

AD A139188

(2)
NRL Memorandum Report 5260

Magnetic Bubble Formation Produced by an Expanding Laser Plasma

S. T. KACENJAR, B. H. RIPIN, J. A. STAMPER,
J. GRUN, AND E. A. MCLEAN

*Laser Plasma Branch
Plasma Physics Division*

February 28, 1984

This research was sponsored by the Defense Nuclear Agency under Subtask 125BMXIO,
work unit 00024 and work unit title "Early Time Plasma."

DTIC FILE COPY

DTIC
ELECTE
S MAR 23 1984 D
B

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited.

84 03 22 136

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		15. RESTRICTIVE MARKINGS			
2. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT			
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE		Approved for public release; distribution unlimited.			
4. PERFORMING ORGANIZATION REPORT NUMBER(S) NRL Memorandum Report 5260		5. MONITORING ORGANIZATION REPORT NUMBER(S)			
6a. NAME OF PERFORMING ORGANIZATION Naval Research Laboratory	6b. OFFICE SYMBOL <i>(If applicable)</i>	7a. NAME OF MONITORING ORGANIZATION			
7b. ADDRESS (City, State and ZIP Code) Washington, DC 20375		7c. ADDRESS (City, State and ZIP Code)			
8a. NAME OF FUNDING/SPONSORING ORGANIZATION Defense Nuclear Agency	8b. OFFICE SYMBOL <i>(If applicable)</i>	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
9b. ADDRESS (City, State and ZIP Code) Washington, DC 20305		10. SOURCE OF FUNDING NOS.			
		PROGRAM ELEMENT NO. 62715H	PROJECT NO.	TASK NO.	WORK UNIT NO. 47-1606-0-4
11. TITLE (Include Security Classification) <i>(See page ii)</i>					
12. PERSONAL AUTHOR(S) S.T. Kacenjar, B.H. Ripin, J.A. Stamper, J. Grun, and E.A. McLean					
13a. TYPE OF REPORT Progress	13b. TIME COVERED FROM _____ TO _____		14. DATE OF REPORT (Yr., Mo., Day) February 28, 1984	15. PAGE COUNT 27	
16. SUPPLEMENTARY NOTATION This research was sponsored by the Defense Nuclear Agency under Subtask I25BMXIO, work unit 00024 and work unit title "Early Time Plasma."					
17. COSATI CODES		18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Laser-generated plasma Magnetic field compression Magnetic bubble			
19. ABSTRACT (Continue on reverse if necessary and identify by block number) A magnetic depleted bubble resulting from the expansion of a laser-generated debris plasma into a low density magnetized background plasma is observed. A compressed magnetic field propagates slightly ahead of the debris plasma and has a thickness on the order of 1 cm.					
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED			21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED		
22a. NAME OF RESPONSIBLE INDIVIDUAL S. T. Kacenjar			22b. TELEPHONE NUMBER <i>(Include Area Code)</i> (202) 787-6279	22c. OFFICE SYMBOL Code 4730	

DD FORM 1473, 83 APR

EDITION OF 1 JAN 73 IS OBSOLETE.

SECURITY CLASSIFICATION OF THIS PAGE

SECURITY CLASSIFICATION OF THIS PAGE

11. TITLE

MAGNETIC BUBBLE FORMATION PRODUCED BY AN EXPANDING LASER PLASMA

SECURITY CLASSIFICATION OF THIS PAGE

CONTENTS

I. INTRODUCTION	1
II. EXPERIMENTAL ARRANGEMENT AND CHECKOUT	2
III. MAGNETIC FIELD MEASUREMENTS	3
IV. MAGNETIC FIELD VELOCITY AND SHELL THICKNESS MEASUREMENTS	4
V. CONCLUSIONS	5
VI. ACKNOWLEDGMENT	5
REFERENCES	15

S DTIC
ELECTED
MAR 23 1984 D
B

Accession No.	
NTIS #	
DTIC FILE #	
Uncontrolled	
Justified view	
By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or
	Special
A-1	

MAGNETIC BUBBLE FORMATION PRODUCED BY AN
EXPANDING LASER PLASMA

I. Introduction

We observe the compression of an externally applied magnetic field and the creation of a magnetic bubble when a laser-generated plasma expands into a low density magnetized background gas. Compression is possible when the plasma conductivity is large enough that convection of the field dominates over the magnetic diffusion process.

A target is placed into a background magnetized low density gas as shown in Figure 1(a). When the target is irradiated with a short high intensity laser pulse two plasmas are formed: the laser target interaction generates radiation which preionizes the background gas to form a stationary ambient plasma, and the target debris creates a rapidly expanding plasma. As the debris plasma expands, it may interact with the ambient either through collisional or collisionless processes. Under low density and high velocity conditions, collisional coupling becomes less important and collective effects may dominate.^{1,2} Many of these collective processes are sensitive to the structure and magnitude of the local magnetic field.

The evolution of the structure and magnitude of the magnetic field due to a rapidly expanding plasma in an external field such as illustrated in Fig. 1b was described by Longmire³ using magnetic conservation of flux. The magnetic field is swept away inside the bubble and confined within a small shell near the expanding debris material. This model was further developed by Wright (1971) who defined the valid parameter space.⁴ Keskinen⁵ extended the analysis of including a piecewise spatially constant collisional term into a one dimensional model. Although, one-dimensional models predict unrealistically high field compressions compared to two or three dimensional models, the diffusion term (i.e., the presence of collisions) is more easily treated in one dimension. The model is further simplified by ignoring the various processes which may alter the effective collision frequency, thus reducing the magnetic Reynold's number; an example of such a process is the magnetized ion-ion instability.^{1,2} Therefore, we experimentally measure the

Manuscript approved November 7, 1983.

field compression to better understand the physics associated with this dynamically changing situation.

This paper addresses our initial experimental findings of the structure and evolution of the magnetic field. Only slight field compressions have been observed with shell thicknesses on the order of 1 cm. Data is also presented which show that the magnetic shell expands with, or slightly ahead of the target debris plasma.

II. Experimental Arrangement and Checkout

Various diagnostics were used in this study, including charge collectors, an optical framing camera, spectrometer, and magnetic induction probes.

The NRL Pharos II Nd-glass laser ($\lambda = 1.05 \mu\text{m}$) was used to generate the debris plasma by irradiating 1.1 mg/cm^2 planar carbon targets. Incident laser energy on target ranged between 5 and 30 joules with a FWHM pulselength of ~ 4 nsec and irradiances up to 10^{14} W/cm^2 . The focusing lens was of an aspheric f/6 lens with a focal length of 1.2 meters. Gas was introduced into the experimental chamber with a controlled orifice which was programmed to maintain a given ambient pressure. In this study the pressure was varied between 10^{-4} torr and 100 mtorr.

Shots were taken both with and without an 800 gauss magnet in place. The field orientation was parallel to the target surface and largely perpendicular to the expanding debris plasma. The targets were mounted to allow a magnetic expansion length of about 4 cm.

Two induction probes were used to measure the field compression. Both probes were $1.0 \pm .1$ cm from the laser axis and situated $1.5 \pm .1$ and $3.0 \pm .1$ cm from the target. The probes consisted of a single $500 \mu\text{m}$ diameter loop encapsulated in a quartz envelope as shown in Figure 2.

The magnetic probes work by using Lenz's Law in which a changing magnetic flux across the probe induces a current in the loop. The proper operation of the probes were checked by rotating the loop by 180° and noting the reversal of the signal (electrostatic pickup by the loop would not change polarity by such a rotation.)

Examples of the observed dB/dt signals are shown in Figure 3; the two probes were oriented antiparallel to each other. A clear signal reversal was seen indicating that the probes were operating properly. Moreover, an additional check was made by rotating the probes by 180° and observing the signals change sign.

The induced voltage resulting from the changing magnetic field across the probe is given by

$$V(t) = A_{\perp} \frac{dB}{dt}, \quad (1)$$

where A_{\perp} is the projected area of the loop perpendicular to the applied field. If the initial field is B_0 then the change in magnetic field, ΔB , can be determined by integrating Equation (1), namely,

$$\Delta B(t) = B(t) - B_0 = \frac{1}{A_{\perp}} \int_{-\infty}^t V(t') dt' \quad (2)$$

III. Magnetic Field Measurements

A typical example of $\Delta B(t)$ is shown in Figure 4 for a probe situated 3 cm from the target. The loop area was $(2.0 \pm .4) \times 10^{-3} \text{ cm}^2$ and its surface normal was oriented to within $\pm 10^\circ$ of the applied field direction. Here an external 800 gauss field and an ambient hydrogen gas were present. A sudden drop in the magnetic field occurs at about 100 nsec after the laser pulse. The fall time in the field of about 20 nsec, corresponding to a spatial width of about 7 mm, is not limited by the probe or scope response time (.2 and 4 nsec, respectively). The accuracy of the probe measurements are limited to $\pm 20\%$ due to the uncertainty in the projected area of the loop and data digitizing process.

Figure 5 shows a plot of ΔB_{\max} versus laser energy taken with various background pressures and laser energy conditions. ΔB_{\max} is the peak compressed field at the location of the probe. The ambient pressure for a shot is indicated by the number at each data point. There appears to be a weak scaling of ΔB_{\max} with laser energy when the probe is 1.5 cm from the target which is not observed 3 cm from the target. The larger compressed fields measured at 3 cm relative to those measured at 1.5 cm are consistent

with an expanding plasma having a magnetic Reynold's number greater than one.

The analysis should also take into account the presence of an azimuthal self-generated magnetic field such as illustrated in Figure 6.^{6,7} This field can result from the $\nabla n \times \nabla T$ thermoelectric source term. To get an estimate the magnitude of the self-generated field alone, the external magnetic field was removed and the probes were repositioned to observe the azimuthal fields. The measured field was between 100 and 200 gauss at 1.5 cm; no self-generated fields were seen by the probe 3 cm away above 20 gauss. Therefore, the self-generated fields are smaller than the external field in our measurements. Also the probes were oriented to minimize the contribution of the self-generated fields in the compression measurements.

IV. Magnetic Field Velocity and Shell Thickness Measurements

Measurements of the arrival time of the magnetic shell were compared with data gathered from time-of-flight charge collectors and time-of-flight spectroscopy of CVI debris ions. An average shell velocity can be defined as the distance to the probe divided by the elapsed time between the x-ray pulse and the peak of the dB/dt signal peak as indicated in Figure 7. Similarly, velocity measurements were taken with charge time-of-flight detectors situated 22 cm from the target and 45° from the laser axis. The CVI time-of-flight spectroscopy was accomplished by means of a spectrometer tuned to 3434 Å which views the expansion region 1 cm in front of the target surface, as illustrated in Figure 8; a time-resolving photomultiplier detector responds to the arrival of CVI ions.

Table 1 compares the velocities obtained from these three diagnostics. They are all in general agreement; but the magnetic measurements tend to give slightly higher velocities. Also, the velocity measured with induction probes appears to slow down with distance from target. Thus, we infer that the compressed magnetic field appears to travel slightly ahead of the debris.⁸

Another interesting feature present in the data is that the magnetic shell width increases as one moves away from the target. This thickness is defined as the FWHM points on the ΔB curve in Figure 4. One explanation for this difference may be that the plasmas temperature drops with distance,

causing the plasma to be more resistive; this would enhance the degree of magnetic diffusion and, therefore, increase the width of the magnetic shell.

V. Conclusions

Magnetic field compression and a magnetic depleted bubble have been observed when a laser-generated plasma expands into a magnetized ionized background gas. The compression increases with distance away from the target. In addition, the thickness of the compressed field is approximately 1 cm at incident energies above 20 joules. However, 3 cm from the target this thickness tends to increase with reduced laser energy on target. The compressed magnetic field travels with velocities equal to or slightly greater than the debris velocity.

VI. Acknowledgment

This work was sponsored by the Defense Nuclear Agency.

Table 1 — Magnetic and ion velocity measurements

SHOT NUMBER	LASER ENERGY (Joules)	AMBIENT PRESSURE (in Torr)	VELOCITY MEASUREMENTS ($\times 10^7$ cm/s)		
			CVI COLLECTOR	CHARGE COLLECTOR (3 cm)	MAGNETIC PROBE (1.6 cm)
12832	10.3	16, H ₂	3.1	3.3 OR 2.2	3.2
12833	6.6	100, AIR	2.8	—	—
12834	7.8	VACUUM	2.9	3.0	2.9
12835	7.7	6, H ₂	2.7	2.4	3.0
12836	8.0	VACUUM	—	3.0	3.0
12837	7.4	VACUUM	2.7	—	—
12838	4.6	25, H ₂	2.7	2.7	2.7
12839	2.3	16, H ₂	2.2	—	—

Fig. 1 — Magnetic field compression simulation experiment using laser irradiated targets in an external magnetic field

Fig. 2 — Magnetic induction probe construction

BY LENZ'S LAW THE INDUCED MAGNETIC FIELD BY THE LOOP CURRENT OPPOSES THE CHANGE OF MAGNETIC FLUX. THEREFORE A POSITIVE SIGNAL IS SEEN FOR CASE (A) INITIALLY AS THE MAGNETIC FIELD ENTERS THE LOOP, WHILE A NEGATIVE SIGNAL IS OBSERVED WHEN THE PROBE IS ROTATED BY 180° (B).

SHOT #12854

Fig. 3 — Verification on the presence of a magnetic field

Fig. 4 — Measured temporal dependence of the magnetic field

Fig. 5 — Compressed magnetic field measurement as a function of probe position and laser incident energy

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{V}_e \times \mathbf{B}) + \frac{C^2}{4\pi c} \nabla^2 \mathbf{B} + \frac{Ck}{n_e e} \nabla T_e \times \nabla n_e$$

Fig. 6 — Self generated magnetic fields from laser irradiated targets

Fig. 7 — Magnetic bubble velocity determination

Fig. 8 — CVI Time-of-flight spectrometer examining the plasma 1 cm in front of the target

References

1. M. Lampe, W. Manheimer, and K. Papadopoulos, NRL Memo Report 3076, June 1975, "Anomalous Transport Coefficients for HANE Applications Due to Plasma Micro-Instabilities." (AD-A014 411)
2. R.A. Smith and J.D. Huba, NRL Memo Report 5092, June 1983, "Parameter Survey for Collisionless Coupling in a Laser Simulation of HANE (High Altitude Nuclear Explosion), (AD-A129 546).
3. C.L. Longmire, The Rand Corporation Report RM-3386-PR, January 1963, "Notes on Debris-Air Magnetic Interaction." (AD296 597)
4. T.P. Wright, Phys. Fluids, 14, 1905 (1971).
5. M.J. Kaskinen, NRL Memo Report 5163, August 31, 1983, "Analytic Models of Magnetic Field Evolution in Laser-Produced Plasma Expansions." (AD-A132 181)
6. J.A. Stamper and D.A. Tidman, Phys. Fluids 16, 2024 (1973).
7. J.A. Stamper, K. Papadopoulos, R.N. Sudan, S.O. Dean, E.A. McLean, and J.M. Dawson, Phys. Rev. Lett. 26, 1012 (1971).
8. D.L. Bock and R.W. Clark, Phys. Fluids 16, 720 (1973).

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

ASSISTANT SECRETARY OF DEFENSE
COMM, CMD, CONT 7 INTELL
WASHINGTON, D.C. 20301

DIRECTOR
COMMAND CONTROL TECHNICAL CENTER
PENTAGON RM B6 683
WASHINGTON, D.C. 20301
O1CY ATTN C-650
O1CY ATTN G-312 R. MASON

DIRECTOR
DEFENSE ADVANCED RSCH PROJ AGENCY
ARCHITECT BUILDING
1400 WILSON BLVD.
ARLINGTON, VA. 22209
O1CY ATTN NUCLEAR MONITORING RESEARCH
O1CY ATTN STRATEGIC TECH OFFICE

DEFENSE COMMUNICATION ENGINEER CENTER
1860 WIEHLE AVENUE
RESTON, VA. 22090
O1CY ATTN CODE R410
O1CY ATTN CODE R812

DEFENSE TECHNICAL INFORMATION CENTER
CAMERON STATION
ALEXANDRIA, VA. 22314
O2CY

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, D.C. 20305
O1CY ATTN STVL
O4CY ATTN TITL
O1CY ATTN DDST
O3CY ATTN RAAE

COMMANDER
FIELD COMMAND
DEFENSE NUCLEAR AGENCY
KIRTLAND, AFB, NM 87115
O1CY ATTN FCPR

DEFENSE NUCLEAR AGENCY
SAO/DNA
BUILDING 20676
KIRTLAND AFB, NM 87115
O1CY D.C. THORNBURG

DIRECTOR
INTERSERVICE NUCLEAR WEAPONS SCHOOL
KIRTLAND AFB, NM 87115
O1CY ATTN DOCUMENT CONTROL

JOINT CHIEFS OF STAFF
WASHINGTON, D.C. 20301
O1CY ATTN J-3 WWMCCS EVALUATION OFFICE

DIRECTOR
JOINT STRAT TGT PLANNING STAFF
OFFUTT AFB
OMAHA, NE 68113
O1CY ATTN JLTW-2
O1CY ATTN JPST G. GOETZ

CHIEF
LIVERMORE DIVISION FLD COMMAND DNA
DEPARTMENT OF DEFENSE
LAWRENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550
O1CY ATTN FCPRL

COMMANDANT
NATO SCHOOL (SHAPE)
APO NEW YORK 09172
O1CY ATTN U.S. DOCUMENTS OFFICER

UNDER SECY OF DEF FOR RSCH & ENGRG
DEPARTMENT OF DEFENSE
WASHINGTON, D.C. 20301
O1CY ATTN STRATEGIC & SPACE SYSTEMS (OS)

WWMCCS SYSTEM ENGINEERING ORG
WASHINGTON, D.C. 20305
O1CY ATTN R. CRAWFORD

COMMANDER/DIRECTOR
ATMOSPHERIC SCIENCES LABORATORY
U.S. ARMY ELECTRONICS COMMAND
WHITE SANDS MISSILE RANGE, NM 88002
O1CY ATTN DELAS-EO F. NILES

DIRECTOR
BMD ADVANCED TECH CTR
HUNTSVILLE OFFICE
P.O. BOX 1500
HUNTSVILLE, AL 35807
O1CY ATTN ATC-T MELVIN T. CAPPS
O1CY ATTN ATC-O W. DAVIES
O1CY ATTN ATC-R DON RUSS

PROGRAM MANAGER
BMD PROGRAM OFFICE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333
O1CY ATTN DACS-BMT J. SHEA

CHIEF C-E SERVICES DIVISION
U.S. ARMY COMMUNICATIONS CMD
PENTAGON BM 1B269
WASHINGTON, D.C. 20310
O1CY ATTN C-E-SERVICES DIVISION

COMMANDER
FRADCOM TECHNICAL SUPPORT ACTIVITY
DEPARTMENT OF THE ARMY
FORT MONMOUTH, N.J. 07703
O1CY ATTN DRSEL-NL-RD R. BENNET
O1CY ATTN DRSEL-PL-ENV R. SOMKE
O1CY ATTN J.E. QUIGLEY

COMMANDER
U.S. ARMY COMM-ELEC ENGRG INSTAL AGY
FT. Huachuca, AZ 85613
O1CY ATTN CCC-EMEO GEORGE LANE

COMMANDER
U.S. ARMY FOREIGN SCIENCE & TECH CTR
220 7TH STREET, NE
CHARLOTTESVILLE, VA 22901
O1CY ATTN DRKST-SD

COMMANDER
U.S. ARMY MATERIAL DEV & READINESS CMD
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333
O1CY ATTN DRCLDG J.A. BENDER

COMMANDER
U.S. ARMY NUCLEAR AND CHEMICAL AGENCY
7500 BACKLICK ROAD
BLDG 2073
SPRINGFIELD, VA 22150
O1CT ATTN LIBRARY

DIRECTOR
U.S. ARMY BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MD 21005
O1CY ATTN TECH LIBRARY EDWARD BAICY

COMMANDER
U.S. ARMY SATCOM AGENCY
FT. MONMOUTH, NJ 07703
O1CY ATTN DOCUMENT CONTROL.

COMMANDER
U.S. ARMY MISSILE INTELLIGENCE AGENCY
REDSTONE ARSENAL, AL 35809
O1CY ATTN JTM GAMBLE

DIRECTOR
U.S. ARMY TRADOC SYSTEMS ANALYSIS ACTIVITY
WHITE SANDS MISSILE RANGE, NM 88002
O1CY ATTN ATAA-SA
O1CY ATTN TCC/F. PAYAN JR.
O1CY ATTN ATTA-TAC LTC J. HESSE

COMMANDER
NAVAL ELECTRONIC SYSTEMS COMMAND
WASHINGTON, D.C. 20360
O1CY ATTN NAVALEX 034 T. HUGHES
O1CT ATTN PME 117
O1CY ATTN PME 117-T
O1CY ATTN CODE 5011

COMMANDING OFFICER
NAVAL INTELLIGENCE SUPPORT CTR
4301 SUITLAND ROAD, BLDG. 5
WASHINGTON, D.C. 20390
O1CY ATTN MR. DUBBIN STIC 12
O1CY ATTN NISC-50
O1CY ATTN CODE 5404 J. GALET

COMMANDER
NAVAL OCCEAN SYSTEMS CENTER
SAN DIEGO, CA 92132
O1CY ATTN J. FERGUSON

NAVAL RESEARCH LABORATORY
WASHINGTON, D.C. 20375
O1CY ATTN CODE 4700 S. L. Ossakow
26 CYS IF UNCLASS. 1 CY IF CLASS)
O1CY ATTN CODE 4701 I. Vilkovitsky
O1CY ATTN CODE 4780 J. Ruba (100
CYS IF UNCLASS, 1 CY IF CLASS)
O1CY ATTN CODE 7500
O1CY ATTN CODE 7550
O1CY ATTN CODE 7580
O1CY ATTN CODE 7591
O1CY ATTN CODE 7555
O1CY ATTN CODE 4730 E. MCLEAN
O1CY ATTN CODE 4108
O1CY ATTN CODE 4730 B. RIPIN
20CY ATTN CODE 2628

COMMANDER
NAVAL SEA SYSTEMS COMMAND
WASHINGTON, D.C. 20362
O1CY ATTN CAPT R. PITKIN

COMMANDER
NAVAL SPACE SURVEILLANCE SYSTEM
DAHLGREN, VA 22448
O1CY ATTN CAPT J.H. BURTON

OFFICER-IN-CHARGE
NAVAL SURFACE WEAPONS CENTER
WHITE OAK, SILVER SPRING, MD 20910
O1CY ATTN CODE F31

DIRECTOR
STRATEGIC SYSTEMS PROJECT OFFICE
DEPARTMENT OF THE NAVY
WASHINGTON, D.C. 20376
O1CY ATTN NSP-2141
O1CY ATTN NSSP-2722 FRED WIMBERLY

COMMANDER
NAVAL SURFACE WEAPONS CENTER
DAHLGREN LABORATORY
DAHLGREN, VA 22448
O1CY ATTN CODE DF-14 R. BUTLER

OFFICER OF NAVAL RESEARCH
ARLINGTON, VA 22217
O1CY ATTN CODE 465
O1CY ATTN CODE 461
O1CY ATTN CODE 402
O1CY ATTN CODE 420
O1CY ATTN CODE 421

COMMANDER
AEROSPACE DEFENSE COMMAND/DC
DEPARTMENT OF THE AIR FORCE
ENT AFB, CO 80912
O1CY ATTN DC MR. LONG

COMMANDER
AEROSPACE DEFENSE COMMAND/XPD
DEPARTMENT OF THE AIR FORCE
ENT AFB, CO 80912
O1CY ATTN XPDQQ
O1CY ATTN XP

AIR FORCE GEOPHYSICS LABORATORY
HANSOM AFB, MA 01731
O1CY ATTN OPR HAROLD GARDNER
O1CY ATTN LIE KENNETH S.W. CHAMPION
O1CY ATTN OPR ALVA T. STAIR
O1CY ATTN PHD JURGEN BUCHAU
O1CY ATTN PHD JOHN P. MULLEN

AF WEAPONS LABORATORY
KIRTLAND AFT, NM 87117
O1CY ATTN SUL
O1CY ATTN CA ARTHUR H. GUENTHER
O1CY ATTN NYCE 1LT. G. KRAJEI

AFTAC
PATRICK AFB, FL 32925
O1CY ATTN TF/MAJ WILEY
O1CY ATTN TN

AIR FORCE AVIONICS LABORATORY
WRIGHT-PATTERSON AFB, OH 45433
O1CY ATTN AAD WADE HUNT
O1CY ATTN AAD ALLEN JOHNSON

DEPUTY CHIEF OF STAFF
RESEARCH, DEVELOPMENT, & ACQ
DEPARTMENT OF THE AIR FORCE
WASHINGTON, D.C. 20330
O1CY ATTN AFRDQ

HEADQUARTERS
ELECTRONIC SYSTEMS DIVISION
DEPARTMENT OF THE AIR FORCE
HANSOM AFB, MA 01731
O1CY ATTN J. DEAS

HEADQUARTERS
ELECTRONIC SYSTEMS DIVISION/YSEA
DEPARTMENT OF THE AIR FORCE
HANSOM AFB, MA 01732
O1CY ATTN YSEA

HEADQUARTERS
ELECTRONIC SYSTEMS DIVISION/DC
DEPARTMENT OF THE AIR FORCE
HANSCOM AFB, MA 01731
O1CY ATTN DCKC MAJ J.C. CLARK

COMMANDER
FOREIGN TECHNOLOGY DIVISION, AFSC
WRIGHT-PATTERSON AFB, OH 45433
O1CY ATTN NICD LIBRARY
O1CY ATTN ETDP B. BALLARD

COMMANDER
ROME AIR DEVELOPMENT CENTER, AFSC
GRIFFISS AFB, NY 13441
O1CY ATTN DOC LIBRARY/TSDL
O1CY ATTN OCSE V. COYNE

SAMSO/SZ
POST OFFICE BOX 92960
WORLDWAY POSTAL CENTER
LOS ANGELES, CA 90009
(SPACE DEFENSE SYSTEMS)
O1CY ATTN SZJ

STRATEGIC AIR COMMAND/XPPS
OFFUTT AFB, NB 68113
O1CY ATTN ADVNATE MAJ BRUCE BAUER
O1CY ATTN NRT
O1CY ATTN DOK CHIEF SCIENTIST

SAMSO/SK
P.O. BOX 92960
WORLDWAY POSTAL CENTER
LOS ANGELES, CA 90009
O1CY ATTN SKA (SPACE COMM SYSTEMS)
M. GLAVIN

SAMSO/MN
NORTON AFB, CA 92409
(MINUTEMAN)
O1CY ATTN MNNL

COMMANDER
ROME AIR DEVELOPMENT CENTER, AFSC
HANSOM AFB, MA 01731
O1CY ATTN SEP A. LORENTZEN

DEPARTMENT OF ENERGY
LIBRARY ROOM G-042
WASHINGTON, D.C. 20545
O1CY ATTN DOC CON FOR A. LABOWITZ

DEPARTMENT OF ENERGY
ALBUQUERQUE OPERATIONS OFFICE
P.O. BOX 5400
ALBUQUERQUE, NM 87115
O1CY ATTN DOC CON FOR D. SHERWOOD

EG&G, INC.
LOS ALAMOS DIVISION
P.O. BOX 809
LOS ALAMOS, NM 85544
O1CY ATTN DOC CON FOR J. BREEDLOVE

UNIVERSITY OF CALIFORNIA
LAWRENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550
O1CY ATTN DOC CON FOR TECH INFO DEPT
O1CY ATTN DOC CON FOR L-389 R. OTT
O1CY ATTN DOC CON FOR L-31 R. HAGER
O1CY ATTN DOC CON FOR L-46 F. SEWARD

LOS ALAMOS NATIONAL LABORATORY
P.O. BOX 1663
LOS ALAMOS, NM 87545
O1CY ATTN DOC CON FOR J. WOLCOTT
O1CY ATTN DOC CON FOR R.F. TASCHER
O1CY ATTN DOC CON FOR E. JONES
O1CY ATTN DOC CON FOR J. MALIK
O1CY ATTN DOC CON FOR R. JEFFRIES
O1CY ATTN DOC CON FOR J. ZINN
O1CY ATTN DOC CON FOR P. KEATON
O1CY ATTN DOC CON FOR D. WESTERVELT
O1CY ATTN D. SAPPENFIELD

SANDIA LABORATORIES
P.O. BOX 5800
ALBUQUERQUE, NM 87115
O1CY ATTN DOC CON FOR W. BROWN
O1CY ATTN DOC CON FOR A. THORNBROUGH
O1CY ATTN DOC CON FOR T. WRIGHT
O1CY ATTN DOC CON FOR D. DAHLGREN
O1CY ATTN DOC CON FOR 3141
O1CY ATTN DOC CON FOR SPACE PROJECT DIV

SANDIA LABORATORIES
LIVERMORE LABORATORY
P.O. BOX 969
LIVERMORE, CA 94550
O1CY ATTN DOC CON FOR B. MURPHET
O1CY ATTN DOC CON FOR T. COOK

OFFICE OF MILITARY APPLICATION
DEPARTMENT OF ENERGY
WASHINGTON, D.C. 20545
O1CY ATTN DOC CON DR. YO SONG

OTHER GOVERNMENT

DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
WASHINGTON, D.C. 20234
OICY (ALL CORRES: ATTN SEC OFFICER FOR)

INSTITUTE FOR TELECOM SCIENCES
NATIONAL TELECOMMUNICATIONS & INFO ADMIN
BOULDER, CO 80303
OICY ATTN A. JEAN (UNCLASS ONLY)
OICY ATTN W. UTLAUT
OICY ATTN D. CROMBIE
OICY ATTN L. BERRY

NATIONAL OCEANIC & ATMOSPHERIC ADMIN
ENVIRONMENTAL RESEARCH LABORATORIES
DEPARTMENT OF COMMERCE
BOULDER, CO 80302
OICY ATTN R. GRUBB
OICY ATTN AERONOMY LAB G. REID

DEPARTMENT OF DEFENSE CONTRACTORS

AEROSPACE CORPORATION
P.O. BOX 92957
LOS ANGELES, CA 90009
OICY ATTN I. GARFUNKEL
OICY ATTN T. SALMI
OICY ATTN V. JOSEPHSON
OICY ATTN S. BOWER
OICY ATTN D. OLSEN

ANALYTICAL SYSTEMS ENGINEERING CORP
5 OLD CONCORD ROAD
BURLINGTON, MA 01803
OICY ATTN RADIO SCIENCES

AUSTIN RESEARCH ASSOC., INC.
1901 RUTLAND DRIVE
AUSTIN, TX 78738
OICY ATTN L. SLOAN
OICY ATTN R. THOMPSON

BERKELEY RESEARCH ASSOCIATES, INC.
P.O. BOX 983
BERKELEY, CA 94701
OICY ATTN J. WORKMAN
OICY ATTN G. PRETTIE
OICY ATTN S. BRECHT

BOEING COMPANY, THE
P.O. BOX 3707
SEATTLE, WA 98124
OICY ATTN G. KEISTER
OICY ATTN D. MURRAY
OICY ATTN G. HALL
OICY ATTN J. KENNEY

CHARLES STARK DRAPER LABORATORY, INC.
555 TECHNOLOGY SQUARE
CAMBRIDGE, MA 02139
OICY ATTN D.B. COX
OICY ATTN J.P. GILMORE

GOMSAT LABORATORIES
LINTHICUM ROAD
CLARKSBURG, MD 20734
OICY ATTN G. HYDE

CORNELL UNIVERSITY
DEPARTMENT OF ELECTRICAL ENGINEERING
ITHACA, NY 14850
OICY ATTN D.T. FARLEY, JR.

ELECTROSPACE SYSTEMS, INC.
BOX 1359
RICHARDSON, TX 75080
OICY ATTN H. LOGSTON
OICY ATTN SECURITY (PAUL PHILLIPS)

EOS TECHNOLOGIES, INC.
606 Wilshire Blvd.
Santa Monica, Calif 90401
OICY ATTN C.B. GABBARD

ESL, INC.
495 JAVA DRIVE
SUNNYVALE, CA 94086
OICY ATTN J. ROBERTS
OICY ATTN JAMES MARSHALL

GENERAL ELECTRIC COMPANY
SPACE DIVISION
VALLEY FORGE SPACE CENTER
GODDARD BLVD KING OF PRUSSIA
P.O. BOX 8555
PHILADELPHIA, PA 19101
OICY ATTN M.H. BORTNER SPACE SCI LAB

GENERAL ELECTRIC COMPANY
P.O. BOX 1122
SYRACUSE, NY 13201
OICY ATTN F. REIBERT

GENERAL ELECTRIC TECH SERVICES CO., INC.
HMES
COURT STREET
SYRACUSE, NY 13201
01CY ATTN G. MILLMAN

GEOPHYSICAL INSTITUTE
UNIVERSITY OF ALASKA
FAIRBANKS, AK 99701
(ALL CLASS ATTN: SECURITY OFFICER)
01CY ATTN T.N. DAVIS (UNCLASS ONLY)
01CY ATTN TECHNICAL LIBRARY
01CY ATTN NEAL BROWN (UNCLASS ONLY)

GTE SYLVANIA, INC.
ELECTRONICS SYSTEMS GRP-EASTERN DIV
77 A STREET
NEEDHAM, MA 02194
01CY ATTN DICK STEINHOF

HSS, INC.
2 ALFRED CIRCLE
BEDFORD, MA 01730
01CY ATTN DONALD HANSEN

ILLINOIS, UNIVERSITY OF
107 COBLE HALL
150, DAVENPORT HOUSE
CHAMPAIGN, IL 61820
(ALL CORRES ATTN DAN MCCLELLAND)
01CY ATTN K. YEH

INSTITUTE FOR DEFENSE ANALYSES
1801 NO. BEAUREGARD STREET
ALEXANDRIA, VA 22311
01CY ATTN J.M. AEIN
01CY ATTN ERNEST BAUER
01CY ATTN HANS WOLFARD
01CY ATTN JOEL BENGSTON

INT'L TEL & TELEGRAPH CORPORATION
500 WASHINGTON AVENUE
NUTLEY, NJ 07110
01CY ATTN TECHNICAL LIBRARY

JAYCOR
11011 TORREYANA ROAD
P.O. BOX 85154
SAN DIEGO, CA 92138
01CY ATTN J.L. SPERLING

JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
JOHNS HOPKINS ROAD
LAUREL, MD 20810
01CY ATTN DOCUMENT LIBRARIAN
01CY ATTN THOMAS POTEMRA
01CY ATTN JOHN DASSOULAS

KAMAN SCIENCES CORP
P.O. BOX 7463
COLORADO SPRINGS, CO 80933
01CY ATTN T. MEAGHER

KAMAN TEMPO-CENTER FOR ADVANCED STUDIES
816 STATE STREET (P.O DRAWER QQ)
SANTA BARBARA, CA 93102
01CY ATTN DASILAC
01CY ATTN WARREN S. KNAPP
01CY ATTN WILLIAM McNAMARA
01CY ATTN B. GAMBILL

LINKABIT CORP
10453 ROSELLE
SAN DIEGO, CA 92121
01CY ATTN IRWIN JACOBS

LOCKHEED MISSILES & SPACE CO., INC
P.O. BOX 504
SUNNYVALE, CA 94088
01CY ATTN DEPT 60-12
01CY ATTN D.R. CHURCHILL

LOCKHEED MISSILES & SPACE CO., INC.
3251 HANOVER STREET
PALO ALTO, CA 94304
01CY ATTN MARTIN WALT DEPT 52-12
01CY ATTN W.L. IMHOF DEPT 52-12
01CY ATTN RICHARD G. JOHNSON DEPT 52-12
01CY ATTN J.B. CLADIS DEPT 52-12

MARTIN MARIETTA CORP
ORLANDO DIVISION
P.O. BOX 5837
ORLANDO, FL 32805
01CY ATTN R. HEFFNER

M.I.T. LINCOLN LABORATORY
P.O. BOX 73
LEXINGTON, MA 02173
01CY ATTN DAVID M. TOWLE
01CY ATTN L. LOUGHLIN
01CY ATTN D. CLARK

MCDONNELL DOUGLAS CORPORATION
5301 BOLSA AVENUE
HUNTINGTON BEACH, CA 92647
OICY ATTN N. HARRIS
OICY ATTN J. MOULE
OICY ATTN GEORGE MROZ
OICY ATTN W. OLSON
OICY ATTN R.W. HALPRIN
OICY ATTN TECHNICAL LIBRARY SERVICES

MISSION RESEARCH CORPORATION
733 STATE STREET
SANTA BARBARA, CA 93101
OICY ATTN P. FISCHER
OICY ATTN W.F. CREVIER
OICY ATTN STEVEN L. GUTSCHE
OICY ATTN R. BOGUSCH
OICY ATTN R. HENDRICK
OICY ATTN RALPH KILB
OICY ATTN DAVE SOWLE
OICY ATTN P. FAJEN
OICY ATTN M. SCHEIBE
OICY ATTN CONRAD L. LONGMIRE
OICY ATTN B. WHITE

MISSION RESEARCH CORP.
1720 RANDOLPH ROAD, S.E.
ALBUQUERQUE, NEW MEXICO 87106
OICY R. STELLINGWERF
OICY M. ALME
OICY L. WRIGHT

MITRE CORPORATION, THE
P.O. BOX 208
BEDFORD, MA 01730
OICY ATTN JOHN MORGANSTERN
OICY ATTN G. HARDING
OICY ATTN C.E. CALLAHAN

MITRE CORP
WESTGATE RESEARCH PARK
1820 DOLLY MADISON BLVD
MCLEAN, VA 22101
OICY ATTN W. HALL
OICY ATTN W. FOSTER

PACIFIC-SIERRA RESEARCH CORP
12340 SANTA MONICA BLVD.
LOS ANGELES, CA 90025
OICY ATTN E.C. FIELD, JR.

PENNSYLVANIA STATE UNIVERSITY
IONOSPHERE RESEARCH LAB
318 ELECTRICAL ENGINEERING EAST
UNIVERSITY PARK, PA 16802
(NO CLASS TO THIS ADDRESS)
OICY ATTN IONOSPHERIC RESEARCH LAB

PHOTOMETRICS, INC.
4 ARROW DRIVE
WOXBURN, MA 01801
OICY ATTN IRVING L. KOFSKY

PHYSICAL DYNAMICS, INC.
P.O. BOX 3027
BELLEVUE, WA 98009
OICY ATTN E.J. FREMONW

PHYSICAL DYNAMICS, INC.
P.O. BOX 10367
OAKLAND, CA 94610
ATTN A. THOMSON

R & D ASSOCIATES
P.O. BOX 9695
MARINA DEL REY, CA 90291
OICY ATTN FORREST GILMORE
OICY ATTN WILLIAM B. WRIGHT, JR.
OICY ATTN ROBERT F. LELEVIER
OICY ATTN WILLIAM J. KARZAS
OICY ATTN R. ORY
OICY ATTN C. MACDONALD
OICY ATTN R. TURCO
OICY ATTN L. DERAND
OICY ATTN W. TSAI

RAND CORPORATION, THE
1700 MAIN STREET
SANTA MONICA, CA 90406
OICY ATTN CULLEN CRAIN
OICY ATTN ED BEDROZIAN

RAYTHEON CO.
528 BOSTON POST ROAD
SUDBURY, MA 01776
OICY ATTN BARBARA ADAMS

RIVERSIDE RESEARCH INSTITUTE
330 WEST 42nd STREET
NEW YORK, NY 10036
OICY ATTN VINCE TRAPANI

SCIENCE APPLICATIONS, INC.
1150 PROSPECT PLAZA
LA JOLLA, CA 92037
OICY ATTN LEWIS M. LINSON
OICY ATTN DANIEL A. RAMLIN
OICY ATTN E. FRIEMAN
OICY ATTN E.A. STRAKER
OICY ATTN CURTIS A. SMITH
OICY ATTN JACK McDougall

SCIENCE APPLICATIONS, INC
1710 GOODRIDGE DR.
MCLEAN, VA 22102
ATTN: J. COCKAYNE

SRI INTERNATIONAL
333 RAVENSWOOD AVENUE
MENLO PARK, CA 94025
OICY ATTN DONALD NEILSON
OICY ATTN ALAN BURIS
OICY ATTN G. SMITH
OICY ATTN R. TSUNODA
OICY ATTN DAVID A. JOHNSON
OICY ATTN WALTER C. CHESNUT
OICY ATTN CHARLEE L. RING
OICY ATTN WALTER DYE
OICY ATTN J. VICKREY
OICY ATTN RAY L. LEADABRAND
OICY ATTN G. CARPENTER
OICY ATTN G. PRICE
OICY ATTN R. LIVINGSTON
OICY ATTN V. GONZALES
OICY ATTN D. McDANIEL

TECHNOLOGY INTERNATIONAL CORP
75 WIGGINS AVENUE
BEDFORD, MA 01730
OICY ATTN W.P. BOQUIST

TOYON RESEARCH CO.
P.O. Box 6890
SANTA BARBARA, CA 93111
OICY ATTN JOHN ISE, JR.
OICY ATTN JOEL GARBARINO

TRW DEFENSE & SPACE SYS GROUP
ONE SPACE PARK
REDONDO BEACH, CA 90278
OICY ATTN R. K. PLEBACH
OICY ATTN S. ALTSCHULER
OICY ATTN D. DEE
OICY ATTN D/ STOCKWELL
SNIP/1375

VISIDYNE
SOUTH BEDFORD STREET
BURLINGTON, MASS 01803
OICY ATTN W. REIDY
OICY ATTN J. CARPENTER
OICY ATTN C. HUMPHREY