NLP 2025 - Exercise Information Retrieval Basics

1. Inverted Index

สมมติว่ามีเอกสารสี่ชิ้นซึ่งมีคำดังต่อไปนี้

Doc 1: new home in top forecasts

Doc 2: home sales rise in july

Doc 3: increase in home sales in july

Doc 4: rise in new home sales

จงวาด Inverted Index สำหรับ boolean retrieval ที่สามารถตอบสนอง phrase query ได้โดยไม่ต้องใช้ bigram index (แปลว่าต้องเก็บตำแหน่งที่แต่ละคำเกิดขึ้น เอาไว้ใน postings ด้วย) จะทำด้วยมือหรือเขียนโค้ดก็ได้ โดยเริ่มจาก

```
doc1 = 'new home in top forecasts'.split(' ')
doc2 = 'home sales rise in july'.split(' ')
doc3 = 'increase in home sales in july'.split(' ')
doc4 = 'rise in new home sales'.split(' ')
docs = [doc1, doc2, doc3, doc4]
```

Term	Postings
forecasts	[(1, [4])]
home	[(1, [1]), (2, [0]), (3, [2]), (4, [3])]
in	[(1, [2]), (2, [3]), (3, [1, 4]), (4, [1])]
increase	[(3, [0])]
july	[(2, [4]), (3, [5])]
new	[(1, [0]), (4, [2])]
rise	[(2, [2]), (4, [0])]
sales	[(2, [1]), (3, [3]), (4, [4])]
top	[(1, [3])]

2. Ranked Retrieval

สมมติว่าเราได้ term-doc matrix ดังตารางข้างล่าง

term	Doc 1	Doc 2	Doc 3
Linus	10	0	1
Snoopy	1	4	0
pumpkin	4	100	10

ถ้า query = "Linus snoopy" และใช้ TF-IDF เป็นเกณฑ์คะแนนความเกี่ยวข้อง (Relevance score) ดังสูตรข้างล่างโดยที่ใช้ log ฐาน 10 และ N คือจำนวน document ทั้งหมด

$$w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log rac{\mathsf{N}}{\mathsf{df}_t}$$

ผลการค้นหาจะออกมาเป็นอย่างอะไร ให้จัดอันดับของแต่ละ document ตามคะแนนความเกี่ยวข้อง และแสดงวิธีการคำนวณ TF-IDF ด้วย

(คำใบ้: log 1 = 0 หา IDF ของแต่ละ term ก่อนแล้วจะง่ายมาก)

Step 1

Linus appears in **2** documents \rightarrow IDF_{Linus}=log $\boxed{0}_{10}(3/2)$ =0.17609 snoopy appears in **2** documents \rightarrow IDF_{pumpkin}=log $\boxed{0}_{10}(3/2)$ =0.17609

Step 2

Linus	TF	TF - IDF
doc1	1+log(10) = 2	2 x log[10](3/2)
doc2	1+log(0) = 1	1 x log ¹⁰ 10(3/2)
doc3	1+log(1)=1	1 x log ¹⁰ 10(3/2)

Snoopy	TF	TF - IDF
СПОСРВ		

doc1	1+log(1) = 1	1 x log ¹⁰ ₁₀ (3/2)
doc2	1+log(4) = 1.6	1.6 x log 10(3/2)
doc3	1+log(0) =1	1 x log ¹⁰ 10(3/2)

Step 3

Rank	Doc	Sum of TF-IDF score
	Doc1	3 x log ₁₀ (3/2)
	Doc2	2.6 x log@ ₁₀ (3/2)
	Doc3	2 x log ₁₀ (3/2)

$$Score(q,d) = \sum_{t \in q \cap d} tf.idf_{t,d}$$