Quantum algorithms

Lecture 2: Quantum algorithms

Benoît Vermersch

October 2, 2023

LPMMC Grenoble

Outline

Our first quantum algorithm: Deutsch's algorithm

Quadratic speedup: Grover's algorithm

Implementation details

IBM Quantum Practicals

- Groups/Schedule on Moodle
- One week after the class, Send me (Julien Renard) a commented jupyter notebook showing/explaining your results
- Grade: Jupyter notebooks+Oral exam

Outline

Our first quantum algorithm: Deutsch's algorithm

Quadratic speedup: Grover's algorithm

Implementation details

Reminder: Structure of a quantum circuit

Quantum circuit: single qubit/two-qubit gates and measurements:

Algorithm: a quantum circuit to retrieve the solution of a problem in the measurement data with high probability.

- Problem: Given a single bit Boolean function f(x), is f constant i.e f(0) = f(1), or balanced, i.e $f(0) \neq f(1)$?
- We need to introduce an object called an Oracle, aka quantum black box.
- An oracle evaluates the classical function f on quantum states

- Complexity will refer here to the number of oracles evaluation.
- Note: a quantum algorithm will be of practical use if the oracle can be implemented easily (see Lecture 6 for a practical implementation of an oracle)

One measurement gives me the solution, I would need two function evaluations in the classical case: quantum speedup

After the first Hadamards

$$|\psi
angle = rac{1}{2}(|0
angle + |1
angle)(|0
angle - |1
angle)$$

After the oracle

$$|\psi
angle'=rac{1}{2}\left(|0,0\oplus f(0)
angle-|0,1\oplus f(0)
angle+|1,0\oplus f(1)
angle-|1,1\oplus f(1)
angle
ight)$$

If f(0) = f(1), let $0 \oplus f(0) = 0 \oplus f(1) = a$, $1 \oplus f(0) = 1 \oplus f(1) = b = 1 - a$

$$|\psi
angle = rac{1}{2}(|0
angle + |1
angle)(|a
angle - |b
angle)$$

After the last Hadamard,

$$|\psi\rangle = \frac{1}{\sqrt{2}}|0\rangle(|a\rangle - |b\rangle)$$

I measure $|0\rangle$ with probability 1

If
$$f(0) \neq f(1)$$
, let $0 \oplus f(0) = 1 \oplus f(1) = a$, $1 \oplus f(0) = 0 \oplus f(1) = b$
$$|\psi\rangle = \frac{1}{2}(|0\rangle - |1\rangle)(|a\rangle - |b\rangle)$$

After the last Hadamard,

$$|\psi
angle = \frac{1}{\sqrt{2}} |1
angle (|a
angle - |b
angle)$$

I measure $|1\rangle$ with probability 1

Further reading

Some related algorithm using oracles:

- Deutsch Joza algorithm: generalization of Deutsch's algorithm to multiple qubits: oracle separation between P and EQP (exact quantum polynomial)
- Bernstein Vazirani and Simon's algorithm: Prove an oracle separation between BPP (bounded error classical complexity) and BQP (bounded-error quantum complexity).

Outline

Our first quantum algorithm: Deutsch's algorithm

 $\label{eq:Quadratic speedup: Grover's algorithm} Quadratic speedup: Grover's algorithm$

Implementation details

- Unstructured search problem: Given a n-bit Boolean function f(x), such that there exists a unique w such that f(w) = 1, find w.
- Application: Subroutine in various classical algorithms (example minimization problem, or machine learning)
- Input: A n-bit phase oracle

For any input x, we can mark to the solution

$$U_f|x\rangle=(-1)^{f(x)}|x\rangle$$

The ancilla qubit has been 'uncomputed'.

- Classical algorithm: $O(2^n)$ evaluations (Just test in a loop...)
- Grover's quantum algorithm $O(\sqrt{2^n})$ oracle evaluations: quadratic speedup
- Possible applications: solving NP-complete problems that allow for oracle implementations (eg Lecture 6 on the 3-SAT problem), brute-force attacks on cryptographic keys . . .

So simple...

• with the diffuser $U_d=2|\psi\rangle\langle\psi|-1$, with $|\psi\rangle=\frac{1}{\sqrt{N}}\sum_x|x\rangle$ the superposition on all $N=2^n$ bitstrings $x=x_1,\ldots,x_n$.

After the first Hadamards $(N = 2^n)$, the state is

$$H^{\otimes n}|0\rangle^{\otimes n} = \frac{1}{\sqrt{N}}(|0\rangle + |1\rangle)^{\otimes n} = \frac{1}{\sqrt{N}}\sum_{x}|x\rangle = |\psi\rangle$$

Introducing, $|\alpha\rangle = \frac{1}{\sqrt{N-1}} \sum_{x \neq w} |x\rangle$, we can write

$$|\psi\rangle = \sin(\theta/2)|w\rangle + \cos(\theta/2)|\alpha\rangle$$
,

with $\sin(\theta/2) = 1/\sqrt{N}$.

Combined application of oracle and diffuser will lead to a rotation of the state $|\psi\rangle$ towards the solution.

$$U_f |\psi\rangle = -\sin(\theta/2)|w\rangle + \cos(\theta/2)|\alpha\rangle$$
,

$$U_d |\alpha\rangle = \cos(\theta) |\alpha\rangle + \sin(\theta) |w\rangle$$

$$U_d |w\rangle = -\cos(\theta) |w\rangle + \sin(\theta) |\alpha\rangle$$

After one iteration,

$$|\psi_1\rangle = U_d U_f |\psi\rangle = \sin(3\theta/2) |w\rangle + \cos(3\theta/2) |\alpha\rangle$$

After t iterations,

$$|\psi_t\rangle = \sin((2t+1)\theta/2)|w\rangle + \cos((2t+1)\theta/2)|\alpha\rangle$$

Grover's algorithm: time complexity

Success probability

$$p_t = |\langle w|\psi_t\rangle|^2 = \sin((2t+1)\theta/2)^2,$$

which becomes of order one for $\theta t = \mathcal{O}(1)$.

• Remember that $\sin(\theta/2) = 1/\sqrt{N} = 1/\sqrt{2^n}$, thus $\theta \approx 2/\sqrt{2^n}$, we obtain t should be of the order of $\sqrt{2^n}$.

Implementation details

• Implentation of the oracle U_f depending on the function f: Careful Boolean logic to 'mark' solution without knowing the solution, eg test Boolean assertions using CNOTs and ancillas (Lecture 6).

Implementation details

• Implementation of the diffuser $U_d=2\left|\psi\right>\left<\psi\right|-1$: This can be done with a few gates, including a N-qubit Toffoli gate (see TD2)

 In practice, the Toffoli gate must be decomposed in elementary CNOT gates, in an optimal way that is platform dependent

Illustration with an IBM quantum computer (c.f., Quantum Practical 2)

• The measurement gives you the solution (if errors are not too large)

• Take-Home Message: The required number of oracle evaluations $\sim \sqrt{N}$ is smaller than the number of entries N of the database!

Grover's algorithm: final remarks

- The quadratic speedup $\sqrt{N}=2^n$ of Grover's algorithm is optimal for any quantum algorithm for unstructured search (see eg Preskill).
- This is sad news!!!: With an exponential speedup, some *NP*-complete problems could have been solved in polynomial time in the size *n*, thus *any NP* problem could have been solved in polynomial time. . . .
- Consider a NP-complete problem of size n represented by a Boolean function f (eg 3-sat)
- 2. Implement the corresponding Grover oracle with *n* qubits (cf Lecture 6).
- 3. Run Grover's algorithm

