Analysis of Word Embeddings: A Clustering and Topological Approach

Master's thesis defence, 30 June 2021

By: Jonas Folkvord Triki

Supervisor: Nello Blaser

UNIVERSITY OF BERGEN

Agenda

- 1. Introduction
- 2. Methods
- 3. Results
- 4. Conclusion
- 5. Future Work

Introduction

Introduction

- Natural language processing (NLP)
- Words to word embeddings
- Single vector representations
- Polysemy of words, e.g.
 - > run
 - > open
 - > make

Word embeddings

- Vector representations of words
 - Similar words have similar vector representations
 - 300 dimensions
- Word embedding models, e.g.
 - > word2vec
 - > GloVe
 - > fastText

Source Text

Training Samples

(brown, jumps)

The quick brown fox jumps over the lazy dog. → (the, quick) (the, brown)

The quick brown fox jumps over the lazy dog.

(quick, the)
(quick, brown)
(quick, fox)

The quick brown fox jumps over the lazy dog. → (brown, the) (brown, quick) (brown, fox)

The quick brown fox jumps over the lazy dog.

(fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)

Motivation

- Finding hidden language relations
- Learning more from single vector representations
- Recent methods from topological data analysis (TDA)

Main goals

Deepen our understanding of word embeddings through

- 1. Cluster analysis
- 2. Prediction of word polysemy

Methods

Methods

- Analogy and cluster analysis
 - Classical word embedding model evaluation
 - Clustering and internal clustering validation algorithms
- Polysemy prediction
 - Topological polysemy
 - Geometric Anomaly Detection (GAD)
 - Intrinsic dimension estimation
 - Proposed supervised models

Analogy analysis

- Analogy test data sets
 - Syntactic, e.g. capital cities, currencies
 - Semantic, e.g. comparative, past tense
- Examples:
 - ➤ king man ≈ queen woman
 - ➤ Paris France ≈ Norway Oslo
 - \triangleright good better \approx cold colder
 - \triangleright work works \approx speak speaks

Analogy analysis

$$king - man \approx queen - woman$$

 $queen \approx king - man + woman$

Converting to word embeddings:

$$V_{\text{queen}} \approx V_{\text{king}} - V_{\text{man}} + V_{\text{woman}}$$

Cluster analysis

- Clustering algorithms
- Internal cluster validation methods

Cluster analysis

- Internal cluster validation methods
 - Silhouette Coefficient (SC)
 - Davies-Bouldin Index (DBI)
 - Caliński-Harabasz Index (CHI)

Polysemy prediction

- Topological data analysis
 - Topological polysemy
 - Geometric Anomaly Detection
- Intrinsic dimension estimation
- Regression analysis
 - Lasso regression
 - Logistic regression

Results

Training our word2vec models

- SGNS-enwiki (English Wikipedia)
 - > ~4.4M words in vocabulary
- SGNS-semeval (SemEval-2010 task 14 data)
 - > ~122k words in vocabulary
- 300 word embedding dimensionality

Analogy analysis

- Semantic-Syntactic Word Relationship test set (SSWR)
 - 19.5k analogy tests (semantic and syntactic)
- Microsoft Research Syntactic Analogies Dataset (MSR)
 - 8k analogy tests
- Phrase Analogy Dataset (PAD)
 - 3k phrase analogy tests

Type of relationship	Word	Pair 1	Wor	d Pair 2	
Common capital city	Athens	Greece	Oslo	Norway	
All capital cities	Astana	Kazakhstan	Harare	Zimbabwe	
Currency	Angola	kwanza	Iran	rial	
City-in-state	Chicago	Illinois	Stockton	California	
Man-Woman	brother	sister	grandson	granddaughter	
Adjective to adverb	apparent	apparently	rapid	rapidly	
Opposite	possibly	impossibly	ethical	unethical	
Comparative	great	greater	tough	tougher	
Superlative	easy	easiest	lucky	luckiest	
Present Participle	think	thinking	read	reading	
Nationality adjective	Switzerland	Swiss	Cambodia	Cambodian	
Past tense	walking	walked	swimming	swam	
Plural nouns	mouse	mice	dollar	dollars	
Plural verbs	work	works	speak	speaks	

26.11	SSWR			
Model	Semantic	Syntactic	Average	
SG 300	55	59	57	
SG 1000	66.1	65.1	65.6	
NEG-15	61	61	61	
RNN-1600	_	_	_	
GloVe 300 42B	81.9	69.3	75.0	
fastText	77.8	74.9	76	
SGNS-enwiki	65.8	67.3	66.6	

Cluster analysis

- Comparing cluster algorithms
- Internal cluster validation methods
- Analysis of
 - $-4.4M \rightarrow 10k$ most common words
 - Distinct word groups
 - Countries/capitals
 - Number words

Topological polysemy

- Word embedding models
- SemEval-2010 task 14
 - 100 polysemous words
 - Gold standard (GS)
- Correlation with
 - Gold standard
 - Number of WordNet synsets
 - Word frequency

Geometric Anomaly Detection (GAD)

- WordNet SGNS-enwiki word embeddings
- Singular words reflected by singular GAD group

	Manifold	Boundary	Singular	Sum
Number of monosemous words	4640	86731	4161	95532
Number of polysemous words	634	47902	344	48880
\overline{Sum}	5274	134633	4505	144412

Intrinsic dimension (ID) estimation

- Five ID estimation methods
- Relation to number of word meanings

Supervised polysemy prediction

- WME- and BWME-enwiki models
 - Lasso and logistic regression
 - WordNet SGNS-enwiki word embeddings
- Features from TPS, GAD and ID estimation
- 95% train / 5% test split
- 20-fold cross validation on ℓ_1 -hyperparameter

Conclusion and Future Work

Conclusion

- Clustering of word embeddings deepen our understanding
- Topological polysemy yield inconsistent results

Future work

- Looking at other word embedding models
- Vectorization of GAD persistence diagrams
- GAD manifold dimension parametrization
- Word sense disambiguation problem