Minimum Message Length and Kolmogorov Complexity

C. S. Wallace and D. L. Dowe

Overview

Turing Machines

Input $\,p\,$ is an acceptable MML message encoding data string $\,x\,$, if

$$1) \quad T(p) = x$$

 $p \ {\it encodes} \ x$

Input $\,p\,$ is an acceptable MML message encoding data string $\,x\,$, if

$$1) \quad T(p) = x$$

 $p \ {\it encodes} \ x$

2)
$$l(p) < l(x)$$

some compression is achieved

$$1) \quad T(p) = x$$

$$p$$
 encodes \boldsymbol{x}

$$2) \quad l(p) < l(x)$$

3)
$$p = qr$$

$$1) \quad T(p) = x$$

2)
$$l(p) < l(x)$$

3)
$$p = qr$$

4)
$$T(q) = \epsilon$$

$$p$$
 encodes x

hypothesis
$$\,q\,$$
 is does not determine data

$$1) \quad T(p) = x$$

$$2) \quad l(p) < l(x)$$

3)
$$p = qr$$

4)
$$T(q) = \epsilon$$

$$5) \quad T_q(rs) = xT_q(s)$$

$$p$$
 encodes \boldsymbol{x}

hypothesis
$$q$$
 is does not determine data

reading r does not alter the state of
$$\,T\,$$

Input $\,p\,$ is an acceptable MML message encoding data string $\,x\,$, if

$$1) \quad T(p) = x$$

$$2) \quad l(p) < l(x)$$

3)
$$p = qr$$

4)
$$T(q) = \epsilon$$

$$5) \quad T_q(rs) = xT_q(s)$$

$$6) \quad l(r) < K_T(x)$$

$$p$$
 encodes x

some compression is achieved

two-part encoding

hypothesis q is does not determine data

reading r does not alter the state of $\,T\,$

hypothesis q is "significant"

Two-part encoding ______

Input $\,p\,$ is an acceptable MML message encoding data string $\,x\,$, if

$$1) \quad T(p) = x$$

2)
$$l(p) < l(x)$$

3)
$$p = qr$$

4)
$$T(q) = \epsilon$$

5)
$$T_q(rs) = xT_q(s)$$

6)
$$l(r) < K_T(x)$$

7)
$$x = x_1 \dots x_n \Rightarrow \begin{cases} r = r_1 \dots r_n \\ T_q(r_i) = x_i, i = 1 \dots n \end{cases}$$

$$p$$
 encodes x

some compression is achieved

two-part encoding

hypothesis q is does not determine data

reading r does not alter the state of \overline{T}

hypothesis q is "significant"

conditionally independent sentences

Input $\,p\,$ is an acceptable MML message encoding data string $\,x\,$, if

$$1) \quad T(p) = x$$

2)
$$l(p) < l(x)$$

3)
$$p = qr$$

4)
$$T(q) = \epsilon$$

5)
$$T_q(rs) = xT_q(s)$$

6)
$$l(r) < K_T(x)$$

7)
$$x = x_1 \dots x_n \Rightarrow \begin{cases} r = r_1 \dots r_n \\ T_q(r_i) = x_i, i = 1 \dots n \end{cases}$$

8)
$$x' = x^{(1)}x^{(2)}$$
 $\Rightarrow T_q(j^{(1)}) = x^{(1)}, \ j^{(1)} < K_T(x^{(1)})$ $T_q(j^{(2)}) = x^{(2)}, \ j^{(2)} < K_T(x^{(2)})$

$$p$$
 encodes x

some compression is achieved

two-part encoding

hypothesis q is does not determine data

reading r does not alter the state of $\,T\,$

hypothesis q is "significant"

conditionally independent sentences

hypothesis q is "general"

Input $\,p\,$ is an acceptable MML message encoding data string $\,x\,$, if

$$1) \quad T(p) = x$$

2)
$$l(p) < l(x)$$

3)
$$p = qr$$

4)
$$T(q) = \epsilon$$

5)
$$T_q(rs) = xT_q(s)$$

6)
$$l(r) < K_T(x)$$

7)
$$x = x_1 \dots x_n \Rightarrow \begin{cases} r = r_1 \dots r_n \\ T_q(r_i) = x_i, i = 1 \dots n \end{cases}$$

8)
$$x' = x^{(1)}x^{(2)}$$
 $\Rightarrow T_q(j^{(1)}) = x^{(1)}, \ j^{(1)} < K_T(x^{(1)})$ $T_q(j^{(2)}) = x^{(2)}, \ j^{(2)} < K_T(x^{(2)})$

9) No prefix of q satisfies all the above conditions

$$p$$
 encodes x

some compression is achieved

two-part encoding

hypothesis q is does not determine data

reading r does not alter the state of $\,T\,$

hypothesis q is "significant"

conditionally independent sentences

hypothesis q is "general"

all of q is required