MA232 Linear Algebra

Alex Myasnikov

Stevens Institute of Technology

September 23, 2011

General solution to $A\bar{\mathbf{x}} = \bar{\mathbf{b}}$

$$A\bar{\mathbf{x}} = \bar{\mathbf{b}} \Rightarrow R\bar{\mathbf{x}} = \bar{\mathbf{d}}$$

- R is an echelon matrix
- Has a solution if zero rows in R correspond to zero entries in d

General solution to $A\bar{\mathbf{x}} = \bar{\mathbf{b}}$

- $A\bar{\mathbf{x}} = \bar{\mathbf{b}}$ inhomogeneous linear system
- ullet $Aar{f x}=ar{f 0}$ associated homogeneous linear system

General solution to $A\bar{\mathbf{x}} = \bar{\mathbf{b}}$

Theorem

Let $\bar{\mathbf{x}}^*$ be a particular solution: $A\bar{\mathbf{x}}^* = \bar{\mathbf{b}}$. The general solution to the linear system $A\bar{\mathbf{x}} = \bar{\mathbf{b}}$ is

$$\bar{\mathbf{x}} = \bar{\mathbf{x}}^* + \bar{\mathbf{z}}$$

where $z \in N(A)$, i.e. $A\bar{z} = \bar{0}$, is arbitrary from the nullspace of A.

Proof: if $A\bar{\mathbf{x}}_1 = \bar{\mathbf{b}} = A\bar{\mathbf{x}}_2$ are any two solutions then

$$\bar{\boldsymbol{z}} = \bar{\boldsymbol{x}}_1 - \bar{\boldsymbol{x}}_2 \Rightarrow A\bar{\boldsymbol{z}} = A(\bar{\boldsymbol{x}}_1 - \bar{\boldsymbol{x}}_2) = A\bar{\boldsymbol{x}}_1 - A\bar{\boldsymbol{x}}_2 = \bar{\boldsymbol{b}} - \bar{\boldsymbol{b}} = \bar{\boldsymbol{0}}$$

- $-\bar{\mathbf{z}}\in N(A)$
- Given $\bar{\mathbf{z}}_1$ any other solution $\bar{\mathbf{z}}_2 = \bar{\mathbf{z}}_1 + \bar{\mathbf{z}}$ for some $\bar{\mathbf{z}}$

Vectors $\bar{\mathbf{v}}_1, \dots, \bar{\mathbf{v}}_k$ are linearly dependent if there exist a_1, \dots, a_k with at least one $a_i \neq 0$ such that

$$a_1\bar{\mathbf{v}}_1+a_2\bar{\mathbf{v}}_2+\cdots+a_k\bar{\mathbf{v}}_k=0$$

Otherwise vectors are linearly independent

Vectors $\bar{\mathbf{v}}_1, \dots, \bar{\mathbf{v}}_k$ are linearly independent if the only combination equal to 0 is

$$0\bar{\mathbf{v}}_1 + 0\bar{\mathbf{v}}_2 + \dots + 0\bar{\mathbf{v}}_k = 0$$

• Suppose in $\bar{\mathbf{v}}_1,\ldots,\bar{\mathbf{v}}_k$ one non-zero vector is a multiple of another, say, $\bar{\mathbf{v}}_1=a\bar{\mathbf{v}}_2$ then the vectors are linearly dependent

$$\bar{\mathbf{v}}_1 - k\bar{\mathbf{v}}_2 + 0\bar{\mathbf{v}}_3 + \cdots + 0\bar{\mathbf{v}}_k$$

- ullet $ar{f v}_1$ and $ar{f v}_2$ are linearly dependent iff $ar{f v}_1=aar{f v}_2$
- If $\bar{\mathbf{0}}$ is one of the vectors $\bar{\mathbf{v}}_1,\ldots,\bar{\mathbf{v}}_k$ then they must be linearly dependent. Let $\bar{\mathbf{v}}_1=\bar{\mathbf{0}}$:

$$1\bar{\mathbf{v}}_1 + 0\bar{\mathbf{v}}_2 + \cdots + 0\bar{\mathbf{v}}_k$$

- If a set S of vectors is linearly independent then any subset of S is linearly independent
- ullet If a set S of vectors contains a linearly dependent subset the S is linearly dependent

• To show that vectors are dependent provide a_1, \ldots, a_k not all equal to zero such that

$$a_1\mathbf{\bar{v}}_1+a_2\mathbf{\bar{v}}_2+\cdots+0\mathbf{\bar{v}}_k=0$$

• Example: $\bar{\mathbf{u}} = (1, 1, 0), \bar{\mathbf{v}} = (1, 3, 2), \bar{\mathbf{w}} = (4, 9, 5)$

$$3\bar{\mathbf{u}} + 5\bar{\mathbf{v}} - 2\bar{\mathbf{w}} = (0,0,0) = \bar{\mathbf{0}}$$

• To show that vectors are independent solve

$$x_1\mathbf{\bar{v}}_1 + x_2\mathbf{\bar{v}}_2 + \dots + x_k\mathbf{\bar{v}}_k = 0$$

- If the only solution is $x_1 = x_2 = \cdots = x_k = 0$ then independent
- ullet If there are solutions other then $ar{f 0}$ then dependent

Reduced row echelon matrix

Reduce Echelon matrix using Jordan's method:

$$\begin{bmatrix} \begin{matrix} \rho_1 & x & x & x & x & x \\ 0 & 0 & \rho_2 & x & x & x \\ 0 & 0 & 0 & \rho_3 & x & x \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} \begin{matrix} 1 & x/p_1 & x/p_1 & x/p_1 & x/p_1 & x/p_1 \\ 0 & 0 & 1 & x/p_2 & x/p_2 & x/p_2 \\ 0 & 0 & 0 & 1 & x/p_3 & x/p_3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} \begin{matrix} 1 & x/p_1 & 0 & 0 & x' & x' \\ 0 & 0 & 1 & 0 & x' & x' \\ 0 & 0 & 0 & 1 & x/p_3 & x/p_3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Reduced row echelon matrix has zeros above the pivots as well as below

Reduced row echelon matrix

$$\begin{bmatrix} 1 & x & 0 & 0 & x & x \\ 0 & 0 & 1 & 0 & x & x \\ 0 & 0 & 0 & 1 & x & x \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- Nonzero rows cannot be expressed as a linear combination of other nonzero rows
- Nonzero rows are linearly independent: must multiply each row by zero to eliminate pivots

Reduced row echelon matrix

$$\begin{bmatrix} 1 & x & 0 & 0 & x & x \\ 0 & 0 & 1 & 0 & x & x \\ 0 & 0 & 0 & 1 & x & x \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- Columns with pivots cannot be expressed as a linear combination of columns with pivots
- Columns with pivots are linearly independent
- Moreover it is easy to see that columns which do not have pivots can be obtained from the ones with pivots

The rank of a matrix A is equal to

- The number of pivots in echelon form R
- The number of non-zero rows in R
- The maximal number of linearly independent rows
- The maximal number of linearly independent columns

To compute rank(A) run elimination on A

$$A = \begin{bmatrix} p_1 & x & x & x & x & x \\ 0 & 0 & p_2 & x & x & x \\ 0 & 0 & 0 & p_3 & x & x \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$rank(A) = 3$$

Let A be $m \times n$ matrix

A is full column rank if rank(A) = n

- All columns of A have pivots
- There are no free variables
- $N(A) = \{\bar{\mathbf{0}}\}$
- $A\bar{\mathbf{x}} = \bar{\mathbf{b}}$ has either unique solution or no solutions

Let A be $m \times n$ matrix

A is full row rank if rank(A) = m

- All rows have pivots and no zero rows in reduced form
- $oldsymbol{\bullet}$ $Aar{f x}=ar{f b}$ has solution for every right side f b
- $C(A) = \mathbb{R}^m$

rank(A) and $A\bar{\mathbf{x}} = \mathbf{b}$

Let
$$r = rank(A)$$
 and A is $m \times n$

- 1 r = m and r = n A is invertible
- 2 r = m and r < n A is full row rank $A\bar{\mathbf{x}} = \bar{\mathbf{b}}$ has ∞ solutions
- 3 r < m and r = n A is full column rank $A\bar{\mathbf{x}} = \bar{\mathbf{b}}$ has 0 or 1 solution
- 4 r < m and r < n A is NOT full rank

 $A\bar{\mathbf{x}} = \bar{\mathbf{b}}$ has 1 solution

 $A\bar{\mathbf{x}} = \bar{\mathbf{b}}$ has 0 or ∞ solutions

Rank and linear independence

Let A be a $m \times n$ matrix columns of A are independent when

- rank(A) = n
- There are *n* pivots and no free variables
- $\bullet \ \mathcal{N}(A) = \{ \bar{\mathbf{0}} \}$

Rank and linear independence

Let $\bar{\mathbf{v}}_1, \dots, \bar{\mathbf{v}}_n$ be vectors in \mathbb{R}^m and n > m then $\bar{\mathbf{v}}_1, \dots, \bar{\mathbf{v}}_n$ must be dependent.

Vectors $\bar{\mathbf{v}}_1, \dots, \bar{\mathbf{v}}_n$ span V if for all $\bar{\mathbf{w}} \in V$

$$\bar{\mathbf{w}} = a_1 \bar{\mathbf{v}}_1 + a_2 \bar{\mathbf{v}}_2 + \cdots + a_n \bar{\mathbf{v}}_n$$

- Different sets may span the same vector space
- A spanning set needs a sufficient number of distinct elements.
- Having too many elements in the spanning set will violate linear independence, and cause redundancies.
- The optimal spanning sets are those that are linearly independent.

A basis of a vector space V is a finite collection of elements $\bar{\mathbf{v}}_1, \dots, \bar{\mathbf{v}}_n$ such that

- $\mathbf{v}_1, \dots, \mathbf{v}_n$ are linearly independent

The elements $\bar{\mathbf{v}}_1, \dots, \bar{\mathbf{v}}_n$ form a basis of V if and only if every $\bar{\mathbf{w}} \in V$ can be written uniquely as a linear combination :

$$\mathbf{\bar{w}} = a_1 \mathbf{\bar{v}}_1 + \dots a_n \mathbf{\bar{v}}_n$$

Every basis of \mathbb{R}^n contains exactly n vectors.

A set of n vectors $\bar{\mathbf{v}}_1, \dots, \bar{\mathbf{v}}_n \in \mathbb{R}^n$ is a basis if and only if the $n \times n$ matrix $A = (\bar{\mathbf{v}}_1, \dots, \bar{\mathbf{v}}_n)$ is nonsingular (invertible).

- Linear independent the only solution to $A\bar{\mathbf{x}} = \bar{\mathbf{0}}$ is $\bar{\mathbf{x}} = \bar{\mathbf{0}}$.
- A vector $\bar{\mathbf{b}} \in \mathbb{R}^n$ is in $span(\bar{\mathbf{v}}_1, \dots, \bar{\mathbf{v}}_n)$ iff $\bar{\mathbf{b}} \in C(A)$ or iff $A\bar{\mathbf{x}} = \bar{\mathbf{b}}$ has a solution.
- For both results A must be nonsingular, i.e., have maximal rank n.

If
$$span(\bar{\mathbf{v}}_1,\ldots,\bar{\mathbf{v}}_n)=V$$
 and $span(\bar{\mathbf{w}}_1,\ldots,\bar{\mathbf{w}}_n)=V$ then $n=m$.

Proof:

- Suppose m > n
- Every $\bar{\mathbf{w}}_i = a_{1i}\bar{\mathbf{v}}_1 + \cdots + anj\bar{\mathbf{v}}_n$
- Then

$$c_1\bar{\mathbf{w}} + \cdots + c_m\bar{\mathbf{w}}_m = \sum_{i=1}^n \sum_{j=1}^m a_{ij}c_j\bar{\mathbf{v}}_i$$

• This linear combination is zero if (c_1, \ldots, c_m) is a solution to

$$\sum_{i=1}^m a_{ij}c_j=0, i=1,\ldots,n$$

- There are n equations with m unknowns and m>n therefore there is a nontrivial solution $\bar{\mathbf{c}}\neq\bar{\mathbf{0}}$
- This makes vectors $\bar{\mathbf{w}}_1, \dots, \bar{\mathbf{w}}_m$ linearly dependent contradiction
- We conclude that m = n

The dimension dim(V) of a space V is the number of vectors in the basis.

- Let $V = span(\bar{\mathbf{v}}_1, \dots, \bar{\mathbf{v}}_n)$
- $\bullet \ A = [\bar{\mathbf{v}}_1, \dots, \bar{\mathbf{v}}_n]$
- Then

$$dim(V) = rank(A)$$

Let V be a n-dimensional vector space. Then

- ullet Every set of more than n elements of V is linearly dependent.
- No set of less than n elements spans V
- A set of n elements forms a basis if and only if it spans V if and only if it is linearly independent.

Let
$$B = {\{\bar{\mathbf{v}}_1, \dots, \bar{\mathbf{v}}_n\}}$$
 be a basis of V and for $\bar{\mathbf{w}} \in V$

$$\bar{\mathbf{w}} = c_1 \bar{\mathbf{v}}_1 + c_2 \bar{\mathbf{2}} + \cdots + c_n \bar{\mathbf{v}}_n$$

The coefficients c_1, \ldots, c_n are called coordinates of $\bar{\mathbf{w}}$ with respect to basis B.

If $\bar{\mathbf{w}} = \bar{\mathbf{c}}$ then the basis is called *standard*

$$\bar{\mathbf{v}}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \bar{\mathbf{v}}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}, \bar{\mathbf{v}}_3 = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \bar{\mathbf{v}}_4 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix}$$

 $\bullet~\{\bar{\textbf{v}}_1,\bar{\textbf{v}}_2,\bar{\textbf{v}}_3,\bar{\textbf{v}}_4\}~$ is a basis of \mathbb{R}^4 called wavelet basis

To show that $\{\bar{\mathbf{v}}_1, \bar{\mathbf{v}}_2, \bar{\mathbf{v}}_3, \bar{\mathbf{v}}_4\}$ is a basis of \mathbb{R}^4 :

• Show that $span(\bar{\mathbf{v}}_1,\bar{\mathbf{v}}_2,\bar{\mathbf{v}}_3,\bar{\mathbf{v}}_4)=\mathbb{R}^4$, i.e. for any $\bar{\mathbf{b}}\in\mathbb{R}^4$

$$\bar{\mathbf{b}} = c_1 \bar{\mathbf{v}}_1 + c_2 \bar{\mathbf{v}}_2 + c_3 \bar{\mathbf{v}}_3 + c_4 \bar{\mathbf{v}}_4$$

or show that if $A = [\bar{\mathbf{v}}_1 \ \bar{\mathbf{v}}_2 \ \bar{\mathbf{v}}_3 \ \bar{\mathbf{v}}_4]$ then

$$A\bar{\mathbf{x}} = \bar{\mathbf{b}}$$

has a solution for any $\boldsymbol{\bar{b}} \in \mathbb{R}^4$

② Show that independent: prove that $A\bar{\mathbf{x}}-\bar{\mathbf{0}}$ has unique solution $\bar{\mathbf{x}}=\bar{\mathbf{0}}$

Let $\bar{\mathbf{w}} = [4, -2, 1, 5]^T$ then

$$\bar{\boldsymbol{w}} = 2\bar{\boldsymbol{v}}_1 - \bar{\boldsymbol{v}}_2 + 3\bar{\boldsymbol{v}}_3 - 2\bar{\boldsymbol{v}}_4$$

i.e. (2,-1,3,-2) are coordinates of $\bar{\bf w}$ with respect to wavelet basis $\{\bar{\bf v}_1,\ldots,\bar{\bf v}_4\}$

Let $\mathcal{P}^{(n)}$ be the vector space of polynomials of degree $\leq n$ then

- $1, x, x^2, \dots, x^n$ is the standard basis of $\mathcal{P}^{(n)}$
- $dim(\mathcal{P}^{(n)}) = n+1$
- Every other basis of $\mathcal{P}^{(n)}$ has n+1 polynomials but not every collection of n+1 polynomials forms a basis

The four fundamental subspaces

Let A be $m \times n$ matrix

- The columns space C(A) is the space of all vectors $\bar{\mathbf{b}}$ for which $A\bar{\mathbf{x}} \bar{\mathbf{b}}$ has a solution.
- ullet The null space N(A) is the space of all solutions to $Aar{\mathbf{x}}=ar{\mathbf{0}}$

The four fundamental subspaces

- The adjoint to a linear system $A\bar{\mathbf{x}} = \bar{\mathbf{b}}$ of m equations in n unknowns is the linear system $A^T\bar{\mathbf{y}} = \bar{\mathbf{f}}$ of n equations in m unknowns. Here $\bar{\mathbf{x}} \in \mathbb{R}^n$ and $\bar{\mathbf{y}} \in \mathbb{R}^m$
- The two a closely related

The four fundamental subspaces

Introduce new subspaces Let A be $m \times n$ matrix

- The row space of A is $C(A^T)$
- The left null space of A is $N(A^T)$

- The four fundamental subspaces associated with the matrix A, are the row space, column space, nullspace and left nullspace.
- The Fundamental Theorem of Linear Algebra states that their dimensions are entirely prescribed by the rank (and size) of the matrix.

Let A be an $m \times n$ matrix of rank r. Then

- dim(row space) = dim(column space) = r
- dim(nullspace) = n r and dim(left nullspace) = m r

- Row space: subspace spanned by rows of A.
 - Elementary row operations do not change the subspace.
 - row space of A = row space of its echelon form U
 - there are r nonzero rows of U and they form the basis of row space of A
- Column space:
 - column space of $A = \text{row space of } A^T$
 - dim(column space of A) = dim(row space of A^T) = $rank(A^T)$ = r

Dimension of the space spanned by columns of A is the same as the dimension of the space spanned by rows of A

- Null space:
 - General solution to $A\bar{\mathbf{x}} = \bar{\mathbf{0}}$ is

$$\bar{\mathbf{x}} = y_1 \bar{\mathbf{s}}_1 + y_2 \bar{\mathbf{s}}_2 + \cdots + y_{n-r} \bar{\mathbf{s}}_{n-r}$$

where y_i are free variables and $\bar{\mathbf{s}}_i$ are corresponding special solutions

- The *i*th entry of $\bar{\mathbf{x}}$ is a free variable y_i
- $\bar{\mathbf{x}} = 0$ if and only if each $y_i = 0$
- Therefore, $\bar{\mathbf{s}}_1, \dots, \bar{\mathbf{s}}_{n-r}$ are linearly independent and form a basis for N(A)

- Left nullspace:
 - left null space of $A = \text{null space of } A^T$
 - dim(left null space of A) = dim(null space of A^T) = m r

