

# Introduction

CSC 573 Internet Protocols
Spring 2019



# Agenda

- 1. History
- 2. Internet Structure
- 3. Packet vs circuit switching
- 4. TCP/IP Protocol Stack



- Cerf and Kahn are considered the Internet founding fathers
  - Vinton Cerf -> Born in 1943, DARPA program manager, funded and chairman of ICANN, president of ACM
  - Bob Kahn -> Born in 1938, Ph.D. from City University of NY, worked at AT&T, and was a professor at MIT
- Established internetworking principles:
  - *minimalism, autonomy* no internal changes required to interconnect networks
  - best effort service model
  - stateless routers

### define today's Internet architecture

Khaled Harfoush 2019



### 1960's: Early Packet-Switching Principles

- 1961: Kleinrock queueing theory shows effectiveness of packetswitching
- 1964: Baran packet-switching in military nets
- 1967: ARPAnet conceived by Advanced Research Projects Agency
- 1969: first ARPAnet node operational
- 1970: ALOHAnet satellite network in Hawaii



### 1970's: Internetworking, proprietary nets

- **1972**:
  - ARPAnet public demo
  - NCP (Network Control Protocol) first host-host protocol
  - first e-mail program
  - ARPAnet has 15 nodes
- 1974: Cerf and Kahn architecture for interconnecting networks
- 1976: Ethernet at Xerox PARC
- Late 70's: proprietary architectures: DECnet, SNA, XNA
- late 70's: switching fixed length packets (ATM precursor)
- 1979: ARPAnet has 200 nodes

Khaled Harfoush 2019



### 1980's: new protocols, a proliferation of networks

- 1983: deployment of TCP/IP
- 1982: smtp e-mail protocol defined
- 1983: DNS defined for name-to-IP-address translation
- 1985: ftp protocol defined
- 1988: TCP congestion control
- new national networks: Csnet, BITnet, NSFnet, Minitel
- 100,000 hosts connected to confederation of networks



### 1990, 2000's: Commercialization, the Web, new apps

- early 1990's: ARPAnet decommissioned
- 1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995)
- early 1990s: Web
  - hypertext [Bush 1945, Nelson 1960's]
  - HTML, HTTP: Berners-Lee
  - 1994: Mosaic, later Netscape
  - late 1990's: commercialization of the Web
- late 1990's 2000's:
  - more killer apps: instant messaging, P2P file sharing
  - network security to forefront
  - est. 50 million hosts, 100 million+ users
  - backbone links running at Gbps

Khaled Harfoush 2019



### 2005 - present

- ~750 million hosts
- Smartphones and tablets
- Aggressive deployment of broadband access
- Increasing ubiquity of high-speed wireless access
- Emergence of online social networks:
  - Facebook: soon one billion users
- Service providers (Google, Microsoft) create their own networks
  - Bypass Internet, providing "instantaneous" access to search, email, etc.
- E-commerce, universities, enterprises running their services in "cloud" (eq, Amazon EC2)



# Agenda

- History
- 2. Internet Structure
- 3. Packet vs circuit switching
- 4. TCP/IP Protocol Stack

Khaled Harfoush 2019



### Network devices

- Endhosts (servers and clients)
- Routers, switches, and hubs to connect endhosts
- A network consists of some number of endhosts interconnected through routers/switches/hubs
- The Internet interconnects networks



# Types of Networks

- Not all networks are created equal! Why?
- Edge Networks: Carry own traffic

**Examples:** Customer networks such as home networks and NCSU network

 Core Networks: Carry transit traffic; i.e. traffic for their customers (in addition to own traffic)

Examples: ISP networks such as Sprint, AT&T, Level3, etc

Khaled Harfoush 2019



## Structure of Edge Networks

- ??
- Why?



# Structure of Core Networks

- ??
- Why?





# Agenda

- History
- 2. Internet Structure
- 3. Packet vs circuit switching
- 4. TCP/IP Protocol Stack

Khaled Harfoush 2019



## **Packet Switching**

- Hosts break applicationlayer messages into packets
  - forward packets from one router to the next, across links on path from source to destination
- Packets from different sources share intermediate resources

















### "Real" Internet delays and routes

- traceroute program: provides delay measurement from source to router along end-end Internet path towards destination. For all *i*:
  - sends three packets that will reach router / on path towards destination
  - router *i* will return packets to sender
  - sender times interval between transmission and reply.



Khaled Harfoush 2019

### Real" Internet delays and routes

traceroute: gaia.cs.umass.edu to www.eurecom.fr 3 delay measurements from
gaia.cs.umass.edu to cs-gw.cs.umass.edu
border1-rt-fa5-1-0.gw.umass.edu (128.119.3.145) 1 ms 1 ms 2 ms
cht-vbns.gw.umass.edu (128.119.3.130) 6 ms 5 ms 5 ms
in1-at1-0-0-19.wor.vbns.net (204.147.132.129) 16 ms 11 ms 13 ms
in1-so7-0-0-0.wae.vbns.net (204.147.136.136) 21 ms 18 ms 18 ms
abilene-vbns.abilene.ucaid.edu (198.32.11.9) 22 ms 18 ms 22 ms
r nycm-wash.abilene.ucaid.edu (198.32.8.46) 22 ms 22 ms 22 ms
de2-1.de1.de.geant.net (62.40.96.50) 113 ms 109 ms 106 ms
de2-1.de1.de.geant.net (62.40.96.50) 113 ms 121 ms 114 ms
renater-gw.fr1.fr.geant.net (62.40.103.54) 112 ms 114 ms
renater-gw.fr1.fr.geant.net (62.40.103.54) 113 ms 125 ms 126 ms
renater-fr (195.220.98.102) 123 ms 125 ms 124 ms
renater-gw.fr1.fr.geant.net (195.220.98.110) 126 ms 126 ms 124 ms
renater-gw.fr1.fr.geant.net (195.220.98.110) 126 ms 126 ms 128 ms 133 ms
renater-fr (195.220.98.110) 126 ms 128 ms 128 ms 133 ms
renater-fr (195.220.98.110) 126 ms 128 ms 128 ms 133 ms
renater-fr (195.220.98.110) 126 ms 128 ms 128 ms 133 ms
renater-fr (195.220.98.110) 128 ms 128 ms 128 ms 133 ms 3 delay measurements from \* means no response (probe lost, router not replying) 19 fantasia.eurecom.fr (193.55.113.142) 132 ms 128 ms 136 ms Khaled Harfoush 2019





# Packet switching vs circuit switching (2/2)



circuit-switching:

10 users

packet switching:

with 35 users, probability > 10 active at same time is less than .0004

Q: how did we get value 0.0004?

Q: what happens if > 35 users?

- packet switching allows more users to use network!
- simpler, no call setup
- congestion possible: packet delay and loss

Khaled Harfoush 2019



# Agenda

- 1. History
- 2. Internet Structure
- 3. Packet vs circuit switching
- 4. TCP/IP Protocol Stack



## What's a protocol?

### Human protocols:

- "what's the time?"
- "I have a question"
- ... specific msgs sent
- ... specific actions taken when msgs received, or other events

### network protocols:

- machines rather than humans
- all communication activity in Internet governed by protocols

protocols define format, order of msgs sent and received among network entities, and actions taken on msg transmission, receipt
Khaled Harfoush 2019



## What's a protocol?

a human protocol and a computer network protocol:





# Protocol "layers"

Networks are complex, with many "pieces":

- hosts
- routers
- links of various media
- applications
- protocols
- hardware, software

Question:

is there any hope of organizing structure of network?

.... or at least our discussion of networks?

Khaled Harfoush 2019



# Organization of air travel

ticket (purchase) ticket (complain)

baggage (check) baggage (claim)

gates (load) gates (unload)

runway takeoff runway landing

airplane routing airplane routing

airplane routing





## Why layering?

### dealing with complex systems:

- explicit structure allows identification,
   relationship of complex system's pieces
- modularization eases maintenance, updating of system
  - change of implementation of layer's service transparent to rest of system



### Internet protocol stack

- Application: supporting network applications
  - FTP, SMTP, HTTP
- Transport: process-process data transfer
  - TCP, UDP
- Network: routing of datagrams from source to destination
  - IP, routing protocols
- Link: data transfer between neighboring network elements
  - Ethernet, 802.11 (WiFi), PPP
- Physical: bits "on the wire"

Khaled Harfoush 2019

application

transport

network

link

physical



### ISO/OSI reference model

- presentation: allow applications to interpret meaning of data, e.g., encryption, compression, machinespecific conventions
- session: synchronization, checkpointing, recovery of data exchange
- Internet stack "missing" these layers!
  - these services, if needed, must be implemented in application
  - needed?

application
presentation
session
transport
network
link

physical



