# Towards Trustworthy LLMs: Improving Robustness via Post-Training Optimization

Liang Chen

The Chinese University of Hong Kong

### **About Me**



#### **Liang Chen**

- Date of Birth: October 1998 (Age: 26)
- Ph.D. Candidate (3rd Year),
   Department of Systems Engineering and Engineering Management, CUHK
- Advisor: Prof. Kam-Fai Wong
- Personal Website: chanliang.github.io

### Research Focus

#### **LLM** Trustworthiness

#### Robustness

Adversarial Attack &
Distribution Shifts
[ICLR 2025]

#### Transparency

Long-CoT & Reasoning Model [NIPS 2025 submission]

#### Validity

Factual Error
[EMNLP 2023]
Inconsistency
[ACL 2023 findings]

### Resistance to Misuse

Cheating, Plagiarism
[ACL 2024]
Harmful Finetuning
[ICML 2025]

**Today's Focus** 

### Research Focus

#### **LLM Trustworthiness**

Robustness to Input

Adversarial Attack &
Distribution Shifts
[ICLR 2025]

Transparency of Decision

Long-CoT & Reasoning Model [NIPS 2025 submission]

Validity of Output

Factual Error
[EMNLP 2023]
Inconsistency
[ACL 2023 findings]

Resistance to Misuse

Cheating, Plagiarism
[ACL 2024]
Harmful Finetuning
[ICML 2025]





### PEARL: TOWARDS PERMUTATION-RESILIENT LLMS

**Liang Chen<sup>1</sup>** Li Shen<sup>2\*</sup> Yang Deng<sup>3</sup> Xiaoyan Zhao<sup>1</sup> Bin Liang<sup>1</sup> Kam-Fai Wong<sup>1\*</sup>

<sup>1</sup>The Chinese University of Hong Kong <sup>2</sup>Shenzhen Campus of Sun Yat-sen University <sup>3</sup>SMU

Robustness in handling tasks with set-structure input, e.g. ICL, RAG

### Backgroud: ICL Order Sensitivity

#### • In-Context Learning (ICL) of LLMs: Powerful but Fragile

- Traverse all possible ordering, and calculate the average and worst-case performance.
- Performance is highly sensitive to the order of demons.



Figure 1: Performance of Llama-3 on CurDial datasets

### Backgroud: ICL Order Sensitivity

#### The Fragility can be exploited to design a adversarial attack.

- Permutation Attack: attacker aims to fool LLMs by permuting ICL demonstrations.
- Attack Success Rate: a sample is successfully attacked if its relative performance drop exceeds a threshold.



Figure 2: Attack success rates for exhaustive and neural search attack methods at different thresholds.

### Backgroud: ICL Order Sensitivity

- The Lack of robustness can
  - a) affect the user experience
  - b) provide opportunities for malicious attacks

What are the reasons behind such non-robustness?

### Cause Analysis: Model Side

#### Autoregressive Nature of Transformer Architectural

- Positional encodings
- Unidirectional attention

#### On the other hand, we know

- Transformers are universal function approximators.
- Permutation invariance (robustness) is a function property.
- Therefore, Transformers can approximate permutation-invariant functions.

### Cause Analysis: Data Side

- Suppose that
  - we train the model for T epochs
  - the ICL number is N
  - we do data augmentation (e.g. shuffling opt) every epoch

Can we solve the problem with data augmentation?

• Then we need T >= N! to guarantee the worst-case robustness...

### Cause Analysis: algorithm Side

Empirical risk minimization

$$\hat{\theta}_{\text{ERM}} \coloneqq \arg\min_{\theta \in \Theta} \mathbb{E}_{(p,x,y) \sim \hat{P}} [\ell(\theta; p, x, y)]$$

Asymptotics properties of ERM:

$$\hat{\theta} \stackrel{p}{\to} \theta^* \ as \ n \to \infty$$

· However, when data is limited...



Figure 3. An illustrative example on 3 shot setting

How to design a method to mitigate the problems of ERM in the limited data setting?

### PEARL: Permutation-Resilient Learning

#### The PEARL Objective

Optimize for the worst-case distribution  $Q_{\Pi}$  within an ambiguity set Q:

$$\hat{\theta}_{\mathsf{DRO}} \arg \min_{\theta \in \Theta} \Bigl\{ \sup_{Q_{\Pi} \in \mathcal{Q}} \mathbb{E}_{(p,x,y) \sim Q_{\Pi}} [\ell(\theta; p, x, y)] \Bigr\}$$

#### Ambiguity Set Q (2/3)

The set of all possible permutations of the demonstrations in the empirical data:

$$\mathcal{Q} := \left\{ \sum_{\Pi \in \mathbb{P}} q_\Pi \ Q_\Pi \ \Big| \ q \in \Delta_{|\mathbb{P}|-1} 
ight\}$$

where  $Q_{\Pi} := \left\{ \left(\Pi \cdot p, \, x, \, y\right) \, \middle| \, (p, x, y) \sim \hat{P} \right\}.$ 

- Π is a permutation matrix.
- $\mathbb{P}$  is the set of all n! permutation matrices.
- q is a probability distribution over these permutations.

#### Intuition:

- ERM: optimize the avg loss
- PEARL: optimize the worstcase loss

**Q** constaints all possible permutations of the empirical distribution.

### **Explanation of PEARL**

- What happens in the inner problem?
  - Consider a 2 shot scenario



### Comparsion of PEARL and ERM



### How to effectively solve the problem?

- Notice that the outter problem can be solved by SGD, if the inner problem is solved.
- Solveing the inner problem (a selection problem) by brute force search will need O(n!).

### Solving the Inner Problem via P-Net

 We design a permutation-proposal network (P-Net) to solve the inner problem.

$$(\mathcal{P} \times \mathcal{X} \times \mathcal{Y}) \to \prod$$

a) Parameter componet: model the cross-relationship between n demons.

$$(\mathcal{P} \times \mathcal{X} \times \mathcal{Y}) \to \mathbf{R} \in \mathbb{R}^{n \times n}$$

b) Non-parameter component: get a permutation from the relationship representation.

$$\mathbf{R} \to \Pi \in \mathbb{R}^{n \times n}$$

### Parameter Componet

- Parameter componet: model the cross-relationship between demons.
- a) A feature extractor (an encoder model, e.g. BERT)

$$([CLS], (x_1, y_1), \dots, [CLS], (x_n, y_n), [CLS], (x, y)) \xrightarrow{\text{Encoder}} (\mathbf{h}_1, \mathbf{h}_2, \dots, \mathbf{h}_n, \mathbf{h}_{n+1}),$$

$$H = (\mathbf{h}_1, \mathbf{h}_2, \dots, \mathbf{h}_n) \in \mathbb{R}^{n \times h}$$

b) A cross-relationship modeling layer (a MLP layer + non-linear activation)

$$\mathbf{R} = g\left(HWH^{\top}\right) \in \mathbb{R}^{n \times n}$$

### **Explanation of Parameter Component**

#### What are the parameter componet doing? - A graph perspective

If we regard demonstrations as nodes in graph, then

- R is the adjacency matrix, Rij represent the relationship between demons i and j.
- The parameterized componet is doing an edge predition task
   e.g. larger Rij indicate we should swap the demons i and j (there is an edge)

So How to get a permutation from R? - Need futhuer operations...

### Non-Parameter Componet

- Non-parameter componet: transform the adjacency matrix R into distribution, then sample a permutation from it.
- a) Sinkhorn algorithm: transform R into a distribution over permutations.  $\mathbf{R} \to \Delta(\Pi)$

$$S(R) = \lim_{l \to \infty} \left( \mathcal{T}_c \left( \mathcal{T}_r \left( \exp(R) \right) \right) \right),$$

$$\mathcal{T}_r(R) = R \oslash \left( R \mathbf{1}_n \mathbf{1}_n^\top \right), \quad \mathcal{T}_c(R) = R \oslash \left( \mathbf{1}_n \mathbf{1}_n^\top R \right)$$

b) Gumbel softmax: sample a permutation from it.  $\Delta(\Pi) \rightarrow \Pi$ 

$$\Pi = \lim_{\tau \to 0} S\left((R+G)/\tau\right),$$

$$G_{ij} = -\log\left(-\log G'_{ij}\right), \quad G'_{ij} \sim U(0,1),$$

### **Adversarial Optimization**



#### Algorithm 1: Adversarial Optimization Algorithm for PEARL

### Experiment

#### We Validate PEARL on Two Scenarios:

#### Scenario 1: ICL with Linear Functions

- Task: Pretrain a Transformer (GPT-2 base) from scratch to in-context learn  $f(x) = w^{\top}x$ .
- Metric: Normalized MSE.
- P-Net: BERT-base, trained from scratch.

#### Scenario 2: Instruction Tuning of LLMs

- Task: Fine-tune existing LLMs on Super-Natural Instructions (SNI).
- LLMs: Llama3-8B, Llama2-7B/13B, Mistral-7B, Gemma-7B.
- P-Net: FLAN-large encoder.

Toy setting

**Realistic setting** 

### Results

Performance on different LLMs

#### **P-Net**

• Flan-large encoder

#### **LLMs**

• SOTA base model 7~8B



### Results

• Generalize to many-shot, long-context setting.

#### **Train**

- **5** shot
- 512 seq length

#### **Test**

- 8 ~ 64 shot
- 8k seq length



#### Results

• Improves shot efficiency: #shots that ERM requires to match the avg performance of PEAEL.

PEARL needs 2 to 4 times fewer shots.

Table 4: Shot Efficiency: Average Performance with and without PEARL.

| # Shots | 2    | 4    | 8    | 16   | 32   | 64   |
|---------|------|------|------|------|------|------|
| ERM     | 57.3 | 59.7 | 61.8 | 66.9 | 67.4 | 68.1 |
| PEARL   | 62.9 | 63.1 | 66.5 | 70.5 | 70.0 | 70.4 |

## An Unexpected Benefit: Improved Best-Case Performance

 Improves shot efficiency: #shots that ERM requires to match the avg performance of PEAEL

Table 12: Best performance comparison between ERM and PEARL

| #Shot | Method | Average | Gain | CSQA | CurDial | CoLA | TMW  |
|-------|--------|---------|------|------|---------|------|------|
| 2     | ERM    | 64.1    | -    | 68.8 | 64.4    | 64.1 | 59.2 |
|       | PEARL  | 68.8    | 7.2% | 73.4 | 69.2    | 70.3 | 62.1 |
| 3     | ERM    | 72.8    | -    | 70.3 | 85.0    | 65.6 | 70.3 |
|       | PEARL  | 77.0    | 5.7% | 73.4 | 87.9    | 79.7 | 66.9 |
| 4     | ERM    | 82.9    | -    | 81.3 | 92.4    | 78.1 | 79.7 |
|       | PEARL  | 84.3    | 1.7% | 82.8 | 93.6    | 81.2 | 79.5 |
| 5     | ERM    | 86.8    | -    | 84.4 | 95.3    | 81.3 | 86.2 |
|       | PEARL  | 89.3    | 2.9% | 87.5 | 96.5    | 85.9 | 87.3 |

### PEARL: Summary Future Outlook

#### Summary

- a) Mitigate the shortcomings of ERM in the limited data setting
- b) Designed a neural solution approach (P-Net, Learn to permute) for the inner problem
- c) Provides a general framework for handling set-structured inputs with order-independent elements

#### Future Directions

- Multiple documents: "Lost in the middle" problem
- Multiple images or videos...

### Thank You! Q & A