YOLO: Real-Time Object Detection

Under supervision of Prof.Kalhor

By: Mohammadali Shakerdargah

Fall 2021

Outlines

- Definition of Object-Detection
- History of Object-Detection
- YOLO
- How to train with YOLOv5
- Examples

Definition of Object-Detection

- Object-Detection definition:
 - Object detection is a phenomenon in computer vision that involves the detection of various objects in digital images or videos.
 - Object detection combines the tasks of object classification and localization.
- Object-Detection Categories:
 - Two stage detectors: Networks separating the tasks of determining the location of objects and their classification.
 - Faster R-CNN, G-RCNN
 - One stage detectors: Networks which predict bounding boxes and class scores at once.
 - YOLO, SSD network, RetinaNet

Definition of Object-Detection

- Two stage detectors :
 - Involves
 - Object region proposal
 - Object classification based on features extracted from the proposed region
 - Achieve the highest detection accuracy but are typically slower
 - Total low performance
 - Usually not end-to-end trainable
 - Famous Networks:
 - Region convolutional neural network (RCNN)
 - Faster R-CNN
 - Mask R-CNN.
 - Granulated RCNN (G-RCNN)

Definition of Object-Detection

- One stage detectors :
 - Prioritize inference speed and are super fast but not as good at recognizing irregularly shaped objects or a group of small objects – Only advantage over multi-stage detectors.
 - Famous Networks:
 - YOLO
 - SSD
 - RetinaNet

History of Object Detection

History of Object Detection

Object detection is becoming a big deal.

- YOLO version:
 - Version 1, by Joseph Redmon, 2016
 - You Only Look Once: Unified, Real-time Object Detection
 - Version 2, by Joseph Redmon, 2017
 - YOLO9000
 - Better, Faster, Stronger
 - Version 3, by Joseph Redmon, 2018
 - An incremental improvement

- YOLO version:
 - Version 4, by Alexey Bochkovskiy, 2020
 - Optimal speed and accuracy of object detection
 - Version 5, by Glenn Jocher, 2020
 - A huge advancement in time consumption
 - Better accuracy

- YOLO version1:
 - Introduced in 2015-2016 by Joseph Redmon
 - Its algorithm is based on regression
 - Fast enough for real-time systems.

- YOLO version1 Design:
 - YOLO is implemented as a convolution neural network and has been evaluated on the PASCAL VOC detection dataset. It consists of a total of 24 convolutional layers followed by 2 fully connected layers.

- YOLO version2:
 - Why 9000?
 - Why Better?
 - Why Faster?
 - Why Stronger?

- YOLO version2:
 - It is an enhanced version of the YOLO with the objective of improving the accuracy significantly while making it faster.
 - YOLO9000 is built on top of YOLOv2 but trained with joint dataset combining the COCO detection dataset and the top 9000 classes from ImageNet.

YOLO version3: An incremental improvement

- YOLO version3:
 - multilabel classification
 - No Softmax
 - logistic regression
 - cross-entropy loss for each label

• YOLO version3:

- YOLOv4 and YOLOv5:
 - Introduced by
 - Alexey Bochkovskiy
 - Glenn Joche
 - YOLOv4:
 - Train
 - Bag-of-freebies
 - Bag-of-specials

- YOLOv4 and YOLOv5:
 - Time: YOLOv5 is so much faster

- YOLOv4 and YOLOv5:
 - Accuracy: Almost the same.

- YOLOv4 and YOLOv5:
 - Space usage: YOLOv5 is so much faster

YOLOv4 and YOLOv5 on MS COCO:

How to train with YOLOv5

- Install Dependencies and import libraries
- Load data | Roboflow
- Model configuration and architecture
- Train
 - o Img
 - o Batch
 - o Epoch
 - o Data
 - o Cfg
 - o Weights
 - o Name
 - o No-save
 - o Chache
- Test

Checkout: Link

Using DOTA_OBB Data-set

Detection of digestive endoscopy targets in the medical field

Detection of people, traffic lights, cars and etc.

Detection of smoke and fire

Thank you for your attention

