Προηγμένα Θέματα Αλγορίθμων

Θεωρία Αριθμών και Πιθανοτικοί Αλγόριθμοι

Άρης Παγουρτζής

Ευχαριστίες: σε κάποιες διαφάνειες χρησιμοποιήθηκε υλικό από σημειώσεις του Στάθη Ζάχου καθώς και από διαφάνειες του Πέτρου Ποτίκα.

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Διαιρετότητα

Ορισμός

Για $a, b \in \mathbb{Z}$ θα λέμε ότι ο "a διαιρεί τον b", συμβολικά $a \mid b$, αν υπάρχει $c \in \mathbb{Z}$ τέτοιο ώστε b = ca.

Θα λέμε ότι ο a δεν διαιρεί τον b, συμβολικά $a \nmid b$, αν $\forall c \in \mathbb{Z}, b \neq ca$.

Ιδιότητες

Για κάθε $a, b, c \in \mathbb{Z}$:

- 1. $a \mid a, 1 \mid a, a \mid 0$.
- 2. $0 \mid a \Leftrightarrow a = 0$.
- 3. $a \mid b \wedge b \mid c \Rightarrow a \mid c$.
- 4. $a \mid b \wedge b \mid a \Rightarrow a = \pm b$.
- 5. $a \mid b \Rightarrow a \mid bc$.
- 6. $a \mid b \wedge a \mid c \Rightarrow a \mid (xb + yc) \forall x, y \in \mathbb{Z}$.
- 7. $a \mid b \Rightarrow |a| \leq |b| \text{ kat } a \mid b \land b \geq 0 \Rightarrow a \leq b$.

Διαιρετότητα

Η διαιρετότητα είναι μια σχέση μερικής διάταξης στο \mathbb{N} .

Ορολογία

- ightharpoonup α γνήσιος διαιρέτης του b: $a \mid b$ και 0 < a < |b|.
- ightharpoonup α μη τετριμμένος διαιρέτης του b: $a \mid b$ και 1 < a < |b|.
- ightharpoonup p > 1 πρώτος αριθμός: μοναδικοί διαιρέτες του ο 1 και ο p.
- ▶ p, q σχετικά πρώτοι (coprime): μοναδικός κοινός διαιρέτης ο 1.

Ακέραια διαίρεση

Θεώρημα (Ακέραιας Διαίρεσης)

Για κάθε $a,b \in \mathbb{Z}$ με b>0 υπάρχουν μοναδικά q (quotient, πηλίκο), r (remainder, υπόλοιπο) $(q,r \in \mathbb{Z})$ τέτοια ώστε:

$$a = qb + r$$

$$\kappa\alpha\iota$$

$$0 \le r < b$$

Απόδειξη

Έστω το σύνολο $S = \{a - xb \mid x \in \mathbb{Z}, a - xb \ge 0\}.$

 $ightharpoonup S
eq \emptyset$ (π.χ. $a-(-|a|\cdot b) \in S$) συνεπώς έχει ελάχιστο στοιχείο r < b (γιατί;). Υπάρχει επομένως $q \in \mathbb{Z}$ τέτοιο ώστε

$$a - qb = r \Rightarrow a = qb + r, \quad 0 \le r < b.$$

- ightharpoonup Έστω $q', r' \in \mathbb{Z}$ τέτοια ώστε $a = q'b + r', \quad 0 \le r' < b, επομένως <math>0 \le |r' r| < b.$
- P $qb+r=q'b+r'\Rightarrow (q-q')b=(r'-r)\Rightarrow |q-q'|b=|r'-r|.$ An $q\neq q'$ τότε $b\mid |r'-r|\Rightarrow b\leq |r'-r|,$ άτοπο. Suneπώς q=q' και r=r'.

Μέγιστος Κοινός Διαιρέτης (Greatest Common Divisor)

Θεώρημα (ΜΚΔ)

Έστω $a, b \in \mathbb{Z}$ και $d = \min \{xa + yb \mid x, y \in \mathbb{Z}, xa + yb \ge 0\}$. Τότε:

- (i) $d \mid a \kappa \alpha i \ d \mid b$.
- (ii) $d' \mid a \wedge d' \mid b \Rightarrow d' \leq d$.

Απόδειξη

▶ (i) Έστω $d = \kappa a + \lambda b$, $\kappa, \lambda \in \mathbb{Z}$, και d ελάχιστο. Θ.δ.ο. $d \mid a$. Έστω $d \nmid a$. Τότε υπάρχουν $q, r \in \mathbb{Z}$ τέτοια ώστε

$$a=qd+r,\quad 0< r< d,$$

$$\Rightarrow r=a-qd=a-q(\kappa a+\lambda b)=(1-q\kappa)a+(-\lambda q)b$$
 οπότε $r\in \{xa+yb\mid x,y\in \mathbb{Z},\ xa+yb\geq 0\}$ και $r< d$, άτοπο. Όμοια δείχνουμε $d\mid b$.

ightharpoonup (ii) Έστω d' τέτοιο ώστε $d' \mid a$ και $d' \mid b$. Τότε $a = c_1 d', b = c_2 d'$. Επομένως:

$$d = \kappa c_1 d' + \lambda c_2 d' \Rightarrow d' \mid d \Rightarrow d' \le d.$$

ΜΚΔ: χρήσιμες ιδιότητες

Σαν πορίσματα του προηγούμενου θεωρήματος προκύπτουν τα παρακάτω:

- ο αλγόριθμος του Ευκλείδη βρίσκει τον ΜΚΔ δύο ακεραίων αριθμών (γιατί; βρίσκει διαιρέτη που είναι και γραμμικός συνδυασμός).
- ▶ $gcd(a,b) = 1 \Rightarrow \exists \kappa, \lambda \in \mathbb{Z}, \quad \kappa a + \lambda b = 1$ (χρήση σε εύρεση αντιστρόφου modulo b: $\kappa a \mod b = 1$).
- ▶ Αν $c \mid ab \land \gcd(a,c) = 1$ τότε $c \mid b$: $\gcd(a,c) = 1 \Rightarrow \exists \kappa, \lambda \in \mathbb{Z} : \kappa c + \lambda a = 1 \Rightarrow \kappa cb + \lambda ab = b \Rightarrow c \mid b$ (γιατί; c διαιρεί το 1ο μέλος).
- ightharpoonup Αν p πρώτος \land $p\mid ab$ τότε $p\mid a\lor p\mid b$: $\gcd(p,a)\in\{1,p\}. \text{ Aν }\gcd(p,a)=p \text{ τότε }p\mid a. \text{ Aν }\gcd(p,a)=1, \text{ αφού }p\mid ab\ \theta \text{ α }$ πρέπει $p\mid b.$

Θεμελιώδες Θεώρημα Αριθμητικής

Κάθε ακέραιος αριθμός n>1 μπορεί να γραφτεί με μοναδικό τρόπο ως πεπερασμένο γινόμενο πρώτων αριθμών.

- Απόδειξη ύπαρξης: με τη μέθοδο της επαγωγής.
- Απόδειξη μοναδικότητας: στηρίζεται στην ιδιότητα "αν p πρώτος $\land p \mid ab$ τότε $p \mid a \lor p \mid b$ " σε συνδυασμό με χρήση επαγωγής.

Ασκηση: συμπληρώστε τις λεπτομέρειες.

Πρώτοι αριθμοί

Παραδείγματα

- \triangleright 2, 3, 5, ..., 1997, ..., 6469, ...
- $ightharpoonup (333+10^{793})10^{791}+1$ (με 1585 ψηφία, παλίνδρομος βρέθηκε το 1987 από τον Η. Dubner)
- $ightharpoonup 2^{1257787} 1$ (με 378632 ψηφία βρέθηκε το 1996)
- $ightharpoonup 2^{13466917} 1$ (με 4053946 ψηφία βρέθηκε το 2001)
- $ightharpoonup 2^{43112609} 1$ (με 12978189 ψηφία βρέθηκε το 2008)
- $ightharpoonup 2^{57885161} 1$ (με 17425170 ψηφία βρέθηκε το 2013)
- $ightharpoonup 2^{74207281} 1$ (με 22338618 ψηφία βρέθηκε το 2016)

Θεώρημα (Ευκλείδη)

Οι πρώτοι αριθμοί είναι άπειροι σε πλήθος.

Απόδειξη. Εστω ότι οι πρώτοι είναι πεπερασμένοι σε πλήθος, συγκεκριμένα p_1,p_2,\ldots,p_n . Τότε ο αριθμός $p_1p_2\ldots p_n+1$ δε διαιρείται από κανένα πρώτο παρά μόνο από το 1 και τον εαυτό του, άρα είναι πρώτος, άτοπο.

Αλγόριθμος Ευκλείδη

```
function gcd(a, b): integer);

if b = 0 then gcd \leftarrow a else gcd \leftarrow gcd(b, a \mod b, )
```

Θεώρημα (ορθότητα Ευκλείδειου αλγορίθμου)

ο αλγόριθμος του Ευκλείδη βρίσκει τον ΜΚΔ δύο ακεραίων αριθμών.

Απόδειξη

- ightharpoonup Βρίσκει διαιρέτη: αν $a,b>0\in\mathbb{Z}$ τότε $\gcd(a,b)=\gcd(b,a\bmod b)$.
- Ο διαιρέτης που βρίσκει μπορεί να γραφτεί σαν γραμμικός συνδυασμός των a, b (γιατί;).
- Επομένως είναι ο ΜΚΔ.

Αλγόριθμος Ευκλείδη

$$1742 = 3 \cdot 494 + 260 \quad 132 = 3 \cdot 35 + 27$$

$$494 = 1 \cdot 260 + 234 \quad 35 = 1 \cdot 27 + 8$$

$$260 = 1 \cdot 234 + 26 \quad 27 = 3 \cdot 8 + 3$$

$$234 = 9 \cdot 26 + 0 \quad 8 = 2 \cdot 3 + 2$$

$$3 = 1 \cdot 2 + 1$$

$$2 = 2 \cdot 1 + 0$$

```
gcd(1742, 494) = 26, \quad gcd(132, 35) = 1.
```

- **Σ** Χρόνος εκτέλεσης: $O(\log a)$ διαιρέσεις, $O(\log^3 a)$ bit operations (υποθέτοντας $a \ge b$).
- ▶ Τα κ, λ τ.ώ. $d = \kappa a + \lambda b$ μπορούν να υπολογιστούν στον ίδιο χρόνο: επεκτατεμένος αλγόριθμος Ευκλείδη.
- Χρήσεις: υπολογισμός αντιστρόφων modulo n, επίλυση γραμμικών ισοτιμιών, κρυπτογραφία δημοσίου κλειδιού (RSA, El Gamal, κ.ά.).

Συνάρτηση ϕ του Euler

Ορισμός

 $\phi(n)$ είναι το πλήθος των αριθμών από το 1 μέχρι και n που είναι σχετικά πρώτοι με τον n.

Υπενθύμιση: m, n σχετικά πρώτοι (coprime): μοναδικός κοινός διαιρέτης ο 1.

Ιδιότητες

- $\phi(p) = p 1$ για p πρώτο.
- $ightharpoonup \phi(p^a)=p^a(1-rac{1}{p})$ για p πρώτο.
- $\phi(mn) = \phi(m)\phi(n)$ για m,n σχετικά πρώτους. **Άσκηση**: αποδείξτε το.

Παρατήρηση: για σύνθετο $n, \phi(n) = n \prod_{p|n} (1 - \frac{1}{p}).$

Αριθμητική modulo, ο δακτύλιος \mathbb{Z}_m

Σχέση ισοτιμίας (congruence)

- ightharpoonup Η πράξη $\mod m, m \in \mathbb{Z}, m > 0$, απεικονίζει το \mathbb{Z} στο $\mathbb{Z}_m = \{0, \ldots, m-1\}.$
- Δύο αριθμοί a, b λέγονται ισότιμοι modulo m, συμβολικά $a \equiv b \pmod{m}$, αν έχουν την ίδια απεικόνιση με την πράξη m cod m:

$$a \equiv b \pmod{m} \stackrel{\text{def}}{\Leftrightarrow} a \mod m = b \mod m \Leftrightarrow m \mid (a - b)$$

- ightharpoonup Αλλοι συμβολισμοί: $a=b\pmod{m}$ ή και $a\equiv b\pmod{m}$.
- Είναι σχέση ισοδυναμίας. Κάθε κλάση C_k , $0 \le k \le m-1$, περιέχει τους ακεραίους που αφήνουν υπόλοιπο k αν διαιρεθούν με το m.
- $ightharpoonup \mathbb{Z}_m = \{C_0, C_1, C_2, \dots, C_{m-1}\}$. Πιο απλά: $\mathbb{Z}_m = \{0, \dots, m-1\}$.

Πράξεις στο \mathbb{Z}_m

- ightharpoonup Πρόσθεση: $C_k + C_j = C_{(k+j) \bmod m}$.
- ightharpoonup Πολλαπλασιασμός: $C_k \cdot C_j = C_{kj \bmod m}$.
- ightharpoonup Η απεικόνιση \pmod{m} : $\mathbb{Z} \mapsto \mathbb{Z}_m$ είναι ομομορφισμός (ακριβέστερα: επιμορφισμός).
- Πιο απλά:

$$(a+b) \bmod m = (a \bmod m + b \bmod m) \bmod m ,$$

$$(a \cdot b) \bmod m = ((a \bmod m) \cdot (b \bmod m)) \bmod m .$$

▶ Πρακτική σημασία: αντί να κάνουμε τις πράξεις στο \mathbb{Z} και στο τέλος να βρίσκουμε το υπόλοιπο της διαίρεσης με m, μπορούμε να κάνουμε τις πράξεις κατευθείαν στο \mathbb{Z}_m : σημαντική μείωση χρόνου εκτέλεσης σε πολλές περιπτώσεις.

Ύψωση σε δύναμη modulo m

```
Επαναλαμβανόμενος Τετραγωνισμός (Repeated Squaring)
Είσοδος: a, n, m ∈ \mathbb{Z}_+
Έξοδος: a^n \mod m
x \leftarrow a \mod m; y \leftarrow 1;
while n > 0 do
  if n \mod 2 \neq 0 then v \leftarrow v \cdot x \mod m;
  x \leftarrow x^2 \mod m
  n \leftarrow n \div 2
end while
output y
```

Χρόνος εκτέλεσης: $O(\log n)$ επαναλήψεις, $O(\log n \log^2 m)$ bit operations.

Μικρό Θεώρημα Fermat

Θεώρημα (μικρό Fermat)

 \forall prime p, $\forall a \in \mathbb{Z}$, $p \nmid a : a^{p-1} \equiv 1 \pmod{p}$

Απόδειξη.

Για $a \in \mathbb{Z}$ με $p \nmid a$, τα στοιχεία

$$a \cdot 1, a \cdot 2, \ldots, a \cdot (p-1)$$

είναι διαφορετικά ανά δύο στο \mathbb{Z}_p^* :

$$i \cdot a \equiv j \cdot a \pmod{p} \Rightarrow p \mid a(i-j) \Rightarrow p \mid (i-j) \Rightarrow i \equiv j \pmod{p}$$

Επομένως
$$a^{p-1}(p-1)! \equiv (p-1)! \Rightarrow a^{p-1} \equiv 1 \pmod{p}$$
.

Παρόμοια αποδεικνύεται το πιο γενικό:

Θεώρημα (Euler)

$$\forall a \in \mathbb{Z}, \gcd(a, m) = 1 \Rightarrow a^{\phi(m)} \equiv 1 \pmod{m}.$$

Κινέζικο Θεώρημα Υπολοίπων (Chinese Remainder Theorem - CRT)

Θεώρημα (Κινέζικο Θεώρημα Υπολοίπων)

Εστω ένα σύστημα ισοτιμιών

```
x \equiv a_1 \pmod{m_1}

x \equiv a_2 \pmod{m_2}

\vdots

x \equiv a_k \pmod{m_k}
```

ώστε $\gcd(m_i, m_j) = 1$ για $i \neq j$. Τότε το σύστημα έχει μοναδική λύση στον δακτύλιο \mathbb{Z}_M , $M = m_1 m_2 \dots m_k$. Ισοδύναμα: το σύστημα έχει άπειρες λύσεις στο \mathbb{Z} και αν s_1, s_2 δύο λύσεις ισχύει $s_1 \equiv s_2 \pmod{M}$.

Απόδειξη.

Για κάθε $i\in\{1,\ldots,k\}$ ορίζουμε $M_i=rac{M}{m_i}$. Ισχύει $\gcd(M_i,m_i)=1$.

Επομένως $\exists N_i \in \mathbb{Z}_{m_i} : N_i \cdot M_i \equiv 1 \pmod{m_i}$.

Επίσης $\forall i \neq j : N_i \cdot M_i \equiv 0 \pmod{m_i}$.

Οπότε μία λύση είναι η παρακάτω (επαληθεύστε):

$$y = \sum_{i=1}^{k} N_i \cdot M_i \cdot a_i$$

Αν s_1, s_2 δύο διαφορετικές λύσεις τότε έχουμε ότι για κάθε i,

$$s_1 \equiv s_2 \pmod{m_i}$$

Από πρόταση προηγούμενης διαφάνειας και επαγωγή προκύπτει:

$$s_1 \equiv s_2 \pmod{M}$$

Πολυπλοκότητα: η επίλυση του συστήματος γίνεται σε πολυωνυμικό χρόνο.

Σημαντικές συνέπειες του CRT

Δύο ισομορφισμοί:

$$\mathbb{Z}_{m_1m_2...m_k} \cong \mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2} \times \ldots \times \mathbb{Z}_{m_k}$$
 ως πρός πρόσθεση, αφαίρεση και πολλαπλασιασμό.

(οι πράξεις στις k-άδες ορίζονται κατά μέλη με τον προφανή τρόπο: τα στοιχεία στη θέση i αθροίζονται / πολλαπλασιάζονται στον δακτύλιο \mathbb{Z}_{m_i})

$$U(\mathbb{Z}_{m_1m_2...m_k})\cong U(\mathbb{Z}_{m_1})\times U(\mathbb{Z}_{m_2})\times\ldots\times U(\mathbb{Z}_{m_k})$$
ως προς πολλαπλασιασμό και διαίρεση.

Θεωρία ομάδων

- ► Ομάδα (group): ζεύγος (G, *) τέτοιο ώστε:
 - $\forall a, b \in G: a * b \in G$
 - $\forall a, b, c \in G: a * (b * c) = (a * b) * c$
 - $ightharpoonup \exists e \in G, \forall a \in G : a * e = a$ (το e είναι μοναδικό)
 - $\forall a \in G : \exists a^{-1} \in G : a * a^{-1} = e$

Αντιμεταθετική (Αβελιανή) ομάδα: επιπλέον a*b=b*a.

Το ζεύγος $(\mathbb{Z}_m, +)$ είναι αντιμεταθετική ομάδα.

- ► Τάξη (order) πεπερασμένης ομάδας: η πληθικότητά της.
- ► Υποομάδα (subgroup):

$$(S,*)$$
 υποομάδα της $(G,*) \stackrel{\mathrm{def}}{\Leftrightarrow} S \subseteq G \land (S,*)$ ομάδα

▶ Πρόταση. (S,*) είναι υποομάδα της (G,*) ανν $S \subseteq G$ και S κλειστό ως προς *.

Η πολλαπλασιαστική ομάδα $(U(\mathbb{Z}_m),\cdot)$

Πρόταση. gcd(a, m) = 1 αν και μόνο αν $\exists c \in \mathbb{Z}_m$ τέτοιο ώστε $a \cdot c \equiv 1 \pmod{m}$.

Απόδειξη. (i) Ευθύ: με χρήση Θεωρ. ΜΚΔ.

(ii) Αντίστροφο: $\exists x \in \mathbb{Z}, \ ax \equiv 1 \pmod{m} \Rightarrow m \mid (ax - 1).$ Αν $\gcd(a, m) = d > 1$ τότε $d \mid m \mid (ax - 1) \Rightarrow d \mid 1$, άτοπο.

Ορισμός

 $U(\mathbb{Z}_m)=\{a\in\mathbb{Z}_m:\gcd(a,m)=1\}$ είναι το σύνολο των σχετικά πρώτων με τον m, που λέγονται και units του \mathbb{Z}_m . Περιέχει ακριβώς τα στοιχεία του \mathbb{Z}_m που έχουν αντίστροφο modulo m.

Το $(U(\mathbb{Z}_m),\cdot)$ είναι αντιμεταθετική ομάδα με πληθάριθμο $\phi(m)$.

Για p πρώτο: $U(\mathbb{Z}_p) = \mathbb{Z}_p \setminus \{0\} = \mathbb{Z}_p^*$.

Θεωρία ομάδων

► Τάξη (order) στοιχείου

τάξη
$$a \stackrel{\text{def}}{=} \min\{y \in \mathbb{N} : a^y = e\}$$

Κυκλική ομάδα (cyclic group):

$$(G,*)$$
 κυκλική $\stackrel{\mathrm{def}}{\Leftrightarrow} \exists g \in (G,*): \forall x \in G: \exists y \in \mathbb{N}: x = g^y$

► Γεννήτορας (generator)

$$a$$
 γεννήτορας της $G \overset{\mathrm{def}}{\Leftrightarrow}$ τάξη $a = |G|$

Πρόταση: μια ομάδα έχει γεννήτορα ανν είναι κυκλική. Η τάξη της ομάδας ισούται με την τάξη του γεννήτορα. (Άσκηση: αποδείξτε.)

Σύμπλοκα, ομάδα πηλίκο

- \blacktriangleright Σύμπλοκο (coset): το σύνολο $H*a=\{h*a:h\in H,a\in G\}$ λέγεται δεξί σύμπλοκο (coset) της H στη G για υποομάδα H της (G,*).
- ▶ Ομάδα πηλίκο (Quotient group) G/H: το σύνολο των συμπλόκων της H στην G Το $(G/H, \circledast)$ είναι ομάδα με πράξη $(H*a) \circledast (H*b) = H*(a*b)$.

Θεώρημα Lagrange

Αν Η είναι υποομάδα της πεπερασμένης ομάδας G τότε

$$|G| = |G/H| \cdot |H|$$

Απόδειζη. Στηρίζεται στο γεγονός ότι δύο σύμπλοκα ταυτίζονται ή είναι ξένα μεταξύ τους.

Πόρισμα (σημαντικό!): η τάξη ενός στοιχείου μιας πεπερασμένης ομάδας διαιρεί την τάξη της ομάδας:

$$\forall a \in G: a^{|G|} = e$$

Περαιτέρω πορίσματα: μικρό Θεώρημα Fermat (ομάδα (\mathbb{Z}_p^*,\cdot)), Θεώρημα Euler (ομάδα $(U(\mathbb{Z}_m),\cdot)$). Οι αποδείξεις τους χωρίς χρήση Θ. Lagrange προϋπήρχαν.

Πόρισμα: κάθε ομάδα με τάξη πρώτο αριθμό είναι κυκλική (γιατί; βρείτε έναν γεννήτορα).

Μέγεθος γνήσιας υποομάδας

Πόρισμα του Θ. Lagrange

 $Aν\left(S,*
ight)$ υποομάδα της (πεπερασμένης) ομάδας $\left(G,*
ight)$ και $S \neq G$ τότε:

$$|S| \leq |G|/2$$

Σημαντική εφαρμογή: πιθανοτικός έλεγχος πρώτων αριθμών Fermat και Miller-Rabin

Fermat (primality) test

Έλεγχος πρώτων αριθμών Fermat

Για να δούμε αν ένας δοσμένος ακέραιος n είναι πρώτος:

Επιλέγουμε τυχαία $a \in \mathbb{Z}_n$: αν $a^{n-1} \not\equiv 1 \pmod{n}$ τότε n σύνθετος (με βεβαιότητα), αλλιώς λέμε ότι το n περνάει το test (ίσως είναι πρώτος).

Στην δεύτερη περίπτωση επαναλαμβάνουμε.

Πρόταση.

Aν για σύνθετο n υπάρχει ένας μάρτυρας (compositeness witness), δηλ. $\exists a \in U(\mathbb{Z}_n), \ a^{n-1} \not\equiv 1 \pmod{n}$, τότε υπάρχουν τουλάχιστον n/2 μάρτυρες. Απόδειζη. Χρήση Θ. Lagrange σε ομάδα μη μαρτύρων του $U(\mathbb{Z}_n)$.

Έλεγχος Fermat ορθός (whp) για σχεδόν όλους τους αριθμούς. Εξαίρεση: αριθμοί Carmichael – σύνθετοι χωρίς μάρτυρα Fermat. Αντιμετώπιση: έλεγχος Miller-Rabin.

Τετραγωνικές ρίζες modulo n και παραγοντοποίηση

- Ο αριθμός 1 έχει δύο τετραγωνικές ρίζες modulo $p:\pm 1$.
- Επίσης έχει 4 τετραγωνικές ρίζες modulo n = pq: τις ± 1 , και άλλες δύο $(\pm u \not\equiv \pm 1 \pmod n)$ που λέγονται μη τετριμμένες ρίζες της μονάδας modulo n.
- Η ύπαρξη μη τετριμμένων ριζών του 1 modulo n συνιστά απόδειξη ότι ο αριθμός n είναι σύνθετος, και συγχρόνως δίνει άμεσα δύο παράγοντες του n: $\gcd(n, u \pm 1)$.
- ▶ Παρόμοια πληροφορία παίρνουμε από την ύπαρξη 2 μη αντίθετων τετραγωνικών ριζών οποιουδήποτε αριθμού $a \in \mathbb{Z}_n$.
- Η ιδιότητα αυτή είναι κομβικής σημασίας για την κατανόηση της λειτουργίας και της ορθότητας του Miller-Rabin primality test.

Έλεγχος πρώτων αριθμών Miller-Rabin

- 1. Έστω $n \in \mathbb{Z}$ θετικός περιττός αριθμός.
- 2. Επιλέγουμε τυχαία $b \in [2, ..., n-1]$. Αν $b^{n-1} \mod n \neq 1$, τότε το n δεν περνάει τον έλεγχο (είναι σίγουρα σύνθετος).
- 3. Αλλιώς, γράφουμε $n-1=2^{s}t$, με t περιττό.
- 4. Αν $b^t \equiv \pm 1 \pmod{n}$, τότε το n περνάει τον έλεγχο (πιθανόν πρώτος).
- 5. Αλλιώς, υψώνουμε το $b^t \mod n$ στο τετράγωνο: $b^{2t} \mod n$, έπειτα ξανά στο τετράγωνο: $b^{2^2} t \mod n$ κ.ο.κ. έως ότου πάρουμε ± 1 (το πολύ σε s επαναλήψεις).
- 6. Αν πάρουμε πρώτα -1 τότε το n περνάει τον έλεγχο (πιθανόν πρώτος), αλλιώς δεν περνάει τον έλεγχο (σίγουρα σύνθετος).

Ορθότητα: Θα αποδείξουμε ότι η πιθανότητα αποτυχίας είναι $<\frac{1}{2}$.

Μπορεί να γίνει αμελητέα (negligible) με επαναλήψεις του ελέγχου για άλλο bκάθε φορά.

Έλεγχος πρώτων αριθμών Miller-Rabin: απόδειξη ορθότητας

Πρόταση

Αν η πρώτος, τότε περνάει τον έλεγχο πάντοτε (για όλα τα b). Αν η σύνθετος τότε περνάει τον έλεγχο για λιγότερα από τα μισά b.

Απόδειξη.

Βασίζεται στην απεικόνιση $b\mapsto seq(b)=\langle b^t,b^{2t},\ldots,b^{2^tt},\ldots b^{2^st}\rangle\pmod{n}$.

Factoring sequence: $\langle \not\equiv \pm 1, \dots, \not\equiv \pm 1, \equiv 1, \dots, \equiv 1 \rangle \pmod{n}$.

Αποδεικνύεται με χρήση του Θ. Lagrange ότι τα στοιχεία που απεικονίζονται σε non-factoring sequences (μη μάρτυρες του n) είναι το πολύ τα μισά.

Έλεγχος πρώτων αριθμών Miller-Rabin: απόδειξη ορθότητας

Έστω $n=n_1n_2$, $\gcd(n_1,n_2)=1$ [αν $n=p^e,e>1$, κανένα στοιχείο του $U(\mathbb{Z}_n)$ δεν περνάει τον έλεγχο Fermat (άσκηση)]. Θδο $\geq |U(\mathbb{Z}_n)|/2$ στοιχεία του $U(\mathbb{Z}_n)$ μάρτυρες συνθετότητας του n κατά Miller-Rabin.

- $j^* = \max\{j \mid \exists u \in U(\mathbb{Z}_n) : u^{2^j t} \equiv -1 \pmod{n}\} :$ "δεξιότερη" θέση όπου συναντάμε -1 στις ακολουθίες $seq(b), b \in U(\mathbb{Z}_n)$.
- ▶ $B = \{b \in U(\mathbb{Z}_n) \mid b^{2^{j^*}t} \equiv \pm 1 \pmod{n}\}$: υπερσύνολο του NW(n) (σύνολο μη μαρτύρων του n) γιατί;
- ▶ Β κλειστό ως προς · (mod n), επομένως υποομάδα!.
- ► $B \neq U(\mathbb{Z}_n)$: $\exists w \in U(\mathbb{Z}_n)$: $w \equiv 1 \pmod{n_1} \land w \equiv u \pmod{n_2}$ (CRT)
- ightharpoonup Επομένως B είναι γνήσια υποομάδα του $U(\mathbb{Z}_n)$, και άρα: $|NW(n)| \leq |B| \leq \frac{|U(\mathbb{Z}_n)|}{2} \text{ (από Θ. Lagrange!)}$
- Αρα τουλάχιστον τα μισά στοιχεία του $U(\mathbb{Z}_n)$ δίνουν factoring sequence, πιθανότητα $\geq \frac{1}{2}$. Με k επαναλήψεις πιθανότητα $\geq 1 \frac{1}{2^k}$.

Παραγοντοποίηση Pollard rho: προκαταρτικά

- ightharpoonup Τεστω p ο μικρότερος πρώτος διαιρέτης του n. Αναζητούμε $x \neq x' \in \mathbb{Z}_n$, τ.ώ. $x \equiv x' \pmod p$
- Tότε gcd(x-x',n), ίσως είναι μη τετριμμένος διαιρέτης του n
- \blacktriangleright Επιλέγουμε τυχαία σύνολο $X\subseteq\mathbb{Z}_n$ και υπολογίζουμε για όλα τα $x,x'\in X$ το $\gcd(x-x',n)$
- Από παράδοξο γενεθλίων, χρειάζεται $|X|\approx 1.17\sqrt{p}$ για να έχουμε σύγκρουση με πιθανότητα $\geq \frac{1}{2}$. Αν ελεγχθούν όλα τα x,x' ανά ζεύγη, το κόστος γίνεται τετραγωνικό στο |X| άρα $O(p)=O(\sqrt{n})$, συγκρίσιμο με απλοϊκό αλγόριθμο!
- Μπορεί να γίνει με πλήθος συγκρίσεων γραμμικό στο |X|;

Παραγοντοποίηση Pollard rho: ο 'αργός' τρόπος

- Θεωρούμε f πολυώνυμο με ακέραιους συντελεστές, π.χ. $f(x) = x^2 + 1 \mod n$
- ightharpoonup Έστω $x_0 \in \mathbb{Z}_n$ και $x_1, x_2, ...$, όπου $x_j = f(x_{j-1}), \ j \geq 2$. Η f παράγει σχεδόν τυχαία στοιχεία.
- Σρειάζεται για κάθε νέο x_j , να υπολογίζουμε $gcd(x_i-x_j,n)$, για όλα τα i < j, τετραγωνικό κόστος (βλ. και προηγούμενη διαφάνεια)

Παραγοντοποίηση Pollard rho: η βασική ιδέα για βελτίωση

- ▶ Ιδέα της μεθόδου: Αν $x_i \bmod p = x_j \bmod p$, τότε $x_{i+1} \bmod p = x_{j+1} \bmod p$ (λόγω της πολυωνυμικής μορφής της f και του ότι p|n)
- ightharpoonup Επαναλαμβάνοντας, αν $x_i \equiv x_j \pmod p$, τότε $x_{i+\delta} \equiv x_{j+\delta} \pmod p$, $\delta \geq 0$
- Γράφος G: κορυφές τα x_i , κατευθυνόμενες ακμές από το $x_i \mod p$ στο $x_{i+1} \mod p$.
- ► Έστω το πρώτο ζευγάρι x_i, x_j , με i < j ώστε $x_i \equiv x_j \pmod{p}$, τότε ο γράφος έχει σχήμα ρ :
- $ightharpoonup x_1 mod p o x_2 mod p \cdots o x_i mod p ext{ (ourá)}$ $x_i mod p o x_{i+1} mod p \cdots o x_j mod p \equiv x_i mod p ext{ (κύκλος)}$
- Από τη μορφή του γράφου, το όνομα της μεθόδου (ρ).

Παραγοντοποίηση Pollard rho: γραμμικός χρόνος

Βελτίωση: δε χρειάζεται να βρούμε την πρώτη σύγκρουση, αντί για αυτήν αρκεί να ελέγξουμε x_{i'}, x_{j'} για κατάλληλο k, όσο το δυνατόν μικρότερο, ώστε

$$i' = 2^k, j' = 2^k + j - i < 2^{k+1}$$

- ▶ Κάθε $x_{j'}$ ελέγχεται μόνο με $x_{i'}$, $i' = 2^k < j' \le 2^{k+1}$: γραμμικός χρόνος!
- Για τον ελάχιστο i' που ικανοποιεί τις παραπάνω συνθήκες ισχύει $j \leq i' < 2j$ και επομένως j' < 3j
- lacktriangle Αναμενόμενος αριθμός επαναλήψεων: $O(j) = O(\sqrt{p})$
- Επειδή, $p < \sqrt{n}$, η αναμενόμενη πολυπλοκότητα είναι $O(n^{1/4})$ (όχι αυστηρή απόδειξη!)
- Αποτυχία αλγορίθμου (πότε?, τι πιθανότητα?, τι κάνουμε?) : όταν $x_i \equiv x_j \pmod p$ και $x_i \equiv x_j \pmod n$ (σχετικά μικρή πιθανότητα $(\approx \frac{p}{n})$). Επαναλαμβάνουμε με άλλο x_0 ή/και άλλο πολυώνυμο.

Παραγοντοποίηση Pollard rho: ψευδοκώδικας

Αλγόριθμος Pollard Rho Factoring (n)

```
i \leftarrow 0
x \leftarrow_R \{0, 1, \dots, n-1\}, y = x, k = 1
while true
   i \leftarrow i + 1
                                                               (* e.g. f(x) = (x^2 + 1) \mod n *)
   x \leftarrow f(x)
   d \leftarrow gcd(|x-y|, n)
   if d \neq 1 and d \neq n
      return d
   if d = n
      return 'fail'
   if i = k
      y \leftarrow x
      k \leftarrow 2k
```

Ευεπίλυτα αριθμητικά προβλήματα

Χαρακτηρίζονται από την ύπαρξη αποδοτικού (πολυωνυμικού χρόνου) αλγορίθμου, ντετερμινιστικού ή πιθανοτικού.

- ightharpoonup GCD(a, n): εύρεση MK $\Delta(a, n)$.
- ▶ Inverse(a, n): υπολογισμός $a^{-1} \mod n$.
- Power(a, y, n): υπολογισμός $a^y \mod n$.
- ▶ Primality(n): έλεγχος αν ο n είναι πρώτος αριθμός.
- Find-Prime(n): εύρεση πρώτου > n.
- ▶ Quad-Res(a, n): έλεγχος αν $\exists x : x^2 \equiv a \pmod{n}$. Για n πρώτο, ή σύνθετο με γνωστή παραγοντοποίηση.
- **Square-Root**(a, n): εύρεση $x : x^2 \equiv a \pmod{n}$, αν υπάρχει. Για n πρώτο, ή σύνθετο με γνωστή παραγοντοποίηση.

Δυσεπίλυτα αριθμητικά προβλήματα

Χαρακτηρίζονται από την μη ύπαρξη (ως τώρα) αποδοτικού (πολυωνυμικού χρόνου) αλγορίθμου, ντετερμινιστικού ή πιθανοτικού.

- ► Factor(*n*): παραγοντοποίηση του *n*.
- e-th-Root(c, n): εύρεση m : $m^e \equiv c \pmod{n}$. Γνωστό και ως RSA-Decrypt(c, n). Δύσκολο για n σύνθετο με άγνωστη παραγοντοποίηση.
- ightharpoonup Discrete-Log(g,a,p): εύρεση $x:g^x\equiv a\pmod p$. Δύσκολο για p πρώτο.
- **Quad-Res**(a, n): έλεγχος αν $\exists x : x^2 \equiv a \pmod{n}$. Δύσκολο για n σύνθετο με άγνωστη παραγοντοποίηση.
- **Square-Root**(a, n): εύρεση $x : x^2 \equiv a \pmod{n}$, αν υπάρχει. Δύσκολο για n σύνθετο με άγνωστη παραγοντοποίηση.