Therefore, the solutions of the original least-squares problem are precisely the solutions of the the so-called *normal equations*

$$A^{\mathsf{T}}Ax = A^{\mathsf{T}}b$$
,

discovered by Gauss and Legendre around 1800. We also proved that the normal equations always have a solution.

Computationally, it is best not to solve the normal equations directly, and instead, to use methods such as the QR-decomposition (applied to A) or the SVD-decomposition (in the form of the pseudo-inverse). We will come back to this point later on.

Here is another important corollary of Proposition 48.7.

Corollary 48.8. For any continuous nonnull linear map $h: E \to \mathbb{C}$, the null space

$$H = \operatorname{Ker} h = \{ u \in E \mid h(u) = 0 \} = h^{-1}(0)$$

is a closed hyperplane H, and thus, H^{\perp} is a subspace of dimension one such that $E = H \oplus H^{\perp}$.

The above suggests defining the dual space of E as the set of all continuous maps $h \colon E \to \mathbb{C}$.

Remark: If $h: E \to \mathbb{C}$ is a linear map which is **not** continuous, then it can be shown that the hyperplane $H = \operatorname{Ker} h$ is dense in E! Thus, H^{\perp} is reduced to the trivial subspace $\{0\}$. This goes against our intuition of what a hyperplane in \mathbb{R}^n (or \mathbb{C}^n) is, and warns us not to trust our "physical" intuition too much when dealing with infinite dimensions. As a consequence, the map $\flat \colon E \to E^*$ introduced in Section 14.2 (see just after Definition 48.4 below) is not surjective, since the linear forms of the form $u \mapsto \langle u, v \rangle$ (for some fixed vector $v \in E$) are continuous (the inner product is continuous).

48.2 Duality and the Riesz Representation Theorem

We now show that by redefining the dual space of a Hilbert space as the set of continuous linear forms on E we recover Theorem 14.6.

Definition 48.4. Given a Hilbert space E, we define the dual space E' of E as the vector space of all continuous linear forms $h: E \to \mathbb{C}$. Maps in E' are also called bounded linear operators, bounded linear functionals, or simply operators or functionals.

As in Section 14.2, for all $u, v \in E$, we define the maps $\varphi_u^l \colon E \to \mathbb{C}$ and $\varphi_v^r \colon E \to \mathbb{C}$ such that

$$\varphi_u^l(v) = \overline{\langle u, v \rangle},$$

and

$$\varphi_v^r(u) = \langle u, v \rangle$$
.