Prova tipo A

P3 de Álgebra Linear I – 2005.1

Data: 6 de junho 2005 Horário: 17:10 – 19:00

Nome:	Matrícula:	
Assinatura	Turma	

Questão	Valor	Nota	Revis.
		riota	nevis.
1a	0.5		
1b	0.5		
1c	1.0		
2a	0.5		
2b	1.0		
2c	1.0		
2d	1.0		
2e	1.0		
3a	1.0		
3b	1.0		
4a	0.5		
4b	1.0		
Total	10.0		

Instruções

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear a prova e as folhas de rascunho. Prova com folhas faltando ou rasuradas terá nota zero.
- Entregar somente este caderno com as respostas. Faça os cálculos nas folhas de rascunho.
- <u>Verifique</u>, <u>revise</u> e <u>confira</u> cuidadosamente suas respostas. Escreva de forma clara e legível.

1) Determine para que valores de a e b as matrizes abaixo são diagonalizáveis:

a)
$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & a \\ 0 & 0 & 2 \end{pmatrix};$$

b)
$$\begin{pmatrix} 2 & b \\ 0 & 2 \end{pmatrix}.$$

Determine c e d para que os vetores não nulos do plano $\pi\colon y+z=0$ sejam autovetores da matriz abaixo e o vetor (17,21,356) não seja um autovetor:

c)
$$\begin{pmatrix} 2 & c & c \\ 0 & 2 & d \\ 0 & 0 & 2 \end{pmatrix}.$$

Respostas:

c)
$$c = d =$$

2) Considere a transformação linear $T \colon \mathbb{R}^3 \to \mathbb{R}^3$ cuja matriz na base canônica

$$\mathcal{E} = \{(1,0,0), (0,1,0), (0,0,1)\}$$

é

$$[T]_{\mathcal{E}} = \begin{pmatrix} 2 & 0 & 1 \\ 0 & -3 & 1 \\ 0 & 0 & -3 \end{pmatrix}.$$

- a) Determine o polinômio característico p_T de T.
- b) Determine os autovalores de T e os autovetores correspondentes.

Considere a base β de \mathbb{R}^3

$$\beta = \{(0, 1, 1), (0, -1, 1), (1, 0, 1)\}.$$

- c) Determine explicitamente a matriz P de mudança de base da base canônica à base β .
- d) Determine a primeira coluna da matriz $[T]_{\beta}$ de T na base β .
- e) Encontre uma base γ de \mathbb{R}^3 tal que a matriz $[T]_\gamma$ de T na base γ seja

$$[T]_{\gamma} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -3 & 1 \\ 0 & 0 & -3 \end{pmatrix}.$$

Respostas:

- a) polinômio característico p_T :
- b) autovalores e autovetores:

d)

primeira coluna de
$$[T]_{\beta} = \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix}$$

$$\gamma = \{$$

a) O produto de matrizes abaixo representa (na base canônica) uma projeção P. Determine a equação cartesiana do plano π de projeção e a direção v de projeção.

$$P = M \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} M^{-1}, \quad \text{onde} \quad M^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix}.$$

b) Considere a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ obtida como a composição da projeção ortogonal no plano π e o espelhamento no plano ρ , onde

$$\pi$$
: $x - y + 2z = 0$, ρ : $x - y - z = 0$.

Encontre uma matriz Rtal que a matriz de Tna base canônica seja o produto

$$[T]_{\mathcal{E}} = R \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} R^t.$$

Respostas:

a) plano π : direção v:

 $R = \begin{pmatrix} & & & \\ & & & \\ & & & \\ & & & \end{pmatrix}$

4) Considere a matriz

$$A = \frac{1}{3} \left(\begin{array}{rrr} 2 & -1 & -4 \\ -1 & -1 & -1 \\ -4 & -1 & 2 \end{array} \right)$$

Sabendo que (1,1,1) é um autovetor de A e que 2 é um autovalor de A.

- a) Determine uma forma diagonal D da matriz A.
- b) Determine uma base ortonormal β de autovetores de A tal que a matriz de A na base β seja a matriz D obtida no item anterior.

Respostas:

a)

$$D = \begin{pmatrix} & & & \\ & & & \\ & & & \end{pmatrix}$$

b)
$$\beta = \{$$