

| Schwimmbad*           |           |              |
|-----------------------|-----------|--------------|
| Aufgabennummer: A_156 |           |              |
| Technologieeinsatz:   | möglich ⊠ | erforderlich |

a) Im Kinderbereich eines Schwimmbads soll eine Kinderrutsche errichtet werden. Die unten stehende, stark vereinfachte Abbildung veranschaulicht den Aufbau dieser Kinderrutsche (nicht maßstabgetreu).

Die Rutsche taucht unter einem Winkel von  $\alpha = 20^{\circ}$  bei Punkt B ins Wasser ein und ist 3 Meter lang  $(\overline{AB})$ . Der Abstand zwischen den Punkten E und C beträgt 0,5 Meter.



- Berechnen Sie die Länge der Leiter AE, die für diese Kinderrutsche benötigt wird.
- b) In der nachstehenden Abbildung sind die Abmessungen eines Schwimmbeckens eingezeichnet (nicht maßstabgetreu):



Dieses Schwimmbecken soll vollständig befüllt werden. Die Hygienevorschriften sehen vor, dass pro Liter Wasser 0,3 Milligramm eines bestimmten Desinfektionsmittels zugefügt werden müssen.

– Berechnen Sie, wie viel Kilogramm dieses Desinfektionsmittels zugefügt werden müssen.

Schwimmbad 2

c) Zur Reinigung eines Schwimmbeckens muss das Wasser abgelassen werden. Zu Beginn sind 2 Millionen Liter Wasser im Becken. Mithilfe von Pumpen werden gleichmäßig 5 000 Liter pro Minute abgesaugt.

- Stellen Sie diejenige Funktionsgleichung auf, die die noch im Becken vorhandene Wassermenge in Abhängigkeit von der Zeit beschreibt.
- Berechnen Sie, wie lange das Abpumpen der gesamten Wassermenge dauert.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben.

Schwimmbad 3

## Möglicher Lösungsweg

a) Ansatz zur Berechnung der Länge  $\overline{AC}$ :

$$\sin(20^\circ) = \frac{\overline{AC}}{3}$$

$$\overline{AC} \approx 1,03 \text{ m}$$

Berechnung der Länge der Leiter mithilfe des Lehrsatzes von Pythagoras:

$$\overline{AE} = \sqrt{(0.5^2 + \overline{AC}^2)} = 1.141... \approx 1.14$$

Die Leiter ist 1,14 m lang.

b) Volumen des Prismas:  $V = \frac{(2,3+1,1) \cdot 50}{2} \cdot 25 = 2125$ 

Das vollständig befüllte Schwimmbecken fasst 2125 m³.

 $2125 \text{ m}^3 = 2125000 \text{ L}$ 

Masse des Desinfektionsmittels:

$$0.3 \cdot 10^{-6} \cdot 2125000 = 0.6375$$

Es müssen 0,6375 kg Desinfektionsmittel zugefügt werden.

c)  $f(t) = 2000000 - 5000 \cdot t$ 

t ... Zeit in Minuten (min)

f(t) ... vorhandene Wassermenge zum Zeitpunkt t in Litern (L)

Berechnung der Nullstelle dieser Funktion:

$$2000000 - 5000 \cdot t = 0$$

$$t = 400$$

Es dauert 400 Minuten, bis die gesamte Wassermenge abgepumpt ist.

## Lösungsschlüssel

- a) 1 × A: für den richtigen trigonometrischen Ansatz
  - 1 x B: für die richtige Berechnung der Länge der Leiter
- b) 1 × A: für den richtigen Ansatz (Modell für die Berechnung des Volumens)
  - 1 × B: für die richtige Berechnung der Masse des Desinfektionsmittels
- c) 1 × A: für das richtige Aufstellen der Funktionsgleichung
  - 1 × B: für die richtige Berechnung der Zeitdauer