CIS 678 Machine Learning

ML Introduction: Linear Regression (part 3)

What we'd like to accomplish today

- **■** General Concepts: Straight Line to Linear Regression
- Gradient Descent Algorithm
 - → A simple two parameter **Linear Regression** model
 - → Hands on **Notebook implementation**
- QA

We will be learning today about Regression

Person's weight : y ∈ R

$$f(y|x=height)$$

Select one among a set of Models!

How to Generalize the Idea for

- any number of points, and/or
- any models (remember, we have infinite number of possible models)

Prediction function & Model

$$\hat{y} = \beta_0 + \beta_1 x$$
$$\Theta = \{\beta_0, \beta_1\}$$

Fitting Error

$$\epsilon = |\hat{y} - y|$$

Optimization/loss/error function

$$E_{\Theta} = \frac{1}{2} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

$$\Theta^* = \operatorname{argmin}_{\Theta} E\{(x_i, y_i)\}_{i=1, \dots, N}$$

► Optimization/Loss Function:

$$\mathcal{E}_{\Theta} = rac{1}{2} \sum_{i=1}^N \left(eta_0 + eta_1 \mathsf{x}_i - \mathsf{y}_i
ight)^2$$

▶ Gradient w.r.t. β_0 :

$$\frac{\partial E_{\Theta}}{\partial \beta_0} = \sum_{i=1}^{N} (\beta_0 + \beta_1 x_i - y_i)$$

$$\frac{\partial E_{\Theta}}{\partial \beta_1} = \sum_{i=1}^{N} (\beta_0 + \beta_1 x_i - y_i) x_i$$

Quadratic functions

$$y = x^2$$

Quadratic functions

$$y = x^2$$

$$y = -x^2$$

Gradient ascent - General idea:

- One wants to reach the top starting from the red point

$$y = -x^2$$
 (Quadratic function)

- One wants to reach the top starting from the red point
- If we take the derivative, with respect to Χ,

$$\frac{dy}{dx} = -2x$$
 (First Derivative)

- One wants to reach the top starting from the red point
- If we take the derivative, with respect to x,

- One wants to reach the top starting from the red point
- If we take the derivative, with respect to x, we will know which direction to move

- One wants to reach the top starting from the red point
- If we take derivatives, with respect to x, we will know which direction to move
- We keep iterating

- One wants to reach the top starting from the red point
- If we take derivatives, with respect to x, we will know which direction to move
- We keep iterating
- It's like building stairs of equal width and varying height (touching f(x)).
- Usually until $f(x) \sim 0$
- The width of each stair is called 'step-size'/'learning-rate in many ML algorithms.
-
- What will happen if the step-size is too big?
- What will happen if the step size is too small?

$$y = -x^2$$
 (Quadratic function)

$$\frac{dy}{dx} = -2x$$
 (First Derivative)

- One wants to reach the top starting from the red point
- If we take derivatives, with respect to x, we will know which direction to move
- We keep iterating
- It's like building stairs of equal width and varying height (touching f(x)).
- Usually until $f(x) \sim 0$
- The width of each stair is called 'step-size'/'learning-rate in many ML algorithms.
-
- What will happen if the step-size is too big?
- What will happen if the step size is too small?

$$y = -x^2$$
 (Quadratic function)

$$\frac{dy}{dx} = -2x$$
 (First Derivative)

- One wants to reach the top starting from the red point
- If we take derivatives, with respect to x, we will know which direction to move
- We keep iterating
- It's like building stairs of equal width and varying height (touching f(x)).
- Usually until $f(x) \sim 0$
- The width of each stair is called 'step-size'/'learning-rate in many ML algorithms.
-
- What will happen if the step-size is too big?
- What will happen if the step size is too small?

$$y = -x^2$$
 (Quadratic function)

$$\frac{dy}{dx} = -2x$$
 (First Derivative)

- One wants to reach the top starting from the red point
- If we take derivatives, with respect to x, we will know which direction to move
- We keep iterating
- It's like building stairs of equal width and varying height (touching f(x)).
- Usually until $f(x) \sim 0$
- The width of each stair is called 'step-size'/'learning-rate in many ML algorithms.
-
- What will happen if the step-size is too big?
- What will happen if the step size is too small?

$$y = -x^2$$
 (Quadratic function)

$$\frac{dy}{dx} = -2x$$
 (First Derivative)

Questions

- One wants to reach the top starting from the red point
- If we take derivatives, with respect to x, we will know which direction to move
- We keep iterating
- It's like building stairs of equal width and varying height (touching f(x)).
- Usually until $f(x) \sim 0$
- The width of each stair is called 'step-size'/'learning-rate in many ML algorithms.
-
- What will happen if the step-size is too big?
- What will happen if the step size is too small?

$$y = -x^2$$
 (Quadratic function)

$$\frac{dy}{dx} = -2x$$
 (First Derivative)

- One wants to reach the top starting from the red point
- If we take derivatives, with respect to x, we will know which direction to move
- We keep iterating
- It's like building stairs of equal width and varying height (touching f(x)).
- Usually until $f(x) \sim 0$
- The width of each stair is called 'step-size'/'learning-rate in many ML algorithms.
-
- What will happen if the step-size is too big?
- What will happen if the step size is too small?

$$y = -x^2$$
 (Quadratic function)

$$\frac{dy}{dx} = -2x$$
 (First Derivative)

- One wants to reach the top starting from the red point
- If we take derivatives, with respect to x, we will know which direction to move
- We keep iterating
- It's like building stairs of equal width and varying height (touching f(x)).
- Usually until $f(x) \sim 0$
- The width of each stair is called 'step-size'/'learning-rate in many ML algorithms.
-
- What will happen if the step-size is too big?
- What will happen if the step size is too small?

$$y = -x^2$$
 (Quadratic function)

$$\frac{dy}{dx} = -2x$$
 (First Derivative)

Another Question!

- One wants to reach the top starting from the red point
- If we take derivatives, with respect to x, we will know which direction to move
- We keep iterating
- It's like building stairs of equal width and varying height (touching f(x)).
- Usually until $f(x) \sim 0$
- The width of each stair is called 'step-size'/'learning-rate in many ML algorithms.
-
- What will happen if the step-size is too big?
- What will happen if the step size is too small?

- One wants to reach the top starting from the red point
- If we take derivatives, with respect to x, we will know which direction to move
- We keep iterating
- It's like building stairs of equal width and varying height (touching f(x)).
- Usually until $f(x) \sim 0$
- The width of each stair is called 'step-size'/'learning-rate in many ML algorithms.
-
- What will happen if the step-size is too big?
- What will happen if the step size is too small?

Now we are ready for the

$$y = x^2$$

Now we are ready for the

$$y = x^2$$

$$y = -x^2$$

Gradient Descent Algorithm

Gradient descent (- ascent)

- Start with an initial (β₀, β₁) and a learning rate (L), a scalar, which controls the gradient step.
- 2. For **N** training data points, estimate the **model loss**
- 3. Estimate the gradient (vector of partial derivatives): $\nabla E_{\Theta} = \left[\frac{\delta}{\delta \beta_0}(E_{\Theta}), \frac{\delta}{\delta \beta_1}(E_{\Theta})\right]$
- 4. Update parameters

$$\beta_0 \leftarrow \beta_0 - L * \frac{\delta}{\delta \beta_0}(E_{\Theta})$$

$$\beta_1 \leftarrow \beta_1 - L * \frac{\delta}{\delta \beta_1}(E_{\Theta})$$

 Go to step 2) and iterate until the model loss reaches a predefined threshold or a certain number of iterations are executed.

▶ Optimization/Loss Function:

$$E_{\Theta} = \frac{1}{2} \sum_{i=1}^{N} (\beta_0 + \beta_1 x_i - y_i)^2$$

▶ Gradient w.r.t. β_0 :

$$\frac{\partial E_{\Theta}}{\partial \beta_0} = \sum_{i=1}^{N} (\beta_0 + \beta_1 x_i - y_i)$$

$$\frac{\partial E_{\Theta}}{\partial \beta_1} = \sum_{i=1}^{N} (\beta_0 + \beta_1 x_i - y_i) x_i$$

Gradient descent (- ascent)

- 1. Start with an initial (β_0, β_1) and a **learning** rate (L), a scalar, which controls the gradient step.
- 2. For **N** training data points, estimate the **model loss**
- 3. Estimate the gradient (vector of partial derivatives): $\nabla E_{\Theta} = \left[\frac{\delta}{\delta\beta_0}(E_{\Theta}), \frac{\delta}{\delta\beta_1}(E_{\Theta})\right]$
- 4. Update parameters

$$\beta_0 \leftarrow \beta_0 - L * \frac{\delta}{\delta \beta_0}(E_{\Theta})$$

$$\beta_1 \leftarrow \beta_1 - L * \frac{\delta}{\delta \beta_1}(E_{\Theta})$$

 Go to step 2) and iterate until the model loss reaches a predefined threshold or a certain number of iterations are executed.

Optimization/Loss Function:

$$E_{\Theta} = \frac{1}{2} \sum_{i=1}^{N} (\beta_0 + \beta_1 x_i - y_i)^2$$

▶ Gradient w.r.t. β_0 :

$$\frac{\partial E_{\Theta}}{\partial \beta_0} = \sum_{i=1}^{N} (\beta_0 + \beta_1 x_i - y_i)$$

$$\frac{\partial E_{\Theta}}{\partial \beta_1} = \sum_{i=1}^{N} (\beta_0 + \beta_1 x_i - y_i) x_i$$

Gradient descent (- ascent)

- 1. Start with an initial (β_0, β_1) and a **learning** rate (L), a scalar, which controls the gradient step.
- 2. For **N** training data points, estimate the **model loss**
- 3. Estimate the gradient (vector of partial derivatives): $\nabla E_{\Theta} = \left[\frac{\delta}{\delta \beta_0}(E_{\Theta}), \frac{\delta}{\delta \beta_1}(E_{\Theta})\right]$
- 4. Update parameters

$$\beta_0 \leftarrow \beta_0 - L * \frac{\delta}{\delta \beta_0}(E_{\Theta})$$

$$\beta_1 \leftarrow \beta_1 - L * \frac{\delta}{\delta \beta_1}(E_{\Theta})$$

 Go to step 2) and iterate until the model loss reaches a predefined threshold or a certain number of iterations are executed.

▶ Optimization/Loss Function:

$$E_{\Theta} = rac{1}{2} \sum_{i=1}^{N} (eta_0 + eta_1 x_i - y_i)^2$$

Gradient w.r.t. β_0 :

$$\frac{\partial E_{\Theta}}{\partial \beta_0} = \sum_{i=1}^{N} (\beta_0 + \beta_1 x_i - y_i)$$

$$\frac{\partial E_{\Theta}}{\partial \beta_1} = \sum_{i=1}^{N} (\beta_0 + \beta_1 x_i - y_i) x_i$$

Gradient descent (- ascent)

- 1. Start with an initial (β_0, β_1) and a **learning** rate (L), a scalar, which controls the gradient step.
- 2. For **N** training data points, estimate the **model loss**
- 3. Estimate the gradient (vector of partial derivatives): $\nabla E_{\Theta} = \left[\frac{\delta}{\delta \beta_0}(E_{\Theta}), \frac{\delta}{\delta \beta_1}(E_{\Theta})\right]$
- 4. Update parameters

$$\beta_0 \leftarrow \beta_0 - L * \frac{\delta}{\delta \beta_0}(E_{\Theta})$$

$$\beta_1 \leftarrow \beta_1 - L * \frac{\delta}{\delta \beta_1}(E_{\Theta})$$

 Go to step 2) and iterate until the model loss reaches a predefined threshold or a certain number of iterations are executed.

Optimization/Loss Function:

$$E_{\Theta} = \frac{1}{2} \sum_{i=1}^{N} (\beta_0 + \beta_1 x_i - y_i)^2$$

▶ Gradient w.r.t. β_0 :

$$\frac{\partial E_{\Theta}}{\partial \beta_0} = \sum_{i=1}^{N} (\beta_0 + \beta_1 x_i - y_i)$$

$$\frac{\partial E_{\Theta}}{\partial \beta_1} = \sum_{i=1}^{N} (\beta_0 + \beta_1 x_i - y_i) x_i$$

Batch Gradient descent (- ascent)

Gradient descent (- ascent) Variants

- 1. Start with an initial (β_0, β_1) and a **learning** rate (L), a scalar, which controls the gradient step.
- 2. For **N** training data points, estimate the **model loss**
- 3. Estimate the gradient (vector of partial derivatives): $\nabla E_{\Theta} = \left[\frac{\delta}{\delta \beta_0}(E_{\Theta}), \frac{\delta}{\delta \beta_1}(E_{\Theta}) \right]$
- 4. Update parameters

$$\beta_0 \leftarrow \beta_0 - L * \frac{\delta}{\delta \beta_0}(E_{\Theta})$$

$$\beta_1 \leftarrow \beta_1 - L * \frac{\delta}{\delta \beta_1}(E_{\Theta})$$

 Go to step 2) and iterate until the model loss reaches a predefined threshold or a certain number of iterations are executed.

▶ Optimization/Loss Function:

$$E_{\Theta} = rac{1}{2} \sum_{i=1}^{N} (eta_0 + eta_1 x_i - y_i)^2$$

Gradient w.r.t. β_0 :

$$\frac{\partial E_{\Theta}}{\partial \beta_0} = \sum_{i=1}^{N} (\beta_0 + \beta_1 x_i - y_i)$$

$$\frac{\partial E_{\Theta}}{\partial \beta_1} = \sum_{i=1}^{N} (\beta_0 + \beta_1 x_i - y_i) x_i$$

Gradient descent (- ascent) Variants

- 1. Start with an initial (β_0, β_1) and a **learning** rate (L), a scalar, which controls the gradient step.
- 2. For **N** training data points, estimate the **model loss**
- 3. Estimate the gradient (vector of partial derivatives): $\nabla E_{\Theta} = \left[\frac{\delta}{\delta \beta_0}(E_{\Theta}), \frac{\delta}{\delta \beta_1}(E_{\Theta}) \right]$
- 4. Update parameters

$$\beta_0 \leftarrow \beta_0 - L * \frac{\delta}{\delta \beta_0}(E_{\Theta})$$

$$\beta_1 \leftarrow \beta_1 - L * \frac{\delta}{\delta \beta_1}(E_{\Theta})$$

 Go to step 2) and iterate until the model loss reaches a predefined threshold or a certain number of iterations are executed.

Gradient descent (- ascent) Variants

- 1. Start with an initial (β_0, β_1) and a *learning* rate (L), a scalar, which controls the gradient step.
- 2. For **N** training data points, estimate the **model loss**
- 3. Estimate the gradient (vector of partial derivatives): $\nabla E_{\Theta} = \left[\frac{\delta}{\delta\beta_0}(E_{\Theta}), \frac{\delta}{\delta\beta_1}(E_{\Theta})\right]$
- 4. Update parameters

$$\beta_0 \leftarrow \beta_0 - L * \frac{\delta}{\delta \beta_0}(E_{\Theta})$$

$$\beta_1 \leftarrow \beta_1 - L * \frac{\delta}{\delta \beta_1}(E_{\Theta})$$

 Go to step 2) and iterate until the model loss reaches a predefined threshold or a certain number of iterations are executed.

Optimization/Loss Function:

$$E_{\Theta} = rac{1}{2} \sum_{i=1}^{N} (eta_0 + eta_1 x_i - y_i)^2$$

Gradient w.r.t. β_0 :

$$\frac{\partial E_{\Theta}}{\partial \beta_0} = \sum_{i=1}^{N} (\beta_0 + \beta_1 x_i - y_i)$$

▶ Gradient w.r.t. β_1 :

$$\frac{\partial E_{\Theta}}{\partial \beta_1} = \sum_{i=1}^{N} (\beta_0 + \beta_1 x_i - y_i) x_i$$

Batch Gradient descent: N=n (random) and n< N

Gradient descent (- ascent) Variants

- 1. Start with an initial (β_0, β_1) and a **learning rate** (L), a scalar, which controls the gradient step.
- 2. For **N** training data points, estimate the **model loss**
- 3. Estimate the gradient (vector of partial derivatives): $\nabla E_{\Theta} = \left[\frac{\delta}{\delta \beta_0}(E_{\Theta}), \frac{\delta}{\delta \beta_1}(E_{\Theta}) \right]$
- 4. Update parameters

$$\beta_0 \leftarrow \beta_0 - L * \frac{\delta}{\delta \beta_0}(E_{\Theta})$$

$$\beta_1 \leftarrow \beta_1 - L * \frac{\delta}{\delta \beta_1}(E_{\Theta})$$

 Go to step 2) and iterate until the model loss reaches a predefined threshold or a certain number of iterations are executed.

Optimization/Loss Function:

$$E_{\Theta} = rac{1}{2} \sum_{i=1}^{N} (eta_0 + eta_1 x_i - y_i)^2$$

Gradient w.r.t. β_0 :

$$\frac{\partial E_{\Theta}}{\partial \beta_0} = \sum_{i=1}^{N} (\beta_0 + \beta_1 x_i - y_i)$$

▶ Gradient w.r.t. β_1 :

$$\frac{\partial E_{\Theta}}{\partial \beta_1} = \sum_{i=1}^{N} (\beta_0 + \beta_1 x_i - y_i) x_i$$

Stochastic Gradient descent: N=1 (random)

Notebook presentation

- Notebook github
 - → Gradient descent training (Linear Regression)

I know one of your tricks; get you soon!!

Our model today

GPT

What we have discussed today

- General Concepts: Straight Line to Linear Regression
- Gradient Descent Algorithm
 - → A simple two parameter **Linear Regression** model
 - → Hands on **Notebook implementation**

