Vyhledávání řetězců

T – textový řetězec(v čem to hledáme)

P – vzorový řetězec (to co hledáme)

- Řetězec S velikosti m
- Podřetězec S[i...j] je část řetězce mezi indexy i a j
- Prefix (předpona) S je podřetězec S[0...i]
- Sufix (přípona) S je podřetězec S[I ... m-1]

Brute force (algoritmus hrubé síly)

Pro každou pozici v textu T kontrolujeme zda v ní nezačíná vzor P

P se posouvá po 1 znaku přes T

- Časová složitost Brute force algoritmu je O(mn) nejhorší případ
- Většina vyhledávání v běžném textu má složitost O(m+n)
- Je rychlý, pokud je abeceda textu velká
- Algoritmus je pomalý pro malou abecedu

Boyer-Moore algoritmus

- 1. Zrcadlový přístup k vyhledávání. (hledáme P v T tak, že začínáme na konci P a postupujeme zpět k začátku)
- 2. Přeskočíme skupinu znaků, které se neshodují (pokud takové znaky existují)

Př:

Funkce Last()

- Boyer-Moore algoritmus předzpracovává vzor P a pro danou abecedu A definuje funkci Last().
 - o Last zobrazuje všechny znaky abecedy A do množiny celých čísel
- Last(x) je definována jako: // x je znak v A
 - Největší index i pro který platí, že P[i] == x, nebo -1 pokud žádný takový index v P neexistuje

Příklad funkce Last()

P: "abacab"

P	a	b	a	c	a	b
			2			

x	а	b	c	d
Last(x)	4	5	3	-1

Boyer-Moore příklad (2)

x	a	b	c	d
L(x)	4	5	3	-1

Boyer-Moore v Javě

```
Public static int bmMatch(String text, String pattern({
int last[] = buildLast(pattern);
int n = text.length();
int m = pattern.length();
int i = m int i = m-1;
if (i > n-1)
return -1; // není shoda není shoda - vzor je
// delší než text
Int j = m-1;
if (pattern.charAt(j) == text.charAt(i))
        if(j==0){
        return I; //match
        else{ //zpetny pruchod
        int lo = last[text.charAt(i)]; //last occ
        i = i + m - Math.min(j, 1+lo);
        j=m−1;
} while (i<=n-1);
return -1 //neni shoda
}//konec
Last:
publi t ti i t[] blic static int[] b ildL t buildLast(St i tt ) (String pattern)
 /* vrací pole indexů posledního výskytu každého
znaku ve vzoru */
int last[] = new int[128]; // ASCII znaky
for (int i= for (int i=0; i< 128; i++)
last[i] = -1; // initializace
for (int i = 0; i < p g attern.length(); i++)
last[pattern.charAt(i)] = i;
return last;
} // d f b ild t() } // end of buildLast()
```

- Časová složitost Boyer-Moore algoritmu je v nejhorším případě O(nm+A)
- Boyer-Moore je rychlejší pokud je abeceda (A) velká, pomalý pro malou abecedu. tj. algoritmus je vhodný pro text, špatný pro binární vstupy
- Boyer-Moore rychlejší než brute force v případě vyhledávání v textu.

Knuth-Morris-Pratt (KMP) algoritmus

- Vyhledává vzor v textu zleva do prava (jako BF algo.)
- Posun vzoru jje řešen mnohem inteligentněji než v brute force algoritmu.
- Pokud se vyskytne neshoda mezi textem a vzorem P v P[j], jaký je největší možný posun vzoru abychom se vyhnuly zbytečnému posouvání?
- ->největší prefix P[0 ... j-1] je sufixem P[1 ... j-1]

Příklad

Chybová funkce

- KMP předzpracovává vzor, abychom nalezli shodu prefixů vzoru se sebou samým.
- k = pozice před neshodou (j-1)
- chybová funkce F(k) definována jako nejdelší prefix P[0 ... k], který je také suffixem P[1 ... k]

(k == j-1)

• P: "abaaba"

	k	0	1	2	3	4	5
ſ	F(k)	0	0	1	1	2	3

F(k) velikost největšího prefixu, který je zároveň sufixem

Použití: KMP modifikuje BF algo

- Pokud se vyskytne neshoda v P[j] (i.e.P[j]!=T[i]), pak
- K=j-1;
- J=F(k); // získání nové hodnoty j

- KMP běží v optimálním čase: O(m+n)
- Algoritmus se nikdy neposouvá zpět ve vstupním textu T (obzvlášť výhodný ve velkých souborech)

Standardní Trie

- Standardní trie pro množinu řetězců S je k-ární (k je velikost použité abecedy) uspořádaný strom, pro který platí:
 - Každý uzel, kromě kořene, je ohodnocen znakem
 - Následníci uzlu jsou abecedně uspořádány
 - Symboly v uzlech na cestě z kořene do externího uzlu tvoří řetězec množiny S
- Příklad: standardní trie pro množinu řetězců
 - S = { bear, bell, bid, bull, buy, sell, stock, stop }

Použití:

- Vyhledávání slov [O(m)]
- Vyhledávání prefix [O(m)]

Komprimovaná Trie

SCS - Shortest common super-sequence

Algoritmus nalezení nejkratšího společného "nadřetězce"

- Podobný algoritmu LCS
- ◆ Definice: Necht' X a Y jsou dva řetězce znaků. Řetězec Z je "nadřetězec" (super-sequence) řetězců X a Y pokud jsou oba řetězce X a Y podřetězcem (subsequence) Z.
- Shortest common super-sequence algoritmus:

Vstup: dva řetězce X aY.

Výstup: nejkratší společný "nadřetězec" X a Y.

Příklad: X=abc a Y=abb. Oba řetězce abbc abcb jsou nejkratším společným "nadřetězcem" řetězců X a Y.

© 2004 Goodrich, Tamassia

nejkratsi spolecnej nadretezec

tabulka – prvni radek a sloupec – indexy sloucpu (radku), cisluje se od 0

shoda: vezmeme cislo vlevo nahore od porovnavane pozice a zvednem o jedna, sipka doleva nahoru

neshoda: vezmeme mensi cislo z hodnot vlevo a nahore od soucasne pozice, zvedneme o jednicku a sipka timto smerem

LCS – Longest common subsequence

Algoritmus nalezení nejdelšího společného podřetězce

- LCS algoritmus je jedním ze způsobů jak posuzovat podobnost mezi dvěma řetězci
- algoritmus se často využívá v biologii k posuzování podobnosti DNA sekvencí (řetězců obsahujících symboly A,C,G,T)
- ◆ Příklad X = AGTCAACGTT, Y=GTTCGACTGTG
- ♦ Podřetězce jsou např. S = AGTG and S'=GTCACGT
- Jak lze tyto podřetězce nalézt ?
 - Použitím hrubé síly: pokud |X| = m, |Y| = n, pak existuje
 2^m podřetězců x, které musíme porovnat s Y (n porovnání)
 tj. časová složitost vyhledání je O(n 2^m)
 - Použití dynamického programování složitost se sníží na O(nm)

nejdelsi spolecnej podretezec

tabulka - prvni radek a sloupec nuly

shoda: vezmeme cislo vlevo nahore od porovnavane pozice a zvednem o jedna, sipka doleva nahoru neshoda: vezmeme vetsi cislo z hodnot vlevo a nahore od soucasne pozice a sipka timto smerem

	j	0	1	2	3	4	5
i		Yj	B	D	\mathbf{C}	\mathbf{A}	(B)
0	Xi	0	0	0	0	0	0
1	A	0	0 †	0 1	0 1	1 \	1_
2	В	0	1 \	1 _	1 ←	1 †	2
3	C	0	1 †	1 †	2	2 ←	2
4	B	0	1	1 †	2 †	2 †	3

	j	0	<u></u>	2	3	4	5
i		Yj	(B) D	(C)	A	(B)
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	B	0	1+	- 1 🙀	1	1	2
3	$\left(\mathbf{c} \right)$	0	1	1	2 ←	- 2	2
4	$\left(\mathbf{B} \right)$	0	1	1	2	2	3

SCS

	j	0	1	2	3	4	5
i		Yj	В	D	C	A	$\left(\mathbf{B}\right)$
0	Xi	0	1	2	3	4	5
1	A	1	2 †	3	4 †	4 \	5_
2	В	2	2	3 _	4	5	5 \
3	C	3	3 †	4	4	5_	6 1
4	B	4	4	5	5 †	6 †	6

	j	0	1	(2)	3	4	5
i		Yj	В	(\mathbf{D})	C	(A	(в
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	B	0	1+	- 1	1	1	2
3	$\left(\mathbf{c}\right)$	0	1	1	2 +	- 2	2
4	$\left(\begin{array}{c}\mathbf{B}\end{array}\right)$	0	1	1	2	2	\ 3