Question 1

Marks

- (a) Differentiate:
 - (i) e^{3x-1}
 - (ii) $\log_e (2x-1)$
- (b) Evaluate $\lim_{x\to 0} \frac{\sin 3x}{x}$
- (c) Find the remainder when the polynomial $P(x) = x^3 2x$ is divided by x + 1
- (d) Evaluate $\int_0^{\sqrt{3}} \frac{dx}{\sqrt{4-x^2}}$
- (e) Find the equation of the tangent to the curve $y = e^{2x} 3x$ at the point (0,1)
- (f) A(-2, -5) and B(1, 4) are two points. Find the acute angle \mathcal{G} between the line AB and the line x + 2y + 1 = 0, giving the answer correct to the nearest minute.

Question 2 Start a new page

- (a) Given $\log_a x = 0.64$ and $\log_a y = 0.04$ find $\log_a (\frac{x}{y})$
- (b) Q(-1, 4) and R(x, y) are two points. The point P(14, -6) divides the interval QR externally in the ration 5:3. Find the coordinates of R.
- (c) (i) Sketch $y = e^{x} (-1)$
 - (ii) Find the exact volume of the solid of revolution formed when the curve $y = e^x 1$ is rotated about the x-axis from x = 0 to x = 1
- (d) Show that the function $x^3 2x 5 = 0$ has one root which lies between 2 and 2.2
 - (ii) Using x = 2.1 as an approximation to a root of $x^3 2x 5 = 0$, find a better approximation, correct to 2 decimal places, using Newton's method once. 3

Question 3 Start a new page

(a) Find
$$\int \frac{x}{x^2 + 5} dx$$

- (b) Write the expansion of sin (A + B).
 Hence, or otherwise, find the exact value of sin 75°
 3
- (c) Solve for x: $\frac{4}{x+1} \le 3$
- (d) Show that (x + 1) is a factor of $f(x) = 2x^3 + 7x^2 7x 12$
 - (ii) Find all roots of $f(x) = 2x^3 + 7x^2 7x 12$ and hence sketch the curve. 3

Question 4 Start a new page

(a) If α, β, γ are the roots of the equation $3x^3 - 6x^2 + x + 2 = 0$ find the value of

$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$

3

(b)

P $(2t, t^2)$ is a variable point which moves on the parabola $x^2 = 4y$. The tangent to the parabola at P cuts the x-axis at T. M is the midpoint of PT.

(i) Show that the tangent PT has equation $tx - y - t^2 = 0$

2

(ii) Show that M has coordinates $(\frac{3t}{2}, \frac{t^2}{2})$

2

(iii) Hence find the Cartesian equation of the locus of M as P moves on the parabola

2

(c)

not to scale

Circle, centre O, has diameter AC. \angle DAC = 52°

1

- (i) Explain why $\angle ADC = 90^{\circ}$
- (ii) Find ∠DBA, giving reasons for your answer.

2

Question 5 Start a new page

- (a) Stephanie invests \$150 at the start of each month into a superannuation fund. The interest is compounded monthly at a rate of 3% p.a. The first \$150 is invested at the beginning of January 2005 and the last is invested at the beginning of December 2010. Calculate, to the nearest dollar:
 - (i) The amount to which the January 2005 investment will have grown by the end of 2010.
 - (ii) The amount to which the total will have grown by the end of 2010.
- (b) Use mathematical induction to prove that:

$$\frac{1}{2\times 3} + \frac{1}{3\times 4} + \frac{1}{4\times 5} + \dots + \frac{1}{(n+1)(n+2)} = \frac{n}{2(n+2)}$$

- (c) Consider the function $f(x) = 2 \sin^{-1} x$
 - (i) Sketch the graph of $f(x) = 2 \sin^{-1} x$
 - (ii) Find the exact value of $f(\frac{1}{\sqrt{2}})$
 - (iii) Find the equation of the tangent to the curve at the point where $x = \frac{1}{\sqrt{2}}$

Question 6 Start a new page

(a) Find
$$\frac{d}{dx}\cos^{-1}2x^3$$

(b) If
$$t = \tan \frac{1}{2}\theta$$
, prove $\cos \theta (\tan \theta - \tan \frac{1}{2}\theta) = \tan \frac{1}{2}\theta$

(c) Show that
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{2}} \cos^2 x \, dx = \frac{\pi}{8} - \frac{1}{4}$$

(d)

ant to scale

A, B, C, D are points on the circumference of a circle.

AB = 5cm, BC = 6cm, DC = 7cm, AD = 8cm

(i) If
$$\angle ADC = \theta$$
, explain why $\angle ABC = 180^{\circ} - \theta$

(ii) By drawing the diagonal AC, or otherwise
$$\cos \angle ADC = \frac{13}{43}$$

2

Question 7 Start a new page

(a) Using the substitution $u = e^x$, find

$$\int \frac{e^x}{1+e^{2x}} dx$$

(b)

- (i) Express $\sqrt{3} \sin \theta \cos \theta$ in the form R sin $(\theta \alpha)$, where α is in radians.
- (ii) Hence, or otherwise, find all angles θ , where $0 \le \theta \le 2\pi$, for which $\sqrt{3} \sin \theta \cos \theta = 1$

(c) The graph of $f(x) = \sqrt{x+6}$ for $x \ge -6$ is shown in the diagram.

(i) Find the inverse function $f^{-1}(x)$

1

(ii) On the same diagram sketch the graphs of y = f(x), the line y = x, and $y = f^{-1}(x)$. Show clearly the intercepts on the coordinate axes.

2

(iii) What is the domain of $f^{-1}(x)$

1

(iv) Show that the x coordinate of any points of intersection of the graphs y = f(x) and $y = f^{-1}(x)$ satisfy the equation $x^2 - x - 6 = 0$. Hence find any points of intersection of the two graphs.

2

END OF EXAMINATION

3 Unit

4 NOLLSAN			
大十日十八日 十日 12	c) i) < ADC= 90° angle in a semi-circle	= k(k+3) + 1(2)	1, 1, = w (x-x')
76+2X+ 8X = 10 11 12 13	11) LDCA= 180-90-52 (ought sum of a)	= k +3k+2	y - 1 = 252(x - 1/2)
	LDBA=38° (angles in the same segment	2(K+2)(K+3)	1 2
R + B + L = Brack+age	مرّد مهسمگ	= (K+6)(K+3) 2 (K+6)(K+3)	y > 2/2x - 2+17
27. st	QUESTION S	2(k+3)	
1 7	a)3% pa = + 6 pm = 0.0025		$-1(2x^3) =$
μ).	i) A=P(1+c).	1 3 K+1	\1-(\times)
)i) y= +	- \$179.54	d 's true for >=1+1=2, a >=12+1=3	$\sqrt{1-4x_0^2}$
الإ الإ الإ		etc.:	
4 x=2t 4'= 2t=2	ii) A. = 150 (1.0025)		b) cost (ton8 - tont &)
1-11-m(x-x)	A72 = 150 (1.00 25)	الجا	1-42
y-z=tx-2t2	Total A = 150 (1.0025 + 1.0025 + + 1.0025 72)		1+45 (1-65)
0=6x-4-2	= 150 (1.0025 (1.0025 -1))	, , , , , , , , , , , , , , , , , , ,	= +++3
ii) If y=0, ex-0-t=0	54.94811¢=	, n	$= \frac{*(1+e^2)}{1+e^2}$
T(t,0)	b) If ~=1, LHS====================================	ii) f(上) = 3sin (上)	= x = tou = 2.0.
midpoint = (= 1 , = 1)	RHS = 2(3) = 6 = CHS		- X2 Sur
٥ (عاً ٢٠)	Promuse true for not	Fly	$\frac{1}{2} \cos x dx = \frac{2asx-1}{2}$
	18 1 + 1 + 1 + 1 K	$f(x) = 2\sin^{-1}x$	1 ((ws 2x + 1) dol
$\frac{C=2x}{3} = \left(\frac{2x}{3}\right)^{\frac{1}{2}} = 2$ $4 = 4x^{\frac{1}{2}} \times 1$	(4-1)(4-2) 2(K+2)	$f'(x) = 3. \frac{1}{\sqrt{1-x^2}}$	= ± [± sin 2x + x] 7/2
0 7 2	is - + - +	f'(ta) =	
x4= 481	$\frac{2\pi^{3}}{2}$ (k+)(k+2) (k+2)(k+3) $\frac{1}{2}$ (k+3)	<u></u>	7 L + 7 / L + 1/1
94=22	1.H5 = K + 1	5	= 立[(0+孔)-(主+孔)]
	(ען ני ה ה ה ה	
		נג גג	1 + + + + + + + + + + + + + + + + + + +

ď

