離散最適化基礎論 第 12 回 マトロイドの合併

岡本 吉央 okamotoy@uec.ac.jp

電気通信大学

2016年1月29日

最終更新: 2016年8月23日 11:58

岡本 吉央 (電通大)	離散最適化基礎論 (12)	2016年1月29日	1

スケジュール 後半 (予定)

★ 休講 (国内出張)	(12/11)
8 マトロイドに対する操作	(12/18)
፬ マトロイドの交わり	(12/25)
* 冬季休業	(1/1)
Ⅲ マトロイド交わり定理	(1/8)
★ 休講 (センター試験準備)	(1/15)
🔟 マトロイド交わり定理:アルゴリズム	(1/22)
<u>■ 最近のトピック</u> マトロイドの合併	(1/29)
* 授業等調整日 (予備日)	(2/5)
★ 期末試験	(2/12)

注意: 予定の変更もありうる

岡本 吉央 (電通大)	離散最適化基礎論 (12)	2016年1月29日	

テーマ:解きやすい組合せ最適化問題が持つ「共通の性質」

→ 解きやすい問題が持つ「共通の性質」は何か?

回答

よく分かっていない

しかし、部分的な回答はある

部分的な回答

問題が「マトロイド的構造」を持つと解きやすい

効率的アルゴリズムが設計できる背景に「美しい数理構造」がある

この講義では、その一端に触れたい

岡本 吉央 (電通大) 離散最適化基礎論 (12)

マトロイドの直和・合併

非空な有限集合 E, 2つのマトロイド $\mathcal{I}_1, \mathcal{I}_2 \subseteq 2^E$

マトロイドの合併 (union) とは? (復習)

 \mathcal{I}_1 と \mathcal{I}_2 の合併とは、次の集合族 $\mathcal{I}_1 \vee \mathcal{I}_2$

 $\mathcal{I}_1 \vee \mathcal{I}_2 = \{X_1 \cup X_2 \mid X_1 \in \mathcal{I}_1, X_2 \in \mathcal{I}_2, X_1 \cap X_2 = \emptyset\}$

非空な有限集合 $E_1,E_2,\ E_1\cap E_2=\emptyset$, 2つのマトロイド $\mathcal{I}_1\subseteq 2^{E_1},\mathcal{I}_2\subseteq 2^{E_2}$

マトロイドの直和 (direct sum) とは? (復習)

 \mathcal{I}_1 と \mathcal{I}_2 の<mark>直和</mark>とは、次の集合族 $\mathcal{I}_1 \oplus \mathcal{I}_2$

 $\mathcal{I}_1 \oplus \mathcal{I}_2 = \{X_1 \cup X_2 \mid X_1 \in \mathcal{I}_1, X_2 \in \mathcal{I}_2\}$

合併と直和は似ているが、少し違う

スケジュール 前半

(10/2)
(10/9)
(10/16)
(10/23)
(10/30)
(11/6)
(11/13)
(11/20)
(11/27)
(12/4)

離散最適化基礎論 (12)

期末試験

岡本 吉央 (電通大)

▶ 日時:2月12日(金)4限

▶ 教室:西5号館214教室

▶ 範囲:第1回講義のはじめから第10回講義のおわりまで (第11回と第12回は含まない)

▶ 出題形式

▶ 演習問題と同じ形式の問題を6題出題する

▶ その中の3題以上は演習問題として提示されたものと同一である。 (ただし、「発展」として提示された演習問題は出題されない)

▶ 全問に解答する

▶ 配点:1題20点満点,計120点満点

▶ 成績において, 100 点以上は 100 点で打ち切り

▶ 持ち込み: A4 用紙1枚分 (裏表自筆書き込み) のみ可

岡本 吉央 (電通大)

目次

① マトロイドの合併:復習

② マトロイドの合併とマトロイドの交わり

3 今日のまとめ

岡本 吉央 (電通大)

離散最適化基礎論 (12)

マトロイドの合併・直和はマトロイド

非空な有限集合 E, 2つのマトロイド $\mathcal{I}_1, \mathcal{I}_2 \subseteq 2^E$

マトロイドの合併はマトロイド

マトロイド $\mathcal{I}_1, \mathcal{I}_2$ の合併 $\mathcal{I}_1 \vee \mathcal{I}_2$ は E 上のマトロイド

非空な有限集合 $E_1, E_2, E_1 \cap E_2 = \emptyset$, 2つのマトロイド $\mathcal{I}_1 \subseteq 2^{E_1}, \mathcal{I}_2 \subseteq 2^{E_2}$

マトロイドの直和はマトロイド

マトロイド \mathcal{I}_1 , \mathcal{I}_2 の直和は $E_1 \cup E_2$ 上のマトロイド

辺素な2つの全域木を見つける問題は

閉路マトロイドと閉路マトロイドの合併でモデル化できる

辺素: 辺集合が互いに素

岡本 吉央 (電通大)

離散最適化基礎論 (12)

016年1月29日

辺素な全域木: 貪欲アルゴリズム?

次の問題を考える 貪欲アルゴリズムで解ける????

貪欲アルゴリズム

 $E=\{e_1,e_2,\ldots,e_n\}$ とする

- $\mathbf{1} X \leftarrow \emptyset$
- 2 すべての $i \leftarrow 1, 2, ..., n$ に対して,以下を繰り返し

$$X \leftarrow egin{cases} X \cup \{e_i\} & (X \cup \{e_i\} \in \mathcal{I} \lor \mathcal{I} \ \mathfrak{O} \succeq \mathfrak{S}) \\ X & (X \cup \{e_i\} \notin \mathcal{I} \lor \mathcal{I} \ \mathfrak{O} \succeq \mathfrak{S}) \end{cases}$$

3 X を出力

岡本 吉央 (電通大)

離散最適化基礎論 (12

2016年1月29日

11 / 22

目次

- マトロイドの合併:復習
- ②マトロイドの合併とマトロイドの交わり
- 3 今日のまとめ

岡本 吉央 (電通大)

離散最適化基礎論 (12)

2016年1月29日

マトロイドの合併とマトロイドの交わり (2)

非空な有限集合 E, 2つのマトロイド $\mathcal{I}_1, \mathcal{I}_2 \subseteq 2^E$

考えること

合併 $\mathcal{I}_1 \lor \mathcal{I}_2$ をマトロイドの交わりとして表現すること

 $E_1 \cup E_2$ 上の分割マトロイドで、次のものを考える $\leftarrow 2$ つ目のマトロイド

$$\mathcal{J} = \{ X' \mid \{ (e,1), (e,2) \} \not\subseteq X' \text{ for all } e \in E \}$$

応用:辺素な全域木 (続き)

辺素な2つの全域木を見つける問題は

閉路マトロイドと閉路マトロイドの合併でモデル化できる

無向グラフG = (V, E)上の閉路マトロイドを \mathcal{I} として

次の問題を考える

貪欲アルゴリズムで解ける???

観察

最適値 = 2(|V|-1) \Leftrightarrow G が辺素な 2 つの全域木を持つ

岡本 吉央 (電通大)

離散最適化基礎論 (12)

2016 / 1 8 20 8

(12)

手 1 月 29 日 10 / 2.

辺素な全域木:貪欲アルゴリズム? (2)

貪欲アルゴリズム

 $E = \{e_1, e_2, \dots, e_n\}$ とする

- $\mathbf{1} X \leftarrow \emptyset$
- 2 すべての $i \leftarrow 1, 2, ..., n$ に対して,以下を繰り返し

$$X \leftarrow egin{cases} X \cup \{\mathsf{e}_i\} & (X \cup \{\mathsf{e}_i\} \in \mathcal{I} \lor \mathcal{I} \ \mathsf{D} \ \mathsf{E} \$$

3 X を出力

問題点

「 $X \cup \{e_i\} \in \mathcal{I} \lor \mathcal{I}$ 」の条件判定をどのように行うのか?

自明ではない → 実は、「マトロイドの交わり」を使うと効率よく行える

岡本 吉央 (電通大)

離散最適化基礎論 (12)

2016年1月29日 12/2

マトロイドの合併とマトロイドの交わり (1)

非空な有限集合 E, 2 つのマトロイド $\mathcal{I}_1, \mathcal{I}_2 \subseteq 2^E$

考えること

合併 $\mathcal{I}_1 \lor \mathcal{I}_2$ をマトロイドの交わりとして表現すること

そのために考える設定

- ▶ $E_1 = \{(e,1) \mid e \in E\}, E_2 = \{(e,2) \mid e \in E\},$ $\mathcal{I}_1' = \{X' \mid ある X \in \mathcal{I}_1 \ に対して、 X' = \{(e,1) \mid e \in X\}\},$ $\mathcal{I}_2' = \{X' \mid ある X \in \mathcal{I}_2 \ に対して、 X' = \{(e,2) \mid e \in X\}\}$
- $m{E}_1 \cap E_2 = \emptyset$ であり、 $\mathcal{I}_1', \mathcal{I}_2'$ はそれぞれ E_1, E_2 上のマトロイド
- ▶ $\mathcal{I}'_1 \oplus \mathcal{I}'_2$ は $E_1 \cup E_2$ 上のマトロイド←1つ目のマトロイド

岡本 吉央 (電通大)

離散最適化基礎論 (12)

016年1月29日 14/22

マトロイドの合併とマトロイドの交わり (3)

▶ 写像 f: E₁ ∪ E₂ → E を次のように定義

任意の $(e,1)\in E_1$ に対して, f((e,1))=e, 任意の $(e,2)\in E_2$ に対して, f((e,2))=e

▶ このとき, $\mathcal{I}_1 = \{ f(X') \mid X' \in \mathcal{I}_1' \}, \, \mathcal{I}_2 = \{ f(X') \mid X' \in \mathcal{I}_2' \}$

証明したいこと

 $\mathcal{I}_1 \vee \mathcal{I}_2 = \{ f(X') \mid X' \in (\mathcal{I}_1' \oplus \mathcal{I}_2') \cap \mathcal{J} \}$

(電通大) 離散最適化基礎論 (12) 2016 年 1 月 29 日

岡本 吉央 (電通ブ

離散最適化基礎論 (12

2016年1月29日

マトロイドの合併とマトロイドの交わり:証明 (⊇)

証明したいこと

 $\mathcal{I}_1 \vee \mathcal{I}_2 = \{ f(X') \mid X' \in (\mathcal{I}_1' \oplus \mathcal{I}_2') \cap \mathcal{J} \}$

証明 $(\supseteq): X' \in (\mathcal{I}_1' \oplus \mathcal{I}_2') \cap \mathcal{J}$ として、f(X') を考える

- ▶ 目標 : $f(X') \in \mathcal{I}_1 \vee \mathcal{I}_2$ を導く
- ▶ $X' \in \mathcal{J}$ より、各 $e \in E$ に対して $\{(e,1),(e,2)\} \not\subseteq X'$
- ▶ つまり,

$$X_1' = \{(e,1) \mid (e,1) \in X'\}, \quad X_2' = \{(e,2) \mid (e,2) \in X'\}$$

とすると

$$f(X') = f(X'_1) \cup f(X'_2)$$
 $f(X'_1) \cap f(X'_2) = \emptyset$

ullet $f(X_1') \in \mathcal{I}_1, f(X_2') \in \mathcal{I}_2$ なので、 $f(X') \in \mathcal{I}_1 \lor \mathcal{I}_2$

岡本 吉央 (電通大)

離散最適化基礎論 (12)

016年1月29日 1

マトロイドの合併とマトロイドの交わり:帰結

証明したこと

 $\mathcal{I}_1 \vee \mathcal{I}_2 = \{ f(X') \mid X' \in (\mathcal{I}_1' \oplus \mathcal{I}_2') \cap \mathcal{J} \}$

帰結: $X \in \mathcal{I}_1 \lor \mathcal{I}_2$ かどうか判定するには?

- I 先に定義した $\mathcal{I}_1', \mathcal{I}_2', \mathcal{J}$ を考える
- ② $X_1'=\{(e,1)\mid e\in X\}, X_2'=\{(e,2)\mid e\in X\}$ として,制限 $\mathcal{I}_1'|X_1',\mathcal{I}_2'|X_2'$ を考える
- * 注意: $(\mathcal{I}_1'|X_1')\oplus(\mathcal{I}_2'|X_2')=(\mathcal{I}_1'\oplus\mathcal{I}_2')|(X_1'\cup X_2')$
- ③ $\max\{|X'|\mid X'\in (\mathcal{I}_1'\oplus\mathcal{I}_2')|(X_1'\cup X_2')\cap\mathcal{J}|(X_1'\cup X_2')\}$ を計算
- 4 この最大値が |X| に等しければ、 $X \in \mathcal{I}_1 \vee \mathcal{I}_2$ そうでなければ、 $X \notin \mathcal{I}_1 \vee \mathcal{I}_2$

岡本 吉央 (電通大)

離散最適化基礎論 (12)

2016年1月29日

19 / 22

残った時間の使い方

- ▶ 授業評価アンケート
- ▶ 退室時, 小さな紙に感想など書いて提出する ← 重要
 - ▶ 内容は何でも OK
 - ▶ 匿名で OK

岡本 吉央 (電通大)

2016年1月29日

マトロイドの合併とマトロイドの交わり:証明 (⊆)

証明したいこと

 $\mathcal{I}_1 \vee \mathcal{I}_2 = \{ f(X') \mid X' \in (\mathcal{I}_1' \oplus \mathcal{I}_2') \cap \mathcal{J} \}$

証明 $(\subseteq): X \in \mathcal{I}_1 \vee \mathcal{I}_2$ とする

- ▶ 目標 : ある $X' \in (\mathcal{I}_1' \oplus \mathcal{I}_2') \cap \mathcal{J}$ に対して,X = f(X')
- $X \in \mathcal{I}_1 \lor \mathcal{I}_2$ より,ある $X_1 \in \mathcal{I}_1 と X_2 \in \mathcal{I}_2$ が存在して

$$X=X_1\cup X_2,\quad X_1\cap X_2=\emptyset$$

▶ このとき, $X_1' = \{(e,1) \mid e \in X_1\}, X_2' = \{(e,2) \mid e \in X_2\}$ とすると,

$$X_1 = f(X_1'), \quad X_2 = f(X_2')$$

- ▶ さらに、 $X_1' \cup X_2' \in (\mathcal{I}_1' \oplus \mathcal{I}_2') \cap \mathcal{J}$
- ▶ つまり, $X' = X'_1 \cup X'_2$ とすれば,

$$X' \in (\mathcal{I}'_1 \oplus \mathcal{I}'_2) \cap \mathcal{J}, \quad X = f(X')$$

岡本 吉央 (電通大) 離散最適化基礎論 (12)

2016年1月29日 18/22

目次

- マトロイドの合併:復習
- ②マトロイドの合併とマトロイドの交わり
- 3 今日のまとめ

岡本 吉央 (電通大)

離散最適化基礎論 (12)

2016年1月29日 20,