DIGITAL DESIGN

SIGNALS

- -Continuous
- -Discrete

SYSTEMS

- -Analog
- -Digital

- (a) Typical voltage assignments in digital systems
- (b) Typical digital signal timing diagram

ADVANTAGES OF DIGITAL SYSTEMS

- Reproducibility of results
- Ease of design
- Programmability
- Speed
- Cost
- Integrated Circuits

DIGITAL CIRCUITS

- COMBINATIONAL

(Outputs depend only on present inputs)

-SEQUENTIAL

(Depends on present & Previous inputs)

Involve timing and memory elements

An Example: To interpret level in a Water tank

Analog System

- Float to give analog input
- Analog Processing (I = V/R)
- Analog Output

Digital System

- Float to give analog input
- A/D converter
- Processing (CPU and memory)
- Output (Digital Display)

Ex: Speed control of DC Servo motor in HDD

Processing elements in Digital Systems

- Arithmetic circuits, decoders, encoders, multiplexers, demultiplexers

Storage Elements

- Flip flops, RAM, ROM, PLDs, Registers, Counters

Display elements

LEDs, LCDs

In this course:

- •Combinational circuit design (Arithmetic circuits, Decoders, Encoders, MUX, DeMUX)
- •Sequential circuit design (FFs, Synchronous & Asynchronous Circuits)
- •Digital ICs and their characteristics (TTL, CMOS)
- •Memories, PLDs & FPGAs
- •Basics of HDL (Simulation & Synthesis Basics)
- •Computer Organization (Modular Approach of CPU Design)

Lab Sessions:

Implementation of Boolean Functions
4-bit counter
Adders & Subtractors
BCD Adder
Decoders, MUX & DeMUX
Latches & FFs
Comparators & ALU
Counters & Shift Registers
Memories & FPGAs

* Take Home Assignments using HDLs

EVALUATION COMPONENTS

	MM
MID SEM TEST	100
ASSIGNMENTS	40
(Tutorials)	
LAB COMPONENTS	40
COMPREHENSIVE	
EXAMINATION	120

INTEGRATED CIRCUITS

- LINEAR
- DIGITAL

LEVELS OF INTEGRATION

- SSI
- MSI
- LSI
- VLSI

Digital IC LOGIC FAMILIES

- RTL, DTL
- TTL
- ECL
- NMOS, PMOS
- CMOS

IC CHARACTERSTICS

- Fan Out
- Propagation Delay
- Noise Margin
- Power Dissipation

© 2002 Prentice Hall, Inc. M. Morris Mano **DIGITAL DESIGN,** 3e.

For TTL logic family

I_{IH}=40 microamps

I_{OH}=400 microamps

 $I_{OL}=16 \text{ ma}$

 $I_{\rm IL}$ =1.6 ma

Fanout = I_{OH}/I_{IH} OR $I_{OL}/I_{IL} = 10$

For TTL logic family

TPHL= 7 ns

TPLH= 11 ns

Depends on loading of gate

Fig. 10-5 Signals for Evaluating Noise Margin

Power Dissipation (P_D)

- Expressed in Milliwatts
- PD= $V_{CC} * I_{CC}$
- $I_{CC}(avg)=(I_{CCH}+I_{CCL})/2$
- •10mw for TTL NAND gate

Do you Know?

- Excess 3 Code
- Gray Code
- Maxterm
- Minterm
- Canonical form