Progettazione e implementazione di un Sistema di Adaptive Cruise Control basato su Logica Fuzzy

Progetto Sistemi Complessi e Incerti

Simone Lesinigo (GitHub)

Introduzione

- Crescente diffusione dei sistemi ADAS (Advanced Driver Assistance Systems) nei veicoli moderni per sicurezza e comfort.
- L'Adaptive Cruise Control (ACC) regola automaticamente velocità e distanza di sicurezza dal veicolo che precede.
- Particolare efficacia in contesto autostradale, con velocità e distanze variabili.
- Basato su Logica Fuzzy, per una gestione graduale e naturale di accelerazioni e decelerazioni.

02 Stato

dell'Arte

Stato dell'Arte

- **Controller PID**: ampiamente utilizzati, ma richiedono taratura complessa e offrono prestazioni limitate. [1]
- **Logica fuzzy**: consente un controllo più flessibile e graduale, adatto a situazioni variabili. [2]
- Architetture fuzzy **gerarchiche/cascata**: riducono il numero di regole e migliorano l'efficienza in tempo reale. [2]
- Confronto fuzzy vs PID tradizionale: maggiore fluidità e minore errore di distanza [3]
- **Approcci ibridi** (fuzzy + MPC + machine learning): combinano vantaggi complementari, aumentando comfort, precisione e robustezza. [4]

03

Modello Proposto

Modello Proposto

- Veicolo di riferimento:
 - categoria M1 (auto per trasporto persone, max 8 posti + conducente).
 - Prestazioni medie in accelerazione e decelerazione
- Scenario di applicazione: ambiente autostradale con traiettorie rettilinee.
- Terminologia:
 - **Ego** = veicolo dell'utilizzatore del sistema ACC.
 - Leader = veicolo che precede.
- Intervallo di velocità considerato: 70–150 km/h [5]
- Input:
 - Weather Condition
 - Time Headway
 - Relative Velocity

- Output:
 - Acceleration

Membership Functions - Weather Condition

- Termini Linguistici:
 - o **bad**: trapezoidale definita dai punti [0.0, 0.0, 0.35, 0.65].
 - o **good**: trapezoidale definita dai punti [0.35, 0.65, 1.0, 1.0].
- Universo: [0, 1]

Membership Functions - Weather Condition

Membership Functions - Time Headway

time headway [s] =
$$\frac{space \ gap \ [m]}{ego \ velocity \ [m/s]}$$
 [6]

- Termini Linguistici:
 - o dangerous: trapezoidale definita dai punti [0.0, 0.0, 0.8, 1.5].
 - o **short**: triangolare definita dai punti [1.0, 2.0, 3.0].
 - o **adequate**: triangolare definita dai punti [2.5, 3.75, 5.0].
 - o **long**: triangolare definita dai punti [4.5, 5.75, 7.0].
 - o very_long: trapezoidale definita dai punti [6.5, 7.0, 15.5, 15.5].
- Universo: [0, 15.5] s

$$max(time\ headway) [s] = \frac{300 [m]}{70 [km/h]} = \frac{300 [m]}{19.4 [m/s]} \approx 15.4 [s] [7]$$

Membership Functions - Time Headway

Time Headway - Motivazioni

$$d_{sicurezza}[m] = d_{reazione}[m] + d_{frenata}[m] = v \cdot t + \frac{v^2}{2 \cdot a \cdot \mu}$$
 [8]

Ipotizzando $a=9.81\,\mathrm{m/s^2}$ e $\mu=0.8\,\mathrm{e}$ che i due veicoli siano separati da 20m:

 $d_{sicurezza} \approx 12.75 \, [\mathrm{m}]$ alla velocità di 30 km/h

 $d_{sicurezza} \approx 119.1 \, [\mathrm{m}]$ alla velocità di 130 km/h

Time Headway - Scelta degli Intervalli

Velocità	Time	Distanza da	Distanza	D:g 07
[km/h]	Headway [s]	mantenere [m]	mantenuta [m]	Differenza %
70	0.5	62.977	33.810	-46.313
	1.0		43.533	-30.875
	2.0		62.977	0.000
	3.0		82.421	+30.875
	4.0		101.866	+61.751
	7.0		160.199	+154.377
	10.0		218.533	+247.004
	15.0		315.755	+401.381
110	0.5	120.594	74.761	-38.006
	1.0		90.038	-25.338
	2.0		120.594	0.000
	3.0		151.149	+25.338
	4.0		181.705	+50.675
	7.0		273.372	+126.688
	10.0		365.038	+202.700
	15.0		517.816	+329.388
150	0.5	193.942	131.442	-32.226
	1.0		152.275	-21.484
	2.0		193.942	0.000
	3.0		235.609	+21.484
	4.0		277.275	+42.968
	7.0		402.275	+107.421
	10.0		527.275	+171.873
	15.0		735.609	+279.293

Membership Functions - Relative Velocity

relative velocity
$$\left[m /_{S} \right] = leader\ velocity \left[m /_{S} \right] - ego\ velocity \left[m /_{S} \right]$$

- Termini Linguistici:
 - o approaching_fast: trapezoidale definita dai punti [-23.0, -23.0, -10.0, -5.0].
 - o approaching: triangolare definita dai punti [-7.0, -3.0, -0.5].
 - steady: triangolare definita dai punti [-1.0, 0.0, 1.0].
 - o **moving_away**: triangolare definita dai punti [0.5, 3.0, 7.0].
 - o moving away_fast: trapezoidale definita dai punti [5.0, 10.0, 23.0, 23.0].
- Universo: [-23.0, +23.0] m/s

max(relative velocity)
$$\left[\frac{m}{s} \right] = \frac{150 \left[\frac{km}{h} \right] - 70 \left[\frac{km}{h} \right]}{3.6} = 22.\overline{2} \left[\frac{m}{s} \right]$$

Membership Functions - Relative Velocity

Membership Functions - Acceleration

- Termini Linguistici:
 - strong_deceleration: trapezoidale definita dai punti [-3.0, -3.0, -2.5, -2.0].
 - medium_deceleration: triangolare definita dai punti [-2.5, -1.8, -1.0].
 - o **light_deceleration**: triangolare definita dai punti [-1.2, -0.7, -0.2].
 - o **zero_acceleration**: trapezoidale definita dai punti [-0.3, -0.1, 0.1, 0.3].
 - o **light_acceleration**: triangolare definita dai punti [0.2, 0.7, 1.2].
 - o medium_acceleration: triangolare definita dai punti [1.0, 1.8, 2.5].
 - strong_acceleration: trapezoidale definita dai punti [2.0, 2.5, 3.0, 3.0].
- Universo: [-3.0, +3.0] m/s²

Accelerazioni più brusche (in modulo) sono considerate **non confertevoli** per il conducente e i passeggeri [10]

Membership Functions - Acceleration

Creazione delle Regole

- Definite tutte le combinazioni dei termini linguistici delle variabili in input
 → copertura completa degli scenari
- Numero totale di regole: 2 × 5 × 5 = 50
- Scelta di una singola base di regole → sistema più semplice, senza approccio a cascata.
- Per ogni combinazione è stato assegnato il termine linguistico di output relativo all'accelerazione.
- In condizioni meteo avverse → regole con output più prudenti, a favore della sicurezza.
- È possibile consultare l'elenco delle regole in <u>Appendice</u>

Implementazione

- Implementato in Python con la libreria *scikit-fuzzy*
- Valori di input fuori intervallo → trasformati nel valore valido più vicino
- L'output non è stato usato direttamente, ma è stato applicato un filtro passa-basso con coefficiente di smoothing $\alpha=0.1$ [11]

$$a_f(t) = \alpha \cdot a(t) + (1 - \alpha) \cdot a_f(t-1)$$

• Le accelerazioni filtrate con $|a| < 0.12 \left[\text{m/}_{\text{S}^2} \right]$ sono poste a zero per evitare micro-accelerazioni potenzialmente fastidiose

Dataset di Riferimento

- Dati raccolti nel 2019 da un veicolo dotato di ACC per un periodo di 15 minuti sulla Interstate 65 (autostrada americana) [12]
- Variabili:
 - timestamps [s]: istanti di campionamento (frequenza di 10 Hz)
 - o ego_velocity [m/s]: velocità del veicolo ego
 - leader_velocity [m/s]: velocità del veicolo leader
 - o space_gap [m]: distanza tra i veicoli
 - **ACC command acceleration** [m/s²]: accelerazione impartita dal sistema ACC per il veicolo *ego*
- Osservazioni:
 - leader_velocity compresa tra 25.667 e 34.799 m/s (92.401 125.276 km/h)
 - o space_gap iniziale di 72.653 m

Dataset Simulazione

- Generato dalla simulazione del modello
- Condizioni iniziali poste uguali al Dataset di Riferimento
- Variabili:
 - o timestamps [s]
 - ego_acceleration [m/s²]
 - leader_acceleration [m/s²]
 - ego_velocity [m/s]
 - leader_velocity [m/s]
 - space_gap [m]

Dataset Simulazione - Variabili

- timestamps [s]: 9000 passi con una frequenza di 10Hz (15 minuti)
- ego_acceleration [m/s²]: calcolata a ogni passo dal modello
- leader_acceleration [m/s²]: viene calcolata a partire dal dataset di riferimento

$$a_t(\text{ leader}) = \frac{v_t(\text{ leader}) - v_{t-1}(\text{ leader})}{\Delta t}$$

• **ego_velocity** [m/s]: valore iniziale pari a 32.493 m/s, viene calcolata secondo la legge del moto uniformemente accelerato

$$v_t(\text{ego}) = v_{t-1}(\text{ego}) + a_t(\text{ego}) \cdot \Delta t$$

Dataset Simulazione - Variabili

- **leader_velocity** [m/s]: copiata dalla colonna corrispondente nel dataset di riferimento
- space_gap [m]: valore iniziale pari a 72.653m, viene aggiornato ad ogni passo come

$$space\ gap_t = space\ gap_{t-1} + \left(leader\ travelled\ space_t - ego\ travelled\ space_t\right)$$

dove

leader travelled space_t =
$$v_{t-1}$$
(leader) $\Delta t + \frac{1}{2}a_t$ (leader) $\Delta t + \frac{1}{2}a_t$ (leader)

ego travelled space_t =
$$v_{t-1}(\text{ego}) \cdot \Delta t + \frac{1}{2} a_t(\text{ego}) \cdot (\Delta t)^2$$

O5 Risultati e Analisi

Premessa

Ego Simulato VS Reale - Accelerazione Impartita

Ego Simulato VS Reale - Accelerazione Effetiva

Ego Simulato VS Reale - Velocità

Ego Simulato VS Leader - Accelerazione

Ego Simulato VS Leader - Velocità

Space Gap Simulato VS Distanza di Sicurezza

Space Gap Simulato VS Distanza di Sicurezza

$$\mu$$
 = **39.325**m σ = **11.519**m

$$d_{ACI}[m] = \left(\frac{v_t(\text{ ego}) \left[\frac{\text{km}}{\text{h}}\right]}{10}\right)^2$$

$$\mu$$
 = -35.849m σ = 12.194m

$$d_{QUIZPATENTEAPP} \left[\mathbf{m} \right] = \frac{v_t(\text{ ego}) \left[\frac{\text{km}}{\text{h}} \right]}{10} \cdot 3 \qquad \qquad \mathbf{\mu} = \mathbf{43.998} \mathbf{m}$$

$$\mathbf{\sigma} = \mathbf{9.960} \mathbf{m}$$

$$\mu$$
 = **43.998**m

[13]

Bad VS Good Weather - Accelerazione

Bad VS Good Weather - Velocità

Bad VS Good Weather - Space Gap

 μ = **56.624**m

 σ = **18.374**m

06 Conclusioni

Conclusioni

- Il modello riproduce con buona fedeltà le dinamiche di un ACC reale:
 - Accelerazione: forte correlazione con i dati reali, con risposta più smussata
 - Velocità: coerente con veicolo reale e leader, guida fluida senza brusche oscillazioni
 - Space Gap: più prudente dei dati reali ma meno conservativo delle regole più restrittive

 buon compromesso sicurezza/realismo
 - Meteo avverso: comportamento più cauto, con distanze maggiori
- La logica fuzzy si è confermata efficace per gestire incertezza e variabilità, garantendo sicurezza, comfort e realismo

- Limitazioni:
 - Assenza di test su veicoli reali
 - Semplificazione sull'accelerazione Impartita ed Effettiva

Lavori Futuri

Lavori Futuri

- Miglior gestione delle condizioni meteo avverse
- Validazione pratica su veicoli reali o in scala con sensori dedicati
- Estensione a scenari più complessi
- Integrazione con modelli predittivi o machine learning
- Introduzione di un limite di velocità massimo dinamico

- Estensione degli intervalli delle variabili linguistiche e miglior gestione dei valori fuori range
- Calcolo del veicolo della variabile meteorologica
- Integrazione con sistemi V2V e V2I per scambio di informazioni in tempo reale
- Ottimizzazione del comfort di guida

Bibliografia

Bibliografia

- 1. P. Panse, A. Singh e C. Satsangi, ≪Adaptive Cruise Control using Fuzzy Logic≫
- 2. <u>M. Simic, ≪Cascaded Fuzzy Logic for Adaptive Cruise Control</u>≫
- 3. <u>K. Alomari, R. Mendoza, S. Sundermann, D. Goehring e R. Rojas, ≪Fuzzy Logic-based Adaptive</u> Cruise Control for Autonomous Model Car≫
- 4. <u>J. Guo, Y. Wang, L. Chu, C. Bai, Z. Hou e D. Zhao, ≪Adaptive Cruise System Based on Fuzzy MPC and Machine Learning State Observer≫</u>
- 5. <u>≪Limite autostrada: regole, neopatentati, pioggia, nebbia, 150 km/h.</u> AutoScout24.
- 6. <u>International Organization for Standardization.</u> «ISO 15622:2018 Intelligent transport systems Adaptive Cruise Control systems Performance requirements and test procedures.»
- 7. <u>≪Adaptive Cruise Control for Passenger Cars.</u> <u>≫ BOSCH.</u>
- 8. G. Carichino. «Lo spazio di frenata: tabella, calcolo online e condizioni. »

Bibliografia

- 9. <u>Gianni Lombardi. « Automobile: la regola dei 3 secondi per evitare incidenti e calcolare correttamente le distanze di sicurezza. »</u>
- 10. <u>A. Maurya e P. Bokare, ≪Study of Deceleration Behaviour of Different Vehicle Types≫</u>
- 11. <u>William C. Evans. «Exponentially-Weighted Moving Average.»</u>
- 12. <u>Y. Wang, G. Gunter, M. Nice e D. Work, Estimating Adaptive Cruise Control Model Parameters from On-Board Radar Units</u>
- 13. <u>≪La distanza di sicurezza: cosa è e come si calcola.</u> Fassina.
- 14. <u>«Come calcolare la distanza minima di sicurezza?» QuizPatenteApp.</u>

Appendice

N°	Weather Condition	Time Headway	Relative Velocity	Acceleration
1	bad	dangerous	approaching_fast	strong_deceleration
2	bad	dangerous	approaching	medium_deceleration
3	bad	dangerous	steady	medium_deceleration
4	bad	dangerous	moving_away	light_deceleration
5	bad	dangerous	moving_away_fast	light_deceleration
6	bad	short	approaching_fast	strong_deceleration
7	bad	short	approaching	medium_deceleration
8	bad	short	steady	light_deceleration
9	bad	short	moving_away	zero_acceleration
10	bad	short	moving_away_fast	light_acceleration
11	bad	adequate	approaching_fast	strong_deceleration
12	bad	adequate	approaching	medium_deceleration
13	bad	adequate	steady	zero_acceleration
14	bad	adequate	moving_away	light_acceleration

N°	Weather Condition	Time Headway	Relative Velocity	Acceleration
15	bad	adequate	moving_away_fast	medium_acceleration
16	bad	long	approaching_fast	medium_deceleration
17	bad	long	approaching	light_deceleration
18	bad	long	steady	zero_acceleration
19	bad	long	moving_away	light_acceleration
20	bad	long	moving_away_fast	medium_acceleration
21	bad	very_long	approaching_fast	medium_deceleration
22	bad	very_long	approaching	light_deceleration
23	bad	very_long	steady	light_acceleration
24	bad	very_long	moving_away	medium_acceleration
25	bad	very_long	moving_away_fast	strong_acceleration
26	good	dangerous	approaching_fast	medium_deceleration
27	good	dangerous	approaching	light_deceleration
28	good	dangerous	steady	light_deceleration

N°	Weather Condition	Time Headway	Relative Velocity	Acceleration
29	good	dangerous	moving_away	zero_acceleration
30	good	dangerous	moving_away_fast	light_acceleration
31	good	short	approaching_fast	medium_deceleration
32	good	short	approaching	light_deceleration
33	good	short	steady	zero_acceleration
34	good	short	moving_away	light_acceleration
35	good	short	moving_away_fast	medium_acceleration
36	good	adequate	approaching_fast	medium_deceleration
37	good	adequate	approaching	light_deceleration
38	good	adequate	steady	zero_acceleration
39	good	adequate	moving_away	light_acceleration
40	good	adequate	moving_away_fast	medium_acceleration
41	good	long	approaching_fast	light_deceleration
42	good	long	approaching	light_deceleration

N°	Weather Condition	Time Headway	Relative Velocity	Acceleration
43	good	long	steady	light_acceleration
44	good	long	moving_away	medium_acceleration
45	good	long	moving_away_fast	strong_acceleration
46	good	very_long	approaching_fast	light_deceleration
47	good	very_long	approaching	zero_acceleration
48	good	very_long	steady	light_acceleration
49	good	very_long	moving_away	medium_acceleration
50	good	very_long	moving_away_fast	strong_acceleration

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**