Data Visualization examples

Steps before starting Data Visualiztion

install libraries

- 1. pandas
- 2. matplotlib

```
In [ ]:
import pandas as pd

In [15]:
from matplotlib import pyplot as plt
import numpy as np
```

Line Graph

In [16]:

```
x=np.arange(1,10,0.1)
y=2*x+5
plt.plot(x,y)
plt.show()
```


In [26]:

```
from matplotlib import pyplot as plt
import numpy as np

x= np.arange(1,10,0.1)
y1=2*x+5
y2=3*x+10

plt.subplot(1,2,1)
plt.title('Line chart')
plt.plot(x,y1)

plt.subplot(1,2,2)
plt.subplot(1,2,2)
plt.plot(x,y2)

plt.xlabel('X-axis')
plt.ylabel('y-axis')
```


Plot Graph

In [17]:

```
data=[1,2,3,4,5,6,1,3,4,3,2,8,9,4,6,7,9]
plt.plot(data)
plt.show()
```


Histogram Graph

In [18]:

```
data=[1,2,3,4,5,6,1,3,4,3,2,8,9,4,6,7,9]
plt.hist(data)
plt.show()
```


Bar Graph

In [29]:

```
from matplotlib import pyplot as plt
import numpy as np

fruit={'apple':30, 'mango':45, 'graps':10}
names=list(fruit.keys())
quantity=list(fruit.values())

plt.bar(names,quantity)
plt.title('Distribution of fruits')
plt.xlabel('fruit')
plt.ylabel ('quantity')
plt.ylabel ('quantity')
plt.show()
```


In [30]:

```
# TO change Color of Bars

from matplotlib import pyplot as plt
import numpy as np

fruit={'apple':30,'mango':45,'graps':10}
names=list(fruit.keys())
quantity=list(fruit.values())

plt.bar(names,quantity,color='orange')
plt.title('Distribution of fruits')
plt.xlabel('fruit')
plt.ylabel ('quantity')
plt.show()
```


Example 2

In [21]:

```
import matplotlib.pyplot as plt
labels = ['G1', 'G2', 'G3', 'G4', 'G5']
men_means = [20, 35, 30, 35, 27]
women_means = [25, 32, 34, 20, 25]
men_std = [2, 3, 4, 1, 2]
women_std = [3, 5, 2, 3, 3]
width = 0.35 # the width of the bars: can also be len(x) sequence
fig, ax = plt.subplots()
ax.bar(labels, men_means, width, yerr=men_std, label='Men')
ax.bar(labels, women_means, width, yerr=women_std, bottom=men_means,
label='Women')
ax.set_ylabel('Scores')
ax.set_title('Scores by group and gender')
ax.legend()
plt.show()
```


Scatter Plot

In [31]:

```
# scatter plot
from matplotlib import pyplot as plt

x=[10,20,30,40,50,60,70,80,90]
a=[1,2,3,4,5,6,3,5,9]
b=[5,6,7,8,9,1,2,3,4]

plt.scatter(x,a)
plt.scatter(x,b)
plt.legend(['a','b'])
plt.title('X vs a&b')
plt.xlabel('x')
plt.ylabel('a&b')
plt.ylabel('a&b')
plt.show()
```


In [32]:

```
# To change size of a variable plot
# scatter plot

from matplotlib import pyplot as plt

x=[10,20,30,40,50,60,70,80,90]
a=[1,2,3,4,5,6,3,5,9]
b=[5,6,7,8,9,1,2,3,4]

plt.scatter(x,a,s=200)
plt.scatter(x,b)
plt.legend(['a','b'])
plt.title('X vs a&b')
plt.xlabel('x')
plt.xlabel('x')
plt.ylabel('a&b')
plt.show()
```


In [33]:

```
# To change size of a variable plot and Adding Marker =3
# scatter plot

from matplotlib import pyplot as plt

x=[10,20,30,40,50,60,70,80,90]
a=[1,2,3,4,5,6,3,5,9]
b=[5,6,7,8,9,1,2,3,4]

plt.scatter(x,a,s=200)
plt.scatter(x,b,s=500,marker='3')
plt.legend(['a','b'])
plt.title('X vs a&b')
plt.xlabel('x')
plt.ylabel('a&b')
plt.show()
```


In [34]:

```
# To change size of a variable plot and Adding Marker =2
# scatter plot

from matplotlib import pyplot as plt

x=[10,20,30,40,50,60,70,80,90]
a=[1,2,3,4,5,6,3,5,9]
b=[5,6,7,8,9,1,2,3,4]

plt.scatter(x,a,s=200)
plt.scatter(x,b,s=500,marker='2')
plt.legend(['a','b'])
plt.title('X vs a&b')
plt.xlabel('x')
plt.ylabel('a&b')
plt.show()
```


In [28]:

```
# scatter plot
from matplotlib import pyplot as plt

x=[10,20,30,40,50,60,70,80,90]
a=[1,2,3,4,5,6,3,5,9]
b=[5,6,7,8,9,1,2,3,4]

plt.scatter(x,a,s=200)
plt.scatter(x,b,s=500,marker='1')
plt.legend(['a','b'])
plt.title('X vs a&b')
plt.xlabel('x')
plt.ylabel('a&b')
plt.ylabel('a&b')
plt.show()
```


Box Plot

In [22]:

```
one = [1,2,3,4,5,6,7,8,9]
two = [2,3,1,4,5,7,8,6,2]
three =[3,2,4,5,6,8,9,1,3]
data=([one,two,three])
plt.boxplot(data)
plt.show()
```


In [23]:

```
# violin form representation

one = [1,2,3,4,5,6,7,8,9]
two = [2,3,1,4,5,7,8,6,2]
three =[3,2,4,5,6,8,9,1,3]
data=([one,two,three])
plt.violinplot(data)
plt.show()
```


In [24]:

```
# repesentaion with grid lines

one = [1,2,3,4,5,6,7,8,9]
two = [2,3,1,4,5,7,8,6,2]
three =[3,2,4,5,6,8,9,1,3]
data=([one,two,three])
plt.violinplot(data)
plt.grid(data)
plt.show()
```



```
In [25]:
```

```
one = [1,2,3,4,5,6,7,8,9]
two = [2,3,1,4,5,7,8,6,2]
three =[3,2,4,5,6,8,9,1,3]
data=([one,two,three])
plt.violinplot(data)
plt.grid(True)
plt.show()
```


In []:

Creation of Data Frame Model

In [19]:

```
# import pandas and matplotlib
import pandas as pd
import matplotlib.pyplot as plt
# create 2D array of table given above
data = [['E001', 'M', 34, 123, 'Normal', 350],
['E002', 'F', 40, 114, 'Overweight', 450],
 ['E003', 'F', 37, 135, 'Obesity', 169],
 ['E004', 'M', 30, 139, 'Underweight', 189],
 ['E005', 'F', 44, 117, 'Underweight', 183],
 ['E006', 'M', 36, 121, 'Normal', 80],
 ['E007', 'M', 32, 133, 'Obesity', 166],
 ['E008', 'F', 26, 140, 'Normal', 120],
 ['E009', 'M', 32, 133, 'Normal', 75],
 ['E010', 'M', 36, 133, 'Underweight', 40]]
# dataframe created with
# the above data array
df = pd.DataFrame(data, columns = ['EMPID', 'Gender',
 'Age', 'Sales',
 'BMI', 'Income'])
# create histogram for numeric data
df.hist()
# show plot
plt.show()
```


In [2]:

```
from matplotlib import pyplot as plt
import numpy as np
```

In [3]:

```
import os
```

In [4]:

pwd

Out[4]:

'/home/jovyan'

To Read CSV files

fist upload the respective file in drive and copy the path

In [58]:

```
pd.read_csv("iris.csv")
```

Out[58]:

	Unnamed: 0	sepal.Length	sepal.width	petal.Length	petal.width	Species
0	0	5.1	3.5	1.4	0.2	setosa
1	1	4.9	3.0	1.4	0.2	setosa
2	2	4.7	3.2	1.3	0.2	setosa
3	3	4.6	3.1	1.5	0.2	setosa
4	4	5.0	3.6	1.4	0.2	setosa

In [46]:

```
# to view the above table data in histogram representation
plt.hist('iris[sepal.Length]')
plt.show()
```


In [52]:

```
# to view the above table data in histogram representation
import pandas as pd
pd.read_csv("iris.csv")
plt.hist('iris[sepal.Length]',color='red')
plt.show()
```


In [59]:

```
# to view the above table data in histogram representation to show bins
import pandas as pd
pd.read_csv("iris.csv")
plt.hist('iris[sepal.Length]',color='red',bins=50)
plt.show()
```


Pie chart

In [64]:

```
from matplotlib import pyplot as plt
import numpy as np

fruit=['apple','mango','graps']
quantity=[30,45,50]
plt.pie(quantity,labels=fruit)
plt.show()
```


In [66]:

```
# To add percentage

from matplotlib import pyplot as plt
import numpy as np

fruit=['apple','mango','graps']
quantity=[30,45,50]
plt.pie(quantity,labels=fruit,autopct='%0.1f%%')
plt.show()
```


In [67]:

```
# to add a shadow

# To add percentage

from matplotlib import pyplot as plt
import numpy as np

fruit=['apple','mango','graps']
quantity=[30,45,50]
plt.pie(quantity,labels=fruit,autopct='%0.1f%%',shadow=True)
plt.show()
```


In [68]:

```
# to highlite slices with explode=0.1 to separate graps

from matplotlib import pyplot as plt
import numpy as np

fruit=['apple','mango','graps']
quantity=[30,45,50]
plt.pie(quantity,labels=fruit,autopct='%0.1f%%',shadow=True,explode=(0,0,0.1))
plt.show()
```


In [69]:

```
# to highlite slices where explode =1

from matplotlib import pyplot as plt
import numpy as np

fruit=['apple', 'mango', 'graps']
quantity=[30,45,50]
plt.pie(quantity,labels=fruit,autopct='%0.1f%%',shadow=True,explode=(0,0,1))
plt.show()
```


In [71]:

```
from matplotlib import pyplot as plt
import numpy as np

fruit=['apple','mango','graps']
quantity=[30,45,50]
pie1=plt.pie(quantity,labels=fruit,autopct='%0.1f%%',shadow=True,explode=(0,0,0.1))
pie2=plt.pie(quantity,colors='w')
plt.show()
```


In [72]:

```
from matplotlib import pyplot as plt
import numpy as np

fruit=['apple','mango','graps']
quantity=[30,45,50]
pie1=plt.pie(quantity,labels=fruit,autopct='%0.1f%%')
pie2=plt.pie(quantity,colors='w')
plt.show()
```


In [78]:

```
# to set radius

from matplotlib import pyplot as plt
import numpy as np

fruit=['apple','mango','graps']
quantity=[30,45,50]
pie1=plt.pie(quantity,labels=fruit,autopct='%0.1f%%',radius=2)
pie2=plt.pie(quantity,colors='w',radius=1)
plt.show()
```


In [86]:

```
# to create a sub circle in pie chart use pie3 and set radius= 0.5

from matplotlib import pyplot as plt
import numpy as np

fruit=['apple','mango','graps']
quantity=[30,45,50]
pie1=plt.pie(quantity,labels=fruit,autopct='%0.1f%%',radius=2)
pie2=plt.pie(quantity,colors='w',radius=1)
pie3=plt.pie(quantity,colors='b',radius=0.5)
plt.show()
```


Area plot

In [79]:

```
x=[10,20,30,40,50,60,70,80,90]
y=[1,2,3,5,4,6,9,8,7]
plt.stackplot(x,y)
plt.show()
```


In [87]:

```
# To have a line plot on area plot

x=[10,20,30,40,50,60,70,80,90]

y=[1,2,3,5,4,6,9,8,7]

plt.stackplot(x,y)

plt.plot(x,y)

plt.show()
```


In [91]:

```
# To have a line plot on area plot and change color of line
x=[10,20,30,40,50,60,70,80,90]
y=[1,2,3,5,4,6,9,8,7]
plt.stackplot(x,y)
plt.plot(x,y,color='red')
plt.show()
```


In []: