RL for Operations Day 1: MDP Basics, VI+PI, Deep RL

Sean Sinclair, Sid Banerjee, Christina Yu Cornell University

RL for Operations Day 1: MDP Basics, VI+PI, Deep RL

Sean Sinclair, Sid Banerjee, Christina Yu Cornell University

RL for Operations, 2022

Data Driven Decision Making at Simons

- First bootcamp August 22nd to August 26th
- Live streamed on youtube + zoom
- https://simons.berkeley.edu/workshops/datadriven-2022-bc

Plan for Today

MDP Basics

- Basic framework for Markov Decision Processes
- Tabular RL Algorithms with policy iteration + value iteration
- DeepRL algorithms (and their "tabular" counterparts)

Simulation Implementation

 Develop simulator for problem using OpenAl Gym API

Simulation Packages

- OpenAl Framework for simulation design
- Existing packages and code-bases for RL algorithm development

Tabular RL Algorithms

 Implement basic tabular RL algorithms to understand key algorithmic design aspects of value estimates + value iteration, policy iteration

Plan for Today

MDP Basics

- Basic framework for Markov Decision Processes
- Tabular RL Algorithms with policy iteration + value iteration
- DeepRL algorithms (and their "tabular" counterparts)

Simulation Implementation

 Develop simulator for problem using OpenAl Gym API

Simulation Packages

- OpenAl Framework for simulation design
- Existing packages and code-bases for RL algorithm development

Tabular RL Algorithms

 Implement basic tabular RL algorithms to understand key algorithmic design aspects of value estimates + value iteration, policy iteration

MDP Basics

Siddhartha Banerjee Cornell University

Success of RL

Backgammon

MuJoCo Simulator

AlphaGo Zero

Focused on game playing + robotics

[Silver2017, Tesauro1995]

This Workshop

This workshop focuses on RL for Operations

We care about:

A Story

Typical question: "which decision is better"

City of Ithaca homepage photo

A/B Test 50% 50%

Take users, divide randomly, observe which has longer visit times

Bandit Algorithms

Adaptively partition users based on observed feedback thus far

Bandit Algorithms

Renaissance of use in industry, motivated new theory + practice research

Bandit Algorithms

Bandit problems are a dynamic "supervised learning" model, no feedback effects

Developing algorithms for RL in Operations can be the *next big success* in industry

Supervised Learning

Supervised Learning

Theory and practice relies on prediction not affecting data distribution

Markov Decision Process (MDP) System Environment Agent Algorithm

Policy: Determine action based on state

Environment: Determine reward and new state

Policy: Determine action based on state

Environment: Determine reward and new state

Policy: Determine action based on state

MDP vs Supervised Learning

	Learn from Experience	Generalize	Interactive	Exploration	Credit Assignment
Supervised Learning	✓	✓	*	*	×
Reinforcement Learning	✓	✓	✓	✓	✓

MDP vs Supervised Learning

	Learn from Experience	Generalize	Interactive	Exploration	Credit Assignment
Supervised Learning	✓	✓	×	×	×
Reinforcement Learning	✓	✓	✓	✓	✓

Infinite Horizon Discounted

A MDP is defined by: $\mathcal{M} = \{S, A, r, T, s_0, \gamma\}$

 \mathcal{S}

State space

 \mathcal{A}

Action space

 $r: \mathcal{S} \times \mathcal{A} \to [0,1]$

Reward

 $T: \mathcal{S} \times \mathcal{A} \to \Delta(\mathcal{S})$

Transitions

 $\gamma \in [0,1)$

Discount

Infinite Horizon Discounted

A MDP is defined by: $\mathcal{M} = \{S, A, r, T, s_0, \gamma\}$

$$r_1 + \gamma r_2 + \gamma^3 r_3 + \gamma^4 r_4 \dots$$

 $\gamma \in [0,1)$ Discount

Infinite Horizon Discounted

A MDP is defined by: $\mathcal{M} = \{S, A, r, T, s_0, \gamma\}$

 \mathcal{S}

State space

 \mathcal{A}

Action space

 $r: \mathcal{S} \times \mathcal{A} \rightarrow [0, 1]$

Reward

 $T: \mathcal{S} \times \mathcal{A} \to \Delta(\mathcal{S})$

Transitions

 $\gamma \in [0,1)$

Discount

 $\pi: \mathcal{S} \to \Delta(\mathcal{A})$

Policy

Policies are non-stationary

Finite Horizon

A MDP is defined by: $\mathcal{M} = \{S, A, r, T, s_0, \gamma\}$

 \mathcal{S}

State space

 \mathcal{A}

Action space

 $r_h: \mathcal{S} \times \mathcal{A} \to [0, 1]$

Reward

 $T_h: \mathcal{S} \times \mathcal{A} \to \Delta(\mathcal{S})$

Transitions

H

Time horizon

 $\pi_h: \mathcal{S} \to \Delta(\mathcal{A})$

Policy

Finite Horizon

H Time horizon

Infinite Horizon

- Future rewards discounted at rate of γ
- "Less" importance on future rewards
- Transition, rewards, policy, not allowed to depend on timestep

$$r_1 + \gamma r_2 + \gamma^3 r_3 + \gamma^4 r_4 \dots$$

Finite Horizon

- Future rewards are not discounted
- "More" importance on future rewards
- Transition, rewards, policy allowed to depend on timestep

$$\lim_{T \to \infty} \frac{1}{T} (r_1 + r_2 + \ldots + r_T)$$

Average Cost

- Future rewards are not discounted
- Transition, rewards, policy, not allowed to depend on timestep
- Typically studied in queueing + scheduling literature

$$\lim_{T \to \infty} \frac{1}{T} (r_1 + r_2 + \ldots + r_T)$$

People tune discount factor in practice

Average Cost

- Future rewards are not discounted
- Transition, rewards, policy, not allowed to depend on timestep
- Typically studied in pure OR literature

Informal Theorem: There exists a discount such that the optimal policy in infinite horizon discounted problem is optimal under average cost

Infinite Horizon

- Future rewards discounted at rate of γ
- "Less" importance on future rewards
- Transition, rewards, policy, not allowed to depend on timestep

$$r_1 + \gamma r_2 + \gamma^3 r_3 + \gamma^4 r_4 \dots$$

Finite Horizon

- Future rewards are not discounted
- "More" importance on future rewards
- Transition, rewards, policy *allowed* to depend on timestep

Value Function

The Value Function is expected return for policy

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(S_{h}, A_{h}) \mid S_{0} = s, A_{h} \sim \pi(S_{h}), S_{h+1} \sim T(\cdot \mid S_{h}, A_{h})\right]$$

$$Q^{\pi}(s, a) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(S_{h}, A_{h}) \mid (S_{0}, A_{0}) = (s, a), A_{h} \sim \pi(S_{h}), S_{h+1} \sim T(\cdot \mid S_{h}, A_{h})\right]$$

Expectation over randomness in policy and transitions

Value Function

The Value Function is expected return for policy

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^h r(S_h, A_h) \mid S_0 = s, A_h \sim \pi(S_h), S_{h+1} \sim T(\cdot \mid S_h, A_h)\right]$$

$$Q^{\pi}(s, a) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^h r(S_h, A_h) \mid (S_0, A_0) = (s, a), A_h \sim \pi(S_h), S_{h+1} \sim T(\cdot \mid S_h, A_h)\right]$$
 Starting Actions by policy by environment

Expectation over randomness in policy and transitions

Bellman Equation

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(S_{h}, A_{h}) \mid S_{0} = s, A_{h} \sim \pi(S_{h}), S_{h+1} \sim T(\cdot \mid S_{h}, A_{h})\right]$$

$$Q^{\pi}(s, a) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(S_{h}, A_{h}) \mid (S_{0}, A_{0}) = (s, a), A_{h} \sim \pi(S_{h}), S_{h+1} \sim T(\cdot \mid S_{h}, A_{h})\right]$$

The Bellman Equations note that:

$$V^{\pi}(s) = \mathbb{E}_{A \sim \pi(s)}[r(s, A) + \gamma \mathbb{E}_{S' \sim T(\cdot \mid s, A)}[V^{\pi}(S')]]$$

$$Q^{\pi}(s, a) = r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot \mid s, a)}[V^{\pi}(S')]$$

Optimal Policy

For an infinite horizon discounted MDP, there exists a deterministic stationary policy:

$$\pi^*: \mathcal{S} \to \mathcal{A}, \text{ s. t. } V^{\pi^*}(s) \geq V^{\pi}(s) \ \forall s, \pi$$

See [Puterman1994]

Our goal is to find this policy, either looking at:

- Sample complexity (statistics)
- Optimization complexity

Optimal Policy

For an infinite horizon discounted MDP, there exists a deterministic stationary policy:

$$\pi^*: \mathcal{S} \to \mathcal{A}, \text{ s. t. } V^{\pi^*}(s) \geq V^{\pi}(s) \ \forall s, \pi$$

See [Puterman1994]

Denote
$$V^*=V^{\pi^*}, Q^*=Q^{\pi^*}$$

Bellman Optimality

The optimal policy satisfies Bellman Optimality equation:

$$V^*(s) = \max_{a \in \mathcal{A}} r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot | s, a)} [V^*(S')]$$

Q-greedy policy:
$$\pi^*(s) = \operatorname{argmax}_a Q^*(s,a)$$

See [Puterman1994]

Bellman Optimality

The optimal policy satisfies Bellman Optimality equation:

$$V^*(s) = \max_{a \in \mathcal{A}} r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot | s, a)} [V^*(S')]$$

Q-greedy policy:
$$\pi^*(s) = \operatorname{argmax}_a Q^*(s,a)$$

See [Puterman1994]

$$V^{\pi}(s) = \mathbb{E}_{A \sim \pi(s)}[r(s, A) + \gamma \mathbb{E}_{S' \sim T(\cdot | s, A)}[V^{\pi}(S')]]$$

Fixed Point Uniqueness

If
$$V(s) = \max_{a \in \mathcal{A}} r(s, a) + \gamma \mathbb{E}_{S' \sim T(\cdot | s, a)}[V(S')]$$

then
$$V(s) = V^*(s) \forall s$$

See [Puterman1994]

Highlights uniqueness of fixed point of the Bellman equation

Discounted?

Infinite Horizon

- Future rewards discounted at rate of γ
- "Less" importance on future rewards
- Transition, rewards, policy, not allowed to depend on timestep

$$r_1 + \gamma r_2 + \gamma^3 r_3 + \gamma^4 r_4 \dots$$

Finite Horizon

- Future rewards are not discounted
- "More" importance on future rewards
- Transition, rewards, policy allowed to depend on timestep

Value Function

The Value Function is expected return for policy

$$V_h^{\pi}(s) = \mathbb{E}\left[\sum_{h'=h}^{H} r_{h'}(S_{h'}, A_{h'}) \mid S_h = s, A_{h'} \sim \pi(S_{h'}), S_{h'+1} \sim T_{h'}(\cdot \mid S_{h'}, A_{h'})\right]$$

$$Q^{\pi}(s, a) = \mathbb{E}\left[\sum_{h'=h}^{H} r_{h'}(S_{h'}, A_{h'}) \mid (S_h, A_h) = (s, a), A_{h'} \sim \pi(S_{h'}), S_{h'+1} \sim T_{h'}(\cdot \mid S_{h'}, A_{h'})\right]$$

Expectation over randomness in policy and transitions

Bellman Equation

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(S_{h}, A_{h}) \mid S_{0} = s, A_{h} \sim \pi(S_{h}), S_{h+1} \sim T(\cdot \mid S_{h}, A_{h})\right]$$

$$Q^{\pi}(s, a) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(S_{h}, A_{h}) \mid (S_{0}, A_{0}) = (s, a), A_{h} \sim \pi(S_{h}), S_{h+1} \sim T(\cdot \mid S_{h}, A_{h})\right]$$

The Bellman Equations note that:

$$V_h^{\pi}(s) = \mathbb{E}_{A \sim \pi_h(s)}[r_h(s, A) + \mathbb{E}_{S' \sim T_h(\cdot | s, A)}[V_{h+1}^{\pi}(S')]]$$

$$Q_h^{\pi}(s, a) = r_h(s, a) + \mathbb{E}_{S' \sim T_h(\cdot | s, a)}[V_{h+1}^{\pi}(S')]$$

Optimal Policy

For a finite horizon MDP, there exists a deterministic (potentially nonstationary) policy:

$$\pi_h^* : \mathcal{S} \to \mathcal{A}, \text{ s. t. } V_h^{\pi^*}(s) \ge V_h^{\pi}(s) \forall s, \pi$$

See [Puterman1994]

Our goal is to find this policy, either looking at:

- Sample complexity (statistics)
- Optimization complexity

Optimal Policy

For a finite horizon MDP, there exists a deterministic (potentially nonstationary) policy:

$$\pi_h^* : \mathcal{S} \to \mathcal{A}, \text{ s. t. } V_h^{\pi^*}(s) \ge V_h^{\pi}(s) \forall s, \pi$$

See [Puterman1994]

Denote
$$V_h^* = V_h^{\pi^*}, Q_h^* = Q^{\pi^*}$$

Bellman Optimality

The optimal policy satisfies Bellman Optimality equation:

$$V_h^*(s) = \max_{a \in \mathcal{A}} r_h(s, a) + \mathbb{E}_{S' \sim T_h(\cdot | s, a)} [V_{h+1}^*(S')]$$

Q-greedy policy: $\pi_h^*(s) = \operatorname{argmax}_a Q_h^*(s,a)$ See [Puterman1994]

Fixed Point Uniqueness

If
$$V_h(s) = \max_{a \in \mathcal{A}} r_h(s,a) + \mathbb{E}_{S' \sim T_h(\cdot \mid s,a)}[V_{h+1}(S')]$$
 then $V(s) = V^*(s) \forall s$

See [Puterman1994]

Highlights uniqueness of fixed point of the Bellman equation

References

[Puterman1994] Martin Puterman. "Markov Decision Processes: Discrete Stochastic Dynamic Programming". *John Wiley + Sons*, 1994.

[Sutton2018] Richard Sutton. "Reinforcement Learning: An Introduction." MIT Press, 2018.

[Agarwal2021] Alekh Agarwal, Nan Jiang, Sham M. Kakade, Wen Sun.

"Reinforcement Learning: Theory and Algorithms". 2021.

[Slivkins2019] Alexsandrs Slivkins. "Introduction to Multi-Armed Bandits." Foundations and Trends in ML, 2019.

[Powell2021] Warren Powell. "Reinforcement Learning and Stochastic Optimization." 2021.

[Meyn2021] Sean Meyn. "Control Systems and Reinforcement Learning". *Cambridge University Press*, 2021.

Course Slides

Cornell CS6789: Foundations of Reinforcement Learning

https://wensun.github.io/CS6789_fall_2021.html

Stanford CS 234: Reinforcement Learning

https://web.stanford.edu/class/cs234/

UCL COMPM050: Course on RL

https://www.davidsilver.uk/teaching/