Denoise brain responses for repeated stories dataset

Motivation

- Subject is not attentive towards the story at some instant *t*
 - ➤ Response is not ideal response need to detect this

Idea

- Assume that brain response with full attention as Rideal
- Multiplicative noise γ dampens the ideal response at instants when subject is not attentive

- take values between 0 and 1

same for all voxels at a given time t

Estimation of Rideal and γ from Robserved

- For each repetition $r: R_{obs,r} = \gamma_r R_{ideal} + \varepsilon_r$
- Factorize Robserved into Rideal and γ_r by minimizing error for each repetition

$$MSE = \Sigma_r \left(R_{obs,r} - \frac{\gamma_r R_{ideal}}{\sqrt{1 + var(\gamma_r R_{ideal})}} \right)^2$$

Note: R_{ideal} is common across all repetitions, only noise varies across them

• Normalization term: $\sqrt{1+var(\gamma_r R_{ideal})}$ - since R_{obs} is normalized for each voxel

- Assumption on noise vector γ_r :
 - \triangleright Different for each repetition r
 - \triangleright Independent samples over time, sampled from **beta distribution** with parameters (α , β)

Maximizing likelihood of the noise samples:

$$\alpha - 1 * \log(\gamma) + \beta - 1 * \log(1 - \gamma)$$

Final loss function:

$$\Sigma_r \left(R_{obs,r} - \frac{\gamma_r R_{ideal}}{\sqrt{1 + var(\gamma_r R_{ideal})}}\right)^2 + \lambda(\alpha - 1 * \log(\gamma) + \beta - 1 * \log(1 - \gamma))$$

Experiments

- Dataset: 10-times repeated 'wheretheresmoke' and subject AA, AHfs, SJ
 - Divide into two parts: **training set** (data for any 9 repetitions), **test set** (left 1 repetition)
- Estimated Rideal and γ by minimizing loss function over training set
- For AA dataset: 10 repetitions x 291 time x 95556 voxels

Evaluation

How do we evaluate? – don't have ground truth values for Rideal or noise γ

- Take test set response: Rtest
- Compare correlation of Rtest with estimated Rideal and Robs averaged over training data:

Diff = corr(Rtest, Rideal) - corr(Rtest, Σ Rtrain_avg) -> expected a positive value

- For $\lambda = 1e 4$, $\alpha = 8$, $\beta = 1$, we averaged Diff over all possible train test combination: small +ve value in order 1e-4
- In place of Rtest, tried prediction of encoding model: Small +ve value

Next...

- How responses varying over repetitions
 - analyzing correlation functions in time
- Training LM over test repetitions -