20/11/19

Indian Institute of Engineering Science and Technology, Shibpur B.Tech 7th Semester (CST) Examination 2019 Under 5-year Dual-Degree (B. Tech-M. Tech) Programme Software Engineering CS-702

Full marks: 70

Time: 3 hours

All parts of a question are to be answered together Questions 1 and 2 are mandatory and answer any 3 from the rest

- 1. [Mandatory Question] Answer all questions.
 - a) What is software redundancy? How does it help in achieving the requirements of fault tolerant systems?
 - b) How does the principles of Extreme Programming (XP) are consistent with the "Agile Manifesto"? Explain with justification.
 - c) Consider XYZ.com is a company which is consisting of few departments. The departments are located in one or more offices and one such office designated as headquarter. Each department has a manager who is recruited from the set of employees. Design a Class diagram for this problem.

[5+7+7] = 19

- 2. [Mandatory Question] Answer any 7 questions (not exceeding 7) out of 10 in brief.
 - a) What is "V" model of Software Development Life Cycle?
 - b) Name few types of testing which are used to test non-functional requirements.
 - c) What is the importance of coding standard that are followed in respective organization?
 - d) How Intermediate COCOMO mitigates the drawbacks of Basic COCOMO model?
 - e) What is Decision Table technique to specify software requirements?
 - f) Explain the terms, statement coverage, branch coverage, and path coverage.
 - g) What are the differences between White Box and Black Box Testing?
 - h) What are the challenges involved in Error Seeding technique?
 - i) What are the limitations of Data Flow Diagram (DFD)?
 - i) Explain the State Chart Diagram in the context of software modelling.

 $[7 \times 3] = 21$

- 3. a) In UML, why Usecase diagram factoring is needed? What are the differences between <<include >> and <<extend>> relationship in UML Usecase factoring? Explain with an example.
 - a) Explain how code integration is performed in mixed or sandwich approach of code integration? Mention the use of Structure chart in this context.

[5+5]=10

- 4. a) How can you determine whether a given design is modular or not?
 - b) Describe various kinds of cohesiveness using suitable example.

[4+6] = 10

5. A certain project can be split into 9 distinct activities A, B, ..., I. The time (in weeks) to complete each activity is as given below, along with the dependencies among the activities.

Activity	Order / dependency	Estimated time (in weeks)
A	Must be done first	8
В	Can only start when A is completed	6
C	Can only start when A is completed	7
D	Can only start when B is completed	8
Е	Can only start when C is completed	11
F	Can only start when C is completed	2
G	Can only start when D and E are completed	3
Н	Can only start when F is completed	10
I	Can only start when G and H are completed	5

- a) Draw the Activity Network for the project following AOA approach
- b) For each activity compute the following parameters so that the overall project can be completed as early as possible
 - i. Earliest time at which it can start
 - ii. Latest time at which the activity must start
 - iii. Slack time
- c) Find the Critical Path and minimum time to complete the project.

$$[4+4+2] = 10$$

6. Consider the following function in C programming language

```
int computeSum( int arrayElems[],
                    int excludeElem,
                    unsigned char numOfElems)
1
2
      unsigned char index = 0;
3
      int sum = 0;
      while(index < numOfElems) {
4
          int tempElem = arrayElems[index];
5
          if((0 == tempElem%2) && (tempElem != excludeElem))
6
7
8
              sum += tempElem;
9
10
          index++;
11
12
       return sum;
13 }
```

- a) Draw the Control Flow Graph (CFG) for the above function.
- b) Compute the McCabe's Cyclomatic complexity of the above function applying all possible approaches and find all Linearly Independent Paths (LIPs) in the CFG.

$$[5+5]=10$$