MAS205 Complex Variables 2004-2005

Exercises 8

Exercise 33: Use the Cauchy integral formula to evaluate each of the following integrals, where \mathcal{C} is the circle $\{z \in \mathbb{C} : |z-4|=2\}$ traversed in the positive (anticlockwise) sense:

(a)
$$\int_{\mathcal{C}} \frac{(z+2)^3}{(z-4)z^2} dz$$

(b)
$$\int_{\mathcal{C}} \frac{4}{(z-\pi)\sin(z/2)} dz$$

Exercise 34: Use the residue theorem to calculate

$$\int_{\mathcal{C}} \frac{1}{(z^2 - 9)(z + 2i)} dz$$

for

- (a) $C = C_1$, the positively oriented circle of radius 5 centred at 1;
- (b) $C = C_2$, the positively oriented square with corners -1 3i and 2.

Exercise 35: Let $f: \mathbb{C} \to \mathbb{C}$ be holomorphic apart from a simple pole at 3i with residue $2\pi i$ and an essential singularity at 2-i with residue 3+i. How many elements are there in the set

$$\left\{ \int_{\mathcal{C}} f(z)dz : \mathcal{C} \text{ is a simple closed curve in } \mathbb{C} \setminus \{3i, 2-i\} \right\} ?$$

- Exercise 36: Suppose $f: \mathbb{C} \to \mathbb{C}$ is holomorphic except for singularities at the points -2i, 1, and 2i. Let \mathcal{C}_1 be the positively oriented circle of radius 3 centred at 0. Let \mathcal{C}_2 be the positively oriented circle of radius 2 centred at i. Let \mathcal{C}_3 be the positively oriented circle of radius 3 centred at 3. Suppose $\int_{\mathcal{C}_1} f(z)dz = 1$, $\int_{\mathcal{C}_2} f(z)dz = 2$, and $\int_{\mathcal{C}_3} f(z)dz = 3$.
 - (a) Calculate the residues of f at each of its three singularities.
 - (b) Give an explicit example of a function f satisfying the above properties.

Please hand in your solutions (to the yellow Complex Variables box on the ground floor) by 11am Tuesday 7th December