DSE 203

DAY 1: REVIEW OF DBMS CONCEPTS

Data Models

- A specification that precisely defines
 - The structure of the data
 - The fundamental operations on the data
 - The logical language to specify queries on the data
- Example
 - Relational
 - Array-structured
 - Tree-structured
 - Graph-structured
 - Vector-structured
- Three architectural levels
 - Conceptual Model
 - Logical Model
 - Physical Model

Database Schema

- Organization of Data for a Specific Application
- Based on a Data Model
- Specific Integrity Constraints
 - Key constraint, uniqueness constraint, ...
- Can represent an infinite number of database instances
- Many databases do not have to have a schema
 - XML, JSON databases
 - Graph Databases
 - Having a schema is useful for query formulation and for query evaluation

Relational Data Model

- Fields or attributes
 - Atomic or complex
- Domain of an attribute
- Tuple or record of attributes
- Relation = Set of tuples
- The special value called NULL
- Set and bag (multiset) semantics

- Relational Algebra Operators
 - Selection
 - (generalized) Projection
 - Cross product
 - Joins (inner join, outer join, semioin, ...)
 - Union
 - Difference
 - Rename
- Other operations
 - Group By
 - Aggregates

Integrity Constraints in Relational Databases

- Key Constraint
 - Let **A** be the set of attributes of a relation *R*
 - $S \subseteq A$ such that if t_1 , t_2 are tuples in R then, if $t_1^S = t_2^S$, then $t_1 = t_2$
 - Then S is key of R
- Functional Dependency
 - Let **A** be the set of attributes of a relation *R*
 - S, S' \subseteq **A** such that if t_1 , t_2 are tuples in R and t_1^S etc. represent subtuples with attribute set S, then, if $t_1^S = t_2^S$ then $t_1^{S'} = t_2^{S'}$ for every pair of tuples
 - Then S' is functionally determined by S

Queries

- Mappings from an input database to an output database function
- Sample SQL Query

• SELECT b.title, getYear(b.publication_date), b.price — Output schema

FROM books b, authors a

WHERE, b.price < 150 AND

Join condition

Projection variables

Filter conditions

b.authorID = a.authorID AND

`a.firstName = 'James' AND a.lastName = 'Stewart'

Logic-like Representation

- Schema
 - Books(Title, Author_id, ISBN, Publication_year, Price)
 - Authors(Author_id, FirstName, LastName)
- Fact tuples
 - Book('Operating System Concepts', 438, '978-1118063330', 2012, 134.36)
 - Authors(438, 'Abraham', 'Silberschatz')
- Query
 - Result(X,Y,Z):- Books(X, A, ISBN, P, Z), Authors(A, F, L), Z < 150, F= 'James', L='Stewart', Y = getYear(P)
 - Result(X,Y,Z):- Books(X, A_1 , ISBN, P, Z), Authors(A_2 , F, L), Z < 150, F= 'James', L='Stewart', Y = getYear(P), $A_1 = A_2$

Relational Views

- Named Virtual Relation
- Defined as a query to a set of base tables or on other views
- Use
 - Only need a specific subset of the data for an application
- Example
 - CREATE VIEW V AS <query expression>
- Materialized View
 - An actual table corresponding to the view definition is created
 - This table is maintained as the base tables get updated

Query Evaluation in a DBMS

Distributed Query Processing

Suppose our data is distributed across multiple machines and we need to process queries

- **Parallel DBMS**s assume homogeneous nodes and fast networks (sometimes even shared memory)
 - A Major goal: efficiently utilize all resources, balance load
- **Distributed DBMS**s assume heterogeneous nodes, slower networks, some sources only available on some machines
 - A Major goal: determine what computation to place where

➤ Our focus here is on the latter

Distributed Query Processing

- Data Placement
 - Horizontal partitioning
 - Vertical partitioning
 - Hybrid Partitioning
- Data Shipping
 - Ship operation sending the output of a query from one machine to another
 - Exchange operation exchanges tuples across a set of data nodes of a horizontally partitioned database until all data with the same key are co-located
 - A suitable partitioning function is used

Distributed Query Processing

- 2 phase joins
 - Two relations are on two machines and the query needs to join them
 - Compute a summary (e.g., projection) of the join attributes from one relation and ship to the second
 - The second machine returns performs a local join and forms a partial result structure to the first machine
 - The first machine completes the join by using these tuples
- What is this kind of operation called?
- What happens when even the summary is really large?