Методы частичного обучения (semi-supervised learning)

K.B.Воронцов vokov@forecsys.ru

Этот курс доступен на странице вики-ресурса http://www.MachineLearning.ru/wiki «Машинное обучение (курс лекций, К.В.Воронцов)»

28 октября 2015

Постановка задачи частичного обучения

Дано:

множество объектов X, множество классов Y; $X^{\ell} = \{x_1, \dots, x_{\ell}\}$ — размеченная выборка (labeled data); $\{y_1, \dots, y_{\ell}\}$ $X^k = \{x_{\ell+1}, \dots, x_{\ell+k}\}$ — неразмеченная выборка (unlabeled data).

Два варианта постановки задачи:

- Частичное обучение (semi-supervised learning): построить алгоритм классификации $a\colon X \to Y$.
- Трансдуктивное обучение (transductive learning): зная все $\{x_{\ell+1},\ldots,x_{\ell+k}\}$, получить метки $\{y_{\ell+1},\ldots,y_{\ell+k}\}$.

Типичные приложения:

классификация и каталогизация текстов, изображений, и т.п.

Содержание: методы кластеризации с частичным обучением

- 1 Простые эвристические методы
 - Особенности задачи SSL
 - Метод self-training
 - Композиции алгоритмов классификации
- Модификации методов кластеризации
 - Оптимизационный подход
 - Кластеризация с ограничениями
 - Иерархическая кластеризация с ограничениями
- Оправо праводни правод праводни пра
 - Трансдуктивный SVM
 - Логистическая регрессия
 - Expectation Regularization

SSL не сводится к классификации

Пример 1. плотности классов, восстановленные:

по размеченным данным X^ℓ

по полным данным $X^{\ell+k}$

SSL не сводится к классификации

Пример 2. Методы классификации не учитывают кластерную структуру неразмеченных данных

Однако и к кластеризации SSL также не сводится

Пример 3. Методы кластеризации не учитывают приоритетность разметки.

Метод self-training (1965-1970)

Пусть
$$\mu\colon X^\ell\to a$$
 — произвольный метод обучения; классификаторы имеют вид $a(x)=rgmax_{y\in Y}\Gamma_y(x)$; Псевдоотступ — степень уверенности классификации $a_i=a(x_i)$:

$$M_i(a) = \Gamma_{a_i}(x_i) - \max_{y \in Y \setminus a_i} \Gamma_y(x_i).$$

Алгоритм self-training — обёртка (wrapper) над методом μ :

- 1: $Z := X^{\ell}$:
- 2: **пока** $|Z| < \ell + k$
- 3: $a := \mu(Z)$;
- 4: $\Delta := \{x_i \in X^k \setminus Z \mid M_i(a) \geqslant M_0\};$
- 5: $y_i := a(x_i)$ для всех $x_i \in \Delta$;
- 6: $Z := Z \cup \Delta$;

 M_0 можно определять, например, из условия $|\Delta|=0.05\,k$

Метод co-training (Blum, Mitchell, 1998)

Пусть $\mu_1\colon X^\ell \to a_1, \;\; \mu_2\colon X^\ell \to a_2$ — два существенно различных метода обучения, использующих

- либо разные наборы признаков;
- либо разные парадигмы обучения (inductive bias);
- либо разные источники данных $X_1^{\ell_1}$, $X_2^{\ell_2}$.

1:
$$Z_1 := X_1^{\ell_1}; \quad Z_2 := X_2^{\ell_2};$$

2: пока
$$|Z_1 \cup Z_2| < \ell + k$$

3:
$$a_1 := \mu_1(Z_1); \ \Delta_1 := \{x_i \in X^k \setminus Z_1 \setminus Z_2 \mid M_i(a_1) \geqslant M_{01}\};$$

4:
$$y_i := a(x_i)$$
 для всех $x_i \in \Delta_1$;

5:
$$Z_2 := Z_2 \cup \Delta_1$$
;

6:
$$a_2 := \mu_2(Z_2); \ \Delta_2 := \{x_i \in X^k \setminus Z_1 \setminus Z_2 \mid M_i(a_2) \geqslant M_{02}\};$$

7:
$$y_i := a(x_i)$$
 для всех $x_i \in \Delta_2$;

8:
$$Z_1 := Z_1 \cup \Delta_2$$
;

Метод co-learning (deSa, 1993)

Пусть $\mu_t\colon X^\ell o a_t$ — разные методы обучения, $t=1,\dots,T$.

Алгоритм co-learning — это self-training для композиции — простого голосования базовых алгоритмов a_1, \ldots, a_T :

$$a(x) = \arg \max_{y \in Y} \Gamma_y(x), \quad \Gamma_y(x_i) = \sum_{t=1}^{I} [a_t(x_i) = y].$$

тогда $M_i(a)$ — степень уверенности классификации $a(x_i)$.

- 1: $Z := X^{\ell}$;
- 2: **пока** $|Z| < \ell + k$
- 3: $a := \mu(Z)$;
- 4: $\Delta := \{x_i \in X^k \setminus Z \mid M_i(a) \geqslant M_0\};$
- 5: $y_i := a(x_i)$ для всех $x_i \in \Delta$;
- 6: $Z := Z \cup \Delta$:

Кластеризация как задача дискретной оптимизации

Пусть $\rho(x,x')$ — функция расстояния между объектами. Веса на парах объектов (близости): $w_{ij} = \exp(-\beta \rho(x_i,x_j))$, где β — параметр.

Задача кластеризации:

$$\sum_{i=1}^{\ell+k} \sum_{j=i+1}^{\ell+k} w_{ij} \big[a_i \neq a_j \big] \to \min_{\{a_i \in Y\}}.$$

Задача частичного обучения:

$$\sum_{i=1}^{\ell+k} \sum_{j=i+1}^{\ell+k} w_{ij} \big[a_i \neq a_j \big] + \lambda \sum_{i=1}^{\ell} \big[a_i \neq y_i \big] \to \min_{\{a_i \in Y\}}.$$

где λ — ещё один параметр.

Алгоритм КНП: кластеризация

Графовый алгоритм КНП (кратчайший незамкнутый путь)

- 1: Найти пару вершин $(x_i, x_j) \in X^{\ell+k}$ с наименьшим $\rho(x_i, y_j)$ и соединить их ребром;
- 2: пока в выборке остаются изолированные точки
- найти изолированную точку,
 ближайшую к некоторой неизолированной;
- 4: соединить эти две точки ребром;
- 5: удалить K-1 самых длинных рёбер;

Задача частичного обучения: земенить только шаг 5...

Алгоритм КНП: частичное обучение

Графовый алгоритм КНП (кратчайший незамкнутый путь)

- 1: Найти пару вершин $(x_i, x_j) \in X^{\ell+k}$ с наименьшим $\rho(x_i, y_j)$ и соединить их ребром;
- 2: пока в выборке остаются изолированные точки
- найти изолированную точку,
 ближайшую к некоторой неизолированной;
- 4: соединить эти две точки ребром;
- 5: $\frac{1}{9}$ удалить K-1 самых длинных рёбер;
- 6: пока есть путь между двумя вершинами разных классов
- 7: удалить самое длинное ребро на этом пути.

Метод k-средних: кластеризация

- 1: начальное приближение центров μ_y , $y \in Y$;
- 2: повторять
- 3: **Е-шаг:**

отнести каждый x_i к ближайшему центру:

$$y_i := \underset{y \in Y}{\operatorname{arg \, min}} \, \rho(x_i, \mu_y), \quad i = 1, \dots, \ell + k;$$

4: М-шаг:

вычислить новые положения центров:

$$\mu_y := rac{\sum\limits_{i=1}^{\ell+k} \left[y_i \! = \! y
ight] x_i}{\sum\limits_{i=1}^{\ell+k} \left[y_i \! = \! y
ight]},$$
 для всех $y \in Y$;

5: **пока** y_i не перестанут изменяться;

Метод k-средних: частичное обучение

- 1: начальное приближение центров μ_y , $y \in Y$;
- 2: повторять
- 3: **Е-шаг:**

отнести каждый $x_i \in X^k$ к ближайшему центру:

$$y_i := \underset{y \in Y}{\operatorname{arg \, min}} \, \rho(x_i, \mu_y), \quad i = \ell + 1, \dots, \ell + k;$$

4: М-шаг:

вычислить новые положения центров:

$$\mu_y := rac{\sum\limits_{i=1}^{\ell+k} \left[y_i = y
ight] x_i}{\sum\limits_{i=1}^{\ell+k} \left[y_i = y
ight]},$$
 для всех $y \in Y$;

5: **пока** y_i не перестанут изменяться;

Алгоритм Ланса-Уильямса: кластеризация

Алгоритм иерархической кластеризации (Ланс, Уильямс, 1967)

- 1: $C_1 := \big\{\{x_1\}, \dots, \{x_{\ell+k}\}\big\}$ все кластеры 1-элементные; $R_{\{x_i\}\{x_j\}} := \rho(x_i, x_j)$ расстояния между ними;
- 2: для всех $t=2,\ldots,\ell+k$ (t номер итерации):
- 3: найти в C_{t-1} пару кластеров (U, V) с минимальным R_{UV} ;
- 4: слить их в один кластер:
 - $W := U \cup V$;

$$C_t := C_{t-1} \cup \{W\} \setminus \{U, V\};$$

- 5: для всех $S \in C_t$
- 6: вычислить R_{WS} по формуле Ланса-Уильямса:

$$R_{WS} := \alpha_U R_{US} + \alpha_V R_{VS} + \beta R_{UV} + \gamma |R_{US} - R_{VS}|;$$

Алгоритм Ланса-Уильямса: частичное обучение

Алгоритм иерархической кластеризации (Ланс, Уильямс, 1967)

- 1: $C_1 := \{\{x_1\}, \dots, \{x_{\ell+k}\}\}$ все кластеры 1-элементные; $R_{\{x_i\}\{x_j\}} := \rho(x_i, x_j)$ расстояния между ними;
- 2: для всех $t=2,\dots,\ell+k$ (t номер итерации):
- 3: найти в C_{t-1} пару кластеров (U,V) с минимальным R_{UV} , при условии, что в $U\cup V$ нет объектов с разными метками;
- 4: слить их в один кластер:

$$W := U \cup V$$
;

$$C_t := C_{t-1} \cup \{W\} \setminus \{U, V\};$$

- 5: для всех $S \in C_t$
- 6: вычислить R_{WS} по формуле Ланса-Уильямса:

$$R_{WS} := \alpha_U R_{US} + \alpha_V R_{VS} + \beta R_{UV} + \gamma |R_{US} - R_{VS}|;$$

SVM: классификация

Линейный классификатор на два класса $Y=\{-1,1\}$:

$$a(x) = sign(\langle w, x \rangle - w_0), \quad w, x \in \mathbb{R}^n, \ w_0 \in \mathbb{R}.$$

Отступ объекта x_i :

$$M_i(w, w_0) = (\langle w, x_i \rangle - w_0)y_i.$$

Задача обучения весов w, w_0 по размеченной выборке:

$$Q(w, w_0) = \sum_{i=1}^{\ell} (1 - M_i(w, w_0))_+ + \frac{1}{2C} ||w||^2 \rightarrow \min_{w, w_0}.$$

Функция $\mathscr{L}(M)=(1-M)_+$ штрафует за уменьшение отступа.

Идея!

Функция $\mathscr{L}(M) = ig(1 - |M|ig)_+$ штрафует за попадание объекта внутрь разделяющей полосы.

Функция потерь для трансдуктивного SVM

Функция потерь $\mathscr{L}(M) = \begin{pmatrix} 1 - |M| \end{pmatrix}_+$ штрафует за попадание объекта внутрь разделяющей полосы.

Transductive SVM: частичное обучение

Обучение весов w, w_0 по частично размеченной выборке:

$$Q(w, w_0) = \sum_{i=1}^{\ell} (1 - M_i(w, w_0))_+ + \frac{1}{2C} ||w||^2 +$$

$$+ \gamma \sum_{i=\ell+1}^{\ell+k} (1 - |M_i(w, w_0)|)_+ \rightarrow \min_{w, w_0}.$$

Достоинства и недостатки TSVM:

- ⊕ как и в обычном SVM, можно использовать ядра;
- 🕀 имеются эффективные реализации для больших данных;
- \varTheta решение неустойчиво, если нет области разреженности;
- igoplus требуется настройка двух параметров C, γ ;

Sindhwani, Keerthi. Large scale semisupervised linear SVMs. SIGIR 2006.

Логистическая регрессия: классификация на 2 класса

Линейный классификатор на два класса $Y = \{-1, 1\}$:

$$a(x) = \operatorname{sign}\langle w, x \rangle, \quad x, w \in \mathbb{R}^n.$$

Вероятность того, что объект x_i относится к классу y:

$$P(y|x_i, w) = \frac{1}{1 + \exp(-\langle w, x_i \rangle y)}.$$

Задача максимизации регуляризованного правдоподобия:

$$Q(w) = \sum_{i=1}^{\ell} \log P(y_i|x_i, w) - \frac{1}{2C} ||w||^2 \to \max_{w},$$

${\cal N}$ огистическая регрессия: классификация при произвольном Y

Линейный классификатор при произвольном числе классов |Y|:

$$a(x) = \arg\max_{y \in Y} \langle w_y, x \rangle, \quad x, w_y \in \mathbb{R}^n, \quad w \equiv (w_y)_{y \in Y}.$$

Вероятность того, что объект x_i относится к классу y:

$$P(y|x_i, w) = \frac{\exp\langle w_y, x_i \rangle}{\sum_{c \in Y} \exp\langle w_c, x_i \rangle}.$$

Задача максимизации регуляризованного правдоподобия:

$$Q(w) = \sum_{i=1}^{\ell} \log P(y_i|x_i, w) - \frac{1}{2C} ||w||^2 \to \max_{w},$$

Логистическая регрессия: частичное обучение

Теперь учтём неразмеченные данные $X^k = \{x_{\ell+1}, \dots, x_{\ell+k}\}$. Пусть $b_j(x)$ — бинарные признаки, $j=1,\dots,m$.

Оценим вероятности $P(y|b_j(x)=1)$ двумя способами:

1) эмпирическая оценка по размеченным данным X^{ℓ} :

$$p_{j}(y) = \frac{\sum_{i=1}^{\ell} b_{j}(x_{i})[y_{i} = y]}{\sum_{i=1}^{\ell} b_{j}(x_{i})};$$

2) оценка по неразмеченным данным X^k и линейной модели w:

$$p_j(y, w) = \frac{\sum_{i=\ell+1}^{\ell+k} b_j(x_i) P(y|x_i, w)}{\sum_{i=\ell+1}^{\ell+k} b_j(x_i)}.$$

Будем минимизировать расстояние между $p_j(y)$ и $p_j(y,w)$.

Как оценить расстояние между двумя распределениями?

Пусть p(y) и q(y) — два дискретных распределения, $y \in Y$.

Проблема: малые различия в «хвостах» распределений могут приводить к существенным различиям статистических свойств.

$$E^2(p,q) = \sum_y ig(p(y) - q(y)ig)^2$$
 — неадекватная мера расстояния;

$$X^{2}(p,q) = \sum_{y} \frac{ig(p(y) - q(y)ig)^{2}}{q(y)} - ext{статистика хи-квадрат};$$

$$H^2(p,q)=rac{1}{2}\sum_{y}ig(\sqrt{p(y)}-\sqrt{q(y)}ig)^2$$
 — расстояние Хелингера;

$$\mathsf{KL}(p\|q) = \sum_y p(y) \log \frac{p(y)}{q(y)}$$
 — дивергенция Кульбака—Лейблера.

KL связана с принципом максимума правдоподобия

Свойства дивергенции Кульбака-Лейблера

KL-дивергенция: KL
$$(p||q) = \sum_{y} p(y) \log \frac{p(y)}{q(y)}$$

- 1. $KL(p||q) \ge 0$; $KL(p||q) = 0 \Leftrightarrow p = q$;
- 2. Если p(y) эмпирическое распределение, $q(y;\alpha)$ параметрическая модель, то минимизация KL эквивалентна максимизации правдоподобия:

$$\mathsf{KL}(p\|q(\alpha)) = \sum_{y} p(y) \ln \frac{p(y)}{q(y;\alpha)} \to \min_{\alpha} \quad \Longleftrightarrow \quad \sum_{y} p(y) \ln q(y;\alpha) \to \max_{\alpha}.$$

3. Если $\mathsf{KL}(p\|q) < \mathsf{KL}(q\|p)$, то p сильнее вложено в q, чем q в p:

Построение функционала качества

Kросс-энтропия — мера согласованности двух оценок, $p_j(y)$ и $p_j(y,w)$, одной и той же вероятности $P(y|b_j(x)=1)$: $H_j(w)=\sum p_j(y)\log p_j(y,w) o \max_w$

(максимум достигается при $p_j(y) \equiv p_j(y,w)$).

Добавим суммарную согласованность по всем *т* признакам к функционалу регуляризованного правдоподобия:

$$Q(w) = \sum_{i=1}^{\ell} \log P(y_i|x_i, w) - \frac{1}{2C} \sum_{y \in Y} ||w_y||^2 +$$

$$+ \gamma \sum_{j=1}^{m} \sum_{y \in Y} p_j(y) \log \left(\frac{\sum_{i=\ell+1}^{\ell+k} b_j(x_i) P(y|x_i, w)}{\sum_{i=\ell+1}^{\ell+k} b_j(x_i)} \right) \rightarrow \max_{w}$$

Замечания про метод XR (Expectation Regularization)

- lacktriangledown Оптимизация Q(w) методом стохастического градиента.
- \bigcirc Возможные варианты задания переменных b_j :
 - $b_j(x) \equiv 1$, тогда $P(y|b_j(x)=1)$ априорная вероятность класса y (label regularization) хорошо подходит для задач с несбалансированными классами;
 - ② $b_j(x) = [$ термин j содержится в тексте x] для задач классификации и каталогизации текстов.
- ullet XR слабо чувствителен к выбору C и γ .
- lacktriangledown XR очень устойчив к погрешностям оценивания $p_j(y)$.
- $oldsymbol{\mathfrak{g}}$ XR не требователен к числу размеченных объектов $\ell.$
- XR хорошо подходит для категоризации текстов.
- ХК показывает в экспериментах очень высокую точность.

Mann, McCallum. Simple, robust, scalable semi-supervised learning via expectation regularization. ICML 2007.

Резюме в конце лекции

- Задача SSL занимает промежуточное положение между классификацией и кластеризацией, но не сводится к ним.
- Простые методы-обёртки требуют многократного обучения, что вычислительно неэффективно.
- Методы кластеризации легко адаптируются к SSL путём введения ограничений (constrained clustering), но, как правило, вычислительно трудоёмки.
- Адаптация методов классификации реализуется сложнее, но приводит к более эффективным методам.
- Expectation Regularization быстрый и точный метод, позволяющий учитывать дополнительную информацию.