

University College Dublin An Coláiste Ollscoile, Baile Átha Cliath

PHYC20090 Electronics and Devices

Experiment No.9 Holography

24 February 2025

by Joana C.C. Adao (Student No. 23311051)
With Ananya L.

Contents

Ab	stract						
1	Theory						
1.1	1.1 Recording and Reconstruction of Holograms						
1.2							
1.3	Properties of Laser Light in Holography						
	1.3.1 Interference and Diffraction						
	1.3.2 Coherence						
	1.3.3 Monochromaticity						
	1.3.4 Beam Properties: Intensity and Directionality						
1.4	Amplitude and Phase						
1.5	Types of Holograms						
	1.5.1 Transmission Holograms						
	1.5.2 Reflection Holograms						
1.6	Materials and Processing Techniques						
	1.6.1 Photographic Emulsion vs. Photopolymers						
	1.6.2 Chemical Processing						
	1.6.3 Chemical Effects on Hologram Quality						
1.7	How Shape, Design and Dimension Affect the Hologram						
1.8	Applications of Holography						
2	Methodology						
3	Results and Calculations						
4	Conclusion						
Ref	ferences						
${f Lis}$	t of Figures						
${f Lis}$	t of Tables						

Abstract

1 Theory

1.1 Recording and Reconstruction of Holograms

1.2 Fourier Transforms

Consider the reflected waves as seen in Figure 1. The detailed nature of this "object beam" is dependent on the object's shape and surface characteristics. Taking a general approach, describe the object beam as a superposition (combination) of plane waves,

$$\psi_0(r,t) = A_0 \iint F_0(k_x, k_y) e^{i(\omega t - k_x x - k_y y - k_z z)} dk_x dk_y$$

where $(k_x^2 + k_y^2 + k_z^2)^{1/2} = k = \lambda/2$. Suppose we have permitted this wave ψ_0 to interfere with a reference beam given by

$$\psi_1(r,t) = A_1 e^{i(\omega t - kz)}$$

and have recorded the resulting intensity pattern on a photographic plate positioned in the plane z = 0. The intensity recorded on the plate is then

$$I(x,y) = |A_1 + A_0 \iint F_0(k_x, k_y) e^{-i(k_x x + k_y y)} dk_x dk_y|^2$$

Expanding the right-hand side of this equation, we will have terms proportional to $|\psi_0|^2$, $|\psi_1|^2$, and $|\psi_0\psi_1^*|$.

Assuming that the reference beam is much more intense than the object beam (ie. $|\psi_1| \gg |\psi_0|$), then the term in $|\psi_0|^2$ can be ignored, and the intensity can be approximated as

$$I(x,y) \approx |A_1|^2 + A_0 A_1^* \iint F_0(k_x, k_y) e^{-i(k_x x + k_y y)} dk_x dk_y + A_1 A_0^* \iint F_0(k_x, k_y) e^{+i(k_x x + k_y y)} dk_x dk_y$$

The transmission function for a developed plate can be expressed as $T(x,y) = 1 - \gamma I(x,y)$ where γ is a function of the exposure and developing processes. Therefore, the hologram's transmission function is

$$T(x,y) = C_0 - \gamma A_0 A_1^* \iint F_0(k_x, k_y) e^{-i(k_x x + k_y y)} dk_x dk_y - \gamma A_1 A_0^* \iint F_0(k_x, k_y) e^{+i(k_x x + k_y y)} dk_x dk_y$$

where C_0 is a constant. Essentially, the hologram contains both scaled versions of the twodimensional Fourier transform of the object beam and its inverse, superimposed on each other. When this hologram is illuminated with a plane wave life the original reference beam, another Fourier transformation occurs, which leads to

$$\psi(r,t) = \iint F(k'_x, k'_y) e^{i(\omega t - k'_x x - k'_y y - k'_z z)} dk'_x dk'_y$$

where, according to Fourier optics,

$$F(k'_x, k'_y) = \left(\frac{1}{2\pi}\right)^2 \iint T(x, y) e^{i(k'_x x + k'_y y)} dx dy$$

The three terms that make up T(x, y) obligingly integrate as delta functions (unlike the ignored $|\psi_0|^2$ term, which would not behave as such), and we find

$$F(k_x', k_y') = -\gamma A_1^* A_0 F_0(k_x', k_y') - \gamma A_1 A_0^* F_0^*(-k_x', -k_y') + C_0 \delta(k_x') \delta(k_y')$$

As a result, when the hologram is illuminated correctly (as in Figure), the emerging wave consists of three parts: (left) a term that is proportional to the original object beam, effectively reconstructing the object in all details of amplitude and phase; (centre) a so-called "twin reconstruction" or "twin image", which can be shown to be the original object beam, reflected across the photographic plate and travelling backwards in time; and (right) an undeflected segment of the reference beam travelling along the z-axis.

Figure 1: sample caption [1]

- 1.3 Properties of Laser Light in Holography
- 1.3.1 Interference and Diffraction
- 1.3.2 Coherence
- 1.3.3 Monochromaticity
- 1.3.4 Beam Properties: Intensity and Directionality
- 1.4 Amplitude and Phase
- 1.5 Types of Holograms
- 1.5.1 Transmission Holograms
- 1.5.2 Reflection Holograms
- 1.6 Materials and Processing Techniques
- 1.6.1 Photographic Emulsion vs. Photopolymers
- 1.6.2 Chemical Processing
- 1.6.3 Chemical Effects on Hologram Quality
- 1.7 How Shape, Design and Dimension Affect the Hologram
- 1.8 Applications of Holography
- 2 Methodology
- 3 Results and Calculations

4 Conclusion

References

		•	and Z. Kermis essed 9 March 2	 ohy," in Phys	sics 312.	Princeton
List	of Figu	ıres				
1	sample ca	ption $[1]$		 		2
List	of Tab	les				