Reg. No.: Name :

Continuous Assessment Test II – June 2023

Programme	: B.Tech. CSE.	Semester	:	Fall Inter 2022-23
Course Code/Title	BCSE303L -Operating System	Slot	:	E2+TE2
Faculty	Dr. Abdul Quadir MD Dr. Bhanu Chander Balusa Dr. Rishikeshan C A Dr. Sandeep Kumar Satapathy Dr. Pradeep K Dr. Valarmathi P Dr. Indra Priyadharshini Dr. Monica Dr. Sangeetha N Dr. Anandan P Dr. Yogesh C Dr. Leki Chom Thungon Dr. Tapabrata Roy	Class Number		CH2022232500759 1 CH2022232500982 2 CH2022232500983 5 CH2022232500993 6 CH2022232500998 6 CH2022232500988 6 CH2022232500755 2 CH2022232500756 CH2022232500757 CH2022232500758 CH2022232500760 CH2022232501076 CH2022232501076
Time	: 1½ Hours	Max. Marks	:	50

Answer ALL Questions

-/-		1	ltipl	o halving stat	ione wher	e different	tasks are no	erformed	10
1/	In a bakery, there are multiple baking stations where different tasks are performed to create various bakery goods. Assume that bakery has five baking stations. Each								
	baking station	ious da	ikery goo	us. Assume u	mat baker	on mivers	and nane to	carry out	
	baking station	n requi	res specii	ic resources s	ucii as ov	en, mixers	iroment of r	carry out	
	the tasks effe	ctively	. At time	T ₀ , allocation	and max	ımum requ	irement or i	esources	
	for all the bak	ring sta	tion are s	hown in the ta	able belov	V.		n	
	BAKING	N 0 1 0 0 2 0 3 0 2 2 1 1				MAXIMU		١, ١	
	STATIONS	OVE	MIXER	PAN	OVEN	MIXER	PAN	1	
		N						343	
	A	0	1	0	7	5	3		_
	В	2	0	0	3	2	2	122	
	С	3	0	2	9	0	2	600	y
	D	2	1	1	2	2	2	011	->
	E	0	0	2	4	3	3	1931	2
	Current avail	able re	sources ar	e 3,3,2.					
	i. Check whether baking stations can finish their tasks. If so, specify the								
	order in which each baking station completes the task.								
-	of the first and a second from boding station (A' raised for (3.3.0) resources								
	ii. If additional request from baking station 'A' raised for (3,3,0) resources,								
	can the request be granted immediately? If yes, specify the order in which								
	ea	ch baki	ng station	completes th	e task, if r	10, justify.			
1									
. 2/	In cooking co	ompetit	ion event	conducted in	n Vibranc	e, the orgai	nizing comm	nittee has	10
	the following	comp	onents: fiv	ve frying pan:	s, five coo	king pots,	five induction	on stoves,	
	and five wo	oden s	poons. Th	iere are four	teams p	articipatin	g with the	following	3.0
	and nee we								

	scenario:	T
	 TEAM 1 having two induction stoves but waiting for four frying pans to prepare their food. TEAM 2 having three induction stoves, one wooden spoon, one cooking po and two frying pans but waiting for one frying pan and one wooden spoon to prepare their food. TEAM 3 having two cooking pot and one wooden spoon but waiting for two induction stoves and one wooden spoon to prepare their food. TEAM 4 having one cooking pot and two frying pans but waiting for fou induction stoves to prepare their food. Draw the resource allocation graph for the given problem. Perform the deadlock detection algorithm and verify if deadlock exist or not. If no deadlock exists then find the cafe converge. If the paid and leadlock exists or not. If no deadlock exists then find the cafe converge. 	t o r
3. 9	the safe sequence. If there is a deadlock, suggest a technique to overcome. A team of students are doing a project, where they store their results of implementation in a common drive shared drive. At a time only one student is allowed to access the drive for modification in order to avoid inconsistency of data stored. Explain how synchronization can be achieved among the students be implementing hardware instruction and also prove that the solution satisfies all the requirements of critical section.	s a y
4.	Consider group of kids are picking cake cubes from a container that can hold up to cakes. A child who wants to eat a cake picks one from the Container to eat. If a kid find the Container to be vacant, the kid updates to his mother and waits until the mother refil the container with N cakes. Unsynchronized code snippets for the kid and mother thread are shown below: //Kid //Mother while True: getCakeFromContainer() eat() //Mother refillCakeContainer(N)	ls ls
	The following variables have been declared for use in your solution. int count = 0; mutex m; // invoke lock and unlock You may perform wait and signal or signal_broadcast with the following: condvar fullContainer, vacantContainer Your task is to provide modified code of the mother and kid threads by addir suitable synchronization such that a kid invokes getCakeFromContainer () only if the Container is non-empty, and the mother invokes refillCakeContainer(N) only if the Container is fully vacant. Solve this question using only locks and condition variable and no other synchronization primitive.	ne es,
	You are a software developer working on a memory-intensive application the manipulates large amounts of data. The application frequently needs to allocate and de-allocate memory dynamically. The current memory allocation strategy is causing performance issues, hence you have been given a task to improve. Given five memory partitions of 130KB, 540KB, 220KB, 335KB, 585KB (in order), show how would the various memory allocation algorithms allocate processes of 190 KB, 390 KB, 121 KB and 450 KB (in order)? Which algorithm makes the most efficient use of memory	ng ry ne B,