3D Vision – Assignment 4

魏家博 (Chia-Po Wei)

Department of Electrical Engineering
National Sun Yat-sen University

[TODO 1] Normalize image points.

- 1. The array pts1 of shape (n, 2) denotes the image points in image1. Let n = 10.
- 2. Normalize pts1 to pts1 normal of shape (n, 2) such that
 - The mean of image points (denoted by pts1 normal) is the origin.
 - The mean distance of the image points (denoted by ptsl normal) from the origin is $\sqrt{2}$.
- 3. In a similar fashion, normalize pts2 to pts2 normal of shape (n,2).
- 4. Construct $\mathbf{T}_1 = \begin{bmatrix} s & 0 & -st_x \\ 0 & s & -st_y \\ 0 & 0 & 1 \end{bmatrix}$, where s, t_x , t_y are defined below.
- 5. In a similar fashion, construct T_2 by replacing s, t_x, t_y with s', t_x', t_y' , where s', t_x', t_y' are from pts2.
- Hint:
 - Let $\mathbf{p}_i \in \mathbb{R}^2$ be the *i*th point in pts1.
 - Denote the mean of image points by $\overline{\mathbf{p}}$, which is given by $\overline{\mathbf{p}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{p}_i$. Let $\overline{\mathbf{p}} = \begin{bmatrix} t_x, t_y \end{bmatrix}^T$.
 - Define $\mathbf{q}_i = \mathbf{p}_i \overline{\mathbf{p}}$.
 - Find s such that $\frac{s\sum_{i=1}^{n}\|\mathbf{q}_{i}\|}{n} = \sqrt{2}$, where $\|\mathbf{q}_{i}\| = \sqrt{x_{i}^{2} + y_{i}^{2}}$ if $\mathbf{q}_{i} = [x_{i}, y_{i}]^{T}$.
 - The *i*th point in pts1_normal is given by $s\mathbf{q}_i$.

[TODO 1]

6. Display the mean distance of the image points in ptsl_normal from the origin. That is, display the value of $\frac{1}{n}\sum_{i=1}^{n}||\mathbf{r}_{i}||$, where \mathbf{r}_{i} is the ith point of ptsl_normal.

[TODO 2] Compute the fundamental matrix **F**.

- Construct array A of shape (n,9) from pts1_normal and pts2_normal as in page 13 of 08 Two-View Geometry.pdf.
- 2. Implement the 8-point algorithm presented in page 14 of 08 Two-View Geometry.pdf to compute the fundament matrix \mathbf{F}_n , and \mathbf{F}_n should have rank two.
- 3. Let $\mathbf{F} = \mathbf{T}_2^T \mathbf{F}_n \mathbf{T}_1$, where \mathbf{T}_1 and \mathbf{T}_2 are defined in the previous slide.
- 4. Display the epipolar error:
 - $\sum_{i=1}^{n} [x_i', y_i', 1] \mathbf{F} [x_i, y_i, 1]^T$
 - where $[x_i, y_i]$ is the *i*th point of pts1, and $[x'_i, y'_i]$ is the *i*th point of pts2.
 - You can check that the epipolar error should be less than one.
 - If this is not the case, then there is something wrong with your program.

[TODO 3] Draw epipolar lines in image1.

- 1. Let p_1', p_2', p_3' be the first three points of pts2. Plot p_1', p_2', p_3' in image2 as in Figure 2.
- 2. Plot the epipolar lines corresponding to p'_1, p'_2, p'_3 in image 1 as in Figure 1.

Hint:

- The epipolar line corresponding to p'_1 is $\mathbf{F}^T p'_1 = [a, b, c]^T$.
- Any point (x, y) on the epipolar line satisfies ax + by + c = 0.
- Select suitable x and then determine y from the above epipolar line equation.

Figure 1: left image

Figure 2: right image

[TODO 4] Draw the epipole and epipolar lines in image1.

- 1. Compute the epipole in image 1. The epipole is a nonzero vector in the null space of ${f F}$.
- 2. Plot the epipole and epipolar lines in image1 as shown in Figure 3.

Figure 3

[TODO 5] Compute the 4 possible camera matrices.

- 1. Let \mathbf{K}_1 and \mathbf{K}_2 be intrinsic matrices for cameras 1 and 2, respectively.
- 2. Let $\mathbf{E} = \mathbf{K}_2^T \mathbf{F} \mathbf{K}_1$.
- 3. Let Rt2_list be a list of extrinsic matrices for camera 2 defined in page 22 of 08 Two-View Geometry.pdf
 - Rt2_list[0] is $[R_1, t_1]$, Rt2_list[1] is $[R_1, t_2]$, Rt2_list[2] is $[R_2, t_1]$, Rt2_list[3] is $[R_2, t_2]$

[TODO 6] Triangulation.

- 1. Let $[x_i, y_i]$ be the *i*th point of pts1, and $[x'_i, y'_i]$ be the *i*th point of pts2, and X_list = []
- 2. for j in range (4):
 - Let $P_1 = K_1[I, 0]$, and $P_2 = K_2[R, t]$, where [R, t] is Rt2_list[j].
 - for i in range(n):
 - Given P_1 , P_2 , $[x_i, y_i]$, $[x_i', y_i']$, implement the triangulation method in page 8 of 08 Two-View Geometry.pdf to obtain $[X_i, Y_i, Z_i]$.
 - Save $[X_i, Y_i, Z_i]$ in the *i*th row of x, where x is an array of shape (n,3).
 - X list.append(X)

[TODO 6] Triangulation.

- 3. Find index j such that X list[j][:,2] are all positive, and denote X list[j] by X best.
- 4. Display the reconstruction error for pts1 and pts2, respectively.
 - Let P_1 and P_2 be defined as in Step 2 of TODO 6, where j is from Step 3 of TODO 6.
 - Let $\mathbf{M}_i \in \mathbb{R}^3$ be the ith point of X_best , and define
 - $\widetilde{\mathbf{M}}_i = \begin{bmatrix} \mathbf{M}_i \\ 1 \end{bmatrix} \in \mathbb{R}^4$, $\widetilde{\mathbf{m}}_i = \mathbf{P}_1 \widetilde{\mathbf{M}}_i$, $\widetilde{\mathbf{m}}_i' = \mathbf{P}_2 \widetilde{\mathbf{M}}_i$
 - Convert $\widetilde{\mathbf{m}}_i \in \mathbb{R}^3$ to $\mathbf{m}_i \in \mathbb{R}^2$ as in Step 3.3 of Assignment 1 (Convert homogeneous coordinates to Cartesian coordinates).
 - Similarly, Convert $\widetilde{\mathbf{m}}_i' \in \mathbb{R}^3$ to $\mathbf{m}_i' \in \mathbb{R}^2$.
 - Let $\mathbf{p}_i \in \mathbb{R}^2$ be the ith point of pts1, and $\mathbf{p}_i' \in \mathbb{R}^2$ be the ith point of pts2.
 - The reconstruction error for pts1 is given by $\frac{\sum_{i=1}^{n} \|\mathbf{p}_i \mathbf{m}_i\|}{n}$.
 - The reconstruction error for pts2 is given by $\frac{\sum_{i=1}^{n} \|\mathbf{p}_i' \mathbf{m}_i'\|}{n}$.
 - Note that the two norm of $\mathbf{d}_i = [x_i, y_i]^T \in \mathbb{R}^2$ is given by $\|\mathbf{d}_i\| = (x_i^2 + y_i^2)^{1/2}$.

[TODO 7] Visualize the 3D reonstruction.

- 1. Plot the 3D points X best from Step 3 of TODO 6 as in Figures 5 and 6.
- 2. You need to draw the nine edges: (v0, v1), (v1, v2), (v2, v3), (v3,v0), (v4, v5), (v5, v6), (v0, v4), (v1, v5), (v2, v6), where the vertex number is defined as in Figure 4.

Figure 4

Figure 5: ax.view_init(elev=-90, azim=-115)

Figure 6: ax.view_init(elev=-139, azim=-113)