Matplotlib Fundamentals

Category	Details
$\overline{Definition}$	A Python 2D plotting library used for creating static, interactive, and animated visualizations.
$Main \\ Module$	matplotlib.pyplot
$Developed\ In$	Python
Common Use	Data visualization in data science, machine learning, and research

Plot Type	Description
Line Plot	Shows trends over time or continuous data using lines.
Bar Plot	Displays categorical data with rectangular bars.
Histogram	Shows distribution of a dataset by grouping into bins.
Scatter Plot	Plots points for two variables to show relationships or clusters.
Pie Chart	Represents data as slices of a pie to show proportions.
Box Plot	Shows data distribution with median, quartiles, and

```
[1]: # Matplotib.pyplot is a plotting library for the Python used for 2D graphics and visualizations.

# Numpy is a library for numerical computations in Python, often used for ahandling arrays and matrices.

# This script imports these libraries, which are commonly used for data visualization and numerical operations.

import matplotlib.pyplot as plt import numpy as np
```

```
[2]: # Display the plot

x=[1,2,3,4,5]
y=[2,3,5,7,-1]
plt.plot(x, y)
plt.show()
```



```
[3]: # This example shows how to plot points as circles in a scatter plot.

# Define x-coordinates for the point
# Define y-coordinates for the point
# Plot the points as circles
# Display the points on the plot

xpoint = np.array([0, 6])
ypoint = np.array([0, 10])
plt.plot(xpoint, ypoint, 'o')
plt.show()
```



```
[4]: # This example shows how to plot a line with markers.

# markers is used to plot lines with markers

# scatter plot is used to plot points with markers

# Display the plot with markers

xpoint = np.array([1,4,3,8])
plt.plot(xpoint, marker='o')
plt.show()
```



```
[5]: # This example shows how to set the marker style in a plot.

# point denotes the marker style, here '*' is used to denote star markers

xpoint = np.array([1,4,3,8])
plt.plot(xpoint, marker='*')
plt.show()
```



```
[7]: # This example shows how to set the marker size in a plot.

# 'ms' denotes the marker size, here it is set to 30

xpoint = np.array([1,4,3,8])
plt.plot(xpoint, marker='*', ms=30)
plt.show()
```



```
[8]: # This example shows how to set the marker edge color in a plot.

# 'mec' denotes the marker edge color, here it is set to red

xpoint = np.array([1,4,3,8])
plt.plot(xpoint, marker='*', ms=30, mec='r')
plt.show()
```



```
[9]: # This example shows how to set the marker face color in a plot.

# 'mfc' denotes the marker face color, here it is set to red

xpoint = np.array([1,4,3,8])
plt.plot(xpoint, marker='*', ms=30, mfc='red')
plt.show()
```



```
[10]: # This example shows how to set the line style to dotted in a plot.

# 'ls' denotes the line style, here it is set to dotted

x=np.array([1,4,3,8])
plt.plot(x, ls='dotted')
plt.show()
```



```
[11]: # This example shows how to set the line style to dashed in a plot.

# 'ls' denotes the line style, here it is set to dashed

x=np.array([1,4,3,8])
plt.plot(x, ls='dashed')
plt.show()
```



```
[12]: # This example shows how to set the width of the line in a plot.

# 'linewidth' denotes the width of the line, here it is set to 5

x=np.array([1,4,3,8])
plt.plot(x, linewidth=5)
plt.show()
```



```
[13]: # This example shows how to plot two different sets of points on the same plot.

# 'a' and 'b' are two different sets of points plotted on the same graph

a=np.array([1,2,3,4])
b=np.array([6,8,5,7])
plt.plot(a)
plt.plot(b)
plt.show()
```



```
[14]: # This example shows how to add a title, labels and Grid to the plot.

# Title is used to give a name to the plot

# labels are used to describe the x and y axes

# grid is used to display a grid on the plot

x=np.array([1,4,3,8])

plt.title('Line Plot Example')

plt.xlabel('X-axis Label')

plt.ylabel('Y-axis Label')

plt.grid(True)

plt.plot(x, linewidth=5)

plt.show()
```



```
[15]: # This example shows how to create subplots in a single figure.

#'subplot' is used to create multiple plots in a single figure

x=np.array([1,2,3,4])
y=np.array([2,3,5,7])
plt.subplot(1,2,1)
plt.plot(x, y)

x1=np.array([1,4,3,8])
y1=np.array([2,5,1,6])
plt.subplot(1,2,2)
plt.plot(x1, y1)

plt.show()
```



```
[21]: # This example shows how to use a colormap in a scatter plot.

# 'cmap' denotes the colormap used for the points
# cmap is used to map the colors to the points based on their values

x = np.array([5,7,8,7,2,17,2,9,4,11,12,9,6])
y = np.array([99,86,87,88,111,86,103,87,94,78,77,85,86])
sizes = np.array([20,50,100,200,500,1000,60,90,10,300,600,800,75])
c = np.array(['red', 'green', 'blue', 'yellow', 'cyan', 'magenta', 'black', 'cyange', 'red', 'green', 'blue', 'yellow', 'cyan'])
plt.scatter(x, y, s = sizes, c = c, cmap='viridis')
plt.colorbar()
plt.show()
```

C:\Users\hp\AppData\Local\Temp\ipykernel_3748\2321600996.py:10: UserWarning: No
data for colormapping provided via 'c'. Parameters 'cmap' will be ignored
 plt.scatter(x, y, s = sizes, c = c, cmap='viridis')

0.1 Bar Plot

```
[22]: # Bar Plot
# A bar plot is used to display categorical data with rectangular bars.

x=np.array([1,2,3,4])
y=np.array([2,3,5,7])
plt.bar(x, y)
plt.show()
```



```
[23]: # This example shows how to create a bar plot with a specific color.

# Bar Plot with color

x=np.array([1,2,3,4])
y=np.array([2,3,5,7])
plt.bar(x, y,color='red', width=0.5,)
plt.show()
```


0.2 Hist Plot

```
[24]: # Hist Plot
# A histogram is used to represent the distribution of numerical data by_____
dividing the data into bins.

x=np.random.normal(170, 10, 250)
x
```

```
[24]: array([167.51074121, 173.50591421, 162.72381222, 171.61637559, 177.90174069, 173.64680238, 175.07722859, 170.59334645, 162.03186832, 175.35216078, 184.14487574, 177.4263598, 167.11390415, 163.27837508, 164.41320673, 170.15326745, 159.22938344, 159.80425999, 170.82911686, 157.54627739, 186.982758, 177.56770079, 173.17867942, 166.19206834, 182.77323774, 180.9953627, 186.57243443, 165.05390603, 163.32914634, 174.94839586, 167.57177998, 169.15350374, 163.35043339, 173.64057667, 165.69242934, 156.9661402, 176.42401442, 166.0736083, 168.5682078, 145.74340735, 176.92663069, 185.16309483, 176.4839425, 164.59120384, 181.79207271, 175.50082301, 163.50101398, 155.65705402, 175.28236623, 168.55565548, 177.16672028, 168.16621402,
```

```
160.77591992, 160.96885223, 148.31927722, 167.16241409,
160.62240101, 181.13224744, 168.50387768, 155.83347998,
165.51036354, 169.75982663, 171.91897612, 175.80162866,
159.12888904, 173.30927544, 176.10009255, 155.53189278,
164.0201893 , 172.39993742, 181.64169024, 182.17563614,
184.78126362, 165.49026362, 161.18977204, 186.71649992,
174.34099186, 167.20089938, 163.00008258, 165.05130018,
174.13754187, 163.53734127, 165.92180193, 195.63620704,
177.61940522, 182.71196162, 166.74223366, 177.2777118,
171.02636636, 170.60440327, 168.90815957, 152.56184251,
171.23711366, 180.55159873, 174.66323105, 166.05507173,
150.18583599, 170.83537961, 160.61836893, 163.20170052,
157.98671929, 169.34343369, 161.17933559, 182.13498854,
168.45589156, 161.73664566, 172.92705657, 169.5729981,
165.90248238, 184.41176905, 179.39315169, 174.35679126,
148.24734211, 150.0404803, 170.06750661, 159.87953218,
173.65881461, 170.06417952, 174.87666094, 168.05383585,
167.58292364, 172.24179137, 153.55970564, 174.86895832,
166.62032339, 174.67681278, 159.32824263, 172.41301162,
171.3239349 , 189.29423117 , 178.8331535 , 153.78776315 ,
170.07496801, 168.90307947, 165.76538923, 203.70209724,
148.47629648, 175.34003725, 181.51815882, 148.72299201,
181.66753138, 197.55687721, 181.26504351, 169.95238064,
173.22557098, 185.91737955, 164.36051222, 172.13880496,
170.82049769, 176.338508 , 166.998995 , 168.80989185,
181.35994793, 187.33503931, 183.94392934, 167.23719329,
158.43022721, 154.43306107, 176.18338096, 184.11545933,
161.18720904, 169.97142468, 185.28859916, 182.67426643,
169.48206823, 151.59370699, 171.64238622, 176.58090813,
162.82825677, 169.31408299, 191.64799338, 188.20887336,
167.50599232, 177.1750306, 160.65185841, 182.40193631,
176.86248127, 173.69163366, 170.63355993, 171.35307469,
179.14358026, 179.76085408, 176.45038419, 167.41287345,
152.77482043, 166.81880083, 162.17223614, 156.80316757,
159.18248891, 164.00334429, 178.59029318, 173.49140082,
167.99651474, 164.83127103, 180.21929348, 171.98608922,
173.34414227, 154.59027759, 164.13699399, 181.98877507,
172.53783565, 155.35356379, 182.74395386, 191.92088427,
173.55042172, 162.03404021, 166.17869411, 171.52254691,
144.09282612, 164.75628044, 153.24981065, 176.90014602,
162.84871286, 163.18246783, 181.59585114, 167.30251245,
180.85185443, 172.2440549 , 166.15018543, 164.10577738,
184.92264461, 167.13237657, 160.78795021, 187.40003722,
173.64027844, 187.89031582, 158.11653632, 177.60246809,
173.09008278, 152.88938529, 174.22148318, 172.22069594,
181.52105646, 166.56534183, 162.36103785, 175.76896241,
164.34643439, 172.0107475, 170.53974044, 165.85085139,
```

```
172.70520232, 168.72909994, 181.01219321, 160.38269964, 161.075961 , 169.39252292, 171.52367384, 168.15460823, 169.57843977, 181.53992851])
```

```
[25]: plt.hist(x)
plt.show()
```


0.3 Pie Plot


```
[29]: # This example shows how to set the start angle to the pie chart.

# Start angle in Pie Plot
# 'startangle' rotates the start of the pie chart

x=np.array([1,2,3,4])
labels=["apple", "banana", "cherry", "date"]
myexplode = (0.1, 0, 0, 0)
plt.pie(x, labels=labels, explode=myexplode, startangle=90, shadow=True)
plt.show()
```



```
[30]: # This example shows how to display percentages in the pie chart.

# Autopct in Pie Plot
# 'autopct' is used to display the percentage of each slice
# '%1.1f%%' formats the percentage to one decimal place

x=np.array([1,2,3,4])
labels=["apple", "banana", "cherry", "date"]
myexplode = (0.1, 0.2, 0, 0)
plt.pie(x, labels=labels, explode=myexplode, shadow=True,autopct='%1.1f%%')
plt.show()
```


[]: