Scaling DCEL Overlay Operations to Support Dangle and Cut Edges

Andres Oswaldo Calderon Romero

University of California, Riverside

November 2024

Outline

Introduction

Scalable Partitioning with Dangle and Cut Edges

Experimental Evaluation

Conclusion

Introduction

- Extension of previous DCEL work for supporting dangle and cut edges.
- Introduction of a new kd-tree partitioner for overlay operations.
- Improvement in handling real-world datasets with scattered line segments.
- Overview of the partitioning strategy and overlay technique.

Motivation

- Many applications require handling noisy or incomplete polygon data.
- Challenges with existing techniques in managing scattered spatial data.
- Need for scalability in overlay operations.

Kd-tree Partitioning Strategy

- ► Kd-tree: Data-oriented approach using midpoint-based splits.
- Quadtree comparison: Space-oriented approach with uniform splits.
- Advantages of kd-tree in reducing empty partitions.

Overlaying Polygons with Dangle and Cut Edges

- Extends DCEL overlay for datasets with scattered line segments.
- Integration of scalable polygonization for dangle and cut edges.
- Examples of overlay operations for applications in urban planning, advertising, and more.

Kd-tree vs Quadtree Performance

- Evaluation on MainUS and GADM datasets.
- Comparison of tree construction, partitioning, and overlay times.
- Kd-tree shows improved performance with fewer empty cells.

Figure: Kd-tree vs Quadtree performance comparison.

Overlaying Polygons with Dangle and Cut Edges

- Comparison of overlay results across states.
- Performance influenced by dangle and cut edge count and intersections.
- Example: Texas and California with large datasets.

Figure: Overlay performance for different states.

Conclusion

- Kd-tree improves partitioning efficiency for large spatial datasets.
- Effective handling of scattered line segments in DCEL overlay.
- ► Scalability demonstrated in experimental evaluation.