- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

11 settembre 2018

(Cognome)									_			(No	me)			-	ume	ı ma	trice	ola)				

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3	0	\bigcirc	0	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9	0	\bigcirc	0	\bigcirc	\bigcirc	
10		0	0	0	\bigcirc	

1. La retta tangente al grafico di $y(x) = \log(1 + x + x^2)$ nel punto $x_0 = 2$ vale $\phi(x) = 2$

A: N.A. B: $\log(\frac{8}{27}) + 2(x - \frac{1}{3})$ C: $\frac{8}{7}x + \log(\frac{7}{4})$ D: x E: $\log(7) + \frac{5(x-2)}{7}$

2. Data $f(x) = -2\frac{x}{|x|}.$ Allora f'(-2) è uguale a

A: $\log(2)$ B: N.A. C: N.E. D: -1 E: 0

3. Quante sono le soluzioni reali del'equazione $x^3 - 3x + 1 = 0$

A: nessuna B: N.A. C: 2 D: 3 E: 1

4. Quale tra questi punti appartiene all'insieme di convergenza della serie di potenze

$$\sum_{n=4}^{+\infty} \frac{2^n \log(n)}{1+n} x^n$$

A: N.A. B: x = 1/e C: x = 1.99 D: $x = -\sqrt{2}$ E: $x = \pi$

5. Il numero complesso $i/(1+i)+(2i)^{-1}$ è uguale a

A: N.A. B: 1+i C: $\frac{1}{2}$ D: i-1 E: 2+i

6. inf min sup e max della funzione $x-2x^4$ per $x\in (-1,1)$ valgono

A: $\{-\frac{3}{8}, -\frac{3}{8}, +\infty, N.E.\}$ B: $\{1, N.E., 3, N.E.\}$ C: $\{1, 1, 3, 3\}$ D: $\{-\frac{3}{8}, -\frac{3}{8}, 3, 3\}$ E: N.A.

7. La soluzione del problema di Cauchy $y'(x) = \frac{x^2}{|y(x)|}$ con y(0) = 1 nel punto x = 1 vale

A: N.A. B: 0 C: $\sqrt{\frac{5}{3}}$ D: -1 E: 1

8. L'integrale

$$\int_{1}^{e^2} \frac{(\log(t))^3}{t} dt$$

vale

A: $\frac{1}{2}$ B: N.A. C: $-e^4$ D: 4 E: N.E.

9. Il limite

$$\lim_{x \to +\infty} \frac{x e^x}{1 + x + x^{(10^9)}}$$

vale

A: 1 B: N.E. C: 1/2 D: 0 E: N.A.

10. Il limite

$$\lim_{x \to +\infty} \cos\left(\pi \int_0^x t e^{-t^2} dt\right)$$

vale

 $A: +\infty$ B: 0 C: N.E. D: 1 E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

11 settembre 2018

 (Cognome)										_			(No	me)			-	(N	ume	ro d	i ma	trice	ola)			

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
10						

1. La retta tangente al grafico di $y(x) = \log(1 + x + x^2)$ nel punto $x_0 = 2$ vale $\phi(x) = A$: N.A. B: $\log(\frac{8}{27}) + 2(x - \frac{1}{3})$ C: $\frac{8}{7}x + \log(\frac{7}{4})$ D: x E: $\log(7) + \frac{5(x-2)}{7}$

2. inf min sup e max della funzione $x - 2x^4$ per $x \in (-1,1)$ valgono

A. $\{1, N, F, 3, N, F\}$ B. $\{3, 3, 4, 20, N, F\}$ C. $\{1, 1, 2, 3\}$ D. $\{3, 3, 3, 2, 3, 4, 20, N, F\}$

A: $\{1, N.E., 3, N.E.\}$ B: $\{-\frac{3}{8}, -\frac{3}{8}, +\infty, N.E.\}$ C: $\{1, 1, 3, 3\}$ D: $\{-\frac{3}{8}, -\frac{3}{8}, 3, 3\}$ E: N.A.

3. Data $f(x) = -2\frac{x}{|x|}.$ Allora f'(-2) è uguale a

A: -1 B: 0 C: N.E. D: N.A. E: $\log(2)$

4. Quante sono le soluzioni reali del'equazione $x^3 - 3x + 1 = 0$

A: 3 B: 1 C: N.A. D: 2 E: nessuna

5. La soluzione del problema di Cauchy $y'(x) = \frac{x^2}{|y(x)|}$ con y(0) = 1 nel punto x = 1 vale

A: 1 B: $\sqrt{\frac{5}{3}}$ C: 0 D: -1 E: N.A.

6. L'integrale

$$\int_{1}^{e^2} \frac{(\log(t))^3}{t} dt$$

vale

A: N.A. B: $\frac{1}{2}$ C: 4 D: N.E. E: $-e^4$

7. Il limite

$$\lim_{x \to +\infty} \frac{x e^x}{1 + x + x^{(10^9)}}$$

vale

A: N.E. B: N.A. C: 0 D: 1/2 E: 1

8. Quale tra questi punti appartiene all'insieme di convergenza della serie di potenze

$$\sum_{n=4}^{+\infty} \frac{2^n \log(n)}{1+n} x^n$$

A: x = 1/e B: x = 1.99 C: $x = \pi$ D: $x = -\sqrt{2}$ E: N.A.

9. Il limite

$$\lim_{x \to +\infty} \cos\left(\pi \int_0^x t e^{-t^2} dt\right)$$

vale

A: 1 B: N.E. C: $+\infty$ D: N.A. E: 0

10. Il numero complesso $i/(1+i)+(2i)^{-1}$ è uguale a

A: 1 + i B: N.A. C: $\frac{1}{2}$ D: 2 + i E: i - 1

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

11 settembre 2018

(Cognome)									_			(No	me)			-	ume	ı ma	trice	ola)				

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3	0	\bigcirc	0	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	0	\bigcirc	\bigcirc	
9	0	\bigcirc	0	\bigcirc	\bigcirc	
10	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	

1. L'integrale

$$\int_{1}^{e^2} \frac{(\log(t))^3}{t} dt$$

vale

A: $\frac{1}{2}$ B: N.A. C: 4 D: N.E. E: $-e^4$

- 2. La soluzione del problema di Cauchy $y'(x)=\frac{x^2}{|y(x)|}$ con y(0)=1 nel punto x=1 vale A: 0 B: $\sqrt{\frac{5}{3}}$ C: -1 D: 1 E: N.A.
- 3. inf min sup e max della funzione $x-2x^4$ per $x\in (-1,1)$ valgono A: N.A. B: $\{-\frac{3}{8},-\frac{3}{8},+\infty,N.E.\}$ C: $\{-\frac{3}{8},-\frac{3}{8},3,3\}$ D: $\{1,1,3,3\}$ E: $\{1,N.E.,3,N.E.\}$

4. Il limite

$$\lim_{x \to +\infty} \cos \left(\pi \int_0^x t e^{-t^2} dt \right)$$

vale

A: 1 B: N.A. C: 0 D: N.E. E: $+\infty$

5. Il numero complesso $i/(1+i)+(2i)^{-1}$ è uguale a A: 1+i B: N.A. C: i-1 D: 2+i E: $\frac{1}{2}$

6. Quante sono le soluzioni reali del'equazione $x^3 - 3x + 1 = 0$

A: 1 B: 3 C: N.A. D: nessuna E: 2

7. Il limite

$$\lim_{x \to +\infty} \frac{x e^x}{1 + x + x^{(10^9)}}$$

vale

A: 0 B: 1/2 C: N.E. D: N.A. E: 1

8. Quale tra questi punti appartiene all'insieme di convergenza della serie di potenze

$$\sum_{n=4}^{+\infty} \frac{2^n \log(n)}{1+n} x^n$$

A: x = 1.99 B: x = 1/e C: $x = -\sqrt{2}$ D: N.A. E: $x = \pi$

9. Data $f(x) = -2\frac{x}{|x|}.$ Allora f'(-2) è uguale a

A: N.E. B: 0 C: -1 D: $\log(2)$ E: N.A.

10. La retta tangente al grafico di $y(x) = \log(1 + x + x^2)$ nel punto $x_0 = 2$ vale $\phi(x) = \frac{1}{2}$

A: N.A. B: $\frac{8}{7}x + \log\left(\frac{7}{4}\right)$ C: $\log\left(\frac{8}{27}\right) + 2\left(x - \frac{1}{3}\right)$ D: x E: $\log(7) + \frac{5(x-2)}{7}$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

11 settembre 2018

 (Cognome)										_			(No	me)			-	(N	ume	ro d	i ma	trice	ola)			

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	0	
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7	0	\bigcirc	\bigcirc	\bigcirc	0	
8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
10						

1. La retta tangente al grafico di $y(x) = \log(1+x+x^2)$ nel punto $x_0 = 2$ vale $\phi(x) = 1$

A:
$$\frac{8}{7}x + \log\left(\frac{7}{4}\right)$$
 B: $\log\left(\frac{8}{27}\right) + 2\left(x - \frac{1}{3}\right)$ C: N.A. D: $\log(7) + \frac{5(x-2)}{7}$ E: x

2. Il numero complesso $i/(1+i)+(2i)^{-1}$ è uguale a

A:
$$i - 1$$
 B: N.A. C: $2 + i$ D: $\frac{1}{2}$ E: $1 + i$

3. Il limite

$$\lim_{x \to +\infty} \frac{x e^x}{1 + x + x^{(10^9)}}$$

vale

4. inf min sup e max della funzione $x-2x^4$ per $x\in(-1,1)$ valgono

$$\text{A: } \{1, N.E., 3, N.E.\} \quad \text{B: } \{-\frac{3}{8}, -\frac{3}{8}, 3, 3\} \quad \text{C: N.A.} \quad \text{D: } \{-\frac{3}{8}, -\frac{3}{8}, +\infty, N.E.\} \quad \text{E: } \{1, 1, 3, 3\}$$

5. Quante sono le soluzioni reali del'equazione $x^3 - 3x + 1 = 0$

6. Il limite

$$\lim_{x \to +\infty} \cos\left(\pi \int_0^x t e^{-t^2} dt\right)$$

vale

A: 0 B: N.A. C: 1 D:
$$+\infty$$
 E: N.E.

7. Quale tra questi punti appartiene all'insieme di convergenza della serie di potenze

$$\sum_{n=4}^{+\infty} \frac{2^n \log(n)}{1+n} x^n$$

A:
$$x = 1.99$$
 B: $x = -\sqrt{2}$ C: $x = 1/e$ D: N.A. E: $x = \pi$

8. L'integrale

$$\int_{1}^{e^2} \frac{(\log(t))^3}{t} dt$$

vale

A: N.A. B: 4 C:
$$-e^4$$
 D: N.E. E: $\frac{1}{2}$

9. Data $f(x) = -2\frac{x}{|x|}$. Allora f'(-2) è uguale a

A:
$$-1$$
 B: N.E. C: N.A. D: $\log(2)$ E: 0

10. La soluzione del problema di Cauchy $y'(x) = \frac{x^2}{|y(x)|}$ con y(0) = 1 nel punto x = 1 vale

A: N.A. B: 0 C: 1 D:
$$-1$$
 E: $\sqrt{\frac{5}{3}}$

11 settembre 2018

			(Co	ogno	ome)				_			(No	me)			_	ume		trice	ola)

1	0	0	0	\bigcirc	•
2	0	\bigcirc	\bigcirc	\bigcirc	•
3	0	0	0	•	0
4	0	•	\bigcirc	\bigcirc	\bigcirc
5	0	\bigcirc	•	\bigcirc	\bigcirc
6	0	\bigcirc	\bigcirc	\bigcirc	•
7	0	\bigcirc	•	\bigcirc	\bigcirc
8	0	\bigcirc	0	•	\bigcirc
9	0	\bigcirc	0	\bigcirc	•
10	0	•	\bigcirc	\bigcirc	\bigcirc

11 settembre 2018

			(Co	ogno	ome)				_			(No	me)			_	ume		trice	ola)

1	0	\bigcirc	\bigcirc	\bigcirc	•	
2	0	\bigcirc	\bigcirc	\bigcirc	•	
3	0	•	\bigcirc	\bigcirc	\bigcirc	
4	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0		\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	•	\bigcirc	\bigcirc	
7	0		\bigcirc	\bigcirc	\bigcirc	
8	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9	0	\bigcirc	\bigcirc	\bigcirc	•	
10						

11 settembre 2018

(Cognome)									(Nome)								(Numero di matricola)														

1	0	\bigcirc	•	\bigcirc	\bigcirc	
2	0	•	\bigcirc	\bigcirc	\bigcirc	_
3	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	_
4	0	\bigcirc	•	\bigcirc	\bigcirc	_
5	0	\bigcirc	\bigcirc	\bigcirc	•	
6	0	•	\bigcirc	\bigcirc	\bigcirc	_
7	0	\bigcirc	\bigcirc	•	\bigcirc	_
8	0	•	0	\bigcirc	\bigcirc	
9	0	•	0	\bigcirc	\bigcirc	_
10	0	\bigcirc	\bigcirc	\bigcirc	•	

11 settembre 2018

(Cognome)									(Nome)								(Numero di matricola)														

1	0	\bigcirc	\bigcirc	•	\bigcirc	
2	0	\bigcirc	\bigcirc	•	\bigcirc	
3	0	\bigcirc	•	\bigcirc	\bigcirc	
4	0	\bigcirc	•	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	•	\bigcirc	
6	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7	0	\bigcirc	•	\bigcirc	\bigcirc	
8	0	•	\bigcirc	\bigcirc	\bigcirc	
9	0	\bigcirc	\bigcirc	\bigcirc	•	
10	0	\bigcirc	\bigcirc	\bigcirc		

11 settembre 2018

PARTE B

1. Si studi la funzione

$$f(x) = \frac{x^2 - 1}{x^2 - 4}$$
 $x \neq \pm 2$.

Soluzione. La funzione risulta pari e positiva per $\{x < 2\} \cup \{x > 2\}$. agli estremi del dominio si hanno i seguenti limiti

$$\lim_{x \to \pm \infty} f(x) = 1 \qquad \lim_{x \to 2^+} f(x) = +\infty \qquad \lim_{x \to 2^-} f(x) = -\infty$$

$$\lim_{x \to -2^+} f(x) = -\infty \qquad \lim_{x \to -2^-} f(x) = +\infty$$

La derivata prima risulta

$$f'(x) = -\frac{6x}{(x^2 - 4)^2}$$

e quindi la funzione è crescente in $]-\infty,-2[\cup]-2,0]$. Nel punto 0 si ha un massimo relativo.

La derivata seconda risulta

$$f''(x) = \frac{6(3x^2 + 4)}{(x^2 - 4)^3}$$

e quindi la funzione è convessa per $\{x < 2\} \cup \{x > 2\}$ e concava per $\{-2 < x < 2\}$.

2. Studiare la convergenza del seguente integrale e, se converge, calcolarne il valore:

$$\int_0^{+\infty} e^{-x} \sin(x) \ dx.$$

Soluzione. L'integrale improprio in questione risulta assolutamente convergente, dato che $|e^{-x}\sin(x)| \le e^{-x} e^{-x} dx < +\infty$.

Integrando per parti si ha che

$$G(x) = -\frac{1}{2}e^{-x}(\sin(x) + \cos(x))$$

risulta essere una primitiva di $e^{-x}\sin(x)$ e quindi

$$\lim_{b \to +\infty} \int_0^b e^{-x} \sin(x) \ dx = \lim_{b \to +\infty} \left[-\frac{1}{2} e^{-x} (\sin(x) + \cos(x)) \Big|_0^b \right] = \frac{1}{2}.$$

Figura 1: Grafico di $f(x) = \frac{x^2-1}{x^2-4}$

3. Risolvere, per x > 0, il problema di Cauchy

$$\begin{cases} y' = \frac{1+x}{x}y + x - x^2 \\ y(1) = \alpha. \end{cases}$$

Determinare per quali valori del parametro $\alpha \in \mathbb{R}$ la soluzione é limitata inferiormente.

Soluzione. Si trtatta di un equazione lineare a coefficienti variaibli e un fattore integrante risulta essere

$$e^{A(x)} = e^{\int -\frac{1+x}{x} dx} = e^{-\log(x)-x} = \frac{e^{-x}}{x}$$
 $x > 0$.

Pertanto, moltiplicando per $\frac{\mathrm{e}^{-x}}{x}$ si ottiene

$$\frac{d}{dx} \left[y(x) \frac{e^{-x}}{x} \right] = y'(x) \frac{e^{-x}}{x} - \frac{e^{-x}}{x} \frac{1+x}{x} y(x) = e^{-x} (1-x)$$

Si ha subito che $\int \mathrm{e}^{-x} (1-x) \, x = x \, \mathrm{e}^{-x} + c$ e quindi

$$y(x)\frac{e^{-x}}{x} = xe^{-x} + c,$$

da cui

$$y(x) = x^2 + cx e^x$$

e imponendo che $y(1) = \alpha$ si ha

$$y(x) = x^2 + \frac{\alpha - 1}{e} x e^x.$$

La funzione y risulta continuna per $\{x > 0\}$ e inoltre

$$\lim_{x\to +\infty} y(x) = +\infty \quad \text{se } \alpha \geq 1$$

$$\lim_{x\to +\infty} y(x) = +\infty \quad \text{se } \alpha \geq 1$$

$$\lim_{x\to +\infty} y(x) = -\infty \quad \text{se } \alpha < 1$$

quindi è limitata inferiormente solo per $\alpha \geq 1.$

4. Siano $f,g:[a,b]\to\mathbb{R}$ due funzioni continue, con $f\geq 0$. Dimostrare che esiste $c\in[a,b]$ tale che

$$\int_a^b f(x)g(x) dx = g(c) \int_a^b f(x) dx.$$

Soluzione. Dato che $f \geq 0$ e g è continua si ha che

$$f(x) \min_{[a,b]} g(x) \le f(x)g(x) \le f(x) \max_{[a,b]} g(x) \qquad \forall x \in [a,b].$$

Pertanto

$$\min_{[a,b]} g \ \int_a^b f(x) \, dx \le \int_a^b f(x) g(x) \, dx \le \max_{[a,b]} g \ \int_a^b f(x) \, dx.$$

Se $f\equiv 0$ allora la uguaglianza da dimostrare è banale. Se $f\not\equiv 0$, essendo continua si ha $\int_a^b f(x)\,dx\not=0$ e quindi si può dividere ottenendo

$$\min_{[a,b]} g \le \frac{\int_a^b f(x)g(x) \, dx}{\int_a^b f(x) \, dx} \le \max_{[a,b]} g$$

e quindi dato che $\frac{\int_a^b f(x)g(x)\,dx}{\int_a^b f(x)\,dx}$ sta tra il minimo e il massimo di g, che è continuna, per il teorema dei valore intermedi esiste almeno un $c\in[a,b]$ tale che

$$\frac{\int_a^b f(x)g(x) dx}{\int_a^b f(x) dx} = g(c),$$

da cui la tesi, molitplicando di nuovo per $\int_a^b f(x)\,dx.$