Extending Accurate Time Distribution and Timeliness Capabilities Over the Air to Enable Future Wireless Industrial Automation Systems

http://ieeexplore.ieee.org/document/8672474/

Proceeding of IEEE.

tags: Paper Study Communication Wi-Fi

Quick Summary

- · Industrial Networks:
 - level categories: management level, cell level, field level
 - from (slow, large data) to (fast, small data)
 - o realtime requirement categories: non-realtime, soft-realtime, hard-realtime
- · Wireless standards in Industrial Networks:
 - 802.15.4 series(ZigBee)
 - Bluetooth
 - 802.11 series (Wi-Fi)
 - LPWAN(SigFox,LoRa)
 - Cellular network.(3G,4G,5G,NB-IOT...)
- IEEE 802.1 TSN:
 - handling time synchronization, control congestion, reliability communication.
 - mechanism:
 - Time synchronization
 - QoS control
 - Traffic identification
 - Network configurations
- TSN Challenge in Wireless communication
 - major different of wireless to wired communication
 - variable capacity, high per.
 - fundamental problem:
 - latency and jitter due to congestion
 - packet loss due to fading and collision
 - Wireless channel variety: capacity is dynamic
 - Large/Unreliable channel access latency:
 - LTE: grant protocol, random access
 - Wi-Fi: LBT protocol
 - Industrial requirements: ultra low latency and reliable communication
 - Interference and coex of different standards.

- New Approach To extend TSN to Wireless
 - Wireless Network Management by a single entity, devices implements a minimal set of features (CUC and CNC)
 - Time Synchronization for Wireless
 - 802.1as PTP over 802.11: TM/FTM(resolution to x00 us)
 - New Area for 5G.
 - Time-Aware Scheduling by synchronize to a common clock, control channel queue globally to control collision.(802.1Qbv)
 - · Wireless link reliability:
 - power control to handle interference,
 - time-frequency resource management to optimize overall capacity and provide reliable transmission
 - spatial diversity and Beamforming to enhance link quality.
 - new waveform design: reduce out-band emissions, reduce overhead of short packets(typical in industrial traffic)
 - adaptive MCS selection with feedback csi.
 - redundant channels for better reliability.
- · Next Generation Standard capability for TSN enhancement
 - 802.11ax:
 - scheduled access and multi-user ofdma,
 - 2M RU enhance link quality 8dB vs 11ac,
 - OFDMA-MU-diversity,
 - flexible GI(handling outdooor channel),
 - new 6G band to legacy standard interface-free and scheduled channel access.
 - Target wake time(TWT) for power saving and sub-groupping of devices for better resource management.
 - 5G URLLC:
 - low latency frame structure
 - slot time to 0.125ms
 - fast dl/ul switching and HARQ interval
 - self-contained data/ack in a sub-frame.
 - physical enhance: support LDPC and URLLC
 - low latency signaling: DMRS
 - Architecture enhancement: CRAN and SDN, edge comupting
 - Industrial Wireless Network Applications categories:
 - Class A: supports current tech with enhanced features in 11ax/5G
 - Class B: Soft-time-sensitive(AR/VR,HMI,) and selective hard-time-sensitive(controller)
 - Class C: Hard realtime controllers with very low cycle times, ex. 802.11be EHT

INTRODUCTION

- New industrial applications require the time coordinated computing and communications over wireless links
 - Ex. AVG/MR
- Some application requires
 - Precise synchronization to a reference time down to nanoseconds accuracy

- Deterministic (bounded) end-to-end latency
 - in us to ms level
- Extremely low packet loss probability
- Coverage of time critical and noncritical traffic in the same network.
- IEEE 802.1 TSN Task Group develops standards to enable time synchronization, bounded latency, redundancy, preemption.

STATE-OF-THE-ART COMMUNICATIONS AND NETWORKING FOR INDUSTRIAL AUTOMATION

Industrial Networks

Field Level

- o communication among sensor, actuators, and controllers
- typically has the most stringent latency and reliability requirements
- Throughput requirements relatively low
- o extremely short cycle times (in the order of microseconds) and low jitter
 - PROFINET, EtherCAT, and SERCOS III
- IEC 61784 International Standard

Cell Level

- mostly communications between PLCs(Programmable Logic Controller) and between PLCs and industrial PCs
- require time synchronization and various levels of real-time guarantees
- relax performance

served by IP-based communication over Ethernet

Management Level

- typical IT infrastructure
- Flexible data exchange within industrial systems
- IT/OT(operation process) convergence
- reuse of IT Technology in operation process
- cost savings
- o flexibility expected from future industrial networks in supporting a variety of applications
- · Category of real-time requirements
 - Non real-time:
 - Soft real-time: realtime iter-action between devices and/or human
 - require low latency
 - not necessary tight time sync
 - tolerate some missed deadlines
 - Hard realtime: require accurate synchronization and timeliness (bounded latency)
 - isochronous
 - mainly at the field and cell levels.
 - Wireless networks have been used primarily in non-real-time applications and in a few soft real-time applications

Wireless Netweorks in Industrial Environments

- the deployment of wireless technologies is only at its infancy (無線技術的部署還處於起步階段)
 - Al application and movement to ensure flexible data access driving deployment of wireless technologies.
- IEEE 802.15.4:
 - several PHY modes for operation in the 2.4-GHz and sub-GHz (868/916 MHz) unlicensed bands
 - also several MAC layer modes
 - CSMA-based communication: device sensing channel before transmission, back-off when busy
 - data rate up-to 250Kbps for 2-M BW in 2.4G
 - ZigBee
 - ZigBee defines networking and transport protocol of 802.15.4.
 - non-realtime application
 - 802.15.4g: New PHY for long range and higher data rate.
- IEEE 802.15.4e:
 - TSCH(Time-Synchronized Channel Hopping) access
 - · High reliability and power-saving
 - Enable low power consumption with better control of latency compared to CSMA protocols
 - can be used across a mesh network
 - TSCH mode may also be used with the more recent 802.15.4g mode
 - 6TiSCH: define an IPv6 compatible layer to enable configuration and exchange of schedules in a TSCH network

Time slots

Fig. 2. TSCH operation and mesh example.

Bluetooth:

- o local connectivity between phones and other consumer devices operating in the 2.4-GHz band
- a frequency hopping PHY
- BT1.2: 1Mbps, BT2.0: EDR, BT3.0: high speed, BT4.0: BLE, for low power
- Add mesh capability
- o play a role in many HMI(human machine interface) and wearable applications in industrial environments
- mesh capability enable sensor network application.

• IEEE 802.11 Wi-Fi

- o consumer, enterprise, and industrial markets, mainly for general IT connectivity
- a, b, g, n, and ac from 2007
- currently mainly 11n/11ac for OFDM and MIMO capability to very high data rate.
- 11ax next major release: enable multi-user transmission simultaneously.
- MAC:
 - Based on CSMA
 - Enhanced QoS: enables traffic prioritization through four main access categories(voice, video, besteffort and backgroud)
 - Contention free polling-based options(PCF,HCCA), but not supported in practice for mainstream Wi-Fi provider
- been used in industrial applications.
- has great potential to enable fast IT/OT convergence and flexibility in the manufacturing processes.

• Cellular Technologies:

- machine-to-machine communications
- have been used mainly in industrial systems

- · GPRS, 3G, LTE-m, NB-IOT
- Goal to reduce power consumption and cost. but not provide realtime performance.

LPWAN:

- Sub1g communication
- SigFox/LORA
- very low throughput over wide areas without hard latency and reliability requirements (mostly normal time)

IEEE 802.1 TSN

- Enable time synchronization, control congestion, and packet loss due to media or device failure
 - mainly assuming Ethernet as layer 2 transport
- · subset of TSN standard and capability

Table 1 IEEE 802.1 TSN Standards

IEEE Standard	Capability
1588, 802.1AS	Time synchronization
802.1Qca	Path control and reservation
802.1Qbv	Time-aware scheduling
802.1Qbu and 802.3br	Frame preemption
802.1Qcc	Central configuration model
802.1Qci	Filtering and policing
802.1CB	Redundancy (frame replication
	and elimination)

TSN mechanism

- Time Synchronization:
 - 802.1AS: PTP defined by IEEE 1588 to enable precise time synchronization across the network
- 。 QoS Provisioning(供應):
 - 802.1Qbv: define a global time-aware schedule to control congestion and provide deterministic latency.
 - 802.1Qbu and 802.3br: to reduce latency for high priority frames.
 - 802.1CB: introduce redundancy through frame duplication and elimination to reduce impact of packet loss

frame duplication and elimination

- Traffic Identification: TSN devices must differentiate time-sensitive streams from other flows
 - 802.1Q: identify and differentiate time-sensitive types from other types of traffic,
 - VLAN tag field
 - traffic classes: eight traffic classes per Ethernet port, each associated to a dedicate queue
- Network Configuration:

- 802.1Qcc and 802.1Qca: CNC model and stream reservation capabilities
- 802.1Qci: policing and filtering mechanisms to ensure nodes follow the configured schedules and avoid malicious behavior.

CHALLENGES FOR WIRELESS TSN

- · Two fundamental problems:
 - latency and jitter caused by network congestion
 - packet losses
- Wired link
 - · constant capacity and
 - o extremely low packet error rate
 - · bandwidth reservation can guarantees latency/jitter
 - o preemption avoid interference from best effort traffic
 - redundancy path reduce loss from HW.
- · Two fundamental different of Wireless media to Wired
 - Variable capability
 - Typically high per
 - Make challenges in providing deterministic latency and reliability guarantees expected by time-sensitive applications.

Wireless Channel Variations

- Wireless channel capability is dynamic.(from fading, interference, ranges...)
- high capacity and bounded latency is not always possible.
- Understand Channel behavior is key to access achievable latency, reliability and capability
- 11n/11ac: TGN-channel model for indoor and statistic outdoor
- 11ax: ITU-R channel and Doppler fading.
- · Channel models are generic enough to statistically represent a plethora of propagation environments
- · Ray-tracing tool for analysis of the well-defined environments,
 - providing coverage maps
 - o fading statistic
 - power-delay profiles
 - o rms delay
 - o coherence bandwidth...

Channel Access Latency

- major source of latency in LTE:
 - grant acquisition
 - random access procedures
- major latency source in WiFi:
 - listen-before-talk (LBT) channel
 - increasing access delay when increasing of devices.

- randomness of LBT protocol is the key issue for hard realtime application.
- Need to support ultra-low-latency service with deterministic access to medium and low-jitter
- · Multiple-access technologies:
 - FDMA,TDMA,CDMA,OFDMA,SDMA,NOVA
 - OFDMA + SDMA has been adopted in current cellular and Wi-Fi
 - NOMA: non-orthogonal multiple access
 - new approach, but receiver need to perform successive cancellation.
 - not been adopted in major wireless standards
 - Multichannel access strategies
 - the device to access multiple channels and initiate multiple data transmissions independently
 - need multiple radios to sense and contend for access simultaneously in multiple channels

Fig. 4. Multichannel access.

 Latency-specific optimizations should consider the unique and dynamic characteristics of wireless channels and links.

Centralized Coordination and Scheduling

- hard to control latency through distributed random access, especially under congestion
- Need centralized coordination of medium access
 - 3GPP: NodeB/eNodeB/gNodeB
 - Wi-Fi: traffics is scheduled by AP, scheduling becomes important in 11ax OFDMA.
- (New) scheduling algorithm need to consider
 - throughput, fairness, and plus stringent latency and reliability.
- Distribute schedule information to devices
 - 3GPP: devices are assigned deterministic access opportunities once admitted
 - Wi-Fi: transmitted by the AP before every transmission opportunity

Interference and Coexistence

- · Not problem in Wired communication.
- More challenge in requirements of both TSN and non-TSN traffic in a converged network.
- · Non-time-sensitive traffic: multiple retransmission to ensure payload delivery
- Opportunity retransmission is limited in hard-real-time traffic.
- · Interference sources:
 - other kind devices(protocol) in the same channel band.
 - self-interference due to schedule conflict

- RF emissions: microwave ovens, electrical machinery, welding arches, power plants, callings
 - dominantly contained in the sub1G band, and may have little or no effect in higher bands (2.4G,5G)
 - RelCovAir project: Real experiments in industrial environments

NEW APPROACHES TO EXTEND TSN CONCEPTS TO WIRELESS

· Reference protocol stack

- · 802.3 major supported
- 802.11 supports some capability: time synchronization
- · ongoing standards
 - 802.11 extends TSN capability
 - 3GPP to introduce TSN on next generation standards

Wireless Network Management Model

- · wireless network should be managed by a single entity
- All devices can implement a minimal set of required features (CUC and CNC)
 - CUC: collects information about the critical traffic streams
 - CNC: uses this information to perform admission control, define/deployment resource allocation strategies to meet time-sensitive applications
 - Wireless devices and APs should be configured by the same CUC and CNC entities
- Infrastructure and end devices support interoperable methods and protocols

Wireless Time Synchronization

- 802.1as define PTP over 802.11
 - time measurement capability in 802.11-2012
 - Fine time measurement capabilities (~ x00ns)
- 3GPP: no synchronizing the radio and applications to the same clock
 - new area in 5G URLLC

Time-Aware Scheduling

- 802.1Qbv time-aware scheduling: gates synchronized to a common reference clock
 - 。 control queue process (opening/closing) by sharing a common egress(出口) port within an Ethernet switch
 - global scheduler define time to open/close the queue to eliminate congestions and make time-bounded latency
- Example model of 802.1Qbv
 - when queue open, transmission selection selects a data frame to send and delivers it to the 802.11 MAC layer.
 - MAC follows a random access procedure, and could introduce random delays to transmission

- · Potential solution of challenge to reduce the random delay
 - TDM to control the wireless medium access refer to the global reference time between wireless devices.
 - The scheduler assign time slots to devices aligned with the end-to-end latency of each data frame.
 - Scheduler need to ensure the end of the traffic within associated time slot due to the variety of channel capacity
- Extends 802.1Qbv in 802.11 need to modify MAC layer to enable distribution control by Qbv server.

Wireless Link Reliability

Reliable transmission challenge due to fading, interference of other device and inter-emission from other system.

• Several techniques can be used to improve reliability: power control, resource scheduling, spatial diversity/BF, waveform design.

Transmit Power Control

- increase power can get better reliable but will interference other devices.
- To control each device power to ensure the guarantees of the reception with limited power
- Unlicensed band need to follow transmit power spectrum mask spec.

- Coverage of AP1 with transmit power: P_{tx1}
- \bigcirc Coverage of AP1 with transmit power: P_{tx2} , note: $(P_{tx1} < P_{tx2})$
- Coverage of AP2 with transmit power: Ptx

Optimal Time-Frequency Resource Scheduling

- Reliability enhancement by scheduling transmit in good time-frequency resources
- Example in LTE and 11ax OFDMA downlink OFDMA.
 - AP get CSI of each device and select good for each one to optimize the transmission efficiency and quality.
 - CSI is the overhead of the system capacity.

Spatial Diversity or Beamforming

- Spatial diversity and BF enhance power efficiency and reliability.
- still need CSI feedback.

PHY Waveform Design

- OFDM has better spectrum efficiency and good enough fading channel performance.
- But poor out of band emission and generate interference to other band.
 - Mitigation of the out-of-band emission
 - windowing, filtering, subcarrier weighting, carrier cancellation, mapping antipodal symbol pair onto adjacent subcarrier, precoding.
- Short packet is common in industrial communication. current 802.11/LTE packet format suffer efficiency issue for short packet.
 - Luvisotto et al. propose a new design approach for supporting small packets with lower latency by reducing some of the overheads in the 802.11 OFDM PHY.
 - (https://ieeexplore.ieee.org/abstract/document/7924385)

Adaptation of Modulation and Coding Scheme

- MCS adaptation to make transmission rate meets channel capacity according to CSI feedback.
- Ref:(https://ieeexplore.ieee.org/abstract/document/7588154/)

Redundancy

- Frame Replication and Eliminations is introduced in the IEEE 802.1CB to improve reliability.
- Multiple-link aggregation is already supported in both the LTE and 802.11 standards
 - focus only on increasing the throughput and not for hard real-time and reliability requirements

NEXT-GENERATION WIRELESS CAPABILITIES FOR TSN

820.11ax

• Enhancements in 802.11ax

Scheduled Access and Multi-user OFDMA

- AP schedule devices connection access the wireless channel on the traditional contention-based channel access
 - more control and deterministic behavior of the traffic
- MU-OFDMA: multiple user can be scheduled across frequency and spatial domain.
- Trigger-based communication
 - Trigger frame initializes multiple user in the same UL PPDU

- provides better controls of channel
- Remove contention between devices for UL transmission
- Enhance uplink efficiency in short packet
 - Example 9-users 256 byte in 256QAM(mcs9) in BW20
 - 11ac needs 1.3 ms (including overheads of channel access gap)
 - 11ax needs 0.758 ms reduce 70%

- · MCS selection is tradeoff between latency and reliability
 - small mcs => better reliability
 - large mcs => shorter transmission time
 - depends on channel condition(capacity)

Improved Reliability in the Physical Layer

- · Minimal 2MHz RU
 - o boosting 8dB SNR in the same transmit power.
 - extend transmission time.(and increasing latency)
- OFDMA MU-diversity leads better throughput and reduce latency.
 - each user can be assigned in good enough RU and make overall throughput enhanced.
- Flexible GI to compact inter-symbol-interference.
- Enable new 6G band, legacy standards not operates in the band.

Target Wake Time

- New power saving mechanism that enables devices and the AP to agree on a schedule defining when the
 devices would be awake to communicate.
- Power management: devices expect sleeps outside the TWT windows.
- Control collision: by define devices in different TWT service interval.
- Cowork with OFDMA:
 - AP separates devices into multiple groups of TWT service periods.
 - Transmission in each group using trigger-based control.

5G Ultra-reliable Low-Latency Communications

• URLLC: wide range applications, extremely low latency and ultra-high reliability

Low-Latency Frame Structure and Numerology

• Flexible slot duration, slot duration is low to 0.125ms for data transmission

Each slot has 14 OFDM symbols

Subframe duration (1 ms)

- Enhanced OFDM numerology with wider subcarrier spacing leads to smaller OFDM symbol duration.
- allows mini-slots to be allocated for short transmissions: 2/4/7 OFDM symbols
- allow faster uplink/downlink switching and HARQ timing interval for TDD to reduce latency in potential retransmissions for time-critical data.
- · a self-contained sub-frame structure:
 - data transmission, associated control signaling, ACK/NACK feedback can all take place within a single subframe
 - useful for very short turnaround time low-latency applications.

PHY Enhancements for High Reliability and Low Latency

- · support for Polar codes and LDPC.
- Polar code
 - significant performance improvements in short packets over turbo-code and convolutional code.
 - have no noticeable error floor: important to reach extremely high level of error tolerance.
 - massive MIMO: spatial diversity from more than 32 antennas to massively increase the transmission reliability
 - mmWave communication @ 28 GHz: very high reliability as well as low latency in industrial automation and factory deployment use cases of light-of-sight communication.

Low-Latency Signaling and Protocol

- grant-free access in the UL by which devices: avoid time-consuming UL resource request and grant mechanism for hard real-time data.
- Front-loaded DMRS(Demodulation Reference Signal) enables lower data decoding latency in low-mobility scenarios
 - DMRS is specific for specific UE,
 - Used to estimate the radio channel.
 - The system can beamform the DMRS, keep it within a scheduled resource
 - Multiple orthogonal DMRSs can be allocated to support MIMO transmission
 - The network presents users with DMRS information early on for the initial decoding requirement that low-latency applications need.
 - For for low-speed(mobility) scenarios since channel change slow.
 - In high-mobility scenarios to track fast changes in channel, increase the rate of transmission of DMRS signal(called "additional DMRS").
 - DMRS refers to demodulation reference signal:
 - used by a receiver for radio channel estimation for demodulation of associated physical channel DMRS design
 - mapping is specific to each Downlink and Uplink NR channels
- · Omitting HARQ, removing cipher and header compression, and prioritization for mission-critical data

Architectural Enhancements

- introduce both RAN and core network.
- CRAN-based design introduces flexibility in dynamically assigning computing and communication resources necessary continuously.
 - traffic mix, network load, and wireless channel conditions evolve over time
- Core network: SDN-based partitioning of control and data plane allows for lower latency in both the control and data planes
- Support NFV and network slicing: consistently provisioning required network resources for hard realtime applications during network congestions and load fluctuations
- MEC and caching at network edges: reduce the latency by bringing the computing power and content near the client devices

mmWave Communications in WiGig

- 11ad/ay makes bounded latency possible
 - mmWave provides high bandwidth and make low latency transmission possible.
 - 9 user case: 90us(3850 Gbps) to finish the transmission vs 750us in 11ax.
- mmWave short range and directional bring additional challenges. Overhead of beam-tracking and blocking issue impacts the both reliability and latency.

Integration With Wired TSN Infrastructure

- 802.11 seamless integrated to 802.3 ethernet protocol since natively 802 series standard.
 - 802.11 already been as part of 802.1 TSN protocol.(defined by 802.11ak amendment)
 - The next step is the support for additional TSN capabilities, such as time-aware haping, redundancy, and preemption.
- 3GPP 4G and 5G networks are not native 802 technologies at the link layer
 - one work item to enable transmission of 802-base link layer frames (Ethernet frames) over 5G links
 - Support for 802.1AS-based time synchronization across 5G links

INDUSTRIAL WIRELESS INFRASTRUCTURE AND APPLICATIONS

- Wireless TSN would extend the infrastructure to mobile and portable devices (controllers, sensors, actuators, and AGVs)
- Combination of 802.11 and 5G can address wide range of deployment scenarios.
- need for time-aware networking protocols to manage access control, resource reservation, routing, and coexistence across the envisioned industrial wireless infrastructure

Time-Sensitive Applications Classification and Wireless Roadmap

- Applications that involve moving parts and mobile devices(robots, AGVs, and AR/VR) be the first to take advantage of new wireless TSN capabilities
- · A classification of industrial applications
 - Class A: supported by current wireless technologies (LTE and 802.11ac and ax) with proper enhancements for admission control, latency-optimized scheduling, and introduction of time-aware (802.1Qbv) concepts
 - Class B: Soft-time-sensitive(AR/VR,HMI,) and selective hard-time-sensitive applications(controllers) require higher reliability than class A in single-digit milliseconds (以數毫秒為單位).
 - required network planning and optimizations in 802.11ax and 5G URLLC
 - Class C: hard realtime controllers with very low cycle times, such as motor control. The 802.11 EHT(distributed MIMO, multi-AP, and low latency enhancements) could enable class C.

Wireless Experimental Platforms

- Experimentation with 802.11/Wi-Fi is relatively easier than with 3GPP technologies.
- The experiments in synchronization need to fundamentally access low-level MAC and PHY. But current vendors
 will not open the FW.
- SDR platform have been to enable research and development with MAC and PHY.
 - USRP, WARP, GNU Radio
 - Architecturally, an SDR platform consists of a front-end module and a signal processing module implemented in FPGA or a combination of FPGA and system on chip(SoC)
 - could be found in markets, very common chips offer 100MHz in 6GHz band.
 - Software toolchains: NI instrument and MathWorks
- A low-latency SDR system(Tick) provides programmable and ensure low-latency throughput accelerator-rich architecture, and HW/SW co-design.
- SDR hardware and software tools will need to be enhanced to enable new wireless capabilities as well as implementation optimizations that can address the strict TSN requirements.

CONCLUSION