SHA-3 양자 회로 개선

https://youtu.be/fBiqCzlV7aY

장경배

• SHA-3 양자 회로 연구들

Cipher	Paper			
SHA-3	M. Amy et al. "Estimating the cost of generic quantum pre-image attacks on SHA-2 and SHA-3", SAC 2016 .	2016		
	T. Häner and M. Soeken, "Lowering the T-depth of Quantum Circuits By Reducing the Multiplic ative Depth Of Logic Networks", <i>ACM Transactions on Quantum Computing</i> , 2022.	2022		
	G. Meuli, M. Soeken, and G. D. Micheli, "Xor-and-inverter graphs for quantum compilation", <i>np j Quantum Information</i> , 8(1), 1–11, 2022.	2022		
	G. Song, K. Jang, and H. Seo, "Improved Low-Depth SHA3 Quantum Circuit for Fault-Tolerant Q uantum Computers", Applied Sciences, 2023.	2023		

SHA-3

- 1,600-bit State S[x][y][z]를 입력 대상으로 24 라운드 함수 수행
 - 라운드 함수는 다음과 같이 구성 됨, θ (theta) $\rightarrow \rho$ (rho) $\rightarrow \pi$ (pi) $\rightarrow \chi$ (chi) $\rightarrow \iota$ (iota)
 - State S[x][y][z]는 3차원 배열로 표현될 수 있으며, 각 x, y, z 크기는 5, 5, 64 (1600 = $5 \times 5 \times 64$)

$$S[x][y][z] = S[x][y][z]) \oplus \left(igoplus_{i=0}^4 S[x-1][i][z] \oplus S[x+1][i][z-1]
ight)$$

 χ transformation

$$S[x][y][z] = S[x][y][z] \oplus (\sim S[x+1][y][z] \cdot S[x+2][y][z])$$

Cipher	Paper				
	M. Amy et al. "Estimating the cost of generic quantum pre-image attacks on SHA-2 and SHA-3", SAC 2016.				
SHA-3	T. Häner and M. Soeken, "Lowering the T-depth of Quantum Circuits By Reducing the Multiplic ative Depth Of Logic Networks", <i>ACM Transactions on Quantum Computing</i> , 2022.				
	G. Meuli, M. Soeken, and G. D. Micheli, "Xor-and-inverter graphs for quantum compilation", <i>np j Quantum Information</i> , 8(1), 1–11, 2022.	2022			
	G. Song, K. Jang, and H. Seo, "Improved Low-Depth SHA3 Quantum Circuit for Fault-Tolerant Q uantum Computers", Applied Sciences, 2023.	2023			

- M. Amy et al. (2016): SHA-3 양자 회로 구현 또한 최초
 - SHA-3의 경우, SHA-2와 비교하여 상대적으로 구현 연산이 간단
 - 큐비트를 줄일 수 있는, in-place **구조**의 SHA-3 양자 회로 제시
 - Reverse 연산 (θ^{-1}, χ^{-1}) 을 통해, 사용된 Input(A), ancilla 큐비트들 초기화 후 **재사용**

M. Amy et al. (2016)

 In-place 구조로, 3200 (= 1600 + 1600)의 큐비트만이 사용되었지만, Reverse 연산으로 인한 회로 Depth 증가, 많은 양자 게이트가 사용되었음

- **또한, 비효율적인** θ^{-1} 가 구현 되었음 (Output으로부터 Input을 생성하여 Input을 초기화하여 재사용)
 - θ : 17,600 CNOT gates, θ^{-1} : **136,000** CNOT gates
- θ 의 경우 선형 연산에 해당, **오히려 PLU 분해를 사용한** in-place **구현이 더 효율적** \to θ^{-1} 필요 X

M. Amy et al. (2016)

Cipher	Paper	Year		
SHA-3	M. Amy et al. "Estimating the cost of generic quantum pre-image attacks on SHA-2 and SHA-3", SAC 2016.	2016		
	T. Häner and M. Soeken, "Lowering the T-depth of Quantum Circuits By Reducing the Multiplic ative Depth Of Logic Networks", <i>ACM Transactions on Quantum Computing</i> , 2022.			
	G. Meuli, M. Soeken, and G. D. Micheli, "Xor-and-inverter graphs for quantum compilation", <i>np j Quantum Information</i> , 8(1), 1–11, 2022.	2022		
	G. Song, K. Jang, and H. Seo, "Improved Low-Depth SHA3 Quantum Circuit for Fault-Tolerant Q uantum Computers", Applied Sciences, 2023.	2023		

- T. Haner et al. (2022), G. Meuli et al (2022): 두 논문 모두, XOR-AND-Graph (XAG)의 양자 구현에서 T게이트와 T-depth를 최적화 시키는 알고리즘을 제시 (SHA-3 양자 구현이 메인이 아님)
 - \rightarrow SHA3의 χ 연산 최적화에 적용

< XOR-AND-Graph >

 $\chi:A'[x][y][z]\leftarrow A[x][y][z]\oplus A[x+2][y][z]\oplus A[x+1][y][z])A[x+2][y][z]$ < SHA-3의 χ 연산 >

• SHA-3에 대한 구현이 구체적으로 명시되어 있지 않지만, χ 연산을 Toffoli depth 1로 최적화

- M. Amy (2016): In-place 구조
 - 적은 큐비트, 높은 Depth 및 게이트
- T. Haner et al. (2022), G. Meuli et al. (2022): Out-of-place 구조
 - 높은 큐비트, 낮은 Depth 및 게이트
 - 최근, SHA-3 구현 결과와 거의 유사, 큐비트 개수는 Theta (Linear 연산)의 최적화로 인한 차이
 → 논문화를 위해서는, 개선이 필요

Hash function	Source	Architecture	#Qubit	Toffoli depth	Full depth	
	Amy et al. (2016)	in-place	3,200	264	10,128	
CHAD DEC	Häner et al. (2022)		46,400	24	-	
SHA3-256	Meuli et al. (2022)	Out-of-place	44,798	24	-	
	Jang et al. (2024)		49,280	24	578	

- 기존에 구현했던 SHA-3 양자 회로에서 큐비트 수 감소
 - AES 최적화 기법과 유사하기도 하면서 다르기도 함
- 기존 구현에서는 매 라운드 θ 에서 320 큐비트, χ 에서 1600 큐비트가 버려졌음 \rightarrow Garbage
 - χ 에서 **다른 1600 큐비트 만 초기화** 후, 다음 라운드에서 재사용

<기존 SHA-3 양자 회로 구조>

- 개선 버전에서는 기존 Garbage 큐비트들을 초기화 후, 재사용
 - 모두 초기화 시키진 못하지만 그래도 이득, 또한 Depth 증가 없음
- Reverse로 큐비트를 **초기화하기 시작하는 라운드의 Garbage2 (1600 qubits)는 초기화 할 수 없음**

<기존 SHA-3 양자 회로 구조>

Case 1). **매 라운드 Reverse**를 수행하는 경우

• Garbage 1만을 초기화할 수 있음 (320 qubits) → **C**에 해당

- Garbage 1 + Garbage2 + Initialize = A (3520 = 320 + 1600 + 1600)
- Garbage 1 + Garbage2 = B (1920 = 320 + 1600)
- Garbage2 = C (320)

Case 2). **2 라운드 간격으로 Reverse**를 수행하는 경우

• 첫 Reverse에서는 Garbage 1, 두번째 Reverse 에서는 Garbage 1 + Garbage 2 + Initialize를 초기화할 수 있음 (320 qubits) → C와 A에 해당

- Garbage 1 + Garbage 2 + Initialize = A (3520 = 320 + 1600 + 1600)
- Garbage 1 + Garbage2 = B (1920 = 320 + 1600)
- Garbage2 = C (320)

Case 2). **2 라운드 간격으로 Reverse**를 수행하는 경우

• 첫 Reverse에서는 Garbage 1, 두번째 Reverse 에서는 Garbage 1 + Garbage 2 + Initialize를 초기화할 수 있음 (320 qubits) → C와 A에 해당

- Garbage 1 + Garbage2 + Initialize = A (3520 = 320 + 1600 + 1600)
- Garbage 1 + Garbage2 = B (1920 = 320 + 1600)
- Garbage2 = C (320)

Case 3). **3 라운드 이상의 간격으로 Reverse**를 수행하는 경우

• 첫 Reverse에서는 Garbage 1, 중간 Reverse 에서는 Garbage 1 + Garbage 2를 초기화할 수 있음, 마지막 Reverse에서는 Garbage 1 + Garbage 2 + Intialize 초기화 가능→ C → B → B ... → A

- Garbage 1 + Garbage 2 + Initialize = A (3520 = 320 + 1600 + 1600)
- Garbage 1 + Garbage2 = B (1920 = 320 + 1600)
- Garbage2 = C (320)

Case 2) 2 라운드 간격으로 Reverse (파란색: Round, 빨간색: Reverse)

```
A B C A

0 1 10 C A

2 3 3 2 C A

A B 4 5 5 4 C A

A B 6 7 7 6

A B 8 9

A B
```

Note:

- Garbage 1 + Garbage2 + Initialize = A (3520 = 320 + 1600 + 1600)
- Garbage 1 + Garbage2 = B (1920 = 320 + 1600)
- Garbage2 = C (320)

C

B

A

A

Case 2) 2 라운드 간격으로 Reverse (파란색: Round, 빨간색: Reverse)

Note:

- Garbage 1 + Garbage2 + Initialize = A (3520 = 320 + 1600 + 1600)
- Garbage 1 + Garbage2 = B (1920 = 320 + 1600)
- Garbage2 = C (320)

$$A + B + A + (B-C) + (B-C) + (B-C) \longrightarrow 2A + B + 11(B-C)$$

A

A

C

B

Case 3) 3 라운드 이상 간격으로 Reverse (파란색: Round, 빨간색: Reverse)

```
A B B C B A

0 1 2 2 1 0 C B A

3 4 5 5 4 3 C B A

A B B 6 7 8 8 7 6

A B B 9 10 11

A B B
```

Note:

- Garbage 1 + Garbage 2 + Initialize = A (3520 = 320 + 1600 + 1600)
- Garbage 1 + Garbage2 = B (1920 = 320 + 1600)
- Garbage2 = C (320)

$$A + B + B + A + (B-C) + (B-C) + (B-C) \rightarrow 2A + 2B + 7(B-C)$$

 $S \rangle \xrightarrow{\int_{0}^{1600}} \theta \xrightarrow{|\theta(S)\rangle} \pi \circ \rho \xrightarrow{|\pi \circ \rho \circ \theta(S)\rangle} \chi \xrightarrow{|\chi \circ \pi \circ \rho \circ \theta(S)\rangle} R(S)$

Α

В

C

A

B

B

- 라운드 간격 별, 필요 큐비트 수: $(2A + (B C) \times (\frac{24}{n} 1) + B \times (n 1)$
 - 4 Round 간격일 때 가장 효율적 (20800)

Round	B-C	В	Total
2	17600	1920	26560
3	11200	3840	22080
4	8000	5760	20800
5	6080	7680	20800
6	4800	9600	21440
7	3885.71429	11520	22445.7143
8	3200	13440	23680
9	2666.66667	15360	25066.6667
10	2240	17280	26560
11	1890.90909	19200	28130.9091
12	1600	21120	29760

Results

• 가장 낮은 Depth를 가짐과 동시에, 가장 높은 트레이드오프 성능 달성

Hash function	Source	Architecture	#Qubit (M)	Toffoli depth (TD)	Full depth (FD)	TD-M	FD-M
SHA3-256	Amy et al. (2016)	in-place	3,200	264	10,128	844,800	3,2409,600
	Häner et al. (2022)	Out-of-place	46,400	24	-	1,113,600	
	Meuli et al. (2022)		44,798	24	-	1,075,152	
	Jang et al. (2024)		49,280	24	578	1,182,720	2,8483,840
	This work		22,400	24	578	537,600	1,2947,200

Thank you!