Topology

Robin Adams

 $\mathrm{May}\ 12,\ 2022$

1 Order Theory

Definition 1 (Preorder). Let X be a set. A *preorder* on X is a binary relation \leq on X such that:

Reflexivity For all $x \in X$, we have $x \leq x$

Transitivity For all $x, y, z \in X$, if $x \le y$ and $y \le z$ then $x \le z$.

Definition 2 (Preordered Set). A preordered set consists of a set X and a preorder \leq on X.

Definition 3 (Interval). Let X be a preordered set and $Y \subseteq X$. Then Y is an interval if and only if, for all $a, b \in Y$ and $c \in X$, if $a \le c \le b$ then $c \in Y$.

2 Real Analysis

Definition 4. Let \mathbb{R}^{∞} be the subset of \mathbb{R}^{ω} consisting of all sequences (a_n) such that $a_n = 0$ for all but finitely many n.

3 Topological Spaces

Definition 5 (Topology). A topology on a set X is a set $T \subseteq PX$ such that:

- $X \in \mathcal{T}$.
- For all $\mathcal{U} \subseteq \mathcal{T}$ we have $\bigcup \mathcal{U} \in \mathcal{T}$.
- For all $U, V \in \mathcal{T}$ we have $U \cap V \in \mathcal{T}$.

We call the elements of X points and the elements of \mathcal{T} open sets.

Definition 6 (Topological Space). A topological space X consists of a set X and a topology on X.

Definition 7 (Discrete Space). For any set X, the *discrete* topology on X is $\mathcal{P}X$.

Definition 8 (Indiscrete Space). For any set X, the *indiscrete* or *trivial* topology on X is $\{\emptyset, X\}$.

Definition 9 (Finite Complement Topology). For any set X, the *finite complement topology* on X is $\{U \in \mathcal{P}X \mid X \setminus U \text{ is finite}\} \cup \{\emptyset\}$.

Definition 10 (Countable Complement Topology). For any set X, the *countable complement topology* on X is $\{U \in \mathcal{P}X \mid X \setminus U \text{ is countable}\} \cup \{\emptyset\}$.

Definition 11 (Finer, Coarser). Suppose that \mathcal{T} and \mathcal{T}' are two topologies on a given set X. If $\mathcal{T}' \supseteq \mathcal{T}$, we say that \mathcal{T}' is *finer* than \mathcal{T} ; if \mathcal{T}' properly contains \mathcal{T} , we say that \mathcal{T}' is *strictly* finer than \mathcal{T} . We also say that \mathcal{T} is *coarser* than \mathcal{T}' , or *strictly* coarser, in these two respective situations. We say \mathcal{T} is *comparable* with \mathcal{T}' if either $\mathcal{T}' \supseteq \mathcal{T}$ or $\mathcal{T} \supseteq \mathcal{T}'$.

Lemma 12. Let X be a topological space and $U \subseteq X$. Then U is open if and only if, for all $x \in U$, there exists an open set V such that $x \in V \subseteq U$.

```
Proof:  \begin{array}{l} \langle 1 \rangle 1. \ \Rightarrow \\ \text{Proof: Take } V = U \\ \langle 1 \rangle 2. \ \Leftarrow \\ \text{Proof: We have } U = \bigcup \{V \text{ open in } X \mid V \subseteq U\}. \end{array}
```

Lemma 13. Let X be a set and \mathcal{T} a nonempty set of topologies on X. Then $\bigcap \mathcal{T}$ is a topology on X, and is the finest topology that is coarser than every member of \mathcal{T} .

Proof:

```
\langle 1 \rangle 1. \ X \in \bigcap \mathcal{T}
```

PROOF: Since X is in every member of \mathcal{T} .

 $\langle 1 \rangle 2$. $\bigcap \mathcal{T}$ is closed under union.

- $\langle 2 \rangle 1$. Let: $\mathcal{U} \subseteq \bigcap \mathcal{T}$
- $\langle 2 \rangle 2$. For all $T \in \mathcal{T}$ we have $\mathcal{U} \subseteq T$
- $\langle 2 \rangle 3$. For all $T \in \mathcal{T}$ we have $\bigcup \mathcal{U} \in T$
- $\langle 2 \rangle 4. \bigcup \mathcal{U} \in \bigcap \mathcal{T}$
- $\langle 1 \rangle 3$. $\bigcap \mathcal{T}$ is closed under binary intersection.
 - $\langle 2 \rangle 1$. Let: $U, V \in \bigcap \mathcal{T}$
 - $\langle 2 \rangle 2$. For all $T \in \mathcal{T}$ we have $U, V \in T$
 - $\langle 2 \rangle 3$. For all $T \in \mathcal{T}$ we have $U \cap V \in T$
- $\sqrt{\langle 2 \rangle} 4. \ U \cap V \in \bigcap \mathcal{T}$

Lemma 14. Let X be a set and \mathcal{T} a set of topologies on X. Then there exists a unique coarsest topology that is finer than every member of \mathcal{T} .

PROOF: The required topology is given by

 $\bigcap \{T \in \mathcal{PP}X \mid T \text{ is a topology on } X \text{ that is finer than every member of } \mathcal{T}\} ,$

The set is nonempty since it contains the discrete topology. \square

Definition 15 (Neighbourhood). A *neighbourhood* of a point x is an open set that contains x.

4 Closed Set

Definition 16 (Closed Set). Let X be a topological space and $A \subseteq X$. Then A is *closed* if and only if $X \setminus A$ is open.

Lemma 17. The empty set is closed.

PROOF: Since the whole space X is always open. \square

Lemma 18. The topological space X is closed.

PROOF: Since \emptyset is open. \square

Lemma 19. The intersection of a nonempty set of closed sets is closed.

PROOF: Let \mathcal{C} be a nonempty set of closed sets. Then $X \setminus \bigcap \mathcal{C} = \bigcup \{X \setminus C \mid C \in \mathcal{C}\}$ is open. \square

Lemma 20. The union of two closed sets is closed.

PROOF: Let C and D be closed. Then $X \setminus (C \cup D) = (X \setminus C) \cap (X \setminus D)$ is open. \sqcap

Proposition 21. Let X be a set and $C \subseteq PX$ a set such that:

- 1. $\emptyset \in \mathcal{C}$
- 2. $X \in \mathcal{C}$
- 3. For all $A \subseteq C$ nonempty we have $\bigcap A \in C$

4. For all $C, D \in \mathcal{C}$ we have $C \cup D \in \mathcal{C}$.

Then there exists a unique topology \mathcal{T} such that \mathcal{C} is the set of closed sets, namely

$$\mathcal{T} = \{ X \setminus C \mid C \in \mathcal{C} \}$$

Proof:

- $\langle 1 \rangle 1$. Let: $\mathcal{T} = \{ X \setminus C \mid C \in \mathcal{C} \}$
- $\langle 1 \rangle 2$. \mathcal{T} is a topology
 - $\langle 2 \rangle 1. \ X \in \mathcal{T}$

Proof: Since $\emptyset \in \mathcal{C}$

- $\langle 2 \rangle 2$. For all $\mathcal{U} \subseteq \mathcal{T}$ we have $\bigcup \mathcal{U} \in \mathcal{T}$
 - $\langle 3 \rangle 1$. Let: $\mathcal{U} \subseteq \mathcal{T}$
 - $\langle 3 \rangle 2$. Case: $\mathcal{U} = \emptyset$

Proof: In this case $\bigcup \mathcal{U} = \emptyset \in \mathcal{T}$ since $X \in \mathcal{C}$

 $\langle 3 \rangle 3$. Case: $\mathcal{U} \neq \emptyset$

PROOF: In this case $X \setminus \bigcup \mathcal{U} = \bigcap \{X \setminus U \mid U \in \mathcal{U}\} \in \mathcal{C}$.

 $\langle 2 \rangle 3$. For all $U, V \in \mathcal{T}$ we have $U \cap V \in \mathcal{T}$

PROOF: Since $X \setminus (U \cap V) = (X \setminus U) \cup (X \setminus V) \in \mathcal{C}$.

 $\langle 1 \rangle 3$. C is the set of all closed sets in T

PROOF:

$$C$$
 is closed in \mathcal{T}

$$\Leftrightarrow X \setminus C \in \mathcal{T}$$

$$\Leftrightarrow C \in \mathcal{C}$$

 $\langle 1 \rangle 4$. If \mathcal{T}' is a topology and \mathcal{C} is the set of closed sets in \mathcal{T}' then $\mathcal{T}' = \mathcal{T}$

PROOF: We have

$$U \in \mathcal{T}$$

$$\Leftrightarrow X \setminus U \in \mathcal{C}$$

 $\Leftrightarrow X \setminus U$ is closed in \mathcal{T}'

$$\Leftrightarrow U \in \mathcal{T}'$$

Proposition 22. If U is open and A is closed then $U \setminus A$ is open.

PROOF: $U \setminus A = U \cap (X \setminus A)$ is the intersection of two open sets. \square

Proposition 23. If U is open and A is closed then $A \setminus U$ is closed.

PROOF: $A \setminus U = A \cap (X \setminus U)$ is the intersection of two closed sets. \square

5 Interior

Definition 24 (Interior). Let X be a topological space and $A \subseteq X$. The *interior* of A, Int A, is the union of all the open subsets of A.

Lemma 25. The interior of a set is open.

PROOF: It is a union of open sets. \square Lemma 26. $\operatorname{Int} A \subseteq A$ PROOF: Immediate from definition. **Lemma 27.** If U is open and $U \subseteq A$ then $U \subseteq \operatorname{Int} A$ PROOF: Immediate from definition. **Lemma 28.** A set A is open if and only if A = Int A. PROOF: If A = Int A then A is open by Lemma 25. Conversely if A is open then $A \subseteq \operatorname{Int} A$ by the definition of interior and so $A = \operatorname{Int} A$. 6 Closure **Definition 29** (Closure). Let X be a topological space and $A \subseteq X$. The *closure* of A, \overline{A} , is the intersection of all the closed sets that include A. This intersection exists since X is a closed set that includes A (Lemma 18). Lemma 30. The closure of a set is closed. PROOF: Dual to Lemma 25. Lemma 31. $A\subseteq \overline{A}$ PROOF: Immediate from definition. **Lemma 32.** If C is closed and $A \subseteq C$ then $\overline{A} \subseteq C$. PROOF: Immediate from definition. **Lemma 33.** A set A is closed if and only if $A = \overline{A}$. PROOF: Dual to Lemma 28. **Theorem 34.** Let X be a topological space, $A \subseteq X$ and $x \in X$. Then $x \in \overline{A}$ if and only if every neighbourhood of x intersects A. PROOF: We have $x \in \overline{A}$ $\Leftrightarrow \forall C. C \text{ closed } \land A \subseteq C \Rightarrow x \in C$ $\Leftrightarrow \forall U.U \text{ open } \wedge A \cap U = \emptyset \Rightarrow x \not\in U$

Proposition 35. If $A \subseteq B$ then $\overline{A} \subseteq \overline{B}$.

П

 $\Leftrightarrow \forall U.U \text{ open } \land x \in U \Rightarrow U \text{ intersects } A$

PROOF: This holds because \overline{B} is a closed set that includes A. \square

Proposition 36.

$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$

Proof:

 $\langle 1 \rangle 1. \ \overline{A} \subseteq \overline{A \cup B}$

PROOF: By Proposition 35.

 $\langle 1 \rangle 2. \ \overline{B} \subseteq \overline{A \cup B}$

PROOF: By Proposition 35.

 $\langle 1 \rangle 3. \ \overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$

- $\langle 2 \rangle 1$. Let: $x \in \overline{A \cup B}$
- $\langle 2 \rangle 2$. Assume: $x \notin \overline{A}$ Prove: $x \in \overline{B}$
- $\langle 2 \rangle 3$. PICK a neighbourhood U of x that does not intersect A
- $\langle 2 \rangle 4$. Let: V be any neighbourhood of x
- $\langle 2 \rangle$ 5. $U \cap V$ is a neighbourhood of x
- $\langle 2 \rangle 6$. $U \cap V$ intersects $A \cup B$

PROOF: From $\langle 2 \rangle 1$ and Theorem 34.

 $\langle 2 \rangle 7$. $U \cap V$ intersects B

PROOF: From $\langle 2 \rangle 3$

- $\langle 2 \rangle 8$. V intersects B
- $\langle 2 \rangle 9$. Q.E.D.

PROOF: We have $x \in \overline{B}$ from Theorem 34.

7 Boundary

Definition 37 (Boundary). The *boundary* of a set A is the set $\partial A = \overline{A} \cap \overline{X \setminus A}$.

Proposition 38.

Int
$$A \cap \partial A = \emptyset$$

PROOF: Since $\overline{X \setminus A} = X \setminus \text{Int } A$. \square

Proposition 39.

$$\overline{A} = \operatorname{Int} A \cup \partial A$$

Proof:

$$\begin{split} \operatorname{Int} A \cup \partial A &= \operatorname{Int} A \cup \left(\overline{A} \cap \overline{X \setminus A} \right) \\ &= \left(\operatorname{Int} A \cup \overline{A} \right) \cap \left(\operatorname{Int} A \cup \overline{X \setminus A} \right) \\ &= \overline{A} \cap X \\ &= \overline{A} \end{split}$$

Proposition 40. $\partial A = \emptyset$ if and only if A is open and closed.

PROOF: If $\partial A = \emptyset$ then $\overline{A} = \text{Int } A$ by Proposition 39.

Proposition 41. A set U is open if and only if $\partial U = \overline{U} \setminus U$.

Proof:

$$\begin{array}{l} \partial U = \overline{U} \setminus U \\ \Leftrightarrow \overline{U} \setminus \operatorname{Int} U = \overline{U} \setminus U \\ \Leftrightarrow \operatorname{Int} U = U \end{array} \tag{Propositions 38, 39)}$$

8 Limit Points

Definition 42 (Limit Point). Let X be a topological space, $a \in X$ and $A \subseteq X$. Then a is a *limit point*, *cluster point* or *point of accumulation* for A if and only if every neighbourhood of a intersects A at a point other than a.

Lemma 43. The point a is an accumulation point for A if and only if $a \in \overline{A \setminus \{a\}}$.

PROOF: From Theorem 34.

Theorem 44. Let X be a topological space and $A \subseteq X$. Let A' be the set of all limit points of A. Then $\overline{A} = A \cup A'$.

Proof:

 $\langle 1 \rangle$ 1. For all $x \in \overline{A}$, if $x \notin A$ then $x \in A'$ PROOF: From Theorem 34. $\langle 1 \rangle$ 2. $A \subseteq \overline{A}$ PROOF: Lemma 31. $\langle 1 \rangle$ 3. $A' \subseteq \overline{A}$ PROOF: From Theorem 34.

П

Corollary 44.1. A set is closed if and only if it contains all its limit points.

Proposition 45. In an indiscrete topology, every point is a limit point of any set that has more than one point.

PROOF: Let X be an indiscrete space. Let A be a set with more than one point and x be a point. The only neighbourhood of x is X, which must intersect A at a point other than x. \square

9 Basis for a Topology

Definition 46 (Basis). If X is a set, a *basis* for a topology on X is a set $\mathcal{B} \subseteq \mathcal{P}X$ called *basis elements* such that

- 1. For all $x \in X$, there exists $B \in \mathcal{B}$ such that $x \in B$.
- 2. For all $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$, there exists $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$.

If \mathcal{B} satisfies these two conditions, then we define the topology generated by \mathcal{B} to be $\mathcal{T} = \{ U \in \mathcal{P}X \mid \forall x \in U. \exists B \in \mathcal{B}. x \in B \subseteq U \}.$

We prove this is a topology.

```
Proof:
```

 $\langle 1 \rangle 1. \ X \in \mathcal{T}$

PROOF: For all $x \in X$ there exists $B \in \mathcal{B}$ such that $x \in B \subseteq X$ by condition

- $\langle 1 \rangle 2$. For all $\mathcal{U} \subseteq \mathcal{T}$ we have $\bigcup \mathcal{U} \in \mathcal{T}$
 - $\langle 2 \rangle 1$. Let: $\mathcal{U} \subseteq \mathcal{T}$
 - $\langle 2 \rangle 2$. Let: $x \in \bigcup \mathcal{U}$
 - $\langle 2 \rangle 3$. Pick $U \in \mathcal{U}$ such that $x \in U$
 - $\langle 2 \rangle 4$. Pick $B \in \mathcal{B}$ such that $x \in B \subseteq U$

PROOF: Since $U \in \mathcal{T}$ by $\langle 2 \rangle 1$ and $\langle 2 \rangle 3$.

- $\langle 2 \rangle 5. \ x \in B \subseteq \bigcup \mathcal{U}$
- $\langle 1 \rangle 3$. For all $U, V \in \mathcal{T}$ we have $U \cap V \in \mathcal{T}$
 - $\langle 2 \rangle 1$. Let: $U, V \in \mathcal{T}$
 - $\langle 2 \rangle 2$. Let: $x \in U \cap V$
 - $\langle 2 \rangle 3$. Pick $B_1 \in \mathcal{B}$ such that $x \in B_1 \subseteq U$
 - $\langle 2 \rangle 4$. PICK $B_2 \in \mathcal{B}$ such that $x \in B_2 \subseteq V$
 - $\langle 2 \rangle$ 5. Pick $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$ PROOF: By condition 2.

 $\langle 2 \rangle 6. \ x \in B_3 \subseteq U \cap V$

Lemma 47. Let X be a set. Let \mathcal{B} be a basis for a topology \mathcal{T} on X. Then \mathcal{T} is the set of all unions of subsets of \mathcal{B} .

PROOF:

- $\langle 1 \rangle 1$. For all $U \in \mathcal{T}$, there exists $\mathcal{A} \subseteq \mathcal{B}$ such that $U = \bigcup \mathcal{A}$
 - $\langle 2 \rangle 1$. Let: $U \in \mathcal{T}$
 - $\langle 2 \rangle 2$. Let: $\mathcal{A} = \{ B \in \mathcal{B} \mid B \subseteq U \}$
 - $\langle 2 \rangle 3. \ U \subseteq \bigcup \mathcal{A}$
 - $\langle 3 \rangle 1$. Let: $x \in U$
 - $\langle 3 \rangle 2$. Pick $B \in \mathcal{B}$ such that $x \in B \subseteq U$

PROOF: Since \mathcal{B} is a basis for \mathcal{T} .

- $\langle 3 \rangle 3. \ x \in B \in \mathcal{A}$
- $\langle 2 \rangle 4$. $\bigcup \mathcal{A} \subseteq U$

PROOF: From the definition of \mathcal{A} ($\langle 2 \rangle 2$).

- $\langle 1 \rangle 2$. For all $\mathcal{A} \subseteq \mathcal{B}$ we have $\bigcup \mathcal{A} \in \mathcal{T}$
 - $\langle 2 \rangle 1. \ \mathcal{B} \subseteq \mathcal{T}$

PROOF: If $B \in \mathcal{B}$ and $x \in B$, then there exists $B' \in \mathcal{B}$ such that $x \in B' \subseteq B$, namely B' = B.

 $\langle 2 \rangle 2$. Q.E.D.

Proof: Since \mathcal{T} is closed under union.

Corollary 47.1. Let X be a set. Let \mathcal{B} be a basis for a topology \mathcal{T} on X. Then \mathcal{T} is the coarsest topology that includes \mathcal{B} .

PROOF: Since every topology that includes $\mathcal B$ includes all unions of subsets of $\mathcal B$. \square

Lemma 48. Let X be a topological space. Suppose that C is a set of open sets such that, for every open set U and every point $x \in U$, there exists $C \in C$ such that $x \in C \subseteq U$. Then C is a basis for the topology on X.

PROOF:

 $\langle 1 \rangle 1$. For all $x \in X$, there exists $C \in \mathcal{C}$ such that $x \in C$

PROOF: Immediate from hypothesis.

 $\langle 1 \rangle 2$. For all $C_1, C_2 \in \mathcal{C}$ and $x \in C_1 \cap C_2$, there exists $C_3 \in \mathcal{C}$ such that $x \in C_3 \subseteq C_1 \cap C_2$

PROOF: Since $C_1 \cap C_2$ is open.

 $\langle 1 \rangle 3$. Every open set is open in the topology generated by \mathcal{C}

PROOF: Immediate from hypothesis.

 $\langle 1 \rangle 4$. Every union of a subset of $\mathcal C$ is open.

Proof: Since every member of \mathcal{C} is open.

Lemma 49. Let \mathcal{B} and \mathcal{B}' be bases for the topologies \mathcal{T} and \mathcal{T}' respectively on the set X. Then the following are equivalent.

- 1. $\mathcal{T} \subseteq \mathcal{T}'$
- 2. For all $B \in \mathcal{B}$ and $x \in B$, there exists $B' \in \mathcal{B}'$ such that $x \in B' \subseteq B$.

Proof:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 2$
 - $\langle 2 \rangle 1$. Assume: $\mathcal{T} \subseteq \mathcal{T}'$
 - $\langle 2 \rangle 2$. Let: $B \in \mathcal{B}$ and $x \in B$
 - $\langle 2 \rangle 3. \ B \in \mathcal{T}$

Proof: Corollary 47.1.

 $\langle 2 \rangle 4. \ B \in \mathcal{T}'$

Proof: By $\langle 2 \rangle 1$

 $\langle 2 \rangle$ 5. There exists $B' \in \mathcal{B}'$ such that $x \in B' \subseteq B$

PROOF: Since \mathcal{B}' is a basis for \mathcal{T}' .

- $\langle 1 \rangle 2. \ 2 \Rightarrow 1$
 - $\langle 2 \rangle 1$. Assume: 2
 - $\langle 2 \rangle 2$. Let: $U \in \mathcal{T}$

Prove: $U \in \mathcal{T}'$

 $\langle 2 \rangle 3$. Let: $x \in U$

PROVE: There exists $B' \in \mathcal{B}'$ such that $x \in B' \subseteq U$

 $\langle 2 \rangle 4$. Pick $B \in \mathcal{B}$ such that $x \in B \subseteq U$

PROOF: Since \mathcal{B} is a basis for \mathcal{T} .

 $\langle 2 \rangle$ 5. Pick $B' \in \mathcal{B}'$ such that $x \in B' \subseteq B$

```
Proof: By \langle 2 \rangle 1.
\langle 2 \rangle 6. \ x \in B' \subseteq U
```

Theorem 50. Let X be a topological space, $A \subseteq X$ and $x \in X$. Let \mathcal{B} be a basis for X. Then $x \in \overline{A}$ if and only if, for all $B \in \mathcal{B}$, if $x \in B$ then B intersects A.

Proof:

- $\langle 1 \rangle 1$. If $x \in \overline{A}$ then, for all $B \in \mathcal{B}$, if $x \in B$ then B intersects A. Proof: This follows from Theorem 34 since every element of \mathcal{B} is open (Corol-
- $\langle 1 \rangle 2$. Suppose that, for all $B \in \mathcal{B}$, if $x \in B$ then B intersects A. Then $x \in \overline{A}$.
 - $\langle 2 \rangle 1$. Assume: For all $B \in \mathcal{B}$, if $x \in B$ then B intersects A.
 - $\langle 2 \rangle 2$. Let: U be an open set that contains x Prove: U intersects A.
 - $\langle 2 \rangle 3$. Pick $B \in \mathcal{B}$ such that $x \in B \subseteq U$.
 - $\langle 2 \rangle 4$. B intersects A.

PROOF: From $\langle 2 \rangle 1$.

- $\langle 2 \rangle 5$. U intersects A.
- $\langle 2 \rangle 6$. Q.E.D.

PROOF: By Theorem 34.

Definition 51 (Lower Limit Topology on the Real Line). The lower limit topology on the real line is the topology on \mathbb{R} generated by the basis consisting of all half-open intervals of the form [a, b).

We write \mathbb{R}_l for the topological space \mathbb{R} under the lower limit topology.

We prove this is a basis for a topology.

Proof:

- $\langle 1 \rangle 1$. For all $x \in \mathbb{R}$ there exists an interval [a, b) such that $x \in [a, b)$. PROOF: Take [a, b) = [x, x + 1).
- $\langle 1 \rangle 2$. For any open intervals [a,b), [c,d) if $x \in [a,b) \cap [c,d)$, then there exists an interval [e, f] such that $x \in [e, f] \subseteq [a, b] \cap [c, d]$

PROOF: Take $[e, f) = [\max(a, c), \min(b, d)).$

П

Definition 52 (K-topology on the Real Line). Let $K = \{1/n \mid n \in \mathbb{Z}^+\}$.

The K-topology on the real line is the topology on \mathbb{R} generated by the basis consisting of all open intervals (a, b) and all sets of the form $(a, b) \setminus K$.

We write \mathbb{R}_K for the topological space \mathbb{R} under the K-topology.

We prove this is a basis for a topology.

- $\langle 1 \rangle 1$. For all $x \in \mathbb{R}$ there exists an open interval (a,b) such that $x \in (a,b)$. PROOF: Take (a, b) = (x - 1, x + 1).
- $\langle 1 \rangle 2$. For any basic open sets B_1 , B_2 if $x \in B_1 \cap B_2$, then there exists a basic open set B_3 such that $x \in B_3 \subseteq B_1 \cap B_2$

```
\langle 2 \rangle1. Case: B_1 = (a, b), B_2 = (c, d)

PROOF: Take B_3 = (\max(a, c), \min(b, d)).

\langle 2 \rangle2. Case: B_1 = (a, b) or (a, b) \setminus K, B_2 = (c, d) or (c, d) \setminus K, and they are not both open intervals.

PROOF: Take B_3 = (\max(a, c), \min(b, d)) \setminus K.
```

Lemma 53. The lower limit topology and the K-topology are incomparable.

Proof:

 $\langle 1 \rangle 1$. The interval [10,11) is not open in the K-topology. PROOF: There is no open interval (a,b) such that $10 \in (a,b) \subseteq [10,11)$ or $10 \in (a,b) \setminus K \subseteq [10,11)$.

 $\langle 1 \rangle 2$. The set $(-1,1) \setminus K$ is not open in the lower limit topology. PROOF: There is no half-open interval [a,b) such that $0 \in [a,b) \subseteq (-1,1) \setminus K$, since there must be a positive integer n with $1/n \in [a,b)$.

Definition 54 (Subbasis). A *subbasis* S for a topology on X is a set $S \subseteq PX$ such that $\bigcup S = X$.

The topology generated by the subbasis S is the set of all unions of finite intersections of elements of S.

We prove this is a topology.

Proof:

 $\langle 1 \rangle 1$. The set \mathcal{B} of all finite intersections of elements of \mathcal{S} forms a basis for a topology on X.

 $\langle 2 \rangle 1$. $\bigcup \mathcal{B} = X$

PROOF: Since $S \subseteq \mathcal{B}$.

 $\langle 2 \rangle 2$. \mathcal{B} is closed under binary intersection.

PROOF: By definition.

 $\langle 1 \rangle 2$. Q.E.D.

PROOF: By Lemma 47.

We have simultaneously proved:

Proposition 55. Let S be a subbasis for the topology on X. Then the set of all finite intersections of elements of S is a basis for the topology on X.

Proposition 56. Let X be a set. Let S be a subbasis for a topology T on X. Then T is the coarsest topology that includes S.

PROOF: Since every topology that includes S includes every union of finite intersections of elements of S. \square

10 Local Basis at a Point

Definition 57 (Local Basis). Let X be a topological space and $a \in X$. A (local) basis at a is a set \mathcal{B} of neighbourhoods of a such that every neighbourhood of a

includes some member of \mathcal{B} .

Lemma 58. If there exists a countable local basis at a point a, then there exists a countable local basis $\{B_n \mid n \geq 1\}$ such that $B_1 \supseteq B_2 \supseteq \cdots$.

PROOF: Given a countable local basis $\{C_n \mid n \geq 1\}$, take $B_n = C_1 \cap \cdots \cap C_n$.

11 Convergence

Definition 59 (Convergence). Let X be a topological space. Let $(a_n)_{n\in\mathbb{N}}$ be a sequence of points in X and $l\in X$. Then the sequence $(a_n)_{n\in\mathbb{N}}$ converges to the limit $l, a_n \to l$ as $n \to \infty$, if and only if, for every neighbourhood U of l, there exists N such that, for all $n \geq N$, we have $a_n \in U$.

Theorem 60. In a Hausdorff space, a sequence has at most one limit.

Proof:

- $\langle 1 \rangle 1$. Let: X be a Hausdorff space.
- $\langle 1 \rangle 2$. Assume: for a contradiction $a_n \to l$ as $n \to \infty$, $a_n \to m$ as $n \to \infty$, and $l \neq m$
- $\langle 1 \rangle 3$. PICK disjoint neighbourhoods U of l and V of m

PROOF: By the Hausdorff axiom.

- $\langle 1 \rangle 4$. PICK M and N such that $a_n \in U$ for $n \geq M$ and $a_n \in V$ for $n \geq N$
- $\langle 1 \rangle 5. \ a_{\max(M,N)} \in U \cap V$
- $\langle 1 \rangle 6$. Q.E.D.

PROOF: This contradicts the fact that U and V are disjoint ($\langle 1 \rangle 3$).

To see this is not always true in spaces that are T_1 but not Hausdorff:

Proposition 61. Let X be an infinite set under the finite complement topology. Let $(a_n)_{n\in\mathbb{N}}$ be a sequence with all points distinct. Then for every $l\in X$ we have $a_n\to l$ as $n\to\infty$.

PROOF: Let U be any neighbourhood of l. Since $X \setminus U$ is finite, there must exist N such that, for all $n \geq N$, we have $a_n \in U$. \square

Lemma 62. Let X be a topological space. Let $A \subseteq X$ and $l \in X$. If there is a sequence of points in A that converges to l then $l \in \overline{A}$.

Proof:

- $\langle 1 \rangle 1$. Let: (a_n) be a sequence of points in A that converges to l.
- $\langle 1 \rangle 2$. Let: *U* be a neighbourhood of *l*.
- $\langle 1 \rangle 3$. PICK N such that, for all $n \geq N$, we have $a_n \in U$.
- $\langle 1 \rangle 4. \ a_N \in U \cap A$
- $\langle 1 \rangle$ 5. Q.E.D.

PROOF: Theorem 34.

Proposition 63. Let X be a topological space. Let \mathcal{B} be a basis for the topology on X. Let (a_n) be a sequence in X and $l \in X$. Then $a_n \to l$ as $n \to \infty$ if and only if, for every $B \in \mathcal{B}$ with $l \in B$, there exists N such that, for all $n \geq N$, we have $a_n \in B$.

Proof:

 $\langle 1 \rangle 1$. If $a_n \to l$ as $n \to \infty$ then, for every $B \in \mathcal{B}$ with $l \in B$, there exists N such that, for all $n \ge N$, we have $a_n \in B$.

PROOF: Since every element of \mathcal{B} is open (Corollary 47.1).

- $\langle 1 \rangle 2$. If, for every $B \in \mathcal{B}$ with $l \in B$, there exists N such that, for all $n \geq N$, we have $a_n \in B$, then $a_n \to l$ as $n \to \infty$.
 - $\langle 2 \rangle 1$. Assume: for every $B \in \mathcal{B}$ with $l \in B$, there exists N such that, for all $n \geq N$, we have $a_n \in B$
 - $\langle 2 \rangle 2$. Let: *U* be a neighbourhood of *l*.
 - $\langle 2 \rangle 3$. Pick $B \in \mathcal{B}$ such that $l \in B \subseteq U$
 - $\langle 2 \rangle 4$. PICK N such that, for all $n \geq N$, we have $a_n \in B$ PROOF: From $\langle 2 \rangle 1$.
- $\langle 2 \rangle$ 5. For all $n \geq N$ we have $a_n \in U$

Lemma 64. If a sequence (a_n) is constant with $a_n = l$ for all n, then $a_n \to l$ as $n \to \infty$.

PROOF: Immediate from definitions.

Theorem 65. Let X be a linearly ordered set. Let (s_n) be a monotone increasing sequence in X with a supremum s. Then $s_n \to s$ as $n \to \infty$.

Proof:

 $\langle 1 \rangle 1$. Assume: s is not least in X.

PROOF: Otherwise (s_n) is the constant sequence s and the result follows from Lemma 64.

- $\langle 1 \rangle 2$. Let: U be a neighbourhood of s.
- $\langle 1 \rangle 3$. PICKa < s such that $(a, s] \subseteq U$
- $\langle 1 \rangle 4$. PICK N such that $a < a_N$.
- $\langle 1 \rangle 5$. For all $n \geq N$ we have $a_n \in (a, s]$
- $\langle 1 \rangle 6$. For all $n \geq N$ we have $a_n \in U$.

Theorem 66. If $\sum_{i=0}^{\infty} a_i = s$ and $\sum_{i=0}^{\infty} b_i = t$ then $\sum_{i=0}^{\infty} (ca_i + b_i) = cs + t$.

PROOF:
$$\sum_{i=0}^{N} (ca_i + b_i) = c \sum_{i=0}^{N} a_i + \sum_{i=0}^{N} b_i \to cs + t \text{ as } n \to \infty.$$

Theorem 67 (Comparison Test). If $|a_i| \leq b_i$ for all i and $\sum_{i=0}^{\infty} b_i$ converges then $\sum_{i=0}^{\infty} a_i$ converges.

Proof:

 $\langle 1 \rangle 1$. $\sum_{i=0}^{\infty} |a_i|$ converges

PROOF: The partial sums $\sum_{i=0}^{N} |a_i|$ form an increasing sequence bounded above by $\sum_{i=0}^{\infty} b_i$.

- $\langle 1 \rangle 2$. Let: $c_i = |a_i| + a_i$ for all i
- $\langle 1 \rangle 3. \sum_{i=0}^{\infty} c_i \text{ converges}$

PROOF: Each c_i is either $2|a_i|$ or 0. So the partial sums $\sum_{i=0}^{N} c_i$ form an increasing sequence bounded above by $2\sum_{i=0}^{\infty} b_i$.

 $\langle 1 \rangle 4$. Q.E.D.

PROOF: Since $a_i = c_i - |a_i|$.

Corollary 67.1. If $\sum_{i=0}^{\infty} |a_i|$ converges then $\sum_{i=0}^{\infty} a_i$ converges.

Theorem 68 (Weierstrass M-test). Let X be a set and $(f_n : X \to \mathbb{R})$ be a sequence of functions. Let

$$s_n(x) = \sum_{i=0}^n f_i(x)$$

for all n, x. Suppose $|f_i(x)| \leq M_i$ for all $i \geq 0$ and $x \in X$. If the series $\sum_{i=0}^{\infty} M_i$ converges, then the sequence (s_n) converges uniformly to

$$s(x) = \sum_{i=0}^{\infty} f_i(x) .$$

Proof:

 $\langle 1 \rangle 1$. Let: $r_n = \sum_{i=n+1}^{\infty} M_i$ for all n $\langle 1 \rangle 2$. Given $0 \le n < k$, we have $|s_k(x) - s_n(x)| \le r_n$

$$|s_k(x) - s_n(x)| = |\sum_{i=n+1}^k f_i(x)|$$

$$\leq \sum_{i=n+1}^k |f_i(x)|$$

$$\leq \sum_{i=n+1}^k M_i$$

$$\leq r$$

 $\langle 1 \rangle 3$. Given $n \geq 0$ we have $|s(x) - s_n(x)| \leq r_n$

PROOF: By taking the limit $k \to \infty$ in $\langle 1 \rangle 2$.

 $\langle 1 \rangle 4$. Q.E.D.

PROOF: Since $r_n \to 0$ as $n \to \infty$.

12 Locally Finite Sets

Definition 69 (Locally Finite). Let X be a topological space and $\{A_{\alpha}\}$ a family of subsets of X. Then A is locally finite if and only if every point in X has a neighbourhood that intersects A_{α} for only finitely many α .

Theorem 70 (Pasting Lemma). Let X and Y be topological spaces and $f: X \to Y$. Let $\{A_{\alpha}\}$ be a locally finite family of closed subsets of X that cover X. Suppose $f \upharpoonright A_{\alpha}$ is continuous for all α . Then f is continuous.

Proof:

- $\langle 1 \rangle 1$. Let X and Y be topological spaces and $f: X \to Y$. Let A and B be closed subsets of X such that $X = A \cup B$. Suppose $f \upharpoonright A$ and $f \upharpoonright B$ are continuous. Then f is continuous.
 - $\langle 2 \rangle 1$. Let: $C \subseteq Y$ be closed.
 - $\langle 2 \rangle 2. \ h^{-1}(C) = f^{-1}(C) \cup g^{-1}(C)$
 - $\langle 2 \rangle 3$. $f^{-1}(C)$ and $g^{-1}(C)$ are closed in X.

PROOF: Theorems 80 and 126.

 $\langle 2 \rangle 4$. $h^{-1}(C)$ is closed in X.

Proof: Lemma 20.

 $\langle 2 \rangle 5$. Q.E.D.

PROOF: Theorem 80.

 $\langle 1 \rangle 2$. Let X and Y be topological spaces and $f: X \to Y$. Let $\{A_{\alpha}\}$ be a finite family of closed subsets of X that cover X. Suppose $f \upharpoonright A_{\alpha}$ is continuous for all α . Then f is continuous.

PROOF: From $\langle 1 \rangle 1$ by induction.

- $\langle 1 \rangle 3$. Let X and Y be topological spaces and $f: X \to Y$. Let $\{A_{\alpha}\}$ be a locally finite family of closed subsets of X that cover X. Suppose $f \upharpoonright A_{\alpha}$ is continuous for all α . Then f is continuous.
 - $\langle 2 \rangle$ 1. Let: $x \in X$ Prove: f is continuous at x
 - $\langle 2 \rangle 2$. PICK a neighbourhood U of x that intersects A_{α} for only finitely many α .
 - $\langle 2 \rangle 3$. $f \upharpoonright U$ is continuous

Proof: By $\langle 1 \rangle 2$.

 $\langle 2 \rangle 4$. Q.E.D.

Proof: Lemma 92.

The following example shows that we cannot remove the assumption of local finiteness.

Example 71. Define $f: [-1,1] \to \mathbb{R}$ by: f(x) = 1 if x < -1, f(x) = 0 if x > 1. Let $C_n = [-1,-1/n]$ for $n \ge 1$, and D = [0,1]. Then $[-1,1] = \bigcup_{n=1}^{\infty} C_n \cup D$ and f is continuous on each C_n and each D, but f is not continuous on [-1,1].

Proposition 72. Let X be a topological space. Let Y be a linearly ordered set in the order topology. Let $f, g: X \to Y$ be continuous. Define $h: X \to Y$ by $h(x) = \min(f(x), g(x))$. Then h is continuous.

PROOF: By the Pasting Lemma applied to $\{x \in X \mid f(x) \leq g(x)\}$ and $\{x \in X \mid g(x) \leq f(x)\}$, which are closed by Lemma 91.

13 Open Maps

Definition 73 (Open Map). Let X and Y be topological spaces and $f: X \to Y$. Then f is an *open map* if and only if, for every open set U in X, the set f(U) is open in Y.

Lemma 74. Let X and Y be topological spaces and $f: X \to Y$. Let \mathcal{B} be a basis for the topology on X. If f(B) is open in Y for all $B \in \mathcal{B}$, then f is an open map.

PROOF: From Lemma 47.

14 Continuous Functions

Definition 75 (Continuous). Let X and Y be topological spaces. A function $f: X \to Y$ is *continuous* if and only if, for every open set V in Y, the set $f^{-1}(V)$ is open in X.

Proposition 76. Let X and Y be topological spaces and $f: X \to Y$. Let \mathcal{B} be a basis for Y. Then f is continuous if and only if, for all $B \in \mathcal{B}$, we have $f^{-1}(B)$ is open in X.

Proof:

 $\langle 1 \rangle 1$. If f is continuous then, for all $B \in \mathcal{B}$, we have $f^{-1}(B)$ is open in X. PROOF: Since every element of B is open (Lemma 47).

- $\langle 1 \rangle 2$. Suppose that, for all $B \in \mathcal{B}$, we have $f^{-1}(B)$ is open in X. Then f is continuous.
 - $\langle 2 \rangle 1$. Assume: For all $B \in \mathcal{B}$, we have $f^{-1}(B)$ is open in X.
 - $\langle 2 \rangle 2$. Let: V be open in Y.
 - $\langle 2 \rangle 3$. Pick $\mathcal{A} \subseteq \mathcal{B}$ such that $V = \bigcup \mathcal{A}$

PROOF: By Lemma 47.

 $\langle 2 \rangle 4$. $f^{-1}(V)$ is open in X.

Proof:

$$f^{-1}(V) = f^{-1}\left(\bigcup \mathcal{A}\right)$$
$$= \bigcup_{B \in \mathcal{A}} f^{-1}(B)$$

Proposition 77. Let X and Y be topological spaces and $f: X \to Y$. Let S be a subbasis for Y. Then f is continuous if and only if, for all $S \in S$, we have $f^{-1}(S)$ is open in X.

Proof

- $\langle 1 \rangle 1$. If f is continuous then, for all $S \in \mathcal{S}$, we have $f^{-1}(S)$ is open in X. PROOF: Since every element of S is open.
- $\langle 1 \rangle 2$. Suppose that, for all $S \in \mathcal{S}$, we have $f^{-1}(S)$ is open in X. Then f is continuous.

- $\langle 2 \rangle 1$. Assume: For all $S \in \mathcal{S}$, we have $f^{-1}(S)$ is open in X.
- $\langle 2 \rangle 2$. Let: $S_1, \ldots, S_n \in \mathcal{S}$
- $\langle 2 \rangle 3.$ $f^{-1}(S_1 \cap \cdots \cap S_n)$ is open in A

PROOF: Since $f^{-1}(S_1 \cap \cdots \cap S_n) = f^{-1}(S_1) \cap \cdots \cap f^{-1}(S_n)$.

 $\langle 2 \rangle 4$. Q.E.D.

PROOF: By Propositions 76 and 55.

Proposition 78. Let X and Y be topological spaces and $f: X \to Y$. Let S be a basis for Y. Then f is continuous if and only if, for all $V \in S$, we have $f^{-1}(V)$ is open in X.

PROOF

- $\langle 1 \rangle 1$. If f is continuous then, for all $V \in \mathcal{S}$, we have $f^{-1}(V)$ is open in X. PROOF: Since every element of \mathcal{S} is open.
- $\langle 1 \rangle 2$. Suppose that, for all $V \in \mathcal{S}$, we have $f^{-1}(V)$ is open in X. Then f is continuous.
 - $\langle 2 \rangle 1$. Assume: For all $V \in \mathcal{S}$, we have $f^{-1}(V)$ is open in X.
 - $\langle 2 \rangle 2$. For every set B that is the finite intersection of elemets of S, we have $f^{-1}(B)$ is open in X.

PROOF: Because $f^{-1}(V_1 \cap \cdots \cap V_n) = f^{-1}(V_1) \cap \cdots \cap f^{-1}(V_n)$.

 $\langle 2 \rangle 3$. Q.E.D.

PROOF: From Propositions 55 and 76.

Definition 79 (Continuous at a Point). Let X and Y be topological spaces. Let $f: X \to Y$ and $x \in X$. Then f is *continuous at* x if and only if, for every neighbourhood V of f(x), there exists a neighbourhood U of x such that $f(U) \subseteq V$.

Theorem 80. Let X and Y be topological spaces and $f: X \to Y$. Then the following are equivalent:

- 1. f is continuous.
- 2. For all $A \subseteq X$, we have $f(\overline{A}) \subseteq \overline{f(A)}$
- 3. For all $B \subseteq Y$ closed, we have $f^{-1}(B)$ is closed in X.
- 4. f is continuous at every point of X.

Proof:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 2$
 - $\langle 2 \rangle 1$. Assume: f is continuous.
 - $\langle 2 \rangle 2$. Let: $A \subseteq X$
 - $\langle 2 \rangle 3$. Let: $x \in \overline{A}$

PROVE: $f(x) \in \overline{f(A)}$

- $\langle 2 \rangle 4$. Let: V be a neighbourhood of f(x)
- $\langle 2 \rangle 5$. $f^{-1}(V)$ is a neighbourhood of x

```
\langle 2 \rangle 6. Pick y \in A \cap f^{-1}(V)
       PROOF: By Theorem 34.
    \langle 2 \rangle 7. \ f(y) \in V \cap f(A)
    \langle 2 \rangle 8. Q.E.D.
       PROOF: By Theorem 34.
\langle 1 \rangle 2. \ 2 \Rightarrow 3
    \langle 2 \rangle 1. Assume: 2
    \langle 2 \rangle 2. Let: B be closed in Y
    \langle 2 \rangle 3. Let: x \in f^{-1}(B)
                       PROVE: x \in f^{-1}(B)
   \langle 2 \rangle 4. \ f(x) \in B
       Proof:
                             f(x) \in f(\overline{f^{-1}(B)})
                                     \subseteq \overline{f(f^{-1}(B))}
                                                                                                 (\langle 2 \rangle 1)
                                     \subseteq \overline{B}
                                                                                (Proposition 35)
                                     = B
\langle 1 \rangle 3. \ 3 \Rightarrow 1
    \langle 2 \rangle 1. Assume: 3
    \langle 2 \rangle 2. Let: V be open in Y
    \langle 2 \rangle 3. Y \setminus V is closed in Y
    \langle 2 \rangle 4. f^{-1}(Y \setminus V) is closed in X
    \langle 2 \rangle 5. X \setminus f^{-1}(V) is closed in X
    \langle 2 \rangle 6. f^{-1}(V) is open in X
\langle 1 \rangle 4. \ 1 \Rightarrow 4
   PROOF: For any neighbourhood V of f(x), the set U = f^{-1}(V) is a neigh-
   bourhood of x such that f(U) \subseteq V.
\langle 1 \rangle 5. \ 4 \Rightarrow 1
    \langle 2 \rangle 1. Assume: 4
    \langle 2 \rangle 2. Let: V be open in Y
    \langle 2 \rangle 3. Let: x \in f^{-1}(V)
    \langle 2 \rangle 4. V is a neighbourhood of f(x)
    \langle 2 \rangle5. Pick a neighbourhood U of x such that f(U) \subseteq V
    \langle 2 \rangle 6. \ x \in U \subseteq f^{-1}(V)
   \langle 2 \rangle 7. Q.E.D.
       PROOF: By Lemma 12.
```

Theorem 81. A constant function is continuous.

PROOF: Let X and Y be topological spaces. Let $b \in Y$, and let $f: X \to Y$ be the constant function with value b. For any open $V \subseteq Y$, the set $f^{-1}(V)$ is either X (if $b \in V$) or \emptyset (if $b \notin V$). \square

Theorem 82. If A is a subspace of X then the inclusion $j: A \to X$ is continuous.

PROOF: For any V open in X, we have $j^{-1}(V) = V \cap A$ is open in A. \square

Theorem 83. The composite of two continuous functions is continuous.

PROOF: Let $f: X \to Y$ and $g: Y \to Z$ be continuous. For any V open in Z, we have $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is open in X. \Box

Theorem 84. Let $f: X \to Y$ be a continuous function and A be a subspace of X. Then the restriction $f \upharpoonright A : A \to Y$ is continuous.

PROOF: Let V be open in Y. Then $(f \upharpoonright A)^{-1}(V) = f^{-1}(V) \cap A$ is open in A. \square

Theorem 85. Let $f: X \to Y$ be continuous. Let Z be a subspace of Y such that $f(X) \subseteq Z$. Then the corestriction $f: X \to Z$ is continuous.

PROOF:

- $\langle 1 \rangle 1$. Let: V be open in Z.
- $\langle 1 \rangle 2$. PICK U open in Y such that $V = U \cap Z$.
- $\langle 1 \rangle$ 3. $f^{-1}(V) = f^{-1}(U)$ $\langle 1 \rangle$ 4. $f^{-1}(V)$ is open in X.

Theorem 86. Let $f: X \to Y$ be continuous. Let Z be a space such that Y is a subspace of Z. Then the expansion $f: X \to Z$ is continuous.

PROOF: Let V be open in Z. Then $f^{-1}(V) = f^{-1}(V \cap Y)$ is open in X. \square

Theorem 87. Let X and Y be topological spaces. Let $f: X \to Y$. Suppose \mathcal{U} is a set of open sets in X such that $X = \bigcup \mathcal{U}$ and, for all $U \in \mathcal{U}$, we have $f \upharpoonright U : U \to Y$ is continuous. Then f is continuous.

PROOF:

- $\langle 1 \rangle 1$. Let: V be open in Y
- $\langle 1 \rangle 2.$ $f^{-1}(V) = \bigcup_{U \in \mathcal{U}} (f \upharpoonright U)^{-1}(V)$
- $\langle 1 \rangle 3$. For all $U \in \mathcal{U}$, we have $(f \upharpoonright U)^{-1}(V)$ is open in U.
- $\langle 1 \rangle 4$. For all $U \in \mathcal{U}$, we have $(f \upharpoonright U)^{-1}(V)$ is open in X. Proof: Lemma 125.

Theorem 88. Let A be a topological space and $\{X_i\}_{i\in I}$ be a family of topological spaces. Let $f: A \to \prod_{i \in I} X_i$ be a function. If $\pi_i \circ f$ is continuous for all $i \in I$ then f is continuous.

Proof:

- $\langle 1 \rangle 1$. Let: $i \in I$ and U be open in X_i
- $\langle 1 \rangle 2$. $f^{-1}(\pi_i^{-1}(U))$ is open in A
- $\langle 1 \rangle 3$. Q.E.D.

Proof: Proposition 77.

Proposition 89. Let X and X' be the same set X under two topologies \mathcal{T} and \mathcal{T}' . Let $i: X \to X'$ be the identity function. Then i is continuous if and only if $\mathcal{T}' \subseteq \mathcal{T}$.

Proof: Immediate from definitions. \Box

Proposition 90. Let $f: \mathbb{R} \to \mathbb{R}$ and $a \in \mathbb{R}$. Then f is continuous on the right at a if and only if f is continuous at a as a function $\mathbb{R}_l \to \mathbb{R}$.

Proof:

- $\langle 1 \rangle 1$. If f is continuous on the right at a then f is continuous at a as a function $\mathbb{R}_l \to \mathbb{R}$.
 - $\langle 2 \rangle 1$. Assume: f is continuous on the right at a.
 - $\langle 2 \rangle 2$. Let: V be a neighbourhood of f(a)
 - $\langle 2 \rangle 3$. Pick b, c such that $f(a) \in (b,c) \subseteq V$.
 - $\langle 2 \rangle 4$. Let: $\epsilon = \min(c f(a), f(a) b)$
 - $\langle 2 \rangle$ 5. Pick $\delta > 0$ such that, for all x, if $a < x < a + \delta$ then $|f(x) f(a)| < \epsilon$
 - $\langle 2 \rangle 6$. Let: $U = [a, a + \delta)$
 - $\langle 2 \rangle 7. \ f(U) \subseteq V$
- $\langle 1 \rangle 2$. If f is continuous at a as a function $\mathbb{R}_l \to \mathbb{R}$ then f is continuous on the right at a.
 - $\langle 2 \rangle 1$. Assume: f is continuous at a as a function $\mathbb{R}_l \to \mathbb{R}$
 - $\langle 2 \rangle 2$. Let: $\epsilon > 0$
 - $\langle 2 \rangle 3$. PICK a neighbourhood U of a such that $f(U) \subseteq (f(a) \epsilon, f(a) + \epsilon)$
 - $\langle 2 \rangle 4$. Pick b, c such that $a \in [b, c) \subset U$
 - $\langle 2 \rangle 5$. Let: $\delta = c a$
- $\langle 2 \rangle 6$. For all x, if $a < x < a + \delta$ then $|f(x) f(a)| < \epsilon$

Lemma 91. Let X be a topological space. Let Y be a linearly ordered set in the order topology. Let $f, g: X \to Y$ be continuous. Then $C = \{x \in X \mid f(x) \le a\}$ g(x) is closed.

Proof:

- $\langle 1 \rangle 1$. Let: $x \in X \setminus C$
- $\langle 1 \rangle 2$. f(x) > g(x)

Prove: There exists a neighbourhood U of x such that $U \subseteq X \setminus C$

- $\langle 1 \rangle 3$. Case: There exists y such that g(x) < y < f(x)PROOF: Take $U = g^{-1}((-\infty, y)) \cup f^{-1}(y, +\infty)$.
- $\langle 1 \rangle 4$. Case: There is no y such that g(x) < y < f(x)

PROOF: Take $U = g^{-1}((-\infty, f(x))) \cup f^{-1}(g(x), +\infty)$.

Lemma 92. Let $f: X \to Y$. Let Z be an open subspace of X and $a \in Z$. If $f \upharpoonright Z$ is continuous at a then f is continuous at a.

PROOF:

- $\langle 1 \rangle 1$. Let: V be a neighbourhood of f(x)
- $\langle 1 \rangle 2$. PICK a neighbourhood W of x in Z such that $f(W) \subseteq V$
- $\langle 1 \rangle 3$. W is a neighbourhood of x in X such that $f(W) \subseteq V$ Proof: Lemma 125.

22

Proposition 93. Let $f: A \to B$ and $g: C \to D$ be continuous. Define $f \times g: A \times C \to B \times D$ by

$$(f \times g)(a,c) = (f(a), g(c)) .$$

Then $f \times g$ is continuous.

PROOF: $\pi_1 \circ (f \times g) = f \circ \pi_1$ and $\pi_2 \circ (f \times g) = g \circ \pi_2$ are continuous by Theorem 83. The result follows by Theorem 88.

Proposition 94. Let X be a topological space. Let Y a Hausdorff space. Let $A \subseteq X$. Let $f, g : \overline{A} \to Y$ be continuous. If f and g agree on A then f = g.

Proof:

- $\langle 1 \rangle 1$. Let: $x \in \overline{A}$
- $\langle 1 \rangle 2$. Assume: $f(x) \neq g(x)$
- $\langle 1 \rangle 3$. PICK disjoint neighbourhoods V of f(x) and W of g(x).
- $\langle 1 \rangle 4$. PICK $y \in f^{-1}(V) \cap g^{-1}(W) \cap A$

PROOF: Since $f^{-1}(V) \cap g^{-1}(W)$ is a neighbourhood of x and hence intersects A.

- $\langle 1 \rangle 5. \ f(y) = g(y) \in V \cap W$
- $\langle 1 \rangle 6$. Q.E.D.

PROOF: This contradicts the fact that V and W are disjoint $(\langle 1 \rangle 3)$.

Proposition 95. Let X and Y be topological spaces and $f: X \to Y$ be continuous. If $a_n \to l$ as $n \to \infty$ in X then $f(a_n) \to f(l)$ as $n \to \infty$.

Proof:

- $\langle 1 \rangle 1$. Let: V be a neighbourhood of f(l)
- $\langle 1 \rangle 2$. PICK a neighbourhood U of l such that $f(U) \subseteq V$
- $\langle 1 \rangle 3$. PICK N such that, for all $n \geq N$, we have $a_n \in U$
- $\langle 1 \rangle 4$. For all $n \geq N$ we have $f(n) \in V$

15 Homeomorphisms

Definition 96 (Homeomorphism). Let X and Y be topological spaces. A *Homeomorphism* f between X and Y, $f: X \cong Y$, is a bijection $f: X \to Y$ such that both f and f^{-1} are continuous.

Lemma 97. Let X and Y be topological spaces and $f: X \to Y$ a bijection. Then the following are equivalent:

- 1. f is a homeomorphism.
- 2. f is continuous and an open map.
- 3. For any $U \subseteq X$, we have U is open if and only if f(U) is open.

PROOF: Immediate from definitions. \square

Proposition 98. Let X and X' be the same set X under two topologies \mathcal{T} and \mathcal{T}' . Let $i: X \to X'$ be the identity function. Then i is a homeomorphism if and only if $\mathcal{T} = \mathcal{T}'$.

PROOF: Immediate from definitions.

Definition 99 (Topological Property). Let P be a property of topological spaces. Then P is a *topological* property if and only if, for any spaces X and Y, if P holds of X and $X \cong Y$ then P holds of Y.

Definition 100 (Topological Imbedding). Let X and Y be topological spaces and $f: X \to Y$. Then f is a topological imbedding if and only if the corestriction $f: X \to f(X)$ is a homeomorphism.

Proposition 101. Let X and Y be topological spaces and $a \in X$. The function $i: Y \to X \times Y$ that maps y to (a, y) is an imbedding.

Proof:

- $\langle 1 \rangle 1$. *i* is injective
- $\langle 1 \rangle 2$. *i* is continuous.

PROOF: For U open in X and V open in Y, we have $i^{-1}(U \times V)$ is V if $a \in U$, and \emptyset if $a \notin U$.

 $\langle 1 \rangle 3. \ i: Y \to i(Y)$ is an open map.

PROOF: For V open in Y we have $i(V) = (X \times V) \cap i(Y)$.

16 The Order Topology

Definition 102 (Order Topology). Let X be a linearly ordered set with at least two points. The *order topology* on X is the topology generated by the basis \mathcal{B} consisting of:

- all open intervals (a, b);
- all intervals of the form $[\bot, b)$ where \bot is least in X;
- all intervals of the form $(a, \top]$ where \top is greatest in X.

We prove this is a basis for a topology.

Proof:

- $\langle 1 \rangle 1$. For all $x \in X$ there exists $B \in \mathcal{B}$ such that $x \in B$.
 - $\langle 2 \rangle 1$. Let: $x \in X$
 - $\langle 2 \rangle 2$. Case: x is greatest in X.
 - $\langle 3 \rangle 1$. Pick $y \in X$ with $y \neq x$
 - $\langle 3 \rangle 2. \ x \in (y, x] \in \mathcal{B}$
 - $\langle 2 \rangle 3$. Case: x is least in X.

```
\langle 3 \rangle 1. PICK y \in X with y \neq x
       \langle 3 \rangle 2. \ x \in [x,y) \in \mathcal{B}
   \langle 2 \rangle 4. Case: x is neither greatest nor least in X.
       \langle 3 \rangle 1. Pick a, b \in X with a < x and x < b
       \langle 3 \rangle 2. \ x \in (a,b) \in \mathcal{B}
\langle 1 \rangle 2. For all B_1, B_2 \in \mathcal{B} and x \in B_1 \cap B_2, there exists B_3 \in \mathcal{B} such that
        x \in B_3 \subseteq B_1 \cap B_2
   \langle 2 \rangle 1. Let: B_1, B_2 \in \mathcal{B} and x \in B_1 \cap B_2
   \langle 2 \rangle 2. Case: B_1 = (a, b), B_2 = (c, d)
      PROOF: Take B_3 = (\max(a, c), \min(b, d)).
   \langle 2 \rangle 3. Case: B_1 = (a, b), B_2 = [\bot, d)
      PROOF: Take B_3 = (a, \min(b, d)).
    \langle 2 \rangle 4. Case: B_1 = (a, b), B_2 = (c, \top]
      PROOF: Take B_3 = (\max(a, c), b).
   \langle 2 \rangle 5. Case: B_1 = [\bot, b), B_2 = [\bot, d)
      PROOF: Take B_3 = [\bot, \min(b, d)).
   \langle 2 \rangle 6. Case: B_1 = [\bot, b), B_2 = (c, \top]
      PROOF: Take B_3 = (c, b).
```

Lemma 103. Let X be a linearly ordered set. Then the open rays form a subbasis for the order topology on X.

Proof:

```
\langle 1 \rangle 1. Every open ray is open.
```

 $\langle 2 \rangle 1$. For all $a \in X$, the ray $(-\infty, a)$ is open.

 $\langle 3 \rangle 1$. Let: $x \in (-\infty, a)$

 $\langle 3 \rangle 2$. Case: x is least in X

PROOF: $xin[x, a) = (-\infty, a)$.

 $\langle 3 \rangle 3$. Case: x is not least in X

 $\langle 4 \rangle 1$. Pick y < x

 $\langle 4 \rangle 2. \ x \in (y, a) \subseteq (-\infty, a)$

 $\langle 2 \rangle 2$. For all $a \in X$, the ray $(a, +\infty)$ is open.

PROOF: Similar.

 $\langle 1 \rangle 2$. Every basic open set is a finite intersection of open rays.

PROOF: We have $(a,b)=(a,+\infty)\cap(-\infty,b),\ [\bot,b)=(-\infty,b)$ and $(a,\top]=(a,+\infty).$

Definition 104 (Standard Topology on the Real Line). The *standard topology* on the real line is the order topology on \mathbb{R} generated by the standard order.

Lemma 105. The lower limit topology is strictly finer than the standard topology on \mathbb{R} .

Proof:

 $\langle 1 \rangle 1$. Every open interval is open in the lower limit topology. PROOF: If $x \in (a,b)$ then $x \in [x,b) \subseteq (a,b)$.

 $\langle 1 \rangle 2$. The half-open interval [0,1) is not open in the standard topology. PROOF: There is no open interval (a,b) such that $0 \in (a,b) \subseteq [0,1)$.

Lemma 106. The K-topology is strictly finer than the standard topology on \mathbb{R} .

Proof:

- $\langle 1 \rangle 1$. Every open interval is open in the K-topology. PROOF: Corollary 47.1.
- $\langle 1 \rangle$ 2. The set $(-1,1) \setminus K$ is not open in the standard topology. PROOF: There is no open interval (a,b) such that $0 \in (a,b) \subseteq (-1,1) \setminus K$, since there must be a positive integer n with $1/n \in (a,b)$.

Definition 107 (Ordered Square). The ordered square I_o^2 is the set $[0,1]^2$ under the order topology generated by the dictionary order.

17 The Product Topology

Definition 108 (Product Topology). Let $\{A_i\}_{i\in I}$ be a family of topological spaces. The *product topology* on $\prod_{i\in I} A_i$ is the topology generated by the subbasis consisting of the sets of the form $\pi_i^{-1}(U)$ where $i\in I$ and U is open in A_i .

Proposition 109. The product topology on $\prod_{i \in I} A_i$ is generated by the basis consisting of all sets of the form $\prod_{i \in I} U_i$ where $\{U_i\}_{i \in I}$ is a family such that each U_i is an open set in A_i and $U_i = A_i$ for all but finitely many i.

Proof: From Proposition 55. \square

Proposition 110. If A_i is closed in X_i for all $i \in I$ then $\prod_{i \in I} A_i$ is closed in $\prod_{i \in I} X_i$.

Proof:

$$\left(\prod_{i\in I} X_i\right) \setminus \left(\prod_{i\in I} A_i\right) = \bigcup_{j\in I} \left(\prod_{i\in I} X_i \setminus \pi_j^{-1}(A_j)\right) \square$$

Proposition 111. Let $\{A_i\}_{i\in I}$ be a family of topological spaces. For $i\in I$, let \mathcal{B}_i be a basis for the topology on A_i . Then $\mathcal{B} = \{\prod_{i\in I} B_i \mid \forall i\in I.B_i\in \mathcal{B}_i, B_i = A_i \text{ for all but finitely many } i\}$ is a basis for the box topology on $\prod_{i\in I} A_i$.

Proof:

- $\langle 1 \rangle 1$. Every set in \mathcal{B} is open.
- $\langle 1 \rangle 2$. For every point $a \in \prod_{i \in I} A_i$ and every open set U with $a \in U$, there exists $B \in \mathcal{B}$ such that $a \in B \subseteq U$.
 - $\langle 2 \rangle 1$. Let: U be open and $a \in U$
 - $\langle 2 \rangle 2$. PICK a family $\{U_i\}_{i \in I}$ such that each U_i is open in A_i , such that $U_i = A_i$ except for $i = i_1, \ldots, i_n$, and such that $a \in \prod_{i \in I} U_i \subseteq U$.

```
\langle 2 \rangle 3. For j = 1, \ldots, n, PICK B_{i_j} \in \mathcal{B}_{i_j} such that a_{i_j} \in B_{i_j} \subseteq U_{i_j}
```

$$\langle 2 \rangle 4$$
. Let: $B = \prod_{i \in I} B_i$ where $B_i = A_i$ for $i \neq i_1, \dots, i_n$

- $\langle 2 \rangle 5. \ B \in \mathcal{B}$
- $\langle 2 \rangle 6. \ a \in B \subseteq U$
- $\langle 1 \rangle 3$. Q.E.D.

Proof: Lemma 48.

Proposition 112. Let $\{A_i\}_{i\in I}$ be a family of topological spaces. Then the projections $\pi_i:\prod_{i\in I}A_i\to A_i$ are open maps.

Proof: From Lemma 74. \Box

Proposition 113. Let $\{X_i\}_{i\in I}$ be a family of sets. For $i\in I$, let \mathcal{T}_i and \mathcal{U}_i be topologies on X_i . Let \mathcal{P} be the product topology on $\prod_{i\in I} X_i$ generated by the topologies \mathcal{T}_i , and \mathcal{Q} the product topology on the same set generated by the topologies \mathcal{U}_i . Then $\mathcal{P}\subseteq\mathcal{Q}$ if and only if $\mathcal{T}_i\subseteq\mathcal{U}_i$ for all i.

Proof:

 $\langle 1 \rangle 1$. If $\mathcal{T}_i \subseteq \mathcal{U}_i$ for all i then $\mathcal{P} \subseteq \mathcal{Q}$

Proof: By Corollary 47.1.

 $\langle 1 \rangle 2$. If $\mathcal{P} \subseteq \mathcal{Q}$ then $\mathcal{T}_i \subseteq \mathcal{U}_i$ for all i

- $\langle 2 \rangle 1$. Assume: $\mathcal{P} \subseteq \mathcal{Q}$
- $\langle 2 \rangle 2$. Let: $i \in I$
- $\langle 2 \rangle 3$. Let: $U \in \mathcal{T}_i$
- $\langle 2 \rangle 4$. Let: $U_i = U$ and $U_j = X_j$ for $j \neq i$
- $\langle 2 \rangle 5. \ \prod_{i \in I} U_i \in \mathcal{P}$
- $\langle 2 \rangle 6. \prod_{i \in I} U_i \in \mathcal{Q}$
- $\langle 2 \rangle 7. \ U \in \mathcal{U}_i$

PROOF: From Proposition 112.

Proposition 114 (AC). Let $\{X_i\}_{i\in I}$ be a family of topological spaces. Let $A_i \subseteq X_i$ for all $i \in I$. Then

$$\prod_{i \in I} \overline{A_i} = \overline{\prod_{i \in I} A_i} .$$

Proof:

 $\langle 1 \rangle 1. \ \overline{\prod_{i \in I} A_i} \subseteq \prod_{i \in I} \overline{A_i}$

 $\langle 2 \rangle 1$. For all $i \in I$ we have $A_i \subseteq \overline{A_i}$

Proof: Lemma 31.

- $\langle 2 \rangle 2$. $\prod_{i \in I} A_i \subseteq \prod_{i \in I} \overline{A_i}$
- $\langle 2 \rangle 3$. Q.E.D.

PROOF: Since $\prod_{i \in I} A_i$ is closed by Proposition 110.

- $\langle 1 \rangle 2$. $\prod_{i \in I} \overline{A_i} \subseteq \overline{\prod_{i \in I} A_i}$
 - $\langle 2 \rangle 1$. Let: $x \in \prod_{i \in I} \overline{A_i}$

```
\langle 2 \rangle 2. Let: U be a neighbourhood of x
\langle 2 \rangle 3. Pick V_i open in X_i such that x \in \prod_{i \in I} V_i \subseteq U with V_i = X_i except for
        i = i_1, \ldots, i_n
\langle 2 \rangle 4. For i \in I, pick a_i \in V_i \cap A_i
  PROOF: By Theorem 34 and \langle 2 \rangle 1 using the Axiom of Choice.
```

 $\langle 2 \rangle$ 5. *U* intersects $\prod_{i \in I} A_i$

 $\langle 2 \rangle 6$. Q.E.D.

Proof: $a \in U \cap \prod_{i \in I} A_i$

Example 115. The closure of \mathbb{R}^{∞} in \mathbb{R}^{ω} is \mathbb{R}^{ω}

Proof:

- $\langle 1 \rangle 1$. Let: $a \in \mathbb{R}^{\omega}$
- $\langle 1 \rangle 2$. Let: U be any neighbourhoods of a.
- $\langle 1 \rangle 3$. PICK U_n open in \mathbb{R} for all n such that $a \in \prod_{n \geq 0} U_n \subseteq U$ and $U_n = \mathbb{R}$ for all n except n_1, \ldots, n_k
- $\langle 1 \rangle 4$. Let: $b_n = a_n$ for $n = n_1, \ldots, n_k$ and $b_n = 0$ for all other n
- $\langle 1 \rangle 5. \ b \in \mathbb{R}^{\infty} \cap U$
- $\langle 1 \rangle 6$. Q.E.D.

PROOF: From Theorem 34.

Proposition 116. Let $\{X_i\}_{i\in I}$ be a family of topological spaces. Let (a_n) be a sequence in $\prod_{i \in I} X_i$ and $l \in \prod_{i \in I} X_i$. Then $a_n \to l$ as $n \to \infty$ if and only if, for all $i \in I$, we have $\pi_i(a_n) \to \pi_i(l)$ as $n \to \infty$.

Proof:

- $\langle 1 \rangle 1$. If $a_n \to l$ as $n \to \infty$ then, for all $i \in I$, we have $\pi_i(a_n) \to \pi_i(l)$ as $n \to \infty$ Proof: Proposition 95.
- $\langle 1 \rangle 2$. If, for all $i \in I$, we have $\pi_i(a_n) \to \pi_i(l)$ as $n \to \infty$, then $a_n \to l$ as $n \to \infty$
 - $\langle 2 \rangle 1$. Assume: For all $i \in I$, we have $\pi_i(a_n) \to \pi_i(l)$ as $n \to \infty$
 - $\langle 2 \rangle 2$. Let: V be a neighbourhood of l
 - $\langle 2 \rangle 3$. Pick open sets U_i in X_i such that $l \in \prod_{i \in I} U_i \subseteq V$ and $U_i = X_i$ for all $i \text{ except } i = i_1, \dots, i_k$
 - $\langle 2 \rangle 4$. For $j = 1, \ldots, k$, PICK N_j such that, for all $n \geq N_j$, we have $\pi_{i_j}(a_n) \in$
 - $\langle 2 \rangle 5$. Let: $N = \max(N_1, \ldots, N_k)$
 - $\langle 2 \rangle 6$. For all $n \geq N$ we have $a_n \in V$

17.1Continuous in Each Variable Separately

Definition 117 (Continuous in Each Variable Separately). Let $F: X \times Y \to Z$. Then F is continuous in each variable separately if and only if:

• for every $a \in X$ the function $\lambda y \in Y.F(a, y)$ is continuous;

• for every $b \in Y$ the function $\lambda x \in X.F(x,b)$ is continuous.

Proposition 118. Let $F: X \times Y \to Z$. If F is continuous then F is continuous in each variable separately.

PROOF: For $a \in X$, the function $\lambda y \in Y.F(a,y)$ is $F \circ i$ where $i: Y \to X \times Y$ maps y to (a,y). We have i is continuous by Proposition 101, hence $F \circ i$ is continuous by Theorem 83.

Similarly for $\lambda x \in X.F(x,b)$ for $b \in Y$. \square

Example 119. Define $F: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ by

$$F(x,y) = \begin{cases} xy/(x^2 + y^2) & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

Then F is continuous in each variable separately but not continuous.

18 The Subspace Topology

Definition 120 (Subspace Topology). Let X be a topological space and $Y \subseteq X$. The *subspace topology* on Y is $\mathcal{T} = \{U \cap Y \mid U \text{ is open in } X\}$.

We prove this is a topology.

Proof:

 $\langle 1 \rangle 1. \ Y \in \mathcal{T}$

PROOF: Since $Y = X \cap Y$

- $\langle 1 \rangle 2$. For all $\mathcal{U} \subseteq \mathcal{T}$, we have $\bigcup \mathcal{U} \in \mathcal{T}$
 - $\langle 2 \rangle 1$. Let: $\mathcal{U} \subseteq \mathcal{T}$
 - $\langle 2 \rangle 2$. Let: $\mathcal{V} = \{ V \text{ open in } X \mid V \cap Y \in \mathcal{U} \}$
 - $\langle 2 \rangle 3. \bigcup \mathcal{U} = (\bigcup \mathcal{V}) \cap Y$
- $\langle 1 \rangle 3$. For all $U, V \in \mathcal{T}$, we have $U \cap V \in \mathcal{T}$
 - $\langle 2 \rangle 1$. Let: $U, V \in \mathcal{T}$
 - $\langle 2 \rangle 2$. Pick U', V' open in X such that $U = U' \cap Y$ and $V = V' \cap Y$
 - $\langle 2 \rangle 3. \ (U \cap V) = (U' \cap V') \cap Y$

Theorem 121. Let X be a topological space and Y a subspace of X. Let $A \subseteq Y$. Then A is closed in Y if and only if there exists a closed set C in X such that $A = C \cap Y$.

PROOF: We have

A is closed in Y

 $\Leftrightarrow Y \setminus A$ is open in Y

 $\Leftrightarrow \exists U \text{ open in } X.Y \setminus A = Y \cap U$

 $\Leftrightarrow \exists C \text{ closed in } X.Y \setminus A = Y \cap (X \setminus U)$

 $\Leftrightarrow \exists C \text{ closed in } X.A = Y \cap U$

П

Theorem 122. Let Y be a subspace of X. Let $A \subseteq Y$. Let \overline{A} be the closure of A in X. Then the closure of A in Y is $\overline{A} \cap Y$.

PROOF: The closure of A in Y is $\bigcap \{C \text{ closed in } Y \mid A \subseteq C\}$ $= \bigcap \{D \cap Y \mid D \text{ closed in } X, A \subseteq D \cap Y\} \qquad \text{(Theorem 121)}$ $= \bigcap \{D \mid D \text{ closed in } X, A \subseteq D\} \cap Y$ $= \overline{A} \cap Y$

Lemma 123. Let X be a topological space and $Y \subseteq X$. Let \mathcal{B} be a basis for the topology on X. Then $\mathcal{B}' = \{B \cap Y \mid B \in \mathcal{B}\}$ is a basis for the subspace topology on Y.

Proof:

- $\langle 1 \rangle 1$. Every element in \mathcal{B}' is open in Y
- $\langle 1 \rangle 2$. For every open set U in Y and point $y \in U$, there exists $B' \in \mathcal{B}'$ such that $y \in B' \subseteq U$
 - $\langle 2 \rangle 1$. Let: U be open in Y and $y \in U$
 - $\langle 2 \rangle 2$. PICK V open in X such that $U = V \cap Y$
 - $\langle 2 \rangle 3$. Pick $B \in \mathcal{B}$ such that $y \in B \subseteq V$
 - $\langle 2 \rangle 4$. Let: $B' = B \cap Y$
 - $\langle 2 \rangle 5. \ B' \in \mathcal{B}'$
 - $\langle 2 \rangle 6. \ y \in B' \subseteq U$
- $\langle 1 \rangle 3$. Q.E.D.

Proof: By Lemma 48.

Lemma 124. Let X be a topological space and $Y \subseteq X$. Let S be a basis for the topology on X. Then $S' = \{S \cap Y \mid S \in S\}$ is a subbasis for the subspace topology on Y.

PROOF: The set $\{B \cap Y \mid B \text{ is a finite intersection of elements of } \mathcal{S}\}$ is a basis for the subspace topology by Lemma 123, and this is the set of all finite intersections of elements of \mathcal{S}' . \square

Lemma 125. Let Y be a subspace of X. If U is open in Y and Y is open in X then U is open in X.

Proof:

- $\langle 1 \rangle 1$. PICK V open in X such that $U = V \cap Y$
- $\langle 1 \rangle 2$. *U* is open in *X*

PROOF: Since it is the intersection of two open sets V and Y.

Theorem 126. Let Y be a subspace of X and $A \subseteq Y$. If A is closed in Y and Y is closed in X then A is closed in X.

PROOF: Pick a closed set C in X such that $A = C \cap Y$ (Theorem 121). Then A is the intersection of two sets closed in X, hence A is closed in X (Lemma 19). \square

Theorem 127. Let $\{X_i\}_{i\in I}$ be a family of topological spaces. Let A_i be a subspace of X_i for all $i \in I$. Then the product topology on $\prod_{i\in I} A_i$ is the same as the topology it inherits as a subspace of $\prod_{i\in I} X_i$.

PROOF: The product topology is generated by the subbasis

$$\{\pi_i^{-1}(U) \mid i \in I, U \text{ open in } A_i\}$$

$$= \{\pi_i^{-1}(V) \cap A_i \mid i \in I, V \text{ open in } X_i\}$$

$$= \{\pi_i^{-1}(V) \mid i \in I, V \text{ open in } X_i\} \cap \prod_{i \in I} A_i$$

and this is a subbasis for the subspace topology by Lemma 124. \square

Theorem 128. Let X be an ordered set in the order topology. Let $Y \subseteq X$ be an interval. Then the order topology on Y is the same as the subspace topology on Y.

Proof:

- $\langle 1 \rangle 1$. The order topology is finer than the subspace topology.
 - $\langle 2 \rangle 1$. For every open ray R in X, the set $R \cap Y$ is open in the order topology.
 - $\langle 3 \rangle 1$. For all $a \in X$, we have $(-\infty, a) \cap Y$ is open in the order topology.
 - $\langle 4 \rangle 1$. Case: For all $y \in Y$ we have y < a

PROOF: In this case $(-\infty, a) \cap Y = Y$.

 $\langle 4 \rangle 2$. Case: For all $y \in Y$ we have a < y

PROOF: In this case $(-\infty, a) \cap Y = \emptyset$.

- $\langle 4 \rangle 3$. Case: There exists $y \in Y$ such that $y \leq a$ and $y \in Y$ such that
 - $\langle 5 \rangle 1. \ a \in Y$

PROOF: Because Y is an interval.

$$\langle 5 \rangle 2. \ (-\infty, a) \cap Y = \{ y \in Y \mid y < a \}$$

- $\langle 3 \rangle 2$. For all $a \in X$, we have $(a, +\infty) \cap Y$ is open in the order topology. PROOF: Similar.
- $\langle 2 \rangle 2$. Q.E.D.

PROOF: By Lemmas 103 and 124 and Proposition 56.

- $\langle 1 \rangle 2$. The subspace topology is finer than the order topology.
 - $\langle 2 \rangle 1$. Every open ray in Y is open in the subspace topology.

PROOF: For any $a \in Y$ we have $(-\infty, a)_Y = (-\infty, a)_X \cap Y$ and $(a, +\infty)_Y = (a, +\infty)_X \cap Y$.

 $\langle 2 \rangle 2$. Q.E.D.

PROOF: By Lemma 103 and Proposition 56

This example shows that we cannot remove the hypothesis that Y is an interval:

Example 129. The order topology on I_o^2 is different from the subspace topology as a subspace of \mathbb{R}^2 under the dictionary order topology.

PROOF: The set $\{1/2\} \times (1/2,1)$ is open in the subspace topology but not in the order topology. \square

Proposition 130. Let X be a topological space, Y a subspace of X, and Z a subspace of Y. Then the subspace topology on Z inherited from X is the same as the subspace topology on Z inherited from Y.

PROOF: The subspace topology inherited from Y is

$$\{V \cap Z \mid V \text{ open in } Y\}$$

$$=\{U \cap Y \cap Z \mid U \text{ open in } X\}$$

$$=\{U \cap Z \mid U \text{ open in } X\}$$

which is the subspace topology inherited from X. \square

Definition 131 (Unit Circle). The unit circle S^1 is $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$

19 The Box Topology

Definition 132 (Box Topology). Let $\{A_i\}_{i\in I}$ be a family of topological spaces. The box topology on $\prod_{i\in I} A_i$ is the topology generated by the set of all sets of the form $\prod_{i\in I} U_i$ where $\{U_i\}_{i\in I}$ is a family such that each U_i is open in A_i .

This is a basis since it covers $\prod_{i \in I} A_i$ and is closed under intersection.

Proposition 133. The box topology is finer than the product topology.

PROOF: From Proposition 109.

Corollary 133.1. If A_i is closed in X_i for all $i \in I$ then $\prod_{i \in I} A_i$ is closed in $\prod_{i \in I} X_i$ under the box topology.

Proof: From Proposition 110.

Proposition 134 (AC). Let $\{A_i\}_{i\in I}$ be a family of topological spaces. For $i \in I$, let \mathcal{B}_i be a basis for the topology on A_i . Then $\mathcal{B} = \{\prod_{i\in I} B_i \mid \forall i \in I.B_i \in \mathcal{B}_i\}$ is a basis for the box topology on $\prod_{i\in I} A_i$.

Proof:

- $\langle 1 \rangle 1$. Every set of the form $\prod_{i \in I} B_i$ is open.
- $\langle 1 \rangle 2$. For every point $a \in \prod_{i \in I} A_i$ and every open set U with $a \in U$, there exists $B \in \mathcal{B}$ such that $a \in B \subseteq U$.
 - $\langle 2 \rangle 1$. Let: U be open and $a \in U$
 - $\langle 2 \rangle 2$. PICK a family $\{U_i\}_{i \in I}$ such that each U_i is open in A_i and $a \in \prod_{i \in I} U_i \subseteq U$.
 - $\langle 2 \rangle 3$. For $i \in I$, PICK $B_i \in \mathcal{B}_i$ such that $a_i \in B_i \subseteq U_i$ PROOF: Using the Axiom of Choice.
 - $\langle 2 \rangle 4. \ a \in \prod_{i \in I} B_i \subseteq U$
- $\langle 1 \rangle 3$. Q.E.D.

Proof: Lemma 48.

Theorem 135. Let $\{X_i\}_{i\in I}$ be a family of topological spaces. Let A_i be a subspace of X_i for all $i \in I$. Give $\prod_{i \in I} X_i$ the box topology. Then the box topology on $\prod_{i \in I} A_i$ is the same as the topology it inherits as a subspace of $\prod_{i\in I} X_i$.

PROOF: The box topology is generated by the basis

$$\{ \prod_{i \in I} U_i \mid \forall i \in I, U_i \text{ open in } A_i \}$$

$$= \{ \prod_{i \in I} (V_i \cap A_i) \mid \forall i \in I, V_i \text{ open in } X_i \}$$

$$= \{ \prod_{i \in I} V_i \mid \forall i \in I, V_i \text{ open in } X_i \} \cap \prod_{i \in I} A_i$$

and this is a basis for the subspace topology by Lemma 123. \square

Proposition 136. Let $\{X_i\}_{i\in I}$ be a family of Hausdorff spaces. Then $\prod_{i\in I} X_i$ under the box topology is Hausdorff.

PROOF:

 $\langle 1 \rangle 1$. Let: $\{X_i\}_{i \in I}$ be a family of Hausdorff spaces.

 $\langle 1 \rangle 2$. Let: $a, b \in \prod_{i \in I} X_i$ with $a \neq b$

 $\langle 1 \rangle 3$. PICK $i \in I$ such that $a_i \neq b_i$

 $\langle 1 \rangle$ 4. PICK U, V disjoint open sets in X_i with $a_i \in U$ and $b_i \in V$ $\langle 1 \rangle$ 5. $\pi_i^{-1}(U)$ and $\pi_i^{-1}(V)$ are disjoint open sets in $\prod_{i \in I} X_i$ with $a \in \pi_i^{-1}(U)$ and $b \in \pi_i^{-1}(V)$

Proposition 137 (AC). Let $\{X_i\}_{i\in I}$ be a family of topological spaces. Give $\prod_{i \in I} X_i$ the box topology. Let $A_i \subseteq X_i$ for all $i \in I$. Then

$$\prod_{i \in I} \overline{A_i} = \overline{\prod_{i \in I} A_i} .$$

Proof:

 $\langle 1 \rangle 1. \ \overline{\prod_{i \in I} A_i} \subseteq \prod_{i \in I} \overline{A_i}$

 $\langle 2 \rangle 1$. For all $i \in I$ we have $A_i \subseteq \overline{A_i}$

Proof: Lemma 31.

 $\langle 2 \rangle 2$. $\prod_{i \in I} A_i \subseteq \prod_{i \in I} \overline{A_i}$

 $\langle 2 \rangle 3$. Q.E.D.

PROOF: Since $\prod_{i \in I} A_i$ is closed by Corollary 133.1.

 $\langle 1 \rangle 2$. $\prod_{i \in I} \overline{A_i} \subseteq \prod_{i \in I} A_i$

 $\langle 2 \rangle 1$. Let: $x \in \prod_{i \in I} \overline{A_i}$

 $\langle 2 \rangle 2$. Let: U be a neighbourhood of x

 $\langle 2 \rangle 3$. Pick V_i open in X_i such that $x \in \prod_{i \in I} V_i \subseteq U$

 $\langle 2 \rangle 4$. For $i \in I$, pick $a_i \in V_i \cap A_i$

PROOF: By Theorem 34 and $\langle 2 \rangle 1$ using the Axiom of Choice.

 $\langle 2 \rangle 5$. U intersects $\prod_{i \in I} A_i$

 $\langle 2 \rangle 6$. Q.E.D.

PROOF: $a \in U \cap \prod_{i \in I} A_i$.

The following example shows that Theorem 88 fails in the box topology.

Example 138. Define $f: \mathbb{R} \to \mathbb{R}^{\omega}$ by f(t) = (t, t, ...). Then $\pi_n \circ f = \mathrm{id}_{\mathbb{R}}$ is continuous for all n. But f is not continuous when \mathbb{R}^{ω} is given the box topology because the inverse image of

$$(-1,1) \times (-1/2,1/2) \times (-1/3,1/3) \times \cdots$$

is $\{0\}$ which is not open.

The following example shows that Proposition 116 fails in the box topology.

Example 139. Give \mathbb{R}^{ω} the box topology. Let $a_n = (1/n, 1/n, \ldots)$ for $n \geq 1$ and $l = (0, 0, \ldots)$. Then $\pi_i(a_n) \to \pi_i(l)$ as $n \to \infty$ for all i, but $a_n \not\to l$ as $n \to \infty$ since the open set

$$(-1,1) \times (-1/2,1/2) \times (-1/3,1/3) \times \cdots$$

contains l but does not contain any a_n .

Example 140. The set \mathbb{R}^{∞} is closed in \mathbb{R}^{ω} under the box topology. For let (a_n) be any sequence not in \mathbb{R}^{∞} . Let U_n be an open interval around a_n that does not contain 0 if $a_n \neq 0$, and $U_n = \mathbb{R}$ if $a_n = 0$. Then $\prod_{n\geq 0} U_n$ is a neighbourhood of (a_n) that does not intersect \mathbb{R}^{∞} .

20 T_1 Spaces

Definition 141 (T_1 Space). A topological space is T_1 if and only if every singleton is closed.

Lemma 142. A space is T_1 if and only if every finite set is closed.

PROOF: From Lemma 20. \square

Theorem 143. In a T_1 space, a point a is a limit point of a set A if and only if every neighbourhood of a contains infinitely many points of A.

Proof:

- $\langle 1 \rangle 1$. If a is a limit point of A then every neighbourhood of a contains infinitely many points of A.
 - $\langle 2 \rangle 1$. Assume: a is a limit point of A.
 - $\langle 2 \rangle 2$. Let: U be a neighbourhood of a.
 - $\langle 2 \rangle 3$. Assume: for a contradiction U contains only finitely many points of A.
 - $\langle 2 \rangle 4$. $(U \cap A) \setminus \{a\}$ is closed.

PROOF: By the T_1 axiom.

```
\langle 2 \rangle5. (U \setminus A) \cup \{a\} is open.

PROOF: It is U \setminus ((U \cap A) \setminus \{a\}).

\langle 2 \rangle6. (U \setminus A) \cup \{a\} intersects A in a point other than a.

PROOF: From \langle 2 \rangle1.

\langle 2 \rangle7. Q.E.D.
```

 $\langle 1 \rangle 2$. If every neighbourhood of a contains infinitely many points of A then a is a limit point of A.

PROOF: Immediate from definitions.

(To see this does not hold in every space, see Proposition 45.)

Proposition 144. A space is T_1 if and only if, for any two distinct points x and y, there exist neighbourhoods U of x and y of y such that $x \notin V$ and $y \notin U$.

PROOF:

- $\langle 1 \rangle 1$. Let: X be a topological space.
- $\langle 1 \rangle 2$. If X is T_1 then, for any two distinct points x and y, there exist neighbourhoods U of x and V of y such that $x \notin V$ and $y \notin U$.

PROOF: This holds because $\{x\}$ and $\{y\}$ are closed.

- $\langle 1 \rangle 3$. Suppose, for any two distinct points x and y, there exist neighbourhoods U of x and V of y such that $x \notin V$ and $y \notin U$. Then X is T_1 .
 - $\langle 2 \rangle 1$. Assume: For any two distinct points x and y, there exist neighbourhoods U of x and V of y such that $x \notin V$ and $y \notin U$.
 - $\langle 2 \rangle 2$. Let: $a \in X$
 - $\langle 2 \rangle 3$. $\{a\}$ is closed.

PROOF: For all $b \neq a$ there exists a neighbourhood U of b such that $U \subseteq X \setminus \{a\}$.

21 Hausdorff Spaces

Definition 145 (Hausdorff Space). A topological space is *Hausdorff* if and only if, for any points x, y with $x \neq y$, there exist disjoint open sets U and V such that $x \in U$ and $y \in V$.

Theorem 146. Every Hausdorff space is T_1 .

PROOF:

- $\langle 1 \rangle 1$. Let: X be a Hausdorff space.
- $\langle 1 \rangle 2$. Let: $b \in X$

PROVE: $\{b\} = \{b\}$

- $\langle 1 \rangle 3$. Assume: $a \in \overline{\{b\}}$ and $a \neq b$
- $\langle 1 \rangle 4$. PICK disjoint neighbourhoods U of a and V of b.
- $\langle 1 \rangle 5$. *U* intersects $\{b\}$

PROOF: Theorem 34.

```
\langle 1 \rangle 6. \ b \in U
\langle 1 \rangle 7. Q.E.D.
  PROOF: This contradicts the fact that U and V are disjoint (\langle 1 \rangle 4).
Proposition 147. An infinite set under the finite complement topology is T_1
but not Hausdorff.
Proof:
\langle 1 \rangle 1. Let: X be an infinite set under the finite complement topology.
\langle 1 \rangle 2. Every singleton is closed.
  PROOF: By definition.
\langle 1 \rangle 3. Picka, b \in X with a \neq b
\langle 1 \rangle 4. There are no disjoint neighbourhoods U of a and V of b.
   \langle 2 \rangle 1. Let: U be a neighbourhood of a and V a neighbourhood of b.
   \langle 2 \rangle 2. X \setminus U and X \setminus V are finite.
   \langle 2 \rangle 3. Pick c \in X that is not in X \setminus U or X \setminus V.
   \langle 2 \rangle 4. \ c \in U \cap V
Proposition 148. The product of a family of Hausdorff spaces is Hausdorff.
\langle 1 \rangle 1. Let: \{X_i\}_{i \in I} be a family of Hausdorff spaces.
\langle 1 \rangle 2. Let: a, b \in \prod_{i \in I} X_i with a \neq b
\langle 1 \rangle 3. PICK i \in I such that a_i \neq b_i
\langle 1 \rangle 4. PICK U, V disjoint open sets in X_i with a_i \in U and b_i \in V
\langle 1 \rangle 5. \pi_i^{-1}(U) and \pi_i^{-1}(V) are disjoint open sets in \prod_{i \in I} X_i with a \in \pi_i^{-1}(U)
        and b \in \pi_i^{-1}(V)
Theorem 149. Every linearly ordered set under the order topology is Hausdorff.
Proof:
\langle 1 \rangle 1. Let: X be a linearly ordered set under the order topology.
```

 $\langle 1 \rangle 2$. Let: $a, b \in X$ with $a \neq b$

 $\langle 1 \rangle 3$. Assume: w.l.o.g. a < b

 $\langle 1 \rangle 4$. Case: There exists c such that a < c < b

PROOF: The sets $(-\infty,c)$ and $(c,+\infty)$ are disjoint neighbourhoods of a and b respectively.

 $\langle 1 \rangle$ 5. Case: There is no c such that a < c < b

PROOF: The sets $(-\infty, b)$ and $(a, +\infty)$ are disjoint neighbourhoods of a and b respectively.

Theorem 150. A subspace of a Hausdorff space is Hausdorff.

PROOF:

 $\langle 1 \rangle 1$. Let: X be a Hausdorff space and Y a subspace of X.

- $\langle 1 \rangle 2$. Let: $x, y \in Y$ with $x \neq y$
- $\langle 1 \rangle 3$. PICK disjoint neighbourhoods U of x and V of y in X.
- $\langle 1 \rangle 4.$ $U \cap Y$ and $V \cap Y$ are disjoint neighbourhoods of x and y respectively in Y.

Proposition 151. A space X is Hausdorff if and only if the diagonal $\Delta = \{(x,x) \mid x \in X\}$ is closed in X^2 .

Proof:

X is Hausdorff

$$\Leftrightarrow \forall x, y \in X. \\ x \neq y \Rightarrow \exists V, W \text{ open.} \\ x \in V \land y \in W \land V \cap W = \emptyset$$

$$\Leftrightarrow \forall (x, y) \in X^2 \setminus \Delta. \\ \exists V, W \text{ open.} \\ (x, y) \subseteq V \times W \subseteq X^2 \setminus \Delta$$

$$\Leftrightarrow \Delta \text{ is closed}$$

22 The First Countability Axiom

Definition 152 (First Countability Axiom). A topological space X satisfies the *first countability axiom*, or is *first countable*, if and only if every point has a countable local basis.

Lemma 153 (Sequence Lemma (CC)). Let X be a first countable space. Let $A \subseteq X$ and $l \in \overline{A}$. Then there exists a sequence in A that converges to l.

Proof:

- $\langle 1 \rangle 1$. Pick a countable local basis $\{B_n \mid n \in \mathbb{Z}^+\}$ at l such that $B_1 \supseteq B_2 \supseteq \cdots$. Proof: Lemma 58.
- $\langle 1 \rangle 2$. For all $n \geq 1$, PICK $a_n \in A \cap B_n$. PROVE: $a_n \to l$ as $n \to \infty$
- $\langle 1 \rangle 3$. Let: U be a neighbourhood of A
- $\langle 1 \rangle 4$. Pick N such that $B_N \subseteq U$
- $\langle 1 \rangle 5$. For $n \geq N$ we have $a_n \in U$

PROOF: $a_n \in B_n \subseteq B_N \subseteq U$

Theorem 154 (CC). Let X be a first countable space and Y a topological space. Let $f: X \to Y$. Suppose that, for every sequence (x_n) in X and $l \in X$, if $x_n \to l$ as $n \to \infty$, then $f(x_n) \to f(l)$ as $n \to \infty$. Then f is continuous.

Proof:

- $\langle 1 \rangle 1$. Let: $A \subseteq X$
- $\langle 1 \rangle 2$. Let: $a \in A$

PROVE: $f(a) \in \overline{f(A)}$

 $\langle 1 \rangle 3$. PICK a sequence (x_n) in A that converges to a.

PROOF: By the Sequence Lemma.

 $\langle 1 \rangle 4. \ f(x_n) \to f(a)$

```
\langle 1 \rangle5. f(a) \in \overline{f(A)}
PROOF: By Lemma 62. \langle 1 \rangle6. Q.E.D.
PROOF: By Theorem 80.
```

Example 155 (CC). The space \mathbb{R}^{ω} under the box product is not first countable.

PROOF: Let $\{B_n \mid n \geq 0\}$ be a countable set of neighbourhoods of $\vec{0}$. We will construct a neighbourhood of $\vec{0}$ that does not include any of these. For $n \geq 0$, pick a neighbourhood U_n of 0 such that $U_n \subset \pi_n(B_p)$. Then $\prod_{n=0}^{\infty} U_n$ is a neighbourhood of $\vec{0}$ that does not include any B_n . \square

Example 156. If J is an uncountable set then \mathbb{R}^J is not first countable.

Proof:

- $\langle 1 \rangle 1$. Let: $\{B_n \mid n \geq 0\}$ be any countable set of neighbourhoods of $\vec{0}$.
- $\langle 1 \rangle 2$. For $n \geq 0$, PICK a basis element $\prod_{\alpha \in J} U_{n\alpha}$ that contains $\vec{0}$ and is included in B_n .

PROOF: Using the Axiom of Countable Choice.

 $\langle 1 \rangle 3$. For $n \geq 0$,

Let: $J_n = \{ \alpha \in J \mid U_{n\alpha} \neq \mathbb{R} \}$

 $\langle 1 \rangle 4$. PICK $\beta \in J$ such that $\beta \notin J_n$ for any n.

PROOF: Since each J_n is finite so $\bigcup_n J_n$ is countable.

 $\langle 1 \rangle 5$. $\pi_{\beta}((-1,1))$ is a neighbourhood of $\vec{0}$ that does not include any B_n .

23 The Metric Topology

Definition 157 (Metric). Let X be a set. A *metric* on X is a function $d: X^2 \to \mathbb{R}$ such that:

- 1. For all $x, y \in X$, $d(x, y) \ge 0$
- 2. For all $x, y \in X$, d(x, y) = 0 if and only if x = y
- 3. For all $x, y \in X$, d(x, y) = d(y, x)
- 4. (Triangle Inequality) For all $x, y, z \in X$, $d(x, z) \le d(x, y) + d(y, z)$

We call d(x, y) the distance between x and y.

Definition 158 (Open Ball). Let X be a metric space. Let $a \in X$ and $\epsilon > 0$. The *open ball* with *centre a* and *radius* ϵ is

$$B(a,\epsilon) = \{x \in X \mid d(a,x) < \epsilon\} .$$

Definition 159 (Metric Topology). Let X be a metric space. The *metric topology* on X is the topology generated by the basis consisting of all the open balls.

We prove this is a basis for a topology.

Proof

 $\langle 1 \rangle 1$. For every point a, there exists a ball B such that $a \in B$ PROOF: We have $a \in B(a,1)$.

- $\langle 1 \rangle 2$. For any balls B_1 , B_2 and point $a \in B_1 \cap B_2$, there exists a ball B_3 such that $a \in B_3 \subseteq B_1 \cap B_2$
 - $\langle 2 \rangle 1$. Let: $B_1 = B(c_1, \epsilon_1)$ and $B_2 = B(c_2, \epsilon_2)$
 - $\langle 2 \rangle 2$. Let: $\delta = \min(\epsilon_1 d(c_1, a), \epsilon_2 d(c_2, a))$ Prove: $B(a, \delta) \subseteq B_1 \cap B_2$
 - $\langle 2 \rangle 3$. Let: $x \in B(a, \delta)$
 - $\langle 2 \rangle 4. \ x \in B_1$

Proof:

$$d(x, c_1) = d(x, a) + d(a, c_1)$$

$$< \delta + d(a, c_1)$$

$$\le \epsilon_1$$

 $\langle 2 \rangle 5. \ x \in B_2$

PROOF: Similar.

Proposition 160. Let X be a metric space and $U \subseteq X$. Then U is open if and only if, for every $x \in U$, there exists $\epsilon > 0$ such that $B(x, \epsilon) \subseteq U$.

PROOF

 $\langle 1 \rangle 1$. If U is open then, for all $x \in U$, there exists $\epsilon > 0$ such that $B(x, \epsilon) \subseteq U$. $\langle 2 \rangle 1$. Assume: U is open.

- $\langle 2 \rangle 2$. Let: $x \in U$
- $\langle 2 \rangle 3$. Pick $a \in X$ and $\delta > 0$ such that $x \in B(a, \delta) \subseteq U$
- $\langle 2 \rangle 4$. Let: $\epsilon = \delta d(a, x)$ Prove: $B(x, \epsilon) \subseteq U$
- $\langle 2 \rangle 5$. Let: $y \in B(x, \epsilon)$
- $\langle 2 \rangle 6. \ d(y,a) < \delta$

$$d(y,a) \le d(a,x) + d(x,y)$$
$$< \delta + d(x,y)$$
$$= \epsilon$$

- $\langle 2 \rangle 7. \ y \in U$
- $\langle 1 \rangle 2$. If, for all $x \in U$, there exists $\epsilon > 0$ such that $B(x, \epsilon) \subseteq U$, then U is open. PROOF: Immediate from definitions.

Definition 161 (Discrete Metric). Let X be a set. The *discrete metric* on X is defined by

 $d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$

Proposition 162. The discrete metric induces the discrete topology.

PROOF: For any (open) set U and point $a \in U$, we have $a \in B(a,1) \subseteq U$. \square

Definition 163 (Standard Metric on \mathbb{R}). The *standard metric* on \mathbb{R} is defined by d(x,y) = |x-y|.

Proposition 164. The standard metric on \mathbb{R} induces the standard topology on \mathbb{R} .

Proof:

 $\langle 1 \rangle 1$. Every open ball is open in the standard topology on \mathbb{R} .

PROOF: $B(a, \epsilon) = (a - \epsilon, a + \epsilon)$

- $\langle 1 \rangle 2$. For every open set U and point $a \in U$, there exists $\epsilon > 0$ such that $B(a,\epsilon) \subseteq U$
 - $\langle 2 \rangle 1$. Let: U be an open set and $a \in U$
 - $\langle 2 \rangle 2$. PICK an open interval b, c such that $a \in (b,c) \subseteq U$
 - $\langle 2 \rangle 3$. Let: $\epsilon = \min(a b, c a)$
 - $\langle 2 \rangle 4. \ B(a, \epsilon) \subseteq U$

Definition 165 (Metrizable). A topological space X is metrizable if and only if there exists a metric on X that induces the topology.

Definition 166 (Bounded). Let X be a metric space and $A \subseteq X$. Then A is *bounded* if and only if there exists M such that, for all $x, y \in A$, we have $d(x, y) \leq M$.

Definition 167 (Diameter). Let X be a metric space and $A \subseteq X$. The *diameter* of A is

$$\operatorname{diam} A = \sup_{x,y \in A} d(x,y) .$$

Definition 168 (Standard Bounded Metric). Let d be a metric on X. The standard bounded metric corresponding to d is the metric \overline{d} defined by

$$\overline{d}(x,y) = \min(d(x,y),1)$$
.

We prove this is a metric.

Proof:

```
Thoof:  \langle 1 \rangle 1. \ \overline{d}(x,y) \geq 0  Proof: Since d(x,y) \geq 0  \langle 1 \rangle 2. \ \overline{d}(x,y) = 0 \text{ if and only if } x = y  Proof: \overline{d}(x,y) = 0 if and only if d(x,y) = 0 if and only if x = y  \langle 1 \rangle 3. \ \overline{d}(x,y) = \overline{d}(y,x)  Proof: Since d(x,y) = d(y,x)  \langle 1 \rangle 4. \ \overline{d}(x,z) \leq \overline{d}(x,y) + \overline{d}(y,z)  Proof:  \overline{d}(x,y) + \overline{d}(y,z) = \min(d(x,y),1) + \min(d(y,z),1)   = \min(d(x,y) + d(y,z), d(x,y) + 1, d(y,z) + 1, 2)   \geq \min(d(x,z),1)   = \overline{d}(x,z)
```

Lemma 169. In any metric space X, the set $\mathcal{B} = \{B(a, \epsilon) \mid a \in X, \epsilon < 1\}$ is a basis for the metric topology.

Proof:

 $\langle 1 \rangle 1$. Every element of \mathcal{B} is open.

PROOF: From Lemma 47.

- $\langle 1 \rangle 2$. For every open set U and point $a \in U$, there exists $B \in \mathcal{B}$ such that $a \in B \subseteq U$
 - $\langle 2 \rangle 1$. Let: U be an open set and $a \in U$
 - $\langle 2 \rangle 2$. Pick $\epsilon > 0$ such that $B(a, \epsilon) \subseteq U$
 - $\langle 2 \rangle 3. \ B(a, \min(\epsilon, 1/2)) \subseteq U$
- $\langle 1 \rangle 3$. Q.E.D.

Proof: Lemma 48.

Proposition 170. Let d be a metric on the set X. Then the standard bounded metric \bar{d} induces the same metric as d.

PROOF: This follows from Lemma 169 since the open balls with radius < 1 are the same under both metrics. \square

Lemma 171. Let d and d' be two metrics on the same set X. Let \mathcal{T} and \mathcal{T}' be the topologies they induce. Then $\mathcal{T} \subseteq \mathcal{T}'$ if and only if, for all $x \in X$ and $\epsilon > 0$, there exists $\delta > 0$ such that

$$B_{d'}(x,\delta) \subseteq B_d(x,\epsilon)$$
.

Proof:

 $\langle 1 \rangle 1$. If $\mathcal{T} \subseteq \mathcal{T}'$ then, for all $x \in X$ and $\epsilon > 0$, there exists $\delta > 0$ such that $B_{d'}(x,\delta) \subseteq B_d(x,\epsilon)$

PROOF: From Proposition 160 since $x \in B_d(x, \epsilon) \in \mathcal{T}'$.

- $\langle 1 \rangle 2$. If, for all $x \in X$ and $\epsilon > 0$, there exists $\delta > 0$ such that $B_{d'}(x, \delta) \subseteq B_d(x, \epsilon)$, then $\mathcal{T} \subseteq \mathcal{T}'$
 - $\langle 2 \rangle 1$. Assume: For all $x \in X$ and $\epsilon > 0$, there exists $\delta > 0$ such that $B_{d'}(x,\delta) \subseteq B_d(x,\epsilon)$
 - $\langle 2 \rangle 2$. Let: $U \in \mathcal{T}$
 - $\langle 2 \rangle 3$. For all $x \in U$ there exists $\delta > 0$ such that $B_{d'}(x, \delta) \subseteq U$.
 - $\langle 3 \rangle 1$. Let: $x \in U$
 - $\langle 3 \rangle 2$. PICK $\epsilon > 0$ such that $B_d(x, \epsilon) \subseteq U$

Proof: Proposition 160

 $\langle 3 \rangle 3$. PICK $\delta > 0$ such that $B_{d'}(x, \delta) \subseteq B_d(x, \epsilon)$

Proof: By $\langle 2 \rangle 1$

 $\langle 3 \rangle 4. \ B_{d'}(x,\delta) \subseteq U$

 $\langle 2 \rangle 4. \ U \in \mathcal{T}'$

Proof: Proposition 160.

П

Proposition 172. \mathbb{R}^2 under the dictionary order topology is metrizable.

PROOF: Define $d: \mathbb{R}^2 \to \mathbb{R}$ by

$$d((x,y),(x,z)) \stackrel{\circ}{=} \max(|y-z|,1)$$

$$d((x,y),(x',y')) = 1 \qquad \text{if } x \neq x' \square$$

$$\langle 1 \rangle 1. \ x \in \bigcap_{i=1}^{N} \pi_i^{-1}() \subseteq B_D(a,\epsilon)$$

Proposition 173. Let $d: X^2 \to \mathbb{R}$ be a metric on X. Then the metric topology on X is the coarsest topology such that d is continuous.

- $\langle 1 \rangle 1$. d is continuous.
 - $\langle 2 \rangle 1$. Let: $a, b \in X$
 - $\langle 2 \rangle 2$. Let: $\epsilon > 0$
 - $\langle 2 \rangle 3$. Let: $\delta = \epsilon/2$
 - $\langle 2 \rangle 4$. Let: $x, y \in X$
 - $\langle 2 \rangle$ 5. Assume: $\rho((a,b),(x,y)) < \delta$
 - $\langle 2 \rangle 6$. $|d(a,b) d(x,y)| < \epsilon$
 - $\langle 3 \rangle 1. \ d(a,b) d(x,y) < \epsilon$

$$d(a,b) \le d(a,x) + d(x,y) + d(y,b)$$

$$\le d(x,y) + 2\rho((a,b),(x,y))$$

$$< d(x,y) + 2\delta$$

$$= d(x,y) + \epsilon$$

 $\langle 3 \rangle 2$. $d(a.b) - d(x,y) > -\epsilon$

PROOF: Similar.

 $\langle 2 \rangle$ 7. Q.E.D.

 $\langle 1 \rangle 2$. If \mathcal{T} is any topology under which d is continuous then \mathcal{T} is finer than the metric topology.

Proof: Since $B(a, \epsilon) = d_a^{-1}((-\infty, \epsilon))$

Proposition 174. Let X be a metric space with metric d and $A \subseteq X$. The restriction of d to A is a metric on A that induces the subspace topology.

Proof:

- $\langle 1 \rangle 1$. The restriction of d to A is a metric on A.
- $\langle 1 \rangle 2$. Every open ball under $d \upharpoonright A$ is open under the subspace topology.

PROOF: $B_{d \upharpoonright A}(a, \epsilon) = B_d(a, \epsilon) \cap A$.

- $\langle 1 \rangle 3$. If U is open in the subspace topology and $x \in U$, then there exists a $d \upharpoonright A$ -ball B such that $x \in B \subseteq U$.
 - $\langle 2 \rangle 1$. PICK V open in X such that $U = V \cap A$
 - $\langle 2 \rangle 2$. Pick $\epsilon > 0$ such that $B_d(x, \epsilon) \subseteq V$
 - $\langle 2 \rangle 3$. Take $B = B_{d \uparrow A}(x, \epsilon)$

Corollary 174.1. A subspace of a metrizable space is metrizable.

Proposition 175. Every metrizable space is Hausdorff.

Proof:

- $\langle 1 \rangle 1$. Let: X be a metric space
- $\langle 1 \rangle 2$. Let: $a, b \in X$ with $a \neq b$
- $\langle 1 \rangle 3$. Let: $\epsilon = d(a,b)/2$
- $\langle 1 \rangle 4$. Let: $U = B(a, \epsilon)$ and $V = B(b, \epsilon)$
- $\langle 1 \rangle$ 5. U and V are disjoint neighbourhoods of a and b respectively.

Proposition 176 (CC). The product of a countable family of metrizable spaces is metrizable.

Proof:

- $\langle 1 \rangle 1$. Let: (X_n, d_n) be a sequence of metric spaces.
- $\langle 1 \rangle 2$. Assume: w.l.o.g. each d_n is bounded above by 1.

Proof: By Proposition 170.

 $\langle 1 \rangle 3$. Let: D be the metric on \mathbb{R}^{ω} defined by $D(x,y) = \sup_{i} (d_i(x_i,y_i)/i)$.

- $\langle 2 \rangle 1$. $D(x,y) \geq 0$
- $\langle 2 \rangle 2$. D(x,y) = 0 if and only if x = y
- $\langle 2 \rangle 3. \ D(x,y) = D(y,x)$
- $\langle 2 \rangle 4$. $D(x,z) \leq D(x,y) + D(y,z)$

$$D(x,z) = \sup_{i} \frac{d_i(x_i, z_i)}{i}$$

$$\leq \sup_{i} \frac{d_i(x_i, y_i) + d_i(y_i, z_i)}{i}$$

$$\leq \sup_{i} \frac{d_i(x_i, y_i)}{i} + \sup_{i} \frac{d_i(y_i, z_i)}{i}$$

$$= D(x, y) + D(y, z)$$

- $\langle 1 \rangle 4$. Every open ball $B_D(a, \epsilon)$ is open in the product topology.
 - $\langle 2 \rangle 1$. PICK N such that $1/\epsilon < N$
- $\langle 2 \rangle 2$. $B_D(a, \epsilon) = \prod_{i=1}^{\infty} U_i$ where $U_i = B(a_i, i\epsilon)$ if $i \leq N$, and $U_i = X_i$ if i > N
- $\langle 1 \rangle 5$. For any open set U and $a \in U$, there exists $\epsilon > 0$ such that $B_D(a, \epsilon) \subseteq U$.
 - $\langle 2 \rangle 1$. Let: $n \geq 1$, V be an open set in \mathbb{R} and $a \in \pi_n^{-1}(V)$
 - $\langle 2 \rangle 2$. PICK $\epsilon > 0$ such that $B_{d_n}(a, \epsilon) \subseteq V$
 - $\langle 2 \rangle 3. \ B_D(a, \epsilon/n) \subseteq \pi_n^{-1}(V)$

Theorem 177. Let X and Y be metric spaces and $f: X \to Y$. Then f is continuous if and only if, for all $x \in X$ and $\epsilon > 0$, there exists $\delta > 0$ such that, for all $y \in X$, if $d(x, y) < \delta$ then $d(f(x), f(y)) < \epsilon$.

- $\langle 1 \rangle 1$. If f is continuous then, for all $x \in X$ and $\epsilon > 0$, there exists $\delta > 0$ such that, for all $y \in X$, if $d(x,y) < \delta$ then $d(f(x),f(y)) < \epsilon$
 - $\langle 2 \rangle 1$. Assume: f is continuous.
 - $\langle 2 \rangle 2$. Let: $x \in X$ and $\epsilon > 0$
 - $\langle 2 \rangle$ 3. PICK a neighbourhood U of x such that $f(U) \subseteq B(f(x), \epsilon)$ PROOF: Theorem 80.
 - $\langle 2 \rangle 4$. Pick $\delta > 0$ such that $B(x, \delta) \subseteq U$ Proof: Proposition 160.
 - $\langle 2 \rangle 5$. For all $y \in X$, if $d(x,y) < \delta$ then $d(f(x),f(y)) < \epsilon$
- $\langle 1 \rangle 2$. If for all $x \in X$ and $\epsilon > 0$, there exists $\delta > 0$ such that, for all $y \in X$, if $d(x,y) < \delta$ then $d(f(x),f(y)) < \epsilon$, then f is continuous.
 - $\langle 2 \rangle$ 1. Assume: for all $x \in X$ and $\epsilon > 0$, there exists $\delta > 0$ such that, for all $y \in X$, if $d(x,y) < \delta$ then $d(f(x),f(y)) < \epsilon$
 - $\langle 2 \rangle 2$. Let: $x \in X$ and V be a neighbourhood of f(x)
 - $\langle 2 \rangle$ 3. PICK $\epsilon > 0$ such that $B(f(x), \epsilon) \subseteq V$ PROOF: Proposition 160.
 - PROOF: Proposition 160. 0 > 0 Such that, for all $u \in X$, if d(x) = 0
 - $\langle 2 \rangle$ 4. Pick $\delta > 0$ such that, for all $y \in X$, if $d(x,y) < \delta$ then $d(f(x),f(y)) < \epsilon$ Proof: By $\langle 2 \rangle$ 1
 - $\langle 2 \rangle$ 5. Let: $U = B(x, \delta)$
 - $\langle 2 \rangle 6$. U is a neighbourhood of x with $f(U) \subseteq V$

 $\langle 2 \rangle 7$. Q.E.D.

PROOF: Theorem 80.

Г

Proposition 178. Let X be a metric space. Let (a_n) be a sequence in X and $l \in X$. Then $a_n \to l$ as $n \to \infty$ if and only if, for all $\epsilon > 0$, there exists N such that, for all $n \ge N$, we have $d(a_n, l) < \epsilon$.

Proof: From Proposition 63. \square

Proposition 179. Every metrizable space is first countable.

PROOF: In any metric space X, the open balls B(a,1/n) for $n \ge 1$ form a local basis at a.

Example 180. \mathbb{R}^{ω} under the box topology is not metrizable.

Example 181. If J is uncountable then \mathbb{R}^J under the product topology is not metrizable.

24 Real Linear Algebra

Definition 182 (Square Metric). The square metric ρ on \mathbb{R}^n is defined by

$$\rho(\vec{x}, \vec{y}) = \max(|x_1 - y_1|, \dots, |x_n - y_n|)$$

We prove this is a metric.

Proof:

 $\langle 1 \rangle 1. \ \rho(\vec{x}, \vec{y}) \geq 0$

PROOF: Immediate from definition.

 $\langle 1 \rangle 2$. $\rho(\vec{x}, \vec{y}) = 0$ if and only if $\vec{x} = \vec{y}$

PROOF: Immediate from definition.

 $\langle 1 \rangle 3. \ \rho(\vec{x}, \vec{y}) = \rho(\vec{y}, \vec{x})$

PROOF: Immediate from definition.

 $\langle 1 \rangle 4. \ \rho(\vec{x}, \vec{z}) \leq \rho(\vec{x}, \vec{y}) + \rho(\vec{y}, \vec{z})$

PROOF: Since $|x_i - z_i| \le |x_i - y_i| + |y_i - z_i|$.

П

Proposition 183. The square metric induces the standard topology on \mathbb{R}^n .

PROOF

 $\langle 1 \rangle 1$. For every $a \in X$ and $\epsilon > 0$, we have $B_{\rho}(a, \epsilon)$ is open in the standard product topology.

$$B_{\rho}(a,\epsilon) = (a_1 - \epsilon, a_1 + \epsilon) \times \cdots \times (a_n - \epsilon, a_n + \epsilon)$$

- $\langle 1 \rangle 2$. For any open sets U_1, \ldots, U_n in \mathbb{R} , we have $U_1 \times \cdots \times U_n$ is open in the square metric topology.
 - $\langle 2 \rangle 1$. Let: $\vec{a} \in U_1 \times \cdots \times U_n$

- $\langle 2 \rangle 2$. For i = 1, ..., n, Pick $\epsilon_i > 0$ such that $(a_i \epsilon_i, a_i + \epsilon_i) \subseteq U_i$
- $\langle 2 \rangle 3$. Let: $\epsilon = \min(\epsilon_1, \dots, \epsilon_n)$
- $\langle 2 \rangle 4. \ B_{\rho}(\vec{a}, \epsilon) \subseteq U$

Definition 184. Given $\vec{x}, \vec{y} \in \mathbb{R}^n$, define the sum $\vec{x} + \vec{y}$ by

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$$
.

Definition 185. Given $\lambda \in \mathbb{R}$ and $\vec{x} \in \mathbb{R}^n$, define the scalar product $\lambda \vec{x} \in \mathbb{R}^n$ by

$$\lambda(x_1,\ldots,x_n)=(\lambda x_1,\ldots,\lambda x_n)$$

Definition 186 (Inner Product). Given $\vec{x}, \vec{y} \in \mathbb{R}^n$, define the *inner product* $\vec{x} \cdot \vec{y} \in \mathbb{R}$ by

$$(x_1,\ldots,x_n)\cdot(y_1,\ldots,y_n)=x_1y_1+\cdots+x_ny_n.$$

We write \vec{x}^2 for $\vec{x} \cdot \vec{x}$.

Definition 187 (Norm). Let $n \geq 1$. The *norm* on \mathbb{R}^n is the function $\| \| : \mathbb{R}^n \to \mathbb{R}$ defined by

$$\|(x_1,\ldots,x_n)\| = \sqrt{x_1^2 + \cdots + x_n^2}$$

Lemma 188.

$$\|\vec{x}\|^2 = \vec{x}^2$$

Proof: Immediate from definitions. \square

Lemma 189.

$$\vec{x} \cdot (\vec{y} + \vec{z}) = \vec{x} \cdot \vec{y} + \vec{x} \cdot \vec{z}$$

PROOF: Each is equal to $(x_1y_1 + x_1z_1, \dots, x_ny_n + x_nz_n)$.

Lemma 190.

$$|\vec{x} \cdot \vec{y}| \le ||\vec{x}|| ||\vec{y}||$$

Proof:

 $\langle 1 \rangle 1$. Assume: $\vec{x} \neq \vec{0} \neq \vec{y}$

PROOF: Otherwise both sides are 0.

- $\langle 1 \rangle 2$. Let: $a = 1/||\vec{x}||$
- $\langle 1 \rangle 3$. Let: $b = 1/||\vec{y}||$
- (1)4. $(a\vec{x} + b\vec{y})^2 \ge 0$ and $(a\vec{x} b\vec{y})^2 \ge 0$
- $\langle 1 \rangle 5$. $\hat{a}^2 \|\vec{x}\|^2 + 2ab\vec{x} \cdot \vec{y} + \hat{b}^2 \|\vec{y}\|^2 \ge 0$ and $\hat{a}^2 \|\vec{x}\|^2 2ab\vec{x} \cdot \vec{y} + \hat{b}^2 \|\vec{y}\|^2 \ge 0$
- $\langle 1 \rangle 6$. $2ab\vec{x} \cdot \vec{y} + 2 \ge 0$ and $-2ab\vec{x} \cdot \vec{y} + 2 \ge 0$
- $\langle 1 \rangle 7$. $\vec{x} \cdot \vec{y} \ge -1/ab$ and $\vec{x} \cdot \vec{y} \le 1/ab$
- $\langle 1 \rangle 8. \ \vec{x} \cdot \vec{y} \ge ||\vec{x}|| ||\vec{y}|| \text{ and } \vec{x} \cdot \vec{y} \le ||\vec{x}|| ||\vec{y}||$

Lemma 191 (Triangle Inequality).

$$\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$$

Proof:

$$\|\vec{x} + \vec{y}\|^2 = \|\vec{x}\|^2 + 2\vec{x} \cdot \vec{y} + \|\vec{y}\|^2$$

$$\leq \|\vec{x}\|^2 + 2\|\vec{x}\| \|\vec{y}\| + \|\vec{y}\|^2 \qquad \text{(Lemma 190)}$$

$$= (\|\vec{x}\| + \|\vec{y}\|)^2$$

Definition 192 (Euclidean Metric). Let $n \geq 1$. The Euclidean metric on \mathbb{R}^n is defined by

$$d(\vec{x}, \vec{y}) = ||\vec{x} - \vec{y}||.$$

We prove this is a metric.

 $\langle 1 \rangle 1. \ d(\vec{x}, \vec{y}) \ge 0$

PROOF: Immediate from definition.

 $\langle 1 \rangle 2$. $d(\vec{x}, \vec{y}) = 0$ if and only if $\vec{x} = \vec{y}$

PROOF: $d(\vec{x}, \vec{y}) = 0$ if and only if $\vec{x} - \vec{y} = \vec{0}$.

 $\langle 1 \rangle 3. \ d(\vec{x}, \vec{y}) = d(\vec{y}, \vec{x})$

PROOF: Immediate from definition.

 $\langle 1 \rangle 4. \ d(\vec{x}, \vec{z}) \le d(\vec{x}, \vec{y}) + d(\vec{y}, \vec{z})$

Proof:

$$\|\vec{x} - \vec{z}\| = \|(\vec{x} - \vec{y}) + (\vec{y} - \vec{z})\|$$

$$\leq \|\vec{x} - \vec{y}\| + \|\vec{y} - \vec{z}\| \qquad \text{(Lemma 191)}$$

П

Proposition 193. The Euclidean metric induces the standard topology on \mathbb{R}^n .

PROOF:

- $\langle 1 \rangle 1$. Let: ρ be the square metric.
- $\langle 1 \rangle 2$. For all $\vec{a} \in \mathbb{R}^n$ and $\epsilon > 0$, we have $B_d(\vec{a}, \epsilon) \subseteq B_\rho(\vec{a}, \epsilon)$
 - $\langle 2 \rangle 1$. Let: $\vec{x} \in B_d(\vec{a}, \epsilon)$
 - $\langle 2 \rangle 2$. $\sqrt{(x_1 a_1)^2 + \dots + (x_n a_n)^2} < \epsilon$ $\langle 2 \rangle 3$. $(x_1 a_1)^2 + \dots + (x_n a_n)^2 < \epsilon^2$ $\langle 2 \rangle 4$. For all i we have $(x_i a_i)^2 < \epsilon^2$

 - $\langle 2 \rangle$ 5. For all i we have $|x_i a_i| < \epsilon$
 - $\langle 2 \rangle 6. \ \rho(\vec{x}, \vec{a}) < \epsilon$
- $\langle 1 \rangle 3$. For all $\vec{a} \in \mathbb{R}^n$ and $\epsilon > 0$, we have $B_{\rho}(\vec{a}, \epsilon / \sqrt{n}) \subseteq B_d(\vec{a}, \epsilon)$
 - $\langle 2 \rangle 1$. Let: $\vec{x} \in B_{\rho}(\vec{a}, \epsilon/\sqrt{n})$
 - $\langle 2 \rangle 2$. $\rho(\vec{x}, \vec{a}) < \epsilon / \sqrt{n}$
 - $\langle 2 \rangle 3$. For all i we have $|x_i x_a| < \epsilon / \sqrt{n}$
 - $\langle 2 \rangle 4$. For all i we have $(x_i x_a)^2 < \epsilon^2/n$
 - $\langle 2 \rangle 5. \ d(\vec{x}, \vec{a}) < \epsilon$
- $\langle 1 \rangle 4$. Q.E.D.

PROOF: By Lemma 171.

Lemma 194. If $\sum_{i=0}^{\infty} x_i^2$ and $\sum_{i=0}^{\infty} y_i^2$ converge then $\sum_{i=0}^{\infty} |x_i y_i|$ converges.

Proof:

 $\langle 1 \rangle 1$. For all $N \geq 0$ we have $\sum_{i=0}^{N} |x_i y_i| \leq \sqrt{\sum_{i=0}^{N} |x_i|^2} \sqrt{\sum_{i=0}^{N} |y_i|^2}$ PROOF: By the Cauchy-Schwarz inequality

 $\langle 1 \rangle 2$. Q.E.D.

PROOF: Since $\sum_{i=0}^{N} |x_i y_i|$ is an increasing sequence bounded above by $(\sum_{i=0}^{\infty} x_i^2)(\sum_{i=0}^{\infty} y_i^2)$.

Corollary 194.1. If $\sum_{i=0}^{\infty} x_i^2$ and $\sum_{i=0}^{\infty} y_i^2$ converge then $\sum_{i=0}^{\infty} (x_i + y_i)^2$ con-

PROOF: Since $\sum_{i=0}^{\infty} x_i^2$, $\sum_{i=0}^{\infty} y_i^2$ and $2\sum_{i=0}^{\infty} x_i y_i$ all converge.

Definition 195 (l^2 -metric). The l^2 -metric on

$$\left\{ (x_n) \in \mathbb{R}^{\omega} \mid \sum_{n=0}^{\infty} x_n^2 \text{ converges} \right\}$$

is defined by

$$d(x,y) = \left(\sum_{n=0}^{\infty} (x_n - y_n)^2\right)^{1/2}$$

We prove this is a metric.

Proof:

 $\langle 1 \rangle 1$. d is well-defined.

PROOF: By Corollary 194.1.

- $\langle 1 \rangle 2. \ d(x,y) \ge 0$
- $\langle 1 \rangle 3$. d(x,y) = 0 if and only if x = y
- $\langle 1 \rangle 4. \ d(x,y) = d(y,x)$
- $\langle 1 \rangle 5. \ d(x,z) \le d(x,y) + d(y,z)$

PROOF: By Lemma 191.

Theorem 196. Addition is a continuous function $\mathbb{R}^2 \to \mathbb{R}$.

- $\langle 1 \rangle 1$. Let: $a, b \in \mathbb{R}$
- $\langle 1 \rangle 2$. Let: $\epsilon > 0$
- $\langle 1 \rangle 3$. Let: $\delta = \epsilon/2$
- $\langle 1 \rangle 4$. Let: $x, y \in \mathbb{R}$
- $\langle 1 \rangle$ 5. Assume: $\rho((a,b),(x,y)) < \delta$
- $\langle 1 \rangle 6. \ |(a+b) (x+y)| < \epsilon$

$$\begin{aligned} |(a+b)-(x+y)| &= |a-x|+|b-y| \\ &\leq 2\rho((a,b),(x,y)) \\ &< 2\delta \\ &= \epsilon \end{aligned}$$

 $\langle 1 \rangle 7$. Q.E.D.

PROOF: Theorem 177

Theorem 197. Multiplication is a continuous function $\mathbb{R}^2 \to \mathbb{R}$.

Proof:

- $\langle 1 \rangle 1$. Let: $a, b \in \mathbb{R}$
- $\langle 1 \rangle 2$. Let: $\epsilon > 0$
- $\langle 1 \rangle 3$. Let: $\delta = \min(\epsilon/(|a|+|b|+1),1)$
- $\langle 1 \rangle 4$. Let: $x, y \in \mathbb{R}$
- $\langle 1 \rangle$ 5. Assume: $\rho((a,b),(x,y)) < \delta$
- $\langle 1 \rangle 6$. $|ab xy| < \epsilon$

Proof:

$$|ab - xy| = |a(b - y) + (a - x)b - (a - x)(b - y)|$$

$$\leq |a||b - y| + |b||a - x| + |a - x||b - y|$$

$$< |a|\delta + |b|\delta + \delta^{2}$$

$$\leq |a|\delta + |b|\delta + \delta$$

$$\leq \epsilon$$

$$(\langle 1 \rangle 3)$$

$$\leq \epsilon$$

 $\langle 1 \rangle 7$. Q.E.D.

PROOF: Theorem 177

П

Theorem 198. The function $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ defined by $f(x) = x^{-1}$ is continuous.

PROOF:

 $\langle 1 \rangle 1$. For all $a \in \mathbb{R}$ we have $f^{-1}((a, +\infty))$ is open.

PROOF: The set is

$$(a^{-1}, +\infty) \text{if } a > 0$$
$$(0, +\infty) \text{if } a = 0$$
$$(-\infty, a^{-1}) \cup (0, +\infty) \text{if } a < 0$$

 $\langle 1 \rangle 2$. For all $a \in \mathbb{R}$ we have $f^{-1}((-\infty, a))$ is open.

PROOF: Similar.

 $\langle 1 \rangle 3$. Q.E.D.

PROOF: By Proposition 77 and Lemma 103.

25 The Uniform Topology

Definition 199 (Uniform Metric). Let J be a set. The uniform metric $\overline{\rho}$ on \mathbb{R}^J is defined by

 $\overline{\rho}(a,b) = \sup_{j \in J} \overline{d}(a_j, b_j)$

where \overline{d} is the standard bounded metric on \mathbb{R} .

The uniform topology on \mathbb{R}^J is the topology induced by the uniform metric.

We prove this is a metric.

Proof:

 $\langle 1 \rangle 1. \ \overline{\rho}(a,b) \geq 0$

PROOF: Immediate from definitions.

 $\langle 1 \rangle 2$. $\overline{\rho}(a,b) = 0$ if and only if a = b

PROOF: Immediate from definitions.

 $\langle 1 \rangle 3. \ \overline{\rho}(a,b) = \overline{\rho}(b,a)$

PROOF: Immediate from definitions.

 $\langle 1 \rangle 4. \ \overline{\rho}(a,c) \leq \overline{\rho}(a,b) + \overline{\rho}(b,c)$

Proof:

$$\begin{split} \overline{\rho}(a,c) &= \sup_{j \in J} \overline{d}(a_j,c_j) \\ &\leq \sup_{j \in J} (\overline{d}(a_j,b_j) + \overline{d}(b_j,c_j)) \\ &\leq \sup_{j \in J} \overline{d}(a_j,b_j) + \sup_{j \in J} \overline{d}(b_j,c_j) \\ &= \overline{\rho}(a,b) + \overline{\rho}(b,c) \end{split}$$

Proposition 200. The uniform topology on \mathbb{R}^J is finer than the product topology.

Proof:

 $\langle 1 \rangle 1$. Let: $j \in J$ and U be open in \mathbb{R}

PROVE: $\pi_j^{-1}(U)$ is open in the uniform topology. $\langle 1 \rangle 2$. Let: $a \in \pi_j^{-1}(U)$

- $\langle 1 \rangle 3$. PICK $\epsilon > 0$ such that $(a_j \epsilon, a_j + \epsilon) \subseteq U$
- $\langle 1 \rangle 4. \ B_{\overline{\rho}}(a, \epsilon) \subseteq \pi_j^{-1}(U)$

Proposition 201. The uniform topology on \mathbb{R}^J is coarser than the box topology.

Proof:

 $\langle 1 \rangle 1$. Let: $a \in \mathbb{R}^J$ and $\epsilon > 0$

PROVE: $B(a, \epsilon)$ is open in the box topology.

- $\langle 1 \rangle 2$. Let: $b \in B(a, \epsilon)$
- $\langle 1 \rangle 3$. For $j \in J$ we have $|a_j b_j| < \epsilon$
- $\langle 1 \rangle 4$. For $j \in J$,

Let:
$$\delta_j = (\epsilon - |a_j - b_j|)/2$$

 $\langle 1 \rangle 5. \prod_{j \in J} (b_j - \delta_j, b_j + \delta_j) \subseteq B(a, \epsilon)$

Proposition 202. The uniform topology on \mathbb{R}^J is strictly finer than the product topology if and only if J is infinite.

PROOF:

 $\langle 1 \rangle 1.$ If J is finite then the uniform and product topologies coincide.

PROOF: The uniform, box and product topologies are all the same.

 $\langle 1 \rangle$ 2. If J is infinite then the uniform and product topologies are different. PROOF: The set $B(\vec{0}, 1)$ is open in the uniform topology but not the produc

PROOF: The set $B(\vec{0},1)$ is open in the uniform topology but not the product topology.

Proposition 203 (DC). The uniform topology on \mathbb{R}^J is strictly coarser than the box topology if and only if J is infinite.

PROOF

 $\langle 1 \rangle 1$. If J is finite then the uniform and box topologies coincide.

PROOF: The uniform, box and product topologies are all the same.

 $\langle 1 \rangle 2$. If J is infinite then the uniform and box topologies are different.

PROOF: Pick an ω -sequence $(j_1, j_2, ...)$ in J. Let $U = \prod_{j \in J} U_j$ where $U_{j_i} = (-1/i, 1/i)$ and $U_j = (-1, 1)$ for all other j. Then $\vec{0} \in U$ but there is no $\epsilon > 0$ such that $B(\vec{0}, \epsilon) \subseteq U$.

П

Proposition 204. The closure of \mathbb{R}^{∞} in \mathbb{R}^{ω} under the uniform topology is \mathbb{R}^{ω} .

PROOF: Given any open ball $B(a,\epsilon)$, pick an integer N such that $1/\epsilon < N$. Then $B(a,\epsilon)$ includes sequences whose nth entry is 0 for all $n \geq N$. \square

26 Uniform Convergence

Definition 205 (Uniform Convergence). Let X be a set and Y a metric space. Let $(f_n: X \to Y)$ be a sequence of functions and $f: X \to Y$ be a function. Then f_n converges uniformly to f as $n \to \infty$ if and only if, for all $\epsilon > 0$, there exists N such that, for all $n \ge N$ and $x \in X$, we have $d(f_n(x), f(x)) < \epsilon$.

Theorem 206 (Uniform Limit Theorem). Let X be a topological space and Y a metric space. Let $(f_n : X \to Y)$ be a sequence of continuous functions and $f : X \to Y$ be a function. If f_n converges uniformly to f as $n \to \infty$, then f is continuous.

- $\langle 1 \rangle 1$. Let: $x \in X$ and $\epsilon > 0$
- $\langle 1 \rangle 2$. PICK N such that, for all $n \geq N$ and $y \in X$, we have $d(f_n(y), f(y)) < \epsilon/3$
- $\langle 1 \rangle 3$. PICK a neighbourhood U of x such that $f_N(U) \subseteq B(f_N(x), \epsilon/3)$

```
PROVE: f(U) \subseteq B(f(x), \epsilon)

\langle 1 \rangle 4. Let: y \in U

\langle 1 \rangle 5. d(f(y), f(x)) < \epsilon

PROOF: d(f(y), f(x)) \leq d(f(y), f_N(y)) + d(f_N(y), f_N(x)) + d(f_N(x), f(x)) \quad \text{(Triangle Inequality)}
< \epsilon/3 + \epsilon/3 + \epsilon/3 \qquad (\langle 1 \rangle 2, \langle 1 \rangle 3)
= \epsilon
```

Proposition 207. Let X be a set. Let $(f_n : X \to \mathbb{R})$ be a sequence of functions and $f : X \to \mathbb{R}$ be a function. Then f_n converges unifomly to f as $n \to \infty$ if and only if $f_n \to f$ as $n \to \infty$ in \mathbb{R}^X under the uniform topology.

Proof:

- $\langle 1 \rangle 1$. If f_n converges uniformly to f then f_n converges to f under the uniform topology.
 - $\langle 2 \rangle 1$. Assume: f_n converges uniformly to f
 - $\langle 2 \rangle 2$. Let: $\epsilon > 0$
 - $\langle 2 \rangle 3.$ PICK N such that, for all $n \geq N$ and $x \in X,$ we have $d(f_n(x),f(x)) < \epsilon/2$
 - $\langle 2 \rangle 4$. For all $n \geq N$ we have $\overline{\rho}(f_n, f) \leq \epsilon/2$
 - $\langle 2 \rangle$ 5. For all $n \geq N$ we have $\overline{\rho}(f_n, f) < \epsilon$
- $\langle 1 \rangle 2$. If f_n converges to f under the uniform topology then f_n converges uniformly to f.

PROOF: Since if $\overline{\rho}(f_n, f) < \epsilon$ then $d(f_n(x), f(x)) < \epsilon$ for all $x \in X$.