

Neural Style Transfer

What is neural style transfer?

Neural style transfer

Content () Style Generated image

Neural Style Transfer

What are deep ConvNets learning?

Visualizing what a deep network is learning

Pick a unit in layer 1. Find the nine image patches that maximize the unit's activation.

Repeat for other units.

Visualizing deep layers

Layer 2

Layer 3

Layer 4

Layer 5

Layer 2

Layer 3

Layer 4

Layer 5

Layer 2

Layer 3

Layer 4

Layer 5

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 5

Layer 4

Layer 5

Layer 5

Neural Style Transfer

Cost function

Neural style transfer cost function

[Gatys et al., 2015. A neural algorithm of artistic style. Images on slide generated by Justin Johnson]

Find the generated image G

1. Initiate G randomly

G:
$$100 \times 100 \times 3$$

T RUB

2. Use gradient descent to minimize J(G)

$$G:=G-\frac{d}{2G}J(G)$$

Neural Style Transfer

Content cost function

Content cost function

$$\underline{J(G)} = \alpha \underline{J_{content}(C,G)} + \beta J_{style}(S,G)$$

- Say you use hidden layer *l* to compute content cost.
- Use pre-trained ConvNet. (E.g., VGG network)
- Let $\underline{a^{[l](C)}}$ and $\underline{a^{[l](G)}}$ be the activation of layer l on the images
- If $a^{[l](C)}$ and $a^{[l](G)}$ are similar, both images have similar content $\int_{Content} \left(C_{i}(C_{i}) \frac{1}{2} \right) \left[\frac{1}{2} \left(C_{i}(C_{i}) C_{i}(C_{i}) \right) \right]^{2} dC_{i}$

Andrew Ng

Neural Style Transfer

Style cost function

Meaning of the "style" of an image

Say you are using layer *l*'s activation to measure "style." Define style as correlation between activations across channels.

How correlated are the activations across different channels?

Intuition about style of an image

Generated Image

Style matrix

Let
$$a_{i,j,k}^{[l]} = \text{activation at } (i,j,k)$$
. $G^{[l]} \text{ is } n_{c}^{[l]} \times n_{c}^{[l]}$

$$\Rightarrow C_{kk'}^{[l]} = \sum_{i=1}^{l} \sum_{j=1}^{l} C_{ijk}^{(l)} C_{ijk'}^{(l)}$$

$$\Rightarrow C_{kk'}^{(l)} = \sum_{i=1}^{l} \sum_{j=1}^{l} C_{ijk'}^{(l)} C_{ijk'}^{(l)}$$

$$\int_{S+y}^{CLT} (S, G) = \frac{1}{(S-1)} \left\| G_{1}(S) - G_{2}(G) \right\|_{F}^{2}$$

$$= \frac{1}{(2n_{H}^{2}n_{W}^{2}n_{W}^{2}n_{W}^{2}n_{W}^{2})^{2}} \left\{ \sum_{k}^{C} \left(G_{kk'} - G_{kk'} - G_{kk'} \right)^{2} \right\}$$

[Gatys et al., 2015. A neural algorithm of artistic style]

Style cost function

$$J_{style}^{[l]}(S,G) = \frac{1}{\left(2n_H^{[l]}n_W^{[l]}n_C^{[l]}\right)^2} \sum_{k} \sum_{k'} (G_{kk'}^{[l](S)} - G_{kk'}^{[l](G)})$$

Convolutional Networks in 1D or 3D

1D and 3D generalizations of models

Convolutions in 2D and 1D

Andrew Ng

3D convolution

