METODE SIMPLEKS

Metode simpleks digunakan untuk menyelesaikan persoalan dengan dua atau lebih variable keputusan dengan pembatas ≤

Contoh:

Sebuah perusahaan memproduksi obat sirup P₁, P₂ dan P₃. Masing-masing obat sirup membutuhkan bahan kimia A, B dan C. Kebutuhan bahan kimia untuk masing-masing produk dan keuntungannya adalah sebagai berikut:

Bahan		Tersedia		
kimia	P1	P2	P3	(ml)
A	8	6	1	48
В	4	2	3/2	20
C	2	3/2	1/2	8
Keuntungan	6000	3000	2000	

P₂ termasuk obat keras yang dibatasi produksinya tidak lebih dari 5 botol/hari. Berapakah masing-masing produk harus diproduksi setiap hari agar keuntungan maksimum ?

Formulasi masalah:

$$\begin{aligned} \text{Maks } Z &= 6000x_1 + 3000x_2 + 2000x_3 \\ 8x_1 + & 6x_2 + & x_3 \leq 48 \\ 4x_1 + & 2x_2 + & 3/2 \ x_3 \leq 20 \\ 2x_1 + & 3/2x_2 + & 1/2 \ x_3 \leq 8 \\ & x_2 \leq 5 \\ & x_1 \ , x_2 \ , x_3 \geq 0 \end{aligned}$$

Bentuk standar:

Iterasi 1

Variabel	6000	3000	2000	0	0	0	0	Ruas	θ
Basis	x1	x2	х3	S 1	S2	S 3	S4	Kanan	O
0S1	8	6	1	1	0	0	0	48	48/8=6
0S2	4	2	3/2	0	1	0	0	20	20/4=5
0S3	2	3/2	1/2	0	0	1	0	8	8/2=4
0S4	0	1	0	0	0	0	1	5	5/0= tdk tdfns
Z	-6000	-3000	-2000	0	0	0	0	0	

Hal-hal yang harus diperhatikan untuk melanjutkan ke iterasi berikutnya:

- 1. Variabel masuk basis (V_{mb})
- 2. Variabel keluar basis (V_{kb})
- 3. Baris pivot

Iterasi 2

Variabel	6000	3000	2000	0	0	0	0	Ruas	θ
Basis	x1	x2	х3	S 1	S2	S3	S4	Kanan	U
0S1	0	0	-1	1	0	-4	0	16	16/-1=-16
0S2	0	-1	1/2	0	1	-2	0	4	4/1/2=8
6000X1	1	3/4	1/4	0	0	1/2	0	4	4/1/4=16
0S4	0	1	0	0	0	0	1	5	5/0= tdk tdfns
Z	0	1500	-500	0	0	3000	0	24000	

Iterasi 3

Variabel	6000	3000	2000	0	0	0	0	Ruas	θ
Basis	x1	x2	х3	S 1	S2	S3	S4	Kanan	U
0S1	0	-2	0	1	2	-8	0	24	
2000X3	0	-2	1	0	2	-4	0	8	
6000X1	1	5/4	0	0	-1/2	3/2	0	2	
0S4	0	1	0	0	0	0	1	5	
Z	0	500	0	0	10	10	0	28000	

Z = 28000 (keuntungan maksimal)

 $X_1 = 2$ (P₁ diproduksi sebanyak 2 botol/hari)

 $X_2 = 0$ (P_2 tidak diproduksi)

 $X_3 = 8$ (P₃ diproduksi sebanyak 8 botol/hari)

 $S_1 = 24$ (sisa bahan kimia A sebanyak 24 ml)

 $S_2 = 0$ (bahan kimia B habis terpakai)

 $S_3 = 0$ (bahan kimia C habis terpakai)

 $S_4 = 5$ (perusahaan tidak dapat memproduksi P_2 sebanyak 5 botol/hari)

Pembuktian:

$$\begin{aligned} \text{Maks } Z &= 6000x_1 + 3000x_2 + 2000x_3 + 0S_1 + 0S_2 + 0S_3 + 0S_4 \\ 8x_1 + & 6x_2 + & x_3 + S_1 & = 48 \\ 4x_1 + & 2x_2 + & 3/2 x_3 & + S_2 & = 20 \\ 2x_1 + & 3/2x_2 + & 1/2 x_3 & + S_3 & = 8 \\ x_2 & + S_4 & = 5 \end{aligned}$$

Maka dengan mensubstitusikan nilai-nilai x₁, x₂, x₃, S₁, S₂, S₃, dan S₄

Maks
$$Z = 6000(2) + 3000(0) + 2000(8) + 0(24) + 0(0) + 0(0) + 0(5) = 28000$$

 $8(2) + 6(0) + (8) + (24) = 48$
 $4(2) + 2(0) + 3/2(8) + (0) = 20$
 $2(2) + 3/2(0) + 1/2(8) + (0) = 8$
 $(0) + (5) = 5$

Latihan

Pyrotec Company memproduksi tiga jenis elektronik yaitu jam dinding, radio, dan televisi. Produk-produk tersebut membutuhkan sumber daya sebagai berikut :

Produk	Kebutuhan akan sumber daya					
Troduk	Biaya/unit (\$)	waktu tenaga kerja/unit				
Jam dinding	7	2				
Radio	10	3				
Televisi	5	2				

Seorang pabrikan mempunyai anggaran harian sebesar \$2000 dan waktu tenaga kerja maksimum 750 jam. Permintaan pelanggan harian maksimum sebanyak 200 jam dinding, 300 radio dan 150 televisi. Jam dijual dengan harga \$15, radio dengan harga \$30, dan televisi dengan harga \$16. Perusahaan ingin mengetahui berapa produksi masing-masing produk agar dapat memaksimumkan penjualan. Selesaikan persoalan ini dengan menggunakan metode simpleks.