牛頓第二運動定律 滑車實驗

班級:高二二

座號: 6

姓名:李俊翰

摘要

本實驗中,我們透過滑車實驗,針對施力與質量兩變因,探討其對於加速度的影響。將數據圖表化後,可由其中看出施力與加速度的正比關係($\mathbf{a} \propto \mathbf{F}$),以及質量與加速度反比關係($\mathbf{a} \propto \frac{1}{m}$),並推出 $\mathbf{F} \propto ma$ 的關係式,符合牛頓第二運動定律。

壹、研究動機

牛頓第二運動定律(F=ma)在日常生活中無所不在,同時也是基礎力學的根本。 於是,我們希望透過滑車實驗,對此定律有更深的了解並親自驗證與分析此定律。

貳、研究目的

- 一、研究施力與加速度之間的關連性。
- 二、研究質量與加速度之間的關連性。

參、研究原理

牛頓第二運動定律(F=ma)。

肆、研究器材

器材名稱	重量(g)	數量	
滑車	485.5	1臺	
砝碼(大)	258.9	1個	
砝碼(中)	102.7	2 個	
	102.4	1 個	
砝碼(小)	51.9	1個	
螺帽	15.9	2 個	
螺絲	16.5	1個	
棉線		1 捆	
滑軌		1組	
滑輪	1個		
紙帶		27 條	

伍、研究過程及結果

一、力與加速度的關係實驗

(一)實驗原理

由牛頓第二運動定律(F = ma),m 固定則 $a \propto F$ 。透過將砝碼移動到懸掛端,改變力的大小同時不影響質量。

(二)實驗步驟

- 1、架設滑車的軌道使尾端切齊桌緣,並將滑輪固定在桌緣並對齊軌道中央。
- 2、將打點計時器放置在距尾端於30公分處。
- 3、剪一段稍長過紙帶的棉線一端固定在滑車末端,另一端繞過滑輪接在螺絲上。
- 4、在懸掛螺絲上套上砝碼(小)並栓上螺帽。
- 5、將砝碼(大)跟兩個砝碼(中)依重量由大到小依序套入滑車的中柱並栓 上螺帽。
- 6、將紙帶一頭接在滑車前端,然後將滑車移動至接觸到打點計時器的位置, 再把紙帶的另一頭穿過打點計時器。
- 7、開啟打點計時器並放開手讓滑車下滑。
- 8、重複6、7步驟三次。
- 9、將滑車上的砝碼移至懸掛螺絲上再次施放(一共重複四次)。

(三)實驗數據

懸掛端總重	0.1351	0.1869	0.2895	0.4921	0.7513		
(kg)							
總質量 (kg)	1.1524						
加速度	0.66	1.19	2.13	3.03	5.29		
(m/s^2)							
A類不確定	0.273	0.416	0.043	0.035	0.037		
度							
B類不確定	0.029	0.029	0.029	0.029	0.029		
度							
組合不確定	0.275	0.417	0.051	0.045	0.047		
度							
測量結果	0.66±0.275	1.19±0.42	2.13±0.05	3.03±0.05	5.29±0.05		

(四)實驗結果

對數關係圖中,由斜率可知加速度與施力約呈一次方正比,並依此做加速度與施力的線性趨勢線。圖表結果顯示加速度 (a) 與施力 (F) 呈高度正相關,兩者為正比關係,由此可推,加速度正比於施力 $(a \propto F)$ 。

二、質量與加速度的關係實驗

(一)實驗原理

由牛頓第二定律(F = ma),F固定則 $a \propto \frac{1}{m}$ 。將砝碼一個個加入至滑車

上,改變質量並保持力固定。

(二)實驗步驟

- 1、架設滑車的軌道使尾端切齊桌緣,並將滑輪固定在桌緣並對齊軌道中央。
- 2、將打點計時器放置在距尾端於 30 公分處。
- 3、剪一段稍長過紙帶的棉線一端固定在滑車末端,另一端繞過滑輪接在螺絲上。
- 4、在懸掛螺絲上套上砝碼(小)並栓上螺帽。
- 5、將砝碼(大)跟兩個砝碼(中)依重量由大到小依序套入滑車的中柱並栓 上螺帽。
- 6、將紙帶一頭接在滑車前端,然後將滑車移動至接觸到打點計時器的位置, 再把紙帶的另一頭穿過打點計時器。
- 7、開啟打點計時器並放開手讓滑車下滑。
- 8、重複6、7步驟三次。
- 9、逐漸減少滑車上的砝碼數量再次施放(一共重複四次)。

(三)實驗數據

懸掛端總重	0.1348					
(kg)						
總質量 (kg)	1.1524	1.1005	0.9978	0.8951	0.6150	
加速度	1.03	1.26	1.25	1.57	2.26	
(m/s^2)						
A類不確定	0.273	0.183	0.205	0.197	0.131	
度						
B類不確定	0.029	0.029	0.029	0.029	0.029	
度						
組合不確定	0.274	0.185	0.207	0.199	0.134	
度						
測量結果	1.03±0.27	1.26±0.19	1.25±0.21	1.57±0.20	2.26±0.13	

(四)實驗結果

對數關係圖中,由斜率可知加速度與施力約呈一次方反比,並依此做加速度與總質量倒數的線性趨勢線。圖表結果顯示加速度(a)與總質量倒數($\frac{1}{m}$)呈高度正相關,兩者為正比關係,而加速度與質量成反比($a \propto \frac{1}{m}$)。

陸、討論

一、打點計時器的頻率

對於加速度較大的紙帶上,我們可以觀察到標記點的數量最少僅有三點,導致

一紙帶只有一組加速度數據,也可從實驗結果中看見其不確定度較小(數據數量較少所導致),應該在加速度較大的個案中,將打點計時器的頻率從原先的10Hz 調整為60Hz,以避免數據量過少的問題。

二、滑車軌道傾斜角度

實驗進行前,我們將滑軌傾斜一特定角度,令滑車大約以等速前進,以抵銷其他外力(摩擦力、風阻)對於實驗的影響。

三、滑輪的阻力

為了避免棉繩脫軌的情況發生,實驗過程中(以調整完軌道傾斜角度)我們將 棉繩多繞滑輪一圈,然而,此舉可能會增加額外的阻力,為數據帶來誤差。

四、懸掛物碰撞桌子側面

實驗執行時,偶爾會發生懸掛物碰撞桌子側面而未注意,為導致數據失去精確度的可能原因之一。

柒、結論

經過實驗後,我們總結出兩大結論。一、加速度正比於施力($a \propto F$)。二、加速度與總質量成反比($a \propto \frac{1}{m}$)。綜上兩點,我們可以導出 $F \propto ma$,與牛頓第二運動定律相印證。

捌、省思

本次實驗中,我們有許多疏失必須改進,還有一些細節需要多加小心,更不能忘記在實驗前規劃完整的流程,以提升實驗的效率與精準度。雖然如此,我在這次實驗也學到了許多實驗觀念,懂得在實驗過程中,迅速針對當下的錯誤做出改進,而非不斷的盲目進行實驗。此外,這個實驗也讓我驗證生活中無所不在的定律——牛頓第二運動定律,看見數據化的資料讓我更堅信此定律的正確,更激發我對科學探究的興趣。