Information
 Introduction
 Key concepts
 History

 0000
 000000
 00
 00000

Chapter 1 Introduction

Tian Tang United International College

February 14, 2019

Section No.	Instructor	Office	Email
1001	Prof. Weifeng Su	T3-602-R3	wfsu@uic.edu.hk
1002	Dr. Zhiyuan Li	T3-502-R6	goliathli@uic.edu.hk
1003	Dr. Zhiyuan Li	T3-502-R6	goliathli@uic.edu.hk

TextBook:

Lecture:

Section	Time	Venue	
1001	Wed. 9:00-10:50	T6-603	
1001	Tue. 16:00-16:50	T4-601	
1002	Mon. 10:00 -11:50	T7-303	
1002	Tue. 15:00-15:50	T5-405	
1003	Fri. 10:00 -11:50	T4-603	
1003	Tue. 13:00-13:50	T4-404	

• 4 Assignments: 10%

• Midterm: 20%

• Project: 30%

• Final Exam: 40%

Week	Topics	Readings	
Week 1	Chapter 1:Introduction	Textbook (Chap.1)	
Week 2&3	Chapter 2:Relational Model	Textbook (Chap.2)	
Week 4&5	Chapter 3:SQL	Textbook (Chap.3)	
Week 6	Chapter 4:Advanced SQL	Textbook (Chap.4)	
Week 7	Midterm		
Week 8&9	Chapter 6:ER model	Textbook (Chap.6)	
Week 10&11	Chapter 7:Database Design	Textbook (Chap.7)	
Week 12	Chapter 10:XML database	Textbook (Chap.10)	
Week 13	Final		

Whether you know it or not, you're using a database evetyday.

- Database Applications
 - Banking: transactions
 - Airlines: reservations, schedules
 - Universities: registration, grades
 - Sales: customers, products, purchases
 - Online retailers: order tracking, customized recommendations
 - Manufacturing: production, inventory, orders, supply chain
 - Human resources: employee records, salaries, tax deductions
 - Social media sites: posts, friendship relationship, activities
- Database can be very large.
- Database touch all aspects of our lives.

- Course Management
 - Add students, instructors, and courses
 - Register students for courses, and generate class rosters
 - Assign grades to students, compute grade point averages (GPA) and generate transcripts
- Provide basic features necessary for data access
 - Shared access by a community of uses
 - Well-defined schema for data access
 - Support query language
- In the early days, applications were built directly on top of file systems.

- Data redundancy and inconsistency
 - Multiple file formats, duplication of information in different files
- Difficulty in accessing data
 - Need to write a new program to carry out each new task
- Data isolation
 - Multiple files and formats
- Integrity problems
 - Integrity constraints (e.g., account balance ≥ 0) become buried in program code rather than being stated explicitly
 - Hard to add new constraints or change existing ones

Information occident Introduction Key concepts History occident Introduction occident Introduction occident Introduction occident Introduction Key concepts occident Introduction occident Introduction Key concepts History occident Introduction Introduction occident Introduction In

Atomicity of updates

- Failures may leave database in an inconsistent state with partial updates carried out.
- Example: Transfer of funds from one account to another should either complete or not happen at all.
- Concurrent access by multiple users
 - Concurrent access needed for performance
 - Uncontrolled concurrent accesses can lead to inconsistencies
 - Example: Two students want to choose the same course that has only one vacancy left.
- Security problems
 - Hard to provide user access to some, but not all, data

Database system offer solutions to all the above problems.

- Efficient
- Reliable
- Convenient
- Safe
- Multi-user (Storage of and access to)
- Massive amounts of persistent data

- Data modeling
- Schema vs. data instances
- Data definition language (DDL)
- Data manipulation or query language (DML)
- DBMS implementer
- Database designer
- Database application developer
- Database administrator

History of Database Systems

- 1950s and early 1960s:
 - Data processing uses magnetic tapes for storage.
 - Tapes provide only sequential access.
 - Punched cards are used for inputs.
- Late 1960s and 1970s:
 - Hard disks allow direct access to data.
 - Network and hierarchical data models are in widespread use.
 - Edgar Frank Codd invented the relational data model.
 - He won the ACM Turing Award in 1981.
 - IBM Research begins System R prototype.
 - UC Berkeley begins Ingres prototype.

- 1980s:
 - Research relational prototypes evolve into commercial systems.
 - SQL becomes an industrial standard.
 - Object-oriented database systems
- 1990s:
 - Large decision support and data-mining applications.
 - Large multi-terabyte data warehouses
 - Emergence of Web commerce
- 2000s:
 - XML and XQuery standards
 - Automated database administration

Information	Introduction	Key concepts	History
00000	0000000		00●00
Big Names in	Database Systems		

Company	Product	Remarks		
Oracle	Oracle 10i, 11i, 12i,	World's 2nd largest software		
	ect. Berkeley DB,	maker by revenue, after Mi-		
	MySQL	crosoft		
IBM	DB2	Since 1970s, when Edgar F.		
		Codd described the theory of		
		relational databases.		
Microsoft	Access, SQL Server	Access comes with MS Of-		
		fice		
Sybase	Adaptive Server	Relational model database		
		server product for business		
Informix	Informix Dynamic	Acquired by IBM in 2001		
	Server (IDS)			

	Rank					Score		
Jan 2018	Dec 2017	Jan 2017	DBMS	Database Model	Jan 2018	Dec 2017	Jan 2017	
1.	1.	1.	Oracle 🗄	Relational DBMS	1341.94	+0.40	-74.78	
2.	2.	2.	MySQL 🔠	Relational DBMS	1299.71	-18.36	-66.58	
3.	3.	3.	Microsoft SQL Server 🚨	Relational DBMS	1148.07	-24.42	-72.89	
4.	4.	↑ 5.	PostgreSQL 🚦	Relational DBMS	386.18	+0.75	+55.81	
5.	5.	4 .	MongoDB <equation-block></equation-block>	Document store	330.95	+0.18	-0.96	
6.	6.	6.	DB2 🖶	Relational DBMS	190.28	+0.70	+7.78	
7.	7.	1 8.	Microsoft Access	Relational DBMS	126.70	+0.82	-0.75	
8.	1 9.	4 7.	Cassandra 😷	Wide column store	123.88	+0.67	-12.57	
9.	4 8.	9.	Redis 🖰	Key-value store	123.14	-0.10	+4.44	
10.	10.	1 11.	Elasticsearch 🖶	Search engine	122.55	+2.77	+16.38	
11.	11.	4 10.	SQLite 🚨	Relational DBMS	114.25	-0.94	+1.88	
12.	12.	12.	Teradata	Relational DBMS	72.63	-2.11	-1.54	
13.	1 4.	13.	SAP Adaptive Server 😷	Relational DBMS	65.46	-0.22	-3.64	
14.	4 13.	14.	Solr	Search engine	64.37	-1.93	-3.71	
15.	15.	1 6.	Splunk	Search engine	64.00	+0.21	+8.51	
16.	16.	4 15.	HBase	Wide column store	61.64	-1.78	+2.50	
17.	17.	1 20.	MariaDB 🔠	Relational DBMS	58.30	+1.56	+13.26	
18.	1 9.	1 9.	Hive 🚼	Relational DBMS	55.49	+0.81	+4.35	

End of Chapter