DATA PREPARATION DARI SUMBER OPEN SOURCE

disusun untuk memenuhi tugas mata kuliah Pembelajaran mesin

Oleh:

Kelompok 10

Anggota:

 Muhammad Habil Aswad
 (2208107010013)

 Rafli Afriza Nugraha
 (2208107010028)

 Muhammad Khalid Al Ghifari
 (2208107010044)

 Muhammad Ridho
 (2208107010064)

 Muhammad Ilzam
 (2208107010087)

JURUSAN INFORMATIKA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

UNIVERSITAS SYIAH KUALA

DARUSSALAM, BANDA ACEH

2025

BAB I

PENDAHULUAN

1.1 Latar Belakang

Dalam era digital saat ini, data menjadi salah satu aset paling berharga dalam berbagai bidang, termasuk bisnis, kesehatan, keuangan, dan ilmu pengetahuan. Namun, sebelum data dapat digunakan untuk analisis atau pelatihan model machine learning, diperlukan proses persiapan data yang tepat. Data yang tidak bersih atau tidak terstruktur dapat menyebabkan hasil analisis yang tidak akurat dan berdampak negatif pada keputusan yang diambil. Oleh karena itu, pemahaman mendalam tentang teknik data preparation sangat penting untuk memastikan kualitas data yang optimal sebelum digunakan dalam proses lebih lanjut.

Tugas ini bertujuan untuk memberikan pengalaman langsung dalam mengolah data dari sumber open source, seperti Kaggle dan Hugging Face. Dengan melakukan serangkaian tahap data preparation, diharapkan dapat memahami pentingnya proses ini serta menerapkan teknik yang sesuai untuk meningkatkan kualitas data yang digunakan dalam analisis atau model machine learning.

1.2 Tujuan

Adapun tujuan dari tugas ini adalah sebagai berikut:

- 1. Memahami proses pemilihan dan pemuatan dataset dari sumber open source.
- 2. Menganalisis struktur dan karakteristik dataset yang digunakan.
- 3. Melakukan eksplorasi data awal untuk menemukan pola dan insight penting.
- 4. Menerapkan teknik preprocessing untuk meningkatkan kualitas dataset, termasuk penanganan missing values, encoding, normalisasi, dan feature selection.
- 5. Mendokumentasikan proses data preparation secara sistematis dalam bentuk laporan.

BAB II

PEMBAHASAN

2.1 Deskripsi Dataset

Nama Dataset : Earthquakes in Indonesia

Sumber : <u>Kaggle</u>

Dataset "Earthquakes in Indonesia" adalah kumpulan data yang berisi catatan kejadian gempa bumi di Indonesia. Data ini mencakup informasi seperti tanggal dan waktu kejadian, lokasi geografis (latitude dan longitude), kedalaman, serta magnitudo gempa. Selain itu, terdapat juga beberapa parameter mekanisme sumber gempa (strike, dip, dan rake) yang menggambarkan bagaimana patahan bumi bergerak saat gempa terjadi.

2.2 Sampel Data

• **Jumlah Sampel** : 92.887

• Jumlah Fitur : 13

• Label : Dataset ini tidak memiliki label eksplisit untuk tugas klasifikasi. Tetapi, kolom mag atau remark bisa digunakan sebagai target dalam analisis tertentu, seperti klasifikasi gempa berdasarkan wilayah atau magnitudo.

• Format Data : CSV (Comma-Separated Values)

2.3 Data Loading

Dalam penelitian ini, data yang digunakan berasal dari file CSV bernama "katalog_gempa.csv". File ini berisi informasi mengenai kejadian gempa bumi di Indonesia yang akan dianalisis lebih lanjut. Untuk memuat dataset ini ke dalam lingkungan pemrograman Python, digunakan library Pandas, yang memungkinkan pembacaan dan manipulasi data dalam format tabular dengan efisien.

Berikut adalah langkah-langkah pemuatan data:

1. **Mengimpor Library** Untuk mempermudah proses pemuatan dan analisis data, kita menggunakan library Pandas.

import pandas as pd

2. Membaca File CSV Dataset dimuat ke dalam DataFrame Pandas menggunakan fungsi pd.read_csv(). Dengan ini, data dapat diakses dan dimanipulasi dengan lebih mudah.

```
# Memuat dataset dari file CSV
df = pd.read_csv("katalog_gempa.csv")
```

Dengan langkah-langkah di atas, dataset telah berhasil dimuat dan siap untuk dianalisis lebih lanjut.

2.4 Data Understanding

Untuk memahami dataset secara keseluruhan, kita bisa melihat kita dapat melihat Statistik Dasar dari Dataset seperti berikut:

1. Ringkasan Statistik Dasar

Ringka	san Statistik	Dataset:					
	lat	lor	ı dept	:h	mag	strike1	\
count	92887.000000	92887.000000	92887.00000	92887.000	000	2735.000000	
mean	-3.404577	119.159707	49.00939	99 3.592	788	170.142852	
std	4.354584	10.833202	76.76107	70 0.834	042	88.359267	
min	-11.000000	94.020000	2.00000	00 1.000	000	0.000000	
25%	-7.885000	113.170000	10.00000	3.000	000	107.550000	
50%	-2.910000	121.160000	16.00000	3.500	000	144.600000	
75%	0.140000	126.900000	54.00000	00 4.200	000	217.500000	
max	6.000000	142.000000	750.00000	7.900	000	359.200000	
	dip1	rake1	strike2	dip2		rake2	
count	2735.000000	2735.000000	2735.000000	2735.000000	273	5.000000	
mean	60.202121	30.358062	197.450303	56.576344	3!	5.250018	
std	19.699252	99.957906	118.920519	21.274923	9	8.235894	
min	2.300000	-180.000000	0.000000	1.500000	-18	0.000000	
25%	46.950000	-28.500000	63.115000	39.400000	-19	9.900000	
50%	62.300000	57.600000	240.720000	58.400000	5	6.500000	
75%	76.400000	100.150000	297.480000	74.700000	11:	2.600000	
max	90.000000	180.000000	359.980000	90.000000	18	0.000000	
						•	

Berdasarkan ringkasan statistik, magnitudo gempa (**mag**) berkisar antara terendah dan tertinggi, dengan rata-rata sekitar nilai mean. Kedalaman gempa (**depth**) sangat bervariasi, dengan beberapa gempa sangat dangkal dan beberapa sangat dalam. Sebaran latitude (**lat**) dan longitude (**lon**) menunjukkan cakupan gempa di berbagai wilayah di Indonesia.

2. Jumlah Missing Values di setiap kolom

```
Jumlah Missing Values per Kolom:
                0
                0
lat
                0
lon
                0
depth
                0
mag
                0
remark
                0
strike1
           90152
           90152
rake1
           90152
strike2
           90152
dip2
           90152
rake2
           90152
dtype: int64
```

- Kolom mekanisme sumber gempa (**strike1, dip1,** dll.) memiliki banyak missing values.
- Kolom utama seperti **lat, lon, depth,** dan **mag** umumnya lengkap.

3. Visualisasi Distribusi data

- Magnitudo (mag): Distribusi mendekati normal, dengan mayoritas gempa berkisar antara 3 hingga 6.
- Latitude (lat) dan Longitude (lon): Menunjukkan sebaran lokasi gempa di wilayah Indonesia.

- Kedalaman (**depth**): Distribusi miring ke kanan, menunjukkan lebih banyak gempa terjadi di kedalaman dangkal.
- Strike, Dip, dan Rake: Memiliki pola distribusi yang beragam, beberapa menunjukkan variasi yang tinggi

4. Korelasi antar fitur

Kebanyakan fitur tidak berkorelasi satu dengan lainnya, hanya fitur rake1 dan rake 2 yang memiliki korelasi cukup tinggi yaitu 0.46.

5. Insight dari Eksplorasi Data

- Magnitudo: Mayoritas gempa berkisar antara 3–6, sedangkan gempa besar (>7) jarang terjadi.
- Sebaran Lokasi: Gempa tersebar di sepanjang Cincin Api Pasifik, terutama di Sumatra, Jawa, Sulawesi, dan Papua.
- Kedalaman Gempa: Mayoritas kurang dari 100 km, menunjukkan aktivitas tektonik dangkal.
- Mekanisme Patahan: Beragam jenis patahan sesuai dengan pergerakan lempeng di Indonesia.
- Missing Values: Tidak ada nilai yang hilang, dataset siap untuk analisis lebih lanjut.

2.5 Data Preparation

Pada tahap ini, dilakukan preprocessing untuk menyesuaikan dataset agar dapat digunakan secara optimal dalam analisis lebih lanjut. Jika tujuan utama dari dataset ini adalah untuk membuat model machine learning, seperti klasifikasi atau klastering, maka penanganan terhadap data yang kosong atau tidak relevan sangatlah penting. Oleh karena itu, kami melakukan beberapa langkah preprocessing sebagai berikut:

1. Memisahkan tahun, bulan dan tanggal.

- Kolom tgl (tanggal) dipecah menjadi tiga bagian: tahun, bulan, dan tanggal menggunakan metode .str.split("/", expand=True).
- Setelah pemisahan, tipe data dikonversi ke integer menggunakan .astype(int), sehingga mempermudah analisis berbasis waktu.
- Kolom tgl yang asli kemudian dihapus (df.drop(columns=['tgl'], inplace=True)) karena informasinya telah dipisahkan ke dalam kolom yang lebih spesifik.
- 2. Mengonversi kolom kategorikal remark menjadi numerik dengan Label Encoding.

```
from sklearn.preprocessing import LabelEncoder
  le = LabelEncoder()
 df['remark'] = le.fit_transform(df['remark'])
               ot
                    lat
                           lon depth mag remark strike1 dip1 rake1
                                                                      strike2 dip2
                                                                                   rake2 tahun
                                                                                                 bulan tanggal
92882 02:25:09.288 3.24 127.18
                                               46
                                                    NaN NaN
                                                                 NaN
                                                                        NaN
                                                                                                           26
                                                                              NaN
                                                                                     NaN
92883 02:15:03.893 2.70 127.10
92884 01:57:08.885 -7.83 121.07
                                                     NaN
                                                           NaN
                                                                 NaN
                                                                         NaN
                                                                              NaN
                                                                                     NaN
                                                                                                           26
                                                     NaN NaN
                                                                 NaN
                                                                         NaN
                                                                              NaN
                                                                                     NaN
92886 00:00:35.181 -8.87 118.95
                                                                        NaN
                                                                              NaN
                                                                                     NaN
```

- Kolom **remark** yang berisi informasi kategorikal diubah menjadi nilai numerik menggunakan **Label Encoding** dari pustaka sklearn.preprocessing.
- Label Encoding mengubah kategori dalam kolom tersebut menjadi nilai numerik sehingga dapat digunakan dalam analisis lebih lanjut atau model machine learning.
- 3. Membagi dataframe menjadi dataframe lengkap, dataframe umum, dan dataframe khusus.
 - Dataframe lengkap (df): Dataframe yang digunakan untuk analisis dan visualisasi, sehingga missing value dihiraukan karena dapat berguna untuk menambah informasi dari suatu data.

• **Dataframe umum (df1):** Dataframe yang digunakan untuk machine learning yang memiliki data-data umum saja (tidak memiliki kolom dip1, strike1, rake1, dip2, strike2, and rake2).

• Dataframe khusus (df2): Dataframe yang digunakan untuk machine learning yang memiliki data-data khusus yang tidak terlalu banyak dimiliki oleh data umum biasanya.

Alasan pemisahan:

Tiga dataframe dibuat untuk fleksibilitas analisis dan machine learning. **Df** dipertahankan tanpa menghapus missing value untuk eksplorasi dan visualisasi. **Df1** dibuat dengan menghapus kolom yang memiliki lebih dari 97.7% missing value agar lebih bersih dan ringkas. **Df2** hanya menyimpan data dengan fitur seismik lengkap, cocok untuk model yang membutuhkan informasi spesifik. Pemisahan ini memastikan setiap dataset dapat digunakan sesuai kebutuhan tanpa kehilangan informasi penting.