

TOUR PROPERTY VIAN

SUCHO & (60 M - 122)

UMTA JOINT MOCK EXAMINATIONS 2023

UGANDA ADVANCED CERTIFICATE OF EDUCATION Chemistry Paper 2 2 hours 30minutes

INSTRUCTIONS TO THE CANDIDATES

This paper consists of two sections A and B.

Attempt any three questions from section A and any two from section B on the answer sheets provided.

Illustrate your answers with equations where possible.

Molar volume R=8.314J mol⁻¹ K^{-1} .

Molar volume at s.t. $p = 22.4dm^3$.

Begin each question on a fresh page.

Non-programmable scientific electronic calculators may be used.

Illustrate your answers with equations where applicable.

Indicate the questions in the grid below.

Where necessary use, Pb=207; Br = 80; Ag = 108; Na = 23; C = 12; O = 16; H = 1; P=31; Cl = 35.5

Question	211111	t marchae	1	د ده د د د د د کار	Total
Marks	non O brins	iso noit: et	[6] [1] [6]	Ω icn(s) leadi	(i) Write equa

Page 1 of 5

SECTION A (60 MARKS)

	Answer three questions from this section	
<u>ا</u> ا	1. (a) (i) Define the term colligative property.	(01 mark)
	(ii) State any two colligative properties other than boiling point elev	ation.
		(01 mark)
	(b) Describe an experiment to determine the relative formula mass of gl boiling point elevation. No diagram is required	Carlo
		(09 marks)
	(c) An aqueous solution containing 9.0g of glucose (C ₆ H ₁₂ O ₆) in 250 cm boils at same temperature as an aqueous solution containing 1.46g of so in 250 cm ³ of water. (K _b for water is 0.52°C per mole per 1000kgs).	n ³ of water dium chloride
	(1) Calculate the relative molecular mass sodium chloride in water (ii) State any two assumptions made in (c)(ii) above	(04 marks) (01 mark)
	(d) Compare your results in (c)(i) above with the theoretical R.F.M of so chloride. Explain the differences between the two values	odium (04 marks)
2.	Chromium (Atomic number 24) is not only a transition but also a d-block	
	(a) Write the electronic configuration of chromium	
	(b) State the reason why chromium is a:	$(\frac{1}{2} \text{mark})$
	(i) transition element	(01 mark)
	(ii) d-block element	(01 mark)
	(c) Both chromium and calcium belong to period 4 of the periodic table that a higher melting point than calcium.	out chromium
	Explain this observation.	(02 marks)
	(d) (i) State the most common oxidation states of chromium exhibited in compounds	its
		(01 mark)
	(ii) Write the formulae of the oxides of chromium formed in each of states in d(i) above	the oxidation
		(02 marks)
	(e) Ammonium dichromate is an orange solid. When heated strongly, it to form a green solid Q. Q, when fused with potassium hydroxide in preoxygen form a yellow solid W. W dissolves in water to form a yellow solid with potassium hydroxide in preoxygen form a yellow solid with a solid is added to the solid.	
	dilute sulphuric acid is added to the sull	nation when

dilute sulphuric acid is added to the yellow solution, it turns orange. (i) Name solid Q $(\frac{1}{2} \text{ mark})$

(ii) Write equation(s) leading to the formation of solid \mathbf{Q} from ammonium dichromate, solid W and the orange solution $(4 \frac{1}{2} \text{ marks})$

	(1) When potassium nitrite is added to the acidified orange solution in	(e), a green
	solution was formed. Explain.	$(3^{\frac{1}{2}} \text{mark})$
	(g) State what would be the observed and write equation between an a solution of W and	queous
	(i) acidified hydrogen peroxide in presence of the ether.(ii) Silver nitrate	(02 marks) (02 marks)
	3. Write equation and outline a mechanism for the reaction when:	Deficació (g)
	(a) 2-iodo-2-methylbutane is added to aqueous sodium hydroxide and the state of the reaction when:	1
	heated	(03 marks)
	(b) benzene is reacted with propene in presence of concentrated arthop	hosphoric acid
		(3 1 morb)
	(c) hydrogen chloride gas is bubbled through a boiling mixture of ethar	
	acid	
	(d) cyclohexanone is converted to cyclohexanone hydrazone	(05 marks) (05 marks)
	(e) Methyl ethanoate is reacted with alcoholic ammonia solution	$(3.\frac{1}{5} \text{ marks})$
	solution	(5. 7 marks)
7	4. Phosphorus(V) chloride decomposes at high temperature according to t equation	he following
	$PCl_{5}(g) \longrightarrow PCl_{3}(g) + Cl_{2}(g)$	1
	1 013 (9) 1 012 (9	Supplicity E
	(a) Write an expression for the equilibrium constant. W. S. H.	
	(a) Write an expression for the equilibrium constant, K_c for the reaction (b) Calculate the anthology shapes for the formula K_c	
	(b) Calculate the enthalpy change for the forward reaction above. (The for CL -CL and P -CL bonds are -242 and -276.6 kJmol ⁻¹ respectively)	
	(c) State and explain the effect on the equilibrium position and values of	(03 marks)
	equilibrium constant for the reaction when	i the
	(i) pressure was increased	(02
	(ii) temperature was increased	(03 marks) (03 marks)
	T	(02 marks)
	(m) mert gas was added at constant volume	(02 marks)
	(d) 82.5g of phosphorus(V) chloride was sealed in a 8,950 cm ³ glass tub	ne and healed
	up to 450°C until equilibrium was attained. The tube as quickly broken	into an ice-
	cold excess potassium iodide solution 25.0cm ³ of solution required 38.5	
	0.025M sodium thiosulphate for complete reaction using starch indicate	
	de la completa responsable de la completa responsable de la completa responsable de la completa del la completa de la completa	14 (6)
	(i) State why the tube was quickly broken into an ice-cold potassium io	dide solution. (01 mark)
	(ii) Write equation(s) for the reaction(s) that took place	(02 marks)
	(iii) Calculate the equilibrium constant, K _c for the reaction at 450°C	(04 marks)
	(iii) Calculate the equinorium commission of a second in Commission of the Commissio	a man and a

SECTION B: (40 MARKS)

Answer any two questions from the section

- 5. The Elements beryllium, magnesium, calcium, strontium and barium belong to group II of the periodic Table.
 - (a) Write the general outermost electronic configuration of the elements above

 $(\frac{1}{2} \text{ mark})$

- (b) State and explain the trend in variation of the first ionization energy amongst the elements

 (3 1 mark
- (c) (i) Describe the reactions of the elements with hydrochloric acid. (04 marks)
- (ii) Write equation(s) for the reaction(s) of beryllium and magnesium with nitric acid under different conditions (03 marks)
- (d) The table below shows solubility in water of 20°C and decomposition temperatures at 1 atmosphere of the hydroxides and carbonates of same of the elements respectively

Hydroxide	Mg(0H)2	Ca(0H) ₂	Sr(0H)2	Ba(0H)2
Solubility (g/100g at 20°C)	0.002	0.15	0.9	4.0
Carbonate	MgC0 ₃	CaC0 ₃	SrC0 ₃	BaC0 ₃
Decomposition temperature(°C)	540	900	1290	1360

Explain the trend in variation of:

- (i) solubility of the hydroxides in water. (03 marks)
- (ii) thermal stability of the carbonates. (03 marks)
- (e) Write equation(s) for the reaction(s), if possible for the:
 - (i) hydroxides of the elements with potassium hydroxides $(1, \frac{1}{2})$ marks
 - (ii) carbonates in (d) above with dilute sulphuric acid $(1\frac{1}{2} \text{ marks})$
- 6. With the help of the equations and giving necessary conditions, show how each of the following conversions could be effected.
 - (a) Chlorobenzene to benzamide $(5 \frac{1}{2} \text{ marks})$
 - (b) But-2-ene to nitrobenzene (5 $\frac{1}{2}$ marks)
 - (c) 2-methylpropan-2-ol from ethene (5 $\frac{1}{2}$ marks)
 - (d) Propanoylchloride to propylamine (5 $\frac{1}{2}$ marks)
 - (e) Methylbenzoate to benzene (02 marks)
 - 7. Explain each of the following observations.
 - (a) An aqueous solution of potassium nitrate has pH 7 whereas an aqueous solution of potassium nitrite has pH above 7 (04 marks)

- (b) A mixture of water and carbon tetrachloride boils at a temperature considerably below the boiling point of either liquids $(3\frac{1}{2} \text{ marks})$
- (c) The basic strength of the following compounds id in the order

$$C_5H_5NH_2 < NH_3 < (CH_3)_2NH$$
 (05 Marks)

- (d) When an aqueous solution of sodium chlorate(I) and lead (II) nitrate was heated, a brown precipitate was formed

 (3 $\frac{1}{2}$ marks)
- (e) Calcium phosphate is less soluble in calcium nitrate solution but more soluble in dilute hydrochloric acid. (04 marks)
- 8. (a) What is meant by the terms:

(01 mark)

(ii) half-life of a reaction

(01 mark)

(b) The equation for the acid catalyzed reaction between propanone and iodine is:

$$CH_3C0CH_3(aq) + l_2(aq) \longrightarrow CH_3C0CH_2l(aq) + HI(aq)$$

The rate equation for the reaction is Rate = $k[CH_3C0CH_3][H^+]$

Describe an experiment to determine the order of reaction with respect to iodine in the laboratory.

(c) The table below shows the results for the hydrolysis of a bromoalkene, C₄H₉Br. The enthalpy for the reaction is — 160kJmol⁻¹

Experiment	[C ₄ H ₉ Br] (moldm ⁻³)	[H ₂ O] (moldm ⁻³)	Initial rate (moldm ⁻³ s ⁻¹)
1	0.05	0.10	1.0 x 10 ⁻⁵
2	0.20	0.10	4.0×10^{-5}
3	0.20	0.05	4.0 x 10 ⁻⁵

- (i) Determine the order of the reaction with reasons to explain your answer (04 marks)
- (ii) Write the structural formula and name of the alkylhalide.

 $(1\frac{1}{2} \text{ marks})$

(iii) Draw a well labelled energy diagram for the reaction.

 $(2\frac{1}{2} \text{ marks})$

END

CamScanner