Gradient and Hessian

Konstantin Tretyakov

1 Gradient

Definition Let $f: \mathbb{R}^n \to \mathbb{R}^m$. We say, that f is differentiable at point \mathbf{x}_0 , if there exists a linear transformation $\mathbf{A}(\mathbf{x}_0)$, such that

$$f(\mathbf{x}_0 + \Delta \mathbf{x}) = f(\mathbf{x}_0) + \mathbf{A}(\mathbf{x}_0) \Delta \mathbf{x} + o(\Delta \mathbf{x})$$

We call a function f differentiable on a set $Q \subset \mathbb{R}^n$, if it is differentiable at each point of Q. If f is differentiable on \mathbb{R}^n , we just say that f is differentiable. The matrix $\mathbf{A}(\mathbf{x}_0)$ is referred to as the *derivative* or *Jacobi matrix* of f (at point \mathbf{x}_0), and is denoted by $\frac{\partial f(\mathbf{x}_0)}{\partial \mathbf{x}}$ or $f'(\mathbf{x}_0)$.

Exercise: What does $o(\Delta \mathbf{x})$ mean in the previous definition and why isn't it $o(\|\Delta \mathbf{x}\|)$?

Theorem 1.1

$$(\mathbf{A}(\mathbf{x}_0))_{ij} = \frac{\partial f_i(\mathbf{x}_0)}{\partial x_i}$$

Exercise*: Prove it.

Hint: First consider $f: \mathbb{R}^n \to \mathbb{R}$ and use the total differential formula $df(\mathbf{x}) = \sum_{i=1}^n \frac{\partial f}{\partial x_i} dx_i$

Theorem 1.2

$$(f(g(\mathbf{x}))' = f'(g(\mathbf{x}))g'(\mathbf{x})$$

Exercise*: Prove it.

Hint: First consider $f: \mathbb{R}^n \to \mathbb{R}$ and use the chain rule $\frac{\partial f \circ g}{\partial x_j}(\mathbf{x}) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(g(\mathbf{x})) \cdot \frac{\partial g_i}{\partial x_j}(\mathbf{x})$.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable. Its derivative (at point \mathbf{x}_0) is then a $1 \times n$ matrix

$$\mathbf{A}(\mathbf{x}_0) = \begin{pmatrix} \frac{\partial f(\mathbf{x}_0)}{\partial x_1} & \frac{\partial f(\mathbf{x}_0)}{\partial x_2} & \dots & \frac{\partial f(\mathbf{x}_0)}{\partial x_n} \end{pmatrix}$$

The vector $\mathbf{A}(\mathbf{x}_0)^T$ is referred to as the *gradient* of f and is denoted as $\operatorname{grad}_{\mathbf{x}} f(\mathbf{x}_0)$ or $\nabla_{\mathbf{x}} f(\mathbf{x}_0)$ or simply $\nabla f(\mathbf{x}_0)$.

Theorem 1.3

$$\nabla (f(\mathbf{x})g(\mathbf{x})) = \nabla f(\mathbf{x})g(\mathbf{x}) + f(\mathbf{x})\nabla g(\mathbf{x})$$
$$\nabla (f(\mathbf{x})/g(\mathbf{x})) = (\nabla f(\mathbf{x})g(\mathbf{x}) - f(\mathbf{x})\nabla g(\mathbf{x}))/g^2(\mathbf{x})$$
$$\nabla (f(g(\mathbf{x}))) = \nabla f(g(\mathbf{x}))\nabla g(\mathbf{x}) = f'(g(\mathbf{x}))\nabla g(\mathbf{x})$$

Exercise: Prove it.

Hint: Use the theorems (1.1) and (1.2).

Exercise*: Convince yourself, that gradient can be regarded as a vector pointing to the direction of the steepest ascent on the surface of the function.

Examples

$$\begin{split} \frac{\partial \mathbf{a}^T \mathbf{x}}{\partial \mathbf{x}} &= \mathbf{a}^T \\ \frac{\partial \mathbf{x}^T \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} &= \mathbf{x}^T (\mathbf{A} + \mathbf{A}^T) \end{split}$$

Exercise: Prove these.

2 Hessian

Definition Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable and $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$ differentiable (i.e. let f be twice differentiable). The derivative of ∇f at point \mathbf{x}_0 is an $n \times n$ matrix $\mathbf{H}(\mathbf{x}_0)$, which is referred to as the *second derivative* or *Hessian* of f (at point \mathbf{x}_0) and is denoted as $\frac{\partial^2 f(\mathbf{x}_0)}{\partial^2 \mathbf{x}}$ or $\nabla^2 f(\mathbf{x}_0)$.

Theorem 2.1

$$(\mathbf{H}(\mathbf{x}_0))_{ij} = \frac{\partial^2 f(\mathbf{x}_0)}{\partial x_i \partial x_j}$$

Exercise: Prove it.

Hint: Statement follows from (1.1).

Theorem 2.2 If partial derivatives $\frac{\partial^2 f}{\partial x_i \partial x_j}$ and $\frac{\partial^2 f}{\partial x_j \partial x_i}$ of function f are continuous at \mathbf{x}_0 , then they are equal.

Thus, Hessian of a sufficiently smooth function is a symmetric matrix.

Theorem 2.3 All eigenvalues of a symmetric matrix are real.

Theorem 2.4 The set of eigenvectors of a symmetric matrix contains an orthonormal basis as a subset.

Exercise*: Find proofs of these theorems somewhere and try to understand them. (e.g. see M. Kilp. Algebra I).

At last, one of the most important results: if a function is twice differentiable, it can be expanded into Taylor's series:

Theorem 2.5

$$f(\mathbf{x}_0 + \Delta \mathbf{x}) = f(\mathbf{x}_0) + \frac{\partial f(\mathbf{x}_0)}{\partial \mathbf{x}} \Delta \mathbf{x} + \frac{1}{2} \Delta \mathbf{x}^T \left(\frac{\partial^2 f(\mathbf{x}_0)}{\partial^2 \mathbf{x}} \right) \Delta \mathbf{x} + o(\|\Delta \mathbf{x}\|^2)$$

Exercise: Prove it.

Hint: Apply the definition of differentiability twice.

The last theorem states, that any sufficiently smooth function, in a sufficiently small neighborhood of \mathbf{x} can be approximated by a second-degree polynomial. It is therefore useful to understand the appearance of a function of the form $f(\mathbf{x}) = c + \mathbf{a}^T \mathbf{x} + \mathbf{x}^T \mathbf{H} \mathbf{x}$, where \mathbf{H} is symmetric.

Exercise: Consider the function $f(\mathbf{x}) = \mathbf{x}^T \mathbf{H} \mathbf{x}$, where $\mathbf{x} \in \mathbb{R}^2$ and \mathbf{H} is symmetric. Let \mathbf{v}_1 and \mathbf{v}_2 be two orthogonal unit eigenvectors of \mathbf{H} . Let the corresponding eigenvalues be λ_1 and λ_2 . Draw the vectors \mathbf{v}_1 , \mathbf{v}_2 on a plane. Examine how function f behaves on the straight lines defined by these vectors, that is, what are the values of the function at points $t\mathbf{v}_1$, $t\mathbf{v}_2$ ($t \in \mathbb{R}$). Do you see that f is either a convex paraboloid or a surface with a "saddle point". What is the role of the values λ_i ?

Exercise: Analyze the appearance of the function $f(\mathbf{x}) = c + \mathbf{a}^T \mathbf{x} + \mathbf{x}^T \mathbf{H} \mathbf{x}$.

3 Notion of a Local Minimum

Let f denote a function $\mathbb{R}^n \to \mathbb{R}$.

Definition Point \mathbf{x}^* is called the *(local) minimum* of f, if there exists a neighborhood $U(\mathbf{x}^*)$ of \mathbf{x}^* , such that $f(\mathbf{x}) \geq f(\mathbf{x}^*)$ $\forall \mathbf{x} \in U(\mathbf{x}^*)$.

Theorem 3.1 (Fermat) Let \mathbf{x}^* be the minimum of f, and let f be differentiable at this point. Then $\nabla f(\mathbf{x}^*) = \mathbf{0}$.

Exercise: Prove it.

In general the converse does not hold, i.e. gradient being zero does not imply a minimum. It holds, however:

Theorem 3.2 If f is a convex function, that is

$$\forall \mathbf{x}, \mathbf{y} \quad f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$$

the condition $\nabla f(\mathbf{x}^*) = \mathbf{0}$ is equivalent to \mathbf{x}^* being the global minimum of f.

Theorem 3.3 Let \mathbf{x}^* be the minimum of f and let f be twice differentiable at this point. Then $\nabla^2 f(\mathbf{x}^*) \geq 0$ (ie the Hessian of f is positive semidefinite at this point).

Theorem 3.4 If f is twice differentiable at point \mathbf{x}^* , $\nabla f(\mathbf{x}^*) = \mathbf{0}$ and $\nabla^2 f(\mathbf{x}^*) > 0$, then \mathbf{x}^* is a minimum of f.

Exercise: Rephrase the last two theorems for the case of $f: \mathbb{R} \to \mathbb{R}$.