

Introduction to Algorithm

Chapter 7: Quick Sort

Outline

- 6.1 Basic Quick Sort
- 6.2 Improving Quick Sort with Medians
- 6.3 Quick Search

7.1 Basic Quick Sort

QUICK SORT

- We have seen two $O(n \log n)$ sorting algorithms:
 - Merge sort which is faster but requires more memory
 - Heap sort which allows in-place sorting
- We will now look at a recursive algorithm which may be done almost in place and usually faster than heap sort
 - Use an object in the array (a pivot) to divide the two
 - Average case: $O(n \log n)$ time and $O(\log n)$ memory
 - Worst case: $O(n^2)$ time and O(n) memory

QUICK SORT

- Merge sort splits the array sub-lists and sorts them
- The larger problem is split into two subproblems based on location in the array
- Consider the following alternative:
 - Chose an object in the array and partition the remaining objects into two groups relative to the chosen entry

QUICK SORT

• For example, given an unsorted array:

2	8	7	1	3	5	6	4
---	---	---	---	---	---	---	---

 We can select the last entry, 4, and sort the remaining entries into two groups, those less than 4 and those greater than 4:

2	1	3	4	7	5	6	8
---	---	---	---	---	---	---	---

- Note that 4 is now in the correct location once the list is sorted
 - Proceed by applying the algorithm to the first 3 and last
 4 entries

A Simple Implementation – PARTITION

• PARTITION (A, p, r) $x \leftarrow A[r]$ $i \leftarrow p-1$ **FOR** $j \leftarrow p$ **TO** r-1 $\mathbf{IF} A[j] \leq x$ THEN $i \leftarrow i + 1$ exchange $A[i] \leftrightarrow A[j]$ exchange $A[i+1] \leftrightarrow A[r]$ RETURN i+1

A Simple Implementation – PARTITION

```
PARTITION (A, p, r) //A[p..r]

1  x \leftarrow A[r] //the rightmost element as pivot

2  i \leftarrow p-1

3 for j \leftarrow p to r-1 Running time = O(n)

4  do if A[j] \le x for n elements

5  then i \leftarrow i+1

6  exchange A[i+1] \leftrightarrow A[r]

7 exchange A[i+1] \leftrightarrow A[r]
```


A Simple Implementation – PARTITION

• The operation of Partition on the sample array. Lightly shaded array elements are all with values no greater than x (the pivot). Heavily shaded array elements are all with values greater than x.

A Simple Implementation – QUICKSORT

• QUICKSORT (A, p, r)

IF p < r

THEN q ← PARTITION (A, p, r)

QUICKSORT (A, p, q-1)

QUICKSORT (A, q+1, r)

• Initial call: QUICKSORT(A, 1, n)

Run-time Analysis

• In the best case, the list will be split into two approximately equal sub-lists, and thus, the run time could be very similar to that of merge sort: $\Theta(n \log n)$

Recursive Tree of the Best Case

- A recursion tree for quick sort in which the partition always balances the two sides of the partition equally. The resulting running time is $\Theta(n \log n)$
- The question is: WHAT happens if we don't get that lucky?

Worst-case Scenario

• Suppose we choose the smallest element as our pivot and we try ordering a sorted list:

• Using 2, we partition the original list into

• We still have to sort a list of size n-1

- The run time is $T(n) = T(n-1) + \Theta(n) = \Theta(n^2)$
 - Thus, the run time drops from $\Theta(n \log n)$ to $\Theta(n^2)$

Recursive Tree of the Worst Case

• A recursion tree for quick sort in which the partition always puts only a single element on one side of the partition. The resulting running time is $\Theta(n^2)$

Recursive Tree of the Balanced Case

• What if the split is always 1:9?

$$-T(n) = T(9n/10) + T(n/10) + \Theta(n)$$

- What is the solution to this recurrence?

Recursive Tree of the Balanced Case

• A recursion tree for quick sort in which partition always produces a 9-to-1 split, yielding a running time of $\Theta(n \log n)$

Average-case Senario

• A recursion tree for quick sort in which partition always produces a 9-to-1 split, yielding a running time of $\Theta(n \log n)$

If we choose a random pivot, this will, on average, divide a set of n items into two sets of size $\frac{n}{4}$ and $\frac{3n}{4}$.

90 % of the time the width will have a ratio of 1:19 or better.

7.2 Improving Quick Sort with Medians

Alternate Strategy

• Our goal is to choose the median element in the list as our pivot:

- Unfortunately, it's DIFFICULT to find
- Alternate strategy: take the median of a subset of entries
 - For example, take the median of the first, middle, and last entries

Choose the Median-of-Three

- It is difficult to find the median so consider another strategy:
 - -Choose the median of the first, middle, and last entries in the list
 - 80 38 95 84 99 10 79 44 26 87 96 12 43 81 3

• This will usually give a much better approximation of the actual median

Choose the Median-of-Three

• Sorting the elements based on 44 results in two sub-lists, each of which must be sorted (again, using quicksort)

• We select the 26 to partition the first sub-list:

and 81 to partition the second sub-list:

Choose the Median-of-Three

- If we choose a random pivot, this will, on average, divide a set of n items into two sets of size $\frac{n}{4}$ and $\frac{3n}{4}$.
 - 90 % of the time the width will have a ratio of 1:19 or better.
- Choosing the median-of-three will, on average, divide the *n* items into two sets of size $\frac{5n}{16}$ and $\frac{11n}{16}$.
 - Median-of-three helps speed the algorithm
 - 90 % of the time the width will have a ratio of 1:6.388 or better.
- Further, we can apply insertion sort to sorting the small subarrays.

- First, we examine the first, middle, and last entries of the full list
- The span below will indicate which list we are currently sorting

```
pivot = 57 70 97 38 63 21 85 68 76 9 81 36 55 79 74 85 16 61 77 49 24
```

- We select 57 to be our pivot
- We move 24 into the first location

- Starting at the 2nd and 2nd-last locations:
- we search forward till we find 70 > 57
- we search backward till we find 49 < 57

```
pivot = 57
24 70 97 38 63 21 85 68 76 9 81 36 55 79 74 85 16 61 77 49
```

• We swap 70 and 49, placing them in order with respect to each other

We search forward until we find

97 > 57

We search backward until we find

16 < 57

• We swap 16 and 97 which are now in order with respect to each other

- We search forward till we find 63 > 57
- We search backward till we find 55 < 57

```
pivot = 57

24 49 16 38 63 21 85 68 76 9 81 36 55 79 74 85 97 61 77 70
```

• We swap **63** and **55**

- We search forward till we find 85 > 57
- We search backward till we find 36 < 57

```
pivot = 57

24 49 16 38 55 21 85 68 76 9 81 36 63 79 74 85 97 61 77 70
```

• We swap 85 and 36, placing them in order with respect to each other

- We search forward until we find 68 > 57
- We search backward until we find 9 < 57

```
pivot = 57

24 49 16 38 55 21 36 68 76 9 81 85 63 79 74 85 97 61 77 70
```

• We swap **68** and **9**

```
pivot = 57

24 49 16 38 55 21 36 9 76 68 81 85 63 79 74 85 97 61 77 70
```

- We search forward until we find 76 > 57
- We search backward until we find 9 < 57
 - The indices are out of order, so we stop

```
pivot = 57

24 49 16 38 55 21 36 9 76 68 81 85 63 79 74 85 97 61 77 70
```

- We move the larger indexed item to the vacancy at the end of the array
- We fill the empty location with the pivot, 57
- The pivot is now in the correct location

- We will now recursively call quick sort on the first half of the list
- When we are finished, all entries < 57 will be sorted

• We examine the first, middle, and last elements of this sub list

```
pivot = 24 49 16 38 55 21 36 9 57 68 81 85 63 79 74 85 97 61 77 70 76
```

- We choose 24 to be our pivot
- We move 9 into the first location in this sub-list

- We search forward till we find 49 > 24
- We search backward till we find 21 < 24

• We swap 49 and 21, placing them in order with respect to each other

- We search forward till we find 38 > 24
- We search backward till we find 16 < 24
- The indices are reversed, so we stop

- We move 38 to the vacant location and move the pivot 24 into the previous location of 38
- 24 is now in the correct location

• We will now recursively call quick sort on the left and right halves of those entries which are < 57

9 21 16 <mark>24</mark> 55 49 36 38 <mark>57</mark> 68 81 85 63 79 74 85 97 61 77 70 76

• The first partition has three entries, so we sort it using insertion sort

• The second partition also has only four entries, so again, we use insertion sort

• First we examine the first, middle, and last entries of the sub-list

```
pivot =

9 16 21 24 36 38 49 55 57 68 81 85 63 79 74 85 97 61 77 70 76
```

- We choose 74 to be our pivot
- We move 76 to the vacancy left by 74

- We search forward till we find 81 > 74
- We search backward till we find 70 < 74

```
pivot = 74

9 16 21 24 36 38 49 55 57 68 81 85 63 79 76 85 97 61 77 70
```

• We swap 70 and 84 placing them in order

- We search forward till we find 85 > 74
- We search backward till we find 61 < 74

```
pivot = 74

9 16 21 24 36 38 49 55 57 68 70 85 63 79 76 85 97 61 77 81
```

• We swap 85 and 61 placing them in order

- We search forward till we find 79 > 74
- We search backward till we find 63 < 74
- The indices are reversed, so we stop

```
pivot = 74

9 16 21 24 36 38 49 55 57 68 70 61 63 79 76 85 97 85 77 81
```

- We move 79 to the vacant location and move the pivot 74 into previous location of 79
- 74 is now in the correct location

- We sort the left sub-list first
- It has 4 elements, so we simply use insertion sort

• Having sorted the four elements, we focus on the remaining sub-list of seven entries

• To sort the next sub-list, we examine the first, middle, and last entries

```
pivot =

9 16 21 24 36 38 49 55 57 61 63 68 70 74 76 85 97 85 77 81 79
```

- We select 79 as our pivot and move:
- 76 into the lowest position
- 85 into the highest position

- We search forward till we find 85 > 79
- We search backward till we find 77 < 79

• We swap 85 and 77, placing them in order

- We search forward till we find 97 > 79
- We search backward till we find 77 < 79
- The indices are reversed, so we stop

- Finally, we move 97 to the vacant location and copy 79 into the appropriate location
- 79 is now in the correct location

- This splits the sub-list into two sub-lists of size 2 and 4
- We use insertion sort for the first sub-list

• We are left with one sub-list with four entries, so again, we use insertion sort

Sorting the last sub-list, we arrive at an ordered list

9 16 21 24 36 38 49 55 57 61 63 68 70 74 76 77 79 81 85 85 97

Searching k-th smallest element

Input: A[1...n] unsorted array Output: index of the k-th smallest element $(1 \le k \le n)$

Algorithm 1:

Sorting A

Time complexity: O(nlog n)

Algorithm 2:

Sequential selection

Time complexity: O(kn)

Algorithm 3:

Quick Search

Quick Search

```
QuickSearch(A, p, r, k)
   if(p = r) return p //p=r=k
   t \leftarrow Partition(A, p, r)
   if(t = k) return t
   if (k < t)
       QuickSearch(A, p, t-1, k)
               // find k-th smallest element in A[p..t-1]
   else
       QuickSearch(A, t+1, r, k)
               // find k-th smallest element in A[t+1..r]
```

Quick Search

- If we choose a random pivot, this will, on average, divide a set of n items into two sets of size $\frac{n}{4}$ and $\frac{3n}{4}$.
 - 90 % of the time the width will have a ratio of 1:19 or better.

The Memory Requirement

- The additional memory required is $O(\log n)$
- Each recursive function call places its local variables, parameters, etc., on a stack
 - The depth of the recursion tree is $O(\log n)$
 - Unfortunately, if the run time is $O(n^2)$, the memory use is O(n)

Run Time Summery

• To summarize all three $O(n \log n)$ algorithms

	Average Run Time	Worst-case Run Time	Average Memory	Worst-case Memory
Heap Sort	$O(n \log n)$		O (1)	
Merge Sort	$O(n \log n)$		O(n)	
Quick Sort	$O(n \log n)$	$O(n^2)$	$O(\log n)$	$\mathbf{O}(n)$

算法分析课程组 重庆大学计算机学院

End of Section.