Random Turán Problems

Sam Spiro, Rutgers University

Given a graph F, we define the Turán number ex(n, F) to be the maximum number of edges that an F-free graph on n vertices can have.

Given a graph F, we define the Turán number ex(n, F) to be the maximum number of edges that an F-free graph on n vertices can have.

Theorem (Mantel 1907)

$$\operatorname{ex}(n, K_3) = \lfloor n^2/4 \rfloor.$$

Given a graph F, we define the Turán number ex(n, F) to be the maximum number of edges that an F-free graph on n vertices can have.

Theorem (Mantel 1907)

$$\operatorname{ex}(n, K_3) = \lfloor n^2/4 \rfloor.$$

Theorem (Erdős-Stone, Simonovits 1946)

$$\operatorname{ex}(n,F) = \left(1 - \frac{1}{\chi(F) - 1} + o(1)\right) \binom{n}{2}.$$

Let $G_{n,p}$ be the random graph on n vertices where each edge is included independently and with probability p.

Let $G_{n,p}$ be the random graph on n vertices where each edge is included independently and with probability p. Let $ex(G_{n,p}, F)$ be the maximum number of edges that an F-free subgraph of $G_{n,p}$ can have.

Let $G_{n,p}$ be the random graph on n vertices where each edge is included independently and with probability p. Let $\mathrm{ex}(G_{n,p},F)$ be the maximum number of edges that an F-free subgraph of $G_{n,p}$ can have. For example,

$$\operatorname{ex}(G_{n,1},F)=\operatorname{ex}(n,F)$$

Let $G_{n,p}$ be the random graph on n vertices where each edge is included independently and with probability p. Let $\mathrm{ex}(G_{n,p},F)$ be the maximum number of edges that an F-free subgraph of $G_{n,p}$ can have. For example,

$$\operatorname{ex}(G_{n,1},F)=\operatorname{ex}(n,F),$$

and with high probability

$$p \cdot \operatorname{ex}(n,F) \lesssim \operatorname{ex}(G_{n,p},F) \lesssim p \binom{n}{2}.$$

Let $G_{n,p}$ be the random graph on n vertices where each edge is included independently and with probability p. Let $\mathrm{ex}(G_{n,p},F)$ be the maximum number of edges that an F-free subgraph of $G_{n,p}$ can have. For example,

$$\operatorname{ex}(G_{n,1},F)=\operatorname{ex}(n,F),$$

and with high probability

$$p \cdot \operatorname{ex}(n, F) \lesssim \operatorname{ex}(G_{n,p}, F) \lesssim p \binom{n}{2}.$$

The lower bound is tight when p = 1.

Let $G_{n,p}$ be the random graph on n vertices where each edge is included independently and with probability p. Let $\operatorname{ex}(G_{n,p},F)$ be the maximum number of edges that an F-free subgraph of $G_{n,p}$ can have. For example,

$$ex(G_{n,1},F)=ex(n,F),$$

and with high probability

$$p \cdot \operatorname{ex}(n,F) \lesssim \operatorname{ex}(G_{n,p},F) \lesssim p\binom{n}{2}.$$

The lower bound is tight when p = 1. The upper bound is tight if p is "small."

$$\frac{1}{2} p \binom{n}{2} \lesssim \text{ex}(\textit{G}_{n,p},\textit{K}_{3}) \lesssim p \binom{n}{2},$$

with the lower bound tight for p=1 and the upper bound tight for $p\ll n^{-1/2}$.

$$\frac{1}{2} p \binom{n}{2} \lesssim \text{ex}(G_{n,p}, K_3) \lesssim p \binom{n}{2},$$

with the lower bound tight for p=1 and the upper bound tight for $p \ll n^{-1/2}$.

Theorem (Frankl-Rödl 1986)

Whp,

$$\operatorname{ex}(G_{n,p},K_3)\sim \frac{1}{2}p\binom{n}{2} \qquad p\gg n^{-1/2}.$$

$$\frac{1}{2}p\binom{n}{2}\lesssim \text{ex}(G_{n,p},K_3)\lesssim p\binom{n}{2},$$
 with the lower bound tight for $p=1$ and the upper bound tight for $p\ll n^{-1/2}$

Theorem (Frankl-Rödl 1986)

Whp,

 $\operatorname{ex}(G_{n,p},K_3)\sim \frac{1}{2}p\binom{n}{2}$

Theorem (Conlon-Gowers, Schacht 2010)

 $\operatorname{ex}(G_{n,p},F) = p \cdot \left(1 - \frac{1}{\sqrt{F} - 1} + o(1)\right) \binom{n}{2}$ $p \gg n^{-1/m_2(F)}$

 $p \gg n^{-1/2}$

where $m_2(F) = \max\{\frac{e(F')-1}{v(F')-2}: F' \subseteq F\}.$

What happens for bipartite graphs?

What happens for bipartite graphs?

Conjecture

If F is a bipartite graph which is not a forest, then whp

$$\operatorname{ex}(G_{n,p},F) = \begin{cases} \Theta(p \cdot \operatorname{ex}(n,F)) & p \gg n^{-1/m_2(F)}, \\ (1+o(1))p\binom{n}{2} & p \ll n^{-1/m_2(F)}. \end{cases}$$

What happens for bipartite graphs?

Conjecture

If F is a bipartite graph which is not a forest, then whp

$$\operatorname{ex}(G_{n,p},F) = \begin{cases} \Theta(p \cdot \operatorname{ex}(n,F)) & p \gg n^{-1/m_2(F)}, \\ (1+o(1))p\binom{n}{2} & p \ll n^{-1/m_2(F)}. \end{cases}$$

This conjecture turns out to be completely false!

Plot of $ex(G_{n,p}, C_4)$ (Füredi 1991)

Conjecture (McKinley-S.)

If F is a graph with $\operatorname{ex}(\mathsf{n},\mathsf{F}) = \Theta(\mathsf{n}^{\alpha})$ for some $\alpha \in (1,2]$, then whp

$$\exp(G_{n,p},F) = \max\{\Theta(p^{\alpha-1}n^{\alpha}), n^{2-1/m_2(F)}(\log n)^{O(1)}\},$$

provided $p \gg n^{-1/m_2(F)}$.

Conjecture (McKinley-S.)

If F is a graph with $\operatorname{ex}(\mathsf{n},\mathsf{F}) = \Theta(\mathsf{n}^{\alpha})$ for some $\alpha \in (1,2]$, then whp

$$\exp(G_{n,p},F) = \max\{\Theta(p^{\alpha-1}n^{\alpha}), n^{2-1/m_2(F)}(\log n)^{O(1)}\},$$

provided $p \gg n^{-1/m_2(F)}$.

Theorem (Nie-S. 2023 (Informal))

This conjecture (essentially) implies Sidorenko's conjecture.

Theorem (Kővari-Sós-Turán 1954)

$$\operatorname{ex}(n,K_{s,t})=O(n^{2-1/s}).$$

Theorem (Kővari-Sós-Turán 1954)

$$\operatorname{ex}(n,K_{s,t})=O(n^{2-1/s}).$$

Theorem (Morris-Saxton 2013)

$$ex(G_{n,p}, K_{s,t}) = O(p^{1-1/s}n^{2-1/s})$$
 for p large.

Theorem (Kővari-Sós-Turán 1954)

$$\operatorname{ex}(n,K_{s,t})=O(n^{2-1/s}).$$

Theorem (Morris-Saxton 2013)

$$ex(G_{n,p}, K_{s,t}) = O(p^{1-1/s}n^{2-1/s})$$
 for p large.

Moreover, this bound is tight whenever $ex(n, K_{s,t}) = \Theta(n^{2-1/s})$.

Theorem (Bondy-Simonovits 1974)

$$ex(n, C_{2b}) = O(n^{1+1/b}).$$

Theorem (Bondy-Simonovits 1974)

$$ex(n, C_{2b}) = O(n^{1+1/b}).$$

Theorem (Morris-Saxton 2013)

$$ex(G_{n,p}, C_{2b}) = O(p^{1/b}n^{1+1/b})$$
 for p large.

Theorem (Bondy-Simonovits 1974)

$$ex(n, C_{2b}) = O(n^{1+1/b}).$$

Theorem (Morris-Saxton 2013)

$$ex(G_{n,p}, C_{2b}) = O(p^{1/b}n^{1+1/b})$$
 for p large.

Moreover, this is tight whenever $ex(n, \{C_3, C_4, \dots, C_{2b}\}) = \Theta(n^{1+1/b})$.

Theorem (Jiang-Longbrake 2022)

If F satisfies "mild conditions", then

$$\operatorname{ex}(G_{n,p},F) = O(p^{1-m_2^*(F)(2-\alpha)}n^{\alpha}) \text{ for } p \text{ large},$$

where
$$m_2^*(F) = \max\{\frac{e(F')-1}{v(F')-2} : F' \subsetneq F, \ e(F') \ge 2\}.$$

$$\operatorname{ex}(n,\theta_{a,b}) = O(n^{1+1/b}).$$

$$\operatorname{ex}(n,\theta_{a,b}) = O(n^{1+1/b}).$$

Theorem (Corsten-Tran 2021)

$$\operatorname{ex}(G_{n,p}, \theta_{a,b}) = O(p^{\frac{2}{ab}} n^{1+1/b}) \text{ for } p \text{ large.}$$

Note: our conjecture predicts $p^{\frac{1}{b}}n^{1+1/b}$.

$$\operatorname{ex}(n,\theta_{a,b}) = O(n^{1+1/b}).$$

Theorem (McKinley-S. 2023)

For $a \ge 100$,

$$ex(G_{n,p}, \theta_{a,b}) = O(p^{\frac{1}{b}}n^{1+1/b}) \text{ for } p \text{ large.}$$

$$\operatorname{ex}(n,\theta_{a,b}) = O(n^{1+1/b}).$$

Theorem (McKinley-S. 2023)

For $a \ge 100$,

$$ex(G_{n,p}, \theta_{a,b}) = O(p^{\frac{1}{b}}n^{1+1/b})$$
 for p large.

Theorem (S. 2022)

This bound is tight whenever a is sufficiently large in terms of b.

Hypergraphs

Theorem (S.-Verstraëte 2021)

Let K_{s_1,\ldots,s_r}^r denote the complete r-partite r-graph with parts of sizes s_1,\ldots,s_r . There exist constants $\beta_1,\beta_2,\beta_3,\gamma$ depending on s_1,\ldots,s_r such that, for s_r sufficiently large in terms of s_1,\ldots,s_{r-1} , we have whp

$$\mathrm{ex}(\textit{G}^{r}_{\textit{n},\textit{p}},\textit{K}^{r}_{\textit{s}_{1},...,\textit{s}_{r}}) = \begin{cases} \Theta\left(\textit{p}\textit{n}^{r}\right) & \textit{n}^{-r} \ll \textit{p} \leq \textit{n}^{-\beta_{1}}, \\ \textit{n}^{r-\beta_{1}+o(1)} & \textit{n}^{-\beta_{1}} \leq \textit{p} \leq \textit{n}^{-\beta_{2}}(\log \textit{n})^{\gamma}, \\ \Theta\left(\textit{p}^{1-\beta_{3}}\textit{n}^{r-\beta_{3}}\right) & \textit{n}^{-\beta_{2}}(\log \textit{n})^{\gamma} \leq \textit{p} \leq 1. \end{cases}$$

Question

Does the McKinley-Spiro conjecture extend to hypergraphs?

Question

Does the McKinley-Spiro conjecture extend to hypergraphs?

Theorem (Nie-S. 2023 (Informal))

Many hypergraphs fail to have a flat middle range.

Question

Does the McKinley-Spiro conjecture extend to hypergraphs?

Theorem (Nie-S. 2023 (Informal))

Many hypergraphs fail to have a flat middle range. More precisely, any hypergraph which isn't Sidorenko fails to have a flat middle range.

We define the *loose cycle* C_{ℓ}^{r} to be the *r*-uniform hypergraph obtained by inserting r-2 distinct vertices into each edge of the graph cycle C_{ℓ} .

Theorem (Nie-S.-Verstaëte 2020; Nie 2023)

For $r \ge 3$, if $p \gg n^{-r+3/2}$ then whp

$$ex(G_{n,p}^r, C_3^r) = max\{p^{\frac{1}{2r-3}}n^{2+o(1)}, pn^{r-1+o(1)}\}.$$

Picture due to Jiaxi Nie.

Theorem (Mubayi-Yepremyan 2020; Nie 2023)

For $r \geq 4$, if $p \gg n^{-r+1+\frac{1}{2\ell-1}}$ then whp

$$\operatorname{ex}(G_{n,p}^r, C_{2\ell}^r) = \max\{n^{1+\frac{1}{2\ell-1}}, pn^{r-1+o(1)}\}.$$

Theorem (Mubayi-Yepremyan 2020; Nie 2023)

For $r \ge 4$, if $p \gg n^{-r+1+\frac{1}{2\ell-1}}$ then whp

$$ex(G_{n,p}^r, C_{2\ell}^r) = max\{n^{1+\frac{1}{2\ell-1}}, pn^{r-1+o(1)}\}.$$

Generalizations of these results were obtained by Nie-S. for expansions of hypergraphs.

Given a k-graph F, we define its r-expansion F^{+r} to be the r-graph obtained by inserting r-k new vertices into each edge of F.

Upper Bound Techniques

Upper Bound Techniques

Proof. Containers.

Upper Bound Techniques

Proof.	
Containers.	
Proof.	
Hypergraph containers.	

A homomorphism is a map $\phi:V(F)\to V(H)$ which maps edges to edges.

A homomorphism is a map $\phi:V(F)\to V(H)$ which maps edges to edges. Define the *homomorphism density*

$$t_F(H) = \frac{\# \text{homs } F \to H}{v(H)^{v(F)}}.$$

A homomorphism is a map $\phi:V(F)\to V(H)$ which maps edges to edges. Define the *homomorphism density*

$$t_F(H) = \frac{\# \text{homs } F \to H}{v(H)^{v(F)}}.$$

We say that a hypergraph F is Sidorenko if for all r-graphs H, we have

$$t_F(H) \geq t_{K_r^r}(H)^{e(F)}$$
.

Conjecture (Sidorenko 1986)

A graph F is Sidorenko if and only if F is bipartite.

Conjecture (Sidorenko 1986)

A graph F is Sidorenko if and only if F is bipartite.

Theorem (Conlon-Lee-Sidorenko 2023)

If F is an r-graph which is not Sidorenko, then there exists $\epsilon = \epsilon(F) > 0$ such that

$$ex(n, F) = \Omega(n^{r - \frac{v(F) - r}{e(F) - 1} + \epsilon}).$$

For an r-graph F, define

$$s(F) := \sup\{s : \exists H \neq \emptyset, \ t_F(H) = t_{K_r^r}(H)^{s+e(F)}\}.$$

For an r-graph F, define

$$s(F) := \sup\{s : \exists H \neq \emptyset, \ t_F(H) = t_{K_r^r}(H)^{s+e(F)}\}.$$

Theorem (Nie-S. 2023)

If F is an r-graph with $e(F) \ge 2$ and $\frac{v(F)-r}{e(F)-1} < r$, then for any $p = p(n) > n^{-\frac{v(F)-r}{e(F)-1}}$, we have whp

$$\mathrm{ex}(G_{n,p}^r,F) \geq n^{r - \frac{v(F) - r}{e(F) - 1} - o(1)} (pn^{\frac{v(F) - r}{e(F) - 1}})^{\frac{s(F)}{e(F) - 1 + s(F)}}.$$

Let $\mathcal{N}_F(G)$ denote the number of copies of F in G.

Lemma

If F is an r-graph such that there exists an r-graph H with $t_{K_r^r}(H)=\alpha$ and $t_F(H)=\beta$, then for all r-graphs G and integers $N\geq 1$ we have

$$\operatorname{ex}(G,F) \geq \alpha^{N} e(G) - \beta^{N} \mathcal{N}_{F}(G).$$

Let $\mathcal{N}_F(G)$ denote the number of copies of F in G.

Lemma

If F is an r-graph such that there exists an r-graph H with $t_{K_r^r}(H)=\alpha$ and $t_F(H)=\beta$, then for all r-graphs G and integers $N\geq 1$ we have

$$\operatorname{ex}(G,F) \geq \alpha^{N} e(G) - \beta^{N} \mathcal{N}_{F}(G).$$

Given two *r*-graphs H, H', we define the *tensor product* $H \otimes H'$ to be *r*-graph on $V(H) \times V(H')$ where $((x_1, y_1), \dots, (x_r, y_r)) \in E(H \otimes H')$ if and only if $(x_1, \dots, x_r) \in E(H)$ and $(y_1, \dots, y_r) \in E(H')$.

Let $\mathcal{N}_F(G)$ denote the number of copies of F in G.

Lemma

If F is an r-graph such that there exists an r-graph H with $t_{K_r^r}(H) = \alpha$ and $t_F(H) = \beta$, then for all r-graphs G and integers $N \ge 1$ we have

$$\operatorname{ex}(G,F) \geq \alpha^{N} e(G) - \beta^{N} \mathcal{N}_{F}(G).$$

Given two *r*-graphs H, H', we define the *tensor product* $H \otimes H'$ to be r-graph on $V(H) \times V(H')$ where $((x_1, y_1), \dots, (x_r, y_r)) \in E(H \otimes H')$ if and only if $(x_1, \dots, x_r) \in E(H)$ and $(y_1, \dots, y_r) \in E(H')$. Fact: for any r-graphs F, H and $N \geq 1$, we have

$$t_F(H^{\otimes N})=t_F(H)^N.$$

Lemma

If F is an r-graph such that there exists an r-graph H with $t_{K_r^r}(H)=\alpha$ and $t_F(H)=\beta$, then for all r-graphs G and integers $N\geq 1$ we have

$$\operatorname{ex}(G,F) \geq \alpha^{N} \operatorname{e}(G) - \beta^{N} \mathcal{N}_{F}(G).$$

Lemma

If F is an r-graph such that there exists an r-graph H with $t_{K_r^r}(H) = \alpha$ and $t_F(H) = \beta$, then for all r-graphs G and integers $N \ge 1$ we have

$$\operatorname{ex}(G,F) \geq \alpha^N e(G) - \beta^N \mathcal{N}_F(G).$$

Lemma

If F is an r-graph such that there exists an r-graph H with $t_{K_r^r}(H) = \alpha$ and $t_F(H) = \beta$, then for all r-graphs G and integers $N \ge 1$ we have

$$\operatorname{ex}(G,F) \geq \alpha^N e(G) - \beta^N \mathcal{N}_F(G).$$

$$\mathbb{E}[e(G')] = t_{K_r'}(H^{\otimes N}) \cdot e(G)$$

Lemma

If F is an r-graph such that there exists an r-graph H with $t_{K_r^r}(H) = \alpha$ and $t_F(H) = \beta$, then for all r-graphs G and integers $N \ge 1$ we have

$$\operatorname{ex}(G,F) \geq \alpha^N e(G) - \beta^N \mathcal{N}_F(G).$$

$$\mathbb{E}[e(G')] = t_{K_r^r}(H^{\otimes N}) \cdot e(G) = \alpha^N \cdot e(G)$$

Lemma

If F is an r-graph such that there exists an r-graph H with $t_{K_r^r}(H) = \alpha$ and $t_F(H) = \beta$, then for all r-graphs G and integers $N \ge 1$ we have

$$\operatorname{ex}(G,F) \geq \alpha^N e(G) - \beta^N \mathcal{N}_F(G).$$

$$\mathbb{E}[e(G')] = t_{K_r}(H^{\otimes N}) \cdot e(G) = \alpha^N \cdot e(G),$$

$$\mathbb{E}[\mathcal{N}_F(G')] = t_F(H^{\otimes N}) \cdot \mathcal{N}_F(G) = \beta^N \cdot \mathcal{N}_F(G).$$

Lemma

If F is an r-graph such that there exists an r-graph H with $t_{K_r^r}(H) = \alpha$ and $t_F(H) = \beta$, then for all r-graphs G and integers $N \ge 1$ we have

$$\operatorname{ex}(G,F) \geq \alpha^N e(G) - \beta^N \mathcal{N}_F(G).$$

Let $\phi:V(G)\to V(H^{\otimes N})$ be chosen uniformly at random, and define $G'\subseteq G$ by keeping the edges which map bijectively to edges.

$$\mathbb{E}[e(G')] = t_{K_r}(H^{\otimes N}) \cdot e(G) = \alpha^N \cdot e(G),$$

$$\mathbb{E}[\mathcal{N}_F(G')] = t_F(H^{\otimes N}) \cdot \mathcal{N}_F(G) = \beta^N \cdot \mathcal{N}_F(G).$$

One gets the result by deleting an edge from each copy of F in G'.

Further Results

Recall that the expansion F^{+r} of a k-graph is defined by inserting r - k new vertices into each edge of F.

Further Results

Recall that the expansion F^{+r} of a k-graph is defined by inserting r-k new vertices into each edge of F.

Theorem (Nie-S. 2023)

If F is a k-graph which contains K_{k+1}^k as a subgraph, then

$$s(F^{+r}) \geq \frac{1}{r-k}.$$

In particular, F^{+r} is not Sidorenko.

Further Results

Recall that the expansion F^{+r} of a k-graph is defined by inserting r - k new vertices into each edge of F.

Theorem (Nie-S. 2023)

If F is a k-graph which contains K_{k+1}^k as a subgraph, then

$$s(F^{+r}) \geq \frac{1}{r-k}.$$

In particular, F^{+r} is not Sidorenko.

Theorem (Nie-S. 2023)

$$s(F^{+r}) \le \frac{v(F) - k}{v(F) - k + (r - k)(s(F) + e(F) - 1)} \cdot s(F).$$

In particular, expansions of Sidorenko hypergraphs are Sidorenko.

Theorem (Nie-S. 2023)

Expansions of Sidorenko hypergraphs are Sidorenko.

Theorem (Nie-S. 2023)

Expansions of Sidorenko hypergraphs are Sidorenko.

Conjecture

For every bipartite graph F, there exists an $r \ge 2$ such that F^{+r} is Sidorenko.

Theorem (Nie-S. 2023)

Expansions of Sidorenko hypergraphs are Sidorenko.

Conjecture

For every bipartite graph F, there exists an $r \ge 2$ such that F^{+r} is Sidorenko.

Question

Is it true that F is Sidorenko if and only if there exists an expansion F^{+r} which is Sidorenko?

Theorem (Nie-S. 2023)

Expansions of Sidorenko hypergraphs are Sidorenko.

Conjecture

For every bipartite graph F, there exists an $r \ge 2$ such that F^{+r} is Sidorenko.

Question

Is it true that F is Sidorenko if and only if there exists an expansion F^{+r} which is Sidorenko? In particular, are all expansions of non-bipartite graphs not Sidorenko?

Problem

Determine $s(C_{2\ell+1}^r)$.

Problem

Determine $s(C_{2\ell+1}^r)$.

We know

$$r^{-2\ell} \ll s(C_{2\ell+1}^r) \leq \frac{2\ell-1}{r-2}.$$

Problem

Determine $s(C_{2\ell+1}^r)$.

We know

$$r^{-2\ell} \ll s(C_{2\ell+1}^r) \le \frac{2\ell-1}{r-2}.$$

Our best guess is

$$s(C_{2\ell+1}^r)=\frac{\ell}{(r-1)\ell-1}.$$

Problem

Prove tight bounds for the 3-uniform loose 4-cycle.

Problem

Prove tight bounds for the 3-uniform loose 4-cycle.

Problem

Prove tight bounds for subdivisions of complete bipartite graphs.