Math 3A03 - Tutorial 5 Questions - Winter 2019

Nikolay Hristov

February 11/13, 2019

Problem 1. Which of the following sets are countable:

- (a) $\mathbb{R} \setminus \mathbb{Q}$.
- (b) $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$.
- (c) $A \times B = \{(a,b) : a \in A, b \in B\}$, where A and B are countable.
- (d) $\mathbb{Q} \cup (\sqrt{2}\mathbb{Q})$, where $\sqrt{2}\mathbb{Q} = {\sqrt{2}q : q \in \mathbb{Q}}$.

Solution. (a) is not countable, the remaining sets are countable.

Problem 2. Let A, B be countable sets, and $C = \{a + bi : a \in A, b \in B\}$, where $i^2 = -1$, prove that C is countable.

Solution. Since A, B are countable, then we have two functions $f_A(x): A \to \mathbb{N}$, $f_B(x): B \to \mathbb{N}$, which are both bijective. Suppose we have an element $a + bi \in \mathcal{C}$, define $f(a + bi) = 2^{f_A(a)}3^{f_B(b)}$, which is a function mapping \mathcal{C} to \mathbb{N} . We'd like to show this function is injective and surjective.

First let's show injectivity, suppose that $a+bi, c+di \in \mathcal{C}$, and $f(a+bi) = f(c+di) \implies 2^{f_A(a)}3^{f_B(b)} = 2^{f_A(c)}3^{f_B(d)}$. Since gcd(2,3) = 1 we have that $f_A(a) = f_A(c)$ and $f_B(b) = f_B(d)$, further the functions f_A and f_B are bijective so they are also injective, and so a = c and b = d, which shows injectivity for f.

Surjectivity will be a tad tricky, because f isn't surjective on \mathbb{N} , it is however surjective on a subset of \mathbb{N} which we will define in a minute. Just recall that (as you will prove in your assignment), a subset of a countable set is also countable, so having a bijection to a subset of the natural numbers is enough. How do we define this subset? Recall a surjection roughly means that you map to the entirety of set, so we'd like to use $\mathcal{I} = f(\mathcal{C}) = \{f(a+bi) : a \in A, b \in B\}$, i.e. the image of the set \mathcal{C} under the function f.

The function is still injective. For surjectivity, suppose that we have a $z \in \mathcal{I}$, we need to find an a, b such that z = f(a + bi), but by definition each element of the set is f(a + bi) for some $a \in A$ and $b \in B$. Hence f is injective and surjective as a map $f: \mathcal{C} \to \mathcal{I} \subset \mathbb{N}$, so it is a bijective map to \mathcal{I} . Since \mathcal{I} is a subset of a countable set, by a problem in assignment 3 we have that \mathcal{I} is countable. We can now conclude that \mathcal{C} is countable, to be a bit more complete we can say that since \mathcal{I} is countable there exists a bijective function $g: \mathcal{I} \to \mathbb{N}$, notice that $g \circ f: \mathcal{C} \to \mathbb{N}$ is a composition of bijective functions, which is also bijective, and hence there is a bijective function from \mathcal{C} to \mathbb{N} , and hence \mathcal{C} is countable.

Problem 3. Show that every interior point is an accumulation point.

Solution. Suppose that x is an interior point of some set $E \subseteq \mathbb{R}$, then there is a c > 0 such that $(x - c, x + c) \subseteq E$. Now suppose that d > 0 is an arbitrary positive number. We'd like to show that $(E \setminus \{x\}) \cap (x - d, x + d)$ is nonempty. Notice however that since $(x - c, x + c) \subseteq E$ then

$$(x-d, x+d) \cap (x-c, x+c) \subseteq (x-d, x+d) \cap E$$
.

Further if we let $a = \min(c, d)$ then $(x - d, x + d) \cap (x - c, x + c) = (x - a, x + a)$, removing the point x we end up with the union of two intervals, (x - a, x) and (x, x + a), hence

$$(x-a,x) \cup (x,x+a) \subseteq (x-d,x+d) \cap (E \setminus x).$$

Since the intervals are nonempty then $(x-d,x+d)\cap (E\setminus x)$ contains at least one point.

Problem 4. Write the open interval (0,2) as a union of closed sets. Can it be expressed as an intersection of closed sets?

Solution. $(0,2) = \bigcup_{n=1}^{\infty} \left[\frac{1}{n}, 2 - \frac{1}{n}\right]$. To justify this note that whenever 0 < x < 2 there is a natural number n, sufficiently large, such that $x \geq \frac{1}{n}$ and $x \leq 2 - \frac{1}{n}$, and hence $x \in \left[\frac{1}{n}, 2 - \frac{1}{n}\right]$ for some n. To show that the boundary points aren't in the set, note that for every $n \in \mathbb{N}$ we have that $0 < \frac{1}{n}$, similarly $2 > 2 - \frac{1}{n}$.

This cannot be expressed as an intersection of closed sets as any intersection of closed sets is also closed (see class notes).

Problem 5. (a) Find the closure, interior points, accumulation points, and boundary points of the set $S = [0, \sqrt{5}] \cap \mathbb{Q}$. Is this set open? Is it closed?

- (b) Show that O = (0,3) is open.
- (c) Show that C = [0, 3] is closed.

Solution. Next tutorial!