Project Development Phase Performance Test

Date	20 May 2023	
Team ID	NM2023TMID17372	
Project	Industrial Workers Health And Safety System Based On Internet Of	
Name	Things	

Model Performance Testing:

Project team shall fill the following information in the performance testing template

Parameter	Values	Screenshot
Metrics	Wowki Execution time and Output screenshot Or Python accuracy of prediction and output screenshot	

Coding:

```
const int ledPin1 = 3;

const int ledPin2 = 4;
const int ledPin3 = 5;
const int buzzerPin = 2;

int menuSelection = 0;
int ledSpeed = 500;
int ledBrightness = 128;
int selection = 0;
int buzzerState = LOW;

void setup() {
    Serial.begin(9600);

    pinMode(buzzerPin, OUTPUT);
    pinMode(ledPin1, OUTPUT);
    pinMode(ledPin2, OUTPUT);
    pinMode(ledPin3, OUTPUT);
```

```
digitalWrite(buzzerPin, LOW);
  digitalWrite(ledPin1, LOW);
  digitalWrite(ledPin2, LOW);
  digitalWrite(ledPin3, LOW);
  Serial.println("MENU:");
  Serial.println("1. Toggle buzzer on/off");
  Serial.println("2. Increase LED 2 speed");
  Serial.println("3. Decrease LED 2 speed");
  Serial.println("4. Toggle LED 3 brightness");
 Serial.println();
 Serial.print("Selection: ");
}
void loop() {
  int buzzerPinStateLast = digitalRead(buzzerPin);
  if (Serial.available()) {
    int inputChar = Serial.parseInt();
    switch (inputChar) {
      case 1:
      //Serial.println ("1");
      //digitalWrite(buzzerPin, !digitalRead(buzzerPin));
        ToggleBuzzer();
        selection = 0;
        break;
      case 2:
      Serial.println("case 2");
        ledSpeed -= 50;
        if (ledSpeed < 50) {</pre>
          ledSpeed = 50;
        }
        break;
      case 3:
      Serial.println("case 3");
        ledSpeed += 50;
        if (ledSpeed > 1000) {
          ledSpeed = 1000;
        }
        break;
      case 4:
      Serial.println("case 4");
        if (ledBrightness == 0) {
          ledBrightness = 128;
        } else {
```

```
ledBrightness = 0;
        }
        break;
      default:
        break;
   }
  }
  digitalWrite(ledPin1, !digitalRead(ledPin1));
  delay(500);
  static unsigned long lastBlinkTime = 0;
  if (millis() - lastBlinkTime > ledSpeed) {
   digitalWrite(ledPin2, !digitalRead(ledPin2));
   lastBlinkTime = millis();
  }
  analogWrite(ledPin3, ledBrightness);
//Serial.println("MENU:");
 //Serial.println("1. Toggle buzzer on/off");
 //Serial.println("2. Increase LED 2 speed");
 //Serial.println("3. Decrease LED 2 speed");
 //Serial.println("4. Toggle LED 3 brightness");
 //Serial.println();
 //Serial.print("Selection: ");
 //delay (5000)
}
void ToggleBuzzer ()
 buzzerState= (buzzerState) ? LOW : HIGH;
   digitalWrite(buzzerPin, buzzerState);
 //int a = digitalWrite(buzzerPin, LOW);
 //if (a == 1)
 //{
   //digitalWrite(buzzerPin, HIGH);
   //digitalWrite(buzzerPin HIGH); attempt no. 3 failed with multiple errors
 // } else
 // {
// digitalWrite(buzzerPin, LOW);
// }
}
```

Output:

- 1. Toggle buzzer on/off
- 2. Increase LED 2 speed
- 3. Decrease LED 2 speed
- 4. Toggle LED 3 brightness