

Instituto Sabato Ingeniería en Materiales. Modelización de Materiales y Procesos 2020.

Guía 2

Fecha recomendada de finalización: 29 de Abril de 2020

Problema 1:

Se desplaza el punto final del sistema de resortes mostrado en la figura, hasta unirlo a la pared. Todos los resortes tienen constantes k = 200 kN/m, siendo el desplazamiento final de $\delta = 20 \text{ mm}$. Determine los desplazamientos de cada uno de los nodos, las fuerzas en cada elemento y las fuerzas globales (reacción de la pared y **F**).

Problema 2:

Considere el entramado mostrado en la figura, con una fuerza aplicada de 20 kN. Calcule los desplazamientos de cada uno de los nodos y las tensiones que sufre cada elemento. Todos los elementos tienen E=210~GPa~y una sección de $10~cm^2$, excepto el elemento 3, que tiene una sección de $20~cm^2$. Los elementos 2~y~5 tienen una longitud de 8~metros~y~el elemento 3~de~4~metros~s.

Problema 3:

Considere una barra con una carga axial aplicada de $T=-20~N/cm^2$, como se muestra en la figura. Determine el desplazamiento axial y la tensión. Tome E=210~GPa, $A=10~cm^2~y~L=1.50~m$. Use primero uno y luego dos elementos. Intente generalizarlo a n elementos y compare sus resultados con la solución teórica:

$$d(x) = \frac{|T|}{6AE} (x^3 - L^3)$$
; $\sigma(x) = \frac{|T|}{2A} x^2$

Problema 4:

Determine los desplazamientos y rotaciones y fuerzas y torques de vínculos para el sistema de la figura. Tome E = 210 GPa e $I = 2 \times 10^{-4} \text{ m}^4$.

Problema 5:

Determine los desplazamientos de los nodos y sus pendientes; las fuerzas en cada elemento y las reacciones. Tome E = 29x106 psi (libras por pulgada cuadrada) e I = 200 pulgada⁴.

