Der Algorithmus von Luhn und tf*idf

Inhalt

- * Wiederholung des Algorithmus von Luhn
- * tf*idf
- * Modifizierter Algorithmus von Luhn
- * Implementierung

Algorithmus von Luhn

- * Auswahl der Sätze, die den Text am besten repräsentieren
- * Ansatz: Beste Repräsentanten sind die Sätze, welche die meisten für den Text relevanten Terme enthalten; also: Auswahl der relevanten Terme
- * Dann: Berechnen eines Maßes, das die Relevanz eines Satzes in Abhängigkeit von den darin enthaltenen Termen ausdrückt

Relevante Terme

- * Ansätze zur Filterung:
 - * Stopwords: Sprachabhängig, müssen weitestgehend manuell erstellt und gepflegt werden
 - * Anhand statistischer Eigenschaften: Rang der Termfrequenz, häufigste (Stopwords) und seltenste Worte werden entfernt, diese Variante nutzt Zipf-Verteilung

Relevanz von Sätzen

- * Idee: Segmente, die zwischen zwei relevanten Termen liegen; relevante Terme dürfen höchstens durch 4 bis 5 nicht-relevante Terme getrennt sein
- ** Relevanzberechnung: $R_s = |T_r|^2 / |T|$ mit $R_s =$ Relevanz eines Satzes, T_r , T Mengen der relevanten bzw. aller Terme in einem Segment, bei mehreren Segmenten zählt der höchste Wert (Anmerkung: Die Anzahl der Segmente bietet sich eigentlich auch als Parameter an.)

- * Zerlege Text in Sätze
- * Zerlege Sätze in Token
- * Finde und filtere Types

- * Für jeden Satz: Starte das aktuelle Segment bei Index 0
- * Für jedes Token in einem Satz: Falls das Token zu den relevanten Termen gehört, füge es zur Liste der relevanten Terme für diesen Satz hinzu

- * Berechne Relevanz des aktuellen Segments anhand der genannten Formel
- * Falls die Differenz zwischen Laufindex und dem Index des letzten relevanten Terms > 4: Beginne neues Segment
- * Bei mehreren möglichen Segmenten: Wähle das mit der höchsten Relevanz
- * Abstract: Alle Sätze über Schwellenwert

* Abstraktes Beispiel:

```
* (__[*__*__*__**]____[*_*]____)
```

- * *: Relevant
- * _: Nicht relevant

tf*idf

- * Gewichtete Termfrequenz
- * tf = Frequenz des Terms im Dokument / Summe der Frequenzen aller Terme im Dokument
- * idf = Anzahl der Dokumente im Korpus / Anzahl der Dokumente im Korpus, die den gesuchten Term enthalten (vgl. Inverted Index)
- # tf*idf = tf * log(idf)

Da fehlt doch was?

- * Richtig, für tf*idf brauchen wir ein Korpus
- * Ansatz
 - * Nutze eine Suchmaschine, um für das Thema des Ursprungsdokuments relevante Dokumente zu finden
 - * Verwende diese Dokumente zur Erstellung eines tf*idf Modells für genau dieses eine Ursprungsdokument

Der Modifizierte Algorithmus

- * die ersten sechs ursprünglich relevante Terme werden als Suchterme genutzt, um ein individuelles Korpus zusammenzustellen
- * dieses Korpus dient zur Erstellung eines tf*idf Modells
- * durch tf*idf Gewichtung ergibt sich eine Verschiebung bei den relevanten Termen

Implementierung

- ***** Grails
- * Yahoo Search API
- * Wikipedia
- * NekoHTML

Zusammenfassung

- * Auswahl der relevanten Terme bedurfte einiges an Fine-Tuning und war teilweise abhängig vom Dokumenttyp
- * Alternativer Ansatz: Auswahl relevanter Terme mittels tf*idf Gewichtung
- * tf*idf Gewichtung zeigt deutliche Effekte

FRAGEN?