يسم الله الرحمن الرحيم

ساختمانهای داده

جلسه ۲۵

مجتبی خلیلی دانشکده برق و کامپیوتر دانشگاه صنعتی اصفهان

Heaps

Recall Priority Queue ADT

IUT-ECE

- A priority queue stores a collection of entries
- Typically, an entry is a pair (key, value), where the key indicates the priority
- Main methods of the Priority Queue ADT
 - insert(e) inserts an entry e
 - removeMin()removes the entry with smallest key

- Additional methods
 - min()
 returns, but does not remove, an entry with smallest key
 - size(), empty()
- Applications:
 - Standby flyers
 - Auctions
 - Stock market

Recall PQ Sorting

- We use a priority queue
 - Insert the elements with a series of insert operations
 - Remove the elements in sorted order with a series of removeMin operations

- The running time depends on the priority queue implementation:
 - Unsorted sequence gives selection-sort: $O(n^2)$ time
 - Sorted sequence gives insertion-sort: O(n²)
 time
- Can we do better? Balancing the above

```
Algorithm PriorityQueueSort(L,P):
   Input: An STL list L of n elements and a priority queue, P, that compares
      elements using a total order relation
    Output: The sorted list L
    while !L.empty() do
       e \leftarrow L.front
                              {remove an element e from the list}
       L.\mathsf{pop\_front}()
                           {...and it to the priority queue}
       P.insert(e)
    while !P.empty() do
       e \leftarrow P.\min()
       P.removeMin()
                                {remove the smallest element e from the queue}
       L.\mathsf{push\_back}(e)
                                \{\dots and append it to the back of L\}
```

We will have these results soon ...

List-based

Operation	Unsorted List	Sorted List
size, empty	<i>O</i> (1)	<i>O</i> (1)
insert	<i>O</i> (1)	O(n)
min, removeMin	O(n)	<i>O</i> (1)

Heap-based

Operation	Time
size, empty	<i>O</i> (1)
min	<i>O</i> (1)
insert	$O(\log n)$
removeMin	$O(\log n)$

Heap: Overview

A heap is a binary tree storing keys at its nodes and satisfying the following properties:

1. Heap-order property

- **1.** Heap-Order: for every internal node v other than the root, $key(v) \ge key(parent(v))$
 - The keys encountered on a path from the root to a leaf T are nondecreasing
 - A minimum key: always at the root

2. Complete binary tree property

- Complete Binary Tree
 - Roughly speaking, every level, except for the last level, is completely filled, and all nodes in the last level are as far left as possible.
- let h be the height of the heap
 - for i = 0, ..., h 1, there are 2^i nodes of depth i
 - at depth h-1, the internal nodes are to the left of the external nodes

Heap: Overview

- A heap is a binary tree storing keys at its nodes and satisfying the following properties:
 - 1. Heap-order property
 - 2. Complete binary tree property
- The last node of a heap is the rightmost node of maximum depth

Min-Heap?

Min-Heap?

Min-Heap?

$$S = \{93, 39, 1, 26, 8, 23, 79, 54\}$$

Height of a Heap of *n* elements

- lacktriangle Theorem: A heap storing n keys has height $O(\log n)$
 - Proof: (we apply the complete binary tree property)
 - Let h be the height of a heap storing n keys
 - Since there are 2^i keys at depth i = 0, ..., h 1 and at least one key at depth h, we have $n \ge 1 + 2 + 4 + ... + 2^{h-1} + 1$
 - Thus, $n \ge 2^h$, i.e., $h \le \log n$

Heap

- دیدیم که heap به صورت درخت باینری تقریبا کامل است:
 - ۰ پیاده سازی ساده با آرایه
 - حفظ اوردر لگاریتمی

Vector-based Heap Implementation

- We can represent a heap with n keys by means of a vector of length n + 1
- lacktriangle For the node at rank i
 - the left child is at rank 2i
 - the right child is at rank 2i + 1
- Links between nodes are not explicitly stored
- The cell of at rank 0 is not used.
- Last node at rank n

Min heap?

[1,8,5,9,12,11,7]

Max heap?

IUT-ECE

- We can use a heap to implement a priority queue
 - We say "heap-based PQ implementation"
- We store a (key, element) item at each internal node
- We keep track of the position of the last node
 - I am able to know who is the last node in O(1) time
 - Easy

Insertion into a Heap

- Method insert of the priority queue ADT corresponds to the insertion of a key k to the heap
- The insertion algorithm consists of three steps
 - Find the insertion node z (the new last node)
 - How? discussed later
 - Store k at z
 - Restore the heap-order property (discussed next)

Upheap

- lacktriangle After the insertion of a new key k, the heap-order property may be violated
- lacktriangle Algorithm upheap restores the heap-order property by swapping k along an upward path from the insertion node
- lacktriangle Upheap terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k
- \bullet Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time

Insert: (2,T)

Insert: (2,T)

Removal from a Heap

- Method removeMin of the priority queue ADT corresponds to the removal of the root key from the heap
- The removal algorithm consists of three steps
 - Replace the root key with the key of the last node w
 - Remove w
 - Restore the heap-order property (discussed next)

Downheap

- lacktriangle After replacing the root key with the key k of the last node, the heap-order property may be violated
- lacktriangle Algorithm downheap restores the heap-order property by swapping key k along a downward path from the root (but which path?)
- lackloss Upheap terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k
- \bullet Since a heap has height $O(\log n)$, downheap runs in $O(\log n)$ time

removeMin

removeMin

Updating the Last Node

IUT-ECE

- How can we find the insertion node (a new last node)?
 - The insertion node can be found by traversing a path of $O(\log n)$ nodes
 - (1) Go up until a left child or the root is reached
 - (2) If a left child is reached, go to the right child
 - (3) Go down left until a leaf is reached
- Similar algorithm for updating the last node after a removal

Vector-based Heap Implementation

- We can represent a heap with n keys by means of a vector of length n + 1
- lacktriangle For the node at rank i
 - the left child is at rank 2i
 - the right child is at rank 2i + 1
- Links between nodes are not explicitly stored
- The cell of at rank 0 is not used
- Operation insert corresponds to inserting at rank n + 1
- Operation removeMin corresponds to removing at rank n

	2	5	6	9	7
0	1	2	3	4	5

List-based vs. Heap-based

List-based

Operation	Unsorted List	Sorted List
size, empty	<i>O</i> (1)	<i>O</i> (1)
insert	<i>O</i> (1)	O(n)
min, removeMin	O(n)	<i>O</i> (1)

Heap-based

Operation	Time	
size, empty	<i>O</i> (1)	
min	<i>O</i> (1)	
insert	$O(\log n)$	
removeMin	$O(\log n)$	