```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Reading the given dataset

```
In [3]: crop_ds=pd.read_csv(r"G:\2. Python for data science\Datasets\apy_2.csv")
```

Checking for Missing values

Dropping the rows with missing values

Out[7]:	Un	named: 0 St	ate_Name	District_Name C	rop_Year	Season	Crop	Area	Producti	on
	0	0	Karnataka	UDUPI	2005	Rabi	Horse- gram	1122.0	83	6.0
	1	1	Madhya Pradesh	GWALIOR	2003	Whole Year	Brinjal	194.0		0.0
	2	2	Andhra Pradesh	CHITTOOR	2010	Rabi	Sesamum	334.0	11	8.0
	3	3	Andhra Pradesh	KRISHNA	2014	Rabi	Tomato	538.0	728	9.0
	4	4	Uttar Pradesh	SULTANPUR	2011	Rabi	Coriander	59.0	3	3.0
In [8]:	crop_c	ds.tail()								
Out[8]:		Unnamed:	State_Name	e District_Name	· Crop_Yea	ar Seasc	on	Crop	Area	Produ
	73822	73822	Utta Pradesł		200	11 Ra	nı ·	peseed lustard	3727.0	3.
	73823	73823	Chhattisgarh	n DURG	i 201	4 Ra	bi	Wheat	6364.0	7.
	73824	73824	Utta	RVERVEI	I 201	0 Summ	er Moong	(Green Gram)	489.0	i
		75024	Pradesh	1				O. a,		
	73825	73825	Pradesh Assan		199	8 Ra	bi	Wheat	6431.0	6
				n KAMRUF				•	6431.0 100125.0	6: 78:

Question no. 1

Which of these crops are produced during the Summer season? (select option with all that apply)

- a. Arecanut, Arhar/Tur, Bajra, Castor seed
- b. Paddy, Maize, Moong (Green Gram), Onion, Sunflower
- c. Banana, Coriander, Gram, Rapeseed & Mustard
- d. Rice, Sugarcane, Paddy, Tomato

```
crop_ds[crop_ds['Season']=='Summer
In [10]:
                                                 ']['Crop'].unique()
Out[10]: array(['Groundnut', 'Maize', 'Rice', 'Sesamum', 'Wheat', 'Onion', 'Urad',
                 'Peas & beans (Pulses)', 'Sunflower', 'Ragi', 'Bajra',
                 'Moong(Green Gram)', 'Cotton(lint)', 'Jowar', 'Cowpea(Lobia)',
                 'Tobacco', 'Horse-gram', 'Dry chillies', 'Paddy', 'Turmeric',
                 'Arhar/Tur', 'Banana', 'Potato', 'Dry ginger', 'Brinjal',
                 'Sugarcane', 'Other Rabi pulses', 'Small millets',
                 'Total foodgrain'], dtype=object)
         Answer: Option b
         Question no. 2
         During which year did Haryana have the highest crop production?
         a. 2013
         b. 2011
         c. 1997
         d. 2008
         q2=crop_ds[['State_Name','Crop_Year','Production']].groupby(['State_Name','Crop_Year')
In [11]:
```

In [12]: | q2.loc['Haryana'].sort_values(by='Production', ascending=False)

0+	[12].	Duaduation
Out	[12]:	Production

Crop_Year		
2008	9647100.0	
2005	9328300.0	
2011	9021300.0	
2003	8437562.0	
2012	7996416.0	
2002	7837700.0	
2004	7523400.0	
2007	7323500.0	
1999	7188901.0	
2001	7009900.0	
1998	6653600.0	
2006	6566600.0	
2000	5872800.0	
2010	5548900.0	
2009	5214480.0	
1997	3376800.0	

Answer: Option d

Question no. 3

The maximum and minimum area for production were in the years?

```
a. 1997 and 2014
```

b. 1998 and 2015

c. 1997 and 2015

d. 1999 and 2005

```
In [13]: q3=crop_ds[['Crop_Year','Area']].groupby(['Crop_Year']).sum()
In [14]: q3.sort_values(by='Area',ascending=False)
```

Out[14]: Area

Crop_Year	
1997	68245111.00
2004	53445367.24
1999	51841049.00
2006	51393712.02
2010	50813109.78
2009	50772638.00
2000	50530198.00
2008	49604477.00
1998	49317287.00
2003	48954140.97
2002	48328531.15
2011	45835655.41
2005	45296672.88
2007	44971304.38
2012	44369268.00
2001	43603438.77
2013	41895685.00
2014	34188857.84
2015	1313314.00

Answer: Option c

Question no. 4

Which state in India had the second lowest crop production? (overall, for all years)

- a. Meghalaya
- b. Chandigarh
- c. Mizoram
- d. Manipur

```
In [15]: q4=crop_ds[['State_Name','Production']].groupby(['State_Name']).sum()
In [16]: q4.sort_values(by='Production',ascending=True)
```

Out[16]: Production

State_Name	
Chandigarh	1.580450e+04
Mizoram	4.579428e+05
Sikkim	5.507250e+05
Dadra and Nagar Haveli	6.247060e+05
Manipur	1.658617e+06
Arunachal Pradesh	2.035912e+06
Jharkhand	3.319141e+06
Meghalaya	3.639914e+06
Nagaland	3.925012e+06
Jammu and Kashmir	4.018134e+06
Tripura	4.278173e+06
Himachal Pradesh	5.198802e+06
Chhattisgarh	3.132986e+07
Uttarakhand	4.017398e+07
Odisha	4.563306e+07
Puducherry	7.326832e+07
Rajasthan	8.671658e+07
Haryana	1.145473e+08
Bihar	1.151581e+08
Telangana	1.202722e+08
Madhya Pradesh	1.337226e+08
Goa	1.421826e+08
Gujarat	1.538659e+08
Punjab	1.724376e+08
Andaman and Nicobar Islands	2.032759e+08
Karnataka	2.637879e+08
Maharashtra	3.930627e+08
Assam	5.201106e+08
West Bengal	5.327023e+08
Uttar Pradesh	1.069989e+09
Tamil Nadu	1.787126e+09
Andhra Pradesh	3.141848e+09

Production

State Name

Kerala 2.299779e+10

Answer: Option c

Question no. 5

What were the top three produced crops in the year 2012?

- a. Wheat, Potato, Rice
- b. Coconut, Potato, Sugarcane
- c. Coconut, Sugarcane, Rice
- d. Rice, Sugarcane, Maize

```
In [17]: q5=crop_ds[['Crop_Year','Crop','Production']].groupby(['Crop_Year','Crop']).sum()
In [18]: q5.loc[2012].sort_values(by='Production',ascending=False)
```

Out[18]: Production

Crop	
Coconut	1.208299e+09
Sugarcane	1.143474e+08
Rice	3.371318e+07
Wheat	2.448045e+07
Potato	1.006466e+07
•••	
Pome Granet	8.720000e+02
Blackgram	7.000000e+01
Grapes	1.800000e+01
Cardamom	1.200000e+01
other oilseeds	1.000000e+00

69 rows × 1 columns

Answer: Option c

Question no. 6

What is the standard deviation for Area of production?

```
a. 52957.44 (approx.)
b. 12167.42 (approx.)
c. 49177.60 (approx.)
d. 48848.27 (approx.)

In [19]: crop_ds['Area'].std()

Out[19]: 49177.60312712377
```

Question no. 7

Answer: Option c

Which is the crop that gave the highest production to the state of Andhra Pradesh?

- a. Sugarcane
- b. Wheat
- c. Banana
- d. Coconut

```
In [20]: q7=crop_ds[['State_Name','Crop','Production']].groupby(['State_Name','Crop']).sum()
In [21]: q7.loc['Andhra Pradesh'].sort_values(by="Production",ascending=False)
```

Out[21]:		Production
	Crop	
	Coconut	2.979218e+09
	Sugarcane	7.585185e+07
	Rice	4.599650e+07
	Groundnut	5.430417e+06
	Maize	4.853811e+06
	•••	
	Cucumber	0.000000e+00
	Bottle Gourd	0.000000e+00
	Other Vegetables	0.000000e+00
	Peas (vegetable)	0.000000e+00

67 rows × 1 columns

other fibres 0.000000e+00

Answer: Option d

Question no. 8

Which of the following statements is true? (Select all that applies)

- a. The overall production during the Kharif season is 2,029,970,000 (approx.)
- b. The overall production during the Summer season is 51,992,900 (approx.)
- c. The overall production during the Autumn season is 14,413,770 (approx.)
- d. The overall production during the Kharif season is 1,282,056,700 (approx.)

```
In [22]: crop_ds[crop_ds['Season']=='Kharif ']['Production'].sum()
Out[22]: 1282056680.69
In [23]: crop_ds[crop_ds['Season']=='Summer ']['Production'].sum()
Out[23]: 51992876.699999996
In [24]: crop_ds[crop_ds['Season']=='Autumn ']['Production'].sum()
Out[24]: 18896594.060000002
```

Answer: Options b & d

Question no. 9

Which state has the lowest area of production?

- a. Puducherry
- b. Chandigarh
- c. Kerala
- d. Goa

```
In [25]: q9=crop_ds[['State_Name','Area']].groupby(['State_Name']).sum()
In [26]: q9.sort_values(by='Area',ascending=True)
```

Out[26]: Area

State_Name	
Chandigarh	2.791000e+03
Andaman and Nicobar Islands	8.531894e+04
Dadra and Nagar Haveli	1.182820e+05
Puducherry	1.206340e+05
Goa	2.702040e+05
Mizoram	2.711313e+05
Sikkim	3.922050e+05
Manipur	6.121800e+05
Meghalaya	1.270237e+06
Arunachal Pradesh	1.283609e+06
Tripura	1.605874e+06
Nagaland	1.800631e+06
Jammu and Kashmir	2.744164e+06
Jharkhand	2.748473e+06
Himachal Pradesh	2.897344e+06
Uttarakhand	5.714422e+06
Kerala	8.871677e+06
Assam	2.065623e+07
Telangana	2.225371e+07
Chhattisgarh	2.547540e+07
Haryana	2.756965e+07
Tamil Nadu	2.922639e+07
Odisha	3.132268e+07
Punjab	3.692255e+07
Andhra Pradesh	3.864198e+07
Bihar	3.881541e+07
Gujarat	4.835700e+07
Karnataka	5.735193e+07
West Bengal	6.637353e+07
Rajasthan	8.258156e+07
Maharashtra	9.356024e+07
Madhya Pradesh	9.968280e+07

State Name

Uttar Pradesh 1.251196e+08

Answer: Option b

Question no. 10

What is the mean for the area of production?

- a. 17065.81 (approx.)
- b. 12035.39 (approx.)
- c. 11868.49 (approx.)
- d. 58250.34 (approx.)

In [27]: crop_ds['Area'].mean()

Out[27]: 12035.385977242393

Answer: Option b

Question no. 11

What is the correlation coefficient between Area and Production?

- a. 37.686
- b. 0.37686
- c. 3.7686
- d. 0.037686

In [28]: crop_ds.corr()

C:\Users\DELL DESKTOP\AppData\Local\Temp\ipykernel_12996\3772326663.py:1: FutureWa rning: The default value of numeric_only in DataFrame.corr is deprecated. In a fut ure version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

crop_ds.corr()

Out[28]:		Unnamed: 0	Crop_Year	Area	Production
	Unnamed: 0	1.000000	-0.007143	0.002912	0.002058
	Crop_Year	-0.007143	1.000000	-0.025927	0.005928
	Area	0.002912	-0.025927	1.000000	0.037686
	Production	0.002058	0.005928	0.037686	1.000000

Answer: Option d

Question no. 12

The crops that had the highest production (in the correct order) were?

- a. Coconut, Sugarcane, Cucumber, Potato, Rice
- b. Gram, Jute, Soya bean, Maize, Cotton
- c. Coconut, Sugarcane, Rice, Wheat, Potato
- d. Sugarcane, Wheat, Soya bean, Potato, Coconut

```
In [29]: q12=crop_ds[['Crop','Production']].groupby(['Crop']).sum()
In [30]: q12.sort_values(by='Production',ascending=False)
```

Out[30]: Production

Crop	
Coconut	2.870917e+10
Sugarcane	1.769219e+09
Rice	4.744665e+08
Wheat	3.849682e+08
Potato	1.250747e+08
•••	
Ber	0.000000e+00
Cucumber	0.000000e+00
Pump Kin	0.000000e+00
Other Citrus Fruit	0.000000e+00
Apple	0.000000e+00

122 rows × 1 columns

Answer: Option c

Question no. 13

Which is the only crop that has the highest production during autumn, summer, and winter?

```
a. Rice
```

b. Maize

c. Paddy

d. Jute

```
In [31]: q13=crop_ds[['Season','Crop','Production']].groupby(['Season','Crop']).sum()
In [32]: q13.loc['Autumn '].sort_values(by='Production',ascending=False)
```

Out[32]: Production

Сгор	
Rice	14820963.70
Maize	3089100.78
Paddy	521140.00
Jute	155210.90
Ragi	121504.38
Groundnut	97968.50
Urad	39608.00
Moong(Green Gram)	24799.50
Dry chillies	10513.00
Sesamum	5302.10
Banana	3980.00
Arhar/Tur	3937.00
Sugarcane	1291.20
Small millets	595.00
Dry ginger	360.00
Tapioca	130.00
Potato	100.00
Peas & beans (Pulses)	50.00
Onion	20.00
Turmeric	20.00

In [34]: q13.loc['Summer '].sort_values(by='Production',ascending=False)

Out[34]: Production

Сгор	
Rice	38709052.2
Maize	4840564.0
Groundnut	2083123.3
Bajra	1779222.0
Paddy	1638436.0
Moong(Green Gram)	735738.3
Sesamum	618864.8
Onion	596379.0
Banana	272080.0
Sunflower	170886.0
Potato	168904.0
Urad	107210.8
Ragi	103252.8
Jowar	59373.0
Dry chillies	54145.0
Wheat	17009.9
Cotton(lint)	10622.0
Peas & beans (Pulses)	10066.0
Tobacco	5318.0
Sugarcane	4570.0
Arhar/Tur	3198.0
Cowpea(Lobia)	2511.0
Dry ginger	860.0
Total foodgrain	617.0
Brinjal	552.0
Horse-gram	287.6
Turmeric	20.0
Small millets	11.0
Other Rabi pulses	3.0

Crop	
Rice	1.113293e+08
Potato	8.277893e+06
Sugarcane	4.839051e+06
Paddy	4.622613e+06
Horse-gram	8.732610e+04
Ragi	8.064870e+04
Urad	7.479070e+04
Moong(Green Gram)	6.656960e+04
Sesamum	3.270780e+04
Arhar/Tur	1.260100e+04
Groundnut	1.229040e+04
Rapeseed &Mustard	9.776100e+03
Banana	8.770000e+03
Maize	3.129800e+03
Wheat	1.652000e+03
Dry chillies	7.000000e+02
Gram	5.740000e+02
Niger seed	3.015000e+02
Peas & beans (Pulses)	1.100000e+02
Sannhamp	7.300000e+01
Dry ginger	4.000000e+01
Sweet potato	3.000000e+01
Onion	2.000000e+01

Answer: Option a

Prepare the dataset further by following the steps given below:

- ●Ensure the datatypes of the columns are appropriate
- •Drop all the variables except "Area" and "Production"
- ulletSplit the data into the train (70%) and test (30%) sets, and set the random state for the train-test split instance as 42

Build a linear regression model using the training dataset by having "Area" as the independent variable and "Production" as the dependent variable. Using the model that has been built, answer the following question

Question no. 14

The Root mean square value of the Linear regression model is

```
a. 13850999.74575 (approx)
         b. 1001531.33109 (approx)
         c. 13524820.12533 (approx)
         d. 14599645.26554 (approx)
In [36]: ml=crop_ds.drop(['Unnamed: 0','State_Name','District_Name','Crop_Year','Season','Cr
In [37]: ml.head()
Out[37]:
             Area Production
         0 1122.0
                        836.0
             194.0
                          0.0
             334.0
                        118.0
             538.0
                       7289.0
              59.0
                         33.0
In [38]: x=pd.DataFrame(ml['Area'])
In [39]: y=pd.DataFrame(ml['Production'])
In [40]: from sklearn.model_selection import train_test_split
In [41]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=42)
In [42]: from sklearn.linear_model import LinearRegression
In [43]: model=LinearRegression()
In [44]: model.fit(x_train,y_train)
Out[44]: ▼ LinearRegression
         LinearRegression()
```

```
prediction=model.predict(x_test)
In [45]:
In [47]: from sklearn.metrics import mean_squared_error
         import numpy as np
In [48]: np.sqrt(mean_squared_error(y_test,prediction))
Out[48]: 13850999.745759705
         Answer: Option a
         Question no. 15
         The MAE of the Linear regression model is
         a. 18529629.51147 (approx)
         b. 827676.37303 (approx)
         c. 13524820.12533 (approx)
         d. 112599645.26554 (approx)
In [49]: from sklearn.metrics import mean_absolute_error
In [50]: mean_absolute_error(y_test,prediction)
Out[50]: 827676.3730329004
         Answer: Option b
         ----Thank You -----
In [ ]:
```