Direct Observation of High-Temperature Polaronic Behavior In Colossal Magnetoresistive Manganites

N. Mannella,^{1,2,*} A. Rosenhahn,² C. H. Booth,³ S. Marchesini,² B. S. Mun,^{1,2} S.-H. Yang,² K. Ibrahim,^{2,4} Y. Tomioka,⁵ and C. S. Fadley^{1,2}

¹Department of Physics, UC Davis, Davis, CA, USA

²Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

³Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

⁴Beijing Synchrotron Radiation Laboratory, Beijing, China

⁵Correlated Electron Research Center and Joint Research Center for Atom Technology, Tsukuba, Japan

(Dated: February 2, 2008)

The temperature dependence of the electronic and atomic structure of the colossal magnetoresistive oxides $\rm La_{1-x}Sr_xMnO_3(x=0.3,0.4)$ has been studied using core and valence level photoemission, x-ray absorption and emission, and extended x-ray absorption fine structure spectroscopy. A dramatic and reversible change of the electronic structure is observed on crossing the Curie temperature, including charge localization and spin moment increase of Mn, together with Jahn-Teller distortions, both signatures of polaron formation. Our data are also consistent with a phase-separation scenario.

PACS numbers: 71.38.-k 71.30.+h 75.47.Gk 79.60.-i

The colossal magnetoresistive (CMR) manganites are among the most studied materials in condensed matter physics [1], with considerable potential for technological applications. And yet agreement on their correct theoretical description is still lacking. Although the long-standing double-exchange (DE) model [1, 2] provides a qualitatively correct description of these materials, more complex, but not necessarily mutually exclusive, mechanisms such as charge localization via Jahn-Teller distortion (JTD) with polaron formation [3, 4, 5, 6] and phase separation [7] have also been proposed.

In particular, manganites with composition $La_{1-x}Sr_xMnO_3$ (LSMO) are still a matter of controversy: they have commonly been referred to as "canonical" (i.e. capable of description via the DE model alone) by some authors [1, 2], but have been suggested by others to exhibit more complex behavior due to JTDs and polaron formation [3, 6].

have thus studied the ferromagnetic-toparamagnetic transition in the CMR compounds $La_{1-x}Sr_xMnO_3$ (LSMO, x = 0.3, 0.4) by means of temperature-dependent core and valence level photoemission spectroscopy (PS), x-ray absorption and x-ray emission spectroscopy (XAS and XES, respectively) and extended x-ray absorption fine structure (EXAFS). Our measurements reveal significant charge localization onto the Mn atom at high temperature, coupled with local JTD, thus providing a direct observation of lattice polaron formation. These results thus suggest that the presence of polarons above the Curie temperature (T_C) is a general defining characteristic of all the CMR materials.

The LSMO compounds studied are metallic and in a rhombohedral crystal structure for the full temperature range accessed by our measurements ($110 \le T \le 600$ K) [8]. A magnetic phase transition from ferromagnetic

to paramagnetic metal occurs at T_C ≈ 370 K. The PS, XAS and XES spectra have been measured on undulator beamline 4.0.2 at the Berkeley Advanced Light Source (ALS) on high-quality single crystals which have been fractured in situ at room temperature in ultrahigh vacuum (ca. 1-2 x 10^{-10} torr). A quantitative PS analysis of core-level photoemission intensities confirmed the expected stoichiometries to within experimental accuracy and further showed minimal degrees of surface stoichiometry alteration (within $\pm 5\%$ for all species) or surface contamination (e.g. less than 0.07 monolayers of C contaminant) during the entire length of a given set of experiments (ca. 24 hours). Bulk-sensitive EXAFS measurements were carried out on a polished single-crystal surface at the Stanford Synchrotron Radiation Laboratory (SSRL) on BL 4-1.

We have first detected temperature-dependent electronic structure changes by means of core and valence PS (Figs. 1 and 2), with the core spectra providing an element-specific look at electronic and magnetic states. In Fig. 1a, we show a set of Mn 3s photoelectron spectra obtained in a single temperature scan on a sample of composition La_{0.7}Sr_{0.3}MnO₃. These spectra exhibit a doublet due to multiplet splitting of the binding energy (BE), a well-known effect in transition metals which provides a unique probe of the local spin moment of magnetic atoms [9, 10], and which has recently been analyzed for several CMR materials [11]. The multiplet energy separation ΔE_{3s} depends on the net spin S_v of the emitter (Mn in this case) via $\Delta E_{3s} = (2S_v + 1)J_{3s-3d}^{\text{eff}}$, where J_{3s-3d}^{eff} denotes the effective exchange integral between the 3s and the 3d shells after allowing for finalstate intra-shell correlation effects [9, 10, 12]. The Mn3s splitting changes markedly from 4.50 to 5.55 eV as the temperature is raised from T_C to a higher "saturation" temperature $T_{\rm sat}$ ≈ 470 K beyond which no change is

FIG. 1: Temperature dependent core and valence photoemission spectra from a La_{0.7}Sr_{0.3}MnO₃ single-crystal. The photon energy was set to 212.5 eV for the Mn3s spectra (1a) and the high-lying core and valence band spectra (1b), and 652 eV for O1s spectra (results summarized in Fig. 2b), so that the O 1s photoelectrons have very nearly the same kinetic energy (and thus escape depth, $\Lambda_e \approx 5$ Å) as the Mn 3s electrons. The temperature range was 110 K - 500 K, with a step of approximately 20 K. (a) Mn 3s core-level spectra (b) High-lying core-level (O 2s, Sr 4p, La 5p) and valence level spectra. Note core-level shifts at high T, reversible changes in valence features VB₁-VB₄, and lack of any Fermi level shift.

observed. The splitting also tends to return to its original value upon cooling the sample (Figs. 1a and 2a), but with hysteresis. These data thus indicate a significant increase in the Mn spin moment S_v at high temperature. Prior results for a range of inorganic Mn compounds yield $J_{3s,3d}^{\rm eff} \approx 1.1$ eV [9, 10, 11, 13, 14]. Using this result,

FIG. 2: Reversibility and hysteresis in the temperature dependence of (a) Mn 3s and (b) O 1s core level binding energies of La_{0.7}Sr_{0.3}MnO₃, including the Mn 3s multiplet splitting.

the change in the Mn3s splitting yields an increase in its average spin moment from ≈ 3 to $\approx 4 \mu_B$, corresponding to about 1 electron transferred to the Mn atom. Note also that the average position of the Mn 3s doublet in Fig. 1a changes very little with temperature (Fig. 2a).

Simultaneous with measuring the Mn 3s spectra, other core-level (O 1s, O 2s, La 4d, La 5p, Sr 4p) and valenceband (VB) spectra were also recorded, with all but O 1s and La 4d being shown in Fig. 1b. The BEs of all of the O, La, and Sr core peaks are observed to increase by between 0.4 eV and 0.6 eV as the temperature changes from T_C to T_{sat} , concomitant with the change of the Mn 3s splitting. The high-T increases of the core BEs for the O, La, and Sr core levels thus suggest charge transfer from the O, La and Sr atoms to the Mn atom, fully consistent with the increase of the Mn 3s splitting. If charge from the O, La and Sr atoms is transferred to and localized on the Mn atom, La, Sr, and O core electrons will experience a more positive environment and therefore be detected at higher BE. The absence of any shift in the Fermi level E_F (to within approximately 50 meV) also indicates that the observed increase of the core levels BEs is not an artifact due to sample charging.

On cooling the sample in the same stepwise fashion, both the Mn 3s splitting and the core BEs return to their original values, but with \approx 200-K-wide hysteresis loops centered around T_C, and with a time constant of several hours (Fig. 2). The BE loops for O, Sr, and La close on the time scale of our measurement, whereas the Mn splitting was found to close on a slightly longer time scale. We attribute this difference to additional collective magnetic character in the Mn 3s spectrum, perhaps due to ferromagnetic cluster formation, resulting in a slower time scale.

We have also explored the depth distribution of these effects below the surface. We have observed the same temperature-dependent effects when the core spectra were excited with higher photon energies so as to change the photoelectron escape depth Λ_e from ≈ 5 Å (as in the

data of Figs. 1 and 2) to $\approx 15 \text{ Å}$ (corresponding to an average emission depth of roughly 3 unit cells), indicating that the observed electronic structure changes affect more than the outermost surface layers. Finally, although not shown here, more bulk sensitive XAS spectra measured over the O K- and Mn L-edges and detected with secondary electrons of ≈ 100 eV kinetic energy as well as photons in the fluorescence-yield mode show remarkable changes when the temperature is varied through T_C and up to T_{sat}. And the most bulk sensitive XES data reveal a strong temperature dependence of the O $2p \rightarrow O$ 1s and Mn 3d \rightarrow Mn 2p transitions on crossing T_C and approaching T_{sat} . Thus, we estimate that these effects take place over at least the first 30-50 Å inward from the surface, or roughly 6-10 unit cells, and are indeed likely to be bulk phenomena. Although all of the results presented here are for La_{0.7}Sr_{0.3}MnO₃, we have also seen identical effects in experiments on La_{0.6}Sr_{0.4}MnO₃, with the only difference being that $T_{\rm sat}$ does not occur until about 150 K above T_C .

We now ask whether these dramatic electronic structure changes are accompanied by local JTDs of atomic positions in the oxygen octahedra surrounding each Mn atom, often considered a structural signature of polaron formation. Several prior experimental atomic structure studies have provided such evidence for the existence of polarons in "non-canonical" manganites, suggesting that the existence of polarons is directly related to JTDs [4, 5], but we now consider the presence of JTDs in these "canonical" compounds. As a first point, the long-timescale hysteresis of the temperature-driven change of the electronic structure (Fig. 2) qualitatively suggests the presence of slower-relaxing atomic displacements that are in turn responsible for the perturbations of the core and valence levels we observe. However, no obvious modification of the long-range crystal structure is shown by x-ray crystallography, since our samples are rhombohedral at all temperatures studied [8]. We have thus explored the possibility of short-range modifications in structure on passing T_C via bulk-sensitive Mn K-edge EXAFS measurements performed on a La_{0.7}Sr_{0.3}MnO₃ sample in the fluorescence-yield mode.

The EXAFS data permit extracting the temperature dependence of the variance of the Mn-O bond length distribution, σ^2 (Fig. 3). Also shown for comparison are some data on the La_{1-x}Ca_xMnO₃ series from Ref. [5]. At low temperatures, the σ^2 of La_{0.7}Sr_{0.3}MnO₃ approaches that of the JTD-free CaMnO₃ material. As the temperature is increased toward T_C, σ^2 increases more rapidly than one expects from a purely vibrational analysis via the correlated-Debye model [15]. Above T_C, σ^2 increases more gradually, again consistent with a Debye-model broadening. These data thus suggest a JTD that develops with increasing temperature and saturates once the system becomes paramagnetic, as observed in a previous EXAFS study of La_{1-x}Ca_xMnO₃ [5]. The size of the

FIG. 3: EXAFS results for the variance of the Mn-O bond length distribution σ^2 with temperature for La_{0.7}Sr_{0.3}MnO₃, compared with similar data from ref. [5] for CaMnO₃ and La_{0.75}Ca_{0.25}MnO₃. The solid line through the CaMnO₃ data is a correlated-Debye fit with $\Theta_{cD} = 860$ K. Dashed curves represent the experimental data. The same curve is drawn through the La_{0.7}Sr_{0.3}MnO₃ data except with a 0.0015 Ų offset, and again through the La_{0.75}Ca_{0.25}MnO₃ data with a 0.0035 Ų offset. Curie temperatures of La_{0.75}Ca_{0.25}MnO₃ and La_{0.7}Sr_{0.3}MnO₃ are indicated.

apparent JTD in our Sr-doped compound is only about half that in the Ca-doped compound, a difference which may be the microscopic cause of the metallic state that survives in the paramagnetic state of the Sr-doped (but not Ca-doped) materials.

Our data thus provide direct experimental evidence for the presence of polarons in the LSMO compounds, since they show both charge localization onto the Mn atom and JTDs. There is theoretical support for this, since Millis et al. predicted that, for x > 0.2 in LSMO, strong electron-phonon coupling should localize the electrons via polarons, with the JT energy remaining important even in the metallic state [3]. It may at first sight seem that polaronic electron localization and metallic conduction (our samples are metallic for all temperatures) are mutually exclusive, but there is experimental evidence suggesting that in fact they are not. E.g., neutron scattering measurements with pair distribution function analysis (PDF) have shown that for LSMO up to x = 0.4local JTDs are observed even in the metallic phase [6], with somewhat larger magnitudes than reported here. However, our results are in quantitative agreement with another recent EXAFS study in which a distortion in the metallic phase is observed but to a lesser degree than in the PDF analysis [16].

It is also possible, and consistent with our data, that the polarons have a magnetic character, i.e. that above T_C the carriers become localized as the lattice is distorted

and magnetically polarize the neighboring Mn atoms, forming ferromagnetic clusters. Experimental evidence for the existence of such "magnetic polarons" has in fact been reported for a related class of compounds [4]. Recent theoretical studies also predict the presence of ferromagnetic clusters in the temperature range $T_C \leq T \leq T^*$, with T^* adding a new temperature scale, and these clusters growing in size when the temperature is reduced from T^* to below T_C [17]. All of our results are consistent with this scenario as well, and it is possible that the temperature T^* could be identified with our temperature T_{sat} .

FIG. 4: Two-phase fits of the Mn 3s temperature-dependent core spectra of Fig. 1a with a linear superposition of the spectra at low (T < 200 K) and high temperatures ($T \ge T_{\rm sat}$). The fraction Y of the high temperature spectrum (red curve in top panel) is the only free parameter. The variation of the multiplet splitting ΔE_{3s} (black points and curve in top panel) is shown for comparison. Fits to spectra at three specific temperatures are shown in the lower panels.

Finally, we comment on the possibility of phase separation in the LSMO system, which has been discussed previously from both experimental and theoretical viewpoints [6, 7, 18]. In order to determine whether the change in electronic structure that we observe is consistent with such a scenario, we have fitted the temperaturedependent core spectra with a linear superposition of the spectra at low temperature (< 200 K) and high temperature ($\geq T_{sat}$). The only free parameter used is the fraction Y of the high temperature spectrum. Some of the results of this type of fit for the Mn 3s spectra are shown in Fig. 4, where there is excellent agreement with experiment. Similar agreement was found for fits of the O, La, and Sr core levels (not shown). The spectra taken over $T_{\rm C} < T < T_{\rm sat}$ can thus be expressed as a linear combination of spectra acquired at low and high temperature, further implying the presence of unique low- and hightemperature electronic states and spectroscopic behavior

that is at least consistent with the presence of phase separation in these materials. Since our core-level measurements probe only the short-range electronic structure, they do not provide any information on the sizes of the domains of these two phases.

This study thus provides unexpected results which act to clarify and unify our understanding of the CMR materials. In particular, polaron formation, which in LSMO is directly observed via both electronic and atomic structure changes, is shown to be an important defining characteristic of the high-temperature paramagnetic state of the CMR materials, even when the electronic phase is metallic. We suggest that future temperature-dependent studies of the type carried out here and involving both core and valence level spectroscopies could shed important light on other CMR materials, as well as the closely related high-temperature superconductors.

We thank M. West, A. Mei, B. Sell, M. Watanabe, A. Nambu, S.B. Ritchey, E. Arenholz, and A.T. Young for assistance with the measurements; Z. Hussain for instrumentation development; Y. Tokura for assistance with obtaining samples, and A. Cavalleri and M.A. Van Hove for helpful discussions. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division, U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

- * Correspondence and requests for materials should be addressed to N. Mannella: norman@electron.lbl.gov
- Colossal Magnetoresistive Oxides, Ed. by Y. Tokura, Gordon and Breach Science Publishers (2000).
- [2] C. Zener, Phys. Rev. 82, 403 (1951); N. Furukawa, in Physics of Manganites, pp. 1-38, eds. Kaplan-Mahanti (Plenum, NY,1999); E. Dagotto, T. Hotta, and A. Moreo, Phys. Reports 344, 1 (2001).
- [3] A. J. Millis, P. B. Littlewood and B. I. Shraiman, Phys. Rev. Lett. **74**, 5144 (1995); A. J. Millis, B. I. Shraiman and R. Mueller, Phys. Rev. Lett. **77**, 175 (1996).
- [4] J. M. De Teresa, M. R. Ibarra, P. A. Algarabel, C. Ritter, C. Marquina, J. Blasco, J. Garcia, A. del Moral and Z. Arnold, Nature 386, 256 (1997).
- [5] C. H.Booth, F. Bridges, G. H. Kwei, J. M. Lawrence, A. L. Cornelius and J. J. Neumeier, Phys. Rev. B 57, 10440 (1998).
- [6] D. Louca and T. Egami, Phys. Rev. B 59, 6193 (1999).
- [7] A. Moreo, S. Yunoki and E. Dagotto, Science 283, 2034 (1999); N. Mathur and P. Littlewood, Physics Today, January 2003.
- [8] A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido and Y. Tokura, Phys. Rev. B 51, 14103 (1995); Y. Moritomo, A. Asamitsu and Y. Tokura, Phys. Rev. B 56, 12190 (1997).
- [9] C. S. Fadley, D. A. Shirley, A. J. Freeman, P. S. Bagus and J. V. Mallow, Phys. Rev. Lett. 23, 1397 (1969).
- [10] G.-H. Gweon, J.-G. Park and S.-J. Oh, Phys. Rev. B 48, 7825 (1993); L. Sangaletti, L. E. Depero, P. S. Bagus and

- F. Parmigiani, Chem. Phys. Lett. 245, 463 (1995).
- [11] V. R. Galakhov, M. Demeter, S. Bartkowski, M. Neumann, N. A. Ovechkina, E. Z. Kurmaev, N. I. Lobachevskaya, Ya. M. Mukovskii, J. Mitchell and D. L. Ederer, Phys. Rev. B 65, 113102 (2002) and references therein.
- [12] This simple exchange-splitting interpretation of the 3s spectra is justified, since the 3s spectra of Mn oxides have been found in prior work [10] to be dominated by exchange effects rather than charge-transfer effects.
- [13] B. D.Hermsmeier, C. S. Fadley, B. Sinkovic, M. O. Krause, J. Jimenez-Mier, P. Gerard, T. A. Carlson, S. T. Manson and S. K. Bhattacharya, Phys. Rev. B 48, 12425 (1993).
- [14] Since the exchange interaction between the Mn 3s and

- 3d levels is strongly localized on the Mn atom, we can reasonably assume that the exchange integral ${\bf J}_{3s-3d}^{\rm eff}$ is constant with temperature.
- [15] E. D. Crozier, J. J. Rehr, and R. Ingalls in X-ray Absorption: Principles, Applications and Techniques of EXAFS, SEXAFS, and XANES, edited by D. Konigsberger and D. Prins (Wiley, New York, 1988), p. 373.
- [16] T. Shibata, B. A. Bunker and J. F. Mitchell, Phys. Rev. B 68, 024103 (2003).
- [17] J. Burgy, M. Mayr, V. Martin-Mayor, A. Moreo, and E. Dagotto, Phys. Rev. Lett. 87, 277202 (2001).
- [18] T. Shibata, B. Bunker, J. F. Mitchell and Peter Schiffer, Phys. Rev. Lett., 88, 207205 (2002).