EXTRACTIVE DISTILLATION OF BENZENE AND ETHANOL USING P-XYLENE AS A SOLVENT

Aditi Jain

Department of Chemical Engineering

National Institute of Technology Warangal

BACKGROUND WORK:

The separation of azeotrope and close boiling mixture is a challenge in most chemical process. For the separation, the use of a single convectional distillation column is impossible. **Extractive distillation** is a method where the relative volatilities of components to be separated are altered by using an additional component called (solvent or entrainer).

PROCESS:

The mixture "benzene and ethanol" is feed to the 50th stage of 71 staged extractive distillation column with the solvent 1 p-xylene fed to the 24th stage. The presence of entrainer alters the relative volatility between the two, causing pure benzene to move toward the top of the column. The mixture is feed into the 10th stage of a 21 stage extractive distillation to produce almost pure ethanol at top of the column. P-xylene is recycled back to the extractive distillation column and merged with one additional pure make up stream to account for the solvent losses.

Results:

Object	ethanol	SOLVENT	P-	MAKEUP	FEED	Benzene	
			XYLENE				
			RECYCLE				
Temperature	350.688	323.116	323.15	298.15	298.15	353.384	K
Pressure	101325	101325	101325	101325	101325	101325	Pa
Molar Flow	50.1011	215.001	264.9	0.301	100	9.84738E-	kmol/h
						05	
Molar Flow	49.55	0	0.449992	0	50	6.78077E-	kmol/h
(Mixture) /						08	
Ethanol							
Molar Flow	0.048269	0	49.9517	0	50	9.81188E-	Kmol/h
(Mixture) /						05	
Benzene							
Molar Flow	0.502843	215.001	214.498	0.301	0	3.26244E-	kmol/h
(Mixture) /						07	
P-xylene							

References:	
https://drive.google.com/file/d/1hZKCgUakhbANaqw1	_0pSg5Z861ZU6h6w/view?usp=drivesdk

stage extractive distillation to produce almost pure ethanol at top of the column. P-xylene is recycled back to the extractive distillation column and merged with one additional pure make up stream to account for the solvent losses.

Results:

Object	ethanol	SOLVENT	P- XYLENE RECYCLE	MAKEUP	FEED	Benzene	
Temperature	350.688	323.116	323.15	298.15	298.15	353.384	K
Pressure	101325	101325	101325	101325	101325	101325	Pa
Molar Flow	50.1011	215.001	264.9	0.301	100	9.84738E- 05	kmol/h
Molar Flow (Mixture) / Ethanol	49.55	0	0.449992	0	50	6.78077E- 08	kmol/h
Molar Flow (Mixture) / Benzene	0.048269	0	49.9517	0	50	9.81188E- 05	Kmol/h
Molar Flow (Mixture) / P-xylene	0.502843	215.001	214.498	0.301	0	3.26244E- 07	kmol/h