Planejamento e análise de experimentos Revisão das ideias principais

Prof. Walmes Zeviani walmes@ufpr.br

Laboratório de Estatística e Geoinformação Departamento de Estatística Universidade Federal do Paraná

Atualizado em 2018-08-03

Plano de aula

Objetivos

- ► Apresentar as ideias principais de planejamento de experimentos.
- Compreender a importância de planejar um experimento.
- Conhecer os principais fundamentos e delineamentos.

Por que planejar um experimento?

- Observar e descrever fenômenos.
- Otimizar o custo-benefício.
- Isolar efeito e determinar relações e causas.
- Produzir resultados confiáveis.
- A validade de um experimento é afetado pela sua construção e execução, então atenção ao delineamento experimental é importante.

Estudos observacionais vs experimentais

Característica	Observacionais	Experimentais
Controle sob as	mummum	
condições de contorno	não	sim
Controle sob efeito de		
fatores indesejáveis	não	sim
Controle dos fatores	100	
sob investigação	não	sim
Determinar relações causais	não	sim
É o mais comum	sim	não
É o mais barato	sim	não

História - as primeiras contribuições

- Sir Ronald A. Fisher em 1920s.
- Responsável pela análise dos experimentos na Rothamsted Agricultural Experimental Station, Inglaterra.
- Suas obras tiveram profundo influência para a Estatística.
 - R. A. Fisher (1958). Statistical Methods for Research Workers 13th ed Oliver & Boid, Edinburgh.
 - R. A. Fisher (1966). The Design of Experiments. 8th ed. Hafner Publishing Company, New York

- Princípios da experimentação: repetição, aleatorização e controle local
- Conceitos de delineamentos. experimentais, experimentos fatoriais, análise de variância, etc

Uma senhora toma chá

- ► Aconteceu com Fisher e Muriel Bristol.
- A senhora declarou saber discriminar a bebida quanto a ordem em que chá e leite eram misturados.
- Experimento proposto: 8 xícaras, 4 de cada tipo servidas, aleatoriamente.
- Reposta: número de xícaras corretamente classificadas.

Definições

- Fator representa a variável independente controlada cujos níveis são definidos pelo pesquisador (domínio/conjunto).
- Níveis são as categorias ou valores no domínio de um fator (pontos no domínio/elementos no conjunto).
- Tratamento é algo que o pesquisador administra às unidades experimentais.
- Unidade experimental (UE) é o que recebe ou contém o tratamento.
- Variável resposta é a variável observada nas UE que estão sujeitas ao efeito dos tratamentos
- Fator ou tratamento? Gera confusão, então tratamento := condição/ponto experimental.

Definições

Fator	Níveis
Quant. de adubo	0, 50,, 150 kg
Tempo de cozimento	20, 25,, 40 min
Forma de aplic.	cova, sulco, superfície
Tipo de medicação	pírula, xarope, injeção
Mét. de ensino	aula, aula+tarefa, vídeo+aula,
	vídeo+tarefa
Comp. do concreto	3:1, 2:1, 1:1, 1:2, 1:3
(areia:pedra)	

Tipos de fatores

- ► Fontes de variação controladas no experimento.
- Métricos ou categóricos.
- Métricos ou quantitativos: suporte contínuo ou discreto.
- ► Categóricos ou qualitativos: níveis nominais ou ordinais.

Combinação de fatores

Unidade experimental

Qual é a unidade experimental?

- ► Há situações em que não é trivial definir a UE.
- Objetivo: avaliar o efeito do nível de poluição da água sobre lesões em peixes.
- ► Cenário: aquários com 50 peixes cada.
- ▶ Medidas: 30 dias depois, 10 peixes ao acaso tiveram lesões contadas.
- Qual é a unidade experimental: peixe ou aquário?

https://onlinecourses.science.psu.edu/stat502/node/174/

Planejamento de experimentos

Planejamento de experimentos

(Statatistical design of experiments) refere-se ao processo de planejar o experimento de tal forma que dados apropriados serão coletados para serem analisados com métodos estatísticos produzindo conclusões válidas e objetivas (montgomery2017design).

- Extrair conclusões relevantes dos dados.
- Os dados estão sujeitos à erros experimentais.
- ► Toda situação experimental tem dois aspectos intimamente relacionados:
 - O planejamento do experimento.
 - A análise dos dados.
- A metodologia estatística fornece uma abordagem objetiva.

Princípio: Repetição

- ► Repetição é ter mais de uma UE de cada ponto experimental.
- Permite estimar o erro experimental (variação aleatória).
- ► A incerteza sobre efeitos diminui com mais repetições.
- Cuidado: pseudo-repetição vs repetição genuína.
- Repetição genuína: as repetições de ponto experimental capturam toda a variação que afeta a variável resposta (aquários).

Pseudo-repetição: capturam menos variação do que as genuínas (peixes).

Princípio: Aleatorização

- Estimativas n\u00e3o tendenciosas dos efeitos e erro experimental.
- Não tendenciosas: livre da influência sistemática de fatores não controlados.
- Ajuda a eliminar erros de origem serial: descalibração de processo/instrumento, mudança de operador/avaliador ou condições de contorno.
- Tem situações em que a aleatorização é complicada: sistemas de cultivo/uso da terra.

Condições das UE

- ► As UE podem ser ou estar em condições:
 - ► Homogeneas: quaisquer diferenças são devido ao acaso.
 - ▶ Heterogêneas: diferenças são explicadas por uma causa indentificável.
- Os níveis da causa de variação podem ser:
 - ► Contínuos: peso/idade inicial dos animais, plantas por m².
 - Categóricos: sexo, raça, classe de tamanho, altura na topografia.

Princípio: Controle local

- Medidas que visam reduzir a interferência de fatores externos.
- Reduzem o erro experimental (aleatório) e variações sistemáticas.
- Blocagem: agrupamento de UE uniformes para casualização.
- ► Bordadura: isolar efeitos de borda.
- Ensaios cegos (simples, duplo): sem conhecimento do tratamento.

Princípio: Controle local

Delineamentos

Quanto a blocagem

- ▶ Delineamento inteiramente casualizado.
- ▶ Delineamento de blocos completos casualizados.
- ▶ Delineamento de quadrado latino.
- ▶ Delineamento de blocos incompletos balanceados.

Quanto aos níveis de aleatorização ou tamanho de parcela

- ► Um estrato → um erro experimental.
- ightharpoonup Mais de um erro experimental.
 - Parcela subdividida.
 - Parcela: casualização dos níveis do fator A.
 - ► Subparcela: casualização dos níveis do fator B.
- ▶ Séries longitudinais → dependência.
 - Efeito do tempo/épocas, efeito da profundidade.

Delineamentos

- ▶ 7 blocos de tramanho 3.
- Fator de 7 níveis com 3 repetições.

bloco 1	1	5	6
bloco 2	1	4	3
bloco 3	7	2	1
bloco 4	5	7	4
bloco 5	7	3	6
bloco 6	4	6	2
bloco 7	3	5	2

Análise exploratória

- Inspeção dos dados antes da análise.
- Definição do modelo.
- ► Conformidade com as suposições do modelo.
- Representação dos efeitos dos fatores.
- ► Análise de experimento em DIC.
- ► Análise de experimento em DBC.
- ► Análise de experimento em DQL.

Especificação do modelo

Especificação do modelo

Distribuição da variável resposta

Representação do efeito

Fator categórico vs métrico

Representação do efeito

Modelos não lineares

Para refletir

"To consult the statistician after an experiment is finished is often merely to ask him to conduct a post mortem examination. He can perhaps say what the experiment died of."

Ronald Fisher

