We claim:

1. A compound of formula I

$$(R^{5})_{q} \xrightarrow{X} A \qquad (CH_{2})_{j}$$

$$(CHR^{6})_{n} \qquad K$$

$$R^{3}$$

$$(CH_{2})_{j} \qquad (R^{2})_{m}$$

wherein

n is 0, 1, 2, or 3;

m is 0, 1, 2, 3, 4, 5 or 6;

j is 1 or 2;

q is 0, 1, or 2;

W, X, Y and Z are each independently CH, C, N, S, or O with appropriate single or double bonds and/or hydrogen atoms to complete valency requirements;

Ring A is a five or six member ring wherein one of W, X, Y or Z may be absent; provided that ring A is not phenyl;

K is a bond, C=O, or $S(O)_p$;

p is 0, 1 or 2;

 R^1 is selected from a group consisting of hydroxy, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkylheterocyclic, C_3 - C_8 cycloalkyl, C_1 - C_6 alkylcycloalkyl; C_1 - C_6 alkylaryl, aryl, heterocyclyl, C_2 - C_6 alkylalcohol, $-OC_1$ - C_6 alkyl, -O-aryl, $-OC_2$ - C_6 alkenyl, $-OC_1$ - C_6 haloalkyl, $-OC_1$ - C_6 alkylheterocyclic, $-OC_3$ - C_8 cycloalkyl, $-OC_1$ - C_6 alkylcycloalkyl, $-NR^7R^8$, $-OC_1$ - C_6 alkylaryl, -O-heterocyclic, $-OC_1$ - C_6 alkyl CO_2R^{11} , $-OC_2$ - C_6 alkylalcohol, $-OC_1$ - C_6 alkyl NR^7R^8 , $-OC_2$ - C_6 cyano, $CONR^{11}R^{12}$, $NR^{11}SO_2R^{12}$, $NR^{11}COR^{12}$, C_0 - C_3 alkyl $NR^{11}R^{12}$, C_1 - C_3 alkyl COR^{11} , C_0 - C_6 alkyl $COOR^{11}$ and; provided that R^1 is not hydroxy when K is $S(O)_p$, CO, and/or when R^1 and R^1 is not hydroxy when R^1 or heterocyclic group is optionally substituted with R^1 to R^1 groups independently selected from oxo, hydroxy, halo, R^1 - R^1 -

alkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkyl, C_1 - C_6 alkylalcohol, $-OC_2$ - C_6 alkylalcohol, C_1 - C_6 haloalkoxy, $CONR^{11}R^{12}$, $NR^{11}SO_2R^{12}$, $NR^{11}COR^{12}$, C_0 - C_3 alkyl $NR^{11}R^{12}$, C_1 - C_3 alkyl COR^{11} , C_0 - C_6 alkyl COR^{11} , C_0 - C_0 alkyl COR^{11

R² is independently selected from the group consisting of hydrogen, halo, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, OC₁-C₆ haloalkyl, OC₁-C₆ alkyl, C₁-C₆ alkylnR⁷R⁸, heteroaryl, heterocyclyl, C₃-C₈ cycloalkyl, C₁-C₆ alkylcycloalkyl and C₁-C₆ alkylheterocyclyl; wherein each cycloalkyl, aryl, or heterocyclic is optionally substituted with 1 to 3 groups independently selected from oxo, hydroxy, halo, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alcohol, C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆ haloalkoxy, CONR¹¹R¹², NR¹¹SO₂R¹², NR¹¹COR¹², C₀-C₃ alkylNR¹¹R¹², C₁-C₃ alkylCOR¹¹, C₀-C₆ alkylCOOR¹¹, cyano, and phenyl, and wherein two R² groups may combine to form a 3,4 or 5 member spirocycle, or a five or six member optionally substituted fused carbocyclic or heterocyclic ring; R³ is hydrogen, C₁-C₆ alkyl, aryl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkylaryl, C₁-C₆ alkylheterocyclic, C₃-C₈ cycloalkyl, or C₁-C₆ alkylcycloalkyl; R⁴ is a group represented by the formula –NR⁹R¹⁰;

R⁵ is selected from the group consisting of hydrogen, halogen, hydroxy, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, -OC₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₈ cycloalkyl, C₁-C₆ alkylcycloalkyl, C₁-C₆ alkylaryl, C₁-C₆ alkylheterocyclic, aryl, C₁-C₆ alkylaryl, heteroaryl, -O-aryl, -OC₂-C₆ alkenyl, -OC₁-C₆ haloalkyl, -NR⁷R⁸, and -OC₁-C₆ alkylaryl; and wherein when q is 1, 2 or 3, two adjacent R⁵ groups may combine to form a fused 5 or 6 member optionally substituted carbocyclic or heterocyclic ring;

 R^6 is independently selected from the group consisting of hydrogen, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, hydroxy, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, -OC₁- C_6 alkyl, -O-aryl, -OC₂- C_6 alkenyl, C_1 - C_6 haloalkyl, -OC₁- C_6 haloalkyl, C_1 - C_6 alkylNR⁷R⁸, C_3 - C_8 cycloalkyl, and C_1 - C_6 alkylcycloalkyl;

R⁷ and R⁸ are independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₃-C₈ cycloalkyl, C₁-C₆ alkylcycloalkyl, C₁-C₆ alkylheterocyclic, heterocyclic, aryl, C₁-C₆ alkylaryl, hydrox y, oxo, COOH, C(O)OC₁-C₄ alkyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆ alkylalcohol, C₁-C₆ alkylamine, C₂-C₆

alkenylaryl, C₂-C₆ alkynylaryl, C₁-C₆ alkyl-O-C₁-C₆ alkylaryl, C₁-C₆ alkyl-NR¹¹-C₁-C₆ alkylaryl, C₁-C₆ alkylcyano, C₁-C₆ alkylconR⁷R⁸, C₁-C₆ alkylNR⁷R⁸, C₁-C₆ alkylNR¹¹COR¹² wherein each alkyl, cycloalkyl, heterocyclic, or aryl group is optionally substituted with 1-3 groups independently selected from hydroxy, oxo, amino, halogen, C₁-C₆ alkylcycloalkyl, C₃-C₈ cycloalkyl, C₁-C₆ alkylheterocyclic, C₁-C₆ haloalkyl, COOH, C(O)OC₁-C₄ alkyl, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, C₁-C₆ alkylalcohol, and C₁-C₆ alkylamine and NR¹¹R¹²; or R⁷ and R⁸ combine to form a nitrogen containing heterocyclic ring which may have 0, 1, or 2 additional heteroatoms selected from oxygen, nitrogen or sulfur and may be optionally substituted with oxo, or C₁-C₆ alkyl;

 R^9 is the group C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_3 - C_8 cycloalkyl, C_1 - C_6 alkylcycloalkyl, aryl, heterocyclic, C_1 - C_6 alkylheterocyclic, COR^7 , CO_2R^7 , C_0 - C_3 alkyl $CONR^7R^8$, C_0 - C_3 alkyl $S(O)_pNR^7R^8$, or C_0 - C_3 alkyl $S(O)_pR^7$ wherein R^7 is as defined above, and wherein each alkyl, cycloalkyl, aryl, and heterocyclic is optionally substituted with one to two groups independently selected from halo, hydroxy, oxo, COOH, $C(O)OC_1$ - C_4 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkylamine, C_1 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkylamine, C_1 - C_6 alkylaryl, C_2 - C_6 alkenylaryl, C_2 - C_6 alkylnylaryl, C_1 - C_6 alkylheterocyclic, $-NR^7R^8$, C_3 - C_8 cycloalkyl, C_1 - C_6 alkylcycloalkyl, C_1 - C_6 alkylaryl, C_1 - C_6 alkylaryl, or aryl group is option ally substituted with halo, hydroxy, oxo, amino, COOH, $C(O)OC_1$ - C_4 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkylamine;

R¹⁰ is selected from the group consisting of aryl, C₁-C₆ alkylaryl, C₂-C₆ alkenylaryl, C₂-C₆ alkynylaryl, C₁-C₆ haloalkylaryl, C₁-C₆ alkylheterocyclic, C₂-C₆ alkenylheterocyclic, C₁-C₆ alkylcycloalkyl, C₃-C₈ cycloalkyl, C₁-C₆ alkyl-O-C₁-C₆ alkylaryl, and wherein each cycloalkyl, aryl, or heterocyclic group is optionally substituted with 1-3 groups independently selected from the group consisting of hydroxy, oxo, -SC₁-C₆ alkyl, C₁-C₆ alkyl, C₁-C₆ alkynyl, C₁-C₆ haloalkyl, halogen, C₁-C₆ alkoxy, aryloxy, C₁-C₆ alkenyloxy, C₁-C₆ haloalkoxyalkyl, C₀-C₆ alkylNR¹¹R¹², -OC₁-C₆ alkylaryl, nitro, cyano, -OC₁-C₆ haloalkyl, C₁-C₆ haloalkylalcohol, and C₁-C₆ alkylalcohol;

R¹¹ and R¹² are independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, C₁-C₆ alkenyl, C₃-C₈ cycloalkyl, heterocyclic, aryl, and C₁-C₆ alkylaryl, wherein each aryl group is optionally substituted with 1-3 groups independently selected from halogen, C₁-C₆ alkylheterocyclic, and C₁-C₆ haloalkyl, or R¹¹ and R¹² combine to form a nitrogen containing heterocyclic ring which may have 0, 1, or 2 additional heteroatoms selected from oxygen, nitrogen or sulfur and is optionally substituted with oxo, or C₁-C₆ alkyl; or a pharmaceutically acceptable salt, solvate, enantiomer, racemate, diastereomer or mixture of diastereomers thereof.

- 2. A compound according to Claim 1 wherein n is 0, and K is C=O, wherein R^1 is selected from a group consisting of hydroxy, hydrogen, $-C_1$ - C_6 alkyl, $-C_0$ - C_6 alkylcycloalkyl, $-C_0$ - C_6 alkylheterocyclic, $-C_1$ - C_6 haloalkyl $-OC_1$ - C_6 alkoxy, C_1 - C_6 alkylaryl, $-OC_1$ - C_6 alkyl, $-OC_3$ - C_8 cycloalkyl $-OC_1$ - C_6 alkylcycloalkyl, $-OC_1$ - C_6 alkylcycloalkylNR⁷R⁸, C_1 - C_6 alkoxy, $-OC_0$ - C_6 alkylaryl, $-OC_1$ - C_6 haloalkyl, OC_1 - C_6 alkylcyano, OC_1 - C_6 alkyl CO_2 R¹¹, $-OC_1$ - C_6 alkylhydroxy, $-OC_3$ - C_8 cycloalkyl CO_2 R¹¹, $-OC_1$ - C_6 alkylhydroxy, $-OC_3$ - C_8 cycloalkyl, aryl, or heterocyclic is optionally substituted with 1 or 2 groups selected from halogen, C_0 - C_3 alkylalcohol, C_0 - C_3 alkylamine, C_0 - C_3 alkylcyano, and $C(O)OC_1$ - C_3 alkyl.
- 3. A compound according to Claim 1 wherein R^4 is NR^9R^{10} and R^9 is a heterocyclic group optionally substituted with one or two groups independently selected from hydroxy, halo, amino, $C(\mathbf{O})OC_1$ - C_4 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, C_1 - C_6 alkylalcohol, C_1 - C_6 alkylamine, C_3 - C_8 cycloalkyl, C_1 - C_6 alkyl $CONR^7R^8$, C_1 - C_6 alkylcyano, C_1 - C_6 alkyl CO_2R^{11} , C_1 - C_1
 - 4. A compound of claim 1 wherein j is 2.
- 5. A compound according to Claim 1 wherein n, m, and q are independently 0, or 1.

- 6. A compound according to Claim 1 wherein the A ring is selected from the group consisting of pyridine, pyrazine, thiophene, pyrazole isoxazole, oxazole, and thiazole.
 - 7. A compound according to Claim 1 wherein the A ring is pyridine.
 - 8. A compound according to Claim 1 wherein the A ring is thiophene.
- 9. A compound according to Claim 1 wherein each R³ is hydrogen and R⁴ is NR⁹R¹⁰ and R⁹ is selected from the group consisting of:

wherein R is independently H, OH, NR^7R^8 or C_1 - C_3 alkyl wherein C_1 - C_3 alkyl group is optionally substituted with OH, halo, cyano, $CONR^7R^8$, CO_2R^{11} , or NR^7R^8 .

10. A compound according to Claim 1 wherein R^3 is hydrogen and R^4 is NR^9R^{10} selected from the group consisting of:

wherein R^7 is independently selected from the group consisting of C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_3 - C_8 cyclo alkyl, C_1 - C_6 alkylcycloalkyl, C_1 - C_6 alkyheterocyclic, heterocyclic, aryl, C_1 - C_6 alkylaryl, O- C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, wherein each cycloalkyl, heterocyclic or aryl group is optionally substituted with a group selected from hydroxy, C_1 - C_3 alkyl, C_1 - C_3 alkylalcohol, C_1 - C_3 alkylNH₂, C(O) C_1 - C_3 alkyl, and C(O) C_3 - C_6 cycloalkyl, C_1 - C_3 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_3 alkylCONR⁷R⁸, C_1 - C_3 alkylcyano, C_1 - C_3 alkylCO₂R¹¹, C_1 - C_3 alkylNR⁷R⁸ and C_1 - C_3 alkylcycloalkyl.

11. A compound according to Claim 1 wherein R⁴ is NR⁹R¹⁰ and R⁹ is COOR⁷.

- 12. A compound according to Claim 1 wherein R⁴ is NR⁹R¹⁰ and R⁹ is CONR⁷R⁸.
- 13. A compound according to Claim 1 wherein R^4 is NR^9R^{10} and R^9 is $S(O)_2NR^7R^8$.
 - 14. A compound selected from the group consisting of:
- 5-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2,3,4,5-tetrahydro-thieno[3,4-b]azepine-1-carboxylic acid isopropyl ester,
- 8-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-3-methyl-5,6,7,8-tetrahydro-thieno[3,2-b]azepine-4-carboxylic acid isopropyl ester,
- 8-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-bromo-5,6,7,8-tetrahydro-thieno[3,2-b]azepine-4-c arboxylic acid isopropyl ester,
- 5-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-5,6,7,8-tetrahydro-pyrido[2,3-b]azepine-9-carboxylic acid isopropyl ester,
- 5-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2,3,4,5-tetrahydro-pyrido[3,4-b]azepine-1-carboxylic acid isopropyl ester,
- 5-[Acetyl-(3,5-bis-trifluo romethyl-benzyl)-amino]-2,3,4,5-tetrahydro-pyrido[4,3-b]azepine-1-carboxylic acid isopropyl ester,
- 9-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-6,7,8,9-tetrahydro-pyrido[3,2-b]azepine-5-carboxylic acid isopropyl ester,
- 9-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-trifluoromethyl-6,7,8,9-tetrahydro-pyrido[3,2-b]azepine-5-c arboxylic acid isopropyl ester,
- 9-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-3-trifluoromethyl-6,7,8,9-tetrahydropyrido[3,2-b]azepine-5-carboxylic acid isopropyl ester,
- 5-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2,3,4,5-tetrahydro-thieno[3,4-b]azepine-1-carboxylic acid isopropyl ester,
- 8-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-3-methyl-5,6,7,8-tetrahydrothieno[3,2-b]azepine-4-carboxylic acid isopropyl ester,
- 4-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-1-methyl-4,5,6,7-tetrahydro-1H-1,2,8-triaza-azulene-8-carboxylic acid isopropyl ester,

- 9-[acetyl-(3,5-bis-trifluoromethylbenzyl)amino]-2-chloro-6,7,8,9-tetrahydro-pyrido[3,2-b]azepine-5-carboxylic acid isopropyl ester,
- 9-[acetyl-(3,5-bis-trifluoromethylbenzyl)amino]-2-methoxy-6,7,8,9-tetrahydro-pyrido[3,2-b]azepine-5-carboxylic acid isopropyl ester,
- 9-[acety1-(3,5-bis-trifluoromethylbenzyl)amino]-2-bromo-6,7,8,9-tetrahydro-pyrido[3,2-b]azepirne-5-carboxylic acid isopropyl ester,
- 9-[Acetyl-(3,5-bis-trifluoromethylbenzyl)amino]-2-dimethylamino-6,7,8,9-tetrahydro-pyrido[3,2-b]azepine-5-carboxylic acid isopropyl ester,
- 9-[Acetyl-(3,5-bis-trifluoromethylbenzyl)amino]-2-methyl-6,7,8,9-tetrahydro-pyrido[3,2-b]azepine-5-carboxylic acid isopropyl ester,
- 9-[Acetyl-(3,5-bis-trifluoromethylbenzyl)amino]-2-cyano-6,7,8,9-tetrahydro-pyrido[3,2-*b*]azepine-5-carboxylic acid isopropyl ester,
- 9-[Acety1-(3,5-bis-trifluoromethylbenzyl)amino]-3-chloro-2-methoxy-6,7,8,9-tetrahydro-pyrido[3,2-b]azepine-5-carboxylic acid isopropyl ester,
- 9-[Acety1-(3,5-bis-trifluoromethylbenzyl)amino]-3-chloro-2-ethoxy-6,7,8,9-tetrahydro-pyrido[3,2-b]azepine-5-carboxylic acid isopropyl ester,
- 9-[Acety1-(3,5-bis-trifluoromethyl-benzyl)amino]-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydro-pyrido[3,2-*b*]azepine-5-carboxylic acid isopropyl ester,
- 9-[Acety1-(3,5-bis-trifluoromethyl-benzyl)amino]-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydr-o-pyrido[3,2-*b*]azepine-5-carboxylic acid *tert*-butyl ester,
- 9-[(3,5-**B** is-trifluoromethyl-benzyl)-2-methyl-2*H*-tetrazol-5-yl)-amino]-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydro-pyrido[3,2-*b*]azepine-5-carboxylic acid isopropyl ester, 9-[(3,5-**B** is-trifluoromethyl-benzyl)-2-methyl-2*H*-tetrazol-5-yl)-amino]-2-methyl-3-
- trifluorormethyl-6,7,8,9-tetrahydro-pyrido[3,2-*b*]azepine-5-carboxylic acid *tert*-butyl ester, (3,5-Bis-trifluoromethyl-benzyl)-(5-cyclopentylmethyl-2-methyl-3-trifluoromethyl-
- 6,7,8,9-te-trahydro-5H-pyrido[3,2-b]azepin-9-yl)-(2-methyl-2H-tetrazol-5-yl)-amine,
- (3,5-Bis-trifluoromethyl-benzyl)-(5-cyclopropylmethyl-2-methyl-3-trifluoromethyl-
- 6,7,8,9-te-trahydro-5H-pyrido[3,2-b]azepin-9-yl)-(2-methyl-2H-tetrazol-5-yl)-amine,
- (3,5-Bis-trifluoromethyl-benzyl)-(2-methyl-5-pyridin-3-ylmethyl-3-trifluoromethyl-
- 6,7,8,9-te trahydro-5H-pyrido[3,2-b]azepin-9-yl)-(2-methyl-2H-tetrazol-5-yl)-amine,
- (3,5-Bis-trifluoromethyl-benzyl)-(2-methyl-5-pyridin-4-ylmethyl-3-trifluoromethyl-10-methyl-10
- 6,7,8,9-tetrahydro-5H-pyrido[3,2-b]azepin-9-yl)-(2-methyl-2H-tetrazol-5-yl)-amine,

WO 2005/097805

PCT/US2005/009294

- 3-{9-[(3,5-B is-trifluoromethyl-benzyl)-(2-methyl-2H-tetrazol-5-yl)-amino]-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydro-pyrido[3,2-b]azepin-5-ylmethyl}-benzoic acid, 4-{9-[(3,5-B is-trifluoromethyl-benzyl)-(2-methyl-2H-tetrazol-5-yl)-amino]-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydro-pyrido[3,2-b]azepin-5-ylmethyl}-benzoic acid, 5-{9-[(3,5-B is-trifluoromethyl-benzyl)-(2-methyl-2H-tetrazol-5-yl)-amino]-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydro-pyrido[3,2-b]azepin-5-yl}-3,3-dimethyl-pentanoic acid,
- (4-{9-[(3,5-Bis-trifluoromethyl-benzyl)-(2-methyl-2H-tetrazol-5-yl)-amino]-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydro-pyrido[3,2-b]azepin-5-ylmethyl}-cyclohexyl)-acetic acid,
- (3,5-Bis-trifluoromethyl-benzyl)-(5-ethyl-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydro-5H-pyrido[3,2-b]azepin-9-yl)-(2-methyl-2H-tetrazol-5-yl)-amine,
- 5-{9-[(3,5-Bis-trifluoromethyl-benzyl)-(2-methyl-2H-tetrazol-5-yl)-amino]-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydro-pyrido[3,2-b]azepin-5-ylmethyl}-thiophene-2-carboxylic acid,
- 2-{9-[(3,5-Bi s-trifluoromethyl-benzyl)-(2-methyl-2H-tetrazol-5-yl)-amino]-2-methyl-3-trifluorometh yl-6,7,8,9-tetrahydro-pyrido[3,2-b]azepin-5-yl}-ethanol,
- (5-Benzyl-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydro-5H-pyrido[3,2-b]azepin-9-yl)-(3,5-bis-trifluoromethyl-benzyl)-(2-methyl-2H-tetrazol-5-yl)-amine,
- (3,5-Bis-trifluoromethyl-benzyl)-(2-methyl-2H-tetrazol-5-yl)-(2-methyl-5-thiazol-2-ylmethyl-3-trifluoromethyl-6,7,8,9-tetrahydro-5H-pyrido[3,2-b]azepin-9-yl)-amine, 9-[(3,5-Bis-trifluoromethyl-benzyl)-(2-methyl-2H-tetrazol-5-yl)-amino]-2-methyl-3-trifluoromethyl-6,7,8,9-tetrahydro-pyrido[3,2-b]azepine-5-carboxylic acid tetrahydro-furan-3-yl ester,
- (3,5-Bis-triflu oromethyl-benzyl)-(2-methyl-5-pyridin-4-ylmethyl-3-trifluoromethyl-6,7,8,9-tetrahydro-5H-pyrido[3,2-b]azepin-9-yl)-carbamic acid methyl ester, N-(3,5-Bis-trifluoromethyl-benzyl)-N-(2-methyl-5-pyridin-4-ylmethyl-3-trifluoromethyl-6,7,8,9-tetrahydro-5H-pyrido[3,2-b]azepin-9-yl)-acetamide or a pharmace utically acceptable salt, solvate enantiomer or diastereomer or mixture thereof.

- 15. A method of regulating CETP activity comprising administering a compound of formula I, a pharmaceutically acceptable salt, solvate, enantiomer, racemate, dias tereomer or mixture of diastereomers thereof to a patient in need thereof.
- 16. A method of treating or preventing dyslipidemia comprising administering a compound of formula I, a pharmaceutically acceptable salt, solvate, enantiomer, racemate diastereomer, mixture of diastereomers thereof, to a patient in need thereof.
- 17. A method of treating or preventing artherosclerosis comprising administering a compound of formula I, a pharmaceutically acceptable salt, solvate, enantiomer, racemate, diastereomer, or mixture of diastereomers thereof to a patient.
- 18. A method according to Claim 14, wherein the regulation of CETP activity results in a decrease in LDL-cholesterol.
- 19. A method of lowering plasma LDL-cholesterol in a mammal comprising administering a therapeutically effective dose of a compound of formula I, a pharmaceutically acceptable salt, solvate, enantiomer, racemate, diastereomer, or mixture of diastereomers thereof to a patient in need thereof.
- 20. A method of treating and/or preventing the pathological sequelae due to high levels of plasma LDL-cholesterol in a mammal comprising administering an effective dose of a compound of formula I, pharmaceutically acceptable salt, solvate, enantiomer, racemate, diastereomer, or mixture of diastereomers to a patient in need thereof.
- 21. A pharmaceutical composition comprising a compound according to Claim 1 and a carrier, diluent and/or excipient.
- 22. Use of a compound of formula I for the manufacture of a medicament for treating and/or preventing atherosclerosis in a mammal comprising administering an effective dose of a compound of formula I, a pharmaceutically acceptable salt, solvate,

WO 2005/097805 PCT/US2005/009294

-83-

enantiomer, racemate, diastereomer, or mixture of diastereomers thereof to a patient in need thereof.