# VE216 RC4

Chapter 4 & 5

#### Continuous-Time Fourier Transform

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt \qquad \text{(FT/analysis equation)}$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega)e^{j\omega t}d\omega \quad \text{(IFT/synthesis equation)}$$

$$x(t) \stackrel{FT}{\longleftrightarrow} X(j\omega) \quad \text{(FT pair)}$$

$$X(j\omega) \quad \text{(spectrum)} \begin{cases} |X(j\omega)| \quad \text{(magnitude)} \\ \angle X(j\omega) \quad \text{(phase)} \end{cases}$$

#### Convergence of Fourier Transforms

- A continuous-time signal x(t) is Fourier transformable if it satisfies the Dirichlet conditions:
  - -x(t) is absolutely integrable
  - x(t) has a finite number of maxima and minima within any finite interval.
  - x(t) has a finite number of discontinuities within any finite interval. Furthermore, each of these discontinuities must be finite.

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM

| Section | Property           | Aperiodic signal     | Fourier transform                                 |
|---------|--------------------|----------------------|---------------------------------------------------|
|         |                    | x(t)                 | $X(j\omega)$                                      |
|         |                    | y(t)                 | $Y(j\omega)$                                      |
| 4.3.1   | Linearity          | ax(t) + by(t)        | $aX(j\omega) + bY(j\omega)$                       |
| 4.3.2   | Time Shifting      | $x(t-t_0)$           | $e^{-j\omega t_0}X(j\omega)$                      |
| 4.3.6   | Frequency Shifting | $e^{j\omega_0t}x(t)$ | $X(j(\boldsymbol{\omega}-\boldsymbol{\omega}_0))$ |
| 1 2 2   | Conjugation        | $x^*(t)$             | $X^*(-j\omega)$                                   |
| 4.3.3   | Conjugation        | 34 (1)               | 11 ( )~)                                          |

| 4.3.5 | Time and Frequency<br>Scaling   | x(at)                       | $\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$                                   |
|-------|---------------------------------|-----------------------------|----------------------------------------------------------------------------------|
| 4.4   | Convolution                     | x(t) * y(t)                 | $X(j\omega)Y(j\omega)$                                                           |
| 4.5   | Multiplication                  | x(t)y(t)                    | $\frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\theta) Y(j(\omega-\theta)) d\theta$ |
| 4.3.4 | Differentiation in Time         | $\frac{d}{dt}x(t)$          | $j\omega X(j\omega)$                                                             |
| 4.3.4 | Integration                     | $\int_{-\infty}^{t} x(t)dt$ | $\frac{1}{j\omega}X(j\omega)+\pi X(0)\delta(\omega)$                             |
| 4.3.6 | Differentiation in<br>Frequency | tx(t)                       | $j\frac{d}{d\omega}X(j\omega)$                                                   |

|       |                       |                                  |              | $X(j\omega) = X^*(-j\omega)$                                                                                                                                                                     |
|-------|-----------------------|----------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                       |                                  |              | $\Re e\{X(j\omega)\} = \Re e\{X(-j\omega)\}$                                                                                                                                                     |
| 4.3.3 | Conjugate Symmetry    | x(t) real                        |              | $X(j\omega) = X^*(-j\omega)$ $\Re \{X(j\omega)\} = \Re \{X(-j\omega)\}$ $\Im \{X(j\omega)\} = -\Im \{X(-j\omega)\}$ $ X(j\omega)  =  X(-j\omega) $ $\langle X(j\omega)  = -\langle X(-j\omega) $ |
|       | for Real Signals      |                                  |              | $ X(j\omega)  =  X(-j\omega) $                                                                                                                                                                   |
|       |                       |                                  |              | $\langle X(j\omega) = -\langle X(-j\omega) \rangle$                                                                                                                                              |
| 4.3.3 | Symmetry for Real and | x(t) real and even               |              | $\hat{X}(j\omega)$ real and even                                                                                                                                                                 |
|       | Even Signals          |                                  |              |                                                                                                                                                                                                  |
| 4.3.3 | Symmetry for Real and | x(t) real and odd                |              | $X(j\omega)$ purely imaginary and odd                                                                                                                                                            |
|       | Odd Signals           |                                  |              |                                                                                                                                                                                                  |
| 4.3.3 | Evan Odd Dagomno      | $x_e(t) = \mathcal{E}v\{x(t)\}$  | [x(t)  real] | $\Re e\{X(j\omega)\}$                                                                                                                                                                            |
| 4.3.3 | Even-Odd Decompo-     | $x_o(t) = \mathfrak{O}d\{x(t)\}$ | [x(t)  real] | $j\mathfrak{G}m\{X(j\boldsymbol{\omega})\}$                                                                                                                                                      |
|       | sition for Real Sig-  |                                  |              |                                                                                                                                                                                                  |
|       | nals                  |                                  |              |                                                                                                                                                                                                  |

4.3.7 Parseval's Relation for Aperiodic Signals

$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X(j\omega)|^2 d\omega$$

TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS

| Signal                                            | Fourier transform                                                | Fourier series coefficients (if periodic)                                                                  |
|---------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| $\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$ | $2\pi\sum_{k=-\infty}^{+\infty}a_k\delta(\omega-k\omega_0)$      | $a_k$                                                                                                      |
| $e^{j\omega_0 t}$                                 | $2\pi\delta(\omega-\omega_0)$                                    | $a_1 = 1$ $a_k = 0$ , otherwise                                                                            |
| $\cos \omega_0 t$                                 | $\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$           | $a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0,  \text{otherwise}$                                                  |
| $\sin \omega_0 t$                                 | $\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$ | $a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0,  \text{otherwise}$                                                |
| x(t) = 1                                          | $2\pi\delta(\omega)$                                             | $a_0 = 1$ , $a_k = 0$ , $k \neq 0$<br>(this is the Fourier series representation for any choice of $T > 0$ |

Periodic square wave

$$x(t) = \begin{cases} 1, & |t| < T_1 \\ 0, & T_1 < |t| \le \frac{T}{2} \end{cases} \sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \, \delta(\omega - k\omega_0) \quad \frac{\omega_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right) = \frac{\sin k\omega_0 T_1}{k\pi}$$
and

$$x(t+T) = x(t)$$

$$\sum_{n=-\infty}^{+\infty} \delta(t-nT) \qquad \frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta\left(\omega - \frac{2\pi k}{T}\right) \qquad a_k = \frac{1}{T} \text{ for all } k$$

$$x(t) \begin{cases} 1, & |t| < T_1 \\ 0, & |t| > T_1 \end{cases} \qquad \frac{2\sin\omega T_1}{\omega} \qquad -$$

$$\frac{\sin Wt}{\pi t} \qquad X(j\omega) = \begin{cases} 1, & |\omega| < W \\ 0, & |\omega| > W \end{cases}$$

| $\delta(t)$                                           | 1                                        | _                                     |  |
|-------------------------------------------------------|------------------------------------------|---------------------------------------|--|
| u(t)                                                  | $\frac{1}{j\omega} + \pi \delta(\omega)$ |                                       |  |
| $\delta(t-t_0)$                                       | $e^{-j\omega t_0}$                       | _                                     |  |
| $e^{-at}u(t)$ , $\Re e\{a\} > 0$                      | $\frac{1}{a+j\omega}$                    |                                       |  |
| $te^{-at}u(t)$ , $\Re e\{a\} > 0$                     | $\frac{1}{(a+j\omega)^2}$                | · · · · · · · · · · · · · · · · · · · |  |
| $\frac{t^{n-1}}{(n-1)!}e^{-at}u(t),$ $\Re e\{a\} > 0$ | $\frac{1}{(a+j\omega)^n}$                |                                       |  |

Example: Given that

$$X(j\omega) = \frac{3j\omega + 5}{(j\omega)^3 + 4(j\omega)^2 + 5j\omega + 2}$$

Determine x(t).

#### **Solution:**

$$X(j\omega) = \frac{3j\omega+5}{(j\omega+1)^{2}(j\omega+2)} = \frac{A_{1}}{(j\omega+1)^{2}} + \frac{A_{2}}{j\omega+1} + \frac{A_{3}}{j\omega+2}$$

$$A_{1} = (j\omega+1)^{2}X(j\omega)\Big|_{j\omega=-1} = \frac{3j\omega+5}{j\omega+2}\Big|_{j\omega=-1} = 2$$

$$A_{2} = \frac{d}{d(j\omega+1)} \left\{ (j\omega+1)^{2}X(j\omega) \right\}\Big|_{j\omega=-1}$$

$$= \frac{d}{dv} \left\{ \frac{3v+2}{v+1} \right\}\Big|_{v=0} = \frac{3(v+1)-(3v+2)}{(v+1)^{2}}\Big|_{v=0} = 1$$

$$A_{3} = (j\omega+2)X(j\omega)\Big|_{j\omega=-2} = \frac{3j\omega+5}{(j\omega+1)^{2}}\Big|_{j\omega=-2} = -1$$

$$x(t) = A_{1}te^{-t}u(t) + A_{2}e^{-t}u(t) + A_{3}e^{-2t}u(t)$$

$$= 2te^{-t}u(t) + e^{-t}u(t) - e^{-2t}u(t)$$

#### Frequency Response

 The convolution property implies that the frequency response of a system may be expressed as the ratio of the Fourier transform of the output to that of the input.

$$y(t) = x(t) * h(t) \leftrightarrow Y(j\omega) = X(j\omega)H(j\omega)$$
$$\Rightarrow H(j\omega) = \frac{Y(j\omega)}{X(j\omega)}$$

#### Example 4.25

Consider a stable LTI system that is characterized by the differential equation

$$\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 3y(t) = \frac{dx(t)}{dt} + 2x(t).$$

From eq. (4.76), the frequency response is

$$H(j\omega) = \frac{(j\omega) + 2}{(j\omega)^2 + 4(j\omega) + 3}.$$

$$H(j\omega) = \frac{j\omega + 2}{(j\omega + 1)(j\omega + 3)}.$$

Then, using the method of partial-fraction expansion, we find that

$$H(j\omega) = \frac{\frac{1}{2}}{j\omega + 1} + \frac{\frac{1}{2}}{j\omega + 3}.$$

$$h(t) = \frac{1}{2}e^{-t}u(t) + \frac{1}{2}e^{-3t}u(t).$$

#### Discrete-Time Fourier Transform



TABLE 5.1 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM

| Section | Property           | Aperiodic Signal                                                                                                                        | Fourier Transform                                                           |
|---------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
|         |                    | x[n]                                                                                                                                    | $X(e^{j\omega})$ periodic with                                              |
|         |                    | y[n]                                                                                                                                    | $Y(e^{j\omega})$ period $2\pi$                                              |
| 5.3.2   | Linearity          | ax[n] + by[n]                                                                                                                           | $aX(e^{j\omega}) + bY(e^{j\omega})$                                         |
| 5.3.3   | Time Shifting      | $x[n-n_0]$                                                                                                                              | $e^{-j\omega n_0}X(e^{j\omega})$                                            |
| 5.3.3   | Frequency Shifting | $e^{j\omega_0 n}x[n]$                                                                                                                   | $X(e^{j(\omega-\omega_0)})$                                                 |
| 5.3.4   | Conjugation        | $x^*[n]$                                                                                                                                | $X^*(e^{-j\omega})$                                                         |
| 5.3.6   | Time Reversal      | x[-n]                                                                                                                                   | $X(e^{-j\omega})$                                                           |
| 5.3.7   | Time Expansion     | $x_{(k)}[n] = \begin{cases} x[n/k], & \text{if } n = \text{multiple of } k \\ 0, & \text{if } n \neq \text{multiple of } k \end{cases}$ | $X(e^{jk\omega})$                                                           |
| 5.4     | Convolution        | x[n] * y[n]                                                                                                                             | $\mathbf{Y}(\rho^{j\omega})\mathbf{Y}(\rho^{j\omega})$                      |
| 5.5     | Multiplication     | x[n]y[n]                                                                                                                                | $\frac{1}{2\pi} \int_{2\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$ |

| 5.3.5 | Differencing in Time                   | x[n]-x[n-1]                 |
|-------|----------------------------------------|-----------------------------|
| 5.3.5 | Accumulation                           | $\sum_{k=-\infty}^{n} x[k]$ |
| 5.3.8 | Differentiation in Frequency           | nx[n]                       |
| 5.3.4 | Conjugate Symmetry for<br>Real Signals | x[n] real                   |

$$(1 - e^{-j\omega})X(e^{j\omega})$$

$$\frac{1}{1 - e^{-j\omega}}X(e^{j\omega})$$

$$+\pi X(e^{j0}) \sum_{k=-\infty}^{+\infty} \delta(\omega - 2\pi k)$$

$$j\frac{dX(e^{j\omega})}{d\omega}$$

$$\int X(e^{j\omega}) = X^*(e^{-j\omega})$$

$$\begin{cases} X(e^{j\omega}) = X^*(e^{-j\omega}) \\ \Re\{X(e^{j\omega})\} = \Re\{X(e^{-j\omega})\} \\ \Im\{X(e^{j\omega})\} = -\Im\{X(e^{-j\omega})\} \\ |X(e^{j\omega})| = |X(e^{-j\omega})| \\ \angle X(e^{j\omega}) = -\angle X(e^{-j\omega}) \end{cases}$$

| 5.3.4 | Symmetry for Real, Even<br>Signals                                                                                                      | x[n] real an even                                                                                    | $X(e^{j\omega})$ real and even                        |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 5.3.4 | Symmetry for Real, Odd<br>Signals                                                                                                       | x[n] real and odd                                                                                    | $X(e^{j\omega})$ purely imaginary and odd             |
| 5.3.4 | Even-odd Decomposition of Real Signals                                                                                                  | $x_e[n] = \mathcal{E}_{\nu}\{x[n]\}$ [x[n] real]<br>$x_o[n] = \mathcal{O}_{\nu}\{x[n]\}$ [x[n] real] | $\Re e\{X(e^{j\omega})\}$ $j \Im m\{X(e^{j\omega})\}$ |
| 5.3.9 | Parseval's Relation for Aperiodic Signals $\sum_{n=-\infty}^{+\infty}  x[n] ^2 = \frac{1}{2\pi} \int_{2\pi}  X(e^{j\omega}) ^2 d\omega$ |                                                                                                      |                                                       |
|       |                                                                                                                                         | $2\pi$ $\int_{2\pi}$                                                                                 |                                                       |

TABLE 5.2 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

| Signal                                        | Fourier Transform                                                                                                      | Fourier Series Coefficients (if periodic)                                                                                                                                                                                                                                        |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\sum_{k=\langle N\rangle} a_k e^{jk(2n/N)n}$ | $2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$                                     | $a_k$                                                                                                                                                                                                                                                                            |
| $e^{j\omega_0 n}$                             | $2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l)$                                                   | (a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} 1, & k = m, m \pm N, m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational $\Rightarrow$ The signal is aperiodic                                                                   |
| $\cos \omega_0 n$                             |                                                                                                                        | (a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} \frac{1}{2}, & k = \pm m, \pm m \pm N, \pm m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational $\Rightarrow$ The signal is aperiodic                                             |
| $\sin \omega_0 n$                             | $\frac{\pi}{j} \sum_{l=-\infty}^{+\infty} \{\delta(\omega - \omega_0 - 2\pi l) - \delta(\omega + \omega_0 - 2\pi l)\}$ | (a) $\omega_0 = \frac{2\pi r}{N}$ $a_k = \begin{cases} \frac{1}{2j}, & k = r, r \pm N, r \pm 2N, \dots \\ -\frac{1}{2j}, & k = -r, -r \pm N, -r \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational $\Rightarrow$ The signal is aperiodic |

| x[n] = 1                                                                                                               | $2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - 2\pi l)$                            | $a_k = \begin{cases} 1, & k = 0, \pm N, \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$                                                                      |
|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Periodic square wave $x[n] = \begin{cases} 1, &  n  \le N_1 \\ 0, & N_1 <  n  \le N/2 \end{cases}$ and $x[n+N] = x[n]$ | $2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$   | $a_k = \frac{\sin[(2\pi k/N)(N_1 + \frac{1}{2})]}{N\sin[2\pi k/2N]}, \ k \neq 0, \pm N, \pm 2N, \dots$ $a_k = \frac{2N_1 + 1}{N}, \ k = 0, \pm N, \pm 2N, \dots$ |
| $\sum_{k=-\infty}^{+\infty} \delta[n-kN]$                                                                              | $\frac{2\pi}{N}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{N}\right)$ | $a_k = \frac{1}{N}$ for all $k$                                                                                                                                  |
| $a^n u[n],   a  < 1$                                                                                                   | $\frac{1}{1-ae^{-j\omega}}$                                                          |                                                                                                                                                                  |

| $x[n] \begin{cases} 1, &  n  \leq N_1 \\ 0, &  n  > N_1 \end{cases}$                                 | $\frac{\sin[\omega(N_1+\frac{1}{2})]}{\sin(\omega/2)}$                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{\sin Wn}{\pi n} = \frac{W}{\pi} \operatorname{sinc}\left(\frac{Wn}{\pi}\right)$ $0 < W < \pi$ | $X(\omega) = \begin{cases} 1, & 0 \le  \omega  \le W \\ 0, & W <  \omega  \le \pi \end{cases}$ $X(\omega) \text{ periodic with period } 2\pi$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\delta[n]$                                                                                          | 1                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| u[n]                                                                                                 | $\frac{1}{1-e^{-j\omega}}+\sum_{k=-\infty}^{+\infty}\pi\delta(\omega-2\pi k)$                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\delta[n-n_0]$                                                                                      | $e^{-j\omega n_{ij}}$                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $(n+1)a^nu[n],   a <1$                                                                               | $\frac{1}{(1-ae^{-j\omega})^2}$                                                                                                               | and the second s |
| $\frac{(n+r-1)!}{n!(r-1)!}a^nu[n],   a <1$                                                           | $\frac{1}{(1-ae^{-j\omega})^r}$                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |