

zhangcuicui@mail.xjtu.edu.cn

2 竞争与险象

忠恕任事

01 74系列门芯片

02 竞争与险象原理分析

03 竞争与险象实验观测

04 实验报告要求

05 下一次实验内容

Part 01

74系列门芯片

- 最早的中小规模数字逻辑器件以74开头命名
- 命名规则为: 74FAMnn, 其中, FAM为按字母排列的系列助记符, nn为用数字表示的功能编号。

◆ FAM助记符

	CMOS 器件。		TTL 器件。
HC 🏻	高速 CMOS。	H _e	高速型 TTL。
HCT .	高速 CMOS,TTL 兼容。	S _e	肖特基型 TTL。
AC .	高级型 CMOS。	LS ₂	低功耗肖特基型 TTL。
ACT .	高级型 CMOS,TTL 兼容。	AS -	高级肖特基型 TTL。
AHC .	高级型高速 CMOS。	ALS .	高级低功耗肖特基型 TTL。
AHCT .	高级型高速 CMOS,TTL 兼容。	F.	快速 TTL。

编号。	功能。	编号。	功能。
00 &	2 输入端与非门。	107 🏻	带清除主从双 J-K 触发器。
01 🕫	集电极开路 2 输入端与非门。	109 -	带预置清除正触发双 J-K 触发器。
02 🕫	2 输入端四或非门。	112 -	带预置清除负触发双 J-K 触发器。
03 🖟	集电极开路 2 输入端四或非门。	121 -	单稳态多谐振荡器。
04 .	六反相器。	122 -	可再触发单稳态多谐振荡器。
05 🖟	集电极开路六反相器。	123 -	可再触发单稳态多谐振荡器。
06 🏻	集电极开路六反相器高压驱动器。	125 -	三态输出高有效四总线缓冲门。
07 .	集电极开路六正相高压驱动器。	126 🏻	三态输出低有效四总线缓冲门。
08 🕫	2 输入端四与门。	132 -	2 输入端四与非施密特触发器。
09 🏻	集电极开路 2 输入端四与门。	133 -	13 输入与非门。
10 0	3 输入端 3 与非门。	136 -	四异或门。
11 🕫	3 输入端 3 与门。	138 -	3-8 译码器。
12 🕫	开路输出3输入端三与非门。	139 -	双 2-4 译码器。
13 🖟	4输入端双与非施密特触发器。	145 .	BCD-十进制译码器。

74LS00 与非门

Logic Diagram, Each Gate (Positive Logic)

74系列门芯片

00与非门时延特性

6.8 Switching Characteristics: SNx400

 V_{CC} = 5 V, T_A = 25°C, and over operating free-air temperature range (unless otherwise noted). See Figure 2.

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	A or D	V	B = 400 O and C = 15 nE		11	22	no
t _{PHL}	A or B	Y	$R_L = 400 \Omega$ and $C_L = 15 pF$		7	15	ns

6.9 Switching Characteristics: SNx4LS00

 V_{CC} = 5 V, T_A = 25°C, and over operating free-air temperature range (unless otherwise noted). See Figure 2.

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t_{PLH}		A or D	Y	B = 2 k0 and C = 15 nE		9	15	no
t _{PHL}		A or B		$R_L = 2 \text{ k}\Omega$ and $C_L = 15 \text{ pF}$		10	15	ns

6.10 Switching Characteristics: SNx4S00

 V_{CC} = 5 V, T_A = 25°C, and over operating free-air temperature range (unless otherwise noted). See Figure 2.

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	A or B	V	R_L = 280 Ω and C_L = 15 pF		3	4.5	
^T PLH	AOID	Ť	R_L = 280 Ω and C_L = 50 pF		4.5		no
	A or D	V	R_L = 280 Ω and C_L = 15 pF		3	5	ns
t _{PHL}	A or B	Ť	R_L = 280 Ω and C_L = 50 pF		5		

04非门时延特性

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS		N5404 N7404 TYP	MAX	UNIT
^t PLH	^	V	D. = 400 O	C: = 15 pF	12	22	
t _{PHL}	A	Ť	$R_L = 400 \Omega$	C _L = 15 pF	8	15	ns

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST C	TEST CONDITIONS		N54LS04 N74LS04		UNIT
	(INFOT)	(001701)		MIN	TYP	MAX	XAN	
t _{PLH}	Λ.	V	B. = 2 kO	C 15 pF		9	15	no
tphl	A	Ť	$R_L = 2 k\Omega$,	C _L = 15 pF		10	15	ns

switching characteristics, V_{CC} = 5 V, T_A = 25°C (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS			N54S04 N74S04		UNIT
	(1141-01)	(0011 01)		MIN	TYP	MAX		
t _{PLH}	Δ	V	R _L = 280 Ω,	C _L = 15 pF		3	4.5	no
^t PHL	A	· ·	11 – 200 52,	CL = 13 pr		3	5	ns
t _{PLH}	Λ	~	D 200 O	C: = 50 pF		4.5		ne
^t PHL	А	Ť	$R_L = 280 \Omega$, $C_L = 50 pF$			5		ns

Dart 02

竞争与险象原理分析

- 基本概念
- 静态1险象
- 静态0险象

F = A + A — 静态 1 险象(A从1→0)

2.3 静态0险象

F = A • A — 静态 0险象(A从0→1)

- ◆在组合电路中,同一信号或同时变化的某些信号,经过不同路径到达某一点时有先有后,这种现象称为**竞争**
- ◆由于竞争而引起电路输出发生瞬间错误现象称为**险象**。表现为输出端出现了原设计中没有的窄脉冲,常称其为**毛刺**。
- ◆有竞争不一定会产生险象,但有险象就一定有竞争。
- ◆产生险象的竞争称为**临界竞争**,未产生险象的称为**非临界竞争**。

Dart 03

竞争与险象实验观测

一 示波器捕获观测

示波器捕获观测

• $Y = B + \overline{B} = \overline{A * \overline{A}} = 1$, 其中 $A = \overline{B}$ 。

?用一片7400如何实现上面的电路?

3.2 示波器捕获观测

示波器捕获观测

 $Y = \overline{A * \overline{A}} = 1$

◆ 用3个与非门做非门

- 1) 电源脚7和14接GND和5V
- 2) A1接拨位开关
- 3) B1、B2、B3输入1 (接5V)
- 4) Y1接A2, Y2接A3, Y3接B4, A1接A4, Y4是输出
- 5) 用示波器观察Y1、Y2、Y3、Y4

用示波器观察这四个信号与A1的关系

3.2 示波器捕获观测

示波器捕获观测

A=A

trigger
couto set
fm = 41
4-4+A

示波器捕获观测

- ✓如何用示波器抓到上面的波形——示波器单次触发功能
 - 1) CH1接A1, CH2接Y1、Y2、Y3、Y4(四次测量);
 - 2) 设置触发源为CH1 (即A1) , 上升沿触发
 - 3) 设置触发电平到合适的位置
 - 4) 点击示波器的Single单次触发按钮

AB+AB.

实验报告要求

AB + AB

实验内容

原理分析

实验观测

总结

A

B

实验报告要求

◆ 实验报告应至少包含

- 1. 实验内容
- 2. 实验原理
- 3. 实验结果及分析
- 4. 总结

电子技术实验 2 实验报告

学号: 班级:

姓名:

2 竞争与险象的实验观测

一 实验内容

二 静态 1 险象原理分析

三 静态 1 险象实验观测

如何用 7400 搭建测量电路 测试结果记录和分析

四 总结竞争险象的基本知识

- 4.1 险象的分类
- 4.2 险象的判别方法
- 4.3 险象的消除方法

实验报告模板-

art 05 下一次实验内容

译码器

