Network Security: Private Communication in a Non-Private World

Chapter 1: Introduction

- **Secure communication**: Focus on how to communicate securely over insecure mediums.
- **Disclaimer**: Authors' opinions may not reflect their employers. Mentions of commercial products are for information only.
- **Design insights**: Offers insights that go beyond basic specifications.

Chapter 2: Introduction to Cryptography

- Purpose: Cryptography ensures:
 - Confidentiality (keeping communication private).
 - **Integrity** (ensuring messages are unaltered).
 - Authentication (verifying identity).
- Types of Cryptographic Functions:
 - **Hash functions**: Produce fixed-length outputs, hard to reverse.
 - **Secret key functions**: Same key for encryption and decryption.
 - **Public key functions**: Uses separate keys for encryption (public) and decryption (private); also supports digital signatures.
- Cryptographic Attacks:
 - Ciphertext-only attack.
 - Known-plaintext attack.
 - Chosen-plaintext attack.

Chapter 3: Secret Key Cryptography

- Block ciphers: Encrypt fixed-length blocks of plaintext.
- **Key/block size**: Must be large enough to prevent brute-force attacks.
- **Practical ciphers**: Often use multiple rounds of simpler ciphers.
- **Example**: DES (Data Encryption Standard) as a common block cipher.

Chapter 4: Modes of Operation

- Encryption modes:
 - ECB (Electronic Code Book): Simple but insecure.
 - CBC (Cipher Block Chaining): Adds security by chaining blocks.
 - **CTR (Counter mode)**: Encrypts a counter, XORs it with plaintext.
 - **XTS mode**: Designed for encrypting disk storage.
- Length preservation: Ciphertext stealing.
- Message Authentication Codes (MACs):
 - **CBC-MAC**: Uses the last block of CBC encryption.
 - **CMAC**: A more secure variant of CBC-MAC.
 - **GCM (Galois/Counter Mode)**: Provides both encryption and authentication.

Chapter 5: Cryptographic Hashes

- Hash functions: Applications include:
 - Password hashing.
 - Message fingerprinting.
 - Digital signatures.
 - Data shorthand.
- **Key property**: Collision resistance.
- **Efficient structures**: Hash trees (Merkle trees).
- **Attack**: Append attack (vulnerability in hash constructions).
- **Examples**: SHA-3 and SHAKE (secure hash functions).

Chapter 6: First-Generation Public Key Algorithms

- **RSA**: Widely used for encryption and digital signatures.
- Other algorithms:
 - **EIGamal**, **DSA**, **ECDSA** (mainly for digital signatures).
 - Diffie-Hellman, ECDH (key exchange).

- **PKCS**: Standards for encoding RSA keys, signatures, and messages.

Chapter 7: Quantum Computing

- **Impact**: Quantum computers could break RSA and algorithms based on the discrete logarithm problem.

Chapter 8: Post-Quantum Cryptography

- **Resistant algorithms**: Designed to resist quantum attacks.
 - Hash-based signatures.
 - Lattice-based cryptography: Based on the difficulty of finding short lattice vectors.
 - Code-based cryptography: Utilizes error-correcting codes.
 - Multivariate cryptography: Based on polynomial equations.

Chapter 9: Authentication of People

- Common methods:
 - Password-based authentication (vulnerable to attacks).
 - Strong password protocols: Protect even if the server's database is compromised.
- Example: Lamport's hash (one-time password scheme).

Chapter 10: Trusted Intermediaries

- **Kerberos**: A trusted third-party authentication system.
- Public Key Infrastructure (PKI): Uses certificates to establish trust relationships.

Chapter 11: Communication Session Establishment

- Secure session protocols:
 - One-way/mutual authentication: Achieved using shared secrets or public keys.
 - **Session keys**: Protect data during communication.

- **Perfect forward secrecy (PFS)**: Ensures past communication is secure even if long-term secrets are compromised.

Chapter 12: IPsec

- **IPsec suite**: Secures IP communications.
 - **IKE (Internet Key Exchange)**: Establishes security associations and keys.
 - **AH (Authentication Header)**: Provides integrity protection.
 - **ESP (Encapsulating Security Payload)**: Provides encryption and optional integrity protection.

Chapter 13: SSL/TLS and SSH

- **SSL/TLS**: Protocol for securing web traffic.
- **SSH**: Protocol for secure remote login and file transfer.

Chapter 14: Electronic Mail Security

- **Email security**: Ensures confidentiality, integrity, and authenticity.
 - **Methods**: Digital signatures and encryption.

Chapter 15: Bitcoin

- **Bitcoin**: Cryptocurrency using blockchain to record transactions.
 - **Mining**: Verifies and adds transactions to the blockchain.

Chapter 16: Cryptographic Tricks

- Cryptographic techniques:
 - Secret sharing.
 - Zero-knowledge proofs.
 - Oblivious transfer.

Chapter 17: Folklore

Common practices:

- **Key rollover**: Limits the impact of compromised keys.
- **Encryption + integrity**: Always combine encryption with integrity protection.