

TECHNOLOGY IN ACTION

Hardware Review

Behind the Scenes:

A Closer Look at System Hardware

CHAPTER TOPICS

- Computer switches
- Binary number system
- Inside the CPU
- Cache memory
- Types of RAM
- Computer buses
- Creating faster CPUs

BINARY LANGUAGE

- Computers work in binary language
- Consists of two numbers: 0 and 1
- Everything a computer does is broken down into a series of 0s and 1s
- Switches: Devices inside the computer that can be flipped between these two states: I or 0, on or off

SWITCHES

- Nonmechanical devices in computers that open and close circuits
- Types of electrical switches:
 - Vacuum tubes
 - ► Transistors:
 - Semiconductors
 - Integrated circuits

Integrated Circuits

Vacuum Tube

Transistors

SWITCHES REPRESENTING DATA

- The on/off state of a switch represents one bit of data
- Bit (binary digit)
 - ▶ On = 1
 - Off = 0

OR

$$= 1 bi$$

1

0

THE BINARY NUMBER SYSTEM

- Describes a number as powers of 2
- Also referred to as base 2 numbering system
- Used to represent every piece of data stored in a computer: all of the numbers, letters, and instructions

THE BINARY NUMBER SYSTEM

- Number systems are organized ways to represent numbers
- Each number in one system has a corresponding number in another.

	128 2x64	64 2x32	32 2x16	16 2x8	8 2x4	4 2x2	2 2x1	1	
Binary	0	1	0	1	1	0	0	1	
Base 10	0 +	64 +	0 +	16 +	8 +	0 +	0 +	1 =	89

$$01011001 = 89$$
Binary
Base 10

REPRESENTING LETTERS AND SYMBOLS

- American Standard Code for Information Interchange (ASCII)
 - 8 bits = 1 byte = alphanumeric character or symbol
 - 256 different combinations

Unicode

- 16 bits equal 1 byte
- 65,000 different combinations, used for all languages

ASCII

01100001 = a

01000001 = A

00100011 = #

01101101 = m

THE CPU: PROCESSING DIGITAL INFORMATION

- The CPU is the brains of the computer
- Different types of CPUs
 - Intel and AMD chips: Used in most Windows-based PCs
 - Apple systems use different CPU design
- Differentiating CPUs
 - Processing power
 - Clock speed and cache

Processors on the Market Today

Processor	Manufacturer	Number of Transistors	Typical Clock Speed	Levels of Cache Storage	Description
Athlon 64 FX – 60	AMD	233 million	2.6 GHz	2	64-bit processor for heavy computation and demanding video gaming needs.
Core Duo	Intel	151.6 million	1.6 - 2.16 GHz	2	Designed specifically for mobile computers; transfers power only to those areas of the processor that need it, improving battery life.
Itanium 2	Intel	410 million	1.3 – 1.66 GHz	3	Seen in high-end server computers.
Pentium 4 Extreme Edition 955	Intel	225 million	3.46 GHz	Each processor core has its own 2 MB L2Cache	This processor uses a dual-core design and hyperthreading to Process four tasks at once.
Pentium D Dual Core	Intel	230 million	2.8 - 3.4 GHz	2	New dual-core processor for more efficient multitasking. No hyperthreading capabilities.
PowerPC G4	Freescale Semiconductor (once part of Motorola)	57 million	1.5 – 1.67 GHz	3	Until 2006, powered the Apple line of computers.
Dual Core PowerPC G5	IBM	58 million	2.0 - 2.5 GHz	2	Powerful 64-bit processor for heavy computational needs.
Sempron	AMD	68.5 million	2.0 GHz	2	Affordable performance for today's value-conscious buyers of desktop PCs.
Turion	AMD	114 million	1.6 – 2.4 GHz	2	Optimized for better performance in thinner and lighter laptops for longer battery life and compatible with wireless technologies.

12

THE CPU MACHINE CYCLE

- ► Fetch
 - The program's binary code is "fetched" from its temporary location in RAM and moved to the CPU
- Decode
 - The program's binary code is decoded into commands that the CPU understands.
- Execute
 - ▶ The ALU performs the calculations.
- Store
 - The results are stored in the registers

"Inside the Chip" by
Intel

E REVIEW WEDNESDAY, MARCH 13, 2013

THE SYSTEM CLOCK

- Located on the motherboard
- Controls the CPU's processing cycles
- Clock cycle
 - Pulse or tick
- Clock speed
 - Number of pulses per second
 - Measured in hertz (Hz)

THE CONTROL UNIT

- ▶ Manages the switches inside the CPU
- Is programmed by CPU designers to remember the sequence of processing stages for that CPU
- Moves each switch to its correct setting (on or off)
- Then performs the work of that stage

THE ARITHMETIC LOGIC UNIT (ALU)

- Part of the CPU designed to perform mathematical operations (addition, subtraction, multiplication, division, etc.)
- Also performs logical OR, AND, and NOT operations
- Is fed data from the CPU registers
 - Word size: Number of bits a computer can work with at a time

CACHE MEMORY

Small amount of memory located on the CPU chip or near it

Stores recent or frequently used instructions and data

- Used for quick access by the CPU
- Different levels of cache

RAM:THE NEXT LEVEL OF TEMPORARY STORAGE

- Volatile: When you turn off your computer, the data is erased
- Several kinds of RAM exist
- Each type of RAM has a different design
 - Some types work at much faster speeds
 - Some transfer data more quickly

TYPES OF RAM: DRAM

- Dynamic RAM (DRAM)
 - Cheapest and most basic type of RAM
 - Loses its electrical charge
 - Needs to be refreshed
 - Many types of DRAM
 - SDRAM: Synchronous DRAM
 - DDR SDRAM: Double data rate SDRAM

TYPES OF RAM: SRAM

- Static RAM (SRAM)
 - Does not lose its electrical charge
 - Faster than DRAM
 - More expensive than DRAM
 - Used only in locations like cache memory

BUSES: THE CPU'S DATA HIGHWAY

- Bus
 - ▶ Electrical pathway used to move data between components
 - Local bus: Connects the CPU with the memory
 - Expansion bus: Connects the CPU with peripheral devices

BUS PERFORMANCE

Bus clock speed

- Rate of speed data moves from one location to another
- Measured in MHz (millions of clock cycles per second)

Bus width

- The number of bits of data moved on a bus at any one time
- Measured in bits
 - 6 bits
 - > 32 bits

TYPES OF EXPANSION BUSES

- ► ISA and EISA
 - Found on older computers
 - Connects mouse, modem, and sound card
- **PCI**
 - Faster than ISA and EISA
 - Found on modern computers
 - Connects network, modem, and sound cards
- AGP
 - Used for three-dimensional graphics
 - Connects the graphics card and memory

MOORE'S LAW

- Number of transistors on a CPU will double every 18 months
- First chip had 29,000 transistors
- Pentium chip 169,000,000 transistors
- Moore's Law has been accurate for more than 40 years
- Law has remained accurate into the 21st century

MAKING COMPUTERS FASTER

Pipelining: The CPU processes more than one instruction at a time

HARDWARE REVIEW WEDNESDAY, MARCH 13, 2013

25

MAKING COMPUTERS FASTER

- Dual processing
 - Two CPUs on the same system
 - Each processor shares the workload
- Parallel processing
 - Network of computers
 - Each computer works on a portion of the problemsimultaneously

Dual processors

DUAL-CORE PROCESSING AND HYPERTHREADING

- Two separate parallel processing paths
- Almost as fast as two separate processors
- Hyperthreading allows the processor to run four tasks at once
- Allows multiple applications to execute much more quickly

COMPUTING CLUSTERS

- Group of computers
- Connected by "clustering software"
- Load-balancing principle
- Not as fast as supercomputers
- Can be set up on Linux systems for free

What is a switch and how does it work in a computer?

What is the binary number system and what role does it play in computer system?

▶ What is inside the CPU and how do these components operate?

► How does a CPU process data and instructions?

What is cache memory?

What types of RAM are there?

What is a bus and how does it function in a computer system?

► How do manufacturers make CPUs so that they run faster?