

FCC PART 15.247 TEST REPORT

For

Shenzhen Cannice Technology Co., Ltd.

20/F,Tower A,Building 7,Baoneng Science and Technology Park,Qingxiang Road #1,Longhua New District, Shenzhen, China

FCC ID: 2ADTV-W3ANC

Report Type: Product Name: Original Report Bluetooth Earphone **Test Engineer:** Tom Tang Report Number: RDG161111801A **Report Date:** 2016-12-14 **Henry Ding** Henry Ding **EMC Leader** Reviewed By: Bay Area Compliance Laboratories Corp. (Chengdu) **Test Laboratory:** 5040, HuiLong Wan Plaza, No. 1, Sha Wan Road, JinNiu District, ChengDu, China Tel: 028-65523123, Fax: 028-65525125 www.baclcorp.com

Note: This test report was prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Chengdu). Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. This report was valid only with a valid digital signature.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	4
Test Methodology	
Test Facility	5
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software	
EQUIPMENT MODIFICATIONSSUPPORT EQUIPMENT LIST AND DETAILS	6
EXTERNAL CABLE	
BLOCK DIAGRAM OF TEST SETUP	6
SUMMARY OF TEST RESULTS	7
FCC §15.247 (i) & §1.1310 & §2.1093- RF EXPOSURE	8
APPLICABLE STANDARD	
FCC §15.203 - ANTENNA REQUIREMENT	9
APPLICABLE STANDARD	
Antenna Connector Construction	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY	
EMI TEST RECEIVER SETUP	
Test Procedure	
CORRECTED AMPLITUDE & MARGIN CALCULATION	12
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	12
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY	
EUT SETUPEMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	16
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	
CORRECTED AMPLITUDE & MARGIN CALCULATION	18
TEST DATA	19
FCC §15.247(a) (1) - CHANNEL SEPARATION TEST	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
FCC §15.247(a) (1) – 20 dB BANDWIDTH TESTING	
APPLICABLE STANDARD	
ALLEICADEL CTARDAND	

Bay Area Compliance Laboratories Corp. (Chengdu)

TEST PROCEDURE	29
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §15.247(a) (1) (iii) - QUANTITY OF HOPPING CHANNEL TEST	35
APPLICABLE STANDARD	35
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	35
Test Data	35
FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)	39
APPLICABLE STANDARD	
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	
Test Data	39
FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT	55
APPLICABLE STANDARD	
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §15.247(d) - BAND EDGES TESTING	61
APPLICABLE STANDARD	
Test Procedure	61
TEST EQUIPMENT LIST AND DETAILS	61
Test Data	62

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The **Shenzhen Cannice Technology Co., Ltd.**'s product, model number: **W3ANC** (FCC ID: 2ADTV-W3ANC) (the "EUT") in this report was a **Bluetooth Earphone**, which was measured approximately: 14.5 cm (L) x 17.2 cm (W) x 2.1 cm (H), rated input voltage: DC3.7V from battery or DC 5V charged from USB.

*All measurement and test data in this report was gathered from final production sample, serial number: 161111801 (assigned by the BACL, Chengdu). It may have deviation from any other sample. The EUT supplied by the applicant was received on 2016-11-14, and EUT conformed to test requirement.

Objective

This report is prepared on behalf of **Shenzhen Cannice Technology Co., Ltd.** in accordance with Part 2, Subpart J, Part 15, Subparts A, B and C of the Federal Communications Commission's rules

The tests were performed in order to determine the Bluetooth BDR and EDR mode of EUT compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

FCC Part 15C DTS submissions with FCC ID: 2ADTV-W3ANC.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Chengdu). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

The uncertainty of any RF tests which use conducted method measurement is ±3.17 dB, the uncertainty of any radiation on emissions measurement is:

30M~200MHz: ±4.7 dB; 200M~1GHz: ±6.0 dB; 1G-6GHz: ±5.13dB; 6G~25GHz: ±5.47dB;

And the uncertainty will not be taken into consideration for all test data recorded in the report.

Report No.: RDG161111801A Page 4 of 65

Bay Area Compliance Laboratories Corp. (Chengdu)

Test Facility

The test site used by BACL to collect test data is located in the 5040, HuiLongWan Plaza, No. 1, ShaWan Road, JinNiu District, ChengDu, China.

Test site at BACL has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on April 24, 2015. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 560332. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Report No.: RDG161111801A Page 5 of 65

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in engineering mode.

EUT Exercise Software

The engineering mode configured the maximum power as default setting.

Equipment Modifications

No modification was made to the EUT.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
Baijunda	Power Supply	UT-115E-5010	HD01385975

External Cable

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
USB Cable	no	no	0.8	EUT	Adapter

Block Diagram of Test Setup

Report No.: RDG161111801A Page 6 of 65

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §15.247 (i) & §1.1310 & §2.1093	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.207 (a)	Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247 (a)(1)	20 dB Bandwidth	Compliance
§15.247(a)(1)	Channel Separation Test	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliance
§15.247(b)(1)	Peak Output Power Measurement	Compliance
§15.247(d)	Band Edges	Compliance

Report No.: RDG161111801A Page 7 of 65

FCC §15.247 (i) & §1.1310 & §2.1093- RF EXPOSURE

Applicable Standard

According to §15.247(i) and §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB447498 D01 General RF Exposure Guidance v06:

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,

mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is \leq 5 mm, a distance of 5 mm according to 5) in section 4.1 is applied to determine SAR test exclusion.

Measurement Result

The max conducted power including tune-up tolerance is 0 dBm (1.0 mW). [(max. power of channel, mW)/(min. test separation distance, mm)][$\sqrt{f(GHz)}$] = 1.0/5*($\sqrt{2.480}$) = 0.3< 3.0

So the stand-alone SAR evaluation is not necessary.

Report No.: RDG161111801A Page 8 of 65

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has one internal antenna arrangement for BT, and the antenna gain is 2.5dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.

Report No.: RDG161111801A Page 9 of 65

FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207

Measurement Uncertainty

Compliance or non- compliance with a disturbance limit shall be determined in the following manner:

If U_{lab} is less than or equal to U_{cispr} of Table 1, then:

- -compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
 -non compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit.
- If U_{lab} is greater than U_{cispr} of Table 1, then:
- –compliance is deemed to occur if no measured disturbance level, increased by $(U_{lab} U_{cispr})$, exceeds the disturbance limit;
- -non compliance is deemed to occur if any measured disturbance level, increased by (U_{lab} U_{cispr}), exceeds the disturbance limit.

Based on CISPR 16-4-2:2011, measurement uncertainty of conducted disturbance at mains port using AMN at Bay Area Compliance Laboratories Corp. (Chengdu) is ±3.17 dB (150 kHz to 30 MHz).

Table 1 – Values of U_{cispr}

Measurement	U cispr
Conducted disturbance at mains port using AMN (150 kHz to 30 MHz)	3.4 dB

Report No.: RDG161111801A Page 10 of 65

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter was connected to a 120 V/60 Hz AC power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the first LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Report No.: RDG161111801A Page 11 of 65

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_C = V_R + A_C + VDF$$

Herein,

V_C: corrected voltage amplitude V_R: reading voltage amplitude A_c: attenuation caused by cable loss

VDF: voltage division factor of AMN or ISN

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Equipment List and Details

Manufacturer	Description	Model Serial Number		Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCS 30	836858/0016	2015-12-02	2016-12-01
Rohde & Schwarz	L.I.S.N.	ENV216	3560.6550.06	2015-12-02	2016-12-01
N/A	Conducted Cable	NO.5	N/A	2016-11-10	2017-11-09
Rohde & Schwarz	PULSE LIMITER	ESH3Z2	357.8810.52	2016-10-31	2017-10-30
R&S	Test Software	EMC32	Version8.53.0	N/A	N/A

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	29.1 °C
Relative Humidity:	49%
ATM Pressure:	100.6kPa

The testing was performed by Tom Tang on 2016-11-19.

Report No.: RDG161111801A Page 12 of 65

Test Mode: Transmitting

AC120 V, 60 Hz, Line:

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.159873	36.5	9.000	L1	19.72	29.0	65.5	Compliance
0.225205	34.0	9.000	L1	19.67	28.6	62.6	Compliance
0.567545	30.9	9.000	L1	19.74	25.1	56.0	Compliance
1.090848	26.1	9.000	L1	19.7	29.9	56.0	Compliance
1.239175	28.7	9.000	L1	19.71	27.3	56.0	Compliance
1.407671	30.8	9.000	L1	19.7	25.2	56.0	Compliance

Frequency (MHz)	Average (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.567545	17.7	9.000	L1	19.74	28.3	46.0	Compliance
0.952654	19.4	9.000	L1	19.7	26.6	46.0	Compliance
0.999305	20.6	9.000	L1	19.7	25.4	46.0	Compliance
1.048242	20.6	9.000	L1	19.7	25.4	46.0	Compliance
1.239175	23.3	9.000	L1	19.71	22.7	46.0	Compliance
1.385415	24.0	9.000	L1	19.7	22.0	46.0	Compliance

Report No.: RDG161111801A Page 13 of 65

AC120 V, 60 Hz, Neutral:

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.576662	33.6	9.000	N	19.59	22.4	56.0	Compliance
0.665597	29.6	9.000	N	19.59	26.4	56.0	Compliance
0.818813	26.4	9.000	N	19.63	29.6	56.0	Compliance
1.200302	29.1	9.000	N	19.64	26.9	56.0	Compliance
1.548915	28.6	9.000	N	19.65	27.4	56.0	Compliance
1.982914	27.6	9.000	N	19.66	28.4	56.0	Compliance

Frequency (MHz)	Average (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.402900	21.0	9.000	N	19.63	26.8	47.8	Compliance
0.563041	29.5	9.000	N	19.6	16.5	46.0	Compliance
0.831967	23.9	9.000	N	19.63	22.1	46.0	Compliance
1.190776	25.7	9.000	N	19.64	20.3	46.0	Compliance
1.385415	22.5	9.000	N	19.65	23.5	46.0	Compliance
2.458886	20.2	9.000	N	19.69	25.8	46.0	Compliance

Report No.: RDG161111801A Page 14 of 65

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

Measurement Uncertainty

Compliance or non- compliance with a disturbance limit shall be determined in the following manner:

If U_{lab} is less than or equal to U_{cispr} of Table 1, then:

-compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
 -non - compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit.

If U_{lab} is greater than U_{cispr} of Table 1, then:

–compliance is deemed to occur if no measured disturbance level, increased by $(U_{lab} - U_{cispr})$, exceeds the disturbance limit;

-non - compliance is deemed to occur if any measured disturbance level, increased by (U_{lab} - U_{cispr}), exceeds the disturbance limit.

Based on CISPR 16-4-2-2011, measurement uncertainty of radiated emission at a distance of 3m at Bay Area Compliance Laboratories Corp. (Chengdu) is:

30M~200MHz: ±4.7 dB; 200M~1GHz: ±6.0 dB; 1G-6GHz: ±5.13dB; 6G~25GHz: ±5.47 dB;

Table 1 – Values of U_{cispr}

Measurement						
Radiated disturbance (electric field strength at an OATS or in a SAC) (30 MHz to 1000 MHz)	6.3 dB					
Radiated disturbance (electric field strength in a FAR) (1 GHz to 6 GHz)	5.2 dB					
Radiated disturbance (electric field strength in a FAR) (6 GHz to 18 GHz)	5.5 dB					

Report No.: RDG161111801A Page 15 of 65

EUT Setup

Below 1GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

Report No.: RDG161111801A Page 16 of 65

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1MHz	3 MHz	/	PK
Above 1 GHZ	1MHz	10 Hz	/	AV

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz - 1 GHz, peak and average detection modes for frequencies above 1 GHz.

Report No.: RDG161111801A Page 17 of 65

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	Amplifier	8447D	2944A10442	2015-12-02	2016-12-01
Rohde & Schwarz	EMI Test Receiver	ESCI	100028	2015-12-02	2016-12-01
Sunol Sciences	Broadband Antenna	JB3	A101808	2016-04-10	2019-04-09
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2015-12-02	2016-12-01
ETS	Horn Antenna	3115	003-6076	2015-12-02	2016-12-01
Ducommun Technologies	Horn Antenna	ARH-4223-02	1007726- 0113024	2014-06-16	2017-06-15
Mini-circuits	Amplifier	ZVA-183-S+	771001215	2016-05-20	2017-05-19
HP	Amplifier	8449B	3008A00277	2015-12-02	2016-12-01
EMCT	Semi-Anechoic Chamber	966	N/A	2015-04-24	2018-04-23
N/A	RF Cable (below 1GHz)	NO.1	N/A	2016-11-10	2017-11-09
N/A	RF Cable (below 1GHz)	NO.4	N/A	2016-11-10	2017-11-09
N/A	RF Cable (above 1GHz)	NO.2	N/A	2016-11-10	2017-11-09

^{*} Statement of Traceability: BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit - Corrected Amplitude

Report No.: RDG161111801A Page 18 of 65

Test Data

Environmental Conditions

Temperature:	25.3 °C
Relative Humidity:	36%
ATM Pressure:	100.4kPa

^{*} The testing was performed by Tom Tang on 2016-11-21.

Test Mode: Transmitting

Report No.: RDG161111801A Page 19 of 65

30MHz-25GHz:

BDR Mode (GFSK):

Frequency		eiver	Rx A	ntenna	Cable	Amplifier	Corrected	FCC 1	5.247
(MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
	(GD# V)			Low Chani			(αΒμν/ιιι)	(αΒμν/ιιι)	(ub)
2402	58.67	PK	Н	23.53	3.00	0.00	85.20	N/A	N/A
2402	53.72	AV	Н	23.53	3.00	0.00	80.25	N/A	N/A
2402	69.35	PK	V	23.53	3.00	0.00	95.88	N/A	N/A
2402	61.94	AV	V	23.53	3.00	0.00	88.47	N/A	N/A
2390	31.62	PK	V	23.57	3.00	0.00	58.19	74.00	15.81
2390	20.38	AV	V	23.57	3.00	0.00	46.95	54.00	7.05
4804	43.76	PK	V	30.77	5.12	26.87	52.78	74.00	21.22
4804	32.47	AV	V	30.77	5.12	26.87	41.49	54.00	12.51
7206	36.75	PK	V	34.71	6.16	26.35	51.27	74.00	22.73
7206	27.61	AV	V	34.71	6.16	26.35	42.13	54.00	11.87
3672	37.76	PK	V	27.69	4.43	26.58	43.30	74.00	30.70
3672	23.67	AV	V	27.69	4.43	26.58	29.21	54.00	24.79
32.91	38.45	QP	V	20.88	0.35	28.56	31.12	40.00	8.88
103.72	40.59	QP	V	11.82	0.61	28.27	24.75	43.50	18.75
			M	liddle Chai	nnel: 244	1 MHz			
2441	58.64	PK	Н	23.40	3.00	0.00	85.04	N/A	N/A
2441	53.24	AV	Н	23.40	3.00	0.00	79.64	N/A	N/A
2441	69.55	PK	V	23.40	3.00	0.00	95.95	N/A	N/A
2441	63.27	AV	V	23.40	3.00	0.00	89.67	N/A	N/A
4882	40.38	PK	V	31.02	5.09	26.87	49.62	74.00	24.38
4882	32.75	AV	V	31.02	5.09	26.87	41.99	54.00	12.01
7323	36.58	PK	V	34.95	6.22	26.40	51.35	74.00	22.65
7323	29.67	AV	V	34.95	6.22	26.40	44.44	54.00	9.56
1683	34.72	PK	V	24.39	2.81	26.51	35.41	74.00	38.59
1683	21.75	AV	V	24.39	2.81	26.51	22.44	54.00	31.56
2681	33.77	PK	V	23.56	3.15	26.72	33.76	74.00	40.24
2681	20.75	AV	V	23.56	3.15	26.72	20.74	54.00	33.26
32.91	38.66	QP	V	20.88	0.35	28.56	31.33	40.00	8.67
103.72	40.73	QP	V	11.82	0.61	28.27	24.89	43.50	18.61
				High Chan			0.1.55	1	
2480	58.37	PK	H	23.27	2.99	0.00	84.63	N/A	N/A
2480	52.91	AV	Н	23.27	2.99	0.00	79.17	N/A	N/A
2480	68.68	PK	V	23.27	2.99	0.00	94.94	N/A	N/A
2480	62.72	AV	V	23.27	2.99	0.00	88.98	N/A	N/A
2483.5	31.67	PK	V	23.26	2.99	0.00	57.92	74.00	16.08
2483.5	16.74	AV	V	23.26	2.99	0.00	42.99	54.00	11.01
4960	43.86	PK	V	31.27	5.05	26.88	53.30	74.00	20.70
4960	36.23	AV	V	31.27	5.05	26.88	45.67	54.00	8.33
7440	35.71	PK	V	35.18	6.27	26.45	50.71	74.00	23.29
7440	26.72	AV	V	35.18	6.27	26.45	41.72	54.00	12.28
2684	37.71	PK	V	23.57	3.15	26.71	37.72	74.00	36.28
2684	23.64	AV	V	23.57	3.15	26.71	23.65	54.00	30.35
32.91	38.93	QP	V	20.88	0.35	28.56	31.60	40.00	8.40
103.72	40.74	QP	V	11.82	0.61	28.27	24.90	43.50	18.60

Report No.: RDG161111801A Page 20 of 65

EDR Mode ($\pi/4$ -DQPSK):

Frequency	Rec	eiver	Rx A	ntenna	Cable	Amplifier	Corrected	FCC 1	5.247
(MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
	Low Channel: 2402 MHz								
2402	58.72	PK	Н	23.53	3.00	0.00	85.25	N/A	N/A
2402	52.67	AV	Н	23.53	3.00	0.00	79.20	N/A	N/A
2402	69.37	PK	V	23.53	3.00	0.00	95.90	N/A	N/A
2402	62.6	AV	V	23.53	3.00	0.00	89.13	N/A	N/A
2390	35.72	PK	V	23.57	3.00	0.00	62.29	74.00	11.71
2390	15.67	AV	V	23.57	3.00	0.00	42.24	54.00	11.76
4804	46.75	PK	V	30.77	5.12	26.87	55.77	74.00	18.23
4804	32.75	AV	V	30.77	5.12	26.87	41.77	54.00	12.23
7206	45.42	PK	V	34.71	6.16	26.35	59.94	74.00	14.06
7206	31.77	AV	V	34.71	6.16	26.35	46.29	54.00	7.71
1843	33.18	PK	V	24.65	2.93	26.67	34.09	74.00	39.91
1843	23.51	AV	V	24.65	2.93	26.67	24.42	54.00	29.58
32.91	38.75	QP	V	20.88	0.35	28.56	31.42	40.00	8.58
103.72	40.56	QP	V	11.82	0.61	28.27	24.72	43.50	18.78
				liddle Cha					
2441	59.38	PK	Н	23.40	3.00	0.00	85.78	N/A	N/A
2441	52.93	AV	H	23.40	3.00	0.00	79.33	N/A	N/A
2441	68.92	PK	V	23.40	3.00	0.00	95.32	N/A	N/A
2441	62.67	AV	V	23.40	3.00	0.00	89.07	N/A	N/A
4882	39.58	PK	V	31.02	5.09	26.87	48.82	74.00	25.18
4882	30.45	AV	V	31.02	5.09	26.87	39.69	54.00	14.31
7323	36.37	PK	V	34.95	6.22	26.40	51.14	74.00	22.86
7323	31.94	AV		34.95	6.22 2.63	26.40	46.71	54.00	7.29
1469	35.27	PK	V	24.02		26.36	35.56	74.00	38.44
1469 2673	24.94 32.63	AV PK	V	24.02 23.55	2.63 3.14	26.36 26.72	25.23 32.60	54.00 74.00	28.77 41.40
2673	24.78	AV	V	23.55	3.14	26.72	24.75	54.00	29.25
32.91	38.56	QP	V	20.88	0.35	28.56	31.23	40.00	8.77
103.72	40.37	QP	V	11.82	0.61	28.27	24.53	43.50	18.97
103.72	40.57	Qi	_	High Chan			24.00	+3.30	10.31
2480	60.92	PK	Н	23.27	2.99	0.00	87.18	N/A	N/A
2480	54.88	AV	Н	23.27	2.99	0.00	81.14	N/A	N/A
2480	69.72	PK	V	23.27	2.99	0.00	95.98	N/A	N/A
2480	62.88	AV	V	23.27	2.99	0.00	89.14	N/A	N/A
2483.5	30.79	PK	V	23.26	2.99	0.00	57.04	74.00	16.96
2483.5	16.08	AV	V	23.26	2.99	0.00	42.33	54.00	11.67
4960	42.57	PK	V	31.27	5.05	26.88	52.01	74.00	21.99
4960	33.67	AV	V	31.27	5.05	26.88	43.11	54.00	10.89
7440	38.42	PK	V	35.18	6.27	26.45	53.42	74.00	20.58
7440	23.75	AV	V	35.18	6.27	26.45	38.75	54.00	15.25
3450	32.72	PK	V	26.72	4.11	26.57	36.98	74.00	37.02
3450	23.08	AV	V	26.72	4.11	26.57	27.34	54.00	26.66
32.91	39.47	QP	V	20.88	0.35	28.56	32.14	40.00	7.86
103.72	41.27	QP	V	11.82	0.61	28.27	25.43	43.50	18.07

Report No.: RDG161111801A Page 21 of 65

EDR Mode (8-DPSK):

(MHz)				ntenna	Cable	Amplifier	Corrected		5.247
	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
				ow Chan		MHz			
2402	60.38	PK	Н	23.53	3.00	0.00	86.91	N/A	N/A
2402	54.27	AV	Н	23.53	3.00	0.00	80.80	N/A	N/A
2402	69.84	PK	V	23.53	3.00	0.00	96.37	N/A	N/A
2402	62.67	AV	V	23.53	3.00	0.00	89.20	N/A	N/A
2390	32.64	PK	V	23.57	3.00	0.00	59.21	74.00	14.79
2390	15.12	AV	V	23.57	3.00	0.00	41.69	54.00	12.31
4824	34.16	PK	V	30.84	5.11	26.87	43.24	74.00	30.76
4824	21.67	AV	V	30.84	5.11	26.87	30.75	54.00	23.25
7236	35.64	PK	V	34.77	6.18	26.36	50.23	74.00	23.77
7236	23.75	AV	V	34.77	6.18	26.36	38.34	54.00	15.66
1837	34.82	PK	V	24.64	2.93	26.66	35.73	74.00	38.27
1837	23.75	AV	V	24.64	2.93	26.66	24.66	54.00	29.34
32.91	39.68	QP	V	20.88	0.35	28.56	32.35	40.00	7.65
103.72	41.41	QP	V	11.82	0.61	28.27	25.57	43.50	17.93
				iddle Cha			T	T	
2441	60.24	PK	Н	23.40	3.00	0.00	86.64	N/A	N/A
2441	54.67	AV	Н	23.40	3.00	0.00	81.07	N/A	N/A
2441	69.86	PK	V	23.40	3.00	0.00	96.26	N/A	N/A
2441	62.62	AV	V	23.40	3.00	0.00	89.02	N/A	N/A
4882	37.64	PK	V	31.02	5.09	26.87	46.88	74.00	27.12
4882	23.15	AV	V	31.02	5.09	26.87	32.39	54.00	21.61
7323	36.42	PK	V	34.95	6.22	26.40	51.19	74.00	22.81
7323	22.72	AV	V	34.95	6.22	26.40	37.49	54.00	16.51
1482	34.27	PK	V	24.05	2.65	26.35	34.62	74.00	39.38
1482	23.92	AV	V	24.05	2.65	26.35	24.27	54.00	29.73
3728	34.84	PK	V	27.91	4.52	26.57	40.70	74.00	33.30
3728	23.74	AV	V	27.91	4.52	26.57	29.60	54.00	24.40
32.91	39.95	QP	V	20.88	0.35	28.56	32.62	40.00	7.38
103.72	41.42	QP	V	11.82	0.61	28.27	25.58	43.50	17.92
2490	60.01	DK	H	High Chan			97.07	NI/A	NI/A
2480 2480	60.81	PK	H	23.27 23.27	2.99 2.99	0.00	87.07	N/A N/A	N/A
	53.47 69.33	AV	V				79.73		N/A
2480		PK AV	V	23.27 23.27	2.99	0.00	95.59	N/A	N/A
2480 2483.5	62.67 30.88	AV PK	V	23.26	2.99 2.99	0.00	88.93 57.13	N/A 74.00	N/A 16.87
	15.94			23.26		0.00			
2483.5 4960	35.12	AV PK	V	31.27	2.99 5.05	26.88	42.19 44.56	54.00 74.00	11.81 29.44
4960	22.37	AV	V	31.27	5.05	26.88	31.81	54.00	29.44
7440	34.84	PK	V	35.18	6.27	26.45	49.84	74.00	
7440	23.61	AV	V	35.18	6.27	26.45	38.61	54.00	24.16 15.39
2375	34.57	PK	V	23.63	3.01	26.45	34.34	74.00	39.66
2375	24.79	AV	V	23.63	3.01	26.87	24.56	54.00	29.44
32.91	39.77	QP	V	20.88	0.35	28.56	32.44	40.00	7.56
103.72	41.24	QP QP	V	11.82	0.35	28.27	25.40	43.50	18.10

Report No.: RDG161111801A Page 22 of 65

FCC §15.247(a) (1) - CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.50 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2016-09-21	2017-09-20
N/A	RF Cable	N/A	N/A	Each Time	1

^{*} Statement of Traceability: BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

- 1. Set the EUT in transmitting mode, spectrum Bandwidth was set at 30 kHz, maxhold the channel.
- 2. Set the adjacent channel of the EUT maxhold another trace.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	26.3 °C
Relative Humidity:	42%
ATM Pressure:	101kPa

^{*} The testing was performed by Tom Tang on 2016-12-05.

Test Result: Compliance.

Please refer to following tables and plots

Report No.: RDG161111801A Page 23 of 65

Test Mode: Transmitting

Mode	Channel	Frequency	Channel Separation	Limit	
Mode	Channel	MHz	MHz	MHz	
	Low	2402	1.002	0.63	
	Low	2403	1.002	0.62	
BDR	Middle	2441	1.002	0.60	
(GFSK)	ivildale	2442	1.002	0.00	
	High	2480	0.998	0.50	
	підіі	2479	0.996	0.59	
	Low	2402	1.006	0.81	
	LOW	2403	1.000	0.61	
EDR	Middle	2441	1.002	0.81	
(π/4-DQPSK)		2442	1.002	0.61	
	High	2480	1.002	0.81	
	riigii	2479	1.002	0.61	
	Low	2402	1.002	0.81	
	Low	2403	1.002	0.61	
EDR	Middle	2441	0.998	0.81	
(8DPSK)	ivildule	2442	0.990	0.01	
	∐igh	2480	1.002	0.81	
	High	2479	1.002	0.81	

Note: Limit= (2/3)× 20dB bandwidth

BDR Mode (GFSK):

Low Channel

Report No.: RDG161111801A Page 24 of 65

Middle Channel

High Channel

EDR Mode ($\pi/4$ -DQPSK):

Low Channel

Middle Channel

Report No.: RDG161111801A Page 26 of 65

High Channel

EDR Mode (8-DPSK):

Low Channel

Report No.: RDG161111801A Page 27 of 65

Middle Channel

High Channel

FCC §15.247(a) (1) - 20 dB BANDWIDTH TESTING

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on the test table without connection to measurement instrument. Turn on the EUT. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2016-09-21	2017-09-20
N/A	RF Cable	N/A	N/A	Each Time	1

^{*} Statement of Traceability: BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	27.1 °C	
Relative Humidity:	37%	
ATM Pressure:	101.6kPa	

^{*} The testing was performed by Tom Tang on 2016-12-06.

Test Result: Compliance.

Please refer to following tables and plots

Report No.: RDG161111801A Page 29 of 65

Bay Area Compliance Laboratories Corp. (Chengdu)

Test Mode: Transmitting

Mode	Channel	Frequency (MHz)	20 dB Bandwidth (MHz)
BDR Mode (GFSK)	Low	2402	0.93
	Middle	2441	0.9
	High	2480	0.89
EDR Mode (π/4-DQPSK)	Low	2402	1.22
	Middle	2441	1.22
(III + DQI OIL)	High	2480	1.22
EDR Mode (8-DPSK)	Low	2402	1.21
	Middle	2441	1.22
(0 51 614)	High	2480	1.22

BDR Mode (GFSK):

Low Channel

Report No.: RDG161111801A Page 30 of 65

Middle Channel

High Channel

EDR Mode (π/4-DQPSK):

Low Channel

Middle Channel

Report No.: RDG161111801A Page 32 of 65

High Channel

EDR Mode (8-DPSK):

Low Channel

Report No.: RDG161111801A Page 33 of 65

Middle Channel

High Channel

FCC §15.247(a) (1) (iii) - QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the Max-Hold function record the Quantity of the channel.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2016-09-21	2017-09-20
N/A	RF Cable	N/A	N/A	Each Time	1

^{*} Statement of Traceability: BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	26.3 °C	
Relative Humidity:	42%	
ATM Pressure:	101kPa	

^{*} The testing was performed by Tom Tang on 2016-12-05.

Test Result: Compliance.

Please refer to following tables and plots

Report No.: RDG161111801A Page 35 of 65

Bay Area Compliance Laboratories Corp. (Chengdu)

Test Mode: Transmitting

BDR Mode (GFSK):

Frequency Range (MHz)	Number of Hopping Channel	Limit
2400-2483.5	79	≥15

Number of Hopping Channels

Report No.: RDG161111801A Page 36 of 65

EDR Mode ($\pi/4$ -DQPSK):

Frequency Range (MHz)	Number of Hopping Channel	Limit
2400-2483.5	79	≥15

Number of Hopping Channels

Report No.: RDG161111801A Page 37 of 65

EDR Mode (8-DPSK):

Frequency Range (MHz)	Number of Hopping Channel	Limit
2400-2483.5	79	≥15

Number of Hopping Channels

Report No.: RDG161111801A Page 38 of 65

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

The EUT was worked in channel hopping; Spectrum SPAN was set as 0. Sweep was set as 0.4 * channel no. (s), the quantity of pulse was get from single sweep. In addition, the time of single pulses was tested.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2016-09-21	2017-09-20
N/A	RF Cable	N/A	N/A	Each Time	1

^{*} Statement of Traceability: BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	26.3~27.1 °C
Relative Humidity:	37~42%
ATM Pressure:	101~101.6kPa

^{*} The testing was performed by Tom Tang from 2016-12-05 to 2016-12-06.

Test Result: Compliance.

Please refer to following tables and plots

Report No.: RDG161111801A Page 39 of 65

Test Mode: Transmitting

BDR Mode (GFSK):

Mode	Channel	Pulse Width (ms)	Dwell Time (s)	Limit (s)	Result	
	Low	0.439	0.140	0.4	Compliance	
DH1	Middle	0.437	0.140	0.4	Compliance	
DITT	High	0.439	0.140	0.4	Compliance	
	Note: Dwell time=Pulse time (ms) × (1600/2/79) ×31.6 s					
	Low	1.707	0.273	0.4	Compliance	
DH3	Middle	1.701	0.272	0.4	Compliance	
Diis	High	1.695	0.271	0.4	Compliance	
	Note: Dwell time=Pulse time (ms) × (1600/4/79) ×31.6 s					
	Low	2.966	0.316	0.4	Compliance	
DH5	Middle	2.986	0.319	0.4	Compliance	
	High	2.976	0.317	0.4	Compliance	
	Note: Dwell time	e=Pulse time	(ms) × (160	0/6/79) ×3	31.6 s	

DH1: Low Channel

Report No.: RDG161111801A Page 40 of 65

DH1: Middle Channel

DH1: High Channel

DH3: Low Channel

DH3: Middle Channel

DH3: High Channel

DH5: Low Channel

DH5: Middle Channel

DH5: High Channel

EDR Mode ($\pi/4$ -DQPSK):

Mode	Channel	Pulse Width (ms)	Dwell Time (s)	Limit (s)	Result	
	Low	0.447	0.143	0.4	Compliance	
2DH1	Middle	0.445	0.142	0.4	Compliance	
2001	High	0.449	0.144	0.4	Compliance	
	Note: Dwell time	e=Pulse time ((ms) × (160	0/2/79)×	31.6 s	
	Low	1.701	0.272	0.4	Compliance	
2DH3	Middle	1.713	0.274	0.4	Compliance	
20113	High	1.707	0.273	0.4	Compliance	
	Note: Dwell time	e=Pulse time	(ms) × (160	0/4/79) ×:	31.6 s	
	Low	2.966	0.316	0.4	Compliance	
2DH5	Middle	2.966	0.316	0.4	Compliance	
	High	2.956	0.315	0.4	Compliance	
	Note: Dwell time	Note: Dwell time=Pulse time (ms) × (1600/6/79) ×31.6 s				

2DH1: Low Channel

Report No.: RDG161111801A Page 45 of 65

2DH1: Middle Channel

2DH1: High Channel

2DH3: Low Channel

2DH3: Middle Channel

2DH3: High Channel

2DH5: Low Channel

2DH5: Middle Channel

2DH5: High Channel

EDR Mode (8-DPSK):

Mode	Channel	Pulse Width (ms)	Dwell Time (s)	Limit (s)	Result	
	Low	0.449	0.144	0.4	Compliance	
3DH1	Middle	0.447	0.143	0.4	Compliance	
30111	High	0.447	0.143	0.4	Compliance	
	Note: Dwell time	e=Pulse time (ms) × (1600	/2/79) ×3	1.6 s	
	Low	1.701	0.272	0.4	Compliance	
3DH3	Middle	1.701	0.272	0.4	Compliance	
30113	High	1.701	0.272	0.4	Compliance	
	Note: Dwell time=Pulse time (ms) × (1600/4/79) ×31.6 s					
	Low	2.976	0.317	0.4	Compliance	
3DH5	Middle	2.966	0.316	0.4	Compliance	
3DH3	High	2.976	0.317	0.4	Compliance	
	Note: Dwell tim	Note: Dwell time=Pulse time (ms) × (1600/6/79) ×31.6 s				

3DH1: Low Channel

Report No.: RDG161111801A Page 50 of 65

3DH1: Middle Channel

3DH1: High Channel

3DH3: Low Channel

3DH3: Middle Channel

3DH3: High Channel

3DH5: Low Channel

3DH5: Middle Channel

3DH5: High Channel

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts

Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2016-09-21	2017-09-20
N/A	RF Cable	N/A	N/A	Each Time	1

^{*} Statement of Traceability: BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	27.1 °C
Relative Humidity:	37%
ATM Pressure:	101.6kPa

^{*} The testing was performed by Tom Tang on 2016-12-06.

Test Result: Compliance.

Report No.: RDG161111801A Page 55 of 65

Test Mode: Transmitting

Mode	Frequency (MHz)	Peak Output power (dBm)	Limit (dBm)
DDD 14	2402	-1.26	30
BDR Mode (GFSK)	2441	-0.89	30
(GFSK)	2480	-1.38	30
EDR Mode (π/4-DQPSK)	2402	-3.69	30
	2441	-2.98	30
	2480	-3.57	30
EDR Mode (8-DPSK)	2402	-2.98	30
	2441	-2.61	30
	2480	-3.09	30

Note: The data above was tested in conducted mode.

BDR Mode (GFSK):

Low Channel

Report No.: RDG161111801A Page 56 of 65

Middle Channel

High Channel

EDR Mode ($\pi/4$ -DQPSK):

Low Channel

Middle Channel

Report No.: RDG161111801A Page 58 of 65

High Channel

EDR Mode (8-DPSK):

Low Channel

Report No.: RDG161111801A Page 59 of 65

Middle Channel

High Channel

FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2016-09-21	2017-09-20
N/A	RF Cable	N/A	N/A	Each Time	1

^{*} Statement of Traceability: BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Report No.: RDG161111801A Page 61 of 65

Test Data

Environmental Conditions

Temperature:	27.1 °C
Relative Humidity:	37%
ATM Pressure:	101.6 kPa

^{*} The testing was performed by Tom Tang on 2016-12-06.

Test Result: Compliance

BDR Mode (GFSK):

Band Edge, Left Side

Report No.: RDG161111801A Page 62 of 65

Band Edge, Right Side

EDR Mode ($\pi/4$ -DQPSK):

Band Edge, Left Side

Report No.: RDG161111801A Page 63 of 65

Band Edge, Right Side

EDR Mode (8-DPSK):

Band Edge, Left Side

Report No.: RDG161111801A Page 64 of 65

Band Edge, Right Side

***** END OF REPORT *****

Report No.: RDG161111801A Page 65 of 65