Set theory

Type theory vs. Set theory

Alexandre Miquel

January 9th, 2019 - CASS 2020 - San José del Maipo

Plan

- A primer in set theory
- 2 Types in sets
- Sets in types
- Going further

A bit of history

- 1878 While studying the properties of trigonometric series (derived sets), Georg **Cantor** (1845–1918) discovers ordinal numbers

 Starting point of set theory: cardinal numbers, continuum hypothesis
- 1879 Gottlob **Frege**'s (1848–1925) *Begriffsschrift* ("concept-script") Ancestor of the predicate calculus
- 1903 First attempt by **Frege** to formalize Cantor's set theory Bertrand **Russell** (1872–1970) shows its inconsistency
- 1908 Ernst **Zermelo**'s (1871–1953) new axiomatization of set theory (**Z**)
 Also introduces the axiom of choice (AC)
- 1922 Abraham **Fraenkel** (1891–1965) and Thoralf **Skolem** (1887–1963) independently introduce the replacement scheme ($Z \rightarrow ZF$)

What is set theory?

- Set theory describes a (nonempty) universe whose objects are sets
 Here: set = pure set = set whose elements are (pure) sets
- The set-theoretic universe is governed by two primitive relations

• Equality: x = y (where both x and y are sets)

• Membership: $x \in y$ (where both x and y are sets)

- Sets are loose enough to encode most mathematical concepts: tuples, relations, functions, numbers... and of course: sets
- Many axiomatizations of set theory. Most notably:
 - Zermelo set theory (Z)
 - Zermelo-Fraenkel set theory (ZF) (= Zermelo + replacement)
- Many additional axioms:
 - Foundation axiom (FA), Axiom of choice (AC)
 - Continuum Hypothesis (CH), Generalized Cont. Hyp. (GCH)

The language of set theory

 Set theory is traditionally presented using the language of first-order logic (with equality):

No constant/function symbol; the only terms are variables

Standard abbreviations:

$$\begin{array}{rcl}
x \neq y & :\equiv & \neg(x = y) \\
x \notin y & :\equiv & \neg(x \in y)
\end{array}$$

$$\forall x \in a \ \phi(x) & :\equiv & \forall x \ (x \in a \Rightarrow \phi(x)) \\
\exists x \in a \ \phi(x) & :\equiv & \exists x \ (x \in a \land \phi(x))$$

$$\exists! x \ \phi(x) & :\equiv & \exists x \ \phi(x) \ \land \ \forall x \ \forall x' \ (\phi(x) \land \phi(x') \Rightarrow x = x')$$

$$x \subseteq y & :\equiv & \forall z \ (z \in x \Rightarrow z \in y)$$

The axioms of Zermelo-Fraenkel set theory

 $\forall a \ \forall b \ (\forall x \ (x \in a \Leftrightarrow x \in b) \ \Rightarrow \ a = b)$ Extensionality

 $\forall a \ \forall b \ \exists c \ \forall x \ (x \in c \Leftrightarrow x = a \lor x = b)$ **Pairing**

Comprehension $\forall a \exists b \ \forall x \ (x \in b \Leftrightarrow x \in a \land \phi(x))$

for each formula $\phi(x)$

Union $\forall a \exists b \ \forall x \ (x \in b \iff \exists y \in a \ x \in y)$

Powerset $\forall a \exists b \ \forall x \ (x \in b \Leftrightarrow x \subseteq a)$

 $\exists a \ (\exists x \in a \ \forall z \ (z \notin x) \ \land$ Infinity

 $\forall x \in a \ \exists y \in a \ \forall z \ (z \in y \Leftrightarrow z \in x \lor z = x))$

 $\forall a \ (\forall x \in a \ \exists ! y \ \psi(x, y) \ \Rightarrow \ \forall x \in a \ \exists y \in b \ \psi(x, y))$ Replacement

for each formula $\psi(x, y)$

 $\forall a ((\exists x \ x \in a) \Rightarrow \exists x \in a \ \forall y \in a \ y \notin x)$ **Foundation**

Introducing notations

Set theory 000000000

> The "official language" of set theory contains no constant/function symbol: the only terms are variables

This is the user's job to introduce his/her own Skolem symbols

• For instance, replace the "official" pairing axiom by

Pairing
$$\forall a \ \forall b \ \forall x \ (x \in \{a, b\} \iff x = a \lor x = b)$$

where $\{-, -\}$ is a new binary function symbol

• And similarly for \bigcup_{-} (union), $\mathfrak{P}(_{-})$ (powerset), Ω (infinity)

Such extensions are known to be conservative, in the sense that: If a formula of the official language is provable using Skolem symbols, then it is provable in the official formalism (i.e. without Skolem symbols) Extensionality

Infinity

Example: Skolemized Zermelo set theory (Z^{sk})

```
Pairing \forall a \ \forall b \ \forall x \ (x \in \{a,b\} \ \Leftrightarrow \ x = a \lor x = b)
Comprehension \forall a \ \forall x \ (x \in \{x \in a : \phi(x)\} \ \Leftrightarrow \ x \in a \land \phi(x))
for each formula \phi(x)
Union \forall a \ \forall x \ (x \in \bigcup a \ \Leftrightarrow \ \exists y \in a \ x \in y)
Powerset \forall a \ \forall x \ (x \in \mathfrak{P}(a) \ \Leftrightarrow \ x \subseteq a)
```

 $\forall a \ \forall b \ (\forall x \ (x \in a \Leftrightarrow x \in b) \Rightarrow a = b)$

where $s(x) :\equiv \{ \{x, \{x, x\} \} \ (= x \cup \{x\}) \}$

Theorem [M. 2005]: (I)Z^{sk} is a conservative extension of (I)Z

 $\emptyset \in \Omega \quad \land \quad \forall x \in \Omega \quad s(x) \in \Omega$

The expressiveness of set theory

Intuition: Sets are a clay to sculpt mathematical objects

$$a \cup b := \bigcup \{a, b\} \qquad \varnothing := \{x \in \Omega : x \neq x\}$$

$$a \cap b := \{x \in a : x \in b\}$$

$$(x, y) := \{\{x\}, \{x, y\}\}\}$$

$$A \times B := \{p \in \mathfrak{P}(\mathfrak{P}(A \cup B)) : \exists x \in A \exists y \in B \ p = (x, y)\}$$

$$B^{A} := \{f \in \mathfrak{P}(A \times B) : \forall x \in A \exists ! y \in B \ (x, y) \in f\}$$

$$f(x) := \bigcup \{y \in \bigcup \bigcup f : (x, y) \in f\}$$

$$A/\sim := \{c \in \mathfrak{P}(A) : \exists x \in A \forall y \in A \ (y \in c \Leftrightarrow y \sim x)\}$$

$$0 := \varnothing \qquad \qquad s(x) := x \cup \{x\}$$

$$\mathbb{N} := \{n \in \Omega : \forall Z (0 \in Z \land \forall x (x \in Z \Rightarrow s(x) \in Z) \Rightarrow n \in Z)\}$$

Drawback: $\sqrt{\pi} \cap \begin{pmatrix} 0 & \text{IR} \\ \cos & \mathcal{L}^2(\text{IR}) \end{pmatrix}$ is a well-formed set

The modularity of set theory

Set theory is highly modular:

- It may be classical (Z, ZF) or intuitionistic (IZ, IZF)
- All set theories contain at least Extensionality, Pairing, Union and Comprehension... but the other axioms are optional
 - It may be impredicative or predicative (remove Powerset)
 - It may be infinitary or finitist (remove Infinity)
 Note: ZF Infinity is equiconsistent to Peano arithmetic
- There are even non-extensional presentations of set theory (i.e. based on intensional membership ε , no primitive equality)

Even classical set theory (ZF) is highly customizable:

- Foundation or Antifoundation? Choice or Determinacy?
- + many axioms for large cardinals

Motto: Whatever your philosophy, there is a set theory for you!

Plan

- A primer in set theory
- 2 Types in sets
- Sets in types
- Going further

Translating type theory into set theory

Translate each type-theoretic construct into its obvious set-theoretic equivalent ("forget about typing constaints"):

Type theory	Set theory
Functions (as algorithms)	Functions (as graphs)
Dependent products	Generalized Cartesian products
Predicative universes Type;	Grothendieck universes
Inductively defined types	Inductively defined sets
Propositions	Booleans
Proofs	A single object (proof irrelevance)

- Through this translation, we may regard type theory as a decidable fragment of set theory, with an explicit algorithmic contents
- However, this simple translation is incompatible with univalence

Set-theoretic functions

• In set theory, a function is a set of pairs f such that the binary relation " $(x, y) \in f$ " is functional in x:

• Each function f has a domain and an image:

$$dom(f) := \{x \in \bigcup \bigcup f : \exists y (x, y) \in f\}$$

$$img(f) := \{y \in \bigcup \bigcup f : \exists x (x, y) \in f\}$$

• Function application is defined by:

$$f(x) := \bigcup \{ y \in \bigcup \bigcup f : (x,y) \in f \}$$
 For all $x \in \text{dom}(f)$, we have: $f(x) = y$ iff $(x,y) \in f$

Interpreting abstraction and application

• Given a set A and a set expression b(x) depending on $x \in A$, we let

$$\lambda x \in A \cdot b(x) := \{(x, b(x)) : x \in A\}$$

Application is defined by:

$$f(a) := \bigcup \{ y \in \bigcup \bigcup f : (a, y) \in f \}$$

 $(\lambda x \in A \cdot b(x))(a) = b(a)$ **Fact:** If $a \in A$, then:

Dependent products as generalized Cartesian products

• Given sets A and B. we let:

$$f: A \to B :\equiv f \text{ function } \wedge \text{ dom}(f) = A \wedge \text{ img}(f) \subseteq B$$

 $B^A := \{ f \in \mathfrak{P}(A \times B) : (f: A \to B) \}$

• More generally, if $(B_x)_{x \in A}$ is a family of sets indexed by A:

$$\prod_{x \in A} B_x := \left\{ f \in \left(\bigcup_{x \in A} B_x \right)^A : \forall x \in A \ f(x) \in B_x \right\}$$

Family of sets indexed by A = function of domain A

Fact: If
$$f \in \prod_{x \in A} B_x$$
 and $a \in A$, then $f(a) \in B_a$

• Particular case where $B_x = B$ for all $x \in A$:

Grothendieck universes

Definition (Grothendieck universe)

A set \mathcal{U} is a Grothendieck universe when:

- **1** If $A \in \mathcal{U}$, then $A \subseteq \mathcal{U}$ (i.e. \mathcal{U} is transitive)
- $\mathbf{O} \ \mathsf{IN} \in \mathcal{U}$
- \bullet If $A \in \mathcal{U}$, then $\mathfrak{P}(A) \in \mathcal{U}$
- If $A \in \mathcal{U}$ and $B_x \in \mathcal{U}$ for all $x \in A$, then $\bigcup_{x \in A} B_x \in \mathcal{U}$

In particular:

- If $A, B \in \mathcal{U}$, then $\{A, B\} \in \mathcal{U}$, $\bigcup A \in \mathcal{U}$ and $\mathfrak{P}(A) \in \mathcal{U}$
- If $A \in \mathcal{U}$ and $B \subseteq A$, then $B \in \mathcal{U}$
- If $A \in \mathcal{U}$ and $B_x \in \mathcal{U}$ for all $x \in A$, then $\prod_{x \in A} B_x \in \mathcal{U}$

 Intuitively, a Grothendieck universe is a set that behaves as a set-theoretic universe inside the set-theoretic universe

Theorem

Each Grothendieck universe $\mathcal U$ is closed under all the set-theoretic constructions that are definable in ZF. In particular:

$$(\mathcal{U}, \in_{|\mathcal{U}}) \models \mathsf{ZF}$$

- From Gödel's second incompleteness theorem, the existence of Grothendieck universes cannot be proved in ZF (unless ZF is inconsistent)
- In what follows, we shall assume the existence of Grothendieck universes (with a suitable axiom)

Grothendieck universes are related to strongly inaccessible cardinals

Definition (Strongly inaccessible cardinal)

A cardinal λ is strongly inaccessible if:

- \bullet $\lambda > \aleph_0$
- \bullet If $\kappa < \lambda$, then $2^{\kappa} < \lambda$
- \bullet If $\kappa < \lambda$ and $\mu_{\alpha} < \lambda$ for all $\alpha < \kappa$, then $\sup \mu_{\alpha} < \lambda$ $\alpha < \kappa$

Proposition

 \mathcal{U} Grothendieck universe \Rightarrow Card(\mathcal{U}) strongly inaccessible

 λ strongly inaccessible \Rightarrow V_{λ} Grothendieck universe

Recall: The cumulative hierarchy $(V_{\alpha})_{\alpha}$ is defined by

$$V_0 \ := \ arnothing, \qquad V_{lpha+1} \ := \ \mathfrak{P}(V_lpha), \qquad V_lpha \ := \ igcup_{eta \le lpha} V_eta \quad ext{(if $lpha$ limit)}$$

Interpreting predicative universes Type,

• We now work in $ZF + SI^{\omega}$, where SI^{ω} is the axiom:

There exist infinitely many strongly inaccessible cardinals

• Let $(\lambda_i)_{i\in\omega}$ be the ω first strongly inaccessible cardinals, and write

$$\mathcal{U}_i \ := \ V_{\lambda_i}$$
 (for each $i \in \omega$)

- By construction, for all $i \in \omega$ we have:
 - $\mathbf{0} \ \mathcal{U}_i \in \mathcal{U}_{i+1}$
 - ② If $A \in \mathcal{U}_i$ and $B_x \in \mathcal{U}_i$ for all $x \in A$, then $\prod_{x \in A} B_x \in \mathcal{U}_i$
- \Rightarrow Interpret each Type, by \mathcal{U}_i

How to interpret the sort Prop of propositions?

- The sort Prop of propositions enjoys two properties:
 - Prop : Type
 - ② If U(x): Prop for all x:T (T any), then $\Pi x:T \cdot U(x)$: Prop
- Hence we need a set U_{*} such that:
 - $\mathbf{0}$ $\mathcal{U}_* \in \mathcal{U}_0$
 - ② If $B_x \in \mathcal{U}_*$ for all $x \in A$ (A any), then $\prod B_x \in \mathcal{U}_*$
- Elements of \mathcal{U}_* should be small enough to be closed under arbitrary dependent products
 - $\mathcal{U}_* = \text{class of all compact sets}$? Does not work, since \mathcal{U}_* is not a set
 - $U_* = V_{\omega} = \text{set of all hereditarily finite sets?}$ Does not work, since V_{ω} is not closed under dependent products

The semantics of proof-irrelevance

Solution: B is a proposition iff Card(B) < 2

(0 or 1 element)

Proposition (Closure under dependent product)

If $Card(B_x) < 2$ for all $x \in A$ (A any), then $Card(\prod B_x) < 2$:

$$\prod_{x \in A} B_x = \begin{cases} \varnothing & \text{if } B_x = \varnothing \text{ for some } x \in A \\ \{(x \mapsto b_x)\} & \text{if } B_x = \{b_x\} \text{ for all } x \in A \end{cases}$$

Intuitions:

- $B_x = \emptyset$ is the false proposition
- $B_x = \{b_x\}$ is a true proposition, with only one proof b_x
- \Rightarrow Set-theoretic $\prod B_x$ mimics the Tarski semantics of \forall $x \in A$

The semantics of proof-irrelevance

- We take: $\mathcal{U}_* := \{\varnothing, \{\bullet\}\} \ (= \mathfrak{P}(\{\bullet\}))$ ($\bullet = \text{canonical proof}$)
- **Beware!** To ensure that \mathcal{U}_* is closed under dependent products. we need to identify each constant function $(x \in A \mapsto \bullet)$ with \bullet
- For that we let := \emptyset and replace each graph f of a function by its trace Tr(f)(notion that comes from domain theory)

$$\operatorname{Tr}(f) \ = \ \{(x,z) \ : \ x \in \operatorname{dom}(f) \ \land \ z \in f(x)\}$$
 (So that $\operatorname{Tr}(x \mapsto \bullet) = \varnothing = \bullet$)

- Interpretation of λ , app. and Π has to be modified accordingly
- Thanks to this trick, we get:

Proposition (Closure under dependent product)

If
$$B_x \in \mathcal{U}_*$$
 for all $x \in A$ (A any), then $\prod_{x \in A} B_x \in \mathcal{U}_*$

Inductive definitions

Inductive definitions work the same way in set theory as in type theory

- ullet Each inductive definition (in a Grothendieck universe \mathcal{U}) consists to define a monotonic operator $\Phi: \mathcal{U} \to \mathcal{U}$ ("the constructors") and then to take its least fixed point in \mathcal{U}
- For instance, the type of binary trees with leaves in A

```
Inductive bintree (A : Type) : Type :=
| Leaf : A \rightarrow bintree A
| Node : bintree A \rightarrow bintree A \rightarrow bintree A
```

is represented by the family of operators $\Phi_A: \mathcal{U} \to \mathcal{U}$ defined by

$$\Phi(X) = A + (X \times X)$$

indexed by $A \in \mathcal{U}$

(here: + is disjoint union)

 Positivity conditions (on the types of the constructors' arguments) ensure that Φ is monotonic and has a least fixed point in \mathcal{U}

Glueing everything together

Let
$$\mathscr{M}:=\bigcup_{i\in\omega}\mathcal{U}_i$$

(transitive set)

- A valuation in \mathcal{M} is any function $\rho \in \mathcal{M}^{\mathcal{X}}$ (where \mathcal{X} is the set of all type-theoretic variables)
- To each raw term M, we associate its interpretation

$$(\rho \mapsto \llbracket M \rrbracket_{\rho}) : \mathscr{M}^{\mathcal{X}} \rightharpoonup \mathscr{M}$$
 (partial function)

that is defined by structural induction on M:

 $[\![M]\!]_{\rho}$ (that is not always defined) only depends on the values of ρ corresponding to the free variables of M

Glueing everything together

(2/2)

The interpretation is extended to typing contexts:

$$\llbracket \Gamma \rrbracket \ := \ \big\{ \rho \in \mathscr{M}^{\mathcal{X}} \ : \ \llbracket T \rrbracket_{\rho} \ \text{defined and} \ \rho(x) \in \llbracket T \rrbracket_{\rho} \\ \text{for each declaration} \ (x : T) \in \Gamma \big\}$$

Theorem (Soundness)

If a typing judgment $\Gamma \vdash M : T$ is derivable in the Calculus of Inductive Constructions (CIC), then for all valuations $\rho \in \llbracket \Gamma \rrbracket$:

- $lacksquare{1}{1} M lacksquare{1}{1}_{
 ho}$ and $[T]_{
 ho}$ are defined, and
- - Recall that False := $\Pi X : Prop . X$ (: Prop)

Corollary (Consistency)

There is no closed proof-term M such that $\vdash M$: False

Proof: Indeed, we have
$$[[False]] = [[\Pi X : Prop. X]] = \prod_{A \in \mathcal{U}_*} A = \varnothing$$

An absolute consistency proof

- In the former slides, we constructed the simplest set-theoretic model of CIC: the proof-irrelevant model
- From this, we got a proof of consistency of CIC within $ZF + SI^{\omega}$ (used as a "metatheory"):

$$ZF + SI^{\omega} \vdash Cons(CIC)$$

• This is a result of absolute consistency, which is written

$$CIC < ZF + SI^{\omega}$$

- More generally, we write A < B when the consistency of A is provable in B. This statement implicitly assumes that:
 - 1 The theory A is recursive (to be formalizable in Heyting arithmetic)
 - 2 The theory B contains Heyting arithmetic (so it can formalize A)

The relation $\ A < B \$ is known to be irreflexive (by the second incompleteness theorem) and transitive

• Recall: This construction is incompatible with univalence

Sets in types

•0000000000000000

Plan

- A primer in set theory
- 2 Types in sets
- Sets in types
- Going further

Translating set theory into type theory

Translating type theory into set theory is quite easy

Translate typed constructions into their set-theoretic equivalents... ... and forget about type constraints!

Translating set theory into type theory is much more difficult

```
How to embed a world with little constraints (set theory) into a world with many constraints (type theory)?
```

- **Idea:** Define a universal type for representing sets
- Two known methods for achieving this:
 - Sets as well-founded trees
 - Sets as pointed graphs

[Aczel '77, Werner '97]

[M. 2000]

Sets as well-founded trees

[Aczel '77, Werner '98]

Consider the inductive definition (Coq):

Inductive U : Type :=
$$|$$
 node : $\forall X : Set, (X \rightarrow U) \rightarrow U.$

- Each object u: U is of the form $u \equiv \text{node } X f$, where:
 - X : Set is the type of branching (index type)
 - $f: X \to U$ is the family of children of t

Examples of sets as well-founded trees

• Von Neumann numerals: $0 = \emptyset$, $1 = \{0\} = \{\emptyset\}$, $2 = \{0, 1\} = \{\emptyset, \{\emptyset\}\}, \quad 3 = \{0, 1, 2\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}, \text{ etc.}$

Sets in types

• The set ω of natural numbers: $\omega = \{0, 1, 2, 3, 4, \ldots\}$

• Exercise: Implement 0, 1, 2, ..., ω as objects of type U in Coq

• The same set can be represented by many well-founded trees:

Sets in types

- Need an extensional collapse
- Recursive definition of extensional equality (Cog):

Fixpoint eqv
$$(u : U)$$
 $(v : U)$: Prop := let 'node $X f := u$ in let 'node $Y g := v$ in $(\forall x : X, \exists y : Y, \text{ eqv } (f x) (g y)) \land (\forall y : Y, \exists x : X, \text{ eqv } (f x) (g y)).$

• **Exercise:** Prove that 'eqv' is an equivalence relation on U.

Defining membership

Membership relation (∈) is defined by:

Definition mem
$$(u : U) (v : U) : Prop :=$$
let 'node $Yg := v$ in $\exists y : Y$, eqv $u (gy)$.

Sets in types

• **Exercise:** Prove that 'mem' is compatible with 'eqv':

```
\forall u : U, \forall v : U, \forall u' : U, \text{ mem } u \lor \rightarrow \text{eqv } u \lor u' \rightarrow \text{mem } u' \lor u'
\forall u : U, \forall v : U, \forall v' : U, \text{ mem } u v \rightarrow \text{eqv } v v' \rightarrow \text{mem } u v'
```

- Remark: The fact that 'mem' is compatible with 'eqv' implies that any first-order formula $\phi(u_1,\ldots,u_n)$ constructed from the only primitive predicates 'eqv' and 'mem' is compatible with 'eqv' in each argument u_i . Hence 'eqv' behaves as Leibniz equality w.r.t. the language of set theory
- **Exercise:** Prove the axiom of extensionality:

```
\forall u : U, \forall v : U, (\forall w : U, \text{ mem } w u \leftrightarrow \text{mem } w v) \rightarrow \text{eqv } u v
```

Proving the axioms of set theory

(1/2)

- Exercise: Interpreting $=/\in$ as eqv/mem, prove in Coq:
 - The pairing axiom $\forall a: U, \ \forall b: U, \ \exists c: U, \ \forall x: U, \ \text{mem} \ x \ c \leftrightarrow \ \text{eqv} \ x \ a \lor \text{eqv} \ x \ b$
 - ② The union axiom: $\forall a: U, \exists b: U, \forall x: U, \text{ mem } x b \leftrightarrow \exists y: U, \text{ mem } y a \land \text{mem } x y$
 - **③** The comprehension scheme: $\forall P: U \rightarrow Prop, \ compat P \rightarrow \forall a: U, \ \exists b: U, \ \forall x: U, \ mem x b \leftrightarrow mem x a \land P x$ where compat $P := \forall x: U, \ \forall x': U, \ P x \rightarrow eqv x x' \rightarrow P x'$
 - **③** The powerset axiom $\forall a: U, \exists b: U, \forall x: U, \text{ mem } x b \leftrightarrow \text{sub } x a$ where $\text{sub } x y := \forall z: U, \text{ mem } z x \rightarrow \text{mem } z y$
 - The infinity axiom
- Exercise: Prove that the relation 'mem' is well-founded on U

 This property is classically equivalent to the Foundation axiom

Proving the axioms of set theory

(2/2)

 The former results show that all axioms, and thus all theorems of Intuitionistic Zermelo set theory (IZ) are provable in Coq

$$IZ < CIC_2$$
 (= CIC with 2 universes) [Werner '97]

- The replacement scheme does not hold, but we have bits of it
- For instance, it is known that the set

$$X = \bigcup_{n \in \omega} \mathfrak{P}^n(\omega) = \bigcup_{n \in \omega} \underbrace{\mathfrak{P}(\cdots \mathfrak{P}(\omega) \cdots)}_{n}$$

is not definable in (I)Z, and requires at least an instance of the replacement scheme to be constructed (in IZF)

• Exercise: Construct a well-founded tree that represents X

Some results

• The representation of sets as well-founded trees was introduced by Peter Aczel (1977) in Martin-Löf type theory (MLTT).

From this representation, Aczel extracted a new (constructive) axiomatization of set theory: Constructive Zermelo Fraenkel (CZF)

Note: In CZF, the Powerset axiom is replaced by an Exponentiation axiom

• Using the same representation of sets in the Coq proof assistant, Benjamin Werner (1997) observed that:

$$IZ + bits of replacement < CIC2 (= CIC with 2 universes)$$

Proof-theoretically, we actually have

CZF
$$<$$
 MLTT (with 1 universe) $<$ HA2 $<$ HA ω $<$ IZ $<$ CIC $_2$ where HA2 (resp. HA ω) is second-order (resp. higher-order) Heyting arithmetic

From well-founded trees to pointed graphs

- The representation of sets as well-founded trees is convenient to give set-theoretic lower bounds to type theories with inductive types
- Its main drawback is that it crucially relies on the presence of generalized inductive types in the target formalism

How to represent sets in a formalism without inductive types, for instance in a Pure Type System (PTS)?

⇒ Representing sets as pointed graphs

[M. 2000]

Sets as pointed graphs

[M. 2000]

A pointed graph is a triple (X, A, a) where:

- X is a type (the type of vertices)
- lacktriangledown A: X o X o Prop is a binary relation on X (the arc relation)
- \bullet a: X is a distinguished point (the root of the p. graph)

Examples:

$$2 = \{\varnothing, \{\varnothing\}\} \qquad 3 = \{\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}\} \qquad x = \{\{x\}\}$$

Note: Pointed graphs allow the representation of cyclic sets, or more generally: non-well-founded sets

Equality as bisimilarity

- Again, a given set can be represented by many pointed graphs
- Extensional collapse is achieved via the relation of bisimilarity

$$(X,A,a)\approx (Y,B,b) :\equiv$$

$$\exists R: X \to Y \to \mathsf{Prop},$$

Sets in types

- (2) $(\forall y \ y' : Y, \ \forall x : X, \ B \ y' \ y \land R \ x \ y \rightarrow \exists x' : X, \ R \ x' \ y' \land A \ x' \ x) \land$
- (3)Rab

Set theory

Sets in types

Membership as shifted bisimilarity

• Extensional membership (\in) is interpreted as shifted bisimilarity

$$(X, A, a) \in (Y, B, b) :\equiv$$

 $\exists b' : Y, B b' b \land (X, A, a) \approx (Y, B, b')$

Compatibility with bisimilarity

• In what follows, we write:

$$\forall (X, A, a), \cdots :\equiv \forall X : \mathsf{Type}, \ \forall A : X \to X \to \mathsf{Prop}, \ \forall a : X, \cdots \\ \exists (X, A, a), \cdots :\equiv \exists X : \mathsf{Type}, \ \exists A : X \to X \to \mathsf{Prop}, \ \exists a : X, \cdots$$

ullet Exercise: Prove that \in is compatible with pprox

$$\forall (X, A, a), \ \forall (Y, B, b), \ \forall (X', A', a'), \\ (X, A, a) \in (Y, B, b) \to (X, A, a) \approx (X', A, a') \to (X', A', a') \in (Y, B, b)$$

$$\forall (X, A, a), \ \forall (Y, B, b), \ \forall (Y', B', b'), \\ (X, A, a) \in (Y, B, b) \to (Y, B, b) \approx (Y', B', b') \to (X, A, a) \in (Y', B', b')$$

• Exercise: Prove the axiom of extensionality

$$\forall (X, A, a), \ \forall (Y, B, b), \\ (\forall (Z, C, c), \ (Z, C, c) \in (X, A, a) \leftrightarrow (Z, C, c) \in (Y, B, b)) \\ \rightarrow (X, A, a) \approx (Y, B, b)$$

• Exercise: Prove the other Zermelo axioms (without Foundation), without using any inductive datatype of Coq

The Antifoundation axiom (AFA)

[Aczel '88]

The sets-as-pointed-graphs representation is incompatible with the Foundation axiom, but it satisfies the Antifoundation axiom (AFA)

• (Going back to set theory) Given a digraph G = (V, A), we call a reification of G any family of sets $(x_i)_{i \in V}$ such that

$$x_i = \{x_j : (j,i) \in A\}$$
 for all $i \in V$

Sets in types

00000000000000000

 Using Replacement, it is easy to see that each well-founded digraph has a unique reification. On the other hand, the Foundation axiom implies that non well-founded digraphs have no reification

This naturally motivates the:

Antifoundation axiom (AFA)

Every digraph has a unique reification

• Using this axiom, we can prove (for instance) that there exists a unique set x such that $x = \{x\}$

• This representation of sets allows us to prove all axioms/theorems of Intuitionistic Zermelo set theory with Antifoundation (IZ + AFA) in the Calculus of Constructions with 3 universes (CC₃)

$$IZ + AFA < CC_3$$
 [M. 2001]

Recall that CC₃ has no inductive datatypes at all

Uses a mixture of impredicative encodings (for defining the connectives and \exists) and predicative encodings (to define the carriers of pointed graphs)

- Why 3 universes?
 - Type₀ is the "bootstrap universe" (contains no provably infinite type) The bootstrap universe allows us to construct the first infinite type $N := \Pi X : \mathsf{Type}_0, \ X \to (X \to X) \to X : \mathsf{Type}_1$
 - Type₁ is the type of carriers of pointed graphs
 - Top universe Type₂ is only used for the rule (Type₂, Prop, Prop), that allows to express quantifications over all sets

Plan

Set theory

- A primer in set theory
- 2 Types in sets
- Sets in types
- Going further

Going further...

A natural question:

What is the smallest type theory that allows us to get IZ (+ AFA)via the sets-as-pointed-graphs representation?

Such a type theory should contain:

- An impredicative sort Prop of propositions
- A predicative universe Type to build the carriers of pointed graphs
- A infinite datatype Nat : Type (or a bootstrap universe Type₀ : Type)
- A top sort (Type') to allow quantifying over all X : Type (via the PTS axiom Type: Type' and rule (Type', Prop, Prop))

HOL⁺: Syntax & typing

Types
$$au, \sigma ::= \alpha \mid \mathsf{Prop} \mid \mathsf{Nat} \mid \tau \to \sigma$$

Typing contexts
$$\Sigma ::= x_1 : \tau_1, \dots, x_n : \tau_n \qquad (x_1 \not\equiv x_i \text{ if } i \neq j)$$

Typing rules:

$$\frac{\sum \vdash x : \tau}{\sum \vdash x : \tau} \xrightarrow{(x : \tau) \in \Sigma} \frac{\sum , x : \tau \vdash M : \sigma}{\sum \vdash \lambda x^{\tau} \cdot M : \tau \to \sigma} \xrightarrow{\sum \vdash M : \tau \to \sigma} \frac{\sum \vdash N : \tau}{\sum \vdash MN : \sigma}$$

$$\frac{\sum \vdash A : \mathsf{Prop}}{\sum \vdash A \Rightarrow B : \mathsf{Prop}} \xrightarrow{\sum \vdash \forall x \in A} \frac{\sum \vdash A : \mathsf{Prop}}{\sum \vdash \forall x^{\tau} \cdot A : \mathsf{Prop}} \xrightarrow{\sum \vdash A : \mathsf{Prop}} \frac{\sum \vdash A : \mathsf{Prop}}{\sum \vdash \forall \alpha \cdot A : \mathsf{Prop}} \xrightarrow{\alpha \notin TV(A)}$$

$$\frac{\sum \vdash 0 : \iota}{\sum \vdash S : \iota \to \iota} \xrightarrow{\sum \vdash \mathsf{rec}_{\tau} : \tau \to (\iota \to \tau \to \tau) \to \iota \to \tau}$$

Underlying PTS: $F\omega + \text{Nat} + (\text{Type} : \text{Type}') + (\text{Type}', \text{Prop}, \text{Prop})$

HOL⁺: Reduction

$$(\lambda x^{\tau}.M)N \rightarrow M\{x := N\}$$
 $\operatorname{rec}_{\tau} M_0 M_1 0 \rightarrow M_0$
 $\operatorname{rec}_{\tau} M_0 M_1(SN) \rightarrow M_1 N (\operatorname{rec}_{\tau} M_0 M_1 N)$

As usual, we write

- ullet the reflexive-symmetric-transitive closure of \succ (conversion)
- Church-Rosser + Subject reduction

HOL⁺: Deduction

Logical contexts:

$$\Gamma := A_1, \ldots, A_n$$

Deduction rules:

$$\langle \Sigma \rangle A_1, \dots, A_n \vdash A_i$$

$$\frac{\langle \Sigma \rangle \Gamma, A \vdash B}{\langle \Sigma \rangle \Gamma \vdash A \Rightarrow B}$$

$$\frac{\langle \Sigma, x : \tau \rangle \Gamma \vdash A}{\langle \Sigma \rangle \Gamma \vdash \forall x^{\tau}. A}$$

$$\frac{\langle \Sigma \rangle \Gamma \vdash A}{\langle \Sigma \rangle \Gamma \vdash \forall \alpha. A} \stackrel{\alpha \notin TV(\Sigma, \Gamma)}{\alpha}$$

 $\Sigma \vdash A_i : \mathsf{Prop} \quad (1 \leq i \leq n)$

$$\frac{\langle \Sigma \rangle \ \Gamma \vdash A \qquad \Sigma \vdash A' : \mathsf{Prop}}{\langle \Sigma \rangle \ \Gamma \vdash A'} \xrightarrow{A \cong A'}$$

$$\frac{\langle \Sigma \rangle \ \Gamma \vdash A \Rightarrow B \qquad \langle \Sigma \rangle \ \Gamma \vdash A}{\langle \Sigma \rangle \ \Gamma \vdash B}$$

$$\frac{\langle \Sigma \rangle \ \Gamma \vdash \forall x^{\tau}. \ A \qquad \Sigma \vdash N : \tau}{\langle \Sigma \rangle \ \Gamma \vdash A \{x := N\}}$$

$$\frac{\langle \Sigma \rangle \ \Gamma \vdash \forall \alpha. \ A}{\langle \Sigma \rangle \ \Gamma \vdash A \{\alpha := \tau\}}$$

Zermelo set theory (recall)

 $\forall a \ \forall b \ (\forall x (x \in a \Leftrightarrow x \in b) \Rightarrow a = b)$ Extensionality

Pairing $\forall a \ \forall b \ \exists c \ \forall x \ (x \in c \Leftrightarrow x = a \lor x = b)$

Comprehension $\forall a \exists b \ \forall x \ (x \in b \Leftrightarrow x \in a \land \phi(x))$

for each formula $\phi(x)$

Union $\forall a \exists b \ \forall x \ (x \in b \iff \exists y \in a \ x \in y)$

Powerset $\forall a \exists b \ \forall x \ (x \in b \Leftrightarrow x \subseteq a)$

 $\exists a \ (\exists x \in a \ \forall z \ (z \notin x) \ \land$ Infinity

 $\forall x \in a \ \exists y \in a \ \forall z \ (z \in y \Leftrightarrow z \in x \lor z = x))$

Z / IZ = classical/intuitionistic Zermelo set theory

HOL⁺ (recall)

 τ, σ ::= α | Prop | Nat | $\tau \to \sigma$ Types

Typing contexts
$$\Sigma ::= x_1 : \tau_1, \dots, x_n : \tau_n \qquad (x_1 \neq x_i \text{ if } i \neq j)$$

Typing rules:

$$\frac{\sum \vdash x : \tau}{\sum \vdash x : \tau} \xrightarrow{(x : \tau) \in \Sigma} \frac{\sum x : \tau \vdash M : \sigma}{\sum \vdash \lambda x^{\tau} \cdot M : \tau \to \sigma} \frac{\sum \vdash M : \tau \to \sigma}{\sum \vdash MN : \sigma} \frac{\sum \vdash N : \tau}{\sum \vdash MN : \sigma}$$

$$\frac{\sum \vdash A : \mathsf{Prop}}{\sum \vdash A \Rightarrow B : \mathsf{Prop}} \frac{\sum x : \tau \vdash A : \mathsf{Prop}}{\sum \vdash \forall x^{\tau} \cdot A : \mathsf{Prop}} \frac{\sum \vdash A : \mathsf{Prop}}{\sum \vdash \forall \alpha \cdot A : \mathsf{Prop}} \frac{\varphi TV(A)}{\sum \vdash \forall \alpha \cdot A : \mathsf{Prop}}$$

Underlying PTS: $F\omega + \text{Nat} + (\text{Type} : \text{Type}') + (\text{Type}', \text{Prop}, \text{Prop})$

ulconsistency

Theorem [M. 2009]

The theories

IZ, IZ + FA, IZ + AFA and
$$HOL^+$$

are equiconsistent

Moreover, these theories prove the very same arithmetic formulas

Remarks:

- FA (Foundation axiom) is an axiom scheme in intuitionitic logic (i.e.: "the relation ∈ is well-founded")
- The equiconsistency $Z \approx Z + FA \approx Z + AFA$ (in classical logic) was already known before [Esser & Hinnion '99]
- The real novelty is: $IZ \approx HOL^+$ (set theory \approx type theory)
- We can replace HOL⁺ by the Pure Type System λZ [M. 2005]

Architecture of the proof

- Translate sets (IZ) into pointed graphs (HOL⁺)
 - Each variable x (IZ) is turned into three variables α_x , A_x , a_x (HOL⁺)
 - Each formula ϕ (IZ) is turned into a proposition ϕ^* (HOL⁺)
 - **Soundness:** If $IZ + AFA \vdash \phi$, then $HOL^+ \vdash \phi^*$
 - Corollary: If $IZ + AFA \vdash \bot$, then $HOL^+ \vdash \bot$

Therefore: $IZ + AFA \leq HOL^+$ (relative consistency)

- Translate types (HOL⁺) into sets (IZ^{sk})
 - Each type τ (HOL⁺) is turned into a set τ^{\dagger} (IZ^{sk})
 - Each term object $M: \tau$ (HOL⁺) is turned into a set $M^{\dagger} \in \tau^{\dagger}$ (IZ^{sk}) In particular, each proposition A is turned into a subset $A^{\dagger} \subseteq \{\bullet\}$
 - Soundness: If $HOL^+ \vdash A$, then $IZ^{sk} \vdash \bullet \in A^{\dagger}$
 - Corollary: If $IZ + AFA \vdash \bot$, then $HOL^+ \vdash \bot$

Therefore: $HOL^+ \le IZ^{sk}$ (relative consistency)

3 Compose both translations $\phi \mapsto \phi^*$ and $A \mapsto A^{\dagger}$

The proof diagram

From this, it follows that:

- **1** HOL⁺ is a conservative extension of IZ + AFA (via the map $\phi \mapsto \phi^*$)
- \bullet IZ, IZ + AFA and HOL⁺ prove the same arithmetic formulas

The case of IZ + FA is treated separately

What about classical systems?

Using Friedman's A-translation (in set theory), we have:

• ZF \approx IZFc

[Friedman '73]

With the same method, we also get:

- 7 ≈ 17
- $Z + FA \approx IZ + FA$
- $Z + AFA \approx IZ + AFA$

Therefore:

Theorem

[M. 2005, 2009]

The following theories are equiconsistent:

What about replacement?

A long quest for cut elimination:

$$\bullet$$
 PA \approx HA \rightsquigarrow System T [Gödel '58, Tait '67]

$$\bullet$$
 PA2 \approx HA2 \rightsquigarrow System F [Girard '69]

$$\bullet$$
 PA $\omega \approx HA\omega \longrightarrow System F ω [Girard '72]$

•
$$Z \approx IZ \approx HOL^+ \rightarrow \lambda HOL^+$$
 [M. 2009]

• ZF
$$\approx$$
 IZF_C \approx HOL⁺ + D \rightsquigarrow λ (HOL⁺ + D) [M. 2009]

where D is the domination scheme:

$$(\forall x : \tau . \operatorname{mon} \beta . R(x, \beta)) \Rightarrow (\forall x : \tau . P(x) \Rightarrow \exists \beta . R(x, \beta)) \Rightarrow \exists \beta . \forall x : \tau . P(x) \Rightarrow R(x, \beta)$$

where $\operatorname{\mathsf{mon}} \beta \cdot A(\beta) \equiv \forall \beta, \beta' \cdot \forall f : (\beta \to \beta') \cdot \operatorname{\mathsf{inj}}(\beta, \beta', f) \Rightarrow A(\beta) \Rightarrow A(\beta')$

$$\begin{array}{lll} \lambda(\mathsf{HOL}^+ + D) &= \\ \lambda \mathsf{HOL}^+ &+ \mathsf{proof} \; \mathsf{term} \; \; \lambda \xi_1 \xi_2 \psi \, . \, \psi \left(\lambda \rho \, . \, \xi_2 \, \rho \left(\xi_1 \, \mathbf{I} \right) \right) \; : \; D \end{array} \tag{keeps SN)} \\ \end{array}$$