Jaringan Komputer

Pertemuan 6

Prodi Informatika

1

Outline

- Network Layer :
 - DHCP
 - Network Address Translation

Prodi Informatika

ರ

IP addressing: CIDR

CIDR: Classless InterDomain Routing

- Bagian dari subnet yang Panjang alamatnya bisa kita tentukan sendiri
- address format: a.b.c.d/x, dimana x adalah # bits dibagian alamat subnet

200.23.16.0/23

Prodi Informatika

7

IP addresses: how to get one?

Q: How does a *host* get IP address?

- hard-coded by system admin in a file
 - Windows: control-panel->network->configuration->tcp/ip->properties
 - UNIX: /etc/rc.config
- DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server
 - "plug-and-play"

Prodi Informatika

DHCP: Dynamic Host Configuration Protocol

goal: memungkinkan host untuk secara dinamis mendapatkan alamat IP-nya dari server jaringan ketika bergabung dengan jaringan

- dapat memperbarui sewa pada alamat yang digunakan
- memungkinkan penggunaan kembali alamat (hanya tahan alamat saat terhubung / "aktif")
- dukungan untuk pengguna seluler yang ingin bergabung dengan jaringan (lebih singkat)
- DHCP overview:
 - host broadcasts "DHCP discover" msg [optional]
 - DHCP server responds with "DHCP offer" msg [optional]
 - host requests IP address: "DHCP request" msg

DHCP server sends address: "DHCP ack" msg

Prodi Informatika

9

223.1.1.0/24 DHCP Server 223.1.1.1 223.1.1.2 223.1.2.1 223.1.2.1 223.1.2.2 223.1.2.2 223.1.2.2 223.1.3.2 223.1.3.2 223.1.3.2 223.1.3.2 Prodi Informatika

DHCP: more than IP addresses

DHCP dapat mengembalikan lebih dari sekadar alamat IP yang dialokasikan pada subnet :

- alamat router first-hop untuk klien
- nama dan alamat IP dari server DNS
- mask jaringan (menunjukkan jaringan versus bagian host dari alamat)

Prodi Informatika

DHCP: example

- menghubungkan laptop memerlukan alamat IPnya, addr first-hop router, addr dari server DNS: use DHCP
- DHCP request dienkapsulasi ke UDP, diencapsulasi ke IP, di enkapsulasi ke 802.1 Ethernet
- Ethernet frame broadcast (dest: FFFFFFFFFFFF) di LAN, diterima di router yang menjalankan server DHCP
- Ethernet demuxed ke IP, UDP demuxed ke DHCP

Prodi Informatika

13

DHCP: example

- DCP server memformulasikan DHCP ACK berisi IP address client, IP address dari first-hop router untuk client, name & IP address DNS server
- encapsulation di DHCP server, frame diforward ke client, demuxing hingga DHCP di klien
- klien sekarang tahu alamat IP-nya, nama dan alamat IP server DNS, alamat IP router first-hopnya

Prodi Informatika

IP addresses: how to get one?

- Q: how does network get subnet part of IP addr?
- A: gets allocated portion of its provider ISP's address space

ISP's block	<u>11001000</u>	00010111	00010000	00000000	200.23.16.0/20
Organization 0					
Organization 1 Organization 2					200.23.18.0/23
	11001000	00010111	0001010	0000000	200.23.20.0/23
Organization 7	11001000	00010111	00011110	00000000	200.23.30.0/23

Prodi Informatika

IP addressing: the last word...

Q: how does an ISP get block of addresses?

A: ICANN: Internet Corporation for Assigned
Names and Numbers http://www.icann.org/

- allocates addresses
- manages DNS
- assigns domain names, resolves disputes

Prodi Informatika

19

NAT: network address translation

motivation: local network uses just one IP address as far as outside world is concerned:

- •range of addresses not needed from ISP: just one IP address for all devices
- can change addresses of devices in local network without notifying outside world
- can change ISP without changing addresses of devices in local network
- devices inside local net not explicitly addressable, visible by outside world (a security plus)

Prodi Informatika

21

NAT: network address translation

implementation: NAT router must:

- outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)
 - ... remote clients/servers will respond using (NAT IP address, new port #) as destination addr
- remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair
- incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

NAT: network address translation

- 16-bit port-number field:
 - 60,000 simultaneous connections with a single LAN-side address!
- NAT is controversial:
 - routers should only process up to layer 3
 - · address shortage should be solved by IPv6
 - violates end-to-end argument
 - ✓ NAT possibility must be taken into account by app designers, e.g., P2P applications
 - NAT traversal: what if client wants to connect to server behind NAT?

to server behind NAT?

Prodi Informatika

IPv6: motivation

- initial motivation: 32-bit address space soon to be completely allocated.
- additional motivation:
 - header format helps speed processing/forwarding
 - header changes to facilitate QoS

IPv6 datagram format:

- fixed-length 40 byte header
- no fragmentation allowed

Prodi Informatika

25

IPv6 datagram format

priority: identify priority among datagrams in flow flow Label: identify datagrams in same "flow." (concept of "flow" not well defined).

next header: identify upper layer protocol for data

ver	pri	flow label					
payload len			next hdr	hop limit			
source address (128 bits)							
destination address (128 bits)							
data							

- 32 bits —

Prodi Informatika

Other changes from IPv4

- checksum: removed entirely to reduce processing time at each hop
- options: allowed, but outside of header, indicated by "Next Header" field
- ICMPv6: new version of ICMP
 - additional message types, e.g. "Packet Too Big"
 - multicast group management functions

Prodi Informatika

27

Transition from IPv4 to IPv6

- not all routers can be upgraded simultaneously
 - no "flag days"
 - how will network operate with mixed IPv4 and IPv6 routers?
- tunneling: IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers

Prodi Informatika

IPv6: adoption

- Google: 8% of clients access services via IPv6
- NIST: 1/3 of all US government domains are IPv6 capable
- Long (long!) time for deployment, use
 - •20 years and counting!
 - *think of application-level changes in last 20 years: WWW, Facebook, streaming media, Skype, ...
 - •Why?

Prodi Informatika