

TRANSFORMERS & THEIR OFSPRINGS

Андреева Дарья Data Scientist, X5 Tech

attention is...

$$Attention(Q, V, K) = Softmax(rac{QK^T}{\sqrt{d}})V$$

возможность отловить более сложные зависимости и концепции

позиционные эмбеддинги

чуть удобнее параллелить вычисления

attention is...

BERT BIDIRECTIONAL **ENCODER** REPRESENTATIONS FROM TRANSFORMERS

bert

Ключевые отличия:

- Два направления (использует контекст и справа, и слева)
- Состоит только из энкодеров

bert

encoder encoder encoder encoder large

24

bert

два подхода к обучению:

15% of tokens

Input

1. mlm: masked language model

bert: train

два подхода к обучению:

2. twosentence task

bert: различные задачи

WORD PIECE - score =

"мама мыла раму, маму мыла рама"

- 1. vocab = ["M", "a", "p", "y"...]
- 2. vocab += ["ма", "му", ...] пары с наивысшим скором
- 3. vocab.size == n: stop

BERT: THE OFFSPRINGS

DISTILBERT

$$L(X,W) = \alpha \cdot H(y,\sigma(z_s,T=1)) + \beta \cdot H(\sigma(z_t,T= au),\sigma(z_s,T= au))$$

- 1. Запустим две модели: исходную и меньшую
- 2. При обучении меньшей будем использовать выходы большей модели и учить меньшую их ПОВТОРИТЬ X5 Tech

distilbert

Table 1: **DistilBERT retains 97% of BERT performance.** Comparison on the dev sets of the GLUE benchmark. ELMo results as reported by the authors. BERT and DistilBERT results are the medians of 5 runs with different seeds.

Model	Score	CoLA	MNLI	MRPC	QNLI	QQP	RTE	SST-2	STS-B	WNLI
ELMo BERT-base DistilBERT	68.7 79.5 77.0	44.1 56.3 51.3	68.6 86.7 82.2	76.6 88.6 87.5	71.1 91.8 89.2	89.6		91.5 92.7 91.3	70.4 89.0 86.9	56.3 53.5 56.3

Table 2: **DistilBERT yields to comparable performance on downstream tasks.** Comparison on downstream tasks: IMDb (test accuracy) and SQuAD 1.1 (EM/F1 on dev set). D: with a second step of distillation during fine-tuning.

Model	IMDb (acc.)	SQuAD (EM/F1)
BERT-base	93.46	81.2/88.5
DistilBERT	92.82	77.7/85.8
DistilBERT (D)	=	79.1/86.9

Table 3: **DistilBERT is significantly smaller** while being constantly faster. Inference time of a full pass of GLUE task STS-B (sentiment analysis) on CPU with a batch size of 1.

Model	# param. (Millions)	Inf. time (seconds)		
ELMo	180	895		
BERT-base	110	668		
DistilBERT	66	410		

ROBERTA

- 1. Теперь маскируем текст не на этапе препроцессинга, а прямо при обучении
- 2. Не обучаемся на предсказании следующего предложения

roberta

Model	SQuAD 1.1/2.0	MNLI-m	SST-2	RACE				
Our reimplementation (with NSP loss):								
SEGMENT-PAIR	90.4/78.7	84.0	92.9	64.2				
SENTENCE-PAIR	88.7/76.2	82.9	92.1	63.0				
Our reimplementation (without NSP loss):								
FULL-SENTENCES	90.4/79.1	84.7	92.5	64.8				
DOC-SENTENCES	90.6/79.7	84.7	92.7	65.6				
$BERT_{BASE}$	88.5/76.3	84.3	92.8	64.3				
$XLNet_{BASE} (K = 7)$	-/81.3	85.8	92.7	66.1				
$XLNet_{BASE} (K = 6)$	-/81.0	85.6	93.4	66.7				

Table 2: Development set results for base models pretrained over BOOKCORPUS and WIKIPEDIA. All models are trained for 1M steps with a batch size of 256 sequences. We report F1 for SQuAD and accuracy for MNLI-m, SST-2 and RACE. Reported results are medians over five random initializations (seeds). Results for BERT_{BASE} and XLNet_{BASE} are from Yang et al. (2019).

roberta

Model	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	SST-2
RoBERTa						
with BOOKS + WIKI	16 G B	8K	100K	93.6/87.3	89.0	95.3
+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	95.6
+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4
BERT _{LARGE} with BOOKS + WIKI	13GB	256	1 M	90.9/81.8	86.6	93.7
XLNet _{LARGE} with BOOKS + WIKI + additional data	13GB 126GB	256 2K	1M 500K	94.0/87.8 94.5/88.8	88.4 89.8	94.4 95.6

Table 4: Development set results for RoBERTa as we pretrain over more data ($16GB \rightarrow 160GB$ of text) and pretrain for longer ($100K \rightarrow 300K \rightarrow 500K$ steps). Each row accumulates improvements from the rows above. RoBERTa matches the architecture and training objective of BERT_{LARGE}. Results for BERT_{LARGE} and XLNet_{LARGE} are from Devlin et al. (2019) and Yang et al. (2019), respectively. Complete results on all GLUE tasks can be found in the Appendix.

DEBERTA

- 1. Вместо одного эмбеддинга для слова теперь два: отдельно позиционный, отдельно слово
- 2. Немного изменена архитектура
- 3. Считывает относительную позицию, а не абсолютную

deberta

Model	MNLI-m/mm Acc	SQuAD v1.1 F1/EM	SQuAD v2.0 F1/EM	RACE Acc	ReCoRD F1/EM	SWAG Acc	NER F1
BERT_{large}	86.6/-	90.9/84.1	81.8/79.0	72.0	_	86.6	92.8
$\overline{\text{ALBERT}_{large}}$	86.5/-	91.8/85.2	84.9/81.8	75.2	-		_
$RoBERTa_{large}$	90.2/90.2	94.6/88.9	89.4/86.5	83.2	90.6/90.0	89.9	93.4
$\overline{ ext{XLNet}_{large}}$	90.8/90.8	95.1/89.7	90.6/87.9	85.4	· -	<u>12-01</u>	-
Megatron _{336M}	89.7/90.0	94.2/88.0	88.1/84.8	83.0	0 - 1	<u>1000</u>	1
$DeBERTa_{large}$	91.1/91.1	95.5/90.1	90.7/88.0	86.8	91.4/91.0	90.8	93.8
$\overline{\text{ALBERT}_{xxlarge}}$	90.8/-	94.8/89.3	90.2/87.4	86.5	- [-	-
Megatron _{1.3B}	90.9/91.0	94.9/89.1	90.2/87.1	87.3	-	=	_
Megatron _{3.9B}	91.4/91.4	95.5/90.0	91.2/88.5	89.5	-	_	_

Table 2: Results on MNLI in/out-domain, SQuAD v1.1, SQuAD v2.0, RACE, ReCoRD, SWAG, CoNLL 2003 NER development set. Note that missing results in literature are signified by "-".

