Data Clustering

Introduction

Data clustering : finding structures in unlabeled data

 Possible Application : Marketing, biology, insurance, earthquake studies ...

 Problems complexity: number of dimensions, distance definition, number of points

Content

Context generation

Resolution

Results

Context generation

Generates cluster and creates points in

Resolution

Create an hash table: local sensitive parsing

Exemple of hashing

Resolution

• Hashing principle:

Nearest Neighboor

1st step clustering

N/2 step clustering

N step clustering

Animation

Data structure used for NN

First method : O(n^2)

Second method : Sorted list O(nlogn)

Cost evolution depending number of cluster

• Curse of dimensionality (with method 1)

• Error in clustering: evalutate percentage of false positive(green) and false negative(blue).

• Remarque : high dimension points isolated

results

• Optimization of NN:

Dimension	Naive NN (s)	Sorted list NN (s)
2	0.16	0.1
3	11	4
4	211(3min)	16
5	2 151(35min)	81
6	16 082(4h)	175
7		198
8		233