# Assignment2\_Ji\_Qi

April 7, 2022

# 1 Student Name: Ji Qi, Session B1

### 1.0.1 Import packages

```
[3]: import numpy as np
  import pandas as pd
  from sklearn.model_selection import train_test_split
  import matplotlib.pyplot as plt

import statsmodels.api as sm
  from statsmodels.sandbox.regression.predstd import wls_prediction_std
```

# 2 Model preparation

#### 2.1 Basic Info about the Data

- $\bullet$  2 missing values in current assets
- 1 missing values in current liability
- Don't fill nan with '0'
- CA = alpha + beta 1 \* TA + beta 2 \* sales to predict current assets
- More interested in finance ratio, convert to the current ratio like CA/CL, and impute the missing values with the mean of CA/CL

```
[4]: from google.colab import drive drive.mount('/content/drive')
```

Mounted at /content/drive

```
[5]: data = pd.read_csv('/content/drive/MyDrive/BA_870/HW/2/assignment2.csv')
```

[6]: data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 354 entries, 0 to 353
Data columns (total 9 columns):
# Column Non-Null Count Dtype
```

|      | 0           | TICKE  | ER                         | 354 n   | on-null              | objec    | t                |                      |                      |                      |  |
|------|-------------|--------|----------------------------|---------|----------------------|----------|------------------|----------------------|----------------------|----------------------|--|
|      | 1           | CURRI  | ENT ASSETS                 | 352 n   | on-null              | float    |                  |                      |                      |                      |  |
|      | 2           | TOTAI  | L ASSETS                   | 354 n   | on-null              | float    | 64               |                      |                      |                      |  |
|      | 3           | EBIT   |                            | 354 n   | on-null              | float    | 64               |                      |                      |                      |  |
|      | 4           | CURRI  | ENT LIABIL                 | 353 n   | on-null              | float    | 64               |                      |                      |                      |  |
|      | 5           | TOTAI  | L LIABILITIES              | 354 n   | on-null              | float    | 64               |                      |                      |                      |  |
|      | 6           | RETA   | INED EARNINGS              | 354 n   | on-null              | float    | 64               |                      |                      |                      |  |
|      | 7           |        | L SALES                    | 354 n   | on-null              | float    | 64               |                      |                      |                      |  |
|      | 8           |        | IT_RATING                  |         | on-null              |          | :                |                      |                      |                      |  |
|      | -           |        | loat64(7), int             | 64(1),  | object(1             | .)       |                  |                      |                      |                      |  |
|      | memo        | ry usa | age: 25.0+ KB              |         |                      |          |                  |                      |                      |                      |  |
| [7]: | dat         | a.head | 1()                        |         |                      |          |                  |                      |                      |                      |  |
| [7]: | T           | ICKER  | CURRENT ASSET              | S TOT   | TAL ASSET            | S I      | EBIT             | CURRENT L            | IABIL                | \                    |  |
|      | 0           | ARXX   | 328.39                     |         | 638.02               |          | .473             |                      | 9.215                | •                    |  |
|      | 1           | ABT    | 11281.88                   | 33      | 36178.17             | 2 4860   | .219             |                      | L.195                |                      |  |
|      | 2           | AMD    | 3963.00                    | 00      | 13147.00             | 0 401    | .000             | 2852                 | 2.000                |                      |  |
|      | 3           | APD    | 2612.60                    | 00      | 11180.70             | 0 1013   | .500             | 2323                 | 3.400                |                      |  |
|      | 4           | HON    | 12304.00                   | 00      | 30941.00             | 0 3544   | .000             | 1013                 | 5.000                |                      |  |
|      |             | TOTAI. | LIABILITIES H              | RETATNE | ED EARNIN            | GS TOT   | AL SAL           | ES CREDI             | Γ_RATI1              | 1G                   |  |
|      | 0           | 101112 | 150.352                    | v—      | 95.2                 |          | 551.8            |                      |                      | 7                    |  |
|      | 1           |        | 22123.986                  |         | 9958.4               |          | 2476.3           |                      |                      | 19                   |  |
|      | 2           |        | 7072.000                   |         | 464.0                |          | 5649.0           | 00                   |                      | 7                    |  |
|      | 3           |        | 6078.700                   |         | 5521.8               | 00       | 8850.4           | 00                   | :                    | 16                   |  |
|      | 4           |        | 21221.000                  |         | 11256.0              | 00 3     | 1367.0           | 00                   | -                    | 16                   |  |
| [8]: | dat         | a.desc | ribe()                     |         |                      |          |                  |                      |                      |                      |  |
| 5-7  |             |        |                            |         |                      |          |                  |                      |                      |                      |  |
| [8]: |             |        | RRENT ASSETS               |         | L ASSETS             | 054      | EBIT             |                      |                      |                      |  |
|      | cou         |        | 352.000000                 |         | 1.000000             |          | 000000           |                      | .000000              |                      |  |
|      | mean        |        | 4573.438503<br>9732.694678 |         | 2.169178<br>1.580520 |          | 369554<br>767859 |                      | . 204343<br>. 253422 |                      |  |
|      | std<br>min  |        | 22.094000                  |         | 2.675000             | -8167.   |                  |                      | . 255422<br>. 740000 |                      |  |
|      | 25%         |        | 593.983750                 |         | 9.039500             |          | 920000           |                      | . 740000<br>. 542000 |                      |  |
|      | 50%         |        | 1429.000000                |         | 5.339000             |          | 00000            |                      | . 289000             |                      |  |
|      | 75%         |        | 4019.000000                |         | 1.750000             |          | 450250           |                      | .000000              |                      |  |
|      | max         |        | 91885.000000               |         | 1.000000             | 56939.   |                  |                      | .000000              |                      |  |
|      |             |        |                            | 10 DE   |                      | האידויממ | mom              | AT GATEG             | an en e              | n DAMING             |  |
|      |             |        | TAL LIABILITI              |         | TAINED EA            |          |                  | AL SALES             |                      | Γ_RATING             |  |
|      | cou         |        | 354.00000                  |         |                      | 000000   |                  | 4.000000             |                      | 1.000000             |  |
|      | mean<br>std |        | 7597.23360<br>20785.0509   |         | 4432.<br>15233.      | 749562   |                  | 1.515785<br>3.899680 |                      | 2.129944<br>3.594938 |  |
|      | min         |        | 48.1230                    |         | -7863.               |          |                  | 4.159000             |                      | 1.000000             |  |
|      | 25%         |        | 912.25000                  |         |                      | 619500   |                  | 6.367000             |                      | 9.000000             |  |
|      | 20/         |        | 912.20000                  | ,0      | 14.                  | 019000   | 149              | 0.501000             | 3                    |                      |  |

```
50%
                   1987.700000
                                        760.108000
                                                      3648.101000
                                                                        12.000000
      75%
                   6153.828750
                                       2408.700000
                                                      9588.753500
                                                                        15.000000
      max
                 280860.000000
                                     192445.000000
                                                    335086.000000
                                                                        22.000000
     2.2 Data Merging (Credit Rating + WRDS Compustat )
[11]: data1 = pd.read_csv('/content/drive/MyDrive/BA_870/HW/2/wrds_assignment2.csv')
      data1.head()
「111]:
                datadate fyear indfmt consol popsrc datafmt
                                                                 tic curcd
         gvkey
                                                                                  ceq
      0
          1056
                20060630
                           2006
                                   INDL
                                             С
                                                    D
                                                          STD
                                                               ARXX
                                                                       USD
                                                                              487.670
                           2006
                                   INDL
                                             С
      1
          1078 20061231
                                                    D
                                                          STD
                                                                 ABT
                                                                       USD
                                                                            14054.186
      2
          1161 20061231
                           2006
                                   INDL
                                             С
                                                    D
                                                          STD
                                                                 AMD
                                                                       USD
                                                                             5785.000
      3
                                             С
                                                          STD
                                                                 APD
                                                                       USD
          1209
                20060930
                           2006
                                   INDL
                                                    D
                                                                             4924.000
                                             C
      4
          1300 20061231
                           2006
                                   INDL
                                                    D
                                                          STD
                                                                 HON
                                                                       USD
                                                                             9720.000
             csho
                         ni costat
                                    prcc_c
      0
           75.270
                                      11.72
                     26.959
                                  Ι
                                      48.71
      1
        1537.243
                  1716.755
                                  Α
      2
          547.000
                  -166.000
                                      20.35
                                  Α
          217.251
                                     70.28
      3
                    723.400
                                  Α
                                      45.24
      4
          800.592
                   2083.000
                                  Α
[12]: print(data.TICKER.nunique())
      print(data1.tic.nunique())
     354
     344
[13]: df = pd.merge(data, data1, how = 'left', left on= 'TICKER', right on= 'tic',
       →indicator= True)
      df . _merge . value_counts()
                    344
[13]: both
      left only
                     10
      right_only
                      0
      Name: _merge, dtype: int64
Γ14]:
     df[df._merge == 'left_only']
```

EBIT

3219.000

3845.000

37678.000

3395.000

384.700

CURRENT LIABIL \

2157.000

5348.000

634.400

76748.000

2158.000

TOTAL ASSETS

14842.000

16141.000

235276.000

18781.000

4390.900

[14]:

75

94

115

209

194 RDS.A

TICKER CURRENT ASSETS

5704.000

5309.000

1836.300

91885.000

2302.000

DNA

OMI

LZ

SU

| 212 |            | PCZ      | 2826.   | 000   | 2264        | 46.00       | 00      | 4366.       | .000    | 3348    | 3.000  |       |   |
|-----|------------|----------|---------|-------|-------------|-------------|---------|-------------|---------|---------|--------|-------|---|
| 231 |            | ETH      | 423.    | 756   | 8:          | 12.24       | 11      | 146.        | .913    | 145     | .718   |       |   |
| 244 |            | PRM      | 323.    | 104   | 12          | 54.32       | 29      | 109.        | .688    | 295     | .267   |       |   |
| 303 |            | AG       | 22.     | 094   | 1:          | 12.67       | 75      | -6.         | . 557   | 18      | 3.740  |       |   |
| 305 |            | LLL      | 3929.   | 800   | 1328        | 36.70       | 00      | 1279.       | . 100   | 2376    | .400   |       |   |
|     |            |          |         |       |             |             |         |             |         |         |        |       |   |
|     | TO         | TAL LIAB | ILITIES | RETA  | INED E      | ARNI        | IGS '   | TOTAI       | L SALES | CREDIT_ | RATING | gvkey | \ |
| 75  |            | 5        | 364.000 |       | -(          | 634.0       | 000     | 92          | 284.000 |         | 19     | NaN   |   |
| 94  |            | 8        | 735.000 |       | 5           | 729.0       | 000     | 232         | 231.000 |         | 22     | NaN   |   |
| 115 |            | 2        | 656.500 |       | 9           | 973.0       | 000     | 40          | 040.800 |         | 12     | NaN   |   |
| 194 | 120331.000 |          | 1084    | 497.0 | 000         | 3188        | 345.000 |             | 19 N    |         |        |       |   |
| 209 | 9829.000   |          |         | 80    | 058.0       | 000         | 148     | 342.000     | 15 Na   |         |        |       |   |
| 212 | 12205.000  |          |         | 86    | 606.0       | 000         | 189     | 911.000     |         | 13      | NaN    |       |   |
| 231 | 394.799    |          |         |       | 530.4       | 131         | 10      | 066.390     |         | 15      | NaN    |       |   |
| 244 | 1777.559   |          | -28     | 317.0 | )28         | 8           | 349.309 |             | 7       | NaN     |        |       |   |
| 303 |            |          | 56.687  |       |             | 5.8         | 357     |             | 4.159   |         | 11     | NaN   |   |
| 305 |            | 7        | 896.500 |       | 19          | 929.4       | 100     | 124         | 176.900 |         | 12     | NaN   |   |
|     |            |          |         |       |             |             |         |             |         |         |        |       |   |
|     | •••        | popsrc   | datafmt | tic   | curcd       | ceq         | csho    | ni          | costat  | prcc_c  | _me    | rge   |   |
| 75  | •••        | NaN      | NaN     | I NaN | NaN         | NaN         | NaN     | ${\tt NaN}$ | NaN     | NaN     | left_o | nly   |   |
| 94  | •••        | NaN      | NaN     | I NaN | NaN         | NaN         | NaN     | ${\tt NaN}$ | NaN     | NaN     | left_o | nly   |   |
| 115 | •••        | NaN      | NaN     | I NaN | NaN         | NaN         | NaN     | ${\tt NaN}$ | NaN     | NaN     | left_o | nly   |   |
| 194 | •••        | NaN      | NaN     | I NaN | NaN         | NaN         | NaN     | ${\tt NaN}$ | NaN     | NaN     | left_o | nly   |   |
| 209 | •••        | NaN      | NaN     | I NaN | NaN         | NaN         | NaN     | ${\tt NaN}$ | NaN     | NaN     | left_o | nly   |   |
| 212 | •••        | NaN      | NaN     | I NaN | NaN         | NaN         | NaN     | ${\tt NaN}$ | NaN     | NaN     | left_o | nly   |   |
| 231 | •••        | NaN      | NaN     |       |             | NaN         |         | NaN         | NaN     | NaN     | left_o | nly   |   |
| 244 | •••        | NaN      | NaN     |       |             | NaN         |         | NaN         | NaN     | NaN     | left_o | •     |   |
| 303 | •••        | NaN      | NaN     | I NaN | NaN         | NaN         | NaN     | NaN         | NaN     | NaN     | left_o | nly   |   |
| 305 | •••        | NaN      | NaN     | NaN   | ${\tt NaN}$ | ${\tt NaN}$ | NaN     | ${\tt NaN}$ | NaN     | NaN     | left_o | nly   |   |

### [10 rows x 24 columns]

- The WRDS (price and shares) data will have about 344 observations (compared to 354 for Assignment2.csv)
- Decide to drop 10 rows of missing observation in the WRDS dataset
- Except for the Current Assets and Current Liabillity Columns, prcc\_c also has 11 missing data

```
[15]: df = df[df._merge == 'both']
    df.reset_index(inplace = True)
    df = df.drop(columns='index')
    df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 344 entries, 0 to 343
Data columns (total 24 columns):
# Column Non-Null Count Dtype
```

| 0  | TICKER            | 344 non-null | object   |
|----|-------------------|--------------|----------|
| 1  | CURRENT ASSETS    | 342 non-null | float64  |
| 2  | TOTAL ASSETS      | 344 non-null | float64  |
| 3  | EBIT              | 344 non-null | float64  |
| 4  | CURRENT LIABIL    | 343 non-null | float64  |
| 5  | TOTAL LIABILITIES | 344 non-null | float64  |
| 6  | RETAINED EARNINGS | 344 non-null | float64  |
| 7  | TOTAL SALES       | 344 non-null | float64  |
| 8  | CREDIT_RATING     | 344 non-null | int64    |
| 9  | gvkey             | 344 non-null | float64  |
| 10 | datadate          | 344 non-null | float64  |
| 11 | fyear             | 344 non-null | float64  |
| 12 | indfmt            | 344 non-null | object   |
| 13 | consol            | 344 non-null | object   |
| 14 | popsrc            | 344 non-null | object   |
| 15 | datafmt           | 344 non-null | object   |
| 16 | tic               | 344 non-null | object   |
| 17 | curcd             | 344 non-null | object   |
| 18 | ceq               | 344 non-null | float64  |
| 19 | csho              | 344 non-null | float64  |
| 20 | ni                | 344 non-null | float64  |
| 21 | costat            | 344 non-null | object   |
| 22 | prcc_c            | 333 non-null | float64  |
| 23 | _merge            | 344 non-null | category |
|    |                   |              | (1)      |

dtypes: category(1), float64(14), int64(1), object(8)

memory usage: 62.4+ KB

# 2.3 Fill the NaN values using the Predictive Model

```
[16]: # 13 Rows with at least one missing value df[df.isna().any(axis=1)]
```

| [16]: | TICKER | CURRENT ASSETS | TOTAL ASSETS | EBIT      | CURRENT LIABIL | \ |
|-------|--------|----------------|--------------|-----------|----------------|---|
| 73    | F      | NaN            | 278554.000   | -8167.000 | NaN            |   |
| 165   | TXT    | NaN            | 17550.000    | 1413.000  | 6317.000       |   |
| 174   | DOW2   | 3485.000       | 8190.000     | 873.000   | 943.000        |   |
| 208   | TRS    | 311.600        | 1286.060     | 104.950   | 205.270        |   |
| 223   | 3525B  | 167.304        | 1423.501     | 138.668   | 89.243         |   |
| 238   | 8135A  | 500.100        | 944.000      | -16.200   | 377.100        |   |
| 274   | LY01   | 1010.000       | 2414.000     | 32.000    | 509.000        |   |
| 291   | 3368B  | 307.509        | 663.355      | 60.010    | 92.094         |   |
| 312   | 9971B  | 139.699        | 1427.783     | 113.268   | 124.042        |   |
| 321   | 0252B  | 114.009        | 242.665      | 42.163    | 54.542         |   |
| 322   | 0282B  | 62.374         | 156.741      | 16.484    | 34.354         |   |
| 339   | 0507B  | 355.845        | 807.330      | 62.362    | 157.103        |   |
|       |        |                |              |           |                |   |

342 MX 244.064 770.053 -119.488 121.449

|     | TOTAL LIA  |          | RETAII  |          | CARNINGS |      | TAL SALES | CREDIT_RAT |    | \ |
|-----|------------|----------|---------|----------|----------|------|-----------|------------|----|---|
| 73  |            | 0860.000 |         |          | 863.000  |      | 80123.000 |            | 7  |   |
| 165 | 14         | 1901.000 |         | 5        | 567.000  | 1    | 1490.000  |            | 15 |   |
| 174 |            | 3767.000 |         |          | 299.000  |      | 7528.000  |            | 12 |   |
| 208 | :          | 1053.280 |         | -        | 166.500  |      | 1020.530  |            | 8  |   |
| 223 | :          | 1030.661 |         | 83.030   |          |      | 424.134   |            | 8  |   |
| 238 |            | 2161.600 |         | -2       | 2092.600 |      | 1331.400  |            | 5  |   |
| 274 |            | 2226.000 |         | -        | 943.000  |      | 1948.000  |            | 8  |   |
| 291 |            | 952.286  |         | -        | 256.426  |      | 742.683   |            | 3  |   |
| 312 | :          | 1160.824 |         |          | 61.518   |      | 835.876   |            | 9  |   |
| 321 |            | 164.390  |         |          | 21.643   |      | 428.616   |            | 7  |   |
| 322 |            | 242.602  |         |          | -92.386  |      | 271.603   |            | 6  |   |
| 339 |            | 531.909  |         |          | 72.130   |      | 927.797   |            | 8  |   |
| 342 |            | 937.220  |         | -339.713 |          |      | 744.352   |            | 13 |   |
|     |            |          |         |          |          |      |           |            |    |   |
|     | gvkey      | pops:    | rc data | afmt     | tic      | curc | l ce      | q csho     | \  |   |
| 73  | 4839.0     |          | D       | STD      | F        | USI  | -3465.00  | 0 1892.538 |    |   |
| 165 | 10519.0    |          | D       | STD      | TXT      | USI  | 2639.00   | 0 125.596  |    |   |
| 174 | 10857.0    | •••      | D       | STD      | DOW2     | USI  | 4420.00   | 0.001      |    |   |
| 208 | 15252.0    | •••      | D       | STD      | TRS      | USI  | 232.78    | 0 20.760   |    |   |
| 223 | 22839.0    | •••      | D       | STD      | 3525B    | USI  |           |            |    |   |
| 238 | 28004.0    | •••      | D       | STD      | 8135A    |      | -1272.20  |            |    |   |
| 274 | 63637.0    | •••      | D       | STD      | LYO1     | USI  |           |            |    |   |
| 291 | 66440.0    | •••      | D       | STD      | 3368B    | USI  |           |            |    |   |
| 312 | 138143.0   | •••      | D       | STD      | 9971B    | USI  |           |            |    |   |
| 321 | 148250.0   | •••      | D       | STD      | 0252B    | USI  |           |            |    |   |
| 322 | 148310.0   | •••      | D       | STD      | 0282B    | USI  |           |            |    |   |
| 339 | 165360.0   |          | D       | STD      | 0507B    | USI  |           |            |    |   |
| 342 | 233491.0   | •••      | D       | STD      | MX       | USI  |           |            |    |   |
|     |            |          |         |          |          |      |           |            |    |   |
|     | ni         | costat   | prcc_c  | m∈       | erge     |      |           |            |    |   |
| 73  | -12613.000 | A        | 7.51    |          | ooth     |      |           |            |    |   |
| 165 | 601.000    | A        |         |          | oth      |      |           |            |    |   |
| 174 | 1046.000   | A        | NaN     |          | oth      |      |           |            |    |   |
| 208 | -128.910   | A        | NaN     |          | ooth     |      |           |            |    |   |
| 223 | 54.386     | I        | NaN     |          | oth      |      |           |            |    |   |
| 238 | -244.500   | A        | NaN     |          | oth      |      |           |            |    |   |
| 274 | 159.000    | I        | NaN     |          | oth      |      |           |            |    |   |
| 291 | -84.311    | I        | NaN     |          | oth      |      |           |            |    |   |
| 312 | 1.077      | I        | NaN     |          | oth      |      |           |            |    |   |
| 321 | 16.254     | I        | NaN     |          | oth      |      |           |            |    |   |
| 322 | -28.766    | I        | NaN     |          | oth      |      |           |            |    |   |
| 339 | 14.686     | I        | NaN     |          |          |      |           |            |    |   |
| 342 | -229.310   | A        | NaN     |          | oth      |      |           |            |    |   |
| J±2 | 223.310    | А        | Ivalv   | L        | ,0 011   |      |           |            |    |   |

#### 2.3.1 Data Imputation for Current Assets (Linear Regression)

```
[21]: # DataFrame without any missing value
      df_nan_c = df[~df.isna().any(axis=1)]
      df_nan_c
[21]:
           TICKER
                   CURRENT ASSETS
                                     TOTAL ASSETS
                                                         EBIT
                                                                CURRENT LIABIL
             ARXX
                           328.354
                                           638.022
                                                       47.473
                                                                        119.215
                                                     4860.219
      1
              ABT
                         11281.883
                                         36178.172
                                                                      11951.195
      2
              AMD
                          3963.000
                                         13147.000
                                                      401.000
                                                                       2852.000
      3
              APD
                          2612.600
                                         11180.700
                                                     1013.500
                                                                       2323.400
      4
              HON
                         12304.000
                                         30941.000
                                                     3544.000
                                                                      10135.000
      . .
      337
             DEIX
                           321.326
                                           678.707
                                                       56.688
                                                                        160.388
      338
             ARII
                           196.874
                                           338.926
                                                       43.189
                                                                         70.788
      340
             WCRX
                           295.805
                                          3162.545
                                                      112.114
                                                                        170.985
                         17177.000
      341
              ABB
                                         25142.000
                                                     2437.000
                                                                      12376.000
      343
              SYT
                          5546.000
                                         11852.000
                                                     1155.000
                                                                       2968.000
            TOTAL LIABILITIES
                                 RETAINED EARNINGS
                                                      TOTAL SALES
                                                                    CREDIT_RATING
      0
                                                                                  7
                       150.352
                                             95.273
                                                          551.846
      1
                     22123.986
                                           9958.494
                                                        22476.322
                                                                                 19
      2
                                                                                  7
                      7072.000
                                            464.000
                                                         5649.000
      3
                      6078.700
                                           5521.800
                                                         8850.400
                                                                                 16
      4
                     21221.000
                                          11256.000
                                                                                 16
                                                        31367.000
      337
                                                           437.778
                                                                                  8
                       554.316
                                              9.579
                                                                                  9
      338
                        88.746
                                             14.200
                                                          646.052
      340
                      1834.313
                                           -708.821
                                                          754.457
                                                                                  8
                                                                                 15
      341
                     18653.000
                                           1628.000
                                                        24412.000
      343
                      6158.000
                                           2474.000
                                                         8046.000
                                                                                 16
                                   {\tt datafmt}
                                              tic curcd
                                                                           csho
               gvkey
                          popsrc
                                                                 ceq
      0
              1056.0
                                       STD
                                             ARXX
                                                     USD
                                D
                                                             487.670
                                                                         75.270
      1
              1078.0
                               D
                                       STD
                                              ABT
                                                     USD
                                                                       1537.243
                                                          14054.186
      2
              1161.0
                                D
                                       STD
                                              AMD
                                                     USD
                                                            5785.000
                                                                        547.000
      3
              1209.0
                                D
                                       STD
                                              APD
                                                     USD
                                                            4924.000
                                                                        217.251
              1300.0
                                       STD
                                                            9720.000
                                                                        800.592
      4
                                D
                                              HON
                                                     USD
            164758.0
                               D
                                       STD
                                             DEIX
                                                             124.391
                                                                         25.164
      337
                                                     USD
      338
            165358.0
                                       STD
                                                            250.180
                                                                         21.208
                                D
                                             ARII
                                                     USD
      340
            175163.0
                                D
                                       STD
                                             WCRX
                                                     USD
                                                            1328.232
                                                                        250.558
                                D
                                       STD
                                              ABB
      341
            210418.0
                                                     USD
                                                            6038.000
                                                                       2178.973
      343
            241216.0
                                D
                                       STD
                                              SYT
                                                     USD
                                                            5666.000
                                                                        487.146
```

```
ni costat prcc_c _merge
0
      26.959
                  Ι
                     11.72
                              both
    1716.755
                  A 48.71
1
                              both
    -166.000
                  A 20.35
                              both
3
     723.400
                  A 70.28
                              both
4
    2083.000
                  A 45.24
                              both
                  Ι
                    11.45
337
      21.009
                              both
338
      35.204
                  I 34.04
                              both
340 -153.510
                  I 13.82
                              both
341 1390.000
                  A 17.98
                              both
343
     634.000
                     37.14
                              both
```

[331 rows x 24 columns]

```
[23]: df_nan_c['constant'] = 1 # intercept
```

/usr/local/lib/python3.7/dist-packages/ipykernel\_launcher.py:1:
SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row\_indexer,col\_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user\_guide/indexing.html#returning-a-view-versus-a-copy """Entry point for launching an IPython kernel.

```
[24]: Xc = df_nan_c.drop(columns='CURRENT ASSETS')
yc = df_nan_c['CURRENT ASSETS']
```

```
[25]: modelc = sm.OLS(yc, Xc)
resultsc = modelc.fit()
print(resultsc.summary())
```

#### OLS Regression Results

Dep. Variable: CURRENT ASSETS R-squared: 0.941 Model: Adj. R-squared: OLS 0.939 F-statistic: Method: Least Squares 511.5 Date: Thu, 07 Apr 2022 Prob (F-statistic): 3.54e-190 Time: 20:25:08 Log-Likelihood: -3005.5No. Observations: 331 AIC: 6033.

| Df Residuals:<br>Df Model:<br>Covariance Type: | n          | 320<br>10<br>onrobust                  |                        |         |           |  |
|------------------------------------------------|------------|----------------------------------------|------------------------|---------|-----------|--|
| =====                                          |            | =======                                |                        | ======= |           |  |
| 0.975]                                         |            |                                        | t                      |         | _         |  |
|                                                |            |                                        |                        |         |           |  |
|                                                | 1.5580     | 0.237                                  | 6.579                  | 0.000   | 1.092     |  |
| 2.024                                          | 4 4405     | 0 100                                  | 0.005                  | 0.000   | 4 447     |  |
| EBIT -0.876                                    | -1.1465    | 0.138                                  | -8.325                 | 0.000   | -1.417    |  |
| TOTAL LIABILITIES -0.822                       | -1.3049    | 0.245                                  | -5.316                 | 0.000   | -1.788    |  |
| RETAINED EARNINGS 0.058                        | 0.0049     | 0.027                                  | 0.180                  | 0.857   | -0.048    |  |
| TOTAL SALES                                    | 0.1585     | 0.016                                  | 10.198                 | 0.000   | 0.128     |  |
| 0.189                                          |            |                                        |                        |         |           |  |
| CREDIT_RATING 190.001                          | 94.4967    | 48.543                                 | 1.947                  | 0.052   | -1.007    |  |
| ceq<br>-1.149                                  | -1.6198    | 0.239                                  | -6.776                 | 0.000   | -2.090    |  |
| csho<br>3.989                                  | 3.4754     | 0.261                                  | 13.321                 | 0.000   | 2.962     |  |
| ni<br>1.266                                    | 0.9646     | 0.153                                  | 6.295                  | 0.000   | 0.663     |  |
| prcc_c<br>23.109                               | 10.3477    | 6.486                                  | 1.595                  | 0.112   | -2.414    |  |
|                                                | -1246.8726 | 491.673                                | -2.536                 | 0.012   | -2214.192 |  |
| Omnibus:                                       |            | ====================================== | =======<br>Durbin-Wats |         | 2.047     |  |
| Prob(Omnibus):                                 |            |                                        |                        |         | 5298.160  |  |
| Skew:                                          |            | 0.525 Prob(JB):                        |                        |         | 0.00      |  |
| Kurtosis:                                      |            | 22.572                                 | Cond. No.              |         | 2.04e+05  |  |

#### Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.04e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
'prcc_c']]
      CA['constant'] = 1
      resultsc.predict(CA)
[26]: 73
             101720.780786
      165
               6009.966305
      dtype: float64
[27]: df.iloc[[73, 165], 1] = resultsc.predict(CA)
     2.3.2 Data Imputation for CURRENT LIABIL (Linear Regression)
[28]: df_nan_c = df[~df.isna().any(axis=1)]
[29]: df_nan_cl = df_nan_c[['CURRENT ASSETS', 'CURRENT LIABIL', 'TOTAL ASSETS', 'EBIT',
             'TOTAL LIABILITIES', 'RETAINED EARNINGS', 'TOTAL SALES',
             'CREDIT_RATING', 'ceq', 'csho', 'ni',
             'prcc_c']]
[30]: df_nan_cl['constant'] = 1 # intercept
     /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1:
     SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: https://pandas.pydata.org/pandas-
     docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
       """Entry point for launching an IPython kernel.
[31]: | Xcl = df_nan_cl.drop(columns='CURRENT LIABIL')
      ycl = df_nan_cl['CURRENT LIABIL']
[32]: modelcl = sm.OLS(ycl, Xcl)
      resultscl = modelcl.fit()
      print(resultscl.summary())
                                  OLS Regression Results
     Dep. Variable:
                            CURRENT LIABIL
                                              R-squared:
                                                                               0.978
     Model:
                                             Adj. R-squared:
                                        OLS
                                                                               0.977
     Method:
                             Least Squares F-statistic:
                                                                               1280.
     Date:
                          Thu, 07 Apr 2022 Prob (F-statistic):
                                                                           4.94e-257
     Time:
                                  20:25:18
                                            Log-Likelihood:
                                                                             -2774.0
                                             AIC:
     No. Observations:
                                        332
                                                                               5572.
     Df Residuals:
                                        320
                                              BIC:
                                                                               5618.
```

| Covariance Type:        |           | nonrobust        |                        |       |                       |  |
|-------------------------|-----------|------------------|------------------------|-------|-----------------------|--|
| ====                    | coef      |                  |                        |       |                       |  |
| 0.975]                  |           |                  |                        |       |                       |  |
| CURRENT ASSETS 0.470    | 0.4167    | 0.027            | 15.361                 | 0.000 | 0.363                 |  |
| TOTAL ASSETS -0.620     | -0.8612   | 0.122            | -7.038                 | 0.000 | -1.102                |  |
| EBIT -0.341             | -0.4861   | 0.074            | -6.595                 | 0.000 | -0.631                |  |
| TOTAL LIABILITIES 1.431 | 1.1864    | 0.124            | 9.558                  | 0.000 | 0.942                 |  |
| RETAINED EARNINGS 0.102 | 0.0761    | 0.013            | 5.807                  | 0.000 | 0.050                 |  |
| TOTAL SALES 0.069       | 0.0515    | 0.009            | 5.934                  | 0.000 | 0.034                 |  |
| CREDIT_RATING 42.785    | -3.8181   | 23.687           | -0.161                 | 0.872 | -50.421               |  |
| ceq<br>0.962            | 0.7181    | 0.124            | 5.792                  | 0.000 | 0.474                 |  |
| csho<br>0.365           | 0.0550    | 0.158            | 0.348                  | 0.728 | -0.256                |  |
| ni<br>0.236             | 0.0814    | 0.079            | 1.033                  | 0.302 | -0.074                |  |
| prcc_c<br>10.854        | 4.6745    | 3.141            | 1.488                  | 0.138 | -1.505                |  |
|                         | -447.8666 | 240.891          | -1.859                 | 0.064 | -921.797              |  |
| Omnibus:                |           | 69.138           | Durbin-Wats            |       | 2.093                 |  |
| Prob(Omnibus):          |           | 0.000            | Jarque-Bera            | (JB): | 882.961               |  |
| Skew:<br>Kurtosis:      |           | -0.380<br>10.953 | Prob(JB):<br>Cond. No. |       | 1.85e-192<br>2.10e+05 |  |

11

### Warnings:

Df Model:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.1e+05. This might indicate that there are strong multicollinearity or other numerical problems.

[33]: 73 143474.242256 dtype: float64

```
[34]: df.iloc[[73], 4] = resultscl.predict(CL)
```

#### 2.3.3 Data Imputation for prcc\_c (Random Forest)

• The reason I chose random forest method to predict Price Close - Annual - Calendar (PRCC\_C) is that the linear regression mdoel doesn't show a accurate prediction with R squared around 0.36. However, random forest could capture more non-linearity among those features and the prediction outcomes are much better than linear regression with R squared around 0.94.

```
[37]: # Fitting Random Forest Regression to the dataset
    # import the regressor
    from sklearn.ensemble import RandomForestRegressor

# create regressor object
    regressor = RandomForestRegressor(n_estimators = 100, random_state = 0)

Xpr = df_nan_pr.drop(columns='prcc_c')
    ypr = df_nan_pr['prcc_c']

# fit the regressor with x and y data
    regressor.fit(Xpr, ypr)
```

[37]: RandomForestRegressor(random\_state=0)

```
[38]: prcc = df.iloc[df[df.isnull().any(axis =1)].index,:][[ 'CURRENT_

→ASSETS','CURRENT LIABIL','TOTAL ASSETS', 'EBIT',

'TOTAL LIABILITIES', 'RETAINED EARNINGS', 'TOTAL SALES',

'CREDIT_RATING', 'ceq', 'csho', 'ni']]
```

```
[39]: regressor.predict(prcc)
```

```
[39]: array([104.1745,
                        24.3753, 42.6806,
                                             15.0962,
                                                        67.5671, 17.8229,
                                             30.1091,
              40.8957,
                        20.6442,
                                   10.7412,
                                                        25.3892])
[40]: print('R squared for the Random Forest method is around {:.4f}.'.
       →format(regressor.score(Xpr, ypr)))
     R squared for the Random Forest method is around 0.9376.
[41]: df.loc[df[df.isnull().any(axis =1)].index,['prcc_c']] = regressor.predict(prcc)
[42]: df.isnull().sum()
[42]: TICKER
                            0
      CURRENT ASSETS
                            0
      TOTAL ASSETS
                            0
      EBIT
                            0
      CURRENT LIABIL
                            0
      TOTAL LIABILITIES
                            0
                            0
      RETAINED EARNINGS
      TOTAL SALES
                            0
                            0
      CREDIT_RATING
      gvkey
                            0
      datadate
                            0
      fyear
                            0
      indfmt
                            0
      consol
                            0
                            0
      popsrc
                            0
      datafmt
                            0
      tic
      curcd
                            0
                            0
      ceq
      csho
                            0
                            0
      ni
                            0
      costat
                            0
      prcc_c
                            0
      merge
      dtype: int64
```

# 2.4 Adding ratios columns (9 new ratio variables)

- Return on Assets = EBIT / TOTAL ASSETS
- Current Ratio = CURRENT ASSETS / CURRENT LIABIL
- NET PROFIT MARGIN = EBIT / TOTAL SALES
- Market Values =  $prcc_c * csho$
- Market Value over TOTAL SALES = market\_value / TOTAL SALES
- Market Value over Book Equity = market\_value / ceq
- P/E ratio = market\_value / ni

- Debt ratio = Total liabilities / EBIT
- RETAINED EARNINGS / TOTAL ASSETS = RE/TA

```
[43]: df['ROA'] = df['EBIT'] / df['TOTAL ASSETS']
df['Current Ratio'] = df['CURRENT ASSETS'] / df['CURRENT LIABIL']
df['NET PROFIT MARGIN'] = df['EBIT'] / df['TOTAL SALES']

df['mv'] = df['prcc_c'] * df['csho']
df['mv/sales'] = df['mv'] / df['TOTAL SALES']
df['mv/beq'] = df['mv'] / df['ceq']
df['p/e'] = df['mv'] / df['ni']
df['debt_ratio'] = df['TOTAL LIABILITIES'] / df['EBIT']
df['RE/TA'] = df['RETAINED EARNINGS'] / df['TOTAL ASSETS']
```

### [44]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 344 entries, 0 to 343
Data columns (total 33 columns):

| #  | Column            | Non-Null Count | Dtype    |
|----|-------------------|----------------|----------|
| 0  | TICKER            | 344 non-null   | object   |
| 1  | CURRENT ASSETS    | 344 non-null   | float64  |
| 2  | TOTAL ASSETS      | 344 non-null   | float64  |
| 3  | EBIT              | 344 non-null   | float64  |
| 4  | CURRENT LIABIL    | 344 non-null   | float64  |
| 5  | TOTAL LIABILITIES | 344 non-null   | float64  |
| 6  | RETAINED EARNINGS | 344 non-null   | float64  |
| 7  | TOTAL SALES       | 344 non-null   | float64  |
| 8  | CREDIT_RATING     | 344 non-null   | int64    |
| 9  | gvkey             | 344 non-null   | float64  |
| 10 | datadate          | 344 non-null   | float64  |
| 11 | fyear             | 344 non-null   | float64  |
| 12 | indfmt            | 344 non-null   | object   |
| 13 | consol            | 344 non-null   | object   |
| 14 | popsrc            | 344 non-null   | object   |
| 15 | datafmt           | 344 non-null   | object   |
| 16 | tic               | 344 non-null   | object   |
| 17 | curcd             | 344 non-null   | object   |
| 18 | ceq               | 344 non-null   | float64  |
| 19 | csho              | 344 non-null   | float64  |
| 20 | ni                | 344 non-null   | float64  |
| 21 | costat            | 344 non-null   | object   |
| 22 | prcc_c            | 344 non-null   | float64  |
| 23 | _merge            | 344 non-null   | category |
| 24 | ROA               | 344 non-null   | float64  |
| 25 | Current Ratio     | 344 non-null   | float64  |
| 26 | NET PROFIT MARGIN | 344 non-null   | float64  |
|    |                   |                |          |

```
27 mv
                       344 non-null
                                       float64
 28 mv/sales
                       344 non-null
                                       float64
 29 mv/beq
                       344 non-null
                                       float64
 30 p/e
                       344 non-null
                                      float64
 31 debt ratio
                       344 non-null
                                       float64
 32 RE/TA
                       344 non-null
                                       float64
dtypes: category(1), float64(23), int64(1), object(8)
memory usage: 86.6+ KB
```

#### 2.5 Check and Handle Outliers

- For the credit rating predictive model, I will select mostly finance ratios as the independent variables.
- Most research found out that total assets and total sales are good indicator of a firm's size and credit scores. So, I will also include both two.
- Thus, below are the boxplots for all those finance ratios.

```
[46]: df_model = df[['ROA', 'Current Ratio', 'NET PROFIT MARGIN', 'mv', 'mv/sales',
      [47]: df model.columns
[47]: Index(['ROA', 'Current Ratio', 'NET PROFIT MARGIN', 'mv', 'mv/sales', 'mv/beq',
            'p/e', 'TOTAL SALES', 'TOTAL ASSETS', 'RE/TA'],
           dtype='object')
[48]: #Creating boxplot of each column with its own scale
     red_circle = dict(markerfacecolor='red', marker='o', markeredgecolor='white')
     mean_shape = dict(markerfacecolor='green', marker='D', markeredgecolor='green')
     fig, axs = plt.subplots(len(df_model.columns),1, figsize=(10,10))
     for i, ax in enumerate(axs.flat):
         ax.boxplot(df model.iloc[:,i], flierprops=red_circle, meanprops=mean_shape,_
      →vert = False)
         ax.set_title(df_model.columns[i], fontsize=15, fontweight='bold')
         ax.tick_params(axis='y', labelsize=14)
     plt.tight_layout()
```



```
[49]: #Creating histogram of each column with its own scale
fig, axs = plt.subplots(2,5, figsize=(20,7))

for i, ax in enumerate(axs.flat):
    ax.hist(df_model.iloc[:,i])
    ax.set_title(df_model.columns[i], fontsize=15, fontweight='bold')
    ax.tick_params(axis='y', labelsize=14)

plt.tight_layout()
```



| df_mod | lel.describe( | )           |                 |           |        |          |        |   |
|--------|---------------|-------------|-----------------|-----------|--------|----------|--------|---|
| :      | ROA           | Current Rat | io NET PROF     | T MARGIN  |        | mv       | . \    |   |
| count  | 344.000000    | 344.0000    | 00 34           | 14.000000 | 34     | 4.000000 | )      |   |
| mean   | 0.110642      | 2.0171      | 50              | 0.116752  | 17059  | 9.179978 | ;      |   |
| std    | 0.067413      | 1.1062      | 79              | 0.082952  | 4065   | 5.784292 | !      |   |
| min    | -0.155169     | 0.3041      | 63 <del>-</del> | -0.521880 | (      | 0.017823 | }      |   |
| 25%    | 0.069420      | 1.3639      | 75              | 0.071748  | 1494   | 4.008200 | )      |   |
| 50%    | 0.104978      | 1.8055      | 32              | 0.109695  | 378    | 3.874905 |        |   |
| 75%    | 0.146757      | 2.2918      | 17              | 0.154258  | 1123   | 0.357020 | )      |   |
| max    | 0.364702      | 9.6434      | 38              | 0.560904  | 43901  | 3.270000 | )      |   |
|        | mv/sales      | mv/beq      | p/e             | TOTAL     | SALES  | TOTAL    | ASSETS | \ |
| count  | 344.000000    | 344.000000  | 344.000000      | 344.0     | 000000 | 344.     | 000000 |   |
| mean   | 1.547113      | 3.589750    | 24.025285       | 11856.4   | 471017 | 12685.   | 247221 |   |
| std    | 1.496501      | 14.269730   | 222.542586      | 30337.    | 188742 | 29664.   | 799449 |   |
| min    | 0.000014      | -62.216453  | -964.287735     | 84.2      | 209000 | 156.     | 741000 |   |
| 25%    | 0.646135      | 1.757390    | 9.872734        | 1497.4    | 479000 | 1604.    | 782500 |   |
| 50%    | 1.113466      | 2.803554    | 17.075702       | 3425.3    | 340500 | 3347.    | 255000 |   |
| 75%    | 1.991899      | 4.217032    | 22.231953       | 9333.9    | 922000 | 9573.    | 700000 |   |
| max    | 17.853070     | 246.084854  | 3953.541714     | 335086.0  | 000000 | 278554.  | 000000 |   |
|        | RE/TA         |             |                 |           |        |          |        |   |
| count  | 344.000000    |             |                 |           |        |          |        |   |
| mean   | 0.203097      |             |                 |           |        |          |        |   |
| std    | 0.400364      |             |                 |           |        |          |        |   |
| min    | -2.583596     |             |                 |           |        |          |        |   |
| 25%    | 0.058042      |             |                 |           |        |          |        |   |
| 50%    | 0.239480      |             |                 |           |        |          |        |   |
| 75%    | 0.419417      |             |                 |           |        |          |        |   |

• According to the multiple box plots above, every column has outliers and most of them have only several anomalies and it is not a big issue.

1.232304

max

- However, "market value", 'total assets', 'total sales' and "market value / book equity" have more outliers compared to others
- Since, we only have 344 data points, dropping some outliers may decrease the model predictive power
- I will use Winsorization and Log transformation methods to deal with outliers and compare the predictive power later

#### 2.5.1 Winsorization Method

```
[51]: from scipy.stats.mstats import winsorize
      df win = df model
      col_name_win = df_win.columns
[52]: # WINSORIZE within the range of 1% and 98% quantiles
      df_win = winsorize(df_win, (0.01, 0.02))
      df_win = pd.DataFrame(df_win, columns = col_name_win )
      df win.describe()
[52]:
                         Current Ratio NET PROFIT MARGIN
                                                                            mv/sales \
                    ROA
                                                                      mν
      count
             344.000000
                            344.000000
                                                344.000000
                                                              344.000000
                                                                          344.000000
               0.110642
                              2.017150
                                                  0.116752
                                                            10302.423549
                                                                             1.547113
     mean
                                                  0.082952 13807.179415
      std
               0.067413
                              1.106279
                                                                             1.496501
                                                 -0.521880
     min
              -0.155169
                              0.304163
                                                                0.017823
                                                                            0.000014
      25%
               0.069420
                              1.363975
                                                  0.071748
                                                             1494.008200
                                                                            0.646135
      50%
               0.104978
                              1.805532
                                                  0.109695
                                                             3783.874905
                                                                             1.113466
      75%
               0.146757
                              2.291817
                                                  0.154258
                                                            11230.357020
                                                                             1.991899
               0.364702
                              9.643438
                                                  0.560904
                                                            45581.000000
      max
                                                                            17.853070
                                       TOTAL SALES
                                                    TOTAL ASSETS
                                                                        RE/TA
                 mv/beq
                                 p/e
             344.000000
                          344.000000
                                         344.000000
                                                       344.000000
                                                                   344.000000
      count
      mean
               3.922330
                           30.750842
                                       8634.719782
                                                      9061.664820
                                                                     0.203097
      std
              13.573103
                          213.830646
                                       11880.332085
                                                     12414.870027
                                                                     0.400364
      min
              -6.711166
                           -6.711166
                                          84.209000
                                                       156.741000
                                                                    -2.583596
      25%
               1.757390
                            9.872734
                                       1497.479000
                                                      1604.782500
                                                                     0.058042
      50%
               2.803554
                           17.075702
                                       3425.340500
                                                      3347.255000
                                                                     0.239480
      75%
               4.217032
                           22.231953
                                       9333.922000
                                                      9573.700000
                                                                     0.419417
             246.084854 3953.541714 45581.000000 45581.000000
      max
                                                                     1.232304
[53]: #Check the outlier after winsorization
      red_circle = dict(markerfacecolor='red', marker='o', markeredgecolor='white')
      mean_shape = dict(markerfacecolor='green', marker='D', markeredgecolor='green')
      fig, axs = plt.subplots(len(df_win.columns),1, figsize=(10,10))
      for i, ax in enumerate(axs.flat):
```

```
ax.boxplot(df_win.iloc[:,i], flierprops=red_circle, meanprops=mean_shape,

→vert = False)

ax.set_title(df_win.columns[i], fontsize=15, fontweight='bold')

ax.tick_params(axis='y', labelsize=14)

plt.tight_layout()
```



```
[54]: #Check the outliers after Winsorization Method
fig, axs = plt.subplots(2,5, figsize=(20,7))

for i, ax in enumerate(axs.flat):
    ax.hist(df_win.iloc[:,i])
    ax.set_title(df_win.columns[i], fontsize=15, fontweight='bold')
```

```
ax.tick_params(axis='y', labelsize=14)
plt.tight_layout()
```



# 2.5.2 Log Tranformation Method + Winsorization Method

```
[65]: df_logwin =pd.DataFrame()
      df_logwin
[65]: Empty DataFrame
      Columns: []
      Index: []
[66]: df_model.columns
[66]: Index(['ROA', 'Current Ratio', 'NET PROFIT MARGIN', 'mv', 'mv/sales', 'mv/beq',
             'p/e', 'TOTAL SALES', 'TOTAL ASSETS', 'RE/TA'],
            dtype='object')
[67]: win_col = []
      log_col = []
      for i in df_model.columns:
        if df_model[i].min() > 0:
          df_logwin[i+'_win'] = np.log(df_model[i])
          win_col.append(i)
          df_logwin[i+'_log'] = winsorize(df_model[i], (0.01, 0.02))
          log_col.append(i)
      print(win_col,'\n', log_col)
```

['Current Ratio', 'mv', 'mv/sales', 'TOTAL SALES', 'TOTAL ASSETS']
['ROA', 'NET PROFIT MARGIN', 'mv/beq', 'p/e', 'RE/TA']

#### [74]: df logwin [74]: ROA\_log Current Ratio\_win NET PROFIT MARGIN\_log mv\_win \ 0 0.074407 1.013164 0.086026 6.782378 1 0.134341 -0.057633 0.216237 11.223630 2 0.030501 0.328981 0.070986 9.317530 3 0.114515 0.090647 0.117314 9.633541 0.114541 0.193930 0.112985 10.497333 . . 0.817594 339 0.077245 0.067215 -1.105033 340 0.035451 0.548125 0.148602 8.149807 341 0.096929 0.327812 0.099828 10.575869 342 -0.036043 0.697936 -0.051005 7.199338 343 0.097452 0.625189 0.143550 9.803258 mv/sales\_win mv/beq\_log p/e\_log TOTAL SALES\_win TOTAL ASSETS\_win \ 0 0.469109 1.808937 32.722445 6.313269 6.458373 1 5.327886 43.616653 1.203413 10.020218 10.496211 2 1.924192 -67.056928 0.678296 8.639234 9.483949 3 0.545323 3.100812 21.106442 9.321944 9.088218 4 0.143821 3.726212 17.387797 10.353512 10.339837 . . 339 -7.9378460.001203 0.022552 6.832813 6.693733 340 1.523809 2.607008 -22.556912 6.625998 8.059132 341 0.473039 6.488562 28.185564 10.102830 10.132295 342 0.586824 -4.704222 -5.837268 6.612514 6.646459 343 0.810328 3.193188 28.537228 8.992930 9.380252 RE/TA\_log 0 0.149326 1 0.275262 2 0.035293 3 0.493869 4 0.363789 . . 339 0.089344 340 -0.224130 341 0.064752 342 -0.441155 343 0.208741

[344 rows x 10 columns]

```
[75]: #Check the outlier after Log Transformation
  red_circle = dict(markerfacecolor='red', marker='o', markeredgecolor='white')
  mean_shape = dict(markerfacecolor='green', marker='D', markeredgecolor='green')

fig, axs = plt.subplots(len(df_logwin.columns),1, figsize=(10,10))

for i, ax in enumerate(axs.flat):
    ax.boxplot(df_logwin.iloc[:,i], flierprops=red_circle,__
    meanprops=mean_shape, vert = False)
    ax.set_title(df_logwin.columns[i], fontsize=15, fontweight='bold')
    ax.tick_params(axis='y', labelsize=14)

plt.tight_layout()
```



```
[76]: #Check the outlier after Log Transformation
fig, axs = plt.subplots(2,5, figsize=(20,7))

for i, ax in enumerate(axs.flat):
    ax.hist(df_logwin.iloc[:,i])
    ax.set_title(df_logwin.columns[i], fontsize=15, fontweight='bold')
    ax.tick_params(axis='y', labelsize=14)

plt.tight_layout()
```



### **2.5.3** Summary

From the eyeball test, Combining Log transformation and Winsorization together did a better job on dealing with the outliers, since both the boxplots and histograms plotted after both methods show a normal distribution for each financial feature. But, we will still need to use the model result, such as adjusted R2 to compare which method is better on handling the outliers.

# 3 Linear Regression Model

### 3.1 Model (Winsorization)

```
[77]: df_model_win = pd.concat([df_win, df['CREDIT_RATING']], axis = 1)
[78]: df_model_win['constant'] = 1 # intercept
[79]: X = df_model_win.drop(columns = 'CREDIT_RATING')
    y = df_model_win['CREDIT_RATING']
[80]: model = sm.OLS(y, X)
    results = model.fit()
```

# print(results.summary())

# OLS Regression Results

| Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type: | CREDIT<br>Least<br>Thu, 07 / | T_RATING R-squared:  OLS Adj. R-squared: Squares F-statistic: Apr 2022 Prob (F-statistic): 20:36:08 Log-Likelihood: 344 AIC: 333 BIC: 10 onrobust |                                                       |       | 0.666<br>0.656<br>66.48<br>2.98e-73<br>-734.72<br>1491.<br>1534. |
|------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------|------------------------------------------------------------------|
| 0.975]                                                                                               |                              |                                                                                                                                                   | t                                                     |       |                                                                  |
| ROA 7.150 Current Ratio -0.286 NET PROFIT MARGIN                                                     | -0.5201                      |                                                                                                                                                   | 0.678<br>-4.377<br>1.319                              | 0.000 | -0.754                                                           |
| 7.109<br>mv<br>0.000                                                                                 |                              | 2.103<br>2.55e-05                                                                                                                                 |                                                       |       | 7.57e-05                                                         |
| mv/sales 0.559                                                                                       | 0.3608                       | 0.101                                                                                                                                             | 3.578                                                 | 0.000 | 0.162                                                            |
| mv/beq<br>0.014                                                                                      | -0.0028                      | 0.008                                                                                                                                             | -0.335                                                | 0.738 | -0.019                                                           |
| p/e<br>0.003                                                                                         | 0.0020                       | 0.001                                                                                                                                             | 3.414                                                 |       | 0.001                                                            |
| TOTAL SALES<br>0.000                                                                                 | 7.753e-05                    |                                                                                                                                                   |                                                       | 0.017 |                                                                  |
| TOTAL ASSETS -6.28e-08 RE/TA                                                                         | -7.582e-05<br>3.3083         | 3.85e-05<br>0.366                                                                                                                                 | -1.969<br>9.040                                       | 0.050 | -0.000<br>2.588                                                  |
| 4.028<br>constant<br>10.710                                                                          | 10.0145                      | 0.353                                                                                                                                             | 28.343                                                | 0.000 | 9.319                                                            |
| Omnibus: Prob(Omnibus): Skew: Kurtosis:                                                              |                              | 1.207<br>0.547<br>0.049<br>2.727                                                                                                                  | Durbin-Watso<br>Jarque-Bera<br>Prob(JB):<br>Cond. No. |       | 1.930<br>1.203<br>0.548<br>7.45e+05                              |

#### Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 7.45e+05. This might indicate that there are strong multicollinearity or other numerical problems.

### 3.2 Model (Log Transformation + Winsorization)

```
[81]: df_model_logwin = pd.concat([df_logwin, df['CREDIT_RATING']], axis = 1)
[82]: df_model_logwin['constant'] = 1 # intercept
[83]: X2 = df_model_logwin.drop(columns = 'CREDIT_RATING')
     y2 = df model logwin['CREDIT RATING']
[84]: | model2 = sm.OLS(y2, X2)
     results2 = model2.fit()
     print(results2.summary())
                            OLS Regression Results
    ______
    Dep. Variable:
                        CREDIT_RATING R-squared:
                                                                  0.718
    Model:
                                 OLS Adj. R-squared:
                                                                  0.710
    Method:
                        Least Squares F-statistic:
                                                                  94.53
    Date:
                     Thu, 07 Apr 2022 Prob (F-statistic):
                                                              2.53e-86
                            20:36:15
    Time:
                                    Log-Likelihood:
                                                                -705.71
    No. Observations:
                                 344
                                      AIC:
                                                                  1431.
    Df Residuals:
                                 334 BIC:
                                                                  1470.
    Df Model:
                                  9
    Covariance Type:
                           nonrobust
    =======
                           coef std err t P>|t| [0.025]
    0.975]
                         3.0977 4.132
                                             0.750 0.454
    ROA_log
                                                               -5.029
    11.225
    Current Ratio_win -0.3038
                                   0.260 -1.169
                                                     0.243
                                                                -0.815
    0.207
    NET PROFIT MARGIN_log 6.2329
                                    3.701 1.684 0.093
                                                                -1.047
    13.513
    mv_win
                         0.3303
                                    0.158
                                             2.092
                                                      0.037
                                                                0.020
    0.641
    mv/sales_win
                         0.0239
                                    0.143
                                             0.167
                                                      0.868
                                                                -0.258
    0.306
```

| mv/beq_log                              | 0.0479    | 0.029    | 1.649        | 0.100   | -0.009   |
|-----------------------------------------|-----------|----------|--------------|---------|----------|
| 0.105                                   |           |          |              |         |          |
| p/e_log                                 | 0.0104    | 0.004    | 2.897        | 0.004   | 0.003    |
| 0.018                                   |           |          |              |         |          |
| TOTAL SALES_win                         | 0.3063    | 0.293    | 1.046        | 0.296   | -0.270   |
| 0.882                                   |           |          |              |         |          |
| TOTAL ASSETS_win                        | 0.6942    | 0.448    | 1.551        | 0.122   | -0.186   |
| 1.575                                   |           |          |              |         |          |
| RE/TA_log                               | 2.8181    | 0.362    | 7.782        | 0.000   | 2.106    |
| 3.530                                   |           |          |              |         |          |
| constant                                | -0.7325   | 0.810    | -0.905       | 0.366   | -2.325   |
| 0.860                                   |           |          |              |         |          |
| ======================================= | ========= |          | =======      | ======= |          |
| Omnibus:                                | 3.26      | 63 Durbi | n-Watson:    |         | 2.049    |
| Prob(Omnibus):                          | 0.19      | 96 Jarqu | e-Bera (JB): |         | 3.446    |
| Skew:                                   | -0.09     | 98 Prob( | JB):         |         | 0.179    |
| Kurtosis:                               | 3.49      | 50 Cond. | No.          |         | 2.50e+16 |
| ======================================= |           |          |              |         |          |

#### Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 6.22e-28. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

# 4 Conclusion

- Both Linear Regression Models selected the same 10 independent varibales, but only difference is that one applied winsorization only to deal with outliers and the other chose the log transformation and winsorization together to handle anomalies. Based on the R2 and AdjR2, we found that the model using log transformation and winsorization with (R2 = 0.718 > 0.666 and AdjR2 = 0.710 > 0.656)indicates a better fit and 71.8% of credit rating could be explained by those 10 independent varibales.
- For the second Model, The coefficients of market value, LOG\_market price over book equity value, LOG\_retained earning over total assets are statistically significant at 5%. In addition, t-values for all three independent variables are 2.092, 2.897, 7.782, respectively and all more than 1.96, which also proves that coefficients for those 3 variables are significant different from 0 at 5% level.
- On average, for each dollar increase in  $market\ value$ , the credit rating will increase 0.3303 (On average, for 1% dollar increase in  $market\ value$ , the credit rating will increase  $[0.3303\ /\ 100\ =\ 0.003]$
- On average, for each 10% increase in market price over book value, the credit rating will increase  $[0.0104 * \log(1.10) = 0.099\%]$
- On average, for each 1% increase in retained earning over total assets, the credit

rating will increase [2.8181 / 100 = 0.028]

• In sum, the ratio of retained earning over total assets will have more impact on the credit rating prediction, since the main reason is RE / TA could be a good indicator of companies' profitbaility in the future. For instance, low RE/TA suggests that companies are financing capital expenditure via borrowings rather than retained earnings.

# 5 Appendix

```
- Y = 0 + 1*log(X)
     -(0 + 1*log(1.01)) - (0 + 1*log1)
     -1*log(1.01) - 1*log1
     -1*(\log(1.01) - \log 1)
     -1*log(1.01 / 1) = 1*log(1.01)
     The result is multiplying the slope coefficient by log(1.01), which is approximately equal to
 []: |sudo apt-get install texlive-xetex texlive-fonts-recommended
       →texlive-plain-generic
[97]: | !jupyter nbconvert --to pdf '/content/drive/MyDrive/BA_870/HW/2/

→Assignment2_Ji_Qi.ipynb¹

     [NbConvertApp] Converting notebook
     /content/drive/MyDrive/BA_870/HW/2/Assignment2_Ji_Qi.ipynb to pdf
     [NbConvertApp] Support files will be in Assignment2_Ji_Qi_files/
     [NbConvertApp] Making directory ./Assignment2_Ji_Qi_files
     [NbConvertApp] Writing 114323 bytes to ./notebook.tex
     [NbConvertApp] Building PDF
     [NbConvertApp] Running xelatex 3 times: ['xelatex', './notebook.tex', '-quiet']
     [NbConvertApp] Running bibtex 1 time: ['bibtex', './notebook']
     [NbConvertApp] WARNING | bibtex had problems, most likely because there were no
     citations
     [NbConvertApp] PDF successfully created
     [NbConvertApp] Writing 296822 bytes to
     /content/drive/MyDrive/BA_870/HW/2/Assignment2_Ji_Qi.pdf
 []:
```