Le CODEUR OPTIQUE ABSOLU

1 Principe

Le disque des codeurs absolus comportent un nombre n de pistes concentriques divisées en segments égaux alternativement opaques et transparents.

A chaque piste est associé un couple émetteur / récepteur optique.

La résolution d'un tel codeur est de 2 à la puissance n (1024 pour 10 pistes, 131 072 pour 17 pistes).

Un codeur Absolu délivre en permanence un code qui est l'image de la position réelle du mobile à contrôler. Il présente de ce fait deux avantages importants par rapport à un codeur <u>incrémental</u>:

insensibilité aux coupures du réseau

Dès la première mise sous tension, ou dès le retour de la tension après coupure, le codeur délivre une information correspondant à la position réelle du mobile et donc immédiatement exploitable par le système de traitement.

Insensibilité aux parasites de ligne

Un parasite peut modifier temporairement le code délivré par un codeur absolu mais ce code redevient automatiquement correct dès la disparition du parasite.

2 Exemple d'un codeur absolu 3 bits

Exemple d'utilisation d'un codeur optique incrémental

Philippe HOARAU 1/5

3 Codeur absolu multi-tours

Si toutes les pistes sont concentriques, plus le nombre de piste est important, plus le diamètre du disque augmente. Le codeur multi-tours permet, grâce à un système d'axes secondaires, d'indiquer le nombre de combinaisons sur plusieurs tours.

Philippe HOARAU 2/5

4 Exemple de calcul d'un codeur absolu

Contrôle du positionnement d'un plateau dont le déplacement linéaire est obtenu par une chaîne cinématique avec vis à billes entraînée par un moteur asynchrone.

Vis à bille:

Pas = 4 mm

Longueur = 1000 mm

Réducteur:

K = 5 (1 tr du codeur pour 5 tr de vis)

Précision attendue:

0.01mm

Calcul du nombre de points par tour du codeur (n)

$$n = \frac{1}{pr\acute{e}cision(mm)}KP$$

K: rapport de réduction entre l'engrenage du mouvement entraînant le codeur et le dernier engrenage entraînant le mobile P: rapport de conversion du mouvement de rotation en mouvement de translation

$$n = \frac{1}{0.05} \cdot 5 \cdot 4$$

n=2000 pts/tr (résolution du codeur)

Il faut choisir un codeur dont la résolution est une puissance de 2 supérieure à 2000. Soit :

$$2^{11} = 2048$$

Il faut également que le codeur délivre des codes différents sur N tours correspondant à la totalité du déplacement soit:

$$N = \frac{L}{KP} = \frac{1000}{4.5} = 50$$

Il faut choisir un codeur dont le nombre de tours soit une puissance de 2 supérieure à 50, soit :

$$2^6 = 64$$

Codeur choisi:

Résolution = 2048 points par tour Nb de tours = 64

Philippe HOARAU 3/5

5 Raccordement du codeur absolu à l'API

- Calcul du déplacement du plateau

- Position initiale: Etat des sorties G1 à G17 du codeur

Code GRAY. G16 G15 G14 G13 G12 G11 G10 G9 G8 G7 G6 G5 G4 G3 G2 G1

- Soit l'état suivant des sorties du codeur après un déplacement

G15 G14 G13 G12 G11 G10 G9 G8 G7 G6 G5 G3 G4 G2 G1 Code GRAY Ō Ō Ō Q Ō Ō Q Q 1 1

Code DECIMAL (61174)

- Nombre de points pour un déplacement de 1 mètre:

 $50 \text{ tr} \times 2048 \text{ points} = 102400 \text{ pts}$

- Déplacement du plateau pour le code GRAY ci-dessus:

$$\frac{\text{longueur vis(mm)}}{\text{nb de pts pour 1 m}} \times \text{code sortie codeur} = \frac{1000}{102400} \times 61174 = 597.4 \text{ mm}$$

Philippe HOARAU 4/5

1	Principe	. 1
	Exemple d'un codeur absolu 3 bits	
	Codeur absolu multi-tours	
	Exemple de calcul d'un codeur absolu	
	Raccordement du codeur absolu à l'API	4

Philippe HOARAU 5/5