivo chamado run, adicionar o código abaixo e dar permissão de execução com chmod +x run. Para executar um arquivo a.cpp, basta rodar ./run a.cpp.

2.5 Stress Test

Script muito útil para achar casos em que sua solução gera uma resposta incorreta. Deve-se criar uma solução bruteforce (que garantidamente está correta, ainda que seja lenta) e um gerador de casos aleatórios para seu problema.

```
14 echo "Passed test: " $i
15 done
16
17 echo "WA no seguinte teste:"
18 cat in
19 echo "Sua resposta eh:"
20 cat out
21 echo "A resposta correta eh:"
22 cat ok
```

2.6 Números aleatórios em C++

É possível usar a função rand() para gerar números aleatórios em C++. Útil para gerar casos aleatórios em stress test, não é recomendado para usar em soluções. rand() gera números entre 0 e RAND_MAX (que é pelo menos 32767), mas costuma ser 2147483647 (depende do sistema/arquitetura).

Para usar números aleatórios em soluções, recomenda-se o uso do mt19937. A função rng() gera números entre 0 e UINT_MAX (que é 4294967295). Para gerar números aleatórios de 64 bits, usar mt19937_64 como tipo do rng. Recomenda-se o uso da função uniform(1, r) para gerar números aleatórios no intervalo fechado [1, r].

```
1 #include <bits/stdc++.h>
2 using namespace std;
3
4 mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count());
5
6 int uniform(int 1, int r) {
7    return uniform_int_distribution<int>(1, r)(rng);
8 }
9
10 int main() {
```

CAPÍTULO 2. TEMPLATES

```
11     for (int i = 0; i < 10; i++) {
12         cout << uniform(0, 100) << endl;
13     }
14 }</pre>
```

2.7 Custom Hash

As funções de hash padrão do unordered_map e unordered_set são muito propícias a colisões (principalmente se o setter da questão criar casos de teste pensando nisso). Para evitar isso, é possível criar uma função de hash customizada.

```
1 #include <bits/stdc++.h>
2 using namespace std;
4 struct custom_hash {
     static uint64_t splitmix64(uint64_t x) {
          x += 0x9e3779b97f4a7c15;
          x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
          x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
          return x ^ (x >> 31);
      }
10
11
12
      size_t operator()(uint64_t x) const {
13
          static const uint64_t FIXED_RANDOM =
               chrono::steady_clock::now().time_since_epoch().count();
          return splitmix64(x + FIXED_RANDOM);
14
15
16 };
17
18 int main() {
      unordered_map<long long, int, custom_hash> mp;
20
      mp[1] = 1;
21
      cout << mp[1] << endl;</pre>
22 }
```

Entretanto, é bem raro ser necessário usar isso. Geralmente o fator $\mathcal{O}(\log n)$ de um map é suficiente.

Capítulo 3

Teórico

3.1 Alguns Números Primos

3.1.1 Primo com Truncamento à Esquerda

Número primo tal que qualquer sufixo dele é um número primo

357,686,312,646,216,567,629,137

3.1.2 Números Primos de Mersenne

Números primos da forma 2^m-1

Expoente (m)	Representação Decimal
2	3
3	7
5	31
7	127
13	8,191
17	131,071
19	524,287
31	2,147,483,647
61	$2,3*10^{18}$
89	$6,1*10^{26}$
107	$1,6*10^{32}$
127	$1,7*10^{38}$

3.2 Constantes em C++

Constante	Nome em C++	Valor
π	M_PI	3.141592
$\pi/2$	M_PI_2	1.570796
$\pi/4$	M_PI_4	0.785398
$1/\pi$	M_1_PI	0.318309
$2/\pi$	M_2_PI	0.636619
$2/\sqrt{\pi}$	M_2_SQRTPI	1.128379
$\sqrt{2}$	M_SQRT2	1.414213
$1/\sqrt{2}$	M_SQRT1_2	0.707106
e	M_E	2.718281
$\log_2 e$	M_LOG2E	1.442695
$\log_{10} e$	M_LOG10E	0.434294
$\ln 2$	M_LN2	0.693147
ln 10	M_LN10	2.302585

3.3 Operadores Lineares

3.3.1 Rotação no sentido anti-horário por θ°

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

3.3.2 Reflexão em relação à reta y = mx

$$\frac{1}{m^2+1} \begin{bmatrix} 1-m^2 & 2m\\ 2m & m^2-1 \end{bmatrix}$$

3.3.3 Inversa de uma matriz 2x2 A

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

3.3.4 Cisalhamento horizontal por K

$$\begin{bmatrix} 1 & K \\ 0 & 1 \end{bmatrix}$$

3.3.5 Cisalhamento vertical por K

$$\begin{bmatrix} 1 & 0 \\ K & 1 \end{bmatrix}$$

3.3.6 Mudança de base

 \vec{a}_{β} são as coordenadas do vetor \vec{a} na base β . \vec{a} são as coordenadas do vetor \vec{a} na base canônica. $\vec{b1}$ e $\vec{b2}$ são os vetores de base para β . C é uma matriz que muda da base β para a base canônica.

$$C\vec{a}_{\beta} = \vec{a}$$

$$C^{-1}\vec{a} = \vec{a}_{\beta}$$

$$C = \begin{bmatrix} b1_x & b2_x \\ b1_y & b2_y \end{bmatrix}$$

CAPÍTULO 3. TEÓRICO

3.3.7 Propriedades das operações de matriz

$$(AB)^{-1} = A^{-1}B^{-1}$$

$$(AB)^{T} = B^{T}A^{T}$$

$$(A^{-1})^{T} = (A^{T})^{-1}$$

$$(A+B)^{T} = A^{T} + B^{T}$$

$$\det(A) = \det(A^{T})$$

$$\det(AB) = \det(A)\det(B)$$

Seja A uma matriz NxN:

$$\det(kA) = K^N \det(A)$$

Capítulo 4

Estruturas de Dados

4.1 Disjoint Set Union

4.1.1 DSU

Estrutura que mantém uma coleção de conjuntos e permite as operações de unir dois conjuntos e verificar em qual conjunto um elemento está, ambas em $\mathcal{O}(1)$ amortizado. O método find retorna o representante do conjunto que contém o elemento, e o método unite une os conjuntos que contém os elementos dados, retornando true se eles estavam em conjuntos diferentes e false caso contrário.

```
Codigo: dsu.cpp
```

```
1 struct DSU {
2    vector<int> par, sz;
3    int number_of_sets;
4    DSU(int n = 0) : par(n), sz(n, 1), number_of_sets(n) {
5        iota(par.begin(), par.end(), 0);
6    }
7    int find(int a) { return a == par[a] ? a : par[a] = find(par[a]); }
8    bool unite(int a, int b) {
9        a = find(a), b = find(b);
10        if (a == b) {
11            return false;
12    }
```

4.1.2 DSU Bipartido

DSU que mantém se um conjunto é bipartido (visualize os conjuntos como componentes conexas de um grafo e os elementos como vértices). O método unite adiciona uma aresta entre os dois elementos dados, e retorna true se os elementos estavam em conjuntos diferentes (componentes conexas diferentes) e false caso contrário. O método bipartite retorna true se o conjunto (componente conexa) que contém o elemento dado é bipartido e false caso contrário. Todas as operações são $\mathcal{O}(\log n)$.

Codigo: bipartite dsu.cpp

```
1 struct Bipartite_DSU {
       vector<int> par, sz, c, bip;
       int number_of_sets, all_bipartite;
      Bipartite_DSU(int n = 0)
          : par(n), sz(n, 1), c(n), bip(n, 1), number_of_sets(n), all_bipartite(1) {
          iota(par.begin(), par.end(), 0);
       int find(int a) { return a == par[a] ? a : find(par[a]); }
       int color(int a) { return a == par[a] ? c[a] : c[a] ^ color(par[a]); }
      bool bipartite(int a) { return bip[find(a)]; }
      bool unite(int a, int b) {
11
          bool equal_color = color(a) == color(b);
12
          a = find(a), b = find(b);
13
14
          if (a == b) {
              if (equal_color) {
15
16
                  bip[a] = 0;
17
                  all_bipartite = 0;
18
19
              return false;
20
21
          if (sz[a] < sz[b]) {</pre>
22
              swap(a, b);
23
24
          number_of_sets--;
25
          par[b] = a;
          sz[a] += sz[b];
26
27
          if (equal_color) {
28
              c[b] = 1;
29
30
          bip[a] &= bip[b];
31
          all_bipartite &= bip[a];
32
          return true;
33
34 };
```

4.1.3 DSU Rollback

DSU que desfaz as últimas operações. O método checkpoint salva o estado atual da estrutura, e o método rollback desfaz as últimas operações até o último checkpoint. As operações de unir dois conjuntos e verificar em qual conjunto um elemento está são $\mathcal{O}(\log n)$, o rollback é $\mathcal{O}(k)$, onde k é o

número de alterações a serem desfeitas e o checkpoint é $\mathcal{O}(1)$. Importante notar que o rollback não altera a complexidade de uma solução, uma vez que $\sum k = \mathcal{O}(q)$, onde q é o número de operações realizadas.

```
Codigo: rollback dsu.cpp
 1 struct Rollback_DSU {
       vector<int> par, sz;
       int number_of_sets;
       stack<stack<pair<int &, int>>> changes;
       Rollback_DSU(int n = 0) : par(n), sz(n, 1), number_of_sets(n) {
          iota(par.begin(), par.end(), 0);
          changes.emplace();
       int find(int a) { return a == par[a] ? a : find(par[a]); }
       void checkpoint() { changes.emplace(); }
11
       void change(int &a, int b) {
12
          changes.top().emplace(a, a);
13
14
15
       bool unite(int a, int b) {
16
          a = find(a), b = find(b);
17
          if (a == b) {
18
              return false;
19
20
          if (sz[a] < sz[b]) {</pre>
21
              swap(a, b);
22
23
          change(number_of_sets, number_of_sets - 1);
24
          change(par[b], a);
25
          change(sz[a], sz[a] + sz[b]);
26
          return true:
27
28
       void rollback() {
29
          while (changes.top().size()) {
30
              auto [a, b] = changes.top().top();
31
32
              changes.top().pop();
33
          }
34
          changes.pop();
36 };
```

4.1.4 DSU Rollback Bipartido

DSU com rollback e bipartido.

```
Codigo: full dsu.cpp
1 struct Full DSU {
      vector<int> par, sz, c, bip;
      int number_of_sets, all_bipartite;
      stack<stack<pair<int &, int>>> changes;
      Full_DSU(int n = 0)
          : par(n), sz(n, 1), c(n), bip(n, 1), number_of_sets(n), all_bipartite(1) {
          iota(par.begin(), par.end(), 0);
          changes.emplace();
9
10
      int find(int a) { return a == par[a] ? a : find(par[a]); }
      int color(int a) { return a == par[a] ? c[a] : c[a] ^ color(par[a]); }
11
      bool bipartite(int a) { return bip[find(a)]; }
13
      void checkpoint() { changes.emplace(); }
      void change(int &a, int b) {
14
          changes.top().emplace(a, a);
15
16
          a = b;
      }
17
      bool unite(int a, int b) {
18
          bool equal_color = color(a) == color(b);
19
          a = find(a), b = find(b);
20
21
          if (a == b) {
22
              if (equal_color) {
23
                 change(bip[a], 0);
24
                  change(all_bipartite, 0);
25
             }
26
              return false;
27
          if (sz[a] < sz[b]) {
28
29
              swap(a, b);
30
31
          change(number_of_sets, number_of_sets - 1);
32
          change(par[b], a);
33
          change(sz[a], sz[a] + sz[b]);
          change(bip[a], bip[a] && bip[b]);
34
35
          change(all_bipartite, all_bipartite && bip[a]);
36
          if (equal_color) {
37
              change(c[b], 1);
          }
38
          return true;
```

```
40  }
41  void rollback() {
42  while (changes.top().size()) {
43   auto [a, b] = changes.top().top();
44   a = b;
45   changes.top().pop();
46  }
47  changes.pop();
48  }
49 };
```

4.1.5 Offline DSU

Algoritmo que utiliza o Full DSU (DSU com Rollback e Bipartido) que permite adição e **remoção** de arestas. O algoritmo funciona de maneira offline, recebendo previamente todas as operações de adição e remoção de arestas, bem como todas as perguntas (de qualquer tipo, conectividade, bipartição, etc), e retornando as respostas para cada pergunta no retorno do método **solve**. Complexidade total $\mathcal{O}(q \cdot (\log q + \log n))$, onde q é o número de operações realizadas e n é o número de nodos.

```
Codigo: offline dsu.cpp
1 struct Offline_DSU : Full_DSU {
       int time:
       Offline_DSU(int n = 0) : Full_DSU(n), time(0) { }
      struct query {
          int type, a, b;
      };
       vector<query> queries;
       void askConnect(int a, int b) {
          if (a > b) {
10
              swap(a, b);
11
12
          queries.push_back({0, a, b});
13
          time++:
14
15
      void askBipartite(int a) {
16
          queries.push_back({1, a, -1});
```

```
17
          time++;
18
      }
19
      void askAllBipartite() {
20
          queries.push_back(\{2, -1, -1\});
21
22
23
      void addEdge(int a, int b) {
24
          if (a > b) {
25
              swap(a, b);
26
27
          queries.push_back({3, a, b});
28
29
30
      void removeEdge(int a, int b) {
31
          if (a > b) {
32
              swap(a, b);
33
34
          queries.push_back({4, a, b});
35
          time++;
      }
36
37
       vector<vector<pair<int, int>>> lazy;
       void update(int 1, int r, pair<int, int> edge, int u, int L, int R) {
38
39
          if (R < 1 || L > r) {
40
              return;
41
          }
          if (L >= 1 && R <= r) {</pre>
42
              lazy[u].push_back(edge);
44
              return;
45
46
          int mid = (L + R) / 2;
47
          update(1, r, edge, 2 * u, L, mid);
          update(1, r, edge, 2 * u + 1, mid + 1, R);
49
50
      void dfs(int u, int L, int R, vector<int> &ans) {
          if (L > R) {
51
52
              return:
53
          checkpoint();
54
          for (auto [a, b] : lazy[u]) {
55
56
              unite(a, b);
57
          }
58
          if (L == R) {
59
              auto [type, a, b] = queries[L];
60
              if (type == 0) {
61
                  ans.push_back(find(a) == find(b));
62
              } else if (type == 1) {
                  ans.push_back(bipartite(a));
63
```

```
} else if (type == 2) {
65
                  ans.push_back(all_bipartite);
66
67
          } else {
              int mid = (L + R) / 2:
68
69
              dfs(2 * u, L, mid, ans);
70
              dfs(2 * u + 1, mid + 1, R, ans);
71
          }
72
          rollback();
73
      }
74
       vector<int> solve() {
75
          lazy.assign(4 * time, {});
76
          map<pair<int, int>, int> edges;
77
          for (int i = 0; i < time; i++) {</pre>
78
              auto [type, a, b] = queries[i];
79
              if (type == 3) {
80
                  edges[{a, b}] = i;
81
              } else if (type == 4) {
82
                 update(edges[{a, b}], i, {a, b}, 1, 0, time - 1);
83
                  edges.erase({a, b});
84
              }
85
          }
86
          for (auto [k, v] : edges) {
87
              update(v, time - 1, k, 1, 0, time - 1);
88
          }
89
          vector<int> ans;
90
          dfs(1, 0, time - 1, ans);
91
          return ans:
92
     }
93 };
```

4.2 Fenwick Tree

4.2.1 Fenwick

Árvore de Fenwick (ou BIT) é uma estrutura de dados que permite atualizações pontuais e consultas de prefixos em um vetor em $\mathcal{O}(\log n)$. A implementação abaixo é 0-indexada (é mais comum encontrar a implementação 1-indexada). A consulta em ranges arbitrários com o método query

é possível para qualquer operação inversível, como soma, XOR, multiplicação, etc. A implementação abaixo é para soma, mas é fácil adaptar para outras operações. O método update soma d à posição i do vetor, enquanto o método updateSet substitue o valor da posição i do vetor por d.

Codigo: fenwick_tree.cpp

```
1 template <typename T> struct FenwickTree {
      vector<T> bit, arr;
      FenwickTree(int _n = 0) : n(_n), bit(n), arr(n) { }
       FenwickTree(vector<T> &v) : n(int(v.size())), bit(n), arr(v) {
          for (int i = 0; i < n; i++) {</pre>
              bit[i] = arr[i];
          for (int i = 0; i < n; i++) {</pre>
10
              int j = i | (i + 1);
11
              if (i < n) {
12
                  bit[j] = bit[j] + bit[i];
13
          }
14
15
16
      T pref(int x) {
17
          T res = T():
18
          for (int i = x; i \ge 0; i = (i & (i + 1)) - 1) {
19
              res = res + bit[i];
20
          }
21
          return res;
      T query(int 1, int r) {
24
          if (1 == 0) {
25
              return pref(r);
26
27
          return pref(r) - pref(l - 1);
28
29
      void update(int x, T d) {
          for (int i = x; i < n; i = i | (i + 1)) {
30
31
              bit[i] = bit[i] + d;
32
33
          arr[x] = arr[x] + d;
34
35
       void updateSet(int i. T d) {
36
          // funciona pra fenwick de soma
37
          update(i, d - arr[i]);
```

```
38 arr[i] = d;
39 }
40 };
```

4.2.2 Kd Fenwick Tree

Fenwick Tree em k dimensões. Faz apenas queries de prefixo e updates pontuais em $\mathcal{O}(\log^k(n))$. Para queries em range, deve-se fazer inclusão-exclusão, porém a complexidade fica exponencial, para k dimensões a query em range é $\mathcal{O}(2^k \log^k(n))$.

21

Codigo: kd_fenwick_tree.cpp

```
1 const int MAX = 20:
 2 long long tree [MAX] [MAX] [MAX] [MAX]; // insira o numero de dimensoes aqui
 4 long long query(vector<int> s, int pos = 0) { // s eh a coordenada
       long long sum = 0;
       while (s[pos] >= 0) {
          if (pos < (int)s.size() - 1) {</pre>
               sum += query(s, pos + 1);
10
               sum += tree[s[0]][s[1]][s[2]][s[3]];
11
              // atualizar se mexer no numero de dimensoes
12
          }
13
           s[pos] = (s[pos] & (s[pos] + 1)) - 1;
14
15
       return sum;
16 }
17
18 void update(vector<int> s, int v, int pos = 0) {
19
       while (s[pos] < MAX) {</pre>
20
           if (pos < (int)s.size() - 1) {</pre>
21
              update(s, v, pos + 1);
22
23
               tree[s[0]][s[1]][s[2]][s[3]] += v;
24
              // atualizar se mexer no numero de dimensoes
25
26
           s[pos] \mid = s[pos] + 1;
27
```

28 }

4.3 Interval Tree

Por Rafael Granza de Mello

Estrutura que trata intersecções de intervalos.

Capaz de retornar todos os intervalos que intersectam [L,R]. Contém métodos insert(L, R, ID), erase(L, R, ID), overlaps(L, R) e find(L, R, ID). É necessário inserir e apagar indicando tanto os limites quanto o ID do intervalo. Todas as operações são $\mathcal{O}(\log n)$, exceto overlaps que é $\mathcal{O}(k + \log n)$, onde k é o número de intervalos que intersectam [L,R]. Também podem ser usadas as operações padrões de um std:set

Codigo: interval_tree.cpp

```
1 #include <ext/pb_ds/assoc_container.hpp>
2 #include <ext/pb_ds/tree_policy.hpp>
3 using namespace __gnu_pbds;
5 struct interval {
      long long lo, hi, id;
      bool operator<(const interval &i) const {</pre>
          return tuple(lo, hi, id) < tuple(i.lo, i.hi, i.id);</pre>
9
10 }:
11
12 const long long INF = 1e18;
14 template <class CNI, class NI, class Cmp_Fn, class Allocator>
15 struct intervals_node_update {
      typedef long long metadata_type;
      int sz = 0;
17
      virtual CNI node_begin() const = 0;
      virtual CNI node_end() const = 0;
20
       inline vector<int> overlaps(const long long 1, const long long r) {
21
          queue<CNI> q;
```

```
q.push(node_begin());
23
          vector<int> vec;
24
          while (!q.empty()) {
25
              CNI it = q.front();
26
              q.pop();
27
              if (it == node_end()) {
28
                  continue:
29
30
              if (r >= (*it)->lo && l <= (*it)->hi) {
31
                  vec.push_back((*it)->id);
32
33
              CNI l_it = it.get_l_child();
34
              long long l_max = (l_it == node_end()) ? -INF : l_it.get_metadata();
35
              if (1 max >= 1) {
36
                  q.push(l_it);
37
38
              if ((*it)->lo <= r) {</pre>
39
                  q.push(it.get_r_child());
40
41
          }
42
          return vec;
43
44
       inline void operator()(NI it, CNI end_it) {
45
          const long long l_max =
46
              (it.get_l_child() == end_it) ? -INF : it.get_l_child().get_metadata();
47
          const long long r_max =
48
              (it.get_r_child() == end_it) ? -INF : it.get_r_child().get_metadata();
49
          const_cast<long long &>(it.get_metadata()) = max((*it)->hi, max(1_max, r_max));
50
51 };
52 typedef tree<interval, null_type, less<interval>, rb_tree_tag, intervals_node_update>
      interval_tree;
```

4.4 LiChao Tree

Uma árvore de funções. Retorna o f(x) máximo em um ponto x.

Para retornar o minimo deve-se inserir o negativo da função (g(x) = -ax - b) e pegar o negativo do resultado. Ou, alterar a função de comparação da árvore se souber mexer.

Funciona para funções com a seguinte propriedade, sejam duas funções f(x) e g(x), uma vez que f(x) passa a ganhar/perder pra g(x), f(x) nunca mais passa a perder/ganhar pra g(x). Em outras palavras, f(x) e g(x) se intersectam no máximo uma vez.

Essa implementação está pronta para usar função linear do tipo f(x) = ax + b.

Sendo L o tamanho do intervalo, a complexidade de consulta e inserção de funções é $\mathcal{O}(log(L))$.

Codigo: lichao tree.cpp

```
1 template <11 MINL = 11(-1e9 - 5), 11 MAXR = 11(1e9 + 5)> struct LichaoTree {
      const 11 INF = 11(2e18) + 10;
      struct Line {
          ll a, b;
          Line(ll a_{-} = 0, ll b_{-} = -INF) : a(a_{-}), b(b_{-}) { }
          11 operator()(11 x) { return a * x + b: }
      vector<Line> tree;
      vector<int> L, R;
10
      int newnode() {
11
12
          tree.push_back(Line());
13
          L.push_back(-1);
14
          R.push_back(-1);
          return int(tree.size()) - 1;
15
16
      }
17
      LichaoTree() { newnode(); }
18
19
20
      int le(int u) {
          if (L[u] == -1) {
21
              L[u] = newnode();
22
23
          }
24
          return L[u];
25
26
      int ri(int u) {
27
28
          if (R[u] == -1) {
29
              R[u] = newnode();
30
31
          return R[u];
```

```
34
       void insert(Line line, int n = 0, ll l = MINL, ll r = MAXR) {
35
           11 \text{ mid} = (1 + r) / 2;
36
           bool bl = line(1) > tree[n](1);
37
           bool bm = line(mid) > tree[n](mid);
38
           bool br = line(r) > tree[n](r);
39
           if (bm) {
40
               swap(tree[n], line);
41
42
           if (line.b == -INF) {
43
              return;
44
45
           if (bl != bm) {
46
               insert(line, le(n), l, mid - 1);
47
          } else if (br != bm) {
48
              insert(line, ri(n), mid + 1, r);
49
          }
      }
50
51
52
      ll query(int x, int n = 0, ll l = MINL, ll r = MAXR) {
53
           if (tree[n](x) == -INF \mid | (1 > r))
54
              return -INF;
55
           if (1 == r) {
56
              return tree[n](x);
57
          }
58
          11 \text{ mid} = (1 + r) / 2;
59
          if (x < mid) {
60
              return max(tree[n](x), query(x, le(n), 1, mid - 1));
61
62
              return max(tree[n](x), query(x, ri(n), mid + 1, r));
63
64
65 };
```

4.5 MergeSort Tree

Árvore que resolve queries que envolvam ordenação em range.

- Complexidade de construção : $\mathcal{O}(N * log(N))$
- Complexidade de consulta : $\mathcal{O}(log^2(N))$

24

MergeSort Tree com Update Pontual

Resolve Queries que envolvam ordenação em Range. (COM UPDATE)

1 segundo para vetores de tamanho $3*10^5$

- Complexidade de construção : $\mathcal{O}(N * log^2(N))$
- Complexidade de consulta : $\mathcal{O}(log^2(N))$
- Complexidade de update : $\mathcal{O}(log^2(N))$

Codigo: mergesort tree update.cpp

```
1 #include <ext/pb_ds/assoc_container.hpp>
2 #include <ext/pb_ds/tree_policy.hpp>
3
4 using namespace __gnu_pbds;
6 namespace mergesort {
      typedef tree<ii, null_type, less<ii>, rb_tree_tag,
           tree_order_statistics_node_update>
          ordered_set;
      const int MAX = 1e5 + 5;
10
11
      ordered set mgtree[4 * MAX]:
13
      vi values;
14
      int le(int n) { return 2 * n + 1; }
15
16
      int ri(int n) { return 2 * n + 2; }
17
18
      ordered_set join(ordered_set set_l, ordered_set set_r) {
19
          for (auto v : set_r) {
20
              set l.insert(v):
21
22
          return set_1;
23
24
      void build(int n, int esq, int dir) {
25
26
          if (esq == dir) {
27
              mgtree[n].insert(ii(values[esq], esq));
          } else {
```

```
int mid = (esq + dir) / 2;
30
              build(le(n), esq, mid);
31
              build(ri(n), mid + 1, dir);
32
              mgtree[n] = join(mgtree[le(n)], mgtree[ri(n)]);
33
          }
34
      }
35
      void build(vi &v) {
36
          n = v.size();
37
          values = v;
38
          build(0, 0, n - 1):
39
40
41
       int less(int n, int esq, int dir, int l, int r, int k) {
42
          if (esq > r || dir < 1) {
43
              return 0:
44
45
          if (1 <= esq && dir <= r) {</pre>
46
              return mgtree[n].order_of_key({k, -1});
47
48
          int mid = (esq + dir) / 2;
49
          return less(le(n), esq, mid, 1, r, k) + less(ri(n), mid + 1, dir, 1, r, k);
50
51
       int less(int 1, int r, int k) { return less(0, 0, n - 1, 1, r, k); }
52
53
       void update(int n, int esq, int dir, int x, int v) {
54
          if (esq > x \mid | dir < x) {
55
              return;
56
57
          if (esa == dir) {
58
              mgtree[n].clear(), mgtree[n].insert(ii(v, x));
59
60
              int mid = (esq + dir) / 2;
61
              if (x <= mid) {</pre>
62
                  update(le(n), esq, mid, x, v);
63
              } else {
64
                  update(ri(n), mid + 1, dir, x, v):
65
66
              mgtree[n].erase(ii(values[x], x));
67
              mgtree[n].insert(ii(v, x));
          }
68
69
70
       void update(int x, int v) {
71
          update(0, 0, n - 1, x, v);
72
          values[x] = v;
      }
73
74
75
       // ordered_set debug_query(int n, int esq, int
```

```
// dir, int 1, int r) {
77
       // if (esq > r || dir < 1) return
78
       // ordered_set(); if (1 <= esq && dir <=
79
       // r) return mgtree[n]; int mid = (esq +
       // dir) / 2: return
81
       // join(debug_query(le(n), esq, mid, 1,
       // r), debug_query(ri(n), mid+1, dir, l,
83
       // r));
84
       // }
       // ordered_set debug_query(int 1, int r)
       // {return debug_query(0, 0, n-1, 1, r);}
86
87
       // int greater(int n, int esq, int dir, int l,
       // int r, int k) {
       // if (esq > r || dir < 1) return 0;</pre>
91
       // if (1 <= esq && dir <= r) return
       // (r-l+1) - mgtree[n].order_of_key({k,
       // 1e8}): int mid = (esq + dir) / 2:
94
       // return greater(le(n), esq, mid, l, r,
       // k) + greater(ri(n), mid+1, dir, l, r,
96
       // k);
97
       // }
       // int greater(int 1, int r, int k) {return
99
       // greater(0, 0, n-1, 1, r, k);}
100 };
 Codigo: mergesort tree.cpp
 1 namespace mergesort {
       const int MAX = 1e5 + 5;
 3
 4
 5
       vi mgtree[4 * MAX];
 6
       int le(int n) { return 2 * n + 1; }
       int ri(int n) { return 2 * n + 2; }
 9
10
       void build(int n, int esq, int dir, vi &v) {
11
           mgtree[n] = vi(dir - esq + 1, 0);
12
           if (esq == dir) {
13
              mgtree[n][0] = v[esq];
14
          } else {
15
              int mid = (esq + dir) / 2;
              build(le(n), esq, mid, v);
16
17
              build(ri(n), mid + 1, dir, v);
              merge(mgtree[le(n)].begin(),
18
                    mgtree[le(n)].end(),
19
```

```
mgtree[ri(n)].begin(),
21
                   mgtree[ri(n)].end(),
22
                   mgtree[n].begin());
23
          }
24
      }
25
      void build(vi &v) {
26
          n = v.size():
27
          build(0, 0, n - 1, v);
28
      }
29
30
      int less(int n, int esq, int dir, int l, int r, int k) {
31
          if (esq > r || dir < 1) {</pre>
32
              return 0;
33
34
          if (1 <= esq && dir <= r) {</pre>
35
              return lower_bound(mgtree[n].begin(), mgtree[n].end(), k) -
                  mgtree[n].begin();
36
37
          int mid = (esq + dir) / 2;
38
          return less(le(n), esq, mid, 1, r, k) + less(ri(n), mid + 1, dir, 1, r, k);
39
40
      int less(int 1, int r, int k) { return less(0, 0, n - 1, 1, r, k); }
41
42
      // vi debug_query(int n, int esq, int dir, int
43
      // 1, int r) {
      // if (esq > r || dir < l) return vi();</pre>
45
      // if (1 <= esq && dir <= r) return
46
      // mgtree[n]; int mid = (esq + dir) / 2;
47
      // auto vl = debug_query(le(n), esq, mid,
      // l, r); auto vr = debug_query(ri(n),
      // mid+1, dir, l, r): vi ans =
50
     // vi(vl.size() + vr.size());
51
      // merge(vl.begin(), vl.end(),
      // vr.begin(), vr.end(),
      // ans.begin());
54
      // return ans:
55
      // }
56
      // vi debug_query(int 1, int r) {return
      // debug_query(0, 0, n-1, 1, r);}
58 };
```

4.6 Operation Queue

Fila que armazena o resultado do operatório dos itens (ou seja, dado uma fila, responde qual é o elemento mínimo, por exemplo). É uma extensão da std::queue, permitindo todos os métodos já presentes nela, com a diferença de que push e pop agora são add e remove, respectivamente, ambos continuam $\mathcal{O}(1)$ amortizado. A fila agora também permite a operação get que retorna o resultado do operatório dos itens da fila em $\mathcal{O}(1)$ amortizado. Chamar o método get em uma fila vazia é indefinido.

Obs: usa a estrutura Operation Stack.

```
Codigo: op queue.cpp
1 template <typename T, auto OP> struct op_queue : queue<T> {
      op_stack<T, OP> st1, st2;
      T get() {
          if (st1.empty()) {
              return st2.get();
          if (st2.empty()) {
              return st1.get();
10
          return OP(st1.get(), st2.get());
11
12
      void add(T element) {
13
          this->push(element);
          st1.add(element);
14
15
      void remove() {
16
17
          if (st2.empty()) {
18
              while (!st1.empty()) {
19
                 st2.add(st1.top());
20
                 st1.remove();
             }
21
22
23
          st2.remove():
24
          this->pop();
26 };
```

4.7 Operation Stack

Pilha que armazena o resultado do operatório dos itens (ou seja, dado uma pilha, responde qual é o elemento mínimo, por exemplo). É uma extensão da std::stack, permitindo todos os métodos já presentes nela, com a diferença de que push e pop agora são add e remove, respectivamente, ambos continuam $\mathcal{O}(1)$ amortizado. A pilha agora também permite a operação get que retorna o resultado do operatório dos itens da pilha em $\mathcal{O}(1)$ amortizado. Chamar o método get em uma pilha vazia é indefinido.

```
Codigo: op_stack.cpp

1 template <typename T, auto OP> struct op_stack : stack<T> {
2    stack<T> st;
3    T get() { return st.top(); }
4    void add(T element) {
5        this->push(element);
6        st.push(st.empty() ? element : OP(element, st.top()));
7    }
8    void remove() {
9        st.pop();
10        this->pop();
11    }
12 };
```

4.8 Ordered Set

Set com operações de busca por ordem e índice.

Pode ser usado como um std::set normal, a principal diferença são duas novas operações possíveis:

• find_by_order(k): retorna um iterador para o k-ésimo menor elemento no set (indexado em 0).

• order_of_key(k): retorna o número de elementos menores que k. (ou seja, o índice de k no set)

Ambas as operações são $\mathcal{O}(\log(n))$.

Também é possível criar um ordered_map, funciona como um std::map, mas com as operações de busca por ordem e índice. find_by_order(k) retorna um iterador para a k-ésima menor key no mapa (indexado em 0). order_of_key(k) retorna o número de keys no mapa menores que k. (ou seja, o índice de k no map).

Para simular um std::multiset, há várias formas:

- Usar um std::pair como elemento do set, com o primeiro elemento sendo o valor e o segundo sendo um identificador único para cada elemento. Para saber o número de elementos menores que k no multiset, basta usar order_of_key(k, -INF).
- Usar um ordered_map com a key sendo o valor e o value sendo o número de ocorrências do valor no multiset. Para saber o número de elementos menores que k no multiset, basta usar order_of_key(k).
- Criar o set trocando o parâmetro less<7> por less_equal<7>. Isso faz com que o set aceite elementos repetidos, e order_of_key(k) retorna o número de elementos menores ou iguais a k no multiset. Porém esse método não é recomendado pois gera algumas inconsistências, como por exemplo: upper_bound funciona como lower_bound e viceversa, find sempre retorna end() e erase por valor não funciona, só por iterador. Dá pra usar se souber o que está fazendo.

Exemplo de uso do ordered_set:

```
1 ordered_set<int> X;
2 X.insert(1);
```

```
3 X.insert(2);
 4 X.insert(4);
 5 X.insert(8);
 6 X.insert(16);
 7 cout << *X.find_by_order(1) << endl; // 2</pre>
 8 cout << *X.find_by_order(2) << endl; // 4</pre>
 9 cout << *X.find_by_order(4) << endl; // 16</pre>
10 cout << (end(X) == X.find_by_order(5)) << endl; // true
11 cout << X.order_of_key(-5) << endl; // 0
12 cout << X.order_of_key(1) << endl; // 0
13 cout << X.order_of_key(3) << endl; // 2
14 cout << X.order_of_key(4) << endl; // 2
15 cout << X.order_of_key(400) << endl; // 5
Exemplo de uso do ordered_map:
 1 ordered_map<int, int> Y;
 2 Y[1] = 10;
 3 Y[2] = 20;
 4 Y[4] = 40;
 5 Y[8] = 80;
 6 \text{ Y}[16] = 160:
 7 cout << Y.find_by_order(1)->first << endl; // 2</pre>
 8 cout << Y.find_by_order(1)->second << endl; // 20</pre>
 9 cout << Y.order_of_key(5) << endl; // 3</pre>
10 cout << Y.order_of_key(10) << endl; // 4
11 cout << Y.order_of_key(4) << endl; // 2
Codigo: ordered set.cpp
 1 #include <ext/pb_ds/assoc_container.hpp>
 2 #include <ext/pb_ds/tree_policy.hpp>
 4 using namespace __gnu_pbds;
 6 template <typename T>
 7 using ordered_set =
       tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
10 template <typename T, typename U>
11 using ordered_map = tree<T, U, less<T>, rb_tree_tag,
        tree_order_statistics_node_update>;
```

4.9 Segment Tree

4.9.1 Segment Tree

Implementação padrão de Segment Tree, suporta operações de consulta em intervalo e update pontual. Está implementada para soma, mas pode ser facilmente modificada para outras operações. A construção é $\mathcal{O}(n)$ e as operações de consulta e update são $\mathcal{O}(\log(n))$.

```
Codigo: seg tree.cpp
1 struct SegTree {
      ll merge(ll a, ll b) { return a + b; }
       const 11 neutral = 0;
      int n;
      vector<ll> t;
      void build(int u, int l, int r, const vector<ll> &v) {
          if (1 == r) {
10
              t[u] = v[1];
11
          } else {
12
              int mid = (1 + r) >> 1;
13
              build(u << 1, 1, mid, v);
14
              build(u << 1 | 1, mid + 1, r, v);
              t[u] = merge(t[u << 1], t[u << 1 | 1]);
15
16
          }
      }
17
18
19
      void build(int _n) { // pra construir com tamanho, mas vazia
20
          n = _n;
          t.assign(n << 2, neutral);</pre>
21
22
23
24
       void build(11 *bg, 11 *en) { // pra construir com array estatico
25
          n = int(en - bg);
26
          t.assign(n << 2, neutral);</pre>
27
          vector<ll> aux(n);
28
          for (int i = 0; i < n; i++) {</pre>
29
              aux[i] = bg[i];
30
          }
31
          build(1, 0, n - 1, aux);
```

```
32
      }
33
34
      void build(const vector<ll> &v) { // pra construir com vector
35
          n = int(v.size());
36
          t.assign(n << 2, neutral);</pre>
37
          build(1, 0, n - 1, v);
38
      }
39
40
      11 query(int u, int 1, int r, int L, int R) {
41
          if (1 > R | | r < L) {
42
              return neutral;
43
          }
44
          if (1 >= L && r <= R) {</pre>
45
              return t[u];
46
47
          int mid = (1 + r) >> 1;
48
          11 ql = query(u << 1, 1, mid, L, R);</pre>
          11 qr = query(u << 1 | 1, mid + 1, r, L, R);
          return merge(ql, qr);
50
51
      }
      11 query(int 1, int r) { return query(1, 0, n - 1, 1, r); }
52
53
54
       void update(int u, int l, int r, int i, ll x) {
55
          if (1 == r) {
56
              t[u] += x; // soma
57
              // t[u] = x; // substitui
58
59
              int mid = (1 + r) >> 1;
60
              if (i <= mid) {</pre>
61
                  update(u << 1, 1, mid, i, x);
62
63
                  update(u << 1 | 1, mid + 1, r, i, x);
64
65
              t[u] = merge(t[u << 1], t[u << 1 | 1]);
66
67
68
       void update(int i, ll x) { update(1, 0, n - 1, i, x); }
69 };
```

4.9.2 Segment Tree 2D

Segment Tree em 2 dimensões, suporta operações de update pontual e consulta em intervalo. A construção é $\mathcal{O}(n \cdot m)$ e as operações de consulta

```
e update são \mathcal{O}(log(n) \cdot log(m)).
Codigo: seg tree 2d.cpp
1 const int MAX = 2505:
3 int n, m, mat[MAX][MAX], tree[4 * MAX][4 * MAX];
5 int le(int x) { return 2 * x + 1; }
6 int ri(int x) { return 2 * x + 2: }
8 void build_v(int nx, int lx, int rx, int ny, int ly, int ry) {
      if (lv == rv) {
10
         if (lx == rx) {
11
              tree[nx][ny] = mat[lx][ly];
12
              tree[nx][ny] = tree[le(nx)][ny] + tree[ri(nx)][ny];
13
14
15
      } else {
          int my = (ly + ry) / 2;
16
17
          build_y(nx, lx, rx, le(ny), ly, my);
          build_y(nx, lx, rx, ri(ny), my + 1, ry);
19
          tree[nx][ny] = tree[nx][le(ny)] + tree[nx][ri(ny)];
20
21 }
22 void build_x(int nx, int lx, int rx) {
      if (lx != rx) {
          int mx = (1x + rx) / 2;
25
          build_x(le(nx), lx, mx);
26
          build_x(ri(nx), mx + 1, rx);
27
      build v(nx, lx, rx, 0, 0, m - 1):
30 void build() { build_x(0, 0, n - 1); }
32 void update_v(int nx, int lx, int rx, int ny, int ly, int ry, int x, int y, int v) {
      if (lv == rv) {
34
          if (lx == rx) {
35
              tree[nx][ny] = v;
36
              tree[nx][ny] = tree[le(nx)][ny] + tree[ri(nx)][ny];
37
38
         }
      } else {
40
          int my = (ly + ry) / 2;
41
          if (y <= my) {</pre>
42
              update_y(nx, lx, rx, le(ny), ly, my, x, y, v);
43
         } else {
              update_y(nx, lx, rx, ri(ny), my + 1, ry, x, y, v);
44
```

```
46
          tree[nx][ny] = tree[nx][le(ny)] + tree[nx][ri(ny)];
47
48 }
49 void update_x(int nx, int lx, int rx, int x, int y, int v) {
     if (lx != rx) {
51
          int mx = (1x + rx) / 2:
52
          if (x \le mx) {
53
              update_x(le(nx), lx, mx, x, y, v);
54
55
              update_x(ri(nx), mx + 1, rx, x, y, v);
56
57
      update_y(nx, lx, rx, 0, 0, m - 1, x, y, v);
59 }
60 void update(int x, int y, int v) { update_x(0, 0, n - 1, x, y, v); }
62 int sum_y(int nx, int ny, int ly, int ry, int qly, int qry) {
      if (ry < qly || ly > qry) {
64
          return 0;
65
66
      if (qly <= ly && ry <= qry) {</pre>
67
          return tree[nx][ny];
68
69
      int my = (1y + ry) / 2;
70
      return sum_y(nx, le(ny), ly, my, qly, qry) + sum_y(nx, ri(ny), my + 1, ry, qly,
71 }
72 int sum_x(int nx, int lx, int rx, int qlx, int qrx, int qly, int qry) {
      if (rx < qlx || lx > qrx) {
74
          return 0:
75
     }
76
      if (qlx <= lx && rx <= qrx) {</pre>
77
          return sum_y(nx, 0, 0, m - 1, qly, qry);
78
79
      int mx = (lx + rx) / 2:
      return sum_x(le(nx), lx, mx, qlx, qrx, qly, qry) +
80
81
             sum_x(ri(nx), mx + 1, rx, qlx, qrx, qly, qry);
83 int sum(int lx, int rx, int ly, int ry) { return sum_x(0, 0, n - 1, lx, rx, ly, ry); }
```

4.9.3 Segment Tree Beats Max And Sum Update

Segment Tree que suporta update de maximo, update de soma e query de soma. Utiliza uma fila de lazy para diferenciar os updates. A construção é $\mathcal{O}(n)$ e as operações de consulta e update são $\mathcal{O}(\log(n))$.

Codigo: seg_tree_beats_max_and_sum_update.cpp

```
1 #include <bits/stdc++.h>
2 using namespace std;
4 #define 11 long long
5 #define INF 1e9
6 #define fi first
7 #define se second
9 typedef pair<int, int> ii;
10
11 struct Node {
      int m1 = INF, m2 = INF, cont = 0;
      11 \text{ soma} = 0:
      queue<ii> lazy;
14
15
      void set(int v) {
16
17
          m1 = v:
18
          cont = 1:
19
          soma = v:
20
      }
21
      void merge(Node a, Node b) {
23
          m1 = min(a.m1, b.m1);
24
          m2 = INF:
25
          if (a.m1 != b.m1) {
26
              m2 = min(m2, max(a.m1, b.m1));
27
          }
28
          if (a.m2 != m1) {
              m2 = min(m2, a.m2):
29
30
          if (b.m2 != m1) {
31
32
              m2 = min(m2, b.m2);
33
34
          cont = (a.m1 == m1 ? a.cont : 0) + (b.m1 == m1 ? b.cont : 0);
35
          soma = a.soma + b.soma:
36
37
      void print() { printf("%d %d %d %lld\n", m1, m2, cont, soma); }
```

```
39 1:
40
41 int n, q;
42 vector<Node> tree:
44 int le(int n) { return 2 * n + 1; }
45 int ri(int n) { return 2 * n + 2; }
46
47 void push(int n, int esq, int dir) {
       while (!tree[n].lazv.emptv()) {
49
          ii p = tree[n].lazy.front();
50
          tree[n].lazy.pop();
51
          int op = p.fi, v = p.se;
52
          if (op == 0) {
              if (v <= tree[n].m1) {</pre>
53
54
                  continue;
55
              tree[n].soma += (11)abs(tree[n].m1 - v) * tree[n].cont;
56
57
              tree[n].m1 = v;
58
              if (esq != dir) {
59
                 tree[le(n)].lazy.push({0, v});
                  tree[ri(n)].lazy.push({0, v});
60
61
62
          } else if (op == 1) {
63
              tree[n].soma += v * (dir - esq + 1);
64
              tree[n].m1 += v:
65
              tree[n].m2 += v;
66
              if (esq != dir) {
67
                  tree[le(n)].lazy.push({1, v});
68
                  tree[ri(n)].lazy.push({1, v});
69
70
71
      }
72 }
73
74 void build(int n, int esq, int dir, vector<int> &v) {
75
       if (esq == dir) {
76
          tree[n].set(v[esq]);
77
      } else {
78
          int mid = (esq + dir) / 2;
79
          build(le(n), esq, mid, v);
80
          build(ri(n), mid + 1, dir, v);
81
          tree[n].merge(tree[le(n)], tree[ri(n)]);
82
83 }
84 void build(vector<int> &v) { build(0, 0, n - 1, v); }
```

30

```
86 // ai = max(ai, mi) em [1, r]
 87 void update(int n, int esq, int dir, int l, int r, int mi) {
       push(n, esq, dir);
       if (esq > r || dir < l || mi <= tree[n].m1) {</pre>
 91
 92
       if (1 <= esq && dir <= r && mi < tree[n].m2) {</pre>
 93
           tree[n].soma += (ll)abs(tree[n].m1 - mi) * tree[n].cont;
 94
           tree[n].m1 = mi;
           if (esa != dir) {
               tree[le(n)].lazy.push({0, mi});
               tree[ri(n)].lazy.push({0, mi});
 97
           }
       } else {
           int mid = (esq + dir) / 2;
100
101
           update(le(n), esq, mid, l, r, mi);
102
           update(ri(n), mid + 1, dir, l, r, mi);
103
           tree[n].merge(tree[le(n)], tree[ri(n)]);
104
105 }
106 void update(int 1, int r, int mi) { update(0, 0, n - 1, 1, r, mi); }
108 // soma v em [1, r]
109 void upsoma(int n, int esq, int dir, int 1, int r, int v) {
       push(n, esq, dir);
       if (esq > r || dir < 1) {</pre>
111
112
           return;
113
       if (1 <= esq && dir <= r) {</pre>
114
           tree[n].soma += v * (dir - esq + 1);
115
           tree[n].m1 += v:
116
117
           tree[n].m2 += v;
           if (esq != dir) {
118
               tree[le(n)].lazy.push({1, v});
119
120
               tree[ri(n)].lazy.push({1, v});
           }
121
122
       } else {
123
           int mid = (esq + dir) / 2;
           upsoma(le(n), esq, mid, 1, r, v);
124
125
           upsoma(ri(n), mid + 1, dir, 1, r, v);
126
           tree[n].merge(tree[le(n)], tree[ri(n)]);
127
128 }
129 void upsoma(int 1, int r, int v) { upsoma(0, 0, n - 1, 1, r, v); }
130
131 // soma de [1, r]
132 int query(int n, int esq, int dir, int 1, int r) {
```

```
push(n, esq, dir);
134
       if (esq > r || dir < 1) {</pre>
135
           return 0;
136
137
        if (1 <= esq && dir <= r) {</pre>
138
           return tree[n].soma;
139
140
       int mid = (esq + dir) / 2;
141
       return query(le(n), esq, mid, 1, r) + query(ri(n), mid + 1, dir, 1, r);
142 }
143 int query(int 1, int r) { return query(0, 0, n - 1, 1, r); }
145 int main() {
146
       cin >> n:
147
       tree.assign(4 * n, Node());
148
       build(v);
149 }
```

4.9.4 Segment Tree Beats Max Update

Segment Tree que suporta update de maximo e query de soma. A construção é $\mathcal{O}(n)$ e as operações de consulta e update são $\mathcal{O}(\log(n))$.

```
Codigo: seg tree beats.cpp
 1 #include <bits/stdc++.h>
 2 using namespace std;
 4 #define 11 long long
 5 #define INF 1e9
 7 struct Node {
      int m1 = INF, m2 = INF, cont = 0, lazy = 0;
      11 \text{ soma} = 0;
10
11
       void set(int v) {
12
          m1 = v:
13
          cont = 1:
14
          soma = v;
15
16
```

```
void merge(Node a, Node b) {
          m1 = min(a.m1, b.m1);
18
19
          m2 = INF:
20
          if (a.m1 != b.m1) {
              m2 = min(m2, max(a.m1, b.m1));
21
22
23
          if (a.m2 != m1) {
24
              m2 = min(m2, a.m2);
25
          if (b.m2 != m1) {
26
27
              m2 = min(m2, b.m2);
28
          cont = (a.m1 == m1 ? a.cont : 0) + (b.m1 == m1 ? b.cont : 0);
30
          soma = a.soma + b.soma:
31
      }
32
33
      void print() { printf("%d %d %d %lld %d\n", m1, m2, cont, soma, lazy); }
34 }:
35
36 int n, q;
37 vector<Node> tree;
39 int le(int n) { return 2 * n + 1: }
40 int ri(int n) { return 2 * n + 2; }
41
42 void push(int n, int esq, int dir) {
      if (tree[n].lazy <= tree[n].m1) {</pre>
44
          return:
45
      tree[n].soma += (ll)abs(tree[n].m1 - tree[n].lazy) * tree[n].cont;
      tree[n].m1 = tree[n].lazv;
47
48
      if (esq != dir) {
          tree[le(n)].lazy = max(tree[le(n)].lazy, tree[n].lazy);
          tree[ri(n)].lazy = max(tree[ri(n)].lazy, tree[n].lazy);
50
51
      tree[n].lazv = 0:
52
53 }
54
55 void build(int n, int esq, int dir, vector<int> &v) {
      if (esq == dir) {
57
          tree[n].set(v[esq]);
58
     } else {
59
          int mid = (esq + dir) / 2;
          build(le(n), esq, mid, v);
          build(ri(n), mid + 1, dir, v);
61
          tree[n].merge(tree[le(n)], tree[ri(n)]);
63
```

```
65 void build(vector<int> &v) { build(0, 0, n - 1, v); }
67 // ai = max(ai, mi) em [1, r]
68 void update(int n, int esq, int dir, int 1, int r, int mi) {
       push(n, esq, dir);
70
       if (esq > r || dir < l || mi <= tree[n].m1) {</pre>
71
           return:
72
73
       if (1 <= esq && dir <= r && mi < tree[n].m2) {</pre>
74
           tree[n].lazy = mi;
75
           push(n, esq, dir);
76
      } else {
77
           int mid = (esq + dir) / 2;
78
           update(le(n), esq, mid, 1, r, mi);
79
           update(ri(n), mid + 1, dir, l, r, mi);
80
           tree[n].merge(tree[le(n)], tree[ri(n)]);
81
      }
82 }
83 void update(int 1, int r, int mi) { update(0, 0, n - 1, 1, r, mi); }
85 // soma de [1, r]
86 int query(int n, int esq, int dir, int 1, int r) {
       push(n, esq, dir);
       if (esq > r || dir < 1) {</pre>
           return 0:
90
       if (1 <= esq && dir <= r) {</pre>
91
92
           return tree[n].soma:
93
94
       int mid = (esq + dir) / 2:
95
       return query(le(n), esq, mid, 1, r) + query(ri(n), mid + 1, dir, 1, r);
96 }
97 int query(int 1, int r) { return query(0, 0, n - 1, 1, r); }
99 int main() {
100
     cin >> n:
101
       tree.assign(4 * n, Node());
102 }
```

4.9.5 Segment Tree Esparsa

Segment Tree Esparsa, ou seja, não armazena todos os nós da árvore, apenas os necessários, dessa forma ela suporta operações em intervalos arbitrários. A construção é $\mathcal{O}(1)$ e as operações de consulta e update são $\mathcal{O}(\log(L))$, onde L é o tamanho do intervalo. A implementação suporta operações de consulta em intervalo e update pontual. Está implementada para soma, mas pode ser facilmente modificada para outras operações.

```
Codigo: seg tree sparse.cpp
1 template <11 MINL = 11(-1e9 - 5), 11 MAXR = 11(1e9 + 5)> struct SegTree {
      const 11 neutral = 0;
      struct node {
          ll val:
          int L, R;
          node(ll \ v) : val(v), L(-1), R(-1) \{ \}
      };
8
      ll merge(ll a, ll b) { return a + b; }
10
      vector<node> t;
11
12
      int newnode() {
13
          t.push_back(node(neutral));
14
          return int(t.size() - 1);
15
16
      SegTree() { newnode(); }
17
18
19
      int le(int u) {
          if (t[u].L == -1) {
20
21
              t[u].L = newnode();
23
          return t[u].L;
      }
24
25
26
      int ri(int u) {
27
          if (t[u].R == -1) {
28
              t[u].R = newnode();
29
         }
          return t[u].R;
30
31
```

```
33
       11 query(int u, 11 1, 11 r, 11 L, 11 R) {
          if (1 > R || r < L) {
34
35
              return neutral:
36
37
           if (1 >= L && r <= R) {
38
              return t[u].val:
39
          }
40
          11 \text{ mid} = 1 + (r - 1) / 2;
41
           11 ql = query(le(u), 1, mid, L, R);
42
          ll gr = guery(ri(u), mid + 1, r, L, R);
43
           return merge(ql, qr);
44
      }
45
       11 query(11 1, 11 r) { return query(0, MINL, MAXR, 1, r); }
46
       void update(int u, 11 1, 11 r, 11 i, 11 x) {
47
48
           debug(u, 1, r);
49
           if (1 == r) {
50
              t[u].val += x; // soma
51
              // t[u].val = x; // substitui
52
              return:
53
54
          11 \text{ mid} = 1 + (r - 1) / 2:
55
           if (i <= mid) {</pre>
56
              update(le(u), l, mid, i, x);
57
58
              update(ri(u), mid + 1, r, i, x);
59
60
           t[u].val = merge(t[le(u)].val, t[ri(u)].val);
61
       void update(ll i, ll x) { update(0, MINL, MAXR, i, x); }
63 };
```

4.9.6 Segment Tree Kadane

Implementação de uma Segment Tree que suporta update pontual e query de soma máxima de um subarray em um intervalo. A construção é $\mathcal{O}(n)$ e as operações de consulta e update são $\mathcal{O}(\log(n))$.

33

É uma Seg Tree normal, a magia está na função merge que é a função que computa a resposta do nodo atual. A ideia do merge da Seg Tree de Kadane

de combinar respostas e informações já computadas dos filhos é muito útil e pode ser aplicada em muitos problemas.

Obs: não considera o subarray vazio como resposta.

```
Codigo: seg tree kadane.cpp
1 struct SegTree {
      struct node {
          11 sum, pref, suf, ans;
      };
       const node neutral = \{0, 0, 0, 0\}:
      node merge(const node &a. const node &b) {
7
          return {a.sum + b.sum,
8
                 max(a.pref, a.sum + b.pref),
                 max(b.suf, b.sum + a.suf),
                 max({a.ans, b.ans, a.suf + b.pref}));
10
      }
11
12
13
      int n:
14
      vector<node> t;
15
      void build(int u, int 1, int r, const vector<11> &v) {
16
17
          if (1 == r) {
              t[u] = \{v[1], v[1], v[1], v[1]\};
18
19
          } else {
20
              int mid = (1 + r) >> 1;
21
              build(u << 1, 1, mid, v);
              build(u << 1 | 1, mid + 1, r, v);
23
              t[u] = merge(t[u << 1], t[u << 1 | 1]);
24
          }
      }
25
26
      void build(int _n) { // pra construir com tamanho, mas vazia
28
29
          t.assign(n << 2, neutral);</pre>
30
31
      void build(l1 *bg, l1 *en) { // pra construir com array estatico
32
33
          n = int(en - bg);
34
          t.assign(n << 2, neutral);</pre>
35
          vector<ll> aux(n):
          for (int i = 0; i < n; i++) {</pre>
37
              aux[i] = bg[i];
38
39
          build(1, 0, n - 1, aux);
```

```
42
       void build(const vector<11> &v) { // pra construir com vector
43
          n = int(v.size());
44
          t.assign(n << 2, neutral);</pre>
45
          build(1, 0, n - 1, v);
46
      }
47
48
       node query(int u, int l, int r, int L, int R) {
49
          if (1 > R || r < L) {
50
              return neutral:
51
          if (1 >= L && r <= R) {
52
53
              return t[u];
54
55
          int mid = (1 + r) >> 1;
56
          node ql = query(u \ll 1, l, mid, L, R);
57
          node qr = query(u \ll 1 \mid 1, mid + 1, r, L, R);
58
          return merge(al, ar);
59
60
      ll query(int 1, int r) { return query(1, 0, n - 1, 1, r).ans; }
61
62
       void update(int u, int 1, int r, int i, ll x) {
63
          if (1 == r) {
64
              t[u] = \{x, x, x, x\};
65
          } else {
66
              int mid = (1 + r) >> 1;
67
              if (i <= mid) {</pre>
68
                  update(u << 1, 1, mid, i, x);
69
              } else {
70
                  update(u << 1 | 1, mid + 1, r, i, x);
71
72
              t[u] = merge(t[u << 1], t[u << 1 | 1]);
73
          }
      }
74
       void update(int i, ll x) { update(1, 0, n - 1, i, x); }
76 };
```

4.9.7 Segment Tree Lazy

Lazy Propagation é uma técnica para updatar a Segment Tree que te permite fazer updates em intervalos, não necessariamente pontuais. Esta implementação responde consultas de soma em intervalo e updates de soma

ou atribuição em intervalo, veja o método update.

A construção é $\mathcal{O}(n)$ e as operações de consulta e update são $\mathcal{O}(\log(n))$.

```
Codigo: seg tree lazy.cpp
1 struct SegTree {
      11 merge(ll a, ll b) { return a + b; }
       const 11 neutral = 0;
      int n:
      vector<ll> t. lazv:
      vector<bool> replace;
9
      void push(int u, int 1, int r) {
10
          if (replace[u]) {
              t[u] = lazy[u] * (r - 1 + 1);
11
12
              if (1 != r) {
                 lazy[u << 1] = lazy[u];</pre>
13
                 lazy[u << 1 | 1] = lazy[u];
14
                 replace[u << 1] = replace[u];
15
                 replace[u << 1 | 1] = replace[u];</pre>
16
17
18
          } else if (lazy[u] != 0) {
19
              t[u] += lazy[u] * (r - 1 + 1);
20
              if (1 != r) {
21
                 lazy[u << 1] += lazy[u];</pre>
                 lazy[u << 1 | 1] += lazy[u];
23
              }
          }
24
25
          replace[u] = false;
26
          lazv[u] = 0;
27
28
      void build(int u, int 1, int r, const vector<11> &v) {
29
30
          if (1 == r) {
31
              t[u] = v[1];
32
          } else {
33
              int mid = (1 + r) / 2;
34
              build(u << 1, 1, mid, v);
              build(u << 1 | 1, mid + 1, r, v):
35
              t[u] = merge(t[u << 1], t[u << 1 | 1]);
36
37
38
39
```

```
40
       void build(int _n) { // pra construir com tamanho, mas vazia
41
42
           t.assign(n << 2, neutral);</pre>
43
           lazy.assign(n << 2, 0);
44
           replace.assign(n << 2, false);</pre>
45
      }
46
47
       void build(l1 *bg, l1 *en) { // pra construir com array estatico
48
           n = int(en - bg);
49
           t.assign(n << 2, neutral);</pre>
50
           lazy.assign(n << 2, 0);
           replace.assign(n << 2, false);</pre>
51
52
           vector<ll> aux(n);
53
           for (int i = 0; i < n; i++) {</pre>
54
               aux[i] = bg[i];
55
56
           build(1, 0, n - 1, aux);
57
      }
58
59
       void build(const vector<ll> &v) { // pra construir com vector
60
           n = int(v.size());
           t.assign(n << 2, neutral);</pre>
61
62
           lazy.assign(n << 2, 0);
63
           replace.assign(n << 2, false);</pre>
64
           build(1, 0, n - 1, v);
65
      }
66
67
       11 query(int u, int l, int r, int L, int R) {
68
           push(u, 1, r);
69
           if (1 > R || r < L) {</pre>
              return neutral:
70
71
72
           if (1 >= L && r <= R) {</pre>
73
              return t[u];
74
75
           int mid = (1 + r) >> 1:
76
           11 ql = query(u << 1, 1, mid, L, R);</pre>
77
           11 qr = query(u << 1 | 1, mid + 1, r, L, R);
78
           return merge(ql, qr);
79
       }
80
       ll query(int 1, int r) { return query(1, 0, n - 1, 1, r); }
81
82
       void update(int u, int 1, int r, int L, int R, 11 val, bool repl) {
83
           push(u, 1, r);
84
           if (1 > R || r < L) {
85
              return;
86
```

CAPÍTULO 4. ESTRUTURAS DE DADOS

```
87
           if (1 >= L && r <= R) {
88
               lazy[u] = val;
89
               replace[u] = repl;
90
               push(u, 1, r);
91
          } else {
92
               int mid = (1 + r) >> 1;
93
               update(u << 1, 1, mid, L, R, val, repl);
94
               update(u << 1 | 1, mid + 1, r, L, R, val, repl);
               t[u] = merge(t[u << 1], t[u << 1 | 1]);
          }
97
       void update(int 1, int r, 11 val, bool repl = false) {
98
99
           update(1, 0, n - 1, 1, r, val, repl);
100
101 };
```

4.9.8 Segment Tree Persisente

Seg Tree Esparsa com histórico de Updates:

- Complexidade de tempo (Pré-processamento): $\mathcal{O}(N * log(N))$
- Complexidade de tempo (Consulta em intervalo): $\mathcal{O}(log(N))$
- Complexidade de tempo (Update em ponto): $\mathcal{O}(log(N))$
- Para fazer consulta em um tempo específico basta indicar o tempo na query

```
Codigo: seg_tree_persistent.cpp
1 namespace seg {
2    const ll ESQ = 0, DIR = 1e9 + 7;
3    struct node {
4         ll v = 0;
5         node *1 = NULL, *r = NULL;
6         node() { }
```

```
node(ll v) : v(v) \{ \}
          node(node *1, node *r) : 1(1), r(r) { v = 1->v + r->v; }
          void apply() {
10
              if (1 == NULL) {
11
                  1 = new node():
12
13
              if (r == NULL) {
14
                  r = new node();
15
          }
16
17
      };
18
       vector<node *> roots:
       void build() { roots.push_back(new node()); }
20
       void push(node *n, int esq, int dir) {
21
          if (esq != dir) {
22
              n->apply();
23
          }
24
      }
25
26
       node *update(node *n, int esq, int dir, int x, int v) {
27
          push(n, esq, dir);
28
          if (esq == dir) {
29
              return new node(n->v + v);
30
31
          int mid = (esq + dir) / 2;
32
          if (x <= mid) {</pre>
33
              return new node(update(n->1, esq, mid, x, v), n->r);
34
35
              return new node(n->1, update(n->r, mid + 1, dir, x, v));
36
          }
37
38
       int update(int root, int pos, int val) {
39
          node *novo = update(roots[root], ESQ, DIR, pos, val);
40
          roots.push_back(novo);
41
          return roots.size() - 1;
42
43
      // sum in [L, R]
44
      11 query(node *n, int esq, int dir, int 1, int r) {
          push(n, esq, dir);
46
          if (esq > r || dir < 1) {</pre>
47
              return 0;
48
49
          if (1 <= esq && dir <= r) {</pre>
50
              return n->v;
51
          }
52
          int mid = (esq + dir) / 2;
          return query(n->1, esq, mid, 1, r) + query(n->r, mid + 1, dir, 1, r);
53
```

CAPÍTULO 4. ESTRUTURAS DE DADOS

```
54
      11 query(int root, int 1, int r) { return query(roots[root], ESQ, DIR, 1, r); }
      // kth min number in [L, R] (l_root can not be
57
58
      int kth(node *L, node *R, int esq, int dir, int k) {
          push(L, esq, dir);
59
          push(R, esq, dir);
61
          if (esq == dir) {
              return esq;
64
          int mid = (esq + dir) / 2;
          int cont = R->1->v - L->1->v;
          if (cont >= k) {
              return kth(L->1, R->1, esq, mid, k);
              return kth(L->r, R->r, mid + 1, dir, k - cont);
70
      }
71
      int kth(int l_root, int r_root, int k) {
          return kth(roots[l_root - 1], roots[r_root], ESQ, DIR, k);
73
74
75 };
```

4.10 Sparse Table

4.10.1 Disjoint Sparse Table

Uma Sparse Table melhorada, construção ainda em $\mathcal{O}(n \log n)$, mas agora suporta queries de **qualquer** operação associativa em $\mathcal{O}(1)$, não precisando mais ser idempotente.

Codigo: dst.cpp

```
1 struct DisjointSparseTable {
2    int n, LG;
3    vector<vector<1l>> st;
4    ll merge(ll a, ll b) { return a + b; }
5    const ll neutral = 0;
6    void build(vector<1l> &v) {
```

```
int sz = (int)v.size();
          while (n < sz) {
10
              n <<= 1. LG++:
11
12
          st = vector<vector<ll>>(LG, vector<ll>(n));
13
          for (int i = 0; i < n; i++) {</pre>
14
              st[0][i] = i < sz ? v[i] : neutral;
15
16
          for (int i = 1; i < LG - 1; i++) {</pre>
17
              for (int j = (1 << i); j < n; j += (1 << (i + 1))) {
18
                 st[i][j] = st[0][j];
19
                 st[i][j-1] = st[0][j-1];
20
                 for (int k = 1; k < (1 << i); k++) {
21
                     st[i][j + k] = merge(st[i][j + k - 1], st[0][j + k]);
22
                     st[i][j-1-k] = merge(st[0][j-k-1], st[i][j-k]);
23
24
              }
25
          }
26
      }
27
      11 query(int 1, int r) {
28
          if (1 == r) {
29
              return st[0][1];
30
31
          int i = 31 - __builtin_clz(l ^ r);
32
          return merge(st[i][1], st[i][r]);
33
34 } dst;
```

4.10.2 Sparse Table

Precomputa em $\mathcal{O}(n \log n)$ uma tabela que permite responder consultas de mínimo/máximo em intervalos em $\mathcal{O}(1)$.

A implementação atual é para mínimo, mas pode ser facilmente modificada para máximo ou outras operações.

A restrição é de que a operação deve ser associativa e idempotente (ou seja, f(x,x) = x).

Exemplos de operações idempotentes: min, max, gcd, lcm.

Exemplos de operações não idempotentes: soma, xor, produto.

Obs: não suporta updates.

```
Codigo: sparse_table.cpp
```

```
1 struct SparseTable {
      int n, LG;
      vector<vector<ll>>> st;
      ll merge(ll a, ll b) { return min(a, b); }
      const ll neutral = 1e18;
      void build(vector<11> &v) {
          n = (int)v.size();
          LG = 32 - __builtin_clz(n);
          st = vector<vector<ll>>(LG, vector<ll>(n));
          for (int i = 0; i < n; i++) {</pre>
              st[0][i] = v[i];
11
12
          }
          for (int i = 0; i < LG - 1; i++) {</pre>
13
14
              for (int j = 0; j + (1 << i) < n; j++) {</pre>
                  st[i + 1][j] = merge(st[i][j], st[i][j + (1 << i)]);
15
              }
16
          }
17
18
19
      11 query(int 1, int r) {
          if (1 > r)
20
21
              return neutral;
          int i = 31 - __builtin_clz(r - 1 + 1);
          return merge(st[i][1], st[i][r - (1 << i) + 1]);</pre>
^{24}
25 };
```

Capítulo 5

Grafos

5.1 2 SAT

Resolve problema do 2-SAT.

• Complexidade de tempo: $\mathcal{O}(N+M)$

N é o número de variáveis e M é o número de cláusulas.

A configuração da solução fica guardada no vetor assignment.

Em relaçõa ao sinal, tanto faz se 0 liga ou desliga, apenas siga o mesmo padrão.

Codigo: 2_sat.cpp

```
1 struct sat2 {
2    int n;
3    vector<vector<int>> g, gt;
4    vector<bool> used;
5    vector<int> order, comp;
6    vector<bool> assignment;
7
8    // number of variables
9    sat2(int _n) {
10     n = 2 * (_n + 5);
```

```
11
           g.assign(n, vector<int>());
12
           gt.assign(n, vector<int>());
13
14
       void add_edge(int v, int u, bool v_sign, bool u_sign) {
15
           g[2 * v + v\_sign].push\_back(2 * u + !u\_sign);
16
          g[2 * u + u\_sign].push\_back(2 * v + !v\_sign);
17
          gt[2 * u + !u_sign].push_back(2 * v + v_sign);
18
           gt[2 * v + !v_sign].push_back(2 * u + u_sign);
19
20
       void dfs1(int v) {
21
           used[v] = true;
22
          for (int u : g[v]) {
23
              if (!used[u]) {
24
                  dfs1(u);
25
26
          }
27
           order.push_back(v);
28
29
       void dfs2(int v, int cl) {
30
           comp[v] = cl;
31
           for (int u : gt[v]) {
32
              if (comp[u] == -1) {
33
                  dfs2(u, c1);
34
35
36
37
       bool solve() {
           order.clear();
39
           used.assign(n, false);
40
          for (int i = 0; i < n; ++i) {</pre>
41
              if (!used[i]) {
```

```
40
```

```
42
                  dfs1(i);
43
              }
          }
44
45
46
          comp.assign(n, -1);
47
          for (int i = 0, j = 0; i < n; ++i) {
              int v = order[n - i - 1];
48
49
              if (comp[v] == -1) {
50
                  dfs2(v, j++);
51
          }
52
53
          assignment.assign(n / 2, false);
54
55
          for (int i = 0; i < n; i += 2) {
              if (comp[i] == comp[i + 1]) {
56
57
                 return false;
58
              assignment[i / 2] = comp[i] > comp[i + 1];
59
          }
61
          return true;
62
63 };
```

5.2 Binary Lifting

Usa uma sparse table para calcular o k-ésimo ancestral de u. Pode ser usada com o algoritmo de EulerTour para calcular o LCA. Complexidade de tempo:

- Pré-processamento: $\mathcal{O}(N * log(N))$
- Consulta do k-ésimo ancestral de u: $\mathcal{O}(log(N))$
- LCA: $\mathcal{O}(log(N))$

Complexidade de espaço: $\mathcal{O}(Nlog(N))$

```
Codigo: binary lifting lca.cpp
 1 namespace st {
       int n, me, timer;
       vector<int> tin, tout;
       vector<vector<int>> st:
       void et_dfs(int u, int p) {
          tin[u] = ++timer;
          st[u][0] = p;
          for (int i = 1; i <= me; i++) {</pre>
              st[u][i] = st[st[u][i - 1]][i - 1];
10
          }
          for (int v : adj[u]) {
11
12
              if (v != p) {
13
                  et_dfs(v, u);
14
15
          }
16
          tout[u] = ++timer;
17
18
       void build(int _n, int root = 0) {
19
          n = _n;
20
          tin.assign(n, 0);
21
          tout.assign(n, 0);
22
          timer = 0:
23
          me = floor(log2(n));
24
          st.assign(n, vector<int>(me + 1, 0));
25
          et_dfs(root, root);
26
27
       bool is_ancestor(int u, int v) { return tin[u] <= tin[v] && tout[u] >= tout[v]; }
28
       int lca(int u, int v) {
29
          if (is_ancestor(u, v)) {
30
              return u:
31
32
          if (is_ancestor(v, u)) {
33
              return v;
34
35
          for (int i = me: i >= 0: i--) {
36
              if (!is_ancestor(st[u][i], v)) {
37
                  u = st[u][i];
38
39
          }
40
          return st[u][0];
41
42
       int ancestor(int u,
43
                  int k) { // k-th ancestor of u
44
          for (int i = me; i >= 0; i--) {
45
              if ((1 << i) & k) {</pre>
                 u = st[u][i];
```

```
41
```

```
47
48
          return u;
50
51 }
Codigo: binary lifting.cpp
1 namespace st {
      int n, me;
       vector<vector<int>> st;
       void bl_dfs(int u, int p) {
          st[u][0] = p;
          for (int i = 1; i <= me; i++) {</pre>
              st[u][i] = st[st[u][i - 1]][i - 1];
          }
9
          for (int v : adj[u]) {
10
              if (v != p) {
11
                 bl_dfs(v, u);
12
13
          }
14
15
       void build(int _n, int root = 0) {
16
          n = _n;
17
          me = floor(log2(n));
18
          st.assign(n, vector<int>(me + 1, 0));
19
          bl_dfs(root, root);
20
21
       int ancestor(int u,
22
                  int k) { // k-th ancestor of u
23
          for (int i = me; i >= 0; i--) {
24
              if ((1 << i) & k) {</pre>
25
                 u = st[u][i];
26
              }
27
          }
28
          return u;
29
      }
30 }
```

5.3 Bridge

Algoritmo que acha pontes utilizando uma dfs

```
Complexidade de tempo: \mathcal{O}(N+M)
Codigo: find bridges.cpp
 1 int n; // number of nodes
 2 vector<vector<int>> adj; // adjacency list of graph
 4 vector<bool> visited;
 5 vector<int> tin, low;
 6 int timer;
 8 void dfs(int u, int p = -1) {
      visited[u] = true;
      tin[u] = low[u] = timer++;
11
      for (int v : adj[u]) {
12
          if (v == p) {
13
              continue;
14
          }
15
          if (visited[v]) {
16
              low[u] = min(low[u], tin[v]);
17
          } else {
18
              dfs(v, u);
19
              low[u] = min(low[u], low[v]);
20
              if (low[v] > tin[u]) {
21
                 // edge UV is a bridge
22
                 // do_something(u, v)
23
24
          }
25
      }
26 }
27
28 void find_bridges() {
      timer = 0;
     visited.assign(n, false);
     tin.assign(n, -1);
32
      low.assign(n, -1);
33
      for (int i = 0; i < n; ++i) {</pre>
34
          if (!visited[i]) {
35
              dfs(i);
36
37
38 }
```

5.4 Fluxo

Conjunto de algoritmos para calcular o fluxo máximo em redes de fluxo.

Muito útil para grafos bipartidos e para grafos com muitas arestas Complexidade de tempo: $\mathcal{O}(V*E)$, mas em grafo bipartido a complexidade é $\mathcal{O}(sqrt(V)*E)$

Útil para grafos com poucas arestas

Complexidade de tempo: $\mathcal{O}(V * E)$

Computa o fluxo máximo com custo mínimo

Complexidade de tempo: $\mathcal{O}(V * E)$

${\bf Codigo:\ EdmondsKarp.cpp}$

```
1 const long long INF = 1e18;
3 struct FlowEdge {
      int u, v;
      long long cap, flow = 0;
      FlowEdge(int u, int v, long long cap) : u(u), v(v), cap(cap) { }
7 };
9 struct EdmondsKarp {
10
      int n, s, t, m = 0, vistoken = 0;
11
      vector<FlowEdge> edges;
12
      vector<vector<int>> adj;
13
      vector<int> visto;
14
      EdmondsKarp(int n, int s, int t) : n(n), s(s), t(t) {
15
16
          adj.resize(n);
17
          visto.resize(n);
18
```

```
19
20
       void add_edge(int u, int v, long long cap) {
21
          edges.emplace_back(u, v, cap);
22
          edges.emplace_back(v, u, 0);
23
          adj[u].push_back(m);
24
          adj[v].push_back(m + 1);
25
          m += 2:
26
      }
27
28
       int bfs() {
29
          vistoken++;
30
          queue<int> fila;
31
          fila.push(s);
32
          vector<int> pego(n, -1);
33
          while (!fila.empty()) {
34
              int u = fila.front();
35
              if (u == t) {
36
                  break:
37
38
              fila.pop();
39
              visto[u] = vistoken;
40
              for (int id : adj[u]) {
41
                  if (edges[id].cap - edges[id].flow < 1) {</pre>
42
                     continue;
43
                  }
44
                  int v = edges[id].v;
45
                  if (visto[v] == -1) {
46
                     continue;
47
                  }
48
                  fila.push(v);
49
                  pego[v] = id;
50
51
          if (pego[t] == -1) {
52
53
              return 0;
54
55
          long long f = INF;
56
          for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
57
              f = min(f, edges[id].cap - edges[id].flow);
58
59
          for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
60
              edges[id].flow += f:
61
              edges[id ^ 1].flow -= f;
62
          }
63
          return f;
64
65
```

```
43
```

```
66
      long long flow() {
67
          long long maxflow = 0;
68
          while (long long f = bfs()) {
69
              maxflow += f;
          }
70
71
          return maxflow;
72
73 };
Codigo: MinCostMaxFlow.cpp
1 struct MinCostMaxFlow {
      int n, s, t, m = 0;
      11 maxflow = 0, mincost = 0;
      vector<FlowEdge> edges;
      vector<vector<int>> adj;
      MinCostMaxFlow(int n, int s, int t) : n(n), s(s), t(t) { adj.resize(n); }
9
      void add_edge(int u, int v, ll cap, ll cost) {
10
          edges.emplace_back(u, v, cap, cost);
11
          edges.emplace_back(v, u, 0, -cost);
          adj[u].push_back(m);
12
13
          adj[v].push_back(m + 1);
          m += 2:
14
15
      }
16
17
      bool spfa() {
18
          vector<int> pego(n, -1);
19
          vector<ll> dis(n, INF);
20
          vector<bool> inq(n, false);
21
          queue<int> fila;
22
          fila.push(s);
23
          dis[s] = 0;
24
          inq[s] = 1;
25
          while (!fila.empty()) {
26
              int u = fila.front();
27
              fila.pop();
28
              inq[u] = false;
29
              for (int id : adj[u]) {
30
                 if (edges[id].cap - edges[id].flow < 1) {</pre>
31
                     continue:
32
                 }
33
                 int v = edges[id].v;
34
                 if (dis[v] > dis[u] + edges[id].cost) {
                     dis[v] = dis[u] + edges[id].cost;
35
                     pego[v] = id;
36
```

```
if (!inq[v]) {
38
                         inq[v] = true;
39
                         fila.push(v);
40
41
                 }
42
43
44
45
          if (pego[t] == -1) {
46
              return 0:
47
48
          11 f = INF:
49
          for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
50
              f = min(f, edges[id].cap - edges[id].flow);
51
              mincost += edges[id].cost;
52
          for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
53
54
              edges[id].flow += f;
55
              edges[id ^ 1].flow -= f;
56
          }
57
          maxflow += f;
58
          return 1;
59
      }
60
61
      11 flow() {
62
          while (spfa())
63
64
          return maxflow;
65
     }
66 };
Codigo: Dinic.cpp
 1 typedef long long 11;
 3 const ll INF = 1e18:
 5 struct FlowEdge {
      int u, v;
      11 \text{ cap, flow = 0;}
       FlowEdge(int u, int v, ll cap) : u(u), v(v), cap(cap) { }
 9 };
10
11 struct Dinic {
12
      vector<FlowEdge> edges;
13
      vector<vector<int>> adj;
      int n, s, t, m = 0;
```

```
15
       vector<int> level, ptr;
16
       queue<int> q;
17
18
       Dinic(int n, int s, int t) : n(n), s(s), t(t) {
          adi.resize(n):
19
20
          level.resize(n);
21
          ptr.resize(n);
22
      }
23
24
       void add_edge(int u, int v, ll cap) {
25
          edges.emplace_back(u, v, cap);
26
          edges.emplace_back(v, u, 0);
27
          adj[u].push_back(m);
28
          adj[v].push_back(m + 1);
29
          m += 2;
      }
30
31
       bool bfs() {
33
          while (!q.empty()) {
34
              int u = q.front();
35
              q.pop();
              for (int id : adj[u]) {
36
37
                  if (edges[id].cap - edges[id].flow < 1) {</pre>
                      continue;
39
40
                  int v = edges[id].v;
                  if (level[v] != -1) {
41
42
                      continue;
43
44
                  level[v] = level[u] + 1;
45
                  q.push(v);
              }
46
47
          return level[t] != -1;
48
49
50
51
       11 dfs(int u, 11 f) {
52
          if (f == 0) {
              return 0;
53
54
          }
55
          if (u == t) {
56
              return f:
57
58
          for (int &cid = ptr[u]; cid < (int)adj[u].size(); cid++) {</pre>
              int id = adj[u][cid];
59
60
              int v = edges[id].v;
              if (level[u] + 1 != level[v] || edges[id].cap - edges[id].flow < 1) {</pre>
61
```

```
continue;
63
64
              ll tr = dfs(v, min(f, edges[id].cap - edges[id].flow));
65
              if (tr == 0) {
66
                 continue:
67
68
              edges[id].flow += tr;
69
              edges[id ^ 1].flow -= tr;
70
              return tr;
          }
71
72
          return 0;
73
      }
74
      11 flow() {
76
          11 maxflow = 0;
77
          while (true) {
78
              fill(level.begin(), level.end(), -1);
79
              level[s] = 0;
80
              q.push(s);
81
              if (!bfs()) {
82
                 break;
83
84
              fill(ptr.begin(), ptr.end(), 0);
85
              while (ll f = dfs(s, INF)) {
86
                 maxflow += f;
87
88
          }
89
          return maxflow;
90
      }
91 };
```

5.5 Graph Center

Encontra o centro e o diâmetro de um grafo

Complexidade de tempo: $\mathcal{O}(N)$

```
Codigo: graph_center.cpp
1 const int INF = 1e9 + 9;
```

```
3 vector<vector<int>> adj;
5 struct GraphCenter {
       int n. diam = 0:
      vector<int> centros, dist, pai;
      int bfs(int s) {
          queue<int> q;
10
          q.push(s);
11
          dist.assign(n + 5, INF);
12
          pai.assign(n + 5, -1);
13
          dist[s] = 0:
          int maxidist = 0, maxinode = 0;
14
          while (!q.empty()) {
16
              int u = q.front();
              q.pop();
17
18
              if (dist[u] >= maxidist) {
19
                  maxidist = dist[u]. maxinode = u:
20
21
              for (int v : adj[u]) {
22
                  if (dist[u] + 1 < dist[v]) {</pre>
23
                     dist[v] = dist[u] + 1;
                     pai[v] = u:
25
                     q.push(v);
26
27
              }
28
          diam = max(diam, maxidist);
30
          return maxinode:
31
      GraphCenter(int st = 0) : n(adj.size()) {
32
33
          int d1 = bfs(st);
          int d2 = bfs(d1);
34
35
          vector<int> path;
          for (int u = d2; u != -1; u = pai[u]) {
36
37
              path.push back(u):
          int len = path.size();
          if (len % 2 == 1) {
40
              centros.push_back(path[len / 2]);
41
43
              centros.push_back(path[len / 2]);
              centros.push_back(path[len / 2 - 1]);
47 };
```

5.6 HLD

Técnica utilizada para decompor uma árvore em cadeias, e assim realizar operações de caminho e subárvore em $\mathcal{O}(\log n \cdot g(n))$, onde g(n) é a complexidade da operação. Esta implementação suporta queries de soma e update de soma/atribuição, pois usa a estrutura de dados Segment Tree Lazy desse almanaque, fazendo assim com que updates e consultas sejam $\mathcal{O}(\log^2 n)$. A estrutura (bem como a operação feita nela) pode ser facilmente trocada, basta alterar o código da Segment Tree Lazy, ou ainda, utilizar outra estrutura de dados, como uma Sparse Table, caso você tenha queries de mínimo/máximo sem updates, por exemplo.

A decomposição pode ser feita com os valores estando tanto nos vértices quanto nas arestas, consulte os métodos build do código para mais detalhes.

A construção da HLD é feita em $\mathcal{O}(n + b(n))$, onde b(n) é a complexidade de construir a estrutura de dados utilizada.

Codigo: hld.cpp

```
1 struct HLD {
       int n, t;
       vector<vector<int>> adj;
       vector<int> sz, pos, par, head, who;
      bool e = 0;
      SegTree seg;
      void dfs_sz(int u, int p = -1) {
          sz[u] = 1;
10
          for (int &v : adj[u]) {
11
              if (v != p) {
12
                  dfs_sz(v, u);
13
                  sz[u] += sz[v];
14
                  if (sz[v] > sz[adj[u][0]] || adj[u][0] == p) {
                     swap(v, adj[u][0]);
15
16
                  }
17
              }
18
          }
19
       void dfs_hld(int u, int p = -1) {
```

```
21
          who [pos [u] = t++] = u;
22
          for (int v : adj[u]) {
23
             if (v != p) {
24
                 par[v] = u;
25
                 head[v] = (v == adj[u][0] ? head[u] : v);
26
                 dfs_hld(v, u);
27
             }
28
          }
29
      void build hld(int u) {
30
31
          sz = pos = par = head = who = vector<int>(n);
32
          dfs sz(u):
33
          t = 0:
          par[u] = u;
34
35
          head[u] = u;
36
          dfs_hld(u);
37
      }
38
39
      void build(int root, vector<ll> v, vector<vector<int>> adj2) {
40
          // usar esse build pra iniciar com valores nos nodos
41
          n = (int)adj2.size();
          adj = adj2;
42
43
          build hld(root):
44
          vector<11> aux(n);
45
          for (int i = 0; i < (int)v.size(); i++) {</pre>
46
              aux[pos[i]] = v[i];
47
48
          seg.build(aux);
49
      }
50
      void build(int root, vector<vector<int>> adj2) {
          // esse build eh para iniciar vazia
51
52
          build(root, vector<11>(adj2.size(), seg.neutral), adj2);
53
      void build(int root, vector<tuple<int, int, ll>> edges) {
54
          // usar esse build se os pesos estiverem nas arestas
55
          n = (int)edges.size() + 1;
56
57
          adj = vector<vector<int>>(n);
58
          for (auto [u, v, w] : edges) {
              adj[u].push_back(v);
59
              adj[v].push_back(u);
60
61
62
          build_hld(root);
63
          e = 1;
64
          vector<ll> aux(n);
          for (auto [u, v, w] : edges) {
65
66
              if (pos[u] > pos[v]) {
67
                 swap(u, v);
```

```
68
69
               aux[pos[v]] = w;
70
           }
71
           seg.build(aux);
72
       }
73
74
       11 querv(int u. int v) {
75
           if (e && u == v) {
76
               return seg.neutral;
77
78
           if (pos[u] > pos[v]) {
 79
               swap(u, v);
 80
           }
81
           if (head[u] == head[v]) {
82
               return seg.query(pos[u] + e, pos[v]);
 83
           } else {
 84
               11 qv = seg.query(pos[head[v]], pos[v]);
 85
               11 qu = query(u, par[head[v]]);
 86
               return seg.merge(qu, qv);
87
           }
 88
       }
89
       11 query_subtree(int u) {
90
           if (e && sz[u] == 1) {
91
               return seg.neutral;
92
           }
93
           return seg.query(pos[u], pos[u] + sz[u] - 1);
94
95
96
        void update(int u, int v, ll k, bool replace = false) {
97
           if (e && u == v) {
98
               return:
99
           }
100
           if (pos[u] > pos[v]) {
101
               swap(u, v);
102
103
           if (head[u] == head[v]) {
104
               seg.update(pos[u] + e, pos[v], k, replace);
105
           } else {
106
               seg.update(pos[head[v]], pos[v], k, replace);
               update(u, par[head[v]], k, replace);
107
108
           }
       }
109
110
        void update_subtree(int u, ll k, bool replace = false) {
111
           if (e && sz[u] == 1) {
112
               return:
113
114
           seg.update(pos[u], pos[u] + sz[u] - 1, k, replace);
```

```
115    }
116
117    int lca(int u, int v) {
118        if (pos[u] > pos[v]) {
119             swap(u, v);
120        }
121            return (head[u] == head[v] ? u : lca(u, par[head[v]]));
122     }
123    } hld;
```

5.7 Inverse Graph

Algoritmo que encontra as componentes conexas quando se é dado o grafo complemento.

Resolve problemas em que se deseja encontrar as componentes conexas quando são dadas as arestas que não pertencem ao grafo

• Complexidade de tempo: $\mathcal{O}(NlogN + NlogM)$

Codigo: inverse_graph.cpp

```
1 #include <bits/stdc++.h>
2 using namespace std;
3
4 set<int> nodes;
5 vector<set<int>> adj;
7 void bfs(int s) {
      queue<int> f;
      f.push(s);
10
      nodes.erase(s);
11
      set<int> aux;
12
      while (!f.empty()) {
13
          int x = f.front();
14
          f.pop();
          for (int y : nodes) {
```

```
if (adj[x].count(y) == 0) {
17
                 aux.insert(y);
18
19
          }
20
          for (int y : aux) {
21
              f.push(y);
22
              nodes.erase(y);
23
          }
24
          aux.clear();
25
26 }
```

5.8 Kruskal

Algoritimo para encontrar a MST (minimum spanning tree) de um grafo. Utiliza DSU para construir MST.

• Complexidade de tempo (Construção): $\mathcal{O}(MlogN)$

Codigo: kruskal.cpp

```
1 struct Edge {
       int u, v, w;
 3
       bool operator<(Edge const &other) { return w < other.w; }</pre>
 4 };
 6 vector<Edge> edges, result;
 7 int cost;
 9 struct DSU {
      vector<int> pa, sz;
11
       DSU(int n) {
          sz.assign(n + 5, 1);
          for (int i = 0; i < n + 5; i++) {
14
              pa.push_back(i);
15
16
      }
```

```
17
      int root(int a) { return pa[a] = (a == pa[a] ? a : root(pa[a])); }
18
      bool find(int a, int b) { return root(a) == root(b); }
19
      void uni(int a, int b) {
20
          int ra = root(a), rb = root(b);
21
          if (ra == rb) {
22
              return:
23
          }
24
          if (sz[ra] > sz[rb]) {
25
              swap(ra, rb);
26
27
          pa[ra] = rb;
28
          sz[rb] += sz[ra];
29
30 };
31
32 void kruskal(int m, int n) {
33
      DSU dsu(n);
34
35
      sort(edges.begin(), edges.end());
36
37
      for (Edge e : edges) {
38
          if (!dsu.find(e.u, e.v)) {
39
              cost += e.w:
40
              result.push_back(e); // remove if need only cost
41
              dsu.uni(e.u, e.v);
42
43
44 }
```

5.9 LCA

Algoritmo de Lowest Common Ancestor usando EulerTour e Sparse Table Complexidade de tempo:

- $\mathcal{O}(Nlog(N))$ Preprocessing
- $\mathcal{O}(1)$ Query LCA

Complexidade de espaço: $\mathcal{O}(Nlog(N))$

```
Codigo: lca.cpp
 1 #include <bits/stdc++.h>
 2 using namespace std;
 3
 4 #define INF 1e9
 5 #define fi first
 6 #define se second
 8 typedef pair<int, int> ii;
10 vector<int> tin, tout;
11 vector<vector<int>> adj;
12 vector<ii> prof;
13 vector<vector<ii>>> st;
14
15 int n, timer;
16
17 void SparseTable(vector<ii> &v) {
      int n = v.size();
      int e = floor(log2(n));
20
      st.assign(e + 1, vector<ii>(n));
21
      for (int i = 0; i < n; i++) {</pre>
22
          st[0][i] = v[i];
23
      }
24
      for (int i = 1; i <= e; i++) {</pre>
25
          for (int j = 0; j + (1 << i) <= n; j++) {
26
              st[i][j] = min(st[i - 1][j], st[i - 1][j + (1 << (i - 1))]);
27
          }
      }
28
29 }
30
31 void et_dfs(int u, int p, int h) {
       tin[u] = timer++;
33
      prof.emplace_back(h, u);
34
      for (int v : adj[u]) {
35
          if (v != p) {
36
              et_dfs(v, u, h + 1);
37
              prof.emplace_back(h, u);
38
          }
39
      }
40
       tout[u] = timer++;
41 }
42
43 void build(int root = 0) {
       tin.assign(n, 0);
```

```
tout.assign(n, 0);
      prof.clear();
      timer = 0;
      et_dfs(root, root, 0);
49
      SparseTable(prof);
50 }
51
52 int lca(int u, int v) {
      int 1 = tout[u], r = tin[v];
      if (1 > r) {
          swap(1, r);
55
56
      int i = floor(log2(r - l + 1));
57
58
       return min(st[i][1], st[i][r - (1 << i) + 1]).se;</pre>
59 }
60
61 int main() {
      cin >> n:
      adj.assign(n, vector<int>(0));
64
65
66
      for (int i = 0; i < n - 1; i++) {</pre>
67
          int a, b;
          cin >> a >> b;
          adj[a].push_back(b);
          adj[b].push_back(a);
70
71
72
73
      build();
74 }
```

5.10 Matching

5.10.1 Hungaro

Resolve o problema de Matching para uma matriz A[n][m], onde $n \leq m$.

A implementação minimiza os custos, para maximizar basta multiplicar os pesos por -1.

A matriz de entrada precisa ser indexada em 1 !!!

O vetor result guarda os pares do matching. Complexidade de tempo: $\mathcal{O}(n^2 * m)$

Codigo: hungarian.cpp 1 const 11 INF = 1e18 + 18; 3 vector<pair<int, int>> result; 5 ll hungarian(int n, int m, vector<vector<int>> &A) { vector < int > u(n + 1), v(m + 1), p(m + 1), way(m + 1);for (int i = 1; i <= n; i++) {</pre> p[0] = i;9 int j0 = 0;10 vector<int> minv(m + 1, INF); vector<char> used(m + 1, false); 11 12 do { 13 used[j0] = true; 14 11 i0 = p[j0], delta = INF, j1; 15 for (int j = 1; j <= m; j++) { 16 if (!used[j]) { 17 int cur = A[i0][j] - u[i0] - v[j]; 18 if (cur < minv[j]) {</pre> 19 minv[j] = cur, way[j] = j0; 20 21 if (minv[j] < delta) {</pre> 22 delta = minv[j], j1 = j; 23 24 } 25 26 for (int j = 0; j <= m; j++) {</pre> 27 if (used[j]) { 28 u[p[i]] += delta, v[i] -= delta; 29 } else { 30 minv[j] -= delta; 31 32 } 33 j0 = j1;34 } while (p[j0] != 0); 35 36 int j1 = way[j0]; 37 p[j0] = p[j1];38 j0 = j1;39 } while (j0);

```
40  }
41  for (int i = 1; i <= m; i++) {
42     result.emplace_back(p[i], i);
43  }
44  return -v[0];
45 }</pre>
```

5.11 Shortest Paths

5.11.1 Dijkstra

Computa o menor caminho entre nós de um grafo.

Dado dois nós u e v, computa o menor caminho de u para v.

Complexidade de tempo: $\mathcal{O}((E+V) * log(E))$

Dado um nó u, computa o menor caminho de u para todos os nós.

Complexidade de tempo: $\mathcal{O}((E+V) * log(E))$

Computa o menor caminho de todos os nós para todos os nós

Complexidade de tempo: $\mathcal{O}(V * ((E + V) * log(E)))$

```
for (int i = 0; i < n; i++) {</pre>
          for (int j = 0; j < n; j++) {</pre>
              dist[i][j] = INF;
10
11
12
      for (int s = 0; s < n; s++) {
13
          priority_queue<ii, vector<ii>, greater<ii>> fila;
14
          dist[s][s] = 0;
15
          fila.emplace(dist[s][s], s);
16
          while (!fila.empty()) {
17
              auto [d, u] = fila.top();
18
              fila.pop();
19
              if (d != dist[s][u]) {
20
                  continue;
21
22
              for (auto [w, v] : adj[u]) {
23
                  if (dist[s][v] > d + w) {
24
                     dist[s][v] = d + w;
25
                     fila.emplace(dist[s][v], v);
26
27
28
29
30 }
Codigo: dijkstra 1 to n.cpp
 1 \text{ const int MAX} = 1e5 + 5, INF = 1e9 + 9;
 3 vector<ii> adj[MAX];
 4 int dist[MAX]:
 5
 6 void dk(int s) {
       priority_queue<ii, vector<ii>, greater<ii>> fila;
      fill(begin(dist), end(dist), INF);
       dist[s] = 0;
10
       fila.emplace(dist[s], s);
11
       while (!fila.empty()) {
12
          auto [d, u] = fila.top();
13
          fila.pop();
14
          if (d != dist[u]) {
15
              continue:
16
17
          for (auto [w, v] : adj[u]) {
18
              if (dist[v] > d + w) {
19
                  dist[v] = d + w;
                  fila.emplace(dist[v], v);
```

```
22
23
      }
Codigo: dijkstra 1 to 1.cpp
1 \text{ const int MAX} = 1e5 + 5, INF = 1e9 + 9;
3 vector<ii> adj[MAX];
4 int dist[MAX];
 6 int dk(int s, int t) {
      priority_queue<ii, vector<ii>, greater<ii>> fila;
      fill(begin(dist), end(dist), INF);
      dist[s] = 0;
      fila.emplace(dist[s], s);
10
11
      while (!fila.empty()) {
12
          auto [d, u] = fila.top();
13
          fila.pop();
          if (u == t) {
14
15
             return dist[t];
16
          }
17
          if (d != dist[u]) {
18
              continue;
19
20
          for (auto [w, v] : adj[u]) {
21
             if (dist[v] > d + w) {
22
                 dist[v] = d + w;
                 fila.emplace(dist[v], v);
23
24
25
      }
26
27
      return -1;
28 }
```

5.11.2 SPFA

Encontra o caminho mais curto entre um vértice e todos os outros vértices de um grafo.

Detecta ciclos negativos.

Complexidade de tempo: $\mathcal{O}(|V| * |E|)$

```
Codigo: spfa.cpp
 1 const int MAX = 1e4 + 4:
 2 const 11 INF = 1e18 + 18;
 4 vector<ii> adj[MAX];
 5 11 dist[MAX];
 7 void spfa(int s, int n) {
      fill(dist, dist + n, INF);
      vector<int> cnt(n, 0);
10
      vector<bool> inq(n, false);
11
      queue<int> fila;
      fila.push(s);
      inq[s] = true;
14
      dist[s] = 0;
15
      while (!fila.empty()) {
16
          int u = fila.front();
          fila.pop();
17
18
          inq[u] = false;
19
          for (auto [w, v] : adj[u]) {
20
              11 newd = (dist[u] == -INF ? -INF : max(w + dist[u], -INF));
21
              if (newd < dist[v]) {</pre>
22
                 dist[v] = newd;
23
                 if (!inq[v]) {
24
                     fila.push(v);
25
                     inq[v] = true;
26
                     cnt[v]++;
27
                     if (cnt[v] > n) { // negative cycle
28
                         dist[v] = -INF;
29
                     }
30
31
32
33
      }
34 }
```

5.12 Stoer-Wagner Min Cut

Algortimo de Stoer-Wagner para encontrar o corte mínimo de um grafo.

O algoritmo de Stoer-Wagner é um algoritmo para resolver o problema de corte mínimo em grafos não direcionados com pesos não negativos. A ideia essencial deste algoritmo é encolher o grafo mesclando os vértices mais intensos até que o grafo contenha apenas dois conjuntos de vértices combinados

Complexidade de tempo: $\mathcal{O}(V^3)$

```
Codigo: stoer wagner.cpp
1 const int MAXN = 555. INF = 1e9 + 7:
3 int n, e, adj[MAXN][MAXN];
4 vector<int> bestCut:
6 int mincut() {
      int bestCost = INF;
      vector<int> v[MAXN];
      for (int i = 0; i < n; i++) {</pre>
10
          v[i].assign(1, i);
11
12
      int w[MAXN], sel;
13
      bool exist[MAXN], added[MAXN];
      memset(exist, true, sizeof(exist));
15
      for (int phase = 0; phase < n - 1; phase++) {
16
          memset(added, false, sizeof(added));
17
          memset(w, 0, sizeof(w));
18
          for (int j = 0, prev; j < n - phase; j++) {</pre>
              sel = -1:
19
20
              for (int i = 0; i < n; i++) {</pre>
                  if (exist[i] && !added[i] && (sel == -1 || w[i] > w[sel])) {
21
22
                     sel = i:
23
24
25
              if (j == n - phase - 1) {
                  if (w[sel] < bestCost) {</pre>
26
                     bestCost = w[sel];
27
                     bestCut = v[sel]:
28
```

```
29
30
                  v[prev].insert(v[prev].end(), v[sel].begin(), v[sel].end());
31
                  for (int i = 0; i < n; i++) {</pre>
32
                      adj[prev][i] = adj[i][prev] += adj[sel][i];
33
34
                  exist[sel] = false;
35
              } else {
36
                  added[sel] = true;
37
                  for (int i = 0; i < n; i++) {</pre>
38
                      w[i] += adj[sel][i];
39
40
                  prev = sel;
41
42
43
       }
44
       return bestCost;
45 }
```

Capítulo 6

String

6.1 Aho Corasick

Constrói uma estrutura de dados semelhante a um trie com links adicionais e, em seguida, constrói uma máquina de estados finitos (autômato). Útil para pattern matching de um set de strings em um texto.

Complexidade de tempo: $\mathcal{O}(|S| + |T|)$, onde |S| é o somatório do tamanho das strings e |T| é o tamanho do texto

```
Codigo: aho_corasick.cpp
```

```
1 const int K = 26;
2
3 struct Vertex {
4    int next[K], p = -1, link = -1, exi = -1, go[K], cont = 0;
5    bool term = false;
6    vector<int> idxs;
7    char pch;
8    Vertex(int p = -1, char ch = '$') : p(p), pch(ch) {
9       fill(begin(next), end(next), -1);
10       fill(begin(go), end(go), -1);
11    }
12 };
13 vector<Vertex> aho(1);
14 void add_string(const string &s, int idx) {
15    int v = 0;
```

```
for (char ch : s) {
17
          int c = ch - 'a';
18
          if (aho[v].next[c] == -1) {
19
              aho[v].next[c] = aho.size();
20
              aho.emplace_back(v, ch);
21
          }
22
          v = aho[v].next[c];
23
      }
24
       aho[v].term = true;
25
       aho[v].idxs.push_back(idx);
26 }
27 int go(int u, char ch);
28 int get_link(int u) {
      if (aho[u].link == -1) {
30
          if (u == 0 || aho[u].p == 0) {
              aho[u].link = 0;
31
32
33
              aho[u].link = go(get_link(aho[u].p), aho[u].pch);
34
35
      }
36
       return aho[u].link;
37 }
38 int go(int u, char ch) {
      int c = ch - 'a';
      if (aho[u].go[c] == -1) {
40
41
          if (aho[u].next[c] != -1) {
42
              aho[u].go[c] = aho[u].next[c];
43
44
              aho[u].go[c] = u == 0 ? 0 : go(get_link(u), ch);
45
```

```
46
47
      return aho[u].go[c];
48 }
49 int exi(int u) {
       if (aho[u].exi != -1) {
          return aho[u].exi;
51
52
53
      int v = get_link(u);
      return aho[u].exi = (v == 0 || aho[v].term ? v : exi(v));
54
55 }
56 void process(const string &s) {
      int st = 0:
      for (char c : s) {
          st = go(st, c);
          for (int aux = st; aux; aux = exi(aux)) {
61
              aho[aux].cont++;
63
64
      for (int st = 1; st < aho_sz; st++) {</pre>
          if (!aho[st].term) {
65
66
              continue;
67
          for (int i : aho[st].idxs) {
              // Do something here
70
              // idx i ocurs + aho[st].cont times
              h[i] += aho[st].cont;
71
73
74 }
```

6.2 Hashing

6.2.1 Hashing Dinâmico

Hashing polinomial para testar igualdade de strings (ou de vetores). Requer precomputar as potências de um primo, como indicado na função precalc. A implementação está com dois MODS e usa a primitiva Mint, a escolha de usar apenas um MOD ou não usar o Mint vai da sua preferência ou necessidade, se não usar o Mint, trate adequadamente as operações com

aritmética modular.

Essa implementação suporta updates pontuais, utilizando-se de uma Fenwick Tree para isso. A construção é $\mathcal{O}(n)$, consultas e updates são $\mathcal{O}(\log n)$.

54

Obs: lembrar de chamar a função precalc!

Exemplo de uso:

27

for (int i = 1; i < MAXN; i++) {</pre>

```
1 string s = "abacabab";
 2 DynamicHashing a(s):
 3 \text{ cout} << (a(0, 1) == a(2, 3)) << \text{endl}; // 0
 4 \text{ cout} << (a(0, 1) == a(4, 5)) << endl: // 1
 5 a.update(0, 'c');
 6 \text{ cout} << (a(0, 1) == a(4, 5)) << endl; // 0
Codigo: dynamic hashing.cpp
 1 const int MOD1 = 998244353;
 2 const int MOD2 = 1e9 + 7;
 3 using mint1 = Mint<MOD1>;
 4 using mint2 = Mint<MOD2>;
 6 struct Hash {
       mint1 h1:
       mint2 h2;
       Hash() { }
       Hash(mint1 _h1, mint2 _h2) : h1(_h1), h2(_h2) { }
       bool operator==(Hash o) const { return h1 == o.h1 && h2 == o.h2; }
12
       bool operator!=(Hash o) const { return h1 != o.h1 || h2 != o.h2; }
13
      bool operator<(Hash o) const { return h1 == o.h1 ? h2 < o.h2 : h1 < o.h1; }</pre>
14
       Hash operator+(Hash o) const { return {h1 + o.h1, h2 + o.h2}; }
       Hash operator-(Hash o) const { return {h1 - o.h1, h2 - o.h2}; }
16
       Hash operator*(Hash o) const { return {h1 * o.h1, h2 * o.h2}; }
17
       Hash operator/(Hash o) const { return {h1 / o.h1, h2 / o.h2}; }
18 };
19
20 const int PRIME = 1001003; // qualquer primo na ordem do alfabeto
21 \text{ const int MAXN} = 1e6 + 5;
22 Hash PR = {PRIME, PRIME}:
23 Hash invPR = {mint1(1) / PRIME, mint2(1) / PRIME};
24 Hash pot[MAXN], invpot[MAXN];
25 void precalc() {
26
       pot[0] = invpot[0] = Hash(1, 1);
```

CAPÍTULO~6.~~STRING

```
28
          pot[i] = pot[i - 1] * PR;
29
          invpot[i] = invpot[i - 1] * invPR;
      }
30
31 }
32
33 struct DynamicHashing {
      int N:
35
      FenwickTree<Hash> hsh;
36
      DynamicHashing() { }
37
      DynamicHashing(string s) : N(int(s.size())) {
38
          vector<Hash> v(N);
39
          for (int i = 0; i < N; i++) {</pre>
              int c = int(s[i] - 'a');
40
41
              v[i] = pot[i + 1] * Hash(c, c);
          }
42
43
          hsh = FenwickTree<Hash>(v);
44
      Hash operator()(int 1, int r) { return hsh.query(1, r) * invpot[1]; }
45
46
      void update(int i, char ch) {
47
          int c = int(ch - 'a');
48
          hsh.updateSet(i, pot[i + 1] * Hash(c, c));
49
50 };
```

6.2.2 Hashing Estático

Hashing polinomial para testar igualdade de strings (ou de vetores). Requer precomputar as potências de um primo, como indicado na função precalc. A implementação está com dois MODS e usa a primitiva Mint, a escolha de usar apenas um MOD ou não usar o Mint vai da sua preferência ou necessidade, se não usar o Mint, trate adequadamente as operações com aritmética modular. A construção é $\mathcal{O}(n)$ e a consulta é $\mathcal{O}(1)$.

Obs: lembrar de chamar a função precalc!

Exemplo de uso:

```
1 string s = "abacabab";
2 Hashing a(s);
3 cout << (a(0, 1) == a(2, 3)) << endl; // 0
4 cout << (a(0, 1) == a(4, 5)) << endl; // 1</pre>
```

```
5 \text{ cout} << (a(0, 2) == a(4, 6)) << endl; // 1
 6 \text{ cout} << (a(0, 3) == a(4, 7)) << endl; // 0
Codigo: hashing.cpp
 1 const int MOD1 = 998244353;
 2 const int MOD2 = 1e9 + 7;
 3 using mint1 = Mint<MOD1>;
 4 using mint2 = Mint<MOD2>;
 6 struct Hash {
       mint1 h1;
       mint2 h2:
       Hash() { }
10
       Hash(mint1 _h1, mint2 _h2) : h1(_h1), h2(_h2) { }
       bool operator == (Hash o) const { return h1 == o.h1 && h2 == o.h2; }
11
12
       bool operator!=(Hash o) const { return h1 != o.h1 || h2 != o.h2; }
13
       bool operator<(Hash o) const { return h1 == o.h1 ? h2 < o.h2 : h1 < o.h1; }</pre>
14
       Hash operator+(Hash o) const { return {h1 + o.h1, h2 + o.h2}; }
15
       Hash operator-(Hash o) const { return {h1 - o.h1, h2 - o.h2}; }
       Hash operator*(Hash o) const { return {h1 * o.h1, h2 * o.h2}; }
       Hash operator/(Hash o) const { return {h1 / o.h1, h2 / o.h2}; }
17
18 };
19
20 const int PRIME = 1001003; // qualquer primo na ordem do alfabeto
21 const int MAXN = 1e6 + 5;
22 Hash PR = {PRIME, PRIME}:
23 Hash invPR = {mint1(1) / PRIME, mint2(1) / PRIME};
24 Hash pot[MAXN], invpot[MAXN];
25 void precalc() {
       pot[0] = invpot[0] = Hash(1, 1);
27
       for (int i = 1; i < MAXN; i++) {</pre>
28
          pot[i] = pot[i - 1] * PR;
29
          invpot[i] = invpot[i - 1] * invPR;
30
      }
31 }
32
33 struct Hashing {
       int N;
35
       vector<Hash> hsh:
36
       Hashing() { }
37
       Hashing(string s) : N(int(s.size())), hsh(N + 1) {
38
          for (int i = 0; i < N; i++) {</pre>
39
              int c = int(s[i] - 'a');
40
              hsh[i + 1] = hsh[i] + (pot[i + 1] * Hash(c, c));
```

55

```
41 }
42 }
43 Hash operator()(int 1, int r) const { return (hsh[r + 1] - hsh[1]) * invpot[1]; }
44 };
```

6.3 Lyndon

Strings em decomposição única em subcadeias que são ordenadas lexicograficamente e não podem ser mais reduzidas.

Duval

Gera a Lyndon Factorization de uma string

* Complexidade de tempo: $\mathcal{O}(N)$

Min Cyclic Shift

Gera a menor rotação circular da string original que pode ser obtida por meio de deslocamentos cíclicos dos caracteres.

* Complexidade de tempo: $\mathcal{O}(N)$

```
Codigo: min_cyclic_shift.cpp
```

```
1 string min_cyclic_shift(string s) {
       s += s:
       int n = s.size();
       int i = 0, ans = 0:
       while (i < n / 2) {
          ans = i;
          int j = i + 1, k = i;
          while (j < n \&\& s[k] <= s[j]) {
              if (s[k] < s[j]) {</pre>
10
                  k = i:
11
              } else {
                  k++;
13
14
              j++;
15
          while (i <= k) {
```

```
17
18
19
20
       return s.substr(ans, n / 2);
21 }
Codigo: duval.cpp
 1 vector<string> duval(string const &s) {
       int n = s.size();
       int i = 0:
       vector<string> factorization;
       while (i < n) {
          int j = i + 1, k = i;
7
          while (j < n \&\& s[k] <= s[j]) {
 8
              if (s[k] < s[i]) {</pre>
                  k = i:
10
              } else {
11
12
13
14
15
          while (i \le k) {
16
              factorization.push_back(s.substr(i, j - k));
17
              i += j - k;
18
          }
19
      }
20
       return factorization;
21 }
```

6.4 Manacher

O algoritmo de manacher encontra todos os palíndromos de uma string em $\mathcal{O}(n)$. Para cada centro, ele conta quantos palíndromos de tamanho ímpar e par existem (nos vetores d1 e d2 respectivamente). O método solve computa os palíndromos e retorna o número de substrings palíndromas. O método query retorna se a substring s[i...j] é palíndroma em $\mathcal{O}(1)$.

Codigo: manacher.cpp

```
1 struct Manacher {
       int n;
      11 count;
      vector<int> d1, d2, man;
      11 solve(const string &s) {
          n = int(s.size()), count = 0;
          solve odd(s):
          solve_even(s);
          man.assign(2 * n - 1, 0);
          for (int i = 0; i < n; i++) {</pre>
              man[2 * i] = 2 * d1[i] - 1;
11
12
          for (int i = 0; i < n - 1; i++) {</pre>
13
14
              man[2 * i + 1] = 2 * d2[i + 1];
          }
15
16
          return count;
17
       void solve_odd(const string &s) {
18
19
          d1.assign(n, 0);
20
          for (int i = 0, l = 0, r = -1; i < n; i++) {
21
              int k = (i > r) ? 1 : min(d1[1 + r - i], r - i + 1);
              while (0 \le i - k \&\& i + k \le n \&\& s[i - k] == s[i + k]) {
22
23
                 k++:
24
              }
25
              count += d1[i] = k--;
              if (i + k > r) {
26
27
                 1 = i - k, r = i + k;
28
          }
29
30
       void solve even(const string &s) {
31
32
          d2.assign(n, 0);
33
          for (int i = 0, l = 0, r = -1; i < n; i++) {
              int k = (i > r) ? 0 : min(d2[1 + r - i + 1], r - i + 1);
34
              while (0 \le i - k - 1 \&\& i + k \le n \&\& s[i - k - 1] == s[i + k]) {
35
36
                  k++:
37
              count += d2[i] = k--;
              if (i + k > r) {
                 1 = i - k - 1, r = i + k;
41
42
          }
43
       bool query(int i, int j) {
45
          assert(man.size()):
46
          return man[i + j] >= j - i + 1;
47
```

48 } mana;

6.5 Patricia Tree

Estrutura de dados que armazena strings e permite consultas por prefixo, muito similar a uma Trie. Todas as operações são $\mathcal{O}(|s|)$.

Obs: Não aceita elementos repetidos.

Implementação PB-DS, extremamente curta e confusa:

Exemplo de uso:

patricia_tree;

```
1 patricia_tree pat;
2 pat.insert("exemplo");
3 pat.erase("exemplo");
4 pat.find("exemplo") != pat.end(); // verifica existência
5 auto match = pat.prefix_range("ex"); // pega palavras que começam com "ex"
6 for (auto it = match.first; it != match.second; ++it); // percorre match
7 pat.lower_bound("ex"); // menor elemento lexicográfico maior ou igual a "ex"
8 pat.upper_bound("ex"); // menor elemento lexicográfico maior que "ex"

Codigo: patricia_tree.cpp
1 #include <ext/pb_ds/assoc_container.hpp>
2 #include <ext/pb_ds/trie_policy.hpp>
3
4 using namespace __gnu_pbds;
```

5 typedef trie<string, null_type, trie_string_access_traits<>, pat_trie_tag,

trie_prefix_search_node_update>

6.6 Prefix Function KMP

6.6.1 Automato KMP

O autômato de KMP computa em $\mathcal{O}(|s| \cdot \Sigma)$ a função de transição de uma string, que é definida por:

$$nxt[i][c] = max\{k : k \le i \land s[0 : k] = s[i - k : i - 1]c\}$$

Em outras palavras, nxt[i][c] é o tamanho do maior prefixo de s que é sufixo de s[0:i-1]c.

O autômato de KMP é útil para mútiplos pattern matchings, ou seja, dado um padrão t, encontrar todas as ocorrências de t em várias strings s_1, s_2, \ldots, s_k , em $\mathcal{O}(|t| + \sum |s_i|)$. O método matching faz isso.

Obs: utiliza o código do KMP.

Codigo: aut_kmp.cpp

```
1 struct AutKMP {
       vector<vector<int>> nxt;
       void setString(string s) {
          s += '#';
          nxt.assign(s.size(), vector<int>(26));
          vector<int> p = pi(s);
           for (int c = 0; c < 26; c++) {</pre>
              nxt[0][c] = ('a' + c == s[0]);
9
          for (int i = 1; i < int(s.size()); i++) {</pre>
10
              for (int c = 0; c < 26; c++) {</pre>
11
12
                  nxt[i][c] = ('a' + c == s[i]) ? i + 1 : nxt[p[i - 1]][c];
13
14
          }
15
16
       vector<int> matching(string &s, string &t) {
17
           vector<int> match;
           for (int i = 0, j = 0; i < int(s.size()); i++) {</pre>
18
19
              j = nxt[j][s[i] - 'a'];
20
              if (j == int(t.size())) {
21
                  match.push_back(i - j + 1);
```

```
22 }
23 }
24 return match;
25 }
26 } aut;
```

6.6.2 KMP

O algoritmo de Knuth-Morris-Pratt (KMP) computa em $\mathcal{O}(|s|)$ a Prefix Function de uma string, cuja definição é dada por:

$$pi[i] = \max\{k : k < i \land s[0 : k] = s[i - k : i]\}$$

Em outras palavras, pi[i] é o tamanho do maior prefixo de s que é sufixo de s[0:i].

O KMP é útil para pattern matching, ou seja, encontrar todas as ocorrências de uma string t em uma string s, como faz a função matching em O(|s| + |t|).

Codigo: kmp.cpp

```
1 vector<int> pi(string &s) {
       vector<int> p(s.size());
       for (int i = 1, j = 0; i < int(s.size()); i++) {</pre>
           while (j > 0 \&\& s[i] != s[j]) {
              j = p[j - 1];
           if (s[i] == s[j]) {
8
              j++;
10
           p[i] = j;
11
12
       return p;
13 }
14
15 vector<int> matching(string &s, string &t) {
16
       vector<int> p = pi(t), match;
17
       for (int i = 0, j = 0; i < int(s.size()); i++) {</pre>
```

```
18
          while (j > 0 \&\& s[i] != t[j]) {
19
              j = p[j - 1];
20
          }
21
          if (s[i] == t[j]) {
23
24
          if (j == int(t.size())) {
25
              match.push_back(i - j + 1);
26
              j = p[j - 1];
27
28
29
      return match;
30 }
```

6.7 Suffix Array

Estrutura que conterá inteiros que representam os índices iniciais de todos os sufixos ordenados de uma determinada string.

Também constrói a tabela LCP (Longest Common Prefix).

- * Complexidade de tempo (Pré-Processamento): $\mathcal{O}(|S| \cdot \log(|S|))$
- * Complexidade de tempo (Contar ocorrências de S em T): $\mathcal{O}(|S| \cdot \log(|T|))$

Codigo: suffix array busca.cpp

```
1 pair<int, int> busca(string &t, int i, pair<int, int> &range) {
2    int esq = range.first, dir = range.second, L = -1, R = -1;
3    while (esq <= dir) {
4        int mid = (esq + dir) / 2;
5        if (s[sa[mid] + i] == t[i]) {
6             L = mid;
7        }
8        if (s[sa[mid] + i] < t[i]) {
9             esq = mid + 1;
10        } else {
11             dir = mid - 1;
12        }
13     }</pre>
```

```
esq = range.first, dir = range.second;
15
       while (esq <= dir) {</pre>
           int mid = (esq + dir) / 2;
16
17
           if (s[sa[mid] + i] == t[i]) {
18
               R = mid:
19
20
           if (s[sa[mid] + i] <= t[i]) {</pre>
21
               esq = mid + 1;
22
          } else {
23
               dir = mid - 1:
24
25
26
       return {L, R};
27 }
28 // count ocurences of s on t
29 int busca_string(string &t) {
       pair<int, int> range = \{0, n - 1\};
       for (int i = 0; i < t.size(); i++) {</pre>
32
           range = busca(t, i, range);
33
           if (range.first == -1) {
34
              return 0;
35
36
37
       return range.second - range.first + 1;
38 }
Codigo: suffix array.cpp
 1 const int MAX_N = 5e5 + 5;
 3 struct suffix array {
       int n, sum, r, ra[MAX_N], sa[MAX_N], auxra[MAX_N], auxsa[MAX_N], c[MAX_N],
            lcp[MAX_N];
       void counting_sort(int k) {
           memset(c, 0, sizeof(c));
           for (int i = 0; i < n; i++) {</pre>
9
               c[(i + k < n) ? ra[i + k] : 0]++;
10
           for (int i = sum = 0; i < max(256, n); i++) {
11
12
               sum += c[i], c[i] = sum - c[i];
13
14
           for (int i = 0; i < n; i++) {</pre>
15
               auxsa[c[sa[i] + k < n ? ra[sa[i] + k] : 0]++] = sa[i];
16
           for (int i = 0; i < n; i++) {</pre>
17
               sa[i] = auxsa[i]:
```

59

```
19
          }
20
21
      void build_sa() {
22
          for (int k = 1; k < n; k <<= 1) {
23
              counting_sort(k);
24
              counting_sort(0);
              auxra[sa[0]] = r = 0;
25
26
              for (int i = 1; i < n; i++) {</pre>
27
                  auxra[sa[i]] =
                      (ra[sa[i]] == ra[sa[i - 1]] \&\& ra[sa[i] + k] == ra[sa[i - 1] + k])
28
29
30
                         : ++r;
31
              for (int i = 0; i < n; i++) {</pre>
33
                  ra[i] = auxra[i];
34
35
              if (ra[sa[n - 1]] == n - 1) {
36
                  break:
          }
39
40
       void build_lcp() {
41
          for (int i = 0, k = 0; i < n - 1; i++) {</pre>
              int j = sa[ra[i] - 1];
43
              while (s[i + k] == s[j + k]) {
44
                  k++;
45
              lcp[ra[i]] = k;
              if (k) {
                  k--;
49
          }
50
51
       void set_string(string _s) {
52
53
          s = _s + '$';
54
          n = s.size():
          for (int i = 0; i < n; i++) {</pre>
55
56
              ra[i] = s[i], sa[i] = i;
          }
57
58
          build_sa();
          build_lcp();
          // for (int i = 0; i < n; i++)
          // printf("%2d: %s\n", sa[i], s.c_str() +
          // sa[i]);
       int operator[](int i) { return sa[i]; }
65 } sa;
```

6.8 Trie

Estrutura que guarda informações indexadas por palavra.

Útil encontrar todos os prefixos inseridos anteriormente de uma palavra específica.

60

- * Complexidade de tempo (Update): $\mathcal{O}(|S|)$
- * Complexidade de tempo (Consulta de palavra): $\mathcal{O}(|S|)$

Codigo: trie.cpp

```
1 struct trie {
       map<char, int> trie[100005];
      int value[100005];
       int n_nodes = 0;
       void insert(string &s, int v) {
          int id = 0:
          for (char c : s) {
              if (!trie[id].count(c)) {
                  trie[id][c] = ++n_nodes;
10
11
              id = trie[id][c];
12
          }
13
          value[id] = v;
14
15
      int get_value(string &s) {
16
          int id = 0;
17
          for (char c : s) {
18
              if (!trie[id].count(c)) {
19
                  return -1:
20
              }
21
              id = trie[id][c];
22
          }
23
          return value[id];
24
25 };
```

Capítulo 7

Paradigmas

7.1 All Submasks

Percorre todas as submáscaras de uma máscara.

* Complexidade de tempo: $\mathcal{O}(3^N)$

```
Codigo: all_submask.cpp
1 int mask;
2 for (int sub = mask; sub; sub = (sub - 1) & mask) { }
```

7.2 Busca Binaria Paralela

Faz a busca binária para múltiplas consultas quando a busca binária é muito pesada.

• Complexidade de tempo: $\mathcal{O}((N+Q)\log(N)\cdot\mathcal{O}(F))$, onde N é o tamanho do espaço de busca, Q é o número de consultas, e $\mathcal{O}(F)$ é o custo de avaliação da função.

```
Codigo: busca_binaria paralela.cpp
 2 namespace parallel_binary_search {
       typedef tuple<int, int, long long, long long> query; //{value, id, 1, r}
       vector<query> queries[1123456]; // pode ser um mapa se
                                                      // for muito esparso
      long long ans[1123456]; // definir pro tamanho
                                                     // das queries
      long long l, r, mid;
       int id = 0:
10
       void set_lim_search(long long n) {
11
          1 = 0:
12
          r = n;
          mid = (1 + r) / 2;
13
14
      }
15
16
       void add_query(long long v) { queries[mid].push_back({v, id++, 1, r}); }
17
18
       void advance_search(long long v) {
19
          // advance search
20
21
22
       bool satisfies(long long mid, int v, long long l, long long r) {
23
          // implement the evaluation
24
25
26
       bool get_ans() {
27
          // implement the get ans
```

```
}
28
29
      void parallel_binary_search(long long 1, long long r) {
30
31
32
          bool go = 1;
33
          while (go) {
34
              go = 0;
35
              int i = 0; // outra logica se for usar
                        // um mapa
36
37
              for (auto &vec : queries) {
                 advance_search(i++);
38
39
                 for (auto q : vec) {
                     auto [v, id, 1, r] = q;
                     if (1 > r) {
41
                         continue;
42
43
44
                     go = 1;
45
                     // return while satisfies
                     if (satisfies(i, v, l, r)) {
                         ans[i] = get_ans();
47
48
                         long long mid = (i + 1) / 2;
                         queries[mid] = query(v, id, l, i - 1);
49
                         long long mid = (i + r) / 2;
51
52
                         queries[mid] = query(v, id, i + 1, r);
                     }
53
54
                 vec.clear();
56
57
      }
58
60 } // namespace name
```

7.3 Busca Ternaria

Encontra um ponto ótimo em uma função que pode ser separada em duas funções estritamente monotônicas (por exemplo, parábolas).

• Complexidade de tempo: $\mathcal{O}(\log(N) \cdot \mathcal{O}(\text{eval}))$, onde N é o tamanho do espaço de busca e $\mathcal{O}(\text{eval})$ é o custo de avaliação da função.

Busca Ternária em Espaço Discreto

Encontra um ponto ótimo em uma função que pode ser separada em duas funções estritamente monotônicas (por exemplo, parábolas).

Versão para espaços discretos.

• Complexidade de tempo: $\mathcal{O}(\log(N) \cdot \mathcal{O}(\text{eval}))$, onde N é o tamanho do espaço de busca e $\mathcal{O}(\text{eval})$ é o custo de avaliação da função.

```
Codigo: busca ternaria.cpp
 2 double eval(double mid) {
      // implement the evaluation
4 }
 6 double ternary_search(double 1, double r) {
      int k = 100;
      while (k--) {
          double step = (1 + r) / 3;
          double mid_1 = 1 + step;
10
          double mid 2 = r - step:
11
12
          // minimizing. To maximize use >= to
13
14
          // compare
15
          if (eval(mid_1) <= eval(mid_2)) {</pre>
16
             r = mid_2;
17
          } else {
18
             1 = mid 1:
19
20
      }
      return 1;
22 }
Codigo: busca ternaria discreta.cpp
 2 long long eval(long long mid) {
      // implement the evaluation
 4 }
```

```
6 long long discrete_ternary_search(long long 1, long long r) {
      long long ans = -1;
      r--; // to not space r
      while (1 <= r) {
          long long mid = (1 + r) / 2;
10
11
12
          // minimizing. To maximize use >= to
13
14
          if (eval(mid) <= eval(mid + 1)) {</pre>
15
              ans = mid;
16
              r = mid - 1:
17
          } else {
              1 = mid + 1;
18
19
20
21
      return ans;
```

7.4 Convex Hull Trick

Otimização de DP onde se mantém as retas que formam um Convex Hull em uma estrutura que permite consultar qual o melhor valor para um determinado x.

Só funciona quando as retas são monotônicas. Caso não sejam, usar LiChao Tree para guardar as retas.

Complexidade de tempo:

- Inserir reta: $\mathcal{O}(1)$ amortizado
- Consultar x: $\mathcal{O}(\log(N))$
- Consultar x quando x tem crescimento monotônico: $\mathcal{O}(1)$

Codigo: Convex Hull Trick.cpp

```
1 const 11 INF = 1e18 + 18;
 2 bool op(11 a, 11 b) {
      return a >= b; // either >= or <=</pre>
4 }
5 struct line {
      ll a, b;
      11 get(11 x) { return a * x + b; }
      11 intersect(line 1) {
          return (l.b - b + a - l.a) / (a - l.a); // rounds up for integer
10
11
12 };
13 deque<pair<line, 11>> fila;
14 void add_line(ll a, ll b) {
      line nova = \{a, b\};
16
      if (!fila.empty() && fila.back().first.a == a && fila.back().first.b == b) {
17
18
      }
19
      while (!fila.empty() && op(fila.back().second, nova.intersect(fila.back().first)))
20
          fila.pop_back();
21
      11 x = fila.empty() ? -INF : nova.intersect(fila.back().first);
23
      fila.emplace_back(nova, x);
24 }
25 ll get_binary_search(ll x) {
      int esq = 0, dir = fila.size() - 1, r = -1;
27
      while (esq <= dir) {</pre>
28
          int mid = (esq + dir) / 2;
29
          if (op(x, fila[mid].second)) {
30
              esa = mid + 1:
31
              r = mid;
32
          } else {
33
              dir = mid - 1;
34
35
36
      return fila[r].first.get(x);
37 }
38 // O(1), use only when QUERIES are monotonic!
39 ll get(ll x) {
      while (fila.size() >= 2 && op(x, fila[1].second)) {
41
          fila.pop_front();
42
      return fila.front().first.get(x);
44 }
```

7.5 DP de Permutacao

Otimização do problema do Caixeiro Viajante

* Complexidade de tempo: $\mathcal{O}(n^2 * 2^n)$

Para rodar a função basta setar a matriz de adjacência 'dist' e chamar solve(0,0,n).

Codigo: tsp dp.cpp

```
1 const int lim = 17; // setar para o maximo de itens
2 long double dist[lim][lim]: // eh preciso dar as
                             // distancias de n para n
4 long double dp[lim][1 << lim];
6 int limMask = (1 << lim) - 1; // 2**(maximo de itens) - 1
7 long double solve(int atual, int mask, int n) {
       if (dp[atual][mask] != 0) {
          return dp[atual][mask]:
      }
10
      if (mask == (1 << n) - 1) {
11
          return dp[atual][mask] = 0; // o que fazer quando
12
13
                                    // chega no final
14
15
16
      long double res = 1e13; // pode ser maior se precisar
      for (int i = 0; i < n; i++) {</pre>
17
18
          if (!(mask & (1 << i))) {</pre>
19
              long double aux = solve(i, mask | (1 << i), n);</pre>
20
              if (mask) {
21
                  aux += dist[atual][i];
22
23
              res = min(res, aux):
24
          }
25
26
       return dp[atual][mask] = res;
27 }
```

7.6 Divide and Conquer

Otimização para DP de prefixo quando se pretende separar o vetor em K subgrupos.

É preciso fazer a função query(i, j) que computa o custo do subgrupo

i, j

.

* Complexidade de tempo: $\mathcal{O}(n \cdot k \cdot \log(n) \cdot \mathcal{O}(\text{query}))$

Divide and Conquer com Query on demand

Usado para evitar queries pesadas ou o custo de pré-processamento.

É preciso fazer as funções da estrutura **janela**, eles adicionam e removem itens um a um como uma janela flutuante.

* Complexidade de tempo: $\mathcal{O}(n \cdot k \cdot \log(n) \cdot \mathcal{O}(\text{update da janela}))$

Codigo: dc.cpp

```
1 namespace DC {
       vi dp_before, dp_cur;
       void compute(int 1, int r, int optl, int optr) {
          if (1 > r) {
              return;
 6
          int mid = (1 + r) >> 1;
          pair<ll, int> best = {0, -1}; // {INF, -1} se quiser minimizar
          for (int i = optl; i <= min(mid, optr); i++) {</pre>
10
              best = max(best,
11
                        {(i ? dp_before[i - 1] : 0) + query(i, mid),
12
                         i}); // min() se quiser minimizar
13
14
          dp_cur[mid] = best.first;
15
          int opt = best.second:
16
          compute(1, mid - 1, optl, opt);
17
          compute(mid + 1, r, opt, optr);
18
19
      11 solve(int n, int k) {
```

```
21
          dp_before.assign(n + 5, 0);
22
          dp_cur.assign(n + 5, 0);
23
          for (int i = 0; i < n; i++) {</pre>
24
              dp_before[i] = query(0, i);
25
26
          for (int i = 1; i < k; i++) {</pre>
27
              compute(0, n - 1, 0, n - 1);
28
              dp_before = dp_cur;
29
30
          return dp_before[n - 1];
31
32 };
Codigo: dc query_on_demand.cpp
1 namespace DC {
       struct range { // eh preciso definir a forma
                    // de calcular o range
4
          vi freq;
 5
          11 \text{ sum} = 0:
 6
          int 1 = 0, r = -1;
          void back_l(int v) { // Mover o '1' do range
                             // para a esquerda
9
              sum += freq[v];
10
              freq[v]++;
11
              1--;
12
13
          void advance_r(int v) { // Mover o 'r' do range
14
                                // para a direita
15
              sum += freq[v];
16
              freq[v]++;
17
              r++;
18
          }
          void advance_l(int v) { // Mover o 'l' do range
19
20
                                // para a direita
21
              freq[v]--;
22
              sum -= freq[v];
23
              1++:
24
25
          void back_r(int v) { // Mover o 'r' do range
26
                             // para a esquerda
27
              freq[v]--;
28
              sum -= freq[v];
29
30
31
          void clear(int n) { // Limpar range
32
              1 = 0:
```

```
r = -1:
34
              sum = 0:
35
              freq.assign(n + 5, 0);
36
37
      } s:
38
39
       vi dp_before, dp_cur;
40
       void compute(int 1, int r, int opt1, int optr) {
41
          if (1 > r) {
42
              return:
43
44
          int mid = (1 + r) >> 1:
45
          pair<11, int> best = {0, -1}; // {INF, -1} se quiser minimizar
46
47
          while (s.1 < optl) {</pre>
48
              s.advance_1(v[s.1]);
49
          while (s.1 > optl) {
50
51
              s.back_l(v[s.1 - 1]);
52
53
          while (s.r < mid) {</pre>
54
              s.advance_r(v[s.r + 1]);
55
56
          while (s.r > mid) {
57
              s.back_r(v[s.r]);
58
59
60
          vi removed:
61
          for (int i = optl; i <= min(mid, optr); i++) {</pre>
62
              best =
63
64
                      {(i ? dp_before[i - 1] : 0) + s.sum, i}); // min() se quiser
                          minimizar
65
              removed.push_back(v[s.1]);
66
              s.advance_1(v[s.1]);
67
68
          for (int rem : removed) {
69
              s.back_l(v[s.1 - 1]);
70
71
72
          dp_cur[mid] = best.first;
73
          int opt = best.second;
74
          compute(1, mid - 1, optl, opt);
75
          compute(mid + 1, r, opt, optr);
76
      }
77
78
      11 solve(int n, int k) {
```

```
79
           dp_before.assign(n, 0);
80
           dp_cur.assign(n, 0);
81
           s.clear(n);
82
           for (int i = 0; i < n; i++) {</pre>
              s.advance_r(v[i]);
84
              dp_before[i] = s.sum;
86
          for (int i = 1; i < k; i++) {</pre>
87
              s.clear(n);
              compute(0, n - 1, 0, n - 1);
89
              dp_before = dp_cur;
91
           return dp_before[n - 1];
93 };
```

7.7 Exponenciação de Matriz

Otimização para DP de prefixo quando o valor atual está em função dos últimos K valores já calculados.

* Complexidade de tempo: $\mathcal{O}(\log(n) * k^3)$

É preciso mapear a DP para uma exponenciação de matriz.

DP:

$$dp[n] = \sum_{i=1}^{k} c[i] \cdot dp[n-i]$$

Mapeamento:

$$\begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ c[k] & c[k-1] & c[k-2] & \dots & c[1] & 0 \end{pmatrix}^n \times \begin{pmatrix} dp[0] \\ dp[1] \\ dp[2] \\ \dots \\ dp[k-1] \end{pmatrix}$$

Exemplo de DP:

$$dp[i] = dp[i-1] + 2 \cdot i^2 + 3 \cdot i + 5$$

Nesses casos é preciso fazer uma linha para manter cada constante e potência do índice.

Mapeamento:

$$\begin{pmatrix} 1 & 5 & 3 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 2 & 1 \end{pmatrix}^{n} \times \begin{pmatrix} dp[0] \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{array}{c} \text{mant\'em } dp[i] \\ \text{mant\'em } i \\ \text{mant\'em } i^{2} \\ \end{pmatrix}$$

Exemplo de DP:

$$dp[n] = c \times \prod_{i=1}^{k} dp[n-i]$$

Nesses casos é preciso trabalhar com o logaritmo e temos o caso padrão:

$$\log(dp[n]) = \log(c) + \sum_{i=1}^{k} \log(dp[n-i])$$

Se a resposta precisar ser inteira, deve-se fatorar a constante e os valores inicias e então fazer uma exponenciação para cada fator primo. Depois é só juntar a resposta no final.

```
Codigo: matrix exp.cpp
1 ll dp[100];
2 mat T;
 4 #define MOD 1000000007
6 mat mult(mat a, mat b) {
      mat res(a.size(), vi(b[0].size()));
      for (int i = 0; i < a.size(); i++) {</pre>
          for (int j = 0; j < b[0].size(); j++) {</pre>
10
              for (int k = 0; k < b.size(); k++) {</pre>
                  res[i][j] += a[i][k] * b[k][j] % MOD;
11
12
                  res[i][j] %= MOD;
13
              }
          }
14
15
      }
16
      return res:
17 }
18
19 mat exp_mod(mat b, ll exp) {
      mat res(b.size(), vi(b.size()));
21
      for (int i = 0; i < b.size(); i++) {</pre>
22
          res[i][i] = 1;
23
      }
24
25
      while (exp) {
26
          if (exp & 1) {
27
              res = mult(res, b);
28
29
          b = mult(b, b);
          exp /= 2;
31
      return res;
```

```
33 }
34
35 // MUDA MUITO DE ACORDO COM O PROBLEMA
36 // LEIA COMO FAZER O MAPEAMENTO NO README
37 11 solve(11 exp, 11 dim) {
       if (exp < dim) {</pre>
39
          return dp[exp];
40
      }
41
      T.assign(dim, vi(dim));
43
      // TO DO: Preencher a Matriz que vai ser
      // exponenciada T[0][1] = 1; T[1][0] = 1;
44
45
      // T[1][1] = 1;
46
47
       mat prod = exp_mod(T, exp);
48
49
      mat vec;
      vec.assign(dim, vi(1));
       for (int i = 0; i < dim; i++) {</pre>
52
          vec[i][0] = dp[i]; // Valores iniciais
53
      }
54
       mat ans = mult(prod, vec);
56
       return ans[0][0];
57 }
```

7.8 Mo

Resolve Queries Complicadas Offline de forma rápida.

É preciso manter uma estrutura que adicione e remova elementos nas extremidades de um range (tipo janela).

• Complexidade de tempo (Query offline): $\mathcal{O}(N \cdot \sqrt{N})$

Mo com Update

Resolve Queries Complicadas Offline de forma rápida.

Permite que existam UPDATES PONTUAIS!

35

vector<int> run() {

É preciso manter uma estrutura que adicione e remova elementos nas extremidades de um range (tipo janela).

• Complexidade de tempo: $\mathcal{O}(Q \cdot N^{2/3})$

```
Codigo: mo.cpp
1 typedef pair<int, int> ii;
2 int block_sz; // Better if 'const';
4 namespace mo {
      struct query {
          int 1, r, idx;
          bool operator<(query q) const {</pre>
              int _l = 1 / block_sz;
              int _ql = q.l / block_sz;
              return ii(_1, (_1 & 1 ? -r : r)) < ii(_ql, (_ql & 1 ? -q.r : q.r));</pre>
11
          }
12
      };
13
      vector<query> queries;
14
15
      void build(int n) {
16
          block_sz = (int)sqrt(n);
17
          // TODO: initialize data structure
18
      inline void add_query(int 1, int r) {
19
20
          queries.push_back({1, r, (int)queries.size()});
21
22
      inline void remove(int idx) {
          // TODO: remove value at idx from data
23
24
          // structure
25
      inline void add(int idx) {
26
27
          // TODO: add value at idx from data
          // structure
28
29
      inline int get_answer() {
31
          // TODO: extract the current answer of the
32
          // data structure
33
          return 0;
34
```

```
vector<int> answers(queries.size());
38
          sort(queries.begin(), queries.end());
39
          int L = 0;
40
          int R = -1:
41
          for (query q : queries) {
42
              while (L > q.1) {
43
                  add(--L);
44
45
              while (R < q.r) {
                  add(++R);
46
47
48
              while (L < q.1) {
49
                  remove(L++);
50
51
              while (R > q.r) {
52
                  remove(R--);
53
54
              answers[q.idx] = get_answer();
55
56
          return answers;
57
58
59 };
Codigo: mo update.cpp
 1 typedef pair<int, int> ii;
 2 typedef tuple<int, int, int> iii;
 3 int block_sz; // Better if 'const';
 4 vector<int> vec;
 5 namespace mo {
       struct query {
          int 1, r, t, idx;
          bool operator<(query q) const {</pre>
              int _1 = 1 / block_sz;
10
              int _r = r / block_sz;
11
              int _ql = q.1 / block_sz;
12
              int _qr = q.r / block_sz;
13
              return iii(_1, (_1 & 1 ? -_r : _r), (_r & 1 ? t : -t)) <
14
                    iii(_ql, (_ql & 1 ? -_qr : _qr), (_qr & 1 ? q.t : -q.t));
15
          }
16
17
       vector<query> queries;
18
      vector<ii> updates;
19
20
       void build(int n) {
          block_sz = pow(1.4142 * n, 2.0 / 3);
```

```
22
          // TODO: initialize data structure
23
      }
24
      inline void add_query(int 1, int r) {
25
          queries.push_back({1, r, (int)updates.size(), (int)queries.size()});
26
27
      inline void add_update(int x, int v) { updates.push_back({x, v}); }
      inline void remove(int idx) {
29
          // TODO: remove value at idx from data
30
          // structure
31
32
      inline void add(int idx) {
          // TODO: add value at idx from data
33
34
          // structure
35
36
      inline void update(int 1, int r, int t) {
          auto &[x, v] = updates[t];
37
38
          if (1 <= x && x <= r) {</pre>
              remove(x):
39
40
41
          swap(vec[x], v);
42
          if (1 <= x && x <= r) {</pre>
43
              add(x);
44
          }
45
46
      inline int get_answer() {
47
          // TODO: extract the current answer from
          // the data structure
48
49
          return 0;
      }
50
51
      vector<int> run() {
52
53
          vector<int> answers(queries.size());
          sort(queries.begin(), queries.end());
54
55
          int L = 0;
56
          int R = -1;
          int T = 0:
57
          for (query q : queries) {
58
59
              while (T < q.t) {</pre>
60
                 update(L, R, T++);
             }
61
62
              while (T > q.t) {
63
                 update(L, R, --T);
64
65
              while (L > q.1) {
                 add(--L);
66
67
              while (R < q.r) {
68
```

```
69
                 add(++R);
70
              while (L < q.1) {
71
72
                 remove(L++);
73
74
              while (R > q.r) {
75
                 remove(R--);
76
77
              answers[q.idx] = get_answer();
78
          }
79
          return answers;
80
      }
81 };
```

Capítulo 8

Primitivas

8.1 Modular Int

O Mint é uma classe que representa um número inteiro módulo um **número primo**. Ela é útil para evitar overflow em operações de multiplicação e exponenciação, e também para facilitar a implementações.

Propriedades básicas de aritmética modular:

- $(a+b) \mod m \equiv (a \mod m + b \mod m) \mod m$
- $(a-b) \mod m \equiv (a \mod m b \mod m) \mod m$
- $(a \cdot b) \mod m \equiv (a \mod m \cdot b \mod m) \mod m$
- $a^b \mod m \equiv (a \mod m)^b \mod m$

Divisões funcionam um pouco diferente, para realizar a/b deve-se fazer $a \cdot b^{-1}$, onde b^{-1} é o **inverso multiplicativo** de b módulo m, tal que $b \cdot b^{-1} \equiv 1 \mod m$. No código, basta usar o operador de divisão normal pois a classe já está implementada com o inverso multiplicativo.

Para usar o Mint, basta declarar o tipo e usar como se fosse um inteiro normal. Exemplo:

```
1 const int MOD = 7; // MOD = 7 para fins de exemplo
 7 a += 2; // a == 6
 9 \text{ a } = 5; // \text{ a } == 4
Codigo: mint.cpp
 1 template <int MOD> struct Mint {
       using m = Mint;
       int v;
       Mint(): v(0) { }
       Mint(ll val) {
           if (val < -MOD or val >= 2 * MOD) {
               val %= MOD;
 8
 9
           if (val >= MOD) {
10
               val -= MOD;
11
12
           if (val < 0) {</pre>
13
               val += MOD;
14
15
           v = int(val);
16
17
       bool operator==(const m &o) const { return v == o.v; }
```

CAPÍTULO 8. PRIMITIVAS

```
bool operator!=(const m &o) const { return v != o.v; }
19
      bool operator<(const m &o) const { return v < o.v; }</pre>
20
      m pwr(m b, ll e) {
21
          m res:
22
          for (res = 1; e > 0; e >>= 1, b *= b) {
23
              if (e & 1) {
24
                 res *= b:
25
              }
26
27
          return res:
28
29
      m &operator+=(const m &o) {
30
          v += o.v:
31
          if (v >= MOD) {
32
              v -= MOD:
33
          }
34
          return *this;
35
36
      m &operator-=(const m &o) {
37
          v -= o.v;
38
          if (v < 0) {
39
              v += MOD;
41
          return *this;
      m &operator*=(const m &o) {
43
          v = int(11(v) * o.v % MOD);
45
          return *this:
46
47
      m &operator/=(const m &o) { return *this *= pwr(o, MOD - 2); }
      m &operator^=(ll e) {
49
          assert(e >= 0);
          return *this = pwr(*this, e);
50
51
52
      friend m operator+(m a, const m &b) { return a += b; }
      friend m operator-(m a. const m &b) { return a -= b; }
      friend m operator*(m a, const m &b) { return a *= b; }
54
55
      friend m operator/(m a, const m &b) { return a /= b; }
      friend m operator^(m a, ll e) { return a ^= e; }
57
      friend ostream & operator << (ostream & os, const m & a) { return os << a.v; }
      friend istream &operator>>(istream &is, m &a) {
59
          11 x;
60
          is \gg x, a = m(x);
61
          return is:
      }
63 };
64
```

```
65 const int MOD = 998244353; // o MOD tem que ser primo 66 using mint = Mint<MOD>;
```

8.2 Ponto 2D

Estrutura que representa um ponto no plano cartesiano em duas dimensões. Suporta operações de soma, subtração, multiplicação por escalar, produto escalar, produto vetorial e distância euclidiana. Pode ser usado também para representar um vetor.

Codigo: point2d.cpp

```
1 template <typename T> struct point {
      point(T_x = 0, T_y = 0) : x(_x), y(_y) { }
      using p = point;
      p operator*(const T o) { return p(o * x, o * y); }
      p operator-(const p o) { return p(x - o.x, y - o.y); }
      p operator+(const p o) { return p(x + o.x, y + o.y); }
10
      T operator*(const p o) { return x * o.x + y * o.y; }
11
      T operator^(const p o) { return x * o.y - y * o.x; }
12
      bool operator<(const p o) const { return (x == o.x) ? y < o.y : x < o.x; }</pre>
13
      bool operator==(const p o) const { return (x == o.x) and (y == o.y); }
14
      bool operator!=(const p o) const { return (x != o.x) or (y != o.y); }
15
      T dist2(const p o) {
16
17
          T dx = x - o.x, dy = y - o.y;
18
          return dx * dx + dy * dy;
19
20
21
      friend ostream &operator<<(ostream &out, const p &a) {</pre>
22
          return out << "(" << a.x << "," << a.v << ")";
23
      }
24
      friend istream &operator>>(istream &in, p &a) { return in >> a.x >> a.y; }
25 };
26
27 using pt = point<11>;
```

Capítulo 9

Geometria

9.1 Convex Hull

Algoritmo Graham's Scan para encontrar o fecho convexo de um conjunto de pontos em $\mathcal{O}(n \log n)$. Retorna os pontos do fecho convexo em sentido horário.

Definição: o fecho convexo de um conjunto de pontos é o menor polígono convexo que contém todos os pontos do conjunto.

Obs: utiliza a primitiva Ponto 2D.

Codigo: convex_hull.cpp

```
1 bool ccw(pt &p, pt &a, pt &b, bool include_collinear = 0) {
      pt p1 = a - p;
      pt p2 = b - p;
       return include_collinear ? (p2 ^ p1) <= 0 : (p2 ^ p1) < 0;</pre>
5 }
6
7 void sort_by_angle(vector<pt> &v) { // sorta o vetor por angulo em relacao ao pivo
      pt p0 = *min_element(begin(v), end(v));
      sort(begin(v), end(v), [&](pt &l, pt &r) { // sorta clockwise
10
          pt p1 = 1 - p0;
11
          pt p2 = r - p0;
12
          11 c1 = p1 ^ p2;
          return c1 < 0 || ((c1 == 0) && p0.dist2(1) < p0.dist2(r));</pre>
13
```

```
14
      });
15 }
17 vector<pt> convex_hull(vector<pt> v, bool include_collinear = 0) {
       int n = size(v);
18
19
20
       sort_by_angle(v);
21
22
      if (include_collinear) {
23
          for (int i = n - 2; i >= 0; i--) { // reverte o ultimo lado do poligono
24
              if (ccw(v[0], v[n - 1], v[i])) {
25
                 reverse(begin(v) + i + 1, end(v));
26
                 break;
27
              }
28
          }
29
      }
30
31
       vector<pt> ch{v[0], v[1]};
32
       for (int i = 2; i < n; i++) {</pre>
33
          while (ch.size() > 2 &&
34
                 (ccw(ch.end()[-2], ch.end()[-1], v[i], !include_collinear)))
35
              ch.pop_back();
36
          ch.emplace_back(v[i]);
37
      }
38
39
       return ch;
40 }
```

Capítulo 10

Matemática

10.1 Eliminação Gaussiana

10.1.1 Gauss

Método de eliminação gaussiana para resolução de sistemas lineares com coeficientes reais.

• Complexidade de tempo: $\mathcal{O}(n^3)$

Codigo: gauss.cpp

```
1 const double EPS = 1e-9;
 2 const int INF = 2; // it doesn't actually have to
                    // be infinity or a big number
5 int gauss(vector<vector<double>> a, vector<double> &ans) {
       int n = (int)a.size();
       int m = (int)a[0].size() - 1;
       vector<int> where(m, -1);
10
      for (int col = 0, row = 0; col < m && row < n; ++col) {</pre>
11
          int sel = row;
12
          for (int i = row; i < n; ++i) {</pre>
              if (abs(a[i][col]) > abs(a[sel][col])) {
13
14
                  sel = i;
```

```
15
           }
16
17
           if (abs(a[sel][col]) < EPS) {</pre>
18
19
20
           for (int i = col; i <= m; ++i) {</pre>
21
               swap(a[sel][i], a[row][i]);
22
23
           where[col] = row;
24
25
           for (int i = 0; i < n; ++i) {</pre>
26
              if (i != row) {
27
                  double c = a[i][col] / a[row][col];
28
                  for (int j = col; j <= m; ++j) {</pre>
29
                      a[i][j] -= a[row][j] * c;
30
31
32
           }
33
           ++row;
34
35
       ans.assign(m, 0);
37
       for (int i = 0; i < m; ++i) {</pre>
38
           if (where[i] != -1) {
39
               ans[i] = a[where[i]][m] / a[where[i]][i];
40
41
       }
42
       for (int i = 0; i < n; ++i) {
43
           double sum = 0:
44
           for (int j = 0; j < m; ++j) {
45
              sum += ans[j] * a[i][j];
```

```
74
```

```
46
47
          if (abs(sum - a[i][m]) > EPS) {
              return 0;
49
      }
50
51
      for (int i = 0: i < m: ++i) {</pre>
52
53
          if (where[i] == -1) {
54
              return INF;
55
57
       return 1;
58 }
```

10.1.2 Gauss Mod 2

Método de eliminação gaussiana para resolução de sistemas lineares com coeficientes em \mathbb{Z}_2 (inteiros módulo 2).

• Complexidade de tempo: $\mathcal{O}(n^3/32)$

Codigo: gauss_mod2.cpp

```
1 const int N = 105:
 2 const int INF = 2; // tanto faz
4 // n -> numero de equacoes, m -> numero de
5 // variaveis a[i][j] para j em [0, m - 1] ->
6 // coeficiente da variavel j na iesima equacao
7 // a[i][j] para j == m -> resultado da equação da
8 // iesima linha ans -> bitset vazio, que retornara
9 // a solucao do sistema (caso exista)
10
11 int gauss(vector<bitset<N>> a, int n, int m, bitset<N> &ans) {
       vector<int> where(m, -1);
13
14
       for (int col = 0, row = 0; col < m && row < n; col++) {</pre>
15
          for (int i = row; i < n; i++) {</pre>
16
              if (a[i][col]) {
```

```
swap(a[i], a[row]);
18
                  break;
19
20
           }
21
           if (!a[row][col]) {
22
               continue;
23
24
           where[col] = row;
25
26
           for (int i = 0; i < n; i++) {</pre>
27
              if (i != row && a[i][col]) {
28
                  a[i] ^= a[row]:
29
30
           }
31
           row++;
      }
32
33
       for (int i = 0: i < m: i++) {</pre>
35
           if (where[i] != -1) {
36
               ans[i] = a[where[i]][m] / a[where[i]][i];
37
38
39
       for (int i = 0; i < n; i++) {</pre>
40
           int sum = 0;
41
           for (int j = 0; j < m; j++) {</pre>
42
               sum += ans[j] * a[i][j];
43
44
           if (abs(sum - a[i][m]) > 0) {
45
              return 0; // Sem solucao
46
47
       }
48
49
       for (int i = 0; i < m; i++) {</pre>
           if (where[i] == -1) {
50
51
              return INF; // Infinitas solucoes
52
53
       return 1; // Unica solucao (retornada no
                // bitset ans)
56 }
```

33

34

36 37

38

39

}

if (invert) {

}

10.2 Exponenciação Modular Rápida

Computa $(base^{exp}) \mod MOD$.

- Complexidade de tempo: $\mathcal{O}(log(exp))$.
- Complexidade de espaço: $\mathcal{O}(1)$

```
Codigo: exp_mod.cpp

1 ll exp_mod(ll base, ll exp) {
2    ll b = base, res = 1;
3    while (exp) {
4        if (exp & 1) {
5            res = (res * b) % MOD;
6        }
7        b = (b * b) % MOD;
8        exp /= 2;
9    }
10    return res;
11 }
```

10.3 FFT

Algoritmo que computa a transformada rápida de fourier para convolução de polinômios.

Computa convolução (multiplicação) de polinômios.

- Complexidade de tempo (caso médio): $\mathcal{O}(N * log(N))$
- Complexidade de tempo (considerando alto overhead): $\mathcal{O}(n*log^2(n)*log(log(n)))$

Garante que não haja erro de precisão para polinômios com grau até $3*10^5$ e constantes até 10^6 .

```
Codigo: fft.cpp
 1 typedef complex<double> cd;
 2 typedef vector<cd> poly;
 3 const double PI = acos(-1);
 5 void fft(poly &a, bool invert = 0) {
       int n = a.size(), log n = 0:
       while ((1 << log_n) < n) {</pre>
          log_n++;
10
11
      for (int i = 1, j = 0; i < n; ++i) {
12
          int bit = n >> 1;
13
          for (; j >= bit; bit >>= 1) {
14
              j -= bit;
15
          j += bit;
16
          if (i < j) {</pre>
17
18
              swap(a[i], a[j]);
19
          }
      }
20
21
       double angle = 2 * PI / n * (invert ? -1 : 1);
       poly root(n / 2);
24
       for (int i = 0; i < n / 2; ++i) {</pre>
25
           root[i] = cd(cos(angle * i), sin(angle * i));
26
       }
27
28
       for (long long len = 2; len <= n; len <<= 1) {
29
          long long step = n / len;
30
          long long aux = len / 2;
31
          for (long long i = 0; i < n; i += len) {
32
              for (int j = 0; j < aux; ++j) {</pre>
```

a[i + j] = u + v;

for (int i = 0: i < n: ++i) {

a[i + i + aux] = u - v:

cd u = a[i + j], v = a[i + j + aux] * root[step * j];

```
41
              a[i] /= n;
42
      }
43
44 }
45
46 vector<long long> convolution(vector<long long> &a, vector<long long> &b) {
      int n = 1, len = a.size() + b.size();
      while (n < len) {</pre>
          n <<= 1;
49
50
51
      a.resize(n);
      b.resize(n);
53
      poly fft_a(a.begin(), a.end());
54
      fft(fft_a);
      poly fft_b(b.begin(), b.end());
56
      fft(fft_b);
57
58
      poly c(n);
       for (int i = 0; i < n; ++i) {</pre>
          c[i] = fft_a[i] * fft_b[i];
61
      }
62
      fft(c, 1);
63
      vector<long long> res(n);
      for (int i = 0; i < n; ++i) {</pre>
          res[i] = round(c[i].real()); // res = c[i].real();
66
67
                                     // se for vector de
                                     // double
68
69
      // while(size(res) > 1 && res.back() == 0)
70
71
      // res.pop_back(); // apenas para quando os
72
      // zeros direita nao importarem
73
      return res;
74 }
```

10.4 Fatoração

Algortimos para fatorar um número.

Fatoração Simples

Fatora um número N.

• Complexidade de tempo: $\mathcal{O}(\sqrt{n})$

Crivo Linear

Pré-computa todos os fatores primos até MAX.

Utilizado para fatorar um número N menor que MAX.

- Complexidade de tempo: Pré-processamento $\mathcal{O}(MAX)$
- Complexidade de tempo: Fatoraração $\mathcal{O}(\text{quantidade de fatores de N})$
- Complexidade de espaço: $\mathcal{O}(MAX)$

Fatoração Rápida

Utiliza Pollar-Rho e Miller-Rabin (ver em Primos) para fatorar um número N.

• Complexidade de tempo: $\mathcal{O}(N^{1/4} \cdot log(N))$

Pollard-Rho

Descobre um divisor de um número N.

- Complexidade de tempo: $\mathcal{O}(N^{1/4} \cdot log(N))$
- Complexidade de espaço: $\mathcal{O}(N^{1/2})$

Codigo: naive_factorize.cpp

```
1 vector<int> factorize(int n) {
2    vector<int> factors;
3    for (long long d = 2; d * d <= n; d++) {
4         while (n % d == 0) {
5             factors.push_back(d);
}</pre>
```

```
n /= d;
9
      if (n != 1) {
10
          factors.push_back(n);
11
12
      return factors;
13 }
Codigo: linear sieve factorize.cpp
1 namespace sieve {
      const int MAX = 1e4;
      int lp[MAX + 1], factor[MAX + 1];
      vector<int> pr;
5
      void build() {
6
          for (int i = 2; i <= MAX; ++i) {</pre>
             if (lp[i] == 0) {
                 lp[i] = i;
9
                 pr.push_back(i);
10
             for (int j = 0; i * pr[j] <= MAX; ++j) {</pre>
11
12
                 lp[i * pr[j]] = pr[j];
                 factor[i * pr[j]] = i;
13
14
                 if (pr[j] == lp[i]) {
15
                     break;
16
17
             }
          }
18
19
20
      vector<int> factorize(int x) {
21
          if (x < 2) {
22
             return {};
23
         }
24
          vector<int> v;
25
          for (int lpx = lp[x]; x >= lpx; x = factor[x]) {
26
             v.emplace_back(lp[x]);
27
         }
28
          return v;
29
30 }
Codigo: pollard rho.cpp
1 long long mod_mul(long long a, long long b, long long m) { return (__int128)a * b % m;
```

```
3 long long pollard_rho(long long n) {
       auto f = [n](long long x) {
          return mod_mul(x, x, n) + 1;
      }:
      long long x = 0, y = 0, t = 30, prd = 2, i = 1, q;
      while (t++ \% 40 || \_gcd(prd, n) == 1) {
          if (x == y) {
10
              x = ++i, y = f(x);
11
12
          if ((q = mod_mul(prd, max(x, y) - min(x, y), n))) {
13
              prd = q;
14
          }
15
          x = f(x), y = f(f(y));
16
17
       return __gcd(prd, n);
18 }
Codigo: fast factorize.cpp
 1 // usa miller_rabin.cpp!! olhar em
 2 // matematica/primos usa pollar_rho.cpp!! olhar em
 3 // matematica/fatoracao
 4
 5 vector<long long> factorize(long long n) {
       if (n == 1) {
          return {};
      }
      if (miller_rabin(n)) {
10
          return {n};
11
12
      long long x = pollard_rho(n);
      auto 1 = factorize(x), r = factorize(n / x);
      1.insert(1.end(), all(r));
15
       return 1;
16 }
```

10.5 GCD

Algoritmo Euclides para computar o Máximo Divisor Comum (MDC em português; GCD em inglês), e variações.

Read in [English](README.en.md)

Algoritmo de Euclides

Computa o Máximo Divisor Comum (MDC em português; GCD em inglês).

• Complexidade de tempo: $\mathcal{O}(log(n))$

Mais demorado que usar a função do compilador C++ __gcd(a,b).

Algoritmo de Euclides Estendido

Algoritmo extendido de euclides que computa o Máximo Divisor Comum e os valores x e y tal que $a * x + b * y = \gcd(a, b)$.

• Complexidade de tempo: $\mathcal{O}(log(n))$

```
Codigo: gcd.cpp
```

return a;

10

11 }

```
1 long long gcd(long long a, long long b) { return (b == 0) ? a : gcd(b, a % b); }
Codigo: extended_gcd.cpp
1 int extended_gcd(int a, int b, int &x, int &y) {
2          x = 1, y = 0;
3          int x1 = 0, y1 = 1;
4          while (b) {
5              int q = a / b;
6              tie(x, x1) = make_tuple(x1, x - q * x1);
7              tie(y, y1) = make_tuple(y1, y - q * y1);
8              tie(a, b) = make_tuple(b, a - q * b);
```

Codigo: extended_gcd_recursive.cpp

```
1 11 extended_gcd(11 a, 11 b, 11 &x, 11 &y) {
2     if (b == 0) {
3         x = 1;
4         y = 0;
5         return a;
6     } else {
7         ll g = extended_gcd(b, a % b, y, x);
8         y -= a / b * x;
9         return g;
10     }
11 }
```

10.6 Inverso Modular

Algoritmos para calcular o inverso modular de um número. O inverso modular de um inteiro a é outro inteiro x tal que $a \cdot x \equiv 1 \pmod{MOD}$

O inverso modular de um inteiro a é outro inteiro x tal que a*x é congruente a 1 mod MOD.

Inverso Modular

Calcula o inverso modular de a.

Utiliza o algoritmo Exp
 Mod, portanto, espera-se que MOD seja um número primo.

- * Complexidade de tempo: $\mathcal{O}(\log(\text{MOD}))$.
- * Complexidade de espaço: $\mathcal{O}(1)$.

Inverso Modular por MDC Estendido

Calcula o inverso modular de a.

Utiliza o algoritmo Euclides Extendido, portanto, espera-se que MOD seja coprimo com a.

Retorna −1 se essa suposição for quebrada.

- * Complexidade de tempo: $\mathcal{O}(\log(\text{MOD}))$.
- * Complexidade de espaço: $\mathcal{O}(1)$.

Inverso Modular para 1 até MAX

Calcula o inverso modular para todos os números entre 1 e MAX.

Espera-se que MOD seja primo.

- * Complexidade de tempo: $\mathcal{O}(MAX)$.
- * Complexidade de espaço: $\mathcal{O}(MAX)$.

Inverso Modular para todas as potências

Seja b um número inteiro qualquer.

Calcula o inverso modular para todas as potências de b entre b^0 e $b^M AX$.

É necessário calcular antecipadamente o inverso modular de b, para 2 é sempre (MOD+1)/2.

Espera-se que MOD seja coprimo com b.

- * Complexidade de tempo: $\mathcal{O}(MAX)$.
- * Complexidade de espaço: $\mathcal{O}(MAX)$.

Codigo: modular_inverse_linear.cpp

```
1 ll inv[MAX];
2
3 void compute_inv(const ll m = MOD) {
4    inv[1] = 1;
5    for (int i = 2; i < MAX; i++) {
6        inv[i] = m - (m / i) * inv[m % i] % m;
7    }
8 }</pre>
```

Codigo: modular inverse pow.cpp

```
1 const ll INVB = (MOD + 1) / 2; // Modular inverse of the base, 2 // for 2 it is (MOD+1)/2 3
```

```
4 ll inv[MAX]; // Modular inverse of b^i
 6 void compute_inv() {
      inv[0] = 1;
      for (int i = 1; i < MAX; i++) {</pre>
          inv[i] = inv[i - 1] * INVB % MOD;
10
11 }
Codigo: modular inverse.cpp
1 11 inv(11 a) { return exp_mod(a, MOD - 2); }
Codigo: modular inverse coprime.cpp
 1 int inv(int a) {
      int g = extended_gcd(a, MOD, x, y);
      if (g == 1) {
         return (x % m + m) % m;
      return -1;
8 }
```

10.7 NTT

Computa a multiplicação de polinômios com coeficientes inteiros módulo um número primo.

79

Computa multiplicação de polinômios; Somente para inteiros.

• Complexidade de tempo: $\mathcal{O}(N \cdot \log(N))$

Constantes finais devem ser menores do que 10^9 .

Para constantes entre 10^9 e 10^{18} é necessário codificar também [big_convolution](

```
Codigo: ntt.cpp
1 typedef long long 11;
2 typedef vector<11> poly;
4 \ 11 \ mod[3] = \{998244353LL, 1004535809LL, 1092616193LL\};
5 ll root[3] = {102292LL, 12289LL, 23747LL};
6 ll root_1[3] = {116744195LL, 313564925LL, 642907570LL};
7 ll root_pw[3] = {1LL << 23, 1LL << 21, 1LL << 21};
9 11 modInv(11 b, 11 m) {
      11 e = m - 2;
11
      ll res = 1:
12
      while (e) {
13
          if (e & 1) {
              res = (res * b) % m;
14
15
          e /= 2;
16
17
          b = (b * b) \% m:
18
19
      return res:
20 }
21
22 void ntt(poly &a, bool invert, int id) {
      11 n = (11)a.size(), m = mod[id];
      for (11 i = 1, j = 0; i < n; ++i) {
24
25
          ll bit = n >> 1:
26
          for (; j >= bit; bit >>= 1) {
27
              j -= bit;
28
          }
29
          j += bit;
30
          if (i < i) {
31
              swap(a[i], a[j]);
32
33
34
      for (11 len = 2, wlen; len <= n; len <<= 1) {
          wlen = invert ? root 1[id] : root[id];
35
36
          for (ll i = len; i < root_pw[id]; i <<= 1) {</pre>
37
              wlen = (wlen * wlen) % m;
38
          for (ll i = 0; i < n; i += len) {</pre>
39
40
              11 w = 1:
41
              for (11 j = 0; j < len / 2; j++) {</pre>
42
                 ll u = a[i + j], v = (a[i + j + len / 2] * w) % m;
                 a[i + j] = (u + v) \% m;
43
44
                 a[i + j + len / 2] = (u - v + m) \% m;
                 w = (w * wlen) % m;
45
46
```

```
48
49
     if (invert) {
50
          11 inv = modInv(n, m);
51
          for (11 i = 0; i < n; i++) {
52
             a[i] = (a[i] * inv) % m;
53
54
     }
55 }
57 poly convolution(poly a, poly b, int id = 0) {
      11 n = 1LL, len = (1LL + a.size() + b.size());
59
      while (n < len) {
60
          n *= 2;
61
      }
62
      a.resize(n);
63
      b.resize(n);
     ntt(a, 0, id):
      ntt(b, 0, id);
66
      poly answer(n);
67
      for (ll i = 0; i < n; i++) {</pre>
68
          answer[i] = (a[i] * b[i]);
69
70
      ntt(answer, 1, id);
71
      return answer;
72. F
Codigo: big convolution.cpp
 2 ll mod_mul(ll a, ll b, ll m) { return (__int128)a * b % m; }
 3 11 ext_gcd(11 a, 11 b, 11 &x, 11 &y) {
    if (!b) {
          x = 1:
         v = 0;
          return a:
      } else {
          ll g = ext_gcd(b, a \% b, y, x);
10
         y -= a / b * x;
11
          return g;
12
     }
13 }
14
15 // convolution mod 1,097,572,091,361,755,137
16 poly big_convolution(poly a, poly b) {
17
      poly r0, r1, answer;
      r0 = convolution(a, b, 1);
```

```
19
      r1 = convolution(a, b, 2);
20
21
      11 s, r, p = mod[1] * mod[2];
22
      ext_gcd(mod[1], mod[2], r, s);
23
24
       answer.resize(r0.size());
25
      for (int i = 0: i < (int)answer.size(): i++) {</pre>
26
          answer[i] = (mod_mul((s * mod[2] + p) % p, r0[i], p) +
27
                      mod_mul((r * mod[1] + p) % p, r1[i], p) + p) %
28
29
30
      return answer;
31 }
```

10.8 Primos

Algortimos relacionados a números primos.

Crivo de Eratóstenes

Computa a primalidade de todos os números até N, quase tão rápido quanto o crivo linear.

• Complexidade de tempo: $\mathcal{O}(N * log(log(N)))$

Demora 1 segundo para LIM igual a $3 * 10^7$.

Miller-Rabin

Teste de primalidade garantido para números até 10^24 .

• Complexidade de tempo: $\mathcal{O}(log(N))$

Teste Ingênuo

Computa a primalidade de um número N.

• Complexidade de tempo: $\mathcal{O}(N^{(1/2)})$ Codigo: sieve.cpp 1 vector<bool> sieve(int n) { vector<bool> is_prime(n + 5, true); is_prime[0] = false; is_prime[1] = false; for (int i = 2; i * i <= n; i++) {</pre> if (is_prime[i]) { for (int j = i * i; j < n; j += i) { is_prime[j] = false; 10 } 11 return is_prime; 13 } Codigo: naive is prime.cpp 1 bool is_prime(int n) { for (int d = 2; d * d <= n; d++) {</pre> if (n % d == 0) { return false; 5 } return true; Codigo: miller rabin.cpp 1 ll power(ll base, ll e, ll mod) { ll result = 1; base %= mod; while (e) { **if** (e & 1) { result = (__int128)result * base % mod; base = (__int128)base * base % mod; 9 e >>= 1; 10 11 return result;

81

```
13
14 bool is_composite(ll n, ll a, ll d, int s) {
      11 x = power(a, d, n);
      if (x == 1 || x == n - 1) {
17
          return false:
18
19
      for (int r = 1; r < s; r++) {
20
          x = (_int128)x * x % n;
21
          if (x == n - 1) {
              return false;
23
24
      return true;
26 }
27
28 bool miller_rabin(ll n) {
      if (n < 2) {
30
          return false;
31
      int r = 0;
      11 d = n - 1;
      while ((d & 1) == 0) {
          d >>= 1, ++r:
37
      for (int a: {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41}) {
          if (n == a) {
38
39
             return true;
41
          if (is_composite(n, a, d, r)) {
              return false;
          }
43
44
      return true;
46 }
```

10.9 Sum of floor (n div i)

Esse código computa, em $\mathcal{O}(\sqrt{n})$, o seguinte somatório:

$$\sum_{i=1}^{n} \left\lfloor \frac{n}{i} \right\rfloor$$

```
Codigo: sum of floor.cpp
 1 \text{ const int MOD} = 1e9 + 7;
 3 long long sumoffloor(long long n) {
      long long answer = 0, i;
      for (i = 1; i * i <= n; i++) {
          answer += n / i;
          answer %= MOD:
8
10
      for (int j = 1; n / (j + 1) >= i; j++) {
          answer += (((n / j - n / (j + 1)) \% MOD) * j) \% MOD;
12
          answer %= MOD;
13
      }
14
      return answer;
15 }
```

10.10 Teorema do Resto Chinês

Algoritmo que resolve o sistema $x \equiv a_i \pmod{m_i}$, onde m_i são primos entre si.

Retorna -1 se a resposta não existir.

Codigo: crt.cpp

```
1 11 extended_gcd(11 a, 11 b, 11 &x, 11 &y) {
2     if (b == 0) {
3         x = 1;
4         y = 0;
5         return a;
6     } else {
```

```
11 g = extended_gcd(b, a % b, y, x);
          y = a / b * x;
9
          return g;
10
11 }
13 ll crt(vector<ll> rem. vector<ll> mod) {
      int n = rem.size();
      if (n == 0) {
15
16
          return 0:
17
       _{int128} \text{ ans = rem[0], m = mod[0];}
18
      for (int i = 1; i < n; i++) {</pre>
19
20
          11 x, y;
21
          11 g = extended_gcd(mod[i], m, x, y);
          if ((ans - rem[i]) % g != 0) {
23
              return -1;
24
          ans = ans + (_int128)1 * (rem[i] - ans) * (m / g) * y;
          m = (_int128) (mod[i] / g) * (m / g) * g;
27
          ans = (ans \% m + m) \% m;
28
      return ans;
30 }
```

10.11 Totiente de Euler

Código para computar o totiente de Euler.

Totiente de Euler (Phi) para um número

Computa o totiente para um único número N.

• Complexidade de tempo: $\mathcal{O}(N^{(1/2)})$

Totiente de Euler (Phi) entre 1 e N

Computa o totiente entre 1 e N.

• Complexidade de tempo: $\mathcal{O}(N * log(log(N)))$

```
Codigo: phi 1 to n.cpp
 1 vector<int> phi_1_to_n(int n) {
       vector<int> phi(n + 1);
      for (int i = 0; i <= n; i++) {</pre>
          phi[i] = i;
      for (int i = 2; i <= n; i++) {
          if (phi[i] == i) {
 8
             for (int j = i; j <= n; j += i) {</pre>
9
                 phi[j] -= phi[j] / i;
10
11
          }
12
      }
      return phi;
14 }
Codigo: phi.cpp
 1 int phi(int n) {
      int result = n;
      for (int i = 2; i * i <= n; i++) {</pre>
          if (n % i == 0) {
              while (n % i == 0) {
                 n /= i:
              result -= result / i;
9
          }
10
      }
11
      if (n > 1) {
12
          result -= result / n;
13
14
      return result;
15 }
```