A Neural Local Coherence Model

Dat Tien Nguyen¹ Shafiq Joty²

¹University of Amsterdam ²Qatar Computing Research Institute

Entity-based Coherence

- ► Text is about entities: objects in the world
- ► A text addresses a common topic often covering multiple subtopics
- ► Earlier sentences provide context for later ones
- ► Centering theory: Coherence created by repeated entity mentions
- ► Coherence modeling: Model entity transition across sentences to distinguish a coherent from incoherent texts

Entity Grid and Its Extensions

Barzilay and Lapata (2008)

- ► Model grammatical role transmission of nouns (heads of NPs) across sentences
- ▶ Represent documents as distributions defined over **entity transition** (vectors of 4^k transitions probabilities $\{S, O, X, -\}^k$)
- ► Assessment of text coherence as a ranking problem in an SVM preference ranking framework

Table: Entity grid	representation	for a	WSJ	article

	LINO	PRODUCTS	RESEARCH	COMPANY	PARTS	CONTROLS	INDUSTRY	ELECTRONICS	TERM	CONCERN	AEROSPACE	EMPLOYEES	SERVICES	LOS ANGELES	EATON
s_0	O		X	X	_			_				X			X
s_1			_						S					_	
s_2		O			_		X		_		_	0	0	X	_
s_3		_	_	_	X	X	_	X		O	X	_		_	S

Elsner and Charniak (2011)

- ► Include non-head nouns
- Extend grid to distinguish between entities by incorporating entity-specific features: named entity, noun class, modifiers, etc

Limitations of entity grid models

- ► Cannot capture long entity transitions
- ► Limit to learn task-specific features

Our Neural Coherence Model

Figure: A Convolutional Neural Network (CNN) architecture for modeling local coherence.

Grid CNN:

- ► Use a **convolutional** approach
- ► Transform each grammatical role in grid into distributed representation
- ► Model sufficiently long entity transitions in location invariant way
- ► Train in end-to-end fashion on a target task (e.g., discrimination)
- ► Learn task-specific high level features

Extended Grid CNN:

- ► Incorporate entity-specific features
- Attach feature values with grammatical roles

 if an entity e_j of type PERSON appears as a subject (S) in a sentence s_i ,

 the grid entry $G_{i,j}$ can be encoded as $PERSON_S$.

Pairwise end-to-end training:

- ▶ Input: ordered pairs (d_i, d_j) , where document d_i is more coherent than d_j
- \blacktriangleright Use pairwise ranking approach to learn θ by minimizing the objective:

$$\Im(\theta) = \max\{0, 1 - \phi(G_i|\theta) + \phi(G_j|\theta)\} \tag{1}$$

where G_i and G_j are entity grids of d_i and d_j , respectively θ : set of CNN parameters

Experiment 1: Sentence Ordering

Discrimination

► A document is compared to its permutations of sentences

Insertion

- ► Remove and re-insert one sentence at a time into every position
- Examine permutations closer to the original ordering

Table: WSJ dataset						
	Sections	Doc.	Pairs	Avg. Sen.		
TRAIN	00-13	1,378	26,422	21.5		
TEST	14-24	1,053	20,411	22.3		

Table: Coherence evaluation results on **Discr**imination and **Ins**ertion tasks. \dagger indicates a neural model is significantly superior to its non-neural counterpart with p-value < 0.01.

	Dis	Ins.	
	Acc	F_1	
Random	50.00	50.00	12.60
Graph-based (G&S)	64.23	65.01	11.93
Dist. sentence (L&H)	77.54	77.54	19.32
Grid-all nouns (E&C)	81.58	81.60	22.13
Extended Grid (E&C)	84.95	84.95	23.28
Grid-CNN	85.57†	85.57†	23.12
Extended Grid-CNN	88.69†	88.69†	25.95 †

Experiment 2: Summary Coherence Rating

- ► Compare rankings of summaries produce by model against rankings of summaries by human judges
- ▶ Dataset: Document Understanding Conference (DUC 2003)
- Pair summaries from human judgments and automatics summarization systems
- ▶ TRAIN: **144** pairs and TEST: **80** pairs

Table: Evaluation results on the Summary Coherence Rating task.

	Acc	$\overline{F_1}$
Random	50.0	50.0
Graph-based (G&S)	80.0	81.5
Grid (B&L)	83.8	_
Grid-CNN	85.0	85.0
Extended Grid-CNN	86.3	86.3
Pre-trained Grid-CNN	86.3	86.3
Pre-trained Ext. Grid-CNN	87.5	87.5

Conclusion

Our contribution

- ► Local text coherence model based on a convolutional neural network that operates over entity transitions of arbitrary length
- ▶ Pairwise ranking approach to train the model end-to-end
- ► Yield the best performance reported so far
- Code and data: https://github.com/datienguyen/cnn_coherence/

Future work:

- ► Include rhetorical relations
- Extend the model to other forms of discourse, especially, asynchronous conversations (e.g., forum, email, etc)

