Rozwiązywanie równań różniczkowych zwyczajnych

Metody Obliczeniowe w Nauce i Technice

Sprawozdanie | Rozwiązywanie równań różniczkowych zwyczajnych

Paweł Fornagiel | Informatyka rok II | Grupa 5

Data Wykonania: 13.06.2025 | Data Oddania: 13.06.2025

1. Opis eksperymentu

W eksperymencie zbadano rozwiązywanie równania różniczkowego:

$$y' - kmy\sin(mx)\cos(mx) = k^2m\sin(mx)\cos(mx), \quad y(x_0) = a$$
 (1.1)

, którego dokładne rozwiązanie analityczne wynosi:

$$y(x) = e^{-k\cos(mx)} - k\cos(mx) + 1 \tag{1.2}$$

, gdzie

$$m = 3, k = 3$$

$$x \in \left[\frac{3}{2}\pi, 3\pi\right]$$

$$(1.3)$$

za pomocą metody Eulera oraz metody Rungego-Kutty 4 rzędu.

W eksperymentach przyjmowano w metodach wielkość kroku $h=10^k$, gdzie $k\in\{-1,-2,-3,-4,-5\}$. Dodatkowo, przeprowadzono analizę błędu przybliżenia rozwiązania analitycznego, opisane w Sekcja 4.

2. Dane techniczne

Zadanie zostało przeprowadzone z użyciem narzędzi o następujących parametrach:

- Komputer HP EliteBook 840 G6:
 - ► System operacyjny: Windows 11 x64
 - ► Procesor Intel(R) Core(TM) i5-8365U CPU 1.60GHz 1.90 GHz
 - ► Pamięć RAM: 8GB
- Środowisko: Jupyter Notebook
- Język: Python 3.12.0
- Biblioteki języka: Numpy, Pandas, Matplotlib, Seaborn

3. Analiza wyników

Rysunek 1: Dokładne rozwiązania równania różniczkowego wraz z aproksymacjami dla kroku h=0.1

Dla kroku h=0.1 w przypadku **metody Eulera** dokładnie widoczne są dwa minima - w punktach $x\approx 7.5$ oraz $x\approx 9.5$, tam, gdzie dokładne rozwiązanie równania różniczkowego osiąga lokalne maksimum. **Metoda Rungego-Kutty** daje rozwiązanie niemal identyczne do faktycznego rozwiązania.

Rysunek 2: Dokładne rozwiązania równania różniczkowego wraz z aproksymacjami dla kroku h=0.01

Dla kroku h=0.01 w przypadku **metody Eulera** ponownie widoczne są dwa minima w tych samych punktach, lecz pierwsze minimum osiąga dużo większą wartość niż występujące w drugim na końcu przedziału. **Metoda Rungego-Kutty** nadal daje rozwiązanie niemal identyczne do faktycznego rozwiązania, można wnioskować, że pozostanie już tak do końca.

Rysunek 3: Dokładne rozwiązania równania różniczkowego wraz z aproksymacjami dla kroku h=0.001

Dla kroku h=0.001 można zaobserwować, że w przypadku **metody Eulera** nie są już widoczne lokalne minima, dokładność jest znacznie większa w porównaniu do poprzednich kroków h. **Metoda Rungego-Kutty** - brak widocznej zmiany względem ostatniego wyniku.

Rysunek 4: Dokładne rozwiązania równania różniczkowego wraz z aproksymacjami dla kroku h=0.0001

Dla kroku h=0.0001 widoczne jest niemal dokładne dopasowanie do prawdziwego rozwiązania w przypadku **metody Eulera**. **Metoda Rungego-Kutty** - brak widocznej zmiany względem ostatniego wyniku.

Rysunek 5: Dokładne rozwiązania równania różniczkowego wraz z aproksymacjami dla kroku $h=0.00001\,$

Dla kroku h=0.00001 różnica pomiędzy **metodą Eulera** oraz **metodą Rungego-Kutty** staje się znikoma.

4. Analiza błędów przybliżenia

W celu wyznaczenia błędu przybliżenia użyto błędu maksymalnego, wyrażonego wzorem

$$E_{\max} = \max_{i \in \{1, 2, \dots, l\}} (|y_i - \tilde{y}_i|) \tag{4.1}$$

, gdzie

- l liczba punktów, będących wynikiem odpowiedniej metody
- $\,y_i$ wynik w punkcie x_i otrzymany rozwiązaniem analitycznym
- $\tilde{y_i}$ wynik w punkcie x_i obliczony dla odpowiedniej metody

Porównanie błędów $E_{ m max}$		
h	Metoda Eulera	Metoda Rungego-Kutty
1e-01	7.12471e+01	6.29009e-01
1e-02	4.22640e+01	1.60143e-05
1e-03	6.04019e+00	1.71420e-09
1e-04	6.27823e-01	1.84816e-10
1e-05	6.30274e-02	3.00399e-09

Tabela 1: Przedstawienie wyników błędów maksymalnych $E_{\rm max}$ dla poszczególnych metod

Rysunek 6: Wykres błędu maksymalnego metod Eulera i Runge-Kuttego dla poszczególnych wielkości kroków

Na podstawie Tabela 1 oraz Rysunek 6 można zauważyć wyraźną poprawę jakości przybliżenia podanymi metodami w miarę zmiejszania kroku h w przypadku obydwu metod. Mimo tego, zanik błędu w metodzie Eulera zachodzi znacznie wolniej niż w przypadku metody Rungego-Kutty. Dodatkowo, błąd metody Eulera jest zawsze kilka rzędów wielkości większy od błędu w metodzie Rungego-Kutty.