Predavanje 1: Elastičnost materijala, harmoničko titranje

1. Ukratko objasnite sljedeće pojmove: periodično gibanje, harmoničko titranje, harmonička sila, harmonički oscilator, period, frekvencija, kružna frekvencija, amplituda, faza, početna faza. (obavezno)

Periodično gibanje – gibanje koje se ponavlja u jednakim vremenskim intervalima.

Harmoničko titranje – titranja koje nastaje pod djelovanjem harmoničke sile koja nastoji tijelo vratiti u ravnotežni položaj.

Harmonička sila – sila koja je proporcionalna iznosu pomaka iz položaja ravnoteže a suprotnog je smjera. Vrijedi da je: $\vec{F} = -k \ \vec{s}$

gdje je: s [m]- pomak iz položaja ravnoteže,

F[N] - sila,

k [N/m] - pozitivna konstanta.

Harmonički oscilator – sustav koji titra pod utjecajem harmonične sile. Jednadžba gibanja harmoničnog oscilatora ima oblik: $m \frac{d^2s}{dt^2} + k s = 0 \implies \frac{d^2s}{dt^2} + \omega^2 s = 0$

Period (T [s]) – vremenski interval između dvije uzastopne jednake faze. Period titranja T je vrijeme potrebno da se ostvari jedan titraj, a s frekvencijom (f) period je povezan izrazom $T = \frac{1}{f}$.

Frekvencija (f [Hz]) – broj titranja u jedinici vremena.

Kružna frekvencija ω je veličinana koja je s periodom titranja (T) i frekvencijom (f) povezana izrazom:

$$\omega = \frac{2\pi}{T} = 2\pi f \qquad [\text{rad/s}]$$

Harmoničko titranje je opisano jednadžbom:

$$s = A \sin(\omega t + \varphi_0)$$

gdje je: A - amplituda titranja,

 $(\omega t + \varphi_0)$ - faza titranja,

 ϕ_o - početna faza.

Amlituda A je maksimalni pomak od ravnotežnog položaja. To je pomak u trenutku kad se čestica zaustavi i promijeni smjer gibanja.

OSTALA PITANJA

2. Što je harmonički oscilator? Izvedite jednadžbu gibanja harmoničkog oscilatora, nađite rješenje jednadžbe te izraze za brzinu i akceleraciju. Grafički prikažite i usporedite ovisnost elongacije, brzine i akceleracije o vremenu.

Harmonički oscilator je sustav koji titra pod djelovanjem harmoničke sile. Harmonička sila je proporcionalna iznosu pomaka iz položaja ravnoteže a suprotna njegovu smjeru:

$$\vec{F} = -k \, \vec{s}$$

gdje je: s [m]- pomak iz položaja ravnoteže,

F [N] - sila,

k [N/m] - pozitivna konstanta.

Zbog trenja koje ćemo uzeti da je jako malo, pri takvom pravocrtnom gibanju amplituda s vremenom će sporo smanjivati. Tada titranje možemo smatrati neprigušenim.

Izvod jednadžbe gibanja:
$$\vec{F} = m \ \vec{a} = m \frac{d^2 \vec{s}}{d t^2} = -k \ \vec{s}$$
 \Rightarrow $m \frac{d^2 s}{d t^2} + k \ s = 0$

$$\Rightarrow \frac{d^2s}{dt^2} + \omega^2 s = 0 \qquad \text{gdje je } \omega^2 = \frac{k}{m}$$

$$s(t) = a \sin(\omega t) + b \cos(\omega t)$$
, $a = A \cos \varphi_0$, $b = A \sin \varphi_0$

$$s(t) = A\cos\varphi_0\sin(\omega t) + A\sin\varphi_0\cos(\omega t)$$

$$s(t) = A\sin(\omega t + \varphi_0)$$

Rješenje jednadžbe gibanja je: $s = A \sin(\omega t + \varphi_0)$

gdje je: A - amplituda titranja,

 $(\omega t + \varphi_0)$ - faza titranja,

 ϕ_o - početna faza.

Derivirajući po vremenu iz elogancije dobivamo brzinu: $v = v(t) = \frac{ds}{dt} = A \omega \cos(\omega t + \varphi_o)$,

i akceleraciju:
$$a = a(t) = \frac{d v}{d t} = \frac{d^2 s}{d t^2} = -A \omega^2 \sin(\omega t + \varphi_0) = -\omega^2 s$$

s(t) A

v(t) A

A

o(t) A

27

t

Na slici je prikazana grafička ovisnost elongacije, brzine i akceleracije o vremenz za početnu fazu $\varphi_o = 0$.

Uz poznatu kružnu frekvenciju ω , amplitudu i početnu fazu možemo odrediti iz početnih uvjeta i izraza za brzinu i akceleraciju:

$$s(0) = s_o = A \sin \varphi_o$$
 $i \quad v(0) = v_o = A \omega \cos \varphi_o$

$$\Rightarrow tg \varphi_o = \frac{s_o \omega}{v_o} \Rightarrow \varphi_o = arc tg \frac{s_o \omega}{v_o}, A = \frac{s_o}{\sin \varphi_o}$$

3. Izvedite ovisnost kinetičke, potencijalne i ukupne energije kod jednostavnog harmoničkog titranja?

Kinetička energija harmoničkog oscilatora jednaka je kinetičkoj energiji materijalne točke mase m brzine v:

$$E_{k} = \frac{1}{2}mv^{2} = \frac{1}{2}mA^{2}\omega^{2}\cos^{2}(\omega t + \varphi_{o}) = \frac{kA^{2}}{2}\cos^{2}(\omega t + \varphi_{o}) = \frac{kA^{2}}{2}\left[1 - \sin^{2}(\omega t + \varphi_{o})\right] = \frac{1}{2}k(A^{2} - s^{2})$$

Kad na materijalnu točku mase m djeluje elastična sila F=-ks, njezina je potencijalna energija jednaka radu te sile pri pomaku točke za eloganciju *s* iz ravnotežnog položaja:

$$E_p = -W = -\int_0^s (-ks)ds = \frac{1}{2}ks^2$$

s obzirom da znamo da je $s = A \sin(\omega t + \varphi_0)$

$$E_p = \frac{1}{2}kA^2\sin^2(\omega t + \varphi_o)$$

Ukupna energija je zbroj potencijalne i kinetičke energije:

$$E = E_k + E_p = \frac{1}{2}kA^2 \left[\cos^2(\omega t + \varphi_0) + \sin^2(\omega t + \varphi_0)\right] = \frac{1}{2}kA^2$$

dakle ukupna energija je uvijek konstantna.

4. Kako se iz početnih uvjeta mogu odrediti amplituda i početna faza?

Iz pocetnih uvjeta:

$$s(0) = s_o = A \sin \varphi_o$$

$$v(0) = v_o = A \omega \cos \varphi_o$$

$$tg \ \varphi_o = \frac{s_o \ \omega}{v_o} \Rightarrow \ \varphi_o = arc \ tg \ \frac{s_o \ \omega}{v_o}$$

$$s_0^2 = A^2 \sin^2 \varphi_0$$

$$\frac{v_0^2}{\alpha^2} = A^2 \cos^2 \varphi_0$$

$$s_o^2 + \frac{v_0^2}{\omega^2} = A^2 \sin^2 \varphi_o + A^2 \cos^2 \varphi_o = A^2 (\sin^2 \varphi_o + \cos^2 \varphi_o)$$

$$A^2 = s^2(0) + \frac{v^2(0)}{\omega^2}$$

Ako je npr. s₀ =0, tj. Ako je tijelo u početku u ravnotežnom položaju, onda je $\varphi_0 = 0$ i $A = \frac{v(0)}{c}$

Ako je v(0)=0, tj. ako je tijelo u početnom trenutku maksimalno udaljeno od ravnotežnog položaja, onda je $A=s_{0,}$ a početna je faza $\varphi_{0}=\frac{\pi}{2}$.

5. Napišite jednadžbu gibanje prigušenog harmoničkog oscilatora?

Prigušeno titranje se javlja kad uz harmoničku silu na tijelo djeluje i sila otpora sredstva, razmjerna iznosu

brzine a suprotnog smjera od brzine. Tijelo obješeno na oprugu koja titra u tekućini je primjer prigušenog titranja. Na tijelo izmaknuto iz ravnotežnog položaja uz harmoničku silu djeluje i sila trenja.

$$\vec{F}_{tr} = -b\vec{v} = -b\frac{d\vec{s}}{dt} = -b\dot{x}$$

Dakle jednadžba gibanja za prigušeno titranje glasi:

$$m\vec{a} = \vec{F}_{opr} + \vec{F}_{tr}$$
 \rightarrow $m\frac{d^2s}{dt^2} = -ks - b\frac{ds}{dt}$, drukcije zapisano: $m\ddot{x} = -kx - bv$

podijelimo li sve s m i prebacimo na jednu stranu:

$$\ddot{x} + \frac{k}{m}x + \frac{b}{m}\dot{x} = 0$$

 $k/m = \omega_0^2$, gdje je ω_0 vlastita frekvencija i ovisi samo o građi oscilatora, a ne o okolini u kojoj se nalazi oscilator b/m=2δ, gdje je δ faktor prigušenja (***u prezentacijama ga oznacavaju s

Dakle konačan zapis:

$$\ddot{x} + \omega^2 x + 2\delta \dot{x} = 0$$

$$s(t) = a(t)\sin(\omega_p t + \varphi_0) = Ae^{-\delta t}\sin(\omega_p t + \varphi_0)$$

nakon sređivanja: $\omega_p = \sqrt{\omega_0^2 - \delta^2}$ - frekvencija prigušenih titraja

6. Skicirajte ovisnot pomaka tijela o vremenu za različite razine prigušenja i uvjete za pojavu pojedinog tipa prigušenja?

7. Što je logaritamski dekrement a što faktor dobrote?

Logaritam omjera amplitude nakon jednog perioda je logaritamski decrement.

$$\lambda = \ln \frac{x(t)}{x(t+T)} = \ln e^{\gamma T} = \gamma T$$

Period T i λ se lako dadu izmjeriti pa se tako može odrediti i faktor prigušenja: $\delta = \frac{\lambda}{T}$.

Faktor dobrote (Q faktor) se definira kao:

 $Q = 2\pi \frac{\text{srednja energija titrajnog sistema unutar jednog perioda}}{\text{gubitak energije unutar jednog perioda}}$ $2\pi \frac{\frac{1}{4}(a(t)^2 + a(t+T)^2)}{\frac{1}{2}(a(t)^2 - a(t+T)^2)} \approx \frac{\pi}{\lambda} = \frac{\omega_o}{2\gamma}$ $Q = \frac{\pi}{\lambda} = \frac{\pi}{\delta T} = \frac{\omega_o}{2\delta}$

Što je faktor dobrote veći to je prigušenje manje, za neprigušeni harmonički oscilator Q→∞.

Vremenska promjena ukupne mehaničke energije kod prigušenog titranja je: $\frac{dE}{dt} = -2m\gamma v^2$

8. Kada nastaje prisilno titranje i kako glasi jednadžba gibanja prisilnog titranja?

Prisilno titranje nastaje kada vanjska sila djeluje na sustav koji titra te se pomoću nje nadoknađuje energija izgubljena zbog trenja. (djeluju tri sile, vanjska, harmonička i sila otpora sredstva.)

Ako na prigušeni oscilator djeluje vanjska periodična sila oblika $F_v = F_o \sin \omega t$, drugi Newtonov zakon daje jednadžbu gibanja prisilnog harmoničkog oscilatora:

$$\frac{d^2s}{dt^2} + 2\delta \frac{ds}{dt} + \omega_o^2 s = A_o \sin \omega t$$

gdje:
$$2\delta = \frac{b}{m}$$
, $\omega_o^2 = \frac{k}{m}$, $A_o = \frac{F_o}{m}$.

Razumno je pretpostaviti da čestica neće titrati ni vlastitom frekvencijom ni frekvencijom slobodnih titranja već frekvencijom vanjske pogonske sile.

Pri prisilnom titranju sustav počne titrati vlastitom frekvencijom ($\omega_p = \omega_o$) i potom nastoji slijediti titranje vanjskog oscilatora. Rezultanto je titranje superpozicija tih dvaju titranja.

Stacionarno rješenje jednadžbe prisilnog harmoničkog titranja:

 $x(t) = A\sin(\omega t - \varphi)$; φ - fazni pomak izmedju sila i elongacije

$$tg\varphi = \frac{2\gamma\omega}{\omega_o^2 - \omega^2} \qquad A = \frac{F_o}{m\sqrt{(\omega_o^2 - \omega^2)^2 + 4\gamma^2\omega^2}}$$

Početna faza kod prisilnog titranja nije više proizvoljna konstanta već ovisi o frekvenciji vanjske sile, faktoru prigušenja i vlastitoj frekvenciji.

9. Što je amplitudna, a što energijska rezonancija i pri kojim uvjetima se javlja amplitudna odnosno

energijska rezonancija?

Amplituda je maksimalna kad je frekvencija vanjske sile jednaka $\frac{\omega_A = \sqrt{\omega_o^2 - 2\gamma^2}}{2}$ te se kaže da je nastupila amplitudna rezonancija.

Kod prisilnog titranja vanjska sila vrši rad i tako nadoknađuje izgubljenu mehaničku energiju zbog trenja. Vanjska sila će predavati maksimalnu snagu $P = \vec{F} \cdot \vec{v}$ titrajnom sustavu kad su vanjska sila i brzina u fazi, tj. kad sila i brzina u istom trenutku imaju maksimalne vrijednosti.

$$F = F_O \sin \omega t \qquad v = \underbrace{A\omega}_{v_{\text{max}}} \cos(\omega t - \varphi) \qquad v_{\text{max}} = \underbrace{\omega t} = \frac{\omega F_O}{m\sqrt{(\omega_O^2 - \omega^2)^2 + 4\gamma^2 \omega^2}}$$
 gornji izraz se moze napisati i u drugacijem obliku uz pomoc
$$Kad \text{ je } \varphi = -\frac{\pi}{2} \text{ brzina i sila su u fazi} \qquad \gamma = \frac{b}{2m} \qquad \text{i} \qquad \omega_O^2 = \frac{k}{m}$$

$$tg(-\frac{\pi}{2}) = \infty = \frac{2\gamma\omega}{\omega - \omega_O} \rightarrow \omega = \omega_O \qquad v_{\text{max}} = \frac{F_O}{\sqrt{(\frac{k}{\omega} - m\omega)^2 + b^2}}$$

Kad je frekvencija pogonske sile jednaka vlastitoj frekvenciji $\omega_E = \omega_o$ nastupa energijska rezonancija, tada tijelo za vrijeme od jednog perioda primi maksimalnu energiju jednaku $E = \pi A(\omega_o) F_o$