Detection of Erroneous Weather Data

Srujan Ponnur North Carolina State University Raleigh, NC, USA sponnur@ncsu.edu

Vamsi Madhur Varada North Carolina State University Raleigh, NC, USA vvarada3@ncsu.edu

1 INTRODUCTION

The NC Climate Office receives measurements from various(23) sensors across 45 stations each day. This amounts to around 544 million samples of data each year. First, these data points get automatically flagged by quality control sensors. Then these flagged samples have to be manually reviewed by experts at the Climate Office to check if any of samples are erroneous(which would mean the sensors need to be looked at). Since the number of samples is huge, this would take a considerable amount of time and effort.

ECONet data are critical to researchers as well as a variety of other sectors such as agriculture and energy. This wider community also utilizes ECONet data for decision-making. Example applications include agriculture irrigation, pest management, and air quality forecasting. Overall, many sectors in North Carolina rely on ECONet data. Thus, it is important to ensure that the highest quality data is available to these various communities. Since the experts have manually collected and flagged the data for the year 2021, we considered this problem an ideal specimen to solve using machine learning methods. This is a supervised, binary classification problem, where we need to predict whether different measures from weather stations are erroneous(instead of manual flagging). A good starting point would be to analyze the process followed by the scientists in manually flagging the data and find out how much each quality control flag influenced the scientists' final decision.

2 RELATED WORK

The data set we are dealing with has imbalanced data, which means it has only a small percentage of 'abnormal' or minority class data. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. [1] Under-sampling of the majority (normal) class or oversampling of the minority(abnormal) class have been proposed as good means of increasing the sensitivity of a classifier to the minority class. In this project, the data imbalance is being addressed in the following ways:

- Random undersampling technique is applied on the majority class.
- Near Miss Undersampling, a K-NN based approach, is applied on the majority class.[5]
- Synthetic Minority Oversampling Technique, or SMOTE for short is applied on the minority class.
- A combination of over and under sampling(SMOTE + Edited Nearest Neighbor method) is applied on the respective parts

Saikaushik Kalyanraman North Carolina State University Raleigh, NC, USA skalyan2@ncsu.edu

Bhaskara Bhavani Krishna Kotaru North Carolina State University Raleigh, NC, USA bkotaru@ncsu.edu

of the dataset. This is done to increase the model performance even further[2].

[3] proposes the creation of a new attribute from the available 4 Quality control flags

3 APPROACH

First, train data is loaded and pre-processed to convert sensor types('measure' attribute) and station codes('station' attribute) using one-hot encoding. Then, feature engineering is performed to include new(possibly relevant) features and drop certain irrelevant ones. Specifically, the 'Ob' attribute(denotes the timestamp at the time of recording the measure) is split into 4 different attributes, namely 'month', 'day', 'hour', and 'minute'. The possibility of a higher correlation between attributes like 'month' and 'day' with the 'target' attribute, rather than just the timestamp is the rationale behind this step. For example, winter months like December and January usually record lower temperatures, so a high temperature reading during these months is an easy giveaway that the sensor might be faulty.

A new attribute, 'QC_score' is added to assist the model in better predicting the 'target' attribute based on domain knowledge obtained from [3]. QC score is calculated for each datapoint in the dataset, as technicians assess data stations if they receive mediocre QC scores. So, We can see that the QC score influences the decision rather than the individual QC flags.

While generating the QC score for the given data, it is observed that there are about 50% of data points for which QC score is currently defaulted to a score of -1, This shortcoming is observed due to certain combinations of (R_flag, B_flag, I_flag, Z_flag) not being handled in the table 1 present in [3]. The updated table(obtained from domain experts) shown in figure handles many more combinations than its predecessor and it is used to generate the new 'qc score' values.

Also using the 'measure' attribute, the 'value' attribute is normalized. The data is then sampled to address the data imbalance before any models are fitted on it.

To establish a reference point for more complex models, three baseline models are applied to the pre-processed data, namely Logistic Regression, Decision Tree, and Random Forest. Baseline models are simple to setup and have a reasonable chance of providing decent results. Since experimenting with them is quick and low cost, a few of them were tried out and results were tabulated. A basic

train validation split is performed on the pre-processed data and the classification report is generated for both train and validation datasets. These classification reports signify the baseline results, any future model would need to perform better than these baseline models to be considered.

4 THE DATASET

EcoNet Dataset: This dataset has data collected from 45 weather stations across North Carolina at each minute of each day for 2021. Each row in data contains 23 different measurements collected by different sensors. Currently, four different types of automated Quality Control(QC) routines are performed on ECONet data: range check, buddy check, intersensor check, and trend check. The range check(R_flag) uses climatology to test the validity of observations. The buddy check(B_flag) utilizes data from neighboring stations to test whether a value (and its rate of change) are consistent with that of surrounding locations. The intersensor test(I_flag) is run on stations that have co-located parameters to cross check sensor performance. The trend check(Z_flag) uses the values from previous hours to validate the current observation given the present state of the atmosphere.

Figure 1: Target variable distribution

The 'station' attribute denotes the respective weather station where the measure was recorded in. The 'Ob' attribute denotes the timestamp when the respective measure was recorded. The 'measure' attribute indicates the type of sensor data(Eg:relative humidity, etc.) being recorded. The 'value' attribute denotes the exact measurement on the respective sensor. Finally, the 'target' is a binary attribute that is labeled True, if the reading was reviewed by a human and found to be likely erroneous, and False if reviewed by a human and found to be likely accurate. The target is also the attribute we need to predict using our machine learning algorithm.

5 HYPOTHESES

As the data set here is highly skewed towards majority class, the performance of the classification model cannot be judged using accuracy alone. The recall of the minority class and the precision of the majority class are more significant in evaluating the performance of a model. Since, reporting a erroneous data point as 'False' means that a faulty sensor wouldn't be detected, this could

Figure 2: New QC_score distribution

prove costly. Hence recall of the minority(True) class is the most significant metric to consider while evaluating models.

A precision-recall curve is a plot of the precision(y-axis) and the recall(x-axis) [4]. The performance of the classification model can be improved by adding additional useful attributes. Firstly, a new attribute named 'qc_score' which can be calculated using the automated QC flags(R_flag, I_flag, B_flag, Z_flag). Next, the timestamp attribute('Ob') is split into 4 different attributes to represent 'month', 'day', 'hour' and 'minute' separately.

6 EXPERIMENTAL DESIGN

Initially, the 'value' attribute has different ranges of data depending on the sensor. So, in order to transform the attribute to be on a similar scale, normalization is performed after dividing the data using the 'measure' attribute. This is done using StandardScaler.

QC_Score is calculated using R, B, I, Z flags. For calculating the QC Score, all the manually curated flag checks are appended in their respective order to generate the QC Flag. This QC Flag can be categorized into different QC Score values (0-3) based on the table[1]. The timestamp attribute 'Ob' is split into 4 different attributes to improve correlation between specific aspects of the timestamp and the dependent variable.

The data is split into train and validation sets. To ensure the similarity in train and validation data sets, stratified flag is used during this split. To overcome the data imbalance, under sampling and oversampling are performed. For Under sampling we used, Random under sampling which randomly chooses majority data points without replacement to match the number of minority data points. Near Miss undersampling which uses a K-NN based approach to choose majority class data points. The version being used is NearMiss-1, which chooses the majority class examples with minimum average distance(Euclidean) to the three closest minority class examples.

For Oversampling we used, SMOTENC oversamples the minority class. It also works on Nominal and Categorical data is suitable for the current dataset as it has 2 categorical attributes. ADASYN works similarly to the borderline SMOTE, but focuses on gaps in

Table 1: Quality control scores

	QC0	QC1		QC2		QC3	
U0 (Anyv	where in Flag String)					U4 (Anywhere in Flag String	
						R4 (Any	where in Flag String
R0	R1B0Z0	R0Z2	R2B0	R0I2	R2B3Z0	unless	a U0 precedes it)
R0Z0	R1B1Z0	R0I1	R2B0Z2	R0I2Z0	R3	R0Z4	R3Z4
R0I0	R2B0Z0	R0I0Z0	R2B1Z0	R0I4	R3Z0	R0I1Z4	R3I4
R0I0Z0	Z0	R0B1	R2B2Z0	R0I4Z0	R3Z2	R0I2Z4	R3B0Z4
R0B0	Z2	R0B2Z0	R3B0Z0	R0B0Z4	R3	R0I4Z4	R3B1Z4
R0B0Z0	I0	R0B3Z0	R3B1Z0	R0B1Z4	R3I0	R0B3Z4	R3B2
R0B1Z0	B0	R1	I1	R0B2	R3B0	R0B4Z0	R3B2Z0
R1Z0	B0Z0	R1B0Z4	B0Z4	R0B2Z4	R3B0Z2	R0B4Z2	R3B2Z2
R1I0	B0Z2	R1I2	B1	R0B3	R3B1	R0B4Z4	R3B2Z4
R1B0	B1Z0	R1B1	B1Z2	R0B3Z2	R3B1Z2	R0B5Z0	R3B3
		R1B2Z0	B2Z0	R1Z4	Z4	R0B5Z2	R3B3Z0
		R2Z0		R1I4	I2	R0B5Z4	R3B3Z2
				R1B1Z4	B1Z4	R1B3	R3B3Z4
				R1B2	B2	R1B3Z4	R3B4
				R1B2Z4	B2Z2	R1B4Z0	R3B4Z0
				R1B3Z0	B2Z4	R1B4Z2	R3B4Z2
				R2	B3	R1B4Z4	R3B4Z4
				R2Z2	B3Z0	R1B5Z0	R3B5
				R2Z4	B3Z2	R1B5Z2	R3B5Z0
				R2B0Z4	B4	R1B5Z4	R3B5Z2
				R2B1Z2	B4Z0	R2B2Z4	R3B5Z4
				R2B1Z4	B4Z2	R2B3	I4
				R2B1		R2B3Z2	B3Z4
				R2B2		R2B3Z4	B4Z4
				R2B2Z2		R2B4Z0	B5
						R2B4Z2	B5Z0
						R2B4Z4	B5Z2
						R2B5Z0	B5Z4
						R2B5Z2	
						R2B5Z4	

the clusters. Borderline SMOTE focuses on increasing the minority class near the decision boundary.

To further increase the performance of models, a combination of under sampling the majority class and oversampling the minority class is also performed on the data set. SMOTEENN(Oversampling using SMOTE and undersampling using Edited Nearest Neighbors).

A few baseline models are applied to the above sampled data.

- Decision tree is applied with a maximum depth of 5. Later this is run on different maximum depth values.
- An ensemble approach RandomForest with different maximum depth values.
- Logistic Regression model with maximum iterations of 10,000.
- KNN model with k value of 5

We also implemented a Deep Neural network with architecture shown in Figure 3. Activation function chosen is Leaky ReLu and output layer has a sigmoid function which gives the results between 0 and 1. This model is ran with BinaryCrossentropy loss and

different metrics such as accuracy, AUC. Hyper parameter tuning is performed to get better results.

7 RESULTS

Once the data was pre-processed, four different Machine Learning algorithms(Decision Tree, Logistic Regression, Random Forest and ANN) were run on the resulting data. Each machine learning algorithm underwent hyperparameter tuning(cross-validation) to ensure the best possible results. The training and validation set had an 75-25 split. The ANN model ran for 10 epochs. Each of these models were run, both including and excluding the 'qc_score' column to understand how 'qc_score' impacts the decision making of each model. When using the initial version of the 'qc_score' table to calculate 'qc_score', the models were consistently performing better without the 'qc_score' column present. After updating the 'qc_score' table to table 3, the models(with 'qc_score' present) started performing on par with the models without 'qc_score' present. Further, each model was also trained on both undersampled data(to address the imbalance) and the original data. All the best hyperparameter

values are mentioned in the git repository mentioned in the last section(ModelRandomSearch.ipynb)

7.1 Logistic Regression

It can be observed in tables 2 and 3 that even a logistic regression model with the best hyperparameters was under performing on the test and validation data sets. Logistic regression(on undersampled data) has a good class-True recall score in the train data set, but by the poor recall score seen on the test set, it is clear that logistic regression(on undersampled data) overfits on the train data set.

Table 2: Logistic regression on Undersampled data with QC_score

Training set									
	Pr	ecision	Recall	F-1 score	Support				
False	0	.99745	0.90475	0.94884	6358102				
True	0	.26688	0.93741	0.41547	235172				
Accuracy				0.90592	6593274				
Macro Avg	0	.63216	0.92108	0.68216	6593274				
Weighted Avg	0	.97139	0.90592	0.92982	6593274				
		AUC	_ PR	0.480796					
		REC	ALL	0.244350					
Test set		AUC_	ROC	0.838865					
	POSIT		VE_ F1	0.385592					
		AC	CC	0.968662					

Table 3: Logistic regression on complete data with QC_score

Training set									
Pr	ecision	Recall	F-1 score	Support					
0	.98421	0.99444	0.98930	6358102					
0	.79092	0.56862	0.66159	235172					
			0.97925	6593274					
0	.88756	0.78153	0.82545	6593274					
0	.97731	0.97925	0.97761	6593274					
	AUC	_ PR	0.625057						
	REC.	ALL	0.453973						
Test set		ROC	0.953499						
	POSITI	VE_ F1	0.578294						
	AC	cc	0.973355						
	0 0 0	0.98421 0.79092 0.88756 0.97731 AUC REC Set AUC_ POSITI	Precision Recall 0.98421 0.99444 0.79092 0.56862 0.88756 0.78153 0.97731 0.97925 AUC _ PR	Precision Recall F-1 score 0.98421 0.99444 0.98930 0.79092 0.56862 0.66159 0.97925 0.88756 0.78153 0.82545 0.97731 0.97925 0.97761 AUC PR RECALL 0.453973 AUC_ROC 0.953499 0.953499 POSITIVE_F1 0.578294					

7.2 Decision Tree

Decision Tree classifier clearly performs better when it is trained on undersampled data. As observed in tables 4 and 5, decision tree(on undersampled data) has a slightly low AUC score on the test and validation data sets, hence it slightly overfits on train data.

Though the outcome of decision tree is highly interpretable, there exists a problem of multicollinearity, when two variables both explain the same thing, a decision tree will greedily choose the best one, whereas many other methods will use them both. The column 'Ob' and the columns 'month', 'day', 'hour' and 'minute'

both explain the same thing. Similarly the column 'qc_score' is derived from the R, B, I and Z flags. Hence these columns contribute to the problem of multicollinearity.

Table 4: Decision tree classifier on Undersampled data with QC_ score

Training set									
	Pr	ecision	Recall	F-1 score	Support				
False	0	.99788	0.96171	0.97946	6358102				
True	0	.47715	0.94476	0.63406	235172				
Accuracy				0.96110	6593274				
Macro Avg	0	.73751	0.95323	0.80676	6593274				
Weighted Avg	0	.97931	0.96110	0.96714	6593274				
		AUC	_ PR	0.758338					
		REC	ALL	0.893877					
Test set		AUC_ROC		0.959684					
	POSITI		VE_F1	0.320388					
		AC	CC	0.847389					

Table 5: Decision tree classifier on complete data with QC_{-} score

Training set									
	Pr	ecision	Recall	F-1 score	Support				
False	0	.97449	0.99849	0.98634	6358102				
True	0	.87797	0.29325	0.43965	235172				
Accuracy				0.97334	6593274				
Macro Avg	0	.92623	0.64587	0.71300	6593274				
Weighted Avg	0	.97104	0.97334	0.96684	6593274				
		AUC	_ PR	0.480796					
		REC	ALL	0.244350					
Test set		AUC_ROC		0.838865					
	POSIT		VE_F1	0.385592					
		A	CC	0.968662					

7.3 Random Forest

Ensemble methods such as random forests can negate the problem of multicollinearity to a certain extent. Hence, in tables 6 and 7 it has much better AUC scores on test and validation sets than the decision tree. If, just the AUC score is to be prioritized, this random forest classifier(on the complete data) is the best performing model. The random forest classifier, excluding the 'qc_score' at table 9 performs slightly better than when the 'qc_score' is included.

7.4 ANN

If recall is to be prioritized, ANN(on the complete data) is the best performing model. ANN performs better as we are back propagating based on the loss which is calculated by AUC Score metric. So, it distinguish between both the minority and majority class better. So, we get a good recall when compared to other models.

Table 6: Random Forest on Undersampled data with QC_score

Training set									
	Pr	ecision	Recall	F-1 score	Support				
False	0	.99996	0.99598	0.99797	6358102				
True	0	.90198	0.99900	0.94801	235172				
Accuracy				0.99609	6593274				
Macro Avg	0	.95097	0.99749	0.97299	6593274				
Weighted Avg	0	.99647	0.99609	0.99619	6593274				
		AUC	_ PR	0.920489					
		REC	ALL	0.874277					
Test set		AUC_	ROC	0.987346					
	POSITI		VE_F1	0.878216					
		A	cc	0.990242					

Table 7: Random Forest on complete data with QC_ score

Training set								
	Pr	ecision	Recall	F-1 score	Support			
False	0	.99974	0.99998	0.99986	6358102			
True	0	.99951	0.99287	0.99618	235172			
Accuracy				0.99973	6593274			
Macro Avg	0	.99962	0.99643	0.99802	6593274			
Weighted Avg	0	.99973	0.99973	0.99973	6593274			
		AUC	_ PR	0.949204				
		REC	ALL	0.770403				
Test	Test set		ROC	0.988582				
	POSIT		VE_ F1	0.855728				
		A(CC	0.989546				

Table 8: Random Forest on Undersampled data without QC_ score

Training set									
	Pr	ecision	Recall	F-1 score	Support				
False	0	.99999	0.99662	0.99830	6358102				
True	0	.91614	0.99974	0.95612	235172				
Accuracy				0.99673	6593274				
Macro Avg	0	.95807	0.99818	0.97721	6593274				
Weighted Avg	0	.99700	0.99673	0.99680	6593274				
		AUC	_ PR	0.918565					
		REC	ALL	0.834221					
Test set		AUC_ROC		0.987539					
	POSITI		VE_F1	0.865579					
		A	CC	0.989573					

8 CONCLUSION

In this report, firstly, the advantages of undersampling on a skewed data set can be seen. In most of the results, applying a model to the undersampled data produces better class - True(minority class)

Table 9: Random forest on complete data without QC $_{-}$ score

Training set									
Pr	ecision	Recall	F-1 score	Support					
0	.99996	1.00000	0.99998	6358102					
0	.99991	0.99900	0.99946	235172					
			0.99996	6593274					
0	.99994	0.99950	0.99972	6593274					
0	.99996	0.99996	0.99996	6593274					
	AUC	_ PR	0.949279						
	REC	CALL	0.773187						
set	AUC	ROC	0.992072						
POSITI		IVE_F1	0.858489						
	A	CC	0.989742						
	0 0	0.99996 0.99991 0.99994 0.99996 AUC REC AUC POSITI	Precision Recall 0.99996 1.00000 0.99991 0.99900 0.99994 0.99996 0.99996 0.99996 AUC _ PR	Precision Recall F-1 score 0.99996 1.00000 0.99998 0.99991 0.99900 0.99946 0.99994 0.99950 0.99972 0.99996 0.99996 0.99996 0.949279 0.773187 AUC_ROC 0.992072 POSITIVE_F1 0.858489					

Training set										
	Pr	ecision	Recall	F-1 score	Support					
False	0.	.99561	0.99274	0.99418	211529					
True	0.	.99277	0.99563	0.99420	211780					
Accuracy				0.99419	423309					
Macro Avg	0.	.99419	0.99419	0.99419	423309					
Weighted Avg	0.	.99419	0.99419	0.99419	423309					
		AUC	_ PR	0.873319						
		REC	ALL	0.811730						
Test set		AUC_	ROC	0.963237						
	POSIT		VE_F1	0.807552						
		AC	CC	0.984430						

Table 11: Neural network on Undersampled data without QC_score

Training set										
	Pr	ecision	Recall	F-1 score	Support					
False	0	.99875	0.98228	0.99045	211457					
True	0	.98260	0.99878	0.99062	211852					
Accuracy				0.99054	423309					
Macro Avg	0	.99068	0.99053	0.99054	423309					
Weighted Avg	0	.99067	0.99054	0.99054	423309					
		AUC	_ PR	0.918434						
				0.922968						
Test set		AUC_	ROC	0.982541						
	POSIT		VE_F1	0.765848						
		A	CC	0.977287						

recall values. Another observation is that even the best random forest model(with its high AUC scores) under performs in terms of class - True(minority class) recall values in comparison to the deep neural network(ANN model). As it has good scores in all the metrics(both recall and AUC score) this ANN is the most well

Figure 3: Deep Neural Network Architecture

Figure 4: Training and Validation Loss in Neural Network for each epoch

Figure 5: Training and Validation AUC Score in Neural Network for each epoch

Table 12: Neural network on complete data with QC_score

Training set										
	Pr	ecision	Recall	F-1 score	Support					
False	0	.99833	0.99453	0.99643	5722314					
True	0	.86590	0.95500	0.90827	211632					
Accuracy				0.99312	5933946					
Macro Avg	0	.93212	0.97477	0.95235	5933946					
Weighted Avg	0	.99361	0.99312	0.99328	5933946					
		AUC	_ PR	0.922705						
		REC	ALL	0.867115						
Test	Test set		ROC	0.952825						
		POSITIVE_F1		0.869606						
		A	\sim C	0.989535						

rounded model out of the ones experimented on. Observing the results of undersampling, applying oversampling methods could prove to be a game changer in combination with ANNs, which currently was computationally expensive. This could open up an avenue for future experimentation. Further, the complete data set comprised of not just the train and test sets, but also a bunch of station specific data sets. Using the additional data to make the

Dates	Agenda	Attendance	Time
03/25/2022	Overall project plan	All members were present	9:00AM-11:00AM
04/07/2022	QC Score & Sampling	All members were present	9:00AM-11:00AM
04/10/2022	Base line Models	All members were present	9:00AM-11:00AM
04/11/2022	Midway Project Report	All members were present	6:00PM-11:59PM
04/15/2022	Random Forest Model	All members were present	6:00PM-10:00 PM
04/19/2022	ANN Model and Tuning	All members were present	6:00PM-10:00 PM
04/25/2022	QC Score V2 & Hyper Parameter Tuning	All members were present	6:00PM-11:59 PM
04/26/2022	Final Report	All members were present	6:00PM-11:59 PM

Table 13: Meeting times, Agenda and Attendance.

current train(and test) data more robust could be another avenue to explore in the future.

9 MEETINGS

We had a total of 8 Meetings. One meeting to discuss about the project, One while coming up with the project proposal and the remaining discussions were mainly on implementing our approach, getting the status on the due tasks and finally, generating the midway and final project reports. Every team member has attended all the meetings and contributed equally to this project.

10 CODE REFERENCE

GitHub Repo Link

REFERENCES

- [1] Chris Drummond and Robert Holte. 2003. C4.5, Class Imbalance, and Cost Sensitivity: Why Under-Sampling beats OverSampling. Retrieved April 10, 2022 from https://www.researchgate.net/publication/245593532_C45_Class_ Imbalance and Cost Sensitivity_Why_Under-Sampling_beats_OverSampling

 [2] Mouna Lamari, Nabiha Azizi, Nacereddine Hammami, Assia Boukhamla,
- Soraya Cheriguene, Nadjette dendani, and Nacer Eddine Benzebouchi. 2020. SMOTE-ENN Based Data Sampling and Improved Dynamic Ensemble Selection for Imbalanced Medical Data Classification. Retrieved April 10, 2022 from https://www.researchgate.net/publication/342571467_SMOTE-ENN_Based_Data_Sampling_and_Improved_Dynamic_Ensemble_Selection_ for_Imbalanced_Medical_Data_Classification
- [3] John A. McGuire Heather A. Dinon Aldrige Ryan P. Boyles Sean P. Heuser*, Aaron P. Sims. 2021. Quality Control Methods for the North Carolina Environment and Climate Observing Network. Retrieved April 10, 2022 from https://econet.climate. ncsu.edu/wp-content/uploads/2021/05/QC-paperV4_NoLN.pdf
 [4] Christopher K I Williams. 2021. The Effect of Class Imbalance on Precision-Recall
- Curves. Retrieved April 26, 2022 from https://arxiv.org/pdf/2007.01905
- [5] Mani I. Zhang, J.P. 2003. KNN Approach to Unbalanced Data Distributions: A Case Study Involving Information Extraction. Retrieved April 10, 2022 from https://www.site.uottawa.ca/-nat/Workshop2003/jzhang.pdf