	AIMAN SIDDIQUA - 2R18/MC/008
	FINANCIAL ENGINEERING
	ASSIGNMENT-4
	(1) · (a) E(RK1) = 0.2x (-10.0) + 0x0.5+ 20x0.3
	= -2+0+6 = 4%
	$E(Rk_2) = 0.2 \times (-30) + 20 \times 0.5 + 15 \times 0.3$
	= -6 + 10 + 4.6 = 8.5 %
	(b) 60% of available fund is invested in K, then weight
	$K_1 = 0.6$ & $K_2 = 0.4$
	E (Portfolio) = WR, E(RK,) + WR, E(RK2)
	$= 0.6 \times 4 + 0.4 \times 8.5$
	= 5.8 \.
	(c) Let $w_{k_1} = n$, then $w_{k_2} = 1 - n$
	n(4) + (1-n)(8.5) = 20
	4n + 8.5 - 8.5m = 20
	-4.5m = 11.5
	n = -2.56
	As n e (0,1), the given expected acturn is not possible
(€ (RK) = 0.4x(-10) + 0.2x(0) + 0.4×20
	= -4 +8 = 4 1/2
	E(RK2) = 0.4x 20 + 0.2x20 + 0.4x10
	= 8+4+4=181.
	$\sigma^{2}(K_{1}) = \frac{1}{3} \left(10^{-4}\right) \left[(14)^{2} + 4^{2} + (16)^{2} \right] = 0.0156$

$\frac{\sigma^{-2}(K_2)}{3} = \frac{1}{3} \left(\frac{10^{-4}}{10^{-4}} \right) \left(\frac{4^2 + 4^2 + 6^2}{10^{-4}} \right) = 0.02267$	
P12 = -0.96309	
$5v^2$ is smaller than $5v^2 & 5v^2$	
If 80% is invested in stock 1 & 20% in Stock 2 $5v^2 = (0.8)^2 \times (0.0156) + (0.2)^2 \times (0.002267)$ = 0.00829	
3.) To brove: $5v^2 \in \max(5^2 \log 5^2)$ it short selling is not allowed.	3
Let us assume that $5,2 \le 52^2$. If short sales are not allowed then $w_1 \notin w_2 > 0$ and	
$W_1 \overline{5_1} + W_2 \overline{5_2} \le (W_1 + W_2) \overline{5_2} = \overline{5_2}$ (As $W_1 + W_2 = 1$)	
Since the correlation coefficient latisfies $-1 \leq l \leq 1$. Then $ \sigma^2 = W_1^2 \sigma_1^2 + W_2^2 \sigma_2^2 + 2w_1 w_2 \int \sigma_1 \sigma_2 $	
Flence Proved.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

<u> 51 = 0.0</u>	25, $62 = 0.28$, $63 = 0.2$
G2 = 0	3, C13 = 0.15, G3 = 0.4
C=	0.0625 0.021 0.0075
	0.023 0.754 0.0024
-	0.0075 0.0224 0.04
4 C	$V_{V} = \begin{bmatrix} 12.33 & 3.54 & 20.723 \end{bmatrix}$ $V_{V} = 36.59$
- 4 C-	VT = 36.59
,	
W×	$VC^{-1} = \begin{bmatrix} 0.837 & 0.097 & 0.568 \end{bmatrix}$
	4 C-IVT
The	expected return & Standard deviation of this
92000	Jordio are 0.10265
1	standard demiation = 50
	$=\sqrt{\omega_c \omega_r}$
	= 0.1653
(5.) ho	r given correlation f=-1
	So Mmin = OIHI + OZHZ
	41+42
	$= 0.05 \times 0.08 + 0.02 \times 0.1$
	0.05+0.02
	= 0.085 \leq 1
Hm	in = 8.5 /.
Wi=	1- Smin & Wz = Smin
	$S_{min} = 0.05 = 0.714$
	5,+52 0.0,5+0.02

8=-1 => W,= 0.286 & Wz = 1	0.714
Smin = 71.4% Hm = 8.317/	
For J= 0.5	
W1 = 1 - Smin & W2 = Smin	
Smin = 0.7894	
W1= 0.210G	
Hmin = (H2-H1) Smin + H1 = 8.	421 %
6min = 1.86%.	
J = 0.5 W1 = 21.06/ W2 = 78.00	1/,
thmin = 8.421 / Omin = 1-986y Hence Proved.	
runce (rough).	
(6.) You given condition last	
(6.) For given condition $J = -1$ So, $Hmin = 61V_1 + 62V_2$	
01+62	
= 0.0857<1	
Mmin = 8-57 y.	
W= 1-8min & Wz = Smin	
where Smin = 0.05 = 0-784	
0.05+0.02	
W1 = 0.286 & W2 = 0.714	
Smin = 71.4%. Hmin = 8.75%.	
For J=0.5	
Yor J=0.5 W= 1-Smin	

$W_1 = 1 - S_{min} = 0.2106$ $W_{min} = (H_2 - H_1) C_{min} + H_1 = 8.421$ $V_{min} = 1.986y$ $V_{min} = 0.5813$	
$5min = 1.986y$. for $J = -0.5$ $N_1 = 1 - Smin = 0.4187$	
for $J = -0.5$ $W_1 = 1 - Smin = 0.4187$	
W1 = 1-Smin = 0.4187	
W1 = 1-Smin = 0.4187	
$W_2 = S_{min} = 0.5813$	
Mmin = 8.83%. omin = 1.4%	
Yor 1=0	
Gmin = 86.24. W1 = 13.8%. W2 = 86.2%. Hmin = (H2-H1) Smin + H1 = 8.276%.	
Hmin = (H2-H1) Smin + H1 - 8.276%.	
omin = 1.850%	
Jor J= 1	
$\frac{8min = 61}{61-62} = 0.05 \cdot > 0$	
0.05-0.02	
Mence Wi = 1-Simin < 0	
in Investor takes short ferward position on asset	
thmin = 66.67 / Omin = 0	
(7.) Yaking d=0, B=1	
$10V_1^{(1)} + 4V_2^{(1)} = 1$	
$4v_1^{(1)} + 12v_2^{(1)} + 6v_3^{(1)} = 1$	
$GVz^{(1)} + 10V3^{(1)} = 1$	
The Solution VCD = (Xo, D, Xo)	

10 ma) + 4 /2 (2) = 5	
4 V1 (2) + 12 V2(2) + 6 V3(2) = 6	
$6v_2^{(2)} + 10v_3^{(2)} = 1$	
Solving we get $V(2) = \frac{7}{2} \cdot \frac{3}{10} \cdot \frac{1}{2} \cdot \frac{-1}{5}$	
Now nogmalizing VCI)	
W(1) = V(1) Inorm = (1/2,0,1/2)	
Normalizing $v^{(2)}$, $W^{(2)}$: Norm $(w^{(2)})$ $4^{(E1)} = 0$ m ^T $w^{(2)} = [5 61]^{T} [V_{2}, 0, 1/2]$ $4^{(E1)} = 3010$	
$V^{-2} = m^{T} \omega \omega = [5 61][1/2 5/6 -1/3]$	
λ V-(1) + (1-λ) 4(2) = 2.8	
$\lambda = 2.8 - 4(c^2) = 28 - 2.16$ $4^{2(1)} - 4^{-(c^2)} = 3.716$	
4201)-4-(-5) 3-116	
$\lambda = 1.648$	
4 = AW(1) + (1-A) W(2)	_
= 1-1 <u>27</u> 25 60	
This is not the most efficient portforlio.	
(9) We have	
0.06- of = 0.5 (rm-rf)	
0.12-86 = 1.5.(2m-86)	
Solving we get 9m = 0.09 & ong = 0.03	

00	Security market line is
	ou = 0.03 + B (0.0G)
	funce julien B= 2
	$94 = 0.03 + 2 \times 0.06 = 0.03 + 0.12 = 0.15$
The	reforce expected return on asset is 15%
	V
(10.)	Given
	H1= 9.5% B1=0.8
	M2 = 13.3 % B2 = 1.8
	Non
	0.095 - 94 = 0.8 (m-3f) 0.135 - 94 = 18 (m-9f)
	0.135 - 9y = 18 (m-91)
	By solving we get of= 0.031 rm= 0.111

	Risk free greturn = 3.1% Return on market portforlio = 11.1%
	Reman on market portforlio = 111%
- 104	
,	
,	