The Pumping Lemma

Some languages are not regular languages. The *pumping lemma* can be used to show this. It uses proof by contradiction and the pigeonhole principle.

Application of pigeonhole principle: If a string is as long or longer than the number of states in a DFA, then some state is visited more than once.

Application of proof by contradiction: Assume L corresponds to some DFA M. Let m be the number of states in M. Create a long string $w \in L$. Show that if M accepts w, then M must accept some string $w' \notin L$. This contradicts assumption that $\mathcal{L}(M) = L$.

Proof of the Pumping Lemma

Theorem: Let L be a regular language. There exists a number m, for all w, if $|w| \ge m$ and $w \in L$, then there exists x, y, z such that

$$w=xyz$$
, and $|xy| \le m$, and $|y| \ge 1$, and $xy^*z \subseteq L$, i.e., $xy^iz \in L$ for all $i \ge 0$

Proof: Let M be a DFA such that $L = \mathcal{L}(M)$. Let m be the number of states in M. Suppose $|w| \geq m$ and $w \in L$. Then a repetition of states in first m symbols. Let w = xyz, where $\delta^*(q_0, x) = \delta^*(q_0, xy)$ Clearly, any xy^i leads to the same state, from which z leads to the final state.

Using the Pumping Lemma

$$L_1 = \{a^n b^n : n \ge 0\}$$

Suppose a DFA M_1 accepts L_1 .

Let m be the number of states in M_1 .

Choose $w = a^m b^m$.

 M_1 must repeat states reading a^m .

By the PL, if M_1 accepts $a^m b^m$, then M_1 accepts strings with more a's without changing the number of b's.

Contradicts assumption that M_1 accepts L_1 .

$$L_2 = \{a^l b^n : l \ge n\}$$

Suppose a DFA M_2 accepts L_2 .

Let m be the number of states in M_2 .

Choose $w = a^m b^m$.

 M_2 must repeat states reading a^m .

By the PL, if M_2 accepts $a^m b^m$, then M_2 accepts one string with fewer a's without changing the number of b's.

Contradicts assumption that M_2 accepts L_2 .

$$L_3 = \{ww^R : w \in \{a, b\}^*\}$$

Suppose a DFA M_3 accepts L_3 .

Let m be the number of states in M_3 .

Choose $w = a^m bba^m$.

 M_3 must repeat states reading a^m .

By the PL, if M_3 accepts a^mbba^m , then M_3 accepts strings with more a's on the left without changing the number of a's on the right.

Contradicts assumption that M_3 accepts L_3 .

$$L_4 = \{a^{2^k} : k \ge 0\}$$

Suppose a DFA M_4 accepts L_4 .

Let m be the number of states in M_4 .

Choose $w = a^{2^n}$, where $2^n > m$.

 M_4 must repeat states reading first m a's

By the PL, if M_4 accepts a^{2^n} , then M_4 accepts a string with 1 to m more a's.

However $2^n < 2^n + m < 2^{n+1}$, i.e., the number of a's won't be a power of 2.

Contradicts assumption that M_4 accepts L_4 .

 $L_5 = \{a^n : n \text{ is not a power of } 2\}$ If L_5 was regular, then $\overline{L_5} = L_4$ would be regular, which is a contradiction.