AMENDMENT TO THE CLAIMS

Please amend the claims without prejudice, without admission, without surrender of subject matter, and without any intention of creating any estoppel as to equivalents, as follows.

In the Claims:

 (Original) Reactive nanoparticular porogen based on cyclodextrin derivative of the following formula 1 to be used as a porogen,

wherein R represents the same or different C₁₋₆ alkyl group, respectively, wherein n is an integer of 6 to 12.

- 2. (Currently amended) In The reactive nanoparticular porogen according to claim 1, wherein said derivative is selected from the group consisting of hexakis(2,3,6-tri-O-(3-trimethoxysilylpropyl)-\alpha-cyclodextrin), hexakis(2,3,6-tri-O-(3-trimethoxysilylpropyl)-\alpha-cyclodextrin), heptakis(2,3,6-tri-O-(3-trimethoxysilylpropyl)-\alpha-cyclodextrin), hexakis(2,3,6-tri-O-(3-trimethoxysilylpropyl)-\alpha-cyclodextrin), octakis(2,3,6-tri-O-(3-trimethoxysilylpropyl)-\alpha-cyclodextrin), cyclodextrin), and octakis(2,3,6-tri-O-(3-trimethoxysilylpropyl)-\alpha-cyclodextrin).
- 3. (Original) A dielectric matrix manufactured by sol-gel reaction of a derivative of the following formula 1,

wherein R represents the same or different $C_{1.6}$ alkyl groups, respectively and wherein n is an integer of 6 to 12.

(1)

 (Currently amended) A low dielectric film manufactured by thin-filming of the dielectric matrix of claim 3 said dielectric matrix, which is manufactured by sol gel reaction of the following formula 1,

wherein R represents the same or different C1-6 alkyl groups respectively and n is an integer of 6 to 12.

- 5. (Currently amended) In-elaim 4, said The low dielectric film according to claim 4, wherein the dielectric matrix comprises a silicate precursor selected from polymethylsilsequioxane and polymethylsilsequioxane copolymer.
- 6. (Original) An ultralow dielectric composition comprising:
 - a) an organic or inorganic silicate precursor, and

 b) a reactive nanoparticular porogen based on cyclodextrin derivative of the following formula 1,

wherein R represents the same or different C_{1-6} alkyl group, respectively and n is an integer of 6 to 12.

- (Currently amended) In elaim 6, said The ultralow dielectric composition according to claim 6, wherein the ultralow dielectric composition is obtained by combining
- (a) said organic or inorganic silicate precursor and
- (b) said nanoparticle of a cyclodextrin derivative of the above formula 1, which are dissolved to have the equal concentration within the range of from 10 to 40 wt.%, with a mixing ratio of 10-50: 10-50 vol.% between the two solutions.
- 8. (Currently amended) In elaim 6, said The ultralow dielectric composition according to claim 6, wherein the derivative of the above formula 1 is an ultralow dielectric composition selected from the group consisting of hexakis(2,3,6-tri-O-(3-trimethoxysilylpropyl)-&-cyclodextrin), hexakis(2,3,6-tri-O-(3-trimethoxysilylpropyl)-&-cyclodextrin), heptakis(2,3,6-tri-O-(3-trimethoxysilylpropyl)-&-cyclodextrin), heptakis(2,3,6-tri-O-(3-triethoxysilylpropyl)-&-cyclodextrin), octakis(2,3,6-tri-O-(3-triethoxysilylpropyl)-&-cyclodextrin), octakis(2,3,6-tri-O-(3-triethoxysilylpropyl)-&-cyclodextrin), and octakis(2,3,6-tri-O-(3-trimethoxysilylpropyl)-&-cyclodextrin).
- (Currently amended) In claim 6, said The ultralow dielectric composition according to claim
 wherein the dielectric matrix comprises a silicate precursor selected from polymethylsilsequioxane and polymethylsilsequioxane copolymer.

- 10. (Currently amended) An ultralow dielectric film films manufactured by thin-filming of any one of the ultralow dielectric composition of claim 6, wherein the porosity is 21 to 51% and dielectric constant is 2.1 to 1.54 when the relative volume of the template-solution a template solution containing the cyclodextrin nanoparticles with reference to a matrix solution containing the silicate precursor is 40 to 49%.
- 11. (Currently amended) An ultralow dielectric film films manufactured by thin-filming of any one of the ultralow dielectric composition of claim 7, wherein the porosity is 21 to 51% and dielectric constant is 2.1 to 1.54 when the relative volume of the template-solution a template solution containing the cyclodextrin nanoparticles with reference to a matrix solution containing the silicate precursor is 40 to 49% the matrix solution is 40 to 49%.
- 12. (Currently amended) An ultralow dielectric film films manufactured by thin-filming of any one of the ultralow dielectric composition of claim 8, wherein the porosity is 21 to 51% and dielectric constant is 2.1 to 1.54 when the relative volume of the template solution a template solution containing the cyclodextrin nanoparticles with reference to a matrix solution containing the silicate precursor is 40 to 49%. the matrix solution is 40 to 49%.
- 13. (Currently amended) An ultralow dielectric film films manufactured by thin-filming of any one of the ultralow dielectric composition of claim 9, wherein the porosity is 21 to 51% and dielectric constant is 2.1 to 1.54 when the relative volume of the template-solution a template solution containing the cyclodextrin nanoparticles with reference to a matrix solution containing the silicate precursor is 40 to 49% the matrix solution is 40 to 49%.