# DSC 680 Project 2 R Code

Christine Hathaway
April 17, 2020

```
#Set the working directory
setwd("C:/Users/Christine/Documents/Bellevue/DSC 680/Project 2")
```

Import data from file

```
#Import file
df <- read.csv(file = "C:/Users/Christine/Documents/Bellevue/DSC 680/Project 2/parkinsons.csv", header</pre>
```

Display first five records of file

```
head(df)
```

```
##
               name MDVP.Fo.Hz. MDVP.Fhi.Hz. MDVP.Flo.Hz. MDVP.Jitter...
## 1 phon_R01_S01_1
                        119.992
                                     157.302
                                                   74.997
                                                                  0.00784
## 2 phon R01 S01 2
                        122.400
                                     148.650
                                                   113.819
                                                                  0.00968
## 3 phon_R01_S01_3
                        116.682
                                     131.111
                                                  111.555
                                                                  0.01050
## 4 phon R01 S01 4
                        116.676
                                     137.871
                                                  111.366
                                                                  0.00997
## 5 phon_R01_S01_5
                        116.014
                                     141.781
                                                  110.655
                                                                  0.01284
## 6 phon_R01_S01_6
                        120.552
                                     131.162
                                                  113.787
                                                                  0.00968
##
    MDVP.Jitter.Abs. MDVP.RAP MDVP.PPQ Jitter.DDP MDVP.Shimmer MDVP.Shimmer.dB.
## 1
              0.00007 0.00370 0.00554
                                                         0.04374
                                           0.01109
                                                                            0.426
## 2
              0.00008 0.00465 0.00696
                                           0.01394
                                                         0.06134
                                                                            0.626
## 3
              0.00009 0.00544 0.00781
                                           0.01633
                                                         0.05233
                                                                            0.482
## 4
              0.00009 0.00502 0.00698
                                           0.01505
                                                         0.05492
                                                                            0.517
              0.00011 0.00655 0.00908
                                                                            0.584
## 5
                                           0.01966
                                                         0.06425
## 6
              0.00008 0.00463 0.00750
                                           0.01388
                                                         0.04701
                                                                            0.456
     Shimmer.APQ3 Shimmer.APQ5 MDVP.APQ Shimmer.DDA
                                                                HNR status
##
                                                        NHR
                                                                               RPDE
          0.02182
                       0.03130 0.02971
## 1
                                            0.06545 0.02211 21.033
                                                                         1 0.414783
## 2
          0.03134
                       0.04518 0.04368
                                            0.09403 0.01929 19.085
                                                                         1 0.458359
## 3
          0.02757
                       0.03858 0.03590
                                            0.08270 0.01309 20.651
                                                                         1 0.429895
## 4
          0.02924
                       0.04005 0.03772
                                            0.08771 0.01353 20.644
                                                                         1 0.434969
## 5
          0.03490
                       0.04825 0.04465
                                            0.10470 0.01767 19.649
                                                                       1 0.417356
## 6
          0.02328
                       0.03526 0.03243
                                            0.06985 0.01222 21.378
                                                                       1 0.415564
##
                spread1 spread2
                                       D2
                                               PPE
## 1 0.815285 -4.813031 0.266482 2.301442 0.284654
## 2 0.819521 -4.075192 0.335590 2.486855 0.368674
## 3 0.825288 -4.443179 0.311173 2.342259 0.332634
## 4 0.819235 -4.117501 0.334147 2.405554 0.368975
## 5 0.823484 -3.747787 0.234513 2.332180 0.410335
## 6 0.825069 -4.242867 0.299111 2.187560 0.357775
```

Run str() function of file

```
str(df)
```

```
## 'data.frame': 195 obs. of 24 variables:
## $ name
                 : Factor w/ 195 levels "phon_R01_S01_1",..: 1 2 3 4 5 6 7 8 9 10 ...
## $ MDVP.Fo.Hz.
                   : num 120 122 117 117 116 ...
## $ MDVP.Fhi.Hz. : num 157 149 131 138 142 ...
## $ MDVP.Flo.Hz. : num 75 114 112 111 111 ...
## $ MDVP.Jitter... : num 0.00784 0.00968 0.0105 0.00997 0.01284 ...
## $ MDVP.Jitter.Abs.: num 0.00007 0.00008 0.00009 0.00011 0.00008 0.00003 0.00003 0.00006 0.
              : num 0.0037 0.00465 0.00544 0.00502 0.00655 0.00463 0.00155 0.00144 0.00293 0.0
## $ MDVP.RAP
                  : num 0.00554 0.00696 0.00781 0.00698 0.00908 0.0075 0.00202 0.00182 0.00332 0.0
## $ MDVP.PPQ
## $ Jitter.DDP : num 0.0111 0.0139 0.0163 0.015 0.0197 ...
## $ MDVP.Shimmer : num 0.0437 0.0613 0.0523 0.0549 0.0643 ...
## $ MDVP.Shimmer.dB.: num 0.426 0.626 0.482 0.517 0.584 0.456 0.14 0.134 0.191 0.255 ...
## $ Shimmer.APQ3 : num 0.0218 0.0313 0.0276 0.0292 0.0349 ...
## $ Shimmer.APQ5 : num 0.0313 0.0452 0.0386 0.0401 0.0483 ...
              : num 0.0297 0.0437 0.0359 0.0377 0.0447 ...
## $ MDVP.APQ
## $ Shimmer.DDA : num 0.0654 0.094 0.0827 0.0877 0.1047 ...
## $ NHR
                   : num 0.0221 0.0193 0.0131 0.0135 0.0177 ...
## $ HNR
                   : num 21 19.1 20.7 20.6 19.6 ...
                   : int 1 1 1 1 1 1 1 1 1 1 ...
## $ status
## $ RPDE
                   : num 0.415 0.458 0.43 0.435 0.417 ...
## $ DFA
                   : num 0.815 0.82 0.825 0.819 0.823 ...
## $ spread1
                   : num -4.81 -4.08 -4.44 -4.12 -3.75 ...
## $ spread2
                   : num 0.266 0.336 0.311 0.334 0.235 ...
                   : num 2.3 2.49 2.34 2.41 2.33 ...
## $ D2
## $ PPE
                   : num 0.285 0.369 0.333 0.369 0.41 ...
```

Count each variable

#### sapply(df, function(x) length(unique(x)))

| ## | name         | MDVP.Fo.Hz.      | MDVP.Fhi.Hz.     | MDVP.Flo.Hz. |
|----|--------------|------------------|------------------|--------------|
| ## | 195          | 195              | 195              | 195          |
| ## | MDVP.Jitter  | MDVP.Jitter.Abs. | MDVP.RAP         | MDVP.PPQ     |
| ## | 173          | 19               | 155              | 165          |
| ## | Jitter.DDP   | MDVP.Shimmer     | MDVP.Shimmer.dB. | Shimmer.APQ3 |
| ## | 180          | 188              | 149              | 184          |
| ## | Shimmer.APQ5 | MDVP.APQ         | Shimmer.DDA      | NHR          |
| ## | 189          | 189              | 189              | 185          |
| ## | HNR          | status           | RPDE             | DFA          |
| ## | 195          | 2                | 195              | 195          |
| ## | spread1      | spread2          | D2               | PPE          |
| ## | 195          | 194              | 195              | 195          |

Run desribe() function of file

```
describe(df)
```

```
##
      n missing distinct
##
      195
           0
                   195
##
## lowest : phon_R01_S01_1 phon_R01_S01_2 phon_R01_S01_3 phon_R01_S01_4 phon_R01_S01_5
## highest: phon_R01_S50_2 phon_R01_S50_3 phon_R01_S50_4 phon_R01_S50_5 phon_R01_S50_6
## -----
## MDVP.Fo.Hz.
                        Info Mean
                                       Gmd
##
       n missing distinct
                                             . 05
                                                     .10
                        1
         0 195
##
      195
                                154.2
                                       46.69
                                             101.9
                                                     110.7
      .25
                   .75
##
             .50
                          .90
                                .95
##
    117.6
           148.8
                  182.8
                         209.9
                                236.5
##
## lowest: 88.333 91.904 95.056 95.385 95.605
## highest: 243.439 244.990 245.510 252.455 260.105
## -----
## MDVP.Fhi.Hz.
##
                                Mean
                                              .05
       n missing distinct
                         Info
                                        Gmd
                                                     .10
##
      195 0 195
                         1
                                197.1
                                       84.42
                                             115.8
                                                    125.3
##
                   .75
                                .95
      .25
             .50
                          .90
##
    134.9
           175.8
                  224.2
                         261.0
                                410.6
##
## lowest : 102.145 102.305 107.715 108.664 110.019
## highest: 565.740 581.289 586.567 588.518 592.030
## ------
## MDVP.Flo.Hz.
      n missing distinct
                         Info
                                Mean
                                       Gmd
                                              .05
                                                      .10
##
         0 195
                         1
                                116.3
                                              68.95
                                                    75.61
      195
                                       46.12
      .25
            .50
                  .75
                          .90
                                .95
##
    84.29 104.31 140.02 187.88
                              220.19
##
## lowest : 65.476 65.750 65.782 65.809 66.004
## highest: 231.848 232.435 232.483 237.303 239.170
## -----
## MDVP.Jitter...
##
      n missing distinct Info Mean Gmd .05
##
      195 0 173
                         1 0.00622 0.004259 0.002211 0.002648
            .50
                  .75
                          .90
## 0.003460 0.004940 0.007365 0.009882 0.015561
##
## lowest : 0.00168 0.00174 0.00178 0.00180 0.00183
## highest: 0.01936 0.02714 0.03011 0.03107 0.03316
## -----
## MDVP.Jitter.Abs.
                                                   .05
##
      n missing distinct
                           Info Mean
                                             Gmd
                                                            .10
          0 19
                            0.978 4.396e-05 3.302e-05
      195
                                                   1e-05
                                                           1e-05
                    .75
##
      . 25
             .50
                           .90 .95
                   6e-05
                         8e-05
##
     2e-05
            3e-05
                                   1e-04
##
## lowest : 7.0e-06 9.0e-06 1.0e-05 2.0e-05 3.0e-05
## highest: 1.4e-04 1.5e-04 1.6e-04 2.2e-04 2.6e-04
##
## 7e-06 (1, 0.005), 9e-06 (5, 0.026), 1e-05 (20, 0.103), 2e-05 (28, 0.144), 3e-05
## (46, 0.236), 4e-05 (28, 0.144), 5e-05 (17, 0.087), 6e-05 (16, 0.082), 7e-05 (8,
## 0.041), 8e-05 (9, 0.046), 9e-05 (5, 0.026), 1e-04 (3, 0.015), 0.00011 (2,
```

```
## 0.010), 0.00012 (1, 0.005), 0.00014 (1, 0.005), 0.00015 (2, 0.010), 0.00016 (1,
## 0.005), 0.00022 (1, 0.005), 0.00026 (1, 0.005)
## -----
## MDVP.RAP
      n missing distinct Info Mean
                                        \operatorname{\mathsf{Gmd}}
                                                .05
##
      195 0 155
                          1 0.003306 0.002518 0.001118 0.001252
             .50 .75 .90 .95
      . 25
## 0.001660 0.002500 0.003835 0.005400 0.008756
##
## lowest : 0.00068 0.00075 0.00076 0.00092 0.00093
## highest: 0.01159 0.01568 0.01800 0.01854 0.02144
## MDVP.PPQ
     n missing distinct Info Mean Gmd .05 .10
         0 165 1 0.003446 0.00242 0.001315 0.001452
.50 .75 .90 .95
##
      195
      . 25
## 0.001860 0.002690 0.003955 0.005712 0.009083
## lowest : 0.00092 0.00096 0.00100 0.00106 0.00107
## highest: 0.01154 0.01522 0.01628 0.01699 0.01958
## Jitter.DDP
     n missing distinct Info Mean Gmd .05 .10
##
          0 180 1 0.00992 0.007553 0.003354 0.003758
.50 .75 .90 .95
      195
      . 25
## 0.004985 0.007490 0.011505 0.016202 0.026271
## lowest : 0.00204 0.00225 0.00229 0.00276 0.00278
## highest: 0.03476 0.04705 0.05401 0.05563 0.06433
## MDVP.Shimmer
      n missing distinct Info Mean Gmd .05
##
                                                     .10
         0 188 1 0.02971 0.01931 0.01121 0.01287
##
      195
                   .75
                           .90 .95
##
      . 25
             .50
## 0.01650 0.02297 0.03789 0.05593 0.06726
## lowest : 0.00954 0.00958 0.01015 0.01022 0.01024
## highest: 0.08143 0.08684 0.09178 0.09419 0.11908
## -----
## MDVP.Shimmer.dB.
    n missing distinct Info Mean Gmd
                                                .05
                          1 0.2823 0.1931 0.1018 0.1198
          0 149
##
      195
                 .75
                          .90 .95
##
      . 25
            .50
##
   ## lowest : 0.085 0.089 0.090 0.093 0.094, highest: 0.833 0.891 0.930 1.018 1.302
## Shimmer.APQ3
      n missing distinct Info Mean
##
                                        Gmd
                                                .05
          0 184 1 0.01566 0.01049 0.005368 0.006358
.50 .75 .90 .95
##
      195
      .25
## 0.008245 0.012790 0.020265 0.030116 0.036227
##
## lowest : 0.00455 0.00468 0.00469 0.00476 0.00490
```

```
## highest: 0.04284 0.04421 0.05358 0.05551 0.05647
## Shimmer.APQ5
      n missing distinct Info Mean
195 0 189 1 0.01788 0
##
                                         Gmd
                                                .05
                          1 0.01788 0.01208 0.006383 0.007522
              .50 .75 .90 .95
      .25
##
## 0.009580 0.013470 0.022380 0.036972 0.042701
## lowest : 0.00570 0.00576 0.00582 0.00588 0.00606
## highest: 0.04962 0.05005 0.05426 0.05556 0.07940
## MDVP.APQ
      n missing distinct Info Mean Gmd .05
##
      195 0 189
                           1 0.02408 0.01617 0.009114 0.010654
      .25 .50 .75 .90 .95
## 0.013080 0.018260 0.029400 0.044298 0.057718
## lowest : 0.00719 0.00726 0.00762 0.00802 0.00811
## highest: 0.06460 0.06824 0.08318 0.08808 0.13778
## -----
## Shimmer.DDA
      n missing distinct Info Mean
                                         Gmd .05 .10
                   195 0 189
##
      .25
             .50
## 0.02474 0.03836 0.06080 0.09035 0.10868
## lowest : 0.01364 0.01403 0.01406 0.01407 0.01428
## highest: 0.12851 0.13262 0.16074 0.16654 0.16942
## NHR
      n missing distinct Info Mean Gmd .05 .10
##
      195 0 185 1 0.02485 0.02982 0.002528 0.004066
.25 .50 .75 .90 .95
##
## 0.005925 0.011660 0.025640 0.052348 0.092044
## lowest : 0.00065 0.00072 0.00119 0.00135 0.00167
## highest: 0.16265 0.16744 0.21713 0.25930 0.31482
      n missing distinct Info Mean
                                         Gmd .05
##
                                                        .10
                          1 21.89 4.894 13.48 16.02
      195 0 195
                           .90
##
      . 25
             .50
                    .75
                                  .95
    19.20 22.09 25.08 26.51 26.97
##
## lowest: 8.441 8.867 9.449 10.489 11.744, highest: 30.775 30.940 31.732 32.684 33.047
## status
      n missing distinct Info Sum Mean
195 0 2 0.557 147 0.7538
##
##
                                                 0.373
##
##
## RPDE
  n missing distinct Info Mean Gmd .05 .10
195 0 195 1 0.4985 0.1197 0.3309 0.3606
##
##
```

```
.25 .50 .75 .90 .95
##
##
  0.4213  0.4960  0.5876  0.6375  0.6532
##
## lowest : 0.256570 0.263654 0.276850 0.296888 0.305062
## highest: 0.665318 0.671299 0.671378 0.677131 0.685151
  ______
                         Info Mean
                                        Gmd .05 .10
##
      n missing distinct

    195
    0
    195
    1
    0.7181
    0.06348
    0.6323
    0.6464

    .25
    .50
    .75
    .90
    .95

##
     . 25
##
  0.6748   0.7223   0.7619   0.7898   0.8160
##
## lowest : 0.574282 0.582710 0.605417 0.623731 0.626710
## highest: 0.819521 0.821364 0.823484 0.825069 0.825288
## -----
## spread1
##
                                         Gmd .05
      n missing distinct Info Mean
                                                        .10
      195 0 195 1 -5.684 1.231 -7.306 -7.052
.25 .50 .75 .90 .95
##
##
      . 25
  -6.450 -5.721 -5.046 -4.256 -3.734
##
##
## lowest : -7.964984 -7.777685 -7.695734 -7.682587 -7.517934
## highest: -3.269487 -2.931070 -2.929379 -2.839756 -2.434031
## -----
## spread2
      n missing distinct Info Mean
                                         Gmd
                                                .05
                                                         .10
          0 194 1 0.2265 0.09419 0.08884 0.12135
.50 .75 .90 .95
##
      195
      . 25
## 0.17435 0.21888 0.27923 0.33841 0.37314
##
## lowest : 0.006274 0.018689 0.056844 0.063412 0.066994
## highest: 0.396746 0.397749 0.414758 0.434326 0.450493
## D2
     n missing distinct Info Mean Gmd .05
195 0 195 1 2.382 0.4299 1.849
##
                                                       .10
           0 195 1 2.382 0.4299 1.849 1.925
.50 .75 .90 .95
##
##
     . 25
##
    2.099
           2.362 2.636 2.922 3.085
##
## lowest : 1.423287 1.512275 1.544609 1.743867 1.765957
## highest: 3.184027 3.274865 3.317586 3.413649 3.671155
## -----
## PPE
      n missing distinct Info Mean Gmd .05
##
                                                         .10
     195 0 195 1 0.2066 0.1001 0.09159 0.10199
.25 .50 .75 .90 .95
## 0.13745 0.19405 0.25298 0.33408 0.36957
##
## lowest : 0.044539 0.056141 0.057610 0.068501 0.073581
## highest: 0.430788 0.444774 0.454721 0.457533 0.527367
```

Run stat.desc() function of file

```
##
            name MDVP.Fo.Hz. MDVP.Fhi.Hz. MDVP.Flo.Hz. MDVP.Jitter...
## nbr.val
              NA 1.950000e+02 1.950000e+02 1.950000e+02
                                                           1.950000e+02
  nbr.null
              NA 0.000000e+00 0.000000e+00 0.000000e+00
                                                           0.000000e+00
## nbr.na
              NA 0.000000e+00 0.000000e+00 0.000000e+00
                                                           0.000000e+00
## min
              NA 8.833300e+01 1.021450e+02 6.547600e+01
                                                           1.680000e-03
##
  max
              NA 2.601050e+02 5.920300e+02 2.391700e+02
                                                           3.316000e-02
## range
              NA 1.717720e+02 4.898850e+02 1.736940e+02
                                                           3.148000e-02
## sum
              NA 3.007458e+04 3.843546e+04 2.268330e+04
                                                           1.212990e+00
              NA 1.487900e+02 1.758290e+02 1.043150e+02
## median
                                                           4.940000e-03
  mean
              NA 1.542286e+02 1.971049e+02 1.163246e+02
                                                           6.220462e-03
## SE.mean
              NA 2.964004e+00 6.551846e+00 3.116633e+00
                                                           3.471821e-04
## CI.mean
              NA 5.845809e+00 1.292199e+01 6.146834e+00
                                                           6.847359e-04
## var
              NA 1.713137e+03 8.370703e+03 1.894113e+03
                                                           2.350440e-05
## std.dev
              NA 4.139006e+01 9.149155e+01 4.352141e+01
                                                           4.848134e-03
## coef.var
              NA 2.683682e-01 4.641769e-01 3.741376e-01
                                                           7.793849e-01
##
                                 MDVP.RAP
                                              MDVP.PPQ
                                                          Jitter.DDP MDVP.Shimmer
            MDVP.Jitter.Abs.
## nbr.val
                1.950000e+02 1.950000e+02 1.950000e+02 1.950000e+02 1.950000e+02
## nbr.null
                0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## nbr.na
                0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
                7.000000e-06 6.800000e-04 9.200000e-04 2.040000e-03 9.540000e-03
## min
                2.600000e-04 2.144000e-02 1.958000e-02 6.433000e-02 1.190800e-01
## max
## range
                2.530000e-04 2.076000e-02 1.866000e-02 6.229000e-02 1.095400e-01
## sum
                8.572000e-03 6.447500e-01 6.720400e-01 1.934390e+00 5.793280e+00
## median
                3.000000e-05 2.500000e-03 2.690000e-03 7.490000e-03 2.297000e-02
                4.395897e-05 3.306410e-03 3.446359e-03 9.919949e-03 2.970913e-02
  mean
## SE.mean
                2.493649e-06 2.125267e-04 1.975744e-04 6.375817e-04 1.350373e-03
## CI.mean
                4.918142e-06 4.191596e-04 3.896696e-04 1.257482e-03 2.663297e-03
## var
                1.212565e-09 8.807685e-06 7.611952e-06 7.926954e-05 3.555839e-04
## std.dev
                3.482191e-05 2.967774e-03 2.758977e-03 8.903344e-03 1.885693e-02
                7.921456e-01 8.975820e-01 8.005483e-01 8.975192e-01 6.347185e-01
## coef.var
            MDVP.Shimmer.dB. Shimmer.APQ3 Shimmer.APQ5
                                                           MDVP.APQ Shimmer.DDA
                195.00000000 1.950000e+02 1.950000e+02 1.950000e+02 1.950000e+02
## nbr.val
## nbr.null
                  0.0000000 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## nbr.na
                  0.00000000 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## min
                  0.08500000 4.550000e-03 5.700000e-03 7.190000e-03 1.364000e-02
## max
                  1.30200000 5.647000e-02 7.940000e-02 1.377800e-01 1.694200e-01
                  1.21700000 5.192000e-02 7.370000e-02 1.305900e-01 1.557800e-01
## range
                 55.03900000 3.054510e+00 3.486260e+00 4.695890e+00 9.163560e+00
## sum
## median
                  0.22100000 1.279000e-02 1.347000e-02 1.826000e-02 3.836000e-02
                  0.28225128 1.566415e-02 1.787826e-02 2.408149e-02 4.699262e-02
  mean
                  0.01395545 7.270830e-04 8.610354e-04 1.213581e-03 2.181223e-03
## SE.mean
                  0.02752389 1.434002e-03 1.698192e-03 2.393506e-03 4.301955e-03
## CI.mean
                  0.03797716 1.030867e-04 1.445695e-04 2.871919e-04 9.277580e-04
## var
                  0.19487729 1.015316e-02 1.202371e-02 1.694674e-02 3.045912e-02
## std.dev
## coef.var
                  0.69043899 6.481781e-01 6.725323e-01 7.037247e-01 6.481682e-01
                     NHR
                                  HNR
                                            status
                                                            RPDE
## nbr.val 1.950000e+02
                          195.0000000 195.00000000 1.950000e+02 1.950000e+02
## nbr.null 0.000000e+00
                            0.0000000
                                       48.00000000 0.000000e+00 0.000000e+00
## nbr.na
            0.000000e+00
                            0.000000
                                        0.00000000 0.000000e+00 0.000000e+00
                            8.4410000
## min
            6.500000e-04
                                        0.00000000 2.565700e-01 5.742820e-01
## max
            3.148200e-01
                           33.0470000
                                        1.00000000 6.851510e-01 8.252880e-01
```

```
## range
            3.141700e-01
                           24.6060000
                                        1.00000000 4.285810e-01 2.510060e-01
## sum
            4.845180e+00 4267.7650000 147.00000000 9.721443e+01 1.400293e+02
            1.166000e-02
## median
                           22.0850000
                                        1.00000000 4.959540e-01 7.222540e-01
## mean
            2.484708e-02
                           21.8859744
                                        0.75384615 4.985355e-01 7.180990e-01
## SE.mean
           2.894425e-03
                           0.3169356
                                        0.03092743 7.443421e-03 3.962681e-03
## CI.mean 5.708581e-03
                                        0.06099716 1.468042e-02 7.815467e-03
                           0.6250817
                           19.5873894
                                        0.18651864 1.080388e-02 3.062054e-03
## var
            1.633651e-03
                                        0.43187803 1.039417e-01 5.533583e-02
## std.dev 4.041845e-02
                            4.4257643
## coef.var 1.626688e+00
                            0.2022192
                                        0.57289943 2.084941e-01 7.705877e-02
##
                                                             PPE
                  spread1
                               spread2
                                                 D2
## nbr.val
              195.0000000 1.950000e+02 195.00000000 1.950000e+02
## nbr.null
               0.0000000 0.000000e+00
                                        0.00000000 0.000000e+00
## nbr.na
               0.0000000 0.000000e+00
                                        0.00000000 0.000000e+00
              -7.9649840 6.274000e-03
## min
                                         1.42328700 4.453900e-02
## max
              -2.4340310 4.504930e-01
                                         3.67115500 5.273670e-01
## range
               5.5309530 4.442190e-01
                                         2.24786800 4.828280e-01
            -1108.4573650 4.416952e+01 464.45608700 4.027757e+01
## sum
## median
              -5.7208680 2.188850e-01
                                         2.36153200 1.940520e-01
               -5.6843967 2.265103e-01
                                         2.38182609 2.065516e-01
## mean
## SE.mean
               0.0780714 5.972811e-03
                                        0.02741281 6.453579e-03
## CI.mean
               0.1539777 1.177998e-02
                                        0.05406539 1.272818e-02
## var
               1.1885530 6.956521e-03
                                         0.14653511 8.121492e-03
## std.dev
               1.0902078 8.340576e-02
                                       0.38279905 9.011932e-02
## coef.var
              -0.1917895 3.682205e-01
                                       0.16071662 4.363041e-01
```

Create graphs of fundamental frequencies

```
ggplot(df, aes(x=MDVP.Fo.Hz.)) + geom_histogram() + ggtitle("Average vocal fundamental frequency")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```

# Average vocal fundamental frequency



ggplot(df, aes(x=MDVP.Fhi.Hz.)) + geom\_histogram() + ggtitle("Maximum vocal fundamental frequency")

# Maximum vocal fundamental frequency



ggplot(df, aes(x=MDVP.Flo.Hz.)) + geom\_histogram() + ggtitle("Minimum vocal fundamental frequency")
## `stat\_bin()` using `bins = 30`. Pick better value with `binwidth`.

### Minimum vocal fundamental frequency



Create graphs of measures of variation in fundamental frequencies

```
ggplot(df, aes(x=MDVP.Jitter...)) + geom_histogram() + ggtitle("MDVP jitter in percentage")
```

# MDVP jitter in percentage



ggplot(df, aes(x=MDVP.Jitter.Abs.)) + geom\_histogram() + ggtitle("MDVP absolute jitter in ms")

# MDVP absolute jitter in ms



ggplot(df, aes(x=MDVP.RAP)) + geom\_histogram() + ggtitle("MDVP relative amplitude perturbation")
## `stat\_bin()` using `bins = 30`. Pick better value with `binwidth`.

# MDVP relative amplitude perturbation



ggplot(df, aes(x=MDVP.PPQ )) + geom\_histogram() + ggtitle("MDVP five-point period perturbation quotient

### MDVP five-point period perturbation quotient



ggplot(df, aes(x=Jitter.DDP )) + geom\_histogram() + ggtitle("Average absolute difference of differences





Create graphs of measures of variation in amplitude

```
ggplot(df, aes(x=MDVP.Shimmer)) + geom_histogram() + ggtitle("MDVP local shimmer")
```

#### MDVP local shimmer



ggplot(df, aes(x=MDVP.Shimmer.dB.)) + geom\_histogram() + ggtitle("MDVP local shimmer in dB")

#### MDVP local shimmer in dB



ggplot(df, aes(x=Shimmer.APQ3)) + geom\_histogram() + ggtitle("Three-point amplitude perturbation quotient

# Three-point amplitude perturbation quotient



ggplot(df, aes(x=Shimmer.APQ5)) + geom\_histogram() + ggtitle("Five-point amplitude perturbation quotien")





ggplot(df, aes(x=MDVP.APQ)) + geom\_histogram() + ggtitle("MDVP 11-point amplitude perturbation quotient

MDVP 11-point amplitude perturbation quotient



ggplot(df, aes(x=Shimmer.DDA)) + geom\_histogram() + ggtitle("Average absolute differences between the artificial content of the content

#### Average absolute differences between the amplitudes of consecutive period



Create graphs of measures of ratio of noise to tonal components in the voice

```
ggplot(df, aes(x=NHR)) + geom_histogram() + ggtitle("Noise-to-harmonics ratio")
```

#### Noise-to-harmonics ratio



ggplot(df, aes(x=HNR)) + geom\_histogram() + ggtitle("Harmonics-to-noise ratio")

#### Harmonics-to-noise ratio



Create graphs of nonlinear dynamical complexity measures

```
ggplot(df, aes(x=RPDE)) + geom_histogram() + ggtitle("Recurrence period density entropy measure")
```

### Recurrence period density entropy measure



ggplot(df, aes(x=D2)) + geom\_histogram() + ggtitle("Correlation dimension")

#### Correlation dimension



Create graphs of nonlinear dynamical complexity measures

ggplot(df, aes(x=spread1)) + geom\_histogram() + ggtitle("Nonlinear measures of fundamental frequency value")

# Nonlinear measures of fundamental frequency variation



ggplot(df, aes(x=spread2)) + geom\_histogram() + ggtitle("Nonlinear measures of fundamental frequency va

# Nonlinear measures of fundamental frequency variation



ggplot(df, aes(x=PPE)) + geom\_histogram() + ggtitle("Pitch period entropy")

# Pitch period entropy



Create graphs of Parkinson's status and signal fractal scaling exponent

ggplot(df, aes(x=status)) + geom\_histogram() + ggtitle("Health status of the subject (one) - Parkinson'





ggplot(df, aes(x=DFA)) + geom\_histogram() + ggtitle("Signal fractal scaling exponent")

#### Signal fractal scaling exponent



Create Training and Testing Datasets

```
#create a list of random number ranging from 1 to number of rows from actual data and 70% of the data i

data = sort(sample(nrow(df), nrow(df)*.7))

#creating training data set by selecting the output row values
train<-df[data,]

#creating test data set by not selecting the output row values
test<-df[-data,]</pre>
```

Create regression model

```
model <- glm(status ~ NHR, data = train, family = "binomial")</pre>
```

Output model results

```
summary(model)
```

```
##
## Call:
## glm(formula = status ~ NHR, family = "binomial", data = train)
##
## Deviance Residuals:
```

```
1Q
                        Median
                                               Max
                                      3Q
## -2.81417
           0.00007
                       0.45811
                               0.82621
                                          1.11225
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.05248
                         0.35145 -0.149 0.88130
## NHR
              89.91209 27.90332
                                   3.222 0.00127 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 148.40 on 135 degrees of freedom
## Residual deviance: 125.84 on 134 degrees of freedom
## AIC: 129.84
##
## Number of Fisher Scoring iterations: 7
Make predictions
#Make predictions
predict <- model %>% predict(test, type = "terms")
head(predict)
##
            NHR
## 1 -0.4646472
## 2 -0.7181992
## 3 -1.2756542
## 4 -1.2360929
## 9 -1.4905441
## 10 -1.5337019
summary(predict)
        NHR
## Min. :-2.3312
## 1st Qu.:-1.9104
## Median :-1.5337
## Mean
         :-0.7223
## 3rd Qu.:-0.7249
## Max. : 7.1815
Create regression model using all variables
model2 <- glm(status ~ MDVP.Fo.Hz.+MDVP.Flo.Hz.+MDVP.Jitter...+MDVP.Jitter.Abs.+MDVP.RAP + MDVP.PPQ + J
Output model results
summary(model2)
```

```
##
## Call:
  glm(formula = status ~ MDVP.Fo.Hz. + MDVP.Flo.Hz. + MDVP.Jitter... +
       MDVP.Jitter.Abs. + MDVP.RAP + MDVP.PPQ + Jitter.DDP + MDVP.Shimmer +
##
       MDVP.Shimmer.dB. + Shimmer.APQ3 + Shimmer.APQ5 + MDVP.APQ +
       Shimmer.DDA + NHR + HNR + RPDE + DFA + spread1 + spread2 +
##
       D2 + PPE, family = "binomial", data = train)
##
##
## Deviance Residuals:
##
        Min
                   1Q
                         Median
                                       3Q
                                                 Max
  -2.25111
              0.00011
                        0.09361
                                  0.34962
                                             1.90785
##
## Coefficients:
                      Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                                2.301e+01
                                           -0.285
                    -6.562e+00
                                                      0.775
## MDVP.Fo.Hz.
                    -2.114e-02
                                2.969e-02
                                           -0.712
                                                      0.477
                                            0.042
## MDVP.Flo.Hz.
                     6.436e-04
                                1.548e-02
                                                      0.967
## MDVP.Jitter...
                    -1.429e+02 1.766e+03
                                           -0.081
                                                      0.936
## MDVP.Jitter.Abs. -7.947e+04 1.207e+05
                                           -0.659
                                                      0.510
## MDVP.RAP
                     3.575e+04 1.638e+05
                                            0.218
                                                      0.827
## MDVP.PPQ
                    -2.508e+03 2.465e+03
                                           -1.017
                                                      0.309
## Jitter.DDP
                    -1.084e+04 5.456e+04
                                           -0.199
                                                      0.843
## MDVP.Shimmer
                     4.752e+02 1.059e+03
                                            0.449
                                                      0.654
## MDVP.Shimmer.dB. 6.967e+00
                                            0.262
                                2.658e+01
                                                      0.793
## Shimmer.APQ3
                     1.463e+05 1.525e+05
                                            0.960
                                                      0.337
## Shimmer.APQ5
                    -1.708e+02 4.981e+02
                                           -0.343
                                                      0.732
## MDVP.APQ
                     1.839e+02 4.357e+02
                                            0.422
                                                      0.673
## Shimmer.DDA
                    -4.907e+04 5.088e+04
                                           -0.964
                                                      0.335
## NHR
                                           -0.463
                    -2.804e+01 6.060e+01
                                                      0.644
## HNR
                     4.214e-03 2.626e-01
                                            0.016
                                                      0.987
## RPDE
                    -1.899e+00 5.896e+00
                                           -0.322
                                                      0.747
## DFA
                     1.295e+01 1.151e+01
                                            1.125
                                                      0.261
## spread1
                     1.174e+00 2.394e+00
                                            0.490
                                                      0.624
                                            0.886
                                                      0.376
## spread2
                     6.837e+00 7.716e+00
## D2
                     2.412e+00
                                1.899e+00
                                             1.270
                                                      0.204
## PPE
                     1.856e+01 3.559e+01
                                                      0.602
                                            0.521
##
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 148.402 on 135
                                      degrees of freedom
## Residual deviance: 56.906
                                       degrees of freedom
                               on 114
## AIC: 100.91
## Number of Fisher Scoring iterations: 9
Make predictions
#Make predictions
predict <- model %>% predict(test, type = "terms")
head(predict)
```

##

NHR

```
## 1 -0.4646472

## 2 -0.7181992

## 3 -1.2756542

## 4 -1.2360929

## 9 -1.4905441

## 10 -1.5337019

summary(predict)

## NHR

## Min. :-2.3312

## 1st Qu.:-1.9104

## Median :-1.5337
```

Create regression model using vocal fundamental frequency variables

```
model3 <- glm(status ~ MDVP.Fo.Hz.+MDVP.Flo.Hz.+MDVP.Jitter...+MDVP.Jitter.Abs.+MDVP.RAP+ MDVP.PPQ + Ji
```

Output model results

## 3rd Qu.:-0.7249 ## Max. : 7.1815

:-0.7223

## Mean

```
summary(model3)
```

```
##
## Call:
  glm(formula = status ~ MDVP.Fo.Hz. + MDVP.Flo.Hz. + MDVP.Jitter... +
##
      MDVP.Jitter.Abs. + MDVP.RAP + MDVP.PPQ + Jitter.DDP + MDVP.Shimmer +
      MDVP.Shimmer.dB. + Shimmer.APQ3, family = "binomial", data = train)
##
##
## Deviance Residuals:
##
       Min
                  1Q
                       Median
                                     ЗQ
                                              Max
## -2.49448 0.00005 0.12638
                               0.47939
                                          1.33014
##
## Coefficients:
                    Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                  -1.395e-01 2.739e+00 -0.051 0.95939
## MDVP.Fo.Hz.
                  -2.369e-02 1.612e-02 -1.470 0.14160
## MDVP.Flo.Hz.
                   1.421e-03 8.984e-03
                                        0.158 0.87433
                   1.211e+03 1.009e+03
                                         1.200 0.23003
## MDVP.Jitter...
## MDVP.Jitter.Abs. -7.938e+03 7.302e+04 -0.109 0.91344
## MDVP.RAP
               -4.061e+04 1.190e+05 -0.341 0.73297
## MDVP.PPQ
                  -2.222e+03 1.336e+03 -1.664 0.09617
## Jitter.DDP
                   1.383e+04 3.971e+04
                                          0.348 0.72765
                   1.165e+03 4.271e+02
## MDVP.Shimmer
                                         2.727 0.00639 **
## MDVP.Shimmer.dB. -3.473e+01 2.068e+01 -1.679 0.09315.
                  -1.295e+03 5.506e+02 -2.352 0.01866 *
## Shimmer.APQ3
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
```

```
##
##
      Null deviance: 148.402 on 135 degrees of freedom
## Residual deviance: 80.188 on 125 degrees of freedom
## AIC: 102.19
## Number of Fisher Scoring iterations: 8
Create regression model using vocal fundamental frequency variables
model4 <- glm(status ~ Shimmer.DDA + HNR + NHR + DFA+RPDE+ spread1 + spread2 + D2 + PPE, data = train,
Output model results
summary(model4)
##
## Call:
## glm(formula = status ~ Shimmer.DDA + HNR + NHR + DFA + RPDE +
       spread1 + spread2 + D2 + PPE, family = "binomial", data = train)
##
## Deviance Residuals:
##
       Min
                  1Q
                        Median
                                      ЗQ
                                               Max
## -2.02207 0.01448 0.13554
                                0.43582
                                           1.90946
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -1.93800 18.33488 -0.106
                                             0.9158
## Shimmer.DDA 20.11160
                          22.69021
                                    0.886
                                             0.3754
## HNR
                0.03457
                           0.18632
                                    0.186
                                             0.8528
## NHR
              -10.61286
                         28.23185 -0.376
                                             0.7070
                                    1.908
                                             0.0564
## DFA
               15.95033
                           8.35878
## RPDE
               -0.31963
                           4.86046 -0.066
                                             0.9476
                2.40726
                           1.88809
                                    1.275
                                             0.2023
## spread1
## spread2
                6.50613
                            6.03280
                                    1.078
                                             0.2808
## D2
                2.41694
                           1.44105
                                    1.677
                                             0.0935
## PPE
               -7.59345
                          26.35854 -0.288
                                             0.7733
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 148.40 on 135 degrees of freedom
## Residual deviance: 69.53 on 126 degrees of freedom
## AIC: 89.53
## Number of Fisher Scoring iterations: 8
Create regression model using vocal fundamental frequency variables
model5 <- glm(status ~ Shimmer.APQ5 +MDVP.APQ, data = train, family = "binomial")</pre>
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
```

##

## (Intercept)

```
summary(model5)
##
## Call:
## glm(formula = status ~ Shimmer.APQ5 + MDVP.APQ, family = "binomial",
##
      data = train)
##
## Deviance Residuals:
##
       Min
                                       3Q
                   1Q
                        Median
                                                Max
## -2.71065
                       0.09935
                                 0.52402
                                            1.53873
             0.00004
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
                           0.8716 -3.919 8.88e-05 ***
## (Intercept)
                 -3.4160
## Shimmer.APQ5 -554.0847 151.7804 -3.651 0.000262 ***
## MDVP.APQ
                709.7304
                          162.4452 4.369 1.25e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 148.402 on 135 degrees of freedom
## Residual deviance: 88.754 on 133 degrees of freedom
## AIC: 94.754
## Number of Fisher Scoring iterations: 8
Based on XGBoost restuls in Python
modeltest <- glm(status ~ MDVP.Fo.Hz.+MDVP.Fhi.Hz.+Shimmer.APQ5+ spread1+ PPE, data = train, family =
Output model results
summary(modeltest)
##
## Call:
## glm(formula = status ~ MDVP.Fo.Hz. + MDVP.Fhi.Hz. + Shimmer.APQ5 +
       spread1 + PPE, family = "binomial", data = train)
##
##
## Deviance Residuals:
##
       Min
                  1Q
                        Median
                                      ЗQ
                                                Max
## -2.56593
            0.01421
                        0.19500
                                0.45886
                                            1.67202
##
## Coefficients:
```

0.211

0.271

0.746

0.227

1.252

0.324

1.208

Estimate Std. Error z value Pr(>|z|)

20.076998 16.037568

## MDVP.Fo.Hz. -0.011187 0.010169 -1.100

## MDVP.Fhi.Hz. 0.001901 0.005875

## Shimmer.APQ5 63.396783 52.495443

```
## spread1
                 2.669416
                           1.883337
                                       1.417
                                                0.156
## PPE
               -11.000771 26.101101 -0.421
                                                0.673
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 148.402 on 135 degrees of freedom
## Residual deviance: 79.098 on 130 degrees of freedom
## AIC: 91.098
##
## Number of Fisher Scoring iterations: 7
Make predictions
#Make predictions
predict <- modeltest %>% predict(test, type = "terms")
head(predict)
##
     MDVP.Fo.Hz. MDVP.Fhi.Hz. Shimmer.APQ5
                                             spread1
## 1
       0.4116710 -0.07510303 0.81065373 2.2975321 -0.8602506
## 2
       0.3847317 -0.09155431 1.69060107 4.2671316 -1.7845353
                                1.27218231 3.2848211 -1.3880675
## 3
       0.4487013 -0.12490370
## 4
       0.4487685 -0.11204995
                                1.36537558 4.1541913 -1.7878465
## 9
       0.6831001 -0.12308402 -0.36408866 0.4672548 -0.2762967
## 10
       0.6906404 - 0.14583477 - 0.08007107 1.7667240 - 0.7140283
summary(predict)
```

```
MDVP.Fo.Hz.
##
                      MDVP.Fhi.Hz.
                                          Shimmer.APQ5
                                                              spread1
##
   Min.
          :-0.9628
                     Min.
                            :-0.159765
                                         Min.
                                                :-0.8085
                                                           Min.
                                                                  :-5.61636
  1st Qu.:-0.2124
                     1st Qu.:-0.121842
                                         1st Qu.:-0.6351
                                                           1st Qu.:-2.11257
## Median : 0.2222
                     Median :-0.062869
                                         Median :-0.3673
                                                           Median :-0.27294
## Mean
         : 0.0947
                     Mean
                           : 0.001917
                                         Mean
                                               :-0.1330
                                                           Mean
                                                                  :-0.09421
   3rd Qu.: 0.4360
                     3rd Qu.: 0.038342
##
                                         3rd Qu.: 0.1570
                                                           3rd Qu.: 1.68902
##
  Max.
          : 0.7259
                     Max. : 0.751507
                                         Max.
                                               : 2.2662
                                                           Max.
                                                                  : 6.34267
##
        PPE
## Min.
          :-2.762053
##
   1st Qu.:-0.488243
## Median : 0.109126
## Mean
         :-0.003518
```

## 3rd Qu.: 0.810288 ## Max. : 1.637408