Exercise 1.3.

- (1) $\mathcal{G}_1 = \{A : A \subset \mathbb{R}, A \text{ open}\}\$ is neither an algebra, nor a σ -algebra.
- (2) $\mathcal{G}_2 = \{A : A \text{ is a finite union of intervals of the form } (a, b], (-\infty, b], \text{ and } (a, \infty)\}$ is an algebra, but not a σ -algebra.
- (3) $\mathcal{G}_3 = \{A : A \text{ is a coutable union of } (a, b], (-\infty, b], \text{ and } (a, \infty)\}$ is both an algebra and a σ -algebra

Exercise 1.7

 $\mathcal{P}(X)$ is the largest possible σ -algebra because each element of it is a subset of X, including X itself and \emptyset . Thus, it contains every possible combination of subsets of X. Now, $\{\emptyset, X\}$ is the smallest possible σ -algebra namely because by containing only a single element \emptyset , it also must contain its complement X. Hence $\{\emptyset, X\}$ is the smallest possible σ -algebra.

Exercise 1.10

Proof. Let $\{S_{\alpha}\}$ be a family of σ -algebras on X.

- i. Since $\emptyset \in \mathcal{S}_{\alpha}$, it follows that $\emptyset \in \cap_{\alpha} \mathcal{S}_{\alpha}$.
- ii. Take an arbitrary set $A \in \cap_{\alpha} \mathcal{S}_{\alpha}$. Thus, $A \in \mathcal{S}_{\alpha}$ for some α . Given that \mathcal{S}_{α} is an algebra, it must be that $A^c \in \cap_{\alpha} \mathcal{S}_{\alpha}$
- iii. Now, take some arbitrary sets $A_1, A_2, A_3, ... \in \cap_{\alpha} S_{\alpha}$. Hence, each of these sets constitute a σ -algebra. Therefore, $\bigcup_{i=1}^{\infty} A_i \in \bigcup_{\alpha} S_{\alpha}$

Therefore, $\cap_{\alpha} S_{\alpha}$ is also a σ -algebra

Exercise 1.17

Proof. Let (X, \mathcal{S}, μ) be a measure space.

• Suppose $A, B \in \mathcal{S}$ and $A \subset B$. Observe that

$$B = (B \cap A^c) \cup A$$

is disjoint. So,

$$\mu(B) = \mu(B \cap A^c) + \mu(A)$$

where $\mu(B \cap A^c) \ge 0$. Thus,

$$\mu(A) \le \mu(B)$$

and μ is monotonically increasing.

• Now suppose $\{A_i\}_{i=1}^{\infty} \subset \mathcal{A}$. Suppose we have a disjoint sequence, namely

$$B_1 = A_1$$

$$B_2 = A_2 \cap A_1^c$$

$$B_3 = A_3 \cap (A_1^c \cup A_2^c)$$

$$\vdots$$

$$B_n = A_n \setminus (\cup_{i=1}^{j-1} A_i)$$

These sets cover the same area as $\bigcup_{i=1}^{\infty} A_i$, hence

$$\mu(\bigcup_{i=1}^{\infty} A_i) = \mu(\bigcup_{i=1}^{\infty} B_i)$$
$$= \sum_{i=1}^{\infty} \mu(B_i)$$

by property (ii). Now, by the monotonicity property, it follows that $\sum_{i=1}^{\infty} \mu(B_i) \leq \sum_{i=1}^{\infty} \mu(A_i)$. Therefore, $\mu(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} \mu(A_i)$

Exercise 1.18.

Proof. Let (X, \mathcal{S}, μ) be a measure space. Let $B \in \mathcal{S}$.

i. Observe that

$$\lambda(\emptyset) = \mu(A \cap \emptyset)$$
$$= \mu(\emptyset)$$
$$= 0$$

ii. Now observe that

$$\lambda(\cup_{i=1}^{\infty} A_i) = \mu((\cup_{i=1}^{\infty} A_i) \cap B)$$

$$= \mu(\underbrace{\cup_{i=1}^{\infty} (A_i \cap B)}_{\text{disjoint union}})$$

$$= \sum_{i=1}^{\infty} \mu(A_i \cap B)$$

$$= \sum_{i=1}^{\infty} \lambda(A_i)$$

Therefore, $\lambda(A) = \mu(A \cap B)$ is also a measure (X, \mathcal{S}) .

Exercise 1.20

Proof. Let μ be a measure on (X, \mathcal{S}) . Suppose that $\{A_n\}$ is a decreasing sequence of measurable sets. That is

$$A_1 \supset A_2 \supset A_3..., A_i \in \mathcal{S}$$

where $\mu(A_1) < \infty$. Now, we examine the case for when $A = \bigcap_{i=1}^{\infty} A_i = \emptyset$ (note that if we replace A_n with $A_n \setminus A$ then the general cases reduces). Observe that

$$A_1 = (A_1 \setminus A_2) \cup (A_2 \setminus A_3) \cup \dots$$

$$A_2 = (A_2 \setminus A_3) \cup (A_3 \setminus A_4) \cup \dots$$

$$\vdots$$

$$A_n = (A_n \setminus A_{n+1}) \cup (A_{n+1} \setminus A_{n+2}) \cup \dots$$

By the subadditivity property, we have that

$$\mu(A_1) = \sum_{i=1}^{\infty} \mu(A_i \setminus A_{i+1})$$

$$\mu(A_2) = \sum_{i=2}^{\infty} \mu(A_i \setminus A_{i+1})$$

$$\vdots$$

$$\mu(A_n) = \sum_{i=n}^{\infty} \mu(A_i \setminus A_{i+1})$$

Note that the series $\mu(A_1) = \sum_{i=1}^{\infty} \mu(A_i \setminus A_{i+1})$ converges; hence, the remainder of $\mu(A_n) = \sum_{i=n}^{\infty} \mu(A_i \setminus A_{i+1})$ as $n \to \infty$ approaches 0. Thus,

$$\lim_{n \to \infty} \mu(A_n) = 0$$
$$= \mu(\emptyset)$$

Exercise 2.10.

Since μ^* is an outer measure, we know it is countably subadditive. By the countable subadditivity property, we can express

$$\mu^* \ge \mu^*(B \cap E) + \mu^*(B \cap E^c)$$
 as

 $\mu^* \leq \mu^*(B \cap E) + \mu^*(B \cap E^c)$. Since the weak inequality can be expressed in both directions, we can replace it by $\mu^* = \mu^*(B \cap E) + \mu^*(B \cap E^c)$.

Exercise 2.14.

By **Definition 1.11**, we know that $\sigma(\mathcal{O})$:= the smallest σ -algebra containing all the open sets of X. We refer to this as the Borel σ -algebra of X denoted by $\mathcal{B}(X)$. By **Theorem 2.8** (Carathéodory Construction), we know that \mathcal{M} is a σ -algebra. Moreover, \mathcal{M} is the collection of all Lebesgue measurable sets, which contains open sets. Thus, since $\mathcal{B}(X)$ is the intersection of σ -algebras containing open sets, it follows that $\mathcal{B}(X) \subset \mathcal{M}$.

Exercise 3.1.

Proof. Let $X \subset \mathbb{R}$ where $\{x_i\}_{i=1}^{\infty}$ represents each element of X. Let $\varepsilon > 0$. Define $A_n = (x_n - \frac{\varepsilon}{2^n}, x_n + \frac{\varepsilon}{2^n})$. So, $X \subset \bigcup_{i=1}^{\infty} A_i$. Observe that $\mu(\bigcup_{i=1}^{\infty}) \leq \sum_{i=1}^{\infty} 2^{1-i} = 2\varepsilon$. Therefore, X has measure zero. \square

Exercise 3.4.

The set must be preserved under complements. So we can replace $\{x \in X : f(x) < a\}$ with $\{x \in X : f(x) \ge a\}$ since these are complements to each other. Now, we need to show that we can replace < with \le or > (which are complements of each other).

Claim: $f^{-1}((-\infty, a)) \in \mathcal{M} \Leftrightarrow f^{-1}((-\infty, a]) \in \mathcal{M}$.

Proof. (\Rightarrow) By **Exercise 3.1**, we know that countable sets have measure zero. Consider a set consisting of a single set $\{a\}$, which is countable. Hence $\{a\} \in \mathcal{M}$ and $f^{-1}(a) \in \mathcal{M}$. Thus, $f^{-1}((-\infty, a]) = f^{-1}((-\infty, a)) \cup f^{-1}(a) \in \mathcal{M}$.

 (\Leftarrow) Now, let $f^{-1}((-\infty, a]) \in \mathcal{M}$. Since \mathcal{M} is closed under finite intersections and complements, we have that $f^{-1}((-\infty, a)) = f^{-1}((-\infty, a]) \cap f^{-1}(a^c) \in \mathcal{M}$.

Therefore $f^{-1}((-\infty, a)) \in \mathcal{M} \Leftrightarrow f^{-1}((-\infty, a]) \in \mathcal{M}$, and we can replace the set with any of the aforementioned sets.

Exercise 3.7.

Proof. Let $f, g, \{f_n\}_{n \in \mathbb{N}}, \{g_n\}_{n \in \mathbb{N}}$ be measurable functions on X, \mathcal{M} , and let $F: (Im(f), Im(g)) \to \mathbb{R}$ be continuous. Assume F(f(x), g(x)) is measurable. That is, the composition of two measurable functions is measurable.

Suppose F(f(x) + g(x)) = f(x) + g(x). Hence, F is continuous and measurable by **Theorem 3.6**. Thus f + g is measurable.

Now, suppose F(f(x) + g(x)) = f(x)g(x). Hence, F is continuous and measurable by **Theorem 3.6**. This $f \cdot g$ is measurable.

Since f and g are measurable functions on X, \mathcal{M} , then $\{x \in X : f(x) < a\} \in \mathcal{M}$ and $\{x \in X : g(x) < a\} \in \mathcal{M}$ for all $a \in \mathbb{R}$. Observe that $\{x \in X : \max(f(x), g(x)) < a\} = \{x \in X : f(x) < a\} \cap \{x \in X : g(x) < a\}$. Now, we know that \mathcal{M} is closed under countable intersections, and so it follows that $\{x \in X : \max(f(x), g(x)) < a\} \in \mathcal{M}$. Thus $\max(f(x), g(x))$ is measurable.

To prove that $\min(f,g)$ is measurable uses a similar to that $\max(f,g)$ (see above). But, $\{x \in X : \min(f(x),g(x)) > a\} = \{x \in X : f(x) > a\} \cup \{x \in X : g(x) > a\}$. Given that \mathcal{M} is closed under countable intersections, we have that $\{x \in X : \min(f(x),g(x)) > a\} \in \mathcal{M}$. Thus, $\min(f(x),g(x))$ is measurable.

Now, $\{x \in X : |f(x)| > a\} = \{x \in X : f(x) < -a\} \cup \{x \in X : f(x) > a\}$, which are both in \mathcal{M} , which is closed with respect to countable unions. Thus, $\{x \in X : |f(x)| > a \in \mathcal{M}\}$, and |f(x)| is measurable.

Exercise 3.14.

Proof. Let f be a function where $f: X \to \mathbb{R}$. Let $\varepsilon > 0$ be given. Since we are given that f is bounded, we know that $|f(x)| \leq M$ for all $x \in X$. So, $x \in E_i^M$ for some i and for all $x \in X$. Hence there is some $N \in \mathbb{N}$ with $N \geq M$ such that $\frac{1}{2^N} < \varepsilon$. Thus, for all $x \in X$ and $n \geq N$ we have that $||s_n(x) - f(x)|| < \varepsilon$. Therefore, the convergence is uniform. \square

Exercise 4.13.

Proof. Let f be measurable, ||f|| < M on $E \in \mathcal{M}$, and $\mu(E) < \infty$. From **Remark 4.10**, we know that $||f|| = f^+ + f^-$, where $f^+ > 0$ and $f^- > 0$. So, $f^+ < M$ and $f^- < M$. Hence, $\int_E f^+ d\mu < \infty$ and $\int_E f^- d\mu < \infty$ which implies that $f \in \mathcal{L}^1(\mu, E)$

Exercise 4.14.

Proof. By the contrapositive statement, suppose there exists some \hat{E} where f is infinite on $\hat{E} \subset E$ and $\mu(\hat{E}) > 0$. Thus $\int_{\hat{E}} f d\mu = \infty$ which implies that

 $\int_{\hat{E}} f^+ d\mu = \infty$. Now since $\hat{E} \subset E$ we have that $\infty = \int_{\hat{E}} f^+ d\mu < \int_{E} f^+ d\mu = \infty$, and $f \notin \mathcal{L}^1(\mu, E)$.

Exercise 4.15.

Proof. Let $f, g \in \mathcal{L}^1(\mu, E)$. Let $B(f) = \{s : 0 \le s \le f, s \text{ simple , measurable}\}$, and suppose that $f \le g$. Hence, we have that $f^+ \le g^+$ and also $f^- \ge g^-$. Hence $B(f^+) \subset B(g^+)$ as well as $B(g^-) \subset B(f^-)$ which imply that

$$\int_{E} f^{+} d\mu \le \int_{E} g^{+} d\mu$$
 and
$$\int_{E} f^{-} d\mu \ge \int_{E} g^{-} d\mu$$

Observe that

$$\int_{E} f d\mu = \int_{E} f^{+} d\mu - \int_{E} f^{-} d\mu$$

$$\leq \int_{E} g^{+} d\mu - \int_{E} g^{-} d\mu$$

$$= \int_{E} g d\mu$$

Therefore, $\int_E f d\mu \leq \int_E g d\mu$ as desired.

Exercise 4.16.

Proof. Let s(x) be a simple function where $s(x) = \sum_{i=1}^{N} c_i \chi_{E_i}$ with $E_i \in \mathcal{M}$. Now suppose $A \subset E \subset \mathcal{M}$. By the monotonicity property, it follows that $\mu(A \cap E_i) \leq \mu(E \cap E_i)$ for every i. Hence (See **Definition 4.1**),

$$\int_{A} s d\mu = \sum_{i=1}^{N} c_{i} \mu(A \cap E_{i})$$

$$\leq \sum_{i=1}^{N} c_{i} \mu(E \cap E_{i})$$

$$= \int_{E} s d\mu$$

Now observe that

$$\int_A f d\mu = \sup \{ \int_A s d\mu : 0 \le s \le f, \text{s simple, measurable} \}$$

$$\int_E f d\mu = \sup \{ \int_E s d\mu : 0 \le s \le f \text{s simple, measurable} \}$$

which follows from **Definition 4.2**. Note though that $\int_A f d\mu \leq \int_E f d\mu$ since s was arbitrary. Now, since $f \in \mathcal{L}^1(\mu, E)$, then $\int_E ||f|| d\mu < \infty$. Hence, it follows that $\int_E f d\mu < \infty$, and $\int_A f d\mu < \infty$. Thus, $\int_A f^+ d\mu < \infty$ as well as $\int_A f^- d\mu < \infty$. Therefore, $f \in \mathcal{L}^1(\mu, A)$

Exercise 4.21.

Proof. Let $A, B \in \mathcal{M}$, $B \subset A$, and $\mu(A - B) = 0$. Suppose that $f \in \mathcal{L}^1$. So we have $\int_{A-B} f d\mu = 0$ from **Proposition 4.6**. Furthermore, $\mu_1(A) = \int_A f^+ d\mu$ and also $\mu_2(A) = \int_A f^- d\mu$ are measures on \mathcal{M} (note that f^+ and f^- are both nonnegative \mathcal{M} measurable since $f \in \mathcal{L}^1$). Thus, we have that

$$\int_{A} f d\mu = \int_{A} f^{+} d\mu - \int_{A} f^{-} d\mu$$
$$= \mu_{1}(A) - \mu_{2}(A)$$

Assume $A = (A - B) \cup B$. Observe that $\mu_i(A) = \mu_i(A - B) + \mu_i(B)$ with i = 1, 2, 3, Since $\mu(A - B) = 0$ it follows that $\mu_i(A) = \mu_i(B)$ for i = 1, 2, 3, Hence,

$$\int_{A} f d\mu = \mu_{1}(B) - \mu_{2}(B)$$
$$= \int_{B} f d\mu$$

Therefore, by implication we have that $\int_A f d\mu \leq \int_B f d\mu$