10_Gradient_Descent

Martin Reißel

27. Juni 2022

Inhaltsverzeichnis

		idient Descent		
	1.1	Überblick	1	
	1.2	Vorüberlegungen	1	
	1.3	Lipschitz-Stetigkeit	2	
		L-Glattheit		
	1.5	<i>μ</i> -Konvexität	11	
	1.6	Zusammenfassung	16	

1 Gradient Descent

1.1 Überblick

Wir betrachten das Gradient-Descent Verfahren

$$x_{t+1} = x_t - \gamma_t f_t',$$

untersuchen Konvergenz, d.h.

$$f_t - f_* \xrightarrow{t \to \infty} 0$$

bzw.

$$\|x_t - x_*\| \xrightarrow{t \to \infty} 0$$

und versuchen das asymptotische Verhalten genauer zu analysieren.

Für den Rest des Kapitels setzen wir $f \in C^1(\mathbb{R}^d)$ konvex und $\gamma_t = \gamma$ konstant voraus.

1.2 Vorüberlegungen

Ist $f \in C^1(\mathbb{R}^d)$, $x_* = \operatorname{argmin}_{x \in \mathbb{R}} f(x)$, $x_{t+1} = x_t - \gamma f'_t$, dann gilt

$$\begin{aligned} \|x_{t+1} - x_*\|_2^2 &= \|x_t - x_* - \gamma f_t'\|_2^2 \\ &= \|x_t - x_*\|_2^2 + \gamma^2 \|f_t'\|_2^2 - 2\gamma f_t'(x_t - x_*) \end{aligned}$$

und somit

$$f_t'(x_t - x_*) = \frac{1}{2\gamma} (\gamma^2 \|f_t'\|_2^2 + \|x_t - x_*\|_2^2 - \|x_{t+1} - x_*\|_2^2).$$

Für konvexes f ist

$$f(y) \ge f(x) + f'(x)(y - x)$$

Gradient Descent 1.3 Lipschitz-Stetigkeit

und mit $y = x_*, x = x_t$

$$f_* \geq f_t + f_t'(x_* - x_t)$$

bzw.

$$\begin{split} 0 &\leq f_t - f_* \leq f_t'(x_t - x_*) \\ &= \frac{1}{2\gamma} \left(\gamma^2 \|f_t'\|_2^2 + \|x_t - x_*\|_2^2 - \|x_{t+1} - x_*\|_2^2 \right). \end{split}$$

Aufsummiert erhält man

$$\begin{split} \sum_{t=0}^{T-1} \left(f_t - f_* \right) &\leq \sum_{t=0}^{T-1} f_t' (x_t - x_*) \\ &= \frac{1}{2\gamma} \sum_{t=0}^{T-1} \left(\gamma^2 \| f_t' \|_2^2 + \| x_t - x_* \|_2^2 - \| x_{t+1} - x_* \|_2^2 \right) \end{split}$$

bzw.

$$\underbrace{\frac{1}{T}\sum_{t=0}^{T-1}(f_t-f_*)}_{\text{"mittlere Abweichung von }f_*} \leq \frac{\gamma}{2}\underbrace{\sum_{t=0}^{T-1}\|f_t'\|_2^2}_{\text{"mittlere Gradient"}} \\ + \frac{1}{2\gamma}\underbrace{\frac{\|x_0-x_*\|_2^2 - \|x_T-x_*\|_2^2}{T}}_{\leq \frac{\|x_0-x_*\|_2^2}{T} = \mathcal{O}\left(\frac{1}{T}\right)}_{\text{"Startfehler"}}.$$

Mit $\hat{t} = \operatorname{argmin}_{t \in \{0,\dots,T-1\}} (f_t - f_*)$ (\hat{t} nicht notwendig gleich T - 1) folgt

$$f_{\hat{t}} - f_* \le \frac{1}{T} \sum_{t=0}^{T-1} (f_t - f_*).$$

Der Anteil

$$\frac{1}{2\gamma} \frac{\|x_0 - x_*\|_2^2 - \|x_T - x_*\|_2^2}{T}$$

war zu erwarten. Das Ziel ist es nun

$$\frac{\gamma}{2T} \sum_{t=0}^{T-1} \|f_t'\|_2^2$$

zu kontrollieren. Dazu muss f zusätzliche Voraussetzungen erfüllen.

1.3 Lipschitz-Stetigkeit

Im letzten Abschnitt haben wir $f \in C^1(\mathbb{R}^d)$ konvex vorausgesetzt. Jetzt fordern wir zusätzlich Lipschitz-Stetigkeit von f, d.h.

$$|f(y)-f(x)| \le L_f ||y-x|| \quad \forall x,y \in \mathbb{R}^d.$$

Dies ist äquivalent zur Beschränktheit des Gradienten, wie das folgende Ergebnis aus der Analysis zeigt.

Lemma: $f : \mathbb{R}^d \supset \text{dom}(f) \to \mathbb{R}$ differenzierbar (nicht notwendig konvex), $X \subset \text{dom}(f)$ offen, konvex. Dann ist

$$|f(x) - f(y)| \le L_f ||x - y|| \quad \forall x, y \in X$$

äquivalent zu

$$||f'(x)|| \le L_f \quad \forall x \in X,$$

wobei bei f' die induzierte Operatornorm benutzt wird.

Beweis:

"⇒"

Gradient Descent 1.3 Lipschitz-Stetigkeit

• für f gelte

$$|f(x) - f(y)| \le L_f ||x - y|| \quad \forall x, y \in X$$

- da X offen ist gibt es für jedes $x \in X$ eine Kugel $B_r(x)$ mit $B_r(x) \subset X$
- für beliebiges $v \in \mathbb{R}^d$ mit ||v|| = 1 ist deshalb die Funktion

$$g(t) = f(x + tv), \quad t \in (-r, r)$$

wohldefiniert

• mit f ist auch g differenzierbar mit

$$g'(t) = f'(x + tv)v$$

und somit gilt für alle $v \in \mathbb{R}^d$ mit ||v|| = 1

$$||f'(x)v|| = |g'(0)|$$

$$= \left|\lim_{t \to 0} \frac{g(t) - g(0)}{t}\right|$$

$$= \lim_{t \to 0} \left|\frac{f(x + tv) - f(x)}{t}\right|$$

$$\leq L_f \lim_{t \to 0} \left|\frac{x + tv - x}{t}\right|$$

$$= L_f ||v||,$$

also

$$||f'(x)|| \le L_f$$

"⇐"

• für f gelte

$$||f'(x)|| \le L_f \quad \forall x \in X$$

• da X konvex ist, ist für alle $x, y \in X$ und $t \in [0, 1]$ die Funktion

$$g(t) = f(x + t(y - x))$$

wohldefiniert und es gilt

$$g(0) = f(x), \quad g(1) = f(y)$$

• $\min f$ ist auch g differenzierbar \min

$$g'(t) = f'(x + t(y - x))(y - x)$$

• durch Anwendung des Mittelwertsatzes folgt

$$|f(x) - f(y)| = |g(1) - g(0)|$$

$$= |g'(\tau)|$$

$$= |f'(\underbrace{x + \tau(y - x)}_{\xi})(y - x)|$$

$$\leq ||f'(\xi)|| ||y - x||$$

$$\leq L_f ||x - y||$$

Gradient Descent 1.3 Lipschitz-Stetigkeit

Setzen wir dies in die summierte Abschätzung von oben ein, so erhalten wir

$$\sum_{t=0}^{T-1} (f_t - f_*) \leq \sum_{t=0}^{T-1} f_t'(x_t - x_*)$$

$$= \frac{1}{2\gamma} \sum_{t=0}^{T-1} (\gamma^2 \|f_t'\|_2^2 + \|x_0 - x_*\|_2^2 - \|x_{t+1} - x_*\|_2^2)$$

$$\leq \frac{\gamma}{2} T L_f^2 + \frac{1}{2\gamma} (\underbrace{\|x_0 - x_*\|_2^2}_{e_0^2} - \underbrace{\|x_T - x_*\|_2^2}_{\geq 0})$$

$$\leq \frac{\gamma T L_f^2}{2} + \frac{e_0^2}{2\gamma},$$

also

$$\min_{t=0,\dots,T-1} (f_t - f_*) \le \frac{1}{T} \sum_{t=0}^{T-1} (f_t - f_*) \le \frac{\gamma L_f^2}{2} + \frac{e_0^2}{2\gamma T}.$$

Wann verschwindet die rechte Seite für $T \to \infty$? Beide Summanden auf der rechten Seite sind ≥ 0 , so dass

$$\frac{\gamma L_f^2}{2} \xrightarrow{T \to \infty} 0, \quad \frac{e_0^2}{2\gamma T} \xrightarrow{T \to \infty} 0$$

gelten muss, also

$$\gamma \xrightarrow{T \to \infty} 0$$
, $\gamma T \xrightarrow{T \to \infty} \infty$.

Mit dem Ansatz

$$\gamma = \frac{c}{T^{\omega}}, \quad c, \omega > 0$$

gilt immer $\gamma \xrightarrow{T \to \infty} 0$.

Für den zweiten Teil erhalten wir $\gamma T = c T^{1-\omega} \xrightarrow{T \to \infty} \infty$ falls $1 - \omega > 0$, also

$$\omega$$
 < 1

ist. Oben eingesetzt folgt

$$\min_{t=0,...,T-1} (f_t - f_*) \leq \frac{\gamma L_f^2}{2} + \frac{e_0^2}{2\gamma T}
= \frac{cL_f^2}{2} \frac{1}{T^{\omega}} + \frac{e_0^2}{2c} \frac{1}{T^{1-\omega}}
= \mathcal{O}\left(\left(\frac{1}{T}\right)^{\min(\omega, 1-\omega)}\right).$$

Die obere Schranke

$$g(\gamma) = \frac{\gamma L_f^2}{2} + \frac{e_0^2}{2\gamma T}$$

wird wegen

$$g'(\gamma) = \frac{L_f^2}{2} - \frac{e_0^2}{2\gamma^2 T}, \quad g''(\gamma) = \frac{e_0^2}{\gamma^3 T} \ge 0$$

minimal für

$$\gamma_{\min} = \frac{e_0}{L_f \sqrt{T}}$$

mit

$$g_{\min} = g(\gamma_{\min}) = \frac{L_f e_0}{\sqrt{T}}.$$

Damit erhalten wir das folgende Ergebnis.

Satz: $f : \mathbb{R}^d \to \mathbb{R}$, konvex, C^1 , L-stetig mit Konstante L_f und es existiere $x_* = \operatorname{argmin}_{x \in \mathbb{R}^d} f(x)$. Mit $\gamma = \frac{c}{T^\omega}$, $\omega \in (0,1)$, gilt

$$\min_{t=0,\dots,T-1} (f_t - f_*) \le \frac{1}{T} \sum_{t=0}^{T-1} (f_t - f_*)$$

$$= \mathcal{O}\left(\left(\frac{1}{T}\right)^{\min(\omega,1-\omega)}\right) \quad \text{für} \quad T \to \infty.$$

Die optimale Ordnung ist $\frac{1}{2}$ bei $\omega = \frac{1}{2}$.

Mit $e_0 = \|x_0 - x_*\|_2$, $\gamma = \frac{e_0}{L_f \sqrt{T}}$ gilt außerdem

$$\min_{t=0,\dots,T-1} (f_t - f_*) \le \frac{1}{T} \sum_{t=0}^{T-1} (f_t - f_*) \le \frac{L_f e_0}{\sqrt{T}}.$$

Bemerkung:

• $\min_{t=0,\dots,T-1} (f_t - f_*) \le \varepsilon$ gilt damit sicher, falls

 $\frac{L_f e_0}{\sqrt{T}} \le \varepsilon$

bzw.

$$T \geq \Big(\frac{e_0}{L_f \varepsilon}\Big)^2$$

- für $\min_{t=0,...,T-1} (f_t f_*) \le \varepsilon$ benötigen wir damit höchstens $\mathcal{O}(\frac{1}{\varepsilon^2})$ Schritte
- \bullet in der Praxis gibt man ε vor, bestimmt T und das zugehörige (feste)

$$\gamma = \frac{e_0}{L_f \sqrt{T}}$$

und führt dann (maximal) T – 1 Schritte des Verfahrens durch

• für $\varepsilon \to 0$ gilt $T \to \infty$ und

$$\gamma = \frac{e_0}{L_f \sqrt{T}} \to 0$$

1.4 L-Glattheit

Ist f konvex und C^1 , dann gilt

$$f(y) \ge f(x) + f'(x)(y - x),$$

d.h. der Graph von f verläuft oberhalb seiner Tangenten. Zur Abschätzung nach oben führen wir den folgenden Begriff ein.

Definition: $f : \mathbb{R}^d \supset \text{dom}(f) \to \mathbb{R}$ (nicht notwendig konvex), $X \subset \text{dom}(f)$. f heißt L-glatt auf X falls ein L > 0 existiert, mit

$$f(y) \le f(x) + f'(x)(y-x) + \frac{1}{2}L\|y-x\|_2^2 \quad \forall x, y \in X.$$

Bemerkung: Ist f L-glatt, so verläuft der Graph von f unterhalb der quadratischen Approximation

$$q_{L,x}(y) = f(x) + f'(x)(y-x) + \frac{1}{2}L\|y-x\|_2^2.$$

```
import sympy as sy
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
fsize = 12
x = sy.symbols('x')
f = sy.Lambda(x, x*x/2 + 1/2)
f1 = sy.Lambda(x, f(x).diff(x))
L = 3/4
x0 = -1
ql = sy.Lambda(x, f(x0) + f1(x0)*(x-x0) + L*(x-x0)**2)
ql = sy.lambdify(x, ql(x))
f = sy.lambdify(x, f(x))
x = np.linspace(-2,2)
xmin = x.min()
xmax = x.max()
plt.axis('off')
tic = 0.2
plt.plot([xmin, xmax], [0,0], 'k')
plt.text(x0, -tic, '$x$', ha = 'center', va = 'top', fontsize=fsize)
plt.plot([x0,x0], [-tic,f(x0)], 'g:')
plt.legend(loc='lower center', ncol=3, fontsize=fsize)
plt.ylim(xmin, f(xmin));
```


L-Glattheit ist eng verknüpft mit der Lipschitz-Stetigkeit des Gradienten f'.

Lemma: $f: \mathbb{R}^d \supset \text{dom}(f) \to \mathbb{R}$ sei differenzierbar (nicht notwendig konvex). Ist f' Lipschitz-stetig, d.h.

$$||f'(y) - f'(x)|| \le L||y - x|| \quad \forall x, y,$$

dann gilt

$$(f'(y) - f'(x))(y - x) \le L||y - x||^2.$$

Beweis: Da f'(x), f'(y) lineare stetige Operatoren sind gilt

$$(f'(y) - f'(x))(y - x) \le |(f'(y) - f'(x))(y - x)|$$

$$\le ||f'(y) - f'(x)|| ||y - x||$$

$$\le L||y - x||^2$$

Lemma: $f: \mathbb{R}^d \supset \text{dom}(f) \to \mathbb{R}$ sei differenzierbar (nicht notwendig konvex), dom(f) konvex. Dann ist

$$(f'(y) - f'(x))(y - x) \le L||y - x||^2 \quad \forall x, y$$

äquivalent zu

$$f(y) \le f(x) + f'(x)(y-x) + \frac{1}{2}L\|y-x\|^2 \quad \forall x, y.$$

Beweis:

"⇒"

• mit

g(t) = f(x + t(y - x))

folgt

g'(t) = f'(x + t(y - x))(y - x)

und für t > 0

$$g'(t) - g'(0) = (f'(x + t(y - x)) - f'(x))(y - x)$$

$$= \frac{1}{t}(f'(x + t(y - x)) - f'(x))t(y - x)$$

$$\leq \frac{1}{t}L\|t(y - x)\|^{2}$$

$$= tL\|y - x\|^{2}$$

• damit erhalten wir

$$f(y) = g(1)$$

$$= g(0) + \int_0^1 g'(\tau) d\tau$$

$$\leq f(x) + \int_0^1 g'(0) + \tau L \|y - x\|^2 d\tau$$

$$= f(x) + f'(x)(y - x) + \frac{1}{2}L \|y - x\|^2$$

<u>''</u>__''

• nach Voraussetzung ist

$$f(y) \le f(x) + f'(x)(y-x) + \frac{1}{2}L\|y-x\|^2$$

bzw.

$$f(x) \le f(y) + f'(y)(x-y) + \frac{1}{2}L||x-y||^2$$

• Addition der beiden Ungleichungen liefert

$$f(y) + f(x) \le f(x) + f(y) + (f'(x) - f'(y))(y - x) + L||y - x||^2$$

also

$$(f'(y) - f'(x))(y - x) \le L||y - x||^2$$

Bemerkung: Ist f' Lipschitz-stetig, dann ist f L-glatt.

Ist f konvex, $dom(f) = \mathbb{R}^d$ und existiert ein $x_* \in dom(f)$ mit $f(x_*) = \inf_x f(x)$, dann gilt auch die Umkehrung.

Lemma: $f: \mathbb{R}^d \to \mathbb{R}$ sei differenzierbar (nicht notwendig konvex) und es existiere x_* mit $f(x_*) = \inf_{x \in \mathbb{R}^d} f(x)$. Ist f L-glatt mit Konstante L, dann gilt

$$\frac{1}{2L} \|f'(x)\|_2^2 \le f(x) - f(x_*) \le \frac{L}{2} \|x - x_*\|_2^2$$

und f' ist Lipschitz-stetig mit Konstante L.

Beweis:

- Abschätzung nach oben:
 - da x_* globaler Minimierer ist muss $f'(x_*) = 0$ sein und somit

$$f(x) \le f(x_*) + f'(x_*)(x - x_*) + \frac{1}{2}L\|x - x_*\|_2^2$$
$$= f(x_*) + \frac{1}{2}L\|x - x_*\|_2^2$$

- Abschätzung nach unten:
 - ▶ wir benutzen

$$f(x_*) = \inf_{y} f(y) \le \inf_{y} u(y),$$

$$u(y) = f(x) + f'(x)(y - x) + \frac{1}{2}L||y - x||_2^2$$

und minimieren die quadratische Funktion u

▶ für die Ableitungen erhalten wir

$$u'(y) = f'(x) + L(y - x), \quad u''(y) = LI$$

• u ist (strikt) konvex mit globalem Minimierer y_* mit

$$0 = u'(y_*) \quad \Leftrightarrow \quad y_* - x = -\frac{1}{I}f'(x)$$

und Minimum

$$u_* = u(y_*) = f(x) + f'(x)(y_* - x) + \frac{1}{2}L\|y_* - x\|_2^2$$
$$= f(x) - \frac{1}{L}\|f'(x)\|_2^2 + \frac{1}{2}L\|\frac{1}{L}f'(x)\|_2^2$$
$$= f(x) - \frac{1}{2L}\|f'(x)\|_2^2$$

▶ somit folgt

$$f(x_*) \le f(x) - \frac{1}{2L} \|f'(x)\|_2^2$$

- Lipschitz-Stetigkeit von f':
 - ▶ wir betrachten die Funktion

$$g(y) = f(y) - f'(x)y$$

▶ mit f ist auch g konvex und differenzierbar mit Ableitung

$$g'(y) = f'(y) - f'(x)$$

▶ damit ist g'(x) = 0, also ist $y_* = x$ globales Minimum von g

ightharpoonup außerdem folgt aus der L-Glattheit von f für beliebiges z

$$g(y) + g'(y)(z - y) + \frac{1}{2}L\|z - y\|_{2}^{2} =$$

$$= f(y) - f'(x)y + (f'(y) - f'(x))(z - y) + \frac{1}{2}L\|z - y\|_{2}^{2}$$

$$= f(y) + f'(y)(z - y) + \frac{1}{2}L\|z - y\|_{2}^{2} - f'(x)y - f'(x)(z - y)$$

$$\geq f(z) - f'(x)z$$

$$= g(z)$$

so dass auch g L-glatt ist

▶ somit können wir die Abschätzung nach unten aus dem vorherigen Teil auf g anwenden und erhalten wegen $y_* = x$

$$\frac{1}{2L} \|f'(y) - f'(x)\|_{2}^{2} = \frac{1}{2L} \|g'(y)\|_{2}^{2}
\leq g(y) - g(y_{*})
= g(y) - g(x)
= f(y) - f'(x)y - (f(x) - f'(x)x)
= f(y) - f(x) - f'(x)(y - x),$$

also

$$f(y) - f(x) - f'(x)(y - x) \ge \frac{1}{2L} \|f'(y) - f'(x)\|_2^2$$

bzw. durch vertauschen von x und y

$$f(x) - f(y) - f'(y)(x - y) \ge \frac{1}{2L} \|f'(y) - f'(x)\|_2^2$$

▶ durch Addition der beiden Ungleichungen erhalten wir

$$(f'(y) - f'(x))(y - x) \ge \frac{1}{L} \|f'(y) - f'(x)\|_2^2$$

und mit Cauchy-Schwartz

$$||f'(y) - f'(x)||_2^2 \le L(f'(y) - f'(x))(x - y)$$

$$\le L||f'(y) - f'(x)||_2 ||x - y||_2,$$

so dass f' Lipschitz-stetig mit Konstante L ist

Bemerkung: Sei $f: \mathbb{R}^d \to \mathbb{R}$ konvex, C^1 und es existiere $x_* \in \text{dom}(f)$ mit $f(x_*) = \inf_x f(x)$. Dann ist äquivalent:

- f ist L-glatt mit Parameter L
- $||f'(y) f'(x)||_2 \le L||y x||_2 \quad \forall x, y \in \mathbb{R}^d$

L-Glattheit ist also unter diesen Voraussetzungen äquivalent dazu, dass f' Lipschitz-stetig mit Konstante L ist.

Folgende Operation erhalten die L-Glattheit:

• für i = 1, ..., m seien $f_i : \mathbb{R}^d \supset \text{dom}(f_i) \to \mathbb{R}$, L-glatt mit Parameter L_i und $\lambda_i \ge 0$. Dann ist

$$f = \sum_{i=1}^{m} \lambda_i f_i$$

L-glatt mit Konstante

$$L = \sum_{i=1}^{m} \lambda_i L_i$$

über

$$dom(f) = \bigcap_{i=1}^{m} dom(f_i)$$

• ist $f: \mathbb{R}^d \supset \text{dom}(f) \to \mathbb{R}$ L-glatt mit Konstante $L, g: \mathbb{R}^m \to \mathbb{R}^d$ affin linear, d.h.

$$g(z) = Az + b,$$

dann ist $f \circ g$ auch L-glatt mit

$$\tilde{L} = L \|A\|_2^2$$
, $dom(f \circ g) = \{z \mid z \in \mathbb{R}^m, g(z) \in dom(f)\}$

Für f konvex und L-glatt werden wir nun günstigere Konvergenzresultate für Gradient-Descent erhalten. Wir benutzen L-Glattheit mit $y = x_{t+1}$, $x = x_t$

$$f_{t+1} \leq f_t + f_t'(x_{t+1} - x_t) + \frac{L}{2} ||x_{t+1} - x_t||_2^2$$

Mit $x_{t+1} - x_t = -\gamma f_t$ folgt

$$f_{t+1} \le f_t - \gamma \|f_t'\|_2^2 + \frac{L}{2} \gamma^2 \|f_t'\|_2^2 = f_t - \underbrace{\gamma (1 - \frac{L}{2} \gamma)}_{=:\beta} \|f_t'\|_2^2.$$

Für $\gamma > 0$ ist $\beta > 0$ genau dann, wenn

$$1-\frac{L}{2}\gamma>0,$$

also genau dann, wenn

$$0<\gamma<\frac{2}{L}.$$

Damit folgt

Descent-Lemma: Ist $f : \mathbb{R}^d \to \mathbb{R}$ *L*-glatt, dann gilt

$$f_{t+1} \leq f_t - \beta \|f_t'\|_2^2, \quad \beta = \gamma \Big(1 - \frac{\gamma L}{2}\Big)$$

und $\beta > 0$ falls $0 < \gamma < \frac{2}{L}$.

Bemerkung: Für f L-glatt und $0 < \gamma < \frac{2}{L}$ fällt f_t also monoton.

Damit verschärfen wir jetzt unser Konvergenzresultat aus dem vorherigen Abschnitt. Nach den Vorüberlegungen gilt

$$\sum_{t=0}^{T-1} (f_t - f_*) \le \frac{\gamma}{2} \sum_{t=0}^{T-1} \|f_t'\|_2^2 + \frac{1}{2\gamma} \|x_0 - x_*\|_2^2 - \frac{1}{2\gamma} \|x_T - x_*\|_2^2.$$

Aus dem Descent-Lemma folgt

$$||f_t'||_2^2 \le \frac{1}{\beta}(f_t - f_{t+1})$$

und somit

$$\begin{split} \sum_{t=0}^{T-1} \left(f_t - f_* \right) &\leq \frac{\gamma}{2\beta} \sum_{t=0}^{T-1} \left(f_t - f_{t+1} \right) + \frac{1}{2\gamma} \left(\| x_0 - x_* \|_2^2 - \| x_T - x_* \|_2^2 \right) \\ &= \frac{\gamma}{2\beta} \left(f_0 - f_T \right) + \frac{1}{2\gamma} \left(\| x_0 - x_* \|_2^2 - \| x_T - x_* \|_2^2 \right). \end{split}$$

Für $\gamma < \frac{2}{L}$ ist $f_{t+1} \le f_t$, so dass

$$f_{T-1} \le \frac{1}{T} \sum_{t=0}^{T-1} f_t$$

und damit

$$f_{T-1} - f_* \le \frac{1}{T} \sum_{t=0}^{T-1} (f_t - f_*)$$

$$\le \frac{1}{T} \left(\frac{\gamma}{2\beta} (f_0 - f_T) + \frac{1}{2\gamma} (\|x_0 - x_*\|_2^2 - \|x_T - x_*\|_2^2) \right).$$

Mit $||x_T - x_*||_2 \ge 0$ erhalten wir schließlich

$$f_{T-1} - f_* \le \frac{1}{T} \left(\frac{\gamma}{2\beta} (f_0 - f_*) + \frac{1}{2\gamma} \|x_0 - x_*\|_2^2 \right).$$

Satz: $f: \mathbb{R}^d \to \mathbb{R}$, konvex, L-glatt mit Konstante L und es existiere $x_* = \operatorname{argmin}_{x \in \mathbb{R}^d} f(x)$. Für $0 < \gamma < \frac{2}{L}$ ist

$$f_{T} - f_{*} \leq \frac{1}{T+1} \left(\frac{\gamma}{2\beta} (f_{0} - f_{*}) + \frac{1}{2\gamma} \|x_{0} - x_{*}\|_{2}^{2} \right)$$

$$= \mathcal{O}\left(\frac{1}{T}\right) \quad \text{für} \quad T \to \infty.$$

Bemerkung:

• $f_T - f_* \le \varepsilon$ gilt damit sicher, falls

$$\frac{1}{T+1} \Big(\frac{\gamma}{2\beta} \big(f_0 - f_* \big) + \frac{1}{2\gamma} \|x_0 - x_*\|_2^2 \Big) \leq \varepsilon$$

also

$$T \geq \frac{1}{\varepsilon} \left(\frac{\gamma}{2\beta} (f_0 - f_*) + \frac{1}{2\gamma} \|x_0 - x_*\|_2^2 \right) - 1 = \mathcal{O}\left(\frac{1}{\varepsilon}\right)$$

• da $\gamma < \frac{2}{L}$ sein muss kann wegen des Terms

$$\frac{1}{2\gamma} \|x_0 - x_*\|_2^2$$

die Asymptotik der oberen Schranke nicht mehr durch eine T-abhängige Wahl von γ verbessert werden

1.5 μ -Konvexität

Bis jetzt haben wir nur Abschätzungen für $f_t - f_*$ bewiesen. Nun werden wir $\|x_t - x_*\|_2$ betrachten. Dazu benötigen wir nochmals stärkere Voraussetzungen, nämlich μ -Konvexität. Damit werden wir zusätzlich auch eine besseres asymptotisches Verhalten nachweisen können.

f ist μ -konvex falls $f(x) - \frac{\mu}{2} \|x\|_2^2$ konvex ist. Ist f zusätzlich differenzierbar, so erhalten wir das folgende Ergebnis.

Lemma: Ist $f \mu$ -konvex und differenzierbar, dann gilt

$$f(y) \ge f(x) + f'(x)(y-x) + \frac{\mu}{2} ||y-x||_2^2 \quad \forall x, y$$

und

$$(f'(y) - f'(x))(y - x) \ge \mu \|y - x\|_2^2 \quad \forall x, y.$$

Beweis:

• f ist μ -konvex falls $g(x) = f(x) - \frac{\mu}{2} ||x||_2^2$ konvex ist

• mit f ist auch g differenzierbar mit

$$g'(x) = f'(x) - \mu x$$

wegen

$$g(y) \ge g(x) + g'(x)(y - x)$$

ist

$$f(y) - \frac{\mu}{2} \|y\|_2^2 \ge f(x) - \frac{\mu}{2} \|x\|_2^2 + (f'(x) - \mu x)^T (y - x)$$

bzw.

$$f(y) \ge f(x) + f'(x)(y-x) + \frac{\mu}{2} \Big(\underbrace{y^T y - x^T x - 2x^T (y-x)}_{h} \Big)$$

mit

$$h = y^{T}y - x^{T}x - 2x^{T}y + 2x^{T}x$$

= $y^{T}y - 2x^{T}y + x^{T}x$
= $||y - x||_{2}^{2}$,

also

$$f(y) \ge f(x) + f'(x)(y-x) + \frac{\mu}{2} ||y-x||_2^2$$

da g konvex und differenzierbar ist, ist g' monoton, also

$$0 \le (g'(y) - g'(x))(y - x)$$

= $(f'(y) - \mu y - f'(x) + \mu x)(y - x)$
= $(f'(y) - f'(x))(y - x) - \mu \|y - x\|_2^2$

und somit

$$(f'(y) - f'(x))(y - x) \ge \mu ||y - x||_2^2 \quad \forall x, y$$

Bemerkung:

• ist $f \mu$ -konvex und L-glatt (und damit differenzierbar), so gilt

$$f(y) \le f(x) + f'(x)(y - x) + \frac{L}{2} \|y - x\|_2^2 =: q_{L,x}(y)$$

$$f(y) \ge f(x) + f'(x)(y - x) + \frac{\mu}{2} \|y - x\|_2^2 =: q_{\mu,x}(y)$$

- f kann also zwischen den beiden quadratischen Funktionen $q_{\mu,x}, q_{L,x}$ "eingesperrt" werden
- $q_{\mu,x}$, $q_{L,x}$ berühren f im Punkt x
- es muss immer $\mu \le L$ gelten
- ist $\mu > 0$ so ist f strikt konvex und x_* ist damit eindeutig
- ist $\mu = L$ dann ist $f = q_{\mu,x} = q_{L,x}$, d.h. f ist ein quadratisches Polynom

```
import sympy as sy
import numpy as np
import matplotlib.pyplot as plt

%matplotlib inline

fsize = 12

x = sy.symbols('x')
```

```
f = sy.Lambda(x, x*x/2 + 1/2)
f1 = sy.Lambda(x, f(x).diff(x))
m = 1/3
L = 3/4
x0 = -1
x1 = sy.solve(ql(x).diff(x))[0]
x2 = sy.solve(f1(x))[0]
x3 = sy.solve(qm(x).diff(x))[0]
qm = sy.lambdify(x, qm(x))
ql = sy.lambdify(x, ql(x))
f = sy.lambdify(x, f(x))
x = np.linspace(-2,3)
xmin = x.min()
xmax = x.max()
plt.axis('off')
tic = 0.2
plt.plot([xmin, xmax], [0,0], 'k')
plt.text(x2, -tic, 'x_{*}, ha = 'center', va = 'top', fontsize=fsize)
plt.plot([x2,x2], [-tic,f(x2)], 'g:')
plt.text(x0, -tic, '$x$', ha = 'center', va = 'top', fontsize=fsize)
plt.plot([x0,x0], [-tic,f(x0)], 'g:')
plt.plot([xmin, x0], [f(x0), f(x0)], 'g:')
plt.plot([xmin,x1], [ql(x1),ql(x1)], 'r:')
plt.text(xmin-tic, (f(x0)+f(x1)+tic)/2, 'guaranteed progress', color='r', ha = _ 'center', va = 'center', fontsize=fsize)
plt.plot([x0,xmax], [f(x0),f(x0)], 'g:')
plt.plot([x3,xmax], [qm(x3),qm(x3)], 'b:')
plt.text(xmax, (f(x0)+qm(x3))/2, 'maximal\n suboptimality', color='b', ha = 'center', \neg va = 'center', fontsize=fsize)
plt.legend(loc='lower center', ncol=3, fontsize=fsize)
plt.ylim(xmin, f(xmin));
```


Lemma: $f: \mathbb{R}^d \to \mathbb{R}$ differenzierbar und es existiere x_* mit $f(x_*) = \inf_{x \in \mathbb{R}^d} f(x)$. Ist f μ -konvex dann gilt

$$\frac{\mu}{2}\|y-x\|_2^2 \le f(x) - f(x_*) \le \frac{1}{2\mu}\|f'(x)\|_2^2.$$

Beweis:

• f ist μ -konvex, d.h.

$$f(y) \ge f(x) + f'(x)(y-x) + \frac{\mu}{2} ||y-x||_2^2 \quad \forall x, y$$

- Abschätzung nach unten:
 - ▶ da x_* globaler Minimierer ist muss $f'(x_*) = 0$ sein und aus der μ -Konvexität folgt

$$f(x) \ge f(x_*) + f'(x_*)(x - x_*) + \frac{\mu}{2} ||x - x_*||_2^2$$
$$= f(x_*) + \frac{\mu}{2} ||x - x_*||_2^2$$

- Abschätzung nach oben:
 - ▶ wir benutzen

$$f(x_*) = \inf_{y} f(y) \ge \inf_{y} u(y),$$

$$u(y) = f(x) + f'(x)(y - x) + \frac{\mu}{2} ||y - x||_2^2$$

und minimieren die quadratische Funktion u

▶ für die Ableitungen erhalten wir

$$u'(y) = f'(x) + \mu(y - x), \quad u''(y) = \mu I$$

• für $\mu > 0$ ist μ strikt konvex mit globalem Minimierer μ_* mit

$$0 = u'(y_*) \quad \Leftrightarrow \quad y_* - x = -\frac{1}{\mu}f'(x)$$

und Minimum

$$u_* = u(y_*) = f(x) + f'(x)(y_* - x) + \frac{1}{2}\mu \|y_* - x\|_2^2$$
$$= f(x) - \frac{1}{\mu} \|f'(x)\|_2^2 + \frac{1}{2}\mu \|\frac{1}{\mu}f'(x)\|_2^2$$
$$= f(x) - \frac{1}{2\mu} \|f'(x)\|_2^2$$

▶ somit folgt

$$f(x_*) \ge f(x) - \frac{1}{2\mu} \|f'(x)\|_2^2.$$

bzw.

$$f(x) - f(x_*) \le \frac{1}{2\mu} \|f'(x)\|_2^2$$

Aus $x_{t+1} = x_t - \gamma f_t'$ hatten wir in den Vorüberlegungen

$$\|x_{t+1} - x_*\|_2^2 = \|x_t - x_*\|_2^2 + \gamma^2 \|f_t'\|_2^2 - 2\gamma f_t'(x_t - x_*)$$

erhalten. μ -Konvexität liefert mit $y = x_*, x = x_t$

$$f_* \ge f_t + f_t'(x_* - x_t) + \frac{\mu}{2} \|x_* - x_t\|_2^2$$

bzw.

$$-f'_t(x_t-x_*) \leq f_*-f_t-\frac{\mu}{2}\|x_t-x_*\|_2^2.$$

Eingesetzt erhalten wir

$$||x_{t+1} - x_*||_2^2 = ||x_t - x_*||_2^2 + \gamma^2 ||f_t'||_2^2 + 2\gamma (f_* - f_t - \frac{\mu}{2} ||x_t - x_*||_2^2)$$

$$\leq (1 - \gamma \mu) ||x_t - x_*||_2^2 + \gamma^2 ||f_t'||_2^2 + 2\gamma (f_* - f_t).$$

Das Descent-Lemma aus dem vorherigen Kapitel liefert

$$f_* - f_t \le f_{t+1} - f_t \le -\beta \|f_t'\|_2^2, \quad \beta = \gamma \left(1 - \frac{\gamma L}{2}\right)$$

mit $\beta > 0$ für $0 < \gamma < \frac{2}{L}$, so dass

$$\|x_{t+1} - x_*\|_2^2 \le (1 - \gamma \mu) \|x_t - x_*\|_2^2 + (\gamma^2 - 2\gamma \beta) \|f_t'\|_2^2$$

gilt.

Für den Vorfaktor des letzten Terms gilt wegen $\gamma > 0$, $\beta = \gamma \left(1 - \frac{\gamma L}{2}\right)$,

$$\gamma(\gamma - 2\beta) \le 0$$
 \Leftrightarrow $\gamma \le 2\beta = \gamma(2 - \gamma L)$
 \Leftrightarrow $1 \le 2 - \gamma L$
 \Leftrightarrow $\gamma \le \frac{1}{L}$.

Somit folgt für $0 < \gamma \le \frac{1}{L}$

$$||x_{t+1} - x_*||_2^2 \le \rho ||x_t - x_*||_2^2, \quad \rho = 1 - \gamma \mu$$

bzw.

$$\|x_T - x_*\|_2^2 \le \rho^T \|x_0 - x_*\|_2^2.$$

Wegen $0 < \mu \le L$ und $0 < \gamma \le \frac{1}{L}$ ist

$$0 < \gamma \mu \le \gamma L \le 1$$

und somit

$$0 \le \rho < 1$$
,

also $|\rho|$ < 1 und wir erhalten Konvergenz für x_T .

Für f_T ergibt sich direkt aus der L-Glattheit

$$f_T \le f_* + f'_*(x_T - x_*) + \frac{L}{2} ||x_T - x_*||_2^2$$

und wegen $f'_* = 0$

$$|f_T - f_*| \le \frac{L}{2} ||x_T - x_*||_2^2 \le \frac{L}{2} \rho^T ||x_0 - x_*||_2^2.$$

Insgesamt haben wir damit das folgende Ergebnis bewiesen.

Satz: $f: \mathbb{R}^d \to \mathbb{R}$, μ -konvex mit $\mu > 0$, L-glatt mit Konstante L und es existiere $x_* = \operatorname{argmin}_{x \in \mathbb{R}^d} f(x)$.

Für
$$0 < \gamma \le \frac{1}{L}$$
 folgt

$$||x_{t+1} - x_*||_2^2 \le \rho ||x_t - x_*||_2^2$$

und

$$f_T - f_* \le \frac{L}{2} \rho^T ||x_0 - x_*||_2^2$$

mit

$$\rho = 1 - \gamma \mu \in [0, 1).$$

Bemerkung:

Gradient Descent 1.6 Zusammenfassung

• $f_T - f_* \le \frac{L}{2} \rho^T \|x_0 - x_*\|_2^2 \le \varepsilon$ gilt sicher, falls

$$\rho^T \le \frac{2\varepsilon}{L\|x_0 - x_*\|_2^2}$$

- für $\rho = 0$ gilt das für alle $\varepsilon \ge 0$
- für $0 < \rho < 1$ folgt

$$T\log(\rho) \le \log\left(\frac{2\varepsilon}{L\|x_0 - x_*\|_2^2}\right), \quad \log(\rho) < 0$$

also

$$T \ge \frac{1}{\log(\rho)} \log\left(\frac{2\varepsilon}{L\|x_0 - x_*\|_2^2}\right)$$

$$= \frac{1}{|\log(\rho)|} \log\left(\frac{L\|x_0 - x_*\|_2^2}{2\varepsilon}\right)$$

$$= \frac{1}{|\log(\rho)|} \left(\log\left(\frac{L}{2}\|x_0 - x_*\|_2^2\right) + \log\left(\frac{1}{\varepsilon}\right)\right)$$

und somit

$$T = \mathcal{O}\left(\log\left(\frac{1}{\varepsilon}\right)\right)$$

1.6 Zusammenfassung

Für Gradient-Descent bei *nicht restringierten Optimierungsproblemen* haben wir folgendes Konvergenzverhalten nachgewiesen:

• f konvex und Lipschitz-stetig, $\gamma = \frac{c}{\sqrt{T}}$, c > 0:

$$\min_{t=0,\dots,T-1} (f_t - f_*) \le \varepsilon \quad \Rightarrow \quad T = \mathcal{O}\left(\frac{1}{\varepsilon^2}\right)$$

• f konvex und L-glatt, $0 < \gamma < \frac{2}{L}$:

$$f_T - f_* \le \varepsilon \quad \Rightarrow \quad T = \mathcal{O}(\frac{1}{\varepsilon})$$

• $f \mu$ -konvex mit $\mu > 0$ und L-glatt, $0 < \gamma \le \frac{1}{L}$:

$$f_T - f_* \le \varepsilon \quad \Rightarrow \quad T = \mathcal{O}\left(\log\left(\frac{1}{\varepsilon}\right)\right)$$

Ist f(x) eine L-glatte Funktion, dann ist für alle $\mu > 0$

$$f_R(x) = f(x) + \mu ||x||_2^2$$

auch μ -konvex, d.h. Tikhonov(Ridge)-Regularisierung kann die Konvergenz von Gradient-Descent beschleunigen.