

Retos científicos - 2025-I - Grupo 1 Claudia Rangel - Christopher Sanguino - Juan Verano





El presente estudio busca analizar la deformación del espacio-tiempo mediante la construcción de un modelo experimental basado en una tela elástica y una estructura de latón. Se registrarán y analizarán las trayectorias de partículas de prueba alrededor de una masa central con el fin de compararlas con las geodésicas predichas por la Relatividad General.



## OBJETIVO

• Determinar experimentalmente la curvatura de una tela elástica deformada por una masa esférica y analizar la trayectoria de partículas de prueba bajo su influencia, con el fin de diseñar una estructura en latón que reduzca los efectos de fricción.

## METODOLOGIA

Se dividirá la investigación en tres partes clave:

- obtención de la curvatura de la tela elástica deformada.
- Análisis de las trayectorias de las partículas.
- Diseño de la estructura de latón.

## MATERIALES



- Tela elastica (conseguida)
- Estructura de hierro (conseguida)
- Agarraderas o pinzas (8.000\$)
- Masa central
- Canicas (conseguidas)
- Espejos pequenos

- Laser
- Tracker
- Herramientas de software
- Estructura de laton (---\$)

## RESULTADOS ESPERADOS

- Se espera que, aunque algunas trayectorias sean cualitativamente similares a las geodésicas, la fricción y la gravedad terrestre introduzcan desviaciones significativas.
- Al usar una superficie de latón en lugar de tela, las trayectorias deberían ser más cercanas a las geodésicas ideales.
- Se espera que la curvatura de la tela sea máxima en el centro y disminuya gradualmente hacia los bordes, generando curvas de nivel aproximadamente circulares, las cuales ayuden a describir la trayectoria de las masas.