it takes lesser time,

Enumeration problem

Collection

Here we are targetting to find all the feasible bolns.

Given a board of size "2 *n" and tile of size "2 *1", count the number of ways to tile the given board.

Foe placing a tile, we have

2 placements

7

Placed the tile vertically

Total no of ways = 1

n=2

Board size = 2 *n

Both vertically

Both holizontally

Total no of ways = 2

n=3

Board size = 2 x n

= 2*3

All vertically

one vertically,

two horizontally

Two horizontally,

one vertically

Total no of ways = 3

n= 4

All vertically

All horizontally

2H +2V

1 V + 2 H + IV

2 V + 2 H

Total no of ways = 5

Total no of ways

Getways (n)

Base Case

Recursive call

3

Base Case

if
$$(n==2)$$

combine them

return n;

بل

[OR]

if
$$(n \leq 3)$$

E retuen n;

Recursive call

2 72

If we place one tile vertically then the problem reduces to n-1, so for this we will use Getways (n-1).

If we are placing one tile houzontally then we will have to place second

tile also horizontally, so the problem reduces to n-2, so for this we can call Getways (n-2)

Getways (n)

3

if (n < 3)

٤

return n;

J

return Getweys (n-1) +

Getways (n-2)

3

Dry Run

n = 4

Getways (4)

$$n = 4$$
 $n \leq 3$
 $4 \leq 3$
 no

return Getways (3) + Getways (2)

Getways (3)
 $n = 3$
 $n \leq 3$

$$n \le 3$$

$$2 \le 3$$

$$yes$$

$$yes$$

$$n = 2$$

Getways (4) = Getways (3) + Getways (2)
=
$$3 + 2$$

= 5

B lint all the sequences of a string voing recurrion.

£g- €1,2} ↓ {13, {23, {1,2}