Prof. Dr. T. Böhme

BT, EIT, II, MIW, WSW, BTC, FZT, LA, MB, MTR, WIW

Mathematik 1 Ubungsserie 9 (4.12.2023 - 8.12.2023)

Aufgabe 1:

Untersuchen Sie das Konvergenzverhalten der folgenden Reihen.

(a)^(*)
$$\sum_{k=1}^{\infty} \frac{k}{k+1}$$

(a)^(*)
$$\sum_{k=1}^{\infty} \frac{k}{k+1}$$
 (b) $\sum_{k=1}^{\infty} \frac{4^k (k+1)!}{2k^k}$ (c) $\sum_{k=1}^{\infty} \frac{k^3}{4^k}$

(c)
$$\sum_{k=1}^{\infty} \frac{k^3}{4^k}$$

(d)^(*)
$$\sum_{k=1}^{\infty} \frac{k!}{k^k}$$

Aufgabe 2:

Verwenden Sie das Quotientenkriterium, um die Menge aller reellen Zahlen x zu bestimmen, für die die folgenden Reihen konvergieren (die gesonderte Betrachtung der Randpunkte ist nicht erforderlich).

(a)
$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^{2k+1}}{5^k \cdot k}$$

(b)
$$\sum_{k=0}^{\infty} \frac{1}{(2k+1)!} x^k$$

(a)
$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^{2k+1}}{5^k \cdot k}$$
 (b) $\sum_{k=0}^{\infty} \frac{1}{(2k+1)!} x^k$ (c)^(*) $\sum_{k=0}^{\infty} \frac{1}{2k+1} x^{2k+1}$

(d)
$$\sum_{k=0}^{\infty} \frac{k^2}{2^k} (x+1)^{2k}$$

(d)
$$\sum_{k=0}^{\infty} \frac{k^2}{2^k} (x+1)^{2k}$$
 (e)^(*) $\sum_{k=0}^{\infty} \frac{(-1)^k}{3k+2} (x-1)^{3k}$ (f)^(*) $\sum_{k=1}^{\infty} \frac{1}{k4^{k-2}} (x-1)^{2k}$

(f)^(*)
$$\sum_{k=1}^{\infty} \frac{1}{k4^{k-2}} (x-1)^{2k}$$

Aufgabe 3:

Bestimmen Sie folgende Grenzwerte, sofern diese existieren

(a)^(*)
$$\lim_{x \to \infty} \frac{x^2 - 3x + 1}{x^3 - 3x + 100}$$

(b)
$$\lim_{x \to -\infty} \frac{x^2 + 3x + 2}{x - 1}$$

(c)^(*)
$$\lim_{x \to \infty} \frac{x^3 + 3x^2 - 1}{x^3 - 2x + 1}$$

(d)
$$\lim_{x \to \infty} \frac{x + \sin x}{x}$$

(e)
$$\lim_{x \to 0+0} \frac{|x|}{x}$$

$$(f) \lim_{x \to 0-0} \frac{|x|}{x}$$

(g)
$$\lim_{x \to 0} \frac{|x|}{x}$$

(h)^(*)
$$\lim_{x \to \infty} \frac{\sqrt{1+x} - 1}{x}$$

(a)^(*)
$$\lim_{x \to \infty} \frac{x^2 - 3x + 1}{x^3 - 3x + 100}$$
 (b) $\lim_{x \to -\infty} \frac{x^2 + 3x + 2}{x - 1}$ (c)^(*) $\lim_{x \to \infty} \frac{x^3 + 3x^2 - 1}{x^3 - 2x + 1}$ (d) $\lim_{x \to \infty} \frac{x + \sin x}{x}$ (e) $\lim_{x \to 0+0} \frac{|x|}{x}$ (f) $\lim_{x \to 0-0} \frac{|x|}{x}$ (g) $\lim_{x \to 0} \frac{|x|}{x}$ (h)^(*) $\lim_{x \to \infty} \frac{\sqrt{1 + x} - 1}{x}$ (i) $\lim_{x \to 1} \left(\frac{1}{1 - x} - \frac{3}{1 - x^3}\right)$

Aufgabe 4:

Es wird als bekannt vorausgesetzt, dass $\lim_{x\to 0} \frac{\sin x}{x} = 1$ gilt. Verwenden Sie diese Aussage, um folgende Grenzwerte zu berechnen.

(a)
$$\lim_{x\to 0} \frac{\sin(\alpha x)}{x}$$
 mit $\alpha > 0$

(b)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

$$(c)^{(*)} \lim_{x\to 0} \frac{\tan x}{x}$$

Aufgabe 5:

Bestimmen Sie die (links-, rechtsseitigen) Grenzwerte folgender Funktionen für $x \to x_0$, sofern diese existieren.

(a)
$$f(x) = \frac{x-2}{\sqrt{x^2-4}}$$
, $x_0 = 2$

(b)^(*)
$$g(x) = \frac{\sqrt{x-2}}{x^2-4}, \ x_0 = 2$$

(c)^(*)
$$h(x) = \frac{x-1}{\sqrt{x^2+3}-2}, \ x_0 = 1$$

Aufgabe 6:

Untersuchen Sie, ob die folgenden Funktionen (auf ihrem gesamtem Definitionsbereich) stetig sind.

(a)
$$f:[0,1] \to \mathbb{R} \text{ mit } f(x) = \begin{cases} 0, & x = 0 \\ \sin \frac{1}{x}, & x > 0 \end{cases}$$

(b)
$$g:[0,1] \to \mathbb{R} \text{ mit } g(x) = \begin{cases} 0, & x = 0 \\ x \sin \frac{1}{x}, & x > 0 \end{cases}$$

(c)
$$h: [0,2] \to \mathbb{R}$$
 mit $h(x) = \begin{cases} x^2, & x \le 1 \\ x, & 1 < x \end{cases}$

(d)^(*)
$$k : [0, 2] \to \mathbb{R}$$
 mit $k(x) = \begin{cases} x^2 & , x \le 1 \\ -x & , 1 < x \end{cases}$

(e)^(*)
$$\ell : [0,2] \to \mathbb{R} \text{ mit } \ell(x) = \sin^2(\sqrt{1+x^2})$$