NOCÕES DE SINAIS REPRESENTADOS NO DOMÍNIO DO TEMPO / ESPAÇO, FREQUÊNCIA / FREQUÊNCIAS ESPACIAIS

Um sinal, ou função, de apenas uma variável (normalmente o tempo t), pode ser representado também no domínio da frequência. Trata-se do mesmo sinal, representado de duas formas (ou em dois domínios) diferentes. Assim, s(t) é o sinal no domínio do tempo e S(w), ou S(f), é o seu espectro de frequências, ou espectro de Fourier. As variáveis w e f são variáveis de frequência e estão relacionadas por $w=2\pi f$, em que f está expressa em Hertz (1 Hz = 1/s) e w está expressa em radianos/s. O espectro pode ser calculado e visualizado como função de w ou f, mas isso precisa estar expresso.

Da mesma forma, um sinal, ou função de duas variáveis (normalmente as coordenadas espaciais x e y), pode ser representado também no domínio das frequências espaciais. Assim, s(x,y) é o sinal no domínio espacial e S(w1,w2), ou S(f1,f2), é o seu espectro de frequências, ou espectro de Fourier. As variáveis w1, w2, f1 e f2 são variáveis de frequência e também correspondem às unidades Hz ou rad/s, conforme o caso.

A figura abaixo mostra o espectro de um sinal, destacando-se a sua componente de frequência zero (ou termo DC), e uma componente de frequência f. Observe-se que foi utilizada uma representação com frequências positivas e negativas, resultante de uma formulação matemática. Na prática, as frequências são sempre positivas (ou nula). O eixo z, designado por "amplitude", refere-se à amplitude dos senos nas frequências indicadas.

Os exemplos abaixo têm a intenção de fornecer uma intuição prática sobre as representações em ambos os domínios. Não houve qualquer preocupação com relação ao rigor matemático.

1. REPRESENTAÇÃO DE UM SINAL NO DOMÍNIO DO TEMPO E NO DOMÍNIO DA FREQUÊNCIA

Exemplo 1.1: A Figura 1 ilustra, através de um exemplo, o conceito de Série de Fourier, usada para descrever o espectro de Fourier de sinais periódicos.

Seja um sinal de onda quadrado, <u>periódico</u> de período T_0 (e portanto com frequência f_0 =1/ T_0), plotado na Figura 1 com a cor preta. Este sinal, por ser periódico, pode ser aproximado por uma soma de sinais senoidais, chamados de harmônicos, cujas frequências são múltiplos inteiros de f_0 (neste exemplo em particular, apenas os múltiplos ímpares são diferentes de zero; ou seja, todos os harmônicos pares são nulos). As amplitudes dos harmônicos são chamadas de coeficientes de Fourier e podem ser calculados através de fórmulas específicas da Série de Fourier.

Assim, temos:

1º Harmônico: sinal senoidal cuja frequência é f₀;

3º Harmônico: sinal senoidal cuja frequência é 3f₀;

5º Harmônico: sinal senoidal cuja frequência é 5f₀;

etc

À medida em que utilizamos mais harmônicos para compor o sinal original, somandoos ponto a ponto para todos os valores de t, a soma aproxima-se cada vez mais do sinal quadrado (na prática, a reconstrução perfeita do sinal quadrado nunca será alcançada, mas isso não é assunto pra hoje).

Seja K a quantidade de harmônicos considerada na composição do sinal (incluindo-se os harmônicos pares, que neste caso são nulos). Então temos:

- Na Figura 1 (a), é mostrado em azul apenas o 1º harmônico (K=1). Observe qua ambos os sinais (senoidal e quadrado) apresentam o mesmo período e, portanto, a mesma frequência.
- Na Figura 1 (b), o sinal mostrado em azul corresponde à soma até o 5º harmônico (K=5, correspondendo à soma 1º + 2º + 3º + 4º + 5º), com os harmônicos pares todos nulos, neste caso.
- Na Figura 1 (c), o sinal mostrado em azul corresponde à soma até o 11º harmônico (K=11, correspondendo à soma 1º + 2º + 3º + 4º + 5º + ...+ 11º), com os harmônicos pares todos nulos, neste caso.
- Na Figura 1 (d), o sinal mostrado em azul corresponde à soma até o 49º harmônico (K=49, correspondendo à soma 1º + 2º + 3º + 4º + 5º + ... + 49º), com os harmônicos pares todos nulos, neste caso.

Figura 1

No contexto deste mesmo exemplo, que trata da decomposição do sinal quadrado em suas componentes harmônicas, a Figura 2 mostra os harmônicos ímpares de 1 a 9 (separadamente) e a soma ponto-a-ponto de todos os harmônicos ímpares de 1 a 9, em azul.

Decomposição Harmônica (Série de Fourier) de onda quadrada até a 9º ordem.

Figura 2

Exercício 1.1: na Figura 2, analise o período do 1º harmônico em relação ao sinal quadrado original.

Exercício 1.2: analise o período dos harmônicos mostrados na Figura 2, em relação ao período do 1º harmônico, também chamado de componente fundamental.

A Figura 3 apresenta, respectivamente, os harmônicos variando em função do tempo (nas figuras à esquerda) e os espectros de Fourier correspondentes, que representam os sinais no domínio da frequência. Abaixo de cada gráfico do sinal variando no tempo, você encontra a expressão do sinal traçado, com as amplitudes de cada harmônico indicadas.

Note que cada harmônico, no domínio do tempo, é um sinal senoidal com uma frequência conhecida e, portanto, o seu espectro de Fourier corresponde em um impulso nesta frequência.

Assim, a Figura 3 apresenta:

- O 1º harmônico e o seu espectro de Fourier (mostrando a amplitude do 1º harmônico (1f), também chamado de componente fundamental.
- A soma dos harmônicos (1º+3º+5º) e o seu espectro de Fourier (observe que as amplitudes dos harmônicos em 1f, 3f e 5f é tanto menor, quanto maior a ordem do harmônico)
- Soma dos harmônicos (1º+3º+5º+7º+9º+11º) e o seu espectro de Fourier (idem observação anterior)

Figura 3

- OBs 1: As amplitudes das componente de frequência, plotadas no Espectro de Frequências, são chamadas de Coeficientes de Fourier.
- Obs 2: Foram traçados os espectros, à direita, apenas para frequências positivas, por questão de simplicidade. Mas usualmente, adota-se uma representação matemática onde aparecem também as frequências negativas. Não se preocupem com isso, por enquanto.
- Obs 3: <u>Todo sinal periódico no domínio do tempo</u>, por apresentar em sua decomposição apenas os harmônicos múltiplos da frequência fundamental f₀,

<u>apresenta o espectro de Fourier</u> (ou, equivalentemente, a representação no domínio da frequência) <u>discreto</u>. Ou seja, estão presentes no sinal apenas alguns componentes de frequência bem distintos.

Obs 4: Quando o sinal, no domínio do tempo, não é periódico, o seu espectro de frequências não é discreto, mas sim contínuo. Isso quer dizer que há infinitas componetes de frequência presentes no sinal.

Exercício 1.3: Gere no matlab o sinal x(t) dado pela expressão abaixo. Em seguida, faça um esboço do seu espectro de frequência (fora do matlab, manualmente mesmo) considerando apenas as frequências positivas, sabendo que o sinal $A sen(2\pi ft)$ é um seno com amplitude A e frequência f. Atenção: escolha previamente a variável de frequência que irá utilizar, f ou w, em que $w=2\pi f$.

$$x(t) = 0.5 + sen(2\pi t) + 0.5 sen(4\pi t) + 0.3 sem(6\pi t)$$

dica: $sen(2\pi ft) = sen(wt)$

Exercício 1.4: Analise a Figura 4, o mais detalhadamente possível. Mencione todas as informações que puder encontrar.

Na coluna "termo", encontram-se os coeficientes de Fourier que correspondem às frequências f múltiplas da frequência fundamental f_0 .

Ao é a componete de frequência 0 (com $f=0.f_0$), correspondente ao valor médio do sinal, que neste caso é nulo;

 A_1 é a componete de frequência f_0 , com $f=1.f_0$, correspondente ao harmônico fundamental, de mesma freqência do sinal periódico original;

E assim por diante.

Fase é o deslocamento no tempo. Como todos os termos têm fase nula, significa que todos eles são senoides não defasadas.

Figura 4

2. ESPECTRO DE FOURIER DE SINAIS BIDIMENSIONAIS (FUNÇÕES DE DUAS VARIÁVEIS), QUE CHAMAREMOS DE "IMAGENS"

O espectro de Fourier de uma imagem, que é um sinal bidimensional, também é um sinal bidimensional, pois depende de duas componentes de frequência (frequência aqui refere-se à "rapidez" da variação da intensidade de cinzas na direção das linhas e na direção das colunas). Assim, uma imagem com altas componentes de frequência será uma imagem com muitas bordas e detalhes, ao passo que uma imagem com baixas componentes de frequência será uma imagem suave, com a predominância de regiões suaves. A componente de frequências zero, assim como nos sinais unidimensionais, representa o valor de intensidade médio da imagem.

Exemplo 2.1: na Figura 5, à esquerda, apresenta-se uma imagem f, que é um sinal 2D cujas intensidades de cinzas variam em (x,y), que são as variáveis espaciais. A imagem é formada por listas verticais, que parecem brancas e pretas, mas que na verdade correspondem a uma variação senoidal das intensidades de cinza, indo do preto ao branco e retornando ao preto, repetidas vezes.

À direita, o seu espectro de Fourier F, que também é 2D, plotado como uma imagem onde o valor do coeficiente F(w1,w2) é mapeado para um valor de intensidade de cinzas, com o intuito de exibir o espectro como uma figura. Assim, os pontos da imagem do espectro F que esão pretos indicam coeficientes nulos (senóides de amplitude zero) e os pontos onde a imagem do espectro F está clara correspondem aos coeficientes de frequência não nulos (quanto mais claros forem os pontos, maior o valor dos coeficientes).

Nesta representação do espectro F, <u>utilizaram-se frequências positivas e negativas</u>. O centro da figura corresponde à componente DC, ou componente F(0,0), ou seja, componente de frequências nulas em ambas as direções. A componete DC do espectro de Fourier corresponde ao valor de intensidade médio da imagem mostrada à esquerda (média de todos os pixels). O quarto quadrante desta figura corresponde às frequências positivas.

Como a intensidade média da imagem no domínio espacial não é nula, a componente DC no espectro aparece como um pontinho claro.

A imagem no domínio espacial, por ser composta por listras verticais exatamente iguais e com o mesmo espaçamento, é um sinal 2D periódico. Por isso, o seu espectro de Fourier F é discreto (pode haver apenas algumas componentes específicas de frequência presentes).

Como a intensidade da imagem não muda quando percorremos o sentido das colunas, as componentes de frequência w2, na direção das colunas, são nulas.

Quando percorremos a imagem no sentido das linhas, a intensidade varia senoidalmente, com a frequência w, do preto ao branco e novamente ao preto, repetidas vezes. Portanto, nessa direção o sinal apresenta apenas uma componente de frequência (senoide pura), mostrada no eixo w1 (representando-se as frequências positiva e negativa).

Figura 5

Exercício 2.1: tomando por base o espectro F mostrado na subfigura à direita (na Figura 5), faça um esboço (manualmente) do espectro F como função de w1 e w2, utilizando o plano w1 x w2 como região de suporte e plotando F(w1, w2) no eixo z. Utilize também a representação de frequências positivas e negativas.

Exemplo 2.1: na Figura 6, à direita, apresenta-se uma imagem f, que é um sinal 2D cujas intensidades de cinzas variam em (x,y). À esquerda, o seu espectro de Fourier F, que também é 2D, plotado como uma imagem onde o valor do coeficiente F(w1,w2) é mapeado para um valor de intensidade de cinzas, com o intuito de exibir o espectro como uma figura. Da mesma forma que no exemplo anterior, os pontos da imagem do espectro F que esão pretos indicam coeficientes nulos (senóides de amplitude zero) e os pontos onde a imagem do espectro F está clara correspondem aos coeficientes de frequência não nulos (quanto mais claros forem os pontos, maior o valor dos coeficientes).

Nesta representação do espectro F, utilizaram-se <u>apenas frequências positivas</u>. O canto superior esquerdo corresponde à componente DC, ou componente F(0,0), que é a intensidade média da imagem. Como ela não é nula, a componente DC no espectro aparece como um pontinho claro (que não pode ser visto, por coincidir com a borda da imagem).

A imagem no domínio espacial é um sinal 2D periódico. Por isso, o seu espectro de Fourier F é discreto (há apenas algumas componentes específicas de frequência presentes).

Como a intensidade da imagem muda quando a percorremos tanto no sentido das colunas quanto no sentido das linhas, as componentes de frequência w1 e w2 estarão presentes. Neste caso, a função senoidal que gerou a imagem espacial depende de ambas as direções: $sen[2\pi(f_1x+f_2y)]$. Dessa forma, o espectro à direita mostra um pontinho branco (coeficiente de Fourier não nulo) perto da origem (um pouco abaixo e à esquerda), identificando uma componente de frequência em ambas as direções. Pela simetria, observa-se que a frequência em ambas as direções é a mesma.

Figura 6

Exercício 2.2: tomando por base o espectro F mostrado na subfigura à esquerda (na Figura 6), faça um esboço (manualmente) do espectro F como função de w1 e w2, utilizando o plano w1 x w2 como região de suporte e plotando F(w1, w2) no eixo z. Utilize a representação de frequências positivas e negativas.

Mais detalhes da Transformada de Fourier

 Coeficientes de Fourier se combinam em ambos os domínios. Por exemplo, a imagem sinusoidal vertical e inclinada a esquerda e abaixo é a soma das sinusóides inclinadas mostrada a direita inferior.

Figura 7