MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2012 SOLUTION KEY

Round 6

A)
$$|T-55| \le 50 \Rightarrow -50 \le T-55 \le +50 \Rightarrow 5 \le T \le 105 \Rightarrow (T_{\text{low}}, T_{\text{high}}) = (5, 105) \Rightarrow \mathbf{110}$$

B) The numbers in Carol's list are generated by 1000 - 7k.

The numbers in Tarah's list are generated by 100 + 13k.

Let's see if the lists share any common numbers. For the same value of k, does

$$1000 - 7k = 100 + 13k$$
?

Since 900 = 20k, for k = 45, the lists do share a common number.

Multiplying by 7 is easier than by 13, so we substitute in 100 - 7k.

The common number is 1000 - 7(45) = 1000 - 315 = 685.

Thus (C, T) = (685, 685).

<u>Note</u>: Since the least common multiple of 7 and 13 is 91, other numbers common to both lists will be of the form 685 + 91n, for any integer n. For example, $n = \pm 1$ results in 594 and 776.

$$594 = 100 + 13(38) = 1000 - 7(58)$$
 and $776 = 100 + 13(52) = 1000 - 7(32)$

The 39th number in Carol's list and the 59th number in Tarah's list is 594

The 53rd number in Carol's list and the 33rd number in Tarah's list is 776

Between 600 and 700, only 685 is common to both lists and |C - T| = 0, the minimum value for the absolute value of a difference.

C) Suppose the walkers rates are x and 2x.

You may argue later whether the faster walker is Chris or Christine.

When travelling in the same direction, they are separating at (2x - x) = x mph.

$$RT = D \Rightarrow x \text{ (in mph)} \cdot \text{T (in hrs)} = \frac{1}{4} \text{ mi. or T (in hrs)} = \frac{1}{4x}$$

$$x \cdot \frac{4}{3} + 2x \cdot \frac{4}{3} = 12 \Leftrightarrow 12x = 36 \Leftrightarrow x = 3$$
. Thus, $T = \frac{1}{12}$ hr. = 5 minutes = **300** seconds.