Spick Physikprüfung Patrick Günthard

1 Masseinheiten

jeweils nach SI

Name	Bez.	\mathbf{SI}
Leistung	P	W
Energie	E	J
Kraft	F	N

 $Andere\ Einheiten \\ 1PS = 735,49875W$

2 Leistung

 ${\bf Grund formel}$

$$P = \frac{\Delta E}{\Delta t} = \frac{\Delta W}{\Delta t}$$
 und
$$P = \vec{F} * \vec{v}$$

3 Wirkungsgrad

 ${\bf Grund formel}$

$$\eta = \frac{\Delta E_{ab}}{\Delta E_{zu}} = \frac{P_{ab} \cdot \Delta t}{P_{zu} \cdot \Delta t} \Rightarrow \eta = \frac{P_{ab}}{P_{zu}}$$
 Regel: $\eta \le 1$

4 Energie

4.1 Bewegungsenergie

$$E_{kin} = \frac{1}{2}mv^2$$

4.2 Potenzielle Energie

$$E_{pot} = m * g * h$$

Beispiel: Im freien Fall ist $E_{pot} = E_{kin}$

4.3 Energieerhaltungssatz

Grundformel

$$E = E_1 + E_2 + E_3 + \ldots + E_n$$
 und immer $\Delta E = 0$

5 Hydrostatik

Grundformel

- \bullet g: Erdbeschleunigung
- $\rho_{Fluessigkeit}$: Dichte der Flüssigkeit in kg
- $\bullet\,$ h: Höhe der Flüssigkeitssäule in m

$$\rho = \rho_{Fluessigkeit} * g * h$$

Abstrakt:

$$Druck = \frac{Kraft}{Flaeche}; \ \rho = \frac{F}{A}$$

Der hydrostatische

Druck am Boden ist trotz unterschiedlicher Füllmengen in allen drei Gefäßen gleich groß.