Supplemental file for "A Weighted Biobjective Transformation Technique for Locating Multiple Optimal Solutions of Nonlinear Equation Systems"

Wenyin Gong, Yong Wang, Member, IEEE, Zhihua Cai, and Shengxiang Yang, Senior Member, IEEE

S-I. THIRTY-EIGHT TEST INSTANCES

1) F01:

$$\begin{cases} x_1^2 + x_2^2 - 1 = 0 \\ x_1 - x_2 = 0 \end{cases}$$
 (1)

where $x_i \in [-1, 1]$, $i = 1, \dots, n$, and n = 2. It has two optimal solutions: (-0.707107, -0.707107) and (0.707107, 0.707107) [1].

2) F02:

$$\begin{cases} \sum_{i=1}^{n} x_i^2 - 1 = 0\\ |x_1 - x_2| + \sum_{i=3}^{n} x_i^2 = 0 \end{cases}$$
 (2)

where $x_i \in [-1, 1]$, $i = 1, \dots, n$, and n = 20. It has two optimal solutions: (-0.707107, -0.707107, 0, ..., 0) and (0.707107, 0.707107, 0, ..., 0) [1].

$$\begin{cases} x_1 - \sin(5\pi x_2) = 0\\ x_1 - x_2 = 0 \end{cases}$$
 (3)

where $x_i \in [-1, 1], i = 1, \dots, n$, and n = 2. It has 11 optimal solutions as shown in Table S-I [1].

TABLE S-I The optimal solutions of F03

x_1	x_2
-0.924840	-0.924840
-0.866760	-0.866760
-0.562010	-0.562010
-0.428168	-0.428168
-0.187960	-0.187960
0.000000	0.000000
0.187960	0.187960
0.428168	0.428168
0.562010	0.562010
0.866760	0.866760
0.924840	0.924840

4) F04:

$$\begin{cases} x_1 - \cos(4\pi x_2) = 0\\ x_1^2 + x_2^2 - 1 = 0 \end{cases}$$
 (4)

where $x_i \in [-1, 1], i = 1, \dots, n$, and n = 2. It has 15 optimal solutions as shown in Table S-II [1].

W. Gong and Z. Cai are with the School of Computer Science, China University of Geosciences, Wuhan 430074, China. (Email: wygong@cug.edu.cn; zhcai@cug.edu.cn)

Y. Wang is with the School of Information Science and Engineering, Central South University, Changsha 410083, China, and also with the Centre for Computational Intelligence (CCI), School of Computer Science and Informatics, De Montfort University, Leicester LE1 9BH, UK. (Email: ywang@csu.edu.cn)

S. Yang is with the Centre for Computational Intelligence (CCI), School of Computer Science and Informatics, De Montfort University, Leicester LE1 9BH, UK. (Email: syang@dmu.ac.uk)

TABLE S-II
THE OPTIMAL SOLUTIONS OF F04

x_2
-0.909178
-0.827569
-0.689462
-0.545959
0.461799
-0.271914
-0.231415
0.000000
0.231416
0.271914
0.461799
0.545959
0.689462
0.827569
0.909178

5) F05:

$$\begin{cases}
\cos(2x_1) - \cos(2x_2) - 0.4 = 0 \\
2(x_2 - x_1) + \sin(2x_2) - \sin(2x_1) - 1.2 = 0
\end{cases}$$
(5)

where $x_i \in [-10, 10]$, $i = 1, \dots, n$, and n = 2. It has 13 optimal solutions as shown in Table S-III [2].

TABLE S-III
THE OPTIMAL SOLUTIONS OF F05

x_1	x_2
-9.268258	-8.931402
-8.744542	-7.164787
-6.126665	-5.789809
-5.602950	-4.023195
-2.985073	-2.648216
-2.461357	-0.881602
0.156520	0.493376
0.680236	2.259991
3.298113	3.634969
3.821828	5.401583
6.439705	6.776562
6.963421	8.543176
9.581298	9.918154

6) F06:

$$\begin{cases} x_1 - 0.25428722 - 0.18324757x_4x_3x_9 = 0 \\ x_2 - 0.37842197 - 0.16275449x_1x_{10}x_6 = 0 \\ x_3 - 0.27162577 - 0.16955071x_1x_2x_{10} = 0 \\ x_4 - 0.19807914 - 0.15585316x_7x_1x_6 = 0 \\ x_5 - 0.44166728 - 0.19950920x_7x_6x_3 = 0 \\ x_6 - 0.14654113 - 0.18922793x_8x_5x_{10} = 0 \\ x_7 - 0.42937161 - 0.21180486x_2x_5x_8 = 0 \\ x_8 - 0.07056438 - 0.17081208x_1x_7x_6 = 0 \\ x_9 - 0.34504906 - 0.19612740x_{10}x_6x_8 = 0 \\ x_{10} - 0.42651102 - 0.21466544x_4x_8x_1 = 0 \end{cases}$$

$$(6)$$

where $x_i \in [-2, 2]$, $i = 1, \dots, n$, and n = 10. It has one optimal solution: (0.257833, 0.381097, 0.278745,

0.200669, 0.445251, 0.149184, 0.432010, 0.073403, 0.345967, 0.427326) [2].

7) F07:

$$\begin{cases} 100(x_1 - 0.25) = 0\\ 100(x_1 \sin(4\pi x_2^2) + 0.75x_1 - 0.25) = 0 \end{cases}$$
 (7)

where $x_i \in [-1,1]$, $i=1,\dots,n$, and n=2. It has eight optimal solutions as shown in Table S-IV.

TABLE S-IV
THE OPTIMAL SOLUTIONS OF F07

x_1	x_2
0.250000	-0.854337
0.250000	-0.721185
0.250000	-0.479471
0.250000	-0.141801
0.250000	0.141801
0.250000	0.479471
0.250000	0.721185
0.250000	0.854337

8) F08:

$$\begin{cases}
3.0 - x_1 x_3^2 = 0 \\
x_3 \sin(\pi/x_2) - x_3 - x_4 = 0 \\
-x_2 x_3 \exp(1.0 - x_1 x_3) + 0.2707 = 0 \\
2x_1^2 x_3 - x_2^4 x_3 - x_2 = 0
\end{cases}$$
(8)

where $x_i \in [0, 5]$, $i = 1, \dots, n$, and n = 4. It has one optimal solution: (3, 2, 1, 0) [3].

9) F09:

$$\begin{cases}
(1-R) \left[\left(\frac{D}{10(1+\beta_1)} - x_1 \right) \cdot \\
\exp \left(\frac{10x_1}{1+\frac{10x_1}{\gamma}} \right) \right] - x_1 &= 0 \\
(1-R) \left[\left(\frac{D}{10} - \beta_1 x_1 - (1+\beta_2) x_2 \right) \cdot \\
\exp \left(\frac{10x_2}{1+\frac{10x_2}{\gamma}} \right) \right] + x_1 - (1+\beta_2) x_2 &= 0
\end{cases} \tag{9}$$

where $x_i \in [0, 1]$, $i = 1, \dots, n$, n = 2, R = 0.96, D = 22, $\gamma = 1000$, and $\beta_1 = \beta_2 = 2$. It has seven optimal solutions as shown in Table S-V [3], [4], [5], [6].

TABLE S-V
THE OPTIMAL SOLUTIONS OF F09

x_1	x_2
0.042100	0.061813
0.042100	0.268723
0.266600	0.178430
0.266600	0.327267
0.266600	0.461111
0.042318	0.686779
0.719074	0.244197

10) F10:

$$\begin{cases}
2x_1 + x_2 + x_3 + x_4 + x_5 - 6.0 = 0 \\
x_1 + 2x_2 + x_3 + x_4 + x_5 - 6.0 = 0 \\
x_1 + x_2 + 2x_3 + x_4 + x_5 - 6.0 = 0 \\
x_1 + x_2 + x_3 + 2x_4 + x_5 - 6.0 = 0 \\
x_1x_2x_3x_4x_5 - 1.0 = 0
\end{cases} (10)$$

where $x_i \in [-10, 10]$, $i = 1, \dots, n$, and n = 5. It has three optimal solutions: (1, 1, 1, 1, 1), (0.916355, 0.916355, 0.916355, 1.418227), and (-0.579043, -0.579043, -0.579043, 8.895215) [7], [8].

11) F11:

$$\begin{cases} x_1 + x_2^4 x_4 x_6 / 4 + 0.75 = 0 \\ x_2 + 0.405 \exp(1 + x_1 x_2) - 1.405 = 0 \\ x_3 - x_4 x_6 / 2 + 1.5 = 0 \\ x_4 - 0.605 \exp(1 - x_3^2) - 0.395 = 0 \\ x_5 - x_2 x_6 / 2 + 1.5 = 0 \\ x_6 - x_1 x_5 = 0 \end{cases}$$
(11)

where $x_i \in [-1, 1]$, $i = 1, \dots, n$, and n = 6. It has one optimal solution: (-1, 1, -1, 1, -1, 1) [8], [9].

12) F12:

$$\begin{cases} \sin(x_1^3) - 3x_1x_2^2 - 1 = 0\\ \cos(3x_1^2x_2) - |x_2^3| + 1 = 0 \end{cases}$$
 (12)

where $x_i \in [-2, 2]$, $i = 1, \dots, n$, n = 2. It has 10 optimal solutions as shown in Table S-VI. This function is modified from [10].

x_1	x_2
-1.810885	-0.349092
-1.810885	0.349092
-1.502221	-0.409077
-1.502221	0.409077
-1.791302	0.301926
-1.791302	-0.301926
-0.947268	0.785020
-0.947268	-0.785020
-0.213057	1.256845
-0.213057	-1.256845

13) F13:

$$\begin{cases} 4x_1^3 + 4x_1x_2 + 2x_2^2 - 42x_1 - 14 = 0\\ 4x_2^3 + 2x_1^2 + 4x_1x_2 - 26x_2 - 22 = 0 \end{cases}$$
 (13)

where $x_i \in [-5, 5]$, $i = 1, \dots, n$, and n = 2. It has nine optimal solutions as shown in Table S-VII [11], [12].

TABLE S-VII
THE OPTIMAL SOLUTIONS OF F13

x_1	x_2
-0.127961	-1.953715
-0.270845	-0.923039
0.086678	2.884255
3.385154	0.073852
3.584428	-1.848127
3.000000	2.000000
-3.779310	-3.283186
-3.073026	-0.081353
-2.805118	3.131313
	-0.127961 -0.270845 0.086678 3.385154 3.584428 3.000000 -3.779310 -3.073026

14) F14:

$$\begin{cases}
-\sin(x1)\cos(x2) - 2\cos(x1)\sin(x2) = 0 \\
-\cos(x1)\sin(x2) - 2\sin(x1)\cos(x2) = 0
\end{cases}$$
(14)

where $x_i \in [0, 2\pi]$, $i = 1, \dots, n$, and n = 2. It has 13 optimal solutions as shown in Table S-VIII [5], [11].

TABLE S-VIII
THE OPTIMAL SOLUTIONS OF F14

x_1	x_2
0.000000	0.000000
3.141593	0.000000
1.570796	1.570796
6.283185	0.000000
0.000000	3.141593
4.712389	1.570796
3.141593	3.141593
1.570796	4.712389
6.283185	3.141593
0.000000	6.283185
4.712389	4.712389
3.141593	6.283185
6.283185	6.283185

15) F15:

$$\begin{cases} x_1^2 + x_2^2 - 1.0 & = & 0 \\ x_3^2 + x_4^2 - 1.0 & = & 0 \\ x_5^2 + x_6^2 - 1.0 & = & 0 \\ x_7^2 + x_8^2 - 1.0 & = & 0 \\ x_7^2 + x_8^2 - 1.0 & = & 0 \end{cases}$$

$$4.731 \cdot 10^{-3}x_1x_3 - 0.3578x_2x_3 - 0.1238x_1 + x_7$$

$$-1.637 \cdot 10^{-3}x_2 - 0.9338x_4 - 0.3571 & = & 0 \\ 0.2238x_1x_3 + 0.7623x_2x_3 + 0.2638x_1 - x_7$$

$$-0.07745x_2 - 0.6734x_4 - 0.6022 & = & 0 \\ x_6x_8 + 0.3578x_1 + 4.731 \cdot 10^{-3}x_2 & = & 0 \\ -0.7623x_1 + 0.2238x_2 + 0.3461 & = & 0 \end{cases}$$

$$(15)$$

where $x_i \in [-1, 1]$, $i = 1, \dots, n$, and n = 8. It has 16 optimal solutions as shown in Table S-IX [7], [11], [12].

x 1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
		-					
0.1644	-0.9864	-0.9471	-0.3210	-0.9982	-0.0594	0.4110	0.9116
0.1644	-0.9864	-0.9471	-0.3210	-0.9982	0.0594	0.4110	-0.9116
0.1644	-0.9864	-0.9471	-0.3210	0.9982	-0.0594	0.4110	0.9116
0.1644	-0.9864	-0.9471	-0.3210	0.9982	0.0594	0.4110	-0.9116
0.1644	-0.9864	0.7185	-0.6956	-0.9980	-0.0638	-0.5278	0.8494
0.1644	-0.9864	0.7185	-0.6956	-0.9980	0.0638	-0.5278	-0.8494
0.1644	-0.9864	0.7185	-0.6956	0.9980	-0.0638	-0.5278	0.8494
0.1644	-0.9864	0.7185	-0.6956	0.9980	0.0638	-0.5278	-0.8494
0.6716	0.7410	-0.6516	-0.7586	-0.9625	-0.2711	-0.4376	0.8992
0.6716	0.7410	-0.6516	-0.7586	-0.9625	0.2711	-0.4376	-0.8992
0.6716	0.7410	-0.6516	-0.7586	0.9625	-0.2711	-0.4376	0.8992
0.6716	0.7410	-0.6516	-0.7586	0.9625	0.2711	-0.4376	-0.8992
0.6716	0.7410	0.9519	-0.3064	-0.9638	-0.2666	0.4046	0.9145
0.6716	0.7410	0.9519	-0.3064	-0.9638	0.2666	0.4046	-0.9145
0.6716	0.7410	0.9519	-0.3064	0.9638	0.2666	0.4046	-0.9145
0.6716	0.7410	0.9519	-0.3064	0.9638	-0.2666	0.4046	0.9145
0.6716	0.7410	0.9519	-0.3064	0.9638	-0.2666	0.4046	0.9145

16) F16:

$$\begin{cases} 4x_1^3 - 3x_1 - \cos(x_2) = 0\\ \sin(x_1^2) - |x_2| = 0 \end{cases}$$
 (16)

where $x_i \in [-2, 2]$, $i = 1, \dots, n$, and n = 2. It has six optimal solutions as shown in Table S-X. This function is modified from [13].

TABLE S-X
THE OPTIMAL SOLUTIONS OF F16

x_1	x_2
-0.597167	-0.349098
-0.597167	0.349098
-0.442758	-0.194781
-0.442758	0.194781
0.964499	-0.801774
0.964499	0.801774

17) F17:

$$\begin{cases} x_i + \sum_{j=1}^n x_j - (n+1) = 0 & i = 1, \dots, n-1 \\ \left[\prod_{j=1}^n x_j \right] - 1 = 0 \end{cases}$$
 (17)

where $x_i \in [-2, 2]$, $i = 1, \dots, n$, and n = 20. It has two optimal solutions: $(1, \dots, 1)$ and $(0.994922, \dots, 0.994922, 1.101551)$ [13].

18) F18:

$$x_i - \cos\left(2x_i - \sum_{j=1}^n x_j\right) = 0 \quad i = 1, \dots, n$$
 (18)

where $x_i \in [-1,1]$, $i=1,\dots,n$, and n=3. It has seven optimal solutions as shown in Table S-XI [14].

TABLE S-XI
THE OPTIMAL SOLUTIONS OF F18

x_1	x_2	x_3
0.810561	0.810561	-0.625687
0.810561	-0.625687	0.810561
-0.625687	0.810561	0.810561
0.543850	0.995778	0.543850
0.543850	0.543850	0.995778
0.995778	0.543850	0.543850
0.739086	0.739086	0.739086

19) F19:

$$\begin{cases} x_1^2 + x_2^2 - 2 = 0 \\ x_1^2 + x_2^2 / 4 - 1 = 0 \end{cases}$$
 (19)

where $x_i \in [-2, 2]$, $i = 1, \dots, n$, and n = 2. It has four optimal solutions as shown in Table S-XII. This function is modified from [15].

TABLE S-XII
THE OPTIMAL SOLUTIONS OF F19

x_1	x_2
-0.816497	-1.154701
0.816497	-1.154701
-0.816497	1.154701
0.816497	1.154701

20) F20:

$$\begin{cases} \exp\left(x_1^2 + x_2^2\right) - 3 = 0\\ |x_2| + x_1 - \sin\left(3(|x_2| + x_1)\right) = 0 \end{cases}$$
 (20)

where $x_i \in [-2, 2]$, $i = 1, \dots, n$, and n = 2. It has six optimal solutions as shown in Table S-XIII. This function is modified from [15].

TABLE S-XIII
THE OPTIMAL SOLUTIONS OF F20

x_1	x_2
-0.741152	-0.741152
-0.741152	0.741152
-0.256625	1.016246
-0.256625	-1.016246
-1.016246	-0.256625
-1.016246	0.256625

21) F21:

$$\begin{cases}
-3.84x_1^2 + 3.84x_1 - x_2 = 0 \\
-3.84x_2^2 + 3.84x_2 - x_3 = 0 \\
-3.84x_3^2 + 3.84x_3 - x_1 = 0
\end{cases}$$
(21)

where $x_i \in [0,1]$, $i = 1, \dots, n$, and n = 3. It has eight optimal solutions as shown in Table S-XIV [16].

TABLE S-XIV
THE OPTIMAL SOLUTIONS OF F21

x_1	x_2	x_3
0.000000	0.000000	0.000000
0.488122	0.959435	0.149452
0.540304	0.953754	0.169399
0.959447	0.149373	0.487917
0.149440	0.488092	0.959440
0.953781	0.169343	0.540157
0.169254	0.539937	0.953788
0.739584	0.739584	0.739574

22) F22:

$$\begin{cases} x_1 + x_2 + x_3 - 1 = 0 \\ x_1 - x_2^3 = 0 \end{cases}$$
 (22)

where $x_i \in [-1,1]$, $i=1,\cdots,n$, and n=3. It has infinite optimal solutions [1].

23) F23:

$$\begin{cases} x_1^2 + x_3^2 - 1 = 0 \\ x_2^2 + x_4^2 - 1 = 0 \\ x_5 x_3^3 + x_6 x_4^3 = 0 \\ x_5 x_1^3 + x_6 x_2^3 = 0 \\ x_5 x_1 x_3^2 + x_6 x_4^2 x_2 = 0 \\ x_5 x_1^2 x_3 + x_6 x_2^2 x_4 = 0 \end{cases}$$
(23)

where $x_i \in [-1, 1]$, $i = 1, \dots, n$, and n = 6. It has infinite optimal solutions [1], [2].

24) F24:

$$\begin{cases} (x_k + \sum_{i=1}^{n-k-1} x_i x_{i+k}) x_n - c_k = 0 & 1 \le k \le n-1 \\ \sum_{i=1}^{n-1} x_i + 1 = 0 & \end{cases}$$

where $x_i \in [-1,1]$, $i = 1, \dots, n$, n = 20, $c_k = 0$, and $k = 1, \dots, n-1$. It has infinite optimal solutions [1], [2].

25) F25:

$$\begin{cases} x_2 + 2x_6 + x_9 + 2x_{10} - 10^{-5} = 0 \\ x_3 + x_8 - 3 \cdot 10^{-5} = 0 \\ x_1 + x_3 + 2x_5 + 2x_8 + x_9 + x_{10} - 5 \cdot 10^{-5} = 0 \\ x_4 + 2x_7 - 10^{-5} = 0 \\ 0.5140437 \cdot 10^{-7}x_5 - x_1^2 = 0 \\ 0.1006932 \cdot 10^{-6}x_6 - 2x_2^2 = 0 \\ 0.7816278 \cdot 10^{-15}x_7 - x_4^2 = 0 \\ 0.1496236 \cdot 10^{-6}x_8 - x_1x_3 = 0 \\ 0.6194411 \cdot 10^{-7}x_9 - x_1x_2 = 0 \\ 0.2089296 \cdot 10^{-14}x_{10} - x_1x_2^2 = 0 \end{cases}$$
(25)

where $x_i \in [-10, 10]$, $i = 1, \dots, n$, and n = 10. It has infinite optimal solutions [2].

26) F26.

$$\begin{cases} 3x_1^2 + \sin(x_1 x_2) - x_3^2 + 2.0 = 0\\ 2x_1^3 - x_2^2 - x_3 + 3.0 = 0\\ \sin(2x_1) + \cos(x_2 x_3) + x_2 - 1.0 = 0 \end{cases}$$
 (26)

where $x_1 \in [-5, 5]$, $x_2 \in [-1, 3]$, and $x_3 \in [-5, 5]$. It has two optimal solutions: (-0.064417, 2.090440, -1.370473) and (-0.032759, 1.264629, 1.400644) [17].

27) F27:

$$\begin{cases}
5x_1^9 - 6x_1^5x_2^2 + x_1x_2^4 + 2x_1x_3 = 0 \\
-2x_1^6x_2 + 2x_1^2x_2^3 + 2x_2x_3 = 0 \\
x_1^2 + x_2^2 - 0.265625 = 0
\end{cases}$$
(27)

where $x_1 \in [-0.6, 6]$, $x_2 \in [-0.6, 0.6]$, and $x_3 \in [-5, 5]$. It has 12 optimal solutions as shown in Table S-XV [13], [11].

TABLE S-XV
THE OPTIMAL SOLUTIONS OF F27

x_1	x_2	x_3
0.279855	0.432789	-0.014189
0.279855	-0.432789	-0.014189
-0.279855	0.432789	-0.014189
-0.279855	-0.432789	-0.014189
0.466980	0.218070	0.000000
-0.466980	0.218070	0.000000
0.466980	-0.218070	0.000000
-0.466980	-0.218070	0.000000
0.000000	0.515388	0.000000
0.000000	-0.515388	0.000000
0.515388	0.000000	-0.012446
-0.515388	0.000000	-0.012446

28) F28:
$$\begin{cases} x_1^2 - x_2 - 2 = 0\\ x_1 + \sin\left(\frac{\pi}{2}x_2\right) = 0 \end{cases}$$
 (28)

where $x_1 \in [0,1]$ and $x_2 \in [-10,0]$. It has two optimal solutions (0, -2) and (0.707660, -1.5) [3].

29) F29:

$$\begin{cases} x_1^2 + x_2^2 + x_1 + x_2 - 8 = 0 \\ x_1|x_2| + x_1 + |x_2| - 5 = 0 \end{cases}$$
 (29)

where $x_1 \in [0, 2.5]$ and $x_2 \in [-4, 6]$. It has four optimal solutions (0.404634, -3.271577), (2.403604, -0.762837), (1, 2), and (2, 1). This problem is modified from [18].

30) F30:

$$\begin{cases} x_1^2 - |x_2| + 1 + \frac{1}{9}|x_1 - 1| = 0\\ x_2^2 + 5x_1^2 - 7 + \frac{1}{9}|x_2| = 0 \end{cases}$$
 (30)

where $x_1 \in [-1, 1]$ and $x_2 \in [-10, 10]$. It has four optimal solutions (-0.814326, -1.864719), (0.861828, -1.758100), (-0.814326, 1.864719), and (0.861828, 1.758100). This problem is modified from [18].

31) F31.

$$\begin{cases} 0.5\sin(x_1x_2) - \frac{0.25}{\pi}x_2 - 0.5x_1 = 0\\ (1 - \frac{0.25}{\pi})\left[\exp(2x_1) - e\right] + \frac{e}{\pi}x_2 - 2ex_1 = 0 \end{cases}$$
(31)

where $x_1 \in [0.25, 1]$ and $x_2 \in [1.5, 2\pi]$. It has two optimal solutions (0.299465, 2.836948) and (0.499966, 3.141589) [12], [19].

32) F32:

$$\begin{cases} x_1^{x_2} + x_2^{x_1} - 5x_1x_2x_3 - 85 = 0\\ x_1^3 - x_2^{x_3} - x_3^{x_2} - 60 = 0\\ x_1^{x_3} + x_3^{x_1} - x_2 - 2 = 0 \end{cases}$$
(32)

where $x_1 \in [3, 5]$, $x_2 \in [2, 4]$, and $x_3 \in [0.5, 2]$. It has one optimal solution (4, 3, 1) [20].

33) F33:

$$\begin{cases} x_1^3 - 3x_1x_2^2 - 1 = 0\\ 3x_1^2x_2 - x_2^3 + 1 = 0 \end{cases}$$
 (33)

where $x_1 \in [-1, -0.1]$ and $x_2 \in [-2, 2]$. It has two optimal solutions (-0.793701, -0.793701) and (-0.290515, 1.084215) [9].

34) F34:

$$\begin{cases}
0.1x_1 + \cos(2x_2) + 0.09240 = 0 \\
\sin(3x_3) + \sin(\frac{10x_1}{3}) + \log(2x_2) - 2.52x_3 + 0.08805 = 0 \\
2(x_1 - 0.75)^2 + \sin(16\pi x_2 - \frac{\pi}{2}) - 3.26815 = 0
\end{cases}$$
(34)

where $x_1 \in [1, 2.5]$, $x_2 \in [0.2, 2]$, and $x_3 \in [0.1, 3]$. It has one optimal solution (1.852100, 0.926050, 0.617370) [21].

35) F35:

$$\begin{cases} 4x_1^3 - 3x_1 - x_2 = 0\\ x_1^2 - x_2 = 0 \end{cases}$$
 (35)

where $x_1 \in [-5, 1.5]$ and $x_2 \in [0, 5]$. It has three optimal solutions (-0.75, 0.5625), (0, 0), and (1, 1) [13].

36) F36:

$$\begin{cases} x_1^3 - 3x_1x_2^2 + a_1(2x_1^2 + x_1x_2) + b_1x_2^2 + c_1x_1 + a_2x_2 = 0\\ 3x_1^2x_2 - x_2^3 - a_1(4x_1x_2 - x_2^2) + b_2x_1^2 + c_2 = 0 \end{cases}$$

where $a_1 = 25, b_1 = 1, c_1 = 2, a_2 = 3, b_2 = 4, c_2 = 5, x_1 \in [0, 2],$ and $x_2 \in [10, 30].$ It has two optimal solutions (1.6359718, 13.8476653) and (0.6277425, 22.2444123) [15].

37) F37:

$$\begin{cases} x_1^2 - x_1 - x_2^2 - x_2 + x_3^2 = 0\\ \sin(x_2 - \exp(x_1)) = 0\\ x_3 - \log|x_2| = 0 \end{cases}$$
 (37)

where $x_1 \in [0, 2]$, $x_2 \in [-10, 10]$, and $x_3 \in [-1, 1]$. It has five optimal solutions shown in Table S-XVI. This problem is modified from [22].

TABLE S-XVI
THE OPTIMAL SOLUTIONS OF F37

x_1	x_2	x_3
0.825297	-0.859034	-0.151946
1.299490	0.525835	-0.642769
1.533662	-1.648068	0.499604
1.981360	-2.172180	0.775731
1.983283	0.983378	-0.016762

38) F38:

$$\begin{cases} x_1^4 + 4x_2^4 - 6.0 = 0 \\ x_1^2 x_2 - 0.6787 = 0 \end{cases}$$
 (38)

where $x_1 \in [-2,2]$ and $x_2 \in [0,1.1]$. It has four optimal solutions (-1.563533, 0.277628), (-0.789706, 1.088295), (1.563533, 0.277628), and (0.789706, 1.088295). This problem is modified from [23].

REFERENCES

- W. Song, Y. Wang, H.-X. Li, and Z. Cai, "Locating multiple optimal solutions of nonlinear equation systems based on multiobjective optimization," *IEEE Trans. on Evol. Comput.*, vol. 19, no. 3, pp. 414–431, June 2015.
- [2] C. Grosan and A. Abraham, "A new approach for solving nonlinear equations systems," *IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans*, vol. 38, no. 3, pp. 698–714, May 2008.
- [3] E. Pourjafari and H. Mojallali, "Solving nonlinear equations systems with a new approach based on invasive weed optimization algorithm and clustering," *Swarm and Evolutionary Computation*, vol. 4, no. 0, pp. 33 43, 2012.
- [4] C. A. Floudas, "Recent advances in global optimization for process synthesis, design and control: Enclosure of all solutions," *Computers & Chemical Engineering*, vol. 23, Supplement, no. 0, pp. 963 – 973, 1999
- [5] M. J. Hirsch, P. M. Pardalos, and M. G. Resende, "Solving systems of nonlinear equations with continuous GRASP," *Nonlinear Analysis: Real World Applications*, vol. 10, no. 4, pp. 2000 – 2006, 2009.
- [6] N. Henderson, W. F. Sacco, and G. M. Platt, "Finding more than one root of nonlinear equations via a polarization technique: An application to double retrograde vaporization," *Chemical Engineering Research and Design*, vol. 88, no. 5C6, pp. 551 – 561, 2010.
- [7] A. Morgan and V. Shapiro, "Box-bisection for solving second-degree systems and the problem of clustering," ACM Trans. Math. Softw., vol. 13, no. 2, pp. 152–167, 1987.
- [8] O. E. Turgut, M. S. Turgut, and M. T. Coban, "Chaotic quantum behaved particle swarm optimization algorithm for solving nonlinear system of equations," *Computers & Mathematics with Applications*, vol. 68, no. 4, pp. 508 – 530, 2014.
- [9] M. Jaberipour, E. Khorram, and B. Karimi, "Particle swarm algorithm for solving systems of nonlinear equations," *Computers & Mathematics* with Applications, vol. 62, no. 2, pp. 566 – 576, 2011.
- [10] M. Abdollahi, A. Isazadeh, and D. Abdollahi, "Imperialist competitive algorithm for solving systems of nonlinear equations," *Computers & Mathematics with Applications*, vol. 65, no. 12, pp. 1894 – 1908, 2013.
- [11] W. Sacco and N. Henderson, "Finding all solutions of nonlinear systems using a hybrid metaheuristic with fuzzy clustering means," *Applied Soft Computing*, vol. 11, no. 8, pp. 5424 – 5432, 2011.
- [12] C. Wang, R. Luo, K. Wu, and B. Han, "A new filled function method for an unconstrained nonlinear equation," *Journal of Computational and Applied Mathematics*, vol. 235, no. 6, pp. 1689 – 1699, 2011.
- [13] R. B. Kearfott, "Some tests of generalized bisection," ACM Trans. Math. Softw., vol. 13, no. 3, pp. 197–220, 1987.
- [14] J. R. Sharma and H. Arora, "On efficient weighted-newton methods for solving systems of nonlinear equations," *Applied Mathematics and Computation*, vol. 222, pp. 497 – 506, 2013.
- [15] W. Rheinboldt, "Some nonlinear test problems," 2003. [Online]. Available: http://folk.uib.no/ssu029/Pdf_file/Testproblems/testprobRheinboldt03.pdf
- [16] C. Jäger and D. Ratz, "A combined method for enclosing all solutions of nonlinear systems of polynomial equations," *Reliable Computing*, vol. 1, no. 1, pp. 41–64, 1995.
- [17] H. Ren, L. Wu, W. Bi, and I. K. Argyros, "Solving nonlinear equations system via an efficient genetic algorithm with symmetric and harmonious individuals," *Applied Mathematics and Computation*, vol. 219, no. 23, pp. 10967 – 10973, 2013.
- [18] H. A. e Oliveira Jr. and A. Petraglia, "Solving nonlinear systems of functional equations with fuzzy adaptive simulated annealing," *Applied Soft Computing*, vol. 13, no. 11, pp. 4349 – 4357, 2013.
- [19] C. Floudas, P. Pardalos, C. Adjiman, W. Esposito, Z. Gumus, S. Harding, J. Klepeis, C. Meyer, and C. Schweiger, *Handbook of Test Problems in Local and Global Optimization*. Kluwer Academic Publishers, 1999.
- [20] Y. Mo, H. Liu, and Q. Wang, "Conjugate direction particle swarm optimization solving systems of nonlinear equations," *Computers & Mathematics with Applications*, vol. 57, no. 11-12, pp. 1877 – 1882, 2009.
- [21] J. Pintér, "Solving nonlinear equation systems via global partition and search: Some experimental results," *Computing*, vol. 43, no. 4, pp. 309– 323, 1990.
- [22] M. Grau-Sánchez, A. Grau, and M. Noguera, "Frozen divided difference scheme for solving systems of nonlinear equations," *J. Comput. Appl. Math.*, vol. 235, no. 6, pp. 1739–1743, 2011.

[23] M. Nikkhah-Bahrami and R. Oftadeh, "An effective iterative method for computing real and complex roots of systems of nonlinear equations," *Applied Mathematics and Computation*, vol. 215, no. 5, pp. 1813 – 1820, 2009.

S-II. PARAMETER SETTINGS

TABLE S-R-I PARAMETER SETTINGS FOR DIFFERENT METHODS.

Method	Parameter settings
A-WeB	NP = 100, H = NP
A-MONES	NP = 100, H = NP
A-MOMMOP	NP = 100, H = NP
A-MOBiDE	NP = 100, H = NP
NCDE	NP = 100, F = 0.9, CR = 0.1
NSDE	NP = 100, F = 0.9, CR = 0.1
LIPS	NP = 100, w = 0.729843788
R3PSO	$NP = 100, w = 0.729843788, c_1 = c_2 = 2.05$
Rep-SHADE	NP = 100, H = NP
Rep-CLPSO	NP = 100, m = 7, c = 2.0
jDE-WeB	$NP = 100, \tau_1 = \tau_2 = 0.1$
JADE-WeB	$NP = 100, c = 0.1, \mu_{CR} = 0.5, \mu_{F} = 0.5$

S-III. SUPPLEMENTAL RESULTS

TABLE S-R-II

Comparison of different methods on test instances F01-F21 with respect to the peak ratio. The best result for each test instance among the compared methods is highlighted in **BOLDFACE**.

Instance	A-WeB	A-MONES	A-MOMMOP	A-MOBiDE	NCDE	NSDE	LIPS	R3PSO	Rep-SHADE	Rep-CLPSO
F01	1.0000	1.0000	1.0000	0.7100	1.0000	1.0000	1.0000	0.0700	1.0000	1.0000
F02	0.6200	0.5500	0.0500	0.0000	0.8300	0.3400	0.0000	0.0000	0.0000	0.0000
F03	1.0000	1.0000	1.0000	0.1345	0.9873	0.9600	0.6382	0.1309	0.9873	0.9455
F04	0.9573	0.7387	0.9000	0.1560	0.9773	0.9653	0.4813	0.1213	0.9147	0.9800
F05	1.0000	0.9708	0.5092	0.0985	0.6400	0.8138	0.0923	0.0000	0.7754	0.5015
F06	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	1.0000	1.0000
F07	0.9400	0.5625	0.9725	0.2075	0.9350	0.9650	0.1925	0.0200	0.9975	0.9675
F08	0.4200	0.4000	0.1600	0.0200	0.1000	0.0400	0.0000	0.0000	0.0000	0.0000
F09	0.8371	0.6029	0.7429	0.2086	0.9257	0.8943	0.2600	0.1657	0.8514	0.8257
F10	0.8933	0.7333	0.7867	0.0000	0.0000	0.0733	0.0000	0.0000	0.2933	0.0000
F11	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0200	1.0000	1.0000
F12	0.8880	0.7180	0.8840	0.1860	0.6540	0.8680	0.1340	0.0140	0.9240	0.8400
F13	0.9733	0.9956	0.9889	0.2178	0.9800	0.9867	0.0756	0.0000	0.9778	0.8667
F14	1.0000	0.4431	0.9985	0.2800	0.8508	0.8508	0.1246	0.0031	0.8877	0.9277
F15	0.6688	0.1738	0.9138	0.1200	0.7700	0.7388	0.0000	0.0000	0.6925	0.6000
F16	0.9433	0.7567	0.8600	0.3600	1.0000	1.0000	0.2267	0.0100	1.0000	1.0000
F17	0.6200	0.3200	0.9000	0.0000	0.2800	0.2100	0.0000	0.0000	1.0000	0.6100
F18	0.9514	0.5686	0.5829	0.2171	0.8371	0.9457	0.0029	0.0029	0.9286	0.7629
F19	0.9950	0.5100	0.5700	0.4250	1.0000	1.0000	0.2600	0.0100	1.0000	1.0000
F20	1.0000	0.7633	1.0000	0.2967	0.9967	0.9900	0.1767	0.0033	1.0000	1.0000
F21	0.8550	0.6250	0.8250	0.3150	0.9650	0.9600	0.0000	0.0100	0.7450	0.4850
Average	0.8839	0.6873	0.7926	0.2835	0.7966	0.7906	0.1745	0.0277	0.8083	0.7292

TABLE S-R-III

Comparison of different methods on test cases F01-F21 with respect to the success rate. The best result for each test instance among the compared methods is highlighted in **BOLDFACE**.

Instance	A-WeB	A-MONES	A-MOMMOP	A-MOBiDE	NCDE	NSDE	LIPS	R3PSO	Rep-SHADE	Rep-CLPSO
F01	1.00	1.00	1.00	0.42		1.00	1.00	0.02	1.00	1.00
					1.00					
F02	0.36	0.10	0.00	0.00	0.68	0.08	0.00	0.00	0.00	0.00
F03	1.00	1.00	1.00	0.00	0.88	0.66	0.00	0.00	0.86	0.62
F04	0.58	0.36	0.38	0.00	0.72	0.62	0.00	0.00	0.24	0.72
F05	1.00	0.86	0.00	0.00	0.00	0.04	0.00	0.00	0.08	0.00
F06	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	1.00
F07	0.60	0.50	0.80	0.00	0.52	0.72	0.00	0.00	0.98	0.78
F08	0.42	0.40	0.16	0.02	0.10	0.04	0.00	0.00	0.00	0.00
F09	0.12	0.02	0.00	0.02	0.50	0.32	0.00	0.00	0.06	0.02
F10	0.68	0.50	0.42	0.00	0.00	0.00	0.00	0.00	0.04	0.00
F11	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.02	1.00	1.00
F12	0.28	0.50	0.24	0.00	0.00	0.28	0.00	0.00	0.42	0.22
F13	0.76	0.96	0.90	0.00	0.84	0.88	0.00	0.00	0.80	0.28
F14	1.00	0.00	0.98	0.00	0.04	0.02	0.00	0.00	0.10	0.36
F15	0.00	0.00	0.36	0.00	0.02	0.00	0.00	0.00	0.00	0.00
F16	0.66	0.50	0.48	0.00	1.00	1.00	0.00	0.00	1.00	1.00
F17	0.24	0.12	0.80	0.00	0.00	0.00	0.00	0.00	1.00	0.28
F18	0.70	0.00	0.00	0.00	0.04	0.64	0.00	0.00	0.62	0.12
F19	0.98	0.00	0.14	0.02	1.00	1.00	0.00	0.00	1.00	1.00
F20	1.00	0.50	1.00	0.00	0.98	0.94	0.00	0.00	1.00	1.00
F21	0.14	0.00	0.14	0.00	0.74	0.74	0.00	0.00	0.08	0.00
Average	0.64	0.44	0.51	0.12	0.53	0.52	0.05	0.00	0.54	0.45

TABLE S-R-IV

Comparison of different methods on test cases F26-F38 with respect to the peak ratio. The best result for each test instance among the compared methods is highlighted in **Boldface**.

Instance	A-WeB	A-MONES	A-MOMMOP	NCDE	NSDE	Rep-SHADE	Rep-CLPSO
F26	1.0000	0.9700	0.9800	0.9900	0.9900	0.9800	0.8100
F27	0.0933	0.3750	0.0000	0.6467	0.7033	0.2733	0.4533
F28	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
F29	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
F30	1.0000	0.7550	1.0000	0.9700	1.0000	1.0000	0.9900
F31	1.0000	0.8600	1.0000	1.0000	1.0000	1.0000	0.9900
F32	1.0000	1.0000	1.0000	0.4000	0.8400	1.0000	1.0000
F33	1.0000	1.0000	1.0000	1.0000	0.9800	1.0000	1.0000
F34	0.8800	0.9200	0.5200	0.1600	0.6600	0.4200	0.1400
F35	1.0000	0.9467	0.9933	0.9800	1.0000	1.0000	1.0000
F36	0.9400	0.9100	0.9400	1.0000	1.0000	1.0000	0.9200
F37	0.9320	0.9160	0.9000	0.7880	0.9840	0.9480	0.3800
F38	1.0000	0.7600	1.0000	0.9750	1.0000	1.0000	1.0000
Average	0.9112	0.8779	0.8718	0.8392	0.9352	0.8939	0.8218

TABLE S-R-V

Comparison of different methods on test cases F26-F38 with respect to the success rate. The best result for each test instance among the compared methods is highlighted in **BOLDFACE**.

Instance	A-WeB	A-MONES	A-MOMMOP	NCDE	NSDE	Rep-SHADE	Rep-CLPSO
F26	1.00	0.94	0.96	0.98	0.98	0.96	0.62
F27	0.00	0.00	0.00	0.00	0.02	0.00	0.00
F28	1.00	1.00	1.00	1.00	1.00	1.00	1.00
F29	1.00	1.00	1.00	1.00	1.00	1.00	1.00
F30	1.00	0.50	1.00	0.88	1.00	1.00	0.96
F31	1.00	0.74	1.00	1.00	1.00	1.00	0.98
F32	1.00	1.00	1.00	0.40	0.84	1.00	1.00
F33	1.00	1.00	1.00	1.00	0.96	1.00	1.00
F34	0.88	0.96	0.52	0.16	0.66	0.42	0.14
F35	1.00	0.86	0.98	0.96	1.00	1.00	1.00
F36	0.88	0.84	0.88	1.00	1.00	1.00	0.84
F37	0.66	0.58	0.54	0.18	0.92	0.74	0.00
F38	1.00	0.50	1.00	0.90	1.00	1.00	1.00
Average	0.88	0.76	0.84	0.73	0.88	0.86	0.73

TABLE S-R-VI

Influence of the historical memory size (H) on the performance of A-WeB for test instances F01-F21 with respect to the peak ratio. The best result for each test instance among the compared methods is highlighted in **Boldface**.

Instance	H = 5	H = 10	H = 30	H = 50	H = 100	H = 200	H = 300	H = 400	H = 500
F01	1.0000	1.0000	1.0000	0.9900	1.0000	1.0000	1.0000	0.9900	1.0000
F02	0.0100	0.0200	0.2400	0.4700	0.6200	0.6900	0.6700	0.7000	0.7300
F03	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
F04	0.9413	0.9427	0.9680	0.9613	0.9573	0.9533	0.9667	0.9600	0.9627
F05	0.9969	0.9969	0.9969	0.9985	1.0000	1.0000	1.0000	1.0000	1.0000
F06	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
F07	0.8875	0.8775	0.9250	0.9550	0.9400	0.9800	0.9675	0.9575	0.9450
F08	0.3200	0.4200	0.4000	0.4800	0.4200	0.4600	0.4200	0.5600	0.4800
F09	0.7886	0.7771	0.8257	0.8200	0.8371	0.8429	0.8086	0.8400	0.8171
F10	0.3067	0.4333	0.7533	0.8533	0.8933	0.9467	0.9733	0.9733	0.9533
F11	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
F12	0.8220	0.8380	0.8860	0.8700	0.8880	0.8940	0.9040	0.8880	0.8720
F13	0.9933	0.9933	0.9844	0.9756	0.9733	0.9756	0.9600	0.9867	0.9689
F14	1.0000	0.9954	0.9985	0.9985	1.0000	1.0000	1.0000	0.9969	1.0000
F15	0.5838	0.6388	0.6875	0.7075	0.6688	0.6938	0.7088	0.7013	0.7225
F16	0.9567	0.9567	0.9600	0.9733	0.9433	0.9567	0.9667	0.9733	0.9767
F17	0.5900	0.6200	0.5800	0.5800	0.6200	0.5500	0.5200	0.4900	0.4900
F18	0.8886	0.9200	0.9714	0.9543	0.9514	0.9514	0.9343	0.9343	0.9400
F19	1.0000	1.0000	1.0000	1.0000	0.9950	1.0000	1.0000	1.0000	0.9950
F20	0.9933	0.9867	1.0000	1.0000	1.0000	0.9967	1.0000	0.9967	1.0000
F21	0.8650	0.8600	0.8225	0.8650	0.8550	0.8575	0.8600	0.8625	0.8400
Average	0.8068	0.8227	0.8571	0.8787	0.8839	0.8928	0.8886	0.8957	0.8902

TABLE S-R-VII

Influence of the historical memory size (H) on the performance of A-WeB for test instances F01-F21 with respect to the success rate. The best result for each test instance among the compared methods is highlighted in **boldface**.

Instance	H = 5	H = 10	H = 30	H = 50	H = 100	H = 200	H = 300	H = 400	H = 500
F01	1.00	1.00	1.00	0.98	1.00	1.00	1.00	0.98	1.00
F02	0.00	0.00	0.12	0.22	0.36	0.44	0.40	0.44	0.50
F03	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
F04	0.44	0.40	0.60	0.52	0.58	0.52	0.60	0.56	0.68
F05	0.96	0.96	0.96	0.98	1.00	1.00	1.00	1.00	1.00
F06	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
F07	0.44	0.38	0.48	0.68	0.60	0.84	0.74	0.68	0.60
F08	0.32	0.42	0.40	0.48	0.42	0.46	0.42	0.56	0.48
F09	0.02	0.00	0.10	0.06	0.12	0.08	0.02	0.12	0.04
F10	0.02	0.10	0.28	0.58	0.68	0.84	0.92	0.92	0.86
F11	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
F12	0.12	0.14	0.24	0.26	0.28	0.36	0.40	0.36	0.26
F13	0.94	0.94	0.86	0.78	0.76	0.78	0.66	0.88	0.72
F14	1.00	0.94	0.98	0.98	1.00	1.00	1.00	0.96	1.00
F15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F16	0.74	0.74	0.76	0.84	0.66	0.74	0.80	0.84	0.86
F17	0.18	0.24	0.16	0.16	0.24	0.10	0.08	0.08	0.08
F18	0.38	0.52	0.80	0.72	0.70	0.70	0.60	0.62	0.62
F19	1.00	1.00	1.00	1.00	0.98	1.00	1.00	1.00	0.98
F20	0.96	0.92	1.00	1.00	1.00	0.98	1.00	0.98	1.00
F21	0.28	0.32	0.20	0.22	0.14	0.22	0.20	0.36	0.24
Average	0.56	0.57	0.62	0.64	0.64	0.67	0.66	0.68	0.66

TABLE S-R-VIII

Influence of F and CR on the performance of A-WeB for test instances F01-F21 with respect to the peak ratio. The best result FOR EACH TEST INSTANCE AMONG THE COMPARED METHODS IS HIGHLIGHTED IN **BOLDFACE**.

Instance	A-WeB	A-WeB-2	A-WeB-3	A-WeB-4	A-WeB-5
F01	1.0000	1.0000	1.0000	1.0000	1.0000
F02	0.6200	0.1700	0.0000	0.5000	0.0300
F03	1.0000	0.9964	1.0000	1.0000	1.0000
F04	0.9573	0.9013	0.9720	0.9280	0.9880
F05	1.0000	0.5708	0.9846	1.0000	1.0000
F06	1.0000	1.0000	0.0000	1.0000	1.0000
F07	0.9400	0.8650	0.6750	0.8250	0.8225
F08	0.4200	0.1000	0.0200	0.4200	0.9600
F09	0.8371	0.8229	0.8343	0.8286	0.8229
F10	0.8933	0.0333	0.8267	0.8600	0.9000
F11	1.0000	1.0000	1.0000	1.0000	1.0000
F12	0.8880	0.8220	0.9260	0.8720	0.9080
F13	0.9733	0.7489	0.7000	0.9489	0.8756
F14	1.0000	1.0000	1.0000	1.0000	1.0000
F15	0.6688	0.5575	0.0350	0.6838	0.5513
F16	0.9433	0.9567	0.9200	0.9500	0.9233
F17	0.6200	0.0000	0.0000	0.0200	0.0400
F18	0.9514	0.7829	0.8886	0.8371	0.8857
F19	0.9950	1.0000	1.0000	0.9950	1.0000
F20	1.0000	0.9833	1.0000	0.9900	1.0000
F21	0.8550	0.7150	0.7475	0.8425	0.7325
Average	0.8839	0.7155	0.6919	0.8334	0.8305

 ${\it TABLE\,\, S-R-IX} \\ {\it Influence\,\, of\,\, F\,\, and\,\, CR\,\, on\,\, the\,\, performance\,\, of\,\, A-WeB\,\, for\,\, test\,\, instances\,\, F01-F21\,\, with\,\, respect\,\, to\,\, the\,\, success\,\, rate.\,\, The\,\, best\,\, result}$ FOR EACH TEST INSTANCE AMONG THE COMPARED METHODS IS HIGHLIGHTED IN **BOLDFACE**.

Instance	A-WeB	A-WeB-2	A-WeB-3	A-WeB-4	A-WeB-5
F01	1.00	1.00	1.00	1.00	1.00
F02	0.36	0.06	0.00	0.12	0.00
F03	1.00	0.96	1.00	1.00	1.00
F04	0.58	0.26	0.68	0.30	0.82
F05	1.00	0.00	0.86	1.00	1.00
F06	1.00	1.00	0.00	1.00	1.00
F07	0.60	0.00	0.26	0.20	0.18
F08	0.42	0.10	0.02	0.42	0.96
F09	0.12	0.06	0.14	0.08	0.12
F10	0.68	0.00	0.52	0.62	0.70
F11	1.00	1.00	1.00	1.00	1.00
F12	0.28	0.08	0.44	0.22	0.32
F13	0.76	0.04	0.02	0.60	0.16
F14	1.00	1.00	1.00	1.00	1.00
F15	0.00	0.00	0.00	0.00	0.00
F16	0.66	0.76	0.52	0.70	0.58
F17	0.24	0.00	0.00	0.00	0.00
F18	0.70	0.10	0.22	0.12	0.30
F19	0.98	1.00	1.00	0.98	1.00
F20	1.00	0.90	1.00	0.94	1.00
F21	0.14	0.00	0.04	0.18	0.06
Average	0.64	0.40	0.46	0.55	0.58

TABLE S-R-X

Influence of the parameter adaptation on the performance of A-WeB for test instances F01-F21 with respect to the peak ratio. The best result for each test instance among the compared methods is highlighted in **boldface**.

Instance	A-WeB	iDE-WeB	JADE-WeB
F01	1.0000	1.0000	1.0000
F02	0.6200	0.3600	0.7000
F03	1.0000	1.0000	1.0000
F04	0.9573	0.9467	0.9653
F05	1.0000	0.9969	1.0000
F06	1.0000	1.0000	1.0000
F07	0.9400	0.8700	0.9725
F08	0.4200	0.7200	0.1800
F09	0.8371	0.8086	0.8514
F10	0.8933	0.9467	0.2467
F11	1.0000	1.0000	1.0000
F12	0.8880	0.8240	0.9080
F13	0.9733	0.9667	0.9444
F14	1.0000	1.0000	1.0000
F15	0.6688	0.4938	0.7363
F16	0.9433	0.9467	0.9600
F17	0.6200	0.5900	0.2900
F18	0.9514	0.8600	0.8629
F19	0.9950	0.9950	1.0000
F20	1.0000	1.0000	1.0000
F21	0.8550	0.7650	0.8575
Average	0.8839	0.8614	0.8321

TABLE S-R-XI

Influence of the parameter adaptation on the performance of A-WeB for test instances F01-F21 with respect to the success rate. The best result for each test instance among the compared methods is highlighted in **Boldface**.

Instance	A-WeB	jDE-WeB	JADE-WeB
F01	1.00	1.00	1.00
F02	0.36	0.10	0.46
F03	1.00	1.00	1.00
F04	0.58	0.48	0.60
F05	1.00	0.96	1.00
F06	1.00	1.00	1.00
F07	0.60	0.28	0.86
F08	0.42	0.72	0.18
F09	0.12	0.04	0.12
F10	0.68	0.84	0.06
F11	1.00	1.00	1.00
F12	0.28	0.14	0.42
F13	0.76	0.74	0.52
F14	1.00	1.00	1.00
F15	0.00	0.00	0.02
F16	0.66	0.68	0.76
F17	0.24	0.04	0.04
F18	0.70	0.22	0.24
F19	0.98	0.98	1.00
F20	1.00	1.00	1.00
F21	0.14	0.04	0.24
Average	0.64	0.58	0.60

TABLE S-R-XII

Comparison between "DE/current/1" and "DE/rand/1" in A-Web. The better result for each test instance between the compared methods is highlighted in **Boldface**. In the last row, the results in the form of (R^+,R^-,p) are obtained by the multiple-problem Wilcoxon test.

Instance	PR		SR	
Instance	DE/current/1	DE/rand/1	DE/current/1	DE/rand/1
F02	0.6200	0.9100	0.36	0.82
F04	0.9573	0.9760	0.58	0.70
F05	1.0000	0.9662	1.00	0.66
F07	0.9400	0.9075	0.60	0.52
F08	0.4200	0.2400	0.42	0.24
F09	0.8371	0.8114	0.12	0.08
F10	0.8933	0.7133	0.68	0.14
F12	0.8880	0.9060	0.28	0.34
F13	0.9733	0.7333	0.76	0.04
F15	0.6688	0.6438	0.00	0.00
F16	0.9433	0.8433	0.66	0.30
F17	0.6200	0.6800	0.24	0.36
F18	0.9514	0.9171	0.70	0.48
F19	0.9950	1.0000	0.98	1.00
F21	0.8550	0.6375	0.14	0.04
Average	0.8375	0.7924	0.50	0.38
Wilcoxon test	t (90.0, 30.0, 9.46E-02)		(83.5, 36.5, 1.53E-01)	

TABLE S-R-XIII

Influence of the distance comparison criterion for A-WeB. The better result for each test instance between the compared methods is highlighted in **boldface**. In the last row, the results in the form of (R^+,R^-,p) are obtained by the multiple-problem Wilcoxon test.

Instance	PR		SR		
Histalice	A-WeB	A-WeB-6	A-WeB	A-WeB-6	
F02	0.6200	0.6300	0.36	0.46	
F04	0.9573	0.9680	0.58	0.66	
F05	1.0000	0.7354	1.00	0.10	
F07	0.9400	0.9925	0.60	0.94	
F08	0.4200	0.2800	0.42	0.28	
F09	0.8371	0.8743	0.12	0.18	
F10	0.8933	0.9800	0.68	0.94	
F12	0.8880	0.9300	0.28	0.56	
F13	0.9733	0.9711	0.76	0.74	
F14	1.0000	0.9985	1.00	0.98	
F15	0.6688	0.7713	0.00	0.00	
F16	0.9433	0.9867	0.66	0.92	
F17	0.6200	0.7000	0.24	0.40	
F18	0.9514	0.9771	0.70	0.84	
F19	0.9950	1.0000	0.98	1.00	
F21	0.8550	0.9800	0.14	0.86	
Average	0.8477	0.8609	0.53	0.62	
Wilcoxon test	$(34.0, 102.0, \ge 0.2)$		$(34.0, 102.0, \ge 0.2)$		