Вопрос по выбору: угловая дисперсия радуги

М.Шлапак

Изучено явление радуги, рассмотрены различия в первой и второй радуге, оценена угловая дисперсия первой и второй радуг

Ключевые слова: преломление, радуга, угловая дисперсия

1. Введение

Коэффициент преломления воды, как известно, зависит от длины волны падаемого на неё излучения, поэтому капля воды может работать в качестве спектрального прибора. В том числе благодаря этому мы можем наблюдать на небе потрясающее явление - радугу. Параллельные лучи солнечного света (будем считать их таковыми, так как они исходят от очень удаленного источника) падают на капли воды, которые, в свою очередь, работают как спектральные приборы: луч определенной длины волны преломляется в каждой капле поразному, поэтому при выходе из неё белый свет разлагается в спектр, а мы видим радугу. Радуга видна в стороне небосвода, противоположной Солнцу, и обязательно при Солнце, не закрытом облаками. Такие условия чаще всего создаются при выпадении летних ливневых дождей, называемых в народе "грибными"дождями. Центром радуги является точка, диаметрально противоположная Солнцу, - антисолярная точка. Внешняя дуга радуги красная, за нею идет оранжевая, желтая, зеленая дуги и т. д., заканчивая внутренней фиолетовой. В данной работе были исследованы первая и вторая радуги, оценена угловая дисперсия первой радуги, а также объяснены трудности в видимости радуг более высоких порядков.

2. Луч радуги

Рис.1. Ход светового луча в капле при образо-

вании первой и второй радуг

Пусть параллельный пучок солнечных лучей падает на каплю. Из-за кривизны поверхности капли, у разных лучей будут разные углы падения, поэтому угол падения $i \in [0^{\circ}, 90^{\circ}]$.

Рассмотрим некоторый луч, падающий в точку А под углом i. Преломившись с углом r, луч входит в каплю и достигает точки В. Часть энергии луча, преломившись, выходит из капли, часть, испытав внутреннее отражение в точке В, достигает точки С. Здесь снова часть энергии луча, преломившись. выходит из капли, а часть испытывает внутреннее отражение, переместившись в точку О. Внутренних отражений в капле может быть большое количество, а преломлений в капле всего два - на выходе и на входе.

Исходя из значений коэффициентов отражения для различных углов падения воды:

$i, {}^{\circ}C$	l			l .		90
p, %	2	2,1	2,5	6	34,5	100

Таблица 1. Зависимость коэффициента отражения от угла падения

где i - угол падения, p - коэффициент отражения

Видно, что большинство лучей будет преломляться.

При каждом отражении интенсивность убывает примерно в

$$\left(\frac{n+1}{n-1}\right)^2 \approx 50 \ pas$$

Обозначим через D_k угол, смежный к углу отклонения любого луча после прохождения им капли. Из рис.1 видно, что

$$D_1 = 2(i-r) + \pi - 2r \tag{1}$$

Параллельный пучок лучей, падающих на каплю, по выходе из капли оказывается сильно расходящимся. Концентрация лучей, а значит,

их интенсивность тем больше, чем ближе они лежат к лучу, испытавшему минимальное отклонение. Только минимально отклоненный луч и самые близкие к нему лучи обладают достаточной интенсивностью, чтобы образовать радугу. Поэтому этот луч и называют лучом радуги.

Минимальное отклонение луча, испытавшего одно внутреннее отражение (k = 1), равно:

$$D_1 = 2(i-r) + \pi - 2r = \pi + 2(i-2r)$$
 (2)

Каждый белый луч, преломляясь в капле, разлагается в спектр, и из капли выходит пучок расходящихся цветных лучей. Поскольку у красных лучей показатель преломления меньше, чем у других цветных лучей, то они и будут испытывать минимальное отклонение по сравнению с остальными.

3. Угловая дисперсия радуги

Используя выражение (2), закон преломления и зная, что D_1 должен быть максимальным (у луча радуги отклоняются минимально), найдем значение угла падения для различных компонент спектра.

$$(D_1)' = (\pi + 2(i - 2r))' = 0 \tag{3}$$

$$\sin i = n \sin r \tag{4}$$

Тогда:

$$(\pi + 2(\arcsin(n\sin r) - 2r))' = 0 \tag{5}$$

$$-4 + \frac{2n\cos r}{\sqrt{1 - n^2\sin^2 r}} = 0\tag{6}$$

Откуда зависимость угла преломления луча радуги от коэффициента преломления выражается как:

$$\sin r = \sqrt{\frac{4 - n(\lambda)^2}{3n(\lambda)^2}} \tag{7}$$

Воспользуемся табличными значениями зависимости коэффициента преломления воды при 20° от длины волны $n(\lambda)$:

λ , HM	n	λ , hm	n
1256,0	1,3210	508,6	1,3360
678,0	1,3308	486,1(F)	1,3371
656,3 (C)	1,3311	480,0	1,3374
643,8	1,3314	434,0 (G)	1,3403
589,3 (D)	1,3330	303,4	1,3581
546,1	1,3345	214,4	1,4032

Таблица 2. Зависимость показателя преломления от длины волны

Откуда найдем углы падения, преломления и отклонения лучей радуги для красной (С), жёлтой (D), голубой (F) и синей (G) линий спектра:

угол	656, 3 нм	589, 3 HM	486, 1 HM	434,0 нм
$r, {}^{\circ}C$	40,350	40,225	39,958	39,750
$i, {}^{\circ}C$	59,521	59,410	59,172	58,987
$D_1, {}^{\circ}C$	137,642	137,92	138,512	138,974
$\pi - D_1$, °C	42,358	42,08	41,488	41,026

Таблица 3. Углы первой радуги для различных длин волн

Угловая дисперсия рассчитывается по формуле:

$$D = \frac{d\theta}{d\lambda} \tag{8}$$

Рассчитаем угловую дисперсию для двух близких (с точки зрения радуги) линий спектра голубой и синей:

$$D_2 = \frac{0.462^{\circ}}{52.1 \text{ } \mu\text{M}} \approx 8.87 \cdot 10^6 \frac{\text{cpad.}}{\text{M}}$$
 (9)

Угловая ширина первой радуги составляет:

$$\triangle_1 = 42,358^{\circ} - 41,026^{\circ} = 1,332^{\circ}$$
 (10)

4. Вторая радуга и следующие

Если повторить предыдущие рассуждения относительно лучей, испытавших в капле два внутренних отражения, получим следующие минимальные углы отклонения крайних цветных лучей:

$$D_2 = 6r - 2i \tag{11}$$

Условие на угол преломления луча радуги:

$$\sin r = \sqrt{\frac{9 - n(\lambda)^2}{8n(\lambda)^2}} \tag{12}$$

угол	656, 3 HM	589,3 HM	486, 1 HM	434,0 нм
$r, {}^{\circ}C$	45,570	45,466	45,244	45,072
$i, {}^{\circ}C$	71,904	71,843	71,711	71,608
$D_1, {}^{\circ}C$	129,612	129,110	128,042	127,216
$\pi - D_1$, °C	50,388	50,890	51,958	52,784

Таблица 4. Углы второй радуги для различных длин волн

Угловая дисперсия для двух близких (с точки зрения радуги) линий спектра - голубой и синей:

$$D_2 = \frac{0.826^{\circ}}{52.1 \text{ nm}} \approx 15.85 \cdot 10^6 \frac{\text{spad.}}{\text{m}}$$
 (13)

Угловая ширина второй радуги составляет:

$$\triangle_2 = 52,784^{\circ} - 50,388^{\circ} = 2,396^{\circ}$$
 (14)

Из таблицы 4 видно, что теперь наибольший угол отклонения имеет фиолетовая компонента, в то время как в первой радуге наибольший угол отклонения имела красная компонента. Это объясняет инвертированный порядок второй радуги: внешняя дуга второй радуги фиолетовая, а внутренняя - красная.

Рис. 2. Пример двойной радуги При большем количестве отражений интенсивность становится очень маленькой, поэтому радугу порядка, выше второго, человеческим глазом увидеть очень сложно.

5. Влияние размера и формы капель на вид радуги

Расчеты по формулам дифракционной теории, выполненные для капель разного размера, по-казали, что весь вид радуги — ширина дуг, наличие, расположение и яркость отдельных цветовых тонов, положение дополнительных дуг очень сильно зависят от размера капель дождя. Приведем основные характеристики внешнего вида радуги для капель разных радиусов.

Радиус капель 0,5-1 мм. Наружный край основной радуги яркий, темнокрасный, за ним идет светло-красный, и далее чередуются все

цвета радуги. Особенно яркими кажутся фиолетовый и зеленый. Дополнительных дуг много (до пяти), в них чередуются фиолетоворозовые тона с зелеными. Дополнительные дуги непосредственно примыкают к основным радугам.

Радиус капель 0,25 мм. Красный кран радуги стал слабее. Остальные цвета видны попрежнему. Несколько фиолетово-розовых дополнительных дуг сменяются зелеными. Радиус капель 0,10-0,15 мм. Красного цвета в основной радуге больше нет. Наружный край радуги оранжевый. В остальном радуга хорошо развита. Дополнительные дуги становятся все более желтыми. Между ними и между основной радугой и первой дополнительной появились просветы.

Радиус капель 0,04-0,05 мм. Радуга стала заметно шире и бледнее. Наружный край ее бледно-желтый. Самым ярким является фиолетовый цвет. Первая дополнительная дуга отделена от основной радуги довольно широким промежутком, цвет ее белесый, чуть зеленоватый и беловато-фиолетовый.

Радиус капель 0,03 мм. Основная радуга еще более широкая с очень слабо окрашенным чуть желтоватым краем, содержит отдельные белые полосы.

Радиус капель 0,025 мм и менее. Радуга стала совсем белой. Она примерно в два раза шире обычной радуги и имеет вид блестящей белой полосы. Внутри нее могут быть дополнительные окрашенные дуги, сначала бледно-голубые или зеленые, затем белесовато-красные.

Рис.3. Белая радуга