

Optimizing Parallel Reduction in CUDA

Mark Harris
NVIDIA Developer Technology

Parallel Reduction

- Common and important data parallel primitive
- Easy to implement in CUDA
 - Harder to get it right
- Serves as a great optimization example
 - We'll walk step by step through 7 different versions
 - Demonstrates several important optimization strategies

Parallel Reduction

Tree-based approach used within each thread block

- Need to be able to use multiple thread blocks
 - To process very large arrays
 - To keep all multiprocessors on the GPU busy
 - Each thread block reduces a portion of the array
- But how do we communicate partial results between thread blocks?

Problem: Global Synchronization

- If we could synchronize across all thread blocks, could easily reduce very large arrays, right?
 - Global sync after each block produces its result
 - Once all blocks reach sync, continue recursively
- But CUDA has no global synchronization. Why?
 - Expensive to build in hardware for GPUs with high processor count
 - Would force programmer to run fewer blocks (no more than # multiprocessors * # resident blocks / multiprocessor) to avoid deadlock, which may reduce overall efficiency
- Solution: decompose into multiple kernels
 - Kernel launch serves as a global synchronization point
 - Kernel launch has negligible HW overhead, low SW overhead

Solution: Kernel Decomposition

Avoid global sync by decomposing computation into multiple kernel invocations

- In the case of reductions, code for all levels is the same
 - Recursive kernel invocation

What is Our Optimization Goal?

- We should strive to reach GPU peak performance
- Choose the right metric:
 - GFLOP/s: for compute-bound kernels
 - Bandwidth: for memory-bound kernels
- Reductions have very low arithmetic intensity
 - 1 flop per element loaded (bandwidth-optimal)
- Therefore we should strive for peak bandwidth
- Will use G80 GPU for this example
 - 384-bit memory interface, 900 MHz DDR
 - 384 * 1800 / 8 = 86.4 GB/s

Reduction #1: Interleaved Addressing


```
global__ void reduce0(int *g_idata, int *g_odata) {
extern __shared__ int sdata[];
// each thread loads one element from global to shared mem
unsigned int tid = threadldx.x;
unsigned int i = blockldx.x*blockDim.x + threadldx.x;
sdata[tid] = q_idata[i];
__syncthreads();
// do reduction in shared mem
for(unsigned int s=1; s < blockDim.x; s *= 2) {
  if (tid % (2*s) == 0) {
    sdata[tid] += sdata[tid + s];
    _syncthreads();
// write result for this block to global mem
if (tid == 0) g_odata[blockldx.x] = sdata[0];
```

Parallel Reduction: Interleaved Addressing

Reduction #1: Interleaved Addressing


```
global__ void reduce1(int *g_idata, int *g_odata) {
extern __shared__ int sdata[];
// each thread loads one element from global to shared mem
unsigned int tid = threadldx.x;
unsigned int i = blockldx.x*blockDim.x + threadldx.x;
sdata[tid] = q_idata[i];
__syncthreads();
// do reduction in shared mem
for (unsigned int s=1; s < blockDim.x; s *= 2) {
  if (tid % (2*s) == 0) {
                                          Problem: highly divergent
    sdata[tid] += sdata[tid + s];
                                        warps are very inefficient, and
                                            % operator is very slow
   _syncthreads();
```

```
// write result for this block to global mem
if (tid == 0) g_odata[blockldx.x] = sdata[0];
```

Performance for 4M element reduction

Time (2²² ints)

Bandwidth

Kernel 1:

8.054 ms

2.083 GB/s

interleaved addressing with divergent branching

Note: Block Size = 128 threads for all tests

Reduction #2: Interleaved Addressing

Just replace divergent branch in inner loop:

```
for (unsigned int s=1; s < blockDim.x; s *= 2) {
    if (tid % (2*s) == 0) {
        sdata[tid] += sdata[tid + s];
    }
    __syncthreads();
}</pre>
```

With strided index and non-divergent branch:

```
for (unsigned int s=1; s < blockDim.x; s *= 2) {
   int index = 2 * s * tid;

   if (index < blockDim.x) {
      sdata[index] += sdata[index + s];
   }
   __syncthreads();
}</pre>
```

Parallel Reduction: Interleaved Addressing

Performance for 4M element reduction

	Time (2 ²² ints)	Bandwidth	Step Speedup	Cumulative Speedup
Kernel 1: interleaved addressing with divergent branching	8.054 ms	2.083 GB/s		
Kernel 2: interleaved addressing with bank conflicts	3.456 ms	4.854 GB/s	2.33x	2.33x

Parallel Reduction: Sequential Addressing

Reduction #3: Sequential Addressing

Just replace strided indexing in inner loop:

```
for (unsigned int s=1; s < blockDim.x; s *= 2) {
  int index = 2 * s * tid;

if (index < blockDim.x) {
    sdata[index] += sdata[index + s];
  }
  __syncthreads();
}</pre>
```

With reversed loop and threadID-based indexing:

```
for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
    if (tid < s) {
        sdata[tid] += sdata[tid + s];
    }
    __syncthreads();
}</pre>
```

Performance for 4M element reduction

	Time (2 ²² ints)	Bandwidth	Step Speedup	Cumulative Speedup
Kernel 1: interleaved addressing with divergent branching	8.054 ms	2.083 GB/s		
Kernel 2: interleaved addressing with bank conflicts	3.456 ms	4.854 GB/s	2.33x	2.33x
Kernel 3: sequential addressing	1.722 ms	9.741 GB/s	2.01x	4.68x

Idle Threads

Problem:

```
for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
    if (tid < s) {
        sdata[tid] += sdata[tid + s];
    }
    __syncthreads();
}</pre>
```

Half of the threads are idle on first loop iteration!

This is wasteful...

Reduction #4: First Add During Load

Halve the number of blocks, and replace single load:

```
// each thread loads one element from global to shared mem
unsigned int tid = threadldx.x;
unsigned int i = blockldx.x*blockDim.x + threadldx.x;
sdata[tid] = g_idata[i];
__syncthreads();
```

With two loads and first add of the reduction:

```
// perform first level of reduction,
// reading from global memory, writing to shared memory
unsigned int tid = threadldx.x;
unsigned int i = blockldx.x*(blockDim.x*2) + threadldx.x;
sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
__syncthreads();
```

Performance for 4M element reduction

	Time (2 ²² ints)	Bandwidth	Step Speedup	Cumulative Speedup
Kernel 1: interleaved addressing with divergent branching	8.054 ms	2.083 GB/s		
Kernel 2: interleaved addressing with bank conflicts	3.456 ms	4.854 GB/s	2.33x	2.33x
Kernel 3: sequential addressing	1.722 ms	9.741 GB/s	2.01x	4.68x
Kernel 4: first add during global load	0.965 ms	17.377 GB/s	1.78x	8.34x

Instruction Bottleneck

- At 17 GB/s, we're far from bandwidth bound
 - And we know reduction has low arithmetic intensity
- Therefore a likely bottleneck is instruction overhead
 - Ancillary instructions that are not loads, stores, or arithmetic for the core computation
 - In other words: address arithmetic and loop overhead
- Strategy: unroll loops

Unrolling the Last Warp

- As reduction proceeds, # "active" threads decreases
 - When s <= 32, we have only one warp left
- Instructions are SIMD synchronous within a warp
- That means when s <= 32:</p>
 - We don't need to __syncthreads()
 - We don't need "if (tid < s)" because it doesn't save any work
- Let's unroll the last 6 iterations of the inner loop

Reduction #5: Unroll the Last Warp


```
__device__ void warpReduce(volatile int* sdata, int tid) {
    sdata[tid] += sdata[tid + 32];
    sdata[tid] += sdata[tid + 16];
    sdata[tid] += sdata[tid + 8];
    sdata[tid] += sdata[tid + 4];
    sdata[tid] += sdata[tid + 2];
    sdata[tid] += sdata[tid + 1];
}

MPORTANT:
For this to be correct,
    we must use the
    "volatile" keyword!
}
```

```
// later...
for (unsigned int s=blockDim.x/2; s>32; s>>=1) {
    if (tid < s)
        sdata[tid] += sdata[tid + s];
        __syncthreads();
}

if (tid < 32) warpReduce(sdata, tid);</pre>
```

Note: This saves useless work in *all* warps, not just the last one! Without unrolling, all warps execute every iteration of the for loop and if statement

Performance for 4M element reduction

	Time (2 ²² ints)	Bandwidth	Step Speedup	Cumulative Speedup
Kernel 1: interleaved addressing with divergent branching	8.054 ms	2.083 GB/s		
Kernel 2: interleaved addressing with bank conflicts	3.456 ms	4.854 GB/s	2.33x	2.33x
Kernel 3: sequential addressing	1.722 ms	9.741 GB/s	2.01x	4.68x
Kernel 4: first add during global load	0.965 ms	17.377 GB/s	1.78x	8.34x
Kernel 5: unroll last warp	0.536 ms	31.289 GB/s	1.8x	15.01x

Complete Unrolling

- If we knew the number of iterations at compile time, we could completely unroll the reduction
 - Luckily, the block size is limited by the GPU to 512 threads
 - Also, we are sticking to power-of-2 block sizes
- So we can easily unroll for a fixed block size
 - But we need to be generic how can we unroll for block sizes that we don't know at compile time?
- Templates to the rescue!
 - CUDA supports C++ template parameters on device and host functions

Unrolling with Templates

0

Specify block size as a function template parameter:

template <unsigned int blockSize>
__global__ void reduce5(int *g_idata, int *g_odata)

Reduction #6: Completely Unrolled

```
Template <unsigned int blockSize>
__device__ void warpReduce(volatile int* sdata, int tid) {
    if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
    if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
    if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
    if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
    if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
    if (blockSize >= 2) sdata[tid] += sdata[tid + 1];
}
```

```
if (blockSize >= 512) {
    if (tid < 256) { sdata[tid] += sdata[tid + 256]; } __syncthreads(); }
    if (blockSize >= 256) {
        if (tid < 128) { sdata[tid] += sdata[tid + 128]; } __syncthreads(); }
    if (blockSize >= 128) {
        if (tid < 64) { sdata[tid] += sdata[tid + 64]; } __syncthreads(); }
    if (tid < 32) warpReduce<blockSize>(sdata, tid);
```

Note: all code in RED will be evaluated at compile time.

Invoking Template Kernels

Don't we still need block size at compile time?

Nope, just a switch statement for 10 possible block sizes:

```
switch (threads)
    case 512:
      reduce5<512><<< dimGrid, dimBlock, smemSize >>>(d idata, d odata); break;
    case 256:
      reduce5<256><<< dimGrid, dimBlock, smemSize >>>(d idata, d odata); break;
    case 128:
      reduce5<128><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
    case 64:
      reduce5< 64><< dimGrid, dimBlock, smemSize >>>(d idata, d odata); break;
    case 32:
      reduce5< 32><< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
    case 16:
      reduce5< 16><< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
    case 8:
                 8><< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
      reduce5<
    case 4:
                 4><< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
      reduce5<
    case 2:
                 2><< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
      reduce5<
    case 1:
      reduce5< 1><< dimGrid, dimBlock, smemSize >>>(d idata, d odata); break;
```

Performance for 4M element reduction

	Time (2 ²² ints)	Bandwidth	Step Speedup	Cumulative Speedup
Kernel 1: interleaved addressing with divergent branching	8.054 ms	2.083 GB/s		
Kernel 2: interleaved addressing with bank conflicts	3.456 ms	4.854 GB/s	2.33x	2.33x
Kernel 3: sequential addressing	1.722 ms	9.741 GB/s	2.01x	4.68x
Kernel 4: first add during global load	0.965 ms	17.377 GB/s	1.78x	8.34x
Kernel 5: unroll last warp	0.536 ms	31.289 GB/s	1.8x	15.01x
Kernel 6: completely unrolled	0.381 ms	43.996 GB/s	1.41x	21.16x

Parallel Reduction Complexity

- Log(N) parallel steps, each step S does N/2^s independent ops
 - Step Complexity is O(log N)
- For $N=2^D$, performs $\sum_{S \in [1...D]} 2^{D-S} = N-1$ operations
 - Work Complexity is O(N) It is work-efficient
 - i.e. does not perform more operations than a sequential algorithm
- With P threads physically in parallel (P processors), time complexity is O(N/P + log N)
 - Compare to O(N) for sequential reduction
 - In a thread block, N=P, so O(log N)

What About Cost?

Cost of a parallel algorithm is processors time complexity

Allocate threads instead of processors: O(N) threads

Time complexity is O(log N), so cost is O(N log N): not cost efficient!

Brent's theorem suggests O(N/log N) threads

Each thread does O(log N) sequential work

Then all O(N/log N) threads cooperate for O(log N) steps

 \bigcirc Cost = O((N/log N) * log N) = O(N) → cost efficient

Sometimes called algorithm cascading

Can lead to significant speedups in practice

Algorithm Cascading

- Combine sequential and parallel reduction
 - Each thread loads and sums multiple elements into shared memory
 - Tree-based reduction in shared memory
- Brent's theorem says each thread should sum O(log n) elements
 - i.e. 1024 or 2048 elements per block vs. 256
- In my experience, beneficial to push it even further
 - Possibly better latency hiding with more work per thread
 - More threads per block reduces levels in tree of recursive kernel invocations
 - High kernel launch overhead in last levels with few blocks
- On G80, best perf with 64-256 blocks of 128 threads
 - 1024-4096 elements per thread

Reduction #7: Multiple Adds / Thread

Replace load and add of two elements:

```
unsigned int tid = threadldx.x;
unsigned int i = blockldx.x*(blockDim.x*2) + threadldx.x;
sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
__syncthreads();
```

With a while loop to add as many as necessary:

```
unsigned int tid = threadldx.x;
unsigned int i = blockldx.x*(blockSize*2) + threadldx.x;
unsigned int gridSize = blockSize*2*gridDim.x;
sdata[tid] = 0;

while (i < n) {
    sdata[tid] += g_idata[i] + g_idata[i+blockSize];
    i += gridSize;
}
__syncthreads();</pre>
```

Reduction #7: Multiple Adds / Thread

Replace load and add of two elements:

```
unsigned int tid = threadldx.x;
unsigned int i = blockldx.x*(blockDim.x*2) + threadldx.x;
sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
__syncthreads();
```

With a while loop to add as many as necessary:

```
unsigned int tid = ti
unsigned int i = blo
unsigned int gridSi
sdata[tid] = 0;

while (i < n) {
    sdata[tid] += g_id
    i += gridSize;
}
__syncthreads();</pre>
Note: gridSize loop stride
to maintain coalescing!
```

Performance for 4M element reduction

	Time (2 ²² ints)	Bandwidth	Step Speedup	Cumulative Speedup
Kernel 1: interleaved addressing with divergent branching	8.054 ms	2.083 GB/s		
Kernel 2: interleaved addressing with bank conflicts	3.456 ms	4.854 GB/s	2.33x	2.33x
Kernel 3: sequential addressing	1.722 ms	9.741 GB/s	2.01x	4.68x
Kernel 4: first add during global load	0.965 ms	17.377 GB/s	1.78x	8.34x
Kernel 5: unroll last warp	0.536 ms	31.289 GB/s	1.8x	15.01x
Kernel 6: completely unrolled	0.381 ms	43.996 GB/s	1.41x	21.16x
Kernel 7: multiple elements per thread	0.268 ms	62.671 GB/s	1.42x	30.04x

Kernel 7 on 32M elements: 73 GB/s!

```
template <unsigned int blockSize>
  device__ void warpReduce(volatile int *sdata, unsigned int tid) {
  if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
  if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
  if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
  if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
                                                            Final Optimized Kernel
  if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
  if (blockSize >= 2) sdata[tid] += sdata[tid + 1];
template <unsigned int blockSize>
  global__ void reduce6(int *g_idata, int *g_odata, unsigned int n) {
  extern shared int sdata[];
  unsigned int tid = threadldx.x;
  unsigned int i = blockldx.x*(blockSize*2) + tid;
  unsigned int gridSize = blockSize*2*gridDim.x;
  sdata[tid] = 0;
  while (i < n) { sdata[tid] += g_idata[i] + g_idata[i+blockSize]; i += gridSize; }
    _syncthreads();
  if (blockSize >= 512) { if (tid < 256) { sdata[tid] += sdata[tid + 256]; } __syncthreads(); }
  if (blockSize >= 256) { if (tid < 128) { sdata[tid] += sdata[tid + 128]; } syncthreads(); }
  if (blockSize >= 128) { if (tid < 64) { sdata[tid] += sdata[tid + 64]; } __syncthreads(); }
  if (tid < 32) warpReduce(sdata, tid);</pre>
  if (tid == 0) g_odata[blockldx.x] = sdata[0];
                                                                                         35
```

Performance Comparison

Types of optimization

- Interesting observation:
- Algorithmic optimizations
 - Changes to addressing, algorithm cascading
 - 11.84x speedup, combined!
- Code optimizations
 - Loop unrolling
 - 2.54x speedup, combined

Conclusion

- Understand CUDA performance characteristics
 - Memory coalescing
 - Divergent branching
 - Bank conflicts
 - Latency hiding
- Use peak performance metrics to guide optimization
- Understand parallel algorithm complexity theory
- Know how to identify type of bottleneck
 - e.g. memory, core computation, or instruction overhead
- Optimize your algorithm, then unroll loops
- Use template parameters to generate optimal code
- Questions: <u>mharris@nvidia.com</u>

CUDA - Parallel Reduction Sum

Ask Question

up vote 2 down vote favorite

I am trying to implement a parallel reduction sum in CUDA 7.5. I have been trying to follow the NVIDIA PDF that walks you through the initial algorithm and then steadily more optimised versions. I am currently making an array that is filled with 1 as the value in every array position so that I can check the output is correct but I am getting a value of -842159451 for an array of size 64. I am expecting that the kernel code is correct as I have followed the exact code from NVIDIA for it but here is my kernel:

```
__global___ void reduce0(int *input, int
*output) {
    extern __shared__ int sdata[];

    unsigned int tid = threadIdx.x;
    unsigned int i = blockIdx.x * blockDim.x +
threadIdx.x;

    sdata[tid] = input[i];

    __syncthreads();

    for (unsigned int s = 1; s < blockDim.x; s
*= 2) {
        if (tid % (2 * s) == 0) {
            sdata[tid] += sdata[tid + s];
        }

        __syncthreads();
    }

    if (tid == 0) output[blockIdx.x] = sdata[0];
}
Here is my code calling the kernel, which is
```

where I expect my problem to be:

```
int main()
  int numThreadsPerBlock = 1024:
  int *hostInput;
  int *hostOutput;
  int *deviceInput;
  int *deviceOutput;
  int numInputElements = 64;
  int numOutputElements; // number of
elements in the output list, initialised below
  numOutputElements =
numInputElements / (numThreadsPerBlock
/2);
  if (numInputElements %
(numThreadsPerBlock / 2)) {
     numOutputElements++;
  }
  hostInput = (int
*)malloc(numInputElements * sizeof(int));
  hostOutput = (int
*)malloc(numOutputElements * sizeof(int));
  for (int i = 0; i < numInputElements; ++i) {
     hostInput[i] = 1;
  }
  const dim3
blockSize(numThreadsPerBlock, 1, 1);
  const dim3 gridSize(numOutputElements,
1, 1);
  cudaMalloc((void **)&deviceInput,
numInputElements * sizeof(int));
  cudaMalloc((void **)&deviceOutput,
numOutputElements * sizeof(int));
  cudaMemcpy(deviceInput, hostInput,
numInputElements * sizeof(int),
cudaMemcpyHostToDevice);
  reduce0 << <gridSize, blockSize >>
>(deviceInput, deviceOutput);
```

```
cudaMemcpy(hostOutput, deviceOutput,
numOutputElements * sizeof(int),
cudaMemcpyDeviceToHost);

for (int ii = 1; ii < numOutputElements;
ii++) {
    hostOutput[0] += hostOutput[ii];
//accumulates the sum in the first element
  }

int sumGPU = hostOutput[0];

printf("GPU Result: %d\n", sumGPU);

std::string wait;
std::cin >> wait;

return 0;
}
```

I have also tried bigger and smaller array sizes for the input and I get the same result of a very large negative value no matter the size of the array.

1 Answer

up vote 2 down vote accepted
Seems you are using a dynamically
allocated shared array:
extern __shared__ int sdata[];
but you are not allocating it in the kernel
invocation:
reduce0 <<<gridSize, blockSize
>>>(deviceInput, deviceOutput);
You have two options:

Option 1

Allocate the shared memory statically in the kernel, e.g. constexpr int threadsPerBlock = 1024; __shared__ int sdata[threadsPerBlock];

__shared__ int sdata[threadsPerBlock];
More often than not I find this the cleanest approach, as it works without a problem when you have multiple arrays in shared memory. The drawback is that while the size usually depends on the number of threads in the block, you need the size to be known at compile-time.

Option 2

Specify the amount of dynamically allocated shared memory in the kernel invocation. reduce0 <<<gri>specify size, blockSize, numThreadsPerBlock*sizeof(int) >>>(deviceInput, deviceOutput); This will work for any value of numThreadsPerBlock (provided it is within the allowed range of course). The drawback is that if you have multiple extern shared arrays, you need to figure out how to put then in the memory yourself, so that one does not overwrite the other.

Note, there may be other problems in your code. I didn't test it. This is something I spotted immediately upon glancing over your code.