Лекция 6: Policy Gradient

Антон Романович Плаксин

Markov Decision Process

Markov Property

$$\mathbb{P}[S_{t+1}|S_t, A_t] = \mathbb{P}[S_{t+1}|S_1, A_1, S_2, A_2, \dots, S_t, A_t]$$
$$\mathbb{P}[R_t|S_t, A_t] = \mathbb{P}[R_t|S_1, A_1, S_2, A_2, \dots, S_t, A_t] = 1$$

Markov Decision Process $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$

- ullet \mathcal{S} бесконечное (конечное) пространство состояний
- Д бесконечное (конечное) пространство действий
- Р неизвестная функция вероятностей переходов между состояниями

$$\mathcal{P}(s'|s, a) = \mathbb{P}[S_{t+1} = s'|S_t = s, A_t = a]$$

R — неизвестная функция вознаграждений

$$\mathcal{R}(s,a) = R_t \quad \Leftrightarrow \quad \mathbb{P}[R_t | S_t = s, A_t = a] = 1$$

• $\gamma \in [0,1]$ — коэффициент дисконтирования

Пример

- Состояния: \mathbb{R}^{26}
- ullet Действия: \mathbb{R}^6
- Награда: +1 в каждый момент времени

Value-Based and Policy-Based RL

- Value-Based
 - Обучение Value Function
 - Неявные Policy
- Policy-Based
 - Bes Value Function
 - Обучение Policy
- Actor-Critic
 - Обучение Value Function
 - Обучение Policy

Основная идея

Аппроксимация Policy

$$\pi^{\eta}(a|s) \approx \pi_*(a|s),$$

где $\eta \in \mathbb{R}^N$ — вектор параметров

Основная идея

Аппроксимация Policy

$$\pi^{\eta}(a|s) \approx \pi_*(a|s),$$

где $\eta \in \mathbb{R}^N$ — вектор параметров

Критерий качества

$$J(\eta) = \mathbb{E}_{\pi^{\eta}}[G_0] \to \max_{\eta},$$

где

$$G_0 = \sum_{t=0}^{\infty} \gamma^t \mathcal{R}(S_t, A_t)$$

- $S = \{0, 1\}$
- A = [-1, 1]
- $\mathcal{R}(0,a) = \mathcal{R}(a)$

$$\pi^{\eta}(a) = \pi^{\eta}(a|0), \quad J(\eta) = \mathbb{E}_{\pi^{\eta}}[G_0] = \int_{a \in \mathcal{A}} \pi^{\eta}(a)\mathcal{R}(a)da$$

$$\pi^{\eta}(a) = \pi^{\eta}(a|0), \quad J(\eta) = \mathbb{E}_{\pi^{\eta}}[G_0] = \int_{a \in \mathcal{A}} \pi^{\eta}(a)\mathcal{R}(a)da$$

Вычисление градиента методом Monte-Carlo

$$\nabla_{\eta_i} J(\eta) \approx \frac{J(\eta + \delta e^i) - J(\eta)}{\delta}, \quad \delta > 0, \quad i \in \overline{1, N},$$

где $e_i \in \mathbb{R}^N$: $e_j^i = 1$, если j = i и $e_j^i = 0$, если $j \neq i$,

$$J(\eta) \approx \frac{1}{n} \sum_{k=1}^{n} \mathcal{R}(a_k), \quad a_k \sim \pi^{\eta}(\cdot)$$

$$\pi^{\eta}(a) = \pi^{\eta}(a|0), \quad J(\eta) = \mathbb{E}_{\pi^{\eta}}[G_0] = \int_{a \in \mathcal{A}} \pi^{\eta}(a)\mathcal{R}(a)da$$

Вычисление градиента с помощью Log Derivative Trick

$$\nabla_{\eta} J(\eta) = \int_{a \in \mathcal{A}} \nabla_{\eta} \pi^{\eta}(a) \mathcal{R}(a) da$$

$$\approx \frac{1}{n} \sum_{k=1}^{n} \mathcal{R}(a_k), \quad a_k \sim \nabla_{\eta} \pi^{\eta}(\cdot)$$
 ?

$$\pi^{\eta}(a) = \pi^{\eta}(a|0), \quad J(\eta) = \mathbb{E}_{\pi^{\eta}}[G_0] = \int_{a \in \mathcal{A}} \pi^{\eta}(a)\mathcal{R}(a)da$$

Вычисление градиента с помощью Log Derivative Trick

$$\nabla_{\eta} J(\eta) = \int_{a \in \mathcal{A}} \nabla_{\eta} \pi^{\eta}(a) \mathcal{R}(a) da = \int_{a \in \mathcal{A}} \pi^{\eta}(a) \frac{\nabla_{\eta} \pi^{\eta}(a)}{\pi^{\eta}(a)} \mathcal{R}(a) da$$

$$= \int_{a \in \mathcal{A}} \pi^{\eta}(a) \nabla_{\eta} \ln \pi^{\eta}(a) \mathcal{R}(a) da = \mathbb{E}_{\pi^{\eta}} [\nabla_{\eta} \ln \pi^{\eta}(a) \mathcal{R}(a)]$$

$$\approx \frac{1}{n} \sum_{k=1}^{n} \nabla_{\eta} \ln \pi^{\eta}(a_{k}) \mathcal{R}(a_{k}), \quad a_{k} \sim \pi^{\eta}(\cdot)$$

Discounted State Distribution

$$\rho_{\pi}(s) = \sum_{t=0}^{\infty} \gamma^{t} \mathbb{P}[S_{t} = s | S_{0}, \pi]$$

Discounted State Distribution

$$\rho_{\pi}(s) = \sum_{t=0}^{\infty} \gamma^{t} \mathbb{P}[S_{t} = s | S_{0}, \pi]$$

$$\mathbb{E}_{\pi}[G_0] = \int_{s \in \mathcal{S}} \rho_{\pi}(s) \int_{a \in \mathcal{A}} \pi(a|s)r(s,a) dads$$
$$= \mathbb{E}_{s \sim \rho_{\pi}, a \sim \pi}[r(s,a)]$$

$$J(\eta) = \mathbb{E}_{\pi^{\eta}}[G_0] = \mathbb{E}_{s \sim \rho_{\pi^{\eta}}, a \sim \pi^{\eta}}[r(s, a)]$$

$$J(\eta) = \mathbb{E}_{\pi^{\eta}}[G_0] = \mathbb{E}_{s \sim \rho_{\pi^{\eta}}, a \sim \pi^{\eta}}[r(s, a)]$$

Теорема

Пусть $\pi^{\eta}(a|s)$ дифференцируема по η и $\pi^{\eta}(a|s) \neq 0$ для любых $s \in \mathcal{S}, \ a \in \mathcal{A}$. Тогда

$$\nabla_{\eta} J(\eta) = \mathbb{E}_{s \sim \rho_{\pi^{\eta}}, a \sim \pi^{\eta}} [\nabla_{\eta} \ln \pi^{\eta}(a|s) q_{\pi^{\eta}}(s, a)]$$

Reinforce: Основная идея

Аппроксимация Policy

$$\pi^{\eta}(a|s) \approx \pi_*(a|s),$$

Reinforce: Основная идея

Аппроксимация Policy

$$\pi^{\eta}(a|s) \approx \pi_*(a|s),$$

Policy Gradient Theorem

$$\nabla_{\eta} J(\eta) = \mathbb{E}_{s \sim \rho_{\pi^{\eta}}, a \sim \pi^{\eta}} [\nabla_{\eta} \ln \pi^{\eta}(a|s) q_{\pi^{\eta}}(s, a)]$$

Reinforce: Основная идея

Аппроксимация Policy

$$\pi^{\eta}(a|s) \approx \pi_*(a|s),$$

Policy Gradient Theorem

$$\nabla_{\eta} J(\eta) = \mathbb{E}_{s \sim \rho_{\pi^{\eta}}, a \sim \pi^{\eta}} [\nabla_{\eta} \ln \pi^{\eta}(a|s) q_{\pi^{\eta}}(s, a)]$$

Monte-Carlo Estimate

$$q_{\pi^{\eta}}(s, a) = \mathbb{E}_{\pi^{\eta}}[G_t | S_t = s, A_t = a] \approx G_t = \sum_{i=t}^{T-1} \gamma^{i-t} R_i$$

Reinforce Algorithm

Задаем структуру аппроксимации $\pi^{\eta}(a|s)$ и начальный вектор параметров η .

Для каждого эпизода делаем:

Reinforce Algorithm

Задаем структуру аппроксимации $\pi^{\eta}(a|s)$ и начальный вектор параметров η .

Для каждого эпизода делаем:

• Согласно π^{η} получаем траекторию $\tau = (S_0, A_0, \dots, S_T)$ и награды (R_0, \dots, R_{T-1}) . По ним определяем (G_0, \dots, G_{T-1}) :

$$G_t = \sum_{i=t}^{T-1} \gamma^{i-t} R_i$$

Reinforce Algorithm

Задаем структуру аппроксимации $\pi^{\eta}(a|s)$ и начальный вектор параметров η .

Для каждого эпизода делаем:

• Согласно π^η получаем траекторию $\tau=(S_0,A_0,\ldots,S_T)$ и награды $(R_0,\ldots,R_{T-1}).$ По ним определяем $(G_0,\ldots,G_{T-1}):$

$$G_t = \sum_{i=t}^{T-1} \gamma^{i-t} R_i$$

• Для каждого $t \in \overline{0, T-1}$ обновляем η :

$$\eta \leftarrow \eta - \alpha \nabla_{\eta} \ln \pi^{\eta} (A_t | S_t) G_t$$

On-Policy Actor-Critic: Основная идея

Аппроксимация Policy и Action-Value Function

$$\pi^{\eta}(a|s) \approx \pi_*(a|s), \quad Q^{\theta}(s,a) \approx q_{\pi^{\eta}}(s,a)$$

Policy Gradient Theorem

$$\nabla_{\eta} J(\eta) = \mathbb{E}_{s \sim \rho_{\pi^{\eta}}, a \sim \pi^{\eta}} [\nabla_{\eta} \ln \pi^{\eta}(a|s) q_{\pi^{\eta}}(s, a)]$$

Аппроксимация на каждом шаге

Если $Q^{\theta} \approx q_{\pi^{\eta}}$, то

$$\nabla_{\eta} J(\eta) \approx \mathbb{E}_{s \sim \rho_{\pi^{\eta}}, a \sim \pi^{\eta}} [\nabla_{\eta} \ln \pi^{\eta}(a|s) Q^{\theta}(s, a)]$$
$$\approx \nabla_{\eta} \ln \pi^{\eta}(A_{t}|S_{t}) Q^{\theta}(S_{t}, A_{t})$$

On-Policy Actor-Critic: Основная идея

Аппроксимация Policy и Action-Value Function

$$\pi^{\eta}(a|s) \approx \pi_*(a|s), \quad Q^{\theta}(s,a) \approx q_{\pi^{\eta}}(s,a)$$

Bellman Expectation Equation для q_{π}

$$q_{\pi^{\eta}}(s, a) = \mathbb{E}_{\pi^{\eta}}[R_t + \gamma q_{\pi^{\eta}}(S_{t+1}, A_{t+1})|S_t = s, A_t = a]$$

Аппроксимация на каждом шаге

Если

$$Q^{\theta}(S_t, A_t) \approx R_t + \gamma Q^{\theta}(S_{t+1}, A_{t+1}), \quad A_{t+1} \sim \pi^{\eta}(\cdot | S_t),$$

To
$$Q^{\theta} \approx q_{\pi^{\eta}}$$

On-Policy Actor-Critic Algorithm

Задаем структуру аппроксимаций $\pi^{\eta}(a|s), Q^{\theta}(s,a)$ и начальные вектора параметров η, θ .

Для каждого эпизода делаем:

Пока эпизод не закончен делаем:

- Находясь в состоянии S_t совершаем действие $A_t \sim \pi^{\eta}(\cdot|S_t)$, получаем награду R_t , переходим в состояние S_{t+1} .
- По (S_t, A_t, R_t, S_{t+1}) выбираем действие $A_{t+1} \sim \pi^{\eta}(\cdot | S_{t+1})$, определяем Loss функции:

$$Loss_1(\theta) = (R_t + \gamma Q^{\theta}(S_{t+1}, A_{t+1}) - Q^{\theta}(S_t, A_t))^2$$
$$Loss_2(\eta) = \ln \pi^{\eta}(A_t | S_t) Q^{\theta}(S_t, A_t)$$

и обновляем параметры:

$$\theta \leftarrow \theta - \alpha \nabla_{\theta} Loss_1(\theta), \quad \eta \leftarrow \eta + \beta \nabla_{\eta} Loss_2(\eta)$$

Deterministic Policy Gradient Theorem

Аппроксимация детерминированной Policy

$$\pi^{\eta}(s) \approx \pi_*(s)$$

Теорема

Пусть $\pi^{\eta}(s)$ дифференцируема по η и $q_{\pi^{\eta}}(s,a)$ дифференцируема по a. Тогда

$$\nabla_{\eta} J(\eta) = \mathbb{E}_{s \sim \rho_{\pi^{\eta}}} [\nabla_{\eta} q_{\pi^{\eta}}(s, \pi^{\eta}(s))]$$

Deterministic Policy Gradient Theorem

$$\nabla_{\eta} J(\eta) = \mathbb{E}_{s \sim \rho_{\pi^{\eta}}} [\nabla_{\eta} q_{\pi^{\eta}}(s, \pi^{\eta}(s))]$$

Deterministic Policy Gradient Theorem

$$\nabla_{\eta} J(\eta) = \mathbb{E}_{s \sim \rho_{\pi^{\eta}}} [\nabla_{\eta} q_{\pi^{\eta}}(s, \pi^{\eta}(s))]$$

Аппроксимация по батчу

Если $\pi \approx \pi^{\eta}$ и $Q^{\theta} \approx q_{\pi^{\eta}}$, то

$$\nabla_{\eta} J(\eta) \approx \nabla_{\eta} \left(\frac{1}{n} \sum_{i=1}^{n} Q^{\theta}(s_i, \pi^{\eta}(s_i)) \right)$$

Deterministic Policy Gradient Theorem

$$\nabla_{\eta} J(\eta) = \mathbb{E}_{s \sim \rho_{\pi^{\eta}}} [\nabla_{\eta} q_{\pi^{\eta}}(s, \pi^{\eta}(s))]$$

Аппроксимация по батчу

Если $\pi \approx \pi^{\eta}$ и $Q^{\theta} \approx q_{\pi^{\eta}}$, то

$$\nabla_{\eta} J(\eta) \approx \nabla_{\eta} \left(\frac{1}{n} \sum_{i=1}^{n} Q^{\theta}(s_i, \pi^{\eta}(s_i)) \right)$$

Bellman Expectation Equation для q_{π}

$$q_{\pi^{\eta}}(s, a) = \mathbb{E}[R_t + \gamma q_{\pi^{\eta}}(S_{t+1}, \pi^{\eta}(S_{t+1})) | S_t = s, A_t = a]$$

Deterministic Policy Gradient Theorem

$$\nabla_{\eta} J(\eta) = \mathbb{E}_{s \sim \rho_{\pi^{\eta}}} [\nabla_{\eta} q_{\pi^{\eta}}(s, \pi^{\eta}(s))]$$

Аппроксимация по батчу

Если $\pi \approx \pi^{\eta}$ и $Q^{\theta} \approx q_{\pi^{\eta}}$, то

$$\nabla_{\eta} J(\eta) \approx \nabla_{\eta} \left(\frac{1}{n} \sum_{i=1}^{n} Q^{\theta}(s_i, \pi^{\eta}(s_i)) \right)$$

Bellman Expectation Equation для q_{π}

$$q_{\pi^{\eta}}(s, a) = \mathbb{E}[R_t + \gamma q_{\pi^{\eta}}(S_{t+1}, \pi^{\eta}(S_{t+1})) | S_t = s, A_t = a]$$

Аппроксимация по батчу

Если

$$\frac{1}{n}\sum_{i=1}^{n} \left(r_i + \gamma Q^{\theta}(s_i', \pi^{\eta}(s_i')) - Q^{\theta}(s_i, a_i) \right) \approx 0,$$

To $Q^{\theta} \approx q_{\pi^{\eta}}$

Задаем структуру аппроксимаций $\pi^{\eta}(s),$ $Q^{\theta}(s,a)$ и начальные вектора параметров $\eta,$ $\theta.$

Для каждого эпизода делаем:

Пока эпизод не закончен делаем:

Задаем структуру аппроксимаций $\pi^{\eta}(s),$ $Q^{\theta}(s,a)$ и начальные вектора параметров $\eta,$ $\theta.$

Для каждого эпизода делаем:

Пока эпизод не закончен делаем:

ullet Находясь в состоянии S_t совершаем действие

$$A_t = \pi^{\eta}(S_t) + Noise,$$

получаем награду R_t переходим в состояние S_{t+1} . Сохраняем $(S_t,A_t,R_t,S_{t+1})\to Memory$

Задаем структуру аппроксимаций $\pi^{\eta}(s), \, Q^{\theta}(s,a)$ и начальные вектора параметров $\eta, \, \theta.$

Для каждого эпизода делаем:

Пока эпизод не закончен делаем:

ullet Находясь в состоянии S_t совершаем действие

$$A_t = \pi^{\eta}(S_t) + Noise,$$

получаем награду R_t переходим в состояние S_{t+1} . Сохраняем $(S_t, A_t, R_t, S_{t+1}) \to Memory$

• Берем $\{(s_i,a_i,r_i,s_i')\}_{i=1}^n \leftarrow Memory$, определяем значения

$$y_i = r_i + \gamma Q^{\theta}(s_i', \pi^{\eta}(s_i'))$$

функции потерь

$$Loss_1(\theta) = \frac{1}{n} \sum_{i=1}^n (y_i - Q^{\theta}(s_i, a_i))^2, \quad Loss_2(\eta) = \frac{1}{n} \sum_{i=1}^n Q^{\theta}(s_i, \pi^{\eta}(s_i))$$

и обновляем вектор параметров

$$\theta \leftarrow \theta - \alpha \nabla_{\theta} Loss_1(\theta), \quad \eta \leftarrow \eta + \beta \nabla_{\eta} Loss_2(\eta), \quad \alpha, \beta > 0$$

Задаем структуру аппроксимаций $\pi^{\eta}(s), Q^{\theta}(s,a)$ и начальные вектора параметров $\eta, \theta.$

Для каждого эпизода делаем:

Пока эпизод не закончен делаем:

ullet Находясь в состоянии S_t совершаем действие

$$A_t = \pi^{\eta}(S_t) + Noise,$$

получаем награду R_t переходим в состояние S_{t+1} . Сохраняем $(S_t, A_t, R_t, S_{t+1}) \to Memory$

• Берем $\{(s_i, a_i, r_i, s_i')\}_{i=1}^n \leftarrow Memory$, определяем значения

$$y_i = r_i + \gamma Q^{\theta}(s_i', \pi^{\eta}(s_i'))$$

функции потерь

$$Loss_1(\theta) = \frac{1}{n} \sum_{i=1}^n (y_i - Q^{\theta}(s_i, a_i))^2, \quad Loss_2(\eta) = \frac{1}{n} \sum_{i=1}^n Q^{\theta}(s_i, \pi^{\eta}(s_i))$$

и обновляем вектор параметров

$$\theta \leftarrow \theta - \alpha \nabla_{\theta} Loss_1(\theta), \quad \eta \leftarrow \eta + \beta \nabla_{\eta} Loss_2(\eta), \quad \alpha, \beta > 0$$

• Уменьшаем Noise

Asynchronous Approach

Asynchronous Approach

Policy Gradient Theorem

$$\nabla_{\eta} J(\eta) = \mathbb{E}_{s \sim \rho_{\pi^{\eta}}, a \sim \pi^{\eta}} [\nabla_{\eta} \ln \pi^{\eta}(a|s) (q_{\pi^{\eta}}(s, a) - b(s))]$$

Policy Gradient Theorem

$$\nabla_{\eta} J(\eta) = \mathbb{E}_{s \sim \rho_{\pi^{\eta}}, a \sim \pi^{\eta}} [\nabla_{\eta} \ln \pi^{\eta}(a|s) (q_{\pi^{\eta}}(s, a) - b(s))]$$

Advantage Function

$$b(s) = v_{\pi^{\eta}}(s), \quad a_{\pi^{\eta}}(s, a) = q_{\pi^{\eta}}(s, a) - v_{\pi^{\eta}}(s)$$

Policy Gradient Theorem

$$\nabla_{\eta} J(\eta) = \mathbb{E}_{s \sim \rho_{\pi^{\eta}}, a \sim \pi^{\eta}} [\nabla_{\eta} \ln \pi^{\eta}(a|s) (q_{\pi^{\eta}}(s, a) - b(s))]$$

Advantage Function

$$b(s) = v_{\pi^{\eta}}(s), \quad a_{\pi^{\eta}}(s, a) = q_{\pi^{\eta}}(s, a) - v_{\pi^{\eta}}(s)$$

$$a_{\pi^{\eta}}(s, a) = \mathbb{E}[R_t + \gamma v_{\pi^{\eta}}(S_{t+1}) - v_{\pi^{\eta}}(s)|S_t = s, A_t = a]$$

Аппроксимация Policy и Action-Value Function

$$\pi^{\eta}(a|s) \approx \pi_*(a|s), \quad V^{\theta}(s) \approx v_{\pi^{\eta}}(s)$$

Policy Gradient Theorem

$$\nabla_{\eta} J(\eta) = \mathbb{E}_{s \sim \rho_{\pi^{\eta}}, a \sim \pi^{\eta}} [\nabla_{\eta} \ln \pi^{\eta}(a|s) a_{\pi^{\eta}}(s, a)],$$

где

$$a_{\pi^{\eta}}(s, a) = \mathbb{E}[R_t + \gamma v_{\pi^{\eta}}(S_{t+1}) - v_{\pi^{\eta}}(s)|S_t = s, A_t = a]$$

Аппроксимация на шаге

Если $V^{\theta} \approx v_{\pi^{\eta}}$, то

$$\nabla_{\eta} J(\eta) \approx \nabla_{\eta} \ln \pi^{\eta} (A_t | S_t) (R_t + \gamma V^{\theta} (S_{t+1}) - V^{\theta} (S_t))$$

Аппроксимация Policy и Action-Value Function

$$\pi^{\eta}(a|s) \approx \pi_*(a|s), \quad V^{\theta}(s) \approx v_{\pi^{\eta}}(s)$$

Bellman Expectation Equation для v_{π}

$$v_{\pi^{\eta}}(s) = \mathbb{E}_{\pi^{\eta}}[R_t + \gamma v_{\pi^{\eta}}(S_{t+1})|S_t = s]$$

Аппроксимация на шаге

Если

$$V^{\theta}(S_t) \approx R_t + \gamma V^{\theta}(S_{t+1}), \quad S_{t+1} \sim \mathcal{P}(\cdot|S_t, A_t), \quad A_t \sim \pi^{\eta}(\cdot|S_t)$$

то $V^{\theta} \approx v_{\pi^{\eta}}$

Advantage Actor-Critic (A2C)

Задаем структуру аппроксимаций $\pi^{\eta}(a|s)$, $V^{\theta}(s)$ и начальные вектора параметров η , θ .

Для каждого эпизода делаем:

Пока эпизод не закончен делаем:

- Находясь в состоянии S_t совершаем действие $A_t \sim \pi^{\eta}(\cdot|S_t)$, получаем награду R_t , переходим в состояние S_{t+1} .
- По (S_t, A_t, R_t, S_{t+1}) определяем Loss функции:

$$Loss_1(\theta) = \left(R_t + \gamma V^{\theta}(S_{t+1}) - V^{\theta}(S_t)\right)^2$$

$$Loss_2(\eta) = \ln \pi^{\eta} (A_t | S_t) \left(R_t + \gamma V^{\theta} (S_{t+1}) - V^{\theta} (S_t) \right)$$

и обновляем параметры:

$$\theta \leftarrow \theta - \alpha \nabla_{\theta} Loss_1(\theta), \quad \eta \leftarrow \eta + \beta \nabla_{\eta} Loss_2(\eta)$$

Организационные вопросы

- Пятница, 17:50, аудитория 622
- Отчетность: домашние работы
- Страничка курса: https://github.com/imm-rl-lab/UrFU_course
- E-mail для связи: a.r.plaksin@gmail.com

вопросы?