Ուշադրության մեխանիզմ

Հայկ Կարապետյան

Սովորական RNN օգտագործելիս առաջանում էր vanishing gradient խնդիր։ LSTM և GRU բլոկները որոշ չափով լուծում էին այդ խնդիրը, բայց միևնույն է սկզբնական բառի մասին ինֆորմացիան (history) շատ ձևափոխությունների էր ենթարկվում։ Այդ պատճառով անհրաժեշտ է կիրառել մի մեթոդ, որը առաջին բառի մշակման (թարգմանության) ժամանակ կհասկանա, թե որ բառերին պետք է ուշադրություն դարձնի։ Առաջին բառի թարգմանության համար ցանցն է որոշելու, թե նախադասության որ բառերն են կարևոր և այդպես հերթով թագմանելու է նախադասությունը։ Ամեն բառին ուշադրություն դարձնելու համար օգտագործում են ուշադրության (attention) մեխանիզմը։ Attention-ի օրինակ կարող եք տեսնել նկար 1-ում։

Նկար 1։ Attention-ի օրինակ

Հասկանանք, թե ինչ է պատկերված նկար 1-ում։ Ներքևի շերտը bidirectional RNN է, որը մուտքում ստանում է հաջորդական տվյալներ (x_1,\ldots,x_T) և վերադարձնում է հաջորդական տվյալներ $(h'_1,\ldots h'_T)$ ։ Bidirectional RNN-ից դուրս եկող output-ը ամենաշատը ինֆորմացիա ունի իր ինդեքսով մուտքային տվյալի մասին, բայց նաև ինֆորմացիա ունի բոլոր տվյալների մասին։ Օրինակ h'_2 -ը ամենաշատ ինֆորմացիան ունի x_2 մասին, բայց նաև տեղյակ է $x_1,x_3,\ldots x_T$ տվյալների մասին։ Վերևին շերտում ունենք սովորական RNN, որը մուտքում ստանում է նույն x_1,\ldots,x_T տվյալները, բայց նաև ստանում է history ներքևի շերտից։ Ամեն քայլի RNN-ին անհրաժեշտ է history ներքևի շերտից, որպեսզի միացնենք այս շերտի history-ի հետ և փոխնցենք հաջորդ բլոկին։ c-ով նշանակենք ներքևի շերտից եկող history-ն։ c-ն ստացվում է հետևյալ կերպ։

$$c_t = \alpha_{t1} * h'_1 + \alpha_{t2} * h'_2 + \dots + \alpha_{tT} * h'_T$$

 α -ները 0-ից մեկ արժեքներ են և դրանց գումարը հավասար է 1-ի։ Այսինքն ամեն α ցույց է տալիս տվյալը ինչքան կարևոր է history-ի մեջ։ Այդ կարևորությունը որոշելու է նեյրոնային ցանցը ուսուցման ընթացքում։ Այսինքն α -ն ուսուցանվող պարամետը է։ α -ները ամեն history-ի

դեպքում տարբեր են և դա կարող է խնդիր առաջացնել։ Երբ մուտքային տվյալների քանակը T է կունենանք T հատ α , իսկ երբ թեստավորման ժամանակ ունենանք T+3 հաջորդական տվյալ, այսինքն T+3 բառից կազմված նախադասություն, այդ դեպքում չենք կարող իրենց համար ուսուցանել համապատասխան α -ներ։ Այս պատճառով անհրաժեշտ է որոշել α -ների ստացման մեթոդ, որը անկախ մուտքային տվյալների քանակից կաշխատի։ Այսպիսով ստացանք.

$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j, \ i = 1, \dots, T_y$$

 $lpha_{ij}$ -երի գումարը պետք է մեկ լինի։

Այդպես կարող ենք ստանալ օգտագործելով softmax ակտիվացիոն ֆունկցիա։

$$\alpha_{ij} = \frac{exp\{e_{ij}\}}{\sum_{j=1}^{T_y} exp\{e_{ij}\}}$$

Մևում է հայտարարել e_{ij} -և

$$e_{ij} = F(s_{i-1}, h'_j) = W_1^T tanh(W_2 s_{i-1} + W_3 h'_j)$$

Նկար ${f 1}$ -ում վերևի RNN շերտը ուներ history, որին միանում էր ներքևի շերտից եկող c-ն։ Ամեն α -ն ստանալու համար մեզ անհրաժեշտ է վերևի RNN-ի s_{i-1} history-ն և ներքևի շերտի h_j' -ն։ Եթե մեր մուտքային հաջորդական տվյալների քանակը ավելի շատ լինի T-ից, այդ դեպքում h'-ի և s-ի քանակը նույնպես կշատանա, որովհետև սովորական RNN-ում մեր բլոկերի քանակը համապատասխանում էր մուտքային տվյալների քանակին (բոլոր բլոկերը ունեն նույն կշիռները)։ Եվ արդյունքում $x_{T+1}, x_{T+2}, x_{T+3}$ տվյալների համար նույնպես կունենանք α գործակիցներ։ W_1, W_2 և W_3 կշիռները թարմացվում են ուսուցանման ընթացքում և մնում են նույնը թեստավորման ժամանակ։