Package 'immuneSIM'

October 13, 2022

Type Package

Title Tunable Simulation of B- And T-Cell Receptor Repertoires

Version 0.8.7

Author Cédric R. Weber [aut, cre], Victor Greiff [aut]

Maintainer Cédric R. Weber < cedric.weber@bsse.ethz.ch>

Description Simulate full B-cell and T-cell receptor repertoires using an in silico recombination process that includes a wide variety of tunable parameters to introduce noise and biases.

Additional post-

simulation modification functions allow the user to implant motifs or codon biases as well as remodeling sequence similarity architecture. The output repertoires contain records of all relevant repertoire dimensions and can be analyzed using provided repertoire analysis functions. Preprint is available at bioRxiv (Weber et al., 2019 <doi:10.1101/759795>).

Depends R (>= 3.4.0)

Imports poweRlaw, stringdist, Biostrings, igraph, stringr, data.table, plyr, reshape2, ggplot2, grid, ggthemes, RColorBrewer, Metrics, repmis

License GPL-3

URL https://immuneSIM.readthedocs.io

BugReports https://github.com/GreiffLab/immuneSIM/issues

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2019-09-27 10:30:06 UTC

2 codon_replacement

R topics documented:

	codon_replacement	2
	codon_replacement_reconstruction	3
	combine_into_paired	4
	gen_code	4
	hotspot_df	5
	hub_seqs_exclusion	5
	immuneSIM	6
	insertions_and_deletion_lengths_df	8
	length_dist_simulation	9
	list_example_repertoires	9
	list_germline_genes_allele_01	10
	load_insdel_data	11
	motif_implantation	11
	one_spot_df	12
	plot_repertoire_A_vs_B	12
	plot_report_repertoire	13
	shm_event_reconstruction	14
Index		15

codon_replacement

Replaces codons with synonymous codons

Description

Replaces codons with synonymous codons

Usage

```
codon_replacement(repertoire, mode = "both", codon_replacement_list,
    skip_probability = 0)
```

Arguments

repertoire An annotated AIRR compliant immuneSIM repertoire.

(http://docs.airr-community.org/en/latest/)

mode Defines whether codons should be replaced in the nt or AA sequence or in both

("nt","AA","both")

codon_replacement_list

List containing instructions for which codons should be replaced and how

skip_probability

Probability with which a sequence gets skipped in the codon replacement pro-

cess between 0,1

Value

immuneSIM repertoire with replaced codons

Examples

```
repertoire <- list_example_repertoires[["example_repertoire_A"]]
rep_codon_repl <- codon_replacement(repertoire, "both",
list(tat = "tac", agt = "agc", gtt = "gtg"), 0)</pre>
```

codon_replacement_reconstruction

Decodes immuneSIM repertoire codon replacements events.

Description

Decodes immuneSIM repertoire codon replacements events.

Usage

```
codon_replacement_reconstruction(codon_replacement_vec)
```

Arguments

```
codon_replacement_vec
```

An vector containing strings describing codon replacement events as generated by codon_replacement() function. The string contains information on every replacement event in the form:

"initial_codon:replacement_codon:number_of_occurrences" which is combined into: "Replacement1|Replacement2|Replacement3". (For example: "tac,tat:3|agc,agt:1|gtg,gtt:0".)

Value

List of dataframes. Each entry contains replacement info including count of occurrences for each simulated sequence.

Examples

```
codon_replacement_example <- c("tat,tac:3|agt,agc:3|gtt,gtg:0", "tat,tac:1|agt,agc:1|gtt,gtg:1")
codon_replacement_list <- codon_replacement_reconstruction(codon_replacement_example)</pre>
```

gen_code

combine_into_paired Generates a dataframe from separate heavy and light or beta and alpha chain dataframes

Description

Generates a dataframe from separate heavy and light or beta and alpha chain dataframes

Usage

```
combine_into_paired(repertoire_heavy, repertoire_light)
```

Arguments

```
repertoire_heavy

A repertoire containing heavy/beta chain data repertoire_light

A repertoire containing light/alpha chain data
```

Value

immuneSIM repertoire containing heavy/beta and light/alpha chain data.

Examples

```
repertoire_heavy <- immuneSIM(number_of_seqs = 5, species = "mm", receptor = "ig", chain = "h")
repertoire_light <- immuneSIM(number_of_seqs = 5, species = "mm", receptor = "ig", chain = "kl")
paired_repertoire <- combine_into_paired(repertoire_heavy, repertoire_light)</pre>
```

gen_code

Translation dictionary amino acid <-> nucleotide codon

Description

A dataframe containing a mapping from each of 64 codons to amino acids.

Usage

```
gen_code
```

Format

A data frame with 64 rows and variables:

```
aa amino acid
```

codon nucleotide codon

hotspot_df 5

Source

https://www.genscript.com/tools/codon-table

hotspot_df

Hotspot dataframe for SHM

Description

A dataframe containing mutation probabilities for every possible 5mer pattern

Usage

hotspot_df

Format

A data frame with 1024 rows and variables:

pattern amino acid

toA probability of mutation to adenine

toC probability of mutation to cytosine

toG probability of mutation to guanine

toT probability of mutation to thymine

Source source of probability

Source

https://cran.r-project.org/package=AbSim

hub_seqs_exclusion

Deletes top hub sequences from repertoire, changing the network architecture.

Description

Deletes top hub sequences from repertoire, changing the network architecture.

```
hub_seqs_exclusion(repertoire, top_x = 0.005, report = FALSE,
  output_dir = "", verbose = TRUE)
```

6 immuneSIM

Arguments

repertoire	An annotated AIRR compliant repertoire. (http://docs.airr-community.org/en/latest/)
top_x	Determines what percentage of hub sequences get excluded (Default: 0.005, i.e. Top 0.5 percent)
report	The user can choose to output a report csv file containing the excluded sequences. (Default: FALSE)
output_dir	If user specifies and output directory a csv file containing the excluded sequences is saved at that path, otherwise it will be saved in tempdir().
verbose	Determines whether messages on plot locations are output to user. (Default: TRUE)

Value

Repertoire reduced by hub sequence (new network architecture)

Examples

```
repertoire <- list_example_repertoires[["example_repertoire_A"]]
rep_excluded_hubs <- hub_seqs_exclusion(repertoire, top_x = 0.005, output_dir = "")</pre>
```

immuneSIM

Simulates an immune repertoire based on user-defined parameters

Description

Simulates an immune repertoire based on user-defined parameters

```
immuneSIM(number_of_seqs = 1000,
    vdj_list = list_germline_genes_allele_01, species = "mm",
    receptor = "ig", chain = "h",
    insertions_and_deletion_lengths = insertions_and_deletion_lengths_df,
    user_defined_alpha = 2, name_repertoire = "sim_rep",
    length_distribution_rand = length_dist_simulation, random = FALSE,
    shm.mode = "none", shm.prob = 15/350, vdj_noise = 0,
    vdj_dropout = c(V = 0, D = 0, J = 0), ins_del_dropout = c(""),
    equal_cc = FALSE, freq_update_time = round(0.5 * number_of_seqs),
    max_cdr3_length = 100, min_cdr3_length = 6, verbose = TRUE,
    airr_compliant = TRUE)
```

immuneSIM 7

Arguments

vdj_list List containing germline genes and their frequencies

species String defining species for which repertoire should be simulated ("mm": mouse,

"hs": human. Default: "mm").

receptor String defining receptor type ("ig" or "tr". Default: "ig")

chain String defining chain (for ig: "h", "k", "l", for tr: "b" or "a". Default: "h")

insertions_and_deletion_lengths

Data.frame containing np1, np2 sequences as well as deletion lengths. (Pooled from murine repertoire data, Greiff,2017) Note: This is a subset of 500000 observations of the dataframe used in the paper. The full dataframe which can be introduced here can be found on: (Git-Link)

user_defined_alpha

Numeric. Scaling parameter used for the simulation of powerlaw distribution (recommended range 2-5. Default: 2, https://en.wikipedia.org/wiki/Power_law)

name_repertoire

String defining chosen repertoire name recorded in the name_repertoire column of the output for identification.

length_distribution_rand

Vector containing lengths of immune receptor sequences based on immune repertoire data (Greiff, 2017).

random Boolean. If TRUE repertoire will consist of fully random sequences, indepen-

dent of germline genes.

shm. mode String defining mode of somatic hypermutation simulation based on AbSim (op-

tions: 'none', 'data', 'poisson', 'naive', 'motif', 'wrc'. Default: 'none'). See

AbSim documentation.

shm.prob Numeric defining probability of a SHM (somatic hypermutation) occurring at

each position.

vdj_noise Numeric between 0,1, setting noise level to be introduced in provided V,D,J

germline frequencies. 0 denotes no noise. (Default: 0)

vdj_dropout Named vector containing entries V,D,J setting the number of germline genes to

be dropped out. (Default: c("V"=0,"D"=0,"J"=0))

ins_del_dropout

String determining whether insertions and deletions should occur. Options: "", "no_insertions", "no_insertions_n1", "no_insertions_n2", "no_deletions_v", "no_deletions_d_5", "no_deletions_d_3", "no_deletions_j", "no_deletions_vd",

"no_deletions". Default: "")

equal_cc Boolean that if set TRUE will override user_defined_alpha and generate a clone

count distribution that is equal for all sequences. Default: FALSE.

freq_update_time

Numeric determining whether simulated VDJ frequencies agree with input after set amount of sequences to correct for VDJ bias. Default: Update after 50 percent of sequences.

Value

An annotated AIRR-compliant immuneSIM repertoire. (http://docs.airr-community.org/en/latest/)

Examples

```
sim_rep <- immuneSIM(number_of_seqs = 10, vdj_list = list_germline_genes_allele_01,
species = "mm", receptor = "ig", chain = "h",
insertions_and_deletion_lengths = insertions_and_deletion_lengths_df,
user_defined_alpha = 2,name_repertoire = "mm_igh_sim",
shm.mode = "data",shm.prob=15/350,vdj_noise = 0, vdj_dropout = c(V=0,D=0,J=0),
ins_del_dropout = "",min_cdr3_length = 6)</pre>
```

insertions_and_deletion_lengths_df

Dataframe containing insertion sequences and deletion lengths

Description

A dataframe containing all insertions and deletions observed in experimental data (pooled across all samples, Greiff, 2017) This dataframe is a subset of the dataframe used in the application note. The original dataframe which contains 11363603 rows can be downloaded from:

Usage

```
insertions_and_deletion_lengths_df
```

Format

A data frame with 500000 rows and variables:

```
n1 np1 insertions
n2 np2 insertions
del_v lengths of V gene deletions
del_d_5 lengths of 5' end D gene deletions
del_d_3 lengths of 3' end D gene deletions
del_j lengths of J gene deletions
```

length_dist_simulation 9

Details

https://github.com/GreiffLab/immuneSIM or using the provided function: load_insdel_data()

Source

```
https://doi.org/10.1016/j.celrep.2017.04.054
```

length_dist_simulation

Vector containing VDJ length distributions

Description

A vector containing 10000 VDJ lengths for simulating of fully random sequences (independent of germline genes)

Usage

length_dist_simulation

Format

A vector with 10000 entries:

length VDJ nucleotide lengths sampled from murine naive follicular B-cell data, Greiff 2017

Source

```
https://doi.org/10.1016/j.celrep.2017.04.054
```

list_example_repertoires

Example repertoires

Description

A list containing two example repertoires (100 sequences each) simulated with immuneSIM using default parameters. These repertoires are used in the examples.

```
list_example_repertoires
```

Format

```
A list with 2 entries:
```

```
example_repertoire_A Repertoire simulated using standard parameters (A)example_repertoire_A Repertoire simulated using standard parameters (B)
```

Source

```
https://immunesim.readthedocs.io
```

```
list_germline_genes_allele_01
```

Collection of germline genes and frequencies

Description

A list containing sublists for species ("hs","mm") which in turn contain sublists for receptors ("ig","tr") which are subset in chains ("h", "k", "l" and "b", "a", respectively). Each entry contains a list of three dataframes ("V","D" and "J") with the major IMGT annotated germline genes including name, sequence based on IMGT and frequencies based on experimental data from DeWitt(2017), Emerson (2017), Greiff (2017) and Madi (2017)

Usage

```
list_germline_genes_allele_01
```

Format

A list of lists containing dataframes with up to 126 entries:

```
gene name of germline gene
allele allele number (presently restricted to allele 01)
sequence nucleotide sequence of germline gene
species name of species
frequency Frequencies of germline genes based on experimental data
```

Source

```
http://www.imgt.org/vquest/refseqh.html
https://doi.org/10.1371/journal.pone.0160853
https://doi.org/10.1038/ng.3822
https://doi.org/10.1016/j.celrep.2017.04.054
https://doi.org/10.7554/eLife.22057
```

load_insdel_data 11

load_insdel_data

Loads full insertion/deletion data from GitHub

Description

Loads full insertion/deletion data from GitHub

Usage

```
load_insdel_data()
```

Value

Dataframe containing insertions and deletions (11363603 rows, 6 columns)

Examples

```
full_insertions_and_deletion_df <- load_insdel_data()
```

motif_implantation

Implant random or predefined motifs into CDR3

Description

Implant random or predefined motifs into CDR3

Usage

```
motif_implantation(sim_repertoire, motif, fixed_pos = 0)
```

Arguments

sim_repertoire An annotated AIRR compliant immuneSIM repertoire.

motif Either a list that contains number, length and frequencies of motifs or dataframe

that contains predefined motifs and their frequencies

fixed_pos defines position at which motif is to be introduced. if 0 motif will be introduced

at random position

Value

Repertoire with modified sequences containing implanted motifs in CDR3.

Examples

```
sim_repertoire <- list_example_repertoires[["example_repertoire_A"]]
sim_rep_motifs <- motif_implantation(sim_repertoire, list("n"=2, "k"=3, "freq"=c(0.1,0.1)),0)</pre>
```

one_spot_df

One Spot

Description

A dataframe containing a mutation probabilities to base per 5mer (inherited from AbSim package)

Usage

```
one_spot_df
```

Format

A dataframe with 32 entries:

```
pattern amino acid
```

toA probability of mutation to adenine

toC probability of mutation to cytosine

toG probability of mutation to guanine

toT probability of mutation to thymine

Source source of probability

Source

```
https://cran.r-project.org/package=AbSim
https://doi.org/10.1093/bioinformatics/btx533
```

```
plot_repertoire_A_vs_B
```

Comparative plots of main repertoire features of two input repertoires (length distribution, amino acid frequency, VDJ usage, kmer occurrence)

Description

Comparative plots of main repertoire features of two input repertoires (length distribution, amino acid frequency, VDJ usage, kmer occurrence)

```
plot_repertoire_A_vs_B(repertoire_A, repertoire_B,
  names_repertoires = c("Repertoire_A", "Repertoire_B"),
  length_aa_plot = 14, output_dir = "", verbose = TRUE)
```

plot_report_repertoire 13

Arguments

repertoire_A An annotated AIRR-compliant immuneSIM repertoire.

(http://docs.airr-community.org/en/latest/)

repertoire_B An annotated AIRR-compliant immuneSIM repertoire.

names_repertoires

A vector containing two strings denoting the names of the repertoires / repertoire

descriptions.

length_aa_plot Defines sequence length for which the amino acid frequency plot will be made.

output_dir String containing full path of desired output folder. If empty, figures will be

output in tempdir().

verbose Determines whether messages on plot locations are output to user. (Default:

TRUE)

Value

TRUE (plots saved as pdfs into subfolder 'figures')

Examples

```
repertoire_A <- list_example_repertoires[["example_repertoire_A"]]
repertoire_B <- list_example_repertoires[["example_repertoire_B"]]
plot_repertoire_A_vs_B(
repertoire_A,
repertoire_B,
c("Sim_repertoire_1","Sim_repertoire_2"),
length_aa_plot = 14,
output_dir="")</pre>
```

```
plot_report_repertoire
```

Plots main repertoire features (length distribution, amino acid frequencies and VDJ usage)

Description

Plots main repertoire features (length distribution,amino acid frequencies and VDJ usage)

```
plot_report_repertoire(repertoire, output_dir = "", verbose = TRUE)
```

Arguments

repertoire An annotated AIRR-compliant immuneSIM repertoire.

(http://docs.airr-community.org/en/latest/)

output_dir String containing full path of desired output folder. If empty figures will be

output in tempdir().

verbose Determines whether messages on plot locations are output to user. (Default:

TRUE)

Value

TRUE (plots saved as pdfs into subfolder 'figures')

Examples

```
repertoire <- list_example_repertoires[["example_repertoire_A"]]
plot_report_repertoire(repertoire,output_dir="")</pre>
```

shm_event_reconstruction

Decodes immuneSIM repertoire shm_events column.

Description

Decodes immuneSIM repertoire shm_events column.

Usage

```
shm_event_reconstruction(shm_event_vec)
```

Arguments

shm_event_vec

An vector containing strings describing SHM events as output in shm_events column of immuneSIM repertoires. The string contains information on every mutation event in the form:

"Position:pre_mutation_nucleotide,post_mutation_nucleotide" combined as: "Mutation1|Mutation2|Mutation3". For example: "171:t,a|186:g,a".

Value

List of dataframes. Each entry contains location and shm mutation info for a simulated sequence

Examples

```
shm\_events\_example < -c("171:t,a|186:g,a|287:g,a|310:t,c","","294:c,g|316:t,c|330:c,t")\\ shm\_list < -shm\_event\_reconstruction(shm\_events\_example)
```

Index

```
* datasets
    gen_code, 4
    hotspot_df, 5
    insertions_and_deletion_lengths_df,
        8
    {\tt length\_dist\_simulation}, 9
    list_example_repertoires, 9
    list\_germline\_genes\_allele\_01, 10
    one_spot_df, 12
codon_replacement, 2
codon_replacement_reconstruction, 3
combine_into_paired, 4
gen_code, 4
hotspot_df, 5
hub_seqs_exclusion, 5
immuneSIM, 6
\verb|insertions_and_deletion_lengths_df|, 8
length_dist_simulation, 9
{\tt list\_example\_repertoires}, 9
list\_germline\_genes\_allele\_01, 10
load_insdel_data, 11
motif_implantation, 11
one_spot_df, 12
plot_repertoire_A_vs_B, 12
plot_report_repertoire, 13
shm_event_reconstruction, 14
```