

סמסטר ב' , תשע"ט

מעבדה

מערכות הפעלה

המחלקה להנדסת תוכנה

עבודה להגשה מס' 3

תאריך ההגשה: 29.04.2021 שעה 23:55

הנחיות:

- קראו היטב את השאלות.
- ניתן להגיש את העבודה בזוגות. <u>לא ניתן להגיש את העבודה בקבוצה מעל שני אנשים</u>.
- readme.txt וקובץ header יש להגיש את העבודה בקובץ zip ובתוכו קצבי קוד .
 - שם הקובץ שיוגש למערכת ההגשה יהיה מורכב מת"ז של המגיש/ים. לדוגמה:

עבור הגשה ביחיד - 111111111.zip עבור הגשה בזוג - 22222222.zip

- במקרה של הגשה בזוגות, <u>רק אחד מבני הזוג יגיש את העבודה במודל.</u>
- גם בתחילת הקובץ בעבודה יש לרשום את שמות ומספרי ת.ז. של המגישים.
- איחור במועד ההגשה יגרור הורדה של ציון, 5 נק' לכל יום איחור או חלק ממנו.
 בכל מקרה לא יהיה ניתן להגיש מעבר ל-3 ימי איחור ממועד ההגשה המקורי.
 במקרים חריגים בלבד יש לפנות למרצה כדי לקבל אישור על הגשה באיחור.
- שאלות לגבי העבודה יש לשאול בפורום באתר הקורס ("מודל") או בשעות קבלה. אין לשלוח שאלות שקרושות לעבודה במייל.

You will write a program to implement the following CPU scheduling algorithms.

- 1. First Come First Serve
- 2. Shortest Job First
- 3. Priority
- 4. Round Robin
- 5. Priority with Round Robin

The program reads a list of tasks from a file and then schedules them based on the chosen scheduling algorithm.

The program gets the file name from command line as an argument. For example:

annafr2@ubuntu:~/Desktop\$./a.out test3.txt

Each line in the task file describes a single task. Each task has a name, a priority (for algorithms that need priority), arrival time, and a CPU burst separated by commas.

Priority, burst time, and arrival time are represented by an integer number. The higher the number, the higher the priority.

Example task file:

<task id>,<priority>,<task arrival time>,<burst time>

1, 4, 0, 10

2, 3, 3, 8

3, 3, 2, 9

Function to implement:

1- Build (.....)

The function Build converts each line in the file to a struct called *task* that has the same fields (task id, priority ...).

2- Table (....)

The functions returns an array of tasks, you could assume that the MAX length of tasks is equal to 10. (MAX is macro)

3- Display(....)

The function prints a table that shows (like in a practical session) the tasks in the file.

4- Schedule (....)

The function print the scheduling of an array of tasks, you need to use enum (DONT USE NUMBERS FOR ALGORTHIMS) for each algorithm name.

For example - using enum:

```
enum Algorithm{
    First_Come_First_Serve=1,
    Shortest_Job_First=2,
    Priority=3,
    Round_Robin=4,
    Priority_With_Round_Robin=5
};
```

The output should be:

<P<taskid>,CPU_TIME><P<taskid>,CPU_TIME>.....

Example: (FCFS, array_tasks)

Array_tasks contains 2 tasks:

0, 4, 0,10

1,3,1,5

The output:

<P0,10><P1,5>

output example 2:

צמודה נציאה

רשתות תקשורת מחשבים - עבודת הגשה מס' 1

תאריך הגשה – 19.4.2021

<u>הוראות הגשה: (אי קיום הוראות אלו עלול לגרום להורדת ציון!)</u>

- 1. יש להגיש עד התאריך 19.4.2021 בשעה 23:55 למטלה הקשורה ב-Moodle בלבד.
- 2. יש להגיש קובץ PDF אחד, מרוכז, ברור ונקי. (ציון יורד אם אין סדר וניקיון ואי הגשה בקובץ PDF!)
 - 3. אין להגיש בשום פנים ואופן למייל של מרצה או מתרגל אך ורק ב-Moodle.
- 4. לדחיית העבודה יש לפנות במייל למרצה alonhkoz@ac.sce.ac.il. נא לציין סיבה לדחייה. אין לפנות במייל למתרגלות!
 - 5. ניתן להגיש את העבודה ביחידים בלבד!.
 - 6. לא יתקבלו עבודות שהוגשו באיחור.
- 7. במקרה של העתקה מלאה או חלקית של העבודה (מסטודנטים אחרים, מ-Internet או מכל מקום אחר), יינתן ציון 0 על העבודה של כלל הסטודנטים המעורבים והם יעלו לוועדת משמעת.

(20 נק' – 4 נק' לכל סעיף) שאלה 1

נתונה רשת 164.185.0.0. החליטו לחלק את הרשת למספר מקסימלי של תתי רשתות עם 450 תחנות בכל תת רשת.

- א. רשום בבסיס 2). Subnet mask א. רשום
 - ב. רשום כמות תתי רשתות.
- ג. רשום מספרי רשתות שהתקבלו לרשתות מספר 1,3,8,18 (ניתן לרשום בבסיס 2, מספור רשתות מתחיל מ-0).
 - ד. רשום כתובת IP לתחנה מספר 200 לכל תתי הרשתות מסעיף ג׳(ניתן לרשום בבסיס 2).
- ה. החליטו להגדיל את כמות התחנות ל-511 תחנות לכל תת רשת. האם יש צורך לחלוקה מחדש? נמק את תשובתך.

(נק') שאלה 2

: קיימים ברשת המופיעה באיור הבא כאשר subnets

- ? bites 17 הוא CIDR א. ה
- ב. ה- CIDR הוא 19
- ?bites 21 הוא CIDR -ג. ה-

CIDR: Classless Inter-Domain Routing מציין את כל הכתובות האפשריות בתחום

שאלה 3 (20 נק')

נניח כי רשת משתמשת בכתובות Pv4 (router). נניח כי לנתב (router) יש 4 ערוצים, ממוספרים מ-0 עד 3, ויש לקדם את החבילות לממשק הערוץ (link interface) לפי המתואר מטה:

Destination Address Range	Link Interface	
11100000 00000000 00000000 00000000 through 11100000 00000000 111111111 11111111	0	
11100000 00000001 00000000 00000000 through 11100000 00000001 111111111 11111111	1	
11100000 00000010 00000000 00000000 through 11100001 11111111 11111111 11111111	2	
otherwise	3	

א. (10 נק')

מהי טבלת הקידום?

דרישות לטבלת הקידום:

- 1. מכילה 5 רשומות.
- 2. משתמשת בהתאמה הארוכה ביותר של ה-prefix.
 - 3. מקדמת את החבילה לממשק הערוץ הנכון.

ב. (10 נק')

יש כתובות היעד (datagrams) יש לתאר איך טבלת הקידום שלכם מגדירה ממשק הערוץ המתאים לחבילות

11111000 10010001 01010001 01010101 11100000 00000000 11000011 00111100 11100001 10000000 00010001 01110111

שאלה 4 (20 נק')

סגמנט TCP באורך מרבי של שדה נתונים bytes 4000 משודר משרת ללקוח דרך אינטרנט.

. (11 bytes) Options הסגמנט מכיל

לצורך השידור הסגמנט מחולק למנות IPv4.

. bytes1024- שווה ל-IPv4 ברשות I אורך מרבי של פרגמנט

במעבר מרשת I לרשת I+1 מתבצע פירוק מנות IP.

ברשות 1+1 אורך מרבי של פרגמנט שווה ל-bytes 256.

- חשב מקדם ניצול ממוצע של ערוץ תקשורת ברשות I. (סמן את התשובה הנכונה בטבלה + דרך מלאה)
- חשב מקדם ניצול ממוצע של ערוץ תקשורת ברשות 1+1. (סמן את התשובה הנכונה בטבלה +דרך מלאה) ב.
 - .datagram- בכל אחד מ-fragment offset אחרי חלוקה ברשת 1+1 רשום מה הוא ערך לשדה

.d	.C	.b	.a	
97.56	96.81	96.78	96.03	.א
91.49	89.85	89.81	89.77	ב.

('נק') שאלה 5

.Autonomous Systems-ידוע כי ניתוב מתבצע ב

(נק') (סעיף א'

איך נתב שנמצא בתוך AS כלשהו יודע איך ולאן לנתב את החבילה ליעד שנמצא מחוץ ל-AS של אותו הנתב?

(10 נק') סעיף ב'

(ראה תסריט) AS_3 - ו AS_2 מ- AS_1 מי-Inter AS ראה תסריט) נניח AS_1 לומד

אילו שלבים צריך לבצע נתב 1_d כדי לנתב את החבילה לתת רשת 2x? נא לפרט את השלבים כולל באילו פרוטוקולים הוא משתמש.

בהצלחה!