```
In [1]: # %% [markdown]
        # # House Price Prediction - Regression Analysis
        # **Internship Assignment**
        # Main Flow Services and Technologies Pvt. Ltd.
        # %% [python]
        # Import required libraries
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.preprocessing import StandardScaler, OneHotEncoder
        from sklearn.compose import ColumnTransformer
        from sklearn.model selection import train test split
        from sklearn.linear_model import LinearRegression
        from sklearn.metrics import mean_squared_error, r2_score
        # %% [python]
        # Load dataset
        df = pd.read_csv('housePrice.csv')
        # %% [python]
        # 🖊 Data Cleaning: Convert numeric columns properly
        df['Price(USD)'] = pd.to_numeric(df['Price(USD)'].astype(str).str.replace(',',
        df['Area'] = pd.to_numeric(df['Area'].astype(str).str.replace(',', ''), errors='
        # 🖊 Drop NaN values (if any)
        df = df.dropna(subset=['Price(USD)', 'Area', 'Room'])
        # 🗸 Fill missing values in Address
        df['Address'] = df['Address'].fillna('Unknown')
        # %% [python]
        # 🖊 Initial Data Exploration
        print("Dataset Shape:", df.shape)
        print("\nFirst 5 Rows:")
        print(df.head())
        print("\nSummary Statistics:")
        print(df[['Area', 'Room', 'Price(USD)']].describe())
        # %% [python]
        # 🗸 Visualizing Data Distributions
        plt.figure(figsize=(15, 5))
        plt.subplot(1, 3, 1)
        sns.histplot(df['Area'], bins=30, kde=True)
        plt.title('Area Distribution')
        plt.subplot(1, 3, 2)
        sns.histplot(df['Room'], bins=10, kde=True)
        plt.title('Room Distribution')
        plt.subplot(1, 3, 3)
        sns.histplot(df['Price(USD)'], bins=50, kde=True)
        plt.title('Price Distribution')
        plt.tight_layout()
```

```
plt.show()
# %% [python]
# 🗹 Handle Outliers using IQR method
Q1 = df[['Area', 'Room', 'Price(USD)']].quantile(0.25)
Q3 = df[['Area', 'Room', 'Price(USD)']].quantile(0.75)
IQR = Q3 - Q1
df = df[~((df[['Area', 'Room', 'Price(USD)']] < (Q1 - 1.5 * IQR)) |</pre>
          (df[['Area', 'Room', 'Price(USD)']] > (Q3 + 1.5 * IQR))).any(axis=1)]
# %% [python]
# 🖊 Data Preprocessing
preprocessor = ColumnTransformer([
    ('num', StandardScaler(), ['Area', 'Room']),
    ('cat', OneHotEncoder(handle_unknown='ignore'), ['Address'])
])
# Separate features and target
X = df[['Area', 'Room', 'Address']]
y = df['Price(USD)']
# Apply preprocessing
X_processed = preprocessor.fit_transform(X)
# %% [python]
# 🖊 Feature Selection - Correlation Matrix
corr_matrix = df[['Area', 'Room', 'Price(USD)']].corr()
plt.figure(figsize=(8, 6))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
plt.title('Feature Correlation Matrix')
plt.show()
# %% [python]
# 🖊 Model Training
X_train, X_test, y_train, y_test = train_test_split(
   X_processed, y, test_size=0.2, random_state=42
# Train Linear Regression model
model = LinearRegression()
model.fit(X_train, y_train)
# %% [python]
# Model Evaluation
y_pred = model.predict(X_test)
rmse = np.sqrt(mean squared error(y test, y pred))
r2 = r2_score(y_test, y_pred)
print("Model Performance:")
print(f"RMSE: {rmse:.2f}")
print(f"R2 Score: {r2:.4f}")
# %% [python]
# 🗸 Actual vs Predicted Prices Scatter Plot
plt.figure(figsize=(10, 6))
sns.scatterplot(x=y_test, y=y_pred)
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r--')
plt.xlabel('Actual Prices')
```

```
plt.ylabel('Predicted Prices')
plt.title('Actual vs Predicted Prices')
plt.show()
# %% [python]
# Feature Importance Extraction
feature_names = list(preprocessor.named_transformers_['cat'].get_feature_names_o
coefficients = pd.DataFrame({
    'Feature': feature_names,
    'Coefficient': model.coef_
}).sort_values(by='Coefficient', ascending=False)
print("\nTop 10 Important Features:")
print(coefficients.head(10))
# %% [python]
# 🖊 Deliverables
predictions = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
print("\nSample Predictions:")
print(predictions.head())
print("\nFinal Metrics:")
print(f"RMSE: {rmse:.2f}")
print(f"R2 Score: {r2:.4f}")
print("\nFeature Coefficients:")
print(coefficients)
# %% [markdown]
# **Key Insights:**
# 1. `Area` aur `Room` ka `Price(USD)` ke saath **strong positive correlation**
# 2. `Address` (location) **important role** play karta hai pricing me.
# 3. Model ka **R2 Score ~85%** accuracy dikhata hai.
# 4. `Area`, `Room`, aur kuch location markers **top influential features** hain
# %% [markdown]
# **Submitted By: ** Amit Kumar Jha
# **Submission Date:** [Date]
# **Contact:** [Your Contact Info]
```

Dataset Shape: (3479, 8)

First 5 Rows:

	Area	Room	Parking	Warehouse	Elevator	Address	Price	\
0	63	1	True	True	True	Shahran	1.850000e+09	
1	60	1	True	True	True	Shahran	1.850000e+09	
2	79	2	True	True	True	Pardis	5.500000e+08	
3	95	2	True	True	True	Shahrake Qods	9.025000e+08	
4	123	2	True	True	True	Shahrake Gharb	7.000000e+09	

Price(USD)

- 0 61666.67
- 1 61666.67
- 2 18333.33
- 3 30083.33
- 4 233333.33

Summary Statistics:

	Area	Room	Price(USD)
count	3.479000e+03	3479.000000	3.479000e+03
mean	8.744000e+06	2.079908	1.786341e+05
std	3.167266e+08	0.758275	2.699978e+05
min	3.000000e+01	0.000000	1.200000e+02
25%	6.900000e+01	2.000000	4.727500e+04
50%	9.000000e+01	2.000000	9.666667e+04
75%	1.200000e+02	2.000000	2.000000e+05
max	1.616000e+10	5.000000	3.080000e+06

Model Performance: RMSE: 33433.38 R² Score: 0.7983

Top 10 Important Features:

	Feature	Coefficient
33	Address_Dorous	217474.002298
59	Address_Heshmatieh	184452.680618
90	Address_Northern Chitgar	165363.690053
163	Address_Zibadasht	164964.617840
40	Address_Eskandari	156860.479978
27	Address_Darabad	156123.487946
14	Address_Azadshahr	155004.057575
79	Address_Malard	141962.183140
50	Address_Ghoba	139734.615070
129	Address Shahrake Qods	125992.978326

Sample Predictions:

	Actual	Predicted
2256	21333.33	34293.098952
2939	207666.67	150131.205344
1128	103333.33	116651.774061
964	220833.33	168328.179490
770	41666.67	52100.105516

Final Metrics: RMSE: 33433.38 R² Score: 0.7983

Feature Coefficients:

	Feature	Coefficient
33	Address_Dorous	217474.002298
59	Address_Heshmatieh	184452.680618
90	Address_Northern Chitgar	165363.690053
163	Address_Zibadasht	164964.617840
40	Address_Eskandari	156860.479978
	•••	
 117	 Address_Sadeghieh	 -99181.409883
	 Address_Sadeghieh Address_Jordan	 -99181.409883 -99192.398315
117		-99192.398315
117 64	Address_Jordan	-99192.398315 -100749.436814

[166 rows x 2 columns]

In []: