

Enzimas (clase 2)

Docente: Juan Ignacio De Palo **Aulas Medicas Curso Virtual de Bioquímica e Inmunologia 2020.**

Enzimas clase 2

- Regulación Enzimática
- Cinética Enzimática (Michaelis-Menten, Lineweaver-Burk, Alosterica).
- Inhibidores Enzimáticos Michaelianos
- Acción del pH y Temperatura en las enzimas.

· Importancia de la regulación enzimática

Un organismo debe poder **coordinar** su **metabolismo** a través de la regulación de sus enzimas. De este modo puede **adaptarse** a cambios de **pH**, **temperatura**, disponibilidad de **energía** o ausencia de esta y mantener una condición interna estable a través de mecanismos de compensación y **autorregulación** (homeostasis).

Regulación → Catálisis → Adaptación celular

• El **conjunto de reacciones enzimaticas** organizadas coordinadas y ordenadas conforma el **metabolismo**.

- Las **vías metabólicas** son conjuntos o colecciones de **reacciones enzimáticas ordenadas**, coordinadas y reguladas que constituyen el metabolismo.
- El metabolismo es un sistema multienzimatico.

• <u>ENZIMAS</u> → <u>REACCIONES</u> <u>ENZIMÁTICAS</u> → <u>VÍAS</u> <u>METABÓLICAS</u> → <u>METABOLISMO</u>

Esquema de una vía metabólica

La regulación de las vías metabólicas se da a nivel de sus reacciones enzimáticas mediadas por enzimas reguladoras lo que en un ultima instancia regula al metabolismo.

- La mayor parte de las enzimas de cada ruta metabólica obedecen a factores cinéticos enzimáticos generales Michaelianos que incluyen cambio de la V de la reacción ante incrementos del S, una Vmax ante la saturación de los sitios cataliticos, la Km (½ de la Vmax) y la inhibición reversible e irreversible por acción de inhibidores. (Enzimas Michaelianas).
- Enzimas reguladoras: Enzimas que tienen mayor efecto sobre la velocidad global de una vía metabólica, su catálisis aumenta o disminuye en respuesta a señales (adaptación celular) bajo regulaciones alostericas, covalentes, génicas, etc. (Enzimas No Michaelianas).

La célula controla sus enzimas a dos niveles :

1) <u>Control de la actividad enzimática</u> : la acción enzimática puede regularse a través de *modificaciones estructurales* que alteran la afinidad por el **sustrato** o por *disponibilidad de compuestos necesarios* para la acción enzimática

- Regulación alosterica
- Modificación covalente
- Activacion de zimogenos
- Regulación por isoenzimas
- Otros (disponibilidad de sustrato, cofactor)

- 2) <u>Control de la cantidad o disponibilidad</u> <u>enzimática (control génico) :</u>
- La cantidad (concentración) de una enzima en una célula depende del equilibrio que se entre su velocidad (horas, minutos) de síntesis y de su velocidad de degradación. Cada una de estas velocidades está controlada directamente por la célula a nivel de la transcripción de genes y la síntesis proteica.
- La **regulación génica** modifica la **concentración** de enzimas disponibles en una célula
 - ADN → ARNm → Ribosomas → Enzima (Proteína)

1) Definición:

allos, "otro", y stereos, "forma".

Las enzimas alostericas sufren cambios conformacionales inducidos por la unión no covalente de reguladores conocidos como moduladores o efectores alostericos.

Los cambios de forma interconvierten a la enzima en formas mas activas (R) o menos activas (T).

Los moduladores pueden ser estimuladores (+) o inhibidores (-)

Si el moduladores es el S (homotropica), si es una molécula diferente (heterotropica)

Los moduladores afectan la afinidad por el S

- 2) Estructura
- Las enzimas alostericas son oligomericas. (varias cadenas polipeptidicas)
- Poseen subunidades R y C.
- Poseen sitios reguladores diferentes al sitio activo que se conocen como centros alostericos.
- Los **centros alostericos** son **específicos** para sus moduladores.
- El modelo de **unión cooperativa** en la Hemoglobina es de tipo alosterico.

Regulación Alosterica

- 3) Cinética
- La **cinética alosterica** es **sigmoidea** (no Michaeliana o no hiperbólica)
- Forma de S (evoluciona en presencia de S y moduladores)
- Curva sigmoidea que muestra relación V0 y [S]
- El comportamiento sigmoideo es el reflejo de las interacciones proteicas cooperativas
- Los cambios estructurales afectan a todas las subunidades adyacentes (cooperativismo)
- El S suele actuar como modulador +

Regulación Alosterica

Regulación Alostetica

5) Cooperativismo (Hemoglobina)

Regulación Alosterica

- 6) Feedback negativo
 - Regulación negativa de una enzima dada por el producto final o 2. A *-> B productos finales de la reacción 0 por producto de una vía metabólica lineal ramificada. Este tipo de regulación asegura que de síntesis un producto sea frenada. tipo un de regulación alosterica.
- A X B C D D E
- 1. Inhibición simple. El producto final (E) inhibe el paso A \rightarrow B.
- 2. Inhibición cooperativa. Ambos productos (D, E) inhiben el primer paso de su propia síntesis.

Inhibición multivalente.

 Inhibición en una ramificación de una vía biosintética (inhibición secuencial)

- 1) Definición
- La actividad de la enzima como proteína es modificada covalentemente a nivel de sus aminoácidos por unión o separación de grupos funcionales modificadores (fosforilo, acetilo, metilo, amida, carboxilo, miristilo, sulfato, adenosina difosfato ribosilo, etc)
- Los grupos funcionales se unen y se eliminan de las enzimas por acción de otras enzimas
- Agregar un grupo altera la carga de la enzima y su función
- <u>La fosforilación</u> y la <u>desfosforilacion</u> son <u>las modificaciones covalentes mas importantes</u>

Modificación Covalente

Modificaciones covalentes más comunes				
Modificación	Molécula donadora	Ejemplo de proteína modificada	Función de la proteína	
Fosforilación	ATP	Glucógeno fosforilasa	Homeostasis de la glucosa	
Acetilación	Acetil-CoA	Histonas	Empaquetamiento del ADN, transcripción	
Miristoilación	Miristoil-CoA	Src	Transducción de señales	
ADP-ribosilación	NAD	ARN polimerasa	Transcripción	
Farnesilación	Farnesil-pirofosfato	Ras	Transducción de señales	
γ-Carboxilación	HCO ₃	Trombina	Coagulación	
Sulfatación	3'-fosfoadenosina-5'- fosfosulfato	Fibrinógeno	Formación del coágulo	
Ubiquitinación	Ubiquitina	Ciclinas	Control del ciclo celular	
Fosforilación	ATP	Glucógeno fosforilasa	Homeostasis de la glucosa	
Acetilación	Acetil-CoA	Histonas	Empaquetamiento del ADN, transcripción	

Modificación Covalente

- 2) Fosforilación y Desfosforilacion
- Un 1/3 de las proteínas eucariontes se encuentran fosforiladas.
- Las **proteína quinasas** catalizan la transferencia de un grupo fosfato terminal del ATP hacia un aminoácido
- Los aminoácidos fosforilados son Ser, Tyr o Thr.
- El **grupo fosfato** introduce oxigeno y forma **puentes de H** con los **NH2**+ o las **cadenas laterales R** de los <u>aminoácidos catalíticos</u> y de <u>fijación</u> alterando su función
- Las quinasas reconocen secuencias consenso (Ser, Tyr, Thr)
- Las fosfatasas catalizan

Modificación Covalente

0 0 N NH₂
HO-P-O-P-O N N N

Tyr-P Aminoácidos
(NH2+ y R)
fosforilados de la enzima.

Enzima fosforilada

Ser-Thr fosfatasa Tyr-fosfatasa CysAsp-fosfatasa

Ruptura proteolitica

- En algunas enzimas la escisión de un precursor inactivo (zimógeno) es necesaria para formar la enzima activa.
- Muchas enzimas son liberadas en su forma inactiva y por acción de peptidasas, adoptan su forma enzimática activa.
- La **ruptura proteolitica** expone el **sitio activo** de la enzima.
- Ejemplos : Enzimas digestivas.
 (pepsina, tripsina, quimotripsina), coagulación, caspasas, insulina, colágeno, etc.

ZIMÓGENO o PROENZIMA

ENZIMA ACTIVADA

Isoenzimas

- iso "igual"
- Las **isozimas** o **isoenzimas**, son enzimas que catalizan la <u>misma reacción</u> pero difieren en la secuencia de **aminoácidos**, codificados por **genes diferentes (loci)**, se encuentran en **tejidos** diferentes, **Km** diferente, **regulación** <u>diferente</u>.
- La existencia de las **isoenzimas** permite un control fino del **metabolismo adecuado** para las **necesidades particulares** de un tejido particular o un estadio del desarrollo.
 - Ej: LDH (Lactato Deshidrogenasa)
- Piruvato + NADH + H+ \leftrightarrow Lactato + NAD+
 - La **LDH** es un tetrámero constituido por dos cadenas polipeptídicas: H y M. Existen 5 isoenzimas de LDH con combinación diferentes y en tejidos diferentes. (LDH1, LDH2, LDH3, LDH4 y LDH5).
- La **presencia** de algunas **isoenzimas** en **plasma** es **indicativa** de daño tisular y puede ser utilizado para el diagnóstico clínico de **patologías**. (enzimas sericas)

Isoenzimas

Isoenzimas de LDH

Otros ejemplos : **Creatinfosfatokinasa** (CPK) (MM, MB, BB), **Hexokinasa** (HKI, HKII, HKIII y HKIV).

Compartimentalizacion

- Las **vías metabólicas** tienen lugar en **ubicaciones celulares específicas**.
- La compartimentalización del citoplasma de la célula permite que las diferentes vías metabólicas operen en diferentes ubicaciones y en consecuencia, la disponibilidad de sustratos esté limitada.
- Ej : Glucokinasa hepática. A altos niveles de glucosa opera en citoplasma y a bajos niveles de glucosa es trascolada al núcleo. Esto modula la fosforilación de la glucosa citoplasmatica.

Compartimentalizacion

Vías metabólicas por compartimientos celulares

Funciones metabólicas de los orgánulos de los eucariontes			
Orgánulo	Principales funciones		
Mitocondria	Ciclo de Krebs, fosforilación oxidativa, oxidación de ácidos grasos, degradación de aminoácidos		
Citosol	Glucólisis, vía de las pentosas, biosíntesis de ácidos grasos, muchas reacciones de gluconeogénesis		
Lisosoma	Digestión enzimática de los componentes celulares y de la materia ingerida		
Núcleo	Replicación y transcripción del ADN, procesamiento del ARN		
Aparato de Golgi	Procesamiento postraduccional de las proteínas de membrana y secretoras; formación de la membrana plasmática y vesículas secretoras		
Retículo Síntesis de proteínas unidas a la membrana y secretoras endoplasmático rugoso			
Retículo endoplasmático liso	Biosíntesis de lípidos y esteroides		
Peroxisomas	Reacciones oxidativas catalizadas por aminoácido oxidasas y catalasa; reacciones del ciclo del glioxilato en plantas		

Regulación génica

- Control de la disponibilidad y concentración enzimática.
- Las **concentraciones** de las **enzimas** y en consecuencia las **actividades enzimáticas**, pueden alterarse por medio de la **síntesis de proteínas** en respuesta a las necesidades metabólicas.
- Los mecanismos de regulación génica son :
- 1) Inducción genética (aumenta la síntesis de enzimas)
- Señal → Receptor → Factor de transcripción → ADN → ARNm → Enzima
- 2) Represión genética (reduce la síntesis de enzimas)
- Señal → Receptor → Factor de transcripción + corepresor → disminución en la transcripción y síntesis de ARNm → Ausencia de Enzima.

Cinética Enzimática de Michaelis-Menten

- 1) Concepto:
- Cinética enzimática es el estudio de la acción enzimática a través de la determinación de la velocidad de una reacción
- La [S] es un factor clave que afecta la V de una reacción
- La **V0** (velocidad inicial) se explora en función de la [S].
- La V0 aumenta a mayores [S] y alcanza una meseta (Vmax).
- Se alcanza la **Vmax** ante **[S]** cada vez mayores.
- La relación V0 y [S] se representan en una curva hiperbólica rectangular y se expresa algebraicamente por la ecuación de Michaellis-Menten.

$$V_0 = \frac{V_{\text{max}}[S]}{K_{\text{m}} + [S]}$$

Cinética Enzimática de Michaelis-Menten

- Michaelis y Menten postularon que la E se combina con el S y forma el complejo ES el cual se descompone en P
- Las **velocidades** de **formación** y **descomposición** de **ES** son determinadas por las constantes de velocidad :
- k1 formación de ES
- **k-1** descomposición E + S
- **k2** descomposición a E + P
- V0 es determinada por la **descomposición** de ES que viene fijado por k2. (V0 = k2 [ES])
- El Km (Constante de Michaelis) se define como (k2 + k-1) / k1
- El **Km** en la practica se expresa como
- Km = [S] cuando V0 es $\frac{1}{2}$ Vmax.

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P \qquad V_0 = rac{V_{ ext{max}}[ext{S}]}{K_{ ext{m}} + [ext{S}]}$$

Ecuación de Lineweaver-Burk

- Grafica de los dobles recíprocos
- La ecuación de Michaelis-Menten a fines prácticos se simplifica en una ecuación de recíprocos, o sea dividiendo la ecuación de Michaelis-Menten por 1.
- Se obtiene la **ecuación de Lineweaver-Burk.**
- La grafica de los dobles recíprocos permite estudiar mecanismos de acción enzimáticos e inhibidores enzimáticos.

$$\frac{1}{v} = \frac{K_m}{V_{max}[S]} + \frac{1}{V_{max}}$$

- Los inhibidores son moléculas que interfieren en la catálisis pudiendo enlentecerla o detenerla completamente.
- Muchos fármacos son diseñados como inhibidores enzimáticos (ej : aspirina)
- Los inhibidores se dividen en
- 1) Inhibidores reversibles :
- - Desaparece el inhibidor y la actividad de la enzima es restaurada.
- - Su unión es no covalente.
- Los inhibidores enzimáticos reversibles pueden ser clasificados según el efecto que produzcan en las constantes cinéticas Km y Vmax. como
- Competitivos,
- No competitivos
- Acompetitivos
- Mixtos
- 2) Inhibidores irreversibles
- - El inhibidor inactiva permanentemente a la enzima.
- - Su unión es covalente y modifica a los aminoácidos de la enzima

- Inhibición competitiva
- El inhibidor **compite** con el sustrato ya que tiene similitud molecular.
- Se une a la E pero no al complejo
 ES
- Al interferir con la unión del S modifica el Km pero no la Vmax (no obstaculiza la catalisis).
 - Inhibición no competitiva

Los **inhibidores** tienen afinidades idénticas por **E** y **ES**.

La inhibición no competitiva **no cambia** *K***m** (es decir, no afecta la unión del sustrato) pero **disminuye** *V***max** (es decir, la unión del inhibidor **obstaculiza la catálisis**).

Km y no modifica la Vmax

No modifica Km y Vmax ,

- Inhibición acompetitiva
- Los inhibidores se unen solamente al complejo ES y no a la enzima libre. Se requiere que primero se une el S y después se fije el inhibidor.
- Se produce una distorsión del sitio activo y por lo tanto, la enzima es catalíticamente inactiva.
- Este tipo de inhibición **disminuye la Vmax** ya que una fracción del complejo ES formado será desviada hacia la formación del complejo ESI.
- Dado que el inhibidor disminuye la concentración de ES, también producirá una disminución de Km.

Competitiva:

Los inhibidores se unen a E, pero no al ES. Interfieren con la unión del sustrato, pero no afectan la catálisis del ES.

No competitiva:

Los inhibidores tienen afinidades idénticas por E y ES. No afecta la unión del sustrato pero impide la formación del producto a partir de ES.

Acompetitiva:

Los inhibidores se unen solamente al complejo ES pero no a la E. Una fracción del complejo ES será desviada hacia la formación del complejo ESI.

- **Inhibidores irreversibles**
- Se unen de manera covalente, destruyen un grupo funcional del sitio activo enzimático
- La cinética de un inhibidor enzimático irreversible se asemeja a la de un inhibidor no competitivo puro.
- Pueden formar uniones no covalentes muy estables que anulan la actividad enzimática conocido como "complejo del punto muerto".
- Los **inhibidores irreversibles** son generalmente **específicos** para un tipo de enzima y no inactiva a todas las proteínas.
- Algunos herbicidas inhibidores de la acetilcolinesterasa tienen acción irreversible
- <u>Inactivadores suicidas</u> son inhibidor que aumentan su reactividad a medida que la enzima actúa y no se transforman en producto.

Enzimas y acción del pH

- Temperatura y pH
- 1) <u>pH</u>
- Potencial de hidrógeno o potencial de los hidrogeniones. (pH = log [H+])
- Las enzimas tienen un pH optimo o un intervalo de pH donde alcanzan su máxima actividad.
- Las cadenas laterales de los aminoácidos de fijación o catalíticos pueden actuar como ácidos o bases débiles
- La acción del pH en una enzima depende del pKa (constante de disociación ácida) de los aminoácidos que determinan su función

ENZIMA	pH óptimo
Pepsina	1.5
Tripsina	7.7
Catalasa	7.6
Arginasa	9.7
Fumarasa	7.8
Ribonucleasa	7.8

Enzimas y acción de la temperatura

- 2) <u>Temperatura</u>
- Energía interna de un sistema termodinámico o magnitud asociada a la vibración o colisión de partículas dentro de un sistema.
- En términos generales la velocidad de las reacciones aumenta ante aumentos de temperatura ya que favorece la colisión entre moléculas (E + S → ES)
- <u>La actividad enzimática aumenta y alcanza</u> <u>una temperatura optima.</u>
- Aumentos de temperatura pueden ocasionar desnaturalizacion de los biocatalizadores por alteración molecular con perdida de su función biológica

Efecto de la Temperatura

Temperatura
Actividad
Enzimática