CSE 350 Digital Electronics and Pulse Techniques

Diode Logic

Course Instructor: Shomen Kundu (SDU)

Mail: shomen.kundu@bracu.ac.bd

Desk: 4N166

Abstract of Logic Gate:

This gates are abstract, because they just represent logical operations.

Logic families

Logic families

Saturated Logic Family: Uses Saturation & Cutoff region of a BJT for implementation of logic states.

- ☐ Resistor Transistor Logic (RTL)
- ☐ Diode Transistor Logic (DTL)
- ☐ Direct Coupled Transistor Logic (DCTL)
- ☐ Integrated Injection Logic (IIL)
- ☐ High Threshold Logic (HTL)
- Transistor-Transistor Logic (TTL)

Unsaturated Logic Family: Uses Active & Cutoff region of a BJT for implementation of logic states.

- □ Schottky TTL
- Emitter Coupled Logic (ECL)

Logic families

Unipolar Logic Family: JFET, MOSFET etc. single charge carrier-based transistor logic families.

- PMOS Logic Family
- □ NMOS Logic Family
- ☐ CMOS Logic Family

OR gate and AND gate Design Techniques,

- For each input we need a series resistance and a diode
- Output will be connected with GND or VDD
- For OR gate output will be connected to the GND via pull down resistance
- For AND gate output will be connected to the VDD via pull up resistance.
- Series resistance will be small.
- Pull up / Pull down resistance will be large.

OR Gate

Series and pull down resistance can be chosen as

$$R_s = 1 k\Omega$$
 $R_{pd} = 100 k\Omega$

Two input OR Gate

Α	В	V1	V2	Vo	Y
0	0	0V	0V		
0	1	0V	5V		
1	0	5V	0V		
1	1	5V	5V		

Assume: Logic 1 means 5 V on input side. Logic 0 means 0 voltage/GND

Case 1: A = 0, B = 0

First thing to check whether diodes are on or off. **FACT:** We need at least 0.7 V to turn on any diode.

Conclusion: D1 and D2 are OFF.

$$\frac{Vo - 0}{RL} = i = 0 \implies Vo = 0 V$$

$$Y = 0$$
 (logic)

Case 2: A = 0, B = 1

First thing to check whether diodes are on or off.

Here: D1 will be OFF and D2 will be ON

$$\frac{Vo - 0}{100 k} + \frac{(Vo + 0.7) - 5}{0.25 k} = 0 \implies Vo = 4.2893 V$$

$$Y = 1 (logic)$$

Case 3: A = 1, B = 0 (symmetrical to case 1)

First thing to check whether diodes are on or off.

Here: D1 will be ON and D2 will be OFF

$$\frac{Vo - 0}{100 k} + \frac{(Vo + 0.7) - 5}{0.25k} = 0 => Vo = 4.2893 V$$

$$Y = 1 (logic)$$

Case 4:
$$A = 1$$
, $B = 1$

First thing to check whether diodes are on or off.

Here: D1 will be ON and D2 will be ON

$$\frac{Vo - 0}{100 k} + \frac{(Vo + 0.7) - 5}{0.25k} + \frac{(Vo + 0.7) - 5}{0.25k} = 0$$
$$=> Vo = 4.2946 V$$

$$Y = 1 (logic)$$

Two input OR Gate Findings
#4.28 V , 4.29 V
logical High and Low can be
Different at input and output side
VOH = 4.28 V
(lowest of the outputs values
that can be considered as logic 1)

A	В	V1	V2	Vo	Υ
0	0	0V	0V	0 V	0
0	1	OV	5V	4.2893V	1
1	0	5V	OV	4.2893V	1
1	1	5V	5V	4.2946 V	1

Power Dissipation Calculation

Theory:

$$P = P1 + P2$$

Max Power Dissipation

Example: Find the max power dissipation of the given circuit.

Max Power Dissipation

Max power dissipation will be in the case 4

$$V_0 = 4.2946 V$$
 $i1 = \frac{5 - (V_0 + 0.7)}{0.25 k} = 0.0216 mA$
 $i2 = i1$
 $i_3 = \frac{V_0 - 0}{100k} = 0.042946 mA$
 $P = (5 - 0) * i_1 + (5 - 0) * i_2 = 0.216 mW$
Or $P = (5 - 0) * i_3 = 0.216 mW$

Inspiring Excellence

AND gate:

Exercise: Analysis the four possible input and fill the table. Also find the V_{OL} for this circuit.

Α	В	V1	V2	Vo	Υ
0	0	0V	0V		
0	1	OV	5V		
1	0	5V	OV		
1	1	5V	5V		

Hints: Logical low voltage at the output side --□ Highest voltage for which the output is considered to be 0 or logic low.

Try yourself,

- 1. Design a logic circuit, Y = A(B + C) using diode logic.
- 2. For the given circuit find the maximum power and average power.

20