① NOFM (벡터의 Zol) i) 기호 : V=(x,y)라 할때 v의 NoFm은) हें दे	$ V = \int X^2 + y^2$	라고 쓰다.	전기 0 로 시주 1
*참고 고치원뿐만 아니라, n 차원으로 화장시키면, V= (V,,V2, …,Vn)라고 할때, NVN = 원ニVx²3½ 이다.		€ عالالاتدا ب	यदाइ शक्तम	. 쉽게 유도 가능!

- ② norm의 성질 ;) || V || ≥ 0 (길이니까 항상 양수다. 물론 명백터가 존재하므로 0일 수도 있다.)
 - ii) $\| v \| = 0 \iff v = \overrightarrow{0}$
- ③ 단위벡터 (unit vector) : 김이가 1인 벡터
 - ⇒ 임의의 벡터 V를 단위벡터로 만드려면 norm의 역수호 스꽝스 배 해주면 된다. ex) 11111 V
- ④ 표준단위벡터 (Standard unit vector)

 ⇒ 한 개의 좌표만 1이고 나머지 좌표는 모두 0인 벡터

 ex) (1,0,0), (0,1,0)

 기호는 e, e₂,e₃, …
- (5) 거리 (distance)

 V, = (X,, y,), V₂ = (X₂, y₂) 라고 할 때

 V,과 V₂ 사이의 거리 d= √(X₂-X₁)² (У₂-У₁)² 이다.
 그리고 결국 d= || ½-V₁| 가 된다.

 d(V, ½) 라고 포현할 수도 있다.
- ⑥ 접 곱(Dot Product) V,=(X,,y,), V=(X2,Y2)라고 향 때 V,·V=X,·X2+Y,·Y2 로 정의 한다.
- ① 연산법칙
 - i) 교환법칙 Vi·Va = Va·Vi
 - (i) 분배법칙 (V·(V+W) = U·V+W·W 4 U=(U,,U2), V=(U,,V2), W=(W,W2) 기계 회사되었다.

1	<u> </u>	_

$$\widetilde{(u)} \wedge \overline{2} = (ku) \cdot V = u \cdot (kv)$$