Started on	Tuesday, 11 March 2025, 3:51 PM			
State	Finished			
Completed on	Tuesday, 11 March 2025, 3:58 PM			
Time taken	6 mins 23 secs			
Marks	14.00/15.00			
Grade	93.33 out of 100.00			
Question 1				
Complete				
Mark 1.00 out of 1.00				
What loss function is	used to train the U-Net model?			
a. Huber Loss				
b. Mean Absolute Error (MAE)				
c. Cross-Entro	○ c. Cross-Entropy Loss			
d. Mean Squar				
o a. moan oqua.				
Question 2				
Complete				
Mark 1.00 out of 1.00				
IVIAIR 1.00 Out Of 1.00				
What is the main adv	rantage of a Variational Autoencoder (VAE) over a standard Autoencoder?			
a VAE introduc	ces stochasticity, allowing it to generate diverse outputs			
	it use any encoder-decoder structure			
	s noise in a stepwise manner like Stable Diffusion			
d. VAE can only	reconstruct input images, while a standard Autoencoder generates new images			
_				
Question 3				
Complete				
Mark 1.00 out of 1.00				
What does the "gene	rate_image` function do in the implementation?			
a. It trains the	U-Net model on new data			
	rtifacts from a given image			
d. It generates	an image by reversing the diffusion process from pure noise			

Ou	esti	ion	4

Complete

Mark 0.00 out of 1.00

Why is 'alpha_t' used in the reverse diffusion process?

- a. To control the step size of the optimizer
- b. To update the weights of the U-Net model
- o. To randomly generate new noise samples
- d. To scale back the original image information that was corrupted

Question 5

Complete

Mark 1.00 out of 1.00

In the training step, what does the U-Net model predict?

- a. The class label of the image
- b. The segmentation map of the image
- o. The noise added at a given time step
- d. The denoised image

Question 6

Complete

Mark 1.00 out of 1.00

What is a key difference between Variational Autoencoders (VAEs) and Stable Diffusion in terms of randomness?

- a. Stable Diffusion does not use a probabilistic approach, unlike VAE
- b. VAEs add noise at every step like Stable Diffusion
- © c. VAEs use a fixed latent space, while Stable Diffusion introduces randomness at every denoising step
- Od. VAEs use diffusion models internally for training

Question 7

Complete

Mark 1.00 out of 1.00

How does a traditional Autoencoder differ from Stable Diffusion in terms of learning representation?

- a. Autoencoders learn a compressed latent representation, while Stable Diffusion learns a noise removal process
- b. Autoencoders use a denoising process to gradually add noise
- oc. Autoencoders work with random noise, while Stable Diffusion works only with clean images
- \bigcirc d. Autoencoders generate images from pure noise, while Stable Diffusion reconstructs missing parts

Question 8			
Complete			
Mark 1.00 out of 1.00			
What is the purpose of the forward diffusion process in Stable Diffusion?			
a. To fine-tune the neural network			
○ b. To upscale the image resolution			
c. To progressively add noise to an image			
O d. To remove noise from an image			
Question 9			
Complete			
Mark 1.00 out of 1.00			
What is the function of the `add_noise` method in the code?			

- a. To denoise the images using the trained model
- b. To add Gaussian noise to an image at a specific time step
- oc. To transform images into high-resolution samples
- Od. To predict the missing pixels in an image

Question 10

Complete

Mark 1.00 out of 1.00

How does Stable Diffusion differ from VAE in terms of image generation?

- a. Stable Diffusion does not use deep learning, while VAE does
- O b. VAE does not encode image information, while Stable Diffusion does
- o c. Stable Diffusion starts with a latent noise vector and removes noise iteratively, while VAE directly decodes a latent space vector
- Od. VAE uses a stepwise noise removal process, while Stable Diffusion directly generates an image

Question 11

Complete

Mark 1.00 out of 1.00

Why do we use a U-Net architecture in the reverse diffusion process?

- a. It applies transformations to images to enhance sharpness
- b. It reduces computational cost by compressing images
- oc. It efficiently predicts and removes noise from images
- Od. It generates new image samples directly from noise

Question 12 Complete Mark 1.00 out of 1.00

Why does Stable Diffusion perform better at high-resolution image generation compared to VAE?

- a. It works in a latent space and gradually denoises the image, preserving fine details
- b. It does not require training like VAE
- oc. It does not use any form of encoder-decoder architecture
- od. It has a simpler architecture than VAE

Question 13

Complete

Mark 1.00 out of 1.00

In the forward diffusion process, what is the role of the 'betas' variable?

- a. It defines the learning rate of the optimizer
- b. It sets the activation function threshold
- o. It controls the noise variance added at each step
- od. It determines the noise reduction factor during denoising

Question 14

Complete

Mark 1.00 out of 1.00

Why do we use the `torch.no_grad()` decorator in the `generate_image` function?

- a. To ensure that the output image is always different
- b. To allow the network to learn during inference
- c. To prevent unnecessary gradient computations and reduce memory usage
- d. To improve model accuracy

Question 15

Complete

Mark 1.00 out of 1.00

In the denoising step, why do we add a small amount of random noise back in each step?

- igcup a. To reduce the training time
- b. To speed up the diffusion process
- o. To make the denoising process deterministic
- d. To introduce diversity and prevent mode collapse