DEPARTAMENTO DE MATEMÁTICA DA UNIVERSIDADE DE COIMBRA

Álgebra Linear e Geometria Analítica

Mestrado Integrado em Eng. Electrotécnica e de Computadores

Ano lectivo 2013/2014 Folha 4

46. Considere o sistema de equações:

$$\begin{cases} 2x_1 + 4x_2 &= 16 \\ 5x_1 - 2x_2 &= 4 \\ 3x_1 & ax_2 &= 9 \\ 4x_1 + bx_2 &= -7 \end{cases}$$

Determine a e b de forma que o sistema seja possível e determine a solução nesse caso.

- 47. Seja A uma matriz qualquer. Mostre que, se b for uma coluna de A, então o sistema Ax = b é possível e indique uma solução.
- 48. Determine os valores de a, b e c de tal modo que os pontos (-1,2), (0,0) e (1,-2) pertençam ao gráfico da função $f(x) = a2^x + b2^{2x} + c2^{3x}$.
- 49. Considere as matrizes 3×3

$$E_{21}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ \alpha & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_{31}(\beta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \beta & 0 & 1 \end{bmatrix}, \quad E_{32}(\gamma) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \gamma & 1 \end{bmatrix}.$$

Calcule os produtos $E_{21}(\alpha)E_{31}(\beta)$, $E_{31}(\beta)E_{21}(\alpha)$, $E_{21}(\alpha)E_{32}(\gamma)$, $E_{32}(\gamma)E_{21}(\alpha)$, $E_{31}(\beta)E_{32}(\gamma)$, $E_{32}(\gamma)E_{31}(\beta)$, $E_{21}(\alpha)E_{31}(\beta)E_{32}(\gamma)$ e $E_{32}(\gamma)E_{31}(\beta)E_{21}(\alpha)$. O que é que observa em cada um deles? Procure generalizar essa observação para matrizes $n \times n$.

- 50. Seja E a matriz elementar 4×4 cujo efeito, quando multiplicada por uma matriz, é adicionar a primeira linha à terceira.
 - (a) Qual é o efeito de E^{50} ?
 - (b) Escreva por extenso as matrizes E, E^{50} e 50E.

51. Verifique que
$$A = \begin{bmatrix} 1 & 0 & 0 \\ -\alpha & 1 & 0 \\ -\beta & 0 & 1 \end{bmatrix}$$
 é a inversa de $B = \begin{bmatrix} 1 & 0 & 0 \\ \alpha & 1 & 0 \\ \beta & 0 & 1 \end{bmatrix}$.

52. Verifique que
$$A = \begin{bmatrix} 1 & 0 & 0 \\ -\alpha & 1 & 0 \\ -\beta & -\gamma & 1 \end{bmatrix}$$
 não é a inversa de $B = \begin{bmatrix} 1 & 0 & 0 \\ \alpha & 1 & 0 \\ \beta & \gamma & 1 \end{bmatrix}$.

53. Sendo
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, calcule A^{-1} .

54. Ache as decomposições LU das seguintes matrizes:

(a)
$$\left[\begin{array}{cc} 1 & -1 \\ 0 & 4 \end{array} \right];$$

(b)
$$\begin{bmatrix} 1 & 0 \\ 8 & 1 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 2 & 1 \\ 8 & 7 \end{bmatrix}$$
;

(a)
$$\begin{bmatrix} 1 & -1 \\ 0 & 4 \end{bmatrix}$$
; (b) $\begin{bmatrix} 1 & 0 \\ 8 & 1 \end{bmatrix}$; (c) $\begin{bmatrix} 2 & 1 \\ 8 & 7 \end{bmatrix}$; (d) $\begin{bmatrix} 2 & -3 & 0 \\ 4 & 5 & 1 \\ 2 & 0 & 4 \end{bmatrix}$;

(e)
$$\begin{bmatrix} 1 & 3 & 5 \\ 3 & 12 & 18 \\ 5 & 18 & 30 \end{bmatrix}$$

(e)
$$\begin{bmatrix} 1 & 3 & 5 \\ 3 & 12 & 18 \\ 5 & 18 & 30 \end{bmatrix}$$
; (f) $\begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}$; (g) $\begin{bmatrix} 2 & 4 & 0 & 2 \\ 0 & 3 & 3 & 1 \\ 2 & 7 & 9 & 7 \\ 0 & 0 & 6 & 5 \end{bmatrix}$.

$$(g) \left[\begin{array}{cccc} 2 & 4 & 0 & 2 \\ 0 & 3 & 3 & 1 \\ 2 & 7 & 9 & 7 \\ 0 & 0 & 6 & 5 \end{array} \right].$$

- 55. Mediante a resolução de sistemas triangulares resolva os sistemas $Ax = b_1$ e $Ax = b_2$ onde,
 - (a) A é a matriz da alínea (d) do exercício 54 e com $b_1 = \begin{bmatrix} 8 & 5 & 1 \end{bmatrix}^T$ e $b_2 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$;
 - (b) A é a matriz da alínea (f) do exercício 54 e com $b_1 = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T$ e $b_2 = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}^T$;
 - (c) A é a matriz da alínea (g) do exercício 54 e com $b_1 = \begin{bmatrix} 6 & 4 & 8-4 \end{bmatrix}^T$ e $b_2 = \begin{bmatrix} 1 & 2 & 4 & 7 \end{bmatrix}^T$.

56. Seja
$$A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -2 \\ 0 & -2 & 0 \end{bmatrix}$$
.

- (a) Determine a decomposição LU de A.
- (b) Determine a matriz inversa de L e a matriz inversa de U. (Sugestão: Escreva as matrizes L e U como produto de matrizes elementares.)
- (c) Usando os resultados obtidos na alínea anterior calcule A^{-1} .

57. Seja
$$A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 6 & 9 \\ 1 & 8 & 8 \end{bmatrix}$$
.

- (a) Determine uma matriz de permutação P para a qual exista a decomposição LU de PA e determine os factores dessa decomposição.
- (b) Resolva o sistema $Ax = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^T$.
- 58. Para cada uma das seguintes matrizes A,
 - determine a factorização LU, onde L é triangular inferior com elementos diagonais iguais a 1 e U é uma matriz em escada (se tal não for possível, faça-o para PA, onde P é uma matriz de permutação adequada);
 - registe os pivots usados na eliminação;
 - determine relativamente ao sistema Ax = 0, as incógnitas básicas e as incógnitas livres e escreva a solução geral:

(a)
$$\begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix};$$

(b)
$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} ;$$

$$(c) \left[\begin{array}{cccc} 0 & 1 & 4 & 0 \\ 0 & 2 & 8 & 0 \end{array} \right];$$

- (d) a transposta da matriz da alínea anterior.
- 59. Para as matrizes do exercício anterior, diga quais os vectores coluna b para os quais o sistema Ax = b é possível e para esses escreva a solução geral do sistema.
- 60. Para cada um dos seguintes sistemas, escreva a solução geral como soma de uma solução particular, caso exista, com a solução geral do sistema homogéneo correspondente:

(a)
$$\begin{cases} x_1 + x_2 + x_3 = 1 \\ x_1 - x_3 = 2 \end{cases}$$
; (b)
$$\begin{cases} x_1 + x_2 + x_3 = 2 \\ 2x_1 + x_2 + x_3 = 3 \\ 3x_1 + x_2 + x_3 = 4 \end{cases}$$
.