OLYMPICS DATA ANALYSIS WITH PREDICTION

MINI PROJECT

VARSHA U ROLL NO:28 S3 MCA GUIDED BY: PROF.MANU JOHN

INTRODUCTION

- Objective: Analyzing historical Olympic data using machine learning to predict future outcomes.
- Focus Areas: Athlete performance, country performance, event trends, and medal predictions.
- Benefits: Provides insights, identifies patterns, and supports datadriven decision-making.
- Specialization: Falls within the domain of specialized sports analytics.

REFERENCE PAPERS

Paper 1:

Sagala, Noviyanti TM, and Muhammad Amien Ibrahim. "A Comparative Study of Different **Boosting Algorithms for** Predicting Olympic Medal." 2022 IEEE 8th International Conference on Computing, Engineering and Design (ICCED). IEEE, 2022.

• The primary objective was to evaluate three boosting algorithms (LGBM, XGBoost, CatBoost) for predicting Olympic medal outcomes.

Accuracy:

CatBoost: 89.1%

• LightGBM: 90.1%

• XGBoost: 90.2%

- The dataset covered 11 Olympic Games and included various athlete attributes like nationality, sport, age, and historical performance, making it comprehensive for analysis.
- XGBoost emerged as the leading algorithm for precise Olympic medal predictions, showcasing its potential in sports analytics.

REFERENCE PAPERS

pape 2:

Jia, Mengjie, et al. "A Random Forest Regression Model Predicting the Winners of Summer Olympic Events." *Proceedings of the 2020 2nd International Conference on Big Data Engineering*. 2020.

- The research aimed to predict Summer Olympic event winners using a Random Forest Regression model.
- accuracy achieved: 89.76%
- The dataset covered athletes from 1896 to 2016 Olympics and integrated external data on world population and GDP for enhanced predictions.
- This study contributed valuable insights into Olympic success factors and demonstrated the practical use of machine learning in sports analytics for outcome predictions.

REFERENCE PAPERS

paper 3:

Schlembach, Christoph, et al.
"Forecasting the Olympic medal distribution—a socioeconomic machine learning model."

Technological Forecasting and Social Change 175 (2022): 121314.

- Aimed to forecast Olympic medal counts for various nations in Tokyo 2020 using a two-staged Random Forest model, trained on a dataset of socio-economic variables from 1991 to 2020.
- accuracy: 85.38%.
- The dataset contains GDP, population, athlete count, COVID-19 impact, host country status, political regime, and geographic region data from various organizations.
- The model outperformed other machine learning algorithms and achieved an impressive accuracy rate, offering valuable insights into the predictive power of socio-economic factors on Olympic medal counts.

hree studi	es Title	Year	Publisher	Summary
1	A Comparative Study of Different Boosting	2022	IEEE	Algorithm selected: XGBoost Accuracy: 90%
	Algorithms for Predicting Olympic Medal			Dataset: Records of Olympics history from the earliest competition in 1896 to recent games in 2016.
2	A Random Forest Regression Model Predicting the Winners	2020	ACM (Association for Computing	Algorithm: random forest Accuracy: 89.76%
	of Summer Olympic Events.		Machinery)	Dataset: information on athletes participating in the 189 to 2016 Winter and Summer Olympic Games.
	Forecasting the Olympic medal	2022	Elsevier	Algorithm : Random Forest accuracy : 85.38%.
3	distribution-a socioeconomic machine learning model			Dataset: GDP, population, the number of athletes, the impact of COVID-19, host country status, political regime, and geographic region.

PROJECT:

- Project Title: Olympics data analysis with Prediction -
- It's a Exploratory Data Analysis of the Modern Olympic Games and provides valuable insights and predictions that can be used for data-driven strategies for future Olympic success

Methodology:

- Data collection and cleaning
- Exploratory data analysis
- Visualization
- Modeling

Algorithm:

- Comparative study of
- Random forest
- XGBoost

Expected Results:

- Medal tally
- Overall analysis
- Country-wise analysis
- Athlete-wise analysis
- medal prediction

DATASET EXPLORATION

The dataset is collected from kaggle. The dataset contains two files: athlete_events.csv and noc_regions.csv.

The file athlete_events.csv contains 271116 rows and 15 columns. Each row corresponds to an individual athlete competing in an individual Olympic event (athlete events).

The columns are:

- ID Unique number for each athlete
- Name Athlete's name
- Sex M or F
- Age Integer
- Height In centimetres
- Weight In kilograms
- Team Team name
- NOC National Olympic Committee 3-letter code

- Games Year and season
- Year Integer
- Season Summer or Winter
- City Host city
- Sport Sport
- Event Event
- Medal Gold, Silver, Bronze, or NA

The file noc_regions.csv contains 230 rows and 3 columns. Each row corresponds to an individual region.

The columns are:

- NOC (National Olympic Committee 3 letter code)
- region
- notes

Joining the NOC data

```
noc.drop('notes', axis=1, inplace=True)
df = df.merge(right=noc, on='NOC', how='left')
```

ID	Name	Sex	Age	Height	Weight	Team	NOC	Games	Year	Season	City	Sport	Event	Medal	region
1	A Dijiang	M	24.0	180.0	80.0	China	CHN	1992 Summer	1992	Summer	Barcelona	Basketball	Basketball Men's Basketball	NaN	China
2	A Lamusi	M	23.0	170.0	60.0	China	CHN	2012 Summer	2012	Summer	London	Judo	Judo Men's Extra- Lightweight	NaN	China
3	Gunnar Nielsen Aaby	M	24.0	NaN	NaN	Denmark	DEN	1920 Summer	1920	Summer	Antwerpen	Football	Football Men's Football	NaN	Denmark
4	Edgar Lindenau Aabye	M	34.0	NaN	NaN	Denmark/Sweden	DEN	1900 Summer	1900	Summer	Paris	Tug-Of-War	Tug-Of-War Men's Tug-Of- War	Gold	Denmark
5	Christine Jacoba Aaftink	F	21.0	185.0	82.0	Netherlands	NED	1988 Winter	1988	Winter	Calgary	Speed Skating	Speed Skating Women's 500 metres	NaN	Netherlands

Nu	mber	of	Unique	Values	in	Each	Column:
ID			135571				
Na	me		134732				
Se	X		2				
Ag	ge		74				
He	eight		95				
We	eight		220				
Te	am		1184				
NC)C		230				
Ga	mes		51				
Ye	ar		35				
Se	ason		2				
Ci	.ty		42				
Sp	ort		66				
Εv	ent		765				
Me	dal		3				
re	gion		205				
dt	ype:	int	64				

Missing Values

Treating missing values

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 271116 entries, 0 to 271115
Data columns (total 16 columns):
     Column Non-Null Count
 0
     ID
            271116 non-null int64
            271116 non-null object
     Sex
            271116 non-null object
            261642 non-null float64
     Age
     Height
            210945 non-null float64
    Weight
            208241 non-null float64
            271116 non-null object
     Team
     NOC
            271116 non-null object
            271116 non-null object
     Games
            271116 non-null int64
     Year
            271116 non-null
                             object
    Season
     City
            271116 non-null object
            271116 non-null object
    Sport
            271116 non-null object
    Event
            39783 non-null
                             object
    Medal
            270746 non-null object
    region
dtypes: float64(3), int64(2), object(11)
memory usage: 35.2+ MB
```


- Missing values in each numeric column are replaced with the mean value of that column.
- Missing values in each categorical column are replaced with the string 'None'.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 262156 entries, 0 to 262155
Data columns (total 16 columns):
    Column Non-Null Count
                             Dtype
            262156 non-null int64
            262156 non-null
                             object
    Name
            262156 non-null
                             int64
    Age
    Sex
            262156 non-null
                             object
    Height 262156 non-null
                             int64
    Weight 262156 non-null
                             int64
    Year
            262156 non-null int64
            262156 non-null
                             object
    Team
    NOC
            262156 non-null
                             object
    region 262156 non-null
                             object
            262156 non-null object
    Games
    Season 262156 non-null
                             object
    City
            262156 non-null
                             object
            262156 non-null
    Sport
                             object
            262156 non-null
                             object
    Event
            262156 non-null
    Medal
                             object
dtypes: int64(5), object(11)
memory usage: 32.0+ MB
```

Box plot to show Outliers

Checking consistency of class variable

Balancing Class Distribution Using RandomOverSampler in imbalanced-learn.

Display the value counts of the target variable in the balanced DataFrame
print(data1['Medal'].value_counts())

None 179741 Gold 179741 Bronze 179741 Silver 179741

Name: Medal, dtype: int64

Selected features for medal prediction

data = data[['Age', 'Sex', 'Height', 'Weight', 'region', 'City', 'Sport', 'Medal']]

Data type: 'Age', 'Height', 'Weight' are numerical & 'Sex', 'region', 'City', 'Sport' are categorical.

Feature variables: 'Age', 'Sex', 'Height', 'Weight', 'region', 'City', 'Sport' are features.

Class variables: 'Medal' is the class variable.

Class labels: Gold ,Silver, Bronze ,None

Study of algorithms

- 1. Extreme Gradient Boosting
- 2. Random forest classifier

XGBoost

- eXtreme Gradient Boosted trees
- Remember boosting is an ensemble method
 - Each tree boosts attributes that led to misclassifications of previous tree
- It is AMAZING
 - Routinely wins Kaggle competitions
 - Easy to use
 - Fast
 - A good choice for an algorithm to start with

Gradient boosting Algorithm:

• Final prediction=Base value (the starting prediction from basic decision tree)+LR*w1+LR*w2+..+LR*wn Where LR= learning rate=eta w1=residual predicted value by 1st residual model

wn=residual predicted value by 1st residual model

Features of XGBoost

- Regularized boosting (prevents overfitting)
- Can handle missing values automatically
- Parallel processing
- Can cross-validate at each iteration
 - Enables early stopping, finding optimal number of iterations
- Incremental training
- Can plug in your own optimization objectives
- Tree pruning
 - Generally results in deeper, but optimized, trees

Random Forest Algorithm

- Random forest is a commonly-used machine learning algorithm.
- A random forest is an ensemble learning method where multiple decision trees are constructed and then they are merged to get a more accurate prediction.
- Random forest became popular because of its ease of use and flexibility in handling both classification and regression problems.

How random forest works

- 1. Bootstrap Sampling
- 2.Decision Tree Building
- 3. Voting or Averageing

Project pipeline

Data splitting

```
# Data preprocessing
X = data1.loc[:, data1.columns != 'Medal']
y = data1['Medal']

# Encode the 'Medal' column to integers using Label Encoding
label_encoder = LabelEncoder()
y = label_encoder.fit_transform(y)

#Split the data into training and test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
```

Training using Random forest

```
from sklearn.ensemble import RandomForestClassifier
# Create a Random Forest model
random_forest_model = RandomForestClassifier(
     n jobs=-1, # Use all available CPU cores
    n_estimators=100, # Adjust the number of trees in the forest
    max depth=100, # Adjust the maximum depth of trees (None means unlimited)
    min samples split=2, # Minimum samples required to split an internal node
    min_samples_leaf=1, # Minimum samples required to be at a leaf node
    max features=3, # Number of features to consider when looking for the best split
    random state=42 # Random seed for reproducibility
# Build the model pipeline (if you have preprocessing steps)
random forest olympics = make pipeline(full pipe, random forest model)
# Train the model
random forest olympics.fit(X train, y train)
tr = str(random forest olympics.score(X train, y train) * 100)
print("Training Score:", tr)
/usr/local/lib/python3.10/dist-packages/sklearn/preprocessing/ encoders.py:868: FutureWarning: `spars
 warnings.warn(
Training Score: 93.03233299314465
```

Training using XGBOOST

```
# Import XGBoost
from xgboost import XGBClassifier
xgboost model = XGBClassifier(
   n_jobs=-1,
    n estimators=100, # Adjust the number of boosting rounds
    max depth=50, # Adjust the maximum depth of trees
    learning_rate=0.1, # Adjust the learning rate
    subsample=1.0, # Adjust the subsample ratio
    colsample_bytree=1.0, # Adjust the feature subsample ratio
                      # Adjust the regularization term
    gamma=0.8,
    scale pos weight=10, # Adjust class weight balance
    objective='multi:softprob', # Specify the objective for multi-class classification
    eval metric='mlogloss' # Specify the evaluation metric
# Build the model
xgboost olympics = make pipeline(full pipe, xgboost model)
# Train the model
xgboost_olympics.fit(X_train, y_train)
tr1 = str(xgboost olympics.score(X train, y train) * 100)
print("Training Score:", tr1)
/usr/local/lib/python3.10/dist-packages/sklearn/preprocessing/_encoders.py:868: FutureWarning: `sparse` was rename
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/xgboost/core.py:160: UserWarning: [12:01:41] WARNING: /workspace/src/lear
Parameters: { "scale pos weight" } are not used.
 warnings.warn(smsg, UserWarning)
Training Score: 93.03233299314465
```

Prediction Using Testing Data

```
# Make predictions on the test set
y_pred = random_forest_olympics.predict(X_test)
# Evaluate the performance of the classifier
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, average='weighted')
recall = recall_score(y_test, y_pred, average='weighted')
print(f'Random Forest Accuracy: {accuracy * 100:.1f}%')
print(f'Random Forest Precision: {precision * 100:.1f}%')
print(f'Random Forest Recall: {recall * 100:.1f}%')
Random Forest Accuracy: 91.8%
Random Forest Precision: 92.0%
Random Forest Recall: 91.8%
```

```
# Make predictions on the test set
y_pred = xgboost_olympics.predict(X_test)
# Evaluate the performance of the classifier
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, average='weighted')
recall = recall_score(y_test, y_pred, average='weighted')
print(f'Accuracy: {accuracy * 100:.1f}%')
print(f'Precision: {precision * 100:.1f}%')
print(f'Recall: {recall * 100:.1f}%')
Accuracy: 91.1%
Precision: 91.5%
Recall: 91.1%
```

Random Forest Has high accuracy, so we select random forest for building Model

User interface

Overall Tally

	region	Gold	Silver	Bronze	total
0	USA	1035	802	708	2545
1	Russia	592	498	487	1577
2	Germany	444	457	491	1392
3	UK	278	317	300	895
4	France	234	256	287	777
5	China	228	163	154	545
6	Italy	219	191	198	608
7	Hungary	178	154	172	504
8	Sweden	150	175	188	513
9	Australia	150	171	197	518
10	Japan	142	134	161	437
11	Finland	104	86	120	310
12	South Korea	90	85	89	264
13	Netherlands	88	97	114	299
14	Romania	88	95	120	303
15	Cuba	77	67	70	214
16	Poland	69	87	134	290
17	Canada	64	104	137	305
18	Czech Republic	64	68	75	207
19	Norway	59	51	48	158
20	Switzerland	58	82	69	209
21	Bulgaria	51	86	80	217

Deploy

Q

(3)

₿

CONCLUSION

"Olympic Data Analysis with Prediction" is a valuable project that uses data analytics and machine learning to understand the Olympic Games and predict future medal outcomes.

It benefits sports enthusiasts, data scientists, Olympic committees, and students/researchers.

It leverages the power of data to provide valuable insights into the Olympics..

REFERENCES

- 1.DATASET: https://www.kaggle.com/datasets/heesoo37/120-years-of-olympic-history-athletes-and-results
- 2. PAPER 1: https://ieeexplore.ieee.org/abstract/document/10010351/
- 3. PAPER 2 : https://dl.acm.org/doi/abs/10.1145/3404512.3404513
- 4. PAPER 3: https://www.sciencedirect.com/science/article/pii/S0040162521007459
- 5. SITES: https://www.geeksforgeeks.org/machine-learning/

THANK YOU