In [3]:	<pre>import sys import math # For Math functions import sympy as sym # For declaring variables as symbols, make sure you have sympy installed in your system from sympy import symbols from sympy import * import matplotlib.pyplot as plt from mpl_toolkits import mplot3d from mpl_toolkits.mplot3d import Axes3D</pre>
	ENPM662 - Final Exam - Pick and place using a humanoid robot The humanoid robot has been designed with 15 Degrees-of-Freedom. As can be seen in the figure below the robot has 15 joints in total.
	Sketch of the Humanoid Robot Kdy
	Right Did Neuk
	as to ellow as
	and 3 Q and end effection
	-(3) (knee) and (5) (c) (c) (c) (c)
	The robot has the following links These are considered parallely for both the halves of the robot. (Right and left) 1. Ankle - 2 joints (1,2)
	 2. Knee - 2 joints (3,4) 3. Waist - 2 joints (5,6) 4. Shoulder - 4 joints (7,8,9,10) 5. Elbow - 2 joints (11,12) 6. Wrist - 2 joints (13,14) 7. Neck - 1 joint (15) I am assuming the following dimensions for my robot. I am taking the following values for the links of the humanoid Calf = a1 = 40 cm = 0.40 m Thigh = a2 = 40 cm = 0.40 m
	Torso = a3 = 45 cm = 0.45 m Upperarm = a5 = 30 cm = 0.30 m Forearm = a6 = 28 cm = 0.28 m Palm = a7 = 10 cm = 0.10 m Shoulder width d4 = 08 cm = 0.08 m All the links in my robot are assumed to be a hollow cylindrical in shape I assume the ankle of my robot to be my base.
	The motors are placed at the joints of the robot as mentioned above. So in total 15 motors are placed in the robot. I assume the outer radius of the legs and arms to be 4 cms = 0.04 m and the inner radius to be 3 cms. The outer radius of the torso to be 15 cms = 0.15 m and the inner radius to be 13.5 cm = 0.135 m. Calculating the Mass of the links of the robot. Using the Formula V = we find the volumes of each of the links.
	 Volume of each calf = Volume of each thigh = Volume of torso = Volume of each upperarm = Volume of each forearm = Volume of each palm = It is given that the robot links are made up of aluminium. The density of Aluminium = We know that Density
	Using all this information we can calculate the mass of links of the robot as 1. Mass of each calf = 4.7665 Kgs 2. Mass of each thigh = 4.7665 Kgs 3. Mass of torso = 32.755 Kgs 4. Mass of each upperarm = 3.575 Kgs 5. Mass of each forearm = 3.337 Kgs 6. Mass of each palm = 1.1919 Kgs
	Now that we have calculated the mass of all the links, let us estimate (assume) the mass of other auxillary items 1. Assumed mass of Head + Neck = 2 Kgs 2. Assumed mass of each end effector = 1 Kg 3. Assumed mass of each foot = 1.5 Kgs 4. Assume an error of 0.5 Kg for the total mass of the robot The mass of each motor is given as 1lb = 0.453592 Kgs Since there are 15 maters in total for my robot, the sum weight of the maters = 6.80388 Kgs
	Since there are 15 motors in total for my robot, the sum weight of the motors = 6.80388 Kgs Therefore the total mass of the robot is 57.391 Kgs 0.5 (without motors) The sum total mass of the robot is 64.19488 Kgs (with motors) Co-ordinate Frame Assignment for the humanoid robot As shown above the robot is to have a sum total of 15 Degrees-of-freedom. For ease of calculation and to prevent a closed loop system the humanoid robot has been split vertically into two parts.
	Left side and right side. Each side will be assigned frames separately and calculations can be made separately. (o-ordinate Fname assignment for the left side of the robot Right Side of the robot A day
	(Shouldways 0304 54 23 24 VALA DE (Shouldways of 23) 24 VALA DE (Shouldways of 23) 25 VALA DE (Shouldways of 23) 27 VALA DE (Shouldways of 23) 28 (Shouldways of 23) 29 VALA DE (Shouldways of 23) 20 VALA DE (Shouldways of 23) 21 VALA DE (Shouldways of 23) 22 VALA DE (Shouldways of 23) 24 (Shouldways of 23) 25 VALA DE (Shouldways of 23) 26 VALA DE (Shouldways of 23) 27 VALA DE (Shouldways of 23) 28 VALA DE (Shouldways of 23) 29 VALA DE (Shouldways of 23) 20 VALA DE (Shouldways of 23) 21 VALA DE (Shouldways of 23) 22 VALA DE (Shouldways of 23) 24 VALA DE (Shouldways of 23) 25 VALA DE (Shouldways of 23) 26 VALA DE (Shouldways of 23) 27 VALA DE (Shouldways of 23) 28 VALA DE (Shouldways of 23) 29 VALA DE (Shouldways of 23) 20 VALA DE (Shouldways of 23) 21 VALA DE (Shouldways of 23) 22 VALA DE (Shouldways of 23) 24 VALA DE (Shouldways of 23) 25 VALA DE (Shouldways of 23) 26 VALA DE (Shouldways of 23) 27 VALA DE (Shouldways of 23) 28 VALA DE (Shouldways of 23) 29 VALA DE (Shouldways of 23) 20 VALA DE (Shouldways of 23) 21 VALA DE (Shouldways of 23) 22 VALA DE (Shouldways of 23) 23 VALA DE (Shouldways of 23) 24 VALA DE (Shouldways of 23) 25 VALA DE (Shouldways of 23) 26 VALA DE (Shouldways of 23) 27 VALA DE (Shouldways of 23) 20 VALA DE (Shouldways of 23) 21 VALA DE (Shouldways of 23) 22 VALA DE (Shouldways of 23) 23 VALA DE (Shouldways of 23) 24 VALA DE (Shouldways of 23) 25 VALA DE (Shouldways of 23) 26 VALA DE (Shouldways of 23) 27 VALA DE (Shouldways of 23) 28 VALA DE (Shouldways of 23) 29 VALA DE (Shouldways of 23) 20 VALA DE (Shouldways of 23) 20 VALA DE (Shouldways of 23) 20 VALA DE (Shouldways of 23) 27 VALA DE (Shouldways of 23) 27 VALA DE (Shouldways of 23) 27 VALA DE (Shouldways of 23) 28 VALA DE (Shouldways of 23) 29 VALA DE (Shouldways of 23) 20 VALA DE (Shouldways of 23) 27 VALA DE (Shouldways of 23) 28 VALA DE (Shouldways
	Based on these frames, we estimate the D-H Parameters for the two sides in separate tables D-H Parameters Table for the B-H Parameter Table for the Right Side of the Robot
	Link Jiansformation d a d θ $framsformation d a d d framsformation d a d d framsformation d a d d d d d d d d d d$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Link Lengths and Link Offsets As asked by the Professor, we will be going forward with the Forward and Inverse Kinematics calculations by considering either half of the humanoid. I will be using the right side of the humanoid robot for my calculations going forward. Note: Since there are seven DOF, calculating the Jacobian and its Inverse becomes diffucilt. So to make it a square matrix, I lock the wrist joint. (Set its angle as = 0 throughout and eliminate its respective Jacobian component for the Jacobian matrix)
In [33]:	Now we need to write the individual transformation matrices for each transformation #defining a function which will return the transformation matrices def trans(t,al,a,d): xi = symbols('theta_i') yi = symbols('alpha_i') di = symbols('d_i') ai = symbols('d_i') cxi = sym.cos(xi) sxi = sym.sin(xi) cyi = sym.cos(yi) syi = sym.sin(yi) T0_i = sym.Matrix([[cxi, -sxi*cyi, sxi*syi, ai*cxi], [sxi, cxi*cyi, -cxi*syi, ai*syi], [0, syi, cyi, di], [0, 0, 0, 1]]) T0_i = T0_i.subs(ai,a).subs(di,d).subs(xi,t).subs(yi,al) return T0_i
In [199]:	<pre>Transformation from 0 to 1 t_1 = symbols('theta_1') t_2 = symbols('theta_2') t_3 = symbols('theta_3') t_4 = symbols('theta_4') t_5 = symbols('theta_5') t_6 = symbols('theta_6') t_7 = symbols('theta_7') t_7 = 0 #locking the joint</pre>
	T0_1 = trans (t_1,-sym.pi,0.4,0) T1_2 = trans (t_2,sym.pi,0.4,0) T2_3 = trans (t_3,0,0.45,0) T3_4 = trans (t_4,-sym.pi/2,0,-0.08) T4_5 = trans (t_5,sym.pi/2,0.3,0) T5_6 = trans (t_6,sym.pi/2,0.28,0) T6_7 = trans (t_7,0,0.1,0) T0_2 = T0_1 * T1_2 T0_3 = T0_2 * T2_3
	T0_4 = T0_3 * T3_4 T0_5 = T0_4 * T4_5 T0_6 = T0_5 * T5_6 T0_7 = T0_6 * T6_7 #Solving for the jacobian matrix On = sym.Matrix(T0_7.col(3)[0:3]) O0 = sym.Matrix([0, 0, 0]) O1 = sym.Matrix(T0_1.col(3)[:3]) O2 = sym.Matrix(T0_2.col(3)[:3]) O3 = sym.Matrix(T0_3.col(3)[:3]) O4 = sym.Matrix(T0_4.col(3)[:3])
	<pre>05 = sym.Matrix(T0_5.col(3)[:3]) 06 = sym.Matrix(T0_6.col(3)[:3]) r1 = 0n-00 r2 = 0n-01 r3 = 0n-02 r4 = 0n-03 r5 = 0n-04 r6 = 0n-05 r7 = 0n-06</pre> z0 = sym.Matrix([0, 0, 1])
	<pre>z1 = sym.Matrix(T0_1.col(2)[:3]) z2 = sym.Matrix(T0_2.col(2)[:3]) z3 = sym.Matrix(T0_3.col(2)[:3]) z4 = sym.Matrix(T0_4.col(2)[:3]) z5 = sym.Matrix(T0_5.col(2)[:3]) z6 = sym.Matrix(T0_6.col(2)[:3]) Jv1 = z0.cross(r1) Jw1 = z0 J1 = Jv1.col_join(Jw1) Jv2 = z1.cross(r2)</pre>
	<pre>Jw2 = z1 J2 = Jv2.col_join(Jw2) Jv3 = z2.cross(r3) Jw3 = z2 J3 = Jv3.col_join(Jw3) Jv4 = z3.cross(r4) Jw4 = z3 J4 = Jv4.col_join(Jw4) Jv5 = z4.cross(r5)</pre>
	<pre>Jw5 = z4 J5 = Jv5.col_join(Jw5) Jv6 = z5.cross(r6) Jw6 = z5 J6 = Jv6.col_join(Jw6) Jv7 = z6.cross(r7) Jw7 = z6 J7 = Jv7.col_join(Jw7)</pre>
In [210]:	#Final Jacobian Matrix without the joint at wrist J = J1.row_join(J2).row_join(J3).row_join(J4).row_join(J5).row_join(J6) #For the inital position, we rotate the robot as per these angles respectively q = sym.Matrix([0, 0, 0, math.pi/4, math.pi/4, math.pi/4]) Now we find out the end effector's position for these values of theta Trans0_7 = T0_7.subs(t_1,q[0,0]).subs(t_2,q[1,0]).subs(t_3,q[2,0]).subs(t_4,q[3,0]).subs(t_5,q[4,0]).subs(t_6,q[5,0])
In [223]:	P7=sym.Matrix([[0] , [0] , [1]]) P = Trans0_7 * P7 X = P[0,0] Y = P[1,0] Z = P[2,0] Now we make the robot to bend to a certain position (near the knees) so that it can reach there to pick up the box X = [] Y = []
	<pre>T = [] for i in range(100): Jacobian = J.subs(t_1,q[0,0]).subs(t_2,q[1,0]).subs(t_3,q[2,0]).subs(t_4,q[3,0]).subs(t_5,q[4,0]).subs(t_6,q[5,0]) psuedo_inv = Jacobian.pinv() # ti = math.pi/2 + ((2*math.pi)*(i))/100 #initial position of the angle tf = math.pi/2 + ((2*math.pi)*(i+1))/100 #new position of the angle Trans0_7 = T0_7.subs(t_1,q[0,0]).subs(t_2,q[1,0]).subs(t_3,q[2,0]).subs(t_4,q[3,0]).subs(t_5,q[4,0]).subs(t_6,q[5,0])</pre>
	<pre>P = Trans0_7 * P7 # X and Z coordinates of P are stored X.append(P[0,0]) Y.append(P[1,0]) Z.append(P[2,0]) end1 = sym.Matrix([1.28636038969321, 0.532340187157677, -0.57, 0, 0,0]) #starting positi on end2 = sym.Matrix([0.4, 0.532340187157677, -0.57, 0, 0, 0]) #goal position delta = (end2-end1)/100 #Since it is quasistatic, each delta must be equal</pre>
In [227]:	<pre>plt.grid() plt.ylabel('X') plt.xlabel('Z')</pre>
	plt.xlabel('Z') plt.plot(Z,X) plt.axis("equal") plt.pause(0.05) plt.show() Path followed by end effector -0.1
	New we calculate the Dynamic equations for the robot
	New we calculate the Dynamic equations for the robot Force Analysis of the block 8 = 45
	Frings Frings Frings Frings Frings Frings
	Forces along x
	From $45^{\circ} - N = 0$ $= > N = F \cos 45^{\circ} - 0$ $= > N = F \cos 45^{\circ} $
	$f + F sin_{45} - mg = 0$ We take $u = 0.43$ $(0.43)(N) + F sin_{45} - mg = 0$
	(0.43) $(F\cos 45) + F\sin 45 = mg$ (0.43) (Fi) + (Fi) = (4.53592) (9.81) F = 44.006N
In [233]:	So When we break this force into its components as per the base frame notation we get FX = 31.1169 N and FZ = 31.1169 N
	<pre>m2 = 4.7665 m3 = 16.3775 #Half weight of torso m4 = 3.575 m5 = 3.337 m6 = 1.1919 #Mean of masses of link 4 and 5 g = 9.81 #the acceleration due to gravity #Position of centre of gravity cg1 = sym.Matrix([0.2,0,0,1]) cg2 = sym.Matrix([0.4,0,0,1]) cg3 = sym.Matrix([0.225,-0.04,0,1]) cg4 = sym.Matrix([0,0,0,1])</pre>
	cg5 = sym.Matrix([0.15,0,0,1]) cg6 = sym.Matrix([0.14,0,0,1]) cg7 = sym.Matrix([0.05,0,0,1]) #Transformations of centre of gravity positions LG2 = T0_1*cg2 LG3 = T0_3*cg3 LG4 = T0_3*cg4 LG5 = T0_4*cg5 LG6 = T0_5*cg6 LG7 = T0_6*cg7
	<pre>#finding the potential energy PE = g * (m1*cg1[0] + m2*LG2[0]+ m3*LG3[0] + m4*LG4[0] + m5*LG5[0] + m6*LG6[0]) #m*g*h #The gravity matrix is given by Grav = sym.Matrix([diff(PE,t_1), diff(PE,t_2), diff(PE,t_3), diff(PE,t_4), diff(PE,t_5), diff(PE,t_6)]) parts = [] #initializing empty list to store the torque calculated for each joint T1 = []</pre>
	<pre>T1 = [] T2 = [] T3 = [] T4 = [] T5 = [] T6 = [] for i in range (100): #Finding the gravity matrix for this iteration Gravity = Grav.subs(t_1,q[0,0]).subs(t_2,q[1,0]).subs(t_3,q[2,0]).subs(t_4,q[3,0]).subs(t_5,q[4,0]).subs(t_6,q[5,0]) Jacobian = J.subs(t_1,q[0,0]).subs(t_2,q[1,0]).subs(t_3,q[2,0]).subs(t_4,q[3,0]).subs(t_5,q[4,0]).subs(t_5,q[4,0]).subs(t_5,q[5,0])</pre>
	<pre>5,q[4,0]).subs(t_6,q[5,0]) JT = sym.Transpose(Jacobian) Tau = Gravity - JT*F #storing these torques for each joint in separate lists initialized above T1.append(Tau[0,0]) T2.append(Tau[1,0]) T3.append(Tau[2,0]) T4.append(Tau[3,0]) T5.append(Tau[4,0]) T6.append(Tau[5,0])</pre>
In [234]:	<pre>#Storing the no. of parts in the list initialized above parts.append(i) plt.title('Joint 4') plt.grid() plt.ylabel('Tau4(Nm)') plt.xlabel('time(s)') plt.plot(parts,T4) plt.pause(0.05) plt.show()</pre>
	Joint 4 11.0 10.8 10.6 10.4

10.2