LA ELIPSE

CONTENIDO

- 1. Ecuación de la elipse horizontal con centro en el origen
 - 1.1 Análisis de la ecuación
- 2. Lado recto
- 3. Excentricidad de la elipse
- 4. Ecuación de la elipse vertical con centro en el origen

Ejercicios

- 5. Ecuación de la elipse horizontal con centro fuera del origen
- 6. Ecuación de la elipse vertical con centro fuera del origen
- 7. Forma general de las ecuaciones de las elipses horizontal y vertical fuera del origen
- 8. Posición general de la elipse y su ecuación
- 9. Ejercicios

Una *elipse* es la curva que se obtiene interceptando un cono circular recto y un plano: Si el plano está inclinado y no es paralelo a una de sus generatrices y corta a una sola rama del cono, como se ve en la *Figura 1*.

La *generatriz* de una superficie cónica es una recta fija en uno de sus puntos con uno de sus extremos describiendo una circunferencia plana.

DEFINICIÓN. Por definición la *elipse* es el *lugar geométrico* de todos los puntos de un plano, participantes de la propiedad relativa: que la suma de sus distancias a dos puntos fijos llamados focos es constante.

Los dos puntos son conocidos como focos de la *elipse*, mientras que la constante será representada por *2a*, como se ve en la *Figura 2*.

Figura 1

1. Ecuación de la elipse horizontal con centro en el origen.

Figura 2

Observando la Figura 2 se tiene:

La condición de movimiento del punto M(x, y), dada por la definición es:

$$\overline{MF_1} + \overline{MF_2} = Constante = 2a$$
 (1)

Aplicando la fórmula para determinar la distancia entre dos puntos, se tiene:

$$\overline{MF}_1 = \sqrt{(x+c)^2 + y^2}$$
 y $\overline{MF}_2 = \sqrt{(x-c)^2 + y^2}$

De modo que al sustituir en (1) queda:

$$\sqrt{(x+c)^2+y^2} + \sqrt{(x-c)^2+y^2} = 2a$$

Despejando al segundo radical:

$$\sqrt{(x-c)^2+y^2} = 2a - \sqrt{(x+c)^2+y^2}$$

Elevando al cuadrado ambos miembros de la igualdad y desarrollando, tendremos:

$$x^2-2cx+c^2+y^2=4a^2-4a\sqrt{(x+c)^2+y^2}+x^2+2cx+c^2+y^2$$

Reduciendo:

$$4a\sqrt{(x+c)^2+y^2} = 4a^2 + 4cx$$

Dividiendo entre 4, se tiene:

$$a\sqrt{(x+c)^2 + y^2} = a^2 + cx$$

Elevando al cuadrado ambos miembros de la igualdad y reduciendo:

$$a^{2}x^{2}+2 a^{2}cx+a^{2}c^{2}+a^{2}y^{2}=a^{4}+2a^{2}cx+c^{2}x^{2}$$

 $a^{2}x^{2}-c^{2}x^{2}+a^{2}y^{2}=a^{4}-a^{2}c^{2}$

Factorizando:

$$(a^2-c^2)x^2+a^2y^2=a^2(a^2-c^2)$$
(2)

Con el fin de transformar más todavía esta ecuación, recordemos que en todo triángulo cada lado es menor que la suma de los otros dos, lo que aplicado al triángulo F_1MF_2 de nuestra *Figura* 2, produce que:

$$\overline{MF}_1 + \overline{MF}_2 > \overline{F_1F}_2$$

Sustituyendo:

a + a > 2c

Por tanto:

2a>2c

Dividiendo entre 2 y elevando al cuadrado:

a > c

 $a^{2}>c^{2}$

Rearreglando:

$$a^{2}-c^{2}>0$$

La última desigualdad nos dice, que la diferencia $\mathbf{a}^2 - \mathbf{c}^2$, es constante y positiva, de tal manera que podemos representarla por \mathbf{b}^2 , puesto que la letra \mathbf{b} representa comúnmente una **constante** y el exponente **2** garantiza que es **positiva**, o sea:

$$a^{2}-c^{2}=b^{2}$$

Por lo tanto, la ecuación (2) de la **elipse** se transforma en:

$$b^2 x^2 + a^2 y^2 = a^2 b^2$$
 (1)

Cuya ecuación también puede expresarse en la siguiente forma llamada **simétrica** o **normal**, la cual se obtiene dividiendo ambos miembros entre **a**²**b**²:

$$\frac{b^2 x^2}{a^2 b^2} + \frac{a^2 y^2}{a^2 b^2} = \frac{a^2 b^2}{a^2 b^2}$$

Simplificando:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
(I')

1.1. Análisis de la ecuación:

Previamente despejaremos las dos variables x, y de (I):

Para la variable y tenemos

$$a^{2}y^{2} = a^{2}b^{2} - b^{2}x^{2} = b^{2}(a^{2} - x^{2})$$

 $y^{2} = \frac{b^{2}}{a^{2}}(a^{2} - x^{2})$

Por tanto:

$$y = \pm \frac{b}{a} \sqrt{a^2 - x^2}$$
 (3)

De la misma forma:

Para la variable x se tiene:

$$b^{2}x^{2} = a^{2}b^{2} - a^{2}y^{2} = a^{2}(b^{2} - y^{2})$$

 $x^{2} = \frac{a^{2}}{b^{2}}(b^{2} - y^{2})$

Por tanto:

$$x = \pm \frac{a}{b} \sqrt{b^2 - y^2}$$
(4)

Ahora procederemos a efectuar el análisis:

Primero

La ecuación (3) permite ver que la *elipse* es *simétrica* con relación al eje de las *abscisas*, porque para cada valor de x, se obtienen dos valores de y iguales y con signos contrarios. Análogamente, la ecuación (4) demuestra que también hay *simetría* con relación al eje de las *ordenadas*. Consecuentemente con esto el *origen* es *centro* de *simetría*.

Segundo

Si en la ecuación (4) hacemos y = 0, resulta: $x = \pm a$, de modo que los puntos de *intersección* de la curva con el eje de las *abscisas* son:

$$A_1(-a,0)$$
 y $A_2(a,0)$

Si en la ecuación (3) hacemos x = 0, resulta: $y = \pm b$, de tal manera que las *intersecciones* con el eje de las *ordenadas* son:

$$B_1(0,-b)$$
 y $B_2(0,b)$

Tercero

La ecuación (3) permite ver que x solamente puede variar desde -a hasta +a porque afuera de estos valores los de y resultan imaginarios. Del mismo modo, la ecuación (4) justifica únicamente pueda variar desde -b hasta +b. En síntesis, la elipse nada más existe dentro del rectángulo que aparece en nuestra Figura 3.

Cuarto

La curva es cerrada, lo que se deduce no solamente como

Figura 3

consecuencia de la **simetría** total existente, sino porque además, sabemos que existe sin interrupción dentro del rectángulo antes citado y también porque tiene que pasar por los puntos **A**₁, **B**₂, **A**₂ y **B**₁.

En conclusión la elipse tiene aproximadamente la forma que se muestra en la Figura 3.

Se dice que ésta es una *elipse horizontal*, con *centro* en el *origen*, cuyos elementos principales son los siguientes:

Distancia Focal:

$$\overline{F_1F_2} = 2c$$

Eje mayor o eje focal: $\overline{A_1 A_2} = 2a$

Eje menor: $B_1B_2 = 2b$

Lado Recto: Q'Q

Focos: F₁ y F₂

En la *Figura 3* se ve que **b** y **c** son los catetos de un triángulo rectángulo cuya hipotenusa es **a**; por lo que: $b^2 = a^2 - c^2$, según el teorema de Pitágoras.

Esta es una fórmula que se usa en la resolución de problemas, para encontrar la ecuación de la *elipse*.

2. Lado recto.

El llamado **Ancho Focal** o **Latus Rectum** de la **elipse** es la magnitud del segmento de recta $\mathbf{Q'Q}$ perpendicular al **eje mayor** que pasa por los **focos**, si los extremos de dicho segmento son puntos de la curva, ver **Figura 3**, se deduce simultaneando la ecuación $\mathbf{x} = \mathbf{c}$, con la ecuación (3) de la curva:

$$y = \pm \frac{b}{a} \sqrt{a^2 - x^2} = \pm \frac{b}{a} \sqrt{a^2 - c^2} = \pm \frac{b}{a} \sqrt{b^2} = \pm \frac{b^2}{a} \therefore y = \frac{b^2}{a}$$

6-5

Valor que corresponde a la mitad del lado recto.

Entonces la fórmula para la longitud del *lado recto* es dos veces este valor:

Es decir que: L.R. = Ancho focal =
$$\frac{2b^2}{a}$$

3. Excentricidad de la elipse.

Este es un concepto del cual depende la mayor o menor deformación que pueda experimentar una circunferencia para producir una *elipse*.

La **excentricidad** que se representa con la letra **e**, se define como el cociente de la **semi- distancia focal c** entre el **semi-eje mayor** a **a**.

Entonces podemos expresarla como:

Excentricidad =
$$e = \frac{c}{a}$$

Precisamente veremos que la **excentricidad** debe ser cualquier número **mayor** que **cero** pero **menor** que **uno**.

Es decir: 1 > e > 0.

En efecto, si **e=0** forzosamente **c=0** y de la fórmula $\mathbf{a^2 - c^2 = b^2}$ se deduce que $\mathbf{a=b}$, en cuyo caso la curva es una circunferencia, la que puede ser considerada como un caso particular de **elipse** con **excentricidad nula**.

Ahora, si **e=1** es evidente que **a=c** y de la propia fórmula $\mathbf{a}^2 - \mathbf{c}^2 = \mathbf{b}^2$ resulta: **b=0**, en cuyo caso la deformación ha sido total, de tal manera que la curva se ha convertido en *línea recta*.

En consecuencia:

Determinar la longitud del **eje mayor** y del **eje menor**, las coordenadas de los **focos** y de los **vértices** y **hacer** la gráfica de la **elipse** dada por la ecuación: $9_{x}^{2} + 16_{y}^{2} = 144_{z}^{2}$.

SOLUCIÓN

Dividiendo ambos miembros de la ecuación entre **144** y simplificando:

$$\frac{9x^2}{144} + \frac{16y^2}{144} = \frac{144}{144}$$

$$\frac{x^2}{\frac{144}{9}} + \frac{y^2}{\frac{144}{16}} = 1$$

$$\frac{x^2}{\frac{16}{16}} + \frac{y^2}{\frac{9}{16}} = 1$$

Como $a^2 > b^2$, entonces: $a^2 = 16$ y $b^2 = 9$; por lo que:

$$a = 4 y b = 3$$
.

La elipse intercepta a los ejes de coordenadas en:

$$A_1(-4,0), A_2(4,0), B_1(0,-3)$$
 y $B_2(0,3).$

Además:

Eje mayor =
$$2a = 8$$

Eje menor =
$$2b = 6$$

Se sabe que: $b^2 = a^2-c^2$, por lo que $c^2 = a^2-b^2=16-9 = 7$. Por tanto: $c=\pm\sqrt{7}$. Finalmente, las coordenadas de los *focos* son:

$$F_1(-\sqrt{7},0)$$
 y $F_2(\sqrt{7},0)$

La Figura 4 muestra gráficamente los resultados obtenidos.

4. Ecuación de la *elipse* vertical con centro en el origen.

Primer método

Si el **centro** de la **elipse** coincide con el **origen** del sistema de ejes de coordenadas y los **focos** están en el eje y, con coordenadas $F_1(0,c)$ y $F_2(0,-c)$, como se muestra en la **Figura 5**:

Siendo **M** un punto cualquiera y aplicando la definición de la **elipse** tenemos:

La definición de la elipse

Figura 5

nos dice que:

$$\overline{MF}_1 + \overline{MF}_2 = 2a(1)$$

Donde:

$$\overline{MF}_1 = \sqrt{x^2 + (y-c)^2}$$
 $\overline{MF}_2 = \sqrt{x^2 + (y+c)^2}$

Sustituyendo en (1):

$$\sqrt{x^2 + (y - c)^2} + \sqrt{x^2 + (y + c)^2} = 2a$$

Despejando el primer radical:

$$\sqrt{x^2 + (y-c)^2} = 2a - \sqrt{x^2 + (y+c)^2}$$

Elevando al cuadrado ambos miembros de la ecuación, desarrollando y simplificando:

$$x^{2}+(y-c)^{2} = \left(2a-\sqrt{x^{2}+(y+c)^{2}}\right)^{2}$$

$$x^{2}+y^{2}-2cy+c^{2} = 4a^{2}-4a\sqrt{x^{2}+(y+c)^{2}}+x^{2}+y^{2}+2cy+c^{2}$$

$$4a\sqrt{x^{2}+(y+c)^{2}} = 4a^{2}+4cy$$

$$a\sqrt{x^{2}+(y+c)^{2}} = a^{2}+cy$$

Elevando al cuadrado, desarrollando y simplificado nuevamente:

$$a^{2} \left[x^{2} + (y+c)^{2} \right] = (a^{2} + cy)^{2}$$

$$a^{2} x^{2} + a^{2} y^{2} + 2a^{2} cy + a^{2} c^{2} = a^{4} + 2a^{2} cy + c^{2} y^{2}$$

$$a^{2} x^{2} + a^{2} y^{2} - c^{2} y^{2} = a^{4} - a^{2} c^{2}$$

$$a^{2} x^{2} + (a^{2} - c^{2}) y^{2} = a^{2} (a^{2} - c^{2})$$

Como ya se vio $\mathbf{b^2} = \mathbf{a^2} - \mathbf{c^2}$. Sustituyendo y dividiendo entre $\mathbf{a^2b^2}$:

$$a^{2}x^{2} + b^{2}y^{2} = a^{2}b^{2}$$

$$\frac{a^{2}x^{2}}{a^{2}b^{2}} + \frac{b^{2}y^{2}}{a^{2}b^{2}} = \frac{a^{2}b^{2}}{a^{2}b^{2}}$$

Simplificando:

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$
 (II)

Que es la ecuación común de la elipse vertical con centro en el origen.

Haciendo **x=0** en la ecuación, determinamos que la curva *intercepta* al eje **y** en los puntos:

$$A_1(0,a) y A_2(0,-a)$$

Haciendo y=0, la curva intercepta al eje de las x en los puntos $B_1(b,0)$ y $B_2(-b,0)$.

La longitud del *lado recto* sigue siendo: L.R.= $\frac{2 b^2}{a}$

La excentricidad también es:

Segundo método.

Para que obtengamos la ecuación correspondiente, consideraremos primero que para el caso ya conocido, la ecuación

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, de acuerdo con la *Figura* 6,

puede expresarse de la siguiente manera:

$$\frac{\overline{QM}^2}{a^2} + \frac{\overline{RM}^2}{b^2} = 1$$

En donde hay que tomar en cuenta que **QM** y **RM**, son las distancias desde

Figura 6

un punto **M** cualquiera de la curva hasta sus ejes de **simetría**, en tanto **a** y **b** son los **semi-ejes paralelos** a esas distancias.

Por lo tanto, aplicando dichos conceptos para el caso de la **elipse vertical** con **centro** en el **origen**, tenemos, según la **Figura 7**:

$$\frac{(\overline{QM})^2}{b^2} + \frac{(\overline{RM})^2}{a^2} = 1$$

Según la Figura 7, tenemos que:

$$\overline{QM} = x ; \overline{RM} = y$$

Sustituyendo nos queda:

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$
 (II)

Que es la misma ecuación de la *elipse vertical* con centro en el origen ya vista.

Figura 7

4.1 Ejercicios

1. **Determinar** la longitud del *eje mayor* y del *eje menor*, las coordenadas de los *focos* y hacer la gráfica de la curva definida por la ecuación: $25 \times 2 + 4 y^2 = 100$.

SOLUCIÓN

Dividiendo ambos miembros de la ecuación entre **100** y simplificando, se tiene:

$$\frac{25 x^{2}}{100} + \frac{4 y^{2}}{100} = \frac{100}{100}$$
$$\frac{x^{2}}{\frac{100}{25}} + \frac{y^{2}}{\frac{100}{4}} = 1$$

Por lo que:

$$\frac{x^2}{4} + \frac{y^2}{25} = 1$$

Que corresponde a una elipse vertical.

Por lo tanto como $a^2 > b^2$, se tiene que $a^2 = 25$ y $b^2 = 4$. Resultando que: a = 5 y b = 2.

De acuerdo a esto, la elipse intercepta a los ejes de coordenadas en los puntos: $A_1(0,5)$, $A_2(0,-5)$, $B_1(2,0)$ y $B_2(-2,0)$.

Figura 8

Eje mayor = 2a = 10 y Eje menor = 2b = 4

Por otra parte si $\mathbf{a}^2 = \mathbf{b}^2 + \mathbf{c}^2$, entonces $\mathbf{c}^2 = \mathbf{a}^2 - \mathbf{b}^2$. Sustituyendo los valores:

$$c^2 = 25 - 4 = 21$$

Extrayendo raíz cuadrada a ambos miembros: $c = \sqrt{21}$.

En consecuencia las coordenadas de los focos son: $F_1(0,\sqrt{21})$ y $F_2(0,-\sqrt{21})$

La *Figura 8* muestra gráficamente los resultados obtenidos.

2. Encontrar la ecuación de la **elipse** que tiene su **centro** en el **origen**, con un **vértice** $A_1(0,5)$ y un **foco** $F_1(0,3)$

SOLUCIÓN

Según datos del enunciado, la forma de la ecuación es la dada por la fórmula (II) Sabemos

que a = 5 y que c = 3, por lo que debemos calcular el valor de **b**.

Como $b^2 = a^2 - c^2$, entonces $b^2 = 25 - 9 = 16$. Sustituyendo en la ecuación de la curva:

$$\frac{x^2}{16} + \frac{y^2}{25} = 1$$

Que es la ecuación buscada.

5. Ecuación de la elipse horizontal con centro fuera del origen.

Primer método

Su ecuación puede determinarse por el método usado en los casos anteriores, pero como es demasiado laborioso, nos valdremos de las ecuaciones de *translación paralela de ejes*, con el propósito de simplificar este procedimiento.

La **elipse** con centro **C**(h, k) y con su **eje mayor paralelo** al eje de las x, como se ve en la **Figura 9**.

Hemos construido un nuevo sistema de coordenadas x'y', cuyo origen coincide con C(h, k) y sus ejes son paralelos a los ejes originales x y y.

Con referencia al nuevo sistema de coordenadas, la ecuación de la **elipse** es:

$$\frac{{x'}^2}{a^2} + \frac{{y'}^2}{b^2} = 1$$

Figura 9

Como x = x' + h; y = y' + k nos

representan las ecuaciones de *translación paralela* de los ejes, las aplicaremos.

Entonces $\mathbf{x}' = \mathbf{x} - \mathbf{h}$ y $\mathbf{y}' = \mathbf{y} - \mathbf{k}$, efectuando la sustitución, tenemos:

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$
 (III)

Que es la ecuación de la elipse horizontal con centro fuera del origen de coordenadas

Las coordenadas de los *vértices*, *focos* y extremos del *eje menor* (**B**₁ y **B**₂), se determinan a partir del centro de la *elipse*, una vez conocidos los valores de a, b y c.

La longitud del *lado recto* sigue siendo L.R. = $\frac{2b^2}{a}$ y la *excentricidad* $e = \frac{c}{a}$.

Segundo método.

Nos apoyaremos en la *Figura 10*:

Tomando en consideración el significado de los segmentos QM y RM expresados y considerados anteriormente se tiene, también para este caso que:

$$\frac{\left(\overline{QM}\right)^2}{a^2} + \frac{\left(\overline{RM}\right)^2}{b^2} = 1$$

Nada más que de acuerdo a la figura anterior:

$$\overline{QM} = \overline{NM} - \overline{NQ} = x - h$$

$$\overline{RM} = \overline{SM} - \overline{SR} = y - k$$

Figura 10

Sustituyendo en la expresión anterior, obtendremos la misma ecuación que hemos obtenido por el **primer método**:

Es decir:

$$\frac{(x-h)^{2}}{a^{2}} + \frac{(y-k)^{2}}{b^{2}} = 1$$
 (III)

Ejemplo:

Determinar la ecuación de la **elipse** que tiene por *vértices* $A_1(-10,6)$, $A_2(10,6)$ y el **lado recto** es 10.

SOLUCIÓN

Como el *centro* es el punto medio del segmento A₁A₂, resulta que las coordenadas del *centro* son:

C(0, 6)

Y que **a = 10**.

El eje mayor es horizontal, por lo que la forma de la ecuación esta dada por la fórmula (III).

Falta por conocer b², la cual se determina a partir del L. R., es decir:

L.R. =
$$10 = \frac{2b^2}{a}$$

Sustituyendo el valor de **a** y despejando a **b**²:

$$10=\frac{2b^2}{10}$$

$$100 = 2b^2$$

$$b^2 = 50$$

Finalmente, sustituyendo en la fórmula (III), se obtiene:

$$\frac{(x-0)^2}{100} + \frac{(y-6)^2}{50} = 1$$

Que es la ecuación pedida.

6. Ecuación de la elipse vertical con centro fuera del origen.

Primer método.

La **elipse vertical** con **centro** fuera del **origen** tiene su **eje mayor paralelo** al eje **y**, como se representa en la **Figura 11**. Usando el método anterior tenemos:

Con referencia al nuevo sistema de coordenadas:

$$\frac{{x'}^2}{b^2} + \frac{{y'}^2}{a^2} = 1$$

Pero ya hemos visto que:

$$x = x' + h$$
. Por tanto : $x' = x - h$
 $y = y' + k$. Por tanto : $y' = y - k$

Figura 11

Sustituyendo, se tiene la ecuación de la **elipse vertical** con **centro** fuera del origen:

$$\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$$
 (IV)

Segundo método.

Considerando la Figura 12 y por analogía la ecuación es:

Tomando en consideración; el significado de los segmentos QM y RM

$$\frac{(\overline{QM})^2}{h^2} + \frac{(\overline{RM})^2}{a^2} = 1$$
 (1)

Donde observando la *figura* se tiene:

$$\overline{QM} = \overline{MN} - \overline{NQ} = x - h$$

$$\overline{RM} = \overline{MS} - \overline{SR} = y - k$$

Sustituyendo en (1), obtenemos la misma fórmula por este método.

$$\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$$
 (IV)

Como lo demostraremos enseguida en cualquiera de estas dos últimas ecuaciones puede expresarse en la siguiente forma general:

Figura 12

$$A x^{2} + C y^{2} + D x + E y + F = 0$$
 (V)

Que se reconoce como representativa de una **elipse** con sus ejes de **simetría paralelos** a los ejes de coordenadas porque los coeficientes de x^2 y y^2 son desiguales y del mismo signo.

7. Forma general de las ecuaciones de las elipses horizontal y vertical con centro fuera del origen.

Para obtener la forma general de la ecuación de la *elipse*, desarrollamos, las ecuaciones ya conocidas en su forma común.

En el caso de la **elipse horizontal** tenemos que su ecuación es:

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{h^2} = 1$$

Haciendo las operaciones tenemos:

$$\frac{b^2(x-h)^2+a^2(y-k)^2}{a^2b^2}=1$$

Multiplicando por a²b²:

$$b^{2}(x-h)^{2} + a^{2}(y-k)^{2} = a^{2}b^{2}$$

Desarrollando:

$$b^{2}(x^{2}-2hx+h^{2}+a^{2}(y^{2}-2ky+k^{2})=a^{2}b^{2}$$

Quitando paréntesis:

$$b^2x^2 - 2b^2hx + b^2h^2 + a^2y^2 - 2a^2ky + a^2k^2 = a^2b^2$$

Ordenando:

$$b^2x^2 + a^2y^2 - 2b^2hx - 2a^2ky + b^2h^2 + a^2k^2 - a^2b^2 = 0$$

Comparando con la ecuación general de las cónicas:

$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$

Vemos que:

B = 0 D = -2
$$b^2$$
 h
A = b^2 E = -2 a^2 k
C = a^2 F = b^2 h² + a^2 k² - a^2 b³

Según esto la ecuación general de la elipse horizontal es:

$$A x^{2} + C y^{2} + D x + E y + F = 0$$
 (V)

Por otra parte para la forma general de la ecuación de la *elipse vertical* procedemos de la misma manera.

Desarrollamos la ecuación:

$$\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$$

Haciendo las operaciones correspondientes:

$$\frac{a^{2}(x-h)^{2}+b^{2}(y-k)^{2}}{b^{2}a^{2}}=1$$

Multiplicando por a²b²:

$$a^{2}(x-h)^{2} + b^{2}(y-k)^{2} = a^{2}b^{2}$$

Desarrollando los binomios:

$$a^{2}(x^{2}-2hx+h^{2})+b^{2}(y^{2}-2ky+k^{2})=a^{2}b^{2}$$

Quitando paréntesis:

$$a^2x^2 - 2a^2hx + a^2h^2 + b^2y^2 - 2b^2ky + b^2k^2 = a^2b^2$$

Ordenando:

$$a^{2}x^{2} + b^{2}y^{2} - 2a^{2}hx - 2b^{2}ky + a^{2}h^{2} + b^{2}k^{2} - a^{2}b^{2} = 0$$

Comparando con la ecuación general de las cónicas, tenemos que:

$$A_{X}^{2} + B_{X}y + C_{y}^{2} + D_{X} + E_{y} + F = 0$$

A =
$$a^2$$
 D = $-2a^2$ h
B = 0 E = $-2b^2$ k
C = b^2 F = a^2 h² + b^2 k² - a^2 b²

Por lo que la ecuación general de la elipse vertical nos queda:

$$A_{x}^{2} + C_{y}^{2} + D_{x} + E_{y} + F = 0$$
 (V)

8. Posición general de la elipse y su ecuación.

Por lo ya establecido y de acuerdo a la *Figura 13* tenemos:

$$\frac{(\overline{QM})^2}{a^2} + \frac{(\overline{RM})^2}{b^2} = 1$$

Nada más que en este caso, si aplicamos la fórmula de la distancia de un punto a una recta dada, se tiene que:

$$\overline{QM} = \frac{y - m_2 x - b_2}{\sqrt{1 + m_2^2}}$$
; $\overline{RM} = \frac{y - m_1 x - b_1}{\sqrt{1 + m_1^2}}$

Sustituyendo en la expresión anterior nos queda que la ecuación es:

Figura 13

$$\frac{(y-m_2 x-b_2)^2}{1+m_2^2} + \frac{(y-m_1 x-b_1)^2}{1+m_1^2} = 1$$
 (VI)

También esta ecuación, como consecuencia de las transformaciones del caso, puede expresarse en la siguiente forma general.

$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$

9. Ejercicios

1. Los **focos** de una **elipse** son los puntos $F_1(-1,0)$ y $F_2(1,0)$; la longitud de su **eje menor** es 2. **Obtener** su ecuación.

SOLUCIÓN

Según el enunciado la ecuación es de la forma:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

De acuerdo con los datos, se tiene:

Eje menor =
$$\overline{B_1B_2}$$
 = 2b = 2. Por tanto: b = 1

Además, de acuerdo con las coordenadas de los focos: c = 1

De la expresión $a^2 - c^2 = b^2$, se deduce que:

$$a^2 = b^2 + c^2 = 1 + 1 = 2$$
. Por tanto : $a = \pm \sqrt{2}$

Así que la ecuación de la elipse es:

$$\frac{x^2}{2} + \frac{y^2}{1} = 1$$

En donde sus vértices son: $A_1 (\sqrt{2}, 0); A_2 (-\sqrt{2}, 0)$ y la excentricidad: $e = \frac{c}{a} = \frac{1}{\sqrt{2}}$

La *Figura 14* muestra gráficamente los resultados obtenidos.

Figura 14

2. **Determinar** las longitudes de los *ejes*, las coordenadas de los *focos* y la *excentricidad* de la *elipse*, cuya ecuación es: $25 x^2 + 169 y^2 = 4225$.

SOLUCIÓN

Dividiendo la ecuación entre 4225 y simplificado, se tiene:

$$\frac{25 x^{2}}{4225} + \frac{169 y^{2}}{4225} = 1$$

$$\frac{x^{2}}{169} + \frac{y^{2}}{25} = 1$$

De la ecuación se observa que: $a^2 = 169$ y $b^2 = 25$. Por tanto: a = 13 y b = 5. Los ejes *mayor* y *menor* están dados por:

$$Eje\ mayor = 2a = 26$$

 $Eje\ menor = 2b = 10$

Despejando a c de $a^2 - c^2 = b^2$:

$$c = \pm \sqrt{a^2 - b^2} = \pm \sqrt{169 - 25} = \pm 12$$

Las coordenadas de los **focos** son: $F_1(-12,0)$ y $F_2(12,0)$.

Finalmente:

Excentricidad =
$$e = \frac{c}{a} = \frac{12}{13}$$

3. Demostrar que la ecuación $9x^2 + 4y^2 + 36x - 24y + 36 = 0$ representa una elipse y determinar todos sus elementos.

SOLUCIÓN

Es suficiente observar que los coeficientes de x² y y² son desiguales y del mismo signo y que no hay término rectangular, para asegurar que la ecuación sí representa una *elipse*, con ejes de *simetría paralelos* a los de coordenadas.

Para mayor seguridad nos convendrá ver si se puede llevar esta ecuación a la forma tipo correspondiente, lo que además nos servirá para determinar los elementos de la curva.

Completando a trinomios cuadrados perfectos en x y y en la ecuación dada:

$$9(x^2 + 4x + 4 - 4) + 4(y^2 - 6y + 9 - 9) + 36 = 0$$

Simplificando:

$$9(x+2)^2-36+4(y-3)^2-36+36=0$$

 $9(x+2)^2+4(y-3)^2=36$

Dividiendo entre 36 queda:

$$\frac{(x+2)^2}{4} + \frac{(y-3)^2}{9} = 1$$

De la ecuación encontramos que $a^2 = 9$ y $b^2 = 4$. Por tanto, a = 3 y b = 2. Las coordenadas del *centro* son C(-2,3).

Los ejes *mayor* y *menor* están dados por:

$$Eje\ mayor = 2a = 6$$

 $Eje\ menor = 2b = 4$

Despejando a **c** de la expresión: $a^2 - c^2 = b^2$:

$$c = \pm \sqrt{a^2 - b^2} = \pm \sqrt{5} = \pm 2.23$$

Distancia focal = 2c = 4.46

Excentricidad =
$$e = \frac{c}{a} = \frac{2.33}{3} = 0.74$$

Ancho focal =
$$\frac{2b^2}{a} = \frac{8}{3} = 2.66$$

Vértices : $A_1(-2,0)$ y $A_2(-2,6)$

Focos: $F_1(-2,0.74)$ y $F_2(-2,5.23)$

La Figura 15 muestra gráficamente

Figura 15

los resultados obtenidos.

4. Los focos de una elipse son $F_1(2,1)$ y $F_2(3,4)$, su eje mayor mide 6. Determinar su ecuación.

SOLUCIÓN

Aplicaremos la definición de la elipse, en la que se establece que, para todo punto de la curva, la suma de las distancias a los focos es igual al eje mayor. Por lo tanto, si M(x, y) es un punto cualquiera de la elipse, debe tenerse:

$$\overline{\mathsf{MF}_1} + \overline{\mathsf{MF}_2} = 6 \tag{1}$$

Donde:

$$\overline{MF_1} = \sqrt{(x-2)^2 + (y-1)^2}$$
; $\overline{MF_2} = \sqrt{(x-3)^2 + (y-4)^2}$

Sustituyendo en (1):

$$\sqrt{(x-2)^2 + (y-1)^2} + \sqrt{(x-3)^2 + (y-4)^2} = 6$$

Despejando al primer radical, se tiene:

$$\sqrt{(x-2)^2+(y-1)^2}=6-\sqrt{(x-3)^2+(y-4)^2}$$

Elevando al cuadrado y desarrollando:

$$x^{2}$$
 - 4x + 4 + y^{2} - 2y + 1 = 36 - 12 $\sqrt{(x-3)^{2} + (y-4)^{2}}$ + x^{2} - 6x + 9 + y^{2} - 8y + 16

Reduciendo:

$$12\sqrt{(x-3)^2 + (y-4)^2} = 56 - 2x - 6y$$
$$6\sqrt{(x-3)^2 + (y-4)^2} = 28 - x - 3y$$

Elevando al cuadrado y simplificando, se obtiene la ecuación pedida:

$$36 x^2 - 216 x + 324 + 36 y^2 - 288 y + 576 = 784 + x^2 + 9 y^2 - 56 x - 168 y + 6 x y$$

 $35 x^2 - 6 x y + 27 y^2 - 160 x - 120 y + 116 = 0$

Para comprobar que la curva es una **elipse**, obsérvese que el **discriminante** de la ecuación

es:

$$B^2 - 4 A C = 36 - 378 < 0$$

5. La ecuación de una **elipse** pasa por el punto P(1,2), cuyos **focos** son: $F_1(1,1)$ y $F_2(0,2)$. **Encontrar** las ecuaciones de las **rectas tangentes** a la **elipse** que son **paralelas** a la **recta** y = -x.

SOLUCIÓN

Si M(x, y) es un punto cualquiera de la curva, tendremos:

$$\overline{MF_1} + \overline{MF_2} = eje mayor = 2 a$$

Aplicando la fórmula de la distancia entre dos puntos, y los datos del enunciado, en la expresión anterior, se tiene:

$$\sqrt{(x-1)^2 + (y-1)^2} + \sqrt{x^2 + (y-2)^2} = 2a$$

Para definir perfectamente esta ecuación necesitamos calcular el valor de **2a**, lo que se logra haciendo que las coordenadas de **P** verifiquen dicha ecuación:

$$1+1=2=2a : a=1$$

Así que la ecuación es:

$$\sqrt{(x-1)^2 + (y-1)^2} + \sqrt{x^2 + (y-2)^2} = 2$$

$$\sqrt{(x-1)^2 + (y-1)^2} = 2 - \sqrt{x^2 + (y-2)^2}$$

Elevando al cuadrado ambos miembros de la ecuación, desarrollando y simplificando:

$$x^{2}$$
 - 2x + 1 + y^{2} - 2y + 1=4 - $4\sqrt{x^{2} + (y - 2)^{2}}$ + x^{2} + y^{2} - 4y + 4
2 $\sqrt{x^{2} + (y - 2)^{2}}$ = x - y + 3

Elevando al cuadrado nuevamente y simplificando, se obtiene la ecuación de la elipse:

$$4x^{2} + 4y^{2} - 16y + 16 = x^{2} + y^{2} + 9 - 2xy + 6x - 6y$$

 $3x^{2} + 2xy + 3y^{2} - 6x - 10y + 7 = 0$

Donde el discriminante de la ecuación es:

$$B^2 - 4 A C = 4 - 36 < 0$$

Las *tangentes* deben tener una ecuación de la forma: y = - x + b, que se simultanean con la ecuación de la *elipse*, como si pretendiéramos encontrar los puntos de *intersección* de la *recta* y la curva. Haciendo simultáneas la ecuación de la *elipse* y la *recta*, se tiene:

$$3x^{2}+2x(-x+b)+3(-x+b)^{2}-6x-10(-x+b)+7=0$$

 $3x^{2}-2x^{2}+2xb+3x^{2}-6bx+3b^{2}-6x+10x-10b+7=0$
 $4x^{2}+(4-4b)x+(3b^{2}-10b+7)=0$

Resolviendo la ecuación anterior aplicando la fórmula para la solución de una ecuación de segundo grado, para lo cual consideramos los coeficientes de la siguiente forma:

$$\mathbf{a} = 4$$
; $\mathbf{b} = (4 - 4b)$; $\mathbf{c} = 3b^2 - 10b + 7$

Resolviendo para x:

$$x = \frac{-(4-4b) \pm \sqrt{(4-4b)^2 - 16(3b^2 - 10b + 7)}}{8}$$

Para que de esta expresión obtengamos un solo valor de x y consecuentemente la **recta** sea **tangente** a la curva, necesitamos que el subradical valga **cero**. Igualando el subradical a **cero**:

$$(4-4b)^{2} - 16(3b^{2} - 10b + 7) = 0$$

$$16(1-b)^{2} - 16(3b^{2} - 10b + 7) = 0$$

$$16[(1-b)^{2} - (3b^{2} - 10b + 7)] = 0$$

$$(1-b)^{2} - (3b^{2} - 10b + 7) = 0$$

$$1-2b+b^{2} - 3b^{2} + 10b - 7 = 0$$

$$2b^{2} - 8b + 6 = 0$$

$$\mathbf{b}^{2} - 4\mathbf{b} + 3 = \mathbf{0}$$

Resolviendo para b, se obtiene:

$$b_1=1 ; b_2=3$$

Entonces, según la ecuación y = -x + b, las ecuaciones de las *tangentes* son:

$$y = -x + 1$$
 $y = -x + 3$

6. Encontrar el *lugar geométrico* de los puntos cuya distancia al *origen* es 1/2 de su distancia a la *recta* x + 3 = 0. Encontrar el *centro* y los *semi-ejes*.

SOLUCIÓN

La **Figura** 16 muestra gráficamente los datos del problema.

Sobre la base de la **figura** adjunta, la condición de movimiento de M(x, y) es:

$$\overline{M0} = \frac{1}{2} \overline{QM}$$

Aplicando la fórmula de la distancia entre dos puntos:

$$\sqrt{x^2 + y^2} = \frac{1}{2} (x + 3)$$

Figura 16

Elevando al cuadrado ambos miembros:

$$x^2 + y^2 = \frac{x^2 + 6x + 9}{4}$$

Multiplicando por 4, simplificando y reagrupando términos, se obtiene:

$$4x^2 + 4y^2 = x^2 + 6x + 9$$

$$3x^2 + 4y^2 - 6x = 9$$

$$3(x^2 - 2x + 1 - 1) + 4y^2 = 9$$

$$3(x-1)^2 + 4(y-0)^2 = 12$$

Finalmente, dividiendo entre 12, se encuentra la ecuación de la elipse:

$$\frac{(x-1)^2}{4} + \frac{(y-0)^2}{3} = 1$$

Donde:

Centro : C(1,0)

Semi-eje mayor = 2

Semi - eje menor = $\sqrt{3}$

Nombre de archivo: elipse

Directorio: C:\Geometria_analitica

Plantilla: C:\WINDOWS\Application Data\Microsoft\Plantillas\Normal.dot

Título: VI

Asunto:

Autor: Pablo Fuentes Ramos

Palabras clave: Comentarios:

Fecha de creación: 08/03/02 01:26 P.M.

Cambio número: 75

Guardado el: 31/05/02 12:54 P.M. Guardado por: Pablo Fuentes Ramos Tiempo de edición: 2,541 minutos

Impreso el: 31/05/02 01:01 P.M.

Última impresión completa

Número de páginas: 22

Número de palabras: 3,226 (aprox.) Número de caracteres: 18,389 (aprox.)