Chapter 1 Signal Analysis Lecture 1

Prepared by Prof

Mahmoud Ahmed Attia Ali

Department of Electronics and Communications
Faculty of Engineering
Tanta University
19 – 10 - 2020

Contents

- Introduction
- Vector Space and Base Functions
 - Vector Space
 - ☐ Minimum Error
 - Condition of Orthogonality
- Generalized Fourier Series Expansion
 - ☐ Trigonometric Fourier Series ☐ Periodic and Aperiodic
- Exponential Fourier Series
 - Exponential OrthogonalityExponential Fourier series
- **□** Some Important Functions
 - 1. Gate or Rect Function
 - 2. Triangular Function
 - 3. Unit step Function

Introduction

Overview and Objectives

- Analogy between Vectors and Signals
- Signal in Time and Frequency Domains
- ☐ Some Important Functions
- Modulation Theorem
- Convolution and Correlation
- ☐ Energy and Power Spectral Densities

and

Base Functions

☐ A vector in space is represented by 3 primary vectors:

$$\vec{A} = A_x \,\hat{x} + A_y \,\hat{y} + A_z \,\hat{z}$$

- Ax, Ay, Az are the similarity between it and unit vectors
- ☐ Primary vectors are called orthogonal since there is no similarity between them:
- Orthogonality condition is: $\hat{x} \cdot \hat{y} = \hat{y} \cdot \hat{z} = \hat{x} \cdot \hat{z} = 0$
- ☐ If primary vectors are all-possible directions, the representation is complete.
- \square In general, vector is represented in n dimensions:

$$\vec{A} = \sum_{i=1}^{n} A_i \, \hat{x}_i$$

 \square Condition of Orthogonality: \hat{x}_i . $\hat{x}_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$

Base Functions

Base Functions

 \square To represent a time signal f(t) in terms of a set of base functions $\{g_i(t)\}$, which are assumed orthogonal:

$$f(t) = \sum_{i=1}^{n} C_i g_i(t) = C_1 g_1(t) + C_2 g_2(t) + \cdots$$

☐ By analogy to vectors, condition of orthogonality:

$$\int_{t_1}^{t_2} g_i(t) g_j(t) dt = \begin{cases} k & i = j \\ 0 & i \neq j \end{cases}$$

 \square Set $\{g_i(t)\}$ may be real or complex, condition is:

$$\int_{t_1}^{t_2} g_i(t)g_j^*(t)dt = \begin{cases} k & i = j \\ 0 & i \neq j \end{cases}$$

- \square Representation is limited to interval $t_1 \le t \le t_2$
- \square Is complete if no other signal having a weight of f(t)

Minimum Error

- \square We should choose coefficients C_i to give minimum errors, which at the complete set of functions must be zero.
- ☐ The coefficients that insure minimum error is given by:

$$C_{i} = \frac{\int_{t_{1}}^{t_{2}} f(t)g_{i}^{*}(t) dt}{\int_{t_{1}}^{t_{2}} |g_{i}^{2}(t)| dt}$$

☐ The proof:

Proof of Minimum Error

 \square When f(t) is represented in a complete set:

$$f(t) = \sum_{i=0}^{n} C_i g_i(t)$$

 \square i is a dummy index, it can be changed to j:

$$f(t) = \sum_{j=0}^{n} C_j g_j(t)$$

 \square Multiplying both sides by $g_i^*(t)$ and integrating:

$$\int_{t_1}^{t_2} f(t) g_i^*(t) dt = \int_{t_1}^{t_2} \sum_{j=0}^{n} C_j g_j(t) g_i^*(t) dt$$

 \Box From orthogonality, all terms is 0 except for the term where j equals i:

$$\int_{t_1}^{t_2} f(t) g_i^*(t) dt = \int_{t_1}^{t_2} C_i g_i(t) g_i^*(t) dt = C_i \int_{t_1}^{t_2} |g_i(t)|^2 dt$$

Examples of Orthogonal Set

 \square Cosine Functions, $\{\cos(n\omega_o t)\}$:

$$\int_{t_o}^{t_o + \frac{2\pi}{\omega_0}} \cos n\omega_o t \cos m\omega_o t \, dt =$$

$$\frac{1}{2} \begin{bmatrix} t_o + \frac{2\pi}{\omega_0} \\ \int_{t_o}^{t_o + \frac{2\pi}{\omega_0}} \cos(n+m)\omega_o t \, dt + \int_{t_o}^{t_o + \frac{2\pi}{\omega_0}} \cos(n-m)\omega_o t \, dt \end{bmatrix} = \begin{cases} \frac{\pi}{\omega_o} & n=m \\ 0 & n \neq m \end{cases}$$

- \square Sine Functions, $\{\sin(n\omega_o t)\}$:
- \square Complete Set $\{\cos(n\omega_o t), \sin(n\omega_o t)\}$:

Generalized

Fourier Series

Expansion

Fourier Series Expansion

To represent a time function f(t) in terms of complete orthogonal set: $\{\cos(n\omega_o t) + \sin(n\omega_o t)\}$: in interval $0 \le t \le T_o$, where $T_o = 2\pi/\omega_o$:

$$f(t) = a_o + \sum_{i=1}^{\infty} a_i \cos n\omega_o t + b_i \sin n\omega_o t$$

$$a_o = \frac{1}{T_o} \int_0^{T_o} f(t) \ dt.$$

$$> a_n = \frac{2}{T_0} \int_0^{T_0} f(t) \cos n\omega_0 t \, dt$$

$$b_n = \frac{2}{T_0} \int_0^{T_0} f(t) \sin n\omega_0 t \, dt$$

Exercise

In representing f(t) with complete orthogonal set $\{\cos(n\omega_o t) + \sin(n\omega_o t)\}$ in the interval $0 \le t \le T_o$, $T_o = 2\pi/\omega_o$ by the trigonometric expansion:

$$f(t) = a_o + \sum_{i=1}^{\infty} a_i \cos n\omega_o t + b_i \sin n\omega_o t$$

Prove that:

$$a_o = \frac{1}{T_o} \int_0^{T_o} f(t) dt.$$

$$> a_n = \frac{2}{T_0} \int_0^{T_0} f(t) \cos n\omega_0 t \, dt$$

$$b_n = \frac{2}{T_o} \int_0^{T_o} f(t) \sin n\omega_o t \, dt$$

Periodic and Aperiodic

Generally, Fourier representing periodic function in the interval $0 \le t \le T_o$ as a linear combinations with different weights of periodic function in T_o .

When f(t) is periodic in T_o , then the expansion is true for all values of t.

In this case f(t) is denoted as $f_{T_o}(t)$.

Exponential

Fourier Series

Exponential Orthogonality

- \square Prove that exponential set $\{e^{jn\omega_0 t}\}$ are orthogonal.
- ☐ By applying the orthogonality condition:

$$\int_{0}^{T_o} e^{jn\omega_o t} (e^{jm\omega_o t})^* dt = \int_{0}^{T_o} e^{j(n-m)\omega_o t} dt =$$

$$\int_{0}^{T_{o}} [\cos(n-m)\omega_{o}t + j\sin(n-m)\omega_{o}t]dt = \begin{cases} T_{o} & \text{if } n = m \\ 0 & \text{if } n \neq m \end{cases}$$

Meaning of Exponential Function

- Exponential function means a phasor diagram
- Its value is represented as: $e^{j\omega_0 t} = 1\langle \omega_0 t \rangle$

A harmonic function of frequency $+\omega_0$

 $e^{j\omega_o t}$

A harmonic function of frequency $-\omega_0$

 $e^{-j\omega_o t}$

Exponential Fourier Series

- □ Advantages: exponential representation is a complex and complete orthogonal set.,
- \square This set is also complete for all values of n: positive, zero, and negative.
- □ Any function (real or complex) can be expanded in interval $0 \le t \le T_o$ as:

$$f(t) = \sum_{n = -\infty}^{\infty} F_n e^{jn\omega_o t}$$

$$F_n = \frac{1}{T_o} \int_0^T f(t) e^{-jn\omega_o t} dt$$

 \Box If f(t) is periodic expansion is valid for all t

F_n Usually Complex

 \Box Generally, F_n is complex having a real and imaginary parts (magnitude and phase) as:

$$F_n = |F_n| e^{j\theta_n}$$

Some

Important

Functions

1-Rectangular or Gate

Standard Gate:

$$f(t) = rect(t)$$

- \square Its height or strength = 1
- \square Its width = 1
- \square Area = 1
- Centered to the origin

In General:

$$f(t) = k \, rect \left(\frac{t - t_o}{\tau} \right)$$

- \square Strength or Length = k
- \square Width $\equiv \tau$
- \square Area = $k \tau$
- \square Shifted t_o to the right

Standard Gate

General Gate

Examples of Gate Function

$$rect\left(\frac{t-t_o}{\tau}\right) = G\left(\frac{t-t_o}{\tau}\right)$$

Example.1.1:
$$rect(3t+5) = rect\left(\frac{t-(-5/3)}{(1/3)}\right)$$

Example.1.2:
$$rect(t) = rect\left(\frac{t-0}{1}\right)$$

2-Triangular Function

Standard Triangle:

$$f(t) = tri(t)$$

- □ Of unity strength, unity Area and width is two.
- ☐ Centered to the origin.

General Triangular:

$$f(t) = k \operatorname{tri}\left(\frac{t - t_o}{\tau}\right)$$

- \square Strength or length $\equiv k$
- \square Width $\equiv 2 \tau$.
- \square Area = $k \tau$
- \square Shifted t_o to the right.

Standard Triangular

General Triangular

Triangular Function

3-Unit Step Function

Standard Unit Step:

$$f(t) = u(t) = \begin{cases} 1 & t > 0 \\ 0 & t < 0 \end{cases}$$

- □ Of unity strength.
- ☐ Begins at origin.

In General:

$$f(t) = k u(t - t_o) = \begin{cases} k & t > t_o \\ 0 & t < t_o \end{cases}$$

- \square Strength = k
- \square Shifted t_o to the right.

Unit Step Examples

Fig.1.6: Unit Step Function

Example.1.3:
$$u(5-3t) = \begin{cases} 1 & \text{if } 5-3t > 0 & \text{or } t < 5/3 \\ 0 & \text{if } 5-3t < 0 & \text{or } t > 5/3 \end{cases}$$

Exersize.1.1:

Show that the rectangular function can be represented as two unit step functions as follows:

$$f(t) = u\left(\frac{t+\tau}{2}\right) - u\left(\frac{t-\tau}{2}\right) = rect\left(\frac{t}{\tau}\right)$$