Einführung in die Geometrie und Topologie - Mitschrieb -

Vorlesung im Wintersemester 2011/2012

Sarah Lutteropp

25. Oktober 2011

Inhaltsverzeichnis

1	Homotopie und Fundamentalgruppe	3
2	Grundlagen der allgemeinen Topologie	6

Vorwort

Dies ist ein Mitschrieb der Vorlesung "Einführung in die Geometrie und Topologie" vom Wintersemester 2011/2012 am Karlsruher Institut für Technologie, die von Herrn Prof. Dr. Wilderich Tuschmann gehalten wird.

Kapitel 1

Homotopie und Fundamentalgruppe

Definition 1.1 (Topologischer Raum). Ein topologischer Raum X ist gegeben durch eine Menge X und ein System σ von Teilmengen von X, den so genannten offenen Mengen von X, welches unter beliebigen Vereinigungen und endlichen Durchschnitten abgeschlossen ist und X und die leere Menge \emptyset als Elemente enthält.

X Menge, $\sigma \subset \mathcal{P}(X)$:

- (1) $O_1, O_2 \in \sigma \Rightarrow O_1 \cap O_2 \in \sigma$
- (2) $O_{\alpha} \in \sigma, \alpha \in A, A \ Indexmenge \Rightarrow \bigcup_{\alpha \in A} O_{\alpha} \in \sigma$
- (3) $X, \emptyset \in \sigma$

Beispiel 1.1. $\sigma = \{X, \emptyset\} \Rightarrow (X, \sigma)$ ist topologischer Raum!

Beispiel 1.2.

$$X \ Menge, \ \sigma = \{\{x\} | x \in X\} + Axiome, \ die \ zu \ erfüllen \ sind \leadsto \tilde{\sigma}$$

 $\Rightarrow (X, \tilde{\sigma})$ ist topologischer Raum. σ ist "Basis" der Topologie $\tilde{\sigma}$.

Definition 1.2 (Metrischer Raum). Ein <u>metrischer Raum</u> X ist eine Menge X mit einer Abbildung $d: X \times X \to \mathbb{R}$, der <u>"Metrik"</u> auf X, die folgende Eigenschaften erfüllt:

- (1) d(x,y) = d(y,x) "Symmetrie"
- (2) $d(x,y) = 0 \Leftrightarrow x = y, d(x,y) \ge 0$ "Definitheit"
- (3) $d(x,z) \le d(x,y) + d(y,z)$ "Dreiecksungleichung"
- $\forall x, y, x \in X$

Definition 1.3 (stetig). Eine Abbildung $F: X \to Y$ zwischen topologischen Räumen X und Y heißt stetig, falls die F-Urbilder offener Mengen in Y offene Teilmengen von X sind.

Bemerkung 1.1. Ist (X,d) ein metrischer Raum, so sind die offenen Mengen der von der Metrik induzierten Topologie Vereinigungen von endlichen Durchschnitten von Umgebungen $U_{\epsilon}(x) := \{y \in X | d(x,y) < \epsilon\} (\epsilon > 0), und F: (X,d) \to (Y,d')$ ist stetig im obigen Sinn genau dann, falls für alle $\epsilon > 0$ ein $\delta > 0$ existiert mit $F(U_{\delta}(x)) \subset U_{\epsilon}(F(x))$.

Definition 1.4 (Homotopie). Eine <u>Homotopie</u> $H: f \simeq g$ zwischen zwei (stetigen) Abbildungen $f, g: X \to Y$ ist <u>eine</u> (stetige) Abbildung

$$H: X \times I^1 \to Y, (x,t) \mapsto H(x,t)$$

 $mit\ H(x,0) = f(x)\ und\ H(x,1) = g(x) \forall x \in X.$

TODO:BILDER

Bemerkung 1.2. H heißt auch $\underline{Homotopie}$ $\underline{von\ f\ nach\ g}$, eine solche ist also eine parametrisierte Schar von $\underline{Abbildungen\ mit\ "Anfang}$ " f und $\underline{"Ende"}$ g. f und g heißen dann homotop, in Zeichen: $f \simeq g$.

Erinnerung Sind X und Y topologische Räume, so ist eine Homotopie $H = (h_t), t \in [0, 1]$, eine parametrisierte Schar von stetigen Abbildungen $h_t \colon X \to Y$ mit Anfang h_0 und Ende h_1 . (TODO: BILD)

Definition 1.5 (homotope Abbildungen). Zwei (stetige) Abbildungen heißen homotop, in Zeichen: $f \simeq g$, falls eine Homotopie mit Anfang f und Ende g existiert.

Bemerkung 1.3. "Homotop sein" ist eine Äquivalenzrelation.

Beweis. Symmetrie: Gilt für $f, g \in C(X, Y) := \{F : X \to Y \text{ stetig }\} \ f \simeq g$ vermöge $H = (h_t), t \in [0, 1]$, so liefert $(\tilde{h_t})mit\tilde{h_t} := h_{1-t}$ eine Homotopie von g nach f, d.h. $f \simeq g \Leftrightarrow g \simeq f$.

Reflexivität: $f \simeq f$ vermöge $h_t :\equiv f \forall t \in [0,1]$

<u>Transitivität</u>: Es sei $f \simeq g$ vermöge (h_t) und ferner $g \simeq l$ vermöge (k_t) . Dann liefert $M: X \times [0,1] \to Y$ mit

$$M_t := \begin{cases} h_{2t} & 0 \le t \le \frac{1}{2} \\ k_{2t-1} & \frac{1}{2} \le t \le 1 \end{cases}$$

eine Homotopie von f nach l. Also ist $f \simeq g, g \simeq l \Rightarrow f \simeq l$.

 $^{1}I = [0,1] \subset \mathbb{R}$

(TODO:BILD)

Bemerkung 1.4. Die Äquivalenzrelation "Homotopie von Abbildungen" liefert also eine Partition von C(X,Y) in Äquivalenzklassen. Diese heißen Homotopieklassen und die Menge aller Homotopieklassen stetiger Abbildungen von X nach Y wird mit [X,Y] bezeichnet. (TODO: BILD)

Bemerkung 1.5. C(X,Y) ist im Allgemeinen <u>wiel</u> schwieriger zu verstehen als [X,Y]!

Beispiel 1.3. Je zwei stetige Abbildungen $f, g: X \to \mathbb{R}^n$ sind homotop! Denn $H(x,t) := (1-t)f(x) + t \cdot g(x)$ liefert eine Homotopie von f nach g: (TODO: BILD)

Definition 1.6. Eine stetige Abbildung $f: X \to Y$ heißt $\underline{nullhomotop}$, falls sie homotop zu einer konstanten Abbildung ist. $(TODO:B\overline{ILD})$

Korollar 1.1. Jede stetige Abbildung $f: X \to \mathbb{R}^n$ ist nullhomotop, d.h. für jeden topologischen Raum X besteht $[X, \mathbb{R}^n]$, n beliebig, nur aus einem Punkt!

Beispiel 1.4. Jeder geschlossene Weg im \mathbb{R}^2 , d.h. jede stetige Abbildung $f: [0,1] \to \mathbb{R}^2$ mit f(0) = f(1) ist nullhomotop. $[[0,1],\mathbb{R}^2]$ + gleicher Anfangs- und Endpunkt besteht nur aus einem Punkt, zum Beispiel der Äquivalenzklasse der konstanten Kurve $t \mapsto (1,0)$. (TODO: BILD) Interpretiere einen geschlossenen Weg im \mathbb{R}^2 auch als stetige Abbildung von S^1 in \mathbb{R}^2 , so gilt also $[S^1,\mathbb{R}^2]$ ist einelementig.

<u>Aber</u> $[S^1, \mathbb{R}^2 \setminus \{0\}]$ ist nichttrivial! (TODO: BILD)

Definition 1.7. Es sei (X, σ) topologischer Raum und $A \subset X$. Die auf A durch

$$\sigma \Big|_{A} := \{ U \cap A | U \in \sigma \}$$

induzierte Topologie heißt $\underline{\text{Teilraumtopologie}}$ und der dadurch gegebene topologische Raum $(A, \sigma \Big|_A)$ heißt $\underline{\text{Teilraum}}$ von (X, σ) .

Bemerkung 1.6. $B \subset A$ ist also genau dann <u>offen in A</u>, wenn B der Schnitt einer <u>in X</u> offenen Menge mit A ist.

Beispiel 1.5. $X = \mathbb{R}^2, A = S^1 = \{x \in \mathbb{R}^2 | ||x|| = 1\}$ (*TODO: BILD*)

Achtung: B ist <u>nicht</u> offen in \mathbb{R}^2 !

Kapitel 2

Grundlagen der allgemeinen Topologie

Beispiel 2.1 (Beispiele topologischer Räume). • (1) $X, \sigma := \{X, \emptyset\}$ 'triviale Topologie'

- (2) $X, \sigma := \mathcal{P}(X)$ 'diskrete Topologie'
- (3) Metrische Räume, siehe unten
- (4) $X := \{a, b, c, d\} \Rightarrow \sigma := \{X, \emptyset, \{a\}, \{b\}, \{a, c\}, \{a, b, c\}, \{a, b\}\}$ definiert eine Topologie auf X, aber $\sigma' := \{X, \emptyset, \{a, c, d\}, \{b, d\}\}$ nicht!
- (5) $X := \mathbb{R}, \sigma := \{O \mid O \text{ ist Vereinigung von Intervallen } (a,b) \text{ mit } a,b \in \mathbb{R}\}. \Rightarrow (X,\sigma) \text{ ist topologischer Raum, und } \sigma \text{ heißt Standard-Topologie.}$
- (6) $X := \mathbb{R}, \tilde{\sigma} := \{O \mid O = \mathbb{R} \setminus E, E \subset \mathbb{R} \text{ endlich}\} \cup \{\emptyset\} \text{ ist auch eine Topologie auf } \mathbb{R}, \text{ die so genannte } \tau_1\text{-Topologie}.$

Definition 2.1. $A \subset X, X$ topologischer Raum, heißt <u>abgeschlossen</u> : $\Leftrightarrow X \setminus A$ ist offen.

Bemerkung 2.1. Beliebige Durchschnitte abgeschlossener Mengen sind abgeschlossen, ebenso endliche Vereinigungen und genauso X und \emptyset .

Beispiel 2.2. In einem diskreten topologischen Raum sind <u>alle Teilmengen</u> abgeschlossen, in $\mathbb{R}_{\tau_1}^{-1}$ alle endlichen Teilmengen und X, \emptyset .

Definition 2.2. Ist X topologischer Raum und $x \in X$, so heißt jede <u>offene</u> Teilmenge $O \subset X$ mit $x \in O$ eine Umgebung von x.

Bemerkung 2.2. Umgebungen sind per definitionem offen! (TODO: BILD)

 $^{{}^{1}\}mathbb{R}$ mit τ_{1} -Topologie

Bemerkung 2.3. Jede offene Teilmenge von $\mathbb{R}_{Standard}$ ist eine Vereinigung disjunkter offener Intervalle, doch abgeschlossene Teilmengen von \mathbb{R} sind keinesfalls immer Vereinigungen abgeschlossener Intervalle!

Beispiel 2.3 (Die Cantor-Menge $\mathcal{C} := \left\{ x \in \mathbb{R} \mid x = \sum_{k=1}^{\infty} \frac{a_k}{3^k}, a_k \in \{0, 2\} \right\}$). (TODO: BILD)

 $\Rightarrow \mathcal{C}$ ist abgeschlossen in \mathbb{R} , enthält überabzählbar viele Elemente und hat 'Hausdorff-Dimension' $\frac{\ln 2}{\ln 3} \approx 0, 6 \dots$

Definition 2.3. Ist (X, σ) topologischer Raum mit $\mathcal{B} \subset \sigma$, so heißt \mathcal{B} Basis der Topologie : \Leftrightarrow Jede (nichtleere) offene Menge ist Vereinigung von Mengen aus \mathcal{B} .

Beispiel 2.4. • (1) Die offenen Intervalle bilden eine Basis der Standard-Topologie von \mathbb{R} .

• (2) Sämtliche offenen² Kreisscheiben (TODO: BILD) und auch sämtliche offenen Quadrate (TODO: BILD) bilden Basen ein und derselben Topologie auf \mathbb{R}^2 .

(TOSO: BILD)

Bemerkung 2.4. • $\mathcal{B} \subset \sigma$ ist Basis der Topologie von $X \Leftrightarrow \forall O \in \sigma \forall x \in O \exists B \in \mathcal{B} : x \in B \subset O$.

• $\mathcal{B} \subset \mathcal{P}(X)$ bildet die Bais <u>einer</u> Topologie auf $X \Leftrightarrow X$ ist Vereinigung von Mengen aus \mathcal{B} und der Schnitt je zweier Mengen aus \mathcal{B} ist eine Bereinigung von Mengen aus \mathcal{B} .

(TODO: BILD)

Definition 2.4. Seind σ_1 und σ_2 Topologien auf X und $\sigma_1 \subset \sigma_2$, so heißt σ_2 feiner als σ_1 und σ_1 gröber als σ_2 .

Beispiel 2.5. • Die triviale Topologie ist die gröbste Topologie auf X, die diskrete Topologie die feinste.

• Die Standard-Topologie auf \mathbb{R} ist feiner als die τ_1 -Topologie.

Mehr in metrischen Räumen:

Definition 2.5. Für einen metrischen Raum (X, d) und $\epsilon > 0$ sei für $p \in X$

- $B_{\epsilon}(p) := \{x \in C \mid d(p,x) < \epsilon\}$ der offene ϵ -Ball um p
- $D_{\epsilon}(p) := \{x \in C \mid d(p, x) \leq \epsilon\}$ der abgeschlossene ϵ -Ball um p
- $S_{\epsilon}(p):=\{x\in C\mid d(p,x)=\epsilon\}$ die $\underline{\epsilon\text{-Sph\"{a}re}}$ um p (oder Sph\"{a}re vom Radius ϵ)

²bezüglich der euklidischen Metrik

Definition 2.6. Ist (X,d) metrischer Raum und $A \subset X$, so heißt der metrische Raum $(A,d|_{A\times A})$ (metrischer) Unterraum von X.

Beispiel 2.6. Für $X = \mathbb{R}^n_{Eukl.}$ sind $B_1(0), D_1(0) =: D^n$ und $S^{n-1} := S_10$ metrische Unterräume und heißen auch offener bzw. abgeschlossener Einheitsball bzw. (n-1)-Sphäre. (TODO: BILD)

Definition 2.7. $A \subset (X,d)$ heißt <u>beschränkt</u> : $\Leftrightarrow \exists O \subset \rho \in \mathbb{R} : d(x,y) < \rho \forall x,y \in A$ (TODO: BILD)

Das Infimum, diam A, dieser ρ heißt dann <u>Durchmesser von A</u>.

Bemerkung 2.5. In einem metrischen Raum (X,d) bilden die offenen Bälle die Basis einer Topologie $\sigma = \sigma_d$ von X, diese heißt die von der Metrik induzierte Topologie.

Bemerkung 2.6. $A \subset (X,d)$ ist dann <u>offen</u> $\Leftrightarrow \forall p \in A \exists$ ein offener Ball $B_{\epsilon}(p)$ um p mit $B_{\epsilon}(p) \subset A$ (TODO: BILD)

Definition 2.8. (X, d) sei metrischer Raum und $A \subset X, p \in X$.

$$d(p, A) := dist(p, A) := \inf\{d(p, a) \mid a \in A\}$$

heißt Abstand von p und A.