Neuromorphic Engineering I

Time and day: Lecture Mondays, 14:15-16:00

Lab exercise location: In Institute of Neuroinformatics Y55 (TAs will advice)

Credits: 6 ECTS credit points Exam: Oral 20-30 minutes at INI

Labs: Reports (max 2 persons). You must successfully complete at least 9 lab exercises. These

exercises should include the first 3 labs (mandatory) and at least one of the last 2 labs. If you do all lab

exercises, we will drop your 3 lowest lab grades.

Grade: 70% exam + 30% lab exercises

Lectures from: Tobi Delbruck, Giacomo Indiveri, Melika Payvand, Shih-Chii Liu, **Teaching assistants:** Lavinia Moretti, Oscar Hrynkevch, Lola Ardura, Zhe Su

Tobi Delbruck

Giacomo Indiveri

Melika Payvand

Shih-Chii Liu

Lola Oscar Lavinia

tobi, giacomo, shih@ini.uzh.ch

To do today

- Introduce book
- Arrange lab times (by doodle) and introduce new classchip and exercises (Slot 1: Tues 8:00 – 11:00, Slot 2: Thursdays 13:30 – 16:30, 30 spots/slot)
- Demo lab setup and class-chip use will be explained by TAs
- Introduce device physics

Book(s)

Introductory textbook (2002) Amazon

System examples (2015) Amazon

Neuromorphic Electronics?

What is it all about?
See Shih-Chii Liu talk from 2020 Telluride
Neuromorphic Workshop:

Neuromorphic electronics, A historical perspective

The context

Bardeen and Brattain

1947

Technology Growth

8-inch (200 mm)

Artificial real-world computation (or: How industry thinks of analog)

0/26/2022 NE1: intro to NE and device physics 12

Synchronous logic is ubiquitously used to implement Finite State Machines (FSMs)

Logic bus (many wires representing a digital symbol or state)

The motivation from biological computation

Natural computation

even with 10kW computer power we cannot do this

Flies acrobatically
Recognizes patterns
Navigates
Forages
Communicates

10uW bee brain 10⁶ neurons, 10⁹ synapses 10 op/s/synapse

10⁻¹⁵ J/op (op=synaptic activation)

Digital silicon 10⁻⁷ to 10⁻¹³ J/op (MAC)

Biology is 10⁸ to 10³ times as efficient as digital silicon

Sparsity

Estimate energy use and spike rate in the human brain

$$10^{11} \times 10^{4} \times 10^{-1} \times 10^{-9} \times 10^{-3} \times X = 10^{1}$$

Neurons* Syn/neuron V A sec Avg. spike rate W J/syn. Act.= 10^{-13} J=0.1pJ

Avg. **output** spike rate = 1 Hz

10⁴ fan-out means avg. synaptic **input** rate per neuron = 10 kHz

It is very different than conventional DNNs, where <u>every</u> neuron sends its messages to <u>all</u> recipients at the frame rate, e.g. 100Hz

Computer vs. Brain

AMD Ryzen 192mm² 5B FETs 180W

Anderson Wal. 2003

dendrite

At the system level, brains are about	1 million times more power	r efficient than computers. Why?
---------------------------------------	----------------------------	----------------------------------

Cost of elementary operation (turning on transistor or activating synapse) is about the same. It's not some magic about physics.

Computer	Brain
Fast global clock	Self-timed, sparse computation (avg spike rate in brain ~1Hz)
Bit-perfect deterministic logical state	Synapses are stochastic! 20% probability. Computation dances: digital→analog→digital
Memory distant in time and space to computation	Memory in synapses, at computation
Devices frozen on fabrication	Constant adaptation and self-modification

The fact that we can build devices that implement the same basic operations as those the nervous system uses leads to the inevitable conclusion that we should be able to build entire systems based on the <u>organizing principles</u> used by the nervous system.

<u>Carver Mead</u>, Physicist by inclination

1966 Inventor of GaAs MESFET transistor

1970's: Coiner of term "Moore's Law"

1980 Co-author of main logic design textbook for 20 years

2013: ISSCC keynote talk (see more cool talks here)

"The high priest of silicon"

Proc. IEEE, 1990

T Delbruck, CNS182 class, Caltech, ca 1989

Lab exercises organization

- The labs are done in groups of 2, sign up on the google sheet.
- The first three labs last 2 hours, the rest are 4 hours (the whole morning/afternoon in which you sign up), the material for the corresponding week will be published at the end of the lecture.
- Please use the OLAT Forum to look for your lab partner or in class.
- You should hand in the prelab, lab report and post-lab as a group on OLAT dropbox before the next lab starts.
- For questions regarding the labs, please contact TAs.

Links for the lab exercises

lab1-scheduling: Sign up at this lab exercise doodle.

Jupyter notebooks https://code.ini.uzh.ch/CoACH/CoACH-labs

- <u>Lab 1</u>: Automated Data Acquisition and Analysis (Running the classchip)
- Lab 2-3: Subthreshold Behavior of Transistors, Transistor superthreshold saturation current and drain characteristics
- Lab 4-5: Static Circuits: Current Mirror, Differential Pair, Current Correlator, Bump

Circuit, and Transconductance Amplifier

- Lab 6: Winner-Take-All circuit
- Lab 7: Integrator Circuits
- Lab 8: Photoreceptors I: Phototransduction
- Lab 9: Photoreceptors II: Photoreceptor Circuits
- Lab 10: Silicon Synaptic Circuits
- Lab 11: Silicon Neuron Circuits
- Lab 12: TBA

First look at semiconductors and transistors

MOS transistors – semiconductor device physics

We need to understand enough about semiconductors and junctions to understand how MOS transistors work

- Insulators, conductors, semiconductors
- Crystal structure of silicon
- Band structure (valence, conduction, and forbidden bands)
- Holes and electrons
- Mechanisms of charge transport (diffusion & drift)
- Doping with donors and acceptors
- Fermi-Dirac distribution
- Law of mass action (np=n_i²)
- p-n junction
- Reverse biased junction and its capacitance

Donors and acceptors in the periodic table

I	II	III	IV	V	VI	VII	Zero
Н			-				He
Li	Be	(B)	C	N	0	F	Ne
Na	Mg	Al	Şi	(P)	S	Cl	Ar
K	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Cd	In	Sn	Sb	Te	I	Xe
1							
Acceptors Donors							
1 missingelectron 1 extra electron							
NE1: intro to NE and device physics							

Conductors, Semiconductors and Insulators

NE1: intro to NE and device physics

Donors and acceptors in the periodic table

I	II	III	IV	V	VI	VII	Zero
Н			-				He
Li	Be	(B)	C	N	0	F	Ne
Na	Mg	Al	Şi	(P)	S	Cl	Ar
K	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Cd	In	Sn	Sb	Te	I	Xe
1							
Acceptors Donors							
1 missing electron 1 extra electron NE1: intro to NE and device physics							

MOS transistors use insulated gates to control barrier energies at PN surface junctions at source and drain

Electrons and Holes

Holes are bubbles in the valence band

- The electrons move, but it is easier to talk about the vacancy (the hole) moving, just like it is easier to talk about a bubble moving than about the water around it moving
- Holes have positive charge and the effective mass in silicon is 2.5 times larger for a hole than for an electron

When electrons are broken loose from the lattice and enter the *conduction* band, they become mobile, and move almost as if in vacuum LECTRON Potential energy of electron Kinetic energy of electron ENERGY Kinetic energy of hole Potential energy of hole

The meaning of energy in the band diagram

The band gap of silicon is about 1.2eV at room temperature

Q/26/2022 NE1: intro to NE and device physics 47

The thermal energy

- Each *degree of freedom* of a system in thermal equilibrium has average energy kT/2, where $k=1.38 \times 10^{-23}$ J/K is **Boltzmann's constant** and T is absolute temperature. I.e. at 300C, $kT=4.1 \times 10^{-21}$ J
- The <u>thermal voltage</u> kT/q is the voltage a single charge falls through to pick up the thermal energy kT
- q is the elementary charge 1.6 x 10⁻¹⁹ C
- $U_T \equiv kT/q = 25 \text{mV} = 1/40 \text{V}$ at room temperature
- kT/q is the natural scale of voltage for electronic systems in thermal equilibrium

Intrinisic carrier density in silicon

- Concentration (density) of Si is about 10²³/cm³.
- n_i is the *intrinsic carrier density*
- At room temperature n_i is 10^{10} /cm³, or about $1/10^{13}$ Si atoms.
- n_i increases with temperature

An intrinsic (undoped) semiconductor

Fermi-Dirac distribution

States above Fermi level are occupied with Boltzmann distribution

An intrinsic (undoped) semiconductor

Donors and acceptors in the periodic table

Doping levels

- Concentration (density) of Si is about 10²³/cm³
- Doping can vary from about 10¹⁵/cm³ to 10¹⁹/cm³
- These doping levels still represent only a tiny fraction of the total atoms, from 10⁻⁸ to 10⁻⁴

An *n-type* semiconductor

A *p-type* semiconductor

Law of mass action: $np=n_i^2$

- n_i is the *intrinsic carrier density*
- In equilibrium, more holes means less electrons, and vice-versa.

Electron transport

- 1. Drift and Diffusion
- 2. Mobility
- 3. The Einstein relation

An electric field causes carriers to drift

NE1: intro to NE and device physics

(c)

Mobility is a function of electric field

Fig. 4.10 Effect of electric field on the magnitude of the drift velocity of carriers in silicon.3

A density gradient causes carriers to diffuse

Diffusion current

Spatial gradient of charge density

Drift and diffusion are related by the *Einstein Relation*

$$J_{diff} = -Dq\nabla n \qquad \qquad J_{drift} = qn\mu\xi$$

$$D = \frac{kT}{q}\mu$$

Charges, fields, and potentials in a PN junction

What happens at a junction between P and N?

Lots of mobile electrons

Electron density gradient: Electrons diffuse rightwards Lots of mobile holes

Hole density gradient: Holes diffuse leftwards

The charge separation builds up an electric field to pull the carries "back home"

In a PN junction with no applied voltage, <u>drift and</u> <u>diffusion are balanced everywhere</u>

Charges, fields, and potentials in a PN junction

Typically, the *built-in voltage*, ϕ_T , is about 0.75V

Electrostatic potentials in a PN junction

Band structure of a PN junction

Carrier densities in a PN junction

Carrier densities in a PN junction

I-V characteristics of a PN junction "rectifier"

A reverse-biased PN junction

A reverse-biased PN junction

Reverse current comes from generated electron hole pairs in 3 regions

Question

What happens when light shines on the junction? Which way does current flow?

Answer: light tries to <u>forward bias</u> the junction.

What is capacitance of reverse-biased PN junction?

$$C=\epsilon_{Si}/L$$

As V increases, L increases.

So, as V increases, C decreases

0/26/2022

NE1: intro to NE and device physics.

78

What was covered

- Insulators, conductors, semiconductors
- Crystal structure of silicon
- Band structure (valence, conduction, and forbidden bands)
- Holes and electrons
- Mechanisms of charge transport (diffusion & drift)
- Doping with donors and acceptors
- Fermi-Dirac distribution
- Law of mass action (np=n_i²)
- p-n junction
- Reverse biased junction and its capacitance in reverse bias

Next week:

Understanding how MOS transistors work in the subthreshold/weak inversion regime

