| Зміст                                                                      |   |
|----------------------------------------------------------------------------|---|
| Вступ                                                                      | 3 |
| 1. Завдання                                                                | 4 |
| 2. Визначення категорії декоративності зразка6                             | 5 |
| 3. Визначення об'єму природної окремості та геологічних втрат. Вихід       |   |
| блоків                                                                     | 7 |
| 4. Структура комплексної механізації                                       | 9 |
| 4.1. Вибір і розрахунок продуктивності обладнання для розкривних робіт9    |   |
| 4.2. Вибір і розрахунок продуктивності обладнання для видобувних робіт12   | 2 |
| 4.3. Розрахунок продуктивності технологічного комплексу                    | ŀ |
| 5. Система розробки                                                        | 5 |
| 5.1. Вибір системи розробки10                                              |   |
| 5.2. Розрахунок параметрів системи розробки                                |   |
| 6. Організація робіт                                                       |   |
| 7. Переробка нерудних будівельних матеріалів                               | ı |
| 7.1 Вибір технологічної схеми переробки нерудних будівельних матеріалів.20 |   |
| 7.2 Склад заводу та режим роботи                                           |   |
| 7.3 Опис технологічного процесу                                            |   |
| Висновки                                                                   | , |
| Список використаної літератури                                             | ŀ |

|           |      |               |        |          | ОБ-11.040709.КП                         |      |         |         |
|-----------|------|---------------|--------|----------|-----------------------------------------|------|---------|---------|
| Зм.       | Арк. | № докум.      | Підпис | Дата     |                                         |      |         |         |
| Розр      | об.  | Павленко М.О. |        |          |                                         | Літ. | Арк.    | Аркушів |
| Пере      | вір. | Зуєвська Н.В. |        |          | Проект будівництва кар'єру по           |      | 1       | 24      |
| Реце      | НЗ.  |               |        |          | видобутку блочного каменю в             |      |         |         |
| Н. Контр. |      |               |        |          | умовах Добринського родовища НТУУ КПП Н |      | КПІ ІЕЕ |         |
| Затв      | ерд. |               |        | гранітів |                                         |      |         |         |

#### ВСТУП

Відкритий спосіб розробки корисних копалин є найбільш перспективним у технологічному, економічному й соціальному відношеннях. Завдяки розвиненій індустріальній базі й значним запасам корисних копалин, розташованим близько до денної поверхні, цим способом у цей час добувається приблизно 3/4 загального обсягу твердої мінеральної сировини, споживаного народним господарством країни. Це стосується руд чорних і кольорових металів, вугілля, гірничо-хімічної сировини, будівельних гірських порід. Особливостями відкритої розробки блочного каменю є жорстка прив'язка параметрів систем розробки до параметрів розміщення природних тріщин в масиві і напряму розділення каменю; лінія забою іде за напрямком розколу паралельно повздовжнім тріщинам; обмежена висота уступів; потужне підйомно-транспортне обладнання; резервні ділянки фронту робіт.

Продукція повинна відповідати ДСТУ Б В.2.7-59-97 Будівельні матеріали. Блоки із природного каменю для виробництва облицювальних виробів. В умовах Емельянівського родовища видобувається граніт з наступним мінеральним складом: кварц - 15-70%; мікроклін – 20-80%; плагноклаз - 10-30%; біотит 3-6%.

| Класифікація по групам               | Ціна 1 м <sup>3</sup> | [1] |
|--------------------------------------|-----------------------|-----|
| I група (свыше 5,0 м <sup>3</sup> )  | 300 USD               |     |
| II група (3,51-5,0 м <sup>3</sup> )  | 290-260 USD           |     |
| III група (2,01-3,5 м <sup>3</sup> ) | 250-225 USD           |     |
| IV група (1,01-2,0 м <sup>3</sup> )  | 200-165 USD           |     |
| V група (0,7-1,0 м <sup>3</sup> )    | 140-107 USD           |     |

| Змн. | Арк. | № докум. | Підпис | Дата |
|------|------|----------|--------|------|

#### 1. Завдання

«Спроектувати будівництво кар'єру з видобутку блочного каменю в умовах родовища Добринське»

Вихідні дані (табл.1, табл.2, табл.3)

#### Загальні дані

табл.1.1

| Потужність, м     |                                 |
|-------------------|---------------------------------|
| розкривна порода  | 7,9                             |
| корисної копалини | 45,5                            |
| Порода            |                                 |
| розкривна порода  | Глина, пісок, вивітрений граніт |
| корисної копалини | Граніт                          |
| Транспорт         | Автомобільний                   |

# Розкрив

табл.1.2

| Назва            | Загальний об'єм, м $^3$ /т |  |
|------------------|----------------------------|--|
|                  |                            |  |
|                  |                            |  |
| М'який розкрив   | 71364,2/189816.75          |  |
|                  |                            |  |
| Скельний розкрив | 130179,6/346276.09         |  |
|                  |                            |  |

# Видобуток

табл.1.3

| Назва              | Загальний об'єм, м <sup>3</sup> /т |
|--------------------|------------------------------------|
| A+B+C <sub>1</sub> | 4411000/11733260                   |

# Параметри відділеного моноліту

| A | В | C |
|---|---|---|
| 6 | 5 | 4 |

| Змн. | Арк. | № докум. | Підпис | Дата |
|------|------|----------|--------|------|

ОБ-11.040709.КП

Арк.

### 2. Визначення категорії декоративності зразка

табл. 2.1

| Основні параметри | Характеристика                                                                                                                                             | Ознаки         | Категорія | Оцінка, бали | Коефіцієнт |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|--------------|------------|
| декоративності    | параметра                                                                                                                                                  | декоративності | ознаки    | Оцінка, Оали | Коефіціент |
|                   | Ахроматичні                                                                                                                                                | Колір          | I         | 5            |            |
| Колір             | Ненасичені (0.1)                                                                                                                                           | насиченість    | II        | 4            | 0.8        |
| Nonp              | Чорно-сірий                                                                                                                                                | Світлість      | III       | 1            | 0.8        |
|                   | Неоднорідний                                                                                                                                               | однорідність   | II        | 4            |            |
| Текстура          | Неправильний у вигляді включень, контрастуючи по відношенню до основного фону                                                                              |                | III       | 2            | 0.9        |
| Структура         | Середньо- і дрібнозернисті кольорові граніти, лабрадорити середньо- і крупнозернисті сірі граніти, сієніти, діорити, кварцити, піщаники, мармури і вапняки |                | II        | 4            | 1          |
| Просвічуваність   | 10-20 mm                                                                                                                                                   |                | II        | 2            | 1          |
| Фактура           | 130-160                                                                                                                                                    |                | II        | 3            | 0.8        |

Визначаємо категорію декоративності зразка  $A = (\Sigma K) \ K^1_K \ \dots \ K^i_K + (\Sigma T) \ K^1_K \ \dots \ K^i_K + \Phi \ K^1_{\ \varphi} \ \dots \ K^i_{\ \varphi} + \Pi + C$  A = (12\*0.8) + (2\*0.9) + 4 + 2 + (3\*0.8) = 19.8

За табл. Даний зразок має ІІ категорію – зразок декоративний.

| Змн. | Арк. | № докум. | Підпис | Дата |
|------|------|----------|--------|------|

# 3. Визначення об'єму природної окремості та геологічних втрат. Вихід блоків.

Дані розрахунки були проведенні в спеціальній програмі:



| Змн. | Арк. | № докум. | Підпис | Дата |
|------|------|----------|--------|------|



| Змн. | Арк. | № докум. | Підпис | Дата |
|------|------|----------|--------|------|

#### 4.Структура комплексної механізації.

#### 4.1 Обладнання для розкривних робіт

Навантажувач Caterpillar 988H (E=6,3м<sup>3</sup>;  $R_{пов}=9.6$  м);

Продуктивність одноківшевого навантажувача визначається за формулою:

$$\Pi_n = 3600 *E *K_H *K_{e}/(K_D *T_u) \tag{4.1}$$

 $E=6,3м^3, -$  місткість ковша;

К<sub>н</sub>=0.9, – коефіцієнт наповнення ковша;

Кв=0.8, - коефіцієнт використання навантажувача в часі;

 $K_p=1,15,$  – коефіцієнт розпушення породи;

 $T_{\mu}$ =34c, – тривалість циклу;

- по м'яким породам

$$\Pi_n = 3600*6, 3*0.9*0.8/(1.15*34) = 417,69 M^3/200;$$
 (4.1.1)

$$T_u = t_u + t_n + t_n = 12 + 10 + 9 + 3 = 34c;$$
 (4.1.2)

- по скельним породам

$$\Pi_{H} = 3600*6, 3*0.8*0.8*(1.33*38) = 287,28 \text{ m}^{3}/200;$$
 (4.1.3)

$$T_{u} = t_{u} + t_{h} + t_{p} + t_{n} = 16 + 10 + 9 + 3 = 38c;$$
 (4.1.4)

Змінну продуктивність навантажувача визначають за формулою:

$$P=E*(T-T_1)*K_c*K_e*60/t;$$
 (4.1.5)

Т=8год, - тривалість зміни;

 $T_1$ =30хв, – час на підготовчі операції,хв.

K<sub>c</sub>=0,8, - коефіцієнт екскавації;

t =44c, - тривалість циклу;

$$t = t_{H} + t_{D} + t_{C} + t_{\partial} = 10 + 12 + 3 + 7 + 12 = 44c;$$
(4.1.6)

Змінну продуктивність навантажувача по м'яким породам

$$P=6,3*(480-30)*0.8*0.9*60/44=2783,5 \text{ m}^3;$$
 (4.1.7)

Змінну продуктивність навантажувача по скельним породам

$$P = 6,3*(480-30)*0.6*0.8*60/44 = 1855,66 \text{ m}^3; \tag{4.1.8}$$

|      |      |          |        |      |                     | Арк. |
|------|------|----------|--------|------|---------------------|------|
|      |      |          |        |      | ОБ-11.040709.КП     | 0    |
| Змн. | Арк. | № докум. | Підпис | Дата | 02 11,0 10, 0, 1111 | 0    |

Продуктивність БВР для скельного розкриву

По показнику буримості вибираємо буровий станок Caterpillar MD5125, номінальний діаметр буріння якого 152 мм.

Лінія опору по підошві:

$$W = \sqrt{(P/\Delta)} = \sqrt{(49.1/0.84)} = 7.64M; \tag{4.1.9}$$

 $P=49.1 \text{ кг/м}^3$ , — щільність заряджання;

 $\Delta$ =0.84 кг/м³, - питома витрата ВР зосередженого заряду;

#### Висота заряду над підошвою уступу:

- Для скельного розкриву

$$l_e = H_v - l_{3a6} = 4 - 3, 1 = 0,9 \text{ m};$$
 (4.1.10)

 $H_y$ =4 м, – висота уступу;

 $1_{3a6}$ =3,1 м, – довжина забійки;

$$l_{3a\delta} = 20d + 0.2H_p - 1.5 = 20*0.11 + 0.2*12 - 1.5 = 3,1 \text{ M};$$
 (4.1.11)

 $H_P$ =12м, - максимальна висота розвалу відбитої породи за умови екскавації;

d=0.11 м, – діаметр свердловинних зарядів;

$$d = K_f * H_v * \sqrt{i} = 16 * 4 * \sqrt{2.72} = 0.110 M; \tag{4.1.12}$$

 $K_{\rm f}$  =16,— коефіцієнт пропорційності, що враховує групу ґрунтів за СНІПом, що підриваються;

і=2.72 – ступінь дроблення гірської маси;

Відстань між зарядами:

$$a=M*W=1.01*7.64=7.76M;$$
 (4.1.13)

Відстань між рядами:

$$b=0.95*W=0.95*7.64=7.25M;$$
 (4.1.14)

Використовуємо грамоніт, який має коефіцієнт зближення (М) від 1,01.. 1,26; Змінна продуктивність бурових верстатів:

$$Q_{3M} = K_{6.6} * T_{3M} / (T_0 + T_0) = 0.78 * 8 / (0.07 + 0.06) = 48 M/3M;$$
(4.1.15)

 $T_0, T_{\scriptscriptstyle \rm I}$  - відповідно час виконання основних та допоміжних операцій;

 $K_{\text{в.в}}$  =0,78, - коефіцієнт використання бурового верстата в часі;

$$T_0 = 1/V_{\delta yp} = 1/14 = 0.07;$$
 (4.1.16)

 $V_{\text{бур}} = 14$ , - технічна швидкість буріння бурового верстату;

$$T_{\partial} = 4M/x_{\theta} = 0.06M/z_{\theta}$$
 (4.1.17)

| ОБ-11.040709.Н |      |        |          |      |      |  |
|----------------|------|--------|----------|------|------|--|
|                | Дата | Підпис | № докум. | Арк. | Змн. |  |

$$K_{e,e} = [T_{3M} - (T_{n3} + T_p + T_{Hn})] / T_{3M} = [8-1.7]/8 = 0.78;$$
 (4.1.18)

Т<sub>пз</sub> - час виконання підготовчо-заключних операцій;

 $T_{p}$  - час регламентних перерв;

 $T_{\rm HII}$  - час непланових простоїв;

 $T_{\text{пз}}$ +  $T_{\text{p}}$ =0.5 ÷ 1=0.6год;

 $T_{HII}=1.0 \div 1.5=1.1$ год;

Ширина розвалу гірської маси:

- Для скельної вскриші

$$B_0 = 3.5 * H_V *^4 \sqrt{F} *^3 \sqrt{(q_\phi/H_V)} = 3.5 * 4 *^4 \sqrt{8} *^3 \sqrt{(0.11/4)} = 12,614 м;$$
 (4.1.19)   
F=8, – група грунта за СНіПом;

#### 4.2 Обладнання для видобувних робіт

Розрахунок продуктивності вантажопідйомних кранів(SENNEBOGEN 655 HD, 55m)

Продуктивність кранів розраховують

$$F = \frac{DKK_1}{t} (T_{3M} - T_{\Pi 3} - T_{0\Pi} - T_{\Pi \varphi}); \qquad (4.2.1)$$

$$F = \frac{55 \cdot 0.8 \cdot 0.8}{22.2} (480 - 30 - 10 - 5) = 689,7 \text{ T/3M}$$

Де F — нормативна змінна продуктивність крана, т; D=55твантажопійомність крана, т; K — нормативний коефіцієнт використання вантажопідйомності, K=q/D=0.8; (K=0.8...1.0);  $K_1$  — коефіцієнт використання крана у часі з урахуванням можливого порядку операцій;  $K_1=0.75...0.9$ ;  $q=39.9\ {\rm T}$  — максимальна маса вантажу (блока), т;  $T_{\rm 3M}$  — тривалість зміни, хв;  $T_{\rm on}$  — час на особисті потреби, хв;  $T_{\rm on}=10{\rm x}$ в ;  $T_{\rm n3}$  — час на піготовчозавершувальні операції, хв;  $T_{\rm n3}=30{\rm x}$ в;  $T_{\rm n4}$  — сумарна тривалість переміщення крана вздовж фронту робіт, хв;

$$T_{\Pi\Phi} = \frac{B}{C_2} + K_2 \cdot t_{BO} (\Pi_6 + \Pi_K)$$

$$T_{\Pi\Phi} = \frac{375}{150} + 0.5 \cdot 0.5(8 + 8) = 6.5 \text{ xB}$$

$$(4.2.2)$$

| Змн. | Арк. | № докум. | Підпис | Дата |
|------|------|----------|--------|------|

Де t – тривалість циклу, хв;

$$t = 1.25 \frac{2H_{\rm B} - H}{C_{\rm H}} + 2\left(\frac{B_1}{C_1} + t_{\rm II}\right) + t_{\rm A} \tag{4.2.3}$$

$$t = 1.25 \frac{2 \cdot 6 - 2.8}{2.3} + 2\left(\frac{4.2}{10} + 0.68\right) + 15 = 21.9 \text{ xB}$$

Де  $t_{\rm n}$  =0.65– тривалість повороту крана, хв;

 $t_{\mbox{\scriptsize BO}}$  - тривалість установлення та прибирання навісних опор:

Для ручного встановлення опор -  $t_{во}$ =3 хв;

Для автоматичного встановлення  $t_{\text{во}} = 0.3...0.6$  хв;

 $t_{\rm д}$  =15 хв- тривалість додаткових операцій;

Н<sub>в</sub> – висота підйому вантажу;

$$(H_{\text{max}} - H_6 - H_c) > H_B > (H_K + 0.5) > (H_y + 0.5)$$

$$(4.2.4)$$

$$(17 - 2.5 - 2.5) > 6 > (4.52 + 0.5) > (2.5 + 0.5)$$

Де  $H_{max}$  =17 м,  $H_6$ =2.5 м,  $H_c$  =2.5 м,  $H_y$  =5 м,  $H_k$  =4,52 м— відповідно максимальна висота підйому гака для заданого вильоту стріли, висота блока, висота підвіски блока на стропах, висота уступу, висота кабіни автомобіля, м. H =2,34 — висота розміщення днища кузова автомобіля над дорожнім полотном, м;

 $B_1 = 4 M - 3міна вильоту стріли;$ 

 $\Pi_{\kappa} = 8 - \kappa$ ількість кюбелів, що відвантажують за зміну;

 $\Pi_{\text{б}} = 8$  – кількість блоків, що відвантажують за зміну;

С<sub>н</sub> =4,3 м/хв- швидкість підйому (спускання) вантажу;

 $C_1 = 11$  м/хв– швидкість зміни вильоту стріли;

 $C_2 = 160$  м/хв— швидкість пересування крана;

B=375 м – сумарна довжина фронту переміщення крана за зміну з урахуванням довжини ділянок переміщення блоків на вибої, навантаження блоків та кюбелів;

 $K_2 = 0.5$ — коефіцієнт, що враховує можливість навантаження та переміщення декількох блоків (кюбелів) для одного фіксованого розміщення автокрана.

| Змн. | Арк. | № докум. | Підпис | Дата |
|------|------|----------|--------|------|

#### Транспортування гірничої маси автосамоскидами(Caterpillar 725R)



#### Радиус поворота

Указанные размеры соответствуют машинам, оснащенным шинами 23,5R25.

| Угол и радиус поворота      |         |
|-----------------------------|---------|
| Максимальный угол поворота  |         |
| (налево/направо)            | 45°     |
| Радиус поворота             |         |
| по стандарту SAE            | 7255 мм |
| Габаритный радиус           | 7590 мм |
| Радиус поворота по          |         |
| внутреннему следу           | 3714 мм |
| Габаритный корилор поворота | 4964 мм |

#### Оптимальное соответствие самосвала погрузочной технике

| Гидравлические экскаваторы | 345B L Series II | 330B L | 325B L |
|----------------------------|------------------|--------|--------|
| Количество циклов          | 3 - 4            | 4-5    | 5-6    |
| Колесные погрузчики        | 966G             | 962G   | 950G   |
| Количество циклов          | 3 - 4            | 3 - 4  | 4      |

Оптимальный подбор погрузочного средства для работы в паре с самосвалом обеспечивает значительное повышение производительности. По своим характеристикам самосвал модели 725 отпично подходит для совместной работы с гидравлическими экскаваторами 345В L Series II, 330В L и 325В L, а также с колесными погрузчиками 966G, 962G и 950G. Это обеспечивает повышение производительности и снижение системных издержек на единицу объема перемещенного груза.

| Змн. | Арк. | № докум. | Підпис | Дата |
|------|------|----------|--------|------|

| Модель двигателя    | Дизельный двига<br>охладителем над<br>воздуха и электр<br>впрыска топлива<br>Caterpillar | дувочного<br>онной системой |
|---------------------|------------------------------------------------------------------------------------------|-----------------------------|
| Полная мощность, кВ | 223,7/300                                                                                |                             |
| Мощность на махови: | 209/280                                                                                  |                             |
| по ISO 9249         |                                                                                          | 209/280                     |
| по ЕЕС 80/1269      |                                                                                          | 209/280                     |
| по SAE J1349        |                                                                                          | 207/277                     |
| Внутренний диаметр  | цилиндра, мм                                                                             | 125                         |
| Ход поршня, мм      |                                                                                          | 140                         |
| Рабочий объем, л    |                                                                                          | 10,3                        |

- Двигатель самосвала модели 725 отвечает требованиям стандарта США Tier 2 и стандарта EC Stage II в отношении токсичности выхлопных газов на период до 2005 г. включительно.
- До высоты 4572 м над уровнем моря понижение характеристик двигателя не требуется.

| Номинальная грузоподъемность, т                                                | 23,6                 |
|--------------------------------------------------------------------------------|----------------------|
| Вместимость кузова, м <sup>3</sup>                                             |                      |
| С "шапкой" (2:1 по SAE)                                                        | 14,3                 |
| Геометрическая вместимость                                                     | 11,1                 |
| С "шапкой" (1:1 по SAE)                                                        | 17,5                 |
|                                                                                |                      |
| Скорости движения, км/ч                                                        |                      |
| Скорости движения, км/ч<br>Передним ходом:                                     | 7.1                  |
| Скорости движения, км/ч                                                        | 7,1<br>13,4          |
| Скорости движения, км/ч<br>Передним ходом:<br>1-я передача                     |                      |
| Скорости движения, км/ч Передним ходом: 1-я передача 2-я передача              | 13,4                 |
| Скорости движения, км/ч Передним ходом: 1-я передача 2-я передача 3-я передача | 13,4<br>20,4         |
| 2-я передача<br>3-я передача<br>4-я передача                                   | 13,4<br>20,4<br>31,2 |

| Распределение массы, кг |       |  |  |  |
|-------------------------|-------|--|--|--|
| Без груза:              |       |  |  |  |
| Передняя ось            | 12900 |  |  |  |
| Средняя ось             | 5210  |  |  |  |
| Задняя ось              | 4620  |  |  |  |
| Общая                   | 22730 |  |  |  |
| Расчетная нагрузка:     |       |  |  |  |
| Передняя ось            | 1500  |  |  |  |
| Средняя ось             | 10750 |  |  |  |
| Задняя ось              | 11340 |  |  |  |
| Общая                   | 23590 |  |  |  |
| С грузом:               |       |  |  |  |
| Передняя ось            | 14400 |  |  |  |
| Средняя ось             | 15960 |  |  |  |
| Задняя ось              | 15960 |  |  |  |
| Общая                   | 46320 |  |  |  |

| Толщина листов кузова, мм |    |
|---------------------------|----|
| Передней стенки           | 8  |
| Каркаса                   | 14 |
| Боковой стенки            | 12 |
| Днища                     | 14 |

| Топливный бак                   | 310 |
|---------------------------------|-----|
| Система охлаждения              | 85  |
| Гидравлическая система          | 150 |
| Картер двигателя                | 31  |
| Коробка передач                 | 36  |
| Бортовые редукторы/дифференциал | 132 |
| Раздаточная коробка             | 18  |

| Подъемник кузова |      |
|------------------|------|
| Время подъема    | 10 c |
| Время опускания  | 7 c  |

# Система рулевого управления Расход рабочей жидкости, л/мин

Норма виробки шофера автосамоскида

$$H_{\rm B} = \frac{T_{\rm 3M} - T_{\rm O\Pi} - T_{\rm \Pi3}}{T_{\rm o6}} \cdot Q_a$$

$$H_{\rm B} = \frac{480 - 10 - 30}{35.4} \cdot 15 = 186 \,\mathrm{M}^3$$
(4.2.5)

Де  $T_{\text{зм}}$  - тривалість зміни;  $T_{\text{зм}}$  =480хв;

 $T_{\text{пз}}$  – час на піготовчо-завершувальні операції, хв;  $T_{\text{пз}}$ =30хв;

 $T_{\text{оп}}$  - час на особисті потреби, хв;  $T_{\text{оп}}$ =10хв ;

 $T_{\rm of}$  – час одного рейсу автосамоскиду, хв;

|      | ·    |          |        |      |
|------|------|----------|--------|------|
| Змн. | Арк. | № докум. | Підпис | Дата |

153

 $Q_a$ =15 м³ - об'єм гірничої маси в цілику в одному автосамоскиді, м³; Час рейсу автосамоскиду залежить від швидкості руху автосамоскида, відстані відкатки гірничої маси, часу навантаження і розвантаження, очікування встановлення під навантаження, встановлення під навантаження і розвантаження.

$$T_{o6} = 2 \cdot \rho + \frac{60}{\vartheta_c} + T_{HaB} + T_p + T_{oq} + T_{B.H} + T_{B.p};$$

$$T_{o6} = 2 \cdot 2.4 + \frac{60}{23} + 8 + 8 + 7 + 2.5 + 2.5 = 35.4 \text{ xB};$$

$$(4.2.6)$$

 $\rho = 2.4 \text{ км}$  - відстань відкатки в одну сторону, км;

 $\vartheta_{\rm c}$ =23км/год - середня швидкість руху автосамоскида, км/год;

Т<sub>нав</sub> = 8 - час навантаження автосамоскида, хв.;

T<sub>p</sub>=8 - час розвантаження автосамоскида, хв.;

Точ= 7 - час очікування автосамоскида, хв.;

Т<sub>в.н.</sub>=2.5 - час встановлення автосамоскида під навантаження, хв.;

Т<sub>в.н.</sub> =2.5- час встановлення автосамоскида під розвантаження, хв.;

$$n_{\text{об}} = \frac{T_{\text{3M}} - T_{\text{оп}} - T_{\text{пЗ}}}{T_{\text{об}}} = \frac{T_{\text{3M}} - T_{\text{оп}} - T_{\text{ПЗ}}}{T_{\text{об}}} = 13$$
 - число рейсів автосамоскида; (4.2.7)

#### 4.3 Розрахунок продуктивності технологічного комплексу

Терморізак УГР 4 з продуктивністю  $Q_{\text{тер}}=25\text{м}^2/\text{зм}$ , бурова установка Dazzini PCT100 з продуктивністю  $Q_{\text{соm}}=240$  пм/зм, канатна пила Dazzini 800 з продуктивністю  $Q_{\text{пили}}=80\text{м}^2/\text{зм}$ , а також HPC.

Довжина шпура, м:

$$l_{\text{ii}} = 2 \cdot \text{C/3}$$
 (4.3.1)

 $l_{\text{III}} = 2*4/3 = 2.66 \text{ M}$ 

Відстань між шпурами, м:

$$L_{\text{III}} = \prod_{\text{III}} \sqrt{2 * P/\sigma}$$
 (4.3.2)

 $Д_{\text{m}} = 0.076$ м - діаметр шпура бурової установки Dazzini PCT100

Р= 60 МПа – тиск використання НРС

$$\sigma_p = 30$$
МПа – тиск розтягу;  $\sigma_p = 0.25 \sigma_c = 0.25*120=30$  МПа [1]

$$L_{\text{III}}=0.076*\sqrt{2*60/30}=0.152 \text{ M}$$

Приймаємо  $L_{\text{III}}$ =15,2 см

Кількість шпурів:

$$N=A/L_{III}$$
 (4.3.3)

N=6/0.152=39,47

Приймаємо N=40

Загальна довжина шпурів:

$$\sum L_{\text{III}} = N* l_{\text{III}} + 2B + 2C = 40*2,66 + 2*5 + 2*4 = 124,4 \text{ M}$$
(4.3.4)

|    |        |          |        |      |                 | Арк. |
|----|--------|----------|--------|------|-----------------|------|
|    |        |          |        |      | ОБ-11.040709.КП | 1/   |
| 3м | ч. Арк | № докум. | Підпис | Дата |                 | 14   |

Питома довжина шпурів:

$$L_{\text{III}}^{\text{y}} = L_{\text{III}}/V_{\text{M}} \tag{4.3.5}$$

$$V_{M} = A * B * C = 6 * 5 * 4 = 120 \text{ м}^{3} - \text{об'} \epsilon \text{м моноліту}$$
 (4.3.6)

 $L_{\text{III}}^{\text{y}} = 124,4/120 = 1.05 \text{ mM/M}^3$ 

Питомий об'єм роботи НРС:

$$S_{\text{hpc}}^{\text{y}} = A * C / V_{\text{M}} = 6 * 4 / 120 = 0.2 \text{ M}^2 / \text{M}^3$$
 (4.3.7)

Питомий об'єм роботи пили Dazzini 800:

$$S_{\text{пила}}^{\text{y}} = 2*B*C/V_{\text{M}} = 2*5*4/120 = 0.33 \text{ M}^2/\text{M}^3$$
 (4.3.8)

Продуктивність технологічного комплексу:

$$Q_{\text{TK}} = \frac{K}{\frac{\text{Lmy}}{\text{Qcom}} + \frac{\text{Shpcy}}{\text{P}} + \frac{\text{Snunu}}{\text{Qnunu}}} = \frac{0.468}{\frac{1.05}{240} + \frac{0.2}{60}} = 42.54 \text{ m}^3/3\text{mihy}$$

$$(4.3.9)$$

Питома площа розпилу:

$$K_{po3} = (AB + BC + AC)/V_m = 74/120 = 0.61 \text{ m}^2/\text{ m}^3$$
 (4.2.10)

Продуктивність технологічного комплексу з урахуванням питомої площі розпилу:

$$Q_{\text{TK}} = \frac{\text{K}}{\frac{\text{Limy}}{\text{Qcom}} + \frac{\text{Shdcy}}{\text{P}} + \frac{\text{Snumu}}{\text{Qnumu}} + \frac{\text{Kpos}}{\text{Qrep}}} = \frac{\frac{0.468}{1.05} + \frac{0.2}{60} + \frac{0.33}{80} + \frac{0.61}{25}}{\frac{240}{60} + \frac{0.33}{80} + \frac{0.61}{25}} = 11,27 \text{ (M}^3/3\text{M})}$$

$$(4.3.11)$$



Кількість комплексів:

$$n = \frac{A_{\text{3M}}}{Q_{\text{TK}}} = \frac{21,36}{11,27} = 1,89 \approx 2$$
 штуки (4.3.12)

| Змн. | Арк. | № докум. | Підпис | Дата |
|------|------|----------|--------|------|

#### 5.Система розробки

#### 5.1. Вибір системи розробки

Елементи системи розробки пов'язані з параметрами використовуваного обладнання і технологією видобувних робіт, які широко застосовуються на практиці. Висота добувного уступу залежить від гірничо-геологічних особливостей залягання, фізико-технічних властивостей каменю, параметрів обладнання для підготовки блоків до виймання, піднімальнонавантажувального та транспортного обладнання, умов безпеки проведення гірничих робіт.

Технологічні процеси на кар'єрах блочного каменю. Розкрив і некондиційна корисна копалина руйнується суцільно для полегшення наступної виїмки, вантаження і транспортування. Відходи у вигляді сколу і дрібноти. Збільшується число площин оголення окремості аж до повного усунення її зв'язків з масивом.

Висота уступів по м'якому і скельному розкриву дорівнює 3.9 м і 4 м відповідно. Висота видобувного уступу повинна бути кратною відстані між горизонтальними тріщинами. Висоту видобувного уступу приймаємо 4 м. Виймання каменю проводимо за двостадійною схемою (з розділом), вантаження, транспортування, складування.

# **5.3. Розрахунок параметрів системи розробки** Ширина робочої площадки:

- по м'якому розкриву

$$III^{MP} = A + \Pi_n + \Pi_0 + \Pi_0 = 19, 2 + 14 + 1.5 + 6, 5 = 41, 2M; \tag{5.3.1}$$

 $A=2R_{nos}=2*9,6=19,2M,-$  ширина заходки по цілику;

 $\Pi_{\pi} = 14$ м, – ширина проїжджої частини;

 $\Pi_0 = 1,5$ м, — ширина бруківки;

 $\Pi_6$ =6,5м, – ширина полоси безпеки;

| Змн. | Арк. | № докум. | Підпис | Дата |
|------|------|----------|--------|------|

- по скельному розкриву

$$\coprod^{c.p.} = E + \Pi_n + \Pi_0 + \Pi_0^I + \Pi_0 = 8.4 + 14 + 1.5 + 6.5 + 6 = 36.4M; \tag{5.3.2}$$

- по корисній копалині

$$\coprod = A + \prod_{K} + \prod_{\Pi} + 2 + \prod_{\Pi} + \prod_{B} + \prod_{A} = 5 + 14 + 13 + 2 + 1, 5 + 6 + 2 = 43 \text{ m}$$
 (5.3.3)

А=5 м – ширина моноліту

 $\Pi_{\kappa}$ =13 м – ширина полоси для вантажопідйомних кранів

 $\Pi_{n}$ =14м – ширина проїжджої частини

 $\Pi_0$ =1,5 м – ширина обочини

 $\Pi_{B}$ =6 м – ширина для додаткового обладнання

 $\Pi_3$ =2 м – відстань між установками на сусідніх уступах

Довжина робочого блоку штабелювання та збирання сколу, м;

$$L_{\text{III}} = 2R_{\text{II}} + A(1 - K_{\text{BM}})K_{\text{p}} = 2 \cdot 9.6 + 6(1 - 0.35) \cdot 1.5 = 25.05 \text{ M}$$
 (5.3.4)

Де  $R_{\Pi}$  - радіус повороту навантажувача, м;

А – довжина робочого блока, м;

К<sub>вм</sub> - коефіцієнт виймання блоку із масиву;

К<sub>р</sub> – коефіцієнт руйнування;

Довжина робочого блока виймання та навантаження, м;

$$L_{\text{вп}} = 2 \cdot R_{\text{K}} + A \cdot K_{\text{po}} = 2 \cdot 9.6 + 6 \cdot 1.5 = 28.2 \text{ M}$$
 (5.3.5)

 $R_{\rm K}$  - радіус обертання крана, м;

 $K_{po}$  – коефіцієнт, який враховує «розвал» каменю при підготовці блоків до виймання;

Довжина резервного блока, м;

$$L_p = L_{\text{III}} + L_{\text{BII}} + N \cdot A = 25,05 + 28,2 + 3 \cdot 6 = 71,25 \text{ M}$$
 (5.3.6)

Мінімальна довжина панелі уступу, м;

$$L_{\Pi}^{min} = L_{\text{III}} + L_{\text{ВП}} + N \cdot A + L_{p} = 25,05 + 28,2 + 3*6 + 71,25 = 142.5 \text{ м}$$

Довжина видобувного уступу. Кількість видобувних панелей беруть такою, що дорівнює необхідній кількості комплексів обладнання з підготовки блоків до виймання.

$$L_{
m дy} = n_{\scriptscriptstyle \Pi} \cdot L_{\scriptscriptstyle \Pi}^{min} = 4 \cdot 142,5 = 570$$
 м

|      | ·    |          |        |      |
|------|------|----------|--------|------|
| Змн. | Арк. | № докум. | Підпис | Дата |

#### 6. Організація робіт

Розкривні роботи

Приймаємо двозмінний, 300 денний робочий рік (використовуємо по одному навантажувачу на м'який і скельний розкрив)

Визначимо кількість змін по м'яким породам:

N=V/P

V об'єм,  $M^3$ 

 $N = 71364,2 \text{ m}^3/2783,5 \text{ m}^3 = 26 \text{ 3miH}$ 

Визначимо кількість змін по скельним породам:

N=V/P

V об'єм,  $M^3$ 

 $N = 130179,6 \text{ m}^3 / 1855,66 \text{ m}^3 = 70$  змін

- м'який розкрив пройде через 26 дні (квітень);
- скельний розкрив пройде через 2 місяці (травень). Отже на розривні роботи затрачено 3 місяці

#### Видобувні роботи

табл. 1

| Назва     | Загальний               | Річний        | Добовий                 | Змінний                 |
|-----------|-------------------------|---------------|-------------------------|-------------------------|
|           | об'єм,м <sup>3</sup> /т | об'єм,м³/т    | об'єм,м <sup>3</sup> /т | об'єм,м <sup>3</sup> /т |
| $A+B+C_1$ | 4411000/ 11733260       | 6410,25/17051 | 21,36/56,81             | 21,36/56,81             |

Визначаємо річний об'єм, м<sup>3</sup>

$$\frac{3000}{X} = \frac{46.8\%}{100\%}$$
;  $X = 6410,25 \text{ m}^3$ 

Приймаємо однозмінний робочий день.

### 7. Переробка нерудних будівельних матеріалів

# 7.1 Вибір технологічної схеми переробки нерудних будівельних матеріалів.

Вихідна сировина для переробки — граніту Емельянівського родовища. Дана сировина переробляється в камнеоброблюючому цеху дробильно-сортувальною установкою. З блоків які поступають з кар'єру, виготовляють облицювальні плити. Сировина на проммайданчик заводу і до ДСУ доставляється автотранспортом. Схема виробництва пиляних полірованих

|      |      |          |        |      |                 | Арк. |
|------|------|----------|--------|------|-----------------|------|
|      |      |          |        |      | ОБ-11.040709.КП | 10   |
| Змн. | Арк. | № докум. | Підпис | Дата |                 | 18   |

плит передбачає наступну послідовність операцій: шліфовка, поліровка, окантовка і розкрій. Розпилювання здійснюють штрипсами товщиною 4 мм із застосуванням спеціальної абразивної суміші, яка складається з дробу 0.8...1.0 мм і води. Абразивна суміш подається на станок насосом. Прийом і зберігання сировини здійснюється на відкритому складі, який обладнаний козловим електрокраном. Цим же краном обслуговується і склад готової продукції.

#### 7.2 Склад заводу та режим роботи

Виходячи з обраної технологічної схеми в склад каменеоброблюючого заводу увійдуть наступні цехи та відділення:

- 1. каменеоброблюючий цех:
- відділення розпилювання;
- відділення шліфування і полірування;
- відділення зберігання і сортування дробу;
- матеріальна комірка;
- інструментальна комірка;
- 2. Склад сировини і готової продукції:
- склад сировини;
- склад готової продукції;
- 3. Ремонтна майстерня.

| Змн. | Арк. | № докум. | Підпис | Дата |
|------|------|----------|--------|------|

#### Режим роботи

Режим роботи цехів та відділень представлені в таблиці

| № | Назва цехів і відділень                                                                                                                                                 | К-ть днів                | ] | Робочі тижн | i   |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---|-------------|-----|
|   |                                                                                                                                                                         | роботи                   | I | II          | III |
| 1 | Каменеоброблюючий цех:  - відділення розпилювання - відділення шліфування і полірування - зберігання і сортування дробу - матеріальна комірка - інструментальна комірка | 260<br>260<br>260<br>260 |   |             |     |
| 2 | Склад сировини і готової продукції                                                                                                                                      | 260                      |   |             |     |
| 3 | Склад сировини і готової продукції                                                                                                                                      | 260                      |   |             |     |

### 7.3 Опис технологічного процесу

Каменеоброблюючий цех.

Виготовлення полірованих плит проводиться наступним чином:

- подача блоків зі складу на пост підготовки;
- підготовка блоків;
- подача блоків на станки для розпилювання;
- розпилювання блоків на станках СМР-043;
- подача блоків на пост розбору ставок;
- розбір ставок;
- подача плит на шліфувально-полірувальні станки СМР-013;
- подача плит на окантовочні (відрізні) станки СМР-015;
- комплектація і пакування плит;
- подача готової продукції на склад;

|      |      |          |        |      |                      | Αμ |
|------|------|----------|--------|------|----------------------|----|
|      |      |          |        |      | ОБ-11.040709.КП      | 2/ |
| Змн. | Арк. | № докум. | Підпис | Дата | 02 1110 107 09 12121 | 20 |

#### Склад сировини. Відділення розпилювання.

Блоки доставляються на склад сировини автомобільним транспортом. Склад обслуговується електричним краном. Склад забезпечує зберігання місячного запасу сировини.

Зі складу сировини блоки спеціально підготовлені і виставлені на вагонетках, подаються в цех на обробку за допомогою лебідки до розпилювального станка.

На постах підготовки блоків проводиться установка блока на вагонетку, закріплення його клинями, вирівнювання верхньої і нижньої площини гіпсовим розчином.

2x3x2,5 3000/15=200

3/0.02 - 1 = 149

 $S = 149x2x2.5x200 = 149000m^2$ 

| $N_{\underline{0}}$ | Назва переділу          | Одн.           | Кількість |         |          |        |
|---------------------|-------------------------|----------------|-----------|---------|----------|--------|
|                     |                         | Вимі           | За рік    | За добу | За зміну | За год |
|                     |                         | py             |           |         | ,        |        |
| 1                   | Поступання блоків на    | м <sup>3</sup> | 3000      | 11.5    | 5.8      | 1.0    |
|                     | розбилювання            |                |           |         |          |        |
| 2                   | Вихід розпилених        | $M^2$          | 149000    | 573,1   | 286.5    | 47.75  |
|                     | плит =0.8 в т.ч.        |                |           |         |          |        |
|                     | товщиною 20 мм          |                | 119200    | 458,48  | 230      | 38.3   |
| 3                   | Поступає на поліровку   | $M^2$          | 119200    | 458,48  | 230      | 38.3   |
|                     | в т.ч. 20мм             |                |           |         |          |        |
| 4                   | Вихід полірованих       | $\mathbf{M}^2$ | 101660    | 391     | 195.5    | 32.6   |
|                     | плит =0.85 в т.ч. 20мм  |                |           |         |          |        |
| 5                   | Поступає на окантовку   | $\mathbf{M}^2$ | 101660    | 391     | 195.5    | 32.6   |
|                     | в т.ч. 20мм             |                |           |         |          |        |
| 6                   | Вихід окантованих       | $\mathbf{M}^2$ | 96577     | 371.45  | 185.7    | 30.95  |
|                     | плит=0.95 в т.ч. 20мм   |                |           |         |          |        |
| 7                   | Поступає на склад       | $\mathbf{M}^2$ | 96577     | 371.45  | 185.7    | 30.95  |
|                     | готової продукції в т.ч |                |           |         |          |        |
|                     | розпилювання,           |                |           |         |          |        |
|                     | шліфовка, поліровка,    |                |           |         |          |        |
|                     | окантовка.              |                |           |         |          |        |

| Змн. | Арк. | № докум. | Підпис | Дата |
|------|------|----------|--------|------|

#### Висновки:

В даній курсовій роботі ми спроектували кар'єр з продуктивністю 6410,25 м³/рік в умовах родовища Емельянівське. Кар'єр працюватиме 35 років з даною продуктивністю. Кар'єр має 2 розкривні уступи по м'яких та скельних породах висотою 3.9 м і 4 м відповідно. Висота видобувного уступу складає 4м.

Для розробки вибрано наступне обладнання: навантажувач Caterpillar 988H (E=6,3м3; Rпов=9.6 м); самоскид Caterpillar 725-R; кран SENNEBOGEN 655 HD, які повністю задовольняють умови даного об'єкту. Кількість технологічних комплексів складає дві штуки. В умовах родовища «Емельянівське» вихід блоків складає 48% Щодо переробки продукції кар'єра, - на склад каменеоброблюючого заводу щорічно поступає 63500 м² готової продукції.

| I |      |      |          |        |      |
|---|------|------|----------|--------|------|
| I |      |      |          |        |      |
| I | Змн. | Арк. | № докум. | Підпис | Дата |

#### Список використаної літератури

- 1. **Васильев М.В.** Современный карьерный транспорт. 2-е изд. М., Недра, 1969. 304 с.
- 2. **Кузнецов Б.А., Ренгевич А.А., Шорин В.Г.** Транспорт на горных предприятиях. 2-е изд., перераб. и доп. М., Недра, 1976. 552 с.
- 3. **Кутузов Б.Н.** Взрывные работы: Учебник для техникумов. 3-е изд., перераб. и доп. М., Недра, 1988. 383 с.
- 4. **Подэрни Р.Ю.** Горные машины и комплексы для открытых работ. M., Недра, 1971.-456 с.
- 5. **Томаков П.И., Наумов И.К.** Технология, механизация и организация открытых горных работ: Учебник для ВУЗов. 3-е изд., перераб. М.: Издво Моск. Горного ин-та,1992.46
- 6. **Бакка Н.Т., Карасьов Ю.Г** Природныйй камень. Добыча блочного и стенового камня. Изд-во Моск. Горного ин-та,1967.

| 3мн. | Арк. | № докум. | Підпис | Дата |
|------|------|----------|--------|------|