Assignment - 2 - Solution

eMasters in Communication Systems, IITK EE901: Probability and Random Processes

Student Name: Venkateswar Reddy Melachervu

Roll No: 23156022

Q1. In an experiment, two dice are rolled. Consider the sigma-algebra containing all possible subsets of the sample space. Let X be the larger of the two numbers shown. Compute the list of intervals in $\mathbb R$ the events in sigma algebra map to.

Solution:

The total set of possible outcomes = $6^2 = 36$

X is the larger of the two numbers displayed on the dice.

Hence, the sample space/ Ω =

σ-algebra	Value of X
(1,1)	1
(1,2),(2,2),(2,1)	2
(1,3), (2,3),(3,3),(3,2),(3,1)	3
(1,4),(2,4),(3,4),(4,4),(4,3),(4,2),(4,1)	4
(1,5),(2,5),(3,5),(4,5),(5,5),(5,4),(5,3),(5,2),(5,1)	5
(1,6),(2,6),(3,6),(4,6),(5,6),(6,6),(6,5),(6,4),(6,3),(6,2),(6,1)	6

Q2: For the previous question, compute the corresponding events to the $X \in [2;4]$ and $X \in [1]$.

Solution:

The events corresponding to $X \in [2; 4]$:

 $\{(1,2),(2,2),(2,1),(1,3),(2,3),(3,3),(3,2),(3,1),(1,4),(2,4),(3,4),(4,4),(4,3),(4,2),(4,1)\}$

The events corresponding to $X \in [1]$: $\{(1,1)\}$

Q3: Let Ω be the sample space. Find and plot the CDF of X where:

- (a) $X(\omega) = c$ (c is a constant).
- (b) $X(\omega) = 1$ for $\omega \in A$ and $X(\omega) = 2$ otherwise, with $P(A) = \frac{1}{3}$

Solution:

(a)

x	$E_b = \{\omega : X(\omega) \in B\}$	$\mathbb{P}_X(B)$
<i>x</i> < <i>c</i>	φ	0
$x \ge c$	Ω	1

The CDF of X is:

$$F_X(x) = \begin{cases} 0, & \text{if } x < c \\ 1, & \text{if } x \ge c \end{cases}$$

(b)

x	$E_b = \{\omega : X(\omega) \in B\}$	$\mathbb{P}_X(B)$
<i>x</i> < 1	ϕ	0
$1 \le x \le 2$		1
		$\frac{\overline{3}}{3}$
$x \ge 2$		1

The CDF of X is:

Figure CDF of X is.
$$F_X(x) = \begin{cases} 0, & \text{if } x < 1 \\ \frac{1}{3}, & \text{if } 1 \le x < 2 \\ 1, & \text{if } x \ge 2 \end{cases}$$

CDF Plot of $X(\omega)$ = 1 for $\omega \in A$ and $X(\omega)$ = 2 otherwise

Q4: Let Ω = [0, 1] be the sample space and let P be a uniform probability measure on it such that P((a, b)) = b-a. Find and plot the CDF of X where X(Ω) = $6\omega^2$

Solution:

CDF of X is:

$$F_X(x) = P[X(\omega) \le x] = P\left[6\omega^2 \le x, \omega \in [0,1]\right] = P\left[\omega \le \sqrt{\frac{x}{6}}, w \in [0,1]\right]$$

Therefore,
$$F_X(x) = \begin{cases} 0, & \text{if } x \le 0 \\ \frac{\sqrt{x}}{6}, & \text{if } 0 < x < 6 \\ 1, & \text{if } x \ge 6 \end{cases}$$

The CDF Plot of $X(\Omega) = 6\omega^2$

Q5: Consider the experiment of tossing a coin three times. Let X be the random variable giving the number of heads obtained. We assume that the tosses are independent, and the probability of a head is $\frac{1}{2}$.

- (a) What is the range of X?
- (b) Compute its PMF?
- (c) Compute the probability that X<2

Solution:

(a) Range of X

$$P(H) = \frac{1}{3} \rightarrow P(T) = 1 - \frac{1}{3} = \frac{2}{3}$$

- S		Durch at 184
Event	Value of X	Probability
{TTT}	X=0	$\frac{2}{3} * \frac{2}{3} * \frac{2}{3} = \frac{8}{27}$
{HTT,THT, TTH}	X=1	$3*\frac{1}{3}*\frac{2}{3}*\frac{2}{3}=\frac{4}{9}$
{HHT, HTH, THH}	X=2	$3*\frac{1}{3}*\frac{1}{3}*\frac{2}{3}=\frac{2}{3}$
{HHH}	X=3	$\frac{1}{3} * \frac{1}{3} * \frac{1}{3} = \frac{1}{27}$

So, the outcomes of X are = $\{0,1,2,3\}$ and hence the range of X is = [0,3]

(b) PMF

$$p_X(x) = \begin{cases} \frac{8}{27}, & \text{if } x = 0\\ \frac{4}{9}, & \text{if } x = 1\\ \frac{2}{9}, & \text{if } x = 2\\ \frac{1}{27}, & \text{if } x = 3 \end{cases}$$

(c) Probability of X<2

$$P[X < 2] = \frac{8}{27} + \frac{4}{9} = \frac{20}{27}$$

Q6: The PDF of a continuous random variable X is given by

$$f_X(x) = \begin{cases} \frac{1}{4}, 0 < x \le 2\\ \frac{3}{4}, 2 < x \le 4\\ 0, otherwise \end{cases}$$

Find the corresponding CDF $F_{\chi}(x)$. Sketch $f_{\chi}(x)$ and $F_{\chi}(x)$. Solution:

Let's look at the area covered by the PDF across the Ω /sample space that should be 1

$$\int_{0}^{\infty} f_X(x)dx = \frac{1}{4}(2-0) + \frac{3}{4}(4-2) + 0 = \frac{4}{2} = 2$$

Hence, the given function is not complaint to PDF principle.

However, if we divide each value of $f_X(x)$ by 2, the area can be complaint to 1.

Therefore,

$$f_X(x) = \begin{cases} \frac{1}{8}, 0 < x \le 2\\ \frac{3}{8}, 2 < x \le 4\\ 0, otherwise \end{cases}$$

CDF, then is:

$$F_X(x) = \begin{cases} 0, & \text{if } x < 0 \\ \int_0^x \frac{1}{8} dx = \frac{x}{8}, & \text{if } 0 < x \le 2 \\ \int_0^2 \frac{1}{8} dx + \int_2^x \frac{3}{8} dx = \frac{1}{8} * [2 - 0] + \frac{3}{8} [x - 2] = \frac{3x}{8} - \frac{1}{2}, & \text{if } 2 \le x < 4 \\ 1, & x \ge 4 \end{cases}$$

PDF - $f_X(x)$ Plot

CDF - $F_x(x)$ Plot

Q7: The PDF of a random variable X is given by: $f_X(x) = \begin{cases} \alpha x, 0 < x < 0.5 \\ 0, otherwise \end{cases}$

$$f_X(x) = \begin{cases} \alpha x, 0 < x < 0.5 \\ 0, otherwise \end{cases}$$

Where α is a constant. Find the value of α .

Solution

$$\int_{-\infty}^{\infty} f_X(x) dx = 1 = \int_{0}^{0.5} \alpha x dx = \alpha \left[\frac{x^2}{2} \right]_{0}^{0.5} = \alpha \left[\frac{0.5^2}{2} \right] = \alpha \left[\left(\frac{1}{2} \right)^2 * \frac{1}{2} \right]$$

$$\therefore \alpha * \frac{1}{8} = 1 = > \alpha = 8$$

Q8: In an exam, the question paper consists of four multiple-choice questions. A student who does not know any answer, randomly guesses the answers.

(a) What is the probability of getting exactly 3 questions correct?

(b) What is the probability that you will write at least 2 questions correctly? **Solution:**

(a) Probability of Getting 3 Questions Correct

If X is the student's answer, it has two outcomes – correct and wrong for each of the question out of 3 questions. We can apply binomial RV here. Assuming 4 multiple choices for each question, the probability of "correct" outcome is ¼ and "wrong" outcome is ¾.

The binomial distribution $P(x) = {}^{n}_{x}Cp^{x}(1-p)^{n-x}$

Therefore, the probability of getting exactly 3 questions correct is:

$$P[X=3] = {}_{3}^{4}C(\frac{1}{4})^{3}(\frac{3}{4})^{1} = \frac{3}{64}$$

(b) Probability of Getting at least 2 Questions Correct

= Probability of getting 2, 3, and 4 questions correct

$$\Rightarrow P[X \ge 2] = \frac{4}{2}C\left(\frac{1}{4}\right)^2\left(\frac{3}{4}\right)^{4-2} + \frac{4}{3}C\left(\frac{1}{4}\right)^3\left(\frac{3}{4}\right)^{4-3} + \frac{4}{4}C\left(\frac{1}{4}\right)^4\left(\frac{3}{4}\right)^{4-4} = \frac{67}{256}$$

Q9: The amount of time a person waits for a bus is uniformly distributed between zero and 15 minutes. What is the probability that a person waits less than 10 minutes? **Solution:**

Let X be the number of minutes a person waits for the bus. The PDF of X, then, is

$$f_X(x) = \frac{1}{(15-0)} = \frac{1}{15}$$

The probability that a person waits for less than 10 minutes is:

$$P[X \le 10] = 10 * f_X(x) = 10 * \frac{1}{15} = \frac{2}{3}$$

Q10: The time when a bulb of a specific company fails is an exponential random variable with mean .5 years. What is the probability that a bulb will fail in the third year. **Solution:**

To solve this problem, we need to use the cumulative distribution function (CDF) of the exponential distribution. The CDF gives us the probability that a random variable is less than or equal to a certain value.

The exponential distribution with mean (μ) has the probability density function (PDF): $f(x) = (1/\mu) * \exp(-x/\mu)$ - where x is the time (in years) and exp denotes the exponential function.

The CDF (F(x)) is the integral of the PDF from 0 to x:

$$F(x) = \int_0^x f(t)dt = \int_0^x \frac{1}{\mu} * e^{-\frac{t}{\mu}} dt$$

Given that the mean (μ) is 0.5 years, the parameter λ (rate parameter) of the exponential distribution can be calculated as $\lambda = 1/\mu = 1/0.5 = 2$.

Now, we want to find the probability that a bulb will fail in the third year, which means x = 3. So, we need to evaluate the CDF at x = 3:

$$F(3) = \int_0^3 \left(\frac{1}{2}\right) * e^{-\frac{t}{2}}$$

To find this integral, we can use integration by parts or look up the CDF of the exponential distribution.

The CDF of the exponential distribution with rate parameter λ is given by:

$$F(x) = 1 - e^{-\lambda x}$$

Substituting our value of λ = 2, we get:

$$F(x) = 1 - e^{-2x}$$

Now, for
$$x = 3$$
:

$$F(3) = 1 - e^{-(2*3)}$$

$$F(3) = 1 - e^{-6}$$

Using a calculator, we find that $F(3) \approx 0.9975$. So, the probability that a bulb will fail in the third year is approximately 0.9975, or 99.75%.