Correction proposée par : EL Amdaoui Mustapha Email : elamdaoui@gmail.com Site web : www.elamdaoui.com

Exercice 1

- 1. Soit $x \in \mathbb{R}$.
 - ullet L'application $t\longmapsto e^{tx-t^2}$ est continue sur $\mathbb R$
 - En outre $e^{tx-t^2} = \circ\left(\frac{1}{t^2}\right)$, donc elle est intégrable.
- 2. Soit $h: (x,t) \in \mathbb{R}^2 \longmapsto e^{tx-t^2}$
 - Pour tout $x \in \mathbb{R}$, $t \longmapsto h(x,t)$ est continue par morceaux et intégrable sur \mathbb{R}
 - Pour tout $n \in \mathbb{N}^*$, l'application h admet une dérivée partielle $\frac{\partial^n h}{\partial x^n}$, donnée par $\forall (x,t) \in \mathbb{R}^2$, $\frac{\partial^n h}{\partial x^n}(x,t) = t^n e^{tx-t^2}$, continue par rapport à la première variable, continue par morceaux par rapport à la seconde
 - Soit $[a,b] \subset \mathbb{R}$ et $n \in \mathbb{N}^*$. Pour $x \in [a,b]$, on a $tx \leqslant \gamma |t|$, avec $\gamma = \max(|a|,|b|)$. Posons alors $\varphi_n : t \in \mathbb{R} \longmapsto |t|^n e^{\gamma |t| t^2}$. Une telle fonction est positive, continue et intégrable telle que :

$$\forall (x,t) \in [a,b] \times \mathbb{R}, \ \left| \frac{\partial^n h}{\partial x^n}(x,t) \right| \leqslant \varphi_n(t)$$

Par le théorème de dérivation sous-signe intégrale f est de classe \mathcal{C}^{∞} sur \mathbb{R} et

$$\forall p \in \mathbb{N}^*, \, \forall x \in \mathbb{R}, \quad f^{(p)}(x) = \int_{-\infty}^{+\infty} t^p e^{tx - t^2} dt$$

- 3. D'après l'expression de la dérivée f', on a $f'(0) = \int_{-\infty}^{+\infty} t e^{-t^2} dt$. Mais $t \mapsto t e^{-t^2}$ est impaire et intégrable sur \mathbb{R} , donc $\int_{-\infty}^{+\infty} t e^{-t^2} dt = 0$
- 4. Soit $x \in \mathbb{R}$. Les deux fonctions $t \longmapsto t$ et $t \longmapsto e^{tx-t^2}$ sont de classe \mathcal{C}^1 sur \mathbb{R} telles que $\lim_{|t| \to +\infty} t e^{tx-t^2} = 0$. Alors par intégration par parties

$$f(x) = \int_{-\infty}^{+\infty} e^{tx-t^2} dt$$

$$= \left[te^{tx-t^2} \right]_{\infty}^{\infty} - \int_{-\infty}^{+\infty} t(x-2t)e^{tx-t^2} dt$$

$$= -x \int_{-\infty}^{+\infty} te^{tx-t^2} dt + 2 \int_{-\infty}^{+\infty} t^2 e^{tx-t^2} dt$$

$$= -xf'(x) + 2f''(x)$$

- 5. La fonction $\varphi: x \longmapsto xf(x) 2f'(x)$ est dérivable sur $\mathbb R$ de dérivée f(x) + xf'(x) 2f''(x) = 0, donc il s'agit d'une fonction constante sur l'intervalle $\mathbb R$. Avec $\varphi(0) = -2f'(0) = 0$, alors $\varphi = 0$.
- 6. D'après la question précédente f est solution de l'équation différentielle linéaire $y'-\frac{x}{2}y=0$, donc il existe $\alpha\in\mathbb{R}$ tel que $f(x)=\alpha e^{\frac{x^2}{4}}$. La condition $\alpha=f(0)$ donne $\alpha=\int_{-\infty}^{+\infty}e^{-t^2}\,\mathrm{d}t=\sqrt{\pi}$

Exercice 2

- 1. Soit $x \in \mathbb{R}^+$.
 - La série $\sum_{n\geqslant 1} \frac{(-1)^{n+1}}{n} e^{-nx}$ est alternée vérifiant le critère spécial des séries alternées, car pour tout $n\geqslant 1$, on a $\frac{|u_{n+1}(x)|}{|u_n(x)|}=\frac{n}{n+1}e^{-x}\leqslant 1$ et $\frac{e^{-nx}}{n}\xrightarrow[n\to+\infty]{}0$, donc elle converge. Ainsi la convergence simple de la série $\sum_{n\geqslant 1} u_n$.
 - En outre pour tout $x \in \mathbb{R}^+$ et $n \geqslant 1$, on a

$$\left| \sum_{k=n+1}^{+\infty} \frac{(-1)^{k+1}}{k} e^{-kx} \right| \le \frac{1}{n+1} e^{-(n+1)x} \le \frac{1}{n+1},$$

avec $\frac{1}{n+1} \xrightarrow[n \to +\infty]{} 0$. On en déduit que la série converge uniformément sur \mathbb{R}^+ .

- 2. Pour tout $n \in \mathbb{N}^*$, l'application u_n est continue sur \mathbb{R} . De plus la série $\sum_{n\geqslant 1} u_n$ converge uniformément sur \mathbb{R}^+ , donc la fonction somme g est continue sur \mathbb{R}^+ .
- 3. Pour tout $n \ge 1$, l'application u_n est de classe C^1 sur \mathbb{R}_+^* et $u_n'(x) = (-1)^n e^{-nx}$.
 - la série $\sum_{n>1} u_n$ converge simplement sur \mathbb{R}_+^* .
 - soit $[a,b] \subset \mathbb{R}^*_{+}$. Pour $x \in [a,b]$ et $n \geqslant 1$, on a

$$|u_n'(x)| = e^{-nx} \leqslant e^{-n\alpha}$$

La série géométrique $\sum_{n\geqslant 1}e^{-na}$, de raison $e^{-a}\in]0,1[$, converge, donc la série $\sum_{n\geqslant 1}u'_n$ converge normalement sur [a,b], donc elle l'est uniformément

Par le théorème de dérivation terme à terme, la fonction g est de classe C^1 sur \mathbb{R}_+^* et pour tout $x \in \mathbb{R}_+^*$:

$$g'(x) = \sum_{n=1}^{+\infty} (-1)^n e^{-nx} = \sum_{n=1}^{+\infty} (-e^{-x})^n = \frac{-e^{-x}}{1 + e^{-x}}$$

4. D'après la question précédente, il existe $\alpha \in \mathbb{R}$ tel que

$$\forall x \in \mathbb{R}_+^*, \quad g(x) = \ln(1 + e^{-x}) + \alpha$$

Par passage à la limite lorsque x tend vers 0^+ et par continuité de g et de \ln , on obtient $g(0) = \ln(2) + \alpha$. Avec la donnée $g(0) = \ln(2)$, on tire

$$\forall x \in \mathbb{R}_+, \quad g(x) = \ln(1 + e^{-x})$$

Problème

1ère partie

Un isomorphisme canonique de $M_n(\mathbb{C})$ sur son dual $(M_n(\mathbb{C}))^*$

1.1. Soit $A \in M_n(\mathbb{C})$. L'application T_A est bien définie de $M_n(\mathbb{C})$ à valeurs dans \mathbb{C} . Soit M, $N \in M_n(\mathbb{C})$ et $\lambda \in \mathbb{C}$. On a

$$\begin{array}{lcl} \mathrm{T}_{A}\left(\lambda M+N\right) & = & \mathrm{Tr}\left(A\left(\lambda M+N\right)\right) \\ & = & \mathrm{Tr}\left(\lambda AM+AN\right) \\ & = & \lambda \mathrm{Tr}\left(AM\right)+\mathrm{Tr}\left(AN\right) = \lambda \mathrm{T}_{A}\left(M\right)+\mathrm{T}_{A}\left(N\right) \end{array}$$

Comme T_A est à valeurs dans \mathbb{C} , donc T_A est bien une forme linéaire sur $M_n(\mathbb{C})$.

- **1.2.** Soit $\Phi: A \in M_n(\mathbb{C}) \longrightarrow T_A \in (M_n(\mathbb{C}))^*$.
 - **1.2.1.** Soit $A, B \in \mathcal{M}_n(\mathbb{C})$ et $\lambda \in \mathbb{C}$, alors pour tout $M \in \mathcal{M}_n(\mathbb{C})$, on a :

$$\begin{split} \Phi\left(\lambda A + B\right)(M) &= \operatorname{T}_{\lambda A + B}\left(M\right) \\ &= \operatorname{Tr}\left(\left(\lambda A + B\right)M\right) = \operatorname{Tr}\left(\lambda AM + BM\right) \\ &= \lambda \operatorname{Tr}\left(AM\right) + \operatorname{Tr}\left(BM\right) = \lambda \operatorname{T}_{A}(M) + \operatorname{T}_{B}(M) \\ &= \left(\lambda \varphi(A) + \varphi(B)\right)(M) \end{split}$$

Ceci vrai quelque soit $M \in M_n(\mathbb{C})$, donc $\Phi(\lambda A + B) = \lambda \Phi(A) + \Phi(B)$.

1.2.2. Soit $A = (a_{ij})_{1 \leqslant i,j \leqslant n} \in \ker(\Phi)$. Soit $(i,j) \in [1,n]^2$, le calcul de $AE_{j,i}$ donne

$$AE_{j,i} = \sum_{k=1}^{n} \sum_{\ell=1}^{n} a_{k\ell} E_{k\ell} E_{j,i} = \sum_{k=1}^{n} a_{k,j} E_{k,i}$$

On tire donc $T_A(E_{j,i}) = Tr(AE_{j,i}) = Tr\left(\sum_{k=1}^n a_{k,j}E_{k,i}\right) = a_{i,j}$, puis $a_{i,j} = \Phi(A)(E_{j,i}) = 0$. La matrice A est donc nulle et $\ker(\Phi) = \{0\}$.

- **1.2.3.** Vu dim $\mathrm{M}_n\left(\mathbb{C}\right)=\dim\left(\mathrm{M}_n\left(\mathbb{C}\right)\right)^*$ et Φ endomorphisme injectif, alors il s'agit d'un isomorphisme d'espaces vectoriels et, par suite, pour toute forme linéaire $\psi\in\left(\mathrm{M}_n\left(\mathbb{C}\right)\right)^*$ il existe une unique matrice $A\in\mathrm{M}_n\left(\mathbb{C}\right)$ telle que $\psi=\Phi(A)=\mathrm{T}_A$
- **1.3.** \mathcal{H} est un hyperplan de $M_n(\mathbb{C})$, donc il existe une forme linéaire non nulle ψ telle que $\mathcal{H} = \ker(\psi)$. La question précédente justifie l'existence d'une matrice A telle que $\psi = T_A$ et comme ψ est non nulle, alors $A \neq 0$.
- **1.4.** Par hypothèse $A \neq 0$, alors $T_A \neq 0$, en conséquence il existe $C \in M_n(\mathbb{C})$ telle que $T_A(C) = 1$ et $M_n(\mathbb{C}) = \ker(T_A) \oplus \operatorname{Vect}(C)$. Pour $M \in M_n(\mathbb{C})$, il existe $\alpha \in \mathbb{C}$ et $M_A \in \ker(T_A)$ tels que $M = M_A + \alpha C$ et puisque $\ker(T_A) \subset \ker(T_B)$, alors $T_B(M) = \alpha T_B(C)$. Posons $\lambda = T_B(C)$, alors il vient $T_B(M) = \lambda \alpha = \lambda T_A(M) = T_{\lambda A}(M)$, soit $\Phi(B) = \Phi(\lambda A)$, par injectivité de Φ , on a bien $B = \lambda A$
- **1.5.** Posons $M=(m_{i,j})_{1\leqslant i,j\leqslant n}$ et $N=(n_{i,j})_{1\leqslant i,j\leqslant n}$. Par définition du produit matriciel, on a $MN=\left(\sum_{k=1}^n m_{i,k}n_{k,j}\right)_{1\leqslant i,j\leqslant n}$ et $NM=\left(\sum_{k=1}^n n_{i,k}m_{k,j}\right)_{1\leqslant i,j\leqslant n}$, et par définition de la trace $\mathrm{Tr}\left(MN\right)=\sum_{i=1}^n\sum_{k=1}^n m_{i,k}n_{k,i}$ et $\mathrm{Tr}\left(NM\right)=\sum_{i=1}^n\sum_{k=1}^n n_{i,k}m_{k,i}$. Ceci prouve que $\mathrm{Tr}(MN)=\mathrm{Tr}(NM)$.
- **1.6.** Soit $M \in \mathrm{M}_n\left(\mathbb{C}\right)$, on a

$$\mathsf{T}_A(M) = \mathrm{Tr}\left(AM\right) = \mathrm{Tr}\left(PBP^{-1}M\right) = \mathrm{Tr}\left(BP^{-1}MP\right) = \mathsf{T}_B\left(P^{-1}MP\right)$$

On conclut donc que $M \in \mathcal{H}_A$ si, et seulement, si $P^{-1}MP \in \mathcal{H}_B$, ainsi $\mathcal{H}_A = P\mathcal{H}_BP^{-1}$

2ème partie

Étude du noyau $\ker(\mathbf{T}_A)$ pour $A \in \mathrm{M}_2\left(\mathbb{C}\right)$ non nulle de trace nulle.

- **2.1.** \mathcal{H}_A est le noyau de la forme linéaire non nulle T_A , donc il s'agit bien d'un hyperplan et sa dimension est évidemment 3.
- **2.2.** On suppose dans cette question que A est semblable à $R = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$.
 - **2.2.1.** On a $\text{Tr}(R) = \lambda + \mu = \text{Tr}(A) = 0$, donc $\mu = -\lambda$. En outre si $\mu = 0$, alors R = 0, puis A = 0. Absurde, donc $\mu \neq 0$.
 - **2.2.2.** Soit $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{M}_2(\mathbb{C})$, on a $RM = \begin{pmatrix} \lambda a & \lambda b \\ -\lambda c & -\lambda d \end{pmatrix}$ et $\mathrm{T}_R(M) = \lambda(a-d)$. On conclut donc que $M \in \mathcal{H}_R$ si, et seulement, si $\lambda(a-d) = 0$ si, et seulement, si a = d. Ainsi $\mathcal{H}_R = \left\{ \begin{pmatrix} a & b \\ c & a \end{pmatrix}, \ (a,b,c) \in \mathbb{C}^3 \right\}$

- **2.2.3.** Les deux matrices $C = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ et $D = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$ sont dans \mathcal{H}_R dont le produit CD vaut $\begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} \notin \mathcal{H}_R$.
- **2.2.4.** Les deux matrices PCP^{-1} et PDP^{-1} sont dans \mathcal{H}_A dont le produit $PCDP^{-1} \notin \mathcal{H}_A$.
- **2.3.** On suppose que A n'est pas diagonalisable dans $M_2(\mathbb{C})$
 - **2.3.1.** Par hypothèse $\operatorname{Tr}(A)=0$, donc $\chi_A=X^2+\det(A)$. Si $\det(A)\neq 0$, alors χ_A est scindé à racines simples et A sera diagonalisable, ce qui est absurde, donc $\det(A)=0$, puis $\chi_A=X^2$, soit A est nilpotente non nulle, donc elle est semblable à une matrice triangulaire supérieure stricte non nulle. Ainsi il existe $\alpha\in\mathbb{C}^*$ et $P\in\operatorname{GL}_2(\mathbb{C})$ tels que $A=PRP^{-1}$, avec $R=\begin{pmatrix} 0 & \alpha \\ 0 & 0 \end{pmatrix}$.
 - **2.3.2.** Soit $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{C})$, on a $RM = \begin{pmatrix} \alpha c & \alpha d \\ 0 & 0 \end{pmatrix}$ et $\mathcal{T}_R(M) = \alpha c$. On conclut donc que $M \in \mathcal{H}_R$ si, et seulement, si $\alpha c = 0$ si, et seulement, si c = 0. Ainsi $\mathcal{H}_R = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}, \ (a,b,d) \in \mathbb{C}^3 \right\}$.
 - **2.3.3.** D'après la question précédente, \mathcal{H}_R est l'ensemble des matrices triangulaires supérieures d'ordre 2, qui est une \mathbb{C} -algèbre.
 - L'application $\phi: M \longmapsto PMP^{-1}$ est un automorphisme d'algèbre de $M_2(\mathbb{C})$ et $\mathcal{H}_A = \phi(\mathcal{H}_R)$, donc \mathcal{H}_A est une \mathbb{C} -algèbre, donc elle est stable par le produit matriciel

3ème partie

Étude des hyperplans de $\mathrm{M}_n\left(\mathbb{C}\right)$ stables par le produit matriciel

3.1.

- **3.1.1.** Si $\psi(I_n) = 0$, alors $I_n \in \ker(\psi) = \mathcal{H}$.
- **3.1.2.** Soit $M \in \mathrm{M}_n\left(\mathbb{C}\right)$ telle que $M^2 \in \mathcal{H}$.
 - (i) On a $\psi(M \lambda I_n) = \psi(M) \lambda \psi(I_n) = 0$, donc $M \lambda I_n = M_H \in \mathcal{H}$. Par stabilité de \mathcal{H} par le produit matriciel, il vient $(M \lambda I_n)^2 \in \mathcal{H}$.
 - (ii) Les deux matrices M et λI_n commutent, alors par la formule de binôme de Newton $(M-\lambda I_n)^2=M^2-2\lambda M+\lambda^2 I_n$, soit, par stabilité de $\lambda^2 I_n-2\lambda M=(M-\lambda I_n)^2-M^2\in\mathcal{H}$
 - (iii) D'une part $\psi\left(\lambda^2\mathrm{I}_n-2\lambda M\right)=\lambda^2\psi(\mathrm{I}_n)-2\lambda\psi(M)=-\lambda^2\psi(\mathrm{I}_n)$ et d'autre part $\lambda^2\mathrm{I}_n-2\lambda M\in\mathcal{H}=\ker(\psi)$, donc $-\lambda^2\psi(\mathrm{I}_n)=0$, puis $\lambda=0$, car $\psi(\mathrm{I}_n)\neq 0$. Enfin $M=M_H\in\mathcal{H}$
- **3.1.3.** Soit $i, j \in [1, n]$ tels que $i \neq j$. On a $E_{i,j}^2 = \delta_{i,j} E_{i,j} = 0 \in H$, alors par la question précédente on tire $E_{i,j} \in \mathcal{H}$.
- **3.1.4.** Soit $i \in [\![1,n]\!]$, on choisit $j \in [\![1,n]\!] \setminus \{i\}$. On a $E_{i,i} = E_{i,j}.E_{j,i}$ et comme $E_{i,j}$ et $E_{j,i}$ sont dans \mathcal{H} et \mathcal{H} est stable par le produit matriciel, alors $E_{i,i} \in \mathcal{H}$.
- **3.1.5.** \mathcal{H} est un sous-espace vectoriel, alors par stabilité par combinaison $I_n = \sum_{i=1}^n E_{i,i} \in \mathcal{H}$. Absurde. On conclut que l'hypothèse $I_n \in \mathcal{H}$
- **3.2.** Soit $N \in \ker(\mathsf{T}_A)$, alors $N \in \mathcal{H}$ et par stabilité de \mathcal{H} par le produit matriciel on obtient $MN \in \mathcal{H}$, soit $\operatorname{Tr}(AMN) = 0$, c'est-à-dire $N \in \ker(\mathsf{T}_{AM})$. Ainsi l'inclusion $\ker(\mathsf{T}_A) \subset \ker(\mathsf{T}_{AM})$.
 - Comme $A \neq 0$, le résultat de la question **1.4.** s'applique, donc il existe un nombre λ_M tel que $AM = \lambda_M A$ ou encore $A(M \lambda_M \mathbf{I}_n) = 0$.
- **3.3.** Soit $M \in \mathcal{H}$, on pose $N = M \lambda_M I_n$, avec λ_M le nombre de la question précédente. On a bien AN = 0, soit $N \in \mathcal{F}$ et $M = N + \lambda_M I_n \in \mathcal{F} + \mathrm{Vect}(I_n)$. Ainsi $\mathcal{H} \subset \mathcal{F} + \mathrm{Vect}(I_n)$.
- **3.4.** Montrons que \mathcal{F} est un sous-espace vectoriel de $M_n(\mathbb{C})$
 - \mathcal{F} est une partie de $M_n(\mathbb{C})$;
 - \mathcal{F} ≠ \emptyset , car il contient la matrice nulle ;
 - Soit $M, N \in \mathcal{F}$ et $\alpha \in \mathbb{C}$, on a $A(\alpha M + N) = \alpha AM + AN = 0$, donc $\alpha M + N \in \mathcal{F}$.

Ceci prouve que \mathcal{F} est un sous-espace vectoriel de $M_n(\mathbb{C})$

• Posons

$$\varphi: \left\{ \begin{array}{ccc} \mathcal{F} & \longrightarrow & \mathcal{L}\left(\mathcal{M}_{n,1}\left(\mathbb{C}\right), \ker\left(\varphi_{A}\right)\right) \\ N & \longmapsto & \varphi_{N} \end{array} \right.$$

avec φ_N est défini par $\forall X \in M_{n,1}(\mathbb{C})$, $\varphi_N(X) = NX$.

– φ est bien définie.

Si $N \in \mathcal{F}$, l'application φ_N est bien un endomorphisme de $\mathrm{M}_{n,1}\left(\mathbb{C}\right)$. En outre pour tout $X \in \mathrm{M}_{n,1}\left(\mathbb{C}\right)$, on a ANX = 0, donc $\varphi_N(X) \in \ker(\varphi_A)$, donc φ_N est à valeurs dans $\ker(\varphi_A)$.

– φ est linéaire.

Soit $M, N \in \mathcal{F}$ et $\lambda \in \mathbb{C}$. Pour $X \in M_{n,1}(\mathbb{C})$, on a

$$\varphi(\lambda M + N)(X) = (\lambda M + N)X = \lambda MX + NX = (\lambda \varphi(M) + \varphi(N))(X)$$

Ceci vrai pour tout $X \in \mathcal{M}_{n,1}(\mathbb{C})$, donc $\varphi(\lambda M + N) = \lambda \varphi(M) + \varphi(N)$

– φ est surjective.

Soit $\psi \in \mathcal{L}\left(\mathrm{M}_{n,1}\left(\mathbb{C}\right), \ker\left(\varphi_{A}\right)\right)$ et notons $\mathcal{B}=\left(\mathcal{E}_{1}, \cdots, \mathcal{E}_{n}\right)$ la base canonique de $\mathrm{M}_{n,1}\left(\mathbb{C}\right)$. Posons $Y_{i}=\psi\left(\varepsilon_{i}\right)$ pour $i\in\left[\!\left[1,n\right]\!\right]$ et soit N la matrice de vecteurs colonnes Y_{1},\cdots,Y_{n} . On a bien $\varphi_{N}=\psi$ car il s'agit de deux applications linéaires qui coïncident sur une base et AN est la matrice dont les colonnes sont AY_{1},\cdots,AY_{n} , donc AN=0, soit $N\in\mathcal{F}$

– φ est injective.

Soit $N \in \mathcal{F}$ telle que $\varphi_N = 0$, alors toutes les colonnes de N sont nulles, donc N = 0

Bref φ est un isomorphisme d'espaces vectoriels de \mathcal{F} vers $\mathcal{L}(M_{n,1}(\mathbb{C}), \ker(\varphi_A))$.

3.5. • La question précédente permet l'égalité

$$\dim_{\mathbb{C}} \mathcal{F} = \dim_{\mathbb{C}} \mathcal{L} \left(M_{n,1} \left(\mathbb{C} \right), \ker \left(\varphi_A \right) \right) = n \dim_{\mathbb{C}} \ker \left(\varphi_A \right) = n \left(n - \operatorname{rg} \left(\varphi_A \right) \right)$$

Or A est la matrice de φ_A dans la base canonique de $M_{n,1}(\mathbb{C})$, donc $\operatorname{rg}(\varphi_A) = \operatorname{rg}(A)$.

• L'inclusion $\mathcal{H} \subset \mathcal{F} + \mathrm{Vect}(\mathrm{I}_n)$ donne $\dim \mathcal{H} \leqslant \dim (\mathcal{F} + \mathrm{Vect}(\mathrm{I}_n)) \leqslant \dim \mathcal{F} + 1$. Ainsi on obtient l'inégalité

$$n^2 - 1 \le n(n - \operatorname{rg}A) + 1 \Rightarrow n.\operatorname{rg}(A) \le 2$$

- **3.6.** A étant non nulle, donc $rg(A) \ge 1$, puis $2 \le n \le n \cdot rg(A) \le 2$. On gagne donc n = 2 et même rg(A) = 1.
- **3.7.** Soit \mathcal{H} un hyperplan de $M_2(\mathbb{C})$ stable par le produit matriciel. D'après la question **1.3** il existe $A \in M_2(\mathbb{C})$ non nulle telle que $\mathcal{H} = \ker(T_A) = \mathcal{H}_A$. En outre d'après **3.1** la matrice $I_n \in \mathcal{H}$, soit $\operatorname{Tr}(A) = 0$. L'étude faite dans la partie 2 montre qu'un tel hyperplan $\mathcal{H}_A = \ker(T_A)$, avec A non nulle de $M_2(\mathbb{C})$ de trace nulle, est stable par produit matriciel. Bref les hyperplans de $M_2(\mathbb{C})$ stables par le produit matriciel sont de la forme $\ker(T_A)$ avec $A \in M_2(\mathbb{C})$ non nulle de trace nulle.