Zero-shot Text Classification via Reinforced Self-training

Zhiquan Ye, Yuxia Geng, Jiaoyan Chen, Xiaoxiao Xu, Suhang Zheng, Feng Wang, Jingmin Chen, Jun Zhang, Huajun Chen

ACL 2020

Motivation

- Zeroshot method
 - Embedding text and label into joint space
 - Matching text and label representation
- A self-training based method to leverage unlabeled data in zero-shot text classification
- A reinforcement learning framework to learn data selection policy automatically instead of using manually designed heuristics

Supervised Learning vs Zeroshot Learning

Figure 1: Illustration of the traditional classifier and standard ZSL model.

Model overview

Figure 2: Overview of our reinforced self-training framework for zero-shot text classification.

Figure 3: BERT as the base matching model.

Reinforcement Learning for Self-training

Self-training:

- Predict label on unlabeled data
- Select samples with high confidence

States

- \circ Prediction confidence p_{x,y^*} ,
- Representation of text c_{x,y^*}

Action

Select instance or not $P(a|s_t)$.

Reward

- Train the model on selected data, evaluate on dev set
- Dev set contains labeled and unlabeled data

$$r_k = \frac{(F_k^s - \mu^s)}{\sigma^s} + \lambda \cdot \frac{(F_k^u - \mu^u)}{\sigma^u}$$

Reinforcement Learning for Self-training (2)

Policy network

$$z_t = ReLU(W_1^T c_{x,y^*} + W_2^T p_{x,y^*} + b_1), \quad (5)$$

$$P(a|s_t) = softmax(W_3^T z_t + b_2) .$$
(6)

Optimization

$$J(\phi) = E_{P_{\phi}(a|s)}[R(s,a)] ,$$

13: for $k = 1 \rightarrow N_3$ do //batch k				
14: Get a batch B_k from Ω .				
15: Decide action for each instance in				
16: B_k , get selected instances B_k^p .				
17: Train model f' with B_k^p .				
18: Evaluate on \mathcal{D}_{dev}^s and \mathcal{D}_{dev}^u ,				
19: $\operatorname{get} F_k^s, F_k^u.$				
20: end for				
21: Compute rewards $\{r_k\}_{k=1}^{N_3}$ by equa-				
22: tion 4.				
23: // update policy network				
24: for $k=1 o N_3$ do				
25: $\phi \leftarrow \phi + \eta \frac{r_k}{ B_k } \sum_{t=1}^{ B_k } \nabla_{\phi} log P(a_t s_t)$				
26: end for				
27: end for				
$28: \qquad \mathcal{D}_i^p \leftarrow \cup_{k=1}^{N_3} B_k^p$				
29: $\mathcal{D}^{p} \leftarrow \mathcal{D}^{p} \cup \mathcal{D}^{p}_{i}$				
30: $\mathcal{D}^u \leftarrow \mathcal{D}^u \setminus \mathcal{D}_i^{p}$				
31: $\mathcal{D}^u_{dev} \leftarrow \mathcal{D}^p$.				
32: end for				

Results

	Topic		Emotion		Situation		E-commerce	
	I	II	I	II	I	II	I	II
Word2vec	35.50	35.33	4.77	11.45	40.67	36.33	53.09	55.47
Label similarity	34.62	36.14	10.63	16.89	54.56	37.45	59.04	55.89
FC	19.45	22.46	27.36	8.31	24.33	25.01	26.40	22.45
RNN+FC	9.68	13.41	15.45	3.15	15.58	14.09	25.76	18.15
BERT	57.07	45.50	16.86	10.21	60.23	34.15	58.05	66.47
BERT+self-training	72.21	62.90	31.96	19.72	69.00	49.30	65.14	76.72
BERT+RL	73.41	65.53	36.98	19.38	73.14	52.44	70.63	80.32