

UNIVERSITATEA TRANSILVANIA DIN BRAŞOV

Departamentul de Automatică și tehnologia informației Disciplina Organe de Mașini

PROIECT DE AN LA DISCIPLINA Organe de Maşini

Autor: Student Andrei-Constantin BORICEAN

Programul de studii: Robotică

Grupa 4LF801A

Coordonatori: Prof. univ. dr. ing. Gheorghe MOGAN Dr. ing. Eugen BUTILĂ Drd. ing. Diana BUZDUGAN

UNIVERSITATEA TRANSILVANIA DIN BRAŞOV

FACULTATEA DE INGINERIE ELECTRICĂ ȘI ȘTIINȚA CALCULATOARELOR

Disciplina Organe de Maşini

MEMORIU TEHNIC

Autor: Student Andrei-Constantin BORICEAN Grupa 4LF801A

Coordonatori: Prof. univ. dr. ing. Gheorghe MOGAN Dr. ing. Eugen BUTILĂ Drd. ing. Diana BUZDUGAN

CUPRINS

Introducere	5
1. Aspecte generale și tema de proiectare	e
1.1. Aspecte generale	6
1.2. Obiective și date de proiectare	6
1.2.1. Obiectivele proiectului	e
1.2.2. Date de proiectare	6
2. Schema structurală funcțional-constructivă și parametri cinetostatici	
2.1. Schema structurală funcțional-constructivă	7
2.2. Prametri cinetostatici	7
3. Predimensionarea angrenajului	8
3.1. Alegerea tipului oțelului, tratamentelor termice și tehnologiilor	8
3.2. Predimensionarea angrenajului cilindric	9
3.2.1. Determinarea modulului frontal	9
3.2.2. Standardizarea modulului și parametri geometrici principali	11
3.2.3. Modelarea dinților roților în angrenare (CATIA)	11
3.2.4. Standardizarea distanței dintre axe și parametri geometrici principali	13
3.2.5. Modelarea și verificarea angrenajului deplasat (CATIA)	14
3.2.6. Modelarea și verificarea angrenării (CATIA)	15
4. Predimensionarea arborilor și alegerea rulmenților	17
4.1. Alegerea tipului oțelului, tratamentelor termice și tehnologiilor	17
4.2. Alegerea structurilor constructive alubansamblelor arborilor	18
4.2.1. Alegerea materialelor arborilor și tratamentelor termice	18
4.2.2. Calculul de predimensionare al arborilor	19
4.2.3. Standardizarea capetelor arborilor de intrare/ieșire	19
4.3. Alegerea rulmenților și montajelor	19
4.3.1. Alegerea rulmenților	19
4.3.2. Alegerea montajelor rulmenților	20
5. Modelarea și simularea cinematică a mecanismului	20
5.1. Generarea și simularea modelului cinematic	20
6. Verificarea (dimensionarea) angrenajului	21
6.1. Verificarea (dimensionarea) angrenajului cilindric	21
6.1.1. Geometria angrenajului și roților cilindrice	21
6.1.2. Alegerea procedeelor de prelucrare și de lubrifiere (ungere)	22
6.1.4. Determinarea coeficienților de siguranță și verificare/dimensionare	24
7. Forțe în angrenajul cilindric	24
7.1 Schema forțelor din angrenaj	24

	7.2 Determinarea forțelor din angrenaj	25
8	Alegerea și calculul asamblărilor cu pene paralele	25
	8.1 Alegerea formelor și dimensiunilor penelor paralele	25
	8.2 Calculul asamblărilor cu pene paralele	26
9	Proiectarea formei și generarea modelelor în catia ale parturilor pentru subansamblele principal	e 26
10	Generare subansamble rulmenți, arbori și angrenaj	27
11	Generare subansamble carcase	30
12	Generare model 3D ansambu	31
13	Verificarea arborilor	32
	13.2Verificarea arborelui de intrare	32
	14. Verificarea rulmenților	36
	14.1 Verificare rulmenți radiali pentru arborele de intrare	36
	15. Modelarea și generarea desenului de ansamblu	38
	16. Bibliografie	39

ANEXE (aplcații în CATIA)

- 1. Modelul dintilor rotilor nedeplasate în angrenare
- 2. Modelul angrenajului cilindric cu danturi deplasate
- 3. Model pentru simularea și verificarea angrenării
- 4. Modelul 3D al reductorului
- 5. Desenul de ansamblu al reductorului

INTRODUCERE

Scopul proiectului de an la disciplina *Organe de maşini* implică dezvoltarea de abilități practice ale studenților de proiectare și sintetizare a cunoștințelor de mecanică, rezistența materialelor, tehnologia materialelor, organe de mașini I și reprezentare grafică în decursul anilor I și II, precum și modul în care aceștia pot rezolva în mod independent o lucrare de proiectare, pe baza algoritmilor, metodelor specifice și programelor avansate din domeniu.

se vor prezenta (pe această pagină) aspecte generale legate de construcția și proiectarea reductoarelor de turație

Reductorul este un sistem tehnic care, pe baza soluției constructive, modifică parametrii de ieșire, comparativ cu parametrii de intrare, după o lege impusă de proiectant.

Numele arată doar reducerea turației de intrare, dar, în realitate, reductorul, ca unitate tehnică, reduce turația și crește momentul de torsiune la ieșire.

Dezvoltarea transmisiilor cu roţi dinţate sau a angrenajelor a depins de progresele făcute în domeniul tehnologic, în special pentru maşini-unelte specializate, de danturare. Din motive tehnologice şi funcţionale, profilul evolventic este cel mai des utilizat, deşi mai există şi alte forme pentru profilul dinţilor: cicloidal, arc de cerc etc.

1. ASPECTE GENERALE ŞI TEMA DE PROIECTARE

1.1 ASPECTE GENERALE

Reductorul de turație este un sistem mecanic demontabil, cu mişcări relative între elemente active (de obicei, roți dințate) care are ca <u>parametri de intrare</u>, puterea (momentul de torsiune) și turația (viteza unghiulară) arborelui de intrare, și ca <u>parametri de ieșire</u>, puterea (momentul de torsiune) și turația (viteza unghiulară) arborelui de ieșire.

Pe lângă <u>funcția principală</u> de transmitere a momentului de torsiune și mișcării de rotație prin angrenajele cu roti dințate conice și cilindrice se urmărește și îndeplinirea următoarelor <u>funcții auxiliare</u>: respectarea prevederilor de interschimbabilitate cerute de standardele din domeniu; respectarea condițiilor de protecție a omului și mediului.

1.2 OBIECTIVE ȘI DATE DE PROIECTARE

1.2.1 OBIECTIVELE PROIECTULUI

Obiectivul principal

Dobândirea și dezvoltarea de cunoștințe și abilități pentru identificarea, calculul și proiectarea formei elementelor componente ale transmisiilor mecanice, cu precădere reductoare conico-cilindrice, în vederea execuției și montajului acestora.

1.2.2 DATE DE PROIECTARE

Tema de proiectare a unui produs, de obicei, este lansată de către un beneficiar și reprezintă o înșiruire de date, cerințe și condiții tehnice care constituie caracteristicile și performanțele impuse viitorului produs.

În tabelul următor se prezintă datele de proiectare impuse pentru o situație practică cerută, unde P_i [kW] reprezintă puterea la intrare, n_i [rot/min] - turația la intrare, i_R - raportul de transmitere al reductorului, L_h^{imp} [ore] - durata de funcționare impusă, PA - planul axelor roților angrenajului cilindric: orizontal (H) sau vertical (V), z_1^{cil} - numărul de dinți ai pinionului cilindric.

P _i [kW]	n _i [rot/min]	i_R	L _{h imp} [ore]	PA	$\mathbf{z_1^{cil}}$
10	1000	3	7000	Н	15

Condiții de funcționare și constructive

Condiții de funcționare:

- tipul maşinii (utilajului) în care se integrează: elevator auto sau stand testare frâne;
- tipul încărcării exterioare: alternativă cu șocuri;
- tipul motorului de acționare: electric, asincron cu rotorul în scurtcircuit;

- nivel de vibrații și zgomot, max 25 dB.
- caracteristicile mediului în care funcționeză: temperaura (- 20 ... 60 °C), umiditate max 30 g/m³;

Condiții constructive: ieșirea pe partea stângă; arborele de ieșire plin.

<u>Condiții ecologice</u>: utilizarea de materiale și tehnologii eco, reciclarea materialelor, protecția vieții; volum minim; greutate minimă.

Domenii de utilizare

Reductorul de turație de proiectat se poate întegra în mașini de ridicat și transportat (de ex. elevatoare pentru ridicarea autoturismelor).

2. SCHEMA STRUCTURALĂ FUNCȚIONAL-CONSTRUCTIVĂ ȘI PARAMETRI CINETOSTATICI

2.1 SCHEMA STRUCTURALĂ FUNCȚIONAL-CONSTRUCTIVĂ

În figură se prezintă schema structurală funcțional-constructivă generală a reductoarelor conicocilindrice în două trepte. Din punct de vedere funcțional se evidențiază următoare elemente: I – angrenaj conic ortogonal cu dantură înclinită (curbă); II – angrenaj cilindic cu dantură înclinată; 1^{I} – pinion conic; 2^{I} – roată conică; 1^{II} – pinion cilindric; 2^{II} – roată cilindrică; A_{1} – arborele de intrare; A_{2} – arborele intermediar; A_{3} – arborele de ieșire; $L_{A}^{A_{1}}$ - lagărul A_{1} ; $L_{B}^{A_{2}}$ - lagărul A_{2} ; $L_{B}^{A_{3}}$ - lagărul A_{3} ; $L_{B}^{A_{3}}$ - lagărul A_{4} al arborelui A_{5} ; $L_{B}^{A_{4}}$ - lagărul A_{5} al arborelui A_{5} ; $L_{B}^{A_{5}}$ - lagărul A_{5} al arborelui A_{5} ; $L_{B}^{A_{5}}$ - lagărul A_{5} al arborelui A_{5} .

Din punct de vedere constructiv, reductorul de turație formează un ansamblu compus din subansamble și elemente constructive. Subansamblele sunt structuri independente, care se evidențiază printr-un grup compact compus, în configurație minimală, din cel puțin două elemente constructive sau din alte subansamble și elemente constructive, în interacțiune permanentă, formate ținându-se cont, cu precădere, de tehnologiile de montaj, de întreținere și de exploatare.

În cazul reductoarelor conico-cilindrice se definesc următoarele subansamble: S_C – subasamblul carcasă; S_{A_1} - <u>subansamblul arborelui de intrare</u>, format din pinionul cilindric (1^I) fixat pe arborele de intrare (A_1) care la rândul său este fixat pe două lagăre ($L_A^{A_1}$ și $L_B^{A_1}$), se sprijină pe subansamblul carcasa S_C ; S_{A_2} - <u>subansamblul arborelui de ieșire</u>, format din roata cilindrică (2^I) fixat pe arborele de ieșire (A_2) care la rândul său este fixat pe două lagăre ($L_A^{A_2}$ și $L_B^{A_2}$), se sprijină pe subansamblul carcasa S_C .

2.2 PARAMETRI CINETOSTATICI

Numere de dinți și rapoarte de transmitere/angrenare

Considerând valorile numerelor de dinți ai pinionului cilindric, $\mathbf{z}_1^I = \mathbf{z}_1^{cil}$ se determină valoarea numărului de dinți ai roții cilindrice,

$$z_2^I = z_1^{cil} i_R = 15 * 3 = 45$$

Se adoptă, $z_2^I = 45$

Astfel, se recalculează rapoartul de angrenare al angrenajului cilindric și al reductorului,

$$u_{\text{rec1}}^{\text{I}} = \frac{z_2^{\text{I}}}{z_1^{\text{I}}} = \frac{45}{15} = 3$$

și raportul de transmitere,

$$i_{R rec1} = u_{rec1}^{I} = 3.$$

În tabelul următor se prezintă sintetic aceste valori precum și abaterea A_b rapotului de transmitere recalculat față de cel impus care respectă abatera acceptabilă de max $\pm 2\%$.

$\mathbf{z}_1^{\mathrm{I}}$	z_2^I	u _{rec1}	i ^I rec1	A_b
15	45	3	3	0%

Puteri, turații și momente de torsiune

Valorile puterilor la nivelul arborilor reductorului sunt:

$$P_1 = P_i = 10 \text{ kW},$$

$$P_2 = \eta^I P_i = 0.96 * 10 = 9.6 \text{ kW},$$

Valorile turațiilor la nivelul arborilor reductorului sunt:

$$n_1 = n_i = 1000 \text{ rot/min},$$

$$n_2 = \frac{n_1}{u_{rec1}^I} = \frac{1000}{3} = 333,33 \text{ rot/min.}$$

Valorile momentelor de torsiune la nivelul arborilor reductorului sunt:

$$M_{t1} = M_{ti} = \frac{30}{\pi} \cdot 10^6 \frac{P_i}{n_i} = \frac{30}{\pi} \cdot 10^6 \frac{10}{1000} = 95492,96 \text{ Nmm},$$

$$M_{t2} = M_{t1} \ u_{rec1}^{I} \eta I = 95492,96 * 3 * 0,96 = 275019,72 \text{ Nmm}.$$

Obs. S-a considerat $\eta^{\text{I}} = 0.96$, randamentul angrenajului cilindric.

Aceste valori sunt sintetzate în următorul tabel

Arborele	Puterea [kW]	Turația [rot/min]	Momentul de torsiune [Nmm]
Arborele intrare (A ₁)	$P_1 = 10$	$n_1 = 1000$	$M_{t1} = 95492,96$
Arborele de ieşire (A ₂)	$P_2 = 9,6$	$n_2 = 333,33$	$M_{t2} = 275019,72$

3. PREDIMENSIONAREA ANGRENAJULUI

3.1 ALEGEREA TIPULUI OŢELULUI, TRATAMENTELOR TERMICE ŞI TEHNOLOGIILOR

8

Alegerea tipului oțelului și tratamentelor termice

Deoarece, $M_{ti} = 95492,96 \text{ Nmm} > 30000...40000 \text{ Nmm}$, se va adopta pentru roțile angrenajului oțel de cementare.

Alegerea oțelului, durităților și rezistențelor

Pentru ambele roți dințate se adoptă oțelul, 20MoNi35 (oțel cu 0,20% C aliat cu Molibde și Nichel 1,3%) cu caracteristicile mecanice din tabel.

Oţelul	curgere,	Rezistenţa la rupere, σ _r [MPa]	Tratamentul termic de bază	Duritățile flancurilor dinților roților	Duritățile zonelor interioare ale dinților	Tensiunea limită la contact, σ _{Hlim} [MPa]	Tensiunea limită la încovoiere, σ _{Flim} [MPa]
20MoNi35	850	1100	Cementare	$HRC_{1,2} = 60$	$HB_{1,2} = 325$	1530	425

Procedee de prelucrare a danturii

Corespunzător tipului materialului și tratamentului termic adoptate se impune prelucrarea prin <u>frezare</u> înainte de cementare și prin <u>rectificare</u> după călire și revenre înaltă.

3.2 PREDIMENSIONAREA ANGRENAJULUI CILINDRIC

3.2.1 DETERMINAREA MODULULUI FRONTAL

Schema de calcul

În figură se prezintă schema de calcul a angrenajului cilindric în care se evidențiază momentul de torsiune al pinionului (T_1) și parametri geometrici de calcul: diametrul de divizare al pinionului (d_1) , diametrul de divizare al roții (d_2) , lățimea danturii pinionului (b_1) , lățimea danturii roții (b_2) , distanța dintre axe de referință (a), unghiul de înclinare a danturii (β) .

Date de intrare

În tabel sunt sintetizate valorile parametrilor de calcul cunoscuți.

Denumirea parametrului	Simbolul	Valoarea	Unitatea de măsură
Raportul de angrenare	u	3	-
Numărul de dinți al pinionului	\mathbf{z}_1	15	-
Momentul de torsiune al pinionului	T_1	95492,96	Nmm
Turația pinionului conic	n_p	1000	rot/min

Durata de funcționare impusă	L _{h imp}	7000	ore
Tensiunea limită la oboseala de contact,	$\sigma_{ m Hlim}$	1530	MPa
Tensiunea limită la oboseala încovoiere,	σ_{Flim}	425	MPa
Unghiul de înclinare a danturii	β	15	° (grade)

Calculul modulului frontal din solicitarea de contact

Valoarea modului exterior din solicitarea de contact se determină cu relația,

$$m_{H} = \sqrt[2]{\frac{2\,T_{1}\,\,K_{A}K_{v}K_{H\beta}K_{H\alpha}}{\psi_{d}\,\,z_{1}^{\,2}\sigma_{HP}^{2}}}(Z_{E}Z_{e}Z_{H}Z_{\beta})^{2}\frac{u\pm1}{u}$$

conform datelor următoare:

unde, T_1 reprezintă momentul de torsiune al pinionului (M_{t2}), u - raportul de angrenare al angrenajului cilindric, β - unghiul de înclinare a danturii, z_1 - numărul de dinți ai pinionului cilindric, K_A - factorul regimului de funcționare, K_v - factorul dinamic, $K_{H\alpha}$ - factorul repartizării neuniforme a sarcinii pe perechile de dinți aflate în angrenare pentru solicitarea de contact, $K_{H\beta}$ - factorul repartizării neuniforme a sarcinii pe lungimea dintelui pentru solicitarea de contact, Z_E - factorul de elasticitate a materialelor roților, Z_H - factorul zonei de contact, Z_E - factorul gradului de acoperire pentru solicitarea de contact, $\psi_d = b/d_1$ - factorul de lățime, σ_{HP} - tensiunea admisibilă la solicitarea de contact.

Calculul modulului frontal exterior din solicitarea de încovoiere

Valoarea modului frontal din solicitarea de încovoiere se determină cu relația,

$$m_F = \sqrt[a]{\frac{2\,T_1}{\psi_\text{d}\,z_\text{l}^2\text{cos}\beta}\,K_A\,K_v\,K_{F\beta}K_{F\alpha}\,Y_\varepsilon Y_\beta\,\max\!\left(\!\frac{Y_\text{Sa1}Y_\text{Fa1}}{\sigma_\text{FP1}}\,,\frac{Y_\text{Sa2}Y_\text{Fa2}}{\sigma_\text{FP2}}\right)}$$

conform datelor următoare:

unde, T_1 reprezintă momentul de torsiune al pinionului (M_{t2}), u - raportul de angrenare al angrenajului cilindric, β - unghiul de înclinare a danturii curbe, z_1 - numărul de dinți al pinionului cilindric, K_A - factorul regimului de funcționare, K_v - factorul dinamic, $K_{F\alpha}$ - factorul repartizării neuniforme a sarcinii pe perechile de dinți aflate în angrenare pentru solicitarea de încovoiere, $K_{F\beta}$ - factorul repartizării neuniforme a sarcinii pe lungimea dintelui pentru solicitarea de încovoiere, Y_{Fa1} - factorul de formă a

dinților pinionului cilindric, Y_{Fa2} - factorul de formă a dinților roții cilindrice, Y_{Sa1} - factorul de corecție a tensiunii la baza dinților pinionului cilindric, Y_{Sa2} - factorul de corecție a tensiunii la baza dinților roții cilindrice, Y_{β} - factorul înclinării dinților, Y_{ϵ} - factorul gradului de acoperire pentru solicitarea de încovoiere, $\psi_d = b/d_1$ - factorul de lățime, σ_{FP1} - tensiunea admisibilă la solicitarea de încovoiere pentru pinion, σ_{FP2} - tensiunea admisibilă la solicitarea de încovoiere pentru roată.

Modulul frontal calculat al danturii

Ținând cont de valorile modului frontal exterior obținute din calculele la contact și încovoiere rezultă, $m_c = max (m_H, m_F) = max (6,760; 2,827) = 6,760 \text{ mm}.$

Astfel, se evidențiază că solicitarea de contact este solicitarea principală.

3.2.2 STANDARDIZAREA MODULULUI NORMAL ŞI PARAMETRI GEOMETRICI PRINCIPALI

Ca urmare a standardizării modulului normal se pot determina parametri principali ai angrenajului cilindric.

initialic.							
Parametrul	Simbolul	Valoarea [mm]	Observații				
Modulul frontal calculat	m_c	6,760					
Modulul normal calculat	$m_{nc} = m_c \cos \beta$	6,52					
Modulul normal (standardizat)	m_n	7					
Modulul frontal	$m = \frac{m_n}{\cos \beta}$	7,247					
Diametrul de divizare al pinonului	$d_1 = m z_1$	108,705	$a = (d_1 + d_2)/2,$				
Diametrul de divizare al roții	$d_2 = m z_2$	326,115	217,41 =				
Distanța dintre axe de referință	$a = \frac{m_n(z_1 + z_2)}{2\cos\beta}$	217,41	(108,705+326,115)/2 (se verifică)				
Lățimea danturii roții	$b_2 = \psi_d d_1$	87					
Lățimea danturii pinionului	$b_1 = b_2 + 46$	92					

3.2.3 MODELAREA DINȚILOR ROȚILOR ÎN ANGRENARE (CATIA)

Personalizarea datelor de intrare în aplicația CATIA

r ersonauzarea aaieior ae inirare in apiicajia CA11A					
Date de intrare `= Simbol teoretic		Semnificația			
¹ <mark>≣</mark> ∮ alfa_n=20deg	α_n	Unghiul de presiune (angrenare) normal [°]			
ha_n=1	h*an	Coeficientul înălțimii capului dintelui			
c_n=0.25	c_{0n}^*	Coeficientul jocului la piciorul dintelui			
rho_n=0.375	$ ho_n^*$	Coeficientul razei de racordare			
z1=15	\mathbf{z}_1	Numărul de dinți ai pinionului			
z2=45	\mathbf{z}_2	Numărul de dinți ai roții			
	m_n	Modulul normal [mm]			
beta=15deg	β	Unghiul de înclinare a danturii [°]			
aw=217.408mm	a_{w}	Distanța dintre axe (reală) [mm]			
xn1=0 X _{n1}		Coeficientul deplasării de profil a danturii pinionului (zero, roți			
g=4mm		nedeplasate)			
5 7 9-4111111	g	Grosimea coroanei [mm]			

Verificarea modelului CATIA

→ Parametri angrenaj și rotj` =	Simbol teoretic	Semnificația	Verificare
	u	Raportul de angrenare	u > 1; 3 > 1

	m	Modulul frontal [mm]	$m > m_n; 7,247 > 7$
u=3=z2 /z1	a	Distanța dintre axe de referință [mm]	a = a _w ; 217,408 = 217,408
m_t=7.247mm=m_n / cos(beta)	α	Unghiul de presiune frontal [°]	$\alpha > \alpha_n$; 20,647 > 20
a=217.408mm=m_t * (z1 +z2)/2	$lpha_{ m w}$	Unghiul de angrenare frontal [°]	$\alpha_{\rm w} = \alpha$; 20,647 = 20,647
alfa=20.647deg=atan(tan(alfa_n)	$a_{ m w}$	Distanța dintre axe reală [mm]	a _w (aw_rec) = a 217,408 = 217,408
alfaw=20.647deg=acos(a /aw * co	$\mathbf{X}_{\mathbf{n}\mathbf{s}}$	Suma coeficeienților deplasărilor	$x_{ns} = 0$
- aw_rec=217.408mm=m_t * (z2 +	X_{n2}	Coeficientul deplasării roții	$x_{n2} = 0$
xns=3.019801008e-007=(tan(alfa	r_{d1}	Raza cercului de divizare al pinionului [mm]	$r_{d1} + r_{d2} = a$
- xn2=3.019801008e-007=xns - xr - rd1=54.352mm=m_t *z1/2	r_{d2}	Raza cercului de divizare al roții [mm]	54,352+163,056=217,408
rd2=163.056mm=m_t *z2 /2	r_{w1}	Raza cercului de rostogolire al pinionului [mm]	$r_{w1} = r_{d1}$; 54,352 = 54,352s
rw1=54.352mm=m_t*z1/2*cos(al rw2=163.056mm=m_t*z2/2*cos(r_{w2}	Raza cercului de rostogolire al roţii [mm]	$r_{w2} = r_{d2}; 163,056 = 163,056$
rf1=45.602mm=m_n * (z1 /cos(b)	\mathbf{r}_{fl}	Raza cercului de picior al pinionului [mm]	$r_{f1} < r_{d1}; 45,602 < 54,352$
rf2=154.306mm=m_n * (z2 /cos() ra1=61.352mm=(2*aw_rec -m_n	\mathbf{r}_{f2}	Raza cercului de picior al roții [mm]	$\begin{array}{c} r_{f2}\!<\!r_{d2};154,\!306<\\ 163,\!056 \end{array}$
ra2=170.056mm=(2*aw_rec -m_	r_{a1}	Raza cercului de divizare al pinionului [mm]	$r_{a1} > r_{d1}$; 61,352 > 54,352
	r_{a2}	Raza cercului de divizare al roţii [mm]	$\begin{array}{l} r_{a2}\!>\!r_{d2};170.056>\\ 163,\!056 \end{array}$

Modelul CATIA

3.2.4 STANDARDIZAREA DISTANȚEI DINTRE AXE ȘI PARAMETRI GEOMETRICI PRINCIPALI

Alegerea (standardizarea) distanței dintre axe

Pentru distanța dintre axe standard, $a_w = 225$ mm, restricțiile impuse în vederea realizării angrenajului cu distanța dintre axe impusă - $0.5m_n < a_w - a \le m_n$ devin:

 $-0.5 * 7 < 225-217,408 \le 7$ sau $-3.5 < 7.592 \le 7$???. Se observă că una din restricții (a doua, maractă cu roșu) nu este îndeplinită și se impune modificarea parametrilor angrenajului nedeplasat.

Modificarea parametrilor angrenajului de referință

Considerând, $u_{rec1}^{I} = 3$, se determină numerele de dinți teoretice:

$$z_1 = \frac{2 a_w \cos \beta}{m_n (u_{rec1}^I + 1)} = \frac{2*225 \cos 15}{7 (3+1)} = 15,52;$$

$$z_2 = u \ z_1 = 3 *15,52 = 46,57.$$

Ca urmare a rounjirilor se pot considera 4 perechi (z_1, z_2) posibile:

Numărul de dinți ai pinionului,	Numărul de dinți ai roții,	Raportul de angrenare recalculat,	Abaterea raportului de angrenare, u _{rec2} față de u _{rec1}	Distanța dintre axe de referință recalculată, a ^r		
15	46	$u_{rec2}^1 = z_2/z_1$ 3,067	A _b [%] +2,23	[mm] 221,031		
15	47	3,134	+4,47	224,655		
16	46	2,875	-4,17	224,655		
16	47	2,938	-2,07	228,278		
Obs. [z ₁] sau [z ₂	Obs. [z ₁] sau [z ₂] reprezintă partea întreagă a valorilor numerelor de dinți					

Dintre cele 4 posibilități din acest table se adoptă perechea $(z_1, z_2) = (15, 46)$ cu distanța dintre axe de referință recalculată $a^r = 221,031 < 225$ mm. Astfel rezultă angrenaj PLUS, care asigură rezistențe la contact și încovoiere mărite.

Determinarea parametrilor geometrici ai angrenajului deplasat

Determinarea parametritor geometrici ai angrenajutut aepiasat								
Denumirea parametrului	Relația de calcul	Valoarea	Unitatea de măsură	Observații				
Unghiul de presiune frontal	$\alpha = \operatorname{arctg} \frac{\operatorname{tg} \alpha_n}{\cos \beta}$	20,6469	[°]	$\alpha_n=20^{\rm o}$				
Unghiul de angrenare frontal	$\alpha_{\rm w} = \arccos(\frac{a}{a_{\rm w}}\cos\alpha)$	23,181	[°]					
Suma coeficienți depasărilor de profil ale danturilor roților	$x_{ns} = \frac{(inv\alpha_{w.} - inv\alpha)(z_2 + z_1)}{2 tg\alpha \cos\beta}$	+0,601						
Coeficientul deplasării de profil a danturii pinionului	$x_{n1} = \frac{x_{ns}}{2} + \left(0.5 - \frac{x_{ns}}{2}\right) \frac{\log(z_2/z_1)}{\log\left(\frac{z_1 z_2}{100 (\cos \beta)^6}\right)}$	+0,4174		$x_{n2} = +0,1836$				

Pentru asigurarea distanței dintre axe impusă $(a_w = 225 \text{ mm})$ și pentru asigurarea unei angrenări corespunzătoare, în continuare, se vor considera următoarele valori:

Numărul de dinți ai pinionului, z ₁	Numărul de dinți ai roții, z ₂	Coeficientul deplasării de profil a danturii pinionului, x _{n1}	Coeficientul deplasării de profil a danturii roții, x _{n2}	Raportul de angrenare recalaculat, u_{rec2}^{I}
15	46	+ 0,4174	+0,1836	3,067

3.2.5 MODELAREA ȘI VERIFICAREA ANGRENAJULUI DEPLASAT (CATIA)

Personalizare date de intrare

− alfa_n=20deg	α_n	Unghiul de presiune (angrenare) normal [o]
−	h _{an}	Coeficientul înălțimii capului dintelui
c_n=0.25	c_{0n}^*	Coeficientul jocului la piciorul dintelui
	ρ_n^*	Coeficientul razei de racordare
	\mathbf{z}_1	Numărul de dinți ai pinionului (modificat)
−□ z1 = 15	\mathbf{z}_2	Numărul de dinți ai roții (modificat)
− 22=46	m _n	Modulul normal [mm]
−	β	Unghiul de înclinare a danturii [°]
beta=15deg	a_{w}	Distanța dintre axe reală [mm]
-	X _{n1}	Coeficientul deplasării de profil a danturii pinionului (calculat)
-	g	Grosimea coroanei [mm]

Verificarea modelului

Verificarea modelului				
`Parametri angrenaj şi rotj` : Simbol teoretic		Semnificația	Verificare	
	u	Raportul de angrenare	$u = u_{rec2}^{I}; 3,067 = 3,067$	
	m	Modulul frontal [mm]	$m > m_n$; 7,247 > 7	
u=3.066666667=z2 /z1	a	Distanța dintre axe de referință [mm]	$a < a_w$; 221,031 < 225	
_	α	Unghiul de presiune frontal [°]	$\alpha < \alpha_w$, 20,647 < 23,181	
m_t=7.247mm=m_n / cos(beta	$\alpha_{ m w}$	Unghiul de angrenare fronatl [°]	(angr. PLUS)	
a=221.031mm=m_t * (z1 +z2), alfa=20.647deg=atan(tan(alfa_r	a_{w}	Distanța dintre axe reală [mm] (verificare)	a _w > a; 225 > 221,031 (angr. PLUS)	
alfaw=23.181deg=acos(a /aw *	X _{ns}	Suma coeficeienților depasărilor	$x_{ns} > 0$; 0,6 > 0 (angr.	
aw_rec=225mm=m_t * (z2 +z1	X _{n2}	Coeficientul deplasării roții	PLUS)	
xns=0.600815088=(tan(alfaw)-a	$r_{ m d1}$	Raza cercului de divizare al pinionului [mm]	$r_{w1,2} > r_{d1,2}$ (angr. PLUS)	
rd1=54.352mm=m_t *z1/2	r_{d2}	Raza cercului de divizare al roţii [mm]	55,428 > 54,352; 169,672 > 166,679	
rd2=166.679mm=m_t *z2 /2 rw1=55.328mm=m_t*z1/2*cos($r_{\rm w1}$	Raza cercului de rostogolire al pinionului [mm]	$r_{d1} + r_{d2} = a;$ 54,352+166,679=221,031 $r_{w1} + r_{w2} = a_w; 55,328 +$	
rw2=169.672mm=m_t*z2/2*co	$r_{ m w2}$	Raza cercului de rostogolire al roţii [mm]	169,672 = 225	
rf2=159.213mm=m_n * (z2 /co	$r_{\rm f1}$	Raza cercului de picior al pinionului [mm]	$r_{\rm f1} < r_{\rm w1}; 48,524 < 55,328$	
ra1=64.037mm=(2*aw_rec -m_	\mathbf{r}_{f2}	Raza cercului de picior al roții [mm]	$r_{f2} < r_{w2}$; 159,213< 169,672	
ra2=174.726mm=(2*aw_rec -n	r _{a1}	Raza cercului de divizare al pinionului [mm]	$r_{a1} > r_{w1}$; 64,037 > 55,328	
	r _{a2}	Raza cercului de divizare al roţii [mm]	$\begin{array}{l} r_{a2}\!>\!r_{w2};174,\!726>\\ 169,\!672 \end{array}$	

Modelul CATIA

Verificarea ascuțirii dinților roților

Prin măsurare pe modelul CATIA, $s_1 = 1,242$ mm și $s_2 = 3,501$ mm. $s_{1,2} > (0,3...0,45)$ $m_n/2; 2,372 > 1,05...1,58$ mm (se verifică).

3.2.6 MODELAREA ȘI VERIFICAREA ANGRENĂRII (CATIA)

Modelul CATIA

Simularea angrenării și verificarea continuității

Semnificațiile parametrilor: C – polul angrenării; T_1T_2 – segmentul teoretic de angrenare; AB – segmentul real de angrenare; K_1K_2 - segmentul de angrenare unipară (numai o pereche de dinți în contact); AK_1 și K_2B – segmente de angrenare bipară (două perechi de dinți în angrenare simultan); p_b – pasul pe cercul de bază

Determinarea valorii aproximative a gradului de acoperire frontal prin măsurare:

$$\epsilon_{\alpha}^{m} = \frac{AB}{P_{b}} = \frac{T_{1}B - T_{1}A}{p_{b}} = \frac{38,91 - 9,813}{21,212} = 1,372.$$

Valorile numerice sunt obținute prin măsurare de cel puțin două ori, conform tebelului de mai sus; în această relația s-au considerat mediile aritmetice ale valorilor măsurate.

Determinarea valorii exacte a gradului de acoperire frontal prin calcul cu relația,

$$\epsilon_{\alpha} \; = \; \frac{\left(2\cos\beta\,\sqrt{r_{a1}^2 \! - \! r_{b1}^2} \! + \! \sqrt{r_{a2}^2 \! - \! r_{b2}^2} \! - \! 2\,a_w\sin\alpha_w\right)}{2\,\pi\,m_n\cos\alpha} \, ,$$

pentru care din modelul CATIA rezultă,

Abaterea valorii gradului de acoperire obținut prin măsurare, $\epsilon_{\alpha}^{m}=1,372$, în raport cu gradul de acoperire calculat, $\epsilon_{\alpha}=1,365$, este +0,51%.

4. PREDIMENSIONAREA ARBORILOR ȘI ALEGEREA RULMENȚILOR

4.1 ALEGEREA STRUCTURILOR CONSTRUCTIVE ALUBANSAMBLELOR ARBORILOR

Subansamble arbori de intrare, intermediar și de ieșire

Semnificații parametri

 d_{A1}^{ST} – diametrul capului arborelui de intrare (standardizat), L_{A1}^{ST} – lungimea capului arborelui de intrare (standardizat), d_{A2}^{ST} – diametrul capului arborelui de ieșire (standardizat), L_{A2}^{ST} – lungimea capului arborelui de ieșire (standardizat), d_{A2}^{r} – diametrul arborelui de ieșire (tronsonul de așezare a roții cilindrice), d_{R1} – diametrul interior al rulmenților arborelui de ieșire.

4.2 PREDIMENSIONAREA ARBORILOR

4.2.1 ALEGEREA MATERIALELOR ARBORILOR ŞI TRATAMENTELOR TERMICE

Caracteristicile otelurilor si tratamentele termice

Limita la		Tensiunea admisibilă la încovoiere [MPa]			Tratamentul	Duritatea la	Duritatea	
Oţelul	re [MPa]		Pulsatorie	Alternant simetrică	termic	suprafață	în interior	
Marca	σ_c/σ_r	σ _{aiI}	σ _{aiII} σ _{aiIII}		Îmbunătățire/ Cementare	HB/HRC	НВ	
Arborele de intrare (corp comun cu pinionul cilindric)								
20MoNi35	850/1100	350	170	95	Cementare	60 HRC	325 HB	

4.2.2. CALCULUL DE PREDIMENSIONARE A ARBORILOR

De ce predimensionare din solicitarea de torsiune?

Deoarece nu se poate face dimensionare cu laurea în considerare și a solicitării de încovoiere, necunoscând, la această etapă, valorile momentelor de încovoiere. Diagramele momentelor de încovoiere se vor putea determina numai după definitivarea configurațiilor arborilor ca urmare a generării formelor acestora ca modele 3D cavasifinale în CATIA.

Relația de calcul

$$d_{Ai} = \sqrt[3]{\frac{16\ M_{ti}}{\pi\ \tau_{ati}}},$$

unde, considerând $i=1, 2, d_{A1}$ reprezintă diametrul arborelui de intrare, d_{A2} - diametrul arborelui de ieșire, M_{t1} - momentul de torsiune al arborelui de ieșire, τ_{at1} - tensiunea admisibilă la torsiune a materialului arborelui de intrare, τ_{at2} - tensiunea admisibilă la torsiune a materialului arborelui de ieșire.

Valorile parametrilor de calcul

Parametrul	Arbore de intrare (A1)	Arbore de ieşire (A2)
Momentul de torsiune	$M_{t1} = 95492,96 \text{ Nmm}$	$M_{t2} = 275019,72 \text{ Nmm}$
Tensiunea admisibilă	$\tau_{at1} = 35 \text{ MPa}$	$\tau_{at2} = 40 \text{ MPa}$
Diametrul	$d_{A1} = 24 \text{ mm}$	$d_{A2} = 33 \text{ mm}$

Obs. Valorile diametrelor se vor rotunji.

4.2.3 STANDARDIZAREA CAPETELOR ARBORILOR DE INTRARE/IEŞIRE

Formă și dimensiuni

Valorile parametrilor

Denumire parametru	Arbore de intrare (A1)	Arbore de ieşire (A2)
Diametrul standard	$d_{A1}^{ST} = 24 \text{ mm}$	$d_{A2}^{ST} = 35 \text{ mm}$
Lungimea standard	$L_{A1}^{ST} = 36 \text{ mm}$	$L_{A2}^{ST} = 58 \text{ mm}$

Obs. S-au adoptat capete de arbori cu lungime scurtă.

4.3 ALEGEREA RULMENŢILOR ŞI MONTAJELOR

4.3.1 ALEGEREA RULMENŢILOR

Date despre rulmenti

	Dute despite intintenzi								
Arborele		Tipul			Dimer	nsiuni [r	nm]		Capacitatea
		rulmentului	Simbol	d	Dimensiuni [mr d D B 35 62 14 50 80 16		T	a	dinamică C [N]
De	e intrare (var. II)	Radial-axial cu bile	7007	35	62	14	-	27	22400
De	e ieşire	Radial cu bile	6010	50	80	16	-	-	20800

Obs.

- diametrele tronsoanelor pe care se montează rulmenții: $d_{R1} = 35$ mm, $d_{R2} = 50$ mm;
- pentru arborele de ieșire se adoptă diametrul tronsonului pe care se montează roata cilindrică, $d_{A2}^r = d_{R2} + 10 \text{ mm} = 60 \text{ mm}.$ $d_{A1}^r = d_{R1} + 10 \text{ mm} = 45 \text{ mm}$

4.3.2 ALEGEREA MONTAJELOR RULMENŢILOR

Arbore de intrare

Arbore de ieșire

5. MODELAREA ȘI SIMULAREA CINEMATICĂ A MECANISMULUI

5.1 GENERAREA ȘI SIMULAREA MODELULUI CINEMATIC

Model cinematic

Obs. La simularea prin intermediul modelului cinematic generat în CATIA se va urmări procesele de angrenare în regimul animație.

- 6. VERIFICAREA (DIMENSIONAREA) ANGRENAJULUI
- 6.1 VERIFICAREA (DIMENSIONAREA) ANGRENAJULUI CILINDRIC
- 6.1.1 GEOMETRIA ANGRENAJULUI ȘI ROȚILOR CILINDRICE

Geometria angrenajului și roților cilindrice

$$\begin{array}{c} z_1 = 15 \\ m_2 = 7 \\ m_3 = 15 \\ m_4 = 7 \\ m_5 = 15 \\ m_6 = 15 \\ m_8 = 10.4174 \\ m_8$$

6.1.2 ALEGEREA PROCEDEELOR DE PRELUCRARE ŞI DE LUBRIFIERE (UNGERE)

d_{an1} = 134.904903413(mm

d_{an2} = 370.410717140' mm

Viteza periferică a roților în polul angrenării

= 108.5704244504 mm

= 238.856094052 mm

Schema de calcul a vitezei periferice pentru angrenajul cilindric

= 332.9493016480 mm

 $\epsilon_{nn} = 1.402230796929$

Relația de calcul a vitezei periferice

$$v = \frac{\pi \, d_{w1} \, n_p}{60 \, . \, 1000} \ [\text{m/s}],$$

Date cunoscute:

 $n_p = \boxed{1000}$ rot/min $d_{w1}/d_{m1} = \boxed{110.6557}$ mm

Calculează

v = 5.79391890329 m/s

Alegerea treptei de precizie și procedeelor de prelucrare

Tipul danturii cilindrice	Treapta de precizie	Procedeul de prelucrare	
<u> </u>	precizie	Frezare îngrijită (înainte de cementare) +	
Înclinată	8	rectificare (după cementare și călire)	

Alegerea rugozităților

Tipul danturii cilindrice	Rugozitatea flancului, R_{a_f} [μm]	Rugozitatea racordării, R _{a_r} [µm]	Procedeul de prelucrare final
Înclinată	0,8	1,6	Rectificare grosolană

Alegerea tipului lubrifiantului (uleiului) și vâscozității acestuia

Vâscozitatea cinematică $v_{50} = 120 * 10^6 \text{ [m}^2\text{/s]}$

Tipul uleiului: TIN 125 EP

6.1.4 PARAMETRI DE EXECUTIE ȘI MONTAJ A ANGRENAJULUI SI ROȚILOR DINȚATE CONICE

Jocuri, abateri și toleranțe ale angrenajului și roților cilindrice

Jocului minim necesar, $j_{min}^{nec} = (0.01...0.03)m_n = (0.01...0.03) 7 = (0.07...0.21)$ mm; se adoptă 0.14 mm (140 µm).

Jocul minim normal, $j_{nmin} = 185 \mu m$;

Tipul ajustajului, C.

Tipul toleranței jocului dintre flancuri, c;

Toleranţele bătăii radiale: F_r = 56 μm, pentru pinion; = 80 μm, pentru roată.

Abatererile minime ale cotelor peste dinți: $E_{ws}=80~\mu m$, pentru pinion; $E_{ws}=120~\mu m$, pentru roată.

Toleranțele cotelor peste dinți: T_w = 60 μm, pentru pinion; T_w = 70 μm, pentru roată.

Abatererile minime ale grosimilor dinților pe coarde constante: $E_{cs} = 80 \mu m$, pentru pinion; $E_{cs} = 140 \mu m$, pentru roată.

Toleranțele grosimii dintelui pe coarda constantă: $T_c = 100 \mu m$, pentru pinion; $T_c = 140 \mu m$, pentru roată.

Abaterile limită ale distanței dintre axe, $f_a = \pm 55 \, \mu m$.

Personalizarea cotelor angrenajului și roților $((W_{Nn})_{-E_{Ws}-T_{W}}^{-E_{Ws}}; (\bar{s}_{cn})_{-E_{cs}-T_{c}}^{-E_{cs}}; a_{w} \pm f_{a})$:

- cota peste 3 dinți, $34,62^{-0,08}_{-0,14}$ și coarda constantă, $11,59^{-0,08}_{-0,18}$, la înălțimea $h_{cn}=7,6$ mm, pentru pinion;
- cota peste 9 dinți, $119.51_{-0.19}^{-0.12}$ și coarda constantă, $10.54_{-0.28}^{-0.14}$, la înălțimea $h_{cn} = 6.1$ mm, pentru roată;
- distanța dintre axe, 225 ± 0.055 mm.

7. FORŢE ÎN ANGRENAJ

7.1 SCHEMA FORŢELOR DIN ANGRENAJUL CILINDRIC

Direcțiile și sensurile forțelor

Forța tangențială: direcție tangentă la cercurile de rostogolire; sensul opus vitezei (forță rezistentă), pentru roata conducătoare, și același sens cu viteza (forță motoare), pentru roata condusă.

Forța radială: direcție radială; sensul spre centrul roții.

<u>Forța axială</u>: direcție axială; sensul determinat de direcția de înclinare a dintelui și de sensul de rotație al roții.

Schema forțelor

Semnificațiile notațiilor

7.2 DETERMINAREA FORŢELOR DIN ANGRENAJUL CILINDRIC

Calculul forțelor

Valorile forțelor

Angrenajul	Cilindric				
Forța	F _t	F_{r}	F_a		
Valoarea forței [N]	1725,9	739	462,5		

25

8. ALEGEREA ȘI CALCULUL ASAMBLĂRILOR CU PENE PARALELE

8.1 ALEGEREA FORMELOR ŞI DIMENSIUNILOR PENELOR PARALELE

Tipurile și formelor penelor paralele Forma A

8.2 CALCULUL ASAMBLĂRILOR CU PENE PARALELE

Calcul lungimii necesare a penei din solicitarea de strivire,

$$l_c = \frac{4 M_t}{d h \sigma_{as}}.$$

Determinarea numărului de pene

Deoarece $l_c \le L_b$, se adoptă o singură pană.

Date de calcul și valori dimensiuni

Denumirea penei/	Pană paralelă I	Pană paralelă II	Pană paralelă III
Parametrul	(tip A)	(tip A)	(tip C)
d [mm]	$d_{A1}^{ST} = 24$	$d_{A2}^{r} = 60$	$d_{A2}^{ST} = 35$
b[mm]	8	18	10
h [mm]	7	11	8
$M_t[Nmm]$	$M_{t1} = 95492,96$	$M_{t2} = 275019,72$	$M_{t2} = 275019,72$
σ _{as} [MPa]	90	120	120
l _c [mm]	25,26	13,89	32,74
1 [mm] (STAS)	35	50	40
t ₁ [mm]	4,0	7,0	5,0
t ₂ [mm]	3,3	4,4	3,3

9. PROIECTAREA FORMEI ȘI GENERAREA MODELELOR ÎN CATIA ALE PARTURILOR PENTRU SUBANSAMBLELE PRINCIPALE

La proiectaea formei și generarea modelelor parturilor s-a ținut cont de recomandările din Anexa 9.1.

10. GENERARE SUBANSAMBLE RULMENŢI, ARBORI ŞI ANGRENAJE

Subansamble rulmenți

Subansamblu arbore de intrare

Subansamblu arbore de ieşire
Subansamblu arbore de iesire H.CATProduct 16mm 58mm

11. GENERARE SUBANSAMBLE CARCASE

Subansamblu carcasă inferioară H

Subansamblu carcasă superioară H

12. GENERARE MODEL 3D ANSAMBU

Ansamblu H

13. VERIFICAREA ARBORILOR

13.2 VERIFICAREA ARBORELUI DE INTRARE (RCil H)

Date de intrare

Schema arborelui conform schiței CATIA

Valori diametre și lungimi

Diametrele și lungimile tronsoanelor: conform schiței CATIA (v. schema de mai sus).

Distanțe de poziționare a reacțiunilor, B = 14 mm.

Grosimea coroanei dințate, g = 3 mm.

<u>Diametrul de rostogolire al pinionului</u>, $d_{w1} = 110,6557$ mm.

<u>Lungimile de calcul</u>: $L_1 = 61 \text{ mm}$; $L_2 = 103 \text{ mm}$; $L_3 = 103 \text{ mm}$.

Valori forțe și momente

Momentul de torsiune, $M_{t1} = 95492,96$ Nmm.

Forțele de încărcare a pinionului cilindric: tangențială, $F_t = 1725,9 \text{ N}$; radială, $F_r = 739 \text{ N}$; axială, $F_a = 462,5 \text{ N}$.

Forța de încărcare a capului arborelui, F_e = F_r = 739 N.

 $\underline{Momentele~de~încovoiere},~M_{\hat{1}1} = F_a~*d_{w1}/2 = 25589,59~mm.$

Turația arborelui

n = 1000 rot/min, turația arborelui de intrare.

Date despre material

<u>Tipul oțelului și tratamentul termic</u>: 20MoNi35, Cementare (carburare+călire+revenire înaltă).

Date despre concentratorii de tensiune

Determinarea componentelor reacțiunilor din rulmenți

Tipul	Relații de calcul (conform schemelor de încărcare de mai sus)		
reductorului	Pentru componentele reacțiuniilor din rulmentul A	Pentru componentele reacțiuniilor din rulmentul B	
RCil H	$R_{yA} = \frac{F_t L_3}{I_{ya} + I_{ya}}$	$R_{yB} = \frac{F_t L_2}{I_{va} + I_{va}} =$	
KCII II	$R_{ZA} = \frac{F_e (L_1 + L_2 + L_3) - F_r L_3 \pm M_{\hat{1}_1}}{L_{10} + L_{10}}$	$R_{zB} = \frac{F_e \ L_1 + F_r \ L_2 \pm M_{11}}{L_{12} + L_{12}}$	

$$R_{vA} = 862,95 \text{ N};$$

$$R_{zA} = 464,11 \text{ N};$$

$$R_{yB} = 862,95 \text{ N};$$

$$R_{zB} = 712,55 \text{ N};$$

Obs.

- **a.** Valorile componentelor reacțiunilor pot rezulta cu + sau cu (în realitate au sens opus).
- b. Momentul de încovoiere M_{î1}, consecință a faptului că forța axială a pionului depinde de sensul de rotație a arborelui și de sensul de înclinare a danturii, poate avea sensuri diferite; în relațiile de mai sus semnul superior este asociat cu simbolulul cu linie contină, iar semnul inferior simbolului cu linie întreruptă (v. schemele de încărcare).
- **c.** Pentru verificarea valorilor componentelor reacțiunilor obținute mai sus se va verifica relațiile,

$$F_t = R_{vA} + R_{vB}$$
.

$$F_t = 1725,9 \text{ N} = 862,95 + 862,95 \text{ (se verifică)}$$

Determinarea valorilor reacțiunilor din rulmenți

$$R_A = \sqrt{(R_{yA})^2 + (R_{zA})^2}$$
, valoarea reacțiunii din lagărul A,

$$R_B = \sqrt{\left(R_{yB}\right)^2 + \left(R_{zB}\right)^2} \;, \, \text{valoarea reacțiunii din lagărul B}.$$

$$R_A = 979,84 \text{ N};$$

$$R_B = 1119,11 \text{ N};$$

Verificarea la solicitări compuse a arborelui de intrare al RCil H

Ipoteze de calcul

- se vor considera forțele și momentele în planele XY și XZ,
- nu se iau în considerare forțele axiale,
- reprezentarea forțelor se face respectând sensul pozitiv (se va schimba sensul forțelor care au rezultat cu valori negative).

Diagrame de eforturi

- <u>diagrama momentului de torsiune</u>, M_{t1}, care se menține constant în zona dintre capul arborelui și angrenaj;
- <u>diagramele momentelor de încovoiere:</u>

M_{îxz} – diagrama momentelor de încovoere din planul XZ, unde:

 $M_{\hat{1}xzO} = R_{zB} L_3 + M_{\hat{1}1}$, momentul de încovoiere maxim în planul XZ și secțiunea O,

 $M_{\text{îxzM}} = F_e * 36/2$, momentul de încovoiere în planul XZ și secțiunea M.

 $M_{\rm \hat{i}xy}-diagrama$ momentelor de încovoere din planul XY, unde:

 $M_{\text{îxyO}} = R_{yB} L_3$, momentul de încovoiere maxim în planul XY secțiunea O.

 $M_{\text{ixzO}} = 98981,70 \text{ Nmm};$

 $M_{ixzM} = 13302 \text{ Nmm};$

 $M_{\text{îxyO}} = 88883,85 \text{ Nmm};$

Determinarea momentelor de încovoiere rezultante

 $M_{\hat{1}O} = \sqrt{(M_{\hat{1}xzO})^2 + (M_{\hat{1}xyO})^2}$, momentul de încovoiere rezultant în secțiunea O, $M_{\hat{1}M} = M_{\hat{1}xzM}$, momentul de încovoiere rezultant în secțiunea M.

$$M_{iO} = 133032,76 \text{ Nmm};$$

$$M_{iM} = 13302 \text{ Nmm};$$

Tensiunile echivalente (torsiune și încovoiere)

în secțiunea O,

$$\sigma_{echO} = \sqrt{\left(\frac{16 \text{ M}_{t1}}{\pi (d_O)^3}\right)^2 + \left(\alpha \frac{32 \text{ M}_{iO}}{\pi (d_O)^3}\right)^2},$$

în secţiunea S,

$$\sigma_{echM} = \sqrt{\left(\frac{16\,M_{t1}}{\pi\,(d_{M})^{3}}\right)^{2} + \left(\alpha\,\frac{32\,M_{\tilde{l}M}}{\pi\,(d_{M})^{3}}\right)^{2}},$$

unde, d_0 și d_M reprezintă diametrele arborelui în secțiunile O și M; $\alpha = \sigma_{aIII}/\sigma_{aII}$ – coeficientul diferențelor dintre ciclurile de încărcare (s-a considerat încărcarea de torsiune pulsatorie, ciclul II); σ_{aIII} , σ_{aIII} – tensiunile admisibile asociate materialului ales pentru ciclurile de solicitare alternat simetric (III), respectiv, pulsator (II).

$$\sigma_{echO} = 1$$
 MPa;

$$\sigma_{\rm echM} = 36 \text{ MPa};$$

Verificarea la solicitări compuse (torsiune și încovoiere) a arborelui

$$\sigma_{\text{echO}} \leq \sigma_{\text{aIII}}, 1 < 95$$
; (se verifică)

$$\sigma_{\text{echS}} \leq \sigma_{\text{aIII}}, 36 < 95; \text{ (se verifică)}$$

Obs. În cazul neverificării se pot modifica caracteristicile materialului şi/sau valoarea diametrului arborelui.

14. VERIFICAREA RULMENȚILOR

14.1 VERIFICARE RULMENȚI RADIALI PENTRU ARBORELE DE INTRARE

Date de intrare

Forțele exterioare

- radiale: $F_{rA} = 979,84 \text{ N}, F_{rB} = 1119,11 \text{ N}.$
- axiale: F_{a1} = ± 463 N; forța F_{a1} în funcție de sensul de rotație poate avea semnul + (de la stânga la dreapta) sau (de la dreapta la stânga) și deci în funcție de acestea se impune studiul în 2 cazuri.

Tipul rulmentului și sarcina (capacitatea) dinamică de bază

Rulment radial-axial cu bile (cod 7007) cu sarcina dinamică de bază C = 22400 N, din catalog pentru rulmenți..

Factorii de influență pentru calcul

 $C_{0r} = 16000 \text{ N}$; rezultă factorii de influență: e = 1,14, X = 1, Y = 0,55.

Turația arborelui

Rulmenții se rotesc cu turația arborelui de intrare, $n = n_1 = 1000$ rot/min.

Durata de funcționare

Durata de funcționare a rulmenților este egală cu cea impusă RCil, $L_{h \text{ imp}} = 7000$ ore.

Sarcinile dinamice echivalente (rulmentul cel mai încărcat)

Pentru rulmentul din lagărul $L_A^{A_1}$

$$\frac{F_{a1}}{F_{rA}} = \frac{463}{979,84} = 0,473 < e = 1,14;$$

Sarcina dinamică echivalentă,

$$P_A = X F_{rA} + Y F_{a1} = 1 * 979,84 + 0,55 * 463 = 1234,5 N.$$

Pentru rulmentul din lagărul $L_B^{A_1}$

$$\frac{F_{a1}}{F_{rB}} = \frac{463}{1119,11} = 0,414 < e = 1,14;$$

Sarcina dinamică echivalentă,

$$P_B = X F_{rB} + Y F_{a1} = 1 * 1119,11 + 0,55 * 463 = 1373,76 N.$$

Deoarece, $P_A < P_B$, rezultă că rulmentul din lagărul $L_B^{A_1}$ este cel mai încărcat.

Verificarea rulmentului cel mai înărcat

Determinara durabilității rulmentului cel mai încărcat

$$L_B = \left(\frac{C}{P_B}\right)^p = \left(\frac{22400}{1373.76}\right)^3 = 4335,223$$
 milioane de rotații.

Determinara duratei de funcționare a rulmentului cel mai încărcat

$$L_{hB} = \frac{L_B 10^6}{n_1 60} = \frac{4335,223 \cdot 10^6}{1000 \cdot 60} = 72253,72 \text{ ore.}$$

 $L_{hB} > L_{h \text{ imp}}; 72254 > 7000 \text{ (se verifică)};$

Rulmentul este supradimensionat (componentele active ale RCil se deteriorează cu mult înaintea rulmentului). Se ignoră schimbarea acestuia.

15. MODELAREA ȘI GENERAREA DESENULUI DE ANSAMBLU

Desen de ansamblu RCil H

BIBLIOGRAFIE

- 1. Jula, A. ş.a. Organe de maşini, vol. I,II. Universitatea din Braşov, 1986, 1989.
- 2. Mogan, Gh. ş.a. Organe de maşini. Teorie-Proiectare-Aplicații, Ed Universității Transilvania din Braşov, 2012 (format electronic: www.mg.rrv.ro, user name: student; password: mogan).
- 3. Moldovean, Gh. ș.a. Angrenaje cilindrice și conice. Calcul și construcție. Ed. LuxLibris, Brașov, 2001.
- 4. Moldovean, Gh. ș.a. Angrenaje cilindrice și conice. Metodici de proiectare. Ed. LuxLibris, Brașov, 2002.
- 5. Rădulescu, C. Organe de mașini, vol. I, II, III. Universitatea Transilvania din Brașov, 1985.
- 6. *** Culegere de norme și extrase din standarde pentru proiectarea elementelor componente ale mașinilor, vol. I. și II. Universitatea din Brașov, 1984.