Arquitectura de computadoras Ejercicio RTL

1. Diseñe una computadora capaz de realizar las siguientes instrucciones. Para las funciones control, basta con mencionar qué controla cada una y cuántas son. Debe incluirse diagrama a bloques de todos los componentes y sus interconexiones.

Código	Mnemónico	Comentario	
00	LD INDIR	$A \leftarrow M[PTR]$	
01	LDI PTR	$PTR \leftarrow dato$	
02	INC PTR	$PTR \leftarrow PTR + 1$	
03	MOVR	$R \leftarrow A$	
04	ADDR	$A \leftarrow A + R$	
05	ADDI	$A \leftarrow A + dato$	
06	SHL	$A \leftarrow shlA$	
07	OR	$A \leftarrow A \lor R$	

dato se define en la siguiente palabra.

2. Con la computadora del problema 1, implemente un programa a partir de la localidad de memoria 100 para convertir dos números ASCII almacenados en las localidades de memoria 40 y 41 a su correspondiente valor binario en el registro A (recuerde que el valor binario de un número ASCII se obtiene al restarle el valor 30_H).

Ejemplo: Si en la localidad 40 tenemos el número 00110010 ("2" ASCII) y en la localidad 41 tenemos el número 00110101 ("5" ASCII), entonces al final de la instrucción, el registro A contendrá el número 00011001 (25 binario).

LOCALIDAD	CONTENIDO	MNEMO	A	R	PTR	PC
100						
101						
102						
103						
104						
105						
106						
107						
108						
109						
110						
111						
112						
113						
114						
115						