18.404/6.840 Lecture 16

Last time:

- NP-completeness
- $-3SAT ≤_P CLIQUE$
- $-3SAT \leq_{\mathsf{P}} HAMPATH$

Today:

- Cook-Levin Theorem: *SAT* is NP-complete
- 3SAT is NP-complete

Quick Review

Defn: *B* is NP-complete if

- 1) $B \in NP$
- 2) For all $A \in NP$, $A \leq_P B$

If B is NP-complete and $B \in P$ then P = NP.

Importance of NP-completeness

- 1) Evidence of computational intractability.
- 2) Gives a good candidate for proving $P \neq NP$.

To show some language C is NP-complete, show $3SAT \leq_{P} C$.

or some other previously shown NP-complete language

Check-in 16.1

The big sigma notation means summing over some set.

$$\sum_{1 \le i \le n} i = 1 + 2 + \dots + n$$

The big AND (or OR) notation has a similar meaning.

For example, if $x = x_1 \cdots x_n$ and $y = y_1 \cdots y_n$ are two strings of length n, when does the following hold?

$$\left(\bigwedge_{1 \le i \le n} x_i = y_i\right) = \text{TRUE}$$

- (a) Whenever x and y agree on some symbol.
- (b) Whenever x = y.

Cook-Levin Theorem (idea)

```
Theorem: SAT is NP-complete
Proof: 1) SAT \in NP (done)
2) Show that for each A \in NP we have A \leq_P SAT:
Let A \in NP be decided by NTM M in time n^k.
Give a polynomial-time reduction f mapping A to SAT.
f \colon \Sigma^* \to \text{ formulas}
f(w) = \langle \phi_{M,w} \rangle
w \in A \text{ iff } \phi_{M,w} \text{ is satisfiable}
Idea: \phi_{M,w} simulates M on w. Design \phi_{M,w} to "say" M accepts w.
```

Satisfying assignment to $\phi_{M,w}$ is a computation history for M on w.

Tableau for M on w

Defn: An <u>(accepting) tableau</u> for NTM M on w is an $n^k \times n^k$ table representing an computation history for M on w on an accepting branch of the nondeterministic computation.

Constructing $\phi_{M,w}$: ϕ_{cell}

The variables of $\phi_{M,w}$ are $x_{i,j,\sigma}$ for $1 \le i, j \le n^k$ and $\sigma \in \Gamma \cup Q$.

 $\overline{x_{i,j,\sigma}} = \text{True means cell } i,j \text{ contains } \sigma.$

Check-in 16.2

How many variables does $\phi_{M,w}$ have? Recall that n=|w|.

- (a) O(n)
- (b) $O(n^2)$
- (c) $O(n^k)$
- (d) $O(n^{2k})$

Constructing $\phi_{M,w}$: $\phi_{ ext{start}}$ and $\phi_{ ext{accept}}$

$$\phi_{M,w}$$
 "says" a tableau for M on w exists. $\phi_{M,w} = \phi_{\text{cell}} \wedge \phi_{\text{start}} \wedge \phi_{\text{move}} \wedge \phi_{\text{accept}}$ ϕ_{cell} done \checkmark $\phi_{\text{start}} = \phi_{\text{accept}} = \bigvee_{k} x_{n^k,j,q_{\text{accept}}}$

Constructing $\phi_{M,w}$: ϕ_{move}

 2×3 neighborhood

 $\phi_{M,w}$ "says" a tableau for M on w exists.

$$\phi_{M,w} = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{move}} \land \phi_{\text{accept}}$$

Legal neighborhoods: consistent with M's transition function

potential a
$$q_7$$
 b examples: q_3 a c

Illegal neighborhoods: not consistent with M's transition function

$$\begin{array}{c|cccc} a & q_7 & c \\ \hline q_3 & d & q_4 \\ \end{array}$$

Claim: If every 2×3 neighborhood is legal then tableau corresponds to a computation history.

$$\phi_{\text{move}} = \bigwedge_{1 < i,j < n^k} \left(\bigvee_{\text{Legal}} \left(x_{i,j-1,r} \wedge x_{i,j,S} \wedge x_{i,j+1,t} \wedge x_{i+1,j-1,V} \wedge x_{i+1,j,V} \wedge x_{i+1,j+1,Z} \right) \right)$$
Says that the neighborhood at i,j is legal

r	S	t
V	У	Z

Says that the neighborhood at i, j is legal

Conclusion: *SAT* is NP-complete

Summary:

For $A \in NP$, decided by NTM M, we gave a reduction f from A to SAT:

$$f \colon \Sigma^* \to \text{ formulas}$$

 $f(w) = \langle \phi_{M,w} \rangle$
 $w \in A \text{ iff } \phi_{M,w} \text{ is satisfiable.}$

$$\phi_{M,w} = \phi_{\text{cell}} \wedge \phi_{\text{start}} \wedge \phi_{\text{move}} \wedge \phi_{\text{accept}}$$

The size of $\phi_{M,w}$ is roughly the size of the tableau for M on w, so size is $O(n^k \times n^k) = O(n^{2k})$.

Therefore f is computable in polynomial time.

3SAT is NP-complete

$$\begin{array}{c|cccc} a & b & a \lor b = c \\ \hline 1 & 1 & 1 & (a \land b) \to c \\ 0 & 1 & 1 & (\overline{a} \land b) \to c \\ 1 & 0 & 1 & (\overline{a} \land \overline{b}) \to \overline{c} \\ 0 & 0 & 0 & (\overline{a} \land \overline{b}) \to \overline{c} \end{array}$$

Theorem: 3SAT is NP-complete

Proof: Show $SAT \leq_P 3SAT$

Give reduction f converting formula ϕ to 3CNF formula ϕ' , preserving satisfiability.

(Note: ϕ and ϕ' are not logically equivalent)

Example: Say $\phi = ((a \land b) \lor c) \land (\overline{a} \lor b)$

Tree structure for ϕ :

Logical equivalence: $(A \to B)$ and $(\overline{A} \lor B)$ $(\overline{A} \land B)$ and $(\overline{A} \lor \overline{B})$

$$\phi' = \left((\mathsf{a} \land \mathsf{b}) \to z_1 \right) \land \left((\overline{\mathsf{a}} \land \mathsf{b}) \to \overline{\mathsf{z}_1} \right) \land \left(\left(\mathsf{a} \land \overline{\mathsf{b}} \right) \to \overline{\mathsf{z}_1} \right) \land \left((\overline{\mathsf{a}} \land \overline{\mathsf{b}}) \to \overline{\mathsf{z}_1} \right)$$

$$\wedge \ \left((z_1 \wedge \mathsf{c}) \to z_2 \right) \wedge \left((\overline{\mathsf{z}_1} \wedge \mathsf{c}) \to z_2 \right) \wedge \left((z_1 \wedge \overline{\mathsf{c}}) \to z_2 \right) \wedge \left((\overline{\mathsf{z}_1} \wedge \overline{\mathsf{c}}) \to \overline{\mathsf{z}_2} \right)$$

 \vdots repeat for each z_i

Λ (z_4) Check-in 16.3

If ϕ has k operations (\wedge and \vee), how many clauses has ϕ '?

(a) k + 1

(c) k^2

b) 4k + 1

(d) $2k^2$

Quick review of today

- 1. *SAT* is NP-complete
- 2. 3*SAT* is NP-complete