

A Programmable Toolchain for Generation and Analysis of Network Topologies

Motivation

With the growth of cloud computing and large-scale computing, having fast and reliable data centers are more important than ever.

A high-performant network topology is key for high performance.

SHARE OF CORPORATE DATA STORED IN THE CLOUD OVER TIME

Source: https://www.zippia.com/advice/cloud-adoption-statistics/

Motivation

Traditionally people were using fat trees to reach high performance. Fat trees have multiple shortest paths between any nodes.

Newer low diameter networks like Slimfly and Dragonfly have been shown to be more efficient and cost effective. As an example, Slimfly has ~2x lower latency and ~15% higher throughput compared to similar cost fat trees [1].

For these networks to be performant, we need multipathing (especially over non minimal paths). Therefore, it makes it harder to generate routing strategies.

What does it mean to have multiple (non minimal) paths?

Motivation

Traditionally people were using fat trees to reach high performance.

Fat trees have

Newer low dia more efficient ~15% higher

For these net minimal paths

We need to understand the path diversity of a network before we start developing routing protocols and before we start doing simulations

wn to be latency and

over non gies.

What does it mean to nave multiple (non minimal) paths?

Create a Toolchain that is:

Create a Toolchain that is:

Variety of Networks

Create a Toolchain that is:

Variety of Networks

Analyze different path Diversity
Properties

Create a Toolchain that is:

Variety of Networks

Analyze different path Diversity
Properties

User-friendly, performant & ensure extensibility

Toolchain Overview

Toolchain Overview

- Adding multiple new topologies
- Make it expandable

Toolchain Overview

- Adding multiple new topologies
- Make it expandable

Visualization Module

- Increased productivity/performance
- Better visualization

Modern low diameter Networks

- Slimfly
- Polarfly
- Expander
- Polarstar
- Megafly
- Spectralfly
- Dragonfly
- Cascade Dragonfly
- Random (Jellyfish)

 $G*G': ER_3 * Paley(5)$

Source: PolarStar: Expanding the Scalability Horizon of Diameter-3 Networks. K. Lakhotia, L. Monroe, K. Isham, M. Besta, N. Blach, T. Hoefler, F. Petrini

***SPCL

Modern low diameter Networks

- Slimfly
- Polarfly
- Expander
- Polarstar
- Megafly
- Spectralfly
- Dragonfly
- Cascade Dragonfly
- Random (Jellyfish)

 $SpF_{3,7}$

Source: SpectralFly: Ramanujan Graphs as Flexible and Efficient Interconnection Networks. S. Young, S. Aksoy, J. Firoz, R Gioiosa, T. Hagge, M. Kempton, J. Escobedo, M. Raugas

Modern low diameter Networks

- Slimfly
- Polarfly
- Expander
- Polarstar
- Megafly
- Spectralfly
- Dragonfly
- Cascade Dragonfly
- Random (Jellyfish)

Modern low diameter Networks

- Slimfly
- Polarfly
- Expander
- Polarstar
- Megafly
- Spectralfly
- Dragonfly
- Cascade Dragonfly
- Random (Jellyfish)

Dragonfly

Source: On-the-Fly Adaptive Routing in High-Radix Hierarchical Networks. M. Garcia, E. Vallejo, R. Beivide, M. Odriozola, C. Camarero, M. Valero, G. Rodriguez, J. Labarta, C. Minkenberg

Tree Networks:

- Fat tree
- Fat tree2x
- K-ary n-tree
- eXtended Generalized Fat Trees (XGFT)
- Multi-Layer-Full-Mesh (MLFM)

Mesh/Torus variants

- Mesh
- Express Mesh
- Torus
- Tofu
- Hypercube
- HyperX
- Flattened Butterfly

Kautz Graph:

- Kautz
- Arrangement graph

Source: The k-tuple twin domination in de Bruijn and Kautz digraphs. Toru Araki

Path Analysis

Path Analysis – Shortest paths and multiplicity

For s,t \in V the length of the shortest path $I_{min}(s,t)$ connecting the two nodes is defined as $I_{min}(s,t) = min \{ i \in N : t \in h^i (\{s\}) \}$

The shortest path multiplicity (or count of shortest paths) between two nodes $s,t \in V$ counts the number of shortest paths between s and t and can be defined as $n_{min}(s, t) = n_{l}(s, t)$ with $l = l_{min}(s, t)$

Path Analysis - Shortest paths and multiplicity

Path Analysis - Interference

Interference $I_{ab,cd}^{I}$ is defined as $c_{I}(\{a,c\}, \{b\}) + c_{I}(\{a,c\}, \{d\}) - c_{I}(\{a,c\}, \{b,d\})$, with $c_{I}(\{s\}, \{t\}) = \text{edge disjoint paths between}$ two nodes s and t of length I.

Path Analysis - Interference

THE RESERVE OF THE PARTY OF THE

Path Analysis - Interference

For a given length *I*, connectivity is defined

as

$$\frac{c_l(s, t)}{r'}$$

For a given length *I*, connectivity is defined

as

$$\frac{c_l(s),(t)}{r'}$$

$$\frac{c_{l}(s), \{t\})}{r'} = \frac{4}{4} = 100\%$$

For a given length *I*, connectivity is defined

as

$$\frac{c_l(s),(t)}{r'}$$

$$\frac{c_{l}(s),(t)}{r'} = \frac{2}{4} = 50\%$$

For a given length *I*, connectivity is defined

as

$$\frac{c_l(s),(t)}{r'}$$

$$\frac{c_{l}(s),(t)}{r'} = \frac{2}{4} = 50\%$$

The Visualization Module

The Visualization Module

Plotter function of previous toolchain

Issues:

- Parameters for design are coupled with data
- Difficult to expand current plotting tools
- No way to interact with data R code
- Hard to debug

The Visualization Module

The Visualization Module

The Visualization Module

The Visualization Module

Low Connectivity - Polarstar

 $G*G': ER_3 * Paley(5)$

ETHzürich

Low Connectivity - Polarstar

 $G*G': ER_3 * Paley(5)$

Low Connectivity - Polarstar

 $G*G': ER_3 * Paley(5)$

Low Connectivity - Polarstar

Structure graph $G: ER_3$

Low Connectivity - Polarstar

 $G*G': ER_3 * Paley(5)$

16 Aries router per chassis

Low connectivity - Megafly

One of the 17 groups

Low connectivity

***SPEL

Low connectivity

Low connectivity

Low connectivity

Torus		Hypercube		
Slimfly		Fat tree2x	Drago	nfly
Mesh	Kautz	Expander	MLFM	
	Polarfly	Tofu	Fat tree	
HyperX		Spectralfly	ratuce	Cascade
_	Megafly		Arrangement	Dragonfly
Express Mesh	XGFT	Polarstar	graph	
Random (Jellyfish)		Flattene Butterfl		K-ary n-tree

Results

Kautz

Source: The k-tuple twin domination in de Bruijn and Kautz digraphs. Toru Araki

 $\{x_1, x_2, ..., x_n\}$ with $x_i \neq x_{i+1}$ defines a node.

A node $\{x_1, x_2, ..., x_n\}$ is connected to $\{x_2, ..., x_n, \alpha\}$ for all $\alpha \neq x_n$

Kautz

Source: The k-tuple twin domination in de Bruijn and Kautz digraphs. Toru Araki

 $\{x_1, x_2, ..., x_n\}$ with $x_i \neq x_{i+1}$ defines a node.

A node $\{x_1, x_2, ..., x_n\}$ is connected to $\{x_2, ..., x_n, \alpha\}$ for all $\alpha \neq x_n$

Arrangement

Source: Structural Outlooks for the OTIS-Arrangement Network. A. M. Awwad, J. Al-Sadi, B. Haddad, A. Kayed

 $\{x_1, x_2, ..., x_n\}$ with $x_i \neq x_i$ for $i \neq j$ defines a node.

A node $\{x_1, x_2, ..., x_n\}$ is connected to $\{x_1, x_2,...,x_n\}$ if they differ in exactly one position.

Arrangement

Source: Structural Outlooks for the OTIS-Arrangement Network. A. M. Awwad, J. Al-Sadi, B. Haddad, A. Kayed

 $\{x_1, x_2, ..., x_n\}$ with $x_i \neq x_i$ for $i \neq j$ defines a node.

A node $\{x_1, x_2, ..., x_n\}$ is connected to $\{x_1, x_2,...,x_n\}$ if they differ in exactly one position.

$$\begin{cases}
 13 \} & \rightarrow \{14\} \\
 \rightarrow \{12\} \end{cases} \\
 \{13\} & \rightarrow \{23\} \\
 \rightarrow \{42\}$$

 $XGFT (h, m_1, ..., m_h, w_1, ..., w_h)$

h: Height of the fat tree

m₁,...,m_{h:} Number of children at level i

w₁,...,w_{h:} Number of parents at level i

 $XGFT (h, m_1, ..., m_h, w_1, ..., w_h)$

h: Height of the fat tree

m₁,...,m_{h:} Number of children at level i

w₁,...,w_{h:} Number of parents at level i

 $XGFT (h, m_1, ..., m_h, w_1, ..., w_h)$

h: Height of the fat tree

m₁,...,m_{h:} Number of children at level i

w₁,...,w_{h:} Number of parents at level i

 $XGFT (h, m_1, ..., m_h, w_1, ..., w_h)$

h: Height of the fat tree

m₁,...,m_{h:} Number of children at level i

w₁,...,w_{h:} Number of parents at level i

K-ary n-tree

Each end node is a unique n-tuple $\{0,1,...,k-1\}^n$ A router is defined as (w,l). w is a (n-1)-tuple $\{0,1,...,k-1\}^{n-1}$. $I = \{0,1,...,n-1\}$.

Two routers (w^a , l^a) and (w^b , l^b) are connected if $l^b=l^a+1$ and $w_i^a=w_i^b$ for $i \ne l^a$.

An endpoint is connected to a router (w,n-1), if $x_i=w_i$.

4-ary 2-tree

Source: k-ary n-trees: high performance networks for massively parallel architectures. F. Petrini; M. Vanneschi

4-ary 3-tree

Source: Dynamic power saving in fat-tree interconnection networks using on/off links. Alonso, Marina and Coll, Salvador and Martínez, Juan and Santonja, Vicente and López, Pedro and Duato, José

Mesh

A d-dimensional mesh. Each node is uniquely defined as $\{x_0,...,x_{d-1}\}$, with $x_i < n$.

Express Mesh

Express connections are added to nodes of a multiple of g distance to original neighbors.

Express Mesh

Express connections are added to nodes of a multiple of g distance to original neighbors.

$$g = 1$$

Express Mesh

Express connections are added to nodes of a multiple of g distance to original neighbors.

$$g = 2$$

Tofu

Variant of a 6-dimensional Torus. Each Tofu cluster consists of 12 nodes

3-dimensional Torus containing multiple clusters.

Each node is connected its equivalent in a neighboring Tofu cluster

3-dimensional cluster

Source: The Tofu Interconnect. Y. Ajima, Y. Takagi, T. Inoue, S. Hiramoto, T. Shimizu

Tofu

Variant of a 6-dimensional Torus. Each Tofu cluster consists of 12 nodes

3-dimensional Torus containing multiple clusters.

Each node is connected its equivalent in a neighboring Tofu cluster

A group is built as a Dragonfly network

Each group is connected via 4 nodes to any other cluster

6 chassis with each 16 Aries routers → 96 routers per group

16 Aries router per chassis

Construction:

v, w are primes

x, y be solutions to $x^2 + y^2 + 1 \equiv_w 0$

$$\alpha_0^2 + \alpha_1^2 + \alpha_2^2 + \alpha_3^2 = v$$

- $\alpha_0 > 0$ is odd, if $v \equiv_4 1$
- $\alpha_0 > 0$ is even, or $\alpha_0 = 0$ and $\alpha_1 > 0$, if $v \equiv_4 3$

 $SpF_{3.7}$

Source: SpectralFly: Ramanujan Graphs as Flexible and Efficient Interconnection Networks. S. Young, S. Aksoy, J. Firoz, R Gioiosa, T. Hagge, M. Kempton, J. Escobedo, M. Raugas

Construction:

Generating set S of SpF(v,w):

$$\begin{bmatrix} a_0 + xa_1 + ya_3 & -ya_1 + a_2 + xa_3 \\ -ya_1 - a_2 + xa_3 & a_0 - xa_1 - ya_3 \end{bmatrix}$$

There is an edge {u,v} if u⁻¹v in S

etc...

 $SpF_{3.7}$

Source: SpectralFly: Ramanujan Graphs as Flexible and Efficient Interconnection Networks. S. Young, S. Aksoy, J. Firoz, R Gioiosa, T. Hagge, M. Kempton, J. Escobedo, M. Raugas

SpectralFly: Ramanujan Graphs as Flexible and Efficient Interconnection Networks

S. Young, S. Aksoy, J. Firoz, R Gioiosa, T. Hagge, M. Kempton, J. Escobedo, M. Raugas

Elementary number theory, group theory and Ramanujan graphs

G. Davidoff, P. Sarnak, and A. Valette

 $\mathsf{SpF}_{3,7}$

Source: SpectralFly: Ramanujan Graphs as Flexible and Efficient Interconnection Networks. S. Young, S. Aksoy, J. Firoz, R Gioiosa, T. Hagge, M. Kempton, J. Escobedo, M. Raugas

Definition: A k-regular graph G is called Ramanujan if, where

$$\lambda(G) \leq 2 \times \sqrt[n]{k-1}$$

denotes the largest magnitude adjacency eigenvalue of G not equal to ±k

If w>2*sqrt(v), then SpF is a (v+1)-regular Ramanujan graph

 $SpF_{3.7}$

Source: SpectralFly: Ramanujan Graphs as Flexible and Efficient Interconnection Networks. S. Young, S. Aksoy, J. Firoz, R Gioiosa, T. Hagge, M. Kempton, J. Escobedo, M. Raugas

Megafly

Spine and leaf nodes s = l = d/2

Each spine router has s/g global links

Total of $s^2/g + 1$ groups

Megafly

Spine and leaf nodes s = l = d/2

Each spine router has s/g global links

Total of $s^2/g + 1$ groups

Polarstar

Structure graph $G: ER_3$

Source: PolarStar: Expanding the Scalability Horizon of Diameter-3 Networks. K. Lakhotia, L. Monroe, K. Isham, M. Besta, N. Blach, T. Hoefler, F. Petrini

Starproduct

Structure graph G is an ER graph

Subgraph either BDF or Paley

Polarstar

 $G*G': ER_3 * Paley(5)$

Source: PolarStar: Expanding the Scalability Horizon of Diameter-3 Networks. K. Lakhotia, L. Monroe, K. Isham, M. Besta, N. Blach, T. Hoefler, F. Petrini

Starproduct

Structure graph G is an ER graph

Subgraph either BDF or Paley

Polarstar

Structure graph $G: ER_3$

Source: PolarStar: Expanding the Scalability Horizon of Diameter-3 Networks. K. Lakhotia, L. Monroe, K. Isham, M. Besta, N. Blach, T. Hoefler, F. Petrini

Starproduct

Structure graph G is an ER graph

Subgraph either BDF or Paley

Previous Toolchain

Source: Facilitating design, analysis, and evaluation of network topologies. Alessandro Maissen