Math 470 Assignment 1

Arnold Jiadong Yu

January 25, 2018

- 6.1.0 Let a_x and b_x be real sequences. Decide which of the following statements are true and which are false. Prove the true ones and give counterexamples to the false ones.
- a) If a_k is strictly decreasing and $a_k \to 0$ as $k \to \infty$, then $\sum_{k=1}^{\infty} a_k$ converges. proof: False, example is the harmonic series.
- b) If $a_k \neq b_k$ for all $k \in \mathbb{N}$ and if $\sum_{k=1}^{\infty} (a_k + b_k)$ converges, then either $\sum_{k=1}^{\infty} a_k$ converges or $\sum_{k=1}^{\infty} b_k$ converges.

proof: False, let $a_k = 1$ and $b_k = -1$, then $\sum_{k=1}^{\infty} (a_k + b_k)$ converges, but both $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ diverges.

c) Suppose that $\sum_{k=1}^{\infty} (a_k + b_k)$ converges, then $\sum_{k=1}^{\infty} a_k$ converges if and only if $\sum_{k=1}^{\infty} b_k$ converges.

proof: True. Suppose $\sum_{k=1}^{\infty} (a_k + b_k)$ converges and equal to $C \in \mathbb{R}, \sum_{k=1}^{\infty} a_k$ converges and equal to $A \in \mathbb{R}$. Thus $\sum_{k=1}^{\infty} (-a_k)$ converges and equal to $A \in \mathbb{R}$.

C - A =
$$\sum_{k=1}^{\infty} (a_k + b_k) + \sum_{k=1}^{\infty} (-a_k) = \sum_{k=1}^{\infty} (a_k + b_k - a_k) = \sum_{k=1}^{\infty} b_k$$
 by Theorem

6.10 and C-A \in R. $Hence \sum_{k=1}^{\infty} b_k$ converges. The converse is trivial.

d)If
$$a_k \to aask \to \infty$$
, then $\sum_{k=1}^{\infty} (a_k - a_{k+2}) = a_1 + a_2 - 2a$

proof: True.
$$\sum_{k=1}^{\infty} (a_k - a_{k+2}) = (a_1 - a_3) + (a_2 - a_4) + (a_3 - a_5) + \dots + (a_{k-2} - a_k) + (a_{k-1} - a_{k+1}) + (a_k - a_{k+2}) = a_1 + a_2 - a_{k+1} - a_{k+2}, \text{ since } a_k \to aask \to \infty,$$
then $a_{k+1} = a$ and $a_{k+2} = a$. Hence
$$\sum_{k=1}^{\infty} (a_k - a_{k+2}) = a_1 + a_2 - 2a.$$

6.1.1 Prove that each of the following series converges and find its value.

a)
$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{e^{k-1}}$$

proof:
$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{e^{k-1}} = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{e^{k-1}} (-1)^2 = (-1)^2 \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{e^{k-1}} = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{e^{k-1}} =$$

$$\sum_{k=0}^{\infty} (-\frac{1}{e})^k. \text{ Since } |-\frac{1}{e}| < 1 \text{ apply Theorem 6.7 (Geometric series)}. \sum_{k=1}^{\kappa-1} \frac{(-1)^{k-1}}{e^{k-1}} = \frac{1}{1+\frac{1}{e}} = \frac{e}{1+e}.$$

b)
$$\sum_{k=0}^{\infty} \frac{(-1)^{k-1}}{\pi^{2k}}$$

proof:
$$\sum_{k=0}^{\infty} \frac{(-1)^{k-1}}{\pi^{2k}} = -\sum_{k=0}^{\infty} \frac{(-1)^k}{(\pi^2)^k} = -\sum_{k=0}^{\infty} (-\frac{1}{\pi^2})^k. \text{ Since } |-\frac{1}{\pi^2}| < 1 \text{ apply}$$

Theorem 6.7 (Geometric series). $\sum_{k=0}^{\infty} \frac{(-1)^{k-1}}{\pi^{2k}} = -\frac{1}{1+\frac{1}{\pi^2}} = -\frac{\pi^2}{1+\pi^2}$.

c)
$$\sum_{k=2}^{\infty} \frac{4^{k+1}}{9^{k-1}}$$

proof:
$$\sum_{k=2}^{\infty} \frac{4^{k+1}}{9^{k-1}} = (\frac{4^3}{9}) \sum_{k=2}^{\infty} \frac{4^{k-2}}{9^{k-2}} = (\frac{64}{9}) \sum_{k=0}^{\infty} (\frac{4}{9})^k$$
, since $|\frac{4}{9}| < 1$ apply Theorem

6.7 (Geometric series).
$$\sum_{k=2}^{\infty} \frac{4^{k+1}}{9^{k-1}} = \left(\frac{64}{9}\right) \left(\frac{1}{1-\frac{4}{9}}\right) = \frac{64}{5}.$$

d)
$$\sum_{k=0}^{\infty} \frac{5^{k+1} + (-3)^k}{7^{k+2}}$$

proof:
$$\sum_{k=0}^{\infty} \frac{5^{k+1} + (-3)^k}{7^{k+2}} = \left(\frac{1}{49}\right) \sum_{k=0}^{\infty} \frac{5^{k+1} + (-3)^k}{7^k} = \left(\frac{1}{49}\right) \sum_{k=0}^{\infty} \left(\frac{5^{k+1}}{7^k} + \frac{(-3)^k}{7^k}\right) = \left(\frac{5}{49}\right) \sum_{k=0}^{\infty} \left(\frac{5}{7}\right)^k + \frac{1}{2} \left(\frac{5}{49}\right) \sum_{k=0}^{\infty} \left(\frac{$$

$$(\frac{1}{49})\sum_{k=0}^{\infty}(-\frac{3}{7})^k$$
, since both $|\frac{5}{7}|$ and $|-\frac{3}{7}|$ are less than 1, then apply Theorem

6.7 (Geometric series).
$$\sum_{k=0}^{\infty} \frac{5^{k+1} + (-3)^k}{7^{k+2}} = \left(\frac{5}{49}\right) \left(\frac{1}{1 - \frac{5}{7}}\right) + \left(\frac{1}{49}\right) \left(\frac{1}{1 + \frac{3}{7}}\right) = \frac{5}{14} + \frac{1}{70} = \frac{13}{35}.$$

6.1.2. Represent each of the following series as a telescopic series and find its value.

b)
$$\sum_{k=1}^{\infty} \frac{12}{(k+2)(k+3)}$$

proof: $\sum_{k=1}^{\infty} \frac{12}{(k+2)(k+3)} = (12) \sum_{k=1}^{\infty} \frac{1}{(k+2)(k+3)} = (12) \sum_{k=1}^{\infty} (\frac{1}{k+2} - \frac{1}{k+3}) = (12)(\frac{1}{3} - \lim_{k \to \infty} \frac{1}{k+2} = 4 \text{ by Theorem 6.6 (Telescopic series)}.$

c)
$$\sum_{k=2}^{\infty} log(\frac{k(k+2)}{(k+1)^2})$$

proof: $\sum_{k=2}^{\infty} log(\frac{k(k+2)}{(k+1)^2}) = \sum_{k=2}^{\infty} log(\frac{\frac{k}{k+1}}{\frac{k+1}{k+2}}) = \sum_{k=2}^{\infty} log(\frac{k}{k+1} - \frac{k+1}{k+2}) = log(\frac{2}{3}) - \lim_{k \to \infty} log(\frac{k}{k+1}) = log(\frac{2}{3}) - log(1) = log(\frac{2}{3})$ by Theorem 6.6 (Telescopic series).

d)
$$\sum_{k=1}^{\infty} 2sin(\frac{1}{k} - \frac{1}{k+1})cos(\frac{1}{k} + \frac{1}{k+1})$$

proof: By trigonometric formula $sin(a) - sin(b) = 2sin(\frac{a-b}{2})cos(\frac{a+b}{2})$, then

$$\sum_{k=1}^{\infty} 2sin(\frac{1}{k} - \frac{1}{k+1})cos(\frac{1}{k} + \frac{1}{k+1}) = \sum_{k=1}^{\infty} (sin(\frac{2}{k}) - sin(\frac{2}{k+1})) = sin(2) - \lim_{k \to \infty} sin(\frac{2}{k}) = \frac{1}{k+1} (sin(\frac{2}{k}) - sin(\frac{2}{k+1})) = sin(2) - \lim_{k \to \infty} sin(\frac{2}{k}) = \frac{1}{k+1} (sin(\frac{2}{k}) - sin(\frac{2}{k+1})) = sin(2) - \lim_{k \to \infty} sin(\frac{2}{k}) = \frac{1}{k+1} (sin(\frac{2}{k}) - sin(\frac{2}{k+1})) = sin(2) - \lim_{k \to \infty} sin(\frac{2}{k}) = \frac{1}{k+1} (sin(\frac{2}{k}) - sin(\frac{2}{k+1})) = sin(2) - \lim_{k \to \infty} sin(\frac{2}{k}) = \frac{1}{k+1} (sin(\frac{2}{k}) - sin(\frac{2}{k+1})) = sin(2) - \lim_{k \to \infty} sin(\frac{2}{k}) = \frac{1}{k+1} (sin(\frac{2}{k}) - sin(\frac{2}{k+1})) = sin(2) - \lim_{k \to \infty} sin(\frac{2}{k}) = \frac{1}{k+1} (sin(\frac{2}{k}) - sin(\frac{2}{k+1})) = sin(2) - \lim_{k \to \infty} sin(\frac{2}{k}) = \frac{1}{k+1} (sin(\frac{2}{k}) - sin(\frac{2}{k+1})) = sin(\frac{2}{k+1}) = \frac{1}{k+1} (sin(\frac{2}{k}) - sin(\frac{2}{k+1})) = sin(\frac{2}{k+1}) = \frac{1}{k+1} (sin(\frac{2}{k}) - sin(\frac{2}{k+1})) = \frac{1}{k+1} (sin(\frac{2}{k+1}) - sin(\frac{2}{k$$

sin(2) - 0 = sin(2) by Theorem 6.6 (Telescopic series).

6.1.3. Prove that each of the following series diverges.

$$a) \sum_{k=1}^{\infty} \cos(\frac{1}{k^2})$$

proof: $\lim_{k\to\infty} \cos(\frac{1}{k^2}) = \cos(0) = 1 \neq 0$, thus by Theorem 6.5 (Divergence test) $\sum_{k=1}^{\infty} \cos(\frac{1}{k^2})$ diverges.

b)
$$\sum_{k=1}^{\infty} (1 - \frac{1}{k})^k$$

proof: Let $\lim_{k\to\infty} (1-\frac{1}{k})^k = a$, then $Ln(\lim_{k\to\infty} (1-\frac{1}{k})^k) = \lim_{k\to\infty} Ln(1-\frac{1}{k})^k) = \lim_{k\to\infty} \frac{Ln(1-\frac{1}{k})}{k^{-1}}$ apply l'hopital's rule $\lim_{k\to\infty} \frac{Ln(1-\frac{1}{k})}{k^{-1}} = \lim_{k\to\infty} \frac{(\frac{1}{1-\frac{1}{k}})(0+k^{-2})}{-k^{-2}} = \lim_{k\to\infty} \frac{-k}{k-1} = -1 = Ln(a), \Rightarrow a = e^{-1}$, since $e^{-1} \neq 0$, thus by Theorem 6.5 (Divergence test) $\sum_{k=1}^{\infty} (1-\frac{1}{k})^k$ diverges.

c)
$$\sum_{k=1}^{\infty} \frac{k+1}{k^2}$$

proof: Assume $\sum_{k=1}^{\infty} \frac{k+1}{k^2}$ converges to $A \in \mathbb{R}$, then $A = \sum_{k=1}^{\infty} \frac{k+1}{k^2} = \sum_{k=1}^{\infty} (\frac{1}{k} + \frac{1}{k^2})$ and $\frac{1}{k^2}$ is positive. Hence $\sum_{k=1}^{\infty} (\frac{1}{k} + \frac{1}{k^2}) > \sum_{k=1}^{\infty} \frac{1}{k}$, but $\sum_{k=1}^{\infty} \frac{1}{k}$ is harmonic series and it diverges. It contradicts with assumption. That is $\sum_{k=1}^{\infty} \frac{k+1}{k^2}$ diverges.

worked together with Michael

6.1.6. a) Prove that if $\sum_{k=1}^{\infty} a_k$ converges, then its partial sums s_n are bounded. b) Show that the converse of part a) is false. Namely, show that a series $\sum_{k=1}^{\infty} a_k$ may have bounded partial sums and still diverge.

proof: part a) Suppose $\sum_{k=1}^{\infty} a_k$ converges and equal to $A \in \mathbb{R}$. Since the partial sums $s_1 = a_1, s_2 = a_1 + a_2,, s_n = a_1 + a_2 + + a_n$, thus construct a sequence s_n . Hence $s_n \to A$ as $n \to \infty$. By Theorem 2.8 Every converges sequence is bounded. Then s_n is bounded.

part b) The series $\sum_{k=1}^{\infty} (-1)^k$ has partial sums either 0 or 1. Then it is bounded by 0 and 1. But it doesn't pass the Divergence test. Hence the converse of part a) is false.