FCC ID: YZP-TWFMB005D IC ID: 7414C-TWFMB005D

Report No.: DRTFCC1207-0336

Total 86 Pages

RF TEST REPORT

Test item	:	Wi-Fi Module
Model No.	:	TWFM-B005D
Order No.	:	DEMC1205-00579, DEMC1205-00580
D-4f		0040 05 00

Date of receipt : 2012-05-08

Test duration : 2012-06-01 ~ 2012-06-29

Date of issue : 2012-07-12

Use of report : Class II Permissive Change

Applicant : LG Innotek Co., Ltd. #978-1, Jangduk-dong, Gwangsan-gu, Gwangju, 506-731, Korea

Test laboratory : Digital EMC Co., Ltd.

683-3, Yubang-Dong, Cheoin-Gu, Yongin-Si, Kyunggi-Do, 449-080, Korea

Test specification : FCC Part 15 Subpart C 247, RSS-210 Issue 8

ANSI C63.4-2003, KDB558074

Test environment : See appended test report

Test result : ⊠ Pass ☐ Fail

The test results presented in this test report are limited only to the sample supplied by applicant and the use of this test report is inhibited other than its purpose. This test report shall not be reproduced except in full, without the written approval of DIGITAL EMC CO., LTD.

Tested by:	Witnessed by:	Reviewed by:
		My
Engineer J.J.LEE	N/A	Technical Director Harvey Sung

Table of Contents

1. GENERAL INFORMATION	3
2. EUT DESCRIPTION	3
3. SUMMARY OF TESTS	4
4. TEST METHODOLOGY	
4.1 EUT CONFIGURATION	
4.2 EUT EXERCISE	5
4.3 GENERAL TEST PROCEDURES	5
4.4 DESCRIPTION OF TEST MODES	5
5. INSTRUMENT CALIBRATION	6
6. FACILITIES AND ACCREDITATIONS	6
6.1 FACILITIES	6
6.2 EQUIPMENT	6
7. ANTENNA REQUIREMENTS	6
8. TEST RESULT	7
8.1 6dB Bandwidth	7
8.2 Maximum Peak Conducted Output Power	34
8.3 Maximum Power Spectral Density	
8.4 Conducted Spurious Emissions	
8.5 Radiated Spurious Emissions	
8.6 Power-line Conducted Emissions	
8.7 Occupied Bandwidth	
9. LIST OF TEST EQUIPMENT	
APPENDIX I	86

1. GENERAL INFORMATION

Applicant : LG Innotek Co., Ltd.

Address : #978-1, Jangduk-dong, Gwangsan-gu, Gwangju, 506-731, Korea

FCC ID : YZP-TWFMB005D

IC number : 7414C-TWFMB005D

EUT : Wi-Fi Module

Model : TWFM-B005D

Additional Model(s) : TWFM-B015D, TWFM-B025D

Data of Test : 2012-06-01 ~ 2012-06-29

Contact person : Lee Seong Chul

2. EUT DESCRIPTION

Product	Wi-Fi Module
Model Name	TWFM-B005D
Add Model Name	TWFM-B015D, TWFM-B025D
Power Supply	DC 5.0V
Frequency Range	2.4GHz Band • 802.11b/g/n(20MHz): 2412 ~ 2462 MHz • 802.11n(40MHz): 2422~2452 MHz 5GHz Band • 802.11a/n(20MHz): 5745~5825 MHz • 802.11n(40MHz): 5755~5795 MHz
Max. RF Output Power	2.4GHz Band *802.11b: 13.95 dBm *802.11g: 18.21 dBm *802.11n (HT20): 21.16 dBm *802.11n (HT40): 18.80 dBm 5GHz Band *802.11a: 17.70 dBm *802.11n (HT20): 20.53 dBm *802.11n (HT40): 19.65 dBm
Modulation Type	802.11b: DSSS/CCK 802.11a/g/n: OFDM
Antenna Specification	PIFA Antenna(2TX 2RX) • 2.4GHz Band Max. peak gain Chain 0 : 2.10dBi, Chain 1 : 1.73dBi • 5GHz Band Max. peak gain Chain 0 : 2.67dBi, Chain 1 : 2.36dBi

3. SUMMARY OF TESTS

FCC Part Section(s)	RSS Section(s)	Parameter	Limit	Test Condition	Status Note 1
I. Transmitter	Mode (TX)				
15.247(a)	RSS-210 [A8.2]	6 dB Bandwidth	> 500 kHz		С
15.247(b)	RSS-210 [A8.4]	Transmitter Output Power	< 1Watt	Conducte	С
15.247(c)	RSS-210 [A8.5]	Out of Band Emissions / Band Edge	20dBc in any 100kHz BW	d	NT Note.2
15.247(d)	RSS-210 [A8.2]	Transmitter Power Spectral Density	< 8dBm / 3kHz		NT Note.2
-	RSS Gen Issue 3	Occupied Bandwidth (99%)	RSS-Gen(4.6.1)		NT Note.2
15.205 15.209	RSS-210 [A8.5]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	< FCC 15.209 limits	Radiated	C Note.3
15.207	RSS-Gen [7.2.4]	AC Conducted Emissions	< FCC 15.207 limits	AC Line Conducte d	С
15.203	RSS-Gen [7.1.2]	Antenna Requirements	FCC 15.203	-	С

Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable

Note 2: According to the manufacturer's declaration, these items were not tested since changes shall not affect to these test items. Please refer to manufacturer's declaration letter for detail changes.

Note 3: This test item was performed in each axis and the worst case data was reported.

DEMC1205-00579 DEMC1205-00580 FCCID: YZP-TWFMB005D
ICID: 7414C-TWFMB005D
Report No.: DRTFCC1207-0336

4. TEST METHODOLOGY

The measurement procedure described in the American National Standard for Methods of Measurement of Radio-Noise Emission from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40GHz(ANSI C63.4-2003) and KDB558074 D01

4.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

4.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4. (Version :2003) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 13.1.4.1 of ANSI C63.4. (Version: 2003)

4.4 DESCRIPTION OF TEST MODES

The EUT has been tested with several operating conditions for maximizing the emission characteristics. A test program is used to control the EUT for staying in continuous transmitting mode.

DEMC1205-00579 DEMC1205-00580 FCCID: YZP-TWFMB005D
ICID: 7414C-TWFMB005D
Report No.: DRTFCC1207-0336

5. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipments, which is traceable to recognized national standards.

6. FACILITIES AND ACCREDITATIONS

6.1 FACILITIES

The open area test site(OATS) or semi anechoic chamber and conducted measurement facility used to collect the radiated and conducted test data are located at the 683-3, Yubang-Dong, Yongin-Si, Gyunggi-Do, 449-080, South Korea. The site is constructed in conformance with the requirements.

- Semi anechoic chamber registration Number: 678747

6.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and peak, quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

7. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203 & RSS-Gen [7.1.2]:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- * The antennas of this E.U.T are permanently attached by means of soldering.
- * Therefore this E.U.T Complies with the requirement of §15.203

8. TEST RESULT

8.1 6dB Bandwidth

Test Requirements and limit, §15.247(a) & RSS-210 [A8.2]

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the receive antenna while the EUT is operating in transmission mode at the appropriate frequencies.

The minimum permissible 6dB bandwidth is 500 kHz.

TEST CONFIGURATION

Refer to the APPENDIX I.

■ TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer and used following test procedure of KDB558074.

- 1. Set resolution bandwidth (RBW) = 1-5 % of the emission bandwidth (EBW).
- 2. Set the video bandwidth (VBW) ≥ 3 x RBW.
- 3. Detector = **Peak**.
- 4. Trace mode = **max hold**.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Compare the resultant bandwidth with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is 1-5 %.

■ TEST RESULTS: Comply

Test Mode	Data	Frequency	Test Results [MHz]		
lest wode	Rate	[MHz]	Chain 0	Chain 1	
		2412	8.184	8.180	
802.11b	1Mbps	2437	8.184	8.177	
		2462	8.198	8.096	
		2412	15.220	15.069	
802.11g	6Mbps	2437	15.403	15.436	
		2462	15.061	15.405	
802.11n		2412	16.544	16.377	
(20MHz)	MCS 0	2437	16.153	17.089	
(ZOIVII IZ)		2462	16.566	17.148	
802.11n		2422	36.434	36.391	
(40MHz)	MCS 0	2437	36.086	36.289	
(40141112)		2452	36.389	36.403	
		5745	16.003	15.957	
802.11a	6Mbps	5785	15.945	15.933	
	_	5825	15.941	15.742	
802.11n		5745	16.981	17.068	
(20MHz)	MCS 0	5785	17.124	16.993	
(201411 12)		5825	17.159	16.635	
802.11n	MCS 0	5755	36.342	36.116	
(40MHz)	IVICOU	5795	35.720	36.365	

RESULT PLOTS

6 dB Bandwidth

Test Mode: Chain 0 & 802.11b & 1Mbps & 2412MHz

6 dB Bandwidth

Test Mode: Chain 0 & 802.11b & 1Mbps & 2437MHz

6 dB Bandwidth Test Mode: Chain 0 & 802.11b & 1Mbps & 2462MHz

6 dB Bandwidth

Test Mode: Chain 1 & 802.11b & 1Mbps & 2412MHz

6 dB Bandwidth

Test Mode: Chain 1 & 802.11b & 1Mbps & 2437MHz

6 dB Bandwidth Test Mode: Chain 1 & 802.11b & 1Mbps & 2462MHz

6 dB Bandwidth Test Mode: Chain 0 & 802.11g & 6Mbps & 2412MHz

6 dB Bandwidth Test Mode: Chain 0 & 802.11g & 6Mbps & 2437MHz

6 dB Bandwidth

Test Mode: Chain 0 & 802.11g & 6Mbps & 2462MHz

6 dB Bandwidth Test Mode: Chain 1 & 802.11g & 6Mbps & 2412MHz

6 dB Bandwidth Test Mode: Chain 1 & 802.11g & 6Mbps & 2437MHz

6 dB Bandwidth

Test Mode: Chain 1 & 802.11g & 6Mbps & 2462MHz

6 dB Bandwidth Test Mode: Chain 0 & 802.11n HT20 & MCS 0 & 2412MHz

6 dB Bandwidth Test Mode: Chain 0 & 802.11n HT20 & MCS 0 & 2437MHz

6 dB Bandwidth Test Mode: Chain 0 & 802.11n HT20 & MCS 0 & 2462MHz

6 dB Bandwidth Test Mode: Chain 1 & 802.11n HT20 & MCS 0 & 2412MHz

6 dB Bandwidth Test Mode: Chain 1 & 802.11n HT20 & MCS 0 & 2437MHz

6 dB Bandwidth Test Mode: Chain 1 & 802.11n HT20 & MCS 0 & 2462MHz

6 dB Bandwidth Test Mode: Chain 0 & 802.11n HT40 & MCS 0 & 2422MHz

6 dB Bandwidth Test Mode: Chain 0 & 802.11n HT40 & MCS 0 & 2437MHz

6 dB Bandwidth Test Mode: Chain 0 & 802.11n HT40 & MCS 0 & 2452MHz

6 dB Bandwidth Test Mode: Chain 1 & 802.11n HT40 & MCS 0 & 2422MHz

6 dB Bandwidth Test Mode: Chain 1 & 802.11n HT40 & MCS 0 & 2437MHz

6 dB Bandwidth Test Mode: Chain 1 & 802.11n HT40 & MCS 0 & 2452MHz

6 dB Bandwidth Test Mode: Chain 0 & 802.11a & 6Mbps & 5745MHz

6 dB Bandwidth Test Mode: Chain 0 & 802.11a & 6Mbps & 5785MHz

6 dB Bandwidth

Test Mode: Chain 0 & 802.11a & 6Mbps & 5825MHz

6 dB Bandwidth Test Mode: Chain 1 & 802.11a & 6Mbps & 5745MHz

6 dB Bandwidth Test Mode: Chain 1 & 802.11a & 6Mbps & 5785MHz

6 dB Bandwidth

Test Mode: Chain 1 & 802.11a & 6Mbps & 5825MHz

6 dB Bandwidth Test Mode: Chain 0 & 802.11n HT20 & MCS 0 & 5745MHz

6 dB Bandwidth Test Mode: Chain 0 & 802.11n HT20 & MCS 0 & 5785MHz

6 dB Bandwidth Test Mode: Chain 0 & 802.11n HT20 & MCS 0 & 5825MHz

6 dB Bandwidth Test Mode: Chain 1 & 802.11n HT20 & MCS 0 & 5745MHz

6 dB Bandwidth Test Mode: Chain 1 & 802.11n HT20 & MCS 0 & 5785MHz

6 dB Bandwidth Test Mode: Chain 1 & 802.11n HT20 & MCS 0 & 5825MHz

6 dB Bandwidth Test Mode: Chain 0 & 802.11n HT40 & MCS 0 & 5755MHz

6 dB Bandwidth Test Mode: Chain 0 & 802.11n HT40 & MCS 0 & 5795MHz

6 dB Bandwidth Test Mode: Chain 1 & 802.11n HT40 & MCS 0 & 5755MHz

6 dB Bandwidth Test Mode: Chain 1 & 802.11n HT40 & MCS 0 & 5795MHz

8.2 Maximum Peak Conducted Output Power

Test Requirements and limit, §15.247(b) & RSS-210 [A8.4]

A transmitter antenna terminal of EUT is connected to the input of a spectrum analyzer.

Measurement is made while the EUT is operating in transmission mode at the appropriate frequencies.

The maximum permissible conducted output power is 1 Watt.

TEST CONFIGURATION

Refer to the APPENDIX I.

■ TEST PROCEDURE (Test Case 1): Only for comparing output powers with the original equipment

The peak output power was measured RF power sensor. Measurement is made while the EUT is operating in transmission mode at the appropriate frequencies. (Power Output Option 1 of DTS measurement guidance)

■ TEST RESULTS : Comply

- Measurement Data: Comply

Single transmitting data

		Frequency [MHz]	Test Result			
Mode	Channel		Cha	Chain 0		in 1
			[dBm]	[W]	[dBm]	[W]
	1	2412	15.65	0.037	14.50	0.028
802.11b	6	2437	16.27	0.042	14.96	0.031
	11	2462	17.38	0.055	16.10	0.041
	1	2412	23.09	0.204	22.92	0.196
802.11g	6	2437	24.98	0.315	24.35	0.272
	11	2462	23.23	0.210	22.85	0.193
	149	5745	23.71	0.235	23.54	0.226
802.11a	157	5785	23.92	0.247	23.79	0.239
	165	5825	23.37	0.217	24.17	0.261

Multiple transmitting data

Mode		Frequency [MHz]	Test Result			
	Channel		Chain 0	Chain 1	Aggregate Power ^{Note1}	
			[dBm]	[dBm]	[dBm]	[W]
	1	2412	23.29	22.77	26.05	0.4025
802.11n HT20	6	2437	24.14	24.34	27.25	0.5311
	11	2462	23.36	23.20	26.29	0.4257
	3	2422	20.00	19.19	22.62	0.1830
802.11n HT40	6	2437	23.69	23.02	26.38	0.4343
	9	2452	21.48	20.87	24.20	0.2628
	149	5745	23.93	23.02	26.51	0.4476
802.11n HT20	157	5785	23.83	23.28	26.57	0.4544
	165	5825	23.68	23.31	26.51	0.4476
902 11n UT40	151	5755	23.35	22.79	26.09	0.4064
802.11n HT40	159	5795	23.71	23.03	26.39	0.4359

Note1: Aggregate power = $10 \log(10^{\left(\frac{\text{chain 0}}{10}\right)} + 10^{\left(\frac{\text{chain 1}}{10}\right)})$

-Output powers of the original certified equipment for reference.

Single transmitting data

		Frequency [MHz]	Test Result			
Mode	Channel		Cha	Chain 0		in 1
			[dBm]	[W]	[dBm]	[W]
	1	2412	15.90	0.039	15.38	0.035
802.11b	6	2437	16.45	0.044	15.85	0.038
	11	2462	17.83	0.061	16.97	0.050
	1	2412	23.28	0.213	23.47	0.222
802.11g	6	2437	25.12	0.325	25.22	0.333
	11	2462	23.64	0.231	23.78	0.239
	149	5745	24.11	0.258	24.31	0.270
802.11a	157	5785	24.13	0.259	24.16	0.260
	165	5825	23.77	0.238	24.19	0.262

Multiple transmitting data

		Frequency [MHz]	Test Result			
Mode	Channel		Chain 0	Chain 1	Aggregate Power ^{Note1}	
		[2]	[dBm]	[dBm]	[dBm]	[W]
	1	2412	23.30	23.52	26.42	0.4387
802.11n HT20	6	2437	24.48	25.17	27.85	0.6094
	11	2462	23.68	23.88	26.79	0.4777
802.11n HT40	3	2422	20.15	20.04	23.11	0.2044
	6	2437	24.07	23.63	26.87	0.4859
	9	2452	21.91	21.63	24.78	0.3008
	149	5745	24.21	24.22	27.23	0.5279
802.11n HT20	157	5785	23.93	24.17	27.06	0.5084
	165	5825	23.80	24.23	27.03	0.5047
902 11n HT40	151	5755	23.98	24.06	27.03	0.5047
802.11n HT40	159	5795	23.97	23.98	26.99	0.4995

Note1: Aggregate power = $10 \log (10^{(\frac{chain 0}{10})} + 10^{(\frac{chain 1}{10})})$

■ TEST PROCEDURE (Test Case 2):

Maximum Peak Conducted Output Power is measured using the Measurement Procedure PK2 of KDB558074.

- 1. Set the **RBW = 1 MHz**.
- 2. Set the VBW = 3 MHz.
- 3. Set the span to a value that is 5-30 % greater than the EBW.
- 4. Detector = **peak**.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the spectrum analyzer's integrated band power measurement function with band limits set equal to the EBW band edges (for some analyzers, this may require a manual override to ensure use of peak detector). If the spectrum analyzer does not have a band power function, sum the spectrum levels (in linear power units) at 1 MHz intervals extending across the EBW of the spectrum.

Note: Tests were performed all possible data rates and the worst case data were reported.

■ TEST RESULTS: Comply

Single transmitting data

			Test Result					
Mode	Data Rate	Frequency [MHz]	Cha	nin 0	Cha	nin 1		
		[2]	[dBm]	[W]	[dBm]	[W]		
		2412	13.25	0.021	12.40	0.017		
802.11b	1 Mbps	2437	13.20	0.021	12.12	0.016		
		2462	13.95	0.025	13.05	0.020		
		2412	14.37	0.027	13.67	0.023		
802.11g	6 Mbps	2437	18.21	0.066	17.78	0.060		
		2462	14.11	0.026	13.31	0.021		
		5745	16.85	0.048	16.36	0.043		
802.11a	MCS 0	5785	16.95	0.050	16.67	0.046		
		5825	17.25	0.053	17.70	0.059		

Multiple transmitting data

			Test Result						
Mode	Data Rate	Frequency [MHz]	Chain 0	Chain 1	Aggregate Power Note1				
		[2]	[dBm]	[dBm]	[dBm]	[W]			
		2412	13.59	12.58	16.12	0.041			
802.11n HT20	6 Mbps	2437	18.30	17.99	21.16	0.131			
		2462	14.23	13.51	16.90	0.049			
	MCS 0	2422	11.37	10.07	13.78	0.024			
802.11n HT40		2437	15.95	15.63	18.80	0.076			
		2452	12.22	11.16	14.73	0.030			
		5745	16.85	16.40	19.64	0.092			
802.11n HT20	MCS 0	5785	16.94	16.71	19.84	0.096			
		5825	17.60	17.44	20.53	0.113			
000 44 11740	MCSO	5755	16.14	15.96	19.06	0.081			
802.11n HT40	MCS 0	5795	16.63	16.65	19.65	0.092			

Note1: Aggregate power = $10 \log (10^{(\frac{chain 0}{10})} + 10^{(\frac{chain 1}{10})})$

RESULT PLOTS

Peak Output Power Test Mode: Chain 0 & 802.11b & 1Mbps & 2412MHz

Peak Output Power Test Mode: Chain 0 & 802.11b & 1Mbps & 2437MHz

Peak Output Power Test Mode: Chain 0 & 802.11b & 1Mbps & 2462MHz

Peak Output Power Test Mode: Chain 1 & 802.11b & 1Mbps & 2412MHz

Peak Output Power Test Mode: Chain 1 & 802.11b & 1Mbps & 2437MHz

Peak Output Power Test Mode: Chain 1 & 802.11b & 1Mbps & 2462MHz

Peak Output Power Test Mode: Chain 0 & 802.11g & 6Mbps & 2412MHz

Peak Output Power Test Mode: Chain 0 & 802.11g & 6Mbps & 2437MHz

Peak Output Power Test Mode: Chain 0 & 802.11g & 6Mbps & 2462MHz

Peak Output Power Test Mode: Chain 1 & 802.11g & 6Mbps & 2412MHz

Peak Output Power Test Mode: Chain 1 & 802.11g & 6Mbps & 2437MHz

Peak Output Power Test Mode: Chain 1 & 802.11g & 6Mbps & 2462MHz

Peak Output Power Test Mode: Chain 0 & 802.11n HT20 & MCS 0 & 2412MHz

Peak Output Power Test Mode: Chain 0 & 802.11n HT20 & MCS 0 & 2437MHz

Peak Output Power Test Mode: Chain 0 & 802.11n HT20 & MCS 0 & 2462MHz

Peak Output Power Test Mode: Chain 1 & 802.11n HT20 & MCS 0 & 2412MHz

Peak Output Power Test Mode: Chain 1 & 802.11n HT20 & MCS 0 & 2437MHz

Peak Output Power Test Mode: Chain 1 & 802.11n HT20 & MCS 0 & 2462MHz

Peak Output Power Test Mode: Chain 0 & 802.11n HT40 & MCS 0 & 2422MHz

Peak Output Power Test Mode: Chain 0 & 802.11n HT40 & MCS 0 & 2437MHz

Peak Output Power Test Mode: Chain 0 & 802.11n HT40 & MCS 0 & 2452MHz

Peak Output Power Test Mode: Chain 1 & 802.11n HT40 & MCS 0 & 2422MHz

Peak Output Power Test Mode: Chain 1 & 802.11n HT40 & MCS 0 & 2437MHz

Peak Output Power Test Mode: Chain 1 & 802.11n HT40 & MCS 0 & 2452MHz

Peak Output Power Test Mode: Chain 0 & 802.11a & 6Mbps & 5745MHz

Peak Output Power Test Mode: Chain 0 & 802.11a & 6Mbps & 5785MHz

Peak Output Power Test Mode: Chain 0 & 802.11a & 6Mbps & 5825MHz

Peak Output Power Test Mode: Chain 1 & 802.11a & 6Mbps & 5745MHz

Peak Output Power Test Mode: Chain 1 & 802.11a & 6Mbps & 5785MHz

Peak Output Power Test Mode: Chain 1 & 802.11a & 6Mbps & 5825MHz

Peak Output Power Test Mode: Chain 0 & 802.11n HT20 & MCS 0 & 5745MHz

Peak Output Power Test Mode: Chain 0 & 802.11n HT20 & MCS 0 & 5785MHz

Peak Output Power Test Mode: Chain 0 & 802.11n HT20 & MCS 0 & 5825MHz

Peak Output Power Test Mode: Chain 1 & 802.11n HT20 & MCS 0 & 5745MHz

Peak Output Power Test Mode: Chain 1 & 802.11n HT20 & MCS 0 & 5785MHz

Peak Output Power Test Mode: Chain 1 & 802.11n HT20 & MCS 0 & 5825MHz

Peak Output Power Test Mode: Chain 0 & 802.11n HT40 & MCS 0 & 5755MHz

Peak Output Power Test Mode: Chain 0 & 802.11n HT40 & MCS 0 & 5795MHz

Peak Output Power Test Mode: Chain 1 & 802.11n HT40 & MCS 0 & 5755MHz

Peak Output Power Test Mode: Chain 1 & 802.11n HT40 & MCS 0 & 5795MHz

8.3 Maximum Power Spectral Density

Test requirements and limit, §15.247(e) & RSS-210 [A8.2]

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

Minimum Standard –specifies a conducted power spectral density (PSD) limit of 8 dBm in any 3 kHz band segment within the fundamental EBW during any time interval of continuous transmission.

TEST CONFIGURATION

■ TEST PROCEDURE:

The Measurement Procedure PKPSD of KDB558074 is used.

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW ≥ 300 kHz.
- 3. Set the span to **5-30** % greater than the EBW.
- 4. Detector = **peak**.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the **peak marker function** to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.
- 9. Scale the observed power level to an equivalent value in 3 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where **BWCF = 10log (3 kHz/100 kHz = -15.2 dB)**.
- 10. The resulting peak PSD level must be ≤ 8 dBm.

■ TEST RESULTS: N/T

8.4 Conducted Spurious Emissions

Test requirements and limit, §15.247(d) & RSS-210 [A8.5]

§15.247(d) specifies that in any 100 kHz bandwidth outside of the authorized frequency band, the power shall be attenuated according to the following conditions:

If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to 15.247(b)(3) requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to **15.247(b)(3)** requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured inband average PSD level.

In either case, attenuation to levels below the general emission limits specified in §15.209(a) is not required.

TEST CONFIGURATION

■ TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer.

- Measurement Procedure 1 Reference Level
- 1. Set the **RBW** = 100 kHz.
- 2. Set the **VBW** ≥ **300** kHz.
- 3. Set the span to 5-30 % greater than the EBW.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the **peak marker function** to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

Next, **determine the power** in 100 kHz band segments outside of the authorized frequency band using the following measurement:

- Measurement Procedure 2 Unwanted Emissions
- 1. Set **RBW = 100 kHz**.
- 2. Set VBW ≥ 300 kHz.
- 3. Set span to encompass the spectrum to be examined.
- 4. Detector = peak.
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.
- 7. Allow the trace to stabilize (this may take some time, depending on the extent of the span).

■ TEST RESULTS: N/T

8.5 Radiated Spurious Emissions

Test Requirements and limit, §15.247(d), §15.205, §15.209 & RSS-210 [A8.5], RSS-Gen [7.2.2]

In any 100kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a) and (b), then the 15.209(a) limit in the table below has to be followed

• FCC Part 15.209(a) and (b)

Frequency (MHz)	Limit (uV/m) @ 3m
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

• FCC Part 15.205 (a): Only spurious emissions are permitted in any of the frequency bands listed below:

1 00 1 art 10:200	(a). Offiny sparious c	inissions are permi	ica in any or the n	equency bands	iisted below.
MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.41425 ~ 8.41475	108 ~ 121.94	1300 ~ 1427	3600 ~ 4400	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1435 ~ 1626.5	4.5 ~ 5.15	15.35 ~ 16.2
2.1735 ~ 2.1905	12.51975 ~	149.9 ~ 150.05	1645.5 ~ 1646.5	5.35 ~ 5.46	17.7 ~ 21.4
4.125 ~ 4.128	12.52025	156.52475 ~	1660 ~ 1710	7.25 ~ 7.75	22.01 ~ 23.12
4.17725 ~ 4.17775	12.57675 ~	156.52525	1718.8 ~ 1722.2	8.025 ~ 8.5	23.6 ~ 24.0
4.20725 ~ 4.20775	12.57725	156.7 ~ 156.9	2200 ~ 2300	9.0 ~ 9.2	31.2 ~ 31.8
6.215 ~ 6.218	13.36 ~ 13.41	162.0125 ~ 167.17	2310 ~ 2390	9.3 ~ 9.5	36.43 ~ 36.5
6.26775 ~ 6.26825	16.42 ~ 16.423	167.72 ~ 173.2	2483.5 ~ 2500	10.6 ~ 12.7	Above 38.6
6.31175 ~ 6.31225	16.69475 ~	240 ~ 285	2655 ~ 2900	13.25 ~ 13.4	
8.291 ~ 8.294	16.69525	322 ~ 335.4	3260 ~ 3267		
8.362 ~ 8.366	16.80425 ~	399.90 ~ 410	3332 ~ 3339		
8.37625 ~ 8.38675	16.80475	608 ~ 614	3345.8 ~ 3358		
	25.5 ~ 25.67	960 ~ 1240			
	37.5 ~ 38.25				
	73 ~ 74.6				
	74.8 ~ 75.2				

• FCC Part 15.205(b): The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

Test Configuration

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

30MHz ~ 25GHz Data(Chain 0 & 802.11b & 1Mbps)

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
199.00	Н	Х	QP	46.50	-11.80	34.70	43.50	8.80
265.36	Н	Χ	QP	49.92	-8.50	41.42	46.00	4.58
2388.92	Н	Χ	PK	54.00	-2.20	51.80	74.00	22.20
2389.88	Н	Х	AV	42.15	-2.20	39.95	54.00	14.05
4823.77	V	Z	PK	46.64	6.91	53.55	74.00	20.45
4824.03	V	Z	AV	38.05	6.91	44.96	54.00	9.04

Middle Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
199.44	Н	Х	QP	47.78	-11.80	35.98	43.50	7.52
264.73	Н	Х	QP	48.90	-8.50	40.40	46.00	5.60
4874.20	Н	Υ	PK	44.98	7.30	52.28	74.00	21.72
4874.03	Н	Υ	AV	37.26	7.30	44.56	54.00	9.44

Highest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
199.23	Н	Х	QP	45.84	-11.80	34.04	43.50	9.46
265.36	Н	Х	QP	48.53	-8.50	40.03	46.00	5.97
2483.50	Н	Х	PK	53.34	-2.34	51.00	74.00	23.00
2483.50	Н	Х	AV	41.62	-2.34	39.28	54.00	14.72
4924.26	Н	Υ	PK	45.22	7.21	52.43	74.00	21.57
4924.00	Н	Υ	AV	39.22	7.21	46.43	54.00	7.57

Note.

- 1. No other spurious and harmonic emissions were reported greater than listed emissions above table.
- 2. Above listed point data is the worst case data.
- 3. Sample Calculation.

30MHz ~ 25GHz Data(Chain 1 & 802.11b & 1Mbps)

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
199.23	Н	Х	QP	46.68	-11.80	34.88	43.50	8.62
265.36	Н	Х	QP	48.36	-8.50	39.86	46.00	6.14
2382.98	V	Х	PK	53.95	-2.20	51.75	74.00	22.25
2389.55	V	Х	AV	42.57	-2.20	40.37	54.00	13.63
4824.01	Н	Υ	PK	48.97	6.91	55.88	74.00	18.12
4824.06	Н	Υ	AV	44.62	6.91	51.53	54.00	2.47

Middle Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
199.35	Н	Х	QP	46.27	-11.80	34.47	43.50	9.03
265.36	Н	Χ	QP	48.70	-8.50	40.20	46.00	5.80
4874.04	V	Υ	PK	47.61	7.30	54.91	74.00	19.09
4874.02	V	Υ	AV	42.79	7.30	50.09	54.00	3.91

Highest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
199.28	Н	X	QP	47.20	-11.80	35.40	43.50	8.10
265.41	Н	Х	QP	49.15	-8.50	40.65	46.00	5.35
2483.74	V	Х	PK	54.51	-2.34	52.17	74.00	21.83
2483.50	V	Х	AV	44.05	-2.34	41.71	54.00	12.29
4923.35	V	Υ	PK	48.04	7.21	55.25	74.00	18.75
4924.01	V	Y	AV	43.58	7.21	50.79	54.00	3.21

Note.

- 1. No other spurious and harmonic emissions were reported greater than listed emissions above table.
- 2. Above listed point data is the worst case data.
- 3. Sample Calculation.

30MHz ~ 25GHz Data(Chain 0 & 802.11g & 6Mbps)

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
199.24	Н	Х	QP	46.26	-11.80	34.46	43.50	9.04
265.13	Н	Х	QP	48.47	-8.50	39.97	46.00	6.03
2389.01	V	Υ	PK	70.90	-2.20	68.70	74.00	5.30
2390.00	V	Υ	AV	53.56	-2.20	51.36	54.00	2.64
4835.65	V	Z	PK	43.53	6.91	50.44	74.00	23.56
4824.30	V	Z	AV	32.71	6.91	39.62	54.00	14.38

Middle Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
199.34	Н	Х	QP	47.49	-11.80	35.69	43.50	7.81
265.11	Н	Х	QP	48.62	-8.50	40.12	46.00	5.88
4873.25	V	Z	PK	48.13	7.30	55.43	74.00	18.57
4874.00	V	Z	AV	36.27	7.30	43.57	54.00	10.43

Highest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
199.34	Н	Х	QP	46.35	-11.80	34.55	43.50	8.95
265.23	Н	Х	QP	48.60	-8.50	40.10	46.00	5.90
2483.82	Н	Υ	PK	72.54	-2.34	70.20	74.00	3.80
2483.50	Н	Υ	AV	53.03	-2.34	50.69	54.00	3.31
4926.49	V	Z	PK	43.97	7.21	51.18	74.00	22.82
4924.25	V	Z	AV	33.22	7.21	40.43	54.00	13.57

Note.

- 1. No other spurious and harmonic emissions were reported greater than listed emissions above table.
- 2. Above listed point data is the worst case data.
- 3. Sample Calculation.

30MHz ~ 25GHz Data(Chain 1 & 802.11g & 6Mbps)

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
199.33	Н	Х	QP	47.23	-11.80	35.43	43.50	8.07
265.32	Н	Х	QP	49.01	-8.50	40.51	46.00	5.49
2389.64	Н	Х	PK	71.81	-2.20	69.61	74.00	4.39
2385.14	Н	Х	AV	52.31	-2.20	50.11	54.00	3.89
4825.40	V	Y	PK	45.43	6.91	52.34	74.00	21.66
4824.95	V	Υ	AV	33.57	6.91	40.48	54.00	13.52

Middle Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
199.11	Н	Х	QP	47.39	-11.80	35.59	43.50	7.91
264.89	Н	Х	QP	48.54	-8.50	40.04	46.00	5.96
4874.65	V	Υ	PK	51.84	7.30	59.14	74.00	14.86
4874.00	V	Υ	AV	39.28	7.30	46.58	54.00	7.42

Highest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
199.17	Н	Х	QP	47.61	-11.80	35.81	43.50	7.69
265.36	Н	Х	QP	48.97	-8.50	40.47	46.00	5.53
2488.34	Н	Х	PK	73.14	-2.34	70.80	74.00	3.20
2483.50	Н	Х	AV	53.89	-2.34	51.55	54.00	2.45
4924.00	V	Υ	PK	44.47	7.21	51.68	74.00	22.32
4924.15	V	Y	AV	34.00	7.21	41.21	54.00	12.79

Note.

- 1. No other spurious and harmonic emissions were reported greater than listed emissions above table.
- 2. Above listed point data is the worst case data.
- 3. Sample Calculation.

30MHz ~ 25GHz Data(2TX (Chain 0, 1) & 802.11n HT20 & MCS 0)

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
199.17	Н	Χ	QP	47.28	-11.80	35.48	43.50	8.02
265.37	Н	Х	QP	48.65	-8.50	40.15	46.00	5.85
2389.60	V	Υ	PK	73.04	-2.20	70.84	74.00	3.16
2390.00	V	Υ	AV	53.96	-2.20	51.76	54.00	2.24
2485.05	V	Υ	PK	58.02	-2.34	55.68	74.00	18.32
2485.62	V	Υ	AV	49.69	-2.34	47.35	54.00	6.65
4823.00	Η	Υ	PK	45.01	6.91	51.92	74.00	22.08
4824.10	Н	Υ	AV	33.09	6.91	40.00	54.00	14.00

Middle Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)			
199.23	Н	Х	QP	47.36	-11.80	35.56	43.50	7.94			
265.23	Н	Х	QP	48.85	-8.50	40.35	46.00	5.65			
2483.73	V	Υ	PK	61.68	-2.34	59.34	74.00	14.66			
2494.09	V	Υ	AV	46.35	-2.34	44.01	54.00	9.99			
4871.65	Н	Y	PK	51.42	7.30	58.72	74.00	15.28			
4872.65	Н	Υ	AV	38.30	7.30	45.60	54.00	8.40			

Highest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
199.44	Н	Х	QP	46.21	-11.80	34.41	43.50	9.09
265.36	Н	Χ	QP	48.76	-8.50	40.26	46.00	5.74
2381.76	V	Υ	PK	55.88	-2.20	53.68	74.00	20.32
2388.16	V	Υ	AV	46.30	-2.20	44.10	54.00	9.90
2484.24	V	Υ	PK	70.25	-2.34	67.91	74.00	6.09
2483.51	V	Υ	AV	51.99	-2.34	49.65	54.00	4.35
4925.35	Н	Υ	PK	45.76	7.21	52.97	74.00	21.03
4924.15	Н	Υ	AV	34.16	7.21	41.37	54.00	12.63

Note.

- 1. No other spurious and harmonic emissions were reported greater than listed emissions above table.
- 2. Above listed point data is the worst case data.
- 3. Sample Calculation.

 $\begin{aligned} &\text{Margin} = \text{Limit} - \text{Result} & / & \text{Result} = \text{Reading} + \text{T.F} / & \text{T.F} = \text{AF} + \text{CL} - \text{AG} \\ &\text{Where, T.F} = \text{Total Factor,} & \text{AF} = \text{Antenna Factor,} & \text{CL} = \text{Cable Loss,} & \text{AG} = \text{Amplifier Gain} \end{aligned}$

30MHz ~ 25GHz Data(2TX (Chain 0, 1) & 802.11n HT40 & MCS 0)

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
199.27	Н	Х	QP	46.19	-11.80	34.39	43.50	9.11
265.34	Н	Х	QP	48.95	-8.50	40.45	46.00	5.55
2388.96	Н	Z	PK	69.83	-2.20	67.63	74.00	6.37
2390.00	Н	Z	AV	51.35	-2.20	49.15	54.00	4.85
4845.18	Н	Υ	PK	45.84	6.91	52.75	74.00	21.25
4844.03	Н	Υ	AV	34.02	6.91	40.93	54.00	13.07

Middle Channel

	Middle Chairner										
Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)			
199.23	Н	Х	QP	46.25	-11.80	34.45	43.50	9.05			
265.29	Н	Х	QP	48.75	-8.50	40.25	46.00	5.75			
2483.83	V	Υ	PK	72.62	-2.34	70.28	74.00	3.72			
2483.50	V	Y	AV	52.35	-2.34	50.01	54.00	3.99			
4875.68	Н	Y	PK	49.72	7.30	57.02	74.00	16.98			
4874.10	Н	Y	AV	37.16	7.30	44.46	54.00	9.54			

Highest Channel

- mgnesi c	riighest Chaillei										
Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)			
199.44	Н	Х	QP	46.64	-11.80	34.84	43.50	8.66			
265.28	Н	Х	QP	48.69	-8.50	40.19	46.00	5.81			
2484.57	Н	Υ	PK	69.31	-2.34	66.97	74.00	7.03			
2484.80	Н	Y	AV	51.05	-2.34	48.71	54.00	5.29			
4904.36	V	Z	PK	46.27	7.21	53.48	74.00	20.52			
4904.05	V	Z	AV	34.96	7.21	42.17	54.00	11.83			

Note.

- 1. No other spurious and harmonic emissions were reported greater than listed emissions above table.
- 2. Above listed point data is the worst case data.
- 3. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F / T.F = AF + CL - AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain

FCCID: YZP-TWFMB005D 7414C-TWFMB005D ICID:

DRTFCC1207-0336 Report No.:

30MHz ~ 25GHz Data(Chain 0 & 802.11a & 6Mbps)

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
199.44	Н	Х	QP	46.82	-11.80	35.02	43.50	8.48
264.83	Н	Х	QP	48.70	-8.50	40.20	46.00	5.80
11490.85	Н	Υ	PK	49.26	12.73	61.99	74.00	12.01
11489.65	Н	Υ	AV	36.68	12.73	49.41	54.00	4.59

Middle Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
199.37	Н	Х	QP	46.77	-11.80	34.97	43.50	8.53
265.27	Н	Х	QP	48.90	-8.50	40.40	46.00	5.60
11572.20	V	Х	PK	48.51	13.54	62.05	74.00	11.95
11565.65	V	Х	AV	35.16	13.54	48.70	54.00	5.30

Highest Channel

	Trigitoet erialition										
Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)			
199.25	Н	Х	QP	46.75	-11.80	34.95	43.50	8.55			
265.36	Н	Χ	QP	48.94	-8.50	40.44	46.00	5.56			
11651.05	Н	Y	PK	50.49	13.99	64.48	74.00	9.52			
11649.85	Н	Υ	AV	36.13	13.99	50.12	54.00	3.88			

Note.

- 1. No other spurious and harmonic emissions were reported greater than listed emissions above table.
- 2. Above listed point data is the worst case data.
- 3. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F / T.F = AF + CL - AGWhere, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain

Note: The total factor above 10GHz shall be extrapolated to the specified distance using an extrapolation factor of 20dB/decade from 3m to 1.5m.

Distance extrapolation factor = 20 log (3m/1.5m) dB

Above 10GHz T.F = AF + CL - AG - 6.02dB

30MHz ~ 25GHz Data(<u>Chain 1 & 802.11a & 6Mbps</u>)

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
199.10	Н	Х	QP	46.35	-11.80	34.55	43.50	8.95
265.35	Н	Х	QP	48.76	-8.50	40.26	46.00	5.74
11495.20	Н	Υ	PK	55.12	12.73	67.85	74.00	6.15
11489.75	Н	Υ	AV	37.71	12.73	50.44	54.00	3.56

Middle Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
199.17	Н	Х	QP	46.31	-11.80	34.51	43.50	8.99
265.28	Н	Х	QP	49.04	-8.50	40.54	46.00	5.46
11576.10	Н	Y	PK	54.58	13.54	68.12	74.00	5.88
11569.90	Н	Υ	AV	37.50	13.54	51.04	54.00	2.96

Highest Channel

I lightest t	Jiidiiio							
Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
199.33	Н	Х	QP	47.15	-11.80	35.35	43.50	8.15
265.35	Н	Χ	QP	48.59	-8.50	40.09	46.00	5.91
11649.20	Н	Υ	PK	54.60	13.99	68.59	74.00	5.41
11651.05	Н	Υ	AV	37.98	13.99	51.97	54.00	2.03

Note.

- 1. No other spurious and harmonic emissions were reported greater than listed emissions above table.
- 2. Above listed point data is the worst case data.
- 3. Sample Calculation.

 $\begin{aligned} & \text{Margin} = \text{Limit} - \text{Result} & / & \text{Result} = \text{Reading} + \text{T.F} / & \text{T.F} = \text{AF} + \text{CL} - \text{AG} \\ & \text{Where, T.F} = \text{Total Factor,} & \text{AF} = \text{Antenna Factor,} & \text{CL} = \text{Cable Loss,} & \text{AG} = \text{Amplifier Gain} \end{aligned}$

Note: The total factor above 10GHz shall be extrapolated to the specified distance using an extrapolation factor of 20dB/decade from 3m to 1.5m.

Distance extrapolation factor = 20 log (3m/1.5m) dB

Above 10GHz T.F = AF + CL - AG - 6.02dB

30MHz ~ 25GHz Data(2TX (Chain 0, 1) & 802.11n HT20 & MCS 0)

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
199.36	Н	Х	QP	46.75	-11.80	34.95	43.50	8.55
265.35	Н	Х	QP	48.60	-8.50	40.10	46.00	5.90
11492.25	Н	Υ	PK	53.56	12.73	66.29	74.00	7.71
11489.60	Н	Y	AV	38.84	12.73	51.57	54.00	2.43

Middle Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
199.27	Н	Х	QP	46.50	-11.80	34.70	43.50	8.80
265.35	Н	Х	QP	48.64	-8.50	40.14	46.00	5.86
11570.15	Н	Υ	PK	52.83	13.54	66.37	74.00	7.63
11570.05	Н	Υ	AV	37.62	13.54	51.16	54.00	2.84

Highest Channel

- Highest C	- Highest Orlander							
Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
199.26	Н	Х	QP	46.66	-11.80	34.86	43.50	8.64
265.33	Н	Χ	QP	48.78	-8.50	40.28	46.00	5.72
11651.50	Н	Υ	PK	54.30	13.99	68.29	74.00	5.71
11650.30	Н	Y	AV	37.94	13.99	51.93	54.00	2.07

Note.

- 1. No other spurious and harmonic emissions were reported greater than listed emissions above table.
- 2. Above listed point data is the worst case data.
- 3. Sample Calculation.

 $\begin{aligned} & \text{Margin} = \text{Limit} - \text{Result} & / & \text{Result} = \text{Reading} + \text{T.F} / & \text{T.F} = \text{AF} + \text{CL} - \text{AG} \\ & \text{Where, T.F} = \text{Total Factor,} & \text{AF} = \text{Antenna Factor,} & \text{CL} = \text{Cable Loss,} & \text{AG} = \text{Amplifier Gain} \end{aligned}$

Note: The total factor above 10GHz shall be extrapolated to the specified distance using an extrapolation factor of 20dB/decade from 3m to 1.5m.

Distance extrapolation factor = 20 log (3m/1.5m) dB

Above 10GHz T.F = AF + CL - AG - 6.02dB

FCCID: YZP-TWFMB005D 7414C-TWFMB005D ICID:

DRTFCC1207-0336 DEMC1205-00580 Report No.:

30MHz ~ 25GHz Data(2TX (Chain 0, 1) & 802.11n HT40 & MCS 0)

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
199.17	Н	Х	QP	46.18	-11.80	34.38	43.50	9.12
265.29	Н	Х	QP	48.94	-8.50	40.44	46.00	5.56
11510.48	Н	Υ	PK	49.86	12.73	62.59	74.00	11.41
11515.20	Н	Υ	AV	36.14	12.73	48.87	54.00	5.13

Highest Channel

ingreet endine								
Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
199.16	Н	Х	QP	46.36	-11.80	34.56	43.50	8.94
265.24	Н	Χ	QP	48.75	-8.50	40.25	46.00	5.75
11589.35	Н	Υ	PK	51.38	13.99	65.37	74.00	8.63
11590.30	Н	Υ	AV	36.89	13.99	50.88	54.00	3.12

Note.

- 1. No other spurious and harmonic emissions were reported greater than listed emissions above table.
- 2. Above listed point data is the worst case data.
- 3. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F / T.F = AF + CL - AGWhere, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain

Note: The total factor above 10GHz shall be extrapolated to the specified distance using an extrapolation factor of 20dB/decade from 3m to 1.5m. Distance extrapolation factor = 20 log (3m/1.5m) dB Above 10GHz T.F = AF + CL - AG - 6.02dB

8.6 Power-line Conducted Emissions

Test Requirements and limit, §15.207 & RSS-Gen [7.2.2]

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range	Conducted Limit (dBuV)				
(MHz)	Quasi-Peak	Average			
0.15 ~ 0.5	66 to 56 *	56 to 46 *			
0.5 ~ 5	56	46			
5 ~ 30	60	50			

^{*} Decreases with the logarithm of the frequency

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- The measurement results are obtained as described below:
- 4. Detectors Quasi Peak and Average Detector.

RESULT PLOTS

AC Line Conducted Emissions (Graph)

Test Mode: 802.11n HT20 (2.4GHz Band)

AC Line Conducted Emissions (List)

Test Mode: 802.11n HT20 (2.4GHz Band)

```
| Standard | FCC FART.15B | Manufacturer | 16 Innotek | Model | TWFN-20050 | Manufacturer | 16 Innotek | Model | TWFN-20050 | Manufacturer | 16 Innotek | Model | TWFN-20050 | Manufacturer | 17 MIN-20050 | Manufacturer | 18 MIN-20050 | Manufacture
```

AC Line Conducted Emissions (Graph)

Test Mode: 802.11a (5.7GHz Band)

AC Line Conducted Emissions (List)

Test Mode: 802.11a (5.7GHz Band)

```
| Standard | For Fart 15B | Standard | For F
```

DEMC1205-00579 DEMC1205-00580 FCCID: YZP-TWFMB005D
ICID: 7414C-TWFMB005D
Report No.: DRTFCC1207-0336

8.7 Occupied Bandwidth

Test Requirements, RSS-Gen [4.6.1]

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

TEST CONFIGURATION

■ TEST PROCEDURE

The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used given that a peak or peak hold may produce a wider bandwidth than actual.

■ TEST RESULTS: N/T

9. LIST OF TEST EQUIPMENT

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent	E4440A	11/09/30	12/09/30	MY45304199
Spectrum Analyzer	Rohde Schwarz	FSQ26	12/01/09	13/01/09	200445
Digital Multimeter	H.P	34401A	12/03/05	13/03/05	3146A13475, US36122178
Spectrum Analyzer	Agilent	N9020A	12/01/09	13/01/09	MY49100833
Signal Generator	Rohde Schwarz	SMR20	12/03/05	13/03/05	101251
Vector Signal Generator	Rohde Schwarz	SMJ100A	12/01/09	13/01/09	100148
Thermo hygrometer	BODYCOM	BJ5478	12/01/13	13/01/13	090205-2
DC Power Supply	HP	6622A	12/03/05	13/03/05	3448A03760
Wideband Power Sensor	Rohde Schwarz	NRP-Z81	12/06/28	13/06/28	1137.9009.02-101001
High-pass filter	Wainwright	WHNX3.0	11/09/30	12/09/30	9
High-Pass Filter	Wainwright	WHKX8.5	11/09/19	12/09/19	1
BILOG ANTENNA	SCHAFFNER	CBL6112D	10/12/21	12/12/21	22609V
HORN ANT	ETS	3115	12/02/20	13/02/20	6419
HORN ANT	A.H.Systems	SAS-574	11/03/25	13/03/25	154
Attenuator (3dB)	WEINSCHEL	56-3	11/09/30	12/09/30	Y2342
Amplifier (22dB)	H.P	8447E	12/01/09	13/01/09	2945A02865
Amplifier (30dB)	Agilent	8449B	12/03/05	13/03/05	3008A01590
EMI TEST RECEIVER	R&S	ESU	12/03/05	13/03/05	100014
RFI/Field intensity Meter	KYORITSU	KNM-2402	12/07/02	13/07/02	4N-170-3
Spectrum Analyzer	H/P	8591E	12/03/05	13/03/05	3649A05889
SINGLE-PHASE MASTER	NF	4420	11/09/15	12/09/15	3049354420023
Artificial Mains Network	Narda S.T.S. / PMM	PMM L2-16B	12/03/13	13/03/13	000WX20305
10dB Attenuator	Aeroflex/Weinschel	86-10-11	11/09/30	12/09/30	408

DEMC1205-00579 DEMC1205-00580 FCCID: YZP-TWFMB005D
ICID: 7414C-TWFMB005D
Report No.: DRTFCC1207-0336

APPENDIX I

Test set Diagram & path loss information for 6dB Bandwidth & Maximum Peak Conducted Output Power

Offset value information

Frequency	Offset Value	Frequency	Offset Value
(GHz)	(dB)	(GHz)	(dB)
2.412 ~ 2.462	3.03	5.745 ~ 5.825	3.32

Note. 1: The path loss from EUT to Spectrum analyzer was measured and used for test. Path loss (S/A's offset value) = Cable A + Attenuator (ATT)