Problem 2. (10 Points) Sequential Circuits

Use the circuit diagram in Figure below with the following parameters:

- $t_{peq} = 10 \text{ ps}$
- 5 ps $< t_{p, AND} < 10$ ps
- $5 ps < t_{p, OR} < 10 ps$
- $10 \text{ ps} < t_{p, XOR} < 20 \text{ ps}$
- $2 ps < t_{p, INV} < 5 ps$

Both flip-flops are identical rising-edge DFFs. Assume the values of x and y are always stable from one rising clock edge to the next rising clock edge.

- (a) What is the maximum setup time of the flip-flops in order to safely use a 50ps clock?
- (b) What is the maximum hold time of the flip-flops in order to avoid hold violation?

Problem 3. (30 Points) FSM Design

Design a Finite State Machine for a Button Press Synchronizer. This circuit should synchronize a button press to a clock signal, such that when the button is pressed, the output of this circuit is a signal that is '1' exactly for one clock cycle. Such a synchronized signal is useful to prevent a single button press that lasts multiple cycles from being interpreted as multiple button presses.

The circuit's input will be a signal b_i and the output a signal b_o . When b_i becomes 1, representing the button being pressed, the system should set b_o to 1 for exactly one cycle. The system waits for b_i to return to 0 again, and then waits for b_i to become 1 again, which would represent the next pressing of the button.

A representative timing diagram of this behavior is shown below:

Part a. Derive the FSM diagram. Refer to the lecture slides and the reading material (FSM Tutorial.pdf) posted on Canvas if you need pointers to how to convert a verbal description into a state diagram.

Part b. Derive the transition table and assign binary codes of your choice to states.

Part c. From this table derive the next state and output logic expression and draw the resulting circuit diagram of the sequential circuit.

Part d. Implement the same FSM in Verilog using always statements and verify the behavior shown in the timing diagram above is matching your Verilog simulation.

