Question Number	Scheme	Mark	S
1.	$P(\text{Not } 6) = 1 - \frac{1}{6} = \frac{5}{6}$	B1	(1)
	P(6 on third throw) = $\frac{5}{6} \times \frac{5}{6} \times \frac{1}{6} = 0.116$ 3 probabilities multiplied	M1 A1ft	
	$= \frac{25}{216} = 0.1157 (accept 0.116)$	A1	(3)
		(4 m	arks)
2.	Observe real world problem	B1	
	Devise a statistical model and collect data	B1	
	Compare observed against expected outcomes and test the model	B1	
	Refine model if necessary	B1	(4)
		(4 m	arks)
3. (a)	$P(B \mid A) = Probability of B$, given A has occurred	B1, B1	(2)
(b)	$\begin{bmatrix} A & & & & \\ & & & & \\ & & & & \\ & & & &$	B1	
	no overlap	B1	(2)
	$P(Amber is late) = 0.5 \times 0.02$	M1	
	= 0.01	A1 cao	(2)
	0.49 complete diagram	M1	
	$0.01 \land A = 0.49; 0.01$	B1	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	B1	
	0.198 <i>C</i> 0.27; 0.03	B1	(4)
(e)	P(Late) = 0.03 + 0.01 + 0.002 = 0.042 intersections, three of them added	M1	
	= 0.042	A1 cao	(2)
		(12 m	arks)

ft = follow-through mark; cao = correct answer only

Number	Scheme	Marks
4. (a)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1 A2 (-1 eeoo) (3)
(b) (c)	$E(X) = (1 \times 0.1) + (2 \times 0.1) + \dots + (8 \times 0.25)$ $= 5.2$ $E(X^2) = (1^2 \times 0.1) + (2^2 \times 0.1) + \dots + (8^2 \times 0.25)$ $= 32.8$ $Var(X) = E(X^2) - \{E(X)\}^2$ $= 32.8 - (5.2)^2 = 5.76 (\clubsuit)$ $E(Y) = 2E(X) + 3 = 13.4$ $Var(Y) = 2^2 Var(X)$ $= 4 \times 5.76 = 23.04$	M1 A1 M1 A1 M1 A1 cso (6) B1 M1 A1 (3)
5. (a)	Bell shaped curve; symmetrical about the mean; 95% of data lies within	(12 marks) B1; B1 (2)
(b)	2sd of mean; asymptotic etc (any 2). $P(X < 3500) = 0.01 \Rightarrow \mu - 3500 = 2.3263 \sigma$ $P(X < 5500) = 0.025 \Rightarrow 5500 - \mu = 1.96 \sigma$ solving for μ and σ $0.025 \Rightarrow \sigma = 466.6028 \qquad \text{accept } 466.6/467$ $\mu = 4585.4583 \qquad \text{accept } 4585.5/4590$ $P(X < 4000) = P\left(Z < \frac{4000 - 4585.4583}{466.6028}\right)$ $= P(Z < -1.25)$ $= 0.1056$	M1 A1 A1 M1 A1 A1 A1 A1 A1 A1 A1 (6) M1 A1ft A1 A1 (4) (12 marks)

(*) indicates final answer is given on question paper; ft = follow-through mark

PROVISIONAL MARK SCHEME

Quest Num		Scheme	Marks	
6.	(a)	Frequency densities – 5, 0, 10, 4, 110, 75, 1.7	B1	
		Graph: scales and labels, shape, correct frequency densities	B1, M1, A1	
			(4))
	(<i>b</i>)	$\Sigma f y = 2888.5$	B1	
		$Mean weight = 14 + \frac{2888.5}{50 \times 10}$	M1	
		= 19.777 accept 19.78/19.8	A1	
		$S_y = \sqrt{\frac{171503.75}{50} - \left(\frac{2888.5}{50}\right)^2}$	M1	
		= 9.62819 awrt 9.63	A1	
		Standard deviation of weight = $\frac{9.62819}{10}$ = 0.96219 accept 0.963/0.96	A1ft (6))
		(NB: Using $n - 1$ gives 0.9725)		
	(c)	$Q_2 = 20.0 + \frac{(25 - 12)}{22} \times 0.2$	M1	
		= 20.118 accept 20.1/20.12	A1 (2)	,
	(<i>d</i>)	Median – data skewed	B1	
		Mean – lower value; fewer complaints	B1 (2)	,
			(14 marks)	

awrt = anything which rounds to

Question Number	Scheme	Mark	S
7. (a)	$\Sigma t = 169; \ \Sigma c = 357$		
	$S_{cc} = 14245 - \frac{357^2}{10} = 1500.1$	M1 A1	
	$S_{tt} = 168.9, \ S_{ct} = 492.7$	A1, A1	
	$r = \frac{492.7}{\sqrt{1500.1 \times 168.9}}$	M1 A1	
	= 0.97883 accept 0.979	A1	(7)
(b)	Since r close to 1, value supports use of regression line	B1 B1	(2)
(c)	$b = \frac{S_{ct}}{S_{tt}} = \frac{492.7}{168.9} = 2.91711$	B1	
	$a = \overline{c} - b\overline{t} = \frac{357}{10} - \frac{492.7}{168.9} \times \frac{169}{10} = -13.59917$	B1	
	c = -13.6 + 2.92t	B1	(3)
(<i>d</i>)	3 extra ice-creams are sold for every 1 °C increase in temperature	B1	(1)
(e)	$c = -13.6 + 2.92 \times 16 = 33.12$	M1 A1	
	i.e. 33 ice-creams	A1	(3)
(<i>f</i>)	Temperature likely to be outside range of validity	B1	(1)
		(17 marks)	