PRACTICAL IMAGE AND VIDEO PROCESSING USING MATLAB®

PRACTICAL IMAGE AND VIDEO PROCESSING USING MATLAB®

OGE MARQUES

Florida Atlantic University

A JOHN WILEY & SONS, INC., PUBLICATION

About the Cover (by Roger Dalal)

The elegant Nautilus, with its progressive chambers and near-perfect logarithmic spiral, demonstrates the beauty of mathematics and the power of digital image processing. Created exclusively for *Practical Image and Video Processing Using MATLAB*®, this composition features multiple layers and processing techniques. The primary image is doubly sharpened with an 8 pixel radius, and enhanced with posterizing and edge detection algorithms. The outer, secondary image is indexed to 20 colors, pixelized at two percent resolution of the center image, and partially hidden by a fading, offset radial mask.

Copyright © 2011 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created ore extended by sales representatives or written sales materials. The advice and strategies contained herin may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department with the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print, however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data

Marques, Oge.

Practical image and video processing using MATLAB® / Oge Marques.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-470-04815-3 (hardback)

1. Image processing–Mathematics. 2. Digital video–Mathematics. 3. Image processing–Digital techniques. 4. MATLAB $^{\otimes}$. I. Title.

TA1637.M3375 2011 502.85'66-dc22

2011008249

oBook ISBN: 978111093467 ePDF ISBN: 9781118093481 ePub ISBN: 9781118093474

Printed in Singapore.

10 9 8 7 6 5 4 3 2 1

To my Son Nicholas, whose Precious Existence has Provided the Greatest Motivation to Pursue this Project.

And in Loving Memory of my Father, Ogê Aby Marques.

CONTENTS

LI	ST OF	FIGURES	xxi	
LI	LIST OF TABLES			
F	OREW	ORD	xli	
PI	REFAC	CE	xliii	
A	CKNO	WLEDGMENTS	xlix	
P	ART I	IMAGE PROCESSING		
1	INTRO	DDUCTION AND OVERVIEW	3	
	1.1	Motivation / 3		
	1.2	Basic Concepts and Terminology / 5		
	1.3	Examples of Typical Image Processing Operations / 6		
	1.4	Components of a Digital Image Processing System / 10		
	1.5	Machine Vision Systems / 12		
	1.6	Resources / 14		
	1.7	Problems / 18		
2	IMAG	E PROCESSING BASICS	21	
	2.1	Digital Image Representation / 21		
		2.1.1 Binary (1-Bit) Images / 23		

VIII CONTENTS

	2.1.2	Gray-Level (8-Bit) Images / 24	
	2.1.3	Color Images / 25	
	2.1.4	Compression / 26	
2.2	Image F	File Formats / 27	
2.3	Basic To	erminology / 28	
2.4	Overvie	ew of Image Processing Operations / 30	
	2.4.1	Global (Point) Operations / 31	
	2.4.2	Neighborhood-Oriented Operations / 31	
	2.4.3	Operations Combining Multiple Images / 32	
	2.4.4	Operations in a Transform Domain / 32	
MATL	AB BAS	ics	35
3.1	Introduc	etion to MATLAB / 35	
3.2		lements of MATLAB / 36	
	3.2.1	Working Environment / 36	
	3.2.2	Data Types / 37	
	3.2.3	Array and Matrix Indexing in MATLAB / 37	
	3.2.4	Standard Arrays / 37	
	3.2.5	Command-Line Operations / 38	
3.3	Progran	nming Tools: Scripts and Functions / 38	
	3.3.1	M-Files / 39	
	3.3.2	Operators / 40	
	3.3.3	Important Variables and Constants / 42	
	3.3.4	Number Representation / 42	
	3.3.5	Flow Control / 43	
	3.3.6	Code Optimization / 43	
	3.3.7	Input and Output / 43	
3.4	-	es and Visualization / 43	
3.5		3.1: MATLAB—a Guided Tour / 44	
3.6		3.2: MATLAB Data Structures / 46	
3.7		3.3: Programming in MATLAB / 53	
3.8	Problem	ns / 59	
THE I	MAGE P	ROCESSING TOOLBOX AT A GLANCE	61
4.1	The Ima	age Processing Toolbox: an Overview / 61	
4.2	Essentia	al Functions and Features / 62	
	4.2.1	Displaying Information About an Image File / 62	
	4.2.2	Reading an Image File / 64	

CONTENTS

	4.2.3	Data Classes and Data Conversions / 65	
	4.2.4	Displaying the Contents of an Image / 68	
	4.2.5	Exploring the Contents of an Image / 69	
	4.2.6	Writing the Resulting Image onto a File / 70	
4.3		4.1: MATLAB Image Processing Toolbox—a Tour / 72	
4.4	Tutoria	4.2: Basic Image Manipulation / 74	
4.5	Problen		
IMAG	E SENSI	NG AND ACQUISITION	83
5.1	Introdu	ction / 83	
5.2		Color, and Electromagnetic Spectrum / 84	
3.2	5.2.1	Light and Electromagnetic Spectrum / 84	
	5.2.2	Types of Images / 85	
	5.2.3	Light and Color Perception / 86	
	5.2.4	Color Encoding and Representation / 87	
5.3		Acquisition / 89	
5.5	5.3.1	Image Sensors / 89	
	5.3.2	Camera Optics / 92	
5.4		Digitization / 93	
	5.4.1	Sampling / 95	
	5.4.2	Quantization / 96	
	5.4.3	Spatial and Gray-Level Resolution / 97	
5.5	Problen	ns / 101	
ARIT	НМЕТІС	AND LOGIC OPERATIONS	103
6.1	Arithmo	etic Operations: Fundamentals and Applications / 103	
	6.1.1	Addition / 104	
	6.1.2	Subtraction / 106	
	6.1.3	Multiplication and Division / 109	
	6.1.4	Combining Several Arithmetic Operations / 110	
6.2	Logic C	Operations: Fundamentals and Applications / 111	
6.3		6.1: Arithmetic Operations / 113	
6.4		6.2: Logic Operations and Region of Interesting / 118	
6.5	Problen	ns / 122	

X CONTENTS

GEO	METRIC (OPERATIONS	125
7.1	Introduc	ction / 125	
7.2	Mappin	g and Affine Transformations / 127	
7.3	Interpol	lation Methods / 130	
	7.3.1	The Need for Interpolation / 130	
	7.3.2	A Simple Approach to Interpolation / 131	
	7.3.3	Zero-Order (Nearest-Neighbor) Interpolation / 132	
	7.3.4	First-Order (Bilinear) Interpolation / 132	
	7.3.5	Higher Order Interpolations / 132	
7.4	Geomet	tric Operations Using MATLAB / 132	
	7.4.1	Zooming, Shrinking, and Resizing / 133	
	7.4.2	Translation / 134	
	7.4.3	Rotation / 134	
	7.4.4	Cropping / 134	
	7.4.5	Flipping / 134	
7.5	Other G	Geometric Operations and Applications / 134	
	7.5.1	Warping / 134	
	7.5.2	Nonlinear Image Transformations / 135	
	7.5.3	Morphing / 137	
	7.5.4	Seam Carving / 137	
	7.5.5	Image Registration / 137	
7.6		7.1: Image Cropping, Resizing, Flipping, action / 138	
7.7	Tutorial	17.2: Spatial Transformations and Image Registration / 14	12
7.8	Problem	ns / 149	
GRAY	/-LEVEL	TRANSFORMATIONS	151
8.1	Introduc	ction / 151	
8.2	Overvie	ew of Gray-level (Point) Transformations / 152	
8.3	Example	es of Point Transformations / 155	
	8.3.1	Contrast Manipulation / 155	
	8.3.2	Negative / 157	
	8.3.3	Power Law (Gamma) Transformations / 157	
	8.3.4	Log Transformations / 159	
	8.3.5	Piecewise Linear Transformations / 160	
8.4		ing the Transformation Function / 161	
8.5		8.1: Gray-level Transformations / 163	
8.6	Problem	ns / 169	

CONTENTS xi

9	ніѕто	OGRAM PROCESSING	171		
	9.1	Image Histogram: Definition and Example / 171			
	9.2	Computing Image Histograms / 173			
	9.3	Interpreting Image Histograms / 174			
	9.4	Histogram Equalization / 176			
	9.5	Direct Histogram Specification / 181			
	9.6	Other Histogram Modification Techniques / 184			
		9.6.1 Histogram Sliding / 185			
		9.6.2 Histogram Stretching / 185			
		9.6.3 Histogram Shrinking / 186			
	9.7	Tutorial 9.1: Image Histograms / 188			
	9.8	Tutorial 9.2: Histogram Equalization and Specification / 191			
	9.9	Tutorial 9.3: Other Histogram Modification Techniques / 195			
	9.10	Problems / 200			
10	NEICH	HBORHOOD PROCESSING	203		
10	_		203		
	10.1	Neighborhood Processing / 203			
	10.2				
		10.2.1 Convolution in the One-Dimensional Domain / 204			
		10.2.2 Convolution in the Two-Dimensional Domain / 206			
		10.2.3 Correlation / 208			
		10.2.4 Dealing with Image Borders / 210			
		Image Smoothing (Low-pass Filters) / 211			
		10.3.1 Mean Filter / 213			
		10.3.2 Variations / 213			
		10.3.3 Gaussian Blur Filter / 215			
		10.3.4 Median and Other Nonlinear Filters / 216			
	10.4	Image Sharpening (High-pass Filters) / 218			
		10.4.1 The Laplacian / 219			
		10.4.2 Composite Laplacian Mask / 220			
		10.4.3 Directional Difference Filters / 220			
		10.4.4 Unsharp Masking / 221			
		10.4.5 High-Boost Filtering / 221			
	10.5	Region of Interest Processing / 222			
	10.6	Combining Spatial Enhancement Methods / 223			
	10.7	Tutorial 10.1: Convolution and Correlation / 223			
	10.8	Tutorial 10.2: Smoothing Filters in the Spatial Domain / 225			

Xİİ CONTENTS

	10.9	Tutorial 1	0.3: Sharpening Filters in the Spatial Domain / 228	
	10.10	Problems	/ 234	
11	FREQU	JENCY-D	OMAIN FILTERING	235
	11.1	Introducti	ion / 235	
	11.2	Fourier T	ransform: the Mathematical Foundation / 237	
		11.2.1	Basic Concepts / 237	
		11.2.2	The 2D Discrete Fourier Transform: Mathematical Formulation / 239	
		11.2.3	Summary of Properties of the Fourier Transform / 241	
		11.2.4	Other Mathematical Transforms / 242	
	11.3	Low-pass	Filtering / 243	
		11.3.1	Ideal LPF / 244	
		11.3.2	Gaussian LPF / 246	
		11.3.3	Butterworth LPF / 246	
	11.4	High-pass	s Filtering / 248	
		11.4.1	Ideal HPF / 248	
		11.4.2	Gaussian HPF / 250	
		11.4.3	Butterworth HPF / 250	
		11.4.4	High-Frequency Emphasis / 251	
	11.5	Tutorial 1	1.1: 2D Fourier Transform / 252	
	11.6	Tutorial 1	1.2: Low-pass Filters in the Frequency Domain / 254	
	11.7	Tutorial 1	1.3: High-pass Filters in the Frequency Domain / 258	
	11.8	Problems	/ 264	
12	IMAGE	RESTOR	RATION	265
	12.1	Modeling Problem	of the Image Degradation and Restoration / 265	
	12.2	Noise and	l Noise Models / 266	
		12.2.1	Selected Noise Probability Density Functions / 267	
		12.2.2	Noise Estimation / 269	
	12.3	Noise Re	duction Using Spatial-domain Techniques / 269	
		12.3.1	Mean Filters / 273	
		12.3.2	Order Statistic Filters / 275	
		12.3.3	Adaptive Filters / 278	
	12.4	Noise Re	duction Using Frequency-domain Techniques / 278	
		12.4.1	Periodic Noise / 279	
		12.4.2	Bandreject Filter / 280	
		12.4.3	Bandpass Filter / 281	

CONTENTS **xiii**

		12.4.4 Notch Filter / 282	
	12.5	Image Deblurring Techniques / 283	
		12.5.1 Wiener Filtering / 286	
	12.6	Tutorial 12.1: Noise Reduction Using Spatial-domain	
		Techniques / 289	
	12.7	Problems / 296	
13	MORP	HOLOGICAL IMAGE PROCESSING	299
	13.1	Introduction / 299	
	13.2	Fundamental Concepts and Operations / 300	
		13.2.1 The Structuring Element / 301	
	13.3	Dilation and Erosion / 304	
		13.3.1 Dilation / 305	
		13.3.2 Erosion / 307	
	13.4	Compound Operations / 310	
		13.4.1 Opening / 310	
		13.4.2 Closing / 311	
		13.4.3 Hit-or-Miss Transform / 313	
	13.5	Morphological Filtering / 314	
	13.6	Basic Morphological Algorithms / 315	
		13.6.1 Boundary Extraction / 317	
		13.6.2 Region Filling / 319	
		13.6.3 Extraction and Labeling of Connected Components / 321	
	13.7	Grayscale Morphology / 322	
		13.7.1 Dilation and Erosion / 323	
		13.7.2 Opening and Closing / 323	
		13.7.3 Top-Hat and Bottom-Hat Transformations / 325	
	13.8	Tutorial 13.1: Binary Morphological Image Processing / 325	
	13.9	Tutorial 13.2: Basic Morphological Algorithms / 330	
	13.10	Problems / 334	
14	EDGE	DETECTION	335
	14.1	Formulation of the Problem / 335	
	14.2	Basic Concepts / 336	
	14.3	First-order Derivative Edge Detection / 338	
	14.4	Second-order Derivative Edge Detection / 343	
		14.4.1 Laplacian of Gaussian / 345	
	14.5	The Canny Edge Detector / 347	

XIV CONTENTS

	14.6	Edge Lir	nking and Boundary Detection / 348	
		14.6.1	The Hough Transform / 349	
	14.7	Tutorial	14.1: Edge Detection / 354	
	14.8	Problem	s / 363	
15	IMAGE	SEGME	ENTATION	365
	15.1	Introduc	tion / 365	
	15.2	Intensity	r-based Segmentation / 367	
		15.2.1	Image Thresholding / 368	
		15.2.2	Global Thresholding / 369	
		15.2.3	The Impact of Illumination and Noise on Thresholding / 370	
		15.2.4	Local Thresholding / 371	
	15.3	Region-l	based Segmentation / 373	
		15.3.1	Region Growing / 374	
		15.3.2	Region Splitting and Merging / 377	
	15.4	Watersho	ed Segmentation / 377	
		15.4.1	The Distance Transform / 378	
	15.5	Tutorial	15.1: Image Thresholding / 379	
	15.6	Problem	s / 386	
16	COLO	R IMAGE	PROCESSING	387
	16.1	The Psyc	chophysics of Color / 387	
		16.1.1	Basic Concepts / 388	
		16.1.2	The CIE XYZ Chromaticity Diagram / 390	
		16.1.3	Perceptually Uniform Color Spaces / 393	
		16.1.4	ICC Profiles / 395	
	16.2	Color M	odels / 396	
		16.2.1	The RGB Color Model / 396	
		16.2.2	The CMY and CMYK Color Models / 398	
		16.2.3	The HSV Color Model / 398	
		16.2.4	The YIQ (NTSC) Color Model / 401	
		16.2.5	The YCbCr Color Model / 401	
	16.3	-	ntation of Color Images in MATLAB / 401	
		16.3.1	RGB Images / 402	
		16.3.2	Indexed Images / 403	
	16.4		olor Image Processing / 406	
		16.4.1	Intensity Slicing / 406	

CONTENTS XV

		16.4.2 Gray Level to Color Transformations / 407	
		16.4.3 Pseudocoloring in the Frequency Domain / 408	
	16.5	Full-color Image Processing / 409	
		16.5.1 Color Transformations / 410	
		16.5.2 Histogram Processing / 412	
		16.5.3 Color Image Smoothing and Sharpening / 412	
		16.5.4 Color Noise Reduction / 414	
		16.5.5 Color-Based Image Segmentation / 414	
		16.5.6 Color Edge Detection / 417	
	16.6	Tutorial 16.1: Pseudocolor Image Processing / 419	
	16.7	Tutorial 16.2: Full-color Image Processing / 420	
	16.8	Problems / 425	
17	IMAGE	COMPRESSION AND CODING	427
	17.1	Introduction / 427	
	17.2	Basic Concepts / 428	
		17.2.1 Redundancy / 428	
		17.2.2 Image Encoding and Decoding Model / 431	
	17.3	Lossless and Lossy Compression Techniques / 432	
		17.3.1 Lossless Compression Techniques / 432	
		17.3.2 Lossy Compression Techniques / 433	
	17.4	Image Compression Standards / 435	
		17.4.1 Binary Image Compression Standards / 435	
		17.4.2 Continuous Tone Still Image Compression Standards / 435	
		17.4.3 JPEG / 436	
		17.4.4 JPEG 2000 / 437	
		17.4.5 JPEG-LS / 437	
	17.5	Image Quality Measures / 438	
		17.5.1 Subjective Quality Measurement / 438	
		17.5.2 Objective Quality Measurement / 439	
	17.6	Tutorial 17.1: Image Compression / 440	
18	FEATU	IRE EXTRACTION AND REPRESENTATION	447
	18.1	Introduction / 447	
	18.2	Feature Vectors and Vector Spaces / 448	
		18.2.1 Invariance and Robustness / 449	
	18.3	Binary Object Features / 450	

XVI CONTENTS

		18.3.1	Area / 450	
		18.3.2	Centroid / 450	
		18.3.3	Axis of Least Second Moment / 451	
		18.3.4	Projections / 451	
		18.3.5	Euler Number / 452	
		18.3.6	Perimeter / 453	
		18.3.7	Thinness Ratio / 453	
		18.3.8	Eccentricity / 454	
		18.3.9	Aspect Ratio / 454	
		18.3.10	Moments / 455	
	18.4	Boundary	Descriptors / 456	
		18.4.1	Chain Code, Freeman Code, and Shape Number / 459	
		18.4.2	Signatures / 461	
		18.4.3	Fourier Descriptors / 462	
	18.5	Histogran	m-based (Statistical) Features / 464	
	18.6	Texture F	Features / 466	
	18.7	Tutorial 1	8.1: Feature Extraction and Representation / 470	
	18.8	Problems	s / 474	
19	VISUA	L PATTE	RN RECOGNITION	475
	19.1	Introduct	ion / 475	
	19.2	Fundame	ntals / 476	
		19.2.1	Design and Implementation of a Visual Pattern Classifier / 476	
		19.2.2	Patterns and Pattern Classes / 478	
		19.2.3	Data Preprocessing / 479	
		19.2.4	Training and Test Sets / 480	
		19.2.5	Confusion Matrix / 480	
		19.2.6	System Errors / 481	
		19.2.7	Hit Rates, False Alarm Rates, and ROC Curves / 481	
		19.2.8	Precision and Recall / 482	
		19.2.9	Distance and Similarity Measures / 485	
	19.3	Statistica	l Pattern Classification Techniques / 487	
		19.3.1	Minimum Distance Classifier / 488	
		19.3.2	k-Nearest Neighbors Classifier / 490	
		19.3.3	Bayesian Classifier / 490	
	19.4	Tutorial 1	19.1: Pattern Classification / 491	
	19.5	D 11	s / 497	

CONTENTS **xvii**

501

PART II VIDEO PROCESSING

20	VIDEO	FUNDA	MENTALS	
	20.1	Basic Co	ncepts and Terminology / 501	
	20.2	Monochr	ome Analog Video / 507	
		20.2.1	Analog Video Raster / 507	
		20.2.2	Blanking Intervals / 508	
		20.2.3	Synchronization Signals / 509	
		20.2.4	Spectral Content of Composite Monochrome Analog Video / 509	
	20.3	Color in	Video / 510	
	20.4	Analog V	ideo Standards / 512	
		20.4.1	NTSC / 513	
		20.4.2	PAL / 513	
		20.4.3	SECAM / 514	
		20.4.4	HDTV / 514	
	20.5	Digital V	ideo Basics / 514	
		20.5.1	Advantages of Digital Video / 515	
		20.5.2	Parameters of a Digital Video Sequence / 516	
		20.5.3	The Audio Component / 517	
	20.6	Analog-to	o-Digital Conversion / 517	
	20.7	Color Representation and Chroma Subsampling / 520		
	20.8 Digital Video Formats and Standards / 521		ideo Formats and Standards / 521	
		20.8.1	The Rec. 601 Digital Video Format / 522	
		20.8.2	The Common Intermediate Format / 523	
		20.8.3	The Source Intermediate Format / 524	
	20.9	Video Co	mpression Techniques and Standards / 524	
		20.9.1	Video Compression Standards, Codecs, and Containers / 525	
	20.10	Video Pro	ocessing in MATLAB / 526	
		20.10.1	Reading Video Files / 527	
		20.10.2	Processing Video Files / 527	
		20.10.3	Playing Video Files / 527	
		20.10.4	Writing Video Files / 528	
	20.11	Tutorial 2 MATLAI	20.1: Basic Digital Video Manipulation in 3 / 528	
	20.12	Tutorial 2	20.2: Working with YUV Video Data / 534	
	20.13	Problems	/ 539	

XVIII CONTENTS

21	VIDEO	SAMPLING RATE AND STANDARDS CONVERSION	541	
	21.1	Video Sampling / 541		
	21.2	Sampling Rate Conversion / 542		
	21.3	Standards Conversion / 543		
		21.3.1 Deinterlacing / 543		
		21.3.2 Conversion between PAL and NTSC Signals / 545		
		21.3.3 Color Space Conversion / 545		
		21.3.4 Aspect Ratio Conversion / 546		
		21.3.5 3:2 Pull-Down / 547		
	21.4	Tutorial 21.1: Line Down-Conversion / 548		
	21.5	Tutorial 21.2: Deinterlacing / 550		
	21.6	Tutorial 21.3: NTSC to PAL Conversion / 556		
	21.7	Tutorial 21.4: 3:2 Pull-Down / 557		
	21.8	Problems / 559		
22	DIGITA	AL VIDEO PROCESSING TECHNIQUES		
22		PPLICATIONS	561	
	22.1	Fundamentals of Motion Estimation and Motion		
	22.1	Compensation / 561		
	22.2	•		
		22.2.1 Motion Representation / 566		
		22.2.2 Motion Estimation Criteria / 567		
		22.2.3 Optimization Methods / 567		
	22.3	Motion Estimation Algorithms / 568		
		22.3.1 Exhaustive Search Block Matching Algorithm / 568		
		22.3.2 Fast Algorithms / 570		
		22.3.3 Hierarchical Block Matching Algorithm / 571		
		22.3.4 Phase Correlation Method / 573		
	22.4	Video Enhancement and Noise Reduction / 573		
		22.4.1 Noise Reduction in Video / 574		
		22.4.2 Interframe Filtering Techniques / 575		
	22.5	Case Study: Object Segmentation and Tracking in the Presence of		
		Complex Background / 576		
	22.6	Tutorial 22.1: Block-based Motion Estimation / 579		
	22.7	Tutorial 22.2: Intraframe and Interframe Filtering		
	22.2	Techniques / 585		
	22.8	Problems / 589		

CONTENTS XIX

Appendix	A: HUM	AN VISUAL PERCEPTION	591
A.1	Introduc	tion / 591	
A.2	The Hun	nan Eye / 592	
A.3	Characte	eristics of Human Vision / 596	
	A.3.1	Resolution, Viewing Distance, and Viewing Angle / 59	6
	A.3.2	Detail and Sharpness Perception / 598	
	A.3.3	Optical Transfer Function and Modulation Transfer Function / 599	
	A.3.4	Brightness Perception / 600	
	A.3.5	Contrast Ratio and Contrast Sensitivity Function / 603	
	A.3.6	Perception of Motion / 605	
	A.3.7	Spatiotemporal Resolution and Frequency Response / 606	
	A.3.8	Masking / 608	
A.4		ions and Applications of Knowledge about the Human ystem / 609	
Appendix	B: GUI [DEVELOPMENT	611
B.1	Introduc	tion / 611	
B.2	GUI File	e Structure / 611	
B.3	Passing	System Control / 613	
B.4	The Use	rData Object / 615	
B.5	A Worki	ng GUI Demo / 616	
B.6	Conclud	ing Remarks / 618	
			619 627

LIST OF FIGURES

1.1	Image sharpening: (a) original image; (b) after sharpening.	7
1.2	Noise removal: (a) original (noisy) image; (b) after removing noise.	7
1.3	Deblurring: (a) original (blurry) image; (b) after removing the (motion) blur. Original image: courtesy of MathWorks.	8
1.4	Edge extraction: (a) original image; (b) after extracting its most relevant edges. Original image: courtesy of MathWorks.	8
1.5	Binarization: (a) original grayscale image; (b) after conversion to a black-and-white version. Original image: courtesy of MathWorks.	ç
1.6	Blurring: (a) original image; (b) after blurring to remove unnecessary details. Original image: courtesy of MathWorks.	Ģ
1.7	Contrast enhancement: (a) original image; (b) after histogram equalization to improve contrast.	ç
1.8	Object segmentation and labeling: (a) original image; (b) after segmenting and labeling individual objects. Original image: courtesy of MathWorks.	10
1.9	Components of a digital image processing system. Adapted and redrawn from [Umb05].	11
1.10	Diagram of a machine vision system. Adapted and redrawn from [GW08].	13
1.11	Test image for the design of a machine vision system to read the label of the main integrated circuit on a printed circuit board.	18

XXİİ LIST OF FIGURES

1.12	(a) Test image for distance estimation: parallel lines with up to 5% difference in length. (b) Test image for area estimation: circles with up to 10% difference in radius. Both images are adapted and redrawn from [Jah05].	19
1.13	(a) Test image for texture-based object segmentation. (b) Test image for object segmentation based on "interpolation" of object boundaries. Both images are adapted and redrawn from [Jah05].	19
2.1	A monochrome image and the convention used to represent rows (x) and columns (y) adopted in this book.	22
2.2	A binary image and the pixel values in a 6×6 neighborhood. Original image: courtesy of MathWorks.	23
2.3	A grayscale image and the pixel values in a 6×6 neighborhood.	24
2.4	Color image (a) and its R (b), G (c), and B (d) components.	25
2.5	An indexed color image and the indices in a 4×4 neighborhood. Original image: courtesy of MathWorks.	26
2.6	Pixels within a neighborhood.	28
2.7	Concept of neighborhood of pixel <i>p</i> (from an image topology perspective): (a) 4-neighborhood; (b) diagonal neighborhood; (c) 8-neighborhood.	28
2.8	Connected components: (a) original (binary) image; (b) results for 8-connectivity; (c) results for 4-connectivity.	29
2.9	Example of intensity reduction using a transformation function: (a) original image; (b) output image.	31
2.10	A 3 \times 3 convolution mask, whose generic weights are $W_1,, W_9$.	32
2.11	Pixel-by-pixel arithmetic and logic operations.	33
2.12	Operations in a transform domain.	33
3.1	MATLAB environment.	45
4.1	Displaying an image: (a) without scaling; (b) scaling for display purposes; (c) selecting only pixels within a specified range. Original image: courtesy of MathWorks.	69
4.2	Displaying an image and exploring its contents with the <i>Pixel Region</i> tool. Original image: courtesy of MathWorks.	69
4.3	The Image Information tool.	70
4.4	The Adjust Contrast tool. Original image: courtesy of MathWorks.	70
4.5	The <i>Distance</i> tool. Original image: courtesy of MathWorks.	71
4.6	Reading and writing images: (a) Original image (PNG); (b) compressed image (JPG, $q=75$, file size = 24 kB); (c) compressed image (JPG, $q=5$, file size = 8 kB); (d) compressed image (JPG, $q=95$, file size = 60 kB). Original image: courtesy of MathWorks.	72

LIST	OF FIGURES	xxiii

4.7	Division of a figure using subplot.	77
5.1	Image acquisition, formation, and digitization. Adapted and redrawn from [GW08].	84
5.2	Electromagnetic spectrum.	85
5.3	Recording the various types of interaction of radiation with objects and surfaces. Redrawn from [Bov00a].	86
5.4	Newton's prism: many "colors" in the sunlight.	87
5.5	Spectral power distributions of common physical light sources. Redrawn from [Pra07].	88
5.6	The Bayer pattern for single-CCD cameras.	90
5.7	The beam splitter for three-CCD color cameras.	91
5.8	X3 color sensor.	91
5.9	Image formation using a lens.	92
5.10	Examples of lens aberrations: (a) pincushion distortion; (b) barrel distortion.	93
5.11	The main components of MATLAB Image Acquisition Toolbox.	94
5.12	Digitization = sampling + quantization. Redrawn from [Poy03].	95
5.13	Pixel arrays of several imaging standards. Redrawn from [Poy03].	95
5.14	1D aliasing explanation. Redrawn from [Wat00].	96
5.15	A mapping function for uniform quantization $(N = 4)$.	97
5.16	Effects of sampling resolution on image quality: (a) A 1944 \times 2592 image, 256 gray levels, at a 1250 dpi resolution. The same image resampled at (b) 300 dpi; (c) 150 dpi; (d) 72 dpi.	98
5.17	(a) A 480×640 image, 256 gray levels; (b–h) image requantized to 128, 64, 32, 16, 8, 4, and 2 gray levels.	99
6.1	Adding two images: (a) first image (X) ; (b) second image (Y) ; (c) result $(Z = X + Y)$.	104
6.2	Additive image offset: (a) original image (X); (b) brighter version ($Z = X + 75$).	104
6.3	Adding noise to an image: (a) original image (X); (b) zero-mean Gaussian white noise (variance = 0.01) (N); (c) result ($Z = X + N$).	105
6.4	Subtractive image offset: (a) original image (X); (b) darker version ($Z = X - 75$).	107
6.5	Example of an image negative: (a) original image; (b) negative image.	109
6.6	Multiplication and division by a constant: (a) original image (X); (b) multiplication result ($X \times 0.7$); (c) division result ($X/0.7$).	109
6.7	Logic operations on binary images.	112

XXIV LIST OF FIGURES

6.8	The AND operation applied to monochrome images: (a) <i>X</i> ; (b) <i>Y</i> ; (c) <i>X</i> AND <i>Y</i> .	112
6.9	The OR operation applied to monochrome images: (a) X ; (b) Y ; (c) X OR Y .	112
6.10	The XOR operation applied to monochrome images: (a) X ; (b) Y ; (c) X XOR Y .	113
6.11	The NOT operation applied to a monochrome image: (a) X ; (b) NOT X .	113
7.1	Examples of typical geometric operations: (a) original image; (b) translation (shifting); (c) scaling (resizing); (d) rotation.	126
7.2	Mapping one triangle onto another by an affine transformation.	128
7.3	Forward mapping: for each pixel position in the input image, the corresponding (continuous) target position—resulting from applying a geometric transformation T —is found in the output image. In general, the target position (x', y') does not coincide with any discrete raster point, and the value of the pixel in the input image is copied to one of the adjacent target pixels. Redrawn from [BB08].	130
7.4	Backward mapping: for each discrete pixel position in the output image, the corresponding continuous position in the input image (x, y) is found by applying the inverse mapping function T^{-1} . The new pixel value is found by interpolation among the neighbors of (x, y) in the input image. Redrawn from [BB08].	131
7.5	Effects of different interpolation techniques on rotated images: (a) original image; zoomed-in versions of rotated (35°) image using (b) zero-order (nearest-neighbor) interpolation; (c) first-order (bilinear) interpolation; (d) third-order (bicubic) interpolation.	133
7.6	Image deformation effects using <i>Photo Booth</i> .	136
7.7	Using seam carving for content-aware resizing: (a) original image (334 × 500 pixels); (b) cropped image (256 × 256 pixels). Original image from Flickr. Seam carving results were obtained using the publicly available implementation by Mathias Lux: http://code.google.com/p/java-imageseams/.	138
7.8	Image registration using MATLAB and the IPT.	145
7.9	Interactive image registration: (a) base image; (b) unregistered image.	145
7.10	The Control Point Selection tool.	146
7.11	Selected points.	146
8.1	The image enhancement process. Adapted and redrawn from [Umb05].	152
8.2	Basic gray-level transformation functions.	153

LIST OF FIGURES	,	xxv
LICT OF FIGURES	-	

8.3	Linear point transformations example: input image.	154
8.4	Linear point transformations and their impact on the overall brightness and contrast of an image: brightening (left), darkening (middle), and contrast reduction (right).	155
8.5	Examples of gray-level transformations for contrast enhancement. Redrawn from [GW08].	155
8.6	Autocontrast operation. Redrawn from [BB08].	156
8.7	(a) Example of an image whose original gray-level range was [90, 162]; (b) the result of applying the autocontrast transformation (equation (8.4)).	157
8.8	Examples of power law transformations for different values of γ .	158
8.9	Examples of gamma correction for two different values of γ : 0.5 (left) and 2.2 (right).	158
8.10	Example of using log transformation: (a) Fourier spectrum (amplitude only) of the rice image (available in MATLAB); (b) result of applying equation (8.6) with $c=1$ followed by autocontrast.	159
0 1 1		
8.11	Piecewise linear transformation using glsdemo.	160
8.12	Gray-level slicing using glsdemo. Original image: courtesy of MathWorks.	160
8.13	Example of using a lookup table: (a) input image; (b) transformation function specified by equation (8.7); (c) output image.	162
9.1	Example of histogram for an image with eight gray levels.	173
9.2	Examples of images and corresponding histograms. Original image in part (b): courtesy of MathWorks.	175
9.3	Transformation function used for histogram equalization.	177
9.4	Equalized histogram—graph.	178
9.5	Use of histogram equalization to improve image contrast.	179
9.6	Global versus local histogram equalization. Original image: courtesy of MathWorks.	180
9.7	Histogram matching: (a) desired (specified) histogram; (b) resulting histogram.	182
9.8	Histogram matching: (a) original image; (b) resulting image; (c) original histogram; (d) desired histogram; (e) resulting histogram.	184
9.9	Histogram sliding: (a) original image; (b) result of sliding to the right by 50; (c) result of sliding to the left by 50; (d–f) histograms corresponding to images in (a)–(c).	185
9.10	Example of using histogram stretching to improve contrast: (a) original image ($r_{min} = 129$, $r_{max} = 204$); (b) result of	

XXVI LIST OF FIGURES

	corresponding to images in (a) and (b).	186
9.11	Example of using histogram shrinking to reduce contrast: (a) original image; (b) result of shrinking using equation (9.13) with $r_{\text{min}} = 4$, $r_{\text{max}} = 254$, $s_{\text{min}} = 49$, and $s_{\text{max}} = 140$; (c and d) histograms corresponding to images in (a) and (b).	187
9.12	Gamma transformations for different values of gamma. Redrawn from [GWE04].	196
10.1	Neighborhood processing for the case of linear filtering.	205
10.2	Two-dimensional convolution example.	208
10.3	Applying different convolution masks to the same input image: (a) original image; (b–d) result of 2D convolution using the masks in Table 10.1.	209
10.4	Border geometry. Redrawn from [BB08].	211
10.5	Examples of applying the averaging filter with different mask sizes: (a) input image (899 \times 675 pixels); (b–d) output images corresponding to averaging masks of size 7×7 , 15×15 , and 31×31 .	214
10.6	A 2D Gaussian function (with $\sigma = 3$).	214
10.7	Example of using Gaussian blur filters.	217
10.7	Median filter. Redrawn from [BB08].	217
10.9	 (a) Original image; (b) image with salt and pepper noise; (c) result of 3 × 3 median filtering; (d) result of 3 × 3 neighborhood averaging. 	217
10.10	Example of using Laplacian masks to enhance an image.	221
10.11	Example of region of interest processing: (a) original image; (b) result of applying a Gaussian blur to a selected ROI; (c) result of applying a HPF to a selected ROI; (d) result of applying a Laplacian mask to a selected ROI.	222
10.12	A 3×3 image region.	224
10.13	A 3×3 mask.	225
10.14	Uniform and nonuniform averaging masks.	227
10.15	Laplacian masks that account for corner pixels (standard and composite).	230
10.16	Unsharp masking process including histogram adjustment.	230
10.17	Unsharp masking process with sharpening image.	231
10.18	Unsharp masking process using convolution mask.	232
10.19	High-boost masks with and without regard to corner pixels.	232
11.1	Frequency-domain operations.	236

LIST OF FIGURES XXVII

11.2	Two examples of response functions for frequency-domain filters: (a) low-pass filter equivalent to a 3×3 average filter in the spatial domain; (b) high-pass filter equivalent to a 3×3 composite Laplacian sharpening filter in the spatial domain.	237
11.3	Operations in a transform domain.	238
11.4	(a) Original image (256×256 pixels); (b) Fourier spectrum of the image in (a).	240
11.5	Original image (a) and its 2D FT spectrum (b); rotated image (c) and its 2D FT spectrum (d).	242
11.6	Example of using LPF to smooth false contours: (a) original image; (b) result of applying a LPF.	243
11.7	Example of using LPF for noise reduction: (a) original image; (b) result of applying a LPF.	243
11.8	Frequency response plot for an ideal LPF: (a) 3D view; (b) 2D view from the top.	244
11.9	(a) Original image (256×256 pixels); (b) Fourier spectrum of the image in (a). The rings represent cutoff frequencies for the low-pass filter examples described later.	244
11.10	(a) Original image (256×256 pixels); (b–f) ideal LPF results for filters with cutoff frequency corresponding to the radii in Figure 11.9b, namely, 8, 16, 32, 64, and 128 pixels.	245
11.11	Frequency response plot for a Gaussian LPF: (a) 3D view; (b) 2D view from the top.	246
11.12	(a) Original image (256 \times 256 pixels); (b–f) Gaussian LPF results for filters with different values for σ : 5, 10, 20, 30, and 75.	247
11.13	Frequency response plot for a Butterworth LPF of order $n = 4$: (a) 3D view; (b) 2D view from the top.	248
11.14	(a) Original image (512×512 pixels); (b–f) fourth-order Butterworth LPF results for filters with cutoff frequency corresponding to the radii in Figure 11.9b, namely, 8, 16, 32, 64, and 128 pixels.	249
11.15	Frequency response plot for an ideal HPF: (a) 3D view; (b) 2D view from the top.	250
11.16	Frequency response plot for a Gaussian HPF: (a) 3D view; (b) 2D view from the top.	250
11.17	Frequency response plot for a Butterworth HPF of order $n = 4$: (a) 3D view; (b) 2D view from the top.	251
11.18	High-frequency emphasis: (a) input image; (b) result of applying a second-order Butterworth HPF (with $D_0 = 30$) to the input image; (c) result of high-frequency emphasis with $a = 0.5$ and $b = 1$.	251

XXVIII LIST OF FIGURES

 12.2 Histograms of representative noise types: (a) Gaussian, (b) impulse (salt and pepper), (c) uniform, (d) Rayleigh, (e) gamma (Erlang), and (e) exponential. Redrawn from [Pra07]. 12.3 Test images and corresponding histograms for different types of noise: (a and b) Gaussian; (c and d) exponential; (e and f) salt and pepper. 12.4 Test images and corresponding histograms for different types of noise: (a and b) Rayleigh; (c and d) Gamma; (e and f) uniform. 12.5 Estimating noise type from a homogeneous patch within an image: (a) original image; (b) noisy image (where the rectangle indicates a manually selected patch); (c) histogram of the original image; (d) histogram of the noisy image; (e) histogram of selected patch showing clearly that the noise is of Gaussian type in this case. 12.6 (a) Original image; (b) image with Gaussian noise; (c) result of 3 × 3 arithmetic mean filtering; (d) result of 5 × 5 arithmetic mean filtering; (e) result of 3 × 3 geometric mean filtering; (f) result of 3 × 3 harmonic mean filtering. 12.7 (a) Image with salt and pepper noise; (b) result of 3 × 3 arithmetic mean filtering; (c) result of 3 × 3 geometric mean filtering; (d) result of 3 × 3 harmonic mean filtering; (e) result of 3 × 3 contraharmonic mean filtering with R = 0.5; (f) result of 3 × 3 contraharmonic mean filtering with R = -0.5. 12.8 (a) Image with salt and pepper noise; (b) result of 3 × 3 arithmetic mean filtering (for comparison); (c) result of 3 × 3
noise: (a and b) Gaussian; (c and d) exponential; (e and f) salt and pepper. 12.4 Test images and corresponding histograms for different types of noise: (a and b) Rayleigh; (c and d) Gamma; (e and f) uniform. 12.5 Estimating noise type from a homogeneous patch within an image: (a) original image; (b) noisy image (where the rectangle indicates a manually selected patch); (c) histogram of the original image; (d) histogram of the noisy image; (e) histogram of selected patch showing clearly that the noise is of Gaussian type in this case. 12.6 (a) Original image; (b) image with Gaussian noise; (c) result of 3 × 3 arithmetic mean filtering; (d) result of 5 × 5 arithmetic mean filtering; (e) result of 3 × 3 geometric mean filtering; (f) result of 3 × 3 harmonic mean filtering. 12.7 (a) Image with salt and pepper noise; (b) result of 3 × 3 arithmetic mean filtering; (c) result of 3 × 3 geometric mean filtering; (d) result of 3 × 3 harmonic mean filtering; (e) result of 3 × 3 contraharmonic mean filtering with R = 0.5; (f) result of 3 × 3 contraharmonic mean filtering with R = -0.5. 12.8 (a) Image with salt and pepper noise; (b) result of 3 × 3
 Test images and corresponding histograms for different types of noise: (a and b) Rayleigh; (c and d) Gamma; (e and f) uniform. Estimating noise type from a homogeneous patch within an image: (a) original image; (b) noisy image (where the rectangle indicates a manually selected patch); (c) histogram of the original image; (d) histogram of the noisy image; (e) histogram of selected patch showing clearly that the noise is of Gaussian type in this case. (a) Original image; (b) image with Gaussian noise; (c) result of 3 × 3 arithmetic mean filtering; (d) result of 5 × 5 arithmetic mean filtering; (e) result of 3 × 3 geometric mean filtering; (f) result of 3 × 3 harmonic mean filtering. (a) Image with salt and pepper noise; (b) result of 3 × 3 arithmetic mean filtering; (c) result of 3 × 3 geometric mean filtering; (e) result of 3 × 3 contraharmonic mean filtering with R = 0.5; (f) result of 3 × 3 contraharmonic mean filtering with R = -0.5. (a) Image with salt and pepper noise; (b) result of 3 × 3 (a) Image with salt and pepper noise; (b) result of 3 × 3
image: (a) original image; (b) noisy image (where the rectangle indicates a manually selected patch); (c) histogram of the original image; (d) histogram of the noisy image; (e) histogram of selected patch showing clearly that the noise is of Gaussian type in this case. 12.6 (a) Original image; (b) image with Gaussian noise; (c) result of 3 × 3 arithmetic mean filtering; (d) result of 5 × 5 arithmetic mean filtering; (e) result of 3 × 3 geometric mean filtering; (f) result of 3 × 3 harmonic mean filtering. 12.7 (a) Image with salt and pepper noise; (b) result of 3 × 3 arithmetic mean filtering; (c) result of 3 × 3 geometric mean filtering; (d) result of 3 × 3 harmonic mean filtering; (e) result of 3 × 3 contraharmonic mean filtering with R = 0.5; (f) result of 3 × 3 contraharmonic mean filtering with R = -0.5. 12.8 (a) Image with salt and pepper noise; (b) result of 3 × 3
3 × 3 arithmetic mean filtering; (d) result of 5 × 5 arithmetic mean filtering; (e) result of 3 × 3 geometric mean filtering; (f) result of 3 × 3 harmonic mean filtering. 12.7 (a) Image with salt and pepper noise; (b) result of 3 × 3 arithmetic mean filtering; (c) result of 3 × 3 geometric mean filtering; (d) result of 3 × 3 harmonic mean filtering; (e) result of 3 × 3 contraharmonic mean filtering with R = 0.5; (f) result of 3 × 3 contraharmonic mean filtering with R = -0.5. 12.8 (a) Image with salt and pepper noise; (b) result of 3 × 3
arithmetic mean filtering; (c) result of 3×3 geometric mean filtering; (d) result of 3×3 harmonic mean filtering; (e) result of 3×3 contraharmonic mean filtering with $R = 0.5$; (f) result of 3×3 contraharmonic mean filtering with $R = -0.5$. 12.8 (a) Image with salt and pepper noise; (b) result of 3×3
median filtering; (d) result of 3×3 midpoint filtering.
12.9 Example of an image corrupted by periodic noise: (a) noisy image; (b) periodic noise component; (c) the Fourier spectrum of the noise component (bright dots were enlarged for viewing purposes).
purposes). 12.10 Example of using a bandreject filter to reduce periodic noise: (a) noisy image; (b) noisy image spectrum (the eight spots corresponding to the noise have been made brighter and bigger for visualization purposes); (c) the Fourier spectrum of the image after applying the bandreject filter; (d) resulting image. 23. 24. 25. 26. 27. 28. 28. 29. 20. 20. 20. 20. 20. 20. 20
12.11 Example of image restoration using inverse filtering: (a) input (blurry) image; (b) result of naive inverse filtering; (c) applying a 10th-order Butterworth low-pass filter with cutoff frequency of 20 to the division; (d) same as (c), but with cutoff frequency of 50; (e) results of using constrained division, with threshold $T = 0.01$: (f) same as (e), but with threshold $T = 0.001$.

LIST OF FIGURES XXIX

12.12	Example of motion deblurring using inverse filtering: (a) input image; (b) result of applying inverse filtering with constrained division and threshold $T=0.05$: the motion blurred has been removed at the expense of the appearance of vertical artifacts.	286
12.13	Example of image restoration using Wiener filtering: (a) input image (blurry and noisy); (b) result of inverse filtering, applying a 10th-order Butterworth low-pass filter with cutoff frequency of 50 to the division; (c) results of Wiener filter, with $K = 10^{-3}$; (d) same as (c), but with $K = 0.1$.	287
12.14	Example of image restoration using Wiener filtering: (a) input (blurry) image; (b) result of inverse filtering, applying a 10th-order Butterworth low-pass filter with cutoff frequency of 50 to the division; (c) results of Wiener filter, with $K = 10^{-5}$; (d) same as (c), but with $K = 0.1$.	288
13.1	Basic set operations: (a) set A ; (b) translation of A by $x = (x_1, x_2)$; (c) set B ; (d) reflection of B ; (e) set A and its complement A^c ; (f) set difference $(A-B)$.	301
13.2	Logical equivalents of set theory operations: (a) Binary image (A) ; (b) Binary image (B) ; (c) Complement (A^c) ; (d) Union $(A \cup B)$; (e) Intersection $(A \cap B)$; (f) Set difference $(A-B)$.	302
13.3	Examples of structuring elements: (a) square; (b) cross.	302
13.4	Example of dilation using three different rectangular structuring elements.	305
13.5	Example of erosion using three different rectangular structuring elements.	308
13.6	Example of morphological opening.	311
13.7	Geometric interpretation of the morphological opening operation.	311
13.8	Example of morphological closing.	312
13.9	Geometric interpretation of the morphological closing operation. Adapted and redrawn from [GW08].	313
13.10	Example of HoM transform.	314
13.11	Morphological filtering. (a) input (noisy) image; (b) partial result (after opening) with SE of radius = 2 pixels; (c) final result with SE of radius = 2 pixels; (d) final result with SE of radius = 4 pixels.	316
13.12	Morphological algorithms. (a) input image; (b) skeleton of (a); (c) pruning spurious pixels from (b); (d) removing interior pixels from (a); (e) thickening the image in (d); (f) thinning the image in (e). Original image: courtesy of MathWorks.	318
13.13	Boundary extraction.	319
13.14	Region filling: (a) input image; (b) complement of (a); (c) partial results (numbered according to the iteration in the algorithm described by equation (13.27); (d) final result; (e) structuring	
	element.	320

XXX LIST OF FIGURES

13.13	iteration; (c) second iteration; (d) final result, showing the contribution of each iteration (indicated by the numbers inside the squares); (e) structuring element.	322
13.16	Grayscale erosion and dilation with a nonflat ball-shaped structuring element with radius 5: (a) input image; (b) result of dilation; (c) result of erosion.	323
13.17	Grayscale opening and closing with a flat disk-shaped structuring element with radius 3: (a) input image (Gaussian noise); (b) result of opening image (a); (c) result of closing image (b); (d) input image (salt and pepper noise); (e) result of opening image (d); (f) result of closing image (e).	324
13.18	Example of using top-hat and bottom-hat filtering for contrast improvement: (a) input image; (b) output image.	326
13.19	Combining two structuring elements into one for the HoM transformation.	330
14.1	Ideal and ramp edges: (a) ideal edge on a digital image and corresponding profile along a horizontal line; (b) ramp edge and corresponding profile.	337
14.2	Grayscale image containing two regions separated by a ramp edge: intensity profile and, first and second derivative results.	338
14.3	First- and second-order edge detectors with and without noise: (a) original image; (b) first derivative; (c) second derivative; (d–f) horizontal profiles for images (a)–(c); (g–i) noisy versions of images (a)–(c); (j–l) horizontal profiles for images (g)–(i).	339
14.4	Edge detection example: (a) original image; (b) result of Prewitt horizontal kernel; (c) result of Prewitt vertical kernel; (d) combination of (b) and (c).	341
14.5	Edge detection using Sobel operator: (a) original image; (b) result of Sobel horizontal kernel; (c) result of Sobel vertical kernel; (d) combination of (b) and (c).	342
14.6	Kirsch compass masks.	343
14.7	Robinson compass masks.	343
14.8	Edge detection using Sobel operator and thresholding (the original image is the same as Figure 14.5a): (a) threshold of 0; (b) threshold of 0.05; (c) threshold of 0.1138 (the best value); (d) threshold of 0.2.	344
14.9	Edge detection using the zero-cross edge detector: (a) input image (without noise); (b) results using default values; (c) results using threshold zero; (d) noisy input image; (e) results using	

LIST OF FIGURES XXXI

	default values; (f) results using threshold zero. Edge results have been inverted for clarity.	345
14.10	Laplacian of Gaussian: (a) 3D plot; (b) 2D intensity plot; (c) cross section of (a).	346
14.11	Edge detection using the LoG edge detector: (a) input image; (b) results using default values; (c) results using $\sigma = 1$; (d) results using $\sigma = 3$. Edge results have been inverted for clarity.	347
14.12	Edge detection using the Canny edge detector: (a) default values ($\sigma = 1$, $T_{\text{low}} = 0.0625$, $T_{\text{high}} = 0.1563$); (b) $\sigma = 0.5$; (c) $\sigma = 2$; (d) $\sigma = 1$, $T_{\text{low}} = 0.01$, $T_{\text{high}} = 0.1$.	349
14.13	The Hough transform maps a point into a line.	350
14.14	The Hough transform: intersections in the transform domain	
	correspond to aligned points in the image.	350
14.15	The Hough transform: a line and its parameters in the polar coordinate system.	351
14.16	Hough transform example: (a) input image; (b) results of Hough transform, highlighting the intersections corresponding to the predominant lines in the input image.	352
14.17	Hough transform example: (a) results of Hough transform highlighting the two highest peaks; (b) (negative of) edge detection results; (c) lines corresponding to the longest peaks overlaid on top of original image.	353
14.18	Kirsch masks stored in a $3 \times 3 \times 8$ matrix.	359
15.1	Test images for segmentation algorithms: (a) a <i>hard</i> test image and (b) its grayscale equivalent; (c) an easier test image (courtesy of MathWorks) and (d) the result of morphological preprocessing and thresholding.	366
15.2	The histogram for the image in Figure 15.1c: an example of histogram suitable for partitioning using a single threshold.	368
15.3	Image thresholding results for the image in Figure 15.1c using iterative threshold selection algorithm (a) and manually selected threshold (b).	370
15.4	An example of uneven illumination pattern used to generate the image in Figure 15.5a.	371
15.5	Effect of illumination (left) and noise (right) on thresholding. See text for details.	372
15.6	Local thresholding. Using a single threshold for the entire image (a) and dividing it up into six slices and choosing a different threshold for each vertical slice (b).	373
15.7	Region growing: (a) seed pixels; (b) first iteration; (c) final iteration.	375
15.8	Region growing results for two test images. See text for details.	376

XXXII LIST OF FIGURES

15.9	The quadtree data structure used in the split and merge segmentation algorithm (a) and the corresponding regions in the image (b).	377
15.10	Segmentation using the morphological watershed transform: (a) complement of the image shown in Figure 15.3; (b) distance transform; (c) watershed ridge lines; (d) result of segmentation.	380
15.11	Histogram plot with data cursor selection.	381
16.1	Spectral absorption curves of the short (S), medium (M), and long (L) wavelength pigments in human cone and rod (R) cells. Courtesy of Wikimedia Commons.	389
16.2	Additive (a) and subtractive (b) color mixtures.	389
16.3	RGB color matching function (CIE 1931). Courtesy of Wikimedia Commons.	390
16.4	XYZ color matching function (CIE 1931). Courtesy of Wikimedia Commons.	391
16.5	CIE XYZ color model.	393
16.6	Color gamut for three different devices: (a) CRT monitor; (b) printer; (c) film. The RGB triangle is the same in all figures to serve as a reference for comparison.	393
16.7	MacAdam ellipses overlapped on the CIE 1931 chromaticity diagram. Courtesy of Wikimedia Commons.	394
16.8	RGB color model.	396
16.9	RGB color cube.	397
16.10	The HSV color model as a hexagonal cone.	399
16.11	The HSV color model as a cylinder.	400
16.12	The HSV color model as a cone.	400
16.13	RGB color image representation.	402
16.14	<i>RGB</i> image and its three color components (or <i>channels</i>). Original image: courtesy of MathWorks.	403
16.15	Indexed color image representation.	404
16.16	A built-in indexed image. Original image: courtesy of MathWorks.	405
16.17	Pseudocoloring with intensity slicing.	407
16.18	An alternative representation of the intensity slicing technique for an image with <i>L</i> gray levels pseudocolored using four colors.	407
16.19	Pseudocoloring using intensity slicing: original image (a) and results of pseudocoloring using different color maps (b–d). Original image: courtesy of MathWorks.	408
16.20	Block diagram for pseudocoloring using color transformation	
	functions.	409

LIST OF FIGURES	xxxiii
-----------------	--------

16.21	(a) Block diagram for pseudocoloring in the frequency domain;(b) frequency response of the filters. Redrawn from [Umb05].	409
16.22	RGB processing.	411
16.23	Intensity processing using RGB to YIQ color space conversions.	411
16.24	Example of color histogram equalization. (a) Original image and its <i>Y</i> channel histogram; (b) output image and its equalized <i>Y</i> channel histogram. Original image: courtesy of MathWorks.	413
16.25	Spatial convolution masks for grayscale and RGB color images.	413
16.26	Thresholding in RGB space.	415
16.27	Defining spherical (ellipsoidal) regions in RGB space.	416
16.28	Example of color segmentation using requantization.	416
16.29	Another example of color segmentation using requantization: (a) original image; (b) requantized image with two color levels; (c) requantized image with five color levels.	417
16.30	Color edge detection example: (a) original image; (b) grayscale equivalent; (c) edge detection on (b); (d) edge detection on individual RGB components; (e) edge detection on Y component only; (f) edge detection on V component only.	418
17.1	Two ways to represent the same information using different amounts of data. See text for details.	429
17.2	A general image encoding and decoding model.	431
17.3	Source encoder.	431
17.4	Lossless predictive encoder.	433
17.5	Transform coding diagram.	434
17.6	JPEG encoder and decoder.	436
17.7	Measuring objective image quality after compression: (a) original; (b) compressed version of (a) (using quality factor = 90), $e_{\rm rms} = 2.1647$, PSNR = 41.4230 dB; (c) compressed version of (a) (using quality factor = 5), $e_{\rm rms} = 7.6188$, PSNR = 30.4931 dB.	441
17.8	The problem of poor correlation between objective and subjective measures of image quality: (a) original; (b) blurred version of (a) (using a 5×5 average filter), $e_{\rm rms} = 0.0689$, PSNR = 71.3623 dB; (c) partially blurred version of (a) (after applying a severe blurring filter only to a small part of the image),	
	$e_{\rm rms} = 0.0629$, PSNR = 72.1583 dB.	442
18.1	Test image (a) and resulting 2D feature vectors (b).	449
18.2	Axis of least second moment.	451
18.3	Horizontal and vertical projections.	452

XXXIV LIST OF FIGURES

18.4	Examples of two regions with Euler numbers equal to 0 and -1 , respectively.	453
18.5	Examples of a compact (a) and a noncompact (b) regions.	454
18.6	Eccentricity (A/B) of a region.	454
18.7	Elongatedness (a/b) of a region.	455
18.8	Tracing boundaries of objects.	459
18.9	Tracing boundaries of objects and holes.	459
18.10	Chain code and Freeman code for a contour: (a) original contour; (b) subsampled version of the contour; (c) chain code representation; (d) Freeman code representation.	460
18.11	Chain code, first differences, and shape number.	461
18.12	Distance × angle signatures for two different objects. Redrawn from [GW08].	462
18.13	Effect of noise on signatures for two different objects. Redrawn from [GW08].	462
18.14	Fourier descriptor of a boundary.	463
18.15	Example of boundary reconstruction using Fourier descriptors: (a) original image; (b–f) reconstructed image using 100%, 50%, 25%, 2.5%, and 1% of the total number of points, respectively.	464
18.16	Example of images with smooth (a), coarse (b), and regular (c) texture. Images from the Brodatz textures data set. Courtesy of http://tinyurl.com/brodatz.	466
18.17	Histograms of images in Figure 18.16.	467
18.18	An image (a) and its cooccurrence matrix for $\mathbf{d} = (0, 1)$ (b).	468
18.19	An image (a) and its cooccurrence matrix for $\mathbf{d} = (1, 0)$ (b).	468
18.20	Test images for this tutorial: (a) steps 1–6; (b) step 7; (c) step 11.	470
19.1	Diagram of a statistical pattern classifier. Redrawn from [SS01].	476
19.2	The interplay between feature extraction, feature selection, and pattern classification as a function of the application at hand. Adapted and redrawn from [Umb05].	477
19.3	Example of two classes (<i>sumo wrestlers</i> —red circles—and <i>table tennis players</i> —blue diamonds) described by two measurements	450
	(weight and height).	479
19.4	Example of 4×4 confusion matrix.	481
19.5	Example of ROC curve.	482
19.6	Example of precision–recall (PR) graph.	484
19.7	Precision–recall graph for Example 19.4.	485
19.8	Discrimination functions for a three-class classifier in a 2D feature space.	487

LIST OF FIGURES	XXXV
	LIST OF FIGURES

19.9	Example of two classes and their mean vectors.	489
19.10	Example of three classes with relatively complex structure.	489
19.11	 (a) Example of a KNN classifier (k = 1) for a five-class classifier in a 2D feature space (obtained using the STPRTool toolbox). (b) Minimum distance classifier results for the same data set. 	490
19.12	Feature space for training set. Obtained using the <i>Statistical Pattern Recognition Toolbox (STPRtool)</i> , available at http://cmp.felk.cvut.cz/cmp/software/stprtool/.	493
19.13	Confusion matrix with results of KNN classifier for the selected features. Obtained using the <i>Statistical Pattern Recognition Toolbox (STPRtool)</i> , available at http://cmp.felk.cvut.cz/cmp/software/stprtool/.	495
19.14	Number of Confusion matrix with results of KNN classifier for the case where the images' gray values are used as "features." Obtained using the <i>Statistical Pattern Recognition Toolbox</i> (<i>STPRtool</i>), available at http://cmp.felk.cvut.cz/cmp/software/stprtool/.	
19.15	Confusion matrix for Problem 19.1.	497
20.1	Scanning raster. Redrawn from [LI99].	502
20.2	Scan and retrace: (a) progressive scan (dashed lines indicate horizontal retrace); (b) interlaced scan (solid and dashed lines represent even and odd fields, respectively). Adapted and redrawn	
	from [WOZ02].	503
20.3	Aspect ratios of SDTV, HDTV, and film. Redrawn from [Poy03].	505
20.4	Gamma correction in video and TV systems: (a) composite video; (b) component video.	506
20.5	Typical interlaced video raster. Redrawn from [WOZ02].	508
20.6	Fine-grained frequency spectrum of a monochrome analog video signal. Redrawn from [LI99].	509
20.7	NTSC spectrum, showing how luminance (Y) and chrominance $(I \text{ and } Q)$ signals are interleaved. Redrawn from [LD04].	512
20.8	Sampling in the horizontal, vertical, and temporal dimensions. Redrawn from [Poy03].	515
20.9	Analog-to-digital converters for composite (top) and component (bottom) video. Redrawn from [LI99].	517
20.10	Location of sampling points in component video signals. Redrawn from [LI99].	518
20.11	Assignment of quantization levels for component and composite video. Redrawn from [LI99].	519
20.12	The most common chroma subsampling patterns: 4:4:4, 4:2:2, and 4:2:0.	520

XXXVI LIST OF FIGURES

20.13	525/59.94/2:1 (a) and 625/50/2:1 (b) variants. Redrawn from [WOZ02].	523
20.14	Visual representation of a YUV file.	534
21.1	The deinterlacing process. Fields t and $t+1$ form one interlaced frame.	544
21.2	A practical method for converting PAL to NTSC formats.	545
21.3	3:2 pull-down. Redrawn from [Ack01].	547
21.4	The problem of judder in telecine using 3:2 pull-down. Redrawn from [Wat94b].	548
22.1	Two frames at different time instants $(t_1 \text{ and } t_1 + \Delta_t)$ and the resulting optical flow. Redrawn from [SHB08].	562
22.2	The aperture problem.	563
22.3	Motion compensation: interpolation axes are aligned with each moving object. Redrawn from [Wat94b].	565
22.4	Anchor and target frames in forward and backward motion estimation.	565
22.5	Motion estimation methods: (a) global; (b) pixel-based; (c) block-based; (d) object-based.	566
22.6	Exhaustive search block matching algorithm (EBMA).	568
22.7	Block matching with half-pixel accuracy. The MV in this case is (1, 1.5). Redrawn from [WOZ02].	569
22.8	EBMA example: (a) target frame; (b) anchor frame; (c) motion field overlapped on anchor frame; (d) reconstructed frame.	570
22.9	2D log search. In this case, the final MV is $(-6, 2)$. Redrawn from [MPG85].	571
22.10	Three-step search. In this case, the final MV is $(-6, 2)$. Redrawn from [MPG85].	572
22.11	Hierarchical block matching algorithm (HBMA) using three levels. Redrawn from [WOZ02].	572
22.12	Object detection and tracking system.	577
22.13	Keeping track of existing and candidate objects.	578
22.14	Updating the coordinates of an existing object.	578
22.15	Screenshot of the object detection and tracking system, showing the bounding box of an object being tracked, its trajectory since it started being tracked, and its properties (on a separate window).	579
A.1	Simplified view of the connection from the eye to the brain via the optic nerve. Adapted and redrawn from [Umb05].	592
A.2	The eye: a cross-sectional view. 1, sclera; 2, ciliary body; 3, iris; 4, pupil and anterior chamber filled with aqueous humor;	

LIST OF FIGURES XXXVII

	5, optical axis; 6, line of sight; 7, cornea; 8, crystalline lens; 9, choroid; 10, optic nerve; 11, optic disk; 12, fovea; 13, retina; 14,	502
	vitreous humor.	593
A.3	The eye-camera analogy. Adapted and redrawn from [Pal99].	593
A.4	Dark adaptation. Adapted and redrawn from [Pal99].	594
A.5	Distribution of rods and cones in the human retina for the right eye (seen from the bottom). Adapted and redrawn from [Ost35].	595
A.6	EIA 1956 standard test pattern. Courtesy of http://www.bealecorner.com/ trv900/respat/.	596
A.7	Angular frequency concept.	597
A.8	Sinusoidal gratings commonly used for measures of resolution—based on MATLAB code by Alex Petrov:	597
	http://alexpetrov.com/softw/utils/.	391
A.9	Viewing distance for SDTV and HDTV displays. Adapted and redrawn from [Poy03].	599
A.10	Picture (viewing) angles for SDTV and HDTV displays. Adapted and redrawn from [Poy03].	600
A.11	(a) The definition of contrast index; (b) A test image with constant CI results in an output image with falling CI; (c) modulation transfer function: the ratio of output and input CIs. Note: When LF response is unity, CI and MTF are	
A.12	interchangeable. Redrawn from [Wat00]. Range of subjective brightness sensations showing a particular adaptation level. Redrawn from [GW08].	601
A.13	Simultaneous contrast: the center square is perceived as progressively darker as the background becomes brighter (from	
	(a) to (d)) even though it is identical in all four cases.	602
A.14	Mach bands.	603
A.15	Contrast sensitivity test pattern.	603
A.16	Contrast sensitivity function for various retinal illuminance values (expressed in Td). Redrawn from [VNB67].	604
A.17	Temporal frequency response of the HVS. Redrawn from [Kel61].	606
A.18	Spatiotemporal frequency response of the HVS: (a) spatial frequency responses for different temporal frequencies (in cpd); (b) temporal frequency responses for different spatial (angular) frequencies (in Hz). Redrawn from [Rob66].	607
A.19	Temporal frequency as a function of eye movements. Redrawn	
	from [Wat00].	608
B.1	System control diagram.	615
B.2	Variable stack.	616

LIST OF TABLES

3.1	MATLAB Data Classes	37
3.2	MATLAB Array and Matrix Arithmetic Operators	40
3.3	Examples of MATLAB Specialized Matrix Operations	41
3.4	Specialized Arithmetic Functions Supported by the IPT	41
3.5	Relational Operators	41
3.6	Logical Operators	42
3.7	Logical Functions	42
3.8	Selected Built-In Variables and Constants	42
4.1	IPT Functions to Perform Image Data Class Conversion	65
4.2	IPT Functions to Perform Image Data Class Conversion	68
7.1	Summary of Transformation Coefficients for Selected Affine Transformations	128
8.1	Examples of Linear Point Transformations (Images and Curves in Figure 8.4)	154
9.1	Example of a Histogram	172
9.2	Equalized Histogram: Values	178
9.3	Desired Histogram	182
9.4	Direct Histogram Specification: Summary	183
9.5	Resulting Histogram	184
10.1	Examples of Convolution Masks	209

XI LIST OF TABLES

13.1	Operations Supported by bwmorph	317
16.1	IPT Functions for CIE XYZ and CIELAB Color Spaces	395
16.2	IPT Functions for ICC Profile Manipulation	395
16.3	<i>R</i> , <i>G</i> , and <i>B</i> Values for Eight Representative Colors Corresponding to the Vertices of the <i>RGB</i> Cube	397
16.4	Color Maps in MATLAB	404
17.1	Objective Quality Measures for Three JPEG Images with Different Quality Factors	440
17.2	Compression Ratio for Five JPEG Images with Different Quality Factors	444
17.3	Objective Quality Measures for Five JPEG Images with Different Quality Factors	444
18.1	RST-Invariant Moments	456
18.2	Properties of Labeled Regions	457
18.3	Statistical Texture Descriptors for the Three Images in Figure 18.16	467
18.4	Statistical Texture Descriptors for the Three Images in Figure 18.16	470
18.5	Table for Feature Extraction Results	471
20.1	Parameters of Analog Color TV Systems	514
20.2	Representative Digital Video Formats	522
20.3	ITU-R Recommendation BT.601-5 Parameters	523
20.4	Intermediate Formats	524

FOREWORD

In packing for an office move earlier this year, I was struck by how many of my books (in many cases books sent to me free by their publishers for evaluation and potential use) were knockoffs: books that repackaged material that had been thoroughly consolidated in good textbooks years or even decades ago. Oge Marques' textbook is not a knockoff, even though much its subject matter has been around for years. It is a thoughtful and original compilation of material that is highly relevant today for students of imaging science, imaging technology, image understanding, and, foremost, image processing.

Imaging is my principal field of expertise. My interest in this book is great because imaging and image processing have grown together in recent years. Some forms of imaging—computational imaging is the buzzword that comes first to mind—presume that there will be (must be, in fact) postdetection processing of the raw information collected by the sensor system. Indeed, the sensor may output something that makes little or no sense to the observer in the absence of critical postprocessing operations.

Ultimately, in commercial mass-produced systems, image processing is implemented by specialized hardware. In the research and development stages of an imaging system, however, the processing is almost certain to be implemented using MATLAB[®]. Marques' book addresses this fact by linking directly to MATLAB[®] the many processing operations that are described.

There are of course numerous texts that describe digital image processing operations and algorithms. None, however, emphasizes as this one does the human vision system and the interaction and intercomparison between that system and machine vision systems.

The book contains a wealth of practical material and an invaluable up-to-date list of references, including journals, periodicals, and web sites. I would hope that the

xlii FOREWORD

book sees subsequent editions, with correspondingly updated lists. Also invaluable to the teacher is the inclusion, now characteristic of many contemporary textbooks, of concise chapter summaries that address the question "What have we learned?" Tutorials punctuate the text, taking the students through important material in an active-learning process.

I write this foreword not just because I think this book addresses its intended image processing audience well but also because I see it influencing the thinking of my own students, students interested in imaging systems from a physics and technological standpoint but who must understand the relationship between imaging systems and image processing systems.

WILLIAM T. RHODES

William T. Rhodes is Emeritus Professor of Electrical & Computer Engineering at Georgia Institute of Technology. In 2005 he joined the Electrical Engineering faculty at Florida Atlantic University and became Associate Director of that university's Imaging Technology Center. A Fellow of the Optical Society of America and of the SPIE, he is editor-in-chief of the Springer Series in Optical Sciences and editor-in-chief of the online journal *SPIE Reviews*.

PREFACE

The prospect of using computers to emulate some of the attributes of the human visual system has attracted the interest of scientists, engineers, and mathematicians for more than 30 years, making the field of image processing one of the fastest-growing branches of applied computer science research. During the past 15 years, the fields of image and video processing have experienced tremendous growth and become more popular and accessible. This growth has been driven by several factors: widely available and relatively inexpensive hardware; a variety of software tools for image and video editing, manipulation, and processing; popularization of the Web and its strong emphasis on visual information, a true revolution in photography that has rendered film-based cameras all but obsolete; advances in the movie industry; and groundbreaking changes on the way we watch, record, and share TV programs and video clips.

APPROACH

This book provides a practical introduction to the most important topics in image and video processing, using MATLAB® (and its Image Processing Toolbox) as a tool to demonstrate relevant techniques and algorithms. The word *Practical* in its title is not meant to suggest a coverage of all the latest consumer electronics products in these fields; this knowledge would be superficial at best and would be obsolete shortly after (or even before!) the publication of the book. The word *Practical* should rather be interpreted in the sense of "enabling the reader/student to develop practical projects, that is, working prototypes, using the knowledge gained from the book." It also has other implications, such as the adoption of a "just enough math" philosophy,

XIIV PREFACE

which favors the computational, algorithmic, and conceptual aspects of the techniques described along the book, over excessive mathematical formalism.

As a result, the book should appeal not only to its original target audience when used as a textbook (namely, upper-level undergraduate and early graduate students in Computer Science, Computer Engineering, Electrical Engineering, and related courses) but also to researchers and practitioners who have access to MATLAB®, solid computing/programming skills, and want to teach themselves the fundamentals of image and video processing.

KEY FEATURES

- This is the first book to combine image processing, video processing, and a
 practical, MATLAB®-oriented approach to experimenting with image and video
 algorithms and techniques.
- Complete, up-to-date, technically accurate, and practical coverage of essential topics in image and video processing techniques.
- 37 MATLAB® tutorials, which can be used either as step-by-step guides to exploring image and video processing techniques using MATLAB® on your own or as lab assignments by instructors adopting the textbook.
- More than 330 figures and 30 tables illustrating and summarizing the main techniques and concepts described in the text.
- This book adopts a "just enough math" philosophy. Many students are intimidated by image and video processing books with heavy emphasis on the mathematical aspects of the techniques. This book addresses this issue by offering the minimal mathematical treatment necessary to fully understand a technique without sacrificing the integrity of its explanation.
- The book emphasizes and encourages practical experimentation. After presenting a topic, it invites the readers to play on their own, reinforcing and expanding what they have just learned and venturing into new avenues along the same theme.
- The book has been designed to answer the most basic questions a student/reader
 is likely to have when first presented with a topic. It builds on my experience
 teaching image and video processing courses for 20 years, and the insights
 acquired along the way.
- The book includes many extra features to reinforce the understanding of its topics and allow the reader to learn more about them, such as exercises and programming projects, useful Web sites, and an extensive list of bibliographical references at the end of the chapters.

A TOUR OF THE BOOK

This book has been organized into two parts: *Image Processing* and *Video Processing*.

PREFACE XIV

Part I (Image Processing) starts with an introduction and overview of the field (Chapter 1) that should motivate students to devote time and effort to the material in the remaining chapters. Chapter 2 introduces the fundamental concepts, notation, and terminology associated with image representation and basic image processing operations. Chapters 3 and 4 are devoted to MATLAB® and its Image Processing Toolbox, respectively, and establish the beginning of a series of chapters with handson activities, presented in the form of step-by-step tutorials at the end of each chapter from this point onward (except Chapter 5). Chapter 5 discusses the factors involved in image acquisition and digitization. Chapter 6 presents arithmetic and logic operations and introduces region of interest (ROI) processing. Chapter 7 covers geometric operations, such as resizing, rotation, cropping, and warping. Chapters 8–10 are devoted to point-based (Chapter 8), histogram-based (Chapter 9), and neighborhood-based (Chapter 10) image enhancement techniques. Chapter 11 extends the reach of image processing operations to the frequency domain and presents the Fourier transform and relevant frequency-domain image filtering techniques. Solutions to the problem of image restoration—particularly in cases of noise and blurring—are discussed in Chapter 12. Chapter 13 presents a detailed coverage of mathematical morphology and its use in image processing. Chapter 14 is devoted to edge detection techniques. Chapter 15 covers image segmentation. Chapter 16 transitions from grayscale to color images and presents representative color image processing techniques and algorithms. Image compression and coding, including the most recent and relevant standards, are the subject of Chapter 17. Chapter 18 looks at the problem of feature extraction and representation and leads naturally to Chapter 19 where the resulting feature vectors could be used for classification and recognition purposes.

Part II (Video Processing) starts by presenting the main concepts and terminology associated with analog video signals and systems and digital video formats and standards (Chapter 20). It then proceeds to describe the technically involved problem of standards conversion (Chapter 21). Chapter 22 discusses motion estimation and compensation techniques, shows how video sequences can be filtered, and concludes with an example of a simple solution to the problem of object detection and tracking in video sequences using MATLAB[®].

The book contains two appendices. Appendix A presents selected aspects of the human visual system that bear implications in the design of image and video processing systems. Appendix B provides a tutorial on how to develop graphical user interfaces (GUIs) in MATLAB[®].

NOTES TO INSTRUCTORS

This book can be used for upper-level undergraduate or introductory graduate courses in image and video processing, for one or two semesters. Most of the material included in this book has been extensively tested in many such courses during the past 20 years. The following is a summary of recommendations for instructors adopting this textbook.

XÍVÍ PREFACE

Part I is organized around a typical machine vision system, from image acquisition to pattern classification. All chapters (except Chapters 16 and 17) in Part I follow a natural logic sequence, which covers all the steps involved in acquiring images, preprocessing them to remove imperfections or improve their properties, segmenting them into objects of interest, extracting objects' features, and classifying the objects into categories. The goal of Chapter 1 is to provide breadth, perspective, early examples of what can be achieved with image processing algorithms, and a systemic view of what constitutes a machine vision system. Some instructors may want to combine this information with the material from Chapter 2 as they introduce the topic early in their courses.

The material from Chapters 3 and 4 has been carefully selected to make the book self-contained, providing students all the MATLAB® and Image Processing Toolbox information they might need for the corresponding tutorials. Readers will likely keep these two chapters for future reference should they ever require MATLAB®-related help later in the course. Instructors with limited lecture time may choose to cover both chapters briefly, assign the corresponding tutorials, and monitor students' progress as they work on the tutorials and answer the associated questions.

Chapter 5 briefly introduces the topic of image sensing and acquisition. Its main goal is to equip the reader with information on the steps needed to convert a three-dimensional (3D) real-world scene into a two-dimensional (2D) digitized version of it. Instructors teaching courses with a strong emphasis on image capture and acquisition hardware may want to supplement this material with detailed references, for example, on sensors that operate outside the visible spectrum, stereo-mounted cameras, camera calibration, and many other topics.

Chapters 6–10 are straightforward and cover essential topics in any image processing class. They also provide room for many interesting discussions, lab assignments, and small projects.

Chapter 11 may be a bit challenging to some students, due to the mathematical formalism associated with the Fourier transform. Instructors may find the interactive MATLAB® frequency-domain demo (fddemo) introduced in that chapter a valuable tool to develop students' confidence on their understanding of the basic concepts of frequency-domain filtering techniques. Chapter 12 builds on the knowledge from Chapters 10 and 11, with focus on noise reduction and deblurring techniques. Some instructors may prefer to tone down the discussion of noise models (Sections 12.1 and 12.2) and present the techniques described in Sections 12.3–12.5 earlier on as applications of spatial-domain and frequency-domain filtering techniques.

Chapter 13 is self-contained, which gives instructors the flexibility to adjust their level of coverage—from skipping it altogether, to covering it in detail—without major impact on the other topics in their courses.

Chapters 14 and 15 provide introductory coverage of two essential topics in any image processing course. Instructors who want to present some of these contents earlier in the course or in a different sequence should be able to easily extract the associated sections and move them to a different point in time.

Chapter 16 comprises information on color image processing and is somehow related to earlier chapters (particularly, those on enhancement, segmentation, and edge

PREFACE XIvii

extraction). We have made a conscious decision of keeping color in a separate chapter rather than spreading color image processing throughout the text. We believe that by the time readers reach Chapter 16, they will be able to easily navigate through its contents focusing on the differences between what they learned earlier for grayscale images and later for their color equivalent. Instructors who do not agree with this decision can easily bring sections of Chapter 16 to an earlier point in their courses.

Chapter 17 deals with image compression and coding, very extensive and technically complex topics upon which entire books have been written. Since the focus of the book is on building *practical* image processing and machine vision solutions using MATLAB®, we decided to approach the topic of image coding and compression from a broad perspective (standards in use today, categories of compression techniques and their chief characteristics, etc.) instead of attempting to embed a deeper discussion of these topics that could be potentially distracting and would most likely add little value. From a pragmatic viewpoint, since the reader's goal is to process images using MATLAB® and its rich capabilities for reading and writing images from/to a wide variety of formats (most of which use some type of compression), we focused on how to use these capabilities in a meaningful way. Instructors may want to proceed in different ways, depending on their goals, ranging from expanding the material in Chapter 17 with additional references (if image coding and compression is an important part of their course syllabus) to skipping the chapter altogether (if the course's main goal is to build a machine vision solution to a practical problem, which probably would not require that type of knowledge).

Chapters 18 and 19 are tightly interrelated. They provide the information needed to design and implement two of the most critical stages of image processing and machine vision solutions: feature extraction and pattern classification. Chapter 18 offers a wide array of choices for feature extraction and representation techniques, depending on the type of image and the specific needs of the solution being designed. Instructors may appreciate the fact that Chapter 19 provides all the basic concepts that students may need from the associated fields of pattern recognition, data mining, and information retrieval, without requiring additional references. This is particularly important if the course does not enforce prerequisites in any of these areas. The tutorial at the end of Chapter 19 was created to put the selection, design, and fine-tuning of the algorithms presented in Chapters 18 and 19 under perspective. It is my hope that at this point in the book, students will not only be fluent in MATLAB® and image processing but will also have acquired the ability to look back and reflect critically on what works, what does not, and why.

Part II is organized in three chapters, which can be used in the later part of a one- or two-semester course that combines image and video processing or at the early stages of course devoted exclusively to video processing. In the latter case, the instructor may want to supplement the material in Part II with additional references (e.g., scholarly papers in video processing and related topics in the case of graduate-level courses).

Chapter 20 covers a very broad range of topics, from basic analog video concepts to digital video standards and codecs. It offers room for expansion in multiple directions, from a deeper study of TV broadcasting systems to a more detailed analysis of contemporary video compression schemes and standards. Chapter 21 covers

XIVIII PREFACE

the topic of standards conversion and discusses the most popular techniques used to accomplish it. Chapter 22 expands the discussion to include motion estimation and compensation, as well as (interframe and intraframe) video filtering techniques. It concludes with a practical project implemented in MATLAB® by one of my former students: an object detection and tracking system in video sequences with fixed camera and moving, complex, background. The goal of including this case study is to conclude the discussion of Part II (and the book) reminding the reader that at this point they should be knowledgeable enough to attempt similar projects (which instructors may assign as end-of-course projects).

The material in Appendix A is very relevant to image and video processing systems because it explains the relationship between properties of the human visual system and their impact on design decisions involved in building such systems. Some instructors may choose to present (part of) it earlier in their courses.

Appendix B is a practical guide to the development of GUIs for MATLAB® applications. It should empower students to develop visually attractive, interactive, and functional interfaces to their MATLAB® projects.

A note about MATLAB[®] and the tutorials at the end of chapters. Having used MATLAB[®] (and its Image Processing Toolbox) for more than a decade, I whole-heartedly agree with Rudra Pratap [Pra02] who wrote, "MATLAB[®]'s ease of use is its main feature." MATLAB[®] has a shallow learning curve, which allows the user to engage in an interactive learning style that accommodates the right degree of challenge needed to raise the user's skills by a certain amount, and so on, in a staircase-like progression. The MATLAB[®] tutorials included in this book have been conceived under this philosophy.

Web site

The book's companion web site (http://www.ogemarques.com) contains many supplementary materials for students and instructors: MATLAB® code for all tutorials in the book, MATLAB® code for selected figures, test images and video sequences, supplementary problems, tutorials, and projects (that could not make it to the printed version), and an ever-growing and frequently maintained list of useful web sites—including (links to) image processing conferences, software, hardware, research groups, test image databases, and much more.

OGE MARQUES

ACKNOWLEDGMENTS

I am deeply grateful to many people who have collaborated—directly or indirectly—on this project. This book would not have been possible without their help.

I want to thank many inspiring professors, supervisors, and colleagues who have guided my steps in the fields of image and video processing and related areas, particularly Maria G. Te Vaarwerk, Wim Hoeks, Bart de Greef, Eric Persoon, John Bernsen, Borko Furht, and Bob Cooper.

A very special thank you to my friend and colleague Hugo Vieira Neto, who has been a great supporter of this project from its early planning stages to its completion.

I am deeply indebted to Gustavo Benvenutti Borba for his excellent work in the creation of most of the figures in this book, his insightful reviews and comments, and continuous encouragement, investing many hours of his time in return for not much more than these few lines of thanks.

Many thanks to Liam M. Mayron for his encouragement, support, and expert help throughout all the steps of this project.

This book could not have been produced without the invaluable contributions of Jeremy Jacob, who wrote, revised, and documented most of the MATLAB® code associated with the book and its tutorials and also contributed the contents for Appendix B.

Special thanks to the MathWorks Book Program (Courtney Esposito, Naomi Fernandes, and Meg Vulliez) for their support over the years.

Several friends and colleagues reviewed draft versions of selected portions of the text: Liam M. Mayron, Hugo Vieira Neto, Mathias Lux, Gustavo Benvenutti Borba, Pierre Baillargeon, Humberto Remigio Gamba, Vladimir Nedovic, Pavani Chilamakuri, and Joel Gibson. I would like to thank them for their careful reviews and insightful comments and suggestions. I have done my best to correct the mistakes

I ACKNOWLEDGMENTS

they pointed out and improve the contents of the book according to their suggestions. If any error remains, it is entirely my responsibility, not theirs. If you should find any errors, please e-mail me at omarques@ieee.org, and I will correct them in future printings of this book.

My biggest thanks to my publisher George J. Telecki and his wonderful staff at John Wiley & Sons, Inc. who have patiently worked with me throughout the lifetime of this project: Lucy Hitz, Rachel Witmer, and Melissa Valentine. Their kindness and professionalism have made the creation of this book a very enjoyable process.

Thanks to Amy Hendrickson (TeXnology Inc.) for her expert help with LATEX issues.

I am also indebted to Roger Dalal who designed the inspiring cover art for the

Last but certainly not least, I want to thank my family for their unfailing love, patience, and understanding.

Oge Marques