https://github.com/savthe/discrete_math

Гомоморфизм и изоморфизм колец

Определение. Гомоморфизмом колец A и B называется отображение $\varphi: A \to B$, сохраняющее константы 0, 1:

$$\varphi(0_A) = 0_B, \qquad \varphi(1_A) = 1_B,$$

а также операции сложения и умножения:

$$\varphi(a + a') = \varphi(a) + \varphi(a'), \qquad \varphi(a \cdot a') = \varphi(a) \cdot \varphi(a').$$

Определение. Ядром ($\ker(\varphi)$) гомоморфизма $\varphi: A \to B$ называется подмножество в A, которое переводится под действием φ в 0_B . То есть $\ker(\varphi) = \{a \in A \mid \varphi(a) = 0_B\}$.

Определение. Образом $(im(\varphi))$ гомоморфизма $\varphi : A \to B$ называется подмножество в B, которое является множеством всех образов элементов из A. То есть $im(\varphi) = \{b \in B \mid \varphi(a) = b, a \in A\}$.

- **1.** Докажите, что свойство $\varphi(0_A) = 0_B$ следует из остальных.
- 2. Докажите равенства:

- **3.** Верно ли, что любой изоморфизм колец является гомоморфизмом? Верно ли обратное?
- **4.** Определите, является ли отображение φ гомоморфизмом. Если является, то найдите его ядро и образ:

a)
$$\varphi: \mathbb{Z} \to \mathbb{Z}$$
, $\varphi(n) = 5n$,

6)
$$\varphi: \mathbb{Z}_3 \to \mathbb{Z}_{12}$$
, $\varphi(x) = 4x$,

B)
$$\varphi : \mathbb{Z} \to \mathbb{Z}$$
, $\varphi(x) = x \pmod{10}$,

$$\Gamma$$
) $\varphi : \mathbb{C} \to \mathbb{C}$, $\varphi(a+bi) = a-bi$,

e)
$$\varphi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
, $\varphi(x, y) = x + y$,

$$\ddot{e}$$
) $\varphi : \mathbb{R}[x] \to \mathbb{R}$, $\varphi(p) = p(1)$,

ж)
$$\varphi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
, $\varphi(x, y) = xy$,

3)
$$\varphi : \mathscr{F}(\mathbb{R}, \mathbb{R}) \to \mathbb{R}, \quad \varphi(f) = f(1),$$

и)
$$\varphi: M_2(\mathbb{Z}) \to \mathbb{Z}, \quad \varphi\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = a.$$

$$\mathsf{K})\; \varphi: \mathbb{C} \to \mathbb{R}^{2\times 2}, \quad \varphi(a+b\,i) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}.$$

$$\pi$$
) φ : $\mathbb{Z} \to \mathbb{Z}$, $\varphi(n) = n^k$.

м)
$$\varphi : \mathbb{Z}_p \to \mathbb{Z}_p$$
, $\varphi(n) = n^p$, p — простое.

5. Существует ли гомоморфизм
$$\mathbb{Z} \to \mathbb{Z}_n$$
?

6. Существует ли гомоморфизм
$$\mathbb{Z}_n \to \mathbb{Z}$$
?

7. Докажите, что не существует гомоморфизма
$$\mathbb{C} \to \mathbb{R}$$

8. Докажите, что из
$$\mathbb{Z}$$
 в \mathbb{Z} существует лишь тождественный гомоморфизм.

9. Докажите, что отображение
$$\varphi : \mathbb{C} \to \mathbb{R}^{2 \times 2}$$
, где $\varphi(a + bi) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ является гомоморфизмом, найдите его ядро.

- **10.** Пусть $f:A\to B$ гомоморфизм. Докажите, что f изоморфизм тогда, и только тогда, когда найдется $g:B\to A$, такое, что fg и gf тождества.
- **11.** Докажите, что множество матриц $R = \left\{ \begin{pmatrix} n & 0 \\ 0 & n \end{pmatrix}, \quad n \in \mathbb{Z} \right\}$ является кольцом. Докажите, что $R \cong \mathbb{Z}$.
- **12.** Докажите, что ядро гомоморфизма $\varphi : A \to B$ является идеалом в кольце A.
- **13.** Докажите, что образ гомоморфизма $\varphi: A \to B$ является подкольцом кольца B.
- **14.** Пусть I идеал кольца A. Докажите, что отображение $\varphi:A\to A/I$, которое ставит в соответствие элементам кольца их классы эквивалентности в A/I является гомоморфизмом. То есть $\varphi(a)=a+I$. Такой гомоморфизм называется каноническим.
- **15.** Докажите, что если J идеал кольца A, содержащий I (т.е. $I \subset J$), то $\varphi(J)$ идеал в A/I.
- **16.** Покажите, что из предыдущей задачи следует, что если I максимальный идеал, то A/I поле.
- **17.** Пользуясь результатом предыдущей задачи, постройте поле из 8 элементов.