Review for Midterm

EES 3310/5310
Global Climate Change
Jonathan Gilligan

Class #18: 2020-02-17 2020

Outline of Semester

Heat and Temperature

- Temperature is stable when heat is balanced
 - \blacksquare $F_{in} = F_{out}$ (F = heat flux)
- Radiative equilibrium:
 - F_{in} is shortwave light from sun
 - F_{out} is longwave light from earth
 - Where on earth does F_{out} come from?
 - Why is F_{in} shortwave and F_{out} longwave?
 - Equations (in W/m²):

$$F_{
m in} = rac{(1-lpha)I_{
m solar}}{4}$$
 (Absorption)
 $F_{
m out} = arepsilon \sigma T_{
m skin}^4$ (Stefan-Boltzmann Law)

Greenhouse Effect

No greenhouse gases: Bare-rock model

$$T=\sqrt[4]{rac{(1-lpha)I_{
m solar}}{4arepsilon\sigma}}$$

- Add greenhouse gases:
 - lacksquare Simple model: Layer model (arepsilon=1 for all wavelengths)

More Realistic Greenhouse Effect

More Realistic Greenhouse Effect

• With real greenhouse gases, ε varies with wavelength:

MODTRAN:

- MODTRAN calculates *emissions* and *absorption* of longwave light in the atmosphere.
- Things that don't change during a run:
 - Heat from the sun
 - Set by "locality" of the atmosphere
 - Temperature of the ground and every layer of the atmosphere.
 - Set by "locality" of the atmosphere and "temperature offset"

Locale	I _{out} (W/m²)	T _{ground} (K)
U.S. Standard Atmosphere	267.98	288.2
Tropical	298.67	299.7
Midlatitude winter	235.34	272.2

• For every wavenumber, MODTRAN calculates heat emission and absorption up and down at each layer.

MODTRAN:

- Emissivity (ε) = absorption
 - lacktriangle Fraction absorbed by layer = arepsilon
 - Radiation emitted by layer = $\varepsilon \sigma T^4$
- ε small (near zero):
 - Little absorption or emission.
- ε large (near one):
 - Almost all incoming radiation is absorbed
 - Emission close to black body at temperature *T*.
- ε is large for wavenumbers where greenhouse gases absorb strongly.
 - lacktriangle Greater concentration ightarrow larger arepsilon
- ullet ε is small where there is little absorption
 - Atmospheric window

- Sensor sees emission at the temperature of the *nearest layer* with large ε :
- Looking down from space:
 - highest layer with large ε
 - In atmospheric window, that layer is near the ground
 - With clouds, it's often the top of the highest cloud
- Looking up from ground:
 - *lowest layer* with large ε
 - In atmospheric window, there's no such layer, so you see very little emission
 - With clouds, it's often the bottom of the lowest cloud

Example: Looking Down

Example: Looking Up

Vertical Structure of the Atmosphere

Vertical Structure of the Atmosphere

- Lapse Rate:
 - Environmental (ELR): Snapshot of actual atmosphere
 - Adiabatic (ALR): Changes as air moves up or down
 - Condition for stability: ELR < ALR</p>
- Why does stability matter?
 - Greenhouse effect alone would make ELR very large.
 - This would make the earth hotter than it is.
 - When ELR > ALR, convection happens
 - Convection moves heat around
 - Convection reduces ELR until atmosphere becomes stable
 - Cools surface
 - Radiative-Convective Equilibrium:
 - Convection weakens greenhouse effect
 - Atmosphere is just at the edge of stability
 - Greenhouse effect wants to raise ELR
 - Convection wants to reduce ELR

Vertical Structure and Greenhouse Effect

Vertical Structure and Greenhouse Effect

Feedbacks

Feedbacks

- Positive: amplify warming or cooling
- Negative: diminish warming or cooling
- Examples:
 - Ice-albedo (positive, fast)
 - Water vapor (positive, fast)
 - Clouds (slightly positive, fast)
 - Silicate Weathering (negative, slow)

Cloud Feedback

Silicate Weathering

- Constant CO₂ concentration:
 - Sources of CO_2 = Sinks (removal)
 - Silicate weathering = volcanic outgassing
- Raise outgassing:
 - CO₂ rises
 - Temperature rises
 - More weathering
 - Eventually ... weathering = new outgassing
 - New equilibrium
 - Higher temperature

Silicate Weathering

- Constant CO₂:
 - Silicate weathering = volcanic outgassing
- One-time pulse of CO₂ into atmosphere
 - Temperature rises
 - More weathering
 - Weathering > outgassing
 - CO₂ drops
 - New equilibrium when CO₂ returns to original value:
 - T returns to original value
 - CO₂ back at original value
 - Weathering = outgassing again

Geochemical Carbon Cycle

Carbon

- Oxidized vs. Reduced Carbon
- Isotopes:
 - ¹²C, ¹³C, ¹⁴C
 - What do they tell us?
- What is the evidence that rising CO₂ comes from fossil fuels?

Source of CO₂: O₂ and ¹³C

Source of CO₂: ¹³C and ¹⁴C

Where is Carbon

Carbonate/Bicarbonate Buffering Buffering reaction

$$CO_2 + H_2O + CO_3^{2-} \rightleftharpoons 2HCO_3^{-}$$

Important points:

- Reaction goes both ways
- At equilibrium left and right are equal (balanced)
- Le Chatlier's principle
 - Add more of something on one side and balance shifts to the other side
 - Add more CO_2 and reaction converts CO_2 and CO_3^{2-} to HCO_3^{-}
- Lots more carbonate than CO₂ in ocean
 - Absorb lots more CO₂ because of buffering, carbonate
 - This consumes carbonate (CO_3^{2-})
 - Ocean acidification as carbonate is depleted

Weathering Reactions

Silicate Weathering Reactions

Silicate Weathering (Urey Reaction)

$$CaSiO_3 + CO_2 \leftrightharpoons CaCO_3 + SiO_2$$

■ Intermediate (in water):

$$CaSiO_3 + H_2CO_3 \leftrightharpoons Ca^2 + SiO_3^2 + 2H^+ + CO_3^2$$

- Silicate rocks dissolve into ions in water
- Wash into ocean
- In ocean, living organisms convert ions to CaCO₃ and SiO₂.
- Net result: Convert CO₂ from atmosphere into rocks at bottom of ocean.

Carbonate Weathering Reactions

Carbonate Weathering

$$CaCO_3 + CO_2 \leftrightharpoons CaCO_3 + CO_2$$

■ Intermediate (in water):

$$CaCO_3 + H_2CO_3 = Ca^{2+} + 2H^+ + 2CO_3^{2-}$$

- Carbonate rocks dissolve into ions in water
- Add carbonate ions to oceans
- Net result:
 - No permanent removal of CO₂ from atmosphere
 - But long-term storage in oceans.

Climates of the Past

- Paleocene-Eocene Thermal Maximum (PETM) (~55 million years ago)
- Pleistocene Ice Ages (~2.8 million to 10,000 years ago)
- Holocene (last ~10,000 years)
 - Medieval Warm Period (~1000 years ago)
 - Post-industrial warming

Paleocene-Eocene Thermal Maximum

- What was it?
- What important evidence do we see for what caused it?
- What is its relevance to today?

Pleistocene Ice Ages

- What was it?
- What important evidence do we use to study it?
- What do we know about what caused it?
- What is its relevance to today?

Industrial-Age Warming

- What do we know about what caused it?
- What are some lines of evidence that human activity is responsible?

Medieval Warm Period

- What was it?
- What is its relevance to today?

Mississippi Valley Droughts 1100-1247 1340-1400 940-985

Younger Dryas

- What was it?
- What is its relevance to today?

Global Ocean Conveyor Belt

