Espaces vectoriels

ENSIMAG Alternance 1ère année

Hamza Ennaji

Dernière modification: December 19, 2023

Contents

Corps		1
Espaces	s véctoriels	2
2.1	Propriétés	4
2.2	Sous-espaces vectoriels	4

Corps

Nous avons besoins de rappeler la notion de corps pour préciser l'ensemble où vivent les scalaires.

Définition 1. Un corps **K** est un ensemble muni de deux opérations + et ⋅ dites addition et multiplication de scalaires tel que pour tout $\alpha, \beta, \gamma \in \mathbb{K}$:

- α + β = β + α et α · β = β · α
 (α + β) + γ = α + (β + γ) et (α · β) · γ = α · (β · γ).
 0_K + α = α et 1_K · α = α.
- Il existe un élément -α ∈ K tel que α + (-α) = 0_K. Pour α ≠ 0_K, il existe un élément α⁻¹ ∈ K tel que α · α⁻1 = 1_K.
 α · (β + γ) = α · β + α · γ.

Example. • L'ensemble des nombre réels \mathbb{R} est un corps pour l'addition et multiplication usuelles.

• L'ensemble des nombres complexes $\mathbb{C} = \{\alpha + i\beta : \alpha, \beta \in \mathbb{R}\}$ est un corps pour les lois + et · usuelles. On rappelle que pour $z = \alpha + i\beta$ et $z_2 = \gamma + i\delta$:

$$z_1 + z_2 = (\alpha + \gamma) + i(\beta + \delta)$$
 et $z_1 z_2 = (\alpha \beta - \gamma \delta) + i(\alpha \delta + \beta \gamma)$.

- L'ensemble des nombres rationnels $\mathbb{Q} = \{ \frac{m}{n} : (m, n) \in \mathbb{Z} \times \mathbb{Z}^* \}$ est un corps pour l'addition et multiplication usuelles.
- L'ensemble $\mathbb{Z}_2 = \{0, 1\}$ muni de l'addition et multiplication définies comme suit:

$$0 + 0 = 1 + 1 \stackrel{\text{def}}{=} 0$$
, $0 + 1 = 1 + 0 \stackrel{\text{def}}{=} 1$, $0 \cdot 0 = 0 \cdot 1 \stackrel{\text{def}}{=} 0$ and $1 \cdot 1 \stackrel{\text{def}}{=} 1$.

Remark. S'il y'a pas d'ambiguïté, on notera simplement 0 et 1 au lieu de $0_{\mathbb{K}}$ et $1_{\mathbb{K}}$.

Convention Le long du cours le corps \mathbb{K} désigne soit \mathbb{R} soit \mathbb{C} .

* Espaces véctoriels

Définition 2. Un espace vectoriel (\mathbb{E} , +, ·) sur \mathbb{K} (ou \mathbb{K} -ev) est un espace muni de deux opérations:

- i) Addition de vecteur: $\forall x, y \in \mathbb{E}$ il existe un élément $x + y \in \mathbb{E}$.
- ii) Multiplication par scalaires: pour tout $\lambda \in \mathbb{K}$ et $x \in \mathbb{E}$, il existe un élément $\lambda \cdot x \in \mathbb{E}$.

Ces opération vérifient les hypothèses suivantes:

A1.
$$x + y = y + x \ \forall x, y \in \mathbb{E}$$
.

A2.
$$(x + y) + z = x + (y + z) \forall x, y, z \in \mathbb{E}$$
.

A3. il existe un élément $0_{\mathbb{E}} \in \mathbb{E}$ dit élément neutre pour l'addition, tel que $x + 0_{\mathbb{E}} = x$ pour tout $x \in \mathbb{E}$.

A4. Pour tout $x \in \mathbb{E}$ il existe $y \in \mathbb{E}$ tel que $x + y = 0_{\mathbb{E}}$.

A5. $1_{\mathbb{K}} \cdot x = x$ pour tout $x \in E$.

A6. $\alpha \cdot (\beta \cdot x) = (\alpha \cdot \beta) \cdot x$ pour tout $\alpha, \beta \in \mathbb{K}$ et $x \in E$.

A7. $\alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y$ pour tout $\alpha \in \mathbb{K}$ et $x, y \in \mathbb{E}$.

A8. $(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$ pour tout $\alpha, \beta \in \mathbb{K}$ et $x \in \mathbb{E}$.

Remark. Les hypothèses (A1-A2-A3-A4) expriment le fait que $(\mathbb{E}, +)$ est un group commutatif (ou abélien). Autrement dit, $(\mathbb{E}, +, \cdot)$ est un espace vectoriel sit $(\mathbb{E}, +)$ est un group abélien et que les hypothèses (A5-A6-A7-A8) sont vérifiées.

Example. • Exemple trivial: $\mathbb{E} = \{0\}$.

- E = Kⁿ = {(x₁, · · · , x_n) : x_i ∈ K ∀i = 1, . . . , n}.
 E = K[X] l'ensemble des polynômes à coefficients dans K. Un élément P de E s'écrit de la forme

$$P(X) = \sum_{i=0}^{n} a_i X^i,$$

où les $a_i \in \mathbb{K}$ et $n \in \mathbb{N}$. L'entier n s'appelle le degré de P et on écrit $n = \deg(P)$. Pour un $\lambda \in \mathbb{K}$, on définit λP par

$$(\lambda \cdot P)(X) \stackrel{\text{def}}{=} \lambda \cdot P(X) = \sum_{i=0}^{n} \lambda \cdot a_i X^i.$$

Soit maintenant $Q(X) = \sum_{i=0}^{m} b_i X^i$ un autre polynôme à coefficients dans K. Sans perte de généralité, on peut supposer que Q est de même degré que P. On définit alors P + Q par

$$(P+Q)(X) \stackrel{\text{def}}{=} P(X) + Q(X) = \sum_{i=1}^{n} (a_i + b_i) X^i.$$

Soient E_1, \ldots, E_n n espaces vectoriels sur \mathbb{K} . Alors

$$\mathbb{E} \stackrel{\text{def}}{=} \prod_{i=1}^n E_i = E_1 \times \cdots E_n$$

est un K-espace vectoriel.

Soit $\mathcal{M}_{2,2}(\mathbb{R})$ l'ensemble des matrices de taille 2×2 à coefficients réels. Soient $\lambda \in \mathbb{R}$ et $M, N \in \mathcal{M}_{2,2}(R)$ avec Plus généralement, $\mathcal{M}_{m,n}(\mathbb{R})$ est un espace vectoriel.

2.1 Propriétés

Proposition 1. Soit \mathbb{E} un \mathbb{K} -e.v et x, y, $z \in \mathbb{E}$. On a

- i) Si x + z = y + z alors x = y. ii) Si z + x = z + y alors x = y.
- iii) $0_{\mathbb{E}}$ est unique: s'il existe $0' \in \mathbb{E}$ tel que $x + 0_{\mathbb{E}} = x$ et x + 0' = x alors $0_{\mathbb{E}} = 0'$.

Preuve. i) D'après Définition-2-(A4), il existe $z' \in \mathbb{E}$ tel que: $z + z' = 0_{\mathbb{E}}$. On a donc

$$x = x + 0_{\mathbb{E}} = x + (z + z') = (x + z) + z' = (y + z) + z' = y + (z + z') = y + 0_{\mathbb{E}} = y.$$

- ii) Si z + x = z + y alors par commutativité (Définition-2-(A1)) x + z = y + zet on conllut d'après i) que x = y.
- iii) On a $x = x + 0_{\mathbb{E}} = x + 0'$ donc $0_{\mathbb{E}} = 0'$ toujours d'après i).

Corollaire. Soit $x \in \mathbb{E}$ alors l'élément $y \in \mathbb{E}$ dans Définition-2 vérifiant (A4) est unique, i.e., si $y, y' \in \mathbb{E}$ vérifient $x + y = x + y' = 0_{\mathbb{E}}$ alors y = y'. On note y = -x.

Example. • Dans $\mathbb{E} = \mathbb{R}^n$, $0_{\mathbb{R}^n} = (0, \dots, 0)$.

- Dans $\mathbb{E} = \mathcal{M}_{2,2}(\mathbb{R})$, on a $0_{2\times 2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.
- Dans $\mathbb{E} = \mathbb{R}[X]$ alors $0_{\mathbb{R}[X]} = 0$ est le polynôme nul.

2.2 Sous-espaces vectoriels

Figure 1: La Figure-1a montre un sous ensemble F du plan qui n'est stable ni pas addition de vecteurs ni par multiplications par scalaires. Tandis que Figure-1b montre une partie du plan, dite droite vectorielle, qui est pas addition de vecteurs et par multiplications par des scalaires.

Définition 3. Soit \mathbb{E} un \mathbb{K} -ev. Un ensemble $F \subset \mathbb{E}$ est un sous-espace vectoriel de 𝔻 s'il est lui même un espace vectoriel sur 𝔻 par rapport à l'addition de vecteurs et multiplications de scalaires définies sur E. Autrement dit, si $(F, +_{\mathbb{E}}, \cdot_{\mathbb{E}})$ vérifie (A1-A8).

Example. Examples de sous-espaces vectoriels

 $F = \{0_{\mathbb{E}}\} \subset \mathbb{E}$, où \mathbb{E} est un \mathbb{K} -ev.

- $F = \{(x_1, \dots, x_{n-1}, 0), x_i \in \mathbb{R}\} \subset \mathbb{R}^n$. $F = \mathbb{K}_n[X] \stackrel{\text{def}}{=} \{p \in \mathbb{K}[X] : \deg(p) \le n\} \subset \mathbb{K}[X]$.

Le résultat suivant fourni "un test" pour vérifier si un ensemble est oui ou non un sousespace vectoriel d'un e.v donné.

Proposition 2 (Tests de sous-ev). Soit $\mathbb E$ un $\mathbb K$ -ev et $F \subset \mathbb E$. Alors F est un sous-espace vectoriel de $\mathbb E$ si et seulement si

- Si $x, y \in F$ alors $x + y \in F$. Si $x \in F$ et $\lambda \in \mathbb{K}$ alors $\lambda x \in F$.

Cela est équivalent à dire

$$\lambda x + y \in F$$

pour tout $\lambda \in \mathbb{K}$ et $x, y \in F$.

Exercise

Vérifier si les ensembles suivant sont des sous-espaces vectoriels de \mathbb{R}^3 .

- $F = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 1\}.$
- $F = \{(x, y, z) \in \mathbb{R}^3 : x + y + z \ge 0\}.$
- $F = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 01\}.$
- $F = \{(x, y, z) \in \mathbb{R}^3 : x^2 + 2y^2 = 0\}.$