(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-227865

(43)公開日 平成8年(1996)9月3日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ	技術表示箇所
H 0 1 L 21/301			H01L 21/78	F
B 2 8 D 5/02			B 2 8 D 5/02	Α

		審査請求	未請求 請求項の数6 OL (全 7 頁)	
(21)出願番号	特願平7-32743	(71)出顧人	000005108 株式会社日立製作所	
(22)出願日	平成7年(1995)2月21日	(72) 登田孝	東京都千代田区神田駿河台四丁目6番地 阿部 由之	
		(12/75914)	東京都小平市上水本町 5 丁目20番 1 号 株式会社日立製作所半導体事業部内	
		(74)代理人	弁理士 筒井 大和	

(54) 【発明の名称】 板状ワークの切断方法および装置

(57)【要約】

【目的】 複数のブレードを用いて効率良くウエハなど のワークを小片に切断し得るようにする。

【構成】 第1ブレード13によりこれを切断方向に進 行移動させてウエハWを切断し、第1ブレード13に同 期して進行移動する第2ブレード14が切断開始側のス ペースSの位置となったら第1ブレード13の進行移動 を停止して第2ブレード14を切断開始側のスペースS に接近移動する。そして、それぞれのブレード13,1 4を進行移動させてこれらによりウエハWを同時に切断 し、第1ブレード13が切断終了側のスペースSにまで 進行移動したときに第2ブレード14の進行移動を停止 させて第1ブレード13を切断終了側のスペースSから 離反移動し、第2ブレード14を切断終了側のスペース Sまで進行移動させてウエハWを切断する。

【特許請求の範囲】

【請求項1】 ワークシートを有する枠体にこの枠体に 対して環状のスペースを介して前記ワークシートに保持 された板状ワークを小片に切断する板状ワークの切断方 法であって、先行側ブレードを前記板状ワークの切断開 始側のスペースに接近移動し、前記先行側ブレードによ りこれを切断方向に進行移動させて前記板状ワークを切 断し、前記先行側ブレードに同期して進行移動する追従 側ブレードが前記切断開始側のスペースの位置となった ら前記先行側ブレードの進行移動を停止して前記追従側 10 ブレードを前記切断開始側のスペースに接近移動し、前 記先行側と追従側のそれぞれのブレードを進行移動させ てこれらにより前記板状ワークを同時に切断し、前記先 行側ブレードが切断終了側のスペースにまで進行移動し たときに前記追従側ブレードの進行移動を停止させて前 記先行側ブレードを前記切断終了側のスペースから離反 移動し、次いで、前記追従側ブレードを前記切断終了側 のスペースまで進行移動させて前記板状ワークを切断す るようにしたことを特徴とする板状ワークの切断方法。

【請求項2】 請求項1記載の板状ワークの切断方法で 20 あって、前記先行側ブレードは前記板状ワークを所定の 深さで切断し、前記追従側ブレードは残りの部分を切断 し、前記先行側ブレードはダウンカットを行い、前記追 従側ブレードはアップカットを行うようにしたことを特 徴とする板状ワークの切断方法。

【請求項3】 ワークシートを有する枠体にこの枠体に 対して環状のスペースを介して前記ワークシートに保持 された板状ワークを小片に切断する板状ワークの切断装 置であって、

前記板状ワークが保持された枠体を支持する支持台と、 前記支持台に隣接して配置され、前記板状ワークの表面 に平行をなし相互に直角をなす2方向に移動自在のXY テーブルと、

前記XYテーブルに前記板状ワークの表面に垂直な方向 に移動自在に設けられ、先端に先行側ブレードを有する 先行側スピンドルと、

前記板状ワークの表面に垂直な方向に移動自在となり、 かつ前記先行側スピンドルに対して前記板状ワークの表 面に沿う方向にずらして前記XYテーブルに設けられ、 先端に追従側ブレードを有する追従側スピンドルと、 前記それぞれのスピンドルを独立して前記板状ワークの 表面に垂直な方向に移動自在に駆動する駆動制御部とを 有することを特徴とする板状ワークの切断装置。

【請求項4】 請求項3記載の板状ワークの切断装置で あって、前記駆動制御部は、前記先行側ブレードによる 前記板状ワークの切断が行われて前記追従側ブレードが 切断開始側のスペースにまで進行移動したときには、前 記XYテーブルの進行移動を停止して前記追従側ブレー ドを前記スペースまで接近移動し、前記先行側ブレード が切断終了側のスペースにまで進行移動したときには前 50 形成されることになり、ブレードはこのスペース内に入

記XYテーブルの進行移動を停止して前記先行側ブレー ドを前記スペースから離反させることを特徴とする板状 ワークの切断装置。

【請求項5】 請求項3または4記載の板状ワークの切 断装置であって、前記先行側と前記追従側のそれぞれの スピンドルはそれぞれ1つずつ設けられていることを特 徴とする板状ワークの切断装置。

【請求項6】 請求項3~5のいずれか1項に記載の板 状ワークの切断装置であって、前記板状ワークは半導体 ウエハであることを特徴とする板状ワークの切断装置。 【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は板状ワークを切断する技 術に関し、特に、半導体ウエハ(以下、単にウエハとい う)を小片状のチップつまりペレットに分割切断するダ イシングに適用して有用な切断技術に関する。

[0002]

【従来の技術】通常、半導体装置の製造においては、た とえば、シリコンなどの半導体からなる基板、すなわち ウエハにフォトリソグラフィ技術等によって所定の半導 体素子を規則的な配列で複数個同時に形成した後、ダイ シングによってウエハを格子状に切断することにより、 個々の半導体素子からなるペレットに分割することが行 われている

【0003】このような切断装置は、ダイシング装置あ るいはダイサなどとも言われており、20~30 um程 度の厚みの切刃を有するダイシングブレードが先端に取 り付けられたスピンドルを有している。スピンドルの先 端に取り付けられる円板状のブレードは、ウエハに垂直 30 な平面内において回転し、このブレードをウエハに接触 させながら水平方向に進行移動させることによって、ウ エハは格子状に切断されて複数のペレットが形成され る。このようなダイシングの技術については、たとえ ば、株式会社サイエンスフォーラム発行「最新半導体向 上自動化システム」昭和59年7月25日発行、P13 4~P137に記載されている。

【0004】ウエハを切断して個々に切断されたペレッ トは底面が粘着シートに粘着されて固定されているた め、ダイシング後もウエハの状態のときにおける相互の 位置関係が維持され、ダイシング後の採取作業などがウ エハの状態における個々のペレットの位置情報に基づい て正確に行われる。

【0005】ダイシングが行われるウエハは、粘着シー トからなるワークシートが貼り付けられウエハフレーム とも言われる枠体を用いて保持される支持台に真空吸着 により固定されるようになっており、ウエハは枠体との 間に所定のスペースを形成するように粘着シートの中央 部分に貼り付けられて固定される。したがって、枠体の 内周面とウエハの外周面との間には、環状のスペースが 3

り込んだ後に、反対側のスペースの位置となるまで移動 して、1ラインの切断操作が終了する。

[0006]

【発明が解決しようとする課題】一方、ウエハの切断効率を向上させるべく、2つのブレードを用いたデュアルスピンドル型のダイシング装置について、発明者によって検討された。その検討の結果、2つのスピンドルを同期して進行移動させるようにした場合には、ブレードが入り込むスペースは、ブレード1つ分の寸法しか確保されていないので、ブレードは枠体と干渉してしまうこと10になる。したがって、2つのブレードを用いる場合には、これらのブレードにより同時に切断作業を行うことができず、スループットが低下することになる。

【0007】そこで、ワークシートとして伸縮性の高い素材により形成されたエクスパンドシートを用い、枠体のみを支持台の表面よりも引き下げて粘着シートを引き伸ばすようにすることが試みられた。この方式によれば、2つのブレードにより同時に切断作業を行うことは可能であるが、ワークシートによってペレットにはこれを水平方向にずらすような作用力が付勢されてしまい、後の採取作業においてペレットをダイレクトピックアップする際に、位置ずれのために正確にペレットをつかむことができない場合があった。

【0008】本発明の目的は、複数のブレードを用いて 効率良くウエハなどのワークを小片に切断し得るように することにある。

【0009】本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。

[0010]

【課題を解決するための手段】本願において開示される 発明のうち、代表的なものの概要を簡単に説明すれば、 以下のとおりである。

【0011】すなわち、本発明の板状ワークの切断方法は、先行側ブレードと追従側ブレードの一方が、枠体とワークとの間のスペースに向けて接近移動したり離反移動する際には、他方のブレードも切断進行方向の移動を停止する。それぞれのブレードは相互にワークの別々の部位を切断するようにしても良く、同一の部位を複数段階で切断するようにしても良い。2つのブレードにより40二段回に切断する際には、先行側ブレードをダウンカットし、追従側ブレードをアップカットする。

【0012】本発明の板状ワークの切断装置は、XYテーブルにそれぞれブレードを有する複数のスピンドルがそれぞれワークの表面に垂直な方向に独立して移動自在となっており、XYテーブルの切断進行移送によってそれぞれのブレードは同期して切断進行方向に移動する。1つのブレードを枠体とワークとの間のスペースに対して接近離反移動させる際には、他のブレードは進行移動が停止されるようになっている。

[0013]

【作用】前記板状ワークの切断方法および装置にあっては、それぞれのブレードをスペースに向けて接近ないし離反移動させる際には、切断進行方向には移動しないので、スペースつまり枠体とワークとの間のスペースの間隔を広げることなく、ブレードと枠体あるいはワークとの不用意な接触が回避され、製品歩留りを高めつつワークを小片に効率良く切断することができる。また、複数のブレードを用いることにより、二段回に分けたワークの切断や相互に別々の部位を同時に切断することが可能となり、効率良くワークを切断することができる。

4

[0014]

【実施例】以下、本発明の実施例を図面に基づいて詳細 に説明する。

【0015】図1は本発明の板状ワークの切断装置であるダイシング装置を示す平面図であり、図2は図1の正面側の断面図である。

【0016】板状のワークであるウエハWは、粘着性のワークシート1を有する枠体2にワークシート1に貼り付けられて保持される。ワークシート1に貼り付けられたウエハWの外周面と枠体2の内周面との間には、環状のスペースSが形成される。枠体2は支持台3に真空吸着などにより支持されるようになっており、この支持台3は枠体2を90度で割り出し回転する。なお、ワークシートとしては、伸縮性が高くない、比較的硬質のものが使用される。

【0017】この支持台3に隣接してXYテーブル4が配置されており、このXYテーブル4はウエハWの表面に平行をなし、相互に直角をなすXYの2方向に移動自30 在となっている。このXYテーブル4には、2つの摺動ブロック5,6がそれぞれ上下方向つまり2方向に摺動自在に設けられており、一方の摺動ブロック5には第1スピンドル11が回転自在に設けられ、他方の摺動ブロック6には第2スピンドル12が設けられている。第1スピンドル11は先行側スピンドルとなっており、第2スピンドル12は追従側スピンドルとなっている。これらのスピンドル11、12は相互にX方向にずれて位置している。

【0018】それぞれのスピンドル11,12の先端には、ダイシング用のブレード13,14が装着されており、第1ブレード13は先行側ブレードとなり、第2ブレード14は追従側ブレードとなっている。それぞれの摺動ブロック5,6はXYテーブル4に設けられていることから、同期してX方向とY方向とに移動することになる。それぞれの摺動ブロック5,6は、XYテーブル4に対してウエハWの表面に垂直な方向、つまり図2において上下方向に独立して移動自在となっており、両方のスピンドル11,12も独立して上下方向に移動自在となっている。

50 【0019】図示するダイシング装置では、図1および

図2において、左側から右側にXYテーブル4を移動させる際にウエハWを切断しているので、第1ブレード13が先行側ブレードとなり、第2ブレードが追従側ブレードとなっているが、XYテーブル4を右側から左側に移動させる際にウエハWを切断する場合には、第2ブレード14が先行側ブレードとなり、第1ブレードが追従側ブレードとなる。

【0020】図3はダイシング装置の制御回路を示す図であり、支持台3を回転駆動するモータ21、XYテーブル4をX方向に駆動するモータ22、Y方向に駆動するモータ23、摺動ブロック5をZ方向に駆動するモータ24、摺動ブロック6をZ方向に駆動するモータ25、およびそれぞれのブレード13、14を回転駆動するためのモータ26には、駆動制御部27から制御信号が送られて所定のタイミングでそれぞれが駆動される。【0021】次に、図4を参照しつつダイシング装置によりウエハWを切断する操作について説明する。

【0022】まず、XYテーブル4を図2において右方向に進行移動させて、図4(a)に示すように、第1ブレード13を切断開始側のスペースSの真上に位置させ 20て、XYテーブル4の進行移動を停止させる。次いで、摺動ブロック5を下降移動させて、図4(a)において二点鎖線で示すように、第1スピンドル11つまり第1ブレード13をスペースSに接近移動させる。このように、XYテーブル4の進行移動を停止させた状態で第1ブレード13を下降移動させるので、第1ブレード13はスペースSの幅を最小限としても枠体2やウエハWに接触することなく、切削開始位置に下降移動することになる。

【0023】この状態のもとでXYテーブル4を図2に 30 おいて右側に進行移動させて第1ブレード13によってウエハWを切断する。この第1ブレード13は、図5(a)に示すように、幅L1となっており、これに対応した幅で深さDだけウエハWを切断する。この切断の進行に伴って、図4(b)に示すように、第2ブレード14が切断開始側のスペースSの位置となったら、XYテーブル4の進行移動を停止して、図4(c)に示すように第2ブレード14をこのスペースSに向けて接近移動させる。進行移動の停止時間は、接近移動に要する時間であり、図示する場合には、0.1~0.15秒程度に設定 40されている。

【0024】次いで、XYテーブル4を切断進行方向に移動させて、両方のブレード13,14によってウエハWの切断を行う。したがって、図5(b)に示すように、第2ブレード14は第1ブレード13が所定の深さDだけ切断した後を、第1ブレード13よりも狭い幅L2で完全に切断する。これにより、2つのブレード13,14による二段階の切断操作によって、図5(c)に示すように、階段状の切断面となってウエハWは切断される。

【0025】XYテーブル4を移動させることにより、両方のブレード13,14が切断進行方向に移動するに伴って、図4(d)に示すように、第1ブレード13が切断終了側のスペースSにまで進行移動したときには、XYテーブル4を停止して両方のブレード13,14の進行を停止させる。この状態のもとで、図4(e)に示すように、摺動ブロック5を上昇移動させることにより第1ブレード13を切断終了側のスペースSから離反移動させる。

6

【0026】離反移動が終了したならば、再度XYテーブル4を切断進行方向に移動させて、第1ブレード13による切断が終了した部分を第2ブレード14によって切断する。このようにして、第2ブレード14による切断作業が終了し、第2ブレード14が切断終了側のスペースSの位置まで到達したら、1ラインの切断作業が終了する。

【0027】その後、XYテーブル4は切断開始側に戻されるとともに、XYテーブル4をY方向に1ピッチ分だけずらして、前記した切断操作が繰り返される。ウエハWに対して平行に所定の本数の切断操作が完了した後には、支持台3が90度旋回して、同様の切断操作が所定のピッチ毎に行われる。このようにして、ウエハWは格子状に切断されて、複数のペレットが形成される。【0028】前記ダイシング装置にあっては、第1ブレ

【0028】前記ダイシング装置にあっては、第1ブレード13と第2ブレード14のいずれかをスペースSに対して接近移動させたり、離反移動させる際には、両方のブレードの進行移動を停止させるようにしたことから、その移動の際にブレード13,14は進行方向に移動しないので、スペースSの隙間寸法を可及的に狭くしても、ブレードと枠体2ないしウエハWとの不用意な接触が回避されて、高品質のペレットを効率良く切断することができる。

【0029】図6はそれぞれのブレード13,14の回転方向を示す図であり、図示する場合には、第1ブレード13はダウンカット方向に回転させ、第2ブレード14はアップカット方向に回転させるようにしている。ダウンカットは図6(a)に示すように、ウエハWの送り方向と同一の方向にブレード13を回転させる方式であり、アップカットは、図6(b)に示すように、ウエハWの送り方向と逆の方向にブレード14を回転させる方式である。

【0030】このように、第1ブレード13をダウンカット方向に回転させると、ウエハWの表面側はシャープな切断面となるが、切断溝の底面側はチッピングCが発生したり、割れ易くクラックが発生し易くなる。逆に第2ブレード14をアップカット方向に回転させると、ウエハWの底面側はシャープな切断面となるが、ウエハWの表面側はチッピングが発生し易くなる。しかし、第2ブレード14によるウエハWの表面側は第1ブレード1503によって所定の深さDで溝が切断されているので、こ

. . . .

の溝の底面ではチッピングが発生することが防止され る。

【0031】したがって、第1ブレード13をダウンカ ット方向とし、第2ブレード14をアップカットとして 回転させることによって、切断面の全体にはクラックの 発生やチッピングの発生がなくなり、高品質の切断がな され、製品の歩留りが向上することになる。

【0032】図示実施例では、第1ブレード13によっ て所定の深さに切断した後に、残りの部分を第2ブレー ド14によって切断するようにしているが、それぞれを 10 以下のとおりである。 図1のY方向に所定のピッチだけずらすことにより、同 時に2か所つまり2ライン分の切断を行うようにしても 良い。また、両方のブレード13,14を同一の方向に 回転させて、ダウンカットあるいはアップカットとして も良い。さらに、図示する場合では、1ラインの切断操 作が終了した後に、XYテーブル4を開始点位置に戻し て別の部分の切断を行うようにしているが、XYテーブ ル4を戻す際にも切断を行うようにしても良い。 つま り、XYテーブル4の往復動の両方で切断を行うように しても良く、その場合には、それぞれのブレード13、 14の回転方向を往動時と復動時とで逆転させるように しても良い。XYテーブル4を戻す場合にもウエハWの 切断を行う場合には、戻し時にはブレード14が第1ブ レードつまり先行側ブレードとなり、ブレード13が第 2ブレードつまり追従側ブレードとなる。

【0033】以上、本発明者によってなされた発明を実 施例に基づき具体的に説明したが、本発明は前記実施例 に限定されるものではなく、その要旨を逸脱しない範囲 で種々変更可能であることはいうまでもない。

【0034】たとえば、図示実施例にあっては、一台の 30 ダイシング装置に2つのスピンドル11.12を装着し て、2つのブレード13,14によって切断を行うよう にしているが、3つのスピンドルを装着するようにして も良い。その場合には、3つのブレードをX方向にずら して設けることにより、二番目のブレードは一番目のブ レードに対して追従側ブレードとなるとともに、三番目 のブレードに対しては先行側ブレードとなる。先行側ブ レードと追従側ブレードとの関係は前記した場合と同様 のタイミングで作動する。そして、ブレードの数つまり スピンドルの数は3つ以上としても良い。

【0035】図7は比較例として、前記したようにワー クシート1として伸縮性の高いエクスパンションシート を用いた場合を示す図であり、この場合には本発明の技 術を適用することなく、ウエハWの切断は可能である が、前記したようにワークシートによってウエハWの各 部位にこれを水平方向にずらすような作用力が付勢され てしまい、切断後のペレットがずれることがある。

【0036】これに対して、本発明の技術では、このよ うな現象が発生せず、作業性が大幅に向上する。

【0037】以上の説明では主として本発明者によって なされた発明をその利用分野である半導体ウエハのダイ シング技術に適用した場合について説明したが、これに 限定されるものではなく、たとえば、板状のワークを小 片に切断する場合であれば、どのようなワークに対して も適用できる。

8

[0038]

【発明の効果】本願において開示される発明のうち、代 表的なものによって得られる効果を簡単に説明すれば、

【0039】(1).ワークに対して同一ラインを複数回に 分けて切断するような複雑な断面形状をした切断を高ス ループットで効率良く行うことができる。

【0040】(2).一度の切断を複数のブレードにより効 率良く行うことができ、それぞれ同一幅のブレードを用 いて同時に複数の切断ラインを切断することができる。

【0041】(3).複数のブレードを相互に異なった回転 方向として、ダウンカットとアップカットとを行うこと ができる。

【0042】(4).ワークを切断後に切断された小片はワ ークシートによってずれることがなくなり、作業性が大 幅に向上する。

【図面の簡単な説明】

【図1】本発明の一実施例である板状ワークの切断装置 を具体化したダイシング装置を示す平面図である。

【図2】図1の正面側の断面図である。

【図3】制御回路を示すブロック図である。

【図4】(a)~(e)はダイシング装置を用いたウエ ハの切断方法を示す工程図である。

【図5】(a)~(c)は切断された後のウエハの断面 形状を示す断面図である。

【図6】(a)はダウンカットによる第1ブレードの切 断作業を示す断面図であり、(b)はアップカットによ る第2ブレードの切断作業を示す断面図である。

【図7】比較例であるダイシング装置を示す正面側断面 図である。

【符号の説明】

ワークシート 1

2 枠体

3 40 支持台

> 4 XYテーブル

> 5, 6 摺動ブロック

1 1 第1スピンドル(先行側スピンドル)

12 第2スピンドル(追従側スピンドル)

13 第1ブレード(先行側ブレード)

14 第2ブレード(追従側ブレード)

21~26 モータ

27 駆動制御部 (駆動制御手段)

W ウエハ(板状ワーク)

【図6】

(b)

