Глава 4. Восходящий синтаксический анализ

4.6. LR-таблицы разбора

4.6.2. *SLR*(1)-грамматики

Более мощный подкласс LR(1)-грамматик — так называемые SLR(1)-грамматики — простые (Simple) LR(1)-грамматики. Во многом SLR(1)-метод построения SLR(1)-таблицы разбора совпадает с LR(0)-методом. Как и в LR(0)-методе, пункты не содержат предпросмотра, т. е. используются LR(0)-пункты. Отличие заключается в том, что SLR(1)-таблица разбора может содержать конфликты определенного вида, которые могут быть разрешены путем просмотра очередного входного символа.

SLR(1)-метод требует вычисления функции

$$Follow(X) = \{a \mid S \stackrel{*}{\Rightarrow} \alpha X a \beta \}, a \in V_T, \alpha \in V_T^*, \beta \in (V_T \cup V_N)^*,$$

для каждого нетерминала X грамматики. Эта функция определяет множество терминалов, которые могут следовать непосредственно за нетерминалом X в какой-либо сентенциальной форме, выводимой из начального нетерминала S. Формальный процесс вычисления функции Follow подробно изложен при рассмотрении LL(1)-грамматик. Значения данной функции используются только для реализации свертки. Если имеется пункт $[A \to \alpha \bullet]$, свертка должна выполняться для всех терминалов $a \in Follow(A)$, т. е. в SLR(1)-таблицу разбора элементы свертки вносятся только в столбцы, соответствующие возможным символам-следователям.

Рассмотрим процесс построения SLR(1)-таблицы разбора для грамматики с продукциями

- 1) $S \rightarrow AB$
- 2) $A \rightarrow aA$
- 3) $A \rightarrow a$
- 4) $B \rightarrow bB$
- 5) $B \rightarrow \varepsilon$

Функция Follow для нетерминалов грамматики имеет следующие значения: $Follow(S) = \{\bot\}$, $Follow(A) = \{b, \bot\}$, $Follow(B) = \{\bot\}$.

SLR(1)-автомат

Таблица 4.8

SER(1)-abtomat							
Состояние	Пункты	Символ	Состояние-	Свертка			
Состоинис	Пушкты	перехода	преемник				
I_0	$S' \rightarrow \bullet S \perp$	S	stop				
	$S \to \bullet AB$	A	I_1				
	$A \rightarrow \bullet aA$		1.				
	$A \rightarrow \bullet a$	а	I_5				
I_1	$S \to A \bullet B$	В	I_2				
	$B \to \bullet bB$	b	I_3				
	$B \rightarrow \bullet$	L		R5			
I_2	$S \rightarrow AB \bullet$			<i>R</i> 1			
I_3	$B \to b \bullet B$	В	I_4				
	$B \to \bullet bB$	b	I_3				
	$B \rightarrow \bullet$	L		R5			
I_4	$B \to bB \bullet$			<i>R</i> 4			
I_5	$A \rightarrow a \bullet A$	A	I_6				
	$A \rightarrow a \bullet$	b, \perp		<i>R</i> 3			
	$A \rightarrow \bullet aA$	a	1				
	$A \rightarrow \bullet a$	а	I_5				
I_6	$A \rightarrow aA \bullet$	b, \perp		<i>R</i> 2			

SLR(1)-автомат представлен в табл. 4.8. Значения функции Follow включены в столбец «символ перехода» для строк, соответствующих свертке. Это удобно для визуальной проверки состояний на наличие конфликтов.

- 1) $S \rightarrow AB$
- $2) A \rightarrow aA$
- $3) A \rightarrow a$
- 4) $B \rightarrow bB$
- 5) $B \rightarrow \varepsilon$

Функция *Follow* для нетерминалов грамматики:

$$Follow(S) = \{\bot\},\$$

 $Follow(A) = \{b, \bot\},\$
 $Follow(B) = \{\bot\}.$

Следует обратить внимание на то, что для продукции $S' \to S \bot$ построены не все пункты, а только $[S' \to \bullet S \bot]$ в состоянии I_0 и $[S' \to S \bullet \bot]$ в состоянии stop (в таблице соответствующая строка не показана). Это связано с тем, что в грамматике не существует более ни одной продукции, в правой части которой содержался бы нетерминал S. Поэтому пункт $[S' \to S \bullet \bot]$ однозначно устанавливает успешное завершение разбора, и нет смысла строить дополнительное состояние для пункта $[S' \to S \bot \bullet]$.

Из SLR(1)-автомата видно, что данная грамматика не является LR(0)-грамматикой, поскольку состояния I_1 , I_3 и I_5 имеют конфликты типа «перенос/свертка». Такие состояния называются HeadekBamhumu.

В состояниях I_1 и I_3 необходимо выполнить два перехода по символам B и b и одну свертку для продукции $B \to \varepsilon$. Чтобы разрешить этот конфликт, очередной входной символ сравнивается с возможным символом-следователем для нетерминала B, т. е. для нетерминала из левой части продукции, для которой выполняется свертка. Поскольку $Follow(B) = \{\bot\}$, то, если входным символом является символ \bot , должна выполняться свертка. Таким образом, в состояниях I_1 и I_3 по символам B и b выполняется перенос, а по символу \bot – свертка. Эти символы не совпадают, конфликта нет, неадекватность снимается.

В состоянии I_5 перенос выполняется по символам A и a, а свертка — по символам b и \bot , поскольку $Follow(A) = \{b, \bot\}$, т. е. если очередным входным символом является b или \bot , выполняется свертка для продукции $A \to a$. Неадекватность снимается.

В состояниях I_2 , I_4 и I_6 выполняются только свертки (конфликтов нет), поэтому при построении таблицы разбора можно было бы включить соответствующие элементы свертки во все столбцы этих состояний, как это делалось в LR(0)методе. Однако SLR(1)-метод, рассматривая только возможные символыследователи, исключает из таблицы несколько элементов свертки. В состоянии I_2 выполняется свертка для продукции $S \to AB$, а $Follow(S) = \{\bot\}$, т. е. за S может следовать только символ \bot и никакой другой. Поэтому для состояния I_2 элемент свертки R1 включается только в столбец \bot . Аналогично в состоянии I_4 элемент R4(свертка для $B \to bB$) включается в столбец \bot , поскольку $Follow(B) = \{\bot\}$, а в состоянии I_6 элемент R2 (свертка для $A \to aA$) записывается в столбцы b и \bot , так как $Follow (A) = \{b, \bot\}$. Если этого не сделать, то некоторые синтаксические ошибки будут обнаружены на более поздних шагах анализа (но не позднее в смысле считанного текста). Соответствующая SLR(1)-таблица разбора представлена в табл. 4.9.

Таблица 4.9 SLR(1)-таблица разбора

SER(1) Tuosiniqui puscopu						
Номер состояния	S	\boldsymbol{A}	В	а	b	Т
0	stop	<i>S</i> 1		<i>S</i> 5		
1			<i>S</i> 2		<i>S</i> 3	<i>R</i> 5
2						<i>R</i> 1
3			<i>S</i> 4		<i>S</i> 3	<i>R</i> 5
4						<i>R</i> 4
5		<i>S</i> 6		<i>S</i> 5	<i>R</i> 3	<i>R</i> 3
6					<i>R</i> 2	<i>R</i> 2

Таким образом, если все конфликты можно разрешить рассмотренным выше способом, т. е. достаточно проанализировать значения функции Follow при реализации свертки, грамматика относится к подклассу SLR(1)-грамматик. В противном случае необходимо использовать более сложные и мощные методы построения таблиц разбора.

SLR(1)-метод часто используется на практике, так как большинство стандартных синтаксических конструкций языков программирования легко выражаются с помощью SLR(1)-грамматик. Однако возможны конструкции, с которыми SLR(1)-метод не может справиться.

Для наглядности на одной странице приведены и SLR(1)-автомат, и SLR(1)-таблица разбора

SLR(1)-таблица разбора

2==-(=) = F F						
Номер состояния	S	A	В	а	b	Т
0	stop	<i>S</i> 1		<i>S</i> 5		
1			<i>S</i> 2		<i>S</i> 3	R5
2						<i>R</i> 1
3			<i>S</i> 4		<i>S</i> 3	R5
4						R4
5		<i>S</i> 6		<i>S</i> 5	R3	R3
6					R2	R2

Состояние	Пункты	Символ перехода	Состояние- преемник	Свертка
I_0	$S' \rightarrow \bullet S \perp$	S	stop	
	$S \rightarrow \bullet AB$	A	I_1	
	$A \rightarrow \bullet aA$		ı	
	$A \rightarrow \bullet a$	a	I_5	
I_1	$S \to A \bullet B$	В	I_2	
	$B \to \bullet bB$	b	I_3	
	$B \rightarrow \bullet$			R5
I_2	$S \rightarrow AB \bullet$	Т		<i>R</i> 1
I_3	$B \to b \bullet B$	В	I_4	
	$B \to \bullet bB$	b	I_3	
	$B \rightarrow \bullet$			R5
I_4	$B \rightarrow bB \bullet$			R4
I_5	$A \rightarrow a \bullet A$	A	I_6	
	$A \rightarrow a \bullet$	b, \perp		R3
	$A \rightarrow \bullet aA$		ı	
	$A \rightarrow \bullet a$	a	I_5	
I_6	$A \rightarrow aA \bullet$	b, \perp		R2