Dernière mise à jour	Mécanismes – Vitesses –	Denis DEFAUCHY
29/03/2016	Accélérations – Lois entrée/sortie	TD8 - Sujet

Mécanismes Vitesses et accélération - Lois entrée/sortie

TD8Liaisons équivalentes

Programme - Compétences		
B211	MODELISER	Torseur cinématique
B214	MODELISER	Liaisons: - liaisons normalisées entre solides, caractéristiques géométriques et repères d'expression privilégiés - torseur cinématique des liaisons normalisées - associations de liaisons en série et parallèle - liaisons cinématiquement équivalentes

Dernière mise à jour	Mécanismes – Vitesses –	Denis DEFAUCHY
29/03/2016	Accélérations – Lois entrée/sortie	TD8 - Sujet

Liaisons équivalentes

Exercice 1: 3 glissières orthogonales

Soit le schéma cinématique suivant :

On s'intéresse à la liaison équivalente 4/1.

Question 1: Etablir le graph des liaisons du mécanisme

Question 2: Les liaisons sont-elles en série ou en parallèle ?

Question 3: Choisir, en le justifiant, point et base utiles à la détermination de la

liaison équivalente

Question 4: Mener l'analyse et donner le torseur équivalent

Question 5: Les inconnues de la liaison équivalente sont-elles indépendantes

Question 6: Combien d'inconnues indépendantes possède cette liaison équivalente ?

Question 7: La liaison est-elle une liaison normalisée ?

Dernière mise à jour	Mécanismes – Vitesses –	Denis DEFAUCHY
29/03/2016	Accélérations – Lois entrée/sortie	TD8 - Sujet

Exercice 2: Pompe hydraulique à pistons axiaux

Une pompe hydraulique transforme l'énergie mécanique de rotation en énergie hydraulique (pression, débit). Intéressons-nous aussi à une pompe hydraulique à pistons axiaux (pistons parallèles à l'axe de rotation d'entrée) :

L'arbre moteur entraine en rotation un barillet contenant les pistons, en liaison pivot glissante avec celui-ci. Chaque piston est lié par l'intermédiaire d'une liaison rotule à un plateau mobile parallèle à un plateau fixe qui glissent l'un sur l'autre (liaison appui plan).

On propose ci-dessous un modèle comportant un piston, (2), le plateau mobile (1) et le plateau fixe (0). On souhaite déterminer la liaison équivalente entre le piston (2) et le plateau mobile (0).

On s'intéresse à la liaison équivalente 2/0.

Question 1: Etablir le graph des liaisons du mécanisme

Question 2: Les liaisons sont-elles en série ou en parallèle ?

Question 3: Choisir, en le justifiant, point et base utiles à la détermination de la

liaison équivalente

Question 4: Mener l'analyse et donner le torseur équivalent

Question 5: Les inconnues de la liaison équivalente sont-elles indépendantes

Question 6: Combien d'inconnues indépendantes possède cette liaison équivalente ?

Question 7: La liaison est-elle une liaison normalisée ?

Dernière mise à jour	Mécanismes – Vitesses –	Denis DEFAUCHY
29/03/2016	Accélérations – Lois entrée/sortie	TD8 - Sujet

Exercice 3: Guidage en rotation

$$\overrightarrow{AC} = \overrightarrow{CB} = \frac{1}{2}L_1\overrightarrow{x_1}$$

On suppose $L_1 \neq 0$ et on s'intéresse à la liaison équivalente 1/0.

Question 1: Etablir le graph des liaisons du mécanisme

Question 2: Les liaisons sont-elles en série ou en parallèle ?

Question 3: Choisir, en le justifiant, point et base utiles à la détermination de la

liaison équivalente

Question 4: Mener l'analyse et donner le torseur équivalent dans le cas où $L_1
eq 0$

Question 5: Les inconnues de la liaison équivalente sont-elles indépendantes

Question 6: Combien d'inconnues indépendantes possède cette liaison équivalente ?

Question 7: La liaison est-elle une liaison normalisée ?

Question 8: Que se passe-t-il si $L_1=0$?

Dernière mise à jour	Mécanismes – Vitesses –	Denis DEFAUCHY
29/03/2016	Accélérations – Lois entrée/sortie	TD8 - Sujet

Exercice 4: Guidage en translation

On réalise un guidage en translation par l'intermédiaire de deux rails en parallèle sur lesquels est fixé par encastrement sur les surfaces planes supérieures des rails un plateau non visible sur la vue 3D cidessus. Ce plateau possède, sur sa partie inférieure, une pièce soudée dans laquelle vient s'emboiter la pièce « Ecrou » par l'intermédiaire de deux surfaces et un arrêt par vis. Le mouvement de translation de l'ensemble Plateau-Pièce soudée-Ecrou est ainsi piloté par la vis..

On suppose $a \neq 0$ et on s'intéresse à la liaison équivalente 1/0 et uniquement aux pièces 0 et 1. On supposera donc que la pièce 2 est absente.

Question 1: Etablir le graph des liaisons du mécanisme

Question 2: Les liaisons sont-elles en série ou en parallèle ?

Question 3: Choisir, en le justifiant, point et base utiles à la détermination de la liaison équivalente

Question 4: Mener l'analyse et donner le torseur équivalent

Question 5: Les inconnues de la liaison équivalente sont-elles indépendantes

Question 6: Combien d'inconnues indépendantes possède cette liaison équivalente ?

Question 7: La liaison est-elle une liaison normalisée ?

Question 8: Quelle liaison est réalisée si a = 0?

Dernière mise à jour	Mécanismes – Vitesses –	Denis DEFAUCHY
29/03/2016	Accélérations – Lois entrée/sortie	TD8 - Sujet

Exercice 5: Liaison complexe

Soit le schéma cinématique suivant :

On suppose que le vecteur \overrightarrow{AC} reste porté par $\overrightarrow{y_1}$ et que \overrightarrow{BC} reste porté par $\overrightarrow{z_1} = \overrightarrow{z_2}$. Même si les points A ou B venaient à bouger, le point C sera le point vérifiant ces conditions.

On s'intéresse à la liaison équivalente 2/1.

On supposera dans un premier temps que $\cos\theta_{21}\neq 0$ et $\sin\theta_{21}\neq 0$

Question 1: Etablir le graph des liaisons du mécanisme

Question 2: Les liaisons sont-elles en série ou en parallèle ?

Question 3: Choisir, en le justifiant, point et base utiles à la détermination de la liaison équivalente

Question 4: Mener l'analyse et donner le torseur équivalent

Question 5: Les inconnues de la liaison équivalente sont-elles indépendantes

Question 6: Combien d'inconnues indépendantes possède cette liaison équivalente ?

Question 7: La liaison est-elle une liaison normalisée ?

Pour la suite, on reprendra le système d'équations obtenu précédemment.

Soit le système suivant où $\theta_{21}=0$

Dernière mise à jour	Mécanismes – Vitesses –	Denis DEFAUCHY
29/03/2016	Accélérations – Lois entrée/sortie	TD8 - Sujet

Question 8: Quelle est la liaison obtenue ?

Soit le système suivant où $\theta_{21}=\frac{\pi}{2}$

Question 9: Quelle est la liaison obtenue ?