NOTAS DE ATENDIMENTO E EXERCÍCIOS

MARCOS AGNOLETTO FORTE

RESUMO. Estas são notas não oficiais sobre os temas mais importantes discutidos durante os horários de atendimento.

Conteúdo

1.	Aula do dia $18/09/2023$	1
1.1.	Revisão de geometria diferencial I	1
1.2.	A faixa de Möbius	5
1.3.	Um panorama de geometria diferencial II através do SageMath	10
2.	Aula do dia $20/09/2023$	10
2.1.	Orientabilidade	10
2.2.	O gradiente	14
2.3.	A segunda forma fundamental	14
2.4.	A curvatura normal	15
2.5.	Exemplos	16
Referências		20

1. Aula do dia 18/09/2023

Objetivos da aula:

- Explicar as regras do curso (aproximadamente 10 minutos)
- Fazer uma revisão relâmpago de Geometria Diferencial I (aproximadamente 30 minutos)
- Introdução à faixa de Möbius (aproximadamente 10 minutos)
- Pausa de 10 minutos
- Obter a parametrização da Faixa de Möbius (aproximadamente 20 minutos)
- Calcular os coeficientes da primeira forma fundamental (aproximadamente 20 minutos)
- Um visão panorâmica do curso de Geometria Diferencial II através do SageManifolds (aproximadamente 10 minutos)
- Acabar 10 minutos antes

Tempo de aula (expectativa): 120 minutos.

1.1. Revisão de geometria diferencial I. A referência para esta seção é [DC05].

Definição 1.1. Uma curva diferenciável parametrizada no \mathbb{R}^3 é uma aplicação diferenciável $\alpha: I \subset \mathbb{R} \to \mathbb{R}^3$. Escrevemos $\alpha(t) = (x(t), y(t), z(t))$, para $t \in I$, o conjunto $\alpha(I)$ é chamado de traço da curva α .

Exemplo 1.1. $\alpha(t) := (\cos(t), \sin(t), t), t \in \mathbb{R}$, é uma curva diferenciável parametrizada no \mathbb{R}^3 (\mathcal{C}^{∞}) cujo traço está contido em um cilindro.

Definição 1.2. Sejam $\alpha: I \subset \mathbb{R} \to \mathbb{R}^3$ uma curva parametrizada diferenciável e $t_0 \in I$ tal que $\alpha'(t_0) \neq 0$. Neste caso, dizemos que $\alpha'(t_0)$ é o vetor tangente a α no ponto $\alpha(t_0)$ e que $\alpha(t_0)$ é um ponto regular de α .

Definição 1.3. Seja $\alpha: I \subset \mathbb{R} \to \mathbb{R}^3$ uma curva parametrizada diferenciável. Dizemos que α é **regular** se $\alpha(t_0)$ for um ponto regular de α para todo $t_0 \in I$.

Note que uma curva parametrizada diferenciável $\alpha: I \subset \mathbb{R} \to \mathbb{R}^3$ é regular se $\alpha'(t_0) \neq 0$ para todo $t_0 \in I$.

Exemplo 1.2. $\alpha(t) := (t^2, t^3), t \in \mathbb{R}, \text{ \'e uma curva diferenci\'avel } (\mathcal{C}^{\infty}) \text{ que n\~ao \'e regular.}$

Definição 1.4. Seja $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ uma curva regular. Dizemos que β é uma reparametrização de α se existir um difeomorfismo $h:J\subset\mathbb{R}\to I$ tal que $\beta=\alpha\circ h$.

Definição 1.5. Seja $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ uma curva regular. O comprimento de arco de α é dado por

$$L_{\alpha}(I) = L(\alpha(I)) := \int_{I} ||\alpha'(t)|| dt.$$

Definição 1.6. Seja $\alpha: I \subset \mathbb{R} \to \mathbb{R}^3$ uma curva regular. Dizemos que α está parametrizada pelo comprimento de arco (p.p.c.a.) se

$$L_{\alpha}([t_0, t_1]) = t_1 - t_0,$$

para todos $t_0, t_1 \in I$ tais que $t_0 < t_1$.

Proposição 1.1. Seja $\alpha: I \subset \mathbb{R} \to \mathbb{R}^3$ uma curva regular. Então α está p.p.c.a. se, e somente se, $||\alpha'(t_0)|| = 1$ para todo $t_0 \in I$.

Proposição 1.2. Seja $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ uma curva regular. Então α pode ser reparametrizada pelo comprimento de arco.

Seja $\alpha: I \subset \mathbb{R} \to \mathbb{R}^3$ uma curva regular p.p.c.a.. Denotaremos por $\overrightarrow{t}(s) := \alpha'(s)$ o vetor tangente de α no ponto $\alpha(s)$ para todo $s \in I$. Como α está p.p.c.a., para todo $s \in I$ temos que

$$||\alpha'(s)|| = 1$$
$$||\alpha'(s)||^2 = 1$$
$$\langle \alpha'(s), \alpha'(s) \rangle = 1$$
$$\langle \alpha''(s), \alpha'(s) \rangle + \langle \alpha'(s), \alpha''(s) \rangle = 0$$
$$\langle \alpha''(s), \alpha'(s) \rangle = 0.$$

Consequentemente, $\alpha''(s) \perp \alpha'(s)$.

Definição 1.7. Seja $\alpha: I \subset \mathbb{R} \to \mathbb{R}^3$ uma curva regular p.p.c.a.. Definimos a curvatura de α em $s \in I$ como sendo o número $\kappa(s) := ||\alpha''(s)||$.

Geometricamente, $\kappa(s)$ mede o quanto uma curva se afasta de uma reta.

Definição 1.8. Seja $\alpha: I \subset \mathbb{R} \to \mathbb{R}^3$ uma curva regular p.p.c.a. tal que $\kappa(s) \neq 0$ para todo $s \in I$. Definimos o **normal (principal) de** α **em** $s \in I$ como sendo o vetor

$$\overrightarrow{n}(s) := \frac{1}{\kappa(s)} \alpha''(s).$$

Note que $\overrightarrow{t}(s) \perp \overrightarrow{n}(s)$ para todo $s \in I$.

Definição 1.9. Seja $\alpha: I \subset \mathbb{R} \to \mathbb{R}^3$ uma curva regular p.p.c.a. tal que $\kappa(s) \neq 0$ para todo $s \in I$. Definimos o binormal de α em $s \in I$ como sendo o vetor

$$\overrightarrow{b}(s) := \overrightarrow{t}(s) \wedge \overrightarrow{n}(s).$$

Note que $\{\overrightarrow{t}(s), \overrightarrow{n}(s), \overrightarrow{b}(s)\}$ é uma base ortonormal de \mathbb{R}^3 centrada em $\alpha(s)$ para cada $s \in I$, ou seja, um referencial móvel sobre α , o qual chamamos de **triedro de Frenet-Serret** ou **referencial de Frenet-Serret** ou **referencial TNB**.

Para todo $s \in I$ temos que

$$\langle \overrightarrow{b}(s), \overrightarrow{b}(s) \rangle = 1$$

 $\left\langle \frac{d\overrightarrow{b}}{ds}(s), \overrightarrow{b}(s) \right\rangle = 0,$

е

$$\langle \overrightarrow{b}(s), \overrightarrow{t}(s) \rangle = 0$$

$$\langle \frac{d\overrightarrow{b}}{ds}(s), \overrightarrow{t}(s) \rangle + \langle \overrightarrow{b}(s), \frac{d\overrightarrow{t}}{ds}(s) \rangle = 0$$

$$\langle \frac{d\overrightarrow{b}}{ds}(s), \overrightarrow{t}(s) \rangle + \kappa(s) \langle \overrightarrow{b}(s), \overrightarrow{n}(s) \rangle = 0$$

$$\langle \frac{d\overrightarrow{b}}{ds}(s), \overrightarrow{t}(s) \rangle = 0.$$

Consequentemente,

$$\frac{d\overrightarrow{b}}{ds}(s) \parallel \overrightarrow{n}(s),$$

para todo $s \in I$.

Definição 1.10. Seja $\alpha: I \subset \mathbb{R} \to \mathbb{R}^3$ uma curva regular p.p.c.a. tal que $\kappa(s) \neq 0$ para todo $s \in I$. Definimos a **torção de** α **em** $s \in I$ como sendo o numero

$$\tau(s) := \left\langle \frac{d\overrightarrow{b}}{ds}(s), \overrightarrow{n}(s) \right\rangle.$$

Geometricamente, $\tau(s)$ mede o quanto a curva deixa de ser plana. Além disso, note que

$$\frac{d\overrightarrow{b}}{ds}(s) = \left\langle \frac{d\overrightarrow{b}}{ds}(s), \overrightarrow{t}(s) \right\rangle \overrightarrow{t}(s) + \left\langle \frac{d\overrightarrow{b}}{ds}(s), \overrightarrow{b}(s) \right\rangle \overrightarrow{b}(s) + \left\langle \frac{d\overrightarrow{b}}{ds}(s), \overrightarrow{n}(s) \right\rangle \overrightarrow{n}(s) = \tau(s) \overrightarrow{n}(s).$$

Proposição 1.3 (Equações de Frenet-Serret). Seja $\alpha: I \subset \mathbb{R} \to \mathbb{R}^3$ uma curva regular p.p.c.a. tal que $\kappa(s) \neq 0$ para todo $s \in I$. Então, para todo $s \in I$, valem que

$$\frac{d\overrightarrow{t}}{ds}(s) = 0 + \kappa(s)\overrightarrow{n}(s) + 0,$$

$$\frac{d\overrightarrow{n}}{ds}(s) = -\kappa(s)\overrightarrow{t}(s) + 0 - \tau(s)\overrightarrow{b}(s),$$

$$\frac{d\overrightarrow{b}}{ds}(s) = 0 + \tau(s)\overrightarrow{n}(s) + 0.$$

Ou ainda, matricialmente,

$$\begin{pmatrix} \overrightarrow{t}' \\ \overrightarrow{n}' \\ \overrightarrow{b}' \end{pmatrix} = \begin{pmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & -\tau \\ 0 & \tau & 0 \end{pmatrix} \begin{pmatrix} \overrightarrow{t} \\ \overrightarrow{n} \\ \overrightarrow{b} \end{pmatrix}.$$

 $^{^{1}\}mathrm{Em}$ homenagem aos matemáticos Jean Frédéric Frenet e Joseph Alfred Serret.

Teorema 1.1 (Teorema fundamental da teoria local de curvas). Dadas duas funções κ, τ : $I \subset \mathbb{R} \to \mathbb{R}$ tais que $\kappa(s) > 0$ para todo $s \in I$, então existe uma curva $\alpha : I \subset \mathbb{R} \to \mathbb{R}^3$ cuja curvatura é $\kappa(s)$ e cuja torção é $\tau(s)$. Além disso, qualquer outra curva com a mesma propriedade é congruente a α .

Definição 1.11. Um subconjunto $S \subset \mathbb{R}^3$ é uma superfície regular se, para cada $p \in S$, existe uma vizinhança V de p em \mathbb{R}^3 e uma aplicação $X: U \to V \cap S$ de um aberto U de \mathbb{R}^2 sobre $V \cap S \subset \mathbb{R}^3$ tal que

- (1) X é um homeomorfismo diferenciável.
- (2) A diferencial $dX_q: \mathbb{R}^2 \to \mathbb{R}^3$ é injetiva para todo $q \in U$.

Proposição 1.4 (Mudança de parâmetros). Sejam $p \in S$ um ponto de uma superfície regular S, $X_1: U \subset \mathbb{R}^2 \to S$ e $X_2: V \subset \mathbb{R}^2 \to S$ duas parametrizações de S tais que $p \in X_1(U) \cap X_2(V) =: W$. Então

$$h := X_1^{-1} \circ X_2 : X_2^{-1}(W) \to X_1^{-1}(W)$$

é um difeomorfismo, isto é, h é diferenciável e tem inversa diferenciável.

Sejam $X:U\subset\mathbb{R}^2\to\mathbb{R}^3$ uma parametrização de uma superfície regular S e $q\in U$. Chamamos o subespaço vetorial de dimensão 2

$$T_{X(q)}S := dX_q\left(\mathbb{R}^2\right) \subset \mathbb{R}^3,$$

de *espaço tangente a* S *em* X(q). Este espaço vetorial coincide com o conjunto dos vetores tangentes $\alpha'(0)$ de curvas parametrizadas diferenciáveis $\alpha:]-\varepsilon, \varepsilon[\to S, \text{ com } \alpha(0) = X(q).$

A escolha de uma parametrização X determina uma base

$$\{dX_q(u), dX_q(v)\} = \left\{\frac{\partial X}{\partial u}(q), \frac{\partial X}{\partial v}(q)\right\} =: \{X_u(q), X_v(q)\}$$

de $T_{X(q)}S$ e um vetor normal unitário em cada ponto $p \in X(U)$ dado por

$$N(p) := \frac{X_u \wedge X_v}{||X_u \wedge X_v||}(q).$$

Nem sempre é possível estender a aplicação diferenciável $N:U\to\mathbb{R}^3$ de maneira diferenciável à superfície S.

O produto interno canônico do \mathbb{R}^3 induz em cada plano tangente T_pS de uma superfície regular S um produto interno, que denotaremos por $\langle \cdot, \cdot \rangle_p$. A esse produto interno, que é uma forma bilinear simétrica, corresponde uma forma quadrática $I_p: T_pS \to \mathbb{R}$ dada por

$$I_p(w) := \langle w, w \rangle_p = ||w||_p^2 \ge 0.$$

Tal forma quadrática em T_pS é chamada de **primeira forma fundamental de** S **em** $p \in S$. Vamos, agora, expressar a primeira forma fundamental na base $\{X_u, X_v\}$ associada a parametrização X(u, v) em p. Como um vetor $w \in T_pS$ é o vetor tangente a uma curva parametrizada $\alpha(t) = X(u(t), v(t)), t \in]-\varepsilon, \varepsilon[$, com $p = \alpha(0)$, obtemos

$$I_{p}(w) = I_{p}(\alpha'(0))$$

$$= \langle \alpha'(0), \alpha'(0) \rangle_{p}$$

$$= \langle X_{u}(u(0), v(0))u'(0) + X_{v}(u(0), v(0))v'(0), X_{u}(u(0), v(0))u'(0) + X_{v}(u(0), v(0))v'(0) \rangle_{p}$$

$$= \langle X_{u}(q), X_{u}(q) \rangle_{p} (u'(0))^{2} + 2\langle X_{u}(q), X_{v}(q) \rangle_{p} u'(0)v'(0) + \langle X_{v}(q), X_{v}(q) \rangle_{p} (v'(0))^{2}$$

$$= E(q) (u'(0))^{2} + 2F(q)u'(0)v'(0) + G(q) (v'(0))^{2},$$

onde

$$\begin{cases} E(q) := \langle X_u(q), X_u(q) \rangle_p, \\ F(q) := \langle X_u(q), X_v(q) \rangle_p, \\ G(q) := \langle X_v(q), X_v(q) \rangle_p \end{cases}$$

são os coeficientes da primeira forma fundamental na base $\{X_u, X_v\}$ de T_pS . Fazendo q variar numa vizinhança coordenada correspondente à parametrização X, obtemos funções E, F, G que são diferenciáveis nesta vizinhança. Quando não houver ambiguidade, os índices p e q serão omitidos.

Assim, podemos representar a primeira forma fundamental como uma matriz simétrica

$$\mathbf{I}(w) = w^\top \begin{pmatrix} E & F \\ F & G \end{pmatrix} w = \begin{pmatrix} u'(0)v'(0) \end{pmatrix} \begin{pmatrix} E(q) & F(q) \\ F(q) & G(q) \end{pmatrix} \begin{pmatrix} u'(0) \\ v'(0) \end{pmatrix}.$$

Definição 1.12. Uma superfície S é **orientável** se ela admite uma cobertura por vizinhanças coordenadas $X_{\alpha}(U_{\alpha})$, em que $X_{\alpha}: U_{\alpha} \to S$, de tal modo que se $p \in X_{\alpha_1}(U_{\alpha_1}) \cap X_{\alpha_2}(U_{\alpha_2})$, com $(u,v) \in U_{\alpha_1}$ e $(\overline{u},\overline{v}) \in U_{\alpha_2}$, então

$$\operatorname{Jac}((\overline{u}, \overline{v}) \mapsto (u, v)) = \frac{\partial(\overline{u}, \overline{v})}{\partial(u, v)} = \det \begin{pmatrix} \frac{\partial \overline{u}}{\partial u} & \frac{\partial \overline{u}}{\partial v} \\ \frac{\partial \overline{v}}{\partial u} & \frac{\partial \overline{v}}{\partial v} \end{pmatrix} > 0.$$

A escolha de uma tal família de vizinhanças coordenadas que cobrem S é chamada de **orientação** de S e S, neste caso, diz-se **orientada**. Se uma tal escolha não é possível, diz-se que S é **não-orientável**. Se S é orientada, uma parametrização local X é compatível com a orientação de S se, unindo X à família de parametrizações dada pela orientação, obtém-se ainda uma (logo, a mesma) orientação.

Proposição 1.5. Uma superfície regular $S \subset \mathbb{R}^3$ é orientável se, e somente se, existe um campo diferenciável $N: S \to \mathbb{R}^3$ de vetores normais em S, isto é, $N(p) \perp T_p S$ para todo $p \in S$.

1.2. A faixa de Möbius. A faixa de Möbius² é obtida tomando-se um retângulo e identificando-se dois lados opostos depois de uma rotação de 180° , como ilustra a Figura 1.

FIGURA 1. Construção de uma faixa de Möbius.

A faixa de Möbius, além de suas inúmeras aplicações artísticas, como em logotipos de centros de estudo de matemática em todo o mundo, também encontra frequentemente uso na engenharia, especialmente na produção de correias que desgastam "ambos" os lados igualmente.

A seguir, apresentaremos uma parametrização da faixa de Möbius e calcularemos os coeficientes de sua primeira forma fundamental.

²Em homenagem ao matemático August Ferdinand Möbius.

1.2.1. Parametrização. Considere a faixa de Möbius, denotada por \mathbf{M} , ao redor do eixo z com raio 2 e largura 1. Sejam $(u, v) \in]0, 2\pi[\times[-1, 1]$ e note que para $p = (x, y, z) \in \mathbf{M}$ temos que

$$\begin{cases} x(u,v) &= \left(2 + v \cos\left(\frac{u}{2}\right)\right) \cos(u) \\ y(u,v) &= \left(2 + v \cos\left(\frac{u}{2}\right)\right) \sin(u) \\ z(u,v) &= v \sin\left(\frac{u}{2}\right). \end{cases}$$

A Figura 2 auxilia a entender as equações acima. Note que cada ponto do segmento que rotacionamos identificamos com um valor de $v \in [-1,1]$ e esta é uma variável da parametrização, que segue a mesma ideia do Toro.

FIGURA 2. Facilitador para a parametrização da faixa de Möbius.

Portanto, um sistema de coordenadas locais para a faixa de Möbius é dado por

$$X:]0,2\pi[\times[-1,1]\subset\mathbb{R}^2\to\mathbf{M}\subset\mathbb{R}^3$$
$$(u,v)\mapsto(x(u,v),y(u,v),z(u,v)).$$

A vizinhança coordenada correspondente omite os pontos u = 0, como ilustra a Figura 3.

FIGURA 3. Plot de X.

Logo, tomando-se $(\overline{u}, \overline{v}) \in]0, 2\pi[\times [-1, 1]]$ de modo que

$$\begin{cases} x(\overline{u}, \overline{v}) &= \left(2 + \overline{v} \cos\left(\frac{\overline{u}}{2} + \frac{\pi}{4}\right)\right) \cos\left(\overline{u} + \frac{\pi}{2}\right) \\ y(\overline{u}, \overline{v}) &= \left(2 + \overline{v} \cos\left(\frac{\overline{u}}{2} + \frac{\pi}{4}\right)\right) \sin\left(\overline{u} + \frac{\pi}{2}\right) \\ z(\overline{u}, \overline{v}) &= \overline{v} \sin\left(\frac{\overline{u}}{2} + \frac{\pi}{4}\right) \end{cases}$$

obtemos outro sistema de coordenadas locais para a faixa de Möbius é dado por

$$\overline{X}:]0,2\pi[\times[-1,1]\subset\mathbb{R}^2\to\mathbf{M}\subset\mathbb{R}^3\\ (\overline{u},\overline{v})\mapsto(x(\overline{u},\overline{v}),y(\overline{u},\overline{v}),z(\overline{u},\overline{v}))\,.$$

A vizinhança coordenada correspondente omite os pontos no intervalo aberto u=0, como ilustra a Figura 4.

FIGURA 4. Plot de \overline{X} .

Essas duas vizinhanças coordenadas formam uma cobertura para a faixa de Möbius, como ilustra a Figura 5.

FIGURA 5. Plot de X e \overline{X} juntos.

Assim, temos que a faixa de Möbius é uma superfície regular. De fato, a intersecção dessas duas vizinhanças coordenadas é constituída por duas componentes conexas

$$W_1 := \left\{ X(u, v) : 0 < u < \frac{\pi}{2}, -1 \le v \le 1 \right\} \ \text{e} \ W_2 := \left\{ X(u, v) : \frac{\pi}{2} < u < 2\pi, -1 \le v \le 1 \right\}.$$

A mudança de coordenada é dada por (a Figura 5 ilustra a mudança de orientação de v em W_1 pela sobreposição ou não das partes mais escuras)

$$\begin{cases} \overline{u} &= u + \frac{\pi}{2} \\ \overline{v} &= -v \end{cases} \text{ em } W_1 \text{ e} \begin{cases} \overline{u} &= u + \frac{\pi}{2} \\ \overline{v} &= v \end{cases} \text{ em } W_2.$$

Donde temos que

$$\operatorname{Jac}((\overline{u}, \overline{v}) \mapsto (u, v)) = \frac{\partial(\overline{u}, \overline{v})}{\partial(u, v)} = \det \begin{pmatrix} \frac{\partial \overline{u}}{\partial u} & \frac{\partial \overline{u}}{\partial v} \\ \frac{\partial \overline{v}}{\partial u} & \frac{\partial \overline{v}}{\partial v} \end{pmatrix} = \det \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = -1$$

em W_1 , e

$$\operatorname{Jac}((\overline{u}, \overline{v}) \mapsto (u, v)) = \frac{\partial(\overline{u}, \overline{v})}{\partial(u, v)} = \det \begin{pmatrix} \frac{\partial \overline{u}}{\partial u} & \frac{\partial \overline{u}}{\partial v} \\ \frac{\partial \overline{v}}{\partial u} & \frac{\partial \overline{v}}{\partial v} \end{pmatrix} = \det \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 1$$

em W_2 .

1.2.2. Primeira forma fundamental. Para obtermos a primeira forma fundamental basta calcularmos as expressões de E, F, G da métrica pelas expressões em coordenadas obtidas anteriormente.

Derivamos x(u, v) com relação a u

$$x_u(u,v) = \frac{\partial}{\partial u} \left(2 + v \cos\left(\frac{u}{2}\right) \right) \cos(u) + \left(2 + v \cos\left(\frac{u}{2}\right) \right) \frac{\partial}{\partial u} \left(\cos(u) \right)$$
$$= -\frac{v}{2} \sin\left(\frac{u}{2}\right) \cos(u) - \left(2 + v \cos\left(\frac{u}{2}\right) \right) \sin(u),$$

e com relação a v

$$x_v(u,v) = \frac{\partial}{\partial v} \left(2 + v \cos\left(\frac{u}{2}\right) \right) \cos(u) + \left(2 + v \cos\left(\frac{u}{2}\right) \right) \frac{\partial}{\partial v} \left(\cos(u) \right)$$
$$= \cos\left(\frac{u}{2}\right) \cos(u).$$

Derivamos y(u, v) com relação a u

$$y_u(u,v) = \frac{\partial}{\partial u} \left(2 + v \cos\left(\frac{u}{2}\right) \right) \sin(u) + \left(2 + v \cos\left(\frac{u}{2}\right) \right) \frac{\partial}{\partial u} \left(\sin(u) \right)$$
$$= -\frac{v}{2} \sin\left(\frac{u}{2}\right) \sin(u) + \left(2 + v \cos\left(\frac{u}{2}\right) \right) \cos(u),$$

e com relação a v

$$y_v(u,v) = \frac{\partial}{\partial v} \left(2 + v \cos\left(\frac{u}{2}\right) \right) \sin(u) + \left(2 + v \cos\left(\frac{u}{2}\right) \right) \frac{\partial}{\partial v} \left(\sin(u) \right)$$
$$= \cos\left(\frac{u}{2}\right) \sin(u).$$

Derivamos z(u,v) com relação a u

$$z_u(u,v) = \frac{\partial}{\partial u} \left(v \sin\left(\frac{u}{2}\right) \right) = \frac{v}{2} \cos\left(\frac{u}{2}\right),$$

e com relação a v

$$z_v(u,v) = \frac{\partial}{\partial v} \left(v \sin\left(\frac{u}{2}\right) \right) = \sin\left(\frac{u}{2}\right).$$

Logo,

$$E = \langle X_u, X_u \rangle$$

= $\langle (x_u, y_u, z_u), (x_u, y_u, z_u) \rangle$

$$\begin{split} &= x_u^2 + y_u^2 + z_u^2 \\ &= \left(-\frac{v}{2} \sin \left(\frac{u}{2} \right) \cos(u) - \left(2 + v \cos \left(\frac{u}{2} \right) \right) \sin(u) \right)^2 \\ &\quad + \left(-\frac{v}{2} \sin \left(\frac{u}{2} \right) \sin(u) + \left(2 + v \cos \left(\frac{u}{2} \right) \right) \cos(u) \right)^2 \\ &\quad + \left(\frac{v}{2} \cos \left(\frac{u}{2} \right) \right)^2 \\ &= \frac{v^2}{4} \sin^2 \left(\frac{u}{2} \right) \cos^2(u) + \left(2 + v \cos \left(\frac{u}{2} \right) \right)^2 \sin^2(u) + 2 \frac{v}{2} \sin \left(\frac{u}{2} \right) \cos(u) \left(2 + v \cos \left(\frac{u}{2} \right) \right) \sin(u) \\ &\quad + \frac{v^2}{4} \sin^2 \left(\frac{u}{2} \right) \sin^2(u) + \left(2 + v \cos \left(\frac{u}{2} \right) \right)^2 \cos^2(u) - 2 \frac{v}{2} \sin \left(\frac{u}{2} \right) \sin(u) \left(2 + v \cos \left(\frac{u}{2} \right) \right) \cos(u) \\ &\quad + \frac{v^2}{4} \cos^2 \left(\frac{u}{2} \right) \\ &= \frac{v^2}{4} \sin^2 \left(\frac{u}{2} \right) + \left(2 + v \cos \left(\frac{u}{2} \right) \right)^2 + \frac{v^2}{4} \cos^2 \left(\frac{u}{2} \right) \\ &= \frac{v^2}{4} + 4 + v^2 \cos^2 \left(\frac{u}{2} \right) + 4v \cos \left(\frac{u}{2} \right) \\ &= v^2 \left(\frac{1}{4} + \cos^2 \left(\frac{u}{2} \right) \right) + 4v \cos \left(\frac{u}{2} \right) + 4. \end{split}$$

$$F = \langle X_u, X_v \rangle$$

$$= \langle (x_u, y_u, z_u), (x_v, y_v, z_v) \rangle$$

$$= x_u x_v + y_u y_v + z_u z_v$$

$$= \left(-\frac{v}{2} \sin\left(\frac{u}{2}\right) \cos(u) - \left(2 + v \cos\left(\frac{u}{2}\right)\right) \sin(u) \right) \left(\cos\left(\frac{u}{2}\right) \cos(u)\right)$$

$$+ \left(-\frac{v}{2} \sin\left(\frac{u}{2}\right) \sin(u) + \left(2 + v \cos\left(\frac{u}{2}\right)\right) \cos(u) \right) \left(\cos\left(\frac{u}{2}\right) \sin(u)\right)$$

$$+ \left(\frac{v}{2} \cos\left(\frac{u}{2}\right)\right) \left(\sin\left(\frac{u}{2}\right)\right)$$

$$= -\frac{v}{2} \sin\left(\frac{u}{2}\right) \cos\left(\frac{u}{2}\right) \cos^2(u) - \left(2 + v \cos\left(\frac{u}{2}\right)\right) \sin(u) \cos\left(\frac{u}{2}\right) \cos(u)$$

$$- \frac{v}{2} \sin\left(\frac{u}{2}\right) \cos\left(\frac{u}{2}\right) \sin^2(u) + \left(2 + v \cos\left(\frac{u}{2}\right)\right) \cos(u) \cos\left(\frac{u}{2}\right) \sin(u)$$

$$+ \frac{v}{2} \sin\left(\frac{u}{2}\right) \cos\left(\frac{u}{2}\right)$$

$$= -\frac{v}{2} \sin\left(\frac{u}{2}\right) \cos\left(\frac{u}{2}\right) + \frac{v}{2} \sin\left(\frac{u}{2}\right) \cos\left(\frac{u}{2}\right)$$

$$= 0.$$

$$G = \langle X_v, X_v \rangle$$

$$= \langle (x_v, y_v, z_v), (x_v, y_v, z_v) \rangle$$

$$= x_v^2 + y_v^2 + z_v^2$$

$$= \left(\cos\left(\frac{u}{2}\right)\cos(u)\right)^2 + \left(\cos\left(\frac{u}{2}\right)\sin(u)\right)^2 + \left(\sin\left(\frac{u}{2}\right)\right)^2$$

$$= \cos^2\left(\frac{u}{2}\right)\cos^2(u) + \cos^2\left(\frac{u}{2}\right)\sin^2(u) + \sin^2\left(\frac{u}{2}\right)$$

$$= \cos^2\left(\frac{u}{2}\right) + \sin^2\left(\frac{u}{2}\right)$$

$$= 1.$$

Donde obtemos a primeira forma fundamental

$$I = \begin{pmatrix} v^2 \left(\frac{1}{4} + \cos^2 \left(\frac{u}{2} \right) \right) + 4v \cos \left(\frac{u}{2} \right) + 4 & 0 \\ 0 & 1 \end{pmatrix}.$$

1.3. Um panorama de geometria diferencial II através do SageMath. Próximos passos:

- Orientabilidade.
- Segunda forma fundamental e consequências geométricas.
- Aplicação normal de Gauss.
- Operador forma, curvatura Gaussiana, média e total.
- Derivada covariante.
- Símbolos de Christoffel³.
- Geodésicas e curvatura geodésica.
- Equações de compatibilidade.
- Teorema egrégio de Gauss.
- Teorema de Bonnet.
- Superfícies mínimas.
- Teorema de Gauss-Bonnet e aplicações.

Apresentar Notebook do SageManifolds com exemplos de cálculos simples (métricas, curvaturas, símbolos de Christoffel, plotagens,...).

2. Aula do dia 20/09/2023

Objetivos da aula:

- Orientabilidade (aproximadamente 20 minutos)
- O gradiente (aproximadamente 10 minutos)
- A segunda forma fundamental e algumas consequências geométricas (aproximadamente 30 minutos)
- A curvatura normal (aproximadamente 10 minutos)
- Pausa de 10 minutos
- Exemplos (aproximadamente 30 minutos)
- Acabar 10 minutos antes

Tempo de aula (expectativa): 120 minutos.

2.1. Orientabilidade. A seguir apresentaremos alguns exemplos de superfícies orientáveis:

Exemplo 2.1. Superfícies que podem ser cobertas por uma única vizinhança coordenada são trivialmente orientáveis. Por exemplo, superfícies dadas como gráficos de uma função diferenciável.

Exemplo 2.2 (Esfera unitária (\mathbb{S}^2)). Considere $X_1(u,v)$ a projeção estereográfica pelo polo norte, $X_2(u,v)$ a projeção estereográfica pelo polo sul e

$$W := X_1(\mathbb{R}^2) \cap X_2(\mathbb{R}^2) = \mathbb{S}^2 \setminus \{N := (0,0,2), S := (0,0,0)\}.$$

Note que W é um conjunto conexo e fixe $p \in W$. A Figura 6 ilustra a mudança de parâmetros entre as duas parametrizações da esfera.

 $^{^3{\}rm Em}$ homenagem ao matemático e físico Elwin Bruno Christoffel.

FIGURA 6. O mapa de transição para as parametrizações estereográficas.

Onde

$$\Pi_N^{-1}(u,v) := \left(\frac{4u}{u^2 + v^2 + 4}, \frac{4v}{u^2 + v^2 + 4}, \frac{2(u^2 + v^2)}{u^2 + v^2 + 4}\right),$$

e

$$\Pi_S^{-1}(\overline{u},\overline{v}) := \left(\frac{4\overline{v}}{\overline{u}^2 + \overline{v}^2 + 4}, \frac{4\overline{u}}{\overline{u}^2 + \overline{v}^2 + 4}, \frac{8}{\overline{u}^2 + \overline{v}^2 + 4}\right).$$

Consequentemente,

$$\Pi_N(x, y, z) = \left(\frac{2x}{2-z}, \frac{2y}{2-z}\right).$$

Portanto,

$$(u,v) = h(\overline{u},\overline{v}) = \left(\Pi_N \circ \Pi_S^{-1}\right)(\overline{u},\overline{v})$$

$$= \Pi_N \left(\frac{4\overline{v}}{\overline{u}^2 + \overline{v}^2 + 4}, \frac{4\overline{u}}{\overline{u}^2 + \overline{v}^2 + 4}, \frac{8}{\overline{u}^2 + \overline{v}^2 + 4}\right)$$

$$= \left(\frac{8\overline{v}}{\overline{u}^2 + \overline{v}^2 + 4}, \frac{8\overline{u}}{\overline{u}^2 + \overline{v}^2 + 4}, \frac{8\overline{u}}{\overline{u}^2 + \overline{v}^2 + 4}\right)$$

$$= \left(\frac{8\overline{v}}{2(\overline{u}^2 + \overline{v}^2)}, \frac{8\overline{u}}{2(\overline{u}^2 + \overline{v}^2)}\right)$$

$$= \left(\frac{4\overline{v}}{\overline{u}^2 + \overline{v}^2}, \frac{4\overline{u}}{\overline{u}^2 + \overline{v}^2}\right).$$

Donde obtemos:

$$\begin{split} \frac{\partial u}{\partial \overline{u}} &= -\frac{8\overline{v}\overline{u}}{(\overline{u}^2 + \overline{v}^2)^2}.\\ \frac{\partial u}{\partial \overline{v}} &= \frac{4(\overline{u}^2 + \overline{v}^2) - 4\overline{v}2\overline{v}}{(\overline{u}^2 + \overline{v}^2)^2} = \frac{4(\overline{u}^2 - \overline{v}^2)}{(\overline{u}^2 + \overline{v}^2)^2}\\ \frac{\partial v}{\partial \overline{v}} &= -\frac{8\overline{u}\overline{v}}{(\overline{u}^2 + \overline{v}^2)^2} \end{split}$$

$$\frac{\partial v}{\partial \overline{u}} = \frac{4(\overline{u}^2 + \overline{v}^2) - 4\overline{u}2\overline{u}}{(\overline{u}^2 + \overline{v}^2)^2} = \frac{4(\overline{v}^2 - \overline{u}^2)}{(\overline{u}^2 + \overline{v}^2)^2} = -\frac{4(\overline{u}^2 - \overline{v}^2)}{(\overline{u}^2 + \overline{v}^2)^2}$$

Logo,

$$\begin{split} \frac{\partial(u,v)}{\partial(\overline{u},\overline{v})} &= \det \begin{pmatrix} \frac{\partial u}{\partial \overline{u}} & \frac{\partial u}{\partial \overline{v}} \\ \frac{\partial v}{\partial \overline{u}} & \frac{\partial v}{\partial \overline{v}} \end{pmatrix} \\ &= \frac{1}{(\overline{u}^2 + \overline{v}^2)^4} \det \begin{pmatrix} -8\overline{u}\overline{v} & 4(\overline{u}^2 - \overline{v}^2) \\ -4(\overline{u}^2 - \overline{v}^2) & -8\overline{u}\overline{v} \end{pmatrix} \\ &= \frac{64\overline{u}^2\overline{v}^2 + 16(\overline{u}^2 - \overline{v}^2)^2}{(\overline{u}^2 + \overline{v}^2)^4} \\ &> 0 \end{split}$$

Como a função de transição $h(\overline{u},\overline{v})$ é um difeomorfismo temos que $\frac{\partial(u,v)}{\partial(\overline{u},\overline{v})}$ é diferente de zero em W. Além disso, como o Jacobiano $\frac{\partial(u,v)}{\partial(\overline{u},\overline{v})}$ é uma função contínua, $\frac{\partial(u,v)}{\partial(\overline{u},\overline{v})}(p)>0$ e W é conexo, segue do Teorema de Bolzano que $\frac{\partial(u,v)}{\partial(\overline{u},\overline{v})}>0$ em W. Portanto, S é orientável. De modo análogo, se uma superfície pode ser coberta por duas vizinhanças coordenadas cuja intersecção é conexa, então a superfície é orientável.

Proposição 2.1. Uma superfície regular $S \subset \mathbb{R}^3$ é orientável se, e somente se, existe um campo diferenciável $N: S \to \mathbb{R}^3$ de vetores normais em S, isto é, $N(p) \perp T_p S$ para todo $p \in S$.

 $Demonstração.\ (\Longrightarrow):$ Como S é orientável, podemos cobri-la com uma família de vizinhanças coordenadas de tal modo que, na vizinhança de duas quaisquer delas, a mudança de coordenadas tenha Jacobiano positivo.

Nos pontos p = X(u, v) de cada vizinhança coordenada, definimos:

$$N(p) := N(u, v) = \frac{X_u \wedge X_v}{||X_u \wedge X_v||}(p).$$

Note que N(p) está bem definido. De fato, sejam $X:U\to S$ e $\overline{X}:\overline{U}\to S$ duas parametrizações tais que $X(U)\cap \overline{X}(\overline{U})=:W\neq\emptyset$ e $h:U\to \overline{U}$ tal que $h(u,v)=(\overline{u},\overline{v})$. Assim, $X=\overline{X}\circ h$ e, consequentemente,

$$X_{u} = \frac{\partial X}{\partial u} = \frac{\partial (\overline{X} \circ h)}{\partial u} = \frac{\partial \overline{X}}{\partial \overline{u}} \frac{\partial \overline{u}}{\partial u} + \frac{\partial \overline{X}}{\partial \overline{v}} \frac{\partial \overline{v}}{\partial u} = \frac{\partial \overline{u}}{\partial u} \overline{X}_{\overline{u}} + \frac{\partial \overline{v}}{\partial u} \overline{X}_{\overline{v}}.$$

$$X_{v} = \frac{\partial X}{\partial v} = \frac{\partial (\overline{X} \circ h)}{\partial v} = \frac{\partial \overline{X}}{\partial \overline{u}} \frac{\partial \overline{u}}{\partial v} + \frac{\partial \overline{X}}{\partial \overline{v}} \frac{\partial \overline{v}}{\partial v} = \frac{\partial \overline{u}}{\partial v} \overline{X}_{\overline{u}} + \frac{\partial \overline{v}}{\partial v} \overline{X}_{\overline{v}}.$$

Logo,

е

$$X_{u} \wedge X_{v} = \left(\frac{\partial \overline{u}}{\partial u} \overline{X}_{\overline{u}} + \frac{\partial \overline{v}}{\partial u} \overline{X}_{\overline{v}}\right) \wedge \left(\frac{\partial \overline{u}}{\partial v} \overline{X}_{\overline{u}} + \frac{\partial \overline{v}}{\partial v} \overline{X}_{\overline{v}}\right)$$

$$= \frac{\partial \overline{u}}{\partial u} \frac{\partial \overline{v}}{\partial v} \overline{X}_{\overline{u}} \wedge \overline{X}_{\overline{v}} + \frac{\partial \overline{v}}{\partial u} \frac{\partial \overline{u}}{\partial v} \overline{X}_{\overline{v}} \wedge \overline{X}_{\overline{u}}$$

$$= \left(\frac{\partial \overline{u}}{\partial u} \frac{\partial \overline{v}}{\partial v} - \frac{\partial \overline{v}}{\partial u} \frac{\partial \overline{u}}{\partial v}\right) \overline{X}_{\overline{u}} \wedge \overline{X}_{\overline{v}}$$

$$= \det \begin{pmatrix} \frac{\partial \overline{u}}{\partial u} & \frac{\partial \overline{u}}{\partial v} \\ \frac{\partial \overline{v}}{\partial u} & \frac{\partial \overline{v}}{\partial v} \end{pmatrix} \overline{X}_{\overline{u}} \wedge \overline{X}_{\overline{v}}$$

$$=\frac{\partial(\overline{u},\overline{v})}{\partial(u,v)}\overline{X}_{\overline{u}}\wedge\overline{X}_{\overline{v}}.$$

Portanto, para $p \in W$ arbitrário, temos que os vetores N(u, v) e $N(\overline{u}, \overline{v})$ coincidem, pois

$$N(u,v) = \frac{X_u \wedge X_v}{||X_u \wedge X_v||}$$

$$= \frac{\operatorname{Jac}(h)\overline{X}_{\overline{u}} \wedge \overline{X}_{\overline{v}}}{||\operatorname{Jac}(h)\overline{X}_{\overline{u}} \wedge \overline{X}_{\overline{v}}||}$$

$$= \frac{\frac{\partial(\overline{u},\overline{v})}{\partial(u,v)}}{\left|\frac{\partial(\overline{u},\overline{v})}{\partial(u,v)}\right|} \frac{\overline{X}_{\overline{u}} \wedge \overline{X}_{\overline{v}}}{||\overline{X}_{\overline{u}} \wedge \overline{X}_{\overline{v}}||}$$

$$= \operatorname{sign}\left(\frac{\partial(\overline{u},\overline{v})}{\partial(u,v)}\right) N(\overline{u},\overline{v})$$

$$= N(\overline{u},\overline{v}).$$

Além disso, as coordenadas de N(u, v) em \mathbb{R}^3 são funções diferenciáveis de (u, v) e, portanto, a aplicação $N: S \to \mathbb{R}^3$ é diferenciável. Por construção $N(p) \perp T_p S$ para todo $p \in S$.

 (\Leftarrow) : Reciprocamente, seja $N:S\to\mathbb{R}^3$ um campo diferenciável unitário de vetores normais em S, e considere uma família de vizinhanças coordenadas cobrindo S. Para os pontos $p\in X(u,v)$ de cada vizinhança coordenada $X(U),\,U\subset\mathbb{R}^2$, é possível, pela continuidade de N e, se necessário, intercambiar u e v, fazer com que

$$N(u,v) = \frac{X_u \wedge X_v}{||X_u \wedge X_v||}.$$

De fato, como ||N(p)||=1, $\left|\left|\frac{X_u \wedge X_v}{||X_u \wedge X_v||}\right|\right|=1$, $N(p) \perp T_p S$ e $\frac{X_u \wedge X_v}{||X_u \wedge X_v||} \perp T_p S$, temos que

$$f(p) := \left\langle N(p), \frac{X_u \wedge X_v}{||X_u \wedge X_v||} \right\rangle = \pm 1.$$

Como f(p) é uma função contínua em X(U) e X(U) é um conjunto conexo, então o sinal de f é constante em X(U). Se f(p) = -1, podemos intercambiar o u, v na parametrização, e então f(p) = 1.

Procedendo desse modo com todas as vizinhanças coordenadas, teremos que na intersecção de duas quaisquer delas, digamos X(u,v) e $\overline{X}(\overline{u},\overline{v})$ o Jacobiano $\frac{\partial(u,v)}{\partial(\overline{u},\overline{v})}$ é positivo.

De fato, suponha por absurdo que $\frac{\partial(u,v)}{\partial(\overline{u},\overline{v})} < 0$. Logo,

$$\begin{split} N(u,v) &= \frac{X_u \wedge X_v}{||X_u \wedge X_v||} \\ &= \frac{\frac{\partial(u,v)}{\partial(\overline{u},\overline{v})} \overline{X}_{\overline{u}} \wedge \overline{X}_{\overline{v}}}{\left| \left| \frac{\partial(u,v)}{\partial(\overline{u},\overline{v})} \overline{X}_{\overline{u}} \wedge \overline{X}_{\overline{v}} \right| \right|} \\ &= \frac{\frac{\partial(u,v)}{\partial(\overline{u},\overline{v})}}{\left| \frac{\partial(u,v)}{\partial(\overline{u},\overline{v})} \right|} \frac{\overline{X}_{\overline{u}} \wedge \overline{X}_{\overline{v}}}{||\overline{X}_{\overline{u}} \wedge \overline{X}_{\overline{v}}||} \\ &= \operatorname{sign} \left(\frac{\partial(u,v)}{\partial(\overline{u},\overline{v})} \right) N(\overline{u},\overline{v}) \\ &= -N(\overline{u},\overline{v}). \end{split}$$

Absurdo! Portanto, a dada família de vizinhanças coordenadas, com eventuais intercâmbios de u,v, torna S orientável. \Box

Exemplo 2.3 (Esfera unitária (\mathbb{S}^2)). Note que a aplicação N(x, y, z) := (x, y, z) quando restrita aos pontos de \mathbb{S}^2 é uma campo normal diferenciável (prova usando coordenadas). Além disso, sua diferencial em $p \in \mathbb{S}^2$ aplicada ao vetor $v \in T_p \mathbb{S}^2$ é dada por

$$dN_p(v) = v.$$

2.2. O gradiente.

Definição 2.1. Seja $S \subset \mathbb{R}^3$ uma superfície regular $e \ f : S \to \mathbb{R}$ uma função diferenciável. Definimos o gradiente de f em $p \in S$ como o campo de vetores $\nabla f : S \to \mathbb{R}^3$ tal que

$$\langle \nabla f(p), v \rangle = df_p(v),$$

para todo $v \in T_pS$.

Lema 2.1. Seja $f: \mathbb{R}^3 \to \mathbb{R}$ uma função diferenciável (pelo menos C^2) e $a \in \mathbb{R}$ um valor regular de f. Então $S:=f^{-1}(a)$ é uma superfície regular orientável.

Rascunho da Demonstração. Use o Teorema da função inversa para mostrar que S é uma superfície regular. Para mostrar que S é orientável mostre que $N(p) := \frac{\nabla f(p)}{||\nabla f(p)||}$ é um campo normal unitário em S e, pela 2.1 temos que S é orientável.

FIM DO CAPÍTULO 2 DO LIVRO [DC05].

2.3. A segunda forma fundamental. Sejam $S = X(U), U \subset \mathbb{R}^2$, uma superfície parametrizada regular, $p = X(u, v), v \in T_pS$ e $\alpha(t) = X(u(t), v(t))$ uma curva em S tal que $\alpha(t_0) = p$ e $\alpha'(t_0) = v$.

Primeiramente, note que

$$v = \alpha'(t) = \frac{d\alpha}{dt}$$

$$= \frac{dX(u(t), v(t))}{dt}$$

$$= \frac{\partial X}{\partial u} \frac{du}{dt} + \frac{\partial X}{\partial v} \frac{dv}{dt}$$

$$= u'(t)X_u(u(t), v(t)) + v'(t)X_v(u(t), v(t)),$$

 $\alpha''(t) = \frac{d^{2}\alpha}{dt^{2}}$ $= \frac{d}{dt} \left(u'(t)X_{u}(u(t), v(t)) + v'(t)X_{v}(u(t), v(t)) \right)$ $= u''(t)X_{u}(u(t), v(t)) + u'(t) \frac{dX_{u}(u(t), v(t))}{dt} + v''(t)X_{v}(u(t), v(t)) + v'(t) \frac{dX_{v}(u(t), v(t))}{dt}$ $= u''(t)X_{u}(u(t), v(t)) + u'(t) \left(\frac{dX_{u}}{du} \frac{du}{dt} + \frac{dX_{u}}{dv} \frac{dv}{dt} \right) + v''(t)X_{v}(u(t), v(t)) + v'(t) \left(\frac{dX_{v}}{du} \frac{du}{dt} + \frac{dX_{v}}{dv} \frac{dv}{dt} \right)$ $= u''(t)X_{u}(u(t), v(t)) + (u'(t))^{2}X_{uu}(u(t), v(t)) + u'(t)v'(t)X_{uv}(u(t), v(t))$ $+ v''(t)X_{v}(u(t), v(t)) + v'(t)u'(t)X_{vu}(u(t), v(t)) + (v'(t))^{2}X_{vv}(u(t), v(t))$ $= u''(t)X_{u}(u(t), v(t)) + v''(t)X_{v}(u(t), v(t))$ $+ (u'(t))^{2}X_{uu}(u(t), v(t)) + 2u'(t)v'(t)X_{uv}(u(t), v(t)) + (v'(t))^{2}X_{vv}(u(t), v(t)).$

No ponto $p = \alpha(t_0)$ temos que $\{X_u(u_0, v_0), X_v(u_0, v_0), N(u_0, v_0)\}$ é uma base do \mathbb{R}^3 , onde $(u_0, v_0) = (u(t_0), v(t_0))$. Calculemos a componente de $\alpha''(t_0)$ na direção $N(u_0, v_0)$.

Observação 2.1. As componentes de $\alpha''(t_0)$ nas direções $X_u(u_0, v_0)$ e $X_v(u_0, v_0)$ serão calculadas posteriormente e levarão aos símbolos de Christoffel.

$$\langle \alpha''(t_0), N(u_0, v_0) \rangle = u''(t_0) \langle X_u, N \rangle + v''(t_0) \langle X_v, N \rangle$$

$$+ (u'(t_0))^2 \langle X_{uu}, N \rangle + 2u'(t_0)v'(t_0) \langle X_{uv}, N \rangle + (v'(t_0))^2 \langle X_{vv}, N \rangle$$

$$= (u'(t_0))^2 \langle X_{uu}, N \rangle + 2u'(t_0)v'(t_0) \langle X_{uv}, N \rangle + (v'(t_0))^2 \langle X_{vv}, N \rangle$$

$$= \langle v, X_u \rangle^2 \langle X_{uu}, N \rangle + 2\langle v, X_u \rangle \langle v, X_v \rangle \langle X_{uv}, N \rangle + \langle v, X_v \rangle^2 \langle X_{vv}, N \rangle.$$

Observação 2.2 (Exercício). O número $\langle \alpha''(t_0), N(u_0, v_0) \rangle$ não depende da parametrização da curva $\alpha(t)$.

Definição 2.2. Seja S = X(U), $U \subset \mathbb{R}^3$, uma superfície parametrizada regular e $p \in S$. Definimos a **segunda forma fundamental de** S **em** p como sendo a forma quadrática $\Pi_p: T_pS \to \mathbb{R}$ dada por

$$II_p(v) := a^2 \langle X_{uu}, N \rangle + 2ab \langle X_{uv}, N \rangle + b^2 \langle X_{vv}, N \rangle$$
$$= a^2 e(u, v) + 2ab f(u, v) + b^2 g(u, v).$$

onde $v = aX_u + bX_v e$

$$\begin{cases} e(u,v) &:= \langle X_{uu}(u,v), N(u,v) \rangle \\ f(u,v) &:= \langle X_{uv}(u,v), N(u,v) \rangle \\ g(u,v) &:= \langle X_{vv}(u,v), N(u,v) \rangle \end{cases}$$

Chamamos as funções $e, f, g: U \subset \mathbb{R}^2 \to \mathbb{R}$ de coeficientes da segunda forma fundamental de S.

2.3.1. Consequências geométricas. Sejam S = X(U), $U \subset \mathbb{R}^2$, uma superfície parametrizada regular, p = X(u, v), $v \in T_pS$ e $\alpha(s) = X(u(s), v(s))$ uma curva p.p.c.a. em S tal que $\alpha(s_0) = p$ e $\alpha'(s_0) = v$.

Considere $\{\overrightarrow{t}, \overrightarrow{n}, \overrightarrow{b}\}$ o triedro de Frenet-Serret de α . Neste caso,

$$\langle \alpha''(s), N(\alpha(s)) \rangle = \langle \kappa(s) \overrightarrow{n}(s), N(\alpha(s)) \rangle = \kappa(s) \langle \overrightarrow{n}(s), N(\alpha(s)) \rangle = \kappa(s) \cos(\theta(s)),$$

onde $\theta(s) := \angle(\overrightarrow{n}(s), N(\alpha(s))).$

Suponha que o traço de α seja uma seção normal de S em p, isto é, $\alpha = \Pi \cap S$, em que Π é o plano nas direções $\alpha'(s)$ e $N(\alpha(s))$ em p.

Como α é uma curva plana então Π é o plano osculador que passa por p e cujos vetores vetores diretores são $\alpha'(s)$ e $\overrightarrow{n}(s)$. Mas como $\alpha'(s) \perp N(\alpha(s))$ e $\alpha'(s) \perp \overrightarrow{n}(s)$ temos que $\overrightarrow{n}(s) = \pm N(\alpha(s))$ e daí

$$\langle \alpha''(s), N(\alpha(s)) \rangle = \pm \kappa(s).$$

2.4. A curvatura normal.

Definição 2.3. Sejam S = X(U), $U \subset \mathbb{R}^2$, uma superfície parametrizada regular, $p \in S$ e $v \in T_pS$. Definimos a curvatura normal de S em p na direção v por

$$\kappa_{\mathbf{n},p}(v) := \frac{\mathrm{II}_p(v)}{\mathrm{I}_p(v)}.$$

Note que a curvatura normal de uma superfície S em um ponto p depende somente da direção de v. De fato, para $\lambda \in \mathbb{R}$,

$$\kappa_{n,p}(\lambda v) = \frac{II_p(\lambda v)}{I_p(\lambda v)}$$

$$= \frac{(\lambda a)^2 e + 2(\lambda a)(\lambda b)f + (\lambda b)^2 g}{(\lambda a)^2 E + 2(\lambda a)(\lambda b)F + (\lambda b)^2 G}$$

$$= \frac{II_p(v)}{I_p(v)}$$

$$= \kappa_{n,p}(v).$$

2.5. **Exemplos.** Agora faremos alguns exemplos de como calcular a segunda forma fundamental e a curvatura normal.

Exemplo 2.4 (Esfera). Valos calcular a primeira e a segunda formas fundamentais de uma esfera em um ponto da vizinhança coordenada pela parametrização

$$X(u,v) = (a\cos(u)\sin(v), a\sin(u)\sin(v), a\cos(v)),$$

 $com \ a > 0$. Primeiro observe que

$$X_{u}(u,v) = (-a\sin(u)\sin(v), a\cos(u)\sin(v), 0),$$

$$X_{v}(u,v) = (a\cos(u)\cos(v), a\sin(u)\cos(v), -a\sin(v)),$$

$$X_{uu}(u,v) = (-a\cos(u)\sin(v), -a\sin(u)\sin(v), 0),$$

$$X_{uv}(u,v) = (-a\sin(u)\cos(v), a\cos(u)\cos(v), 0),$$

$$X_{vv}(u,v) = (-a\cos(u)\sin(v), -a\sin(u)\sin(v), -a\cos(v)).$$

Agora calculemos o vetor normal em p:

$$\begin{split} N(p) &= \frac{X_u \wedge X_v}{||X_u \wedge X_v||} \\ &= \frac{i}{i} \frac{j}{j} \frac{k}{k} \\ -a\sin(u)\sin(v) - a\cos(u)\sin(v) - 0 \\ -a\cos(u)\cos(v) - a\sin(u)\cos(v) - -a\sin(v) - 0 \\ &= \frac{(-a\sin(v)a\cos(u)\sin(v))\hat{i} + (-a\sin(v)a\sin(u)\sin(v))\hat{j} + (-a\sin(u)\cos(v)a\sin(u)\sin(v) - a\cos(u)\sin(v)a\cos(u)\cos(v))\hat{k}}{||X_u \wedge X_v||} \\ &= \frac{(-a^2\sin^2(v)\cos(u))\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j} + (-a^2\sin^2(u)\cos(v)\sin(v) - a^2\cos^2(u)\sin(v)\cos(v))\hat{k}}{||X_u \wedge X_v||} \\ &= \frac{(-a^2\sin^2(v)\cos(u))\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j} + (-a^2\cos^2(\cos(v)\sin(v)\sin^2(v) + \cos^2(v)))\hat{k}}{||X_u \wedge X_v||} \\ &= \frac{(-a^2\sin^2(v)\cos(u))\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j} + (-a^2\cos(v)\sin(v))\hat{k}}{||X_u \wedge X_v||} \\ &= \frac{(-a^2\sin^2(v)\cos(u))\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j} + (-a^2\cos(v)\sin(v))\hat{k}}{||X_u \wedge X_v||} \\ &= \frac{(-a^2\sin^2(v)\cos(u))\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j} + (-a^2\cos(v)\sin(v))\hat{k}}{\sqrt{(-a^2\sin^2(v)\cos(u))^2} + (-a^2\sin^2(v)\sin(u))^2 + (-a^2\cos(v)\sin(v))\hat{k}}} \\ &= \frac{(-a^2\sin^2(v)\cos(u))\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j} + (-a^2\cos(v)\sin(v))\hat{k}}{\sqrt{a^4\sin^4(v)\cos^2(u) + a^4\sin^4(v)\sin^2(u) + a^4\cos^2(v)\sin^2(v)}} \\ &= \frac{(-a^2\sin^2(v)\cos(u))\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j} + (-a^2\cos(v)\sin(v))\hat{k}}{\sqrt{a^4\sin^4(v)\cos^2(u) + a^4\sin^4(v)\sin^2(u) + a^4\cos^2(v)\sin^2(v)}} \\ &= \frac{(-a^2\sin^2(v)\cos(u))\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j} + (-a^2\cos(v)\sin(v))\hat{k}}{\sqrt{a^4\sin^4(v) + a^4\cos^2(v)\sin^2(v)}} \\ &= \frac{(-a^2\sin^2(v)\cos(u))\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j} + (-a^2\cos(v)\sin(v))\hat{k}}{\sqrt{a^4\sin^4(v) + a^4\cos^2(v)\sin^2(v)}}} \\ &= \frac{(-a^2\sin^2(v)\cos(u))\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j} + (-a^2\cos(v)\sin(v))\hat{k}}{\sqrt{a^4\sin^4(v) + a^4\cos^2(v)\sin^2(v)}} \\ &= \frac{(-a^2\sin^2(v)\cos(u))\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j} + (-a^2\cos(v)\sin(v))\hat{k}}{\sqrt{a^4\sin^4(v) + a^4\cos^2(v)\sin^2(v)}} \\ &= \frac{(-a^2\sin^2(v)\cos(u))\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j} + (-a^2\cos(v)\sin(v))\hat{k}}{\sqrt{a^4\sin^4(v) + a^4\cos^2(v)\sin^2(v)}} \\ &= \frac{(-a^2\sin^2(v)\cos(u))\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j} + (-a^2\cos(v)\sin(v))\hat{k}}{\sqrt{a^4\sin^4(v) + a^4\cos^2(v)\sin^2(v)}} \\ &= \frac{(-a^2\sin^4(v)\cos(u))\hat{i} + (-a^2\sin^4(v)\sin(u))\hat{j} + (-a^2\cos(v)\sin(v))\hat{k}}{a^2\sqrt{\sin^4(v)}\sin(u), \cos(v)}} \\ &= (-(-a\sin^2(v)\cos(u))\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j} + (-a^2\cos(v)\sin(v))\hat{k}} \\ &= (-(-a^2\sin^2(v)\cos(u))\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j} + (-a^2\cos(v)\sin(v))\hat{k} \\ &= (-(-a^2\sin^2(v)\cos(u))\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j} + (-a^2\cos(v)\sin^2(v))\hat{k} \\ &= (-(-a^2\sin^2(v)\cos(u))\hat{i} + (-a^2\sin^2(v)\sin(u))\hat{j}$$

Finalmente podemos calcular os coeficientes da primeira e segunda formas fundamentais:

$$E(u, v) = \langle X_u, X_u \rangle = a^2 \sin^2(v)$$

$$F(u, v) = \langle X_u, X_v \rangle = 0$$

$$G(u, v) = \langle X_v, X_v \rangle = a^2$$

$$e(u, v) = \langle X_{uu}, N \rangle = a \sin^2(v)$$

$$f(u, v) = \langle X_{uv}, N \rangle = 0$$

$$g(u, v) = \langle X_{vv}, N \rangle = a.$$

Obteremos a primeira e segunda formas fundamentais para v, um vetor tangente a esfera no ponto p, dado na base associada a X(u,v) por

$$v = v_1 X_u + v_2 X_v.$$

Logo,

$$I_p(v) = v_1^2(a^2 \sin^2(v)) + v_2^2 a^2$$
$$II_p(v) = v_1^2(a \sin^2(v)) + v_2^2 a.$$

Por fim, calculamos a curatura normal:

$$\kappa_{n,p}(v) = \frac{II_p(v)}{I_p(v)} = \frac{v_1^2(a\sin^2(v)) + v_2^2a}{v_1^2(a^2\sin^2(v)) + v_2^2a^2} = \frac{1}{a}.$$

 $\kappa_{n,p}(v)$ é a curvatura do círculo máximo determinado por p, N, v.

Exemplo 2.5 (Plano). Vamos calcular a primeira e segunda formas fundamentais do plano S = X(U) cuja equação é ax + by + cz + d = 0, com $c \neq 0$, em um ponto da vizinhança coordenada pela parametrização

$$X(u,v) = \left(u, v, \frac{-d - au - bv}{c}\right).$$

Primeiro observe que

$$X_{u}(u,v) = \left(1,0,-\frac{a}{c}\right),$$

$$X_{v}(u,v) = \left(0,1,-\frac{b}{c}\right),$$

$$X_{uu}(u,v) = (0,0,0),$$

$$X_{uv}(u,v) = (0,0,0),$$

$$X_{vv}(u,v) = (0,0,0).$$

Agora calculamos o vetor normal em p:

$$N(p) = \frac{X_u \wedge X_v}{||X_u \wedge X_v||}$$

$$= \frac{\begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 0 & -\frac{a}{c} \\ 0 & 1 & -\frac{b}{c} \end{pmatrix}}{||X_u \wedge X_v||}$$

$$= \frac{(\frac{a}{c})\hat{i} + (\frac{b}{c})\hat{j} + (1)\hat{k}}{||X_u \wedge X_v||}$$

$$= \frac{(\frac{a}{c})\hat{i} + (\frac{b}{c})\hat{j} + (1)\hat{k}}{\sqrt{(\frac{a}{c})^2 + (\frac{b}{c})^2 + 1}}$$

$$= \frac{1}{\sqrt{(\frac{a}{c})^2 + (\frac{b}{c})^2 + 1}} \left(\frac{a}{c}, \frac{b}{c}, 1\right).$$

Finalmente podemos calcular os coeficientes da primeira e segunda formas fundamentais:

$$E(u, v) = \langle X_u, X_u \rangle = 1 + \frac{a^2}{b^2}$$
$$F(u, v) = \langle X_u, X_v \rangle = \frac{ab}{c^2}$$

$$G(u, v) = \langle X_v, X_v \rangle = 1 + \frac{b^2}{c^2}$$

$$e(u, v) = \langle X_{uu}, N \rangle = 0$$

$$f(u, v) = \langle X_{uv}, N \rangle = 0$$

$$g(u, v) = \langle X_{vv}, N \rangle = 0.$$

Obteremos a primeira e segunda formas fundamentais para v, um vetor tangente ao plano no ponto p, dado na base associada a X(u,v) por

$$v = v_1 X_u + v_2 X_v.$$

Logo,

$$I_p(v) = v_1^2 \left(1 + \frac{a^2}{b^2} \right) + 2v_1 v_2 \left(\frac{ab}{c^2} \right) v_2^2 \left(1 + \frac{b^2}{c^2} \right)$$

$$II_p(v) = 0.$$

Por fim, calculamos a curvatura normal:

$$\kappa_{n,p}(v) = \frac{II_p(v)}{I_p(v)} = \frac{0}{v_1^2 \left(1 + \frac{a^2}{b^2}\right) + 2v_1v_2\left(\frac{ab}{c^2}\right)v_2^2\left(1 + \frac{b^2}{c^2}\right)} = 0.$$

A curvatura de qualquer seção normal do plano é igual a 0, pois são retas.

Exemplo 2.6 (Cilindro circular). Vamos calcular a primeira e segunda formas fundamentais de um cilindro circular em um ponto da vizinhança coordenada pela parametrização

$$X(u, v) = (r\cos(u), r\sin(u), v),$$

 $com\ r > 0.$ Valos calcular a primeira e a segunda formas fundamentais de uma esfera em um ponto da vizinhança coordenada pela parametrização

$$X(u,v) = (a\cos(u)\sin(v), a\sin(u)\sin(v), a\cos(v)),$$

 $com \ a > 0$. Primeiro observe que

$$X_{u}(u, v) = (-r\sin(u), r\cos(u), 0),$$

$$X_{v}(u, v) = (0, 0, 1),$$

$$X_{uu}(u, v) = (-r\cos(u), -r\sin(u), 0),$$

$$X_{uv}(u, v) = (0, 0, 0),$$

$$X_{vv}(u, v) = (0, 0, 0).$$

Agora calculemos o vetor normal em p:

$$\begin{split} N(p) &= \frac{X_u \wedge X_v}{||X_u \wedge X_v||} \\ &= \frac{\begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ -r\sin(u) & r\cos(u) & 0 \\ 0 & 0 & 1 \end{pmatrix}}{||X_u \wedge X_v||} \\ &= \frac{(r\cos(u))\,\hat{i} + (r\sin(u))\,\hat{j} + (0)\,\hat{k}}{||X_u \wedge X_v||} \\ &= \frac{(r\cos(u))\,\hat{i} + (r\sin(u))\,\hat{j} + (0)\,\hat{k}}{\sqrt{(r\cos(u))^2 + (r\sin(u))^2 + 0}} \\ &= \frac{(r\cos(u))\,\hat{i} + (r\sin(u))\,\hat{j} + (0)\,\hat{k}}{r} \end{split}$$

$$= (\cos(u), \sin(u), 0).$$

Finalmente podemos calcular os coeficientes da primeira e segunda formas fundamentais:

$$E(u, v) = \langle X_u, X_u \rangle = r^2$$

$$F(u, v) = \langle X_u, X_v \rangle = 0$$

$$G(u, v) = \langle X_v, X_v \rangle = 1$$

$$e(u, v) = \langle X_{uu}, N \rangle = -r$$

$$f(u, v) = \langle X_{uv}, N \rangle = 0$$

$$g(u, v) = \langle X_{vv}, N \rangle = 0.$$

Obteremos a primeira e segunda formas fundamentais para v, um vetor tangente a esfera no ponto p, dado na base associada a X(u,v) por

$$v = v_1 X_u + v_2 X_v.$$

Logo,

$$I_p(v) = v_1^2(r^2) + v_2^2 1$$
$$II_p(v) = v_1^2(-r).$$

Por fim, calculamos a curvatura normal:

$$\kappa_{n,p}(v) = \frac{II_p(v)}{I_p(v)} = \frac{-v_1^2 r}{v_1^2(r^2) + v_2^2} \le 0.$$

O máximo de $\kappa_{n,p}(v)$ ocorre para $v_1=0$, isto é, $v=v_2X_v$ e neste caso $\kappa_{n,p}(v)=0$. O mínimo de $\kappa_{n,p}(v)$ ocorre para $v_2=0$, isto é, $v=v_1X_u$ e neste caso $\kappa_{n,p}(v)=-\frac{1}{r}$.

Referências

[DC05] M. P. Do Carmo, Geometria diferencial de curvas e superfícies, Sociedade Brasileira de Matemática, 2005. \uparrow 1, 14