Домашнее Задание по ТРЯПу №10

Павливский Сергей Алексеевич , 873 20.11.2019

Задание 1.

Решение

Воспользуемся алгоритмами вычисления FIRST и FOLLOW (точнее , их неформальным описаниеми) , приведенными в конспекте к заданию .

Tогда FIRST:

E $\{(,id)\}$ E' $\{+,\varepsilon\}$ T $\{(,id)\}$ T' $\{x,\varepsilon\}$ F $\{(,id)\}$ FOLLOW: E $\{\$,\}$ E' $\{\$,\}$ T' $\{+,\$,\}$ T' $\{+,\$,\}$ F $\{x,\$,+\}$

Задание 2.

Построить дерево вывода, левые и правые разборы для слова ((id)) в грамматике Expr (грамматика из задания 1) .

Решение

Дерево разбора ((id)):

Левый разбор ((id)):

 $E \to TE'$

 $T \to FT'$

 $F \to (E)$

 $E \rightarrow TE'$

 $T \to FT'$

 $F \rightarrow (E)$

 $E \to TE'$

```
T \to FT
F \to id
T' \to \varepsilon
E' \to \varepsilon
T' \to \varepsilon
E' \to \varepsilon
T' \to \varepsilon
E' \to \varepsilon
Правый разбор ((id)):
E \to TE'
E' \to \varepsilon
T \to FT
T'\to\varepsilon
F \rightarrow (E)
E \to TE'
E' \to \varepsilon
T \rightarrow FT'
T' \to \varepsilon
F \to (E)
E \to TE'
E' \to \varepsilon
T \rightarrow FT'
T' \to \varepsilon
F \rightarrow id
```

Задание 3.

Постройте LL(1)-анализатор для грамматики Expr. Продемонстрируйте его работу на слове $id + id \times id$ и, в случае успеха, постройте дерево разбора по результатам работы аналтзатора.

Решение

Занумеруем множество правил вывода:

	Е	E'	Т	T'	F
id	1	-	3	-	6
+	-	2	-	8	-
X	-	-	-	4	-
(1	-	3	-	5
)	-	7	-	8	-
\$	-	7	-	8	-

$$E \to TE' (1)$$

$$E' \to +TE' (2)$$

$$T \to FT' (3)$$

$$T' \to xFT' (4)$$

$$F \to (E) (5)$$

$$F \to id (6)$$

$$E' \to \varepsilon (7)$$

$$T' \to \varepsilon (8)$$

Построим LL анализатор (для каждого терминала из FIRST(нетерминал1) на пересечении с нетерминал1 стоит номер перехода , который реализует этот первый символ , если же из нетерминал1 выводимо пустое слово , то также на пересечении его и FOLLOW(нетерминал1) ставим реализующий данную позицию номер перехода) .

Продемонстрируем работу данного LL(1) анализатора на слове $id + id \times id$:

```
(id + id x id $ | E $)

(id + id x id$ | TE'$)

(id + id x id$ | FT'E'$)

(id + id x id$ | idT'E'$)

(+ id x id$ | T'E'$)

(+ id x id$ | E'$)

(+ id x id$ | +TE'$)

(id x id$ | TE'$)

(id x id$ | FT'E'$)

(id x id$ | idT'E'$)

(x id$ | T'E'$)
```

```
(x id$ | xFT'E'$)
(id$ | FT'E'$)
(id$ | idT'E'$)
($ | T'E'$)
($ | E'$)
($ | $)
```

Построим дерево разбора:

Задание 4.

Решение

Докажем требуемое , что грамматика не $\mathrm{LL}(1)$. FIRST :

111001

 $S \{a, b\}$

A {b, ε }

FOLLOW:

S {\$}

 $A \{a, b\}$

 $\varepsilon\in FIRST(A); FIRST(A)\bigcap FOLLOW(A)=b=
eq\varnothing$. Значит по теореме данная грамматика не LL(1) .

Теперь докажем, что данная грамматика — LL(2)-грамматика.

Рассмотрим правила для S:

 $S \to aAaa, S \to bAba.$

Заметим, что

 $\forall a \text{ FIRST2}(aAaaa) \cap \text{FIRST2}(bAbaa) = \emptyset$

так как первая цепочка начинается c a, а вторая — c b.

Теперь рассмотрим правила для А:

 $A \to b, A \to \varepsilon$

Заметим, что все a такие, что S \Rightarrow_l^* wAa, начинаются либо на аа, либо на ba, так как

 $S \to aAaa, S \to bAba$

- все правила вывода, содержащие в левой части А.

Значит, $\forall a : S \Rightarrow_l^* wAa \rightarrow FIRST2(ba) \cap FIRST2(\varepsilon a) = \varnothing$.

Значит по теореме данная грамматика является LL(2).

 $FIRST_2$:

 $S \{ab, aa, bb\}$

 $A \{\varepsilon, b\}$

 $FOLLOW_2:$

S {\$}

 $A \{aa, ba\}$