Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\tau_0^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2 \partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$\tau_{1}^{\#2}{}^{\alpha} + 2ik \ \sigma_{1}^{\#2}{}^{\alpha} = 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha} \tau^{\chi\beta} + \partial_{\chi}\partial^{\beta} \tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi} t^{\beta\alpha} + 2 \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0$	$t_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0 -i(4\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}t^{\chi\delta} + 2\partial_{\delta}\partial^{\delta}\partial^{\alpha}t^{\chi})$	5
	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4\ i \ k^{\chi}\ \partial_{\epsilon}\partial_{\chi}\partial^{eta}\partial^{lpha}\sigma^{\delta arepsilon}_{\ \ \delta}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6 \ i \ k^{\chi} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{eta \delta lpha}$ -	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} t_{\chi}^{\chi}$ -	
	$4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon}_{\delta}) == 0$	
Total constraints/gauge generators:	ge generators:	16

$\iota eta \qquad \iota_{1}^{\#1} \qquad \sigma_{1}^{\#1} \qquad \sigma_{1}^{\#2} \qquad \iota_{1}^{\#2} \qquad \iota_{1}^{$		$\frac{+t_1}{t_1^2} - \frac{\frac{i(2k^3r_5 - kt_1)}{(1+k^2)^2 t_1^2}}{(1+k^2)^2 t_1^2} 0 0 0 0$	$ \frac{kt_1}{t_1^2} = \frac{-2k^4 r_5 + k^2 t_1}{(1+k^2)^2 t_1^2} = 0 = 0 = 0 $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$0 \qquad \frac{\sqrt{2}}{t_1 + 2k^2 t_1} \qquad \frac{-2k^2 r_5 + t_1}{(t_1 + 2k^2 t_1)^2} \qquad 0 \qquad -\frac{i\sqrt{2}k(2k^2 r_5 + t_1)}{(t_1 + 2k^2 t_1)^2}$	0 0 0 0	$0 \qquad -\frac{2ik}{2} \frac{i\sqrt{2}k(2k^2r_5t_1)}{2} \qquad 0 \qquad \frac{-4k^4r_5+2k^2t_1}{2}$
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2} - \frac{i}{2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2} = \frac{-2}{(1+k^2)^2}$	0	0	0	0
$\sigma_{1}^{\#1}\alpha\beta$	$ + \alpha \beta = 0$	$-\alpha\beta - \frac{\sqrt{2}}{t_1 + k^2 t_1}$	$\dagger^{\alpha\beta} \frac{i\sqrt{2} k}{t_1 + k^2 t_1}$	0	0	0	0

7											_		
$(t_1 + 2 k^2 t_1)^2$				$^{x}f_{1}\theta$	+						$\omega_{0}^{\#1}$	0	(
				- 2 <i>d</i>	$\theta^{f^{\alpha_{l}}}$				α)	ţ	$f_{0}^{\#1}$ $f_{0}^{\#2}$	0	(
,			α,	$\theta^{f_{\theta}}$	$\sigma_{\alpha \beta}$	+			$^{0}\omega^{6}$	[] X	+1	kt_1	٠ ,
t ₁) ²			, d'f	α^{α}	$+ \partial_{\theta} f$	$f^{\alpha\prime}))$	+ θθλ		θ -2	dy c	f_0^*	$i\sqrt{2}kt_1$. 212
$t_1 + 2k^2 t_1$ $(t_1 + 2k^2 t_1)^2$			$+4 \omega_{, \epsilon}^{\theta}$	$^{\theta} + 4 \partial' f$	$^{\alpha\theta}\partial^{\theta}f^{\alpha\prime}$	$^{1\theta} + 2 \theta^{\theta}$	$^{\prime\prime}_{\prime}^{\prime}^{\prime}^{\prime}^{\prime}^{\prime}^{\prime}^{\prime}^{\prime}^{\prime}^$	+	$_{r}$ - $(\partial_{\alpha}\omega^{\alpha\prime\prime})$	y, z]ďz	$\omega_{0}^{\#1}$	-t ₁	f#1 + F
, t ₁			$g'f_{\alpha i}$	$\partial_{ heta} f_{c}$	+ 0,f	$(\omega^{lpha_{'}}$	$\partial_{eta}\omega$	$\omega^{\alpha\beta l}$	$\omega^{\alpha\prime}$	t, x,			
^t 1+2 <i>k</i>			$\alpha \theta$	$\partial_{\iota}f^{\alpha_{l}}$	$f_{\alpha'}$	$ u_{\alpha\theta_I} $, + 5	3) 9 ₉ (к дв	k,)))[$\omega_{0}^{\#1}\dagger$	7#1
			φ.	α-2	ε ^{θ'} θ,	+2 ($^g\!\omega_{lpha \ell}$	$\omega_{\alpha_{I}}$	$\partial_{ heta}\omega_{}^{\prime}$	$^{\lambda}_{\kappa}\omega_{ ho}$			
,		αβχ +	$\frac{1}{2}t_1(2\omega^{\alpha\prime}_{\alpha}\omega^{\theta}_{\theta}\!-\!4\omega^{\theta}_{\theta}\partial_{}f^{\alpha\prime}\!+\!4\omega^{\theta}_{}\partial^{\prime}f^{\alpha}_{}\!-\!$	$2\partial_i f^{\theta}_{\ \ \ }\partial^i f^{\alpha}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\partial^{\theta}f^{\alpha\prime} - \partial_{\alpha}f_{\theta\prime}\partial^{\theta}f^{\alpha\prime} + \partial_{\imath}f_{\alpha\theta}\partial^{\theta}f^{\alpha\prime} + \partial_{\theta}f_{\alpha\prime}\partial^{\theta}f^{\alpha\prime} +$	$\partial_{\theta} f_{,\alpha} \partial^{\theta} f^{\alpha \prime} + 2 \ \omega_{\alpha \theta \prime} \ (\omega^{\alpha \prime \theta} + 2 \partial^{\theta} f^{\alpha \prime})) +$	$\frac{1}{3} r_2 (4 \partial_\beta \omega_{\alpha l \theta} - 2 \partial_\beta \omega_{\alpha \theta l} + 2 \partial_\beta \omega_{l \theta \alpha} - \partial_l \omega_{\alpha \beta \theta} +$	$\partial_\theta \omega_{\alpha\beta^I} \! - \! 2 \partial_\theta \omega_{\alpha I\beta}) \partial^\theta \omega^{\alpha\beta^I} +$	$r_{5}\left(\partial_{i}\omega_{\theta}^{\kappa}\partial^{\theta}\omega^{\alpha\prime}_{\alpha}-\partial_{\theta}\omega_{\kappa}^{\kappa}\partial^{\theta}\omega^{\alpha\prime}_{\alpha}-(\partial_{\alpha}\omega^{\alpha\prime\theta}-2\partial^{\theta}\omega^{\alpha\prime}_{\alpha})\right.$	$(\partial_{\kappa}\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	$\omega_1^{\#}$	¹ / ₊ † ^{αμ} ² / ₊ † ^{αμ} ¹ /	3
	_	× a	Ω ε	2		∂_{θ}	(4 0 ₆	θ_{θ}	ω_{θ}		$\omega_1^{\#}$	$^{2}_{+}$ $\dagger^{\alpha\mu}$	3
,	Quadratic (free) action	$S == \iiint (f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} +$	$\frac{1}{2}t_{1}$ ($\frac{1}{3}$ r_2		r ₅ (0,		$f_{1}^{\#}$	¹ † ^{αμ}	3
	(ee)	$\tau_{\alpha\beta}$									ω	#1 †	ľ
,	tic (fr	$\int \int (f^{\alpha eta})$									ω	#2 †°	γ
- - ,	adra	= [[]									f	- #1 †° #2 †°	¥
⊣	Ŏ	2									f	#2 †°	Υ

$f_0^{\#}$	0	0	0	0								$\alpha\beta$	$\frac{2}{2}k$	2)2 12			
f_{0}^{*}	$\bar{i}\sqrt{2}kt_1$	$-2 k^2 t_1$	0	0			$\omega_{2^{+}lphaeta}^{\sharp 1}$	f#1	,	.,#1		$\tau_{2}^{\#1}_{\alpha\beta}$	$-\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0		
$\omega_0^{* \pm}$	$-t_1$ $ $ $ar{\it l}$.	$\sqrt{2} kt_1$	0	0	ω	$_{2}^{\sharp1}$ † lphaeta	$\frac{\omega_2^+ \alpha \beta}{\frac{t_1}{2}}$	$-\frac{i kt_1}{\sqrt{2}}$		0 ₂ - _{αβ;}	X	$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$\frac{2}{1+2k^2)^2t_1}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0		
3		<u> –</u>		_	f_{z}^{z}	$_{2}^{\#1}$ † $^{\alpha \beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	L	0			$-\alpha\beta$	$+^{\alpha\beta}$	$\chi g \chi$		
	$\omega_{0}^{\#1}\dagger$	$f_0^{\#1}$ †	$f_{0}^{\#2} \uparrow$	$\omega_{0}^{\#1}\dagger$	$\omega_2^{\#}$	1 † $^{\alpha\beta\chi}$	0	0		<u>t</u> 1 2			$\sigma_2^{\#1}$ †	$\tau_{2}^{\#1}$ 1	$\sigma_{2}^{\#1} +^{\alpha\beta\chi}$		
		ω	#1 1 ⁺ αβ	ω_1^{\sharp}	‡2 .+ αβ	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1}^{\#1}$ a	ω_1^{\sharp}	‡2 . α	$f_{1-\alpha}^{\#1}$	$f_{1}^{#2}\alpha$	$\sigma_{0^{ ext{-}1}}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 - t_1}$	
$\omega_1^{\#}$	¹ † ^{αμ}	k^2	$r_5 - \frac{t_1}{2}$	<u>.</u>	$\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	()	0	0						
$\omega_1^{\#_2}$	² † ^{αμ}	3	$\frac{t_1}{\sqrt{2}}$		0	0	0	()	0	0	$\tau_0^{\#2}$	_ 0 _1	$\begin{bmatrix} - \\ t_1 \end{bmatrix} 0$	0	0	
$f_{1}^{\#}$	¹ † ^{αμ}	3	$\frac{ikt_1}{\sqrt{2}}$		0	0	0	()	0	0	$\tau_0^{\#1}$	$i \sqrt{2} k $ (1+2 k ²) ² t ₁	$\frac{2k^2}{(1+2k^2)^2t_1}$	0	0	
ω	#1 †	γ	0		0	0	$k^2 r_5 - \frac{t}{2}$	$\frac{1}{2}$ $\frac{t}{}$	<u>1</u>	0	Īkt1		·	1			
ω	#2 †°	χ	0		0	0	$\frac{t_1}{\sqrt{2}}$	()	0	0	$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0	
f	#1 †	γ	0		0	0	0	()	0	0		- (1+	i			
f	#2 †°	γ	0		0	0	- ī k t 1	. ()	0	0		$\sigma_{0}^{\#1}$ †	$\tau_0^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}$ †	

Massive and massless spectra

Massive particle
Pole residue:
$$-\frac{1}{r_2} > 0$$
Polarisations: 1
Square mass: $\frac{t_1}{r_2} > 0$
Spin: 0
Parity: Odd

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_1 < 0$