Denotational Semantics; Runtime Errors

CS 536: Science of Programming, Fall 2022

A. Why

- Our simple programming language is a model for the kind of constructs seen in actual languages.
- Our programs stand for state transformers.
- Runtime errors cause failure of normal program execution.

B. Outcomes

At the end of today, you should be able to:

- Give the denotational semantics of a program in a state.
- Say when and how evaluation of an expression or program fails due to a runtime error.

C. Problems

Denotational Semantics

Problems 1 – 4 are the denotational versions of the similar questions from Practice 5.

- 1. What is
 - a. $M(x := x+1, \{x = 5\})$?
 - b. $M(x := x+1, \sigma)$? (Your answer will be symbolic.)
 - c. $M(x := x+1; y := 2*x, \{x = 5\})$?
- 2. Let IF = if x > 0 then x := x+1 else y := 2*x fi.
 - a. Let $\sigma(x) = 8$. What is $M(IF, \sigma)$?
 - b. Repeat, if $\sigma(x) = 0$.
 - c. Repeat, if we don't know what $\sigma(x)$ is. (Your answer will be symbolic.)
- 3. Let IF = if x > 0 then x := x/z fi.
 - a. What is $M(IF, \sigma)$ if $\sigma = \{x = 8, z = 3\}$? (Don't forget, integer division truncates)
 - b. What is $M(IF, \{x = -2, z = 3\})$?
- 4. Let W = while x < 3 do S od where S = x := x+1; y := y*x.
 - a. Evaluate the body S in an arbitrary state τ and give $M(S, \tau)$.
 - b. What is $M(W, \sigma)$ if $\sigma \models x = 4 \land y = 1$?
 - c. What is $M(W, \sigma)$ if where $\sigma \models x = 1 \land y = 1$?

Runtime Errors

- 5. Let S = x := y / b[x] and let $\sigma = \{b = (3, 0, -2, 4), x = \alpha, y = 13\}$. Find all σ such that $M(S, \sigma) = \{\bot_e\}$. (Remember, integer division truncates.)
- 6. Repeat the previous problem on S = y := y / sqrt(b[x]) and $\sigma = \{b = (-1, 9, 12, 0), x = \alpha, y = 8\}$. Treat sqrt as returning the truncated integer square root of its argument: sqrt(3) = 1, sqrt(8) = 2, sqrt of (15) = 3, etc.

Solution to Practice 6 (Denotational Semantics; Runtime Errors)

Denotational Semantics

- 1. (Calculate meanings of programs)
 - a. $M(x := x+1, \{x = 5\}) = \{\{x = 5\}[x \mapsto \{x = 5\}(x+1)]\} = \{\{x = 6\}\}$
 - b. $M(x := x+1, \sigma) = {\sigma[x \mapsto \sigma(x+1)]} = {\sigma[x \mapsto \sigma(x)+1]}$
 - c. $M(x := x+1; y := 2*x, \{x = 5\})$ = $M(y := 2*x, M(x := x+1, \{x = 5\}))$ = $M(y := 2*x, \{x = 6\})$, from part (a) = $\{\{x = 6\}[y \mapsto \beta]\}$ where $\beta = \{x = 6\}(2*x) = 12$ = $\{\{x = 6, y = 12\}\}$
- 2. Let IF = if x > 0 then x := x+1 else y := 2*x fi.
 - a. If $\sigma(x) = 8$, then $\sigma(x > 0) = T$, so $M(IF, \sigma) = M(x := x + 1, \sigma) = {\sigma[x \mapsto \sigma(x + 1)]} = {\sigma[x \mapsto 9]}$
 - b. If $\sigma(x) = 0$, then $\sigma(x > 0) = F$, so $M(IF, \sigma) = M(y := 2*x, \sigma) = {\sigma[y \mapsto \sigma(2*x)]} = {\sigma[y \mapsto 0]}$
 - c. If $\sigma(x) > 0$ then $M(S, \sigma) = M(x := x+1, \sigma) = {\sigma[x \mapsto \sigma(x)+1]}$ If $\sigma(x) \le 0$ then $M(S, \sigma) = M(y := 2*x, \sigma) = {\sigma[y \mapsto 2 \times \sigma(x)]}$
- 3. Let IF = if x > 0 then x := x/z fi = if x > 0 then x := x/z else skip fi
 - a. If $\sigma = \{x = 8, z = 3\}$, then $\sigma(x > 0) = T$, so $M(IF, \sigma) = M(x := x/z, \sigma) = \{\sigma[x \mapsto \beta]\}$ where $\beta = \sigma(x/z) = \sigma[x \mapsto 8 \div 3] = \sigma[x \mapsto 2]$, since integer division truncates.
 - b. If $\sigma = \{x = -2, z = 3\}$ then $\sigma(x > 0) = F$, so $M(IF, \sigma) = M(skip, \sigma) = \{\sigma\}$.
- 4. Let W = while x < 3 do S od where S = x := x+1; y := y*x.
 - a. For arbitrary τ,

$$M(S, \tau) = M(x := x+1; y := y*x, \tau)$$

= $M(y := y*x, \tau[x \mapsto \tau(x)+1])$
= $\{ \tau[x \mapsto \tau(x)+1][y \mapsto \beta] \}$ where $\beta = \tau[x \mapsto \tau(x)+1](y*x) = \tau(y) \times (\tau(x)+1)$

- b. If $\sigma \models x = 4 \land y = 1$, then $\sigma(x < 3) = F$ so $M(W, \sigma) = \{\sigma\}$.
- c. If $\sigma \models x = 1 \land y = 1$, then $\sigma(x < 3) = T$ so we have at least one iteration to do. Let $\sigma_0 = \sigma$, let $\sigma_1 = M(S, \sigma_0) = \sigma_0(y) \times (\sigma_0(x) + 1)$, and let $\sigma_2 = M(S, \sigma_1) = \sigma_1(y) \times (\sigma_1(x) + 1)$. Then,

$$\sigma_0 = \sigma[x \mapsto 1][y \mapsto 1]$$

$$\sigma_1 = M(S, \sigma_0) = \sigma_0[x \mapsto \sigma_0(x) + 1][y \mapsto \sigma_0(y) \times (\sigma_0(x) + 1)] = \sigma[x \mapsto 2][y \mapsto 2]$$

$$\sigma_2 = M(S, \sigma_1) = \sigma_1[x \mapsto 2 + 1][y \mapsto 2 \times (2 + 1)] = \sigma[x \mapsto 3][y \mapsto 6]$$

Since σ_0 and $\sigma_1 \models x < 3$ but $\sigma_2 \models x \ge 3$, we have $M(W, \sigma) = {\sigma_2} = {\sigma[x \mapsto 3][y \mapsto 6]}$.

Runtime Errors

5.
$$M(S, \sigma) = M(x := y/b[x], \sigma) = \{\sigma[x \mapsto y]\}$$
 where $y = \sigma(y/b[x]) = 13/\sigma(b)(\alpha) = \bot_e$ iff $\sigma(b)(\alpha) = \bot_e$ or $\sigma(b)(\alpha) = 0$ iff $(\alpha \text{ is out of range for } \sigma(b))$ or $(\sigma(b)(\alpha) = 0)$ ($(b[x])$ fails if x is out of range) iff $(\alpha < 0 \text{ or } \alpha \ge 4)$ or $(\sigma(b)(\alpha) = 0)$ ($(\sigma(b))$ has size $(a < 0)$ iff $(a < 0)$ or $(a = 1)$ ($(a < 0)$ or $(a < 0)$ or $(a < 0)$ or $(a < 0)$ iff $(a < 0)$ or $(a < 0)$ or $(a < 0)$ ($(a < 0)$) ($(a < 0)$

6.
$$M(S, \sigma) = M(y := y/sqrt(b[x]), \sigma) = \{\sigma[y \mapsto \beta]\}$$
 where $\beta = (\sigma(y)/sqrt(y)) = (8/sqrt(y))$ and $y = \sigma(b) \ (\sigma(x)) = \sigma(b)(\alpha)$. So $\beta = \bot_e$ and thus $M(S, \sigma) = \{\sigma[y \mapsto \bot_e]\} = \{\bot_e\}$ iff $y = \bot_e$ or $y < 0$ or $sqrt(y) = 0$ ($b[x]$ fails, $b[x] < 0$, or $sqrt(b[x]]) = 0$)

iff $(\alpha \text{ out of range for } \sigma(b)]$ or $y < 0$ or $sqrt(y) = 0$ ($y = \bot_e$ iff $b[x]$ has a bad index) iff $(\alpha < 0 \text{ or } \alpha \ge 4)$ or $y = \sigma(b)(\alpha) < 0$ or $sqrt(y) = 0$ ($\sigma(b)$ is of size 4) iff $(\alpha < 0 \text{ or } \alpha \ge 4)$ or $(\alpha = 0)$ or $sqrt(y) = 0$ (only $sqrt(b[3]) = sqrt(0) = 0$) iff $(\alpha < 0 \text{ or } \alpha \ge 4)$ or $(\alpha = 0)$ or $(\alpha = 3)$ (combining terms)