

Felipe P. Vista IV

Class Admin Matters

Grading

> Attendance

5%

Name (Original Name)	User Email	Join Time	Leave Time	Duration (Minutes)
		4/12/2021 9:12	4/12/2021 10:14	62
		4/12/2021 9:12	4/12/2021 9:14	3
		4/12/2021 9:12	4/12/2021 9:14	3
		4/12/2021 9:12	4/12/2021 9:14	3
		4/12/2021 9:12	4/12/2021 9:14	3
		4/12/2021 9:12	4/12/2021 9:14	3
		4/12/2021 9:13	4/12/2021 9:13	1
		4/12/2021 9:13	4/12/2021 9:14	2
		4/12/2021 9:14	4/12/2021 9:14	1
		4/12/2021 9:14	4/12/2021 9:14	1
		4/12/2021 9:14	4/12/2021 10:14	60

Bad ZOOM User Name (Absent)

- ➤ Iphone → Not your name
- ➤ SiAko 202100001 → Wrong order
- ightharpoonup SiAko \rightarrow Name only
- \triangleright 202100001 \rightarrow ID Num only

ZOOM User Name (Present)

- University ID Num_Name
- ➤ 202100001 SiAko → GOOD (Present)

Name (Original Name)	User Email	Total Duration (Minutes)
		62
		63
		62
		62
		63
		62
		63

Class Admin Matters

Student Responsibilities

- ➤ Download/Install **ZOOM** app for online lecture
 - > Zoom profile must be your OASIS ID+name similar to OASIS
 - > Ex.: 202061234 YourName
- Regularly login and check on-line learning system for updates, notifications
 - https://ieilmsold.jbnu.ac.kr
 - ➤ Presentations & lecture videos will be uploaded after class
- > Regularly check Kakao Group Chat for class
 - > Everybody must have a Kakao talk account
 - Search & add account "botjok", introduce yourself and name of class ("Robotics"), then you will be added to the group chat

Introduction to

Robotics

Intro To Robotics

SENSORS

- Classification of sensors
- Distance sensors

Introduction to

Robotics

- Cameras
- Other sensors
- Range, resolution, precision
- Nonlinearity

Sensors

Sensors

- Make robot move specific distance at specific direction
 - Even using same motor(s) & just controlling them is very hard
 - (Small differences actual power output) + (wheel & motor characteristics)
 - + (surface unevenness) + (friction) → affect total dist & dir travelled
- Ex: Robot move to wall 1 m away & stop 20 cm in front of it
 - The robot must sense the wall and stop when it detects it is 20 cm away
- Sensor
 - Measure some aspect of the environment
 - Distance (cheap: infrared, ultrasound; expensive but accurate: lasers);
 - Images/ Videos for complex operations
- Computer in robot
 - Control actions of the robot based on sensor data

Classification of Sensors

- General classification
 - Proprioceptive

Introduction to

Robotics

- Internal to robot itself. Ex: speedometer
- Exteroceptive
 - External to the robot. Ex: distance
- Exteroceptive sub-class
 - Active
 - Affects environment by usually emitting energy. Ex: sonar
 - Passive
 - Does not affect the environment. Ex: camera record light reflected
- Robots usually use exteroceptives
 - correct error due to proprioceptives; account for environmental changes

Sensors

- Classification of sensors
- Distance sensors
- Cameras
- Other sensors
- Range, resolution, precision
- Nonlinearity

Distance Sensors

- Robots usually use it for **measuring** its distance from an object
 - Active, transmit a signal then receive any reflected signals
- One way is measuring time send→ receive bounced signal

- Some low-cost sensors measure intensity of reflected signal
 - Intensity of signal decrease with distance
 - Disadvantage
 - factors affect intensity of returning signal (ex: object reflectivity)

Ultrasound Distance Sensors

- Sound whose frequency is **above** 20KHertz
 - Higher than highest freq detectable by human ear

- Sound better than vision
 - At night and in water
 - Bats (navigating at night)
 - Ships/submarines (detect objects since sound travel better in water than air)
 - We can try by going to sea, then compare how far we see to how far we can hear
- Ex: Speed of sound in air is 340 m/s

- If object is 34 cm from robot, how long will it take for sound to travel?

$$s = \frac{1}{2}vt \rightarrow 0.34\text{m} = \frac{1}{2}(340 \text{ m/s})(t) \rightarrow 2\text{ms}$$

*An electronic circuit can easily measure time in milliseconds.

Ultrasound Distance Sensors

Advantages

- Not sensitive to:
 - Change in object color or light reflectivity; Light intensity of environment
- Relatively cheap & work outdoors (advantage)
 - Ex: short distances such as aid to parking

Disadvantages

- Sensitive to:
 - Texture: fabric absorb some sound; wood/metal reflect almost all sounds
- Measurement is relatively slow
 - Speed of sound way lower than speed of light
- Cannot be focused to measure distance of a specific object

Infrared Proximity Sensors

- Wavelength of IR light is longer than red light
 - w/c is longest wavelength our eyes can see
 - Invisible to naked eye, remote control for electronic devices (TV, AirCon...)
- Proximity sensors
 - Detect presence of object by measuring intensity of reflected light
 - Light intensity decrease with square of the distance from source

intensity
$$\propto \frac{1}{distance^2}$$

* As distance from the light source increases, the intensity is equal to a value multiplied by $1/d^2$

- Not very accurate, object reflectivity affects reflected intensity
 - Black object reflects less light compared to white object at same distance
 - Cannot distinguish bet black object & white object farther away
- Which is why it is called "proximity sensors"

Optical Distance Sensors

- Recall: distance computed through elapsed time trans → receipt
 - Can be any type of light (ordinary or laser)
 - Laser* is coherent;
 - Lasers for measuring distance usually use IR light, visible lights also
 - Advantage of lasers:
 - More powerful, can detect & measure long distances
 - Highly focused beam allow highly accurate measurement of angle to object

Beam width of laser light (solid) and non-coherent light (dashed)

* light amplification by stimulated emission of radiation

Optical Distance Sensors

- White (sun, light bulb)
 - Many different colors (freqs)
 - Different times (phases)
 - Different directions
- Monochromatic (LEDs)
 - Of a single color
 - Non-coherent
 - Different phases & different directions
- Coherent (laser)
 - All waves of same freq & same phase*
 - All energy concentrated in one beam

* Same phase – each wave start at the same time

Optical Distance Sensors

- Ex: Pulse of light transmitted from robot, reflects on an object & then received by sensor on a robot. How long will it take?
 - Speed of light in air: 3x108 m/s (3x1010 cm/s)
 - Distance of object: 30 cm (0.3 m)

$$\frac{(2)(30)}{3 \times 10^{10}} = \frac{2}{10^9} = 2 \times 10^{-9} = 0.002 ms$$

A very short time period but can be electronically measured.

Time of flight sensor on a 1.6mm thick circuit board (sensor in black)

- Triangulation
 - 2nd principle of distance measurement via light beam
 - Transmitter and receiver are at different locations

Robotics

Sensors

Triangulating Sensors

- Light reflected depends on object it hits
- Narrow light beam bounce off shiny surface in narrow beam
 - Like laser (coherent) off a mirror
- Reflections
 - a) Specular reflection
 - Angle of reflection angle same as angle of incidence

• For rough surface, reflection scattered in all directions

Triangulating Sensors

- Simplified triangulating sensor on (a) far & (b) near objects
 - Lens: d distance from laser, sensor array: l distance behind the lens
 - Assuming diffuse, some light collected by lens and focused onto sensors
 - d inversely proportional to s
 - Triangles $\Delta ll'd'$ and $\Delta ss'd$ are similar, therefore $\frac{s}{d} = \frac{l}{d'}$
 - l & d are fixed, compute s by measuring d'

Sensors

Triangulating Sensors

- Design parameters affecting performance
 - Power of laser
 - Optical characteristics of lens
 - Number of sensors in array
 - Sensitivity of the sensors used

- Performance vs Cost (usual)
- Range & minimum measurable distance of object (main trade-off)
- To get very small s:
 - detector array size d' becomes very large > put limit on minimal distance
- To get shorter minimum distance
 - Increase dist bet laser emitter & detector array → will reduce range

Sensors

Laser Scanners

- a) With ultrasound or proximity sensors
 - Small number placed around robot to detect objects around its area
 - Robot approach/ avoid object but angle to object not measured accurately
 - With laser sensor
 - Beam width so small, large number needed to detect objects at any angle

b) Laser scanner

- Better design: Single laser sensor mounted on rotating shaft

• Full 360° can generate profile of objects in env

Map of environment from a laser scanner

Sensors

- Classification of sensors
- Distance sensors
- Cameras
- Other sensors
- Range, resolution, precision
- Nonlinearity

Sensors

Cameras

- Digital cameras in robotics
 - Widely used, more detailed info than just distance & angle to object(s)
 - Use charge-coupled device
 - Sense light waves
 - Return array of picture elements (or pixels)
- Characterized by
 - Number of pixels captured/frame
 - Content of the pixels
- Ex: A small camera in an educational robot
 - Capture 192 rows of 256 pixels each → for total of 49,152 pixels
 - Which is a very small picture
 - Smartphone cameras record images in **millions** of pixels

Cameras

- Return values for each pixel
 - As black and white (1-bit per pixel) -
- [MAIN] .

ww

- Shades of **gray** (8-bits per pixel)
- Full color red-green-blue (RGB) (3 x 8 = 24 bits per pixel)
- Ex: A small 256 x 192 camera
 - about 50 kbyte for single grayscale image
 - 150 kbyte for a color image
- Mobile robot (such as self-driving car)
 - Several images/second
 - Movies & TV approximately 24 images/sec
 - Require large memory for storing & analyzing images

Sensors

Cameras

- Field of view: *Important characteristic*
 - What portion of sphere surrounding camera is captured in image?
 - Lens with narrow FOY
 - Small area w/ high resolution & little distortion
 - Lens with wide FOV
 - Large area w/ lower resolution & more distortion
- Omnidirectional camera
 - Most extreme case of distortion
 - Capture almost entire sphere surrounding it
- Cameras w/ wide FOV
 - Used by robots to analyze environment
 - For navigation, detect objects
 - Interact w/ people or other robots using visual properties (like color)

Image capture of Omnidirectional camera w/ 360 FOV

Sensors

Cameras

- Robotics is not interested in array of "raw" pixels
 - But in identifying objects in the image
- Human eye & brain perform recognition tasks instantly
 - Driving
 - Identify other vehicles, pedestrians, traffic lights, obstacles
 - Then take appropriate actions
- Image processing:
 - *→* Sophisticated algorithms
 - Significant processing power
- Robots with cameras
 - More complex & expensive than educational robots

Sensors

- Classification of sensors
- Distance sensors
- Cameras
- Other sensors
- Range, resolution, precision
- Nonlinearity

Sensors

Other Sensors

Touch sensor

- Simplified distance sensor
- Measure only two values: distance to object is "0" or "> 0"
- Usually as safety method
 - Used in bottom of small room heaters, will only run if heater detect/touch floor; heater will automatically turn off if it topples/fall over
 - Will apply emergency brake in a mobile robot it is too close to a wall

Buttons & switches

- Direct user interaction with robot

Microphone

- Robot can sense sound
- interpret voice commands via algorithms

Sensors

Other Sensors

- Accelerometer
 - Measure acceleration
 - Primarily the direction of gravitational force
 - cause acceleration of 9.8 m/s² to earth's center
- Three-axis accelerometer
 - Three perpendicular to each other
 - Allow measurement of robot's attitude:
 - Pitch
 - Yaw
 - Roll

Roll Axis

- 27 -

Sensors

- Classification of sensors
- Distance sensors
- Cameras
- Other sensors
- Range, resolution, precision
- Nonlinearity

Sensors

Range

Extent of the set of values that sensor can measure

Example:

- Infrared sensor:
 - Distance of 1cm ~ 30cm
- Laser
 - Larger range since focused power into narrow beam
- Distance sensor
 - Moving robot in a building: about 10m
 - Self-driving car: up to 100m

Resolution

Smallest measurable change in sensor value

Example:

- Distance sensor
 - One sensor returns distances in centimeters (1 cm, 2 cm, 3 cm, 4 cm...)
 - Better sensor is in hundredths of centimeters (4.00 cm, 4.01 cm, 4.02 cm...)
- Self-driving car
 - Resolution of centimeters is enough
 - We will not park 1 cm away from another car, or even 0.1 cm away
- Surgical Robot
 - Requires much higher resolution
 - Even a millimeter is critical when performing surgery

Precision

Consistency of the measurement

- Same quantity measured repeatedly gives the same result?

 - Very important
 Inconsistent measurements \rightarrow inconsistent decisions $\frac{36.5}{4.5} = \frac{36.5}{4.5}$
- Self-driving car

Introduction to

Robotics

- Measure distance to nearest 10cm
- But successive measurements
 - Wide range i.e. 250 cm, 280 cm, 210 cm
- In maintaining fixed distance away from preceding vehicle
 - Speed-up or slow-down for no good reason aside to maintain distance
 - Making for an uncomfortable ride
 - Waste in energy

Sensors

Precision

- High Resolution with Low Precision
 - Usual configuration
 - Resolution cannot be trusted
- Ex: A distance sensor
 - Return value in millimeters
 - Precision not really high: 4.7 cm 7.0 7.9 -7.5.0
 - Only values within the nearest centimeter or half-centimeter can be trusted

Accuracy

Closeness of measurement to real-world quantity being measured

• In robotics

- Since sensors do not directly return physical quantity
- Physical quantity computed from measured electronic value (dist or speed)
- Calibrate sensor to get true physical quantity if consistent inaccuracy
- Ex:
 - Distance sensor using light or sound compute distance from time of flight of signal as:

$$s = \frac{vt}{2}$$

Since, sensor consistently returns value
 5cm too large, we revise formula to

$$s = \frac{vt}{2} - 5$$

Sensors

- Classification of sensors
- Distance sensors
- Cameras
- Other sensors
- Range, resolution, precision
- Nonlinearity

Robotics

Sensors

Nonlinearity

- Sensors
 - Return electronic quantities (Volt or Amp) proportional to what is measured
 - Analog values **converted** to digital values
 - Ex: Proximity sensor return 8-bits of data (values of $0 \sim 255$, range of $0 \sim 50$)
- Calibration

- An 8-bit sensor can't return angles in $0 \sim 360^{\circ}$ range at 1° resolution
- Computer must translate digital values to measurements of physical quantity
 - Discovering mapping for this translation is called calibration
- Best case: Linear-mapping and easy to compute
- Other case: Nonlinear mapping, use table or nonlinear function
- Table more efficient

- Entry lookup faster than compute function
- But large memory requirement

Linear Sensors

Linear mapping: x = as + b

Introduction to

Robotics

Where: \boldsymbol{x} is value returned by sensor, \boldsymbol{s} is distance of object from sensor, **a** is slope (constant) and **b** is intercept (slope) with sensor axis.

Ex: Sensor return 100 if object is 2 cm away, and 0 when 30 cm.

$$P_{1}(36)$$
 $\alpha = slope = \frac{\Delta x}{\Delta s} = \frac{0-100}{30-2} = -3.57$

- Therefore

$$\begin{cases} x = as + b \to \\ s = \frac{x - 107}{-3.57} = \frac{107 - x}{3.57} \end{cases}$$

Sensor value as linear function of distance

Mapping Linear Sensors

Ex: Proximity sensor

Robotics

- (a) Linearity plot of raw measure values, with its (b) Linear function
- Function linear in the middle of range but nonlinear outside of it
 - Impossible to use linear func of sensor raw values to get distance of object
- Solution?
 - Create table mapping sensor values to distances

Mapping Linear Sensors

- Table of real measurements with an educational robot
 - (s): Every 2 cms, for range $2 cm \sim 18 cm$
 - Object cannot be detected at 20 cm
 - (x): sensor value for each distance -4+8
 - (x_l) : value returned if linear fxn x = -2s + 48
 - We can see actual sensor values (x) is not that different from linear values (x_l)
 - Therefore, sounds good to use linear function
 - Best have entry for each possible returned sensor values
 - But need lots of memory, esp if range of values is much larger, i.e.: 12 bits $(0 \sim 4095)$
- 18
 14
 12

 16
 18
 16

 14
 22
 20

 12
 26
 24

 10
 29
 28

 8
 32
 32

 6
 36
 36

 4
 41
 40

 2
 44
 44

 $\boldsymbol{\mathcal{X}}$

 x_l

s(cm)

- Possible solution is take nearest value (x) to one returned by sensor
 - Ex: if measured value= $27 \rightarrow$ then mapping would give a distance (s) = 12

Mapping Linear Sensors

- Better solution is to interpolate
 - Segments of curve are roughly linear (a)
 - but slopes change according to curve
 - Take relative distance on straight line between two points (b)
 - Given: $s_1 \& s_2$ corresponding to sensor values $x_1 \& x_2$.
 - For value $x_1 < x < x_2$, distance s:

Robots & Their Applications

Summary

- Choice of sensors is critical in designing a robot
 - Designer must decide what needs to be measured
 - ➤ i.e.: distance, attitude, velocity, etc.
 - ➤ Then make trade-off's:
 - Finer reso, higher prec & accu always better but comes at a price
 - > Educational robots
 - > Price is of great concern but don't expect excellent performance
 - Algorithmic principles the same even if using high-quality sensors or not
- > Computer must be able to calibrate sensors
 - > If sensor is linear, slope & intercept determine the linear function
 - > If sensor is non-linear, a table or non-linear function must be used

Thank you.