#### Week 10

#### **Questions of Causation**

Paul Laskowski and Alex Hughes January 12, 2023

UC Berkeley, School of Information

### **Questions of Causation**

#### **SOME BUSINESS QUESTIONS**

- What will happen to coffee sales if we buy a new roaster?
- Will profits be higher if we design a new jet or upgrade our existing one?
- Will more people visit our amusement park if we add a monorail?

#### **AMUSEMENT PARK DAILY VISITORS**

#### Monorails Increase Visitors?



#### **AMUSEMENT PARK DAILY VISITORS (CON'T)**



# Correlation $\neq$ Causation

**Explanatory modeling:** How can we test or estimate an effect in a causal theory?

### **Unit Plan**

#### **PLAN FOR THE WEEK**

#### Three sections

- 1. What is explanatory modeling?
- 2. The one-equation structural model
- 3. Common violations of the one-equation model
  - · Confounding, omitted variable bias
  - · Outcome on the RHS
  - Simultaneity bias

#### PLAN FOR THE WEEK (CONT.)

At the end of this week, you will be able to:

- Recognize major strategies for estimating causal effects
- Understand the assumptions behind the one-equation structural model
- Reason about common violations of the one-equation structural model

# What Is Explanatory Modeling?

#### **TOWARD EXPLANATION**

What extra assumptions are needed for OLS regression coefficients to be causal?\*

\* Misleading question

#### THE EXPLANATORY MODELING WORKFLOW



#### THE EXPLANATORY MODELING WORKFLOW



#### WHAT IS CAUSAL THEORY?

#### **Causal theory**

A causal theory is a statement of beliefs about what concepts do and what concepts do not cause other concepts.

 Objective: narrow the range of causal explanations for associations we find in data.

#### WHAT IS CAUSAL THEORY? (CONT.)

- Joint distributions and cumulative density functions cannot identify causal information
- If we begin with causal statements, we can use logic to reach causal conclusions



#### **HOW TO REASON ABOUT A CAUSAL THEORY**



#### **HOW TO REASON ABOUT A CAUSAL THEORY (CONT.)**

#### Creating and eliminating possible causal paths

- Time structure
  - If X happens after Y, then X cannot have caused Y.
- Domain Knowledge
  - Germ theory of infections disease
  - · Often formed through past experiments
- Effectively "random" events
  - Coin flips
  - Tropical storms
  - pseudorandom generators

#### HOW TO IDENTIFY AN IDENTIFICATION STRATEGY, PART I



#### HOW TO IDENTIFY AN IDENTIFICATION STRATEGY, PART II

**Goal**: Produce a consistent estimate of the strength of the causal relationship given:

- 1. Causal theory
- 2. Data

No estimator provides estimates that *always* have a causal interpretation

- OLS Regression
- · Diff-in-Diff

- · Regression discontinuity
- Two-Stage Least Squares

#### HOW TO IDENTIFY AN IDENTIFICATION STRATEGY, PART III



#### **HOW TO ESTIMATE PARAMETERS**

- Estimate model and interpret coefficients
- Return to reasoning about the causal model and possible violations

#### THE EXPLANATORY MODELING WORKFLOW



#### **WE SHOULD HAVE AN ACTIVITY HERE**

Note: We should either have a reading, or applied activity here.

Reading activity

**Pearl and Structural Equation** 

**Models** 

#### **TOWARD A FLEXIBLE CAUSAL FRAMEWORK**





Judea Pearl

#### **HOW TO REASON ABOUT A CAUSAL THEORY**



#### STRUCTURAL EQUATION MODEL (SEM) BASICS

#### **Endogenous variables**

- V: Vaccine
- · A: Antibodies
- 1: Infection

#### **Background variables**

•  $\epsilon$ : Outside causes

#### **Structural equations**

- $V = f_V(\epsilon_1)$
- $A = f_A(V, \epsilon_2)$
- $I = f_I(A, \epsilon_3)$



# **Pearl and Structural Equation Models**

Reading: Alleged Dangers of Cigarette Smoking

#### READING: ALLEGED DANGERS OF CIGARETTE SMOKING

Note: This is a reading call. We're just placing it here for organization.

Read the two-page article, published in the BMJ in 1957 written by Ronald A. Fisher. Some context. R.A. Fisher is

- Perhaps the most influential statistician of all time
- At the very least, up there with Bayes, Neyman, and the canon.
- The student interested in a longer-form profile of this content can read the following article written by Pricenomics. [Link here].



Of course, smoking causes lung cancer – Fisher was dogmatic.

## **Pearl and Structural Equation**

Models

**Evaluation and Execution of a Structural** 

**Equation Model** 

#### **EXAMPLE: EXECUTION OF AN SEM**

## Note: This is a whiteboard, we're just placing it here for organization.

- What causes lung cancer?
- Coffee  $\rightarrow$  Alertness  $\rightarrow$  Work
- Interest  $\rightarrow$  Awareness  $\rightarrow$  Purchase

#### **EXECUTION OF AN SEM**

#### **Step one**

- Draw values of  $\epsilon_1, \epsilon_2, \epsilon_3$ .
- Assume  $\epsilon_1 \dots \epsilon_k$  are independent

#### **Step two**

 Assign endogenous variables their values

$$V = f_V(\epsilon_1)$$

$$A = f_A(V, \epsilon_2)$$

$$I = F_I(A, \epsilon_3)$$



**Statistical Implications of a** 

**Causal Graph** 

#### **HOW TO APPLY AN SEM**

Causal models require that we write down, clearly, the assumptions about the causal process in the data generating process.

- Evaluate how closely our data matches our theory about the world
- Choose an appropriate estimator for the data and theory

#### **CAUSAL GRAPH DEFINITION**

#### **Causal graph**

A **causal graph** is a graph that describes the causal pathways among a subset of all variables.

Causal graphs encode our theory about the causal structure:

- 1. If there is an arrow from *X* to *Y*, then *X* has a direct causal effect on *Y*.
- 2. If there is **no** arrow from *X* to *Y*, *X* has **no** direct causal effect on *Y*.
- 3. If X and Y have a common cause Z, then Z must be in the diagram, even if we cannot measure it.

#### **EXAMPLES OF CAUSAL GRAPHS**

#### **Example: Direct and indirect effects**

 V → A → I. Vaccines have a direct causal effect on Antibodies, but no direct effect on Infection.

#### **Example: Common Causes**

 Education → Wage. Do we need to include motivation?

## STATISTICAL IMPLICATIONS OF A CAUSAL GRAPH

#### Theorem: independence

If X and Y have no common ancestors in an acyclic SEM, they are independent.



**The One-Equation Structural** 

Model

#### THE SIMPLEST CAUSAL GRAPH

#### One causal relationship:

- A single outcome: Max\_Speed
- A set of background variables that have a causal effect on the outcome: HP, Weight
- An error term that also has a causal effect on the outcome:  $\epsilon$

## THE ONE-EQUATION STRUCTURAL MODEL



$$\begin{aligned} \text{Max\_Speed} &= \beta_{\text{O}} + \beta_{\text{1}} \text{HP} + \beta_{\text{2}} \text{Weight} + \epsilon & \text{(S)} \\ \text{Where } E[\epsilon] &= \text{O} \end{aligned}$$

#### THE ERROR TERM IN STRUCTURAL EQUATIONS

**To a statistician:**  $\epsilon$  is the difference between the target and the prediction

To an explanatory modeler:  $\epsilon$  is unmeasured factors that have a causal effect on the outcome

### THE ERROR TERM IN STRUCTURAL EQUATIONS (CONT.)

**Thought experiment:** Write down any missing variable that can affect the outcome.

$$\begin{aligned} \textit{Max\_Speed} = & \beta_{\text{o}} + \beta_{\text{1}} \textit{HP} + \beta_{\text{2}} \textit{Weight} \\ & + \underbrace{\beta_{\text{3}} \textit{Air\_Resistance} + \beta_{\text{4}} \textit{Tires} + \dots}_{\epsilon} \end{aligned}$$

#### **ASSESSING THE CAUSAL GRAPH**



### Two things we look for:

- Are there any causal pathways back from Max\_Speed to HP and Weight?
- 2. Are there any common ancestors of HP and Max\_Speed or of Weight and Max\_Speed?

# **ESTIMATION IN THE ONE-EQUATION MODEL**



# One-Equation Model

**Applications for the** 

# **AN IMPORTANT QUESTION**

When is the one-equation structural model valid?

### **CONFOUNDING VARIABLES IN OBSERVATIONAL DATA**



# WHEN IS THE ONE-EQUATION MODEL CREDIBLE?

- True experiments
- Some natural experiments
- Differenced panels

#### THE TRUE EXPERIMENT

- Treatment T is randomly assigned (e.g. coin flip) => no incoming paths other than the coin.
- Controls C<sub>1</sub>, C<sub>2</sub>, C<sub>3</sub> are either measured or determined before treatment
  - No paths from T to controls, or controls to T
- Outcome Y measured after T





#### **SOME NATURAL EXPERIMENTS**

**Natural experiment:** A scenario in which we can exploit naturally occurring variation to estimate structural parameters

- Often through instrumental variables, regression discontinuity, or other advanced techniques
- May enable OLS to identify causal quantities if treatment is random
  - · The Vietnam War lottery
  - · Tropical cyclones
  - · Forest fires
  - Network outages

#### **DIFFERENCED PANELS**



$$Production_{1} = \beta_{0} + \beta_{1}Work\_Hours_{1} + \beta_{2}Motivation + \epsilon_{1}$$

$$-\left[Production_{2} = \beta_{0} + \beta_{1}Work\_Hours_{2} + \beta_{2}Motivation + \epsilon_{2}\right]$$

$$\Delta Production = \beta_{1}\Delta Work\_Hours + (\epsilon_{1} - \epsilon_{2})$$

**Violations of the One-Equation** 

Structural Model

# **Omitted Variables**

#### **OMITTED VARIABLES**

#### **Assumed Model**

Education causes wages



#### **True Model**

Motivation causes both education and wages



#### **OMITTED VARIABLES**

#### We fit

$$W = \tilde{\beta}_{o} + \tilde{\beta}_{1}E + \tilde{\epsilon}$$

#### **True structural equation**

$$\mathbf{W} = \beta_{0} + \beta_{1}\mathbf{E} + \beta_{2}\mathbf{M} + \epsilon$$

- We are interested in  $\beta_1$ .
- What is the bias,  $E[\tilde{\beta}_1 \beta_1]$ ?

#### **OMITTED VARIABLE BIAS IN SIMPLE REGRESSION**

#### We fit

$$W = \tilde{\beta}_{o} + \tilde{\beta}_{1}E + \tilde{\epsilon}$$

#### **True structural equation**

$$W = \beta_0 + \beta_1 E + \beta_2 M + \epsilon$$

Regress *M* on *E*:

$$\mathbf{M} = \delta_{\mathsf{O}} + \delta_{\mathsf{1}}\mathbf{E} + \nu$$

### Consider two quantities

- $\beta_2$  is the effect of M on W.
- $\delta_1$  represents how related M and E are.

Omitted Variable Bias:  $\tilde{\beta}_1 - \beta_1 = \beta_2 \delta_1$ 

#### **OMITTED VARIABLE BIAS IN MULTIPLE REGRESSION**

#### We fit

$$Y = \tilde{\beta}_0 + \tilde{\beta}_1 X_1 + \tilde{\beta}_2 X_2 + \dots + \tilde{\beta}_{k-1} X_{k-1} + \tilde{\epsilon}$$

#### **True structural equation**

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots$$
$$+ \tilde{\beta}_{k-1} X_{k-1} + \beta_k X_k + \epsilon$$

Regress  $X_k$  on other X's:

$$X_k = \delta_0 + \delta_1 X_1 + \dots + \delta_{k-1} X_{k-1} + \nu$$

Omitted Variable Bias:  $\tilde{\beta}_1 - \beta_1 = \beta_k \delta_1$ 

#### **ESTIMATING OMITTED VARIABLE BIAS**



We fit:  $\widehat{\textit{Wage}} = \widetilde{\beta}_{\mathsf{o}} + \widetilde{\beta}_{\mathsf{1}} \textit{Education}$ ; Omitted: Motivation

#### **ASSESSING OMITTED VARIABLE BIAS**

Which is worse: Bias toward zero or bias away from zero?

# Proof of Omitted Variable Bias

#### THE OMITTED VARIABLE BIAS IN SIMPLE REGRESSION

#### We fit

$$W = \tilde{\beta}_{o} + \tilde{\beta}_{1}E + \tilde{\epsilon}$$

#### **True structural equation**

$$W = \beta_{\rm O} + \beta_{\rm 1}E + \beta_{\rm 2}M + \epsilon$$

# Reverse Causality

#### **REVERSE CAUSALITY**

#### **Assumed model**

Education causes wages



#### True model

Education causes wages and wages cause education



#### **AN SEM VERSION**

#### True structural equations:

$$W = \beta_0 + \beta_1 E + \epsilon_1 \qquad (1)$$

$$E = \gamma_0 + \gamma_1 W + \epsilon_2 \qquad (2)$$



#### Observations

- E is a descendant of  $\epsilon_1$ .
- $\Longrightarrow$  *E* and  $\epsilon_1$  are dependent.
- $\implies$  (1) is not the BLP.

Since OLS estimates the BLP, it can't estimate (1).

#### **UNDERSTANDING FEEDBACK**

#### True structural equations:

$$W = \beta_0 + \beta_1 E + \epsilon_1$$
$$E = \gamma_0 + \gamma_1 W + \epsilon_2$$

Suppose  $\beta_1 > 0$ 

- Positive feedback  $\gamma_1 > 0$ 
  - $\tilde{\beta}_1 > \beta_1$
- Negative feedback  $\gamma_1 < 0$ 
  - $\tilde{\beta}_1 < \beta_1$



## **UNDERSTANDING THE SEM EQUILIBRIUM**



# **UNDERSTANDING THE SEM EQUILIBRIUM**



# **UNDERSTANDING THE SEM EQUILIBRIUM**



**Outcome Variables on Right-Hand** 

Side

#### **OUTCOME VARIABLES ON THE RIGHT-HAND SIDE**

#### **Assumed model**

- Education causes wages
- Contacts in industry cause wages

#### **True Model**

- · Education causes wages
- Contacts in industry cause wages
- Education creates contacts in industry



#### **ESTIMATING THE STRUCTURAL PARAMETERS**



Structural Equation:  $W = \beta_0 + \beta_1 E + \beta_2 C + \epsilon$  (S)  $\epsilon$  and E have no common ancestors.

- $\implies \epsilon$  and E are independent.
- $\implies cov(E, \epsilon) = 0$
- $\implies$  OLS is consistent for  $\beta_1$

#### INTERPRETING THE STRUCTURAL COEFFICIENT

 $\beta_1$  - The expected increase in Wage, from getting an extra year of eduction, holding the number of industry contacts constant.

**TAKE AWAY** 

# Do not put outcome variables on the right hand side.

# Explanatory Modeling Wrap-Up

#### TAKE AWAYS

- Explanatory modeling takes place inside a causal theory.
- The one-equation structural model is usually wrong.
- In special circumstances, advanced techniques can overcome omitted variables and reverse causality.
  - To learn more, try the instrumental variables and simultaneous equations chapters in *Introductory Econometrics* (Wooldridge).