Coursework 2 (now on Vision)

Coursework 2

- You choose between two coursework variants
- It is recommended you do Variant 1:
 - Implement a basic genetic algorithm (GA)
 - Implement a basic version of PSO
 - Compare them using some benchmark problems
 - Write a 3 page report which discusses the results and shows some understanding of GAs and PSO

Coursework 2

- Ohrowever, you can do Variant 2 if you prefer
 - This is designed for non-programmers
 - Do a literature review on comparing optimisers using mathematical benchmark problems
 - Compare GA and PSO using a software tool
 - Write a 5 page report which includes the literature review, the results, and shows some understanding of GAs and PSO

Variant 1

- The main aim is to give you some experience of implementing and using two popular optimisers
 - You get a lot of marks for just implementing them
 - ▶ 60% (for F20BC), 50% (for F21BC)
 - You're only required to implement basic versions, but you can add bells and whistles if you want
 - You can use any sensible language, but should use the same language for both implementations

Variant 1

- The second aim is to give you some idea of how different optimisers perform on different problems
 - You will be using the CEC 2005 benchmarks for this
 - These are standardised mathematical functions where the aim is to find the global optimum
 - You should choose 5 of these
 - Code is available in Java, Python, Matlab and C, so you shouldn't need to implement these functions yourself

Variant 2

- In Variant 2, you're not asked to implement algorithms, so:
 - I expect you to spend more time studying the literature
 - In particular, you're asked to summarise previous literature on using benchmarks to compare optimisers
 - You're also expected to spend more time on the comparative study (reflected by a larger CW %age) and the discussion of the results

Comparing Algorithms

- Both variants involve doing experiments to compare GA and PSO
 - It's important that you do this in a fair way, for example using the same population size
 - There's information about this in the coursework spec.
 Please make sure you read the spec thoroughly!
 - You need to do multiple runs, because both algorithms are stochastic

Comparing Algorithms

There are various ways you could present the results of your comparative study:

e.g. mean* fitness of 10 solutions from 10 runs:

Problem	GA	PSO
1	0	0.5
2	-50	-100
3	0.04	0.05
4	10	9
5	100	75

^{*} You could also add standard deviations or statistical tests

e.g. fitness-iteration plots (average of 10 runs)

Optimising Hyperparameters

- Both variants also require you to gain some insights into the role of hyperparameters
 - e.g. the effects of varying population size, mutation rate, acceleration coefficients etc.
 - But don't spend too long on this. A few examples and a bit of discussion would suffice.

F20BC vs F21BC

- Those of you studying F21BC are also asked to relate your observations to the wider literature:
 - e.g. if you observe a particular effect from varying hyperparameters, or see that GA/PSO perform well on particular problems, try to relate this to what other people have reported in the literature

Clarifications, Questions etc.

If anything's not clear, please email me, and I'll send out any relevant clarifications to everyone.