Ausgabe: 24. Juni 2022 ______ Bearbeitung: 27. Juni – 1. Juli 2022

Einführung in die angewandte Stochastik

11. Präsenzübung

Aufgabe P 40

Seien $n \in \mathbb{N}$ und X_1, \ldots, X_n stochastisch unabhängige Zufallsvariablen, die jeweils auf dem Intervall [0, b] (stetig) gleichverteilt seien mit unbekannter oberer Intervallgrenze b > 0. Wir betrachten folgende Funktion:

$$\widehat{b}_n = 2 \overline{X}_n = \frac{2}{n} \sum_{i=1}^n X_i.$$

- (a) Berechnen Sie den Erwartungswert $E_b(\hat{b}_n)$.
- (b) Berechnen Sie die Varianz $\mathrm{Var}_b\Big(\,\widehat{b}_n\Big)$ von \widehat{b}_n für b>0 .

In der schließenden Statistik nennt man \hat{b}_n einen erwartungstreuen Schätzer für b.

Aufgabe P 41

Auf dem letzten Aachener Weihnachtsmarkt wurden vom Gewerbeaufsichtsamt an zwei Glühweinständen Untersuchungen angestellt, um die erwartete Füllmenge μ der Becher zu bestimmen. Hierbei wurden am ersten Stand die Füllmengen x_1, \ldots, x_n und am zweiten Stand die Füllmengen y_1, \ldots, y_m gemessen.

Es werde angenommen, dass diese n+m Messwerte als Realisationen von Zufallsvariablen X_1,\ldots,X_n bzw. Y_1,\ldots,Y_m aufgefasst werden können, die (gemeinsam) stochastisch unabhängig sind mit $\mu=\mathrm{E}(X_i)=\mathrm{E}(Y_j)\geq 0,\ \sigma_1^2=\mathrm{Var}(X_i)>0$ und $\sigma_2^2=\mathrm{Var}(Y_j)>0$ für $i=1,\ldots,n$ bzw. $j=1,\ldots,m$.

Zur Schätzung von μ soll eine Schätzfunktion der Form

$$\hat{\mu} = a \overline{X}_n + b \overline{Y}_m + c = a \frac{1}{n} \sum_{i=1}^n X_i + b \frac{1}{m} \sum_{j=1}^m Y_j + c$$

mit $a, b, c \in \mathbb{R}$ verwendet werden.

(a) Bestimmen Sie a,b,c so, dass der Schätzer $\hat{\mu}$ erwartungstreu für μ ist, d.h., es soll gelten:

$$E_{\mu}(\widehat{\mu}) = \mu$$
 für alle $\mu \in [0, \infty)$.

(b) Bestimmen Sie a, b, c so, dass $\hat{\mu}$ unter allen erwartungstreuen Schätzern der oben angegebenen Form minimale Varianz besitzt. Welcher Schätzer ergibt sich speziell für $\sigma_1^2 = \sigma_2^2$?

Aufgabe P 42

Es seien X_1, \ldots, X_n stochastisch unabhängige, jeweils beta $(\alpha, 1)$ -verteilte Zufallsvariablen mit (unbekanntem) Parameter $\alpha > 0$. Die zugehörige Dichtefunktion f_{α} der Zufallsvariablen X_i für $i \in \{1, ..., n\}$ in Abhängigkeit vom Parameter α ist dann gemäß B 3.11 gegeben durch

$$f_{\alpha}(x) = \begin{cases} \alpha x^{\alpha - 1} & \text{für } x \in (0, 1), \\ 0 & \text{für } x \in \mathbb{R} \setminus (0, 1). \end{cases}$$

Bestimmen Sie zu gegebenen Realisationen $x_1,...,x_n \in (0,1)$ von $X_1,...,X_n$ eine Maximum-Likelihood-Schätzung $\hat{\alpha}$ für den unbekannten Parameter α .

Welche Maximum-Likelihood-Schätzung erhält man für die folgenden Daten:

$$0.46$$
, 0.24 , 0.67 , 0.79 , 0.83 , 0.85 , 0.42 , 0.90 ?

Aufgabe P 43

Die Zufallsvariablen X_1, \ldots, X_n seien stochastisch unabhängig und jeweils geometrisch verteilt mit (unbekanntem) Parameter $p \in (0, 1)$.

Bestimmen Sie zu gegebenen Realisationen $x_1, \ldots, x_n \in \mathbb{N}_0$ von X_1, \ldots, X_n mit $\overline{x} > 0$ eine Maximum-Likelihood-Schätzung \hat{p} für den Parameter p.