

Basic Information/Objective

In this project, we look into a variety of storm events that occur in the state of Florida, from thunderstorms to flooding. We then retrieved data from NOAA that determines how long each storm event occurs for, and how the aftermath of the storm affected officials and residents.

Description of Dataset

The dataset describes the weather events that occurred in Florida 2013. It gives the 67 counties of Florida, the event types, the dates of the event types. In the dataset, it shows every storm event across all states, however, Florida is the main focus. The dataset also includes the month, day, and year of these storm events.

Data Preparation

Data Loading:

The data was loaded as a CSV file

code:

df1 = pd.read_csv("stormdata_2013.csv")

df1

Data Cleaning:

We scaled the data down to Florida and took out data we did not understand or felt was unnecessary to keep. We wanted to focus on Florida out of all the states and we wanted to see the event type, the start and end of the event, the damages, and magnitude.

To select only Florida, we made a new dataframe and called it df2. We equaled df2 to our first dataframe, df1, and selected the column "STATE". Afterwards we equaled it to "FLORIDA", so the data would only be retrieved from the state of Florida. We lastly called df2, so it could print the result.

code:

df2 = df1[df1['STATE'] == 'FLORIDA']

df2

Data Preparation (cont.)

In addition to prepping the dataset, we dropped many columns that were not relevant to what we were looking for and didn't have much information to use. These columns were dropped using the drop function.

Data Preparation Images/Code

In [22]: 🕨	import pandas as pd import numpy as np import cs import sets import seaborn as sns from datetime import datetime														
In [23]: H	df = pd.re	<pre>df = pd.read_csv('stormdata_2013.csv') df</pre>													
Out[23]:		IN_YEARMONTH	BEGIN_DAY	BEGIN_TIME	END_YEARMONTH	END_DAY	END_TIME	EPISODE_ID	EVENT_ID	STATE	STATE_FIPS				
	0	201301	1	0	201301	31	2359	70300	422180	ALABAMA	1				
	1	201301	1	0	201301	31	2359	70580	423795	COLORADO	8				
	2	201301	1	1230	201301	1	1230	71728	431896	CALIFORNIA	6	***			
	3	201301	1	1800	201301	2	1400	70755	424932	WYOMING	56				
	4	201301	1	1800	201301	2	1400	70753	424935	SOUTH	46				

In [4]: df2 = df1[df1['STATE'] == 'FLORIDA']

BEGIN_DAT	CZ_NAME	EVENT_TYPE	MONTH_NAME	STATE	EVENT_ID	EPISODE_ID	END_TIME	END_DAY	END_YEARMONTH	BEGIN_TIME	BEGIN_DAY	YEARMONTH
	MIAMI- DADE	Funnel Cloud	January	FLORIDA	419577	69951	1342	4	201301	1330	4	201301
	MIAMI- DADE	Funnel Cloud	January	FLORIDA	419578	69951	1545	4	201301	1540	4	201301
1/29/2	MADISON	Drought	January	FLORIDA	422188	70302	2359	31	201301	0	29	201301
1/29/2	INLAND JEFFERSON	Drought	January	FLORIDA	422187	70302	2359	31	201301	0	29	201301
1/29/2	LEON	Drought	January	FLORIDA	422186	70302	2359	31	201301	0	29	201301
		177		*****	177.0	-	300	1757	EM S	- 100	***	===
10/15/20	Duval	Coastal Flood	October	FLORIDA	475171	79203	1754	15	201310	1754	15	201310
10/15/2	Duval	Coastal Flood	October	FLORIDA	475170	79203	600	15	201310	600	15	201310
10/15/2	Duval	Coastal Flood	October	FLORIDA	475169	79203	536	15	201310	536	15	201310
10/15/2	Duval	Coastal Flood	October	FLORIDA	475169	79203	536	15	201310	536		15

ı

Data Preparation Images/Code (cont)

Out[4]:

842 rows × 16 columns

	BEGIN_YEARMONTH	BEGIN_DAY	BEGIN_TIME	END_YEARMONTH	END_DAY	END_TIME	MONTH_NAME	EVENT_TYPE	CZ_TYPE	CZ_NAME	В
798	201301	4	1330	201301	4	1342	January	Funnel Cloud	С	MIAMI- DADE	
799	201301	4	1540	201301	4	1545	January	Funnel Cloud	С	MIAMI- DADE	
4039	201301	29	0	201301	31	2359	January	Drought	Z	MADISON	
4040	201301	29	0	201301	31	2359	January	Drought	Z	INLAND JEFFERSON	
4041	201301	29	0	201301	31	2359	January	Drought	Z	LEON	
				A-40		***				***	
51161	201310	15	1754	201310	15	1754	October	Coastal Flood	Z	Duval	
51162	201310	15	600	201310	15	600	October	Coastal Flood	Z	Duval	
51163	201310	15	536	201310	15	536	October	Coastal Flood	Z	Duval	
51189	201310	17	1648	201310	17	1648	October	Funnel Cloud	С	COLLIER	
51231	201310	19	1611	201310	19	1631	October	Heavy Rain	С	ST. JOHNS	

Data Analysis using Descriptive Statistics Images/Code

```
In [66]:
             df['MAGNITUDE'].mean()
             df['MAGNITUDE'].describe()
   Out[66]:
             count
                       51932.000000
                          17.144878
             mean
             std
                          24.671429
             min
                           0.000000
             25%
                           0.000000
             50%
                           0.750000
             75%
                          50.000000
                         105.000000
             max
             Name: MAGNITUDE, dtype: float64
```


Data Visualization

Out[77]: <AxesSubplot:title={'center':'Event Count'}, xlabel='EVENT'>

Conclusion

Based on the graphs, we can conclude that most of the storm events occurred in the month of July and the most common event that occurred was thunderstorm winds, with hail being a close second that occurred in 2013. In the beginning of 2013, the longest duration of a drought was for 25 days. The property damage after a lightning storm was the most costly, being \$95,000. Magnitude was used to measure wind speeds and hail size and in 2013, the average magnitude was 17.144878 and the maximum was 105. Overall, these kinds of events are seen more frequently due to climate change and it will only increase in the future.

Source

https://www.ncdc.noaa.gov/stormevents/listevents.jsp?eventType=%28Z%29+Wildfire&beginDate_mm=01&beginDate_dd=01&beginDate_yyyy=2021&endDate_mm=01&endDate_dd=01&endDate_yyyy=2022&county=ALL&hailfilter=0.00&tornfilter=0&windfilter=000&sort=DT&submitbutton=Search&statefips=6%2CCALIFORNIA

