

PLENARY EXERCISES - TMA4145

Week 37, Wednesday 13. September 2023

Problem 1

Let V be a vector space, and consider $P: V \to V$ such that $P^2 = P$. Let $m = \dim(\ker P)$ and $n = \dim(\operatorname{range}(P))$. Find the characteristic polynomial of P. Find, and verify, the minimal polynomial of P.

Hint:

- **1.** What are the eigenvalues of *P*?
- **2.** What happens if n = 0?

1

Problem 2

Let V be a vector space. Assume there exists V_1, \ldots, V_n T-invariant subspaces such that

$$V = V_1 \oplus \ldots \oplus V_n$$
.

Let $T:V\to V$ be a linear operator, and T_j is the restriction of T to V_j . Show that the characteristic polynomial χ_T can be written as

$$\chi_{\mathcal{T}} = \chi_{\mathcal{T}_1} \dots \chi_{\mathcal{T}_n}.$$

Hint:

- **1.** The restriction of T_j is defined such that $T(v_j) = T_j(v_j)$ for all $v_j \in V_j$.
- **2.** Let *W* be a vector space, and $S: W \to W$. Then $W = \bigoplus_{l} G(\mu_{l}, S)$.
- **3.** How does the matrix representation of T look like?

Problem 3

Let $A, B \in \operatorname{Mat}_n(\mathbb{C})$. Show that AB and BA have the same eigenvalues with the same multiplicities. Show that the dimension of the respective eigenspaces corresponding to $\lambda \neq 0$ are the same.

Hint:

- **1.** Find a mapping from one eigenspace to the other.
- **2.** Consider $\lambda \neq 0$, and $\lambda = 0$ seperately.
- **3.** How many eigenvalues are there?