Отчет по проведенному эксперименту

Лунев Артем

Информация об оборудовании:

Процессор: Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz, 2712 МГц, ядер: 2, оперативная память 8 Гб, DDR4 (для docker было выделено 6 Гб).

Эксперимент:

Эксперимент проводился на графах LUBM300, LUBM500, LUBM1M, LUBM1.5M и LUBM1.9M со следующими запросами q1_0, q2_0, q3_0, q4_2_0, q5_0, q6_0, q7_0, q8_0, q9_2_0, q10_2_0, q11_2_0, q_12_0, q_13_0, q_14_0, q_15_0, q_16_0.

Все замеры проводились 5 раз с использованием библиотеки time, затем бралось среднее.

Ниже приведены результаты замеров времени, затраченного на вычисление транзитивного замыкания и пересечения автоматов. Транзитивное замыкание, полученное методом возведения в квадрат обозначено square, методом домножения на матрицу смежности – multiply.

Вывод:

Как видно из графиков с результатами вычисления транзитивного замыкания, два разных алгоритма показывают приблизительно одинаковые результаты. На некоторых запросах лучше работает один, на других другой. Но в среднем алгоритм основанный на возведении в квадрат работает незначительно лучше.