PROBABILITY THEORY AND RANDOM PROCESSES (MA225)

LECTURE SLIDES Lecture 22 (September 30, 2019)

Theorem: Let $X \sim N_2(\mu, \Sigma)$ be such that Σ is invertible, then

① for all $y \in \mathbb{R}$, the conditional PDF of X given Y = y is given by

$$f_{X|Y}(x|y) = \frac{1}{\sigma_{x|y}\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu_{x|y}}{\sigma_{x|y}}\right)^2\right] \quad \text{for } x \in \mathbb{R},$$

where
$$\mu_{x|y} = \mu_x + \rho \frac{\sigma_x}{\sigma_y} (y - \mu_y)$$
 and $\sigma_{x|y} = \sigma_x^2 (1 - \rho^2)$.

Theorem: Let $X_1, X_2, \ldots X_n$ be i.i.d. N(0,1) random variables. Then $\sum_{i=1}^n X_i^2 \sim Gamma(n/2, 1/2) \equiv \chi_n^2$.

Theorem: Let $X_1, X_2, \ldots X_n$ be i.i.d. $N(\mu, \sigma^2)$ random variables. Then $\overline{X} \sim N(\mu, \sigma^2/n)$, $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$, and \overline{X} and S^2 are independently distributed. Here $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ and $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$.