Integer programming approaches for solving variants of Sudoku puzzle

Kieu Thu Ha

Advisor: Dr. Le Xuan Thanh (IM, VAST)

June 24th, 2020

- Introduction
 - Classical Sudoku
 - Some variants of Sudoku
- IP-based approaches for Classical Sudoku
 - A binary linear programming formulation
 - An integer programming formulation
- 3 IP-based approaches for variants of Sudoku
 - Binary linear programming approach
 - Integer programming approach
- Mumberical experiments
- Summary

Introduction Classical Sudoku

- Introduction
 - Classical Sudoku
 - Some variants of Sudoku
- IP-based approaches for Classical Sudoku
 - A binary linear programming formulation
 - An integer programming formulation
- 3 IP-based approaches for variants of Sudoku
 - Binary linear programming approach
 - Integer programming approach
- 4 Numberical experiments
- Summary

Introduction Classical Sudoku

Introduction

Howard Garns (1905 - 1989): father of modern Sudoku

Introduction Classical Sudoku

Classical Sudoku rule for size 9×9

- (S1) Each cell of grid must be filled by exactly one digit from 1 to 9.
- (S2) Each digit from 1 to 9 appears exactly once in each row of the grid.
- (S3) Each digit from 1 to 9 appears exactly once in each column of the grid.
- (S4) Each digit from 1 to 9 appears exactly once in each of the 3×3 blocks of the grid.

			5				6	
8		9					1	
1	6			8	7			
3				2	6			
		7		1		6		
			8	5				3
			4	7			2	1
[4					9		8
	8				3			

4	7	2	5	3	1	8	6	9
8	5	9	6	4	2	3	1	7
1	6	3	9	8	7	2	5	4
3	1	8	7	2	6	4	9	5
5	9	7	3	1	4	6	8	2
6	2	4	8	5	9	1	7	3
9	3	6	4	7	8	5	2	1
7	4	1	2	6	5	9	3	8
2	8	5	1	9	3	7	4	6

Variants of Sudoku

- X-Sudoku
- Windoku
- Killer Sudoku
- Jigsaw Sudoku

X-Sudoku

(X1) Each digit from 1 to 9 appears exactly once in each of the two main diagonals of the grid.

5							3	4
	7				5			
4				8				1
			4		6		9	2
6	4	2		3			1	
9	, ,		1	2				
			6					
				 		6		
						3		

5	8	9	7	6	1	2	3	4
1	7	3	2	4	5	9	8	6
4	2	6	9	8	3	7	5	1
3	1	8	4	7	6	5	9	2
6	4	2	5	3	9	8	1	7
9	5	7	1	2	8	4	6	3
7	3	5	6	9	2	1	4	8
8	9	4	3	1	7	6	2	5
2	6	1	8	5	4	3	7	9

Windoku

(W1) Each digit from 1 to 9 appears exactly once in each of the four additional blocks of the grid.

9			4		3			8
	1			9				
3		4				6		2
				7			4	
			5		8			
	2			3				
2		5				3		6
				4			8	
1			3		6			7

9	6	2	4	5	3	1	7	8
8	1	7	6	9	2	5	3	4
3	5	4	8	1	7	6	9	2
6	9	3	2	7	1	8	4	5
4	7	1	5	6	8	9	2	3
5	2	8	9	3	4	7	6	1
2	4	5	7	8	9	3	1	6
7	3	6	1	4	5	2	8	9
1	8	9	3	2	6	4	5	7

Jigsaw Sudoku

(J1) Each digit from 1 to 9 appears exactly once in each of the nine nonominos.

9	5	7	4	2	1	6	8	3
6	<u></u> -	3		-			5	1
0	. 0	3	2	4	- (9	_	L
3	9	1	5	8	6	4	2	7
8	6	5	7	3	9	2	1	4
5	1	2	9	6	4	3	7	8
7	3	4	8	1	2	5	6	9
2	4	9	6	7	8	1	3	5
1	2	8	3	9	5	7	4	6
4	7	6	1	5	3	8	9	2

Some variants of Sudoku

Killer Sudoku

- (K1) No digit appears more than once in a cage.
- (K2) The sum of all digits filled in a cage must equal the associated number of the cage.

⁷ 7	¹⁹ 2	8	9	²⁵ 3	1	¹² 6	²⁵ 5	4
⁷ 1	6	94	5	7	8	3	9	¹⁰ 2
¹⁷ 5	¹² 3	9	94	6	2	1	7	8
9	¹⁰ 5	2	3	108	207	4	¹² 1	6
3	4	1	¹² 6	2	9	177	8	5
¹⁴ 6	¹⁵ 8	7	1	5	¹² 4	2	¹² 3	9
8	⁷ 1	6	117	4	5	¹⁹ 9	2	103
¹⁸ 4	9	5	³ 2	1	3	8	116	7
¹² 2	7	3	²⁸ 8	9	6	5	4	1

- Introduction
 - Classical Sudoku
 - Some variants of Sudoku
- IP-based approaches for Classical Sudoku
 - A binary linear programming formulation
 - An integer programming formulation
- IP-based approaches for variants of Sudoku
 - Binary linear programming approach
 - Integer programming approach
- 4 Numberical experiments
- **5** Summary

Framework

Formulate Sudoku problem as an IP

min
$$c^T x$$

s.t. $Ax = b$
 $x \in \mathbb{Z}^n$

then solve numerically by some IP solver

Classical Sudoku

$$S = \{1, \dots, 9\}$$

$$B := \{(1, 1), (1, 4), (1, 7), (4, 1), (4, 4), (4, 7), (7, 1), (7, 4), (7, 7)\}$$

- Introduction
 - Classical Sudoku
 - Some variants of Sudoku
- IP-based approaches for Classical Sudoku
 - A binary linear programming formulation
 - An integer programming formulation
- IP-based approaches for variants of Sudoku
 - Binary linear programming approach
 - Integer programming approach
- 4 Numberical experiments
- **5** Summary

A binary integer linear program

$$G = \{(i, j, k) \mid k \text{ is clue in cell } (i, j)\}, \quad x_{ijk} = \begin{cases} 1 & \text{if } k \text{ is filled in cell } (i, j) \\ 0 & \text{otherwise} \end{cases}$$

$$(SUDOKU - BLP) \qquad \min \sum_{i,i,k \in S} 0 \cdot x_{ijk} \tag{1}$$

s.t.
$$x_{ijk} = 1$$
 $\forall (i, j, k) \in G$ (2)

$$\sum x_{ijk} = 1 \qquad \forall i \in S, j \in S$$
 (3)

$$\sum_{i} x_{ijk} = 1 \qquad \forall j \in S, k \in S$$
 (4)

$$\sum_{j\in S} x_{ijk} = 1 \qquad \forall i \in S, k \in S$$
 (5)

$$\sum_{i=p}^{p+2} \sum_{j=q}^{q+2} x_{ijk} = 1 \qquad \forall k \in S, (p,q) \in B \qquad (6)$$

$$x_{ijk} \in \{0,1\}$$
 $\forall i \in S, j \in S, k \in S$ (7)

- Introduction
 - Classical Sudoku
 - Some variants of Sudoku
- IP-based approaches for Classical Sudoku
 - A binary linear programming formulation
 - An integer programming formulation
- IP-based approaches for variants of Sudoku
 - Binary linear programming approach
 - Integer programming approach
- 4 Numberical experiments
- 5 Summary

A non-linear integer programming formulation

F is the set of clue cells g(i,j) is clue inside cell (i,j)

$$(SUDOKU - NLIP) \qquad \min \sum_{i,j \in S} 0 \cdot x_{ij} \tag{8}$$

s.t.
$$x_{ij} = g(i,j) \quad \forall (i,j) \in F$$
 (9)

$$|x_{ij} - x_{ik}| \ge 1 \qquad \forall i, j, k \in S, j < k \tag{10}$$

$$|x_{ij} - x_{kj}| \ge 1 \qquad \forall i, j, k \in S, i < k \tag{11}$$

$$|x_{p+i,q+j}-x_{p+k,q+l}| \ge 1$$
 $\forall (p,q) \in B$,

$$i, j, k, l \in \{0, 1, 2\} : 3i + j < 3k + l$$
 (12)

$$x_{ij} \in S \qquad \forall i, j \in S$$
 (13)

Linearize non-linear constraints

$$y^{+} = \begin{cases} y & \text{if } y > 0, \\ 0 & \text{if } y \le 0, \end{cases} \qquad y^{-} = \begin{cases} 0 & \text{if } y \ge 0, \\ -y & \text{if } y < 0, \end{cases}$$
$$a^{+} = \begin{cases} 1 & \text{if } y > 0, \\ 0 & \text{if } y \le 0, \end{cases} \qquad a^{-} = \begin{cases} 1 & \text{if } y < 0, \\ 0 & \text{if } y \ge 0. \end{cases}$$

Since $|y| = y^+ + y^-$, non-linear constraint

$$1 \le |y| \le 8, y \in \mathbb{Z}$$

can be linearized by

$$y^{+} - y^{-} = y \tag{14}$$

$$y^+ + y^- \ge 1 \tag{15}$$

$$a^+ \le y^+ \le 8a^+ \tag{16}$$

$$a^- < v^- < 8a^-$$
 (17)

$$a^{+} + a^{-} = 1 (18)$$

$$y^+, y^- \in \mathbb{Z} \tag{19}$$

$$a^+, a^- \in \{0, 1\}$$
 (20)

- Introduction
 - Classical Sudoku
 - Some variants of Sudoku
- IP-based approaches for Classical Sudoku
 - A binary linear programming formulation
 - An integer programming formulation
- IP-based approaches for variants of Sudoku
 - Binary linear programming approach
 - Integer programming approach
- 4 Numberical experiments
- Summary

- Introduction
 - Classical Sudoku
 - Some variants of Sudoku
- IP-based approaches for Classical Sudoku
 - A binary linear programming formulation
 - An integer programming formulation
- IP-based approaches for variants of Sudoku
 - Binary linear programming approach
 - Integer programming approach
- 4 Numberical experiments
- 5 Summary

X-Sudoku

5							3	4
	7				5			
4				8				1
			4		6		9	2
6	4	2		3			1	
9			1	2				
			6					
						6		
						6 3		

(X1) Each digit from 1 to 9 appears exactly once in each of the two main diagonals of the grid.

$$\sum_{i \in S} x_{iik} = 1 \qquad \forall k \in S \qquad (21)$$

$$\sum_{i \in S} x_{iik} = 1 \qquad \forall k \in S \qquad (21)$$

$$\sum_{i \in S} x_{i,10-i,k} = 1 \qquad \forall k \in S \qquad (22)$$

Windoku

9			4		3			8
	1			9				
3		4				6		2
				7			4	
			5		8			
	2			3				
2		5				3		6
				4			8	
1			3		6			7

(W1) Each digit from 1 to 9 appears exactly once in each of the four additional blocks of the grid.

$$B_W := \{(2,2), (2,6), (6,2), (6,6)\}$$

$$\sum_{i=p}^{p+2} \sum_{j=q}^{q+2} x_{ijk} = 1 \quad \forall k \in S, (p,q) \in B_W \quad (23)$$

Jigsaw Sudoku

(J1) Each digit from 1 to 9 appears exactly once in each of the nine jigsaw blocks.

Let ${\mathcal H}$ be the set of jigsaw blocks.

$$\sum_{(i,j)\in H} x_{ijk} = 1 \quad \forall k \in S, H \in \mathcal{H} \quad (24)$$

Killer Sudoku

(K1) No digit appears more than once in a cage.

$$\sum_{(i,j)\in\mathcal{C}} x_{ijk} \le 1 \quad \forall \mathcal{C}\in\mathcal{C}, k\in\mathcal{S} \qquad (25)$$

(K2) The sum of all digits filled in a cage must equal the associated number of the cage.

$$\sum_{(i,j)\in C} \sum_{k\in S} kx_{ijk} = n(C) \quad \forall C \in C \quad (26)$$

where C is the set of all cages, n(C) is the number associated with cage C

- Introduction
 - Classical Sudoku
 - Some variants of Sudoku
- ② IP-based approaches for Classical Sudokι
 - A binary linear programming formulation
 - An integer programming formulation
- IP-based approaches for variants of Sudoku
 - Binary linear programming approach
 - Integer programming approach
- 4 Numberical experiments
- Summary

X-Sudoku

(X1) 'Each digit from 1 to 9 appears exactly once in each of the two main diagonals of the grid'

$$|x_{ii} - x_{jj}| \ge 1 \quad \forall i, j \in S : i < j \quad (27)$$

 $|x_{i,10-i} - x_{i,10-j}| \ge 1 \quad \forall i, j \in S : i < j \quad (28)$

Windoku

9			4		3			8	l
	1			9					l
3		4				6		2	
				7			4		1
			5		8				
	2			3					
2		5				3		6	1
				4			8		
1			3		6			7	

(W1) 'Each digit from 1 to 9 appears exactly once in each of the four additional blocks of the grid'

$$|x_{p+i,q+j} - x_{p+k,q+l}| \ge 1$$

 $\forall (p,q) \in B \cup B_W,$
 $i,j,k,l \in \{0,1,2\} : 3i+j < 3k+l$ (29)

Jigsaw Sudoku

(J1) 'Each digit from 1 to 9 appears exactly once in each of the nine jigsaw blocks'

$$|x_{ij} - x_{kl}| \ge 1$$

 $\forall (i,j), (k,l) \in H : 9i + j < 9k + l$ (30)

Killer Sudoku

(K1) No digit appears more than once in a cage.

$$|x_{ij} - x_{kl}| \ge 1$$

 $\forall (i,j), (k,l) \in C : 9i + j < 9k + l, (31)$

K2) The sum of all digits filled in a cage must equal the associated number of the cage.

$$\sum_{(i,i)\in\mathcal{C}}\sum_{k\in\mathcal{S}}kx_{ijk}=n(\mathcal{C})\quad\forall\mathcal{C}\in\mathcal{C}.\quad(32)$$

- Introduction
 - Classical Sudoku
 - Some variants of Sudoku
- IP-based approaches for Classical Sudoku
 - A binary linear programming formulation
 - An integer programming formulation
- 3 IP-based approaches for variants of Sudoku
 - Binary linear programming approach
 - Integer programming approach
- 4 Numberical experiments
- 5 Summary

Numerical experiments

- Model by ZIMPL; IP solver: SCIP
- Intel Core i3-4005U CPU, 64 GHz Processor, 4 GB RAM
- Performance (average running time in seconds) of IP formulations:

Variant	(BLP)	(NLIP)
Classical Sudoku	-	31.7
X-Sudoku	-	26.7
Windoku	-	298.8
Jigsaw Sudoku	-	220.5
Killer Sudoku	7.6	475.5

- Introduction
 - Classical Sudoku
 - Some variants of Sudoku
- IP-based approaches for Classical Sudoku
 - A binary linear programming formulation
 - An integer programming formulation
- 3 IP-based approaches for variants of Sudoku
 - Binary linear programming approach
 - Integer programming approach
- 4 Numberical experiments
- Summary

Summary

- Classical Sudoku and some variants
 - X-Sudoku, Windoku, Jigsaw Sudoku, Killer Sudoku
- IP formulations
 - BLP: three index binary variables
 - NLIP: two-index integer variables
- Numerical experiments
 - BLP outperforms NLIP
 - Killer Sudoku is hardest
 - Classical Sudoku & X-Sudoku is easiest.

Thank you for your attention!