ON EMBEDDING INFINITE CYCLIC COVERS IN COMPACT 3-MANIFOLDS

C. McA. Gordon

1. By a knot we shall mean a smooth knot K in S^3 . The exterior of K is $E(K) = S^3 - \text{int } N(K)$, where N(K) is a tubular neighborhood of K, and we shall refer to the infinite cyclic cover of E(K) as simply the infinite cyclic cover of K.

In [JNWZ] the authors consider the question (attributed to John Stallings) of when the infinite cyclic cover of a knot embeds in S^3 . Following [JNWZ], we say that such a knot has Property IE. Clearly fibered knots have Property IE. In [JNWZ] it is shown that if a non-fibered genus 1 knot has Property IE then its Alexander polynomial is either 1 or $2 - 5t + 2t^2$, and that in each case there are infinitely many genus 1 knots having Property IE.

[JNWZ] also raises the question of whether the infinite cyclic cover of a knot always embeds in some compact 3-manifold. The following theorem provides a negative answer.

Theorem. The infinite cyclic cover of the untwisted Whitehead double of a non-trivial knot does not embed in any compact 3-manifold.

Corollary. There are infinitely many genus 1 knots with Alexander polynomial 1 whose infinite cyclic covers do not embed in any compact 3-manifold.

2. Let $L = J \cup J'$ be the Whitehead link, and W be its exterior; see Figure 1. Let T be the boundary component of W corresponding to the component J of L, and let m, ℓ be a meridian-longitude pair for J on T. Let k be a non-trivial knot, with exterior X, and let μ, λ be a meridian-longitude pair for k on ∂X . Let K be the untwisted Whitehead double of k. Then the exterior of K is $Y = W \cup_T X$, where T is identified with ∂X so that $m \leftrightarrow \lambda$, $\ell \leftrightarrow \mu$.

Figure 1

The exterior of J (resp. J') in S^3 is a solid torus V (resp. V'). Let V'_{∞} be the infinite cyclic cover of V', and let \tilde{J} be the inverse image of J in V'_{∞} . The infinite cyclic cover of J' in the solid torus V is $W_{\infty} = V'_{\infty} - \operatorname{int} N(\tilde{J})$. Since there is an isotopy of S^3 interchanging

the components of L, the link \tilde{J} in $V_{\infty}' \cong D^2 \times \mathbb{R}$ is as shown in Figure 2.

Let the components of \tilde{J} be J_i , $i \in \mathbb{Z}$, indexed in the obvious way, and let $T_i = \partial N(J_i)$. Then the infinite cyclic cover of Y is $Y_{\infty} = W_{\infty} \cup (\coprod_{i \in \mathbb{Z}} X_i)$, where X_i is a copy of X, attached to W_{∞} by identifying T_i with ∂X_i via $\tilde{m}_i \leftrightarrow \lambda_i$, $\tilde{\ell}_i \leftrightarrow \mu_i$, where μ_i , λ_i is a meridian-longitude pair on ∂X_i , and \tilde{m}_i , $\tilde{\ell}_i$ are lifts of m, ℓ . Note that \tilde{m}_i is a meridian of J_i .

Let $\gamma_i \subset T_i$ be a longitude of J_i in $D^2 \times \mathbb{R}$. Then there is a planar surface $P_i \subset W_\infty$ with $\partial P_i = \gamma_i \cup \lambda_{i-1} \cup \lambda_{i+1}$. See Figure 3.

Let $S_j \subset X_j$ be a copy of a Seifert surface for k, and define $F_i = P_i \cup S_{i-1} \cup S_{i+1}$. Then F_i is an orientable surface in Y_{∞} with $F_i \cap X_i = \partial F_i = \gamma_i$. Note that each of γ_{i-1} and γ_{i+1} intersects F_i transversely in a single point.

We are now ready to prove the theorem. So suppose that Y_{∞} embeds in a compact 3-manifold M. By passing to a double cover if necessary we may assume that M is orientable.

Lemma. T_i is incompressible in M.

Proof. Let D be a compressing disk for T_i in M. Since k is non-trivial, $D \cap X_i = \partial D$. Recall the orientable surface $F_i \subset Y_{\infty}$ with $\partial F_i \cap X_i = \partial F_i = \gamma_i$. Then ∂D and γ_i are both null-homologous in $\overline{M - X_i}$, and hence they are isotopic on T_i . Let \widehat{F}_i be the (singular) closed surface $F_i \cup D$. We may assume that D intersects T_{i+1} transversely in a finite number of simple closed curves, each essential on T_{i+1} .

If $D \cap T_{i+1} = \emptyset$, then γ_{i+1} intersects \widehat{F}_i transversely in a single point, and so $[\gamma_{i+1}]$ has infinite order in $H_1(M)$. But this contradicts the fact that γ_{i+1} bounds F_{i+1} .

If $D \cap T_{i+1} \neq \emptyset$, then an innermost disk on D is a compressing disk D' for T_{i+1} disjoint from T_i . Now, γ_i meets $\widehat{F}_{i+1} = F_{i+1} \cup D'$ transversely in a single point, and we get a contradiction as before. \Box Proof of Theorem. By the Lemma and Haken Finiteness there exist distinct i, j, k such that T_i , T_j and T_k are mutually parallel in M. By relabeling if necessary we may assume that T_j is contained in the interior of the product region between T_i and T_k . Since T_j bounds X_j , either T_i or T_k is contained in X_j , which is absurd. \Box

References

[JNWZ] B. Jiang, Y. Ni, S. Wang and Q. Zhou, Embedding infinite cyclic covers of knot spaces into 3-space, Topology 45 (2006), 691–705.

Department of Mathematics The University of Texas at Austin 1 University Station C1200 Austin TX 78712-0257 USA gordon@math.utexas.edu