Nr. 353

Das Relaxionsverhalten eines RC-Kreises

Sara Krieg sara.krieg@udo.edu Marek Karzel marek.karzel@udo.edu

Durchführung: 18.12.2018 Abgabe: 08.01.2019

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Theorie	3
	1.1 Das Relaxionsverhalten	3
	1.2 Die Auf- und Entladung eines Kondensators	3
	1.3 Die Relaxionsphänomene bei periodischer Auslenkung	4
	1.4 Der RC-Kreis als Integrator	5
2	Durchführung	
3	Auswertung 3.1 Entladung eines Kondensators	7
4	Diskussion	9

1 Theorie

Ziel dieses Versuches ist die Untersuchung des Relaxionsverhaltens eines RC-Kreises, sowie demjenigen unter Anschluss von Gleich- oder Wechselstrom.

1.1 Das Relaxionsverhalten

Die Relaxion beschreibt die nicht-oszillatorische Rückkehr eines Systems in einen Grundzustand, aus dem es zuvor gebracht wurde. Diese Rückkehr zum Endzustand $A(\infty)$ ist dabei nur asymptotisch möglich. Außerdem ist die Änderungsgeschwindigkeit proportional zum Abstand der Größe A zu ihrem Endzustand $A(\infty)$.

$$\frac{\mathrm{d}A}{\mathrm{d}t} = c \left[A(t) - A(\infty) \right] \tag{1}$$

Durch Integration von (1) über t von 0 bis t ergibt sich

$$A(t) = A(\infty) + [A(0) - A(\infty)] \cdot e^{ct}.$$
(2)

Allerdings muss, damit A beschränkt ist, c < 0 in (2) gelten. Im Folgenden soll das Relaxionsverhalten für das Beispiel eines über einen Widerstand auf- und entladenden Kondensators nach Abbildung 1 betrachtet werden.

Abbildung 1: Aufladung (Stellung 2) und Entladung (Stellung 1) eines Kondensators über einen Widerstand [1]

1.2 Die Auf- und Entladung eines Kondensators

Liegt an dem Kondensator mit der Kapazität C eine Ladung Q vor, so liegt dort die Spannung

$$U_{\rm C} = \frac{Q}{C}$$

an. Mit dem Zusammenhang

$$I = -\frac{\mathrm{d}Q}{\mathrm{d}t} = \frac{U_{\mathrm{C}}}{R}$$

ergibt sich für die Ladung Q ähnlich zu (1) die zeitliche Differentialgleichung

$$\dot{Q}(t) = -\frac{1}{RC} \cdot Q(t) \ . \tag{3}$$

Mit der Randbedingung $Q(\infty) = 0$, dass der Kondensator sich nach einer unendlich langen Zeitspanne vollständig entladen hat, ergibt sich nach (2) die Lösung

$$Q(t) = Q(0) \cdot e^{\frac{-t}{RC}}. \tag{4}$$

Analog führt der Aufladevorgang mit den Randbedingungen Q(0)=0 und $Q(\infty)=CU_0$ zu der Lösung

$$Q(t) = CU_0 \cdot \left(1 - e^{\frac{-t}{RC}}\right) \ . \tag{5}$$

Der Ausdruck RC wird als Zeitkonstante bezeichnet und gibt an, wie schnell das System seinem Endzustand entgegenstrebt.

1.3 Die Relaxionsphänomene bei periodischer Auslenkung

Als Beispiel für Relaxionsphänomene wird das Verhalten eines RC-Kreises bei anliegender Sinusspannung nach Abbildung 2 betrachtet.

Abbildung 2: Schaltung zur Untersuchung von Relaxationsphänomenen bei periodischer Auslenkung [1]

An der Schaltung liegt die Spannung

$$U(t) = U_0 \cdot \cos(\omega t) \tag{6}$$

an. Ist die Kreisfrequenz $\omega << \frac{1}{RC}$ hinreichend klein, ist zu jedem Zeitpunkt $U_{\rm C} = U(t)$. Bei einer Erhöhung von ω tritt zwischen den Spannungen eine Phasenverschiebung φ auf und die Amplitude A nimmt wegen des Zurückbleibens des Auf- und Entladevorgangs des Kondensators hinter dem zeitlichen Verlauf von U(t) ab.

Mit einem Ansatz

$$U_{\rm C}(t) = A(\omega)\cos(\omega t + \varphi(\omega))$$

ergibt sich unter Zuhilfenahme des 2. Kirchhoffschen Gesetzes und des Zusammenhangs

$$I(t) = \frac{\mathrm{d}Q}{\mathrm{d}t} = C \cdot \frac{\mathrm{d}U_{\mathrm{C}}}{\mathrm{d}t} \tag{7}$$

die Gleichung

$$U(t) = U_{\rm R}(t) + U_{\rm C}(t)$$

$$U_0 \cos(\omega t) = -A(\omega) \,\omega R C \sin(\omega t + \varphi) A(\omega) \cos(\omega t + \varphi)$$
(8)

Daraus folgen für die Phasenverschiebung $\varphi(\omega)$ und die Amplitude $A(\omega)$ die Gleichungen

$$\varphi(\omega) = \arctan(-\omega RC),$$

$$A(\omega) = \frac{U_0}{\sqrt{1 + (\omega RC)^2}}.$$

Es ist zu erkennen, dass für niedrige Frequenzen die Phase $\varphi(\omega) \to 0$ und die Amplitude $A(\omega) \to U_0$ gegen entsprechende Werte streben. Für größere Frequenzen gilt hingegen $\varphi(\omega) \to \frac{\pi}{2}$ und $A(\omega) \to 0$.

1.4 Der RC-Kreis als Integrator

Unter den Bedingungen

$$\omega >> \frac{1}{RC}$$
 $\implies |U_{\rm C}| << |U_{\rm R}| \text{ und } |U_{\rm C}| << |U|$

kann der RC-Kreis die anliegende zeitlich veränderliche Spannung U(t) integrieren. Aus den Gleichungen (8) und (7) ergibt sich die Gleichung

$$U(t) = RC\frac{\mathrm{d}U_{\mathrm{C}}}{\mathrm{d}t} + U_{\mathrm{C}}(t) ,$$

die als

$$U(t) = RC \cdot \frac{\mathrm{d}U_{\mathrm{C}}}{\mathrm{d}t}$$

$$\iff U_{\mathrm{C}}(t) = \frac{1}{RC} \int_{0}^{t} U(t') \, \mathrm{d}t'$$

genähert werden kann. Dabei ist $U_{\rm C}(t)$ nur unter den oben genannten Bedingungen proportional zu $\int U(t) \; {\rm d}t.$

Abbildung 3: Schaltung zur Beobachtung des Auf- und Entladevorganges des Kondensators [1]

2 Durchführung

Im ersten Teil des Versuchs werden Auf- und Entladevorgang des Kondensators im RC-Kreis untersucht. Dazu wird ein Versuchsaufbau gemäß Abbildung 3 verwendet.

Durch die angelegte Rechteckspannung entlädt und lädt sich der Kondensator abwechselnd. Dadurch sind auf dem Oszilloskop beide Vorgänge zu sehen. Es werden 10 Messwertpaare von U_C und t eines Ent- oder Aufladevorganges aufgenommen.

Im zweitem Teil des Versuchs wird die Frequenzabhängigkeit der Ampflitude der Kondensatorspannung untersucht. Dazu wird eine Schaltung gemäß Abbildung 4 verwendet.

Abbildung 4: Schaltung zur Untersuchung der Frequenzabhängigkeit der Kondensatorspannungsamplitude [1]

Mit einem Millivoltmeter wird die Kondensatorspannungsamplitude in Abhängigkeit von der Frequenz im Bereich über drei Größenordnungen gemessen. Bei der Wahl des Frequenzbereiches ist darauf zu achten, dass U_0 in diesem von der Frequenz nahezu abhängig sein soll.

Im dritten Versuchsteil wird die Phasenverschiebung zwischen Generator - und Kondensatorspannung gemessen. Dazu wird eine Schaltung gemäß Abbildung 5 verwendet.

Dafür wird nun die Kondensatorspannung U_C auf den einen Eingang des Zweikanaloszilloskops gegeben und die Generatorspannung U auf den anderen. Nun wird der zeitliche Abstand der Maxima der beiden Schwingungen gemessen.

Im letztem Versuchsteil soll gezeigt werden, dass ein RC-Kreis als Integrator genutzt werden kann. Dazu wird bei einer Frequenz mit $\omega \gg \frac{1}{RC}$ jeweils eine Rechteck-, Sinusund Dreiecksspannung auf das RC-Glied gegeben. Es werden sowohl Eingangs - als auch Ausgangsspannung auf dem Bildschirm des Zweikanaloszilloskops dargestellt und für jede der drei Spannungen ein Bild der Signale aufgenommen.

Abbildung 5: Schaltung zur Untersuchung der Phasenverschiebung zwischen U(t) und $U_C(t)$ [1]

3 Auswertung

3.1 Entladung eines Kondensators

Die aufgenommenen Wertepaare finden sich in Tabelle 1.

Tabelle 1: Messdaten zur Entladekurve

t/ms	U_C/V
0,00	100
$0,\!26$	82
$0,\!50$	70
0,76	58
1,00	46
$1,\!26$	38
1,50	30
2,00	20
3,00	6
4,10	0

Die Wertepaare werden in einem halblogarithmischen Diagramm dargestellt. Dazu wird eine lineare Regression mittels Python und matplotlib durchgeführt. Das entstandene Diagramm ist in Abbildung 6 zu finden.

Die lineare Ausgleichsrechnung der logarithmierten Daten mit $\ln{(U_C)} = ax + b$ ergibt folgende Regressionsparameter:

$$a = (-919,67 \pm 45,48) \frac{1}{s},$$

 $b = 4,71 \pm 0,07.$

Durch Vergleich mit der Formel (4) ergibt sich für die Zeitkonstante:

$$RC = -\frac{1}{a} = (1,09 \pm 0,05) \,\mathrm{ms}.$$

Abbildung 6: Lineare Regression zur Bestimmung der Zeitkonstanten mithilfe der Entladekurve

4 Diskussion