Project ID: C23-M001-01362 Report No.: AA-23-02854_ONC Date Reported: May 19, 2023

ACTOnco® + Report

PATIENT	
Identifier: 陳江玉美	Patient ID: 1372050
Date of Birth: Oct 01, 1952	Gender: Female
Diagnosis: Pancreatic cancer	
ORDERING PHYSICIAN	
Name: 趙大中醫師	Tel: 886-228712121
Facility: 臺北榮總	
Address: 臺北市北投區石牌路二段 201 號	
SPECIMEN	
Specimen ID: S11218989A Collection site: Liver	Type: FFPE tissue
Date received: May 09, 2023 Lab ID: AA-23-02854	D/ID: NA

ABOUT ACTORCO®+

The test is a next-generation sequencing (NGS)-based assay developed for efficient and comprehensive genomic profiling of cancers. This test interrogates coding regions of 440 genes associated with cancer treatment, prognosis and diagnosis. Genetic mutations detected by this test include small-scale mutations like single nucleotide variants (SNVs), small insertions and deletions (InDels) (≤ 15 nucleotides) and large-scale genomic alterations like copy number alterations (CNAs). The test also includes an RNA test, detecting fusion transcripts of 13 genes.

SUMMARY FOR ACTIONABLE VARIANTS VARIANTS/BIOMARKERS WITH EVIDENCE OF CLINICAL SIGNIFICANCE

Genomic	Probable Effects in F	atient's Cancer Type	Probable Sensitive in Other
Alterations/Biomarkers	Sensitive	Resistant	Cancer Types
	Not de	tected	

VARIANTS/BIOMARKERS WITH POTENTIAL CLINICAL SIGNIFICANCE

Genomic Alterations/Biomarkers	Possibly Sensitive	Possibly Resistant
KRAS G12D	-	Cetuximab, Panitumumab

Note:

- The above summary tables present genomic variants and biomarkers based on the three-tiered approach proposed by US FDA for reporting tumor profiling NGS testing. "Variants/biomarkers with evidence of clinical significance" refers to mutations that are widely recognized as standard-of-care biomarkers (FDA level 2/AMP tier 1). "Variants/biomarkers with potential clinical significance" refers to mutations that are not included in the standard of care but are informational for clinicians, which are commonly biomarkers used as inclusion criterial for clinical trials (FDA level 3/AMP tier 2).
- The therapeutic agents and possible effects to a given drug are based on mapping the variants/biomarkers with ACT Genomics clinical knowledge database. The mapping results only provide information for reference, but not medical recommendation.
- Please refer to corresponding sections for more detailed information about genomic alteration and clinical relevance listed above.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 1 of 36

Project ID: C23-M001-01362 Report No.: AA-23-02854_ONC Date Reported: May 19, 2023

ACTOnco® + Report

TESTING RESULTS

VARIANT(S) WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Allele Frequency
KMT2D	L2986*	38.7%
KRAS	G12D	41.7%
TP53	Q192*	77.7%

- Copy Number Alterations

Chromosome	Gene	Variation	Copy Number
Chr18	SMAD4	Heterozygous deletion	1
Chr19	ERCC1, STK11	Heterozygous deletion	1
Chr22	CHEK2, NF2	Heterozygous deletion	1
Chr3	BAP1, MLH1	Heterozygous deletion	1
Chr5	RAD50	Heterozygous deletion	1
Chr9	CDKN2A	Heterozygous deletion	1

- Fusions

Fusion Gene & Exon	Transcript ID
	No fusion gene detected in this sample

- Immune Checkpoint Inhibitor (ICI) Related Biomarkers

Biomarker	Results
Tumor Mutational Burden (TMB)	1.3 muts/Mb
Microsatellite Instability (MSI)	Microsatellite stable (MSS)

Note:

- Variant(s) enlisted in the SNV table may currently exhibit no relevance to treatment response prediction. Please refer to INTERPRETATION for more biological information and/or potential clinical impacts of the variants.
- Loss of heterozygosity (LOH) information was used to infer tumor cellularity. Copy number alteration in the tumor was determined based on 76% tumor purity.
- For more therapeutic agents which are possibly respond to heterozygous deletion of genes listed above, please refer to APPENDIX for more information.
- TMB was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The threshold for high mutation load is set at ≥ 7.5 mutations per megabase. TMB, microsatellite status and gene copy number deletion cannot be determined if calculated tumor purity is < 30%.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **2** of **36**

Project ID: C23-M001-01362 Report No.: AA-23-02854_ONC Date Reported: May 19, 2023

ACTOnco® + Report

THERAPEUTIC IMPLICATIONS

TARGETED THERAPIES

Genomic Alterations	Therapies	Effect
Level 3A		
KRAS G12D	Cetuximab, Panitumumab	resistant

Therapies associated with benefit or lack of benefit are based on biomarkers detected in this tumor and published evidence in professional guidelines or peer-reviewed journals.

Level	Description
1	FDA-recognized biomarkers predictive of response or resistance to FDA approved drugs in this indication
2	Standard care biomarkers (recommended by the NCCN guideline) predictive of response or resistance to FDA approved drugs in this indication
3A	Biomarkers predictive of response or resistance to therapies approved by the FDA or NCCN guideline in a different cancer type
3B	Biomarkers that serve as inclusion criteria for clinical trials (minimal supportive data required)
4	Biomarkers that show plausible therapeutic significance based on small studies, few case reports, or preclinical studies

AG4-QP4001-02(07)

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

page **3** of **36**

Project ID: C23-M001-01362 Report No.: AA-23-02854_ONC Date Reported: May 19, 2023

ACTOnco® + Report

IMMUNE CHECKPOINT INHIBITORS (ICIs)

No genomic alterations detected to confer sensitivity or lack of benefit to immune checkpoint therapies.

- Other Biomarkers with Potential Clinical Effects for ICIs

Genomic Alterations	Potential Clinical Effects
No	detected

Note: Tumor non-genomic factors, such as patient germline genetics, PDL1 expression, tumor microenvironment, epigenetic alterations or other factors not provided by this test may affect ICI response.

CHEMOTHERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to chemotherapies.

HORMONAL THERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to hormonal therapies.

OTHERS

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to other therapies.

Note:

Therapeutic implications provided in the test are based solely on the panel of 440 genes sequenced. Therefore, alterations in genes not covered in this panel, epigenetic and post-transcriptional and post-translational factors may also determine a patient's response to therapies. In addition, several other patient-associated clinical factors, including but not limited to, prior lines of therapies received, dosage and combinations with other therapeutic agents, patient's cancer types, sub-types, and/or stages, may also determine the patient's clinical response to therapies.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 4 of 36

Project ID: C23-M001-01362 Report No.: AA-23-02854 ONC

Date Reported: May 19, 2023

VARIANT INTERPRETATION

KMT2D L2986*

Biological Impact

KMT2D (Lysine methyltransferase 2D) gene encodes the histone methyltransferase MLL2, which methylates lysine residue 4 on the tail of histone H3 (H3K4) and regulates gene expression via modulating chromatin structures[1]. KMT2D mutations have been reported in bladder cancer, diffuse large B cell lymphoma (DLBCL), non-Hodgkin lymphoma, and acute myeloid leukemia[2][3][4][5], and deletion of KMT2D has been reported to lead to genomic instability in vitro[6].

L2986* mutation results in a premature truncation of the KMT2D protein at amino acid 2986 (UniProtKB). This mutation is predicted to lead to a loss of KMT2D function, despite not having characterized in the literature.

Therapeutic and prognostic relevance

A study of non-small cell lung cancer patients (n=194) indicated that patients harboring mutant KMT2D had shorter overall survival and progression-free survival compared with patients with wild-type KMT2D. However, this correlation had not found in small cell lung cancer patients[7].

Low levels of KMT2D expression was associated with better overall survival in pancreatic ductal adenocarcinoma (PDAC)[8], esophageal squamous cell carcinoma (ESCC)[9], and better disease-free survival in prostate cancer[10]. However, low expression of KMT2D had been reported to correlate with advanced stages and imatinib resistance in chronic myeloid leukemia (CML)[11].

KRAS G12D

Biological Impact

The V-Ki-Ras2 Kirsten Rat Sarcoma 2 Viral Oncogene Homolog (KRAS) gene encodes a small GTPase protein, a member of the RAS family of small GTPases, which catalyze the hydrolysis of GTP to GDP. RAS proteins cycle between an active (GTP-bound) and an inactive (GDP-bound) state, to activate the downstream oncogenic pathways, including the PI3K/AKT/mTOR and MAPK pathways[12]. KRAS mutations occur primarily in three hotspots G12, G13 and Q61, and less frequently in codon A146^{[12][13]}. These are activating mutations that lead to constitutive activation and persistent stimulation of the downstream signaling pathways^{[14][15]}. Mutations in KRAS have been reported in a diverse spectrum of human malignancies, including pancreatic carcinomas (>80%)[12][16], colon carcinomas (40-50%)[17][18], and lung carcinomas (30-50%)[19][20], but are also present in biliary tract malignancies, endometrial cancer, cervical cancer, bladder cancer, liver cancer, myeloid leukemia and breast cancer^[13].

G12D is a hotspot mutation located in the GTP binding region of the KRAS protein (UniProtKB). This mutation results in decreased KRAS GTPase activity, increased activation of downstream signaling, and promotes tumor formation in preclinical studies[21][22][23].

Therapeutic and prognostic relevance

Cetuximab and panitumumab are FDA-approved for treating RAS wild-type metastatic colorectal cancer. The NCCN for CRC recommends cetuximab and panitumumab use only if both KRAS and NRAS genes are normal.

KRAS mutation has been determined as an inclusion criterion for the trials evaluating MEK inhibitors efficacies in various types of solid tumors (NCT03704688, NCT02399943, NCT02285439, NCT03637491, NCT04214418).

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 5 of 36

Project ID: C23-M001-01362 Report No.: AA-23-02854 ONC

Date Reported: May 19, 2023

ACTOnco® + Report

KRAS mutations are associated with a lack of efficacy of EGFR TKIs^{[24][25][26]}. Some case reports suggest that MEK inhibitors may benefit patients with KRAS mutations, as shown in cervical and ovarian cancer cases (Am J Clin Exp Obstet Gynecol 2015;2(3):140-143)[27][28]. However, a randomized Phase II study did not find trametinib to be superior to docetaxel in KRAS-mutant non-small cell lung cancer patients[29]. MEK inhibitors as a monotherapy have limited response[30].

Combining MEK and mTOR inhibitors is being evaluated as a potential strategy in RAS-mutant CRC[31][32]. The combination of trametinib and palbociclib has resulted in objective responses in KRAS mutant models[33].

Sorafenib has been shown to be beneficial in KRAS-mutant CRC/NSCLC, and KRAS-amplified melanoma[34][35][36]. KRAS mutations in exon 2 (codon 12 or 13) and codon 61 have been associated with poor prognosis in CRC[37].

Patients with KRAS or BRAF mutations in low-grade serous carcinoma of the ovary or peritoneum had better overall survival than those with wild-type genes[38]. In ovarian serous borderline tumor, KRAS G12V mutation was linked to shorter survival time[39].

TP53 Q192*

Biological Impact

TP53 encodes the p53 protein, a crucial tumor suppressor that orchestrates essential cellular processes including cell cycle arrest, senescence and apoptosis[40]. TP53 is a proto-typical haploinsufficient gene, such that loss of a single copy of TP53 can result in tumor formation[41].

Q192* mutation results in a premature truncation of the p53 protein at amino acid 192 (UniProtKB). This mutation is predicted to lead to a loss of p53 function, despite not having characterized in the literature.

Therapeutic and prognostic relevance

Despite having a high mutation rate in cancers, there are currently no approved targeted therapies for TP53 mutations. A phase II trial demonstrated that Wee1 inhibitor (AZD1775) in combination with carboplatin was well tolerated and showed promising anti-tumor activity in TP53-mutated ovarian cancer refractory or resistant (< 3 months) to standard first-line therapy (NCT01164995)[42].

In a retrospective study (n=19), advanced sarcoma patients with TP53 loss-of-function mutations displayed improved progression-free survival (208 days versus 136 days) relative to patients with wild-type TP53 when treated with pazopanib^[43]. Results from another Phase I trial of advanced solid tumors (n=78) demonstrated that TP53 hotspot mutations are associated with better clinical response to the combination of pazopanib and vorinostat[44].

Advanced solid tumor and colorectal cancer patients harboring a TP53 mutation have been shown to be more sensitive to bevacizumab when compared with patients harboring wild-type TP53[45][46][47]. In a pilot trial (n=21), TP53-negative breast cancer patients demonstrated increased survival following treatment with bevacizumab in combination with chemotherapy agents, Adriamycin (doxorubicin) and Taxotere (docetaxel)[48]. TP53 mutations were correlated with poor survival of advanced breast cancer patients receiving tamoxifen or primary chemotherapy[49][50]. In a retrospective study of non-small cell lung cancer (NSCLC), TP53 mutations were associated with high expression of VEGF-A, the primary target of bevacizumab, offering a mechanistic explanation for why patients exhibit improved outcomes after bevacizumab treatment when their tumors harbor mutant TP53 versus wild-type TP53[51].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 6 of 36

Project ID: C23-M001-01362 Report No.: AA-23-02854_ONC Date Reported: May 19, 2023

ACTOnco® + Report

BAP1 Heterozygous deletion

Biological Impact

Breast cancer type 1 susceptibility protein (BRCA1)-associated protein (BAP1) encodes an enzyme with ubiquitin carboxyl hydrolase activity involved in the regulation of cell cycle, transcription, and double-strand DNA repair^{[52][53][54]}. BAP1 acts as a tumor suppressor by forming a complex with BRCA1^[55]. BAP1 is a haploinsufficient tumor suppressor with one copy loss may lead to weak protein expression and is related to renal cell carcinoma (RCC)^[56]. Inactivating mutations of BAP1 were frequently observed in uveal melanoma with high metastatic risk, malignant mesothelioma and other carcinoma types, including a subtype of renal cell carcinoma and intrahepatic cholangiocarcinoma^{[53][57][58][59]} [60][61][62]

Therapeutic and prognostic relevance

In a Phase II trial (MiST1; NCT03654833), rucaparib demonstrated manageable toxicity and clinical activity in patients with relapsed malignant mesothelioma that were negative for BAP1 (n=23), BRCA1 (n=13), or both (n=10), resulting in a 12-week disease control rate (DCR) of 58% (15/26), a 24-week DCR of 23% (6/26), and an objective response rate of 11.5% (3/26)^[63]. The loss of BAP1 was shown to be associated with increased sensitivity to PARP inhibitor, olaparib, in renal cell carcinoma (RCC)^[59] and mesothelioma cell lines^[64]. However, no difference in sensitivity to the PARP inhibitor niraparib (MK4827) was observed between BAP1-mutant and wild-type mesothelioma cell^[53]. BAP1 deficiency was also linked to a high tumor grade and was correlated with metastasis development in uveal melanoma^[57].

An open-label, non-randomized, Phase II study (NCT03207347) has been initiated, aimed at investigating the use of niraparib in mesothelioma, uveal melanoma, renal cell carcinoma, and cholangiocarcinoma patients with tumors known to have mutations in BAP1 and other selected DNA double-strand break repair pathway genes. BAP1 loss of function mutation has been selected as an inclusion criteria for the trial examining olaparib in urothelial cancer (NCT03375307) and malignant mesothelioma (NCT04515836).

CDKN2A Heterozygous deletion

Biological Impact

The Cyclin-Dependent Kinase Inhibitor 2A (CDKN2A) gene encodes the p16 (p16INK4a) and p14 (ARF) proteins. p16INK4a binds to CDK4 and CDK6, inhibiting these CDKs from binding D-type cyclins and phosphorylating the retinoblastoma (RB) protein whereas p14 (ARF) blocks the oncogenic activity of MDM2 by inhibiting MDM2-induced degradation of p53^{[65][66][67]}. CDKN2A has been reported as a haploinsufficient tumor suppressor with one copy loss that may lead to weak protein expression and is insufficient to execute its original physiological functions^[68]. Loss of CDKN2A has been frequently found in human tumors that result in uncontrolled cell proliferation^{[69][70]}.

Therapeutic and prognostic relevance

Intact p16-Cdk4-Rb axis is known to be associated with sensitivity to cyclin-dependent kinase inhibitors^{[71][72]}. Several case reports also revealed that patients with CDKN2A-deleted tumors respond to the CDK4/6-specific inhibitor treatments^{[73][74][75]}. However, there are clinical studies that demonstrated CDKN2A nuclear expression, CDKN2A/CDKN2B co-deletion, or CDKN2A inactivating mutation was not associated with clinical benefit from CDK4/6 inhibitors, such as palbociclib and ribociclib, in RB-positive patients^{[76][77][78]}. However, CDKN2A loss or mutation has been determined as an inclusion criterion for the trial evaluating CDK4/6 inhibitors efficacy in different types of solid tumors (NCT02693535, NCT02187783).

The phase II TAPUR trial demonstrated clinical benefits to palbociclib monotherapy in advanced NSCLC or head and neck cancer harboring a CDKN2A mutation or copy number loss. However, pancreatic and biliary cancer patients harboring a CDKN2A mutation or copy number loss did not demonstrate an objective response or stable disease when treated with palbociclib monotherapy for 16 weeks (DOI: 10.1200/JCO.2021.39.15 suppl.6043)^{[79][80]}.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 7 of 36

Project ID: C23-M001-01362 Report No.: AA-23-02854_ONC Date Reported: May 19, 2023

ACTOnco® + Report

Notably, the addition of several CDK4/6 inhibitors to hormone therapies, including palbociclib in combination with letrozole, ribociclib plus letrozole, and abemaciclib combines with fulvestrant, have been approved by the U.S. FDA for the treatment of ER+ and HER2- breast cancer^{[72][81][82]}.

In a Phase I trial, a KRAS wild-type squamous non-small cell lung cancer (NSCLC) patient with CDKN2A loss had a partial response when treated with CDK4/6 inhibitor abemaciclib^[74]. Administration of combined palbociclib and MEK inhibitor PD-0325901 yield promising progression-free survival among patients with KRAS mutant non-small cell lung cancer (NSCLC) (AACR 2017, Abstract CT046). Moreover, MEK inhibitor in combination with CDK4/6 inhibitor demonstrates significant anti-KRAS-mutant NSCLC activity and radiosensitizing effect in preclinical models^[83].

A retrospective analysis demonstrated that concurrent deletion of CDKN2A with EGFR mutation in patients with non-small cell lung cancer (NSCLC), predicts worse overall survival after EGFR-TKI treatment^[84].

CHEK2 Heterozygous deletion

Biological Impact

The checkpoint kinase 2 (CHEK2 or CHK2) gene encodes a serine/threonine protein kinase involved in transducing DNA damage signals that are required for both the intra-S phase and G2/M checkpoints^[85]. CHEK2 heterozygosity has been shown to cause haploinsufficient phenotypes that can contribute to tumorigenesis through inappropriate S phase entry, accumulation of DNA damage during replication, and failure to restrain mitotic entry^{[86][87]}. CHEK2 aberrations are associated with glioblastoma, breast, ovarian, prostate, colorectal, gastric, thyroid, and lung cancers^{[88][89][90][91][92]}.

Therapeutic and prognostic relevance

Olaparib is FDA-approved for treating mCRPC patients harboring mutations in homologous recombination repair (HRR) genes, including CHEK2.

CHEK2 mutation has been determined as an inclusion criterion for the trials evaluating olaparib, rucaparib, niraparib, and talazoparib efficacies in various types of solid tumors (NCT03297606, NCT01968213, NCT03840967, NCT02401347, NCT03148795).

In TBCRC 048 trial, olaparib treatment did not show response in 7 metastatic breast cancer patients with germline mutations in CHEK2 (SD: n=3, PD: n=4)^[93]. In TRITON2 trial, rucaparib treatment had limited response in 12 mCRPC patients with CHEK2 alterations^[94].

ERCC1 Heterozygous deletion

Biological Impact

The Excision Repair Cross-Complementation Group 1 (ERCC1) gene encodes a non-catalytic component of a structure-specific DNA repair endonuclease that is responsible for 5' incision. This endonuclease is a heterodimer containing ERCC1 and ERCC4 and is involves in recombinational DNA repair and in the repair of inter-strand crosslinks (ICL). In addition, ERCC1 participates in the processing of anaphase bridge-generating DNA structures. Other genes associated with the nucleotide excision repair pathway includes ERCC1-5, CDK7, DDB1–2, XPA, and XPC^[95]. ERCC1 haploinsufficiency is associated with tumorigenesis in the mouse model^[96].

Therapeutic and prognostic relevance

Loss of expression of ERCC1 has long been implicated in increased sensitivity towards cisplatin in non-small cell lung cancer (NSCLC) and ovarian carcinoma^{[97][98][99][100]}. PARP inhibitors demonstrated anti-tumor activity against ERCC1-deficient non-small cell lung cancer (NSCLC) cell line^{[101][102][103]}. Preclinical studies also showed that inhibiting topoisomerase I and PARP1 in combination, as was demonstrated with the combination of ABT-888 and CPT-11, may result in the synergistic decrease in tumor regression for women with triple-negative breast cancer (TNBC)^[104].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 8 of 36

Project ID: C23-M001-01362 Report No.: AA-23-02854_ONC Date Reported: May 19, 2023

ACTOnco® + Report

.

MLH1 Heterozygous deletion

Biological Impact

The MutL protein homolog 1 (MLH1) gene encodes a tumor suppressor that dimerizes with PMS2 protein to form a component of the DNA mismatch repair (MMR) system^[105]. Deletion of one copy of the MLH1 gene resulted in haploinsufficiency in the correction of small insertions/deletions (indels), and could be a driving force in pancreatic and renal carcinogenesis^[106]. Genetic alterations such as mutation, loss of heterozygosity or epigenetic silencing could lead to inactivation of MLH1 and are associated with a broad spectrum of cancers, including a subset of sporadic colon, gastric and endometrial cancers, as well as the hereditary non-polyposis colon cancer (HNPCC, also known as Lynch syndrome)^{[107][108][109]}.

Therapeutic and prognostic relevance

Currently, there are no FDA-approved medications specifically targeting MLH1. A screening test for microsatellite instability (MSI) is commonly used to identify an MMR-deficient tumor in the clinic^{[110][111]}. Pembrolizumab (KEYTRUDA), an inhibitor targeting programmed cell death 1 (PD-1), has been approved by the U.S. FDA for adult and pediatric patients with unresectable or metastatic, microsatellite instability-high (MSI-H) or mismatch repair-deficient cancer. Down-regulation of genes involved in the MMR pathway such as MLH1, MSH2 and, MSH6 in high-grade serous epithelial ovarian cancer cell lines rendered cells sensitive to PARP inhibitors^[112].

NF2 Heterozygous deletion

Biological Impact

The neurofibromin (NF2) gene encodes the protein Merlin, a tumor suppressor that functions as a negative regulator of the PI3K/AKT/mTOR pathway^{[113][114][115]}. NF2 is a haploinsufficient tumor suppressor gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^[116]. Inactivation germline mutations in the NF2 are associated with the hereditary neurofibromatosis type 2, a disorder characterized by the growth of noncancerous tumors in the nervous system^{[113][117]}. Somatic mutations or deletion of NF2 are frequently observed in human cancers, including 20-50% of pleural mesotheliomas^[53], 6% papillary renal cell carcinoma, 5% pancreas cancer, and 4% melanoma (cbioPortal; June 2015), and less frequently in other cancers^[118].

Therapeutic and prognostic relevance

Genomic alterations with activating effects on the mTOR signaling pathway have been identified to confer sensitivity to everolimus across multiple cancer types^{[119][120][121][122]}. There are at least two case studies indicating the clinical efficacy of everolimus in bladder cancer and urothelial carcinoma^{[123][124]}, both harboring NF2 truncating mutations. Preclinical evidence has shown the efficacy of MEK1/2 inhibitor selumetinib in KRAS-mutant thyroid cancer model with NF2 loss^[125].

Analysis of afatinib-plus-cetuximab-resistant biopsy specimens revealed a loss-of-function alteration in genes that modulate mTOR signaling pathway, including NF2 and TSC1^[126].

RAD50 Heterozygous deletion

Biological Impact

The RAD50 gene encodes a highly-conserved DNA double-strand break (DSB) repair factor. It forms MRN complex with NBS1 and MRE11 protein and is involved in sensing and early processing of DSB, cell cycle checkpoints, DNA recombination and maintenance of telomeres^{[127][128]}. Mutations in the components of the MRN complex could increase susceptibility to familial breast cancer^[130], gastric cancer^[131], colorectal cancer^[132], and urothelial cancer^[133]. RAD50 has been implicated as a haploinsufficient gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^[134].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **9** of **36**

Project ID: C23-M001-01362 Report No.: AA-23-02854_ONC

Date Reported: May 19, 2023

Besides, RAD50 deletion was also suggested as a marker of BRCAness, a phenotype shared between non-BRCA1/2-mutated ovarian cancers and BRCA1/2-mutated ovarian cancers^[135].

Therapeutic and prognostic relevance

Preclinical data showed that knockdown of the RAD50 gene in ovarian cancer cell lines was significantly associated with better responses to two PARP inhibitors, olaparib and rucaparib^[135]. RAD50 has been selected as an inclusion criterion for the trials examining talazoparib efficacy in HER2-negative breast cancer, olaparib efficacy in breast cancer, rucaparib efficacy in metastatic prostate cancer and niraparib efficacy in any malignancy (except prostate) (NCT02401347, NCT03207347, NCT03344965, NCT03413995).

SMAD4 Heterozygous deletion

Biological Impact

The SMAD family member 4 (SMAD4) gene encodes a transcription factor that acts as a downstream effector in the TGF- β signaling pathway. Upon phosphorylated and activated by serine-threonine receptor kinase, Smad4 is the Co-Smad which recruits other activated R-Smad proteins to the Smad transcriptional complex and regulate TGF- β -targeted genes^[136]. Smad4 has been identified as a haploinsufficient gene with one copy loss may lead to a weak protein expression and is insufficient to execute its original physiological function^[137]. SMAD4 germline mutations are associated with juvenile polyposis syndrome (JPS)^{[138][139][140][141]}. Somatic mutations of SMAD4 are commonly observed in pancreatic cancer^[142], colorectal cancer (CRC)^{[140][143][144]}, and less frequently seen in other cancers such as lung adenocarcinoma^[145], head and neck cancer^{[146][147]}, and cutaneous squamous cell carcinoma^[148].

Therapeutic and prognostic relevance

In Chinese patients with metastatic colorectal cancer, SMAD4 or NF1 mutations are suggested as a potential biomarker for poor prognosis to cetuximab-based therapy^[149]. Preclinical data demonstrated that depletion of SMAD4 by shRNA knockdown increased clonogenic survival and cetuximab resistance in HPV-negative head and neck squamous cell carcinoma cells^[150].

SMAD4 is also suggested as a predictive marker for 5-fluorouracil-based chemotherapy in colorectal cancer (CRC)^{[151][152]}. CRC patients with normal SMAD4 diploidy exhibited three-fold higher benefit of 5-FU/mitomycin-based adjuvant therapy when compared with those with SMAD4 deletion^[153].

Results from clinical and meta-analyses showed that loss of SMAD4 in CRC, pancreatic cancer was correlated with poor prognosis^{[154][155][156][157][158][159][160][161]}. In cervical cancer patients, weak cytoplasmic SMAD4 expression and absent nuclear SMAD4 expression were shown to be significantly associated with poor disease-free and overall 5-year survival^[162].

STK11 Heterozygous deletion

Biological Impact

The serine/threonine kinase 11 (STK11, also known as LKB1) gene encodes the multifunctional serine/threonine kinase, a tumor suppressor that functions as an inhibitor for the mTOR signaling pathway^{[163][164]}. STK11 is a haploinsufficient gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^{[165][166]}. In the mouse model, loss of STK11 promotes aggressive endometrial and squamous cell carcinomas^{[167][168]}. Mutations in STK11 have been found in lung, breast, cervical, testicular, and liver cancers, as well as malignant melanoma, pancreatic and biliary carcinoma^[169]. Germline mutations in STK11 are found in 30-70% of Peutz-Jeghers syndrome^[170].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

COLLEGE JAMERICAN PARTICOCOSTS Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 10 of 36

Project ID: C23-M001-01362 Report No.: AA-23-02854_ONC Date Reported: May 19, 2023

ACTOnco® + Report

Therapeutic and prognostic relevance

A clinical study in a pancreatic cancer patient with Peutz-Jeghers syndrome whose tumor harboring an STK11 D194E mutation coupled with the loss of heterozygosity of the other STK11 allele displayed partial response to the everolimus treatment^[171]. In another clinical case study, an adrenocorticotropic pituitary carcinoma patient whose tumor bearing an STK11 inactivating mutation responded to a combination of everolimus and radiotherapy^[172].

Preclinical data suggested that lung cancer cell lines with STK11 inactivating mutations may confer increased sensitivity to the MEK-1 and MEK-2 inhibitor, trametinib^[173].

Inactivating mutations of STK11 was shown to be associated with resistance to immune checkpoint blockade in KRAS-mutant lung adenocarcinoma (LUAC) and NSCLC (DOI: 10.1200/JCO.2017.35.15_suppl.9016)^{[174][175][176]}. It was proposed that loss of STK11 negatively impacts the number and function of tumor-infiltrating T cells (TILs) and PD-L1 expression on tumor cells and therefore results in an ineffective response to PD-1-targeting antibodies^[177].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

COLLEGE JAMERICAN MATRICUSCISTS Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 11 of 36

Project ID: C23-M001-01362 Report No.: AA-23-02854_ONC Date Reported: May 19, 2023

ACTOnco® + Report

US FDA-APPROVED DRUG(S)

Binimetinib (MEKTOVI)

Binimetinib is an oral kinase inhibitor that targets MEK. Binimetinib is developed and marketed by Array BioPharma under the trade name MEKTOVI.

- FDA Approval Summary of Binimetinib (MEKTOVI)

MEKTOVI ^[178]	Melanoma (Approved on 2018/06/27)
	BRAF V600E/K
NCT01909453	Encorafenib + binimetinib vs. Vemurafenib [PFS(M): 14.9 vs. 7.3]

Cobimetinib (COTELLIC)

Cobimetinib is a reversible inhibitor which targets MEK1 and MEK2. Cobimetinib is developed by Exelixis and Genentech, and marketed by Genentech under the trade name COTELLIC.

- FDA Approval Summary of Cobimetinib (COTELLIC)

DDIM[179]	Melanoma (Approved on 2015/11/10)
coBRIM ^[179] NCT01689519	BRAF V600E/K
NC101009519	Cobimetinib + vemurafenib vs. Placebo + vemurafenib [PFS(M): 12.3 vs. 7.2]

Everolimus (AFINITOR)

Everolimus, a derivative of sirolimus, works as an inhibitor of mammalian target of rapamycin complex 1 (mTORC1) and blocks mTORC1-mediated downstream signals for cell growth, proliferation, and survival. Everolimus is developed and marketed by Novartis under the trade name AFINITOR.

- FDA Approval Summary of Everolimus (AFINITOR)

RADIANT-4 ^[180]	Lung or gastrointestinal neuroendocrine tumor (Approved on 2016/02/26)
NCT01524783	
	Everolimus vs. Placebo [PFS(M): 11 vs. 3.9]
	Breast cancer (Approved on 2012/07/20)
BOLERO-2 ^[181]	ER+/HER2-
NCT00863655	Everolimus + exemestane vs. Placebo + exemestane [PFS(M): 7.8 vs. 3.2]
	Tuberous sclerosis complex (tsc)-associated renal angiomyolipoma (Approved on
EXIST-2	2012/04/26)
NCT00790400	
	Everolimus vs. Placebo [ORR(%): 41.8 vs. 0]
DADIANT O[182]	Pancreatic neuroendocrine tumor (Approved on 2011/05/05)
RADIANT-3 ^[182]	-
NCT00510068	Everolimus vs. Placebo [PFS(M): 11 vs. 4.6]
EVIOT 4[183]	Subependymal giant cell astrocytoma (Approved on 2010/10/29)
EXIST-1 ^[183]	
NCT00789828	Everolimus vs. Placebo [ORR(%): 35.0]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 12 of 36

Project ID: C23-M001-01362 Report No.: AA-23-02854_ONC Date Reported: May 19, 2023

ACTOnco® + Report

RECORD-1 ^[184]	Renal cell carcinoma (Approved on 2009/05/30)
NCT00410124	-
NC100410124	Everolimus vs. Placebo [PFS(M): 4.9 vs. 1.9]

Niraparib (ZEJULA)

Niraparib is an oral, small molecule inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1 and -2 (PARP-1, -2). Niraparib is developed and marketed by Tesaro under the trade name ZEJULA.

- FDA Approval Summary of Niraparib (ZEJULA)

DDIMA	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2020/04/29)
PRIMA	-
NCT02655016	Niraparib vs. Placebo [PFS (overall population)(M): 13.8 vs. 8.2]
NOVA[185]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/03/27)
NOVA ^[185]	-
NCT01847274	Niraparib vs. Placebo [PFS (overall population)(M): 11.3 vs. 4.7]

Olaparib (LYNPARZA)

Olaparib is an oral, small molecule inhibitor of poly (ADP-ribose) polymerase-1, -2, and -3 (PARP-1, -2, -3). Olaparib is developed by KuDOS Pharmaceuticals and marketed by AstraZeneca under the trade name LYNPARZA.

- FDA Approval Summary of Olaparib (LYNPARZA)

OlympiA	Her2-negative high-risk early breast cancer (Approved on 2022/03/11)					
OlympiA NCT02032823	HER2-/gBRCA mutation					
NC102032623	Olaparib vs. Placebo [invasive disease-free survival (IDFS)(M):]					
PROfound ^[186]	Prostate cancer (Approved on 2020/05/19)					
NCT02987543	HRR genes mutation					
110102907545	Olaparib vs. Enzalutamide or abiraterone acetate [PFS(M): 5.8 vs. 3.5]					
PAOLA-1 ^[187]	Ovarian cancer (Approved on 2020/05/08)					
NCT02477644	HRD+					
NC102477044	Olaparib + bevacizumab vs. Placebo + bevacizumab [PFS(M): 37.2 vs. 17.7]					
POLO ^[188]	Pancreatic adenocarcinoma (Approved on 2019/12/27)					
NCT02184195	gBRCA mutation					
NC102104195	Olaparib vs. Placebo [ORR(%): 23.0 vs. 12.0, PFS(M): 7.4 vs. 3.8]					
SOLO-1 ^[189]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/12/19)					
NCT01844986	gBRCA mutation or sBRCA mutation					
NC101044900	Olaparib vs. Placebo [PFS(M): NR vs. 13.8]					
Olympi AD[190]	Breast cancer (Approved on 2018/02/06)					
OlympiAD ^[190] NCT02000622	HER2-/gBRCA mutation					
INC 1 02000022	Olaparib vs. Chemotherapy [PFS(M): 7 vs. 4.2]					
SOLO-2/ENGOT-Ov21 ^[191]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)					
NCT01874353	gBRCA mutation					
INC 1010/4303	Olaparib vs. Placebo [PFS(M): 19.1 vs. 5.5]					

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 13 of 36

Project ID: C23-M001-01362 Report No.: AA-23-02854_ONC Date Reported: May 19, 2023

ACTOnco® + Report

Studv19 ^[192]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)
NCT00753545	-
NC100753545	Olaparib vs. Placebo [PFS(M): 8.4 vs. 4.8]

Rucaparib (RUBRACA)

Rucaparib is an inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1, -2 and -3 (PARP-1, -2, -3). Rucaparib is developed and marketed by Clovis Oncology under the trade name RUBRACA.

- FDA Approval Summary of Rucaparib (RUBRACA)

TRITON2 NCT02952534	Prostate cancer (Approved on 2020/05/15)
	gBRCA mutation or sBRCA mutation
NC102952554	Rucaparib [ORR(%): 44.0, DOR(M): NE]
	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/04/06)
ARIEL3 ^[193]	-
NCT01968213	Rucaparib vs. Placebo [PFS (All)(M): 10.8 vs. 5.4, PFS (HRD)(M): 13.6 vs. 5.4, PFS
	(tBRCA)(M): 16.6 vs. 5.4]

Talazoparib (TALZENNA)

Talazoparib is an inhibitor of poly (ADP-ribose) polymerase (PARP) enzymes, including PARP1 and PARP2. Talazoparib is developed and marketed by Pfizer under the trade name TALZENNA.

- FDA Approval Summary of Talazoparib (TALZENNA)

FAADD A G A [194]	Breast cancer (Approved on 2018/10/16)
EMBRACA ^[194]	HER2-/gBRCA mutation
NCT01945775	Talazoparib vs. Chemotherapy [PFS(M): 8.6 vs. 5.6]

Temsirolimus (TORISEL)

Temsirolimus is a soluble ester of sirolimus (rapamycin, brand-name drug Rapamune) and functions as an inhibitor of mammalian target of rapamycin complex (mTORC). The inhibitory molecular mechanism is similar to Everolimus. Temsirolimus is developed by Wyeth Pharmaceuticals and marketed by Pfizer under the trade name TORISEL.

- FDA Approval Summary of Temsirolimus (TORISEL)

[195]	Renal cell carcinoma (Approved on 2007/05/30)
NCT00065468	Temsirolimus vs. Ifn-α [OS(M): 10.9 vs. 7.3]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **14** of **36**

Project ID: C23-M001-01362 Report No.: AA-23-02854_ONC Date Reported: May 19, 2023

ACTOnco® + Report

Trametinib (MEKINIST)

Trametinib is an anti-cancer inhibitor which targets MEK1 and MEK2. Trametinib is developed and marketed by GlaxoSmithKline (GSK) under the trade name MEKINIST.

- FDA Approval Summary of Trametinib (MEKINIST)

CDRB436G2201 NCT02684058	Low-grade glioma (Approved on 2023/03/09)					
	BRAF V600E					
NC102004000	Dabrafenib + trametinib vs. Carboplatin + vincristine [ORR(%): 46.6 vs. 10.8]					
BRF117019, NCI-MATCH,	Cancer (Approved on 2022/06/22)					
CTMT212X2101	BRAF V600E					
NCT02034110, NCT02465060, NCT02124772	Dabrafenib + trametinib [ORR(adult patients)(%): 41.0, ORR(pediatric patients)(%): 25.0]					
DDE447040[196]	Anaplastic thyroid cancer (Approved on 2018/05/04)					
BRF117019 ^[196]	BRAF V600E					
NCT02034110	Dabrafenib + trametinib [ORR(%): 61.0]					
DDE440000[197]	Non-small cell lung cancer (Approved on 2017/06/22)					
BRF113928 ^[197]	BRAF V600E					
NCT01336634	Trametinib + dabrafenib vs. Dabrafenib [ORR(%): 63.0 vs. 27.0, DOR(M): 12.6 vs. 9.9]					
OOMBL -[198]	Melanoma (Approved on 2014/01/10)					
COMBI-d ^[198]	BRAF V600E/K					
NCT01584648	Trametinib + dabrafenib vs. Dabrafenib + placebo [PFS(M): 9.3 vs. 8.8]					
METDIO[199]	Melanoma (Approved on 2013/05/29)					
METRIC ^[199] NCT01245062	BRAF V600E/K					
NC101245002	Trametinib vs. Dacarbazine or paclitaxel [PFS(M): 4.8 vs. 1.5]					

D=day; W=week; M=month

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **15** of **36**

Project ID: C23-M001-01362 Report No.: AA-23-02854_ONC Date Reported: May 19, 2023

ACTOnco® + Report

ONGOING CLINICAL TRIALS

Trials were searched by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **16** of **36**

Project ID: C23-M001-01362 Report No.: AA-23-02854_ONC Date Reported: May 19, 2023

ACTOnco® + Report

SUPPLEMENTARY INFORMATION OF TESTING RESULTS DETAILED INFORMATION OF VARIANTS WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change		Exon		COSMIC ID	Allele Frequency	Coverage	
KMT2D	L2986*	34	c.8957T>A	NM_003482	-	38.7%	639	
KRAS	G12D	2	c.35G>A	NM_004985	COSM521	41.7%	2152	
TP53	Q192*	6	c.574C>T	NM_000546	COSM10733	77.7%	794	

- Copy Number Alterations

Observed copy number (CN) for each evaluated position is shown on the y-axis. Regions referred to as amplification or deletion are shown in color. Regions without significant changes are represented in gray.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 17 of 36

Project ID: C23-M001-01362 Report No.: AA-23-02854 ONC Date Reported: May 19, 2023

ACTOnco® + Report

OTHER DETECTED VARIANTS

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
ADAMTS16	V75M	3	c.223G>A	NM_139056	COSM7269246	46.3%	1386
BUB1B	Splice region	-	c.2385+7C>T	NM_001211	-	49.3%	1047
CDH1	D433G	9	c.1298A>G	NM_004360	-	50.8%	665
ERCC4	G912R	11	c.2734G>A	NM_005236	COSM9110680	48.2%	789
LIG3	I624V	12	c.1870A>G	NM_013975	-	45.3%	1486
MAP3K1	M312L	4	c.934A>T	NM_005921	COSM5979000	50.6%	934
NSD1	T1063A	5	c.3187A>G	NM_022455	-	49.5%	1048
PRKDC	M3928T	84	c.11783T>C	NM_006904	-	48.1%	852
SYNE1	N4418S	78	c.13253A>G	NM_182961	-	50.7%	728
TAP1	R438Q	5	c.1313G>A	NM_000593	-	50.6%	1238
TEK	Splice region	19	c.3060T>C	NM_000459	-	90.6%	2322

Note:

This table enlists variants detected by the panel other than those with clinical relevance (reported in Testing Result section). The clinical impact of a genetic variant is determined according to ACT Genomics in-house clinical knowledge database. A negative result does not necessarily indicate absence of biological effect on the tumor. Some variants listed here may possibly have preclinical data or may show potential clinical relevance in the future.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 18 of 36

Project ID: C23-M001-01362 Report No.: AA-23-02854_ONC Date Reported: May 19, 2023

ACTOnco® + Report

TEST DETAILS SPECIMEN RECEIVED AND PATHOLOGY REVIEW

- Collection date: Apr 28, 2023
- Facility retrieved: 臺北榮總
- H&E-stained section No.: S11218989A
- Collection site: Liver
- Examined by: Dr. Chien-Ta Chiang
 - 1. The percentage of viable tumor cells in total cells in the whole slide (%): 15%
 - 2. The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 40%
 - 3. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 0%
 - 4. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 0%
 - 5. Additional comment: NA
- Manual macrodissection: Performed on the highlighted region
- The outline highlights the area of malignant neoplasm annotated by a pathologist.

RUN QC

- Panel: ACTOnco®+

DNA test

- Mean Depth: 800x
- Target Base Coverage at 100x: 94%

RNA test

Average unique RNA Start Sites per control GSP2: 112

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 19 of 36

Project ID: C23-M001-01362 Report No.: AA-23-02854_ONC Date Reported: May 19, 2023

ACTOnco® + Report

LIMITATIONS

- 1. This test does not provide information of variant causality and does not detect variants in non-coding regions that could affect gene expression. This report does not report polymorphisms and we do not classify whether a mutation is germline or somatic. Variants identified by this assay were not subject to validation by Sanger or other technologies.
- 2. The possibility cannot be excluded that certain pathogenic variants detected by other sequencing tools may not be reported in the test because of technical limitation of bioinformatics algorithm or the NGS sequencing platform, e.g. low coverage.
- 3. This test has been designed to detect fusions in 13 genes sequenced. Therefore, fusion in genes not covered by this test would not be reported. For novel fusions detected in this test, Sanger sequencing confirmation is recommended if residue specimen is available.

NEXT-GENERATION SEQUENCING (NGS) METHODS

DNA test

Extracted genomic DNA was amplified using primers targeting coding exons of analyzed genes and subjected to library construction. Barcoded libraries were subsequently conjugated with sequencing beads by emulsion PCR and enriched using Ion Chef system. Sequencing was performed according to Ion Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific).

Raw reads generated by the sequencer were mapped to the hg19 reference genome using the Ion Torrent Suite. Coverage depth was calculated using Torrent Coverage Analysis plug-in. Single nucleotide variants (SNVs) and short insertions/deletions (InDels) were identified using the Torrent Variant Caller plug-in. VEP (Variant Effect Predictor) was used to annotate every variant using databases from Clinvar, COSMIC and Genome Aggregation database. Variants with coverage \geq 20, allele frequency \geq 5% and actionable variants with allele frequency \geq 2% were retained. This test provides uniform coverage of the targeted regions, enabling target base coverage at $100x \geq 85\%$ with a mean coverage $\geq 500x$.

Variants reported in Genome Aggregation database with > 1% minor allele frequency (MAF) were considered as polymorphisms. ACT Genomics in-house database was used to determine technical errors. Clinically actionable and biologically significant variants were determined based on the published medical literature.

The copy number alterations (CNAs) were predicted as described below:

Amplicons with read counts in the lowest 5th percentile of all detectable amplicons and amplicons with a coefficient of variation ≥ 0.3 were removed. The remaining amplicons were normalized to correct the pool design bias. ONCOCNV (an established method for calculating copy number aberrations in amplicon sequencing data by Boeva et al., 2014) was applied for the normalization of total amplicon number, amplicon GC content, amplicon length, and technology-related biases, followed by segmenting the sample with a gene-aware model. The method was used as well for establishing the baseline of copy number variations.

Tumor mutational burden (TMB) was calculated by using the sequenced regions of ACTOnco $^{\circ}$ + to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The TMB calculation predicted somatic variants and applied a machine learning model with a cancer hotspot correction. TMB may be reported as "TMB-High", "TMB-Low" or "Cannot Be Determined". TMB-High corresponds to \geq 7.5 mutations per megabase (Muts/Mb); TMB-Low corresponds to \leq 7.5 Muts/Mb. TMB is reported as "Cannot Be Determined" if the tumor purity of the sample is \leq 30%.

Classification of microsatellite instability (MSI) status is determined by a machine learning prediction algorithm. The change of a number of repeats of different lengths from a pooled microsatellite stable (MSS) baseline in > 400 genomic loci are used as the features for the algorithm. The final output of the results is either microsatellite Stable (MSS) or microsatellite instability high (MSI-H).

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 20 of 36

Project ID: C23-M001-01362 Report No.: AA-23-02854_ONC Date Reported: May 19, 2023

ACTOnco® + Report

RNA test

Extracted RNA was reverse-transcribed and subjected to library construction. Sequencing was performed according to lon Proton or lon S5 sequencer protocol (Thermo Fisher Scientific). To ensure sequencing quality for fusion variant analysis, the average unique RNA Start Sites (SS) per control Gene Specific Primer 2 (GSP 2) should be ≥ 10.

The fusion analysis pipeline aligned sequenced reads to the human reference genome, identified regions that map to noncontiguous regions of the genome, applied filters to exclude probable false-positive events and, annotated previously characterized fusion events according to Quiver Gene Fusion Database, a curated database owned and maintained by ArcherDX. In general, samples with detectable fusions need to meet the following criteria: (1) Number of unique start sites (SS) for the GSP2 \geq 3; (2) Number of supporting reads spanning the fusion junction \geq 5; (3) Percentage of supporting reads spanning the fusion junction \geq 10%; (4) Fusions annotated in Quiver Gene Fusion Database.

DATABASE USED

- Reference genome: Human genome sequence hg19
- COSMIC v.92
- Genome Aggregation database r2.1.1
- ClinVar (version 20210404)
- ACT Genomics in-house database
- Quiver Gene Fusion Database version 5.1.18

Variant Analysis:

醫檢師黃靖婷 博士 Ching-Ting Huang Ph.D. 檢字第 016511 號 CTHUANG

Sign Off

解剖病理專科醫師王業翰 Yeh-Han Wang M.D. 病解字第 000545 號

AG4-QP4001-02(07) page **21** of **36**

Project ID: C23-M001-01362 Report No.: AA-23-02854_ONC Date Reported: May 19, 2023

ACTOnco® + Report

GENE LIST SNV & CNV

ABCB1*	ABCC2*	ABCG2*	ABL1	ABL2	ADAMTS1	ADAMTS13	ADAMTS15	ADAMTS16	ADAMTS18	ADAMTS6	ADAMTS9
ADAMTSL1	ADGRA2	ADH1C*	AKT1	AKT2	AKT3	ALDH1A1*	ALK	AMER1	APC	AR	ARAF
ARID1A	ARID1B	ARID2	ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXIN2	AXL
B2M	BAP1	BARD1	BCL10	BCL2*	BCL2L1	BCL2L2*	BCL6	BCL9	BCOR	BIRC2	BIRC3
BLM	BMPR1A	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1	BTG2*	BTK	BUB1B	CALR
CANX	CARD11	CASP8	CBFB	CBL	CCNA1	CCNA	CCNB1	CCNB2	CCNB3	CCND1	CCND2
CCND3	CCNE1	CCNE2	CCNH	CD19	CD274	CD58	CD70*	CD79A	CD79B	CDC73	CDH1
CDK1	CDK12	CDK2	CDK4	CDK5	CDK6	CDK7	CDK8	CDK9	CDKN1A	CDKN1B	CDKN2A
CDKN2B	CDKN2C	CEBPA*	CHEK1	CHEK2	CIC	CREBBP	CRKL	CRLF2	CSF1R	CTCF	CTLA4
CTNNA1	CTNNB1	CUL3	CYLD	CYP1A1*	CYP2B6*	CYP2C19*	CYP2C8*	CYP2D6	CYP2E1*	CYP3A4*	CYP3A5*
DAXX	DCUN1D1	DDR2	DICER1	DNMT3A	DOT1L	DPYD	DTX1	E2F3	EGFR	EP300	EPCAM
EPHA2	ЕРНА3	EPHA5	EPHA7	EPHB1	ERBB2	ERBB3	ERBB4	ERCC1	ERCC2	ERCC3	ERCC4
ERCC5	ERG	ESR1	ESR2	ETV1	ETV4	EZH2	FAM46C	FANCA	FANCC	FANCD2	FANCE
FANCF	FANCG	FANCL	FAS	FAT1	FBXW7	FCGR2B	FGF1*	FGF10	FGF14	FGF19*	FGF23
FGF3	FGF4*	FGF6	FGFR1	FGFR2	FGFR3	FGFR4	FH	FLCN	FLT1	FLT3	FLT4
FOXL2*	FOXP1	FRG1	FUBP1	GATA1	GATA2	GATA3	GNA11	GNA13	GNAQ	GNAS	GREM1
GRIN2A	GSK3B	GSTP1*	GSTT1*	HGF	HIF1A	HIST1H1C*	HIST1H1E*	HNF1A	HR	HRAS*	HSP90AA1
HSP90AB1	HSPA4	HSPA5	IDH1	IDH2	IFNL3*	IGF1	IGF1R	IGF2	IKBKB	IKBKE	IKZF1
IL6	IL7R	INPP4B	INSR	IRF4	IRS1	IRS2*	JAK1	JAK2	JAK3	JUN*	KAT6A
KDM5A	KDM5C	KDM6A	KDR	KEAP1	KIT	KMT2A	кмт2С	KMT2D	KRAS	LCK	LIG1
LIG3	LMO1	LRP1B	LYN	MALT1	MAP2K1	MAP2K2	MAP2K4	MAP3K1	MAP3K7	MAPK1	МАРК3
MAX	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1	MET	MITF	MLH1	MPL	MRE11
MSH2	MSH6	MTHFR*	MTOR	MUC16	MUC4	MUC6	MUTYH	МҮС	MYCL	MYCN	MYD88
NAT2*	NBN	NEFH	NF1	NF2	NFE2L2	NFKB1	NFKBIA	NKX2-1*	NOTCH1	NOTCH2	<i>NOTCH3</i>
NOTCH4	NPM1	NQ01*	NRAS	NSD1	NTRK1	NTRK2	NTRK3	PAK3	PALB2	PARP1	PAX5
PAX8	PBRM1	PDCD1	PDCD1LG2	PDGFRA	PDGFRB	PDIA3	PGF	PHOX2B*	PIK3C2B	PIK3C2G	РІКЗСЗ
PIK3CA	PIK3CB	PIK3CD	PIK3CG	PIK3R1	PIK3R2	PIK3R3	PIM1	PMS1	PMS2	POLB	POLD1
POLE	PPARG	PPP2R1A	PRDM1	PRKAR1A	PRKCA	PRKCB	PRKCG	PRKCI	PRKCQ	PRKDC	PRKN
PSMB8	PSMB9	PSME1	PSME2	PSME3	PTCH1	PTEN	PTGS2	PTPN11	PTPRD	PTPRT	RAC1
RAD50	RAD51	RAD51B	RAD51C	RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10	RECQL4
REL	RET	RHOA	RICTOR	RNF43	ROS1	RPPH1	RPTOR	RUNX1	RUNX1T1	RXRA	SDHA
SDHB	SDHC	SDHD	SERPINB3	SERPINB4	SETD2	SF3B1	SGK1	SH2D1A*	SLC19A1*	SLC22A2*	SLCO1B1*
SLCO1B3*	SMAD2	SMAD3	SMAD4	SMARCA4	SMARCB1	SMO	SOCS1*	SOX2*	SOX9	SPEN	SPOP
SRC	STAG2	STAT3	STK11	SUFU	SYK	SYNE1	TAF1	TAP1	TAP2	TAPBP	TBX3
TEK	TERT	TET1	TET2	TGFBR2	TMSB4X*	TNF	TNFAIP3	TNFRSF14	TNFSF11	TOP1	TP53
TPMT*	TSC1	TSC2	TSHR	TYMS	U2AF1	UBE2A*	UBE2K	UBR5	UGT1A1*	USH2A	VDR*
VEGFA	VEGFB	VHL	WT1	XIAP	XPO1	XRCC2	ZNF217				

^{*}Analysis of copy number alterations NOT available.

FUSION

ALK	BRAF	ECED	FGFR1	FGFR2	FGFR3	MET	NRG1	NTRK1	NTRK2	NTRK3	RET	ROS1
ALN	DNAF	EGFK	FUFNI	FUFNZ	rurns	IVILI	INNUT	INIUNI	IVINNZ	IVINNO	nei-	NO31

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 22 of 36

Project ID: C23-M001-01362

Report No.: AA-23-02854_ONC Date Reported: May 19, 2023

ACTOnco® + Report

APPENDIX

POSSIBLE THERAPEUTIC IMPLICATIONS FOR HETEROZYGOUS DELETION

Gene	Therapies	Possible effect
STK11	Binimetinib, Cobimetinib, Trametinib, Everolimus, Temsirolimus	sensitive
NF2	Everolimus, Temsirolimus	sensitive
BAP1	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
CHEK2	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
ERCC1	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
MLH1	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
RAD50	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
SMAD4	Cetuximab	resistant

SIGNALING PATHWAYS AND MOLECULAR-TARGETED AGENTS

1: Olaparib, Niraparib, Rucaparib, Talazoparib

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 23 of 36

Project ID: C23-M001-01362 Report No.: AA-23-02854_ONC Date Reported: May 19, 2023

ACTOnco® + Report

1: Everolimus, Temsirolimus; 2: Trametinib, Cobimetinib, Binimetinib

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 24 of 36

Project ID: C23-M001-01362 Report No.: AA-23-02854_ONC Date Reported: May 19, 2023

ACTOnco® + Report

DISCLAIMER

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性指標,反之亦然。本檢驗報告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。

本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關專業醫師協助,若需將報告移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因,行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及 準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 25 of 36

Project ID: C23-M001-01362 Report No.: AA-23-02854_ONC Date Reported: May 19, 2023

ACTOnco® + Report

REFERENCE

- PMID: 25998713; 2015, Nat Rev Cancer; 15(6):334-46
 Hijacked in cancer: the KMT2 (MLL) family of methyltransferases.
- PMID: 24476821; 2014, Nature;507(7492):315-22
 Comprehensive molecular characterization of urothelial bladder carcinoma.
- PMID: 21804550; 2011, Nat Genet;43(9):830-7
 Analysis of the coding genome of diffuse large B-cell lymphoma.
- PMID: 21796119; 2011, Nature;476(7360):298-303
 Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma.
- PMID: 28609655; 2017, Cancer Cell;31(6):755-770.e6
 MLL2, Not MLL1, Plays a Major Role in Sustaining MLL-Rearranged Acute Myeloid Leukemia.
- PMID: 26883360; 2016, Genes Dev;30(4):408-20
 Mutation of cancer driver MLL2 results in transcription stress and genome instability.
- PMID: 29627316; 2018, Clin Lung Cancer;19(4):e489-e501
 KMT2D Mutation Is Associated With Poor Prognosis in Non-Small-Cell Lung Cancer.
- PMID: 27280393; 2016, Cancer Res;76(16):4861-71
 Reduced Expression of Histone Methyltransferases KMT2C and KMT2D Correlates with Improved Outcome in Pancreatic Ductal Adenocarcinoma.
- PMID: 29532228; 2018, J Cancer Res Clin Oncol;144(6):1025-1035
 High MLL2 expression predicts poor prognosis and promotes tumor progression by inducing EMT in esophageal squamous cell carcinoma.
- PMID: 29269867; 2018, Oncogene;37(10):1354-1368
 Histone methyltransferase KMT2D sustains prostate carcinogenesis and metastasis via epigenetically activating LIFR and KLF4.
- PMID: 29483845; 2018, Cancer Cell Int;18():26
 MLL2/KMT2D and MLL3/KMT2C expression correlates with disease progression and response to imatinib mesylate in chronic myeloid leukemia.
- PMID: 2453289; 1988, Cell;53(4):549-54
 Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes.
- 13. PMID: 2114981; 1990, Eur J Clin Invest;20(3):225-35 ras oncogenes: their role in neoplasia.
- PMID: 20617134; 2010, J Biomed Biotechnol;2010():150960
 Clinical relevance of KRAS in human cancers.
- PMID: 21993244; 2011, Nat Rev Cancer;11(11):761-74
 RAS oncogenes: weaving a tumorigenic web.
- PMID: 3047672; 1988, Nucleic Acids Res;16(16):7773-82
 KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas.
- PMID: 3587348; 1987, Nature;327(6120):293-7
 Prevalence of ras gene mutations in human colorectal cancers.
- PMID: 1942608; 1991, Nihon Shokakibyo Gakkai Zasshi;88(8):1539-44
 [Prevalence of K-ras gene mutations in human colorectal cancers].
- 19. PMID: 2252272; 1990, Am Rev Respir Dis;142(6 Pt 2):S27-30

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 26 of 36

Project ID: C23-M001-01362 Report No.: AA-23-02854_ONC Date Reported: May 19, 2023

ACTOnco® + Report

The ras oncogenes in human lung cancer.

- PMID: 1486840; 1992, Environ Health Perspect;98():13-24
 Role of proto-oncogene activation in carcinogenesis.
- PMID: 16474405; 2006, Nat Genet;38(3):331-6
 Germline KRAS mutations cause Noonan syndrome.
- PMID: 26037647; 2015, Mol Cancer Res;13(9):1325-35
 Biochemical and Structural Analysis of Common Cancer-Associated KRAS Mutations.
- 23. PMID: 22871572; 2012, Mol Cancer Res;10(9):1228-39
 KRAS(G12D)- and BRAF(V600E)-induced transformation of murine pancreatic epithelial cells requires MEK/ERK-stimulated IGF1R signaling.
- 24. PMID: 18349398; 2008, J Clin Oncol;26(9):1472-8

 Molecular characteristics of bronchioloalveolar carcinoma and adenocarcinoma, bronchioloalveolar carcinoma subtype, predict response to erlotinib
- PMID: 23401440; 2013, J Clin Oncol;31(8):1112-21
 KRAS mutation: should we test for it, and does it matter?
- PMID: 18024870; 2007, J Clin Oncol;25(33):5240-7
 Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non small-cell lung cancer.
- PMID: 29946554; 2018, Gynecol Oncol Rep;25():41-44
 Binimetinib (MEK162) in recurrent low-grade serous ovarian cancer resistant to chemotherapy and hormonal treatment.
- PMID: 26075998; 2014, Gynecol Oncol Rep;10():28-9
 Response to MEK inhibitor in small cell neuroendocrine carcinoma of the cervix with a KRAS mutation.
- 29. PMID: 25722381; 2015, Ann Oncol;26(5):894-901
 A randomized phase II study of the MEK1/MEK2 inhibitor trametinib (GSK1120212) compared with docetaxel in KRAS-mutant advanced non-small-cell lung cancer (NSCLC)†.
- 30. PMID: 24947927; 2014, Clin Cancer Res;20(16):4251-61
 Phase I expansion and pharmacodynamic study of the oral MEK inhibitor RO4987655 (CH4987655) in selected patients with advanced cancer with RAS-RAF mutations.
- PMID: 27340376; 2016, Curr Colorectal Cancer Rep;12():141-150
 Molecular Subtypes and Personalized Therapy in Metastatic Colorectal Cancer.
- 32. PMID: 22392911; 2012, Clin Cancer Res;18(9):2515-25
 Inhibition of MEK and PI3K/mTOR suppresses tumor growth but does not cause tumor regression in patient-derived xenografts of RAS-mutant colorectal carcinomas.
- PMID: 26369631; 2016, Clin Cancer Res;22(2):405-14
 Sensitivity of KRAS-Mutant Colorectal Cancers to Combination Therapy That Cotargets MEK and CDK4/6.
- 34. PMID: 24407191; 2014, Br J Cancer;110(5):1148-54
 Sorafenib and irinotecan (NEXIRI) as second- or later-line treatment for patients with metastatic colorectal cancer and KRAS-mutated tumours: a multicentre Phase I/II trial.
- 35. PMID: 23224737; 2013, Clin Cancer Res;19(3):743-51
 A phase II study of sorafenib in patients with platinum-pretreated, advanced (Stage IIIb or IV) non-small cell lung cancer with a KRAS mutation.
- PMID: 26307133; 2016, Clin Cancer Res;22(2):374-82
 Copy Number Changes Are Associated with Response to Treatment with Carboplatin, Paclitaxel, and Sorafenib in Melanoma.
- PMID: 15923428; 2005, Ann Oncol;16 Suppl 4():iv44-49
 Prognostic and predictive factors in colorectal cancer: Kirsten Ras in CRC (RASCAL) and TP53CRC collaborative studies.

CAP

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 27 of 36

Project ID: C23-M001-01362 Report No.: AA-23-02854_ONC Date Reported: May 19, 2023

ACTOnco® + Report

- PMID: 26484411; 2015, Br J Cancer;113(9):1254-8
 Impact of mutational status on survival in low-grade serous carcinoma of the ovary or peritoneum.
- PMID: 24549645; 2013, J Pathol;231(4):449-56
 KRAS (but not BRAF) mutations in ovarian serous borderline tumour are associated with recurrent low-grade serous carcinoma.
- 40. PMID: 24739573; 2014, Nat Rev Cancer;14(5):359-70
 Unravelling mechanisms of p53-mediated tumour suppression.
- 41. PMID: 21125671; 2011, J Pathol;223(2):137-46 Haplo-insufficiency: a driving force in cancer.
- 42. PMID: 27998224; 2016, J Clin Oncol;34(36):4354-4361
 Phase II Study of WEE1 Inhibitor AZD1775 Plus Carboplatin in Patients With TP53-Mutated Ovarian Cancer Refractory or Resistant to First-Line Therapy Within 3 Months.
- PMID: 26646755; 2016, Ann Oncol;27(3):539-43
 TP53 mutational status is predictive of pazopanib response in advanced sarcomas.
- 44. PMID: 25669829; 2015, Ann Oncol;26(5):1012-1018
 Phase I study of pazopanib and vorinostat: a therapeutic approach for inhibiting mutant p53-mediated angiogenesis and facilitating mutant p53 degradation.
- PMID: 27466356; 2016, Mol Cancer Ther;15(10):2475-2485
 TP53 Alterations Correlate with Response to VEGF/VEGFR Inhibitors: Implications for Targeted Therapeutics.
- 46. PMID: 23670029; 2013, Oncotarget;4(5):705-14 P53 mutations in advanced cancers: clinical characteristics, outcomes, and correlation between progression-free survival and bevacizumab-containing therapy.
- PMID: 17145525; 2006, Semin Oncol;33(5 Suppl 10):S8-14
 Bevacizumab in combination with chemotherapy: first-line treatment of patients with metastatic colorectal cancer.
- PMID: 21399868; 2011, Int J Oncol;38(5):1445-52
 p53, HER2 and tumor cell apoptosis correlate with clinical outcome after neoadjuvant bevacizumab plus chemotherapy in breast cancer.
- PMID: 20549698; 2011, Int J Cancer;128(8):1813-21
 p53 status influences response to tamoxifen but not to fulvestrant in breast cancer cell lines.
- PMID: 10786679; 2000, Cancer Res;60(8):2155-62
 Complete sequencing of TP53 predicts poor response to systemic therapy of advanced breast cancer.
- PMID: 25672981; 2015, Cancer Res;75(7):1187-90
 VEGF-A Expression Correlates with TP53 Mutations in Non-Small Cell Lung Cancer: Implications for Antiangiogenesis Therapy.
- PMID: 20302916; 2010, Biochim Biophys Acta;1806(1):1-6
 The potential role of ubiquitin c-terminal hydrolases in oncogenesis.
- 53. PMID: 21642991; 2011, Nat Genet;43(7):668-72
 The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma.
- PMID: 19188440; 2009, Mol Cell Biol;29(8):2181-92
 Association of C-terminal ubiquitin hydrolase BRCA1-associated protein 1 with cell cycle regulator host cell factor 1.
- PMID: 18757409; 2008, Cancer Res;68(17):6953-62
 BRCA1-associated protein-1 is a tumor suppressor that requires deubiquitinating activity and nuclear localization.
- PMID: 26891804; 2016, Int J Oncol;48(4):1571-80
 Genomic profiling of the genes on chromosome 3p in sporadic clear cell renal cell carcinoma.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 28 of 36

Project ID: C23-M001-01362 Report No.: AA-23-02854 ONC Date Reported: May 19, 2023

ACTOnco® + Report

- 57. PMID: 21051595; 2010, Science; 330(6009):1410-3 Frequent mutation of BAP1 in metastasizing uveal melanomas.
- PMID: 24128712; 2013, J Thorac Oncol;8(11):1430-3 Clinical characteristics of patients with malignant pleural mesothelioma harboring somatic BAP1 mutations.
- PMID: 22683710; 2012, Nat Genet;44(7):751-9 59 BAP1 loss defines a new class of renal cell carcinoma.
- 60. PMID: 23333114; 2013, Lancet Oncol;14(2):159-167 Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation.
- PMID: 24185509; 2013, Nat Genet; 45(12):1470-1473 61. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas.
- 62. PMID: 25889843; 2015, J Transl Med;13():122 BAP1 mutation is a frequent somatic event in peritoneal malignant mesothelioma.
- PMID: 33515503; 2021, Lancet Respir Med;9(6):593-600 63. Rucaparib in patients with BAP1-deficient or BRCA1-deficient mesothelioma (MiST1): an open-label, single-arm, phase 2a clinical trial.
- PMID: 28389374; 2017, J Thorac Oncol;12(8):1309-1319 64. A Novel BRCA1-Associated Protein-1 Isoform Affects Response of Mesothelioma Cells to Drugs Impairing BRCA1-Mediated DNA Repair.
- PMID: 17055429; 2006, Cell;127(2):265-75 65. The regulation of INK4/ARF in cancer and aging.
- PMID: 8521522; 1995, Cell;83(6):993-1000 Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest.
- 67. PMID: 9529249; 1998, Cell;92(6):725-34 ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways.
- 68. PMID: 16115911: 2005. Clin Cancer Res:11(16):5740-7 Comprehensive analysis of CDKN2A status in microdissected urothelial cell carcinoma reveals potential haploinsufficiency, a high frequency of homozygous co-deletion and associations with clinical phenotype.
- PMID: 7550353; 1995, Nat Genet;11(2):210-2 69. Frequency of homozygous deletion at p16/CDKN2 in primary human tumours.
- PMID: 24089445; 2013, Clin Cancer Res;19(19):5320-8 70. The cell-cycle regulator CDK4: an emerging therapeutic target in melanoma.
- PMID: 27849562; 2017, Gut;66(7):1286-1296 Palbociclib (PD-0332991), a selective CDK4/6 inhibitor, restricts tumour growth in preclinical models of hepatocellular carcinoma.
- 72. PMID: 25524798; 2015, Lancet Oncol;16(1):25-35 The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study.
- PMID: 28283584; 2017, Oncologist;22(4):416-421 Clinical Benefit in Response to Palbociclib Treatment in Refractory Uterine Leiomyosarcomas with a Common CDKN2A Alteration.
- 74. PMID: 27217383; 2016, Cancer Discov;6(7):740-53 Efficacy and Safety of Abemaciclib, an Inhibitor of CDK4 and CDK6, for Patients with Breast Cancer, Non-Small Cell Lung Cancer, and Other Solid Tumors.
- PMID: 26715889; 2015, Curr Oncol;22(6):e498-501

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 29 of 36

Project ID: C23-M001-01362 Report No.: AA-23-02854 ONC

Date Reported: May 19, 2023

ACTOnco® + Report

Does CDKN2A loss predict palbociclib benefit?

- 76. PMID: 25501126; 2015, Clin Cancer Res;21(5):995-1001 CDK 4/6 inhibitor palbociclib (PD0332991) in Rb+ advanced breast cancer: phase II activity, safety, and predictive biomarker assessment.
- PMID: 27542767; 2016, Clin Cancer Res;22(23):5696-5705 A Phase I Study of the Cyclin-Dependent Kinase 4/6 Inhibitor Ribociclib (LEE011) in Patients with Advanced Solid Tumors and Lymphomas.
- 78. PMID: 24797823; 2014, Oncologist; 19(6):616-22 Enabling a genetically informed approach to cancer medicine: a retrospective evaluation of the impact of comprehensive tumor profiling using a targeted next-generation sequencing panel.
- PMID: 35050752: 2020. JCO Precis Oncol:4():757-766 Palbociclib in Patients With Non-Small-Cell Lung Cancer With CDKN2A Alterations: Results From the Targeted Agent and Profiling Utilization Registry Study.
- 80 PMID: 35100714; 2019, JCO Precis Oncol;3():1-8 Palbociclib in Patients With Pancreatic and Biliary Cancer With CDKN2A Alterations: Results From the Targeted Agent and Profiling Utilization Registry Study.
- PMID: 27717303; 2016, N Engl J Med;375(18):1738-1748 81. Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer.
- PMID: 28580882; 2017, J Clin Oncol;35(25):2875-2884 82. MONARCH 2: Abemaciclib in Combination With Fulvestrant in Women With HR+/HER2- Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy.
- PMID: 26728409; 2016, Clin Cancer Res;22(1):122-33 83. Coadministration of Trametinib and Palbociclib Radiosensitizes KRAS-Mutant Non-Small Cell Lung Cancers In Vitro and In Vivo.
- PMID: 31401335: 2019. Transl Oncol:12(11):1425-1431 84 Concomitant Genetic Alterations are Associated with Worse Clinical Outcome in EGFR Mutant NSCLC Patients Treated with Tyrosine Kinase Inhibitors.
- PMID: 21088254; 2011, Clin Cancer Res;17(3):401-5 85. Tumor suppressor CHK2: regulator of DNA damage response and mediator of chromosomal stability.
- PMID: 15261141; 2004, Cancer Cell;6(1):45-59 86. Chk1 is haploinsufficient for multiple functions critical to tumor suppression.
- 87. PMID: 15539958; 2005, Cell Cycle;4(1):131-9 Chk1 is essential for tumor cell viability following activation of the replication checkpoint.
- PMID: 23296741; 2013, Fam Cancer; 12(3):473-8 The risk of gastric cancer in carriers of CHEK2 mutations.
- PMID: 24713400; 2014, Hered Cancer Clin Pract;12(1):10 89. A risk of breast cancer in women - carriers of constitutional CHEK2 gene mutations, originating from the North - Central Poland.
- 90. PMID: 25583358; 2015, Int J Cancer;137(3):548-52 CHEK2 mutations and the risk of papillary thyroid cancer.
- PMID: 12052256; 2002, Breast Cancer Res;4(3):R4 Mutation analysis of the CHK2 gene in breast carcinoma and other cancers.
- 92. PMID: 15125777; 2004, Mol Cancer;3():14 CHK2 kinase expression is down-regulated due to promoter methylation in non-small cell lung cancer.
- 93. PMID: 33119476; 2020, J Clin Oncol;38(36):4274-4282 TBCRC 048: Phase II Study of Olaparib for Metastatic Breast Cancer and Mutations in Homologous Recombination-Related Genes.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 30 of 36

Project ID: C23-M001-01362 Report No.: AA-23-02854 ONC Date Reported: May 19, 2023

ACTOnco® + Report

- 94. PMID: 32086346; 2020, Clin Cancer Res;26(11):2487-2496 Non-BRCA DNA Damage Repair Gene Alterations and Response to the PARP Inhibitor Rucaparib in Metastatic Castration-Resistant Prostate Cancer: Analysis From the Phase II TRITON2 Study.
- PMID: 19023283; 2008, Nat Rev Mol Cell Biol;9(12):958-70 95. Transcription-coupled DNA repair: two decades of progress and surprises.
- PMID: 21952828; 2012, Cell Mol Life Sci;69(5):727-40 96. Haploinsufficiency in mouse models of DNA repair deficiency: modifiers of penetrance.
- PMID: 12114432; 2002, Clin Cancer Res;8(7):2286-91 97. Low ERCC1 expression correlates with prolonged survival after cisplatin plus gemcitabine chemotherapy in non-small cell lung cancer.
- PMID: 18024864; 2007, J Clin Oncol;25(33):5172-9 98. ERCC1 genotype and phenotype in epithelial ovarian cancer identify patients likely to benefit from paclitaxel treatment in addition to platinumbased therapy.
- PMID: 1433335; 1992, J Natl Cancer Inst;84(19):1512-7 99. ERCC1 and ERCC2 expression in malignant tissues from ovarian cancer patients.
- PMID: 8040325: 1994. J Clin Invest:94(2):703-8 100 Messenger RNA levels of XPAC and ERCC1 in ovarian cancer tissue correlate with response to platinum-based chemotherapy.
- PMID: 23275151; 2013, Carcinogenesis; 34(4): 739-49 101. PARP inhibition selectively increases sensitivity to cisplatin in ERCC1-low non-small cell lung cancer cells.
- PMID: 23934192; 2013, Oncogene;32(47):5377-87 A high-throughput screen identifies PARP1/2 inhibitors as a potential therapy for ERCC1-deficient non-small cell lung cancer.
- PMID: 30589644; 2019, J Clin Invest;129(3):1211-1228 103 PARP inhibition enhances tumor cell-intrinsic immunity in ERCC1-deficient non-small cell lung cancer.
- 104. PMID: 25774912; 2015, PLoS One;10(3):e0119614 Protein expression of DNA damage repair proteins dictates response to topoisomerase and PARP inhibitors in triple-negative breast cancer.
- PMID: 16873062; 2006, Cell;126(2):297-308 Endonucleolytic function of MutLalpha in human mismatch repair.
- PMID: 22156295; 2012, Genome Res;22(2):208-19 106. Whole-exome sequencing of human pancreatic cancers and characterization of genomic instability caused by MLH1 haploinsufficiency and complete deficiency.
- PMID: 8484122; 1993, Science;260(5109):816-9 Microsatellite instability in cancer of the proximal colon.
- PMID: 8040889; 1994, J Natl Cancer Inst;86(16):1216-21 108 Microsatellite instability in sporadic endometrial carcinoma.
- 109. PMID: 8261393; 1993, Cancer Res;53(24):5853-5 Microsatellite instability is associated with tumors that characterize the hereditary non-polyposis colorectal carcinoma syndrome.
- PMID: 9823339; 1998, Cancer Res;58(22):5248-57 A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer.
- PMID: 12454837; 2002, Gastroenterology; 123(6):1804-11 Evaluation of tumor microsatellite instability using five quasimonomorphic mononucleotide repeats and pentaplex PCR.
- PMID: 27374179; 2017, Oncotarget;8(25):40152-40168

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 31 of 36

Project ID: C23-M001-01362 Report No.: AA-23-02854_ONC Date Reported: May 19, 2023

ACTOnco® + Report

Cumulative defects in DNA repair pathways drive the PARP inhibitor response in high-grade serous epithelial ovarian cancer cell lines.

- 113. PMID: 25893302; 2016, Oncogene;35(5):537-48 Role of Merlin/NF2 inactivation in tumor biology.
- 114. PMID: 19451229; 2009, Mol Cell Biol;29(15):4235-49
 Loss of the tumor suppressor gene NF2, encoding merlin, constitutively activates integrin-dependent mTORC1 signaling.
- 115. PMID: 19451225; 2009, Mol Cell Biol;29(15):4250-61 NF2/merlin is a novel negative regulator of mTOR complex 1, and activation of mTORC1 is associated with meningioma and schwannoma growth.
- PMID: 17655741; 2007, Brain Pathol; 17(4):371-6
 Role of NF2 haploinsufficiency in NF2-associated polyneuropathy.
- PMID: 19545378; 2009, Orphanet J Rare Dis;4():16
 Neurofibromatosis type 2 (NF2): a clinical and molecular review.
- 118. PMID: 24393766; 2014, Oncotarget;5(1):67-77
 NF2/merlin in hereditary neurofibromatosis 2 versus cancer: biologic mechanisms and clinical associations.
- 119. PMID: 27091708; 2016, J Clin Oncol;34(18):2115-24 Molecular Alterations and Everolimus Efficacy in Human Epidermal Growth Factor Receptor 2-Overexpressing Metastatic Breast Cancers: Combined Exploratory Biomarker Analysis From BOLERO-1 and BOLERO-3.
- 120. PMID: 26503204; 2016, J Clin Oncol;34(5):419-26 Correlative Analysis of Genetic Alterations and Everolimus Benefit in Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer: Results From BOLERO-2.
- 121. PMID: 24833916; 2014, Breast Cancer (Dove Med Press);6():43-57
 Use of mTOR inhibitors in the treatment of breast cancer: an evaluation of factors that influence patient outcomes.
- 122. PMID: 26859683; 2016, Oncotarget;7(9):10547-56
 Next-generation sequencing reveals somatic mutations that confer exceptional response to everolimus.
- 123. PMID: 22923433; 2012, Science;338(6104):221 Genome sequencing identifies a basis for everolimus sensitivity.
- 124. PMID: 25630452; 2015, Eur Urol;67(6):1195-1196
 Exceptional Response on Addition of Everolimus to Taxane in Urothelial Carcinoma Bearing an NF2 Mutation.
- 125. PMID: 26359368; 2015, Cancer Discov;5(11):1178-93
 NF2 Loss Promotes Oncogenic RAS-Induced Thyroid Cancers via YAP-Dependent Transactivation of RAS Proteins and Sensitizes Them to MEK Inhibition.
- 126. PMID: 24813888; 2014, Cell Rep;7(4):999-1008
 Acquired resistance of EGFR-mutant lung adenocarcinomas to afatinib plus cetuximab is associated with activation of mTORC1.
- 127. PMID: 9315668; 1997, Mol Cell Biol;17(10):6087-96 hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks.
- 128. PMID: 16467875; 2006, Cell Res;16(1):45-54
 The role of NBS1 in DNA double strand break repair, telomere stability, and cell cycle checkpoint control.
- PMID: 16385572; 2006, Int J Cancer;118(11):2911-6
 Evaluation of RAD50 in familial breast cancer predisposition.
- 130. PMID: 24894818; 2014, Breast Cancer Res;16(3):R58 Rare key functional domain missense substitutions in MRE11A, RAD50, and NBN contribute to breast cancer susceptibility: results from a Breast Cancer Family Registry case-control mutation-screening study.

CAP

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 32 of 36

Project ID: C23-M001-01362 Report No.: AA-23-02854_ONC Date Reported: May 19, 2023

ACTOnco® + Report

- 131. PMID: 18440592; 2008, Hum Pathol;39(6):925-32 Gastric cancer with high-level microsatellite instability: target gene mutations, clinicopathologic features, and long-term survival.
- 132. PMID: 11196187; 2001, Cancer Res;61(1):36-8
 Frameshift mutations at coding mononucleotide repeats of the hRAD50 gene in gastrointestinal carcinomas with microsatellite instability.
- PMID: 24934408; 2014, Cancer Discov;4(9):1014-21
 Synthetic lethality in ATM-deficient RAD50-mutant tumors underlies outlier response to cancer therapy.
- 134. PMID: 16474176; 2006, Carcinogenesis;27(8):1593-9 RAD50 and NBS1 are breast cancer susceptibility genes associated with genomic instability.
- 135. PMID: 27016230; 2016, Gynecol Oncol;141(1):57-64
 Copy number deletion of RAD50 as predictive marker of BRCAness and PARP inhibitor response in BRCA wild type ovarian cancer.
- PMID: 25935112; 2015, Trends Biochem Sci;40(6):296-308
 Structural determinants of Smad function in TGF-β signaling.
- 137. PMID: 19014666; 2008, Pathogenetics;1(1):2 Smad4 haploinsufficiency: a matter of dosage.
- 138. PMID: 9545410; 1998, Am J Hum Genet;62(5):1129-36 A gene for familial juvenile polyposis maps to chromosome 18q21.1.
- PMID: 8553070; 1996, Science;271(5247):350-3
 DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1.
- PMID: 8673134; 1996, Nat Genet; 13(3):343-6
 Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers.
- 141. PMID: 18662538; 2008, Cell;134(2):215-30 TGFbeta in Cancer.
- 142. PMID: 9135016; 1997, Cancer Res;57(9):1731-4 Tumor-suppressive pathways in pancreatic carcinoma.
- PMID: 23139211; 2013, Cancer Res;73(2):725-35
 SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer.
- 144. PMID: 22810696; 2012, Nature;487(7407):330-7 Comprehensive molecular characterization of human colon and rectal cancer.
- PMID: 25890228; 2015, World J Surg Oncol;13():128
 Clinical outcome and expression of mutant P53, P16, and Smad4 in lung adenocarcinoma: a prospective study.
- PMID: 19841540; 2009, J Clin Invest;119(11):3208-11
 Smad4: gatekeeper gene in head and neck squamous cell carcinoma.
- 147. PMID: 15867212; 2005, Clin Cancer Res;11(9):3191-7
 Differences in Smad4 expression in human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck squamous cell carcinoma.
- 148. PMID: 25589618; 2015, Clin Cancer Res;21(6):1447-56
 Genomic analysis of metastatic cutaneous squamous cell carcinoma.
- 149. PMID: 29703253; 2018, BMC Cancer;18(1):479 SMAD4 and NF1 mutations as potential biomarkers for poor prognosis to cetuximab-based therapy in Chinese metastatic colorectal cancer patients.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 33 of 36

Project ID: C23-M001-01362 Report No.: AA-23-02854_ONC Date Reported: May 19, 2023

ACTOnco® + Report

- 150. PMID: 28522603; 2017, Clin Cancer Res;23(17):5162-5175
 SMAD4 Loss Is Associated with Cetuximab Resistance and Induction of MAPK/JNK Activation in Head and Neck Cancer Cells.
- PMID: 16144935; 2005, Clin Cancer Res;11(17):6311-6
 SMAD4 levels and response to 5-fluorouracil in colorectal cancer.
- 152. PMID: 24384683; 2014, Br J Cancer;110(4):946-57 Loss of Smad4 in colorectal cancer induces resistance to 5-fluorouracil through activating Akt pathway.
- 153. PMID: 12237773; 2002, Br J Cancer;87(6):630-4 SMAD4 is a predictive marker for 5-fluorouracil-based chemotherapy in patients with colorectal cancer.
- 154. PMID: 25749173; 2015, Transl Oncol;8(1):18-24
 A Meta-Analysis of SMAD4 Immunohistochemistry as a Prognostic Marker in Colorectal Cancer.
- 155. PMID: 19478385; 2009, Cell Oncol;31(3):169-78
 Presence of a high amount of stroma and downregulation of SMAD4 predict for worse survival for stage I-II colon cancer patients.
- 156. PMID: 25681512; 2015, J Clin Pathol;68(5):341-5
 Smad4 inactivation predicts for worse prognosis and response to fluorouracil-based treatment in colorectal cancer.
- PMID: 26861460; 2016, Clin Cancer Res;22(12):3037-47
 Reduced Expression of SMAD4 Is Associated with Poor Survival in Colon Cancer.
- PMID: 26947875; 2016, Transl Oncol;9(1):1-7
 Prognostic Value of SMAD4 in Pancreatic Cancer: A Meta-Analysis.
- 159. PMID: 25760429; 2015, Pancreas;44(4):660-4 SMAD4 expression predicts local spread and treatment failure in resected pancreatic cancer.
- 160. PMID: 22504380; 2012, Pancreas;41(4):541-6 SMAD4 genetic alterations predict a worse prognosis in patients with pancreatic ductal adenocarcinoma.
- 161. PMID: 19584151; 2009, Clin Cancer Res;15(14):4674-9 SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer.
- 162. PMID: 18425078; 2008, Mod Pathol;21(7):866-75
 Expression of Smad2 and Smad4 in cervical cancer: absent nuclear Smad4 expression correlates with poor survival.
- 163. PMID: 19029933; 2008, Oncogene;27(55):6908-19 LKB1; linking cell structure and tumor suppression.
- 164. PMID: 19584313; 2009, Physiol Rev;89(3):777-98 LKB1 and AMPK family signaling: the intimate link between cell polarity and energy metabolism.
- 165. PMID: 20142330; 2010, Dis Model Mech;3(3-4):181-93 Lkb1 inactivation is sufficient to drive endometrial cancers that are aggressive yet highly responsive to mTOR inhibitor monotherapy.
- PMID: 17676035; 2007, Nature;448(7155):807-10
 LKB1 modulates lung cancer differentiation and metastasis.
- 167. PMID: 18245476; 2008, Cancer Res;68(3):759-66 Loss of Lkb1 provokes highly invasive endometrial adenocarcinomas.
- 168. PMID: 18172296; 2008, Cancer Res;68(1):55-63 LKB1 deficiency sensitizes mice to carcinogen-induced tumorigenesis.
- 169. PMID: 25244018; 2014, Int J Mol Sci;15(9):16698-718
 Recent progress on liver kinase B1 (LKB1): expression, regulation, downstream signaling and cancer suppressive function.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 34 of 36

Project ID: C23-M001-01362 Report No.: AA-23-02854_ONC Date Reported: May 19, 2023

ACTOnco® + Report

- PMID: 9425897; 1998, Nat Genet;18(1):38-43
 Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase.
- 171. PMID: 21189378; 2011, J Clin Oncol;29(6):e150-3
 mTOR inhibitor treatment of pancreatic cancer in a patient With Peutz-Jeghers syndrome.
- 172. PMID: 27615706; 2016, CNS Oncol;5(4):203-9
 Widely metastatic atypical pituitary adenoma with mTOR pathway STK11(F298L) mutation treated with everolimus therapy.
- 173. PMID: 27821489; 2017, Cancer Res;77(1):153-163
 A Transcriptional Signature Identifies LKB1 Functional Status as a Novel Determinant of MEK Sensitivity in Lung Adenocarcinoma.
- 174. PMID: 29764856; 2018, Clin Cancer Res;24(22):5710-5723
 TP53, STK11, and EGFR Mutations Predict Tumor Immune Profile and the Response to Anti-PD-1 in Lung Adenocarcinoma.
- PMID: 29773717; 2018, Cancer Discov;8(7):822-835
 STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma.
- 176. PMID: 29337640; 2018, J Clin Oncol;36(7):633-641
 Molecular Determinants of Response to Anti-Programmed Cell Death (PD)-1 and Anti-Programmed Death-Ligand 1 (PD-L1) Blockade in Patients With Non-Small-Cell Lung Cancer Profiled With Targeted Next-Generation Sequencing.
- 177. PMID: 26833127; 2016, Cancer Res;76(5):999-1008
 STK11/LKB1 Deficiency Promotes Neutrophil Recruitment and Proinflammatory Cytokine Production to Suppress T-cell Activity in the Lung Tumor Microenvironment.
- 178. PMID: 29573941; 2018, Lancet Oncol;19(5):603-615
 Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): a multicentre, open-label, randomised phase 3 trial.
- 179. PMID: 27480103; 2016, Lancet Oncol;17(9):1248-60
 Cobimetinib combined with vemurafenib in advanced BRAF(V600)-mutant melanoma (coBRIM): updated efficacy results from a randomised, double-blind, phase 3 trial.
- 180. PMID: 26703889; 2016, Lancet;387(10022):968-977

 Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study.
- PMID: 22149876; 2012, N Engl J Med;366(6):520-9
 Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer.
- 182. PMID: 21306238; 2011, N Engl J Med;364(6):514-23
 Everolimus for advanced pancreatic neuroendocrine tumors.
- 183. PMID: 23158522; 2013, Lancet;381(9861):125-32
 Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial.
- 184. PMID: 18653228; 2008, Lancet;372(9637):449-56
 Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial.
- PMID: 27717299; 2016, N Engl J Med;375(22):2154-2164
 Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer.
- PMID: 32343890; 2020, N Engl J Med;382(22):2091-2102
 Olaparib for Metastatic Castration-Resistant Prostate Cancer.
- PMID: 31851799; 2019, N Engl J Med;381(25):2416-2428
 Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 35 of 36

Project ID: C23-M001-01362 Report No.: AA-23-02854_ONC Date Reported: May 19, 2023

ACTOnco® + Report

- PMID: 31157963; 2019, N Engl J Med;381(4):317-327
 Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer.
- PMID: 30345884; 2018, N Engl J Med;379(26):2495-2505
 Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer.
- 190. PMID: 28578601; 2017, N Engl J Med;377(6):523-533
 Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation.
- 191. PMID: 28754483; 2017, Lancet Oncol;18(9):1274-1284

 Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial.
- 192. PMID: 27617661; 2016, Lancet Oncol;17(11):1579-1589

 Overall survival in patients with platinum-sensitive recurrent serous ovarian cancer receiving olaparib maintenance monotherapy: an updated analysis from a randomised, placebo-controlled, double-blind, phase 2 trial.
- 193. PMID: 28916367; 2017, Lancet;390(10106):1949-1961
 Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial.
- 194. PMID: 30110579; 2018, N Engl J Med;379(8):753-763
 Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation.
- PMID: 17538086; 2007, N Engl J Med;356(22):2271-81
 Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma.
- 196. PMID: 29072975; 2018, J Clin Oncol;36(1):7-13
 Dabrafenib and Trametinib Treatment in Patients With Locally Advanced or Metastatic BRAF V600-Mutant Anaplastic Thyroid Cancer.
- 197. PMID: 27080216; 2016, Lancet Oncol;17(5):642-50
 Dabrafenib in patients with BRAF(V600E)-positive advanced non-small-cell lung cancer: a single-arm, multicentre, open-label, phase 2 trial.
- PMID: 25265492; 2014, N Engl J Med;371(20):1877-88
 Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma.
- PMID: 22663011; 2012, N Engl J Med;367(2):107-14
 Improved survival with MEK inhibition in BRAF-mutated melanoma.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 36 of 36