Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 6 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження рекурсивних алгоритмів»

Варіант <u>13</u>

Виконав студент <u>III-13, Жмайло Дмитро Олександрович</u>

(шифр, прізвище, ім'я, по батькові)

Перевірила Вєчерковська Анастасія Сергіївна

(прізвище, ім'я, по батькові)

Лабораторна робота 6

Дослідження рекурсивних алгоритмів

Мета — дослідити особливості роботи рекурсивних алгоритмів та набути практичних навичок їх використання під час складання програмних специфікацій підпрограм.

Індивідуальне завдання

Варіант 13

13. Перетворення значення у двійковій системі числення в десяткове значення.

Постановка задачі

Задано натуральне число у двійковій системі числення. Необхідно перевести це число у десяткову систему числення, використовуючи механізм рекурсії підпрограми.

Побудова математичної моделі

Відповідно до умови складемо таблицю змінних:

Змінна	Tun	Назва	Призначення
Початкове число п	Цілий	number	Початкові дані
Проміжне двійкове число	Цілий	bin_n	Проміжні дані
Проміжний результат	Цілий	prev_result	Проміжні дані
Результат обчислень	Цілий	result	Вихідні дані

Для розрахунків введемо допоміжні функції:

- Функція знаходження остачі від ділення числа **a** на **b**: **Mod(a, b)**;
- Функція знаходження цілочисельної частки від ділення числа **a** на **b**:

Div(a, b);

Для переведння числа з двійкової системи числення у десяткову достатньо помножити значення розряду числа на 2 в степені номеру самого розряду, починаючи з 0.

Для того, щоб перевести число з двійкової системи числення у десяткову за допомогою рекурсивної формули, необхідно розробити підпрограму **BinToDec**, яка буде:

- 1. Перевіряти чи параметр функції (число, яке ми вписуємо в тіло функції) рівний нулю:
 - Якщо параметр функції задовольняє умові, то функція присвоює змінній **prev_result** значення **0** (вихід з рекурсії)
 - Якщо параметр функції **не** задовольняє умові, то присвоюємо змінній **prev_result** значення Mod(**bin_n**, 10) +
 - 2 * **BinToDec**(Div(**bin_n**, 10)), тим самим викликав рекурсію
- 2. Виводити значення prev_result

Розв'язання:

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії;

Крок 2. Деталізуємо дію виклику підпрограми BinToDec для обчислення результату;

Крок 3. Деталізуємо підпрограму ВіпТо Вес.

Псевдокод:

Крок 1

початок

введення number

виклик підпрограми для обчислення результату

виведення result

кінець

Функція BinToDec(bin n)

реалізація підпрограми

Все функція

Крок 2

початок

введення number result := BinToDec(number) виведення result

кінець

Функція BinToDec(bin_n)

реалізація підпрограми

Все функція

```
Крок 3
```

все функція

```
початок

введення number

result := BinToDec(number)

виведення result

кінець

функція BinToDec(bin_n)

якщо (bin_n == 0)

то

ргеv_result := 0

все якщо

інакше

ргеv_result := Mod(bin_n, 10) + 2 * BinToDec( Div(bin_n, 10) )

return prev_result
```

Блок-схема:

Крок 1

Крок 2

Крок 3

Код програми: (С++)

```
#include <iostream>
       using namespace std;
       int BinToDec(int bin_n);
      ⊟int main()
            int number;
            int result;
            cout << "Enter the binary value: ";</pre>
            cin >> number;
10
            result = BinToDec(number);
11
            cout << "Decimal value of binary number is: " << result << endl;</pre>
12
            return 0;
13
14
15
      □int BinToDec(int bin_n)
16
17
            if (bin_n == 0)
18
                return 0;
19
20
            else
                return ((bin_n % 10) + 2 * BinToDec(bin_n / 10));
21
22
```

Випробування алгоритму:

Блок	Дія
	Початок
1	number := 101
2	bin_n := 101
3	bin_n == 0 не виконується
4	prev_result := 1 + 2 * BinToDec(10)
	// Виклик функції
5	bin_n == 0 не виконується
6	prev_result := 0 + 2 * BinToDec(1)
	// Виклик функції
7	bin_n == 0 не виконується
8	prev_result := 1 + 2 * BinToDec(0)
	// Виклик функції
9	bin_n == 0 виконується
10	prev_result := 0
	return 0
11	prev_result := 1
	return 1
12	prev_result := 2
	return 2
13	prev_result := 5
	return 5
14	result := 5;
15	Виведення 5

	Кінець
--	--------

Блок	Дія
	Початок
1	number := 11
2	bin_n := 11
3	bin_n == 0 не виконується
4	prev_result := 1 + 2 * BinToDec(1)
	// Виклик функції
5	bin_n == 0 не виконується
6	prev_result := 1 + 2 * BinToDec(0)
	// Виклик функції
7	bin_n == 0 виконується
8	prev_result := 0
	return 0
9	prev_result := 1
	return 1
10	prev_result := 3
	return 3
11	result := 3;
12	Виведення 3
	Кінець

Висновок: На цій лабораторній роботі ми дослідили особливості роботи рекурсивних алгоритмів та набули практичних навичок їх використання під час складання програмних специфікацій підпрограм; навчилися складати блок-схеми підпрограм, робити псевдокод рекурсивних алгоритмів. Покроково перевірили виконання алгоритму та за допомогою нього склали програму на мові C++.