Cosmological Perturbations

Most of the conventions and notations in [5, ch. 5] will be followed. Suppose the metric can be expanded up to the linear order as

$$g = g^{(0)} + \epsilon g^{(1)} + O(\epsilon^2). \tag{1}$$

The background metric $g^{(0)}$ takes the Robertson–Walker form

$$g_{\mu\nu}^{(0)} \, \mathrm{d}x^{\mu} \, \mathrm{d}x^{\nu} = -N^2(t) \, \mathrm{d}t^2 + a^2(t) \, \mathrm{d}\Omega_{3\mathrm{F}}^2, \tag{2}$$

in which $d\Omega_{3F}^2 = d\chi^2 + \chi^2(d\theta^2 + \sin^2\theta d\phi^2)$ is the dimensionless flat spatial metric. The linear perturbation can be decomposed into scalar, vector and tensor parts

$$g_{00}^{(1)} = -E, (3)$$

$$g_{i0}^{(1)} = g_{i0}^{(1)} = F_{,i} + G_{i}, \tag{4}$$

$$g_{ij}^{(1)} = A\delta_{ij} + B_{,i,j} + C_{i,j} + C_{j,i} + D_{ij}. \tag{5}$$

Here one has some weird condition, where the contractions do not follow the one-up-one-down tradition

$$C_{i,i} = G_{i,i} = 0, \quad D_{ij,i} = 0, \quad D_{ii} = 0.$$
 (6)

1 Metric perturbation under diffeomorphism

Consider a diffeomorphism generated by ξ^{μ}

$$x^{\mu} \to \overline{x}^{\mu} = x^{\mu} - \epsilon \xi^{\mu}. \tag{7}$$

The generator ξ^{μ} can in turn be decomposed into $\xi_0 = \zeta$, $\xi_i = \xi_{,i}^{S} + \xi_{i}^{V}$.

One has here again some weird condition, where the contractions do not follow the one-up-one-down tradition

$$\xi_{i,i}^{\mathbf{V}} = 0. \tag{8}$$

The Lie derivative of the metric $\mathbb{L}_{\xi}g$ is

$$\left(\mathbb{L}_{\xi}g\right)_{\mu\nu} = \xi^{\lambda}g_{\mu\nu,\lambda} + \xi^{\lambda}{}_{,\mu}g_{\lambda\nu} + \xi^{\lambda}{}_{,\nu}g_{\mu\lambda}.\tag{9}$$

In components and expansion, these are

$$\left(\mathbb{L}_{\xi}g\right)_{00} = 2\dot{\zeta} - 2\zeta \frac{\dot{N}}{N} + O(\epsilon), \tag{10}$$

$$\left(\mathbb{L}_{\xi}g\right)_{i0} = \left(\mathbb{L}_{\xi}g\right)_{0i} = \left(\zeta - 2\frac{\dot{a}}{a}\xi^{\mathrm{S}} + \dot{\xi}^{\mathrm{S}}\right)_{i} + \left(-2\frac{\dot{a}}{a}\xi^{\mathrm{V}}_{i} + \dot{\xi}^{\mathrm{V}}_{i}\right) + O(\epsilon), \tag{11}$$

$$\left(\mathbb{L}_{\xi}g\right)_{ii} = \left(\mathbb{L}_{\xi}g\right)_{ij} = -\frac{2a\dot{a}}{N^{2}}\zeta\delta_{ij} + 2\xi^{\mathrm{S}}_{,i,j} + \xi^{\mathrm{V}}_{i,j} + \xi^{\mathrm{V}}_{j,i} + O(\epsilon). \tag{12}$$

2 Scalar perturbations

$$-N^{2} - \epsilon E + O(\epsilon^{2}) \to -N^{2} - \epsilon E + \epsilon \left(2\dot{\zeta} - 2\zeta\frac{\dot{N}}{N}\right) + O(\epsilon^{2}), \tag{13}$$

so one can write

$$\mathbb{L}_{\xi}E = -2\dot{\zeta} + 2\zeta \frac{\dot{N}}{N}.\tag{14}$$

Similarly one can read-off

$$\mathbb{L}_{\xi}F = \zeta - 2\frac{\dot{a}}{a}\xi^{S} + \dot{\xi}^{S},\tag{15}$$

$$\mathbb{L}_{\xi} A = -\frac{2a\dot{a}}{N^2} \zeta,\tag{16}$$

$$\mathbb{L}_{\xi} B = 2\xi^{S}. \tag{17}$$

The four scalar perturbations are generated by ζ and ξ^S , so that only two independent perturbations exists. It is clear that

$$\mathbb{L}_{\xi} \left(\frac{F}{a} - \frac{d}{dt} \frac{B}{2a} \right) = \frac{\zeta}{a}. \tag{18}$$

One can verify that

$$\mathbb{L}_{\xi} \left\{ \frac{E}{2N} + \frac{d}{dt} \left[\frac{a}{N} \left(\frac{F}{a} - \frac{d}{dt} \frac{B}{2a} \right) \right] \right\} = 0, \tag{19}$$

$$\mathbb{L}_{\xi} \left\{ \frac{A}{2} + \frac{a^2 \dot{a}}{N^2} \left(\frac{F}{a} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{B}{2a} \right) \right\} = 0. \tag{20}$$

- 3 Vector perturbations
- 4 Tensor perturbations
- 5 Scalar field perturbation under diffeomorphism
- 6 Perturbation of Arnowitt–Deser–Misner Hamiltonian formalism

The well known Arnowitt–Deser–Misner's Hamiltonian action for gravitation is [3, ch.4.2.2]

$$S = \int \mathrm{d}t \, \mathrm{d}x^3 \left\{ \mathfrak{p}^{ij} \dot{h}_{ij} + \mathfrak{P} \dot{N} + \mathfrak{P}^i \dot{N}_i - N \mathfrak{H}^\perp - N_i \mathfrak{H}^i - \mathfrak{P} V - \mathfrak{P}^i V_i \right\}, \ (21)$$

$$\mathfrak{H}^{\perp} = \frac{\varkappa}{\sqrt{\mathfrak{h}}} \left(h_{ik} h_{jl} + h_{il} h_{kj} - h_{ij} h_{kl} \right) \mathfrak{p}^{ij} \mathfrak{p}^{kl} - \frac{\sqrt{\mathfrak{h}}}{2\varkappa} [R] h, \tag{22}$$

$$\mathfrak{H}^i = -2\mathfrak{p}^{ij}_{|j},\tag{23}$$

where $\{V,V_i\}$ are velocity of N and N_i and play the role of Lagrange multipliers. Note that $\{N,N_i,h_{ij};\mathfrak{P},\mathfrak{P}^i,\mathfrak{p}^{ij}\}$ are not the unique choice of canonical variables for General Relativity in Hamiltonian formalism; instead, they are a special parametrisation of the phase space. One can also choose the components of the original four-metric and their conjugate momenta $\{g_{\mu\nu};\mathfrak{p}^{\mu\nu}\}$ as canonical variables, as Dirac has done [2]. The two approaches are different in some subtle aspects; see [4] for a comparison.

Gauge transformations in the Arnowitt–Deser–Misner variables are generated by [1]

$$G = -\int d^3x \left\{ \left[\xi_{\perp} \left(\mathfrak{H}^{\perp} + N_{|i} \mathfrak{P}^i + \left(N \mathfrak{P}^i \right)_{|i} + \left(N_i \mathfrak{P} \right)^{|i} \right) + \dot{\xi}_{\perp} \mathfrak{P} \right] \right. \\ \left. + \left[\xi_i \left(\mathfrak{H}^i + N_j^{|i} \mathfrak{P}^j + \left(N_j \mathfrak{P}^i \right)^{|j} + N^{|i} \mathfrak{P} \right) + \dot{\xi}_i \mathfrak{P}^i \right] \right\}, \tag{24}$$

and the infinitesimal gauge transformation of N is

$$\delta N = [N, G]_{P} = \xi_{\perp|i} N^{i} - \dot{\xi}_{\perp} - \xi_{i} N^{|i}, \tag{25}$$

$$\delta N_i = -\xi_{\perp} N_{|i} + \xi_{\perp|i} N - \xi_j N_i^{|j} + \xi_i^{|j} N_j - \dot{\xi}_i, \tag{26}$$

which can be found in [4]. Transformations for g_{ij} and the momenta have to be worked out as

$$\delta \mathfrak{P} = -(\xi_{\perp} \mathfrak{P}^i)_{|i} - \xi_{\perp|i} \mathfrak{P}^i - (\xi_i \mathfrak{P})^{|i}, \tag{27}$$

$$\delta \mathfrak{P}^{i} = -\xi_{\perp|i} \mathfrak{P} - (\xi_{j} \mathfrak{P}^{i})^{|j} - \xi_{j}^{|i} \mathfrak{P}^{j}; \tag{28}$$

$$\delta g_{ij} = -\frac{\partial}{\partial \mathfrak{p}^{ij}} (\xi_{\perp} \mathfrak{H}^{\perp} + \xi_{i} \mathfrak{H}^{i})$$

$$= -\xi^{\perp} \frac{2\varkappa}{\sqrt{\mathfrak{h}}} (h_{ik} h_{jl} + h_{il} h_{kj} - h_{ij} h_{kl}) \mathfrak{p}^{kl} - \xi_{i|j} - \xi_{j|i}, \qquad (29)$$

$$\delta \mathfrak{p}^{ij} = \frac{\partial}{\partial g_{ij}} (\xi_{\perp} \mathfrak{H}^{\perp} + \xi_{i} \mathfrak{H}^{i})$$

$$= \xi_{\perp} \Big\{ \frac{\varkappa}{\sqrt{\mathfrak{h}}} \Big[(4\delta^{i}_{k} \delta^{j}_{m} h_{ln} - h^{ij} h_{km} h_{ln}) - \frac{1}{2} (4\delta^{i}_{k} \delta^{j}_{m} h_{ln} - h^{ij} h_{km} h_{ln}) \Big] \mathfrak{p}^{kl} \mathfrak{p}^{mn}$$

$$+ \frac{\sqrt{\mathfrak{h}}}{2\varkappa} G^{ij} [h] \Big\}$$

$$+ \xi_{i} \qquad (30)$$

References

- [1] Leonardo Castellani. "Symmetries in constrained Hamiltonian systems". In: Annals of Physics 143.2 (Oct. 1982), pp. 357–371. DOI: 10.1016/0003-4916(82)90031-8.
- [2] Paul A. M. Dirac. "The Theory of Gravitation in Hamiltonian Form". In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 246.1246 (Aug. 1958), pp. 333–343. DOI: 10.1098/rspa.1958.0142.
- [3] Claus Kiefer. Quantum Gravity. 3rd ed. Oxford University Press, Apr. 2012. DOI: 10.1093/acprof:oso/9780199585205.001.0001.
- [4] Natalia Kiriushcheva and Sergei Kuzmin. "The Hamiltonian formulation of General Relativity: myths and reality". In: Central Eur. J. Phys. 9:576-615,2011 9.3 (Aug. 31, 2008). DOI: 10.2478/s11534-010-0072-2. arXiv: 0809.0097 [gr-qc].
- [5] Steven Weinberg. Cosmology. Oxford University Press, 2008. ISBN: 9780198526827.
 URL: https://global.oup.com/academic/product/cosmology-9780198526827.