Lista 3 zadanie 8

Wiktor Hamberger 308982

28 kwietnia 2020

Idea rozwiązania tego zadania jest mocno wzorowana na scalaniu posortowanych tablic w algorytmie sortowania przez scalanie. Skoro po scaleniu T_1, T_2, T_3 nasza mediana znajdzie się na pozycji $\lceil \frac{3n}{2} \rceil$ (każda z tablic ma n elementów), to oznacza że przy scalaniu tych tablic w "mergesortowy" sposób, po wybraniu $\lceil \frac{3n}{2} \rceil$ najmniejszych elementów dostastaniemy medianę – będzie ona $\lceil \frac{3n}{2} \rceil$ -szym najmniejszym elementem, więc nawet nie musimy przeglądać wszystkich tablic do końca. Dodatkowo, żeby zaoszczędzić pamięć, nie potrzebujemy nigdzie zapisywać scalonej tablicy – interesuje nas tylko konkretny element, więc jedyne co będziemy musieli pamiętać, T_1, T_2, T_3 , to trzy wskaźniki/indeksy, które będą nam mówiły, na jakim etapie przetwarzania tych tablic jesteśmy oraz jedną zmienną pamiętającą ile elementów musimy jeszcze przejść, żeby uzyskać medianę.

```
 \begin{array}{lll} \textbf{Data:} & T_{1}, T_{2}, T_{3} - \text{tablice, n - rozmiar tablic} \\ \textbf{Result:} & \text{Mediana } \{T_{1}, T_{2}, T_{3}\} \\ \textbf{Function} & \textit{mediana}(T_{1}, T_{2}, T_{3}, n) \text{ is} \\ & | i_{1} := 0 \\ & i_{2} := 0 \\ & i_{3} := 0 \\ & \text{while } i_{1} + i_{2} + i_{3} < \lceil \frac{3n}{2} \rceil \text{ do} \\ & | \text{if } T_{1}[i_{1}] \leq T_{2}[t_{2}] \text{ and } T_{1}[i_{1}] \leq T_{3}[t_{3}] \text{ and } i_{1} < n \text{ then} \\ & | i_{1} + = 1; \\ & \text{else if } T_{1}[i_{1}] \leq T_{2}[t_{2}] \text{ and } T_{1}[i_{1}] \leq T_{3}[t_{3}] \text{ and } i_{1} < n \text{ then} \\ & | i_{2} + = 1; \\ & \text{else} \\ & | i_{3} + = 1; \\ & \text{end} \\ & \text{end} \\ & \text{return } \min(T_{1}[i_{1}], T_{2}[i_{2}], T_{3}[i_{3}]) \\ \text{end} \\ \end{array}
```

Zmienne i_1, i_2, i_3 oznaczają ile elementów z każdej tablicy "wzięliśmy" do naszej scalonej, posortowanej tablicy. W każdym obrocie pętli wybieramy najmniejszy spośród $T_1[i_1], T_2[i_2], T_3[i_3]$, myślimy o nim jak o elemencie włożonym do scalonej tablicy i zwiększamy odpowiednie i_k . Skoro suma $i_1 + i_2 + i_3$

oznacza ile elementów sumarycznie włożyliśmy do scalonej tablicy, to medianę znajdziemy gdy będziemy próbowali scalić element o numerze $\lceil \frac{3n}{2} \rceil$, dlatego też przed nim kończymy pętlę i wybieramy do zwrócenia minimum spośród $T_1[i_1], T_2[i_2], T_3[i_3]$.

Dowód poprawności

Załóżmy że liczba m którą zwrócił nasz algorytm nie jest medianą, jest nią natomiast liczba p. Musi więc zachodzić m < p lub m > p.

- m<p: Z działania algorytmu i faktu posortowania tablic wiemy, że w T_1, T_2, T_3 istnieje conajmniej $\lceil \frac{3n}{2} \rceil 1$ liczb mniejszych lub równych m, więc jest tam conajmniej $\lceil \frac{3n}{2} \rceil$ mniejszych od p. Dlatego p nie jest medianą.
- $\mathbf{p} < \mathbf{m}$: Analogicznie zauważmy, że w T_1, T_2, T_3 istnieje conajmniej:
 - $-2\mid n\colon \lceil\frac{3n}{2}\rceil$ liczb większych bądź równych m, więc istnieje $\lceil\frac{3n}{2}\rceil+1$ liczb większych od p-pnie jest medianą;
 - $-2\nmid n\lceil\frac{3n}{2}\rceil-1$: liczb większych bądź równych m, więc istnieje $\lceil\frac{3n}{2}\rceil$ liczb większych od p-pnie jest medianą;

Z tego wynika, że nie istnieje takie p, więc algorytm działa poprawnie. Pozostaje jeszcze kwestia złożoności obliczeniowej. W każdym obrocie pętli algorytm wykona stałą liczbę operacji arytmetycznych i porównań – niech będzie to c. Pętla wykona $\left\lceil \frac{3n}{2} \right\rceil$ obrotów, więc złożoność to $O(\left\lceil \frac{3n}{2} \right\rceil) * c = O(n)$.