Visualizing and understanding convolutional neural networks

Object Recognition and Computer Vision - 2018

Éloïse Berthier & Clément Mantoux

Introduction

Deep convnets perform extremely well on images

But little explainability

- → Deconvolutional NN to visualize convnets
- → Tool for network architecture design

Figure: the VGG16 network architecture

Visualizing convnets with deconvnets

Deconvolutional Neural Networks:

- Convolution → Transposed Convolution
- Pooling → Unpooling with argmax
- Rel U → Rel U

Convnet visualization:

→ Nullify all channels but one and feed in the deconvnet

Figure: deconvnet from [Zeiler et al. ICCV 2011]

Features Visualization on VGG16

Figure: the VGG16 network architecture

Features Visualization on VGG16

Figure : Best feature map at each network block

Training a ConvNet on CIFAR-10

32x32 images

10 classes

50k train images

10k test images

Figure: Sample images from CIFAR-10

Batch Normalization & Padding

Figure: Most activated filters of layer 4

Figure: Most activated filters of layer 1

Evolution of filters during training

Figure: Tracking of 1 filter per layer during training

Checkerboard effect

Figure: Activation of VGG16 deconvnet on each layer from the deepest one

Final architecture: 81.9% test accuracy

Sensitivity analysis

Figure: Sliding a gray patch on the input image