Fundamental Analysis and Mean-Variance Optimal Portfolios

Lyle M R , Yohn T L .

Kelley School of Business Research Paper Forthcoming.

解读者: 屠雪永

2020.10.10

Outline

- Introduction
- Research design
 - "Fully" Optimized Portfolios (FOP)
 - Fundamental Analysis and Stock Returns
- Empirical result
 - Data and Estimation
 - Optimal Fundamental Portfolios Performance
 - Related comparisons and robust tests
- Conclusion

1.Introduction

1.1. Motivation

 We integrate fundamental analysis with mean-variance portfolio optimization to form fully optimized fundamental portfolios (FOP).

1.Introduction

1.2. Framework

Prior Literature an Extensions

Fundamental Analysis and Extreme

Decile/Break Point Portfolios

- Mean-Variance
- Factor-Based Approach
- Parametric Portfolio Policies
- **Large Dimension Covariance Estimation**

a. "Fully" Optimized Portfolios

- Nested Portfolios for b. Covariance-Only Portfolios
- Performance Attribution c. Expected Returns-Only Portfolios

 $w = \frac{\Sigma^{-1}\mu}{e^T \Sigma^{-1}\mu}.$

Naive Equal-Weighted Portfolios

Fundamental Analysis and Stock Returns

Optimal Portfolios

Data and Estimation

Empirical Results

Conclusion

1.Introduction

1.3. Contribution

- This study extends the academic research on fundamental analysis and portfolio optimization:
 - Firstly, using a large sample, incorporate fundamentalsbased expected stock returns and a covariance matrix.
 - Secondly, gains from the fully optimized fundamental portfolios over portfolios in the prior optimization literature.
 - Thirdly, our approach to portfolio optimization provides practical benefits with respect to implementation.

2.1. Fundamental Analysis and Extreme Decile/Break Point Portfolios

The portfolio weight for stock i with a fundamental signal S_i would be:

$$w_{i} = \begin{cases} \frac{1}{N^{HD}}, & S_{i} \in D^{HD} \\ 0, & S_{i} \notin \{D^{HD}, D^{LD}\} \\ -\frac{1}{N^{LD}}, & S_{i} \in D^{LD} \end{cases}$$

where $D^{HD}(D^{LD})$ represents the upper (lower) decile of the signal and $N^{HD}(N^{LD})$ represents the number of stocks in the respective decile.

2.2. Optimal Portfolios

The cross-section of stock returns in matrix form, r, as follows:

$$r = \mu + \sqrt{\Sigma}\epsilon,\tag{1}$$

$$\mu = (\mu_{1,t}, \mu_{2,t}, \dots \mu_{N,t})^T, \tag{2}$$

$$\Sigma = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1N} \\ \sigma_{12} & \sigma_{22} & \dots & \sigma_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1N} & \sigma_{2N} & \dots & \sigma_{NN} \end{bmatrix}, \tag{3}$$

$$\epsilon = (\epsilon_{1,t+1}, \epsilon_{2,t+1}, \dots, \epsilon_{N,t+1})^T. \tag{4}$$

The portfolio's return: $r_{p,t+1} = w^T r$ where $w = (w_1, w_2, \dots, w_N)^T$

The portfolio's expected return: $E_t[r_{p,t+1}] = w^T \mu$

The portfolio's variance: $E_t[r_{p,t+1}^2] - E_t[r_{p,t+1}]^2 = w^T \Sigma w$.

2.2.1. Mean-Variance

A Markowitz (1952) mean-variance optimal stock portfolio:

$$\max_{w} w^{T} \mu, \tag{5}$$

s.t.
$$w^T \Sigma w = \Sigma_p,$$
 (6)

$$w^T e = 1, (7)$$

Maximizing the expected portfolio return per unit of portfolio volatility (i.e., maximum Sharpe ratio) results in the following optimal portfolio policy: $\Sigma^{-1}\mu$

$$w = \frac{\Sigma^{-1}\mu}{e^T \Sigma^{-1}\mu}.$$
 (8)

The difficulties: unreliable expected return estimates and error in the estimation of the covariance matrix.

2.2.2. Factor-Based Approach(FB)

This approach **reduces the dimension** of the covariance matrix by assuming that returns have a linear "factor structure":

$$\mu_{FB} = \alpha + F^T \beta, \tag{9}$$

$$\Sigma_{FB} = \beta^T \Sigma_F \beta + \Lambda, \tag{10}$$

where α is a constant,

F is a $K \times 1$ vector of expected returns on the factor portfolios, and β is a $K \times N$ matrix of factor sensitivities, Σ_F is the covariance matrix of factor portfolios

and Λ is a diagonal matrix of idiosyncratic variances.

$$w_{FB} = \frac{\Sigma_{FB}^{-1} \mu_{FB}}{e^T \Sigma_{FB}^{-1} \mu_{FB}}.$$
 (11)

$$N(N + 1)/2 \longrightarrow N + K(K + 1)/2$$

2.2.3. Parametric Portfolio Policies (PPP)

The characteristics-based parametric portfolio policy approach

$$\omega_{ppp} = \overline{\omega} + X^T \theta \tag{12}$$

 $\overline{\omega}$ is a $N \times 1$ vector of weights for some benchmark portfolio,

 θ is a $M \times 1$ vector of coefficients that need to be estimated,

X is a $M \times N$ vector of standardized firm characteristics divided by the number of firms (N) in the cross-section.

$$\max_{\theta} \frac{1}{t} \sum_{j=0}^{t-1} \frac{(1 + w_{PPP}^T r_j)^{1-\gamma}}{1 - \gamma}, \tag{13}$$

s.t.
$$w_{PPP} = \bar{w} + \theta^T X$$
, (14)

$$e^T w_{PPP} = 1, (15)$$

$$e^T \theta^T X = 0, \tag{16}$$

2020/10/10

2.3. Large Dimension Covariance Estimation

Ledoit and Wolf (2017) develop a nonlinear shrinkage estimator for covariance matrix estimation which can be readily applied to mean-variance portfolio optimization.

2.4. Nested Portfolios for Performance Attribution

Any **performance gains** from the optimized fundamental portfolios over naive equal-weighted portfolios are attributable to the use of the fundamentals-based **expected returns model**, **the covariance matrix**, **or both**.

2.4.1. "Fully" Optimized Portfolios (FOP)

$$w_{FOP} = \frac{\Sigma^{-1}\mu}{e^T \Sigma^{-1}\mu}. (17)$$

2.4.2. Covariance-Only Portfolios (COV)

$$w_{COV} = \frac{\Sigma^{-1}e}{e^T \Sigma^{-1}e}. (18)$$

2.4.3. Expected Returns-Only Portfolios (ER)

$$w_{ER} = \frac{\mu}{e^T \mu}. (19)$$

2.4.4. Naive Equal-Weighted Portfolios (EW)

$$w_{EW} = \frac{1}{N}e. (20)$$

$$\mu = c \times e$$
 and $\Sigma = C \times I$

2.5. Fundamental Analysis and Stock Returns

Assume that the difference between the market value and intrinsic value for stock i, $M_{i,t} - V_{i,t}$, follows an AR(1) process, with an unconditional mean of zero:

$$M_{i,t+1} - V_{i,t+1} = \omega_i (M_{i,t} - V_{i,t}) + \epsilon_{i,t+1}. \tag{21}$$

 $\omega_i \in (0,1)$ represents a persistence parameter, and $\epsilon_{i,t+1}$ is a mean-zero noise term with bounded variance.

$$V_{i,t} = \sum_{j=1}^{\infty} \mathbb{E}_{t}^{F} [R_{i}^{-j} D_{i,t+j}]$$

$$\mathbb{E}_{t}^{F} [V_{i,t+1} + D_{i,t+1}] = R_{i} V_{i,t} \text{, where } R_{i} > 1$$

$$\frac{M_{i,t+1} + D_{i,t+1}}{M_{i,t}} = \underbrace{\frac{V_{i,t}}{M_{i,t}} R_{i} + \omega_{i} (1 - \frac{V_{i,t}}{M_{i,t}})}_{\text{Expected Return}} + \underbrace{\frac{(V_{i,t+1} + D_{i,t+1}) - R_{i} V_{i,t}}{M_{i,t}}}_{\text{Fundamentals Shock}} + \underbrace{\frac{\epsilon_{i,t+1}}{M_{i,t}}}_{\text{Convergence Shock}}.$$

2.5. Fundamental Analysis and Stock Returns

$$R_{i,t+1} \equiv \frac{M_{i,t+1} + D_{i,t+1}}{M_{i,t}} = \omega_i + \frac{V_{i,t}}{M_{i,t}} (R_i - \omega_i) + \Omega_{i,t} \xi_{i,t+1}, \tag{23}$$

$$V_{i,t} \xrightarrow{X_i} B_{i,t} \xrightarrow{X_i,t} \Delta NOA_{i,t}$$

$$\Delta FIN_{i,t}$$

$$R_{i,t+1} = A_{i,0} + A_{i,1} \frac{1}{M_{i,t}} + A_{i,2} \frac{B_{i,t}}{M_{i,t}} + A_{i,3} \frac{x_{i,t}}{M_{i,t}} + A_{i,4} \frac{\Delta NOA_{i,t}}{M_{i,t}} + A_{i,5} \frac{\Delta FIN_{i,t}}{M_{i,t}} + \Omega_{i,t} \xi_{i,t+1}.$$

Market value $M_{i,t}$, book value $B_{i,t}$, current earnings, $x_{i,t}$, growth in net operating assets, $\Delta NOA_{i,t}$, and growth in financing, $\Delta FIN_{i,t}$

2020/10/10 14

3.1.1. Data

Data sources: CRSP, Compustat and Ken French's data library

Sample time period: 1976-2017.

Windows width: rolling five-year periods of historical monthly data.

Data processing:

remove stocks below one dollar, a negative book value, and less than five years of historical stock return data,

remove financial and regulated firms,

all expected return estimates winsorized at the 1% and 99% levels.

3.1.2. Model Estimation for Mean-Variance Optimization

Estimating the coefficients {A0, A1, A2, A3, A4, A5}:

we collect five years of historical data to by regressing one monthahead stock returns on the fundamental variables.

we update predictor variables $\frac{1}{M_t}$, $\frac{B_t}{M_t}$, $\frac{x_t}{M_t}$, $\frac{\Delta NOA_{i,t}}{M_{i,t}}$ and $\frac{\Delta FIN_{i,t}}{M_{i,t}}$ quarterly.

3.1.2. Model Estimation for Mean-Variance Optimization

Table 1: Ro	egression Tes	sts				$V_{i,t}$	$B_{i,t}$			
		(a) Panel	A: Quarterly	Earnings Reg	ressions	<i>v i,t</i>	$x_{i,t+j}^a$			
	dependent variable: $\frac{X_{t+1}}{M_t}$ (1) (2) (3) (4) (5) (6) (7) $\frac{X_t}{M_t}$ 0.380*** 0.368*** 0.406*** 0.387*** 0.364*** 0.341*** 0.330*** $\frac{M_t}{M_t}$ (6.227) (6.045) (7.081) (6.714) (6.586) (6.614) (6.522) $\frac{\Delta FIN_t}{M_t}$ 0.057*** 0.052*** 0.049*** 0.043*** 0.042*** $\frac{M_t}{M_t}$ (9.576) (9.561) (9.239) (11.835) (11.513) $\frac{\Delta NOA_t}{M_t}$ -0.030*** -0.020*** -0.020*** -0.024***									
	(1)	(2)	(3)	(4)	(5)	(6)	(7)			
X_t	0.380***	0.368***	0.406***	0.387***	0.364***	0.341***	0.330***			
$\overline{M_t}$	(6.227)	(6.045)	(7.081)	(6.714)	(6.586)	(6.614)	(6.522)			
ΔFIN_t		0.057***		0.052***	0.049***	0.043***	0.042***			
$\overline{M_t}$		(9.576)		(9.561)	(9.239)	(11.835)	(11.513)			
ΔNOA_t			-0.030***	-0.020***	-0.020***	-0.024***	-0.024***			
$\overline{M_t}$			(-5.672)	(-3.895)	(-4.358)	(-4.241)	(-4.498)			
1					-0.127***		-0.082***			
$\frac{1}{M_t}$					(-7.128)		(-4.616)			
$\frac{B_t}{M_t}$						-0.031***	-0.029***			
$\overline{M_t}$						(-5.542)	(-4.888)			
# Obs.	531,565	531,565	531,565	531,565	531,565	531,565	531,565			
\mathbb{R}^2	0.186	0.194	0.189	0.195	0.21	0.244	0.25			

Earnings, book value, and growth are informative about future earnings

3.1.2. Model Estimation for Mean-Variance Optimization

		(b) Pane	el B: Monthly	Return Regre	essions								
	dependent variable: $100 \times R_{t+1}$												
	(1)	(2)	(3)	(4)	(5)	(6)	(7)						
							0.594***						
μ_t							(12.828)						
1	0.412*					0.462*							
$\overline{M_t}$	(1.676)					(1.787)							
B_t		0.783***				0.548**							
$\frac{B_t}{M_t}$		(3.314)				(2.091)							
$\frac{X_t}{M_t}$			1.662***			1.815***							
$\overline{M_t}$			(6.981)			(8.647)							
ΔFIN_t				0.894***		0.390***							
$\overline{M_t}$				(9.796)		(4.233)							
ΔNOA_t					-0.786***	-0.900***							
$\overline{M_t}$					(-7.699)	(-8.987)							
# Obs.	861,474	861,474	861,474	861,474	861,474	861,474	861,474						
$100 \times R^2$	0.007	0.027	0.123	0.035	0.027	0.208	0.244						

➤ The fundamentals-based model is a strong predictor of future stock returns.

3.2.1. Optimal Fundamental Portfolios Performance

Table 2: Unconstrained Portfolio Performance

(a) Panel A: Portfolio Summary Statistics

SR =	$\bar{R}_{P,t+1} - \bar{R}_F$	
$\mathcal{D}\mathcal{H}$ —	$\sqrt{\sigma_{P,t+1}^2}$,

	_			Long-Short			Long-Only			
Portfolio:		EW	COV	ER	FOP		COV	ER	FOP	
		(1)	(2)	(3)	(4)		(5)	(6)	(7)	
	Mean	1.275	1.148	1.763	3.850		1.011	1.745	1.920	
	Std.	5.310	2.984	5.605	6.732		3.376	5.638	4.307	
	SR	0.176	0.271	0.253	0.524		0.198	0.249	0.367	

(b) Panel B: Sharpe Ratio Differences

Portfolios:	COV-EW	COV-EW ER-EW		FOP-COV	FOP-ER	FOP-EW
	(1)	(2)	(3)	(4)	(5)	(6)
Long-Short	0.095***	0.077***	-0.018	0.253***	0.271***	0.348***
Long-Only	0.022	0.073***	0.051*	0.169***	0.118***	0.191***

Under unconstrained situation, the FOP portfolios generate the highest future stock returns.

3.2.1. Optimal Fundamental Portfolios Performance

Table 3: Constrained Portfolio Performance

-2.5%~2.5%

0~2.5%

(a) Panel A: Portfolio Summary Statistics

				Long-Short			Long-Only			
Portfolio:		EW	COV	/ ER	FOP		COV	ER	FOP	
		(1)	(2)	(3)	(4)		(5)	(6)	(7)	
	Mean	1.275	1.14	8 1.773	3.681		1.017	1.746	1.876	
	Std.	5.310	2.98	5.615	4.951		3.373	5.639	4.114	
	SR	0.176	0.27	0.255	0.684		0.200	0.249	0.373	

(b) Panel B: Sharpe Ratio Differences

Portfolios:	COV-EW	ER-EW	ER-COV	FOP-COV	FOP-ER	FOP-EW
	(1)	(2)	(3)	(4)	(5)	(6)
Long-Short	0.095***	0.079***	-0.016	0.413***	0.429***	0.508***
Long-Only	0.024	0.073***	0.049*	0.173***	0.124***	0.197***

Under constrained situation, the FOP portfolios generate the highest future stock returns.

3.2.2. Alternative Approaches to Portfolio Construction

Table 4: Alternative Portfolio Optimization

(a) Pane	l A: Portfo	olio Summ	ary Statistics
----	--------	-------------	-----------	----------------

		Long-	Short		Long-Only					
	Unconstrained		Constrained		Unconstrained		Constrained			
Portfolio:	FB	PPP	FB	PPP	FB	PPP	FB	PPP		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
Mean	1.198	2.416	1.190	1.259	1.195	1.254	1.195	1.254		
Std.	4.372	5.408	4.361	5.192	4.363	5.193	4.363	5.193		
SR	0.198	0.384	0.195	0.177	0.197	0.178	0.196	0.177		

(b) Panel B: Sharpe Ratio Differences

	. ,				
Portfolios:		FB-EW	PPP-EW	FB-FOP	PPP-FOP
		(1)	(2)	(3)	(4)
Long-Short	Unconstrained	0.022***	0.208***	-0.328***	-0.140*
	Constrained	0.019**	0.001**	-0.172***	-0.190***
Long-Only	Unconstrained	0.021***	0.002	-0.488***	-0.508***
	Constrained	0.020***	0.001	-0.177***	-0.197***

The FOP portfolios dominate the portfolio performance of FB and PPP approaches.

3.2.2. Alternative Approaches to Portfolio Construction

Table 5: Extreme Decile Portfolios

(a) Pane	l A: Po1	tfolio	Summary	Statistics
----	--------	----------	--------	---------	------------

Long-Short							Long-Only				
Portfolio:	EWED	VWED	COV	ER	FOP	EWED	VWED	COV	ER	FOP	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	
Mean	2.360	1.473	2.170	2.599	2.521	2.619	2.078	2.352	2.716	2.593	
Std.	3.487	5.810	2.796	3.710	3.053	6.730	7.429	4.922	6.782	5.104	
SR	0.580	0.195	0.655	0.609	0.715	0.339	0.234	0.409	0.351	0.442	

(b) Panel B: Sharpe Ratio Differences

Portfolios:	EWED-	EWED-	EWED-	VWED-	VWED-	VWED-
	COV	ER	FOP	COV	ER	FOP
	(1)	(2)	(3)	(4)	(5)	(6)
Long-Short	-0.075*	-0.029***	-0.135***	-0.460***	-0.414***	-0.520***
Long-Only	-0.070***	-0.012***	-0.103***	-0.175***	-0.117***	-0.208***

The FOP portfolios generate the highest future stock returns, EWED and VWED portfolios significantly underperform relative to others.

3.2.3. Alphas and Information Ratios

Table 6: Alphas and Information Ratios

$$R_{FOP,t+1} = \alpha + \beta \times R_{Bench,t+1} + \epsilon_{t+1},$$

(a) Panel A: α 's and IR's relative to alternative fundamentals-based portfolios

\ /							
	Long-Sl	nort	Long-O	nly			
 Benchmark	α	IR	α	IR			
FB	2.934***	0.709	0.895***	0.756			
PPP	3.050***	0.722	1.022***	0.738			
EWED	0.996***	0.483	0.800***	0.815			
VWED	2.240***	0.786	1.494***	0.593			

The Information ratio as α divided by the standard deviation of the residual.

(b) Panel B: α 's and IR's relative to asset pricing factors

$$R_{FOP,t+1} = \alpha + \sum_{j=1}^{m} \beta_j \times f_{j,t+1} + \epsilon_{t+1},$$

	Long-S	Short	Long-Or	nly
Benchmark	α	IR	α	IR
CAPM	3.158***	0.715	1.179***	0.535
FF3	3.068***	0.715	1.071***	0.667
FF4	3.059***	0.712	1.138***	0.673
FF5	3.011***	0.701	0.988***	0.672

None of the benchmark portfolios replicate the returns of the FOP portfolios..

3.2.4. Portfolio Performance Over Time

Table 7: Portfolio Performance Over Time

			Long-Short			I	ong-Onl	У
Portfolio:		EW	COV	ER	FOP	COV	ER	FOP
		(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Mean	1.478	1.930	2.074	6.265	1.589	2.018	2.536
1981-1987	Std.	5.846	3.715	6.089	6.294	4.187	6.065	4.891
	SR	0.130	0.325	0.222	0.879	0.209	0.214	0.371
	Mean	1.388	1.231	2.120	4.886	0.977	2.005	2.083
1988-1997	Std.	3.957	2.134	4.171	3.664	2.620	4.132	2.980
	SR	0.238	0.363	0.400	1.217	0.200	0.376	0.542
	Mean	1.207	0.888	1.792	2.724	0.856	1.727	1.694
1998-2007	Std.	5.625	2.986	6.187	4.084	3.033	6.170	3.701
	SR	0.163	0.199	0.242	0.591	0.185	0.232	0.377
	Mean	1.089	0.779	1.198	1.624	0.816	1.315	1.390
2008-2017	Std.	5.834	3.080	5.968	4.728	3.723	6.127	4.822
	SR	0.182	0.245	0.197	0.338	0.213	0.211	0.283

> The gains from the FOP portfolios are not driven by a particular time period. And there has been a **decline** over time in the returns.

3.2.5. Portfolio Performance and Implementation Issues

Table 8: Performance by Size

				Long - Shor	t		Long Only	/
Portfolio:		EW	COV	ER	FOP	COV	ER	FOP
Size Group		(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Mean	1.192	1.082	1.415	2.901	1.118	1.423	1.586
Top 1,000	Std.	5.148	3.045	5.387	4.399	3.302	5.399	3.848
	SR	0.165	0.245	0.200	0.592	0.236	0.201	0.325
	Mean	1.137	1.100	1.285	2.189	1.140	1.290	1.458
Top 500	Std.	4.838	3.194	5.029	3.978	3.426	5.029	3.791
	SR	0.165	0.239	0.188	0.471	0.234	0.189	0.296
	Mean	1.085	1.073	1.184	1.576	1.088	1.187	1.269
Top 200	Std.	4.542	3.543	4.675	4.059	3.551	4.668	3.852
	SR	0.164	0.208	0.180	0.306	0.211	0.181	0.241
Top 100	Mean	1.068	1.031	1.156	1.248	1.078	1.156	1.189
	Std.	4.355	3.652	4.415	3.816	3.650	4.423	3.841
	SR	0.167	0.190	0.185	0.238	0.203	0.184	0.221

> Returns and SRs **decline** as the investment set is limited to larger stocks. But the FOP portfolios dominate within each size group.

3.2.5. Portfolio Performance and Implementation Issues

Table 9: Leverage, Exposure and Transaction Costs

]	Long-Short			Long-Only			
Protfolio		EW	COV	ER	FOP	COV	ER	FOP		
		(1)	(2)	(3)	(4)	(5)	(6)	(7)		
				Panel A:	Portfolio V	Veights				
Long-side:	$\omega_L = \sum\nolimits_{i=0}^{N_t} \omega_i \times I(\omega_i \ge 0)$	1.000	1.545	1.049	2.580	1.000	1.000	1.000		
Short-side:	$\omega_S = \sum\nolimits_{i=0}^{N_t} \omega_i \times I(\omega_i < 0)$	0.000	0.545	0.049	1.580	0.000	0.000	0.000		
Net exposure:	$\omega_L - \omega_S = \sum\nolimits_{i=0}^{N_t} \omega_i$	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
Gross exposure:	$\omega_L + \omega_S = \sum\nolimits_{i=0}^{N_t} \omega_i $	1.000	2.090	1.099	4.159	1.000	1.000	1.000		
	Pane	el B: Factor	Sensitiviti	es						
Sensitivity to Ma	arket	1.021	0.700	1.045	0.643	0.530	1.041	0.560		
Sensitivity to HN	ИL	0.105	0.182	0.128	0.107	0.161	0.099	0.113		
Sensitivity to SMB		0.734	0.520	0.775	0.372	0.367	0.752	0.248		
Sensitivity to RMW		-0.002	0.111	-0.050	0.151	0.081	-0.054	0.210		
Sensitivity to CN	ИΑ	0.067	0.116	0.027	0.216	0.071	0.045	0.215		

- ➤ The FOP portfolios have significantly higher gross exposure than the other portfolios .
- \triangleright Utilizing information in the covariance matrix (i.e., the COV and FOP portfolios) tend to have lower β 's than the EW or ER portfolios.

3.2.5. Portfolio Performance and Implementation Issues

Table 9: Leverage, Exposure and Transaction Costs

		Long-Short				Long-Only				
Protfolio	EW	COV	ER	FOP	COV	ER	FOP			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)			
	Panel C: Post-Transaction Cost Performance									
Mean	1.260	1.002	1.400	1.745	0.889	1.441	1.263			
Std.	5.319	3.003	5.593	4.768	3.396	5.635	4.129			
SR	0.173	0.221	0.190	0.295	0.162	0.196	0.224			

➤ The FOP portfolios outperform the other portfolios in terms of the SR, even after transactions costs.

4. Conclusion

- Firstly, The FOP portfolios produce large out-of-sample factor alphas with high Sharpe ratios, outperform equal-weighted and value-weighted portfolios of stocks in the extreme decile of expected returns.
- Secondly, They outperform the factor-based and parametric portfolio policy approaches.
- Finally, the gains from the FOP portfolios are robust when taking time, firm size and transactions costs into consideration.

5. Consideration

- 1. It will be more convincing that if the fundamental signals are replaced by Fama-French five factors, the models still have better performance.
- 2. We can use machine learning methods to predict future returns instead of fundamental analysis in this article.