Chapitre 5

Continuité

I. Fonction continue

1) Continuité

Définition:

Soit une fonction f définie sur un intervalle I.

On dit que la fonction f est **continue en** un réel a de I si :

$$\lim_{x \to a} f(x) = f(a)$$

On dit que la fonction f est **continue sur I** si f est continue en tout réel a de I.

Exemples:

• La fonction f définie sur \mathbb{R} par $f(x) = x^3 - 3x + 2$

f est continue sur \mathbb{R} .

• La fonction g définie sur \mathbb{R} par $g(x) = \begin{cases} 3 - x^2 si \ x \le 1 \\ x^2 - 2x + 2 si \ x > 1 \end{cases}$

g n'est pas continue en 1, donc elle n'est pas continue sur \mathbb{R} .

- Les fonctions carrée, cube, cosinus sont continues sur \mathbb{R} .
- La fonction partie entière E est définie sur \mathbb{R} par E(x)=n, où n est l'entier relatif tel que $n \le x < n+1$.

Ainsi si $0 \le x < 1$ alors E(x) = 0 et si $1 \le x < 2$ alors E(x) = 1.

Donc
$$\lim_{x \to 1^-} E(x) = 0$$
 alors que $E(1) = 1$.

On dit que E est **discontinue** en 1, et de façon générale, en tout entier relatif.

La courbe \mathcal{C}_E est « en escaliers » et présente des sauts en ses points d'abscisses entières.

2) Propriétés

Propriétés (admise):

- Les fonctions affines, les fonctions polynômes, la fonction racine carrée et la fonction exponentielle sont continues sur leur ensemble de définition.
- Les sommes, produits, quotients et composées de fonctions continues sont des fonctions continues sur chacun des intervalles formant leur ensemble de définition.

Exemple:

La fonction f, définie sur $]-\infty$; $1[\cup]1$; $+\infty[$ par $f(x) = \frac{x^2 - 3x + 5}{x - 1}$, est continue sur chacun des intervalles $]-\infty$; 1[et]1; $+\infty[$ en tant que quotient de fonctions polynômes.

Propriété (admise):

Toute fonction **dérivable** sur un intervalle *I* est **continue** sur *I*.

Remarque:

La réciproque de ce théorème est fausse : les fonctions valeur absolue et racine carrée, par exemple, ne sont pas dérivables en 0, mais sont continues en 0.

Remarques:

Ne pas confondre continuité et dérivabilité.

- Une fonction f est **continue en** a si la courbe \mathcal{C}_f ne présente pas de saut en son point d'abscisse a.
- Une fonction f est **dérivable en** a si la courbe \mathcal{C}_f admet une tangente non verticale en son point d'abscisse a.

II. Théorème des valeurs intermédiaires

1) Cas général

Propriété (admise):

f est une fonction **continue** sur un intervalle [a;b].

Pour tout réel k compris entre f(a) et f(b) il existe **au moins** un réel c compris entre a et b, tel que f(c)=k.

Exemples:

• f est continue sur [a;b], toutes les valeurs comprises entre f(a) et f(b) sont prises au moins une fois.

• g n'étant pas continue sur [a;b], certaines valeurs comprises entre g(a) et g(b) ne sont pas atteintes par g.

Remarque:

La continuité permet de dire que des solutions existent.

2) Cas des fonctions monotones

Propriété:

Soit f une fonction **continue** et **strictement monotone** sur un intervalle [a;b] et k un nombre compris entre f(a) et f(b), alors l'équation f(x)=k admet une **unique solution** c située dans l'intervalle [a;b].

Démonstration :

Soit un réel k compris entre f(a) et f(b).

Comme f est continue sur [a;b], d'après le théorème des valeurs intermédiaires, il existe un réel c de [a;b] tel que f(c)=k. Il reste à prouver l'unicité.

Dans le cas où la fonction f est strictement croissante sur [a;b], on a:

- pour tout réel x de [a;c[, f(x) < f(c), c'est-à-dire f(x) < k]
- pour tout réel x de]c;b], f(x)>f(c), c'est-à-dire f(x)>k

L'équation f(x)=k n'admet donc pas d'autre solution que c dans l'intervalle [a;b].

Dans le cas où la fonction f est strictement décroissante sur [a;b], on raisonne de la même façon.

Exemples:

Remarques:

- Dans le cas particulier où 0 est compris entre f(a) et f(b), sous les hypothèses du théorème précédent, f prend une fois et une seule la valeur 0.
 - Ceci signifie que l'équation f(x)=0 admet une solution unique sur a;b[.
- Ce théorème s'étend au cas d'intervalles ouverts ou semi-ouverts, bornés ou non bornés en remplaçant si besoin f(a) et f(b) par les limites de f en a et en b.
- Dans un tableau de variation les flèches obliques traduisent la continuité et la stricte monotonie d'une fonction sur un intervalle.

Exemple:

Soit la fonction f définie sur \mathbb{R} par :

$$f(x) = -x^3 + 3x^2 + 1$$

$$f'(x)=-3x^2+6x=3x(-x+2)$$

 $f'(x)=0$ pour $x=0$ et $x=2$

Sur [2;4], la fonction f est continue (c'est une fonction polynôme) et strictement décroissante. f(2)=5 et f(4)=-15.

Ainsi l'équation f(x)=0 possède une unique solution α dans l'intervalle [2,4].

3) Extension à d'autres intervalles

On généralise le théorème des valeurs intermédiaires sur un intervalle ouvert.

Propriété:

Soit f une fonction **continue** sur un intervalle a; b[où a désigne un réel ou $-\infty$ et b désigne un réel ou $+\infty$.

On suppose que f admet des limites en a et b, finies ou infinies.

- Pour tout k comprisentre $\lim_{x\to a} f(x)$ et $\lim_{x\to b} f(x)$, l'équation f(x)=k admet au moins une solution dans l'intervalle a; b[.
- Si, de plus, f est strictement monotone sur a; b[, alors cette solution est unique.

Exemple:

La fonction f définie sur \mathbb{R} par $f(x)=x^3+3x+1$ est continue et strictement croissante sur \mathbb{R} et $\lim_{x \to -\infty} f(x) = -\infty$ et $\lim_{x \to +\infty} f(x) = +\infty$.

0 appartient à $]-\infty;+\infty[$ donc l'équation f(x)=0 a une unique solution x_0 sur \mathbb{R} .

Algorithme : approcher, à 10^{-n} près les solutions de l'équation f(x)=k sur [a;b].

Cas où la fonction est continue et strictement **croissante** sur [a;b]

Algorithme: approcher, à 10^{-n} près les solutions de l'équation f(x)=0 sur [a;b].

Cas où la fonction est continue et strictement **monotone** sur [a;b]

```
Tant que b - a > 10^{-n} faire

m \leftarrow (a + b) / 2

Si f(a) \times f(m) > 0 \text{ alors}

a \leftarrow m

Sinon

b \leftarrow m

Fin Si

Fin Tant que
```


Python

```
# On importe la fonction exponentielle
from math import exp

# On définit la fonction
def f(x):
    return exp(x) + x

# On implémente l'algorithme
def dichotomie(a, b, epsilon):
    while (b - a) > epsilon:
        m = (a + b) / 2
        if f(a) * f(m) > 0:
            a = m
        else:
            b = m
    print("La solution appartient à l'intervalle ["+
            str(a)+";"+str(b)+"] avec une précision de", epsilon)
```

```
>>> dichotomie(-1,2,0.000001)
La solution appartient à l'intervalle [-0.5671436786651611;-0.5671429634094238]
avec une précision de le-06
>>>
```

III. Application aux suites

1) Limite de la composée d'une suite et d'une fonction

Propriété:

f est une fonction définie sur un intervalle I.

 (v_n) est une suite dont tous les termes appartiennent à l'intervalle I.

b et c désignent soit des nombres, soit $+\infty$, soit $-\infty$.

Si
$$\lim_{n \to +\infty} v_n = b$$
 et $\lim_{x \to b} f(x) = c$ alors $\lim_{n \to +\infty} f(v_n) = c$.

Exemple:

Cherchons la limite éventuelle de la suite (u_n) définie sur \mathbb{N} par $u_n = \sqrt{\frac{3n+2}{n+1}}$.

$$u_n = \sqrt{v_n}$$
 avec $v_n = \frac{3n+2}{n+1}$. Or $\lim_{n \to +\infty} v_n = 3$ et $\lim_{x \to 3} \sqrt{x} = \sqrt{3}$, donc $\lim_{n \to +\infty} u_n = \sqrt{3}$.

Cas particulier:

f est une fonction définie sur un intervalle de la forme $]A;+\infty[$ et (u_n) est la suite définie pour tout entier naturel $n \ge A$, par $u_n = f(n)$.

La lettre L désigne soit un nombre, soit $+\infty$, soit $-\infty$.

Si
$$\lim_{x \to +\infty} f(x) = L$$
, alors $\lim_{n \to +\infty} u_n = L$.

Exemple:

Considérons la suite (u_n) définie pour tout entier naturel n non nul par $u_n = \frac{\sin(n)}{n}$.

 $u_n = f(n)$ où f est la fonction définie sur $]0; +\infty[$ par $f(x) = \frac{\sin(x)}{x}$.

Or $\lim_{x \to +\infty} f(x) = 0$ (voir plus loin), donc $\lim_{n \to +\infty} u_n = 0$.

2) Théorème du point fixe

Propriété:

Soit une suite (u_n) définie par un premier terme et $u_{n+1} = f(u_n)$ convergente vers ℓ .

Si la fonction associée f est continue en ℓ , alors la limite de la suite ℓ est solution de l'équation f(x)=x.

<u>Démonstration</u>:

La suite (u_n) est convergente vers ℓ .

De plus, la fonction f est continue en ℓ . Donc $\lim_{x \to \ell} f(x) = f(\ell)$.

Par composition, on en déduit que $\lim_{n\to+\infty} f(u_n) = f(\ell) \Leftrightarrow \lim_{n\to+\infty} u_{n+1} = f(\ell)$.

Or $\lim_{n\to+\infty} u_{n+1} = \lim_{n\to+\infty} u_n = \ell$, on en déduit alors que $f(\ell) = \ell$.

Remarques:

- La condition de continuité de f en ℓ est indispensable. Comme ℓ n'est « à priori » pas connue, on prendra en pratique l'ensemble sur lequel la fonction f est continue.
- Si l'équation f(x)=x admet plusieurs solutions, on choisira celle qui correspondra aux caractéristiques de la suite.