Note that if
$$Z\{f(k)\} = F(z)$$
 then

The inverse z -transform of $F(z)$ is

denoted by $Z\{F(z)\}$ and is given by

 $Z'\{F(z)\} = f(k)$

* Inverse Z- transform:

Example 1) find—the inverse z-transform of
$$F(z) = \frac{1}{z-a} \quad \text{when i, } |z| < |a| \text{ ii) } |z| > |a|$$

$$\frac{\text{Solution'}}{|z|} \text{ i)} \quad |z| < |a|$$

$$\Rightarrow \quad |z| < |a|$$

$$\Rightarrow |\frac{z}{a}| < 1$$

$$\therefore consider, F(z) = \frac{1}{z-a}$$

$$= \frac{1}{a(\frac{z}{a}-1)}$$

$$= -\frac{1}{a(1-(\frac{z}{a}))}$$

$$= -\frac{1}{a[1+\frac{z}{a}+(\frac{z}{a})^2+\cdots+(\frac{z}{a})^k+\cdots]}$$

$$= -[\frac{1}{a}+\frac{z}{a^2}+\frac{z^2}{a^3}+\cdots+\frac{z^k}{a^{k+1}}+\cdots]$$

$$= -[\frac{1}{a}+\frac{z^2}{a^2}+\frac{z^3}{a^3}+\cdots+\frac{z^k}{a^{k+1}}+\cdots]$$

$$= -[\frac{1}{a}+\frac{z^2}{a^2}+\frac{z^3}{a^3}+\cdots+\frac{z^k}{a^{k+1}}+\cdots]$$

The coefficient of
$$z^{k} = -a^{(k+1)}$$
, $k \ge 0$

$$\Rightarrow \text{ The coefficient of } \overline{z}^{k} = -a^{(-k+1)}$$
, $k \le 0$ (Replace (k by - k))

$$\Rightarrow \text{ The coefficient of } \overline{z}^{k} = -a^{k-1}$$
, $k \le 0$

$$\Rightarrow \overline{z}^{l} \left[F(z) \right] = \left\{ f(k) \right\} = \left\{ -a^{k-1} \right\}$$
, $k \le 0$

$$\Rightarrow \overline{z}^{l} \left[\frac{1}{z-a} \right] = \left\{ -a^{k-1} \right\}$$
, $k \le 0$

$$\Rightarrow \overline{z}^{l} \left[\frac{1}{z-a} \right] = \left\{ -a^{k-1} \right\}$$
, $k \le 0$

ii) $|z| > |a| \Rightarrow |> \left| \frac{a}{z} \right|$ i.e $\left| \frac{a}{z} \right| < 1$

$$\Rightarrow F(z) = \frac{1}{z-a}$$

$$= \frac{1}{z(1-\frac{a}{z})} = \frac{1}{z} \left[\frac{1}{1-(\frac{a}{z})} \right]$$

$$= \frac{1}{z} \left[1 + az^{l} + a^{l}z^{2} + \dots + a^{k}z^{k} + \dots \right]$$

$$= \left[z^{l} + az^{2} + a^{l}z^{2} + \dots + a^{k}z^{k} + \dots \right]$$

$$= \left[az^{l} + az^{2} + \dots + a^{k-1}z^{k} + a^{k}z^{k} + \dots \right]$$

The coefficient of $z^{k} = a^{k-1}$, $k \ge 1$

$$\therefore z^{l} \left[F(z) \right] = \left\{ f(k) \right\} = \left\{ a^{k-1} \right\}$$
, $k \ge 1$

* Inverse z-transform by partial fraction:

FX 1) Find invorse z-transform of

$$F(z) = \frac{z}{(z-1)(z-2)}$$
, $|z|>2$

solution: consider
$$\frac{z}{(z-1)(z-2)} = \frac{A}{z-1} + \frac{B}{z-2}$$
 -0

$$\Rightarrow \frac{z}{(z-1)(z-2)} = \frac{A(z-2) + B(z-1)}{(z-1)(z-2)}$$

$$\Rightarrow$$
 $Z = A(2-2) + B(2-1)$

$$\Rightarrow if Z=1 \quad \text{then} \quad 1=A(1-2)+B(0)$$

$$\Rightarrow A=-1$$

if
$$z=2$$
 -then $2 = A(0) + B(2-1)$
 $B=2$

equation 1 becomes.

$$\frac{z}{(z-1)(z-2)} = \frac{-1}{z-1} + \frac{z}{z-2}$$

$$F(z) = \frac{2}{z-2} - \frac{1}{z-1}$$

=

since,
$$|z| > 2$$
 \Rightarrow $|z| > |\frac{2}{2}| < 1$

and
$$|z| > 2 > 1 \Rightarrow |z| > 1 > |z| \Rightarrow |z| > 1 \Rightarrow$$

$$F(Z) = \begin{bmatrix} \frac{2}{Z-2} \end{bmatrix} - \begin{bmatrix} \frac{1}{Z-1} \end{bmatrix}$$

$$= \frac{2}{z \left[1 - \left(\frac{2}{z}\right)\right]} - \frac{1}{z \left(1 - \frac{1}{z}\right)}$$

$$= \frac{2}{z} \left[1 + \left(\frac{2}{z}\right) + \left(\frac{2}{z}\right)^{2} + \dots + \left(\frac{2}{z}\right)^{k} \dots \right]$$

$$= \frac{2}{z} \left[1 + \left(\frac{1}{z}\right) + \left(\frac{1}{z}\right)^{2} + \dots + \left(\frac{1}{z}\right)^{k} \dots \right]$$

$$= \frac{1}{z} \left[1 + \left(\frac{1}{z}\right) + \left(\frac{1}{z}\right)^{2} + \dots + \left(\frac{1}{z}\right)^{k} \dots \right]$$

$$= 2z^{2} \left[1 + 2z^{2} + 2^{2}z^{2} + \dots + 2z^{k} + \dots \right]$$

$$= \frac{1}{z} \left[1 + z^{2} + z^{2} + z^{2} + \dots + z^{k} + \dots \right]$$

$$= \left[2^{1}z^{2} + 2^{2}z^{2} + 2^{2}z^{2} + \dots + z^{k} + \dots \right]$$

$$= \left[2^{1}z^{2} + 2^{2}z^{2} + \dots + 2^{k}z^{k} + \dots \right]$$

$$= \left[2^{1}z^{2} + 2^{2}z^{2} + \dots + 2^{k}z^{k} + \dots \right]$$

$$= \left[2^{1}z^{2} + 2^{2}z^{2} + \dots + 2^{k}z^{k} + \dots \right]$$
The coefficient of $z^{k} = x^{k} - 1$, $k \ge 1$

Homework!

- 1) find inverse z-transform of $\frac{1}{(z-3)(z-2)}$ if ROC is |z|>3
- find inverse z-transform of $F(z) = <math>\frac{3z^2-18z+26}{(z-2)(z-3)(z-4)}$, 3< z< 6