

CLAIMS

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:

1 1. A stand alone welding power supply comprising;
2 a primary mover mechanically coupled to a rotating
3 shaft;

4 a generator having a rotor mechanically coupled to
5 the shaft, and further having a stator magnetically
6 coupled to the rotor, whereby the generator provides a
7 generator output;

8 an inverter having an inverter input in electrical
9 communication with the generator output, wherein the
10 inverter inverts power from the inverter input to
11 provide an inverter output;

12 a controller coupled to the primary mover and
13 having a feedback input; and

14 a feedback circuit coupled to the welding output
15 and the feedback input wherein a feedback signal
16 responsive to at least one welding output operating
17 parameter is provided to the feedback input.

1 2. The power supply of claim 1 wherein the
2 primary mover includes a speed control and the controller
3 includes an output coupled to the speed control, wherein the
4 speed of the primary mover is controlled in response to the
5 feedback signal.

1 3. The power supply of claim 2 wherein the speed
2 control includes an idle/run selector for selecting between
3 an idle speed and a run speed in response to the feedback
4 signal.

1 4. The power supply of claim 1 wherein the
2 controller includes means for controlling at least one of a
3 throttle position, a fuel pump, an injection timer, a fuel
4 to air ratio, fuel consumption and ignition timing.

1 5. The power supply of claim 1 wherein the at
2 least one operating parameter is welding current.

1 6. The power supply of claim 1 wherein the at
2 least one operating parameter is welding voltage.

1 7. The power supply of claim 5 wherein the at
2 least one operating parameter further includes welding
3 voltage.

1 8. The power supply of claim 7 wherein the
2 feedback circuit includes a multiplier, wherein the
3 multiplier multiplies signals representative of voltage and
4 current to obtain a signal representative of power, and
5 further wherein the feedback circuit includes an integrator
6 to integrate the signal representative of power.

1 9. The power supply of claim 2 further including
2 a rectifier that couples the inverter to the ac output, and
3 wherein the inverter includes at least one input energy
4 storage device that stores rectified energy and wherein the
5 controller causes the primary mover to increase speed when
6 the energy stored decreases past a threshold.

1 10. The power supply of claim 1 wherein the
2 operating parameter is a function of a ripple in the output.

1 11. The power supply of claim 1 further including
2 a rectifier coupled to the inverter output to provide a dc
3 welding output.

1 12. The power supply of claim 1 wherein the
2 generator is a dc generator.

1 13. The power supply of claim 1 wherein the
2 generator is an ac ~~dc~~ generator, and the inverter includes an
3 input rectifier.

1 14. A stand alone welding power supply comprising;
2 a primary mover mechanically coupled to a rotating
3 shaft;

4 a generator having a rotor mechanically coupled to
5 the shaft, and further having a stator magnetically
6 coupled to the rotor, whereby the generator provides a
7 generator output;

8 an inverter having an inverter input in electrical
9 communication with the generator output, wherein the
10 inverter inverts power from the inverter input to
11 provide an inverter output;

12 control means, coupled to the primary mover and
13 having a feedback input, for controlling the primary
14 mover; and

15 feedback means, coupled to the welding output and
16 the feedback input, for providing a feedback signal
17 responsive to at least one welding output operating
18 parameter to the feedback input.

1 15. The power supply of claim 14 wherein the
2 primary mover speed control means for controlling the
3 primary mover's speed, and the control means includes an
4 output coupled to the speed control means, wherein the speed
5 of the primary mover is controlled in response to the
6 feedback signal.

1 16. The power supply of claim 15 wherein the
2 speed control means includes an idle/run selector means for

3 selecting between an idle speed and a run speed in response
4 to the feedback signal.

1 17. The power supply of claim 14 wherein the
2 control means includes means for controlling at least one of
3 a throttle position, a fuel pump, an injection timer, a fuel
4 to air ratio, fuel consumption and ignition timing.

1 18. The power supply of claim 14 wherein the at
2 least one operating parameter is welding current.

1 19. The power supply of claim 14 wherein the at
2 least one operating parameter is welding voltage.

1 20. The power supply of claim 18 wherein the at
2 least one operating parameter further includes welding
3 voltage.

1 21. The power supply of claim 20 wherein the
2 feedback means includes a multiplier means for multiplying
3 signals representative of voltage and current to obtain a
4 signal representative of power, and further wherein the
5 feedback means includes an integrator means for integrating
6 the signal representative of power.

1 22. The power supply of claim 15 wherein the
2 inverter includes at least one input energy storage means
3 for storing energy to be inverted by the inverter, and
4 wherein the control means further includes means for
5 increasing primary mover's speed when the energy stored
6 decreases past a threshold.

1 23. The power supply of claim 14 wherein the
2 operating parameter is a function of a ripple in the output.

1 24. The power supply of claim 14 further
2 including a rectifier means coupled to the inverter output
3 for providing a dc welding output.

1 25. The power supply of claim 14 wherein the
2 generator is a dc generator.

1 26. The power supply of claim 14 wherein the
2 generator is an ac dc generator and the inverter includes a
3 rectifier.

1 27. A method of providing welding power
2 comprising;
3 generating an electrical output with an engine and
4 generator;
5 inverting the electrical input to provide an ac
6 inverter output;
7 controlling the engine using feedback indicative
8 of a welding output operating parameter.

1 28. The method of claim 27 wherein the engine
2 speed is controlled in response to the feedback.

1 29. The method of claim 28 wherein the step of
2 controlling includes the step of selecting between an idle
3 speed and a run speed in response to the feedback.

1 30. The method of claim 27 wherein the step of
2 controlling includes controlling at least one of a throttle
3 position, a fuel pump, an injection timer, a fuel to air
4 ratio, fuel consumption and ignition timing.

1 31. The method of claim 28 including the step of
2 providing feedback responsive to welding current.

1 32. The method of claim 28 including the step of
2 providing feedback responsive to welding voltage.

1 33. The method of claim 28 including the step of
2 providing feedback responsive to welding power.

1 34. The method of claim 33 wherein step of
2 providing feedback further includes the steps of multiplying
3 signals representative of voltage and current to obtain a
4 signal representative of power, and integrating the signal
5 representative of power.

1 35. The method of claim 28 further including the
2 step of storing energy after rectification and wherein the
3 step of controlling includes the step of increasing engine
4 speed when the energy stored decreases past a threshold.

1 36. The method of claim 31 wherein the feedback
2 is responsive to a ripple in the output.

1 37. The method of claim 31 further including the
2 step of rectifying the inverter output to provide a dc
3 welding output.

1 38. The method of claim 27 wherein the step of
2 generating includes the step of generating a dc output.

1 39. The method of claim 27 wherein the step of
2 generating includes the step of generating an ac dc output
3 and the step of inverting includes the step of rectifying..