CSE 566 Spring 2023

Chaining for Sequence Alignment

Instructor: Mingfu Shao

Chaining Problem seed & - extend

- Input: a set of anchors
- Output: a chain of anchors so that its score is maximized
- Define: anchors A < B if $A \cdot x_R < B \cdot x_L$ and $A \cdot y_R < B \cdot y_L$
- Define: a list of anchors (A_1, A_2, \dots, A_k) forms a chain if $A_1 < A_2 < \ldots < A_k$

Scoring Function

- Let $C = (A_1, A_2, \dots, A_k)$ be a chain
- $f(C) = \sum_{i=1}^{k} \operatorname{score}(A_i) + \sum_{i=1}^{k-1} \operatorname{gap-cost}(A_i, A_{i+1})$
- The gap-cost is letter independent: gap-cost(A, B) = $\lambda(B \cdot x_L - A \cdot x_R + B \cdot y_L - A \cdot y_R)$

Dynamic Programming Algorithm

- Sort all anchors according to x_L : (A_1, A_2, \dots, A_n)
- Define OPT(k) as the score of the optimal chain in the first \underline{k} anchors, where A_k must appear in the chain.
- $OPT(k) = score(A_k) + \max_{j:A_j < A_k} (OPT(j) + gap-cost(A_j, A_k))$
- Running time: $O(n^2)$

Improved Algorithm

- The same framework: find OPT(k), for $k = 1, 2, \dots, n$
- Key: find $\max_{j:A_j < A_k} (OPT(j) \lambda(A_j \cdot x_R + A_j \cdot y_R)) := \max_{j:A_j < A_k} OPT_{\lambda}(j)$
- Idea #1: use a 2D range tree to fetch $\{j: A_j < A_k\}$ faster. Aj
- Idea #2: store/update the max-value in each subtree.

$$OPT(k) = \operatorname{score}(A_k) + \max_{j:A_j < A_k} (OPT(j) + \operatorname{gap-cost}(A_j, A_k))$$

$$= \operatorname{score}(A_k) + \max_{j:A_j < A_k} (OPT(j) + \lambda(A_k \cdot x_L - A_j \cdot x_R + A_k \cdot y_L - A_j \cdot y_R))$$

$$= \operatorname{score}(A_k) + \lambda(A_k \cdot x_L + A_k \cdot y_L) + \max_{j:A_j < A_k} (OPT(j) - \lambda(A_j \cdot x_R + A_j \cdot y_R))$$

$$= \operatorname{score}(A_k) + \lambda(A_k \cdot x_L + A_k \cdot y_L) + \max_{j:A_j < A_k} (OPT(j) - \lambda(A_j \cdot x_R + A_j \cdot y_R))$$

Store Anchors with 2D Range Tree

Query Optimal Previous Anchor

- For the current anchor A_k , feasible previous anchor, i,e., $\{A_j \mid A_j < A_k\}$, can be queried by range $[0,A_k,x_L)$, $[0,A_k,y_L)$
- Cannot afford calculating $OPT_{\lambda}(j)$ for every $\{A_j \mid A_j < A_k\}$.
- Note that $\{A_j \mid A_j < A_k\}$ are represented by a set of nodes, $O(\log^2 n)$ of them, and a set of subtrees, $O(\log^2 n)$ of them.
- Idea: for each node v store M(v), defined as the maximum OPT_{λ} for all nodes in the subtree rooted at v.
- Then, $\max_{j:A_i < A_k} OPT_{\lambda}(j)$ can be found in $O(\log^2 n)$ time!

An Example

Update M(v)

- After getting OPT(k) and $OPT_{\lambda}(k)$, we need to update M(v), for every node in each Y-tree that involves A_k .
- #nodes need to update: $O(\log n)$.

Complete Algorithm

```
Build 2D range tree for all anchors using \underline{x_{\!R}} and y_{\!R}
For every node v in every Y-tree, init M(v) = -\infty
For each A_k in ascending order of x_L
                                                                 0(logn)
  Query [0,A_k.x_L),[0,A_k.y_L) -> a list nodes and subtrees
  Scan the nodes to find \max_{i} OPT_{\lambda}(j)
  Scan the roots of the subtrees to find \max_{v} M(v)
  Take the minimum of above two which gives \max_{j:A_j < A_k} OPT_{\lambda}(j)
  Calculate OPT(k) = score(A_k) + \lambda(A_k.x_L + A_k.y_L) + max_{j:A_i < A_k} OPT_{\lambda}(j)
  Calculate OPT_{\lambda}(k) := OPT(k) - \lambda(A_k . x_R + A_k . y_R)
  Find A_k in the main tree
  For each node on the path from A_k to the root in the main tree:
     follow the link to reach Y-tree and find A_k in the Y-tree
    Update M(v) for each v on the path from A_k to the root
             if M(v) < 0)T3(k): M(v) ← 0PT3(k)
```

Analysis

- Running time: $\mathbb{O}(n \log n)$
- - Time complexity $0 (n \log h)$
 - Space complexity

$$0 \left(n \log^{d-1} n \right)$$

More Chaining Algorithms

- Sparse dynamic programming. I: Linear cost functions; II: Convex and concave cost functions. (1992)
- A Chaining multiple-alignment fragments in subquadratic time (1995)
 - Chaining algorithms for multiple genome comparison (2004)
 - Algorithms for Colinear Chaining with Overlaps and Gap Costs (2022)
 RMQ data Structure