Pre-Calculus 11

Solving for Angles in All Four Quadrants

Created by Yi-Chen Lin

June 15, 2025

Review: SOH-CAH-TOA

Key Trig Ratios

$$\sin heta = rac{ ext{Opposite}}{ ext{Hypotenuse}}$$
 $\cos heta = rac{ ext{Adjacent}}{ ext{Hypotenuse}}$ $an heta = rac{ ext{Opposite}}{ ext{Adjacent}}$

- Pythagorean Theorem: $a^2 + b^2 = c^2$
- Circle Equation: $x^2 + y^2 = r^2$

Trig Ratio for Any Angle

Coordinates on the Circle

- For angle θ in standard position, any point P(x, y) on the circle of radius r:
- $x = r \cos \theta$, $y = r \sin \theta$
- On the unit circle (r = 1): $P(\cos \theta, \sin \theta)$

Example: Coordinates for Given Angles

Question

Find the coordinates of point P(x, y) for the following angles in standard position:

•
$$\theta = 215^{\circ}$$

$$\theta = 150^{\circ}$$

Example: Coordinates for Given Angles

Solution

- $\theta = 215^{\circ}$: $x = \cos 215^{\circ} \approx -0.819$, $y = \sin 215^{\circ} \approx -0.573$
- $\theta = 150^{\circ}$: $x = \cos 150^{\circ} \approx -0.866$, $y = \sin 150^{\circ} \approx 0.5$

Sine, Cosine, Tangent in Different Quadrants

CAST Rule

- Sine, cosine, and tangent can be positive or negative depending on the quadrant.
- Use the CAST rule to remember which is positive:
- Quadrant I: All positive
- Quadrant II: Sine only
- Quadrant III: Tangent only
- Quadrant IV: Cosine only

6 / 38

Example: Which Quadrant?

Question

Determine which quadrants the angle θ can be in for the following trig functions:

- $\cos \theta = 2/5$
- $\tan \theta = -3/7$

Example: Which Quadrant?

Solution

- $\sin \theta = -2/3$ (negative): θ in Q3 Q4
- $\cos \theta = 2/5$ (positive): θ in Q1 Q4
- $\tan \theta = -3/7$ (negative): θ in Q2 Q4

Steps for Solving for Angles

Step-by-Step

- Identify the trig function (sine, cosine, tangent)
- Check if the ratio is positive or negative
- Use CAST to determine possible quadrants
- Use inverse trig to find the reference angle
- Find the second angle in the other quadrant
- State both solutions

9/38

Example: Solve for the Angle

Question

Solve for θ given $\sin \theta = 2/5$.

Solution

 $\sin \theta = 2/5$ (positive) θ in Q1 and Q2 $\theta_1 = \sin^{-1}(2/5) \approx 23.58^{\circ}$ $\theta_2 = 180^{\circ} - 23.58^{\circ} = 156.42^{\circ}$

Example: Solve for the Angle (Cos Negative)

Question

Solve for θ given $\cos \theta = -3/7$.

Example: Solve for the Angle (Cos Negative)

Solution

 $\cos \theta = -3/7$ (negative) θ in Q2 and Q3 $\theta_1 = \cos^{-1}(-3/7) \approx 115.54^{\circ}$ $\theta_2 = 360^{\circ} - 115.54^{\circ} = 244.46^{\circ}$

Created by Yi-Chen Lin Pre-Calculus 11 June 15, 2025

13 / 38

Example: $\tan \theta = 4/9$

Question

Given $\tan \theta = 4/9$, find all possible coordinates for point P(x, y) in the unit circle.

 Created by Yi-Chen Lin
 Pre-Calculus 11
 June 15, 2025
 14 / 38

Example: $\tan \theta = 4/9$

Solution

 $\tan \theta = 4/9$ (positive) θ in Q1 and Q3 x = 0.917, y = 0.401 (Q1), x = -0.917, y = -0.401 (Q3) **Reference angle:** $\theta_1 = \tan^{-1}(4/9) \approx 23.96^{\circ}$ $\theta_2 = 180^{\circ} + 23.96^{\circ} = 203.96^{\circ}$

Created by Yi-Chen Lin Pre-Calculus 11 June 15, 2025

15 / 38

Practice: Find the Angles

Practice

Given $0^{\circ} \le \theta \le 360^{\circ}$, find the angles:

- $\tan \theta = -2/5$
- $\sin \theta = -5/3$
- $\cos \theta = -5/3$

Q: One or No Solution?

Concept Check

Which of the following have one solution? Which have none?

- \bullet $\sin \theta = 0.856$
- $\cos \theta = 1$
- $\cos \theta = 2.345$
- $\tan \theta = -9.856$
- $\tan \theta = 0$

Solving Trig Equations with Algebra

Steps

- Isolate the trig function
- Oetermine possible quadrants using CAST
- Find the reference angle
- State all solutions

Example: Algebraic Trig Equation

Question

Solve for θ given $8 \sin \theta + 7 = 12$.

Example: Algebraic Trig Equation

Solution

```
8 \sin \theta + 7 = 12

8 \sin \theta = 5

\sin \theta = 5/8

\theta in Q1 and Q2

\theta_1 = \sin^{-1}(5/8) \approx 38.68^{\circ}

\theta_2 = 180^{\circ} - 38.68^{\circ} = 141.32^{\circ}
```

 Created by Yi-Chen Lin
 Pre-Calculus 11
 June 15, 2025
 20 / 38

Practice: Solve for θ

Practice

Given $0^{\circ} \le \theta \le 360^{\circ}$, solve:

- $5\cos\theta + 13 = 11$
- $3\cos\theta = 8\sin\theta$
- $4 \tan^2 \theta + 7 = 10$
- $9\sin^2\theta 4 = 0$

Sine, Cosine, Tangent of 0°, 90°, 180°, 270°, 360°

Special Angles

- $\sin \theta$ is the y-coordinate, $\cos \theta$ is the x-coordinate
- $\cos 0^{\circ} = 1$, $\sin 0^{\circ} = 0$
- $\cos 90^{\circ} = 0$, $\sin 90^{\circ} = 1$
- $\cos 180^{\circ} = -1$, $\sin 180^{\circ} = 0$
- $\cos 270^{\circ} = 0$, $\sin 270^{\circ} = -1$
- $\cos 360^{\circ} = 1$, $\sin 360^{\circ} = 0$

 Created by Yi-Chen Lin
 Pre-Calculus 11
 June 15, 2025
 22 / 38

What is $\tan \theta$ at Special Angles?

Special Tangent Values

- $\tan \theta = \frac{\sin \theta}{\cos \theta}$
- $\tan 0^{\circ} = 0$
- \bullet tan 90° is undefined
- $tan 180^{\circ} = 0$
- tan 270° is undefined

Finding Coordinates of P on Terminal Arm

Method 1: Using Central Angle

- $P(x,y) = (r\cos\theta, r\sin\theta)$
- On the unit circle: $P(\cos \theta, \sin \theta)$
- There are usually two angles (reference angles)

 Created by Yi-Chen Lin
 Pre-Calculus 11
 June 15, 2025
 24 / 38

Finding Coordinates of *P* on Terminal Arm

Method 2: Using Pythagorean Theorem

- Draw a right triangle in the correct quadrant
- Use the given ratio to find missing side
- Use $a^2 + b^2 = c^2$ to solve for x or y

Example: $\cos \theta = 3/5$

Question

Given $\cos \theta = 3/5$, find all possible coordinates for point P(x, y) in the unit circle.

 Created by Yi-Chen Lin
 Pre-Calculus 11
 June 15, 2025
 26 / 38

Example: $\cos \theta = 3/5$

Solution

 $\cos\theta = 3/5$ (positive) θ in Q1 and Q4 x = 0.6, y = 0.8 (Q1), y = -0.8 (Q4) Angles: $\theta_1 = \cos^{-1}(3/5) \approx 53.13^\circ$, $\theta_2 = 360^\circ - 53.13^\circ = 306.87^\circ$

 Created by Yi-Chen Lin
 Pre-Calculus 11
 June 15, 2025
 27 / 38

Practice: $\sin \theta = -2/5$

Practice

Given $\sin \theta = -2/5$, show the angle in standard position and the coordinates of P on the unit circle.

 Created by Yi-Chen Lin
 Pre-Calculus 11
 June 15, 2025
 28 / 38

Practice: $\sin \theta = -2/5$

Solution

```
\sin\theta=-2/5 (negative) \theta in Q3 and Q4 x=0.447,\ y=-0.894 (Q4), y=-0.894 (Q3)
```

 Created by Yi-Chen Lin
 Pre-Calculus 11
 June 15, 2025
 29 / 38

Example: $\sin \theta = -6/11$ (Exact Value)

Question

Given $\sin \theta = -6/11$, find the exact value of the coordinates of point P(x, y) in the unit circle.

Example: $\sin \theta = -6/11$ (Exact Value)

Solution

 $\sin \theta = -6/11$ (negative) θ in Q3

Draw triangle: $\sin\theta = \frac{\text{opp}}{\text{hyp}} = -6/11$ x = -5, y = -6, r = 11

Example: $\tan \theta = 3/5$

Question

Given $\tan \theta = 3/5$, find all possible coordinates for point P(x, y) in the unit circle.

 Created by Yi-Chen Lin
 Pre-Calculus 11
 June 15, 2025
 32 / 38

Solution

 $\tan \theta = 3/5$ (positive) θ in Q1 and Q3 x = 0.858, y = 0.514 (Q1), x = -0.858, y = -0.514 (Q3) **Reference angle:** $\theta_1 = \tan^{-1}(3/5) \approx 30.96^{\circ}$ $\theta_2 = 180^{\circ} + 30.96^{\circ} = 210.96^{\circ}$

33 / 38

Practice: Find Coordinates

Practice

Given the trig value, show the angle in standard position and the coordinates of P on the unit circle:

- $\sin \theta = -2/5$
- $\sin \theta = -6/11$
- $\tan \theta = 3/5$

Practice: Solve for θ

Practice

Solve for θ given $\sin \theta = -4/7$.

Solution

$$\sin \theta = -4/7 \text{ (negative)}$$

 $\theta \text{ in Q3 and Q4}$
 $\theta_1 = 360^\circ - \sin^{-1}(4/7) \approx 209.46^\circ$
 $\theta_2 = 360^\circ + \sin^{-1}(4/7) \approx 330.54^\circ$

Created by Yi-Chen Lin Pre-Calculus 11 June 15, 2025

36 / 38

Practice: Solve for θ

Practice

Solve for θ given $\cos \theta = 5/13$.

Solution

 $\cos \theta = 5/13$ (positive) θ in Q1 and Q4 $\theta_1 = \cos^{-1}(5/13) \approx 67.38^{\circ}$ $\theta_2 = 360^{\circ} - 67.38^{\circ} = 292.62^{\circ}$

Created by Yi-Chen Lin Pre-Calculus 11 June 15, 2025

38 / 38