パターン認識と学習 深層学習(1)

管理工学科 篠沢佳久

資料の内容

- 深層学習(1)
 - □ オートエンコーダ
 - □ 畳み込みニューラルネットワーク(1)

- 実習①(多層のネットワークの学習)
- 実習②(オートエンコーダ)

深層学習(Deep Learning)

ニューラルネットワークの大規模化

- 大規模データ
 - →データ数. 入力情報の次元数が増加
 - →入力層が増加
- 多クラス分類問題
 - → 出力層が増加
- ネットワークの大規模化
 - □ 多層化(深層)にすればよいのか

多層化した場合

- 単純に層を増やせばよいわけではない
- 層を増やせば、学習が困難になる→実習①(DL.py(8層のネットワーク)を実行してみて下さい)
- 階層化, 層間の結合方法(ネットワークアーキテクチャ)はどう すればよいか
- 層を増やすと何ができるようになるのか

多層化した場合、何ができるのか

■ (ヒント)人間の視覚野のモデル

深層学習(Deep Learning)

目的

Deep learning methods aim at learning feature hierarchies with features from higher levels of the hierarchy formed by the composition of lower level features.

- 階層的な特徴の学習
 - □ ネットワークの下層部 局所的な特徴
 - □ ネットワークの上層部 大局的な特徴

(従来?の)ニューラルネットワークでの認識

ニューラルネットワークに期待すること

深層学習に期待すること

視覚野 V1 V4 \odot 男性 二郎 友人 太郎 女性 花子 家族 \odot 深層学習 精度の向上 階層化した特徴

深層学習で考えるべきこと

- 単純に層を増やせばよいわけではない
- 階層化した特徴を学習できるようにするため、
 - ロ ネットワークアーキテクチャをどうすべきか
 - □ 学習をどう行なうべきか
- ネットワークが複雑化、巨大化した場合、
 - □ 学習方法をどう改良すべきか
- なぜ上手くいったのか説明できるようにする

オートエンコーダ

事前学習(PreTraining)

ニューラルネットワークでの認識

入力画像

ニューラルネットワークの動作

ニューラルネットワークによる特徴抽出

- 特徴とは
 - □入力情報の次元数を削減
 - →代表的な手法として主成分分析

- ニューラルネットワークによる特徴抽出
 - □ヘッブの学習則
 - □ オートエンコーダ (Auto Encoder)

オートエンコーダ(砂時計型ネットワーク)

オートエンコーダ(1)

オートエンコーダ②

中間層
$$h_j = f(\sum_{i=1}^n w_{ji} x_i)$$

出力層
$$y_i = f(\sum_{j=1}^m \widetilde{w}_{ij} h_j)$$
 教師信号 X_i =入力値

オートエンコーダ③

オートエンコーダの動作

中間層

$$\mathbf{h} = f(W\mathbf{x} + \mathbf{b})$$

入力層と中間層 結合係数W閾値 b

出力層

$$\mathbf{y} = \widetilde{f}(\widetilde{W}\mathbf{h} + \widetilde{\mathbf{b}})$$
$$= \widetilde{f}(\widetilde{W}f(W\mathbf{x} + \mathbf{b}) + \widetilde{\mathbf{b}})$$

中間層と出力層 結合係数W 閾値 h

$$\widetilde{W} = W^t$$
 | 重み共有

オートエンコーダの学習(1)

出力値が実数値の場合(活性化関数:恒等関数)

$$E = \sum_{p=1}^{P} ||\mathbf{y}_{p} - \mathbf{x}_{p}||^{2} = \sum_{p=1}^{P} ||(\widetilde{W}f(W\mathbf{x}_{p} + \mathbf{b}) + \widetilde{\mathbf{b}}) - \mathbf{x}_{p}||^{2}$$

誤差二乗和

出力値が二値の場合(活性化関数:シグモイド関数)

$$E = -\sum_{p=1}^{P} \sum_{i=1}^{n} (x_{pi} \log y_{pi} + (1 - x_{pi}) \log(1 - y_{pi}))$$

交差エントロピー

特徴抽出(入力情報の次元削減)

分散表現

オートエンコーダの学習②

多層のオートエンコーダを学習するには?

23

X

Stackedオートエンコーダ①

Stackedオートエンコーダ②

Stackedオートエンコーダ③

Stackedオートエンコーダ4

Stackedオートエンコーダ⑤

X

n>m>l>h

出力層

n個

中間層

m個

中間層

I個

中間層

h個

中間層

I個

中間層

m個

入力層

n個

デコード

抽出した特徴から入力情報を復元

エンコード

入力情報の次元数の削減 (特徴抽出)

事前学習(PreTraining)①

事前学習(PreTraining)②

中間層

中間層

入力層

AEの結合係数を初期 値として、再学習 (Fine Tuning)

Denoisingオートエンコーダ①

出力層

中間層

入力層

入力 x

 $\begin{vmatrix} \widetilde{x}_i = x_i + \delta x_i \\ \delta \approx N(0, \sigma^2) \end{vmatrix}$

Denoisingオートエンコーダ②

■学習

$$E = \sum_{p=1}^{P} \| \mathbf{y}_p - \mathbf{x}_p \|^2$$

教師信号→ノイズの含まれていない入力

- Denoisingオートエンコーダ
 - □ 入力のノイズの除去が可能
 - □ ノイズを含んだ入力からの特徴抽出が可能

エンコーダ・デコーダの応用

- 画像処理
 - □ 畳み込み(逆畳み込み)ニューラルネットワーク
 - セマンティックセグメンテーション
 - □ 画像変換, 画像生成
- 自然言語処理
 - □ Sequence to Sequenceモデル
 - □ 機械翻訳
 - □ 対話文応答
 - □ 文章の自動生成

畳み込みニューラルネットワーク (Convolution Neural Network)

空間フィルタリング処理 畳み込み層 プーリング層

空間フィルタリング処理(畳み込み処理)①

■ 各画素について、その画素周辺のN×N画素の小領域と、N×Nの空間フィルタとの積和を行なう

■ 入力画像をf, 空間フィルタをhとした場合, 下記の式に基づいて変換後の画素値gを求める

畳み込み処理

$$g(x,y) = \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} h(k,l) f(x+k,y+l)$$

空間フィルタリング処理(畳み込み処理)②

3×3の空間フィルタ h

0	-1	0
-1	5	-1
0	-1	0

周辺の3×3の小領域f

以上の処理を全ての画素で行なう

空間フィルタリング処理(畳み込み処理)③

空間フィルタリング処理(畳み込み処理)④

入力画像 f(x,y)

2	4	1	3	5
3	2	6	2	8
1	0	3	4	2
6	2	1	7	5
5	3	2	5	6

平滑化フィルタ h

$$h(k,l) = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

出力画像 g(x,y)

2.44444	2.777778	3.777778
2.666667	3	4.222222
2.55556	3	3.888889

(3+4+2+1+7+ 5+2+5+6)/9

空間フィルタリング処理(畳み込み処理)⑤

(従来?の)ニューラルネットワークでの認識

(近年?の)ニューラルネットワークでの特徴抽

出及び認識

フィルターを結合係数として学習できないか

畳み込み層(Convolution Layer)

入力層

入力画像

W ₀₀	W ₀₁	W ₀₂	W ₀₃
W ₁₀	W ₁₁	W ₁₂	W ₁₃
W ₂₀	W ₂₁	W ₂₂	W ₂₃
W ₃₀	W ₃₁	W ₃₂	W33

W ₀₀	W ₀₁	W ₀₂	W ₀₃
W ₁₀	W ₁₁	W ₁₂	W ₁₃
W ₂₀	W ₂₁	W ₂₂	W ₂₃
W ₃₀	W ₃₁	W ₃₂	W ₃₃

W ₀₀	W ₀₁	W ₀₂	W ₀₃
W ₁₀	W ₁₁	W ₁₂	W ₁₃
W ₂₀	W ₂₁	W ₂₂	W ₂₃
W ₃₀	W ₃₁	W ₃₂	W33

フィルターを結合係数 として学習

畳み込み処理後の出力

認識に利用できる特徴ではないか

畳み込み層

畳み込み層(Convolution Layer)

入力層

W ₀₀	W ₀₁	W ₀₂	W ₀₃
W ₁₀	W ₁₁	W ₁₂	W ₁₃
W ₂₀	W ₂₁	W ₂₂	W ₂₃
W ₃₀	W ₃₁	W ₃₂	W33

フィルター(結合係数)

w(p,q) $p = 0,1,\dots, N-1$ $q = 0,1,\dots, N-1$

f(x, y)
$f(x, y)$ $x = 0,1, \dots X - 1$ $y = 0,1, \dots Y - 1$
$y = 0, 1, \dots Y - 1$

W ₀₀	W ₀₁	W ₀₂	W ₀₃
W ₁₀	W ₁₁	W ₁₂	W ₁₃
W ₂₀	W ₂₁	W ₂₂	W ₂₃
W ₃₀	W ₃₁	W ₃₂	W33

	W ₀₀	W ₀₁	W ₀₂	W ₀₃
_	W ₁₀	W ₁₁	W ₁₂	W ₁₃
7	W ₂₀	W ₂₁	W ₂₂	W ₂₃
	W ₃₀	W ₃₁	W ₃₂	W ₃₃

$$g(x,y) = \sum_{p=0}^{N-1} \sum_{q=0}^{N-1} f(x+p, y+q) w(p,q)$$

パディング

入力画像 f(x,y)

1	1	1	1
$h(k,l) = \frac{1}{9}$	1	1	1
9	1	1	1

出力画像 g(x,y)

2	4	1	3	5
3	2	6	2	8
1	0	3	4	2
6	2	1	7	5
5	3	2	5	6

2.444	2.778	3.778
2.667	3.000	4.222
2.556	3.000	3.889

画像の大きさが小さくなる

周囲を0(ゼロパディング)

0	0	0	0	0	0	0
0	2	4	1	3	5	0
0	3	2	6	2	8	0
0	1	0	3	4	2	0
0	6	2	1	7	5	0
0	5	3	2	5	6	0
0	0	0	0	0	0	0

1.222	2.000	2.000	2.778	2.000
1.333	2.444	2.778	3.778	2.667
1.556	2.667	3.000	4.222	3.111
1.889	2.556	3.000	3.889	3.222
1.778	2.111	2.222	2.889	2.556
0.889	1.111	1.111	1.444	1.222

画像の大きさは変わらない

ストライド①

ストライドが1の場合

2	4	1	3	5	2	1
3	2	6	2	8	3	4
1	0	3	4	2	1	2
6	/2	1	7	5	2	4
5	3	2	5	6	1	7
3	4	1	6	7	0	3
1 /	4	0	8	5	2	8

入力画像 *f(x,y)*

2.444	2.778	3.778	3.333	3.111
2.667	3.000	4.222	3.778	3.444
2.556	3.000	3.889	3.667	3.333
3.000	3.444	4.444	4.333	3.889
2.556	3.667	4.444	4.444	4.333

ストライド②

ストライドが1の場合

2	4	1	3	5	2	1
3	2	6	2	8	3	4
1	0	3	4	2	1	2
6	2	/ 1	7	5	2	4
5	3	2	5	6	1	7
3	4	1	6	7	0	3
1	4	0	8	5	2	8

入力画像 *f(x,y)*

2.444	2.778	3.778	3.333	3.111
2.667	3.000	4.222	3.778	3.444
2.556	3.000	3.889	3.667	3.333
3.000	3.444	4.444	4.333	3.889
2.556	3.667	4.444	4.444	4.333

ストライド③

ストライドが2の場合

2	4	1	3	5	2	1
3	2	6	2	8	3	4
1	0	3	4	2	1	2
6	2	1	7	5	2	4
5	3	2	5	6	1	7
3	4	1	6	7	0	3
1	4	0	8	5	2	8

入力画像 *f(x,y)*

2.444	3.778	3.111
2.556	3.889	3.333
2.556	4.444	4.333

ストライド4

ストライドが2の場合

2	4	1	3	5	2	1
3	2	6	2	8	3	4
1	0	3	4	2	1	2
6	2	/	7	5	2	4
5	3	2	5	6	1	7
3	4	/ 1	6	7	0	3
1	4	0	8	5	2	8

入力画像 *f(x,y)*

2.444	3.778	3.111
2.556	3.889	3.333
2.556	4.444	4.333

畳み処理後の画像*の大きさ

- ストライド, パディングによって畳み処理後の画像(特徴マップ)の大きさを変更可能
- 入力画像の大きさ I_W×I_H
- フィルターの大きさ $F_W \times F_H$
- ストライド s
- パディング p
- 畳み処理後の特徴マップの大きさ
- $O_W \times O_H = ((I_W F_W + 2p)/s + 1) \times ((I_H F_H + 2p)/s + 1)$

特徴マップ①

入力画像

X

フィルター数 M枚

M枚の出力画像

 $X \times Y \times M$

特徴マップ②

表記方法

(バッチサイズ, チャネル数, Y, X)

- 入力画像(1枚=バッチサイズ=1)
 - □ グレースケール画像(1チャネル)

(1, 1, Y, X)

- 大きさ X×Y
- □ 次元数 X×Y×1

チャネル数は同じ

- フィルター
 - □ 枚数 M枚(1チャネル)
 - □ 大きさ W×W
 - □ 次元数 W×W×M

表記方法

(枚数, チャネル数, Y, X) もしくは(枚数, Y, X)

(M, 1, W, W)

(M, W, W)

- 畳み処理後の特徴マップ
 - □ 枚数 M枚チャネル
 - 大きさ X×Y*
 - 次元数 X×Y×M

表記方法

(バッチサイズ, チャネル数, Y, X)

(1, M, Y, X)

^{*}入力画像の大きさと同じになるようにパディング,ストライドを調整したという仮定

入力値のチャネル数が複数の場合

特徴マップ③

表記方法

- 入力画像(1枚=バッチサイズ=1)
- (バッチサイズ, チャネル数, Y, X)

RGB画像(3チャネル)

(1, 3, Y, X)

大きさ X×Y

□ 次元数 X×Y×3

チャネル数は同じ

- フィルター
 - □ 枚数 M枚(3チャネル)
 - □ 大きさ W×W
 - □ 次元数 W×W×3

表記方法 (枚数, チャネル数, Y, X) もしくは(枚数, Y, X)

(M, 3, W, W)

(M, W, W)

- 畳み処理後の特徴マップ
 - □ 枚数 M枚チャネル
 - 大きさ X×Y
 - □ 次元数 X×Y×M

表記方法

(バッチサイズ, チャネル数, Y, X)

(1, M, Y, X)

特徴マップの畳み込み処理①

特徴マップの畳み込み処理②

$$u_{ijm} = \sum_{k=1}^{K} \sum_{p=0}^{H-1} \sum_{q=0}^{H-1} z_{i+p,j+q,k}^{(l-1)} h_{pqkm}$$

$$u_{ijm} = \sum_{k=1}^{K} \sum_{p=0}^{H-1} \sum_{q=0}^{H-1} z_{i+p,j+q,k}^{(l-1)} h_{pqkm} + b_{ijm}$$

フィルターごとに閾値(M個)

第I層の特徴マップ

$$z_{ijm}^{(l)} = f(u_{ijm})$$
活性化関数

LeNet(**貴み込みニューラルネットワーク**) (Y.LeCun,1989)

单純型細胞,複雜型細胞

単純型細胞

複雜型細胞

LeNet-5(**畳み込みニューラルネットワーク**) (Y.LeCun,1998)

- 畳み込み層, プーリング層から構成されるニューラルネットワーク
 - □畳み込み層・・・単純型細胞
 - □ 畳み込み層, プーリング層・・・複雑型細胞

プーリング層(Pooling Layer)

特徴マップ

W

W/2

W/2

最大プーリング(大きさは2×2, ストライドは2)

22	27	26	68	64	39	38	72
16	84	29	4	10	47	25	3
37	66	7	89	49	72	81	24
83	67	61	70	95	88	43	48
54	70	0	49	54	34	29	92
10	97	25	1	67	43	10	67
61	66	59	16	54	85	58	17
29	32	87	63	37	15	8	44

84	68	64	72
83	89	95	81
97	49	67	92
66	87	85	58

プーリング処理

$$u_{ijk} = \max_{(p,q) \in P_{ij}} z_{pqk}$$

$$u_{ijk} = \frac{1}{H^2} \sum_{(p,q) \in P_{ij}} z_{pqk}$$

$$u_{ijk} = \left(\frac{1}{H^2} \sum_{(p,q) \in P_{ij}} z_{pqk}^P\right)^{\frac{1}{P}}$$

全結合層への変換

一次元に変換

特徴マップ

W

W

全結合層

(W×W×M)個

出力層

全結合層 (中間層)

Mチャネル

特徴マップの次元数 $W \times W \times M$

特徴マップから全結合層に入力 →二次元の位置情報が失われる

出力層

$$O_{pj} = u_{pj}$$

恒等関数

クラス分類の場合

$$O_{pj} = \frac{e^{u_{pj}}}{\sum_{k=1}^{K} e^{u_{pk}}}$$

ソフトマックス関数

$$u_{pj} = \sum_{i=1}^{H} x_{pi} W_{ji} + b_j$$

$$O_{pj} = f(u_{pj})$$

畳み込みニューラルネットワーク(LeNet5)

数字認識

VGG (Visual Geometry Group) 1

K.Simonyan, A.Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, 2015

VGG (Visual Geometry Group) (2)

表記方法 (バッチサイズB, チャネル数, Y, X)

畳み込みニューラルネットワーク の行列計算

行列計算による畳み込み処理

入力画像

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

フィルター

1	2	
3	4	

畳み込み処理後の画像

44 🛕	54	64
84	94	104
124	134	144

$$1 \times 1 + 2 \times 2 + 5 \times 3 + 6 \times 4$$

入力画像の変換(変換①) (バッチサイズ1, チャネル数1, フィルター数1の場合)

入力画像の変換(変換①)

フィルターの変換(変換②) (フィルター数1の場合)

フィルターの変換(変換②)

行列計算による畳み込み処理

特徴マップへの変換(変換③)

行列計算によるプーリング処理(1)

入力画像

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

プーリング処理後の画像

Maxプーリング 2×2, ストライド2

6	8
14	16

行列計算によるプーリング処理②

入力画像

X

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

変換4後の画像

変換④

1	2	5	6
3	4	7	18
9	10	13	14
11	12	15	16

行ごとに最大値を求める

変換⑤

U

プーリング処理 後の特徴マップ

プーリング処理 後の画像

P

6	
8	
14	
16	

>	6	8
	14	16

変換④(バッチサイズ1, チャネル数1の場合)

入力画像の変換(変換4)

行列計算によるプーリング処理

特徴マップへの変換(変換⑤)

 $(pool_w \times pool_h \times img_ch \times batch, 1)$

畳み込みニューラルネットワーク の学習

誤差逆伝播

畳み込みニューラルネットワークの学習

- ① 出力層の学習 出力層と全結合間の学習
- ② 全結合層の学習全結合層間の学習
- ③ 畳み込み層の学習 全結合層から逆伝播してきた誤差の変換 フィルタの学習
- ④ プーリング層での逆伝播プーリング層は学習しない、誤差を逆伝播するのみ

出力層

m個

出力値

 O_{pi} $\mathbf{o}_p = (o_{p1}, o_{p2}, \dots, o_{pm})$

$$\boldsymbol{t}_{pj} \quad \boldsymbol{t}_{p} = \left(t_{p1}, t_{p2}, \cdots, t_{pm}\right)$$

$$\mathbf{x}_p = (x_1, x_2, \cdots, x_n)$$

$$\mathbf{x}_{p} = (x_{1}, x_{2}, \dots, x_{n})$$

$$\frac{\mathbf{k}$$
結合係数}
$$W = \begin{pmatrix} w_{11} & w_{21} & \cdots & w_{m1} \\ w_{12} & w_{22} & & w_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ w_{1n} & w_{2n} & \cdots & w_{mn} \end{pmatrix}$$

$$\mathbf{u}_{p} = \mathbf{x}_{p}W + \mathbf{b}_{p}$$

$$\mathbf{u}_p = \mathbf{x}_p W + \mathbf{b}_p$$

閾値
$$\mathbf{b} = (b_1, b_2, \dots, b_m)$$

$$\left|\mathbf{o}_p = f(\mathbf{u}_p)\right|$$

全結合層

n個

出力層

m個

入力值 バッチ(b個)

$$X = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{b1} & x_{b2} & \cdots & x_{bn} \end{pmatrix}$$

出力值

$$O = \begin{pmatrix} o_{11} & o_{12} & \cdots & o_{1m} \\ o_{21} & o_{22} & \cdots & o_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ o_{b1} & o_{b2} & \cdots & o_{bm} \end{pmatrix}$$

教師信号

結合係数
$$W = \begin{pmatrix} w_{11} & w_{21} & \cdots & w_{m1} \\ w_{12} & w_{22} & & w_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ w_{1n} & w_{2n} & \cdots & w_{mn} \end{pmatrix} \quad \underbrace{\begin{array}{c} \vdots \\ t_{b1} \\ U = XW + \mathbf{1}^t \mathbf{b} \end{array}}$$

$$U = XW + \mathbf{1}^t \mathbf{b}$$

閾値
$$\mathbf{b} = (b_1, b_2, \dots, b_m)$$

$$O = f(U)$$

出力層の学習(行列計算)①

出力層の学習(行列計算)(2)

$$\partial W = \begin{pmatrix} \partial w_{11} & \partial w_{21} & \cdots & \partial w_{m1} \\ \partial w_{12} & \partial w_{22} & & \partial w_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ \partial w_{1n} & \partial w_{2n} & \cdots & \partial w_{mn} \end{pmatrix} = \begin{pmatrix} \delta_1 x_1 & \delta_2 x_1 & \cdots & \delta_m x_1 \\ \delta_1 x_2 & \delta_2 x_2 & & \delta_m x_2 \\ \vdots & \vdots & \ddots & \vdots \\ \delta_1 x_n & \delta_2 x_n & \cdots & \delta_m x_n \end{pmatrix}$$

$$= \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} (\mathcal{S}_1 \quad \mathcal{S}_2 \quad \cdots \quad \mathcal{S}_m) = \mathbf{x}^t \mathbf{\Delta}$$

結合係数
$$W' = W - \alpha \partial W = W - \alpha \mathbf{x}^t \mathbf{\Lambda}$$

閾値

$$\mathbf{b}' = \mathbf{b} - \alpha \partial \mathbf{b} = \mathbf{b} - \alpha \mathbf{1}^t \mathbf{\Delta}$$

誤差の逆伝播(行列計算)

全結合層の学習

全結合層から逆伝播してきた誤差の変換

畳み込み層の学習(1)

フィルター F flt_w×flt_h×img_ch flt

(flt, flt_w \times flt_h \times img_ch)

$$U' = FX'$$

flt

(flt, conv_w × conv_h × batch)

変換①後の入力画像

 $conv_w \times conv_h \times batch$

 $flt_w \times flt_h \times img_ch$

 $(flt_w \times flt_h \times img_ch, conv_w \times conv_h \times batch)$

X'

変換③

 \boldsymbol{U}

畳み処理後の 特徴マップ

(batch, flt, conv_h, conv_w)

O = f(U)

 $\boldsymbol{\Delta}^{(l+1)}\boldsymbol{W}^{(l+1)^t}$

してきた誤差

(I+1)層から逆伝播

|層の誤差

$$\Delta^{(l)} = \Delta^{(l+1)} W^{(l+1)^t} f'(U)$$

畳み込み層の学習(2)

変換①後の入力画像

 $\Delta^{(l)} = \Delta^{(l+1)} W^{(l+1)^{t}} f'(U)$

(batch, flt, conv_h, conv_w)

変換

flt

conv_w × conv h × batch

 $(conv_w \times conv_h \times batch, flt)$

フィルターの修正値

 $\partial F = X' \Lambda^{(l)} \mid (\text{flt_w} \times \text{flt_h} \times \text{img_ch, flt})$

誤差

転置

(flt, flt_w × flt_h × img_ch)

変換②の逆変換

 $\partial W^{(l)}$

フィルター (4次元)

(flt, img_ch, flt_h, flt_w)

畳み込み層の学習③

誤差の逆伝播(1)

94

誤差の逆伝播②

プーリング層での逆伝播①

 $(pool_w \times pool_h \times img_ch \times batch, pool \times pool)$

 $(pool_w \times pool_h \times img_ch \times batch, 1)$

プーリング層での逆伝播②

プーリング層での逆伝播③

 $(pool_w \times pool_h \times img_ch \times batch, 1)$

プーリング層での逆伝播4

 $(pool_w \times pool_h \times img_ch \times batch, 1)$

プーリング層での逆伝播4

実習① (多層のネットワークの学習)

多層のネットワークの学習(DL.py)

- MNISTの数字画像認識
- MNISTのデータがあるフォルダーにプログラムは置いて下さい
- ■「dat」というフォルダーを作成して下さい
- 実行方法
 - □ 学習
 - □ > python DL.py t
 - □ 認識
 - > python DL.py p

引数をつけて下さい

ニューラルネットワークの構造①

- 出力層
 - □ 損失関数:誤差二乗和
 - □ 活性化関数:シグモイド関数
 - □ 個数:クラス数(class_num)
- 中間層(6層)
 - □ 活性化関数: ReLU関数
 - □ 個数:次頁参照
- 入力層
 - □ 個数:特徴数(feature)

ニューラルネットワークの構造②

変数名

出力層

outunit

class_num=10

中間層

hunit6

hunit_num6=32

中間層

hunit5

hunit_num5=32

中間層

hunit4

hunit_num4=32

中間層

hunit3

hunit_num3=64

中間層

hunit2

hunit_num2=128

中間層

hunit1

hunit_num1=256

入力層

feature(size × seize)

メインメソッド

```
if __name__ == '__main__':
  #中間層の個数
  hunit_num1 = 256
  hunit num2 = 128
  hunit num3 = 64
  hunit_num4 = 32
  hunit num5 = 32
  hunit num6 = 32
  #中間層のコンストラクター
  hunit1 = Hunit( feature , hunit_num1 )
```

プログラムはBP.pyを用いています 違う箇所のみ説明します

中間層の個数:hunit num1 一つ前の層(入力層)の個数:feature

```
コンストラクター(__init__)により、配列を確保
→初期化
hunit1.w:feature × hunit num
hunit1.b:hunit num
```

```
hunit2 = Hunit( hunit_num1 , hunit_num2 )
hunit3 = Hunit( hunit_num2 , hunit_num3 )
hunit4 = Hunit( hunit_num3 , hunit_num4 )
hunit5 = Hunit( hunit_num4 , hunit_num5 )
hunit6 = Hunit( hunit_num5 , hunit_num6 )
```

```
#出力層のコンストラクター
outunit = Outunit( hunit_num6 , class_num )
                        出力層の個数:class num
argvs = sys.argv
                         一つ前の層(中間層)の個数:hunit_num6
#引数がtの場合
if argvs[1] == "t":
                        コンストラクター( init )により, 配列を確保
 # 学習データの読み込み
                        →初期化
                        outunit.w:hunit_num6 × class_num
 flag = 0
                        outunit.b:class num
  Read_data(flag)
 #学習
 Train()
                        flag=0
                         →学習データの読み込み
# 引数がpの場合
elif argvs[1] == "p":
 # テストデータの読み込み
 flag = 1 ◆
                        flag=1
 Read_data( flag )
                        →テストデータの読み込み
 # テストデータの予測
  Predict()
                                                         106
```

学習(1)

```
def Train():
  # エポック数
                学習回数:(epoch×class_num×train_num)回
  epoch = 200
  for e in range( epoch ):
    error = 0.0
    for i in range(class_num):
      for j in range(0,train_num):
         # 入力データ
                                               入力データ
         rnd_c = np.random.randint(class_num)
                                               (1×feature)に変形
         rnd_n = np.random.randint(train_num)
         input_data = data_vec[rnd_c][rnd_n].reshape(1,feature)
```

ランダムにクラス(rad_c), データ(rnd_n)を選択し、入力

学習(2)

①hunit1.Propagationメソッド 入力値(input_data)を渡す

伝播

hunit1.Propagation(input_data)

hunit2.Propagation(hunit1.out)*

hunit3.Propagation(hunit2.out)

hunit4.Propagation(hunit3.out) -

hunit5.Propagation(hunit4.out) ~

hunit6.Propagation(hunit5.out)

outunit.Propagation(hunit6.out)

#教師信号

teach = np.zeros((1,class_num)) teach[0][rnd_c] = 1

教師信号

(1 × class_num)

→ rnd_c番目の要素は1 それ以外は0

- ② huni2.Propagationメソッド 中間層の出力値(hunit1.out)を渡す
- ③ huni3.Propagationメソッド 中間層の出力値(hunit2.out)を渡す
- 4 huni4.Propagationメソッド中間層の出力値(hunit3.out)を渡す
- ⑤ huni5.Propagationメソッド 中間層の出力値(hunit4.out)を渡す
- ⑥ huni6.Propagationメソッド中間層の出力値(hunit5.out)を渡す
- ⑦ outunit.Propagationメソッド 中間層の出力値(hunit6.out)を渡す

学習③

#誤差

outunit.Error(teach)

hunit6.Error(outunit.error) <

hunit5.Error(hunit6.error) •

hunit4.Error(hunit5.error) 🔪

hunit3.Error(hunit4.error)

hunit2.Error(hunit3.error)

hunit1.Error(hunit2.error)

- ① outunit.Errorメソッド 教師信号(teach)を渡す
- ② hunit6.Errorメソッド 教師信号(outunit.error)を渡す
- ③ hunit5.Errorメソッド 教師信号(hunit6.error)を渡す
- 4 hunit4.Errorメソッド教師信号(hunit5.error)を渡す
- ⑤ hunit3.Errorメソッド 教師信号(hunit4.error)を渡す
- ⑥ hunit2.Errorメソッド 教師信号(hunit3.error)を渡す
- ⑦ hunit1.Errorメソッド 教師信号(hunit2.error)を渡す

```
#重みの修正
      outunit.Update_weight()
      hunit6.Update_weight()
                                  出力層、中間層での
      hunit5.Update_weight()
                                  重みの修正
      hunit4.Update_weight()
      hunit3.Update_weight()
      hunit2.Update_weight()
      hunit1.Update_weight()
                                  誤差二乗和
      error += np.dot( ( outunit.out - teach ) , ( outunit.out - teach ).T )
  print( e , "->" , error )
                                  outunit.Saveメソッド
                                  出力層の保存
#重みの保存
                                  保存ファイル名 ("dat/BP-out.npz")を渡す
outunit.Save( "dat/BP-out.npz" )
hunit1.Save( "dat/BP-hunit1.npz" )
                                  hunit1.Saveメソッド
hunit2.Save( "dat/BP-hunit2.npz" )
                                  出力層の保存
                                  保存ファイル名 ("dat/BP-hunit1.npz")を渡す
hunit3.Save( "dat/BP-hunit3.npz" )
hunit4.Save( "dat/BP-hunit4.npz" )
hunit5.Save( "dat/BP-hunit5.npz" )
                                                                    110
hunit6.Save( "dat/BP-hunit6.npz" )
```

予測

```
出力層のロード
def Predict():
                                     ロードしたいファイル名
  # 重みのロード
                                     ("dat/BP-out.npz")を渡す
  outunit.Load( "dat/BP-out.npz" )
                                     hunit1.Loadメソッド
  hunit1.Load( "dat/BP-hunit1.npz" )
                                     中間層のロード
  hunit2.Load( "dat/BP-hunit2.npz" )
                                     ロードしたいファイル名
  hunit3.Load( "dat/BP-hunit3.npz" )
                                     ("dat/BP-hunit1.npz")を渡す
  hunit4.Load( "dat/BP-hunit4.npz" )
  hunit5.Load( "dat/BP-hunit5.npz" )
  hunit6.Load( "dat/BP-hunit6.npz" )
  # 混合行列
  result = np.zeros((class_num,class_num), dtype=np.int32)
  for i in range(class_num):
    for j in range(0,train_num):
                                     入力データ
                                     (1×feature)に変形
      # 入力データ
      input_data = data_vec[i][j].reshape(1,feature)
```

outunit.Loadメソッド

伝播

```
hunit1.Propagation(input_data)
```

hunit2.Propagation(hunit1.out)

hunit3.Propagation(hunit2.out)

hunit4.Propagation(hunit3.out)

hunit5.Propagation(hunit4.out)

hunit6.Propagation(hunit5.out)

outunit.Propagation(hunit6.out)

#教師信号

```
teach = np.zeros( (1,class_num) )
teach[0][i] = 1
```

#予測

```
ans = np.argmax( outunit.out[0] )
result[i][ans] +=1
print( i , j , "->" , ans )
```

教師信号

(1 × class_num)

→ i番目の要素は1 それ以外は0

outunit.out

(1 × class_num)

np.argmax(配列)

配列中,最大値の要素番号を返す

```
print( "¥n [混合行列]" ) 混合行列の表示 
print( result ) 正解数の表示 
print( "¥n 正解数 ->", np.trace(result) )
```

- 確認して下さい
- 学習が停止することは多くありませんか
- 3層のネットワークと比較して精度は向上しましたか。

実習②(オートエンコーダ)

オートエンコーダ(AE.py)

- MNISTの数字画像を対象
- MNISTのデータがあるフォルダーにプログラムは置いて下さい
- ■「fig」「dat」というフォルダーを作成して下さい
- 実行方法
 - □ 学習
 - □ > python AE.py t
 - □ 認識
 - > python AE.py p

引数をつけて下さい

ニューラルネットワークの構造

- 出力層
 - □ 損失関数:誤差二乗和
 - □ 活性化関数:恒等関数
 - □ 個数:特徴数(feature=size×size)
- 中間層
 - □ 活性化関数:ソフトマックス関数*
 - □ 個数:32個,100個
- 入力層
 - □ 個数:特徴数(feature=size×size)

^{*}正確には活性化関数は恒等関数,中間層からの出力値の合計を1としています

変数の宣言

クラス数

class_num = 10

プログラムはBP.pyを用いています

#画像の大きさ

size = 14

feature = size * size

feature

入力層の個数(特徴数)

学習データ数

 $train_num = 100$

#データ

data_vec

(クラス数, 学習(テスト)データ数, 特徴数)

data_vec = np.zeros((class_num,train_num,feature), dtype=np.float64)

学習係数

alpha = 0.1

```
#シグモイド関数
def Sigmoid( x ):
  return 1/(1 + np.exp(-x))
#シグモイド関数の微分
def Sigmoid_( x ):
  return (1-Sigmoid(x)) * Sigmoid(x)
# ReLU関数
def ReLU(x):
  return np.maximum(0, x)
# ReLU関数の微分
def ReLU_(x):
  return np.where(x > 0, 1, 0)
#ソフトマックス関数
def Softmax(x):
  return np.exp(x)/np.sum(np.exp(x), axis=1, keepdims=True)
                                                                  118
```

出力層のクラス(1)

```
class Outunit:
                         m:出力層の個数
  def __init__(self, m, n):
                         n: 一つ下の層(中間層)の個数
    # 重み
    self.w = np.random.uniform(-0.5,0.5,(m,n))
    # 閾値
    self.b = np.random.uniform(-0.5,0.5,n)
  def Propagation(self, x):
    self.x = x
    # 内部状態
    self.u = np.dot(self.x, self.w) + self.b
    #出力値(恒等関数)
```

self.out = self.u

重み:(n×m)の行列 → 0.5から0.5の乱数で初期化

閾値:m次元のベクトル → 0.5から0.5の乱数で初期化

$$\mathbf{u}_p = \mathbf{x}_p W + \mathbf{b}_p$$

出力層のクラス②

def Error(self, t):

#誤差

f = 1 f_: 活性化関数の微分

delta = (self.out - t) * f_

#重み, 閾値の修正値

self.grad_w = np.dot(self.x.T, delta)
self.grad_b = np.sum(delta, axis=0)

#前の層に伝播する誤差

self.error = np.dot(delta, self.w.T)

損失関数が誤差二乗和 活性化関数が恒等関数の場合

$$\frac{\partial E}{\partial V_{kj}} = \frac{\partial E}{\partial S_k} \frac{\partial S_k}{\partial V_{kj}} = (O_k - t_k) H_j$$
誤差

$$\partial W = \mathbf{x}^t \mathbf{\Lambda}$$

$$\partial \mathbf{b} = \mathbf{1}^t \mathbf{\Delta}$$

 ${oldsymbol\Delta} W^t$

def Update_weight(self):

#重み, 閾値の修正

self.w -= alpha * self.grad_w
self.b -= alpha * self.grad_b

$$W' = W - \alpha \partial W$$

$$\mathbf{b'} = \mathbf{b} - \alpha \partial \mathbf{b}$$

出力層のクラス③

np.savez numpy形式のデータの保存(バイナリイ) def Save(self, filename): np.savez(ファイル名,変数名) #重み, 閾値の保存 → ファイル名.npzとして保存 np.savez(filename, w=self.w, b=self.b) def Load(self, filename): #重み、閾値のロード np.load work = np.load(filename) numpy形式のデータのロード self.w = work['w']np.load(ファイル名) self.b = work['b'] キー「w」→重み

キー「b」→閾値

中間層のクラス(1)

```
class Hunit:
```

def __init__(self, m, n):

m:中間層の個数

n: 一つ下の層(入力層)の個数

重み

self.w = np.random.uniform(-0.5,0.5,(m,n))

重み: (n×m)の行列

→ 0.5から0.5の乱数で初期化

#閾値

self.b = np.random.uniform(-0.5,0.5,n)

閾値:m次元のベクトル

→ 0.5から0.5の乱数で初期化

def Propagation(self, x):

self.x = x

x:入力ベクトル(n次元)

内部状態

self.u = np.dot(self.x, self.w) + self.b

 $|\mathbf{u}_{p} = \mathbf{x}_{p}W + \mathbf{b}_{p}|$

#出力値(ソフトマックス関数)

self.out = Softmax(self.u)

 $\mathbf{o}_p = f(\mathbf{u}_p)$

中間層のクラス②

def Error(self, p_error):

p_error:

一つ上の層(出力層)逆伝播してきた誤差(m次元)

#誤差

$$f_{-} = 1$$

delta = p_error * f_

$$\mathcal{S}_{j} = (\sum_{k} V_{kj} \mathcal{S}_{k}) f'(S_{j})$$

#重み, 閾値の修正値

self.grad_b = np.sum(delta, axis=0)

$$\partial W = \mathbf{x}^t \mathbf{\Delta}$$

$$\partial \mathbf{b} = \mathbf{1}^t \mathbf{\Delta}$$

#前の層に伝播する誤差

self.error = np.dot(delta, self.w.T)

$$\Delta W^{t}$$

def Update_weight(self):

#重み, 閾値の修正

self.w -= alpha * self.grad_w

self.b -= alpha * self.grad_bZ

$$W' = W - \alpha \partial W$$

$$\mathbf{b'} = \mathbf{b} - \alpha \partial \mathbf{b}$$

中間層のクラス③

def Save(self, filename):

#重み, 閾値の保存

np.savez(filename, w=self.w, b=self.b)

np.savez numpy形式のデータの保存(バイナリィ) np.savez(ファイル名, 変数名) → ファイル名.npzとして保存

> 重み→キー「w」 閾値→キー「b」

def Load(self, filename):

重み, 閾値のロード

work = np.load(filename)

self.w = work['w']

self.b = work['b']

np.load numpy形式のデータのロード np.load(ファイル名)

キー「w」→重み キー「b」 →閾値

データの読み込み

```
flagが0の場合→学習データ(「mnist/train/」)
def Read_data( flag ):
                             flagが1の場合→テストデータ(「mnist/test/」)
  dir = [ "train" , "test" ]
                             からデータを読み込む
  for i in range(class_num):
    for j in range(1,train_num+1):
      # グレースケール画像で読み込み→大きさの変更→numpyに変換,ベクトル化
       train_file = mnist/" + dir[ flag ] + "/" + str(i) + "/" + str(i) + "_" + str(j) + ".jpg"
       work_img = Image.open(train_file).convert('L')
       resize_img = work_img.resize((size, size))
       data_vec[i][j-1] = np.asarray(resize_img).astype(np.float64).flatten()
      # 入力値の合計を1とする
       data_vec[i][i-1] = data_vec[i][i-1] / np.sum( data_vec[i][i-1] )
```

メインメソッド

if __name__ == '__main__':

#中間層の個数

hunit num = 32

中間層の個数:hunit num

一つ前の層(入力層)の個数:feature

コンストラクター(init)により, 配列を確保

→初期化

hunit.w:feature × hunit_num

hunit.b:hunit num

#中間層のコンストラクター

hunit = Hunit(feature , hunit_num)

出力層のコンストラクター

outunit = Outunit(hunit_num , feature)

argvs = sys.argv

出力層の個数:class num

一つ前の層(中間層)の個数:hunit_num

コンストラクター(init)により, 配列を確保

→初期化

outunit.w:hunit num × feature

outunit.b: feature

```
# 引数がtの場合
if argvs[1] == "t":
 # 学習データの読み込み
 flag = 0
                       flag=0
  Read_data( flag )
                       →学習データの読み込み
 #学習
 Train()
#引数がpの場合
elif argvs[1] == "p":
 os.system( "del fig¥*.png" )
 # テストデータの読み込み
                       flag=1
 flag = 1
                       →テストデータの読み込み
  Read_data( flag )
 # テストデータの予測
```

Predict()

127

学習

```
def Train():
  # エポック数
                 学習回数: (epoch × class_num × train_num)回
  epoch = 1000
  for e in range( epoch ):
    error = 0.0
    for i in range(class_num):
      for j in range(0,train_num):
        # 入力データ
         rnd_c = np.random.randint(class_num)
                                              入力データ
                                              (1×feature)に変形
         rnd_n = np.random.randint(train_num)
        input_data = data_vec[rnd_c][rnd_n].reshape(1,feature)
                    ランダムにクラス(rad_c), データ(rnd_n)を選択し、入力
        # 伝播
                                        hunit.Propagationメソッド
         hunit.Propagation(input_data)
                                        入力値(input_data)を渡す
        outunit.Propagation( hunit.out )
                                        outunit.Propagationメソッド
```

中間層の出力値(hunit.out)を渡す

教師信号

teach = data_vec[rnd_c][rnd_n].reshape(1,feature)

教師信号 (1×feature) →入力情報と同じ

#誤差

outunit.Error(teach) ← hunit.Error(outunit.error),

outunit.Errorメソッド 教師信号(teach)を渡す

#重みの修正

outunit.Update_weight()
hunit.Update_weight()

hunit.Errorメソッド 出力層から逆伝播される誤差 (outunit.error)を渡す

誤差二乗和

error += np.dot((outunit.out - teach) , (outunit.out - teach).T)
print(e , "->" , error)

#重みの保存

outunit.Save("dat/BP-out.npz") hunit.Save("dat/BP-hunit.npz")

outunit.Saveメソッド 出力層の保存 保存ファイル名 ("dat/BP-out.npz")を渡す

hunit.Saveメソッド 出力層の保存 保存ファイル名 ("dat/BP-hunit.npz")を渡す

予測

```
出力層のロード
                                 ロードしたいファイル名
def Predict():
                                 ("dat/BP-out.npz")を渡す
  # 重みのロード
  outunit.Load( "dat/BP-out.npz" )
                                 hunit.Loadメソッド
  hunit.Load( "dat/BP-hunit.npz" )
                                 中間層のロード
                                 ロードしたいファイル名
                                 ("dat/BP-hunit.npz")を渡す
  #混合行列
  result = np.zeros((class_num,class_num), dtype=np.int32)
  for i in range(class_num):
                                 入力データ
    for j in range(0,train_num):
                                 (1×feature)に変形
      # 入力データ
      input_data = data_vec[i][j].reshape(1,feature)
                                      hunit.Propagationメソッド
      # 伝播
                                      入力値(input_data)を渡す
      hunit.Propagation(input_data)
```

outunit.Propagation(hunit.out) •

outunit.Loadメソッド

outunit.Propagationメソッド 中間層の出力値(hunit.out)を渡す

各クラスごとで一枚のみ画像化

if j < 1:

#画像の描画

plt.figure()

元画像

復元画像

元画像の表示

plt.subplot(1,2,1)
plt.imshow(np.reshape(data_vec[i][j],(size,size)),cmap='gray')
plt.title("Original Image")

復元画像の表示

plt.subplot(1,2,2) plt.imshow(np.reshape(outunit.out,(size,size)),cmap='gray')

画像の保存

```
plt.title( "Decode Image(" + str(i) + "," + str(j) + ")" )
file = "fig/decode-" + str(i) + "-" + str(j) + "-result.png"
plt.savefig(file)
plt.close()
```

```
# 結合係数の画像化
g_size = 10
                                 最大(10×10)個の領域
plt.figure(figsize=(g_size,g_size))
                                 に結合係数を画像化
count = 1
for i in range(hunit_num):
                                 hunit.w
                                 feature × hunit_num
  plt.subplot(g_size,g_size,count)
  plt.imshow(np.reshape(hunit.w[:,i],(size,size)),cmap='gray')
  plt.xticks(color="None")
                           X, Y軸上の目盛り, 目盛り線を表示しない
  plt.yticks(color="None")
  plt.tick_params(length=0)
  count += 1
file = "fig/hunit-weight.png"
                           画像の保存
plt.savefig(file)
```

plt.close()

入力画像と出力画像①

中間層数は32個

学習データ

入力画像

______ 出力画像

テストデータ

入力画像と出力画像②

中間層数は100個

学習データ

入力画像

出力画像

テストデータ

エンコーダの結合係数の視覚化(1)

中間層数は32個

エンコーダの結合係数の視覚化②

中間層数は100個

宿題①

- CIFAR-10の画像(学習データ1,000枚)を対象として、3層のオートエンコーダを学習しなさい。
- ただし、RGB画像(3チャネル)として学習させることは困難 かと思います。
- 3チャネルごとに(Rチャネル, Gチャネル, Bチャネルごとに)3個のオートエンコーダを学習して下さい.
- 最後に、3個のオートエンコーダからの出力を3チャネルにま とめて、元の画像に復元されるか確認して下さい。


```
#データ
data_vec = np.zeros((class_num,train_num,3,feature), dtype=np.float64)
                                       (class num × train num × 3 × feature)
#データの読み込み
def Read_data( flag ):
  dir = [ "train" , "test" ]
  dir1 = [ "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship",
"truck" 1
  for i in range(class_num):
     for j in range(0,train_num):
       # RGB画像で読み込み→大きさの変更→numpyに変換, ベクトル化
       train_file = cifar-10/" + dir[ flag ] + "/" + dir1[i] + "/" + str(j) + ".png"
       work_img = Image.open(train_file).convert('RGB')
       resize img = work img.resize((size, size))
                                                       (size,size,3)の大きさに変更
       work = np.resize( np.asarray(resize_img).astype(np.float64) , (size,size,3 ) )
       data_vec[i][j][0] = work[:,:,0].flatten() ~ R画像
       data_vec[i][j][1] = work[:,:,1].flatten() ____
                                                G画像
       data_{vec[i][j][2]} = work[:,:,2].flatten()
                                                B画像
```

次頁の出力結果で用いたオートエンコーダの構造

- 出力層
 - □ 損失関数:誤差二乗和
 - □ 活性化関数:シグモイド関数
 - □ 個数:特徴数(32×32)
- 中間層
 - □ 活性化関数:シグモイド関数
 - □ 個数:100個
- 入力層
 - □ 個数:特徵数(32×32)
 - □ 入力値:画素値を255で除算(0~1)

Rチャネル

Gチャネル

Bチャネル

RGB画像(3チャネル)

出力画像の例

入力画像

出力画像

numpy配列をRGB画像にする場合の注意

```
vec
                                              numpy配列(3, size*size)
vec = np.zeros((3,size*size), dtype=np.float64)
                                              vec[0] R値
#(3, size, size)に変換
                                              vec[1] G値
                                              vec[2] B值
img_vec = np.resize( vec , (3,size,size) )
#(size, size, 3)に変換
img_vec = np.transpose(img_vec, (1,2,0))
#画像化
img = Image.fromarray(np.uint8(img_vec))
```

(本日の)参考文献

- J.デイホフ: ニューラルネットワークアーキテクチャ 入門, 森北出版(1992)
- P.D.Wasserman: ニューラル・コンピューティング, 理論と実際, 森北出版(1993)
- C.M.ビショップ:パターン認識と機械学習(上),シュプリンガ—・ジャパン(2007)
- 岡谷貴之:深層学習,講談社(2015)
- 瀧雅人: これならわかる深層学習入門, 講談社(2017)
- 原田達也:画像認識,講談社(2017)