SW문제해결

소속	구미 2반
이름	박정후
학번	1424493

명제: n² 이3의 배수이면n은3의 배수 이다.

대우: n 이 3 의 배수가 아니면 n² 도 3 의 배수가 아니다.

- 1. $n \equiv 0 \pmod{3}$
 - → n은 3의 배수 "참"
- 2. $n \equiv 1 \pmod{3}$
 - $\rightarrow n$ 은 3으로 나누어 떨어지지 않음
- 3. $n \equiv 2 \pmod{3}$
 - \rightarrow n은 3으로 나누어 떨어지지 않음
- ∴ n이 3의 배수가 아니라면 n²도 3의 배수가 아님. 원래의 명제가 "참"

기초 수식 문제 4: $T(n) = T(\frac{n}{2}) + 1, T(1) = 1$

1. 수식 전개

$$T(n) = T\left(\frac{n}{2}\right) + 1$$

$$T\left(\frac{n}{2}\right) = T\left(\frac{n}{4}\right) + 1$$

$$T\left(\frac{n}{4}\right) = T\left(\frac{n}{8}\right) + 1$$

...

2. 일반화

$$T(n) = T\left(\frac{n}{2^k}\right) + k$$

3. 종료 조건

$$\frac{n}{2^k} = 1 \qquad => \qquad n = 2^k \qquad => \qquad k = \log_2 n$$

$$T(n) = T(1) + \log_2 n$$

4. 초기값 대입

$$T(1) = 1$$

$$=> T(n) = 1 + \log_2 n$$

5. 결과

$$QED.T(n) = 1 + \log n$$

시간 복잡도는 $O(\log n)$