Lung Cancer Prediction using CT medical imaging

- Nisarg Patel (1225464851)

Introduction

INTRODUCTION

- As lung cancer is among the top three cancers worldwide, its early-stage detection and prediction play the most crucial role in cancer prevention.
- In this project, we proposed an efficient model that accurately predicts whether a patient is suffering from lung disease or not, based on a CT scan image.
- However, for any Al-based system to predict cancer accurately, it should get access to a reasonable amount of patients' digital data such as low-dose computed tomography (LDCT) and computed tomography (CT).
- The authors have implemented a specific type of image augmentation and pre-processing
- on a relatively small CT image dataset and have trained ensembled Convolutional Neural
- Network (CNN) models that performs better.

- Dataset Accessibility
- Model Performance

Literature Review

Literature Review

- A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification
 - KNN \rightarrow 80% accuracy on 813 random samples
- Lung cancer screening with low-dose CT scans using a deep learning approach
 - □ DeepScreener \rightarrow 78.2% accuracy (trained on 3000 samples)
- <u>Lung Cancer Detection and Classification with 3D Convolutional Neural Network</u>
 (3D-CNN)
 - U-Net \rightarrow 86.6% accuracy, AUC \rightarrow 0.83
- Automatic Lung Cancer Prediction for Chest X-ray Images Using the Deep Learning
 Approach
 - DenseNet-121 \rightarrow 74.43% accuracy

Dataset Description

Dataset Description

- 1000 CT scans images with size (224,224)
- 4 categories (1 normal CT scan, 3 category of lung cancer)

Category	Training	Validation	Testing	
Adenocarcinoma	195	23	120	338
Large Cell	115	21	51	187
Squamous Cell	155	15	90	260
Normal	148	13	54	215
	613	72	315	1000

Pre-Processing

Pre-Processing

- ImageDataGenerator from tensorflow.keras.preprocessing.image import ImageDataGenerator
 - Pixel Scaling: rescale = 1. /255
 - Image Augmentation:
 - Rotation Range: 15
 - Shear Range: 0.2
 - Zoom Range: 0.2
 - Horizontal flip: True
 - Width shift range: 0.1
 - Height shift range: 0.1
 - Fill Method: 'Nearest'

Base Model & performance

Model	Loss	Accuracy	Recall	Precision
DenseNet169	0.547894	0.853968	0.93968	0.45963
DenseNet201	0.759781	0.765079	0.87619	0.57381
EfficientNetB4	0.995534	0.55873	0.82857	0.4579
Inception V3	0.624704	0.793651	0.94286	0.44461
MobileNet	0.559497	0.825397	0.93651	0.65121
ResNet50	1.123878	0.514286	0.6	0.32643
VGG19	0.706449	0.72381	0.77778	0.58612
Xception	0.828387	0.669841	0.75238	0.59102

Proposed models & environment setting

Parameters	Values		
Programming Language	Python 3.8.0		
Platform	Google Colab		
Framework	TensorFlow		
Batch size	8		
Epochs	50		
Optimizer	Adam		
Loss	Categorical cross-entropy		
Metrics	Accuracy, Recall, Precision		
ModelCheckpoint	monitor = Validation Accuracy		

RESULT & ANALYSIS

Result & Analysis

Result & Analysis

Model	Loss	Accuracy	Recall	Precision
DenseNet169	0.547894	0.853968	0.93968	0.45963
MobileNet	0.559497	0.825397	0.93651	0.65121
InceptionV3	0.624704	0.793651	0.94286	0.44461
Proposed	0.344487	0.873015	1	0.58558

CONCLUSION

- Solved two major challenges
 - Small dataset
 - Better performance

 Detection of 3 lung cancer's categories with a highest recall on a test (hold out) dataset through proposed model.

Thank You!

Any questions?