Klasszikus fizika laboratórium

7. mérés

Mágneses szuszceptibilitás mérése

Bakó Bence Kedd délelőtti csoport

Mérés dátuma: 2020. április 21. Leadás dátuma: 2020. április 26.

1. A mérés célja:

Anyagok mágneses szuszceptibilitásának meghatározása a Gouy-módszerrel.

2. Mérőeszközök:

- Hall-szonda
- Analitikai mérleg
- Fluxusmérő
- Elektromágnes
- Voltmérő
- Áramgenerátor
- 19-es számú réz minta
- Grafit minta
- Mérőtekercs

3. A mérés menete:

A mérés két részre osztható. Először a hitelesítést végezzük el a mérőtekercs segítségével. Ezután a megmérjük a minták átmérőjét több helyen is. Végül pedig meghatározzuk az elektromágnes pofái közé akasztott mintára ható erőt és a hozzá tartozó feszültséget 10 pontban, ezt elvégezve mindkét mintára. Ezekből meg tudjuk határozni a minták mágneses szuszceptibilitását.

4. A mérés elmélete:

A hitelestéshez a mágneses indukció kiszámítható a fluxusváltozásból:

$$B = \frac{3\Phi}{n\pi(R_2^2 + R_1^2 + R_1 R_2)} \tag{1}$$

Ahol $\Delta\Phi$ a fluxusváltozás, n a mérőtekercs menetszáma, R_1 és R_2 pedig a tekercs belső és külső sugara.

Ezen felül ismert a Hall-efektusra a következő összefüggés:

$$U_H = \frac{R_H I_H}{d} \cdot B + U_P \tag{2}$$

Ahol R_H a Hall-állandó, I_H a Hall-áram, d a lapka vastagsága, B a mágneses térerősség és U_P pedig a parazita-feszültség, amely abból adódik, hogy a két potenciál-vezeték nincs tökéletesen szemben. Ezt kicsit átrendezve:

$$B = \frac{d}{R_H I_H} \cdot U_H - \frac{d}{R_H I_H} \cdot U_P \tag{3}$$

Egy mintát inhomogén mágneses térbe helyezve a rá ható erő:

$$F = \frac{(\kappa - \kappa_0) \cdot A}{2 \cdot \mu_0} B_y^2 \tag{4}$$

Ahol κ a mint a mágneses szuszceptibilitása, $\kappa_0 = 3,77 \cdot 10^{-7}$ a levegő szuszceptibilitása, B_y^2 az y irányú mágneses indukció, A a minta keresztmetszete és $\mu_0 = 4\pi \cdot 10^{-7} \frac{Vs}{Am}$. Tehát az $F - B^2$ egyenes meredekségéből megkapható a szuszceptibilitás.

5. <u>Mérési adatok:</u>

5.1. Hitelesítés

A fluxusmérő tekercs paraméterei:

• 194 menet

• belső sugara: $R_1 = 3, 15 \pm 0, 05 \ mm$

• külső sugara: $R_2 = 4,80 \pm 0,05 \ mm$

A Hall-áram: 6,51 mA.

A mágnesre adott áramot változtatva vizsgáltuk a Hall-feszültséget és a tekercs segítségével mértük a fluxust. Az (1)-es egyenlet segítségével ki is számoltam a fluxushoz tartozó mágneses indukciót és ezt is bevezettem a táblázatba.

I[A]	$U_H [mV]$	$\Phi [mVs]$	B[T]
0	7,8	0,12	0,01228
0,3	25,8	0,67	0,06859
0,6	44,8	1,29	0,13206
0,9	63,1	1,88	0,19246
1,2	83,4	2,49	0,25491
1,5	103,7	3,13	0,32043
1,8	125,0	3,82	0,39106
2,1	145.0	4,47	0,45760
2,4	164,9	5,07	0,51903
2.7	184,1	5,71	0,58455
2,95	199,8	6,22	0,63676

5.2. A szuszceptibilitás mérése

A minták átmérője csavarmikrométerrel van mérve (bizonytalansága 0,005 mm), amelynek nullhibája 0,01 mm, ezért azt a mért adatokból le is vonom és úgy tűntetem fel őket.

19-es réz minta:

Átmérő [mm]	7,86	7,98	7,92	7,86	7,93	8,02	8,04	8,07
-------------	------	------	------	------	------	------	------	------

I[A]	F/g [g]	U[mV]
0	0,0001	8,1
0,3	-0,0001	26,3
0,6	-0,0004	49,8
0,9	-0,0008	66,0
1,2	-0,0013	86,2
1,5	-0,0018	105,5
1,8	-0,0025	127,0
2,1	-0,0035	147,4
2,4	-0,0043	166,6
2,7	-0,0051	184,5

Grafit minta:

	Átmérő [mm	1 7.66	7.68	7.62	7.68	7.68	7.62	7.66	7.65
--	------------	----------	------	------	------	------	------	------	------

I[A]	F/g [g]	U[mV]
0	0,0001	7,9
0,3	0,0012	25,8
0,6	0,0022	45,4
0,9	0,0019	64,8
1,2	0,0004	85,2
1,5	-0,0032	109,6
1,8	-0,0066	125,9
2,1	-0,0129	148,6
2,4	-0,0190	166,0
2,7	-0,0274	185,4

6. <u>Kiértékelés:</u>

6.1. Hitelesítés

A mérési adatoknál már megadtam a mágneses indukciót, így a (3)-as összefüggés alapján ábrázolom a mágneses indukciót a Hall-feszültség függvényében és $B = m \cdot U_H + b$ egyenletű egyenest illesztek a pontokra. Az illesztésnél figyelembe vettem a a számolt mágneses indukció bizonytalanságát, így az illesztés bizonytalansága tartalmazza ezt a hibát is.

Az illesztett egyenes egyenlete:

$$B = 0,003238 \frac{T}{mV} U_H - 0,013490 \tag{5}$$

Ezzel számolhatóakki B értékei a továbbiakban. A meredekség és a tengelymetszet bizonytalansága:

$$\Delta m_0 = 9,0606 \cdot 10^{-5} \frac{T}{mV}$$
$$\Delta b_0 = 5,1882 \cdot 10^{-3} T$$

Megkaphatjuk a parazita feszültség értékét is:

$$U_H = \frac{b}{m} = -4,166 \ mV$$

6.2. A szuszceptibilitás mérése

19-es réz minta:

A minta keresztmetszetét az átmérő átlagából, a hibáját pedig az átlagtól vett legnagyobb eltérésből számoltam (lásd hibaszámítás):

$$A_1 = 3,98^2 \cdot \pi = (49,76 \pm 1,37) mm^2$$

A mért értékekből kiszámoltam az F-et, B-t és B^2 -et, majd ezeket is táblázatba foglaltam. A gravitációs gyorsulást $9,81\frac{m}{s^2}$ -nek tekintettem.

$F[\mu N]$	B[T]	$B^2 [10^{-4}T^2]$
0,981	0,01274	1,62252
-0,981	0,07167	51,36503
-3,924	0,14776	218,33727
-7,848	0,20022	400,87248
-12,753	0,26563	705,56959
-17,658	0,32812	1076,62078
-24,525	0,39774	1581,93926
-34,355	0,46379	2151,02277
-42,183	0,52596	2766,34763
-50,031	0,58392	3409,63734

A kapott adatokat ábrázoltam és a pontokra egy $y = m \cdot x$ egyenletű egyenest illesztettem:

Az illesztett egyenes meredeksége a hibával együtt:

$$m = (-0, 15278 \pm 0, 00253) \cdot 10^{-3} \frac{N}{T^2}$$

Innen a minta mágneses szuszceptibilitása megadható a (4)-es összefüggés alapján:

$$\kappa = \kappa_0 + \frac{2 \cdot \mu_0 \cdot m}{A}$$

$$\kappa = -0,7339 \cdot 10^{-5}$$
(6)

Grafit minta:

Itt is az előzőekhez hasonlóan jártam el. A minta keresztmetszete:

$$A_2 = 3,83^2 \cdot \pi = (46,04 \pm 0,48)mm^2$$

Itt is hasonlóan készítettem el a táblázatot:

$F[\mu N]$	B[T]	$B^2 \left[10^{-4} T^2 \right]$
0,981	0,01209	1,46173
11,772	0,07005	49,07059
21,582	0,13352	178,26308
18,639	0,19633	385,46411
3,924	0,26239	688,47253
-31,392	0,34139	1165,50409
-64.746	0,39417	1553,73300
-126,549	0,46767	2187,21589
-186,39	0,52402	2745,94864
-268,794	0,58684	3443,75552

A kapott értékeket ábrázoltam és egyenest illesztettem az utolsó 5 pontra (ezért itt az egyenes egyenletébe bejönne a tengelymetszet is, de annak nincs fizikai értelme, csak formálisan jelenik meg):

Az illesztett egyenes meredeksége:

$$m = (-1,0419 \pm 0,0338) \cdot 10^{-3} \frac{N}{T^2}$$

Innen a minta mágneses szuszceptibilitása megadható a (6)-os összefüggést felhasználva:

$$\kappa = -5,6499 \cdot 10^{-5}$$

7. Hibaszámítás:

7.1. Hitelesítés

Az (1)-es egyenletből kiszámolt mágneses indukció bizonytalansága a hibarerjedés módszerével kiszámolható (kicsit túlbecsülve):

$$\frac{\Delta B}{B} = \frac{\Delta \Phi}{\Phi} + 2\frac{\Delta R_1}{R_1} + 2\frac{\Delta R_2}{R_2} \tag{7}$$

A fluxus bizonytalanságát 0,05 mVs-nak tekintettem. Innen a mágneses indukció bizonytalansága:

$\Delta B [10^{-3}T] \parallel 5,762$	23 8,7250	12,0621	15,2378	18,5215	21,9664	25,6801	29,1784
32,40	82 35,8534	38,5985					

7.2. A szuszceptibilitás mérése

19-es réz minta:

A minta keresztmetszetének hibája a hibaterjedéssel (a sugár hibája $\Delta r_1 = 0,055mm$):

$$\Delta A_1 = 2\frac{\Delta r_1}{r_1} \cdot A_1 = 1,37 \ mm^2 \tag{8}$$

A minta mágneses szuszceptibilitásának hibája:

$$\Delta \kappa = \kappa \left(\frac{\Delta m}{m} + \frac{\Delta A}{A} \right) = 0,0323 \cdot 10^{-5} \tag{9}$$

Grafit minta:

A minta keresztmetszetének hibája a hibaterjedéssel (a sugár hibája $\Delta r_2 = 0,02mm$):

$$\Delta A_2 = 2\frac{\Delta r_2}{r_2} \cdot A_2 = 0,48 \ mm^2 \tag{10}$$

A minta mágneses szuszceptibilitásának hibája:

$$\Delta \kappa = \kappa \left(\frac{\Delta m}{m} + \frac{\Delta A}{A} \right) = 0,2422 \cdot 10^{-5} \tag{11}$$

8. Diszkusszió:

Az eredmények összegezve:

A réz minta mágneses szuszceptibilitása:	$(-0.733 \pm 0.032) \cdot 10^{-5}$
A grafit minta mágneses szuszceptibilitása:	$(-5,64\pm0,24)\cdot10^{-5}$

Ezeket összehasonlítva az irodamlmi értékekkel, a réz esetében elég közeli, bár nem hibahatáron belüli) értéket kaptunk. A grafit esetében ez jobban eltér az irodalmi értéktől, ami lehet a szennyeződéseknek is az oka. Mindemellett, mindkét anyagra diamágneses szuszceptibilitást kaptunk és ezt is vártuk.