Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1

«Исследование характеристик источника электрической энергии постоянного тока»

Выполнил:	
Студент группы Р3255	
Фелюкович С. А	

Цель работы

Исследование режимов работы и экспериментальное определение параметров схемы замещения источника электрической энергии.

Ход работы

1. В приложении LTspice собрать электрическую цепь по заданной схеме замещения со значениями $r=3200 [{
m Om}]$ и $E=240 [{
m B}]$ (рис.1).

Рис. 1: Схема электрической цепи

- 2. Измерить напряжение холостого хода U_0 при разрыве цепи, занести полученный результат в таблицу 1.
- 3. Изменяя сопротивление R_n найти такое R_n ,при котором $U_n = \frac{U_0}{2} = \frac{240}{2} = 120,000 [\text{Ом}].$ Занести в таблицу значение R_n .
- 4. Заполнить таблицу, изменяя сопротивление от $100[{\rm O}_{\rm M}]$ до $10000[{\rm O}_{\rm M}]$ соответствующими значениями U_k .
- 5. Для каждого k рассчитать ток в нагрузке по формуле $I_k = \frac{U_k}{R_k}$ [A]:

$$\begin{split} I_0 &= \frac{U_0}{R_0} = \frac{240}{\infty} \cdot 1000,000 \approx 0,000 [\text{mA}]; & I_6 &= \frac{U_6}{R_6} = \frac{105,263}{2500,000} \cdot 1000,000 \approx 42,105 [\text{mA}]; \\ I_1 &= \frac{U_1}{R_1} = \frac{120,000}{3200} \cdot 1000,000 \approx 37,500 [\text{mA}]; & I_7 &= \frac{U_7}{R_7} = \frac{57,142}{1000,000} \cdot 1000,000 \approx 57,142 [\text{mA}]; \\ I_2 &= \frac{U_2}{R_2} = \frac{181,818}{10000,000} \cdot 1000,000 \approx 18,182 [\text{mA}]; & I_8 &= \frac{U_8}{R_8} = \frac{32,432}{500,000} \cdot 1000,000 \approx 64,864 [\text{mA}]; \\ I_3 &= \frac{U_3}{R_3} = \frac{171,428}{8000,000} \cdot 1000,000 \approx 21,429 [\text{mA}]; & I_9 &= \frac{U_9}{R_9} = \frac{17,391}{250,000} \cdot 1000,000 \approx 69,564 [\text{mA}]; \\ I_4 &= \frac{U_4}{R_4} = \frac{156,521}{6000,000} \cdot 1000,000 \approx 26,087 [\text{mA}]; & I_{10} &= \frac{U_{10}}{R_{10}} = \frac{7,272}{100,000} \cdot 1000,000 \approx 72,720 [\text{mA}]; \\ I_5 &= \frac{U_5}{R_5} = \frac{146,341}{5000,000} \cdot 1000,000 \approx 29,268 [\text{mA}]. \end{split}$$

6. Для каждого k рассчитать рассеиваемую в нагрузке мощность по формуле $P_k = \frac{{U_k}^2}{R_k}$ [Вт] :

$$\begin{split} P_0 &= \frac{U_0^2}{R_0} = \frac{240^2}{\infty} \approx 0,000 [\text{BT}]; & P_6 &= \frac{U_6^2}{R_6} = \frac{105,263^2}{2500,000} \approx 4,432 [\text{BT}]; \\ P_1 &= \frac{U_1^2}{R_1} = \frac{120,000^2}{3200} \approx 4,500 [\text{BT}]; & P_7 &= \frac{U_7^2}{R_7} = \frac{57,142^2}{1000,000} \approx 3,265 [\text{BT}]; \\ P_2 &= \frac{U_2^2}{R_2} = \frac{181,818^2}{10\,000,000} \approx 3,306 [\text{BT}]; & P_8 &= \frac{U_8^2}{R_8} = \frac{32,432^2}{500,000} \approx 2,104 [\text{BT}]; \\ P_3 &= \frac{U_3^2}{R_3} = \frac{171,428^2}{8000,000} \approx 3,673 [\text{BT}]; & P_9 &= \frac{U_9^2}{R_9} = \frac{17,391^2}{250,000} \approx 1,210 [\text{BT}]; \\ P_4 &= \frac{U_4^2}{R_4} = \frac{156,521^2}{6000,000} \approx 4,083 [\text{BT}]; & P_{10} &= \frac{U_10^2}{R_{10}} = \frac{7,272^2}{100,000} \approx 0,529 [\text{BT}]; \\ P_5 &= \frac{U_5^2}{R_5} = \frac{146,341^2}{5000,000} \approx 4,283 [\text{BT}]. & \end{split}$$

7. Для каждого k, кроме k=10, рассчитать и занести в таблицу 1 внутреннее сопротивление источника $r_k=\frac{U_k-U_{k+1}}{I_{k+1}-I_k}$ [Ом]:

$$\begin{split} r_1 &= \frac{U_1 - U_2}{I_2 - I_1} = \frac{120,000 - 181.818}{18,182 - 37,500} \cdot 1000,000 \approx 3200,021 [\text{OM}]; \\ r_2 &= \frac{U_2 - U_3}{I_3 - I_2} = \frac{181,818 - 171,428}{21,429 - 18,182} \cdot 1000,000 \approx 3199,877 [\text{OM}]; \\ r_3 &= \frac{U_3 - U_4}{I_4 - I_3} = \frac{171,428 - 156,521}{26,087 - 21,429} \cdot 1000,000 \approx 3200,301 [\text{OM}]; \\ r_4 &= \frac{U_4 - U_5}{I_5 - I_4} = \frac{156,521 - 146,341}{29,268 - 26,087} \cdot 1000,000 \approx 3200,251 [\text{OM}]; \\ r_5 &= \frac{U_5 - U_6}{I_6 - I_5} = \frac{146,341 - 105,263}{42,105 - 29,268} \cdot 1000,000 \approx 3199,969 [\text{OM}] \\ r_6 &= \frac{U_6 - U_7}{I_7 - I_6} = \frac{57,142 - 32,432}{57,142 - 42,105} \cdot 1000,000 \approx 3200,173 [\text{OM}]; \\ r_7 &= \frac{U_7 - U_8}{I_8 - I_7} = \frac{32,432 - 17,391}{64,864 - 57,142} \cdot 1000,000 \approx 3200,213 [\text{OM}]; \\ r_8 &= \frac{U_8 - U_9}{I_9 - I_8} = \frac{32,432 - 17,391}{69,564 - 64,864} \cdot 1000,000 \approx 3200,213 [\text{OM}]; \\ r_9 &= \frac{U_9 - U_{10}}{I_{10} - I_9} = \frac{17,391 - 7,272}{72,720 - 69,564} \cdot 1000,000 \approx 3206,274 [\text{OM}]; \end{split}$$

8. Найти оценку внутреннего сопротивления источников в виде среднего квадратического внутренних сопротивлений источника:

$$r = \sqrt{\frac{\sum_{k=1}^{9} \frac{r_k^2}{9}}{9}} = \sqrt{\frac{r_1^2 + r_2^2 + r_3^2 + r_4^2 + r_5^2 + r_6^2 + r_7^2 + r_8^2 + r_9^2}{9}} = \frac{\sqrt{\frac{3200,021^2 + 3199,877^2 + 3200,301^2 + 3200,251^2 + 3199,969^2 + 3200,173^2}{9}} + \frac{\sqrt{\frac{3199,948^2 + 3200,213^2 + 3206,274^2}{9}}}{9} \approx 3200,781 \text{[Om]}$$

9. Рассчитать и занести в таблицу 1 коэффициент полезного действия $\eta_k == \frac{Rn_k}{r + Rn_k}$

$$\begin{array}{lll} \eta_1 = \frac{R_1}{R_1 + r} = \frac{3200}{3200 + 3200,781} = 0,500 & \eta_6 = \frac{R_6}{R_6 + r} = \frac{2500,000}{2500,000 + 3200,781} = 0,439 \\ \eta_2 = \frac{R_2}{R_2 + r} = \frac{10000,000}{10\,000,000 + 3200,781} = 0,758 & \eta_7 = \frac{R_7}{R_7 + r} = \frac{1000,000}{10\,000,000 + 3200,781} = 0,238 \\ \eta_3 = \frac{R_3}{R_3 + r} = \frac{8000,000}{8000,000 + 3200,781} = 0,714 & \eta_8 = \frac{R_8}{R_8 + r} = \frac{500,000}{500,000 + 3200,781} = 0,135 \\ \eta_4 = \frac{R_4}{R_4 + r} = \frac{6000,000}{6000,000 + 3200,781} = 0,652 & \eta_9 = \frac{R_9}{R_9 + r} = \frac{250,000}{250,000 + 3200,781} = 0,072 \\ \eta_5 = \frac{R_5}{R_5 + r} = \frac{5000,000}{5000,000 + 3200,781} = 0,610 & \eta_{10} = \frac{R_{10}}{R_{10} + r} = \frac{100,000}{100,000 + 3200,781} = 0,030 \end{array}$$

10. Рассчитать и занести в таблицу 1 ток короткого замыкания источника:

$$I_{sc} = \frac{U_0}{r} = \frac{240}{3200,781} \cdot 1000,000 = 74,982 [\text{MA}]$$

Таблица 1

Гаолица Г							
	Измерения	Расчет:					
$\mid k \mid$		$r = 3200,781[O_{\rm M}], E = 240[B], I_{sc} = 74,982[{\rm MA}]$					
	R_k [OM]	U_k [B]	I_k [MA]	P_k [B _T]	η_1	r_k [OM]	
0	∞	240	0,000	0,000	1,000		
1	3200	120,000	37,500	4,500	0,500	3200,021	
2	10 000,000	181,818	18,182	3,306	0,758	3199,877	
3	8000,000	171,428	21,429	3,673	0,714	3200,301	
4	6000,000	156,521	26,087	4,083	0,652	3200,251	
5	5000,000	146,341	29,268	4,283	0,610	3199,969	
6	2500,000	105,263	42,105	4,432	0,439	3200,173	
7	1000,000	57,142	57,142	3,265	0,238	3199,948	
8	500,000	32,432	64,864	2,104	0,135	3200,213	
9	250,000	17,391	69,564	1,210	0,072	3206,274	
10	100,000	7,272	72,720	0,529	0,030		

11. Через точки $[0, E = U_0]$ и $[I_{sc}, 0]$ построить линию расчетной внешней характеристики и на этой же плоскости показать точки экспериментальной характеристики в соответствии с таблицей 1:

12. По данным таблицы 1 построить зависимости мощности в нагрузке $P_n(I_n)$:

13. По данным таблицы 1 построить зависимости КПД в нагрузке $\eta_n(I_n)$:

Вывод

В ходе работы я экспериментально определил параметры схемы замещения источника электрической энергии: $E=240,000 [{\rm B}],\ r=3200,781 [{\rm Om}],\ I_{sc}=74,982 [{\rm A}].$ Цель достигнута.