

Offen im Denken

Ole Meyer

Wiederholung

 \mathcal{X}_2

Formel

$$Y = f(X^TW + B)$$

Eingabe & Parameter

$$X^{T} = \begin{bmatrix} x_{0} & x_{1} & x_{2} \end{bmatrix} \qquad W = \begin{bmatrix} w_{00} & w_{01} \\ w_{10} & w_{11} \\ w_{20} & w_{21} \end{bmatrix} \qquad B = \begin{bmatrix} b_{0} \\ b_{1} \end{bmatrix}$$

Vereinfachte Schreibweise

Bis jetzt:

$$Y = f_1((f_0(X^TW_0 + B_0))^T W_1 + B_1)$$

Einfacher:

$$Y = f(X; \theta)$$

- Ermöglicht einfacher über komplexe Netzwerke zu sprechen
- Interpretation:
 - $f(\cdot)$ = Die Funktion des gesamten Netzwerkes: Alle bis jetzt besprochenen Vorgänge.
 - ullet θ = Alle Parameter die benötigt werden, also alle W und B
 - X = Die Eingabe

Offen im Denken

Fehler Quantifizieren

Fehlerfunktion

$$X = [x_0, x_1]$$

$$x_0$$

$$x_1$$

$$x_2$$

$$x_2$$

- Vorhergesagter Wert $= Y = [y_0]$
- Zielwert = $Y^* = [y_0^*]$

$$L(f(X;\theta), Y^*)$$

Empirische Fehlerfunktion

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} L(f(X_i; \theta), Y_i^*)$$

Mean Squared Error

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (Y_i - f(X_i; \theta))^2$$

Binary Cross Entropy Loss

$$J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} Y_i \log (f(X_i; \theta)) + (1 - Y_1) \log (1 - f(X_i; \theta))$$

Offen im Denken

Training von Neuronalen Netzen

Ziel: Gesucht werden die Parameter für das Netzwerk, welche den geringsten Fehler erzeugen.

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} L\left(f(X_i; \theta), Y_i\right)$$

$$\theta^* = \underset{\theta}{\operatorname{argmin}} J(\theta)$$

Die zufällige Initialisierung der Parameter führt zu einer zufälligen Position im Wertebereich der Fehlerfunktion.

Herausforderung: Wie kann der Weg zum Ziel (globales Minimum = θ^*) gefunden werden?

Gradient Descent: Grundidee

Herausforderung: Wie kann der Weg zum Ziel (globales Minimum = θ^*) gefunden werden?

Ausflug: Partielle Ableitungen

Eine partielle Ableitung ist die Ableitung einer Funktion mit mehreren Variablen nach einer dieser Variablen.

Beispiel:
$$f(\theta)$$
 mit $\theta \in \mathbb{R}^2 = f(\theta_0, \theta_1) = 2\theta_0 + \theta_1$

Partielle Ableitung nach
$$\theta_0$$
 ist $\frac{\partial f}{\partial \theta_0} = 2$

Partielle Ableitung nach
$$\theta_1$$
 ist $\frac{\partial f}{\partial \theta_1} = 1$

Alle bekannten Ableitungsregeln gelten auch für partielle Ableitungen!

Neuronale Netze lernen über den Gradienten, welcher über die partielle Ableitung von θ bestimmt werden kann.

Aus diesem Grund muss sichergestellt werden, dass alle verwendeten Funktionen differenzberbar sind!

Gradient Descent

Algorithmus

- 1. θ zufällig initialisieren mit $\sim N(0,\sigma^2)$
- 2. Bis das Netzwerk konvergiert:
 - 1. Gradient der Fehlerfunktion bestimmen $\frac{\partial J(\theta)}{\partial \theta}$
 - 2. Gewichte updaten $\theta \leftarrow \theta \eta \frac{\partial J(\theta)}{\partial \theta}$

Der Parameter η (Lernrate) bestimmt die Schrittgröße

Herausforderung: Gradient über beliebig viele Layer zurückführen.

Herausforderung: Gradient über beliebig viele Layer zurückführen.

Wie stark ändert eine kleine Änderung von θ_1 den Fehler $J(\theta)$?

Lösung: Anwendung der Kettenregel

Herausforderung: Gradient über beliebig viele Layer zurückführen.

Wie stark ändert eine kleine Änderung von θ_1 den Fehler $J(\theta)$?

Lösung: Anwendung der Kettenregel

Herausforderung: Gradient über beliebig viele Layer zurückführen.

Wie stark ändert eine kleine Änderung von θ_0 den Fehler $J(\theta)$?

Dieser Prozess muss für jeden (lernbaren) Parameter des Netzwerkes wiederholt werden.

Danach können die Parameter angepasst werden $\theta \leftarrow \theta - \eta \frac{\partial J(\theta)}{\partial \theta}$

Offen im Denken

Training von Neuronalen Netzen Praxis: Lernrate

Praxis

Die Optimierung von Neuronalen Netzen in der Praxis ist voller Herausforderungen!

Li, H., Xu, Z., Taylor, G., Studer, C., & Goldstein, T. (2017). Visualizing the loss landscape of neural nets. arXiv preprint arXiv:1712.09913.

Lernrate

Die Lernrate beim Training ist ein wesentlicher Hyperparameter (von vielen).

Lernrate

Die Lernrate beim Training ist ein wesentlicher Hyperparameter (von vielen).

Kleine Lernraten führen zur langsamen Konvergenz und bleiben möglicherweise in einem lokalen Minimum "hängen".

Lernrate

Die Lernrate beim Training ist ein wesentlicher Hyperparameter (von vielen).

Große Lernraten führen können über das Ziel "hinausschießen" und verhindern so möglicherweise eine ausreichende Konvergenz.

Lernraten

Die Lernrate beim Training ist ein wesentlicher Hyperparameter (von vielen).

- Möglichkeit 1: Viele verschiedene Werte ausprobieren.
 - Kann sehr lange dauert. Möglicherweise wird der optimale Wert nie gefunden.
- Möglichkeit 2: Adaptive Lernraten, welche sich den Gegebenheiten der Landschaft der Fehlerfunktion anpassen.

Adaptive Lernraten

Der Lernrate ist nicht fixiert, sondern wir adaptive zur Oberfläche der Fehlerfunktion angepasst.

Es gibt verschiedene Möglichkeiten und Ansatzpunkte:

- Abhängig von der Größe des Gradienten
- Abhängig von der realen Verbesserung der Fehlerfunktion
- Die Größe von Gewichten oder deren Verteilung

•

Adaptive Lernraten

Es gibt verschiedene Strategien und Implementierungen, welche sich durchgesetzt haben:

- Momentum
 - Fügt ein Momentum zur Optimierung hinzu
- RMSProp
 - Berechnung des gleitenden Durchschnitts der quadrierten Gradienten
 - Gradienten werden vor dem Update durch die Wurzel des Durchschnittes geteilt
- Adagrad
 - Die Lernrate wird pro Parameter abhängig von der Häufigkeit der Updates angepasst
 - Je mehr eine Anpassung stattfinden, desto kleiner die Lernrate
- Adam
 - Kombiniert die Ansätze von RMSProp und Adagrad

Offen im Denken

Training von Neuronalen Netzen Praxis: Mini-Batches

Gradient Descent

Algorithmus

- 1. θ zufällig initialisieren mit $\sim N(0,\sigma^2)$
- 2. Bis das Netzwerk konvergiert:
 - 1. Gradient der Fehlerfunktion bestimmen $\frac{\partial J(\theta)}{\partial \theta}$
 - 2. Gewichte updaten $\theta \leftarrow \theta \eta \frac{\partial J(\theta)}{\partial \theta}$

Die Berechnung von $J(\theta)$ kann sehr sehr teuer sein!

Stochastic Gradient Descent

Algorithmus

- 1. θ zufällig initialisieren mit $\sim N(0,\sigma^2)$
- 2. Bis das Netzwerk konvergiert:
 - 1. Wähle einen Datenpunkt i
 - 2. Gradient der Fehlerfunktion bestimmen $\frac{\partial J_i(\theta)}{\partial \theta}$
 - 3. Gewichte updaten $\theta \leftarrow \theta \eta \frac{\partial J_i(\theta)}{\partial \theta}$

Sehr einfach zu berechnen aber häufig mit sehr viel Rauschen verbunden (stochastisch).

Stochastic Gradient Descent mit Mini-Batches

Algorithmus

- 1. θ zufällig initialisieren mit $\sim N(0,\sigma^2)$
- 2. Bis das Netzwerk konvergiert:
 - 1. Wähle einen Batch von Datenpunkten B
 - 2. Gradient der Fehlerfunktion bestimmen $\frac{1}{B} \sum_{i=1}^{B} \frac{\partial J_i(\theta)}{\partial \theta}$
 - 3. Gewichte updaten $\theta \leftarrow \theta \eta \frac{1}{B} \sum_{i=1}^{B} \frac{\partial J_i(\theta)}{\partial \theta}$

Schnell zu berechnen.
Abhängig von der Batchgröße eine gute
Approximation des echten Gradienten.

Stochastic Gradient Descent mit Mini-Batches

Effekte von Mini-Batches auf die Effektivität des Trainings

- . Approximation des echten Gradienten $\frac{\partial J(\theta)}{\partial \theta}$
- Bessere (gleichmäßigere) Konvergenz des Trainings
- Bietet die Möglichkeit für größere Lernraten

Effekte von Mini-Batches auf die Geschwindigkeit des Trainings

- Parallelisieren möglich (von parallelen Berechnungen der einzelnen Datenpunkten in einem Batch)
- Signifikante Geschwindigkeitsvorteile auf spezialisierter Hardware (GPUs/TPUs)