Introduction to Machine Learning CSE474/574: Lecture 5

Varun Chandola <chandola@buffalo.edu>

4 Feb 2015

Outline

- Inductive Bias
- 2 Online Learning
 - Online Learning of Conjunctive Concepts
 - Properties
- Optimal Mistake Bounds for a Concept Class
 - Bounds on the Optimal Mistake Bound

Outline

- Inductive Bias
- Online Learning
 - Online Learning of Conjunctive Concepts
 - Properties
- Optimal Mistake Bounds for a Concept Class
 - Bounds on the Optimal Mistake Bound

How many target concepts can there be?

- Target concept labels examples in X
- $2^{|X|}$ possibilities (C)
- $\bullet |X| = \prod_{i=1}^d n_i$
- Conjunctive hypothesis space \mathcal{H} has $\prod_{i=1}^d n_i + 1$ possibilities
- Why is this difference?

Hypothesis Assumption

Target concept is conjunctive.

How many target concepts can there be?

- Target concept labels examples in X
- $2^{|X|}$ possibilities (C)
- $\bullet |X| = \prod_{i=1}^d n_i$
- Conjunctive hypothesis space \mathcal{H} has $\prod_{i=1}^d n_i + 1$ possibilities
- Why is this difference?

Hypothesis Assumption

Target concept is conjunctive.

Inductive Bias

Inductive Bias

Inductive Bias

Bias Free Learning – $\mathcal{C} \equiv \mathcal{H}$

- Simple tumor example: 2 attributes size (sm/lg) and shape (ov/ci)
- Target label malignant (+ve) or benign (-ve)
- |X| = 4
- |C| = 16

Bias Free Learning is Futile

 A learner making no assumption about target concept cannot classify any unseen instance

Inductive Bias

Set of assumptions made by a learner to generalize from training examples.

Examples of Inductive Bias

- Rote Learner No Bias
- Candidate Elimination Stronger Bias
- Find-S Strongest Bias

Outline

- Inductive Bias
- 2 Online Learning
 - Online Learning of Conjunctive Concepts
 - Properties
- Optimal Mistake Bounds for a Concept Class
 - Bounds on the Optimal Mistake Bound

Online Learning with Mistakes

•
$$X = \{true, false\}^d$$

•
$$D = X^{(1)}, X^{(2)}, \dots$$

•
$$c \in C, c : X \to \{0, 1\}$$

1: **for**
$$i = 1, 2, ...$$
 do

- 2: Learner given $x^{(i)} \in X$
- 3: Learner predicts $c_*(x^{(i)})$
- 4: Learner is told $c(x^{(i)})$
- 5: end for

Learning Objective

"Discover" c with minimum number of prediction mistakes

Online Learning of Conjunctive Concepts

- Target concept c is conjunctive
- Examples are denoted using binary variables v_i
 - Example: $v_1 \bar{v_2} v_3 v_4$
 - v_i means attribute i is true (or 1 or circular) and \bar{v}_i means attribute i is false (or 0 or oval)
- Initialize $L \rightarrow \{v_1, \overline{v}_1, v_2, \overline{v}_2, \dots, v_d, \overline{v}_d\}$
- Match input x and L to get prediction, $c_L(x)$
- If $c_L(x) \neq c(x)$ (a mistake)
 - Remove offending entries from L
- Consider next input
- L is the learnt concept when finished

Properties of Online Learning Algorithm - Homework 1

- Always makes mistake on the first example
- First mistake causes d entries to be removed from L
- Number of literals to be removed to reach target concept of length p is 2d p
- No entry in c is removed from L
- Mistakes are made only on positive examples
- Each mistake causes ≥ 1 entry to be removed from L

Mistake Bound

Concept c can be learnt with at most d+1 prediction mistakes

Outline

- Inductive Bias
- Online Learning
 - Online Learning of Conjunctive Concepts
 - Properties
- 3 Optimal Mistake Bounds for a Concept Class
 - Bounds on the Optimal Mistake Bound

Mistake Bound for \mathcal{L}

- ullet Learning algorithm
- c Target concept ($c \in C$)
- D One possible sequence of training examples
- $M_{\mathcal{L}}(c, D)$ Number of mistakes made by \mathcal{L} to learn c with D examples
- $M_{\mathcal{L}}(c) = \max_{\forall D} M_{\mathcal{L}}(c, D)$
- ullet Worst case scenario for ${\cal L}$ in learning c
- $M_{\mathcal{L}}(\mathcal{C}) = \max_{\forall c \in \mathcal{C}} M_{\mathcal{L}}(c)$
- ullet Worst case scenario for ${\mathcal L}$ in learning any concept in ${\mathcal C}$

Mistake Bound for \mathcal{L}

- ullet Learning algorithm
- c Target concept ($c \in C$)
- D One possible sequence of training examples
- $M_{\mathcal{L}}(c, D)$ Number of mistakes made by \mathcal{L} to learn c with D examples
- $M_{\mathcal{L}}(c) = \max_{\forall D} M_{\mathcal{L}}(c, D)$
- ullet Worst case scenario for ${\cal L}$ in learning c
- $M_{\mathcal{L}}(\mathcal{C}) = \max_{\forall c \in \mathcal{C}} M_{\mathcal{L}}(c)$
- ullet Worst case scenario for ${\mathcal L}$ in learning any concept in ${\mathcal C}$

Mistake Bound for \mathcal{L}

- ullet Learning algorithm
- c Target concept ($c \in C$)
- D One possible sequence of training examples
- $M_{\mathcal{L}}(c, D)$ Number of mistakes made by \mathcal{L} to learn c with D examples
- $M_{\mathcal{L}}(c) = \max_{\forall D} M_{\mathcal{L}}(c, D)$
- ullet Worst case scenario for ${\cal L}$ in learning c
- $M_{\mathcal{L}}(\mathcal{C}) = \max_{\forall c \in \mathcal{C}} M_{\mathcal{L}}(c)$
- ullet Worst case scenario for ${\cal L}$ in learning any concept in ${\cal C}$

Optimal Mistake Bound for Target Concept Class $\mathcal C$

Optimal Mistake Bound

$$opt(\mathcal{C}) = \min_{\forall \mathcal{L}} M_{\mathcal{L}}(\mathcal{C})$$

Tighter bounds?

Find $M_{\mathcal{L}}(\mathcal{C})$ for a given \mathcal{L}

References