Amendments to the Claims:

The following claims will replace all prior versions of the claims in this application (in the unlikely event that no claims follow herein, the previously pending claims will remain):

1. (Withdrawn) A compound of the formula 1:

$$R_2$$
 R_3
 R_4
 R_5
 R_6

wherein the bond represented by the dotted line may be an optional double bond, and the geometry across the bond may be E or Z;

A = -COOR, -CONR'R", -CN, or -COR $_7$ wherein R, R', R" and R $_7$ are defined below;

X = OH, or C_2 - C_{10} linear or branched alkenyl group, optionally substituted with COOR, carbonyl, or halo;

 $R = H \text{ or } C_1-C_{20}$ linear or branched alkyl or aryl or aralkyl, or a pharmaceutically acceptable counter-ion;

 R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , and R_7 are independently H; C_1 - C_{20} linear or branched alkyl or alkenyl groups optionally substituted; COOR where R is as defined previously; NR'R" or CONR'R", where R' and R" may be independently H or C_1 - C_{20} linear or branched alkyl or aryl; OH; C_1 - C_{20} alkoxy; C_1 - C_{20} acylamino; C_1 - C_{20} acyloxy; C_1 - C_{20} alkanoyl; C_1 - C_{20} alkoxycarbonyl; halo; NO_2 ; SO_2R''' ; CZ_3 , where each Z is independently a halo atom, H, alkyl, chloro or fluoro-substituted alkyl; or SR''', where R'''' may be H or linear or branched C_1 - C_{20} alkyl; or R_2 and R_3 together, or R_5 and R_6 together may be joined to form methylenedioxy or ethylenedioxy groups.

- 2. (Withdrawn) A compound according to claim 1 wherein A= -COOR.
- 3. (Cancelled).
- 4. (Withdrawn) A compound according to claim 1, wherein A = -COOR; R_3 , R_5 and R_6 are H; R_4 is p-hydroxy; and R_1 R₂ together are 3,5-dimethoxy.
- 5. (Withdrawn) A compound according to claim 4, wherein R is H.
- 6. (Withdrawn) A compound according to claim 4, wherein R is Na+.
- 7. (Withdrawn) A compound according to claim 2, wherein R_4 is p-hydroxy; R_1 and R_2 together are 3,5-dimethoxy and the dotted line represents a double bond.
- 8. (Cancelled).
- 9. (Withdrawn) A pharmaceutical composition for the treatment of diabetes comprising a therapeutically effective amount of a compound of claim 1, or a mixture of compounds thereof, in a pharmaceutically acceptable carrier.
- 10. (Withdrawn) A composition according to claim 9 which is suitable for oral administration.
- 11-13. (Cancelled).
- 14. (Withdrawn) A composition according to claim 9, wherein R is H or Na+ and said double bond is in the E-configuration.
- 15. (Withdrawn) A composition according to claim 9, wherein R is H or Na+ and said double bond is in the Z-configuration.

- 16. (Withdrawn) A composition according to claim 15, wherein R is Na+.
- 17. (Withdrawn) A composition according to claim 14, wherein R is Na+.
- 18. (Withdrawn) A composition according to claim 9, wherein said composition is suitable for oral administration.

19-23. (Cancelled).

24. (Currently amended) A compound of the formula 1:

$$R_2$$
 R_3
 R_4
 R_5
 R_6

wherein the bond represented by the dotted line may be an optional double bond, and the geometry across the bond may be E or Z;

 $A = -COOR_8$ or -CONR'R", wherein R_8 is C_1-C_{20} linear or branched alkyl or arylalkyl, and R' and R" are defined below;

X=H, OH, or C_1 - C_{10} linear or branched alkyl or alkenyl groups, optionally substituted with COOR, carbonyl, or halo, wherein R is H or C_1 - C_{20} linear or branched alkyl or aryl or aralkyl, or a pharmaceutically acceptable counter-ion;

 R_1 , R_2 , R_3 , R_4 , R_6 , and R_6 are independently H; is C_1 - C_{20} linear or branched alkyl or alkenyl groups; COOR where R is as defined previously; NR'R" or CONR'R", where R' and R" may be independently H or C_1 - C_{20} linear or branched alkyl or aryl; OH; C_1 - C_{20} alkoxy; C_1 - C_{20} acylamino; C_1 - C_{20} acyloxy; C_1 - C_{20} alkoxycarbonyl; halo; NO_2 ; SO_2R "; CZ_3 , where each Z is independently a halo atom, H, alkyl, chloro or fluoro-substituted alkyl; or SR", where R'" may be H or linear or branched C_1 - C_{20}

alkyl; or R₂ and R₃ together, or R₆ and R₆ tegether may be joined to form methylenedioxy or ethylenedioxy groups;

R₂ and R₃ are independently H; C₁-C₂₀ linear or branched alkyl or alkenyl groups; COOR where R is as defined previously; NR'R" or CONR'R", where R' and R" may be independently H or C₁-C₂₀ linear or branched alkyl or aryl; C₁-C₂₀ alkoxy; C₁-C₂₀ acylamino; C₁-C₂₀ acyloxy; C₁-C₂₀ alkoxycarbonyl; halo; NO₂; SO₂R'"; CZ₃, where each Z is independently a halo atom, H, alkyl, chloro or fluoro-substituted alkyl; or SR'", where R'" may be H or linear or branched C₁-C₂₀ alkyl; or R₂ and R₃ together may be joined to form methylenedioxy or ethylenedioxy groups;

 R_4 , R_5 , and R_6 are independently H; C_1 - C_{20} linear or branched alkyl or alkenyl groups; COOR where R is as defined previously; NR'R" or CONR'R", where R' and R" may be independently H or C_1 - C_{20} linear or branched alkyl or aryl; OH; C_1 - C_{20} acylamino; C_1 - C_{20} acyloxy; C_1 - C_{20} alkoxycarbonyl; halo; NO_2 ; SO_2R '"; CZ_3 , where each Z is independently a halo atom, H, alkyl, chloro or fluoro-substituted alkyl; or SR'", where R'" may be H or linear or branched SR'", where R'" may be H or linear or branched SR'", or SR and SR together may be joined to form methylenedioxy or ethylenedioxy groups;

or R_1 , R_2 , R_3 , R_4 , R_5 , and R_6 are independently $\underline{C_1-C_{20}}$ alkanovl of the form a-COQ group-wherein Q represents an alkyl or aryl group.

- 25. (Withdrawn) The compound of claim 24, wherein A is -CONR'R".
- 26. (Previously presented) A pharmaceutical composition for the treatment of diabetes comprising a therapeutically effective amount of a compound of claim 24, or a mixture of compounds thereof, in a pharmaceutically acceptable carrier.
- 27. (Previously presented) A composition according to claim 26 which is suitable for oral administration.
- 28. (Withdrawn) A pharmaceutical composition for the treatment of diabetes comprising a therapeutically effective amount of a compound of claim 25, or a mixture of compounds thereof, in a pharmaceutically acceptable carrier.

- 29. (Withdrawn) A composition according to claim 28 which is suitable for oral administration.
- 30. (Previously presented) The compound of claim 24 wherein A is -COOR8.
- 31. (Previously presented) A pharmaceutical composition for the treatment of diabetes comprising a therapeutically effective amount of a compound of claim 30, or a mixture of compounds thereof, in a pharmaceutically acceptable carrier.
- 32. (Previously presented) A composition according to claim 31 which is suitable for oral administration.
- 33. (Previously presented) The compound of claim 30 wherein R_{B} is a methyl group.
- 34. (Withdrawn) A compound selected from 3-(3,4-dimethoxy-phenyl)-2-(4-hyrdoxy-phenyl)-acrylic acid; 3-(3,4-dimethoxy-phenyl)-2-(4-fluoro-p-phenyl)-acrylic acid; 2-(4-acetylamino-phenyl)-3-(3,5-dimethoxy-phenyl)-acrylic acid or 3-(3,4-dimethoxy-phenyl)-2-(4-hyrdoxy-phenyl)-propionic acid.
- 35. (New) The compound of claim 30 wherein R_3 , R_5 and R_6 are H; R_4 is 4-hydroxy; and R_1 and R_2 together are 3,5-dimethoxy.
- 36. (New) The compound of claim 32 wherein R_3 , R_5 and R_6 are H; R_4 is 4-hydroxy; and R_1 and R_2 together are 3,5-dimethoxy.
- 37. (New) The compound of claim 36 wherein X is H and the bond represented by the dotted line is a double bond in the E configuration.

Application No. 10/690,844

Amendment dated October 21, 2005
Page 8

38. (New) The compound of claim 36 wherein X is H and the bond represented by the dotted line is a double bond in the Z configuration.