

An Introduction to Naive Bayes Classifiers

How It Works, Where We See It, and Why It Matters

Spams vs. Hams

congratulations! win a price...

আমি গুগল-এর একজন

নিয়োগ ব্যবস্থাপক।

hey friend! how are things...

ON SUNDAY
WITH WILL!!

WINNER!! As a valued network customer...

Eh u remember how 2 spell his name...

Thanks for your subscription to...

Ok lar... Joking wif u oni...

Did you hear about the...

Wah lucky man...

Please call our customer service...

Tell where you reached...

Congrats! 1 year special...

Spams vs. Hams

congratulations! win a price...

hey friend! how are things...

ON SUNDAY
WITH WILL!!

WINNER!! As a valued

network customer...

Eh u remember how 2 spell his name...

আমি গুগল-এর একজন নিয়োগ ব্যবস্থাপক।

Did you hear about the...

Wah lucky man...

Thanks for your subscription to...

Ok lar... Joking wif u oni...

Please call our customer service...

Tell where you reached...

Congrats! 1 year special...

Naive Bayes Models

- Bayes' Theorem: What we know to guess what's true.
- Naive Assumption: Assumes every word is independent
- **Use cases:** text classification, sentiment analysis, spam filtering.

Naive Bayes Models

A probability-based classifier that assumes all features work independently.

Three Naive Bayes Models

Multinomial Naive Bayes

Bernoulli Naive Bayes

Gaussian Naive Bayes

Multinomial Naive Bayes

Count Matters

Perfect for text data where we care about how many times a word appears

Example

The word *free* shows up 5 times \rightarrow 5

Practical Example

Message	Words	Count
Free prize now	"free", "prize", "now"	free: 1 prize: 1 now: 1
Free free unlimited offer	"free", "offer"	free: 2 unlimited: 1 offer: 1
Hello friend, hello	"hello", "friend"	hello: 2 friend: 1

Bernoulli Naive Bayes

Presence Matters

Doesn't care how many times a word appears; just whether it's there or not

Example

The word *free* shows up 5 times → **1** (Present)

Practical Example

Message	Words	Presence
Free prize now	"free", "prize", "now"	free: 1 prize: 1 now: 1
Free free unlimited offer	"free", "offer"	free: 1 unlimited: 1 offer: 1
Hello friend, hello	"hello", "friend"	hello: 1 friend: 1

Gaussian Naive Bayes

Normal Distribution

Numerical data that follows a normal distribution

Use Cases

Continuous numbers, sensor readings, pixel intensities

Practical Example

Message	Words	TF-IDF Scores
Free prize now	"free", "prize", "now"	free: 0.82 prize: 0.54 now: 0.36
Free free unlimited offer	"free", "offer"	free: 0.91 unlimited: 0.62 offer: 0.48
Hello friend, hello	"hello", "friend"	hello: 0.73 friend: 0.41

Final Recap

Model	Input Type	What it Looks for
MultinomialNB	Word Counts	Frequency of each word
BernoulliNB	Binary Values	Whether a word appears or not
GaussianNB	Continuous Values	Statistical distribution of features

SMS Spam Dataset

Sample Dataset

- Ham: U dun say so early hor... U c already then say...
- Ham: Ok lar... Joking wif u oni...
- Spam: Free entry in 2 a wkly comp to win FA Cup final tkts 21st May 2005.
- Spam: WINNER!! As a valued network customer you have been selected to receive £900 prize

Report for MultinomialNB

Accuracy Score: 98.68%

	precision	recall	f1-score	support
0	0.99	1.00	0.99	1448
1	0.97	0.93	0.95	224
accuracy			0.99	1672
macro avg	0.98	0.96	0.97	1672
weighted avg	0.99	0.99	0.90	1672

Report for BernoulliNB

Accuracy Score: 97.19%

	precision	recall	f1-score	support
0	0.97	1.00	0.98	1448
1	0.99	0.79	0.88	224
accuracy			0.97	1672
macro avg	0.98	0.9	0.93	1672
weighted avg	0.97	0.97	0.97	1672

Report for GaussianNB

Accuracy Score: 87.74%

	precision	recall	f1-score	support
0	0.99	9.87	0.92	1448
1	0.52	0.92	0.67	224
accuracy			0.88	1672
macro avg	0.76	0.90	0.8	1672
weighted avg	0.52	0.98	0.89	1672

Confusion Matrices

- Minimize False Positives → Bernoulli Naive Bayes
- Minimize False Negatives → Multinomial Naive Bayes
- Overall Best Model → Multinomial Naive Bayes
- Overall Worst Model → Gaussian Naive Bayes

Model Comparison across Three Metrics

Best Model: Multinomial NB

Accuracy

98.68%

Precision

97.00%

Recall

93.00%

F1-Score

95.00%

ROC-AUC

99.07%

FPR Rate

0.48%

FNR Rate

6.70%

Visit the Project

fli.so/naivebayes

The End

Thank you for listening!