Few-shot Perturbations LLMs for Drug-Drug Interaction Prediction

October 16, 2025

1 Empirical Design

we conducted a sensitivity analysis on the two best-performing models (Claude 3.5 Sonnet and GPT-40) using similarity-based example selection on the 1,090-instance validation set. We focused sensitivity analyses on the best-performing models to demonstrate that even top performers are sensitive to prompt structure, avoid overwhelming the paper with redundant analyses (18 models x 4 perturbations would generate many supplementary tables without additional scientific insight), and establish an upper bound on few-shot robustness before pivoting to fine-tuning.

Specifically, we applied a semantically equivalent prompt perturbation that:

(1) reordered per-drug fields to genes \rightarrow organisms \rightarrow SMILES, (2) paraphrased the system instruction (e.g., "You are an expert of drug-drug interaction" \rightarrow "You are a drug-drug interaction specialist"), and (3) reversed the order of the 10 retrieved examples. We then compared the results using the same metrics and reporting the Δ with the previously obtained results.

Table 1: RQ2: Few-shot similarity-based robustness on the validation set under a combined prompt perturbation (reworded system instruction, reordered drug fields, reversed example order). Deltas (Perturbed—Baseline) are shown in parentheses.

Model	Setting	Acc	Sens	F1
Claude 3.5 Sonnet	Baseline	0.8376	0.8422	0.8384
	Perturbed	0.7917 (-0.0459)	0.6899 (-0.1523)	0.7681 (-0.0702)
GPT-4o	Baseline	0.7917	0.8404	0.8014
	Perturbed	0.7688 (-0.0229)	0.7450 (-0.0954)	0.7632 (-0.0382)

The results of the sensitive analysis (see Table 1) showed significant performance degradation (Sonnet: -4.59% accuracy, -15.23% sensitivity; GPT-40: -2.29% accuracy, -9.54% sensitivity), confirming that few-shot learning is extremely sensitive to prompt structure variations—a known limitation that has been documented in previous work [3, 2, 1].

References

- [1] Qingxiu Dong et al. "A Survey on In-context Learning". In: Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing. 2024, pp. 1107–1128.
- [2] Nelson F Liu et al. "Lost in the Middle: How Language Models Use Long Contexts". In: Transactions of the Association for Computational Linguistics 11 (2024), pp. 157–173.
- [3] Sheng Lu et al. "Are Emergent Abilities in Large Language Models just In-Context Learning?" In: Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2024, pp. 5098–5139.