

Discriminative Pattern-Based Classification

- Discriminative patterns as features for classification [Cheng et al., ICDE'07]
- Principle: Mining discriminative frequent patterns as high-quality features and then apply any classifier
- Framework (PatClass)
 - □ Feature construction by frequent itemset mining
 - Feature selection (e.g., using Maximal Marginal Relevance (MMR))
 - Select discriminative features (i.e., that are relevant but minimally similar to the previously selected ones)
 - Remove redundant or closely correlated features
 - Model learning
 - Apply a general classifier, such as SVM or C4.5, to build a classification model

On the Power of Discriminative Patterns

- K-itemsets are often more informative than single features (1-itemsets) in classification
- Computation on real datasets shows: The discriminative power of k-itemsets (for k > 1 but often ≤ 10) is higher than that of single features

Information Gain vs. Pattern Length

Information Gain vs. Pattern Frequency

- Computation on real datasets shows: Pattern frequency (but not too frequent) is strongly tied with the discriminative power (information gain)
- Information gain upper bound monotonically increases with pattern frequency

Information Gain Formula: $IG(C \mid X) = H(C) - H(C \mid X)$

Conditional entropy of study focus

Entropy of given data

$$H(C) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

$$H(C | X) = \sum_{j} P(X = x_{j}) H(Y | X = x_{j})$$

Discriminative Pattern-Based Classification: Experimental Results

Table 1. Accuracy by SVM on Frequent Combined Features vs. Single Features

Table 2. Accuracy by C4.5 on Frequent Combined Features vs. Single Features

Data	Single Feature			Freq. 1	Pattern
	$Item_All$	$Item_FS$	$Item_RBF$	Pat_All	Pat_FS
anneal	99.78	99.78	99.11	99.33	99.67
austral	85.01	85.50	85.01	81.79	91.14
auto	83.25	84.21	78.80	74.97	90.79
breast	97.46	97.46	96.98	96.83	97.78
cleve	84.81	84.81	85.80	78.55	95.04
diabetes	74.41	74.41	74.55	77.73	78.31
glass	75.19	75.19	74.78	79.91	81.32
heart	84.81	84.81	84.07	82.22	88.15
hepatic	84.50	89.04	85.83	81.29	96.83
horse	83.70	84.79	82.36	82.35	92.39
iono	93.15	94.30	92.61	89.17	95.44
iris	94.00	96.00	94.00	95.33	96.00
labor	89.99	91.67	91.67	94.99	95.00
lymph	81.00	81.62	84.29	83.67	96.67
pima	74.56	74.56	76.15	76.43	77.16
sonar	82.71	86.55	82.71	84.60	90.86
vehicle	70.43	72.93	72.14	73.33	76.34
wine	98.33	99.44	98.33	98.30	100
ZOO	97.09	97.09	95.09	94.18	99.00

Dataset	Single Features		Frequent Patterns		
	$Item_All$	$Item_FS$	Pat_All	Pat_FS	
anneal	98.33	98.33	97.22	98.44	
austral	84.53	84.53	84.21	88.24	
auto	71.70	77.63	71.14	78.77	
breast	95.56	95.56	95.40	96.35	
cleve	80.87	80.87	80.84	91.42	
diabetes	77.02	77.02	76.00	76.58	
glass	75.24	75.24	76.62	79.89	
heart	81.85	81.85	80.00	86.30	
hepatic	78.79	85.21	80.71	93.04	
horse	83.71	83.71	84.50	87.77	
iono	92.30	92.30	92.89	94.87	
iris	94.00	94.00	93.33	93.33	
labor	86.67	86.67	95.00	91.67	
lymph	76.95	77.62	74.90	83.67	
pima	75.86	75.86	76.28	76.72	
sonar	80.83	81.19	83.67	83.67	
vehicle	70.70	71.49	74.24	73.06	
wine	95.52	93.82	96.63	99.44	
ZOO	91.18	91.18	95.09	97.09	

Discriminative Pattern-Based Classification: Scalability Tests

Table 3. Accuracy & Time on Chess Data

min_sup	#Patterns	Time (s)	SVM (%)	C4.5 (%)
1	N/A	N/A	N/A	N/A
2000	68,967	44.703	92.52	97.59
2200	28,358	19.938	91.68	97.84
2500	6,837	2.906	91.68	97.62
2800	1,031	0.469	91.84	97.37
3000	136	0.063	91.90	97.06

Table 4. Accuracy & Time on Waveform Data

$\overline{min_sup}$	# Patterns	Time (s)	SVM (%)	C4.5 (%)
1	9,468,109	N/A	N/A	N/A
80	26,576	176.485	92.40	88.35
100	15,316	90.406	92.19	87.29
150	5,408	23.610	91.53	88.80
200	2,481	8.234	91.22	87.32