Na czym polega metoda superpozycji podczas generowania liczb pseudolosowych?

Metoda superpozycji

Stosujemy tam, gdzie trudno odwrócić dystrybuantę, ale można ją podzielić na części, które łatwo odwracać.

$$F_X(x) = \sum_k c_k F_X^{(k)}(x) \qquad 0 < c_k < 1 \qquad \sum_k c_k = 1$$
 Przykład:

$$f_X(x) = \frac{5}{12}(1+(x-1)^4)$$
 $x \in (0,2)$

2. Na czym polega metoda eliminacji podczas generowania liczb pseudolosowych?

Metoda eliminacji: stosujemy gdy f(x) niezerowe tylko w przedziale (a,b) i ograniczone (przez stała <c). Metoda postępowania: losujemy punkt (x,y) w prostokacie o bokach (a,b) i (0,c), jeżeli leży on nad f(X) to akceptujemy x, w przeciwnym wypadku losujemy kolejny punkt.

3.Na czym polega metoda "z przekształceniem" podczas generowania liczb pseudolosowych?

Metody z przekształceniem – szukamy innej zmiennej losowej o tej samej dystrybuancie (funkcji gęstości prawdopodobieństwa).

Przykład:
$$f_X(x) = nx^{n-1}$$
 $x \in (0,1)$ generujemy jako $x = max(\gamma_1, \gamma_2, \ldots, \gamma_n)$ $\gamma_i \in (0,1)$

4. Co nazywamy statystyką zmiennej losowej?

Statystyka – funkcja zmiennych losowych obserwowanych w próbie, sama też jest zmienną losową.

Estymatorem parametru Θ nazywamy statystykę o rozkładzie prawdopodobieństwa zależnym od Θ i oznaczamy $\mathsf{T}_n(\Theta)$ lub $\mathsf{T}_n(\mathsf{x}_1,\mathsf{x}_2,\ldots,\mathsf{x}_n;\;\Theta).$

Zatem dla danego parametru może istnieć wiele estymatorów o różnych własnościach. Pożądanymi własnościami są:

Zgodność – estymator T_n(⊙) jest zgodny gdy

$$\forall \, \varepsilon > 0 : \lim_{n \to \infty} P(|T_n(\Theta) - \Theta| < \varepsilon) = 1$$
 wartość estymatora (statystyki)

2. Obciążenie (jego brak) – estymator $T_n(\Theta)$ jest zmienną losową (różne próby dają różne wartości estymatora), zatem ma wartość oczekiwaną i wariancję. Obciążenie estymatora to

$$B_n \equiv E(T_n(\Theta)) - \Theta$$

- 6. Co to jest estymator zgodny?
- Zgodność estymator T_n(⊙) jest zgodny gdy

$$\forall \varepsilon > 0$$
: $\lim_{n \to \infty} P(|T_n(\Theta) - \Theta| < \varepsilon) = 1$ wartość estymatora (statystyki)

7. Co to jest estymator nieobciążony?

Estymator jest nieobciążony, gdy niezależnie od wielkości próby

$$E(T_n(\Theta)) = \Theta$$
 czyli $B_n = 0$

8. Co to jest estymator asymptotycznie nieobciążony?

Estymator jest asymptotycznie nieobciążony gdy

$$\lim_{n\to\infty} B_n = 0$$

- 9. Co to jest estymator najbardziej efektywny?
- Efektywność estymator jest najbardziej efektywny gdy ma najmniejszą wariancję.

Optymalnie estymator powinien być: zgodny, nieobciążony i najbardziej efektywny.

- 10. Który estymator wartości oczekiwanej ma optymalne własności?
- 11. Co jest wynikiem estymacji punktowej?

Estymacja punktowa to metoda statystyczna mająca na celu oszacowanie wartości badanego zjawiska. Chodzi tu o znalezienie konkretnej liczby (nie przedziału), która jest estymatorem parametru w populacji (w odróżnieniu od estymacji przedziałowej)

12. Dlaczego, tam gdzie to możliwe, powtarzamy pomiar i liczymy średni wynik, a niezadowalamy się jednym pomiarem?

Wiecej wyników = wieksza dokładność

13. Podaj nieobciążony estymator wariancji.

Nieobciążony estymator wariancji

$$S_n^2 = \frac{1}{n-1} \sum_{k=1}^n (X_k - \overline{X}_n)^2$$

14. Co jest wynikiem estymacji przedziałowej?

Estymacja przedziałowa – podanie przedziału liczbowego,

$$\left[T_n^L(\theta), T_n^P(\theta)\right]$$

wewnątrz którego, z założonym prawdopodobieństwem γ =1- α , leży prawdziwa wartość parametru Θ .

15.Co to jest przedział ufności dla parametru Θ?

wewnątrz którego, z założonym prawdopodobieństwem g =1-a, leży prawdziwa wartość parametru Θ.

$$P(T_n^L(\theta) \le \theta \le T_n^P(\theta)) = 1 - \alpha = \gamma$$

- 16. Od czego zależą wartości krańców przedziału ufności?
 - 2). Końce przedziału zależą od próby i od γ , a nie zależą funkcyjnie od Θ .
- 17. Opisz procedurę estymacji przedziałowej.

Aby znaleźć przedział ufności szukamy statystyki o znanym rozkładzie prawdopodobieństwa zależnej od estymowanego parametru Θ i próby.

Przypadek 1 – znamy $\sigma(X)$

Twierdzenie: Statystyka

$$Z = \frac{\overline{X} - E(X)}{\sigma(\overline{X})} = \frac{(\overline{X} - E(X))\sqrt{n}}{\sigma(X)}$$

ma rozkład normalny N(0,1). (Średnia ma rozkład N(E(X), σ^2 (X)/n), standaryzacja przekształca rozkład normalny w normalny).

Chcemy znaleźć przedział ufności taki, że

$$P\left(Z^{L} \leq Z \leq Z^{P}\right) = \gamma \qquad \text{Kwantyle rozkładu N(0,1)}$$
 Jest to spełnione przez $Z^{L} = Z_{\frac{1-\gamma}{2}} \quad i \quad Z^{P} = Z_{\frac{1-\gamma}{2}+\gamma=\frac{1+\gamma}{2}}$

18. Wymień 3 metody szukania estymatorów.

- -Metoda momentów
- Metoda największej wiarygodności
- -Metoda najmniejszych kwadratów

19. Opisz procedurę szukania estymatorów w metodzie momentów.

Metoda momentów polega na porównaniu momentów względem początku układu współrzędnych $\widetilde{\mu}_k \equiv E(X^k)$ wyliczonymi wprost z definicji a wartościami ich estymatorów wyliczonymi na podstawie n-elementowej próby

T_n(
$$\widetilde{\mu}_k$$
) = $\frac{1}{n} \sum_{i=1}^n (x_i)^k$

czyli
$$\widetilde{\mu}_k(\theta_1, \theta_2, ..., \theta_p) = \frac{1}{n} \sum_{i=1}^n (x_i)^k$$

Rozwiązanie tak otrzymanego układu p (k=1,...,p) równań na $\Theta_1, \Theta_2, ..., \Theta_p$ przyjmujemy za estymatory parametrów

Estymatory uzyskane metodą momentów są zgodne i asymptotycznie nieobciążone (czasami nawet nieobciążone).

20. Opisz procedurę szukania estymatorów w metodzie największej wiarygodności.

Metoda największej wiarygodności polega na szukaniu wartości parametrów $\mathcal{O}_1, \mathcal{O}_2, ..., \mathcal{O}_p$, dla których funkcja największej wiarygodności osiąga maksimum.

Tak otrzymane wartości przyjmujemy za estymatory parametrów $\Theta_1,\Theta_2,\ldots,\Theta_D$.

21. Zdefiniuj funkcję największej wiarygodności.

Funkcja największej wiarygodności
$$\widetilde{L}(\theta_1,\theta_2,\ldots,\theta_p) = \prod_{i=1}^n f(x_i;\theta_1,\theta_2,\ldots,\theta_p)$$

22. Opisz procedurę szukania estymatorów w metodzie najmniejszych kwadratów.

Metoda najmniejszych kwadratów polega na szukaniu wartości parametrów $\mathcal{O}_1, \mathcal{O}_2, ..., \mathcal{O}_p$, dla których funkcja

$$\sum_{i=1}^{n} w_i \Big(g(y_i; \theta_1, \theta_2, \dots, \theta_p) \Big)^2$$

osiąga minimum. Współczynniki liczbowe w, określają wagę jaką przykładamy do kolejnych wartości y, mogą być to na przykład odwrotności kwadratów błędów pomiaru y.

Tak otrzymane wartości przyjmujemy za estymatory parametrów $\Theta_1, \Theta_2, ..., \Theta_D$.

23. Co to jest funkcja regresji I rodzaju zmiennej Y względem zmiennej X?

Funkcją regresji I rodzaju zmiennej Y względem zmiennej X nazywamy warunkową wartość oczekiwaną E(Y|X) traktowaną jako funkcje zmiennej X.

 $E(Y \mid X = x) = \int_{-\infty}^{+\infty} y f_{Y|X}(y \mid x) dy$ $f_{Y|X}(y \mid x) = f_{X,Y}(x, y) / f_X(x)$

24. Co to jest liniowa funkcja regresji II rodzaju?

Liniowa funkcja regresji II rodzaju przybliża liniowo E(Y|X)

$$E(Y \mid X) \approx u(x) = ax + b$$

25. Co to jest test statystyczny?

Testowanie hipotez statystycznych pozwala na sprawdzenie na podstawie wyników próby, przy zadanym poziomie ufności, czy jakieś twierdzenie (hipoteze) dotyczące populacji generalnej jest prawdziwe. Taką procedurę nazywamy **testem statystycznym**.

26. Co to jest hipoteza zerowa?

Jest to hipoteza poddana procedurze weryfikacyjnej, w której zakładamy, że różnica między analizowanymi parametrami lub rozkładami wynosi zero. Przykładowo wnioskując o parametrach hipotezę zerową zapiszemy jako:

$$H_0: \theta_1 = \theta_2$$

27. Co to jest hipoteza prosta

jednoznacznie określają rozkład, funkcję gęstości prawdopodobieństwa lub dystrybuantę zmiennej losowej

28. Co to jest błąd I rodzaju i jak wiąże się z poziomem istotności testu?

29. Co to jest błąd II rodzaju?

Określenie obszaru krytycznego na podstawie a jest niejednoznaczne. Można to poprawić wprowadzając prawdopodobieństwo błędu II-go rodzaju: przyjęciu fałszywej H0, gdy w rzeczywistości prawdziwa jest hipoteza alternatywna H1. Prawdopodobieństwo to oznaczamy b, a 1-b nazywamy **mocą** testu.

30. Opisz procedurę testu statystycznego np. do zbadania Ho: E(X)=Xo.

Zał. Próbka o liczebności n pochodzi z rozkładu $N(E(X), \sigma^2)$.

Badamy H_0 : $E(X)=X_0$.

Statystyka testowa jest:

Statystyką testową jest: Gdy znamy odchylenie standardowe σ : $U = \frac{(X - E(X))\sqrt{n}}{\sigma(X)}$ Ma ona rozkład N(0,1).

Gdy nie znamy odchylenia standardowego σ : $t = \frac{(\overline{X} - E(X))\sqrt{n}}{Ma}$ ona rozkład t-Studenta o n-1 stopniach swobody. S(X)

H ₁	W (znane σ)	W (nieznane σ)
E(X)≠X ₀	u >u _{1-α/2}	t >t _{1-α/2}
$E(X)>X_0$	u>u _{1-α}	t>t _{1-α}
E(X) <x<sub>0</x<sub>	u <u<sub>α</u<sub>	t <t<sub>\alpha</t<sub>