

Trajectories

Input

Joystick commands: cmd_hst_pt, cmd_crd_pt

Output

- Torques: u_hst, u_crd
- Positions: y_hst, y_crd

Currently we have:

- n_tra different trajectories of size n_sim
- n_tra = 9; n_sim = 1000
- each of them is a matrix of size (n_sim, n_tra)

Objective Function

Parameters that are optimized:

hst_inertia_engine, inertia_yy, hst_friction, crd_mass

$$\min_{p \in \mathbb{R}^4} f(p) = \frac{1}{n_{\text{tra}}} \cdot \left(\alpha_1 \cdot \| \overline{U}_{\text{hst}} - U_{\text{hst}} (p) \|_{\text{F}}^2 + \dots \right)$$
s. t.
$$p_i \ge 0$$

where

$$\alpha_1 = \frac{1}{\|\overline{U}_{\text{hst}}\|_{\text{F}}^2} \qquad \|\overline{U}_{i,j}\|_{\text{F}}^2 = \sum_{j=1}^{n_{\text{tra}}} \sum_{i=1}^{n_{\text{sim}}} |\overline{U}_{i,j}|^2$$

 $\|\cdot\|_{\mathrm{F}}$ is the Frobenius norm

Influence of the Parameters

10% deviation of parameter . . . cause in the objective function:

- hst inertia engine

linear linear

■ inertia_yy

 $3.3 \cdot 10^{-3}$ $7.8 \cdot 10^{-11}$

 $1 \cdot 10^{-3}$

quadratic

■ hst_friction

- $52 \cdot 10^{-3}$
- linear

crd_mass

Inertia Engine

souris YY

Friction

Solvers

Conditions:

■ Starting values: $X \sim N(\bar{x}, \bar{x}/2)$, where \bar{x} is the given value

■ Smarm Size: 10

■ Function Tolerance: 10⁻⁹

■ Time Limit: 15 min

lacksquare Max Iterations: ∞

	penalty	evaluations	time
Particle Swarm	10^{-13}	2500	3 min
Pattern Search	10^{-3}	6000	8 min
Genetic Algorithm	10^{-2}	7500	10 min (time limit)
Simulated Annealing	10^{-1}	3000	4 min

Optimization Problem

$$\min_{p \in \mathbb{R}^{10}} f(p) = \frac{1}{2} ||x_{\mathsf{ref}} - x(p)||^2$$
s. t.
$$p_i \ge 0$$

- state $x = (s, \theta, \dot{s}, \dot{\theta})^T$
- $lacktriangleq x_{\mathrm{ref}}$ reference trajectory
- lacktriangleq x(p) approximation using Runge-Kutta methods of Order 1/2/3/4

Influence of the Parameters

Using $x_{ref} = x_{real}$, the real trajectory:

Influence of the Parameters

Using $x_{ref} = x(p_{real})$, the appriximation from the real parameters:

Solvers

Conditions:

■ Supporting Points: 100

Runge-Kutta Order: 1

■ Reference Trajectory: x_{real}

lacktriangle Optimality Tolerance: 10^{-10}

	iterations	$\frac{1}{2}\ x_{real} - x(p)\ $	$\frac{1}{2}\ x(p_{real}) - x(p)\ $
SQP	177	$1.8 \cdot 10^{-4}$	$7.6 \cdot 10^{-4}$
Interior Point	186	$1.8 \cdot 10^{-4}$	$7.6 \cdot 10^{-4}$
Trust Region	12	$1.8 \cdot 10^{-4}$	$7.6 \cdot 10^{-4}$
Active Set	17	$1.9\cdot 10^{-2}$	$2.6\cdot 10^{-2}$

Solvers

Conditions:

■ Supporting Points: 100

■ Runge-Kutta Order: 4

■ Reference Trajectory: *x*_{real}

 $\frac{1}{2} ||x_{\text{real}} - x(p_{\text{real}})||^2 = 9.4 \cdot 10^{-5}$

lacktriangle Optimality Tolerance: 10^{-10}

	iterations	$\frac{1}{2}\ x_{real} - x(p)\ $	$rac{1}{2}\ x(p_{real}) - x(p)\ $
SQP	193	$8.9 \cdot 10^{-5}$	$5.3 \cdot 10^{-6}$
Interior Point	206	$8.9 \cdot 10^{-5}$	$5.3 \cdot 10^{-6}$
Trust Region	19	$8.9 \cdot 10^{-5}$	$5.2 \cdot 10^{-6}$
Active Set	17	$1.9\cdot 10^{-2}$	$1.9\cdot 10^{-2}$