Proof Techniques

Proofs

Theorem: the main result that we want to prove

Lemma: intermediate result used in theorem proof

Axiom: basic truth

Corollary: immediate consequence of theorem

Conjecture: something to be proven

Typically, we want to prove statements

$$\forall x (P(x) \rightarrow Q(x))$$

Proof technique:

show that for some arbitrary c

$$P(c) \rightarrow Q(c)$$

and apply universal generalization

Direct proof:
$$P(c) \rightarrow Q(c)$$

Proof by contraposition:
$$\neg Q(c) \rightarrow \neg P(c)$$

Proof by contradiction:
$$\neg P(c) \rightarrow (r \land \neg r)$$

If we want to prove $P(c)$

Definition: integer n is even $\leftrightarrow \exists k \ n = 2k$ integer n is odd $\leftrightarrow \exists k \ n = 2k+1$

An integer is either even or odd

Theorem: if n is an even integer,

P(n)

then n^2 is even

Q(n)

Proof: (direct proof) $P(n) \rightarrow Q(n)$

$$P(n) \rightarrow Q(n)$$

n is even
$$\rightarrow \exists k \ n = 2k$$

$$n^2 = (2k)^2 = 4k^2 = 2(2k^2)$$

Therefore, n^2 is even

Theorem:

if n is an odd integer,

then n^2 is odd

P(n)

Q(n)

Proof: (direct proof) $P(n) \rightarrow Q(n)$

$$n \text{ is odd} \rightarrow \exists k \ n = 2k+1$$

$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$

Therefore, n^2 is odd

Theorem: if n^2 is an even integer, then n is even P(n)

Q(n)

Proof: (proof by contraposition) $\neg Q(n) \rightarrow \neg P(n)$

$$\neg Q(n) \rightarrow \neg P(n)$$

 $n \text{ is odd} \rightarrow n^2 \text{ is odd}$ (see last proof)

Therefore: $P(n) \rightarrow Q(n)$

End of proof

Theorem: if n^2 is an odd integer, then n is odd P(n)

Q(n)

Proof: (proof by contraposition) $\neg Q(n) \rightarrow \neg P(n)$

$$\neg Q(n) \rightarrow \neg P(n)$$

n is even $\rightarrow n^2$ is even

Therefore: $P(n) \rightarrow Q(n)$

Real Numbers

Theorem: $\sqrt{2}$ is irrational

Proof: (proof by contradiction) $\neg P \rightarrow (r \land \neg r)$

$$\neg P \rightarrow (r \land \neg r)$$

 $\neg P$: Assume $\sqrt{2}$ is rational

$$\sqrt{2} = \frac{m}{n}$$

r: m and n have no common divisor greater than 1

Therefore:
$$\neg P \rightarrow r$$

$$2 = \frac{m^2}{n^2} \longrightarrow m^2 = 2n^2 \longrightarrow m = 2k_1 \text{ (m is even)}$$

$$2n^2 = m^2 = 4k_1^2$$
 $n^2 = 2k_1^2$ $n = 2k_2$ (*n* is even)

$$\neg r$$
: $\frac{m}{n} = \frac{2k_1}{2k_2}$ common divisor is 2

Therefore:
$$\neg P \rightarrow \neg r$$

Therefore:

$$\neg P \rightarrow r$$

$$\neg P \rightarrow \neg r$$

$$\therefore (\neg P \rightarrow r) \land (\neg P \rightarrow \neg r) \text{ Conjunction}$$

$$\equiv \neg P \rightarrow (r \land \neg r) \text{ contradiction}$$

Therefore:

$$\neg P \rightarrow (r \land \neg r)$$

$$\neg (r \land \neg r)$$

$$\therefore \neg (\neg P)$$
 Modus Tollens

 $\equiv P$

Counterexamples

False statement:

"Every positive integer is the sum of the squares of two integers"

$$\forall x > 0 \,\exists y \exists z (x = y^2 + z^2)$$

Counterexample:
$$x = 3$$

$$3 \neq 1^2 + 1^2 = 2$$

 $3 \neq 1^2 + 2^2 = 1 + 4 = 5$

Any other combination gives sum larger than 3

Proof by cases

We want to prove $p \rightarrow q$

We know
$$p = p_1 \lor p_2 \lor \cdots \lor p_n$$

Instead, we can prove each case

$$\begin{split} p &\to q \\ &\equiv p_1 \vee p_2 \vee \dots \vee p_n \to q \\ &\equiv (p_1 \to q) \wedge (p_2 \to q) \wedge \dots \wedge (p_n \to q) \\ &\text{Case 1} \qquad \text{Case 2} \qquad \text{Case n} \end{split}$$

Theorem: If n is integer, then

$$n^2 \ge n$$

Case 1

Case 2

Case 3

Proof: $n \text{ is integer} \equiv (n = 0) \lor (n \ge 1) \lor (n \le -1)$

Case 1: n = 0

$$n^2 = 0^2 = 0 = n$$

Case 2: n > 1

$$n^2 = n \cdot n \ge n \cdot 1 = n$$

Case 3: $n \le -1$

$$n^2 > 0 > n$$

End of proof

Existence Proofs

Theorem: There is a positive integer that

can be written as the sum of cubes

in two different ways

Proof: (constructive existence proof)

$$1729 = 10^3 + 9^3 = 12^3 + 1^3$$

End of proof

Theorem: There exist irrational numbers such that \mathbf{x}^y is rational

X, **y**

Proof: (non-constructive existence proof)

We know:
$$\sqrt{2}$$
 is irrational

If
$$\sqrt{2}^{\sqrt{2}}$$
 is rational

If
$$\sqrt{2}^{\sqrt{2}}$$
 is rational $= x = \sqrt{2}$, $y = \sqrt{2}$

If
$$\sqrt{2}^{\sqrt{2}}$$
 is irrational $= x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$

$$\mathbf{x}^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}\sqrt{2}} = \sqrt{2}^{2} = 2 = \frac{2}{1}$$
 rational