TEA018 Hidrologia Ambiental
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR

0

P04, 11 out 2023 Prof. Nelson Luís Dias

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO	Assinatura:

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

 $\mathbf{1}$ [40] Para uma bacia hidrográfica com área $A = 7.0 \,\mathrm{mi}^2$, observa-se a altura de chuva efetiva p e o escoamento direto q da tabela abaixo. Converta p e q para cm h^{-1} e preencha as colunas de intensidade de chuva efetiva x e escoamento direto y.

t (1/2 h)	p (in)	q (ft ³ s ⁻¹)	$x (cm h^{-1})$	$y (cm h^{-1})$	Fatores de co	onversão
0	0.00	0.0			1 in	2.54 cm
1	1.06	428.0			1 ft	12 in
2	1.93	1923.0			1 mi	1609.34 m
3	1.81	5297.0				
4	0.00	9131.0				
5	0.00	10625.0				
6	0.00	7834.0				
7	0.00	3921.0				
8	0.00	1846.0				
9	0.00	1402.0				
10	0.00	830.0				
11	0.00	313.0				

SOLUÇÃO DA QUESTÃO:

t (1/2 h)	p (in)	$q ext{ (ft}^3 ext{ s}^{-1})$	$x (cm h^{-1})$	$y (cm h^{-1})$
0	0.00	0.0	0.0	0.0
1	1.06	428.0	5.3848	0.23962947
2	1.93	1923.0	9.8044	1.07665295
3	1.81	5297.0	9.1948	2.96569459
4	0.00	9131.0	0.0	5.11228192
5	0.00	10625.0	0.0	5.94874552
6	0.00	7834.0	0.0	4.38611505
7	0.00	3921.0	0.0	2.19529705
8	0.00	1846.0	0.0	1.03354205
9	0.00	1402.0	0.0	0.78495447
10	0.00	830.0	0.0	0.464702
11	0.00	313.0	0.0	0.17524304

2 [20] Se a duração da chuva efetiva é M e a duração da vazão direta é N, qual é a duração da hidrógrafa unitária H? Justifique.

SOLUÇÃO DA QUESTÃO:

$$H = N - M + 1$$

pois cada intervalo de tempo de precipitação gera uma resposta de duração H. Logo, M intervalos vão gerar uma resposta de duração N=M+H-1

SOLUÇÃO DA QUESTÃO:

A HUI é a resposta (linear) de uma bacia a uma chuva uniformemente distribuída sobre a bacia com intensidade $\delta(t)$, onde $\delta(t)$ é a delta de Dirac \blacksquare

4 [20] Dada a equação da continuidade em um reservatório de acumulação,

$$\frac{\mathrm{d}S}{\mathrm{d}t} = I - O,$$

onde S é o volume do reservatório, I é a hidrógrafa afluente, e O = O(S) é a hidrógrafa efluente, mostre que o máximo de O ocorre quando I = O.

SOLUÇÃO DA QUESTÃO:

$$O = O(S);$$

$$\frac{dO}{dt} = \frac{dO}{dS} \frac{dS}{dt};$$

$$\frac{dO}{dt} = 0 \implies \frac{dS}{dt} = 0;$$

$$\frac{dS}{dt} = I - O = 0 \implies I = O \blacksquare$$