Centre Universitaire de Mila

Examen final en « Apprentissage Automatique »

Institut: ST, Département: MI

Master 1 – STIC

Durée de l'examen : 1h00 / Mila le : 01-07-2021

Documents non autorisés

Corrigé type de l'examen final 2020-2021

Exercice 1 : Classificateur de Bayes (11 points)

Etant donné l'ensemble d'apprentissage dans le tableau ci-dessous :

ID	Age	Revenu	Étudiant	Évaluation du crédit	Classe : acheter ordinateur
1	<=30	Élevé	Non	acceptable	Non
2	<=30	Élevé	Non	excellent	Non
3	3140	Élevé	Non	acceptable	Oui
4	>40	Moyen	Non	acceptable	Oui
5	>40	Faible	Oui	acceptable	Oui
6	>40	Faible	Oui	excellent	Non
7	3140	Faible	Oui	excellent	Oui
8	<=30	Moyen	Non	acceptable	Non
9	<=30	Faible	Oui	acceptable	Oui
10	>40	Faible	Oui	acceptable	Oui
11	<=30	Faible	Oui	excellent	Oui
12	3140	Faible	Non	excellent	Oui
13	3140	Élevé	Oui	acceptable	Oui
14	>40	Moyen	Non	excellent	Non

- 1) On propose d'utiliser un classificateur de Bayes Naïve. Donner la formule de la probabilité à posteriori dans ce cas.
- 2) En utilisant le classificateur de Bayes Naïve, faites une prédiction de la classe à laquelle appartiennent les cas ci-dessous :
 - $x_1 = (age < 30, le revenu=moyen, étudiant=oui, évaluation crédit=acceptable)$
 - $x_2 = (age=31..40, le revenu=élevé, étudiant=oui, évaluation crédit=excellent)$
 - $x_3 = (age>40, le revenu= élevé, étudiant=non, évaluation crédit= excellent)$

Solution:

1) Formule de la probabilité à posteriori:

$$p(y = C_k | \mathbf{x} = x, \mathbf{D}) = \frac{p(\mathbf{x} = x | y = C_k, \mathbf{D})p(y = C_k | \mathbf{D})}{\sum_{i=1}^{K} p(\mathbf{x} = x | y = C_i, \mathbf{D})p(y = C_i | \mathbf{D})}$$

2) Prédiction de la classe des nouvelles données :

Nous avons besoin de calculer P(oui|E) et P(non|E) et les comparer.

$$P(oui|E) = \frac{P(E_1|oui)P(E_2|oui)P(E_3|oui)P(E_4|oui)P(oui)}{P(E)} \qquad P(non|E) = \frac{P(E_1|non)P(E_2|non)P(E_3|non)P(E_4|non)P(non)}{P(E)}$$

avec
$$P(E) = P(E|oui) \times P(oui) + P(E|non) \times P(non)$$

selon le tableau ci-dessus, on a $P(oui) = \frac{9}{14}$ et $P(non) = \frac{5}{14}$

- $x_1 =$ (âge<=30, le revenu=moyen, étudiant=oui, évaluation crédit=acceptable) Soient les variables E_1 , E_2 , E_3 et E_4 :
 - E₁: âge <= 30,
 - E₂: Revenu = moyen,
 - E₃: Étudiant = oui,
 - E₄: Évaluation du crédit = acceptable

$$P(E_{1}|oui) = 2/9$$

$$P(E_{2}|oui) = 1/9$$

$$P(E_{3}|oui) = 6/9$$

$$P(E_{4}|oui) = 6/9$$

$$P(E_{4}|oui) = 6/9$$

$$P(E_{4}|oui) = 6/9$$

$$P(E_{4}|oui) = 1/5$$

$$P(E_{4}|oui) = 2/5$$

$$P(E_{5}|oui) = 1/5$$

$$P(E_{6}|oui) = 1/5$$

$$P(E_{7}|oui) = 1/5$$

$$P(E_{1}|oui) = 3/5$$

$$P(E_{2}|oui) = 1/5$$

$$P(E_{1}|oui) = 3/5$$

$$P(E_{1}|oui) = 3/5$$

$$P(E_{2}|oui) = 1/5$$

$$P(E_{3}|oui) = 1/5$$

$$P(E_{4}|oui) = 2/5$$

$$P(E_{4}|oui) = 3/5$$

$$P(E_{5}|oui) = 1/5$$

$$P(E_{7}|oui) = 1/5$$

$$P(E_{7}$$

On a $P(E) = P(E|oui) \times P(oui) + P(E|non) \times P(non) = 0.0139$

D'où : P(oui|E) = 0.5071 et P(non|E) = 0.4929

Par conséquent, le classificateur Bayes Naïve prédit (« acheter ordinateur » = OUI) pour la donnée x_1 .

- $x_2 =$ (âge=31..40, le revenu=élevé, étudiant=oui, évaluation crédit=excellent) Soient les variables E_1 , E_2 , E_3 et E_4 :
 - E_1 : Age = 31..40,
 - E₂: Revenu = élevé,
 - E_3 : Étudiant = oui,
 - E₄: Évaluation du crédit = excellent

Nous avons besoin de calculer P(oui|E) et P(non|E) et les comparer.

$$P(E_{1}|oui) = 4/9$$

$$P(E_{2}|oui) = 2/9$$

$$P(E_{3}|oui) = 6/9$$

$$P(E_{4}|oui) = 3/9$$

$$P(Oui|E) = \frac{4/9 \times 2/9 \times 6/9 \times 3/9 \times 9/14}{P(E)}$$

$$P(Oui|E) = \frac{0.0141}{P(E)}$$

$$P(E_{1}|non) = 1/9$$

$$P(E_{2}|non) = 3/9$$

$$P(E_{3}|non) = 2/9$$

$$P(E_{4}|non) = 4/9$$

$$P(F_{4}|non) = 4/9$$

$$P(F_{5}|non) = 1/9$$

$$P(E_{1}|non) = 1/9$$

On a $P(E) = P(E|oui) \times P(oui) + P(E|non) \times P(non) = 0.0154$

D'où : P(oui|E) = 0.9156 et P(non|E) = 0.0844

Par conséquent, le classificateur Bayes Naïve prédit (« acheter ordinateur » = OUI) pour la donnée x_2 .

- $x_3 =$ (âge>40, le revenu= élevé, étudiant=non, évaluation crédit= excellent) Soient les variables E_1 , E_2 , E_3 et E_4 :
 - E_1 : Age > 40,
 - E₂: Revenu = élevé,
 - E_3 : Étudiant = non,
 - E₄: Évaluation du crédit = excellent

Nous avons besoin de calculer P(oui|E) et P(non|E) et les comparer.

$$P(E_{1}|oui) = 3/9$$

$$P(E_{2}|oui) = 2/9$$

$$P(E_{3}|oui) = 3/9$$

$$P(E_{4}|oui) = 3/5$$

$$P(E_{5}|oui) = 2/5$$

$$P(E_{5}|oui) = 2/5$$

$$P(E_{6}|oui) = 2/5$$

$$P(E_{1}|oui) = 2/5$$

$$P(E_{1}$$

On a $P(E) = P(E|oui) \times P(oui) + P(E|non) \times P(non) = 0.0327$

D'où : P(oui|E) = 0.1621 et P(non|E) = 0.8379

Par conséquent, le classificateur Bayes Naïve prédit (« acheter ordinateur » = NON) pour la donnée x_3 .

Exercice 2 : Machine à vecteurs de supports (09 points)

Considérer le classificateur SVM et soit un ensemble avec deux points en 1D :

 $(x_1=\mathbf{0},y_1=-\mathbf{1})$ et $(x_2=\sqrt{2},y_2=\mathbf{1})$ tel que y_1 et y_2 représentent les classes. Considérer la transformation de chaque point vers l'espace 3D en appliquant la fonction $\phi: \mathbb{R} \to \mathbb{R}^3$, $\phi(x)=\left[\mathbf{1},\sqrt{2}x,x^2\right]^T$.

- a) Calculer les points $\phi(x_1)$ et $\phi(x_2)$.
- b) Donner un vecteur parallèle au vecteur optimal w.
- c) Quelle est la valeur de la marge obtenue par ce w?
- d) Trouver le vecteur w en utilisant le fait que la marge est égale à 1/||w||.
- e) Trouver w_0 en utilisant votre valeur de w.
- f) Ecrivez la forme de la fonction discriminante $f(x) = w^T \phi(x) + w_0$.

Solution:

- a) Les point transférés sont : $[1,0,0]^T$ et $[1,2,2]^T$.
- b) La meilleure frontière de décision est celle avec norme $[0,1,1]^T$ et qui passe par le point $[1,1,1]^T$. Par conséquent, w peut être choisi comme $[0,1,1]^T$.
- c) Le marginal est la distance entre $[1,1,1]^T$ et $[1,2,2]^T$, donc $\sqrt{2}$.
- d) $\mathbf{w} = \left[0, \frac{1}{2}, \frac{1}{2}\right]^T$.
- e) Nous avons:

$$\frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 0 + w_0 = -1$$

$$\frac{1}{2} \cdot 2 + \frac{1}{2} \cdot 2 + w_0 = 1$$
Donc $w_0 = -1$.

f) La fonction discriminante est :

$$f(x) = -1 + \frac{1}{2}x_2 + \frac{1}{2}x_3.$$