Finite State Transducer mechanisms in speech recognition

Daniel Povey

Microsoft Research

9/1/2011

Spoiler

- "New" part of this talk is: a "perfect" lattice generation algorithm.
- Informally, when we generate a lattice for an utterance, we want it to:
 - Contain all sufficiently likely word sequences
 - Have the "correct" alignments and likelihoods for such sequences
 - Not be too large due to too-unlikely sequences or duplicate alignments
- Current lattice generation algorithms generally fall into two categories:
 - ▶ Store one traceback for each state → quick, but approximate.
 - Store N tracebacks → fairly exact, but slow.
- Our method stores one traceback, but is exact.

Introduction to Weighted Finite State Transducers (WFSTs)

Finite State Acceptors (FSAs)
Weighted Finite State Acceptors (WFSAs)

Weighted Finite State Transducers (WFSTs)

WFSTs in speech recognition

The "standard" recipe
The Kaldi recipe
Lattice generation

Finite State Acceptors (FSAs)

- ► An FSA "accepts" a set of strings
- (a string is a sequence of symbols).
- View FSA as a representation of a possibly infinite set of strings.
- ▶ This FSA accepts just the string *ab*, i.e. the set {*ab*}
- Numbers in circles are state labels (not really important).
- Labels are on arcs are the symbols.
- Start state(s) bold; final/accepting states have extra circle.
 - ▶ Note: it is sometimes assumed there is just one start state.

A less trivial FSA

- ► The previous example doesn't show the power of FSAs because we could represent the set of strings finitely.
- ▶ This example represents the infinite set {ab, aab, aaab, . . .}
- ▶ Note: a string is "accepted" (included in the set) if:
 - ▶ There is a path with that sequence of symbols on it.
 - ► That path is "successful" (starts at an initial state, ends at a final state).

Equivalence of FSAs

- ► This example represents the *same* infinite set as before { *ab*, *aab*, *aaab*, . . . }
- ▶ ... but it looks different from the previous one.
- ▶ The FSAs are equivalent but not equal.

The ϵ (epsilon) symbol

- ▶ The symbol ϵ has a special meaning in FSAs (and FSTs)
- ▶ It means "no symbol is there".
- ▶ This example represents the set of strings {a, aa, aaa, ...}
- ▶ If ϵ were treated as a normal symbol, this would be $\{a, a\epsilon a, a\epsilon a\epsilon a, ...\}$
- ▶ In text form, ϵ is sometimes written as <eps>
- ➤ Toolkits implementing FSAs/FSTs generally assume <eps> is the symbol numbered zero

Deterministic FSAs

- ▶ The right hand FSA above is deterministic
- ▶ Means: no state has two outgoing arcs with the same label
- ▶ The classical definition of "deterministic" also forbids ϵ arcs.
- ▶ There is a definition that allows ϵ (Mohri/AT&T/OpenFst).
- ▶ Working out whether a given string (e.g. *ab*) is accepted is more efficient in deterministic FSAs.

Determinizing FSAs

- ▶ There is a fairly easy algorithm to determinize FSAs
- Each state in the determinized FSA corresponds to a set of states in the original.
- ▶ The algorithm starts from the start state and uses a queue...
- ▶ In this example, states 1 and 3 on get combined as state 1.
- ▶ The classical approach has to treat ϵ specially.
- (Mohri's version simplifies things, making ϵ removal a separate stage).

Minimial deterministic FSAs

- ▶ Here, the left FSA is not minimal but the right one is.
- "Minimal" is normally only applied to deterministic FSAs.
- Think of it as suffix sharing, or combining redundant states.
- ▶ It's useful to save space (but not as crucial as determinization, for ASR).

Minimization of FSAs

- ▶ Common minimization algorithm partitions states into sets.
- Start out with a partition of just two sets (final/nonfinal).
- Keep splitting sets until we can't split any more.
- ▶ The sets are the states in the minimal FSA.
- ► Set splitting is based on yes/no criteria like "does a state have a transition with symbol a to a member of set s?"

Other algorithms for FSAs

- Equality and equivalence testing
- Reversing (like reversing the arrows)
- Trimming (removing unreachable states)
- Union, difference (view these in terms of the "set of strings")
- Concatenation (of strings accepted by two FSAs)
- ► Closure (allowing arbitrary repetitions of the accepted strings)
- Epsilon removal

FSAs/FSTs and testability

- Many useful FSA/FST operations preserve equivalence (e.g. determinization, minimization)
- ▶ We can test equivalence
- Useful to test correctness of algorithms like determinization, minimization.
- E.g.: generate random FSA; determinize; check deterministic; check equivalent.
- ▶ This is one of the advantages of the FST framework
- ➤ You could hand-code algorithms to solve your specific problems (e.g. decoding), but could you test them?

Weighted Finite State Acceptors: normal case

- ▶ Like a normal FSA but with costs on the arcs and final-states
- ▶ Note: cost comes after "/". For final-state, "2/1" means final-cost 1 on state 2.
- ▶ View WFSA as a function from a string to a cost.
- ▶ In this view, unweighted FSA is f : string $\rightarrow \{0, \infty\}$.
- If multiple paths have the same string, take the one with the lowest cost.
- ▶ This example maps ab to (3 = 1 + 1 + 1), all else to ∞ .

Semirings

- ▶ The semiring concept makes WFSAs more general.
- ► A semiring is
 - ightharpoonup A set of elements (e.g. \mathbb{R})
 - ► Two special elements 1 and 0 (the identity element and zero)
 - ► Two operations, ⊕ (plus) and × (times) satsifying certain axioms.
- ► Examples:
 - ▶ The reals, with \oplus and \otimes defined as the normal + and \times , $\bar{1}=1, \bar{0}=0.$
 - ▶ The integers, as above.
 - The nonnegative reals, as above.
 - ► The nonnegative reals as above, except with $x \oplus y = \max(x, y)$.

Semirings and Weighted Finite State Acceptors (WFSAs)

- ▶ The normal semirings used in ASR applications are
 - ► The tropical semiring, which is the simplest case (⊕ means: take the minimum cost; × means, add the costs)
 - ► The log semiring, which is equivalent to the nonnegative reals, except representing them as negative log.
- There are also "fancier" semirings used (e.g.) in determinization, where the weight contains a string component.
- ▶ In WFSAs, weights are ⊗-multiplied along paths.
- ▶ Weights are ⊕-summed over paths with identical symbol-sequences.

Costs versus weights: terminology

- Personally I use "cost" to refer to the numeric value, and "weight" when speaking abstractly, e.g.:
 - ▶ The acceptor above accepts a with unit weight.
 - It accepts a with zero cost.
 - ▶ It accepts bc with cost 4 = 2 + 1 + 1
 - State 1 is final with unit weight.
 - ▶ The acceptor assigns zero weight to *xyz*.
 - It assigns infinite cost to xyz.

Function interpretation of WFSAs

- Consider the WFSA above, with the tropical ("Viterbi-like") semiring. Take the string ab.
- We "multiply" (⊗) the weights along paths; this means adding the costs.
- ► Two paths for ab:
 - One goes through states (0, 1, 1); cost is (0 + 1 + 2) = 3
 - One goes through states (0, 2, 3); cost is (1 + 2 + 2) = 5
- We add weights across different paths; tropical ⊕ is "take min cost" → this WFSA maps ab to 3

Equivalence of WFSAs

- ➤ Two WFSAs are equivalent if they represent the same function from (string) to (weight).
- ► For example, the above two WFSAs are equivalent (but not equal).
- Easy to test only if we can determinize.
- ▶ Otherwise there are randomized algorithms (pick random string from one; make sure it has same weight in both).

Determinization of Weighted Finite State Acceptors

- ▶ Determinization is also applicable to WFSAs.
- In algorithm, (subset of states) → (weighted subset of states).
- Not all WFSAs are determinizable
- ▶ If you try to determinize a nondeterminizable WFSA:
 - ► There will be an infinite sequence of determinized-states with the same subset of states but different weights
 - Determinization will fail to terminate; eventually memory will be exhausted.

The twins property

- ▶ A WFSA is determinizable if it has the "twins property"...
- ▶ (that "if" is "iff" subject to certain extra conditions).
- ▶ A WFSA (as above) fails to have the twins property¹ if:
 - ▶ There are two states *s* and *t*...
 - that are reachable from the start state with the same string...
 - ▶ and there are cycles at both *s* and *t*...
 - with the same string on them but different weights.

¹We are glossing over some details here

Other algorithms on Weighted Finite State Acceptors

- Shortest-path and shortest-distance algorithms, e.g.:
 - Total weight of FSA, summed over all "successful" paths, i.e. from initial to final.
 - ▶ Total weight for all paths to final-state, starting at each state
 - Best path through FSA
 - N-best paths through FSA
- ▶ We can also apply most unweighted FSA algorithms to the weighted case.

Weighted Finite State Transducers (WFSTs)

- Like a WFSA except with two labels on each arc.
- View it as a function from a (pair of strings) to a weight
- ▶ This one maps (a, x) to 1 and all else to ∞
- ▶ Note: view 1 and ∞ as costs. ∞ is $\bar{0}$ in semiring.
- ► Symbols on the left and right are termed "input" and "output" symbols.

Equivalence of WFSTs

- ► WFSTs are equivalent if they represent same function from (string, string) to weight.
- ▶ Both these WFSTs map (a, x) to 1 and all else to ∞
- ► Therefore they are equivalent (although not equal)

WFSTs versus matrices

- ► WFSTs can be viewed as function from (input string, output string) to (weight).
- Matrices (over reals) can be viewed as function from (row index, column index) to (real).
- ▶ Note: the set of possible input and output strings is infinite.

Functional WFSTs

- ► A WFST is *functional* iff each input string has a non-0 weight with at most one output string.
- ▶ Left transducer is functional: maps a to xy with cost 2, and b to z with cost 1.
- ▶ The right transducer is non-functional:
 - ▶ The string *a* has a nonzero weight with two strings.
 - ▶ I.e. (a, xy) and (a, z) both appear on successful paths.
- WFST can be interpreted as function from input to (output, weight) only if functional.

Inversion of WFSTs

- ▶ Inversion just means swapping the input and output symbols.
- ▶ If A if WFST, we write its inverse as A^{-1} .
- ▶ Only vaguely analogous to function inversion ...
- ▶ In matrix analogy, it's transposition.

Projection of WFSTs

- Projection on the input means copying input symbols to output, so both are identical.
- ▶ Projection on the output means copying the output symbol to input.
- ▶ In FST toolkits like OpenFst, if input and output symbols are identical the WFST is termed an acceptor (WFSA) and can be treated as one.

Composition of WFSTs

- ▶ Notation: $C = A \circ B$ means, C is A composed with B.
- ▶ In special cases, composition is similar to function composition
- Composition algorithm "matches up" the "inner symbols"
 - ▶ i.e. those on the output (right) of A and input (left) of B

Composition of WFSTs vs matrix multiplication

- ► Composition of WFSTs corresponds exactly with matrix multiplication.
- \blacktriangleright Let s, t and u be strings, and w be a weight.
- ▶ Interpret A,B,C as functions from (string, string) to (weight).
- ▶ Then $C(s, u) = \bigoplus_t A(s, t) \otimes B(t, u)$ (sum over and discard central string t).
- Matrix multiplication follows the same pattern (sum over central index).

Composition of WFSTs (algorithm)

- ▶ Ignoring ϵ symbols, algorithm is quite simple.
- ▶ States in *C* correspond to tuples of (state in *A*, state in *B*).
 - ▶ But some of these may be inaccessible and pruned away.
- ► Maintain queue of pairs, initially the single pair (0,0) (start states).
- ▶ When processing a pair (s, t):
 - Consider each pair of (arc a from s), (arc b from t).
 - ▶ If these have matching symbols (output of *a*, input of *b*):
 - Create transition to state in C corresponding to (next-state of a, next-state of b)
 - If not seen before, add this pair to queue.
- \blacktriangleright With ϵ involved, need to be careful to avoid redundant paths...

Deterministic WFSTs

- ► Taken to mean "deterministic on the input symbol"
- ▶ I.e., no state can have > 1 arc out of it with the same input symbol.
- Some interpretations (e.g. Mohri/AT&T/OpenFst) allow ϵ input symbols (i.e. being ϵ -free is a separate issue).
- ▶ I prefer a definition that disallows epsilons, except as necessary to encode a string of output symbols on an arc.
- Regardless of definition, not all WFSTs can be determinized.

Determinizing WFSTs

- Easiest to view the output symbol as part of the weight and determinize as WFSA.
- ► Encode the WFST as a WFSA in an appropriate semiring that contains the weight and string.
- ▶ Do WFSA determinization (and hope it succeeds).
- Two basic failure modes:
 - ► Fails because input FST was non-functional (multiple outputs for one input)
 - ► Fails because WFSA fails to have twins property ... i.e. has cycles with same input-symbol seq, different weights.
- ▶ Can also fail if there are paths with more output than input symbols and you don't want to introduce ϵ -input arcs (I allow these as a special case).

Speech recognition application of WFSTs

- ▶ $HCLG \equiv H \circ C \circ L \circ G$ is the recognition graph
- ▶ *G* is the grammar or LM (an acceptor)
- L is the lexicon
- C adds phonetic context-dependency
- ► *H* specifies the HMM structure of context-dependent phones

	Input	Output
Н	p.d.f. labels	ctx-dep. phone
C	ctx-dep phone	phone
L	phone	word
G	word	word

Decoding graph construction (simple version)

- ► Create H, C, L, G separately
- Compose them together
- Determinize (like making a tree-structured lexicon)
- Minimize (like suffix sharing)

Decoding graph construction (complexities)

- ► Have to do things in a careful order or algorithms "blow up"
- Determinization for WFSTs can fail
 - ▶ Need to insert "disambiguation symbols" into the lexicon.
 - ▶ Need to "propagate these through" *H* and *C*.
- ▶ Need to make sure final *HCLG* is stochastic, for optimal pruning performance.
 - ▶ I.e. sums to one, like a properly normalized HMM.
 - Standard algorithm to do this (weight-pushing) can fail
 - ... because FST representation of backoff LMs is non-stochastic
- ▶ Also we can't always recover the phone sequence from path through HCLG (but see later).

Decoding graph construction (our approach)

- Mostly followed quite closely the AT&T recipe.
- Added a disambiguation symbol for backoff arcs in the LM FST
 - ▶ Partly for reasons of taste; not comfortable with treating ϵ as "real symbol".
 - It's actually necessary because we use a determinization algorithm that does ϵ removal.
- ▶ Different approach to "weight pushing" see next slide.
- ▶ Put special symbols on input of HCLG that encode more than the p.d.f.— see below.

Our approach to weight pushing

- ► Want to ensure that HCLG can be interpreted as properly normalized HMM ("stochastic").
- ► AT&T recipe does this as a final "weight pushing" step.
- ▶ This can fail for backoff LMs, or lead to weird results.
- ▶ Our approach is to ensure that *if G is stochastic*, each step of graph creation keeps it stochastic.
- ► This is done in such a way that where *G* is "nearly" stochastic, *HCLG* will be "nearly" stochastic.
 - Requires doing some algorithms (e.g. determinization) in log semiring
 - ► Some algorithms (e.g. epsilon removal), need to "know about" two semirings at once.

Symbols on input of HCLG – the problem

- Normally, the symbols on the input of H (or HCLG) represent p.d.f.'s
- ► The symbol would actually be the integer identifier of the p.d.f., with range e.g. 5k if there are 5k p.d.f.'s.
- ► The decoder will give you an input-symbol string *I*, an output-symbol string *O*, and a weight *w*.
- ▶ We want I (input-symbol seq). to give enough information to
 - train transition models
 - work out the phone sequence
 - reconstruct the path through the HMM.
- We don't want to have to assume different phones have distinct p.d.f.'s.

Symbols on input of HCLG – our solution

- Make the symbols on HCLG a slightly a finer-grained identifier.
- We call this a "transition id".
- From a transition id, we can work out
 - ► The p.d.f. index
 - ▶ The phone
 - The transition arc that was taken within the prototype HMM topology
- ► There would typically be about twice as many transition-ids as p.d.f. id's.
- ▶ Doesn't expand the graph size, in normal configurations.

Decoding characteristics

- ► For a simple, medium-vocab task (Resource Management), about 20 x faster than real time.
- ▶ We can decode Wall Street Journal read speech in about real time without significant loss in accuracy.
- ► This is with a pruned trigram language model— about 0.8M arcs.
- Final HCLG takes about 0.5G (gigabytes) in default OpenFst format.
- Can't go much larger or memory for graph compilation becomes a problem.
- ▶ Note: our HCLG currently has self-loops.

Ways to decode with bigger LMs

- Lattice rescoring
 - We can already do this (see lattice generation, below).
- Store HCLG in a more compact form
 - ► E.g. remove self-loops (decoder would add them)
 - Could then "factor" FST by compactly storing linear seqs of states.
 - Could decrease final graph size 10-fold but graph creation would still require a lot of memory.
- Online "correction" of LM scores in HCLG
 - Idea is to add the difference in LM score between (small, big)
 LM when we cross a word
 - ► Already done preliminary work (w/ Gilles Boulianne)
- OpenFst's "fast lookahead matcher" need to investigate this.

Lattice generation

- From now, will describe how lattice generation in Kaldi works.
- ▶ Up to now, we have described standard concepts (with a few minor twists)
- ► Here starts the "novel" part.
- ▶ We will begin with some preliminaries before describing the algorithm.

What is a lattice?

- ▶ The word "lattice" is used in the ASR literature as:
 - Some kind of compact representation of the alternate word hypotheses for an utterance.
 - Like an N-best list but with less redundancy.
 - Usually has time information, sometimes state or word alignment information.
 - Generally a directed acyclic graph with only one start node and only one end node.

WFST view of a speech recognition decoder

- ▶ First— a "WFST definition" of the decoding problem.
- ▶ Let *U* be an FST that encodes the acoustic scores of an utterance (as above).
- Let $S = U \circ HCLG$ be called the search graph for an utterance.
- ▶ Note: if *U* has *N* frames (3, above), then
 - ▶ #states in S is \leq (N + 1) times #states in HCLG.
 - ▶ Like N + 1 copies of HCLG.

Pruning in a speech recognition decoder

- \triangleright With beam pruning, we search a subgraph of S.
- ► The set of "active states" on all frames, with arcs linking them as appropriate, is a subgraph of *S*.
- Let this be called the beam-pruned subgraph of S; call it B.
- ► A standard speech recognition decoder finds the best path through *B*.
- ▶ In our case, the output of the decoder is a linear WFST that consists of this best path.
- ▶ This contains the following useful information:
 - ► The word sequence, as output symbols.
 - ► The state alignment, as input symbols.
 - ▶ The cost of the path, as the total weight.

A lattice – our format

- We let a lattice be an FST, similar to HCLG.
- ► The input symbols will be the p.d.f.'s (actually, transition-ids).
- ▶ The output symbols will be words.
- ► The weights will contain the acoustic costs plus the costs in HCLG
- ... well, actually we use a semiring that contains two floats:
 - Keeps track of (graph, acoustic) costs separately while behaving as if they were added together.
- ▶ We also have an "acceptor" form of the lattice. Here,
 - Words appear on both the input and output side.
 - ► The p.d.f.'s/transition-ids are encoded as part of the weight.
 - ▶ This format is more compact, and sometimes more convenient.

Our statement of the lattice generation problem

- ▶ Let the lattice beam be α (e.g. $\alpha = 8$).
- No missing paths:
 - Every word sequence whose best path in B is within α of the overall best path, should be present in L
- ▶ No extra paths:
 - ▶ No path should be in *L* if there is not an equivalent path in *B*.
- No duplicate paths:
 - ▶ No two paths in *L* should have the same word sequence.
- Accurate paths:
 - ► Each path through *L* should be equivalent to the best path through *B* with the same word sequence.

Our solution to the lattice generation problem

- ▶ During decoding, generate *B* (beam-pruned subgraph of *S*).
- \triangleright Prune B with beam α .
 - ▶ I.e. prune all arcs not on path within α of best path.
 - Actually we do this in an online way to avoid memory bloat.
 - ▶ This is *not* the same as the beam pruning used in search.
- ▶ Let this pruned version of B be called P
- ▶ Do a special form of determinization on P (next slide)
- \triangleright Prune the result with beam α

Lattice determinization

- ► Special determinization algorithm we call "lattice determinization"
- ► This is not really a determinization algorithm in a WFST sense, as it does not preserve equivalence.
- It keeps only the lowest-cost output-symbol sequence for each input-symbol sequence
 - ▶ Note: we'd apply it after inversion, so words are on input.
- Conceptual view (not how we really do it):
 - Convert WFST to acceptor in a special semiring (see below)
 - Remove epsilons from that acceptor
 - Determinize:
 - Convert back

Converting an FST to an acceptor

- ▶ Suppose we had an arc in B with "1520:HI/3.67" on it.
- ▶ I.e. input symbol is 1520, output is "HI", cost is 3.67
- First, invert → "HI:1520/3.67"
- Next, convert to acceptor \rightarrow "HI:HI/(3.67,1520)"
- Remember— acceptors have same input/output symbols on arcs.
- ► The weight (after "/") is a tuple of (old-weight, string)
- Other valid weights: "(12.20,1520_1520_1629)", "(-2.64,)" (empty string)

Acceptor determinization – conventional semiring

- Multiplication (⊗) is ⊗-multiplying the weights, concatenating the strings.
- ▶ Addition (⊕) only defined if the string part is the same
 - ▶ Just corresponds to ⊕-adding the weights in their semiring.
- ▶ I.e. addition will crash if strings are different²
- ... this is not really a proper semiring
- ... designed to detect non-functional FSTs and to fail then.
- ▶ Common-divisor of (w, s) and (x, t) is $(w \oplus x, u)$
 - where u is the longest common prefix of s and t.
 - ... this is an operation needed for determinization (to normalize subsets)

²This is the way it's done in OpenFst, anyway. $\langle a \rangle \langle b \rangle \langle b \rangle \langle b \rangle \langle b \rangle = \sqrt{2}$

Semiring for lattice-determinization

- Only defined if there is a total order over the weight part, and
 on the weights corresponds to taking the max.
- Multiplication is as before.
- ▶ Addition means taking pair that has the largest weight part.
- ▶ We need to be a bit careful when the weights are the same.
 - This is for mathematical purity— it wouldn't make a practical difference.
 - It's a question of satisfying semiring axioms.
 - ▶ We take the shortest string (if lengths differ), then use lexicographical order.
 - Simple lexicographical order would have violated one of the axioms (distributivity of ⊗ over ⊕).
- Common-divisor is as before.

Lattice-determinization vs. conventional determinization

- Let's compare them where they are both defined (for tropical semiring, which is like Viterbi).
- ▶ When creating a weighted subset of states...
 - ▶ Suppose a particular state appears twice in the subset (i.e. we process > 1 links to that state)...
 - If the "weights" on that state have the same string part—both semirings behave the same.
 - Otherwise (different string part):
 - Lattice-determinization will continue happily, choosing the string with better weight.
 - Conventional determinization will say "I detected non-functional FST" and fail.

Lattice-determinization in practice

- ▶ The "OpenFst" /AT&T way to do it would be to:
 - Convert to our special semiring; remove epsilons; determinize; convert back.
- We don't do it this way, because lattices would have a lot of input-epsilons
 - ▶ The remove-eps step would "blow up".
- Instead we wrote a determinization algorithm that removes epsilons itself.
 - This is a bit more complex and harder to formally prove correctness (probably why Mohri doesn't like it)
 - But easy to verify using random examples (can check equivalence and check if deterministic)
 - Optimized it by using efficient data-structures to store strings.

Lattice generation—simple version

- ▶ If we had unlimited memory, basic process would be:
- ▶ Generate beam-pruned subgraph B of search graph S
 - The states in B correspond to the active states on particular frames
- ▶ Prune B with beam α to get pruned version P.
- Convert P to acceptor and lattice-determinize to get A (deterministic acceptor)
- ▶ Prune A with beam α to get final lattice L (in acceptor form).

Lattice generation—real version

- B would be too large to easily fit in memory— prune as we go, not at the end
 - We have a special algorithm for this that's efficient and exact.
 - I.e. it won't prune anything we wouldn't have pruned away at the end
- ▶ Determinization of P can use a lot of memory for some utterances (if α is large, e.g. ≥ 10)
 - This is caused by links being generated that would have been pruned away later anyway.
 - We could create a determinization algorithm that would avoid this bloat
 - ... but it would probably be quite slow.
 - For now we just detect this, reduce the beam a bit and try again.

Lattice generation—why our algorithm is good

- ► We can prove that lattices generated in this way will satisfy the properties we stated³
- We can get "exact" lattices without approximation (e.g. the "word-pair approximation" of Ney), while only storing a single traceback.
- ▶ No extra time cost for generating lattices (for small-ish α)
- ► This is unlike the traditional "more exact" approaches, which have to store multiple tokens in each state.
- ... and those approaches are not even as exact as ours.
- ▶ We have verified that LM rescoring of these lattices gives the same results as decoding directly with the original LM.
- Will also verify using an N-best algorithm that the lattices have the properties we stated.

Lattice generation— experimental aspects

- ▶ We have verified that LM rescoring of these lattices gives the same results as decoding directly with the original LM (as beams get large enough)
- ▶ Will also verify using an N-best algorithm that the lattices have the properties we stated.
- Also measuring oracle WERs of lattices:
 - This is mainly because people expect it.
 - ▶ I don't acknowledge that oracle WER is a relevant metric (consider a single word-loop).
- Not presenting detailed results here (not ready yet/ not that useful anyway).
- ▶ Hard to compare experimentally with previous approaches:
 - ► These are often either not published, not completely described, or too tied to a particular type of decoder.

Lattice generation—summary

- ▶ I believe this is the "right" way to do lattice generation.
- ▶ No compromise between speed and exactness.
- ▶ Lattices have clearly defined properties that can be verified.
- Interesting algorithm:
 - A common objection to WFSTs is, "I could code this easier without WFSTs"
 - Many WFST algorithms have simple analogs, e.g. determinization = tree-structured lexicon; minimization = suffix sharing.
 - ► This algorithm is hard to explain without WFSTs, and shows the power of the framework.

The "standard" recipe The Kaldi recipe Lattice generation

The end

▶ Questions?