Evolutionary Dynamics Project: Evolution of Protein-Protein Interaction Network

Michał Sanocki

Protein-Protein Interaction (PPI) networks

Architecture:

Nodes - proteins

Edges - connections between

interactive proteins

Reflect the cell's machinery and signaling pathways

Human HIV-1 protein-protein interaction network

Mutation Mechanism

Previous literature mutation mechanism:

Mutant - new node with k - new edges

Mutant edges selected randomly - uniformly or weighted by degree or gene expression

Proposed mutation mechanism:

Mutant has a "parent" node

Mutant deletes Kd - edges of parent and adds Ka new edges

By default Ka=Kd >=1

Mutation rate - percentage of parent edges that will be changed

K = Parent_degree*mutation_rate

Note: Actual mutation rate varies because we have to round up the numbers and Ka,Kd have to be at least one

Properties:

- 1. Better Structure preservation
- 2. Varied mutant degree
- 3. Parent degree is equal to mutant degree

Klein, B., Holmér, L., Smith, K.M. et al. A computational exploration of resilience and evolvability of protein–protein interaction networks. *Commun Biol* 4, 1352 (2021). https://doi.org/10.1038/s42003-021-02867-8

Investigated Properties

1. Resilience

2. Integration time

3. Number of Communities

4. Modularity

5. Structure preservation

Properties

Resilience

$$H_{msh}(G) = -\frac{1}{\log(N)} \sum_{x=1}^{X} p_x \log p_x$$

$$R(G) = 1 - \sum_{f=0}^{1} \frac{H_{msh}(G_f)}{r_f}$$

Communities

Greedy Algorithm - Find Partition to maximize modularity

Modularity

$$Q = rac{1}{2m} \sum_{i,j} igg[A_{ij} - rac{k_i k_j}{2m} igg] \delta(c_i,c_j),$$

Simulations

Addition of 10 nodes to 3 different networks - Comparison to previous mechanism

2. Influence of Mutation rate: integration time, resilience, number of communities and modularity x 100 to achieve statistical significance

3. Long simulations (300 added nodes) to investigate changes in network structure

Experiment#1 Comparison to Literature Mechanism

Higher resilience compared to previous mechanism

Benchmarked model:

0.438

0.432

0.440

Experiment#2: Mutation Rates and Network Parameters

Trade-off between integration time and number of communities and resilience

Experiment#3: Evolution of networks structure

Structural diversity loss ->need for better modeling scheme

Conclusions

Proposed mechanism can be used to model evolutionary changes in PPIs

Achieved higher resilience changes than benchmarked literature models

2. Mutation Rates Impact Key Network parameters

Trade off between integration time and resilience and number of communities

3. Decreased Network Diversity Over Time:

For sufficiently long simulations network becomes homogeneous