- Modelo para criarmos classificadores ou regressores não-lineares
- Podem ser compostas de unidades de processamento simples, por exemplo, regressores logísticos

• Diagrama de uma rede neural típica:

• Diagrama de uma rede neural típica:

• Diagrama de uma rede neural típica:

Camadas ocultas

• Diagrama de uma rede neural típica:

Camadas ocultas

• Diagrama de uma rede neural típica:

• Diagrama de uma rede neural típica:

• Diagrama de uma rede neural típica:

Treinamento de Redes Neurais

- Ideia geral:
 - Saída esperada (target): y_i
 - Forward pass: predições ŷ_i
 - Erro entre saída esperada e predita: $E(y_i \hat{y}_i)$
 - A função custo depende de ŷ_i
 - ŷ_i, por sua vez, é uma composição de funções
 - (que indiretamente depende das entradas x_1, \ldots, x_d)
 - O gradiente da função custo com respeito aos pesos w pode ser calculado aplicando-se a regra da cadeia

Treinamento de Redes Neurais

- Na prática, precisamos pensar em:
 - Inicialização dos pesos
 - Taxa de Aprendizado
 - Número de iterações
 - Tamanho de batch (Stochastic Gradient Descent)
 - Arquitetura da rede (quantidade de camadas e de unidades por camada)