Que-

Consider a simple program to classify a triangle. Its inputs are a triple of positive integers (say x, y, z) and the data type for input parameters ensures that these will be integers greater than 0 and less than or equal to 100. The program output may be one of the following words: [Scalene; Isosceles; Equilateral; Not a triangle]

- 1. Design the boundary value test cases.
- 2. Draw the cause effect graph. and then Design the test cases using Decision table technique.
- 3. Consider the program above. Write down the code for it and design the CFG graph.
- 4. Design statement and branch coverage test cases.
- 5. Design path coverage test cases using McCabe's cyclomatic Metric

Ans:

```
Code: package OOPS_lab;

public class triangle {

    static void tri(int x, int y, int z) {

        if (x >= y + z || y >= x + z || z >= x + y)

        System.out.println("Not a Triangle!");

        else if (x == y && x == z)

        System.out.println("Equilateral Triangle!");
        else if (x != y && y != z)

        System.out.println("Scalene Triangle!");
        else

        System.out.println("Isosceles Triangle!");
        else

        System.out.println("Isosceles Triangle!");
        }

        public static void main(String[] args) {

        tri(50,70,90);
        }

    }
```

Design the boundary value test cases.

Test Case	X	Y	Z	Expected O/P
1	50	50	1	Isosceles
2	10	30	20	Not a triangle
3	50	50	50	Equilateral
4	50	50	99	Isosceles
5	50	50	100	Not a triangle
6	50	70	90	Scalene
7	50	2	50	Isosceles
8	50	99	50	Isosceles
9	50	100	50	Not a triangle
10	1	50	50	Isosceles

11	2	50	50	Isosceles
12	99	50	50	Isosceles
13	100	50	50	Not a triangle

2. Draw the cause effect graph. and then Design the test cases using Decision table technique.

Causes: -

C1: Side 'X', 'Y' and 'Z' are equal.

C2: Side 'X' and 'Y' are equal.

C3: Side 'X', 'Y' and 'Z' are different.

C4: sum of two sides is greater than third one.

Effects: -

E1: Equilateral Triangle.

E2: Isosceles Triangle.

E3: Scalene Triangle.

E4: Not a Triangle.

Decision Table:

Action	Tc1	Tc2	Tc3	Tc4
C1	1	0	0	0
C2	0	1	0	0
C3	0	0	1	0
C4	0	0	0	1
E1	1	0	0	0
E2	0	1	0	0
E3	0	0	1	0
E4	0	0	0	1

3. Consider the program above. Write down the code for it and design the CFG graph.

Assignment_6(Ruturaj)

4. Design statement and branch coverage test cases.

Statement Coverage Test Cases: -

Test Cases 1: -
$$\{(x = 100, y = 50, z = 50)\}$$

Test Case 2: -
$$\{(x = 50, y = 70, z = 90)\}$$

Test Case 3: -
$$\{(x = 50, y = 50, z = 50)\}$$

Test Case 4: -
$$\{(x = 50, y = 50, z = 1)\}$$

Branch Coverage Test Case:

Test Cases 1: -not a triangle
$$\{(x = 100, y = 50, z = 50)\}$$

Test Case 2: Scalene triangle

$$\{(x = 50, y = 70, z = 90)$$

Test Case 4: Isosceles Triangle

$$\{(x = 50, y = 50, z = 1)\}$$

- 5. Design path coverage test cases using McCabe's cyclomatic metric.
 - 1. tri(int x, int y, int z)
 - 2. if (x>=y+z || y>x+z || z>=x+y)
 - 3. System.out.println("Not a Triangle!");
 - 4. else if (x == y && x == z)
 - 5. System.out.println("Equilateral Triangle!");
 - 6. else if (x != y && y != z)
 - 7. System.out.println("Scalene Triangle!");
 - 8. else
 - 9. System.out.println("Isosceles Triangle");

10. exit

N = 10, E = 12

Cyclomatic Metrix = E - N + 2 = 12-10+2 = 4.

Set of all execution paths: $\{(B0, B1, B5, B9), (B0, B2, B6, B9), (B0, B3, B7, B9), (B0, B4, B8, B9)\}$