

OEGTalks

Enabling Ontology-based Access to Streaming Data Sources

Jean-Paul Calbimonte¹, Oscar Corcho¹, Alasdair J G Gray²

¹Ontology Engineering Group. Departamento de Inteligencia Artificial. Facultad de Informática, Universidad Politécnica de Madrid. Campus de Montegancedo s/n. 28660 Boadilla del Monte. Madrid. Spain

jp.calbimonte@upm.es;ocorcho@fi.upm.es

²School of Computer Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom a.gray@cs.man.ac.uk

Outline

- Introduction & Motivation
- Background
- Approach
- Mapping Streams to Ontologies
- SPARQL Stream
- Query Translation
- Example
- Future work
- Conclusions

Introduction & Scope

Sensor technologies

- Ubiquitous data capture
- Data processing
- Cheap
- Noisy, Unreliable
- Low computational, power resources, storage

Streaming Data

- Continuously appended data
- Potentially infinite
- Time-stamped tuples
- Continuous queries
- Latest used in queries

Streaming Data

```
(t9, a1, a2, ..., an)
(t8, a1, a2, ..., an)
(t7, a1, a2, ..., an)
...
(t1, a1, a2, ..., an)
...
```


• Applications in security surveillance, healthcare provision, environmental monitoring, you name it.

Motivation

- Detect conditions likely to cause a flood
- Present data model in terms of the user domain: e.g. Flood risk assessment

Example:

 "provide me with the wind speed observations average over the last minute in the Solent region, if it is higher than the average of the last 2 to 3 hours"

Motivation

- Ontologies can be used as such a common model
- Answer the requirements:
 - Establish mappings between ontological models and streaming data source schemas
 - Access streaming data sources through queries over ontology models

Background – Ontology-based Data Access

Generate Semantic Web content from existing relational data sources

R₂O + ODEMapster D2RQ SquirrelRDF RDBToOnto Relational.OWL SPASQL Virtuoso MASTRO

Background – Querying Relational Data Streams

Streaming Data

Window-to-Stream operators: convert stream of windows to stream of tuples

Ontology-based Streaming Data Access

Ontology-based Streaming Data Access

- Mappings from relational streams to ontological concepts
 - Extend stored data schema mappings
 - Study translation semantics
- Provide with a stream query language at ontological level
 - Use notion of RDF stream
 - Extend SPARQL
 - Window operator, window-to-stream operators

Example:

"provide me with the wind speed observations over the last minute in the Solent Region"

RDF-Stream

Example:

"provide me with the wind speed observations over the last minute in the Solent Region"


```
PREFIX cd:
<a href="http://www.semsorgrid4env.eu/ontologies/CoastalDefences.owl#>">http://www.semsorgrid4env.eu/ontologies/CoastalDefences.owl#>">
PREFIX sb: <a href="http://www.w3.org/2009/SSN-">http://www.w3.org/2009/SSN-</a>
XG/Ontologies/SensorBasis.owl#>
PREFIX rdf: <a href="http://www.w3.org/1999/02/22-rdf-syntax-ns#">http://www.w3.org/1999/02/22-rdf-syntax-ns#</a>
SELECT ?windspeed ?windts
FROM STREAM <a href="http://www.semsorgrid4env.eu/ccometeo.srdf">http://www.semsorgrid4env.eu/ccometeo.srdf</a>
[ NOW - 1 MINUTE TO NOW - 0 MINUTES ]
WHFRF
?WindObs a cd:Observation:
   cd:observationResult ?windspeed;
   cd:observationResultTime ?windts;
   cd:observedProperty ?windProperty;
   cd:featureOfInterest ?windFeature.
 ?windFeature a cd:Feature:
   cd:locatedInRegion cd:SolentCCO.
 ?windProperty a cd:WindSpeed.
```

Ontology-based Streaming Data Access

S20 Mappings

R2O Mappings

Schema descriptions (probably mostly unused)

```
<has-stream name="windsamples" streamType="push">
        <keycol-desc name="id"/>
        <keycol-desc name="ts"/>
        <timestamp-desc name="ts" />
        <nonkeycol-desc name="speed"/>
        <nonkeycol-desc name="temperature"/>
        <nonkeycol-desc name="direction"/>
        </has-stream>
```

S20 Mappings

```
<conceptmap-def id="Observation wind"</pre>
name="http://www.semsorgrid4env.eu/ontologies/CoastalDefences.owl#Observation"
virtualStream="http://www.semsorgrid4env/ccometeo.srdf">
<uri-as>
  <operation oper-id="concat">
     <arg-restriction on-param="string1">
       <a href="http://www.semsorgrid4env.eu/data#ObservationWind</has-value">http://www.semsorgrid4env.eu/data#ObservationWind</has-value>
    </arg-restriction>
    <arg-restriction on-param="string2">
       <a href="mailto:right-square;">has-column>meteostream.DateTime</a>/has-column>
    </arg-restriction>
  </operation>
 </uri-as>
<attributemap-def
name="http://www.semsorgrid4env.eu/ontologies/CoastalDefences.owl#observationResult"
dataType="xsd:double">
<selector>
<aftertransform>
                                                                                    cd:Observation
 <operation oper-id="constant">
  <arg-restriction on-param="const-val">
                                                                                                                     meteostream
  <has-column>meteostream.Hs</has-column>
                                                                                                                     Datetime: Iong
                                                                                        cd:observationResult
  </arg-restriction>
                                                                                                                     Hs: float
                                                                                                                     Lon: float
 </operation>
                                                                                                                     Lat: float
</aftertransform>
                                                                            xsd:double
</selector>
```

</attributemap-def>

S20 Mappings

Union of extents-streams

Ontology-based Streaming Data Access

Stored Data Query Translation

SELECT?y
FROM STREAM < STREAM
http://www.semsorgrid4env.eu/ccometeo.srdf
[NOW - 1 MINUTE TO NOW - 0 MINUTES] >
WHERE
{ ?x a cd:Observation;
 cd:observationResult ?y. }

SELECT concat('ssg4env.eu#ObservationWind', envdata milford.datetime) as x,

FROM envdata_milford [FROM NOW - 1 TO NOW MIN]

SELECT concat('ssg4env.eu#ObservationWind',

envdata_milford.datetime) as x,

envdata_milford.Hs as y

FROM envdata_milford [**FROM** NOW - 1 **TO** NOW MIN]

Redundant queries, unacceptable for stream processing

Query Translation

Queries:

```
SELECT?y
                                             q(y) \leftarrow Observation(x) \land observationResult(x, y)
WHERE
 { ?x a cd:Observation;
    cd:observationResult ?y. }
                                  q(\vec{x}) \leftarrow \phi(\vec{x}, \vec{y})
SELECT?y
FROM STREAM < STREAM <a href="http://www.semsorgrid4env.eu/ccometeo.srdf">http://www.semsorgrid4env.eu/ccometeo.srdf</a>
[ NOW - 1 MINUTE TO NOW - 0 MINUTES ] >
WHFRF
{ ?x a cd:Observation;
   cd:observationResult ?y. }
          q(y)[t_i, t_f, \delta] \leftarrow (Observation(x) \land observationResult(x, y))[t_i, t_f, \delta]
```


Query Translation

Mappings:

 $(Observation(x) \land \\ observationResult(x, y))[t_i, t_f, \delta]$

Query Translation

 $(Observation(x) \land observationResult(x, y))[t_i, t_f, \delta]$

Ontology-based Streaming Data Access

Query Execution

Ontologies

Streams

```
PREFIX cd: <a href="mailto:cd://www.semsorgrid4env.eu/ontologies/CoastalDefences.owl#>"> PREFIX sb: <a href="mailto:sb://www.w3.org/2009/SSN-XG/Ontologies/SensorBasis.owl#>"> PREFIX rdf: <a href="mailto:chttp://www.w3.org/1999/02/22-rdf-syntax-ns#>"> SELECT ?waveheight ?wavets ?lat ?lon</a>
FROM STREAM <a href="mailto:http://www.semsorgrid4env/ccometeo.srdf">http://www.semsorgrid4env/ccometeo.srdf</a>
WHERE

{
    ?WaveObs a cd:Observation;
```

cd:observationResult?waveheight;
cd:observationResultTime?wavets;
cd:observationResultLatitude?lat;
cd:observationResultLongitude?lon;
cd:observedProperty?waveProperty;
cd:featureOfInterest?waveFeature.
?waveFeature a cd:Feature;
cd:locatedInRegion cd:SouthEastEnglandCCO.
?waveProperty a cd:WaveHeight.

(SELECT Lon,timestamp,Hs,Lat FROM envdata_rhylflats) UNION (SELECT Lon,timestamp,Hs,Lat FROM envdata_hornsea) UNION (SELECT Lon,timestamp,Hs,Lat FROM envdata_milford) UNION (SELECT Lon,timestamp,Hs,Lat FROM envdata_chesil) UNION (SELECT Lon,timestamp,Hs,Lat FROM envdata_perranporth) UNION (SELECT Lon,timestamp,Hs,Lat FROM envdata_westbay) UNION (SELECT Lon,timestamp,Hs,Lat FROM envdata_pevenseybay)

SPARQL_{Stream}

SNEEql

Ontology-based Streaming Data Access

Data Translation

Data translation:

Tagged tuples → SPARQL bound variables

```
<ns9:sparql>
<ns9:head>
 <ns9:variable name="waveheight"/>
 <ns9:variable name="wavets"/>
</ns9:head>
<ns9:results>
  <ns9:result>
   <ns9:binding name="waveheight">
    <ns9:literal datatype="http://www.w3.org/2001/XMLSchema#double">4.850</ns9:literal>
   </ns9:binding>
   <ns9:binding name="wavets">
    <ns9:literal datatype="http://www.w3.org/2001/XMLSchema#long">1272588663</ns9:literal>
   </ns9:binding>
  </ns9:result>
  <ns9:result>
   <ns9:binding name="waveheight">
    <ns9:literal datatype="http://www.w3.org/2001/XMLSchema#double">2.1230</ns9:literal>
   </ns9:binding>
   <ns9:binding name="wavets">
    <ns9:literal datatype="http://www.w3.org/2001/XMLSchema#long">1272587400</ns9:literal>
   </ns9:binding>
  </ns9:result>
</ns9:results>
</ns9:sparql>
```


Implementation

- Design, implement and deploy a Semantic Integration Service
- Extend existing ontologybased data integration models to take into account sensor networks streaming data, semantic heterogeneity and quality of service

Implementation

Implementation

Flood Warning Application

Ontology-base data access

- Define stream extensions for R2O
- Define SPARQL_{Stream} language syntax and semantics
- Define S2O mappings-based translation semantics

Implementation

- Enable engine support for « S2O » documents, SPARQL_{Stream} queries
- Enabled engine support for SNEEql translation and connection
- Limited to non-distributed scenario initially

Future Works

- Ontology-based data access
 - SPARQL construct expressions, aggregates, projected operators
 - Implement adapters for other streaming sources
 - Add query rewriting algorithms
- Ontology-based streaming data integration
 - Horizontal & vertical integration
 - Integrate streaming + stored data
 - RDF data sources integration
- Streaming query optimization
 - Analyze cost models
 - Streaming sources statistics and metadata
- Quantitative evaluation

Thanks!

Enabling Ontology-based Access to Streaming Data Sources

Internship

- Period: 21.05.2010 29.07.2010
- Institution: School of Computer
 Science, The University of Manchester

Research contact: Alasdair Gray

Professors:
 Norman Paton,
 Alvaro Fernandes

Objectives

- Study the existing approaches on <u>distributed</u> <u>SPARQL</u> query processing.
- Study the existing SPARQL <u>query optimization</u> approaches.
- Study the existing <u>streaming SPARQL</u> query processing approaches.
- Propose a coherent solution for streaming distributed query processing using SPARQL extensions.
- Propose a study use-case in the context of the SSG4E project that highlights the streaming query processing capabilities.
- Prepare a formal publishable version of the proposal for the consideration of the community

Research Outcome

- Stuff for each of the objectives available in draft documents:
 - http://delicias.dia.fi.upm.es/wiki/index.php/ManchesterJPC
- Material in development for future interesting work

Integration Use-cases

- Horizontal integration of data sources. Sources provide the same type of information with respect to the global schema. The data may overlap (redundancy) or be complementary (partitioned) and it can be seen as union of homogeneous information.
- Vertical integration of sources. Sources provide different information with respect to the global schema. In this case data of each source adds additional information to an original set. In this case the joins are between different kinds of information and finding their relationships is not always straightforward.
- Integration of different streaming sources. Answer queries including data from 2+ streaming sources.
- Integration of streaming and stored data.
- Integration of streaming data in the past and current streaming data

Completing SPARQL_{Stream}

- Adjust semantics of « triple-based » windows
- Fixes on types: stream of triples, stream of triple windows.
- Window-to-Stream operation semantics
- Stored data scans

Query Optimization

Open for Collaboration

- Any streaming data in your project? e.g. geo information?
- Mapping-based query translation
- Distributed query processing
- Discovery/invocation of data sources
- Others...

Thanks

