TD2

22 février 2024

Exercice 1

On note par

$$\mathcal{S}_{++}^n = \{ A \in \mathcal{S}_n : \ x^T A x > 0 : \text{ pour tout } x \in \mathbb{R}^n \setminus \{0\} \}$$

l'ensemble des matrice symétriques définies positives et

$$\mathcal{S}^n_+ = \{ A \in \mathcal{S}^n : x^T A x \ge 0 : \text{ pour tout } x \in \mathbb{R}^n \}$$

l'ensemble des matrice symétriques semi-définies positives.

- Montrer que S^n_+ et S^n_{++} sont convexes. Montrer que S^n_+ est un cône, i.e., pour tout $\lambda \geq 0$ et $A \in S^n_+$, on a $\lambda A \in S^n_+$.
- Montrer que \mathcal{S}^n_+ est fermé. Qu'elle est l'adhérence de \mathcal{S}^n_{++} ?

Exercice 2

Montrer que les ensembles suivants sont convexes :

- 1. $L = \{x + td : t \in \mathbb{R}\}$ avec $x, d \in \mathbb{R}^n$ et $d \neq 0$.
- 2. Les boules ouvertes et fermées : B(a,r), $B_f(a,r)$ avec $a \in \mathbb{R}^n$, r > 0.
- 3. $H = \{x \in \mathbb{R}^n : a^T x = b\}, a \in \mathbb{R}^n, b \in \mathbb{R}.$
- 4. $H^{-} = \{x \in \mathbb{R}^{n} : a^{T}x \leq b\}, a \in \mathbb{R}^{n}, b \in \mathbb{R}.$

Exercice 3

Donner le domaine où les fonctions suivantes sont convexes :

- 1. $f(x,y) = x + 2y + y^2$.
- 2. $f(x,y) = y^2/x$.
- 3. $f(x) = x \log(x)$.

Exercice 4

On appelle fonction support ou d'appui de $S \subset \mathbb{R}^n$ la fonction

$$\sigma_S(x) = \sup_{y \in S} x^T y \text{ pour } x \in \mathbb{R}^n.$$

- 1. Montrer que σ_S est convexe.
- 2. Calculer σ_S pour les ensembles suivants

(a)
$$S = \{a_1, ..., a_k\}$$
 avec $a_1, ..., a_k \in \mathbb{R}^n$.

- (b) $S = \mathbb{R}^n_+$.
- (c) $S = B_f(0,1) = \{x \in \mathbb{R}^n : ||x|| \le 1\}.$

Exercice 5

Soit $f: \mathbb{R}^n \to \overline{\mathbb{R}}$. On définit la conjuguée de f par

$$f^*(x) = \sup_{y} y^T x - f(y).$$

Montrer que f^* est convexe. Calculer f^* pour :

- 1. $f = \delta_C$, avec C un ensemble non vide de \mathbb{R}^n .
- 2. $f: x \in \mathbb{R} \mapsto e^x$.
- 3. $f: x \in \mathbb{R} \mapsto \frac{1}{p}|x|^p$ avec p > 1.

Exercice 6

Soient $S, T \subset \mathbb{R}^n$. Montrer que :

- Si $S \subset T$ alors $Conv(S) \subset Conv(T)$.
- Conv(S + T) = Conv(S) + Conv(T)
- Conv(Conv(S)) = Conv(S).

Exercice 7

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction différentiable telle que sont gradient $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$ est L-Lipschitz, i.e.,

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$$
, pour tout $x, y \in \mathbb{R}^n$.

1. Montrer que pour tout $x, y \in \mathbb{R}^n$:

$$f(y) - f(x) = \int_0^1 (y - x)^T \nabla f(x + t(y - x)) dt.$$

2. En déduire que pour tout $x, y \in \mathbb{R}^n$:

$$f(y) \le f(x) + (y - x)^T \nabla f(y) + \frac{L}{2} ||x - y||^2.$$

3. Appliquer l'inégalité précédente pour $y=x-\gamma\nabla f(x)$ avec $\gamma<2/L$.