${\rm DS100M06VL}$

19. oktobar 2025.

Sadržaj

1	Mounting holes	3
2	Input connectors 2.1 PCB mount connector	3 3 3
3	Charging connector 3.1 Panel mount USB C	3
4	Input divider 4.1 Resistance divider	4 4 4 4
5	Offset results 5.1 10x gain enabled	5 5 5 5
6	Sources of offset 6.1 Input buffer	55555555
7	Output diff amp	6
8	Noise 8.1 Resistor noise	6 6 6
9	Issues	6
10	Asymetric gain	6

1 Mounting holes

4 mounting posts are spaced in a 80 mm by 40 mm rectangle. Plastic post hole width is about 2.5 mm, but to allow for a self tapping screw, the PCB hole must be M3.

Apropriate screw is has a B of 2 mm, L of 6 mm, A of 5 mm and C of 3 mm.

2 Input connectors

2.1 PCB mount connector

Pomona connector cost around 8 EUR.

2.2 Panel mount

3 Charging connector

3.1 Panel mount USB C

Aliexpress panel mount USB C connector cost around 1.2 EUR per 10 qty.

This connector may not have the required resistors in order to negociate current demand Kupujemprodajem konektor

4 Input divider

4.1 Resistance divider

With single sided input impedance of 4 Meg and a required attenuation of 1:400, total impedance from opamp input to gnd must be:

$$R_{in} = \frac{4 \text{ M}\Omega}{399} = 10.025 \text{ k}\Omega \tag{1}$$

Total resistance to ground is a parallel connection of the dividing resistor, 10 M Ω input offset trim pot and 10 M Ω opamp input resistance.

Dividing resistor value should then equal:

$$R_{div} = \frac{5\mathrm{M}\Omega \cdot 10.025\mathrm{k}\Omega}{5\mathrm{M}\Omega - 10.025\mathrm{k}\Omega} = 10.045\Omega \tag{2}$$

Placing a 0.1% resistor (10.010 k Ω max), trim pot should be around 50 Ω .

4.2 Capacitance divider

4 series 10 pF capacitors yield total 2.5 pF with a tolerance of 5%. In order to achieve 1:400 attenuation, total capacitance on the buffers input pin should be 997.5 pF. If we account for the 5% tolerance, total capacitance should be trimmable in the range for 947.62 pF to 1047.4 pF.

AD8039 features a typical input capacitance of 2 pF and thus should not significantly impact the total capacitance.

4.2.1 Trim potenciometers

Available trimmable capacitor has a capacitance range from 8 pF to 50 pF, not enough to account for the 5% capacitor tolerance.

These trim capacitors are expensive (5 EUR per 1 qty) and are only single turn, limiting trim accuracy.

4.2.2 Varicap trimming

In order to allow for auto-calibration, input capacitance needs to be control voltage dependant. To achieve this, a varicap diode may be used.

This component can be trimmed manually, using a trim potentiometer.

Since varicap add a voltage dependant capacitance value, total capacitance before the adding the varicap needs to be less then the total capacitance required.

As 5% capacitors are used, fixed capacitors used should equal:

$$C_{placed} = \frac{C_{req}}{1.05} - C_{varicap\ min} \tag{3}$$

Parallel connection of 2 470 pF yield capacitance in the range of 893 pF to 987 pF.

Since the capacitance change required is 10% of required capacitance, varicap capacitance change in the available control voltage range (0 V to 5V) must be around 100 pF.

Diode selection:

• Cheaper varicap diode is toshibas at 0.26 EUR per 10 qty.

• Better documented varicap diode is skyworks at 0.51 EUR per 10 qty.

PCB needs to support both of these diode footprints.

5 Offset results

5.1 10x gain enabled

-8.5 mV

5.2 1x gain enabled

 $9.2~\mathrm{mV}$

5.3 solving

$$V_{off_10} = 10 \cdot (2V_{in_off} + V_{curr_off}) + V_{out_off}$$

$$\tag{4}$$

$$V_{off_1} = 2V_{in_off} + V_{curr_off} + V_{out_off}$$

$$\tag{5}$$

$$V_{off_10} - V_{off_1} = 9 \cdot (2V_{in_off} + V_{curr_off}) = -17.7 \text{mV}$$
 (6)

Total input offset is -2 mV. Total output offset is 11.2 mV.

6 Sources of offset

6.1 Input buffer

6.1.1 Input bias current offset

AD8039 has an input bias current offset of 25nA, across the 20 k Ω input impedance, generates 0.5 mV of offset. Taking into account the second input buffer, maximum offset is 1 mV.

6.1.2 Input voltage offset

AD8039 has an max input voltage offset of 3mV. Worst case total offset is 6mV.

6.2 Output buffer

6.2.1 Input bias current offset

AD8009 has an max input current offset of 150 μ A. With an input impedance of 100 Ω , total offset is 15 mV. If both inputs have opposing offsets, the total offset is 30 mV

6.2.2 Input voltage offset

AD8009 has an max input voltage offset of 5mV.

7 Output diff amp

AD8039 load resistor is it's outputs series resistor.

8 Noise

8.1 Resistor noise

$$V_{rms} = \sqrt{4k_B T R \Delta f} \tag{7}$$

At the bandwidth of 100 MHz and temperature of 25 °C, noise is

$$V_{rms} = 3.63 \text{mV}_{RMS} \tag{8}$$

8.2 Input buffer noise

AD8039 has an input noise level of $8nV/\sqrt{Hz}$ meaning that total input noise rms at 100 MHz bandwidth is $80~\mu V_{RMS}$.

8.3 Output buffer noise

AD8009 has an input noise level of 1.9nV/ $\sqrt{\rm Hz}$ meaning that total input noise rms at 100 MHz bandwidth is 19 $\mu V_{\rm RMS}$.

9 Issues

10 Asymetric gain

At 100 mode, positive input connected to sig gen at 30 Mhz, reades 6.7 Vpp instead of 10 Vpp. In this configuration, AD8039 buffers sees 1 kOhm resistor from output to AD8009 input and 2 kOhm after that to ground.

Moving to 100 and 200 combo improves response, now closer to 8 Vpp