LU01c - Stellenwertsysteme

Stellenwertsysteme

Alle Stellenwertsystem basieren auf den gleichen Regeln. Das Wichtigste ist dabei die Basis:

- Die Basis legt fest, wie viele Ziffern-Symbole das System kennt.
- Welcher Faktor für den Wert der Stellen angewandt wird.

Um die Systeme zu unterscheiden, schreiben Sie immer die Basis $_{\text{tiefqestellt}}$ neben die Zahl.

 Hexadezimale Zahlen werden häufig durch ein x nach der Zahl identifiziert.

Eine Zahl ohne Angabe des Systems ist als Dezimalzahl zu interpretieren. Also

- 1A7₁₆ oder 1A7x
- 10101011₂ oder 10101011b
- 435₈

Dezimalsystem

Wir betrachten zunächst das Ihnen vertraute Dezimalsystem im Detail. Daraus können wir Schlüsse für andere, in der Informatik relevante Systeme ziehen.

Das Dezimalsystem (10er System),

- kennt 10 verschiedene Zahl-Symbole,
 - In Europa verwenden wir Symbole die aus Indien über den arabischen Raum kamen: 0, 1,
 2, 3, 4, 5, 6, 7, 8, 9.

Sie werden deshalb als arabische Ziffern bezeichnet.

- Je nach Gebiet werden andere Symbole verwendet.
- hat die Basis 10 für die Stellen einer Zahl.
 - \circ Die Stelle direkt vor dem Dezimalpunkt hat den Wert 10° bzw. 1.
 - Nach links hat jede Stelle den zehnfachen Wert der davorliegenden Stelle.
 - Nach rechts hat jede Stelle einen Zehntel des Werts der davorliegenden Stelle.

Wert	10 ²	10 ¹	10°	10 ⁻¹	10 ⁻²
WEIL	100	10	1	0.1	0.01

- Jede Ziffer wird mit dem Wert seiner Position multipliziert.
- Alle Produkte (Ziffer * Wert) werden addiert.

$$734.25 = 7*100 + 3*10 + 4*1 + 2*0.1 + 5*0.01$$

Binärsystem

Das Binärsystem oder Dualsystem verwendet die Basis 2. Daraus ergibt sich:

- Es gibt 2 unterschiedliche Symbole für die Ziffern (z.B. 0 und 1)
- Der Wert der Positionen verdoppelt sich von rechts nach links, bzw. halbiert sich von links nach rechts.

Ziffer	l .				0		0	1
Wert	2 ⁴	2 ³	2 ²	2 ¹	2 °	2-1	2 ⁻²	2 ⁻³
Meir	16	8	4	2	1	1/2	1/4	1/8

$$11010.101_2 = 1*16 + 1*8 + 0*4 + 1*2 + 0*1 + 1*(1/2) + 0*(1/4) + 1*(1/8)$$

Oktal

Das Oktalsystem verwendet die Basis 8.

- 8 unterschiedliche Symbole für die Ziffern (0, 1, 2, 3, 4, 5, 6, 7)
- Der Wert der Positionen erhöht sich um den Faktor 8 (bzw. wird um den Faktor 8 verkleinert).

Ziffer		l -	l -	4	1
Wert				8-1	8 ⁻²
Weit	64	8	1	1/8	1/64

$$406.41_8 = 4*64 + 0*8 + 6*1 + 4*(1/8) + 1*(1/64)$$

Im Oktalsystem werden jeweils 3 binäre Stellen (Bits) zusammengefasst. Dadurch lassen sich die Zahlen kompakter schreiben. Gleichzeitig ist die Umrechnung zwischen Binärsystem und Oktalsystem relativ einfach.

Hexadezimal

Das Hexadezimal-System verwendet die Basis 16.

- 16 unterschiedliche Symbole für die Ziffern (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)
- Der Wert der Positionen erhöht sich um den Faktor 16 (bzw. wird um den Faktor 16 verkleinert).

Ziffer	3	Α	2	. 0	С
	•	' '	_	. •	_

https://wiki.bzz.ch/ Printed on 2024/09/10 01:49

Wort	16 ²	16 ¹	16°	16-1	16 ⁻²
Wert	256	16	1	1/16	1/256

$$3A2.0C_{16} = 3*256 + 10*16 + 2*1 + 0*(1/16) + 12*(1/256)$$

Das Hexadezimalsystem (kurz Hex) fasst jeweils 4 binäre Stellen (Bits) zusammen. Damit können Sie ein Byte (8 Bits) mit zwei hexadezimalen Ziffern abbilden.

Zum Schmunzeln: Echte Programmierer haben Mühe zwischen Halloween (31. Oktober) und Weihnachten (25. Dezember) zu unterscheiden. Denn 31 $_{\rm Okt}$ = $25_{\rm Dez}$.

2024/03/19 08:26

From:

https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:

https://wiki.bzz.ch/modul/m114/learningunits/lu01/stellenwertsysteme

Last update: 2024/03/28 14:07

