Hypothesis Testing

How many datapoints would you like to buy?

Recall what we know so far

Think design

how to make statements about reality

Population of TREATED mice

Formulating Hypotheses

making statements

Hypotheses Pair

```
\begin{cases} H_0 - \text{Null Hypothesis} & \text{(no effect)} \\ H_A - \text{Alternative Hypothesis} & \text{(some effect)} \end{cases}
```


Hypotheses Pair

 H_0 - Null Hypothesis H_A – Alternative Hypothesis

(no effect) (some effect)

$$\begin{cases} H_0 : \mu_1 = \mu_2 \\ H_A : \mu_1 \neq \mu_2 \end{cases}$$

Non-Directional

Hypotheses Pair

 H_0 - Null Hypothesis H_A – Alternative Hypothesis

(no effect) (some effect)

$$H_0: \mu_1 = \mu_2$$

 $H_A: \mu_1 \neq \mu_2$

Non-Directional

Directional

Testing Hypotheses

Test Statistics

$$= \frac{\text{M} - \mu}{\text{statistic}} = \frac{\text{Observed Difference}}{\text{Difference due to chance}}$$

Conducting Z-test


```
H_0: \mu_1 = \mu_2

H_A: \mu_1 \neq \mu_2
```


Conducting Z-test

1.96

TREATED

mice

-1.96

Conducting Z-test

mice

Report your Results

You are not typically told explicitly what test was used, what alpha was used, or whether the null was rejected or retained.

- "The treatment showed a significant effect on IQ scores, z = 2.5, p < .05."
- "The treatment did not have a significant effect on IQ scores, z = 1.5, p > 0.05." OR "There was no evidence of an effect on IQ, z = 1.5, ns."

Null or Alternative hypotheses do not need to be mentioned in formal reporting!

If you are using software and given an *exact p*-value, report the EXACT value, your phrasing should indicate whether the results were significant.

More about Hypothesis Testing

Error and Uncertainty

- When we use a small sample to make judgments about an entire population, errors can be made
 - When the sample does not represent the population
- <u>Type I Errors:</u> occurs when a researcher rejects a null hypothesis that is true
 - Conclude there is a treatment effect when there is not
- **Type II Errors:** occurs when a researcher fails to reject a null (supports a null) that is actually false.
 - Concludes there is no treatment effect when there really is

Type I Errors

- Type I Error: Reject a null that is really true
 - I found support for my study guide improving test scores, but the study guide did not, in fact, change test scores.
- Type I errors occur when we select an extreme sample by chance (because of sampling error).
 - The probability of a Type I error is equal to the alpha level
 - We select an alpha level to reflect how much risk we're willing to take
- If the null is true and there was no treatment effect (i.e. no shift in the population mean post-treatment), we still could get an extreme statistical value, it's just rare.

Type II Errors

- **Type II Errors**: fail to reject a null that is, in fact, false.
 - I did not find support for my study guides improving test scores, but they really do work!
- Often happens when treatment effect is small
 - Treatment did make a difference, but not enough to push the stat into the critical region.
- Difficult, if not impossible to determine exact probability – it depends on MANY things
- Signified by β ("beta")

Errors Hypothesis Testing

	Reality		
Research Results		Treatment Effects DO NOT Exist H₀ is TRUE	Treatment Effects DO Exist H ₀ is FALSE
	Treatment effects were not found H ₀ was retained	Correct	Type II Error p=β
	Treatment effects were found H ₀ was rejected	Type I Error p=α	Correct p=1 -β

Common Critical Values for One-Tailed *z*-tests

Common Critical Values for Two-Tailed z-tests

Assumptions of the z-test

- Random Sampling- the sample must be representative.
- Independent observations one observation must have no effect on another, there must be no predictable relationship between them. Usually satisfied by random sampling.
- Variability is unchanged by treatment— Computation is based on standard error, calculated from the population's original variance. This must remain unchanged since we cannot measure the treated population's variance.
- Sample means are normally distributed— we use the Unit Normal Table to calculate probability—this only works on normal data!

Concerns with Hypothesis Testing

- Focus is on the data, not on the hypothesis
 - Significant results indicate that a particular sample mean is unlikely if the null is true.
 - Does not tell us how likely it is that the null (or alternative) is true.
 - Rejection of the null given alpha = .05 does <u>NOT</u> mean that there is a 5% chance that the null is true.
 - **It means there is a 5% chance of selecting a sample with this statistical value assuming the null is true. **
 - Our probabilities operate under assumption of the null (no shift in parameter values after treatment). This is where we test!

Effect Size

- A "significant" effect does NOT mean a substantial effect.
 - We are making a relative comparison: How great is the treatment effect relative to the standard error?
- With any significant effect, it is recommended that you report the <u>effect size</u>: intended to provide a measure of the absolute magnitude of a treatment effect, independent of sample size being used.
 - Remember, n is used in computation of z (and other later stats, too). Larger n → more likely to reject the null even with small effects.

Cohen's d

- Cohen's d is a relatively simple and direct effect size measure.
- Cohen's $d = \underline{\text{mean difference}} = \underline{\mu_{\text{Treatment}}} \underline{\mu_{\text{NoTreatment}}}$ standard deviation σ
- We can't measure the population mean after treatment, so we estimate using the sample mean.
- Estimated Cohen's $d = \underline{M}_{\underline{\text{Treatment}}} \underline{\mu}_{\underline{\text{NoTreatment}}}$
- Size of Effects (these criteria are constant, even for other statitical effect size measures)
 - -d = 0.2 = Small effect
 - -d = 0.5 = Medium effect
 - -d = 0.8 = Large effect

Power

- The <u>Power</u> of a statistical test is the probability that the test will correctly reject a false null hypothesis.
 - Related to the probability of a Type II error (β)
 - $-1-\beta$ is the measure of Power
 - I.E. if power is 75%, the probability of a Type II error is 25%
 - Power is calculated BEFORE a study is conducted.
 - Please read this section in your book carefully, it is difficult to explain through these slides but your book does a good job, and it's an important concept!