

G H Patel College of Engineering & Technology

(The Charutar Vidhya Mandal (CVM)
University)
Bakrol, Anand

COMPUTER ENGINEERING DEPARTMENT

Project Report On Heart Disease Prediction

Submitted By

Name of Student: Varad Chaudhari Enrollment Number: 12202130501062

Name of Student: Vivek Vallabhan Enrollment Number: 12202130501065

Artificial Intelligence & Machine Learning (202046702) A.Y. 2024-25 EVEN TERM

1. Objective

The objective of this project is to develop a predictive model that can determine whether a patient is likely to have heart disease based on their medical features. The main goals include:

- Building an accurate classification model using machine learning techniques.
- Evaluating and comparing the performance of multiple algorithms.
- Providing probabilistic output to support clinical decision-making.
- Implementing the model in a scalable, reusable script for real-time prediction.
 Heart disease remains a leading cause of mortality worldwide, and this tool aims to assist healthcare professionals by offering quick and reliable decision support.

2. Dataset Used

The dataset used in this project is the **Heart Disease Dataset** sourced from the **UCI Machine Learning Repository**. It is a well-known dataset in the data science community for binary classification problems.

- Total Samples: 1025
- Features: 13 independent variables (clinical features)
- Target: 1 (Presence of heart disease), 0 (Absence of heart disease)

➤ Key Features:

- Age: Age of the patient
- Sex: Gender (1 = Male, 0 = Female)
- **cp**: Chest pain type (0–3)
- **trestbps**: Resting blood pressure (in mm Hg)
- **chol**: Serum cholesterol in mg/dl
- **fbs**: Fasting blood sugar > 120 mg/dl (1 = true; 0 = false)
- **restecg**: Resting electrocardiographic results (values 0,1,2)
- thalach: Maximum heart rate achieved
- **exang**: Exercise induced angina (1 = yes; 0 = no)
- **oldpeak**: ST depression induced by exercise relative to rest
- slope: Slope of the peak exercise ST segment
- ca: Number of major vessels colored by fluoroscopy (0–3)
- thal: 3 = normal; 6 = fixed defect; 7 = reversible defect

3. Model Chosen

To identify the best-performing model, multiple machine learning algorithms were evaluated:

- Logistic Regression A baseline linear model for binary classification.
- Random Forest Classifier An ensemble model with decision trees for robust predictions.
- **Support Vector Machine (SVM)** A powerful classifier that finds the optimal hyperplane for separation.

After thorough evaluation, **SVM** (**Support Vector Machine**) was chosen as the final model due to its excellent balance between precision, recall, and overall accuracy.

4. Performance Metrics

Each model was evaluated using the following metrics:

- Accuracy: Overall correctness of the model.
- **Precision**: Percentage of correctly predicted positive cases.
- **Recall**: Ability to detect all actual positive cases.
- F1 Score: Harmonic mean of precision and recall.
- **ROC AUC Score**: Area under the Receiver Operating Characteristic curve.

Comparison Table:

Metric	Logistic Regression	Random Forest	SVM (Chosen)
Accuracy	80.98%	92.68%	92.20%
Precision	76.19%	89.47%	90.83%
Recall	91.43%	97.14%	94.29%
F1 Score	83.12%	93.15%	92.52%
ROC AUC Score	92.97%	97.61%	97.71%

5. Challenges & Learnings

Challenges:

- **Model Selection**: Choosing a model that generalized well without overfitting required multiple experiments.
- **Data Imbalance Consideration**: Even though the dataset was relatively balanced, careful monitoring of precision and recall was necessary to avoid bias.
- Evaluation Beyond Accuracy: Initially, accuracy appeared high for all models. A deeper dive into recall and AUC scores revealed actual model robustness.

Learnings:

- Understood the critical importance of **data preprocessing**, especially when working with medical data.
- Gained practical experience in **model evaluation using multiple metrics**, beyond just accuracy.
- Learned how to **compare multiple classifiers** and select one based on both performance and interpretability.
- Built a modular and reusable script (predict.py) to **simulate real-world predictions**.
- Understood the **end-to-end workflow of a ML project**, from data loading to deployment-ready model saving.