Darboux theorem for homogeneous

Presymplectic and Pfoffian forms

Summer School on Geometry, Dynamics & Field Theory 2025

Asier López-Gordon, joint mork mith Janusz Grabonski Intitute of Mathematics, Polish Academy of Sciences

- There are several situations in geometry and physics in which a (N, 72, 72, R, ...) grading appears:
 - * The algebra of differential forms with the Wedge product.
 - * The spin of partides.
 - * Intensive/extensive Variables in thermodynamics
 - * Symplectisation / Poissonisation of contact/Jacobi mfolds.
 - * Supormanifolds
 - * Higher tangent bundles

Theorem (Euler): Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function. The following statements are equivalent:

i) f is K-homogeneous (KEZ), namely $f(tx',...,tx^n) = t^K f(x',...,x^n) \quad \forall t \in \mathbb{R} \setminus 30f.$

ii) f is a solution of the PDE $k \cdot f = \sum_{i=1}^{n} x^{i} \frac{\partial f}{\partial x^{i}}$.

In other words, homogeneous functions are eigenfunctions of

$$X = \sum_{i=1}^{m} x^{i} \partial_{x^{i}} . \tag{*}$$

In particular, linear = 1-homogeneous

We can extend this idea to manifolds by considering a vector field X that is locally of the form (*) in some coords.

Def: A Vector field ∇ on a manifold M is called a Weight Vector field if in a neighbourhood of ellery point of M there are local coordinates (x^a) such that

$$\nabla = \sum_{\alpha=1}^{n} W_{\alpha} \times^{\alpha} \partial_{\chi} \alpha$$

where $W_a = deg(x^a) \in \mathbb{R}$ is called the meight of x^a . Such coordinates are called <u>homogeneous</u> coordinates.

The pair (M, ∇) is called a homogeneity manifold.

Def.: Let (M, V) be a homogeneity manifold.

A tensor field A on M is called w-homogeneous $(W \in \mathbb{R})$ if $\mathcal{L} A = w \cdot A.$

Examples of homogeneity manifolds

* A Vector bundle $T: E \longrightarrow M$ and the Euler Vector field ∇_E (the generator of homotheties on the fibers). In bundle coords., $T: (X^i, y^a) \longmapsto (x^i)$, $\nabla_E = \sum_a y^a \ \partial_y a$.

 * An exact symplectic manifold $(M, \omega = d\theta)$ with a Liouville vector field ∇ , i.e. $\mathcal{L}_{\nabla} \omega = \omega.$

* Weight Vector fields with non-integer Weights appear in BH thormodynamics

L. F. Belgierno, "Quasi-homogeneous thermodynamics and black holes", J. Math. Phys. 44, 1089 (2003)

Set (M, V) be a homogeneity mfold. There are two different situations on an open

$$*$$
 $\nabla |_{U} \neq 0$

$$* \exists x \in U \quad s.t. \quad \nabla(x_o) = 0.$$

Remark: Any nowhere-vanishing vector field $X \in \mathcal{X}(M)$ is a weight vector field. However, its weights are not canonical.

Indeed, since X is nowhere zero, \exists local coords. (x^a) such that $X = \partial_{X^i}$. For any $\partial_i W_1, \ldots, W_n \mathcal{Y}_n = \mathbb{R}$ with $W_i \neq 0$, we can def. a new system of coords.

$$y'=e^{W_iX'}, \qquad y^i=e^{W_iX'}x^i, \quad 2 \leq i \leq n$$

so that

$$X = \sum_{\alpha=1}^{n} W_{\alpha} y^{\alpha} \partial_{y\alpha}, i.e. \qquad deg (y\alpha) = W_{\alpha}.$$

On the other hand, in a neighbourhood of any point at which a weight wester field wanishes, its weights are cononical.

Proposition (Grabowska & Grabowski, 2024): VEX(M) is a Weight

Vector field on M iff $T_{X_o}X$ is diagonal $\forall X_o \in M$ s.t. $\nabla(x_o) = 0$.

Let (x^a) be a system of homog, coords around x_0 , i.e.

 $\nabla = \sum_{\alpha} w_{\alpha} x^{\alpha} \partial_{x^{\alpha}}$, with $\Gamma := \{w_{1}, \dots, w_{n}\} \subset \mathbb{R}$.

Then, any other system of homog. Coords. around X_0 has weights in Γ .

Homogeneous Poincaré Lemma (Grabowska & Grabowski, '24):

Set (M, ∇) be a homogeneity mfold. Let $W \in \mathfrak{L}^K(M)$ be a λ -homogeneous K-form (K > 0). Assume that $\nabla(X_0) = 0$. In a nbh. of X_0 , $\exists (K-1)$ -form X = 5.t.

- i) $d\alpha = \omega$,
- (i) \propto is λ -homogeneous,
- $xin) \propto (x_0) = 0$

Dorboux theorem for homogeneous symplectic forms (6,26'24)

Let (M, ∇) be a homogeneity mfold, and let ω be a λ -homog. Symplectic form on M. Then, around every $x_0 \in M$ $s.t. \nabla(x_0)=0$, there is a system of homog. Coords. (q^s, p_i) such that

$$\omega = \sum_{i} dp_{i} \wedge dq^{i}, \qquad \nabla = \sum_{i} \left(w_{qi} q^{i} \partial_{qi} + w_{pi} p_{i} \partial_{pi} \right).$$

Homogeneous straightening lemma (Grabowski & LG):

Set (M, ∇) be a homogeneity mfold, and let $X \in \mathcal{H}(M)$ be a $(-\lambda)$ - homogeneous vector field. Assume that $\nabla(X_0) = 0$ and $X(X_0) \neq 0$ at $X_0 \in M$. Then, in a neighbourhood of X_0 , there is a chart of homog. Coords. $(U, 2, y^i)$ such that

$$X = \partial_z$$
, $\nabla = \lambda_z \partial_z + \sum_i W_i y^i \partial_{yi}$.

Def.: Let (M, ∇) be a homog mfold. A (a) distribution $D \subset TM$ (resp. $D \subset T^*M$) is called <u>homogeneous</u> if the (a) tangent lift $d_{\tau}\nabla$ (resp. $d_{\tau^*}\nabla$) is tangent to D.

Theorem (Grabowski & S_G): D=TM is homogeneous iff it is locally generated by homogeneous vector fields.

Lorollory: $D^{\circ} \subset T^{*}M$ is homog. if it is locally generated by homog. one - forms.

Homogeneous Frobenius theorem (byrabowski & LG):

Let (M, ∇) be a homog mfold, and let D by an involutive distribution of runk K which is locally generated by homog vector fields. Around every $X_0 \in M$ s.t. $\nabla(X_0) = 0$ \exists homog. chart $(V, X', ..., X^n)$ such that

$$D|_{U} = \langle \partial_{x'}, \dots, \partial_{xK} \rangle$$

and the slices

$$N = \{ X^{K+1} = Const., \dots, X^n = Const. \} \subset U$$

are integral submanifolds.

Def: A presymplectic form w on M is a closed 2-form of constant rank. Its haracteristic distribution is given by $C_{w} = \text{Ker } w.$

Proposition: C_{ω} is in Wolntie. If (M, ∇) is a homog. mfold and ω is homog, then C_{ω} is a homog, distrib.

Dorboux theorem for homog. presymp. forms (Grabouski & Sg):

Set (M, ∇) be a homogeneity mfold, and let W be a λ -homog. Presymp. form on M. Then, in a neighbourhood of each point $X_0 \in M$ s.t. $\nabla(X_0) = 0$, there exists a system of homog. Coords. (q^i, p_i, z_a) s.t.

$$\omega = \sum_{i} dp_{i} \wedge dq^{i}$$

$$\nabla = \sum_{i} \left(W_{qi} q^{i} \partial_{qs} + W_{p_{i}} p_{i} \partial_{p_{i}} \right) + \sum_{a} W_{z_{a}} z^{a} \partial_{z_{a}}.$$

Def: A one-form θ on a mfold. M^m is said to have $\frac{\partial dd}{\partial x} \frac{\partial ds}{\partial x} \frac{\partial s}{\partial x} + \frac{\partial s}{\partial x} \frac{\partial s}{\partial x} +$

A contact form is a one-form of class $2s+1=\dim M + x \in M$.

Remark: If O has constant class, do is presymplectic.

In the classical literature, one-forms are called Proffian forms.

Darboux thm. for homog.one-forms of odd class (Grabowski & LG):

Set (M, ∇) be a homogeneity mfold, and let O be a λ -homog. 1-form of class 2s+1. Then, in a neighbourhood of each point $x_0 \in M$ s.t. $\nabla(x_0) = 0$, there exists a system of homog. Coords. (q^i, p_i, z, t_a) s.t.

$$\theta = dz + \sum_{i} p_{i} dq^{i}$$

Remark: Coords. Which are simultaneously homog, & Darboux may not exist in a neighbourhood $U \subseteq M$ s.t. $\nabla |_{U} \neq 0$,

Deg.: Given a contact form η , the Real Wester field is the unique $R \in \mathcal{X}(M)$ s.t. $R \in Ker d\eta$ & $\eta(R) = 1$.

Counterexample: $M = \mathbb{R}^3$, (x,y,z) canonical coords. $\eta = dz + y dx$, $\nabla = R = 2z$

A homog. Coord. ζ is a solution of the PDE $\nabla \zeta = W\zeta$ On the other hand, in Darboux coords. $(\tilde{\gamma}', \tilde{p}_i, \zeta)$, $R(\zeta) = \nabla \zeta = 1$ Def: A one-form β on a mfold. M^m is said to have even class $2s+2 \le m$ at x if $\beta \wedge (d\beta)^s / (x) \neq 0$ & $\beta \wedge (d\beta)^{s+1} (x) = 0$.

Theorem (Dorbow): In a sufficiently small neighbourhood of X where W has constant class, there are coords. (4°, pi, Za)

$$\beta = \sum_{i=1}^{S+1} p_i d4^i$$

Work in progress If B is homog., are there coords.

Which are homog & Dorboux simultaneously?

Future mork

- * Extending our results to supermanifolds.
- * Homogeneous multisymplectic forms
- * Applications to Pfaffian systems/exterior differential systems

 Les Eudyong differential eys as ideals generated by

 differential forms
- * Bi-homogeneity: ∇_1 , ∇_2 s.t. $[\nabla_1$, $\nabla_2] = 0$.

References

K. Grabowska, J. Grabowski and Z. Ravanpak, "VB-structures and generalizations", Ann. Global Anal. Geom. 62, 1 (2022)

K. Grabowska and J. Grabowski, "Homogeneity supermanifolds and homogeneous Darboux theorem", 2024, arXiv: 2411.00537

Thank you for your attention!

Feel free to contact me at alopez-gordon a impan. pl
These slides are available at alopez gordon. Xy Z