Instrumental Variables

INTRODUCTION

Roadmap

Introductions
Who Am I?
Who Am I?
What is This Course?

Regression Review

Models vs. Estimands vs. Estimators

Regression Identification and Endogeneity

Intro to IV
Instrument Validity and Relevance
The 2SLS Estimator

Groos Family Assistant Professor of Economics, Brown University

- Groos Family Assistant Professor of Economics, Brown University
- A big fan of instrumental variable (IV) methods

- Groos Family Assistant Professor of Economics, Brown University
- A big fan of instrumental variable (IV) methods
 - → Lottery- and non-lottery IVs in studies of educational quality (Angrist et al. 2016, 2017, 2021, 2022; Abdulkadiroğlu et al. 2016)
 - → Quasi-experimental evaluations of healthcare quality (Hull 2020; Abaluck et al. 2021, 2022)
 - → IV-based analyses of discrimination and bias (Arnold et al. 2020, 2021, 2022; Hull 2021; Bohren et al. 2022)
 - → Shift-share instruments and related designs
 (Borusyak et al. 2022; Borusyak and Hull 2021, 2022; Goldsmith-Pinkham et al. 2022)

- Groos Family Assistant Professor of Economics, Brown University
- A big fan of instrumental variable (IV) methods
 - → Lottery- and non-lottery IVs in studies of educational quality (Angrist et al. 2016, 2017, 2021, 2022; Abdulkadiroğlu et al. 2016)
 - → Quasi-experimental evaluations of healthcare quality (Hull 2020; Abaluck et al. 2021, 2022)
 - → IV-based analyses of discrimination and bias (Arnold et al. 2020, 2021, 2022; Hull 2021; Bohren et al. 2022)
 - → Shift-share instruments and related designs (Borusyak et al. 2022; Borusyak and Hull 2021, 2022; Goldsmith-Pinkham et al. 2022)
- A constant student of IV (and econometrics more generally)

• A one-day intensive on IV, with focus on recent practical advances

- A one-day intensive on IV, with focus on recent practical advances
 - ightarrow Far from comprehensive; stay tuned for more "mixtape tracks" that take deeper dives on particular topics (judge IV, etc)
 - → Emphasis on *practical*: IV is meant to be used, not just studied!

- A one-day intensive on IV, with focus on recent practical advances
 - ightarrow Far from comprehensive; stay tuned for more "mixtape tracks" that take deeper dives on particular topics (judge IV, etc)
 - → Emphasis on practical: IV is meant to be used, not just studied!
- Four one-hour lectures: from IV basics to recent topics

- A one-day intensive on IV, with focus on recent practical advances
 - ightarrow Far from comprehensive; stay tuned for more "mixtape tracks" that take deeper dives on particular topics (judge IV, etc)
 - → Emphasis on practical: IV is meant to be used, not just studied!
- Four one-hour lectures: from IV basics to recent topics
 - → Please ask questions in the Discord chat!
 - ightarrow I will try to stick to the schedule but may improvise slightly

- A one-day intensive on IV, with focus on recent practical advances
 - ightarrow Far from comprehensive; stay tuned for more "mixtape tracks" that take deeper dives on particular topics (judge IV, etc)
 - → Emphasis on practical: IV is meant to be used, not just studied!
- Four one-hour lectures: from IV basics to recent topics
 - → Please ask questions in the Discord chat!
 - → I will try to stick to the schedule but may improvise slightly
- Two 75-minute coding labs, applying what we've learned

- A one-day intensive on IV, with focus on recent practical advances
 - ightarrow Far from comprehensive; stay tuned for more "mixtape tracks" that take deeper dives on particular topics (judge IV, etc)
 - → Emphasis on practical: IV is meant to be used, not just studied!
- Four one-hour lectures: from IV basics to recent topics
 - → Please ask questions in the Discord chat!
 - ightarrow I will try to stick to the schedule but may improvise slightly
- Two 75-minute coding labs, applying what we've learned
 - → I will be live-coding in Stata, but R code will also be available
 - → Goal: demonstrate both methods & how I think about applying them

Schedule

9:00-10:00am	Lecture 1: Regression Review; Regression Endogeneity; Introduction to IV
10:00-10:10am	Break
10:10-11:10am 11:10-11:15am	Lecture 2: Understanding Instrument Validity; 2SLS Mechanics; Applications Break
11:10-11:15am 11:15am-12:30pm	Coding Lab 1: Angrist and Krueger (1991)
1	Lunch
12:30-1:30pm	Lunch

2:40pm-3:40pm Lectur

Lecture 4: Judge Leniency Designs; Shift-Share IV; New IV Frontiers

3:40-3:45pm Break 3:45-5:00pm Coding

Coding Lab 2: Stevenson (2018)

5:00-5:15pm Closing Remarks

Roadmap

Introductions
Who Am I?
Who Am I?
What is This Course'

Regression Review

Models vs. Estimands vs. Estimators

Regression Identification and Endogeneity

Intro to IV
Instrument Validity and Relevance
The 2SLS Estimator

Three distinct objects (though not always clearly distinguished)

- Three distinct objects (though not always clearly distinguished)
- Parameters come from models of how observed data are generated
 - → E.g. a structural supply/demand model or potential outcomes
 - ightarrow They set the target for an empirical analysis: what we want to know

- Three distinct objects (though not always clearly distinguished)
- Parameters come from models of how observed data are generated
 - ightarrow E.g. a structural supply/demand model or potential outcomes
 - ightarrow They set the target for an empirical analysis: what we want to know
- Estimands are functions of the distribution of observable data
 - ightarrow E.g. a difference in means or ratio of population regression coef's
 - ightarrow Make assumptions to link parameters & estimands ("identification")

- Three distinct objects (though not always clearly distinguished)
- Parameters come from models of how observed data are generated
 - → E.g. a structural supply/demand model or potential outcomes
 - ightarrow They set the target for an empirical analysis: what we want to know
- Estimands are functions of the distribution of observable data
 - → E.g. a difference in means or ratio of population regression coef's
 - → Make assumptions to link parameters & estimands ("identification")
- Estimators are functions of the observed data itself (the "sample")
 - ightarrow E.g. a difference in sample means or ratio of OLS coefficients
 - → Since data are random, so are estimators. Each has a distribution
 - → Use knowledge of estimator distributions to make learn about estimands ("inference") and—hopefully—identified parameters

Identification vs. Estimation

This course will mostly focus on identification, but we'll cover some IV estimation / inference issues as well

 Human capital theory (e.g. Becker, 1957) tells us that taking one-day IV intensives are likely to boost later-life productivity

- Human capital theory (e.g. Becker, 1957) tells us that taking one-day IV intensives are likely to boost later-life productivity
 - \rightarrow Parameter: returns to taking this class β , measured in some outcome Y_i (e.g. lifetime top-5 pubs / earnings / twitter followers)
 - ightarrow Simple causal/structural model: $Y_i=\alpha+\beta D_i+\varepsilon_i$, where $D_i\in\{0,1\}$ indicates taking this class

- Human capital theory (e.g. Becker, 1957) tells us that taking one-day IV intensives are likely to boost later-life productivity
 - \rightarrow Parameter: returns to taking this class β , measured in some outcome Y_i (e.g. lifetime top-5 pubs / earnings / twitter followers)
 - ightarrow Simple causal/structural model: $Y_i=\alpha+\beta D_i+\varepsilon_i$, where $D_i\in\{0,1\}$ indicates taking this class
- We see a sample of Y_i , D_i , and some other covariates W_{1i}, \dots, W_{Ki}
 - \rightarrow We fire up Stata and reg y d w1-wk, r. How do we interpret the output?

- Human capital theory (e.g. Becker, 1957) tells us that taking one-day IV intensives are likely to boost later-life productivity
 - ightarrow Parameter: returns to taking this class eta, measured in some outcome Y_i (e.g. lifetime top-5 pubs / earnings / twitter followers)
 - ightarrow Simple causal/structural model: $Y_i=\alpha+\beta D_i+\varepsilon_i$, where $D_i\in\{0,1\}$ indicates taking this class
- We see a sample of Y_i, D_i , and some other covariates W_{1i}, \dots, W_{Ki}
 - \rightarrow We fire up Stata and reg y d w1-wk, r. How do we interpret the output?
- The OLS estimator $\widehat{\beta}^{OLS}$ consistently estimates the regression estimand β^{OLS} under relatively weak conditions (e.g. *i.i.d.* data)
 - \rightarrow Stata tells us $\hat{\beta}^{OLS}$ and what we can infer about β^{OLS} from it
 - ightarrow It doesn't directly tell us about the relationship between eta^{OLS} and eta

• Def.: the population regression of Y_i on $\mathbf{X}_i = [1, D_i, W_{1i}, \dots, W_{Ki}]'$ is given by $Y_i = \mathbf{X}_i' \boldsymbol{\beta}^{OLS} + U_i$ where $E[\mathbf{X}_i U_i] = 0$

- Def.: the population regression of Y_i on $\mathbf{X}_i = [1, D_i, W_{1i}, \dots, W_{Ki}]'$ is given by $Y_i = \mathbf{X}_i' \boldsymbol{\beta}^{OLS} + U_i$ where $E[\mathbf{X}_i U_i] = 0$
 - ightarrow Equivalently, $m{eta}^{OLS} = E[\mathbf{X}_i\mathbf{X}_i']^{-1}E[\mathbf{X}_iY_i]$ and $U_i = Y_i \mathbf{X}_i'm{eta}^{OLS}$
 - ightarrow $oldsymbol{eta}^{OLS}$ contains regression coefficients; U_i is the regression residual

- Def.: the population regression of Y_i on $\mathbf{X}_i = [1, D_i, W_{1i}, \dots, W_{Ki}]'$ is given by $Y_i = \mathbf{X}_i' \boldsymbol{\beta}^{OLS} + U_i$ where $E[\mathbf{X}_i U_i] = 0$
 - \rightarrow Equivalently, $\boldsymbol{\beta}^{OLS} = E[\mathbf{X}_i \mathbf{X}_i']^{-1} E[\mathbf{X}_i Y_i]$ and $U_i = Y_i \mathbf{X}_i' \boldsymbol{\beta}^{OLS}$
 - $ightarrow oldsymbol{eta}^{OLS}$ contains regression coefficients; U_i is the regression residual
- Key point: we can always define β^{OLS} for any Y_i and \mathbf{X}_i (assuming no perfect collinearity); this is what Stata estimates
 - ightarrow Specifically it computes $\widehat{m{eta}}^{OLS} = (\frac{1}{N} \sum_i \mathbf{X}_i \mathbf{X}_i')^{-1} (\frac{1}{N} \sum_i \mathbf{X}_i Y_i)$ and uses large-sample asymptotics (LLN/CLT) to get a standard error

- Def.: the population regression of Y_i on $\mathbf{X}_i = [1, D_i, W_{1i}, \dots, W_{Ki}]'$ is given by $Y_i = \mathbf{X}_i' \boldsymbol{\beta}^{OLS} + U_i$ where $E[\mathbf{X}_i U_i] = 0$
 - \rightarrow Equivalently, $\boldsymbol{\beta}^{OLS} = E[\mathbf{X}_i \mathbf{X}_i']^{-1} E[\mathbf{X}_i Y_i]$ and $U_i = Y_i \mathbf{X}_i' \boldsymbol{\beta}^{OLS}$
 - ightarrow $oldsymbol{eta}^{OLS}$ contains regression coefficients; U_i is the regression residual
- Key point: we can always define β^{OLS} for any Y_i and \mathbf{X}_i (assuming no perfect collinearity); this is what Stata estimates
 - ightarrow Specifically it computes $\widehat{m{eta}}^{OLS} = (\frac{1}{N} \sum_i \mathbf{X}_i \mathbf{X}_i')^{-1} (\frac{1}{N} \sum_i \mathbf{X}_i Y_i)$ and uses large-sample asymptotics (LLN/CLT) to get a standard error
- But what if this estimand is not what we want?

- Def.: the population regression of Y_i on $\mathbf{X}_i = [1, D_i, W_{1i}, \dots, W_{Ki}]'$ is given by $Y_i = \mathbf{X}_i' \boldsymbol{\beta}^{OLS} + U_i$ where $E[\mathbf{X}_i U_i] = 0$
 - ightarrow Equivalently, $m{eta}^{OLS} = E[\mathbf{X}_i\mathbf{X}_i']^{-1}E[\mathbf{X}_iY_i]$ and $U_i = Y_i \mathbf{X}_i'm{eta}^{OLS}$
 - ightarrow $oldsymbol{eta}^{OLS}$ contains regression coefficients; U_i is the regression residual
- Key point: we can always define β^{OLS} for any Y_i and \mathbf{X}_i (assuming no perfect collinearity); this is what Stata estimates
 - ightarrow Specifically it computes $\widehat{m{eta}}^{OLS} = (\frac{1}{N} \sum_i \mathbf{X}_i \mathbf{X}_i')^{-1} (\frac{1}{N} \sum_i \mathbf{X}_i Y_i)$ and uses large-sample asymptotics (LLN/CLT) to get a standard error
- But what if this estimand is not what we want?
 - \rightarrow What if β^{OLS} fails to coincide with our economic parameter of interest (e.g. returns to mixtape workshops)?

You Can't Always Get What you Want...

- The model parameter in $Y_i=\alpha+\beta D_i+\varepsilon_i$ need not coincide with the regression coefficient in $Y_i=\alpha^{OLS}+\beta^{OLS}D_i+U_i$
 - ightarrow I.e. we may not have $Cov(D_i, \varepsilon_i) = 0$ (always have $Cov(D_i, U_i) = 0$)

You Can't Always Get What you Want...

- The model parameter in $Y_i = \alpha + \beta D_i + \varepsilon_i$ need not coincide with the regression coefficient in $Y_i = \alpha^{OLS} + \beta^{OLS}D_i + U_i$
 - $\rightarrow \,$ l.e. we may not have $Cov(D_i, \varepsilon_i) = 0$ (always have $Cov(D_i, U_i) = 0$)
- Selection bias (a.k.a. omitted variables bias): students with higher latent earnings potential ε_i are more likely to take this class D_i
 - $\rightarrow Cov(D_i, \varepsilon_i) > 0$ means $\beta^{OLS} > \beta$: overstate the returns-to-mixtape

You Can't Always Get What you Want...

- The model parameter in $Y_i = \alpha + \beta D_i + \varepsilon_i$ need not coincide with the regression coefficient in $Y_i = \alpha^{OLS} + \beta^{OLS}D_i + U_i$
 - \rightarrow l.e. we may not have $Cov(D_i, \varepsilon_i) = 0$ (always have $Cov(D_i, U_i) = 0$)
- Selection bias (a.k.a. omitted variables bias): students with higher latent earnings potential ε_i are more likely to take this class D_i
 - $ightarrow \ Cov(D_i, arepsilon_i) > 0$ means $eta^{OLS} > eta$: overstate the returns-to-mixtape
- Adding more controls (e.g. demographics) may or may not help
 - \rightarrow Projecting ε_i on X_i , we get $Y_i = \alpha + \beta D_i + \gamma X_i + \tilde{\varepsilon}_i$, $Cov(X_i, \tilde{\varepsilon}_i) = 0$
 - ightarrow Whether or not $Cov(D_i, \tilde{arepsilon}_i) = 0$ depends on whether X_i sufficiently accounts for the confounding relationship $Cov(D_i, arepsilon_i)
 eq 0$

Regression "Exogeneity"

Regression "Endogeneity"

...But Sometimes, You Get What you Need

- Imagine this course was "oversubscribed," and admission was determined by lottery
 - ightarrow Among those interested in taking the course, a random sample denoted by $Z_i=1$ was given access
 - \rightarrow The rest, with $Z_i = 0$ not initially given access (maybe got in later)

...But Sometimes, You Get What you Need

- Imagine this course was "oversubscribed," and admission was determined by lottery
 - \rightarrow Among those interested in taking the course, a random sample denoted by $Z_i=1$ was given access
 - \rightarrow The rest, with $Z_i = 0$ not initially given access (maybe got in later)
- ullet Intuitively, this external shock Z_i should be helpful for identifying eta
 - \rightarrow Affects D_i , so relevant to the "treatment" of interest
 - ightarrow Randomly assigned, so unconfounded by selection (unlike D_i)

...But Sometimes, You Get What you Need

- Imagine this course was "oversubscribed," and admission was determined by lottery
 - ightarrow Among those interested in taking the course, a random sample denoted by $Z_i=1$ was given access
 - ightarrow The rest, with $Z_i=0$ not initially given access (maybe got in later)
- ullet Intuitively, this external shock Z_i should be helpful for identifying eta
 - \rightarrow Affects D_i , so relevant to the "treatment" of interest
 - ightarrow Randomly assigned, so unconfounded by selection (unlike D_i)
- Indeed, this leads us to IV estimands (and estimators)

The IV Solution

Roadmap

Who Am I?
What is This Course.

Regression Review

Models vs. Estimands vs. Estimators

Regression Identification and Endogeneity

Intro to IV
Instrument Validity and Relevance
The 2SLS Estimator

- Causal/structural model $Y_i = \alpha + \beta D_i + \varepsilon_i$ and a candidate IV Z_i
 - ightarrow Single D_i and Z_i and no further controls, for now

- Causal/structural model $Y_i=lpha+eta D_i+arepsilon_i$ and a candidate IV Z_i
 - ightarrow Single D_i and Z_i and no further controls, for now
- Two key assumptions:
 - \rightarrow Relevance: Z_i and D_i are correlated: $Cov(Z_i, D_i) \neq 0$
 - ightarrow Validity: Z_i and $arepsilon_i$ are uncorrelated: $Cov(Z_i, arepsilon_i) = 0$

- Causal/structural model $Y_i = \alpha + \beta D_i + \varepsilon_i$ and a candidate IV Z_i \rightarrow Single D_i and Z_i and no further controls, for now
- Two key assumptions:
 - \rightarrow Relevance: Z_i and D_i are correlated: $Cov(Z_i, D_i) \neq 0$
 - \rightarrow Validity: Z_i and ε_i are uncorrelated: $Cov(Z_i, \varepsilon_i) = 0$
- We then have identification:

$$Cov(Z_i, Y_i) = Cov(Z_i, \alpha + \beta D_i + \varepsilon_i) = \beta Cov(Z_i, D_i) + Cov(Z_i, \varepsilon_i)$$

= $\beta Cov(Z_i, D_i)$, Implying $\beta = \frac{Cov(Z_i, Y_i)}{Cov(Z_i, D_i)}$

- Causal/structural model $Y_i = \alpha + \beta D_i + \varepsilon_i$ and a candidate IV Z_i
 - ightarrow Single D_i and Z_i and no further controls, for now
- Two key assumptions:
 - \rightarrow Relevance: Z_i and D_i are correlated: $Cov(Z_i, D_i) \neq 0$
 - \rightarrow Validity: Z_i and ε_i are uncorrelated: $Cov(Z_i, \varepsilon_i) = 0$
- We then have identification:

$$Cov(Z_i, Y_i) = Cov(Z_i, \alpha + \beta D_i + \varepsilon_i) = \beta Cov(Z_i, D_i) + Cov(Z_i, \varepsilon_i)$$
$$= \beta Cov(Z_i, D_i), \text{ Implying } \beta = \frac{Cov(Z_i, Y_i)}{Cov(Z_i, D_i)}$$

• This $\beta^{IV} = \frac{Cov(Z_i, Y_i)}{Cov(Z_i, D_i)}$ is the (simple) IV estimand

- Causal/structural model $Y_i = \alpha + \beta D_i + \varepsilon_i$ and a candidate IV Z_i
 - ightarrow Single D_i and Z_i and no further controls, for now
- Two key assumptions:
 - \rightarrow Relevance: Z_i and D_i are correlated: $Cov(Z_i, D_i) \neq 0$
 - \rightarrow Validity: Z_i and ε_i are uncorrelated: $Cov(Z_i, \varepsilon_i) = 0$
- We then have identification:

$$Cov(Z_i, Y_i) = Cov(Z_i, \alpha + \beta D_i + \varepsilon_i) = \beta Cov(Z_i, D_i) + Cov(Z_i, \varepsilon_i)$$
$$= \beta Cov(Z_i, D_i), \text{ Implying } \beta = \frac{Cov(Z_i, Y_i)}{Cov(Z_i, D_i)}$$

- This $\beta^{IV} = \frac{Cov(Z_i, Y_i)}{Cov(Z_i, D_i)}$ is the (simple) IV estimand
 - ightarrow Compare to the OLS estimand: $eta^{OLS} = rac{Cov(D_i, Y_i)}{Var(D_i)}$

"Reduced Form" and "First Stage"

Note we can write

$$\beta^{IV} = \frac{Cov(Z_i, Y_i)}{Cov(Z_i, D_i)} = \frac{Cov(Z_i, Y_i) / Var(Z_i)}{Cov(Z_i, D_i) / Var(Z_i)} = \frac{\rho^{OLS}}{\pi^{OLS}}$$

where ρ^{OLS} and π^{OLS} are two OLS coefficients:

"Reduced Form" and "First Stage"

Note we can write

$$\beta^{IV} = \frac{Cov(Z_i, Y_i)}{Cov(Z_i, D_i)} = \frac{Cov(Z_i, Y_i) / Var(Z_i)}{Cov(Z_i, D_i) / Var(Z_i)} = \frac{\rho^{OLS}}{\pi^{OLS}}$$

where ρ^{OLS} and π^{OLS} are two OLS coefficients:

$$Y_i = \kappa^{OLS} + \rho^{OLS} Z_i + V_i$$
 "reduced form"
$$D_i = \mu^{OLS} + \pi^{OLS} Z_i + W_i$$
 "first stage"

"Reduced Form" and "First Stage"

Note we can write

$$\beta^{IV} = \frac{Cov(Z_i, Y_i)}{Cov(Z_i, D_i)} = \frac{Cov(Z_i, Y_i) / Var(Z_i)}{Cov(Z_i, D_i) / Var(Z_i)} = \frac{\rho^{OLS}}{\pi^{OLS}}$$

where ρ^{OLS} and π^{OLS} are two OLS coefficients:

$$Y_i = \kappa^{OLS} + \rho^{OLS} Z_i + V_i$$
 "reduced form"
$$D_i = \mu^{OLS} + \pi^{OLS} Z_i + W_i$$
 "first stage"

• Sometimes we refer to the IV estimand as the "second stage":

$$Y_i = \alpha^{IV} + \beta^{IV} D_i + U_i$$

where now $Cov(Z_i,U_i)=0$. Thus "IV=RF/FS" $\left(\beta^{IV}=\rho^{OLS}/\pi^{OLS}\right)$

The 2SLS Estimator

As with OLS, we estimate IV by sample analog:

$$\widehat{\beta}^{IV} = \frac{\widehat{Cov}(Z_i, Y_i)}{\widehat{Cov}(Z_i, D_i)} = \frac{\widehat{\rho}^{OLS}}{\widehat{\pi}^{OLS}}$$

where
$$\widehat{Cov}(X_i, W_i) = \frac{1}{N} \sum_i X_i W_i - \left(\frac{1}{N} \sum_i X_i\right) \left(\frac{1}{N} \sum_i W_i\right),$$

$$\hat{\rho}^{OLS} = \widehat{Cov}(Z_i, Y_i) / \widehat{Var}(Z_i) \text{ and } \hat{\pi}^{OLS} = \widehat{Cov}(Z_i, D_i) / \widehat{Var}(Z_i)$$

The 2SLS Estimator

As with OLS, we estimate IV by sample analog:

$$\widehat{\beta}^{IV} = \frac{\widehat{Cov}(Z_i, Y_i)}{\widehat{Cov}(Z_i, D_i)} = \frac{\widehat{\rho}^{OLS}}{\widehat{\pi}^{OLS}}$$

where
$$\widehat{Cov}(X_i, W_i) = \frac{1}{N} \sum_i X_i W_i - \left(\frac{1}{N} \sum_i X_i\right) \left(\frac{1}{N} \sum_i W_i\right)$$
, $\hat{\rho}^{OLS} = \widehat{Cov}(Z_i, Y_i) / \widehat{Var}(Z_i)$ and $\hat{\pi}^{OLS} = \widehat{Cov}(Z_i, D_i) / \widehat{Var}(Z_i)$

- → This is what Stata does when you type "ivreg2 y (d=z), r"
- ightarrow Standard errors come from the usual large-sample asymptotics

The 2SLS Estimator

As with OLS, we estimate IV by sample analog:

$$\widehat{\beta}^{IV} = \frac{\widehat{Cov}(Z_i, Y_i)}{\widehat{Cov}(Z_i, D_i)} = \frac{\widehat{\rho}^{OLS}}{\widehat{\pi}^{OLS}}$$

where
$$\widehat{Cov}(X_i, W_i) = \frac{1}{N} \sum_i X_i W_i - \left(\frac{1}{N} \sum_i X_i\right) \left(\frac{1}{N} \sum_i W_i\right)$$
, $\hat{\rho}^{OLS} = \widehat{Cov}(Z_i, Y_i) / \widehat{Var}(Z_i)$ and $\hat{\pi}^{OLS} = \widehat{Cov}(Z_i, D_i) / \widehat{Var}(Z_i)$

- \rightarrow This is what Stata does when you type "ivreg2 y (d=z), r"
- ightarrow Standard errors come from the usual large-sample asymptotics
- We will soon consider extensions of all of this, with controls / multiple instruments / etc

Angrist (1990): The "Draft Lottery Paper"

- Angrist famously used Vietnam-era draft eligibility as an instrument to estimate the earnings effects of military service
 - ightarrow Let Z_i be an indicator for draft eligibility, D_i be an indicator for military service, and Y_i measure later-life earnings

Angrist (1990): The "Draft Lottery Paper"

- Angrist famously used Vietnam-era draft eligibility as an instrument to estimate the earnings effects of military service
 - ightarrow Let Z_i be an indicator for draft eligibility, D_i be an indicator for military service, and Y_i measure later-life earnings
- Here $\beta^{IV}=\frac{Cov(Z_i,Y_i)/Var(Z_i)}{Cov(Z_i,D_i)/Var(Z_i)}=\frac{E[Y_i|Z_i=1]-E[Y_i|Z_i=0]}{E[D_i|Z_i=1]-E[D_i|Z_i=0]}$ has a special name, because Z_i is binary: the Wald estimand
 - \rightarrow First stage $E[D_i \mid Z_i = 1] E[D_i \mid Z_i = 0]$: effect of eligibility on the probability of military service (b/c D_i is binary)
 - \rightarrow Reduced form $E[Y_i \mid Z_i=1] E[Y_i \mid Z_i=0]$: effect of eligibility on adult earnings (measured in 1971, 1981...)

Angrist (1990): The "Draft Lottery Paper"

- Angrist famously used Vietnam-era draft eligibility as an instrument to estimate the earnings effects of military service
 - ightarrow Let Z_i be an indicator for draft eligibility, D_i be an indicator for military service, and Y_i measure later-life earnings
- Here $\beta^{IV}=\frac{Cov(Z_i,Y_i)/Var(Z_i)}{Cov(Z_i,D_i)/Var(Z_i)}=\frac{E[Y_i|Z_i=1]-E[Y_i|Z_i=0]}{E[D_i|Z_i=1]-E[D_i|Z_i=0]}$ has a special name, because Z_i is binary: the Wald estimand
 - \rightarrow First stage $E[D_i \mid Z_i = 1] E[D_i \mid Z_i = 0]$: effect of eligibility on the probability of military service (b/c D_i is binary)
 - \rightarrow Reduced form $E[Y_i \mid Z_i=1] E[Y_i \mid Z_i=0]$: effect of eligibility on adult earnings (measured in 1971, 1981...)
- IV interprets the latter causal effect in terms of the former

Draft Lottery Reduced Form, First Stage, and IV

IV Estimates of the Effects of Military Service on the Earnings of White Men born in 1950

Earnings year	Earnings		Veteran Status		Wald Estimate of
	Mean	Eligibility Effect	Mean	Eligibility Effect	Veteran Effect
	(1)	(2)	(3)	(4)	(5)
1981	16,461	-435.8 (210.5)	.267	.159 (.040)	-2,741 (1,324)
1971	3,338	-325.9 (46.6)			-2050 (293)
1969	2,299	-2.0 (34.5)			

Note: Adapted from Table 5 in Angrist and Krueger (1999) and author tabulations. Standard errors are shown in parentheses. Earnings data are from Social Security administrative records. Figures are in nominal dollars. Veteran status data are from the Survey of Program Participation. There are about 13,500 individuals in the sample.

Draft Lottery Reduced Form and First Stage Visualized

FIGURE 3. EARNINGS AND THE PROBABILITY OF VETERAN STATUS BY

Notes: The figure plots mean W-2 compensation in 1981–4 against probabilities of veteran status by cohort and groups of five consecutive lottery numbers for white men born 1950–3. Plotted points consist of the average residuals (over four years of earnings) from regressions on period and cohort effects. The slope of the least-squares regression line drawn through the points is -2,384, with a standard error of 778, and is an estimate of α in the equation

$$\bar{y}_{cti} = \beta_c + \delta_t + \hat{p}_{ci}\alpha + \bar{u}_{cti}.$$