

Abstention for Noise-Robust Learning in Medical Image Segmentation

presented by:
Wesam Moustafa [Mat. Nr. 3410585]

First Examiner:

Prof. Dr. Rafet Sifa

Supervisors:

Prof. Dr. Rafet Sifa & Dr. Helen Schneider

Second Examiner:

Prof. Dr. Christian Bauckhage

July 17, 2025

Table of contents

- 1 Introduction
- 2 Exploring Abstention
- 3 Universal Abstention Framework
- 4 Experiments
- 5 Evaluations
- 6 Conclusions

Introduction

Label Noise

What is Label Noise?

- Errors or inaccuracies in ground truth training labels.
- A pervasive problem in real-world datasets.

Why is it Bad?

- Deep Neural Networks tend to memorize these errors.
- This leads to poor generalization and unreliable models.

Amplified in Image Segmentation

- Segmentation demands pixel-perfect accuracy.
- This makes the annotation process uniquely tedious and error-prone, especially at object boundaries.

Noise in Medical Segmentation

The Annotation Bottleneck

- Acquiring clean labels is extremely difficult and expensive.
- Requires time from scarce, highly-trained medical experts.
- Subject to significant inter-observer variability (experts disagree).

The High Stakes of Failure

- Medical segmentation is a critical, safety-sensitive task.
- Inaccurate models can directly impact patient diagnosis.
- Urgent need for models that are robust to noise.

Figure: The primary sources of label noise in medical settings [3]

Robust Learning Methods in Classification

Extensive research exists for mitigating label noise in classification tasks:

- Label Cleaning and Pre-processing.
- Robust Network Architectures.
- Data Re-weighting.
- Curriculum Learning and Knowledge Distillation.
- Noise-robust Loss Functions.

Robust Learning Methods in Classification

Extensive research exists for mitigating label noise in classification tasks:

- Label Cleaning and Pre-processing.
- Robust Network Architectures.
- Data Re-weighting.
- Curriculum Learning and Knowledge Distillation.
- Noise-robust Loss Functions.
 - Relatively easy to implement.
 - Universal solutions.
 - Can be used alongside other methods.

Research Gap

- This critical area remains notably under-investigated for image segmentation.
 - Adapting existing methods to segmentation.
 - Developing new methods tailored for segmentation.
- Many existing methods are not directly suited for the spatial nature of segmentation noise and cannot be easily adapted.
- Developing new methods is complicated and requires significant research time and resources.

Our Contributions:

- We address this research gap by adapting Abstention to segmentation.
- We improve and expand abstention beyond its current definition.

Exploring Abstention

Abstention

The Mechanism

- Model can choose to not make a classification decision on ambiguous data.
- Adds an extra output unit (k + 1) representing 'abstain' or 'ignore' class.
- The loss function is modified to reward abstention on uncertain samples.
- Higher abstention = lower loss = smaller contribution to the gradient.

Abstention

The Mechanism

- Model can choose to not make a classification decision on ambiguous data.
- Adds an extra output unit (k + 1) representing 'abstain' or 'ignore' class.
- The loss function is modified to reward abstention on uncertain samples.
- Higher abstention = lower loss = smaller contribution to the gradient.

The Benefits

- Avoids overfitting on noisy samples.
- Filters data during training with minimal computational overhead.
- No pre-processing required.
- Architecture (and potentially loss function) agnostic.

Deep Abstaining Classifier

$$\mathcal{L}_{DAC}(x_j) = (1 - p_{k+1}) \left(-\sum_{i=1}^{k} t_i \log \frac{p_i}{1 - p_{k+1}} \right) + \alpha \log \frac{1}{1 - p_{k+1}}$$

- Modified CE
- Abstention probability p_{k+1} .
- Regularization term $\left[\alpha \log \frac{1}{1-\rho_{k+1}}\right]$.
- Incremental abstention penalty α .
- α is initialized to a small value after a warm-up period.

Deep Abstaining Classifier

$$\mathcal{L}_{DAC}(x_j) = (1 - p_{k+1}) \left(-\sum_{i=1}^k t_i \log \frac{p_i}{1 - p_{k+1}} \right) + \alpha \log \frac{1}{1 - p_{k+1}}$$

- Modified CF
- Abstention probability p_{k+1} .
- Regularization term $\left[\alpha \log \frac{1}{1-p_{k+1}}\right]$.
- Incremental abstention penalty α .
- α is initialized to a small value after a warm-up period.

Algorithm 1 α auto-tuning

```
Input: total iter. (T), current iter. (t), total epochs (E),
abstention-free epochs (L), current epoch (e), \alpha init factor
(\rho), final \alpha (\alpha_{final}), mini-batch cross-entropy over true
classes (\mathcal{H}_c(P_{1-K}^M))
\alpha_{set} = False
for t := 0 to T do
    if e < L then
       \beta = (1 - P_{h+1}^M)\mathcal{H}_c(P_1^M)
       if t = 0 then
           \tilde{\beta} = \beta \{ // \text{ initialize moving average} \}
       end if
       \tilde{\beta} \leftarrow (1 - \mu)\tilde{\beta} + \mu\beta
    end if
    if e = L and not \alpha_{set} then
       \alpha := \tilde{\beta}/\rho \{ // \text{ initialize } \alpha \text{ at start of epoch } L \}
       \delta_{\alpha} := \frac{\alpha_{final} - \alpha}{E - I}
       undate_{enoch} = L
       \alpha_{set} = True
    end if
    if e > update_{epoch} then
       \alpha \leftarrow \alpha + \delta_{\alpha} {//then update \alpha once every epoch}
       update_{enoch} = e
    end if
end for
```

Figure: DAC's α auto-tuning algorithm [5].

Informed Deep Abstaining Classifier

$$\mathcal{L}_{IDAC}(x_j) = (1 - p_{k+1}) \left(-\sum_{i=1}^k t_i \log \frac{p_i}{1 - p_{k+1}} \right) + \alpha(\tilde{\eta} - \hat{\eta})^2$$

- Extension of DAC.
- α is fixed during training.
- Uses noise estimation $\tilde{\eta}$ to guide or 'inform' abstention $\hat{\eta}$.
- $\hat{\eta} = \sum_{l=1}^{N} \frac{p_{l,k+1}}{N}.$

Informed Deep Abstaining Classifier

$$\mathcal{L}_{IDAC}(x_j) = (1 - p_{k+1}) \left(-\sum_{i=1}^k t_i \log \frac{p_i}{1 - p_{k+1}} \right) + \alpha (\tilde{\eta} - \hat{\eta})^2$$

- Extension of DAC.
- α is fixed during training.
- Uses noise estimation $\tilde{\eta}$ to guide or 'inform' abstention $\hat{\eta}$.

$$\hat{\eta} = \sum_{l=1}^{N} \frac{p_{l,k+1}}{N}.$$

Figure: Abstention behaviour in DAC and IDAC at 10% (top) and 20% (bottom) label noise.

Potential Baselines

Generalized Cross Entropy (GCE)

$$\mathcal{L}_{GCE}(x_j) = \frac{1 - f(x_j)^q}{q}$$

Potential Baselines

Generalized Cross Entropy (GCE)

$$\mathcal{L}_{GCE}(x_j) = \frac{1 - f(x_j)^q}{q}$$

Symmetric Cross Entropy (SCE)

$$\mathcal{L}_{RCE}(x_j) = -\sum_{i=1}^k p_i \log(t_i)$$

$$\mathcal{L}_{SCE}(x_j) = \alpha \mathcal{L}_{CE}(x_j) + \beta \mathcal{L}_{RCE}(x_j)$$

Potential Baselines

Generalized Cross Entropy (GCE)

$$\mathcal{L}_{GCE}(x_j) = \frac{1 - f(x_j)^q}{q}$$

Symmetric Cross Entropy (SCE)

$$\mathcal{L}_{RCE}(x_j) = -\sum_{i=1}^k p_i \log(t_i)$$

$$\mathcal{L}_{SCE}(x_j) = \alpha \mathcal{L}_{CE}(x_j) + \beta \mathcal{L}_{RCE}(x_j)$$

Dice Loss (Dice Similarity Coefficient)

$$DSC(x_{j}) = \frac{2 \sum_{i=1}^{N} p_{i} t_{i}}{\sum_{i=1}^{N} p_{i} + \sum_{i=1}^{N} t_{i}}$$

$$\mathcal{L}_{\textit{Dice}}(x_j) = 1 - \mathcal{DSC}(x_j)$$

Universal Abstention Framework

Universal Abstention Framework

$$\mathcal{L}_{abstention}(x_j) = (1 - p_{k+1})\mathcal{L}_{\mathcal{X}}(x_j) + \alpha \left| \log \frac{1 - \tilde{\eta}}{1 - p_{k+1}} \right| \tag{1}$$

Universal Abstention Framework

$$\mathcal{L}_{abstention}(x_j) = (1 - p_{k+1})\mathcal{L}_{\mathcal{X}}(x_j) + \alpha \left| \log \frac{1 - \tilde{\eta}}{1 - p_{k+1}} \right| \tag{1}$$

Informed Regularization

- Combines DAC and IDAC.
- Allows for more freedom to abstain when noise level is high.
- Reduces overfitting in the final stages of training.
- Defaults back to DAC if $\tilde{\eta}$ is unknown.

Figure: Abstention behaviour in DAC, IDAC, and GAC at 15% noise.

Power-law auto-tuning

$$\alpha = \alpha_{final} * \left(\frac{e - L}{E - L}\right)^{\gamma} \tag{2}$$

current epoch e, total epochs E, warm-up epochs L.

- Replaces DAC's complicated auto-tuning algorithm with a simpler and more flexible calculation.
- γ controls the rate of growth for α .
- Higher $\gamma \to \text{smaller } \alpha \to \text{more abstention}$.
- Still allows for DAC's linear growth $(\gamma = 1)$.

Power-law auto-tuning

$$\alpha = \alpha_{final} * \left(\frac{e - L}{E - L}\right)^{\gamma} \tag{2}$$

current epoch e, total epochs E, warm-up epochs L.

- Replaces DAC's complicated auto-tuning algorithm with a simpler and more flexible calculation.
- γ controls the rate of growth for α .
- Higher $\gamma \to \text{smaller } \alpha \to \text{more abstention.}$
- Still allows for DAC's linear growth $(\gamma = 1)$.

Figure: The effect of different values of γ on the growth of α with $\alpha_{\textit{final}} = 1$.

Novel Abstaining Loss Functions

- Generalized Abstaining Classifier (GAC): GCE + Abstention
- Symmetric Abstaining Classifier (SAC): SCE + Abstention
- Abstaining Dice Segmenter (ADS): Dice + Abstention

Novel Abstaining Loss Functions

- Generalized Abstaining Classifier (GAC): GCE + Abstention
- Symmetric Abstaining Classifier (SAC): SCE + Abstention
- Abstaining Dice Segmenter (ADS): Dice + Abstention
 - needs to adapt Abstention to Dice's class-wise nature.

ADS Class-wise Abstention

Figure: Transforming the output layer of an abstaining model from pixel-wise to class-wise abstention.

Experiments

Datasets: CaDIS

- 4,670 high-quality annotated images from cataract surgery.
- Dense annotations
- Has 3 variants for number of classes.
- We used the first variant (8 classes).
- Normalized and resized to 480x256.

Figure: Example image frame (top) and semantic segmentation labels (bottom) from the CaDIS Dataset [2].

Datasets: DSAD

- 13,195 laparoscopic annotated images.
- Binary segmentations for 11 anatomical structures.
- 1,430 stomach images used for multi-organ segmentation (7 organs).
- Sparse annotations (≈ 82% background).
- Normalized and resized to 480x384.

Figure: Overview of the data acquisition and validation process of DSAD [1].

Noise Synthesis

- Morphological operations: Erosion and Dilation.
- Random label flipping.
- 5 noise level for each dataset.
- CaDIS: 5-25%.
- DSAD: 3-15%.

Figure: Two examples of Erosion and Dilation. Correct segmentation boundaries in red [6].

U-Net

- Most commonly used segmentation architecture.
- Designed for medical image segmentation.
- encoder captures context and decoder enables precise localization.
- Skip connections bridge the two paths.
- Used with pretrained ResNet-50 backbone.

Figure: The U-Net architecture [4].

Experimental Setup

- Optimized hyperparameters with U-Net for highest noise level for each dataset.
- Trained for 50 epochs.
- AdamW with Ir=0.003.
- Ir divided by 5 every 10 epochs.
- A single NVIDIA A100 80GB GPU.

Loss	CaDIS	DSAD
DAC	$lpha_{\mathit{final}} = 1$ $\mathit{L} = 10$	$lpha_{\mathit{final}} = 2$ $\mathit{L} = 18$
IDAC	lpha = 1 L = 10	lpha = 1 L = 10
GCE	q=0.5	<i>q</i> =0.1
GAC	$lpha_{ extit{final}}=3 \ L=10 \ \gamma=3$	$lpha_{ extit{final}}=$ 2 $L=$ 15 $\gamma=$ 2
SCE	lpha=1 $eta=1$	lpha = 0.5 $eta = 1$
SAC	$lpha_{ extit{final}}=1 \ L=10 \ \gamma=1.5$	$lpha_{ extit{final}}=$ 1 $L=$ 20 $\gamma=$ 3
ADS	$lpha_{\mathit{final}} = 1$ $L = 10$ $\gamma = 3$ $w = 16$	$lpha_{\mathit{final}} = 4$ $L = 10$ $\gamma = 1.5$ $w = 16$

Table: The hyperparameters used in our experiments.

Evaluations

Results

Figure: Test mIoU (%) scores of a U-Net model trained on CaDIS (a) and DSAD (b) at 5 different noise levels.

U-Net Performance

Dataset	Noise rate	Loss function								
	η (%)	CE	DAC	IDAC	GCE	GAC	SCE	SAC	Dice	ADS
CaDIS	0	76.02±0.70	75.29±0.79	75.36±0.73	73.49±3.27	73.76±2.80	75.38±0.75	75.83±0.62	76.52±0.47	77.04±0.37
	5	73.67±1.03	73.14 ± 0.46	$72.89 {\pm} 0.41$	72.83±1.11	71.73 ± 2.79	73.41 ± 0.71	73.51 ± 1.59	73.48±0.28	75.22 \pm 0.85
	10	66.39 ± 0.17	67.43 ± 0.49	66.92 ± 0.49	64.82±0.86	$64.16 {\pm} 2.57$	$65.92 {\pm} 0.91$	67.29 ± 1.65	66.51±0.61	71.12 \pm 0.55
	15	$64.15{\pm}2.47$	65.85 ± 1.05	$64.87{\pm}0.91$	64.81±0.46	$64.44{\pm}2.70$	62.16 ± 1.99	65.48 ± 2.11	67.31±0.73	70.80 ± 1.08
	20	59.56 ± 1.21	63.42 ± 0.87	$60.54{\pm}2.27$	60.73±1.41	60.91 ± 1.64	57.62 ± 4.22	62.70 ± 0.31	63.64±0.82	68.88 ± 0.49
	25	$52.27{\pm}1.70$	$60.63 {\pm} 2.73$	$58.19{\pm}4.77$	55.71±1.30	59.46 ± 0.76	$55.08 {\pm} 0.93$	$\pmb{61.27 \!\pm\! 1.22}$	61.04±1.41	$66.39 \!\pm\! 0.67$
DSAD	0	34.25±2.50	34.01±0.96	33.60±0.72	35.14±1.65	32.26±0.53	32.78±1.19	33.86±1.83	31.28±0.87	30.09±1.10
	3	33.69 ± 1.85	$33.67{\pm}2.01$	32.76 ± 2.03	33.84±2.56	$32.94{\pm}2.23$	32.11 ± 1.09	30.90 ± 2.76	30.83±4.78	$28.64{\pm}2.76$
	6	30.70±2.47	$29.47{\pm}1.97$	29.11 ± 2.10	29.69±1.96	29.78 ± 4.27	30.51 ± 2.16	31.55 ± 2.43	28.56±1.00	30.48 ± 3.61
	9	24.65 ± 2.90	$24.58{\pm}2.61$	$23.47{\pm}2.48$	22.95±2.93	28.84 ± 4.17	28.02 ± 2.37	28.55 ± 1.29	19.04±1.92	26.23 ± 2.05
	12	21.00±3.15	22.59 ± 4.35	$20.94{\pm}1.86$	19.84±2.89	25.00 ± 4.13	$21.57 {\pm} 0.67$	23.73 ± 0.68	16.15±1.49	22.63 ± 0.51
	15	14.41±2.59	17.69 ± 3.97	16.24 ± 1.45	14.12±2.91	20.01 ± 2.56	15.31 ± 0.75	15.91 ± 3.53	14.65±1.50	18.05 ± 1.63

Table: Average test mIoU (%) and standard deviation (5 runs) of a U-Net model trained on CaDIS and DSAD datasets with various rate of label noise, comparing five abstaining loss functions [DAC, IDAC, GAC, SAC, ADS] against their non-abstaining baselines [CE, GCE, SCE, Dice]. Best results in each bracket are in **bold**.

DeepLabV3+

Dataset	Loss function								
	CE	DAC	IDAC	GCE	GAC	SCE	SAC	Dice	ADS
CaDIS	56.02±1.30	57.02±0.81	56.29±1.05	55.56±2.08	58.08±1.43	58.37±0.53	59.77±1.17	59.55±1.66	61.84±2.23
DSAD	16.73±2.34	15.90±3.19	16.20±1.37	16.26±1.37	19.01±1.69	12.74±2.03	14.03±3.53	12.46±0.86	17.16±2.02

Table: Average test mIoU (%) and standard deviation (5 runs) of a DeepLabV3+ model trained on CaDIS and DSAD datasets at 25% and 15% label noise, respectively. Best results in each bracket are in **bold**.

Visualizations

Figure: Visualisation of a sample clean ground truth from CaDIS and the segmentation predictions of a U-Net model trained with each loss function at 25% noise.

Visualizations

Figure: Visualisation of a sample clean ground truth from DSAD and the segmentation predictions of a U-Net model trained with each loss function at 15% noise.

Conclusions

Contributions & Impact

- Adapted abstention for Medical Image Segmentation.
- Enhanced abstention with Informed regularization and flexible α -tuning.
- Integration with different and distinct loss functions.
- Empirical proof: Abstention boosts robustness across losses, datasets, and architectures.
- Abstention is a modular and easy-to-use extension for robust learning in medical imaging.

Future Work

- Dynamic Noise Estimation: Develop methods to learn the noise rate directly from the data.
- Real-World Noise Validation: Test on clinical datasets with naturally occurring, unsimulated noise.
- Abstention as an Uncertainty Metric: Use the model's abstention signal to flag difficult cases for expert review, creating a human-in-the-loop system.

References I

- [1] Matthias Carstens et al. "The Dresden Surgical Anatomy Dataset for Abdominal Organ Segmentation in Surgical Data Science". In: Sci Data 10.1 (Jan. 2023), p. 3. ISSN: 2052-4463. DOI: 10.1038/s41597-022-01719-2.
- [2] Maria Grammatikopoulou et al. CaDIS: Cataract Dataset for Image Segmentation. Feb. 2022. DOI: 10.48550/arXiv.1906.11586. arXiv: 1906.11586 [cs].
- Davood Karimi et al. "Deep Learning with Noisy Labels: Exploring Techniques and Remedies in Medical Image Analysis". In: *Medical Image Analysis* 65 (Oct. 2020), p. 101759. ISSN: 13618415. DOI: 10.1016/j.media.2020.101759.
- [4] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. *U-Net: Convolutional Networks for Biomedical Image Segmentation*. May 2015. DOI: 10.48550/arXiv.1505.04597. arXiv: 1505.04597 [cs].

References II

- [5] Sunil Thulasidasan et al. Combating Label Noise in Deep Learning Using Abstention. Aug. 2019. DOI: 10.48550/arXiv.1905.10964. arXiv: 1905.10964 [stat].
- [6] Haidong Zhu, Jialin Shi, and Ji Wu. *Pick-and-Learn: Automatic Quality Evaluation for Noisy-Labeled Image Segmentation*. July 2019. DOI: 10.48550/arXiv.1907.11835.arXiv:1907.11835 [cs].