ARRIVED PEL ORSO

- CINEMATICA (PESCHIZIONE DEL HOVINEDTO) 3
 - HOTO DI UN PUNTO (MATERIALE)
 - · MOTO PI UP CORPO RICUSO (CR)
 - HOTO DI SISTEMI DI CORPI PIGIDI
- DIPAHICA (TROVERE LE CACSE DEL KONNEDTO: FORCE COPPIE)
 - DIVANICA HI UN PUDO HATERIALE
 - SISTEMA DELLE FORZE D'INERZIA (NEWOOD)
 - PRINCIPIO DI D'ALEMBERT
 - PRINCIPIO DE l CAUORI VIRTUALI (P.L.V.)
 - BILANCIO DI POTENZE/EQUAZIONE DECL'ENERGIA CINETICA
 - EQUAZIONE DI LAGRADGE
 - DINAMICA DEL CORPORIGIDO/SISTEM DI CERPI PILIDI
 - VIBRAZIONI MECCANICHE (PUGIDEZZA)
 - · SISTEM 1 GRADO DI LIBERTA! (GOL)
 - MOTO LIBERD
 - MOTO FORZATO
 - SISTEMI A 2-N GOL
 - MOTO LIBERD
 - MOCO FORZATO
 - ARGONEPO PACOLTATIVO

 BULLIANDA POR PURCO PURCO PURCO POR PURCO

CINEMATICA DEL PUNTO (RIPASSO)

- · VETTORE POSIZIONE
- · VELOCITA!
- · ACCELERAZIONE
- VETTO RE POSIZIONE
- 1) P(t) = (P-0)
- 2) p (b) = r(t) i + y(t) j

Equazione Padametrica Deccatracetroria

Im

$$fr = \kappa(t)$$
 $fy = y(t)$

- 3) USO BEL PIALO DI GAUSS (PLUTO COME DUMBESSO)
 P(t) = x + i q
- 4) NOTAZIONE FOLARE (NUMERO COMPLESSO)
 P(t) = Pe

FORMULA DI EULERO

io

$$C = Cos O + i sin O$$

wother in the state $C = -1$

ESPONDIZIACE CARTESIANA

 $C = Cos O + i sin O$
 $C = -1$
 $C = -1$

· ASCISSA CURVILIMEA

$$(A-0) = \mathbf{e} \stackrel{id}{e}$$

$$(B-0) = \mathbf{b} \stackrel{id}{e}$$

$$\vec{v} = \frac{d\vec{P}}{dt} = \frac{d\vec{P}}{dc} \frac{ds}{dt}$$

$$\vec{b} = \frac{d\vec{P}}{dt} = \vec{v}_n \vec{i} + \vec{v}_y \vec{j} =$$

$$= \vec{v}_l(t) \vec{i} + \vec{y}_l(t) \vec{j}$$

