CS-301: DATA STRUCTURE

Te	Teaching Scheme					Duration End	
L	T	P/D	С	Sessional	End Semester	Total	Semester
					Exam		Examination
3	1	0	4	40	60	100	3 hrs

COURSE CONTENT:

UNIT	CONTENT	No. of Hrs.		
I	Data Structures: Definition, primitive and derived data types, abstract data types, need for data structures, types of data structures.			
	Algorithm: Definition, characteristics, development of algorithm, analysis of complexity:- time complexity, space complexity, order of growth, asymptotic notation with example, obtaining the complexity of algorithm.			
	Arrays: Definition, 1d and 2d arrays, operations on arrays, sparse matrices, structures and arrays of structures.			
п	Linked list: Representation of linked list in memory, allocation & garbage collection, operations on linked list, doubly linked lists, circular linked list, linked list with header node, applications.			
	Stacks: representation of stack in memory, operations on stack and applications.			
	Queues: Representation of queues in memory, operations on queues, circular queues, double ended queues, priority queues, applications.			
Ш	Trees: Introduction, representation of tree in memory.			
	Binary Trees: Terminology, binary tree traversal, binary search tree, insertion, deletion & searching in binary search tree, heap trees, types of heap trees, insertion, deletion in heap tree with example, heap sort algorithm, introduction of AVL trees & B-trees.			
	Graphs: Definition, representation of graph (adjacency matrix, adjacency list), traversing a graph (DFS & BFS), dijkstra's algorithm for shortest distance, minimum spanning tree.			
IV	Searching and sorting: Need for searching and sorting, linear and binary search, insertion sort, selection sort, merge sort, quick sort, radix sort and bubble sort.			
	Hash Tables: Introduction, hash function, collision resolution techniques in hashing, deletion from hash table.			

www.ululu.in - Download Al Christon Minimenals ample Papers Hamirpur - 177001

www.ululu.in

Text Books:

- Seymour Lipschutg: Theory and practice of Data structure, Tata Mc. Graw Hill 1998
- Tenebaum, A. Lanhgsam Y and Augensatein, A. J. Data structures using C++, Prentice Hall of India.

Reference Books:

- 1. Data structure and Algorithms in C++ by Micheal T. Goodrich, Wiley India publication.
- 2. Data structures, R. Venkatesan, S. Lovelyn Rose, Wiley India publication.
- 3. Data Structure using C++ By Patil, Oxford University press.
- Data Structure, Algorithm and Object-Oriented programming, Gregory L. Heileman, Tata Mc-Graw Hills.
- 5. S. Sahni, "Data structure Algorithms ad Applications in C++", WCB/McGraw Hill.
- J.P. Tremblay and P.G. Sorenson, "An Introduction to Data Structures with applications", Tata McGraw Hill.

14