Билет 1 2013 г.

1. На горизонтальной поверхности стола находится тележка. На шероховатой горизонтальной поверхности тележки находится брусок, прикреплённый к тележке лёгкой упругой пружиной (см. рис.). Масса тележки в 3 раза больше массы бруска. Брусок отклоняют влево так, что удлинение пружины равно x, а тележка прижата к упору. Затем брусок отпускатот

- 1) Найдите деформацию пружины в момент отрыва тележки от упора.
- 2) Найдите скорость бруска в момент отрыва тележки от упора.
- 3) Найдите скорость тележки после прекращения движения по ней бруска.

Известно следующее. Если брусок подвесить на пружине, то деформация пружины равна 2x. Если брусок тащить по неподвижной тележке с постоянной скоростью, прикладывая горизонтальную силу к прикреплённой к бруску пружине, то деформация пружины равна 2x/3. Массой колёс тележки и трением в их осях пренебречь. Деформация x пружины меньше длины пружины в ненапряжённом состоянии.

- 2. Тяжёлый подвижный поршень площадью $S=10~{\rm cm}^2$ делит объём вертикально расположенного цилиндра на 2 равные части объёмом $V_0=1$ л каждая. Над поршнем находится вода и водяной пар общей массой m=2 г, под поршнем $m_1=2$ г азота. Температура в цилиндре $100~{\rm ^{\circ}C}$. Принять $g=10~{\rm m/c}^2$, молярные массы азота и воды $\mu_{\rm a}=28~{\rm r/mоль},~\mu_{\rm B}=18~{\rm r/mоль},~{\rm плотность}$ воды $\rho=1~{\rm r/cm}^3$.
 - 1) Найдите массу M поршня.
 - 2) Какую часть объёма V_0 занимает жидкая вода?
- 3. Для подзарядки аккумулятора используется динамомашина (генератор) с сопротивлением обмотки ротора R=1 Ом. Человек вращает ручку динамомашины с частотой n=1 об/с, прикладывая к ней силу F=20 Н на расстоянии $\rho=8$ см от оси вращения вдоль направления движения ручки. Через аккумулятор идёт ток I=1 А. Из-за трения в механизмах динамомашины теряется 20% затрачиваемой человеком мощности. Считать, что ротор вращается между полюсами постоянного магнита.
 - 1) Какую мощность затрачивает человек?
 - 2) Найти напряжение на зажимах динамомашины.
- **4.** В схеме, показанной на рисунке, все элементы можно считать идеальными, известные параметры элементов указаны на рисунке, неизвестная ЭДС меньше $\mathscr E$. Ключ замыкают и дожидаются установления стационарного режима. Затем ключ размыкают, после чего в схеме выделяется количество теплоты, равное $\frac{1}{18}C\mathscr E^2$.

- 1) Какое количество теплоты выделилось в резисторе 3R после размыкания ключа?
 - 2) Найдите силу тока, протекавшего в схеме в стационарном режиме.
- 5. Для определения показателя преломления неизвестной прозрачной жидкости экспериментатор Глюк положил на дно мензурки монету и налил в неё исследуемую жидкость. Толщина слоя жидкости H=27 см. Далее он сфотографировал монету с высоты h=37 см над поверхностью жидкости и получил резкое изображение, диаметр которого в k=10 раз меньше диаметра монеты. Фокусное расстояние объектива F=50 мм. Оптическая ось объектива перпендикулярна поверхности жидкости.
 - 1) Какое расстояние d было установлено на шкале дальности объектива?
 - 2) Найдите показатель преломления n жидкости.

Билет 2 2013 г.

1. Тележка находится на горизонтальной поверхности стола. На шероховатой горизонтальной поверхности тележки находится брусок, прикреплённый к тележке лёгкой упругой пружиной (см. рис.). Масса тележки в 2 раза больше массы бруска. Брусок отклоняют влево так, что пружина сжата на величину x, а тележка прижата к упору. Затем брусок отпускают.

- 1) Найдите деформацию пружины в момент отрыва тележки от упора.
- 2) Найдите скорость бруска в момент отрыва тележки от упора.
- 3) Найдите скорость тележки после прекращения движения по ней бруска.

Известно следующее. Если брусок подвесить на пружине, то деформация пружины равна 3x. Если брусок тащить по неподвижной тележке с постоянной скоростью, прикладывая горизонтальную силу к прикреплённой к бруску пружине, то деформация пружины равна 3x/4. Массой колёс тележки и трением в их осях пренебречь.

- 2. Тяжёлый подвижный поршень массой $m_0=10$ кг делит объём вертикально расположенного цилиндра на 2 равные части объёмом $V_0=1$ л каждая. Над поршнем находится вода и водяной пар общей массой m=2,5 г, под поршнем $m_1=2,5$ г азота. Температура в цилиндре $100\,^{\circ}\mathrm{C}$. Принять $g=10\,\mathrm{m/c^2}$, молярные массы азота и воды $\mu_{\mathrm{a}}=28\,\mathrm{г/моль},\,\mu_{\mathrm{B}}=18\,\mathrm{г/моль},\,$ плотность воды $\rho=1\,\mathrm{r/cm^3}$.
 - 1) Найдите площадь поршня.
 - 2) Какую часть объёма V_0 занимает жидкая вода?
- 3. Ящик массой m=50 кг передвигают с постоянной скоростью v=0,1 м/с вверх вдоль наклонной плоскости с углом наклона α ($\sin\alpha=\frac{3}{5}$) при помощи лебёдки, приводимой в действие мотором постоянного тока. Сопротивление обмотки ротора мотора R=2 Ом, ток через неё I==2,5 А. Из-за трения в оси мотора и передачах теряется 16% потребляемой ротором мощности. Коэффициент трения скольжения между ящиком и наклонной плоскостью $\mu=0,2$. Прикреплённый к ящику лёгкий трос лебёдки направлен вдоль наклонной плоскости. Принять g=10 м/с².
 - 1) Найти силу натяжения троса.
 - 2) Найти напряжение, подводимое к ротору мотора.
- **4.** В схеме, показанной на рисунке, все элементы можно считать идеальными, известные параметры элементов указаны на рисунке, неизвестная ЭДС больше $\mathscr E$. Ключ замыкают и дожидаются установления стационарного режима. Затем ключ размыкают, после чего в схеме выделяется количество теплоты, равное $\frac{1}{72}C\mathscr E^2$.

- 1) Какое количество теплоты выделилось в резисторе 4R после размыкания ключа?
 - 2) Найдите силу тока, протекавшего в схеме в стационарном режиме.
- 5. С борта яхты турист, установив расстояние $d=2{,}05$ м на шкале дальности объектива, фотографирует рыбку и получает резкое изображение. Расстояние от поверхности воды до объектива $h=1{,}0$ м. Фокусное расстояние объектива F=50 мм. Показатель преломления воды $n=\frac{4}{3}$. Оптическая ось объектива перпендикулярна поверхности жидкости
 - 1) Во сколько раз длина изображения меньше длины рыбки?
 - 2) На какой глубине H находится рыбка?

Билет 3 2013 г.

1. На горизонтальной поверхности стола находится тележка. На шероховатой горизонтальной поверхности тележки находится брусок, прикреплённый к тележке лёгкой упругой пружиной (см. рис.). Масса тележки в 4 раза больше массы бруска. Брусок отклоняют влево так, что удлинение пружины равно x, а тележка прижата к упору. Затем брусок отпускают.

- 1) Найдите деформацию пружины в момент отрыва тележки от упора.
- 2) Найдите скорость бруска в момент отрыва тележки от упора.
- 3) Найдите скорость тележки после прекращения движения по ней бруска.

Известно следующее. Если брусок подвесить на пружине, то деформация пружины равна 4x/3. Если брусок тащить по неподвижной тележке с постоянной скоростью, прикладывая горизонтальную силу к прикреплённой к бруску пружине, то деформация пружины равна x/3. Массой колёс тележки и трением в их осях пренебречь. Деформация x пружины меньше длины пружины в ненапряжённом состоянии.

- 2. Тяжёлый подвижный поршень массой M=12 кг и площадью S=10 см² делит объём вертикально расположенного цилиндра на две равные части объёмом $V_0=1$ л каждая. Над поршнем находится вода и водяной пар общей массой m=3 г, под поршнем азот. Температура в цилиндре 100 °C. Принять g=10 м/с², молярные массы азота и воды $\mu_{\rm a}=28$ г/моль, $\mu_{\rm B}=18$ г/моль, плотность воды $\rho=1$ г/см³.
 - 1) Найдите массу азота под поршнем.
 - 2) Какую часть объёма V_0 занимает жидкая вода?
- 3. Трамвай массой m=15500 кг движется со скоростью v=36 км/ч в гору с небольшим уклоном $\alpha=0,01$. Ротор двигателя трамвая потребляет постоянный ток I=80 А. Сопротивление обмоток ротора R=1 Ом. Трение в оси двигателя и передачах приводит к потере 15% потребляемой ротором мощности. Сила сопротивления движению трамвая составляет k=0,01 от силы тяжести, действующей на трамвай. Принять g=10 м/с².
 - 1) Определить силу тяги, развиваемую двигателем трамвая.
 - 2) Определить напряжение, подводимое к ротору двигателя.
- **4.** В схеме, показанной на рисунке, все элементы можно считать идеальными, известные параметры элементов указаны на рисунке, неизвестная ЭДС меньше $\mathscr E$. Ключ замыкают и дожидаются установления стационарного режима. Затем ключ размыкают, после чего в схеме выделяется количество теплоты, равное $\frac{2}{9}C\mathscr E^2$.

- 1) Какое количество теплоты выделилось в резисторе 2R после размыкания ключа?
 - 2) Найдите силу тока, протекавшего в схеме в стационарном режиме.
- 5. Мальчик фотографирует черепаху, находящуюся на глубине H=1,32 м, и получает резкое изображение, длина которого в k=30 раз меньше длины черепахи. Фокусное расстояние объектива F=90 мм. Показатель преломления воды $n=\frac{4}{3}$. Оптическая ось объектива перпендикулярна поверхности жидкости.
 - 1) Найдите расстояние f от объектива до изображения.
 - 2) Найдите расстояние h от поверхности воды до объектива.

Билет 4 2013 г.

1. Тележка находится на горизонтальной поверхности стола. На шероховатой горизонтальной поверхности тележки находится брусок, прикреплённый к тележке лёгкой упругой пружиной (см. рис.). Масса тележки в 5 раз больше массы бруска. Брусок отклоняют влево так, что пружина сжата на величину x, а тележка прижата к упору. Затем брусок отпускают.

- 1) Найдите деформацию пружины в момент отрыва тележки от упора.
- 2) Найдите скорость бруска в момент отрыва тележки от упора.
- 3) Найдите скорость тележки после прекращения движения по ней бруска.

Известно следующее. Если брусок подвесить на пружине, то деформация пружины равна 5x/2. Если брусок тащить по неподвижной тележке с постоянной скоростью, прикладывая горизонтальную силу к прикреплённой к бруску пружине, то деформация пружины равна x/2. Массой колёс тележки и трением в их осях пренебречь.

- 2. Тяжёлый подвижный поршень массой $m_0=9$ кг и площадью S=10 см² делит объём вертикально расположенного цилиндра на 2 равные части объёмом $V_0=1$ л каждая. Над поршнем находится вода и водяной пар общей массой m=1,5 г, под поршнем $m_1=1,5$ г азота. Температура в цилиндре 90 °C. Принять g=10 м/с², молярные массы азота и воды $\mu_{\rm a}=28$ г/моль, $\mu_{\rm B}=18$ г/моль, плотность воды $\rho=1$ г/см³.
 - 1) Определите по этим данным давление насыщенного пара воды при 90 °C.
 - 2) Какую часть объёма V_0 занимает жидкая вода?
- 3. Груз массой m=10 кг висит на лёгком тросе, намотанном на вал. Вал через зубчатую передачу соединён с ротором генератора. Сопротивление обмоток ротора R=1 Ом. К зажимам генератора подключён электровентилятор. Груз под действием силы тяжести опускается с постоянной скоростью v=1 см/с, и через вентилятор идёт ток I=0,3 А. Потери на трение в подшипниках и передаче равны 20% от энергии, потребляемой вентилятором. Считать, что ротор вращается между полюсами постоянного магнита. Принять g=10 м/с².
 - 1) Найти мощность тепловых потерь в обмотке генератора.
 - 2) Найти напряжение на зажимах генератора.
- **4.** В схеме, показанной на рисунке, все элементы можно считать идеальными, известные параметры элементов указаны на рисунке, неизвестная ЭДС больше $\mathscr E$. Ключ замыкают и дожидаются установления стационарного режима. Затем ключ размыкают, после чего в схеме выделяется количество теплоты, равное $\frac{1}{18}C\mathscr E^2$.

- 1) Какое количество теплоты выделилось в резисторе 5R после размыкания ключа?
 - 2) Найдите силу тока, протекавшего в схеме в стационарном режиме.
- 5. Посетитель океанариума фотографирует рыбку, находящуюся на глубине H=1,2 м, и получает резкое изображение на расстоянии f=63 мм от объектива. Фокусное расстояние объектива F=60 мм. Показатель преломления воды $n=\frac{4}{3}$. Оптическая ось объектива перпендикулярна поверхности жидкости
 - 1) Во сколько раз длина изображения меньше длины рыбки?
 - 2) На каком расстоянии h от объектива находится рыбка?

Билет 5 2013 г.

1. Доска находится на шероховатой горизонтальной поверхности стола. На гладкой верхней горизонтальной поверхности доски находится брусок, прикреплённый к доске лёгкой упругой пружиной (см. рис.). Брусок отклоняют влево так, что пружина растянута на величину x, а доска прижата к упору. Затем брусок отпускают.

- 1) Найдите деформацию пружины в момент отрыва доски от упора.
- 2) Найдите скорость бруска в момент отрыва доски от упора.

Известно следующее. Если брусок подвесить на пружине, то деформация пружины равна x/7. Если брусок с доской двигать по столу с постоянной скоростью, прикладывая горизонтальную силу к бруску, то деформация сжатой пружины равна 3x/4. Все деформации пружины меньше длины пружины в ненапряжённом состоянии.

- 2. В цилиндре под поршнем находится водяной пар при температуре T. При изобарическом охлаждении цилиндра объём уменьшается в 2 раза, а температура на 10%. К концу охлаждения в цилиндре образовалось ν молей жидкости, объём которой намного меньше объёма пара. Найдите работу, совершённую над содержимым цилиндра в этом процессе. Пар считать идеальным газом.
- 3. Проводящий шарик радиусом R с зарядом Q имеет потенциал $\varphi_1=200$ В. Каким станет потенциал φ_2 шарика, если он окажется внутри полого проводящего шара с радиусами сферических поверхностей 2R и 3R и зарядом 2Q? Центры заряженного шарика и полого шара совпадают.
- **4.** В схеме, показанной на рисунке, все элементы можно считать идеальными, известные параметры элементов указаны на рисунке, неизвестная ЭДС меньше \mathscr{E} . Ключ замыкают и дожидаются установления стационарного режима. Затем ключ размыкают, после чего в схеме выделяется количество теплоты, равное $\frac{2}{9}C\mathscr{E}^2$.
- $\begin{array}{c|c} & & & \\ \hline & & \\ \hline &$
- 1) Какое количество теплоты выделилось в резисторе 2R после размыкания ключа?
 - 2) Найдите силу тока, протекавшего в схеме в стационарном режиме.
- 5. Точечный источник находится на главной оптической оси собирающей линзы на расстоянии d=15 см от линзы, его действительное изображение наблюдается на вдвое большем расстоянии. Найдите фокусное расстояние F линзы. Если за линзой перпендикулярно её главной оптической оси поместить плоскопараллельную прозрачную пластину толщиной h=9 см с показателем преломления n=1,5, то изображение точечного источника наблюдается на задней поверхности пластины. Найдите расстояние l от линзы до передней поверхности пластины.

Билет 6 2013 г.

1. На шероховатой горизонтальной поверхности стола находится доска. На гладкой верхней горизонтальной поверхности доски находится брусок, прикреплённый к доске лёгкой упругой пружиной (см. рис.). Брусок отклоняют влево так, что пружина сжата на величину x, а доска прижата к упору. Затем брусок отпускают.

- 1) Найдите деформацию пружины в момент отрыва доски от упора.
- 2) Найдите скорость бруска в момент отрыва доски от упора.

Известно следующее. Если брусок подвесить на пружине, то деформация пружины равна x/9. Если брусок с доской двигать по столу с постоянной скоростью, прикладывая горизонтальную силу к бруску, то деформация растянутой пружины равна 4x/5.

- **2.** В цилиндре под поршнем находятся в равновесии водяной пар и ν молей жидкой воды при температуре T. При изобарическом нагревании цилиндра объём увеличивается в 2,5 раза, а температура в 1,5 раза. Найдите работу, совершённую содержимым цилиндра в этом процессе. Объём жидкости намного меньше объёма пара. Пар считать идеальным газом.
- **3.** Потенциал электростатического поля в точке A на расстоянии R от точечного заряда Q равен $\varphi_1 = 300$ B. Каким станет потенциал φ_2 в точке A, если заряд Q окажется в центре полого проводящего шара с радиусами сферических поверхностей 3R и 4R и зарядом 3Q?
- **4.** В схеме, показанной на рисунке, все элементы можно считать идеальными, известные параметры элементов указаны на рисунке, неизвестная ЭДС больше $\mathscr E$. Ключ замыкают и дожидаются установления стационарного режима. Затем ключ размыкают, после чего в схеме выделяется количество теплоты, равное $\frac{1}{18}C\mathscr E^2$.

- 1) Какое количество теплоты выделилось в резисторе 4R после размыкания ключа?
 - 2) Найдите силу тока, протекавшего в схеме в стационарном режиме.
- 5. Точечный источник находится на главной оптической оси собирающей линзы с фокусным расстоянием $F=12~{\rm cm}$. Расстояние от линзы до действительного изображения втрое меньше расстояния от линзы до источника. На каком расстоянии d от линзы находится источник? За линзой перпендикулярно её главной оптической оси на расстоянии $l=12~{\rm cm}$ от линзы помещают плоскопараллельную стеклянную пластину толщиной $h=6,4~{\rm cm}$. Найдите показатель преломления n стекла, если изображение точечного источника наблюдается на задней поверхности пластины.

Билет 7 2013 г.

1. Доска находится на шероховатой горизонтальной поверхности стола. На гладкой верхней горизонтальной поверхности доски находится брусок, прикреплённый к доске лёгкой упругой пружиной (см. рис.). Брусок отклоняют влево так, что пружина растянута на величину x, а доска прижата к упору. Затем брусок отпускают.

- 1) Найдите деформацию пружины в момент отрыва доски от упора.
- 2) Найдите скорость бруска в момент отрыва доски от упора.

Известно следующее. Если брусок подвесить на пружине, то деформация пружины равна x/5. Если брусок с доской двигать по столу с постоянной скоростью, прикладывая горизонтальную силу к бруску, то деформация сжатой пружины равна 2x/3. Все деформации пружины меньше длины пружины в ненапряжённом состоянии.

- **2.** В цилиндре под поршнем находится водяной пар при температуре T. При изобарическом охлаждении цилиндра объём уменьшается в 3 раза, а температура на 20%. Найдите работу, совершённую над содержимым цилиндра в этом процессе, если к концу охлаждения в цилиндре образовалось ν молей жидкости. Объём жидкости намного меньше объёма пара. Пар считать идеальным газом.
- 3. Проводящий шарик радиусом R с зарядом Q имеет потенциал $\varphi_1 = 400$ В. Каким станет потенциал φ_2 шарика, если он окажется внутри полого проводящего шара с радиусами сферических поверхностей 4R и 5R и зарядом 4Q? Центры заряженного шарика и полого шара совпадают.
- **4.** В схеме, показанной на рисунке, все элементы можно считать идеальными, известные параметры элементов указаны на рисунке, неизвестная ЭДС меньше $\mathscr E$. Ключ замыкают и дожидаются установления стационарного режима. Затем ключ размыкают, после чего в схеме выделяется количество теплоты, равное $\frac{1}{18}C\mathscr E^2$.

- 1) Какое количество теплоты выделилось в резисторе 3R после размыкания ключа?
 - 2) Найдите силу тока, протекавшего в схеме в стационарном режиме.
- 5. Точечный источник находится на главной оптической оси собирающей линзы с оптической силой D=5 дптр. Расстояние от источника до линзы вдвое больше расстояния f от линзы до действительного изображения источника. Найдите f. За линзой перпендикулярно её главной оптической оси на расстоянии l=26 см от линзы помещают плоскопараллельную стеклянную пластину. Найдите толщину h пластины, если изображение точечного источника наблюдается на задней поверхности пластины. Показатель преломления стекла n=1,5.

Билет 8 2013 г.

1. На шероховатой горизонтальной поверхности стола находится доска. На гладкой верхней горизонтальной поверхности доски находится брусок, прикреплённый к доске лёгкой упругой пружиной (см. рис.). Брусок отклоняют влево так, что пружина сжата на величину x, а доска прижата к упору. Затем брусок отпускают.

- 1) Найдите деформацию пружины в момент отрыва доски от упора.
- 2) Найдите скорость бруска в момент отрыва доски от упора.

Известно следующее. Если брусок подвесить на пружине, то деформация пружины равна 4x/11. Если брусок с доской двигать по столу с постоянной скоростью, прикладывая горизонтальную силу к бруску, то деформация растянутой пружины равна 5x/6.

- **2.** В цилиндре под поршнем находятся в равновесии ν молей воды (жидкость) и водяной пар при температуре T. При изобарическом нагревании цилиндра объём увеличивается в 4 раза, а температура на 25%. Найдите работу, совершённую содержимым цилиндра в этом процессе. Объём жидкости намного меньше объёма пара. Пар считать идеальным газом.
- **3.** Потенциал электростатического поля в точке A на расстоянии R от точечного заряда Q равен $\varphi_1 = 500$ B. Каким станет потенциал φ_2 в точке A, если заряд Q окажется в центре полого проводящего шара с радиусами сферических поверхностей 5R и 7R и зарядом 6Q?
- **4.** В схеме, показанной на рисунке, все элементы можно считать идеальными, известные параметры элементов указаны на рисунке, неизвестная ЭДС больше \mathscr{E} . Ключ замыкают и дожидаются установления стационарного режима. Затем ключ размыкают, после чего в схеме выделяется количество теплоты, равное $\frac{1}{72}C\mathscr{E}^2$.

- 1) Какое количество теплоты выделилось в резисторе R после размыкания ключа?
 - 2) Найдите силу тока, протекавшего в схеме в стационарном режиме.
- 5. Точечный источник находится на главной оптической оси собирающей линзы. Расстояние f=64 см от линзы до действительного изображения источника в три раза больше расстояния от источника до линзы. Найдите фокусное расстояние F линзы. Если за линзой перпендикулярно её главной оптической оси на расстоянии l=59 см от линзы поместить плоскопараллельную прозрачную пластину, то изображение точечного источника наблюдается на задней поверхности пластины. Найдите расстояние от этого изображения до линзы. Показатель преломления стекла n=1,8.

Олимпиада Физтех-2013. Физика. Решения. (17 марта, местные) Билет 1

- **1.** Пусть жёсткость пружины k, масса бруска m. По условию сила трения $F_{TP} = k \frac{2}{3} x$, mg = k2x.
- 1) Отрыв наступит, когда уменьшающаяся сила упругости пружины сравняется с силой трения: $kx_{OTP} = k\frac{2}{3}x$. Отсюда деформация пружины при отрыве $x_{OTP} = \frac{2}{3}x$.
- **2**) По ЗСЭ $\frac{1}{2}kx^2 = \frac{1}{2}kx_{OTP}^2 + \frac{1}{2}mV^2 + F_{TP}\left(x x_{OTP}\right)$. С учётом выражений для F_{TP} , mg и x_{OTP} получаем скорость бруска при отрыве тележки $V = \frac{\sqrt{2}}{6}\sqrt{gx}$.
 - **3**) По ЗСИ mV = (3m+m)u. Скорость тележки $u = \frac{1}{4}V = \frac{\sqrt{2}}{24}\sqrt{gx}$.
- **2. 1**) Уравнение состояния для азота $\left(P + \frac{Mg}{S}\right)V_0 = \frac{m_1}{\mu_a}RT$. Здесь $P \approx 10^5$ Па. $M = \frac{S}{g}\left(\frac{m_1RT}{\mu_aV_0} P\right) \approx 12$ кг.
 - **2**) Для пара $PV_0 = \frac{m \alpha V_0 \rho}{\mu_B} RT$. Доля объёма V_0 , занимаемая водой $\alpha = \frac{1}{V_0 \rho} \left(m \frac{PV_0 \mu_B}{RT} \right) \approx 1,4 \cdot 10^{-3}$.
- **3. 1**) Скорость ручки $V=2\pi n \rho$. Мощность человека $P=FV=2\pi n \rho F\approx 10$ Вт.
 - **2**) По 3СЭ $P = 0, 2P + I^2R + UI$. Отсюда напряжение на зажимах динамомашины $U = \frac{0, 8P I^2R}{I} \approx 7$ В.
- **4.1**) $Q_{3R} = \frac{1}{18} C \varepsilon^2 \frac{3R}{3R+R} = \frac{1}{24} C \varepsilon^2$.
- 2) Пусть при замкнутом ключе ток в цепи I, а заряд верхней обкладки конденсатора q_1 . Тогда $\varepsilon \frac{q_1}{C} = IR$. Отсюда $q_1 = C \left(\varepsilon IR \right)$. После размыкания ключа в установившемся режиме напряжение на конденсаторе ε , заряд верхней обкладки конденсатора $C\varepsilon$. Работа источника $A = \left(C\varepsilon q_1 \right) \varepsilon = CIR\varepsilon$.

Изменение энергии конденсатора $\Delta W_C = \frac{C\varepsilon^2}{2} - \frac{q_1^2}{2C} = CIR\varepsilon - \frac{CI^2R^2}{2}$. По 3СЭ $A = \Delta W_C + Q$, где

$$Q = \frac{1}{18}C\varepsilon^2$$
. С учётом выражений для A и ΔW_C получаем $\frac{C\left(IR\right)^2}{2} = Q$. Отсюда $I = \sqrt{\frac{2Q}{CR^2}} = \frac{\varepsilon}{3R}$.

- **5.** Для фотоаппарата предметом будет изображение монеты после выхода лучей из жидкости. Это изображение будет на расстоянии $\frac{H}{n}$ от поверхности жидкости. Его размер равен размеру монеты.
- 1) Пусть Γ поперечное увеличение в объективе, f расстояние от объектива до изображения в фотоаппарате. Имеем $\frac{1}{d} + \frac{1}{f} = \frac{1}{F}$, $\frac{f}{d} = \Gamma = \frac{1}{k}$. Отсюда $d = F\left(k+1\right) = 11F = 55$ см.
 - 2) $h + \frac{H}{n} = d$. Тогда $n = \frac{H}{d-h} = \frac{H}{F(k+1)-h} = 1,5$.

Билет 2

1. По условию сила трения $F_{TP} = k \frac{3}{4} x$, mg = k3x. **1)** $x_{OTP} = \frac{3}{4} x$. **2)** $V = \frac{\sqrt{3}}{12} \sqrt{gx}$. **3)** $u = \frac{1}{3} V = \frac{\sqrt{3}}{36} \sqrt{gx}$.

2. 1) Для азота
$$\left(P + \frac{m_0 g}{S}\right) V_0 = \frac{m_1}{\mu_a} RT$$
. Здесь $P \approx 10^5$ Па. Отсюда $S = \frac{m_0 g}{\frac{m_1 RT}{\mu V_0} - P} \approx 5,7$ см².

2) Уравнение состояния для пара
$$PV_0 = \frac{m - \alpha V_0 \rho}{\mu_B} RT$$
. Отсюда $\alpha = \frac{1}{V_0 \rho} \left(m - \frac{PV_0 \mu_B}{RT} \right) \approx 1,9 \cdot 10^{-3}$.

- **3. 1)** Сила $F = mg \sin \alpha + \mu mg \cos \alpha = mg \left(\sin \alpha + \mu \cos \alpha\right) \approx 380$ H.
 - **2**) По 3СЭ $UI = 0,16UI + I^2R + FV$. Отсюда напряжение $U = \frac{FV + I^2R}{0.84I} \approx 24$ В.
- **4.1**) $Q_{4R} = \frac{1}{72} C \varepsilon^2 \frac{4R}{4R+R} = \frac{1}{90} C \varepsilon^2$.
- 2) Пусть при замкнутом ключе ток в цепи I, а заряд верхней обкладки конденсатора q_1 . Тогда $\varepsilon \frac{q_1}{C} = -IR$. Отсюда $q_1 = C\left(\varepsilon + IR\right)$. После размыкания ключа в установившемся режиме напряжение на конденсаторе ε , заряд верхней обкладки $C\varepsilon$. Работа источника $A = \left(C\varepsilon q_1\right)\varepsilon = -CIR\varepsilon$. Изменение энергии конденсатора $\Delta W_C = \frac{C\varepsilon^2}{2} \frac{q_1^2}{2C} = -CIR\varepsilon \frac{CI^2R^2}{2}$. По 3СЭ $A = \Delta W_C + Q$, где $Q = \frac{1}{72}C\varepsilon^2$.

С учётом выражений для A и ΔW_C получаем $\frac{C\left(IR\right)^2}{2} = Q$. Отсюда $I = \sqrt{\frac{2Q}{CR^2}} = \frac{\varepsilon}{6R}$.

5. 1)
$$k = \frac{d-F}{F} = 40$$
. **2**) $d-h = \frac{H}{n}$. Тогда $H = n(d-h) = 140$ см.

Билет 3

- **1.** По условию сила трения $F_{TP} = k \frac{1}{3} x$, $mg = k \frac{4}{3} x$. **1)** $x_{OTP} = \frac{x}{3}$. **2)** $V = \frac{\sqrt{3}}{3} \sqrt{gx}$. **3)** $u = \frac{1}{5} V = \frac{\sqrt{3}}{15} \sqrt{gx}$.
- **2. 1**) Для азота $\left(P + \frac{Mg}{S}\right)V_0 = \frac{m_a}{\mu_a}RT$. Здесь $P \approx 10^5$ Па. Отсюда $m_a = \left(P + \frac{Mg}{S}\right)\frac{V_0\mu_a}{RT} \approx 2$ г.
 - **2**) Уравнение состояния для пара $PV_0 = \frac{m \alpha V_0 \rho}{\mu_B} RT$. Отсюда $\alpha = \frac{1}{V_0 \rho} \left(m \frac{PV_0 \mu_B}{RT} \right) \approx 2, 4 \cdot 10^{-3}$.
- **3. 1**) Сила тяги $F = mg \sin \alpha + kmg \approx mg\alpha + kmg = mg(\alpha + k) \approx 3,1$ кН.
 - **2**) По 3СЭ $UI = 0.15UI + I^2R + FV$. Отсюда напряжение $U = \frac{FV + I^2R}{0.85I} \approx 550$ В.

4. 1)
$$Q_{2R} = \frac{2}{9}C\varepsilon^2 \frac{2}{5} = \frac{4}{45}C\varepsilon^2$$
. **2)** $I = \sqrt{\frac{2Q}{C(2R)^2}} = \frac{\varepsilon}{3R}$.

5.1)
$$f = (\Gamma + 1)F = (\frac{1}{k} + 1)F = 9,3$$
 cm. **2**) $h + \frac{H}{n} = d$, $d = (\frac{1}{\Gamma} + 1)F = (k+1)F$. $h = (k+1)F - \frac{H}{n} = 180$ cm.

Билет 4

- **1.** По условию сила трения $F_{TP} = k \frac{1}{2} x$, $mg = k \frac{5}{2} x$. **1)** $x_{OTP} = \frac{x}{2}$. **2)** $V = \frac{\sqrt{10}}{10} \sqrt{gx}$. **3)** $u = \frac{1}{6} V = \frac{\sqrt{10}}{60} \sqrt{gx}$.
- **2. 1**) Для азота $\left(P + \frac{m_0 g}{S}\right) V_0 = \frac{m_1}{\mu_a} RT$. Отсюда $P = \frac{m_1}{\mu_a} \frac{RT}{V_0} \frac{m_0 g}{S} \approx 0,7 \cdot 10^5$ Па.
 - **2**) Уравнение состояния для пара $PV_0 = \frac{m \alpha V_0 \rho}{\mu_B} RT$. Отсюда $\alpha = \frac{1}{V_0 \rho} \left(m \frac{PV_0 \mu_B}{RT} \right) \approx 1,1 \cdot 10^{-3}$.

3. 1) Мощность тепловых потерь $P = I^2 R = 0,09$ Вт.

2) По 3СЭ $mgV = UI + 0, 2UI + I^2R$. Напряжение на зажимах генератора $U = \frac{mgV - I^2R}{1, 2I} \approx 2,5$ В.

4. 1)
$$Q_{5R} = \frac{1}{18}C\varepsilon^2 \frac{5}{7} = \frac{5}{126}C\varepsilon^2$$
. **2)** $I = \sqrt{\frac{2Q}{C(2R)^2}} = \frac{\varepsilon}{6R}$.

5. 1)
$$k = \frac{F}{f - F} = 20$$
. **2)** $h = d + \left(H - \frac{H}{n}\right) = \frac{Ff}{f - F} + H\frac{n - 1}{n} = 156$ cm.

Олимпиада Физтех-2013. Физика. Решения. (17 марта, выезд) Билет 5

- **1.** Пусть жёсткость пружины k, масса бруска m. Максимальная сила трения $F_{TP} = k \frac{3}{4} x$, $mg = k \frac{x}{7}$.
- 1) Отрыв наступит, когда увеличивающаяся сила упругости сжатой пружины сравняется с максимальной силой трения: $kx_{OTP} = k\frac{3}{4}x$. Отсюда деформация пружины при отрыве $x_{OTP} = \frac{3}{4}x$.
- **2**) По ЗСЭ $\frac{1}{2}kx^2 = \frac{1}{2}kx_{OTP}^2 + \frac{1}{2}mV^2$. С учётом выражений для F_{TP} , mg и x_{OTP} получаем скорость бруска при отрыве доски $V = \frac{7}{4}\sqrt{gx}$.
- **2.** Пусть v_1 количество пара в конце, P , V , T начальные давление, объём и температура пара. Работа $A = P\left(V \frac{V}{2}\right) = \frac{PV}{2}$. Уравнение состояния для пара в начале и в конце: $PV = (v_1 + v)RT$, $P\frac{V}{2} = v_1 R\frac{9}{10}T$. Из записанных уравнений $A = \frac{9}{8}vRT$.
- **3.** На внутренней поверхности полого шара будет заряд -Q, на внешней заряд 3Q. $\varphi_1 = k\frac{Q}{R}$, $\varphi_2 = k\frac{Q}{R} + k\frac{-Q}{2R} + k\frac{3Q}{3R} = \frac{3}{2}k\frac{Q}{R}$. Отсюда $\varphi_2 = \frac{3}{2}\varphi_1 = 300$ В.
- **4.1**) $Q_{2R} = \frac{2}{9}C\varepsilon^2 \frac{2R}{2R+3R} = \frac{4}{45}C\varepsilon^2$.
- **2)** Пусть при замкнутом ключе ток в цепи I , а заряд верхней обкладки конденсатора q_1 . Пусть ε_1 неизвестная ЭДС. Тогда $\varepsilon_1 \frac{q_1}{C} = -I2R$. Отсюда $q_1 = C\left(\varepsilon_1 + 2IR\right)$. После размыкания ключа в установившемся режиме напряжение на конденсаторе ε_1 , заряд верхней обкладки $C\varepsilon_1$. Работа источника $A = \left(C\varepsilon_1 q_1\right)\varepsilon_1 = -2CIR\varepsilon_1$. Изменение энергии конденсатора $\Delta W_C = \frac{C\varepsilon_1^2}{2} \frac{q_1^2}{2C} = -2CIR\varepsilon_1 2CI^2R^2$. По 3СЭ $A = \Delta W_C + Q$, где $Q = \frac{2}{9}C\varepsilon^2$.

С учётом выражений для A и ΔW_C получаем $2CI^2R^2=Q$. Отсюда $I=\sqrt{\frac{Q}{2CR^2}}=\frac{\varepsilon}{3R}$.

- **5.1**) $\frac{1}{d} + \frac{1}{2d} = \frac{1}{F}$. $F = \frac{2}{3}d = 10$ cm.
- **2**) Изображение в линзе располагается внутри пластины на расстоянии $\frac{h}{n}$ от ближайшей к линзе поверхности пластины. $l+\frac{h}{n}=2d$. Отсюда $l=2d-\frac{h}{n}=24$ см.

Билет 6

- **1.** Пусть жёсткость пружины k, масса бруска m. Максимальная сила трения $F_{TP} = k\frac{4}{5}x$, $mg = k\frac{x}{9}$.
- 1) Отрыв наступит, когда увеличивающаяся сила упругости растянутой пружины сравняется с максимальной силой трения: $kx_{OTP} = k\frac{4}{5}x$. Отсюда деформация пружины при отрыве $x_{OTP} = \frac{4}{5}x$.

- **2**) По ЗСЭ $\frac{1}{2}kx^2 = \frac{1}{2}kx_{OTP}^2 + \frac{1}{2}mV^2$. С учётом выражений для F_{TP} , mg и x_{OTP} получаем скорость бруска при отрыве доски $V = \frac{9}{5}\sqrt{gx}$.
- **2.** Пусть v_1 начальное количество пара. Работа A = P(2,5V-V) = 1,5PV . Уравнение состояния для пара в начале и в конце: $PV = v_1RT$, $P \cdot 2,5V = (v_1 + v)R \cdot 1,5T$. Из записанных уравнений $A = \frac{9}{4}vRT$.
- **3.** $\varphi_1 = k \frac{Q}{R}$, $\varphi_2 = k \frac{Q}{R} + k \frac{-Q}{3R} + k \frac{4Q}{4R} = \frac{5}{3} k \frac{Q}{R}$. Отсюда $\varphi_2 = \frac{5}{3} \varphi_1 = 500$ В.
- **4.1**) $Q_{4R} = \frac{1}{18} C \varepsilon^2 \frac{4R}{4R + 2R} = \frac{1}{27} C \varepsilon^2$.
- **2)** Пусть при замкнутом ключе ток в цепи I , а заряд верхней обкладки конденсатора q_1 . Пусть ε_1 неизвестная ЭДС. Тогда $\varepsilon_1 \frac{q_1}{C} = I2R$. Отсюда $q_1 = C\left(\varepsilon_1 2IR\right)$. После размыкания ключа в установившемся режиме напряжение на конденсаторе ε_1 , заряд верхней обкладки конденсатора $C\varepsilon_1$. Изменение энергии конденсатора $\Delta W_C = \frac{C\varepsilon_1^2}{2} \frac{q_1^2}{2C} = 2CIR\varepsilon_1 2CI^2R^2$. Работа источника $A = \left(C\varepsilon_1 q_1\right)\varepsilon_1 = 2CIR\varepsilon_1$. По ЗСЭ $A = \Delta W_C + Q$, где $Q = \frac{1}{18}C\varepsilon^2$. С учётом выражений для A и ΔW_C получаем $2CI^2R^2 = Q$. Отсюда $I = \sqrt{\frac{Q}{2CR^2}} = \frac{\varepsilon}{6R}$.
- **5. 1**) $\frac{1}{d} + \frac{1}{d/3} = \frac{1}{F}$. d = 4F = 48 см. **2**) $l + \frac{h}{n} = \frac{d}{3}$. Тогда $n = \frac{h}{d/3 l} = \frac{h}{4F/3 l} = 1, 6$.

Билет 7

- **1.** По условию максимальная сила трения $F_{TP} = k \frac{2}{3} x$, $mg = k \frac{x}{5}$. **1**) $x_{OTP} = \frac{2}{3} x$. **2**) $V = \frac{5}{3} \sqrt{gx}$.
- **2.** Работа $A = P\left(V \frac{V}{3}\right) = \frac{2PV}{3}$. Уравнение состояния для пара в начале и в конце: $PV = (v_1 + v)RT$, $P\frac{V}{2} = v_1R \cdot 0,8T$. Из записанных уравнений $A = \frac{8}{7}vRT$.
- **3.** $\varphi_1 = k \frac{Q}{R}$, $\varphi_2 = k \frac{Q}{R} + k \frac{-Q}{4R} + k \frac{5Q}{5R} = \frac{7}{4} k \frac{Q}{R}$. Отсюда $\varphi_2 = \frac{7}{4} \varphi_1 = 700$ В.
- **4.1**) $Q_{3R} = \frac{1}{18} C \varepsilon^2 \frac{3}{4} = \frac{1}{24} C \varepsilon^2$. **2**) $I = \sqrt{\frac{2Q}{CR^2}} = \frac{\varepsilon}{3R}$.
- **5. 1**) $\frac{1}{2f} + \frac{1}{f} = \frac{1}{F}$. F = 20 см. $f = \frac{3}{2}F = 30$ см. **2**) $l + \frac{h}{n} = f$. Тогда $h = n(f l) = n(\frac{3}{2}F l) = 6$ см.

Билет 8

- **1.** По условию максимальная сила трения $F_{TP} = k \frac{5}{6} x$, $mg = k \frac{4}{11} x$. **1)** $x_{OTP} = \frac{5}{6} x$. **2)** $V = \frac{11}{12} \sqrt{gx}$.
- **2.** Пусть v_1 начальное количество пара. Работа $A = P\big(4V V\big) = 3PV$. Уравнение состояния для пара в начале и в конце: $PV = v_1RT$, $P \cdot 4V = \big(v_1 + v\big)R\frac{5}{4}T$. Из записанных уравнений $A = \frac{15}{11}vRT$.

 ${f 3.}~~ arphi_1=krac{Q}{R},~~ arphi_2=krac{Q}{R}+krac{-Q}{5R}+krac{7Q}{7R}=rac{9}{5}krac{Q}{R}$. Отсюда $arphi_2=rac{9}{5}arphi_1=900~{
m B}.$

4.1) $Q_R = \frac{1}{72} C \varepsilon^2 \frac{1}{5} = \frac{1}{360} C \varepsilon^2$. **2**) $I = \sqrt{\frac{2Q}{CR^2}} = \frac{\varepsilon}{6R}$.

5. 1) $\frac{1}{f/3} + \frac{1}{f} = \frac{1}{F}$. $F = \frac{f}{4} = 16$ cm. **2)** $l + \frac{h}{n} = f$. h = n(f - l). x = l + h = l + n(f - l) = 68 cm.

Олимпиада «Физтех-2013». МФТИ. 17.03.2013

Критерии оценивания. Билеты 1-4

Задача 1. (10 очков)

Эада Ia 1. (10 0 IKOD)
1) Ответ на первый вопрос
2) Правильно записан ЗСЭ
Ответ на второй вопрос
3) Правильно записан ЗСИ даже при не найденной скорости
бруска при отрыве тележки 1 очко
Ответ на третий вопрос
Задача 2. (10 очков)
1) Правильное уравнение состояния для азота 3 очка
Аналитический ответ на первый вопрос
Численный ответ на первый вопрос
2) Правильно записаны все необходимые уравнения 3 очка
Аналитический ответ на второй вопрос
Численный ответ на второй вопрос
Задача 3. (10 очков)
1) Аналитический ответ на первый вопрос
Численный ответ на первый вопрос
2) Правильно записаны все необходимые уравнения 5 очков
Аналитический ответ на второй вопрос
Численный ответ на второй вопрос
Задача 4. (10 очков)
1) Есть попытки обосновать раздел теплоты между рез-ми 1 очко
Ответ на первый вопрос
2) Правильно записаны все необходимые уравнения 4 очка
Ответ на второй вопрос
Задача 5. (10 очков)
1) Ответ на первый вопрос 3 очка
2) Есть понимание (рис., слова), что промежуточное изображение
на расстоянии H/n . Доказательство не требовать
Правильно записаны все необходимые уравнения 2 очка
Ответ на второй вопрос

Олимпиада «Физтех-2013». МФТИ. 17.03.2013

Критерии оценивания. Билеты 5 - 8

Задача 1. (10 очков)	
1) Ответ на первый вопрос с попытками объяснения 4 очка	
2) Правильно записан ЗСЭ	
Правильная связь между массой бруска и жёсткостью 1 очко	
Ответ на второй вопрос	
Задача 2. (10 очков)	
Правильное выражение для работы через P и V	
Оба уравнения состояния правильные 5 очков	
Ответ	
Задача 3. (10 очков)	
Есть понимание, как распределены заряды	
Правильное выражение для φ_1	
Правильное выражение для φ_2	
Ответ	
Задача 4. (10 очков)	
1) Есть попытки обосновать раздел теплоты между рез-ми 1 очко	
Ответ на первый вопрос	
2) Правильно записаны все необходимые уравнения 4 очка	
Ответ на второй вопрос	
Задача 5. (10 очков)	
1) Ответ на первый вопрос	
2) Есть понимание (рис., слова), что промежуточное изображение	
на расстоянии h/n . Доказательство не требуется	
Правильно записаны все необходимые уравнения 2 очка	
Ответ на второй вопрос	