

Sparsity Regularization

Bangti Jin

Course "Inverse Problems & Imaging"

Outline

- 1 Motivation: sparsity?
- 2 Mathematical preliminaries
- 3 ℓ^1 solvers

problem setup

finite-dimensional formulation

$$b = Ax^* + \eta,$$

- $\mathbf{x}^* \in \mathbb{R}^p$: the unknown signal
- $\eta \in \mathbb{R}^n$: additive Gaussian noise; $\epsilon = ||\eta||$: noise level
- $A \in \mathbb{R}^{n \times p}$, $p \gg n$: (normalized column), i.e., $||A_i|| = 1$

The problem has infinitely many solutions (if it has one), which one shall we take?

insights from "exact data"

toy example: find a "reasonable" solution to the problem

$$x_1 + 2x_2 = 5$$

There are infinitely many solutions.

Which one shall we take? convention: least-squares Gauss 1809

min
$$|x_1|^2 + |x_2|^2$$

s.t. $x_1 + 2x_2 = 5$

generalized "minimum-energy" solution

$$\min |x_1|^p + |x_2|^p, 0 \le p \le 2$$

s.t.
$$x_1 + 2x_2 = 5$$

LUCL

in case of noisy data: Tikhonov regularization

$$\frac{1}{2}\|Ax-b\|^2+\alpha\psi(x)$$

two possible choices of $\psi(x)$ (convexity ...)

classical Tikhonov regularization

$$\psi(\mathbf{X}) = \frac{1}{2} \|\mathbf{X}\|_2^2 =: \frac{1}{2} \sum_i |\mathbf{X}_i|^2$$

sparsity regularization

$$\psi(x) = ||x||_{p}^{p} =: \frac{1}{p} \sum_{i} |x_{i}|^{p}, \ p \in [0, 1]$$

general analogues ...

in case of noisy data: Tikhonov regularization

$$\frac{1}{2}\|Ax-b\|^2+\alpha\psi(x)$$

assumption: i.i.d. additive Gaussian noise on the data

$$b_i = b_i^{\dagger} + \xi_i, \quad \xi_i \sim N(0, \sigma^2)$$

⇒likelihood

$$p(b|x) \propto e^{-\frac{1}{2\sigma^2}(Ax-b)^2}$$

assumption: prior knowledge

$$p(x) \propto e^{-\lambda \psi(x)}$$

- classical Tikhonov regularization ⇔ Gaussian prior distribution
- sparsity regularization ⇔ Laplace distribution

The energy can be more general:

$$\psi(\mathbf{X}) = \tilde{\psi}(\mathbf{W}\mathbf{X}),$$

under certain transformation, e.g., wavelet, framelet, curvelet, shearlet ...

The discussions below extend to these more complex cases

natural idea for sparse solution is to penalize the number of unknowns

$$\frac{1}{2}||Ax - b||^2 + \alpha ||x||_0$$

where

$$||x||_0 = \#(\text{nonzeros in } x)$$

conceptually intuitive, but computationally very challenging: approximations:

bridge penalty

$$||x||_q^q = \sum |x_i|^q, \quad q \in (0,1)$$

I1 penalty

$$||x||_1 = \sum |x_i|$$

- The I0 penalty is the genuine choice, but VERY challenging there are different ways to approximate it ...
- Iq is an approximation, and there are many others
- especially I1 is very popular, since I1 is convex
- further, there is a solid theory

notation:

- $S = \{1, ..., p\}$
- $I \subset S$, x_I : subvector consisting of entries of x indexed by $i \in I$
- $I \subset S$, A_I : submatrix consisting of columns of A indexed by $i \in I$

restricted isometry property (RIP)

■ RIP of order s, if \exists a $\delta_s \in (0, 1)$ s.t.

$$(1 - \delta_s) \|c\|^2 \le \|A_I c\|^2 \le (1 + \delta_s) \|c\|^2 \quad \forall I \subset S, |I| \le s.$$

with δ_s being the smallest constant for which RIP holds

$$\delta_s := \inf\{\delta : (1-\delta)\|c\|^2 \le \|A_Ic\|^2 \le (1+\delta)\|c\|^2 \,\forall |I| \le s, \forall c \in \mathbb{R}^{|I|}\}$$
 denoted by RIP (s, δ_s)

 \blacksquare RIP $(s, \delta_s) \Rightarrow$

$$1 - \delta_s \le \lambda_{min}(A_l^*A_l) \le \lambda_{max}(A_l^*A_l) \le 1 + \delta_s$$

the submatrix A_l is fairly well-conditioned

■ RIP is difficult to compute

under certain conditions on the matrix A and the true solution x^* :

$$\|\mathbf{x}^* - \mathbf{x}_{\alpha}\| \leq C\epsilon$$

conditions

- the result holds on $\delta_{3s} + 3\delta_{4s} < 2$
- n is nearly of order s, i.e., $n \ge s$ up to log factors
- the reconstruction error is of the same order as data error ϵ much better than the classical inverse problems \sim sublinear \leftarrow much stronger conditions

there are some other methods that also achieves the similar errors

ALICI

convex function

convex functions: f(x) is convex over its domain dom(f) if

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2) \quad \forall \lambda \in [0, 1], x_1, x_2 \in \text{dom}(f)$$

- \blacksquare *f* is concave if -f is convex
- f is strictly convex if

$$f(\lambda x_1 + (1-\lambda)x_2) < \lambda f(x_1) + (1-\lambda)f(x_2) \quad \forall \lambda \in (0,1), x_1 \neq x_2 \in \text{dom}(f),$$

if f differentiable

$$f(x_2) \geq f(x_1) + (\nabla f(x_1), x_2 - x_1)$$

first-order Taylor exp. is a global under-estimator

how to verify:

- by definition
- if f is twice differential: convex $\equiv f'' \geq 0$

 ℓ^1 term is not differentiable, but a generalized derivative exists

■ a vector $g \in \mathbb{R}^n$ is a subgradient of a convex function $f(x) : \mathbb{R}^n \to \mathbb{R}$ at x^0 if

$$f(x) - f(x^0) \ge \langle x - x^0, g \rangle \quad \forall x \in \text{dom}(f)$$

i.e.,

$$f(x) \ge f(x_0) + \langle x - x^0, g \rangle \quad \forall x \in \text{dom}(f)$$

- the set of subgradient at x^0 is denoted by $\partial f(x^0)$
- if f is differentiable at x^0 , then it is identical with $f'(x^0)$

≜UCL

the subdifferential of f(t) = |t|

■ at $t \neq 0$, f is differentiable, $\partial f(t) = \{f'(t)\}$, i.e.,

$$\partial f(t) = \operatorname{sign}(t), \quad t \neq 0$$

a at t = 0, f(t) is not differentiable: any constant c s.t.

$$|t| = f(t) \ge f(0) + c(t - 0) = ct \quad \forall t \in \mathbb{R}$$

 $\Rightarrow -1 < c < 1$, i.e. $(\partial |t|)(0) = [-1, 1]$

Hence, $\partial |t|$

$$\partial(|t|) = \begin{cases} 1, t > 0, \\ -1, t < 0, \\ [-1, 1], t = 0. \end{cases}$$

property

- x^* is a minimizer to f if and only if $0 \in \partial f(x^*)$
- sum rules (under certain mild conditions)

one-dimensional example: fixed t

$$f(s) = \frac{1}{2}(t-s)^2 + \alpha|s|$$

the function is strictly convex ∃! a unique minimizer

$$f(s) = \frac{1}{2}(t-s)^2 + \alpha|s| = \begin{cases} \frac{1}{2}(t-s)^2 + \alpha s, & s > 0\\ \frac{1}{2}(t-s)^2 - \alpha s, & s \le 0 \end{cases}$$

suppose t > 0 and the minimum is achieved at $s^* > 0$, then

$$s^* = t - \alpha > 0, \quad f(s^*) = \frac{1}{2}\alpha^2 + \alpha(t - \alpha)$$

 $s^* = 0, \quad f(s^*) = \frac{1}{2}t^2$

 \Rightarrow

$$t - \alpha \ge 0 \Rightarrow s^* = t - \alpha$$

 $t - \alpha < 0 \Rightarrow s^* = 0$

$$s = S_{\alpha}(t) = \left\{ egin{array}{ll} t - lpha, & t > lpha \ 0, & |t| \leq lpha \ t + lpha, & t < -lpha \end{array}
ight.$$

the optimality condition is

$$\mathbf{0} \in (\mathbf{s} - t) + \partial \alpha |\mathbf{s}|, \quad \text{i.e.} \quad t \in \mathbf{s} + \alpha \partial |\mathbf{s}|,$$

$$\Rightarrow$$
 soft thresholding operator $S_{\alpha}(t) = (\partial \alpha |\cdot| + I)^{-1}(t)$

It shrinks the value, and zeros it if small

Convex approach – I1 penalty

popular approach: basis pursuit or lasso Chen et al 1998, Tibshirani 1996

$$\min_{\mathbf{x}\in\mathbb{R}^p} J_{\alpha}(\mathbf{x}) = \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2 + \alpha \|\mathbf{x}\|_1,$$

How can we obtain such nice pictures numerically?

iterative soft thresholding

iterative soft thresholding Daubechies-defrise-de Mol 2005 an iterative algorithm for computing the solution by surrogate function approach (majorization-minimization, optimization transfer)

$$J_{\alpha}(x) = \frac{1}{2} ||Ax - y||^2 + \alpha ||x||_1,$$

observations:

 \blacksquare if K = I, the problem is easy

$$J_{\alpha}(x) = \sum_{i} \left(\frac{1}{2} (x_i - y_i)^2 + \alpha |x_i| \right)$$

the problem decouples into n one-dimensional problems

• if K is orthonormal, i.e., $A^*A = I$,

$$J_{\alpha}(x) = \frac{1}{2} \|x - A^*b\|^2 + \alpha \|x\|_1$$

- the presence of an operator $A \Rightarrow$ surrogate function
- coupling $f(x) = \frac{1}{2} ||Ax b||^2 \approx 1$ st-order Taylor expansion ...

given the current guess x^k

$$f(x) = \frac{1}{2} \|A(x - x^{k}) + Ax^{k} - b\|^{2}$$

$$= \frac{1}{2} \|A(x - x^{k})\|^{2} + \langle A(x - x^{k}), Ax^{k} - b \rangle + \frac{1}{2} \|Ax^{k} - y\|^{2}$$

$$\approx \frac{\tau_{k}}{2} \|x - x^{k}\|^{2} + \langle x - x^{k}, A^{*}(Ax^{k} - b) \rangle + \frac{1}{2} \|Ax^{k} - b\|^{2}$$

$$:= Q(x, x^{k})$$

it is easy to verify that

$$Q(x^{k}, x^{k}) = f(x^{k}), \quad Q'(x^{k}, x^{k}) = f'(x^{k})$$

and further

$$Q(x, x^k) \ge f(x)$$
 if $\tau_k \ge ||A||^2$

algorithm: simplified minimization problem:

 $\sqrt{k+1}$

approximate minimization problem

$$x^{k+1} = \arg\min Q(x, x^k) + \alpha \|x\|_1$$

$$Q(x, x^k) + \alpha \|x\| = \frac{\tau_k}{2} \|x - x^k\|^2 - \langle A^*(Ax^k - b), x - x^k \rangle + \alpha \|x\|_1$$

$$= \frac{\tau_k}{2} \|x - (x^k - \tau^{-1}A^*(Ax^k - b))\|^2 + \alpha \|x\|_1$$

$$- \frac{1}{2\tau} \|A^*(Ax^k - b)\|^2$$

let

$$\bar{x}^{k+1} = x^k - \tau_k^{-1} A^* (A x^k - b)$$

then

$$Q(x, x^{k}) + \alpha ||x|| = \frac{\tau_{k}}{2} ||x - \bar{x}^{k+1}||^{2} + \alpha ||x||_{1} + \text{cnst}$$
$$= \sum_{i} \left(\frac{\tau_{k}}{2} (x_{i} - \bar{x}_{i}^{k+1})^{2} + \alpha |x_{i}| \right) + \text{cnst}$$

The one-dimensional optimization problem

$$\frac{1}{2}(s-t)^2 + \alpha|s|$$

the solution $S_{\alpha}(t)$ is given by

$$\mathcal{S}_{lpha}(t) = \left\{ egin{array}{ll} t-lpha, & t>lpha \ 0, & |t| \leq lpha \ t+lpha, & t<-lpha \end{array}
ight.$$

It shrinks the value, and zeros it if small

iterative soft thresholding Daubechies-Defrise-De Mol, 2005 given initial guess x^0 , update the solution iteratively by

$$ar{x}^{k+1} = x^k - au^{-1} A^* (A x^k - b)$$
 (gradient descent)
 $x^{k+1} = S_{ au^{-1} lpha} (ar{x}^{k+1})$ (thresholding)

iterative thresholding iteration is a (nonlinear) gradient descent method

- ⇒ the convergence is slow ...
 - adaptive choice of step size can improve convergence ...
 - primal dual active set (PDAS) algorithmPDAS = Newton method, for a class of convex optimization

choice I: Cauchy step size Cauchy 1847

$$\tau_k = \arg\min_{\tau>0} \|A(x^k - \tau A^*(Ax^k - b)) - b\|$$

i.e.,

$$\tau_k = \frac{\|A^*(Ax^k - b)\|^2}{\|AA^*(Ax^k - b)\|^2} = \frac{\|d^k\|^2}{\|Ad^k\|^2}$$

Choice II: Barzilai-Borwein rule Barzilai-Borwein 1988

to use preceding two iterates to decide the step size

general quasi-Newton method:

$$x^{k+1} = x^k - (B^k)^{-1}g^k$$
, $B^k(x^k - x^{k-1}) = g^k - g^{k-1}$ (quasi-Newton relation)

select $D^k = \tau_k I$ and

$$x^{k+1} = x^k - D^k g^k$$

to mimic the quasi-Newton method (in least-squares sense)

$$\min \|(x^k - x^{k-1}) - \tau(g^k - g^{k-1})\|$$

 \Rightarrow

$$\tau_{k} = \frac{\langle x^{k} - x^{k-1}, g^{k} - g^{k-1} \rangle}{\|g^{k} - g^{k-1}\|^{2}}$$

fast iterative shrinkage-thresholding algorithm Nesterov 1980s, Beck-Teboulle 2008 $x^{-1}=x^0$, $z^1=x^0$, and for k>1, $t_1=1$

$$x^{k} = S_{\alpha}(z^{k} - A^{*}(Az^{k} - b))$$
 $t_{k+1} = \frac{1 + \sqrt{1 + 4t_{k}^{2}}}{2}$
 $z^{k+1} = x^{k} + \frac{t_{k} - 1}{t_{k+1}}(x_{k} - x_{k-1})$

"extrapolated" point z^k

observation:

One-dimensional problem can be solved easily!

The presence of the operator K messes things up, so we update the solution componentwise

$$\begin{aligned} x_1^k &\in \arg\min J_\alpha(x_1, x_2^{k-1}, \cdots, x_p^{k-1}) \\ x_2^k &\in \arg\min J_\alpha(x_1^k, x_2, x_3^{k-1}, \cdots, x_p^{k-1}) \\ &\vdots \\ x_p^k &\in \arg\min J_\alpha(x_1^k, x_2^k, \cdots, x_{p-1}^k, x_k) \end{aligned}$$

theoretically P. Tseng, 2001

- The sequence have a subsequence converging to the minimizer.
- The sequence of function value to the minimum.

revived interest in statistics Friedman et al 2007

simple case $\alpha = 0$, $f(x) = \frac{1}{2} ||Ax - b||^2$ minimizing over x_i , with all x_j , $j \neq i$ fixed

$$0 = \nabla_i f(x) = A_i^* (Ax - b) = A_i^* (A_{-i}x_{-i} + A_ix_i - b)$$

i.e.

$$x_i = \frac{A_i^*(b - A_{-i}x_{-i})}{A_i^*A_i}$$

coordinate descent repeats this for i = 1, 2, ..., ...

$$x_i = \frac{A_i^* r}{\|A_i\|^2} + x_i^{old}$$

with $r = y - Ax \Rightarrow O(n)$ operation per cycle

I1 problem minimization over x_i , with x_j , $j \neq i$ fixed

$$0 = A_i^* A_i x_i + A_i^* (A_{-i} x_{-i} - b) + \alpha s_i$$

$$s_i \in \partial |x_i|$$

$$\mathbf{x}_i = \mathbf{S}_{\alpha/\|\mathbf{A}_i\|^2} \left(\frac{\mathbf{A}_i^*(\mathbf{b} - \mathbf{A}_{-i}\mathbf{x}_{-i})}{\|\mathbf{A}_i\|^2} \right)$$

iteratively reweighed least-squares (IRLS)

Another viewpoint: recall for the quadratic penalty

$$\frac{1}{2}||Ax - b||^2 + \frac{\alpha}{2}||x||^2$$

the optimal solution x_{α} satisfies the following optimality system

$$A^*(Ax_{\alpha}-b)+\alpha x_{\alpha}=0$$

i.e.,

$$(A^*A + \alpha I)x_{\alpha} = A^*b$$

To take advantage of the quadratic problem, we rewrite the l1 problem as (given current estimate x^k)

$$\frac{1}{2}\|Ax - b\|^2 + \alpha x^t W_k x,$$

with

$$W_k = \operatorname{diag}(|x_i^k|^{-1})$$

Then this gives the iterative scheme (+ regularization with small $\epsilon >$ 0):

$$W_k = 2\text{diag}((|x_i^k| + \epsilon)^{-1}),$$

 $x^k = (A^*A + W_k)^{-1}A^*b.$

what is beyond

- nonlinear forward operators (many medical imaging problems)
- structured sparsity patterns
- total variation regularization
- nonconvex penalties (can be efficiently solved)

setting: Gaussian Ψ and noise, 500 \times 1000, $DR = 10^3$, $\sigma = 0.01$

- with 500 data points: the ℓ^1 allows exact support recovery only if solution is **very sparse**
- nonconvex models allow recovering far more nonzeros

references

- E Candes, J. Romberg, T Tao, CPAM 2006
- I. Daubechies et al, CPAM 2005
- S Wright, R Nowak, M Figueiredo, ITSP 2009
- Q. Fan, Y Jiao, X. Lu, ITSP 2014
- B Jin, P Maass, IP, 2012

