

Class 4

More on Standard Deviation, Z-scores, & Sampling Error

Prepared by B. Cunningham, Ph.D.

Review of Standard Deviation (s)

- Standard deviation = the average variability in the set of scores in the same units as the scores
- Formula: $s = \sqrt{\sum (X-mean)^2/n-1}$

Practice

- Mean =100, s= 15
 - $\bullet \textit{ What individual score falls 1 standard deviation }$ above the mean?

Z-scores

- · A standardized score
 - $Z = X \mu$
- This tells us how many standard deviations from the mean the score is.
- Other ways to say that: - Z score represents the relative standing of each observation (X) to the mean in σ units.
 - X is Z units above/below mean.

The Normal Distribution & Z scores

- Healthcare worker annual salary
 - μ = \$20,000; σ = \$1,500
 - Individual with annual income = \$22,000
 - What is the z-score? $Z = X \mu$

_

The Normal Distribution & Z scores

- Table A on page 512
 - For a z-score of 1 (a score 1 σ above the mean):
 - What percent of scores are between that and the mean?
 - What percent of scores fall above that?
 - What percent of scores fall below that?

Practice

- -Healthcare worker annual salary example:
 - μ = \$20,000; σ = \$1,500
 - Individual with annual income = \$22,000
 - What is the z-score? 1.33
 - $\bullet \textit{ What percent of scores fall above that?}\\$

Finding X from Probability on **Normal Curve**

• Modify our Z - score formula:

 $X = \mu + z\sigma$

- · Steps:
 - Locate in Table A the z-score that cuts off the area closet to the area under the cover
 - Convert the z value to its raw score equivalent
- - Find the salary for the top 10% of earners

Review: Statistics vs. Parameter

- Sample Statistics
 - \bar{x} = sample mean

s or SD = sample standard deviation s^2 = sample variance

- Population Parameters
 - $\mu = population mean$

 σ = population standard deviation σ^2 = population variance

Inferential Statistics

<u>Inferential Statistics</u> - draw inferences about a population (entire group) from data collected from a sample (subset of entire group)

compared to

Descriptive Statistics - organize & summarize a collection of data

- Difference between the value of a sample statistic (e.g. sample mean) and the true value of the population parameter (e.g. population mean)
- Example: Gallup Poll predicts candidate Smith will receive 56% of the votes <u>+</u>4% margin of
 - Confident that Smith will receive between 52% 60% of vote [56% - 4% = 52; 56% + 4% = 60%]