# 日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 2月27日

出 願 番 号 Application Number:

特願2003-051625

[ST. 10/C]:

[JP2003-051625]

出 願 Applicant(s):

株式会社椿本チエイン

10 M

2003年10月21日

特許庁長官 Commissioner, Japan Patent Office 今井康



【書類名】

特許願

【整理番号】

12656

【提出日】

平成15年 2月27日

【あて先】

特許庁長官 殿

【国際特許分類】

F16G 13/06

【発明の名称】

ローラチェーン

【請求項の数】

1

【発明者】

【住所又は居所】

大阪府大阪市中央区城見2丁目1番61号 株式会社椿

本チエイン内

【氏名】

加我 有将

【発明者】

【住所又は居所】

大阪府大阪市中央区城見2丁目1番61号 株式会社椿

本チエイン内

【氏名】

嶋谷 和彦

【特許出願人】

【識別番号】

000003355

【氏名又は名称】

株式会社椿本チエイン

【代表者】

福永 喬

【代理人】

【識別番号】

100111372

【弁理士】

【氏名又は名称】

津野 孝

【電話番号】

0335081851

【選任した代理人】

【識別番号】

100119921

【弁理士】

【氏名又は名称】

三宅 正之

【電話番号】

0335081851



## 【選任した代理人】

【識別番号】 100112058

【弁理士】

【氏名又は名称】 河合 厚夫

【電話番号】 0335081851

【手数料の表示】

【予納台帳番号】 077068

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9807572

【包括委任状番号】 0118003

【包括委任状番号】 9900183

【プルーフの要否】 要



### 【書類名】 明細書

【発明の名称】 ローラチェーン

## 【特許請求の範囲】

【請求項1】 ブシュの両端がそれぞれ一対の内プレートのブシュ孔に嵌着固定され、前記ブシュ内に回転自在に嵌挿されたピンの両端が前記一対の内プレートの両外側に配置された一対の外プレートのピン孔に嵌着固定され、かつ、前記ブシュにローラが外挿されているローラチェーンにおいて、

前記ローラの外径D及び前記ピンの外径dが前記ローラチェーンのピッチPに対して、

- 0.  $72 P \le D \le 0$ . 79 P
- 0.  $40 P \le d \le 0$ . 44 P

の関係を満たすとともに、前記内プレートの高さHが、

0. 96  $P \le H$ 

の関係を満たすことを特徴とするローラチェーン。

### 【発明の詳細な説明】

 $[0\ 0\ 0\ 1\ ]$ 

#### 【発明の属する技術分野】

本発明は、自動車、産業用機械等の動力伝達機構あるいは搬送機構などに用いられるローラチェーンに関するものである。特に、自動車エンジンのタイミングドライブ用 (カム軸駆動用) に適したローラチェーンに関するものである。

[0002]

### 【従来の技術】

近年、自動車エンジンの動力伝達機構等に用いられる動力伝達媒体には、高荷 重、高速化及びメンテナンスフリー化の要請から、従来多用されていた歯付ベル トに代わり、金属製のローラチェーンの採用が増加している。

## [0003]

従来のローラチェーン500は、図5に示すように円筒状のブシュ522の両端部がそれぞれ一対の内プレート524のブシュ孔526に嵌着固定され、そのブシュ522にローラ528を回転自在に外嵌した内リンク520(図5(b)



参照)と、前記ブシュ522内に回転自在に嵌挿されたピン542の両端が、前記一対の内プレート524の両外側に配置された一対の外プレート544のピン孔546に嵌着固定された外リンク540(図5(c)参照)から構成されている。

### [0004]

このような構成の従来のローラチェーンは、寸法的バランスからローラの外径 D及びピンの外径 d がローラチェーンのピッチ P に対して、いわゆる A 系ローラ チェーンにおいて、

- $0.591 \le D/P \le 0.640$  かつ  $0.281 \le d/P \le 0.377$  及びB系ローラチェーンにおいて、
- 0.  $575 \le D/P \le 0$ . 670 かつ 0.  $288 \le d/P \le 0$ . 389 のものが使用されていた(JISB1801参照)。

## [0005]

この理由は、D/Pが大きくなり過ぎると、ローラチェーンと噛み合うスプロケットの歯幅が小さくなり過ぎ、スプロケットの歯の強度が問題となり、一方、D/Pが小さくなり過ぎると、ブシュに嵌挿されるピンの外径 d が小さくなり、チェーンの強度が低下することが問題となると考えられていたためである。そして、実際には、前記B系ローラチェーンのうち、例えば、JISB1801で「06B」(ISOの呼び番号と一致)と呼ばれるピッチ9.525mm、ローラ外径6.35mm、ピン外径3.28mmのものが、自動車エンジンの動力伝達機構の動力伝達媒体として多用されていた。

## [0006]

### 【発明が解決しようとする課題】

ところが、上述したような従来のローラチェーンを、高負荷(例えば、4 k N ) が発生する自動車のタイミングチェーンに使用した際には、期待した耐久性を 発揮しないチェーンが、ごくわずかであるが存在することが報告された。

#### $[0\ 0\ 0\ 7]$

それ故に、エンジンのさらなる信頼性向上のため、チェーンの一層の耐久性向上が焦眉の課題であった。そこで本発明者らが鋭意研究を重ねたところ、他の用



途では許容範囲にあるローラチェーンの「伸び=耐摩耗性」が、タイミングの正確さを追求するカム軸駆動用チェーン、すなわちタイミングチェーンとして用いた場合には、耐久性を決定する重要な課題となっていること及びエンジンの高速化によりチェーンのリンクを連結しているピンに予想以上の負荷が加わっていることが判明した。そのため、従来の寸法的バランスから設定されていたローラチェーンのピッチPとローラの外径D及びピンの外径dの寸法比(D/P、d/P)が、必ずしも最適値ではないことが解明された。

## [0008]

そこで、本発明の目的は、前述したような従来のローラチェーンが抱えていた問題点を解消し、耐摩耗性及び強度を向上させ、特に、高速で回転する自動車エンジン用タイミングチェーンとして用いた場合にも、十分な耐久性を発揮するローラチェーンを提供することにある。

## [0009]

## 【課題を解決するための手段】

上記の目的を達成するため、本発明は、ブシュの両端がそれぞれ一対の内プレートのブシュ孔に嵌着固定され、前記ブシュ内に回転自在に嵌挿されたピンの両端が前記一対の内プレートの両外側に配置された一対の外プレートのピン孔に嵌着固定され、かつ、前記ブシュにローラが外挿されているローラチェーンにおいて、前記ローラの外径D及び前記ピンの外径dが前記ローラチェーンのピッチPに対して、 $0.72P \le D \le 0.79P$ 及び $0.40P \le d \le 0.44P$ の関係を満たすとともに、前記内プレートの高さHが、 $0.96P \le H$ の関係を満たすような構成とする。

### [0010]

ここで、 $0.72P \le D \le 0.79P$ 及び $0.40P \le d \le 0.44P$ 、すなわち $0.72 \le D/P \le 0.79$ 及び $0.40 \le d/P \le 0.44$ とするとともに、 $0.96P \le H$ とするのは、次のような理由による。

#### $[0\ 0\ 1\ 1]$

d/Pを0.40以上とすることにより、ピンが太くなり、ピンの強度が高まり、高負荷又は高速回転時におけるピン折れが解消される。一方、d/Pを0.

4 4 以上とすることは、ブシュ及びローラの肉厚を極端に薄くすることを強いられ、かえって、チェーンの強度を低下させるため好ましくない。

### [0012]

また、ブシュ及びローラの耐衝撃性を低下させないためには、ブシュ及びローラの肉厚は、従来の肉厚を維持する必要がある。そのため、D/Pの値は、d/Pの値を、 $0.40 \le d/P \le 0.44$ とするのに呼応して、 $0.72 \le D/P$   $\le 0.79$ とした。

### [0013]

さらに、 $0.40 \le d/P \le 0.44$ としたことにより、従来よりブシュ径も大きくなる。そのため、内リンクの最小断面積(すなわちブシュ孔の中心を通る垂直断面積)が減少し、内リンクの強度が低下する。そこで、従来、ピッチPの86%程度であった内リンクの高さHを96%以上まで大きくすることにより、最小断面積の減少を抑えた。

## $[0\ 0\ 1\ 4]$

## 【作用】

本発明のローラチェーンは、ローラの外径D及びピンの外径dがローラチェーンのピッチPに対して、 $0.72P \le D \le 0.79P$ 及び $0.40P \le d \le 0.44P$ の関係を満たすとともに、内プレートの高さHが、 $0.96P \le H$ の関係を満たすようにしたことによって、ピンが太くなり、ピン破断強さが飛躍的に向上し、長期に亘り、円滑に屈曲摺動する。

## [0015]

また、ピンが太くなることにより、ピンとブシュの接触面積が増大するためピンとブシュに加わる接触応力が減少し、その結果としてピン及びブシュの摩耗、すなわちチェーンの伸びが抑制され、長期に亘り、スプロケットとの正確な噛み合いが実現する。さらに、内リンクの最小断面積が増大するため、内リンクのブシュ圧入部近傍への応力集中が回避される。

### [0016]

## 【発明の実施の形態】

本発明の実施の形態を実施例に基づき、図1乃至図4を参照して説明する。

## [0017]

図1は、本発明のローラチェーンの一例を示しており、(a)が平面図であり、(b)が側面図である。なお、(a)は、ローラチェーンの内部構造がわかるように、その一部を断面図として描いている。

## [0018]

このローラチェーン100は、円筒状のブシュ122の両端部がそれぞれ一対の内プレート124のブシュ孔126に嵌着固定され、そのブシュ122にローラ128を回転自在に外嵌した内リンク120と、前記ブシュ122内に回転自在に嵌挿されたピン142の両端が、前記一対の内プレート124の両外側に配置された一対の外プレート144のピン孔146に嵌着固定された外リンク140から構成されている。

## [0019]

ローラの外径D及びピンの外径 d は、ローラチェーンのピッチPに対して、0.72 P  $\leq$  D  $\leq$  0.79 P及び0.40 P  $\leq$  d  $\leq$  0.44 Pの関係を満たすとともに、内プレートの高さHは、ピッチPに対して、0.96 P  $\leq$  Hの関係を満たすように各部位の寸法を設定した。

#### [0020]

本実施例では、ローラの外径Dを 6.  $25 \, \mathrm{mm}$ 、ピンの外径 d を 3.  $50 \, \mathrm{mm}$  、ローラチェーンのピッチ P を 8.  $00 \, \mathrm{mm}$  及び内プレートの高さ H を 7.  $8 \, \mathrm{m}$  m とした。 すなわち、 D/P=0. 781、 d/P=0. 438、 H/P=0.  $975 \, \mathrm{c}$  あり、いずれも上記の関係式を満たしている。

### [0021]

次に本実施例によるローラチェーンの特性について、図2乃至図4に示した測定結果に基づき詳述する。なお、各測定において、従来例として用いたローラチェーンは、JISB1801で「06B」(ISOの呼び番号と一致)と呼ばれるピッチ9. 525mm、ローラ外径6. 35mm、ピン外径3. 28mm、内プレートの高さが8. 26mmのものを使用した。

### [0022]

図2は、ローラチェーンの伸び率(%)について、測定した結果を示す。試験

方法としては、歯数が18枚と36枚の2つのスプロケットにリンク数が96のローラチェーンを循環掛張し、張力を2.0kNに維持しつつ毎分6500回転で回転させ、チェーンの伸び指数(%)を計測した。図2で、実線が本実施例のローラチェーンによる測定結果を示しており、破線は、従来のローラチェーンの測定結果を示している。

### [0023]

図2からわかるように、本実施例のローラチェーンは、200時間経過後の伸び率が従来品の約70%に抑えられている。さらに、ピンとブシュの接触応力について測定したところ、本実施例のローラチェーンは、従来品に比べて接触応力が10%近く低減されており、この接触応力の低減により、上記のように伸び率が抑えられたものと推察される。

### [0024]

図3は、ローラチェーンのピン破断強さ(kN)について、測定した結果を示す。試験方法としては、5リンク以上のローラチェーンを引張試験機に取り付けて、ピンがどれぐらいの引張荷重に耐えられるかを測定した。図3からわかるように、本実施例のローラチェーンは、従来品に比べてピンの破断強さが1.5倍近く向上している。

### [0025]

図4は、ローラチェーンの回転疲れ限度(kN)について、測定した結果を示す。回転疲れ限度とは、所定回数の繰返し荷重により疲れ破壊を起こさない荷重限界のことであり、試験方法としては、JISB1801(1997年改訂)で規定された方法を用いて測定した。

### [0026]

図4からわかるように、本実施例のローラチェーンは、従来品に比べて疲れ限界が1.5倍近く向上している。これは、内プレートの高さHをピッチPの96%以上としたことにより、内プレートの最小断面積が増大し、この箇所への応力の集中が回避されたことによるものと推察される。

## [0027]

上記の例では、ローラの外径Dが6.25mm、ピンの外径dが3.50mm

、ピッチPが8.00mm及び内プレートの高さHが7.8mmであるローラチェーンを用いたが、0.72P $\leq$ D $\leq$ 0.79P、0.40P $\leq$ d $\leq$ 0.44P及び0.96P $\leq$ Hの関係を満たしさえすれば、上述の試験結果と同様、伸び率、破断強さ、回転疲れ限界の点で、従来のローラチェーンに対して有意な特性の向上が確認された。

## [0028]

なお、本実施例のローラチェーンと共に使用されるスプロケットは、本実施例のローラチェーンのピッチP及びローラの外径Dに基づき、基準寸法計算式にしたがって決められた寸法のスプロケットであれば、その歯形は、S歯形、U歯形、ISO歯形のいずれでもよく、従来から用いられているスプロケットを使用することができる。しかしながら、チェーンのローラ径が大きくなる分、スプロケットの歯が小さくなるため、動力伝達機構全体の信頼性を高めるという観点から、スプロケットの材質及び熱処理を工夫して、スプロケットの強度を向上させることが好ましい。

## [0029]

## 【発明の効果】

以上説明したように、本発明のローラチェーンは、ローラの外径D及びピンの外径dがローラチェーンのピッチPに対して、 $0.72P \le D \le 0.79P$ 及び $0.40P \le d \le 0.44P$ の関係を満たすとともに、内プレートの高さHが、 $0.96P \le H$ の関係を満たすようにしたことによって、ピンが太くなり、ピン破断強さが飛躍的に向上し、高速で回転する自動車エンジンのタイミングチェーンとして使用した場合であっても、経年劣化によりピンが折れることがない。さらに、内プレートの最小断面積が増大するので、内プレートのブシュ圧入部近傍への応力の集中が回避され、内プレートへのクラック(亀裂)発生等が抑制される。

### [0030]

また、ピンが太くなることにより、ピンとブシュの接触面積が増大するためピンとブシュに加わる接触応力が減少し、その結果としてピン及びブシュの摩耗が抑制され、チェーン伸び率が低減され、製品寿命が延びる。特に、タイミングチ

ェーンとして使用した場合には、長期に亘って、タイミングの正確さが確保され 、しかも、ローラの使用により静粛性も向上し、自動車の省エネ化、低騒音化に 寄与する。

## [0031]

本発明は、自動車エンジンのタイミングチェーン等、高速で回転するローラチェーンの寿命を決定する原因を究明し、チェーンの伸びや破断のメカニズムを踏まえて、チェーンを構成する各部材の寸法比の最適化を図ったことにより、きわめて再現性良くローラチェーンの耐久性を向上させることができる点で産業上の技術的意義はきわめて大きい。

## 【図面の簡単な説明】

- 【図1】 本発明のローラチェーンの一部を示す平面図。
- 【図2】 本発明のローラチェーンの伸び率試験の結果を示す図。
- 【図3】 本発明のローラチェーンの破断強さ試験の結果を示す図。
- 【図4】 本発明のローラチェーンの伸び率試験の結果を示す図。
- 【図5】 従来のローラチェーンの一部を示す斜視図で、(a)はチェーン全体、(b)は内リンク、(c)は外リンクを示す。

## 【符号の説明】

| 1 | 00, | 5 0 0 | ローラチェーン |
|---|-----|-------|---------|
| 1 | 20, | 5 2 0 | 内リンク    |
| 1 | 22, | 5 2 2 | ブシュ     |
| 1 | 24, | 5 2 4 | 内プレート   |
| 1 | 26, | 5 2 6 | ブシュ孔    |
| 1 | 28, | 5 2 8 | ローラ     |
| 1 | 40, | 5 4 0 | 外リンク    |
| 1 | 42, | 5 4 2 | ピン      |
| 1 | 44、 | 5 4 4 | 外プレート   |
| 1 | 46, | 5 4 6 | ピン孔。    |

【書類名】

図面

【図1】





【図2】



【図3】



【図4】



【図5】



【書類名】 要約書

【要約】

【課題】 耐摩耗性及び強度を向上させ、特に、高速で回転する自動車エンジン 用タイミングチェーンとして用いた場合にも、十分な耐久性を発揮するローラチェーンを提供すること。

【解決手段】 ローラの外径D及びピンの外径 d がピッチPに対して、0.72  $P \le D \le 0.79$  P及び0.40 P  $\le d \le 0.44$  Pの関係を満たすとともに、 内プレートの高さHが、0.96 P  $\le$  Hの関係を満たすような構成のローラチェーンとすることにより、チェーンの伸び率の低減、ピンの破断強さ及び回転疲れ 限度の向上を達成する。

【選択図】 図2

## 特願2003-051625

## 出願人履歴情報

## 識別番号

[000003355]

1. 変更年月日

2001年10月 1日

[変更理由]

住所変更

住 所

大阪府大阪市中央区城見2丁目1番61号

氏 名

株式会社椿本チエイン

2. 変更年月日

2003年 7月 1日

[変更理由]

住所変更

住 所

大阪府大阪市北区小松原町2番4号

氏 名

株式会社椿本チエイン