Aditya Gangrade, ANIL KAG, Venkatesh Saligrama

Selective Classification - what and why

Classification with the option to say 'I don't know', or 'reject' a query.

- Dynamically collect features.
- Invoke Experts/human fallback

Goal: Maximise coverage, while making total error smaller than a given level.

Target error level $\varepsilon \ll 1$.

- Two key challenges
- Statistical no supervision on what to reject.
- Computational inherent non-convexity that makes training hard.

Prior Work

Naïve Scheme - Standard classifier f, and a post-hoc uncertainty score \mathcal{U} .

- Reject if $\mathcal{U}(f(x))$ is too big. Otherwise output f(x).
- Using $U(f(x)) = 1 \max_k(f_k(x))$ is near-SOTA for DNNs [GEY17].

Gating Formulation - *Jointly train* a **gate** γ and a classifier f. [CDM16; EYW10; WEY11].

- If $\gamma(x) = 1$, reject. Else classify according to f(x).
- Many approaches relaxations & surrogates, alternating minimisation, architectures.
- SOTA: Selective Net [GEY19], Deep Gamblers [Liu+19].

(Lots of other interesting work - see paper)

Key Challenge - Gating SOTA \approx **Naïve SOTA.**

Structure of Formulation

 \mathcal{S}_2

Supervision $(X_i, Y_i) \stackrel{\text{i.i.d.}}{\sim} \mathbb{P}; Y_i \in [1:K].$ • Disjoint decision sets S_1, S_2, \ldots, S_K . • S_k = the decision region for class k. • Rejection region $\mathcal{R} = \bigcap \mathcal{S}_k^c$. • Coverage: $\sum \mathbb{P}(X \in \mathcal{S}_k)$. • Error: $\sum \mathbb{P}(X \in \mathcal{S}_k, Y \neq k)$. \times \times \times X

Formulation

- Maximise Coverage, keeping **error** smaller than ε .
- $\varepsilon \ll 1$ 'Target error level'.
- Disjointness constraint to yield a valid classifier.
 - Enforcing disjointness makes training hard.

$$\max_{\{\mathcal{S}_k\}_{k \in [1:K]}} \sum_{k} \mathbb{P}(X \in \mathcal{S}_k)$$
s.t.
$$\sum_{k} \mathbb{P}(X \in \mathcal{S}_k, Y \neq k) \leq \epsilon,$$

$$\forall k \neq k', \mathbb{P}(\mathcal{S}_k \cap \mathcal{S}_{k'}) = 0.$$

 $\max \ \mathbb{P}(X \in \widetilde{\mathcal{S}}_k)$

Relaxation to One-Sided Prediction

Drop the disjointness constraint.

- 1. The problem **decouples** into easier onesided prediction (OSP) problems
- Hyperparameters $\alpha_k \ge 0$: $\sum \alpha_k = 1$.
- 2. Removing overlaps gives **feasible** $\{S_k\}$ that are **near optimal**
- $\sum \mathbb{P}(S_k) \geq \mathsf{OPT}_{\varepsilon} 2\varepsilon$.
- 1. \Longrightarrow Easy to train
- 2. \Longrightarrow not too lossy in the low ε regime.

Method Via Differentiable Relaxations

- Parametric class f^{θ} .
- Solutions threshold soft outputs.
- Relaxed empirical **OSP**.

- OSP Lagrangian

 $\min_{\theta} L_k(\theta)$ s.t. $C_k(\theta) \leq \varphi_k$ $\mathcal{L}(\theta, \lambda_k) = L_k(\theta) + \lambda_k C_k(\theta).$

 $f^{\theta} = (f_1^{\theta}, \dots, f_K^{\theta}).$

 $\tilde{\mathcal{S}}_{k}^{\theta,t} = \{x : f_{k}^{\theta}(x) \ge t\}.$

- Train, select by matching λ_k s on validation.
- -Catch! Unviable due to hyperparameter search.

Solution:

- Heuristic: autotune using a minimax program.
- *Single parameter* μ to control total error.
- Joint Lagrangian

$$\mathcal{M}^{\mu}(\theta, \{\phi_k\}, \{\lambda_k\}) = \sum_k (L_k(\theta) + \lambda_k(C_k(\theta) - \phi_k) + \mu\phi_k$$

• Training:

 $\min_{\theta, \mathbf{\varphi}} \max_{\lambda \geq \mathbf{0}} \mathcal{M}^{\mu}(\theta, \lambda, \mathbf{\varphi})$

Empirical Performance

Comparison Against

- Naïve Softmax Response f is a standard DNN classifier, reject if $\max_k f_k(x) < t$.
- Selective Net DNN architecture for selective classification.
- Deep Gamblers Loss function for selective classification based on gambling theory. RESNET-32 models; CIFAR-10 dataset.

Std. Error Train. Test. Val. 45K 10K 5K 9.58%

Low Target Error Regime

	Target	OSP (Ours)		Naïve		SelectiveNet		Deep Gambles	
									Error
-	2%	80.6	1.91	75.1	2.09	73.0	2.31	74.2	1.98
	1%	74.0	1.02	67.2	1.09	64.5	1.02	66.4	1.01
	0.5%	64.1	0.51	59.3	0.53	57.6	0.48	57.8	0.51

- -Gains of at least 4.5% against best competitor.
- **−OSP-based** ≫ Naïve SOTA

High Target Coverage Regime

- 'Dual' formulation - minimise error subject to large coverage.

	Target	OSP	(Ours)	Na	iive	Selec	tiveNet	Deep	Gamblers
	Cov.	Cov.	Error	Cov.	Error	Cov.	Error	Cov.	Error
Ξ	100%	100	9.74	100	9.58	100	11.07	100	10.81
	95%	95.1	6.98	95.2	8.74	94.7	8.34	95.1	8.21
	90%	90.0	4.67	90.5	6.52	89.6	6.45	90.1	6.14

- -Outside of very high coverage, OSP-based still outperforms by > 1%.
- Very surprising, given design.

Coverage-Error Curve

Overlap Characteristics

–Empirical Total Overlap is much smaller than 2ε.

Target Error (%) 2 1 0.5 Empirical Total Overlap (%) 0.09 0.01 0.00