UNIVERSITAS JENDERAL SOEDIRMAN FAKULTAS TEKNIK PROGRAM STUDI TEKNIK ELEKTRO

TUGAS TERSTRUKTUR 2

Sinyal dan Sistem

Semester Gasal TA 2025/2026

Identitas MK

Kode MK	TKE222124
Nama MK	Sinyal dan Sistem
Dosen MK	Dinda Wahyu ,M. Syaiful Aliim, Imron Rosyadi, Agung Mubyarto

Capaian Pembelajaran MK Terkait

СРМК	Bobot
CPMK 1: Analisis Sinyal dan Sistem Linier Invarian Waktu (LTI) di Domain	$33,\!33\%$
Waktu.	
CPMK 2: Analisis Sinyal dan Sistem di Domain Frekuensi (Waktu-kontinu).	$33{,}33\%$
CPMK 3: Analisis Sinyal dan Sistem di Domain Waktu-Diskret.	$33{,}33\%$

Pelaksanaan Asesmen

Hari, Tanggal	Senin, 24 November 2025
Durasi	1 bulan
Bentuk	Tugas terstruktur kelompok
Bobot	10%

Tugas Terstruktur Kelompok 2: Penapisan dan Rekonstruksi Sinyal

Tujuan Tugas Terstruktur

Setelah menyelesaikan tugas terstruktur ini,

- 1. Mahasiswa mampu merancang tapis pelewat rendah (low pass filter);
- $2.\,$ Mahasiswa mampu menerapkan konvolusi kawasan waktu;
- 3. Mahasiswa mampu menerapkan sistem komunikasi lengkap dengan menerapkan demodulasi dan penapisan;
- 4. Mahasiswa mampu memulihkan sinyal dan menganalisis unjuk kerja sistem;
- 5. Mahasiswa mampu mengomunikasikan proyek, metode, dan temuan secara efektif dan profesional dengan laporan tertulis dan presentasi video.

Deskripsi Tugas Terstruktur

Melalui tugas terstruktur ini, mahasiswa MK Sinyal dan Sistem menerapkan konsep-konsep yang dipelajari untuk melakuan kalkulasi, visualisasi, transformasi, dan analisis terhadap sinyal suara yang diakuisisi secara mandiri oleh mahasiswa. Dengan bekerja secara berkelompok, mahasiswa diharapkan mampu mengembangkan kemampuan kerja tim serta mampu mengomunikasikan hasil kerja secara profesional melalui laporan tertulis dan presentasi video. Untuk mencapai tujuannya, tugas terstruktur ini diperinci melalui beberapa modul dan langkah.

Modul Tugas Terstruktur

Modul 5: Perancangan Tapis Pelewat Rendah (LPF) dan Konvolusi Kawasan Waktu

Pekerjaan	Deskripsi	Konsep Terkait
5.1 Perancangan LPF	Rancang FIR LPF sederhana.	Filter Design Principles, Cutoff
	Tentukan dan justifikasi	Frequency (f_c) , FIR Filters.
	pemilihan $cutoff\ frequency\ (f_c).$	
5.2 Respon Impuls	Visualisasikan plot dari $impulse$	Impulse Response,
	$response, h[n]^{**}, dari LPF yang$	Time-Domain Representation
	dirancang. Analisis bentuk	of a Filter.
	sinc dan panjang tapis.	
5.3 Konvolusi	Muat sinyal rekaman suara asli	Convolution Sum, LTI Systems,
	x[n] dari Tugas Terstruktur I.	Filtering.
	Terapkan time-domain	
	$convolution\ y[n] = x[n] * h[n]$	
	untuk menyimulasikan	
	penghilangan derau.	
5.4 Visualisasi	Plot komparasi sinyal asli dan	Filtering Effect, Time Domain
	sinyal tertapis $(x[n] \operatorname{dan} y[n])$.	Comparison.
	Simpan sinyal tertapis sebagai	
	berkas audio.	

Modul 6: Demodulasi dan Pemulihan Sinyal

Pekerjaan	Deskripsi	Konsep Terkait
6.1 Pemuatan Sinyal	Muat sinyal yang termodulasi	Signal Retrieval.
	s[n] dan sinyal pembawa asli	
	c[n] dari Tugas Terstruktur I.	

Pekerjaan	Deskripsi	Konsep Terkait
6.2 Demodulasi (Mixing)	Terapkan coherent	$r[n] = s[n] \cdot c[n]$
	${\bf demodulation} \ {\bf dengan}$	
	mengalikan sinyal termodulasi	
	s[n] kembali dengan sinyal	
	pembawa, $c[n]$, untuk	
	mendapatkan sinyal yang	
	diterima, $r[n]$.	
6.3 Spektrum Demodulasi	Hitung FFT $magnitude$	Spectral Analysis, Mixing
	spectrum dari $r[n]$. Perhatikan	Products.
	dua komponen penting: pita	
	sinyal dasar yang diinginkan	
	$(desired\ baseband)$ pada 0 Hz	
	dan sinyal yang tak diinginkan	
	$(unwanted\ signal)$ yang tereser	
	$\text{ke } 2f_c$.	
6.4 Penapisan Akhir	Terapkan \mathbf{LPF} yang dirancang	Filtering for Baseband
	pada Modul 5 pada sinyal $r[n]$.	Recovery, System Separation.
	Tapis ini harus meloloskan	
	sinyal pita dasar (baseband	
	signal) dengan menahan	
	komponen sinyal pada $2f_c$.	
6.5 Visualisasi	Visualisasi perbandingan sinyal	Signal Integrity, Complete LTI
	asli $x[n]$ dan sinyal yang	System Analysis.
	terpulihkan. Simpan sinyal	
	yang terpulihkan sebagai	
	berkasi audio.	

Tahap Pengerjaan Tugas Terstruktur

Tahap 1: Eksperimen dan Analisis

- 1. **Kajian pustaka:** Kaji ulang dan baca referensi mata kuliah yang relevan dengan tugas terstruktur.
- 2. **Perencanaan Kerja:** Baca rincian tugas dengan baik. Rancang rencana pengerjaan tugas. Diskusikan dan tetapkan pilihan asumsi, parameter, dan batasan dengan justifikasi yang tepat.
- 3. **Eksperimen:** Kerjakan eksperimen secara bertahap. Kerjakan modul dan langkah secara berurutan.
- 4. **Pemrograman:** Kembangkan pemrograman dengan bahasa pemrograman yang sesuai. Temukan solusi numeris dan visualisasi yang tepat.
- 5. Analisis: Analisis hasil komputasi dan visualisasi. Kaitkan dengan kajian pustaka.

Tahap 2: Pelaporan dan Presentasi

- 1. **Laporan Terstruktur:** Buat laporan yang mendokumentasikan pengerjaan tugas secara terstruktur.
- 2. **Presentasi Video:** Buat salindia presentasi dan buat video presentasi minimal 5 menit yang menjelaskan tugas.

Luaran Tugas Terstruktur

- 1. Laporan Tugas Terstrukur (PDF): Laporan tugas terstruktur setidaknya mengandung bagian sebagai berikut: abstrak, pendahuluan, dasar teori, pembahasan, kesimpulan dan lampiran (meliputi kode program dan laporan kontribusi setiap anggota kelompok).
- 2. Berkas kode, himpunan data: Berkas-berkas (.py, .m, .wav dll.) yang digunakan dan diproduksi, dikompresi menjadi satu berkas zip.
- 3. Salindia Presentasi (PDF): Salindia yang digunakan dalam presentasi video.
- 4. Tautan Video Presentasi: Tautan YouTube presentasi.

Seluruh luaran tugas terstruktur (berkas dan tautan) diunggah melalui Eldiru Unsoed.

Kelompok Tugas Terstruktur

Tugas terstruktur ini dikerjakan secara berkelompok.

Kelompok: Mahasiswa membuat kelompok untuk mengerjakan tugas terstruktur ini. Satu kelompok beranggotakan 2-3 orang. Komposisi kelompok dilaporkan kepada Dosen MK. Kelompok ini sama dengan kelompok pada Tugas Terstruktur I.

Waktu Pengerjaan Tugas Terstruktur

Waktu: Tugas Terstruktur II, sudah harus dikirimkan paling lambat 20 Desember 2025

Purbalingga, 20 Oktober 2025

	PIC	Tanda Tangan	
Dipersiapkan oleh (Dosen MK)	Dinda Wahyu	1.	
	M. Syaiful Aliim	2.	
	Imron Rosyadi	3.	
	Agung Mubyarto	4.	
Diperiksa oleh (Korprodi)	Winasis	5.	