Machine Learning- COL774 Assignment 1

Ankesh Gupta 2015CS10435

Question 1

What was done:

- 1. Batch Gradient Descent was implemented to train the given dataset.
- 2. Different *learning rates* and *convergence values* were engineered.
- 3. Loss functions were plotted and visualized.

Observations:

- 1. The algorithm diverged for learning rate(η) above 0.2 .
- 2. While observing the contours for different learning rates, it was observed that for lower learning rate, the jump between successive *epochs* was comparatively lower that jump for rates.
- 3. Direct consequence of above phenomenon was increased *convergence time* as well as number of iterations for lower rates. However, increasing η again raised the epochs because of oscillations.
- 4. Another interesting observation was that for low learning rates, algorithm *stably* converged to the minima, whereas for $\eta=0.017$, it first *oscillated* about the minima a bit and then converged.
- 5. It failed convergence for next $\eta = 0.021$ as oscillations only pushed it further away from the minima.
- 6. Epochs also increased with decrease in error condition(ϵ) kept for convergence.
- 7. Optimal value of learning rate was around $\eta = 0.09$ for below mentioned ϵ .

Here is a tabulated form for η vs *epochs* on the dataset, with $\epsilon = 10^{-7}$, that is difference of $J(\theta)$ became less than ϵ (*Stopping Criteria*). Obtained θ were:

$$\theta_0 = 0.9965$$

$$\theta_1 = 0.0013$$

η	Epochs
0.001	89
0.005	16
0.009	6
0.013	10
0.017	29

Figure 2: Example Plot of Hypothesis and data for $\eta=0.001$

Contours and Path Traversed

Figure 3: Example Plot of Hypothesis and data for $\eta = 0.019$

Question 2

What was done:

- 1. Closed form equations were implemented for linear regression and locally weighted linear regression(LWLR). *Bandwidth parameter* for $LWLR(\tau)$ was engineered.
- 2. Inferences were drawn on extreme values of τ .

Observations:

- 1. The best value of τ was 0.3.
- 2. Too low τ (< 0.2) gave rise to *overfitting*. Too high τ (> 5) resulted in *underfitting*. Example figure is shown.
- 3. High τ makes the value in power of exponent ≈ 0 which resulted in equal weightage of all sample points, a reduction of its power to *Linear Regression*.
- 4. Low τ assigns too much weight to the point in consideration and hence forces the hypothesis to fit as many points as it could, resulting in underfitting.
- 5. Although powerful, this technique is *computationally expensive*, as evaluation at each point is quite expensive. In our case, it required complete data lookup as well as *inverse* computations.
- 6. Closed form θ for Linear Case: $\theta_0 = 0.9966$, $\theta_1 = 0.0013$
- 7. Closed form expression for LWLR is

$$\theta = (W^T W X)^{-1} (X^T W^T Y)$$

LWLR- Data and Hypothesis: Tau=0.3

Figure 4: Best Fit

Figure 5: An example of small au

LWLR- Data and Hypothesis: Tau=10.0

Figure 6: An example of large τ

Figure 7: Hypothesis plot for Closed form of Linear Regression

Question 3

What was done:

- 1. Newton's method was applied to optimize/maximise *likelihood* for the problem.
- 2. Decision boundary was plotted and analyzed.

Observations:

1. Obtained θ leading to covergence:

$$\theta_0 = 0.401$$
 $\theta_1 = 2.588$

$$\theta_2 = -2.725$$

- 2. The stopping criteria was when $\|\theta^t \theta^{t-1}\|_2 < \epsilon$
- 3. Generally, Newton takes lower epochs than *GradientDescent* but computationally suffers because of computation of inverse of *Hessian*.
- 4. A benefit of using it is we don't have to engineer any *step_size* or learning rate, as in *Gradient Descent*.

General tabulation of experiments done with different converging criteria(ϵ)

ϵ	Epochs
0.1	8
0.001	258
10^{-6}	968
10^{-9}	1687

Figure 8: Decision Boundary and Points $\epsilon = 10^{-6}$

Question 4

What was done:

- 1. Closed form equations were derived for μ_0 , μ_1 , $\Sigma' s$, ϕ .
- 2. Decision boundary equations were derived and plotted once assuming $\Sigma_0 = \Sigma_1$, and other time, removing the restriction.
- 3. The obtained boundaries were analyzed.
- 4. Alaska is numbered 1 and Canada, 0.

Obtained values of $\mu's$, $\Sigma's$, ϕ on *normalized* data are:

$$\phi = 0.5$$

$$\mu_0 = \begin{bmatrix} -0.7553 & 0.685 \end{bmatrix}$$

$$\mu_1 = \begin{bmatrix} 0.7553 & -0.685 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 2.333 & 0.0988 \\ 0.0988 & 1.8886 \end{bmatrix}$$

$$\Sigma_0 = \begin{bmatrix} 0.4774 & 0.1099 \\ 0.1099 & 0.4135 \end{bmatrix}$$

$$\Sigma_1 = \begin{bmatrix} 0.3816 & -0.1548 \\ -0.1548 & 0.6477 \end{bmatrix}$$

Obtained Decision Boundary when $\Sigma_0 = \Sigma_1$ is linear given by:

$$(\mu_1^T \Sigma^{-1} - \mu_0^T \Sigma^{-1}) x = 0.5 * (\mu_1^T \Sigma^{-1} \mu_1 - \mu_0^T \Sigma^{-1} \mu_0) + \log \frac{1 - \phi}{\phi}$$

Obtained Decision Boundary without the above assumption is quadratic in nature given by:

$$x^{T}(\Sigma_{1}^{-1} - \Sigma_{0}^{-1})x + 2(\mu_{0}^{T}\Sigma_{0}^{-1} - \mu_{1}^{T}\Sigma_{1}^{-1})x = (\mu_{0}^{T}\Sigma_{0}^{-1}\mu_{0} - \mu_{1}^{T}\Sigma_{1}^{-1}\mu_{1}) + 2*\log\frac{\phi}{1-\phi} - \log\frac{|\Sigma_{1}|}{|\Sigma_{0}|}$$

Analyzing the decision boundary to comment which of them better fits is non-trivial given so few instances. But given so few a datapoints, if indeed the underlying $x/y \sim N(\mu, \sigma^2)$, then GDA is one of the better discriminator's because of its strong modelling assumptions. Both the *boundaries* do a decent role in separating the given set of instances. Since the points are concentrated in a local neighbourhood for both the classes, their is a stray possibility that the underlying distribution is indeed *Gaussian*.

Since the quadratic curve allows *larger class of functions* to be estimated, we can say that quadratic boundary is a better estimator as it misclassifies very few data points. Also its quadratic curve is in a sense, better/strongly separating the 2 classes. But again, we definitely need more instances to comment something stronger.

GDA- Data and Linear Hypothesis

Figure 9: Linear Fit when $\Sigma_0=\Sigma_1$

Figure 10: General GDA Quadratic Fit