

Transformer: Attention Is All You Need

Dr. Nudrat Nida

Downloaded from: https://github.com/AIEnthusiastNN/Research-Paper-Digest

Video: https://youtu.be/wl9qWbi8FOI

License: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0):

https://creativecommons.org/licenses/by-nc/4.0/legalcode

Not for commercial use

Recurrent Neural Networks (RNN)

Problems with RNN (among others)

- 1. Slow computation for long sequences
- 2. Vanishing or exploding gradients
- 3. Difficulty in accessing information from long time ago

Introducing the Transformer Output Probabilities Softmax Linear Add & Norm Feed Forward Add & Norm Add & Norm Multi-Head Feed Attention Forward $N \times$ Add & Norm N× Add & Norm Masked Multi-Head Multi-Head Attention Attention Positional Positional Encoding **Encoding** Output Input Embedding Embedding Inputs Outputs

(shifted right)

Notations

Input matrix (sequence, d_{model})

Encoder

What is an input embedding?

We define $d_{model} = 512$, which represents the size of the embedding vector of each word

Encoder

What is positional encoding?

- We want each word to carry some information about its position in the sentence.
- We want the model to treat words that appear close to each other as "close" and words that are distant as "distant".
- We want the positional encoding to represent a pattern that can be learned by the model.

What is positional encoding?

Original sentence	YOUR	CAT	IS	А	LOVELY	CAT
	952.207	171.411	621.659	776.562	6422.693	171.411
	5450.840	3276.350	1304.051	5567.288	6315.080	3276.350
Embedding	1853.448	9192.819	0.565	58.942	9358.778	9192.819
(vector of size 512)						
	1.658	3633.421	7679.805	2716.194	2141.081	3633.421
	2671.529	8390.473	4506.025	5119.949	735.147	8390.473
	+	+	+	+	+	+
Position Embedding		1664.068				1281.458
(vector of size 512).		8080.133				7902.890
Only computed once		2620.399				912.970
and reused for every						3821.102
sentence during		9386.405				1659.217
training and inference.		3120.159				7018.620
	=	=	=	=	=	=
		1835.479				1452.869
Encoder Input (vector of size 512)		11356.483				11179.24
		11813.218				10105.789
		13019.826				5292.638
		11510.632				15409.093

What is positional encoding?

Why trigonometric functions?

Trigonometric functions like **cos** and **sin** naturally represent a pattern that the model can recognize as continuous, so relative positions are easier to see for the model. By watching the plot of these functions, we can also see a regular pattern, so we can hypothesize that the

Encoder

What is Self-Attention?

Self-Attention allows the model to relate words to each other.

In this simple case we consider the sequence length $\mathbf{seq} = 6$ and $\mathbf{d}_{model} = \mathbf{d}_{k} = 512$.

 $Attention(Q,K,V) = \operatorname{softmax} \left(\frac{QK^T}{\sqrt{d_k}} \right) V$

The matrices **Q**, **K** and **V** are just the input sentence.

	YOUR	CAT	IS	A	LOVELY	CAT	Σ
YOUR	0.268	0.119	0.134	0.148	0.179	0.152	1
CAT	0.124	0.278	0.201	0.128	0.154	0.115	1
IS	0.147	0.132	0.262	0.097	0.218	0.145	1
A	0.210	0.128	0.206	0.212	0.119	0.125	1
LOVELY	0.146	0.158	0.152	0.143	0.227	0.174	1
CAT	0.195	0.114	0.203	0.103	0.157	0.229	1

^{*} all values are random.

(6, 6)

^{*} for simplicity I considered only one head, which makes d model = dk

How to compute Self-Attention?

$$Attention(Q,K,V) = \text{softmax } \left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

	YOUR	CAT	IS	A	LOVELY	CAT
YOUR	0.268	0.119	0.134	0.148	0.179	0.152
CAT	0.124	0.278	0.201	0.128	0.154	0.115
IS	0.147	0.132	0.262	0.097	0.218	0.145
A	0.210	0.128	0.206	0.212	0.119	0.125
LOVELY	0.146	0.158	0.152	0.143	0.227	0.174
CAT	0.195	0.114	0.203	0.103	0.157	0.229

Each row in this matrix captures not only the meaning (given by the embedding) or the position in the sentence (represented by the positional encodings) but also each word's interaction with other words.

(6, 6)

Self-Attention in detail

- Self-Attention is permutation invariant.
- Self-Attention requires no parameters. Up to now the interaction between words has been driven by their embedding and the positional encodings. This will change later.
- We expect values along the diagonal to be the highest.
- If we don't want some positions to interact, we can always set their values to -∞ before applying the *softmax* in this matrix and the model will not learn those interactions. We will use this in the decoder.

	YOUR	CAT	IS	A	LOVELY	CAT
YOUR	0.268	0.119	0.134	0.148	0.179	0.152
CAT	0.124	0.278	0.201	0.128	0.154	0.115
IS	0.147	0.132	0.262	0.097	0.218	0.145
Α	0.210	0.128	0.206	0.212	0.119	0.125
LOVELY	0.146	0.158	0.152	0.143	0.227	0.174
CAT	0.195	0.114	0.203	0.103	0.157	0.229

Multi-head Attention

$$Attention(Q, K, V) = \operatorname{softmax} \left(\frac{QK^{T}}{\sqrt{d_{k}}} \right) V$$

$$MultiHead(Q, K, V) = Concat \left(head_{1} \dots head_{h} \right) W^{O}$$

$$head_{i} = Attention(QW_{i}^{Q}, KW^{K}, VW^{V})$$

 $d_{k} = d_{v}$ = d_{model} / h

Why query, keys and values?

The Internet says that these terms come from the database terminology or the Python-like dictionaries.

^{*} this could be a Python dictionary or a database table.

Why query, keys and values?

The Internet says that these terms come from the database terminology or the Python-like dictionaries.

^{*} this could be a Python dictionary or a database table.

Encoder

What is layer normalization?

Batch of 3 items

ITEM 1

ITEM 2	
--------	--

ITEM 3

1242.223	
688.123	
434.944	
149.442	

 μ_3

$$\mu_1$$
 σ^2

$$\mu_2$$
 σ_2^2

$$\hat{x}_{j}^{\circ} = \frac{x_{j} - \mu_{j}}{\sqrt{\sigma^{2} + \epsilon}}$$

We also introduce two parameters, usually called **gamma** (multiplicative) and **beta** (additive) that introduce some fluctuations in the data, because maybe having all values between 0 and 1 may be too restrictive for the network. The network will learn to tune these two parameters to introduce fluctuations when necessary.

Decoder

What is Masked Multi-Head Attention?

Our goal is to make the model causal: it means the output at a certain position can only depend on the words on the previous positions. The model **must not** be able to see future words.

	YOUR	CAT	IS	A	LOVELY	CAT
YOUR	0.268	0.119	0.134	0.14 8	0.179	0.152
CAT	0.124	0.278	0.201	0.128	0.154	0.115
IS	0.147	0.132	0.262	0:097	0.218	0.145
A	0.210	0.128	0.206	0.212	0.119	0.125
LOVELY	0.146	0.158	0.152	0.143	0.227	0.174
CAT	0.195	0.114	0.203	0.103	0.157	0.229

Dr. Nudrat Nida https://github.com/AIEnthusiastNN/Research-Paper-Digest

Inference and training of a Transformer model

Training

Training

Time Step = 1
It all happens in one time step!

The encoder outputs, for each word a vector that not only captures its meaning (the embedding) or the position, but also its interaction with other words by means of the multi-head attention.

Softmax

(seq, vocab_size)

Linear

Ti amo molto <EOS>

* This is called the "label" or the "target"

Cross Entropy Loss

We prepend the <SOS> token at the beginning. That's why the paper says that the decoder input is shifted right.

Τi Inference Time Step = 1**Softmax** (seq, vocab_size) Linear (seq, d_{model}) **②**seq, vocab_size) Encoder Decoder Output Output (seq, d_{model}) (seq, d_{model}) **Encoder** Decoder Encoder Decoder Input Input (seq, d_{model}) (seq, d_{model}) <SOS>I love you very much<EOS> <SOS>

We select a token from the vocabulary corresponding to the position of the token with the maximum value.

The output of the last layer is commonly known as logits

^{*} Both sequences will have same length thanks to padding

Time Step = 2

Since decoder input now contains two tokens, we select the softmax corresponding to the second token.

Append the previously output word to the decoder input

Use the encoder output from the first

Time Step = 3

time step

Since decoder input now contains three tokens, we select the softmax corresponding to the third token.

Append the previously output word to the decoder input

Use the encoder output from the first

<SOS>I love you very much<EOS>

Time Step = 4

time step

Since decoder input now contains **four** tokens, we select the softmax corresponding to the fourth token.

Append the previously output word to the decoder input

Inference strategy

- We selected, at every step, the word with the maximum softmax value. This strategy is called **greedy** and usually does not perform very well.
- A better strategy is to select at each step the top *B* words and evaluate all the possible next words for each of them and at each step, keeping the top *B* most probable sequences. This is the **Beam Search** strategy and generally performs better.

Thanks for watching!
Don't forget to subscribe for more amazing content on Al and Machine Learning!