※ 참고: CD(V1.6.0.1)에서 복사하는 파일들은 버전에 따라 파일명이 다를 수 있으니 Is 명령어를 사용하여 확인하고 복사

또한 CD의 사용 대신에 PC 하드에 CD를 복사하고 폴더 공유 기능을 이용해 작업하면 편리함

- 0. 개발환경 구축
- 0.1 VMware Player 설치
- 0.2 Ubuntu 12.04 64bit 설치 (약 15~20분)

반드시 이 버전을 다운로드해 사용. 중간에 업데이트도 금지 → 모든 실습환경이 여기에 맞추어 설정되어 있음

안될 경우, BIOS -> CPU -> Virtualization -> Intel Virtualization Technology [Enable] 설정

Network Setup

Configure Adapters를 선택 → PC LAN 카드만 마크함

(Default로 NAT 인 네트워크를 Bridged 모드로 변경)

※ 네트워크 상태에 따라 네트워크가 불안할 경우 NAT로 설정을 하고 진행 (2. 디바이스 드라이버까지는 문제 없음. 이후에도 Bridged 모드가 불안할 때는 SD카드를 PC로 꼽고SD카드에 내용을 복사해서 타겟에 다시 꽂은 후 실습 가능)

- ※ 실습에 사용되는 IP 종류
- 1) PC IP: 자기 PC의 IP → 확인 필요
- 2) 우분투(리눅스) 호스트 IP: PC IP + 50
- 3) 타겟 보드 IP: PC IP + 100

Ubuntu IP Address Setup 방법:

[Edit Connections...] 클릭 -> Wired connection 1 선택 후 [Edit] -> IPv4 Settings -> Method [Manual] -> [Add] -> IP 입력, DNS 입력

Address 10.40.1.(본인 PC IP+50)

NetMask 255.255.255.0 Gateway 10.40.1.254 DNS server 210.93.48.196

- ※ PC와의 공유폴더를 만들고 CD ROM 복사
- ※ 새로운 터미널 창 열기: Ctrl+Alt+T
- 0.3 루트 패스워드 설정
- # sudo passwd root
- 0.4 루트 계정 로그인 설정

방법-1: 초기부터 root 계정 로그인 하는 방법

sudo vi /etc/lightdm/ightdm.conf

Login에서 Username (root) -> passwd 입력 로그인

방법-2: 사용자 계정으로 로그인 → root 계정 전환

#su -

※ 모든 작업은 root 계정에서 실시

0.5 32bit 라이브러리 및 vim 설치

apt-get update (패키지 인덱스 정보 업데이트)

(에러 시 /etc/apt/sources.list 수정, DNS변경)

- # apt-get upgrade (최신 패키지로 업그레이드 → 15분~20분 소요)
- # apt-get install vim ia32-libs

(32bit lib패키지 미지원 시 gcc-multilib 설치) → 5분 정도 소요. 이 경우

VMtool 업데이트를 안하면 그럴 수도 있음

0.6 minicom 설치

- # apt-get install minicom
- # minicom -s

Serial port setup

A - Serial Device : /dev/tty~~~~

E - Bps/Par/Bits: 115200 8N1

F – Hardware Flow Control : No

G – Software Flow Control : No)

(미니컴 환경설정,

통신 포트 선택 COM1 → /dev/ttyS0

COM2 → /dev/ttyS1

USB-to-Serial → /dev/ttyUSB0

- * #dmesg | grep serial 명령어를 사용해서 나오는 장치이름 (ttyS0 또는 ttyS1을 사용하여 설정해 볼 것)
- * Save setup as dfl 로 설정값 저장
- ▶ 보드의 CONSOLE(Ethernet 바로 옆)에 호스트 PC의 시리 얼 포트를 연결한다

0.7 TFTP 설치

- # apt-get install tftp tftpd xinetd
- # mkdir /tftpboot
- # vi /etc/xinetd.d/tftp (정확히 타이핑 할 것!!)

```
/etc/xinetd.d/tftp

service tftp
{
    socket_type = dgram
    protocol = udp
    wait = yes
    user = root
```

```
server = /usr/sbin/in.tftpd
server_args = -s /tftpboot
disable = no
per_source = 11
cps = 100 2
flags = IPv4
}
```

service xinetd restart

▶ TFTP 테스트

(대부분의 error가 /etc/xinetd.d/tftp의 오타로 발생. Time out시 재작성 할 것)

- # cd /tftpboot
- # cat > /tftpboot/test.txt

Hello World (Ctrl+D를 눌러 입력 내용 저장)

- # cd /root
- # tftp localhost

```
tftp> get test.txt
tftp> quit
```

Is /root

[.... test.txt]

cat test.txt

[Hello World]

0.8 NFS 설치

- # apt-get install nfs-kernel-server
- # vim /etc/exports (서버에서 공유될 디렉토리 및 옵션들 설정)

```
/etc/exports
....
/nfsroot *(rw,sync,no_root_squash,no_subtree_check)
....
```

- # mkdir /nfsroot
- # service nfs-kernel-server restart

▶ NFS 테스트

- # mkdir /mnt/nfs (클라이언트에서 서버와 공유할 디렉토리 설정)
- # mount -t nfs localhost:/nfsroot /mnt/nfs (수초 소요)
- # cd /nfsroot

touch test1 (서버에서 파일을 하나 생성)

ls /mnt/nfs (test 파일이 있는지 확인)

umount /mnt/nfs (연결 해제)

0.9 작업 디렉토리 생성

mkdir -p /work/achro5250

(-p: 상위 디렉토리까지 포함하여 디렉토리 생성)

0.10 툴체인 설치

- # dpkg-reconfigure -plow dash ('No'를 선택)
- ▶실습장비와 함께 제공된 CD 삽입 후 탐색기 화면이 뜬 이후 다음 명령을 실행하여 파일 복사
- ▶CD 내용을 PC 폴더에 공유했으면 향후 CD가 없어도 /mnt/hqfs/~~ 디렉토리 밑에서 복사 가능
- # cp -a [CD 위치]/toolchain/arm-2010q1-203-arm-none-linux-gnueabi-i686-pc-linux-gnu.tar.bz2 /work/achro5250 (같은 중에 타이핑) > 파일명이 다를 수 있으니 확인 필요(Is 이용)
- # mkdir /opt/toolchains
- # cd /work/achro5250
- # tar xvfj arm-2010q1-202-arm-none-linux-gnueabi-i686-pc-

linux-gnu.tar.bz2 -C /opt/toolchains/ (-C: 경로 지정 옵션)

vi /root/.bashrc

```
~/.bashrc

If[-f ~/.bash_aliases]; then
. ~/.bash_aliases
fi

(파일의 제일 아래에 다음 3라인을 추가)
export ARCH=arm
export CROSS_COMPILE=arm-none-linux-gnueabi-
export PATH=/opt/toolchains/arm-2010q1/bin:$PATH
.....
```

- # source /root/.bashrc
- # cd /work/achro5250/
- # vi helloworld.c (새로운 파일을 만들어 개발환경 확인)

```
hellowrold.c

#include <stdio.h>
int main(int argc, char** argv)
{
    printf("Hello world!!\n");
    retrun 0;
}
```

- # arm-none-linux-gnueabi-gcc -o helloworld helloworld.c
- # file ./helloworld (컴파일된 바이너리의 확인)
- [ELF 32-bit LSB executable, ARM, version 1 ~~~~~]
- # arm-none-linux-gnueabi-gcc --v (컴파일러 버전 확인 시 실행)

0.11 USB 드라이버 설치 및 smdk-usbdl 복사

- # apt-get install libusb-dev
- # cd [CD 위치]/utilities/linux_tools/smdk-usbdl
- # cp smdk-usbdl.tar.gz /work/achro5250
- # cd /work/achro5250
- # tar xvfz smdk-usbdl.tar.gz
- # cd dltool
- # cp -a smdk-usbdl /usr/bin

1. 시스템 이미지 제작

1.1 부트로더 컴파일

- # cd /work/achro5250
- # cp -a [CD 위치]bootloader/u-boot_140806.tar.gz . (점 주의)
- # tar xvfz u-boot_140806.tar.gz
- # cd u-boot/sd fuse
- # make
- # cp mkbl2 /work/achro5250/u-boot
- # cd /work/achro5250/u-boot
- # make distclean (이전 부트로더 설정환경 초기화)
- # make clean (이전 make 과정에서 생긴 파일들 제거 *.bak, *.o, *,a 등)
- # make achro5250_config (타겟보드용 환경 설정)
- # make (타겟보드용 부트로더 바이너리 파일 생성)

1.2 부트로더 퓨징

- ♠ MicroSD카드로 부팅할 경우 모바일보드 뒷면의 OM핀 중 3번만 ON, 나머지는 모두 OFF한 후 진행할 것
- ▶호스트 PC에서 진행
- ▶ 장치에 있는 system SD 메모리 카드를 빼서 USB 젠더에 연결한 후 호스트 PC의 USB 커넥터에 연결한다.
- # pwd

[/work/achro5250/u-boot]

- # Is /dev/sd* (메모리 디바이스 확인. sdb가 있어야 함)
 [/dev/sda /dev/sda1 /dev/sdb]
- # dd if=/dev/zero of=/dev/sdb bs=64k (SD카드 초기화)
- ※ dd 명령의 진행상황을 알고 싶을 때는 또 다른 터미널을열고 다음 명령을 실행한다. 30초 마다 상태가 보여진다4GB SD의 경우 약 15분 정도 소요
- #watch -n30 'sudo kill -USR1 \$(pgrep ^dd)'

- ▶완료 후 SD 카드 재연결
- # ./mksdcard-boot.sh /dev/sdb (SD카드 RAW 파일영역 설정/복사)
- ▶SD 카드 파티션 설정
- # fdisk /dev/sdb

Command (m for help): n

Partition type:

- P primary(0 primary, 0 extended, 4 free)
- e extended

Select (default p): p

Partition number (1-4, default 1): 1

First sector (2048-(SD 카드마다 다를 수 있음),

default 2048): 1050624

Last sector, +sectors or +size{K,M,G} (1050624-(SD **7**)

드 끝), default (SD 카드 끝)): +512M

Command (m for help): p

.....

Device Boot Start End Block

/dev/sdb1 1050624 2099199

.....

Command (m for help): n

Partition type:

- P primary(0 primary, 0 extended, 4 free)
- e extended

Select (default p) : p

Partition number (1-4, default 2): 2

First sector (2048-(SD 카드마다 다를 수 있음)),

default 2048): 2099200

(SD 카드마다 다를 수 있음. End+1 입력,)

Last sector, +sectors or +size{K,M,G} (2026048-(SD **7**)

드 끝), default (SD 카드 끝)): Enter

Command (m for help): w

- # mkfs.ext3 -L Achro5250_System /dev/sdb1
- # mkfs.ext3 -L Achro5250_Data /dev/sdb2
- ▶ SD카드를 제거해서 보드에 넣는다

1.3 커널 컴파일

- # cd /work/achro5250
- # cp -a [CD 위치]/kernel/kernel_140806.tar.gz . (점 주의)
- # tar xvfz kernel 140806.tar.gz

- # cd /work/achro5250/kernel
- # make distclean
- # make achro5250_defconfig
- # make (십여분 소요)

1.4 커널 퓨징

- ▶타겟 보드와 호스트 PC를 USB-Serial 케이블로 연결한다.
- ▶타겟 보드와 호스트 PC를 USB OTG 케이블로도 연결한다.
- ▶타겟에서 (부트롬 모드에서) 다음 명령을 실행한다:
- # dnw 0x40000000
- ▶호스트에서 다음 명령을 실행한다:
- # smdk-usbdl -f arch/arm/boot/zImage
- ▶타겟에서 T-flash로 이미지 쓰기:
- # movi write kernel S5P_MSHC2 0x40000000
- # reset

※ 커널 부팅 후 리눅스 파일 시스템을 찾게 되므로 파일 시 스템이 없으면 커널 패닉이 발생함.

1.5 리눅스 파일 시스템 퓨징

cd /work/achro5250

cp –a [CD 위

지]/filesystem/linux_filesystem/linuxfs_20130312.tar.gz (점 주의)

- # tar xvfz linuxfs_20130312.tar.gz
- ▶ACHRO5250의 전원을 끈다.
- ▶장치에 있는 system SD 메모리 카드를 빼서 USB 젠더에 연결한 후 호스트 시스템의 USB 커넥터에 연결한다.
- ▶파일시스템은 시간 관계상 기존 이미지를 그대로 fusing
- ▶아래 내용은 리눅스 호스트 창에서 실행하는 것임.
- # cd /media/Achro5250_System
- # rm -rf *
- # cd /work/achro5250/linuxfs
- # cp -a * /media/Achro5250_System
- # sync
- # umount /media/Achro5250_System
- # umount /media/Achro5250_Data

▶마운트된 SD카드를 제거하여 보드의 System SD 소켓에 장착하고 전원을 켠다.

▶ NFS 테스트

(타겟 보드 리눅스 파일시스템 퓨징 후에 시행)

Ethernet으로 타겟과 호스트를 연결(PC와 직접적인 선의 연결은 아님)

(다음 내용들은 타겟에서 실행)

타겟에서도 항상 root 계정으로 입력 (root 입력)

vi /etc/network/interfaces

/etc/network/interfaces

Configure Loopback

auto lo

iface lo inet loopback

User Network setting

auto eth0

iface eth0 inet static

address 10.40.1.(PC의 IP 번호 + 100)

netmask 255.255.255.0

broadcast 10.40.1.255

gateway 10.40.1.254

reboot

mount -t nfs 10.40.1.(리눅스 호스트번호):/nfsroot /mnt/nfs

-o tcp,nolock

(※ 리눅스 호스트 번호 = PC IP 번호 + 50)

Is /mnt/nfs

[... test1] (test1 파일이 출력되는지 확인)

2. 디바이스 드라이버

2.1 모듈 프로그래밍

▶ 모듈 프로그래밍 예제 파일 복사

cd [CD 위치]/examples/linux/module

cp -a module.tar.gz /work/achro5250

cd /work/achro5250

tar xvfz module.tar.gz

cd module

vi Makefile (수정)

Makefile

•••

KDIR := /work/achro5250/kernel

...

make

cp hello_module.ko /nfsroot

▶ 타겟 보드에서 NFS 연결

※ NFS 연결 전, ping 을 통하여 네트워크가 연결 됐는지를 먼저 확인할 것

※ 이후부터 네트워크 상태에 따라 NFS가 안될 경우에는 SD카드를 PC로 꼽고 SD카드에 내용을 복사해서 타겟에 다시 꽂은 후 실습 가능하다. 예) 현재 디렉토리의 파일을 타 겟의 root 디렉토리로 복사하는 경우

cp <복사할 파일> /media/Achro5250_System/root

ping 10.40.1.(리눅스 호스트 번호)

mkdir /mnt/nfs (디렉토리가 없을 경우 생성)

mount -t nfs 10.40.1.(리눅스 호스트번호):/nfsroot /mnt/nfs

-o tcp,nolock

cp /mnt/nfs/hello_module.ko /root

cd root

insmod hello_module.ko

[Hello, Welcome to module!!]

#rmmod hello_module

[GoodBye, Exit Module!!]

2.2 디바이스 드라이버 예제 파일 가져오기

▶ 디바이스 드라이버 예제 파일들 복사 (**리눅스 호스트)**

mkdir /work/achro5250/device_driver

cd /work/achro5250/device_driver

cp -a [CD 위치]/examples/linux/fpga_driver/* .

2.3 디바이스 드라이버 예제 소스 컴파일 및 실행

◆ 디바이스 드라이버 실행시 FPGA 보드내의 스위치 SW7의 1번을 ON으로 하고, 2번은 OFF로 하고 전원 연결 후, 보드 전원 스위치를 켤 것

[예제 공통]

▶각 예제의 Makefile 수정

- ※ 위와 같이 각 디바이스 드라이버 디렉토리 내의 Makefile 을 수정하지 않으려면 다음과 같이 kernel과 toolchain 명령 어들에 대해 symbolic link 를 걸어주면 됨
- # cd /work/achro5250
- # In -s kernel kernel-20130306
- # cd /opt/toolchains/arm-2010q1/bin
- # ftp computer.kpu.ac.kr

Name (computer.kpu.ac.kr: root): anonymous

Passwd: **anonymous** ftp> **cd achro5250**

ftp> get cross-symlink.sh

ftp> bye

sh cross-symlink.sh

** sh 명령에서 실행이 안되고 ^M 관련 에러가 발생하면 'dos2unix' 방법으로 해결

① fpga_led

- # cd /work/achro5250/device_driver
- # tar xvfz fpga_led.tar.gz
- # cd fpga_led
- ▶ Makefile 수정 (symbolic link 설정 시 안 해도 됨)
- # make
- # make install (/nfsroot로 실행파일들 복사)
- (# make && make install 로 동시에 실행이 가능)
- ▶ 타겟 보드에서 NFS 마운트 후 진행
- # mount -t nfs 10.40.1.(리눅스 호스트번호):/nfsroot /mnt/nfs -o tcp,nolock

(복사하지 않고 /mnt/nfs 디렉토리로 가서 실행해도 무방)

- # cp -a /mnt/nfs/fpga_test_led /root
- # cp -a /mnt/nfs/fpga_led_driver.ko /root

- # insmod fpga_led_driver.ko
- # mknod /dev/fpga_led c 260 0

(기존에 존재한다고 나오면 무시하고 진행)

./fpga_test_led 1 (타겟 보드의 LED 확인)

2 fpga_FND (Seven Segment)

- # cd /work/achro5250/device driver
- # tar xvfz fpga_fnd.tar.gz
- # cd fpga_fnd
- ▶ Makefile 수정 (symbolic link 설정 시 안 해도 됨)
- # make && make install
- ▶ 타겟 보드에서 NFS 마운트 후 진행
- # mount -t nfs 10.40.1.(리눅스 호스트번호):/nfsroot /mnt/nfs
- -o tcp,nolock

(복사하지 않고 /mnt/nfs 디렉토리로 가서 실행해도 무방)

- # cp -a /mnt/nfs/fpga_test_fnd /root
- # cp -a /mnt/nfs/fpga_fnd_driver.ko /root
- # insmod fpga_fnd_driver.ko
- # mknod /dev/fpga_fnd c 261 0

(기존에 존재한다고 나오면 무시하고 진행)

./fpga_test_fnd 1234 (타겟 보드의 FND 확인)

3 fpga_dot (Dot Matrix)

- # cd /work/achro5250/device_driver
- # tar xvfz fpga_dot.tar.gz
- # cd fpga_dot
- ▶ Makefile 수정 (symbolic link 설정 시 안 해도 됨)
- # make && make install
- ▶ 타겟 보드에서 NFS 마운트 후 진행
- # mount -t nfs 10.40.1.(리눅스 호스트번호):/nfsroot /mnt/nfs -o tcp,nolock

(복사하지 않고 /mnt/nfs 디렉토리로 가서 실행해도 무방)

- # cp -a /mnt/nfs/fpga_test_dot /root
- # cp -a /mnt/nfs/fpga_dot_driver.ko /root

- # insmod fpga dot driver.ko
- # mknod /dev/fpga_dot c 262 0

(기존에 존재한다고 나오면 무시하고 진행)

./fpga_test_dot 1 (타겟 보드의 Dot Matrix 확인)

4 fpga_text_lcd

- # cd /work/achro5250/device_driver
- # tar xvfz fpga_text_lcd.tar.gz
- # cd fpga_text_lcd
- ▶ Makefile 수정 (symbolic link 설정 시 안 해도 됨)
- # make
- # make install

(# make && make install)

- ▶ 타겟 보드에서 NFS 마운트 후 진행
- # mount -t nfs 10.40.1.(리눅스 호스트번호):/nfsroot /mnt/nfs -o tcp,nolock

(복사하지 않고 /mnt/nfs 디렉토리로 가서 실행해도 무방)

- # insmod fpga_text_lcd_driver.ko
- # mknod /dev/fpga_text_lcd c 263 0

(기존에 존재한다고 나오면 무시하고 진행)

./fpga_test_text_lcd hello world

(타겟 보드의 LCD 확인)

⑤ fpga_dip_switch

- # cd /work/achro5250/device_driver
- # tar xvfz fpga_dip_switch.tar.gz
- # cd fpga_dip_switch
- ▶ Makefile 수정 (symbolic link 설정 시 안 해도 됨)
- # make && make install
- ▶ 타겟 보드에서 NFS 마운트 후 진행
- # mount -t nfs 10.40.1.(리눅스 호스트번호):/nfsroot /mnt/nfs -o tcp,nolock

(복사하지 않고 /mnt/nfs 디렉토리로 가서 실행해도 무방)

- # cp -a /mnt/nfs/fpga_dip_switch /root
- # cp -a /mnt/nfs/fpga_dip_switch_driver.ko /root

- # insmod fpga_dip_switch_driver.
- # mknod /dev/fpga_dip_switch c 266 0

(기존에 존재한다고 나오면 무시하고 진행)

./fpga_test_dip_switch

(타겟 보드의 dip switch(SW1)를 변경 해보면서 확인)

(종료시 Ctrl+C 입력)

6 fpga_push_switch

- # cd /work/achro5250/device_driver
- # tar xvfz fpga_push_swtich.tar.gz
- # cd fpga_push_swtich
- ▶ Makefile 수정 (symbolic link 설정 시 안 해도 됨)
- # make && make install
- ▶ 타겟 보드에서 NFS 마운트 후 진행
- # mount -t nfs 10.40.1.(리눅스 호스트번호):/nfsroot /mnt/nfs
- -o tcp,nolock

(복사하지 않고 /mnt/nfs 디렉토리로 가서 실행해도 무방)

- # cp -a /mnt/nfs/fpga_test_push_swtich /root
- # cp -a /mnt/nfs/fpga_push_swtich_driver.ko /root
- # insmod fpga_push_swtich_driver.ko
- # mknod /dev/fpga_push_swtich c 265 0

(기존에 존재한다고 나오면 무시하고 진행)

./fpga_test_push_switch

(타겟 보드의 push switch를 눌러보며 확인)

⑦ fpga_buzzer

- # cd /work/achro5250/device_driver
- # tar xvfz fpga_buzzer.tar.gz
- # cd fpga_buzzer
- ▶ Makefile 수정 (symbolic link 설정 시 안 해도 됨)
- # make && make install
- ▶ 타겟 보드에서 NFS 마운트 후 진행
- # mount -t nfs 10.40.1.(리눅스 호스트번호):/nfsroot /mnt/nfs
- -o tcp,nolock

(복사하지 않고 /mnt/nfs 디렉토리로 가서 실행해도 무방)

- # cp -a /mnt/nfs/fpga_buzzer /root
- # cp -a /mnt/nfs/fpga_buzzer_driver.ko /root
- # insmod fpga_buzzer_driver.
- # mknod /dev/fpga_buzzer c 264 0

(기존에 존재한다고 나오면 무시하고 진행)

./fpga_test_buzzer (비프음 출력)

fpga_step_motor

- # cd /work/achro5250/device_driver
- # tar xvfz fpga_step_motor.tar.gz
- # cd fpga_step_motor
- ▶ Makefile 수정 (symbolic link 설정 시 안 해도 됨)
- # make && make install
- ▶ 타겟 보드에서 NFS 마운트 후 진행
- # mount -t nfs 10.40.1.(리눅스 호스트번호):/nfsroot /mnt/nfs -o tcp,nolock

(복사하지 않고 /mnt/nfs 디렉토리로 가서 실행해도 무방)

- # cp -a /mnt/nfs/fpga_test_step_motor /root
- # cp -a /mnt/nfs/fpga_step_motor_driver.ko /root
- # insmod fpga_step_motor_driver.ko
- # mknod /dev/fpga_step_motor c 267 0

(기존에 존재한다고 나오면 무시하고 진행)

- # ./fpga_test_step_motor 1 1 50
- # ./fpga_test_step_motor 0 0 0

(타겟 보드의 step motor가 움직이는지 확인)

3. mmap()을 이용한 디바이스 응용 어플리케이션

- ▶ 예제 가져오기
- # cd /work/achro5250
- # ftp computer.kpu.ac.kr

Name (computer.kpu.ac.kr: root): anonymous

Passwd: anonymous ftp> cd achro5250 ftp> get mmap.tar.gz

ftp> bye

- # tar xvf mmap.tar.gz
- # cd mmap

1 mmap led

arm-linux-gcc -o mmap_led mmap_led.c

(arm-linux-gcc가 동작되지 않으면 심볼릭 링크 설정이 안된 것임. arm-none-linux-gnueabi-gcc 명령을 사용할 것)

- # cp mmap_led /nfsroot
- ▶ 타겟 보드에서 NFS 마운트 후 진행
- # mount -t nfs 10.40.1.*51*:/nfsroot /mnt/nfs -o tcp,nolock (같은 줄에 타이핑)
- # cp -a /mnt/nfs/mmap_led /root
- # cd /root
- # ./mmap_led

② mmap_fnd

arm-linux-gcc -o mmap_fnd mmap_fnd.c

(arm-linux-gcc가 동작되지 않으면 심볼릭 링크 설정이 안된 것임. arm-none-linux-gnueabi-gcc 명령을 사용할 것)

- # cp mmap_fnd /nfsroot
- ▶ 타겟 보드에서 NFS 마운트 후 진행
- # mount -t nfs 10.40.1.*51*:/nfsroot /mnt/nfs -o tcp,nolock (같은 줄에 타이핑)
- # cp -a /mnt/nfs/mmap_fnd /root
- # cd /root
- # ./mmap_fnd
- ▶ 다른 문자 디바이스들에 대해서도 mmap_led.c나 mmap_fnd.c를 수정하여 테스트 프로그램을 작성해 볼 것.

4. 디바이스 응용 어플리케이션

3.1 Frame Buffer

- ▶ 프레임 버퍼 예제 가져오기
- # cd [CD 위치]/examples/linux/application
- # cp -a frame_buffer.tar.gz /work/achro5250
- # cd /work/achro5250

tar xvfz frame_buffer.tar.gz

3.2 프레임 버퍼 예제 소스 컴파일 및 실행

pwd

[/work/achro5250/framebuffer]

1 fbinfo

arm-none-linux-gnueabi-gcc -o fbinfo fbinfo.c

cp fbinfo /nfsroot

▶ 타겟 보드에서 NFS 마운트 후 진행

cp -a /mnt/nfs/fbinfo /root

./fbinfo

② fbset

▶ fbset을 실행하여 화면의 해상도를 변경한 경우에는 다른 예제 프로그램의 실행에 문제가 있을 수 있으니 해상도를 원래의 값으로 되돌려 주고 다른 예제 프로그램을 실행할 것 (자신 없으면 fbset 은 실행하지 말기 바람!!)

arm-none-linux-gnueabi-gcc -o fbset fbset.c

cp fbset /nfsroot

▶ 타겟 보드에서 NFS 마운트 후 진행

cp -a /mnt/nfs/fbset /root

./fbset

3 fbpixel

arm-none-linux-gnueabi-gcc -o fbpixel fbpixel.c

cp fbpixel /nfsroot

▶ 타겟 보드에서 NFS 마운트 후 진행

cp -a /mnt/nfs/fbpixel /root

./fbpixel

4) fbrect

arm-none-linux-gnueabi-gcc -o fbrect fbrect.c

cp fbrect /nfsroot

▶ 타겟 보드에서 NFS 마운트 후 진행

cp -a /mnt/nfs/fbrect /root

./fbrect

(5) fbranrect

arm-none-linux-gnueabi-gcc -o fbranrect fbranrect.c

cp fbranrect /nfsroot

▶ 타겟 보드에서 NFS 마운트 후 진행

cp -a /mnt/nfs/fbranrect /root

./fbranrect

6 fbmranrect

arm-none-linux-gnueabi-gcc -o fbmranrect fbmranrect.c

cp fbmranrect /nfsroot

▶ 타겟 보드에서 NFS 마운트 후 진행

cp -a /mnt/nfs/fbmranrect /root

./fbmranrect

※ 본 자료는 공기석/전광일교수님께서 작성하신 내용을 새로운 Achro-5250 CD 버전에 맞게 수정한 내용입니다.