CONTADORES MÓDULO "N"

Um contador constituído por 4 FFs, por exemplo, pode contar de 0 a 15, pois temos neste caso 16 estados ou possibilidades (2⁴).

Porém um contador pode ser construído de forma a apresentar um número "N" de estados diferentes, onde N é um número inteiro qualquer.

Desta forma um contador módulo N retorna ao estado inicial após o "enésimo" pulso de clock. Um contador módulo 6, por exemplo, retorna ao estado inicial após o 5º pulso de clock, isto é, efetivamente conta de 0 a 5.

Para construir um contador módulo N deveremos encontrar o número de FFs para estruturar o contador, baseando-se na regra abaixo:

$$2^{n-1} < N < 2^n$$

onde:

N é o módulo do contador n é o número de FFs.

A construção de um contador módulo 10 deverá ser estruturada da seguinte forma:

$$N = 10$$

 $2^3 \le 10 \le 2^4$

Para construir esse contador serão necessários 4FFs ($2^4 = 16$), pois três FFs dariam apenas 8 estados e não seriam suficientes.

Para construir um contador módulo 5, devemos estruturar da seguinte forma:

$$N = 5$$
$$2^2 \le 5 \le 2^3$$

Para construir um contador módulo 5 serão necessários apenas 3FFs.

CONTADOR MÓDULO 6:

Para um contador módulo 6, precisaremos de 3 FFs (8 estados), pois:

$$2^2 \le 6 \le 2^3$$

O contador módulo 6 conta de 0 a 5.

Como temos 3 FFs que representam 8 estados, no 6º pulso de clock o mesmo deverá reciclar, ou seja, zerar e reiniciar a contagem.

A tabela da verdade a seguir mostra esse arranjo.

Pulsos	S	AÍDA	S	Dooimal	Condição	
de clock	Α	В	С	Decimal		
0	0	0	0	0		
1	0	0	1	1		
2	0	1	0	2		
3	0	1 1		3		
4	1	0	0	4		
5	1	0	1	5		
6	1 1		0	6	recicla	
7	1	1	1	7		

Observa-se pela tabela acima que é mostrada a contagem de 0 a 5 e que no 6° pulso de clock ocorre a reciclagem.

Isto significa que o decimal 6 não aparece no contador, pois a contagem mais alta é o binário 0101.

A figura a seguir mostra o circuito que representa o contador módulo 6. Trata-se de um contador assíncrono.

No 6° pulso de clock temos na saída do contador QC=0, QB=1 e QA=1, onde os dados de QA e QB são introduzidos em uma porta NAND que cuja saída é ligada às entradas C (Clear) dos FFs.

Quando as entradas da porta NAND são submetidas a nível lógico 1, teremos na saída nível lógico 0, zerando o contador e reiniciando sua contagem.

CONTADOR MÓDULO 10 ASSÍNCRONO

O contador módulo 10 muito utilizado na prática é conhecido também como contador de década, pois conta de 0 a 9.

Para construí-lo precisamos de 4 FFs pois:

$$2^3 \leq 10 \leq 2^4$$

Neste caso, a contagem mais alta é 1001 binário, ou seja, após o 9° pulso de clock deve ocorrer a reciclagem.

Pulsos		SAÍ	DAS		Dagimal	Condição	
de clock	D	С	В	Α	Decimal		
0	0	0	0	0	0		
1	0	0	0	1	1		
2	0	0	1	0	2		
3	0	0	1	1	3		
4	0	1	0	0	4		
5	0	1	0	1	5		
6	0	1	1	0	6		
7	0	1	1	1	7		
8	1	0	0	0	8		
9	1	0	0	1	9		
10	1	0	1	0	10	recicla	
11	1	0	1	1	11		
12	1	1	0	0	12		
13	1	1	0	1	13		
14	1	1	1	0	14		
15	1	1	1	1	15		

Após a contagem máxima que é 1001, quando o contador tentar chegar a 1010 (10° pulso de clock), teremos os níveis lógicos B=1 e D=1, que serão introduzidos em uma porta NAND que limpará o contador através das entradas CLEAR de cada FF.

A figura a seguir mostra o circuito desse contador que também á assíncrono.

P = preset C = clear

Outra forma de construir um contador módulo 10 é utilizar uma porta NAND de quatro entradas, de tal forma que ao se aplicar a contagem binária 1010, ocorrerá o resetamento de todos os FFs e a contagem será reiniciada.

Observe que os FFs utilizados neste circuito são dotados de entradas assíncronas PR e CLR que são ativas em 0, isto é, para que operem totalmente as entradas PR e CLR deverão ser submetidas a nível lógico 1

Deveremos usar as saídas complementares dos FFs que correspondem a QA e QC, assim:

Nas condições quando as quatro entradas da porta NAND forem submetidas a 1, teremos na saída 0, que levará todos os FFs ao resetamento.

Veja a tabela da verdade a seguir.

Pulsos		SAÍ	DAS	3	Cloor	Candiaão			
de clock	QD	QC	QB	QA	Clear	Condição			
0	0	0	0	0	1				
1	0	0	0	1	1				
2	0	0	1	0	1				
3	0	0	1	1	1				
4	0	1	0	0	1				
5	0	1	0	1	1				
6	0	1	1	0	1				
7	0	1	1	1	1				
8	1	0	0	0	1				
9	1	0	0	1	1				
10	1	0	1	0	0	recicla			
11	1	0	1	1					
12	1	1	0	0					
13	1	1	0	1					
14	1	1	1	0					
15	1	1	1	1					

CONTADOR MÓDULO 10 SÍNCRONO

Para construir um contador de década síncrono, podemos utilizar os mesmos processos descritos anteriormente.

As entradas PR e CLR são ativas em zero, portanto, as mesmas devem estar em nível lógico 1 (NL 1) para que os FFs operem normalmente.

Analisando as entradas de cada um dos FFs teremos:

FFA	J=1					
FFA	K=1					
FFB	J=QA.QD'					
FFB	K = QA					
FFC	J=QB.QA					
FFC	K=QB.QA					
FFD	J=QC(QB.QA)					
FFD	K=QA					

A tabela da verdade é mostrada a seguir.

			CAÍ	DAC	ENTRADAS										
		SAÍDAS				FFD FFC		FC	FFB		FFA		DECIMAL	CLOCK	
		Q	QD QC QB QA		٦	K	J	K	J	K	J	K			
	+	0	0	0	0	0	Ø	0	Ø	0	Ø	1	Ø	0	CLEAR
		0	0	0	1	0	Ø	0	Ø	1	Ø	Ø	1	1	1
		0	0	1	0	0	Ø	0	Ø	Ø	0	1	Ø	2	2
		0	0	1	1	0	Ø	1	Ø	Ø	1	Ø	1	3	3
		0	1	0	0	0	Ø	Ø	0	0	Ø	1	Ø	4	4
		0	1	0	1	0	Ø	Ø	0	1	Ø	Ø	1	5	5
		0	1	1	0	0	Ø	Ø	0	Ø	0	1	Ø	6	6
		0	1	1	1	1	Ø	Ø	1	Ø	1	Ø	1	7	7
		1	0	0	0	Ø	0	0	Ø	0	Ø	1	Ø	8	8
		1	0	0	1	Ø	1	0	Ø	0	Ø	Ø	1	9	9
Ι'	4	0	0	0	0										10

Ø = don't care (pouco importa) ou condição irrelevante,
onde qualquer uma das entradas pode assumir os valores
0 e 1 sem que haja qualquer alteração na saída.

Para melhor entender essa condição veja o exemplo a seguir.

Consideremos o estado inicial setado, onde Q=1.

A saída Q poderá assumir o valor "0" em duas condições:

J=1, K=1
$$\rightarrow$$
 toggle J=0, K=1 \rightarrow reset

Mantendo K=1 conclui-se que, a entrada J pode assumir os valores 0 ou 1, pois em qualquer uma das condições teremos Q=0.