

12-Pulse Module Overview

OEE: Overall Equipment Effectiveness

OEE – Description

Overall Equipment Effectiveness

- Is an industry standard
- □ Is a Key Performance Indicator (KPI) for production and areas close to production
- Describes the effectiveness of a machine

Goal: Identification of the efficiency of machines and their optimization

OEE consists of 3 single key figures:

1. Availability

2. Performance

3. Quality

OEE – Workflow

acquire OEE relevant data analysis of the acquired data

recognize problems start sanctions

OEE-Workflow

Scope

- □ Strategy of maintenance
- Optimization of equipment
- □ Appliance for time-and production planning
- ☐ Facts about cycle time, availability,
- □ Efficiency, capacity
- □ Appliance for decisions of investments

Pulse OEE

Key facts

- □ Fulfill the Continental automotive procedure for OEE (cam0600429)
- □ Reduce network traffic due to using a caching mechanism
- Allows to categorizes recorded downtime with an web based user front end
- □ Includes OEE reporting
- Offers configurable dashboards
- Configurable analyze and reporting hierarchies
- Configurable failure catalogs
 - □ Creation of catalogs based on CAM0600429
 - ☐ Flexible assignment to machines or nodes

OEE Procedure CAM0600429

OEE = EquipmentAvailability x Performance x QualityRate

$$Equipment Availability = \frac{\sum Operating Time}{\sum Loading Time}$$

$$Performance = \frac{\sum (IdealCycleTime * PartsProduced)}{\sum OperatingTime}$$

$$\textit{QualityRate} = \frac{\sum \textit{TotalPartsProduced} - \sum \textit{FailureParts}}{\sum \textit{TotalPartsProduced}}$$

Introduction to Time model

Definition: methodical acquire of the Six Big Losses (red)

Caching mechanism

PULSE – Architecture

OPM/OEE connection overview

The connection from production client vary from location and depends on specific requirements

Example of FraMES data flow

Example of data structure

Array definition

Name	Туре	Index	OPM rel.	OEE rel.	Comment
Actual Units	D	0		х	# of Units a Process is started (Test_Count)
					# of Units that Passed the Machine
Effective Units	D	1		Х	(Pass_Count)
Quantity Checkin	D	10		opt	
Quantity Start	D	11		opt	
Quantity Yield	D	12	х	opt	
Quantity Fail	D	13	х	opt	
Quantity Scrap	D	14		opt	
Quantity Testruns	D	20		-	
Teststeps Pass	D	21		-	
Teststeps Fail	D	22		-	
Teststeps Saved	D	23		-	
Texts Saved	D	24		-	
Blobs Saved	D	25		-	

Name	Туре	Index	OPM rel.	OEE rel.	Comment
Material Name	S	10	х	х	Product_ID A2C123456
Material Revision	S	11		opt	
Material Group	S	12		opt	
Order Number	S	13		opt	
Production Version	S	14		opt	
Operation Number	S	15		х	
Process Group	S	16		opt	SAP shorttext (can be mandatory for non WIP)
Operation Descript	S	17		opt	
Testplan Group	S	20		-	
Testplan Name	S	21		-	
Testplan Version	S	22		-	
Testplan Datatype	S	23		-	
Unit Id Type	S	30		opt	
UnitId	S	31		opt	
Error Text	S	33		opt	
Library Version	S	34		opt	

Example of code

```
void DoSendProdChange()
         shorti, sRetVal=0;
         char szState[40] = {0}
         char szComment[160] = {0};
         shortsUsrDataCnt = 2;
         pul_USERDATA UserData[20] = {0};
         shortsUsrFldCnt=2;
         pul_USERFIELD UserFields[20] = {0};
         strcpy(szState, "UNIT_PROGRESS");
         strcpy(szComment, "Event for production regular");
         // setting of user data
         // two elements for index 0,1,
         UserData[0].sIndex = 0; // Actual units (test_count)
         UserData[1].sIndex = 1; // Effective units (pass_count)
         UserData[0].dUserData = 10; // Value for achal units
         UserData[1].dUserData = 10; // Value for effective units
         // setting of user field data (depending on the design)
         // two elements for index 10,16
         UserFields[0].sIndex = 10; // Product
         UserFields[1].sIndex = 16; // Process group
         strcpy(UserFields[0].szUserField, "A2C1234556"); // Value for product
         strcpy(UserFields[1].szUserField, "MILLING"); // Value for process group
         // send data to Pulse
         sRetVal = pul_SendMessageData(szState, szComment,
                                    sUsrDataCnt, UserData, sUsrFldCnt, UserFields);
                  pul_ShowError();
```


OEE Reporting

Tool / tool group OEE trend | 100% | 55% | 10%

Cluster module compare

	<u>Elevator</u>	<u>PM1</u>	<u>PM2</u>	Port1	Robot
PRD	42.36%	40.83%	40.25%	39,95%	39.17%
SBY	36.29%	37.86%	39.65%	39.00%	39.60%
ENG	0.00%	0.00%	0.00%	0.00%	0.00%
SDT	7.83%	8.68%	8.93%	8.70%	9.59%
UDT	13.53%	12.63%	11.17%	12.35%	11.64%
NST	0.00%	0.00%	0.00%	0.00%	0.00%
Availability Efficiency	78.65%	78.69%	79.90%	78.96%	78.77%
Operational Efficiency	53.86%	51.89%	50.38%	50.60%	49.72%

Tool detail analysis

- > tools
- > tool groups
- > cluster tools
- > cluster modules

OEE Dashboard

- Easy creation of dashboards
- Dashboard can be defined per user
- □ Global dashboard can be defined

OEE Downtime categorization client

Categorized machine downtimes will be displayed as additional track

OEE Log Book

Log Book is the result track of original track plus assigned machine downtime states

OEE FAB Layout

□ Shows the actual status of line/production area

Benefits of Pulse OEE

- □ Efficiency improvement of equipment
 - □ Real-time evaluation of equipment
 - Presents the potential of production

Semi E10 Time Analysis			
	Percent	Time (h)	Semi E10 Time Analysis
Total Time	100%	104,00	Join Liv Time Hillysis
Non Scheduled Time	15,58%	16,20	
Operation Time	84,42%	87,80	
Uptime	30,5%	31,73	
Engineering Time	9,1%	9,45	
Manufacturing Time	21,43%	22,28	
Productive Time	11,1%	11,53	
Standby Time	10,3%	10,75	
Downtime	53,9%	56,07	
Scheduled Down	40,6%	42,26	
Unscheduled Down	13,3%	13,80	

- Time and failure analysis (recipe execution time, material tracking etc.)
- □ Calculation of productivity index ref. to Conti OEE
- □ Effective online monitoring, reporting and tracking with up-to-date WEB technology
- □ Flexible administration of equipment models

Scheduled Down