Formuleblad voor Digitale Signaalbewerking

Hogeschool van Arnhem en Nijmegen

ir drs E.J Boks

Convolutie in het tijddomein

Een LTI systeem dat wordt gekarakteriseerd door de impulsresponsie h[n], zal een signaal x[n] omzetten naar een uitkomst y[n] volgens:

$$y[n] = \sum_{k=-\infty}^{\infty} x[n-k]h[k]$$

Fourier Transformatie

Ω is de bemonsterde frequentie, welke loopt van 0 tot 2π. Ω=π komt overeen met $f=\frac{f_{sample}}{2}$

Omschrijving	Signaal in tijddomein	Signaal in frequentiedomein
Transformatie	x[n]	$\sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$
Lineariteit	$a^*x_1[n] + b^*x_2[n]$	$a^*X_1(\Omega) + b^*X_2(\Omega)$
Tijdverschuiving	x[n-a]*u[n-a]	X(Ω)e- _{H3} .
Modulatie	x₁[n]x₂[n]	$\frac{1}{2\pi}\int\limits_{-\pi}^{\pi}X_{1}(\lambda)X_{2}(\Omega\!-\!\lambda)d$
Convolutie	x₁[n]*x₂[n]	$X_1(\Omega)X_2(\Omega)$
Tijddifferentiatie	x[n] –x[n-1]	X(Ω)(1-e ^{-RQ})

Omschrijving	Signaal in tijddomein x[n]	Signaal in Frequentiedomein X(Ω)
Impuls	δ[n]	1
Vertraagde impuls	δ[n-n ₀]	$e^{-j\Omegan_0}$
Stap	u[n]	$\frac{1}{1 - e^{-j\Omega}}$
Rechthoekige puls in tijddomein	u[n+n₀] - u[n-n₀+1]	$\frac{\sin((n_0 + \frac{1}{2})\Omega)}{\sin(\frac{1}{2}\Omega)}$
Rechthoekige puls in frequentiedomein	$\frac{\sin(n\Omega_0)}{n\pi} = \frac{\Omega_0}{\pi} sinc(n\Omega_0)$	$u[\Omega + \Omega_{:}] - u[\Omega - \Omega_{:}]$
Macht	$a^nu[n]$	$\frac{1}{1-ae^{-j\Omega}}$

Z Transformatie

Omschrijving	Signaal in tijddomein	Signaal in Z domein
Transformatie	x[n]	$\sum_{n=0}^{\infty} x[n]z^{-n}$
Lineariteit	a*x ₁ [n] + b*x ₂ [n]	$a*X_1(z) + b*X_2(z)$
Tijdverschuiving	x[n-a]*u[n-a]	X(z)z-a
Tijdintegratie	$\sum_{k=0}^{N} x[k]$	$X(z)\frac{z}{z-1}$
Tijddifferentiatie	x[n] -x[n-1]	X(z)(1-z ⁻¹)
Convolutie	x ₁ [n]*x ₂ [n]	$X_1(z)X_2(z)$
Eindwaarde	$\lim_{n\to\infty}x[n]$	$\lim_{z\to 1} \left(\frac{z-1}{z}\right) X(z)$

Omschrijving	Signaal in tijddomein	Signaal in Z domein
Impuls	δ[n]	1
Stap	u[n]	$\frac{z}{z-1} \text{of} \frac{1}{1-z^{-1}}$
helling	r[n]	$\frac{z}{(z-1)^2}$
Macht	$a^nu[n]$	$\frac{z}{z-a}$

Transformatie van s- naar z-domein

Een overdrachtsfunktie H(s), die bestaat na na het uitvoeren van de Laplace transformatie op een lineaire differentiaalvergelijking, kan worden omgezet naar het z-domein door middel van de bilineair z-transformatie. Deze BZT transformatie wordt uitgevoerd volgens :

$$s \equiv \frac{2}{T_s} \frac{z-1}{z+1}$$

Waarbij T_S de sampletijd is.

De Regel van Leonhard Euler

$$e^{jx} = \cos x + j \sin x$$

$$\cos(x) = \frac{e^{jx} + e^{-jx}}{2} \quad \text{En} \quad \sin(x) = \frac{e^{jx} - e^{-jx}}{2j}$$

12/05/12 door Ewout Boks .