Precalculus Homework Lecture 13

1. Solve the quadratic equation.

(a)
$$2x^2 - 5x + 3 = 0$$
.

answet: $x_1 = 1$, $x_2 = \frac{3}{2}$

(b)
$$2x^2 + 6x + 3 = 0$$
.

 $\frac{2\sqrt{\pm \varepsilon}-}{2}=2x\cdot 1x$ Sinswer:

(c)
$$3x^2 - 5x - 2 = 0$$
.

 $z = 2x, \frac{1}{3}, x_2 = 2$

(d)
$$3x^2 - 5x - 3 = 0$$
.

 $\frac{10\sqrt{\pm 3}}{8} = 2x \cdot 1x : 10 \text{ mergins}$

- 2. Compute the vertex of the parabola and the x- and y- intercepts.
 - Plot the quadratic function roughly by hand.
 - (a) $x^2 x + 1$.
 - (b) $x^2 + x 1$.
 - (c) $x^2 6x + 9$.
 - (d) $\frac{1}{2}x^2 + 2x 1$.
 - (e) $2x^2 + 3x 5$.
- 3. The answer key has not been proofread, use with caution.
 - (a) Find the maximal possible product of two numbers whose sum is 12.

98 :15wen

- (b) Two numbers add to 12 and when twice the square of one of them is added to the other, the result is the minimum possible. What are the two numbers?
 - answer: $\frac{1}{L}$ and $\frac{1}{L}$

(c) What is the maximal possible area of a rectangle with perimeter 20m?

ZmdZ ::awen

(d) Let L be the line with equation x + y = 4 and let P be the point (0,1). Find the point on L closest to P and find the distance between P and that point.

answer: closest point: $(\frac{3}{2}, \frac{5}{2})$, distance: $\frac{3\sqrt{2}}{2}$