

Lecture 09 – Image segmentation II Thresholding

Prof. João Fernando Mari

<u>joaofmari.github.io</u>

joaof.mari@ufv.br

Agenda

- Thresholding
- Basic global thresholding
- Otsu's method

Thresholding

- Image thresholding:
 - Central position in image segmentation applications
 - Ease of implementation
 - Computational speed
- Global thresholding:
 - T is a constant applicable to an entire image
- Local threshold (variable or regional):
 - T changes throughout the image

$$g(x,y) = \begin{cases} 1, & \text{if } f(x,y) > T \\ 0, & \text{if } f(x,y) \le T \end{cases}$$

Thresholding

- Image thresholding:
 - Central position in image segmentation applications
 - Ease of implementation
 - Computational speed
- Global thresholding:
 - T is a constant applicable to an entire image
- Local threshold (variable or regional):
 - T changes throughout the image

$$g(x,y) = \begin{cases} 1, & \text{if } f(x,y) > T \\ 0, & \text{if } f(x,y) \le T \end{cases}$$

BASIC GLOBAL THRESHOLDING

- 1. Select an initial guess for the global threshold, T.
- 2. Segment the image using T:

$$g(x,y) = \begin{cases} 1 & \text{if } f(x,y) > T \\ 0 & \text{if } f(x,y) \le T \end{cases}$$

- Isso dará origem a dois grupos de pixels:
 - G₁, pixels com valores de intensidade > T;
 - G_2 , pixels com valores $\leq T$.
- 3. Calcular os valores de intensidade média m_1 e m_2 para os pixels em G_1 e G_2 , respectivamente.
- 4. Calcular um novo valor de limiar:

$$T = \frac{1}{2}(m_1 + m_2)$$

Repetir as etapas 2 a 4 até que a diferença entre os valores de T em iterações sucessivas seja menor que o parâmetro predefinido ΔT .

	Image I									
	2	თ	6	5						
	3	1	1	1						
	6	7	6	3						
	5	7	0	3						
	$T_0 = \min(I) = 0$									
1	7 A	T = T	0.00)1						

Image I								
2	3	6	5					
3	1	1	1					
6	7	6	3					
5	7	0	3					
$T_0 = \min(I) = 0$								

 $\Delta T = 0.001$

- $T_0 = \min(I) = 0$
- $G_1 = [2, 3, 6, 5, 3, 1, 1, 1, 6, 7, 6, 3, 5, 7, 3]$
- $G_2 = [0]$
- $m_1 = (2+3+6+5+3+1+1+1+6+7+6+3+5+7+3) / 15$ = 59 / 15 = 3.9333
- $m_2 = 0 / 1 = 0$
- $T_1 = (3.9333 + 0) / 2 = 1.9667$
- $|T_1 T_0| = |1.9667 0| = 1.9667 > \Delta T$. Then, new iteration.

- $T_1 = 1.9667$
- $G_1 = [2, 3, 6, 5, 3, 6, 7, 6, 3, 5, 7, 3]$
- $G_2 = [1, 1, 1, 0]$
- $m_1 = (2+3+6+5+3+6+7+6+3+5+7+3) / 12$ = 56 / 12 = 4.6667
- $m_2 = (1+1+1+0)/4 = 3/4 = 0.75$
- $T_2 = (4.6667 + 0.75) / 2 = 2.7084$
- $|T_2 T_1| = |2.7084 1.9667| = 0.7417 > \Delta T$. Then, new iteration.

Imagem I

 $\Delta T = 0.001$

- $T_2 = 2,7084$
- $G_1 = [3, 6, 5, 3, 6, 7, 6, 3, 5, 7, 3]$
- $G_2 = [2, 1, 1, 1, 0]$
- $m_1 = (3+6+5+3+6+7+6+3+5+7+3) / 11$ = 54 / 11 = 4.9091
- $m_2 = (2 + 1 + 1 + 1 + 0) / 5 = 1$
- $T_3 = (4.9091 + 1) / 2 = 2.9546$
- $|T_3 T_2| = |2.9546 2.7084| = 0.2462 > \Delta T$. Then, new iteration.

Image I								
2	3	6	5					
3	1	1	1					
6	7	6	3					
5	7	0	3					
Т	,	min/	1) —	, U				

 $\Delta T = 0.001$

- $T_3 = 2.9546$
- $G_1 = [3, 6, 5, 3, 6, 7, 6, 3, 5, 7, 3]$
- $G_2 = [2, 1, 1, 1, 0]$
- $m_1 = (3+6+5+3+6+7+6+3+5+7+3) / 11$ = 54 / 11 = 4.9091
- $m_2 = (2 + 1 + 1 + 1 + 0) / 5 = 1$
- $T_4 = (4.9091 + 1) / 2 = 2.9546$
- $|T_4 T_3| = |2.9546 2.9546| = 0.0 \le \Delta T$. Then, end of the algorithm.

Image 1	I
---------	---

	180 1			
2	3	6	5	
3	1	1	1	
6	7	6	3	
5	7	0	3	

$$T_0 = \min(I) = 0$$
$$\Delta T = 0.001$$

Image I'

Image I							
2	3	6	5				
3	1	1	1				
6	7	6	3				
5	7	0	3				

$$T_3 = 2.9546$$

- $G_1 = [3, 6, 5, 3, 6, 7, 6, 3, 5, 7, 3]$
- $G_2 = [2, 1, 1, 1, 0]$
- $m_1 = (3+6+5+3+6+7+6+3+5+7+3) / 11$ = 54 / 11 = 4.9091
- $m_2 = (2 + 1 + 1 + 1 + 0) / 5 = 1$
- $T_4 = (4.9091 + 1) / 2 = 2.9546$
- $|T_4 T_3| = |2.9546 2.9546| = 0.0 \le \Delta T$. Then, end of the algorithm.

OTSU'S METHOD

- Calculate the normalized histogram of the input image:
 - Designar os componentes do histograma como p_i , i = 0, 1, ..., L-1.
- Calculate the accumulated sums, $P_1(k)$, for k=0, 1, 2, ..., L-1, according to:

$$- P_1(k) = \sum_{i=0}^k p_i$$

- Calculate the accumulated means m(k), for k=0, 1, 2, ..., L-1, according to :
 - $m(k) = \sum_{i=0}^{k} i p_i$
- Calculate the global mean intensity, m_G, according to :
 - $m_G = \sum_{i=0}^{L-1} i p_i$
- Calcular a variância entre classes, $\sigma_B^2(k)$, para k=0, 1, 2, ..., L-1, de acordo com:

$$- \sigma_B^2 = P_1(m_1 - m_G)^2 + P_2(m_2 - m_G)^2, \text{ reescrita como: } \sigma_B^2(k) = \frac{[m_G P_1(k) - m(k)]^2}{P_1(k)[1 - P_1(k)]}$$

- O limiar de Otsu, k*, é valor de k para o qual $\sigma_B^2(k)$ é máxima.
 - Se ocorrer mais de uma máxima, K* é a média dos valores de k correspondentes
- Obter a medida de separabilidade, η^* , considerando k = k* na equação:

$$-\eta(k)=rac{\sigma_B^2(k)}{\sigma_G^2},$$
 em que: $\sigma_G^2=\sum_{i=0}^{L-1}(i-m_G)^2p_i$

16 pixels (4 x 4) 3 bits = 8 gray levels. [0, ..., 7]

i	h_i	p_i	$P_1(k)$	m(k)	$\sigma_B^2(k)$
0	1	0.0625			
1	3	0.1875			
2	1	0.0625			
3	4	0.2500			
4	0	0.0000			
5	2	0.1250			
6	3	0.1875			
7	2	0.1250			
	16	1.0			

(i	 m.c	,)2	n:
(-	• G	「丿	\mathbf{r}_{ι}

$$P_1(k) = \sum_{i=0}^k p_i$$

i	h_i	p_i	$P_1(k)$	m(k)	$\sigma_B^2(k)$		$(i-m_G)^2p_i$
0	1	0.0625	0.0625			_	
1	3	0.1875	0.2500				
2	1	0.0625	0.3125				
3	4	0.2500	0.5625				
4	0	0.0000	0.5625				
5	2	0.1250	0.6875				
6	3	0.1875	0.8750				
7	2	0.1250	1.0000				
			•		•	<u>-</u> '	

$$P_1(k) = \sum_{i=0}^k p_i$$

$$m(k) = \sum_{i=0}^{k} i p_i$$

	i	h_i	p_i	$P_1(k)$	m(k)	$\sigma_B^2(k)$		(i-m)
	0	1	0.0625	0.0625	0.0		_	
	1	3	0.1875	0.2500	0.1875			
	2	1	0.0625	0.3125	0.3125			
	3	4	0.2500	0.5625	1.0625			
	4	0	0.0000	0.5625	1.0625			
	5	2	0.1250	0.6875	1.6875			
_	6	3	0.1875	0.8750	2.8125		_	
_	7	2	0.1250	1.0000	3.6875		_	
-							-	

 $(i-m_G)^2p_i$

$$P_1(k) = \sum_{i=0}^k p_i$$

$$m(k) = \sum_{i=0}^{k} i p_i$$

$$m_G = \sum_{i=0}^{L-1} i p_i$$

i	h_i	p_i	$P_1(k)$	m(k)	$\sigma_B^2(k)$
0	1	0.0625	0.0625	0.0	
1	3	0.1875	0.2500	0.1875	
2	1	0.0625	0.3125	0.3125	
3	4	0.2500	0.5625	1.0625	
4	0	0.0000	0.5625	1.0625	
5	2	0.1250	0.6875	1.6875	
6	3	0.1875	0.8750	2.8125	
7	2	0.1250	1.0000 (3.6875)

$$m_G = 3.6875$$

 $(i-m_G)^2p_i$

$$P_1(k) = \sum_{i=0}^k p_i$$

$$m(k) = \sum_{i=0}^{k} i p_i$$

$$m_G = \sum_{i=0}^{L-1} i p_i$$

$$\sigma_B^2(k) = \frac{[m_G P_1(k) - m(k)]^2}{P_1(k)[1 - P_1(k)]}$$

i	h_i	p_i	$P_1(k)$	m(k)	$\sigma_B^2(k)$
0	1	0.0625	0.0625	0.0	0.906510
1	3	0.1875	0.2500	0.1875	2.876302
2	1	0.0625	0.3125	0.3125	3.283026
3	4	0.2500	0.5625	1.0625	4.159288
4	0	0.0000	0.5625	1.0625	4.159288
5	2	0.1250	0.6875	1.6875	3.344389
6	3	0.1875	0.8750	2.8125	1.567522
7	2	0.1250	1.0000 (3.6875)

 $m_G = 3.6875$

$$P_1(k) = \sum_{i=0}^k p_i$$

$$m(k) = \sum_{i=0}^{k} i p_i$$

$$m_G = \sum_{i=0}^{L-1} i p_i$$

$$\sigma_B^2(k) = \frac{[m_G P_1(k) - m(k)]^2}{P_1(k)[1 - P_1(k)]}$$

$$\mathbf{k}^* = \frac{1}{2}(3+4) = \mathbf{3.5}$$

i	h_i	p_i	$P_1(k)$	m(k)	$\sigma_B^2(k)$
0	1	0.0625	0.0625	0.0	0.906510
1	3	0.1875	0.2500	0.1875	2.876302
2	1	0.0625	0.3125	0.3125	3.283026
3	4	0.2500	0.5625	1.0625	4.159288
4	0	0.0000	0.5625	1.0625	4.159288
5	2	0.1250	0.6875	1.6875	3.344389
6	3	0.1875	0.8750	2.8125	1.567522
7	2	0.1250	1.0000 (3.6875)
			224	_ 2 _ 0	76

$$(i-m_G)^2p_i$$

$$P_1(k) = \sum_{i=0}^k p_i$$

$$m(k) = \sum_{i=0}^{k} i p_i$$

$$m_G = \sum\nolimits_{i=0}^{L-1} i p_i$$

$$\sigma_B^2(k) = \frac{[m_G P_1(k) - m(k)]^2}{P_1(k)[1 - P_1(k)]}$$

$$k^* = \frac{1}{2}(3+4) = 3.5$$

$$\eta(k) = \frac{\sigma_B^2(k)}{\sigma_G^2},$$

	i	h_i	p_i	$P_1(k)$	m(k)	$\sigma_B^2(k)$	
	0	1	0.0625	0.0625	0.0	0.906510	
	1	3	0.1875	0.2500	0.1875	2.876302	
	2	1	0.0625	0.3125	0.3125	3.283026	
	3	4	0.2500	0.5625	1.0625	4.159288	
	4	0	0.0000	0.5625	1.0625	4.159288	
	5	2	0.1250	0.6875	1.6875	3.344389	
	6	3	0.1875	0.8750	2.8125	1.567522	
	7	2	0.1250	1.0000	3.6875		
$m_G = 3.6875$							

$$(i-m_G)^2p_i$$

$$P_1(k) = \sum_{i=0}^k p_i$$

$$m(k) = \sum_{i=0}^{k} i p_i$$

$$m_G = \sum_{i=0}^{L-1} i p_i$$

$$\sigma_B^2(k) = \frac{[m_G P_1(k) - m(k)]^2}{P_1(k)[1 - P_1(k)]}$$

$$k^* = \frac{1}{2}(3+4) = 3.5$$

$$\eta(k) = \frac{\sigma_B^2(k)}{\sigma_G^2}$$
, em que:

$$\sigma_G^2 = \sum_{i=0}^{L-1} (i - m_G)^2 p_i$$

,	_					
	İ	h_i	p_i	$P_1(k)$	m(k)	$\sigma_B^2(k)$
	0	1	0.0625	0.0625	0.0	0.906510
	1	3	0.1875	0.2500	0.1875	2.876302
,	2	1	0.0625	0.3125	0.3125	3.283026
	3	4	0.2500	0.5625	1.0625	4.159288
	4	0	0.0000	0.5625	1.0625	4.159288
	5	2	0.1250	0.6875	1.6875	3.344389
	6	3	0.1875	0.8750	2.8125	1.567522
ï	7	2	0.1250	1.0000 (3.6875)
•						
				m	$a_G = 3.68^{\circ}$	75

$$(i - m_G)^2 p_i$$
 0.84985
 1.35425
 0.17798
 0.11816
 0.00000
 0.21533
 1.00269
 1.37158

 $\sigma_G^2 = 5.08984$

$$P_1(k) = \sum_{i=0}^k p_i$$

$$m(k) = \sum_{i=0}^{k} i p_i$$

$$m_G = \sum_{i=0}^{L-1} i p_i$$

$$\sigma_B^2(k) = \frac{[m_G P_1(k) - m(k)]^2}{P_1(k)[1 - P_1(k)]}$$

$$k^* = \frac{1}{2}(3+4) = 3.5$$

$$\eta(k) = \frac{\sigma_B^2(k)}{\sigma_G^2}$$
, em que:

$$\sigma_G^2 = \sum_{i=0}^{L-1} (i - m_G)^2 p_i$$

	i	h_i	p_i	$P_1(k)$	m(k)	$\sigma_B^2(k)$
•	0	1	0.0625	0.0625	0.0	0.906510
	1	3	0.1875	0.2500	0.1875	2.876302
	2	1	0.0625	0.3125	0.3125	3.283026
	3	4	0.2500	0.5625	1.0625	4.159288
	4	0	0.0000	0.5625	1.0625	4.159288
	5	2	0.1250	0.6875	1.6875	3.344389
	6	3	0.1875	0.8750	2.8125	1.567522
	7	2	0.1250	1.0000	3.6875	
				m	$_{G} = 3.68$	75

$$(i-m_G)^2p_i$$

0.17798

$$\sigma_G^2 = 5.08984$$

$$\eta(k^*) = 0.81717$$

2	3	6	5	
3	1	1	1	
6	7	6	3	
5	7	0	3	
0	0	0	0	
0	0	0	0	
0	0	0	0	
0	0	0	0	
,				-

Í	h_i	p_i	$\sigma_B^2(k)$
0	1		
1	3		
2	1		
3	4		
4	0		
5	2		
6	3		
7	2		

7								
6								
5								
4								
3								
2								
1								_
	0	1	2	3	4	5	6	7

2	3	6	5	
3	1	1	1	
6	7	6	3	
5	7	0	3	
/				\longrightarrow
0	0	0	0	
0	0	0	0	
0	0	0	0	
0	0	0	0	
,				-

i	h_i	p_i	$\sigma_B^2(k)$
0	1	0.0625	
1	3	0.1875	
2	1	0.0625	
3	4	0.2500	
4	0	0.0000	
5	2	0.1250	
6	3	0.1875	
7	2	0.1250	

2	3	6	5	
3	1	1	1	
6	7	6	3	
5	7	0	3	
				\longrightarrow
0	0	0	0	
0	0	0	0	
0	0	0	0	
0	0	0	0	

i	h_i	p_i	$\sigma_B^2(k)$
0	1	0.0625	0.906510
1	3	0.1875	2.876302
2	1	0.0625	3.283026
3	4	0.2500	4.159288
4	0	0.0000	4.159288
5	2	0.1250	3.344389
6	3	0.1875	1.567522
7	2	0.1250	

2	3	6	5	
3	1	1	1	
6	7	6	3	
5	7	0	3	
2	3	6	5	
3	1	1	1	
6	7	6	3	
5	7	0	3	

i	h _i	p_i	$\sigma_B^2(k)$
0	1	0.0625	0.906510
1	3	0.1875	2.876302
2	1	0.0625	3.283026
3	4	0.2500	4.159288
4	0	0.0000	4.159288
5	2	0.1250	3.344389
6	3	0.1875	1.567522
7	2	0.1250	

Bibliography

- GONZALEZ, R.C.; WOODS, R.E. **Digital Image Processing**. 3rd ed. Pearson, 2007.
- MARQUES FILHO, O.; VIEIRA NETO, H. Processamento digital de imagens. Brasport, 1999.
 - (in Brazilian Portuguese)
 - Available on the author's website (for personal use only)
 - http://dainf.ct.utfpr.edu.br/~hvieir/pub.html
- J. E. R. Queiroz, H. M. Gomes. Introdução ao Processamento Digital de Imagens. RITA. v. 13, 2006.
 - (in Brazilian Portuguese)
 - http://www.dsc.ufcg.edu.br/~hmg/disciplinas/graduacao/vc-2016.2/Rita-Tutorial-PDI.pdf

THE END