Wahrscheinlichkeit und Statistik Prüfungsnotizen

Fabian Bösiger

30.06.2020

Inhalt

Wahrscheinlichkeiten
Grundbegriffe
Diskrete Wahrscheinlichkeitsräume
Bedingte Wahrscheinlichkeiten
Unabhängigkeit
Diskrete Zufallsvariablen und Verteilungen
Grundbegriffe
Erwartungswerte
Gemeinsame Verteilungen und unabhängige Zufallsvariablen
Funktionen von mehreren Zufallsvariablen
Bedingte Verteilungen
Wichtige diskrete Verteilungen
Allgemeine Zufallsvariablen
Übersicht
Wichtige stetige Verteilungen
Ungleichungen und Grenzwertsätze
Ungleichungen
Das Gesetz der grossen Zahlen
Der Zentrale Grenzwertsatz
Schätzer
Grundbegriffe
Die Maximum-Likelihood-Methode
Verteilungsaussagen
Tests
Grundbegriffe
Konstruktion von Tests
Konfidenzbereiche
Konfidenzintervall
Kombinatorik kurz und knapp
Anhang
Integration 10

Wahrscheinlichkeiten

Grundbegriffe

Ereignisraum Ω : Menge aller möglichen elementaren Ereignissen.

Beispiel: Bei einem Würfelwurf sind die Elementarereignisse $\Omega = \{1, 2, 3, 4, 5, 6\}.$

Potenzmenge $\mathcal{P}(\Omega)$ oder 2^{Ω} : Menge aller Teilmengen von Ω .

Klasse aller beobachtbaren Ereignisse $\mathcal{F}: \mathcal{F} \subseteq \mathcal{P}(\Omega)$ und \mathcal{F} ist eine σ -Algebra. Bei diskreten, d.h. endlichen bzw. abzählbaren Wahrscheinlichkeitsräumen wird $\mathcal{F} = \mathcal{P}(\Omega)$ gewählt.

 σ -Algebra: $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ ist eine σ -Algebra, wenn gilt:

- 1. $\Omega \in \mathcal{F}$
- $2. \ A \in \mathcal{F} \implies A^c \in \mathcal{F}$
- 3. $(A_n)_{n\in\mathbb{N}}, A_n\in\mathcal{F} \implies \bigcup_{n=1}^{\infty} A_n\in\mathcal{F}$

Beispiel: Jemand wirft einen Würfel und teilt uns mit, ob die gewürfelte Zahl gerade oder ungerade ist.

Wir könnten den Grundraum $\Omega_1 = \{G, U\}$ wählen mit G für gerade und U für ungerade. In diesem Fall wäre $\mathcal{F} = \{\emptyset, \Omega_1, \{G\}, \{U\}\}.$

 $\mbox{Jedoch k\"onnten wir auch den Grundraum } \Omega_2 = \{1,2,3,4,5,6\} \mbox{ w\"{a}hlen. Dann w\"{a}re } \mathcal{F} = \{\emptyset,\Omega_2,\{2,4,6\},\{1,3,5\}\} \neq 0 \}$ $\mathcal{P}(\Omega_2)$, da beispielsweise das prinzipielle Ereignis $\{1\}$ nie beobachtbar ist.

Wahrscheinlichkeitsmass $P: \mathcal{F} \to [0,1]: P[A] \in \mathcal{F}] \in [0,1]$ ist die Wahrscheinlichkeit, dass A eintritt. Dabei muss gelten:

- 1. $\forall A \in \mathcal{F} : P[A] \ge 0$
- 2. $P[\Omega] = 1$ 3. $P[\bigcup_{i=1}^{\infty} A_i] = \sum_{i=1}^{\infty} P[A_i]$, sofern die $A_i \in \mathcal{F}$ paarweise disjunkt sind.

Folgende Rechenregeln lassen sich herleiten:

- 1. $P[A^c] = 1 P[A]$
- 2. $P[\emptyset] = 0$
- 3. Für $A \subseteq B$ gilt $P[A] \le P[B]$ 4. Additionsregel: $P[A \cup B] = P[A] + P[B] P[A \cap B]$

Diskrete Wahrscheinlichkeitsräume

Bei diskreten, d.h. endlichen bzw. abzählbaren Wahrscheinlichkeitsräumen gilt $\mathcal{F} = \mathcal{P}(\Omega)$ und P[A] = $\sum_{w_i \in A} P[\{w_i\}].$

Laplace-Raum Ω ist endlich und ich alle Elementarereignisse $\Omega = \{w_1, \dots, w_N\}$ sind gleich wahrscheinlich $mit p_1 = \dots = p_N = \frac{1}{N}.$

Diskrete Gleichverteilung In einem Laplace-Raum gilt für beliebige $A \subseteq \Omega$: $P[A] = \frac{|A|}{|\Omega|}$.

Beispiel: Beim zweimaligen Münzwurf ist $\Omega = \{KK, KZ, ZK, ZZ\}$, also $|\Omega| = 4$ und damit $p_i = \frac{1}{4}$. Dann ist $P[Mindestens einmal Kopf] = P[\{KK, KZ, ZK\}] = \frac{3}{4}$

Bedingte Wahrscheinlichkeiten

Bedingte Wahrscheinlichkeit Wahrscheinlichkeit, dass B eintritt, unter der Bedingung, dass A eintritt:

$$P[B \mid A] := \frac{P[B \cap A]}{P[A]} = \frac{P[A \mid B]P[B]}{P[A]}$$

2

Satz von der totalen Wahrscheinlichkeit (Satz 1.1) Sei A_1, \ldots, A_n eine Zerlegung von Ω in paarweise disjunkte Ereignisse, dann gilt für beliebiege Ereignisse B:

$$P[B] = \sum_{i=1}^{n} P[B \mid A_i] P[A_i]$$

Formel von Bayes (Satz 1.2) Ist A_1, \ldots, A_n eine Zerlegung von Ω mit $P[A_i] > 0$ und B ein Ereignis mit P[B] > 0, so gilt für jedes k:

$$P[A_k \mid B] = \frac{P[B \mid A_k]P[A_k]}{\sum_{i=1}^{n} P[B \mid A_i]P[A_i]}$$

Unabhängigkeit

Stochastische Unabhängigkeit Zwei Ereignisse A, B heissen stochastisch unabhängig, falls $P[A \cap B] = P[A]P[B]$.

Allgemeiner: Zwei Ereignisse A, B heissen stochastisch unabhängig, wenn für jede endliche Teilfamile

$$\{k_1,\ldots,k_m\}\subseteq\{1,\ldots,n\}$$
 gilt, dass $P\left[\bigcap_{i=1}^m A_{k_i}\right]=\prod_{i=1}^m P[A_{k_i}].$

Ist P[A] = 0 oder P[B] = 0, so sind A und B immer unabhängig.

Für $P[A] \neq 0$ gilt: A, B unabhängig $\iff P[B \mid A] = P[B]$.

Diskrete Zufallsvariablen und Verteilungen

Grundbegriffe

Diskrete Zufallsvariable Funktion $X: \Omega \to \mathbb{R}$, W(X): Wertebereich von X.

Indikatorfunktion Für jede Teilmente $A \subset \Omega$ gilt: $I_A(w) := \begin{cases} 1 & w \in A \\ 0 & w \in A^c \end{cases}$

Verteilungsfunktion $F_x : \mathbb{R} \to [0,1], F_X(t) := P[X \le t] = P[\{w \mid X(w) \le t\}].$

Gewichtsfunktion $p_x: W(X) \rightarrow [0,1], p_X(x_k) := P[X = x_k] = P[\{w \mid X(w) = x_k\}].$

Es gilt
$$F_X(t) = P[X \le t] = \sum_{x_k \le t} p_X(x_k)$$

Erwartungswerte

Erwartungswert $E[X] := \sum_{x_k \in W(X)} x_k p_X(x_k)$. Es gilt:

- 1. Monotonie: Ist $X \leq Y$ (d.h. $\forall w : X(w) \leq Y(w)$), so gilt auch $E[X] \leq E[Y]$
- 2. Linearität: E[aX + b] = aE[X] + b
- 3. Falls $X \ge 0$, so gilt $E[X] = \sum_{j=1}^{\infty} P[X \ge j]$

Varianz $Var[X] := E[(X - E[X])^2]$. Es gilt:

- 1. $Var[X] = E[X^2] (E[X])^2$
- 2. $Var[aX + b] = a^2 Var[X]$
- 3. Für unabhängige X, Y gilt: $\text{Var}[aX+bY]=a^2\text{Var}[X]+b^2\text{Var}[Y]$
- 4. Für abhängige X, Y gilt: $Var[aX + bY] = a^2 Var[X] + b^2 Var[Y] + 2abCov[X, Y]$

Standardabweichung $\sigma(X) = \sqrt{\operatorname{Var}[X]}$.

Gemeinsame Verteilungen und unabhängige Zufallsvariablen

Gemeinsame Verteilungsfunktion $F: \mathbb{R}^n \to [0,1], F(x_1,\ldots,x_n) := P[X_1 \le x_1,\ldots,X_n \le x_n]$

Gemeinsame Gewichtsfunktion $p: \mathbb{R}^n \to [0,1], \ p(x_1, \dots, x_n) := P[X_1 = x_1, \dots, X_n = x_n]$ $F(x_1, \dots, x_n) = P[X_1 \le x_1, \dots, X_n \le x_n] = \sum_{y_1 \le x_1, \dots, y_n \le x_n} P[X_1 = y_1, \dots, X_n = y_n] = \sum_{y_1 \le x_1, \dots, y_n \le x_n} p(y_1, \dots, y_n)$

Randverteilung Verteilungsfunktion der Randverteilung von X: $F_X(x) := P[X \le x] = P[X \le x, Y < \infty] = \lim_{y \to \infty} F(x, y)$

Gewichtsfunktion der Randverteilung von X: $p_X(x) := P[X = x] = \sum_{y_j \in W(Y)} P[X = x, Y = y_j] = \sum_{y_j \in W(Y)} p(x, y_j)$

Unabhängigkeit X_1, \ldots, X_n heissen unabhängig, falls $F(x_1, \ldots, x_n) = F_{X_1}(x_1) \cdots F_{X_n}(x_n)$ beziehungsweise $p(x_1, \ldots, x_n) = p_{X_1}(x_1) \cdots p_{X_n}(x_n)$

X und Y sind unabhängig, wenn gilt E[XY] = E[X]E[Y].

Funktionen von mehreren Zufallsvariablen

Linearität (Satz 2.4) Seien X_1, \ldots, X_n diskrete Zufallsvariablen mit endlichen Erwartungswerten. Sei $Y = a + \sum_{l=1}^{n} b_l X_l$ mit Konstanten a, b_1, \ldots, b_n . Dann gilt $E[Y] = a + \sum_{l=1}^{n} b_l E[X_l]$.

Kovarianz
$$Cov(X_1, X_2) := E[X_1X_2] - E[X_1]E[X_2]$$

 $Cov(X, X) = Var[X]$

Unkorreliertheit X_1 und X_2 sind unkorreliert, wenn gilt $Cov(X_1, X_2) = 0$.

Unabhängigkeit impliziert Unkorreliertheit, die andere Richtung folgt jedoch nicht.

Produkte von Zufallsvariablen (Satz 2.5) Seien X_1, \ldots, X_n diskrete Zufallsvariablen mit endlichen Erwartungswerten. Falls X_1, \ldots, X_n unabhängig sind, so gilt: $E\left[\prod_{i=1}^n X_i\right] = \prod_{i=1}^n E[X_i]$. Ausserdem sind dann X_1, \ldots, X_n unkorreliert und es gilt: $\operatorname{Var}\left[\prod_{i=1}^n X_i\right] = \prod_{i=1}^n \operatorname{Var}[X_i]$.

Bedingte Verteilungen

Bedingte Gewichtsfunktion Seien X and Y diskrete Zufallsvariablen mit gemeinsamer Gewichtsfunktion p(x,y). Die bedingte Gewichtsfunktion von X, gegeben dass Y=y, is te definiert durch $p_{X|Y}(x\mid y):=P[X=x\mid Y=y]=\frac{P[X=x,Y=y]}{P[Y=y]}=\frac{p(x,y)}{p_Y(y)}$ für $p_Y(y)>0$ und 0 sonst.

Wichtige diskrete Verteilungen

Verteilung	Gewichtsfunktion $p_X(k) = P[X = k]$	Verteilungsfunktion $F_X(t) = P(X \le t)$	Erwartungswert $E[X]$	Varianz $Var[X]$
Diskrete Gleichverteilung	$\frac{1}{n}$	$\frac{\lfloor t \rfloor}{n}$	$\frac{a+b}{2}$	$\frac{(b-a+2)(b-a)}{12}$
Bernoulli- Verteilung	$p^k(1-p)^{1-k}$	1-p	p	p(1-p)
$X \sim \text{Be}(p)$ Binomialverteilung $X \sim \text{Bin}(n, p)$	$\binom{n}{k}p^k(1-p)^{n-k}$		np	np(1-p)

Verteilung	Gewichtsfunktion $p_X(k) = P[X = k]$	Verteilungsfunktion $F_X(t) = P(X \le t)$	Erwartungswert $E[X]$	Varianz $Var[X]$
Geometrische Verteilung $X \sim \text{Geom}(p)$	$p(1-p)^{k-1}$		$\frac{1}{p}$	$\frac{1-p}{p^2}$
(*)	$\binom{k-1}{r-1} p^r (1-p)^{k-r}$		$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$
Hypergeometrische Verteilung	$\frac{\binom{r}{k}\binom{n-r}{m-k}}{\binom{n}{m}}$		$m\frac{r}{n}$	$m_{n}^{r}(1-\frac{r}{n})_{n-1}^{n-m}$
Poisson-Verteilung $X \sim \mathcal{P}(\lambda)$	$e^{-\lambda} \frac{\lambda^k}{k!}$		λ	λ

${\bf Allgemeine} \ {\bf Zufalls variablen}$

$\ddot{\mathbf{U}}\mathbf{bersicht}$

	Diskrete Zufallsvariablen	Allgemeine Zufallsvariablen
Verteilungsfunktion	$F_X : \mathbb{R} \to [0, 1] F_X(t) := P[X \le t] := P[\{w \mid X(w) \le t\}] = \sum_{x_k \le t} p_X(x_k)$	$F_X : \mathbb{R} \to [0, 1]$ $F_X(t) := P[X \le t] := P[\{w \mid X(w) \le t\}] = \int_{-\infty}^{t} f_X(s) ds$
Gemeinsame Verteilungsfunktion	$F: \mathbb{R}^n \to [0, 1]$ $F(x_1, \dots, x_n) = P[X_1 \le x_1, \dots, X_n \le x_n] = \sum_{y_1 \le x_1, \dots, y_n \le x_n} p(y_1, \dots, y_n)$	$F: \mathbb{R}^n \to [0,1]^{-\infty}$ $F(x_1, \dots, x_n) = P[X_1 \le x_1, \dots, X_n \le x_n] = \int_{x_1}^{x_1} \dots \int_{x_n}^{x_n} f(t_1, \dots, t_n) dt_n \dots dt_1$
Monoton wachsend	$\forall s \le t : F_X(s) \le F_X(t)$	$-\infty$ $-\infty$ Analog
Rechtsstetig	$\forall u > t, u \to t : F_X(u) \to F_X(t)$	Analog
	$\lim_{t \to \infty} F_X(t) = 1, \ \lim_{t \to -\infty} F_X(t) = 0$	Analog
Verteilung	$\mu_X(B) := P[X \in B] = \sum_{x_k \in B} p_X(x_k)$	$\mu_X(B) := P[X \in B] = \int_B f_X(s)ds$
Randverteilung	$F_X(x) := P[X \le x] = P[X \le x, Y \le \infty] = \lim_{y \to \infty} F(x, y)$	Analog
Gewichtsfunktion, Dichtefunktion	$p_X(x_k) := P[X = x_k] = P[\{w \mid X(w) = x_k\}]$	$f_X(t) = \frac{d}{dt} F_X(t)$
Gemeinsame Gewichtsfunktion, Dichtefunktion	$p_X(x_1, \dots, x_n) := P[X_1 = x_1, \dots, X_n = x_n]$	$f_X \ge 0, f_X = 0$ ausserhalb von $W(X)$ $\int_{-\infty}^{\infty} f_X(s)ds = 1$ $f(t_1, \dots, t_n)$ $f(x_1, \dots, x_n) \ge 0,$ $f(x_1, \dots, x_n) = 0 \text{ ausserhalb von }$ $W(X_1, \dots, X_n)$ $\int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f(x_1, \dots, x_n) dx_n \dots dx_1$
Bedingte Gewichtsfunktion	$p_{X Y}(x \mid y) := P[X = x \mid Y = y] = \frac{P[X = x, Y = y]}{P[Y = y]} = \frac{p(x, y)}{p_Y(y)}$	$f_{X Y}(x \mid y) = \frac{f(x,y)}{f_Y(y)}$
Randdichte	(), 1.(0)	$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy,$ $f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$
Unabhängigkeit	$p(x_1, \dots, x_n) = p_{X_1}(x_1) \cdots p_{X_n}(x_n)$	$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$ $f(x_1, \dots, x_n) =$ $f_{X_1}(x_1) \cdots f_{X_n}(x_n)$

	Diskrete Zufallsvariablen	Allgemeine Zufallsvariablen
Erwartungswert	$E[X] = \sum_{n=1}^{\infty} xp(x)$, für	$E[X] = \int_{-\infty}^{\infty} x f(x) dx$
	$-\infty$ nichtnegative ganzzahlige	$-\infty$
	Zufallsvariablen:	
	$E[X] = \sum_{i=1}^{\infty} P[X \ge i]$	
Varianz	$Var(X) = E[X^2] - E[X]^2$	Analog

Wichtige stetige Verteilungen

Verteilung	Dichtefunktion $f_X(t)$	Verteilungsfunktion $F_X(t)$	Erwartungswert $E[X]$	Varianz $Var[X]$
(, -)	$\begin{cases} \frac{1}{b-a} & a \le t \le b \\ 0 & \text{sonst} \end{cases}$	11 620	$\frac{a+b}{2}$	
Exponential verteilung $X \sim \text{Exp}(\lambda)$		$\begin{cases} 1 - e^{-\lambda t} & t \ge 0\\ 0 & t < 0 \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Normalverteilung $X \sim \mathcal{N}(\lambda, \sigma^2)$	$\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(t-\mu)^2}{2\sigma^2}\right)$		μ	σ^2

Standard-Normalverteilung Für die Standard-Normalverteilung $\mathcal{N}(0,1)$ gilt $F_X(t) = \Phi(t)$. Ist $X \sim \mathcal{N}(\mu, \sigma^2)$, so ist $\frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1)$. $\Phi(t)$ ist tabelliert.

Abhängige Zufallsvariablen (Satz 4.1) Sei X eine Zufallsvariable und Y = g(X) eine weitere Zufallsvariable. Ist X stetig mit Dichte $f_X(x)$, so ist $E[Y] = E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$.

Ungleichungen und Grenzwertsätze

Ungleichungen

Markov-Ungleichung Sei X eine Zufallsvariable und $g:W(X)->[0,\infty)$ eine wachsende Funktion. Dann gilt für jedes $c\in\mathbb{R}$ mit g(c)>0:

$$P[X \ge c] \le \frac{E[g(X)]}{g(c)}$$

Chebyshev-Ungleichung Sei Y eine Zufallsvariable mit endlicher Varianz. Für jedes b > 0 gilt dann:

$$P[|Y - E[Y]| \ge b] \le \frac{Var[Y]}{b^2}$$

Oder äquivalänt dazu:

$$P[|Y - E[Y]| < b] \ge 1 - \frac{Var[Y]}{b^2}$$

Das Gesetz der grossen Zahlen

Schwaches Gesetz der grossen Zahlen Sei X_1, X_2, \ldots eine Folge von unabhängigen Zufallsvariablen mit dem gleichen Erwartungswert $E[X_i] = \mu$ und der gleichen Varianz $\mathrm{Var}[X_i] = \sigma^2$. Sei $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Dann konvergiert \overline{X}_n für $n \to \infty$ stochastisch gegen $\mu = E[X_i]$, d.h.:

$$\forall \epsilon > 0 : P[|\bar{X}_n - \mu| > \varepsilon] \xrightarrow{n \to \infty} 0$$

Beweis mit Chebyshev-Ungleichung.

Starkes Gesetz der grossen Zahlen Sei X_1, X_2, \ldots eine Folge von unabhängigen Zufallsvariablen mit dem gleichen endlichen Erwartungswert $E[X_i] = \mu$ und der gleichen Verteilung. Sei $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Dann konvergiert \overline{X}_n für $n \to \infty$ fastsicher gegen $\mu = E[X_i]$, d.h.:

$$P[\{\omega \in \Omega \mid \bar{X}_n(\omega) \xrightarrow{n \to \infty} \mu\}] = 1$$

Der Zentrale Grenzwertsatz

Zentraler Genzwertsatz (Satz 5.5) Sei $X_1, X_2, ...$ eine Folge von Zufallsvariablen mit $E[X_i] = \mu$ und $Var[X_i] = \sigma^2$. Für die Summe $S_n = \sum_{i=1}^n X_i$ gilt dann:

$$\lim_{n \to \infty} P\left[\frac{S_n - n\mu}{\sigma\sqrt{n}} \le x\right] = \Phi(x) \quad \forall x \in \mathbb{R}$$

 S_n hat den Erwartungswert $E[S_n] = n\mu$ und Varianz $\operatorname{Var}[S_n] = n\sigma^2$. Also ist $S_n^* = \frac{S_n - n\mu}{\sigma\sqrt{n}} = \frac{S_n - E[S_n]}{\sqrt{\operatorname{Var}[S_n]}}$ die Standartisierung von S_n mit $E[S_n^*] = 0$ und $\operatorname{Var}[S_n] = 1$. Deshalb gilt für grosse n:

$$P[S_n^* \le x] \approx \Phi(x) \quad S_n^* \sim \mathcal{N}(0, 1)$$

Momenterzeugende Funktion Die momenterzeugende Funktion einer Zufallsvariable X ist $M_X(t) := E[e^{tX}] = \int_{-\infty}^{\infty} e^{tx} f(x)$ für $t \in \mathbb{R}$.

(Satz 5.6)

Schätzer

Grundbegriffe

Stichprobe Gesamtheit der Beobachungen x_1, \ldots, x_n oder Zufallsvariablen X_1, \ldots, X_n . Die Anzahl n heisst Stichprobenanzahl.

Stochastischer Mechanismus P_{ϑ} ist ein konkreter stochastischer Mechanismus, der besagt, wie sich X_1, \ldots, X_n verhalten. Dabei wird der Parameter ϑ zu bestimmen versucht.

Schätzer Die Schätzer T_1, \ldots, T_m schätzen die Parameter $\vartheta_1, \ldots, \vartheta_m$. Sie sind Zufallsvariablen mit der Form $T_j = t_j(X_1, \ldots, X_n)$.

Schätzwert $T_j(\omega) = t_j(X_1(\omega), \dots, X_n(\omega))$ eines konkreten Experiments ω .

Erwartungstreuheit Ein Schätzer T heisst erwartungstreu für $\vartheta \in \Theta$, falls gilt $E_{\vartheta}[T] = \vartheta$

Bias $E_{\vartheta}[T] - \vartheta$

 $\textbf{Mittlerer quardratischer Schätzfehler} \quad \text{MSE}_{\vartheta}[T] := E_{\vartheta}[(T-\vartheta)^2] = Var_{\vartheta}[T] + (E_{\vartheta}[T] - \vartheta)^2$

Konsistenz Eine Folge von Schätzern $T^{(n)}$ heisst konsistent für ϑ , falls für jedes $\vartheta \in \Theta$ und jedes $\varepsilon > 0$ gilt: $\lim_{n \to \infty} P_{\vartheta}[|T^{(n)} - \vartheta| > \varepsilon] = 0$. Beweisen mit Chebyshev-Ungleichung.

Die Maximum-Likelihood-Methode

Likelihood-Funktion
$$L(x_1, ..., x_n; \vartheta) := \begin{cases} p(x_1, ..., x_n; \vartheta) = \prod_{i=1}^n p_X(x_i; \vartheta) & \text{Im diskreten Fall} \\ f(x_1, ..., x_n; \vartheta) = \prod_{i=1}^n f_X(x_i; \vartheta) & \text{Im stetigen Fall} \end{cases}$$

log-Likelihood-Funktion $l(x_1, \ldots, x_n; \vartheta) := \log L(x_1, \ldots, x_n; \vartheta)$

ML-Schätzer Der ML-Schätzer T für ϑ wird definiert als Maximierung von $L(X_1, \ldots, X_n; \vartheta)$ als Funktion von ϑ .

Um den ML-Schätzer zu finden:

- 1. Bilde log-Likelihood-Funktion, da sie meistens einfacher ist zu maximieren
- 2. Bilde Ableitung $\frac{\partial}{\partial \vartheta} \log L(x_1, \dots, x_n; \vartheta)$ 3. ML-Schätzer ϑ kann durch das Nullsetzen von $\frac{\partial}{\partial \vartheta} \log L(x_1, \dots, x_n; \vartheta)$ gefunden werden

Momentenschätzer Der ML-Schätzer für $\vartheta = (\mu, \sigma^2) = (E_{\vartheta}[X], \operatorname{Var}_{\vartheta}[X])$, genannt Momentenschätzer, ist:

$$T = (T_1, T_2) \quad T_1 = \frac{1}{n} \sum_{i=1}^n X_i = \overline{X}_n \quad T_2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \sum_{i=1}^n X_i^2 - \overline{X}_n^2$$

Dieser Schätzer ist nicht erwartungstreu.

Um einen Erwartungstreuen Schätzer für $(E_{\vartheta}[X], \operatorname{Var}_{\vartheta}[X])$ zu haben, verwendet man meistens:

$$T = (T'_1, T'_2) \quad T'_1 = T_1 = \overline{X}_n \quad T'_2 = \frac{1}{n-1} T_2 = \frac{1}{n-1} \sum_{i=1}^n X_i^2 - \frac{1}{n-1} \overline{X}_n^2$$

 $T_1 = T_1'$ wird Stichprobenmittel, $S^2 := T_2' = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$ wird Stichprobenvarianz genannt.

Um den Momentenschätzer zu finden:

- 1. Berechne T
- 2. Setze T = (E[X], Var[X]), wobei $E[X] = \int_{-\infty}^{\infty} x f(x) dx$
- 3. Löse auf nach der zu schätzenden Variable ϑ

Verteilungsaussagen

Mehrere Normalverteilte Variablen (Satz 7.1) Seien $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$. Dann gilt:

- 1. \overline{X}_n ist normalverteilt gemäss $\sim \mathcal{N}(\mu, \frac{1}{n}\sigma^2)$, und $\frac{\overline{X}_n \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$.
- 2. $\frac{n-1}{\sigma^2}S^2 = \frac{1}{\sigma^2}\sum_{i=1}^n (X_i \overline{X}_n)^2$ ist \mathcal{X}^2 -verteilt mit n-1 Freiheitsgraden.
- 3. \overline{X}_n und S^2 sind unabhänging. 4. Der Quotient $\frac{\overline{X}_n \mu}{\sigma/\sqrt{n}}$ ist t-verteilt mit n-1 Freiheitsgraden.

Tests

Grundbegriffe

Hypothese $H_0: \vartheta \in \Theta_0$

Niveau Je kleiner das Niveau α , desto kleiner ist die Wahrscheinlichkeit, dass die Nullhypothese H_0 abgelehnt wird, obwohl sie richtig ist.

Alternative $H_A: \vartheta \in \Theta_A$, wobei $\Theta_A = \Theta_0^c$, falls keine explizite Alternative spezifizert wurde.

Realisierung $\tilde{K} = \{T \in K\} = \{\omega \mid T(\omega) \in K\}$ ist eine Teilmenge von Ω mit $P_{\vartheta}[\tilde{K}] = P_{\vartheta}[T \in K]$.

Fehler erster Art $\vartheta \in \Theta_0$ und $T \in K$.

Fehler zweiter Art $\vartheta \in \Theta_A$ und $T \notin K$.

Vorgehen

- 1. Minimierung des Fehlers erster Art. Wähle Signifikanzniveau $\alpha \in (0,1)$ so dass $\sup_{\alpha \in \mathbb{R}} P_{\theta}[T \in K] \leq \alpha$.
- 2. Minimierung des Fehlers zweiter Art. Maximiere die Macht des Tests $\beta(\theta) := P_{\theta}[T \in K]$.

Konstruktion von Tests

Likelihood-Quotient
$$R(x_1, \ldots, x_n; \vartheta_0, \vartheta_A) := \frac{L(x_1, \ldots, x_n; \vartheta_0)}{L(x_1, \ldots, x_n; \vartheta_A)}$$

Ist der Likelihood-Quotient klein, sprechen die Daten gegen die Nullhypothese und für die Alternativhypothese.

Neyman-Pearson-Lemma (Satz 9.1) Sei $\Theta_0 = \{\vartheta_0\}$ und $\Theta_A = \{\vartheta_A\}$. Sei $T = R(X_1, \dots X_n, \vartheta_0, \vartheta_A)$ und K=[0,c) sowie $\alpha^*:=P_{\vartheta_0}[T\in K]=P_{\vartheta_0}[T< c].$ Der Likelihood-Quotienten-Test mit T und K ist dann optimal im Sinn dass jeder andere Test mit Signifikanzniveau $\alpha \leq \alpha^*$ eine kleinere Macht hat.

Beispiel zur Konstruktion von Tests:

Ist eine Münze gezinkt? Vermutung, dass für einen Wurf X_i gilt, dass p > 0 ist. Test mit n = 10, $\alpha = 2.5\%$. Die Resultate der Würfe sind $6 \times X_i = 1$ und somit $4 \times X_i = 0$.

- 1. Modell: $X_i \sim \text{Ber}(p)$
- 2. Nullhypothese: $H_0: p_0 = p = 0.5$
- 3. Alternatively pothese: $H_A: p > p_0$
- 4. Teststatistik: $T = \sum_{i=1}^{n} X_i$, denn der Likelihood-Quotiont kleiner als 1 und somit wird $R(x_1, \dots, x_10; p_0, p_A)$ klein genau dann wenn $T = \sum_{i=1}^{n} x_i$ gross ist.
- 5. Verteilung der Teststatistik unter der Nullhypothese: $p_0 = p = 0.5 \implies T \sim \text{Bin}(10, 0.5)$
- 6. Verwerfungsbereich: Da gilt, dass die Summe T gross wird bei einem kleinen Likelihood-Quotient, hat der Verwerfungsbereich die Form $K=(k,\infty)$. Zudem muss $P_{p_0}[T\leq k]\geq (1-\alpha)$ gelten, woraus folgt, dass k = 8. Somit ist $K = [8, \infty)$.
- 7. Beobachteter Wert der Teststatistik: $T(\omega) = 6$
- 8. Testentscheid: Da $T(\omega) = 6 \notin K = [8, \infty)$, wird die Nullhypothese nicht verworfen.

z-Test Seien $X_1, \ldots, X_n \sim \mathcal{N}(\vartheta, \sigma^2)$ Normalverteilt mit bekannter Varianz σ^2 und unbekanntem Erwartungsert ϑ . Wir wollen die Hypothese $H_0: \vartheta = \vartheta_0$ testen.

Die Teststatistik ist $T := \frac{\overline{X}_n - \vartheta_0}{\sigma/\sqrt{n}} \sim N(0, 1).$

Der kritische Bereich ist von der folgenden Form mit Niveau α :

- $H_A: \vartheta > \vartheta_0$ mit $K_> = (c_>, \infty)$ und $c_> = \Phi^{-1}(1-\alpha) := z_{1-\alpha}$ wegen der Bedingung $\alpha = P_{\vartheta_0}[T \in K_>] = 0$ $P_{\theta_0}[T > c_>] = 1 - P_{\theta_0}[T \le c_>] = 1 - \Phi(c_>).$
- $H_A: \vartheta < \vartheta_0 \text{ mit } K_< = (-\infty, c_<) \text{ und } c_< = -\Phi^{-1}(1-\alpha) := -z_{1-\alpha} \text{ wegen der Bedingung } \alpha = P_{\vartheta_0}[T \in \mathbb{R}^n]$ $K_<] = P_{\vartheta_0}[T < c_<] = \Phi(c_<).$
- $H_A: \vartheta \neq \vartheta_0 \text{ mit } K_{\neq} = (-\infty, -c_{\neq}) \cup (c_{\neq}, \infty) \text{ und } c_{\neq} = \Phi^{-1}(1 \frac{\alpha}{2}) := z_{1-\frac{\alpha}{2}} \text{ wegen der Bedingung } \alpha = P_{\vartheta_0}[T \in K_{\neq}] = P_{\vartheta_0}[T < -c_{\neq}] + P_{\vartheta_0}[T > c_{\neq}] = \Phi(-c_{\neq}) + 1 \Phi(c_{\neq}) = 2(1 \Phi(c_{\neq})).$

Die Nullhypothese wird verworfen, wenn für die Realisierung der Teststatistik gilt $t \in H_a$.

t-Test Seien $X_1, \dots, X_n \sim \mathcal{N}(\vartheta, \sigma^2)$ Normalverteilt mit unbekannter Varianz und unbekanntem Erwartungswert $\vartheta = (\mu, \sigma^2)$. Wir wollen die Hypothese $H_0: \mu = \mu_0$ testen.

Die Teststatistik ist $T := \frac{\overline{X}_n - \mu_0}{S/\sqrt{n}} \sim t_{n-1}$.

Wir ersetzen die unbekannte Varianz durch den Schätzer $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X_n})^2$.

Der kritische Bereich ist von der folgenden Form mit Niveau α :

- $\begin{array}{ll} \bullet & H_A: \mu > \mu_0 \text{ mit } K_> = (c_>, \infty) \text{ und } c_> = t_{n-1, 1-\alpha}. \\ \bullet & H_A: \mu < \mu_0 \text{ mit } K_< = (-\infty, c_<) \text{ und } c_< = t_{n-1, \alpha}. \\ \bullet & H_A: \mu \neq \mu_0 \text{ mit } K_\neq = (-\infty, c_\neq) \cup (c_\neq, \infty) \text{ und } c_\neq = t_{n-1, 1-\frac{\alpha}{2}}. \end{array}$

Die Nullhypothese wird verworfen, wenn für die Realisierung der Teststatistik gilt $t \in H_a$.

Gepaarter Zweistichproben-Test

Ungepaarter Zweistichproben-Test

Konfidenzbereiche

Konfidenzintervall

 $C(X_1,\ldots,X_n)$ heisst der Konfidenzbereich zum Niveau $1-\alpha$, falls gilt $P_{\vartheta}[\vartheta \in C(X_1,\ldots,X_n)] \geq 1-\alpha$.

Konfidenzintervall des Erwartungswerts

$$C(X_1,\ldots,X_n) = [\overline{X_n} - t_{n-1,1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}, \overline{X_n} + t_{n-1,1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}]$$

Konfidenzintervall der Varianz

$$C(X_1, ..., X_n) = \left[\frac{(n-1)S^2}{\mathcal{X}_{n-1, 1-\frac{\alpha}{2}}^2}, \frac{(n-1)S^2}{\mathcal{X}_{n-1, \frac{\alpha}{2}}^2} \right]$$

Kombinatorik kurz und knapp

Name	Fragestellung	Antwort
Anzahl Permutationen ohne Wiederholung von n Elementen.	Auf wieviele Arten kann man n Objekte nebeneinander anordnen?	$n! = n \times (n-1) \times \cdots \times 2 \times 1$
Anzahl Kombinationen ohne Wiederholung.	Auf wie viele Arten kann man k aus den n Objekten auswählen ohne Zurücklegen?	$\binom{n}{k} = \frac{n!}{k!(n-k)!}$
Anzahl der Variationen mit Wiederholung.	Wie viele Sequenzen der Länge m kann man mit den n Symbolen bilden?	n^m

10

Anhang

Integration

Integration durch Substitution $x = \varphi(u)$

$$\int_{\varphi(a)}^{\varphi(b)} f(x)dx = \int_{a}^{b} f(\varphi(u))\varphi'(u)du$$

Partielle Integration
$$\int\limits_a^b f'(x)g(x)dx = [f(x)g(x)]_a^b - \int\limits_a^b f(x)g'(x)dx$$