IV

Programación Paralela Clase 10: Introducción a la Programación Paralela

Ramiro Martínez D'Elía

2021

Índice general

1.	Conceptos		
	1.1.	Programa paralelo	2
	1.2.	Speedup	2
	1.3.	Eficiencia	2
	1.4.	Escalabildiad	9
	1.5.	Ley de Amdhal	
	1.6	Granularidad	:

Capítulo 1

Conceptos

1.1. Programa paralelo

Tipo de programa, concurrente, escrito para resolver un problema en menos tiempo que su análogo secuencial. El objetivo principal es reducir el tiempo de ejecución, o resolver problemas más grandes o con mayor precisión en el mismo tiempo.

Un programa paralelo puede escribirse usando variables compartidas o pasaje de mensajes. La elección la dicta el tipo de arquitectura.

Para determinar si una solución paralela tiene mejores prestaciones que su análogo secuencial, existen nociones como: **speedup**, **eficiencia**, **escalabilidad**, y **ley de Amndhal**.

1.2. Speedup

La métrica de speedup (o eficiencia) **evalúa el tiempo total de ejecución** de un programa. El speedup está dado por la siguiente fórmula:

$$S = Speedup = T_1/T_p$$

Donde T_1 es el tiempo de una solución secuencial ejecutando en 1 CPU y T_p es el tiempo de una solución paralela con p CPUs.

Del resultado obtenido, podemos concluir las siguientes afirmaciones:

- Si $S = P \rightarrow \text{speedup } lineal \text{ (o } perfecto).$
- Si $S < P \rightarrow$ speedup sublineal
- Si $S > P \rightarrow$ speedup *superlineal*.

Por ejemplo, si el tiempo de una solución secuencial es de 600 segundos y el de una solución paralela es de 60 segundos utilizando 10 CPU.

$$Speedup = T_1/T_p = 600/60 = 10$$

Como $S = P \rightarrow$ speedup lineal

1.3. Eficiencia

Esta métrica permite conocer **qué tan bien aprovechará procesadores extras** un programa paralelo. La eficiencia, está dada por la siguiente fórmula:

$$E = Eficiencia = Speedup/p$$

Donde p es la cantididad de CPUs. Del resultado obtenido, podemos concluir las siguientes afirmaciones:

- Con speedup perfecto $\rightarrow E = 1$.
- Con speedup sublineal $\rightarrow E < 1$.
- Con speedup superlineal $\rightarrow E > 1$.

Por ejemplo, si el tiempo de una solución secuencial es de 600 segundos y el de una solución paralela es de 60 segundos utilizando 10 CPU.

$$Speedup = T_1/T_p = 600/60 = 10$$

$$Eficiencia = Speedup/P = 10/10 = 1$$

Como el speedup obtenido fue lineal (S = P), entonces se cumplió que E = 1.

1.4. Escalabildiad

Las métricas de **speedup** y **eficiencia**, son **relativas**. Ellas dependen del número de procesadores, el tamaño de los datos y el algoritmo utilizado. Por esto, de forma general, se dice que **un programa paralelo** es escalable si; su eficiencia se mantienen constante para un rango amplio de CPU.

Por ejemplo: una solución es paralelizada sobre P procesadores de dos maneras. En la primera, el speedup está regido por la función S = P - 5. Mientras que, en la otra S = P/2. ¿Qué solución se comportará más eficientemente al crecer P?

P	S = P - 5	$\mathrm{S}=\mathrm{P}\;/\;2$
6	(6-5)/6 = 1,66	(6/2)/6 = 0,5
10	(10-5)/10=0,5	(10/2)/10 = 0,5
20	(20-5)/20 = 0,75	(10/2)/20 = 0,5

La solución regida por el speedup S=P/2 es la más escalable. Ya que, el valor de E se mantiene constante al incrementar el número de procesadores.

1.5. Ley de Amdhal

Un programa típico consta de 3 (tres) etapas; entrada de datos, cómputo y salida de resultados.

La ley de Amdhal postula que; para todo algoritmo **existe un speedup máximo alcanzable**, independiente del número de procesadores. Ese valor dependerá de la cantiadd de código paralelizable.

$$Limite = 1/1 - Paralelizable$$

Por ejemplo: suponga un programa secuencial donde las etapas (1) y (2) consumen cada una el 10% del tiempo de ejecución y no pueden ser paralelizadas. La etapa (3) consume el 80% restante. Si el programa tarda 100 unidades de tiempo (ut), ¿cuál es el limite de mejora alcanzable?

$$Limite = 1/1 - 0, 8 = 1/0, 2 = 5$$

El mejor speedup alcanzable es 5. Esto quiere decir que; el tiempo de ejecución, del algoritmo paralelizado, será como máximo hsta 5 veces más rápido (100/5 = 20ut)

1.6. Granularidad