

Machine Learning with Information Geometry

Mahito Sugiyama

Summary

- We study machine learning with its applications
 - We focus on the relationship between computational processes, discrete structures, and machine learning models
- Ongoing topics
 - Machine Learning with Information Geometry
 - Machine Learning with Discrete Structure
 - Significant Pattern Mining
 - Machine Learning Applications

Tensor (Matrix) Balancing

```
\begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \\ p_{41} & p_{42} & p_{43} & p_{44} \end{bmatrix}
```

Tensor (Matrix) Balancing

Constraints on η

$$\begin{bmatrix}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34} \\
p_{41} & p_{42} & p_{43} & p_{44}
\end{bmatrix}$$

$$\theta_{ij} = \log p_{ij} - \log p_{i-1j} - \log p_{ij-1} + \log p_{i-1j-1}$$

$$\begin{bmatrix}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34} \\
p_{41} & p_{42} & p_{43} & p_{44}
\end{bmatrix}$$

$$\theta_{ij} = \log p_{ij} - \log p_{i-1j} - \log p_{ij-1} + \log p_{i-1j-1}$$

$$\begin{bmatrix}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34} \\
p_{41} & p_{42} & p_{43} & p_{44}
\end{bmatrix}$$

$$\theta_{ij} = \log p_{ij} - \log p_{i-1j} - \log p_{ij-1} + \log p_{i-1j-1}$$

$$\begin{bmatrix}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34} \\
p_{41} & p_{42} & p_{43} & p_{44}
\end{bmatrix}$$

$$\theta_{ij} = \log p_{ij} - \log p_{i-1j} - \log p_{ij-1} + \log p_{i-1j-1}$$

$$\begin{bmatrix}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34} \\
p_{41} & p_{42} & p_{43} & p_{44}
\end{bmatrix}$$

$$\theta_{ij} = \log p_{ij} - \log p_{i-1j} - \log p_{ij-1}$$

$$+ \log p_{i-1j-1}$$

Balancing as Constraints on η and θ

$$\begin{bmatrix}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34} \\
p_{41} & p_{42} & p_{43} & p_{44}
\end{bmatrix}$$

Matrix balancing is achieved iff: $\eta_{11} = 4$, $\eta_{21} = 3$, ..., $\eta_{41} = 1$ without changing any θ_{ij}

Information Geometric View

Empirical Performance

From Matrix to Poset (DAG)

Partially Ordered Set

- Partially ordered set (poset) (S, ≤)
 - (i) $x \le x$ (reflexivity)
 - (ii) $x \le y, y \le x \Rightarrow x = y$ (antisymmetry)
 - (iii) $x \le y, y \le z \Rightarrow x \le z$ (transitivity)
 - We assume that S is finite and includes the least element (bottom) $\bot \in S$
- Equivalent to a DAG
 - Each $x \in S$ is a node
 - $-x \le y \iff y \text{ is reachable from } x$

Log-Linear Model on Poset

Each $x \in S$ has a triple: $(p(x), \theta(x), \eta(x))$

- A probability vector $p:S \to (0,1)$ s.t. $\sum_{x \in S} p(x) = 1$
 - (Normalized) weight for each node
- We introduce $\theta:S \to \mathbb{R}$ and $\eta:S \to \mathbb{R}$ as $\log p(x) = \sum_{s \le x} \theta(s)$, $\eta(x) = \sum_{s \le x} p(s)$

Log-Linear Model on Poset

Each $x \in S$ has a triple: $(p(x), \theta(x), \eta(x))$

- A probability vector $p:S \to (0,1)$ s.t. $\sum_{x \in S} p(x) = 1$
 - (Normalized) weight for each node
- We introduce $\theta:S \to \mathbb{R}$ and $\eta:S \to \mathbb{R}$ as

$$\log p(x) = \sum_{s \le x} \theta(s), \ \theta(x) = \sum_{s \in S} \mu(s, x) \log p(s)$$
$$\eta(x) = \sum_{s \in S} p(s), \ p(x) = \sum_{s \in S} \mu(x, s) \eta(s)$$

Möbius Function

• Zeta function $\zeta: S \times S \to \{0, 1\}$ $\zeta(s, x) = \begin{cases} 1 & \text{if } s \leq x, \\ 0 & \text{otherwise.} \end{cases}$

• Möbius function $\mu: S \times S \to \mathbb{Z}$

$$\mu(x,y) = \begin{cases} 1 & \text{if } x = y, \\ -\sum_{x \le s < y} \mu(x,s) & \text{if } x < y, \\ 0 & \text{otherwise.} \end{cases}$$

- We have $\zeta \mu = I$, that is; $\sum_{s \in S} \zeta(s, y) \mu(x, s) = \sum_{x \le s \le y} \mu(x, s) = \delta_{xy}$

Möbius Function Is Generalization of Inclusion-Exclusion Principle

- For sets A, B, C, $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |B \cap C| - |A \cap C| + |A \cap B \cap C|$
- In general, for A_1, A_2, \ldots, A_n ,

$$\left|\bigcup_{i} A_{i}\right| = \sum_{J \subseteq \{1, \dots, n\}, J \neq \emptyset} (-1)^{|J|-1} \left|\bigcap_{j \in J} A_{j}\right|$$

• The Möbius function μ is the generalization of " $(-1)^{|J|-1}$ "

Riemannian Manifold with Info. Geometry

Example of Learning Prob. Dist. (1/2)

Example of Learning Prob. Dist. (2/2)

Summary of Our Approach

Conclusion

- We have established information geometric formulation for partial order structures
 - Learning process can be achieved as a projection in the parameter space (dually flat manifold)
- We have studied several applications
 - Sugiyama, M., Nakahara, H., Tsuda, K.,
 Tensor Balancing on Statistical Manifold, ICML2017
 - Sugiyama, M., Nakahara, H., Tsuda, K.,
 Legendre Decomposition for Tensors, NeurlPS2018
 - Truncated Boltzmann machines (submitted)