

Spec No. :DS70-2013-0020 Effective Date: 02/15/2022

Revision: H

LITE-ON DCC

RELEASE

BNS-OD-FC001/A4

Small Outline, 5Lead, High CMR

DESCRIPTION

The LTV-M601 series consists of a high efficient AlGaAs Light Emitting Diode and a high speed optical detector. This unique design provides maximum AC and DC circuit isolation while achieving LVTTL/LVCMOS compatibility. The output of the optical detector features an open collector Schottky clamped transistor. The internal shield provides a guaranteed common mode transient immunity specification of 10 KV/us at 3.3/5V operation. The Optocoupler operational parameters are guaranteed over the temperature range from -40°C ~ +85°C.

1.1 Features

- 3.3V / 5V Dual Supply Voltages
- Low power consumption
- High speed 10MBd typical
- Low input current capability: 5mA
- 10KV/µs minimum Common Mode Rejection (CMR) at V_{CM} = 1000V
- Guaranteed AC and DC performance over temperature -40°C \sim +85°C.
- LVTTL/LVCMOS Compatible.
- Strobable output.
- Safety approval

UL/ cUL 1577, 3750 Vrms/1 min

VDE DIN EN60747-5-5, V_{IORM} = 567 Vpeak

1.2 Applications

- Isolation in line receivers
- Ground loop elimination
- Feedback Element in Switching Mode Power Supplier
- High Speed Logic Ground Isolation TTL/TTL, TTL/CMOS, TTL/LSTTL
- Pulse transformer replacement
- Power transistor isolation in motor drives
- Interface between Microprocessor system, computer and their peripheral

Functional Diagram

Pin No. and Internal connection diagram

Truth Table (Negative Logic)

LED	OUT
ON	L
OFF	Н

A 0.1µF bypass Capacitor must be connected between Pin4 and Pin6

Part No. : LTV-M601 series BNS-OD-FC002/A4

2. PACKAGE DIMENSIONS

2.1 LTV-M601 series

Notes:

- 1. The first digit is year date code, second and third digit is work week
- 2. Factory identification mark (W:China-CZ) Dimensions are all in Millimeters.
- 3. "4"or"V"for VDE option.
- * Dimensions are in Millimeters and (Inches).

Part No. : LTV-M601 series BNS-OD-FC002/A4

3. TAPING DIMENSIONS

3.1 LTV-M601

3.2 LTV-M601-TP

Description	Symbol	Dimension in mm (inch)
Tape wide	W	12 ± 0.3 (.472)
Pitch of sprocket holes	P_0	4 ± 0.1 (.157)
Distance of compartment	F	5.5 ± 0.1 (.217)
Distance of compartment	P_2	2 ± 0.1 (.079)
Distance of compartment to compartment	P ₁	8 ± 0.1 (.315)

3.3 Quantities Per Reel

Package Type	LTV-M601 series
Quantities (pcs)	3000

Part No. : LTV-M601 series BNS-OD-FC002/A4

4. RATING AND CHARACTERISTICS

4.1 Absolute Maximum Ratings at Ta=25℃ *

	Parameter	Symbol	Rating	Unit	Note
	Average Forward Input Current	I _F	20	mA	2
Input	Reverse Input Voltage	V_R	5	V	
	Power Dissipation	Pı	40	mW	
	Output Collector Current	Io	50	mA	
Output	Output Collector Voltage	Vo	7	V	
	Output Collector Power Dissipation	Po	85	mW	
	Isolation Voltage	V_{iso}	3750	V_{rms}	
	Supply Voltage	V _{cc}	7	V	
	Operating Temperature	T_{opr}	-40 ~ +85	C	
	Storage Temperature	T_{stg}	-40 ~ +125	C	
	Lead Solder Temperature **	T _{sol}	260	C	

^{*}Ambient temperature = 25°C, unless otherwise spec ified. Stresses exceeding the absolute maximum ratings can cause permanent damage to the device. Exposure to absolute maximum ratings for long periods of time can adversely affect reliability.

4.2 Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Operating Temperature	T _A	-40	85	°C
Cumply Voltoge	M	2.7	3.6	V
Supply Voltage	V _{cc}	4.5	5.5	V
Low Level Input Current	I _{FL}	0	250	μΑ
High Level Input Current	I _{FH}	5	15	mA
Output Pull-up Resistor	R_L	330	4k	Ω
Fan Out (at R _L =1kΩ per channel)	N	_	5	TTL Loads

Part No. : LTV-M601 series BNS-OD-FC002/A4

^{**260℃} for 10 seconds. Refer to Lead Free Reflow Profile.

4.3 ELECTRICAL OPTICAL CHARACTERISTICS

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition	Fig.	Note
Input								
Input Forward Voltage	V _F	_	1.38	1.80	V	I _F =10mA, T _A =25℃	7	
Input Forward Voltage Temperature Coefficient	ΔV _F /ΔΤ	_	-1.6	_	mV/℃	I _F =10mA		
Input Reverse Voltage	BV_R	5.0	_	_	V	I _R = 10μΑ		
Input Threshold Current	I _{TH}	_	1.5	5	mA	$V_{CC} = 3.3V$, $V_O = 0.6V$ I_{OL} (sinking) = 13mA	4	
Input Capacitance	C _{IN}	_	34	_	pF	V _F =0; f=1MH _Z		
Detector								
Logic low output voltage	V _{OL}	_	0.3	0.6	V	$V_{CC} = 3.3V$, $I_F = 5mA$, I_{OL} (sinking) = 13mA	5	
Logic high output current	l _{OH}	_	5	100	μA	$V_{CC} = 3.3V, V_{O} = 3.3V,$ $I_{F} = 250\mu A$	3	
Logic low supply current	I _{CCL}	_	5.8	10	mA	$V_{CC} = 3.3V, I_F = 10mA$		1
Logic high supply current	Іссн	_	3.8	7	mA	$V_{CC} = 3.3V$, $I_F = 0mA$		1

Specified over recommended temperature ($T_A = -40$ °C to +85°C, 2.7V \leq V_{CC} \leq 3.6V), $I_F = 7.5$ mA unless otherwise specified. All typicals at $T_A = 25$ °C, $V_{CC} = 3.3$ V.

4.4 ELECTRICAL OPTICAL CHARACTERISTIC

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition	Fig.	Note
Input								
Input Forward Voltage	V_{F}	—	1.38	1.80	V	I _F =10mA, T _A =25℃	7	
Input Forward Voltage Temperature Coefficient	ΔV _F /ΔΤ	_	-1.6	_	mV/℃	I _F =10mA		
Input Reverse Voltage	BV_R	5.0	_	_	V	I _R = 10μA		
Input Threshold Current	I _{TH}	_	1.57	5	mA	$V_{CC} = 5.5V, V_{O} = 0.6V$ $I_{OL} \ge 13mA$	4	
Input Capacitance	C _{IN}	_	34	_	pF	V _F =0; f=1MH _Z		
Detector								
Logic low output voltage	V _{OL}	_	0.4	0.6	V	$V_{CC} = 5.5V$, $I_F = 5mA$, I_{OL} (sinking) = 13mA	5	
Logic high output current	I _{OH}	_	3	100	μA	$V_{CC} = 5.5V, V_O = 5.5V,$ $I_F = 250\mu A$	3	
Logic low supply current	I _{CCL}	_	8	13	mA	$V_{CC} = 5.5V, I_F = 10mA$		1
Logic high supply current	Іссн	_	6	10	mA	$V_{CC} = 5.5V$, $I_F = 0mA$		1

Specified over recommended temperature (T_A = -40°C to +85°C, 4.5V \leq V_{CC} \leq 5.5V), I_F = 7.5mA unless otherwise specified. All typicals at $T_A = 25$ °C, $V_{CC} = 5.0$ V.

5. SWITCHING SPECIFICATION

Parameter	Symb	Min.	Тур.	Max.	Unit	Test Condition	Fig.	Note
Propagation Delay Time to High Output Level	t _{PLH}	_	60	90			1,9	3
Propagation Delay Time to Low Output Level	t _{PHL}	_	25	75			1,9	4
Pulse Width Distortion	t _{PLH} - t _{PHL}	_	35	45	no	D 0500 0 45 5	10	_
Propagation Delay Skew	t _{PSK}	_	_	40	ns	$R_L=350\Omega$, $C_L=15pF$	_	_
Output Rise Time (10 to 90%)	t _r	_	27	_			_	_
Output Fall Time (90 to 10%)	t _f	_	7	_			_	_

Specified over recommended temperature (T_A = -40°C to +85°C, 2.7V \leq V_{CC} \leq 3.6V), I_F = 7.5mA unless otherwise specified. All typicals at $T_A = 25$ °C, $V_{CC} = 3.3$ V.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition	Not	Fig.
Propagation Delay Time to		_	45	75		$T_A = 25$ °C $R_L = 350\Omega$,	4.0	2
High Output Level	t _{PLH}	_	_	100		C _L =15pF	1,9	3
Propagation Delay Time to		_	25	75		$T_A = 25^{\circ}C$ $R_L=350\Omega$,	1,9	4
Low Output Level	t _{PHL}	_	_	100		C _L =15pF	1,9	4
Pulse Width Distortion	t _{PLH} - t _{PHL}	_	10	35	ns		10	_
Propagation Delay Skew	t _{PSK}	_	_	40		$R_{L} = 350\Omega, C_{L} = 15pF$	_	_
Output Rise Time (10 to 90%)	t _r	_	21	_		1\(\(\(\)_\) = 13\(\)F	_	_
Output Fall Time (90 to 10%)	t _f	_	7	_			_	_

Specified over recommended temperature ($T_A = -40$ °C to +85°C, 4.5V $\leq V_{CC} \leq 5.5$ V), $I_F = 7.5$ mA unless otherwise specified. All typicals at $T_A = 25$ °C, $V_{CC} = 5.0$ V.

Parameter	Test Condition	Sym.	Min.	Тур.	Max.	Units	Fig.	Note
Common Mode Transient	$V_{CC} = 3.3V$ $V_{CM} = 1000V$ $R_{L} = 350\Omega$ $I_{F} = 0mA$ $T_{A} = 25^{\circ}C$		10	_	_	10.11		_
Immunity at High Output Level	$V_{CC} = 5V$ $V_{CM} = 1000V$ $R_{L} = 350\Omega$ $I_{F} = 0mA$ $T_{A} = 25^{\circ}C$	CM _H	10	_	_	KV/μs	2	5
Common Mode Transient	$V_{CC} = 3.3V$ $V_{CM} = 1000V$ $R_{L} = 350\Omega$ $I_{F}=10.0mA$ $T_{A} = 25C$	1011	10	_	_	10 //		
Immunity at Low Output Level	$V_{CC} = 5V$ $V_{CM} = 1000V$ $R_{L} = 350\Omega$ $I_{F}=10.0mA$ $T_{A} = 25^{\circ}C$	CM∟	10	_	_	KV/μs	2	6

6. ISOLATION CHARACTERISTIC

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition	Note
Input-Output Insulation Leakage				1.0		45% RH, t = 5s,	7
Current	I _{I-O}	_	_	1.0	μA	V _{I-O} = 3kV DC, T _A =25℃	,
Withstand Insulation Test	V	3750			V	RH ≤ 50%, t = 1min,	7 0
Voltage	V_{ISO}	3750	_	_	V_{RMS}	T _A = 25℃	7, 8
Input-Output Resistance	R _{I-O}	_	10 ¹²	_	Ω	V _{I-O} = 500V DC	7
Input-Output Capacitance	C _{I-O}	_	1.0	_	р	f = 1MHz, T _A = 25℃	7

Specified over recommended temperature ($T_A = -40$ °C to +85°C) unless otherwise specified. Typic all values applies to $T_A = 25$ °C

Note

- 1. A 0.1µF or bigger bypass capacitor for V_{CC} is needed as shown in Fig.1
- 2. Peaking driving circuit may be used to speed up the LED. The peak drive current of LED may go up to 50mA and maximum pulse width 50ns, as long as average current doesn't exceed 20mA.
- 3. t_{PLH} (propagation delay) is measured from the 3.75 mA point on the falling edge of the input pulse to the 1.5 V point on the rising edge of the output pulse.
- 4. t_{PHL} (propagation delay) is measured from the 3.75 mA point on the rising edge of the input pulse to the 1.5 V point on the falling edge of the output pulse.
- 5. CM_H is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state (i.e., VO > 2.0 V).
- 6. CM_L is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (i.e., VO < 0.8 V).
- 7. Device is considered a two-terminal device: pins 1, 3 shorted together, and pins 4, 5, 6 shorted together.
- 8. In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage 4500 Vrms for one second (leakage current less than 10 uA). This test is performed before the 100% production test for partial discharge

7. SWITCHING TIME TEST CIRCUIT

Figure 1: Test Circuit for tPHL and tPLH

Figure 2: Test Circuit for Common Mode Transient Immunity

Part No. : LTV-M601 series BNS-OD-FC002/A4

8. TYPICAL PERFORMANCE CURVES

Figure 3: Typical high level output current vs. temperature.

Figure 4: Typical Input Diode Threshold Current vs. Ambient Temperature

Figure 5: Typical Low Level Output Voltage vs. Ambient Temperature

Figure 6: Typical Low Level Output Current vs. Ambient Temperature

Figure 7: Typical Input Diode Forward Characteristics

Part No. : LTV-M601 series BNS-OD-FC002/A4

Figure 8: Typical Propagation Delay vs. Ambient Temperature

Figure 9: Typical Pulse Width Distortion vs. Ambient Temperature

Part No. : LTV-M601 series BNS-OD-FC002/A4

9. TEMPERATURE PROFILE OF SOLDERING

9.1 IR Reflow soldering (JEDEC-STD-020C compliant)

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

Profile item	Conditions
Preheat	
- Temperature Min (T _{Smin})	150°C
- Temperature Max (T _{Smax})	200°C
- Time (min to max) (ts)	90±30 sec
Soldering zone	
- Temperature (T _L)	217°C
- Time (t∟)	60 ~ 100sec
Peak Temperature (T _P)	260°C
Ramp-up rate	3°C / sec max.
Ramp-down rate	3~6°C / sec

9.2 Wave soldering (JEDEC22A111 compliant)

One time soldering is recommended within the condition of temperature.

Temperature: 260+0/-5°C

Time: 10 sec.

Preheat temperature:25 to 140°C

Preheat time: 30 to 80 sec.

9.3 Hand soldering by soldering iron

Allow single lead soldering in every single process. One time soldering is recommended.

Temperature: 380+0/-5°C

Time: 3 sec max.

Part No. : LTV-M601 series BNS-OD-FC002/A4

10. NAMING RULE

Part Number Options	
LTV-M601-TP	
LTV-M601	
LTV-M601-G	
LTV-M601-TP-G	
LTVM601TP-V	
LTVM601-V	
LTVM601TP-V-G	
LTVM601-V-G	
Definition of Suffix	Remark
"M601"	LiteOn model name
" no suffix "	Pin 1 location at upper right of the tape
"G"	Halogen free
"TP"	Pin 1 location at lower left of the tape
"V"	VDE approved option

11. NOTES

LiteOn is continually improving the quality, reliability, function or design and LiteOn reserves the right to make changes without further notices.

The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical application and instrumentation.

For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.

When requiring a device for any "specific" application, please contact our sales in advice.

If there are any questions about the contents of this publication, please contact us at your convenience.

The contents described herein are subject to change without prior notice.

Immerge unit's body in solder paste is not recommended.