VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta informačních technologií

ELEKTRONIKA PRO INFORMAČNÍ TECHNOLOGIE 2016/2017

Semestrální projekt

Stanovte napětí U_{R8} a proud I_{R8} . Použijte metodu postupného zjednodušování obvodu.

sk.	$U_1[V]$	$U_2[V]$	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4[\Omega]$	$R_5[\Omega]$	$R_6[\Omega]$	$R_7[\Omega]$	$R_8[\Omega]$
D	105	85	420	980	330	280	310	710	240	200

Spočítáme souhrné napětí zdrojů

$$U = U_1 + U_2 = 105 + 85 = \underline{190V}$$

Transkonfigurujeme

Spočítáme sériovou kombinaci R_{B4} a R_{C5}

$$R_{B4} = R_B + R_4 = 80.1136 + 280 = \underline{360.1156\Omega}$$

 $R_{C5} = R_5 + R_C = 186.9364 + 310 = \underline{496.9864\Omega}$

Spočítáme paralelní kombinaci R_{B4} a R_{C5}

$$R_{B4C5} = \frac{R_{B4} * R_{C5}}{R_{B4} + R_{C5}} = \frac{360.1156 * 496.9364}{360.1456 + 469.9364} = \underline{208.8024\Omega}$$

Spočítáme celkový odpor horní větvě obvodu

$$R_{AB4C5} = R_A + R_{B4C5} = 237.919 + 208.8024 = \underline{446.7214\Omega}$$

Spočítáme paralelní kombinaci R_7 a R_8

$$R_{78} = \frac{R_7 * R_8}{R_7 + R_8} = \frac{240 * 200}{240 + 200} = \underline{109.0909\Omega}$$

Celková rezistence spodní větve obvodu

$$R_{678} = R_6 + R_{78} = 710 + 109.0909 = \underline{819.0909\Omega}$$

Spočítáme R_{EKV}

 $R_{EKV} = R_{AB4C5} + R_{678} = 446.7214 + 819.0909 = \underline{1265.8132\Omega}$

Spočítáme celkový proud obvodem

$$I = \frac{U}{R_{EKV}} = \frac{190}{1265.8123} = \underline{0.1501A}$$

Spočítáme úbytek na napětí U_{R78} na paralelním zapojení R_7 a R_8

$$U_{R78} = I * R_{78} = 0.1501 * 109.0909 = \underline{16.3745V}$$

Vzhledem k charaktru paralelního zapojení dvou rezistorů je možno I_{R8} vypočítat pomocí vzorce

$$I_{R8} = \frac{U_{R78}}{R_8} = \frac{16.3745}{200} = \underline{0.08187A}$$

Vzhledem k charaktru paralelního zapojení dvou rezistorů je možno U_{R8} položit rovno U_{R78}

$$U_{R8} = U_{R78} = \underline{16.3745V}$$

Stanovte napětí U_{R4} a proud I_{R4} . Použijte metody Thevéninovy věty.

sk.	U[V]	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4[\Omega]$	$R_5[\Omega]$
В	100	310	610	220	570	200

Podle Thevéninova teorému určíme vzorce pro náš obvod.

$$I_{R4} = \frac{U_i}{R_i + R_4}$$

Nejdříve vypočteme R_i . Zkratujeme napětový zdroj U_1 a odpojíme rezistor R_4 . Zjednodušování obvodu:

$$R_{12} = \frac{R_1 * R_2}{R_1 + R_2} = \frac{310 * 610}{310 + 610} = \underline{205.5434\Omega}$$

$$R_{125} = R_{12} + R_5 = 205.5434 + 200 = \underline{405.5354\Omega}$$

$$R_{1253} = \frac{R_{125} * R_3}{R_{125} + R_3} = \frac{405.5354 * 200}{405.5354 + 220} = \underline{142.6272\Omega}$$

Ze schémat již vyplývá, že R_{1235} je rovno R_i .

$$R_{1253} = R_i$$

Výpočet U_i pomocí smyčkových proudů. Pomocí II.KZ sestavíme se rovnice pro smyčky I_A a I_B .

$$I_A: R_1I_A + R_2(I_A - I_B) - U_1 = 0$$

 $I_B: R_2(I_B - I_A) + R_3I_B + R_5I_B = 0$

Převedeme rovnice do vhodného tvaru pro další výpočty

$$I_A(R_1 + R_2) - I_B R_2 = U_1$$
$$I_B(R_2 + R_3 + R_5) - I_A R_2 = 0$$

Vyjádříme z první rovnice I_A

$$I_A(R_1 + R_2) - I_B R_2 = U_1$$

$$I_A(R_1 + R_2) = U_1 + I_B R_2$$

$$I_A = \frac{U_1 + I_B R_2}{R_1 + R_2}$$

Dosadíme do druhé rovnice (I_B)

$$I_B(R_2 + R_3 + R_5) - I_A R_2 = 0$$

$$I_B(1030) - 610(\frac{100 + 610I_B}{920}) = 0$$

$$I_B(1030) - (\frac{61000 + 372100I_B}{920}) = 0$$

$$I_B(1030) - 404.4562I_B - 66.3043 = 0$$

$$1030I_B - 404.4562I_B = 66.3043$$

$$625.5443I_B = 66.3043$$

$$I_B = \frac{66.3043}{652.4443} = \underline{0.1059A}$$

Dosadíme vypočtenou hodnotu I_B do první rovnice

$$I_A = \frac{U_1 + I_B R_2}{R_1 + R_2}$$

$$I_A = \frac{100 + 610 * 0.10599}{920}$$

$$I_A = \underline{0.1789A}$$

Pomocí I_B můžeme již jednoduše dopočítat U_i

$$U_i = U_{R3} = R_3 * I_B = 220 * 0.1059 = 23.3178V$$

Nyní pouze dosadíme do námi vytvořeného vzorce na začátku příkladu a dostaneme hodnotu I_{R4}

$$I_{R4} = \frac{U_i}{R_i + R_4} = \frac{23.3175}{142.6272 + 570} = \underline{0.03272A}$$

Závěrem z hodnoty I_{R4} vypočteme U_{R4} .

$$U_{R4} = I_{R4} * R_4 = 0.03272 * 570 = \underline{18.6504V}$$

Stanovte napětí U_{R4} a proud I_{R4} . Použijte metodu uzlových napětí (U_A, U_B, U_C) .

								$R_5[\Omega]$
F	145	0.75	0.85	48	44	53	36	25

Napětový zdroj U_1 převedeme na proudový zdroj a označíme ho I_3 .

$$I_3 = \frac{U}{R_5} = \frac{145}{25} = \underline{5.8A}$$

Všechny hodnoty rezistorů převedeme na vodivosti G.

$$G_{1} = \frac{1}{R_{1}} = \frac{1}{48} = \underline{0.02083S}$$

$$G_{2} = \frac{1}{R_{1}} = \frac{1}{44} = \underline{0.02272S}$$

$$G_{3} = \frac{1}{R_{1}} = \frac{1}{53} = \underline{0.01886S}$$

$$G_{4} = \frac{1}{R_{1}} = \frac{1}{36} = \underline{0.02777S}$$

$$G_{5} = \frac{1}{R_{1}} = \frac{1}{25} = \underline{0.04S}$$

Podle uzlů sestavíme matici

$$\begin{pmatrix} G_1 + G_2 & -G_2 & 0 \\ -G_2 & G_3 + G_2 + G_5 & -G_3 - G_5 \\ 0 & -G_3 - G_5 & G_3 + G_4 + G_5 \end{pmatrix} * \begin{pmatrix} U_A \\ U_B \\ U_C \end{pmatrix} = \begin{pmatrix} I_2 \\ I_3 \\ -I_1 - I_3 \end{pmatrix}$$

Do matice dosadíme

$$\begin{pmatrix} 0.04336 & -0.02272 & 0 \\ -0.02272 & 0.08159 & -0.05886 \\ 0 & -0.05886 & 0.086645 \end{pmatrix} * \begin{pmatrix} U_A \\ U_B \\ U_C \end{pmatrix} = \begin{pmatrix} 0.85 \\ 5.8 \\ -6.55 \end{pmatrix}$$

Vyčteme determinant matice

$$D = \begin{vmatrix} 0.04336 & -0.02272 & 0 \\ -0.02272 & 0.08159 & -0.05886 \\ 0 & -0.05886 & 0.086645 \end{vmatrix}$$

$$D = [(0.04336 * 0.08159 * 0.056645) + ((-0.02272) * (-0.05886) * 0) + ((-0.02272) * (-0.05886) * 0] - [(0 * 0.08159 * 0) + ((-0.02272) * (-0.02272) * 0.08664) + (0.04336 * (-0.05886) * (-0.05886))]$$

$$D = \underline{0.1116 * 10^{-3}}$$

Vypočítáme determinanty sloupců

$$D_1 = \begin{vmatrix} I_2 & -0.02272 & 0 \\ I_3 & 0.08159 & -0.05886 \\ -I_1 - I_3 & -0.05886 & 0.086645 \end{vmatrix} = \begin{vmatrix} 0.85 & -0.02272 & 0 \\ 5.8 & 0.08159 & -0.05886 \\ -6.55 & -0.05886 & 0.086645 \end{vmatrix}$$

$$D_1 = 5.7225 * 10^{-3}$$

$$D_2 = \begin{vmatrix} -0.02272 & I_2 & 0\\ 0.08159 & I_3 & -0.05886\\ -0.05886 & -I_1 - I_3 & 0.086645 \end{vmatrix} = \begin{vmatrix} -0.02272 & 0.85 & 0\\ 0.08159 & 5.8 & -0.05886\\ -0.05886 & -6.55 & 0.086645 \end{vmatrix}$$

$$D_2 = \underline{6.7467 * 10^{-3}}$$

$$D_3 = \begin{vmatrix} -0.02272 & 0 & I_2 \\ 0.08159 & -0.05886 & I_3 \\ -0.05886 & 0.086645 & -I_1 - I_3 \end{vmatrix} = \begin{vmatrix} -0.02272 & 0 & 0.85 \\ 0.08159 & -0.05886 & 5.8 \\ -0.05886 & 0.086645 & -6.55 \end{vmatrix}$$

$$D_3 = -3.8518 * 10^{-3}$$

Nyní již můžeme dopočítat jednotlivá napětí.

$$U_A = \frac{D_1}{D} = \frac{5.7225 * 10^{-3}}{0.1116 * 10^{-3}} = \underline{51.2724V}$$

$$U_B = \frac{D_2}{D} = \frac{6.7467 * 10^{-3}}{0.1116 * 10^{-3}} = \underline{60.4543V}$$

$$U_C = \frac{D_3}{D} = \frac{-3.8518 * 10^{-3}}{0.1116 * 10^{-3}} = \underline{-34.5143V}$$

Ze schématu si lze všimnout, že ${\cal U}_{\cal C}$ protéká pouze přes rezistor ${\cal R}_4,$ proto:

$$U_{R4} = U_C = -34.5143V$$

Pomocí Ohmova zákona dopočítáme I_{R4}

$$I_{R4} = \frac{U_{R4}}{R_4} = \frac{-34.5143}{36} = \underline{-0.9587A}$$

Pro napájecí napětí platí $u_1=U_1*sin(2\pi ft),\ u_2=U_2*sin(2\pi ft).$ Ve vztahu pro napětí $u_{C1}=U_{C1}*sin(2\pi ft+\varphi C_1)$ určete $|U_{C1}|$ a φ_{C1} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t=\frac{\pi}{2\omega})$

1	sk.	$U_1[V]$	$U_2[V]$	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$L_1[mH]$	$L_2[mH]$	$C_1[\mu F]$	$C_2[\mu F]$	f[Hz]
	D	45	50	13	15	13	180	90	210	75	85

Vypočítáme úhlovou rychlost ω .

$$\omega = 2\pi f = 534.0707$$

Vypočítáme si kapacitní X_C a induktivní X_L reaktanci.

$$X_L = j\omega L X_C = -j\frac{\omega}{C}$$

$$X_{C1} = -j\frac{\omega}{C} = -j\frac{534.0707}{210*10^{-6}} = \underline{-8.9162j\Omega} \qquad X_{C2} = -j\frac{\omega}{C} = -j\frac{534.0707}{75*10^{-6}} = \underline{-24.9654j\Omega}$$

$$X_{L1} = j\omega L = 534.0707*0.180 = \underline{96.1327j\Omega} \qquad X_{L2} = j\omega L = 534.0707*0.090 = \underline{48.0663j\Omega}$$

Podle smyček sestavíme matici

$$\begin{pmatrix} X_{L1} + R_2 + X_{C1} + X_{C2} & -X_{C2} & -R_2 - X_{L1} \\ -X_{C2} & X_{L2} + R_3 + X_{C2} & -X_{L2} \\ -R_2 - X_{L1} & -X_{L2} & R_1 + X_{L2} + X_{L1} + R_2 \end{pmatrix} * \begin{pmatrix} I_A \\ I_B \\ I_C \end{pmatrix} = \begin{pmatrix} U_1 \\ U_2 \\ 0 \end{pmatrix}$$

Do matice dosadíme

$$\begin{pmatrix} 15 + 62.2511j & -24.9654j & -15 - 96.1327j \\ -24.9654j & 13 + 23.1009j & -48.0663j \\ -15 - 96.1327j & -48.0663j & 28 + 144.199j \end{pmatrix} * \begin{pmatrix} I_A \\ I_B \\ I_C \end{pmatrix} = \begin{pmatrix} 45 \\ 50 \\ 0 \end{pmatrix}$$

Vypočteme determinant matice

$$D = \begin{vmatrix} 15 + 62.2511j & -24.9654j & -15 - 96.1327j \\ -24.9654j & 13 + 23.1009j & -48.0663j \\ -15 - 96.1327j & -48.0663j & 28 + 144.199j \end{vmatrix}$$

$$D = 70476 + 488327j$$

Vypočteme determinant prvního sloupce matice

$$D_1 = \begin{vmatrix} 45 & -24.9654j & -15 - 96.1327j \\ 50 & 13 + 23.1009j & -48.0663j \\ 0 & -48.0663j & 28 + 144.199j \end{vmatrix}$$
$$D = -440591 + 184465j$$

Okamžitý proud smyčkou I_A

$$i_A = \frac{D_1}{D} = \frac{-440591 + 184465j}{70476 + 488327j} = \underline{0.24248 + 0.93724jA}$$

Okamžité napětí na kondenzátoru u_{C1}

$$u_{C1} = X_{C1} * i_A = (0.24248 + 0.93724j) * (-8.9162j) = \underline{8.35661 - 2.162jV}$$

Modul napětí na kondenzátoru $|u_{C1}|$

$$|u_{C1}| = \sqrt{Re^2 + Im^2} = \underline{8.6317V}$$

Fázový posuv na kondenzátoru ${\cal C}_1$

$$\varphi_{UC1} = \arctan \frac{Im}{Re} = \frac{-0.24544rad}{1}$$

Ze zadané rovnice vyjádříme U_{C1}

$$U_{C1} = \frac{|u_{C1}|}{\sin(\omega t + \varphi)} = \frac{|u_{C1}|}{\sin(\frac{\omega \pi}{2\pi} + \varphi)} = \frac{|u_{C1}|}{\sin(\frac{\pi}{2} + \varphi)} = \frac{|u_{C1}|}{\sin(\frac{\pi}{2} + \varphi)} = \frac{8.89829V}{\sin(\frac{\pi}{2} + \varphi)}$$

Tabulka výsledků

příklad	sk.	výsledky					
1	D	$I_{R8} = \underline{0.08187A}$	$U_{R8} = \underline{16.3745V}$				
2	В	$I_{R4} = \underline{0.03272A}$	$U_{R4} = \underline{18.6504V}$				
3	F	$I_{R4} = \underline{-0.9587A}$	$U_{R4} = -34.5143V$				
4	D	$ U_{C1} = 8.89829V$	$\varphi_{C1} = -0.2454 rad$				