Business and Data Understanding

What decisions need to be made?

公司想依据现有的数据,预测一下如果给250位顾客派发新的产品册能否带来一定收入,从而决定 是否进行派发。

Based on the existing data, the company would like to predict whether the distribution of new product catalog to 250 customers will bring certain profits, so as to decide whether to distribute them.

What data is needed to inform those decisions?

- 已有的顾客数据,来建立预测模型
- 通过线性回归模型,预测这250个顾客的可能花费,求出总和即可
- Existing customer data, to establish a prediction model
- Through the linear regression model, we can predict the possible costs of these 250 customers and calculate the sum

Analysis, Modeling, and Validation

How and why did you select the predictor variables in your model?

Name	Customer_SecCustomer	_ID Address	City	State	ZIP	Avg_Sale_Amo	Store_NumberRespo	onded_t(Avg_Num_Pro	#_Years_as_Customer
Pamela Wi	rig Store Mailir	2 376 S Jasmi	Denver	CO	80224	227. 9	100 No	1	6
Danell Va	aldeStore Mailir	7 12066 E Lal	Greenwood V	CO	80111	55	105 Yes	1	6
Jessica I	RineStore Mailir	8 7225 S Gay	Centennial	CO	80122	212. 57	101 No	1	3
Nancy Cla	ark Store Mailii	9 4497 Cornis	Denver	CO	80239	195. 31	105 Yes	1	6
Andrea Br	run Store Mailir	10 2316 E 5th	Denver	CO	80206	110.55	100 Yes	1	2
p 1 p		44 0000 0 1	P.	0.0	00010	4 40 04	400 11		

The general content of the dataset used for training is shown in the figure above. Useless information can be ignored first, like *Name,ID,ZIP*,etc.

Because *Avg_sale_amount* is our forecast variable, we can explore the relationship between characteristic parameters that may be relevant.

erplot of Avg_Num_Products_Purchased versus Avg_Sale

Scatterplot of Avg_Sale_Amount versus Customer_Segm

From the scatter diagram of the above three possible variables and *Avg_sales_amount*, it's obvious that *Avg_num_products_purchased* has strong linear relationship with *Avg_sales_amount*, and different *Customer_segment* have different *Avg_sales_amount*. While *Years_as_customer's* influence on *Avg_sales_amount* is not clear.(In fact, when using it as a parameter of linear regression, the corresponding p-value is relatively large)

Explain why you believe your linear model is a good model.

Report for Linear Model LR1

Basic Summary

Call

Im(formula = Avg_Sale_Amount ~ Customer_Segment + Avg_Num_Products_Purchased, data = inputs\$the.data)

Residuals:

Min	1Q	Median	3Q	Max
-663.8	-67.3	-1.9	70.7	971.7
0 (0)				

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	303.46	10.576	28.69	< 2.2e-16 ***
Customer_SegmentLoyalty Club Only	-149.36	8.973	-16.65	< 2.2e-16 ***
Customer_SegmentLoyalty Club and Credit Card	281.84	11.910	23.66	< 2.2e-16 ***
Customer_SegmentStore Mailing List	-245.42	9.768	-25.13	< 2.2e-16 ***
Avg_Num_Products_Purchased	66.98	1.515	44.21	< 2.2e-16 ***

Significance codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 137.48 on 2370 degrees of freedom Multiple R-squared: 0.8369, Adjusted R-Squared: 0.8366 F-statistic: 3040 on 4 and 2370 DF, p-value: < 2.2e-16

Report for this linear model is shown in figure above. For two variables we select, their p-value is far less than 0.05 which means their relationship with *Avg_sales_amount* is strong. R-squared and adjusted R-squared are also good enough which indicating the linear model we bulit is reliable.

Linear equation:

Avg_sales_amount=303.46-149.36(Customer_SegmentLoyalty Club
Only)+281.34(Customer_SegmentLoyalty Club and Credit Card)-245.42(Customer_SegmentStore Mailing
List)+66.98·Avg_Num_Products_Purchased

Conclusion

What is your recommendation? Should the company send the catalog to these 250 customers?

affirmative. The final calculated profit is **\$22050**. The company is interested in it when projected profits is above \$20000.