Lenguajes Formales Segundo Parcial 2025 TN

Prácticos

1) Un cierto lenguaje de programación utiliza una sentencia for especial, con la siguiente estructura:

for Variable is range (Expresión) [step Constante] next Variable

Este ciclo especial se repetirá desde Variable=0 hasta Variable=Expresión en pasos indicados en la constante que sigue a la palabra reservada **step**. Los corchetes indican que los pasos son opcionales. En caso que no se indique nada, por default asumirá pasos de 1 en 1.

Variable es un identificador que comienza con una letra y puede seguir con letras y dígitos.

Expresión es una expresión aritmética de la forma: Variable + Constante o Variable * Constante.

Constante es un número entero positivo.

Son terminales las palabras reservadas for, is, range, step y next. Son terminales los (), las letras, los dígitos y los símbolos +, -, * y /.

Ejemplo de cadenas: for a1 is range (c1*3) step 2 next a1

for i is range (n+1) next i

for cont is range (tope*2) next cont

- a) Escribir las reglas de una gramática independiente de contexto en formato BNF para describir la sintaxis de esta sentencia for especial.
- b) Hacer el árbol de derivación de alguna de las cadenas ejemplo con la gramática que diseñó.

2) Dado el Parser LL correspondiente a la GIC: $G = \langle S, C, A \rangle$, $\{a, b, c\}$, $S, \{S \rightarrow CA; CA; C \rightarrow CC \mid CC, A \rightarrow aAbb \mid a\} \rangle$

Hacer el análisis sintáctico de la cadena CCCCaabb, mostrando en cada paso cómo queda la pila, y explicar cómo maneja la pila el Parser LL, al hacer el análisis sintáctico de una cadena.

3) Dada la MT=< {q0, q1, q2, q3, q4}, {0,1}, {0,1, \square }, δ , q0, \square , {q4}>

Determine si las siguientes cadenas pertenecen o no al lenguaje aceptado por la MT:

- i. 10100101
- ii. 11001100
- iii. 1001001
- iv. 10110100

Teóricos

- 1) Demostrar: El lenguaje: $L = \{ h^n g^j e^{2n} d^{3i} / i, j, n >= 0 \}$, con alfabeto $\{e, d, g, h\}$ es un LIC.
- 2) Marcar si las siguientes afirmaciones son Verdaderas o Falsas:
- a. La gramática $G=\{\{A\},\{+,*,(,),vble\},A,P\}$ donde P: $A\rightarrow A*A$, $A\rightarrow A+A$ | (A) | vble es ambigua.
- b. ¿Se pueden generar las cadenas de un lenguaje representado por una expresión regular mediante una gramática independiente al contexto?
- c. No puedo diseñar un AP para el lenguaje: $L = \{ x / x = a^n b^m ; n,m \ge 1 ; m = 2 * n \}$
- d. La intersección de un lenguaje libre de contexto y un lenguaje regular da como resultado siempre un lenguaje regular.

3) Marcar si las siguientes afirmaciones son Verdaderas o Falsas:

- a. En un compilador, la tarea de reconocer los componentes del lenguaje de programación la hace el analizador sintáctico.
 - b. Las reglas gramaticales de un lenguaje de programación son gramáticas tipo 3 de la Clasificación de Chomsky.
 - c. Puedo definir una expresión regular para las constantes hexadecimales de un lenguaje de programación.
 - d. En un parser LR, el árbol de parsing se arma desde el axioma hacia la cadena.
- 4) Marcar si las siguientes afirmaciones son Verdaderas o Falsas: Dado el lenguaje L={ $0^{2p} 1^{2q} 0^p 1^q$, p,q >= 0} con Σ = {0,1}
- a) El lenguaje puede ser reconocido por un Autómata con Pila.
- b) El lenguaje puede ser reconocido por un Autómata con Pila y por una Máquina de Turing.
- c) El lenguaje puede ser reconocido sólo por una Máquina de Turing.
- d) Si p>=1 y q=3, el lenguaje puede ser reconocido por un Autómata con Pila.