PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-050230

(43) Date of publication of application: 21.02.2003

(51)Int.CI.

GO1N 27/83

(21)Application number: 2001-238161

(71)Applicant: TOSHIBA ELEVATOR CO LTD

(22)Date of filing:

06.08.2001

(72)Inventor: HARA HIDEAKI

(54) WIRE ROPE FLAW DETECTOR

(57)Abstract:

PROBLEM TO BE SOLVED: To accurately detect the presence of damage to every strand of a wire rope. SOLUTION: A plurality of magnetic sensors 1b are arranged along the strand 1a of the wire rope and constituted to detect leakage magnetic flux from permanent magnets 2, 2. A processor 7 can extract a damage signal corresponding to each strand 1a of the wire rope 1 and display it on a display 8.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2003-50230 (P2003-50230A)

(43)公開日 平成15年2月21日(2003.2.21)

(51) Int.Cl.⁷

識別配号

FΙ G01N 27/83 ラーマコード(参考) 2G053

G01N 27/83

審査請求 未請求 請求項の数5 OL (全 10 頁)

(21)出願番号

特顧2001-238161(P2001-238161)

(22)出願日

平成13年8月6日(2001.8.6)

(71) 出願人 390025265

東芝エレベータ株式会社

東京都品川区北品川6丁目5番27号

(72) 発明者 原 英敬

東京都品川区北品川6丁目5番27号 東芝

エレベータ株式会社内

(74)代理人 100083806

弁理士 三好 秀和 (外7名)

Fターム(参考) 20053 AA11 AA14 AB22 BA02 BA14

BB03 BB11 BC20 CB17 DB04

(54) [発明の名称] ワイヤローブ探傷装置

(57)【要約】

【課題】 ワイヤープのストランド毎に、損傷の有無を 的確に検出する。

【解決手段】 ワイヤロープ1のストランド1aに沿 い、複数個の磁気センサ1bを配列して、永久磁石2, 2からの漏洩磁束を検出するように構成されている。従 って、処理装置7は、磁気センサ1bで検出された漏洩 磁束信号から、ワイヤープ 1 の各ストランド 1 a毎に対 応した損傷信号を抽出して、表示器8に表示することが できる。

【特許請求の範囲】

【請求項1】 複数本のストランドのより合わせからな るワイヤロープを長手方向に磁化する磁化手段と、

前記ワイヤロープのストランドに沿うように螺旋状に配 置された複数個の磁気検出手段と、

この磁気検出手段によって検出された磁気力が予め定め られた基準値を超えたとき損傷信号を導出する損傷信号 検出手段と、

この損傷信号検出手段によって出力される損傷信号の数 が予め定められた基準数を超えたか否かを判定する判定 手段と、

この判定手段からの出力信号を表示する表示手段とを具 備することを特徴とするワイヤロープ探傷装置。

【請求項2】 前記複数個の磁気検出手段は、前記スト ランドに沿って前記ワイヤロープの外周を少なくとも 1 周する長さにわたり配列され、

前記判定手段は、前記長手方向へのワイヤローブの移動 により、前記磁気検出手段により検出される長手方向の ストランドピッチに基づき、損傷信号の数が予め定めら れた基準数を超えたか否かを判定することを特徴とする 請求項1に記載のワイヤロープ探傷装置。

【請求項3】 前記磁気検出手段で検出されるストラン ドピッチを、所定時間にわたりカウントすることにより 前記ワイヤロープの移動速度を演算するロープ速度演算 手段を具備することを特徴とする請求項2に記載のワイ ヤロープ探傷装置。

【請求項4】 前記複数個の磁気検出手段の出力信号間 の位相差を検出する位相差検出手段と、

前記複数個の磁気検出手段の各出力信号の位相をそろえ る出力補正手段とを具備することを特徴とする請求項1 ないし3のいずれか1項に記載のワイヤロープ探傷装

【請求項5】 前記位相差検出手段で検出された位相差 と前記磁気検出手段で検出されたストランドピッチから 前記ワイヤロープのストランドの伸び量を演算するワイ ヤロープ伸び量演算手段を具備することを特徴とする請 求項4に記載のワイヤロープ探傷装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ワイヤロープを使 用した各種設備の安全性確保のために、各種設備からワ イヤロープを取り外すことなく使用状態のまま、ワイヤ ロープの素線切れや断線などの損傷の有無を検出するワ イヤロープ探傷装置に関する。

100021

【従来の技術】複数本のストランドをより合わせて構成 されたワイヤロープは、静索として使用される他に、リ フトやクレーン、エレベータなどでの動索として多用さ れている。このワイヤロープには、曲げおよび引張応力 や摩擦などによって、ストランドを構成した素線に断線

や局部的摩耗などの損傷が発生する。そのため、保安 上、定期的に損傷の有無を検査する必要があるが、使用 中のワイヤロープの損傷を検査する場合、従来、電磁気 探傷法による検査と、技術者等の作業員による目視検査 とが併用して行われている。

【0003】図10は、従来の漏洩磁束法による損傷検 出器の概略的な構成を示したものである。損傷検出器 は、被検査体のワイヤロープ1を磁化する一対の永久磁 石2,2が、ワイヤロープ1の周りを囲むように長手方 向に間隔を置いて設けられ、相対移動しつつ、その一対 の永久磁石2,2間に設けられた検出器3でワイヤロー プ1からの漏洩磁束を検出し、その検出信号を制御器4 で処理してワイヤロープ1損傷の有無を検知するように 構成されている。

【0004】なお、センサとしての検出器3は、ワイヤ ロープ1の長手方向に沿い、かつ横断面の円周を半割り 状態に分割するように形成された一対の差動式のプロー ブコイル3a,3bによって構成されている。

【0005】永久磁石2,2により、ワイヤロープ1の 長手方向に磁束が通ると、断線箇所や局部的な摩耗部分 から漏洩磁束が発生するが、この漏洩磁束が、検出器3 のプローブコイル3a,3bと交差することにより電圧 変化が生じ、その電圧変化分を制御器4で検波、増幅等 の処理を施して探傷信号を得るものである。

[0006]

【発明が解決しようとする課題】ところで、上記従来の 損傷検出器は、ワイヤロープ1の長手方向および円周方 向に半円状に配置した一対の差動式のプローブコイル3 a. 3 bにより漏洩磁束を検出するため、検出器3で一 度に検出される範囲は特に円周方向に大きな広がりを有 している。従って、もしも同一円周方向に複数箇所の断 線や摩耗部分が存在した場合でも、従来の損傷検出器で は、1箇所の断線あるいは摩耗部分としてカウントして しまうことが多く、正確な損傷個数を把握できないとい う問題があった。

【0007】従って、漏洩磁束法により損傷部位が機械 的に検出されたとしても、作業員による損傷箇所数等の 確認が目視検査により改めて行われ、損傷個数がワイヤ ロープ1の交換基準に達しているかどうかを判断しなけ ればならなかった。

【0008】本発明はこのような従来の課題に鑑みてな されたもので、同一円周方向に存在する複数個の損傷を 識別して検出できるとともに、ストランド毎の損傷個数 を容易かつ的確に算出して、その損傷個数がワイヤロー プの交換基準に達しているかどうかを自動的に判定し得 るワイヤロープ探傷装置を提供することを目的とする。 [0009]

【課題を解決するための手段】上記の従来の課題を解決 するため、本発明のワイヤロープ探傷装置は、複数本の ストランドのより合わせからなるワイヤロープを長手方 向に磁化する磁化手段と、ワイヤロープのストランドに 沿うように螺旋状に配置された複数個の磁気検出手段 と、この磁気検出手段によって検出された磁気力が予め 定められた基準値を超えたとき損傷信号を導出する損傷 信号検出手段と、損傷信号検出手段によって出力される 損傷信号の数が予め定められた基準数を超えたか否かを 判定するストランド別判定手段と、このストランド別判 定手段からの出力信号を表示する表示手段とを具備する ことを特徴とする。

【0010】 このように、ワイヤロープのストランドに 沿うように螺旋状に複数個の磁気検出手段を配置し、ま た検出された損傷信号数が基準数を超えたか否かを判定 するので、ストランド毎に交換の要否を容易にかつ正確 に判定することができる。

[0011]

【発明の実施の形態】以下、本発明に係るワイヤロープ 探傷装置の一実施の形態について、図1乃至図9を参照 して詳細に説明する。なお、図10に示した従来の構成 と同一構成には同一符号を付して詳細な説明は省略す

【0012】図1は本発明に係るワイヤローフ探傷装置 の第1の実施の形態の全体構成を示した斜視図である。 【0013】図1に示すように、本実施の形態のワイヤ ロープ探傷装置は、長手方向の矢印Yに示す方向に一定 速度で移動するワイヤロープ 1 の周りを、間隔をなして 囲むように一対の永久磁石2.2が図示上下方向に配置 され、それら一対の永久磁石2,2は支持器5によって 連結されている。また、一対の永久磁石2,2の間に は、被検査体であるワイヤロープ1の周りを間隔を有し て取り囲むように筒状の漏洩磁束検出器6が取り付けら れている。

【0014】図2は、ワイヤロープ1を中に通した漏洩 磁束検出器6の拡大平面図であるが、図2にも示すよう に漏洩磁束検出器6は、非磁性材料からなる輪体6a と、ワイヤロープ1のストランド1aに沿うように、輪 体6aの内壁面に螺旋状に配置された複数個(この実施 の形態では16個) の磁気センサ6b (6b-1~6b -16)とで構成されている。また、16個の各磁気セ ンサ6 b (6 b - 1 ~ 6 b - 1 6) は、ワイヤロープ1 の外周を丁度1周する長さ分にわたり等間隔に配置され ている。

【0015】従って、ワイヤロープ1の長手方向への移 動により、ワイヤロープ1と、螺旋状に配置された磁気 センサ6b (6b-1~6b-16) との間の相対位置 は連続的に変化する。

【0016】図1に示したように、漏洩磁束検出器6 は、処理装置7を介して表示器8に接続されている。処 理装置7は、パーソナルコンピュータで構成され、漏洩 磁束検出器6からの出力信号を取り入れて、ストランド 1 aの損傷が、ストランド 1 aあるいはワイヤロープ 1

そのものを交換しなければならない程度かどうかを判定 するための演算処理を行い、その演算結果を表示器8に

【0017】なお、本実施の形態では、ワイヤロープ1 は、図2に示すように8本のストランド1a(1a-1 \sim 1 a - 8) で構成され、各ストランド1 a(1 a - 1 ~1 a - 8) は、中心の心綱1 b (図示、黒く塗りつぶ されている)の外側にあって、それぞれが多数の素線の より合わせで構成されている。従って、検出面をワイヤ ロープ1側に面して配置された各磁気センサ6b(6b -1~6b-16)は、長手方向に一定速度で移動する ワイヤロープ 1 から漏洩磁束を検出し、その検出された 磁気力に応じたアナログ検出信号を出力する。

【0018】図3は漏洩磁束検出器6の構成を示したも ので、各磁気センサ6b(6b-1~6b-16)の出 力端は、それぞれ個々にアナログ・デジタル(A/D) 変換器6cに接続されている。

【0019】A/D変換器6cは、各磁気センサ6b (6b-1~6b-16)からのアナログ検出信号を導 入し、たとえば極く短い周期のサンプリング信号で同時 に量子化を行い、デジタル検出信号に変換して処理装置 7に並列供給する。もちろん、各磁気センサ6b(6b -1~6 b - 1 6) と A / D 変換器 6 c との間には必要 に応じて適宜、増幅器を設けることができる。また、各 磁気センサ6b (6b-1~6b-16) からのアナロ グ検出信号をマルチプレクサを介して1つのA/D変換 器6cに入力して信号処理することもできる。また、各 磁気センサ6b (6b-1~6b-16) のアナログ検 出信号を掃引し、シリアル信号化されたデジタル検出信 号に変換した後、処理装置7に供給するようにしてもよ

【0020】いずれにしても、ストランドに対応してワ イヤロープ 1 の外周を丁度 1 周する長さに螺旋状に配置 された各磁気センサ6b(6b-1~6b-16)は、 ワイヤロープ1の長手方向への移動に同期して、順次ス トランド1 a-1からストランド1 a-2、ストランド 1 a-3・・・へと移動し、8本目のストランド1 a-8を経た後、長手方向に連なる次のストランド1a-1 へと順次移行して探傷を行う。

【0021】図4(a)は、漏洩磁束検出器6の中の1 個の磁気センサ6b(例えば6b-1)で検出された漏 洩磁束のアナログ検出信号を示したものである。

【0022】磁気センサ6b-1は、上記のように、各 ストランド1a(1a-1~1a-8)に対し、長手方 向に縦断するように順次走査するので、そのアナログ検 出信号には、図4 (a) に示すように、長手方向のスト ランドピッチに対応した周期もで変化する微小振幅の漏 洩磁束信号成分と、ストランドの損傷部位において、切 断や摩耗等の損傷に対応した大振幅の漏洩磁束信号成分 (11a, 11b, 11c)とが含まれる。

【図9】

【図10】

