ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ & ΣΤΑΤΙΣΤΙΚΗ

Σ.Η.Μ.Μ.Υ. ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ Ι

Άσκηση 1 Ρίχνουμε ένα ζάρι 3 φορές. Περιγράψτε το χώρο πιθανότητας Ω και τα ενδεχόμενα: A=«Την 1η και 3η φορά ήρθε 6», B=«την 1η φορά ήρθε 1 και τη 2η και 3η φορά ήρθε το ίδιο αποτέλεσμα» και C=«τρεις φορές ήρθε το ίδιο ζυγό αποτέλεσμα».

Άσκηση 2 Στα τρία διαγράμματα του παρακάτω σχήματος να σκιαστούν (αντιστοίχως) τα τρία ενδεχόμενα $B \cap A', (A \cup B') \cap C, (A' \cup B' \cup C') \cap D$.

Άσκηση 3 Ένα τυχαίο πείραμα έχει χώρο πιθανότητας το σύνολο $\Omega=\{a,b,c\}$. Έστω πως κάποιο μέτρο πιθανότητας $\mathbb P$ ικανοποιεί τις σχέσεις, $\mathbb P(\{a,c\})=9/16$ και $\mathbb P(\{a,b\})=3/4$. Χρησιμοποιήστε τους κανόνες πιθανότητας του κεφαλαίου 3 για να υπολογίσετε τις πιθανότητες όλων των στοιχειωδών ενδεχομένων.

Άσκηση 4 Θεωρήστε τον χώρο πιθανότητας $\Omega=\left\{\left(\begin{array}{cc}a&b\\b&c\end{array}\right)\ :a,b,c\in\{0,1\}\right\}$. Αν

$$\mathbb{P}\left[\left(\begin{array}{cc} a & b \\ b & c \end{array}\right)\right] = K(a+b+c)$$

όπου K είναι μια σταθερά, υπολογίστε την K και στη συνέχεια την πιθανότητα του ενδεχομένου $A=\{P\in\Omega:$ ο P είναι αντιστρέψιμος $\}.$

Άσκηση 5 Να δείξετε, χρησιμοποιώντας τους κανόνες πιθανότητας του κεφαλαίου 3, ότι για οποιαδήποτε δύο ενδεγόμενα E,F ισγύει:

$$\mathbb{P}(E \cap F') = \mathbb{P}(E) - \mathbb{P}(E \cap F).$$

Να δείξετε επίσης ότι, για οποιαδήποτε τρία ενδεχόμενα A, B και C ισχύει:

$$\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(A' \cap B) + \mathbb{P}(A' \cap B' \cap C).$$

Άσκηση ${\bf 6}$ Ο παίκτης A στρίβει ν φορές ένα (δίκαιο) νόμισμα και ο παίκτης B στρίβει το ίδιο νόμισμα $\nu+1$ φορές. Ποια είναι η πιθανότητα ο B να φέρει αυστηρά περισσότερες φορές γράμματα απ΄ όσες ο A;

Άσκηση 7 (Ανισότητα Bonferroni.) Έστω μια οποιαδήποτε ακολουθία ενδεχόμενων A_1,A_2,\ldots σε κάποιο χώρο πιθανότητας Ω . Δείξτε ότι: $\mathbb{P}(\bigcup_{i=1}^n A_i) \geq \sum_{i=1}^n \mathbb{P}(A_i) - \sum_{i < j} \mathbb{P}(A_i \cap A_j)$.

Άσκηση 8 Έστω χώρος πιθανότητας $(\Omega, \mathcal{F}, \mathbb{P})$. Δείξτε ότι για κάθε $n \in \mathbb{N}$ και οποιαδήποτε ενδεχόμενα $\{A_1, ..., A_n\} \subset \mathcal{F}$, έχουμε

$$\sum_{i=1}^{n} \mathbb{P}(A_i) \le \mathbb{P}\left[\bigcap_{i=1}^{n} A_i\right] + n - 1$$

Συμπεράνετε ότι, αν $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{F}$ είναι μια αχολουθία ενδεχομένων με $\mathbb{P}(A_i)=1$ για χάθε $i\in\mathbb{N}$, τότε

$$\mathbb{P}\left[\bigcap_{i=1}^{\infty} A_i\right] = 1$$

$$\mathbb{P}(A)\mathbb{P}(B) = \mathbb{P}(A \cap B)\mathbb{P}(A \cup B) + \mathbb{P}(A \cap B')\mathbb{P}(B \cap A').$$

Χρησιμοποιήστε την παραπάνω ισότητα για να αποδείξετε ότι

$$\big|\, \mathbb{P}(A)\mathbb{P}(B) - \mathbb{P}(A\cap B) \big| \leq \mathbb{P}(A)\mathbb{P}(A') \leq \frac{1}{4}.$$