

Description

The VSM105N08 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- V_{DS} =80V, I_{D} =105A $R_{DS(ON)} < 6.5 m\Omega$ @ V_{GS} =10V (Typ:5.8mΩ)
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Automotive applications
- Hard switched and high frequency circuits
- Uninterruptible power supply

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM105N08-TC	VSM105N08	TO-220C	-	-	-

Absolute Maximum Ratings (T_c=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	80	V
Gate-Source Voltage	V _G s	±20	V
Drain Current-Continuous	I _D	105	А
Drain Current-Continuous(T _C =100 ℃)	I _D (100℃)	74	Α
Pulsed Drain Current	I _{DM}	420	А
Maximum Power Dissipation	P _D	200	W
Derating factor		1.33	W/℃

Shenzhen VSEEI Semiconductor Co., Ltd

Single pulse avalanche energy (Note 5)	E _{AS}	800	mJ
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	$^{\circ}\mathbb{C}$

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R _{0JC}	0.75	°C/W	
---	------------------	------	------	--

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	80	86	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =80V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			•	•		
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2	3	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =40A	-	5.8	6.5	mΩ
Forward Transconductance	g Fs	V _{DS} =25V,I _D =40A	80	-	-	S
Dynamic Characteristics (Note4)				•		
Input Capacitance	C _{lss}		-	4522	-	PF
Output Capacitance	Coss	$V_{DS}=25V,V_{GS}=0V,$	-	396	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	339	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	20	-	nS
Turn-on Rise Time	t _r	V_{DD} =40 V , I_{D} =2A, R_{L} =15 Ω ,	-	19	-	nS
Turn-Off Delay Time	$t_{d(off)}$	$R_G=2.5\Omega, V_{GS}=10V$	-	70	-	nS
Turn-Off Fall Time	t _f		-	30	-	nS
Total Gate Charge	Qg		-	117	-	nC
Gate-Source Charge	Q _{gs}	I _D =55A,V _{DD} =40V,V _{GS} =10V	-	24	-	nC
Gate-Drain Charge	Q _{gd}		-	43	-	nC
Drain-Source Diode Characteristics			•	•		
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =40A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	105	Α
Reverse Recovery Time	t _{rr}	Tj=25℃,IF=75A,	-	37		nS
Reverse Recovery Charge	Qrr	di/dt=100A/uS ^(Note3)	-	58		nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD				y LS+LD)

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- **3.** Pulse Test: Pulse Width ≤ 300μ s, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}$ C,VDD=40V,VG=10V,L=0.5mH,Rg=25 Ω

Test circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 Current vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance