Homework

Chapter 1

Week 1

Recall that A system of linear equations is said to be **consistent** if it has either one solution or infinitely many solutions; a system is **inconsistent** if it has no solution.

1. Determine if the following system is consistent:

$$\begin{cases} x_1 - 4x_3 = 8 \\ 2x_1 - 3x_2 + 2x_3 = 1 \\ 4x_1 - 8x_2 + 12x_3 = 1 \end{cases}$$

2. Determine which matrices are in reduced echelon form and which others are only in echelon form.

a.
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \quad b. \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$c. \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad d. \begin{bmatrix} 1 & 1 & 0 & 1 & 1 \\ 0 & 2 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 & 4 \end{bmatrix}$$

3. Reduced the matrices to echelon form. Circle the pivot positions in the final matrix and in the original matrix, and list the pivot columns.

a)
$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 5 & 6 & 7 \\ 6 & 7 & 8 & 9 \end{bmatrix}$$

a)
$$\begin{bmatrix} 1 & 3 & 5 & 7 \\ 3 & 5 & 7 & 9 \\ 5 & 7 & 9 & 1 \end{bmatrix}$$

4. Find the general solutions of the systems whose augmented matrices

a)
$$\begin{bmatrix} 1 & 3 & 4 & 7 \\ 3 & 9 & 7 & 6 \end{bmatrix}$$

b)
$$\begin{bmatrix} 3 & -4 & 2 & 0 \\ -9 & 12 & -6 & 0 \\ -6 & 8 & -4 & 0 \end{bmatrix}$$

5 Solve the system

a)
$$\begin{cases} 4x + 2y + z = 18 \\ 4x - 2y - 2z = 28 \\ 2x - 3y + 2z = -8 \end{cases}$$

b)
$$\begin{cases} 2x_1 + x_2 + x_3 + 2x_4 = -1 \\ 5x_1 - 2x_2 + x_3 - 3x_4 = 0 \\ -x_1 + 3x_2 + 2x_3 + 2x_4 = 1 \\ 3x_1 + 2x_2 + 3x_3 - 5x_4 = 12 \end{cases}$$

Applications

6. (*Network Analysis*) The figure shows the flow of traffic (in vehicles per hour) through a network of streets.

- a) Solve this system for $x_i, i = 1, 2, 3, 4$
- b) Find the traffic flow when $x_4 = 0$.
- c) Find the traffic flow when $x_4 = 100$.

Week 2

- 1. Answer the following questions
 - a) If a matrix A is 5×3 and the product AB is 5×7 , what is the size of B?
 - b) How many rows does B have if BC is a 3×4 matrix?

2. Let
$$A = \begin{pmatrix} 1 & 1 \\ -2 & -1 \\ 1 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -1 & -2 \\ 2 & 1 & -2 \end{pmatrix}$, and $C = \begin{pmatrix} 1 & 1 & -3 \\ -1 & 2 & 1 \\ -3 & -1 & 0 \end{pmatrix}$.

Find the following if possible.

a)
$$A + 20B$$
, $B - 5A^T$, and BA

b)
$$A + 4C^T$$
, AC and CA

3. Let
$$A = \begin{pmatrix} 2 & 5 \\ -3 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 4 & -5 \\ 3 & c \end{pmatrix}$. What is value of c such that $AB = BA$?

- **4.** Let $A = \begin{pmatrix} 3 & -6 \\ -1 & 2 \end{pmatrix}$. Find matrix B such that AB = 0
- **5.** Consider the following system of equation

$$\begin{cases} 3x_1 + x_2 + x_3 = 3 \\ x_1 - x_2 - x_3 = 1 \\ x_1 + 2x_2 + 2x_3 = 1 \end{cases}$$

Denote $x=\begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix}$ the vector solution of the equation. Express your solution in the form x=tv+su, where v and u are column vector in three dimensions, $t,s\in\mathbb{R}$.

Week 3

Inverse matrices

1. Suppose A, B, and X are $n \times n$ matrices with A, X, and A - AX is invertible and and suppose

$$(A - AX)^{-1} = X^{-1}B \tag{*}$$

- a) Explain why B is invertible
- b) Solve (*) for X. If you need to invert a matrix, explain why that matrix is invertible.
- 2. Find the inverses of the matrices, if they exist

a)
$$\begin{pmatrix} 1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4 \end{pmatrix}$$

b)
$$\begin{pmatrix} 1 & -2 & 1 \\ 4 & -7 & 3 \\ -2 & 6 & -4 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

- **3.** If A, B, and C are $n \times n$ invertible matrices, does the equation $C^{-1}(A+X)B^{-1}=I_n$ have a solution, X? If so, find it.
- 4. Use an inverse matrix to solve system of linear equations.

$$x_1 + x_2 - 2x_3 = -1$$

$$x_1 - 2x_2 + x_3 = 2$$

$$x_2 - x_2 - x_3 = 0$$

5 Prove that if $A^2 = A$ then $I - 2A = (I - 2A)^{-1}$.