september 4 shift2

1

[4th September shift 2,2020]

EE24BTECH11066 - YERRA AKHILESH

16) The angle of elevation of a cloud C from a point P, 200m above a still lake is 30° . If the angle of depression of the image of C in the lake from the point P is 60° ,

then PC (in m)

a) $200\sqrt{3}$	b) $400\sqrt{3}$	c) 400	d) 100	
5 elements. If each	element of the set T	is an element of ex	nts and each Y_i contains actly 20 of the sets X_i 's September shift 2,2020]	
a) 15	b) 30	c) 50	d) 45	
18) Let $x = 4$ be a directrix to an ellipse whose centre is at the origin and its eccentricity is $\frac{1}{2}$. If $\mathbf{P}(1,\beta)$, $\beta > 0$ is a point on this ellipse, then the equation of the normal to it at \mathbf{P} is:				
a) $8x - 2y = 5$	b) $4x - 2y = 1$	c) 7x - 4y = 1	d) $4x - 3y = 2$	
19) Let $a_1, a_2,, a_n$ be a given A.P. whose common difference is an integer and $S_n = a_1 + a_2 + + a_n$. If $a_1 = 1$, $a_n = 300$ and $15 \le n \le 50$, then the ordered pair (S_{n-4}, a_{n-4}) is equal to: [4th September shift 2,2020]				
a) (2480, 248)	b) (2480, 249)	c) (2490, 249)	d) (2490, 248)	
20) The circle passing through the intersection of the circles, $x^2 + y^2 - 6x = 0$ and $x^2 + y^2 - 4y = 0$, having its centre on the line, $2x - 3y + 12 = 0$, also passes through the point: [4th September shift 2,2020]				
a) $(-1,3)$	b) $(1, -3)$	c) $(-3, 6)$	d) $(-3, 1)$	
21) Let $\{x\}$ and $[x]$ denote the fractional part of x and the greatest integer $\leq x$ respectively of a real number x . If $\int_{0}^{x} \{x\} dx$, $\int_{0}^{x} [x] dx$ and $10(n^2 - n)$, $(n \in N, n > 1)$ are three consecutive terms of a G.P., then n is equal to [4th September shift 2,2020]				
22) A test consists of 6 multiple choice questions, each having 4 alternative answers of which only one is correct. The number of ways, in which a candidate answers all six questions such that exactly four of the answers are correct, is [4th]				

September shift 2,2020]

- 23) If $\bar{a} = 2\hat{i} + \hat{j} + 2\hat{k}$, then the value of $\left|\hat{i} \times (\bar{a} \times \hat{i})\right|^2 + \left|\hat{j} \times (\bar{a} \times \hat{j})\right|^2 + \left|\hat{k} \times (\bar{a} \times \hat{k})\right|^2$ is equal to ______ [4th September shift 2,2020]
- 24) Let PQ be a diameter of the circle $x^2 + y^2 = 9$. If α and β are the lengths of the perpendiculars from **P** and **Q** on the straight line, x + y = 2 respectively, then the maximum value of $\alpha\beta$ is _____ [4th September shift 2,2020]
- 25) If the variance of the following frequency distribution:

Class	10-20	20-30	30-40
Frequency	2	X	2

is 50, then x is equal to _____ [4th September shift 2,2020]