Билет 10. Обратный элемент по модулю

Определение

Число a^{-1} называется **обратным по модулю** m, если:

$$a \cdot a^{-1} \equiv 1 \pmod{m}$$

Обратный элемент существует только если $\gcd(a,m)=1$.

Метод 1: Теорема Эйлера

Метод

Если gcd(a, m) = 1, то по теореме Эйлера:

$$a^{\phi(m)} \equiv 1 \pmod{m}$$

Умножаем на a^{-1} :

$$a^{\phi(m)-1} \equiv a^{-1} \pmod{m}$$

 $\mathbf{\Pi}\mathbf{puмep:}$ Найти $7^{-1} \pmod{15}$

 $\phi(15) = 8$, тогда:

$$7^{-1} \equiv 7^7 \pmod{15}$$

Вычисляем: $7^2=49\equiv 4,\, 7^4\equiv 4^2=16\equiv 1,\, 7^7=7^4\cdot 7^2\cdot 7^1\equiv 1\cdot 4\cdot 7=28\equiv 13$ Ответ: $7^{-1}\equiv 13\pmod{15}$

Метод 2: Теорема Ферма

Теорема

Если p — простое и (p,a)=1, то:

$$a^{p-1} \equiv 1 \pmod{p}$$

Следовательно:

$$a^{-1} \equiv a^{p-2} \pmod{p}$$

Метод 3: Расширенный алгоритм Евклида

Метод

Решаем уравнение:

$$a \cdot x + m \cdot y = 1$$

$$a \cdot x = 1 \pmod{m}$$

Тогда x — искомый обратный элемент $a^{-1} \pmod{m}$.

Алгоритм:

- 1. **Базовый случай:** Если b=0: вернуть (a,1,0)
- 2. Рекурсивный шаг:
 - $(g, x_1, y_1) = \text{extGCD}(b, a \mod b)$
 - $\bullet \ \ x = y_1$
 - $y = x_1 \lfloor a/b \rfloor \cdot y_1$
 - Вернуть (g, x, y)

Пример: Найти $7^{-1} \pmod{15}$ алгоритмом Евклида

Решаем: 7x + 15y = 1

$$15 = 2 \cdot 7 + 1$$

$$7 = 7 \cdot 1 + 0$$

Обратный ход:

$$1 = 15 - 2 \cdot 7 \Rightarrow 7 \cdot (-2) + 15 \cdot 1 = 1$$

Ответ: $7^{-1} \equiv -2 \equiv 13 \pmod{15}$