CPMC_Lab exercises report

icf

September 2017

1 Introduction

There are six problems in the Exercises and each question in the problem will be answered in four steps:

- 1) Pre-analysis
- 2) Matlab Program Modification
- 3) Input
- 4) Output
- 5) Discussion

Notice:

Calculation used the running parameters below if no special mention:

deltau=0.01;

 $N_{\text{wlk}}=100;$

 $N_blksteps=200;$

 $N_{eqblk}=3;$

 $N_blk=10$;

 $itv_{modsvd}=5;$

 $itv_pc=10;$

 $itv_Em=20;$

2 Problem 1: Running the sample script

2.1 Question1: How much imaginary time is needed to equilibrate?

1) Pre-analysis

Get the behavior (figure) of E vs. imaginary time (N_eqblk*N_blksteps*deltau) at the end of each bulk in "Equilibration phase".

(When it comes to Equilibration Phase, the E wouldn't change or vibration around some value.)

- 2) Matlab Program Modification Calculate E in each bulk in the Equilibration phase: batchsample_deltau_icf.m
- 3) Input 11.mat N_blksteps=40; N_eqblk=16; deltau=0.01;
- 4) Output 11.fig

Figure 1: 11.fig: Mixed Energy vs. Imaginary Time, in Equilibration phase.

5) Discussion

- The "E" above in 11.fig is "Mixed" Energy which used to describe the "Equilibration Phase Stability" and the better method to describe the "Equilibration Phase Stability" is $||\phi_i\rangle |\phi_{i+N}\rangle|^2$ where $\{|\phi_i\rangle\}$ are states after each bulk and N=1,2,...
- N_eqblk, N_blk steps and deltau affect the state propagation together as "imaginary time = N_eqblk*N_blk steps*deltau ".
- According to the Output, imaginary time >= 4 is chosen to be the imaginary time to include an "Equilibration Phase".

2.2 Question2: after get an equilibration phase, get the minimum length of a reliable N_- blksteps.

1) Pre-analysis

Change N_blksteps with fixed imaginary time >=4 in equilibration phase. The reliable "N_bliksteps" lead to an small and stable "E_err" in Measurement phase .

- Matlab Program Modification batchsample.m for different N_blksteps.
- Input
 N_blksteps=[40:20:320];

4) Output 14.fig

Figure 2: 14.fig: E, E_err vs. N_blksteps with fixed imaginary time >=4 in equilibration phase.

5) Discussion

System	(kx,ky)	E_0	E_c	Data
2*1	(+0.0819,0)	-2.44260	-2.44215	15.mat
4*1	(+0.0819,0)	-2.11671	-2.10726	16.mat
8*1	(+0.0819,0)	-4.60591	-4.61115	17.mat
2*4	(+0.0819, -0.6052)	-12.1210	-12.12566	18.mat
3*4	(+0.02, 0.04)	-13.9918	-13.99065	19.mat
4*4	(0,0)	-19.58094	-19.58320	20.mat

Table 1: E_c is calculated result and E_0 is Ground state Energy.

When N_blksteps more than 200, then E_err become stable and reliable. (Although there should be more accurate if N_blksteps goes far like 1000, as an exercise it is not necessary to spend to much time in calculation.)

2.3 Question3: using "correct" parameters, compare the results in Table 1

1) Input

batchsample_Lx_Ly_icf.m;

15.mat;16.mat;17.mat;18.mat;19.mat;20.mat;

2) Output

Table 1.

3 Problem 2: Controlling the basic run parameters

3.1 Question1: E vs. deltau (the sliced length) in comparable statistics

1) Pre-analysis

Change deltau with deltau*N_blksteps and deltau*itv_em fixed.

- 2) Matlab Program Modification batchsample_deltau_icf.m
- 3) Input

21.mat

4) Output

21.fig

Figure 3: 21.fig: E vs. deltau (the sliced length) with deltau*N_blksteps and deltau*itv_em fixed.

5) Discussion

- The smaller deltau is, the smaller E is.
- Smaller deltau lead to a larger $E_{\rm err}$ and need more calculation time, deltau=0.01 for all calculation here for convinence.
- A part of the difference between state calculated by CPMC and the real Ground state is from the slice process.

3.2 Question3: E_err vs. N_wlk*bulk

1) Pre-analysis

Change N_wlk (The number of walker) with N_wlk*N_blk and N_wlk*N_eqblk fixed.

- 2) Matlab Program Modification batchsample_N_wlk_icf.m
- 3) Input 22.mat
- 4) Output

22.fig;22_2.fig;

Figure 4: The Error change little with fixed N_wlk*N_blk and N_wlk*N_eqblk.

5) Discussion

If N_wlk*N_blk and N_wlk*N_eqblk are fixed, the accuracy of E (E_err) wouldn't change much, which means "time" and "space" are equivalent in CPMC process.

4 Problem3: Calculating E_K and E_V separately and compare with Table3

1) Pre-analysis

AS

$$E_{-}V = <\phi(U)|U\frac{\mathrm{d}H(U)}{\mathrm{d}U}|\phi(U)> = U\frac{\mathrm{d}E(U)}{\mathrm{d}U} \equiv U\lim_{\Delta U \to 0} \frac{E(U+\Delta U) - E(U-\Delta U)}{2\Delta U}$$

And

$$E_-V = <\phi(t_x,t_y)|t_x\frac{\mathrm{d}H(t_x,t_y))}{\mathrm{d}t_x} + t_y\frac{\mathrm{d}H(t_x,t_y))}{\mathrm{d}t_y}|\phi(t_x,t_y)> = t_x\frac{\mathrm{d}E(t_x,t_y)}{\mathrm{d}t_x} + t_y\frac{\mathrm{d}E(t_x,t_y)}{\mathrm{d}t_y}$$

$$\equiv t_x \lim_{\Delta t_x \rightarrow 0} \frac{E(t_x + \Delta t_x, t_y) - E(t_x - \Delta t_x, t_y)}{2\Delta t_x} + t_y \lim_{\Delta t_y \rightarrow 0} \frac{E(t_y + \Delta t_y, t_x) - E(t_y - \Delta t_y, t_x)}{2\Delta t_y}$$

There are two steps:

- 1. Find a reliable and minimum $\Delta U \equiv deltaU$ and corresponding Δt_x , Δt_y according to the E_err for a set of different deltaU. (E_err is $std(E_{\cdot}V(i,:))/\sqrt{N \cdot loop}$ used to describe the stability of E with each deltaU and N_loop is the times of calculations under the same deltaU.)
- 2. Use the H.F. Theorem to calculate E_V and E_K.
- 2) Matlab Program Modification

 $sample_E_V_icf.m;$

sample_E_K_icf.m;

3) Input

 E_V, E_V_{err} vs. deltaU : 27.mat;

E_K,E_K_err vs. deltaU: 25.mat;

28_1.mat;28_2.mat;28_3.mat;28_4.mat;28_5.mat;28_6.mat;

4) Output

 E_V, E_V_{err} vs. deltaU : 27.fig;

 E_K,E_K_err vs. deltaU: 25.fig;

Table 2.

5) Discussion

The reliable deltaU for U, t_x and t_y may be different but deltaU = 0.08 in all calculation related here for convenience.

(a) 27.fig: E_V, E_V_err vs. 2*deltaU (b) 25.fig: E_K, E_K_err vs. 2*deltaU

Figure 5: Large deltaU lead to stable derivative.

System	(kx,ky)	< K >	< V >	$< K >_c$	$< V >_c$	Data
2*4	(+0.0819, -0.6052)	-13.7778	1.65680	-13.7779	1.6176	28_4.mat 28 ₁ .mat
3*4	(+0.02, 0.04)	-15.2849	1.29311	-15.2520	1.2917	$28_5.mat \ 28_2.mat$
4*4	(0,0)	-22.5219	2.94100	-22.4981	2.9079	$28_6.mat\ 28_3.mat$

Table 2: $< V >_c, < K >_c$ is calculated results with H.F. Theorem and < V >, < K > are Ground State Kinetic and Potential Energy.

5 Problem4: The Hydrogen molecule

5.1 Question1: Compare E vs. U with exact solution

- 1) Matlab Program Modification batchsample_U.m;
- 2) Input29.mat;
- 3) Output 29.fig;

5.2 Question2: plot E_V vs. U and E_K vs. U

- Matlab Program Modification batchsample_E_K.m; batchsample_E_V.m;
- 2) Input $\begin{array}{l} E_{V},E_{V}=rr\ vs.\ U:31.mat;\\ E_{K},E_{K}=rr\ vs.\ U:54.mat; \end{array}$

Figure 6: 29.fig: red curve is analytic solution and blue points are CPMC results.

3) Output

E_V,E_V_err vs. U : 31.fig; E_K,E_K_err vs. U : 54.fig;

Figure 7: E_V, E_V_err and E_K, E_K_err increase with increasing U

4) Discussion

According to the output figure, E_V, E_V_err and E_K, E_K_err become larger with increasing U.

- The E_V increase because U increase.
- The E.K increase because electrons are harder to move due to an increasing U.
- The E_V_err and E_K_err increase because the Error of derivative $\propto \frac{\Delta E}{\Delta U}$ where ΔE is the error from QMC process considered as an linear function of $U^2 \approx U e^{aU}$ (E_V_err: 51.fig,51.mat.) (The e^{aU} in the estimation comes from $[e^{H_K}, e^{H_V}]$ and the U in $U e^{aU}$ from $H = \dots + U \sum_i n_i n_i$).

E_V_err is linear with $\Delta U \equiv deltaU$ (E_V, E_V_err: 49.fig, 49.mat with deltaU=0.04 and 50.fig, 50.mat with deltaU=0.16. However when deltaU becomes lager the estimate of derivative becomes less accurate.)

 And there is still a problem that: the huge difference between E_K_err and E_V_err.

5.3 Question3: the double occupancy and the correlation function vs. U

1) Pre-analysis

Consider

$$H' = K + V' = -t_x \sum_{\langle i,j \rangle,\sigma} (c_{i,\sigma}^{\dagger} c_{i,\sigma} + c.c.) + U_1(n_{1,up} n_{1,dn}) + U_{12}(n_{1,up} n_{2,dn}) + U \sum_i (n_{i,up} n_{i,dn})$$

Figure 8: 51.fig: The Error of E (ΔE) vs. U is linear with $U^2 \approx U e^{aU}$

Figure 9: E_V_err is linear with $\Delta U \equiv deltaU$

, according to H.F. Theorem:

$$\langle n_{1,up} n_{1,dn} \rangle = \frac{\mathrm{d} \langle \phi_0(U_1) | H'(U_1) | \phi_0(U_1) \rangle}{\mathrm{d}U_1} = \frac{\mathrm{d} \langle \phi_T | H'(U_1) | \phi_0(U_1) \rangle}{\mathrm{d}U_1}$$

$$\langle n_{1,up} n_{2,dn} \rangle = \frac{\mathrm{d} \langle \phi_0(U_{12}) | H'(U_{12}) | \phi_0(U_{12}) \rangle}{\mathrm{d}U_{12}} = \frac{\mathrm{d} \langle \phi_T | H'(U_{12}) | \phi_0(U_{12}) \rangle}{\mathrm{d}U_{12}}$$

There are three steps:

- 1. Modefy the propagate process to get the Ground state of $H'(U_1, U_{12})$.
- 2. Modefy the measure process to get the mixed measurement of $H'(U_1, U_{12})$.
- 3. Calculate the difference over deltau (derivative) around $U_1=U$ and $U_{12}=0$.
- 2) Matlab Program Modification

batchsample_NiNi_icf.m;

initialization_NiNi.m;

CPMC_Lab_NiNi.m;

stepwlk_NiNi.m;

measure_NiNi.m;

batchsample_N1N2_icf.m;

initialization_N1N2.m;

CPMC_Lab_N1N2.m;

stepwlk_N1N2.m;

measure_N1N2.m;

3) Input

$$< n_{1,up} n_{1,dn} >: 56.mat;$$

$$< n_{1.up} n_{2.dn} >: 57.$$
mat;

4) Output

$$< n_{1,up} n_{1,dn} >: 56.fig;$$

$$< n_{1,up} n_{2,dn} >: 57.fig;$$

- 5) Discussion
 - $|\phi_0\rangle$ must be the ground state of H' or

$$<\phi_T|H'|\phi_0> \neq <\phi_0|H'|\phi_0>$$

- . (Ignore the normalization.)
- As U increasing, it become harder for electrons to stay together so the double occupancy decrease. For the same reason, the correlation function increase.

Figure 10:

6 Problem5: Ground state Energy of a chain

- 1) Input
 - 38.mat;
- 2) Output 55.fig;
- 5) Discussion

7 Problem6: Other correlation functions

- Pre-analysis
 Modefy the measurement process.
- Matlab Program Modification batchsample_U_mixed.m; CPMC_Lab_mixed.m; measure_mixed.m; step-wlk_mixed.m;
- 3) Input 40.mat;41.mat;42.mat;
- 4) Output Table 3, Table 4.

Figure 11: 55.fig: E/L_x vs. $1/L_x^2$, The Ground State Energy per site in the half-filled chain system converge at a point with increasing L_x

System	(kx,ky)	< K >	< V >	$< K >_{mixed}$	$< V>_{mixed}$	Data
2*4	(+0.0819, -0.6052)	-13.7778	1.65680	-14.3892	2.2609	40.mat
3*4	(+0.02, 0.04)	-15.2849	1.29311	-15.9954	2.0002	41.mat
4*4	(0,0)	-22.5219	2.94100	-24	4.4205	42.mat

Table 3: $< V >_{mixed}$, $< K >_{mixed}$ are calculated mixed results of Kinetic and Potential Energy and < V >, < K > are Ground State Kinetic and Potential Energy.

System	(kx,ky)	$< c1c2 >_{mixed}$	$< s1s2 >_{mixed}$	$< c1c2c>_{mixed}$	Data
2*4	(+0.0819, -0.6052)	0.3821	-0.0405	0.3890	40.mat
3*4	(+0.02, 0.04)	0.2408	-0.0419	0.2460	41.mat
4*4	(0,0)	0.1861	-0.024	0.3881	42.mat

Table 4: $\langle c1c2 \rangle_{mixed}$, $\langle s1s2 \rangle_{mixed}$, $\langle c1c2c \rangle_{mixed}$ are calculated mixed results of One body spin up density matrix, spin-spin correlation function and the charge-charge correlation function for i=1, j=2.