

Backward propagation $\frac{\text{Recall Chain} \text{Rule}}{\text{Eg.I} f(x,y,z) = (x+y)z} \quad \text{Chain} \text{-Rule}$ Let q = (x+y) and f = qz, then $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} * \frac{\partial q}{\partial x}$, $\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} * \frac{\partial q}{\partial y}$, $\frac{\partial f}{\partial q} = z$ $\frac{\text{Short-}}{\text{hand}} dx = dq * \frac{\partial q}{\partial x}, \quad dy = dq * \frac{\partial q}{\partial y}, \quad dq = z$ = dq * 1 $= \frac{z}{z} = \frac{z}{z} = \frac{z}{z}$

 $-dx_1 = 1 * dxsm$ $dsample_mean = -1 * dxsm$

(N,D)

Note dx = dx, + dx2,
from xsm from sample-mean

* dsample_mean

- 10 dgnx = 1 * dout dbeta = 1 * dout
- 9 I dgamma = normalized_x * dgnx

 I dnormalized_x = gamma * dgnx
- 8 I dxsm_= inversed_sqrt_sve * dnormalized_x dinversed_sqrt_sve = xsm * dnormalized_x
- 1 degrt_sve = (sq.rt_sve) * dinversed_sq.rt_sve
- 6 deve = $\frac{1}{2} * \frac{1}{\sqrt{2}} * degrt_sve$
- 5 { dsample_var = 1 * dsve deps < hyperparameter, so we don't back propagate it
- (1) $dsq_-xsm = \frac{1}{N} * np. ones((N,D)) * dsomple_vor$
- (3) dxsm = 2*xsm* dsq-xsm

 Note: dxsm = dxsm_1 + dxsm_2 [which is true since node "xsm" inputs to
 two other nodes (i.e. node "normalized-x" and node
 "sq-xsm")]

 normalized_x sq-xsm

Scanned by CamScanner