Circuito para medição de massa

Objetivo

Projetar um circuito que permita a medição de massas de até 1000kg, utilizando-o em um data logger.

Componentes Utilizados

- Célula de carga do tipo I-1T ALFA INSTRUMENTOS, com capacidade de medir massas até 1000kg, com resistência elétrica em sua entrada de 390 +/-10 Ohms, e 350 +/- 1 Ohms na saída;
- Circuito integrado ADS1232 TEXAS INSTRUMENTS, para leitura da célula de carga, fazendo a interface com o microcontrolador;
- Fonte de alimentação 3,3 5VCC para alimentação do CI e a célula de carga;
- 2 Capacitores de 0,1 micro-Farads;

Circuito integrado ADS1232 – 24 Pinos

PINO	NOME	TIPO	DESCRIÇÃO
1	DVDD	Digital	Fonte de alimentação digital: 2,7 V a
			5,3 V
2	DGND	Digital	Terra digital
3	CLKIN/XTAL 1	Entrada digital	Ligação de cristal externo 1, ou
			entrada de relógio externo, ou ligação
			baixa para ativar o oscilador interno.

4	XTAL2	Digital	Ligação de cristal externo 2
5	DGND	Digital	Terra digital
6	DGND	Digital	Terra digital
7	TEMP	Entrada digital	Seleção do sensor de temperatura
8	A0	Entrada digital	Pinos de seleção MUX de entrada.
9	CAP	Analógico	Passagem PGA, ligar um condensador
	G, "!	7	de 0,1 μF aos pinos 9 e 10
10	CAP	Analógico	Passagem PGA, ligar um condensador
	G	7	de 0,1 μF aos pinos 9 e 10
11	AINNP1	Entrada analógica	Canal de entrada analógica positiva 1
12	AINN1	Entrada analógica	Canal de entrada analógica negativa 1
13	AINN2	Entrada analógica	Canal de entrada analógica negativa 2
14	AINP2	Entrada analógica	Canal de entrada analógica positiva 2
15	REFN	Entrada analógica	Entrada de referência positiva
16	REFP	Entrada analógica	Entrada de referência negativa
17	AGND	Analógico	Terra analógico
18	AVDD	Analógico	Fonte de alimentação analógica: 2,7 V
			a 5,3 V
19	GAIN0	Entrada digital	Pinos de seleção de ganho
20	GAIN1	Entrada digital	Pinos de seleção de ganho
21	SPEED	Entrada digital	Seleção da velocidade de dados
22	PDWN/	Entrada digital	Desligar: mantenha este pino baixo
			para desligar e reiniciar o ADC.
			Alternar o pino no dispositivo ligar o
			dispositivo
23	SCLK	Entrada digital	Relógio de série: dados de saída do
			relógio no bordo ascendente.
			Também utilizado para iniciar a
			calibração do desvio e os modos de
			espera
24	DRDY/DOUT	Saída digital	Saída de dupla finalidade:
			Os dados prontos indicam dados
			válidos ao entrarem em estado baixo.
			Os dados de saída de dados, MSB
			primeiro, na primeira borda
			ascendente de SCLK

Diagrama de blocos

NOTE: (1) A1 for ADS1234, TEMP for ADS1232.

Célula de carga I-1T

- As conexões +E e -E representam os pontos de alimentação da célula de carga, e as conexões +I e -I são os sinais para ligação ao CI mencionado.
- Abaixo segue o diagrama que representa a integração entre célula de carga, circuito integrado e microcontrolador para medição de massa.

Figure 9-1. Weigh-Scale Application

Conclusão

A opção de se utilizar o CI mencionado deve-se a simplificação do circuito de data logger, pois o mesmo permite realizar as leituras das variáveis do circuito e possui conversor A/D interno, assim eliminando a necessidade do uso de Cl's extras, tornando o hardware mais simples e compacto.