記号 m 項数ベクトルの全体を \mathbf{R}^m と書く.

例 1.7. \mathbb{R}^2 は平面ベクトルの全体;

$$\mathbf{R}^2 = \left\{ \left(\begin{array}{c} a_1 \\ a_2 \end{array} \right) \middle| a_1, a_2$$
は実数 $\right\}$

例 1.8. \mathbb{R}^3 は空間ベクトルの全体;

$$\mathbf{R}^3 = \left\{ \left(\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array} \right) \middle| a_1, a_2, a_3$$
 は実数 $\right\}$

定義 n 個の m 項数ベクトル $\vec{a}_1,\ldots,\vec{a}_n$ が次の 2 条件を満たすとき,これらを \mathbf{R}^m の基底という.

- $\vec{a}_1,\ldots,\vec{a}_n$ は 1 次独立.
- 任意の m 項数ベクトル \vec{v} は $\vec{a}_1,\ldots,\vec{a}_n$ の線形結合で表せる; $\vec{v}=c_1\vec{a}_1+\cdots+c_n\vec{a}_n$.

事実 1 次独立な m 個の m 項数ベクトル $\vec{a}_1,\ldots,\vec{a}_m$ は \mathbf{R}^m の基底となる.

例 1.9. 任意の空間ベクトル $\vec{a}=\begin{pmatrix} a_1\\a_2\\a_3 \end{pmatrix}$ は

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = a_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + a_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + a_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

と表すことができる。 $\vec{e}_1=\left(egin{array}{c}1\\0\\0\end{array}
ight),\; \vec{e}_2=\left(egin{array}{c}0\\1\\0\end{array}
ight),\; \vec{e}_3=\left(egin{array}{c}0\\0\\1\end{array}
ight)$ を \mathbf{R}^3 の標準基底と

よぶ $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$ が 1 次独立であることは明らかだろう).

4