

Prof. Dr. Anne Frühbis-Krüger M.Sc. Marco Melles

Präsenzaufgaben 8

Keine Abgabe vorgesehen

Präsenzaufgabe 8.4.

- (a). Zeigen Sie, dass $K = \mathbb{Q}(\sqrt{8}, 3 + \sqrt{50})$ einfach ist und bestimmen Sie $\alpha \in \mathbb{C}$, sodass $K = \mathbb{Q}(\alpha)$. Bestimmen Sie das Minimalpolynom $f_{\alpha,\mathbb{Q}}$ von α über \mathbb{Q} , den Grad der Körpererweiterung $K \supseteq \mathbb{Q}$ und eine Basis von K als \mathbb{Q} -Vektorraum.
- (b). Sei $\alpha \in \mathbb{C}$ Nullstelle des Polynoms $g = t^4 + 12t^2 + 6t + 10 \in \mathbb{Z}[t]$ und $K = \mathbb{Q}(\alpha, \sqrt[5]{7})$. Bestimmen Sie den Grad der Körpererweiterung von K über \mathbb{Q} und eine Basis von K als \mathbb{Q} -Vektorraum.

Präsenzaufgabe 8.5. Es seien $\alpha = \sqrt{2} + \sqrt{3}$, $\beta = \sqrt{2}$ und $\gamma = \sqrt{3}$.

- (a). Zeigen Sie, dass $K = \mathbb{Q}[\alpha]$ eine Körpererweiterung vom Grad 4 über \mathbb{Q} ist. Bestimmen Sie dazu ein normiertes, irreduzibles Polynom $f \in \mathbb{Q}[t]$ vom Grad 4, welches α als Nullstelle hat. Geben Sie eine Basis von K als \mathbb{Q} -Vektorraum an und stellen Sie α^{-1} bezüglich dieser Basis dar.
- (b). Bestimmen Sie $[\mathbb{Q}(\beta):\mathbb{Q}]$, $[\mathbb{Q}(\gamma):\mathbb{Q}]$, sowie $[\mathbb{Q}(\beta,\gamma):\mathbb{Q}]$ und beweisen Sie damit, dass $\mathbb{Q}(\beta,\gamma)=K$. Geben Sie außerdem eine Basis von $\mathbb{Q}(\beta,\gamma)$ über $\mathbb{Q}(\beta)$ an.

Präsenzaufgabe 8.6. Beweisen oder widerlegen Sie:

- (a). Seien $a, b \in \mathbb{Q}$. Dann gilt: $\mathbb{Q}(\sqrt{a}, \sqrt{b}) = \mathbb{Q}(\sqrt{a} + \sqrt{b})$.
- (b). Seien $\alpha, \beta \in \mathbb{C}$ algebraisch über \mathbb{Q} . Seien $K = \mathbb{Q}(\alpha, \beta), K_1 = \mathbb{Q}(\alpha), K_2 = \mathbb{Q}(\beta)$ und $K_1 \cap K_2 = \mathbb{Q}$. Dann ist $[K : \mathbb{Q}]$ ein Teiler von $[K_1 : \mathbb{Q}] \cdot [K_2 : \mathbb{Q}]$.
- (c). Jede algebraische Erweiterung von \mathbb{Q} ist endlich.

Präsenzaufgabe 8.7. Es seien $K \supseteq k$ eine Körpererweiterung, $\alpha \in K$ algebraisch über k, es bezeichne $f_{\alpha,k} \in k[t]$ das Minimalpolynom von α über k und $n = [k[\alpha] : k]$.

- (a). Diskutieren und Erläutern Sie Bemerkung 6.2.10, d.h. wie Sie zu einem Element $\beta \in k[\alpha] \setminus \{0\}$ das Inverse Element bestimmen können, also ein $\gamma \in k[\alpha]$ finden, so dass $\beta \cdot \gamma = 1$.
- (b). Sei $f := 3t^3 + 5t + 10 \in \mathbb{Q}[t]$ und sei $\alpha \in \mathbb{C}$ eine Nullstelle von f. Zeigen Sie, dass $\mathbb{Q}[t]/\langle f \rangle$ ein Körper ist und geben Sie $[\mathbb{Q}(\alpha):\mathbb{Q}]$, sowie eine \mathbb{Q} -Basis von $\mathbb{Q}(\alpha)$ an. Stellen Sie α^{-1} , sowie $(\alpha^6 + \alpha^4 + 1)$ und α^{-4} bezüglich der Basis dar.