Lab 1

Sophie Samuels 10/1/23

CDA3203 Computer Logic Design Fall 2023

Dr. Maria Petrie Florida Atlantic University

Part 1: Design 9 circuits by completing below: Draw the symbol for the gate, its Truth Table, its Simplest Sum of Products Expression, draw its NOT-AND-OR Equivalent Circuit, its all-NAND Equivalent Circuit.

1.1 NOT gate.

Draw NOT gate	Truth Table and Simplest Sum of Products Equation	NOT-AND-OR Equivalent Circuit	all-NAND Equivalent Circuit
	A NOT(A) 1 0 0 1 Y1=A'	Ay	A—E—y

1.2- AND gate

Draw AND gate	Truth Table and Simplest Sum of Products Equation	NOT-AND-OR Equivalent Circuit	all-NAND Equivalent Circuit
	A B AND(A,B) 0 0 0 0 1 0 1 0 0 1 1 1 Y2=AB	A J	h Do-To-y

1.3- OR gate

Draw OR gate	Truth Table and Simplest Sum of Products Equation	NOT-AND-OR Equivalent Circuit	all-NAND Equivalent Circuit
→	A B OR(A,B) 0 0 0 0 1 1 1 0 1 1 1 1 Y3=A+B	Po J	

1.4- XOR gate

Draw XOR gate	Truth Table and Simplest Sum of Products Equation	NOT-AND-OR Equivalent Circuit	all-NAND Equivalent Circuit
⇒	A B XOR(A,B) 0 0 0 0 1 1 1 0 1 1 1 0 Y4=A⊕B	A John J	FORD DOLD

1.5- NAND gate

Draw NAND gate	Truth Table and Simplest Sum of Products Equation	NOT-AND-OR Equivalent Circuit	all-NAND Equivalent Circuit
	A B NAND(A,B) 0 0 1 0 1 1 1 0 1 1 1 0 Y5=(AB)'	<u>a</u> ——>—j	A Do-J

1.6- NOR gate

Draw NOR gate	Si	mple	Table and st Sum of Equation	NOT-AND-OR Equivalent Circuit	all-NAND Equivalent Circuit
⇒	A 0 0 1 1	B 0 1 0 1	NOR(A,B) 1 0 0 0 0 1	A Y	

1.7- XNOR gate

Draw XNOR gate	Truth Table and Simplest Sum of Products Equation	NOT-AND-OR Equivalent Circuit	all-NAND Equivalent Circuit
⇒ >>-	A B XNOR(A,B) 0 0 1 0 1 0 1 0 0 1 1 1 Y7=A⊙B		

1.8 3-input NAND gate

Draw 3-input NAND gate	Truth Table and Simplest Sum of Products Equation	NOT-AND-OR Equivalent Circuit	all-NAND Equivalent Circuit
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	x ₁ x ₂	× _x

1.9- 2 to 1 Encoder or Multiplexer (Mux)

Draw 2to1 Mux	Truth Table and Simplest Sum of Products Equation	NOT-AND-OR Equivalent Circuit	all-NAND Equivalent Circuit
5 - J	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	x. 	*·

1.10 - 2 to 4 decoder or Demultiplexer (DMux)

Draw 2to4	Truth Table and Simplest Sum						NOT-AND-OR Equivalent	all-NAND Equivalent
DMux		of Pro	oduct	s Equ	atior	1	Circuit	Circuit
5	X_1	X_0	Y_3	Y_2	Y_1	Y_0		
	0	0	0	0	0	1		
<u> </u>	0	1	0	0	1	0	x ₀	
\bullet \b	1	0	0	1	0	0		Ko-446-(Do-)
<u>×-</u> 3	1	1	1	0	0	0	1.4400-3.	1.44 00-3.
\ \				•				
	Y3=X	$_{0}X_{1}$						
	Y2=X							
	Y1=X						93	33
	Y0=X	₀ ′X ₁ ′						

2.1 Create a new project in Altera Quartus using VHDL of a **3-input NAND** circuit call it NAND3_YourName, using all-NAND gates

Project Wizard

3-input NAND Diagram

Truth Table

X_2	X_1	X_0	NAND3
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

2.2 Create a new project in Altera Quartus using VHDL of a 4-input NAND circuit, call it NAND4_YourName, using all-NAND gates

Project Wizard

4-input NAND Diagram

Truth Table

Α	В	С	D	NAND4
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

2.3 Create a new project in Altera Quartus using VHDL of a 2 to 1 Multiplexer/Encoder (Mux) circuit, call it Mux2to1_YourName, using all-NAND gates

Project Wizard

Mux2to1 Diagram

Truth Table

S	X_0	X_1	Mux2:1
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

2.4. Create a new project in Altera Quartus using VHDL of a 4-to-1 Mux circuit, call it Mux4to1_YourName, using only Mux2to1 components.

2.5 Create a new project in Altera Quartus using VHDL of a 8-to-1 Mux, call it Mux8to1_YourName, using only Mux4to1 and/or Mux2to1components

2.6 Create a new project in Altera Quartus using VHDL of a 16-to-1 Mux, call it Mux8to1_YourName, using only Mux8to1, Mux4to1 and/or Mux2to1

components.

Project Wizard


```
Mux16to1_samuelssophie.vhd
                                                                                                                                                  - E X
       1 ■--Mux 16 to 1
            --Built with Mux 8 to 1
            --By Sophie Samuels
       5 LIBRARY ieee;
\overrightarrow{0}
       6 USE ieee.std logic 1164.all;
重
       8 ENTITY mux16to1 samuelssophie IS
ŧ.
       9 PORT ( 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 110, 111, 112, 113, 114, 115, S0, S1, S2, S3 : IN STD_LOGIC ;
      10
      11
           END mux16to1 samuelssophie ;
%
      13 ARCHITECTURE structure OF mux16to1 samuelssophie IS
                                                                                             Compiler Tool
                                                                                                                                                 - - X
%
                SIGNAL y1, y2 : STD_LOGIC;
      14
      1.5
*
                                                                                               Analysis & Synthesis
                                                                                                                                               Classic Timing Analyzer
                                                                                                                                  Assembler
      16 COMPONENT mux2to1_samuelssophie IS
Û
      17 PORT ( x1, x2, s : IN STD_LOGIC ;
                                                                                                  00:00:05
                                                                                                                                   00:00:02
                                                                                                                                                   00:00:01
                                                                                                                  00:00:01
                           : OUT STD LOGIC) ;
\overline{Z}
           END COMPONENT mux2to1 samuelssophie ;
                                                                                                                                2 4 
                                                                                               ♥ 🙎 🔮 🍇
                                                                                                               ₩ 2 @ �

    \[
    \]

      20
      21 COMPONENT mux4to1 samuelssophie IS
267
268
      22 PORT (IO, I1, I2, I3, SO, S1 : IN STD_LOGIC;
                                                                                                                        Full Compilation
                                       : OUT STD_LOGIC);
      23
ab/
      24 END COMPONENT mux4to1_samuelssophie;
                                                                                                                           00:00:09
      26 COMPONENT mux8to1 samuelssophie IS
      27 PORT ( IO, I1, I2, I3, I4, I5, I6, I7, SO, S1, S2 : IN STD_LOGIC ;
                                                                                              Start
                                                                                                                         100 Stop
                                                                                                                                                    Report
                                                             : OUT STD LOGIC ) :
      29
            END COMPONENT mux8to1_samuelssophie ;
      30
      31
            mux0: mux8to1_samuelssophie PORT MAP(IO, I1, I2, I3, I4, I5, I6, I7, S0, S1, S2, y1);
            mux1: mux8to1 samuelssophie PORT MAP(I8, I9, I10, I11, I12, I13, I14, I15, S0, S1, S2, y2);
            mux2: mux2to1_samuelssophie PORT MAP(y1, y2, S3, y);
      34
            END structure:
```

Timing Diagram

Truth Table

S_0	S_1	S_2	S_3	Mux4:1
0	0	0	0	10
0	0	0	1	I 1
0	0	1	0	12
0	0	1	1	13
0	1	0	0	14
0	1	0	1	15
0	1	1	0	16
0	1	1	1	17
1	0	0	0	18
1	0	0	1	19
1	0	1	0	I10
1	0	1	1	l11
1	1	0	0	l12
1	1	0	1	I13
1	1	1	0	114
1	1	1	1	I15

This project was done by: Sophie Samuels

following the tutorial videos created by Dr. Petrie and material in the class textbook,
with no other outside resources or help with the following exceptions:
Received help from Teaching Assistant: Chelsea, Harry
Found the following material on the internet: https://www.electronics-tutorials.ws/logic/logic_5.html
Other: