Chapter 1

Dual-Simplex Method

Problem 1.0.1. Solve the LPP by the dual-simplex method:

maximize
$$Z = -(2x_1 + x_2 + x_3)$$

subject to $4x_1 + 6x_2 + 3x_3 \le 8$
 $x_1 - 9x_2 + x_3 \le -3$
 $2x_1 + 3x_2 - 5x_3 \ge 4$
 $x_1, x_2, x_3 \ge 0$

Solution. Here, the 3rd constraint is of \geq type. To convert into \leq type, let us multiply it by -1. Adding s_1 , s_2 , s_3 as the slack variables to the 1st, 2nd and 3rd constraints respectively, the given LPP is expressed as

maximize
$$Z = -(2x_1 + x_2 + x_3)$$

subject to $4x_1 + 6x_2 + 3x_3 + s_1 = 8$
 $x_1 - 9x_2 + x_3 + s_2 = -3$
 $-2x_1 - 3x_2 + 5x_3 + s_3 = -4$
 $x_1, x_2, x_3, s_1, s_2 \ge 0$

Putting $x_1 = x_2 = x_3 = 0$, the initial basic solution is $s_1 = 8$, $s_2 = -3$, $s_3 = -4$ which is infeasible. The above information is expressed in tab-I called staring dual simplex table.

Tab	C_B	$c_j \to c_j$ Basis	-2	-1	-1	0	0	0	Constant/
			x_1	x_2	x_3	s_1	s_2	s_3	Solution
I	0	s_1	4	6	3	1	0	0	8
	0	s_2	-1	-9	1	0	1	0	-3
	0	s_3	-2	-3	5	0	0	1	-4
	$\bar{c_j}$ row		-2	-1	-1	0	0	0	Z = 0
II	0	s_1	0	0	13	1	0	2	0
	0	s_2	7	0	-14	0	1	-3	9
	-1	x_2	2/3	1	-5/3	0	0	-1/3	4/3
		$\bar{c_j}$ row	-4/3	0	-8/3	0	0	-1/3	Z = -4/3

In these tableaux, basis refers to the basic variables in the basic solution. The values of the basic variables are given under the column solutions. Here, c_j denotes the coefficients of the variables in the objective function. C_B denotes the coefficient of the basic variables only and \bar{c}_j denotes the relative cost coefficients of the variables which is given by

$$\bar{C}_j = C_j$$
 – [inner product of C_B and the column corresponding the j -th variable in the canonical system] $= C_j - C_B A_j$, where A_j is the j -th column of the matrix $A = (a_{ij})$, which is found by the coefficients of the basis and non-basis variables of constraints equation.

In tableau-I, all \bar{c}_j row entry are either negative of zero and the 'solution' column shows that s_2 and s_3 are negative; this solution is optimal but infeasible.

Since the basic variable s_3 has the most negative value, so it will be chosen to leave the basis. Since the variable x_1 and x_2 have negative coefficient in row-3, so we take the ratios of these with corresponding relative cost row in \bar{c}_j , which are $\frac{-2}{-2}$, $\frac{-1}{-3}$. $\left(\frac{-2}{-2}\right)$ i.e., 1 and $\frac{-1}{-3}$ i.e., $\frac{1}{3}$

The minimum ratio occurs corresponding to the non-basic variable x_2 . Thus, s_3 will be replaced by x_2 in the basis. Hence, the pivot element is $a_{32} = -3$. We construct tab-II, using pivot operation.

Now we see that tableau-II is optimal and the solution is feasible. The optimal solution is

$$x_1 = 0, \qquad x_2 = \frac{40}{3}, \qquad x_3 = 0$$

and the optimum value is $Z = -\frac{4}{3}$.

From tab-II, we see that the none of the non-basic variables has zero relative cost factors in the \bar{c}_j row. So, there is no alternative optimal of the given LPP. Hence, the optimal solution is unique at $(x_1, x_2, x_3) = (0, \frac{4}{3}, 0)$

Problem 1.0.2. Solve by Dual-Simplex method

minimize
$$Z = x_1 + 4x_2 + 3x_4$$

subject to $x_1 + 2x_2 - x_3 + x_4 \ge 3$
 $-2x_1 - x_2 + 4x_3 + x_4 \ge 2$
 $x_i \ge 0$

Solution. Multiplying both constraints by -1 and then adding x_5 and x_6 as the slack variables to the 1st and 2nd constraints respectively, we get

minimize
$$Z = x_1 + 4x_2 + 3x_4$$

subject to $-x_1 - 2x_2 + x_3 - x_4 + x_5 = -3$
 $2x_1 + x_2 - 4x_3 - x_4 + x_6 = -2$
 $x_i \ge 0$

Putting $x_1 = x_2 = x_3 = x_4 = 0$, the initial basic solution is $x_5 = -3$, $x_6 = -2$; which is infeasible. The above information is expressed in tab-I called starting dual simplex table.

Tab	C_B	$c_j \to $ Basis	1	4	0	3	0	0	Constant/
			$\overline{x_1}$	x_2	x_3	x_4	x_5	x_6	Solution
I	0	x_5	-1	-2	1	-1	1	0	-3
	0	x_6	2	1	-4	-1	0	1	-2
		$\bar{c_j}$ row	1	4	0	3	0	0	Z = 0
II	1	x_1	1	2	-1	1	-1	0	3
	0	x_6	0	-3	-2	-3	2	1	-8
		$\bar{c_j}$ row	0	2	1	2	1	0	Z=3
III	1	x_1	1	7/2	0	5/2	-2	-1/2	7
	0	x_3	0	3/2	1	3/2	-1	-1/2	4
		$\bar{c_j}$ row	0	1/2	0	1/2	2	1/2	Z = 7

In these tableaux, basis refers to the basic variables in the basic solution. The values of the basic variables are given under the column solutions. Here, c_j denotes the coefficients of the variables in the objective function. C_B denotes the coefficient of the basic variables only and \bar{c}_j denotes the relative cost coefficients of the variables which is given by

$$\bar{C}_j = C_j$$
 – [inner product of C_B and the column corresponding the j -th variable in the canonical system] $= C_j - C_B A_j$, where A_j is the j -th column of the matrix $A = (a_{ij})$, which is found by the coefficients of the basis and non-basis variables of constraints equation.

In tab-I, the basic solution is given by $x_1 = x_2 = x_3 = x_4 = 0$, $x_5 = -3$, $x_6 = -2$. This is infeasible though it satisfies the optimality condition.

Since the basic variable x_5 has the most negative value, so it will be chosen to leave the basis. Since the variable x_1 , x_2 and x_4 have negative coefficient in row-1, so we take the ratios of these with corresponding relative cost row in \bar{c}_j , which are

$$\left|\frac{1}{-1}\right| = 1, \qquad \left|\frac{4}{-2}\right| = 2, \qquad \left|\frac{3}{-1}\right| = 3$$

The minimum ratio occurs corresponding to the non-basic variable x_1 . Thus, x_1 will be replaced by x_5 in the basis. Hence, the pivot element is $a_{11} = -1$. We construct tab-II, using pivot operation.

Tab-II is optimal but the basic variable x_6 has negative value. So, x_6 will leave the basis. By the same procedure, we see that x_3 will replace x_6 in the basis; we construct tab-III.

Tab-III is optimal and the solution is feasible. The optimal solution is

$$x_1 = 7, \qquad x_2 = 0, \qquad x_3 = 4, \qquad x_4 = 0$$

and the optimum value is Z = 7.

Since in \bar{c}_j row there is no zero values corresponding to non-basic variable, hence the solution is unique.