### NeuralNet 101

4. Logistic Regression

#### What we have learned in linear regression...

- Can calibrate parameters of linear based mean value function by L2 distance and gradient descent.
- The input and output are all continuous

But when the output data is only 0 or 1, can linear regression represent the relation of dataset?

### Let's look this picture



Referenced from: https://satisfactoryplace.tistory.com/322

It clearly shows that it is inappropriate to find an answer to describe these kinds of problems

we need other point of view, at least

### Let's think based on the point of probability, then

- Why? outputs are only 0 and 1, so it can be interpreted as True or False
- How? based on likelihood

• Why likelihood? - because we do not know entirely about all cases.

Then, we need to change the linear function to be fit in  $0^{1}$ 

Hence, we define a probability function as...

$$\log \frac{p}{1-p} = WX + b$$

# And this function can be changed into under below process

$$logit(p) = log(\frac{p}{1-p})$$

$$\log\left(\frac{p}{1-p}\right) = WX + b$$

$$\frac{p}{1-p} = e^{WX+b}$$

$$(\frac{p}{1-p})^{-1} = \frac{1-p}{p} = (e^{WX+b})^{-1} = \frac{1}{e^{WX+b}}$$

$$\frac{1-p}{p} = \frac{1}{p} - 1 = \frac{1}{e^{WX+b}}$$

$$\frac{1}{p} = \frac{1}{e^{WX+b}} + 1 = \frac{1 + e^{WX+b}}{e^{WX+b}}$$

$$\therefore p = \frac{e^{WX+b}}{1+e^{WX+b}}$$

Therefore, we can get a generalized form of probability function  $\sigma(z)$ , z = WX + b (when W = 0, b=0)



Well done... but how to calibrate w and b?

If we just use Mean Squared Error, then it is hard to represent the loss because real loss is 0 or infinity but the loss function is quadratic.

Therefore, we need to define new loss function L like next slide



And mathematically it can be written as...

$$L(b, W) = \prod_{i=1}^{n} p(x_i)^{y_i} (1 - p(x_i))^{1 - y_i}$$

$$l(b, W) = \sum_{i=1}^{n} y_i \log p(x_i) + (1 - y_i) \log (1 - p(x_i))$$

$$= \sum_{i=1}^{n} \log (1 - p(x_i)) + \sum_{i=1}^{n} y_i \log \frac{p(x_i)}{1 - p(x_i)}$$

$$= \sum_{i=1}^{n} \log (1 - p(x_i)) + \sum_{i=1}^{n} y_i (b_i + x_i \cdot W_i)$$

$$= \sum_{i=1}^{n} -\log(1 + e^{b_i + x_i} \cdot W_i + \sum_{i=1}^{n} y_i(b_i + x_i \cdot W_i)$$

## And therefore, the gradient of this loss is equal as under below formula

$$\frac{\partial l}{\partial W_{j}} = -\sum_{i=1}^{n} \frac{1}{1 + e^{b_{i} + x_{i}} \cdot W_{i}} e^{b_{i} + x_{i}} \cdot W_{i} x_{ij} + \sum_{i=1}^{n} y_{i} x_{ij}$$

$$= \sum_{i=1}^{n} (y_i - p(x_i; b_i, W_i)) x_{ij}$$

Therefore, we can optimize logistic regression based on gradient descent method also!

#### References

 Cosma Shalizi, Undergraduate Advanced Data Analysis Chapter 12 LectureNote,2012, <a href="https://www.stat.cmu.edu/~cshalizi/uADA/12/lectures/ch12.pdf">https://www.stat.cmu.edu/~cshalizi/uADA/12/lectures/ch12.pdf</a>

• 김성훈, 모두를 위한 딥러닝 Logistic (Regression) Classification, <a href="https://hunkim.github.io/ml/lec5.pdf">https://hunkim.github.io/ml/lec5.pdf</a>

#### Lab session

#### In Lab session...

- Logistic regression with PyTorch
- Implementation with class

$$H(x) = \frac{1}{1 + e^{-(x \cdot W + b)}}$$

$$L(x)$$

$$= -\frac{1}{m} \sum_{x} \left( y \times \log(H(x)) + (1 - y) \times \log(1 - H(x)) \right)$$

$$H(x) = \frac{1}{1 + e^{-(x \cdot W + b)}}$$

```
hypothesis = 1 / (1 + torch.exp(-(x_train.matmul(W) + b)))
```

hypothesis = torch.sigmoid(x\_train.matmul(W) + b)

$$L(x)$$

$$= -\frac{1}{m} \sum_{x} \left( y \times \log(H(x)) + (1 - y) \times \log(1 - H(x)) \right)$$

```
losses = -(y_train * torch.log(hypothesis) + (1 - y_train) * torch.log(1 - hypothesis))
cost = losses.mean()
```

```
import torch.nn.functional as E
cost = F.binary_cross_entropy(hypothesis, y_train)
```

| Lecture | Lab | S/U (S=1) |
|---------|-----|-----------|
| 10      | 10  | 1         |
| 5       | 7   | 1         |
| 10      | 0   | 0         |
| 1       | 6   | 0         |

Lab03-ex-data.csv

```
filename = "Lab03-ex-data.csv"
df = pd.read_csv(filename)
x_train = torch.tensor(df.loc[:, ['lecture', 'lab']].values.tolist(), dtype=torch.float32)
y_train = torch.tensor(df['su'].values.tolist(), dtype=torch.float32).reshape(-1, 1)
W = torch.zeros((2,1), requires_grad=True, dtype=torch.float32)
b = torch.zeros(1, requires_grad=True, dtype=torch.float32)
optimizer = torch.optim.SGD([W, b], lr=0.1
nb_{epochs} = 5000
for epoch in range(nb_epochs):
    hypothesis = torch.sigmoid(x_train.matmul(W) + b)
    cost = F.binary_cross_entropy(hypothesis, y_train)
    optimizer.zero_grad()
    cost.backward()
    optimizer.step()
    if epoch%100==0:
        print(cost.item())
```

Adjust learning rate for appropriate gradient descent

```
x_predict = torch.tensor([[3,6]], dtype=torch.float32)
y_predict = torch.sigmoid(x_predict.matmul(W) + b)
print(y_predict)#0.7283
prediction = (y_predict >= torch.Tensor([0.5])).int()
print(prediction)#1
```

#### Implement with class

```
class BinaryClassifier(nn.module):
    def __init__(self):
        super.__init__()
        self.linear = nn.Linear(2,1)
        self.sigmoid = nn.Sigmoid()
    def forward(self, x):
        return self.sigmoid(self.linear(x))
model = BinaryClassifier()
```

#### Implement with class

```
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
nb_{epochs} = 5000
for epoch in range(nb_epochs):
    hypothesis = model(x_train)
    cost = F.binary_cross_entropy(hypothesis, y_train)
    optimizer.zero_grad()
    cost.backward()
    optimizer.step()
    if epoch%100==0:
        print(cost.item())
```

#### Lab02 Problems

- Check github vlab-kaist
- https://github.com/vlab-kaist/NeuralNet101
- Problems>Lab03

- If you solved all of problems, please make issue.
- •Title: 'Section\_Name\_lab\_week3' (ex. 'B\_장유진\_lab\_week3')

#### References.

• 모두를 위한 딥러닝 시즌2 – PyTorch <a href="https://www.youtube.com/playlist?list=PLQ28Nx3M4JrhkqBVIXg-i5\_CVVoS1UzAv">https://www.youtube.com/playlist?list=PLQ28Nx3M4JrhkqBVIXg-i5\_CVVoS1UzAv</a>, Lab05