EE207: End-semester examination Total Mark-70

Consider the p-n junction diode shown below:

1'

Each question carries 10 marks. Always write appropriate units, Write the final answer to this sheet and tie with your answer sheet.

On.	Semila	I to	1.1 eV	Esemi	11,8	E0	8.85×10 ⁻¹⁴ F/cm
04	10 cm ³ /s	T	300 K	Ln	100 µm	Lp	50 µm
Ni	1.1×10 ¹⁰ cm ²	mh/m;	1.06	Eox	3.9	as glivericia fidicimentini	

	N _{A2} 10 ¹⁸ cm ⁻³	2×10,, ew ,	N ₀₁ 3×10 ¹⁸ cm '	N ₀₂ 10 ¹⁸ cm ³								
	Large	100 nm	100 nm	Large								
		X	=0									
	Find out the ele	ctric field i	n V/cm at	x=0.								
2.	Consider a piece of a semiconductor with $N_A=10^{11}$ cm ⁻³ and $N_D=9\times10^{10}$ cm ⁻³ . Find out the number of a) holes (p), b) electrons (n) and c) position of the Fermi level with respect to the intrinsic Fermi energy (in eV) of the semiconductor? [3+3+4]											
	Ans: a)		Ŀ)	c)							
3.		The HFCV and LFCV in a n-MOSFET at a gate voltage +1 V above threshold are given by 0.4 μ F/cm ² and 0.04 μ F/cm ² , respectively. What is the doping concentration of the substrate?										
	Ans:											
4.	Consider a n-MOSFET with substrate doping concentration $N_A=10^{16}$ cm ⁻² and $t_{ox}=4$ nm. Assuming $\phi_{ms}=0$ and $V_{DS}=0$, find out the a) voltage across the oxide at a gate voltage of +1 V and b) surface potential. [5+5]											
	Ans: a)		b)									
5.	0.5 µm half of th	e gate tow de thickne	vards sour	ce has an oxide . Assuming φ _m	centration of $N_A=10^{16}$ and gate length of L=1 μ m. The de thickness of 4 nm and the rest 0.5 μ m towards the ms=0, find out the drain-to-source current (in mA) for $N_{GS}=2$ V. [5+5]	9						
	Ans: a)		ь)									
6.		regions are much smaller than the minority carries the expression for the in terms of other parameters.										
	Ans:											
7.	Consider a bipolar junction transistor with Emitter- N_{DE} =2×10 ¹⁸ cm ⁻³ , Base- N_{AB} =2×10 ¹⁶ cm ⁻³ , and collector N_{DC} =10 ¹⁵ cm ⁻³ with W_E =0.2 μ m and W_E =0.1 μ m. Find out a) α of the transistor during regular operation (forward active mode). If a user swaps the connection by mistake between Emitter and Collector during circuit operation (reverse active mode) find out the b) modified α of the transistor. [5+5]											
	Ans: a)		b)									