WHAT IS CLAIMED IS:

1	1. A method of receiving a signal using an integrated circuit, the integrated
2	circuit comprising a signal path including a low-noise amplifier configured to receive the signal
3	a mixer having an input coupled to an output of the low-noise amplifier, and a low-pass filter
4	having an input coupled to an output of the mixer, the method comprising:
5	determining a first signal strength at a first node in the signal path in the
6	integrated circuit; and
7	dynamically changing an impedance of a component in the signal path based on
8	the first signal strength.
1	2. The method of claim 1 wherein the signal comprises a preamble portion
2	and a data portion, the impedance of a component is changed while receiving the preamble
3	portion, and the method further comprises receiving the data portion of the signal.
1	3. The method of claim 2 further comprising:
2	determining a second signal strength at a second node in the signal path, wherein
3	the second node in the signal path is after the first node in the signal path.
1	4. The method of claim 3 wherein the impedance of the component in the
2	signal path is also changed based on the second signal strength.
1	5. The method of claim 2 wherein the component in the signal path
2	comprises a MOS transistor.
1	6. The method of claim 2 wherein the component in the signal path
2	comprises a resistor.
1	7. The method of claim 2 wherein the component in the signal path
2	comprises a capacitor.
1	8. The method of claim 4 wherein the component in the signal path is
2	included in the mixer.

1	9. The method of claim 4 wherein the component in the signal path is
2 .	included in the low-pass filter.
1	10. A method of receiving a signal comprising a preamble portion and a data
2	portion using an integrated circuit, the integrated circuit comprising a signal path including a
3	low-noise amplifier configured to receive the signal, a mixer having an input coupled to an
4	output of the low-noise amplifier, and a low-pass filter having an input coupled to an output of
5	the mixer, the method comprising:
6	determining a first signal strength at a first node in the signal path in the
7	integrated circuit; and
8	while receiving the preamble portion of the signal, dynamically changing a bias
9	current in the signal path based on the first signal strength.
1	11. The method of claim 10 wherein the method further comprises receiving
2	the data portion of the signal.
1	12. The method of claim 11 further comprising:
2	determining a second signal strength at a second node in the signal path, wherein
3	the second node in the signal path is after the first node in the signal path.
1	13. The method of claim 12 wherein the bias current in the signal path is also
2	changed based on the second signal strength.
1	14. The method of claim 11 wherein the bias current is a bias current for the
2	low-noise amplifier.
_	
1	15. The method of claim 11 wherein the bias current is a bias current for the
2	mixer.
1	The most had of aloing 11 wherein the bigg assemble is a bigg assembly
1	16. The method of claim 11 wherein the bias current is a bias current for the
2	low-pass filter.

1	17. A method of receiving a signal using an integrated circuit, the integrated
2	circuit comprising a signal path including a first circuit and a second circuit having an input
3	coupled to an output of the first circuit, the method comprising:
4	determining a first signal strength at a first node in the signal path in the
5	integrated circuit, wherein the first node is before the first circuit in the signal path;
6	dynamically changing a gain of the first circuit based on the first signal strength;
7	and
8	dynamically changing an impedance of a component in the second circuit based
9	on the first signal strength.
1	18. The method of claim 17 wherein the signal comprises a preamble portion
2	and a data portion, the gain and impedance are changed while receiving the preamble portion,
3	and the method further comprises receiving the data portion of the signal.
1	19. The method of claim 18 further comprising:
2	determining a second signal strength at a second node in the signal path, wherein
3	the second node in the signal path is after the second circuit in the signal path.
1	20. The method of claim 19 wherein the gain of the first circuit and
2	impedance of the component in the second circuit is also changed based on the second signal
3	strength.
1	21. The method of claim 18 wherein the first circuit is a low-noise amplifier.
1	22. The method of claim 18 wherein the first circuit is a mixer.
1	23. A wireless transceiver integrated circuit comprising:
2	a receiver comprising a signal path, the signal path comprising:
3.	a low-noise amplifier;
4	a mixer having an input coupled to an output of the low-noise amplifier;
5	and
6	a low-pass filter having an input coupled to an output of the mixer; and

/	a first signal strength indicator circuit coupled to the signal path, and configured
8	to determine a first signal strength;
9	wherein an impedance in the signal path is configured to be dynamically adjusted
10	in response to the first signal strength.
1	24. The wireless transceiver of claim 23 further comprising:
2	a second signal strength indicator circuit coupled to the output of the mixer, and
3	configured to determine a second signal strength,
4	wherein the first signal strength indicator is coupled to the output of the low-noise
5	amplifier, and
6	wherein the impedance in the signal path is configured to be adjusted in response
7	to the first and second signal strengths.
1	25. The wireless transceiver of claim 23 further comprising:
2	a second signal strength indicator circuit coupled to the output of the low-pass
3	filter, and configured to determine a second signal strength,
4	wherein the first signal strength indicator is coupled to the output of the mixer,
5	and
6.	wherein the impedance in the signal path is configured to be adjusted in response
7	to the first and second signal strengths.
1	26. A wireless transceiver integrated circuit comprising:
2	a receiver comprising a signal path, the signal path comprising:
3	a low-noise amplifier;
4	a mixer having an input coupled to an output of the low-noise amplifier;
5	and
6	a low-pass filter having an input coupled to an output of the mixer; and
7	a first signal strength indicator circuit coupled to the signal path, and configured
8	to determine a first signal strength, the first signal strength the strength of a signal comprising a
9	preamble portion and a data portion;
10	wherein a bias current in the signal path is configured to be dynamically adjusted
11	during the preamble portion of the signal in response to the first signal strength.

1	27. The wireless transceiver of claim 26 further comprising:
2	a second signal strength indicator circuit coupled to the output of the mixer, and
3	configured to determine a second signal strength,
4	wherein the first signal strength indicator is coupled to the output of the low-noise
5	amplifier, and
6	wherein the bias current in the signal path is configured to be adjusted in response
7	to the first and second signal strengths.
1	28. The wireless transceiver of claim 26 further comprising:
2	a second signal strength indicator circuit coupled to the output of the low-pass
3	filter, and configured to determine a second signal strength,
4	wherein the first signal strength indicator is coupled to the output of the mixer,
5	and
6	wherein the bias current in the signal path is configured to be adjusted in response
7	to the first and second signal strengths.
1	29. A wireless transceiver integrated circuit comprising:
. 2	a receiver comprising a signal path, the signal path comprising:
3	a first circuit; and
4	a second circuit having an input coupled to an output of the first circuit;
5	and
6	a first signal strength indicator circuit coupled to the signal path, and configured
7	to determine a first signal strength;
8	wherein a gain of the first circuit is configured to be dynamically adjusted in
9	response to the first signal strength, and
10	wherein an impedance in the second circuit is configured to be dynamically
11	adjusted in response to the first signal strength.
1	30. The wireless transceiver of claim 29 further comprising:
2	a transmitter comprising:
3	a power amplifier; and
4	an output-level-sensing circuit coupled to an output of the nower amplifier

- 5 wherein the output-level-sensing circuit is configured to dynamically adjust a gain
- 6 of the power amplifier.