Introdução às Redes e Serviços

Redes e Serviços

Licenciatura em Engenharia Informática DETI-UA

Redes de Dados

- Propósito: Transmitir informação de um emissor para um recetor
 - Usando redes de múltiplas entidades, equipamentos e serviços
 - Respeitando os requisitos do emissor/recetor
 - QoS, Segurança, ...

Diferentes Implementações Possíveis

VS

O que é a Internet?

- Milhões de dispositivos interligados: hosts ou sistemas terminais
 - PCs, servidores, telefones, tablets, micro-ondas, ...
 - Que executam aplicações distribuídas
- Ligações físicas
 - Fibra óptica, cobre, rádio, satélite, ...
- Débito de transmissão = largura de banda
- Routers: equipamentos que comutam pacotes entre ligações físicas
- Protocolos controlam envio e recepção de mensagens
 - e.g., TCP, IP, HTTP, FTP, PPP
- Internet: "rede de redes"
 - Aproximadamente hierárquica
 - Internet pública versus intranet privada
- Normas Internet
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

O que é um protocolo?

Protocolos humanos:

- "Que horas são?"
- "Eu tenho uma pergunta!"

- ... são enviadas mensagens específicas
- ... são executadas acções específicas quando são recebidas mensagens

Protocolos de rede:

- Máquinas em vez de humanos
- Todas as comunicações na Internet são executadas por protocolos

Os protocolos definem o formato e a ordem das mensagens enviadas e recebidas entre as entidades da rede, e as acções executadas quando da transmissão e recepção das mensagens

O que é um protocolo?

• Um protocolo humano e um protocolo de rede:

A estrutura da rede

- Periferia da rede
 - Estações e suas aplicações
- Núcleo da rede (Core)
 - Routers
 - Rede de redes
- Redes de acesso

A periferia da rede

- Estações (hosts)
 - Correm os programas com as aplicações
 - Por exemplo, Web, email
 - na periferia da rede
- Modelo cliente/servidor
 - Estação cliente solicita e recebe serviço de um servidor que está sempre à escuta
 - Por exemplo, browser/servidor
 Web; cliente/servidor de email
- Modelo peer-to-peer
 - Utilização mínima (ou nula) de servidores dedicados
 - Por exemplo: eMule, BitTorrent

Núcleo da rede: comutação de circuitos

- Recursos extremo-a-extremo reservados para uma "chamada"
 - Largura de banda da ligação, capacidade de comutação
 - Recursos dedicados: não há partilha de recursos entre várias chamadas
 - Desempenho do tipo circuito (garantido)
 - Necessário o estabelecimento da chamada

Núcleo da rede: comutação de circuitos

- Recursos da rede divididos em "pedaços"
 - Os pedaços são atribuídos ás chamadas
 - O pedaço de recurso permanece inativo se não for usado por nenhuma chamada (não há partilha)

- Divisão da largura de banda em "pedaços"
 - Divisão na frequência
 - Divisão no tempo

Núcleo da rede: FDM e TDM

Núcleo da rede: comutação de pacotes

- Cada fluxo de dados extremo-a-extremo é dividido em pacotes
 - Os pacotes de todos os utilizadores partilham os recursos da rede
 - Cada pacote utiliza a largura de banda total da ligação
 - Os recursos são usados quando necessário
- Os pacotes são manipulados de duas formas
 - Datagramas
 - Circuitos virtuais

Competição pelos recursos:

- O pedido agregado de recursos pode exceder a quantidade disponível
- Congestionamento: os pacotes são armazenados em fila de espera até serem transmitidos na ligação
- Store and forward: os pacotes deslocam-se um salto de cada vez

Comutação de pacotes: multiplexagem estatística

A sequência de pacotes de A e B não tem um padrão fixo multiplexagem estatística.

Datagrama

- Cada pacote é tratado de forma independente
- Os pacotes podem tomar qualquer rota mais prática
- Os pacotes podem chegar fora de ordem
- Os pacotes podem-se perder
- O receptor tem a responsabilidade de re-ordenar os pacotes e recuperar de pacotes perdidos

Encaminhamento de Datagramas

Circuito Virtual

- São estabelecidas rotas pré-planeadas antes do envio dos pacotes
- São usados pacotes para o pedido e estabelecimento da ligação/chamada (handshake)
- Cada pacote contém um identificador do circuito virtual em vez do endereço destino
- Não são necessárias decisões de encaminhamento para cada pacote
- É preciso um pedido explícito para eliminar um circuito
- Não é um caminho dedicado

Encaminhamento baseado em Circuitos Virtuais

Circuitos virtuais vs Datagramas

Circuitos virtuais

- A rede pode fornecer mecanismos de sequenciação e controlo de erros
- Os pacotes são encaminhados de forma mais rápida
 - Não é necessário tomar decisões de encaminhamento
- Menos fiável
 - A perda de um nó implica a perda de todos os circuitos que passam por esse nó

Datagramas

- Não existe a fase de estabelecimento da chamada
 - Melhor para poucos pacotes
- Mais flexível
 - O encaminhamento pode ser usado para evitar as partes congestionadas da rede

Taxonomia da rede

 A Internet fornece ás aplicações serviços orientados à ligação (TCP) e serviços connectionless (UDP).

Redes de acesso

Como é feita a ligação à rede de núcleo?

- Redes de acesso residenciais
- Redes de acesso institucionais (escola, empresa)
- Redes de acesso móveis

Pontos importantes:

- Qual a largura de banda (bits) por segundo) da rede de acesso?
- Acesso partilhado ou dedicado?

Acesso residencial: Acesso Ponto-a-Ponto

- Modem
 - Até 56Kb/s de acesso directo ao router
 - Não era possível telefonar e aceder à Internet ao mesmo tempo
- ADSL: asymmetric digital subscriber line
 - Até 8Mbps downstream/1Mbps upstream
 - FDM:
 - → 50 kHz 1 MHz para downstream
 - 4 kHz 50 kHz para upstream
 - 0 kHz 4 kHz para telefone tradicional
- ADSL2: 12Mbps/1Mbps
- ADSL2+: 24Mbps/1Mbps
- VDSL: 55Mbps/15Mbps
- VDSL2 (long range): 55Mbps/30Mbps
- VDSL2 (short range): 100Mbps/100Mbps

Acesso residencial: modems de cabo

- Rede de cabo e fibra liga habitações ao router do ISP
- HFC: Hybrid Fiber Coax
 - Assimétrico: até 10Mbps/1 Mbps
- DOCSIS: Data Over Cable Service Interface Specification
 - Versão 2 assimétrico: até 50Mbps/27Mbps
 - Versão 3 (4 canais) assimétrico: até 200Mbps/108Mbps

Arquitectura da rede de cabo

Arquitectura da rede de cabo

Acesso institucional: redes de área local

- Rede de área local (LAN) de um campus de pequena dimensão
 - Liga estações ao router (ou routers) de entrada .

Acesso institucional: redes de média/grande dimensão

- Rede de área local (LAN) de um campus de média/grande dimensão
 - Arquitetura hierárquica.

Redes de acesso wireless

- Acesso wireless partilhado liga estações ao router
 - Através de um ponto de acesso
- Wireless LANs:
 - 802.11b (WiFi): 11 Mbps
 - 802.11g (WiFi): 54 Mbps
 - ♦ 802.11n (WiFi): ~300 Mbps
- Acesso wireless de área mais alargada
 - Fornecido por um operador de telecomunicações
 - LTE Advanced: até 1Gbps/500Mbps
 - LTE: até 100Mbps/50Mbps
 - WiMax: até 128Mbps/56Mbps
 - 3G HSPA+: até 42Mbps/11Mbps
 - 3G HSUPA: upload até 5.7Mbps
 - 3G HSDPA: download até 14.4Mbps
 - 3G UMTS: até 384kbps/384kbps
 - WAP/GPRS na Europa: até 114kbps

Terminais móveis

Redes residenciais

Componentes típicos:

- ADSL ou modem de cabo
- Router/firewall/NAT
- (Switched) Ethernet
- Ponto de acesso wireless

Rede Ethernet Switched e Rede Wireless com a mesma rede IP

Rede Ethernet Switched e Rede Wireless com redes IP diferentes

Estrutura da Internet: rede de redes

- Aproximadamente hierárquica
- ISPs de nível 1 (cobertura nacional/internacional, e.g Sprint e AT&T), ISPs de nível 2 (mais pequenos, frequentemente regionais), ISPs de nível 3 e ISPs locais (redes de acesso)

Estrutura da Internet: rede de redes

- Um pacote atravessa muitas redes.
- Os caminhos podem não ser simétricos.

Organização das funcionalidades de rede em camadas

Modelo OSI (Open Systems Interconnection)

Nível 7	Application
Nível 6	Presentation
Nível 5	Session
Nível 4	Transport
Nível 3	Network
Nível 2	Data Link
Nível 1	Physical

Aplicação/Serviço

Definição, Manipulação e Codificação da informação

Estabelecimento e manutenção de sessões

Comunicação extremo a extremo

Endereçamento e Encaminhamento

Partilha do meio

Transmissão dos sinais

Concatenação de cabeçalhos

 Os pacotes que viajam na rede incluem vários cabeçalhos concatenados

Modelo de referência TCP/IP

TCP/IP

OSI

Exemplo HTTP (HyperText Transfer Protocol)

Cabeçalho HTTP

Dados

Mensagem HTTP

Cabeçalho TCP

Cabeçalho HTTP

Dados

Segmento TCP

Cabecalho IP

Cabeçalho TCP

Cabeçalho HTTP

Dados

Datagrama IP

Cabeçalho Ethernet

Cabecalho IP

Cabeçalho TCP

Cabeçalho HTTP

Dados

Pacote Ethernet

Equipamentos

Switch

- OSI Layer 2 inter-connection
- Implementa VLAN
- Encaminhamento com base na Spanning-tree
 - STP, RSTP, MSTP
- Pontos de acesso sem-fios

- OSI Layer 3 inter-connection
- Tem funcionalidades extra como QoS, Segurança, VPN gateway, monitorização, etc...

L3 Switch

- Switch+Router
- Funcionalidades de routing limitadas na gama baixa/média
- Funcionalidades de routing completas na gama alta
- Muitos tem hardware Layer 2 dedicado para o switching

Router with switching modules

- Funcionalidades Layer 3 completas
- Funcionalidades Layer 2 limitadas

Security Appliance

- Firewall
- IDS/IPS (Intrusion Detection/Prevention System)
- NAT/PAT
- VPN Gateway

