2. Protocoale de Securitate la Nivel Reţea

IPSec

- Completează IPv4 cu facilităţi de securitate
- Protocol de Nivel 3+
- Pune la dispoziţia protocoalelor de pe nivelul superior (TCP, UDP) servicii de comunicaţie securizate
- Pentru a suporta IPSec, stiva TCP/IP de pe clienţi sau gatewayuri trebuie modificată

Arhitectura IPSec

- Descris în cadrul mai multor RFC
 - RFC 4301: An overview of the IPSec security architecture
 - RFC 4302: Specification of AH
 - RFC 4303: Specification of ESP
 - RFC 4305: Specification of algorithms for AH and ESP
 - RFC 4306: Specification of IKEv2
 - **–** ...
- Destul de complex, foarte multe opţiuni
- Probleme de interoperabilitate între diferite implementări

AH şi ESP

- Authentication Header Protocol (AH)
 - Integritatea pachetelor
 - Autentificarea originii datelor
- Encapsulating Security Payload Protocol (ESP)
 - Confidenţialitatea datelor
 - Autentificarea originii datelor
- Pot fi folosite independent sau combinat
- Moduri de operare
 - Transport
 - Tunel

Authentication Header Protocol

Next Header	Payload Length	Reserved
Security Parameters Index		
Sequence Numbers Field		
Integrity Check Value		

- Numărul de protocol pentru AH este 51
- Numărul de secvenţă evită atacurile prin reluare
- Câmpul Integrity Check Value este calculat pentru toate câmpurile din pachetul IP cu excepţia celor ce pot suferi modificări (TOS, TTL, CRC, etc)

Encapsulating Security Payload Protocol

- Numărul de protocol pentru ESP este 50
- Authentication Data este calculat numai pentru câmpurile din ESP

IPSec – Modul Transport

IPSec – Modul Transport (AH)

Before applying AH

After applying AH

IPSec – Modul Transport (ESP)

Before applying ESP

After applying ESP

IPSec – Modul Tunel

IPSec – Modul Tunel (AH)

IPSec – Modul Tunel (ESP)

Security Association (SA)

- Un SA este un "contract" stabilit între cele două capete ale tunelului IPSec
 - parametrii criptografici (algoritmi, chei, etc)
 - timp de viaţă
- SA sunt stocate într-o bază de date. Fiecare SA are asociat un SPI (Security Parameters Index) pentru a putea fi regăsit în baza de date

Internet Key Exchange

- Managementul asocierilor de securitate (SA)
 - manual
 - automat
- ISAKMP (Internet Security Association and Key Management)
 - framework pentru managementul cheilor şi asocierilor de securitate
- IKE (Internet Key Exchange)
 - stabilirea parametrilor criptografici
 - · algoritmul de criptare, funcția hash, metoda de autentificare, etc
 - autentificarea mutuală între entităţi
 - pre-shared keys sau certificate digitale
 - stabilirea cheii de sesiune
 - Diffie-Hellman (DH)
 - foloseşte portul UDP 500 pentru comunicaţie
 - RFC 4306 (IKE v2)

Moduri de lucru

Faza 1

- negocierea unui SA iniţial (ISAKMP SA)
- Modul principal
 - 6 mesaje
- Modul agresiv
 - 3 mesaje
 - nu asigură protecţia identităţii

Faza 2

- negocierea unui SA general (IPSec SA)
- reîmprospătarea cheilor de sesiune
- Modul rapid

Moduri de lucru (cont.)

- Se foloseşte modul principal / agresiv pentru a stabili un SA iniţial (ISAKMP SA)
- Se foloseşte modul rapid pentru a negocia un SA general (IPSec SA)
- Se foloseşte IPSec SA pentru transmiterea datelor până când acesta expiră şi trebuie negociat un nou IPSec SA
- Se foloseşte modul rapid pentru reînnoirea IPSec SA

IKE - Modul Principal

IKE - Modul Principal (cont.)

IKE – Modul Agresiv

IKE – Modul Rapid

- Schimb de mesaje criptate folosind cheia de sesiune stabilită în faza anterioară
- Negocierea parametrilor pentru IPSec SA
- 3 mesaje
- IPSec SA este bidirecţional (unul pentru conexiunea de intrare şi unul pentru conexiunea de ieşire)
- Schimbarea periodică a cheilor de sesiune
 - Perfect Forward Secrecy

Consideraţii privind implementarea IPSec VPN

- Algoritmi criptografici recomandaţi
 - Criptarea datelor: 3DES, AES
 - Integritatea datelor: SHA-1
- Fragmentarea pachetelor
 - antetele AH şi ESP cresc dimensiunea pachetelor
 - scăderea performanței rețelei
- Translaţia de adresă (NAT)
 - translaţia de adresă modifică pachetele IP! (distruge integritatea datelor)
 - folosire NAT înainte de IPSec
 - IPSec NAT Traversal (NAT-T)
 - încapsularea pachetelor IPSec în datagrame UDP
- Configurare firewall
 - AH (IP Protocol Number 51), ESP (IP Protocol Number 50)
 - IKE (UDP Port 500)
 - IPSec NAT-T (UDP Port 4500)
- Suport pentru mecanisme extinse de autentificare
 - Extended Authentication (XAUTH)
 - RADIUS, TACACS+, RSA SecurID

