CONCOURS D'ENTRÉE EN 1^{ere} ANNÉE À L'ÉCOLE NATIONALE SUPÉRIEURE DE POLYTECHNIQUE DE DOUALA *(ENNPD)*, SECTION DE JUILLET 2021; Cursus Ingénieur

First year entrance examination to the National Higher Polytecnic School of Douala **NHPSD**, July session 2021; Engineer Curriculum

Épreuve de (Paper): Physiques (Physics); BACC C $|\mathbf{D}|$ E $(GCE\ AL)$ Durée (time): 03 heures

INSTRUCTIONS

Calculatrice non programmable autorisée. Encadrer tous les résultats (Non programmable calculators are autorized. Square all the results)

EXERCICE 1: (6 Points)

Lors de déménagements, il est fréquent de voir l'utilisation d'une monte-meubles, sorte de tapis roulant incliné qui entraîne meubles et cartons à la hauteur voulue. Ainsi afin d'équiper son appartement situé au troisième étage d'un immeuble récent, on peut utiliser un tapis roulant de 20,10m de long et dont le sommet se trouve à une hauteur de 9,30m au bord d'une des fenêtres de l'appartement.

La situation est schématisée par la figure sur le coté. Un carton de livres de masse M=40,00kg, qu'on assimilera a son centre de gravit, est entraîné par le tapis roulant a une vitesse \vec{v} .

La valeur du champ de pesanteur est $g = 9,81m.s^{-2}$. La vitesse de montée du tapis est $v = 0,50m.s^{-1}$.

- 1. Donner les longueurs des segments **GH** et **OH**. En déduire la distance **GO**, distance entre le bas du monte-meubles et celui de l'immeuble.
- **2.** Calculer α , angle d'inclinaison du tapis avec le sol.
- 3. Évaluer l'énergie cinétique de la masse M aux points G et H.
- 4. Le point G est considéré à l'altitude nulle et l'origine de l'énergie potentielle est choisie à cette altitude. Calculer l'énergie potentielle de pesanteur de la masse M au point H
- 5. Donner les expressions et les valeurs de l'énergie mécanique **Em** de la masse M aux points G et H.
- 6. Calculer la variation de l'énergie mécanique de la masse M lors de son déplacement entre G et H. Cette variation de l'énergie correspond t-elle à un travail moteur ou à un travail résistant, ou ne peut-elle pas être attribuée au travail d'une force?
- 7. Justifier que la somme des forces s'exerçant sur M est nulle.
- 8. Représenter sur un schéma toutes les forces qui s'appliquent à la masse M
- **9.** Calculer les modules de la réaction \vec{R} , perpendiculaire au tapis; ainsi que de la force de traction \vec{T} , parallèle au tapis.
- 10. Donner les expressions du travail pour \vec{P} , \vec{R} et \vec{T} au cours du déplacement de la masse M de G à H. Calculer leurs valeurs numériques
- 11. Comparer la variation d'énergie mécanique de la masse M entre G et H aux résultats trouvés à la question 9, puis conclure.
- 12. Évaluer la durée τ du trajet G à H pour la masse M. Quelle est la puissance mécanique nécessaire P_u pour entraîner le tapis lors de ce trajet?

EXERCICE 2: (5 Points)

A l'aide d'un spectromètre de masse, on désire séparer les ions des isotopes de l'hydrogène: $H^+(H={}^1_1H)$ et $D^+(H={}^2_1H)$ de masses respectives m1=m et m2=2m et de charges identiques $q1=q2=+e=1,6.10^{-19}C$. On donne $m=1,67.10^{-27}Kg$. Un faisceau homocinétique d'ions H^+ et D^+ pénètre en un point \mathbf{O} avec la vitesse $\vec{V_0}$, dans une enceinte ou règne un champ magnétique uniforme \vec{B} disposé orthogonalement à $\vec{V_0}$. Ces ions sont déviés vers un écran (E) disposé parallèlement à \vec{B}

- 1. Montrer qu'un ion effectue un mouvement circulaire uniforme.
- 2. Reproduire le schéma en indiquant le sens de \vec{B} .
- 3. Établir l'expression du rayon R1 de la trajectoire d'un ion H^+ en fonction de m, e, V_0 et
- B. En déduire l'expression du rayon $\mathbf{R2}$ de la trajectoire d'un ion D^+ .
- 4. Soient I et J les points d'impact sur (E) des ions ainsi séparés.
 - a. Quels ions sont recueillis en I? En J?
 - b. Établir l'expression de la distance IJ en fonction de m, e, V_0 et B.
 - c. Pour $V_0 = 9,60.10^5 m.s^{-1}$, déterminer la valeur de B pour laquelle on a OI = 30cm. En déduire la valeur de **IJ**.

EXERCICE 3: (4 Points)

Entre deux points A et B, on monte en série une bobine d'inductance L1 et de résistance $R1 = 25\Omega$ avec une résistance pure $R = 75\Omega$. Puis, on applique entre A et B une tension sinusoïdale d'expression: $u(t) = 220\sqrt{2}\sin(314t)$ en volts. L'intensité du courant est alors en retard de $\pi/3$ radians par rapport à la tension instantanée entre A et B.

1. Trouver la valeur de L1, puis celle de l'impédance Z1 de cette portion de circuit.

2.

On met en série avec la première une autre portion de circuit **BD** d'impédance Z2, comprenant en série une bobine d'inductance L2 = 0, 2H, de résistance $R2 = 100\Omega$ et un condensateur de capacité **C**. On applique la tension précédente entre A et D.

a. En vous aidant de la construction de Fresnel, déterminer la valeur C qui vérifie la relation Z = Z1 + Z2, avec Z impédance de la portion **AD**.

b. Donner l'expression de l'intensité instantanée.

EXERCICE 4: (5 Points)

On mélange un échantillon A d'eau de capacité thermique $C_A = 400J.K^{-1}$ à une température initiale $T_A = 30^{\circ}C$ avec un échantillon B d'eau de capacité thermique $C_B = 100J.K^{-1}$ à la température initiale $T_B = 20^{\circ}C$. On admet qu'il n'y a pas d'échange de chaleur avec l'extérieur.

1. Quelle est la température finale du mélange?

A travers une paroi, l'énergie thermique circule de la paroi où la température est la plus importante vers la paroi où la température est la plus faible.

- 2. De quel type de transfert s'agit-il?
- 3. Lorsque l'épaisseur augmente, le transfert est-il plus rapide ou plus lent? Justifier. Soient deux matériaux dont la conduction thermique (λ) vaut: $\lambda_1 = 0,026W.m^{-1}.K^{-1}$ et $\lambda_2 = 0,92W.m^{-1}.K^{-1}$
- 4. Pour une bonne isolation, quel matériau faut-il utiliser? On considère un mur de surface $S=20m^2$ et d'épaisseur e=10cm avec le matériau n^o2 . La température extérieure est de 10^oC et la température intérieure est de 20^oC . Le flux thermique a pour valeur 20W.
- **5.** Que vaut la résistance thermique R_{th} du mur?

