Узагальнене оптимальне керування

Гуляницький А. Л.*

1 жовтня 2019 р.

Зміст

1.3	Початкові значення		1
	1.3.1	Початкові значення інтегралу	1
	1.3.2	Початкові значення похідних	2
1.4	Перетворення Лапласа дробовах інтегралів і похідних		4

1.3 Початкові значення

1.3.1 Початкові значення інтегралу

Дослідимо, за яких умов початкове значення інтегралу $((I_0^{\alpha}f)(t)=o(1))$ дорівнює нулю.

Теорема 1.40

Нехай $\alpha>0,\, p>1/\alpha,\, p\geq 1,\, f\in L_p((0,T)).$ Тоді $(I_0^\alpha)(t)=o(t^{\alpha-1/p})$ при $t\to 0.$

Доведення.

$$|(I_0^{\alpha})(t)| = \frac{1}{\Gamma(\alpha)} \left| \int_0^t f(s)(t-s)^{\alpha-1} \, \mathrm{d}s \right| \le$$

$$\le \frac{1}{\Gamma(\alpha)} \int_0^t |f(s)(t-s)^{\alpha-1} \, \mathrm{d}s| \le$$

$$\le \frac{1}{\Gamma(\alpha)} \left(\int_0^t |f(s)|^p \, \mathrm{d}s \right)^{1/p} \left(\int_0^t (t-s)^{(\alpha-1)q} \, \mathrm{d}s \right)^{1/q} =$$

$$= \frac{1}{\Gamma(\alpha)} \left(\int_0^t |f(s)|^p \, \mathrm{d}s \right)^{1/p} \left(\frac{t^{(\alpha-1)q+1}}{(\alpha-1)q+1} \right)^{1/q} =$$

$$= \left(\int_0^t |f(s)|^p \, \mathrm{d}s \right)^{1/p} \frac{t^{\alpha-1+1/q}}{c(\alpha,p)} =$$

 $^{^*\}Gamma$ уляницький Андрій Леонідович, andriy.hul@gmail.com

$$= \left(\int_0^t |f(s)|^p ds\right)^{1/p} \frac{t^{\alpha - 1/p}}{c(\alpha, p)} =$$
$$= o(t^{\alpha - 1/p}),$$

де останній перехід справджується адже $\int_0^t |f(s)|^p \, \mathrm{d} s = o(1)$ при $t \to 0$

Зауваження 1.41 (абсолютна неперервність інтеграла Лебега) — Якщо $f \in L_1$ то

$$(\forall \varepsilon > 0) \quad (\exists \delta(\varepsilon) > 0) \quad (\forall A : \mu(A) < \delta(\varepsilon)) \quad \int_{A} f \, d\mu \le \varepsilon. \tag{1.48}$$

Зауваження 1.42 (інтегральна нерівність Коші-Буняковського) — Якщо всі функції достатньо інтегровні (всі норми скінченні)

$$||f \cdot g||_{L_1} \le ||f||_{L_2} \cdot ||g||_{L_2}. \tag{1.49}$$

Зауваження 1.43 (інтегральна нерівність Гельдера) — Якщо всі функції достатью інтегровні (всі норми скінченні)

$$||f \cdot g||_{L_1} \le ||f||_{L_p} \cdot ||g||_{L_q},\tag{1.50}$$

де 1/p + 1/q = 1.

Зауваження 1.44 — Умова $p>1/\alpha$ необхідна для збіжності усіх інтегралів з доведення

Наслідок 1.45

При $\alpha > 1/p$ маємо $(I_0^{\alpha}f)(t) = o(1)$, тобто $(I_0^{\alpha}f)(0) = 0$.

Вправа 1.46. Наведіть приклад f для якої $(I_0^{\alpha}f)(0) \neq 0$ (але і не ∞).

1.3.2 Початкові значення похідних

Теорема 1.47

Нехай $\alpha>0,\ \alpha\not\in\mathbb{N},\ n=\lceil\alpha\rceil,\ f\in C^{n-1}([0,T]),\ p>\frac{1}{n-\alpha},\ f^{(n)}\in L_P([0,T]).$ Тоді $(D_0^\alpha)(0)=0\iff f^{(k)}(0)=0$ при $k=\overline{0,n-1}.$

Доведення. За умов теореми

$$(D_0^{\alpha} f)(t) = \frac{1}{\Gamma(n-\alpha)} \int_0^t \frac{f^{(n)}(s)}{(t-s)^{\alpha-n+1}} \, \mathrm{d}s + \sum_{k=0}^{n-1} \frac{f^{(k)}(0)t^{k-\alpha}}{\Gamma(k-\alpha+1)}. \tag{1.51}$$

(⇐=) У формулі вище інтеграл дорівнює нулю за першою сьогоднішньою теоремою, а уся сумма зануляється за умовою теореми.

 (\Longrightarrow) Домножатимемо (1.51) на $t^{\alpha-k}$ для $k=\overline{0,n-1}.$ Наприклад, для k=0 матимемо

$$t^{\alpha}(D_0^{\alpha}f)(t) = t^{\alpha}({}^{\star}D_0^{\alpha}f)(t) + \frac{f(0)}{\Gamma(1-\alpha)} + \sum_{k=1}^{n-1} \frac{f^{(k)}(0)t^k}{\Gamma(k-\alpha+1)}.$$
 (1.52)

Бачимо, що $t^{\alpha}(^{\star}D_0^{\alpha}f)(t) = o(1)$, всі доданки суми нескінченно малі, тому f(0) = 0. Далі за індукцією по k отримуємо рівність нулеві усіх похідних до (n-1)-ої.

Зауваження 1.48 — При
$$0 < \alpha < 1$$
 маємо $(D_0^{\alpha}1)(t) = \frac{1}{\Gamma(1-\alpha)t^{\alpha}} \neq 0$.

Зауваження 1.49 — Але $(*D_0^{\alpha}1)(t) = 0$.

Теорема 1.50

Нехай $\alpha>0,\ n=\lceil\alpha\rceil,\ f\in C^n([0,T]),$ тоді $D_0^\alpha f\equiv 0\iff f(t)=\sum_{k=0}^{n-1}c_kt^{\alpha-k-1}$ — дробовий многочлен.

Вправа 1.51. (\Longrightarrow) Вправа.

(⇐=) Нехай

$$f(t) = \sum_{k=0}^{n-1} c_k t^{\alpha - k - 1}, \tag{1.53}$$

тоді

$$D_0^{\alpha} f = \frac{\mathrm{d}^n}{\mathrm{d}t^n} I_0^{n-\alpha} \left(\sum_{k=0}^{n-1} t^{\alpha-k-1} \right) = \frac{\mathrm{d}^n}{\mathrm{d}t^n} \frac{\Gamma(\alpha-k)}{\Gamma(n-k)} t^{n-k-1} = 0.$$
 (1.54)

Теорема 1.52 (похідна добутку)

Нехай f,g — аналітичні в (-h,h). Тоді для $t\in (0,h/2)$

$$D^{\alpha}(f \cdot g)(t) \sum_{k=0}^{\infty} {k \choose \alpha} D_0^k f(t) \cdot D_0^{\alpha-k} f(t), \qquad (1.55)$$

де

$$\binom{k}{\alpha} = \frac{\Gamma(\alpha+1)}{\Gamma(k+1) \cdot \Gamma(\alpha-k-1)}.$$
 (1.56)

Теорема 1.53 (Тарасова)

Нехай $0 < \alpha < 1$, тоді D^{α} — лінійний оператор, що задовольняє умову

$$D^{\alpha}(f \cdot g) = D^{\alpha}f \cdot g + f \cdot D^{\alpha}g. \tag{1.57}$$

Тоді $\exists p(t) \colon (D_0^{\alpha} f)(t) = p(t) \cdot \frac{\mathrm{d}f}{\mathrm{d}t}.$

1.4 Перетворення Лапласа дробовах інтегралів і похідних

Означення 1.54. Нехай $f: \mathbb{R}_+ \to \mathbb{R}$, тоді

$$\mathscr{L}[f](\eta) = \overline{f}(\eta) = \int_0^\infty e^{-\eta t} f(t) \, \mathrm{d}t. \tag{1.58}$$

Лема 1.55 (перетворення Лапласа похідної)

$$\mathscr{L}[f'](\eta) = \eta \mathscr{L}[f](\eta) - f(0). \tag{1.59}$$

Доведення. Доведення. Інтегруємо частинами.

Лема 1.56 (перетворення Лапласа згортки)

$$\mathscr{L}[f \star g](\eta) = \mathscr{L}[f](\eta) \cdot \mathscr{L}[g](\eta). \tag{1.60}$$

Доведення. Змінюємо порядок інтегрування.

Лема 1.57 (перетворення Лапласа степеневої функції)

$$\mathscr{L}[t^{-\beta}](\eta) = \Gamma(1-\beta)\eta^{\beta-1}.$$
(1.61)

Доведення. За означенням

$$\mathscr{L}[t^{-\beta}](\eta) = \int_0^\infty e^{-\eta t} t^{-\beta}.$$
 (1.62)

Зробимо заміну змінних: $\eta t = \xi$, $\mathrm{d}t = \mathrm{d}\xi/\eta$. Тоді

$$\int_0^\infty e^{-\eta t} t^{-\beta} = \int_0^\infty e^{-\xi} \left(\frac{\xi}{\eta}\right)^{-\beta} \frac{1}{\eta} d\xi =$$

$$= \eta^{\beta - 1} \int_0^\infty e^{-\xi} \xi^{-\beta} d\xi =$$

$$= \eta^{\beta - 1} \Gamma(1 - \beta).$$
(1.63)

Лема 1.58 (перетворення Лапласа інтегралу дробового порядку)

$$\mathcal{L}[I_0^{\alpha} f](\eta) = \eta^{-\alpha} \mathcal{L}[f](\eta). \tag{1.64}$$

Доведення.

$$\mathcal{L}[I_0^{\alpha} f](\eta) = \mathcal{L}[f \star y_{\alpha}](\eta) =$$

$$= \mathcal{L}[f](\eta) \cdot \mathcal{L}[y_{\alpha}](\eta) =$$

$$= \mathcal{L}[f](\eta) \cdot \frac{1}{\Gamma(\alpha)} \Gamma(1 - (1 - \alpha)) \eta^{-\alpha} =$$

$$= \eta^{-\alpha} \mathcal{L}[f](\eta).$$
(1.65)

Лема 1.59 (перетворення Лапласа похідної Рімана-Ліувіля)

$$\mathscr{L}[D_0^{\alpha} f](\eta) = \eta^{\alpha} \mathscr{L}[f](\eta) - \sum_{k=0}^{n-1} (D_0^{\alpha-k-1} f)(0) \eta^k.$$
 (1.66)

Приклад 1.60

Зокрема, при $0 < \alpha < 1$ маємо

$$\mathscr{L}[D_0^{\alpha}f](\eta) = \eta^{\alpha}\mathscr{L}[f](\eta) - (I_0^{\alpha - 1}f)(0). \tag{1.67}$$

Доведення.

$$\mathcal{L}[D_0^{\alpha} f](\eta) = \mathcal{L}\left[\frac{\mathrm{d}}{\mathrm{d}t} I_0^{1-\alpha} f\right](\eta) =$$

$$= \eta \cdot \mathcal{L}[I_0^{1-\alpha} f](\eta) - (I_0^{1-\alpha} f)(0) =$$

$$= \eta \cdot \eta^{\alpha-1} \cdot \mathcal{L}[f](\eta) - (I_0^{1-\alpha} f)(0) =$$

$$= \eta^{\alpha} \cdot \mathcal{L}[f](\eta) - (I_0^{1-\alpha} f)(0).$$
(1.68)

Лема 1.61 (перетворення Лапласа похідної Катупо)

$$\mathscr{L}\left[{}^{\star}D_0^{\alpha}f\right](\eta) = \eta^{\alpha} \cdot \mathscr{L}[f](\eta) - \sum_{k=0}^{n-1} f^{(k)}(0)\eta^{\alpha-k-1}. \tag{1.69}$$

Π риклад 1.62

Зокрема, при $0 < \alpha < 1$ маємо

$$\mathscr{L}[D_0^{\alpha} f](\eta) = \eta^{\alpha} \cdot \mathscr{L}[f](\eta) - \eta^{\alpha - 1} f(0). \tag{1.70}$$

Вправа 1.63. Довести.

Доведення.