Airbnb Lab

Xubin Lou and Jiayue Meng

Abstract—Through summarizing data about the Airbnb listing and review dataset, descriptive analysis with statistics, Sentiment Analysis and adding new data, data mining, creating linear regression model with OLS, and visualization, the report of the Airbnb Lab tries to figure out the relationship of multifactors on the Airbnb price.

I. INTRODUCTION

We expected to find the relation of multifactors to the price of Airbnb. We firstly expect that the comments with positive and negative words will be the main significant effect to the price of Airbnb. Nevertheless, as we do linear regression with positivity mean and negativity mean variables with price, we find the coefficient of them are not significant in 0.05 significant level. Thus, the comments are not that significant as we thought before to affect the price.

II. DATASET

In the Airbnb Lab, there are three datasets: calendar.csv, listings.csv, and reviews.csv. Here we mainly use listings and reviews datasets to do the data analysis. Firstly, we set up the dataset and descriptive Statistics, process the data before the analysis like transferring to appropriate data type and format to prepare for the EDA analysis. In the EDA analysis, we got the minimum, maximum, mean, median, variance, and standard deviation of each given numerical variables in the listing dataset. Figure 1, 2.

	-+-		+		-+		+-		+-		+-	
Variables			ì	Maximum	1	Hean		Median	ľ	Variance	1	Std. De
+												
host_response_rate		0.0	ı	1.0	- 1	0.9498908156711676	l	1.0	ı	0.015664214154569103		0.12515675
12558584 host_acceptance_rate	1	0.0	ı	1.0	1	0.8417308927424536	ı	0.94	ı	0.047418359180513216	Ī	0.2177575
host listings count	1	0	ī	749	1	58.9023709902371	ı	2.0	ı	29281.9391266313	ı	171.119
31794												
host_total_listings_count	1	0	ı	749	- 1	58.9023709902371	ı	2.0	ı	29281.9391266313	1	171.119
accommodates	1	1	ī	16	1	3.0412831241283125	ı	2.0	ı	3.164589870990237	ı	1.7789294
0905818	,		•				'		'			
bathrooms	1	0.0	ı	6.0	-1	1.221646597591711	1	1.0	1	0.2514188513038815		0.5014168
8573653 bedrooms	1	0.0	ï	5.0	1	1.255944055944056		1.0	ı	0.5669401926744584	ı	0.7529543
818636	1	0.0	١	3.0		1.233944033944030	1	1.0	1	0.3009401920744304	1	0.7525545
beds	1	0.0	Ī	16.0	-1	1.6090604026845639	ı	1.0	Ī	1.0207716716744826		1.0103324
0136047			ı								,	
price 18042326	1	10.0	1	4000.0	- 1	173.9258019525802	ı	150.0	ı	21996.04358809467	1	148.31063
weekly_price	1	80.0	ĺ	5000.0	Ī	922.3923766816143	ĺ	750.0	İ	432244.4200315712	L	657.4529
331276												
monthly_price 6770415	1	500.0	١	40000.0	- 1	3692.097972972973	ı	2925.0	ı	8400319.16945535	1	2898.3304
security deposit	i.	95.0	i	4500.0	1	324.6982116244411	i	250.0	i	108076.90519799397	i	328.75052
1326587												
cleaning_fee		5.0	I	300.0	1	68.38014527845036	ı	50.0	I	2630.405933473648	1	51.287483
4/12316 guests_included 4928616	I	0	I	14	1	1.4298465829846583	I	1.0	I	1.1167986650727235	I	1.056786

Fig. 1. EDA1

For the listings dataset, there are many missing data. Something strange is that the differences of variance between the variables are huge. Some data like maximum nights, host listings count, host total listings count, price, weekly price, monthly price have extremely large variance and standard deviation. Thus, these data are more likely to be badly measured compared with the data with small variance like host response rate and host acceptance rate with variance

cleaning_fee	1	5.0	1	300.0	1	68.38014527845036	1	50.0	1	2630.405933473648	1	51.287483
712316												
guests_included		0		14	1	1.4298465829846583		1.0		1.1167986650727235	-	1.0567869
928616												
extra_people		0.0	-	200.0	1	10.886192468619248	-	0.0	1	366.1521803423143	-	19.13510
minimum nights		1		300	ī.	3.1712691771269177		2.0		78.75023457735604		8.874132
76282		1	1	300	1	3.1/12091//12091//	1	2.0	1	78.73023437733604	1	0.074132
maximum nights	1	1	1	9999999	i	28725.83682008368	1	1125.0	1	2789354050349.153	1	1670135.
856582		-			1	20123103002000300	1	112510	1	21030340300431233		10/01551
availability 30	1	0	1	30	1	8.649930264993026	1	4.0	1	108.89611118375176	1	10.43532
88089												
availability_90		0		90	1	38.5581589958159		37.0		1099.4710166990435	-	33.1582
12579												
availability_365	1	0	-	365	1	179.34644351464436	-	179.0	ı	20202.693559474	-	142.1361
88123 number of reviews		0		404	ı,	19.04463040446304		5.0		1265.3428736426579		35.57165
number_oi_reviews	1	U	1	404	1	19.04463040446304	1	5.0	1	1265.3428/364265/9	1	35.5/165
review scores rating	1	20.0	1	100.0	i	91.91666666666667	1	94.0	1	90.82025613275613	1	9.529966
67521		20.0		10010	1	3113100000000000		2410		30102023013273013		31323300
review scores accuracy	1	2.0	1	10.0	1	9.43157132512672	1	10.0	L	0.868054663450018	1	0.931694
707194					ľ							
review_scores_cleanliness		2.0	1	10.0	1	9.25804119985544	1	10.0	1	1.3660132212877545	1	1.168765
986328												
review_scores_checkin	1	2.0	-	10.0	1	9.64629294755877		10.0	I	0.5815820986301907	-1	0.762615
159457												
review_scores_communication 433844		4.0	-	10.0	1	9.646548608601373	-	10.0	1	0.5407750412765244	-	0.735374
review scores value		2.0		10.0	ī.	9.16823444283647		9.0		1.0219866078440818		1.010933
review_scores_value	1	2.0	-1	10.0	1	7.1002344428364/	1	9.0	1	1.02170000/8440818	1	1.010933
reviews per month	1	0.01	1	19.15	i	1.970908448214916	i	1.17	ī.	4.495191362774157	1	2.120186
485673	1	0.01	1	17.13	1	1.5.0500440214910	1	1.1/	1	41475252502774157	1	2.120100

Fig. 2. EDA2

less than 0.05. An obvious contrast here is the variance of minimum nights is about 78, while the variance of maximum nights 2789354050349 is extremely larger.

Then, we conduct sentiment analysis and adding new data, focus on the review dataset, use sentiment analysis template.py to get the new four columns negativity, neutrality, positivity, and compound and add then to the review dataset. Also, calculate and add positivity simple and negativity simple these two new column to the review dataset to show the proportion of positive words and negative words respectively in each comments. Figure 3

1	id	date	reviewer_id	reviewer_name	comments	negativity	neutrality	positivity	compound	total_number_words	positivity_simple	negativity_simple
2	4724140	2013- 05-21	4298113	Olivier	my stay at islams place was really cool good L	0.0	0.648	0.352	0.9626	47	0.127660	0.042553
2	4869189	2013- 05-29	6452964	Charlotte	great location for both airport and city grea	0.0	0.639	0.361	0.9061	23	0.130435	0.043478
2	5003196	2013- 06-06	6449554	Sebastian	we really enjoyed our stay at islams house fro	0.0	0.767	0.233	0.9663	86	0.058140	0.046512
2	5150351	2013- 06-15	2215611	Marine	the room was nice and clean and so were the co	0.0	0.673	0.327	0.9267	36	0.138889	0.027778
2	5171140	2013- 06-16	6848427	Andrew	great location just 5 mins walk from the airpo	0.0	0.637	0.363	0.8658	22	0.136364	0.000000
-	-		-	-		-		-		-		
3	80537457	2016- 06-18	22034145	Antonio	joe y su mujer son encantadores la habitación 	0.0	0.946	0.054	0.34	48	0.041667	0.041667
3	83640094	2016- 07-03	40052513	Steve	joe was on his way to jamaica to be married on	0.014	0.822	0.164	0.9504	129	0.077519	0.062016
3	85797088	2016- 07-13	77129134	Nick	the room was very clean as were the	0.0	0.784	0.216	0.9693	92	0.097826	0.032609

Fig. 3. comments

Next, we try to find the unique values of listings in the reviews dataset (listings id column). Calculate the average scores for each listing and name them in the following way: negativity mean, neutrality mean, positivity mean, compound mean, positivity simple mean, negativity simple mean. Add these values to the listings dataset as new columns. Figure 4, 5.

Fig. 4. mean1

lated_host_listings_count	reviews_per_month	negativity_simple_mean	positivity_simple_mean	negativity_mean	positivity_mean	neutrality_mean	compound_mean
1	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1	1.30	0.042922	0.128897	0.014000	0.321944	0.664056	0.837644
1	0.47	0.044825	0.119082	0.010854	0.264659	0.724488	0.905349
1	1.00	0.041667	0.125000	0.000000	0.484000	0.516000	0.950600
1	2.25	0.045183	0.141893	0.017034	0.273897	0.709069	0.780959
	-		***				
8	0.34	0.038744	0.097125	0.019000	0.219500	0.761500	0.81147

Fig. 5. mean2

III. RESULT

After finishing the data processing, descriptive statistics, conducting sentiment analysis and adding new data, we begin data mining process the further analyze. We look at the following variables in the listings.csv file: property type, room type, accommodates, bathrooms, bedrooms. Using the Apriori algorithm to calculate the frequent itemsets in the listings dataset.

With minSup is 0.1, the top 5 most frequent itemsets are (1.0 bathrooms), (Apartment), (1.0 bedrooms), (Apartment, 1.0 bathrooms), (Entire home/apt). The top 5 least frequent itemsets are (1.0 bathrooms, Entire home/apt, 2.0 bedrooms), (1.0 bathrooms, 2.0 bedrooms), (Entire home/apt, 2.0 bathrooms), (1.0 bedrooms, 1 accommodates, Private room), (1 accommodates, Private room). Figure 6

With minSup is 0.2, the top 5 most frequent itemsets are (1.0 bathrooms), (Apartment), (1.0 bedrooms), (Apartment, 1.0 bathrooms), (Entire home/apt). The top 5 least frequent itemsets are (1.0 bedrooms, Apartment, 1.0 bathrooms, 2 accommodates), (1.0 bedrooms, Apartment, 1.0 bathrooms, Entire home/apt), (1.0 bedrooms, Apartment, Private room), (Apartment, Private room), (1.0 bedrooms, Apartment, Entire home/apt). Figure 7

I found that under the minSup 0.1 and 0.2 have the same top 5 most frequent itemsets.

We do the linear regression model that uses price as

```
support
                                                       itemsets
    0.100418
               (Entire home/apt, 1.0 bathrooms, 2.0 bedrooms)
46
    0.100418
                                (1.0 bathrooms, 2.0 bedrooms)
16
30
    0.101255
                              (Entire home/apt, 2.0 bathrooms)
38
    0.102929
                 (Private room, 1.0 bedrooms, 1 accommodates)
13
    0.102929
                               (Private room, 1 accommodates)
    0.593305
                                             (Entire home/apt)
19
    0.597768
                                    (1.0 bathrooms, Apartment)
    0.663598
                                                (1.0 bedrooms)
    0.728591
                                                   (Apartment)
    0.767364
                                               (1.0 bathrooms)
[70 rows x 2 columns]
```

Fig. 6. minSup=0.1

```
support
                                                                        itemsets
     0.216179
0.217573
                   (1.0 bathrooms, 1.0 bedrooms, Apartment, 2 acc...
                   (Entire home/apt, 1.0 bathrooms, 1.0 bedrooms,...
28
     0.219247
                               (Private room, 1.0 bedrooms, Apartment
18
27
     0.219247
                                                  (Private room,
                            (Entire home/apt, 1.0 bedrooms, Apartment)
     0.225105
                         (1.0 bedrooms, Apartment, 2 accommodates (Private room, 1.0 bedrooms, 2 accommodates
25
     0.233752
26
16
     0.238494
                                           (Private room, 2 accommodates
                      (Entire home/apt, 1.0 bathrooms, 1.0 bedrooms)
(Entire home/apt, 1.0 bedrooms)
(1.0 bathrooms, Apartment, 2 accommodates)
21
13
23
     0.247141
     0.272245
15
19
     0.290934
                        (Apartment, 2 accommodates (1.0 bathrooms, 1.0 bedrooms, 2 accommodates
10
     0.301813
                                            (Private room, 1.0 bathrooms
22
11
                          (Private room, 1.0 bathrooms, 1.0 bedrooms (1.0 bedrooms, 2 accommodates
     0.350907
     0.358996
                                          (1.0 bathrooms, 2 accommodates
                                              (Private room, 1.0 bedrooms
5
24
     0.384379
                                                                (Private room
                          (Entire home/apt, 1.0 bathrooms, Apartment (2 accommodates
     0.387727
     0.413668
20
                              (1.0 bathrooms, 1.0 bedrooms, Apartment
     0.427615
     0.446583
                                        (Entire home/apt, 1.0 bathrooms (1.0 bedrooms, Apartment
9
12
17
     0.492050
                                              (Entire home/apt, Apartment
                                             (1.0 bathrooms,
                                                            (Entire home/apt
     0.593305
                                                (1.0 bathrooms, Apartment (1.0 bedrooms
     0.597768
     0.663598
     0.728591
                                                                    (Apartment
     0.767364
                                                               (1.0 bathrooms)
```

Fig. 7. minSup=0.2

the outcome variable (Y) price and all the other variables listed above as explanatory variables (X's) host response rate, review scores rating, review scores accuracy, review scores cleanliness, review scores checkin, review scores communication, positivity mean, negativity mean, positivity simple mean, negativity simple mean. Here, x1=host response rate, x2=review scores rating, x3=review scores accuracy, x4=review scores cleanliness, x5=review scores checkin, x6=review scores communication, x7=positivity mean, x8=negativity mean, x9=positivity simple mean, x10=negativity simple mean. Figure 8

The R-square is 0.05. According to to P-value in the chart and 5 percent confidence interval, we find the P-value of the coefficients of constant, review scores rating, review scores accuracy, review scores cleanliness, review scores checkin, positivity simple mean, and negativity simple mean are less than the the significance level 0.05. Thus, these coefficients are significant. This means the price y can be closely related to these variables. Effect size is a number measuring the strength of the relationship between two variables in a population, or a sample-based estimate of that quantity.

We then regard the x variables as three main groups of coefficients that determine the price (at least in theory): host

			gression Res			
Dep. Variab			y R-squa			0.050
Model:			OLS Adj. F	R-squared:		0.047
Method:		Least Squa	res F-stat	istic:		13.40
Date:	Su	n, 10 Oct 2	021 Prob (F-statisti	c):	3.23e-23
Time:		18:09	:19 Log-Li	kelihood:		-15507.
No. Observa	tions:	2	543 AIC:			3.104e+04
Df Residual	s:	2	532 BIC:			3.110e+04
Df Model:			10			
Covariance	Type:	nonrob				
	coef	std err	t	P> t		
const.	116.1989		2.969		39 453	192 945
x1			-0.149			
x2			3.674			
x3		3.464			-19.892	
x4			5.484		10.586	
x5	-12.5665				-20.582	
x6		4.303			-13.906	
×7		48.655			-129.463	
x8		117.148			-261.020	
x9			2.373			
x10	611.9750	108.850	5.622	0.000	398.530	825.420
Omnibus:		1242.	450 Durbin	-Watson:		1.542
Prob(Omnibu	ıs):	0.	000 Jarque	-Bera (JB)	:	11140.087
Skew:		2.	116 Prob(J	TB):		0.00
Kurtosis:		12.	339 Cond.	No.		5.49e+03

Fig. 8. OLS

response rate, review scores, and the results of the sentiment analysis. Conducting PCA to see if we indeed get three categories after the dimensionality reduction process. Here, x1=host response rate, x2=review scores, x3=the results of the sentiment analysis. Figure 9

		OLS Rec	ression Res	sults		
Dep. Vari	able:		y R-squa	red:		0.003
Model:		C	DLS Adj. F	R-squared:		0.002
Method:		Least Squar	es F-stat	istic:		2.271
Date:	Mo	n, 11 Oct 20	21 Prob (F-statistic):	0.0784
Time:		22:02:	27 Log-Li	kelihood:		-12415.
No. Obser	vations:	20	34 AIC:			2.484e+04
Df Residu	als:	20	30 BIC:			2.486e+04
Df Model:			3			
Covarianc	e Type:	nonrobu	ist			
	coef	std err	t	P> t	[0.025	0.975]
const	166.7920	2.404	69.387	0.000	162.078	171.506
x1	-2.6512	1.212	-2.188	0.029	-5.027	-0.275
x2	-0.5756	1.843	-0.312	0.755	-4.190	3.038
x3	3.3390	2.404	1.389	0.165	-1.376	8.054
Omnibus:		757.2	41 Durbir	-Watson:		2.044
Prob(Omni	.bus):	0.0	000 Jarque	-Bera (JB):		3174.870
Skew:		1.7	74 Prob(3	TB):		0.00
Kurtosis:		7.9	87 Cond.	No.		1.98

Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Fig. 9. PCA

As doing PCA, the standard errors of coefficients are generally smaller than before, which means the predictors are performs better in the model. However, the R-square reduces a lot from 0.05 to 0.003, which means this model does not do well in predicting the price.

For visualization, we report the percentage of listings that have a compound mean below zero and those that have a compound mean above zero using a bar chart. Figure 10

Then, we create a "correlogram" that shows the correlations between the numerical variables host response rate, review scores rating, review scores accuracy, review scores cleanliness, review scores checkin, review scores communication, positivity mean, negativity mean, positivity simple mean, negativity simple mean. Figure 11, 12.

Create a pairplot that shows the relationship between the three principal components host response rate, review scores, the results of the sentiment analysis: Figure 13

The bar graph showing percentage of listings that have a compound_mean below zero and above zero

The percentage of listings that have a compound_mean below zero is 0.00697350069735007 The percentage of listings that have a compound_mean above zero is 0.7626220362622036

Fig. 10. bar

Fig. 11. pairwise1

Fig. 12. pairwise2

Fig. 13. pairplot

Table for linear regression output (from Q6) that shows the coefficients for different variables, number of observations, degrees of freedom, statistical significance, R2 value is the result in Figure 8 we shown above.

Fig. 14. table1

The table for linear regression output (from Q7) that shows the coefficients for different variables in three principal components, number of observations, degrees of freedom, statistical significance, R2 value is the result Figure 9 we shown above.

Variables	value
number of observations degrees of freedom F-statistic R^2 value coefficient of constant coefficient of host response rate coefficient of review scores coefficient of review to coefficient of review host response rate	2034 3 2.271 0.003 166.792 -2.6512 -0.5756 3.339
<u> </u>	

Fig. 15. table2

In the Airbnb Lab, we find that in data mining, under the minSup 0.1 and 0.2, they have the same top 5 most frequent itemsets (1.0 bathrooms), (Apartment), (1.0 bedrooms), (Apartment, 1.0 bathrooms), (Entire home/apt).

When doing the linear regression model, we find that review scores accuracy, review scores cleanliness, review scores checkin, and negativity simple mean have the p-value 0, which is far less than the significance level 0.05, thus they are the variables seem to explain the price the most.

Some of the ways to improve this analysis are that we can include more variables related in the regression to search for more significant factors to price. And we can make the data more completed without that many missing values.

I did see any typical causal inference problems in this analysis, including selection bias and response bias. In making comments, there always some people who do not want to give feedbacks for some privacy reason. The comments collected are generally from the kinds of people who have strong feeling about the living condition in Airbnb. For those who don't have strong feeling or reactions in living experience, they might won't give the feedback like leave comments spontaneously. Thus, there're selection bias and response bias.