Dataflow Analysis

Matteo Lugli, Carlo Uguzzoni

Dominator Analysis

Example 1

Table 1: $Gen_b = \{b\}$, $Kill_b = successors(b)$

	Dominator Analysis
Domain	Basic Blocks
Direction	Forward
Framework	$out[b] = f_b(in[b])$
	$in[b] = \cap out[pred(b)]$
Transfer function	$f_b(x) = \operatorname{Gen}_b \cup (x\text{-kill}_b)$
Meet operation	\cap
Boundary Condition	$in[entry] = \emptyset$
Initial interior points	out[b] = U

Iter 1^1

	In	Out
\mathbf{A}	<00000000>	<1000000>
\mathbf{B}	<1000000>	<1100000>
\mathbf{C}	<1000000>	<1010000>
\mathbf{D}	<1010000>	<1011000>
${f E}$	<1010000>	<1010100>
${f F}$	<1010000>	<1010010>
\mathbf{G}	<1000000>	<1000001>

 $^{^{1} \}mathrm{initialization}$ is not considered as an iteration.

Example 2

Iteration 1 2

	In	Out
\mathbf{A}	$\{\emptyset\}$	{A}
\mathbf{C}	$\{A\}$	$\{C,A\}$
\mathbf{B}	$\{C,A\}$	$\{C,A,B\}$
\mathbf{D}	$\{C,A\}$	$\{C,A,D\}$
${f F}$	$\{C,A\}$	${F,A}^{3}$
\mathbf{G}	$\{F,A\}$	$\{F,A,G\}$
\mathbf{K}	$\{A\}$	$\{A,K\}$

 $^{^2}$ initialization is not considered as an iteration. $^3\mathrm{C}$ gets killed

Very busy expression analysis

Example 1

In this example, we assume that each BB contains just 1 expression, as showed in the graph.

	Very busy expression
Domain	Expressions
Direction	Backwards
Framework	$in[b] = f_b(out[b])$
	$out[b] = \cap in[succ[(b)]$
Direction	Backwards
Transfer function	$f_b(x) = \operatorname{Gen}_b \cup (x\text{-Kill}_b)$
Meet Operation	\cap
Boundary condition	$in[exit] = \emptyset$
Initial interior points	in[b] = U

Figure 1: $Gen_b = expressions$ evaluated in b, $Kill_b = every$ expression that contains a operand that is defined in b

Iteration 1 ⁴

Expressions:

- 1. a!=b
- 2. b-a
- 3. a-b

BB	OUT	IN
8	000	000
7	000	001
4	000	001
6	001	000^{5}
5	000	010
3	001	011
2	010	110
1	110	110

⁴initialization is not considered as an iteration.

 $^{^5}$ a-b gets killed

Costant propagation analysis

Example 1

In this example, we assume that each BB contains only 1 expression, as showed in the graph.

Table 2: $Gen_b = lhs$ if operand is costant for each operand in rhs, $Kill_b = lhs$

	Dominator Analysis
Domain	Variables
Direction	Forward
Framework	$\operatorname{out}[b] = f_b(\operatorname{in}[b])$
	$\operatorname{in}[b] = \cap \operatorname{out}[\operatorname{pred}(b)]$
Transfer function	$f_b(x) = \mathrm{Gen}_b \cup (x\text{-kill}_b)$
Meet operation	\cap
Boundary Condition	$in[entry] = \emptyset$
Initial interior points	out[b] = U

We assume that values are stored in a symbol table (hash map).

Iteration 1 ⁶

Point	IN	OUT
P1	00000	00000
P2	00000	00100 {k:2}
P3	00100 {k:2}	00100 {k:2}
P4	00100 {k:2}	$10100 \text{ {k:2, a:4}}$
P5	$10100 \{k:2, a:4\}$	$10110 \{k:2, a:4, x:5\}$
P6	00100 {k:2}	$10100 \{k:2, a:4\}$
P7	$10100 \{k:2, a:4\}$	$10110 \{k:2, a:4, x:8\}$
P8	$10100 \{k:2, a:4\}$	$10100 \{k:4, a:4\}$
P9	10100 {k:4, a:4}	$10100 \text{ {k:4, a:4}}$
P10	$10100 \{k:4, a:4\}$	$11100 \{k:4, a:4, b:2\}$
P11	11100 {k:4, a:4, b:2}	$11110 \{k:4, a:4, b:2, x:8\}$
P12	$11110 \{k:4, a:4, b:2, x:8\}$	11111 $\{k:4, a:4, b:2, x:8, y:8\}$
P13	11111 {k:4, a:4, b:2, x:8, y:8}	11111 {k:5, a:4, b:2, x:8, y:8}
P14	$10100 \{k:4, a:4\}$	$10100 \{k:4, a:4\}$
P15	10100 {k:4, a:4}	$10100 \text{ {k:4, a:4}}$

Iteration 2

Point	IN	OUT
P1	00000	00000
P2	00000	$00100 \text{ {k:2}}$
P3	$00100\{\{k:2\}$	$00100 \text{ {k:2}}$
P4	00100 {k:2}	$10100 \{k:2, a:4\}$
P5	$10100 \{k:2, a:4\}$	$10110 \{k:2, a:4, x:5\}$
P6	00100 {k:2}	$10100 \{k:2, a:4\}$
P7	$10100 \{k:2, a:4\}$	$10110 \{k:2, a:4, x:8\}$
P8	$10100 \{k:2, a:4\}$	$10100 \{k:4, a:4\}$
P9	10000 {a:4}	$10000 \{a:4\}$
P10	$10000 \{a:4\}$	$11000 \{a:4, b:2\}$
P11	$11000 \{a:4, b:2\}$	$11000 \{a:4, b:2\}$
P12	$11000 \{a:4, b:2\}$	$11001 \{a:4, b:2,y:8\}$
P13	$11001 \{a:4, b:2,y:8\}$	$11001 \{a:4, b:2, y:8\}$
P14	$10000 \{a:4\}$	$10000 \{a:4\}$
P15	$10000 \{a:4\}$	$10000 \{a:4\}$

 $^{^{6}}a \rightarrow 10000,\, b \rightarrow 01000,\, k \rightarrow 00100,\, x \rightarrow 00010,\, y \rightarrow 00001,\, initialization \, is \, not \, considered \, as \, a \, iteration.$