

Table of Contents

- Recap
- TCP/IP
- Other terms
- Establishing TCP Connections / 3-Way Handshake
- Scenarios (+ demos)

Recap

- Enumerate → nmap
 - 1. Ping scan whole network
 - 2. Find target
 - 3. Port scan the target

```
oot@thessSec:~# nmap -sn 192.168.190.0/24
Starting Nmap 7.25BETA1 ( https://nmap.org ) at 2017-03-24 07:40 EDT
Nmap scan report for 192.168.190.1
Host is up (0.00061s latency).
MAC Address: 00:50:56:C0:00:08 (VMware)
Nmap scan report for 192.168.190.2
Host is up (0.00014s latency).
MAC Address: 00:50:56:F3:92:DB (VMware)
Vmap scan report for 192.168.190.130
Host is up (0.00084s latency).
MAC Address: 00:0C:29:FA:DD:2A (VMware)
Nmap scan report for 192.168.190.254
Host is up (0.00023s latency).
MAC Address: 00:50:56:F3:9C:4F (VMware)
Vmap scan report for 192.168.190.128
Host is up.
Nmap done: 256 IP addresses (5 hosts up) scanned in 2.06 seconds
```

```
oot@thessSec:~# nmap -sS 192.168.190.130
Starting Nmap 7.25BETA1 ( https://nmap.org ) at 2017-03-24 07:43 EDT
Nmap scan report for 192.168.190.130
Host is up (0.00017s latency).
Not shown: 977 closed ports
        STATE SERVICE
PORT
21/tcp
        open ftp
22/tcp
       open ssh
23/tcp open telnet
25/tcp open smtp
53/tcp open domain
80/tcp open http
111/tcp open rpcbind
139/tcp open netbios-ssn
445/tcp open microsoft-ds
512/tcp open exec
513/tcp open login
514/tcp open shell
1099/tcp open rmiregistry
1524/tcp open ingreslock
2049/tcp open nfs
2121/tcp open ccproxy-ftp
3306/tcp open mysql
5432/tcp open postgresql
5900/tcp open vnc
6000/tcp open X11
6667/tcp open irc
8009/tcp open ajp13
8180/tcp open unknown
MAC Address: 00:0C:29:FA:DD:2A (VMware)
Nmap done: 1 IP address (1 host up) scanned in 0.10 seconds
```

```
oot@thessSec:~# nmap -sV 192.168.190.130
Starting Nmap 7.25BETA1 ( https://nmap.org ) at 2017-03-24 07:43 EDT
Nmap scan report for 192.168.190.130
Host is up (0.00012s latency).
Not shown: 977 closed ports
        STATE SERVICE
                          VERSION
PORT.
21/tcp
        open ftp
                          vsftpd 2.3.4
                          OpenSSH 4.7pl Debian 8ubuntul (protocol 2.0)
22/tcp
        open ssh
23/tcp
        open telnet
                          Linux telnetd
25/tcp
       open smtp
                          Postfix smtpd
       open domain
53/tcp
                          ISC BIND 9.4.2
80/tcp
                          Apache httpd 2.2.8 ((Ubuntu) DAV/2)
       open http
111/tcp open rpcbind
                          2 (RPC #100000)
139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
512/tcp open exec
                          netkit-rsh rexecd
513/tcp open login?
514/tcp open tcpwrapped
1099/tcp open rmiregistry GNU Classpath grmiregistry
1524/tcp open shell
                          Metasploitable root shell
2049/tcp open nfs
                          2-4 (RPC #100003)
2121/tcp open ftp
                          ProFTPD 1.3.1
3306/tcp open mysql
                          MvSOL 5.0.51a-3ubuntu5
5432/tcp open postgresgl PostgreSQL DB 8.3.0 - 8.3.7
5900/tcp open vnc
                          VNC (protocol 3.3)
6000/tcp open X11
                          (access denied)
6667/tcp open irc
                          Unreal ircd
8009/tcp open ajp13
                          Apache Jserv (Protocol v1.3)
                          Apache Tomcat/Coyote JSP engine 1.1
8180/tcp open http
MAC Address: 00:0C:29:FA:DD:2A (VMware)
Service Info: Hosts: metasploitable.localdomain, localhost, irc.Metasploitable.LAN; OSs:
Unix, Linux; CPE: cpe:/o:linux:linux kernel
Service detection performed. Please report any incorrect results at https://nmap.org/submi
Nmap done: 1 IP address (1 host up) scanned in 14.55 seconds
```


Recap

- Enumerate → nmap
 - 1. Ping scan whole network
 - 2. Find target
 - 3. Port scan the target
- Connect to server (IP, port) → netcat (nc)
 - 1. Chat
 - 2. GET/POST Requests
 - 3. File transfers
 - 4. Reverse shells

```
root@thessSec:~# nc 172.217.22.14 80
GET / HTTP/1.0
HTTP/1.0 302 Found
Cache-Control: private
Content-Type: text/html; charset=UTF-8
Location: http://www.google.gr/?gfe_rd=cr&ei=jefkWIWvAoug8wf-9bHQCw
Content-Length: 258
Date: Wed, 05 Apr 2017 12:48:13 GMT

<HTML><HEAD><meta http-equiv="content-type" content="text/html;charset=utf-8">
<TITLE>302 Moved</TITLE></HEAD><B0DY>
<H1>302 Moved</H1>
The document has moved
<A HREF="http://www.google.gr/?gfe_rd=cr&amp;ei=jefkWIWvAoug8wf-9bHQCw">here</A>.

CHTML>
```


TCP/IP

TCP/IP model	OSI model	
	HTTP, FTTP,	Application
Application	Telnet, NTP,	Presentation
	DHCP, PING	Session
Transport	TCP, UDP	Transport
Network	IP, ARP, ICMP, IGMP	Network
Network		Data Link
Interface	Ethernet	Physical

Other terms...

Domain Name system (DNS):

- Name → IP addresses
- Found online or via commands like nslookup
 Address Resolution Protocol (ARP):
- IP addresses → MAC addresses
- Found via arp command

Packet Encapsulation

TCP/IP Header

Establishing TCP Connections / 3-Way Handshake

Establishing TCP Connections / 3-Way Handshake

translated to English:

Computer A: hello computer B, can you hear me?

Computer B: I acknowledge that I can hear you. Also, can you hear me?

Computer A: I acknowledge I can hear you. Let's talk about reddit.

It is done this way because it is the most efficient way to tell if the

communication channels are open in both directions.

https://www.reddit.com/r/explainlikeimfive/comments/1ahc5s/eli5_tcpip/

Scenario 1 – ping request (hostname)

- 1. Resolve DNS to IP
- 2. Send ICMP request
- 3. Receive ICMP reply

What if we ping the IP?

Wireshark: ping google.com

No.	Time	Source	Destination	Protocol	Length Info
-	39 1.243173433	10.0.1.128	10.0.1.2	DNS	70 Standard query 0x8024 A google.com
	40 1.243326041	10.0.1.128	10.0.1.2	DNS	70 Standard query 0x0153 AAAA google.com
4	41 1.281298263	10.0.1.2	10.0.1.128	DNS	86 Standard query response 0x8024 A google.com A 172.217.22.46
L	42 1.281975027	10.0.1.2	10.0.1.128	DNS	98 Standard query response 0x0153 AAAA google.com AAAA 2a00:1450:4001:820::200e
	43 1.282578737	10.0.1.128	172.217.22.46	ICMP	98 Echo (ping) request id=0x0df5, seq=1/256, ttl=64 (reply in 44)
	44 1.356664312	172.217.22.46	10.0.1.128	ICMP	98 Echo (ping) reply id=0x0df5, seq=1/256, ttl=128 (request in 43)
	45 1.356854628	10.0.1.128	10.0.1.2	DNS	86 Standard query 0xe6c3 PTR 46.22.217.172.in-addr.arpa
	46 1.395358496	10.0.1.2	10.0.1.128	DNS	155 Standard query response 0xe6c3 PTR 46.22.217.172.in-addr.arpa PTR fra15s16-in
	64 2.285137467	10.0.1.128	172.217.22.46	ICMP	98 Echo (ping) request id=0x0df5, seq=2/512, ttl=64 (reply in 65)
	65 2.366766070	172.217.22.46	10.0.1.128	ICMP	98 Echo (ping) reply id=0x0df5, seq=2/512, ttl=128 (request in 64)
	67 3.287007922	10.0.1.128	172.217.22.46	ICMP	98 Echo (ping) request id=0x0df5, seq=3/768, ttl=64 (reply in 68)

Scenario 2 – HTTP(s) request

- 1. Resolve DNS to IP
- 2. Send packet with SYN flag set
- 3. Receive packet with SYN, ACK flag set
- 4. Send packet with ACK flag set
- 5. Send GET request (HTTP Protocol)
- 6. Receive packet with ACK flag set
- 7. Receive HTTP response
- 8. Close connection with ACK FIN/ACK sequence

Wireshark: curl google.com

No.	Time	Source	Destination	Protocol	Length Info
	8 1.549847121	10.0.1.128	10.0.1.2	DNS	70 Standard query 0x4a88 A google.com
	9 1.550007571	10.0.1.128	10.0.1.2	DNS	70 Standard query 0x4917 AAAA google.com
	10 1.554309425	10.0.1.2	10.0.1.128	DNS	86 Standard query response 0x4a88 A google.com A 172.217.16.174
	11 1.554906890	10.0.1.2	10.0.1.128	DNS	98 Standard query response 0x4917 AAAA google.com AAAA 2a00:1450:4
r	12 1.563393660	10.0.1.128	172.217.16.174	TCP	74 56520-80 [SYN] Seq=3733452883 Win=29200 Len=0 MSS=1460 SACK_PER
-	13 1.638200799	172.217.16.174	10.0.1.128	TCP	60 80-56520 [SYN, ACK] Seq=1232215861 Ack=3733452884 Win=64240 Len:
	14 1.638303210	10.0.1.128	172.217.16.174	TCP	54 56520-80 [ACK] Seq=3733452884 Ack=1232215862 Win=29200 Len=0
	15 1.638784702	10.0.1.128	172.217.16.174	HTTP	128 GET / HTTP/1.1
	16 1.639415459	172.217.16.174	10.0.1.128	TCP	60 80-56520 [ACK] Seq=1232215862 Ack=3733452958 Win=64240 Len=0
	17 1.712926190	172.217.16.174	10.0.1.128	HTTP	525 HTTP/1.1 302 Found (text/html)
	18 1.712997782	10.0.1.128	172.217.16.174	TCP	54 56520-80 [ACK] Seq=3733452958 Ack=1232216333 Win=30016 Len=0
	19 1.714620600	10.0.1.128	172.217.16.174	TCP	54 56520-80 [FIN, ACK] Seq=3733452958 Ack=1232216333 Win=30016 Len
	20 1.716437623	172.217.16.174	10.0.1.128	TCP	60 80-56520 [ACK] Seq=1232216333 Ack=3733452959 Win=64239 Len=0
	21 1.786113815	172.217.16.174	10.0.1.128	TCP	60 80-56520 [FIN, PSH, ACK] Seq=1232216333 Ack=3733452959 Win=6423
Ł	22 1.786193488	10.0.1.128	172.217.16.174	TCP	54 56520-80 [ACK] Seq=3733452959 Ack=1232216334 Win=30016 Len=0

Scenario 3 – nc shell

- 1. 3-Way handshake
- 2. Send Command packet (PSH/ACK)
- 3. Receive confirmation (ACK)
- 4. Receive Response packet (PSH/ACK)
- 5. Send confirmation (ACK)
- 6. ...
- 7. Close connection with ACK FIN/ACK sequence

Wireshark: (3) commands over netcat interactive shell

1000						
No.		Time	Source	Destination	Protocol	Length Info
170	702	785.644007637	10.0.1.130	10.0.1.128	TCP	74 44689_4444 [SYN] Seq=4081970295 Win=5840 Len=0 MSS=1460 SACK_PERM=1 TSval=664.
	705	785.644213307	10.0.1.128	10.0.1.130	TCP	74 4444_44689 [SYN, ACK] Seq=3774769288 Ack=4081970296 Win=28960 Len=0 MSS=1460
1	706	785.644332220	10.0.1.130	10.0.1.128	TCP	66 44689-4444 [ACK] Seq=4081970296 Ack=3774769289 Win=5856 Len=0 TSval=664250 TS
	709	789.710229063	10.0.1.128	10.0.1.130	TCP	69 4444-44689 [PSH, ACK] Seq=3774769289 Ack=4081970296 Win=29056 Len=3 TSval=2
	710	789.710586228	10.0.1.130	10.0.1.128	TCP	66 44689_4444 [ACK] Seq=4081970296 Ack=3774769292 Win=5856 Len=0 TSval=664652 [S
	711	789.712268015	10.0.1.130	10.0.1.128	TCP	82 44689-4444 [PSH, ACK] Seq=4081970296 Ack=3774769292 Win=5856 Len=16 TSval=664
	712	789.712293713	10.0.1.128	10.0.1.130	TCP	66 4444_44689 [ACK] Seq=3774769292 Ack=4081970312 Win=29056 Len=0 TSval=249053
	715	791.400713198	10.0.1.128	10.0.1.130	TCP	73 4444-44689 [PSH, ACK] Seq=3774769292 Ack=4081970312 Win=29056 Len=7 TSval=249
	716	791.402353389	10.0.1.130	10.0.1.128	TCP	75 44689-4444 [PSH, ACK] Seq=4081970312 Ack=3774769299 Win=5856 Len=9 TSval=6648
	717	791.402407038	10.0.1.128	10.0.1.130	TCP	66 4444-44689 [ACK] Seq=3774769299 Ack=4081970321 Win=29056 Len=0 TSval=2490960
	718	792.779125927	10.0.1.128	10.0.1.130	TCP	70 4444_44689 [PSH, ACK] Seq=3774769299 Ack=4081970321 Win=29056 Len=4 TSval=249:
	719	792.779577595	10.0.1.130	10.0.1.128	TCP	81 44689-4444 [PSH, ACK] Seq=4081970321 Ack=3774769303 Win=5856 Len=15 TSval=664
	720	792.779595916	10.0.1.128	10.0.1.130	TCP	66 4444-44689 [ACK] Seq=3774769303 Ack=4081970336 Win=29056 Len=0 TSval=2491304
	721	797.796391158	10.0.1.128	10.0.1.130	TCP	66 4444_44689 [FIN, ACK] Seq=3774769303 Ack=4081970336 Win=29056 Len=0 TSval=249
	722	797.797314355	10.0.1.130	10.0.1.128	TCP	66 44689-4444 [FIN, ACK] Seq=4081970336 Ack=3774769304 Win=5856 Len=0 TSval=6654
E	723	797.797356047	10.0.1.128	10.0.1.130	TCP	66 4444-44689 [ACK] Seq=3774769304 Ack=4081970337 Win=29056 Len=0 TSval=2492558

Scenario 4 – nmap Version Detection

For each port:

- 1. 3 –Way Handshake
- 2. Sends packets for specific versions
- 3. If response matches a version OK
- 4. Close connection with ACK FIN/ACK sequence

Scenarios Demo

Thank you for your attention

georgkonst@ece.auth.gr

github.com/gakonst