Simplified AES

16-bit block

16-bit key

4 x 4 S-box

Field \mathbb{F}_{16}

Modulus $X^4 + X + 1$

2 rounds

SPN

Musa, A., Schaefer, E., and Wedig, S. 2010. "A Simplified AES Algorithm and Its Linear and Differential Cryptanalysis." *Cryptologia* 27(12), 148 – 177.

S-box

Input nibble	Output nibble
0000	1001
0001	0100
0010	1010
0011	1011
0100	1101
0101	0001
0110	1000
0111	0101
1000	0110
1001	0010
1010	0000
1011	0011
1100	1100
1101	1110
1110	1111
1111	0111

Construction of S-box

Input nibble

0101
$$X^2 + 1$$

Construct inverse of 0101 modulo $X^4 + X + 1$

1011
$$Y^3 + Y + 1$$

Affine transformation

$$(Y^3 + Y^2 + 1)(Y^3 + Y + 1) + (Y^3 + 1) \mod(Y^4 + 1) = 1$$

Output nibble

0001

16-bit block (4 nibbles) $N_0 N_1 N_2 N_3$

$$N_0 N_2$$
 $N_1 N_3$

Encryption operations

Nibble Substitution NS

$$S(N_0)$$
 $S(N_2)$
 $S(N_1)$ $S(N_3)$

Shift Row SR

$$\begin{bmatrix}
 N_0 & N_2 \\
 N_3 & N_1
 \end{bmatrix}$$

Mix Columns MC

$$\begin{bmatrix} b_0b_1b_2b_3 & c_0c_1c_2c_3 \\ b_4b_5b_6b_7 & c_4c_5c_6c_7 \end{bmatrix} \text{ becomes}$$

The transformation is

$$\begin{bmatrix} N_0 & N_2 \\ N_1 & N_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & x^2 \\ x^2 & 1 \end{bmatrix} \begin{bmatrix} N_0 & N_2 \\ N_1 & N_3 \end{bmatrix} \mod (x^4 + x + 1)$$

Key Schedule

16 bits of user-supplied key
$$\underbrace{k_0 k_1 k_2 k_3}_{\text{W[0]}} \underbrace{k_4 k_5 k_6 k_7}_{\text{W[0]}} \underbrace{k_8 k_9 k_{10} k_{11}}_{\text{W[1]}} \underbrace{k_{12} k_{13} k_{14} k_{15}}_{\text{W[1]}}$$

 $K_0 = W[0]W[1]$ $K_1 = W[2]W[3]$ $K_2 = W[4]W[5]$

Key Schedule

16 bits of user-supplied key
$$\underbrace{1010 \quad 0111}_{w[0]} \quad \underbrace{0011 \quad 1011}_{w[1]}$$

$$K_0 = 1010 \quad 0111 \quad 0011 \quad 1011$$

 $K_1 = 0001 \quad 1100 \quad 0010 \quad 0111$
 $K_2 = 0111 \quad 0110 \quad 0101 \quad 0001$

Encipher

plaintext ok

CIPHERTEXT 0000 0111 0011 1000