Unitary Integration of Open Atomic Systems

Prabhat, 215120018

Master's in Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

M.Sc. Project stage-I Presentation

Under the Supervision of Professor Sai Vinjanampathy November 21, 2022

Table of Contents

- Introduction
 - Towards Open Quantum Systems
 - von-Neumann Liouville Equation
 - Density operators
 - Lindblad Master Equation
 - Unitary Integration
- 2 Implementation of Unitary Integration (Common Part
 - Implementation I: Landau Zener Stuckleberg Majorana (LZSM) Transition
 - Implementation II: Periodically Driven Two-Level System
- 3 Implementation III: Nuclear Magnetic Resonance Relaxations (WIP)
- 4 Takeaways and Future Work

Towards Open Quantum Systems

Main idea we want to incorporate in our framework

Environment can be contextually modelled for different atoms or photons!

Two ways of Implementation

Density Operator Formalism:

Time Dependent Hamiltonians:

$$\langle \psi | M_{A} \otimes \mathbb{I} | \psi \rangle = (\sum_{i'j'} \psi_{i'j'}^{*} \langle A_{i'} | \otimes \langle B_{j'} |)$$

$$(M_{A} \otimes \mathbb{I}) (\sum_{ij} \psi_{ij} | A_{i} \rangle \otimes | B_{j} \rangle)$$

$$\rho_{A} = \sum_{i} \rho_{i} | i \rangle \langle i |$$

$$\rho_{A} = Tr_{B} \{ | \psi \rangle \langle \psi | \}$$

$$\langle M_{A} \rangle = Tr \{ \rho_{A} M_{A} \}$$

$$\varepsilon(\rho) = \sum_{a} M_{a} \rho M_{a}^{\dagger}$$

$$\partial_{t} \rho = -\frac{i}{\hbar} [H, \rho] = \mathcal{L} \rho$$

von-Neumann Liouville Equation

$$i\dot{U}(t) = H(t)U(t)$$
 with $U(0) = \mathcal{I}$

where U is unitary, following $UU^{\dagger} = U^{\dagger}U = \mathcal{I}$.

$$i\dot{U}(t) = H(t)U(t)$$
 with $U(0) = \mathcal{I}$

Non-exhaustive List of Features:

lacktriangledown Equivalent to Schrödinger Equation with definition $|\Psi(t)
angle=U(t,t_0)|\Psi(t_0)
angle$

$$i\dot{U}(t) = H(t)U(t)$$
 with $U(0) = \mathcal{I}$

- Equivalent to Schrödinger Equation with definition $|\Psi(t)\rangle = U(t,t_0) |\Psi(t_0)\rangle$
- 2 Linear

$$i\dot{U}(t) = H(t)U(t)$$
 with $U(0) = \mathcal{I}$

- Equivalent to Schrödinger Equation with definition $|\Psi(t)\rangle = U(t,t_0) |\Psi(t_0)\rangle$
- 2 Linear
- Oirect Exponentiation

- Equivalent to Schrödinger Equation with definition $|\Psi(t)\rangle = U(t,t_0) |\Psi(t_0)\rangle$
- 2 Linear
- Oirect Exponentiation
- Opson Expansion

$$i\dot{U}(t) = H(t)U(t)$$
 with $U(0) = \mathcal{I}$

- Equivalent to Schrodinger Equation with definition $|\Psi(t)\rangle = U(t,t_0) |\Psi(t_0)\rangle$
- 2 Linear
- Oirect Exponentiation
- Opson Expansion
- Approximated Analytical Solutions (for example: Time Dependent Perturbation Theory)

$$i\dot{U}(t) = H(t)U(t)$$
 with $U(0) = \mathcal{I}$

- Equivalent to Schrodinger Equation with definition $|\Psi(t)\rangle = U(t,t_0)|\Psi(t_0)\rangle$
- 2 Linear
- Oirect Exponentiation
- Opson Expansion
- Approximated Analytical Solutions (for example: Time Dependent Perturbation Theory)
- Numerical Integration (for example: Runge Kutta-4*)

Baker–Campbell–Hausdorff formula

$$Z = X + Y + \frac{1}{2}[X, Y] + \frac{1}{12}([X, [X, Y]] + [Y, [Y, X]]) + \dots$$

where

$$e^Z = e^X e^Y$$

Remark

This expression highlights the non-commutativity of the SU(N) operations

Density operators

Open system is a sub-part of a larger closed system.

The density operator needs to be a

 $\bullet \ \ {\rm Hermitian} \ \ {\rm matrix:} \ \ \rho^\dagger = \rho$

Open system is a sub-part of a larger closed system.

The density operator needs to be a

- $\bullet \ \, \text{Hermitian matrix:} \, \, \rho^\dagger = \rho$
- Operative matrix (all non-negative eigenvalues): $\rho \geq 0 \equiv \langle \Psi | \rho | \Psi \rangle \geq 0$

Open system is a sub-part of a larger closed system.

The density operator needs to be a

- $\bullet \ \ {\rm Hermitian} \ \ {\rm matrix:} \ \ \rho^\dagger = \rho$
- ② Positive matrix (all non-negative eigenvalues): $\rho \geq 0 \equiv \langle \Psi | \rho | \Psi \rangle \geq 0$
- **3** and with unit trace: $\operatorname{Tr}\{\rho\}=1$

Lindblad Master Equation

$$\dot{\rho} = i[\rho, H] + \sum_{i} \Gamma_{i} (L_{i} \rho L_{i}^{\dagger} - \frac{1}{2} \{L_{i} L_{i}^{\dagger}, \rho\}) = \mathcal{L} \rho$$

Features:

Markovian Interaction

$$\dot{
ho}=i[
ho,H]+\sum_{i}\Gamma_{i}(L_{i}
ho L_{i}^{\dagger}-rac{1}{2}\{L_{i}L_{i}^{\dagger},
ho\})=\mathcal{L}
ho$$

- Markovian Interaction
- First term is from Schrödinger-von Neumann equation.

- Markovian Interaction
- 2 First term is from Schrödinger-von Neumann equation.
- Trace-preserving

$$\dot{
ho}=i[
ho,H]+\sum_{i}\Gamma_{i}(L_{i}
ho L_{i}^{\dagger}-rac{1}{2}\{L_{i}L_{i}^{\dagger},
ho\})=\mathcal{L}
ho$$

- Markovian Interaction
- First term is from Schrödinger-von Neumann equation.
- Trace-preserving
- Completely Positive $\Gamma > 0$

- Markovian Interaction
- 2 First term is from Schrödinger-von Neumann equation.
- Trace-preserving
- Completely Positive $\Gamma > 0$
- \bullet L_i : Lindblad operators or quantum jump operators

$$\dot{\rho} = i[\rho, H] + \sum_{i} \Gamma_{i} (L_{i} \rho L_{i}^{\dagger} - \frac{1}{2} \{L_{i} L_{i}^{\dagger}, \rho\}) = \mathcal{L} \rho$$

- Markovian Interaction
- First term is from Schrödinger-von Neumann equation.
- Trace-preserving
- Completely Positive $\Gamma > 0$
- **1** Linear in ρ

$$\dot{\rho} = i[\rho, H] + \sum_{i} \Gamma_{i} (L_{i} \rho L_{i}^{\dagger} - \frac{1}{2} \{L_{i} L_{i}^{\dagger}, \rho\}) = \mathcal{L} \rho$$

- Markovian Interaction
- 2 First term is from Schrödinger-von Neumann equation.
- Trace-preserving
- Completely Positive $\Gamma > 0$
- \bullet L_i : Lindblad operators or quantum jump operators
- **6** Linear in ρ
- Vectorisation in Liouville Space: Liouvillian Super-operator

$$\dot{\rho} = i[\rho, H] + \sum_{i} \Gamma_{i} (L_{i} \rho L_{i}^{\dagger} - \frac{1}{2} \{L_{i} L_{i}^{\dagger}, \rho\}) = \mathcal{L} \rho$$

- Markovian Interaction
- First term is from Schrödinger-von Neumann equation.
- Trace-preserving
- Completely Positive $\Gamma > 0$
- \bullet L_i : Lindblad operators or quantum jump operators
- **1** Linear in ρ
- Vectorisation in Liouville Space: Liouvillian Super-operator
- 8 Exponentiation
- 9 Blows up in the number of variables

Unitary Integration

Summarizing Problems in both regimes

- Dimensionality
- Non-commutativity of operators
- Constraint equations

Unitary Integration Tackles Last Two in its Construction

Unitary Integration Scheme

As an example, we take

$$i\dot{U}(t) = [a(t)A + b(t)B]U(t)$$

= $[(X_{-}(t)J_{-} + X_{+}(t)J_{+})/2 + X_{z}(t)J_{z}]U(t)$ where $[A, B] \neq 0$

Ansatz:

$$U(t) = e^{-i\mu_{+}(t)J_{+}}e^{-i\mu_{-}(t)J_{-}}e^{-i\mu_{z}(t)J_{z}}$$

Evaluating $i\dot{U}(t)$:

$$\begin{split} i\dot{U}(t) = & \dot{\mu_+}(t)J_+ \ e^{-i\mu_+(t)J_+} e^{-i\mu_-(t)J_-} e^{-i\mu_z(t)J_z} + \ \dot{\mu_-}(t) \ e^{-i\mu_+(t)J_+} \ J_- \ e^{-i\mu_-(t)J_-} e^{-i\mu_z(t)J_z} \\ & + \dot{\mu_z}(t) \ e^{-i\mu_+(t)J_+} e^{-i\mu_-(t)J_-} \ J_z \ e^{-i\mu_z(t)J_z} \end{split}$$

Comparing to H(t)U(t):

$$\dot{\mu_{+}} + i\mu_{+}X_{z} - \frac{1}{2}\mu_{+}^{2}X_{+} = \frac{1}{2}X_{-},$$

$$\dot{\mu_{-}} - i\mu_{-}\dot{\mu_{z}} = \frac{1}{2}X_{+},$$

$$\dot{\mu_{z}} - i\mu_{+}X_{+} = X_{z}$$

$$\dot{\mu_{+}} + i\mu_{+}X_{z} - \frac{1}{2}\mu_{+}^{2}X_{+} = \frac{1}{2}X_{-},$$

$$\dot{\mu_{-}} - i\mu_{-}\dot{\mu_{z}} = \frac{1}{2}X_{+},$$

$$\dot{\mu_{z}} - i\mu_{+}X_{+} = X_{z}$$

- Choice of Hamiltonian
- Closed Algebra
- Time Dependent Scalar Coefficients
- Non-Commuting Operators
- Reduction to solving Coupled Non-linear Differential Equations!

Table of Contents

- Introduction
 - Towards Open Quantum Systems
 - von-Neumann Liouville Equation
 - Density operators
 - Lindblad Master Equation
 - Unitary Integration
- Implementation of Unitary Integration (Common Part)
 - Implementation I: Landau Zener Stuckleberg Majorana (LZSM) Transition
 - Implementation II: Periodically Driven Two-Level System
- 3 Implementation III: Nuclear Magnetic Resonance Relaxations (WIP)
- Takeaways and Future Work

Implementation I: Landau Zener Stuckleberg Majorana (LZSM) Transition

Figure 2: (a) No coupling between the states (b) Coupling produce avoided energy level crossing

Hamiltonian

The Hamiltonian is $H=-\frac{1}{2}\left(\Delta\sigma_x+vt\sigma_z\right)$ In our closed-algebra basis $H=-\frac{\Delta}{2}J_+-\frac{\Delta}{2}J_--vtJ_z$.

Riccati Equation and Two Others

$$\dot{\mu_{+}} - iv \, t \, X_{z} + \frac{\Delta}{2} \mu_{+}^{2} + \frac{\Delta}{2} = 0,$$

$$\dot{\mu_{-}} - i \mu_{-} \dot{\mu_{z}} + \frac{\Delta}{2} = 0,$$

$$\dot{\mu_{z}} + i \Delta \mu_{+} + v \, t = 0$$

with
$$\mu_{-}(0) = \mu_{+}(0) = \mu_{z}(0) = 0$$
.

Dealing with Stiffness

Problem:

Solving equations using RK-4 turns out to be numerically difficult due to their stiffness

Solution:

apply the Unitarity constraint explicitly, $U^\dagger U = \mathcal{I}$

$$egin{align} \mu_- &= \mu_+^*/(1+|\mu_+|^2) \ e^{\mathbb{I}(\mu_z)} &= 1+|\mu_+|^2 \ \end{gathered}$$

Results Comparison: Majorana's Solution and Unitary Integration's

Ettore Majorana's asymptotic solution: $\mathcal{P} = |\beta(t \to \infty)|^2 = \exp(-2\pi\delta)^1$.

¹Kofman, P., Ivakhnenko, O., Shevchenko, S., & Nori, F.(2022)

Occupation probabilities

Correct dynamics far from avoided level crossing But only in the vicinity of t=0 (transition region), the solution diverges

Implementation II: Periodically Driven Two-Level System

Generalising the previous Hamiltonian and Unitary Integration

$$H = \frac{\epsilon(t)}{2}\sigma_z + J\sigma_x, \qquad \quad L_k = \sqrt{\frac{\Gamma}{2}}\sigma_k$$

where L_k are the Lindblad Operators and $\epsilon(t) = a \cos \omega t$. Using the same anstaz for Lindblad equation in Liouville Space !!

$$\frac{d}{dt} \begin{bmatrix} \rho_{11} \\ \rho_{12} \\ \rho_{21} \\ \rho_{22} \end{bmatrix} = \begin{bmatrix} i\Gamma & -J & J & i\Gamma \\ -J & (\epsilon - 2i\Gamma) & 0 & J \\ J & 0 & -(\epsilon + 2i\Gamma) & -J \\ i\Gamma & J & -J & -i\Gamma \end{bmatrix} \begin{bmatrix} \rho_{11} \\ \rho_{12} \\ \rho_{21} \\ \rho_{22} \end{bmatrix}$$

Remark

One needs fifteen 4X4 matrices to model the dynamics completely !!

Fortunately

Conversion to Liouville-Bloch:

$$i\frac{d}{dt} \begin{bmatrix} \rho_{12} + \rho_{21} \\ \rho_{21} - \rho_{12} \\ \rho_{11} - \rho_{22} \end{bmatrix} = \begin{bmatrix} -i\Gamma & -\epsilon(t) & 0 \\ -\epsilon(t) & -i\Gamma & 2J \\ 0 & 2J & -i\Gamma \end{bmatrix} \begin{bmatrix} \rho_{12} + \rho_{21} \\ \rho_{21} - \rho_{12} \\ \rho_{11} - \rho_{22} \end{bmatrix}$$

Effective Hamiltonian Becomes

$$i\dot{\eta} = \mathcal{L}(t)\eta(t) = \left(-i\Gamma\mathbb{I} - a\epsilon(t)A_z + 2JA_x\right)\eta(t); \qquad \qquad \eta(0) = (0,0,1)$$

Features

- Non-Hermitian C.
- Complex and linearly independent coefficients μ_- , μ_+ , μ_7
- Decomposed as a sub algebra of Gell-Mann set $\{A_x, A_y, A_z\}$

Unitary Integration for Open Quantum System: Scheme

Ansatz

$$\eta(t) = \exp(-\Gamma t) \exp(-i\mu_{+}(t)A_{+}) \exp(-i\mu_{-}(t)A_{-}) \exp(-i\mu(t)A_{z})\eta(0)$$

Obtained a Set of Differential Equations

$$0 = \dot{\mu}_{+} - i\epsilon(t)\mu_{+} - J(1 + \mu_{+}^{2})$$

$$0 = \dot{\mu}_{-} - i\mu_{-}\dot{\mu} - J$$

$$0 = \dot{\mu} - 2iJ\mu_{+} + \epsilon(t), \qquad \mu_{i}(0) = 0$$

Remark

No Constraint Equation !!

$ho_{22}(t)$ for Undamped, Underdamped and Overdamped

where $\omega = 1$, J = 3, A = 45

Table of Contents

- - Towards Open Quantum Systems
 - von-Neumann Liouville Equation
 - Density operators
 - Lindblad Master Equation
 - Unitary Integration
- - Implementation I: Landau Zener Stuckleberg Majorana (LZSM) Transition
 - Implementation II: Periodically Driven Two-Level System
- Implementation III: Nuclear Magnetic Resonance Relaxations (WIP)

• We cheated! Very Special Bath

- We cheated! Very Special Bath
- Atonement: Two different coupling rates $\Gamma_1 \& \Gamma_2$

- We cheated! Very Special Bath
- Atonement: Two different coupling rates $\Gamma_1 \& \Gamma_2$

Constructing Spin System Liouville Superoperator

$$H = \frac{\epsilon(t)}{2}\sigma_z + J\sigma_x, \qquad \quad L_{\pm} = \sqrt{\frac{\Gamma_1}{2}}\sigma_{\pm}, \qquad \quad L_3 = \sqrt{\frac{\Gamma_2}{2}}\sigma_z$$

- We cheated! Very Special Bath
- Atonement: Two different coupling rates $\Gamma_1 \& \Gamma_2$

Constructing Spin System Liouville Superoperator

$$H = \frac{\epsilon(t)}{2}\sigma_z + J\sigma_x, \qquad \quad L_{\pm} = \sqrt{\frac{\Gamma_1}{2}}\sigma_{\pm}, \qquad \quad L_3 = \sqrt{\frac{\Gamma_2}{2}}\sigma_z$$

• Spin Lattice Relaxation (T_1) and Spin Spin Relaxation (T_2)

- We cheated! Very Special Bath
- Atonement: Two different coupling rates $\Gamma_1 \& \Gamma_2$

Constructing Spin System Liouville Superoperator

$$H = \frac{\epsilon(t)}{2}\sigma_z + J\sigma_x, \qquad \quad L_{\pm} = \sqrt{\frac{\Gamma_1}{2}}\sigma_{\pm}, \qquad \quad L_3 = \sqrt{\frac{\Gamma_2}{2}}\sigma_z$$

• Spin Lattice Relaxation (T_1) and Spin Spin Relaxation (T_2)

Ansatz for three level η

$$U(t) = e^{-i\delta}e^{-i\mu_8b_+}e^{-i\mu_7b_-}e^{-i\mu_6c_+}e^{-i\mu_5c_-}e^{-i\mu_4a_+}e^{-i\mu_3a_-}e^{-i\mu_2a_3}e^{-i\mu_1a_3}$$

- We cheated! Very Special Bath
- Atonement: Two different coupling rates $\Gamma_1 \& \Gamma_2$

Constructing Spin System Liouville Superoperator

$$H = \frac{\epsilon(t)}{2}\sigma_z + J\sigma_x, \qquad \quad L_{\pm} = \sqrt{\frac{\Gamma_1}{2}}\sigma_{\pm}, \qquad \quad L_3 = \sqrt{\frac{\Gamma_2}{2}}\sigma_z$$

• Spin Lattice Relaxation (T_1) and Spin Spin Relaxation (T_2)

Ansatz for three level η

$$U(t) = e^{-i\delta}e^{-i\mu_8b_+}e^{-i\mu_7b_-}e^{-i\mu_6c_+}e^{-i\mu_5c_-}e^{-i\mu_4a_+}e^{-i\mu_3a_-}e^{-i\mu_2a_3}e^{-i\mu_1a_3}$$

• The solution of this ansatz ², for our case would give us the following EIGHT equations.

²Phys. Rev. A, 71, 063822. (2005) Implementation III: Nuclear Magnetic Resonance Relaxations 4 D > 4 A D > 4 B > 4 B > 9 Q P

EIGHT COUPLED Differential Equations for the System

$$\dot{\mu_8} = -\epsilon(t) - iS\mu_5 - \epsilon\mu_8^2 \tag{1}$$

$$\dot{\mu}_7 = -\epsilon(t) + i\mu_6 R + i\mu_5 \mu_7^2 S + 2\epsilon(t)\mu_7 \mu_8 \tag{2}$$

$$\dot{\mu_6} = 2iJ\mu_7 - 2iJ\mu_8\mu_6^2 + \epsilon(t)\mu_6\mu_8 + iS\mu_5\mu_6\mu_7 + \mu_6(\Gamma_2 - \Gamma_1)$$
(3)

$$\dot{\mu}_5 = -2iJ\mu_8 - \epsilon(t)\mu_5\mu_8 + 4iJ\mu_5\mu_8\mu_6 - iS\mu_5^2\mu_7 - \mu_5(\Gamma_2 - \Gamma_1)$$
(4)

$$\dot{\mu}_4 = i\epsilon(t)\mu_8 + 2J\mu_6\mu_8 - S\mu_5\mu_7 + \frac{i}{3}(\Gamma_2 - \Gamma_1) \tag{5}$$

$$\dot{\mu}_3 = S + R\mu_3^2 - i\mu_3 \left(-i\epsilon(t)\mu_8 + 2J\mu_6\mu_8 + S\mu_5\mu_7 + i(\Gamma_2 - \Gamma_1) \right)$$
 (6)

$$\dot{\mu_2} = 2J(1 - \mu_8\mu_7) + i\mu_2\left(i\epsilon(t)\mu_8 + 2iR\mu_3 + 2J\mu_6\mu_8 + S\mu_5\mu_7 + i(\Gamma_2 - \Gamma_1)\right)$$
 (7)

$$\dot{\mu_1} = -i\epsilon(t)\mu_8 + S\mu_5\mu_7 + iR\mu_3 + \frac{i}{3}(\Gamma_2 - \Gamma_1)$$
(8)

where

$$R = 2J(1 - \mu_7 \mu_8)$$

$$S = \frac{2J}{1 - \mu_5 \mu_6}$$

Table of Contents

- Introduction
 - Towards Open Quantum Systems
 - von-Neumann Liouville Equation
 - Density operators
 - Lindblad Master Equation
 - Unitary Integration
- 2 Implementation of Unitary Integration (Common Part
 - Implementation I: Landau Zener Stuckleberg Majorana (LZSM) Transition
 - Implementation II: Periodically Driven Two-Level System
- 3 Implementation III: Nuclear Magnetic Resonance Relaxations (WIP)
- Takeaways and Future Work

- Unitary integration can solve many Small Atomic Systems.
- Not extendable to many-particle systems
- Exact equations up to numerical accuracy.
- Future Plans:
 - Deeper Exploration of NMR problem; A subject in itself
 - Collective Atomic Systems with same underlying algebra from the field of quantum optics and molecular physics
- Token of Appreciation to Gourang, Naman and MATHEMATICA

Most Important References I

- [1] A. R. P. Rau, Phys. Rev. Lett. 81, 4785 (1998)
- [2] S. Vinjanampathy and A R P Rau J. Phys. A: Math. Theor. 42 425303 (2009)
- [3] C. Bengs. Journal of Magnetic Resonance, 322, 106868. (2021)
- [4] Kofman, P., Ivakhnenko, O., Shevchenko, S., & Nori, F. (2022)