

(Artificial) Neural Networks: From Perceptron to MLP

Industrial AI Lab.

Prof. Seungchul Lee

We have:
$$\theta_0 = 1$$
 and $\boldsymbol{\theta} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$

$$\hat{y} = g \left(\theta_0 + X^T \boldsymbol{\theta} \right)$$

$$= g \left(1 + \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 3 \\ -2 \end{bmatrix} \right)$$

$$\hat{y} = g \left(1 + 3x_1 - 2x_2 \right)$$

This is just a line in 2D!

Assume we have input: $X = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$

$$\hat{y} = g(1 + (3*-1) - (2*2))$$

= $g(-6) \approx 0.002$

Perceptron: Forward Propagation

Perceptron: Forward Propagation

$$\hat{y} = g \left(\theta_0 + \sum_{i=1}^m x_i \theta_i \right)$$

$$\hat{y} = g \left(\theta_0 + \boldsymbol{X}^T \boldsymbol{\theta} \right)$$

where:
$$\boldsymbol{X} = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$$
 and $\boldsymbol{\theta} = \begin{bmatrix} \theta_1 \\ \vdots \\ \theta_m \end{bmatrix}$

Perceptron: Forward Propagation

Activation Functions

$$\hat{y} = g (\theta_0 + X^T \theta)$$

• Example: sigmoid function

$$g(z) = \sigma(z) = \frac{1}{1 + e^{-z}}$$

Common Activation Functions

Sigmoid Function

$$g'(z) = g(z)(1 - g(z))$$

Hyperbolic Tangent

$$g(z) = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}}$$

$$g'(z) = 1 - g(z)^2$$

Discuss later

Rectified Linear Unit (ReLU)

$$g(z) = \max(0, z)$$

$$g'(z) = \begin{cases} 1, & z > 0 \\ 0, & \text{otherwise} \end{cases}$$

From Perceptron to MLP

Artificial Neural Networks: Perceptron

- Perceptron for $h(\theta)$ or $h(\omega)$
 - Neurons compute the weighted sum of their inputs
 - A neuron is activated or fired when the sum a is positive

- A step function is not differentiable
- One neuron is often not enough
 - One hyperplane

$$a=\omega_0+\omega_1x_1+\cdots \ o=\sigma(\omega_0+\omega_1x_1+\cdots)$$

XOR Problem

- Minsky-Papert Controversy on XOR
 - Not linearly separable
 - Limitation of perceptron

x_1	x_2	x_1 XOR x_2
0	0	0
0	1	1
1	0	1
1	1	0

• Single neuron = one linear classification boundary

Artificial Neural Networks: MLP

- Multi-layer Perceptron (MLP) = Artificial Neural Networks (ANN)
 - Multi neurons = multiple linear classification boundaries

Artificial Neural Networks: Activation Function

• Differentiable nonlinear activation function

Artificial Neural Networks

• In a compact representation

3 hyperplanes

Artificial Neural Networks

- Multi-layer perceptron
 - Features of features
 - Mapping of mappings

ANN: Architecture

- A single layer is not enough to be able to represent complex relationship between input and output
 - ⇒ perceptron with many layers and units

$$\sigma_{2}=\sigma_{2}\left(heta_{2}^{T}o_{1}+b_{2}
ight)=\sigma_{2}\left(heta_{2}^{T}\sigma_{1}\left(heta_{1}^{T}x+b_{1}
ight)+b_{2}
ight)$$

Another Perspective: ANN as Kernel Learning

Nonlinear Classification

SVM with a polynomial Kernel visualization

> Created by: Udi Aharoni

Neuron

• We can represent this "neuron" as follows:

$$f(x) = \sigma(w \cdot x + b).$$

XOR Problem

• The main weakness of linear predictors is their lack of capacity. For classification, the populations have to be linearly separable.

"xor"

Nonlinear Mapping

• The XOR example can be solved by pre-processing the data to make the two populations linearly separable.

$$\Phi: (x_u, x_v) \mapsto (x_u, x_v, x_u x_v).$$

Nonlinear Mapping

• The XOR example can be solved by pre-processing the data to make the two populations linearly separable.

$$\Phi: (x_u, x_v) \mapsto (x_u, x_v, x_u x_v).$$

Nonlinear Mapping

• The XOR example can be solved by pre-processing the data to make the two populations linearly separable.

$$\Phi: (x_u, x_v) \mapsto (x_u, x_v, x_u x_v).$$

Kernel

- Often we want to capture nonlinear patterns in the data
 - nonlinear regression: input and output relationship may not be linear
 - nonlinear classification: classes may note be separable by a linear boundary
- Linear models (e.g. linear regression, linear SVM) are not just rich enough
 - by mapping data to higher dimensions where it exhibits linear patterns
 - apply the linear model in the new input feature space
 - mapping = changing the feature representation
- Kernels: make linear model work in nonlinear settings

Kernel + Neuron

• Nonlinear mapping + neuron

$$\Phi:(x_u,x_v)\mapsto (x_u,x_v,x_ux_v).$$

Neuron + Neuron

Nonlinear mapping can be represented by another neurons

- Nonlinear Kernel
 - Nonlinear activation functions

- Nonlinear mapping can be represented by another neurons
- We can generalize an MLP

Summary

- Universal function approximator
- Universal function classifier

Parameterized

$$\hat{y} = f_{\omega_1, \cdots, \omega_k}(x) \hspace{1cm} \longrightarrow \hspace{1cm} y$$

Artificial Neural Networks

- Complex/Nonlinear universal function approximator
 - Linearly connected networks
 - Simple nonlinear neurons

Input

Output

Classification

Deep Artificial Neural Networks

- Complex/Nonlinear universal function approximator
 - Linearly connected networks
 - Simple nonlinear neurons

Example: Linear Classifier

• Perceptron tries to separate the two classes of data by dividing them with a line

Example: Neural Networks

• The hidden layer learns a representation so that the data gets linearly separable

Nonlinearly Distributed Data

Multi Layers

Multi Layers

Nonlinearly Distributed Data

Multi Layers

Nonlinearly Distributed Data

Multi Layers

