Topics in Macro 2

Week 6 - Second Part - TD 1 and TD 2

Oscar Fentanes www.oscarfentanes.com

TSE

Tuesday (17:00-18:30)

TD Second Part: Fiscal Multipliers (4 Weeks)

Part I

- Exercise I: Habit Persistence and The Keynesian Multiplier (Week 1)
- Exercise II: A Benchmark Model (Week 1)
- Exercise III: Consumption, Labor Supply and the Multiplier

Part II

- Exercise I: Taxes on the Labor Input and the Multiplier
- Exercise II: Public Spending in Utility Function and the Multiplier
- Exercise III: Labor Supply, Public Spending in Utility and the Multiplier

Part III

- Exercise I: Endogenous Public Spending
- Exercise II: Externality in Production and the Multiplier
- Exercise III: Externality in Labor Supply and the Multiplier

Exercise I: Habit Persistence and The Keynesian Multiplier

2/22

Model with habit persistence in consumption

Consumption:

$$C_t = \lambda C_{t-1} + c(1-\lambda)(Y_t - T_t)$$

Aggregate resources:

$$Y_t = C_t + G_t$$

Lag operator:

$$LC_t = C_{t-1}$$

Question 1. Assume first that $T_t = 0$. Using the lag operator L, determine the equilibrium output as a function of G_t . More precisely, determine the function B(L), such that equilibrium output is expressed as:

$$Y_t = B(L)G_t$$

Answer: $Y_t = \frac{1-\lambda L}{1-c(1-\lambda)-\lambda L} G_t$

Question 2. Compute the short run multiplier. This multiplier is obtained by imposing L=0 in the representation $Y_t=B(L)G_t$.

Answer: $B(0) = \frac{1}{1 - c(1 - \lambda)}$. Maximum for $\lambda = 0$.

Question 3. Compute the long run multiplier. This multiplier is obtained by imposing L=1 in the representation $Y_t=B(L)G_t$.

Answer: $B(1) = \frac{1-\lambda}{1-c(1-\lambda)-\lambda} = \frac{1}{1-c}$

Question 4. Discuss the two obtained government spending multipliers.

$$B(0) = B(1)$$
 if $\lambda = 0$ and

$$B(0) < B(1) \text{ if } \lambda > 0$$

7/22

Question 5. Assume now that $G_t = T_t$. Using the lag operator L, determine the equilibrium output as a function of G_t . More precisely, determine the function B(L), such that equilibrium output is expressed as $Y_t = B(L)G_t$. Compute the short run and long-run multipliers. Discuss.

Answer: $Y_t = G_t$. Fiscal multiplier B(L) = 1 = B(0) = B(1).

Exercise II: A Benchmark Model

Log-linearization in 3 steps

Take logs

$$y_t = F(x_t)$$

$$log(y_t) = log(F(x_t))$$

1st order Taylor expansion around the steady state

$$log(y_t) pprox log(ar{y}) + rac{1}{ar{y}} * (y_t - ar{y})$$

$$log(F(x_t)) \approx log(F(\bar{x})) + \frac{F'(\bar{x})}{F(\bar{x})} * (x_t - \bar{x})$$

Express everything in deviations

$$\hat{x} = \frac{x_t - \bar{x}}{\bar{x}}$$

Example 1

Production function $y_t = Ak_t^{\alpha} n_t^{1-\alpha}$.

Example 2

Resource constraint: $y_t = c_t + g_t$.

Benchmark model

Representative household:

$$U_t = \ln c_t - rac{\eta}{1+
u} n_t^{1+
u}$$

Budget constraint:

$$c_t \leq w_t n_t - T_t + \pi_t$$

Technology:

$$y_t = an_t^{\alpha}$$

Profits:

$$\pi_t = y_t - w_t n_t$$

Taxes:

$$T_t = g_t$$

Market clearing condition:

$$y_t = c_t + g_t$$

Question 1. Determine the optimality condition of the households and then deduce the Marginal Rate of Substitution (MRS).

Answer: $\frac{\eta n_t^{\nu}}{1/c_t} = w_t$.

Question 2. Determine the optimality condition of the firm.

Answer: $a\alpha n_t^{\alpha-1} = w_t$.

Question 3. Determine the equilibrium output.

Answer: Solution to $\eta\left(\frac{y_t}{a}\right)^{\frac{\nu+1}{\alpha}}=\frac{\alpha y_t}{y_t-g_t}.$

18 / 22

Answer:
$$\left(\nu + 1 + rac{lpha s_g}{1 - s_g}
ight) \widehat{y}_t = rac{lpha s_g}{1 - s_g} \widehat{g}_t.$$

4 D > 4 B > 4 B > 4 B > 9 Q C

Question 5. Compute the output multiplier and discuss the value of this multiplier with respect to ν and α .

Answer: $\frac{dy_t}{dg_t} = \frac{\alpha s_g}{(1-s_g)(\nu+1)+\alpha s_g}$

Question 6. Compute the consumption multiplier and discuss the value of this multiplier with respect to ν and α .

Answer: $\frac{d\hat{c}_t}{d\hat{\sigma}_t}$