Теория чисел и основные алгебраические структуры

- ullet Z целые числа $+-\cdot>$
- \mathbb{N} натуральные числа
- ullet R вещественные числа

Аксиома индукции. $A\subset \mathbb{N}; A\neq \emptyset \Rightarrow$ в A есть наименьший элемент

Тh. о делении с остатком

$$\begin{cases} a, b \in \mathbb{Z} \\ b \neq 0 \end{cases} \Rightarrow \exists ! q, r \in \mathbb{Z} : a = b \cdot q + r, 0 \le r < |b|$$

Доказательство

• Существование

1. a > 0, b > 0 fix b

Пусть не так, есть плохие a (множество плохих $a \neq \emptyset$)

Пусть a_0 - наименьшее плохое, значит a_0-1 - хорошее, можно разделить с остатком

$$a_0 - 1 = b \cdot q + r, 0 \le r < b$$
, тогда

$$a_0 = (b \cdot q + r) + 1, r + 1 < b$$

$$a_0 = b \cdot (q+1)$$
, r.e. a_0 - xopomee

a < 0, b > 0

$$-a = b \cdot q + r, 0 \le r < b$$

$$a = -b \cdot q - r$$

$$2.1. r = 0$$

$$a = b \cdot (-q) + 0$$

$$a = b \cdot (-q) - b + b - r = b \cdot (-q - 1) + b - r, 0 < r < b \Rightarrow 0 < b - r < b$$

3. b < 0, -b > 0

$$a = -b \cdot q + r = b \cdot (-q) + r, 0 \le r < b$$

• Единственность

Пусть
$$q, q', r, r'$$

$$a = b \cdot q + r$$

$$a = b \cdot q' + r'$$

$$a-a=b\cdot q+r-b\cdot q'-r'$$

$$0 = b \cdot (q - q') + (r - r')$$

$$r'-r=b\cdot(q-q'), q\neq q', |q-q'|\geq 1$$

$$|b \cdot (q - q')| \ge |b|$$

$$r', r \in [0; |b| - 1]$$

$$|r-r'| < |b|-1$$
 Противоречие $\Rightarrow q = q', r = r'$

Def. $a, b \in \mathbb{Z}, a : b(b|a),$ если $\exists c \in \mathbb{Z} : a = bc$

Rem. $0 : 0 \ \forall x \in \mathbb{Z}0 = 0 \cdot x$

Основные свойства делимости:

1. 0 : a

- $2. \ a : 1$
- 3. $a, b : c \Rightarrow a + b : c$
- 4. $a, k : c \Rightarrow k \cdot a : c$
- 5. $a \vdots a$
- 6. $a \vdots b, b \vdots a \Rightarrow a = \pm b$
- 7. $a:b,b:c\Rightarrow a:c$
- 8. $ac : bc, c \neq 0 \Rightarrow a : b$

Доказательство

3.
$$a: c \Rightarrow \exists q_a: a = q_a \cdot c$$

 $b: c \Rightarrow \exists q_b: b = q_b \cdot c$
 $a+b=(q_a+q_b)\cdot c$

6.
$$a = bx$$

$$b = ay$$

$$a = ayx$$

$$a = a(xy) \Rightarrow \begin{bmatrix} a = 0, b \neq 0 \\ a \neq 0, xy = 1 \Rightarrow x, y = \pm 1, a = \pm b \end{bmatrix}$$

8.
$$ac : bc, c \neq 0$$

$$ac = bc \cdot x$$

$$c \cdot a = c \cdot bx \Rightarrow a = bx \ (a : b)$$

Задача: при каких $a,b,c\in\mathbb{Z}$ уравнение ax+by=c имеет решение в целых числах (\Leftrightarrow из чего состоит < a,b>? $c\in< a,b>$?)

Def. Идеалом называется подмножество $I \subset \mathbb{Z}$:

- 1. $I \neq \emptyset$
- $2. \ a,b \in I \Rightarrow a+b \in I$
- 3. $a \in I, k \in \mathbb{Z} \Rightarrow a \cdot k \in I$

Ex. 1
$$c \in \mathbb{Z}$$

$$\langle c \rangle = \{n \cdot c\} = \{x \in \mathbb{Z} | x : c\}$$
 - идеал, порожденный c - главный идеал

Ex. 2
$$c_1, c_2 \cdots c_k \in \mathbb{Z}$$

$$\langle c_1, c_2 \cdots c_k \rangle = \{ n_1 c_1 + n_2 c_2 + \cdots + n_k c_k | n_i \in \mathbb{Z} \}$$

Th. в Z любой идеал - главный

Доказательство

I - идеал в \mathbb{Z} , хотим $b \in \mathbb{Z}$, I = < b >

1.
$$I = \{0\} = <0>$$

2.
$$\exists a \in I, a \neq 0 \Rightarrow a \in I, a \in \mathbb{N}$$
. Рассмотрим наименььший натуральный $b \in I$

Докажем
$$I = < b >$$

$$< b > \subset I, b \in I, k \cdot b \in I$$

$$a \in I$$
 делим с остатком

$$a = bq + r, 0 \le r < b$$

$$r = a - bq \ b \in I \Rightarrow -bq \in I \Rightarrow a - bq \in I \Rightarrow r \in I$$

$$r \in \mathbb{N}$$
 - противоречие $(b$ - наименььшее $) \Rightarrow r \notin \mathbb{N} \Rightarrow r = 0$

В частности $\forall a,b \in \mathbb{Z} \ \exists d: < a,b> = < d>$ **Def.** $a,b \in \mathbb{Z} \ \text{HOД}(a,b) = gcd(a,b) = (a,b)$ - такое $d \in \mathbb{Z}$, что:

- 1. $a \vdots d, b \vdots d$
- 2. $\forall d': a : d', b : d' \Rightarrow d : d'$

Rem. НОД определен однозначно с точностью до знака

Доказательство

$$\begin{cases} d_1 = (a,b) \Rightarrow a \vdots d_1, b \vdots d_1, d_2 \vdots d_1 \\ d_2 = (a,b) \Rightarrow a \vdots d_2, b \vdots d_2, d_1 \vdots d_2 \end{cases} \Rightarrow d_1 = \pm d_2$$
Th. $a,b \in \mathbb{Z}$

- 1. $\exists (a,b) = d$
- 2. $\exists x,y \in \mathbb{Z}: ax+by=d$ линейное представление НОДа
- 3. ax + by = c имеет решение $\Leftrightarrow c : d$

Доказательство 1

Рассмотрим I=< a,b> - по предыдущей теореме он главный < d>=< a,b> $d=d\cdot 1\in I\Rightarrow d\in< a,b>$, т.е. $\exists x,y:ax+by=d$ d=(a,b) $\Big\{a:d'\Rightarrow ax:d'b:d'\Rightarrow by:d'\Rightarrow d:d'$ $a=a\cdot 1+b\cdot 0\in< a,b>=< d>\Leftrightarrow a:d$ Аналогично b:d

Доказательство 3

$$\Rightarrow: \ c = ax + by \begin{cases} a : (a, b) \\ b : (a, b) \end{cases} \Rightarrow c = ax + by : (a, b)$$

$$\Leftarrow$$
: Пусть c : $(a,b)=d$, т.е. $c=d\cdot k, k\in\mathbb{Z}$ $ax+by=d$ $a_{new}=ak, b_{new}=bk$ $a_{new}x+b_{new}y=dk$

Lem.
$$(a,b) = (a,b-a)$$
 $\begin{cases} a,b:d\Rightarrow b-a\Rightarrow d \\ a,b-a:d\Rightarrow b=a+(b-a):d \end{cases}$ \Rightarrow одинаковые общие делители

Следствие: $b = aq + r \Rightarrow (a, b) = (a, r)$. Доказывается аналогично лемме **Алгоритм Евклида:**

$$1. \ a = bq + r_1$$
$$b = r_1q + r_2$$

2. $(a,b) = (r_1,b) = (r_1,r_2)\cdots, \exists i \in \mathbb{N} : r_i = 0$

3.
$$(a,b) = \cdots = (r_k, r_k + 1) = (r_k, 0) = r_k$$

Rem.
$$a_1, a_2 \cdots a_k \in \mathbb{Z}$$
 $\exists (a_1, a_2 \cdots a_k) = d \ \exists x_1 \cdots x_k \in \mathbb{Z} : d = x_1 a_1 + x_2 a_2 + \cdots + x_k a_k$

Доказательство

Рассмотрим идеал $< a_1, a_2 \cdots a_k > \exists d : < d > = < a_1 \cdots a_k >$. Далее все как при k=2 **Def.** $a,b \in \mathbb{Z}$ называются взаимнопростыми, если (a,b)=1 **Lm.** a,b - взаимнопросты $\Leftrightarrow \exists x,y : ax+by=1$

Доказательство

$$\Rightarrow (a,b) = 1 \Rightarrow \exists x, y : ax + by = 1$$

$$\Leftarrow ax + by = 1 \Rightarrow 1 : (a,b) (a,b) = 1$$

Lm. об отбрасывании взаимнопростого множителя

$$a, b, c \in \mathbb{Z}$$

$$\begin{cases} ab : c \\ (a, c) = 1 \end{cases} \Rightarrow b : c$$

Доказательство

ab=cx $ay+cz=1\Rightarrow aby+cbz=b$: c **Def.** $p\in\mathbb{Z}$. p называется простым, если

- 1. |p| > 1
- 2. $p \neq xy |x|, |y| < |p|$

Ясно, что это равносильно тому, что p имеет ровно 4 делителя $(\pm 1, \pm p)$

Lm.
$$p$$
 - простое $\Leftrightarrow ab : p \Rightarrow \begin{bmatrix} a : p \\ b : p \end{bmatrix}, |p| > 1$

Доказательство

$$\Leftarrow p = xy \Rightarrow xy : p \Rightarrow \begin{bmatrix} x : p \\ y : p \end{bmatrix} \Rightarrow \begin{bmatrix} |x| \ge p \\ |y| \ge p \end{bmatrix}$$

 \Rightarrow Пусть p - простое, ab : p

$$\begin{bmatrix}
(a,p) = 1 \Rightarrow b \\
(a,p) = p \Rightarrow a \\
\vdots p
\end{bmatrix}$$

Основная теорема арифметики

$$x \in \mathbb{Z}, x \neq 0$$

$$\begin{aligned} 1. \ &\exists p_1, p_2 \cdots p_k \text{ - простые} > 0 \\ &\varepsilon = sgn(n) \\ &a_1, a_2 \cdots a_k \in \mathbb{N} \\ &x = \varepsilon p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}, p_i \neq p_j \end{aligned}$$

2. Это разложение единственное с точностью до порядка сомножителей

$$\begin{split} x &= \varepsilon_1 p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k} \\ x &= \varepsilon_2 q_1^{b_1} q_2^{b_2} \cdots q_k^{b_k} \\ p_i, q_i &> 0, \text{ тогда } \varepsilon_1 = \varepsilon_2, k = l \\ \exists \{i_1, i_2 \cdots i_k\} = \{1, 2 \cdots k\} : \\ p_{i_1} &= q_1 \ a_{i_1} = b_1, p_{i_2} = q_2 \ a_{i_2} = b_2 \end{split}$$

Доказательство

Будем доказывать единственность и существование разложения $n=p_1p_2\cdots p_s, p_i$ - простые, $n\in\mathbb{N}$

1. Существование:

Пусть есть плохие n (множество плохих непусто)

 n_0 - наименьшее плохое

- n_0 простое $p_1 = n_0, s = 1$ $n_0 = p_1 \ ?? \Rightarrow n_0$ хорошее
- n_0 составное $\Rightarrow n_0 = n_1 n_2 \ n_1, n_2 < n_0$ n_1, n_2 хорошие $\Leftrightarrow \begin{cases} n_1 = p_1 p_2 \cdots p_k, p_i \text{ простое} \\ n_2 = q_1 q_2 \cdots q_s, q_i \text{ простое} \end{cases} \Rightarrow n_0 = n_1 n_2 = p_1 p_2 \cdots p_k q_1 q_2 \cdots q_s \Rightarrow n_0$ хорошее

2. Единственность:

Пусть есть плохие n

 n_0 - наименьшее из плохих

$$\begin{cases} n_0 = p_1 p_2 \cdots p_k \\ n_0 = q_1 q_2 \cdots q_s \end{cases} \quad p_i, q_i \text{ - простые}$$

$$p_1 p_2 \cdots p_k = n_0 : q_1 \Rightarrow \begin{bmatrix} p_1 : q_1 \\ p_2 \cdots p_k : q_1 \end{bmatrix} \Rightarrow \begin{bmatrix} p_1 : q_1 \\ p_2 : q_1 \\ p_3 \cdots p_k : q_1 \end{bmatrix} \Rightarrow \cdots \Rightarrow \begin{bmatrix} p_1 : q_1 \\ p_2 : q_1 \\ \vdots \\ p_k : q_1 \end{bmatrix}$$

 $\exists p_i \ \vdots \ q_1$

$$p_i, q_1 > 0 \ q_1 \neq 1 \Rightarrow q_1 = p_i$$

Итак: $\exists i: p_i = q_1 \Rightarrow p_1 p_2 \cdots p_{i-1} p_{i+1} \cdots p_k = q_2 q_3 \cdots q_s = n_1, \ n_1 < n_0 \Rightarrow n_1$ - хорошее \Rightarrow разложения $p_1 p_2 \cdots p_{i-1} p_{i+1} \cdots p_k$ и $q_2 q_3 \cdots q_s$ совпадают ??

$$n=arepsilon p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k}, p_1< p_2<\cdots< p_k$$
 - каноническое разложение $n=\prod_{p\in\mathbb{P}}p^{v_p(n)},$ почти все $v_p(n)=0$

 $v_p(n)$ - степеньь вхождения p в n

Свойства степени вхождения:

1.
$$v_p(ab) = v_p(a) + v_p(b)$$

2.
$$v_p(a+b) \geq min(v_p(a),v_p(b))$$
 если $v_p(a) \neq v_p(b)$, то $v_p(a+b) = min(v_p(a),v_p(b))$

Rem. $v_p(a)$ - это такое n, что $a : p_n, a : /p^{n+1}$

Доказательство

1. Напишем разложения:

$$\begin{split} a &= p^{v_p(a)} \cdot \prod_{q \neq p} q^{v_q(a)} \\ b &= p^{v_p(b)} \cdot \prod_{q \neq p} q^{v_q(b)} \\ ab &= p^{v_p(a) + v_p(b)} \cdot \prod_{q \neq p} q^{v_q(a) + v_q(b)} \\ a &= p^n x, \ b = p^m y \\ \text{HYO } n &\geq m \\ a + b &= p^m p^{n-m} x + p^m y = p^m (p^{n-m} x + y) \vdots p^m = p^{min(n,m)} \\ n &\neq m \ p^{n-m} x \vdots p \Rightarrow p^{n-m} x + y \ \vdots / p \Rightarrow p^m (p^{n-m} x + y) \ \vdots / p^{m+1} \\ m &= v_p(a + b) \end{split}$$

Следствия из ОТА

Утверждение:
$$a=\prod_{p_i\in\mathbb{P}}p_i^{a_i},\,b=\prod_{p_i\in\mathbb{P}}p_i^{b_i}$$

Тогда

- 1. $a : b \Leftrightarrow a_i \ge b_i \forall i$
- 2. $\exists c : a = c^k \Leftrightarrow a_i : k \forall i$
- 3. Число a имеет $\tau(a) = \prod (a_i + 1)$ натуральных делителей

Доказательство

1.
$$a = bx, x = \prod p_i^{x_i}$$

$$\prod p_i^{a_i} = \prod p_i^{b_i} \cdot \prod p_i^{x_i} = \prod p_i^{b_i + x_i} \Leftrightarrow a_i = b_i + x_i \forall i \Leftrightarrow a_i \ge b_i \forall i$$

2. Упражнение

$$b_1 \in \{0, 1 \cdots a_1\}$$

3.
$$|\{$$
 делители a $\}|=|\{p_1^{b_1}p_2^{b_2}\cdots p_s^{b_s}|^{b_2}\in\{0,1\cdots a_2\}\}|=|\{(b_1\cdots b_s)|b_i\leq a_i\}|=|\{0\cdots a_1\}\times\{0\cdots a_2\}\times\cdots\times a_s\}|$

$$b_s \in \{0, 1 \cdots a_s\}$$

$$\{0 \cdots a_s\} | = (a_1 + 1)(a_2 + 1) \cdots (a_s + 1)$$

 ${f Def.}\ c$ - наименьшее общее кратное a,b $a,b,c\in {\Bbb Z}$ если

- 1. c : a, c : b
- 2. $c' \vdots a, c' \vdots b \Rightarrow c' \vdots c$

Утверждение
$$a=\prod\limits_{i}p_i^{a_i},b=\prod\limits_{i}p_i^{b_i}$$
 $(a,b)=\prod\limits_{i}p_i^{min(a_i,b_i)}$ $\exists [a,b]=\prod\limits_{i}p_i^{max(a_i,b_i)}$

Доказательство

1.
$$min(a_i, b_i) \stackrel{\leq}{\underset{\leq}{}} a_i$$

$$\frac{\prod p_i^{a_i}}{\prod p_i^{a_i}} : \prod p_i^{min(a_i,b_i)}, \text{ r.e. } a,b : \prod p_i^{min(a_i,b_i)}$$

$$a, b : \prod p_i^{c_i} \ \forall i \ \frac{c_i \le a_i}{c_i \le b_i} \Rightarrow c_i \le min(a_i, b_i) \Rightarrow \prod p_i^{min(a_i, b_i)} : \prod p_i^{c_i}$$

2. НОК - аналогично

Отступление

Решаем диофантовы уравнения

$$x^2 - y^2 = 100 \ (x - y)(x + y) = 2^2 \cdot 5^2 \Rightarrow$$
 знаем $(x - y), \ (x + y)$ (находим их из разложения $100) \Rightarrow$ находим x, y

Отступление от теории чисел

Основные алгебраические структуры

Def. Группой называется пара (G,*), где G - множество, * - бинарная операция на G, такая, что: 1. (a*b)*c=a*(b*c) - ассоциативность

- 2. $\exists e : a * e = e * a = a, e$ нейтральный элемент
- 3. $\forall a \in G \exists a^{-1} : a * a^{-1} = a^{-1} * a = e$

Если a*b=b*a (коммутативность), то G - абелева (коммутативная) группа

Rem. Простейшие свойства группы

- 1. Нейтраьный элемент единственный
- 2. Обратный элемент единственный
- 3. $a, b \in G$
 - $a*x = b*x \Rightarrow a = b$ свойство сокращения
 - Уравнения a * x = b и x * a = b имеют единственное решение

Доказательство (?)

- a * x = b * x $(a * x) * x^{-1} = (b * x) * x^{-1}$ $a * (x * x^{-1}) = b * (x * x^{-1})$ a * e = b * ea = b
- a * x = b $a^{-1} * (a * x) = a^{-1} * b$ $(a^{-1} * a) * x = a^{-1} * b$ $e * x = a^{-1} * b$ $x = a^{-1} * b$
- x * a = b \dots $x = b * a^{-1}$

 $f:A\to B$

Главний пример ассоциативной, но не коммутативной операции – композиция

$$\begin{cases} (a, f(a)) | a \in A \\ f(a) \in B \end{cases}$$

$$g: B \to C$$

$$b \in B; g(b) \in C$$

$$a \to f(a) \to g(f(a)) \in C$$

$$g \circ f: A \to C$$

$$(g \circ f)(x) = g(f(x)) \ \forall x \in A$$

$$(g \circ f)(x) = g(f(x)) \ \forall x \in A$$
 Rem. Если $C \neq A$, то $f \circ g$ не существует $A \to B \to C \to D$ $h \circ (g \circ f) : A \to D$ $(h \circ g) \circ f : A \to D$ и $h \circ (g \circ f) = (h \circ g) \circ f$ $\forall a \in A \ (h \circ (g \circ f))(a) = h(g \circ f)(a) = h(g(f(a))) = ((h \circ g) \circ f)(a)$ **Def.** M – множество $End(M) = \{f : M \to M\}$

Тогда на End(M) определена бинарная ассоциативная операция \circ

 $f,g:M\to M;\ f\circ g;\ M\to M\to M$

End(M) замкнуто относительно композиции

Аксиомы:

- 1. Ассоциативность есть
- 2. $id_m(x) = x \ \forall x \in M$

$$(f \circ id_m)(x) = f(id_m(x)) = f(x)$$

$$(id \circ f)(x) = id(f(x)) = f(x)$$

T.e.
$$f \circ id = f$$
 и $id \circ f = f$

 id_m – нейтральный элемент

Rem. Если в определение группы взять только аксиомы 1 и 2, то G – моноид. End(M) – моноид

$$fix f(x) = a$$

$$g(f(x)) = f(a) - fix$$

$$g \circ f \neq id_m \ \forall g$$

Th. $f: M \to M$ имеет обратное $\Leftrightarrow f$ – биекция

Т.е. $\forall y \in M \ f(x) = y$ имеет единственно решение

$$f^{-1}(y) = x$$

$$f^{-1} \circ f(x) = f^{-1}(y) = x$$

$$f \circ f^{-1}(y) = f(x) = y$$

$$egin{cases} f^{-1}\circ f=id \ f\circ f^{-1}=id \end{cases} \Rightarrow f^{-1}$$
 — биекция

 $\mathbf{\hat{D}ef.}\ M$ – множество

$$S(M) \subset End(M)$$

$$S(M) = \{ f \in End(M) | f -$$
биекция $\}$

S(M) – симметрическая группа на множестве M, группа относительно \circ

Rem. id – биекция; $id^{-1} = id$

$$M = \{1, 2 \cdots n\}$$

 $S(M) = S_n$ – симметричная группа (группа перестановок)

Def. Кольцом называется тройка $(R, +, \cdot)$, где

R – множество

 $+, \cdot -$ бинарные операции на R (|R| > 1)

Такие, что:

- 1. (R, +) абелева группа
 - $\bullet \ a+b=b+a$
 - (a+b) + c = a + (b+c)
 - $\exists 0 : a + 0 = a$
 - $\bullet \ \forall a \exists (-a) : a + (-a) = 0$

5.
$$a\cdot(b+c)=a\cdot b+a\cdot c\\ (b+c)\cdot a=b\cdot a+c\cdot a$$
 – дистрибутивность

6.
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$
 – у нас выполняется всегда

7.
$$\exists 1 : a \cdot 1 = 1 \cdot a = a$$

8.
$$a \cdot b = b \cdot a$$

9.
$$\forall a \in R, a \neq 0 \ \exists a^{-1} : a \cdot a^{-1} = 1$$

Если выполняется 1-6, это ассоциативное кольцо

Если выполняется 1-7, это ассоциативное кольцо с 1

Если выполняется 1-6 и 8, это (ассоциативное) коммутативное кольцо

Если выполняется 1-8, это (ассоциативное) коммутативное кольцо с 1

Если выполняется 1-9, это поле

Если выполняется 1-7 и 9, это тело

Простейшие свойства колец:

1. $a \cdot 0 = 0$

2.
$$a \cdot (-1) = -a$$

Rem. R – поле $\Rightarrow \forall a, b \neq 0$ a : b $a = b \cdot \frac{a}{b} = b \cdot (a \cdot b^{-1})$

Значит бессмыслены понятия простых, разложения на простые

Кольца вычетов

 $M,\{(a,b)\}\subset M imes M$ — отноешния на множестве M aRb

- $aRb \Rightarrow bRa$ симметричность
- $aRb, bRc \Rightarrow aRc$ транзитивность
- aRa рефлексивность

Если выполняются все 3 пункта, то это отношения эквивалентности

R – отноешние эквивалентности

 $a \in M$

 $\overline{a} = \{b \in M | aRb\}$ – класс Эквивалентности a

Th. Любые два класса эквивалентности $\overline{a}, \overline{b}: \begin{bmatrix} \overline{a} \bigcap \overline{b} = \emptyset \\ \overline{a} = \overline{b} \end{bmatrix}$

В итоге $M = \bigcup \overline{a}$ – разбиение на классы

Def. $a,b,n\in\mathbb{Z}$ a сравнимо с b по модулю n, если (a-b) : n обозначается $a\equiv b(modn)\Rightarrow\mathbb{Z}$ разбивается на классы эквивалентности. Обозначение: R – отношение, M/R – множество классов эквивалентности, \sim – эквивалентность M/\sim – множество классов эквивалентности – фактормножество

Доказательство

P: a - a = 0 : $n \Rightarrow a = a$

C: $a \equiv b \Rightarrow a - b : n \Rightarrow b - a : n \Rightarrow b \equiv a$

T:
$$\begin{cases} a \equiv b \\ b \equiv c \end{cases} \Rightarrow \begin{cases} a - b : n \\ b - c : n \end{cases} \Rightarrow a - c = (a - b) + (b - c) : n \Rightarrow a \equiv c$$

 $\mathbf{Rem.}\ a \equiv b \Leftrightarrow a$ и b имеют одинаковые остатки от деления на n

Доказательство

← Упражнение

$$\Rightarrow \begin{cases} a = q_a \cdot n + r \\ b = q_b \cdot n + r \end{cases} \Rightarrow a - b = n(q_a - q_b) + 0 \Rightarrow a \equiv b$$
$$(r_1 - r_2 \neq 0 \Rightarrow 0 < |r_1 - r_2| < n; r_1 - r_2 \stackrel{!}{\cdot}/n)$$

Элементы \mathbb{Z}/\equiv – вычеты (классы вычетов) по модулю n

$$\overline{3} = \{3; 3 \pm n; 3 \pm 2n \cdots \}$$

Из
$$\widetilde{\mathrm{Rem}} \Rightarrow |\mathbb{Z}/\equiv|=\mathrm{n}$$

$$\mathbb{Z}/\equiv = \{\overline{0}; \overline{1}\cdots \overline{n-1}\}$$

Обозначается $\mathbb{Z}/n\mathbb{Z}$

Свойства сравнений:

$$\begin{cases} a \equiv b \\ c \equiv d \end{cases} \Rightarrow \begin{cases} a + c \equiv b + d \\ ac \equiv bd \end{cases}$$

Доказательство

1.
$$(a+c) - (b+d) = (a-b) + (c-d) : n$$

2.
$$ac \equiv bc$$
, т.к. $ac - bc = c(a - b)$: n

$$ad \equiv bd$$
, t.k. $ad - bd = d(a - b) : n$

По транзитивности $ac \equiv bc \equiv bd$

$$a \equiv b \Leftrightarrow \overline{a} = \overline{b}$$
 в Z/nZ

Каноническое отображение:

$$\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$$

$$a \to \overline{a} = \{a + nk | k \in \mathbb{Z}\}$$

$$\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2} \cdots \overline{n-1}\}$$

$$\begin{cases} a \equiv b \\ c \equiv d \end{cases} \Rightarrow \begin{cases} a + c \equiv b + d \\ ac \equiv bd \end{cases}$$

Эти свойства позволяют перенести на $\mathbb{Z}/n\mathbb{Z}$ структуру кольца:

$$\overline{a} + \overline{b} := \overline{a + b}$$

$$\overline{a} \cdot \overline{b} = \overline{a \cdot b}$$

Зачем для этго свойства?

Пусть x, y – классы

Строим
$$x+y$$
 : выбираем $a:\overline{a}=x$ $b:\overline{b}=y$ $x+y:=\overline{a+b}$

Нужно показать, что результат не зависит от выбора a и b

$$\begin{cases} \overline{a} = \overline{c} \\ \overline{b} = \overline{d} \end{cases} \Leftrightarrow \begin{cases} a \equiv c \\ b \equiv d \end{cases} \Rightarrow a + c \equiv c + d \Leftrightarrow \overline{a + b} = \overline{c + d}$$

С умножением аналогично

Th. $(\mathbb{Z}/n\mathbb{Z},+,\cdot)$ – коммутативное ассоциативное кольцо с 1

Доказательство

Надо проверить 8 аксиом, очев

Пусть
$$v \in \mathbb{Z}/n\mathbb{Z}$$
 $f(x) = bx$

$$f: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$$

Как устроена?

B Q:
$$f(x) = bx$$
 – биекция $(b \neq 0)$

В \mathbb{Z} : f(x) = bx – инъекция, но не сюрьекция

•
$$bx = by \Rightarrow x = y$$

 \bullet Не все числа вида bx

Утверждение f – биекция \Leftrightarrow $(a,n)=1; \overline{a}=b$, иначе это даже не инъекция

Доказательство

•
$$(b, n) = 1 \Rightarrow \exists y, z : by + nz = 1$$

$$\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1} \cdots \overline{n-1}\} \ b = \overline{a}$$

Значения $f \colon \overline{0a}, \overline{1a} \cdots \overline{(n-1)a}$

Заметим, что если
$$\overline{ka}=\overline{la},$$
 т.е. $ka\equiv la,$ то
$$\begin{cases} (k-l)a \vdots n \\ (a,n)=1 \end{cases} \Rightarrow k-l \vdots n \Rightarrow \overline{k}=\overline{l}$$

Таким образом f – инъективно $\Rightarrow \overline{0a}, \overline{1a}\cdots \overline{(n-1)a}$ – попарно различные классы \Rightarrow это $\{\overline{0}, \overline{1}\cdots \overline{n-1}\} \Rightarrow f$ – сюрьекция

Упражнение: доказать сюрьективность напрямую через ay + bz = 1

• Пусть $(a,n)=d\neq 1$ $a=dz;\ n=dy$ Положим $x=\overline{y}\in \mathbb{Z}/n\mathbb{Z}$ Тогда $f(x)=vx=\overline{dz}\cdot\overline{y}=\overline{dzy}=\overline{dy}\cdot\overline{z}=0\cdot\overline{z}=0$ и f(0)=0 $x\neq\overline{0}=\{0+nk|k\in\mathbb{Z}\}=< n>\Rightarrow f$ — неинъективна

Следствие p – простое, $\mathbb{Z}/p\mathbb{Z}$ – поле

Доказательство

Пусть $\overline{a} \neq \overline{0}$, т.е. $a \not p \Rightarrow (a,p) = 1$, т.е. $x \to \overline{a} \cdot x$ сюрьективно то есть $\exists b \in \mathbb{Z} : \overline{a} \cdot \overline{b} = 1 \Rightarrow \overline{b} = \overline{a}^{-1}$, т.е. у \overline{a} есть обратный $\Rightarrow \mathbb{Z}/p\mathbb{Z}$ – поле Как найти этот обратный? $\overline{a} \cdot \overline{x} = \overline{1}; \ ax \equiv 1 \Leftrightarrow ax = 1 + py \Leftrightarrow ax - py = 1$ – линейное представление НОДа, т.е. x,y существуют Пусть n – составное: $n = pq; \ p,q > 1$

 $\overline{p}, \overline{q} \neq \overline{0}$ — кольцо с делителями нуля

 $\overline{p} \cdot \overline{q} = \overline{0}$

Def. Область целостности – кольцо без делителей нуля **Lem.**

- 1. Любое поле область целостности
- 2. В области целостности $\begin{cases} ab = ac \\ a \neq 0 \end{cases} \Rightarrow b = c$

Доказательство

1.
$$K$$
 – поле; $a,b\in K:ab=0$ Пусть $a\neq 0\Rightarrow \exists a^{-1}$ $a^{-1}\cdot ab=a^{-1}\cdot 0=0$, т.е. $b=0$ Итак $ab=0\Rightarrow \begin{bmatrix} a=0\\b=0 \end{bmatrix}$

2.
$$ab = ac$$
; $a \neq 0 \Rightarrow ab - ac = 0 \Rightarrow a(b - c) = 0 \Rightarrow b - c = 0 \Rightarrow b = c$

Rem. $\mathbb{Z}/0\mathbb{Z} = \mathbb{Z}$ $ax + by = c; \ (a,b) = 1$ ax = c - by $ax \equiv c$ $\overline{a} \cdot \overline{x} = \overline{c}$ в $\mathbb{Z}/b\mathbb{Z}$ $\exists ! \overline{x_0} : (a,b) = 1$ $ax \equiv c \Leftrightarrow x \equiv x_0$, т.е. $x = x_0 + bk, k \in \mathbb{Z}$ Тогда $y = \cdots$

Утверждение
$$egin{cases} (m,n)=1 \\ a,b\in\mathbb{Z} \end{cases} \Rightarrow$$

1.
$$\exists x \in \mathbb{Z} : \begin{cases} \overline{x} = \overline{a} \mathbb{Z} / m \mathbb{Z} \\ \overline{x} = \overline{b} \mathbb{Z} / n \mathbb{Z} \end{cases} \Leftrightarrow \begin{cases} x - a : m \\ x - b : n \end{cases}$$

2. Пусть x_0 – такое, тогда все x, удовлетворяющие условию, это $\overline{x_0}$ в $\mathbb{Z}/mn\mathbb{Z}$

Доказательство

1.
$$x - a : m$$
, т.е. $\begin{cases} x - a = my \\ x - b = nz \end{cases}$ $my + a = x = nz + b \Rightarrow my - nz = b - a$ – имеет решение, т.к. $(m, n) = 1 \Rightarrow \exists$ соответствующие x, y

2. B
$$\mathbb{Z}/m\mathbb{Z} \ \overline{x} = \overline{a} = \overline{x_0}$$

B $\mathbb{Z}/n\mathbb{Z} \ \overline{x} = \overline{b} = \overline{x_0}$

T.e.
$$\begin{cases} x \equiv x_0 \pmod{m} \\ x \equiv x_0 \pmod{n} \end{cases} \Leftrightarrow \begin{cases} x - x_0 \vdots m \\ x - x_0 \vdots n \\ (a, b) = 1 \end{cases} \Leftrightarrow x - x_0 \vdots mn \Leftrightarrow \overline{x} = \overline{x_0} \text{ B } \mathbb{Z}/mn\mathbb{Z}$$

Смысл: каждой паре остатков по модулю m и по модулю n соответствует единственный остаток по модулю mn

$$m=3;\ n=5$$

	0	1	2	3	4
0	0	6	12	3	9
1	10	1	7	13	4
2	5	11	2	8	14

Биекция между $\mathbb{Z}/15\mathbb{Z}$ и $\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$

Отступление: произведение групп и колец

Def. R_1, R_2 – кольца

Их произведение – это
$$(R_1 \times R_2, +, \cdot)$$
, где $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$ $(a_1, a_2) \cdot (b_1, b_2) = (a_1b_1, a_2b_2)$

Утверждение это и правда кольцо (аксиомы наследуются)

Доказательство

Очев

Rem. $R_1 \times R_2$ – не область целостности $(1,0) \cdot (0,1) = (0,0)$

с группами аналогично:

$$G_1,G_2$$
 – группы $\Rightarrow G_1 \times G_2$ – группа

$$(g_1, g_2) \cdot (g'_1, g'_2) = (g_1 g'_1, g_2 g'_2)$$

Хотим сказать

 $(m,n)>1\Rightarrow \mathbb{Z}/mn\mathbb{Z}$ и $\mathbb{Z}/m\mathbb{Z}\times\mathbb{Z}/n\mathbb{Z}$ – это одно и то же

Def. R_1, R_2 – кольца

Изоморфизм между R_1 и R_2 – биекция

 $f:R_1 \to R_2$ такая, что

1.
$$f(a+b) = f(a) + f(b)$$

2.
$$f(ab) = f(a) f(b)$$

3.
$$f(1) = 1$$

 R_1 и R_2 изоморфны, если существует изоморфизм

$$G_1, G_2$$
 – группы

Изоморфизм
$$f:G_1 o G_2$$
 – биекция:

$$f(xy) = f(x) \cdot f(y) \ \forall x, y \in G_1$$

$$G_1$$
 и G_2 изоморфны, если \exists изоморфизм $f:G_1 \to G_2$

$$G_1\cong G_2$$
. Аналогично $R_1\cong R_2$ $(R_1,R_2$ – кольца)

 $\mathbf{Rem.}\;e_1,e_2$ – нейтральные элементы в $G_1,G_2;f$ – изоморфизм $\Rightarrow f(e_1)=e_2$

$$e_1 \cdot e_1 = e_1$$

$$\begin{cases} f(e_1 \cdot e_1) = f(e_1) \\ f(e_1 \cdot e_1) = f(e_1) \cdot f(e_1) \end{cases} \Rightarrow f(e_1) \cdot f(e_1) = f(e_1) \cdot e_2 \Rightarrow f(e_1) = e_2$$

Аналогично $f(a^{-1}) = f(a)^{-1}$

Rem2. Здесь биективность не важна

Def. Гомоморфизм отображение $f:G_1\to G_2:f(xy)=f(x)\cdot f(y)\ \forall x,y\in G_1$

Def. Гомоморфизм колец: $f: R_1 \to R_2$

$$f(xy) = f(x) \cdot f(y)$$

$$f(x+y) = f(x) + f(y) \forall x, y \in R_1$$

Def. Гомоморфизм колец с 1: требуем еще $f(1_{R_1}) = 1_{R_2}$

 $\mathbf{Def.}$ Изоморфизм между множествами $f:M_1 o M_2$ – биекция

$$f: \mathbb{Z} \to \mathbb{Z} \ f(x) = kx \ x \in \mathbb{Z}$$
 $\begin{cases} k(x+y) = kx + ky \\ k(xy) \neq kx \cdot ky \end{cases} \Rightarrow f$ – не гомоморфизм колец $(k \neq 1)$, но гомоморфизм групп

 $\hat{\mathbf{A}}$ если $k=\pm 1 \Rightarrow$ изоморфизм

G – группа f:G o G $f(g)=g^{-1}$ – биекция \Rightarrow изоморфизм, если G – абелева

$$\begin{cases} f:\mathbb{R}\to\mathbb{R}\\ f(x)=e^x &\Rightarrow f$$
 – гомоморфизм, но точнее это $f:(\mathbb{R},+)\to(\mathbb{R}^*,\cdot)$, но не изоморфизм $e^{x+y}=e^x\cdot e^y$ $g:(\mathbb{R},+)\to(\mathbb{R}_+,\cdot)$ – изоморфизм $g(x)=e^x$

Тh. Китайская теорема об остатках

1.
$$(m,n) = 1 \ Z/mnZ \cong Z/mZ \times Z/nZ$$

2.
$$m_1, m_2 \cdots m_k \in Z \ (m_i, m_j) = 1$$

 $Z/m_1 m_2 \cdots m_k Z \cong Z/m_1 Z \times \cdots \times Z/m_k Z$

3.
$$\forall a_1, a_2 \cdots a_n \in Z; \ m_1, m_2 \cdots m_n \in Z : (m_i, m_j) = 1$$

$$\begin{cases} x\equiv a_1\pmod{m1}\\ x\equiv a_2\pmod{m2}\\ \vdots\\ x\equiv a_n\pmod{mn} \end{cases}$$
 – имеет решение в Z , единственное по модулю $m_1m_2\cdots m_n$

Доказательство

Индукция по k. База k=2

• База: строим $\varphi: Z/mnZ \to Z/mZ \times Z/nZ$

$$\overline{a_{mn}} \to (\overline{a_m}, \overline{a_n})$$
$$(\overline{a_{mn}} = \overline{b_{nm}} \Rightarrow \overline{a_m} = \overline{b_m})$$

 φ – гомоморфизм:

$$\varphi(x+y) = \varphi(\overline{a_{mn}} + \overline{b_{mn}}) = \varphi(\overline{a+b_{mn}}) = (\overline{a+b_m}, \overline{a+b_n}) = (\overline{a_m} + \overline{b_m}, \overline{a_n} + \overline{b_n}) = (\overline{a_m}, \overline{a_n}) + (\overline{b_m}, \overline{b_n}) = \varphi(x) + \varphi(y)$$

 φ – биекция (смотри утверждение перед табличкой $3\times 5)$

$$\forall a,b \ \exists x: egin{cases} x \equiv a \ mod \ m \\ x \equiv b \ mod \ n \end{cases}$$
 и все такие x имеют вид $x = x_0 + kmn$

• Переход $k \to k+1$

 $m_1, m_2 \cdots m_{k+1}$ попарно взаимнопросты $\Rightarrow (m1m2 \cdots m_k, m_{k+1}) = 1 \Rightarrow$ по базе

$$Z/m_1m_2\cdots m_{k+1}Z\cong Z/m_1m_2\cdots m_kZ\times Z/m_{k+1}Z$$

По индукционному предположению $Z/m_1\cdots m_k\cong Z/m_1Z\times\cdots\times Z/m_kZ$

Итого $Z/m_1 \cdots m_{k+1}Z \cong Z/m_1 \cdots m_kZ \times Z/m_{k+1}Z \cong (Z/m_1Z \times Z/m_2Z \times \cdots \times Z/m_kZ) \times Z/m_{k+1}Z \cong$ $Z/m_1 \times \cdots \times Z/m_k Z \times Z/m_{k+1} Z$

Rem.
$$(A \times B) \times C \neq A \times B \times C$$

$$((a,b),c) \to (a,b,c)$$

• φ – сюръективно, т.е. $\forall y_1 \cdots y_n \ y_i \in \mathbb{Z}/m_i\mathbb{Z}$

$$\exists z \in Z/m_1 \cdots m_n Z : \varphi(z) = (y_1, y_2 \cdots y_n)$$

Возьмем
$$y_i = \overline{a_1} \ a_i \in Z \ z = \overline{xm_1} \cdots m_n \Rightarrow \begin{cases} \overline{x_{m_1}} = y_1 \\ \overline{x_{m_2}} = y_2 \end{cases}$$
 , т.е.
$$\begin{cases} x \equiv a_1 \ mod \ m_1 \\ x \equiv a_2 \ mod \ m_2 \\ \cdots \end{cases}$$

Единственность x по модулю $m_1\cdots m_n$ – инъективность φ

"Явная формула"для φ^{-1}

Найдем
$$\varphi^{-1}(1_{m_1}, 0_{m_2} \cdots 0_{m_k})$$
 это $\overline{a}: a: m_2, \cdots, m_k \Leftrightarrow a: m_2 \cdots m_k$

 $a = m_2 \cdots m_k \cdot y; \ m_2 \cdots m_k \cdot y - 1 = m_1 x$

 $m_2 \cdots m_k \cdot y - m_1 x = 1$. Далее ищем y

 $a = a_1 \ \varphi(\overline{a_1}) = (1, 0 \cdots 0)$

Аналогично находим $\varphi(\overline{a_i}) = (0, 0 \cdots 1_{m_i} \cdots 0)$

Теперь $\forall \overline{b_1}, \overline{b_2}, \cdots \overline{b_k} \ (b_i \in Z/m_i Z)$

$$\varphi(\overline{a_1b_1} + \overline{a_2b_2} + \dots + \overline{a_kb_k}) = \varphi(b\overline{a_1}) + \varphi(b_2\overline{a_2}) + \dots + \varphi(b_k\overline{a_k}) = b_1\varphi(\overline{a_1}) + b_2\varphi(\overline{a_2}) + \dots + b_k\varphi(\overline{a_k}) = b_1(1, 0 \dots 0) + b_2(0, 1, 0 \dots 0) + \dots + b_k(0 \dots 0, 1)$$

Rem. $\varphi(\overline{3x}) = \varphi(\overline{x} + \overline{x} + \overline{x}) = \overline{3\varphi(x)}$

Def. G – группа. $a \in G$, порядок a – $\min k \in N$: $a^k = e$. Если такого k нет, то порядок = ∞ . Обозначение: ord(a)

Lm.

- 1. ord(a) количество различных элементов в последовательности $(e, a, a^2, a^3 \cdots)$
- 2. $ord(a) = \infty \Rightarrow$ все элементы различны
- 3. $ord(a) = k \in N$, тогда $a^m = a^n \Leftrightarrow m \equiv n \pmod k$

Доказательство

- 1. 2, $3 \Rightarrow 1$ упражнение
- 2. $ord(a) = \infty \ a^m = a^n$, НУО m > 0 $a^m \cdot a^{m-n} = a^n \cdot e \Rightarrow a^{m-n} = e; \ m-n \in N$, но $ord(a) = \infty$????
- 3. $ord(a) = k \ m, n \in N$

$$m = q_m \cdot k + r_m; \ n = q_n \cdot k + r_n$$

$$\begin{cases} a^m = a^{q_m \cdot k + r_m} = (a^k)^{q_m} \cdot a^{r_m} = a^{r_m} \\ a^n = a^{r_n} \\ r_m = r_n \end{cases} \Rightarrow a^m = a^n \Rightarrow a^{r_m} = a^{r_m} \Rightarrow a^{r_m - r_n} = e ???$$

Th. Теорема Лагранжа

$$G$$
 – группа, $|G|=n$ ($|G|$ – порядок группы)

$$a \in G$$
; $ord(a) = k \Rightarrow n : k$

Доказательство

Нарисуем орграф $\forall x \in G : x \to ax$

$$\forall x \to \text{цикл } x \to ax \to a^2x \to \cdots \to a^kx = x$$

Все элементы G разбились на циклы длины $k \Rightarrow n \vdots k$

Следствие: малая теорема Ферма

$$G = (Z/pZ)^*; |(Z/pZ)^*| = p - 1$$

$$ord(\overline{a}) = k \Leftrightarrow a^k = \overline{1}; \ p-1 \vdots k$$

$$a^{p-1} = (a^k)^{=}(\overline{1})^l = 1$$

$$B\ Z/pZ \xrightarrow{\overline{a^{p-1}} = \overline{1}} a :/p \Rightarrow a^{p-1} \equiv 1 \pmod{p} \Leftrightarrow a^{p-1} - 1 : p$$

Тh. Переформулировка теоремы Лагранжа

$$G$$
 – конечная $\Rightarrow a^{|G|} = e$

 $e, a, a^2 \cdots$ преиодична с периодом |G|, но возможно это не наименьший период $G = (Z/pZ)^* \Rightarrow a^{p-1} = 1$ в $Z/pZ \Leftrightarrow a^{p-1} \equiv 1 \pmod p$ ($\forall a \not > p$)
Или $a \in Z; \ a^p - a : p \Leftrightarrow a(a^{p-1} - 1) : p \Leftrightarrow \begin{bmatrix} a : p \\ a^{p-1} - 1 : p \end{bmatrix}$

Что с произвольным n? Хотим $a^k \equiv 1 \pmod{n}$

 $(a,n) \neq 1 \Rightarrow (a^k,n) \neq 1 \Rightarrow a^k \not\equiv 1 \pmod n \ (\forall k>0) \Rightarrow$ вопрос имеет смысл только для $(a,n)=1 \Rightarrow \overline{a}$ обратим в Z/nZ

По теореме Лагранжа $b \in (Z/nZ)^* \Rightarrow b^{|(Z/nZ)^*|} = 1$

Переформулировка: $(a,n)=1\Rightarrow a^{|(Z/nZ)^*|}\equiv 1\ (mod\ n)$ – теорема Эйлера

Def. Функция Эйлера $\varphi(n) = |(Z/nZ)^*|$

Rem. $\varphi(n) = \{x \in \{0, z \cdots n - 1\} | (x, n) = 1\}$

Ех. p – простое. Знаем $(Z/pZ)^* = (Z/pZ) \setminus \{0\}$

 $\varphi(p) = p - 1$

Как найти $\varphi(n)$? $n = p_1^{a_1} p_2^{a_2} \cdots$

Rem1. p – простое $\Rightarrow \varphi(p^k) = \{x \in \{0, 1 \cdots p^k - 1\} | (p^k, x) = 1\} = \{x = 0 \cdots p^k - 1 | x \not p\} = p^k - \{x = 0 \cdots p^k - 1 | x \not p\} = p^k - \{x = 0 \cdots p^k - 1 | x \not p\} = p^k - \{x = 0 \cdots p^k - 1 | x \not p\} = p^k - \{x = 0 \cdots p^k - 1 | x \not p\} = p^k - \{x = 0 \cdots p^k - 1 | x \not p\} = p^k - \{x = 0 \cdots p^k - 1 | x \not p\} = p^k - \{x = 0 \cdots p^k - 1 | x \not p\} = p^k - \{x = 0 \cdots p^k - 1 | x \not p\} = p^k - \{x = 0 \cdots p^k - 1 | x \not p\} = p^k - \{x = 0 \cdots p^k - 1 | x \not p\} = p^k - \{x = 0 \cdots p^k - 1 | x \not p\} = p^k - \{x = 0 \cdots p^k - 1 | x \not p\} = p^k - \{x = 0 \cdots p^k - 1 | x \not p\} = p^k - p$ $0\cdots p^k-1|x\stackrel{.}{:}p\}=p^k-rac{p^k}{p}=p^k=p^{k-1}$ **Rem2.** Мультипликативность φ

 $m, n \in N \ (m, n) = 1 \Rightarrow \varphi(mn) = \varphi(m) \cdot \varphi(n)$

 φ — мультипликативная функция

Remrem. $\tau(n)$ – количество делителей, $\sigma(n)$ – сумма делителей. Обе эти функции тоже мультипликативны (упражнение)

Явная формуля для функции Эйлера

$$\varphi(n) = \varphi(p_1^{a_1} \cdots p_k^{a_k}) = \varphi(p_1^{a_1}) \cdots \varphi(p_k^{a_k}) = (p_1^{a_1} - p_1^{a_1-1}) \cdots (p_k^{a_k} - p_k^{a_k-1}) = p_1^{a_1} (1 - \frac{1}{p_1}) \cdots p_k (1 - \frac{1}{p_k}) = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k} (1 - \frac{1}{p_1}) \cdots (1 - \frac{1}{p_k}) = n (1 - \frac{1}{p_1}) \cdots (1 - \frac{1}{p_k}) = n \prod_{p \in P: p \mid n} (1 - \frac{1}{p})$$

Ex. $\varphi(600) = 600 \cdot \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{4}{5} = 160$

Rem. $a^{\varphi(n)} = 1 \ (\forall a \in (Z/nZ)^*)$

 $n:p,q\Rightarrow$ показатель $\varphi(n)$ можно улучшить

 $n = 105 = 3 \cdot 5 \cdot 7 \Rightarrow \varphi(n) = 2 \cdot 4 \cdot 6 = 48$

По теореме Эйлера $(a, 105) = 1 \Rightarrow a^{48} \equiv 1 \pmod{105}$

На самом деле (применим МТФ)
$$(a, 105) = 1 \Rightarrow a \not:/3, 5, 7 \Rightarrow$$

$$\begin{cases} a^2 \equiv 1 \pmod{3} \\ a^4 \equiv 1 \pmod{5} \\ a^6 \equiv 1 \pmod{7} \end{cases} \Rightarrow \begin{cases} a^{12} \equiv 1 \pmod{3} \\ a^{12} \equiv 1 \pmod{5} \\ a^{12} \equiv 1 \pmod{5} \end{cases} \Rightarrow \begin{cases} a^{12} \equiv 1 \pmod{3} \\ a^{12} \equiv 1 \pmod{5} \end{cases} \Rightarrow \begin{cases} a^{12} \equiv 1 \pmod{3} \\ a^{12} \equiv 1 \pmod{5} \end{cases} \Rightarrow \begin{cases} a^{12} \equiv 1 \pmod{3} \\ a^{12} \equiv 1 \pmod{5} \end{cases} \Rightarrow \begin{cases} a^{12} \equiv 1 \pmod{3} \\ a^{12} \equiv 1 \pmod{5} \end{cases} \Rightarrow \begin{cases} a^{12} \equiv 1 \pmod{3} \\ a^{12} \equiv 1 \pmod{5} \end{cases} \Rightarrow \begin{cases} a^{12} \equiv 1 \pmod{3} \\ a^{12} \equiv 1 \pmod{5} \end{cases} \Rightarrow \begin{cases} a^{12} \equiv 1 \pmod{3} \\ a^{12} \equiv 1 \pmod{5} \end{cases} \Rightarrow \begin{cases} a^{12} \equiv 1 \pmod{3} \\ a^{12} \equiv 1 \pmod{5} \end{cases} \Rightarrow \begin{cases} a^{12} \equiv 1 \pmod{3} \\ a^{12} \equiv 1 \pmod{5} \end{cases} \Rightarrow \begin{cases} a^{12} \equiv 1 \pmod{3} \\ a^{12} \equiv 1 \pmod{5} \end{cases} \Rightarrow \begin{cases} a^{12} \equiv 1 \pmod{3} \\ a^{12} \equiv 1 \pmod{5} \end{cases} \Rightarrow \begin{cases} a^{12} \equiv 1 \pmod{3} \\ a^{12} \equiv 1 \pmod{5} \end{cases} \Rightarrow \begin{cases} a^{12} \equiv 1 \pmod{3} \\ a^{12} \equiv 1 \pmod{5} \end{cases} \Rightarrow \begin{cases} a^{12} \equiv 1 \pmod{3} \\ a^{12} \equiv 1 \pmod{5} \end{cases} \Rightarrow \begin{cases} a^{12} \equiv 1 \pmod{3} \\ a^{12} \equiv 1 \pmod{5} \end{cases} \Rightarrow \begin{cases} a^{12} \equiv 1 \pmod{3} \\ a^{12} \equiv 1 \pmod{5} \end{cases} \Rightarrow \begin{cases} a^{12} \equiv 1 \pmod{5} \\ a^{12} \equiv 1 \pmod{5} \end{cases} \Rightarrow \begin{cases} a^{12} \equiv 1 \pmod{5} \\ a^{12} \equiv 1 \pmod{5} \end{cases} \Rightarrow \begin{cases} a^{12} \equiv 1 \pmod{5} \\ a^{12} \equiv 1 \pmod{5} \end{cases} \Rightarrow \begin{cases} a^{12} \equiv 1 \pmod{5} \\ a^{12} \equiv 1 \pmod{5} \end{cases} \Rightarrow \begin{cases} a^{12} \equiv 1 \pmod{5} \\ a^{12} \equiv 1 \pmod{5} \end{cases} \Rightarrow \begin{cases} a^{12} \equiv 1 \pmod{5} \\ a^{12} \equiv 1 \pmod{5} \end{cases} \Rightarrow \begin{cases} a^{12} \equiv 1 \pmod{5} \\ a^{12} \equiv 1 \pmod{5} \end{cases} \Rightarrow \begin{cases} a^{12} \equiv 1 \pmod{5} \\ a^{12} \equiv 1 \pmod{5} \end{cases} \Rightarrow \begin{cases} a^{12} \equiv 1 \pmod{5} \\ a^{12} \equiv 1 \pmod{5} \end{cases} \Rightarrow \begin{cases} a^{12} \equiv 1 \pmod{5} \\ a^{12} \equiv 1 \pmod{5} \end{cases} \Rightarrow \begin{cases} a^{12} \equiv 1 \pmod{5} \\ a^{12} \equiv 1 \pmod{5} \end{cases} \Rightarrow \begin{cases} a^{12} \equiv 1 \pmod{5} \\ a^{12} \equiv 1 \pmod{5} \end{cases} \Rightarrow \begin{cases} a^{12} \equiv 1 \pmod{5} \\ a^{12} \equiv 1 \pmod{5} \end{cases} \Rightarrow \begin{cases} a^{12} \equiv 1 \pmod{5} \\ a^{12} \equiv 1 \pmod{5} \end{cases} \Rightarrow \begin{cases} a^{12} \equiv 1 \pmod{$$

 $\Rightarrow a^{12} \equiv 1 \pmod{105}$

Доказательство мультипликативности

Знаем: $(m,n) = 1 \Rightarrow Z/mnZ \cong Z/mZ \times Z/nZ \Rightarrow \varphi(ab) = \varphi(a) \cdot \varphi(b)$

 φ – изоморфизм. x – обратим $\Leftrightarrow \varphi(n)$ – обратим

x – обратим $\Leftrightarrow \exists y: x\cdot y=1.$ $\varphi(xy)=\varphi(x)\cdot \varphi(y)=1=\varphi(1)\Rightarrow \varphi$ – обратим

Обратно: $\varphi(x)$ – обратим. $\varphi(x) \cdot z = 1 \Rightarrow \varphi^{-1}(\varphi(x) \cdot z) = \varphi^{-1}(1)$. $\varphi^{-1}(\varphi(x)) \cdot \varphi^{-1}(z) = \varphi^{-1}(1) \Rightarrow x$ – обратим

Следствие: $(Z/mnZ)^* = (Z/mZ \times Z/nZ)^*$

Утверждение. R_1, R_2 – кольца. $(R_1 \times R_2)^* = R_1^* \times R_2^*$

Доказательство

$$(r_1, r_2) \in R_1 \times R_2 - \text{обратим} \Leftrightarrow \exists (s_1, s_2) : (r_1, r_2)(s_1, s_2) = 1_{R_1 \times R_2} \Leftrightarrow (r_1 s_1, r_2 s_2) = (1_{R_1}, 1_{R_2}) \Leftrightarrow \begin{cases} \exists s_1 : r_1 s_1 = 1 \\ \exists s_2 : r_2 s_2 = 1 \end{cases} \Leftrightarrow \begin{cases} r_1 \in R_1^* \\ r_2 \in R_2^* \end{cases}$$

едствие: $|(Z/mZ \times Z/nZ)^*| = |(Z/mZ)^* \times (Z/nZ)^*| = |(Z/mZ)^*| \cdot |(Z/nZ)^*|$

Итого: $\varphi(mn) = \varphi(m) \cdot \varphi(n)$

Вопрос: $p \in P$. \exists ли $\overline{a} \in \mathbb{Z}/p\mathbb{Z} : \{\overline{a}, \overline{a^2} \cdots \} = \{\overline{1}, \overline{2} \cdots \overline{p-1}\}$

Def. (G, \cdot) – группа; $a \in G$

 $< a> = \{a^k | k \in Z\}$ – группа, порожденная элементом a

Утверждение. Это действительно группа (относительно ·)

Доказательство

- Замкнутость. $x, y \in < a >$ $x = a^e; y = a^m \Rightarrow xy = a^{e+m} \in < a >$
- Ассоциативность очев
- $\exists e \in G; \ e = a^0 \in \langle a \rangle$
- $x \in \langle a \rangle \Rightarrow x = a^k \Rightarrow x^{-1} = a^{-k} \in \langle a \rangle$

< a > – подгруппа в G. Может быть < a > = Gили $< a > \neq G$

Def. Если $\exists a \in G : \langle a \rangle = G \Rightarrow G$ называется циклической

 $\mathbf{Th.}\ G$ – циклическая

- 1. $|G| = \infty \Rightarrow G \cong (Z, +)$
- 2. $|G| = n < \infty \Rightarrow G \cong (Z/nZ, +)$

Доказательство

G=< a>. Знаем: $ord(a)=k\Rightarrow$ в < a> k элементов. Иначе $(ord(a)=\infty)\Rightarrow$ все $\{a^k|k\in Z\}$ попарно различны

1. Строим гомоморфизм

$$\varphi Z \to G; \ k \to a^k$$

Это биекция (см. выше) и $\varphi(x+y)=a^{x+y}=a^x\cdot a^y=\varphi(x)+\varphi(y)$ – точно гомоморфизм

2. (k = n) ord(a) = n. $\langle a \rangle = \{e, a, a^2 \cdots a^{n-1}\}$

$$(a^n = e; \ a^{-1} = a^{n-1})$$

 $\varphi: Z/nZ \to < a>; \overline{p} \to a^p$ – биекция и гомоморфизм (упражнение)

Корректность: $q: \overline{p} = \overline{q} \Rightarrow p - q : n$

$$p = q + ln \Rightarrow a^p = a^{q + ln} = a^q \cdot (a^n)^l = a^q \Rightarrow a^p = a^q$$

Ex. $(Z/3Z)^* = <2>: \overline{2}^2 = 1 \ (ord(\overline{2}) = 2)$

Изоморфизм: $(Z/2Z, +) \rightarrow (Z/3Z, \cdot)$

$$\overline{0}_2 \leftrightarrow \overline{1}_3$$

$$\overline{1}_2 \leftrightarrow \overline{2}_3$$

$$(Z/5Z)^* = \{1, 2, 3, 4\} = \langle \overline{2} \rangle \quad (ord(2) = 4). \text{ Поэтому } (Z/5Z)^* \cong (Z/4Z, +)$$

Th. $p \in P \Rightarrow (Z/pZ)^*$ – циклическая

Следствие. $(Z/pZ)^* \cong (Z/(p-1)Z, +)$

$$\exists a \in Z : < \overline{a} > = \{1, 2 \cdots p - 1\}$$

a называется первообразным корнем по модулю p

a – первообразный корень $mod\ p \Leftrightarrow ord(\overline{a}) = p-1$, т.е. $|<\overline{a}>|=p-1=|(Z/pZ)^*|$

Lm. G – группа |G| = N. $f: G \to G: f(a) = a^k$

Тогда f_k – биекция $\Leftrightarrow (k, N) = 1$

Доказательство

Только ⇐:

 $(k,N) = 1 \Rightarrow \exists x,y : xk + yN = 1 \Rightarrow \forall a \in G; \ a = a^1 = a^{xk + yN} = (a^k)^x \cdot (a^N)^y$ по переформулировке теоремы Лагранжа = $(a^k)^x \Rightarrow f_x$ – обратное к f_k

Алгоритм RSA (шифрование с открытым ключом)

Алиса (А) хочет получать сообщения от Боба (В)

А придумывает p, q – простые (достаточно большие) N = pq

$$\varphi(N) = (p-1)(q-1)$$
. А выбирает $x: (x, \varphi(N)) = 1$ и $y: (x-y) \equiv 1 \pmod{\varphi(N)}$

Тогда как в Lm. $f_x(a) = a^x$; $f_y(a) = a^y$ – взаимно обратные отображения

A сообщает В x

В хочет послать A сообщение. $a \in (Z/NZ)^*$

Шифрование: $a \to a^x = b$ и посылает А

A получает $b = a^x$, вычисляет $b^y = a$

Что нужно чтобы дешифровать b? Надо знать y

N, x известны всем. $xy \equiv 1 \pmod{\varphi(N)}$

 $yx + \varphi(N)z = 1$ – линейное Диофантово уравнение. Легко решается зная $x, \varphi(N)$

Нужно сделать так, чтобы $\varphi(N)$ было сложно узнать

Вопрос: как найти большие простые числа?

p — большое натуральное число. Как проверить, что p — простое?

Рассмотрим $n \in \mathbb{N}$. $n-1=p_1^{a_1}\dots p_5^{a_5}$, т.е. $n=\prod p_i^{a_i}+1$. Простое ли n?

Th. Тест Люка

Пусть
$$n = \prod p_i^{a_i} + 1.a \in \mathbb{Z}$$

Пусть
$$n = \prod p_i^{a_i} + 1.a \in \mathbb{Z}$$

$$\begin{cases} a^{n-1} = 1 \pmod{n} \\ a^{\frac{n-1}{p_i}} \neq 1 \pmod{n} \end{cases} \Rightarrow n - \text{простое}$$

Доказательство

B
$$(Z/mZ)^*$$
 ord(a) =?

В
$$(Z/mZ)^*$$
 $ord(a)=?$
$$\begin{cases} a^{n-1}\equiv 1\Leftrightarrow n-1 \ : \ ord(a) \\ a^{\frac{n-1}{p_i}}\neq 1\Leftrightarrow \frac{n-1}{p_i} \ : \ /ord(a) \end{cases} \Rightarrow n-1=ord(a)\Rightarrow |(Z/nZ)^*|\geq |< a>|=n-1$$
 $\varphi(n)\geq n-1\Leftrightarrow 1,2\ldots n-1$ взаимнопросты с $n\Rightarrow n$ – простое

Вопрос: какая доля $a \in \{1, 2...n\}$ удовлетворяет условию Люка, если n – простое? $a \in \{1 \dots n-1\} \Rightarrow \overline{a} \in (Z/nZ)^*$. Какова вероятность: $ord(\overline{a}) = n-1$?

Знаем: n – простое $\Rightarrow (Z/nZ)^*$ – циклическая. $(Z/nZ)^* = < b > ord(b) = n-1$

 $\forall a \in (Z/nZ)^* \ \exists k : b^k = a; \ k \in \{1, 2 \dots n-1\}$

Утверждение: $ord(a) = n - 1 \Leftrightarrow (k, n - 1) = 1$

Следствие: Доля подходящих под тест Люка $a = \frac{\varphi(n-1)}{n-1} = p \in [0;1]$

Делаем тест Люка s раз $\Rightarrow \begin{bmatrix} \text{попадется хорошее } a \Rightarrow n - \text{простое} \\ \text{все время плохие } a \Rightarrow (1-p)^s \to 0 \end{bmatrix}$ **Lm.** $ord(x) = n \Rightarrow ord(x^k) = \frac{n}{(n,k)}$ (утверждение: частный случай)

$$(n,k)=d\Rightarrow \begin{cases} n=dn_1 \\ k=dk_1 \end{cases} \Rightarrow (x^k)^{\frac{n}{(n,k)}}=(x^{dk_1})^{n_1}=1^{n_1}=1$$
 Пусть $(x^k)^l=1;\; x^{kl}=1\Leftrightarrow kl : ord(x)\Leftrightarrow dk_1l : dn_1\Leftrightarrow k_1b : n_1\Leftrightarrow l : n_1, \text{ т.e. } n_1=min(l)$

Нестойкость простых из теста Люка

Пусть p, q – простые получены тестом Люка, т.е. у p-1 и q-1 маленькие простые множители

$$N = pq$$
. Как зная все разложить N ?

$$a \in N; \begin{cases} ord_p(a) = p_1^{b_1} \dots p_k^{b_k} \\ ord_q(a) = p_1^{c_1} \dots p_k^{c_k} \end{cases}$$

$$a \in N;$$
 $\begin{cases} ord_p(a) = p_1^{b_1} \dots p_k^{b_k} \\ ord_q(a) = p_1^{c_1} \dots p_k^{c_k} \end{cases}$ $\begin{cases} A = min(x|x! : ord_p(a)) \\ B = min(x|x! : ord_q(a)) \end{cases} \Rightarrow A, B$ не очень большие, скорее всего $A \neq B$

Враг считает $d_k = (a^{k!} - 1, n)$. НУО A < B. Тогда $d_A = p$; $a := \frac{N}{h}$. Взломано

$$n\in Z;\ a\in Z;\ a\in \{1\dots n-1\}.$$
 n тестируем, a – случайное

$$a^{n-1} \not\equiv 1 \pmod{n} \Rightarrow n - \text{составное}$$

$$a^{n-1} \equiv 1 \pmod{n} \Rightarrow n$$
 – может быть простое

$$(n=15;\ n-1=14;\ 4^{14}\equiv 1\ (mod\ 15),$$
 но 15 не простое)

a – свидетель простотые $mod\ n$, если $a^{n-1} \equiv 1 \pmod n$

Утверждение: (упражнение) если не все числа $\{1 \dots n-1\}$ – свидетели, то свидетелей \leq половины a – свидетель, b не свидетель $\Rightarrow ab$ не свидетель. В этом случае за s тестов $p(\text{неудачи}) \leq (\frac{1}{2})^s \to 0$ Проблема: $\exists n$ – составные : $\forall a \in (Z/nZ)^*$ – свидетель простоты

Это числа Кармайкла. Наименьшее такое число $n = 561 = 3 \cdot 11 \cdot 17$

$$a \not:/3,11,17;$$

$$\begin{cases} a^2 \equiv 1 \pmod{3} \\ a^{10} \equiv 1 \pmod{11} \\ a^{16} \equiv 1 \pmod{17} \end{cases} \Rightarrow a \equiv 1 \pmod{561} \Rightarrow a^{560} \equiv 1 \pmod{561}, \text{ но 561 не простое }$$

Тест Рабина-Миллера:

$$p \in Z; \ p-1 = 2^m \cdot l; \ l : /2$$

$$a \in Z$$
; $a : /p$. Рассмотрим в Z/pZ последовательность $\overline{a}^l, \overline{a}^{2l} \dots \overline{a}^{2^m l} = a^{p-1} = 1$

$$p\in Z,\ p=1-2-c,\ v\neq 2$$
 $a\in Z,\ a:/p.$ Рассмотрим в Z/pZ последовательность $\overline{a}^l,\overline{a}^{2l}\ldots\overline{a}^{2^ml}=a^{p-1}=1$ Утверждение: Если p – простое, то
$$\begin{bmatrix} \overline{a}^l=1\\ \exists k:\overline{a}^{2^kl}=\overline{-1} \end{bmatrix}$$
 (*)

Доказательство

Пусть
$$a^l \neq 1; \ a^{p-1} = 1 \Rightarrow \exists k : \overline{a}^{2^k l} \neq 1; \ \overline{a}^{2^{k+1} l} = 1$$

$$\Rightarrow \text{ B } Z/pZ \ x \neq 1; \ x^2 = 1 \Rightarrow (x - 1)(x + 1) = 0 \Rightarrow \begin{bmatrix} x - 1 = 0 \\ x + 1 = 0 \end{bmatrix} \Rightarrow x = -1$$

* – условия Рабина-Миллера для числа а

Знаем: $\exists a : /p$. Рабин-Миллер для a не выполнен $\Rightarrow p$ – составные

Th. Если все $a=1,2\ldots\sqrt{p}$ свидетели Рабина-Миллера $\Rightarrow p$ – простое

Th. Если все $a = 1, 2 \dots c \cdot \log^2 p$ свидетели $\Rightarrow p$ – простое. (следует из гипотезы Римана)

Th. n – составное \Rightarrow свидетелей Рабина-Миллера $\leq \frac{\varphi(n)}{4}$

Следствие: делаем s ходов. $p(\text{неудачи}) = (\frac{1}{4})^s \to 0$

Квадратичные вычеты

 $Z \to Z/nZ \to Z/pZ$. Как решать уравнения в Z/pZ?

- 1. Линейные $\overline{ax} = \overline{b} \Leftrightarrow ax \equiv b \pmod{p} \Leftrightarrow ax py = b$
- 2. Квадратные $ax^2 + bx + c = 0$: $a \neq 0$

$$x^{2} + sx + q = 0$$
. Если $p \neq 2$, то

$$(x+\frac{s}{2})^2+(q-\frac{s^2}{4})=0 \Leftrightarrow y^2=k$$
, где $y=x+\frac{s}{2};\; -k=q-\frac{s^2}{4}$

Как понять, что $\exists y: y^2 \equiv k$ в Z/pZ

Или для каких $p \exists y : (y^2 - k \vdots p)$

Если такой y существует, k называется квадратичным вычетом по модулю p. $(k \neq 0)$

Символ Лежандра
$$\binom{a}{p}=\begin{bmatrix} 1,\ a$$
— квадратичные вычет $-1,\ a$ — не квадратичные вычет $0,\ a \vdots p$

Утверждение: \exists ровно $\frac{p-1}{2}$ квадратичных вычетов и $\frac{p-1}{2}$ квадратичных неравенства

Доказательство

$$1, 2 \dots p - 1$$

 $1^2, 2^2 \dots (p - 1)^2$

Сколько различный вычетов во второй строке? Заметим: $x^2=y^2\Rightarrow (x-y)(x+y)=0\Leftrightarrow \begin{bmatrix} x=y\\x=-y \end{bmatrix}$ при возведении в квадрат вычеты склеиваются, попадая \Rightarrow ровно $\frac{p-1}{2}$ квадратов $\Rightarrow p-1-\frac{p-1}{2}=\frac{p-1}{2}$ не квадратов

Мультипликативность: $\forall a, b. \binom{ab}{p} = \binom{a}{p} \binom{b}{p}$

Доказательство

$$\binom{ab}{p} = 0 \Leftrightarrow ab \vdots p \Leftrightarrow \begin{bmatrix} a \vdots p \\ b \vdots p \end{bmatrix} \Leftrightarrow \begin{bmatrix} \binom{a}{p} = 0 \\ \binom{b}{p} = 0 \end{bmatrix}$$

$$\binom{a}{p}\binom{b}{p} = 1 \Rightarrow \begin{cases} a = x^2 \\ b = y^2 \end{cases} \Rightarrow ab = (xy)^2 \Rightarrow \binom{ab}{p} = 1$$

$$\binom{a}{p} = 1; \ \binom{b}{p} = 1 \Rightarrow \exists x : a = x^2; \ b \neq y^2 \ \forall y$$

Пусть
$$\begin{cases} ab = z^2 \\ a = x^2 \end{cases} \Rightarrow b = (\frac{z}{x})^2 ????$$

$$\binom{a}{p} = -1; \ \binom{b}{p} = -1$$

 $b_1, b_2 \dots b_{\frac{p-1}{2}}$ — квадраты, все остальные не квадраты

Идем $ab_1,ab_2\dots ab_{\frac{p-1}{2}}$ – не квадраты (все, т.к. их $\frac{p-1}{2}$) \Rightarrow все остальные квадраты

$${ab_1, ab_2 \dots ab_{p-1}} = {1, 2 \dots p-1}$$

Утверждение: Квадратичный закон взаимности

Если p,q – нечетные простые $\Rightarrow \binom{p}{q}\binom{q}{p} = (-1)^{\frac{p-1}{2}\dots\frac{q-1}{2}}$

R — коммутативное кольцо с 1

 $f(x) = 3x^2 + 2x$ имеет смысл в любом кольце с 1, т.к. $f(x) = (1+1+1) \cdot x \cdot x + (1+1) \cdot x$

Ex.
$$g, f: \mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$$

$$\begin{cases} f(x) = x \\ g(x) = x^p \end{cases}$$
 ⇒ по МТФ одна и та же функция, но многочлены различные

Формальные степенные ряды

Def. Пусть R – коммутативное кольцо с 1. Кольцом формальных степенных рядов R[[x]] называется множество $f: Z_{\geq 0} \to R; \ \{a_0, a_1, a_2 \dots | a_i \in R\}$ с операциями $+, \cdot$

Ряд:
$$a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$$

 $(a_0, a_1, a_2 \dots) + (b_0, b_1, b_2 \dots) = (a_0 + b_0, a_1 + b_1, a_2 + b_2 \dots)$

$$(a_i)\cdot(b_i)=(c_i)_{i=0}^\infty;\ c_i=\sum_{k=0}^i a_k b_{i-k}$$
 – правило свертки **Th.** $R[[x]]$ – коммутативное кольцо с 1

Доказательство

Очев – аксиомы сложения:
$$(0,0\ldots)=0_{R[[x]]}$$
 $1_{R[[x]]}=(1,0,0\ldots)$ $(a+b)\cdot c$ — очев (покоординатно)
$$ab=ba:(ab)_i=\sum_{k=0}^ia_ib_{i-k}=\sum_{l=0}^ia_{i-l}b_l=\sum_{l=0}^ib_la_{i-l}=(ba)_i$$
 Ассоциативность: $(f\cdot g)\cdot h=f(g\cdot h);\ f,g,h\in R[[x]]$ $f=(a_0,a_1,a_2\ldots a_i\ldots);\ f_i=a_i$ $((f\cdot g)\cdot h)_n=\sum_{k=0}^n(fg)_kh_{n-k}=\sum_{k=0}^n(\sum_{i=0}^kf_ig_{k-i})h_{n-k}=\sum_{k=0\ldots n;i=0\ldots k}f_ig_{k-i}h_{n-k}=\sum_{p,q,r\geq 0;p+q+r=n}(f_pg_q)h_r=\sum_{p,q,r\geq 0;p+q+r=n}f_p(g_qh_r)=\sum_{p,q,r\geq 0;p+q+q\leq n}f_p(g_qh_{n-p-q})=\sum_{r=0}^nf_p(\sum_{q=0}^pg_qh_{(n-p)-q})=\sum_{f}f_p(gh)_{n-p}=(f(gh))_n$

Lem. \exists инъективный гомоморфизм колец

$$i: {R \rightarrow R[[x]] \atop a \rightarrow (a,0,0\ldots)}$$

Доказательство

Нужно доказать
$$\begin{cases} \text{инъективность}\\ i(x+y)=i(x)+i(y)\\ i(xy)=i(x)\cdot i(y)\\ i(1)=1 \end{cases}$$
 — все очев

В умножении $(a,0,0\ldots)\cdot(b,0,0\ldots)=(ab,0,0\ldots)$

Def.
$$x = (0, 1, 0, 0 \dots)$$

Lem. $a \in R$
$$\begin{cases} ax = (0, a, 0, 0 \dots) \\ x^2 = (0, 0, 1, 0, 0 \dots) \\ x^k = (0, 0, 0 \dots 1, 0, 0 \dots) \end{cases}$$

 $(a_0, a_1, a_2 \dots a_k, 0, 0 \dots) = a_0 + a_1 x + a_2 x^2 + \dots a_k x^k$ – следствие из леммы и правила сложения **Def.** $f \in R[[x]]$ называется многочленом, если $\exists N : \forall n > N \ f_n = 0$

Обозначение: множество многочленов обозначается R[x]

Lem. R[x] – подкольцо в R[[x]]

Доказательство

$$0, 1 \in R[x]$$
 – очев $(a_n) \in R[x] \Rightarrow (-a_n) \in R[x]$ – тоже очев $(b_i), (a_i) \in R[x] \Rightarrow (b_i + a_i) \in R[x]$ $\begin{cases} \exists N_1 : a_n = 0; \ n > N_1 \\ \exists N_2 : b_n = 0; \ n > N_2 \end{cases} \Rightarrow (a+b)_n = 0; \ n > \max(N_1; N_2) \ (a \cdot b)_n = 0 = \sum_{i=0}^n a_i b_{n-i}; \ n > N_1, N_2 \Rightarrow \begin{bmatrix} i > N_1 \\ n-i > N_2 \end{cases} \Rightarrow a_i b_{n-i} = 0 \ \forall i \Rightarrow (ab)_n = 0$

Th. S – коммутативное кольцо; $f:R\to S$ – гомоморфизм (e.g. R=S; f=id); $s\in S$. Тогда $\exists!f_s:R[x]\to S$ продолжающий f

$$f_s|_R = f; \quad f_s \circ i = f; \quad f_s(x) = s$$

Доказательство

 $g \in R[x] \Rightarrow g = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$ Положим $f_s(g) = f(a_0) + f(a_1) s + f(a_2) s^2 + \ldots f(a_n) s^n$ $f_s(gh) = f_s(g) \cdot f_s(h)$ — муторная проверка Сложение — очев проверка

Единственность – очев

 ${f Rem.}\ f_s$ называется гомоморфизм эвалюации

Rem. $R = S; f \rightarrow f(s)$ – значение многочлена в точке S

 $f \in R[x]; \ P(f): R \to R: \ a \to f(a)$ – полиномиальная функция, заданная f Знаем: может быть такое, что $f_1 \neq f_2$, но $P(f_1) = P(f_2)$ (e.g. x^p и x в Z/pZ)

Степень многочлена: $f=\sum_{i\in Z_{\geq 0}}a_ix^i$ $deg(f)=max\{i|a_i\neq 0\};\ f\neq 0$ $deg(0)=-\infty$

Свойства степени:

- 1. $deg(f+g) \leq max(deg(f), deg(g))$ $deg(f+g) = max(deg(f), deg(g)) \text{ если } deg(f) \neq deg(g)$
- 2. deg(fg)=deg(f)+deg(g) $f=\sum a_ix^i;\ g=\sum b_jx^j$ Тогда $(fg)_s=0$ при s>n+m

 $(fg)_{n+m} = a_{n+m}b_0 + a_{n+m-1}b_1 + \ldots + a_nb_m + a_{n-1}b_{m+1} \ldots = a_nb_m$

Итого: $(fg)_{n+m} = a_n b_m \neq 0 \Rightarrow deg(fg) = deg(f) + deg(g)$ – но верно только если R – область целостности, т.к. нет делителей нуля

Далее R – область целостности, еще лучше: R=K – поле

Следствие: R – область целостности $\Rightarrow R[x]$ – область целостности

Тh. О делении с остатком

K – поле, $f,g \in K[x](g \neq 0)$, тогда $\exists !q,r \in K[x] : f = gq + r; \ deg(r) < deg(g)$

Def. a – корень f, если f(a) = 0

Тh. Теорема Безу: остаток от деления f на (x-a) равен f(a). В частности a – корень $f \Leftrightarrow f : x-a$

Доказательство

По теореме о делении с остатком

$$f = (x-a)q + r; \ deg(r) < deg(x-a) = 1 \Rightarrow \begin{bmatrix} deg(r) = 0 \\ r = 0 \end{bmatrix} \Leftrightarrow r = c \in K$$

$$f(x) = (x-a)q(x) + k$$

$$f(a) = (a-a)q(a) + k = k$$
 TODO
$$f = ax^n + f_1; \ f \circ deg(f_1) < n$$

$$g = bx^m + g_1; \ deg(g_1) < m$$

$$\tilde{f} = f - \frac{a}{b}x^{n-m}g = ax^n + f_1 - ax^n - \frac{a}{b}x^{n-m}g_1 = f_1 - \frac{a}{b}x^{n-m}g_1$$

$$deg(\tilde{f}) < n \text{ по и.п. } \exists \tilde{q}, \tilde{r} : \tilde{f} = g \cdot \tilde{q} + \tilde{r}; \ deg(\tilde{r}) < deg(g)$$
 Тогда
$$f = \tilde{f} + \frac{a}{b}x^{n-m}g = g(\tilde{q} + \frac{a}{b}x^{n-m}) + \tilde{r}$$
 Положим
$$q = \tilde{q} + \frac{a}{b}x^{n-m}; \ r = \tilde{r}$$

Th. k – поле, $f \in k[x]$, $deg(f) = n \in Z \Rightarrow f$ имеет не более n корней

Доказательство

Индукция по n. База n = 1 – очев $n \to n+1$. $\deg(f) = n+1$

- 1. У f 0 корней. 0 < n+1
- 2. У f есть корень $a \Rightarrow f = (x a)\tilde{f}$

$$b$$
 – корень $f\Leftrightarrow (b-a)\tilde{f}(b)=a\Leftrightarrow egin{bmatrix} b-a=0\ \tilde{f}(b)=0 \end{cases}\Leftrightarrow egin{bmatrix} b=a\ b- \ ext{корень} ? \end{cases}$

По и.п. $deg(\tilde{f}) = n$. У \tilde{f} не больше n корней, у $f \leq n+1$ корня

Th. О формальном и функциональном равенстве

- 1. k поле. $f, g \in k[x]; a_1 \dots a_n \in k; n > max(deg(f), deg(g))$ $f(a_i) = g(a_i) \forall i \Leftrightarrow f = g$
- 2. k бесконечно, $f(a) = g(a) \forall a \in k \Rightarrow f = g$ $1 \Rightarrow 2$: возьмем любые $a_1 \dots a_n \in k : n > max(deg(f), deg(g))$

Доказательство

1. h := f - q; deg(h) < max(deg(f), deg(g)) < nПри этом $h(a_i) = d(a_i) - g(a_i) = 0$; $a_1 \dots a_n$ – корни $h, n > deg(h) \Rightarrow h = 0 \Leftrightarrow f = g$

 ${\bf Rem.}\ f,g\in Z/pZ[x];\ deg(f),deg(g)< p\Rightarrow$ по предыдущей теореме $f\neq g$ как функции $|\{f|degf < p\}| = |\{a_0 + a_1x + \dots a_{p-1}x^{p-1}\}| = p^p$

Функций:
$$\begin{cases} f(0)=b_0\\ f(1)=b_1\\ \vdots\\ f(p-1)=b_{p-1} \end{cases} \Rightarrow \text{всего } p^p$$

$$\vdots\\ \mathbf{Lm.}\ a_1,a_2\dots a_k - \text{корни } f:a_i\neq a_j\Rightarrow f\vdots (x-a_1)(x-a_2)\dots (x-a_k) \end{cases}$$

Интерполяция

Def. k – поле. Интерполяционные данные $\cfrac{x \mid x_1 \dots x_n \in k}{f(x) \mid y_1 \dots y_n \in k} x_i \neq x_j$

Интерполяционная задача: построить $f \in k[x]$ такую, что $f(x_i) = y_i \forall i$

- 1. ∀ интерполяционная задача имеет решение
- 2. Оно единственно при ограничении deg(f) < n (а вообще бесконечно много)

Доказательство

2. Пусть f_1, f_2 – два решения. $deg(f_i) < n$ По теореме о формальном и функциональном равенстве $f_1 = f_2 \ (f_1(x_i) = y_i = f_2(x_i))$

1. Рассмотрим $L_i(x) = \frac{(x-x_1)...(x-x_{i-1})(x-x_{i+1})...(x-x_n)}{(x_i-x_1)...(x_i-x_{i-1})(x_i-x_{i+1})...(x_i-x_n)}$

$$L_i = \frac{\prod\limits_{\substack{j \neq i \\ 1 \neq i}} (x - x_j)}{\prod\limits_{\substack{j \neq i \\ j \neq i}} (x_i - x_j)}$$

$$L_i(x_i)=1;$$
 при $i \neq j$ $L_i(x_j)=0$

$$deg(L_i) = n - 1$$

Положим
$$f = \sum y_i L_i$$

$$\forall k \ f(x_k) = \sum y_i L_i(x_k) = y_k L_k(x_k) + \sum y_i L_i(x_k) = y_k$$

Итог: $f=\sum_{i=1}^n \frac{y_i\prod\limits_{\substack{j\neq i\\i\neq i}}(x-x_j)}{\prod\limits_{\substack{i\neq i\\i\neq i}}(x_i-x_j)}$ — интерполяционная формула Лагранжа

Rem. Это все КТО:

Интерполяционная задача
$$\Leftrightarrow \begin{cases} f \equiv y_1 \pmod{x-x_1} \\ \vdots \\ f \equiv y_n \pmod{x-x_n} \end{cases}$$

Вернемся к теории чисел

Th. $(Z/pZ)^* = \langle a \rangle$. $\exists a : \{\overline{a}, \overline{a^2}, \overline{a^3} \dots\} = \{\overline{1}, \overline{2} \dots\}$. a – первообразный корень по модулю pНадо доказать: $\exists a \in (Z/pZ)^*: ord(a) = p-1$ **LmA.** $\forall n \in N \quad \sum\limits_{d|n} \varphi(d) = n$

Доказательство LmA:

$$\{1,2,\ldots,n\}=A_{d_1}\bigcup A_{d_2}\ldots;\;A_d=\{x\leq n|(x,n)=d\}$$
 $|A_d|=|\{dy\leq d\cdot \frac{n}{d}|(dy,d\frac{n}{d})=d\}|=|\{y\leq \frac{n}{d}|(y,\frac{n}{d})=1\}|=arphi(\frac{n}{d})$ Тогда $n=|\{1\ldots n\}|=\sum\limits_{d|n}|A_d|=\sum\limits_{d|n}arphi(\frac{n}{d})=\sum\limits_{x|n}arphi(x)$

LmB. $\forall d$ – делителя n в $(Z/pZ)^*$ есть либо 0, либо $\varphi(d)$ элементов порядка d

Доказательство LmB:

Пусть $a \in (Z/pZ)^* : ord(a) = d$ $a^d = 1; \ 1, a, a^2 \dots a^{d-1}$ попарно различны

Заметим: $ord(b) = d \Rightarrow b^d = 1 \Rightarrow b \in \{1, a, a^2 \dots a^{d-1}\}$, так как иначе у многочлена $x^d - 1$ d корней в Z/pZ $b = a^k$; ord(b) = d; $b^l \neq 1$ при $l < d \Leftrightarrow a^{kl} \neq 1$ при $l < d \Leftrightarrow kl$;/d при $l < d \Leftrightarrow (k, d) = 1 - \varphi(d)$ вариантов

Доказательство (Th.)

Докажем: d – делитель $p-1\Rightarrow$ в $(Z/pZ)^*$ ровно $\varphi(d)$ элементов порядка d (в частности $d=p-1\Rightarrow$ есть

элементы порядка
$$p-1$$
) По LmA. $p-1=\sum\limits_{d|p-1}\varphi(d)$, но $p-1=|(Z/pZ)^*|=|\bigcup\limits_{d|p-1}B_d|=\sum\limits_{d|p-1}|B_d|$, где $B_d=\{a|ord(a)=d\}$ $p-1=\sum\limits_{d|p-1}|B_d|=\sum\limits_{d|p-1}\varphi(d)\Rightarrow |B_d|=\varphi(d)$. В частности $|B_{p-1}|=\varphi(p-1)>0$

Хотим ОТА для многочленов ...

Def. Область целостности R называется евклидовым кольцом, если $\exists \varphi : R \setminus \{0\} \to Z_{\geq 0}$ (евклидова норма),

такая, что
$$\forall a,b \in R, b \neq 0$$
 $\exists q,r"a=bq+r \begin{bmatrix} \varphi(r)<\varphi(b)\\ r=0 \end{bmatrix}$

Смысл. В евклидовом кольце можно делать алгоритм евклида (понижая φ)

Def.
$$R$$
 — область целостности. R — евклидово, если $\exists \varphi: R \setminus \{0\} \to Z_{\geq 0}$ — евклидова норма $\forall a,b \in R,b \neq 0; \ \exists q,r: a=b\cdot q+r \begin{bmatrix} r=0 \\ \varphi(r)<\varphi(b) \end{bmatrix}$

Тh. В евклидовом кольце любой идеал главный

Доказательство

I – идеал в R; $I \neq \{0\}$ (иначе I = <0>)

Рассмотрим $i \in I : \varphi(i)$ – минимальна

Тогда
$$\forall a \in I \ a = q \cdot i + r \begin{bmatrix} \varphi(r) < \varphi(i) \\ r = 0 \end{bmatrix}$$

Ho
$$r = a - q \cdot i \in I \Rightarrow \varphi(r) \ge \varphi(i)!! \Rightarrow r = 0$$
, t.e. $a = qi \forall a \in I$, t.e. $I \in \langle i \rangle \Rightarrow I = \langle i \rangle$

Def. Область целостности в которой любой идеал главный, называется областью главных идеалов (ОГИ)

Д-ли: ∀ евклидово кольцо

Rem. Обратное неверно (сложно)

Ех. Пусть R = Z[x], тогда R – не ОГИ

$$I = \langle 2, x \rangle = \{ f \in Z[x] | f(0) : 2 \}$$
 – идеал

$$I \neq < f>$$
, т.к. $egin{bmatrix} 2 &: f \\ x &: f \end{pmatrix} \Rightarrow f = \pm 1$, но $\pm 1 \in I!!!! \ (2,x) = 1$, но $\not\exists g,h: 2 \cdot g + x \cdot h = 1$ $R = Q[x], R[x], Z/pZ[x]$ — все ок, т.к. это поля $\Rightarrow K[x]$ евклидово \Rightarrow ОГИ

Def. R – область целостности, a : b, если $\exists c : a = bc$

Rem. $a : c, c \neq 0 \Rightarrow$ частное в определении однозначно (т.к. в области целостности верен закон сохранения) $Z/4Z, 2 = 2 \cdot 1 = 2 \cdot 3????$

Def. $a \in R \Rightarrow a$ называется неразложимым, если

 $1.\ a\neq 0,\ a\not\in R^*$

$$2. \ a = bc \Rightarrow \begin{bmatrix} b \in R^* \\ c \in R^* \end{bmatrix}$$

Def. a, b называются ассоциированными $(a \sim b)$, если выполнено одно из определений

1. $a \vdots b, b \vdots a$

2. $a = b\varepsilon$; $\varepsilon \in R^*$

Rem. B Z $a \sim b \Leftrightarrow |a| = |b|$

Rem. Это отношение эквивалентности (очев из первого определения)

Упражнение: $3 \Rightarrow 1, 2 \text{ у } a, b$ одинаковые делители

3': у a, b одинаковые кратные

Def. Область целостности R называется факториальной, если любой $a \in R \setminus \{0\}$ представляется в виде произведения не разложимых единственным образов с точностью до порядка множителей и ассоциированности

Ех. $a = p_1 p_2 p_3; \; p_1, p_2, p_3$ – неразложимые. $\varepsilon, \mu, \alpha \in R^*$

 $a = (\varepsilon p_2 \mu)(o_3 \mu^{-1} \alpha^{-1})(\varepsilon^{-1} \alpha p_1); \ \varepsilon p_2 \mu \sim p_2$ – неразложимый (упр) и т.д.

Th. ОГИ – факториальна

Ключевые свойства:

1.
$$\begin{cases} (a,b) = 1 \\ ac : b \end{cases} \Rightarrow c : b$$

2. р – неразложимый

$$ab : p \Rightarrow \begin{bmatrix} a : p \\ b : p \end{bmatrix} \Rightarrow$$
 единственность разложения

Доказательство

Единственность доказывается по той же схеме, что и в Z

Существование – неочев /без доказательства/

У нас R = K[x] – существование разложения очевидна (индукция по deg(f))

Что значит в K[x] $f \sim g$? $f = \varepsilon g$, $\varepsilon \in K[x]^*$

Lem.
$$K[x]^* = K \setminus \{0\}$$
. $deg(f) > 0$, $\forall g \ deg(fg) \ge deg(f) > 0$ или $fg = 0 \ (fg \ne 1)$

Поэтому $f \sim g \Leftrightarrow \exists k \in K^* : f = kg$

 $deg(f) = 0, f = k \sim 1$, для f разложение пустое (deg(f) > 0 – непустое)

Def. f называется уникальным, если $\exists n = deg(f) : f = x^n + \sum_{i=0}^{n-1} a_i x^i$

В ∀ классе ассоциативности ∃! уникальный многочлен

Итого: $\forall f \in K[x] \; \exists ! a \in K, \; p_1, p_2 \dots p_l$ – уникальные неразложимые: $f = ap_1p_2 \dots p_3$

 $p_1, p_2 \dots p_l$ – единственные с точностью до перестановки множителей

Производная

Def. R – коммутативное кольцо: $D: R \to R$ называется дифференциированием, если

1.
$$\forall f, g \in R \ D(f+g) = D(f) + D(g)$$

2.
$$\forall f,g \in R \ D(f \cdot g) = f \cdot D(g) + g \cdot D(f)$$
 – правило Лейбница

Def. R – кольцо, $f \in R[x]$: $f = \sum a_n x^n$ тогда по определению $D(f) = f' = \sum n a_n x^{n-1}$ $(n \cdot a_n = a_n + a_n +$ $\ldots + a_n \ (n \text{ pas})$

Def. $f \in R[x]$. Положим $D(f)(x) = \frac{f(x) - f(y)}{x - y}|_{x = y}$

$$\frac{ax^{n} - ay^{n}}{x - y} = a \frac{(x - y)(x^{n-1} + x^{n-2}y + \dots + y^{n-1})}{x - y} |_{x = y} = na \cdot y^{n-1}$$

Упражнение: $def1 \Leftrightarrow def2$ $\frac{ax^n - ay^n}{x - y} = a\frac{(x - y)(x^{n - 1} + x^{n - 2}y + \ldots + y^{n - 1})}{x - y}|_{x = y} = na \cdot y^{n - 1}$ **Def./Th.** K – бесконечное поле $f \in K[x]$, $a \in K$, $\exists q, r : f = (x - a)^2 \cdot q + r \ (deg(r) < 2)$

$$f = (x-a)^2 \cdot q(x) + k(x-a) + m_a \ (x=a; \ m_a = f(a))$$

Утв. отображение $a o K_a$ – полиномиальная функция, соответствующий многочлен называется производной (а и менно f' из Def1. задает эту функцию)

Утв.
$$f = (x-a)^2 q_f(x) + f'(a)(x-a) + f(a); \ g = (x-a)^2 q_g(x) + g'(a)(x-a) + g(a)$$

Сложим: $f + g = (x - a)^2 (q_f + q_g) + (f'(a) + g'(a))(x - a) + f(a) + g(a)$

 $f \cdot g = (x-a)^2((x-a)^2q_fq_g + q_fg'(a)(x-a) + q_gf'(a)(x-a) + f'(a)g'(a)) + (f'(a)g(a) + f(a)g'(a))(x-a) + f(a)g(a),$ но коэффициенты при x-a равен (fg)'(a)

Пусть K – поле, $f \in K[x]$; a – корень f

a – корень кратности l, если $V_{(x-a)}(f)=l$, т.е. f : $(x-a)^l$, f : $/(x-a)^{l+1}$, $f=(x-a)^l \tilde{f}$: $\tilde{f}(a)\neq 0$

a – кратный корень, если l > 1 (иначе простой)

Th. $f \in K[x]$, a – корень кратности l ($l \ge 1$), тогда

- 1. a корень кратности $\geq l-1$ в многочлене f'
- 2. Если $1+1+\ldots+1\neq 0$ в $K\Rightarrow a$ корень кратности =l-1 в f'
- 3. a кратный корень $f \Leftrightarrow a$ корень qcd(f, f')

Доказательство

1.
$$f = (x-a)^l \tilde{f}; \ \tilde{f}(a) \neq 0$$

$$f' = ((x-a)^l)' \tilde{f} + (x-a)^l \tilde{f}' = l(x-a)^{l-1} \tilde{f} + (x-a)^l \tilde{f}' = (x-a)^{l-1} (l\tilde{f} + (x-a)\tilde{f}') \Rightarrow a$$
 – корень кратности хотя бы $l-1$

2.
$$1 \cdot l \neq 0$$
 в K , т.е. $l \neq 0$ в $K \Rightarrow l\tilde{f} \neq 0 \Rightarrow (l\tilde{f}' + (x-a)\tilde{f}')(a) \neq 0$ т.е. $f' = (x-a)^{l-1}g, \ g(a) \neq 0 \Rightarrow$ кратность ровно $l-1$

Ех.
$$Z/pZ$$
 $f = x^p$, 0 – корень кратности p $f' = px^{p-1} = 0$ – корень кратности ∞ 0 \vdots $x^n \forall n$

Def.
$$K$$
 – поле. Характеристика K – $char(K) = \begin{cases} ord_{(K,+)}(1), \text{ если оно не } \infty \\ 0 \end{cases}$

Ex.
$$char(Q) = char(Z) = 0$$
; $char(Z/pZ) = p$

Th.
$$char(K) = 0$$
 или простое число

Доказательство

Пусть n = pq, p, q > 1

Если
$$n$$
 единиц $=0\Rightarrow$ т.к. K – поле \Rightarrow О.Ц. $\Rightarrow \begin{bmatrix} p=0\\ q=0 \end{bmatrix} \Rightarrow n$ – не минимальное

Rem. Любое поле характеристики 0 содержит подполе, изоморфное Q. Поле характеристики p содержит подполе, изоморфное Z/pZ

Тh.
$$K$$
 – поле, $a \in K$; $f \in K[x]$, тогда $\exists ! a_0, a_1, a_2 \dots a_n; \ n = degf: f = \sum a_i (x-a)^i; \ f = \sum a_i (x-0)^i = \sum a_i x^i$

Доказательство

Индукция по degf. База очев

 $(a,b) \cdot (c,d) = (ac - bd, ad + bc)$

Переход: $n \to n+1$

$$f=(x-a)q+f(a)$$
 по и.п. $q=\sum\limits_{i=0}^nb_i(x-a)^i$ $f=(x-a)\sum\limits_{i=0}b_i(x-a)^i+a_0=\sum\limits_{i=0}b_i(x-a)^{i+1}+a_0$, положим $a_i=b_{i-1}$ при $i>0$

Th. Формула Тейлора:

K – поле, $f \in K[x]$, char(K) = 0 или char(K) > degfОпределим последовательность многочленов: $f^{(0)} = f$; $f^{(n+1)} = (f^{(n)})'$ Тогда $f = \sum \frac{f^{(k)}(a)}{k!} (x-a)^k$

Доказательство

Знаем: $f = \sum a_i(x-a)^i$ (*). Хотим $a_i = \frac{f^{(i)}(a)}{i!}$ $((x-a)^k)' = k(x-a)^{k-1}$ Тогда $f = (x-a)^k$; $f^{(1)} = k(x-a)^{k-1}$; $f^{(k)} = k!(x-a)^0 = k!$; $f^{(l)} = 0$, l > k Применим к * дифференцирование k раз и эвалюируем в a $f^{(k)}(a) = \sum ((a_i(x-a)^i))^{(k)}(a)$ При i < k: $((a_i(x-a)^i))^{(k)}(a) = 0$ При i > k: $((a_i(x-a)^i))^{(k)} = c \cdot (x-a)^{i-k}$. Эвалюация в a дает $a \in A$ Птого: $a \in A$ $a \in A$

Расширения полей и комплексные числа

Пусть K – поле, $f \in K[x]$, f – неразложим, degf > 1Надо K = Q; $f = x^2 - 2$ $Q o Q(\sqrt{2}) = \{a + b\sqrt{2} | a, b \in Q\}; \ Q o R$ – новые поля $x^2-2=(x-\sqrt{2})(x+\sqrt{2})$ – разложение!!! Хотим уметь строить новое поле $L\supset K$ такое, что в L у f есть корень \Rightarrow раслкадывается на множители Конструкция: положим $g \equiv h \pmod{f}$, если $g - h \in f$ Это отношение эквивалентности и можно перейти к K[x]/f – множество классов эквивалентности K[x]/f – кольцо вычетов по модулю f**Th.** Упражнение: f – неразложимый многочлен $\Rightarrow K[x]/f$ – поле $g = f \cdot q + r; \ degr < degf$ $\overline{g} = \overline{r} = \{\overline{a_0 + a_1 x + \ldots + a_{n-1} x^{n-1}} | a_i \in K \}$ Все $\overline{a_0}$ – различны и $\overline{a_0} + \overline{a_0'} = \overline{a_0 + a_0'}$ и $\overline{a_0} \cdot \overline{a_0'} = \overline{a_0 \cdot a_0'}$ Можно считать, что K[x]/f содержит K как подполе L = K[x]/f. В L f имеет корень: $\frac{f}{0} = \frac{a_0 + a_1 x + \ldots + a_{n-1} x^{n-1} + a_n x^n}{\overline{0} = \overline{f} = \sum \overline{a_i} \cdot \overline{x}^i = \sum \overline{a_i} (\overline{x})^i = \sum a_i \overline{x}^i = f(\overline{x})$ f имеет корень в L: $f = (x - \overline{x})(...)$ **Ех.** (основной) $K = R; \ \hat{f} = x^2 + 1$ — неразложим $R[x]/(x^2+1) = \{\overline{ax+b}|a,b \in R\}$ $\overline{ax+b} + \overline{cx+d} = (a+c)x + (b+d)$ $\overline{ax+b\cdot cx+d}=\overline{(ax+b)(cx+d)}=\overline{acx^2+(ad+bc)x+bd}$ делим на x^2+1 Получаем $\overline{acx^2+ac-ac+(bc+ad)x+bd}=\overline{ac(x^2+1)}+\overline{(bc+ad)x-ac+bd}=\overline{(bc+ad)x-ac+bd}$ $R[x]/(x^2+1)\cong R\times R$ ($\overline{a+bx}\leftrightarrow (a,b)$) со следующими операциями (a,b) + (c,d) = (a+c,b+d)

 $\frac{\overline{x} \to (0,1)}{\overline{x^2} = -1 \to (-1,0); \ \overline{x} = i$

Итого: $C = R[x]/(x^2 + 1) = \{a + bi | a, b \in R\}$ – поле комплексных чисел

 $R = \{a + 0 \cdot i | a \in R\} \subset C$ — подполе C

В общем случае $Z = a + bi; \ a = Re(z), \ b = Im(z)$ – вещественная и мнимая часть соответственно

і – мнимая единица

$$x^{2} + 1 = x^{2} - (-1) = x^{2} - i^{2} = (x - i)(x + i)$$

Следствие. Любой квадратный трехчлен из R[x] раскладывается на линейные множители в $C.\ f=$ $(x-c)^2 - D = (x - c - \sqrt{D})(x - c + \sqrt{D})$

$$D = -k; \ k > 0 \Rightarrow \sqrt{\overline{D}} = i\sqrt{k}$$

Th. Основная теорема алгебры: $\forall f \in C[x] \ f = c(x-a_1) \dots (x-a_n)$ – имеет n комплексных корней с учетом кратности

Знаем: существует биекция $R \times R \leftrightarrow$ точки на плоскости

А еще есть биекция $C \leftrightarrow$ точки на плоскости

А еще есть биекция $C \leftrightarrow$ вектора, отложенные из 0

Вот как-то так и думайте, а по-другому не думайте

 $\mathbf{Def.}\ |a+b_i|=\sqrt{a^2+b^2}$ — модуль комплексного числа $z o |\overrightarrow{0x}|=\sqrt{a^2+b^2}$

Симметричный относительно $\overrightarrow{0x}$ вектор $\rightarrow a-bi$

Def. $\overline{a+bi}=a-bi$ – сопряженное число

Свойства модуля и сопряжения:

- $1. \ \overline{\overline{z}} = z$
- $2. \ z + \overline{z} = 2Re(z)$
- 3. $z \cdot \overline{z} = |z|^2$

Резюмируем что-то: z, \overline{z} – корни многочлена $x^2 - 2ax + (a^2 + b^2) \in R[x]$

- 4. $|z_1z_2|=|z_1|\cdot|z_2|\Leftrightarrow |z_1z_2|^2=|z_1|^2\cdot|z_2|^2\Leftrightarrow z_1\overline{z_1}z_2\overline{z_2}=(z_1z_2)(\overline{z_1z_2})$ следует из 6
- 5. $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
- 6. $\overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$

Rem. 3) $\Rightarrow C$ – поле, т.к. $z \neq 0 \Rightarrow |z| \neq 0 \Rightarrow z^{-1} = \frac{\overline{z}}{|z|^2}$