0.1 Complex Numbers and the Complex Plane

0.1.1 Review of Complex Numbers

- A complex number takes the form z = x + iy where $x, y \in \mathbb{R}$ and that $i^2 = -1$. We denote this set of numbers as \mathbb{C} .
- The **real** and **imaginary** part of z is defined as follows:

$$x = \Re(z)$$
 and $y = \Im(z)$.

- Real numbers like x have $\Im(x) = 0$, while numbers like y have $\Re(y) = 0$. In other words, y is said to be **purely imaginary**.
- Each complex number can be represented as a point in \mathbb{R}^2 with the x- axis representing the **real axis** and the y-axis representing the **imaginary axis**.
- The operations that are used with complex numbers works similarly to how we would treat real numbers; that is, they follow commutativity, associativity, and distributivity.
- The addition of two complex numbers works like adding two corresponding vectors in \mathbb{R}^2 where you add up each component.
- Multiplication of complex numbers produces a rotation (around the unit circle) and a dilation of said vector. This is seen using the polar form of a complex number.

0.1.2 Notion of Length and Inequalities

• The notion of length in \mathbb{R}^2 is also similar to the complex plane. For $z \in \mathbb{C}$ with $x, y \in \mathbb{R}$, we can see that the **absolute value** of a complex number z = x + iy is

$$|z| = (x^2 + y^2)^{1/2}.$$

This is the distance from the origin to the point (x, y).

• Like in \mathbb{R} , the triangle inequality for \mathbb{C} also holds:

$$|z+w| \le |z| + |w|$$
 for all $z, w \in \mathbb{C}$.

• Some other inequalities in \mathbb{C} include:

$$|\Re(z)| \le |z|$$
 and $|\Im(z)| \le |z|$.

Furthermore, the reverse triangle inequality holds:

$$||z| - |w|| \le |z - w|.$$

• The **complex conjugate** of z = x + iy is defined by

$$\overline{z} = x - iy$$
.

Geometrically, this is seen as a reflection of z over the real axis.

• Furthermore, we say that $z \in \mathbb{C}$ is a real number if and only if $z = \overline{z}$. On the other hand, we say that $z \in \mathbb{C}$ is purely imaginary if and only if $z = -\overline{z}$.

0.1.3 Other Properties and Polar Form

• On top of defining our real and imaginary parts of a complex number, it should be straightforward to prove that

$$\Re(z) = \frac{z + \overline{z}}{2}$$
 and $\Im(z) = \frac{z - \overline{z}}{2i}$.

• We also see that $|z|^2 = z\overline{z}$ implies that

$$\frac{1}{z} = \frac{\overline{z}}{|z|^2}$$

whenever $z \neq 0$.

• The **polar form** of $z \in \mathbb{C}$ is

$$z = re^{-i\theta}$$

for r > 0 and $\theta \in \mathbb{R}$. We denote θ as the **argument** of z; that is, $\theta = \arg(z)$. Note that θ is defined uniquely up to a multiple of 2π .

• Recall that

$$e^{i\theta} = \cos\theta + i\sin\theta$$

and that $|e^{i\theta}| = 1$ as well as r = |z|.

• Finally, with these properties, we can see that multiplying $z, w \in \mathbb{C}$ results in

$$zw = rse^{i(\theta + \varphi)}$$

where $z = re^{i\theta}$ and $w = se^{i\varphi}$. The rs is corresponds to the dialation of zw and $\theta + \varphi$ corresponds to a rotation.

0.2 Convergence

Definition 0.2.1 (Convergence in \mathbb{C}). A sequence $(z_n) \subset \mathbb{C}$ is said to **converge** to $w \in \mathbb{C}$ if

$$\lim_{n \to \infty} |z_n - w| = 0$$

and we write

$$w = \lim_{n \to \infty} z_n.$$

The two formulae above are equivalent to each other.

- In other words, (z_n) converges to w if and only if the corresponding sequence of points in the complex plane converges to the point that corresponds to w.
- We can check that $(z_n) \to w$ if and only if for w = a + bi, we have $(a_n) \to a$ and $(b_n) \to b$; that is, the real and imaginary parts of the sequence of complex numbers converges, respectively.

Definition 0.2.2 (Cauchy Sequence). A sequence (z_n) is said to be a Cauchy sequence if

$$|z_n - z_m| \to 0$$

as $n, m \to \infty$.

- In other words, given any $\varepsilon > 0$, there exists an integer N > 0 such that $|z_n z_m| < \varepsilon$ whenever n, m > N.
- Similarly to how \mathbb{R} is complete and how all $z \in \mathbb{C}$ are made up of a tuple of real numbers in \mathbb{R}^2 , we see that if (z_n) is Cauchy, then every Cauchy complex sequence converges to a limit that is in \mathbb{C} .

Theorem 0.2.1. The set of complex numbers \mathbb{C} is complete.

0.3 Sets in the complex plane

Definition 0.3.1 (Open Discs). If $z_0 \in \mathbb{C}$ and r > 0, we denote the **open disc** $D_r(z_0)$ of radius r centered at z_0 to be the set

$$D_r(z_0) = \{ z \in \mathbb{C} : |z - z_0| < r \}.$$

Definition 0.3.2 (Closed Discs). If $z_0 \in \mathbb{C}$ and r > 0, we denote the **closed disc** $\overline{D_r}(z_0)$ of radius r centered at z_0 to be the set

$$\overline{D_r}(z_0) = \{ z \in \mathbb{C} : |z - z_0| \le r \}.$$