Exercise 1. Let $X_1, \dots, X_n \overset{\text{i.i.d}}{\sim} \operatorname{Exp}(\lambda)$ for $\lambda > 0$ (rate) and $n \in \mathbb{N}$ with $n \geq 2$. Consider the following estimators for the parameter $\mu = \frac{1}{\lambda}$:

$$\hat{\mu}_1 = n \min (X_1, \dots, X_n), \qquad \hat{\mu}_2 = \frac{1}{n-1} \sum_{i=1}^n X_i.$$

- (a) Compute the expectation of $\hat{\mu}_1$ and $\hat{\mu}_2$. Are the estimators unbiased for μ ? Justify your answer. [1.5 points]
- (b) Show that $MSE(\hat{\mu}_1) = \mu^2$ and $MSE(\hat{\mu}_2) = \frac{n+1}{(n-1)^2}\mu^2$. [2 points]
- (c) Are $\hat{\mu}_1$ and $\hat{\mu}_2$ consistent? Justify your answer. [0.5 points]

Exercise 2. For $n \in \mathbb{N}$ let X_1, \dots, X_n be i.i.d random variables with density function:

$$f_X(x|\alpha) = \frac{\alpha}{x^2} \exp\left(-\frac{\alpha}{x}\right), \quad x > 0, \, \alpha > 0.$$

In the following, x_1, \dots, x_n denotes a sample from these random variables.

- (a) Find the maximum likelihood estimator (MLE), $\hat{\alpha}$, for α . [2.5 points]
- (b) Compute the asymptotic distribution of $\hat{\alpha}$. [2 points]
- (c) The median η of the distribution specified above is given as $\eta = \alpha/(\log 2)$. Obtain the MLE, $\hat{\eta}$, for η . [0.5 points]
- (d) Use the univariate Delta method to obtain the asymptotic distribution of the estimator $\hat{\eta}$. [1 point]