

43-я Международная олимпиада по физике — теоретический тур Тарту, Эстония — вторник, 17 июля 2012 года

- Тур длится 5 часов. Тур содержит 3 задачи, в сумме оцениваемые в 30 баллов. Обратите внимание, что суммы баллов за различные задачи различны.
- Покидать рабочее место без разрешения запрещено. Если вам необходима помощь (сломался калькулятор, нужно посетить туалет и т.д.), поднимите соответствующий флаг с длинной ручкой ("HELP" помощь или "TOILET" туалет), размещённый возле вашего сиденья, над стенами вашего бокса и держите его поднятым, пока к вам не подойдёт организатор.
- Ваши ответы должны быть выражены через выделенные в тексте задачи величины, а также, если необходимо, могут содержать фундаментальные постоянные. Например, если в задаче сказано, что "высота коробки равна а, а длина b", то величину а, но не b, можно использовать в ответе (если только величина b не выделена где-то ещё, см. ниже). Величины, выделенные в тексте данного подпункта, могут быть использованы только для ответа на вопросы этого подпункта. В свою очередь, величины, выделенные в вводном тексте задачи (или части задачи), т.е. вне подпунктов, можно использовать для ответа на все вопросы данной задачи (или части задачи).
- Пишите только на лицевой стороне листов бумаги.
- Для каждой задачи заготовлены отдельные листы для решений ("Solution Sheet"; в заголовке каждого такого листа отмечен номер задачи и её пиктограмма). Решения записывайте на соответствующие листы для решений. Листы для решений для каждой задачи пронумерованы —

- используйте их в соответствии с нумерацией. Всегда отмечайте, какой частью задачи и каким вопросом вы
 занимаетесь. Скопируйте конечные ответы в соответствующие графы на листах для ответов ("Answer Sheet").
 Также вам предложены листы для черновиков ("Draft");
 используйте их для записей, не предназначенных к оцениванию. Если вы записали на листы для решений что-то,
 что не следует использовать в оценивании (например, поспешные и неверные решения), зачеркните те строки.
- Если вам нужны дополнительные листы для какой-либо задачи, поднимите флаг "HELP" и сообщите организатору номер задачи; вам выдадут два листа для решений. Просить дополнительную бумагу можно более одного раза.
- Используйте как можно меньше текста: стремитесь объяснять свое решение прежде всего уравнениями, числами, символами и рисунками.
- Первый, одиночный звуковой сигнал означает, что до конца тура остаётся полчаса. Второй, двойной звуковой сигнал означает, что до конца тура остаётся пять минут. Последний, тройной звуковой сигнал оповестит вас о конце тура. После третьего звукового сигнала вы обязаны немедленно прекратить писать. Вложите все листы в конверт на рабочем столе. Из помещения запрещено выносить какие бы то ни было листы бумаги. Если вы закончите решение задач до последнего звукового сигнала, поднимите флаг.

Problem 1

Задача Т1. Рисунки прежде всего (13 баллов)

Часть А. Баллистика (4.5 баллов)

Мячик, брошенный с начальной скоростью v_0 , движется в однородном гравитационном поле в плоскости x-z, где ось x горизонтальна, а z — вертикальна и антипараллельна ускорению свободного падения g; сопротивлением воздуха пренебречь.

i. (0.8 б.) Меняя угол броска мячика, брошенного с начальной скоростью v_0 из начала координат, можно поразить цели в области, заданной уравнением

$$z \le z_0 - kx^2;$$

этот факт можно принять без доказательства. Найдите постоянные z_0 и k.

іі. (1.2 б.) Теперь можно менять и угол, и точку броска (которая всё же остаётся на уровне земли, z=0). Необходимо поразить самую верхнюю точку сферического здания радиуса R (см. рис.), бросив мячик с наименьшей возможной

скоростью v_0 . До поражения цели отскоки мячика от здания не допускаются. Нарисуйте качественно (т.е., учитывая самые важные свойства решения, но не с абсолютной точностью) оптимальную траекторию мячика (в соответствующей графе на листе для ответов). Внимание! Баллы даются только за рисунок.

iii. (2.5 б.) Чему равна наименьшая возможная скорость v_{\min} , необходимая, чтобы поразить самую верхнюю точку сферического здания радиуса R?

La Géode, Parc de la Villette, Paris. Photo: katchooo/flickr.com

Часть В. Поток воздуха вокруг крыла (4 балла)

меньших скорости звука, вдоль линии тока $p+\rho gh+\frac{\rho v^2}{2}={\rm const.}$ Здесь ρ — плотность, h — высота, g — ускорение свободного падения, p — гидростатическое давление. Линиями тока называются траектории частиц жидкости в случае стационарного течения. Величину $\frac{\rho v^2}{2}$ называют динамическим давлением. На рисунке приведено поперечное сечение крыла самолёта, изображённое вместе с линиями тока воздуха вокруг крыла, увиденными в системе отсчёта, связанной с последним. Предполагайте, что (а) поток воздуха полностью двумерный (т.е. векторы скорости воздуха лежат в плоскости рисунка); (б) рисунок линий тока не зависит от скорости самолёта; (в) ветра нет; (г) динамическое давление гораздо меньше атмосферного давления $p_0=1.0\times 10^5\,\Pi a$. Разрешается использовать линейку, чтобы

Для этой части задачи вам может пригодиться следующая ин-

формация. Для потока жидкости или газа при скоростях, много

снять необходимые измерения с рисунка на листе для ответов.

i. (0.8 б.) Если скорость самолёта равна $v_0 = 100 \,\mathrm{m/c}$ относительно земли, чему равна скорость воздуха v_P в точке P (см. рис.) относительно земли?

іі. (1.2 б.) В случае высокой относительной влажности при превышении самолётом критического значения скорости $v_{\rm crit}$ за крылом возникает поток капель воды. Капли образуются в определённой точке Q. Отметьте точку Q на рисунке на листе для ответов. Поясните качественно (используя формулы и минимальное количество текста), как вы определили её местонахождение.

ііі. (2.0 б.) Оцените критическую скорость $v_{\rm crit}$, используя следующие данные: относительная влажность невозмущённого воздуха равна r=90%, удельная теплоёмкость воздуха при постоянном давлении $c_p=1.00\times 10^3\,{\rm Дж/kr\cdot K}$, давление насыщенного водяного пара: $p_{sa}=2.31\,{\rm к\Pi a}$ при температуре невозмущённого воздуха $T_a=293\,{\rm K}$, и $p_{sb}=2.46\,{\rm к\Pi a}$ при температуре $T_b=294\,{\rm K}$. В зависимости от ваших приближений вам может также понадобиться удельная теплоёмкость воздуха при постоянном объёме $c_V=0.717\times 10^3\,{\rm Дж/kr\cdot K}$. Относительная влажность является отношением давления водяного пара к давлению насыщенного водяного пара при той же температуре.

Problem 1

Часть С. Магнитные соломинки (4.5 баллов)

Рассмотрим цилиндрическую трубку из сверхпроводящего материала. Длина трубки равна l, а её внутренний радиус — r, причём $l\gg r$. Центр трубки совпадает с началом координат, а её ось — с осью z. Имеется магнитный поток Φ через центральное поперечное сечение трубки, z=0, $x^2+y^2< r^2$. Сверхпроводник — вещество, полностью выталкивающее магнитное поле (магнитное поле в его толще всегда равно нулю).

і. (0.8 б.) На листе для ответов нарисуйте пять силовых линий

магнитного поля, проходящие через пять отмеченных точек в плоскости продольного (осевого) поперечного сечения трубки. ii. (1.2 б.) Найдите направленную вдоль оси z силу натяжения T в середине трубки (т.е. силу, с которой две половины цилиндра, z>0 и z<0, взаимодействуют друг с другом).

ііі. (2.5 б.) Теперь в наличии имеется ещё одна трубка, идентичная и параллельная первой. Магнитное поле во второй трубке имеет противоположное направление, а её центр расположен в точке y=l, x=z=0 (таким образом, трубки лежат вдоль двух про-

тивоположных сторон квадрата). Определите силу магнитного взаимодействия F между двумя трубками.

Problem 2

Задача Т2. Капельница Кельвина (8 баллов)

Вам могут пригодиться следующие сведения о поверхностном натяжении. Для молекул жидкости положение на границе с воздухом менее предпочтительно, чем в глубине. Поэтому граница обладает так называемой поверхностной энергией $U=\sigma S$, где S — площадь поверхности жидкости, а σ — коэффициент поверхностного натяжения. Кроме того, два соседних фрагмента поверхности жидкости притягивают друг друга с силой $F=\sigma l$, где l — длина прямой линии, разделяющей эти два фрагмента.

Длинная металлическая трубка с внутренним диаметром d направлена вниз, а из отверстия на её конце медленно капает вода, см. рис. Воду можно считать проводящей. Коэффициент поверхностного натяжения воды равен σ , а плотность — ρ . На протяжении всей задачи полагайте, что $d \ll r$, где r — радиус капли, висящей непосредственно под трубкой, медленно растущий во времени до

момента, когда капля отрывается от трубки и начинает падать из-за силы тяжести (ускорение свободного падения — g). Часть А. Одна трубка (4 балла)

і. (1.2 б.) Найдите радиус $r_{\rm max}$ капли непосредственно перед её отрывом от трубки.

ii. (1.2 б.) Электростатический потенциал трубки относительно бесконечно удалённой точки равен φ . Найдите заряд Q капли в момент, когда её радиус равен r.

ііі. (1.6 б.) В этом подпункте полагайте, что r остаётся неизменным, пока φ медленно повышают. Капля станет нестабильной и распадется на капельки поменьше, если гидростатическое давление внутри капли станет меньше, чем атмосферное. Найдите критический потенциал трубки $\varphi_{\rm max}$, при котором это случится.

Первая падающая капля имеет микроскопический заряд, что приводит к нарушению симметрии системы и небольшому разделению заряда на конденсаторе.

Часть В. Две трубки (4 балла)

Аппарат под названием "капельница Кельвина" состоит из двух трубок (идентичных трубке из части A), соединённых Тобразной трубкой, см. рис. Концы обеих трубок находятся в центре двух цилиндрических электродов (длиной L и диаметром $D, L \gg D \gg r$); из обеих трубок капает n капель в единицу времени. Капли падают с высоты H в две проводящие чаши прямо под трубками, соединённые с электродами так, как показано на рисунке. Электроды соединены через конденсатор ёмкостью C. Суммарный заряд системы чаш и электродов равен нулю. Верхний контейнер с водой заземлён.

i. (1.2 б.) Выразите модуль заряда Q_0 капель, отделяющихся от трубок в момент, когда заряд конденсатора равен q, через $r_{\rm max}$ (описанный в части A-i). Эффектом, описанным в части A-iii, пренебречь.

іі. (1.5 б.) Найдите зависимость величины q от времени t, представив её как непрерывную функцию от вре-t мени q(t) и приняв $q(0) = q_0$.

части A-ііі. Более того, существует предел U_{\max} для допустимого напряжения между электродами, вызванный электростатическим отталкиванием капли и чаши под ней. Найдите U_{\max} .

Problem 3

Задача Т3. Образование протозвезды (9 бал-лов)

Рассмотрим следующую модель формирования звезды. Сферическое облако разреженного межзвёздного газа, находящееся изначально в состоянии покоя, начинает сжиматься из-за своей собственной гравитации. Начальный радиус облака равен r_0 , масса — m . Температура окружающей среды, гораздо более разреженной, чем газ, а также начальная температура газа однородна и равна r_0 . Газ считайте идеальным. Средняя молярная масса газа равна r_0 , а его показатель адиабаты r_0 . Предполагайте, что r_0 r_0

i. (0.8 б.) На протяжении большей части сжатия газ настолько прозрачен, что всё возникающее в нём тепло немедленно теряется через излучение. Во сколько раз (n) увеличится давление, если радиус уменьшится вдвое ($r_1=0.5r_0$)? Предполагайте, что плотность газа остаётся однородной.

іі. (1 б.) Оцените (приблизительно) время t_2 , за которое радиус облака уменьшится с r_0 до $r_2=0.95r_0$. Изменением гравитационного поля вдоль траектории частиц пренебрегите.

ііі. (2.5 б.) Предполагая, что давление газа в облаке остаётся пренебрежимо мало, найдите время $t_{r \to 0}$, за которое облако сожмётся с радиуса r_0 до гораздо меньшего размера, используя законы Кеплера для эллиптических орбит.

iv. (1.7 б.) При определённом радиусе $r_3 \ll r_0$ газ станет достаточно плотным для того, чтобы быть непрозрачным для тепловой радиации. Определите количество теплоты Q, излучённое при сжатии с радиуса r_0 до r_3 .

v. (1 б.) Для радиусов меньше, чем r_3 , тепловым излучением можно пренебречь. Определите, как температура T облака зависит от его радиуса $r < r_3$.

vi. (2 б.) Через какое-то время пренебрегать влиянием давления на динамику газа больше нельзя, и сжатие прекращается при радиусе $r=r_4$ (где $r_4\ll r_3$). Однако тепловым излучением все ещё можно пренебречь, а температура недостаточно высока, чтобы спровоцировать термоядерную реакцию. Давление в такой протозвезде больше не однородно, однако грубые оценки с неточными численными коэффициентами все ещё могут быть сделаны. Оцените конечный радиус r_4 и соответствующую температуру T_4 .