Prof. W. Bley 26.04.2006

2.Klausur zur Linearen Algebra I (WS 2005/2006)

Name	Vorname	Matrikelnummer	

A 1	A 2	A 3	A 4	A 5	A 6	A 7	\sum

Aufgabe 1 (3+2 Punkte)

Sei $K = \mathbf{F}_2$ der Körper der Reste modulo 2.

a) Berechnen Sie die Inverse der Matrix $A \in Gl_3(K)$,

$$A = \left(\begin{array}{rrr} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{array}\right).$$

b) Sei $V=\{p\in K[X]\mid \deg(p)\leq 2\}$. Sei $f:V\longrightarrow V$ die lineare Abbildung, die bezüglich der Basis $v_1=1,v_2=X,v_3=X^2$ durch die Matrix A aus Teilaufgabe a) gegeben ist. Bestimmen Sie explizit $f(1+X+X^2)$.

Aufgabe 2 (4 Punkte)

Gegeben sei das lineare Gleichungssystem

über dem Körper $\mathbb Q$ der rationalen Zahlen. Bestimmen Sie die Gesamtheit aller Lösungen dieses Gleichungssystems.

Aufgabe 3 (2+2+2 Punkte)

Sei $V = \text{Lin}(\sin(x), \cos(x))$ der \mathbb{R} -Vektorraum, der durch die Funktionen $\sin(x)$ und $\cos(x)$ erzeugt wird.

- a) Zeigen Sie, daß $v_1 = \sin(x), v_2 = \cos(x)$ eine Basis von V bilden.
- b) Sei $D:V\longrightarrow V, D(f)=f'$ gegeben , wobei $f\in V$ und f' die Ableitung von f bezeichnet. Geben Sie die Koordinatenmatrix von D bezüglich der Basis v_1,v_2 an.
- c) Bestimmen Sie Kern und Bild von D.

Aufgabe 4 (2+2+2+2 Punkte)

Zeigen oder widerlegen Sie die folgenden Aussagen:

- a) Eine lineare Abbildung bildet linear unabhängige Mengen von Vektoren auf linear unabhängige Mengen von Vektoren ab.
- b) Sei $f:V\longrightarrow W$ eine lineare Abbildung zwischen endlich dimensionalen Vektorräumen. Es gelte $\dim(V)<\dim(W)$. Dann ist f nicht surjektiv.
- c) Sei peine Primzahl. Dann gibt es ein lineares Gleichungssystem über dem Körper \mathbf{F}_n mit 10 Lösungen.
- d) Seien $U, V \subseteq \mathbb{R}^5$ zwei Unterräume mit $\dim(U) = 3, \dim(V) = 2$. Dann gilt $\dim(U \cap V) \ge 1$.

Aufgabe 5 (6 Punkte)

Zeigen Sie, daß die Matrix $A \in M_3(\mathbb{Q})$,

$$A = \left(\begin{array}{ccc} 5 & 5 & -25 \\ 0 & 10 & -20 \\ 0 & 0 & 0 \end{array}\right)$$

diagonalisierbar ist. Berechnen Sie ferner eine Basis aus Eigenvektoren und geben Sie eine Übergangsmatrix $S \in Gl_3(\mathbb{Q})$ an, so daß $S^{-1}AS$ Diagonalgestalt hat.

Aufgabe 6 (4 Punkte)

Sei $A \in M_n(K)$ und $m \in \mathbb{N}$, so daß $A^m = 0$. Zeigen Sie: A hat genau einen Eigenwert λ , nämlich $\lambda = 0$.

Aufgabe 7 (4 Punkte)

Berechnen Sie die Determinante der folgenden Matrix aus $M_4(\mathbb{R})$

$$\left(\begin{array}{cccc}
c & c & c & c \\
0 & 1 & 2 & 3 \\
0 & 4 & 5 & 6 \\
c & 1 & c & c
\end{array}\right)$$

in Abhängigkeit von $c \in \mathbb{R}$.

Viel Erfolg!!!