

D-MNSV7-X16 Instruction Manual

D-MNSV7-X16

Magnetic Navigation Sensor

User Manual

Thank you very much for using our products

This manual explains the usage and safety precautions of the product.

* Read this manual carefully and pay attention to safety during use.

*Keep this manual in a suitable place for easy reference.

Updated: May 2022

Table of contents

1 Security	4
1.1 Safety Warnings4	
2 Product Overview	5
2.1 Appearance5	
2.2 Dimensions5	
3 Port features and functions	8
3.1 IO output characteristics8	
3.2 Function Configuration9	
4 RS-232/RS-485 interface MODBUS-RTU protocol	11
4.1 RS-232 / RS-485 Connections11	
4.2 MODBUS-RTU communication protocol	11
4.3 MODBUS-RTU communication protocol register table	13
4.4 MODBUS-RTU protocol example	14
5. RS-232, RS-485 and CAN automatic output protocol 6. Inspection and	15
troubleshooting	17
6.1 Inspection Contents17	
6.2 Troubleshooting17	
7 AGV system architecture example	18
7.1 Single drive control scheme	18
7.2 Dual drive control scheme19	
8 Specifications 9 After-sales	20
Service 21	
9.1 Warranty Period	twenty one
9.2 Warranty Scope	teventy one
9.3 Disclaimer	teventy one

Safety Attention After reading this manual, please keep it in a safe place for future reference.

Here are important information about precautions and safety, so please be sure to

Comply, the signs mean the following:

Warning: Failure to follow the instructions in this warning may result in death or serious injury.

Violation of the precautions during operation may result in personal injury or property damage.

Product damage.

Remind you of the relevant matters that must be followed when operating the product so that you can use it correctly.

1. Security

1.1 Safety Warnings

The purpose of the precautions here is to enable you to use the product safely and correctly and to prevent accidents from happening.

It may cause harm and injury to you and others. Please use this product after fully understanding its contents.

Do not use in explosive gas environments, flammable gas environments, corrosive environments, places that are easily exposed to water, or near combustibles.

Failure to use this product may cause fire or injury. Please be careful when setting up, connecting, running, operating, inspecting, and diagnosing faults.

This must be performed by properly qualified personnel; otherwise, it may cause fire, injury or product damage.

set up

Please install the sensor inside the frame, otherwise the device may be damaged.

connect

Please make sure the power input voltage is within the rated range, otherwise it may cause a fire. Please connect according to the connection diagram.

Otherwise, it may cause a fire. Do not forcibly bend, pull or clamp the cable, otherwise it may cause a fire.

Please use cables of the specified size, otherwise it may cause a fire. Please observe the tightening torque of the driver screws, otherwise it may cause a fire or

Cause damage to the device.

Maintenance and inspection

Maintenance and inspection must be performed after cutting off the power supply, otherwise it may cause injury.

Do not touch during insulation resistance measurement or insulation withstand voltage test, otherwise it may cause electric shock.

Repair, disassembly, and modification

Do not disassemble or modify the sensor, as this may cause injury or damage to the device.

Please contact us.

2 Product Overview

D-MNSV7-X16 is a magnetic navigation sensor designed for AGV magnetic strip navigation.

After receiving the magnetic stripe magnetic field signal, it outputs the switch signal to provide the required magnetic stripe signal to the main controller.

Product Composition

model	model Input Power		Function	
D-MNSV7-X16	D-MNSV7-X16 DC 9V to 28V FC-26P cable 0.7M		16-point signal output	
FC-26P cable 0.7M			Signal extension cable	

2.1 Appearance

2.2 Dimensions

Magnetic navigation sensor installation direction

lagnetic stripe

fannetic strine

Magnetic stripe

Magnetic navigation sensor installation and setting precautions

The magnetic navigation sensor is recommended to be installed in this way.

The fixing plate can provide a certain degree of protection.

 $\label{thm:magnetic stripe} \textbf{Magnetic stripe sensor fixing plate, please use aluminum or stainless steel.} \ \textbf{Magnetic metals (iron, cobalt, please use aluminum or stainless steel)} \\$

nickel) are prohibited.

Magnetic navigation sensor installation location

For better control effect, L/D=1.5 is recommended

Installation conditions	The magnetic navigation sensor fixing plate must be made of non-magnetic material 2) The background magnetic field strength of the magnetic navigation sensor should be less than 2 Gauss
Usage Environment	Ambient temperature: -20-80ÿ Ambient humidity: below 80%RH (no frost or dew)
Use gas environment	Do not use in corrosive, flammable gas or dust environments

3 Port Features and Functions

3.1 IO output characteristics

Pin No.	name	Note	Cable color
1 Pin 2	VCC	Input power (9-28V) Positive Input power (9-28V)	brown
Pin 3	GND	Negative	red
Pin	485B	RS-485 communication pin B	orange
4 pins	485A	RS-485 communication pin A	yellow
5 feet	CANL	CAN communication L pin	green
6 foot	CANH	CAN communication H pin	blue
7 foot	232T	RS-232 communication TX pin	purple
8 foot	232R	RS-232 communication RX pin	Ash
9 foot	S1	NPN open drain output (detection point 1)	white
10 foot	S2	NPN open drain output (detection point 2)	black
11 foot	\$3	NPN open drain output (detection point 3)	brown
12 foot	S4	NPN open drain output (detection point 4)	red
13 foot	S5	NPN open drain output (detection point 5)	orange
14 feet	S6	NPN open drain output (detection point 6)	yellow
15 feet	S7	NPN open drain output (detection point 7)	green
16 feet	S8	NPN open drain output (detection point 8)	blue
17 feet	S9	NPN open drain output (detection point 9)	purple
18 feet	S10	NPN open drain output (detection point 10)	Ash
19 feet	S11	NPN open drain output (detection point 11)	white
20 feet	S12	NPN open drain output (detection point 12)	black
21 feet	S13	NPN open drain output (detection point 13)	brown
22 feet	S14	NPN open drain output (detection point 14)	red
23 feet	S15	NPN open drain output (detection point 15)	orange
24 feet	S16	NPN open drain output (detection point 16) For	yellow
25 feet	DO	manufacturer use, please leave it unconnected	green
26 feet	GND	Input power (9-28V) negative pole	blue

3.2 Functional Configuration

ÿ Confirm the magnetic navigation sensor configuration connection

 \ddot{y} Turn on the power and configure the magnetic navigation sensor parameters

Configure the magnetic navigation sensor parameters through the PC software. For specific operations, please see the "Magnetic Navigation Sensor Parameter List" below.

After the parameter setting is completed, configure and load the sensor, wait for the prompt to succeed, and then restart the magnetic navigation sensor.

ÿ Magnetic navigation sensor parameter list

Parameter name	parameter	Default parameters and descriptions	
	S pole		
Detecting magnetic pole pattern	N pole	Default N pole	
Sensor temperature	Read-only parameters	Read-only parameters	
Sensitivity	Level 0-13	The higher the level, the more sensitive \bar{x} is.	
	none		
	Change CAN output (output when parameters change)		
	Continuous CAN output (7ms interval continuous output)		
Automatic output	Changing 485 output (output when parameters change) Continuous 485 output	none	
	(7ms interval continuous output) Changing 232 output (output when parameters		
	change) Continuous 232 output (7ms interval continuous output)		

ÿ Communication failure If

communication is unsuccessful, please check the following: 1)

Confirm that the magnetic navigation sensor has been properly supplied with DC 9-28V power; 2) Confirm

that the USB to RS232/RS485 serial port cable driver is installed and the port is configured correctly, or try another RS232/RS485 communication module. 3) Confirm that the computer has correctly

installed the configuration software and operating environment; 4) If the problem still cannot be

solved after the above confirmation, please try to replace a PC and try again; 5) If the problem still cannot be solved after the above confirmation,

 ${\it please contact Guangzhou\ Network\ Technology\ after-sales\ technical\ support.}$

ÿ Sensor magnetic field calibration The

sensor has been calibrated before leaving the factory. Generally, the user does not need to calibrate it. Please use the calibration function with caution.

4 RS-232/RS-485 interface MODBUS-RTU protocol

Parameters Parameters Inform	ation Communication	Default settings
Mode Point to Point		
Receiving/sending mode F	ull-duplex/half-duplex communication mode	
	1-255	1
Communication ID Comm	unication rate 115200	115200 bps
bps Data bit 8 bits Parity b	it No	8-bit
parity Stop bit 1 bit		No verification
		1 bit

4.1 RS-232 / RS-485 Connection

ÿ RS-232 Configuration Connection

Corresponding wiring	Corresponding wiring						
sensor	26 feet GND			1 foot VCC	2 pins GND		
RS-232 Module GND Power S	upply	TXD	RxD				
				Power+	power supply-		

ÿ RS-485 Configuration Connection

Corresponding wiring	Corresponding wiring						
sensor	26 feet	4 pins	3-pin	1 foot	2 pins		
	GND	Α	В	VCC	GND		
RS-485 module GND power si	ipply	A	В				
				Power+	power supply-		

4.2 MODBUS-RTU communication protocol

ÿ Function code 03H: Read register value

Host sends:

1	2	3 4 Start	register	5 6 Number of	f registers	7	8
ADR	03H		Initial deposit		Low register count	CRC low byte CRC	t high byte
		High Byte	Low Byte	High Byte	byte	ONO IOW BYIC ONC	Tilgit byte

1st byte ADR: slave address code (=001ÿ255)

2nd byte 03H: Read register value function code

Bytes 3 and 4: The starting address of the register to be read

To read the FCC downlink meter,

Bytes 5 and 6: Number of registers to read

Bytes 7 and 8: CRC16 checksum from bytes 1 to 6

Slave loopback:

1	2	3	4, 5	6, 7		M-1, M	M+1	M+2
ADR 03	H Byte tota	al register data 1 reg	ister data 2		Registe	r data M CRC low byte CRC	high byte	

1st byte ADR: slave address code (=001ÿ255)

2nd byte 03H: Return read function code

Byte 3: Total number of bytes from 4 to M (including 4 and M)

Bytes 4 to M: Register data

Bytes M+1, M+2: CRC16 checksum from byte 1 to M

When the slave receives an error, there is no feedback from the slave.

ÿ Function code 06H: Write single register value

Host sends:

1	2	3	4	5	6	7	8
ADR	ADR 06H	Register high word	Register low word	Data high word	Data low word	CRC code low	CRC code high
, ABIK		Section Address	Section Address	Festival	Festival	byte	byte

When the slave receives the data correctly, it sends back:

1	2	3	4	5	6	7	8
ADR	06H	Register high word	Register low word	Data high word	Data low word	CRC code low	CRC code high
		Section Address	Section Address	Festival	Festival	byte	byte

When the slave receives an error, there is no feedback from the slave.

ÿ Function code 10H: Write multiple register values continuously

Host sends:

1	2	3	4	5	6	7
ADR	10H	Start register	Start register	Number of registers	Number of registers	Total data bytes
ADIC	1011	High byte address	Low byte address	High Byte	Low Byte	number

8,9 10,11		N,N+1	N+2	N+3
Register Data	Register data	Register data	CRC code low word	CRC code low word
1	2	M	Festival	Festival

When the slave receives the data correctly, it sends back:

1	2	3	4	5	6	7	8
ADR	10H	Register high word	Register low word	Number of registers	Number of registers	CRC code low	CRC code high
		Section Address	Section Address	High Byte	Low Byte	byte	byte

When the slave receives an error, there is no feedback from the slave.

ÿ Function code 20H: Empty magnetic field calibration

Host sends:

1	2	3	4	5	6	7	8
ADR	20H	00H	00H	00H	00H	CRC code low byte	CRC code high

When the slave receives the data correctly, it sends back:

1	2	3	4	5	6	7	8
ADR	20H	00H	00H	00H	00H	CRC code low	CRC code high

When the slave receives an error, there is no feedback from the slave.

ÿ Function code 21H: Uniform magnetic field calibration

Host sends:

1	2	3	4	5	6	7	8
ADR	twenty-one	00H	00H	00H	00H	CRC code low	CRC code high

When the slave receives the data correctly, it sends back:

1	2	3	4	5	6	7	8
ADR	twenty one	00H	00H	00H	00H	CRC code low	CRC code high
						byte	byte

When the slave receives an error, there is no feedback from the slave.

4.3 MODBUS-RTU communication protocol register table

Address cor	ntent description No.	Read-only
00H	1 magnetic field state value (2-byte floating point number)	
01H	The second channel no magnetic field status value (2-byte floating point number)	
02H	The third channel no magnetic field status value (2-byte floating point number)	
03H	4th channel no magnetic field status value (2-byte floating point number)	
04H	The 5th channel no magnetic field status value (2-byte floating point number)	
05H	The 6th channel no magnetic field status value (2-byte floating point number)	
06H	7th channel no magnetic field status value (2-byte floating point number)	
07H	8th channel no magnetic field status value (2-byte floating point number)	
08H	9th channel no magnetic field status value (2-byte floating point number)	
09H	10th channel no magnetic field status value (2-byte floating point number)	
0AH	11th channel no magnetic field status value (2-byte floating point number)	
0BH	12th channel no magnetic field status value (2-byte floating point number)	
0CH	13th channel no magnetic field status value (2-byte floating point number)	
0D	14th channel no magnetic field status value (2-byte floating point number)	
0E	15th channel no magnetic field status value (2-byte floating point number)	
0FH	16th channel no magnetic field status value (2-byte floating point number)	
10H	The first channel uniform magnetic field state value (2-byte floating point number)	
11H	The second uniform magnetic field status value (2-byte floating point number)	
12H	The third channel uniform magnetic field state value (2-byte floating point number)	
13H	4th channel uniform magnetic field state value (2-byte floating point number)	
14H	The fifth channel uniform magnetic field status value (2-byte floating point number)	
15H	The sixth channel uniform magnetic field status value (2-byte floating point number)	
16H	7th channel uniform magnetic field status value (2-byte floating point number)	
17H	8th channel uniform magnetic field status value (2-byte floating point number)	
18H	9th channel uniform magnetic field status value (2-byte floating point number)	

19H	The 10th uniform magnetic field status value (2-byte floating point number)	
1AH	11th channel uniform magnetic field status value (2-byte floating point number)	
1BH	12th channel uniform magnetic field status value (2-byte floating point number)	
1CH	13th channel uniform magnetic field status value (2-byte floating point number)	
1DH	14th channel uniform magnetic field status value (2-byte floating point number)	
1EH	15th channel uniform magnetic field status value (2-byte floating point number)	
1FH	16th channel uniform magnetic field status value (2-byte floating point number)	
20H	1st channel detection value (low 1-byte integer) + 2nd channel detection value (high 1-byte integer)	ÿ
21H	3rd channel detection value (low 1-byte integer) + 4th channel detection value (high 1-byte integer)	ÿ
22H	5th channel detection value (low 1-byte integer) + 6th channel detection value (high 1-byte integer)	ÿ
23H	7th channel detection value (low 1-byte integer) + 8th channel detection value (high 1-byte integer)	ÿ
24H	9th channel detection value (low 1-byte integer) + 10th channel detection value (high 1-byte integer)	ÿ
25H	11th channel detection value (low 1-byte integer) + 12th channel detection value (high 1-byte integer)	ÿ
26H	13th channel detection value (low 1-byte integer) + 14th channel detection value (high 1-byte integer)	ÿ
27H	15th channel detection value (low 1-byte integer) + 16th channel detection value (high 1-byte integer)	ÿ
28H	16-channel switch output (2-byte unsigned integer) Real-	ÿ
29H	time sensor temperature (2 byte integer)	ÿ
2AH	Reserved	
2BH	Reserve	
2CH	RS-232 and RS-485 baud rate (2-byte integer) 0:4800 1:9600 2:14400 3:19200 4:38400 5:56000 6:57600 7:115200 8:128000	
	9:256000	
2DH	CAN baud rate (2-byte integer) 0:100K 1:125K 2:500K 3:1M	
2EH	CAN 11-bit ID (2-byte unsigned integer)	
2F	Automatic output mode (2-byte integer) 0: No automatic output 1: CAN variable output 2: CAN continuous output 3: 485 variable output 4: 485 continuous output 5:232 Variation output 6:232 Continuous output	
30H	Basic settings (2-byte integer) 0bit = 0: S polarity mode 0bit = 1: N polarity mode 1bit=0: filter off 1bit=1: filter on	
31H	Trigger factor (2-byte integer)	
32H	Difference coefficient (2-byte integer)	
33H	RS-232 and RS-485 MODBUS-based device ID (1-byte unsigned integer)	
34H	Date of manufacture	ÿ

4.4 MODBUS-RTU Protocol Example

Access switch data protocol:

0x01 0x03 0x00 0x28 0x00 0x01 0x04 0x02

Protocol for accessing analog data:

0x01 0x03 0x00 0x20 0x00 0x08 0x45 0xC6

Setting 232 changes the automatic output protocol:

0x01 0x06 0x00 0x2F 0x00 0x05 0x78 0x00

Set 232 to continue automatic output protocol:

0x01 0x06 0x00 0x2F 0x00 0x06 0x38 0x01

Cancel the automatic output protocol of the serial port:

0x01 0x06 0x00 0x2F 0x00 0x00 0xB8 0x03

	Access switch data protocol					
		After sending the access agreement, the device responds to	the agreement, one question and one answer			
Description Send	01 0	3 00 28 00 01 04 02	Send access agreement			
(HEX) Receive (HEX)	0	1 03 02 00 00 B8 44	Received agreement response			
Data parsing (HEX)						
Modbus ID	01	Modbu	us ID of this machine			
Modbus function cod	e 03 register	Null				
length data	02	The following	data corresponds to 2 bytes			
protocol	00 00	Data high byte: 9th-16	6th switch output			
		Data low byte: 1st to 8th switch output				
		2 bytes of data converted into 16 bits in binary, corresponding to 16 switch quantities				
CRC 16 check bit B8	44	Modbus-RTU (CRC 16 checksum			

	Accessing analog data protocol				
	After sending the access agreement, the device responds to the agreement, one question and one answer				
Description Send (HEX)	01 (03 00 20 00 08 45 C6 Receive	Send access agreement		
(HEX) 01 03 10 00 00 0	02 00 06 04 04 0	05 03 04 00	Received agreement response		
	00	0 00 00 00 00 81 F3			
	2017	Data parsing (HEX)			
Modbus ID	01	Modbu	us ID of this machine		
Modbus function code 03		Null			
The following data in the	register 16 ngth co	rresponds to 16 bytes (0x20-0x27)			
Data protocol 2nd cha	nnel de 1000 n valu	e (high 1-byte integer) + 1st channel detection value (l	ow 1-byte integer)		
Data protocol 4th det	ection & Ne (high	1-byte integer) + 3rd detection value (low 1-byte in	teger)		
Data protocol 6th det	ection @al@e (high	1-byte integer) + 5th detection value (low 1-byte in	teger)		
Data protocol 8th det	ection WalVe (high	1-byte integer) + 7th detection value (low 1-byte in	teger)		
Data protocol 10th cha	annel de e e e e e e e e e e e e e e e e e	ue (high 1-byte integer) + 9th channel detection value	(low 1-byte integer)		
Data protocol 00 00	12th channel de	tection value (high 1-byte integer) + 11th chann	nel detection value (low 1-byte integer)		
Data protocol 00 00	Data protocol 00 00 14th channel detection value (high 1-byte integer) + 13th channel detection value (low 1-byte integer)				
Data Protocol	00 00 16th	detection value (high 1-byte integer) + 15th detection	on value (low 1-byte integer)		
CRC 16 check digit 81 F	3	Modbus-RTU (CRC 16 checksum		

232 Change automatic output protocol					
		After sending the setup agreement, the device data will be	automatically uploaded every time it changes.		
Description Send	01 06	6 00 2F 00 05 78 00	Send setting 232 Change output protocol		
(HEX) Receive (HEX)	01 Al	B 00 28 00 10 A5 D6	Automatically upload data		
	Data parsing (HEX)				
Modbus ID	01	Modbus ID of this machine			
Modbus function code	e AB	Null			
Register address	00 28 Data	16 switch outputs (2-byte unsigned integer)			
protocol 00 10		Data high byte: 9th-16	6th switch output		
		Data low byte: 1st to 8th switch output			
		The data is converted into 16 bits in binary, corresponding to 16 switch quantities.			
CRC 16 check digit A	5 D6	Modbus-RTU (CRC 16 checksum		

232 Continuous Automatic Output Protocol					
	After sending the setup agreement, the device data continues to upload automatically				
Description Send	01 06 00 2F 00 06 38 01 Send set to 232 continuous output protocol				
(HEX) Receive (HEX)	01 AB 00 28 00 00 A4 1A Automatically upload data				
	Data parsing (HEX)				
Modbus ID	01	01 Modbus ID of this machine			
Modbus function code	: AB	Null			
Register length (00 28 Data	28 Data 16 switch outputs (2-byte unsigned integer)			
protocol 00 00		Data high byte: 9th-16th switch output			
		Data low byte: 1st to 8th switch output			
CRC 16 check digit A	4 1A	Modbus-RTU CRC 16 checksum			

Cancel automatic output protocol			
	Set to no automatic output mode		
Description Send	01 06 00 2F 00 00 B8 03	Send settings without automatic output protocol	
(HEX) Receive (HEX)	01 06 00 2F 00 00 B8 03	Indicates successful setup	

5. RS-232, RS-485 and CAN automatic output protocol

Change output mode: When the detected value changes each time, the switch value will be output immediately.

Continuous output mode: send the current switch value every 7ms

parameter	Parameter information	Default settings
Communication	peer to peer	
method receiving/sending	Full-duplex/half-duplex communication mode	
method communication ID	1-255	01
RS-232/485 communication rate 115200 b	ps	115200 bps
RS-232/485 data bit 8 bits		8-bit
RS-232/485 parity bit no parity		No verification
RS-232/485 stop bit 1 bit		1 bit
CAN communication rate	500K bps	500K bps
CAN communication node	161H	161H

Format:

MODBUS	Function code	Register high word	Register Low	Data high word	Data low word	CRC code low word	CRC code high byte
Device ID	Function code	Section Address	Byte Address	Festival	Festival	Festival	CKC code night byte
XXH	ABH	00Н	28H	XXH	XXH	ххн	ХХН

Data high byte: 9th-16th switch output

Data low byte: 1st to 8th switch output

6. Inspection and troubleshooting

6.1 Inspection Contents Since AGV is

a moving device, it operates in a vibrating environment. To ensure that the product can operate stably and without failure,

Therefore, it is necessary to conduct regular inspections of the equipment and the inspection contents.

Recommended inspection cycle: 3 months

9V-28V

Check the tightness of the terminal and the condition of the wires in the port.

6.2 Troubleshooting When the product

has abnormal faults and cannot operate normally, please refer to the fault list for troubleshooting.

Fault phenomenon inspection	and determination	Treatment measures	
LED is not on	Check whether the power supply voltage is normal; 2) Check whether the VCC and GND line sequence is correct.	Provide correct voltage power supply; 2) Correct the line sequence;	
Signal discontinuity	Check whether the sensing polarity matches the magnetic stripe polarity; 2) Check whether the sensor is less than 15mm from the magnetic stripe.	Adjust the configuration parameters; 2) Adjust the installation location.	
No signal	Check whether the installation height exceeds 50mm; 2) Check whether the set induction polarity matches the magnetic strip polarity;	Adjust the configuration parameters; Adjust the installation location.	

7 AGV system architecture example

7.1 Single drive control scheme

Schematic diagram of a single-drive solution. The single-drive solution is generally a 6-wheel structure, used for traction or backpack AGVs

7.2 Dual drive control scheme

Dual drive scheme diagram

8 Specifications

General Specifications of the

Product		Specification	
Project Operating Environment Ambient temperatu		re -20ÿ+80ÿ (no ice) Ambient humidity	
	below 80% (no frost) H	eight Medium Environment No	
		Below 1000m above sea level	
	corrosive, flammable ga	s or dust, etc., cannot be used in special environments containing radioactive substances, strong magnetic fields and vacuum	
		Vibration Do not apply continuous vibration or excessive	
	impact Storage Enviror	ment Ambient temperature -25ÿ+70ÿ (no ice) Ambient	
humidity below 85% (no t	rost) Height Product Wei	ght	
		230g below 1000m above	
		sea level, error 10% (excluding connecting wires)	

Magnetic Navigation Sensor General Specifications

	Specification	
Input power rated voltage	e: DC 9~28V Rated current: 95mA ÿThe	
	sensor has power reverse	
	protection communication function ÿ RS-232/	
RS-485/CAN communic	ation	
	Communication rate: 115200bps	
Magnetic point spacing	10mm	
Sensitivity 0~255 Signal r	esponse	
Communication status:	Based on the query data sent by the host computer, the response is less than 8ms	
Suitable for magnetic stripe	specifications 30mm wide,	
50mm wide Installation	conditions It is recommended to use aluminum alloy	
or stainless steel Filling	material	
Silicone Shell material	luminum alloy	
Protection level IP54		

9 After-sales

9.1 Warranty Period D-MNSV7-

X16 provides a limited warranty period. During the warranty period, any product failure due to product quality problems, design defects, etc.

If the product is used normally, we will provide free after-sales

maintenance. ÿWarranty period: 1 year from the date of sale.

9.2 Warranty Scope During the

warranty period, if the product falls within the warranty conditions, we will repair or replace it free of charge. ÿThe warranty and after-sales service of this product are limited to mainland China; ÿThe product cannot be used normally due to unpacking during transportation; ÿThe product cannot work normally due to damage to its own components; ÿThe product cannot be used normally due to design defects.

9.3 Scope of Disclaimer Please

note that we will not provide free after-sales service and warranty within the following conditions during the use of the product. ÿ Failure to install the product correctly according to the instructions, resulting in product damage;

 \ddot{y} Using the product in an unsuitable environment and conditions, resulting in product damage; \ddot{y}

Failure to follow the product instructions to operate the product, resulting in product

damage; ÿ Disassembling or repairing the product without the company's

permission; \ddot{y} Product damage caused by irresistible external forces such as natural disasters and fires.

