Galactic Swarm Optimization

Estudio de la metaherística e hibridación con CMAES

Francisco Solano López Rodríguez

- Introducción
- 2 Algoritmo
- 3 GSC
- 4 GSO con CMAES
- Comparación

Introducción

La metaheurística GSO se inspira en el movimiento que describen las estrellas en el interior de una galaxia, y además a una mayor escala, en el movimiento de las galaxias pertenecientes a un cúmulo.

El conjunto de galaxias será una población, y cada galaxía será vista como una subpoblación compuesta de estrellas. Cada estrella debe verse como una solución.

GSO se divide en dos niveles:

- Nivel 1: movimiento de las estrellas dentro de cada galaxia con PSO. (Exploración)
- Nivel 2: creación de una población compuesta por las mejores soluciones de cada galaxia. A esta nueva población se le aplicará PSO.

- Introducción
- 2 Algoritmo
- 3 GSC
- 4 GSO con CMAES
- Comparación

```
Level 1 Initialization: \mathbf{x}_i^{(i)}, \mathbf{v}_j^{(i)}, \mathbf{p}_j^{(i)}, \mathbf{g}^{(i)} within [x_{min}, x_{max}]^D randomly.
               Level 2 Initialization: \mathbf{v}^{(i)}, \mathbf{p}^{(i)}, \mathbf{g} within [x_{min}, x_{max}]^D randomly.
               for EP \leftarrow 1 to EP_{max}
\begin{aligned} & \text{Begin PSO: Level 1} \\ & \text{for } i \leftarrow 1 \text{ to } M \\ & \text{do} \\ & \text{do} \end{aligned} \begin{cases} & \text{for } j \leftarrow 1 \text{ to } N \\ & \text{for } j \leftarrow 1 \text{ to } N \\ & \text{for } j \leftarrow 1 \text{ to } N \\ & \text{for } j \leftarrow 1 \text{ to } N \\ & \text{do} \end{aligned} \end{cases} \\ & \text{do} \end{aligned} \begin{cases} & \text{for } j \leftarrow 1 \text{ to } N \\ & \text{for } j \leftarrow 1 \text{ to } N \\ & \text{for } j \leftarrow 1 \text{ to } N \\ & \text{for } j \leftarrow 1 \text{ to } N \\ & \text{for } j \leftarrow 1 \text{ to } N \\ & \text{for } j \leftarrow 1 \text{ to } N \\ & \text{for } j \leftarrow 1 \text{ to } N \\ & \text{for } j \leftarrow 1 \text{ to } N \\ & \text{for } j \leftarrow 1 \text{ to } j \leftarrow 1 \text{ to } N \\ & \text{for } j \leftarrow 1 \text{ to } N \\ & \text{for } j \leftarrow 1 \text{ to } j \leftarrow 1 \text{ to } N \\ & \text{for } j \leftarrow 1 \text{ to } j \leftarrow 1 \text{ to } N \\ & \text{for } j \leftarrow 1 \text{ to } j \leftarrow 1 \text{ to } N \\ & \text{for } j \leftarrow 1 \text{ to } N \\ & \text{for } j \leftarrow 1 \text{ to } N \\ & \text{for } j \leftarrow 1 \text{ to } N \\ & \text{for } j \leftarrow 1 \text{ to } j \leftarrow 1 \text{ to } N \\ & \text{for } j \leftarrow 1 \text{ to } j \leftarrow 1 \text{ to } N \\ & \text{for } j \leftarrow 1 \text{ to } j \leftarrow 1 \text{ to } N \\ & \text{for } j \leftarrow 1 \text{ to } j \leftarrow 1 \text{ to } N \\ & \text{for } j \leftarrow 1 \text{ to } j \leftarrow 1 \text{ to } N \\ & \text{for } j \leftarrow 1 \text{ to } j \leftarrow 1 \text{ to } N \\ & \text{for } j \leftarrow 1 \text{ to } j \leftarrow 1 \text{ to } j \leftarrow 1 \text{ to } N \\ & \text{for } j \leftarrow 1 \text{ to } j \leftarrow 1 \text{ to } j \leftarrow 1 \text{ to } N \\ & \text{for } j \leftarrow 1 \text{ to 
                                                                                          \mathbf{do} \begin{cases} \mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ M \\ \mathbf{v}^{(i)} \leftarrow \mathbf{w_2} \mathbf{v}^{(i)} + c_3 r_3 (\mathbf{p}^{(i)} - \mathbf{y}^{(i)}) + c_4 r_4 (\mathbf{g} - \mathbf{y}^{(i)}); \\ \mathbf{y}^{(i)} \leftarrow \mathbf{y}^{(i)} + \mathbf{v}^{(i)}; \\ \mathbf{if} \ f(\mathbf{y}^{(i)}) < f(\mathbf{p}^{(i)}) \\ \mathbf{p}^{(i)} \leftarrow \mathbf{y}^{(i)}; \\ \mathbf{then} \begin{cases} \mathbf{p}^{(i)} \leftarrow \mathbf{y}^{(i)}; \\ \mathbf{if} \ f(\mathbf{p}^{(i)}) < f(\mathbf{g}) \\ \mathbf{then} \ \mathbf{g} \leftarrow \mathbf{p}^{(i)}; \end{cases} \end{cases}
               Return \mathbf{g}, f(\mathbf{g})
```

```
Level 1 Initialization: \mathbf{x}_{j}^{(i)}, \mathbf{v}_{j}^{(i)}, \mathbf{p}_{j}^{(i)}, \mathbf{g}^{(i)} within [x_{min}, x_{max}]^{D} randomly.
Level 2 Initialization: \mathbf{v}^{(i)}, \mathbf{p}^{(i)}, \mathbf{g} within [x_{min}, x_{max}]^D randomly.
```

```
for EP \leftarrow 1 to EP_{max}
                                                   Begin PSO: Level 1
                                                                                                                                                                                                                                                                                                                                                                                                                                       LEVEL 1
                                                   for i \leftarrow 1 to M
 \mathbf{do} \left\{ \begin{array}{l} \mathbf{do} \left\{ \begin{aligned} &\mathbf{for} \ k \leftarrow 0 \ \mathbf{to} \ L_1 \\ &\mathbf{for} \ j \leftarrow 1 \ \mathbf{to} \ N \\ &\mathbf{v}_j^{(i)} \leftarrow \omega_1 \mathbf{v}_j^{(i)} + c_1 r_1 (\mathbf{p}_j^{(i)} - \mathbf{x}_j^{(i)}) + c_2 r_2 (\mathbf{g}^{(i)} - \mathbf{x}_j^{(i)}); \\ \mathbf{x}_j^{(i)} \leftarrow \mathbf{x}_j^{(i)} + \mathbf{v}_j^{(i)}; \\ \mathbf{do} \left\{ \begin{aligned} &\mathbf{do} \\ &\mathbf{do} \end{aligned} \right. \left\{ \begin{array}{l} \mathbf{v}_j^{(i)} \leftarrow \mathbf{u}_1 \mathbf{v}_j^{(i)} + c_1 r_1 (\mathbf{p}_j^{(i)} - \mathbf{x}_j^{(i)}) + c_2 r_2 (\mathbf{g}^{(i)} - \mathbf{x}_j^{(i)}); \\ \mathbf{x}_j^{(i)} \leftarrow \mathbf{x}_j^{(i)}; \\ \mathbf{if} \ f(\mathbf{x}_j^{(i)}) < f(\mathbf{g}^{(i)}) \\ \mathbf{then} \end{aligned} \right. \left\{ \begin{aligned} &\mathbf{g}^{(i)} \leftarrow \mathbf{p}_j^{(i)}; \\ \mathbf{f} \ f(\mathbf{g}^{(i)}) < f(\mathbf{g}) \\ \mathbf{then} \ \mathbf{g} \leftarrow \mathbf{g}^{(i)}; \end{aligned} \right. \right. \right. \right. 
                                                                                                  for k \leftarrow 0 to L_1
```

Initialize Swarm
$$\mathbf{y}^{(i)} = \mathbf{g}^{(i)} : i = 1, 2, \dots, M;$$

for
$$k \leftarrow 0$$
 to L_2
for $i \leftarrow$

$$\begin{array}{c} \text{do} \begin{cases} \text{for } i \leftarrow 1 \text{ to } M \\ \mathbf{v}^{(i)} \leftarrow \mathbf{\omega_2} \mathbf{v}^{(i)} + c_3 r_3 (\mathbf{p}^{(i)} - \mathbf{y}^{(i)}) + c_4 r_4 (\mathbf{g} - \mathbf{y}^{(i)}); \\ \mathbf{y}^{(i)} \leftarrow \mathbf{y}^{(i)} + \mathbf{v}^{(i)}; \\ \text{if } f(\mathbf{y}^{(i)}) < f(\mathbf{p}^{(i)}) \\ \mathbf{then} \begin{cases} \mathbf{p}^{(i)} \leftarrow \mathbf{y}^{(i)}; \\ \mathbf{p}^{(i)} \leftarrow \mathbf{y}^{(i)}; \\ \text{then } \mathbf{g} \leftarrow \mathbf{p}^{(i)}; \end{cases} \end{array}$$

Return $\mathbf{g}, f(\mathbf{g})$

Level 1 Initialization: $\mathbf{x}_{i}^{(i)}, \mathbf{v}_{j}^{(i)}, \mathbf{p}_{j}^{(i)}, \mathbf{g}^{(i)}$ within $[x_{min}, x_{max}]^D$ randomly. Level 2 Initialization: $\mathbf{v}^{(i)}, \mathbf{p}^{(i)}, \mathbf{g}$ within $[x_{min}, x_{max}]^D$ randomly.

```
for EP \leftarrow 1 to EP_{max}
                                     Begin PSO: Level 1
                                     for i \leftarrow 1 to M
           \mathsf{do} \left\{ \begin{array}{l} \mathsf{do} \left\{ \begin{array}{l} \mathsf{for} \ k \leftarrow 0 \ \mathsf{to} \ L_1 \\ \mathsf{for} \ j \leftarrow 1 \ \mathsf{to} \ N \\ \mathsf{v}_j^{(i)} \leftarrow (\color{w}_j) \mathsf{v}_j^{(i)} + c_1 r_1(\mathbf{p}_j^{(i)} - \mathbf{x}_j^{(i)}) + c_2 r_2(\mathbf{g}^{(i)} - \mathbf{x}_j^{(i)}); \\ \mathsf{x}_j^{(i)} \leftarrow \mathbf{x}_j^{(i)} + \mathsf{v}_j^{(i)}; \\ \mathsf{x}_j^{(i)} \leftarrow \mathsf{v}_j^{(i)} > f(\mathbf{p}_j^{(i)}) \\ \mathsf{then} \left\{ \begin{array}{l} \mathsf{p}_j^{(i)} \leftarrow \mathsf{x}_j^{(i)}; \\ \mathsf{p}_j^{(i)} \leftarrow \mathsf{x}_j^{(i)}; \\ \mathsf{then} \left\{ \begin{array}{l} \mathsf{g}^{(i)} \leftarrow \mathsf{p}_j^{(i)}; \\ \mathsf{if} \ f(\mathbf{g}^{(i)}) < f(\mathbf{g}) \\ \mathsf{then} \ \mathbf{g} \leftarrow \mathbf{g}^{(i)}; \end{array} \right. \end{array} \right. \right.
                                                                        for k \leftarrow 0 to L_1
                                      Initialize Swarm \mathbf{y}^{(i)} = \mathbf{g}^{(i)} : i = 1, 2, \dots, M:
                                      for k \leftarrow 0 to L_2
```

 $\begin{array}{c} \textbf{do} \left\{ \begin{array}{l} \mathbf{v}^{(i)} \leftarrow \omega_2 \mathbf{v}^{(i)} + c_3 r_3 (\mathbf{p}^{(i)} - \mathbf{y}^{(i)}) + c_4 r_4 (\mathbf{g} - \mathbf{y}^{(i)}); \\ \mathbf{y}^{(i)} \leftarrow \mathbf{y}^{(i)} + \mathbf{v}^{(i)}; \\ \mathbf{if} \ f(\mathbf{y}^{(i)}) < f(\mathbf{p}^{(i)}) \\ \mathbf{then} \ \left\{ \begin{array}{l} \mathbf{p}^{(i)} \leftarrow \mathbf{y}^{(i)}; \\ \mathbf{if} \ f(\mathbf{p}^{(i)}) < f(\mathbf{g}) \\ \mathbf{then} \ c < \mathbf{p}^{(i)} \end{array} \right. \end{array} \right.$

Return $\mathbf{g}, f(\mathbf{g})$

```
Level 1 Initialization: \mathbf{x}_{j}^{(i)}, \mathbf{v}_{j}^{(i)}, \mathbf{p}_{j}^{(i)}, \mathbf{g}^{(i)} within [x_{min}, x_{max}]^{D} randomly.
Level 2 Initialization: \mathbf{v}^{(i)}, \mathbf{p}^{(i)}, \mathbf{g} within [x_{min}, x_{max}]^D randomly.
for EP \leftarrow 1 to EP_{max}
                                Begin PSO: Level 1
                                                                                                                              coeficientes de LEVEL 1
                                for i \leftarrow 1 to M
        \mathbf{do} \left\{ \begin{array}{l} \mathbf{do} \left\{ \begin{array}{l} \text{for } k \leftarrow 0 \text{ to } L_1 \\ \mathbf{for } j \leftarrow 1 \text{ to } N \\ \\ \mathbf{do} \left\{ \begin{array}{l} \mathbf{for } j \leftarrow 1 \text{ to } N \\ \\ \mathbf{v}_j^{(i)} \leftarrow \omega_1 \mathbf{v}_j^{(i)} + \mathbf{c}_j r_1(\mathbf{p}_j^{(i)} - \mathbf{x}_j^{(i)}) + \mathbf{c}_j r_2(\mathbf{g}^{(i)} - \mathbf{x}_j^{(i)}); \\ \\ \mathbf{x}_j^{(i)} \leftarrow \mathbf{x}_j^{(i)} + \mathbf{v}_j^{(i)}; \\ \\ \mathbf{if } f(\mathbf{x}_j^{(i)}) < f(\mathbf{p}_j^{(i)}) & \mathbf{c1} = \mathbf{c2} = 2.05 \\ \\ \mathbf{c} \left\{ \begin{array}{l} \mathbf{p}_j^{(i)} \leftarrow \mathbf{x}_j^{(i)}; \\ \mathbf{f} f(\mathbf{p}_j^{(i)}) < f(\mathbf{g}^{(i)}) \\ \mathbf{then} \end{array} \right. \\ \left\{ \begin{array}{l} \mathbf{g}^{(i)} \leftarrow \mathbf{p}_j^{(i)}; \\ \mathbf{f} f(\mathbf{g}^{(i)}) < f(\mathbf{g}) \\ \mathbf{then} \mathbf{g} \leftarrow \mathbf{g}^{(i)}; \\ \mathbf{then} \mathbf{g} \leftarrow \mathbf{g}^{(i)}; \end{array} \right. \end{array} \right.
                                                              (for k \leftarrow 0 to L_1 aceleración
                                 Initialize Swarm \mathbf{v}^{(i)} = \mathbf{g}^{(i)} : i = 1, 2, \dots, M:
                                 for k \leftarrow 0 to L_2
                           \begin{array}{c} \textbf{do} \left\{ \begin{array}{l} \mathbf{v}^{(i)} \leftarrow \omega_2 \mathbf{v}^{(i)} + c_3 r_3 (\mathbf{p}^{(i)} - \mathbf{y}^{(i)}) + c_4 r_4 (\mathbf{g} - \mathbf{y}^{(i)}); \\ \mathbf{y}^{(i)} \leftarrow \mathbf{y}^{(i)} + \mathbf{v}^{(i)}; \\ \mathbf{if} \ f(\mathbf{y}^{(i)}) < f(\mathbf{p}^{(i)}) \\ \mathbf{then} \ \left\{ \begin{array}{l} \mathbf{p}^{(i)} \leftarrow \mathbf{y}^{(i)}; \\ \mathbf{if} \ f(\mathbf{p}^{(i)}) < f(\mathbf{g}) \\ \mathbf{then} \ c < \mathbf{p}^{(i)} \end{array} \right. \end{array} \right.
```

```
Level 1 Initialization: \mathbf{x}_j^{(i)}, \mathbf{y}_j^{(i)}, \mathbf{p}_j^{(i)}, \mathbf{g}^{(i)} within [x_{min}, x_{max}]^D randomly.
Level 2 Initialization: \mathbf{v}^{(i)}, \mathbf{p}^{(i)}, \mathbf{g} within [x_{min}, x_{max}]^D randomly.
for EP \leftarrow 1 to EP_{max}
                                                                                Begin PSO: Level 1
                                                                                for i \leftarrow 1 to M
                                                                                                                                                       for k \leftarrow 0 to L_1
                                                                                                                                                                                                                                             (for i \leftarrow 1 to N
                                                                       \left\{\begin{array}{l} \mathbf{do} \left\{\begin{array}{l} \mathbf{for} \ j \leftarrow 1 \ \mathbf{to} \ N \\ \mathbf{v}_{j}^{(i)} \leftarrow \omega_{1} \mathbf{v}_{j}^{(i)} + c_{1} r_{1} (\mathbf{p}_{j}^{(i)} - \mathbf{x}_{j}^{(i)}) + c_{2} r_{2} (\mathbf{g}^{(i)} - \mathbf{x}_{j}^{(i)}); \\ \mathbf{x}_{j}^{(i)} \leftarrow \mathbf{x}_{j}^{(i)} + \mathbf{v}_{j}^{(i)}; \\ \mathbf{x}_{j}^{(i)} \leftarrow \mathbf{x}_{j}^{(i)} + \mathbf{v}_{j}^{(i)}; \\ \mathbf{if} \ f(\mathbf{x}_{j}^{(i)}) < f(\mathbf{p}_{j}^{(i)}) \\ \mathbf{p}_{j}^{(i)} \leftarrow \mathbf{x}_{j}^{(i)}; \\ \mathbf{ff} \ f(\mathbf{p}_{j}^{(i)}) < f(\mathbf{g}^{(i)}) \\ \mathbf{then} \ \left\{\begin{array}{l} \mathbf{g}^{(i)} \leftarrow \mathbf{p}_{j}^{(i)}; \\ \mathbf{if} \ f(\mathbf{g}^{(i)}) < f(\mathbf{g}) \\ \mathbf{ff} \ \mathbf{f}^{(i)} = \mathbf{f}^{(i)}, \\ \mathbf{ff} \ \mathbf
                do
                                                                                  Begin PSO: Level 2
                                                                                     Initialize Swarm \mathbf{y}^{(i)} = \mathbf{g}^{(i)} : i = 1, 2, \dots, M;
                                                                                for k \leftarrow 0 to L_2
                                                                  \begin{array}{c} \text{do} \left\{ \begin{array}{l} \mathbf{do} \\ \text{do} \\ \end{array} \right. \begin{cases} \mathbf{v}^{(i)} \leftarrow \omega_2 \mathbf{v}^{(i)} + c_3 r_3 (\mathbf{p}^{(i)} - \mathbf{y}^{(i)}) + c_4 r_4 (\mathbf{g} - \mathbf{y}^{(i)}); \\ \mathbf{v}^{(i)} \leftarrow \mathbf{y}^{(i)} + \mathbf{v}^{(i)}; \\ \text{if } f(\mathbf{y}^{(i)}) < f(\mathbf{p}^{(i)}) \\ \mathbf{p}^{(i)} \leftarrow \mathbf{y}^{(i)}; \\ \text{then } \left\{ \begin{array}{l} \mathbf{p}^{(i)} \leftarrow \mathbf{y}^{(i)}; \\ \mathbf{f} f(\mathbf{p}^{(i)}) < f(\mathbf{g}) \end{array} \right. \end{array}
Return \mathbf{g}, f(\mathbf{g})
```

- Introducción
- 2 Algoritmo
- 3 GSO
- 4 GSO con CMAES
- Comparación

Código

```
for(int ep = 0; ep < EP_max; ep++){
   // PSO level 1
   for(int i = 0; i < M; i++){
      for(int k = 0; k \le L1; k++){
         double w1 = 1.0-k*L1 div;
         for(int i = 0; i < N; i++){
            double r1 = m random->rand():
            double r2 = m random->rand();
            for(int d = 0; d < D; d++){
               v1[i][i][d] = w1*v1[i][i][d] + c1*r1*(p1[i][i][d]-x[i][i][d]) + c2*r2*(q[i][d]-x[i][i][d]);
               x[i][i][d] = x[i][i][d] + v1[i][i][d];
            domain->clip(x[i][j]);
            double new value = m eval->eval(x[i][i]);
            eval++:
            if(new value < p1 value[i][j]){
               for(int d = 0; d < D; d++)
                  p1[i][i][d] = x[i][i][d];
               p1_value[i][j] = new_value;
               if(new value < q value[i]){
                  for(int d = 0: d < D: d++)
                     g[i][d] = p1[i][j][d];
                  g value[i] = new value:
                  if(new value < gbest value){
                     for(int d = 0: d < D: d++)
                        abest[d] = a[i][d];
                     gbest_value = new_value:
```

Código

```
// PSO level 2
vector< vector<double> > y(q);
for(int k = 0; k \le L2; k++){
   double w2 = 1.0-k*1.0*L2_{div};
   for(int i = 0; i < M; i++){
      double r3 = m random->rand();
      double r4 = m random->rand();
      for(int d = 0; d < D; d++){
         v2[i][d] = w2*v2[i][d] + c3*r3*(p2[i][d] - y[i][d]) + c4*r4*(gbest[d]-y[i][d]);
         y[i][d] = y[i][d] + v2[i][d];
      domain->clip(y[i]);
      double new value = m eval->eval(v[i]);
      eval++:
      if(new value < p2 value[i]){
         for(int d = 0; d < D; d++)
            p2[i][d] = y[i][d];
         p2 value[i] = new value;
         if(new value < qbest value){
            for(int d = 0: d < D: d++)
               qbest[d] = p2[i][d];
            gbest value = new value;
```

Resultados

	Dimen	sión 10		Dimensión 30			
Función	Media	Desv.	Mediana	Media	Desv.	Mediana	
F1	665525	986620	319094	3.35383e+07	2.3751e+07	2.3549e+07	
F2	7111.75	4933.42	9863.47	6.55879e+08	9.0387e+08	2.5262e+08	
F3	267.021	233.547	245.913	9155.07	2956.95	8944.79	
F4	36.0719	17.0868	34.7803	253.41	83.345	230.306	
F5	20.1538	0.092518	20.1551	20.5305	0.122447	20.5437	
F6	6.25161	1.21448	6.06837	30.3963	3.29772	31.0341	
F7	2.96936	2.12357	2.25073	6.90277	7.9903	3.08737	
F8	23.0069	8.45772	19.9005	135.669	33.6428	135.777	
F9	28.5642	10.3621	29.0956	175.089	37.589	175.021	
F10	654.016	232.524	670.208	4588.56	636.641	4600.59	
F11	855.566	297.636	862.308	4814.08	598.692	4944.39	
F12	0.42005	0.153718	0.426314	0.990066	0.249225	0.98602	
F13	0.410964	0.137787	0.351583	0.626694	0.198228	0.596704	
F14	0.58442	0.370606	0.396934	1.59153	3.31706	0.45672	
F15	2.58898	1.63657	2.15886	111.04	185.005	46.8188	
F16	3.31785	0.197635	3.39961	12.383	0.454295	12.4798	
F17	697.934	306.897	646.263	2.4189e+06	3.5518e+06	840912	
F18	73.4638	54.7024	58.7193	2.62698e+07	9.0391e+07	13865.6	
F19	5.71442	1.95925	5.47976	37.2742	32.5489	20.0341	
F20	88.692	55.3184	67.9788	1779.72	1557.75	1165.51	

- Introducción
- 2 Algoritmo
- **3** GSO
- GSO con CMAES
- Comparación

GSO con CMAES

En esta sección se mostrará el código del GSO modificado para unirlo con CMAES. Para ello he realizado una modificación del nivel 2, en este nivel se tomaban las mejores soluciones de cada galaxia y se ejecutaba un PSO con ellas. Se ha seguido la misma idea de tomar las mejores soluciones de cada galaxia, pero en vez de usar PSO, se ha ejecutado CMAES sobre cada una de estas soluciones.

Además tras terminar el GSO se ha aplicado CMAES sobre la mejor solución encontrada.

```
// PSO level 2
vector< vector<double> > y(g);
for(int i = 0; i < M; i++){
  ILocalSearch *ls;
  ILSParameters *ls_options;
  CMAESHansen *cmaes = new CMAESHansen("cmaesinit.par");
  cmaes->searchRange(0.1);
  ls = cmaes;
  ls->setProblem(m problem);
  ls->setRandom(m_random);
  ls options = ls->getInitOptions(sol);
  unsigned evals = ls->apply(ls_options, y[i], p2_value[i], 1000);
  eval += evals:
  for(int d = 0; d < D; d++)
     p2[i][d] = y[i][d];
  if(p2 value[i] < gbest value){
     for(int d = 0; d < D; d++)
         gbest[d] = p2[i][d];
      gbest value = p2 value[i];
```

```
// CMAES sobre la mejor solución
if(qbest_value < fitness){
   sol = gbest;
   fitness = gbest value;
ILocalSearch *ls;
ILSParameters *ls options;
//ls = new SimplexDim();
CMAESHansen *cmaes = new CMAESHansen("cmaesinit.par");
cmaes->searchRange(0.1);
ls = cmaes;
ls->setProblem(m_problem);
ls->setRandom(m_random);
ls options = ls->qetInitOptions(sol);
unsigned evals = ls->apply(ls options, sol, fitness, 22000);
eval += evals;
```

Resultados

	Dimen	sión 10	Dimensión 30				
Función	Media	Desv.	Mediana	Media	Desv.	Mediana	
F1	3.4106e-15	6.0692e-15	0	89299.5	47915.4	83088.5	
F2	3.4106e-15	9.2359e-15	0	2.6148e-14	7.7106e-15	2.8421e-14	
F3	6.8212e-15	1.8471e-14	0	705.366	804.641	393.686	
F4	0.159463	0.781207	0	11.4824	1.69733	11.2217	
F5	20.1306	0.126057	20.1421	20.6958	0.073157	20.7063	
F6	0.102493	0.1131	0.016517	2.35257	1.66983	1.88441	
F7	0.00915841	0.00955326	0.007396	0.00069042	0.0023672	1.1368e-13	
F8	6.15269	1.72933	5.96975	54.1655	16.9623	49.7479	
F9	6.08911	1.33469	6.07561	53.1307	15.5595	54.7226	
F10	387.025	103.025	381.999	2869.31	845.37	2803.99	
F11	315.376	102.658	283.342	3122.64	940.959	2967.59	
F12	0.220911	0.212019	0.141145	0.692645	0.647705	0.909875	
F13	0.0908851	0.0382812	0.087790	0.302646	0.0817274	0.295432	
F14	0.238046	0.0518777	0.246368	0.342666	0.0543367	0.332612	
F15	1.06398	0.295651	1.03589	3.35017	0.785337	3.17071	
F16	3.24118	0.180191	3.25163	12.6987	0.245135	12.7228	
F17	619.505	271.402	582.308	2645.98	899.895	2609.8	
F18	101.77	41.0501	91.4863	736.895	261.758	653.919	
F19	1.79736	0.300453	1.65395	14.262	2.04533	14.6611	
F20	88.0418	46.0177	83.0554	1246.51	771.103	1081.76	

- Introducción
- 2 Algoritmo
- 3 GSC
- 4 GSO con CMAES
- 6 Comparación

GSO sin y con CMAES

	Dimensiór	ı 10	Dimensión 30			
Función GSO		GSO-CMAES	GSO	GSO-CMAES		
F1	665525	3.41061e-15	3.35383e+07	89299.5		
F2	7111.75	3.41061e-15	6.55879e+08	2.6148e-14		
F3	267.021	6.82121e-15	9155.07	705.366		
F4	36.0719	0.159463	253.41	11.4824		
F5	20.1538	20.1306	20.5305	20.6958		
F6	6.25161	0.102493	30.3963	2.35257		
F7	2.96936	0.00915841	6.90277	0.000690428		
F8	23.0069	6.15269	135.669	54.1655		
F9	28.5642	6.08911	175.089	53.1307		
F10	654.016	387.025	4588.56	2869.31		
F11	855.566	315.376	4814.08	3122.64		
F12	0.42005	0.220911	0.990066	0.692645		
F13	0.410964	0.0908851	0.626694	0.302646		
F14	0.58442	0.238046	1.59153	0.342666		
F15	2.58898	1.06398	111.04	3.35017		
F16	3.31785	3.24118	12.383	12.6987		
F17	697.934	619.505	2.4189e+06	2645.98		
F18	73.4638	101.77	2.62698e+07	736.895		
F19	5.71442	1.79736	37.2742	14.262		
F20	88.692	88.0418	1779.72	1246.51		

GSO sin y con CMAES

Como se puede ver en la tabla anterior los resultados obtenidos al añadir CMAES han mejorado significantemente los resultados del GSO, el cual posiblemente tenía una baja explotación y se ha visto muy beneficiado al aplicar CMAES sobre las mejores soluciones de cada galaxia.

Esto es una prueba clara de la gran potencia del algoritmo CMAES y la gran capacidad que tiene.

Algoritmos DE dimensión 10

	CoDE	D-SHADE	EPSDE	IADE	LCHARE	AOD -CM	CHAREII	SaDE	dowND IDE	CMATC IIC
	CODE	D-SHADE	EPSUE	JADE	L-SHADE	*OP-aCM				ICMAES-ILS
F1	U	U	U	U	U	U	0	2,5523186	2,1693E-07	U
F2	0	0	0	O	0	0	0	0	0	0
F3	0	0	0	0,00617	0	0	0	0	0	0
F4	10,4826	30,773486	0	27,6187	29,409553	2,81989	29,49456	18,08504	3,32292061	14,3852921
F5	18,449	17,726874	20,04996	17,2677	14,145598	18,0702	18,00618	15,784068	15,9500416	14,6543978
F6	1.65E-06	0	3.041562	0.17552	0.0175401	0,33053	0	l . 0	0	0
F7	0.03759	0,0053139	0.017574	0.01186	0.0030429	0	0.009782	0.0072429	0,00496919	0
F8	0	0	0	0	0	3,69725	0	0		0.25365771
F9	3,88229	3,0826834	3,688733	3.50709	2.3445977	0.32622	3.140748	3.5837731	3.8578531	0.09754876
F10	0.03551	0,0489839	0.044085	0.00612	0.0085722	91.6179	0.012246	0.0195936	0.00244919	122.040112
F11		54,934451		83,6965	32,055826	116,833	63,1802	196,4226	136,2142	8,58508098
F12	0,04338	0,0529084	0,32105	0,25014	0,0681671	0,01008	0,136408	0,435019	0,31112176	0,06500938
F13	0,0798	0,048919	0,122368	0,08397	0,051562	0,01089	0,073997	0,1252054	0,11896589	0,00911486
F14	0,10715	0,0900969	0,136322	0,11054	0,0813617	0,28243	0,105517	0,1857701	0,13522187	0,15455911
F15	0,65232	0,4027667	0,753867	0,57825	0,3660992	0,54672	0,505169	0,7903287	0,7815061	0,72333112
F16	1,12919	1,3390289	2,541299	1,65084	1,2407968	2,52952	1,55714	1,9669672	1,59448403	1,90705025
F17	2,66213	3,3813451	53,28958	30,911	0,9766638	38,8965	1,557691	28,333598	2,62282136	21,0348886
F18	0,43056	0,4749765	1,197126	0,23878	0,2440928	3,57667	0,236954	1,6451056	0,44095956	0,52591997
F19	0,07447	0,2050415	1,431944	0,25492	0,0773	0,8277	0,191691	0,0668896	0,12183151	0,70769573
F20	0,02391	0,2733571	0,165033	0,32407	0,1848826	1,31679	0,243349	0,1076009	0,04147881	0,80409414

Algoritmos DE dimensión 30

	CoDE	O-SHADE	EPSDE	IADE	L-SHADE	OP-aCM	6HADE12	SaDE	vnNP-iD	MAES-ILS
F1	26331,9			447,82	0	0	481,345	298971	46510,2	0
F2	0	0	0	0	0	0	0	0	0	0
F3	0	0	0	0,00056	0	0	0	14,2579	0	0
F4	2,51743	5,03E-09	3,21266	0	0	0	0	37,184	2,03512	0
F5	20,0639	20,0142	20,3465	20,2871	20,1147	20,5171	20,1011	20,5357	20,2913	20
F6	1,98906	0,05924	18,8933	9,42289	1,38E-07	0,71355	0,52891	5,45994	1,1962	0,004
F7	0,00015	0	0,00208	0	0	0	0,00048	0,01233	0	0
F8	0	0	0	0	0	9,97799	0	0,07804	0	2,41701
F9	40,3709	8,70331	44,3622	26,166	6,78488	3,24113	15,8318	38,1205	33,9323	2,56503
F10	0,50019	0,03511	0,2014	0,00531	0,01633	636,003	0,01266	0,26919	0,00408	145,006
F11	1951,29	1303,97	3564,63	1639,94	1229,48	731,495	1396,94	3147,46	1953,74	73,8476
F12	0,05999	0,09665	0,52516	0,27113	0,16058	0,01322	0,16227	0,79419	0,36209	0,02829
F13	0,2313	0,13435	0,24299	0,2203	0,12412	0,03891	0,20401	0,25159	0,2531	0,02951
F14	0,23889	0,23173	0,27812	0,23399	0,2417	0,32782	0,22468	0,22853	0,26566	0,16982
F15	3,17523	1,89185	5,66927	3,09797	2,14637	2,13582	2,56413	4,141	4,75585	2,51102
F16	9,26248	8,51852	11,1465	9,36984	8,49901	10,6241	9,14776	10,9109	9,22422	10,8702
F17	1452,99	210,32	46053,2	9673,39	187,508	852,206	1058,91	11530,7	957,701	1046,75
F18	13,4426	10,3642	331,882	358,052	5,91007	115,353	49,8746	443,834	21,0204	96,0895
F19	2,70413	3,52751	13,3001	4,43732	3,68178	5,69994	4,30572	4,0013	3,9067	6,45644
F20	10,9131	4,20164	50,0425	2885,37	3,08186	24,0393	12,6424	124,543	8,52817	33,5459

GSO sin y con CMAES

Los resultados obtenidos por GSO con CMAES a pesar de haber mejorado enormemente los del GSO, aún están algo por debajo de algunos de los algoritmos DE, como puede verse en las tablas anteriores. A pesar de ello ya estamos en condiciones de poder incluso competir con ellos ya que al menos no hemos quedado últimos y nuestro algoritmo puede mejorarse mucho más haciendo un ajuste mucho más profundo de los parámetros e incluyendo parámetros adaptativos.

FIN DE LA PRESENTACIÓN