

Intro. Number Theory

Modular e'th roots

Modular e'th roots

We know how to solve modular <u>linear</u> equations:

$$\mathbf{a} \cdot \mathbf{x} + \mathbf{b} = \mathbf{0}$$
 in Z_N

Solution: $\mathbf{x} = -\mathbf{b} \cdot \mathbf{a}^{-1}$ in Z_N

What about higher degree polynomials?

Example: let p be a prime and $c \in Z_p$. Can we solve:

$$x^2 - c = 0$$
 , $y^3 - c = 0$, $z^{37} - c = 0$ in Z_p

Modular e'th roots

Let p be a prime and $c \in Z_p$.

Def:
$$x \in Z_p$$
 s.t. $x^e = c$ in Z_p is called an **e'th root** of c.

Examples:
$$7^{1/3} = 6$$
 in \mathbb{Z}_{11}

$$3^{1/2} = 5$$
 in \mathbb{Z}_{11}

$$1^{1/3} = 1$$
 in \mathbb{Z}_{11}

$$-6^3 = 216 = 7$$
 in \mathbb{Z}_{11}

 $2^{1/2}$ does not exist in \mathbb{Z}_{11}

The easy case

When does $c^{1/e}$ in Z_p exist? Can we compute it efficiently?

The easy case: suppose
$$gcd(e, p-1) = 1$$

Then for all c in $(Z_p)^*$: $c^{1/e}$ exists in Z_p and is easy to find.

Proof: let
$$d = e^{-1}$$
 in Z_{p-1} . Then $C'' = C'' = C'' + 2p$

$$d \cdot e = 1 \text{ in } Z_{p-1} \Rightarrow \exists x \in \mathbb{Z} : d \cdot e = K \cdot (p-1) + 1 \Rightarrow$$

$$\Rightarrow (cd)^e = c^{d \cdot e} = c^{\kappa \cdot (p-1) + 1} = [c^{p-1}] \cdot c = c \quad \text{in } \mathbb{Z}_p$$
Dan Bone

The case e=2: square roots

If p is an odd prime then $\gcd(2, p-1) \neq 1$ x - xFact: in \mathbb{Z}_p^* , $x \to x^2$ is a 2-to-1 function

p odd prime \Rightarrow the # of Q.R. in \mathbb{Z}_p is (p-1)/2 + 1

Euler's theorem

Thm:
$$x \text{ in } (Z_p)^* \text{ is a Q.R.} \iff x^{(p-1)/2} = 1 \text{ in } Z_p \qquad \text{(p odd prime)}$$

Example: in
$$\mathbb{Z}_{11}$$
: 1⁵, 2⁵, 3⁵, 4⁵, 5⁵, 6⁵, 7⁵, 8⁵, 9⁵, 10⁵

$$= 1 -1 1 1 1 1, -1, -1, -1, 1, -1$$

Note:
$$x \neq 0 \implies x^{(p-1)/2} = (x^{p-1})^{1/2} = 1^{1/2} \in \{1, -1\} \text{ in } Z_p$$

<u>Def</u>: $x^{(p-1)/2}$ is called the <u>**Legendre Symbol**</u> of x over p (1798)

Computing square roots mod p

Suppose $p = 3 \pmod{4}$

Lemma: if
$$c \in (Z_p)^*$$
 is Q.R. then $\sqrt{c} = c^{(p+1)/4}$ in Z_p

Proof:
$$\left[C^{\frac{44}{3}} \right]^2 = C^{\frac{44}{3}} = C^{\frac{44}{3}} = C = C \text{ in } \mathbb{Z}_p$$

When $p = 1 \pmod{4}$, can also be done efficiently, but a bit harder

run time
$$\approx O(\log^3 p)$$

Solving quadratic equations mod p

```
Solve: a \cdot x^2 + b \cdot x + c = 0 in Z_p

Solution: x = (-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}) / 2a in Z_p
```

• Find (2a)⁻¹ in Z_D using extended Euclid.

Find square root of b² – 4 · a · c in Z_p (if one exists)
 using a square root algorithm

Computing e'th roots mod N??

Let N be a composite number and e>1

When does $c^{1/e}$ in Z_N exist? Can we compute it efficiently?

Answering these questions requires the factorization of N (as far as we know)

End of Segment