

Introducción

- En comunidades urbanas como El Refugio en Tijuana, muchas familias utilizan vehículos sin sensores avanzados de reversa o advertencia.
- Esto incrementa el riesgo de accidentes al estacionarse o maniobrar en zonas angostas con peatones, niños o mascotas cerca.
- Con herramientas asequibles como el ESP32 y sensores ultrasónicos, los estudiantes pueden diseñar soluciones tecnológicas a problemas reales de su entorno.

Accidentes viales en Tijuana

- Según datos del INEGI, en 2023 se registraron más de 15,000 accidentes de tránsito terrestre en zonas urbanas y suburbanas en México, con un incremento del 24% respecto al año anterior en Tijuana. (INEGI,2025)
- Muchos de estos accidentes ocurrieron en vialidades de alta velocidad y zonas residenciales sin infraestructura inteligente, como lo reporta. (imparcial, 2024)

Condiciones urbanas en El Refugio, Tijuana

- El Refugio cuenta con más de 14,000 viviendas, muchas de ellas en zonas de alta densidad y con calles estrechas. (Youtube,2025)
- El crecimiento urbano acelerado en Tijuana ha llevado a la proliferación de asentamientos en terrenos poco aptos para urbanización, como laderas y cañones, lo que incrementa la vulnerabilidad ante accidentes y desastres. (Pueblos América)

INDUSTRIA, INNOVACIÓN E INFRAESTRUCTURA

¿A qué ODS contribuye?

- ODS 11 Ciudades y comunidades sostenibles
 - Mejora la seguridad vial urbana
- ODS 9 Industria, innovación e infraestructura
 - Promueve soluciones accesibles de ingeniería
- ODS 4 Educación de calidad
 - Integra habilidades STEM con impacto real

Propuesta de solución

 Desarrollar un sistema de asistencia de estacionamiento usando ESP32, sensor ultrasónico, microservo, LED y App Inventor, orientado a zonas residenciales como El Refugio, Tijuana. El sistema detecta obstáculos a corta distancia, activa alertas visuales, y permite monitoreo desde una app móvil. Busca resolver problemas de visibilidad y prevención de accidentes, aplicando habilidades técnicas con impacto social.

Objetivo general

 Desarrollar un sistema de asistencia para estacionamiento usando un ESP32, un sensor ultrasónico HC-SR04, un LED de advertencia, un microservo y una app móvil que muestre la distancia en tiempo real, simule la reversa con un pushbutton y active una señal visual de peligro.

Hardware

Cantidad	Elemento	Descripción
1	ESP32	Microcontrolador con Wi-Fi integrado para gestionar sensores y conectividad
1	Sensor HC-SR04	Sensor ultrasónico para medir distancia a objetos
1	Microservo SG90	Motor pequeño de rotación controlada para levantar o mover señal visual
1	LED rojo	Indicador de advertencia cuando un objeto se encuentra muy cerca
1	Pushbutton	Botón para activar manualmente el sistema (simula marcha atrás)
1	Resistencia 220Ω	Limitador de corriente para el LED
1	Protoboard	Base de conexiones rápida y reutilizable para el circuito
Varios	Cables Dupont	Cables macho-macho o hembra- macho para conexiones
1	Cable USB	Alimentación y programación del ESP32 desde la PC

Software

Cantidad	Elemento	Descripción
1	Arduino IDE	Plataforma para programar y cargar el código al ESP32
1	App Inventor 2	Entorno visual para crear la app móvil de monitoreo y control
1	Navegador web	Herramienta para acceder a App Inventor y monitorear el ESP32 vía IP
1	Celular Android	Dispositivo para instalar y probar la app móvil
1	Librería WiFi.h	Librería de Arduino para conexión del ESP32 a red Wi-Fi
1	Librería Servo.h	Librería para controlar el microservo desde el ESP32

Etapa 1: Conexión del Sensor Ultrasónico (HC-SR04)

- **Prueba esperada:** Leer distancia por monitor serial y que los valores cambien al acercar la mano.
- CODIGO 01 SENSOR ULTRASONICO

Pin del Sensor	Conecta a ESP32		
VCC	5V		
GND	GND		
Trig	GPIO 5		
Echo	GPIO 18		

Etapa 2: Agregar el LED de Advertencia

- **Prueba esperada:** Si la distancia < 30 cm, el LED se enciende. Si > 30 cm, se apaga.
- CODIGO DE PRUEBA: 02 LED

CABLE DEL SERVO	CONECTAR A ESP32	
Marrón (GND)	GND	
Rojo (VCC)	5V	
Naranja (Señal)	GPIO 25	

Etapa 3: Integrar el microservo (SG90)

- Consejo: Aunque muchos SG90 funcionan con 5V, algunos ESP32 no dan suficiente corriente por el pin 5V. Si se comporta errático, te puedo sugerir usar una fuente externa o capacitors.
- CODIGO PRUEBA: <u>03 SERVO</u>

Etapa 4: Pushbutton de activación

- **PULL-DOWN:** Cuando conectas algo (como voltaje al presionar un botón), cambia a HIGH.
- **PULL-UP**: el pin se conecta internamente a **3.3 V** (HIGH) hasta que tú, por ejemplo con un botón, lo mandas a tierra (LOW).
- Se usará el modo **INPUT_PULLUP** para evitar el uso de resistencias externas. El sistema se activará solo cuando el botón esté presionado (estado LOW).
- CODIGO DE PRUEBA: 04 Push Button

Pin del botón	Conectar a ESP32		
Un lado	GPIO 19		
Otro lado	GND		

Área del sistema	Resultado esperado	
Pushbutton	Si está presionado, el sistema se activa. Si no, todo permanece desactivado.	
Sensor ultrasónico	Lee y calcula la distancia en centímetros con precisión cada 200 ms.	
LED rojo	Se enciende automáticamente si la distancia es menor o igual a 30 cm.	
Microservo	Gira a 90° si hay peligro. Regresa a 0° si no lo hay.	
Monitor Serial	Muestra continuamente el valor de la distancia leída y el estado actual del sistema.	
Servidor HTTP	Entrega respuestas JSON en dos rutas:	

Probar el código estructurado

- Cargar directamente ese código completo a tu ESP32 desde el Arduino IDE, pero asegúrate de cumplir con estas 4 condiciones clave:
 - Seleccionar placa correcta → En el menú de Arduino IDE → Herramientas → "ESP32 Dev Module" (o el modelo específico que uses)
 - Puerto correcto seleccionado →
 Herramientas → Puerto → Asegúrate de elegir
 el COM adecuado
 - Tener las librerías → Necesitas: WiFi.h (viene con ESP32), y Servo.h (instalada desde el Gestor de Librerías)
 - Configurar tu red Wi-Fi > En el código, cambia const char* ssid = "TU_SSID" y password por los de tu red

CODIGO DE PRUEBA: 05 CODIGO ESTRUCTURADO

Copiar esa IP:

Aplicación web móvil embebida en el ESP32

Etapa 1: ¿Qué hará el sistema?

El ESP32 creará su propia página web

La app se abrirá desde el navegador del celular (ej. Chrome)

Desde ahí podrás:

- Tocar un botón "Medir distancia"
- Ver el resultado: "Distancia: XX cm"
- Encender el LED si el valor está debajo del umbral

Todo esto se hace con HTML + JavaScript incrustado en el código del ESP32.

Parte 1 – Probar conexión

Objetivo

- Que el ESP32 se conecte a tu red Wi-Fi
- Que te muestre una IP en el Monitor Serial

Código de Prueba: <u>06</u> CONEXIÓN-PRUEBA

Parte 2: Mostrar una página desde el ESP32

- Objetivo de esta parte
 - Que el ESP32 cree una página web interactiva
 - Que tú puedas abrir esa página desde tu celular
 - Que la página tenga un botón (por ahora sin función real, solo decorativo)
 - Que todo se sirva directamente desde el ESP32 usando su IP
- Codigo de Prueba: <u>07 WebServer</u>

- ¿Qué hace este código?
 - Se conecta al Wi-Fi y te muestra su IP como antes
 - Sirve una página que puedes visitar desde tu celular escribiendo http://192.168.1.67
 - Al presionar el botón, el mensaje cambiará a: Botón presionado correctamente

Botón Virtual

Botón presionado correctamente

Sistema de Medición

Sistema encendido

📏 Distancia: 29 cm

Parte 3: incluir el sensor ultrasónico

- Botón virtual con dos estados:
 - "Sistema encendido" / "Sistema apagado"
 - Cuando está encendido, mide distancia y la muestra en la página
 - Cuando está apagado, no hace medición y muestra "Sin lectura"
 - Código de prueba: <u>08 Ultrasónico</u>

Sistema de Medición

Sistema encendido

No Distancia: 32 cm

Zona segura. LED apagado.

Sistema de Medición

Sistema encendido

Activo

N Distancia: 2 cm

↑ ¡Distancia peligrosa! LED encendido.

Parte 4: Encender el LED si la distancia es menor a cierto umbral

Objetivo de esta etapa

- Encender el LED (pin 13) solo si la distancia medida es menor, por ejemplo, a 30 cm
- Mientras el sistema esté encendido (desde el botón virtual), el LED reaccionará según cada lectura automática
- Si la distancia es mayor, el LED permanece apagado
- Código de prueba: <u>09 LED</u>

- Parte 1: Personalizar colores según estado
 - Vamos a usar colores dinámicos para indicar:
 - Peligro (distancia menor al umbral)
 - **Zona segura** (distancia mayor)
 - O Sistema apagado
 - Eso lo lograremos con
 JavaScript + estilos CSS + respuestas del ESP32.

- Parte 2: Ajustar la interfaz para celular
 - Para que se vea bien en pantalla pequeña:
 - Usamos meta etiquetas de visualización
 - Estilizamos con CSS para que los textos y botones se adapten al ancho del celular
 - Código prueba: 10 Adaptado

Sistema encendido

Sistema encendido

No Distancia: 59 cm✓ Zona segura. LED apagado.

Mostrar una **tabla** que se actualiza en vivo con cada lectura

- Paso 1 Guardar el historial en el navegador
 - Lo haremos desde la interfaz web, para que sea liviano y sin modificar el ESP32 aún. Usamos JavaScript para almacenar las lecturas en una lista, y mostrarla en una tabla que crece cada segundo.
- Código de prueba: <u>11 HISTORIAL</u>

Sensor Web Interactivo con Historial y Exportación

Código de prueba: 12 Exportar

Α	В	С	D	Е
#	Distancia (cr	Estado	Hora	
1	50	✠Zona s	10:40:20 p.m	
2	50	✠Zona s	10:40:21 p.m	
3	51	✠Zona s	10:40:22 p.m	
4	27	âš ï¸ Â¡Dista	10:40:23 p.m	
5	7	âš ï¸ Â¡Dista	10:40:24 p.m	
6	7	âš ï¸ Â¡Dista	10:40:25 p.m	
7	7	âš ï¸ Â¡Dista	10:40:26 p.m	
8	7	âš ï¸ Â¡Dista	10:40:27 p.m	
9	7	âš ï¸ Â¡Dista	10:40:28 p.m	
10	7	âš ï¸ Â¡Dista	10:40:29 p.m	
11	7	âšï, ¡Dista	10:40:30 p.m	
12	7	âš ï¸ Â¡Dista	10:40:31 p.m	
13	7	âš ï¸ Â¡Dista	10:40:32 p.m	
14	7	âš ï¸ Â¡Dista	10:40:33 p.m	
15	7	âš ï¸ Â¡Dista	10:40:34 p.m	
16	7	âš ï¸ Â¡Dista	10:40:35 p.m	
17	7	âš ï¸ Â¡Dista	10:40:36 p.m	
18	7	âš ï¸ Â¡Dista	10:40:41 p.m	
19	7	âšï¸ ¡Dista	10:40:41 p.m	
20	7	âš ï¸ Â¡Dista	10:40:41 p.m	
21	7	âš ï¸ Â¡Dista	10:40:41 p.m	
22	7	âš ï¸ Â¡Dista	10:40:42 p.m	
23	7	âš ï¸ Â¡Dista	10:40:42 p.m	
24		âš ï¸ Â¡Dista		
25	7	âš ï¸ Â¡Dista	10:40:44 p.m	
26	7	âš ï¸ Â¡Dista	10:40:45 p.m	
27	7	âš ï¸ Â¡Dista	10:40:46 p.m	

		A postancia poligiona. 225 onconsido.	· ·
30	7	▲ ¡Distancia peligrosa! LED encendido.	10:40:49 p.m.
31	7	▲ ¡Distancia peligrosal LED encendido.	10:40:50 p.m.
32	7	▲ ¡Distancia peligrosal LED encendido.	10:40:51 p.m.
33	7	▲ ¡Distancia peligrosal LED encendido.	10:40:52 p.m.
34	7	▲ ¡Distancia peligrosal LED encendido.	10:40:53 p.m.
35	7	▲ ¡Distancia peligrosal LED encendido.	10:40:54 p.m.
36	7	▲ ¡Distancia peligrosal LED encendido.	10:40:55 p.m.
37	7		10:40:56 p.m.

Referencias

- INEGI. (2023). Estadísticas de accidentes de tránsito terrestre en zonas urbanas y suburbanas. Instituto Nacional de Estadística y Geografía. Recuperado de https://www.inegi.org.mx/temas/accidentes/
- El Imparcial. (2023, 10 de enero). Crecen 24% los accidentes viales en Tijuana: faltan sensores y prevención. Recuperado de https://www.elimparcial.com/tijuana
- Baja News. (2025, 1 de febrero). Atlas de riesgo: Colonias en Tijuana con calles angostas y alta densidad poblacional. Recuperado de https://bajanews.mx/noticias/37689/Industrial
- News BC. (2025, 1 de febrero). Presentaron el Atlas de Riesgo de Tijuana. Recuperado de https://www.industrialnewsbc.com/2025/02/01/presentaron-atlas-de-riesgo-de-tijuana/