Model Documentation of the Stable PT_n Element

This document was automatically generated based on the ACKREP project system model with OV6ND. The Automatic Control Knowledge Repository, short ACKREP, aims to facilitate knowledge transfer of control theory and control engineering.

1 Nomenclature

1.1 Nomenclature for Model Equations

K proportional factor $T_1, T_2, \dots T_n$ time constants

2 Model Equations

State Vector and Input Vector:

$$\underline{x} = (x_1 \ x_2 \dots x_n)^T$$
$$u = u$$

Model Equations:

$$\dot{x}_1 = x_2 \tag{1a}$$

$$\dot{x}_2 = x_3 \tag{1b}$$

$$\vdots = \vdots \tag{1c}$$

$$\dot{x}_n = Ku - \mathcal{L}^{-1}(X(s) \prod_{i=1}^n (1 + T_i s))$$
(1d)

Parameters: T_1, T_2, \dots, T_n Outputs: $\langle not \ defined \rangle$

2.1 Assumptions

1. All Parameters have Real positive values

2.2 Exemplary parameter values

For a PT_2 Element:

TOT OF TELESCOPE			
Parameter Name	Symbol	Value	Unit
Proportional Factor	K	3	
Time Constant 1	T_1	5	\mathbf{s}
Time Constant 2	T_2	0.5	\mathbf{s}

3 Derivation and Explanation

Not available

References

[1] Janschek, K.: Mechatronic Systems Design, p. 795, Springer-Verlag Berlin Heidelberg, 2012