

Kompleksitas Algoritma (Bagian 1)

Bahan Kuliah

IF2120 Matematika Diskrit

Oleh: Rinaldi Munir

(Update 2023)

Program Studi Teknik Informatika STEI - ITB

```
for (i = 1; i \le n, i++)
  for (j = 1; j \le n; j++) {
      for (k = 1; k \le j; k++) {
       p = p * 20 * z;
```

Pendahuluan

- Sebuah algoritma tidak saja harus benar (sesuai spesifikasi persoalan), tetapi juga harus sangkil (efisien).
- Algoritma yang bagus adalah algoritma yang sangkil (efficient).
- Kesangkilan algoritma diukur dari waktu (time) yang diperlukan untuk menjalankan algoritma dan ruang (space) memori yang dibutuhkan oleh algoritma tersebut.
- Algoritma yang sangkil ialah algoritma yang meminimumkan kebutuhan waktu dan ruang memori.

- Kebutuhan waktu dan ruang memori suatu algoritma bergantung pada ukuran masukan (n), yang menyatakan ukuran data yang diproses oleh algoritma.
- Kesangkilan algoritma dapat digunakan untuk menilai algoritma yang bagus dari sejumlah algoritma penyelesaian persoalan.
- Sebab, sebuah persoalan dapat memiliki banyak algoritma penyelesaian. Contoh: persoalan pengurutan (sort), ada puluhan algoritma pengurutan (selection sort, insertion sort, bubble sort, dll).

• Mengapa kita memerlukan algoritma yang sangkil? Lihat grafik di bawah ini.

Model Perhitungan Kebutuhan Waktu

 Menghitung kebutuhan waktu algoritma dengan mengukur waktu eksekusi riil nya (dalam satuan detik) ketika program (yang merepresentasikan sebuah algoritma) dijalankan oleh komputer bukanlah cara yang tepat.

Alasan:

- 1. Setiap komputer dengan arsitektur berbeda memiliki bahasa mesin yang berbeda → akibatnya, waktu setiap operasi antara satu komputer dengan komputer lain tidak sama.
- 2. Compiler bahasa pemrograman yang berbeda menghasilkan kode bahasa mesin yang berbeda → akibatnya, waktu setiap operasi antara compiler dengan compiler lain tidak sama.

• Model abstrak pengukuran waktu/ruang memori algoritma harus independen dari pertimbangan mesin (computer) dan compiler apapun.

• Besaran yang dipakai untuk menerangkan model abstrak pengukuran waktu/ruang ini adalah kompleksitas algoritma.

 Ada dua macam kompleksitas algoritma, yaitu: kompleksitas waktu (time complexity) dan kompleksitas ruang (space complexity).

- Kompleksitas waktu, T(n), diukur dari jumlah tahapan komputasi yang dilakukan di dalam algoritma sebagai fungsi dari ukuran masukan n.
- Kompleksitas ruang, S(n), diukur dari memori yang digunakan oleh struktur data yang terdapat di dalam algoritma sebagai fungsi dari ukuran masukan n.
- Dengan menggunakan besaran kompleksitas waktu/ruang algoritma, kita dapat menentukan *laju* peningkatan waktu (ruang) yang diperlukan algoritma dengan meningkatnya ukuran masukan *n*.
- Di dalam kuliah ini kita hanya membatasi bahasan kompleksitas waktu saja, karena dua alasan:
 - 1. Materi struktur data diluar lingkup mata kuliah matematika diskrit
 - 2. Saat ini memori komputer bukan persoalan yang kritis dibandingkan waktu

• Ukuran masukan (n) menyatakan banyaknya data yang diproses oleh sebuah algoritma.

Array size = 10

10 20 30 40 50 60 70 80 90 100 0 1 2 3 4 5 6 7 8 9 array

Contoh:

- 1. algoritma pengurutan 10 elemen larik (array), maka n = 10.
- 2. algoritma pencarian pada 500 elemen larik, maka n = 500
- 3. algoritma TSP pada sebuah graf lengkap dengan 100 simpul, maka n = 100.
- 4. algoritma perkalian 2 buah matriks berukuran 50 x 50, maka n = 50.
- 5. algoritma menghitung polinom dengan derajat \leq 100, maka n = 100
- Dalam perhitungan kompleksitas waktu, ukuran masukan dinyatakan sebagai variabel *n* saja (bukan instans suatu nilai).

Kompleksitas Waktu

- Pekerjaan utama di dalam kompleksitas waktu adalah menghitung (counting) jumlah tahapan komputasi di dalam algoritma.
- Jumlah tahapan komputasi dihitung dari berapa kali suatu operasi dilakukan sebagai fungsi ukuran masukan (n).
- Di dalam sebuah algoritma terdapat banyak jenis operasi:

```
    Operasi baca/tulis
    Operasi aritmetika (+, -, *, /)
    Operasi pengisian nilai (assignment)
    (input a, print a)
    (a + b, M * N)
    (a ← 10)
```

- Operasi perbandingan (a < b, k >= 10)
- Operasi pengaksesan elemen larik, pemanggilan prosedur/fungsi, dll
- Untuk menyederhanakan perhitungan, kita tidak menghitung semua jenis operasi, tetapi kita hanya menghitung jumlah operasi khas (tipikal) yang *mendasari* suatu algoritma.

Contoh operasi khas di dalam algoritma

Algoritma pencarian (searching)
 Operasi khas: operasi perbandingan elemen larik

- Algoritma pengurutan (sorting)
 Operasi khas: operasi perbandingan elemen dan operasi pertukaran elemen
- Algoritma perkalian dua buah matriks AB = COperasi khas: operasi perkalian dan penjumlahan

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \times \begin{bmatrix} 10 & 11 \\ 20 & 21 \\ 30 & 31 \end{bmatrix}$$

$$= \begin{bmatrix} 1x10 + 2x20 + 3x30 & 1x11 + 2x21 + 3x31 \\ 4x10 + 5x20 + 6x30 & 4x11 + 5x21 + 6x31 \end{bmatrix}$$

$$= \begin{bmatrix} 10+40+90 & 11+42+93 \\ 40+100+180 & 44+105+186 \end{bmatrix} = \begin{bmatrix} 140 & 146 \\ 320 & 335 \end{bmatrix}$$

• Algoritma menghitung nilai sebuah polinom $p(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$ Operasi khas: operasi perkalian dan penjumlahan **Contoh 1.** Tinjau algoritma menghitung rerata elemen di dalam sebuah larik (array).

- Operasi yang mendasar pada algoritma tersebut adalah operasi penjumlahan elemen-elemen larik (yaitu $sum \leftarrow sum + a[i]$) yang dilakukan sebanyak n kali.
- Kompleksitas waktu: T(n) = n.

Contoh 2. Algoritma untuk mencari elemen terbesar di dalam sebuah larik (*array*) yang berukuran *n* elemen.

```
procedure CariElemenTerbesar(input a_1, a_2, ..., a_n: integer, output maks: integer)
{ Mencari elemen terbesar dari sekumpulan elemen larik integer a_1, a_2, ..., a_n.
 Elemen terbesar akan disimpan di dalam maks. }
Kamus
  k: integer
Algoritma
 maks \leftarrow a_1
 k←2
                                                                       89
                                                                                                        23
 while k \le n do
   if a_k > maks then
                                                                   Index
      maks \leftarrow a_k
   endif
   k \leftarrow k+1
 endwhile
```

Kompleksitas waktu algoritma dihitung dari jumlah operasi perbandingan elemen larik ($a_k > maks$). Kompleksitas waktu CariElemenTerbesar : T(n) = n - 1.

Kompleksitas waktu dibedakan atas tiga macam:

- 1. $T_{max}(n)$: kompleksitas waktu untuk kasus terburuk (worst case),
 - → kebutuhan waktu maksimum.
- 2. $T_{min}(n)$: kompleksitas waktu untuk kasus terbaik (best case), \rightarrow kebutuhan waktu minimum.
- 3. *T*_{avg}(n): kompleksitas waktu untuk kasus rata-rata (average case)

 → kebutuhan waktu secara rata-rata

Contoh 3. Algoritma sequential search (linear search)

```
procedure PencarianBeruntun(input a_1, a_2, ..., a_n: integer, x: integer, output idx: integer)
{ Mencari elemen x di dalam larik A yang berisi n elemen. Jika x ditemukan, maka indeks elemen larik disimpan
 di dalam idx, idx bernilai −1 jika x tidak ditemukan
Kamus
  k: integer
  ketemu : boolean { bernilai true jika x ditemukan atau false jika x tidak ditemukan }
Algoritma:
 k\leftarrow 1
 ketemu \leftarrow false
 while (k \le n) and (not ketemu) do
   if a_k = x then
      ketemu←true
                                                                         20
                                                                                                       55
  else
      k \leftarrow k + 1
  endif
 endwhile
 if ketemu then { x ditemukan }
   idx \leftarrow k
 else
               { x tidak ditemukan }
   idx \leftarrow -1
 endif
```

Jumlah operasi perbandingan elemen tabel:

1. *Kasus terbaik*: ini terjadi bila $a_1 = x$.

$$T_{\min}(n) = 1$$

2. *Kasus terburuk*: bila $a_n = x$ atau x tidak ditemukan.

$$T_{\max}(n) = n$$

3. *Kasus rata-rata*: Jika x ditemukan pada posisi ke-j, maka operasi perbandingan ($a_k = x$) akan dieksekusi sebanyak j kali.

$$T_{\text{avg}}(n) = \frac{(1+2+3+...+n)}{n} = \frac{\frac{1}{2}n(1+n)}{n} = \frac{(n+1)}{2}$$

Cara lain: asumsikan bahwa $P(a_j = x) = 1/n$. Jika $a_j = x$ maka T_j yang dibutuhkan adalah $T_j = j$. Jumlah perbandingan elemen larik rata-rata:

$$T_{\text{avg}}(n) = \sum_{j=1}^{n} T_j P(\alpha[j] = x) = \sum_{j=1}^{n} T_j \frac{1}{n} = \frac{1}{n} \sum_{j=1}^{n} T_j$$
$$= \frac{1}{n} \sum_{j=1}^{n} j = \frac{1}{n} \left(\frac{n(n+1)}{2} \right) = \frac{n+1}{2}$$

Contoh 4: Algoritma pengurutan seleksi (selection sort)

```
procedure SelectionSort(input/output a_1, a_2, ..., a_n: integer)
{ Mengurutkan elemen-elemen larik A yang berisi n elemen integer sehingga terurut menaik }
Kamus
  i, j, imin, temp: integer
                                                                                                                   pass ke-1
                                                                                                  8
                                                                                                      2
Algoritma
  for i \leftarrow 1 to n-1 do { pass sebanyak n-1 kali }
                                                                                                                   pass ke-2
                                                                                        5
                                                                                                  8
                                                                                                       2
                                                                              1
     imin←i
     for j \leftarrow i + 1 to n do
                                                                                                  8
                                                                                        5
                                                                                                      4
        if a_j < a_{imin} then
           imin←j
                                                                                                  8
                                                                                                       5
         endif
    endfor
     \{ pertukarkan a_{imin} dengan a_i \}
    temp \leftarrow a_i
                                                                                                                  pass ke-6
    a_i \leftarrow a_{imin}
    a_{imin} \leftarrow temp
                                                                                   2
                                                                                        4
                                                                                             5
                                                                                                  7
                                                                                                       8
                                                                                                            9
 endfor
```

(i) Jumlah operasi perbandingan elemen-elemen larik ($a_j < a_{imin}$)

Untuk setiap pass ke-i,

```
i = 1 \rightarrow jumlah perbandingan = n - 1

i = 2 \rightarrow jumlah perbandingan = n - 2

i = 3 \rightarrow jumlah perbandingan = n - 3

\vdots

i = n - 1 \rightarrow jumlah perbandingan = 1
```

```
for i \leftarrow 1 to n-1 do \{pass \ sebanyak \ n-1 \ kali \}
imin \leftarrow i
for j \leftarrow i+1 to n do
if \ a_{j} < a_{imin} \ then
imin \leftarrow j
endif
endfor
\{pertukarkan \ a_{imin} \ dengan \ a_{i} \}
temp \leftarrow a_{i}
a_{i} \leftarrow a_{imin}
a_{imin} \leftarrow temp
endfor
```

Jumlah seluruh operasi perbandingan elemen-elemen larik adalah

$$T(n) = (n-1) + (n-2) + ... + 2 + 1 = \frac{n(n-1)}{2}$$

Ini adalah kompleksitas waktu untuk kasus terbaik dan terburuk, karena algoritma SelectionSort tidak bergantung pada apakah data masukannya sudah terurut atau acak.

(ii) Jumlah operasi pertukaran

Untuk setiap i dari 1 sampai n-1, terjadi satu kali pertukaran elemen, sehingga jumlah operasi pertukaran seluruhnya adalah

$$T(n) = n - 1$$
.

Ini adalah jumlah pertukaran untuk semua kasus.

Jadi, algoritma pengurutan seleksi membutuhkan n(n-1)/2 buah operasi perbandingan elemen dan n-1 buah operasi pertukaran.

```
for i \leftarrow 1 to n-1 do \{pass \ sebanyak \ n-1 \ kali \}
imin \leftarrow i
for j \leftarrow i+1 to n do
if \ a_{j} < a_{imin} \ then
imin \leftarrow j
endif
endfor
\{pertukarkan \ a_{imin} \ dengan \ a_{i} \}
temp \leftarrow a_{i}
a_{i} \leftarrow a_{imin}
a_{imin} \leftarrow temp
endfor
```

Contoh 5: Diberikan algoritma pengurutan *bubble-sort* seperti berikut ini. Hitung kompleksitas waktu algoritma didasarkan pada jumlah operasi perbandingan elemen-elemen larik dan jumlah operasi pertukaran.

```
procedure BubbleSort(input/output a_1, a_2, ..., a_n: integer)
{ Mengurut larik A yang berisi n elemen integer sehingga terrut menaik }
Kamus
   i, j, temp : integer
Algoritma
  for i \leftarrow n-1 downto 1 do
      for j \leftarrow 1 to i do
         if a_{i+1} < a_i then
             \{ pertukarkan a_i dengan a_{i+1} \}
             temp \leftarrow a_i
             a_i \leftarrow a_{i+1}
             a_{i+1} \leftarrow temp
         endif
      endfor
  endfor
```

(i) Jumlah operasi perbandingan elemen-elemen larik ($a_{i+1} < a_i$)

Untuk setiap pass ke-i, $i = n - 1 \rightarrow jumlah$ perbandingan = n - 1 for $i \leftarrow n - 1$ downto 1 do for $j \leftarrow 1$ to i do if $a_{i+1} < a_i$ then $\{pertukarkan\ a_i\ dengan\ a_{i-1}\}$ $i = n - 3 \rightarrow jumlah$ perbandingan = n - 3 \vdots $i = 1 \rightarrow jumlah$ perbandingan = 1 for $i \leftarrow n - 1$ downto 1 do for $j \leftarrow 1$ to i do if $a_{i+1} < a_i$ then $\{pertukarkan\ a_i\ dengan\ a_{i-1}\}$ $\{pertukarkan\ a_i\ dengan\ a_{$

Jumlah seluruh operasi perbandingan elemen-elemen larik adalah

$$T(n) = (n-1) + (n-2) + ... + 2 + 1 = \frac{n(n-1)}{2}$$

Ini adalah kompleksitas waktu untuk kasus terbaik dan terburuk, karena algoritma *BubbleSort* tidak bergantung pada apakah data masukannya sudah terurut atau acak. Jumlah operasi perbandingan sama dengan *selection sort*.

(ii) Jumlah operasi pertukaran ($temp \leftarrow a_i$; $a_i \leftarrow a_{imin}$; $a_{imin} \leftarrow temp$)

Jumlah operasi pertukaran di dalam *bubble sort* hanya dapat dihitung pada kasus terbaik dan kasus terburuk. Kasus terbaik adalah tidak ada pertukaran (yaitu jika **if** $a_{j+1} < a_j$ false), yaitu semua elemen larik pada awalnya sudah terurut menaik, sehingga

$$T_{min}(n)=0.$$

Pada kasus terburuk, (yaitu jika **if** $a_{j+1} < a_j$ bernilai true), pertukaran elemen selalu dilakukan. Jadi, jumlah operasi pertukaran elemen pada kasus terburuk sama dengan jumlah operasi perbandingan elemen-elemen larik, yaitu

$$T_{max}(n) = (n-1) + (n-2) + ... + 2 + 1 = \frac{n(n-1)}{2}$$

Jadi, algoritma pengurutan bubble sort membutuhkan n(n-1)/2 buah operasi pertukaran, lebih banyak daripada algoritma selection sort. Ini berarti secara keseluruhan bubble sort lebih buruk daripada selection sort.

Latihan 1

Hitung kompleksitas waktu algoritma berikut berdasarkan jumlah operasi perkalian.

```
procedure Kali(input x : integer, n : integer, output jumlah : integer)
{Mengalikan x dengan i = 1, 2, ..., j, yang dalam hal ini j = n, n/2, n/4, ..., l. Hasil perkalian disimpan di
dalam peubah jumlah. }
Kamus
   i, j, k: integer
Algoritma
 j \leftarrow n
 while j \ge 1 do
    for i \leftarrow 1 to j do
        x \leftarrow x * i
    endfor
    j \leftarrow j \operatorname{div} 2
  endwhile
 jumlah←x
```

Jawaban

Untuk

j = n, jumlah operasi perkalian = n j = n/2, jumlah operasi perkalian = n/2j = n/4, jumlah operasi perkalian = n/4

• • •

j = 1, jumlah operasi perkalian = 1

Jumlah operasi perkalian seluruhnya adalah

 $= n + n/2 + n/4 + ... + 2 + 1 \rightarrow$ deret geometri

$$= \frac{n(1-2^{2\log n^{-1}})}{1-\frac{1}{2}} = 2n-1$$

```
j \leftarrow n
while j \ge 1 do
for i \leftarrow 1 to j do
x \leftarrow x * i
endfor
j \leftarrow j div 2
endwhile
jumlah \leftarrow x
```

Latihan 2

Di bawah ini adalah algoritma untuk menguji apakah dua buah matriks, A dan B, yang masing-masing berukuran $n \times n$, sama.

```
function samaMatriks(A, B : matriks; n : integer) \rightarrow boolean
{ true jika A dan B sama; sebaliknya false jika A \neq B }
Kamus
   i, j: integer
Algoritma:
  for i \leftarrow 1 to n do
     for j \leftarrow 1 to n do
         if A_{i,i} \neq B_{i,j} then
            return false
        endif
    endfor
  endfor
  return true
```

- (a) Apa kasus terbaik dan terburuk untuk algoritma di atas?
- (b) Tentukan kompleksitas waktu terbaik dan terburuknya.

Jawaban:

(a) Kasus terbaik terjadi jika ketidaksamaan matriks ditemukan pada elemen pertama $(A_{1,1} \neq B_{1,1})$

Kasus terburuk terjadi jika ketidaksamaan matriks ditemukan pada elemen ujung kanan bawah ($A_{n,n} \neq B_{n,n}$) atau pada kasus matriks A dan B sama, sehingga seluruh elemen matriks dibandingkan.

(b)
$$T_{min}(n) = 1$$

 $T_{max}(n) = n^2$

Latihan Mandiri

- 1. Diberikan matriks persegi berukuran n x n. Hitung kompleksitas waktu untuk memeriksa apakah matriks tersebut merupakan matriks simetri terhadap diagonal utama.
- 2. Berapa kompleksitas waktu untuk menjumlahkan matriks A dan B yang keduanya berukuran n x n?
- 3. Ulangi soal 2 untuk perkalian matriks A dan B.
- 4. Tulislah algoritma pengurutan *insertion sort* pada larik yang berukuran n elemen, hitung masing-masing kompleksitas waktu algoritma diukur dari jumlah operasi perbandingan dan jumlah operasi pertukaran elemen-elemen larik.

5. Berapa kali operasi penjumlahan pada potongan algoritma ini dilakukan?

```
for i \leftarrow 1 to n do

for j \leftarrow 1 to n do

for k \leftarrow 1 to j do

x \leftarrow x + 1

endfor

endfor
```

6. Algoritma di bawah ini menghitung nilai polinom $p(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$

```
function p(\text{input } x:\text{real}) \rightarrow \text{real}
\{ Mengembalikan nilai p(x) \}
Kamus
   j, k: integer
   jumlah, suku : real
Algoritma
  jumlah \leftarrow a_0
   for j \leftarrow 1 to n do
     \{ hitung \ a_i x^j \}
      suku \leftarrow a_i
      for k \leftarrow 1 to j do
           suku \leftarrow suku * x
       endfor
      jumlah \leftarrow jumlah + suku
    endfor
    return jumlah
```

Hitunglah berapa operasi perkalian dan berapa operasi penjumlahan yang dilakukan oleh algoritma tsb

Algoritma menghitung polinom yang lebih baik dapat dibuat dengan metode Horner berikut: $p(x) = a_0 + x(a_1 + x(a_2 + x(a_3 + ... + x(a_{n-1} + a_nx)))...))$

```
function p2(input x:real)\rightarrowreal { Mengembalikan nilai p(x) dengan metode Horner} Kamus

k: integer
b_1, b_2, ..., b_n: real

Algoritma

b_n \leftarrow a_n
for k \leftarrow n-1 downto 0 do
b_k \leftarrow a_k + b_{k+1} * x
endfor
return b_0
```

Hitunglah berapa operasi perkalian dan berapa operasi penjumlahan yang dilakukan oleh algoritma di atas? Manakah yang terbaik, algoritma p atau p2?

Bersambung ke Bagian 2