Type Author Citation Literature Cutoff Date Full Evaluation Yang Dong, Huo Junde NDS 128, 185 (2015) 10-Jul-2015

 $Q(\beta^-)=-4711.2\ 19;\ S(n)=12038.4\ 9;\ S(p)=10503.4\ 9;\ Q(\alpha)=-9351.3\ 6$ 2012Wa38 Other reactions: ${}^{48}\text{Ti}(\alpha,\gamma)\ E=6-12\ \text{MeV},\ 1976\text{Fo04};\ {}^{48}\text{Ti}({}^{16}\text{O},{}^{12}\text{C})\ E=120\ \text{MeV}\ (1979\text{Da07});\ {}^{53}\text{Cr}({}^{12}\text{C},{}^{13}\text{C})\ E=18.5-33\ \text{MeV}\ (1974\text{PaZZ});\ {}^{54}\text{Fe}({}^{18}\text{O},{}^{20}\text{Ne})\ E=48,50\ \text{MeV}\ (1972\text{SiYD},1975\text{PeZM}).$

⁵²Cr Levels

Cross Reference (XREF) Flags

						<u>I</u>	
	A B C D E F G H I J K L	⁵² V β ⁻ decay (3.743 r ⁵² Mn ε decay (5.591 d ⁵² Mn ε decay (21.1 m (HI,xnγ) ⁵⁰ Ti(³ He,n) ⁵² Cr(p,p'γ) ⁵² Cr(p,p') ⁵⁰ Cr(t,p) ⁵¹ V(p,γ) E=res:IAR ⁵¹ V(³ He,d) ⁵¹ V(³ He,dγ) ⁵⁵ Mn(p,α)	d) N	52 Cr(γ , γ'),(pol γ , γ') 52 Cr(e,e') 52 Cr(π^+ , π^+),(π^+ , π^+) 52 Cr(n,n') 52 Cr(n,n' γ) 50 V(α ,d) 50 Ti(16 O, 14 C) 52 Cr(d,d') 52 Cr(3 He, 3 He') 52 Cr(2 Cr(3 Li, 7 Li') 52 Cr(7 Li, 7 Li')	')	Z C. Others: AA 50 AB 53 AC 53 AD 53 AE 54 AF 55 AG 51 AH 56	$Cr(^{16}O,^{16}O'),(^{18}O,^{18}O')$ oulomb excitation $Cr(\alpha,^2He)$ $Cr(\alpha,^2He)$ $Cr(d,t),(pol\ d,t)$ $Cr(^3He,\alpha)$ $Cr(p,t)$ $Mn(\mu^-,3n\gamma)$ $V(\alpha,t)$ $Cr(^6Li)$ $Cr(^6Li)$ $Cr(^6Li)$
E(level) [†]	J^{π}	$T_{1/2}^{m}$		XREF			Comments
0.0 ^p	0+		RCDFFGHT	JKLMNO Q S UVWXYZ	XRFF:	Others:	AA, AB, AC, AD, AE, AF, AG, AH,
1434.091 ^p 14	2+			JKLMNOPQ STUVWXYZ	AI rms ch rms (196 (197 XREF: μ =+2.4 Q=-0. J ^{π} : E2 T _{1/2} : I (³ He	arge radiu charge rad 2Jo05), rr 6Li19) (e. Others: <i>I</i> 11 13 (200 082 16 (1 γ to 0 ⁺ . From Coul	as=3.6424 fm 21 (2004An14). others: dius=3.61 fm 8, muonic x-ray ms charge radius=3.674 fm 15 ,e'). AB, AC, AD, AE, AF, AG, AH, AI
2369.630 ^p 18	4+	6.7 ps +35–17 AE	BCD FG I	JKL NOPQ ST VW Z	XREF: B(E4)1 XREF: J^{π} : $L(a)$ B(E4)1 and $T_{1/2}$: I	Others: $I = 0.00066$ K(2368)I $(x,\alpha')=4$. The from we consider the constant of the cons	AB, AC, AD, AE, AF, AG, AH
2646.9 6	0+	A	FGH	L NO Q S V	XREF: XREF: AC(Others: <i>H</i> (2660)I 2640)AH(AB, AC, AE, AH L(2650)N(2650)O(2650)S(2640)V(2650) 2650). e')=L(t,p)=L(p,t)=0.
2767.767 21	4+	1.9 ps 5 AE	BCD FG I	JKL NO Q ST VW	XREF:	Others: A	AA, AB, AC, AD, AE, AG O(2770)V(2770)AA(2770)AC(2770)AD(

E(level) [†]	J^{π}	T _{1/2} ^m	XREF	Comments
2964.786 17	2+	0.42 ps 8	A C FGHIJKL NO Q ST V	J ^π : L(α,α')=4. T _{1/2} : DSAM, from weighted average of values 1.4 ps +5-3 (³ He,dγ) and 2.5 ps 6 (HI,xnγ). XREF: Others: AB XREF: H(2974)N(2970)O(2960)V(2960).
3113.858 ^p 21	6+	41.4 ps <i>14</i>	B D G IJKL N Q S VW	J ^π : E2 γ to 0 ⁺ . T _{1/2} : from (p,p' γ). Others: 0.47 ps +22–13, DSAM (³ He,d γ), 0.42 ps 21 (n,n' γ). XREF: Others: AA, AB, AG, AH XREF: N(3110)V(3110)AA(3110)AG(3110)AH(311 0).
3161.74 6	2+	0.035^n ps 7	A C FGHI KLMNO Q VW	J^{π} : L(p,p')=6, E2 γ to 4 ⁺ . $T_{1/2}$: RDM. Other: >1.8 ps (³ He,dγ), DSAM. XREF: Others: AB, AE, AH XREF: H(3175)AE(3168). J^{π} : L(α,α')=2.
3415.32 ^q 3	4+	0.26 ps 7	AB D FG IJKL O Q V	T _{1/2} : Others: 0.08 ps +4-3 (3 He,d γ) and 33 fs 5 (p,p' γ). XREF: Others: AB, AD XREF: J(3420)O(3420)V(3450)AB(3432)AD(3418). J $^{\pi}$: L(p,p')=4.
3472.25 <i>15</i>	3+	7.2 ps 8	A CD FG I KL Q S	$T_{1/2}$: from weighted average of values 0.22 ps +8-5 (3 He,dy) and 0.33 ps 9 (HI,xny). XREF: Others: AB, AC, AD, AG XREF: S(3440)AB(3494)AC(3460)AG(3440). J $^{\pi}$: 1968Mo19 propose the existence of two levels
				in this vicinity separated by 3.0 keV, one decaying by 703γ and having a spin of 3, 5 (from p,p' $\gamma(\theta)$), and another with spin 2 decaying by 2038γ . Subsequent work (1977Ya08, 1974Br04) shows that a single level at 3472.2 emits two γ 's (704.6 (78%) and 2038.0 (22%))
				and suggests that the two-level hypothesis was a result of an error in the energy assigned to the 704 γ by 1968Mo19. Furthermore, the p,p' γ (θ) data on the 2038 γ (1968Mo19) were found to be consistent with 3. $T_{1/2}$, together with L in
				transfer, suggest π =+. One further complication is the assignment of L=4 to the level by 1970Pr08 in (p,p'). L(p,p')=2+3. Thus existence of a J^{π} =4+ level at 3472 is tentatively ruled out. $T_{1/2}$: RDM. Other: >1.9 ps (3 He,d γ), DSAM, GT 0.49 ps (n,n' γ).
3615.924 22	5+	2.6 ps <i>12</i>	B D G IJKL	XREF: Others: AB XREF: J(3620)L(3619). J^{π} : log ft =6.15 from 6^{+} , $\gamma(\theta)$ in (HI,xn γ); π from L(3 He,d)=1. $T_{1/2}$: from 1.4 ps< $T_{1/2}$ <3.8 ps, lower limit,
				DSAM; upper, RDM. Other: >0.76 ps in (3 He,d γ), and 0.10 ps 7 (n,n' γ).
3739.6 ^a	1+,1-,2+		M	J^{π} : From (γ, γ') (1998En05), based on values of reduced transition strengths(\uparrow).
3771.72 <i>14</i>	2+	9 fs 2	A C EFGH JKLMNO Q S V	XREF: Others: AB, AC, AD, AG XREF: E(3700)H(3781)S(3780)V(3780)AB(3767)AC

E(level) [†]	J^π	T _{1/2} ^m	XREF	Comments
				J ^π : L(α,α')=2, L(³ He,d)=1. B(E2)↑=0.0071 8 (2007En02). T _{1/2} : from weighted average of values 9 fs 3 (n,n'γ) and 9 fs 4 (p,p'γ).
3947.5 6	2+	0.014 ⁿ ps 7	G I KL Q	(II,II γ) and 9 Is 4 (p,p γ). XREF: Others: AB XREF: G(3949)AB(3926). J ^{π} : L(p,p')=2, T _{1/2} : other: 0.10 ps +4-3 (³ He,d γ).
3951.2 10	2+		C GH J	XREF: G(3949)H(3957). J^{π} : L(p,p')=2, L(³ He,d)=1 from 7/2 ⁻ .
4015.51 ^q 3	5+	0.61 ps +27–19	B D G IJKL	XREF: Others: AD XREF: J(4020)AD(4017). J^{π} : log ft =6.6 from 6^{+} , π from L(3 He,d)=1. $T_{1/2}$: from weighted average of values 0.58 ps $+32-19$ (3 He,d $_{Y}$) and 0.7 ps 5 (HI,xn $_{Y}$).
4039.1 11	4+	26 ⁿ fs 4	D G IJKL NO V	XREF: Others: AB XREF: J(4033)V(4010)AB(4030). J^{π} : L(p,p')=L(α , α ')=4. $T_{1/2}$: other: 0.51 ps +25-14 (3 He,d γ).
4.10×10 ³ ^c 10	3-		P	XREF: Others: AC, AG XREF: P(4200)AC(4090). J^{π} : L(n,n')=3.
4470	3-		U	E(level): from (${}^{3}\text{He}, {}^{3}\text{He}'$). J^{π} : L(${}^{3}\text{He}, {}^{3}\text{He}'$)=3.
4563.0 8	3-	40 ⁿ fs 6	C GH JKL NOPQ S V X	B(E3) \uparrow =0.0066 3 XREF: H(4572)P(4600)V(4560). J ^{π} : L(α , α')=L(e,e')=3. T _{1/2} : other: 0.27 ps +12-6 (3 He,d γ).
4584.0 <i>7</i> 4611	(6 ⁺) (3,4) ⁺		D I	B(E3) from weighted average of values 0.0065 4 in (e,e') and 0.0068 5 in $(\pi^+,\pi^+),(\pi^+,\pi^{+'})$. J ^{π} : From (HI,xn γ), γ to 6 ⁺ . XREF: Others: AD XREF: AD(4605). J ^{π} : L(³ He, α)=3 on 3/2 ⁻ .
4627.32 19	4+		B G J L O	XREF: Others: AG XREF: G(4630)L(4630)O(4630)AG(4680). J^{π} : L(p,p')=4.
4702 5	2+		E G J L O	XREF: E(4710)L(4706)O(4710). J^{π} : L(³ He,n)=2.
4730 ^f 4742.3 11	4 ⁺ 0 ⁺		J V GHI L S	J ^{π} : L(α , α')=4. L(3 He,d)=1. XREF: G(4738)H(4745). J ^{π} : L(t,p)=0.
4750.31 ^p 20	8+	0.08 ⁿ ps 10	D QR	XREF: Others: AA XREF: AA(4770). $T_{1/2}$: Other: 0.64 ps +20-17 (HI,xn γ). J^{π} : $\gamma(\theta)$ in (HI,xn γ), E2 γ to 6 ⁺ .
4800.1 ^a 4805.96 ^q 24	1 ⁺ ,1 ⁻ ,2 ⁺ 6 ⁺	0.49 ps +28–14	M D G I L	J ^π : From (γ, γ') (1998En05). XREF: Others: AA XREF: I(4808)L(4808)AA(4770). J ^π : L(α , ² He)=4,6, γ (θ) in (HI,xn γ), M1+E2
4815.69 9	1+,2+		С	γ to 5 ⁺ . XREF: Others: AD XREF: ad(4830). J ^{π} : log ft =5.55 from 2 ⁺ , γ to 0 ⁺ .
4841.3 ^a 11	1+,1-,2+		G IJ LM	XREF: Others: AD

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{m}$	XREF		Comments
					XREF: G(4832)ad(4830).
4951 <i>4</i>	4+		G L	S	J^{π} : From (γ, γ') (1998En05). XREF: L(4950)S(4980).
4931 4	4		G L	3	J^{π} : L(p,p')=4.
5054.3 11	4 ⁺		I	V	XREF: V(5070).
					J^{π} : $L(\alpha, \alpha')=4$.
5095 <i>5</i>	4 ⁺		GJL	V	XREF: Others: AG
					XREF: V(5070)AG(5120).
5098.6 ^a 4	1	0.045° eV 10	I M		J ^{π} : L(³ He,d)=L(α ,t)=1, L(p,p')=L(α , α ')=4. J ^{π} : excitation in (γ , γ ').
5139 5	(6 ⁺)	0.043 CV 10	GJL		J^{π} : L(p,p')=5,6, L(3 He,d)=(3) from 7/2 $^{-}$.
5213.7 ^a 5	1	0.013° eV 3	G LM	S	J^{π} : excitation in (γ, γ') .
5285 5			GJL		XREF: L(5281).
					J^{π} : $L(^{3}\text{He,d})=0$ from $7/2^{-}$, $L(p,p')=5,6$.
5346 <i>4</i>	$4^{+},6^{+}$		G L		XREF: Others: AA
					XREF: AA(5320).
5396.9 ^q 3	7+	0.14 ms + 12 0	D		J ^{π} : L(α , ² He)=4,6. J ^{π} : $\gamma(\theta)$ in (HI,xn γ), M1+E2 γ to 6 ⁺ , E2 γ to
3390.91 3	7	0.14 ps +12-9	Д		$J^{"}: \gamma(\theta) \text{ in } (HI,XN\gamma), MI+EZ \gamma \text{ to } 0^{\circ}, EZ \gamma \text{ to } 5^{+}.$
5410 <i>4</i>	(2^{+})		GH j L		XREF: Others: AD
	· /				XREF: H(5423)j(5420)AD(5400).
					J^{π} : L(t,p)=(2).
5425 <i>5</i>	4+		GjL		XREF: j(5420)L(5422).
5432 6			G		$J^{\pi}: L(p,p')=4.$
5446.4 <i>5</i>	4+		HIJ L	V	XREF: Others: AG
3110.13	•		1113 12	•	XREF: H(5443)J(5450)L(5450)V(5450)AG(5450).
					J^{π} : $L(\alpha,\alpha')=4$.
5490.8 ^a	$1^+, 1^-, 2^+$		g LM		XREF: g(5494).
1.					J^{π} : excitation in (γ, γ') .
5500 ^b	3-		g N		XREF: g(5494).
5526.0 ^a 5	1	0.016° eV 3	М		J^{π} : L(e,e')=3. J^{π} : excitation in (γ, γ') .
5541 5	4 ⁺	0.010 67 3	G L		XREF: L(5538).
33 11 3	•		0 2		J^{π} : L(p,p')=4.
5544.7 <mark>a</mark> 10	(1^+)	0.112° eV 7	G LM		XREF: Others: AD
					XREF: G(5546)AD(5560).
5562.5.0	+				J^{π} : L(³ He, α)=(1) from 3/2 ⁻ , D γ to 0 ⁺ .
5563.5 8	'		GIL		XREF: G(5569)L(5571). J^{π} : L(³ He,d)=1 from 7/2 ⁻ .
5584 6	+		GJL		XREF: J(5594).
33010			0 3 2		J^{π} : L(³ He,d)=1 from 7/2 ⁻ .
5600 [#] 15	0^{+}		ЕН		XREF: E(5650).
3000 13	O		2		J^{π} : L(t,p)=L(3He,n)=0.
5633.4 11	(8^{+})		D	V	XREF: V(5640).
	(2)				J^{π} : From (HI,xn γ), γ to (6 ⁺).
5664.4 11	$(2)^{+}$		G IJ L		XREF: Others: AD
					XREF: G(5661)J(5660)AD(5670). J^{π} : L(p,p')=2. L(³ He,d)=1+3 from 7/2 ⁻ .
5725.3 12	+		GIJL	S	J : L(p,p) = 2. $L(He,d) = 1+3$ from $1/2$. XREF: Others: AD
3,23.3 12			Q 13 L	J	XREF: G(5727)J(5720)S(5700)AD(5710).
					J^{π} : L(³ He, α)=3 from 3/2 ⁻ .
5737.5 11	(4^{+})		GΙ		J^{π} : $L(p,p')=(4)$.
5755 [#] 15	+		Нј		XREF: j(5751).
					J^{π} : L(t,p)=0. But L(3 He,d)=1 from 7/2 $^{-}$.

E(level) [†]	J^π	T _{1/2} ^m	XREF			Comments
5796.0 ^a	1+,2+		G J LM			XREF: J(5790). J^{π} : 1,2 ⁺ from excitation in (γ,γ') , PI=- ruled out by $L(^{3}\text{He,d})=1+3$ from $7/2^{-}$.
5811 <i>5</i> 5818 <i>6</i>	5,6+		G G			J^{π} : L(p,p')=5,6.
5824.7 ^{<i>q</i>} 4 5860.5 <i>11</i>	8++	1.0 ps +6-4	D G IJ			J ^π : $\gamma(\theta)$ in (HI,xn γ), M1+E2 γ to 7 ⁺ . XREF: Others: AG XREF: G(5853)J(5828)AG(5830). J ^π : L(³ He,d)=L(α ,t)=1 from 7/2 ⁻ .
5865 <i>6</i> 5873 <i>5</i>	3-		G G			$J^{\pi}: L(p,p')=3.$
5891 &	3-,4-		J		V	XREF: V(5910). J^{π} : L(³ He,d)=0 from 7/2 ⁻ .
5919 <i>5</i> 5953 <i>5</i>	5,6 ⁺ 2 ⁺		G G J	S		J^{π} : L(p,p')=5,6. XREF: J(5945). J^{π} : L(p,p')=2.
5960 <i>5</i> 5996 <i>5</i>	3-		G G J L			XREF: Others: AA
3990 3	3		G J L			XREF. Others. And XREF: $J(5992)AA(5990)$. J^{π} : $L(p,p')=3$.
6026 <i>6</i> 6035.3 <i>12</i>	+		GH J G I			J^{π} : L(3 He,d)=1 from 7/2 $^{-}$.
6055 <i>5</i> 6065 <i>7</i>	2+		G GH			J^{π} : L(p,p')=2. XREF: H(6069).
6106 6	0+		E G J	S		XREF: $E(6100)J(6089)S(6130)$. J^{π} : $L(^{3}He,n)=0$.
6137.0 ^a 10 6153 8	2 ⁺ 2 ⁺		G M GH		**	J^{π} : L(p,p')=2. Excitation in (γ,γ') . J^{π} : L(t,p)=2.
6164 12	3 ⁻ 2 ⁺		G		V	XREF: V(6160). J^{π} : $L(\alpha, \alpha') = 3$.
6175 7	2.		G			XREF: Others: AD XREF: AD(6180). J^{π} : L(p,p')=2.
6193 <i>6</i> 6205.4 <i>12</i>	+		G J G I			J^{π} : L(${}^{3}\text{He,d}$)=1 from 7/2 $^{-}$.
6210 <i>10</i> 6220 <i>6</i>			G G			
6233 <i>10</i> 6243 <i>5</i>	+ 3 ⁻		G J G			J^{π} : L(³ He,d)=1 from 7/2 ⁻ . J^{π} : L(p,p')=3.
6252 <i>6</i> 6272 <i>6</i>	3		G G			
6293 <i>7</i> 6324 <i>10</i>			G G	S		XREF: S(6330).
6349 5	+		G J			XREF: J(6364). J^{π} : L(³ He,d)=1 from 7/2 ⁻ .
6356.6 <i>12</i> 6365.3 ^{<i>p</i>} <i>11</i>	(9^+) (10^+)		D D			J^{π} : $\gamma(\theta)$ in (HI,xn γ). J^{π} : $\gamma(\theta)$ in (HI,xn γ).
6375.4 <i>12</i> 6381.0 <i>10</i>	(6 ⁺)		G I D			XREF: G(6372). J^{π} : From $\gamma(\theta)$ in (HI,xn γ).
6389.9 ^a 5	1+	0.069° eV 7	G J LM			XREF: J(5790). J^{π} : 1 from excitation in (γ, γ') , PI=- ruled out by
6392 10	3-		G			$L(^{3}He,d)=1 \text{ from } 7/2^{-}.$ J^{π} : $L(p,p')=3.$
6426 <i>5</i> 6437 <i>10</i>			G G			

E(level) [†]	${f J}^\pi$	$T_{1/2}^{m}$		X	REF			Comments
6453.4 9 4	9+	0.14 ps +9-8	D					J^{π} : $\gamma(\theta)$ in (HI,xn γ), M1+E2 γ to 8 ⁺ .
6462.4 <mark>a</mark> 5	1	0.074° eV 7	G		M			J^{π} : From excitation in (γ, γ') .
6482 5	$5,6^{+}$		G					J^{π} : L(p,p')=5,6.
6493 ^e 10	2+		G	J		S		XREF: Others: AD
								XREF: J(6500)AD(6490).
								J^{π} : L(p,p')=2. L(³ He, α)=0 from 3/2 ⁻ .
6495.5 ^a 5	1	0.131° eV 9			M			J^{π} : From excitation in (γ, γ') .
6541 <i>10</i>	3-		G				V	J^{π} : $L(\alpha,\alpha')=3$.
6568 10			G					TIPE 1/((40)11/((00)
6580 5			G	J	N			XREF: J(6610)N(6600).
6637 <i>5</i> 6678 <i>5</i>	+		G	J				XREF: J(6625).
00/8 3			E G	J				XREF: E(6670).
6700 <mark>8</mark> 20	_							J^{π} : L(³ He,n)=0, L(³ He,d)=1 from 7/2 ⁻ .
6700° 20								XREF: Others: AD
6704.5	5,6 ⁺		G					J^{π} : L(${}^{3}\text{He},\alpha$)=2 from 3/2 $^{-}$.
6704 5	3,0		G	J				XREF: J(6720). J^{π} : L(p,p')=5.
6752.0 ^a 5	1+	0.089° eV 10		J	M	S	٧	XREF: J(6760)S(6740)V(6760).
6795.4 12	3-	0.009 EV 10	G 1		0	3	v	XREF: G(6786).
01/3.4 12	3		0.1	_	U			J^{π} : L(p,p')=3.
6810 <i>30</i>	2+		G	J				XREF: Others: AA, AD
								XREF: J(6814)AA(6800)AD(6790).
								J^{π} : L(p,p')=2.
6871 <i>5</i>	5-		G					J^{π} : $L(p,p')=5$.
6894 <mark>&</mark>	+			J				J^{π} : L(³ He,d)=1 from 7/2 ⁻ .
6928 <mark>&</mark>	+			J				J^{π} : L(³ He,d)=1 from 7/2 ⁻ .
6956 <i>5</i>	$5,6^{+}$		G	•				J^{π} : L(p,p')=5,6.
6993 5	3-		Ğ	J		S		J^{π} : L(p,p')=3.
7014.5 <mark>a</mark> 4	1	0.210° eV 30			M			
7030 <mark>b</mark> 10	1+			J	N			XREF: J(6993).
								J^{π} : Dipole excitation in (e,e'). PI=– ruled out by
								$L(^{3}He,d)=1$ from $7/2^{-}$.
7090.8 <mark>a</mark> 5	1+	0.062° eV 11	G	J	M			J^{π} : from excitation in (γ, γ') .
7100 ^f	3-				N		٧	J^{π} : $L(\alpha, \alpha') = L(e, e') = 3$.
7140 ⁱ 7	+		G		N		•	J^{π} : M1 excitation in (e,e'). $L(p,p')=4$.
7166.2^a 5	+	0.054° eV 11	· ·	J	MN			XREF: N(7170).
7100.2 3		0.031 0111		,				J^{π} : M1 excitation in (e,e'). L(³ He,d)=1 from 7/2 ⁻ .
7217 10	2+		G	J				XREF: J(7210).
,21, 10	-							$J^{\pi}: L(p,p')=2.$
7223 <mark>&</mark>	+			J				J^{π} : L(³ He,d)=1 from 7/2 ⁻ .
7237.9 9 6	10 ⁺	0.16 ps +15-8	D	,				J^{π} : From $\gamma(\theta)$ in (HI,xn γ), M1+E2 γ to 9 ⁺ .
7260^{b} 10	+	0.10 ps 115 0		J	N			J^{π} : L(3 He,d)=1+3 from 7/2 $^{-}$, but M1, (M2) excitation
7200 10				J	IN			in (e,e') .
7278 10	4+		G	J		S		XREF: J(7273)S(7290).
7270 10	•			,		9		J^{π} : L(p,p')=4.
7310 <mark>&</mark>	+			J				J^{π} : L(³ He,d)=1+3 from 7/2 ⁻ .
7310 7322 &	+							J^{π} : L(³ He,d)=1 from $7/2^{-}$.
			_	J -				•
7342 ⁱ 7	1+		G	J	N			XREF: J(7350)N(7340).
7260 00 5	1+	0.2200 -37.10		,	м			J^{π} : M1 excitation in (e,e'). $L(p,p')=2$.
7368.8 ^a 5	1+	0.229° eV 18		J	M			J^{π} : 1 from excitation in (γ, γ') , PI=- ruled out by
7376 10	5-		G					$L(^{3}\text{He,d})=1 \text{ from } 7/2^{-}.$ J^{π} : $L(p,p')=5.$
7376 10 7395 10	5 5 ⁺		G	J				XREF: Others: AA
1373 10	J			J				ANDI. Ouicis. m

E(level) [†]	J^{π}	$T_{1/2}^{m}$		Х	KREF			Comments
								XREF: J(7400)AA(7390).
								J^{π} : L(α , ² He)=5,7, L(³ He,d)=1 from 7/2 ⁻ .
								E(level): From average of values in (³ He,d) and
								$(\alpha,^2$ He).
7401.6 <i>15</i>	(12^+)		D					J^{π} : From (HI,xn γ), γ to (10 ⁺).
7403.2 ^a 5	1	0.107° eV 15			M			$B(M1)=0.069 \ 10, B(E1)=0.76\times10^{-5} \ 11.$
7409 10	3-		G		0			J^{π} : L(p,p')=3.
7450 [‡] <i>h</i> 50	$0^{+},2^{+}$		E					J^{π} : L(³ He,n)=0+2.
7458 10	5,6 ⁺		G					J^{π} : L(p,p')=5,6.
7482 10	3-		G					J^{π} : L(p,p')=3.
7487	+			J				J^{π} : L(3 He,d)=1 from 7/2 $^{-}$.
7524.1 ^a 5	1+ <i>j</i>	0.400° eV 28	g	i	MN			XREF: N(7520).
								J^{π} : L(p,p')=0.
7560 ^b 20	+		g	j	N	S		XREF: g(7540)j(7536)S(7570).
								J^{π} : from L(³ He,d)=1 from 7/2 ⁻ .
7585 10	3-		G	J				J^{π} : L(p,p')=3.
7590	+			J				J^{π} : L(3 He,d)=1+3 from 7/2 ⁻ .
7679 10	$5,6^{+}$		G	J				XREF: J(7686).
								J^{π} : L(p,p')=5,6, L(³ He,d)=1+3 from 7/2 ⁻ .
7700 ^b 10	1+				N			J^{π} : M1 excitation in (e,e').
7731.9 ^a 5	1- <i>j</i>	0.960° eV 24		J	M			$B(E1)=5.96\times10^{-5} 40.$
								$\Gamma_{20}^2/\Gamma = 1.75 \text{ eV } 32 \text{ (1979Ku14)}.$
7738 10	3-		G					$J^{\pi'}$: $L(p,p')=3$.
7750	+			J				XREF: Others: AA
								XREF: J(7729).
0								J^{π} : L(³ He,d)=1 from 7/2 ⁻ , L(α , ² He)=5,7.
7760 <mark>&</mark>	+			J				J^{π} : L(³ He,d)=1 from 7/2 ⁻ .
7810 ^c	_							XREF: Others: AG
7020 10	1+		6					J^{π} : L(α ,t)=4.
7820 10	1+		G	J				XREF: J(7815).
7823 <mark>&</mark> 10	2-							J^{π} : M1 excitation in (e,e').
	3-		G					J^{π} : L(p,p')=3.
7854 ⁱ 7	4+		G	J	N	S		XREF: G(7848)N(7860)S(7870).
7065 10 5	1 +	0.4250 31.27						J^{π} : L(p,p')=4. L(³ He,d)=1 from 7/2 ⁻ .
7865.1 ^a 5 7889.0 ^a 5	1+	0.435° eV 27 0.480° eV 45			M			Vπ. f
7893 <i>10</i>	1 4 ⁺	0.480° EV 43	G	J	M			J^{π} : from excitation in (γ, γ') . XREF: J(7905).
1893 10	4		ď	J				J^{π} : L(p,p')=4. L(3 He,d)=1 from $7/2^{-}$.
7897.4 ^a 5	1- <i>j</i>	3.38° eV 17			M			J^{π} : π based on asymmetries for different g.s. dipole
1071.4")	1 ,	3.30° EV 1/			M			J^{**} : π based on asymmetries for different g.s. dipole transition in (γ, γ') .
7900 <mark>b</mark>	3-				N		V	J^{π} : L(e,e')=3.
7900 7920 <mark>&</mark>	<i>5</i> +			,	IN		V	J : L(e,e) = 5. $J^{\pi}: L(^{3}He,d)=1 \text{ from } 7/2^{-}.$
	+		_	J				
7930 [‡] <i>50</i>	+		E	J				XREF: J(7967).
7967 10	2-		_					J^{π} : L(³ He,n)=0, L(³ He,d)=1 from 7/2 ⁻ .
7967 <i>10</i> 8010	3-		G G	J				J^{π} : L(p,p')=3. XREF: Others: AG
0010			G	J				XREF: Uners: AG XREF: J(7967).
								J^{π} : L(³ He,d)=1 from 7/2 ⁻ , L(α ,t)=4 from 7/2 ⁻ .
8015.4 ^a 4	1	0.260° eV 59			M			B(M1)=0.131 30, B(E1)=1.45×10 ⁻⁵ 33.
8022 10	2+	0.200 0 7 0 7	G	J				J^{π} : L(p,p')=2 and L(3 He,d)=1 from $7/2^{-}$.
8083	+		•	J	MN			XREF: N(8080).
								J^{π} : L(³ He,d)=1 from 7/2 ⁻ .
8087 <mark>&</mark> 9	3-		G					J^{π} : L(p,p')=3.
	-							
-			Co	ntin	ued or	n nex	t page	(footnotes at end of table)

E(level) [†]	${\sf J}^\pi$	T _{1/2} ^m		XREF		Comments
8091.3 ^a 5	1	0.734° eV 44		М		J^{π} : from excitation in (γ, γ') .
8100 20	8-	0.731 01 77		N		J^{π} : M8 excitation in (e,e').
8121 <i>10</i>	+		G	J		XREF: J(8130).
0121 10				-		J^{π} : L(³ He,d)=1 from 7/2 ⁻ , L(p,p')=0.
8179.3 <mark>a</mark> 4	1+	0.90° eV 18	G	J M O		XREF: J(8183).
0179.5 4	1	0.90 CV 10	9	J 11 U		J^{π} : L(p,p')=0.
8190 ^c	+					XREF: Others: AG
8190						
0212 10	0^{+}					J^{π} : L(α ,t)=4 from 7/2 ⁻ .
8213 10		0.04 . 17 . 0	G	-		J^{π} : $L(p,p')=0$.
8216.4 ^q 9	11+	0.24 ps +17-9	D	J		XREF: J(8234).
						J^{π} : from $\gamma(\theta)$ in (HI,xn γ), M1+E2 γ to 10 ⁺ , E2
						γ to 9 ⁺ .
8250&	+			J		J^{π} : L(³ He,d)=1+3 from 7/2 ⁻ .
8281 ^e 10	3-		G			J^{π} : $L(p,p')=3$.
8283	+			J		J^{π} : L(³ He,d)=1 from 7/2 ⁻ .
8337 ^e 10	(4^{+})		G	J		XREF: J(8330).
						J^{π} : L(p,p')=4,5, L(³ He,d)=1+3 from 7/2 ⁻ .
8350 <mark>&</mark>	+			J		J^{π} : L(³ He,d)=1 from 7/2 ⁻ .
8374 ^e 10	3-		G			J^{π} : $L(p,p')=3$.
8390 ^b 10	+			J N		XREF: J(8371).
0390 10				J N		
04106 10	+					J^{π} : L(³ He,d)=1 from 7/2 ⁻ .
8412 ^e 10			G	J O		XREF: J(8400).
0	_					J^{π} : L(³ He,d)=1 from 7/2 ⁻ .
8420 ^c	6-			N		XREF: Others: AG
						XREF: N(8450).
0						J^{π} : L(α ,t)=4, M6 excitation in (e,e').
8451 <mark>&</mark>	+			J		J^{π} : L(³ He,d)=1 from 7/2 ⁻ .
8457 10	3-		G			J^{π} : L(p,p')=3.
8505 10	3-		G			J^{π} : L(p,p')=3.
8569 10	0_{+}		G	J	S	XREF: J(8579)S(8580).
						J^{π} : L(p,p')=0.
8600 ^b 10	3-			N		B(E3)↑=0.0022 3 (1964Be32)
						J^{π} : L(e,e')=3.
8617 10			G	J		XREF: J(8614).
						J^{π} : L(p,p')=2,3,4. L(³ He,d)=1+3 from 7/2 ⁻ .
8679 ^e 10	3-		G			J^{π} : L(p,p')=3.
$8710^{\frac{1}{4}h}$ 50	+			J N		
8/10: 30			E	J N		XREF: J(8700)N(8690). J^{π} : L(³ He,n)=0+2. L(³ He,d)=1+3 from 7/2 ⁻ , D,
8728 10	2-		C			E2 excitation in (e,e') .
8728 10 8765.9 ^a 5	3-	0.441° eV <i>37</i>	G	M		J^{π} : $L(p,p')=3$. J^{π} : from excitation in (γ,γ') .
	1	0.441° ev 37	6	M		
8778 10	3 ⁻ 2		G	M		J^{π} : L(p,p')=3. J^{π} : Q excitation in (e,e').
8790 10	2		C	N		J'': Q excitation in (e,e).
8827 <i>10</i> 8860 <i>10</i>	1+,(2-)		G	M		J^{π} : M1,(M2) excitation in (e,e').
				N N	c	J^{π} : M1,(M2) excitation in (e,e'). J^{π} : M2,(M2) excitation in (e,e').
8890 <i>20</i> 8940 <i>20</i>	$1^+,(2^-)$			N N	S	J^{π} : (M8,M6) excitation in (e,e').
	(8-,6-)	0.233° eV 36		N M		
8958.4 ^a 5	1	0.233° eV 36		M		J^{π} : from excitation in (γ, γ') .
9004 ⁱ 9	1+	U	G	N		XREF: G(9020).
0						J^{π} : M1 excitation in (e,e'). L(p,p')=0.
9050 <mark>&</mark> <i>10</i>	$1^+,(2^-)$			N		J^{π} : M1,(M2) excitation in (e,e').
9080 20	(8-)			N		J^{π} : (M8) excitation in (e,e').
9140.3 ^{aq} 5	1+ <i>j</i>	2.65° eV 15	G	MN		B(M1)=0.90 5.
						• •

E(level) [†]	${ m J}^{\pi}$	T _{1/2} <i>m</i>		XREF	Comments
9200 [@]	5-				J ^{π} : M1 excitation in (e,e'). L(p,p')=0, 1 ⁺ in (γ , γ '). XREF: Others: AA
9211.9 ^a 5	1+	2.11° eV 14	G	MN	J^{π} : L(α , 2 He)=5. XREF: G(9221)N(9210). J^{π} : M1 excitation in (e,e').
9245 <mark>e</mark> 10	1+		G		J^{π} : $L(p,p')=0$.
9327.0 ^a 5	1+ <i>k</i>	0.746° eV 80	G	N	J^{π} : M1 excitation in (e,e').
9370 20	$1^+, 2^-$			N	J^{π} : M1,M2 excitation in (e,e').
9429.0 ^a 5	1+	0.95° eV 11	G	MN	XREF: G(9440). J^{π} : M1 excitation in (e,e').
9438.5 9 9	$12^{(+)}$		D	N	J^{π} : from (HI,xn γ), γ to 10^{+} .
9450 20	8-			N	XREF: Others: AG XREF: AG(9480). J^{π} : M8 excitation in (e,e').
9470 20	1+,2+			N	J^{π} : M1, E2 excitation in (e,e').
9580 <i>10</i>	0+		E	N	J^{π} : L(³ He,n)=0. But M1,(E1) excitation in (e,e').
9612 ⁱ 9	1+ <i>k</i>		G	N	XREF: G(9620).
9660 20	8-			N	J^{π} : M1 excitation in (e,e'). XREF: Others: AG
9000 20	O			N	XREF: AG(9630).
					J^{π} : M8 excitation in (e,e').
9724 ⁱ 9	1 ⁺ <i>k</i>		G	MN	XREF: $G(9740)M(9736)N(9720)$. J^{π} : M1 excitation in (e,e').
9787 ^a 3	1- <i>j</i>			M	J^{π} : π based on asymmetries for different g.s. dipole transition in (γ, γ') .
9830 10	1+			N	J^{π} : M1 excitation in (e,e').
9878 ⁱ 9	1+ <i>k</i>		E G	N	XREF: E(9870)G(9870)N(9880).
9910 20	8-			N	J^{π} : M1 excitation in (e,e'). J^{π} : M8 excitation in (e,e').
9981 ^a 3	(-)			M	J^{π} : π : based on asymmetrics for different g.s. dipole transition, see (γ, γ') , $(\text{pol } \gamma, \gamma')$.
10008 ⁱ 9	1^{+k}		G	N	XREF: G(10000)N(10010).
10110 20	(8-1)			N	XREF: Others: AG XREF: AG(10130).
10100 00					J^{π} : (M8) excitation in (e,e').
10130 20	1,2-		D.	NO	J^{π} : D,M2 excitation in (e,e').
10161.3 ^q 12 10180 10	(13^+) 2^-		D	N	J^{π} : from $\gamma(\theta)$ in (HI,xn γ), E2 γ to 11 ⁺ . J^{π} : M2 excitation in (e,e').
10240 20	1			N	J^{π} : E1, (M1) excitation in (e,e').
10270 20	$1,(2^{-})$			N	J^{π} : D, (M2) excitation in (e,e').
10300 20				N	J^{π} : M2, M3,E3 excitation in (e,e').
10330 20	6-			N	XREF: Others: AG
					XREF: AG(10280). J^{π} : M6 excitation in (e,e').
10340 20	1			N	J^{π} : D excitation in (e,e').
10380^{i} 14	1+ <i>k</i>		G	N	b . B exercition in (e.e.).
10433 ^a 4	1+		•	MN	J^{π} : M1 excitation in (e,e').
10464 9	1 ⁺ <i>k</i>		G	N	XREF: $G(10480)N(10460)$. J^{π} : M1 excitation in (e,e').
10500 20	1			N	J^{π} : D excitation in (e,e').
10510 20	(-)			N	J^{π} : (M8, M6) excitation in (e,e').
10604 ⁱ 12	1^{+k}		G	N	XREF: G(10580)N(10610).
10710 <i>10</i>	1			N	J^{π} : D excitation in (e,e').

E(level) [†]	$_J^\pi$		XREF	Comments
10760 10	6+,8+		N	XREF: Others: AA XREF: AA(10750). $J^{\pi}: L(\alpha,^{2}He)=6,8.$
10790 9 10800 20 10820 10 10927 ^a 3	1+k (-) 1+,(2-) 1+,2-	G	N N N MN	J^{π} : M1 excitation in (e,e'). J^{π} : (M8,M6) excitation in (e,e'). J^{π} : M1, (M2) excitation in (e,e'). XREF: N(10920). J^{π} : M1, M2 excitation in (e,e').
10970 <i>20</i> 11000 <i>20</i> 11070 <i>10</i>	0+ <i>k</i> 8- 1	G	N N	J^{π} : $L(p,p')=0$. J^{π} : M8 excitation in (e,e'). J^{π} : D excitation in (e,e').
11140 <i>10</i>	0^{+k}	G	N	XREF: $G(11120)$. J^{π} : $L(p,p')=0$.
11160 <i>20</i> 11170 <i>20</i>	(1 ⁺),2 8 ⁻		N N	J^{π} : (M1), Q excitation in (e,e'). XREF: Others: AG J^{π} : M8 excitation in (e,e'). L(α ,t)=4.
11229 3		I		7 . 1410 exertation in (e.g.). E(a,t) = 1.
11256.5 7		e I		XREF: e(11280).
11264.9 <i>4</i>	+1	e I		XREF: Others: AA T=3 XREF: e(11280)AA(11260).
				IAS (52 V g.s.). Some authors identify 11256.5 state as g.s. IAS. However, from a comparison of relative M1 transition rates from 11264.9 state with Gamow-Teller β decay matrix elements for 52 V g.s. 1973Fa12 concluded that most of the IAS strength lies in the 11265 state. The 11256 state might still be a fragment of the g.s. IAS.
11270 20	8-		NO	J^{π} : M8 excitation in (e,e').
11274.6 ^d 6	+1	e I		T=3 XREF: e(11280). Identified as fragment of IAS (⁵² V 23 keV).
11291.1 <mark>d</mark> 10		I		XREF: Others: AD
11330 20	$(1^+), 2^-$	-	N	J^{π} : (M1), M2 excitation in (e,e').
11370 20	8- ′′		N	XREF: Others: AG XREF: AG(11350). J^{π} : M8 excitation in (e,e'). $L(\alpha,t)=4$.
11400.0 ^d 4	4+	I		T=3
				Identified by 1974Ro44 as IAS (52 V 148 keV, $^{+}$). J^{π} : From γ (theta) in (p,γ) .
11402 ⁱ 9	1 ⁺	G	N	XREF: $G(11410)N(11400)$. J^{π} : M1 excitation in (e,e') . $L(p,p')=0$.
11510 <i>10</i> 11550 <i>20</i>	2 ⁻ 8 ⁻		N N	J^{π} : M2 excitation in (e,e'). J^{π} : M8 excitation in (e,e').
11570 20	$(1^+),2$		N	J^{π} : (M1),Q excitation in (e,e').
11610 <i>10</i>	2		N	J^{π} : Q excitation in (e,e').
11656 ^d 3	1+,2-	I	N	XREF: N(11650). J^{π} : M1, M2 excitation in (e,e').
11660 20	8-		N	XREF: Others: AG J^{π} : M8 excitation in (e,e').
11691.8 ^d 4		I	N	T=3 IAS (⁵² V 437 keV, 2 ⁺).
11713 ^d 3		I		
11725 ^d 3		I		
11745 ^d 3		I		

E(level) [†]	J^{π}		KREF	Comments
11765 ^a 3			M	
11770 20	8-		N	XREF: Others: AG
				XREF: AG(11790).
11700 20	(1+) 2-		W	J^{π} : M8 excitation in (e,e').
11780 <i>20</i> 11837 ^{<i>a</i>} <i>3</i>	$(1^+),2^-$		N M	J^{π} : (M1),M2 excitation in (e,e').
118374 3	8-		M N	J^{π} : M8 excitation in (e,e').
11960 20	8-		N	J^{π} : M8 excitation in (e,e').
12034.8 ^d 4	_	I	N	XREF: Others: AG
12001.0 7		-	**	XREF: AG(12050).
				J^{π} : $L(\alpha,t)=4$ from $7/2^-$.
12041.8 ^d 4	4 ⁺	I		T=3
		_		IAS (⁵² V 793 keV, 3 ⁺).
12050	-			XREF: Others: AG
				J^{π} : $L(\alpha,t)=4$.
12099.9 <i>4</i>	4^{+1}	I		T=3
				IAS (52 V 846 keV, 4^+).
12130 20	$(8^-,6^-)$		N	J^{π} : (M8,M6) excitation in (e,e').
12240 20	6-		N	J^{π} : M6 excitation in (e,e').
12260 [@]	6+,8+			XREF: Others: AA
125000	_			J^{π} : $L(\alpha, {}^{2}\text{He})=6,8$.
12500 ^C				XREF: Others: AG J^{π} : $L(\alpha,t)=4$ from $7/2^{-}$.
12560 20	1^{+k}	G		
12560 20				XREF: Others: AG
12665 ^d 6	3+	I		T=3
12730 20	_		N	IAS (⁵² V 1419 keV, 3 ⁺)? XREF: Others: AG
14/30/20			IN	XREF: Others: AG XREF: AG(12700).
				J^{π} : $L(\alpha,t)=4$ from $7/2^-$.
12734 d 6		I		T=3
12.01		-		IAS (⁵² V 1493 keV, 7 ⁺)?
12794.8 7	4 ⁺	I		T=3
12//1.0/		-		IAS (⁵² V 1559 keV, 4 ⁺)?
12900 20	1+ <i>k</i>	G		(, , , , , , , , , , , , , , , , ,
$12977^{d} 6$	-l	I		XREF: Others: AG
12711 0		1		T=3
				XREF: AG(13010).
				J^{π} : L(α ,t)=4 from 7/2 ⁻ .
_				IAS (⁵² V 1733 keV, 3 ⁻ ,4 ⁻)?
12994 ^d 6		I		IAS (⁵² V 1760 keV, 3 ⁺)?
13038 ^d 6	+1	I		IAS (52 V 1843 keV, +)?
13220 20	8-		N	J^{π} : M8 excitation in (e,e').
13319 ^d		I		
13393 ^d	6-	I	N	J^{π} : M6 excitation in (e,e').
13419 ^d	0^{+}	E I		T=3
				J^{π} : L(³ He,n)=0.
13570 20	6-		N	J^{π} : M6 excitation in (e,e').
13580 ^g 20	$(1,2)^{-}$			XREF: Others: AD
.t.				J^{π} : L(³ He, α)=0 from 3/2 ⁻ .
13630 [‡] <i>10</i>	0_{+}	E		T=3
				J^{π} : L(³ He,n)=0.
				IAS (⁵² V 2396 keV, 0 ⁺ , (1 ⁺))?

E(level) [†]	J^{π}	XREF	Comments
13710 20	6-	N	J^{π} : M6 excitation in (e,e').
13950 [‡] <i>50</i>		E	
14030 20	6-	N	J^{π} : M6 excitation in (e,e').
14110 [‡] <i>20</i>	2+	E	T=3
			J^{π} : L(³ He,n)=2.
			IAS (⁵² V 2881 keV, +)?
14340 20	6-	N	J^{π} : M6 excitation in (e,e').
14430 20	8-	N	XREF: Others: AG
			XREF: AG(11470).
			J^{π} : M8 excitation in (e,e').
15270 20	6-	N	XREF: Others: AG
			XREF: AG(15280).
			J^{π} : M6 excitation in (e,e'). $L(\alpha,t)=4$.
15482 ^c 7	8-	N	XREF: Others: AG
			T=3
			J^{π} : M8 excitation in (e,e').
16400 <i>20</i>	6-	N	J^{π} : M6 excitation in (e,e').
16690 <i>20</i>	(8^{-})	N	J^{π} : (M8) excitation in (e,e').

[†] Levels connected by gammas are from least squares fit, others from ⁵²Cr(p,p') for E(level)<8830 keV and from ⁵²Cr(e,e') for E(level)>8830 keV, except as noted.

[‡] From 50 Cr(t,p). @ From 50 Cr(α , 2 He,d). & From 50 Cr(α , 2 He,d).

^a From ⁵²Cr(γ, γ'),(pol γ, γ').

^b From ⁵²Cr(e,e').

^c From 51 V(α ,t).

^d From 51 V(p, γ).

^e From ⁵²Cr(p,p').

^f From 52 Cr(α,α').

^g From 53 Cr(3 He, α).

^h Close doublet; not resolved in (³He,n) tof spectra, but separated in angular distribution procedure.

ⁱ From weighted average of values in ⁵²Cr(e,e') and ⁵²Cr(p,p').

^j Dipole transition in 52 Cr(γ,γ'),(pol γ,γ').

^k Based on $\sigma(\theta)$, DWIA calculations in ⁵²Cr(p,p').

^l IAS in ⁵¹V(p, γ) E=res.

^m From (HI,xnγ), DSAM, except as noted.

ⁿ From $(n,n'\gamma)$.

^o Partial decay width into ground state in 52 Cr(γ,γ'),(pol γ,γ').

^p Band(A): g.s. Band.

^q Band(B): Band based on 5⁺.

γ (52Cr)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. ^d	δ^{d}	Comments
1434.091	2+	1434.068 ^b 14	100	0.0	0+	E2 [@]		B(E2)(W.u.)=10.3 3
2369.630	4+	935.538 ^b 11	100	1434.091	2+	E2@		$B(E2)(W.u.)=1.0\times10^{-11} +3-6$
2646.9	0_{+}	1212.8 6	100	1434.091		E2		E_{γ} : from $(p,p'\gamma)$.
2767.767	4+	398.08 [#] 9	1.76 14	2369.630	4+	E2 [@]		B(E2)(W.u.)=45 13
								I_{γ} : other: 1.36 17 in ⁵² V β ⁻ decay.
		1333.649 <i>17</i>	100 <i>I</i>	1434.091		E2 [@]		B(E2)(W.u.)=6.0 16
2964.786	2+	1530.67 [‡] <i>1</i>	100 [‡] 4	1434.091		M1+E2	-6.25 <i>15</i>	B(M1)(W.u.)=0.00036 8; B(E2)(W.u.)=13 3
		2965 [‡] 1	$0.9^{\ddagger} 6$	0.0	0^{+}	E2#		B(E2)(W.u.)=0.005 4
3113.858	6+	346.02 <i>4</i>	1.09 1	2767.767		E2		B(E2)(W.u.)=2.58 10
2161.74	2+	744.233 <i>13</i> 1727.53 [‡] <i>7</i>	100.0 <i>9</i> 100 [‡] <i>5</i>	2369.630		E2	0.10.7	B(E2)(W.u.)=5.14 19 B(M1)(W.u.) 0.107.23; B(E2)(W.u.) 2.6.24
3161.74	2	1/2/.53* / 3161.8 [‡] <i>1</i>	100 + 3 10.0 + 14	1434.091	0 ⁺	M1+E2 E2	-0.18 7	B(M1)(W.u.)=0.107 23; B(E2)(W.u.)=2.6 21
2415.22	4 ⁺			0.0		E2 M1+E2 [@] e	0.22 [@] e 8	B(E2)(W.u.)=0.40 10
3415.32	4 '	647.47 <i>6</i> 766.0 [#] <i>f</i> 10	100 5	2767.767	4 · 0+	M1+E2	0.22 6 8	B(M1)(W.u.)=0.24 7; B(E2)(W.u.)=6.E+1 5
				2646.9				The γ 's placement is highly suspect because $\Delta J=4$.
		1045.73 ^b 4 1981.12 4	17 <i>5</i> 8.5 <i>8</i>	2369.630 1434.091		[E2]		B(E2)(W.u.)=0.42 13
3472.25	3 ⁺	704.6‡ 2	100	2767.767		M1+E2	-0.14 6	B(M1)(W.u.)=0.0059 7; B(E2)(W.u.)=0.5 5
3472.23	3	704.0 2	100	2/07.707	4	WII+E2	-0.14 0	I_{γ} : From $(n,n'\gamma)$.
		2038.0‡ 2	44.2 12	1434.091	2+			I_{γ} : From $(n,n'\gamma)$.
3615.924	5 ⁺	200.58 4	1.80 5	3415.32				17. 110111 (11,11 7).
		502.06 5	5.0 5	3113.858		_		
		848.18 5	78.9 <i>7</i>	2767.767		M1 [@]		B(M1)(W.u.)=0.006 3
		1246.278 <i>15</i>	100.0 14	2369.630				
3771.72	2+	2337.44 ^c 19	100 [‡] 14	1434.091		M1+E2	-0.20 8	B(M1)(W.u.)=0.15 5; B(E2)(W.u.)=2.4 20
		3771.7 [‡] 2	26 [‡] 6	0.0	0_{+}	[E2]		B(E2)(W.u.)=1.5 5
3947.5	2+	1578 <mark>&</mark>		2369.630				
3951.2	2+	3951 [‡] <i>I</i>	‡	0.0	0+			
4015.51	5+	399.57 5	46.9 18	3615.924		@		I_{γ} : other: 33.3 5 in (HI,xn γ).
		600.16 <i>5</i> 901.89 <i>18</i>	100 <i>3</i> 11.3 <i>11</i>		4 ⁺	M1 [@]		B(M1)(W.u.)=0.062 +20-28
		901.89 <i>18</i> 1247.88 <i>9</i>	11.3 <i>11</i> 97 <i>10</i>	3113.858 2767.767		M1 [@]		D(M1)(W ₁₁₁)=0.0067+22-21
		1247.88 9 1645.82 <i>4</i>	97 10 12.1 8	2369.630		IVI I		B(M1)(W.u.)=0.0067 +23-31
4039.1	4+	566.8 [@]	100@	3472.25				
4563.0	3-	791 <mark>&</mark>	100	3771.72				
1505.0	J	3129 [‡] <i>I</i>		1434.091				
4584.0	(6 ⁺)	1470.1 [@] 7	100 [@]	3113.858				
4627.32	(6) 4 ⁺	2257.42 19	100	2369.630				

γ (52Cr) (continued)

$E_i(level)$	J_i^π	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.d	δ^d	Comments
4750.31	8+	1636.4 [@] 2	100@	3113.858	6+	E2 [@]		B(E2)(W.u.)=5.E+1 +7-5
4805.96	6+	790.0 [@] 3	100 [@] 8	4015.51	5 ⁺	$(M1+E2)^{@e}$	-0.16 [@] e 5	B(M1)(W.u.)=(0.062 +19-37); B(E2)(W.u.)=(6 +4-5)
		1189.7 [@]	20 [@] 5	3615.924	5 ⁺			
		1693.9 [@] 6	23 [@] 3	3113.858	6+			
4815.69	$1^+, 2^+$	3381.5 [‡] <i>1</i>	100 [‡] 20	1434.091	2+			
		4815.4 [‡] 2	100 [‡] <i>16</i>	0.0	0^{+}			
5098.6	1	3664.5 ^a 5	79 ^a 22	1434.091				
		5098.3 ^a 5	100 ^a	0.0	0+			
5213.7	1	5213.4 ^a 5	100^{a}	0.0	0+	7200	0.2-00	D. G. K. V. T. V. O. C. A. C. D. (TD.) (TV. V. D. G. 40 ²) - 22. 22.
5396.9	7+	590.9 [@] 3	100 [@] 6	4805.96	6+	M1+E2 [@] e	-0.27 [@] e 6	$B(M1)(W.u.)=0.6 +4-6$; $B(E2)(W.u.)=2.9\times10^2 +22-28$
5526.0	1	1381.5 [@] 5 5525.7 5	15.2 [@] 16	4015.51 0.0	5 ⁺ 0 ⁺	E2 [@]		B(E2)(W.u.)=9 +6-8
5526.0 5544.7	1 (1 ⁺)	5544.4 <mark>a</mark>	100 ^a	0.0	0+			
5633.4	(8 ⁺)	1049.4 [@] 8	100	4584.0	(6 ⁺)			
5824.7	(8) 8 ⁺	427.9 [@] 3	100	5396.9	(0) 7 ⁺	M1(+E2) [@] e	-0.03 [@] e 4	$\alpha(K)=0.00166; \alpha(L)=0.00016$
3024.7	o	421.9 3	100	3370.7	,	WII(+E2)	-0.03 4	B(M1)(W.u.)=(0.28 +12-17); B(E2)(W.u.)=(3 +9-3)
6137.0	2+	6136.6 ^a	100 <mark>a</mark>	0.0	0^{+}			
6356.6	(9^+)	725.5 [@] f 12	100 [@]	5633.4	(8^{+})			
6365.3	(10^+)	1615.0 [@] 10	100 [@]	4750.31	8+			
6381.0	(6 ⁺)	2765.0 [@]	100	3615.924	5 ⁺			
6389.9	1+	6389.5 ^a 5	100 ^a	0.0	0_{+}			
6453.4	9+	628.9 [@] 5	35 [@] 18	5824.7	8+	M1+E2 [@] e	$+0.22^{@e} + 15 - 8$	B(M1)(W.u.)=0.13 11; B(E2)(W.u.)=4.E+1 +6-4
		1056.0 [@] 10	26 [@] 2	5396.9	7+			
		1702.9 [@] 5	100 [@] 5	4750.31	8+	$M1+E2^{@e}$	-0.04 ^{@e} +7-3	B(M1)(W.u.)=0.020 +12-13; B(E2)(W.u.)=0.02 +9-2
6462.4	1	6462.0 ^a 5	100 ^a	0.0	0+			
6495.5	1	6495.1 ^a 5	100 ^a	0.0	0+			
6752.0 7014.5	1 ⁺ 1	6751.5 ^a 5 5580.5 ^a 5	100 ^a 24 ^a 6	0.0 1434.091	0 ⁺ 2 ⁺			
7014.3	1	7013.6 ^a 5	100^{a}	0.0	0 ⁺			
7090.8	1+	7090.3 ^a 5	100 ^a	0.0	0+			
7166.2	+	7165.7 ^a 5	100 <mark>a</mark>	0.0	0^{+}			
7237.9	10 ⁺	784.5 [@] 5	100 [@] 12	6453.4	9+	$M1+E2^{@e}$	-0.06 [@] e +3-5	B(M1)(W.u.)=0.19 +10-18; $B(E2)(W.u.)=2 +3-2$
		883.7 [@] <i>f</i> 10	28 [@] 3	6356.6	(9^+)			
		1413.6 [@] <i>f</i> 10	8 [@] 4	5824.7	8+	[E2]		B(E2)(W.u.)=2.9 +21-29
		1606.0 [@] f 20	15 [@] 4	5633.4	(8^{+})	[E2]		B(E2)(W.u.)=2.9 +17-28
7368.8	1+	7368.2 ^a 5	100 ^a	0.0	0+			
7401.6	(12^{+})	1036.3 [@]	100	6365.3	(10^{+})	(E2) [@]		

γ (52Cr) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$_{\rm I_{\gamma}}^{\dagger}$	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.d	δ^d	Comments
7403.2	1	7402.6 ^a 5	100 ^a	0.0	0+			
7524.1	1+	7523.5 ^a 5	100 <mark>a</mark>	0.0	0_{+}			
7731.9	1-	7731.3 ^a 5	100 ^a	0.0	0_{+}			
7865.1	1+	7864.5 ^a 5	100 ^a	0.0	0_{+}			
7889.0	1	7888.4 ^a 5	100 <i>a</i>	0.0	0_{+}			
7897.4	1-	7896.8 <i>a</i> 5	100 <mark>a</mark>	0.0	0+			
8015.4	1	6580.9 ^a 5	54 ^a 16	1434.091	2+			
		8014.6 ^a 5	100 ^a	0.0	0+			
8091.3	1	8090.6 ^a 5	100^{a}	0.0	0+			- 1001-0-1
8179.3	1+	6744.8 ^a 5	326 ^a 50	1434.091	2+			E_{γ} : if 8179.2 level energy is correct, then E_{γ} should be 6744.8, not 6740.8 as listed in table I of 2013Pa38.
		8178.5 ^a 5	100 ^a	0.0	0_{+}			
8216.4	11+	978.5 [@] 5	97 [@] 9	7237.9	10 ⁺	M1+E2 [@] e	+0.10 [@] e +5-8	B(M1)(W.u.)=0.048 +19-35; B(E2)(W.u.)=1.1 +12-11
		1763.3 [@] 10	100 [@] 11	6453.4	9+	E2 [@]		B(E2)(W.u.)=6.1 +25-44
8765.9	1	8765.1 ^a 5	100 <i>a</i>	0.0	0^{+}			
8958.4	1	8957.6 ^a 5	100 ^a	0.0	0^{+}			
9140.3	1+	9139.4 ^a 5	100 <mark>a</mark>	0.0	0_{+}			
9211.9	1+	9211.0 ^a 5	100 ^a	0.0	0_{+}			
9327.0	1+	9326.1 ^a 5	100 ^a	0.0	0_{+}			
9429.0	1+	9428.1 ^a 5	100 ^a	0.0	0_{+}			
9438.5	$12^{(+)}$	1222.4 [@] 8	100 [@] 5	8216.4	11+			
		2200.0 [@] 10	16.8 [@] 11	7237.9	10 ⁺			
10161.3	(13^{+})	721.3 [@] 10	4.7 [@] 6	9438.5	12 ⁽⁺⁾			
10101.5	(15)	1943.6 [@] 7	100.0 [@] 17	8216.4	11 ⁺	E2@		
11256.5		8291	100.0 17	2964.786		L2		
11230.3		8488	85	2767.767				
11264.9	+	7648	<9	3615.924				
		7792	<5	3472.25	3+			
		7850	39 <i>7</i>	3415.32	4+	(M1+E2) [@] e	+0.06 [@] e 9	
		8150	25 9	3113.858		(111112)	. 0.00	
		8299	<5	2964.786				
		8496	11 7	2767.767	4+			
		8895	100 16	2369.630	4+	(M1+E2) [@] e	+0.9 [@] e +10-5	
		9830	34 5	1434.091		$(M1+E2)^{@}e$	-0.30 [@] e 6	
11274.6	+	4479	72 12	6795.4	3-	(1111112)	0.50	
		4899	24 8	6375.4	-			
		5069	36 12	6205.4				
		5239	20 8	6035.3				
		5549	100 12	5725.3	+			
		7258	60 12	4015.51	5+			
		7326	24 8	3947.5	2+			

15

γ (52Cr) (continued)

991.1 9856 100 1434.091 2*	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.d	δ^d	Comments
99.1	11274.6	+	7859	8 4	3415.32 4+	$(M1+E2)^{@e}$	+0.47 ^{@e} 10	
191.1 9856 100 1434.091 2* 190.0 4* 5836 615 5563.5 * 1953 29.5 5446.4 4* 17380 4039.1 4* 17381 263 3615.92 5* 1788 285 53 3113.858 6* 18030 100 5 2369.630 4* 1804.8 530 233 6389.9 1* 1805.2 13 3 415.32 4* 1805.2 13 3 5664.4 (2)* 1805.2 13 3 5664.4 (2)* 1805.2 13 7 5054.3 4* 1805.2 13 7 5054.3 4* 1805.2 13 7 5054.3 4* 1807.2 13 7 5054.3 4* 1808.3 1809.1 1* 1809.3			8904	56 8		$(M1+E2)^{@e}$	+0.19 [@] e 10	
00.0	11291.1				1434.091 2+	,		
991.8 993 29 5 5446.4 4	11400.0	4+						
7384			5953	29 5				
783 26 3 3615.924 5* 785 21 3 3415.32 4* 8285 5 3 3113.858 6* 9030 100 5 2369.630 4* (M1+E2) e 0.5 e 2 6: from (p,y), see 1974Ro44. 991.8 6027 23 3 5664.4 (2)* 6637 13 7 5054.3 4* 6683 4805.96 6* 6883 4805.96 6* 6883 4805.96 6* 8219 30 7 3472.25 3* 8277 7 3 3415.32 4* 8529 13 3 361.76 7 4* 8529 13 3 361.76 7 4* 8529 13 3 361.52 4* 8776 6 7 676 6 7 37 2964.786 2* 8776 7 7 3 3415.32 4* 8776 2 7 7 944.80 12* 8776 2 7 7 344.091 2* 8776 2 7 7 3 3415.32 4* 8776 2 7 7 3 3415.32 4* 8776 2 7 7 3 3415.32 4* 8776 3 10 277.767 4* 8776 3 10 27 7 10 7 134.091 2* 8776 10 9 3472.25 3* 8777 10 9 3472.25 3* 8776 10 9 3472.35 4* 8776 10 9 3472.35 4* 8776 10 9 3472.35 4* 8776 10 9 947.86 2* 8776 10 9 947.86 2* 8776 10 9 947.86 2* 8776 10 9 947.86 2* 8776 10 9 947.86 2* 8776 10 9 947.86 2* 8776 10 9 967.767 4* 8777 10 9 967.767 4* 8777								
7985								
991.8 S285 5 3 3113.858 6 ⁺ 9930 100 5 23696.30 4 ⁺ (M1+E2) ^{@e} 0.5 ^{@e} 2 δ: from (p,γ), see 1974Ro44. 991.8 6027 23 3 5366.4 (2) ⁺ 6245 53 3 546.4 4 ⁺ 6637 13 7 5054.3 4 ⁺ 6884 4841.3 1 ⁺ ,1 ⁻ ,2 ⁺ 4841.3 1 ⁺ ,1 ⁻ ,2 ⁺ 4841.3 1 ⁺ ,1 ⁻ ,2 ⁺ 4852 4039.1 4 ⁺ 7652 4039.1 4 ⁺ 8219 30 7 3472.25 3 ⁺ 8229 13 3 3161.74 2 ⁺ 8726 27 7 2964.786 2 ⁺ 8923 10 3 2767.767 4 ⁺ 9322 27 3 2369.630 4 ⁺ 10257 1007 1434.091 2 ⁺ 8562 179 3472.25 3 ⁺ 8563 46 472.25 3 ⁺ 8564 46 472.25 3 ⁺ 8579 46 472.25 3 ⁺ 8677 19 4 3415.32 4 ⁺ 8687 19 4 3415.32 4 ⁺ 8677 19 4 3415.32 4 ⁺ 8689 46 4 3472.25 3 ⁺ 8677 19 4 3415.32 4 ⁺ 8679 46 4 3472.25 3 ⁺ 8679 47 2767.767 4 ⁺ 8679 47 2767.767 4 ⁺ 8679 48 48 472.25 3 ⁺ 8679 48 48 472.25 3 ⁺ 8679 49 48 3472.25 3 ⁺ 8679 40 472.25 3 ⁺ 879 40 472			7783	26 <i>3</i>				
901.8 9030 100 5 2369.630 4* (M1+E2)								
991.8 5302 33 3 3 3889, 9 1			8285	5 3				
991.8 5302 33 3 3 3889, 9 1					2369.630 4+	(M1+E2) [@] e	0.5 ^{@e} 2	δ : from (p,γ) , see 1974Ro44.
6245 53 3 5446.4 4+ 6637 13 7 5054.3 4+ 66854 4805.96 6+ 6883 4805.96 6+ 6884 4805.96 6+ 6885 4015.51 5+ 8219 30 7 3472.25 3+ 8277 7 3 3415.32 4+ 8529 13 3 3161.74 2+ 8726 27 7 2964.786 2+ 8923 10 3 2767.767 4+ 8923 10 3 2767.367 4+ 8102 405.86 24 5446.4 4+ 844 4627.32 4+ 8562 100 9 3415.32 4+ 8562 100 9 3415.32 4+ 8620 100 9 960.86 6+ 8620 100 9 960.86 6+ 8620 100 9 960.86 6+ 8620 100 960.86 8+ 8620 100 960.86 8+ 8620 100 960.86 8+ 8620 100 960.86 8+ 8620 100 960.86 8+ 8620 100 960.86 8+ 8620 100 960.86 8+ 8620 100 960.86 8+ 8620 100 960.86 8+ 8620 100 960.86 8+ 8620 100 960.86 8+ 8620 100 960.86 8+ 8620 100 960.86 8+ 8620 100 960.86 8+ 8620 100 960.86 8+ 8620 100 960.86 8+ 8620 100 960.86 8+ 8620 100 960.86 8+ 8620 100 960.86 8+ 8620 10	11691.8							
6637 13 7 5054.3 4 ⁺ 6854 4841.3 1 ⁺ 11 ⁻ 2 ⁺ 6883 480.96 6 ⁺ 6949 37 3 4742.3 0 ⁺ 7652 4039.1 4 ⁺ 8219 30 7 3472.25 3 ⁺ 8219 30 7 3472.25 3 ⁺ 8277 7 3 3415.32 4 ⁺ 8529 13 3 3161.74 2 ⁺ 8529 13 3 3161.74 2 ⁺ 8529 13 3 3161.74 2 ⁺ 8522 27 7 2964.786 2 ⁺ 8923 10 3 2767.767 4 ⁺ 9322 27 3 2369.630 4 ⁺ 10257 100 7 1434.091 2 ⁺ 10257 100 7 1434.091 2 ⁺ 8562 17 9 3472.25 3 ⁺ 8620 100 9 3415.32 4 ⁺ 88562 17 9 3472.25 3 ⁺ 8620 100 9 3415.32 4 ⁺ 8740 48 4 4627.32 4 ⁺ 8750 740 48 4 4627.32 4 ⁺ 8750 100 9 3415.32 100 9 3415.32 100 9 9 3415.32 100 9 9 9 9 9 9 9 9 9 9					$5664.4 (2)^+$			
6854 4841,3 1+,1-2+ 6883 4805.96 6+ 6883 4805.96 6+ 6883 4805.96 6+ 6883 4805.96 6+ 7652 4039.1 4+ 7652 4039.1 4+ 8219 30 7 3472.25 3+ 8277 7 3 3415.32 4+ 8529 13 3 3161.74 2+ 8726 27 7 2964.786 2+ 8923 10 3 2767.767 4+ 9322 27 3 2369.630 4+ 10257 100 7 1434.091 2+ 10257 100 7 1434.091 2+ 8528 22 4 5446.4 4+ 7404 48 4 4627.32 4+ 8562 17 9 3472.25 3+ 8620 100 9 3415.32 4+ 8620 100 9 3415.32 4+ 9069 17 9 2964.786 2+ 9065 78 4 2369.630 4+ 10600 48 4 1434.091 2+ 10600 48 4 1434.091 2+ 10600 48 4 1434.091 2+ 10600 48 4 1434.091 2+ 10600 48 4 1434.091 2+ 10600 48 4 1434.091 2+ 10600 48 4 1434.091 2+ 10600 7 4 3405.96 6+ 8627 19 4 3415.32 4+ 8869 46 4 3472.25 3+ 8869 62 4 3463.2 4+ 8879 62 4 3161.74 2+ 9076 7 4 2964.786 2+				53 <i>3</i>	5446.4 4+			
6883				13 7				
6949 37 3 4742.3 0+ 7652 4039.1 4+ 7652 4015.51 5+ 8219 30 7 3472.25 3+ 8277 7 3 3415.32 4+ 8529 13 3 3161.74 2+ 8726 27 7 2964.786 2+ 8923 10 3 2767.767 4+ 9322 27 3 2369.630 4+ 10257 100 7 1434.091 2+ 6471 22 4 5563.5 + 6588 22 4 5446.4 4+ 7404 48 4 4627.32 4+ 8562 17 9 3472.25 3+ 8620 100 9 3415.32 4+ 9066 78 4 2369.630 4+ 10600 48 4 1434.091 2+ 9141.8 4+ 6595 42 4 5446.4 4+ 7233 19 4 4805.96 6+ 8569 46 4 3472.25 3+ 8569 10600 48 4 1434.091 2+ 941.8 4+ 6595 42 4 5446.4 4+ 7233 19 4 4805.96 6+ 8569 46 4 3472.25 3+ 8569 10600 78 4 2134.091 2+ 941.8 4- 6595 42 4 5446.4 4+ 941.8 4- 6595 42 4 5446.4 4+ 942.00 48 4 1434.091 2+ 943.00 6- 74 2964.786 2+ 944.8 723 19 4 4805.96 6- 8569 66 78 4 2369.630 4+ 945.00 66 78 4 2369.630 4+ 946.00 66 78 4 2369.630 4+ 946.00 66 78 4 2369.630 4+ 947.25 3+ 948.76 64 3472.25 3+ 948.77 62 4 3161.74 2+ 947.00 67 74 2964.786 2+						2+		
7652				27.2				
7676 8219 30 7 3472.25 3+ 8277 7 3 3415.32 4+ 8529 13 3 3161.74 2+ 8726 27 7 2964.786 2+ 8923 10 3 2767.767 4+ 9322 27 3 2369.630 4+ 10257 100 7 1434.091 2+ 8582 24 5446.4 4+ 7404 48 4 4627.32 4+ 8562 17 9 3472.25 3+ 8620 100 9 3415.32 4+ 9066 78 4 2369.630 4+ 1026 78 4 2767.767 4+ 9329 4 563.5 5 4- 8569 46 4 345.32 4+ 9266 78 4 2369.630 4+ 10600 48 4 1434.091 2+ 10600 48 4 1434.091 2+ 10600 48 4 1434.091 2+ 10600 48 4 1434.091 2+ 10600 48 4 1434.091 2+ 10600 48 4 1434.091 2+ 10600 78 4 2696.786 2+ 10600 78 4 2767.767 4+ 10600 88 4 1434.091 2+ 10600 88 4 1434.091 2+ 10600 78 4 2767.767 4+ 10600 88 4 1434.091 2+ 10600 78 4 2767.767 4+ 10600 88 4 1434.091 2+ 10600 78 4 2767.767 4+ 10600 88 4 1434.091 2+ 10600 88 569 66+ 10600 88 4 1434.091 2+ 10600 88 569 66+ 10600 88 569 66+ 10600 88 569 66+ 10600 88 569 66+ 10600 88 569 66+ 10600 88 569 88 569 66+ 10600 88 569				37 3	4/42.3 0 ⁺			
8219 30 7 3472.25 3+ 8277 7 3 3415.32 4+ 8529 13 3 3161.74 2+ 8726 27 7 2964.786 2+ 8923 10 3 2767.767 4+ 9322 27 3 2369.630 4+ 10257 100 7 1434.091 2+ 34.8 - 6471 22 4 5563.5 + 6588 22 4 5446.4 4+ 7404 48 4 4627.32 4+ 8560 17 9 3472.25 3+ 8620 100 9 3415.32 4+ 9069 17 9 2964.786 2+ 9266 74 4 2767.767 4+ 9665 78 4 2369.630 4+ 10600 48 4 1434.091 2+ 341.8 4+ 6595 42 4 5446.4 4+ 7233 19 4 4805.96 6+ 8569 46 4 3472.25 3+ 8627 19 4 3415.32 4+ 8879 62 4 3161.74 2+ 9076 7 4 2964.786 2+								
8277 7 3 3415.32 4 ⁺ 8529 13 3 3161.74 2 ⁺ 8726 27 7 2964.786 2 ⁺ 8923 10 3 2767.767 4 ⁺ 9322 27 3 2369.630 4 ⁺ 10257 100 7 1434.091 2 ⁺ 6588 22 4 5446.4 4 ⁺ 7404 48 4 4627.32 4 ⁺ 8562 17 9 3472.25 3 ⁺ 8620 100 9 3415.32 4 ⁺ 9069 17 9 2964.786 2 ⁺ 9266 74 4 2767.767 4 ⁺ 9665 78 4 2369.630 4 ⁺ 1041.8 4 ⁺ 6595 42 4 5446.4 4 ⁺ 7233 19 4 4805.96 6 ⁺ 8569 46 4 3472.25 3 ⁺ 8627 19 4 3415.32 4 ⁺ 9076 7 4 2964.786 2 ⁺ 9076 7 4 2964.786 2 ⁺				20. 7				
8529 13 3 3161.74 2+ 8726 27 7 2964.786 2+ 8923 10 3 2767.767 4+ 9322 27 3 2369.630 4+ 10257 100 7 1434.091 2+ 6471 22 4 5563.5 + 6588 22 4 5446.4 4+ 7404 48 4 4627.32 4+ 8562 17 9 3472.25 3+ 8620 100 9 3415.32 4+ 9069 17 9 2964.786 2+ 9266 74 4 2767.767 4+ 9665 78 4 2369.630 4+ 10600 48 4 1434.091 2+ 10600 48 4 1434.091 2+ 10723 19 4 4805.96 6+ 8569 46 4 3472.25 3+ 8627 19 4 3415.32 4+ 8879 62 4 3161.74 2+ 9076 7 4 2964.786 2+				30 / 7 2				
8726 27 7 2964.786 2 ⁺ 8923 10 3 2767.767 4 ⁺ 9322 27 3 2369.630 4 ⁺ 10257 100 7 1434.091 2 ⁺ 6471 22 4 5563.5 + 6588 22 4 5446.4 4 ⁺ 7404 48 4 4627.32 4 ⁺ 8562 17 9 3472.25 3 ⁺ 8620 100 9 3415.32 4 ⁺ 9069 17 9 2964.786 2 ⁺ 9266 74 4 2767.767 4 ⁺ 9665 78 4 2369.630 4 ⁺ 10600 48 4 1434.091 2 ⁺ 41.8 4 ⁺ 6595 42 4 5446.4 4 ⁺ 7233 19 4 4805.96 6 ⁺ 8569 46 4 3472.25 3 ⁺ 8627 19 4 3415.32 4 ⁺ 8879 62 4 3161.74 2 ⁺ 9076 7 4 2964.786 2 ⁺								
8923 10 3 2767.767 4 ⁺ 9322 27 3 2369.630 4 ⁺ 10257 100 7 1434.091 2 ⁺ 34.8 - 6471 22 4 5563.5 + 6588 22 4 5446.4 4 ⁺ 7404 48 4 4627.32 4 ⁺ 8562 17 9 3472.25 3 ⁺ 8620 100 9 3415.32 4 ⁺ 9069 17 9 2964.786 2 ⁺ 9266 74 4 2767.767 4 ⁺ 9665 78 4 2369.630 4 ⁺ 10600 48 4 1434.091 2 ⁺ 341.8 4 ⁺ 6595 42 4 5446.4 4 ⁺ 7233 19 4 4805.96 6 ⁺ 8569 46 4 3472.25 3 ⁺ 8627 19 4 3415.32 4 ⁺ 8879 62 4 3161.74 2 ⁺ 8879 62 4 3161.74 2 ⁺ 9076 7 4 2964.786 2 ⁺								
9322 27 3 2369.630 4 ⁺ 10257 100 7 1434.091 2 ⁺ 6588 22 4 5563.5 + 6588 22 4 5446.4 4 ⁺ 7404 48 4 4627.32 4 ⁺ 8562 17 9 3472.25 3 ⁺ 8620 100 9 3415.32 4 ⁺ 9069 17 9 2964.786 2 ⁺ 9266 74 4 2767.767 4 ⁺ 9665 78 4 2369.630 4 ⁺ 10600 48 4 1434.091 2 ⁺ 1041.8 4 ⁺ 6595 42 4 5446.4 4 ⁺ 7233 19 4 4805.96 6 ⁺ 8569 46 4 3472.25 3 ⁺ 8627 19 4 3415.32 4 ⁺ 8879 62 4 3161.74 2 ⁺ 99076 7 4 2964.786 2 ⁺			8923					
10257 100 7 1434.091 2 ⁺ 6471 22 4 5563.5 + 6588 22 4 5446.4 4 ⁺ 7404 48 4 4627.32 4 ⁺ 8562 17 9 3472.25 3 ⁺ 8620 100 9 3415.32 4 ⁺ 9069 17 9 2964.786 2 ⁺ 9266 74 4 2767.767 4 ⁺ 9665 78 4 2369.630 4 ⁺ 10600 48 4 1434.091 2 ⁺ 10600 48 4 1434.091 2 ⁺ 41.8 4 ⁺ 6595 42 4 5446.4 4 ⁺ 7233 19 4 4805.96 6 ⁺ 8569 46 4 3472.25 3 ⁺ 8627 19 4 3415.32 4 ⁺ 8879 62 4 3161.74 2 ⁺ 9076 7 4 2964.786 2 ⁺								
034.8 - 6471					1434 091 2+			
6588 22 4 5446.4 4 ⁺ 7404 48 4 4627.32 4 ⁺ 8562 17 9 3472.25 3 ⁺ 8620 100 9 3415.32 4 ⁺ 9069 17 9 2964.786 2 ⁺ 9266 74 4 2767.767 4 ⁺ 9665 78 4 2369.630 4 ⁺ 10600 48 4 1434.091 2 ⁺ 10600 48 4 4805.96 6 ⁺ 8569 46 4 3472.25 3 ⁺ 8627 19 4 3415.32 4 ⁺ 8879 62 4 3161.74 2 ⁺ 9076 7 4 2964.786 2 ⁺	12034.8	-						
7404 48 4 4627.32 4 ⁺ 8562 17 9 3472.25 3 ⁺ 8620 100 9 3415.32 4 ⁺ 9069 17 9 2964.786 2 ⁺ 9266 74 4 2767.767 4 ⁺ 9665 78 4 2369.630 4 ⁺ 10600 48 4 1434.091 2 ⁺ 041.8 4 ⁺ 6595 42 4 5446.4 4 ⁺ 7233 19 4 4805.96 6 ⁺ 8569 46 4 3472.25 3 ⁺ 8627 19 4 3415.32 4 ⁺ 8879 62 4 3161.74 2 ⁺ 9076 7 4 2964.786 2 ⁺								
8562 17 9 3472.25 3 ⁺ 8620 100 9 3415.32 4 ⁺ 9069 17 9 2964.786 2 ⁺ 9266 74 4 2767.767 4 ⁺ 9665 78 4 2369.630 4 ⁺ 10600 48 4 1434.091 2 ⁺ 041.8 4 ⁺ 6595 42 4 5446.4 4 ⁺ 7233 19 4 4805.96 6 ⁺ 8569 46 4 3472.25 3 ⁺ 8627 19 4 3415.32 4 ⁺ 8879 62 4 3161.74 2 ⁺ 9076 7 4 2964.786 2 ⁺								
8620 100 9 3415.32 4 ⁺ 9069 17 9 2964.786 2 ⁺ 9266 74 4 2767.767 4 ⁺ 9665 78 4 2369.630 4 ⁺ 10600 48 4 1434.091 2 ⁺ 041.8 4 ⁺ 6595 42 4 5446.4 4 ⁺ 7233 19 4 4805.96 6 ⁺ 8569 46 4 3472.25 3 ⁺ 8627 19 4 3415.32 4 ⁺ 8879 62 4 3161.74 2 ⁺ 9076 7 4 2964.786 2 ⁺					3472.25 3 ⁺			
9266 74 4 2767.767 4 ⁺ 9665 78 4 2369.630 4 ⁺ 10600 48 4 1434.091 2 ⁺ 041.8 4 ⁺ 6595 42 4 5446.4 4 ⁺ 7233 19 4 4805.96 6 ⁺ 8569 46 4 3472.25 3 ⁺ 8627 19 4 3415.32 4 ⁺ 8879 62 4 3161.74 2 ⁺ 9076 7 4 2964.786 2 ⁺				100 9	3415.32 4+			
9665 78 4 2369.630 4 ⁺ 10600 48 4 1434.091 2 ⁺ 041.8 4 ⁺ 6595 42 4 5446.4 4 ⁺ 7233 19 4 4805.96 6 ⁺ 8569 46 4 3472.25 3 ⁺ 8627 19 4 3415.32 4 ⁺ 8879 62 4 3161.74 2 ⁺ 9076 7 4 2964.786 2 ⁺			9069		2964.786 2+			
10600 48 4 1434.091 2 ⁺ 041.8 4 ⁺ 6595 42 4 5446.4 4 ⁺ 7233 19 4 4805.96 6 ⁺ 8569 46 4 3472.25 3 ⁺ 8627 19 4 3415.32 4 ⁺ 8879 62 4 3161.74 2 ⁺ 9076 7 4 2964.786 2 ⁺								
041.8 4+ 6595 42 4 5446.4 4+ 7233 19 4 4805.96 6+ 8569 46 4 3472.25 3+ 8627 19 4 3415.32 4+ 8879 62 4 3161.74 2+ 9076 7 4 2964.786 2+								
7233 19 4 4805.96 6 ⁺ 8569 46 4 3472.25 3 ⁺ 8627 19 4 3415.32 4 ⁺ 8879 62 4 3161.74 2 ⁺ 9076 7 4 2964.786 2 ⁺								
8569	12041.8	4+						
8627 19 4 3415.32 4 ⁺ 8879 62 4 3161.74 2 ⁺ 9076 7 4 2964.786 2 ⁺								
8879 62 4 3161.74 2 ⁺ 9076 7 4 2964.786 2 ⁺								
9076 7 4 2964.786 2+								
92/3 31 4 2/6/./6/ 4'								

γ (52Cr) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$
12041.8	4+	9672	100 4	2369.630	4+	12099.9	4+	8152	22 4	3947.5 2 ⁺
		10607	54 <i>4</i>	1434.091	2+			8483	26 4	3615.924 5 ⁺
12099.9	4+	6239	39 9	5860.5	+			8627	17 <i>3</i>	3472.25 3 ⁺
		6362	39 9	5737.5	(4^{+})			8685	52 9	3415.32 4+
		6653	30 9	5446.4	4 ⁺			9331	35 <i>4</i>	2767.767 4+
		7002	13 4	5098.6	1			9730	100 9	2369.630 4+
		7469	30 4	4611	$(3,4)^{+}$	12794.8	4+	9178	81	3615.924 5 ⁺
		8060	30 4	4039.1	4 ⁺			10424	100	2369.630 4+
		8084	13 2	4015.51	5 ⁺					

[†] E γ <4 MeV from ⁵²Mn ε decay (5.591 d), E γ >4 MeV from ⁵¹V(p, γ), except as noted.

[‡] From ⁵²Mn ε decay (21.1 min).

[#] From 52 V β^- decay.

[@] From (HI,xn γ). [&] From ⁵¹V(³He,d γ).

^a From ⁵²Cr(γ , γ),(pol γ , γ).

^b From weighted average of values in ⁵²Mn ε decay (5.591 d) and ⁵²V β ⁻ decay.

^c From weighted average of values in ⁵²Mn ε decay (21.1 min) and ⁵²V β ⁻ decay.

^d From $\gamma \gamma(\theta)$ in ⁵²Cr(p,p' γ), except as noted.

^e From $^{51}V(p,\gamma)$.

f Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

 $^{52}_{24}\mathrm{Cr}_{28}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

____ → γ Decay (Uncertain)

Legend

Level Scheme (continued)

