Quiz 5 – Recursive Definitions

1. Solve each of the following recurrence relations:

[Note: You must use the iterative method and show all of your work.]

- (a) $a_n = 2a_{n-1} 3$, where $a_0 = -1$ $a_n = 2a_{n-1} - 3$ $= 2*2a_{n-2} - 3 - 3$ $= 2*2*2a_{n-2} - 3 - 3 - 3$... $= 2^n a_0 - 3n$ $= 2^n (-1) - 3n$
- (b) $a_n = (n + 1) a_{n-1}$, where $a_0 = 2$ $a_n = (n + 1) a_{n-1}$ $= (n+1)*(n)*a_{n-2}$ $= (n+1)*(n)*(n-1)*a_{n-2}$... $= (n+1)! a_0$ = 2*(n + 1)!
- 2. Recall that every recursive definition consists of a *Basis Step* and a *Recursive Step*. Give a recursive definition for each of the following sets.
 - (a) The set of even integers.

Basis Step: $0 \in A$

Recursive Step: if $x \in A$ then $(x + 2) \in A$ and $(x - 2) \in A$

(b) The set of positive integers not divisible by 5.

Basis Step: $1, 2, 3, 4 \in A$

Recursive Step: if $x \in A$ then $(x + 5) \in A$

3.	Suppose that a rectangular chocolate bar consists of <i>n</i> individual squares.
	Further suppose that the bar — or any smaller, rectangular, piece of the bar — can only be broken
	into two pieces along the horizontal or vertical lines separating its squares.
	For example, one possible rectangular bar of 8 squares is that with dimensions 4×2 . One
	possible way to break this bar is as follows:

... producing one bar of 2 squares and one bar of 6. Prove the following generalization: A bar of n squares requires n-1 breaks to be broken down into its constituent squares.

Proof:

Basis Step:

Let n = 1. Then 1-1 = 0 and certainly if there is only one square then it will take 0 breaks to get it into 1 square.

Inductive Hypothesis:

Suppose for all integers, $1 \le n \le k$, a bar of n squares requires n-1 breaks to be broken down into its constituent squares.

Inductive Step:

Let n = k + 1. Let x and y be some integers such that $k + 1 = x^*y$, where x and y are the width and height of the bar. Breaking off the edge of the bar will then lead to two rectangles: $(x - 1) \times y$ and $1 \times y$.

By hypothesis, the first rectangle, $(x-1) \times y$, requires $(x-1)^*y-1$ breaks to break it down to its constituent squares. Similarly, the $1 \times y$ rectangle is proven by the hypothesis to take y-1 breaks.

This leads to a bar with k+1 squares taking (x-1)*y-1+(y-1)+1 breaks. Then we have: x*y-y-1+y-1+1=x*y-1=(k+1)-1.

Therefore, by PMI, a bar of n squares requires n-1 breaks to be broken down into is constituent squares.