Sensors & Interfacing

Tuur Vanhoutte

17 februari 2020

${\bf Inhoud sopgave}$

1	Con	Communicatie			
	1.1	Datacommunicatie in IoT	. 1		
	1.2	Data	. 1		
	1.3	Communicatie	. 1		
		1.3.1 Communicatieafspraken	. 2		
		1.3.2 Encoding/Decoding	. 2		
		1.3.3 Signalen	. 2		
		1.3.4 Communicatiemedia	. 2		
		1.3.5 Voorbeelden	. 2		
		1.3.6 Eigenschappen van media	. 2		
		1.3.7 Afspraken	. 3		
		1.3.8 Standaardiseren van			
2	Δns	loog vs digitaal	3		
4	2.1	Toestanden	_		
	2.1	2.1.1 Bepaalde toestand			
		2.1.2 Digitale toestanden	_		
		2.1.3 Analoge toestanden			
	2.2	Signalen			
	2.2	bigliateii	. 4		
3	Analoge signalen				
		3.0.1 Transducer	. 4		
		3.0.2 Sensoren en Actuatoren	. 4		
	3.1	Analoge communicatie	. 4		
		3.1.1 Eigenschappen	. 5		
		3.1.2 Wisselspanning - Eigenschappen			
		3.1.3 Periodieke signalen			
		3.1.4 Tijdsdomein en frequentiedomein			
4	Dio	itale signalen	7		
-1	4.1	Duty Cycle	•		
	4.1	Flanken (edge)			
		Weergave digitale signalen			

1 Communicatie

1.1 Datacommunicatie in IoT

3 lagen:

- 1. Application Layer
- 2. Fog layer
- 3. IoT Device Layer

Datacommunicatie in IoT

1.2 Data

- "Pre-informatie"
- Gegevens waaruit informatie kan worden gewonnen
- Stelt een bepaalde toestand voor

1.3 Communicatie

Overbrengen van informatie tussen deelnemers

- Boodschap
- Signaal
- Medium

1.3.1 Communicatieafspraken

- Coderen van informatie (encoding)
- Voorbeeld:
- morse-code
- Ascii-codering
 - Codering voor alle gebruikte symbolen in symbolen
 - Codering in 7 of 8 bit
 - -1 byte =1 teken
- . . .

1.3.2 Encoding/Decoding

- 1. Codifying
- 2. Sending the message
- 3. Decodifying

1.3.3 Signalen

- Licht
- Geluid
- Elektriciteit
- ...

1.3.4 Communicatiemedia

- Twisted-Pair cable
- Coaxial cable
- Fiber-Optic cable

1.3.5 Voorbeelden

- Welke codering?
- Wat is het signaal?
- Wat is het medium?

1.3.6 Eigenschappen van media

- Vatbaarheid voor interferentie
- Overbrugbare afstand
- Praktisch
- Kostprijs

1.3.7 Afspraken

- Protocol
- Standaarden
- IEEE
- EIA (NEDA/ECA)ECIA

1.3.8 Standaardiseren van ...

- Type media en zijn specificaties
- Het gebruikte signaal en zijn toleranties
- De elektrische interferentie
- De gebruikte codering
- Foutcorrectiecodes
- Protocol
- De gebruikte connector
- ...

2 Analoog vs digitaal

- Digitaal: Discrete waarden
- Analoog: Continue waarden

2.1 Toestanden

2.1.1 Bepaalde toestand

- Temperatuur
- Licht aan/uit
- Afstand
- Tijd
- ...

2.1.2 Digitale toestanden

- Licht aan/uit
- Deur open/dicht
- \bullet Keuze van versnelling N 1 2 3 4 5 R
- Ruitenwisser interval uit interval traag snel
- ...

2.1.3 Analoge toestanden

- Tijd (!)
- Temperatuur
- Luchtdruk
- Luchtvochtigheid
- Afstand
- . .

2.2 Signalen

- Analoog signaal
- Digitaal signaal

Digital Signal

3 Analoge signalen

3.0.1 Transducer

Omzetten van een analoog signaal naar een ander analoog signaal.

Voorbeeld: elektrisch signaal omzetten naar een geluidsignaal via een luidspreker (=de transducer)

3.0.2 Sensoren en Actuatoren

- Sensor \Rightarrow meten van een fysieke eigenschap
- $\bullet\,$ Actuator \Rightarrow beïnvloeden van een fysieke parameter \Rightarrow transducers

3.1 Analoge communicatie

Sinusgolf als meest elementaire signaal

3.1.1 Eigenschappen

- DC vs AC
- Polariteit blijft gelijk bij (pulserende) DC
- Polariteit verandert bij AC

3.1.2 Wisselspanning - Eigenschappen

- RMS = Root Mean Square (= kwadratisch gemiddelde) = effectieve waarde (in geval van sinus)
 - 1. Som van alle kwadraten (= square)
 - 2. Die som delen door het aantal waardes (= mean)
 - 3. Neem de vierkantswortel van dat getal
 - Wordt vaak gebruikt in de elektriciteit om het gemiddelde vermogen te vinden
- Frequentie
- Periode
- Amplitude
- Peak of top-to-top waarde

3.1.3 Periodieke signalen

- 1 herhaling = 1 periode
- \bullet Periode (T) = tijdsduur (in s)
- \bullet Frequentie (f) = aantal periodes per seconde (in Hz)
- $F = \frac{1}{T}$ en $T = \frac{1}{F}$

3.1.4 Tijdsdomein en frequentiedomein

- Tijdsdomein: met een oscilloscoop
- Frequentiedomein: met

(Formule niet te kennen)1

Time Domain ⇔ Frequency Domain

4 Digitale signalen

Aan/uit

4.1 Duty Cycle

= Hoeveel procent van de tijd staat het signaal aan?

4.2 Flanken (edge)

- Stijgende flank
- $\bullet\,$ Dalende flank
- Belangrijk bij kloksignalen

4.3 Weergave digitale signalen

