Well-balanced semi-implicit scheme for the Euler equations with gravity

BOUHENNICHE Oussama

Supervisors:

Ms. Andrea Thomann

Mr. Victor Michel-Dansac

August 24, 2025

Inria, University of Strasbourg, France

Table of contents

Introduction

The Euler equations with gravity

The numerical scheme

Implementation

Numerical Results

Well-balanced tests

Accuracy

Conclusion

Bibliography

Host Organization

- This internship is a final-year project for the Master 2 program in Scientific Computing and Mathematical Innovation.
- It is a five-month internship, carried out within the Macaron team (MAChine leARning for Optimized Numerical methods) at Inria Nancy-Grand Est, hosted in Strasbourg.
- The internship was funded by ITI IRMIA++.

Introduction

Context & Problematic

- Many natural phenomena (geophysical and astrophysical flows) are modeled by the compressible Euler equations with gravitational source terms.
- Gravity generates hydrostatic equilibria where the pressure gradient balances the gravitational force.
- A major difficulty: many flows evolve in the low-Mach regime,
 where |u| « c (flow velocity much smaller than speed of sound).
- Explicit schemes face two main challenges:
 - (i) Acoustic CFL restriction \Rightarrow prohibitively small time steps.
 - (ii) Lack of preservation of hydrostatic equilibria \Rightarrow spurious oscillations and instabilities.

Objectives

The objective of this internship is the development of a **well-balanced semi-implicit scheme** for the compressible Euler equations with gravity.

The method relies on:

- Flux-splitting: explicit discretization of transport terms, implicit treatment of pressure and gravity.
- Implicit step formulated as a linear elliptic problem (pressure or total energy).
- IMEX Runge-Kutta methods for high-order accuracy in time.
- Finite volume discretization on Cartesian grids.

Our proposed scheme is designed to:

- 1. Remove the acoustic time step restriction.
- 2. Preserve hydrostatic equilibria exactly.
- 3. Remain asymptotic-preserving in the low-Mach regime.

The Euler equations with gravity

Classical Euler Equations

- Euler equations [2] are a cornerstone of fluid dynamics.
- They describe compressible, inviscid fluid motion based on:
 - · Conservation of mass
 - · Conservation of momentum
 - · Conservation of energy

Classical form:

$$\begin{split} &\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0, \\ &\partial_t (\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p = 0, \\ &\partial_t (\rho E) + \nabla \cdot \left(\mathbf{u} (\rho E + p) \right) = 0. \end{split}$$

Where the total energy density is given by:

$$\rho E = \rho e + \frac{1}{2} \rho \|\mathbf{u}\|^2$$

Euler Equations with Gravity

- In presence of a gravitational potential ϕ , momentum equation include source terms.
- Using suitable reference scales,we nondimensionalize the equations, introducing the Mach and Froude numbers:
- · The non-dimensional system reads:

$$\begin{split} &\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0, \\ &\partial_t (\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) + \frac{1}{M^2} \nabla p = -\frac{1}{Fr^2} \rho \nabla \phi, \\ &\partial_t \rho E + \nabla \cdot \left(\mathbf{u} (\rho E + p) \right) = 0, \end{split}$$

with the total energy

$$\rho E = \rho e + \frac{1}{2} M^2 \rho \|\mathbf{u}\|^2 + \frac{M^2}{Fr^2} \rho \phi.$$

Hydrostatic Equilibria and Low-Mach Limit

Hydrostatic equilibrium:

$$\mathbf{u} = 0, \qquad \frac{1}{M^2} \nabla p = -\frac{1}{Fr^2} \rho \nabla \phi$$

- · Examples:
 - · Isothermal atmosphere: exponential profiles
 - · Polytropic atmosphere: power-law profiles
- Low-Mach limit: M → 0 with M ~ Fr ⇒ Dynamics evolve on slow time scales governed by transport and buoyancy.
- · Numerical difficulty:
 - Acoustic CFL ⇒ very small time steps
 - · Numerical viscosity overdamps slow modes

The numerical scheme

Semi-implicit well-balanced scheme: overview

- Goal: develop a semi-implicit well-balanced scheme for Euler with gravity.
- · Key ideas:
 - Explicit treatment for **transport/convective** terms.
 - Implicit treatment for stiff pressure and gravity to remove acoustic CFL.
 - Exact preservation of hydrostatic equilibria (well-balanced).
- Roadmap:
 - 1. Well-balanced reformulation
 - 2. Time semi-discrete scheme
 - 3. Fully discrete finite-volume scheme
 - 4. High-order (IMEX-RK) extension

Well-balanced reformulation

Assume a known hydrostatic equilibrium (ρ^{hyd} , p^{hyd}):

$$\frac{\nabla p^{hyd}}{M^2} = -\, \rho^{hyd} \frac{\nabla \phi}{Fr^2}.$$

It implies

$$\nabla \phi = -\frac{Fr^2}{M^2} \, \frac{\nabla p^{hyd}}{\rho^{hyd}}.$$

Plugging into the Euler system yields

$$\begin{split} &\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0, \\ &\partial_t (\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) + \frac{1}{M^2} \nabla p = \frac{\rho}{\rho^{hyd}} \frac{1}{M^2} \nabla p^{hyd}, \\ &\partial_t \rho E + \nabla \cdot \left(\mathbf{u} (\rho E + p) \right) = 0. \end{split}$$

Flux splitting: explicit vs. implicit

Conservative variables vector:

$$\mathbf{q} = \begin{pmatrix} \rho \\ \rho \mathbf{u} \\ \rho E \end{pmatrix}.$$

We split flux/source as:

$$f(q) = \underbrace{f^u(q)}_{\text{explicit}} + \underbrace{f^p(q)}_{\text{implicit}}, \qquad s(q) = \underbrace{s^p(q)}_{\text{implicit}}.$$

$$\mathbf{f}^{\mathbf{u}}(\mathbf{q}) = \begin{pmatrix} \rho \mathbf{u} \\ \rho \mathbf{u} \otimes \mathbf{u} \\ 0 \end{pmatrix}, \quad \mathbf{f}^{p}(\mathbf{q}) = \begin{pmatrix} 0 \\ \frac{\rho}{M^{2}} \mathbb{I} \\ \mathbf{u}(\rho E + p) \end{pmatrix}, \quad \mathbf{s}^{p}(\mathbf{q}) = \begin{pmatrix} 0 \\ \frac{\rho}{\rho^{hyd}} \frac{1}{M^{2}} \nabla \rho^{hyd} \\ 0 \end{pmatrix}.$$

Gravity grouped with the implicit part \Rightarrow well-balanced at discrete level.

Time semi-discrete semi-implicit scheme

Semi-discrete form:

$$\partial_t \mathbf{q} + \nabla \cdot \mathbf{f}^{\mathbf{u}}(\mathbf{q}) + \nabla \cdot \mathbf{f}^{\mathbf{p}}(\mathbf{q}) = \mathbf{s}(\mathbf{q}).$$

First-order (in time) scheme:

$$\begin{split} & \rho^{n+1} - \rho^n + \Delta t \, \nabla \cdot \left(\rho \mathbf{u} \right)^n = 0, \\ & \left(\rho \mathbf{u} \right)^{n+1} - \left(\rho \mathbf{u} \right)^n + \Delta t \, \nabla \cdot \left(\rho \mathbf{u} \otimes \mathbf{u} \right)^n + \frac{\Delta t}{M^2} \nabla p^{n+1} = \frac{\rho^{n+1}}{\rho^{hyd}} \frac{\Delta t}{M^2} \nabla p^{hyd}, \\ & \rho E^{n+1} - \rho E^n + \Delta t \, \nabla \cdot \left(\left(\rho \mathbf{u} \right)^{n+1} H^n \right) = 0, \end{split}$$

with enthalpy
$$H^n = \frac{\rho E^n + p^n}{\rho^n}$$
.

Time step: explicit & implicit update

Stage 1: explicit

$$\rho^{(1)} = \rho^{n} - \Delta t \nabla \cdot (\rho \mathbf{u})^{n},$$

$$(\rho \mathbf{u})^{(1)} = (\rho \mathbf{u})^{n} - \Delta t \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u})^{n},$$

$$\rho E^{(1)} = \rho E^{n}.$$

Density is fully explicit: $\rho^{n+1} = \rho^{(1)}$.

Stage 2: implicit

$$(\rho \mathbf{u})^{n+1} = (\rho \mathbf{u})^{(1)} - \frac{\Delta t}{M^2} \nabla p^{n+1} + \frac{\rho^{n+1}}{\rho^{hyd}} \frac{\Delta t}{M^2} \nabla p^{hyd},$$

$$\rho E^{n+1} = \rho E^{(1)} - \Delta t \nabla \cdot \left((\rho \mathbf{u})^{n+1} H^n \right).$$

Plugging momentum equation in energy equations yields a linear elliptic problem

$$\rho E^{^{n+1}} = \rho E^{(1)} - \Delta t \, \nabla \cdot \left(H^n (\rho \mathbf{u})^{(1)} \right) + \frac{\Delta t^2}{M^2} \nabla \cdot \left(H^n \nabla p^{^{n+1}} \right) - \frac{\Delta t^2}{M^2} \nabla \cdot \left(H^n \frac{\rho^{^{n+1}}}{\rho^{hyd}} \nabla p^{hyd} \right),$$

then use a linearized EOS to obtain an **energy-based** or **pressure-based** approach.

Two closures: energy-based vs. pressure-based

- **Energy-based:** solve the elliptic problem for E^{n+1} , recover p^{n+1} via the linearized EOS.
- **Pressure-based:** recast the elliptic equation in terms of p^{n+1} via the EOS, solve for p^{n+1} , then update $(\rho \mathbf{u})^{n+1}$ and reconstruct ρE^{n+1} .

Following [1] We choose this linearizations of EOS for each approach:

Energy-based:
$$p^{n+1} = (\gamma - 1) \left(\rho E^{n+1} - M^2 (\rho E_{\rm kin})^n - \frac{M^2}{Fr^2} (\rho E_{\rm pot})^{n+1} \right).$$
 Pressure-based:
$$p^{n+1} = (\gamma - 1) \left(\rho E^{n+1} - M^2 (\rho E_{\rm kin})^n - \frac{M^2}{Fr^2} (\rho E_{\rm pot})^n \right).$$

Energy-based closure

Substitute EOS into the elliptic step:

$$\rho E^{n+1} - (\gamma - 1) \frac{\Delta t^2}{M^2} \nabla \cdot \left(H^n \nabla \rho E^{n+1} \right) = \rho E^{(1,\star)},$$

with

$$\rho E^{(1,\star)} = \rho E^{(1)} - \Delta t \, \nabla \cdot \left(H^n(\rho \mathbf{u})^{(1)} \right) - \frac{\Delta t^2}{M^2} \nabla \cdot \left(H^n \frac{\rho^{n+1}}{\rho^{hyd}} \nabla \rho^{hyd} \right)$$
$$- (\gamma - 1) \frac{\Delta t^2}{M^2} \nabla \cdot \left(H^n \nabla \left(M^2 (\rho E_{kin})^n + \frac{M^2}{Fr^2} (\rho E_{pot})^{n+1} \right) \right).$$

Then update momentum with p^{n+1} from EOS, then (for consistency) recompute ρE^{n+1} using the fully implicit flux.

Pressure-based closure

Express energy via pressure:

$$\rho E^{n+1} = \frac{p^{n+1}}{\gamma - 1} + M^2 (\rho E_{\rm kin})^n + \frac{M^2}{F r^2} (\rho E_{\rm pot})^n.$$

Elliptic problem for p^{n+1} :

$$\begin{split} p^{n+1} - (\gamma - 1) \frac{\Delta t^2}{M^2} \nabla \cdot \left(H^n \nabla p^{n+1} \right) &= p^{(1,\star)}, \\ p^{(1,\star)} &= p^{(1)} - (\gamma - 1) \Delta t \, \nabla \cdot \left(H^n (\rho \mathbf{u})^{(1)} \right) - (\gamma - 1) \frac{\Delta t^2}{M^2} \nabla \cdot \left(H^n \frac{\rho^{n+1}}{\rho^{hyd}} \nabla p^{hyd} \right). \end{split}$$

Then update $(\rho \mathbf{u})^{n+1}$ and ρE^{n+1} .

Fully discrete finite-volume scheme

- Framework: fully discrete finite-volume method on a Cartesian grid (cell averages).
- Explicit transport: Rusanov (LLF) numerical flux.
- · Implicit pressure-gravity:
 - divergence: centered numerical flux (zero artificial viscosity),
 - gradient: centered differences (2nd order).
- **Div-grad operator:** centered discrete operator $\mathcal{H}[h,q] \approx \nabla \cdot (h \nabla q)$ (2nd order).
- **CFL**: time step constrained *only* by the explicit transport subsystem.

Second-order IMEX-RK (ARS(2,2,2))

ARS(2,2,2) Butcher tables (with $\beta = 1 - \frac{1}{\sqrt{2}}$):

IMEX-RK stages:

$$\mathbf{q}^{(k)} = \mathbf{q}^n - \Delta t \sum_{l=1}^{k-1} \tilde{a}_{kl} \nabla \cdot \mathbf{f}^{\mathbf{u}}(\mathbf{q}^{(l)}) - \Delta t \sum_{l=1}^{k} a_{kl} \left(\nabla \cdot \mathbf{f}^{p}(\mathbf{q}^{(l)}) + \mathbf{s}(\mathbf{q}^{(l)}) \right).$$

Update:

$$\mathbf{q}^{n+1} = \mathbf{q}^n - \Delta t \sum_{k=1}^{s} \tilde{b}_k \nabla \cdot \mathbf{f}^{\mathbf{u}}(\mathbf{q}^{(k)}) - \Delta t \sum_{k=1}^{s} b_k \left(\nabla \cdot \mathbf{f}^{p}(\mathbf{q}^{(k)}) + \mathbf{s}(\mathbf{q}^{(k)}) \right).$$

To achieve **second-order** spatial accuracy, we perform a linear (first-order polynomial) reconstruction with the **minmod** limiter.

Implementation

Implementation: Overview

- The numerical scheme is implemented in a **modular**, **reproducible** way and managed in a private Gitlab repository.
- The solver is a **Python package** with dedicated modules for:
 - · Mesh handling
 - Discretization (FV operators, reconstructions)
 - Numerical fluxes
 - Time integration (semi-implicit / IMEX-RK)
 - Post-processing (I/O, visualization)
- A suite of benchmark test cases are implemented; all are fully parameterizable (domain, BCs, numerical parameters).

Implementation: Implicit Solver & HPC

- Implicit step (elliptic pressure equation): the discrete operator matrix is assembled explicitly, enabling robust preconditioning.
- Use of **BiCGStab** Krylov solver with **ILU** preconditioner to improves stability and accelerates convergence in the **low-Mach** regime (stiff elliptic systems).
- Execution environment: simulations run on the Gaya HPC cluster

Numerical Results

Numerical results overview

- Well-balanced tests: Isothermal and polytropic hydrostatic atmospheres.
- Accuracy: Gresho vortex in a gravitational field.
- Vanishing-gravity: Sod shock tube; Kelvin-Helmholtz instability.
- Test cases with instabilities: Rayleigh-Taylor, rising thermal bubble, shock-bubble interaction.

Well-balanced tests: setup

- 2D stationary atmospheres (isothermal & polytropic), advanced with the **second-order** scheme.
- Uniform grid 100×100 on $[0,1] \times [0,1]$, final time $T_f = 1.0$, exact boundary conditions.
- Potential $\phi(x, y) = \frac{1}{2}(x + y)$, adiabatic index $\gamma = 1.4$.
- Errors measured in L^1 against the corresponding hydrostatic state.

Isothermal atmosphere

Hydrostatic state:
$$\rho^{\text{hyd}}(x, y) = \exp\left(-\frac{M^2}{Fr^2}\phi(x, y)\right), \qquad p^{\text{hyd}}(x, y) = \rho^{\text{hyd}}(x, y).$$

	Energy-based				Pressure-based				
	ρ	u	ρE		ρ	u	ρE		
M = 1	4.71e-13	7.83e-14	7.25e-12		4.71e-13	9.36e-14	8.09e-12		
$M = 10^{-5}$	5.99e-13	1.01e-13	9.70e-12		6.51e-13	6.30e-14	5.66e-12		
$M = 10^{-10}$	6.84e-13	9.99e-14	9.92e-12		4.32e-13	7.00e-14	6.72e-12		

Table 1: L^1 errors for the isothermal atmosphere with Fr = M.

The cases Fr = 0.75 M and Fr = 10 M exhibit the same round-off-level behavior.

Polytropic atmosphere

Hydrostatic state:

$$\rho^{\text{hyd}}(x,y) = \left(1 - \frac{\gamma - 1}{\gamma} \frac{M^2}{Fr^2} \phi(x,y)\right)^{\frac{1}{\gamma - 1}}, \qquad p^{\text{hyd}}(x,y) = \left(1 - \frac{\gamma - 1}{\gamma} \frac{M^2}{Fr^2} \phi(x,y)\right)^{\frac{\gamma}{\gamma - 1}}.$$

	Energy-based (Fr = M)				Pressure-based (Fr = M)				
	ρ	u	ρΕ		ρ	u	ρΕ		
M = 1	1.17e-12	2.10e-13	1.69e-11		7.17e-13	6.35e-14	4.91e-12		
$M = 10^{-5}$	7.48e-13	1.38e-13	1.20e-11		7.33e-13	1.39e-13	1.09e-11		
$M = 10^{-10}$	1.08e-12	1.78e-13	1.57e-11		7.55e-13	6.90e-14	5.46e-12		

Table 2: L^1 errors for the polytropic atmosphere with Fr = M.

Remark. The cases Fr = 0.75 M and Fr = 10 M display the same (round-off-level) behavior.

Gresho vortex in a gravitational field — setup

Configuration. Domain $[0,1] \times [0,1]$, periodic BCs, $\gamma = 1.4$, grid 128×128, final time $T_f = 1$ (one turn), parameters $M = Fr = 10^{-2}$.

Pressure split (background + perturbation):

$$p(r) = p_0(r) + M^2 p_2(r),$$
 $p_0 = RT \rho,$ $\rho(r) = \exp\left(-\frac{M^2}{Fr^2 RT} \phi(r)\right).$

 p_0 : hydrostatic background in balance with gravity. p_2 : vortex-induced pressure correction.

Angular velocity profile:

$$u_{\theta}(r) = \frac{1}{u_r} \begin{cases} 5r, & r \le 0.2, \\ 2 - 5r, & 0.2 < r \le 0.4, \\ 0, & r > 0.4. \end{cases}$$

Velocity field: $\mathbf{u}(x, y) = u_{\theta}(r)(-\sin\theta, \cos\theta)^{\top}, \ \theta = \arctan 2(y, x).$

Gresho vortex in a gravitational field initial state t = 0

Figure 2: Initial state at t = 0

Gresho vortex in a gravitational field results at t = 1

Figure 3: Results at t = 1

Accuracy Analysis

Why using Gresho vortex in a gravitational field as benchmark?

 Taken from [7]. Probes well-balancedness, low-Mach robustness, AP behavior, and EOC.

Setup (non-dimensional).

- Periodic domain $[0,1]^2$; final time T_f = 1 (one revolution); γ = 1.4.
- Mach/Froude: $M = Fr \in \{10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}\}.$

Metrics.

- L^1 errors in ρ , $\rho \mathbf{u}$, ρE and experimental order of convergence (EOC).
- Loss of kinetic energy after one turn (dissipation indicator).
- Stability as *M* decreases (evidence of AP behavior).

<i>M</i> =	- Fr	Ν	ρ		ρU_{x}		ρU_y		ρE	
10)-1	25	8.230E-04	-	1.058E-02	-	1.058E-02	-	1.379E-03	-
		50	1.648E-04	2.32	2.681E-03	1.98	2.681E-03	1.98	2.016E-04	2.77
		100	4.111E-05	2.00	1.000E-03	1.42	1.000E-03	1.42	5.650E-05	1.83
		200	1.130E-05	1.86	3.593E-04	1.48	3.593E-04	1.48	2.240E-05	1.34
10	₀ -2	25	6.559E-04	-	1.025E-02	-	1.025E-02	_	1.229E-03	-
		50	1.168E-04	2.49	2.622E-03	1.97	2.622E-03	1.97	1.320E-04	3.22
		100	3.101E-05	1.91	9.884E-04	1.41	9.884E-04	1.41	2.809E-05	2.23
		200	8.746E-06	1.83	3.565E-04	1.47	3.565E-04	1.47	8.093E-06	1.80
10	$^{-3}$	25	6.424E-04	-	1.022E-02	-	1.022E-02	_	1.261E-03	-
		50	9.818E-05	2.71	2.622E-03	1.96	2.622E-03	1.96	1.188E-04	3.41
		100	2.528E-05	1.96	9.879E-04	1.41	9.879E-04	1.41	2.495E-05	2.25
		200	7.423E-06	1.77	3.565E-04	1.47	3.565E-04	1.47	7.532E-06	1.73
10	₎ -4	25	6.427E-04	-	1.022E-02	-	1.022E-02	_	1.262E-03	-
		50	9.876E-05	2.70	2.622E-03	1.96	2.622E-03	1.96	1.189E-04	3.41
		100	2.545E-05	1.96	9.880E-04	1.41	9.880E-04	1.41	2.497E-05	2.25
		200	7.387E-06	1.78	3.565E-04	1.47	3.565E-04	1.47	7.514E-06	1.73

Table 3: L^1 errors and convergence rates for various values of M and Fr using the Energy-based scheme.

Figure 4: Mach number distribution using energy-based schema

Figure 5: Loss of kinetic energy for different grids and Mach numbers

Sod shock tube problem

Setup.

- 1D Euler (no gravity) on [0, 1], discontinuity at x = 0.5.
- Initial states (ρ, u, p) :

$$(1, 0, 1)$$
 for $x < 0.5$, $(0.125, 0, 0.1)$ for $x > 0.5$.

- $\gamma = 1.4$, M = 1, final time t = 0.1644, grid $N_x = 75, 200$.
- Reference ("exact") solution from open-source Riemann solver .

Expected pattern. Left rarefaction, mid contact, right shock [6].

Sod shock tube: numerical vs exact

Figure 6: Numerical vs exact solution for $N_x = 75$

Sod shock tube: numerical vs exact

Figure 7: Numerical vs exact solution for $N_x = 200$

Kelvin-Helmholtz instability (setup)

Physics. Shear layer between fluids of different densities becomes unstable, rolling up into vortices and turbulence [4].

setup (no gravity)

- Domain $\Omega = [0, 1]^2$, periodic in x, y; constant pressure $p_0 = 2.5$.
- Smooth layers of thickness L = 0.025: $(\rho_1, \rho_2) = (1, 2)$, $(u_1, u_2) = (+0.5, -0.5)$.
- Vertical seed perturbation: $u_v(x, y, 0) = \varepsilon \sin(4\pi x)$, $\varepsilon = 10^{-2}$.
- Grid 128 × 128, final time t = 2; Mach numbers $M \in \{1, 10^{-1}, 10^{-2}, 10^{-3}\}$.

Note The *pressure-based* scheme yields qualitatively the same roll-up and vortex pairing.

Figure 8: Density at t = 2 (second-order scheme, Energy-based formulation).

Rayleigh-Taylor instability (setup)

Goal. Assess the scheme's ability to capture gravity-driven interface instabilities while preserving hydrostatic balance [8, 3].

Configuration.

- Radial gravity with potential $\phi(r) = r$.
- Domain $D = [-1, 1] \times [-1, 1]$; grid 240 × 240; Mach M = 1.
- Base state: *isothermal hydrostatic equilibrium* with piecewise p, ρ ensuring pressure continuity via $\mu = \frac{e^{-r_0}}{e^{-r_0} + \Delta \rho}$.
- Perturbed interface $r_i(\theta) = r_0 (1 + \nu \cos(k\theta))$.

Parameters. $r_0 = 0.5, \ \Delta \rho = 0.1, \ \nu = 0.02, \ k = 20.$

Note The pressure-based scheme exhibits the same qualitative behavior for this test case.

Figure 9: Rayleigh-Taylor instability in density (using Energy-based schema)

Rising bubble (setup)

Goal. Warm bubble rising in a stably stratified atmosphere [7].

Configuration.

- Domain $D = [0, 10] \times [0, 15]$ km; gravity in the *y*-direction with potential $\phi(x, y) = g y$, g = 9.81 m s⁻².
- Base state: isentropic stratification expressed via the potential temperature $\theta = T\left(\frac{p_0}{p}\right)^{R/c_p}$, with $p_0 = 10^5\,\mathrm{Pa}$, $R = c_p c_v$, and $\gamma = 1.4$.
- Bubble perturbation in θ : $\delta\theta(x,y) = \theta_0 \cos^2(\frac{\pi r}{2})$ for $r \le 1$, otherwise 0, where $r = \sqrt{\left(\frac{x-x_c}{r_0}\right)^2 + \left(\frac{y-y_c}{r_0}\right)^2}$; center $(x_c, y_c) = (5, 2.75)$ km, radius $r_0 = 2$ km, amplitude $\theta_0 = 6.6$ K.
- Non-dimensionalization: reference scaling; in the tests we take $M = Fr = 10^{-2}$.

Note The pressure-based formulation displays the same qualitative evolution for the rising-bubble.

Figure 10: Density perturbation (using Energy-based schema)

Shock-bubble interaction (setup)

Goal. Assess shock–bubble deformation and interface roll-up in a strong-shock setting [5].

Configuration.

- 2D Euler (without gravity), ideal gas ($\gamma = 1.4$); domain $D = [0, 2] \times [0, 1]$.
- u = v = 0, p = 1.
- Density: $\rho = \rho_{\text{bubble}} = 0.138$ inside the circular bubble, $\rho_R = 1.0$ (right state), $\rho_L = 1.3764$ (left state).
- Incident planar shock of Mach $M_s = 1.22$ (propagating from the left).

Note. The pressure-based formulation exhibits the same qualitative behavior.

Figure 11: Shock-bubble interaction: density snapshots (using energy-based scheme)

Conclusion

Conclusion

Contributions.

- Developed semi-implicit, well-balanced schemes for the Euler equations with gravity.
- Designed for low-Mach robustness while exactly preserving hydrostatic equilibria (AP behavior).
- Validation: Across benchmarks (Kelvin–Helmholtz, Rayleigh–Taylor, rising bubble, shock–bubble).

Challenges.

 Ensuring stability at very low Mach numbers and in long-time integrations (avoid spurious oscillations).

Outlook.

- Increase accuracy to fourth order.
- Theoretical analysis: AP proof, contact property.
- Explore advanced applications in **geophysical** and **astrophysical** flows.

Thank you for your attention! Questions?

Bibliography

Bibliography i

Sebastiano Boscarino, Giovanni Russo, and Leonardo Scandurra.

All Mach Number Second Order Semi-Implicit Scheme for the Euler Equations of Gas Dynamics.

Journal of Scientific Computing, 77(2):850–884, 2018.

Leonhard Euler.

Principia Motus Fluidorum.

Novi Commentarii Academiae Scientiarum Petropolitanae, 6:271–311, 1761.

Randall J. LeVeque and Derek S. Bale.

Wave Propagation Methods for Conservation Laws with Source Terms.

In Hyperbolic Problems: Theory, Numerics, Applications. Seventh International Conference in Zürich, February 1998, Volume II, pages 609–618, Basel, 1999. Birkhäuser.

Bibliography ii

Colin P. McNally, Wladimir Lyra, and Jean-Claude Passy.

A Well-Posed Kelvin-Helmholtz Instability Test and Comparison.

The Astrophysical Journal Supplement Series, 201(2):18, 2012.

James J. Quirk and Smadar Karni.

On the Dynamics of a Shock-Bubble Interaction.

Journal of Fluid Mechanics, 318:129-163, 1996.

Gary A. Sod.

A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws.

Journal of Computational Physics, 27(1):1–31, 1978.

Bibliography iii

Andrea Thomann, Gabriella Puppo, and Christian Klingenberg.

An All-Speed Second Order Well-Balanced IMEX Relaxation
Scheme for the Euler Equations with Gravity.

Journal of Computational Physics, 420:109723, 2020.

Andrea Thomann, Markus Zenk, and Christian Klingenberg.

A Second-Order Positivity-Preserving Well-Balanced Finite Volume Scheme for Euler Equations with Gravity for Arbitrary Hydrostatic Equilibria.

International Journal for Numerical Methods in Fluids, 89(11):465–482, 2019.