

Europäi ches Patentamt

Europ an Patent Offic

Office européen des brevets

(11) EP 1 108 790 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 20.06.2001 Bulletin 2001/25

(21) Application number: 00127688.0

(22) Date of filing: 18.12.2000

(51) Int Cl.7: **C12Q 1/68**, C07H 21/04, C12N 15/63, C07K 14/34, C12R 1/15, G06F 17/00, C12R 1/13, G01N 33/50

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE TR

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 16.12.1999 JP 37748499 07.04.2000 JP 2000159162 03.08.2000 JP 2000280988

- (83) Declaration under Rule 28(4) EPC (expert solution)
- (71) Applicant: KYOWA HAKKO KOGYO CO., LTD. Chiyoda-ku, Tokyo 100-8185 (JP)
- (72) Inventors:
 - Nakagawa, Satochi, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
 - Mizoguchi, Hiroshi, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)

- Ando, Seiko, c/o Kyowa Hakko Kogyo Co., Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Hayashi, Mikiro,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)
- Ochlai, Kelko, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Yokoi, Haruhiko, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Tateishi, Naoko,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)
- Senoh, Akihiro, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Ikeda, Masato, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Ozaki, Akio, c/o Kyowa Hakko Kogyo Co., Ltd. Hofu-shi, Yamaguchi 747-8522 (JP)
- (74) Representative: VOSSIUS & PARTNER Siebertstrasse 4 81675 München (DE)

(54) Novel polynucleotides

(57) Novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays

comprising the polynucleotides and fragments thereof, recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded which are readable in a computer, and use of them.

Description

10

15

35

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention relates to novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays comprising the polynucleotides and fragments thereof, computer readable recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded, and use of them as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.

2. Brief Description of the Background Art

[0002] Coryneform bacteria are used in producing various useful substances, such as amino acids, nucleic acids, vitamins, saccharides (for example, ribulose), organic acids (for example, pyruvic acid), and analogues of the above-described substances (for example, N-acetylamino acids) and are very useful microorganisms industrially. Many mutants thereof are known

[0003] For example, Corynebacterium glutamicum is a Gram-positive bacterium identified as a glutamic acid-producing bacterium, and many amino acids are produced by mutants thereof. For example, 1,000,000 ton/year of L-glutamic acid which is useful as a seasoning for umami (delicious taste), 250,000 ton/year of L-lysine which is a valuable additive for livestock feeds and the like, and several hundred ton/year or more of other amino acids, such as L-arginine, L-proline, L-glutamine, L-tryptophan, and the like, have been produced in the world (Nikkei Bio Yearbook 99, published by Nikkei BP (1998)).

[0004] The production of amino acids by *Corynebacterium glutamicum* is mainly carried out by its mutants (metabolic mutants) which have a mutated metabolic pathway and regulatory systems. In general, an organism is provided with various metabolic regulatory systems so as not to produce more amino acids than it needs. In the biosynthesis of L-lysine, for example, a microorganism belonging to the genus *Corynebacterium* is under such regulation as preventing the excessive production by concerted inhibition by lysine and threonine against the activity of a biosynthesis enzyme common to lysine, threonine and methionine, i.e., an aspartokinase, (*J. Biochem., 65*: 849-859 (1969)). The biosynthesis of arginine is controlled by repressing the expression of its biosynthesis gene by arginine so as not to biosynthesize an excessive amount of arginine (*Microbiology, 142*: 99-108 (1996)). It is considered that these metabolic regulatory mechanisms are deregulated in amino acid-producing mutants. Similarly, the metabolic regulation is deregulated in mutants producing nucleic acids, vitamins, saccharides, organic acids and analogues of the above-described substances so as to improve the productivity of the objective product.

[0005] However, accumulation of basic genetic, biochemical and molecular biological data on coryneform bacteria is insufficient in comparison with *Escherichia coli, Bacillus subtilis*, and the like. Also, few findings have been obtained on mutated genes in amino acid-producing mutants. Thus, there are various mechanisms, which are still unknown, of regulating the growth and metabolism of these microorganisms.

[0006] A chromosomal physical map of *Corynebacterium glutamicum* ATCC 13032 is reported and it is known that its genome size is about 3,100 kb (*Mol. Gen. Genet., 252*: 255-265 (1996)). Calculating on the basis of the usual gene density of bacteria, it is presumed that about 3,000 genes are present in this genome of about 3,100 kb. However, only about 100 genes mainly concerning amino acid biosynthesis genes are known in *Corynebacterium glutamicum*, and the nucleotide sequences of most genes have not been clarified hitherto.

[0007] In recent years, the full nucleotide sequence of the genomes of several microorganisms, such as *Escherichia coli, Mycobacterium tuberculosis*, yeast, and the like, have been determined (*Science, 277*: 1453-62 (1997); *Nature, 393*: 537-544 (1998); *Nature, 387*: 5-105 (1997)). Based on the thus determined full nucleotide sequences, assumption of gene regions and prediction of their function by comparison with the nucleotide sequences of known genes have been carried out. Thus, the functions of a great number of genes have been presumed, without genetic, biochemical or molecular biological experiments.

[0008] In recent years, moreover, techniques for monitoring expression levels of a great number of genes simultaneously or detecting mutations, using DNA chips, DNA arrays or the like in which a partial nucleic acid fragment of a gene or a partial nucleic acid fragment in genomic DNA other than a gene is fixed to a solid support, have been developed. The techniques contribute to the analysis of microorganisms, such as yeasts, *Mycobacterium tuberculosis*, *Mycobacterium bovis* used in BCG vaccines, and the like (*Science*, 278: 680-686 (1997); *Proc. Natl. Acad. Sci. USA*, 96: 12833-38 (1999); *Science*, 284: 1520-23 (1999)).

SUMMARY OF THE INVENTION

[0009] An object of the present invention is to provide a polynucleotide and a polypeptide derived from a microorganism of coryneform bacteria which are industrially useful, sequ nce information of the polynucleotide and the polypeptide, a method for analyzing the microorganism, an apparatus and a system for use in the analysis, and a method for breeding the microorganism.

[0010] The present invention provides a polynucleotide and an oligonucleotide derived from a microorganism belonging to coryneform bacteria, oligonucleotide arrays to which the polynucleotides and the oligonucleotides are fixed, a polypeptide encoded by the polynucleotide, an antibody which recognizes the polypeptide, polypeptide arrays to which the polypeptides or the antibodies are fixed, a computer readable recording medium in which the nucleotide sequences of the polynucleotide and the oligonucleotide and the amino acid sequence of the polypeptide have been recorded, and a system based on the computer using the recording medium as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.

BRIEF DESCRIPTION OF THE DRAWING

[0011] Fig. 1 is a map showing the positions of typical genes on the genome of *Corynebacterium glutamicum* ATCC 13032.

[0012] Fig. 2 is electrophoresis showing the results of proteome analyses using proteins derived from (A) Coryne-bacterium glutamicum ATCC 13032, (B) FERM BP-7134, and (C) FERM BP-158.

[0013] Fig. 3 is a flow chart of an example of a system using the computer readable media according to the present invention.

[0014] Fig. 4 is a flow chart of an example of a system using the computer readable media according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0015] This application is based on Japanese applications No. Hei. 11-377484 filed on December 16, 1999, No. 2000-159162 filed on April 7, 2000 and No. 2000-280988 filed on August 3, 2000, the entire contents of which are incorporated hereinto by reference.

[0016] From the viewpoint that the determination of the full nucleotide sequence of *Corynebacterium glutamicum* would make it possible to specify gene regions which had not been previously identified, to determine the function of an unknown gene derived from the microorganism through comparison with nucleotide sequences of known genes and amino acid sequences of known genes, and to obtain a useful mutant based on the presumption of the metabolic regulatory mechanism of a useful product by the microorganism, the inventors conducted intensive studies and, as a result, found that the complete genome sequence of *Corynebacterium glutamicum* can be determined by applying the whole genome shotgun method.

[0017] Specifically, the present invention relates to the following (1) to (65):

- (1) A method for at least one of the following:
 - (A) identifying a mutation point of a gene derived from a mutant of a coryneform bacterium,
 - (B) measuring an expression amount of a gene derived from a coryneform bacterium,
 - (C) analyzing an expression profile of a gene derived from a coryneform bacterium,
 - (D) analyzing expression patterns of genes derived from a coryneform bacterium, or
 - (E) identifying a gene homologous to a gene derived from a coryneform bacterium, said method comprising:
 - (a) producing a polynucleotide array by adhering to a solid support at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of the first or second polynucleotides,
 - (b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a coryneform bacterium, a labeled polynucl otide derived from a mutant of the coryneform bacterium or a lab led polynucleotide to be examined, under hybridization conditions,
 - (c) detecting any hybridization, and
 - (d) analyzing the result of the hybridization.

3

50

10

15

25

30

35

40

45

50

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at least two of the third polynucleotides, or at least two of the first, second and third polynucleotides.

- (2) The method according to (1), wherein the coryneform bacterium is a microorganism belonging to the genus 5 Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - (3) The method according to (2), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium um melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - (4) The method according to (1), wherein the polynucleotide derived from a coryneform bacterium, the polynucelotide derived from a mutant of the coryneform bacterium or the polynucleotide to be examined is a gene relating to the biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof.
 - (5) The method according to (1), wherein the polynucleotide to be examined is derived from Escherichia coli.
 - (6) A polynucleotide array, comprising:

10

15

20

25

30

35

40

45

50

at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 continuous bases of the first or second polynucleotides, and a solid support adhered thereto.

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at least two of the third polynucleotides, or at least two of the first, second and third polynucleotides.

- (7) A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a homology of at least 80% with the polynucleotide.
- (8) A polynucleotide comprising any one of the nucleotide sequences represented by SEQ ID NOS:2 to 3431, or a polynucleotide which hybridizes with the polynucleotide under stringent conditions.
- (9) A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.
- (10) A polynucleotide which is present in the 5' upstream or 3' downstream of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a whole polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.
- (11) A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of (7) to (10), or a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising 10 to 200 continuous based.
- (12) A recombinant DNA comprising the polynucleotide of any one of (8) to (11).
- (13) A transformant comprising the polynucleotide of any one of (8) to (11) or the recombinant DNA of (12).
- (14) A method for producing a polypeptide, comprising:

culturing the transformant of (13) in a medium to produce and accumulate a polypeptide encoded by the polynucleotide of (8) or (9) in the medium, and recovering the polypeptide from the medium.

- (15) A method for producing at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, comprising:
 - culturing the transformant of (13) in a medium to produce and accumulate at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid, and analogues thereof from the medium.
- (16) A polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS: 55 2 to 3431.
 - (17) A polypeptide comprising the amino acid sequence selected from SEQ ID NOS:3502 to 6931.
 - (18) The polypeptide according to (16) or (17), wherein at least one amino acid is deleted, replaced, inserted or

added, said polypeptides having an activity which is substantially the same as that of the polypeptide without said at least one amino acid deletion, replacement, insertion or addition.

- (19) A polypeptide comprising an amino acid sequence having a homology of at least 60% with the amino acid sequence of the polypeptide of (16) or (17), and having an activity which is substantially the same as that of the polypeptide.
- (20) An antibody which recognizes the polypeptide of any one of (16) to (19).
- (21) A polypeptide array, comprising:

5

10

15

20

25

30

35

40

45

50

55

at least one polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.

- (22) A polypeptide array, comprising:
 - at least one antibody which recognizes a polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.
- (23) A system based on a computer for identifying a target sequence or a target structure motif derived from a corvneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 1 to 3501 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
 - (24) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with the target sequence or target structure motif information; and
 - (iv) screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information.
 - (25) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
 - (26) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence information or target structure motif information into a user input device;

- FP 1 108 790 A2 (ii) at least temporarily storing said information; (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information; and (iv) screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structur motif information. (27) A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following: (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information; (ii) a data storage device for at least temporarily storing the input information; (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 2 to 3501 with the target nucleotide sequence information, and determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501; and (iv) an output devices that shows a function obtained by the comparator. (28) A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following: (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information; (ii) at least temporarily storing said information; (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information; and (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501. (29) A system based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following: (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information; (ii) a data storing device for at least temporarily storing the input information; (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target amino acid sequence information for determining a function of a polypeptide
 - having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001; and
 - (iv) an output device that shows a function obtained by the comparator.
- (30) A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
 - (ii) at least temporarily storing said information;

5

10

15

20

25

30

35

40

45

50

- (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target amino acid sequence information; and
- (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001.
- (31) The system according to any one of (23), (25), (27) and (29), wherein a coryneform bacterium is a microor-

ganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.

- (32) The method according to any one of (24), (26), (28) and (30), wherein a coryneform bacterium is a microorganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
- (33) The system according to (31), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, corynebacterium callunae, corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (34) The method according to (32), wherein the microorganism belonging to the genus *Corynebacterium* is selected from the group consisting of *Corynebacterium glutamicum*, *Corynebacterium acetoacidophilum*, *Corynebacterium acetoglutamicum*, *Corynebacterium callunae*, *Corynebacterium herculis*, *Corynebacterium lilium*, *Corynebacterium melassecola*, *Corynebacterium thermoaminogenes*, and *Corynebacterium ammoniagenes*.
- (35) A recording medium or storage device which is readable by a computer in which at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 or function information based on the nucleotide sequence is recorded, and is usable in the system of (23) or (27) or the method of (24) or (28).
- (36) A recording medium or storage device which is readable by a computer in which at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence is recorded, and is usable in the system of (25) or (29) or the method of (26) or (30).
 - (37) The recording medium or storage device according to

5

10

20

25

30

35

40

45

50

- (35) or (36), which is a computer readable recording medium selected from the group consisting of a floppy disc, a hard disc, a magnetic tape, a random access memory (RAM), a read only memory (ROM), a magneto-optic disc (MO), CD-ROM, CD-RW, DVD-ROM, DVD-RAM and DVD-RW.
- (38) A polypeptide having a homoserine dehydrogenase activity, comprising an amino acid sequence in which the Val residue at the 59th in the amino acid sequence of homoserine dehydrogenase derived from a coryneform bacterium is replaced with an amino acid residue other than a Val residue.
- (39) A polypeptide comprising an amino acid sequence in which the Val residue at the 59th position in the amino acid sequence as represented by SEQ ID NO:6952 is replaced with an amino acid residue other than a Val residue. (40) The polypeptide according to (38) or (39), wherein the Val residue at the 59th position is replaced with an Ala residue.
- (41) A polypeptide having pyruvate carboxylase activity, comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence of pyruvate carboxylase derived from a coryneform bacterium is replaced with an amino acid residue other than a Pro residue.
- (42) A polypeptide comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence represented by SEQ ID NO:4265 is replaced with an amino acid residue other than a Pro residue.
- (43) The polypeptide according to (41) or (42), wherein the Pro residue at the 458th position is replaced with a Ser residue.
- (44) The polypeptide according to any one of (38) to (43), which is derived from Corynebacterium glutamicum.
- (45) A DNA encoding the polypeptide of any one of (38) to (44).
- (46) A recombinant DNA comprising the DNA of (45).
- (47) A transformant comprising the recombinant DNA of (46).
- (48) A transformant comprising in its chromosome the DNA of (45).
 - (49) The transformant according to (47) or (48), which is derived from a coryneform bacterium.
 - (50) The transformant according to (49), which is derived from Corynebacterium glutamicum.
 - (51) A method for producing L-lysine, comprising:
 - culturing the transformant of any one of (47) to (50) in a medium to produce and accumulate L-lysine in the medium, and
 - recovering the L-lysine from the culture.
 - (52) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising the following:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corr sponding nucleotide sequenc in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtained by (i);
 - (iii) introducing the mutation point into a coryneform bacterium which is free of the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform

bacterium obtained in (iii).

5

10

15

20

25

30

35

40

45

50

55

- (53) The method according to (52), wherein the gene is a gene encoding an enzym in a biosynthetic pathway or a signal transmission pathway.
- (54) The method according to (52), wherein the mutation point is a mutation point relating to a useful mutation which improves or stabilizes the productivity.
- (55) A method for breading a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtain by (i);
 - (iii) deleting a mutation point from a coryneform bacterium having the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- (56) The method according to (55), wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- (57) The method according to (55), wherein the mutation point is a mutation point which decreases or destabilizes the productivity.
- (58) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) identifying an isozyme relating to biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof, based on the nucleotide sequence information represented by SEQ ID NOS:2 to 3431;
 - (ii) classifying the isozyme identified in (i) into an isozyme having the same activity;
 - (iii) mutating all genes encoding the isozyme having the same activity simultaneously; and
 - (iv) examining productivity by a fermentation method of the compound selected in (i) of the coryneform bacterium which have been transformed with the gene obtained in (iii).
- (59) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) arranging a function information of an open reading frame (ORF) represented by SEQ ID NOS:2 to 3431;
 - (ii) allowing the arranged ORF to correspond to an enzyme on a known biosynthesis or signal transmission pathway;
 - (iii) explicating an unknown biosynthesis pathway or signal transmission pathway of a coryneform bacterium in combination with information relating known biosynthesis pathway or signal transmission pathway of a coryneform bacterium;
 - (iv) comparing the pathway explicated in (iii) with a biosynthesis pathway of a target useful product; and
 - (v) transgenetically varying a coryneform bacterium based on the nucleotide sequence information to either strengthen a pathway which is judged to be important in the biosynthesis of the target useful product in (iv) or weaken a pathway which is judged not to be important in the biosynthesis of the target useful product in (iv).
 - (60) A coryneform bacterium, bred by the method of any one of (52) to (59).
 - (61) The coryneform bacterium according to (60), which is a microorganism belonging to the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
 - (62) The coryneform bacterium according to (61), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (63) A method for producing at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid and an analogue thereof, comprising:

culturing a coryneform bacterium of any one of (60) to (62) in a medium to produce and accumulate at least

one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof;

recovering the compound from the culture.

(64) The method according to (63), wherein the compound is L-lysine.

(65) A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:

(i) preparing

10

a protein derived from a bacterium of a production strain of a coryneform bacterium which has been subjected to mutation breeding by a fermentation process so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, and a protein derived from a bacterium of a parent strain of the production strain;

15

20

- (ii) separating the proteins prepared in (i) by two dimensional electrophoresis;
- (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;
- (iv) treating the protein showing different expression amounts as a result of the comparison with a peptidase to extract peptide fragments;
- (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and
- (vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ
- ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.

25

30

As used herein, the term "proteome", which is a coined word by combining "protein" with "genome", refers to a method for examining of a gene at the polypeptide level.

- (66) The method according to (65), wherein the coryneform bacterium is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
- (67) The method according to (66), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, corynebacterium herculis, Corynebacterium lilium Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (68) A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382).

[0018] The present invention will be described below in more detail, based on the determination of the full nucleotide 35 sequence of coryneform bacteria.

- 1. Determination of full nucleotide sequence of coryneform bacteria
- [0019] The term "coryneform bacteria" as used herein means a microorganism belonging to the genus Corynebac-40 terium, the genus Brevibacterium or the genus Microbacterium as defined in Bergeys Manual of Determinative Bacteriology, 8: 599 (1974).
 - [0020] Examples include Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium glutamicum, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, Brevibacterium saccharolyticum, Brevibacterium immariophilum, Brevibacterium roseum, Brevibacterium thiogenitalis, Microbacterium ammoniaphilum, and the like.
 - [0021] Specific examples include Corynebacterium acetoacidophilum ATCC 13870, Corynebacterium acetoglutamicum ATCC 15806, Corynebacterium callunae ATCC 15991, Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 13060, Corynebacterium glutamicum ATCC 13826 (prior genus and species: Brevibacterium flavum, or Corynebacterium lactofermentum), Corynebacterium glutamicum ATCC 14020 (prior genus and species: Brevibacterium divaricatum), Corynebacterium glutamicum ATCC 13869 (prior genus and species: Brevibacterium lactofermentum), Corynebacterium herculis ATCC 13868, Corynebacterium lilium ATCC 15990, Corynebacterium melassecola ATCC 17965, Corynebacterium thermoaminogenes FERM 9244, Brevibacterium saccharolyticum ATCC 14066, Brevibacterium immariophilum ATCC 14068, Brevibacterium roseum ATCC 13825, Brevibacterium thiogenitalis
- ATCC 19240, Microbacterium ammoniaphilum ATCC 15354, and the like. 55

(1) Preparation of genome DNA of coryneform bacteria

[0022] Coryneform bacteria can be cultured by a conventional method.

[0023] Any of a natural m dium and a synthetic medium can be used, so long as it is a medium suitable for efficient culturing of the microorganism, and it contains a carbon source, a nitrogen source, an inorganic salt, and the like which can be assimilated by the microorganism.

[0024] In Corynebacterium glutamicum, for example, a BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine and the like can be used. The culturing is carried out at 25 to 35°C overnight.

[0025] After the completion of the culture, the cells are recovered from the culture by centrifugation. The resulting cells are washed with a washing solution.

[0026] Examples of the washing solution include STE buffer (10.3% sucrose, 25 mmol/l Tris hydrochloride, 25 mmol/l tethylenediaminetetraacetic acid (hereinafter referred to as "EDTA"), pH 8.0), and the like.

[0027] Genome DNA can be obtained from the washed cells according to a conventional method for obtaining genome DNA, namely, lysing the cell wall of the cells using a lysozyme and a surfactant (SDS, etc.), eliminating proteins and the like using a phenol solution and a phenol/chloroform solution, and then precipitating the genome DNA with ethanol or the like. Specifically, the following method can be illustrated.

[0028] The washed cells are suspended in a washing solution containing 5 to 20 mg/l lysozyme. After shaking, 5 to 20% SDS is added to lyse the cells. In usual, shaking is gently performed at 25 to 40°C for 30 minutes to 2 hours. After shaking, the suspension is maintained at 60 to 70°C for 5 to 15 minutes for the lysis.

[0029] After the lysis, the suspension is cooled to ordinary temperature, and 5 to 20 ml of Tris-neutralized phenol is added thereto, followed by gently shaking at room temperature for 15 to 45 minutes.

[0030] After shaking, centrifugation (15,000 \times g, 20 minutes, 20°C) is carried out to fractionate the aqueous layer.

[0031] After performing extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner, 3 mol/i sodium acetate solution (pH 5.2) and isopropanol are added to the aqueous layer at 1/10 times volume and 2 times volume, of the aqueous layer, respectively, followed by gently stirring to precipitate the genome DNA.

[0032] The genome DNA is dissolved again in a buffer containing 0.01 to 0.04 mg/ml RNase. As an example of the buffer, TE buffer (10 mmol/l Tris hydrochloride, 1 mol/l EDTA, pH 8.0) can be used. After dissolving, the resultant solution is maintained at 25 to 40°C for 20 to 50 minutes and then extracted successively with phenol, phenol/chloroform and chloroform as in the above case.

[0033] After the extraction, isopropanol precipitation is carried out and the resulting DNA precipitate is washed with 70% ethanol, followed by air drying, and then dissolved in TE buffer to obtain a genome DNA solution.

(2) Production of shotgun library

35

45

[0034] A method for produce a genome DNA library using the genome DNA of the coryneform bacteria prepared in the above (1) include a method described in *Molecular Cloning, A laboratory Manual*, Second Edition (1989) (hereinafter referred to as "*Molecular Cloning*, 2nd ed."). In particular, the following method can be exemplified to prepare a genome DNA library appropriately usable in determining the full nucleotide sequence by the shotgun method.

[0035] To 0.01 mg of the genome DNA of the coryneform bacteria prepared in the above (1), a buffer, such as TE buffer or the like, is added to give a total volume of 0.4 ml. Then, the genome DNA is digested into fragments of 1 to 10 kb with a sonicator (Yamato Powersonic Model 50). The treatment with the sonicator is performed at an output of 20 continuously for 5 seconds.

[0036] The resulting genome DNA fragments are blunt-ended using DNA blunting kit (manufactured by Takara Shuzo) or the like.

[0037] The blunt-ended genome fragments are fractionated by agarose gel or polyacrylamide gel electrophoresis and genome fragments of 1 to 2 kb are cut out from the gel.

[0038] To the gel, 0.2 to 0.5 ml of a buffer for eluting DNA, such as MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) or the like, is added, followed by shaking at 25 to 40°C overnight to elute DNA.

[0039] The resulting DNA eluate is treated with phenol/chloroform and then precipitated with ethanol to obtain a genome library insert.

[0040] This insert is ligated into a suitable vector, such as pUC18 Smal/SAP (manufactured by Amersham Pharmacia Biotech) or the like, using T4 ligase (manufactured by Takara Shuzo) or the like. The ligation can be carried out by allowing a mixture to stand at 10 to 20°C for 20 to 50 hours.

[0041] The resulting ligation product is precipitated with ethanol and dissolved in 5 to 20 μ l of TE buff $\,$ r.

[0042] Escherichia coli is transformed in accordance with a conventional method using 0.5 to 2 µl of the ligation solution. Examples of the transformation method include the electroporation method using ELECTRO MAX DHIOB

(manufactured by Life Technologies) for *Escherichia coli*. The electroporation method can be carried out under the conditions as described in the manufacturer's instructions.

[0043] The transformed *Escherichia coli* is spread on a suitable selection medium containing agar, for example, LB plate medium containing 10 to 100 mg/l ampicillin (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) when pUC18 is used as the cloning vector, and cultured therein.

[0044] The transformant can be obtained as colonies formed on the plate medium. In this step, it is possible to select the transformant having the recombinant DNA containing the genome DNA as white colonies by adding X-gal and IPTG (isopropyl-β-thiogalactopyranoside) to the plate medium.

[0045] The transformant is allowed to stand for culturing in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml of ampicillin has been added in each well. The resulting culture can be used in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any time.

(3) Production of cosmid library

10

15

35

45

50

[0046] The genome DNA (0.1 mg) of the coryneform bacteria prepared in the above (1) is partially digested with a restriction enzyme, such as Sau3Al or the like, and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under a 10 to 40% sucrose density gradient using a 10% sucrose buffer (1 mol/l Nacl, 20 mmol/l Tris hydrochloride, 5 mmol/l EDTA, 10% sucrose, pH 8.0) and a 40% sucrose buffer (elevating the concentration of the 10% sucrose buffer to 40%).

[0047] After the centrifugation, the thus separated solution is fractionated into tubes in 1 ml per each tube. After confirming the DNA fragment size of each fraction by agarose gel electrophoresis, a fraction rich in DNA fragments of about 40 kb is precipitated with ethanol.

[0048] The resulting DNA fragment is ligated to a cosmid vector having a cohesive end which can be ligated to the fragment. When the genome DNA is partially digested with Sau3AI, the partially digested product can be ligated to, for example, the BamHI site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instructions.

[0049] The resulting ligation product is packaged using a packaging extract which can be prepared by a method described in *Molecular Cloning*, 2nd ed. and then used in transforming *Escherichia coli*. More specifically, the ligation product is packaged using, for example, a commercially available packaging extract, Gigapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions and then introduced into *Escherichia coli* XL-1-BlueMR (manufactured by Stratagene) or the like.

[0050] The thus transformed *Escherichia coli is* spread on an LB plate medium containing ampicillin, and cultured therein.

[0051] The transformant can be obtained as colonies formed on the plate medium.

[0052] The transformant is subjected to standing culture in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin has been added.

[0053] The resulting culture can be employed in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any time.

(4) Determination of nucleotide sequence

(4-1) Preparation of template

[0054] The full nucleotide sequence of genome DNA of coryneform bacteria can be determined basically according to the whole genome shotgun method (Science, 269: 496-512 (1995)).

[0055] The template used in the whole genome shotgun method can be prepared by PCR using the library prepared in the above (2) (DNA Research, 5: 1-9 (1998)).

[0056] Specifically, the template can be prepared as follows:

[0057] The clone derived from the whole genome shotgun library is inoculated by using a replicator (manufactured by GENETIX) into each well of a 96-well plate to which 0.08 ml per well of the LB medium containing 0.1 mg/ml ampicillin has been added, followed by stationarily culturing at 37°C overnight.

[0058] Next, the culture solution is transported, using a copy plate (manufactured by Tokken), into each well of a 96-well reaction plate (manufactured by PE Biosystems) to which 0.025 ml per well of a PCR reaction solution has been added using TaKaRa Ex Taq (manufactur d by Takara Shuzo). Then, PCR is carried out in accordance with the protocol by Makino et al. (DNA Research, 5: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the inserted fragments.

[0059] The excessive primers and nucleotides are eliminated using a kit for purifying a PCR product, and the product is used as the template in the sequencing reaction.

[0060] It is also possible to determine the nucleotide sequence using a double-stranded DNA plasmid as a template.

[0061] The double-stranded DNA plasmid used as the template can be obtained by the following method.

[0062] The clone derived from the whole genome shotgun library is inoculated into each well of a 24- or 96-well plate to which 1.5 ml per well of a 2 × YT medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin has been added, followed by culturing under shaking at 37°C overnight.

[0063] The double-stranded DNA plasmid can be prepared from the culture solution using an automatic plasmid preparing machine KURABO PI-50 (manufactured by Kurabo Industries), a multiscreen (manufactured by Millipore) or the like, according to each protocol.

[0064] To purify the plasmid, Biomek 2000 manufactured by Beckman Coulter and the like can be used.

[0065] The resulting purified double-stranded DNA plasmid is dissolved in water to give a concentration of about 0.1 mg/ml. Then, it can be used as the template in sequencing.

(4-2) Sequencing reaction

10

15

[0066] The sequencing reaction can be carried out according to a commercially available sequence kit or the like. A specific method is exemplified below.

[0067] To 6 μ l of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems), 1 to 2 pmol of an M13 regular direction primer (M13-21) or an M13 reverse direction primer (MI3REV) (*DNA Research*, 5: 1-9 (1998)) and 50 to 200 ng of the template prepared in the above (4-1) (the PCR product or plasmid) to give 10 μ l of a sequencing reaction solution.

[0068] A dye terminator sequencing reaction (35 to 55 cycles) is carried out using this reaction solution and GeneAmp PCR System 9700 (manufactured by PE Biosystems) or the like. The cycle parameter can be determined in accordance with a commercially available kit, for example, the manufacture's instructions attached with ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit.

[0069] The sample can be purified using a commercially available product, such as Multi Screen HV plate (manufactured by Millipore) or the like, according to the manufacture's instructions.

[0070] The thus purified reaction product is precipitated with ethanol, dried and then used for the analysis. The dried reaction product can be stored in the dark at -30°C and the stored reaction product can be used at any time.

[0071] The dried reaction product can be analyzed using a commercially available sequencer and an analyzer according to the manufacture's instructions.

[0072] Examples of the commercially available sequencer include ABI PRISM 377 DNA Sequencer (manufactured by PE Biosystems). Example of the analyzer include ABI PRISM 3700 DNA Analyzer (manufactured by PE Biosystems).

(5) Assembly

35

[0073] A software, such as phred (The University of Washington) or the like, can be used as base call for use in analyzing the sequence information obtained in the above (4). A software, such as Cross_Match (The University of Washington) or SPS Cross_Match (manufactured by Southwest Parallel Software) or the like, can be used to mask the vector sequence information.

[0074] For the assembly, a software, such as phrap (The University of Washington), SPS phrap (manufactured by Southwest Parallel Software) or the like, can be used.

[0075] In the above, analysis and output of the results thereof, a computer such as UNIX, PC, Macintosh, and the like can be used.

[0076] Contig obtained by the assembly can be analyzed using a graphical editor such as consed (The University of Washington) or the like.

[0077] It is also possible to perform a series of the operations from the base call to the assembly in a lump using a script phredPhrap attached to the consed.

[0078] As used herein, software will be understood to also be referred to as a comparator.

(6) Determination of nucleotide sequence in gap part

[0079] Each of the cosmids in the cosmid library constructed in the above (3) is prepared in the same manner as in the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the insert fragment of the cosmid is determined using a commercially available kit, such as ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.

[0080] About 800 cosmid clones are sequenced at both ends of the inserted fragment to detect a nucleotide sequence in the contig derived from the shotgun sequencing obtained in (5) which is coincident with the sequence. Thus, the chain linkage between respective cosmid clones and respective contigs are clarified, and mutual alignment is carried out. Furthermore, the results are compared with known physical maps to map the cosmids and the contigs. In case of Corynebacterium glutamicum ATCC 13032, a physical map of Mol. Gen. Genet., 252: 255-265 (1996) can be used.

[0081] The sequence in the region which cannot be covered with the contigs (gap part) can be determined by the following method.

[0082] Clones containing sequences positioned at the ends of the contigs are selected. Among these, a clone wherein only one end of the inserted fragment has been determined is selected and the sequence at the opposite end of the inserted fragment is determined.

[0083] A shotgun library clone or a cosmid clone derived therefrom containing the sequences at the respective ends of the inserted fragments in the two contigs is identified and the full nucleotide sequence of the inserted fragment of the clone is determined.

[0084] According to this method, the nucleotide sequence of the gap part can be determined.

10

25

30

35

40

45

[0085] When no shotgun library clone or cosmid clone covering the gap part is available, primers complementary to the end sequences of the two different contigs are prepared and the DNA fragment in the gap part is amplified. Then, sequencing is performed by the primer walking method using the amplified DNA fragment as a template or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment is determined. Thus, the nucleotide sequence of the above-described region can be determined.

[0086] In a region showing a low sequence accuracy, primers are synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington), and the sequence is determined by the primer walking method to improve the sequence accuracy.

[0087] Examples of the thus determined nucleotide sequence of the full genome include the full nucleotide sequence of genome of *Corynebacterium glutamicum* ATCC 13032 represented by SEQ ID NO:1.

(7) Determination of nucleotide sequence of microorganism genome DNA using the nucleotide sequence represented by SEQ ID NO:1

[0088] A nucleotide sequence of a polynucleotide having a homology of 80% or more with the full nucleotide sequence of Corynebacterium glutamicum ATCC 13032 represented by SEQ ID NO:1 as determined above can also be determined using the nucleotide sequence represented by SEQ ID NO:1, and the polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention is within the scope of the present invention. The term "polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention" is a polynucleotide in which a full nucleotide sequence of the chromosome DNA can be determined using as a primer an oligonucleotide composed of continuous 5 to 50 nucleotides in the nucleotide sequence represented by SEQ ID NO: 1, for example, according to PCR using the chromosome DNA as a template. A particularly preferred primer in determination of the full nucleotide sequence is an oligonucleotide having nucleotide sequences which are positioned at the interval of about 300 to 500 bp, and among such oligonucleotides, an oligonucleotide having a nucleotide sequence selected from DNAs encoding a protein relating to a main metabolic pathway is particularly preferred. The polynucleotide in which the full nucleotide sequence of the chromosome DNA can be determined using the oligonucleotide includes polynucleotides constituting a chromosome DNA derived from a microorganism belonging to coryneform bacteria. Such a polynucleotide is preferably a polynucleotide constituting chromosome DNA derived from a microorganism belonging to the genus Corynebacterium, more preferably a polynucleotide constituting a chromosome DNA of Corynebacterium glutamicum.

2. Identification of ORF (open reading frame) and expression regulatory fragment and determination of the function of ORF

[0089] Based on the full nucleotide sequence data of the genome derived from coryneform bacteria determined in the above item 1, an ORF and an expression modulating fragment can be identified. Furthermore, the function of the thus determined ORF can be determined.

[0090] The ORF means a continuous region in the nucleotide sequence of mRNA which can be translated as an amino acid sequence to mature to a protein. A region of the DNA coding for the ORF of mRNA is also called ORF.

[0091] The expression modulating fragment (hereinafter referred to as "EMF") is used herein to define a series of polynucleotide fragments which modulate the expression of the ORF or anoth r sequ nc ligat d operatably thereto. The xpression "modulate the expression of a sequence ligated operatably" is used herein to refer to changes in the expression of a sequence due to the presence of the EMF. Examples of the EMF include a promoter, an operator, an

enhancer, a silencer, a ribosome-binding sequence, a transcriptional termination sequence, and the like. In coryneform bacteria, an EMF is usually present in an intergenic segment (a fragment positioned between two genes; about 10 to 200 nucleotides in length). Accordingly, an EMF is frequently present in an intergenic segment of 10 nucleotides or longer. It is also possible to determine or discover the presence of an EMF by using known EMF sequences as a target sequence or a target structural motif (or a target motif) using an appropriate software or comparator, such as FASTA (*Proc. Natl. Acad. Sci. USA, 85*: 2444-48 (1988)), BLAST (*J. Mol. Biol., 215*: 403-410 (1990)) or the like. Also, it can be identified and evaluated using a known EMF-capturing vector (for example, pKK232-8; manufactured by Amersham Pharmacia Biotech).

[0092] The term "target sequence" is used herein to refer to a nucleotide sequence composed of 6 or more nucleotides, an amino acid sequence composed of 2 or more amino acids, or a nucleotide sequence encoding this amino acid sequence composed of 2 or more amino acids. A longer target sequence appears at random in a data base at the lower possibility. The target sequence is preferably about 10 to 100 amino acid residues or about 30 to 300 nucleotide residues.

10

25

35

40

50

[0093] The term "target structural motif" or "target motif" is used herein to refer to a sequence or a combination of sequences selected optionally and reasonably. Such a motif is selected on the basis of the threedimensional structure formed by the folding of a polypeptide by means known to one of ordinary skill in the art. Various motives are known.

[0094] Examples of the target motif of a polypeptide include, but are not limited to, an enzyme activity site, a protein-protein interaction site, a signal sequence, and the like. Examples of the target motif of a nucleic acid include a promoter sequence, a transcriptional regulatory factor binding sequence, a hair pin structure, and the like.

[0095] Examples of highly useful EMF include a high-expression promoter, an inducible-expression promoter, and the like. Such an EMF can be obtained by positionally determining the nucleotide sequence of a gene which is known or expected as achieving high expression (for example, ribosomal RNA gene: GenBank Accession No. M16175 or Z46753) or a gene showing a desired induction pattern (for example, isocitrate lyase gene induced by acetic acid: Japanese Published Unexamined Patent Application No. 56782/93) via the alignment with the full genome nucleotide sequence determined in the above item 1, and isolating the genome fragment in the upstream part (usually 200 to 500 nucleotides from the translation initiation site). It is also possible to obtain a highly useful EMF by selecting an EMF showing a high expression efficiency or a desired induction pattern from among promoters captured by the EMF-capturing vector as described above.

[0096] The ORF can be identified by extracting characteristics common to individual ORFs, constructing a general model based on these characteristics, and measuring the conformity of the subject sequence with the model. In the identification, a software, such as GeneMark (*Nuc. Acids. Res., 22*: 4756-67 (1994): manufactured by GenePro)), GeneMark.hmm (manufactured by GenePro), GeneHacker (*Protein, Nucleic Acid and Enzyme, 42*: 3001-07 (1997)), Glimmer (*Nuc. Acids. Res., 26*: 544-548 (1998): manufactured by The Institute of Genomic Research), or the like, can be used. In using the software, the default (initial setting) parameters are usually used, though the parameters can be optionally changed.

[0097] In the above-described comparisons, a computer, such as UNIX, PC, Macintosh, or the like, can be used.
[0098] Examples of the ORF determined by the method of the present invention include ORFs having the nucleotide sequences represented by SEQ ID NOS:2 to 3501 present in the genome of *Corynebacterium glutamicum* as represented.

sequences represented by SEQ ID NOS:2 to 3501 present in the genome of *Corynebacterium giutamicum* as represented by SEQ ID NO:1. In these ORFs, polypeptides having the amino acid sequences represented by SEQ ID NOS: 3502 to 7001 are encoded.

[0099] The function of an ORF can be determined by comparing the identified amino acid sequence of the ORF with known homologous sequences using a homology searching software or comparator, such as BLAST, FAST, Smith & Waterman (*Meth. Enzym.*, 164: 765 (1988)) or the like on an amino acid data base, such as Swith-Prot, PIR, GenBank-nr-aa, GenPept constituted by protein-encoding domains derived from GenBank data base, OWL or the like.

[0100] Furthermore, by the homology searching, the identity and similarity with the amino acid sequences of known proteins can also be analyzed.

[0101] With respect of the term "identity" used herein, where two polypeptides each having 10 amino acids are different in the positions of 3 amino acids, these polypeptides have an identity of 70% with each other. In case wherein one of the different 3 amino acids is analogue (for example, leucine and isoleucine), these polypeptides have a similarity of 80%.

[0102] As a specific example, Table 1 shows the registration numbers in known data bases of sequences which are judged as having the highest similarity with the nucleotide sequence of the ORF derived from *Corynebacterium glutamicum* ATCC 13032, genes of these sequences, functions of these genes, and identities thereof compared with known amino acid translation sequences.

[0103] Thus, a great number of novel genes derived from coryneform bacteria can be identified by determining the full nucleotide sequence of the genome derived from coryneform bacterium by the means of the present invention. Moreover, the function of the proteins encoded by these genes can be determined. Since coryneform bacteria are industrially highly useful microorganisms, many of the identified genes are industrially useful.

[0104] Moreover, the characteristics of respective microorganisms can be clarified by classifying the functions thus determined. As a result, valuable information in breeding is obtained.

[0105] Furthermore, from the ORF information derived from coryneform bacteria, the ORF corresponding to the microorganism is prepared and obtained according to the general method as disclosed in *Molecular Cloning*, 2nd ed. or the like. Specifically, an oligonucleotide having a nucleotide sequence adjacent to the ORF is synthesized, and the ORF can be isolated and obtained using the oligonucleotide as a primer and a chromosome DNA derived from coryneform bacteria as a template according to the general PCR cloning technique. Thus obtained ORF sequences include polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3501.

[0106] The ORF or primer can be prepared using a polypeptide synthesizer based on the above sequence information.

10

25

30

40

[0107] Examples of the polynucleotide of the present invention include a polynucleotide containing the nucleotide sequence of the ORF obtained in the above, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0108] The polynucleotide of the present invention can be a single-stranded DNA, a double-stranded DNA and a single-stranded RNA, though it is not limited thereto.

[0109] The polynucleotide which hybridizes with the polynucleotide containing the nucleotide sequence of the ORF obtained in the above under stringent conditions includes a degenerated mutant of the ORF. A degenerated mutant is a polynucleotide fragment having a nucleotide sequence which is different from the sequence of the ORF of the present invention which encodes the same amino acid sequence by degeneracy of a gene code.

[0110] Specific examples include a polynucleotide comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3431, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0111] A polynucleotide which hybridizes under stringent conditions is a polynucleotide obtained by colony hybridization, plaque hybridization, Southern blot hybridization or the like using, as a probe, the polynucleotide having the nucleotide sequence of the ORF identified in the above. Specific examples include a polynucleotide which can be identified by carrying out hybridization at 65°C in the presence of 0.7-1.0 M NaCl using a filter on which a polynucleotide prepared from colonies or plaques is immobilized, and then washing the filter with 0.1x to 2x SSC solution (the composition of lx SSC contains 150 mM sodium chloride and 15 mM sodium citrate) at 65°C.

[0112] The hybridization can be carried out in accordance with known methods described in, for example, *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology, DNA Cloning 1: Core Techniques, A Practical Approach,* Second Edition, Oxford University (1995) or the like. Specific examples of the polynucleotide which can be hybridized include a DNA having a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the nucleotide sequence represented by any one of SEQ ID NO:2 to 3431 when calculated using default (initial setting) parameters of a homology searching software, such as BLAST, FASTA, Smith-Waterman or the like.

[0113] Also, the polynucleotide of the present invention includes a polynucleotide encoding a polypeptide comprising the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931 and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0114] Furthermore, the polynucleotide of the present invention includes a polynucleotide which is present in the 5' upstream or 3' downstream region of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS: 2 to 3431 in a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of a polypeptide encoded by the polynucleotide. Specific examples of the polynucleotide having an activity of regulating an expression of a polypeptide encoded by the polynucleotide includes a polynucleotide encoding the above described EMF, such as a promoter, an operator, an enhancer, a silencer, a ribosome-binding sequence, a transcriptional termination sequence, and the like.

[0115] The primer used for obtaining the ORF according to the above PCR cloning technique includes an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides in the nucleotide sequence of the ORF and an adjacent region or an oligonucleotide comprising a sequence which is complementary to the oligonucleotide. Specific examples include an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431, and an oligonucleotide comprising a sequence complementary to the oligonucleotide comprising a sequence of at least 10 to 20 continuous nucleotide of any one of SEQ ID NOS:1 to 3431. When the primers are used as a sense primer and an antisense primer, the above-described oligonucleotides in which melting temperature (T_m) and the number of nucleotides are not significantly different from each other are preferred.

[0116] The oligonucleotide of the present invention includes an oligonucleotide comprising a sequence which is the same as 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431 or an oligonucleotide comprising a sequence compl mentary to the oligonucleotide.

[0117] Also, analogues of these oligonucleotid s (hereinaft r also referred to as "analogous oligonucleotides") are also provided by the present invention and ar useful in the methods described herein.

[0118] Examples of the analogous oligonucleotides include analogous oligonucleotides in which a phosphodiester

bond in an oligonucleotide is converted to a phosphorothioate bond, analogous oligonucleotides in which a phosphodiester bond in an oligonucleotide is converted to an N3'-P5' phosphoamidate bond, analogous oligonucleotides in which ribose and a phosphodiester bond in an oligonucleotide is converted to a peptide nucleic acid bond, analogous oligonucleotides in which uracil in an oligonucleotide is replaced with C-5 propynyluracil, analogous oligonucleotides in which uracil in an oligonucleotide is replaced with C-5 thiazoluracil, analogous oligonucleotides in which cytosine in an oligonucleotide is replaced with C-5 propynylcytosine, analogous oligonucleotides in which cytosine in an oligonucleotide is replaced with phenoxazine-modified cytosine, analogous oligonucleotides in which ribose in an oligonucleotide is replaced with 2'-O-propylribose, analogous oligonucleotides in which ribose in an oligonucleotide with 2'-methoxyethoxyribose, and the like (*Cell Engineering*, 16: 1463 (1997)).

[0119] The above oligonucleotides and analogous oligonucleotides of the present invention can be used as probes for hybridization and antisense nucleic acids described below in addition to as primers.

[0120] Examples of a primer for the antisense nucleic acid techniques known in the art include an oligonucleotide which hybridizes the oligonucleotide of the present invention under stringent conditions and has an activity regulating expression of the polypeptide encoded by the polynucleotide, in addition to the above oligonucleotide.

3. Determination of isozymes

[0121] Many mutants of coryneform bacteria which are useful in the production of useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, are obtained by the present invention.

[0122] However, since the gene sequence data of the microorganism has been, to date, insufficient, useful mutants have been obtained by mutagenic techniques using a mutagen, such as nitrosoguanidine (NTG) or the like.

[0123] Although genes can be mutated randomly by the mutagenic method using the above-described mutagen, all genes encoding respective isozymes having similar properties relating to the metabolism of intermediates cannot be mutated. In the mutagenic method using a mutagen, genes are mutated randomly. Accordingly, harmful mutations worsening culture characteristics, such as delay in growth, accelerated foaming, and the like, might be imparted at a great frequency, in a random manner.

[0124] However, if gene sequence information is available, such as is provided by the present invention, it is possible to mutate all of the genes encoding target isozymes. In this case, harmful mutations may be avoided and the target mutation can be incorporated.

[0125] Namely, an accurate number and sequence information of the target isozymes in coryneform bacteria can be obtained based on the ORF data obtained in the above item 2. By using the sequence information, all of the target isozyme genes can be mutated into genes having the desired properties by, for example, the site-specific mutagenesis method described in *Molecular Cloning*, 2nd ed. to obtain useful mutants having elevated productivity of useful substances.

4. Clarification or determination of biosynthesis pathway and signal transmission pathway

[0126] Attempts have been made to elucidate biosynthesis pathways and signal transmission pathways in a number of organisms, and many findings have been reported. However, there are many unknown aspects of coryneform bacteria since a number of genes have not been identified so far.

[0127] These unknown points can be clarified by the following method.

[0128] The functional information of ORF derived from coryneform bacteria as identified by the method of above item 2 is arranged. The term "arranged" means that the ORF is classified based on the biosynthesis pathway of a substance or the signal transmission pathway to which the ORF belongs using known information according to the functional information. Next, the arranged ORF sequence information is compared with enzymes on the biosynthesis pathways or signal transmission pathways of other known organisms. The resulting information is combined with known data on coryneform bacteria. Thus, the biosynthesis pathways and signal transmission pathways in coryneform bacteria, which have been unknown so far, can be determined.

[0129] As a result that these pathways which have been unknown or unclear hitherto are clarified, a useful mutant for producing a target useful substance can be efficiently obtained.

[0130] When the thus clarified pathway is judged as important in the synthesis of a useful product, a useful mutant can be obtained by selecting a mutant wherein this pathway has been strengthened. Also, when the thus clarified pathway is judged as not important in the biosynthesis of the target useful product, a useful mutant can be obtained by selecting a mutant wherein the utilization frequency of this pathway is lowered.

5. Clarification or determination of useful mutation point

[0131] Many useful mutants of coryneform bacteria which are suitable for the production of useful substances, such

16

35

25

10

15

40

45

50

as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, have been obtained. However, it is hardly known which mutation point is imparted to a gene to improve the productivity.

[0132] However, mutation points contained in production strains can be identified by comparing desired sequences of the genome DNA of the production strains obtained from coryneform bacteria by the mutagenic technique with the nucleotide sequences of the corresponding genome DNA and ORF derived from coryneform bacteria determined by the methods of the above items 1 and 2 and analyzing them

[0133] Moreover, effective mutation points contributing to the production can be easily specified from among these mutation points on the basis of known information relating to the metabolic pathways, the metabolic regulatory mechanisms, the structure activity correlation of enzymes, and the like.

[0134] When any efficient mutation can be hardly specified based on known data, the mutation points thus identified can be introduced into a wild strain of coryneform bacteria or a production strain free of the mutation. Then, it is examined whether or not any positive effect can be achieved on the production.

[0135] For example, by comparing the nucleotide sequence of homoserine dehydrogenase gene hom of a lysine-producing B-6 strain of Corynebacterium glutamicum (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)) with the nucleotide sequence corresponding to the genome of Corynebacterium glutamicum ATCC 13032 according to the present invention, a mutation of amino acid replacement in which valine at the 59-position is replaced with alanine (Val59Ala) was identified. A strain obtained by introducing this mutation into the ATCC 13032 strain by the gene replacement method can produce lysine, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0136] Similarly, by comparing the nucleotide sequence of pyruvate carboxylase gene *pyc* of the B-6 strain with the nucleotide sequence corresponding to the ATCC 13032 genome, a mutation of amino acid replacement in which proline at the 458-position was replaced with serine (Pro458Ser) was identified. A strain obtained by introducing this mutation into a lysine-producing strain of No. 58 (FERM BP-7134) of *Corynebacterium glutamicum* free of this mutation shows an improved lysine productivity in comparison with the No. 58 strain, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0137] In addition, a mutation A1a213Thr in glucose-6-phosphate dehydrogenase was specified as an effective mutation relating to the production of lysine by detecting glucose-6-phosphate dehydrogenase gene *zwf* of the B-6 strain.
[0138] Furthermore, the lysine-productivity of *Corynebacterium glutamicum* was improved by replacing the base at the 932-position of aspartokinase gene *lysC* of the *Corynebacterium glutamicum* ATCC 13032 genome with cytosine to thereby replace threonine at the 311-position by isoleucine, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0139] Also, as another method to examine whether or not the identified mutation point is an effective mutation, there is a method in which the mutation possessed by the lysine-producing strain is returned to the sequence of a wild type strain by the gene replacement method and whether or not it has a negative influence on the lysine productivity. For example, when the amino acid replacement mutation Val59Ala possessed by *hom* of the lysine-producing B-6 strain was returned to a wild type amino acid sequence, the lysine productivity was lowered in comparison with the B-6 strain. Thus, it was found that this mutation is an effective mutation contributing to the production of lysine.

[0140] Effective mutation points can be more efficiently and comprehensively extracted by combining, if needed, the DNA array analysis or proteome analysis described below.

6. Method of breeding industrially advantageous production strain

10

20

35

40

[0141] It has been a general practice to construct production strains, which are used industrially in the fermentation production of the target useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, by repeating mutagenesis and breeding based on random mutagenesis using mutagens, such as NTG or the like, and screening.

[0142] In recent years, many examples of improved production strains have been made through the use of recombinant DNA techniques. In breeding, however, most of the parent production strains to be improved are mutants obtained by a conventional mutagenic procedure (W. Leuchtenberger, *Amino Acids - Technical Production and Use.* In: Roehr (ed) Biotechnology, second edition, vol. 6, products of primary metabolism. VCH Verlagsgesellschaft mbH, Weinheim, P 465 (1996)).

[0143] Although mutagenesis methods have largely contributed to the progress of the fermentation industry, they suffer from a serious problem of multiple, random introduction of mutations into every part of the chromosome. Since many mutations are accumulated in a single chromosome each time a strain is improved, a production strain obtained by the random mutation and selecting is generally inferior in properties (for example, showing poor growth, delayed consumption of saccharides, and poor resistance to stresses such as t mperature and oxygen) to a wild type strain, which brings about troubles such as failing to establish a sufficiently elevated productivity, being frequently contaminated with miscellaneous bacteria, requiring troublesome procedures in culture maint nance, and the like, and, in its

turn, elevating the production cost in practice. In addition, the improvement in the productivity is based on random mutations and thus the mechanism thereof is unclear. Therefore, it is very difficult to plan a rational breeding strategy for the subsequent improvement in the productivity.

[0144] According to the present invention, effective mutation points contributing to the production can be efficiently specified from among many mutation points accumulated in the chromosome of a production strain which has been bred from coryneform bacteria and, therefore, a novel breeding method of assembling these effective mutations in the coryneform bacteria can be established. Thus, a useful production strain can be reconstructed. It is also possible to construct a useful production strain from a wild type strain.

[0145] Specifically, a useful mutant can be constructed in the following manner.

[0146] One of the mutation points is incorporated into a wild type strain of coryneform bacteria. Then, it is examined whether or not a positive effect is established on the production. When a positive effect is obtained, the mutation point is saved. When no effect is obtained, the mutation point is removed. Subsequently, only a strain having the effective mutation point is used as the parent strain, and the same procedure is repeated. In general, the effectiveness of a mutation positioned upstream cannot be clearly evaluated in some cases when there is a rate-determining point in the downstream of a biosynthesis pathway. It is therefore preferred to successively evaluate mutation points upward from downstream.

[0147] By reconstituting effective mutations by the method as described above in a wild type strain or a strain which has a high growth speed or the same ability to consume saccharides as the wild type strain, it is possible to construct an industrially advantageous strain which is free of troubles in the previous methods as described above and to conduct fermentation production using such strains within a short time or at a higher temperature.

[0148] For example, a lysine-producing mutant B-6 (*Appl. Microbiol. Biotechnol., 32*: 262-273 (1989)), which is obtained by multiple rounds of random mutagenesis from a wild type strain *Corynebacterium glutamicum* ATCC 13032, enables lysine fermentation to be performed at a temperature between 30 and 34°C but shows lowered growth and lysine productivity at a temperature exceeding 34°C. Therefore, the fermentation temperature should be maintained at 34°C or lower. In contrast thereto, the production strain described in the above item 5, which is obtained by reconstituting effective mutations relating to lysine production, can achieve a productivity at 40 to 42°C equal or superior to the result obtained by culturing at 30 to 34°C. Therefore, this strain is industrially advantageous since it can save the load of cooling during the fermentation.

[0149] When culture should be carried out at a high temperature exceeding 43°C, a production strain capable of conducting fermentation production at a high temperature exceeding 43°C can be obtained by reconstituting useful mutations in a microorganism belonging to the genus *Corynebacterium* which can grow at high temperature exceeding 43°C. Examples of the microorganism capable of growing at a high temperature exceeding 43°C include *Corynebacterium thermoaminogenes*, such as *Corynebacterium thermoaminogenes* FERM 9244, FERM 9245, FERM 9246 and FERM 9247.

[0150] A strain having a further improved productivity of the target product can be obtained using the thus reconstructed strain as the parent strain and further breeding it using the conventional mutagenesis method, the gene amplification method, the gene replacement method using the recombinant DNA technique, the transduction method or the cell fusion method. Accordingly, the microorganism of the present invention includes, but is not limited to, a mutant, a cell fusion strain, a transformant, a transductant or a recombinant strain constructed by using recombinant DNA techniques, so long as it is a producing strain obtained via the step of accumulating at least two effective mutations in a coryneform bacteria in the course of breeding.

[0151] When a mutation point judged as being harmful to the growth or production is specified, on the other hand, it is examined whether or not the producing strain used at present contains the mutation point. When it has the mutation, it can be returned to the wild type gene and thus a further useful production strain can be bred.

[0152] The breeding method as described above is applicable to microorganisms, other than coryneform bacteria, which have industrially advantageous properties (for example, microorganisms capable of quickly utilizing less expensive carbon sources, microorganisms capable of growing at higher temperatures).

- 7. Production and utilization of polynucleotide array
- (1) Production of polynucleotide array

15

35

40

50

[0153] A polynucleotide array can be produced using the polynucleotide or oligonucleotide of the present invention obtained in the above items 1 and 2.

[0154] Examples include a polynucleotide array comprising a solid support to which at least one of a polynucleotide comprising the nucleotide s quenc represented by SEQ ID NOS:2 to 3501, a polynucleotide which hybridizes with the polynucleotide under stringent conditions, and a polynucleotide comprising 10 to 200 continuous nucleotides in the nucleotide sequence of the polynucleotide is adhered; and a polynucleotide array comprising a solid support to

which at least one of a polynucleotide encoding a polypeptide comprising the amino acid sequ ince represented by any one of SEQ ID NOS:3502 to 7001, a polynucleotide which hybridizes with the polynucleotide under stringent conditions, and a polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequences of the polynucleotides is adhered.

[0155] Polynucleotide arrays of the present invention include substrates known in the art, such as a DNA chip, a DNA microarray and a DNA macroarray, and the like, and comprises a solid support and plural polynucleotides or fragments thereof which are adhered to the surface of the solid support.

[0156] Examples of the solid support include a glass plate, a nylon membrane, and the like.

[0157] The polynucleotides or fragments thereof adhered to the surface of the solid support can be adhered to the surface of the solid support using the general technique for preparing arrays. Namely, a method in which they are adhered to a chemically surface-treated solid support, for example, to which a polycation such as polylysine or the like has been adhered (*Nat. Genet.*, 21: 15-19 (1999)). The chemically surface-treated supports are commercially available and the commercially available solid product can be used as the solid support of the polynucleotide array according to the present invention.

[0158] As the polynucleotides or oligonucleotides adhered to the solid support, the polynucleotides and oligonucleotides of the present invention obtained in the above items 1 and 2 can be used.

[0159] The analysis described below can be efficiently performed by adhering the polynucleotides or oligonucleotides to the solid support at a high density, though a high fixation density is not always necessary.

[0160] Apparatus for achieving a high fixation density, such as an arrayer robot or the like, is commercially available from Takara Shuzo (GMS417 Arrayer), and the commercially available product can be used.

[0161] Also, the oligonucleotides of the present invention can be synthesized directly on the solid support by the photolithography method or the like (*Nat. Genet., 21*: 20-24 (1999)). In this method, a linker having a protective group which can be removed by light irradiation is first adhered to a solid support, such as a slide glass or the like. Then, it is irradiated with light through a mask (a photolithograph mask) permeating light exclusively at a definite part of the adhesion part. Next, an oligonucleotide having a protective group which can be removed by light irradiation is added to the part. Thus, a ligation reaction with the nucleotide arises exclusively at the irradiated part. By repeating this procedure, oligonucleotides, each having a desired sequence, different from each other can be synthesized in respective parts. Usually, the oligonucleotides to be synthesized have a length of 10 to 30 nucleotides.

(2) Use of polynucleotide array

10

40

45

[0162] The following procedures (a) and (b) can be carried out using the polynucleotide array prepared in the above (1).

 (a) Identification of mutation point of coryneform bacterium mutant and analysis of expression amount and expression profile of gene encoded by genome

[0163] By subjecting a gene derived from a mutant of coryneform bacteria or an examined gene to the following steps (i) to (iv), the mutation point of the gene can be identified or the expression amount and expression profile of the gene can be analyzed:

- (i) producing a polynucleotide array by the method of the above (1);
- (ii) incubating polynucleotides immobilized on the polynucleotide array together with the labeled gene derived from a mutant of the coryneform bacterium using the polynucleotide array produced in the above (i) under hybridization conditions;
- (iii) detecting the hybridization; and
- (iv) analyzing the hybridization data.

[0164] The gene derived from a mutant of coryneform bacteria or the examined gene include a gene relating to biosynthesis of at least one selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof.

[0165] The method will be described in detail.

[0166] A single nucleotide polymorphism (SNP) in a human region of 2,300 kb has been identified using polynucleotide arrays (*Science, 280*: 1077-82 (1998)). In accordance with the method of identifying SNP and methods described in *Science, 278*: 680-686 (1997); *Proc. Natl. Acad. Sci. USA, 96*: 12833-38 (1999); *Science, 284*: 1520-23 (1999), and the like using the polynucleotide array produced in the above (1) and a nucleic acid molecul (DNA, RNA) derived from coryneform bacteria in the method of the hybridization, a mutation point of a useful mutant, which is useful in producing an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, or the like can be identified and the gene

expression amount and the expression profile thereof can be analyzed.

10

25

30

50

[0167] The nucleic acid molecule (DNA, RNA) derived from the coryneform bacteria can be obtained according to the general method described in Molecular Cloning, 2nd ed. or the like. mRNA derived from Corynebacterium glutamicum can also be obtained by the method of Bormann et al. (Molecular Microbiology, 6: 317-326 (1992)) or the lik .

[0168] Although ribosomal RNA (rRNA) is usually obtained in large excess in addition to the target mRNA, the analysis is not seriously disturbed thereby.

[0169] The resulting nucleic acid molecule derived from coryneform bacteria is labeled. Labeling can be carried out according to a method using a fluorescent dye, a method using a radioisotope or the like.

[0170] Specific examples include a labeling method in which psoralen-biotin is crosslinked with RNA extracted from a microorganism and, after hybridization reaction, a fluorescent dye having streptoavidin bound thereto is bound to the biotin moiety (Nat. Biotechnol., 16: 45-48 (1998)); a labeling method in which a reverse transcription reaction is carried out using RNA extracted from a microorganism as a template and random primers as primers, and dUTP having a fluorescent dye (for example, Cy3, Cy5) (manufactured by Amersham Pharmacia Biotech) is incorporated into cDNA (Proc. Natl. Acad. Sci. USA, 96: 12833-38 (1999)); and the like.

[0171] The labeling specificity can be improved by replacing the random primers by sequences complementary to the 3'-end of ORF (J. Bacteriol., 181: 6425-40 (1999)).

[0172] In the hybridization method, the hybridization and subsequent washing can be carried out by the general method (Nat. Bioctechnol., 14: 1675-80 (1996), or the like).

[0173] Subsequently, the hybridization intensity is measured depending on the hybridization amount of the nucleic acid molecule used in the labeling. Thus, the mutation point can be identified and the expression amount of the gene can be calculated.

[0174] The hybridization intensity can be measured by visualizing the fluorescent signal, radioactivity, luminescence dose, and the like, using a laser confocal microscope, a CCD camera, a radiation imaging device (for example, STORM manufactured by Amersham Pharmacia Biotech), and the like, and then quantifying the thus visualized data.

[0175] A polynucleotide array on a solid support can also be analyzed and quantified using a commercially available apparatus, such as GMS418 Array Scanner (manufactured by Takara Shuzo) or the like.

[0176] The gene expression amount can be analyzed using a commercially available software (for example, ImaGene manufactured by Takara Shuzo; Array Gauge manufactured by Fuji Photo Film; ImageQuant manufactured by Amersham Pharmacia Biotech, or the like).

[0177] A fluctuation in the expression amount of a specific gene can be monitored using a nucleic acid molecule obtained in the time course of culture as the nucleic acid molecule derived from coryneform bacteria. The culture conditions can be optimized by analyzing the fluctuation.

[0178] The expression profile of the microorganism at the total gene level (namely, which genes among a great number of genes encoded by the genome have been expressed and the expression ratio thereof) can be determined using a nucleic acid molecule having the sequences of many genes determined from the full genome sequence of the microorganism. Thus, the expression amount of the genes determined by the full genome sequence can be analyzed and, in its turn, the biological conditions of the microorganism can be recognized as the expression pattern at the full gene level.

(b) Confirmation of the presence of gene homologous to examined gene in coryneform bacteria 40

[0179] Whether or not a gene homologous to the examined gene, which is present in an organism other than coryneform bacteria, is present in coryneform bacteria can be detected using the polynucleotide array prepared in the above (1).

[0180] This detection can be carried out by a method in which an examined gene which is present in an organism other than coryneform bacteria is used instead of the nucleic acid molecule derived from coryneform bacteria used in the above identification/analysis method of (1).

8. Recording medium storing full genome nucleotide sequence and ORF data and being readable by a computer and methods for using the same

[0181] The term "recording medium or storage device which is readable by a computer" means a recording medium or storage medium which can be directly readout and accessed with a computer. Examples include magnetic recording media, such as a floppy disk, a hard disk, a magnetic tape, and the like; optical recording media, such as CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, and the like; electric recording media, such as RAM, ROM, and the like; and hybrids in these categories (for example, magnetic/optical recording media, such as MO and the like). [0182] Instruments for recording or inputting in or on the recording medium or instruments or devices for reading out the information in the recording medium can be appropriately selected, depending on the type of the recording medium

and the access device utilized. Also, various data processing programs, software, comparator and formats are used for recording and utilizing the polynucleotide sequence information or the like. of the present invention in the recording medium. The information can be expressed in the form of a binary file, a t xt file or an ASCII file formatted with commercially available software, for example. Moreover, software for accessing the sequence information is available and known to one of ordinary skill in the art.

[0183] Examples of the information to be recorded in the above-described medium include the full genome nucleotide sequence information of coryneform bacteria as obtained in the above item 2, the nucleotide sequence information of ORF, the amino acid sequence information encoded by the ORF, and the functional information of polynucleotides coding for the amino acid sequences.

[0184] The recording medium or storage device which is readable by a computer according to the present invention refers to a medium in which the information of the present invention has been recorded. Examples include recording media or storage devices which are readable by a computer storing the nucleotide sequence information represented by SEQ ID NOS:1 to 3501, the amino acid sequence information represented by SEQ ID NOS:3502 to 7001, the functional information of the nucleotide sequences represented by SEQ ID NOS:1 to 3501, the functional information of the amino acid sequences represented by SEQ ID NOS:3502 to 7001, and the information listed in Table 1 below and the like.

10

25

30

50

- 9. System based on a computer using the recording medium of the present invention which is readable by a computer
- [0185] The term "system based on a computer" as used herein refers a system composed of hardware device(s), software device(s), and data recording device(s) which are used for analyzing the data recorded in the recording medium of the present invention which is readable by a computer.
 - [0186] The hardware device(s) are, for example, composed of an input unit, a data recording unit, a central processing unit and an output unit collectively or individually.
 - [0187] By the software device(s), the data recorded in the recording medium of the present invention are searched or analyzed using the recorded data and the hardware device(s) as described herein. Specifically, the software device (s) contain at least one program which acts on or with the system in order to screen, analyze or compare biologically meaningful structures or information from the nucleotide sequences, amino acid sequences and the like recorded in the recording medium according to the present invention.
 - [0188] Examples of the software device(s) for identifying ORF and EMF domains include GeneMark (*Nuc. Acids. Res., 22*: 4756-67 (1994)), GeneHacker (*Protein, Nucleic Acid and Enzyme, 42*: 3001-07 (1997)), Glimmer (The Institute of Genomic Research; *Nuc. Acids. Res., 26*: 544-548 (1998)) and the like. In the process of using such a software device, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.
 - [0189] Examples of the software device(s) for identifying a genome domain or a polypeptide domain analogous to the target sequence or the target structural motif (homology searching) include FASTA, BLAST, Smith-Waterman, GenetyxMac (manufactured by Software Development), GCG Package (manufactured by Genetic Computer Group), GenCore (manufactured by Compugen), and the like. In the process of using such a software device, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.
 - [0190] Such a recording medium storing the full genome sequence data is useful in preparing a polynucleotide array by which the expression amount of a gene encoded by the genome DNA of coryneform bacteria and the expression profile at the total gene level of the microorganism, namely, which genes among many genes encoded by the genome have been expressed and the expression ratio thereof, can be determined.
 - [0191] The data recording device(s) provided by the present invention are, for example, memory device(s) for recording the data recorded in the recording medium of the present invention and target sequence or target structural motif data, or the like, and a memory accessing device(s) for accessing the same.
 - [0192] Namely, the system based on a computer according to the present invention comprises the following:
 - (i) a user input device that inputs the information stored in the recording medium of the present invention, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the information stored in the recording medium of the present invention with the target sequence or target structure motif information, recorded by the data storing device of (ii) for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.

[0193] This system is usable in the methods in items 2 to 5 as described above for searching and analyzing the ORF and EMF domains, target sequence, target structural motif, etc. of a coryneform bacterium, searching homologs, searching and analyzing isozymes, determining the biosynthesis pathway and the signal transmission pathway, and identifying spots which have been found in the proteome analysis. The term "homologs" as used herein includes both of orthologs and paralogs.

10. Production of polypeptide using ORF derived from coryneform bacteria

25

[0194] The polypeptide of the present invention can be produced using a polynucleotide comprising the ORF obtained in the above item 2. Specifically, the polypeptide of the present invention can be produced by expressing the polynucleotide of the present invention or a fragment thereof in a host cell, using the method described in *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology*, and the like, for example, according to the following method.

[0195] A DNA fragment having a suitable length containing a part encoding the polypeptide is prepared from the full length ORF sequence, if necessary.

[0196] Also, DNA in which nucleotides in a nucleotide sequence at a part encoding the polypeptide of the present invention are replaced to give a codon suitable for expression of the host cell, if necessary. The DNA is useful for efficiently producing the polypeptide of the present invention.

[0197] A recombinant vector is prepared by inserting the DNA fragment into the downstream of a promoter in a suitable expression vector.

[0198] The recombinant vector is introduced to a host cell suitable for the expression vector.

[0199] Any of bacteria, yeasts, animal cells, insect cells, plant cells, and the like can be used as the host cell so long as it can be expressed in the gene of interest.

[0200] Examples of the expression vector include those which can replicate autonomously in the above-described host cell or can be integrated into chromosome and have a promoter at such a position that the DNA encoding the polypeptide of the present invention can be transcribed.

[0201] When a procaryote cell, such as a bacterium or the like, is used as the host cell, it is preferred that the recombinant vector containing the DNA encoding the polypeptide of the present invention can replicate autonomously in the bacterium and is a recombinant vector constituted by, at least a promoter, a ribosome binding sequence, the DNA of the present invention and a transcription termination sequence. A promoter controlling gene can also be contained therewith in operable combination.

[0202] Examples of the expression vectors include a vector plasmid which is replicable in Corynebacterium glutamicum, such as pCGI (Japanese Published Unexamined Patent Application No. 134500/82), pCG2 (Japanese Published Unexamined Patent Application No. 35197/83), pCG4 (Japanese Published Unexamined Patent Application No. 183799/82), pCG11 (Japanese Published Unexamined Patent Application No. 134500/82), pCG116, pCE54 and pCB101 (Japanese Published Unexamined Patent Application No. 105999/83), pCE51, pCE52 and pCE53 (Mol. Gen. Genet., 196: 175-178 (1984)), and the like; a vector plasmid which is replicable in Escherichia coli, such as pET3 and pET11 (manufactured by Stratagene), pBAD, pThioHis and pTrcHis (manufactured by Invitrogen), pKK223-3 and pGEX2T (manufactured by Amersham Pharmacia Biotech), and the like; and pBTrp2, pBTac1 and pBTac2 (manufactured by Boehringer Mannheim Co.), pSE280 (manufactured by Invitrogen), pGEMEX-1 (manufactured by Promega), pQE-8 (manufactured by QIAGEN), pKYP10 (Japanese Published Unexamined Patent Application No. 110600/83), pKYP200 (Agric. Biol. Chem., 48: 669 (1984)), pLSA1 (Agric. Biol. Chem., 53: 277 (1989)), pGEL1 (Proc. Natl. Acad. Sci. USA, 82: 4306 (1985)), pBluescript II SK(-) (manufactured by Stratagene), pTrs30 (prepared from Escherichia coli JM109/pTrS30 (FERM BP-5407)), pTrs32 (prepared from Escherichia coli JM109/pTrS32 (FERM BP-5408)), pGHA2 (prepared from Escherichia coli IGHA2 (FERM B-400), Japanese Published Unexamined Patent Application No. 221091/85), pGKA2 (prepared from Escherichia coli IGKA2 (FERM BP-6798), Japanese Published Unexamined Patent Application No. 221091/85), pTerm2 (U.S. Patents 4,686,191, 4,939,094 and 5,160,735), pSupex, pUB110, pTP5, pC194 and pEG400 (J. Bacteriol., 172: 2392 (1990)), pGEX (manufactured by Pharmacia), pET system (manufactured by Novagen), and the like.

[0203] Any promoter can be used so long as it can function in the host cell. Examples include promoters derived from *Escherichia coli*, phage and the like, such as *trp* promoter (P_{tp}), *lac* promoter, P_L promoter, P_R promoter, T7 promoter and the like. Also, artificially designed and modified promoters, such as a promoter in which two P_{trp} are linked in series ($P_{+p} \times 2$), *tac* promoter, *lac*T7 promoter *let*I promoter and the like, can be used.

[0204] It is preferred to use a plasmid in which the space between Shine-Dalgamo sequence which is the ribosome binding sequence and the initiation codon is adjusted to an appropriate distance (for example, 6 to 18 nucleotides).

[0205] The transcription termination sequence is not always necessary for the expression of the DNA of the present invention. However, it is preferred to arrange the transcription terminating sequence at just downstream of the structural gene.

[0206] One of ordinary skill in the art will appreciate that the codons of the above-described elements may be opti-

mized, in a known manner, depending on the host cells and environmental conditions utiliz d.

10

30

[0207] Examples of the host cell include microorganisms belonging to the genus *Escherichia*, the genus *Serratia*, the genus *Bacillus*, the genus *Brevibacterium*, the genus *Corynebacterium*, the genus *Microbacterium*, the genus *Pseudomonas*, and the like. Specific examples include *Escherichia coli* XL1-Blue, *Escherichia coli* XL2-Blue, *Escherichia coli* MC1000, *Escherichia coli* KY3276, *Escherichia coli* W1485, *Escherichia coli* JM109, *Escherichia coli* HB101, *Escherichia coli* No. 49, *Escherichia coli* W3110, *Escherichia coli* NY49, *Escherichia coli* Gl698, *Escherichia coli* TB1, *Serratia ficaria*, *Serratia fonticola*, *Serratia liquefaciens*, *Serratia marcescens*, *Bacillus subtilis*, *Bacillus amyloliquefaciens*, *Corynebacterium ammonia genes*, *Brevibacterium immariophilum* ATCC 14068, *Brevibacterium saccharolyticum* ATCC 14066, *Corynebacterium glutamicum* ATCC 13032, *Corynebacterium glutamicum* ATCC 13869, *Corynebacterium glutamicum* ATCC 14067 (prior genus and species: *Brevibacterium flavum*), *Corynebacterium lactofermentum*), *Corynebacterium acetoacidophilum* ATCC 13870, *Corynebacterium thermoaminogenes* FERM 9244, *Microbacterium ammoniaphilum* ATCC 15354, *Pseudomonas putida*, *Pseudomonas* sp. D-0110, and the like.

[0208] When Corynebacterium glutamicum or an analogous microorganism is used as a host, an EMF necessary for expressing the polypeptide is not always contained in the vector so long as the polynucleotide of the present invention contains an EMF. When the EMF is not contained in the polynucleotide, it is necessary to prepare the EMF separately and ligate it so as to be in operable combination. Also, when a higher expression amount or specific expression regulation is necessary, it is necessary to ligate the EMF corresponding thereto so as to put the EMF in operable combination with the polynucleotide. Examples of using an externally ligated EMF are disclosed in Microbiology, 142: 1297-1309 (1996).

[0209] With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into the above-described host cells, such as a method in which a calcium ion is used (*Proc. Natl. Acad. Sci. USA, 69*: 2110 (1972)), a protoplast method (Japanese Published Unexamined Patent Application No. 2483942/88), the methods described in *Gene, 17*: 107 (1982) and *Molecular & General Genetics, 168*: 111 (1979) and the like, can be used.

[0210] When yeast is used as the host cell, examples of the expression vector include pYES2 (manufactured by Invitrogen), YEp13 (ATCC 37115), YEp24 (ATCC 37051), YCp50 (ATCC 37419), pHS19, pHS15, and the like.

[0211] Any promoter can be used so long as it can be expressed in yeast. Examples include a promoter of a gene in the glycolytic pathway, such as hexose kinase and the like, PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, gal 10 promoter, a heat shock protein promoter, MF all promoter, CUP 1 promoter, and the like.

[0212] Examples of the host cell include microorganisms belonging to the genus Saccharomyces, the genus Schizosaccharomyces, the genus Kluyveromyces, the genus Trichosporon, the genus Schwanniomyces, the genus Pichia, the genus Candida and the like. Specific examples include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, Trichosporon pullulans, Schwanniomyces alluvius, Candida utilis and the like.

[0213] With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into yeast, such as an electroporation method (*Methods. Enzymol., 194*: 182 (1990)), a spheroplast method (*Proc. Natl. Acad. Sci. USA, 75*: 1929 (1978)), a lithium acetate method (*J. Bacteriol., 153*: 163 (1983)), a method described in *Proc. Natl. Acad. Sci. USA, 75*: 1929 (1978) and the like, can be used.

[0214] When animal cells are used as the host cells, examples of the expression vector include pcDNA3.1, pSinRep5 and pCEP4 (manufactured by Invitorogen), pRev-Tre (manufactured by Clontech), pAxCAwt (manufactured by Takara Shuzo), pcDNAI and pcDM8 (manufactured by Funakoshi), pAGE107 (Japanese Published Unexamined Patent Application No. 22979/91; *Cytotechnology, 3*:133 (1990)), pAS3-3 (Japanese Published Unexamined Patent Application No. 227075/90), pcDM8 (*Nature, 329*: 840 (1987)), pcDNAI/Amp (manufactured by Invitrogen), pREP4 (manufactured by Invitrogen), pAGE103 (*J. Biochem., 101*: 1307 (1987)), pAGE210, and the like.

[0215] Any promoter can be used so long as it can function in animal cells. Examples include a promoter of IE (immediate early) gene of cytomegalovirus (CMV), an early promoter of SV40, a promoter of retrovirus, a metallothionein promoter, a heat shock promoter, SR α promoter, and the like. Also, the enhancer of the IE gene of human CMV can be used together with the promoter.

[0216] Examples of the host cell include human Namalwa cell, monkey COS cell, Chinese hamster CHO cell, HST5637 (Japanese Published Unexamined Patent Application No. 299/88), and the like.

[0217] The method for introduction of the recombinant vector into animal cells is not particularly limited, so long as it is the general method for introducing DNA into animal cells, such as an electroporation method (*Cytotechnology, 3*: 133 (1990)), a calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), a lipofection method (*Proc. Natl. Acad. Sci. USA, 84*, 7413 (1987)), the method described in *Virology, 52*: 456 (1973), and the like.

[0218] When insect cells are used as the host cells, the polypeptide can be expressed, for example, by the method describ d in *Bacurovirus Expression Vectors, A Laboratory Manual*, W.H. Fr eman and Company, New York (1992), *Bio/Technology*, 6: 47 (1988), or the like.

[0219] Specifically, a recombinant gene transfer vector and bacurovirus are simultaneously inserted into insect cells

to obtain a recombinant virus in an insect cell culture supernatant, and then the insect cells are infected with the resulting recombinant virus to express the polypeptide.

[0220] Examples of the gene introducing vector used in the method include pBlueBac4.5, pVL1392, pVL1393 and pBlueBacIII (manufactured by Invitrogen), and the like.

[0221] Examples of the bacurovirus include Autographa californica nuclear polyhedrosis virus with which insects of the family *Barathra* are infected, and the like.

5

10

25

35

- [0222] Examples of the insect cells include *Spodoptera frugiperda* oocytes Sf9 and Sf21 (*Bacurovirus Expression Vectors, A Laboratory Manual,* W.H. Freeman and Company, New York (1992)), *Trichoplusia ni* oocyte High 5 (manufactured by Invitrogen) and the like.
- [0223] The method for simultaneously incorporating the above-described recombinant gene transfer vector and the above-described bacurovirus for the preparation of the recombinant virus include calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), lipofection method (*Proc. Natl. Acad. Sci. USA, 84*: 7413 (1987)) and the like.
- [0224] When plant cells are used as the host cells, examples of expression vector include a Ti plasmid, a tobacco mosaic virus vector, and the like.
 - [0225] Any promoter can be used so long as it can be expressed in plant cells. Examples include 35S promoter of cauliflower mosaic virus (CaMV), rice actin 1 promoter, and the like.
 - [0226] Examples of the host cells include plant cells and the like, such as tobacco, potato, tomato, carrot, soybean, rape, alfalfa, rice, wheat, barley, and the like.
- [0227] The method for introducing the recombinant vector is not particularly limited, so long as it is the general method for introducing DNA into plant cells, such as the *Agrobacterium* method (Japanese Published Unexamined Patent Application No. 140885/84, Japanese Published Unexamined Patent Application No. 70080/85, WO 94/00977), the electroporation method (Japanese Published Unexamined Patent Application No. 251887/85), the particle gun method (Japanese Patents 2606856 and 2517813), and the like.
- [0228] The transformant of the present invention includes a transformant containing the polypeptide of the present invention *per se* rather than as a recombinant vector, that is, a transformant containing the polypeptide of the present invention which is integrated into a chromosome of the host, in addition to the transformant containing the above recombinant vector.
 - [0229] When expressed in yeasts, animal cells, insect cells or plant cells, a glycopolypeptide or glycosylated polypeptide can be obtained.
 - [0230] The polypeptide can be produced by culturing the thus obtained transformant of the present invention in a culture medium to produce and accumulate the polypeptide of the present invention or any polypeptide expressed under the control of an EMF of the present invention, and recovering the polypeptide from the culture.
 - [0231] Culturing of the transformant of the present invention in a culture medium is carried out according to the conventional method as used in culturing of the host.
 - [0232] When the transformant of the present invention is obtained using a prokaryote, such as *Escherichia coli* or the like, or a eukaryote, such as yeast or the like, as the host, the transformant is cultured.
 - [0233] Any of a natural medium and a synthetic medium can be used, so long as it contains a carbon source, a nitrogen source, an inorganic salt and the like which can be assimilated by the transformant and can perform culturing of the transformant efficiently.
 - [0234] Examples of the carbon source include those which can be assimilated by the transformant, such as carbohydrates (for example, glucose, fructose, sucrose, molasses containing them, starch, starch hydrolysate, and the like), organic acids (for example, acetic acid, propionic acid, and the like), and alcohols (for example, ethanol, propanol, and the like).
- [0235] Examples of the nitrogen source include ammonia, various ammonium salts of inorganic acids or organic acids (for example, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, and the like), other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn steep liquor, casein hydrolysate, soybean meal and soybean meal hydrolysate, various fermented cells and hydrolysates thereof, and the like.
- [0236] Examples of inorganic salt include potassium dihydrogen phosphate, dipotassium hydrogen phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate, and the like.
 - [0237] The culturing is carried out under aerobic conditions by shaking culture, submerged-aeration stirring culture or the like. The culturing temperature is preferably from 15 to 40°C, and the culturing time is generally from 16 hours to 7 days. The pH of the medium is preferably maintained at 3.0 to 9.0 during the culturing. The pH can be adjusted using an inorganic or organic acid, an alkali solution, urea, calcium carbonate, ammonia, or the like.
 - [0238] Also, antibiotics, such as ampicillin, tetracycline, and the like, can be added to the medium during the culturing, if necessary.
 - [0239] When a microorganism transformed with a recombinant vector containing an inducible promoter is cultured,

an inducer can be added to the medium, if necessary.

10

25

[0240] For example, isopropyl-β-D-thiogalactopyranoside (IPTG) or the like can be added to the medium when a microorganism transformed with a recombinant vector containing *lac* promoter is cultur d, or indoleacrylic acid (IAA) or the like can by added thereto when a microorganism transformed with an expression vector containing *trp* promoter is cultured.

[0241] Examples of the medium used in culturing a transformant obtained using animal cells as the host cells include RPMI 1640 medium (*The Journal of the American Medical Association, 199*: 519 (1967)), Eagle's MEM medium (*Science, 122*: 501 (1952)), Dulbecco's modified MEM medium (*Virology, 8,* 396 (1959)), 199 Medium (*Proceeding of the Society for the Biological Medicine, 73*:1 (1950)), the above-described media to which fetal calf serum has been added, and the like.

[0242] The culturing is carried out generally at a pH of 6 to 8 and a temperature of 30 to 40°C in the presence of 5% CO₂ for 1 to 7 days.

[0243] Also, if necessary, antibiotics, such as kanamycin, penicillin, and the like, can be added to the medium during the culturing.

[0244] Examples of the medium used in culturing a transformant obtained using insect cells as the host cells include TNM-FH medium (manufactured by Pharmingen), Sf-900 II SFM (manufactured by Life Technologies), ExCell 400 and ExCell 405 (manufactured by JRH Biosciences), Grace's Insect Medium (Nature, 195: 788 (1962)), and the like.

[0245] The culturing is carried out generally at a pH of 6 to 7 and a temperature of 25 to 30°C for 1 to 5 days.

[0246] Additionally, antibiotics, such as gentamicin and the like, can be added to the medium during the culturing, if necessary.

[0247] A transformant obtained by using a plant cell as the host cell can be used as the cell or after differentiating to a plant cell or organ. Examples of the medium used in the culturing of the transformant include Murashige and Skoog (MS) medium, White medium, media to which a plant hormone, such as auxin, cytokinine, or the like has been added, and the like.

[0248] The culturing is carried out generally at a pH of 5 to 9 and a temperature of 20 to 40°C for 3 to 60 days.

[0249] Also, antibiotics, such as kanamycin, hygromycin and the like, can be added to the medium during the culturing, if necessary.

[0250] As described above, the polypeptide can be produced by culturing a transformant derived from a microorganism, animal cell or plant cell containing a recombinant vector to which a DNA encoding the polypeptide of the present invention has been inserted according to the general culturing method to produce and accumulate the polypeptide, and recovering the polypeptide from the culture.

[0251] The process of gene expression may include secretion of the encoded protein production or fusion protein expression and the like in accordance with the methods described in *Molecular Cloning*, 2nd ed., in addition to direct expression.

[0252] The method for producing the polypeptide of the present invention includes a method of intracellular expression in a host cell, a method of extracellular secretion from a host cell, or a method of production on a host cell membrane outer envelope. The method can be selected by changing the host cell employed or the structure of the polypeptide produced.

[0253] When the polypeptide of the present invention is produced in a host cell or on a host cell membrane outer envelope, the polypeptide can be positively secreted extracellularly according to, for example, the method of Paulson et al. (J. Biol. Chem., 264: 17619 (1989)), the method of Lowe et al. (Proc. Natl. Acad. Sci. USA, 86: 8227 (1989); Genes Develop., 4: 1288 (1990)), and/or the methods described in Japanese Published Unexamined Patent Application No. 336963/93, WO 94/23021, and the like.

[0254] Specifically, the polypeptide of the present invention can be positively secreted extracellularly by expressing it in the form that a signal peptide has been added to the foreground of a polypeptide containing an active site of the polypeptide of the present invention according to the recombinant DNA technique.

[0255] Furthermore, the amount produced can be increased using a gene amplification system, such as by use of a dihydrofolate reductase gene or the like according to the method described in Japanese Published Unexamined Patent Application No. 227075/90.

[0256] Moreover, the polypeptide of the present invention can be produced by a transgenic animal individual (transgenic nonhuman animal) or plant individual (transgenic plant).

[0257] When the transformant is the animal individual or plant individual, the polypeptide of the present invention can be produced by breeding or cultivating it so as to produce and accumulate the polypeptide, and recovering the polypeptide from the animal individual or plant individual.

[0258] Examples of the method for producing the polyp ptide of the present invention using the animal individual include a method for producing the polypeptide of the present invention in an animal d v loped by ins rting a gene according to methods known to those of ordinary skill in the art (American Journal of Clinical Nutrition, 63: 639S (1996), American Journal of Clinical Nutrition, 63: 627S (1996), Bio/Technology, 9: 830 (1991)).

[0259] In the animal individual, the polypeptide can be produced by breeding a transgenic nonhuman animal to which the DNA encoding the polypeptide of the present invention has been inserted to produce and accumulate the polypeptide in the animal, and recovering the polypeptide from the animal. Examples of the production and accumulation place in the animal include milk (Japanese Published Unexamined Patent Application No. 309192/88), egg and the like of the animal. Any promoter can be used, so long as it can be expressed in the animal. Suitable examples include an α-casein promoter, a (β-casein promoter, a β-lactoglobulin promoter, a whey acidic protein promoter, and the like, which are specific for mammary glandular cells.

[0260] Examples of the method for producing the polypeptide of the present invention using the plant individual include a method for producing the polypeptide of the present invention by cultivating a transgenic plant to which the DNA encoding the protein of the present invention by a known method (*Tissue Culture, 20* (1994), *Tissue Culture, 21* (1994), *Trends in Biotechnology, 15:* 45 (1997)) to produce and accumulate the polypeptide in the plant, and recovering the polypeptide from the plant.

[0261] The polypeptide according to the present invention can also be obtained by translation in vitro.

10

30

35

40

50

[0262] The polypeptide of the present invention can be produced by a translation system *in vitro*. There are, for example, two *in vitro* translation methods which may be used, namely, a method using RNA as a template and another method using DNA as a template. The template RNA includes the whole RNA, mRNA, an *in vitro* transcription product, and the like. The template DNA includes a plasmid containing a transcriptional promoter and a target gene integrated therein and downstream of the initiation site, a PCR/RT-PCR product and the like. To select the most suitable system for the *in vitro* translation, the origin of the gene encoding the protein to be synthesized (prokaryotic cell/eucaryotic cell), the type of the template (DNA/RNA), the purpose of using the synthesized protein and the like should be considered. *In vitro* translation kits having various characteristics are commercially available from many companies (Boehringer Mannheim, Promega, Stratagene, or the like), and every kit can be used in producing the polypeptide according to the present invention.

[0263] Transcription/translation of a DNA nucleotide sequence cloned into a plasmid containing a T7 promoter can be carried out using an *in vitro* transcription/translation system *E. coli* T7 S30 Extract System for Circular DNA (manufactured by Promega, catalogue No. L1130). Also, transcription/translation using, as a template, a linear prokaryotic DNA of a supercoil non-sensitive promoter, such as *lac*UV5, *tac*, λPL(con), λPL, or the like, can be carried out using an *in vitro* transcription/translation system *E. coli* S30 Extract System for Linear Templates (manufactured by Promega, catalogue No. L1030). Examples of the linear prokaryotic DNA used as a template include a DNA fragment, a PCR-amplified DNA product, a duplicated oligonucleotide ligation, an *in vitro* transcriptional RNA, a prokaryotic RNA, and the like.

[0264] In addition to the production of the polypeptide according to the present invention, synthesis of a radioactive labeled protein, confirmation of the expression capability of a cloned gene, analysis of the function of transcriptional reaction or translation reaction, and the like can be carried out using this system.

[0265] The polypeptide produced by the transformant of the present invention can be isolated and purified using the general method for isolating and purifying an enzyme. For example, when the polypeptide of the present invention is expressed as a soluble product in the host cells, the cells are collected by centrifugation after cultivation, suspended in an aqueous buffer, and disrupted using an ultrasonicator, a French press, a Manton Gaulin homogenizer, a Dynomill, or the like to obtain a cell-free extract. From the supernatant obtained by centrifuging the cell-free extract, a purified product can be obtained by the general method used for isolating and purifying an enzyme, for example, solvent extraction, salting out using ammonium sulfate or the like, desalting, precipitation using an organic solvent, anion exchange chromatography using a resin, such as Gelethylaminoethyl (DEAE)-Sepharose, DIAION HPA-75 (manufactured by Mitsubishi Chemical) or the like, cation exchange chromatography using a resin, such as S-Sepharose FF (manufactured by Pharmacia) or the like, hydrophobic chromatography using a resin, such as butyl sepharose, phenyl sepharose or the like, gel filtration using a molecular sieve, affinity chromatography, chromatofocusing, or electrophoresis, such as isoelectronic focusing or the like, alone or in combination thereof.

[0266] When the polypeptide is expressed as an insoluble product in the host cells, the cells are collected in the same manner, disrupted and centrifuged to recover the insoluble product of the polypeptide as the precipitate fraction. Next, the insoluble product of the polypeptide is solubilized with a protein denaturing agent. The solubilized solution is diluted or dialyzed to lower the concentration of the protein denaturing agent in the solution. Thus, the normal configuration of the polypeptide is reconstituted. After the procedure, a purified product of the polypeptide can be obtained by a purification/isolation method similar to the above.

[0267] When the polypeptide of the present invention or its derivative (for example, a polypeptide formed by adding a sugar chain thereto) is secreted out of cells, the polypeptide or its derivative can be collected in the culture supernatant. Namely, the culture supernatant is obtained by treating the culture medium in a treatment similar to the above (for example, centrifugation). Then, a purified product can be obtained from the culture medium using a purification/isolation method similar to the abov

[0268] The polypeptide obtained by the above method is within the scope of the polypeptide of the present invention,

and examples include a polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431, and a polypeptide comprising an amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931.

[0269] Furthermore, a polypeptide comprising an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide is included in the scope of the present invention. The term "substantially the same activity as that of the polypeptide" means the same activity represented by the inherent function, enzyme activity or the like possessed by the polypeptide which has not been deleted, replaced, inserted or added. The polypeptide can be obtained using a method for introducing part-specific mutation(s) described in, for example, *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology, Nuc. Acids. Res., 10*: 6487 (1982), *Proc. Natl. Acad. Sci. USA, 79*: 6409 (1982), *Gene, 34*: 315 (1985), *Nuc. Acids. Res., 13*: 4431 (1985), *Proc. Natl. Acad. Sci. USA, 82*: 488 (1985) and the like. For example, the polypeptide can be obtained by introducing mutation(s) to DNA encoding a polypeptide having the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931. The number of the amino acids which are deleted, replaced, inserted or added is not particularly limited; however, it is usually 1 to the order of tens, preferably 1 to 20, more preferably 1 to 10, and most preferably 1 to 5, amino acids.

[0270] The at least one amino acid deletion, replacement, insertion or addition in the amino acid sequence of the polypeptide of the present invention is used herein to refer to that at least one amino acid is deleted, replaced, inserted or added to at one or plural positions in the amino acid sequence. The deletion, replacement, insertion or addition may be caused in the same amino acid sequence simultaneously. Also, the amino acid residue replaced, inserted or added can be natural or non-natural. Examples of the natural amino acid residue include L-alanine, L-asparagine, L-asparatic acid, L-glutamine, L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine, L-cysteine, and the like.

[0271] Herein, examples of amino acid residues which are replaced with each other are shown below. The amino acid residues in the same group can be replaced with each other.

Group A:

10

25

35

40

50

[0272] leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic acid, methionine, O-methylserine, t-butylglycine, t-butylalanine, cyclohexylalanine;

Group B:

[0273] asparatic acid, glutamic acid, isoasparatic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid;

Group C:

[0274] asparagine, glutamine;

Group D:

[0275] lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid;

Group E:

[0276] proline, 3-hydroxyproline, 4-hydroxyproline;

Group F:

[0277] serine, threonine, homoserine;

Group G:

[0278] phenylalanine, tyrosine.

[0279] Also, in order that the resulting mutant polypeptide has substantially the same activity as that of the polypeptide which has not been mutated, it is preferred that the mutant polypeptide has a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the polypeptide which has not been mutated, when calculated, for example, using default (initial setting) parameters by a homology searching software, such as BLAST, FASTA, or the like.

[0280] Also, the polypeptide of the present invention can be produced by a chemical synthesis method, such as Fmoc (fluorenylmethyloxycarbonyl) method, tBoc (t-butyloxycarbonyl) method, or the like. It can also be synthesized using a peptide synthesizer manufactured by Advanced ChemTech, Perkin-Elmer, Pharmacia, Protein Technology Instrument, Synthecell-Vega, PerSeptive, Shimadzu Corporation, or the like.

[0281] The transformant of the present invention can be used for objects other than the production of the polypeptide of the present invention.

[0282] Specifically, at least one component selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof can be produced by culturing the transformant containing the polynucleotide or recombinant vector of the present invention in a medium to produce and accumulate at least one component selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof, and recovering the same from the medium.

[0283] The biosynthesis pathways, decomposition pathways and regulatory mechanisms of physiologically active substances such as amino acids, nucleic acids, vitamins, saccharides, organic acids and analogues thereof differ from organism to organism. The productivity of such a physiologically active substance can be improved using these differences, specifically by introducing a heterogeneous gene relating to the biosynthesis thereof. For example, the content of lysine, which is one of the essential amino acids, in a plant seed was improved by introducing a synthase gene derived from a bacterium (WO 93/19190). Also, arginine is excessively produced in a culture by introducing an arginine synthase gene derived from *Escherichia coli* (Japanese Examined Patent Publication 23750/93).

[0284] To produce such a physiologically active substance, the transformant according to the present invention can be cultured by the same method as employed in culturing the transformant for producing the polypeptide of the present invention as described above. Also, the physiologically active substance can be recovered from the culture medium in combination with, for example, the ion exchange resin method, the precipitation method and other known methods. [0285] Examples of methods known to one of ordinary skill in the art include electroporation, calcium transfection, the protoplast method, the method using a phage, and the like, when the host is a bacterium; and microinjection, calcium phosphate transfection, the positively charged lipid-mediated method and the method using a virus, and the like, when the host is a eukaryote (*Molecular Cloning*, 2nd ed.; Spector et al., Cells/a laboratory manual, Cold Spring Harbour Laboratory Press, 1998)). Examples of the host include prokaryotes, lower eukaryotes (for example, yeasts), higher eukaryotes (for example, mammals), and cells isolated therefrom. As the state of a recombinant polynucleotide fragment present in the host cells, it can be integrated into the chromosome of the host. Alternatively, it can be integrated into a factor (for example, a plasmid) having an independent replication unit outside the chromosome. These transformants are usable in producing the polypeptides of the present invention encoded by the ORF of the genome of *Corynebacterium glutamicum*, the polynucleotides of the present invention and fragments thereof. Alternatively, they can be used in producing arbitrary polypeptides under the regulation by an EMF of the present invention.

11. Preparation of antibody recognizing the polypeptide of the present invention

[0286] An antibody which recognizes the polypeptide of the present invention, such as a polyclonal antibody, a monoclonal antibody, or the like, can be produced using, as an antigen, a purified product of the polypeptide of the present invention or a partial fragment polypeptide of the polypeptide or a peptide having a partial amino acid sequence of the polypeptide of the present invention.

(1) Production of polyclonal antibody

10

15

20

30

35

45

[0287] A polyclonal antibody can be produced using, as an antigen, a purified product of the polypeptide of the present invention, a partial fragment polypeptide of the polypeptide, or a peptide having a partial amino acid sequence of the polypeptide of the present invention, and immunizing an animal with the same.

[0288] Examples of the animal to be immunized include rabbits, goats, rats, mice, hamsters, chickens and the like.

[0289] A dosage of the antigen is preferably 50 to 100 μg per animal.

[0290] When the peptide is used as the antigen, it is preferably a peptide covalently bonded to a carrier protein, such as keyhole limpet haemocyanin, bovine thyroglobulin, or the like. The peptide used as the antigen can be synthesized by a peptide synthesizer.

[0291] The administration of the antigen is, for example, carried out 3 to 10 times at the intervals of 1 or 2 weeks after the first administration. On the 3rd to 7th day after each administration, a blood sample is collected from the venous plexus of the eyeground, and it is confirmed that the serum reacts with the antigen by the enzyme immunoassay (Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976); Antibodies - A Laboratory Manual, Cold Spring Harbor Laboratory (1988)) or the like.

[0292] Serum is obtained from the immunized non-human mammal with a sufficient antibody titer against the antigen used for the immunization, and the serum is isolated and purified to obtain a polyclonal antibody.

[0293] Examples of the method for the isolation and purification include centrifugation, salting out by 40-50% saturated ammonium sulfate, caprylic acid precipitation (*Antibodies, A Laboratory manual,* Cold Spring Harbor Laboratory (1988)), or chromatography using a DEAE-Sepharose column, an anion exchange column, a protein A- or G-column, a gel filtration column, and the like, alone or in combination thereof, by m thods known to those of ordinary skill in the art.

(2) Production of monoclonal antibody

5

30

- (a) Preparation of antibody-producing cell
- 10 [0294] A rat having a serum showing an enough antibody titer against a partial fragment polypeptide of the polypeptide of the present invention used for immunization is used as a supply source of an antibody-producing cell.
 - [0295] On the 3rd to 7th day after the antigen substance is finally administered the rat showing the antibody titer, the spleen is excised.
 - [0296] The spleen is cut to pieces in MEM medium (manufactured by Nissui Pharmaceutical), loosened using a pair of forceps, followed by centrifugation at 1,200 rpm for 5 minutes, and the resulting supernatant is discarded.
 - [0297] The spleen in the precipitated fraction is treated with a Tris-ammonium chloride buffer (pH 7.65) for 1 to 2 minutes to eliminate erythrocytes and washed three times with MEM medium, and the resulting spleen cells are used as antibody-producing cells.
- 20 (b) Preparation of myeloma cells
 - [0298] As myeloma cells, an established cell line obtained from mouse or rat is used. Examples of useful cell lines include those derived from a mouse, such as P3-X63Ag8-U1 (hereinafter referred to as "P3-U1") (*Curr. Topics in Microbiol. Immunol., 81*: 1 (1978); *Europ. J. Immunol., 6*: 511 (1976)); SP2/O-Agl4 (SP-2) (*Nature, 276*: 269 (1978)): P3-X63-Ag8653 (653) (*J. Immunol., 123*: 1548 (1979)); P3-X63-Ag8 (X63) cell line (*Nature, 256*: 495 (1975)), and the like, which are 8-azaguanine-resistant mouse (BALB/c) myeloma cell lines. These cell lines are subcultured in 8-azaguanine medium (medium in which, to a medium obtained by adding 1.5 mmol/l glutamine, 5×10^{-5} mol/l 2-mercaptoethanol, 10 μ g/ml gentamicin and 10% fetal calf serum (FCS) (manufactured by CSL) to RPMI-1640 medium (hereinafter referred to as the "normal medium"), 8-azaguanine is further added at 15 μ g/ml) and cultured in the normal medium 3 or 4 days before cell fusion, and 2×10^7 or more of the cells are used for the fusion.
 - (c) Production of hybridoma
 - [0299] The antibody-producing cells obtained in (a) and the myeloma cells obtained in (b) are washed with MEM medium or PBS (disodium hydrogen phosphate: 1.83 g, sodium dihydrogen phosphate: 0.21 g, sodium chloride: 7.65 g, distilled water: 1 liter, pH: 7.2) and mixed to give a ratio of antibody-producing cells: myeloma cells = 5:1 to 10:1, followed by centrifugation at 1,200 rpm for 5 minutes, and the supernatant is discarded.
 - [0300] The cells in the resulting precipitated fraction were thoroughly loosened, 0.2 to 1 ml of a mixed solution of 2 g of polyethylene glycol-1000 (PEG-1000), 2 ml of MEM medium and 0.7 ml of dimethylsulfoxide (DMSO) per 10⁸ antibody-producing cells is added to the cells under stirring at 37°C, and then 1 to 2 ml of MEM medium is further added thereto several times at 1 to 2 minute intervals.
 - [0301] After the addition, MEM medium is added to give a total amount of 50 ml. The resulting prepared solution is centrifuged at 900 rpm for 5 minutes, and then the supernatant is discarded. The cells in the resulting precipitated fraction were gently loosened and then gently suspended in 100 ml of HAT medium (the normal medium to which 10^{-4} mol/l hypoxanthine, 1.5×10^{-5} mol/l thymidine and 4×10^{-7} mol/l aminopterin have been added) by repeated drawing up into and discharging from a measuring pipette.
 - [0302] The suspension is poured into a 96 well culture plate at 100 µl/well and cultured at 37°C for 7 to 14 days in a 5% CO₂ incubator.
 - [0303] After culturing, a part of the culture supernatant is recovered, and a hybridoma which specifically reacts with a partial fragment polypeptide of the polypeptide of the present invention is selected according to the enzyme immunoassay described in *Antibodies, A Laboratory manual*, Cold Spring Harbor Laboratory, Chapter 14 (1998) and the like. [0304] A specific example of the enzyme immunoassay is described below.
 - [0305] The partial fragment polypeptide of the polypeptide of the present invention used as the antigen in the immunization is spread on a suitable plate, is allowed to react with a hybridoma culturing supernatant or a purified antibody obtained in (d) described below as a first antibody, and is further allow d to react with an anti-rat or anti-mouse immunoglobulin antibody labeled with an enzyme, a chemical luminous substance, a radioactive substance or the like as a second antibody for reaction suitable for the labeled substance. A hybridoma which specifically reacts with the polypeptide of the present invention is selected as a hybridoma capable of producing a monoclonal antibody of the present

invention.

5

10

25

40

[0306] Cloning is repeated using the hybridoma twice by limiting dilution analysis (HT medium (a medium in which aminopterin has been removed from HAT medium) is firstly used, and the normal medium is secondly used), and a hybridoma which is stable and contains a sufficient amount of antibody titer is selected as a hybridoma capable of producing a monoclonal antibody of the present invention.

(d) Preparation of monoclonal antibody

[0307] The monoclonal antibody-producing hybridoma cells obtained in (c) are injected intraperitoneally into 8- to 10-week-old mice or nude mice treated with pristane (intraperitoneal administration of 0.5 ml of 2,6,10,14-tetrameth-ylpentadecane (pristane), followed by 2 weeks of feeding) at 5×10⁶ to 20×10⁶ cells/animal. The hybridoma causes ascites tumor in 10 to 21 days.

[0308] The ascitic fluid is collected from the mice or nude mice, and centrifuged to remove solid contents at 3000 rpm for 5 minutes.

[0309] A monoclonal antibody can be purified and isolated from the resulting supernatant according to the method similar to that used in the polyclonal antibody.

[0310] The subclass of the antibody can be determined using a mouse monoclonal antibody typing kit or a rat monoclonal antibody typing kit. The polypeptide amount can be determined by the Lowry method or by calculation based on the absorbance at 280 nm.

0 [0311] The antibody obtained in the above is within the scope of the antibody of the present invention.

[0312] The antibody can be used for the general assay using an antibody, such as a radioactive material labeled immunoassay (RIA), competitive binding assay, an immunotissue chemical staining method (ABC method, CSA method, etc.), immunoprecipitation, Western blotting, ELISA assay, and the like (An introduction to Radioimmunoassay and Related Techniques, Elsevier Science (1986); Techniques in Immunocytochemistry, Academic Press, Vol. 1 (1982),

Vol. 2 (1983) & Vol. 3 (1985); Practice and Theory of Enzyme Immunoassays, Elsevier Science (1985); Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976); Antibodies - A Laboratory Manual, Cold Spring Harbor laboratory (1988); Monoclonal Antibody Experiment Manual, Kodansha Scientific (1987); Second Series Biochemical Experiment Course, Vol. 5, Immunobiochemistry Research Method, Tokyo Kagaku Dojin (1986)).

[0313] The antibody of the present invention can be used as it is or after being labeled with a label.

[0314] Examples of the label include radioisotope, an affinity label (e.g., biotin, avidin, or the like), an enzyme label (e.g., horseradish peroxidase, alkaline phosphatase, or the like), a fluorescence label (e.g., FITC, rhodamine, or the like), a label using a rhodamine atom, (*J. Histochem. Cytochem., 18*: 315 (1970); *Meth. Enzym., 62*: 308 (1979); *Immunol., 109*: 129 (1972); *J. Immunol., Meth., 13*: 215 (1979)), and the like.

[0315] Expression of the polypeptide of the present invention, fluctuation of the expression, the presence or absence of structural change of the polypeptide, and the presence or absence in an organism other than coryneform bacteria of a polypeptide corresponding to the polypeptide can be analyzed using the antibody or the labeled antibody by the above assay, or a polypeptide array or proteome analysis described below.

[0316] Furthermore, the polypeptide recognized by the antibody can be purified by immunoaffinity chromatography using the antibody of the present invention.

- 12. Production and use of polypeptide array
- (1) Production of polypeptide array

[0317] A polypeptide array can be produced using the polypeptide of the present invention obtained in the above item 10 or the antibody of the present invention obtained in the above item 11.

[0318] The polypeptide array of the present invention includes protein chips, and comprises a solid support and the polypeptide or antibody of the present invention adhered to the surface of the solid support.

[0319] Examples of the solid support include plastic such as polycarbonate or the like; an acrylic resin, such as polyacrylamide or the like; complex carbohydrates, such as agarose, sepharose, or the like; silica; a silica-based material, carbon, a metal, inorganic glass, latex beads, and the like.

[0320] The polypeptides or antibodies according to the present invention can be adhered to the surface of the solid support according to the method described in *Biotechniques*, 27: 1258-61 (1999); *Molecular Medicine Today*, 5: 326-7 (1999); *Handbook of Experimental Immunology*, 4th edition, Blackwell Scientific Publications, Chapter 10 (1986); *Meth. Enzym.*, 34 (1974); *Advances in Experimental Medicine and Biology*, 42 (1974); U.S. Patent 4,681,870; U.S. Patent

4,282,287; U.S. Patent 4,762,881, or the like.

[0321] The analysis described herein can be efficiently performed by adhering the polypeptide or antibody of the present invention to the solid support at a high density, though a high fixation density is not always necessary.

(2) Use of polypeptide array

10

15

30

35

[0322] A polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention adhered to the array can be identified using the polypeptide array to which the polypeptides of the present invention have been adhered thereto as described in the above (1).

[0323] Specifically, a polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention can be identified by subjecting the polypeptides of the present invention to the following steps (i) to (iv):

- (i) preparing a polypeptide array having the polypeptide of the present invention adhered thereto by the method of the above (1);
- (ii) incubating the polypeptide immobilized on the polypeptide array together with at least one of a second polypeptide or compound;
- (iii) detecting any complex formed between the at least one of a second polypeptide or compound and the polypeptide immobilized on the array using, for example, a label bound to the at least one of a second polypeptide or compound, or a secondary label which specifically binds to the complex or to a component of the complex after unbound material has been removed; and
- (iv) analyzing the detection data.

[0324] Specific examples of the polypeptide array to which the polypeptide of the present invention has been adhered include a polypeptide array containing a solid support to which at least one of a polypeptide containing an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide containing an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide containing an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, and a peptide comprising an amino acid sequence of a part of a polypeptide.

[0325] The amount of production of a polypeptide derived from coryneform bacteria can be analyzed using a polypeptide array to which the antibody of the present invention has been adhered in the above (1).

[0326] Specifically, the expression amount of a gene derived from a mutant of coryneform bacteria can be analyzed by subjecting the gene to the following steps (i) to (iv):

- (i) preparing a polypeptide array by the method of the above (1);
- (ii) incubating the polypeptide array (the first antibody) together with a polypeptide derived from a mutant of coryneform bacteria;
- (iii) detecting the polypeptide bound to the polypeptide immobilized on the array using a labeled second antibody of the present invention; and
- (iv) analyzing the detection data.

[0327] Specific examples of the polypeptide array to which the antibody of the present invention is adhered include a polypeptide array comprising a solid support to which at least one of an antibody which recognizes a polypeptide comprising an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide comprising an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide comprising an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, or a peptide comprising an amino acid sequence of a part of a polypeptide.

[0328] A fluctuation in an expression amount of a specific polypeptide can be monitored using a polypeptide obtained in the time course of culture as the polypeptide derived from coryneform bacteria. The culturing conditions can be optimized by analyzing the fluctuation.

- [0329] When a polypeptide derived from a mutant of coryneform bacteria is used, a mutated polypeptide can be detected.
 - 13. Identification of useful mutation in mutant by proteome analysis
- [0330] Usually, the proteome is us d herein to refer to a method wherein a polypeptide is separated by twodimensional electrophoresis and the separated polypeptide is digest d with an nzyme, followed by identification of the polypeptide using a mass spectrometer (MS) and searching a data base.
 - [0331] The two dimensional electrophoresis means an electrophoretic method which is performed by combining two

electrophoretic procedures having different principles. For example, polypeptides are separated depending on molecular weight in the primary electrophoresis. Next, the gel is rotated by 90° or 180° and the secondary electrophoresis is carried out depending on isoelectric point. Thus, various separation patterns can b achieved (JIS K 3600 2474). [0332] In searching the data base, the amino acid sequence information of the polypeptides of the present invention and the recording medium of the present invention provide for in the above items 2 and 8 can be used.

[0333] The proteome analysis of a coryneform bacterium and its mutant makes it possible to identify a polypeptide showing a fluctuation therebetween.

[0334] The proteome analysis of a wild type strain of coryneform bacteria and a production strain showing an improved productivity of a target product makes it possible to efficiently identify a mutation protein which is useful in breeding for improving the productivity of a target product or a protein of which expression amount is fluctuated.

[0335] Specifically, a wild type strain of coryneform bacteria and a lysine-producing strain thereof are each subjected to the proteome analysis. Then, a spot increased in the lysine-producing strain, compared with the wild type strain, is found and a data base is searched so that a polypeptide showing an increase in yield in accordance with an increase in the lysine productivity can be identified. For example, as a result of the proteome analysis on a wild type strain and a lysine-producing strain, the productivity of the catalase having the amino acid sequence represented by SEQ ID NO: 3785 is increased in the lysine-producing mutant.

[0336] As a result that a protein having a high expression level is identified by proteome analysis using the nucleotide sequence information and the amino acid sequence information, of the genome of the coryneform bacteria of the present invention, and a recording medium storing the sequences, the nucleotide sequence of the gene encoding this protein and the nucleotide sequence in the upstream thereof can be searched at the same time, and thus, a nucleotide sequence having a high expression promoter can be efficiently selected.

[0337] In the proteome analysis, a spot on the two-dimentional electrophoresis gel showing a fluctuation is sometimes derived from a modified protein. However, the modified protein can be efficiently identified using the recording medium storing the nucleotide sequence information, the amino acid sequence information, of the genome of coryneform bacteria, and the recording medium storing the sequences, according to the present invention.

[0338] Moreover, a useful mutation point in a useful mutant can be easily specified by searching a nucleotide sequence (nucleotide sequence of promoters, ORF, or the like) relating to the thus identified protein using a recording medium storing the nucleotide sequence information and the amino acid sequence information, of the genome of coryneform bacteria of the present invention, and a recording medium storing the sequences and using a primer designed on the basis of the detected nucleotide sequence. As a result that the useful mutation point is specified, an industrially useful mutant having the useful mutation or other useful mutation derived therefrom can be easily bred.

[0339] The present invention will be explained in detail below based on Examples. However, the present invention is not limited thereto.

35 Example 1

25

30

40

45

Determination of the full nucleotide sequence of genome of Corynebacterium glutamicum

[0340] The full nucleotide sequence of the genome of *Corynebacterium glutamicum* was determined based on the whole genome shotgun method (*Science, 269*: 496-512 (1995)). In this method, a genome library was prepared and the terminal sequences were determined at random. Subsequently, these sequences were ligated on a computer to cover the full genome. Specifically, the following procedure was carried out.

(1) Preparation of genome DNA of Corynebacterium glutamicum ATCC 13032

[0341] Corynebacterium glutamicum ATCC 13032 was cultured in BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine at 30°C overnight and the cells were collected by centrifugation. After washing with STE buffer (10.3% sucrose, 25 mmol/l Tris hydrochloride, 25 mmol/l EDTA, pH 8.0), the cells were suspended in 10 ml of STE buffer containing 10 mg/ml lysozyme, followed by gently shaking at 37°C for 1 hour. Then, 2 ml of 10% SDS was added thereto to lyse the cells, and the resultant mixture was maintained at 65°C for 10 minutes and then cooled to room temperature. Then, 10 ml of Tris-neutralized phenol was added thereto, followed by gently shaking at room temperature for 30 minutes and centrifugation (15,000 × g, 20 minutes, 20°C). The aqueous layer was separated and subjected to extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner. To the aqueous layer, 3 mol/l sodium acetate solution (pH 5.2) and isopropanol were added at 1/10 times volume and twice volume, respectively, followed by gently stirring to precipitate the genome DNA. The genome DNA was dissolved again in 3 ml of TE buffer (10 mmol/l Tris hydrochloride, 1 mmol/l EDTA, pH 8.0) containing 0.02 mg/ml of RNase and maintained at 37°C for 45 minutes. The xtractions with phenol, phenol/chloroform and chloroform were carried out successively in the same manner as the abov. The genome DNA was subjected to iso-

propanol precipitation. The thus formed genome DNA precipitate was washed with 70% ethanol three times, followed by air-drying, and dissolved in 1.25 ml of TE buffer to give a genome DNA solution (concentration: 0.1 mg/ml).

(2) Construction of a shotgun library

5

20

25

40

[0342] TE buffer was added to 0.01 mg of the thus prepared genome DNA of *Corynebacterium glutamicum* ATCC 13032 to give a total volume of 0.4 ml, and the mixture was treated with a sonicator (Yamato Powersonic Model 150) at an output of 20 continuously for 5 seconds to obtain fragments of 1 to 10 kb. The genome fragments were bluntended using a DNA blunting kit (manufactured by Takara Shuzo) and then fractionated by 6% polyacrylamide gel electrophoresis. Genome fragments of 1 to 2 kb were cut out from the gel, and 0.3 ml MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) was added thereto, followed by shaking at 37°C overnight to elute DNA. The DNA eluate was treated with phenol/chloroform, and then precipitated with ethanol to obtain a genome library insert. The total insert and 500 ng of pUC18 *Smal/*BAP (manufactured by Amersham Pharmacia Biotech) were ligated at 16°C for 40 hours.

[0343] The ligation product was precipitated with ethanol and dissolved in 0.01 ml of TE buffer. The ligation solution (0.001 ml) was introduced into 0.04 ml of *E. coli* ELECTRO MAX DH10B (manufactured by Life Technologies) by the electroporation under conditions according to the manufacture's instructions. The mixture was spread on LB plate medium (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) containing 0.1 mg/ml ampicillin, 0.1 mg/ml X-gal and 1 mmol/l isopropyl-β-D-thiogalactopyranoside (IPTG) and cultured at 37°C overnight.

[0344] The transformant obtained from colonies formed on the plate medium was stationarily cultured in a 96-well titer plate having 0.05 ml of LB medium containing 0.1 mg/ml ampicillin at 37°C overnight. Then, 0.05 ml of LB medium containing 20% glycerol was added thereto, followed by stirring to obtain a glycerol stock.

(3) Construction of cosmid library

[0345] About 0.1 mg of the genome DNA of *Corynebacterium glutamicum* ATCC 13032 was partially digested with *Sau*3Al (manufactured by Takara Shuzo) and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under 10 to 40% sucrose density gradient obtained using 10% and 40% sucrose buffers (1 mol/l NaCl, 20 mmol/l Tris hydrochloride, 5 mmol/l EDTA, 10% or 40% sucrose, pH 8.0). After the centrifugation, the solution thus separated was fractionated into tubes at 1 ml in each tube. After confirming the DNA fragment length of each fraction by agarose gel electrophoresis, a fraction containing a large amount of DNA fragment of about 40 kb was precipitated with ethanol.

[0346] The DNA fragment was ligated to the BamHI site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instructions. The ligation product was incorporated into Escherichia coli XL-1-BlueMR strain (manufactured by Stratagene) using Gigapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions. The Escherichia coli was spread on LB plate medium containing 0.1 mg/ml ampicillin and cultured therein at 37°C overnight to isolate colonies. The resulting colonies were stationarily cultured at 37°C overnight in a 96-well titer plate containing 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin in each well. LB medium containing 20% glycerol (0.05 ml) was added thereto, followed by stirring to obtain a glycerol stock.

(4) Determination of nucleotide sequence

(4-1) Preparation of template

[0347] The full nucleotide sequence of *Corynebacterium glutamicum* ATCC 13032 was determined mainly based on the whole genome shotgun method. The template used in the whole genome shotgun method was prepared by the PCR method using the library prepared in the above (2).

[0348] Specifically, the clone derived from the whole genome shotgun library was inoculated using a replicator (manufactured by GENETIX) into each well of a 96-well plate containing the LB medium containing 0.1 mg/ml of ampicillin at 0.08 ml per each well and then stationarily cultured at 37°C overnight.

[0349] Next, the culturing solution was transported using a copy plate (manufactured by Tokken) into a 96-well reaction plate (manufactured by PE Biosystems) containing a PCR reaction solution (TaKaRa Ex Taq (manufactured by Takara Shuzo)) at 0.08 ml per each well. Then, PCR was carried out in accordance with the protocol by Makino *et al.* (*DNA Research, 5*: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the inserted fragment.

[0350] The excessive primers and nucleotides were eliminated using a kit for purifying a PCR production (manufactured by Amersham Pharmacia Biotech) and the r sidue was used as the template in the sequencing reaction.

[0351] Some nucleotide sequences were determined using a double-stranded DNA plasmid as a template.

- [0352] The double-stranded DNA plasmid as the template was obtained by the following method.
- [0353] The clone derived from the whole genome shotgun library was inoculated into a 24- or 96-well plate containing a $2 \times YT$ medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin at 1.5 ml per each well and then cultured under shaking at 37°C overnight.
- [0354] The double-stranded DNA plasmid was prepar d from the culturing solution using an automatic plasmid preparing machine, KURABO PI-50 (manufactured by Kurabo Industries) or a multiscreen (manufactured by Millipore) in accordance with the protocol provided by the manufacturer.
 - [0355] To purify the double-stranded DNA plasmid using the multiscreen, Biomek 2000 (manufactured by Beckman Coulter) or the like was employed.
- 10 [0356] The thus obtained double-stranded DNA plasmid was dissolved in water to give a concentration of about 0.1 mg/ml and used as the template in sequencing.

(4-2) Sequencing reaction

- [0357] To 6 μl of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems), an M13 regular direction primer (M13-21) or an M13 reverse direction primer (M13REV) (*DNA Research*, *5*: 1-9 (1998) and the template prepared in the above (4-1) (the PCR product or the plasmid) were added to give 10 μl of a sequencing reaction solution. The primers and the templates were used in an amount of 1.6 pmol and an amount of 50 to 200 ng, respectively.
- [0358] Dye terminator sequencing reaction of 45 cycles was carried out with GeneAmp PCR System 9700 (manufactured by PE Biosystems) using the reaction solution. The cycle parameter was determined in accordance with the manufacturer's instruction accompanying ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit. The sample was purified using MultiScreen HV plate (manufactured by Millipore) according to the manufacture's instructions. The thus purified reaction product was precipitated with ethanol, followed by drying, and then stored in the dark at -30°C.
 - [0359] The dry reaction product was analyzed by ABI PRISM 377 DNA Sequencer and ABI PRISM 3700 DNA Analyzer (both manufactured by PE Biosystems) each in accordance with the manufacture's instructions.
 - [0360] The data of about 50,000 sequences in total (i.e., about 42,000 sequences obtained using 377 DNA Sequencer and about 8,000 reactions obtained by 3700 DNA Analyser) were transferred to a server (Alpha Server 4100: manufactured by COMPAQ) and stored. The data of these about 50,000 sequences corresponded to 6 times as much as the genome size.

(5) Assembly

- [0361] All operations were carried out on the basis of UNIX platform. The analytical data were output in Macintosh platform using X Window System. The base call was carried out using phred (The University of Washington). The vector sequence data was deleted using SPS Cross_Match (manufactured by Southwest Parallel Software). The assembly was carried out using SPS phrap (manufactured by Southwest Parallel Software; a high-speed version of phrap (The University of Washington)). The contig obtained by the assembly was analyzed using a graphical editor, consed (The University of Washington). A series of the operations from the base call to the assembly were carried out simultaneously using a script phredPhrap attached to consed.
 - (6) Determination of nucleotide sequence in gap part
- [0362] Each cosmid in the cosmid library constructed in the above (3) was prepared by a method similar to the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the inserted fragment of the cosmid was determined by using ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.
 - [0363] About 800 cosmid clones were sequenced at both ends to search a nucleotide sequence in the contig derived from the shotgun sequencing obtained in the above (5) coincident with the sequence. Thus, the linkage between respective cosmid clones and respective contigs were determined and mutual alignment was carried out. Furthermore, the results were compared with the physical map of *Corynebacterium glutamicum* ATCC 13032 (*Mol. Gen. Genet., 252*: 255-265 (1996) to carrying out mapping between the cosmids and the contigs.
 - [0364] The sequence in the region which was not covered with the contigs was determined by the following method.

 [0365] Clones containing sequences positioned at the ends of contigs were selected. Among these clones, about 1,000 clones wherein only one end of the inserted fragment had been determined wer selected and the sequence at the opposite end of the inserted fragment was determined. A shotgun library clone or a cosmid clone containing th sequences at the respective ends of the inserted fragment in two contigs was identified, the full nucleotide sequence

of the inserted fragment of this clone was determined, and thus the nucleotide sequence of the gap part was determined. When no shotgun library clone or cosmid clone covering the gap part was available, primers complementary to the end sequences at the two contigs were prepared and the DNA fragment in the gap part was amplified by PCR. Then, sequencing was performed by the primer walking method using the amplified DNA fragment as a template or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment was determined. Thus, the nucleotide sequence of the domain was determined.

[0366] In a region showing a low sequence precision, primers were synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington) and the sequence was determined by the primer walking method to improve the sequence precision. The thus determined full nucleotide sequence of the genome of Corynebacterium glutamicum ATCC 13032 strain is shown in SEQ ID NO:1.

(7) Identification of ORF and presumption of its function

5

10

15

25

30

35

40

45

50

55

[0367] ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified according to the following method. First, the ORF regions were determined using software for identifying ORF, i.e., Glimmer, GeneMark and GeneMark.hmm on UNIX platform according to the respective manual attached to the software.

[0368] Based on the data thus obtained, ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified.

[0369] The putative function of an ORF was determined by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database, Frame Search (manufactured by Compugen), or by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database, BLAST. The nucleotide sequences of the thus determined ORFs are shown in SEQ ID NOS:2 to 3501, and the amino acid sequences encoded by these ORFs are shown in SEQ ID NOS:3502 to 7001.

[0370] In some cases of the sequence listings in the present invention, nucleotide sequences, such as TTG, TGT, GGT, and the like, other than ATG, are read as an initiating codon encoding Met.

[0371] Also, the preferred nucleotide sequences are SEQ ID NOS:2 to 355 and 357 to 3501, and the preferred amino acid sequences are shown in SEQ ID NOS:3502 to 3855 and 3857 to 7001

[0372] Table 1 shows the registration numbers in the above-described databases of sequences which were judged as having the highest homology with the nucleotide sequences of the ORFs as the results of the homology search in the amino acid sequences using the homology-searching software Frame Search (manufactured by Compugen), names of the genes of these sequences, the functions of the genes, and the matched length, identities and analogies compared with publicly known amino acid translation sequences. Moreover, the corresponding positions were confirmed via the alignment of the nucleotide sequence of an arbitrary ORF with the nucleotide sequence of SEQ ID NO:

1. Also, the positions of nucleotide sequences other than the ORFs (for example, ribosomal RNA genes, transfer RNA genes, IS sequences, and the like) on the genome were determined.

[0373] Fig. 1 shows the positions of typical genes of the Corynebacterium glutamicum ATCC 13032 on the genome.

EP 1 108 790 A2

	_							_				-	-		\neg	_			Т		\neg			
5		Function	replication initiation protein DnaA		DNA polymerase III beta chain	DNA replication protein (recF		hypothetical protein	DNA topoisomerase (A i P- hydrolyzing)					NAGC/XYLR repressor			DNA gyrase subunit A	hypothetical membrane protein	hypothetical protein	bacterial regulatory protein, LysR type		cytochrome c biogenesis protein	hypothetical protein	or
			replication		DNA po	DNA re	protein)	hypothe	ONA topoiso		-		-	NAGC/)	1		DNA 9y	hypothe					7	repressor
15		Matched length (a.a.)	524		390	000	385	174	704					422			854	112	329	268		265	155	117
20		Similarity (%)	9.66		818		79.9	58.1	88.9					50.7			88.1	9.69	63.5	62.3		57.4	64.5	70.1
		Identity (%)	9.66		50.5		53.3	35.1	71.9					29.4			70.4	29.5	33.7	27.6		29.1	31.6	36.8
25		ne	dnaA		Neap aire		atis recF	or yreG	losis					ulosis			ulosis	ulosis	eiH	noluteolus		us ccdA		ulosis
30	Table 1	Homologous gene	Brevihacterium flavum dnaA		Neap sitempome military	Ayconacterium suregu	Mycobacterium smegmatis recF	Streptomyces coelicolor yreG	Mycobacterium tuberculosis H37Rv gyrB					Mycobacterium tuberculosis H37Rv			Mycobacterium tuberculosis H37Rv Rv0006 gyrA	Mycobacterium tuberculosis H37Rv Rv0007	Escherichia coli K12 yeiH	Hydrogenophilus thermoluteolus TH-1 cbbR		Rhodobacter capsulatus ccdA	Coxiella burnetii com1	Mycobacterium tuberculosis H37Rv Rv1846c
35 40		db Match	P C2006.52			Sp.UP3B_MYCSIM_IN	SP.RECF_MYCSM N	sp:YREG_STRCO						sp:YV11_MYCTU			sp:GYRA_MYCTU	pir.E70698	SD. YEIH ECOLI	1		ap. AF156103 2	pir:A49232	pir.F70664
		ORF (bp)	1573		_	1182	1182	534	2133	996	699	510	441	1071	261	246	2568	342	1035	894	420	2,0	762	369
45		Terminal (nt)	0237	15/2	1597	3473	4766	5299	7486	8795	8628	1001	9474	10107	11263	11523	14398	14746	15209	17207	17670	17860	18736	20073
50		Initial		-	1920	2532	3585	4766	5354	7830	9466	9562	9914	11177	11523	11768	11831	14405	16243	16314	17251		19497	_!
		SEO	(a.a.)	3502	3503	3504	3505	3506	3507	3508	3509	3510	3511	3512	3513	3514	3515	3516	26.47	3518	35.10	2520	3521	3522
55		SEQ.	(DNA)	2	3	4	2	ď	7	8	6	10	=	12	13	4	15	16	1,	= 8	ģ	2 6	3 2	22

EP 1 108 790 A2

	_					_				_	_	Т			T		_ {		- 1	1.	- i	t	⋖	1	1	
5		Function	orane protein	2,5-diketo-D-gluconic acid reductase	ecursor		mily protein		oxide detoxication	NA helicase	ornalial Chi		glucosidase		family or integral	amily of integral	ransport ATP-	porter, periplasmic	otein	high affinity ribose transport protein	ribose transport ATP-binding protein	bunit NF-180	rase		ווחומוכ ליכיניי	
10		Func	hypothetical membrane protein	2,5-diketo-D-gluco	5. purchootidase precursor	ם -וותכובסווספסם לי	5'-nucleotidase family protein	transposase	organic hydroperoxide detoxication	ATO Accorded ONA helicase	Al P-dependent		glucan 1,4-alpha-glucosidase	lipoprotein	1	ABC 3 transport lamily of integral membrane protein	iron(III) dicitrate transport ATP-biding protein	sugar ABC transporter,	sugar-binding protein	high affinity ribos	ribose transport	neurofilament subunit NF-180	in bylora tubitana	pepulgyl-prolyr cis-hams isomore	Nypomencai mei	
15		Matched length (a.a.)	321	26	90,	95	270	51	139	155	21/		449	311		266	222	5	283	312	236	347		8	226	
20		Similarity (%)	50.8	88.5	1	56.1	56.7	72.6	79.9	1	8.09		54.1	63.7		74.1	70.3		56.5	68.3	7.97	44.4	1	89.9	53.1	
		Identity (%)	24.9	65.4	1	27.0	27.0	52.9	51.8		32.7		26.7	28.9		34.6	39.2		25.8	30.5	32.2	23.6		79.9	29.2	
25	ntinueuj	gene	rae	p. ATCC		dicus nutA	durans	triatum ORF1	pestris		xidans recG		erevisiae ita1	iopathiae		ogenes SF370	12 fecE	MSBB		12 rbsC	58 rbsA	9116	Naze Hazev	placiloni	68 yagP	
30	Table 1 (confinued)	Homologous gene	Mycobacterium leprae	Corynebacterium sp.	1090	Vibrio parahaemolyticus nutA	Deinococcus radiodurans DR0505	Corynebacterium striatum ORF1	Xanthomonas campestris	phaseoli ohr	Thiobacillus ferrooxidans recG		Saccharomyces cerevisiae	Erysipelothrix rhusiopathiae	ewlA	Streptococcus pyogenes SF370	Escherichia coli K12 fecE		TM0114	Escherichia coli K12 rbsC	Racillus subtilis 168 rbsA		Petromyzon maring	Mycobacterium lepi de 11371 % RV0009 ppiA	Bacillus subtilis 168 yagP	
35		-		.	9			Ī) ×	۵				\top				-		Ī	1	1				
40		db Match	ap:MLCB1788_6	140838	000041.114	sp:5NTD_VIBPA	gp:AE001909_7	700000	DZ055152.Hd	prf:2413353A	SP.RECG_THIFE		SP. AMYH_YEAST		gp:ERU52850_1	qp:AF180520_3	Sn FFCF ECOLI		pir.A72417	2 prf 1207243B			pir 151116	sp:CYPA_MYCTU	sp:YQGP_BACSU	
		ORF (bp)	993	0	00	528	1236	١	5	435	1413	438	1278	1	954	849	657	3	981	15	2 5	£)	816	561	687	
45		Terminal (nt)	21065		5/0LZ	22124	23399		23615	24729	24885	25775	26822		28164	29117	20664	10000	31677	00000	32038	33457	33465	34899	35668	
50		Initial (nt)	20073	21007	21253	21597	22164		23779	24295	26297	00000	28039		29117	29965	_!_	C6667	30697	_		32699	34280	34339	34982	╛
		SEO	(a.a.)	2252	3524	3525	3576		3527	3528	3529		3530	3	3532	25.33	2000	3534	3535		3536	3537	3538	3539	3540	
55		SEO			24	7,	28	3	27	28	29	3	30	5	32	;	3	34	35		36	37	38	39	64	
									-																	

EP 1 108 790 A2

5	Function	ferric enterobactin transport system permease protein		AlPase	vulnibactin utilization protein	hypothetical membrane protein	serine/threonine protein kinase	serineAhreonine protein kinase	penicillin-binding protein	stage V sporulation protein E	phosphoprotein phosphatase	hypothetical protein	hypothetical protein					phenol 2-monooxygenase	succinate-semialdehyde dehydrogenase (NAD(P)+)	hypothetical protein	hypothetical membrane protein
15	Matched length (a.a.)	332		253	260	95	648	486	492	375	469	155	526					117	490	242	262
20	Similarity (%)	70.5		81.8	52.7	72.6	68.7	59.1	2'99	65.6	70.8	66.5	38.8					63.3	78.2	27.0	64.1
	Identity (%)	40.4		51.8	26.2	40.0	40.6	31.7	33.5	31.2	44.1	38.7	23.6					29.9	46.7	27.3	29.0
30 eHer (beuninnen) t eHer	s gene	12 fepG		Q	O6-24 viuB	berculosis	prae pknB	licotor pksC	eus pbpA	38 spoVE	berculosis	berculosis	berculosis					aneum ATCC	(12 gabD	rkH	annaschii
30 t and 20	Homologous gene	Escherichia coli K12 fepG		Vibrio cholerae viuC	Vibrio vulnificus MO6-24 viuB	Mycobacterium tuberculosis H37Rv Rv0011c	Mycobacterium leprae pknB	Streptomyces coeficolor pksC	Streptomyces griseus pbpA	Bacillus subtilis 168 spoVE	Mycobacterium tuberculosis H37Rv ppp	Mycobacterium tuberculosis H37Rv Rv0019c	Mycobacterium tuberculosis H37Rv Rv0020c					Trichosporon cutaneum ATCC 46490	Escherichia coli K12 gabD	Bacillus subtilis yrkH	Methanococcus jannaschii MJ0441
35 40	db Match	Sp.FEPG_ECOUL		gp:VCU52150_9	D	2	SD. PKNB MYCLE			5		pir.A70700	pir:B70700					sp:PH2M_TRICU	sp:GABD_ECOLI	sp.YRKH_BACSU	
	ORF (bp)		966	777 gp	822 sp	270 sp	1938 sp	12	. 7	100	8	462 pi	864 pi	147	720	219	471	954 SI	1470 S	1467 s	
45	Terminal (C	80	36247	1	39799		40576	\top	1	\dagger		48024	48505	49455	49897	50754	99609	54008	51626	55546	55629
50	Initial	37221	37242	38202	38978	40458	42513	43010	45347	46489	48021	48485	49368	49601	50616	50972	51436	53055	53095	54080	
	SEQ.	(a.a.) 3541	3542	3543	3544	3545	36.46	26.47	354B	35.49	3550	3551	3552	3553	3554	3555	3556	3557	3558	3559	3560
55		(DNA)	42	ī		1	, a	2 5	3 0	9 9	200	51	52	53	54	55	56	57	88	50	8

EP 1 108 790 A2

				1		7	Т	T	\top	T	Т	T	\neg		\top	T	Τ				П	
5		ou			-				transport	Jan Hansport		otein	ansport	n-induced			100	plex secondary	tem sensor		lator	-hydroxyacid
10		Function	hypothetical protein	hypothetical protein	hypothetical protein	riotory locitor de	nypomencal process		100	magnesium and cobair iransport		chloride channel protein	required for NMN transport	phosphate starvation-induced protein-like protein				Mg(2+)/citrate complex secondary transporter	two-component system sensor histidine kinase		transcriptional regulator	D-isomer specific 2-hydroxyacid dehydrogenase
15	Matched	length (a.a.)	74	179	62		210			390		400	241	340				497	563		229	293
20	-	Similarity (%)	74.3	70.4	83.9		20.7			59.5		64.8	53.1	60.0				68.8	9.09		63.3	73.7
		Identity (%)	40.5	36.3	53 2		26.8			29.5		30.0	24.1	29.1				42.3	27.2		33.2	43.3
25 G	(2)	e e		.6803	losis		38.11			ulosis		M4 clcb	m pnuC	ulosis					piB		riR	amicum
30 to	lanco i comi	Homologous gene	Bacillus subtilis yrkF	Synechocystis sp. PCC6803 slr1261	Mycobacterium tuberculosis H37Rv Rv1766		Leishmania major L4768.11			Mycobacterium tuberculosis H37Rv Rv1239c corA		Zymomonas mobilis ZM4 clcb	Salmonella typhimurium pnuC	Mycobacterium tuberculosis H37Rv RV2368C				Bacillus subtilis citM	Escherichia coli K12 dpiB		Escherichia coli K12 criR	Corynebacterium glutamicum unkdh
35			†		ΣI					≥I			1									
40		db Match	SD:YRKF BACSU	sp:YC61_SYNY3	pir:G70988		gp:LMFL4768_11			pir.F70952		on AF179611 12	Sp. PNUC SA	sp:PHOL_MYCTU				sp:CITM_BACSU	sp:DPIB_ECOLI		Sp. DPIA ECOLI	gp:AF134895_1
		ORF (bp)	291	 	174	855		711	1653	1119	447	1269	069	1122	132	384	765	1467	1653	570	654	912
45		Terminal (nt)	56386	56680	57651	58941	59930	60662	62321	62390	63594	86458	65508	67972	68301	68251	69824	68720	72158	71474	72814	72817
50		Initial (nt)	56676	57270	57478	58087	59091	59952	69909	63508	64040	04040	66197	66851	68170	68634	09069		70506	72043		
	ļ		25.61		3563	3564	3565	3566	3567	3568	25.60	2000	3570	3572	3573	3574	3575	3576	3577	25.70	0 25	3580
55		SEO	(A)	62	63	64	65	99	67	99	5	2 2	5 2	2	73	74	75	. 9	12	100	2 5	8

EP 1 108 790 A2

5		Function	hypothetical protein	biotin synthase	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical protein	integral membrane efflux protein	creatinine deaminase			SIR2 gene family (silent information	regulator)	triacylglycerol lipase	triacyigiyceroi iipase		transcriptional regulator	urease gammma subunit or urease structural protein	urease beta subunit	urease alpha subunit	
15	-	Matched length (a.a.)	127	334	43	85		42	84	507	394				279	251	262		171	100	162	570	
20		Similarity (%)	76.4	99.7	79.1	63.5		75.0	0.99	59.0	8 60				50.2	59.0	56.1		94.7	100.0	100.0	100.0	
		Identity (%)	38.6	99.4	72.1	34.1		71.0	61.0	25.6	07.2	2.16			26.2	30.7	29.4		90.6	100.0	100.0	100.0	
<i>25</i>	nen)		A3(2)	nicum	losis	siae		Nigg		0.00	2 6				isiae hst2	es	es		amicum	amicum	amicum	amicum	
30	lable 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2)	Corynebacterium glutamicum bioB	Mycobacterium tuberculosis H37Rv Rv1590	Saccharomyces cerevisiae YKL084w		Chlamydia muridarum Nigg	Chlomydia poelimoniae	maniyola piledinoliio	Streptomyces vilginiae valo	Bacillus sp.			Saccharomyces cerevisiae hst2	Propionibacterium acnes	Propionibacterium acnes		Corynebacterium glutamicum ureR	Corynebacterium glutamicum ureA	Corynebacterium glutamicum	Corynebacterium glutamicum	AICC 13032 men
35			ळ ळ		ΣÏ		-	OF	- (<u>ין כ</u>	S	<u> </u>		-			<u>L</u>				2		
40		db Match	gp:SCM2_3	sp:BIOB_CORGL	pir:H70542	sp:YKI4_YEAST		PIR:F81737		GSP: Y35814		gp:D38505_1			sp:HST2_YEAST	ort 2316378A	prf.2316378A		gp:AB029154_1	gp:AB029154_2		1	3r
		ORF (bp)	429	1002	237	339	117	141		273	1449	1245	306	615	924	972	8	888	513	300	486	+=	\exists
45		Terminal (nt)	74272	75491	75742	76035	76469	80613		81002	82120	83691	85098	85663	87241	87561	88545	90445	90461	91473	91988	03704	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
50		Initial	73844	74490	75506	75697	76253	80753	2000	81274	83568	84935	85403	86277	86318		_!	_1	_!				91887
		SEO.	(a.a.)	3582	3583	3584	3030	3565	2300	3587	3588	3589	3590	3591	3592	20.00	3594	2505	3596	3597	000		3599
55			(DNA)	$\neg \vdash$	1		7		90	87	88	89	8	91	92		3 9	5 8	96	6	5 6	8 3	66
										-													

EP 1 108 790 A2

	: .									- 1	\neg	$\neg \Gamma$	\neg		$\neg \tau$	7	-	$\neg \tau$			$\neg \tau$		$\neg \tau$	\neg
10		Function	urease accessory protein	urease accessory protein	urease accessory protein	urease accessory protein	epoxide hydrolase		valanimycin resistant protein			heat shock protein (hsp90-family)	AMP nucleosidase		acetolactate synthase large subunit		proline dehydrogenase/P5C dehydrogenase		aryl-alcohol dehydrogenase (NADP+)	pump protein (transport)	indole-3-acetyl-Asp hydrolase		hypothetical membrane protein	
15		Matched length (a.a.)	157	226	205	283	279		347			999	481		196		1297		338	513	352		106	
20		Similarity (%)	100.0	100.0	100.0	100.0	48.4		59.7			52.7	68.2		58.7		50.4		60.7	71.4	49.2		70.8	
		Identity (%)	100.0	100.0	100.0	100.0	21.2		26.5			23.8	41.0		29.6		25.8		30.2	36.5	23.0		35.9	
25	(pan		icum	icum	iicum	icum	ter echA		ns vimF			S			APE2509		putA		porium	He	รทร		I	
<i>30</i>	Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 ureE	Corynebacterium glutamicum ATCC 13032 ureF	Corynebacterium glutamicum ATCC 13032 ureG	Corynebacterium glutamicum ATCC 13032 ureD	Agrobacterium radiobacter echA		Streptomyces viridifaciens vlmF			Escherichla coli K12 htpG	Escherichia coli K12 amn		Aeropyrum pernix K1 Af		Salmonella typhimurium putA		Phanerochaete chrysosporium aad	Escherichia coli K12 ydaH	Enterobacter agglomerans		Escherichia coli K12 yidH	
40		db Match	gp:CGL251883_4	gp:CGL251883_5	gp:CGL251883_6	gp:CGL251883_7	prf.2318326B		gp:AF148322_1			sp:HTPG_ECOLI	SP. AMN_ECOLI		pir.E72483		sp:PUTA_SALTY		SP: AAD_PHACH	Sp.YDAH_ECOLI	prf.2422424A		sp:YIDH_ECOLI	
		ORF (bp)	471	678	615	849	777	699	1152	675	2775	1824		579	552	999	3456	114	945	1614	1332	669	366	315
45		Terminal (nt)	94199	94879	95513	96365	96368	98189	97319	100493	98808	101612	104909	105173	105841	106630	110890	111274	112318	114083	115478	114564	115943	116263
50		Initial (nt)	93729	94202	94899	95517	97144	97521	98470	99819	101582	103435	103494	105751	106392	107289	107435	1111161	111374	112470	1	115262	115578	115949
		SEQ NO.	3600	3601	3602	3603	3604	3605	3606	3607	3608	3609	3610	3611	3612	3613	3614	3615	3616	3617	3618	3619	3620	3621
55		SEQ NO.	100	101	102	103	104	105	106	107	108	109	130	=	112	113	114	115	116	=======================================	118	119	120	12

EP 1 108 790 A2

										_	_		_		$\overline{}$	\neg	\neg	\neg				-	\neg		\neg
5		Function		transcriptional repressor	methylglyoxalase	hypothetical protein	mannitol dehydrogenase	D-arabinitol transporter		galactitol utilization operon repressor	xytutose kinase			pantoate-beta-alanine ligase	3-methyl-2-oxobutanoate hydroxymethyltransferase		DNA-3-methyladenine glycosylase		esterase		carbonate dehydratase	xylose operon repressor protein	macrolide efflux protein		
15	Matched	length (a.a.)			126	162	497	435		260	451			279	27.1		188		270		201	357	418		
20		Similarity (%)		59.7	78.6	64.8	70.4	68.3		64.6	68.1			100.0	100.0		9.29		69.3		53.2	49.3	61.2		
		Identity (%)		29.5	57.9	37.0	43.5	30.3		27.3	45.0			100.0	100.0		45.0		39.3		30.9	24.1	21.1		
25 (Đại tại	(2000)	s gene		efaciens	}	erculosis	rescens mtID	niae dalT		2 gatR	Along xvIB	arto caronil		glutamicum	glutamicum 3		а тад		ing bacterium		nermophila	23 xylR	. mef214		
30 Selection of the Police of	o) i pige	Homologous gene		Agrobacterium tumefaciens accR	Bacillus subtilis yurT	Mycobacterium tuberculosis H37Rv Rv1276c	Pseudomonas fluorescens mtlD	Klebsiella pneumoniae dalT		Escherichia coli K12 gatR	Sistematical and an analysis of the sistematical analysis of the sistematical and an analysis of the sistematical analysis of the	oriepromyces i api		Corynebacterium glutamicum ATCC 13032 panC	Corynebacterium glutamicum ATCC 13032 panB		Arabidopsis thaliana mag		Petroleum-degrading bacterium HD-1 hde		Methanosarcina thermophila	Bacillus subtilis W23 xylR	Lactococcus lactis mef214		
35	-	db Match		sp:ACCR_AGRTU a	pir.C70019	UTOYI	orf 2309180A			B LICOLI BECOLL	\top	SP.XYLB SIRRU		gp:CGPAN_2	gp:CGPAN_1		ARATH		gp:AB029896_1		SD:CAH METTE	15			
40				sp:AC	pir.C.	sp:YC				100		-		gp:C	1	_	sp:3MG	_	gp:A		Sp.C	3 co X		+	4
		ORF (bp)	2052	780	390	510	1509	1235	25.0	2 2		+	822	837	813	951	630	654	924	627	558	114	127	8	44
45		Terminal (nt)	116548	118810	120410	120413	120951	100001	122301	24030	124900	126350	127992	126353	127192	128099	129489	130798	130815	132424	132981	132071	134207	135518	136122
50		Initial (nt)	118599	119589	120021	120922	122450	605771	123841	123842	124130	124932	127171	127189	128004	129049	-	130145		131798	4			-	1
	İ	SEQ NO.	3622	3623	3674	3625	3030	3020	362/	3028	3629	3630	3631	3632	3633	3634	3635	3636	3637	3638	3630	2 6	3641	3642	
55		SEQ NO.	122	123	125	125	90,	2	127	128	129	130	131	132	133	134	135	136	137	138	3 2	2 3	= =	142	143

EP 1 108 790 A2

5		Function			cellulose synthase	membrane profein	nypomenca memorary process			chloramphenicol sensitive protein	handhelical membrane protein	in the contract of the contrac		transport protein	hypothetical membrane protein			ATP-dependent helicase			nodulation protein	DNA repair system specific for alkylated DNA	DNA-3-methyladenine glycosylase	threonine efflux protein	hypothetical protein	doxorubicin biosynthesis enzyme	
15	Matched	length (a.a.)			420		583			2002	202	951		361	248			829			188	219	166	217	55	284	
20		Similarity (%)			51.2	4:	51.8			7 00	90.7	29.1		67.3	70.7	101		643			0.99	60.7	65.1	61.3	72.7	52.1	
	_	Identify (%)			6 7 6	24.3	25.1				34.7	30.3		700	32.4	7		326	3		40.4	34.7	39.8	34.1	50.0	3 2	2
25 	(panilli	gene			A least	raciens cerA	Wistae				ginosa rarD	yadS			2 abris	z yrcA		0 10 10	adııı z	-	osarum bv. 1JI nodL	73#1 alkB	2 tag	2 rhtC	7 IIII	State day	A min spille
30	lable I (co	Homologous gene				Agrobacterium tumeraciens cela	Saccharomyces cerevisiae YDR420W hkr1				Pseudomonas aeruginosa rarD	Escherichia coli K12 yadS			Escherichia coli K12 abre	Escherichia coli K12 yrcA		100	Escherichia con N 12 III po		Rhizobium leguminosarum bv. viciae plasmid pRL131 nodL	Escherichia coli o373#1 alkB	Escherichia coli K12 taq	T. Laistin and K.	Escherichia con mar inno	Bacillus subrills yada	Streptomyces peuceius ain v
<i>35</i> 40		db Match				pir.139714	sp:HKR1_YEAST				sp:RARD_PSEAE	sp:YADS_ECOLI			SP. ABRB_ECOLI	sp:YFCA_ECOLI			Sp.HRPB_ECOLI		SP:NODL_RHILV	SD:ALKB ECOLI	1000 1000	Sp. sivile 1 ECCL	sp:RHTC_ECOLI	sp:YAAA_BACSU	prf.2510326B
	-	ORF (bp)	1941	1539	636	1461	1731	621	1065	756	879	717	333	1659	1137	798	624	405	2388	315	675	690	+	+	678	\dashv	852
45		Terminal (nt)	138744	140329	139226	141789	143526	143075	144639	145480	145518	147238	147570	149780	149794	152369	150966	152814	153226	156167	156147	157537		158138	158831	159159	160013
50		Initial (nt)	136804	138791	139861	140329	141796	142455	143575	144725	146396	146522	147238	148122	150930	151572		152410	155613	155853				157614	158154	158869	159162
		SEQ NO.	3644	3645	3646	3647	3648	3649	3650	3651	3652	3653	3654	3655	3656	3657	3658	3659	3660	3661			\neg	3664	3665	3666	3667
55		SEQ NO.	144	145	146	147	148	149	150	15,	153	153	154	155	156	157	158	159	160	161	162		2	164	165	166	167

oxidoreductase

354

65.5

31.1

Bacillus subtilis yvaA

1023 sp:YVAA_BACSU 456

180711

179689 179081

189 3689 180842

621

179658 178461

5	Function	methyltransferase				ribonuclease			neprilysin-like metallopeptidase 1		transcriptional regulator, GntR family or fatty acyl-responsive regulator	fructokinase or carbohydrate kinase	hypothetical protein	methylmalonic acid semialdehyde dehydrogenase	myo-inositol catabolism	myo-inositol catabolism	rhizopine catabolism protein	myo-inosital 2-dehydrogenase	myo-inositol catabolism	metabolite export pump of tetracenomycin C resistance
15	Matched length	104				118			722		238	332	296 .	498	268	586	290	335	287	457
20	Similarity (%)	56.7				76.3			57.2		9.59	63.0	80.7	86.1	58.2	8.69	51.0	72.2	72.1	61.5
	Identity (%)	35.6				41.5			28.5		29.8	28.6	52.7	61.0	33.2	41.0	29.7	39.1	44.6	30.9
30 14 eHer (bending) 1.	ons gene	nyces pombe				gitidis MC58			11		K12 farR		selicolor A3(2)	selicolor msdA	iolB	Otoi	oti mocC	idh or iolG	Hloi	Streptomyces glaucescens tcmA
	Homologous gene	Schizosaccharomyces pombe SPAC1250.04c				Neisseria meningitidis MC58 NMB0662			Mus musculus nl1		Escherichia coli K12 farR	Beta vulgaris	Streptomyces coelicolor A3(2) SC8F11.03c	Streptomyces coelicolor msdA	Bacillus subtilis iolB	Bacillus subtilis iotD	Rhizobium meliloti mocC	Bacillus subtilis idh or iolG	Bacillus subtilis iolH	Streptomyces gl
35 40	db Match	gp:SPAC1250_3				gp:AE002420_13			gp:AF176569_1		sp:FARR_ECOLI	pir:T14544	gp:SC8F11_3	prf.2204281A	SP:IOLB BACSU	Sp:IOLD BACSU	Sp. MOCC RHIME	Sp:MIZD_BACSU	Sp.IOLH BACSU	sp:TCMA_STRGA
	ORF		930	657	933	405	639	741	2067	963	759	1017	921	1512	888	_	954	_	870	74
45	Terminal	9	161360	162352	161363	162867	163603	166457	163689	167419	167837	169991	170916	172444	173355	175275	176272	177318	178203	179658
50	Initial	160029	160431	161696	162295	162463	162965	165717		166457	1	168975		170933	172468	1	:			
	SEO	(a a) 3668	3669	3670	3671	3672	3673	3674	3675	3676	3677	3678	3679	3680	3681	3682	3683	3684	3685	3686
55	SEO	(DNA)	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186

EP 1 108 790 A2

5	1	Function		regulatory protein	oxidoreductase	hypothetical protein		sold shock protein			O-Bound Cob 3-O-methyltransferase	calleoyl-cov-cov-los	in the species and a second	glucose-resistance amplicacing regulator			D-xylose proton symporter		franchocase (ISCd2)	riansposes (1003)	Signatural according manager	glutamine z-oxogium argic aminotransferase large subunit	glutamine 2-oxoglutarate	aminotransterase sman supum.	in a factor of the factor of t	nypoureucar protein	
15	Matched	length (a.a.)	1	331	442	303		74	5			134		338			458		10,	9	140 C	1510	208		3	480	
20	. discipation	(%)		61.9	52.5	64.7		0.00	32.2			58.2		62.1			70.5		4-	_	60.7	100 0	8 00	2.00		72.8	
		Identity (%)		32.0	24.4	33.7			70.3			30.6		28.7			36.0			100.0	27.6	99.9	3	9. 9.		44.6	_
25	Table 1 (confinince)	is gene		uli cebR	R234 y4hM	I		licolor A3(2)						срА			vie volT		ofidamicum		oti fixL	n glutamicum	n alutamicum	n	of a classical state of the	tuberculosis	
30	lable 1 (c	Homologous gene		Strentomyces reticuli cebR	Rhizohium sp. NGR234 y4hM	Hily silitie sulfile Vill	delines sociales		streptomyces coefficient 75(2)			Stellaria longipes		Bacillus subtilis ccpA			Tivy givery aulitochate	רמכוחחמרוות אים		ATCC 13032 tnp	Rhizobium meliloti fixL	Corynebacterium glutamicum	Connebacterium dutamicum	gltD		Mycobacterium tubercurosis H37Rv Rv3698	
35		tch		Ī	1	\top	T	1									Ť	LACBK		147_1	RHIME	4708_1		4708_2		93	
40		db Match		2000	gp. SKES130	Sp Y4HM KNION	Sp. YFIH BACSO		sp.CSP_ARTGO			prf:2113413A		sp:ccPA_BACSU				sp:XYLT		gp:AF189147_1	Sp:FIXL_	ap:AB02		gp.AB024708		pir.C70793	
		ORF (bp)	100	-		1233	$\overline{}$	429	201	534	306	414	426	066	402		2 4 9	1473	30	1203	435	+ `	+	1518	240	1485	369
45		Terminal (nt)	_		181687	184051	185087	185642	186708	187302	187607	188100	188300	188747	100321	70061	190389	190703	192949	194464	194604	199769	201661	201289	201341	201760	205956
50		Initial (nt)		181264	182679	182819	184077	185214	186508	186769	187302	187687	188725	189736	00000	189920	190628	192175	193248	193262	105038			199772	201580	203244	205588
		SEO		3690		3692	3693	3694	3695	3696	2607	2608	200	3700		3/01	3702	3703	3704	3705	3706	3700	3/0/	3708	3709		3711
55				190	191	192	193	194	195	106	十	36	0 0	991		201	202	203	204	205	000	202	207	208	209	210	211

EP 1 108 790 A2

	_			_					_	_	τ		\top		$\overline{}$	Т	1					
5		Function		arabinosyl (fansierase	hypothetical membrane protein	acetoacetyl CoA reductase	oxidoreductase			and	no differential	hypothetical protein		hypothetical protein	rhamnosyl transferase		hypothetical protein	O-antigen export system ATP- binding protein	O-antigen export system permease protein	hypothetical protein	NADPH quinone oxidoreductase	
				arabin	hypoth	acetos	oxidor	1	+	100	biole	hypot	+	hypot	rhamı		hypot	O-an bindir	O-an prote	 	İ	
15		Matched Fength (a.a.)		1122	651	223	464			000	nes	124		206	302		214	236	262	416	302	
20		Similarity (%)		70.6	66.1	56.5	85.1				4.76	83.9		73.8	79.1		55.1	78.4	75.6	63.0	71.5	
		Identity (%)		39.8	35.0	31.4	66.0			,	24.3	60.5		43.2	63.6		31.3	47.0	31.3	36.5	41.1	
25	nued)	ne ne		embB	ulosis	8	ulosis				_	ulosis		ulosis	culosis		sciens tlorf100	a rfbE	a rfbD	culosis		
30	Table 1 (continued)	Homologous gene		Mycobacterium avium embB	Mycobacterium tuberculosis H37Rv Rv3792	Pseudomonas sp. phbB	Mycobacterium tuberculosis H37Rv Rv3790				Leishmania major ppg1	Mycobacterium tuberculosis H37Rv Rv3789		Mycobacterium tuberculosis H37Rv Rv1864c	Mycobacterium tuberculosis H37Rv Rv3782 rfbE		Agrobacterium tumefaciens plasmid pTi-SAKURA tlorf100	Yersinia enterocolitica rfbE	Yersinia enterocolitica rfbD	Mycobacterium tuberculosis	Homo sapiens pig3	ווסוווס מהלומות ליים
35			+	≥	ΣI	10	21		1		\neg								1			_
40		db Match		prf.2224383C	pir.D70697	prf:2504279B	pir.B70697				gp:LMA243459_1	sp:Y0GN_MYCTU		pir:H70666	pir.B70696		gp:AB016260_100	sp:RFBE_YEREN				
		ORF (bp)	318	3471	1983	759	1464	234	507	453	1002	396	402	633	939	342	597	789	804	1173		924
45		Terminal (nt)	206385	203541	207007	209210	209992	211535	212283	212735	213657	214107	214522	215159	215162	216605	216116	217141	217943	220151	2002	220154
50	•	Initial (nt)	206068	207011	208989	2000GR	211455	211768	211777	212283	212656	213712	214121	214527	216100	216264	216712	217929	218746			221107
		SEO	(a.a.)					3717	3718		<u>. </u>	3721	3722	3723	3724	3725	3726	7777	377B	27.50	3/23	3730
55			_ 	213	T	_;_	216	217		:			222	$\overline{}$		225	226	227	328	077	573	230
22		1	-		1					•		4							-			

EP 1 108 790 A2

			tein		aio 4	LOIGIII	Ψ	thesis		hesis	in	j <u>e</u>	itor		ein				
5	Function		transfer pro	er protein		osynthesis p e)	nthase, larg	cofactor biosynthesis	sis protein	o-factor syntl	mbrane prote	ng periplasm	onverting fac	rt protein	mbrane prote	hate			
10	Fur		probable electron transfer protein	amino acid carrier protein		molybdopterin biosynthesis protein moeB (sulfurylase)	molybdopterin synthase, large subunit	molybdenum cof protein CB	co-factor synthesis protein	molybdopterin co-factor synthesis protein	hypothetical membrane protein	molybdate-binding periplasmic protein	molybdopterin converting factor subunit 1	mattose transport protein	hypothetical membrane protein	histidinol-phosphate aminofransferase			
15	Matched length (a.a.)		78	475		368	150	158	154	377	227	256	96	365	121	330			
20	Similarity (%)		51.0	75.8		70.1	75.3	63.3	84.4	58.6	70.5	68.0	70.8	60.8	76.9	65.8			
	identity (%)		35.0	46.7		43.8	44.7	33.5	61.7	34.5	44.1	34.0	37.5	34.3	36.4	37.3			
30 Zable 1 (continued)	ius gene		uberculosis	IsT		sp. PCC 7942	tinovorans	sp. PCC 7942	otinovorans	otinovorans	otinovorans	otinovorans	uberculosis	toralis malK	selicolor A3(2)	bilis hisC			
Table 1	Homologous gene		Mycobacterium tuberculosis H37Rv Rv3571	Baciltus subtilis alsT		Synechococcus sp. moeB	Arthrobacter nicotinovorans	Synechococcus sp. PCC 7942 moaCB	Arthrobacter nicotinovorans	Arthrobacter nicotinovorans	Arthrobacter nicotinovorans modB	Arthrobacter nicotinovorans modA	Mycobacterium tuberculosis H37Rv moaD2	Thermococcus litoralis malk	Streptomyces coelicolor A3(2) ORF3	Zymomonas mobilis hisC			
35	db Match		PIR: A70606	BACSU		gp:SYPCCMOEB_ 1	 	SP.MOCB_SYNP7	prf:2403296C	gp:ANY10817_2	prf.2403296F	prf:2403296E	pir:D70816	prf 2518354A	8	sp:HIS8_ZYMMO			
40			PIR:A	6 sp.ALST		gp:S/		sp:M(+	5 gp:Af			+	2 prt 2			<u></u>		
	ORF (bp)	582	297	1476	606	1083	456	471	468	118	723	804	321	91	42	1023	906	294	120
45	Terminal (nt)	221131	222207	222210	225244	225242	226312	226760	227218	227703	228891	229711	230928	230931	231848	232260	234818	234910	235409
50	Initial (nt)	221712	221911	223685	224336	226324	226767	227230	227685	228887	229613	230514	230608	231842	1	233282	233913		235290
	SEQ NO.	3731	3732	3733	3734	3735	3736	3737	3738	3739	3740	3741	3742	3743	3744	3745	3746	3747	3748
55	SEQ NO (DNA)	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248

EP 1 108 790 A2

							_		_	_	$\overline{}$	$\overline{}$	-1				- 1	- 1	1	- 1	- 1	ı		- 1	- 1	- 1	
5		Function	factor	drogenase	xidase	magnesium ion transporter		Na/dicarboxylate cotransporter	3Se		protein	nitrogen fixation protein			1	membrane transport protein	queuine tRNA-ribosyltransferase	hypothetical membrane protein			Joinel	glutamyl-tkinA synthetase		e			
10			transcription factor	alcohol dehydrogenase	putrescine oxidase	magnesium		Na/dicarbox	oxidoreductase		hypothetical protein	nitrogen fixa				membrane	quevine tR	hypothetica			ABC transporter	glutamyi-tk		transposase			
15	Matched	length (a.a.)	252	335	451	444		295	317		160	144				997	400	203			526	316		360			
20		Similarity (%)	57.1	0.99	38.1	68.5		59.6	80.1	3	73.8	70.1				45.7	68.0	62.1			49.6	63.3		55.0			
	_	identity (%)	29.4	34.0	21.5	30.9		33.2	78.4		48.8	45.1				20.7	41.3	28.1			24.3	34.8		34.2			
25 G			χ	nophilus	ond s	mgtE			ercutosis		erculosis	oonicum				perculosis mpL2	is.	dP			scescens strW	3		ringae tnpA			
30 Spaintings) Foliate	lable i (c	Homologous gene	Brucella abortus oxyR	Bacillus stearothermophilus	Micrococcus rubens puo	Borrelia buradorferi matE		Vacanie laavie	Myrobacterium tubercutosis	H37Rv tyrA	Mycobacterium tuberculosis	Bradwrhizohium iabonicum	, in the second			Mycobacterium tuberculosis H37Rv Rv0507 mmpL2	Zymomonas mobilis	Bacillus subtilis ypdP			Streptomyces glaucescens strW	Bacillus subtilis gltX		Pseudomonas syringae tnpA			
<i>35</i>		db Match	n BAU81286 1 E	ST	T			1	4	pir:C70800	pir.870800	- 0	gp.rrioir.v.			sp:YV34_MYCTU	OWMYZ TOT ON	SD:YPDP BACSU			pir.S65588	SP:SYE_BACSU		gp:PSESTBCBAD_			
40		ORF (bp)	\neg	-i			<u>. i e</u>		1530 pm	1020 pir.	522 pir	- i -		201	351	2403 sp	1263 cn		_	648	-		066	1110 9	303		138
45		Terminal ORF	1	-		_	_ †	-+	241515 1	241883 1	243431	+	+	244215	244816	247304 2	240572	\top	1			1	1		255,402	232432	256204
50		Initial	7	21 2002	22000	237345	238176	239772	239986	242902	242910	216757	243494	244015	244466	244902		24/310					-				256067
		SEQ.		3750	_	-	3752	3753	3754	3755	2756	200	3757	3758	3759	3760		3/61	3763	3764	3765		+	\neg		_	3770
55		SEO	- 1	 -	Ť	251	252	253	254	255	a ii	007	257	258	259	260		261	707	3 3	285	202	2 6	890		269	270

																						_
5	-	Lancaga	inase	111 12 12 12 12 12 12 12 12 12 12 12 12	DNA polymerase III noloenzyme tao subunit		in	tein	ıase	amyl tripeptide		III epsilon chain	nbrane protein	alpha chain			extracytopiasmic function alternative sigma factor	se			ve regulatory	branched-chain amino acid transport
10			aspartate transaminase		DNA polymerase subunit		hypothetical protein	recombination protein	cobyric acid synthase	UDP-N-acetylmuramyl tripeptide	synthetase	DNA polymerase III epsilon chain	hypothetical membrane protein	aspartate kinase alpha chaln			extracytoplasmic sigma factor	vegetative catalase			leucine-responsive regulatory protein	branched-chain
15	Matched	length (a.a.)	432		642		101	214	248	1	444	346	270	421			189	492			143	203
20	Cimilarity	(%)	100.0		53.1		74.3	72.4	61.7		90.0	55.2	100.0	99.8		-	63.5	76.4			72.0	68.0
	L don't it.	(%)	98.6		31.6		41.6	42.5	38.3		31.3	25.7	100.0	99.5			31.2	52.9			37.1	30.5
25 Pari) and a	s gene	ofermentum		ilus dnaX		aX	8	odos si	2002	is murC	oerculosis .	glutamicum avum) ATCC	glutamicum			negmatis sigE	at/a			oniae Irp	A1 azlC
30	ומחוב	Homologous gene	Brevibacterium lactofermentum aspC		Thermus thermophilus dnaX		Bacillus subtilis yaak	Bacillus subtilis recR	Odon silling mobilis	Dellopacinus moon	Heliobacillus mobilis murC	Mycobacterium tuberculosis H37Rv dnaQ	Corynebacterium glutarnicum (Brevibacterium flavum) ATCC 13032 orfX	Corynebacterium glutamicum lysC-alpha			Mycobacterium smegmatis sigE	Bacillus subtilis katA			Klebsiella pneumoniae Irp	Bacillus subtilis 1A1 azlC
<i>35</i>		db Match	gsp:W69554		gp:AF025391_1		SE VAAK BACSU	1_	十	pri.2503462B	prf.2503462C	pir:H70794	sp:YLEU_CORGL	sp.AKAB_CORGL			prf.2312309A	sp:CATV_BACSU			Sp:LRP_KLEPN	sp:AZLC_BACSU
	-	ORF (bp)	1296 g	630		717	1	$\overline{}$	_	750	1269	1080	867	1263	1053	1434			342	291	462	753
45		Terminal (nt)	257894	258529	260875	SERGE	200000	C87107	567055	262546	263298	264599	268258	270633	269524	273194	273542	275871	276232	275957	276302	277581
50		Initial (nt)	256599	257900	258551	250342	710607	786097	261402	263295	264566	265678	269124	269371	270576	271761	274120		\bot			
		SEQ.	3771	2772	3773	277.4	3//4	3775	3776	3777	3778	3779	3780	3781	3782	1783	3784	3785	3786	+-		
55	-	SEQ.		27.2	273		5/4	275	276	277	278	279	280	281	282	283	284	285	286	2 2	288	289

EP 1 108 790 A2

																				$\overline{}$	
5	Function		varofein	are an expansion-transforation pump	nit	ase				Na+/H+ antiporter of multiple resistance and pH regulation related protein D	ler	Na+/H+ antiporter or multiple resistance and pH regulation related protein A				activator	two-component system sensor histidine kinase	atase		se	otein
10	пН		metalloreorganical variation	are only oxyanlor	membrane subunit	arsenate reductase				Na+/H+ antiporter of mutuple resistance and pH regulation protein D	Na+/H+ antiporter	Na+/H+ antiporter or multiple resistance and pH regulation protein A				transcriptional activator	two-component histidine kinase	alkaline phosphatase		phosphoesterase	hypothetical protein
15	Matched length (a a)		8	06	341	119				503	119	824				223	521	180		307	149
20	Similarity (%)		3	00.9	84.2	68.9				70.4	70.6	64.3				70.4	56.8	0.09		54.7	71.8
	Identity (%)			34.4	52.2	31.1				32.4	37.0	34.1				38.6	26.7	28.3		26.1	37.6
so 55 Table 1 (continued)	ous gene			o. As4 arsR	o. As4 arsB	xylosus arsC				ንF4 mrpD	aureus mnhC	ЭЕ4 тгрА				ophus CH34	tuberculosis	Lactococcus lactis MG1363 apl		ykuE	удеУ
30 ade 1	Homologous gene			Sinorhizobium sp. As4 arsR	Sinorhizobium sp. As4 arsB	Staphylococcus xylosus arsC				Bacillus firmus OF4 mrpD	Stanhylococcus aureus mnhC	Bacillus firmus OF4 mrpA				Alcaligenes eutrophus CH34 czcR	Mycobacterium tuberculosis mtrB	Lactococcus lac		Bacillus subtilis ykuE	Bacillus subtilis yqeY
35 40	db Match			gp:AF178758_1	gp:AF178758_2	SP. ARSC_STAXY				gp:AF097740_4	-4-2E04285D	gp:AF097740_1				sp:czcR_ALCEU	prf.2214304B	SP.APL LACLA		pir.B69865	sp.YQEY_BACSU
	ORF (bp)	324	315	345 gp	1080 gp	387 sp	318	270	453	1530 gp		2886 gp	1485	603	864	9	1467 pr	603	+-	+	6
45	Terminal (nt)	277904	277987	278388	279893	280279	280349	t	1	281404	10000	282937	287857	1	287966	289131	289777	292417	291273	292597	293991
50	Initial (nt)	277581	278301	278732	278814	279893	280666	280939	281401	282933		283317	286373	287661	28829	289796	291243	291815	291833	٠,	_!
	SEO	+-	3791	3792	3793	3794	-					3800	3801	2802	3803	3804	3805	3806	2807	3808	
55	SEO	290	291	292	293	294	295	296	297	298		300	204		5 5	8 8	305	306	2 2	3 2	308

EP 1 108 790 A2

5		Function	class A penicillin-binding protein(PBP1)	regulatory protein		hypothetical protein	transcriptional regulator	shikimate transport protein	oscal Act Line Hand	long-chain-fatty-acidCoA lightse	transcriptional regulator	3-oxoacyl-(acyl-carrier-protein) reductase	glutamine synthetase	short-chain acyl CoA oxidase	nodulation protein	hydrolase		Cicoco	CAMIP receptor process	ased 06/aschagasha 14 to 1	ultraviolet in-glycosylase/Ar 1983e	cytochrome c biogenesis protein
15	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Matched length (a.a.)	782	7.1		50	149	440		534	127	251	254	394	153	272			707	;	240	211
20		Similarity (%)	17.7	63.4		96.0	89.9	689		59.9	65.4	72.5	52.0	66.5	72.6	72.4			65.7		77.1	58.3
		Identity (%)	48.3	40.9		84.0	65.1	37.3		31.1	33.9	41.0	27.2	38.8	45.8	41.2			30.9		57.5	34.6
25	ominueo)	e de ue	rae pon1	color A3(2)		coelicolor A3(2)	erculosis	12 shiA		4	licolor A3(2)	99	s fluG	na atq6	nosarum nodN	berculosis			a		Spd Sr	berculosis
30	lable 1 (confined)	Homologous gene	Mycobacterium leprae pon1	Streptomyces coelicolor A3(2) whiB		Streptomyces coel	Mycobacterium tuberculosis H37Rv Rv3678c	Escherichia coli K12 shiA		Bacillus subtilis lefA	Streptomyces coelicolor A3(2) SCJ4.28c	Bacillus subtilis fabG	Emericella nidulans fluG	Arabidonsis thaliana atd6	Rhizobium leguminosarum nodN	Mycobacterium tuberculosis H37Rv Rv3677c			Vibrio cholerae crp		Micrococcus luteus pdg	Mycobacterium tuberculosis H37Rv Rv3673c
35			Į Ž	\$ \$	+	8 8	ΣI	ŭ					1	T	1				_	!		
40		db Match	prf:2209359A	pir:S20912		gp:SCH17_10	pir:G70790	SD:SHIA ECOLI		sp.LCFA_BACSU	gp.SCJ4_28	sp:FABG_BACSU	INEME CITIES	3p.1 COC.	SO NODN BHILV	pir.F70790			prf:2323349A		Sp:UVEN_MICLU	pir:B70790
		ORF (bp)	-i	339	192	153	459	1353	609	1536	525	933	5	746	47.4	843	1173	705	681	192	780	558
45		Terminal (nt)	4	297402	207622	297783	298250	_	1	Ť	301512	303099	20107	304074	305263	306700	305195	307504	306782	307727	308734	309302
50		Initial	1 00		207424		297792	200684	200087	301261	302036	302167	1			305858	306367					
		SEQ NO.			15	3813	3814	20.15	3015	3812	3818	3819		3820	3821	3823	3824	3875	3926	3827	3828	3829
55			(DNA)		-	313		\neg	315	$\overline{}$	-	\dashv	1		321	322	324	325	326	327	328	329

-				 -							Т		\top	1	\top	T	1	\neg		٦
5	Function	al protein	(einase	ydrolase	hypothetical membrane protein	phosphoserine phosphatase	hypothetical prolein	conjugal transfer region protein		hypothetical membrane protein	hypothetical protein	hypothetical protein			Carollod Alvo Land	Al P-dependent King Hendase	cold shock protein		DNA topoisomerase I	
		hypothetical protein	serine proteinase	epoxide hydrolase	hypothetic	phosphos	hypothetic	conjugal (hypotheti	hypotheti	hypotheti				Al P-dep	cold sho		DNA top	
15	Matched length (a.a.)	192	396	280	156	287	349	319		262	201	59];	/64	67		977	
20	Similarity (%)	56.3	71.0	52.1	77.6	65.5	60.2	66.5		63.7	64.2	84.8				96.1	88.1		81.6	
	Identity (%)	30.7	38.6	29.6	46.8	29.6	35.0	32.9		30.5	33.8	47.5				33.8	68.7		61.7	
25 20 Table 1 (continued)	ars gene	12 yeaB	berculosis	sp. С12 сЕН	berculosis	prae serB	berculosis	PB		berculosis	iberculosis	berculosis				prA	iformis SI55		uberculosis topA	
30 Table 1	Homologous gene	Escherichia coli K12 yeaB	Mycobacterium tuberculosis H37Rv Rv3671c	Corynebacterium sp. C12 cEH	Mycobacterium tuberculosis H37Rv Rv3669	Mycobacterium leprae MTCY20G9,32C. serB	Mycobacterium tuberculosis H37Rv Rv3660c	Escherichia coli trbB		Mycobacterium tuberculosis H37Rv Rv3658c	Mycobacterium tuberculosis H37Rv Rv3657c	Mycobacterium tuberculosis H37Rv Rv3656c				Bacillus subtilis yprA	Arthrobacter globiformis SISS csp		Mycobacterium tuberculosis H37Rv Rv3646c topA	
35	db Match	p:YEAB_ECOLI E														sp:YPRA_BACSU	sp.CSP_ARTGO			
40	ą	sp:YEA	pir:H70789	prf:2411250A	pir:F70789	pir:S72914	pir.E70788	pir.C44020	+	pir.C70788	pir:870788	pir.A70788							9 pir.G70563	
	ORF (bp)	699	1191	993	549	996	1023	1023	615	816	546	198	318	414	345	2355	201	225	2988	711
45	Terminal (nt)	310038	311325	311899	312909	313625	316002	317132	316350	317893	318465	318689	319013	318545	319335	319336	322207	321992	325897	326614
50	Initial (nt)	309370	310135	312891	313457	314590	314980	316110			317920	318492	318696	318958	318991	321690	322007	322216	322910	325904
	SEO	3830	3831	3832	3833	3834	3835	3836	3837	3838	3839	3840	3841	3842	3843	3844	3845	3846	3847	3848
55	SEQ.	(DNA)	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348

dolichol phosphate mannose synthase

230

66.5

33.9

Methanococcus jannaschii JAL-1 MJ1222

sp:YC22_METJA

759 1029

340569

341327

3864

364

nucleotide sugar synthetase UDP-sugar hydrolase

260

54.4 57.3

Salmonella typhimurium ushA Escherichia coli K12 yefJ

2082 SP.USHA_SALTY

162

345814

368

345717

343636 3868 345975

342417 3865 341347

3866 3867

365 366 367

sp:YEFJ_ECOLI

1035

342375 343451

25.8 26.1

	Г	-T			ī	\neg					Ĭ	$\neg \neg$	\Box	Ī	\neg		- 1
5		Function	adenylate cyclase	DNA polymerase III subunit tau/gamma		hypothetical protein	hypothetical protein	ribosomal large subunit pseudouridine synthase C	beta-glucosidase/xylosidase	beta-glucosidase	NAD/mycothiol-dependent formaldehyde dehydrogenase		metallo-beta-lactamase superfamily	3-oxoacyl-(acyl-carrier-protein) reductase	valanimycin resistant protein	dTDP-glucose 4,6-dehydratase	hypothetical protein
15		D c _		1	-							1					
		Matched length (a.a.)	263	423		144	172	314	558	5	362		160	251	415	320	108
20		Similarity (%)	62.4	52.7		59.0	63.4	65.0	60.2	61.4	86.5		47.5	55.8	56.4	66.3	88.9
		Identity (%)	32.7	25.3		32.6	39.0	43.6	34.8	38.6	9.99		32.5	25.9	26.3	33.8	59.3
25			50			333			\$				र्घ		JE.		
	Table 1 (continued)	Homologous gene	Stigmatella aurantiaca B17R20 cyaB	Bacillus subtilis dnaX		Ureaplasma urealyticum uu033	Deinococcus radiodurans DR0202	Escherichia coli K12 rluC	Erwinia chrysanthemi D1 bgxA	Azospirillum irakense salB	Amycolatopsis methanolica		Rhodococcus enythropolis orf5	Escherichia coli K12 fabG	Streptomyces viridifaciens vlmF	Actinoplanes sp. acbB	Mycobacterium tuberculosis H37Rv Rv3632
35				1						1	Ψ.		T		T		
40		db Match	sp:CYAB_STIAU	sp:DP3X_BACSU		gp: AE002103_3	gp:AE001882_8	sp:RLUC_ECOLI	Sn. BGLX ERWCH	an. AF090429 2	Sp.FADH_AMYME		Sp:YTH5 RHOSN	sp:FABG_ECOU	ap: AF148322 1	prf.2512357B	pir.A70562
		ORF (bp)	1041	1257	162	444	561	882	1644	1080	1104	621	537	699	1230	933	375
45		Terminal (nt)	326695	329539	329909	330376	331533	332433	334562	334053	336112	335185	336748	337449	338768	339725	340195
50		Initial (nt)	327735	328283	120748	329933	330973	331552	232010	332513	335009	335805			117519		
		SEQ.	3849	3850	385.1	3852	3853	3854	3055	2000	3857	3858	3850	3860	1861	3862	3863
55		SEQ.	349	350	351	352	353	354	200	350	357	358	350	360	76.1	362	363

5
10
15
20
25
30
35
40
45
50

		_			$\neg \tau$	\neg						$\overline{}$	\neg	\neg								
	Function		NADP-dependent alcohol dehydrogenase	glucose-1-phosphate thymidylyltransferase	ATDP-4-keto-L-rhamnose reductase	dTDP-glucose 4,6-dehydratase	NADH dehydrogenase	Fe-regulated protein		hypothetical membrane protein	metallopeptidase	prolyl endopeptidase		hypothetical membrane profein	cell surface layer protein	autophosphorylating protein Tyr kinase	protein phosphatase		capsular polysaccharide biosynthesis	ORF 3	lipopolysaccharide biosynthesis / aminotransferase	
	Matched length (a.a.)		343	285	192	343	206	325		423	461	708		258	363	453	102		613	06	394	
	Similarity (%)		74.9	84.9	74.0	83.4	61.2	66.5		68.3	62.5	56.4		46.0	76.6	57.2	68.6		65.7	51.0	68.3	
:	Identity (%)		52.2	62.8	49.5	61.8	35.4	33.2		37.4	34.1	28.4		26.0	50.7	28.5	39.2		33.0	41.0	37.1	
Table 1 (continued)	Homologous gene		Mycobacterium tuberculosis H37Rv adhC	Salmonella anatum M32 rfbA	Streptococcus mutans rmIC	Streptococcus mutans XC rmlB	Thermus aquaticus HB8 nox	Staphylococcus aureus sirA		Mycobacterium tuberculosis H37Rv Rv3630	Streptomyces coelicolor SC5F2A. 19c	Sphingomonas capsulata		Streptomyces coelicolor A3(2)	Corynebacterium ammoniagenes ATCC 6872	Acinetobacter johnsonii ptk	Acinetobacter johnsonii ptp		Staphylococcus aureus M capD	Vibrio cholerae	Campylobacter jejuni wlaK	
	db Match		sp:ADH_MYCTU	sp:RFBA_SALAN	qp:D78182 5	Sp. RMLB STRMU	Sp:NOX_THETH	prf:2510361A		sp:Y17M_MYCTU	gp:SC5F2A_19	prf:2502226A		gp:SCF43_2	gsp:W56155	prf.2404346B	prf.2404346A		sp:CAPD_STAAU	PRF:2109288X	prf:2423410L	
	ORF (bp)	351	1059	855	1359	1131	579	945	639	1308	1380	2118	573	1092	1095	1434	603	984	1812	942	1155	
	Terminal (nt)	346110	346961	348098	348952	350313	351370	353637	353749	354599	355849	357237	359762	360814	362057	365257	365852	366838	368643	367701	369801	
	Initial (nt)	346460	348019	348952	350310	351443	351948	352693	354387	355906	357228	359354	360334	361905	363151	363824	365250			368642	ل	
	SEQ NO.	3869	3870	3871	3872	3873	3874	3875	3876	3877	3878	3879	3880	3881	3882	3883	3884	3885	3886	3887	3888	
	SEO NO.	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388	

5
10
15
20
25
30
35
40
45
50

						Table 1 (continued)				
SEO NO.	SEQ NO.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
389	3889	369794	370405	612	gp:AF014804_1	Neisseria meningitidis pglB	54.6	75.0	196	pilin glycosylation protein
390	3890	370613	371773	1161	sp.CAPM_STAAU	Staphylococcus aureus M capM	33.4	69.2	380	capsular polysaccharide biosynthesis
391	3891	371929	373419	1491	pir.S67859	Xanthomonas campestris gumJ	34.3	8.69	504	lipopolysaccharide biosynthesis / export protein
392	3892	373500	374813	1314	sp:MURA_ENTCL	Enterobacter cloacae murA	31.4	64.6	427	UDP-N-acetylglucosamine 1- carboxyvinyltransferase
393	3893	374833	375837	1005	sp:MURB_BACSU	Bacillus subtilis murB	34.8	68.5	273	UDP-N- acetylenolpyruvoylglucosamine reductase
394	3894	375842	376876	1035	gp:VCLPSS_9	Vibrio cholerae ORF39x2	32.0	57.3	356	sugar transferase
395	3895	377683	377832	150	prf 2211295A	Corynebacterium glutamicum	60.4	79.3	53	transposase
396	3896	378093	378227	135						
397	3897	378185	378511	327	pir.S43613	Corynebacterium glutamicum ATCC 31831	75.7	94.3	70	transposase (insertion sequence IS31831)
398	3898	378562	378287	276						
399	3899	379837	378668	1170	pir.G70539	Mycobacterium tuberculosis H37Rv Rv1565c	28.0	57.4	404	hypothetical protein
400	3900	380842	379850	993	gsp:W37352	Pseudomonas aeruginosa PAO1 psbC	34.5	60.2	354	acetyltransferase
401	3901	381265	381495	231	PIR:S60890	Corynebacterium glutamicum	44.0	53.0	65	hypothetical protein B
402	3902	381948	383108	1161	sp:UDG8_ECOLI	Escherichia coli ugd	63.7	89.7	388	UDP-glucose 6-dehydrogenase
403	3903	383768	383496	273						
404	3904	385190	383982	1209						
405	3905	386195	385374	822	gp:AF172324_3	Escherichia coli wbnA	32.1	65.0	243	glycosyl transferase
406	3906	386556	387200	645	gp:AB008676_13	Escherichia coli 0157 wbhH	33.0	62.0	221	acetyltransferase
407	3907	387657	387463	195						

EP 1 108 790 A2

		_			—				\neg	1	\neg	\top	\top	Т	\neg	Т	T			
5	Function	dihydrolipoamide dehydrogenase	UTPglucose-1-phosphate uridylyltransferase	regulatory protein	transcriptional regulator	cytochrome b subunit	succinate dehydrogenase flavoprotein	succinate dehydrogenase subunit B						hypothetical protein	hypothetical protein			tetracenomycin C transcription repressor		transporter
15	Matched length (a.a.)	469 d	295 ^U	153	477 tu	230 c	809 fl	258 s						259 1	431			197		499
20	Similarity (%)	100.0	68.1	71.9	81.3	67.4	61.2	56.2						49.8	64.3			53.8		74.6
	Identity (%)	93.6	41.7	43.8	57.0	34.8	32.4	27.5						26.3	32.7			26.4		36.1
25 (panuj	ene	amicum	stris	nosa PAO1	culosis	lor A3(2)		ns sdhB						lor	Nijk			scens		T#2717
8 Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 lpd	Xanthomonas campestris	Pseudomonas aeruginosa PAO1 orfX	Mycobacterium tuberculosis H37Rv Rv0465c	Streptomyces coelicolor A3(2) SCM10.12c	Bacillus subtilis sdhA	Paenibacillus macerans sdhB						Streptomyces coelicolor SCC78.05	Escherichia coli K12 yjiN			Streptomyces glaucescens GLA.0 tcmR		Streptomyces fradiae T#2717 urdJ
35		O &			21		<u> </u>	 												
40	db Match	gp:CGLPD_1	pir:JC4985	gp:PAU49666_2	pir.E70828	gp:SCM10_12	pir.A27763	gp:BMSDHCAB_4						gp:SCC78_5	sp:YJIN_ECOL			sp:TCMR_STRGA		gp:AF164961_8
	ORF (bp)	1407	921	498	1422	771	1875	837	336	261	630	96	339	975	1251	420	303	678	204	1847
45	Terminal (nt)	389098	390168	390730	390787	393475	395513	396262	396650	396932	396411	397825	398222	397232	399579	400017	400341	401150	401253	402796
50	Initial (nt)	387692	389248	390233	392208	392705	393639	395426	396315	396672	397040	397730	397884	398206	398329	399598	400039	400473	401050	401150
	SEQ NO.	3908	3909	3910	3911	3912	3913	3914	3915	3916	3917	3918	3919	3920	3921	3922	3923	3924	3925	3926
55	SEQ NO.	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426

	_						_		— Т	-		-		1		E	·I	1	\neg	\neg	\neg
5		Function	Iransporter	formyltetrahydrofolate deformylase	deoxyribose-phosphate aldolase			hypothetical protein	hypothetical protein		cation-transporting P-type ATPase B		glucan 1,4-alpha-glucosidase	hemin-binding periplasmic protein	ABC transporter	ABC transporter ATP-binding protein	hypothelical protein	hypothetical protein			
15		Matched length (a.a.)		286	208			280	92		748		626	348	330	254	266	258			
20		Similarity (%)	74.6	72.7	74.0			53.6	85.9		75.3		56.1	83.6	90.3	85.0	56.4	61.6			
		fdentity (%)	39.6	40.9	38.5			26.8	58.7		45.7		27.3	57.2	65.2	63.8	28.6	32.6			
25	lable 1 (confinued)	s gene	iae T#2717	sp. P-1 purU	ပ္မ			ium GIR 10	berculosis		orae ctpB		erevisiae ta1	diphtheriae	diphtheriae	diphtheriae	licolor C75A	licolor C75A			
30	lable 1 (c	Homologous gene	Streptomyces fradiae T#2717 urdJ	Corynebacterium sp.	Bacillus subtilis deoC			Mycobacterium avium GIR 10 mav 346	Mycobacterium tuberculosis H37Rv Rv0190		Mycobacterium leprae ctpB		Saccharomyces cerevisiae S288C YIR019C sta1	Corynebacterium diphtheriae hmuT	Corynebacterium diphtheriae hmuU	Corynebacterium diphtheriae hmuV	Streptomyces coelicolor C75A SCC75A.17c	Streptomyces coelicolor C75A SCC75A 17c			
<i>40</i>		db Match	3p. AF164961_8	Sp. PURU_CORSP (1			prf.2413441K	pir.A70907		SP.CTPB_MYCLE		SP:AMYH_YEAST	gp:AF109162_1	gp:AF109162_2	gp:AF109162_3	gp:SCC75A_17	gp:SCC75A_17			
		ORF (bp)	1632	912	999	150	897	1 298	98	99	1	450	1863	1077	1068	813	957	837	810	813	501
45		Terminal (nt)	404430	404508	406145	406161	405521	407416	407409	409145	407711	410027	412545	413633	414710	415526	416599	417439	417545	418441	419257
50		Initial (nt)	402799	405419	405480	406310	406417	406550	407708	408546	409975	410476	410683	412557	413643	414714	415643	416603	418354		419757
		SEQ NO.	3927	3928	3929	3930	3931	3932	3933	7634	3935	3936	3937	3938	3939	3940	3941	3942	3943	3944	3945
55		SEQ.	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445

15	nity Matched (a.a.)	UDP-N-acetylpyruvoylglucosamine reductase				long-chain-fatty-acidCoA ligase	transferase	phosphoglycerate mutase	two-component system sensor histidine kinase	two-component response regulator		ABC transporter ATP-binding protein	cytochrome P450	exopolyphosphatase	hypothetical membrane protein	pyrroline-5-carboxylate reductase	membrane glycoprotein	hypothetical protein	
		_ m			+	558 long-	416 trans	246 phos	417 two-c	231 two-c		921 ABC	269 cytor	306 exop	302 hуро	269 pyrrc	394 mem	55 hypo	
20	Similarity (%)	58.4			-	68.1	58.7	84.2	74.8	6.06		60.7	6.99	57.8	57.3	100.0	52.0	94.6	
	Identity (%)	30.1				35.5	33.9	7.07	49.2	75.8		31.3	45.0	28.8	28.8	100.0	25.4	76.4	
<i>25</i> (panui	ene)12 murB					lor	or A3(2)	senX3	ВСС		lor A3(2)	culosis	nosa ppx	culosis	amicum	ORF71	a)	
8 Table 1 (continued)	Homologous gene	Escherichia coli RDD012 murB				Bacillus subtilis IcfA	Streptomyces coelicolor SC2G5.06	Streptomyces coelicolor A3(2) gpm	Mycobacterium bovis senX3	Mycobacterium bovis BCG regX3		Streptomyces coelicolor A3(2) SCE25.30	Mycobacterium tuberculosis H37Rv RV3121	Pseudomonas aeruginosa ppx	Mycobacterium tuberculosis H37Rv Rv0497	Corynebacterium glutamicum ATCC 17965 proC	Equine herpesvirus 1 ORF71	Mycobacterium teprae B2168_C1_172	
35	·	-		-	-		कें कें	$\overline{}$	Ź	Ž ė		SC		ď			ш	≥ 83	H
40	db Match	gp:ECOMURBA_1				sp:LCFA_BACSU	gp:SC2G5_6	sp:PMGY_STRCO	prf 2404434A	prf.2404434B		gp:SCE25_30	sp:YV21_MYCTU	prf.2512277A	sp:YV23_MYCTU	sp.PROC_CORGL	gp:D88733_1	pir.S72921	
	ORF (bp)	1101	651	735	174	1704	1254	744	1239	969	879	2586	903	927	813	810	1122	198	219
45	Terminal (nt)	420885	421516	420309	422031	422090	425131	425920	427172	427867	429439	429438	432126	433988	434822	435695	433865	436137	436103
50	Initial (nt)	419785	420866	421043	421858	423793	423878	425177	425934	427172	428561	432023	433028	433062	434010	434886	434986	435940	436321
	SEQ NO.	3946	3947	3948	3949	3950	3951	3952	3953	3954	3955	3956	3957	3958	3959	3960	3961	3962	3963
55	SEO		447	448	449	450	:	452	453	454	455	456	457	458		460	461	462	463

5	Function	hypothetical protein	The state of the s		phosphoserine phosphatase	hypothetical protein		glutamyl-tRNA reductase	hydroxymethylbilane synthase		cat operon transcriptional regulator	shikimate transport protein	3-dehydroshikimate dehydratase	shikimate dehydrogenase		putrescine transport protein		iron(III)-transport system permease protein		periplasmic-iron-binding protein	uroporphyrin-III C-methylfransferase	
15	ed •	hypotheti			T				П						1	T				1	\dashv	
	Matched length (a.a.)	29			296	74		455	308		321	417	309	282		363		578		347	486	
20	Similarity (%)	100.0			77.4	66.2		74.3	75.3		57.6	72.2	57.9	98.6		68.6		55.2		59.9	71.6	
	Identity (%)	89.7			51.0	40.5		44.4	50.7		27.1	35.5	28.2	98.2		34.7		25.1		25.1	46.5	
52 Table 1 (continued)	s gene	icolor			rae serB	serculosis		orae hemA	orae hem3b		oaceticus	12 shiA	a qa4	glutamicum		12 potG		ns sfuB		/senteriae bitA	prae cysG	
% Zable 1 (c	Homologous gene	Streptomyces coelicolor SCE68.25c			Mycobacterium leprae MTCY20G9.32C. serB	Mycobacterium tuberculosis H37Rv Rv0508		Mycobacterium leprae hemA	Mycobacterium leprae hem3b		Acinetobacter calcoaceticus catM	Escherichia coli K12 shiA	Neurospora crassa qa4	Corynebacterium glutamicum ASO19 aroE		Escherichia coli K12 potG		Serratia marcescens sfuB		Brachyspira hyodysenteriae bitA	Mycobacterium leprae cysG	
40	db Match	gp:SCE68_25			pir.S72914	sp:YV35_MYCTU		Sp:HEM1_MYCLE	pir.S72887		sp:CATM_ACICA	SP. SHIA ECOLI	œ	gp:AF124518_2		sp:POTG_ECOLI		sp:SFUB_SERMA		gp:SHU75349_1	pir:S72909	
	ORF (bp)	66	192	618	1065	246	258	1389	906	372	882	1401	1854	849	273	1050	615	1644	1113	1059	1770	426
45	Terminal (nt)	436561	436764	437850	436980	438424	438037	439904	440814	441591	441501	444158	446038	447386	447398	448130	449100	449183	451961	450837	454430	454875
50	Initial (nt)	436463	436573	437233	438044	438179	438294	438516	4	441220	!	442758		1	447670	449179	449714	<u>:</u>	450849	451895	452661	454450
	SEQ NO (a a)	+	3965	3966	T	3968	3969	†	1	3972	 	3974			3977	3978		+	3981	1	3983	3984
55	SEQ NO.	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483	484

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

_																				
	Function	delta-aminolevulinic acid dehydratase			cation-transporting P-type ATPase B		uroporphyrinogen decarboxylase	protoporphyrinogen IX oxidase	glutamate-1-semialdehyde 2,1- aminomutase	phosphoglycerate mutase	hypothetical protein	cytochrome c-type biogenesis protein	hypothetical membrane protein	cytochrome c biogenesis protein		transcriptional regulator	Zn/Co transport repressor		hypothetical membrane protein	1,4-dihydroxy-2-naphthoate octaprenyltransferase
	Matched length (a.a.)	337			858		364	464	425	161	208	245	533	338		144	06		82	301
	Similarity (%)	83.1			56.5		7.92	6.69	83.5	62.7	71.2	85.3	76.0	77.8		69.4	72.2		78.1	61.5
	Identity (%)	60.8			27.4		55.0	28.0	61.7	28.0	44.7	53.5	50.7	44.1		38.9	31.1		39.0	33.6
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) hemB			Mycobacterium leprae ctpB		Streptomyces coelicolor A3(2) hemE	Bacillus subtilis hemY	Mycobacterium leprae heml.	Escherichia coli K12 gpmB	Mycobacterium tuberculosis H37Rv Rv0526	Mycobacterium tuberculosis H37Rv ccsA	Mycobacterium tuberculosis H37Rv Rv0528	Mycobacterium tuberculosis H37Rv ccsB		Mycobacterium tuberculosis H37Rv Rv3678c pb5	Staphylococcus aureus zntR		Mycobacterium tuberculosis H37Rv Rv0531	Escherichia coli K12 menA
	db Match	sp:HEM2_STRCO			sp:CTPB_MYCLE		sp:DCUP_STRCO	sp:PPOX_BACSU	sp:GSA_MYCLE	sp:PMG2_ECOLI	pir.A70545	pir.B70545	pir.C70545	pir:D70545		pir:G70790	prf:2420312A		pir.F70545	sp:MENA_ECOL!
	ORF (bp)	1017	582	510	2544	843	1074	1344	1311	909	621	792	1623	1011	801	471	357	300	333	894
	Terminal (nt)	455983	456597	457150	459900	458583	461093	462455	463867	464472	465102	465909	467571	468658	470170	470654	470657	471121	471847	471915
	Initial (nt)	454967	456016	456641	457357	459425	460020	461112	462557	463867	464482	465118	465949	467648	469370	470184	471013	471420	471515	472808
	SEQ NO.	3985	3986	3987	3988	3989	3990	3991	3992	3993	3994	3995	3996	3997	3998	3999	4000	4001	4002	4003
	SEO NO.		486	487	488	489	490	491	492	493	494	495	496	497	498	499	500	501	505	503

			_						_											
	Function	glycosyl transferase	malonyl-CoA-decarboxylase	hypothetical membrane protein	ketoglutarate semialdehyde dehydrogenase	5-dehydro-4-deoxyglucarate dehydratase	als operon regulatory protein	hypothetical protein		2-pyrone-4,6-dicarboxylic acid				low-affinity inorganic phosphate transporter			naphthoate synthase	peptidase E	pterin-4a-carbinolamine dehydratase	muconate cycloisomerase
	Matched length (a.a.)	238	421	139	520	303	293	94		267				410			293	202	22	335
	Similarity (%)	9.29	51.5	65.5	76.0	75.6	66.2	64.9		54.7				83.2			703	82.7	68.8	76.7
	Identity (%)	32.4	25.4	35.3	50.4	48.5	36.9	33.0		28.1				0.09			48.5	67.9	37.7	54.0
Table 1 (continued)	Homalogous gene	Bacteroides fragilis wcgB	Rhizobium trifolii matB	Escherichia coli K12 yajF	Pseudomonas putida	Pseudomonas putida KDGDH	Bacillus subtilis 168 alsR	Mycobacterium tuberculosis H37Rv Rv0543c		Sphingomonas sp. LB126 fldB				Mycobacterium tuberculosis H37Rv pitA			Bacillus subtilis menB	Deinococcus radiodurans DR1070	Aquifex agolicus VF5 phhB	Mycobacterium tuberculosis H37Rv Rv0553 menC
	db Match	gp:AF125164_6	prf:2423270B	sp:YQJF_ECOLI	pir:S27612	sp:KDGD_PSEPU	sp:ALSR_BACSU	pir:B70547		gp:SSP277295_9				pir.D70547			sp:MENB_BACSU	gp:AE001957_12	pir:C70304	pir:D70548
	ORF (bp)	864	1323	411	1560	948	879	315	444	750	417	378	261	1275	222	306	957	603	309	1014
	Terminal (nt)	473811	473814	474997	475489	477048	478092	478989	480597	479452	480208	480624	481131	481394	483366	483637	484106	485986	485077	487014
	Initial (nt)	472948	475136	475407	477048	477995	478970	479303	480154	480201	480624	481001	481391	482668	483587	483942	485062	485384	485385	486001
	SEQ NO.	4004	4005	4006	4007	4008	4009	4010	4011	4012	4013	4014	4015	4016	4017	4018	4019	4020	4021	4022
	SEQ NO. (DNA)	504	505	506	507	508	509	510	511	512	513	514	515	516	517	518	519		521	T .

10	Function	2-oxoglutarate decarboxylase and 2- succinyl-6-hydroxy-2,4- cyclohexadiene-1-carboxylate synthase	hypothetical membrane protein	aipha-D-mannose-alpha(1- 6)phosphatidyl myo-inositol monomannoside transferase	D-serine/O-alanine/glycine transporter	ubiquinone/menaquinone biosynthesis methyltransferase		oxidoreductase	heptaprenyl diphosphate synthase component II	preprotein translocase SecE subunit	transcriptional antiterminator protein	50S ribosomal protein L11	50S ribosomal protein L1	regulatory protein	4-aminobutyrate aminotransferase
15	Matched length (a.a.)	909	148	408	447	237		412	316	111	318	145	236	564	443
20	Similarity (%)	54.0	64.9	54.2	89.9	66.7		76.7	67.1	100.0	100.0	100.0	100.0	50.2	82.4
	Identity (%)	29.4	37.2	22.8	66.2	37.1		49.0	39.2	100.0	100.0	100.0	100.0	23.1	60.5
Table 1 (continued)	Homologous gene	Bacillus subtilis menD	Mycobacterium tuberculosis H37Rv Rv0556	Mycobacterium tuberculosis H37Rv pimB	Escherichia coli K12 cycA	Escherichia coli K12 ubiE		Mycobacterium tuberculosis H37Rv Rv0561c	Bacillus stearothermophilus ATCC 10149 hepT	Corynebacterium glutamicum ATCC 13032 secE	Corynebacterium glutamicum ATCC 13032 nusG	Corynebacterium glutamicum ATCC 13032 rplK	Corynebacterium glutamicum ATCC 13032 rplA	Streptomyces coelicolor SC5H4.02	Mycobacterium tuberculosis H37Rv RV2589 gabT
·	Ē	Bacillus su	Mycobacterium H37Rv Rv0556	Mycobacteriu H37Rv pimB	Escherichi	Escherichi		Mycobacterium t H37Rv Rv0561c	Bacillus stearother ATCC 10149 hepT	Corynebacterium g ATCC 13032 secE	Corynebac ATCC 130	Corynebacterium ATCC 13032 rpIK	Corynebacterium ATCC 13032 rplA	Streptomyc SC5H4.02	Mycobacte H37Rv RV
<i>35</i>	db Match	sp:MEND_BACSU	pir:G70548 ,	pir:H70548	sp:CYCA_ECOLI	sp:UBIE_ECOLI		pir.D70549	sp.HEP2_BACST	gp:AF130462_2	gp:AF130462_3	gp:AF130462_4	gp:AF130462_5	gp.SC5H4_2	sp:GABT_MYCTU
	ORF (bp)	1629	441	1239	1359	069	699	1272	1050	333	954	435	708	1512	1344
45	Terminal (nt)	488656	489100	490447	491938	492655	493583	492645	495110	497142	498327	499032	499869	499925	502920
50	fnitial (nt)	487028	488660	489209	490580	491966	492915	493916	494061	496810	497374	498598	499162	501436	501577
	SEQ NO.	4023	4024	4025	4026	4027	4028	4029	4030	4031	4032	4033	4034	4035	4036
55	SEQ NO.	523	524	525	526	527	528	529	530	531	532	533	534	535	536

EP 1 108 790 A2

					_													
5		Function	succinate-semialdehyde dehydrogenase (NAD(P)+)	novel two-component regulatory system	tyrosine-specific transport protein	calion-transporting ATPase G	hypothetical protein or dehydrogenase		50S ribosomal protein L10	50S ribosomal protein L7/L12		hypothetical membrane protein	DNA-directed RNA polymerase beta chain	DNA-directed RNA polymerase beta chain	hypothetical protein		DNA-binding protein	hypothetical protein
15		Matched length (a.a.)	461 suc	150 novel to system	447 tyro	615 cati	468 hyp		170 50S	130 508		283 ћур	1180 DNA-c	1332 DNA-	169 hур		232 DNA	215 hypo
20		Similarity M	71.8	38.0	49.9	64.4	66.2		84.7	89.2		55.5	90.4	88.7	52.0		63.8	57.7
		Identity (%)	40.8	32.0	25.5	33.2	40.2		52.9	72.3		25.8	75.4	72.9	39.0		39.2	29.3
25	Table 1 (continued)	us gene	(12 gabD	ilense carR	(12 0341#7	uberculosis ctpG	dans P49		seus N2-3-11	uberculosis pIL		uberculosis	Jberculosis poB	uberculosis poC	uberculosis		elicolor A3(2)	iberculosis
30	Table 1	Homologous gene	Escherichia coli K12 gabD	Azospirillum brasilense carR	Escherichia coli K12 o341#7 tyrP	Mycobacterium tuberculosis H37Rv RV1992C ctpG	Streptomyces lividans P49		Streptomyces griseus N2-3-11 rpU	Mycobacterium tuberculosis H37Rv RV0652 rplL		Mycobacterium tuberculosis H37Rv Rv0227c	Mycobacterium tuberculosis H37Rv RV0667 rpoB	Mycobacterium tuberculosis H37Rv RV0668 rpoC	Mycobacterium tuberculosis H37Rv Jv0166c		Streptomyces coelicolor A3(2) SCJ9A. 15c	Mycobacterium tuberculosis H37Rv RV2908C
35		db Match	sp.GABD_ECOLI E	GP.ABCARRA_2	sp:TYRP_ECOLI	sp:CTPG_MYCTU	sp.P49_STRLI		Sp.RL10_STRGR	Sp.RL7_MYCTU N			sp.RPOB_MYCTU	sp.RPOC_MYCTU	GP.AF121004_1 h		gp:SCJ9A_15	sp:YT08_MYCTU
40				GP:AE					sp.RL	Sp.RL		pir:A70962	<u> </u>				gp:SC	sp:YT(
		ORF (bp)	1359	468	1191	1950	1413	603	513	384	138	972	3495	3999	582	180	780	798
45		Terminal (nt)	504283	503272	505569	507647	509081	969609	510510	510974	510989	512507	516407	520492	518696	520850	521644	521679
50		Initial (nt)	502925	503739	504379	505698	507669	509094	509998	510591	511126	511536	512913	516494	519277	520671	520865	522476
		SEQ NO.	4037	4038	4039	4040	4041	4042	4043	4044	4045	4046	4047	4048	4049	4050	4051	4052
55		SEQ NO.	537	538	539	540	541	542	543	544	545	546	547	548	549	550	551	552

5
10
15
20
25
30
35
40
45
50

						_										_	_						_
	Function	30S ribosomal protein S12	30S ribosomal protein S7	elongation factor G		1:00000	ilpoprotein		GFA 1	ferric enterobactin transport ATP- binding protein	ferric enterobactin transport protein	ferric enterobactin transport protein	A emyrador ofatororia of herbit	butyry-CoA. acetate coefizyine A. transferase	30S ribosomal protein S10	50S ribosomal protein L3		50S ribosomal protein L4	50S ribosomal protein L23		50S ribosomal protein LZ	30S ribosomal protein S19	
	Matched length (a.a.)	121	154	709		;	44			258	329	375	3	145	101	212		212	98		280	92	
	Similarity (%)	97.5	94.8	88.9		0.00	0.87			83.7	77.8	808	0.80	79.3	0.66	99.6		90.1	90.6		92.9	98.9	
	Identity (%)	90.9	81.8	71.7			56.0			56.2	45.6	40 4	0.0	56.6	84.2	66.5		71.2	74.0		80.7	87.0	
Table 1 (continued)	Homologous gene	Mycobacterium intracellulare rpsL	Mycobacterium smegmatis LR222 rpsG	Micrococcus luteus fusA			Chlamydia trachomatis			Escherichia coli K12 fepC	Escherichia coli K12 fepG	G-3 C72	Escherichia coli K12 repu	Thermoanaerobacterium thermosaccharolyticum actA	Planobispora rosea ATCC 53733 rpsJ	Mycobacterium bovis BCG rplC		Mycobacterium bovis BCG rplD	Mycobacterium bovis BCG rpfW		Mycobacterium bovis BCG rplB	Mycobacterium tuberculosis H37Rv Rv0705 rpsS	
	db Match	sp.RS12_MYCIT	sp.RS7_MYCSM	sp:EFG_MICLU			GSP: Y37841			sp:FEPC_ECOLI	LICOS ECOLI	אין בו סביים	Sp.FEPD_ECOU	gp:CTACTAGEN_1	sp:RS10_PLARO	sp:RL3_MYCBO		Sp:RL4_MYCBO	sp:RL23_MYCBO		sp:RL2_MYCLE	sp:RS19_MYCTU	
	ORF (bp)	366	465	2115	2160	144	228	153	729	792	1035		1035	516	303	654	687	654	303	327	840	276	285
	Terminal (nt)	523059	523533	526010	523911	526013	526894	527607	528768	528779	202002	760670	530748	532523	533401	534090	533401	534743	535048	534746	535915	536210	535899
	Initial (nt)	522694	523069	523896	526070	526156	527121	527759	528040	529570			531782	532008	533099	533437		١		535072	_		536183
	SEO		4054	4055	4056	4057	4058	4059	4060	4061		4062	4063	4064	4065	4066	4067	4068	4069	4070	4071	4072	4073
	SEQ.		554	555	†	1	558	1	-	1		562	563	564	565	566	567	568	569	570	571	572	573

5
10
15
20
25
30
35
40
45
50

	Function	50S ribosomal protein L22	30S ribosomal protein S3	50S ribosomal protein L16	50S ribosomal protein L29	30S ribosomal protein S17				50S ribosomal protein L14	50S ribosomal protein L24	50S ribosomal protein L5		2,5-diketo-D-gluconic acid reductase		formate dehydrogenase chain D	molybdopterin-guanine dinucleotide biosynthesis protein	formate dehydrogenase H or alpha chain			ABC transporter ATP-binding protein		
	Matched length (a.a.)	109	239	137	67	82				122	105	183		260		298	94	756			624		
	Similarity (%)	91.7	91.2	88.3	88.1	89.0				95.1	91.4	92.3		74.2		59.7	68.1	53.4			52.6		
	Identity (%)	74.3	77.4	69.3	65.7	69.5				83.6	76.2	73.6		52.3		28.9	37.2	24.3			26.9		
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0706 rplV	Mycobacterium bovis BCG rpsC	Mycobacterium bovis BCG rplP	Mycobacterium bovis BCG rpmC	Mycobacterium bovis BCG rpsQ				Mycobacterium tuberculosis H37Rv Rv0714 rplN	Mycobacterium tuberculosis H37Rv Rv0715 rplX	Micrococcus tuteus rpIE		Corynebacterium sp.		Wolinella succinogenes fdhD	Streptomyces coelicolor A3(2) SCGD3.29c	Escherichia coli fdfF			Mycobacterium tuberculosis H37Rv Rv1281c oppD		
,	db Match	sp.RL22_MYCTU	sp:RS3_MYCBO	sp:RL16_MYCBO	sp:RL29_MYCBO	Sp.RS17_MYCBO				sp:RL14_MYCTU	sp:RL24_MYCTU	sp:RL5_MICLU		sp.2DKG_CORSP		Sp:FDHD_WOLSU	gp:SCGD3_29	Sp.FDHF_ECOU			sp:YC81_MYCTU		
	ORF (bp)	360	744	414	228	276	294	318	969	366	312	573	1032	807	492	915	336	2133	756	804	1662	1146	1074
	Terminal (nt)	536576	537322	537741	537971	538252	537974	538381	538718	540106	540423	540998	542079	542090	542921	543415	544335	544757	548084	548187	548990	550699	551854
	Initial (nt)	536217	536579	537328	537744	537977	538267	538698	539413	539741	540112	540426	541048	542896	543412	544329	544670	546889	547329	548990	550651	551844	552927
	SEQ NO. (a.a.)	4074	4075	4076	4077	4078	4079	4080	4081	4082	4083	4084	4085	4086	4087	4088	4089	4090	4091	4092	4093	4094	4095
	SEO NO. (DNA)	574	575	576	577	578	579	580	581	582	583	584	585	586	587	588	589	590	591	592	593	594	595

5
10
15
20
25
30
35
40
45
50

	Function	hypothetical protein	hypothetical protein	30S ribosomal protein S8	50S ribosomal protein L6	50S ribosomal protein L18	30S ribosomal protein S5	50S ribosomal protein L30	50S ribosomal protein L15		methylmatonic acid semialdehyde dehydrogenase		novel two-component regulatory system	aldehyde dehydrogenase or betaine aldehyde dehydrogenase			reductase	2Fe2S ferredoxin	p-cumic alcohol dehydrogenase	hypothetical protein	phosphoenolpyruvate synthetase	phosphoenolpyruvate synthetase	cytochrome P450
	Matched length (a.a.)	405	150	132	179	110	171	55	143		128		125	487			409	107	257	22	629	378	422
	Similarity (%)	50.4	66.7	7.76	87.7	90.9	88.3	76.4	87.4		68.8		52.0	71.5			71.6	66.4	70.8	26.0	45.0	66.7	65.2
	Identity (%)	24.7	42.7	75.8	59.2	67.3	67.8	54.6	66.4		46.9		47.0	41.7			41.1	47.7	35.8	50.0	22.9	38.6	34.8
Table 1 (continued)	Homologous gene	Archaeoglobus fulgidus AF1398	Deinococcus radiodurans DR0763	Micrococcus luteus	Micrococcus luteus	Micrococcus luteus rptR	Micrococcus luteus rpsE	Escherichia coli K12 rpmJ	Micrococcus luteus rpIO		Streptomyces coelicolor msdA		Azospirillum brasilense carR	Rhodococcus rhodochrous plasmid pRTL1 orf5			Sphingomonas sp. redA2	Rhodobacter capsulatus fdxE	Pseudomonas putida cymB	Aeropyrum pernix K1 APE0029	Pyrococcus furiosus Vc1 DSM 3638 ppsA	Pyrococcus furiosus Vc1 DSM 3638 ppsA	Rhodococcus erythropolis thcB
	db Match	pir.E69424	gp:AE001931_13	pir.S29885	pir.S29886	Sp:RL18 MICLU	Sp:RS5_MICLU	Sp:RL30_ECOLI	sp:RL15_MICLU		prt:2204281A		GP:ABCARRA_2	prf.2516398E			prf.2411257B	prf.2313248B	gp:PPU24215_2	PIR:H72754	pir.JC4176	pir.JC4176	1290 prf.2104333G
	ORF (bp)	1182	468	396	534	402	633	183	444	729	321	363	456	1491	735	306	1266	318	744	213	1740	1080	1290
	Terminal (nt)	552948	554452	555726	556282	556690	557366	557555	558008	556860	558197	558607	560260	559144	560634	562937	561368	562646	562993	564083	563732	565680	566799
	Initial (nt)	554129	554919	555331	555749	556289	556734	557373	557565	557588	558517	558969	559805	560634	561368	562632	562633				٠	566759	568088
	SEQ NO.	4096	4097	4098	4000	100	4101	4102	4103	4104	4105	4106	4107	4108	4109	4110	4111	4112	4113	4114	4115	4116	4117
	SEQ NO.	596	597	50R	\neg		9	602	603	604	ĺ	606	607	809	609	610	611	612	613	614	615	616	617

EP 1 108 790 A2

10	Function	transcriptional repressor	adenylate Kinase	methionine aminopeptidase		1-11 report factor IE-1	(ransianon imitation iactor ii - i	30S ribosomal protein S13	30S ribosomal protein S11	30S ribosomal protein S4	RNA polymerase alpha subunit		50S ribosomal protein L17	pseudouridylate synthase A	hypothetical membrane protein			hypothetical protein	cell elongation protein	cyclopropane-fatty-acyi-phospholipid synthase	hypothetical membrane protein
15	Matched length (a.a.)	256	184	253	253	ş	27	122	134	132	311		122	265	786			485	505	423	100
20	Similarity (%)	66.0	81.0	7.47	7		86.0	91.0	93.3	93.9	77.8		77.1	61.1	51.2			53.8	50.9	56.0	59.0
	Identity (%)	28.5	48.9	7 65	43.1		77.0	66.4	81.3	82.6	51.1		51.6	37.0	24.8			27.4	22.8	30.7	28.0
25 (Siuned)	gene	arotovora	adk		map			us HB8	olor A3(2)	rculosis sD	гроА		Öldr	truA	rculosis			erculosis	CV DIM	2 cfa	solor A3(2)
& Table 1 (continued)	Homologous gene	Erwinia carotovora carotovora kdgR	Micrococcus luteus a		Bacillus subtilis 168 map		Bacillus subtilis infA	Thermus thermophilus HB8 rps13	Streptomyces coelicolor A3(2) SC6G4.06. rpsK	Mycobacterium tuberculosis H37Rv RV3458C rpsD	Bacillus subtilis 168 rpoA		Escherichia coli K12 rplQ	Escherichia coli K12 truA	Mycobacterium tuberculosis H37Rv Rv3779			Mycobacterium tuberculosis H37Rv Rv0283	Arabidopsis thaliana	Escherichia coli K12 cfa	Streptomyces coelicolor A3(2) SCL2.30c
35		교장		-	-+		E	t g		ΣI	+		T	_				21			000
40	db Match	prf.2512309A	Sp:KAD_MICLU		SP. AMPM_BACSU		pir.F69644	prf:2505353B	sp.RS11_STRCO	prf.2211287F	sp:RPOA_BACSU		Sp.RL17 ECOLI	_				pir.A70836	Sp. DIM ARATH		gp:SCL2_30
	ORF (bp)	804	543	612	792	828	216	366	402	603	1014	156	489	867	2397	456	1	1257	1545	+-	426
45	Terminal (nt)	568272	571316	570756	572267	573176	573622	574181	574588	575217	576351	575211	576898	577923	580429	580436	580919	582662	584228	585620	586248
50	Initial (nt)	569075	570774	571367	571476	572349	573407	•	574187	574615	575338					580891	1_		582684	_!	585823
	SEQ NO.	4118	4119	4120	4121	4122	4123	4124	4125	4126	4127	412B	4120	4120	4131	4132	4133	4134	4135	4136	4137
55	SEQ.	618	619	620	621	622	623	624	625	626	627	929	070	670	63.	632	633	634	635	636	637

EP 1 108 790 A2

5			ase	ni	ر					- N										
			otein	e prote	e protei					n target E	113	98 4	mutase							
10		Function	high-alkaline serine proteinase	hypothetical membrane protein	hypothetical membrane protein				hypothetical protein	early secretory antigen target ESA I-6 protein	50S ribosomal protein L13	30S ribosomal protein S9	phosphoglucosamine mutase		hypothetical protein			hypothetical protein	alanine racemase	hypothetical protein
15	1 - 4 - 6 d	Matched length (a.a.)	273	516	1260				103	80	145	181	450		318			259	368	154
20		Similarity (%)	58.0	50.6	38.4				6.69	81.3	82.1	72.4	76.4		45.6			72.2	68.5	78.6
		Identity (%)	31.3	24.0	65.0				31.1	36.3	58.6	49.2	48.9		29.3			44.0	41.6	48.7
25	nued)	. 9 U:		or A3(2)	ulosis				ulosis	ulosis	or A3(2)	or A3(2)	S		C6803			0	culosis	culosis
30	Table 1 (continued)	Homologous gene	Bacillus alcalophilus	Streptomyces coelicolor A3(2) SC3C3.21	Mycobacterium tuberculosis H37Rv Rv3447c				Mycobacterium tuberculosis H37Rv Rv3445c	Mycobacterium tuberculosis	Streptomyces coclicolor A3(2) SC6G4.12. rpIM	Streptomyces coelicolor A3(2) SC6G4.13. rpsl	Staphylococcus aureus femR315		Synechocystis sp. PCC6803 slr1753			Mycobacterium leprae B229_F1_20	Mycobacterium tuberculosis H37Rv RV3423C alr	Mycobacterium tuberculosis H37Rv Rv3422c
35	-		8	क छ	ΣÏ		-	긕	ΣÏ	≥	120 Q	N N	Ω €		O M			≥ 60	ΣI	
40		db Match	sp.ELYA_BACAO	pir:T10930	pir:E70977				pir.C70977	prf.2111376A	sp:RL13_STRCO	sp.RS9_STRCO	prf:2320260A		pir.S75138	-		pir.S73000	Sp:ALR_MYCTU	sp:Y097_MYCTU
		ORF (pg)	1359	1371	3567	822	663	900	324	288	441	546	1341	303	1509	573	234	855	1083	495
45		Terminal (nt)	586399	587645	592862	589590	589898	593761	594258	594580	595379	595927	597449	598194	599702	598778	599932	600022	602053	602574
50		Initial (nt)	587757	589015	589296	590411	590560	592862	593935	594293	594939	595382	596109	597892	598194	599350	669669	600876	600971	602080
		SEQ.	4138		4140	4141	4142	4143	4144	4145	4146	4147	4148	4149	4150	4151	4152	4153	4154	4155
55			(DNA)		640	641		+-	+	645	646	647	648	649	<u> </u>	651	1 –	1	654	655

EP 1 108 790 A2

_									\neg	\neg							Ĺ	- 1		- 1
5	Function	4	brane protein	dase	u.	alanine N-	in endopeptidase	uj:			n groES	n groEL	ein	ein		sigma factor		ein	ase	ein
10	Func		hypothetical membrane protein	proline iminopeptidase	hypothetical protein	ribosomal-protein-alanine N- acetyltransferase	O-siatoglycoprotein endopeptidase	hypothetical protein			heat shock protein groES	heat shock protein groEl	hypothetical protein	hypothetical protein	regulatory protein	RNA polymerase sigma factor		hypothetical protein	IMP dehydrogenase	hypothetical protein
15	Matched	(a.a)	550	411	207	132	319	571			100	537	76	138	94	174		116	504	146
20	Similarity	(%)	66.2	77.6	75.4	6.65	75.2	59.4			94.0	85.1	99.0	45.0	88.3	81.6		69.8	93.9	53.0
	Identity	(%)	28.9	51.3	52.2	30.3	46.1	38.4			76.0	63.3	50.0	34.0	64.9	55.2		41.4	80.8	39.0
<i>25</i> (penuju		gene	2 yidE	shermanii pip	erculosis	2 riml	lytica	erculosis			erculosis nopB	orae E1	perculosis	perculosis	negmatis	berculosis igD		prae	TCC 6872	oshii PH0308
So Table 1 (Continued)		Homologous gene	Escherichia coli K12 yidE	Propionibacterium shermanii pip	Mycobacterium tuberculosis H37Rv Rv3421c	Escherichia coli K12 riml	Pasteurella haemolytica SEROTYPE A1 gcp	Mycobacterium tuberculosis H37Rv Rv3433c			Mycobacterium tuberculosis H37Rv RV3418C mopB	Mycobacterium leprae	Mycobacterium tuberculosis	Mycobacterium tuberculosis	Mycobacterium smegmatis	Mycobacterium tuberculosis H37Rv Rv3414c sigD		Mycobacterium leprae B1620_F3_131	Corynebacterium ammoniagenes ATCC 6872 quaB	Pyrococcus horikoshii PH0308
35				1	T^-		1				i		1-			Э		CLE	1	
40		db Match	Sp. YIDE ECOLI	ap PSJ00161	sp:Y098_MYCTU	sp.RIMI_ECOLI	sp.GCP_PASHA	sp:Y115_MYCTU			sp.CH10_MYCTU	sp.CH61_MYCLE	AGM/OT CAMPA		gp:AF073300_1	sp:Y09F_MYCTU		Sp:Y09H_MYCLE	8 gp:AB003154_1	PIR:F71456
	200	(g (g)	1599	1239	675	507	1032	1722	429	453	297	1614	1		297	564	1026	378	1518	627
45		Terminal (nt)	604409	805708	606392	606898	607936	609679	610175	609816	610644	612272		610946	611109	613719	614747	614803	616853	615605
50		tnitial (nt)	603011	604470	605718	606392	606909	607958	609747	61026B	610348	610659	1		612266				615336	616231
	C	있 일 일 2	(8.8.)	00 1		4159	4160	4161	4162	4163	4164	4165		4166	4167	4169	4470	4171	4172	4173
55	-			1) cg	\neg			667	200	664	865	3	999	667	699	07.9	671	672	673

EP 1 108 790 A2

													_		\neg					$\overline{}$	\neg
5		Function	IMP dehydrogenase	hypothetical membrane protein	glutamate synthetase positive regulator	GMP synthetase				hypothetical membrane protein	two-component system sensor histidine kinase	transcriptional regutator or extracellular proteinase response regulator				hypothetical protein	hypothetical protein		hypothetical protein	hypothetical membrane protein	
		P =	₫	γγ	gluta	GM	+		7	Ť			_		\dashv			1			\dashv
15		Matched length (a.a.)	381	274	262	517				513	411	218				201	563		275	288	
20		Similarity (%)	86.1	67.5	58.4	92.8				39.6	48.7	65.1				64.2	64.1		62.9	58.3	
		Identity (%)	6.07	38.0	29.0	81.6				20.5	26.8	. 33.5				30.9	37.5		33.8	27.8	
25	ontinued)	s gene	CC 6872	2 ybiF		A				color A3(2)	color A3(2)	3 degU				erculosis	erculosis		icolor A3(2)	durans	
30	Table 1 (continued)	Homologous gene	Corynebacterium ammoniagenes ATCC 6872	Escherichia coli K12 ybiF	Bacillus subtilis gltC	Corynebacterium ammoniagenes guaA				Streptomyces coelicolor A3(2)	Streptomyces coelicolor A3(2) SC6E10.15c	Bacillus subtilis 168 degU				Mycobacterium tuberculosis H37Rv Rv3395c	Mycobacterium tuberculosis H37Rv Rv3394c		Streptomyces coelicolor A3(2) SC5B8.20c	Deinococcus radiodurans DR0809	
<i>35</i>		db Match	gp:AB003154_2	Sp: YBIF ECOLI	39A	sp.GUAA_CORAM				gp:SCD63_22	20	sp:DEGU_BACSU				pir.B70975	pir.A70975		gp:SC5B8_20	gp:AE001935_7	
		ORF (bp)	1122	921	606	1569	663	441	189	1176	1140	069	324	489	963	825	1590	999	861	861	390
45		Terminal (nt)	618094	618093	619994	621572	620264	622157	622457	622460	624939	625674	626000	626070	626577	628551	630140	630151	631809	631824	632690
50		Initial (nt)	616973	619013	619086	620004	620926	621717	62229	623635	623800	624985	625677	626558	627539	627727	628551	630810	630949	632684	633079
		SEQ NO.	4174	4175	4176	4177	4178	4179	4180	4181	4182	4183	4184	4185	4186	4187	4188	4189	4190	4191	4192
55		SEQ NO.	674	675	676	677	678	679	680	681	682	683	684	685	989	687	688	689	069	691	692

							—т	—-Т			_	T	$\neg \top$	\neg		\top	\top	\top	T	Т		7	
5		Function	brane protein	98.0		91	ransport protein	rophosphate	gulator (MarR	lipoprotein	ein			ase								=	ein
10		Fun	hypothetical membrane protein	nhytoene desaturase	pliytoelle desatu	phytoene synthase	transmembrane transport protein	geranylgeranyl pyrophosphate (GGPP) synthase	transcriptional regulator (MarR family)	outer membrane lipoprotein	hypothetical protein		DNA photolyase	glycosyl transferase	ABC transporter	ABC transporter		ABC transporter		ABC transporter	lipopratein	DNA polymerase III	hypothetical protein
15		Matched length (a.a.)	95	424	974	288	722	367	188	145	467		497	205	897	223		206		346	268	1101	159
20		Similarity (%)	67.4	78.7	7.0/	71.2	75.6	63.8	68.1	62.1	74.2		63.2	53.7	54.9	72.2		75.2		75.4	67.2	57.5	62.3
		Identity (%)	36.8	, ,	50.4	42.0	48.6	32.7	38.3	33.1	\perp	r	40.0	25.9	24.3	35.4		35.9		43.6	28.7	30.2	41.5
25 G	(manual)	gene	man	S ATCC		is ATCC	color A3(2)	is crtE	St	old 0860 old		2	ns ATCC	cps1K	color A3(2)	y y		abcD		P90 abc	inzae \	dnaE	icolor A3(2)
30 Section 1975	lable i	Homologous gene	Mycobacterium marinum	trevihanterium linen	9175 crtl	Brevibacterium linens ATCC 9175 crtB	Streptomyces coelicolor A3(2) SCF43A.29c	Brevibacterium linens crtE	Brevibacterium linens	olt OS60 old illouidit he OS60 ble	ביווסססמפן ווכחומוי	Brevibacterium inens	Brevibacterium linens ATCC 9175 cpd1	Streptococcus suis cps1K	Streptomyces coelicolor A3(2) SCE25.30	Bacillus subtilis 168 yvrO		Hellcobacter pylori abcD		Escherichia coli TAP90 abc	Haemophilus influenzae SEROTYPE B hlpA	Thermus aquaticus dnaE	Streptomyces coelicolor A3(2) SCE126.11
35			T	T	0.6	யக	0, 0,		1	1	1		<u> </u>	"	0, 0,								
40		db Match	S-10201193075 3		gp:AF139916_3	gp:AF139916_2	gp:SCF43A_29	gp:AF139916_11	gp:AF139916_14	0.11		gp:AF139916_1	gp:AF139916_5	gp:AF155804_7		prf.2420410P		prf:2320284D		Sp. ABC_ECOLI	sp:HLPA_HAEIN	prf.2517386A	gp:SCE126_11
		ORF (bp)	306	25	1644	912	2190	1146	585		948	1425	1404	753	2415	717	153	999	846	1080	897	3012	447
45		Terminal (nt)	02000	022073	633532	635178	636089	638317	640208		\neg	642557	642556	644778	645176	647593	648315	648440	650187	649114	650392	654612	655122
50		Initial (nt)		033474	635175	636089	638278	639462	639624		640879	641133	643959	644026		648309	648467					651601	•
		SEQ.	(a a)	4193	4194	4195	4196	4197	4198		4199	4200	4201	4202	4203	4204	4205	4206	4207	4208	4209	4210	4211
55			二	693	694	695	969	_	1	_	669	700	701	707	703	704	705	706	707	708	407	7	

EP 1 108 790 A2

																	\neg			$\overline{}$	\neg
5		Function	etical membrane protein		transcriptional repressor	hypothetical protein		transcriptional regulator (Sir2 family)	hypothetical protein	iron-regulated lipoprotein precursor	rRNA methylase	methylenetetrahydrofolate dehydrogenase	hypothetical membrane protein	hypothetical protein		homoserine O-acetyltransferase	O-acetylhomoserine sulfhydrylase	carbon starvation protein		hypothetical protein	
	-	0	hypothetical	-	transci	hypoth		transc	hypoth	iron-re	rRNA	methy	hypot						_	hypot	_
15		Matched length (a.a.)	468		203	264		245	157	357	151	278	80	489		379	429	069		20	_
20		Similarity (%)	56.0		76.4	61.7		71.8	78.3	62.2	86.1	87.4	76.3	63.2		99.5	76.2	78.4		99.0	
		Identity (%)	26.1		50.3	34.9		42.5	45.2	31.1	62.9	70.9	31.3	34.0		99.5	49.7	53.9		40.0	
25	(pant	ле	r A3(2)		losis	r A3(2)		, AF1676	ır A3(2)	heriae	losis	losis		or A3(2)		micum	>	stA		×	
30	Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SCE9.01		Mycobacterium tuberculosis H37Rv Rv2788 sirR	Streptomyces coelicolor A3(2) SCG8A.05c		Archaeoglobus fulgidus AF1676	Streptomyces coelicolor A3(2) SC5H1.34	Corynebacterium diphtheriae irp1	Mycobacterium tuberculosis H37Rv Rv3366 spoU	Mycobacterium tuberculosis H37Rv Rv3356c folD	Mycobacterium leprae MLCB1779, 16c	Streptomyces caelicolor A3(2) SC66T3.18c		Corynebacterium glutamicum metA	Leptospira meyeri metY	Escherichia coli K12 cstA		Escherichia coli K12 yjiX	
35			क्ष क्ष		ΣÏ	20.00		4			ΣI	≥I	ω,	18				Ī			
40		db Match	gp:SCE9_1		pir.C70884	gp:SCG8A_5		pir.C69459	gp:SC5H1_34	gp:CDU02617_1	pir.E70971	pir.C70970	gp:MLCB1779	gp:SC66T3_1		gp:AF052652_1	prf:2317335A	Sp.CSTA_ECOL		sp:YJIX_ECOLI	
		ORF (bp)	1413	738	699	798	138	774	492	966	471	852	255	1380	963	1131	1311	2202	609	201	609
45		Terminal (nt)	656534	655097	657215	657205	658142	658928	659424	660538	660650	662017	662374	662382	564126	665183	666460	670465	669445	670672	671045
50		Initial (nt)	655122	655834	656547	658002	658005	658155	658933	659543	661120	661166	662120	663761	665088		667770		<u>-</u>	670472	671653
		SEO	4212	4213	4214	4215	4216	4217	4218	4219	4220	4221	4222	4223	4224	4225	4226	4227	4228	4229	4230
55		SEQ.		713	714	715	716			719	720	721	722	723	724	725	726	727	728	729	730

EP 1 108 790 A2

						$\neg \neg$	-	$\overline{}$			$\neg \tau$									
5		Function	hypothetical protein	carboxy phosphoenolpyruvate mutase	citrale synthase		hypothetical protein		L-malate dehydrogenase	regulatory protein		vibriobactin utilization protein	ABC transporter ATP-binding protein	ABC transporter	ABC transporter	iron-regulated lipoprotein precursor	chloramphenicol resistance protein	catabolite repression control protein	hypothetical protein	
	:		hypothe	carboxy mutase	citrate s		hypothe		L-malat	regulato		vibrioba	ABC tra	ABC tra	ABC tra	iron-reg	chlorarr	cataboli	hypothe	
15		Matched length (a.a.)	317	281	380		53		338	226		284	269	339	330	356	395	303	219	
20		Similarity (%)	86.4	76.2	81.3		62.3		67.5	62.8		54.2	85.1	86.4	88.2	82.3	9.69	58.1	85.8	
		Identity (%)	71.0	41.6	56.1		34.0		37.6	26.1		25.4	55.4	56.3	63.0	53.1	32.2	30.4	56.2	
25	nntinued)	gene	erculosis	scopicus	egmatis		2 yneC		rvidus V24S	nophilus T-6		AWA 395	iphtheriae	iphtheriae	iphtheriae	iphtheriae	zuetae cmlv	iginosa crc	nzae Rd	
30	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1130	Streptomyces hygroscopicus	Mycobacterium smegmatis ATCC 607 gltA		Escherichia coli K12 yneC		Methanothermus fervidus V24S mdh	Bacillus stearothermophilus T-6 uxuR		Vibrio cholerae OGAWA 395 viuB	Corynebacterium diphtheriae irp1D	Corynebacterium diphtheriae irp1C	Corynebacterium diphtheriae irp1B	Corynebacterium diphtheriae irp1	Streptomyces venezuelae cmlv	Pseudomonas aeruginosa crc	Haemophilus influenzae Rd H11240	
<i>35</i>		db Match	pir.C70539	prf. 1902224A	Sp.CISY_MYCSM		sp:YNEC_ECOL! E		Sp:MOH_METFE	prf.2514353L		Sp:VIUB_VIBCH	gp:AF176902_3	gp:AF176902_2	gp:AF176902_1	gp:CDU02617_1	prf:2202262A	prf:2222220B	Z	
				+	1	_	i 		1 sp:N		_			0			2	1		
		ORF (bp)	954	912	1149	930	192	672	104	720	702	897	807	105	966	1050	127	912	657	195
45		Terminal (nt)	672653	673576	674756	672710	674799	675846	675082	676218	677047	680131	681040	681846	682871	683876	686380	687346	688007	688335
50		Initial (nt)	671700	672685	673608	673639	674990	675175	676122	676937	677748	!	681846	682904	683866	684925	685109	1		688141
		SEQ.	4231	4232	4233	4234	4235	4236	4237	4238	4239	4240	4241	4242	4243	4244	4245	4246	4247	4248
55		SEO NO.		732	733	ī	735	736	737	738	739	740	741	742	743	744	745	746	747	748

EP 1 108 790 A2

						Table 1 (continued)				
SEO		Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
(ONA)		ᆚ	0,000	27.0						
749	4249	068689	916889	- 	1	Corynebacterium diphtheriae	45.1	73.8	244	ferrichrome ABC transporter
750	4250	969069	689917	780	gp:AF109162_3	hmuV	1	, 60	246	hamin narmease
751	4251	691722	907069	1017		Yersinia enterocolitica hemU	38.7	08.7		trontophanyl-tRNA synthetase
752	4252	691882	692916	1035	sp:SYW_ECOLI	Escherichia coli K12 trpS	24.4	0 0 0	Т	hypothetical profein
753	+-	693028	694110	1083	1083 sp: YHJD_ECOLI	Escherichia coli K12 yhjD	37.1	12.3	217	
754	1		695074	903						ponicillin-hinding protein 68
755	1	1	695077	1137	sp:DACD_SALTY	Salmonella typhimurium LT2 dacD	30.9	57.5	301	precursor
756	4256	697995	696769	1227	pir.F70842	Mycobacterium tuberculosis H37Rv Rv3311	34.1	70.7	417	hypothetical protein
757	4257	698922	698065	858	gp:SC6G10_8	Streptomyces coelicolor A3(2) SC6G10.08c	29.4	52.6	323	hypothetical protein
750	425A	699072	699266	195						
0 1			608022	351						
52	_		030375	3 6	ACIDD 1 ACI A	l actococcus lactis upp	46.4	72.3	209	uracil phosphoribosyltransferase
760			099913	20 20	_	Streptomyces coelicolor A3(2)	41.8	66.2	77	bacterial regulatory protein, lacl family
761	4261	699998	10000/	5		SC1AZ.11			3	N-acyl-L-amino acid amidohydrolase
762	4262	702081	703262	1182	pir:H70841	Mycobacterium tuberculosis H37Rv Rv3305c amiA	51.4	80.5	385	or peptidase
783	4263	202108	700384	1725	SP: MANB_MYCPI	Mycoplasma pirum BER manB	22.1	53.8	561	phosphomannomutase
764			704811	1407		Hatobacterium volcanii ATCC 29605 lpd	31.6	65.0	468	dihydrolipoamide dehydrogenase
765	5 4265	5 705211	708630	3420	prf.2415454A	Corynebacterium glutamicum strain21253 pyc	100.0	100.0	1140	pyruvate carboxylase
766	$\overline{}$	6 708839	709708	870	sp:YD24_MYCTU	Mycobacterium tuberculosis H37Rv Rv1324	26.2	60.1	263	hypothetical protein
767			710278	486	gp:SCF11_30	Streptomyces coelicolor A3(2) SCF11.30	30.7	66.9	127	hypothetical protein
	╗	'	4	4						

EP 1 108 790 A2

5		Function	hypothetical protein	thioredoxin reductase	PrpD protein for propionate catabolism	carboxy phosphoenolpyruvate mutase	hypothetical protein	citrate synthase		hypothetical protein			thiosulfate sulfurtransferase	hypothetical protein	hypothetical protein	hypothetical membrane protein	hypothetical protein	hypothetical protein	detergent sensitivity rescuer or carboxyl transferase	detergent sensitivity rescuer or carboxyl transferase
15		Matched length (a.a.)	381	305	521	278	96	383		456			225	352	133	718	192	63	537	543
20		Similarity (%)	69.0	59.3	49.5	74.5	47.0	78.9		72.6			100.0	79.8	76.7	63.4	66.2	69.8	100.0	100.0
		Identity (%)	44.6	24.6	24.0	42.5	39.0	54.6		40.8			100.0	61.1	51.1	35.1	31.8	33.3	8.66	9.66
25	Table 1 (continued)	Homologous gene	Bacillus subtilis 168 yciC	Bacillus subtilis IS58 trxB	Salmonella typhimurium LT2 prpD	Streptomyces hygroscopicus	Aeropyrum pernix K1 APE0223	Mycobacterium smegmatis ATCC 607 gltA		Mycobacterium tubercutosis H37Rv Rv1129c			Corynebacterium glutamicum ATCC 13032 thtR	Campylobacter jejuni Cj0069	Mycobacterium leprae MLCB4.27c	Mycobacterium tuberculosis H37Rv Rv1565c	Escherichia coli K12 yceF	Mycobacterium leprae B1308- C3-211	terium glutamicum tsR2	Corynebacterium glutamicum AJ11060 dtsR1
	Tat	Hon	Bacillus sut	Bacillus sut	Salmonella prpD	Streptomyc	Aeropyrum	Mycobacterium ATCC 607 gltA		Mycobacterium t H37Rv Rv1129c			Corynebacterium ATCC 13032 thtR	Campyloba	Mycobacte MLCB4.27	Mycobacterium t H37Rv Rv1565c	Escherichi	Mycobacte C3-211	Corynebacterium AJ11060 dtsR2	Corynebacteriu AJ11060 dtsR1
<i>35</i> 40		db Match	pir.869760	SACSU		prf: 1902224A	PIR:E72779	sp:CISY_MYCSM		pir.B70539			sp:THTR_CORGL	gp:CJ11168X1_62	gp:MLCB4_16	pir:G70539	Sp. YCEF_ECOLI	prf:2323363CF	gp:AB018531_2	pir.JC4991
		ORF (bp)	1086	924	-	888	378		375	1323	246	1359	903	1065	414	2148	591	246	1611	1629
45		Terminal (nt)	710520	712647	714231	715145	714380	716283	716286	716687	718350	720016	720547	722841	722925	725559	725872	726470	726742	728696
50		Initial (nt)	711605	711724	712738	714258	714757	715102	716660	718009	718105	718658	721449	721777	723338	723412	726462		728352	730324
•		SEQ.	4268	4269	4270	4271	4272	4273	4274	4275	4276	4277	4278	4279	4280	4281	4282	4283	4284	4285
<i>55</i>		SEQ.	768	769	770	771	772	773	774	775	776	777	778	779	780	781	782	783	784	785

EP 1 108 790 A2

						$\neg \tau$			т-		- 1			- 1	- 1	- 1		- 1	- 1	- 1	1
5	tion	(biotin synthesis	n acetyl-CoA	rane protein	5-amino-4- se					5-amino-4- ise	L		_	nooxygenase	963-5)	ogenase	brane protein		u	in	
10	Function	bifunctional protein (biotin synthesis	repressor and biotin acetyl-CoA carboxylase ligase)	hypothetical membrane protein	5'-phosphoribosyl-5-amino-4- Imidasol carboxylase	K+-uptake protein				5-phosphoribosyl-5-amino-4- imidasol carboxylase	hypothetical protein	1000	hypothetical protein	nitrilotriacetate monooxygenase	transposase (ISA0963-5)	glucose 1-dehydrogenase	hypothetical membrane protein		hypothetical protein	hypothetical protein	
15	Matched length	(a.a)	293	165	394	628				147	152		255	426	303	256	96		175	142	
20	Similarity (%)		61.8	58.8	83.8	73.6				93.2	60.5		70.6	73.0	52.5	64.8	68.8		66.3	76.8	
	Identity		28.7	23.0	69.0	41.1				85.7	36.2		42.8	43.2	23.4	31.3	29.2		28.6	35.9	
25 (penuiture	gene		2 birA	erculosis	CC 6872	2 kup	1			CC 6872	etiosum	licator A 37.2)	licolor A3(2)	ntzii ATCC	gidus	ım IAM 1030	ima MSB8		38 ywjB	licolor A3(2)	
So Table 1 (Continued)	Homologous gene		Escherichia coli K12 birA	Mycobacterium tuberculosis H37Rv Rv3278c	Corynebacterium ammoniagenes ATCC 6872 purk	Escharichia coli K12 kup				Corynebacterium ammoniagenes ATCC 6872	Actionsympoma pretingum	Actinosymicing pr	Streptomyces coelicolor A3(2) SCF43A.36	Chelatobacter heintzii ATCC 29600 ntaA	Archaeoglobus fulgidus	Bacillus megaterium IAM 1030 gdhll	Thermotoga maritima MSB8 TM1408		Bacillus subtills 168 ywjB	Streptomyces coelicolor A3(2) SCJ9A.21	
<i>35</i> 40	db Match		sp.BIRA_ECOLI	pir.G70979	sp:PURK_CORAM		Sp:KUP_ECOLI			sp.PUR6_CORAM	1	gp:APU33039_3	gp:SCF43A_36	sp:NTAA_CHEHE	pir. A69426	sp:DHG2_BACME	pir.A72258		SD: YWJB BACSU	gp:SCJ9A_21	
	ORF	(dq)	864 St	486 pi	1161 S	- 1		615	357	495 s		453 g	792 9	1314 8	1500	789	369	342		10	222
45	Terminal	(nt)	731299	731797	733017	十	-+	733183	735340	735896		736351	737204	737216	738673	740228	741765	742195	741818	742828	742831
50	Initial	(nt)	730436	731312	731857		733072	733797	734984	735402		735899	736413	738529	740172	741016	741397	741854	_i_		743052
	SEO	(a.a.)	<u> </u>	4287	4288		4289	4290	4291	4292		4293	4294	4295	4004	4297	4298	4700	2000	4301	4302
55	T-	ON (Q) (A) (A)		787	788		789	790	791	792		793	794	795	306	797	798	200	8	801	802

EP 1 108 790 A2

5	Function		trehalose/maltose-binding protein	trehalose/mailose-Dinging process	nia tora pribain	(renaiose/manose-prioring process	ABC transporter ATP-binding protein	(ABC-type sugar transport protein) or cellobiose/maltose transport protein			RNA helicase			hypothetical protein	hypothetical protein	DNA helicase II						RNA helicase	hypothetical protein	RNA polymerase associated protein (ATP-dependent helicase)
15	Matched	(a.a.)	271	306		41/		332			1783			240	720	701						2033	869	873
20	Similarity	(%)	75.3	70.3		62.4		73.9			49.9			59.2	62.5	41.1				-		45.B	53.2	48.6
	Identity	(%)	42.4	37.3		30.9		57.2			25.1			31.7	30.0	20.7						22.4	24.4	23.1
30 25 (continued)		ıs gene	ralis malG	ralis malF		ralis malE		culi msiK			odurans K1			ıberculosis	ri J99 jhp0462	(12 uvrD						elicolor	p. NRC-1 00 H1130	K12 hepA
30 tel	200	Homologous gene	Thermococcus litoralis malG	Thermococcus litoralis malF		Thermococcus litoralis malE		Streptomyces reticuli msiK			Deinococcus radiodurans K1 DRB0135			Mycobacterium tuberculosis H37Rv Rv3268	Helicobacter pylori J99 jhp0462	Fscherichia coli K12 uvrD						Streptomyces caelicolor SCH5.13	Halobacterium sp. NRC-1 plasmid pNRC100 H1130	Escherichia coli K12 hepA
35			IF.	F			-		1		<u> </u>					+	1							
40		db Match	prf 2406355C	prf.2406355B		prf.2406355A		prf:2308356A			pir:B75633			pir.E70978	pir.C71929							pir.T36671	pir.T08313	sp:HEPA_ECOLI
		(bp)	834	1 -	+-	1272	423	966		369	4800	372	3699	633	2423	553.	1303	32,	393	396	825	6207	4596	2886
45		Terminal (nt)	743067	743900	745046	745622	748442	747031		748814	748886	757434	753507	757630	750354	136364	90609/	762853	763122	762582	767367	763237	769547	774150
50		Initial (nt)	743900	744931	745513	746893	748020	748026		748446	753685	757063	200727	758262	201001	96/09/		762497	762730	762977	768191		774142	777035
	0.0	NO.	(a.a.)	2308	4305	4306	4307	4308		4309	4310	4214	- (4313		4314	4315	4318	4317	4318	4319	4320	4321	4322
55	⊢		$\overline{}$	3 3		1	 	ī		809	810	1		813		814	815	816	817	818	819	820	128	822

ĺ		T								e								
5	vo		uAc- enol, a-3-L- se	ate				ase		ate isomeras			sive protein	diotamo	orysicanie			
10	Function	hypothetical protein	dTDP-Rha:a-D-GlcNAc- diphosphoryl polyprenol, a-3-L- rhamnosyl transferase	mannose-1-phosphate guanylyltransferase	regulatory protein	hypothetical protein	hypothetical protein	phosphomannomutase	hypothetical protein	mannose-6-phosphate isomerase			pheromone-responsive protein	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S-adenosyl-L-nomocysteme hydrolase			thymidylate kinase
15	Matched length (a.a.)	527	289	353	94	139	136	460	327	420			180		476			209
20	Similarity (%)	71.4	6.77	6.99	81.9	74.8	71.3	66.3	56.3	66.2			57.8		83.0			56.0
	Identity (%)	45.5	56.4	29.8	73.4	48.9	51.5	38.0	31.2	36.9			35.6		59.0			25.8
<i>25</i> (penuju	gene	rculosis	gmatis	evisiae	gmatis	erculosis	color A3(2)	ideo M40	erculosis	2 manA			alis plasmid		alis WAA38			gidus VC-16
S Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3267	Mycobacterium smegmatis mc2155 wbbL	Saccharomyces cerevisiae YDL055C MPG1	Mycobacterium smegmatis whmD	Mycobacterium tuberculosis H37Rv Rv3259	Streptomyces coelicolor A3(2) SCE34.11c	Salmonella montevideo M40 manB	Mycobacterium tuberculosis H37Rv Rv3256c	Escherichia coli K12 manA			Enterococcus faecalis plasmid pCF10 prgC		Trichomonas vaginalis WAA38			Archaeoglobus fulgidus VC-16 AF0061
35	stch							1							TRIVA			_ARCFU
40	db Match	pir: D70978	gp:AF187550_1	sp:MPG1_YEAST	gp:AF164439_1	pir:B70847	gp:SCE34_11	sp:MANB_SALMO	pir.B70594	SP: MANA_ECOLI			prf:1804279K		SP.SAHH_TRIVA			sp:KTHY_ARCFU
	ORF (bp)	1554	897	1044	408	456	390	1374	1005	1182	150	360	564	351	1422	708	720	609
45	Terminal (nt)	777158	779910	781171	781875	782162	783101	784557	785639	786824	787045	787983	787170	788546	790093	788719	789002	790704
50	Initial (nt)	778711	779014	780128	781468	782617	782712	783184	784635	785643	786896	787624	787733	788196	788672	789426	789721	790096
	SEO	(a.a.) 4323	4324	4325	4326	4327	4328	4329	4330	4331	4332	4333	4334	4335	4336	4337	4338	4339
55	SEO		824	825	826	827	828	829	830	831	832	833	834	835	836	837	838	839

EP 1 108 790 A2

	Function	two-component system response regulator		two-component system sensor histidine kinase	lipoprotein	hypothetical protein		30S ribosomal protein or chloroplast precursor	preprotein translocase SecA subunit		hypothetical protein	hypothetical protein	5-enolpyruvylshikimate 3-phosphate synthase	hypothetical protein	5-enolpyruvylshikimate 3-phosphate synthase	hypothetical protein	RNA polymerase sigma factor
	Matched length (a.a.)	224		484	595	213		203	845		170	322	461	180	23	380	188
	Similarity (%)	90.6		78.9	65.6	72.8		61.6	93.6		78.8	82.9	99.0	63.9	100.0	42.4	87.2
	Identity (%)	73.7		53.1	29.6	38.0		34.5	99.1		47.1	64.6	99.0	38.3	100.0	21.6	61.2
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3246c mtrA		Mycobacterium tuberculosis H37Rv Rv3245c mtrB	Mycobacterium tuberculosis H37Rv Rv3244c lpqB	Mycobacterium tuberculosis H37Rv Rv3242c		Spinacia oleracea CV rps22	Brevibacterium flavum (Corynebacterium glutamicum) MJ-233 secA		Mycobacterium tuberculosis H37Rv Rv3231c	Mycobacterium tuberculosis H37Rv Rv3228	Corynebacterium glutamicum ASO19 aroA	Mycobacterium tuberculosis H37Rv Rv3226c	Corynebacterium glutamicum	Mycobacterium tuberculosis H37Rv Rv0336	Mycobacterium tuberculosis sigH
	db Match	prf:2214304A		prf.2214304B	pir:F70592	pir.D70592		sp.RR30_SPIOL			pir.A70591	pir.F70590	gp:AF114233_1	pir.D70590	GP:AF114233_1	pir.G70506	prt:2515333D
	ORF (bp)	678	684	1497	1704	588	156	663	2535	672	504	987	1413	480	123	1110	618
	Terminal (nt)	791409	790738	793008	794711	795301	795292	796110	798784	100001	800200	800208	801190	803128	802565	803131	805025
	Initial (nt)	790732	791421	791512	793008	794714	705447	795448	796250	10000	799697	801194	802602	802649		804240	804408
	SEQ.	(a.a.)	4341	4342	4343	4344	12,45	4346	4347	19	4348	4350	4351	4352	4353	4354	4355
		(DNA)	841	Ì	843	844	1	846			848 849	850	851	852	853	854	855

EP 1 108 790 A2

																			_
5		Function	regulatory protein	hypothetical protein	hypothetical protein	DEAD box ATP-dependent RNA helicase		hypothetical protein	hypothetical protein	ATP-dependent DNA helicase		ATP-dependent DNA helicase		potassium channel	hypothetical protein	DNA helicase II		hypothetical protein	
15		Matched length (a.a.)	84	129	415	458		291	249	1155		1126		302	230	999		280	
20		Similarity (%)	96.4	65.1	62.2	64.0		69.8	62.9	48.9		65.7		64.2	58.3	58.8		49.3	
		Identity (%)	78.6	33.3	29.6	37.3		46.4	37.0	23.9		41.4		26.2	30.4	32.6		26.8	
25	inued)	ene	ulasis	ulasis	ulosis	s CG43		ulosis	sulosis	culosis		culosis		schii JAL-	culosis	uvrD		culosis	
30	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3219 whiB1	Mycobacterium tuberculosis H37Rv Rv3217c	Mycobacterium tuberculosis H37Rv Rv3212	Klebsiella pneumoniae CG43 deaD		Mycobacterium tuberculosis H37Rv Rv3207c	Mycobacterium tuberculosis H37Rv Rv3205c	Mycobacterium tuberculosis H37Rv Rv3201c		Mycobacterium tuberculosis H37Rv Rv3201c		Methanococcus jannaschil JAL- 1 MJ0138.1.	Mycobacterium tuberculosis H37Rv Rv3199c	Escherichia coli K12 uvrD		Mycobacterium tuberculosis H37Rv Rv3196	
35		db Match	pir.D70596	pir.B70596	pir.E70595	Sp.DEAD_KLEPN		pir:H70594	pir.F70594	pir:G70951		pir.G70951		sp:Y13B_METJA	pir.E70951	sp:UVRD_ECOLI		pir:B70951	
		ORF (bp)	258 pi	420 pi	1200 pi	1272 sp	225		759 p	3048 p	780	3219 p	1332	1005 s	714 p	2034 s	591	816 p	603
45		Terminal O (nt)	805535 2	806737	806740 1	807946 1	809510	 	811163	814217 3	811386	i	814210	†	819236	821287	╁╴	821290	823391
50		Initial (nt)	805792	806318	807939	809217	809286	809549	810405	811170	812165	814204	815541	817519	818523	819254	822079	822105	822789
		SEQ NO.	4356	4357	4358	4359	4360	4361	4362	4363	4364	4365	4366	4367	4368	4369	4370	4371	4372
55		SEQ NO.		857	858	859	860		862	863	864	965	866	867	868	869	870	871	872

EP 1 108 790 A2

	Γ				\top	Т			Т	\neg	\neg	Т		T			T	T			7
5		Function	i	iin			ain		e protein	hie	ein .		nase precursor		IA polymerase	major secreted protein PS1 protein precursor					a
10		Fun	hypothetical protein	hypothetical protein			hypothetical protein	regulatory protein	ethylene-inducible protein	hypothetical protein	hypothetical protein		alpha-lytic proteinase precursor		DNA-directed DNA polymerase	major secreted p precursor					monophosphatase
15	2.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	Matched length (a.a.)	474	350			1023	463	301	18	201		408		208	363				1	255
20		Similarity (%)	76.4	74.9			73.5	57.7	89.0	53.0	73.6		44.4		51.4	51.5					74.9
		Identity (%)	42.8	43.4			47.2	34.3	67.4	49.0	40.8		26.7		25.0	27.0					51.8
25	Juliliaco)	s gene	erculosis	ercutosis			erculosis	durans	laticifer er1	K1 APE0247	в уааЕ		ogenes ATCC		edia LaBelle- olasmid	glutamicum ivum) ATCC					oniger pur3
30	(apie (confined)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3195	Mycobacterium tuberculosis H37Rv Rv3194			Mycobacterium tuberculosis H37Rv Rv3193c	Deinococcus radiodurans DR0840	Hevea brasiliensis laticifer er1	Aeropyrum pernix K1 APE0247	Bacillus subtilis 168 yaaE		Lysobacter enzymogenes ATCC 29487		Neurospora intermedia LaBelle- 1b mitochondrlon plasmid	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1					Streptomyces alboniger pur3
35	}		21	=							BACSU									i	ī
40		db Match	pir.A70951	pir:H70950			pir.G70950	gp:AE001938_5	Sp.ER1 HEVBR	PIR:F72782	sp:YAAE_BA		pir.TRYXB4		pir.S03722	sp:CSP1_CORGL					pri.2207273H
		ORF (bp)	1446	1050	675	522	2955	1359	951	345	900	363	1062	501	585	1581	429	510	222	309	780
45		Terminal (nt)	822680	825239	825242	825996	829570	829627	831971	831578	832570	832795	834633	835388	835837	838892	839353	840139	840210	840437	841517
50		Initial (nt)	824125	824190	825916	826517	826616	830985	831021		831971	833157	1	834888	835253	837312	838925	839630	840431	840745	842296
		SEQ NO.	4373	4374	4375	4376	4377	4378	4370	4380	4381	4382	4383	4384	4385	4386	4387	4388	4389	4390	4391
55		SEQ NO.	873	874	875	876	877	878	970	S S S	881	882	883	884	885	886	887	888	889	890	891

5		Function	myo-inositol monophosphatase	peptide chain release factor 2	cell division ATP-binding protein	hypothetical protein	cell division protein	small protein B (SSRA-binding protein)	hypothetical protein				vibriobactin utilization protein	Fe-regulated protein	hypothetical membrane protein	ferric anguibactin-binding protein precursor	ferrichrome ABC transporter (permease)	ferrichrome ABC transporter (permease)	ferrichrome ABC transporter (ATP-binding protein)
			myo	pepti	cell d	hypo	cello	smal	hypo		_		vibric	Fe-re	hypo	ferric prec	ferric (per	ferrik (per	ferric
15		Matched length (a.a.)	243	359	226	72	301	145	116				272	319	191	325	313	312	250
20		Similarity (%)	59.3	88.6	91.2	54.0	74.8	75.9	73.3				52.9	58.3	71.2	61.5	80.8	76.0	82.0
		Identity (%)	33.7	0.89	70.4	43.0	40.5	43.5	44.0				26.8	29.5	36.1	27.7	39.3	35.6	48.4
25	ontinued)	gene	persicus	color A3(2)	erculosis E	<1 APE2061	erculosis \$X	2 smpB	2 yeaO				AWA 395	reus sirA	rae	775 fatB	8 yctN	8 yclO	8 yclP
30	Table 1 (continued)	Homologous gene	Streptomyces flavopersicus spcA	Streptomyces coelicolor A3(2) prfB	Mycobacterium tuberculosis H37Rv Rv3102c ftsE	Aeropyrum pernix K1 APE2061	Mycobacterium tuberculosis H37Rv Rv3101c ftsX	Escherichia coli K12 smpB	Escherichia coli K12 yeaO				Vibrio cholerae OGAWA 395 viuB	Staphylococcus aureus sirA	Mycobacterium leprae MLCB1243.07	Vibrio anguillarum 775 fatB	Bacillus subtilis 168 yclN	Bacillus subtilis 168 yclO	Bacillus subtilis 168 yclP
35			W 15		ΣI	4	Σī		†					S			<u>a</u>	-	<u> </u>
40		db Match	gp:U70376_9	sp:RF2_STRCO	pir.E70919	PIR:G72510	pir:D70919	sp:SMPB_ECOLI	sp:YEAO_ECOL!				sp:VIUB_VIBCH	prf.2510361A	gp:MLCB1243_5	sp:FATB_VIBAN	pir.B69763	pir.C69763	pir.D69763
		ORF (bp)	819	1104	687	264	006	492	351	537	300	405	825	918	588	1014	666	942	753
45		Terminal (nt)	842306	844360	845181	844842	846097	846628	846982	846269	848026	847718	848499	849326	850412	852364	853616	854724	855476
50		Initial (nt)	843124	843257	844495	845105	845198	846137	846632	846805	847727	848122	849323	850243	850999	851351	852618	853783	854724
		SEQ NO.		4393	4394	4395	4396	4397	4398	4399	4400	4401	+	4403	4404	4405	4406	4407	4408
55		SEQ NO.		893	894	895	1	897	898	1	1	106	905	903	904	905	906	907	806
										_									

EP 1 108 790 A2

5		-			tamine						ing factor				ferase				1.0		
10		Function	hypothetical protein	hypothetical protein	kynurenine aminotransferase/glutamine transaminase K		DNA repair helicase	hypothetical protein	hypothetical protein		resuscitation-promoting factor	cold shock protein		hypothetical protein	glutamine cyclotransferase			permease	1.0-7-anisanaha/110-	methyltransferase	
15	Matched	length (a.a.)	48	84	442		613	764	57		198	61		159	273			477		319	
20		Similanty (%)	72.0	66.0	64.9		62.3	65.2	62.0		64.7	75.4		58.5	67.8			79.3		51.7	
	\vdash	Identity (%)	66.0	61.0	33.5		30.7	36.1	44.0		39.4	42.6		28.3	41.8	1		43.6		27.9	
25 Ga	(Sapularia)	jene	n Nigg	iae	tat)		evislae D25	rculosis	rculosis		ju,	869	ads	ae	urans			color A3(2)		eus tsnR	
30 Solder	lane I	Homologous gene	Chlamydia muridarum Nigg TC0129	Chlamydia pneumoniae	Rattus norvegicus (Rat)		Saccharomyces cerevislae S288C YIL143C RAD25	Mycobacterium tuberculosis H37Rv Rv0862c	Mycobacterium tuberculosis H37Rv Rv0863		on of the	Micrococcus luteus ipi	Lactococcus lacils cspb	Mycobacterium leprae MLCB57.27c	Deinococcus radiodurans DR0112			Streptomyces coelicolor A3(2) SC6C5.09		Streptomyces azureus tsnR	
35 40		db Match	PIR:F81737	GSP-Y35814			sp:RA25_YEAST	pir F70815	pir.G70815				prf.2320271A	gp:MLCB57_11	gp:AE001874_1			gp:SC6C5_9		sp:TSNR_STRAZ	
	İ	ORF (bp)	147 P	27.3		639		2199	219	0.4.3	_		381	525	774	669	138	1473	912	828	876
45		Terminal (nt)	860078	677730	862752	862753	863396	865119	867571	00000	868630	867803	869318	869379	869918	870721	871660	873210	872018	874040	874069
50		Initial (nt)	860224	0000	861544	863301	865066	867317	867353		867788	868399	868938	869903	870691	871419	871523		872927		874944
		SEO.	4409		4410	24.42		4414	4415		4416	4417	4418	4419	4420	4421	4422	4423	4424		4426
55		SEQ.	(DNA)	- :	910	545	912	914	915		916	917	918	919	920	921	922	923	924	925	926

														_	_			_	T-	$\overline{}$	\neg		
5		tion		saminase	carboxylase e subunit beta	_	nonter			_				etyltransferase				ctase	000	960	orter	NA helicase	line-DNA
10		Function	hypothetical protein	phosphoserine transaminase	acetyl-coenzyme A carboxylase carboxy transferase subunit beta	hypothetical protein	sodium/oroline symborter	to principality in the control of th		hypothetical protein	fatty-acid synthase			homoserine O-acetyltransferase			glutaredoxin	dihydrofolate reductase	of the country of	tnymidyiate syriti	ammonium transporter	ATP dependent DNA helicase	formamidopyrimidine-DNA glycosidase
15		Matched length (a.a.)	316	374	236	103	640	248		243	3026			335			62	171		107	202	1715	298
20		Similarity (%)	55.1	52.9	69.5	9.08	,	28.1		77.4	83.4			59.7			72.6	62.0	0.20	88.9	56.4	68.1	51.0
		Identity (%)	32.6	21.9	36.0	51.5		26.4		49.0	63.1	İ		29.0			43.6	0 00	20.0	64.8	32.2	47.4	29.2
<i>25</i>	(panulu	gene	rculosis	CC 21783	accD	olor A3(2)		scens		erculosis				netX			turans	41.5	um folk	2 thyA	2 cysQ	color A3(2)	ongatus
<i>30</i>	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0883c	Bacillus circulans ATCC 21783	Escherichia coli K12 accD	Streptomyces coelicolor A3(2)	C18.08c	Pseudomonas fluorescens		Mycobacterium tuberculosis H37Rv Rv2525c	Corynebacterium ammoniagenes fas			Leptospira meyeri metX			Deinococcus radiodurans	UKZUBS	Mycobacterium avium folk	Escherichia coli K12 thyA	Escherichia coli K12 cysQ	Streptomyces coelicolor A3(2) SC7C7.18c	Synechococcus elongatus naegeli mutM
35				+	1	1	o)	<u> </u>		Z 1	0 10		 	=		İ			_		<u> </u>	ĺ	
40		db Match	sp.YZ11_MYCTU	pir.C71430	SP. ACCD ECOLI	9 9100	gp. consdg	pir.JC2382		pir.A70657	pir:S55505			orf 2317335B			an. AE002044 8		prf:2408256A	Sp:TYSY ECOLI	Sp.CYSQ ECOL	gp:SC7C7_16	sp:FPG_SYNEN
		ORF (bp)	933	4420			000	1653	816	840	8907	489	186	1047		927	3 6	3	456	798	756	+	768
45		Terminal (nt)	874951	271001	879642		681993	883647	884541	884549	894578	R05101	203300	905508	000000	896719	09/009	171160	897979	898434	899253	904602	905382
50		Initial (nt)	875883		881114		88164/	881995	883726	885388	885672	207700	_1_					89/803	898434				1
		SEO	4427		4428	6744	4430	4431	4432	4433	4434	14.05	4433	4430	443/	4438	4439	4440	4441	CVVV	4443	4444	
55			(UNA)				930	931	1	1	934	200	656	936	93/	938	939	940	941	2	242	944	945

													$\overline{}$	-			- 1			\neg
5		Function	hypothetical protein	alkaline phosphatase	integral membrane transporter		glucose-6-phosphate Isomease	hypothetical protein		hypothetical protein	ATP-dependent helicase	sporter	sporter		ə	hypothetical protein		5'-phosphoribosylglycinamide formyltransferase	5-phosphoribosyl-5-aminoimidazole- 4-carboxamide formyltransferase	citrate lyase (subunit)
			hypotheti	alkaline	integral n		glucose-	hypothet		hypothet	ATP-dep	ABC transporter	ABC transporter		peptidase	hypothe		5'-phosp formyltra	5'-phosp 4-carbo	citrate ly
15	Padotok	length (a.a.)	128	196	403		557	195		78	763	885	217		236	434		189	525	217
20		Similarity (%)	86.7	71.9	67.0		77.0	52.3		85.9	73.1	48.6	71.4		73.3	60.8	-	86.2	87.8	100.0
		identity (%)	55.5	38.8	33.8		52.4	24.6		59.0	46.1	21.8	43.8		43.6	31.1		64.6	74.5	100.0
25 30 30	COHEHIACA)	ns gene	iberculosis	s MG1363 apl	elicolor A3(2)		M101 pgi	berculosis		uberculosis	ermophilus	elicolor A3(2)	68 yvrO		uberculosis	uberculosis		r	r burH	n glutamicum E
30 T	lane	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0870c	Lactococcus lactis MG1363 apl	Streptomyces coelicolor A3(2) SC128.06c		Escherichia coli JM101 pgi	Mycobacterium tuberculosis H37Rv Rv0336		Mycobacterium tuberculosis H37Rv Rv0948c	Bacillus stearothermophilus NCA 1503 pcrA	Streptomyces coelicolor A3(2) SCE25.30	Bacillus subtilis 168 yvrO		Mycobacterium tuberculosis H37Rv Rv0950c	Mycobacterium tuberculosis H37Rv Rv0955		Corynebacterium ammoniagenes purN	Corynebacterium ammoniagenes purH	Corynebacterium glutamicum ATCC 13032 citE
<i>35</i>		db Match	pir.F70816	Sp:APL_LACLA			pir.NUEC	pir:G70506		sp:YT26_MYCTU	sp.PCRA_BACST	gp:SCE25_30	prf.2420410P		pir:D70716	sp:YT19_MYCTU		gp:AB003159_2	gp:AB003159_3	gp:CGL133719_3
	į	ORF (bp)	408 pir	009 8b	1173 pii	717	1620 pi	1176 pi	381	309 sr	2289 sp	2223 98	999 pr	507	711 pi	1425 sp	228	 	1560 g	819 9
45		Terminal C	962506	905792	906559 1	909328	907759 1	909521 1	911223	+	913514	913477	915699	916368	916970	919352	917827	919956	921526	922412
50		Initial (nt)	905389	906391	907731	908612	909378	910696	910843	911163	911226	915699	916364	916874	917680	917928	918054	919330	919967	921594
		SEO NO.	4446	4447	4448	4449		<u>. </u>	4452	4453	4454	4455	4456	4457	4458	4459	4460	4461	4462	4463
55		SEO. NO.	946	247	948	049	950	951	952	953	954	955	956	957	958	959	99	96	962	963

EP 1 108 790 A2

	_					_			_		_	$\overline{}$		$\neg \tau$		\neg			- 1			
5		Function	repressor of the high-affinity (methyl) ammonium uptake system	hypothetical protein	Oct. in common protein C18	305 ribosornal protein 5 to	30S ribosomai protein S 14	50S ribosomal protein L33	50S ribosomal protein LZB	transporter (sulfate transporter)	Zn/Co transport repressor	50S ribosomal protein L31	50S ribosomal protein L32		copper-inducible two-component regulator	two-component system sensor	proteinase DO precursor	molybdopterin biosynthesis cnx1 protein (molybdenum colactor biosynthesis enzyme cnx1)	•	large-conductance mechanosensitive channel	hypothetical protein	5-formyltetrahydrofolate cyclo-ligase
15		Matched length (a.a.)	222	109		/9	100	49	77	529	80	78	55		227	484	406	188		131	210	191
20		Similarity (%)	100.0	100.0		76.1	80.0	83.7	81.8	71.1	77.5	65.4	78.2		73.6	50.1	59.9	54.3		77.1	60.0	59.7
		Identity (%)	100.0	100.0		52.2	54.0	55.1	52.0	34.4	37.5	37.2	60.0		48.0	24.4	33.3	27.7		50.4	28.6	25.1
25	ntinued)	gene	utamicum	utamicum		xa rps18	rpsN	rpmG	2 rpmB	yvdB	eus zntR	yi rpmE	color A3(2)		ngae copR	2 baeS	2 htrA	a CV cnx1		ercutosis scL	erculosis	4FS
30	Table 1 (conlinued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 amtR	Corynebacterium glutamicum ATCC 13032 yjcC		Cyanophora paradoxa rps18	Escherichia coli K12 rpsN	Escherichia coli K12 rpmG	Escherichia coli K12 rpmB	Bacillus subtilis 168 yvdB	Staphylococcus aureus zntR	Haemophilus ducreyi rpmE	Streptomyces coelicolor A3(2) SCF51A.14		Pseudomonas syringae copR	Escherichia coli K12 baeS	Escherichia coli K12 htrA	Arabidopsis thaliana CV cnx1		Mycobacterium tubercutosis	Mycobacterium tuberculosis H37Rv Rv0990	Homo sapiens MTHFS
<i>35</i>		db Match	gp:CGL133719_2	gp:CGL133719_1		sp:RR18_CYAPA		sp:RL33_ECOLI			X	200			Sp.COPR_PSESM	SD:BAES ECOLI	pir.S45229	sp:CNX1_ARATH		sp:MSCL_MYCTU	pir.A70601	pir.JC4389
		ORF (bp)	1	327 9	321	249 \$	303	+	234	+	 -	_	1	447	+	1365		-	9		651	570
45		Terminal (nt)	922396	923138	923981	924159	924425	924734	924901	925325	026031	927737	927922	927339	928812	930248	931648	932290	787750	932570	933060	933733
50		fuitial (nt)	923061	923464	923661	924407	924727	924895	925134	926935	007700	921242	927752	027785	_1	028884		_1	000000		933710	
		SEO	(a.a.) 4464	4465	4466	4467	4468	4469	4470	4471	12	44/2	4474	4476	4476	4477	. 477	4479	7,00	4400	4482	4483
55		SEO	(DNA)	965	996	796	968	969	22	27.0	5 2	9/2	974	37.0	976	770	97.0	979	1	980	982	983

_							_			$\overline{}$						- 1		
5	Function	UTP-glucose-1-phosphate uridylyltransferase	molybdopterin biosynthesis protein	ribosomal-protein-alanine N- acetyltransferase	hypothetical membrane protein	cyanate transport protein		hypothetical membrane protein	hypothetical membrane protein	cyclomaltodextrinase	hypothetical membrane protein	hypothetical protein	methionyl-tRNA synthetase	ATP-dependent DNA helicase	hypothetical protein	hypothetical protein		transposase
15	hed Jth							137 hy	225 hy	444 cy	488 hy	272 hy	615 m	741 A	210 h)	363 hy		94
	Matched length (a.a.)	296	390	193	367	380	1	=	22	4	4	2	9	7		e 	_	
20	Similarity (%)	6.89	62.6	54.9	54.8	62.4		9.09	59.6	53.6	75.2	78.3	66.7	49.0	53.3	29.0		59.6
	Identity (%)	42.2	31.8	29.0	30.3	26.6		32.1	25.3	26.8	43.0	54.0	33.8	26.2	27.6	30.0		33.0
<i>25</i>	91	<u>s</u>	ans	2	losis	ž		e Rd	losis	244	losis	losis	Delta H		Delta H	aG.		
S Table 1 (continued)	Homologous gene	Xanthomonas campestris	Arthrobacter nicotinovorans moeA	Escherichia coli K12 rimJ	Mycobacterium tuberculosis H37Rv Rv0996	Escherichia coli K12 cynX		Haemophilus influenzae Rd H11602	Mycobacterium tuberculosis H37Rv Rv0093c	Bacillus sphaericus E-244 CDase	Mycobacterium tuberculosis H37Rv	Mycobacterium tuberculosis H37Rv Rv1003	Methanobacterium thermoautotrophicum Delta H MTH587 metG	Escherichia coli recQ	Methanobacterium thermoautotrophicum Delta H MTH796	Bacillus subtilis 168 yxaG		Enterococcus faecium
<i>35</i>	db Match	pir.JC4985	prf:2403296B	Sp:RIMJ_ECOLI	pir:G70601	Sp.CYNX_ECOL!		sp:YG02_HAEIN	sp:Y05C_MYCTU	sp.CDAS_BACSH	pir.E70602	sp:Y19J_MYCTU	sp:SYM_METTH	prf. 1306383A	pir:B69206	SP.YXAG BACSU		gp:AF029727_1
	ORF (hp)		1257 pi	099	1020 p	1200 \$	1419	405 s	714 8	1167 s	1560	825 8	1830	2049		1158		
45	Terminal O	6	936607 1		938401	939626	937799 1	╁	940754	941925	942381	944833	948669	950839		951834	1	954266
50	Initial	934423	935351	936615	937382	938427	939217	939686	940041	940759	943940	944009	946840	048791		952991	٠.	
	SEO	(a.a.)	4485	4486	4487	4488	4489	4490	4491	4492	4493	4494	4495	9077	4497	4408	_	4500
55	SEO			<u> </u>	987			 	991	992	993	994	995	900	766	g	900	1000

	_			_		-											 -	Т				$\overline{}$
5		Function	transposase	transposase subunit		D-lactate dehydrogenase	site-specific DNA-methyltransferase		transposase	transposase	transcriptional regulator	cadmium resistance protein		hypothetical protein	hypothelical protein	dimethyladenosine transferase	isopentenył monophosphate kinase		ABC transporter	pyridoxine kinase	hypothetical protein	hypothetical protein
15		Matched length (a.a.)	139 tre	112 tra		565 D-	231 sit		94	139 tr	91 tra	205 cë		263 hy	362 h	265 d	315 is	1	478 A	242 p	159 h	108 h
								-	-	4			\dashv			\dashv		\dashv		+		
20		Similarity (%)	67.6	88.4		75.6	62.8		59.6	67.6	84.6	66.8		70.7	63.5	65.3	67.0		82.8	67.4	58.5	78.7
		Identity (%)	41.7	73.2		46.4	30.8		33.0	41.7	62.6	31.7		46.4	34.8	34.3	42.5		65.5	40.1	27.0	45.4
25		_=																	es .			2)
30	lable 1 (conunueu)	Homologous gene	Escherichia coli K12	Brevibacterium linens tnpA		Escherichia coli did	Klebsiella pneumoniae OK8 kpnIM		Enterococcus faecium	Escherichia coli K12	Mycobacterium tuberculosis H37Rv Rv1994c	Staphylococcus aureus cadD		Mycobacterium tuberculosis H37Rv Rv1008	Mycobacterium tuberculosis H37Rv Rv1009 rpf	Escherichia coli K12 ksgA	Mycobacterium tuberculosis H37Rv Rv1011		Saccharopolyspora erythraea ertX	Escherichia coli K12 pdxK	Mycobacterium tuberculosis H37Rv RV2874	Streptomyces coelicolor A3(2) SCF1.02
35			ES	ă	-	<u>w</u>	1	-	ū	l ši		120		ΣÏ	ΣI		ΣI		လ စ			SS
40		db Match	pir.TQEC13	an AF052055 1		prf:2014253AE	sp:MTK1_KLEPN		qp. AF029727 1	pir TQEC13	sp:YJ94_MYCTU	prf.2514367A		pir.C70603	pir.D70603	Sp.KSGA_ECOLI	pir.F70603		pir.S47441	SP. PDXK_ECOLI		gp:SCF1_2
		ORF (bp)	477	414	864	1713	840	219	294	477	357	621	342	831	1071	879	933	642	1833	792	480	321
45		Terminal (nt)	954753	055354	056774	1	i 	959185	960374	960861	961653	962249	961321	963639	964934	965852	966784	965950	968660	969458	969461	970349
50		Initial (nt)	054277	22720	055011	95539R	958683	959403	060081	960385	961297	961629	961662	962809	963864	964974		966591		968667		970029
		SEO	(a. d.)	3 5	4502	302	4505	4506	4507	4508	4509	4510	4511	4512	4513	4514	4515	4516	4517	4518	4519	4520
55			(CONT)			200		1006		_		1010	+	+	1013	1014		1016	+	1018	1019	1020

EP 1 108 790 A2

	Function	hypothetical protein	regulator	hypothetical protein	enoyl-CoA hydratase				major secreted protein PS1 protein precursor	transcriptional regulator (tetR family)	membrane transport protein	S-adenosylmethionine:2- demethylmenaquinone methyltransferase		hypothetical protein	hypothetical protein		peptide-chain-release factor 3	amide-urea transport protein
	Matched length (a.a.)	107	261	276	337				440	100	802	157		121	482		546	404
	Similarity (%)	69.2	88.1	59.1	70.9				56.8	70.0	70.0	75.8		63.6	48.3		68.0	72.8
	Identity (%)	35.5	64.8	27.2	35.6				27.7	44.0	42.6	38.2		29.8	24.9		39.2	42.8
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SCF1.02	Streptomyces coelicolor A3(2) SCJ1.15	Bacillus subtilis 168 yxeH	Mycobacterium tuberculosis H37Rv echA9				Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Streptomyces coelicolor A3(2) SCF56.06	Streptomyces coelicolor A3(2) SCE87.17c	Haemophilus influenzae Rd H10508 menG		Neisseria meningitidis NMA1953	Mycobacterium tuberculosis H37Rv Rv1128c		Escherichia coli K12 prfC	Methylophilus methylotrophus fmdD
	db Match	gp:SCF1_2	gp:SCJ1_15	Sp:YXEH_BACSU	pir.E70893				sp:CSP1_CORGL	gp:SCF56_6	gp:SCE87_17	sp:MENG_HAEIN		gp:NMA6Z2491_21	pir.A70539		pir:159305	prf:2406311A
	ORF (bp)	321	960	792	1017	654	777	1212	1386	579	2373	498	999	381	1551	936	1647	1269
	Terminal (nt)	970738	971823	972244	974155	973304	974962	974965	977734	977800	978368	981490	982287	982294	984650	985845	984864	988007
	Initial (nt)	970418	970864	973035	973139	973957	974186	976176	976349	978378	980740	980993	981622	982674	983100	984910		
	SEQ NO.	4521	4522	4523	4524	4525	4526	4527	4528	4529	4530	4531	4532	4533	4534	4535		
	SEQ NO.	1021	1022	1023	1024	1025	1026	1027	1028	1029	1030	1031	1032	1033	1034	1035	1036	1037

	Γ		- T	T	0 =	ه د	T	7		5	\exists						Т		
5		ion	rt protein	rt protein	ed-chain amin binding protei	ed-chain amin binding protei	olase	ygenase	hosphate	ted to be usel	olase	ein L25	/ase	air enzyme	0)	samine		sor	iding protein I
10		Function	amide-urea transport protein	amide-urea transport protein	high-affinity branched-chain amino acid transport ATP-binding protein	high-affinity branched-chain amino acid transport ATP-binding protein	peptidyl-tRNA hydrolase	2-nitropropane dioxygenase	glyceraldehyde-3-phosphate dehydrogenase	polypeptides predicted to be useful antigens for vaccines and diagnostics	peptidyl-tRNA hydrolase	50S ribosomal protein L25	lactoylglutathione lyase	DNA alkylation repair enzyme	ribose-phosphate pyrophosphokinase	UDP-N-acetylglucosamine pyrophosphorylase		sufl protein precursor	nodulation ATP-binding protein I
15		Matched length (a.a.)	77	. 234	253	236	187	361	342	51	174	194	143	208	316	452		909	310
20		Similarity (%)	61.0	68.0	0.07	69.1	9.07	54.0	72.8	61.0	63.2	65.0	54.6	62.5	79.1	71.9		61.7	64.8
		Identity (%)	40.8	34.6	37.9	35.2	39.0	25.2	39.5	54.0	38.5	47.0	28.7	38.9	44.0	42.0		30.8	35.8
25	ontinued)	gene	ylotrophus	ylotrophus	iginosa PAO	iginosa PAO	2 pth	C 0895	ofulvus gap	dis	2 pth	erculosis	urium D21	CC 10987		aD		12 sufl	l nodl
30	Table 1 (continued)	Homologous gene	Methylophilus methylotrophus fmdE	Methylophilus methylotrophus fmdF	Pseudomonas aeruginosa PAO braF	Pseudomonas aeruginosa PAO braG	Escherichia coli K12 pth	Williopsis mrakii IFO 0895	Streptomyces roseofulvus gap	Neisseria meningitidis	Escherichia coli K12 pth	Mycobacterium tuberculosis H37Rv rplY	Salmonella typhimurium D21 gloA	Bacillus cereus ATCC 10987 alkD	Bacillus subtilis prs	Bacillus subtilis gcaD		Escherichia coli K12 sufl	Rhizobium sp. N33 nodl
35			25	2 =			Ш	i				21							
40		db Match	prf:2406311B	prf:2406311C	sp:BRAF_PSEAE	sp:BRAG_PSEAE	SP.PTH ECOLI	SP:2NPD WILMR	sp:G3P_ZYMMO	GSP: Y75094	Sp.PTH_ECOLI	pir.B70622	sp:LGUL_SALTY	prf.2516401BW	Sp:KPRS_BACCL	pir.S66080		sp:SUFI_ECOLI	Sp.NODI_RHIS3
		ORF (bp)	882	1077	726	669	612	1023	1065	369	531	900	429	624	975	1455	1227	1533	918
45		Terminal (nt)	988904	989980	990705	991414	991417	993080	994613	994106	994845	995527	996830	996833	997466	998455	1000016	1002864	1003930
50		Initial (nt)	988023	988904	989980	990716	992028	992058	993549	994474	995375	996126	996402	997456	998440	606666	1001242	1001332	1003013
		SEQ NO.	4538	4539	4540	4541	4542	4543	4544	4545	4546	4547	4548	4549	4550	4551	4552	4553	4554
55		SEQ NO.		1039	1040	1041	1042	_		1045	1046	1047	1048	1049	1050	1051	1052	1053	1054

5		Function	hypothetical membrane protein	two-component system sensor	historine Milase	regulator (luxR family)		hypothetical membrane protein	ABC transporter		ABC transporter	gamma-giutamyitranspeptidase precursor						transposase protein naginein	transposase (IS1628 TnpB)	1,0,1		transcriptional regulator (TetR-	family)	transcription/repair-coupling protein	
15	ped		\neg		T			$\neg \uparrow$		1					-	-	1	37 tra	236 tra		-	-	183 fa	1217 tra	_
	Matched		272	459		202	1	349	535		573	999		-	-	+	+	4	-	-	-	+		\dashv	_
20		Similarity (%)	63.2	48.4		67.3		64.5	57.0		74.0	58.6						72.0	100.0			_	59.6	65.1	
		identity (%)	30.2	24.6	2.1.2	36.6		31.5	28.6		44.0	32.4						64.0	9.66				23.0	36.2	
25 (panuji			Is ORF2	0	adun	stius dnrN		olor A3(2)	escens strV		egmatis exiT	2 ggt						lutamicum	lutamicum AG1 tnpB				œ	Į.	
So Solutioned	DON LONGE	Homologous gene	Strentomyces lividans ORF2		Escherichia coli N 12 unpo	Streptomyces peucetius dnrN		Streptomyces coelicolor A3(2) SCF15.07	Streptomyces glaucescens strV		Mycobacterium smegmatis exiT	Escherichia coli K12 ggt						Corynebacterium glutamicum TnpNC	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB				Escherichia coli tetR	Escherichia coli mfd	
35			\(\sigma\)	1-		<i>σ</i>		0, 0,	0)		_		†										COL	<u>P</u>	
40		db Match	12. (A)(A)	DESOUND JIE	sp:UHPB_ECOLI	prf.2107255A		gp:SCF15_7	pir.S65587		nir T14180	SD.GGT ECOLI	-					GPU:AF164956_23	gp:AF121000_8				sp:TETC_ECOLI	SP.MFD ECOLI	
		ORF (bp)	+	129	1257	609	204	1155	1440	153	1734	1965		249	519	192	909	243	708	462	597	312	651	3627	
45		Terminal (nt)		1004/83	1006085	1006697	1006734	1008152	1010061	1008534	1011790	1011797		1014264	1014343	1015116	1016560	1015450	1015145	1017018	1017274	1018393	1019066	1022716	1019390
50		Initial (nt)		1003953	1004829	1006089	1006937		1008522	400888	1000000			1014016	1014861	1014925	1015652	1015692	1015852	4570 1016557	1017870	1018082		1019090	1020613
	1	SEQ.		4555	4556	4557	455B				100		4303	4564	4565	4566	4567	4568	4569		_				
55		SEQ NO.		1055	1056	1057	1058	1059	1060		1001	1062	1003	1064	1065	1066	1067	1068	1069	1070	1071	1072	1073	7207	1075

5		Function	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	multidrug resistance-like ATP- binding protein, ABC-type transport protein	ABC transporter	hypothetical membrane protein		hypothetical protein			IpqU protein	enolase (2-phosphoglycerate dehydratase)(2-phospho-D- glycerate hydro-lyase)	hypothetical protein	hypothelical protein	hypothetical protein	guanosine pentaphosphatase or exopolyphosphatase		threonine dehydratase	
5		Matched length (a.a.)	92	632	574	368		183			241	422	41	191	153	329		314	
20		Similarity (%)	69.0	62.7	81.9	100.0		57.4			68.9	86.0	58.0	55.0	77.8	55.0		64.7	
		Identity (%)	48.0	31.3	50.2	100.0		33.4			46.5	64.5	68.0	31.9	59.5	25.2		30.3	
25	inued)	eue	o o		culosis	amicum					culosis		APE2459	culosis	culosis				
30	Table 1 (continued)	Homologous gene	Neisseria gonorrhoeae	Escherichia coli mdlB	Mycobacterium tuberculosis H37Rv Rv1273c	Corynebacterium glutamicum ATCC 13032 orf3		Bacillus subtilis yabN			Mycobacterium tuberculosis H37Rv Rv1022 lpqU	Bacillus subtilis eno	Aeropyrum pernix K1 APE2459	Mycobacterium tuberculosis H37Rv Rv1024	Mycobacterium tuberculosis H37Rv Rv1025	Escherichia coli gppA		Escherichia coli tdcB	
35 40		db Match	GSP:Y75301	sp:MDLB_ECOLI	sp:YC73_MYCTU	sp:YLI3_CORGL		sp:YABN_BACSU			pir.A70623	sp:ENO_BACSU	PIR:872477	pir:C70623	pir.D70623	sp:GPPA_ECOLI		sp.THD2_ECOLI	
		ORF (bp)	228	1968	1731	2382	297	1	426	378	786	1275	144	540	546	963	984	930	195
45		Terminal (nt)	1021078	1022699	1024666	1026505	1032181	1032780	1032760	1033269	1034739	1036223	1036016	1036855	1037445	1038410	1036498	1038721	1039977
50		Initial (nt)	1021305	1024666	1026396	1028886	1031885	1032196	1033185	1033646		1034949	1036159		1036900	1037448	1037481		
		SEO	(a.a.) 4576	4577	4578	4579	45.BO	4581	4582	4583	4584	4585	4586		4588	4589	4590	 -	
55			(DNA)	1077	1078	1079	1080	1081	1082	1083	1084	1085	1086	1087	1088	1089	1090	1091	1092

EP 1 108 790 A2

		· · · · · ·								_	_ [_		1 -	- 1	1	- 1	- 1	1		- 1	- 1
5	on			or of L-rhamnose				tion factor		. uo		heptulosonate-7		n or undecaptery thetase				9	nyl transferase	id synthase	
10	Function		hypothetical protein	transcription activator of L-rhamnose operon	hypothetical protein		hypothetical protein	transcription elongation factor	hypothetical protein	lincomycin-production		3-deoxy-D-arabino-heptulosonate-7- phosphate synthase		hypothetical protein or undecaptering pyrophosphate synthetase	hypothetical protein			pantothenate Kinase	serine hydroxymethyl transferase	p-aminobenzoic acid synthase	
15	Matched length		56	242	282		140	143	140	300		367		97	28			308	434	969	
20	Similarity (%)		74.1	55.8	80.1		57.1	60.1	72.1	56.3		99.5		97.3	100.0			79.9	100.0	70.1	
	Identity (%)		46.3	24.8	57.8		30.0	35.0	34.3	31.7		99.2		96.0	100.0			53.9	99.5	47.6	
25 (panuju	s gene		ma MSB8	aR	perculosis		licolor A3(2)	.eA	berculosis	olnensis ImbE		glutamicum		glutamicum	glutamicum avum)			oaA	avum MJ-233	seus pabS	
so Table 1 (continued)	Homologous gene		Thermotoga maritima MSB8	Escherichia coli rhaR	Mycobacterium tuberculosis H37Rv Rv1072		Streptomyces coelicolor A3(2) SCF55.39	Escherichia coli greA	Mycobacterium tuberculosis H37Rv Rv1081c	Streptomyces lincolnensis ImbE		Corynebacterium glutamicum aroG		Corynebacterium CCRC18310	Corynebacterium glutamicum (Brevibacterium flavum)			Escherichia coli coaA	Brevibacterium flavum MJ-233 alyA	Streptomyces griseus pabS	
35 40	db Match		pir.B72287	ECOLI	pir.F70893		gp:SCF55_39	SP. GREA ECOLI E	-	pir.S44952		sp:AROG_CORGL		Sp:YARF_CORGL	SP.YARF_CORGL			sp.cova_Ecol1	gsp:R97745	SP. PABS_STRGR	
			+	+	+		1	+		1_	1_		 E	. 	+	6	80		7		က္
	ORF			-	816	387	 	522	+	873	318	7 1098	633	1 675	9 174	3 51	31	7 936	1	0 1860	
45	Terminal	1040325	1040682	1041917	1042842	1042850	1043298	1043774	1044477	1046030	1046390		1046820	1048501	1048529	1049043	1049068	1049427		1053880	1054602
50	Initial	1030006	1040404	1040925	1042027	1043236	1043747	1044295		1045158			1047452		1048356	1048525	1049385	1050362	1	1052021	
	SEO	(a.a)	2007		4596	4597	4598	4599	4600	4601	4602	4603	4604		4606	4607	-	+		4611	
55	SEO	710	-+-	1095	1096	1007	1098	1000	1100	1101	1103	1103	1104	1105	1106	1107	1108	1109	110	1111	1112

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

_			_	_			-			_	\neg		\neg	\neg			\neg						
	Function		-	phosphinothricin resistance protin	hypothetical protein		hypothetical protein	lactam utilization protein	hypothelical membrane protein			transcriptional regulator		fumarate hydratase precursor	NADH-dependent FMN oxydoreductase			reductase	dibenzothlophene desulfurization enzyme A	dibenzothiophene desulfurization enzyme C (DBT sulfur dioxygenase)	dibenzothiophene desulfurization enzyme C (DBT sulfur dioxygenase)		
	Matched length (a.a.)			165	300		225	276	165			204		456	159			184	443	372	391		
	Similarity (%)			58.8	59.0		57.8	52.2	81.2			63.2		79.4	65.4			81.0	67.7	51.3	61.6		
	identity (%)			30.3	30.3		37.8	30.8	40.6			26.0		52.0	32.7			55.4	39.1	25.8	28.9		
Table 1 (continued)	Homologous gene			Alcaligenes faecalis ptcR	Escherichia coli ybgK		Escherichia coli ybgJ	Emericella nidulans lamB	Bacillus subtilis ycsH			Bacillus subtilis ydhC		Rattus norvegicus (Rat) fumH	Rhodococcus erythropolis IGTS8 dszD			Streptomyces coelicolor A3(2) StAH10.16	Rhodococcus sp. IGTS8 soxA	Rhodococcus sp. IGTS8 soxC	Rhodococcus sp. IGTS8 soxC		
	db Match			ap:A01504 1	Sp.YBGK_ECOLI		sp.YBGJ ECOLI	Sp.LAMB_EMENI	sp:YCSH_BACSU			sp:YDHC_BACSU		Sp:FUMH_RAT	gp.AF048979_1			gp:SCAH10_16	sp:SOXA_RHOSO	sp.SOXC_RHOSO	sp:SOXC_RHOSO		
	ORF (bp)	864	393	•	1	+	699	756	591	672	603	189	1278	1419	489	261	447	564	1488	1080	1197	780	9
	Terminal (nt)	1055722	1054640	1056319	1056322	1058628	1057200	1057843	1058624	1059889	1059962	1060792	1062146	1062211	1064424	1064478	1064754	1065304	1067570	1068649	1069845	1068913	
	Initial (nt)	1054859	1055032	1055783	1057200	1057573	1057868	1058598	1059214	1059218	1059360		1060869			1064738	1065200		1066083	1067570		1069692	
	SEQ NO.										4622		4624	4625	4626	4627	4628	4629	4630	4631	4632	4633	
	SEQ			_						_	-+	_		_		1127	1128	1129	1130	1131	1132	1133	1134

														_	_						_
5		Function	FMNH2-dependent aliphatic sulfonate monooxygenase	glycerol metabolism	hypothetical protein	hypothetical protein		transmembrane efflux protein	exadeoxyribanuclease small subunit	exodeoxyribonuclease large subunit	penicillin tolerance	polypeptides predicted to be useful antigens for vaccines and diagnostics		permease		sodium-dependent proline transporter	major secreted protein PS1 protein precursor	GTP-binding protein	virulence-associated protein	ornithine carbamoyftransferase	hypothetical protein
15		Matched length (a.a.)	397	325	211	227		82	62	466	311	131		338		552	412	361	75	301	143
20		Similarity (%)	73.1	75.7	56.4	66.1		78.1	67.7	55.6	78.8	47.0		63.9		61.4	60.0	88.6	80.0	58.8	6.69
		Identity (%)	45.3	44.3	27.5	31.3		36.6	40.3	30.0	50.2	33.0		26.3		30.3	29.9	70.1	57.3	29.6	39.2
25	ntinuea)	gene	Coss	glpX	erculosis	Qu		olor A3(2)	2 MG1655	2 MG1655	2 lytB	996		2 perM		Rat) SLC6A7	utamicum vum) ATCC	ш	sus intA	iginosa argF	f I
	able 1 (continued)	Homologous gene	Escherichia coli K12 ssuD	Escherichia coli K12 glpX	Mycobacterium tuberculosis H37Rv Rv1100	Bacillus subtilis ywmD		Streptomyces coelicolor A3(2) SCH24.37	Escherichia coli K12 MG1655 xseB	Escherichia coli K12 MG1655 xseA	Escherichia coll K12 lytB	Neisseria gonorrhoeae		Escherichia coli K12 perM		Rattus norvegicus (Rat) SLC6A7 ntpR	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Bacillus subtilis yyaF	Dichelobacter nodosus intA	Pseudomonas aeruginosa	Bacillus subtilis 168 ykkB
40		db Match	gp:ECO237695_3 E	Sp.GLPX_ECOLI E		pir.H70062 B		gp:SCH24_37	sp:EX75_ECOLI x	sp:EX7L_ECOLI	Sp.LYTB ECOLI E	421		sp:PERM_ECOLI E		sp:NTPR_RAT	sp:CSP1_CORGL (Sp:YYAF BACSU	SACNO	PSEAE	\vdash
		ORF (bp)	1176	963	570	1902	285	225	243	1251	975	429	828	1320	180	1737	1233	1083	297	1	501
45		Terminal (nt)	1071134	1071479	1073245	1073340	1075641	1075329	1075667	1075933	1078271	1077306	1078319	1079221	1080786	1080972	1082951	1085462	1086087	-	
50		Initial (nt)	1069959	1072441	1072676	1075241	1075357	1075553	1075909	1077183	1077297		1079146	1080540	1080965	1082708	1084183	1084380			
		SEQ NO.	:	4636		4638	4639		4641	4642	4643		4645		4647		4649	4650			
55		SEQ NO	1135	1136	1137	1138	1139	1140	1141	1142	1143	1144	1145	1146	1147	1148	1149	1150	1151	1152	1153

EP 1 108 790 A2

													$\overline{}$							つ し
5		Function	9-cis retinol dehydrogenase or oxidoreductase	transposase/integrase (IS110)	hypothetical membrane protein	N-acetylglucosaminyltransferase			transposase (insertion sequence IS31831)	transposase	transposase			-G-adivaron re condendation	oxidoreductase of morphine of dehydrogenase (naloxone reductase)	4-carboxymuconolactone decarboxlyase			l as	involved in frenolicin blosynthetic
	_		9-cis oxido	trans	hypo	N-ac	-	-	trans 1S31	trans	trans	-	-		deh	4-ca		_		7
15	Matched	length (a.a.)	198	396	1153	259			97	125	48				264	108			146	<u>}</u>
20	-	Similarity (%)	9.09	73.0	52.2	47.1			93.8	94.4	95.8				66.3	63.9			86.4	r.
	_	(%)	33.8	42.2	23.0	22.8			82.5	79.2	87.5				37.5	33.3			0 76	9.4.9
<i>25</i>					E				nicum	nicum mentum)	nicum mentum)				110 norA	ticus			0 -1	vus irnə
30 0 Tobline	name i	Homologous gene	Mus musculus RDH4	Streptomyces coelicolor SC3C8.10	Escherichia coli K12 yegE	Rhizobium meliloti nodC			Corynebacterium glutamicum ATCC 31831	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869				Pseudomonas putida M10 norA	Acinetobacter calcoaceticus				Streptomyces roseofulvus Irno
35	-					ш										\dagger			\top	
40		db Match	gp:AF013288_1	sp:YIS1_STRCO	sp. YFGE ECOLI	SD NODC RHIME			pir:S43613	pir.JC4742	pir:JC4742				sp:MORA_PSEPU	sp:DC4C_ACICA				gp:AF058302_19
	-	ORF (bp)	630	1208	3042			333	291	375	144	141	366	498	843	321	683	200	193	654
45		Terminal (nt)	1087664	1088535	1003216	1004693	1094911	1095384	1095387	1095719	1096188	1096331	1096746	1097726	1098592	1098929	01,000	1099750	1099015	1099115
50	1	fuitial (nt)	1088293	1089740	1000175	000000	1004693	1095052	1095677	1096093	1096331	1096471		1097229	1097750	1098609		1099088	1099209	4670 1099768
·		SEQ NO.	(8.8.)	4655		2000	- -		_ :	4661	4662	4663	4664	4665	4666	4667	_		4669	4670
<i>55</i>	Ì		1154				101			1161	1162	1163	1164	1165	1166	1167		1168	1169	1170

					T							te			ein		d E	eo
5									subunit	ase		olpyruva	-binding		ake prote	5	efflux pu	sequen
10	Function	biotin carboxylase						hypothetical protein	magnesium chelatase subunit	2,3-PDG dependent phosphoglycerate mutase	hypothetical protein	carboxyphosphonoenolpyruvate phosphonomutase	tyrosin resistance ATP-binding protein	hypothetical protein	alkylphosphonate uptake protein	transcriptional regulator	multi-drug resistance efflux pump	transposase (insertion sequence IS31831)
15	Matched length (a.a.)	563						655	329	160	262	248	593	136	111	134	367	436
20	Similarity (%)	78.5						80.3	52.6	62.5	60.7	59.3	54.1	6.99	82.0	62.7	59.4	99.8
	Identity (%)	48.1						57.9	27.7	33.8	38.2	29.4	31.7	29.4	55.0	32.1	22.6	99.5
<i>25</i> (pənı		C 7942						losis	des ATCC	olica pgm	ulosis	opicus	5	ulosis	1G1655	аО	oniae	amicum ermentum)
& Samuel (Continued)	Homologous gene	Synechococcus sp. PCC 7942 accC						Mycobacterium tuberculosis H37Rv Rv0959	Rhodobacter sphaeroides ATCC 17023 bchl	Amycolatopsis methanolica pgm	Mycobacterium tuberculosis H37Rv Rv2133c	Streptomyces hygroscopicus SF1293 BcpA	Streptomyces fradiae tlrC	Mycobacterium tuberculosis H37Rv Rv2923c	Escherichia coli K12 MG1655 phnA	Bacillus subtilis 168 yxaD	Streptococcus pneumoniae pmrA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 31831
35				-			_	<u> </u>			ΣI		İ	<u> </u>		1		0 S 4
40	db Match	gp:SPU59234_3						sp.YT15_MYCTU	SP.BCHI_RHOSH	gp:AMU73808_1	pir:A70577	gp:STMBCPA_1	Sp:TLRC_STRFR	sp:Y06C_MYCTU	sp:PHNA_ECOL!	sp:YXAD_BACSU		pir.S43613
	ORF (bp)	1737	597	498	345	153	639	1956	1296	642	705	762	1641	396	342	474	1218	1308
45	Terminal (nt)	1101653	1102639	1103192	1103524	1104103	1105561	1104103	1106086	1108201	1108905	1109754	1111432	1111425	1112230	1112484	1114319	1115793
50	Initial (nt)	1099917	1102043	1102695	1103180	1103951	1104923	1106058	1107381	1107560	1108201	1108993	1109792	1111820	1111889	1112957		1114486
	SEO		4672	-	4674	4675	4676		4678	4679	4680	4681	4682	4683	4684	4685		4687
55	SEQ.	1171	1172	1173	1174	1175	1176	1177	1178	1179	1180	1181	1182	1183	1184	1185	1186	1187

1		—-т							$\overline{}$	$\neg \neg$		Т	\neg	εT	$\neg T$	Т	-Т		
5	Function	cysteine desulphurase	nicotinate-nucleotide pyrophosphorylase	quinolinate synthetase A	DNA hydrolase	hypothetical membrane protein	hypothetical protein	hypothetical protein	lipoate-protein ligase A	alkylphosphonate uptake protein and C-P lyase activity	transmembrane transport protein or 4-hydroxybenzoate transporter	p-hydroxybenzoate hydroxylase (4- hydroxybenzoate 3- monooxygenase)	hypothetical membrane protein	ABC transporter ATP-binding protein	hypothetical membrane protein		Ca2+/H+ antiporter ChaA	hypothetical protein	hypothetical membrane protein
		cyste	nico! pyro	a i	N N	h y p	hyp	hyp	ipo	alky and	tran 4-hy	thyd Pom	hyp	ABC	hyp		Ca	hyp	ξ
15	Matched length (a.a.)	376	283	361	235	192	214	108	216	148	420	395	191	532	250		339	236	221
20	Similarity (%)	73.4	68.9	77.6	6.09	54.7	66.4	74.1	60.7	8.09	64.3	68.6	9.69	47.6	61.6		69.0	57.6	61.1
	Identity S	43.9	42.1	49.3	37.0	23.4	36.0	41.7	30.1	29.7	28.8	40.8	36.7	24.8	25.6		33.3	28.4	27.6
<i>25</i> (p ən		ens Jene	osis			Is R1		31655	4	80	caK	sa phhy	JE JE		ပ္			ау	
so Table 1 (continued)	Homologous gene	Ruminococcus flavefaciens cysteine desulphurase gene	Mycobacterium tuberculosis	Bacillus subtilis nadA	Streptomyces coelicolor SC5B8.07	Deinococcus radiodurans DR1112	Streptomyces coelicolor SC3A7.08	Escherichia coli K12 MG1655 ybdF	Escherichia coli K12 IpIA	Escherichia coli K12 phnB	Pseudomonas putida pcaK	Pseudomonas aeruginosa phhy	Bacillus subtilis 168 ykoE	Escherichia coli yijK	Bacillus subtilis 168 ykoC		Escherichia coli chaA	Pyrococcus abyssi Orsay PAB1341	Bacillus subtilis ywaF
35					0, 0,		0,0,				1								-
40	db Match	gp:RFAJ3152_2	sp:NADC_MYCTU	pir.E69663	gp:SC5B8_7	gp:AE001961_5	gp:SC3A7_8	sp:YBDF_ECOLI	qp:AAA21740 1	sp:PHNB_ECOLI	sp:PCAK_PSEPU	sp:PHHY_PSEAE	pir.A69859	Sp:YJJK ECOLI	pir.G69858		sp:CHAA_ECOLI	pir:C75001	sp:YWAF_BACSU
	ORF (bp)	1074	837	1182	642	900	900	342	789	411	1293	1185	588	1338	753	531	1050	708	723
45	Terminal (nt)	1115832	1116908	1117751	1119086	1120804	1120833	1121468	1121818	1123461	1123534	1124836	1127009	1128350	1129102	1129632	1130704	1131428	1131401
50	Initial (nt)	1116905	1117744	1118932	1119727	1120205	1121432	1121809	1122606	1123051	1124826	1126020	1126422	1127013	1128350	1129102	1129655	1130721	4705 1132123
	SEQ NO.		4689	4690	4691	4692	4693	4694	4695	4696	4697	4698	4699	4700	4701	4702	4703	4704	
55	ļ	1188	1189	1190		1192	1193	1194	1105		1197	1198	1100	1200	1201	1202	1203	1204	1205

EP 1 108 790 A2

						\neg				$\neg au$		_	Т	Γ.		- 1	i i		1	- 1	1	- 1	- 1	
5			Function	BC subunit A	oxidase		nietoria mombrono profein	and alle process	otein				110	dasa farsanical numb	arsenate reductase (arsenical periformodifier)	hypothetical membrane protein	otein	otein	GTP-binding protein (tyrosine phsphorylated protein A)	rotein	rotein		e-4S]	
10			Ē	excinuclease ABC subunit A	thioredoxin peroxidase		or Colored	nypometical me	biosynthesis protein					chymotrypsin en	arsenate reuuc modifler)	hypothetical m	hypothetical protein	hypothetical protein	GTP-binding protein (tyre phsphorylated protein A)	hypothetical protein	hypothetical protein		ferredoxin [4Fe-4S]	
15		Matched	length (a.a.)	946	164		3	318	282					277	111	340	147	221	614	206	315		103	
20			Similarity (%)	58.7	81.7			72.0	49.0					51.3	72.1	62.4	71.4	62.9	76.7	54.9	61.9		91.3	
			Identity (%)	35.5	57.3			39.9	34.0					28.8	43.2	23.5	43.5	35.8	46.3	27.9	38.7		78.6	
25	ontinued)		s gene	ilus unrA	ercutosis			d.	icolor A3(2)					-		aD.	berculosis	berculosis	12 typA	berculosis	iberculosis		seus fer	
30	Table 1 (continued)		Homologous gene	Thermus thermophilus unrA	Mycobacterium tuberculosis H37Rv tpx			Escherichia coli yedL	Streptomyces coeliculor A3(2)					Penaeus vannamei	Escherichia coli	Bacillus subtilis yyaD	Mycobacterium tuberculosis H37Rv Rv1632c	Mycobacterium tuberculosis H37Rv Rv1157c	Escherichia coli K12 typA	Mycobacterium tuberculosis H37Rv Rv1166	Mycobacterium tuberculosis H37Rv Rv1170		Streptomyces griseus fer	פייייייייייייייייייייייייייייייייייייי
35 40			db Match	Sp.UVRA THETH	1	T		sp:YEDI_ECOLI	gp:SCF76_2					sp.CTR2_PENVA	sp:ARC2_ECOL1	SD:YYAD BACSU	pir:F70559	pir.F70555	sp:TYPA_ECOLI	pir:F70874	pir:B70875		SEED STREE	יייייייייייייייייייייייייייייייייייייי
		-	ORF (bp)		495 SF	216	1776	954 8	900	366	297	261	387	834 s		1200 s		714	1911	1506	870	438	, u	n
45			Terminal ((nt)	2	1	1135691	1	1136938	1138859	1139245	1139492	1139611	1139635	1140028	1140901	1.	$\overline{}$	1143026	1146028	1147602	1148461	114882		114926/
50			Initial (nt)	2700211	1134561	1135476	1136833	1137891	1137960	1138880	1139196		1140021	1140861	1141245	1141273		1143739				1140445	14044	1148953
			SEO	(a.a.)		<u> </u>							4715	4716	4717	4710		4720				_		4725
55					1207						1213	1214	1215	1216	1217	0,0	1219	1220	1221	1222	1223		1224	1225

EP 1 108 790 A2

									$ \tau$						- [- 1	1	- 1	1	- 1
5		Function	aspartate aminotransferase		TO GREAT COLOR CANCELLE IN THE	terranyarioupiconinate socionistical succinylation of piperidine-2,6-dicarboxylate		hypothetical protein	dihydropteroate synthase	hypothetical protein	hypothetical protein	antigen TbAAMK, useful in vaccines for prevention or treatment of tuberculosis	mycinamicin-resistance dene	oselospin chan-con-	sucrose-o-phospitate hydrolase	ADPglucosestarch(bacterial glycogen) glucosyltransferase	glucose-1-phosphate adenylyltransferase	methyltransferase	RNA polymerase sigma factor (sigma-24); heat shock and oxidative stress	
15		Matched length (a.a.)	397			229		211	273	245	66	47	286	207	524	433	400	93	194	
20		Similarity (%)	52.9			100.0		100.0	0.69	73.1	67.7	91.5	67.0	0.70	51.0	51.3	81.8	62.4	57.2	
		Identity (%)	25.9			100.0		100.0	59.0	45.7	31.3	72.3	8	33.6	23.5	24.7	61.0	25.8	27.3	
25	Table 1 (continued)	is gene	strain YM-2 aat			glutamicum		glutamicum	liculor A3(2)	prae u17561	berculosis	ıberculosis	niseorubida		tosaceus scrB	<12 MG1655	elicolor A3(2)	rcarofaciens	poE	
30	Table 1 (c	Hamologous gene	Bacillus sp. strain			Corynebacterium glutamicum ATCC 13032 dapD		Corynebacterium glutamicum ATCC 13032 orf2	Streptomyces coeliculor A3(2)	Mycobacterium lebrae u17561	Mycobacterium tuberculosis	H3/KV KV1209 Mycobacterium tuberculosis	Missonora oriseorubida	myrA	Pediococcus pentosaceus scrB	Escherichia coli K12 MG1655 glgA	Streptomyces coelicalor A3(2)	Streptomyces mycarofaciens	Escherichia coli rpoE	
35	!	db Match	SD: AAT BACSP B			gp:CGAJ4934_1				1	100	67		sp:MYRA_MICGR	Sp:SCRB_PEDPE		sp:GLGC_STRCO	sp:MDMC_STRMY	sp.RPOE_ECOL!	
40		අ	sp:AAT			gp:CG/		pir.S60064	gp:SCP8_4		gp:MLO 13 t	gsp:W32443		sp:MY			5 sp:GL			
		ORF (bp)	1101	621	1185	891	663	768	831	5	67/ 58	165	_	864	1494	 	121	639	 	492
45		Terminal	1150379	115102B	1152370	1152373	1155875	1157669	1158524		1159252	1159762		1160728	1160738	1162379	1164916	1164974		1167067
50		Initial	11/40279	1450400	1151186	1153263	4466537	1156902	1157694		1158524	1159635		1159865	1162231		1163702			1166576
		SEO NO.	-+-					4731	4732		4733	4734		4736	4737	4738	4739	_		4742
55		SEQ S	~	_	1221			1230		_		1234	253	1236	1227	1238	1239	1240	1241	1242

EP 1 108 790 A2

,			$\overline{}$					\neg	$ \top$					Ι'''	T	i	1	1		ı
5	Function	hypothetical protein	ATPase	hypothetical protein	hypothetical protein	hypothetical protein			2-oxoglutarate dehydrogenase	ABC transporter or multidrug resistance protein 2 (P-glycoprotein 2)	hypothetical protein	shikimate dehydrogenase	para-nitrobenzyl esterase					tetracycline resistance protein	metabolite export pump of tetracenomycin C resistance	
45	ed c						+	+				╁╴	\vdash	1	-		+			-
15	Matched length (aa)	112	257	154	434	140			1257	1288	240	255	501		-	-	1	409	444	_
20	Similarity (%)	73.2	72.0	83.8	77.0	87.1			93.8	60.4	72.1	61.2	647					61.4	64.2	
	Identity (%)	45.5	43.6	60.4	49.8	57.9			99.4	28.8	31.7	25.5	35.7	3				27.1	32.4	
<i>25</i> (p		osis		losis	losis	losis			nicum	ese.	losis							oson	cens tcmA	
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1224	Escherichia coli mrp	Mycobacterium tuberculosis H37Rv Rv1231c	Mycobacterium tuberculosis H37Rv Rv1232c	Mycobacterium tuberculosis H37Rv Rv1234			Corynebacterium glutamicum A.112036 odhA	Cricetulus griseus (Chinese hamster) MDR2	Mycobacterium tuberculosis	H3/KV KV12496	Escribilization and	Bacillus subtilis pube				Escherichia coli transposon Tn1721 tetA	Streptomyces glaucescens tcmA	
35		121		21	22		-					-	1.	CSU				O-LI	RGA	
40	db Match	pir:C70508	SD:MRP ECOLI	pir:870509	pir.C70509	pir.A70952			prf.2306367A	sp:MDR2_CRIGR	pir.H70953		Sp:AROF_ECULI	sp.PNBA_BACSU				sp:TCR1_ECOLI	sp.TCMA_STRGA	
	ORF		1125		1290	516	999	594	3771	3741	717	=	808	1611	651	876	525	1215	1347	705
45	Terminal	1167577	1167587	1168747	1169321	1171187	1171871	1171869	1172501	1176308	1400121	110012	1180872	1183603	1184257	1185155	1185218	1187039	1188389	1190526
50	\	1167110			1170610	1170672	1171206	1172462	1176271	1180048	2000077	1180837	1181675	1181993	1183607	1184280	1185742	1185825	1187043	1189822
	SEQ				4746	4747	47.4R			4751		4752	4753	4754	4755	4756	4757	4758	4759	4760
55	SEO	2 6		1245			9767	-	1250	1251		1252	1253	1254	1255	1256	1257	1258	1259	1260

EP 1 108 790 A2

5	Function	5- methyltetrahydropteroyltriglutamate- -homocysteine S-methyltransferase	niatory notional and an article	thiophene biolians of process						ABC transporter	ABC transporter	cytochrome bd-type menaquinol oxidase subunit II	cytochrome bd-type menaquinol oxidase subunit l	helicase		mutator mutT protein ((7,8-dihydro-8-oxoguanine-triphosphatase)(8-oxo-dGTPase)(dGTP		proline-specific permease
15	Matched length (a.a.)	774		444						526	551	333	512	402		86		433
20	Similarity (%)	72.2		79.5						63.5	58.4	93.0	99.0	55.0		65.6		85.0
	Identity (%)	45.2		55.2						28.7	29.4	92.0	9.66	26.4		36.9		51.3
25 (continued)	us gene	eus metE		les strain KGB1						<12 MG1655	<12 MG1655	n glutamicum lactofermentum)	Corynebacterium glutamicum (Brevibacterium lactofermentum) cydA	K12 MG1655		mutT		imurium proY
Table 1.0	Homologous gene	Catharanthus roseus metE		Nocardia asteroides strain KGB1						Escherichia coli K12 MG1655 cydC	Escherichia coli K12 MG1655 cydD	Corynebacterium glutamicum (Brevibacterium lactofermentum) cydB	Corynebacterium glutamicum (Brevibacterium factofermentu cydA	Escherichia coli K12 MG1655 yejH		Proteus vulgaris mut T		Salmonella typhimurium proY
35																		ALTY
40	db Match	pir:S57636		gsp: Y29930						sp:cYDC_ECOLI	sp:cYDD_ECOLI	gp:AB035086_2	gp:AB035086_1	sp:YEJH_ECOLI		sp:MUTT_PROVU		sp.PROY_SALTY
	ORF (bp)	2235	456	1398	324	945	792	1647	192	1554	1533	666	1539	2265	342	393	765	; ;
45	Terminal (nt)	1188388	1191542	1193807	1194190	1195109	1195125	1197620	1197815	1197990	1199543	1201090	1202094	1203916	1206657	1206831	1208138	1
50	Initial (nt)	1190622	1191087	1192410	1193867	1194165	1195916	1195974	1197624	1199543	1201075	1202088	1203632	1206180	1206316		1207374	
	SEO		4762	4763	4764	4765	4766	4767	4768	4769	4770	4771	4772	4773	4774		4776	_
55	SEO	(DNA)	1262	1263	1264	1265	1266	1267	1268	1269	1270	1271	1272	1273	\$77.0	1275	1278	1277

EP 1 108 790 A2

[1		$\neg \neg$		\neg	\Box							_					1
5	Function	DEAD box ATP-dependent RNA helicase	bacterial regulatory protein, tetik family	nol 4-	eductase	худепаѕе		stein	egulator		otein	es	otein			ıse		
10	T.	DEAD box ATP- helicase	bacterial regulat family	pentachlorophenol 4- monooxygenase	maleylacetate reductase	catechol 1,2-dioxygenase		hypothetical protein	transcriptional regulator		hypothetical protein	phosphoesterase	hypothetical protein			esterase or lipase		
15	Matched length (a.a.)	643	247	595	354	278		185	878		203	395	915			220		
20	Similarity (%)	74.3	47.4	47.7	72.0	59.4		58.4	55.4		56.2	67.3	59.6			64.6	1	
	Identity (%)	48.1	24.7	24.5	40.4	30.6		31.9	24.9		29.6	39.2	29.7			37.3		
<i>25</i> (penui	ene	CG43		Вфэс	3 clcE	eticus		culosis	visiae		lor A3(2)	culosis	culosis			bacterium		
% % % % % % % % % % % % % % % % % % %	Homologous gene	Klebsiella pneumoniae CG43 DEAD box ATP-dependent RNA helicase deaD	Mycobacterium leprae B1308 C2 181	Sphingomonas flava pcpB	Pseudomonas sp. B13 clcE	Acinetobacter calcoaceticus catA		Mycobacterium tuberculosis H37Rv Rv2972c	Saccharomyces cerevisiae SNF2		Streptomyces coelicolor A3(2) orfZ	Mycobacterium tuberculosis H37Rv Rv1277	Mycobacterium tuberculosis H37Rv Rv1278			Petroleum-degrading bacterium HD-1 hde		
<i>35</i>	db Match	sp:DEAD_KLEPN	prf:2323363BT	sp:PCPB_FLAS3	SD:CLCE_PSESB			pir.A70672	sp:SNF2_YEAST		gp:SCO007731_6	pir.E70755	sp:Y084_MYCTU			gp:AB029896_1		
	ORF (bp)	 	687 pr	1590 sp	1068 sr		471	540 p	3102 8	1065		1173 p	2628 \$	306	318	774 g	378	786
45	Terminal (58	1212429	1214858	_		1216904	1217443	1222996	1221841	T	1225059	1227693	1227282	1227340	1228636	1229095	1229935
50	Initial	1209934	1213115	1213269			1217374		1219895	1222905		1223887	1225066	1227587	1227657		1228718	1229150
	SEO	(a.a.)	4779	4780	4784	4782	4783		4785	4786		4788	4789	4790	_		4793	4794
55	SEQ NO.	(DNA)	1279	1280	1201	1282	1283	1284	1285	128G	1287	1288	1289	1290	1291	1292	1293	1294

EP 1 108 790 A2

								—				$\overline{}$	\neg	$\neg \neg$	\top			$\neg \neg$	\neg	T		\neg
5	Function	icids transporter			ate) reduction	ate) reducine	mercuric transort protein periplasmic component precursor	ATPase Zn(II)- pe ATPase	GTP pyrophosphokinase (ATP:GTP 3-pyrophosphotransferase) (ppGpp synthetase I)	oeptidase			drogenase		aio do	gamma cuam	delta chain	beta chain	ein	ein	alpha chain	protein
10	Fun	short-chain fatty acids transporter	regulatory protein		mitate) reduction	regulatory protein	mercuric transort prot component precursor	zinc-transporting ATPase Zn(II)- translocating P-type ATPase	GTP pyrophosph 3'-pyrophosphotr synthetase I)	tripeptidyl aminopeptidase			homoserine dehydrogenase			nitrate reductase gamma cilani	nitrate reductase della chain	nitrate reductase beta chain	hypothetical protein	hypothetical protein	nitrate reductase alpha chain	nitrate extrusion protein
15	Matched length	122	166			228	81	909	137	601			24			220	175	505	137	83	1271	461
20	Similarity (%)	69.7	56.6			57.9	66.7	70.6	58.4	49.3			98.0			9.69	63.4	83.4	48.0	55.0	73.8	67.9
	Identity (%)	37.7	24.7			25.0	33.3	38.0	32.9	26.6			95.0			45.0	30.3	56.6	36.0	36.0	46.9	32.8
25 (panuju	s gene	icolor	emi recS			12 MG1655 fnr	aciens merP	12 MG1655		lans tap			glutamicum			ari	arJ	arH	K1 APE1291	K1 APE1289	arG	(12 narK
30 Table 1 (Continued)	Homologous gene	Streptomyces coelicolor SC1C2.14c atoE	Erwinia chrysanthemi recS			Escherichia coli K12 MG1655 fnr	Shewanella putrefaciens merP	Escherichia coli K12 MG1655 atzN	Vibrio sp. S14 relA	Streptomyces lividans tap			Corynebacterium glutamicum			Bacillus subtilis narl	Bacillus subtilis narJ	Bacillus subtilis narH	Aeropyrum pernix K1 APE1291	Aeropyrum pernix K1 APE1289	Bacillus subtilis narG	Escherichia coli K12 narK
<i>35</i>	db Match	sp:ATOE_ECOLI	SP. PECS_ERWCH			sp:FNR_ECOLI	sp:MERP_SHEPU	$\dot{\top}$		gsp. R80504			GSP:P61449			sp:NARI_BACSU	SP:NARJ BACSU	SD:NARH BACSU	PIR-D72603	PIR-R72603	Sp: NARG BACSU	1350 SP.NARK_ECOLI
	ORF	-i	486 Sp	222	519	750 st	234 St	1875 SI	630 8	1581		120	+-	1260	069	777 s	732 s	1-		1	7	- 0
45	Terminat	g	1230480	1230831	1230914	1232479	1232836	1234881	1235612	1236545	1241554	124215B	1243728	1243942	1244843	1245720	1246508	1247199	1250444	1251817	1248794	
50	Initial	9	1229995	1230610	1231432	1231730	1232603			1030175				1245201	1245532	1246496		-	:-		1251545	1253906
	SEQ	(a.a.) 4795	_ •	4797	4798	4799	4800	4801	4802	7003	4000	_		+	4808						4813	4815
55	SEO	(DNA)	129B	1297	1298	1299	1300	1301	1302	2007	202	200	1306	1307	1308	1309	1340	2 5		1312	1313	1315

EP 1 108 790 A2

	_										$\overline{}$				~	\neg	$\overline{}$	\neg		$\overline{}$
5		Function	malybdapterin biosynthesis cnx1 protein (molybdenum cofactor biosynthesis enzyme cnx1)	extracellular serine protease precurosor		hypothetical membrane protein	hypothetical membrane protein	molybdopterin guanine dinucleotide synthase	molybdoptein biosynthesis protein	molybdopterin biosynthsisi protein Moybdenume (mosybdenum cofastor biosythesis enzyme)	edium-chain fatty acid-CoA ligase	actor				peptide chain release factor 1	protoporphyrinogen oxidase		hypothetical protein	undecaprenyl-phosphate alpha-N- acetylglucosaminyltransferase
		.	molyb protei biosyr	extracellula precurosor	-	hypot	hypot	molybdop synthase		molyt Moyb cofas		Rho factor	1	-		T				
15		Matched length (a.a.)	157	738		334	472	178	366	354	572	753				363	280		215	322
20		Similarity (%)	65.0	45.9		62.6	60.2	52.3	58.2	73.7	65.7	73.8				71.9	57.9		86.0	58.4
		Identity (%)	32.5	21.1		30.8	31.6	27.5	32.8	51.4	36.7	50.7				41.9	31.1		62.3	31.1
25	(panu	ene ene	V cnx1	train IFO-		ulosis	ulosis	торА	ulosis A	. كير	ans					₹-1			ulosis	fe
30	Table 1 (continued)	Homologous gene	Arabidopsis thaliana CV cnx1	Serratia marcescens strain IFO- 3046 prtS		Mycobacterium tuberculosis H37Rv Rv1841c	Mycobacterium tuberculosis H37Rv Rv1842c	Pseudomonas putida mobA	Mycobacterium tuberculosis H37Rv Rv0438c moeA	Arabidopsis thaliana cnx2	Pseudomonas oleovorans	Micrococcus luteus rho				Escherichia coli K12 RF-1	Escherichia coli K12		Mycobacterium tuberculosis H37Rv Rv1301	Escherichia coli K12 rfe
<i>35</i>		db Match	sp:CNX1_ARATH	Sp:PRTS_SERMA		sp:Y0D3_MYCTU	sp:Y0D2_MYCTU	gp:PPU242952_2	sp:MOEA_ECOLI	sp:CNX2_ARATH	SP. ALKK PSEOL					sp:RF1_ECOU	sp:HEMK_ECOLI		sp:YD01_MYCTU	sp:RFE_ECOLI
		ORF (bp)		1866	684	1008	1401	561	1209	1131	1725	Ø	603	969	1023	1074	837	774	648	1146
45		Terminal (nt)	1254634	1254737	1257750	1256851	1257865	1259429	1259993	1261688	1262886	1267427	1266267	1265611	1265427	1268503	1269343	1268267	1270043	1271192
50		Initial (nt)	1254146	1256602	1257067	1257858	1259265	1259989	1261201	1262818	1264610	1265142	1265665	1266306	1266449	1267430	. 1	1269040	1269396	1270047
		SEQ.		4817	4818	4819	4820	4821	4822	4823	4824	4825		4827	4828	4829	4830	4831	4832	4833
		NO.	1316	1317	1318	1319	1320	1321	1322	1323	1324	1325	1326	1327	1328	1329	1330	1331	1332	1333

EP 1 108 790 A2

												$ \tau$					
5	Function		stein	ATP synthase chain a (protein 6)	H+-transporting ATP synthase lipid- binding protein. ATP synthase C chane	H+-transporting ATP synthase chain b	H+-transporting ATP synthase delta chain	H+-transporting ATP synthase alpha chain	H+-transporting ATP synthase gamma chain	H+-transporting ATP synthase beta chain	H+-transporting ATP synthase epsilon chain	otein	otein	putative ATP/GTP-binding protein	otein	otein	
10	T.		hypothetical protein	ATP synthase o	H+-transporting ATP synthase binding protein. ATP synthase chane	H+-transporting b	H+-transporting chain	H+-transporting chain	H+-transporting gamma chain	H+-transporting chain	H+-transporting epsilon chain	hypothetical protein	hypothetical protein	putative ATP/G	hypothetical protein	hypothetical protein	thioredoxin
15	Matched length (a.a.)		80	245	11	151	274	516	320	483	122	132	230	95	134	101	301
20	Similarity (%)		99.0	56.7	85.9	6.99	67.2	88.4	76.6	100.0	73.0	67.4	85.7	56.0	68.7	79.2	71.4
	Identity (%)		98.0	24.1	54.9	27.8	34.3	6.99	46.3	9.66	41.0	38.6	70.0	45.0	35.8	54.5	37.9
30 (bautimos) 1 elder	as gene		glutamicum	12 atpB	dans atpt.	dans atpF	Jans atpD	dans atpA	dans atpG	glutamicum	dans atpE	ıberculosis	berculosis	elicolor A3(2)	ąc	uberculosis	uberculosis
30 ed.	Homologous gene		Corynebacterium glutamicum atpl	Escherichia coli K12	Streptomyces lividans atpL	Streptomyces lividans atpF	Streptomyces lividans atpD	Streptomyces lividans atpA	Streptomyces lividans atpG	Corynebacterium glutamicum AS019 atpB	Streptomyces lividans atpE	Mycobacterium tuberculosis H37Rv Rv1312	Mycobacterium tuberculosis H37Rv Rv1321	Streptomyces coelicolor A3(2)	Bacillus subtilis yajC	Mycobacterium tuberculosis H37Rv Rv1898	Mycobacterium tuberculosis H37Rv Rv1324
<i>35</i> 40	db Match		GPU:AB046112_1	Sp:ATP6 ECOLI	sp:ATPL_STRLI	Sp.ATPF_STRLI	sp:ATPD_STRLI	sp.ATPA_STRLI	sp:ATPG_STRLI	sp:ATPB_CORGL	sp.ATPE_STRLI	sp:Y02W_MYCTU	sp:Y036_MYCTU	GP:SC26G5 35	sp:YQJC_BACSU	sp:YC20_MYCTU	sp:YD24_MYCTU
	ORF (bp)	486	249 G	810 s	+	564 s	813 s	1674 s	975 s	1449 s	372 s	471	690	285 (16	312	921
45	Terminal (nt)	1271698	1272119	1273149	 	1274122	1274943	1276648	1277682	1279136	1279522	1280240	1280959	1281251	1281262	1282105	1283114
50	Initial (nt)	1271213	1271871	1272340	1273286	1273559	1274131	1274975	1276708	1277688	1279151	1279770	1280270	1280967			1282194
	SEO	4834	4835	4836	4837	4838	4839	4840	4841	4842	4843	4844	4845	4846	4847	4848	4849
	O O S			336		338	339	340	1341	1342	1343	1344	1345	1346	1347	1348	1349

5	Function	FMNH2-dependent aliphatic	alphatic sulfonates transport	alphatic sulfonates transport	permease protein	sulfonate binding protein precursor	1,4-aipha-giucan branching enzyme) (glycogen branching enzyme)	alpha-amylase		ferric enterobactin fransport A.P. binding protein or ABC transport ATP-binding protein	hypothetical protein	hypothetical protein		electron transfer flavoprotein beta- subunit	electron transfer flavoprotein alpha subunit for various dehydrogenases		nitrogenase cofactor sythesis protein		hypothetical protein
		FMN	alpha	alphe		Sulfo	1,4-a	atbha	1	ferric bindi ATP	hуро	hypo		efectror	elec		i ir	1	hype
15	Matched length	366	240	228		311	710	467		211	260	367		244	335		375		397
20	Similarity (%)	74.3	75.8	72.8		62.1	72.7	50.5		87.6	68.5	70.0		64.8	61.8		67.7		55.7
	dentity (%)	50.3	40.8	50.4		35.1	46.1	22.9		31.8	39.6	43.1		31.2	33.1		35.2		29.5
<i>25</i>	Je Je	Onss	Q.	q	2	au A	Josis	hilum		pc	ulosis	ulosis		-			i nifS		34 plasmid
30 Soutines	Homologous gene	Escherichia coli K12 ss	Secherichia coli K12 ssuC	Guan (142)		Escherichia coli K12 ssuA	Mycobacterium tuberculosis H37Rv Rv1326c glgB	Dictyoglomus thermophilum amyC		Escherichia coli K12 fepC	Mycobacterium tuberculosis H37Rv Rv3040c	Mycobacterium tuberculosis H37Rv Rv3037c		Rhizobium meliloti fixA	Rhizobium meliloti fixB		Azotobacter vinelandii nifS		Rhizobium sp. NGR234 plasmid pNGR234a y4mE
35	_	+	+	1		ECOLI				COLI				IIME	IIME		AZOVI		HISN
40	db Match	20972000	J. C. C. C. C.	sp. sec.	sp:ssua_econ	sp:SSUA_EC	sp:GLGB_ECOLI	sp:AMY3_DICTH		sp.FEPC_ECOLI	pir. C70860	pir:H70859		Sp.FIXA_RHIME	sp:FIXB_RHIME		sp:NIFS_AZ		sp:Y4ME_RHISN
	ORF				729	957	2193	1494	348	879	804	1056	612	786	951	615	1128	312	1146
45	Terminal	(iii)	1284400	1285284	1286030	1286999	1287281	1289514	1201373	1292577	1294025	1295206	1294436	1296220	1297203	1297093	1298339		1299000
50	Initial	(w)	1283324	1284517	1285302	1286043		1291007	1201026	1291699	1293222	1294151	1205047			1296479			4866 1300145
	SEQ	(a.a.)		4851	4852	4853	4854	4855	1056	4857	4858	4859	ABBO			4863	$\overline{}$		4866
	000	(¥)	350	351	352	353	354	355	100	357	358	359	260	36.	362	282	364	1365	1366

																			1		
5 10		Function	transcriptional regulator	acetyltransferase			2. hills moniment of the contract	tkivk (5-meinylaniinonenyrz- thiouridylate)-methyltransferase		hypothetical protein	tetracenomycin C resistance and export protin		DNA ligase	(palyaeoxyribondoleolide symmase [NAD+]	hypothetical protein	glutamyl-tRNA(Gln) amidotransferase subunit C	glutamyl-tRNA(Gin) amidotransferase subunit A	vibriobactin utilization protein / iron- chelator utilization protein		hypothetical memorane protein	pyrophosphatefructose o- phosphate 1-phosphotransrefase
15		Matched length (a a.)	59	181		_		361		332	200			677	220	97	484	263		96	358
20		Similarity (%)	76.3	55.3				6.08		66.0	65.8			70.6	70.9	64.0	83.0	54.0		79.2	77.9
		Identity (%)	47.5	34.8				61.8		33.7	30.2			42.8	40.0	53.0	74.0	28.1		46.9	54.8
25	(ned)	<u>ə</u>	plasmid	31655				losis		losis	ens tcmA			Unb s	losis	or A3(2)	ulosis		10/EV 30	(2)CV II	olica pfp
30	Table 1 (continued)	Homologous gene	Rhizobium sp. NGR234 plasmid pNGR234a Y4mF	Escherichia coli K12 MG1655 yhbS				Mycobacterium tuberculosis H37Rv Rv3024c		Mycobacterium tuberculosis H37Rv Rv3015c	Streptomyces glaucescens tcmA			Rhodothermus marinus dnlJ	Mycobacterium tuberculosis H37Rv Rv3013	Streptomyces coelicolor A3(2) gatC	Mycobacterium tuberculosis	Vibrio vulnificus viuB	Spoile on accountable	Streptomyces coencolol A3(2) SCE6.24	Amycolatopsis methanolica pfp
35								ΣI		ΣI		-	1		21		 			<i>))</i> ()	
40		db Match	SP:Y4MF_RHISN	sp:YHBS_ECOLI				pir.C70858		pir:B70857	sp:TCMA_STRGA			sp:DNLJ_RHOMR	pir.H70856	sp:GATC_STRCO	sp:GATA_MYCTU	UVBIV BUIV-us		gp:SCE6_24	Sp.PFP_AMYME
		ORF (bp)	225	504	942	1149	396	1095	654	066	1461	735	3	2040	663	297	1491	849		306	1071
45		Terminal (nt)	1300145	1301055	1300988	1301975	1303694	1304923	1303883	1305921	1305924	4207462	130/402	1310369	1310435	1311616	1313115	1314118		1314470	1316083
50		Initial (nt)	1300369	1300552	1301929	1303123	1303299	1303829	1304536		1307384		1308196	1308330	1311097	1311320	1311625			1314775	1315013
		SEO		4868	4869		4871	4872	4872	4874	4875		48/6	4877	4878	4879	$\overline{}$		\rightarrow	4882	4883
G.		O O		368	369			1	272	374	1375		1376	1377	1378	1379	1380		120	1382	1383

5
10
15
20
25
30
35
40
45
50

	Function		glucose-resistance amylase regulator (catabolite control protein)	ripose transport ATP-binding protein	high affinity ribose transport protein	periplasmic ribose-binding protein	high affinity ribose transport protein	hypothetical protein	iron-siderophore binding lipoprotein	Na-dependent bile acid transporter	RNA-dependent amidotransferase B	putative F420-dependent NADH reductase	hypothetical protein	hypothetical protein	hypothetical membrane protein		dihydroxy-acid dehydralase	hypothetical protein
	Matched length (a.a.)		328	499	329	305	139	200	354	268	485	172	317	234	325		613	105
	Similarity (%)		31.4	76.2	76.9	7.77	68.4	58.0	60.2	61.9	71.8	61.1	6.99	62.4	52.6		99.4	68.6
	Identity (%)		31.4	44.7	45.6	45.9	41.7	31.0	31.4	35.8	43.1	32.6	39.8	39.3	27.4		99.2	33.3
Table 1 (continued)	Homologous gene		Bacillus megaterium ccpA	Escherichia coli K12 rbsA	Escherichia coli K12 MG1655 rbsC	Escherichia coli K12 MG1655 rbsB	Escherichia coli K12 MG1655 rbsD	Saccharomyces cerevisiae YIR042c	Streptomyces coelicolor SCF34,13c	Rattus norvegicus (Rat) NTCI	Staphylococcus aureus WHU 29 ratB	Methanococcus jannaschii MJ1501 f4re	Escherichia coli K12 yajG	Mycobacterium tuberculosis H37Rv Rv2972c	Mycobacterium tuberculosis H37Rv Rv3005c		Corynebacterium glutamicum ATCC 13032 ilvD	Mycobacterium tuberculosis H37Rv Rv3004
	db Match		sp:CCPA_BACME	Sp.RBSA_ECOLI	sp:RBSC_ECOLI	sp:RBSB_ECOLI	sp:RBSD_ECOLI	sp:YIW2_YEAST	gp:SCF34_13	sp:NTCI_RAT	gsp:W61467	sp:F4RE_METJA	sp:YQJG_ECOLI	pir:A70672	pir.H70855		gp:AJ012293_1	pir:G70855
	ORF (bp)	630	1107	1572	972	942	369	636	1014	1005	1479	672	1077	774	1056	237	1839	564
	Terminal (nt)	1315325	1317444	1319005	1319976	1320942	1321320	1322111	1323406	1324537	1326256	1327049	1329891	1331875	1333008	1333188	1333442	1335412
	Initial (nt)	1315954	1316338	1317434	1319005	1320001	1320952	1321476	1322393	1323533	1324778	1326378	1330967	1331102	1331953	1333424	1335280	1335975
	SEQ NO.	4884	4885	4886	4887	4888	4889	4890	4891	4892	4893	4894	4895	4896	4897	4898	4899	4900
	SEQ NO.	1384	1385	1386		1388	1389	1390	1391	1392	1393	1394	1395	1396	1397	1398	1399	1400

EP 1 108 790 A2

					,			$\overline{}$	$\overline{}$	_	$\overline{}$		$\neg \neg$	7		\neg					!	
5	Function		hypothetical membrane protein	hypothetical protein		nitrate transport ATP-binding potein	maltose/maltodextrin transport ATF- binding protein	nitrate transporter protein			actinorhodin polyketide olimerase	cobalt-zinc-cadimium resistance protein			hypothetical protein		U-3-pnospnoglycerate dehydrogenase	hypothetical serine-rich protein			hypothetical protein	
15	Matched	_	62	99	7	167	87	324			142	304			642		530	105			620	
20	Similarity	(%)	100.0	55.0		80.8	78.2	56.8			73.2	72.7			53.7		100.0	52.0			63.1	
	Identity	<u>8</u>	100.0	45.0		50.9	46.0	28.1			39.4	39.1			22.9		99.8	29.0			32.9	
25 3	table of (committee)	2	glutamicum	aricus		sp. nrtD	ogenes genes) malK	ain PCC 7120			elicolor	на сzcD			jannaschii		lavum serA	myces pombe			psulatus strain	
30	eden silopolomen		Corynebacterium glutamicum ATCC 13032 yilV	Sulfolobus solfataricus		Synechococcus sp. ntlD	Enterobacter aerogenes (Aerobacter aerogenes) malK	Anabaena sp. strain PCC 7120 nrtA			Streptomyces coelicolor	Raistonia eutropha czcD			Methanococcus jannaschii		Brevibacterium flavum serA	Schizosaccharomyces pombe SPAC11G7.01			Rhodobacter capsulatus strain SB1003	
35 40	4717	dD Match	sp:YILV_CORGL	GP:SSU18930_26		SP NRTD SYNP7		SP.NRTA_ANASP			sp:DIM6_S1RCO	sp:cZcD_ALCEU			sp:Y686_METJA		gsp:Y22646	SP:YEN1_SCHPO			pir T03476	
	ORF	(dq)	1473 SI	231	909	 -		882 s	447	369	486 s	954 8	153	069	_	1743	1590	327	867	1062		402
45	Terminal		1336095	1338379	1342677	1341960	1342461	1342794	134464	1344808	1345420	1346439	1345335	1345642	1348272	1350076	1352444	1351727	1353451	1354540	1357554	1356853
50	Leifial	(F)	1337567	1338609	1342072	1342457		1343675	134401R				1345487			1348334		1352053	1352585			1356452
	SEQ	NO.	÷—	4902	400			4906	4007				4911	4912	4913	4914		4916	4917	_		4920
55	SEQ	NO SNO		1402	1,403				1407		1409	1410	1411		1413	1414	1415	1416	1417	1418	1419	1420

EP 1 108 790 A2

5		Function		homoprotocatechinate catabolism	bifunctional isomerase/decarboxylase [includes: isomerase/decarboxylase [includes: 2-hydroxyhepta-2, 4-diene-1, 7-dioat isomerase(hhdd isomerase); 5-carboxymethyl-2-oxo-hex-3-ene-1, 7 dioate decarboxylase(opet decarboxylase)}	methyltransferase or 3-	demethyltransferase	isochorismate synthase	alutamy LIRNA synthetase	transcriptional regulator													thiamin biosynthesis protein	The state of the s
15	Matched	length (a.a.)			228		192	371	185	405	5				-					-		-	200	200
20	:	Similarity (%)			59.2		55.7	70.4	7 00	7.60	20.0						-	1					2	2.10
		Identity (%)			33.3		23.4	38.0	200	37.3	0						-			1		1	1	63.1
25 (D		90									or A3(2)													SEC
8 O Tahle 1 (continued)	(שחום ו לפחווו	Homologous gene			Escherichia coli C hpcE		Escherichia coli K12	Occillate aubilie dhbC	acilità sannilla olipa	Bacillus subtilis gftX	Streptomyces coelicolor A3(2)													Bacillus subtilis thiA or thiC
35				+				$\overline{}$	+	\neg													一	\neg
40		db Match			sp:HPCE_ECOU		sp:UBIG_ECOLI		Sp.DHBC_BACSU	sp:SYE_B	gp:SCJ33_10													sp:THIC_BACSU
		ORF (bp)	- 173	200	804		618		1128	1488	213	516	522	342	621	303	180	330	213	183	318	1152	324	1761
45		Terminal (nt)	420040	1358210	1359062		1359669		1360168	1362848	1362926	1363142	i	1365256	1364340	1364878	1365217	1366137	1367505	1367888	1368395	1369551	1369874	1369877
50		Initial (nt)	1	1357557	1422 4922 1358259	1	1359052		1361295		1363138	1363657			4930 1364960	1365180	1365396		1		4936 1368078	1368400	1369551	4939 1371637
		SEO	- }-	4921	4922		4923	l	4924	4925	4926	4927		_		4931	4932	_	4934	4935			4938	4939
55		SEQ NO.		1421	1422		1423	1	1424	1425	1426	1427	1428	1429	1430	1431	1432	1433	1434	1435	1436	1437	1438	1439

EP 1 108 790 A2

	_							_				_		_							
5		Function			lipoprotein		glycogen phosphorylase			hypothetical protein	hypothetical membrane protein		guanosine 3',5'-bis(diphosphate) 3'- pyrophosphatase	acetate repressor protein	3-isopropylmalate dehydratase large subunit	3-isopropylmatate dehydratase small subunit		mutator mutT protein ((7,8-dihydro- 8-oxoguanine-triphosphatase)(8- oxo-dGTPase)(dGTP pyrophosphohydrolase)		NAD(P)H-dependent dihydroxyacetone phosphate reductase	D-alanine-D-alanine ligase
15		Matched length (a.a.)			44		797			299	256		178	257	473	195		294		331	374
20		Similarity (%)			74.0		74.0			52.8	64.8		60.1	60.7	87.5	89.2		71.4		72.2	67.4
		Identity (%)			61.0		44.2			25.4	25.4		29.8	26.1	68.1	67.7		45.9		45.0	40.4
25 1	ntinuea)	gene			atis		Rat)			_	naschii Y441		2 spoT	2 iclR	myceticus	ırium		erculosis 5c		Ą	2 MG1655
30 :	Table 1 (continued)	Homologous gene			Chlamydia trachomatis		Rattus norvegicus (Rat)			Bacillus subtilis yrkH	Methanococcus jannaschii Y441		Escherichia coli K12 spoT	Escherichia coli K12 iclR	Actinoplanes teichomycettcus leu2	Salmonella typhimurium		Mycobacterium tuberculosis H37Rv MLCB637.35c		Bacillus subtilis gpdA	Escherichia coli K12 MG1655 ddlA
35				-	ర్		Ra			_		_	1	l E		j	_				
40		db Match			GSP:Y37857		sp.PHS1_RAT			Sp:YRKH_BACSU	Sp: Y441_METJA		sp:SPOT_ECOLI	SPICLE ECOLI		sp:LEUD_SALTY		gp:MLCB637_35		sp:GPDA_BACSU	sp:DDLA_ECOLI
		ORF (bp)	348	531	132	936	2427	183	156	1407	750	477	564	705	1443	591	318	954	156	966	1080
45		Terminal (nt)	1371979	1373131	1373929	1375491	1373350	1375805	1375933	1376149	1377666	1378466	1379566	1379555	1381882	1382492	1382502	1382845	1384085		1386232
50		Initial (nt)	1372326	1372601	1373798	1374556	1375776	1375987	1376088	1377555	_1			1380259		1381902	1382819	1383798	1383930		1385153
		SEQ NO.	4940	4941	4942	4943	4944	4945	4946	4947	4948	4949	4950	4951	4952	4953	4954		4956		4958
55		SEQ NO.	1440	1441	1442	1443	1444	1445	1446	1447	1448	1449	1450	1451	1452	1453	1454	1455	1456	1457	1458

EP 1 108 790 A2

5		Function		(hiamin-phospinate Ninase	uracil-DNA glycosylase precursor	hypothetical protein	ATP-dependent DNA helicase	polypeptides predicted to be useful antigens for vaccines and diagnostics	biotin carboxyl carrier protein	methylase	lipopolysaccharide core blosynthesis protein		Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	ABC transporter or glutamine ABC transporter, ATP-binding protein	nopaline transport protein	glutamine-binding protein precursor		hypothetical membrane protein		phage integrase
15	Matched	length (a.a.)		335	245	568	693	108	29	167	155		99	252	220	234		322		223
20	Cimilarity	(%)		57.6	59.6	56.3	0.09	48.0	67.2	63.5	78.7		74.0	78.6	75.0	59.0		60.3		52.5
	14000	(%)		32.2	38.8	23.1	35.4	31.0	38.8	37.1	42.6		67.0	56.4	32.7	27.4		28.6		26.9
<i>25</i>						(629)			reichii		655			S	SL	655		H465		
35 Spring (Continued)	2000	Homologous gene		Escherichia coli K12 thiL	Mus musculus ung	Mycoplasma genitalium (SGC3) MG369	Escherichia coli K12 recG	Noisseria meningitidis	Propionibacterium freudenreichli subsp. Shermanii	Escherichia coli K12 yhhF	Escherichia coli K12 MG1655 kd18		Neisseria gonorrhoeae	Bacillus stearothermophilus glnQ	Agrobacterium tumefaciens nocM	Escherichia coli K12 MG1655 glnH		Methanobacterium thermoautotrophicum MTH465		Bacteriophage L54a vinT
40		db Match		Sp:THIL_ECOLI	MOUSE		Sp. RECG ECOLI		sp:BCCP_PROFR	1-	Sp:KDTB_ECOLI		GSP:Y75358	sp:GLNQ_BACST	sp:NOCM_AGRT5	Sp:GLNH_ECOLI		pir.H69160		sp:VINT_BPL54
		ORF (bp)	978	993	762		2121	324	213	582	480	1080	204	750	843	861	807	978	408	756
45		Terminal (nt)	1386293	1388324	1389073	1390788	1202016	1391638	1393151	1293735	1394221	1205023	1395097	1394800	1395568	1396561	1398468	1398557	1401333	
50		Initial (nt)	1387270	1387332	1388312	1389208	1200706	1391961	1392939	1203154			1394894	1395549	1396410	1397421	1397662		1400926	
		SEQ NO.	4959	4960	-			4964	4965	9907	4967		4968 4969	4970	4971	4972	4973		4975	
55	· :	SEQ NO.	1459	-			1,163	1464	1465	1466	1467		1469	1470	1471	1472	1473	1474	1475	1478

EP 1 108 790 A2

			_	-		_			~	- 1			$\overline{}$			-	_	$\overline{}$					
5	uc						3 related)													rotein		genase	
	Function						insertion element (IS3 related)		hypothetical protein										DNA polymerase I	cephamycin export protein	DNA-binding protein	morphine-6-dehydrogenase	
15	Matched length (a.a.)						26		37										968	456	283	284	
20	Similarity (%)						96.2		97.0										80.8	67.8	65.4	76.1	
	identity (%)						88.5		89.0										56.3	33.8	41.3	46.5	
25 (panujuno	s gene						Jutamicum		glutamicum										oerculosis	amdurans	icolor A3(2)	ida morA	
S Table 1 (continued)	Homologous gene						Corynebacterium glutamicum orf2		Corynebacterium glutamicum										Mycobacterium tuberculosis polA	Streptomyces lactamdurans cmcT	Streptomyces coelicolor A3(2) SCJ9A.15c	Pseudomonas putida morA	
35							0 0		O														_
40	db Match						pir.S60890		PIR:S60890										sp:DPO1_MYCTU	SP.CMCT_NOCLA	gp:SCJ9A_15	sp:MORA_PSEPU	
	ORF (bp)	744	432	202	864	219	192	855	111	369	315	321	375	948	306	564	222	291	2715	1422	606	873	159
45	Terminal (nt)	1402076	1402703	1402368	1403991	1404215	1404694	1405320	1406999	1407167	1407559	1408703	1409428	1410064	1411119	1411437	1412572	1412626	1416459	1416462	1418870	1419748	1419878
50	Initial (nt)	1401333		1402874	1403128	1403997	1404885	1406174	1407109	1407535	1407873	1409023	1409802	1411011	1411424	1412000	1412351	1412916	1413745	1417883	1417962	1418876	1420036
	SEQ NO. (a.a.)	4977	4978	4979	4980	4981	4982	4983	4984	4985	4986	4987	4988	4989	4990	4991	4992	4993	4994	4995	4996	4997	4998
55	SEQ NO.	1477	1478	1479	1480	1481	1482	1483	1484	1485	1486	1487	1488	1489	1490	1491	1492	1493	1494	1495	1496	1497	1498

EP 1 108 790 A2

5		Function	hypothetical protein	30S ribosomal protein S1		hypothetical protein				orisonomia e institution	inosine-undine preferring increoside hypolase (purine nucleosidase)	aniseptic resistance protein	ribose kinase	criptic asc operon repressor,	ranscription regulator		excinuclease ABC subunit B	hypothetical protein	hypothetical protein	hypothetical protein		hypothetical protein	hypothelical protein	hydrolase
15	Matched	length (a.a.)	163	451	十	195					310	517	293	337)cc		671	152	121	279		839	150	214
20	_	Similarity (%)	58.3	71.4		93.9					81.0	53.8	67.6	9 29	02.0		83.3	59.2	80.2	77.1		47.2	68.0	58.4
	_	Identity (%)	31.9	39.5		80.5					61.9	23.6	35.5		30.0		57.4	33.6	38.8	53.8		23.2	32.7	30.4
30 elder Deliminos) L	(South Property of the Control of th	us gene	elicolor	<12 rpsA		actofermentum E					ata iunH	aureus	K12 shek	VIZ IDSIV	K12 ascG		neumoniae) uvrB	jannaschii	K12 yttH	K12 ytfG		yvgS	oelicolor A3(2)	K12 ycbL
30 F	lance	Homologous gene	Streptomyces coelicolor SCH5.13 yafE	Escherichia coli K12 rpsA		Brevibacterium lactofermentum ATCC 13869 yacE					Crithidia fasciculata iunH	Stanbolococcis	Capitylococcas and Crarkek	Escherichia con	Escherichia coli K12 ascG		Streptococcus pneumoniae plasmid pSB470 uvrB	Methanococcus jannaschii MJ0531	Escherichia coli K12 ytfH	Escherichia coli K12 ytfG		Bacillus subtilis yvgS	Streptomyces coelicolor A3(2) SC9H11, 26c	Escherichia coli K12 ycbL
35 .		db Match	sp:YAFE_ECOLI	sp.RS1_ECOLI		sp:YACE_BRELA					Sp:IUNH_CRIFA	TIV VEG	Sp. CACA SI MAG	Sp.RBSK_ECOLI	sp:ASCG_ECOLI		sp:UVRB_STRPN	sp.Y531_METJA	SO YTEH ECOLI	Sp:YTFG ECOLI		pir H70040	gp:SC9H11_26	sp:YCBL_ECOLI
		ORF (bp)	-	100	76	600 sp.	1098	582	46	57	9	1	2	921 sp	1038 sp	798	97	441 sp	381 50		+	- i -		009 sr
45		Terminal OF (nt)	1420071 65	1422556 145	1421096 147	1425878 6	1427354 10	1427376 5	+	1429246 95	+		\dashv	1430659 9	1431575 1	1433547	1436201 20	1436775	143689	+-	1440028	4420242	1440675	1441793
50	ļ	Initial (nt)	1420724	1421099	1422571	1425279	1426257	1427957	1428049	1428290	1429159		1430642	1431579	1432612	1432750	1434105	5013 1436335	4437340	1437356	1420243	1433343	1440560	
		SEO NO.	 -				5003						2008	5009	5010	5011		5013	1	5014		20.00	5018	
55		SEQ.			\rightarrow		1503		20.00	 -			1508	1509	1510	1511	1512	1513		1514		9161	1517	1519

EP 1 108 790 A2

		j	- 1	Į	- 1	- 1	- 1	ļ			- 1		1	_	_	_	_			1	1	۾ ا	
5		Function	C subunit A	ein 1246 (uvrA	ein 1246 (uvrA			ion factor IF-3	rotein L35		rotein L20			sn-glycerol-3-phosphate transport system permease protein	sn-glycerol-3-phosphate transport system protein	sn-glycerol-3-phosphate transport system permease proein	sn-glycerol-3-phosphate transport ATP-binding protein	itein	nyl diester	ase	e-2'-0-}-	phenylalanyl-tRNA synthetase alphi chain	i
10		Fur	excinuclease ABC subunit A	hypothetical protein 1246 (uvrA region)	hypothetical protein 1246 (uvrA region)			transtation initiation factor IF-3	50S ribosomal protein L35		50S ribosomal protein L20			sn-glycerol-3-phosphate to system permease protein	sn-glycerol-3-ph system protein	sn-glycerol-3-phosphate system permease proein	sn-glycerol-3-phospl ATP-binding protein	hypothetical protein	glycerophosphoryl diester	phosphodiesterase	tRNA(guanosine-Z-0-)- methlytransferase	phenylalanyl-tR chain	
15	Matched	length (a.a.)	952	100	142			179	9	3	117			292	270	436	393	74	244	;	153		
20		Similarity (%)	90.8	57.0	47.0			78.2	787	20	92.7			71.6	70.4	57.6	71.3	56.0	C	2	71.2		
		Identity (%)	56.2	40.0	31.0			52.5	44.7	41.7	75.0			33.2	33.3	26.6	44.0	47.0	Cac	7.07	34.0		
25 G	3							infC			· .			1655	1655	1655	1655	F0042			1655		
30 Side F	lable (column	Homologous gene	A VI (17 IlvrA	Micrococcus luteus	Micrococcus Iuteus			Observator subaeroides info	חטטטטמנים פרומים	Mycoplasma fermentans	Pseudomonas syringae pv. syringae			Escherichia coli K12 MG1655	Escherichia coli K12 MG1655	Escherichia coli K12 MG1655	Escherichia coli K12 MG1655	Agrangim pernix K1 APE0042		Bacillus subtilis gipQ	Escherichia coli K12 MG1655 trmH	Bacillus subtilis 168 syfA	
35	-		1-	1	2	-	+	T				-	-		1			\neg	╅		Ī	Т	1
40		db Match		Spilovka_Ecoul	PIR:JQ0406			_	Sp. F3 KHOSH	Sp:RL35_MYCFE	sp:RL20_PSESY			sp:UGPA_ECOLI						sp. GLPQ_BACSU	SP:TRMH_ECOL!		
		ORF (bp)		2847	450	717		2124	267	192	381	822	267	903	834		1224	-	249	717	594	1020	
45		Terminal (nt)		1445333	1444944	1445074	1440014	1445323	1448358	1448581	1449025	1449119	2000	1451820	1452653	1454071	1455338		1454102	1455350	1456948	1458066	_
50		(nitial		1442487	1445393	00,00	1440138	1447446	1447792	1448390	1448645	1449940		1450918	1451820	1452758			1454350	1456066	1456355		
		SEO	(a.a.)		5022		5023		5025	5026		AC02		5029	5031	5032	2000	2020	5034	5035	5036		
55			(DNA)		1522		1523	1524	1525	_		1530	1320	1529	1531	1532	3 5	250	1534	1535	1536	1537	; ;

5	lion	synthetase beta			transferase	C cominidativida	o-sermanding of	ltransferase	inotransferase	synthetase		lyase				III	Tase (tylosine-	ri e		in .
10	Function	phenylalanyl-tRNA synthetase beta chain		aspansa	macrolide 3-O-acyltransferase		N-acetylgiutamate-5-sermatucity of dehydrogenase	glutamate N-acetyltransferase	acetylornithine aminotransferase	argininosuccinate synthetase		argininosuccinate lyase			1000	nypotnetical protein	tynosyl-twnA synthase (tyrosine- tRNA ligase)	hypothetical protein		hypothetical protein
15	Matched length	343	000	303	423		347	388	391	401		478			:	05	417	149		42
20	Similarity (%)	71.7		55.1	56.3		99.1	99.7	99.2	99.5		0.06				72.0	79.6	64.4		75.0
	Identity (%)	42.6		26.5	30.0		98.3	99.5	99.0	99.5		83.3				48.0	48.4	26.9		71.0
<i>25</i>		1655		\$	iens		icum	icum	iicum	iicum		ilcum				Z.		Juli		digo
% Saple 1 (continued)	Homologous gene	Escherichia coli K12 MG1655 syf8		Streptomyces scabies estA	Streptomyces mycarofaciens mdmB		Corynebacterium glutamicum ASO19 argC	Corynebacterium glutamicum ATCC 13032 argJ	Corynebacterium glutamicum ATCC 13032 argD	Corynebacterium glutamicum ASO19 argG		Corynebacterium glutamicum ASO19 argH				Escherichia coli K12 ycaR	Bacillus subtilis syy1	Methanococcus jannaschii MJ0531		Chlamydia muridarum Nigg TC0129
35 40	db Match	sp:SYFB_ECOLI		Sp.ESTA_STRSC	sp:MDMB_STRMY		gp:AF005242_1	sp:ARGJ_CORGL	sp:ARGD_CORGL	sp.ASSY_CORGL		gp:AF048764_1				sp:YCAR_ECOLI	sp:SYY1_BACSU	sp:Y531_METJA		PIR:F81737
	ORF	2484	77.1	972	1383	402	1041	1164	1173	1203	1209	1431	1143	1575	612	177	1260	465	390	141
45	Terminal	1460616	1458196	1462128	1463516	1463934	1465123	1466373	1468548	1471413	1470154	1472907	1474119	1475693	1476294	1476519	1477809	1477929	1478503	<u> </u>
50	Initial	65	1458968	5040 1461157	5041 1462134	1463533	1464083	1465210	1467376	1470211	1471362	1471477	1472977	1474119	1475683	1476343		1478393	1478892	1483475
	SEO		5039	5040	5041	5042	-!	5044	5045	5046	5047		5049	5050	5051			5054	5055	
55	SEO		1539		1541	1542	1543	1544	1545	1546	15.47	1548	1549	1550	1551	1552	1553	1554	1555	1556

EP 1 108 790 A2

						_			7	$\overline{}$			T		1	1	1	- 1		ļ	i		1	1	1
5		Function	hypothetical protein	translation initiation factor IF-2	hypothetical protein		hypothetical protein	hypothetical protein		DNA repair protein	hypothetical protein	of or of ordinates	nypotnetical protein	CTP synthase (UTP-ammonia ligase)	hypothetical protein	turceine recombinase	tylosine recommendation	tyrosin resistance on profein	chromosome partitioning protein or ATPase involved in active partitioning of diverse bacterial plasmids	hypothetical protein		thiosulfate sulfurtransferase	hypothetical protein	ribocomal large subunit	pseudouridine synthase B
			ξĎ	tran	hyp		hyp	a A		Ž	Py Py]	È	<u>اة</u> 5	7 2		-	ž ă	P & B B	È	L	٤	Ē		8
15	Matched	length (a.a.)	84	182	311		.260	225		574	394	9.0	313	549	157	5 8	300	551	258	251		270	15	1	229
20	-	Similarity (%)	0.99	0.79	60.1		69.6	316	;	63.4	73.1		68.1	7.97	74.3	2 1	5	29.7	73.6	64.5		67.0	2 2	7.00	72.5
		Identity S (%)	61.0	36.3	29.6	 - 	38.5	2.0	2:5	31.4	41.9		30.4	55.0	200	30.3	39.7	30.5	44.6	28.3		35.6	20.55	33.1	45.9
25							T	1											4						
30	Table 1 (continued)	Homologous gene	Chlamydia pneumoniae	Dorrelia huradorferi IF2	Bacillus subtilis vzaD		The purposition was	Mycobacterium tuberculosis	H37Rv Rv1695	Escherichia coli K12 recN	Mycobacterium tuberculosis	DSIAN AVIOSI	Mycobacterium tuberculosis H37Rv Rv1698	Escherichia coli K12 ovrG		Bacillus subtilis yqkG	Staphylococcus aureus xerD	Streptomyces fradiae tlrC	Caulobacter crescentus parA	Occalling while words	Dacillas sancillas y par		Datisca glomerata tst	Bacillus subtilis ypuH	Bacillus subtilis rluB
35	-			7	十	\top	_	_					==	1			-	άχ	4	1	BACSO		-	CSU	csu
40		db Match	100.V.000	GSF. 133014	Sp:IFZ_BORBO	sp. 1260_exp.		sp.YQXC_BACSU	sp:YFJB_HAEIN	SP. RECN ECOLI	pir H70502		pir:A70503			sp:YakG_BACSU	gp:AF093548				sp. YPUG			Sp:YPUH_BACSU	
		ORF (bg)			<u> </u>		\rightarrow		873	1779	1191		963		1662	657	912	1530	783		765	561	867	543	756
45	!	Terminal	_	$\neg \uparrow$	一	_	1487193	1488056	1489018	1490881		_	1493109		1495174	1495861	1496772	1496795	1499645		1500695	1500911	1502578	1503176	1504238
50		Initial		-+		1486042	1487032	1487238	1488146	-		480344	1492147		1493513	1495205	1495861	1408324			1499931	1501471	1501710	-	
		SEO.	_	5057 1	5058	5059	5060 1	5061	5062 1			5005	5065		9905	5087	900		5070		5071	5072	5073	5074	5075
55		SEQ S	- 1	1557 50	1558 5	1559 5	1560 5	1561 5	1562 5			1564	1565		1566	1567			1570		1571	1572	-		
		, 0, -	こし	~ -	,	•	i .			- 1	1	_	i												

EP 1 108 790 A2

													_	1		\top	_							- 1
5		Function	cytidylate kinase	GTP binding protein				methyltransferase	ABC transporter	ABC transporter		hypothetical membrane protein			Na+/H+ antiporter			hypothetical protein	2-hydroxy-6-oxohepta-2,4-dienoate hydrolase	preprotein translocase SecA subunit	signal transduction protein	hypothetical protein	hypothetical protein	
15		Matched length (a a.)	220	435 (T	232	499	005		257	T		499			130	210	805	132	234	133	
20		Similarity 1	736	74.0		 		67.2	60.1	56.3		73.2			61.5			57.7	63.8	61.7	93.2	74.4	63.2	
		identity (%)	38.6	42.8				36.2	29.7	31.2		30.7			25.7			36.9	25.2	35.2	75.8	41.9	30.8	
<i>25</i>	nued)							losis	um M82B	um M82B		u u	100		9372			249#9	IS AF0675		matis garA	culosis	culosis	
30	Table 1 (continued)	Homologous gene	Bacillus subtilis cmk	Bacillus subtilis yphC				Mycobacterium tuberculosis Rv3342	Corynebacterium striatum M82B tetA	Corynebacterium striatum M82B tetB		1. C47.	Escherichia coil N 12 ygin		Bacillus subtilis ATCC 9372 nhaG			Escherichia coli K12 o249#9 ychJ	Archaeoglobus fulgidus AF0675	Bacillus subtilis secA	Mycobacterium smegmatis garA	Mycobacterium tuberculosis	Mycobacterium tuberculosis	H37Rv Rv1828
<i>35</i> <i>40</i>		db Match	a Hadya Adam	1=	, de la companya de l			sp:YX42_MYCTU N	prf.2513302B	prf.2513302A			sp:YGIE_ECOLI		gp:A8029555_1 F			sp:YCHJ_ECOLI	pir.C69334	SPECA BACSU	1	1,		sp:Youe_MYCIO
		ORF (bp)		95 080		000	49B	813 sp	1554 pr	1767 pr	1 20		789 sp	189	1548 91	186	420	375 s	1164 p	2280	3 8			633 8
45		Terminal (n)	-+-	1504945	_	÷	1507405	1507917	1510366	1512132		+	1512977	1514693	1512980	1514974	1515815	1515408	1515799	4540459	-1-	1520025		1521589
50		Initial T	-		_!_	-	1507902 1	1508729	1508813	1510366			1512189	1514505	1514527	1515159	1515396		1516962			1519601	0201020	1520957
		SEQ NO.				5078	5079	5080	5081	5082		5083	5084	5085	5086	5087	5088		5090				CEOC	5094
55					1577	1578	1579		1581			1583	1584	1585	1586	1587	1588	1589	1590		1591	1592	Cac)	1594

5		Function	hypothetical protein				1	hemolysin	hemolysin		DEAD box KNA helicase	ABC transporter ATP-binding protein	6-phosphogluconale dehydrogenase	thioesterase		nodulation ATP-binding protein I	hypothetical membrane protein	transcriptional regulator	phosphonates transport system permease protein	phosphonates transport system permease protein	phosphonates transport ATP-binding protein		
15		Matched length (a.a.)	178 hyp				1	1	65 her	\dashv	374 DE	245 AB	492 6-	121 thi		235 no		277 tra	281 ph	268 pt	250 pt		
20	}	Similarity N	84.3					0.69	65.5		69.5	66.1	99.2	67.8		68.1	76.3	63.9	63.4	62.3	72.0		
		Identity (%)	71.4					33.9	31.4		41.2	34.3	99.0	39.7		39.6	43.1	26.7	29.9	27.2	44.8		
25	nen)	9	losis								herA	losis		losis		=	losis	표	빌	를	Ju.C		
30	lable I (confined)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1828					Bacillus subtilis yhdP	Bacillus subtilis yhdT		Thermus thermophilus her A	Mycobacterium tuberculosis H37Rv Rv1348	Brevibacterium flavum	Mycobacterium tuberculosis H37Rv Rv1847		Rhizobium sp. N33 nodl	Mycobacterium tuberculosis H37Rv Rv1686c	Escherichia coli K12 yfhH	Escherichia coli K12 phnE	Escherichia coli K12 phnE	Escherichia coli K12 phnC		
40		db Match	SP.YODE_MYCTU					SP.YHDP_BACSU E	sp.YHDT_BACSU E		gp:TTHERAGEN_1		gsp:W27613			sp:NODI_RHIS3	pir.E70501	SP. YFHH ECOLI	l	Sp. PHNE_ECOL!	Sp.PHNC_ECOLI		
		ORF (bp)	573 s	510	1449	009	930	1062 s	1380 s		1344 g		1476	1 ~	675	1_	741	873		804	804	210	1050
45		Terminal (nt)	1522343	1522432	1523052	1525973	1524568	1525473	1526534	1528186	1527987	1530220	1530341	1532394	1532996	1533781	1534521	1534529	1535382	1536227	1537030	1538968	1537870
50		Initial (nt)	1521771	1522941	1524500	1525374	1525497	1526534	1527913	1527968	1529330	1529485	1531816	1531933	1532322	1533041		1535401		1537030	1537833	1538759	•
		SEO NO.	5005	5096	5097	-	5099	5100		$\overline{}$	5103		5405	-i	5107	 -	+	5110				5114	
55		SEQ NO.	1595	1596	1597	1598	1599	1600	1601	1602	1603	1604	400	1606	1807	1608	1609	1610	1611	1612	1613	1614	1615

EP 1 108 790 A2

5		Function		phosphomethylpyrimidine kinase		hydoxyethylthiazole Kinase	cyclopropane-fatty-acyl-priospriolipid synthase	sugar transporter or 4-methyl-o- phthalate/phthalate permease	purine phosphoribosyltransferase	hypothetical protein	arsenic oxyanion-translocation pump	membrane subunit		hypothetical protein	sulfate permease	hypothetical protein					hypothetical protein	dolichol phosphate mannose synthase	apolipoprotein N-acyltransferase		secretory lipase	
15		Matched length (a.a.)		262		249	451	468	156	206		361		222	469	97					110	217	527		392	
20		Similarity (%)		70.2		77.5	55.0	66.9	59.0	68.5		54.6		83.8	83.6	50.0					87.3	71.0	55.6		55.6	
		Identity (%)		47.3	?	46.6	28.6	32.5	36.5	39.8		23.3		62.2	51.8	39.0					71.8	39.2	25.1		23.7	
<i>25</i>	ntinuea)	gene		Cidt mili	CHI IIII	ium L 1 2	rcutosis	a Pc701	62 gpt	Man	yeni	s4 arsB		color A3(2)	R ORFA	RE ORFG					erculosis	eqwod səɔ	2 Int		101	
30	Table 1 (continued)	Homologous gene			Salmonella typnimurium timo	Salmonella typhimurium L12 thiM	Mycobacterium tuberculosis H37Rv ufaA1	Burkholderia cepacia Pc701	Thermus flavus AT-62 gpt	May C1 X Ing citation	Schericina con N.	Sinorhizobium sp. As4 arsB		Streptomyces coelicolor A3(2) SCI7.33	Pseudomonas sp. R9 ORFA	Pseudomonas sp. R9 ORFG					Mycobacterium tuberculosis H37Rv Rv2050	Schizosaccharomyces pombe dom1	Escherichia coli K12 Int		Candida albicans lib1	
35			-	1	1		ΣÏ	<u> </u>		ī				00	ဖ	1					4			-	Γ	٦
40		db Match			sp:THID_SALTY	Sp:THIM_SALTY	pir.H70830	prf:2223339B	B14 2120352B	pir. 2 1200020	sp. YEBN_ECOL	gp:AF178758_2		gp.SCI7_33	an PSTRTETC1	GP PSTRTETC1_7					pir.A70945	prf.2317468A	Sp.LNT ECOL	-	AE18880A	1 gp.Ar 100034
		ORF (bp)	100	70/	1584	804	1314	1386	17.	1	669	966	483	693	1465	426	+	207	189	750	396	810	1635	Τ.		
45		Terminal (nt)		1538963	1539820	1542119	1546289	1546307	10011	154/80/	1549349	1550398	1550951	1552237	4553072	1553297	1554070	1555067	1554891	1555086	↓	1557014	1557859			1560437
50		Initiat (nt)		1539664	1541403	1542922	1544976	1547692			1548651	1549403	1550469		4000040				1555079	1555835		1557823			130063	1561660
		SEQ		5116	5117		5119			5121	5122	5123	2124	5125	18	21.60	5128	5129	5130	5131		5133				5136
55				1616	1617		1619			1621	1622	1623	_	1625		1620	1628	1629	1630	1631	1632	1633	1634	200	C501	1636

٦		1								- 1	e	1			i	- 1	1	1	1	-
	Function	precorrin 2 methyltransferase	precorrin-6Y C5, 15. methyltransferase				oxidoreductase	dipeptidase or X-Pro dipeptidase		ATP-dependent RNA helicase	sec-independent protein translocase	procein	hypothetical protein	hypothetical protein	hypothetical protein	hypothetical prolein		hypothetical protein	hypothetical protein	hypothetical protein
	Matched length (a.a.)	291	411				244	382		1030	268		82	317	324	467		61	516	159
	Similarity (%)	56.7	8.09				75.4	61.3		55.7	62.7		69.4	61.2	64.8	77.3		80.3	74.2	20.0
	Identity (%)	31.3	32.4				54.1	36.1		26.5	787		44.7	31.9	32.4	53.1		54.1	48.6	45.0
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis	H37KV cobo	303 10 coor			Mycobacterium tuberculosis H37Rv RV3412	Streptococcus mutans LT11 pepQ		Saccharomyces cerevisiae	Yachouvy dob i	Escherichia coil A 12 tato	Mycobacterium leprae MLCB2533.27	Mycobacterium tuberculosis H37Rv Rv2095c	Mycobacterium leprae Mi CB2533.25	Mycobacterium tuberculosis H37Rv Rv2097c		Mycobacterium tuberculosis H37Rv Rv2111c	Mycobacterium tuberculosis H37Rv Rv2112c	Aeropyrum pernix K1 APE2014
	db Match	nir.C70764	SEDE	1			sp:YY12_MYCTU	gp:AF014460_1		Sp.MTR4 YEAST		sp:TATC_ECOLI	sp:YY34_MYCLE	sp:YY35_MYCTU	sp:YY36_MYCLE	sp:YY37_MYCTU		pir:B70512	pir:C70512	PIR:H72504
	ORF (bp)			2	366	246	738	1137	639	787		1002	315	981	972	1425	249	192	1542	480
	Terminal (nt)	:	1502333	202001	1564237	1564482	1564565	1565302	1567106	1		1569932	1571068	1571506	1572492		1575205		1575406	
	fnitial	. 1 _	ł	1303002	1563872	1564237	1565302	1566438	156646R	20000	cossoci	1570933	1571382	1572486		•	1_			
	SEQ			3515	5139	5140		5142	6112		5144	5145	5146	5147				5151		5153
				1638	1639	_		1642			1644	1645	1646	1647	16.48	1649		1651	1657	1653

						$\overline{}$			$\neg \tau$			- 1	- 1			•	- 1	- 1	1		- 1	- 1	
5			V6	(chaperone-like	te	Jase		1 protein	protein	lyaco	Dep 6	Itransferase	mutase	olate-		reductase		e protein				thetase	
10			Function	AAA (amily ATPase (chaperone-tike tunction)	protein-beta-aspartate methyltransferase	aspartyl aminopeptidase	hypothetical protein	virulence-associated protein	quinoton resistance protein	esta clasamo estab	aspartate animome	ATP phospharibosyltransferase	beta-phosphoglucomutase	5-methyltetrahydrofolate-	nomocysteme men	alkyl hydroperoxide	subunit F	arsenical-resistance protein	arsenate reductase	arsenate reductase		cysteinyl-tRNA synthetase	
15		Matched	length (a.a.)	545	281	436	269	69	385		526	281	195	1254			366	388	129	123		387	
20		Cimilarity	(%)	78.5	79.0	67.2	71.4	72.5	61.0		8.66	97.5	63.1	62.4			49.5	63.9	64.3	75.6		64.3	
		100	(%)	51.6	57.3	38.1	45.4	40.6	21.8		99.8	96.8	30.8	316			22.4	33.0	32.6	47.2		35.9	
25			<u> </u>	s arc	T.E.		sis	4198	norA23	moje	MJ233	nicum	1588	ŝ			ris ahpF	siae	plasmid	losis		5.5	
30	Table 1 (confinied)	ומחפו ופחפו	Homologous gene	Rhodococcus erythropolis arc	Mycobacterium leprae pimT	Homo sapiens	Mycobacterium tuberculosis	Dichelobacter nodosus A198	vapi	Corynebacterium glutamicum	(Brevibacterium flavum) MJ233 aspA	Corynebacterium glutamicum	Thermotoga maritima MSBB	IM1234	Escherichia coll N.12 Illean		Xanthomonas campestris ahpF	Saccharomyces cerevisiae S288C YPR201W acr3	Staphylococcus aureus plasmid	Mycobacterium tuberculosis H37Rv arsC		X12 C1X ilos eldoisedos	באבוובווכווום כביי ייי
35	i	-		&	Ž	Į <u>Ť</u>		1	T	n 0					_			<u> </u>	1			1	٦
40)		db Match	prf.2422382Q	pir:S72844	OD: AF005050	oir:B70513	ON DAR HACNO		prf.2513299A	sp:ASPA_CORGL	gp:AF050166_1	nir.H72277		sp:METH_ECOLI		SP:AHPF_XANCH	sp:ACR3_YEAST	sp. ARSC_STAAU				sp SYC_ECULI
			ORF (bp)	1581	834	1323	834	V ac	5	1209	1578	843	603		3663	570	1026	1176	420	639	270		9 1212
4:	5		Terminal (nt)	1576951	1578567	4570440	1581640	2 2	12051	1582273	1583913	1585603	4505017	20000	1587573	1591912	1591941	1594512	1594951	 -		-	1596249
5	o		Initial	1578531	1570400	2010	1580771	200000	1581851	1583481	1585490	1586445		158/504	1591235	1591343	+				_	1596221	1597460
		1	SEO.	(3.3.)					5158	5159	5160	5161		2916	5163	5154					-+-	_	5170
5	5					660	1656	165/	1658	1659	1660	1661	3 3	1662	1663	1664	1665	1666	1667	1668		1669	1670
		1																					

5		Function	bacitracin resistance protein	oxidoreductase	ipoprotein	dihydroorotate dehydrogenase			transposase		bio operon ORF I (blotin biosynthetic enzyme)	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics		ABC transporter		ABC transporter		puromycin N-acetyltransferase	LAO(lysine, arginine, and ornithine)/AO (arginine and ornithine)/tansport system kinase	methylmalonyl-CoA mutase alpha subunit
15		Matched length (a.a.)	255 t	326	359	334			360		152	198		597		535		56	339	741
20		Similarity (%)	69.4	62.6	53.5	67.1			55.3		75.0	33.0		68.7		67.1		56.4	72.3	87.5
		Identity (%)	37.3	33.4	27.0	44.0			34.7		44.1	26.0		43.6		36.8		32.4	43.1	72.2
25	(þa			S	sis				Adı					M82B		1 M82B		ac)	ensis
30	Table 1 (continued)	Homologous gene	Escherichia coli K12 bacA	Agrobacterium tumefaciens mocA	Mycobacterium tuberculosis H37Rv lppt.	Agrocybe aegerita ura1			Pseudomonas syringae tnpA		Escherichia coli K12 ybhB	Neisseria meningitidis		Corynebacterium striatum M82B tetB		Corynebacterium striatum M82B tetA		Streptomyces anulatus pac	Escherichia coli K12 argK	Streptomyces cinnamonensis A3823.5 mutB
40		db Match	SP.BACA_ECOLI		pir:F70577	SP. PYRD_AGRAE			gp:PSESTBCBAD_1		sp:YBHB_ECOLI	GSP:Y74829		prf.2513302A		prf:2513302B		pir.JU0052	sp:ARGK_ECOLI	sp:MUTB_STRCM
		ORF (bp)	879 sp:[948 prf.	999 pir.	1113 sp:	351	807	1110 gp.	486	1	729 GS	603	1797 prf	249	1587 prf	351	609 pir	1089 sp	2211 sp
45		Terminal O	1597745 8	1599614 9	1600677	1601804 1	1601931	1603466 8	1604629 1	1604830	+ -	1606689	1608248	1605861	1609335	1607661	1609842	1610844	 	1612234 2
50		Initial (nt)	1598623	·	1599679	1600692	1602281	1602660	1603520	1605315	1605811	1605961	1607646	1607657	1609087	1609247	1610192	1610236	1612238	1614444
		SEQ			5173	5174	5175 1	5176	5177	5178		5180	5181	5182	5183		5185	+	<u> </u>	5188
55			1671	:	1673	1674	1675			1678		1680	1681	1682	1683	1684	1685	1686	1687	1688
								-	_											

											_		Ţ	$\neg \vdash$							ı
5	Function		methylmalonyl-CoA mutase beta subunit	hypothetical membrane protein		hypothetical membrane protein	hypothetical membrane protein	hypothetical protein		ferrochelatase	invasin			aconilate hydratase	transcriptional regulator	GMP synthetase	hypothetical protein	hypothetical protein		hypothetical protein	
15	D		sut sut	hyp	-				-		\top	T	Ť	Ī	T						1
	Matched	(a.a)	610	224	Ì	370	141	261		364	611	5		959	174	235	221	98		446	
20	<u>\$</u>	(%)	68.2	70.1		87.0	78.7	72.8		65.7	28.2	25		85.9	81.6	51.9	62.0	80.2		86.1	
	Identity	(%)	41.6	39.7		64.1	44.7	51.0		36.8	2 20	6.67		6.69	54.6	21.3	32.6	37.2		61.2	
25 Ç			sisi	.s.		sis	sis	(3(2)	-	nreichil			1	SIS	sis	·=	A3(2)	ië.		C58	
30 to	Table 1	Homologous gene	Streptomyces cinnamonensis A3823.5 mutA	Mycobacterium tuberculosis H37Rv Rv1491c		Mycobacterium tuberculosis	Mycobacterium tuberculosis H37Rv Rv1487	Streptomyces coelicolor A3(2) SCC77.24		Propionibacterium freudenreichil	subsp. Shermanii hemH	Streptococcus faecium		Mycobacterium tuberculosis H37Rv acn	Mycobacterium tuberculosis H37Rv Rv1474c	Methanococcus jannaschii MJ1575 guaA	Streptomyces coelicolor A3(2) SCD82.04c	Methanococcus jannaschii MJ1558		Neisseria meningitidis MC58	NMB1652
35	-		+	1	-			. 00 00		i	-									6	,
40		db Match	sp:MUTA_STRCM	sp:YS13_MYCTU		SD;YS09 MYCTU	pir.B70711	gp:SCC77_24			Sp.ricin	sp:P54_ENTFC		pir.F70873	pir.E70873	pir. F64496	gp:SCD82_4	pir.E64494		an.AE002515	
	1	(g)	1848	723	203	1296	435	843	702	3 3	טווו	1800	498	2829	564	756	663	267	- 1 6	<u>'</u>	
45		Terminal (nt)	1614451	1617300	4004	1618321	1619672	1620167	0.0100	102 1030	1621841	1623027	1625428	1629107	1629861	1630668	1630667	1631926	- 1		
50	-	Initial (nt)	86			161/398		1621009		1621056	1622950	1624826	1625925	5199 1626279	1629298	1629913				1031/43	1631933
	9	NO C	(a a.) 5.189			5191			1.		5196	5197	5198	5199	5200	5201	5202	5203			5205
55	<u></u>		(DNA)				1697			1695	1696	1697	1698	1699	1700	1701	1702	1 5		1704	1705
	ا																				

5		Function	antigenic protein	antigenic protein	cation-transporting ATPase P		hypothetical protein					host cell surface-exposed lipoprotein	integrase	ABC transporter A I P-binding protein		sialidase	transposase (IS1628)	transposase protein fragment	hypothetical protein		dTDP:4-keto-L-rhamnose reductase	nitrogen fixation protein
15	9.40.40.hod	length (a.a.)	T	152	883		120					107	154	497		387	236	37	88		107	149
20		Similarity (%)	0.09	0.69	73.2		58.3					73.8	60.4	64.4		72.4	100.0	72.0	43.0		70.1	85.2
		Identity (%)	54.0	59.0	42.6		35.8					43.0	34.4	32.8		51.9	9.66	64.0	32.0		32.7	63.8
25 5	Table 1 (colullined)	ns gene	oeae ORF24	oeae	PCC6803		elicolor A3(2)					ermophilus	4L int	<12 yijK		viridifaciens JA	nglutarnicum pAG1 tnpB	glutamicum			ssi Orsay	eprae ſU7
30	lane I	Hamologous gene	Neisseria gonorrhoeae	Neisseria gonorrhoeae	Synechocystis sp. PCC6803 sil1614 pma1		Streptomyces coelicolor A3(2) SC3D11.02c					Streptococcus thermophilus phage TP-J34	Corynephage 304L int	Escherichia coli K12 yjjK		Micromonospora viridifaciens ATCC 31146 nedA	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB	Corynebacterium glutamicum TnpNC	Plasmid NTP16		Pyrococcus abyssi Orsay PAB1087	Mycobacterium leprae MLCL536.24c nifU7
35			Z 	Z															S			
40		db Match	GSP: Y38838	GSP: Y38838	sp:ATA1_SYNY3		gp:SC3D11_2					prf:2408488H	prf:2510491A	sp:YJJK_ECOLI		sp:NANH_MICVI	gp:AF121000_8	GPU:AF164956_23	GP:NT1TNIS		pir.B75015	pir.S72754
		ORF (bp)	400	456	2676	783	489	1362	357	156	162	375	456	1629	1476	1182	708	243	+-	585	423	447
45		Terminal (nt)	1632109	1632682	1636241	1633781	1636244	1638442	1638776	1639520	1639817	1640155	1641001	1641046	1642743	1644318	1646368	1646063	1645601	1647133	1647212	1647651
50		Initial (nt)	163258B			1634563	1636732	1637081	1639132	1639365	1639656	1639781	1640546		1644218	1645499	1645661	1645821	1645861	1646549	:647634	1648097
		SEO	5005			5209	5210	5211			5214	5215	5216	5217	5218	5219	5220	5221	5222	-		5225
55	•		170g			1709	1710	1711		1713	1714	1715	1716	1717	1718	1719	1720	1721	1722	1723	1724	1725

													_	T-	$\overline{}$				7
5	Finction		hypothetical protein	nitrogen fixation protein	ABC transporter ATP-binding protein	hypothelical protein	ABC transporter	DNA-binding protein	hypothetical membrane protein	ABC transporter	hypothetical protein	hypothetical protein		nelicase	quinone oxigone accessor	cytochrome o uniquino oxidase assembly factor / heme O synthase	transketolase	transaldolase	
15	Matched		T	411	252	377	493	217	518	317	266	291		418	323	295	675	358	
20	Similarity	(%)	57.0	84.4	89.3	83.0	73.0	71.4	87.8	77.3	74.8	746		51.0	70.9	8.99	100.0	85.2	
	Identity		48.0	64.7	70.2	55.2	41.0	46.1	36.3	50.2	41.0	43.0		23.4	37.5	37.6	100.0	62.0	
25 Dencijin	(200	gene	(1 APE2025	ae nifS	colar A3(2)	erculosis	PCC6803	color A3(2)	erculosis	rae	ırae	oerculosis		shii PH0450	12 qor	adskyi coxC	glutamicum	prae	
30 September 1 (Continued)	lane 1	Homologous gene	Aeropyrum pernix K1 APE2025	Mycobacterium leprae nifS	Streptomyces coelicolor A3(2) SCC22.04c	Mycobacterium tuberculosis H37Rv Rv1462	Synechocystis sp. PCC6803 str0074	Streptomyces coelicolor A3(2) SCC22.08c	Mycobacterium tuberculosis H37Rv Rv1459c	Mycobacterium leprae MLCL536.31 abc2	Mycobacterium leprae MLCL536.32	Mycobacterium tuberculosis H37Rv Rv1456c		Pyrococcus horikoshii PH0450	Escherichia coli K12 qor	Nitrobacter winogradskyi coxC	Corynebacterium glutamicum ATCC 31833 tkt	Mycobacterium leprae MLCL536.39 tal	
35	-		18	Ź	ा अ अ	ŽÏ		<i>ភ</i> ភ	ΣI	≥≥	22	151		4					
40		db Match	PIR:C72506	nir S72761	gp:SCC22_4	pir.A70872	sp:Y074_SYNY3	gp:SCC22_8	pir.F70871	pir:S72783	pir:S72778	pir.C70871		pir.C71156	Sp. GOR_ECOL!		gp:AB023377_1	sp:TAL_MYCLE	
		ORF (bp)	167	1263	756	1176	1443	693	1629	1020	804	666	357	1629	975		2100	1080	1164
45		Terminal (nt)	1648700	1640100	1649367	1650249	1651433	1652894	1655671	1656700	1657515	1658675	1659140	1661136	1662552	1	1668502	1667752	1666601
50		Initial (nt)		1648548		1651424	1652875	1653586	1654043	1655681	1656712	:	1659496				1664403	1666673	1667764
		SEQ.			5228				5232	5233	5234	5235	5236				5240		5242
55	-			-+	1728				1732	1733	1734	1735	1736	1737	472B	1739	1740	1741	1742

ction	ate	(glucose 6-	olactonase		376)					isomerase	ane protein	e kinase	-phosphate	ein	ein	ein	C subunit C
E PE	glucose-6-phosph dehydrogenase	oxppcycle protein phosphate dehydr assembly protein)	6-phosphoglucon	sarcosine oxidase	transposase (IS16	sarcosine oxidase				triose-phosphate	probable membra	phosphoglycerate	glyceraldehyde-3 dehydrogenase	hypothetical prot	hypothetical prot	hypothetical prot	excinuclease ABC subunit C
Matched length (a.a.)	484	318	258	128	200	205				259	128	405	333	324	309	281	701
Similarity (%)	100.0	71.7	58.1	57.8	46.6	100.0				93.6	51.0	98.5	99.7	87.4	82.5	76.2	61.5
Identity (%)	9.66	40.6	28.7	35.2	24.6	100.0				99.2	37.0	98.0	99.1	63.9	56.3	52.0	34.4
is gene	- Env	berculosis pcA	erevisiae sol3	62	hropolis	glutamicum A				glutamicum 159 tpiA	erevisiae	glutamicum 359 pgk	glutamicum 359 gap	ıberculosis	berculosis	ıberculosis	. PCC6803
Hamologou	revibacterium fla	lycobacterium tul	accharomyces con 288C YHR163W	acillus sp. NS-12	thodococcus eryt	corynebacterium				Sorynebacterium AS019 ATCC 130	Saccharomyces or	Sorynebacterium 1S019 ATCC 130	Sorynebacterium AS019 ATCC 130	Mycobacterium tu 137Rv Rv1423	Mycobacterium tu H37Rv Rv1422	Mycobacterium to H37Rv Rv1421	Synechocystis sp. PCC6803 uvrC
db Match			:	ŤΤ		S,					1						sp:UVRC_PSEFL
ORF (bp)	1 7	957 pi	705 88	 -		840 9	174	687	981	777 s	408	1215 s	1002 s	981	1023 s	927 \$	2088
<u>e</u>	5	1670375	1671099	1671273	1	1673266	1677384	1678070	1680128	1680332	1681670	1681190	1682624	1684117	1685110	1686152	1687103
Initial	1667950	1669419	1670395	1671677	1671723		1677211	1678756	1679148		1681263	1682404	1683625	1685097	1686132	1687078	5259 1689190
SEO	(a.a.) 5243	5244	5245	5246	5247	5248	5249	5250	5251	5252	5253	5254	5255				
SEQ	(DNA)	1744	1745	1746	1747	1748	1749	1750	1751	1752	1753	1754	1755	1756	1757	1758	1759
	SEQ Initial Terminal ORF db Match Homologous gene (%) (%)	SEQ NO (a1) Initial (n1) Terminal (nt) ORF (bp) db Match Homologous gene (sa.a) Identity (%) Similarity (%) Matched (%) Matched (%) Homologous gene (a.a.) 100.0 484	SEQ Initial NO. Terminal CRF db Match Homologous gene Identity (%) Similarity length (%) Matched (%) NO. (n1) (nt) (hp) (hp) <td>SEQ Initial (nt) Terminal (bp) db Match Homologous gene (%) Identity (%) Similarity length (%) Matched (%) 5243 1667950 1669401 1452 gsp:W27612 Brevibacterium flavum 99.8 100.0 484 5244 1669419 1670375 957 pir.A70917 Mycobacterium tuberculosis 40.6 71.7 318 5245 1670395 1671099 705 sp:SOL3_YEAST Saccharomyces cerevisiae 28.7 58.1 258</td> <td>SEQ Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) 8243 1667950 1669401 1452 gsp:W27612 Brevibacterium flavum 99.8 100.0 484 5244 1669419 1670375 957 pir.A70917 Mycobacterium tuberculosis 40.6 71.7 318 5245 1670395 1671099 705 sp:SOL3_YEAST Saccharomyces cerevisiae 28.7 58.1 258 5245 1671677 1671273 405 sp:SOL3_YEAST Saccharomyces cerevisiae 28.7 58.1 258 5245 1671677 1671273 405 sp:SOL3_YEAST Saccharomyces cerevisiae 28.7 58.1 258</td> <td>SEQ (n1) Initial (n1) Terminal (n1) CRF (bp) db Match Homologous gene (cb) Identity (cb) Similarity (cb) Matched (cb) 5243 1667950 1669401 1452 gsp:W27612 Brevibacterium flavum 99.8 100.0 484 5244 1669419 1670375 957 pir.A70917 Mycobacterium flavum 99.8 71.7 318 5245 1670395 1671073 957 pir.A70917 Saccharomyces cerevisiae 28.7 58.1 258 5246 1671677 1671273 405 sp:SAOX_BACSN Bacillus sp. NS-129 35.2 57.8 128 5246 1671677 1671273 405 sp:SAOX_BACSN Bacillus sp. NS-129 35.2 57.8 128 5245 16717273 1673123 1401 gp:SAOX_BACSN Rodococcus erythropolis 24.6 46.6 500</td> <td>SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td> <td>SEQ Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) 8243 1667950 1669401 1452 gsp:W27612 Brevibacterium flavum 99.8 100.0 484 5243 1667950 1669401 1452 gsp:W27612 Brevibacterium flavum 99.8 100.0 484 5244 1669419 1670375 957 pir.A70917 Mycobacterium flavum 99.8 100.0 484 5246 1670375 957 pir.A70917 Sp:SOL3_YEAST Saccharomyces cerevisiae 28.7 58.1 258 5246 1671677 1671273 405 sp:SAOX_BACSN Bacillus sp. NS-129 35.2 57.8 128 5246 167167 167326 840 gp:CGL007732_s ATCC 13032 soxA 46.6 500 5248 1677211 1677284 174 ACC 13032 soxA ACC 13032 soxA ACC 13032 soxA</td> <td>SEQ Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) (a.a.) (n1) (n1) (h1) (h2) db Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)</td> <td>SEQ (n1) Initial (n1) Terminal (n1) CRF (bp) db Match Homologous gene (%) Identity (%) Imagen (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%)</td> <td>SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%) Matched (%) Matched (%) Matched (%) (%) (%) (%) (%) Matched (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)</td> <td>SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s)<</td> <td>SEQ (n1) Initial (n1) Terminal (n1) ORF (n2) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Identity (%) Matched (%) Identity (%) Matched (%) Identity (%) Matched (%) Identity (%) Matched (%) Identity (%) Matched (%) Matched (%) Identity (%) Matched (%) Matched (%)</td> <td>SEC NO 16a.a.) Initial (nl) Terminal (nl) ORF (nl) db Match Homologous gene Homologous gene (%b) Identity (%b) Similarity (%b) Matched (%b) 5243 1667950 1669401 1452 gsp:W27612 Brevibacterium flavum 99. 8 100.0 484 5244 1669419 1670375 957 pir.A70917 Mycobacterium flavum 99. 8 100.0 484 5245 1669419 1670375 957 pir.A70917 Mycobacterium flavum 99. 8 10.0 484 5245 1670395 1671073 405 sp:SAOX_BACSN Bacillus sp. NS-129 35.2 57.8 128 5246 1671027 4671273 405 sp:SAOX_BACSN Bacillus sp. NS-129 35.2 57.8 128 5246 1671027 1671273 401 gp:SAOX_BACSN Bacillus sp. NS-129 35.2 57.8 128 5249 1677214 1677326 840 gp:CGL007732_5 ATCC 13022 soxA 100.0 100.0 100.0 205</td> <td>SEG Initial Terminal ORF deb Match Homologous gene Identity Similarity Matched (%b) (36) (48) (78) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48)</td> <td> SEG Initial Terminal ORF Gb Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)</td> <td> SEG Initial Terminal ORF db Match Homologous gene 146ntity Similarity Matched No</td>	SEQ Initial (nt) Terminal (bp) db Match Homologous gene (%) Identity (%) Similarity length (%) Matched (%) 5243 1667950 1669401 1452 gsp:W27612 Brevibacterium flavum 99.8 100.0 484 5244 1669419 1670375 957 pir.A70917 Mycobacterium tuberculosis 40.6 71.7 318 5245 1670395 1671099 705 sp:SOL3_YEAST Saccharomyces cerevisiae 28.7 58.1 258	SEQ Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) 8243 1667950 1669401 1452 gsp:W27612 Brevibacterium flavum 99.8 100.0 484 5244 1669419 1670375 957 pir.A70917 Mycobacterium tuberculosis 40.6 71.7 318 5245 1670395 1671099 705 sp:SOL3_YEAST Saccharomyces cerevisiae 28.7 58.1 258 5245 1671677 1671273 405 sp:SOL3_YEAST Saccharomyces cerevisiae 28.7 58.1 258 5245 1671677 1671273 405 sp:SOL3_YEAST Saccharomyces cerevisiae 28.7 58.1 258	SEQ (n1) Initial (n1) Terminal (n1) CRF (bp) db Match Homologous gene (cb) Identity (cb) Similarity (cb) Matched (cb) 5243 1667950 1669401 1452 gsp:W27612 Brevibacterium flavum 99.8 100.0 484 5244 1669419 1670375 957 pir.A70917 Mycobacterium flavum 99.8 71.7 318 5245 1670395 1671073 957 pir.A70917 Saccharomyces cerevisiae 28.7 58.1 258 5246 1671677 1671273 405 sp:SAOX_BACSN Bacillus sp. NS-129 35.2 57.8 128 5246 1671677 1671273 405 sp:SAOX_BACSN Bacillus sp. NS-129 35.2 57.8 128 5245 16717273 1673123 1401 gp:SAOX_BACSN Rodococcus erythropolis 24.6 46.6 500	SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) 8243 1667950 1669401 1452 gsp:W27612 Brevibacterium flavum 99.8 100.0 484 5243 1667950 1669401 1452 gsp:W27612 Brevibacterium flavum 99.8 100.0 484 5244 1669419 1670375 957 pir.A70917 Mycobacterium flavum 99.8 100.0 484 5246 1670375 957 pir.A70917 Sp:SOL3_YEAST Saccharomyces cerevisiae 28.7 58.1 258 5246 1671677 1671273 405 sp:SAOX_BACSN Bacillus sp. NS-129 35.2 57.8 128 5246 167167 167326 840 gp:CGL007732_s ATCC 13032 soxA 46.6 500 5248 1677211 1677284 174 ACC 13032 soxA ACC 13032 soxA ACC 13032 soxA	SEQ Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) (a.a.) (n1) (n1) (h1) (h2) db Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	SEQ (n1) Initial (n1) Terminal (n1) CRF (bp) db Match Homologous gene (%) Identity (%) Imagen (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%)	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%) Matched (%) Matched (%) Matched (%) (%) (%) (%) (%) Matched (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s) (%s)<	SEQ (n1) Initial (n1) Terminal (n1) ORF (n2) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Identity (%) Matched (%) Identity (%) Matched (%) Identity (%) Matched (%) Identity (%) Matched (%) Identity (%) Matched (%) Matched (%) Identity (%) Matched (%) Matched (%)	SEC NO 16a.a.) Initial (nl) Terminal (nl) ORF (nl) db Match Homologous gene Homologous gene (%b) Identity (%b) Similarity (%b) Matched (%b) 5243 1667950 1669401 1452 gsp:W27612 Brevibacterium flavum 99. 8 100.0 484 5244 1669419 1670375 957 pir.A70917 Mycobacterium flavum 99. 8 100.0 484 5245 1669419 1670375 957 pir.A70917 Mycobacterium flavum 99. 8 10.0 484 5245 1670395 1671073 405 sp:SAOX_BACSN Bacillus sp. NS-129 35.2 57.8 128 5246 1671027 4671273 405 sp:SAOX_BACSN Bacillus sp. NS-129 35.2 57.8 128 5246 1671027 1671273 401 gp:SAOX_BACSN Bacillus sp. NS-129 35.2 57.8 128 5249 1677214 1677326 840 gp:CGL007732_5 ATCC 13022 soxA 100.0 100.0 100.0 205	SEG Initial Terminal ORF deb Match Homologous gene Identity Similarity Matched (%b) (36) (48) (78) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48) (48)	SEG Initial Terminal ORF Gb Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	SEG Initial Terminal ORF db Match Homologous gene 146ntity Similarity Matched No

													\neg						T	1		7		٦
5		Function	hypothetical protein	6,7-dimethyl-8-ribityllumazine synthase	polypeptide encoded by rib operon	riboflavin biosynthetic protein	polypeptide encoded by rib operon	GTP cyclohydrolase II and 3, 4-	dihydroxy-2-butanone 4-prospnate synthase (riboflavin synthesis)	riboflavin synthase alpha chain	riboflavin-specific deaminase	September 3 onimerase	ribulose-phosphate 3-epiinelase	nucleofar protein NOL 1/NOPZ (eukaryotes) family	methionyl-tRNA formyltransferase	polypeptide deformylase	primosomal protein n'	S-adenosylmethionine synthetase	DNA/pantothenate metabolism	flavoprotein	hypothetical protein	guanylate kinase	integration host factor	
15			hypo	6,7-4 synt	log S	ribo	poly	15	Sy gh	- rgi	ğ	-	<u>ē</u>	<u>e</u> <u>n</u>] E	8) · Ē	. G		Ē	ų,	gn	_ <u>:</u>	\dashv
15	Matched	length (a.a.)	150	154	72	217	106		404	211	365		234	448	308	150	725	407	ş i	409	81	186	103	2
20	-	Similarity (%)	68.7	72.1	68.0	48.0	52.0		84.7	79.2	62.7		73.1	60.7	67.9	727	48.2	200	99.0	80.9	87.7	74.7	60	
	-	Identity Si	32.7	43.5	59.0	26.0	44.0		65.6	47.4	27.3	3	43.6	30.8	2.5	27.7		5.22	99.3	58.0	70.4	39.8	u 0	00.0
25	-	-			\dagger	\dagger	+	\top	ribA	ü					-	=		1	33			guk1	, ,	
·	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis	Escherichia coli K12		Bacillus subtilis	Bacillus suomis	Bacillus subtilis	Mycobacterium tuberculosis ribA	Actinobacillus	Sieuropheumomiae (20-170)	Escherichia coil N12 nou	Saccharomyces cerevisiae S288C YJL121C rpe1	Escherichia coli K12 sun		Pseudomonas aeruginosa iiii	Bacillus subtilis 100 dei	Escherichia coli priA	Brevibacterium flavum MJ-233	Mycobacterium tuberculosis H37Rv RV1391 dfp	Mycobacterium tuberculosis	Saccharomyces cerevisiae guk1	Mycobacterium tuberculosis	H37Rv Rv1388 mIHF
35		db Match	Sp. YR35 MYCTU N	\neg					gp:AF001929_1	Sp. BISA ACTPL	1	Sp.RIBD_ECOLI	sp:RPE_YEAST				sp:DEF_BACSU	Sp:PRIA_ECOLI	0900	sp:DFP_MYCTU	SP:YD90 MYCTU	11538	25	9899
40		g	30:YR35		sp.Risp	GSP:Y832/3	GSP: Y83272	GSP:Y83273	gp:AF00	en RISA	2	sp.RIBE	sp:RPE			sp.FMT	sp:DEF	sp:PRI	gsp:R80060		sp:YD§		pirkibitou	pir.B70899
		ORF (bp)	579		, , 4	228	714	336	1266	623	3	984	657		1332	945	507	2064	1221	1260	291	18	179	318
45		Terminal (nt)	1689201		1689869	1690921	1691421	1691347	1690360	4604630	6501601	1692275	1693262		1693967	1695499	1696466	1697084	1699177	1700508	1702032		1702411	1702991
50		Initial T			1690345 1	1690694 1	1690708	1691012	1691625		16922/1	1693258	1693918		1695298	1696443	1696972	1699147	1700397	1701767	4702322		1703037	1703308
		SEO		5260 1	5261 1	5262 1	5263 1	5264 1	5265		2266	5267			2269	5270	5271	5272	5273	5274	5275	327.3	5276	5277
				09	.0	.62	63	+	165	 -	992	767	-	-+-	692	770	77.	777	773	774	1		1776	1777

5
10
15
20
25
30
35
40
45

	Function	orotidine-5'-phosphate decarboxylase	carbamoyl-phosphate synthase large chain	carbamoyl-phosphate synthase small chain	dihydroorotase	aspartate carbamoyltransferase	phosphoribosyl transferase or pyrimidine operon regulatory protein	cell division inhibitor				N utilization substance protein B (regulation of rRNA biosynthesis by transcriptional antitermination)	elongation factor P	cytoplasmic peptidase	3-dehydroquinate synthase	shikimate kinase	type IV prepilin-like protein specific leader peptidase
	Matched length (a.a.)	276	1122	381	402	311	176	297				137	187	217	361	166	142
	Similarity (%)	73.6	77.5	70.1	67.7	79.7	80.1	73.4				69.3	98.4	100.0	99.7	100.0	54.9
	Identity (%)	51.8	53.1	45.4	42.8	48.6	54.0	39.7				33.6	97.9	99.5	98.6	100.0	35.2
Table 1 (conlinued)	Homologous gene	Mycobacterium tuberculosis H37Rv uraA	Escherichia coli carB	Pseudomonas aeruginosa ATCC 15692 carA	Bacillus caldolyticus DSM 405 pyrC	Pseudomonas aeruginosa ATCC 15692	Bacillus caldolyticus DSM 405 pyrR	Mycobacterium tuberculosis H37Rv Rv2216				Bacillus subtilis nusB	Brevibacterium lactofermentum ATCC 13869 efp	Corynebacterium glutamicum AS019 pepQ	Corynebacterium glutamicum AS019 aroB	Corynebacterium glutamicum AS019 aroK	Aeromonas hydrophila tapD
	db Match	Sp:DCOP_MYCTU	pir:SYECCP	sp.CARA_PSEAE	sp:PYRC_BACCL	sp:PYRB_PSEAE	Sp.PYRR_BACCL	sp:Y00R_MYCTU				sp:NUSB_BACSU	Sp.EFP_BRELA	gp:AF124600_4	gp:AF124600_3	gp:AF124600_2	sp:LEP3_AERHY
	ORF (bp)	834	3339	1179	1341	936	576	1164	477	462	210	681	561	1089	1095	492	411
	Terminal (nt)	1703517	1704359	1707706	1709011	1710413	1711352	1713759	1714306	1714760	1714950	1715382	1716132	1716780	1717938	1719107	1720971
	Initial (nt)	1704350	1707697	1708884	1710357	1711348	1711927	1712596	1713830	1714299	1714741		1716692	1717868	1719032	1719598	1721381
	SEQ.	5278	5279	5280	5281	5282	5283	5284	5285	5286	5287	5288	5289	5290	5291	5292	5293
	SEQ NO.		1779	1780	1781	1782	1783	1784	1785	-		1788	1789	1790	1791	1792	1793

EP 1 108 790 A2

,					-	$\overline{}$			Γ				ł	- 1	- 1	- 1	- [- 1			i	!	į.
5		Function	bacterial regulatory protein, arsR family	ABC transporter			iron(III) ABC transporter, periplasmic-binding protein	ferrichrome transport ATP-binding protein		shikimate 5-dehydrogenase	hypothetical protein	hypothetical protein		alanyl-tRNA synthetase	hypothelical protein		aspartyl-tRNA synthetase	hypothetical protein	glucan 1,4-alpha-glucosidase	phage infection protein		Total Control of the	transcriptional regulator
			bacter family	9		1	per	ferr	-	Shil	À À	<u>¥</u>	+	aga	<u> </u>	+	as	È	<u>6</u>	6	-	1	
15	Matched	length (a.a.)	83	240	040		373	230		259	395	161		894	454		591	297	839	747		!	192
20		Similarity (%)	68.7	33.0	13.6		50.7	71.7		0.09	70.1	69.6		71.8	84.8		89.2	74.1	53.6	54.0	2.15		62.0
•	-	Identity S (%)	45.8	1 8	35.9		23.6	38.3	1	50.0	41.8	52.8		43.3	65.4		71.1	46.1	26.1	22.4	7.07		29.2
25) (a)						1					ပ္ပ			- 1					5	(2)
30 bolder	ומחוב ו (בחוווות	Homologous gene	Streptomyces coelicolor A3(2)	Sourchasterium dinhtheriae	уши принадання принада		Pyrococcus abyssi Orsay	Racillus subtilis 168 fluC		Mycobacterium tuberculosis H37Rv aroE	Mycobacterium tubercutosis H37Rv Rv2553c	Mycobacterium tuberculosis	H37Rv Rv2554c	Thiobacillus ferrooxidans ATCC 33020 alaS	Mycobacterium tuberculosis H37Rv Rv2559c		Mycobacterium leprae aspS	Mycobacterium tuberculosis H37Rv Rv2575	Saccharomyces cerevisiae	SZBBC TIROTSC SIGN	Bacillus subtilis ynge	A	Streptomyces coeticolor A3(2)
35			1000					1-	1					1.1	5		ш	DT:	AST		BACSU		
40		db Match	on SC1A2 22		gp:AF109162_2		pir.A75169	LISUNA CHILD	sp.rnoc_end	pir:D70660	pir.E70660	0000	pir:r/uggo	SP.SYA_THIFE	sp:Y0A9_MYCTU		SD SYD MYCLE		SP. AMYH YEAST		sp:YHGE		gp:SCE68_13
	-	ORF (bp)	_	\neg	1074	99	957	25	S	828	1167		546	2664	1377	1224	1824	891	2676	3	1857	648	594
45		Terminal (5	7	1722853	172200	1723826		1/245/8	1724612	1725459		1726625	1727385	1730166	1731599	17329R	1735946	1736004	1/30001	1738713	1740572	1741906
50		Initial 7		6711211	1721780	2000054			1723826	1725439	1726625		1727170	1730048	1731542	4732822	173/811	1735056		1/386/1	1740569	1741219	5310 1741313
		SEO.		2234	5295 1		5296		5298 1	5299	2300	- 1 -	5301	5302	5303		2002	5306		2307	5308	5309	
55				1/94 5	1795 5	-i-			1798 5	1799	0081	_	1801	1802	1803			1806		1807	1808	1809	1810
			- 1			•		1		•				1									

5		Function		oxidoreductase		NADH-dependent FMN reductase	L-serine dehydratase		alpha-glycerolphosphate oxidase	histidyl-tRNA synthetase	hydrolase	cyclophilin		hypothetical protein		GTP pyrophosphokinase	adenine phosphoribosyltransferase	dipeplide transport system	hypothetical protein	protein-export membrane protein	
15		Matched length (a.a.)		371		116	462		598	421	211	175		128		760	185	49	558	332	
20		Similarity (%)		88.1		77.6	71.4		53.9	72.2	62.1	61.1		100.0		6.66	100.0	98.8	60.9	57.2	
		Identity (%)		72.8		37.1	46.8	ļ	28.4	43.2	40.3	35.4		98.4		99.9	99.5	98.0	30.7	25.9	
25	Table 1 (continued)	ous gene		elicolor A3(2)		eruginosa PAO1	K12 sdaA		sseliflavus glpO	aureus	ejuni 809c	ırysomallus		n glutamicum 4		n glutamicum	glutamicum	n glutamicum AE	uberculosis	K12 secF	
30	Table 1	Homologaus gene		Streptomyces coeticolor A3(2) SCE15.13c		Pseudomonas aeruginosa PAO1 slfA	Escherichia coli K12 sdaA		Enterococcus casseliflavus glpO	Staphylococcus aureus SR17238 hisS	Campylobacter jejuni NCTC11168 Cj0809c	Streptomyces chrysomallus sccypB		Corynebacterium glutamicum ATCC 13032 orf4		Corynebacterium glutamicum ATCC 13032 rel	Corynebacterium glutamicum ATCC 13032 apt	Corynebacterium glutamicum ATCC 13032 dciAE	Mycobacterium tuberculosis H37Rv RV2585c	Escherichia coli K12 secF	
<i>35</i>		db Match		gp:SCE15_13		sp:SLFA_PSEAE	sp:SDHL_ECOLI		prf:2423362A	sp:SYH_STAAU	gp:CJ11168X3_12 7	prf:2313309A		gp:AF038651_4		gp:AF038651_3	gp:AF038651_2	gp:AF038651_1	sp:Y0BG_MYCTU	sp:SECF_ECOLI	
		ORF (bp)	714	1113 gı	126	495 sp	1347 5	861	1686 p	1287 sı	639 9	507 p	237	555 9	342	2280 g	555 9	150 g	1743 s	1209 s	630
45		Terminal (nt)	1742606	1743813	1743968	1744519	1746230	1747588	1746233	1747990	1749325	1750933	1751200	1752051	1752527	1752615	1754925	1755599	1755486	1757589	1760336
50		Initial (nt)	1741893	1742701	1743843	1744025	1744884	1746728	1747918	1749276	1749963	1750427	1750964	1751497	1752186	1754894	1755479	1755748	1757228	1758797	5329 1759707
55		SEQ NO.	5311	5312	5313	1	5315	5316	,	5318	5319	5320	5321	5322	5323	5324	5325	5326	5327	5328	_
		SEQ NO.	811	812	813	1814	815		_	818	1819	1820	1821	1822	1823	1824	1825	1826	1827	1828	1829

EP 1 108 790 A2

					\neg														
5	Function	protein-export membrane protein	hypothetical protein	holliday junction DNA helicase	holliday junction DNA helicase	crossover junction endodeoxyribonuclease	hypothetical protein	acyl-CoA thiolesterase	hypothetical protein	hypothetical protein	hexosyltransferase or N- acetylglucosaminyl- phosphatidylinositol biosynthetic protein	acyltransferase	CDP-diacylglycerol-glycerol-3- phosphate phosphatidyltransferase	histidine triad (HIT) family protein	threonyl-tRNA synthetase	hypothetical protein			
15	Matched length (a.a.)	616	106	331	210	180	250	283	111	170	414	295	78	194	647	400			
20	Similarity (%)	52.0	66.0	81.9	74.3	63.3	78.4	9.89	61.3	61.2	49.3	8.79	78.0	78.4	68.9	61.8			
	Identity (%)	24.4	39.6	55.3	45.2	35.6	49.2	38.5	31.5	38.2	21.7	46.4	48.2	54.6	42.0	34.3			
55 Table 1 (continued)	Homologous gene	Rhodobacter capsulatus secD	Mycobacterium leprae MLCB1259.04	Escherichia coli K12 ruvB	Mycobacterium leprae ruvA	Escherichia coli K12 ruvC	Escherichia coli K12 ORF246 yebC	Escherichia coli K12 tesB	Streptomyces coelicolor A3(2) SC10A5.09c	Mycobacterium tuberculosis H37Rv Rv2609c	Saccharomyces cerevisiae S288C sp114	Streptomyces coelicolor A3(2) SCL2.16c	Mycobacterium tuberculosis H37Rv Rv2612c pgsA	Mycobacterium tuberculosis H37Rv Rv2613c	Bacillus subtilis thrZ	Bacillus subtills ywbN			
35	db Match	prf:2313285A Rho	Sp:Y0BD_MYCLE My	sp.RUVB_ECOLI Esc	Sp.RUVA_MYCLE Myc	sp:RUVC_ECOLI Esc	sp:YEBC_ECOLI Esche	sp:TESB_ECOLI Esc	gp:SC10A5_9 Stre	pir:H70570 H3	sp:GPI3_YEAST Sac	gp:SCL2_16 Stre	pir.C70571 Myc	pir:D70571 Myc	sp:SYT2_BACSU Bac	sp:YWBN_BACSU Bac			
	ORF (bp)	1932 p	363	1080	618	663 's	753 8	846 s	474 g	462 p	1083 SI	963	657 pi	660 pi	2058 si	1206 sp	564	546	735
45	Terminal (nt)	1758803	1761005	1761419	1762517	1763177	1763990	1765015	1766442	1766487	1766948	1768034	1769022	1769681	1770327	1772658	1774444	1773893	1774457
50	Initial (nt)	1760734	1761367	1762498	1763134	1763839	1764742	1765860	1765969	1766948	1768030	1768996	1769678	1770340	1772384	1773863	1773881	1774438	1775191
	SEO NO (a.a.)	5330	5331	5332	5333	5334	5335	5336	5337	5338	5339	5340	5341	5342	5343	5344	5345	5346	5347
	SEQ NO (DNA)	1830	1831	1832	1833	1834	1835	1836	1837	1838	1839	1840	1841	1842	1843	1844	1845	1846	1847

5	Function						puromycin N-acetylifansierase											ferric transport ATP-binding protein					pantothenate metabolism flavoprotein		
15	Matched fength (a.a.)					1	190											202					129		
20	Similarity (%)						64.2											28.7					66.7		
	Identity (%)						36.3											28.7			_		27.1		_
25 (panuit	gene						us pac											fuc					djp		
& Sample 1 (continued)	Homologous gene						Streptomyces anulatus pac											Actinobacillus pleuropneumoniae afuC					Zymomonas mobilis dfp		
<i>35</i>	db Match						Sp.PUAC_STRLP								-			sp.AFUC_ACTPL					gp:AF088896_20		
	ORF (bp)	378	594	1407	615	399	567	1086	1101	669	2580	1113	1923	483	189	312	429	597	666	159	1107	420	591	864	420
45	Terminal (nt)	1777646	1778037	1778102	1779554	1780507	1781019	1782790	1784381	1783382	1782894	1785732	1786907	1789562	1789768	1790057	1790461	1792438	1793426	1793496	1794820	1795621	1796181	1797049	1797769
50	Initial (nt)	1777269	1777444	1779508	1780168	1780905	1781585	1781705	1783281	1784080	1785473	1786844	1788829	1789080	1789580	1789746	1790889	1791842	1792428	1793654	1793714	1795202	1795591	1796186	1797350
	SEQ NO.		5349	5350	5351	5352	5353	5354	5355	5356	5357	5358	5359	5360	5361	5362	5363		5365	5366	5367	5368	5369	5370	5371
55	SEQ	1848	1849	1850	1851	1852	1853	1854	1855	1856	1857	1858	1859	1860	1861	1862	1863	1864	1865	1866	1867	1868	1869	1870	1871

EP 1 108 790 A2

ſ	_		i	\top	T	7	T	T	T			1	1	-		-	1		1	ļ				i	1	į
5		Function																		Carolina TAIN	transposon 1142 tesorates			protein-tyrosine phosphatase		
15	Matched	length (a.a.)		+-			+													T	8			164		
20	_	Similarity (%)																			0.87			51.8		
		identity (%)																			51.1			29.3		
25 (Penuju		gene																			28			erevisiae vh1		
S Table 1 (continued)	200	Homologous gene																			Escherichia coli tnpR			Saccharomyces cerevisiae S288C YIR026C yvh1		
35		atch																								
40		db Match																			sp:TNP2_ECOLI			sp:PVH1_YEAST		
	-	ORF (bp)	120	735	225	894	156	474	753	423	289	429	465	237	681	960	480	681	285	375		-	375	477	726	42
45		Terminal (nt)	1797850	1798023	1799406	1800366	1800449	1801307	1802096	1802155	1803419	1803893	1804598	1804865	1805599	1806686	1807396	1808113	1808421	1808832	1810372	1811545	1811938	1812691	1813606	1812460
50		Initial (nt)	1797969	1798757	1799182	1799473	1800604	1800834	1801344	1802577	1802733	1803465	1804134	1804629	1804919	1805727	1806917	1807433	1808137	1808458	1809761	1810541	1811564	1812215	1812881	1812882
		SEQ NO.	- -		5374	5375	5376		5378		5380	5381	5382	5383	5384	5385	5386	5387	5388	5389	5390	5391			5394	5395
55		SEQ NO.	_	-	-	1875		1877		+			1882	1883	1884	1885	1886	1887	1888	1889	1890	1891	1892	1893	1894	1895

EP 1 108 790 A2

	_										_		_	_		_				$\overline{}$	$\overline{}$		7	
5		Function	sporulation transcription factor							The second secon		hypothetical protein					hypothetical protein	insertion element (IS3 related)	insertion element (IS3 related)			single-stranded-DNA-specific exonuclease		primase
46	}	ъ	sboı	\dashv	4	-	-	\dashv	<u> </u>	\dashv	-	hyp		-	_	-	P P	inse	inse			sinç exo	4	prin
15		Matched length (a.a.)	216									545					166	298	101			622		381
20		Similarity (%)	65.7									55.2					75.0	92.6	84.2			50.6		64.3
		Identity (%)	34.3									22.6					63.0	87.9	72.3			24.0		31.8
25	ntinued)	gene	olor A3(2)									ıa MSB8					utamicum	utamicum	utamicum			ni recJ		je phi-01205
30	Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) whilH									Thermotoga maritima MSB8 TM1189					Corynebacterium glutamicum	Corynebacterium glutamicum orf2	Corynebacterium glutamicum orf 1			Erwinia chrysanthemi recJ		Streptococcus phage phi-01205 ORF13
35												FF				-	၁	0 5	0 6					S
40		db Match	gp:SCA32WHIH_6									pir.C72285					PIR:S60891	pir.S60890	pir.S60889			sp:RECJ_ERWCH		pir:T13302
		ORF (bp)	738	789	456	186	672	417	315	369	207	2202	1746	219	144	429	534	894	294	213	1299	1878	780	1650
45		Terminal (nt)	1814517	1815651	1815128	1815636	1817803	1818219	1818774	1819166	1819748	1820181	1824322	1824589	1824927	1825178	1826557	1825751	1826644	1829688	1832063	1834044	1834149	1838324
50		Initial (nt)	1813780	1814863	1815673	1816451	1817132	1817803	1818460	1818798	1819954	1822382	1822577	1824371	1824784	1825606	1826024	1826644	1826937	1829900	1830765	1832167	1834928	1836675
		SEO NO.		5397	5398	5399	5400	5401	5402	5403	5404	5405	5406	5407	5408	5409	5410	5411	5412	5413	5414	5415	5416	5417
55		SEQ NO.		1897	1898	1899	1900	1901	1902	1903	1904	1905	1906		1908	1909	1910	1911	1912	1913	1914	1915	1916	1917

EP 1 108 790 A2

5	Function	ė			helicase		phage N15 protein gp57										actin binding protein with SH3 domains					ATP/GTP binding protein		ATP-dependent Clp proteinase ATP- binding subunit
15	Matched length (a.a.)				620		109										422					347		630
20	Similarity (%)				44.7		64.2										49.8					52.5		61.0
	Identity (%)				22.1		36.7										28.7					23.6		30.2
55 57 Table 1 (continued)	Homologous gene				Mycoplasma pneumoniae ATCC 29342 yb95		115 gene57										myces pombe					selicofor		K12 clpA
·	Homolog				Mycoplasma pne 29342 yb95		Bacteriophage N15 gene57										Schizosaccharomyces pombe SPAPJ760.02c	and the second second				Streptomyces coelicolor SCSC7.14		Escherichia coli K12 clpA
40	db Match				sp:Y018_MYCPN		pir.T13144										gp:SPAPJ760_2					gp:SC5C7_14		sp:CLPA_ECOLI
	ORF (bp)	3789	447	534	1839 s	375	336 p	366	618	537	528	862	186	372	438	9/9	1221 g	852	1395	594	180	1257 g	1854	1965 s
45	Terminal (nt)	1842137	1842681	1843337	1845356	1845857	1846207	1846333	1847932	1848474	1849036	1849785	1849966	1850406	1849978	1850474	1852440	1852324	1853873	1854854	1855237	1856788	1858738	1860727
50	Initial (nt)	1838349	1842235	1842804	1843518	1845483	1845872	1846698	1847315	1847938	1848509	1848988	1849781	1850035	1850415	1851049	1851220	1851473	1852479	1854261	1855058	1855532	1856885	1858763
	SEQ NO.	5418	5419	5420	5421	5422	5423	5424	5425	5426		5428	5429	5430	5431	5432	5433	5434	5435	5436	5437	5438	5439	5440
55	SEQ NO.	1918	1919	1920	1921	1922	1923	1924	1925	1926	1927	1928	1929	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939	1940

EP 1 108 790 A2

									_	_	~					_					\neg	\top	1	1
5							ase						ophosphate							lonuclease				
10		Function					ATP-dependent nelicase					hypothetical protein	deoxynucleotide monophosphate kinase					tyne II 5-cytosoine	methyltransferase	type II restriction endonuclease			hypothetical protein	
15	Matched	length (a.a.)					693					224	208						363	358			504	
20		Similarity (%)					45.9					47.8	61.5						99.7	99.7			45.B	
		Identity (%)					21.4					25.9	31.7						99.2	99.7			24.6	
25 Portug		ane					us SA20					olor A3(2)	31 gp52						utamicum	utamicum			color A3(2)	
30 to 14 to 15 to	lable I (col	Homologous gene					Staphylococcus aureus SA20 pcrA					Streptomyces coelicolor A3(2) SCH17.07c	Bacteriophage phi-C31 gp52						Corynebacterium glutamicum ATCC 13032 cgllM	Corynebacterium glutamicum ATCC 13032 cgllR			Streptomyces coelicolor A3(2) SC1A2.16c	
40		db Match					Sp.PCRA_STAAU					gp:SCH17_7							prf.2403350A	pir.A55225			gp:SC1A2_16	
		ORF (bp)	474	156	324	312	2355 sp	558	378	465	264	777	702		677	2166	273	6507	1089	1074	1521	717	1818	186
45		Terminal (nt)	1861225	÷	1861519	1862399	1865299	1865822	1866219	1866792	1867095	1867874	1868587	1	18080/1	1868927	1871101	1871380	1879400	1880485	1882470	1884220	1887047	1887590
50		Initial (nt)	1860752	-	╂	1862088	1862945	1865265	1865842	5448 1866328	1866832	1				1871092	1871373	1877886	1878312	1879412	1883990			1887405
		SEO						5446	5447							5453	5454	5455	5456	5457	5458	+		5461
55		SEO	10 L	_		1944	1945	1946	1947	1948	1949	1950	1051	2	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961

EP 1 108 790 A2

	٢				$\neg \top$	T	$\neg \Gamma$	\neg	Т			Ī	ī	Т	$\neg \tau$	Т	\neg	Т	T			T	П	-		٦
5		Function	case-related	ein		ein				Ip ATP-binding							pparatus protein									
10		ΡŪ	SNF2/Rad54 helicase-related protein	hypothetical protein		hypothetical protein				endopeptidase Clp ATP-binding chain B							nuclear mitotic apparatus protein									
15		Matched length (a.a.)	06	163		537				724							1004									
20		Similarity (%)	70.0	56.4		47.9				52.5							49.1									
		Identify (%)	46.7	33.1		20.7	į			25.3							20.1	_			_					
25	linued)	ene	ans	hi-gle		22-16																				
30	Table 1 (continued)	Homologous gene	Deinococcus radiodurans DR1258	Lactobacillus phage phi-gle Rorf232		Bacillus anthracis pXO2-16				Escherichia coli cipB							Homo sapiens numA									
<i>35</i>		db Match	gp:AE001973_4	pir.T13226		gp:AF188935_16				sp:CLPB_ECOLI							pir:S23647									
		ORF (bp)	351	864	330	1680	1206	1293	2493	1785	621	1113	846	981	879	198	2766	909	1251	969	714	1008	1659	1488	399	1509
45		Terminal (nt)	1887688	1888231	1889859	1890028	1891832	1893388	1894739	1897374	1899233	1899804	1901066	1902955	1902005	1903225	1903113	1905973	1906664	1907965	1908785	1909501	1910642	1912333	1913973	1914725
50		Initial (nt)	1888038	1889094	1889530	1891707	1893037	1894680	1897231	1899158	1899853	1900916	1901911	1901975	1902883	1903028	1905878	1906572	1907914	1908660	1909498	1910508	1912300	1913820	1914371	1916233
		SEQ.	5462	5463	5464	5465	5466	5467	5468	5469	5470	5471	5472	5473	5474	5475	5476	5477	5478	5479	5480	5481	5482	5483	5484	5485
		S O S	962	963	964	965	996	967	968	696	970	971	972	973	974	975	976	977	978	979	980	981	1982	1983	1984	1985

EP 1 108 790 A2

5 10	Function										submaxillary apomucin			modification methylase					hypothetical protein			hypothetical protein			
15	Matched length (a.a.)										1408			61					114			328			
20	Similarity (%)										49.2			9.39					58.8			54.6			
	Identity (%)										23.2			42.6					38.6			27.1			
os Table 1 (continued)	Homologous gene										stica			ecoR1					uberculosis			jannaschii			
Table 1	Homolog		, i						4		Sus scrofa domestica			Escherichia coli ecoR1					Mycobacterium tuberculosis H37Rv Rv1956			Methanococcus jannaschii MJ0137			
<i>35</i>	db Match										pir. T03099			sp:MTE1_ECOLI					pir:H70638			sp:Y137_METJA			
	ORF (bp)	360	222	312	645	159	549	930	306	357	4464 p	579	945	171 S	375	1821	201	468	381 p	202	837	942 s	624	210	534
45	Terminal (nt)	1916733	1917165	1917329	1917564	1918703	1919646	1920347	1925695	1926038	1921547	1926259	1927245	1928381	1928908	1929059	1930990	1931421	1931935	1932373	1933522	1934971	1936849	1937411	1937486
50	Initial (nt)	1916374	1916944	1917640	1918208	1919461	1920194	1921276	1925390	1925682	1926010	1926837	1928189	1928211	1928534	1930879	1931190	1931888	1932315	1932879	1934358	1935912	1936226	1937202	1938019
	SEO NO.	5486	5487	5488	5489	5490	5491	5492	5493	5494	5495	5496	5497	5498	5499	5500	5501	5502	5503	5504	5505	5506	5507	5508	5509
55	SEQ NO.	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009

EP 1 108 790 A2

10	Function										surface protein				major secreted protein PS1 protein precursor			DNA topoisomerase III					major secreted protein PS1 protein precursor	
15	Matched length (a.a.)										304				270			597					344	
20	Similarity (%)							į			44.1				54.4			50.9					54.7	
	Identity (%)										23.0				30.7			23.8					29.7	
% G G G Table 1 (continued)	Homologous gene										faecalis esp				Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1			ili topB					Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	
os Table	Homolc										Enterococcus faecalis esp				Corynebacteriu (Brevibacteriur 17965 csp1			Escherichia coli topB					Corynebacteriu (Brevibacteriur 17965 csp1	
<i>35</i>	db Match										prf:2509434A				sp:CSP1_CORGL			sp:TOP3_ECOLI					sp:CSP1_CORGL	
	ORF (bp)	1191	534	588	444	753	303	216	309	885	828 p	297	381	429	1581 sp	2430	867	2277 5	2085	891	432	744	1887 s	291
45	Terminal (nt)	1940135	1938531	1940844	1941550	1941732	1942812	1943310	1943653	1944564	1944608	1945595	1945952	1946609	1947070	1949021	1951619	1952546	1956203	1958450	1959765	1960371	1961114	1963139
50	l Initial (nt)	1938945	1939064	1940257	1941107	1942484	1942510	1943095	1943345	1943680	1945435	1945891	1946332	1947037	1948650	1951450	1952485	1954822	1958287	1959340	1960196	1961114	1963000	1963429
	SEQ NO. (a.a.)	5510	5511	5512	5513	5514	5515	5516	5517	5518	5519	5520	5521	5522	5523	5524	5525	5526	5527	5528	5529	5530	5531	5532
55	SEQ NO.	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032

EP 1 108 790 A2

5	Function				thermonuclease										single stranded DNA-binding protein								serine protease				
15	Matched length (a.a.)				227										225								249				
20	Similarity (%)				57.7										59.1								52.6				
	Identity (%)				30.4										24.9								25.7				
25 Table 1 (continued)	ans gene				aureus nuc										ssb								iae AgSP24D				
Table 1	Homologous gene				Staphylococcus aureus nuc									İ	Shewanella sp. ssb								Anopheles gambiae AgSP24D				
35	£																										
40	db Match				sp.NUC_STAAU										prf:2313347B								sp:S24D_ANOGA				
	ORF (bp)	1230	1176	357	684	147	564	1452	459	1221	1419	591	396	237	624	579	462	507	588	333	558	570	912	693	366	747	180
45	Terminal (nt)	1963514	1964727	1965911	1966984	1967289	1968167	1969715	1970203	1971474	1973090	1973737	1974204	1974503	1975794	1976494	1976983	1977549	1978329	1978721	1979217	1979808	1980885	1981657	1982028	1982817	1981912
50	Initial (nt)	1964743	1965902	1966267	1966301	1967435	1967604	1968264	1969745	1970254	1971672	1973147	1973809	5545 1974267	1975171	1975916	1976522	1977043	1977742	1978389	1978660	1979239	1979974	1980965	1981663	1982071	1982091
	SEQ NO.	5533	5534	5535	5536	5537	5538	5539	5540	5541	5542	5543	5544		5546	5547	5548	5549	5550	5551	5552	5553	5554	5555	5556	5557	5558
55	SEQ NO.	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054	2055	2056	2057	2058

EP 1 108 790 A2

	Г	1	$\neg \top$	\top	\top	\neg	\top	\top	T	Ī									\neg			\neg
5		C O									(1)		sor	33 related)						in PS1 protein	
10		Function								integrase	transposase (divided)	transposase (divided)		transposition repressor	insertion element (IS3 related)	transposase					major secreted protein PS1 protein precursor	integrase
15		Matched length (a.a.)								406	124	117		31	43	270					153	223
20		Similarity (%)								55.9	94.4	84.6		96.8	88.4	53.7					37.0	56.1
		Identity (%)								29.6	83.9	70.9		80.7	74.4	ે 31.1					25.0	28.7
25	nued)	ane ane								L5 int	rmentum	rmentum		rmentum	тісит	or A3(2)					micum 1) ATCC	L5 int
30	Table 1 (continued)	Homologous gene								Mycobacterium phage L5 int	Brevibacterium lactofermentum CGL 2005 ISaB 1	Brevibacterium factofermentum CGL 2005 ISaB 1		Brevibacterium lactofermentum CGL2005 ISaB1	Corynebacterium glutamicum orf1	Streptomyces coelicolor A3(2) SCJ11.12					Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Mycobacterium phage L5 int
35											80	80		80	0 0	SS						
40		db Match	-							SP: VINT_BPML5	gsp:R23011	gsp:R23011		gsp:R21601	pir.S60889	gp:SCJ11_12					sp:CSP1_CORGL	SP:VINT_BPML5
		ORF (bp)	363	273	264	234	342	273	303	1149	390	417	207	114	135	828	354	891	432	744	1584	687
45		Terminal (nt)	1983548	1983883	1984181	1984450	1984728	1985364	1985071	1985442	1987507	1987887	1988589	1988370	1988530	1988778	1991020	1989874	1991189	1991795	1992538	1994608
50		Initial (nt)	1983186	1983611	1983918	1984217	1984387	1985092	1985373	1986590	1987896	1988303	1988383	1988483	1988664	1989605	1990661	1990764	1991620	1992538	1994121	1995294
		SEQ NO (a a)	5559	5560	5561	5562	5563	5564	5565	5566	5567	5568	5569	5570	5571	5572	5573	5574	5575	5576	5577	5578
		SEQ NO. (DNA)	2059	2060	2061	2062	2063	2064	2065	2066	2067	2068	2069	2070	2071	2072	2073	2074	2075	2076	2077	2078

EP 1 108 790 A2

,										- 1	- 1		l .	- 1	- 1	1	- 1	- 1	1	ı	Į.	
5	1	runciioii	nt transporter	ein			thesis protein	ane protein	xide reductase		tein	itein		ore & whosehate	1-deoxy-U-xyldiose-3-priospriate synthase	ısferase		otein	-triphosphate olase	otein		
10			sodium-dependent transporter	hypothetical protein			riboflavin biosynthesis protein	potential membrane protein	methionine sulfoxide reductase		hypothetical protein	hypothetical protein	O oscolomodi:	ribonuciease o	1-deoxy-U-xyiul synthase	RNA methyltransferase		hypothetical protein	deoxyuridine 5'-triphosphate nucleotidohydrolase	hypothetical protein		
15	Matched	length (a.a.)	88	92			233	384	126		232	201	1	5	618	472		268	140	150		
20	Similarity	(%)	76.1	81.5			64.4	71.9	67.5		77.2	78.6		52.8	78.5	52.3		62.7	82.1	7.07		
	1400 filtr	(%)	39.8	48.9			33.5	42.5	41.3		55.2	55.7		25.9	55.3	25.4		38.1	55.0	46.0		
25 30 30	(Communication)	s gene	56695	aA			berculosis 5D	berculosis	rdonii msrA		berculosis	berculosis	P d detaon	Derizae na d	. CL190 dxs	itima MSB8		uberculosis	elicolor A3(2)	luberculosis		
30 T	n) i ainei	Homologous gene	Helicobacter pylori 26695 HP0214	Bacillus subtilis yxaA			Mycobacterium tuberculosis H37Rv Rv2671 ribD	Mycobacterium tuberculosis H37Rv Rv2673	Streptococcus gordonii msrA		Mycobacterium tuberculosis	Mycobacterium tuberculosis	H37Rv Rv2680	Haemophilus Iniluenzae na KW20 Hl0390 rnd	Streptomyces sp. CL190 dxs	Thermotoga maritima MSB8 TM1094		Mycobacterium tuberculosis	Streptomyces coelicolor A3(2)	Mycobacterium tuberculosis	חפוזאא אאופם	
35 40		db Match	pir:F64546	SP:YXAA BACSU			pir:C70968	pir:E70968	qp:AF128264_2		pir:H70968	00000	pir.c.rusze	sp:RND_HAEIN	gp:AB026631_1	pir:E72298		pir.C70530	SP DUT STRCO	pir.E70530		
		ORF (bp)	306 pi	432 5	2	336	d 969	1254 p	408	+	+		624	1263	1908	1236	282	+-	-	549	3	207
45.		Terminal (nt)	1995783	1996537	1997112	1997503	1998240	1999542	1999949	1000707	2000521		2002112	2003334	2003402	2005462	2006979	2006777	2007738			2008876
50		Initial (nt)	1996088	1096106	1996768	1997168	1997545	1998289			2000132	21007	2001489	2002072	2005309	2006697	2008698				2000200	5596 2009082
		SEQ.	5579		_				5585	200	5560		5588	5589	5590	_						5596
55		SEO	(UNA)	 -		_		2084	2005	COO	2080	7007	2088	2089	2090	2091	2000	2002	602	2094	2095	2096

ATP-dependent RNA helicase

661

50.7

24.4

Saccharomyces cerevisiae YJL050W dob1

sp:MTR4_YEAST

2550

2029043

2026494

5613

2113

hypothetical protein

79.0

45.3

Mycobacterium tuberculosis H37Rv Rv2714

pir:E70532

957

2025423

2112

1323

2023948 2026379

2025270

5611

UDP-glucose 4-epimerase

99.1

99.1

Corynebacterium glutamicum ATCC 13869 (Brevibacterium lactofermentum) galE

Sp.GALE_BRELA

987

2023945

2022959

5610

2110

10	Function	hypothetical protein	extragenic suppressor protein	polyphosphate glucokinase	sigma factor or RNA polymerase transcription factor	hypothetical membrane protein		hypothetical protein	hypothetical membrane profein	hypothetical protein	transferase	hypothetical protein	iron dependent repressor or diphtheria toxin repressor	putative sporulation protein	
15	Matched length (a.a.)	100	198	248	200	422		578	127	76	523	144	228	7.7	
20	Similarity (%)	81.0	68.2	80.2	98.6	51.4		80.8	59.1	85.5	61.2	100.0	93.6	64.0	
	Identity (%)	58.0	38.4	54.4	98.0	23.9		61.3	32.3	62.8	33.5	97.2	98.7	62.0	
25 (penul)	jene	culosis	suhB	culosis	amicum			culosis	culosis	culosis	olor A3(2)	tamicum	tamicum	aciens	
8 Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2699c	Escherichia coli K12 suhB	Mycobacterium tuberculosis H37Rv RV2702 ppgK	Corynebacterium glutamicum sigA	Bacillus subtilis yrkO		Mycobacterium tuberculosis H37Rv Rv2917	Mycobacterium tuberculosis H37Rv Rv2709	Mycobacterium tuberculosis H37Rv Rv2708c	Streptomyces coelicolor A3(2) SCH5.08c	Corynebacterium glutamicum ATCC 13869 ORF1	Corynebacterium glutamicum ATCC 13869 dbR	Streptomyces aureofaciens	
35	db Match	pir.F70530	sp.SUHB_ECOLI	sp:PPGK_MYCTU	prf.2204286A	sp:YRKO_BACSU		sp:Y065_MYCTU	pir.H70531	pir.G70531	gp:SCH5_8	prf:2204286C	pir:140339	GP:AF010134_1	
	ORF (bp)	291	816	828	1494	1335	537	1710	636	237	1533	432	684	234	
45	Terminal (nt)	2009280	2009724	2011382	2013356	2014162	2015585	2016257	2018754	2017966	2020276	2020724	2022949	2022313	
50	fnitial (nt)	2009570	2010539	2010555	2011863	2015496	2016121	2017966	2018119	2018202	2018744	2020293	2022266	5609 2022546	
	SEQ NO.		5598	5599	2600	5601	5602	5603	5604	5605	9099	2607	5608	5609	1
55	SEQ NO.	2097	2098	2099	2100	2101	2102	2103	2104	2105	2106	2107	2108	2109	-

EP 1 108 790 A2

5	Function	hydrogen peroxide-inducible genes activator		ATP-dependent helicase	regulatory protein		SOS regulatory protein	galactitol utilization operon repressor	phosphofructokinase (fructose 1- phosphate kinase)	phosphoenolpyruvate-protein phosphotransferase	glycerol-3-phosphate regulon repressor	1-phosphofructokinase or 6- phosphofructokinase	PTS system, fructose-specific IIBC component	phosphocarrier protein		uracil permease	ATP/GTP-binding protein			diaminopimelate epimerase
15	Matched length (a.a.)	299		1298	145		222	245	320	592	262	345	549	81		407	419			269
20	Similarity (%)	65.6		76.2	86.2		71.6	67.8	55.6	64.0	62.6	55.7	69.6	71.6		70.5	80.0			64.7
	Identity (%)	35.8		49.2	61.4		46.9	33.9	27.2	34.3	26.7	33.0	43.0	37.0		39.1	54.4			33.5
os Table 1 (continued)	s gene	yR		ρA	uligerus nrdR		٦.	12 gatR	icolor A3(2)	mophilus ptsl	12 glpR	ulatus fruK	12 fruA	mophilus XL-		us pyrP	iae orf11*			enzae Rd F
Table 1 (c	Homologous gene	Escherichia coli oxyR		Escherichia coli hrpA	Streptomyces clavuligerus nrdR		Bacillus subtilis dinR	Escherichia coli K12 gatR	Streptomyces coelicolor A3(2) SCE22.14c	Bacillus stearothermophilus ptsl	Escherichia coli K12 glpR	Rhodobacter capsulatus fruK	Escherichia coli K12 fruA	Bacillus stearothermophilus XL- 65-6 ptsH		Bacillus caldolyticus pyrP	Streptomyces fradiae orf11*			Haemophilus influenzae Rd KW20 HI0750 dapF
35	atch	† 		\neg		i						1								
40	db Match	Sp.OXYR_ECOLI			gp:SCAJ4870_3		sp:LEXA_BACSU	SP.GATR_ECOLI	gp:SCE22_14	sp:PT1_BACST	sp:GLPR_ECOLI	sp:K1PF_RHOCA	sp:PTFB_ECOLI	sp:PTHP_BACST		SP:PYRP_BACCL	gp:AF145049_8			831 SP.DAPF_HAEIN
	ORF (bp)	981	1089	3906	420	420	969	777	096	1704	792	066	1836	267	582	1287	1458	786	537	831
45	Terminal (nt)	2030157	2030277	2035383	2035431	2035990	2037507	2038591	2039550	2039618	2042519	2043508	2045571	2046028	2046714	2047320	2048650	2051106	2051842	2051845
50	Initial (nt)	2029177	2031365	2031478	2035880	2036409	2036812			2041321	2041728	2042519	2043736	2045762	2047295	2048606	2050107	2050321	2051306	2052675
	SEQ NO.	5614	5615	5616	5617	5618	5619	5620	5621	5622	5623	5624	5625	5626	5627	5628	5629	5630	5631	5632
55	SEQ	2114	2115	2116	2117	2118	2119	2120	2121	2122	2123	2124	2125	2126	2127	2128	2129	2130	2131	2132

EP 1 108 790 A2

| Function | tRNA delta-2-
isopentenylpyrophosphate
transferase |

 | hypothetical protein

 |

 | | hypothetical membrane protein | hypothetical protein | glutamate transport ATP-binding
protein
 | Neisserial polypeptides predicted to
be useful antigens for vaccines and
diagnostics | glutamate transport system
permease protein | giutamate transport system
permease protein | regulatory protein | hypothetical protein | | biotin synthase
 | putrescine transport ATP-binding protein | hypothetical membrane protein |
|-----------------------------|---
--
--
--
--
--

--
--
---|--|---|---|---|---|---|---
---|---|--|--|---
--|
| Matched
length
(a.a.) | 300 |

 | 445

 |

 | | 190 | 494 | 242
 | 17 | 225 | 273 | 142 | 29 | | 197
 | 223 | 228 |
| Similarity
(%) | 68.7 |

 | 75.7

 |

 | | 63.7 | 86.4 | 9.66
 | 73.0 | 100.0 | 9.66 | 6.99 | 71.6 | | 61.4
 | 69.5 | 58.8 |
| Identity
(%) | 40.0 |

 | 48.5

 |

 | | 29.0 | 68.4 | 9.66
 | 66.0 | 100.0 | 99.3 | 34.5 | 40.3 | | 33.0
 | 33.2 | 24.6 |
| ene | піаА |

 | culosis

 |

 | | culosis | Ð | tamicum
 | le le | tamicum | tamicum
Im) ATCC | e recX | rculosis | | yoic
 | potG | |
| Homologous gene | scherichia coli K12 I |

 | Aycobacterium tuber
137Rv Rv2731

 |

 | | Aycobacterium tuber
137Rv Rv2732c | Aycobacterium lepra
32235 C2 195 | Corynebacterium glu
ATCC 13032 gluA
 | Veisseria gonorrhoea | Corynebacterium glu
ATCC 13032 gluC | Corynebacterium glu
Brevibacterium flavo
13032 gluD | Mycobacterium lepra | Mycobacterium tube
H37Rv Rv2738c | | Bacillus sphaericus I
 | Escherichia coli K12 | Bacillus subtilis ybaF |
| <u></u> | |

 | ZI

 |

 | | 21 | | 1
 | | | | T | | | İ
 | | |
| db Match | sp:MIAA_ECC |

 | pir:B70506

 |

 | | pir.C70506 | sp:Y195_MYC | sp:GLUA_CO
 | GSP:Y75358 | sp:GLUC_CC | sp:GLUD_CC | Sp:RECX_MY | pir:A70878 | | SD: BIOY BAC
 | sp.POTG_EC | pir.F69742 |
| ORF
(bp) | 903 | 675

 | 1359

 | 1020

 | 1023 | 699 | 1566 | 726
 | 219 | 684 | 819 | +- | | 738 | 576
 | | 609 |
| Terminal (nt) | 2052684 | 2053609

 | 2055761

 | 2054724

 | 2056787 | 2057120 | 2057855 | 2060499
 | 2060196 | 2062312 | 2063259 | 2063298 | 2065394 | |
 | | 2068474 |
| | 2053586 | 2054283

 |

 | 2055743

 | 2055765 | 2057788 | 2059420 | 2059774
 | 2060414 | 2061629 | 2062441 | | 2065627 | | <u> </u>
 | | 2067866 |
| SEO | (a.a.)
5633 |

 |

 | 5636

 | | | 5639 | 5640
 | 5641 | 5642 | | 5644 | | |
 | _ | 5649 |
| | |

 |

 |

 | | _ | 2139 | 2140
 | 2141 | 2142 | 2143 | 2144 | 2145 | 2146 | 2447
 | 2148 | 2149 |
| | SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (26) (27) | SEQ Initial No. (nt) Terminal ORF (hp) db Match Homologous gene (%) Identity (%) Similarity length (%) Matched (%) (a.a.) (nt) (nt) (pp) Initial NO. Terminal ORF (nt) db Match Homologous gene (sa.a.) Identity (%) Similarity (%) Matched (%) <th< td=""><td>SEQ (nt) Initial (nt) Terminal ORF (lb) db Match Homologous gene (lc) Identity (lc) Similarity (la) Matched (lg) NO. (nt) (nt) (nt) (lp) db Match (lc) (lc)<td>SEQ (nt) Initial (nt) Terminal (bp) db Match Homologous gene Identity (%) Similarity (%) Matched (%)</td><td>SEQ Initial NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td><td>SEQ Initial NO. Terminal ORF (nt) db Match Homologous gene (%) Identity (%) Similarity length (%) Matched (%)</td><td>SEQ Initial NO. Terminal ORF (nt) db Match Homologous gene (%) Identity (%) Similarity length (%) Matched (%) Homologous gene (%) Identity (%) Similarity length (%) Identity</td><td>SEQ Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) (%)</td><td>SEQ
(nt) Initial
(nt) Terminal
(nt) ORF
(nt) db Match
(bp) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%) Matched
(%) Matched
(%) Matched
(%) Matched
(%) Identity
(%) Similarity
(%) Imagene
(%) Imagene</td><td>SEQ
(aa.) Initial
(nt) Terminal
(nt) ORF
(nt) db Match
(nt) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%) Matched
(%) Matched
(%) Matched
(%) Identity
(%) Similarity
(%) Matched
(%) Mat</td><td>SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) Image</td><td>SEQ
(a1) Initial
(IN) Terminal
(IN) ORF
(IN) db Match
(b) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Homologous gene
(%) Identity
(%)
 Matched
(%) Identity
(%) Identi</td><td>SECA (nt)ial NO. Terminal (nt) (pp) deb Match Homologous gene Identity (%) Similarity length (%) Identity length (%)</td><td> SEG Initial Terminal CRF db Match Homologous gene (%) (%</td><td> SEG Initial Terminal ORF 4b Match Homologous gene (%)</td><td> No. (ni) (ni) (ni) (hp) (</td></td></th<></td> | SEQ Initial NO. Terminal ORF (nt) db Match Homologous gene (sa.a.) Identity (%) Similarity (%) Matched (%) <th< td=""><td>SEQ (nt) Initial (nt) Terminal ORF (lb) db Match Homologous gene (lc) Identity (lc) Similarity (la) Matched (lg) NO. (nt) (nt) (nt) (lp) db Match (lc) (lc)<td>SEQ (nt) Initial (nt) Terminal (bp) db Match Homologous gene Identity (%) Similarity (%) Matched (%)
Matched (%) Matched (%)</td><td>SEQ Initial NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td><td>SEQ Initial NO. Terminal ORF (nt) db Match Homologous gene (%) Identity (%) Similarity length (%) Matched (%)</td><td>SEQ Initial NO. Terminal ORF (nt) db Match Homologous gene (%) Identity (%) Similarity length (%) Matched (%) Homologous gene (%) Identity (%) Similarity length (%) Identity</td><td>SEQ Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) (%)</td><td>SEQ
(nt) Initial
(nt) Terminal
(nt) ORF
(nt) db Match
(bp) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%) Matched
(%) Matched
(%) Matched
(%) Matched
(%) Identity
(%) Similarity
(%) Imagene
(%) Imagene</td><td>SEQ
(aa.) Initial
(nt) Terminal
(nt) ORF
(nt) db Match
(nt) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%) Matched
(%) Matched
(%) Matched
(%) Identity
(%) Similarity
(%) Matched
(%) Mat</td><td>SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) Image</td><td>SEQ
(a1) Initial
(IN) Terminal
(IN) ORF
(IN) db Match
(b) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Homologous gene
(%) Identity
(%) Matched
(%) Identity
(%) Identi</td><td>SECA (nt)ial NO. Terminal (nt) (pp) deb Match Homologous gene Identity (%) Similarity length (%) Identity length (%)</td><td> SEG Initial Terminal CRF db Match Homologous gene (%)
(%) (%</td><td> SEG Initial Terminal ORF 4b Match Homologous gene (%)</td><td> No. (ni) (ni) (ni) (hp) (</td></td></th<> | SEQ (nt) Initial (nt) Terminal ORF (lb) db Match Homologous gene (lc) Identity (lc) Similarity (la) Matched (lg) NO. (nt) (nt) (nt) (lp) db Match (lc) (nt) Initial (nt) Terminal (bp) db Match Homologous gene Identity (%) Similarity (%) Matched (%)</td> <td>SEQ Initial NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td> <td>SEQ Initial NO. Terminal ORF (nt) db Match Homologous gene (%) Identity (%) Similarity length (%) Matched (%)</td> <td>SEQ Initial NO. Terminal ORF (nt) db Match Homologous gene (%) Identity (%) Similarity length (%) Matched (%) Homologous gene (%) Identity (%) Similarity length (%) Identity</td> <td>SEQ Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) (%) (%) (%) (%) (%)
 (%) (%)</td> <td>SEQ
(nt) Initial
(nt) Terminal
(nt) ORF
(nt) db Match
(bp) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%) Matched
(%) Matched
(%) Matched
(%) Matched
(%) Identity
(%) Similarity
(%) Imagene
(%) Imagene</td> <td>SEQ
(aa.) Initial
(nt) Terminal
(nt) ORF
(nt) db Match
(nt) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%) Matched
(%) Matched
(%) Matched
(%) Identity
(%) Similarity
(%) Matched
(%) Mat</td> <td>SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) Image</td> <td>SEQ
(a1) Initial
(IN) Terminal
(IN) ORF
(IN) db Match
(b) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Homologous gene
(%) Identity
(%) Matched
(%) Identity
(%) Identi</td> <td>SECA (nt)ial NO. Terminal (nt) (pp) deb Match Homologous gene Identity (%) Similarity length (%) Identity length (%)</td> <td> SEG Initial Terminal CRF db Match Homologous gene (%) (%</td> <td> SEG Initial Terminal ORF 4b Match Homologous gene (%)</td> <td> No. (ni) (ni) (ni) (hp)
 (hp) (</td> | SEQ (nt) Initial (nt) Terminal (bp) db Match Homologous gene Identity (%) Similarity (%) Matched (%) | SEQ Initial NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) | SEQ Initial NO. Terminal ORF (nt) db Match Homologous gene (%) Identity (%) Similarity length (%) Matched (%) | SEQ Initial NO. Terminal ORF (nt) db Match Homologous gene (%) Identity (%) Similarity length (%) Matched (%) Homologous gene (%) Identity (%) Similarity length (%) Identity | SEQ Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) (%) | SEQ
(nt) Initial
(nt) Terminal
(nt) ORF
(nt) db Match
(bp) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%) Matched
(%) Matched
(%) Matched
(%) Matched
(%) Identity
(%) Similarity
(%) Imagene
(%) Imagene | SEQ
(aa.) Initial
(nt) Terminal
(nt) ORF
(nt) db Match
(nt) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Matched
(%) Matched
(%) Matched
(%) Matched
(%) Identity
(%) Similarity
(%) Matched
(%) Mat | SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) Image | SEQ
(a1) Initial
(IN) Terminal
(IN) ORF
(IN) db Match
(b) Homologous gene
(%) Identity
(%) Similarity
(%) Matched
(%) Homologous gene
(%) Identity
(%) Matched
(%) Identity
(%) Identi | SECA (nt)ial NO. Terminal (nt) (pp) deb Match Homologous gene Identity (%) Similarity length (%) Identity
length (%) Identity length (%) | SEG Initial Terminal CRF db Match Homologous gene (%) (% | SEG Initial Terminal ORF 4b Match Homologous gene (%) | No. (ni) (ni) (ni) (hp) (|

EP 1 108 790 A2

										\neg					\neg				1
5	Function	hypothetical protein	hypothetical protein (35kD protein)	regulator (DNA-binding protein)	competence damage induced proteins	phosphotidylglycerophosphate synthase	hypothetical protein	surface protein (Peumococcal surface protein A)			stage III sporulation protein E	hypothetical protein	hypothetical protein	hypothetical protein			guanosine pentaphosphate synthetase	30S ribosomal protein \$15	nucleoside hydrolase
15	Matched length (a.a.)	228	269	83	165	160	117	30		358	845	216	645	250			742	88	319
20	Similarity (%)	78.5	9.68	78.3	68.5	72.5	52.1	0.07		59.8	64.6	61.0	99.4	93.6			85.3	88.8	63.3
	Identity (%)	41.7	72.5	54.2	41.8	38.8	24.8	60.0		31.0	38.0	33.3	99.1	99.2			65.4	64.0	35.1
25 (panujiuo	s gene	serculosis	serculosis	serculosis	umoniae R6X	genes pgsA	na L	sumoniae		ပ်	38 spottlE	licolor A3(2)	glutamicum	glutamicum actofermentum)			ibioticus gpsl	Osc	
6 Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis	Mycobacterium tuberculosis H37Rv RV2744C	Mycobacterium tuberculosis H37Rv Rv2745c	Streptococcus pneumoniae R6X	Streptococcus pyogenes pgsA	Arabidopsis thaliana ATSP: T16118.20	Streptococcus pneumoniae DBL5 pspA		Escherichia coli terC	Bacillus subtilis 168 spollE	Streptomyces coelicolor A3(2) SC4G6.14	Corynebacterium glutamicum ATCC 13032 orf4	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 orf2			Streptomyces antibioticus gpsl	Bacillus subtilis rpsO	Leishmania major
35		∑		ΣI	!		44	8 4	\vdash	<u> </u>	1		-				- 57		Ħ
40	db Match	pir B60176	sp:35KD_MYCTU	pir:H70878	sp.CINA_STRPN	prf:2421334D	pir:T10688	gp:AF071810_1		orf 2119295D	SP.SP3E_BACSU		sp:YÖR4_CORGL	sp:YDAP_BRELA			prf:2217311A	pir.F69700	
	ORF (bp)		828	321	516	603	285	117	813	1107	2763	633	2154	750	669	264	2259	267	948
45	Terminal		2068556	2069616	2069997	2070519	2071599	2071740	2072878	2071799	2073294	2076392	2077122	2080387	2082813	2082105		2085436	
50	Initial	(111)	2069383	2069936	2070512	2071121	2071315	2071624	2072066				2079275	2081136	2082115	2082368		2085702	
	SEO		5650 5651	5652	5653		5655	5656	5557	900	5659	5660	5661	5662	5663	5664		5666	5667
55	SEO		2150	2152	2153				1976	_			2161	2162	2163	2164	2165	2166	2167

5	Function		tRNA pseudouridine synthase B	hypothetical protein	hypothetical protein	phosphoesterase	DNA damaged inducible protein f	hypothetical protein	rlbosome-binding factor A	translation initiation factor IF-2	hypothetical protein	n-utilization substance protein (transcriptional termination/antitermination factor)		hypothetical protein	peptide-binding protein	peptidetransport system permease	oligopeptide permease	peptidetransport system ABC- transporter ATP-binding protein
		bifunctio and FAL	tRNA ps	hypothe	hypothe	phospho	DNA da	hypothe	ribosom	translat	hypothe	n-utilization sul (transcriptional termination/ant		hypoth	peptide	peptide	oligope	peptide
15	Matched length (a.a.)	329	303	47	237	273	433	308	108	1103	83	352		165	534	337	292	552
20	Similarity (%)	79.0	61.7	73.0	62.5	68.9	78.8	70.8	70.4	62.9	66.3	71.0		65.5	60.9	69.4	69.2	81.3
	Identity (%)	56.2	32.7	65.0	42.2	46.9	51.0	36.7	32.4	37.7	44.6	42.3		34.6	25.3	37.7	38.4	57.6
25 (continued)	Homologous gene	ATCC 6872 ribF	168 truB	_	selicolor A3(2)	tuberculosis	tuberculosis din F	tuberculosis	168 rbfA	Stigmatella aurantiaca DW4 infB	oelicolor A3(2)	168 nusA		tuberculosis c	168 dppE	K12 dppB	spo0KC	tuberculosis c dppD
30 GE	Homolog	Corynebacterium ammoniagenes ATCC 6872 ribF	Bacillus subtilis 168 truB	Corynebacterium ammoniagenes	Streptomyces coelicolor A3(2) SC5A7.23	Mycobacterium tuberculosis H37Rv Rv2795c	Mycobacterium tuberculosis H37Rv Rv2836c dinF	Mycobacterium tuberculosis H37Rv Rv2837c	Bacillus subtilis 168 rbfA	Stigmatella aura	Streptomyces coelicolor A3(2) SC5H4.29	Bacillus subtilis 168 nusA	,	Mycobacterium tuberculosis H37Rv Rv2842c	Bacillus subtilis 168 dppE	Escherichia coli K12 dppB	Baciltus subtilis spo0KC	Mycobacterium tuberculosis H37Rv Rv3663c dppD
<i>35</i>	db Match	SP:RIBF_CORAM	sp:TRUB_BACSU	PIR:PC4007	gp:SC5A7_23	pir:B70885	pir:G70693	pir:H70693	SP. RBFA BACSU	sp:IF2_STIAU	gp:SC5H4_29	sp:NUSA_BACSU		pir:E70588	SDE BACSU	Sp.DPPB ECOLI	prf. 1709239C	pir.H70788
	ORF (bp)	1023 sp	891 SF	228 P	651 9	804 p	1305 p	966 b	447 S	~	336 g	966	1254	534 p	1602 s		6	1731 p
45	Terminal (nt)	9	2088863	2087954	2089218	2089861	2090751	2092051	2093055	2093712	2096844	2097380	2099815	2098412	2101841	2102946	2103973	2105703
50	Initial	+-	2087973		2089868	2090664	2092055	2093046	2093501	2096723	2097179	2098375	2098562	•	2100240			
	SEO	(a.a.) 5668	5669		5671	5672	5673	5674	5675	5676	5677	5678	5679		5681			
55	SEQ	(DNA) 2168	$\overline{}$		2171	2172	2173	2174	2175	2176	2177	2178	2179	2180	246	2182	2183	2184

					$-\tau$					1	1	- 1	•	1	į	l	1	۔ ا	- 1	- 1	- 1	
5	i i	Function	prolyl-tRNA synthetase	hypothetical protein	magnesium-chelatase subunit	magnesium-chelatase subunit	uroporphyrinogen III methyltransferase	hypothetical protein	hypothetical protein	hypothetical protein	glutathione reductase					methionine aminopeptidase	nenicillin binding protein	connect requision (two-component	system response regulator)	two-component system sensor histidine kinase	hypothetical membrane protein	
15	hed					342 r	237	488	151	338	466					252	200	3	216	424	360	
	2	(a.a)	578	243	37	34	53	4		Ж	4	<u> </u>	_	╀-	-	1,	1 4	<u>'</u>	-	-		
20	Virginity ((%)	84.6	65.0	60.7	9.69	73.8	68.7	62.3	65.7	76.6					75.0	0.0.	20.0	72.2	56.8	58.1	
	_	(%)	67.0	39.5	32.4	46.5	49.0	41.2	35.1	37.6	53.0					, ,	47.2	57.3	44.0	29.5	24.4	
25 (Dancin		gene	rculosis S	olor A3(2)	oides ATCC	bchl	eudenreichii	ens NCIB	color A3(2)	erculosis	ia AC1100						2 map	ligerus pcbK	iphlheriae	liphtheriae	durans	
30 Solder	lable 1	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2845c proS	Streptomyces coelicolor A3(2) SCC30.05	Rhodobacter sphaeroides ATCC	Heliohacillus mobilis bchl	Propionibacterium freudenreichii	Clostridium perfringens NCIB	Streptomyces coelicolor A3(2)	Mycobacterium tuberculosis	Burkholderia cepacia AC1100	200					Escherichia coli K12 map	Streptomyces clavuligerus pcbR	Corynebacterium diphtheriae chrA	Corynebacterium diphtheriae chrS	Deinococcus radiodurans DRA0279	
35	-			SS	+	÷				1.24	_	十			1	1	ECOLI				2	
40		db Match	sp:SYP_MYCTU	gp:SCC30_5	Sp.BCHD_RHOSH	AACAACAACA	pri.2303402.m	sp:YPLC_CLOPE	qp:SC5H1_10								sp:AMPM_EC	prf.2224268A	prf. 2518330B	prf.2518330A	gp: AE001863_70	_
		ORF (bp)	1764	735	759	1	750	1422	006	1014	1395		942	474	357	729	789	1866	630	1149	957	_
45		Terminal (nt)	2105801	2108386	2108389		2109155	2112659	2112717	2116774	2118310		2117015	2119080	2119495	2120356	2120359	2121296	2123219	2123848	2126045	
50		Initial (nt)	2107564	_!			2110255		2113616	2115761			2117956	2118607	2119139	2119628	2121147				5702 : 2125089	
	:	SEQ	5685					2000 2690		5607	2000	2092	5694	5695	5696	5697	5698					
55			(DNA)			$\overline{}$		2189	2130	2107	2612	2193	2194	2195	2196	2197	2198	2199	2200	2201	2002	1

5		Function	ABC transporter		hypothetical pratein (gcpE protein)			hypothetical membrane protein	polypeptides can be used as vaccines against Chlamydia trachomatis	1-deoxy-D-xylulose-5-phosphate reductoisomerase					ABC transporter ATP-binding protein	pyruvate formatc-lyase 1 activating enzyme	hypothetical membrane protein	phosphatidate cytidylyltransferase	ribosome recycling factor	uridylate kinase		elongation factor Ts	30S ribosomal protein S2
15	Matched	length (a.a.)	225		359			405	147	312					245	356	94	294	185	109		280	254
20		Similarity (%)	71.1		73.8	2		73.6	43.0	42.0					75.1	78.0	74.5	56.5	84.3	43.1		76.8	83.5
		Identity (%)	37.3		44.2	3.		43.0	36.0	22.8					37.1	66.0	41.5	33.3	47.0	28.4		49.6	54.7
25 G	2							sis	-						SB8	osis	osis	s S		sa pyrH		r A3(2)	
30 4 oder	I anie	Homologous gene	Oscillus subtilis 168 WIO		0.55	Escherichia coil N 12 gcpc		Mycobacterium tuberculosis H37Rv Rv2869c	Chlamydia trachomatis	Escherichia coli K12 dxr					Thermotoga maritima MSB8 TM0793	Mycobacterium tuberculosis H37Rv	Mycobacterium tuberculosis H37Rv Rv3760	Pseudomonas aeruginosa ATCC 15692 cdsA	Bacillus subtilis 168 frr	Pseudomonas aeruginosa pyrH		Streptomyces coelicolor A3(2) SC2E1.42 tsf	Bacillus subtilis rpsB
35					十	ECOLI				İ					İ	CTU		SEAE	CSU	o		1	
40		db Match	0440040	pri.2420410P		sp:GCPE_EC		pir:G70886	GSP:Y37145	Sp.DXR ECOLI					pir:B72334	sp:YS80_MYCTU	pir.A70801	sp:CDSA_PSEAE	SO'RRF BACSU	prf:2510355C	-	sp.EFTS_STRCO	pir.A69699
		ORF (bp)		069		1134	612	1212	645	1176	?	441	480	1578	855	1098	258	855	555	729	861	925	816
45		Terminal (nt)		2126753	2126926	2127350	2129461	2128669	2130950	2129903	2123303	2131762	2131247	2131825	2133406	2134454	2136141	2136235	21372RG	2137936	2139854	2139003	2140071
50		fnitial (nt)	- ‡		2127087	2128483	2128850	2129880	2130306	9707070	0/0/6/2	2131322	2131726	-		2135551	2135884	2137089	2127840				5721 2140886
		SEO.	1.	5703	5704	5705	5706	5707	5708		60/c	5710	5711		57.13	5714	5715	5716			_		5721
55			-	2203	2204		2206		2208	000	6022	2210	2211	2212	2213	2214	2215	2216	1	22.5	22.10	2220	2221

EP 1 108 790 A2

120 Similarity Matched (%) (%) (9%) (9%) (9%) (9%) (9%) (9%) (site-specific recombinase	al protein	Mg(2+) chelatase family protein	tein	u.				_	ein (19				thiamine biosynthetic enzyme thiS (thiG1) protein	thiamine biosynthetic enzyme thiG protein	molybdopterin biosynthesis protein
120 Similarity Matched (%) (%) (9%) (9%) (9%) (9%) (9%) (9%) (-specific	TO 1	<u>a</u>	pro	prote	E		idase	protei	and prof	nosphate	horylase	tase	osynthetic tein	iosynthetic	erin biosyr
1 Identity Similarity Matche (%) (%) (a.a.) (a.a.) (46.0 58.0 120	site	hypothetical protein	Mg(2+) chel	hypothetical protein	hypothetical protein	ribonuclease HII		signal peptidase	Fe-regulated protein	60 inhocomal protein 19	thismine phosphate	pyrophosphorylase	oxidoreductase	thiamine biosyr (thIG1) protein	thiamine bi protein	molybdopt
1 Identity (%) (%) (46.0	297	395	504	119	101	190		285	323		=	225	376	62	251	437
25	68.7	86.8	75.8	72.3	96.0	69.5		61.1	59 1	3	2.00	6.09	64.1	74.2	76.9	56.8
_	40.1	39.8	46.6	40.3	68.3	42.6		32.3	25.4		70.3	28.4	34.0	37.1	48.2	30.2
⊕ ≒ u		ulosis	ulosis	ulosis	ulosis	ae Rd		; TK21	us sirA		philus rpis	hiE	lor A3(2)	this	thiG	- Axr
Table 1 (continued) Homologous gene Mycobacterium tuberculosis H37Rv Rv2891	Proteus mirabilis xerD	Mycobacterlum tuberculosis H37Rv Rv2896c	Mycobacterium tuberculosis H37Rv Rv2897c	Mycobacterium tuberculosis H37Rv Rv2898c	Mycobacterium tuberculosis H37Rv Rv2901c	Haemophilus influenzae Rd H11059 rnhB		Streptomyces lividans TK21 sipY	Staphylococcus aureus sirA		Bacillus stearothermophilus rplS	Bacillus subtilis 168 thiE	Streptomyces coelicolor A3(2) SC6E10.01	Escherichia coli K12 thiS	Escherichia coli K12 thiG	Emericella nidulans cnxF
35		2	sp:YX28_MYCTU	sp:YX29_MYCTU	sp:YT01_MYCTU	sp:RNH2_HAEIN		prf.2514288H			sp:RL19_BACST	sp:THIE_BACSU	gp:SC6E10_1	sp:THIS_ECOLI	SP.THIG_ECOLI	prf.2417383A
40	prf.2417318A	sp:YX2		sp:YX2	sp:YT0	sp:RN		prf.251	prf.2510361A		sp:RL1	sp:THI				prf.24
ORF (bp)	924	. 0	1521	366	303	627	792	786	936	213	339	663	1080	195	780	1134
Terminal (nt) 2141760	2141763	2142885	2144066	2145576	2146264	2146566	2148022	2147261	2149166	2149359	2149634	2150997	2152118	2152329	2153113	2154191
(nt)	2142686	2144066	2145586	2145941	2146566	2147192	2147231	2148046	2148231	2149571	2149972	2150335	2151039	2152135	5737 2152334	5738 2153058
SEQ NO. (aa.)	12	1 0	0	(3	,	1	T		1,,,							
SEQ NO. (DNA)	5723 214		5725 2	5726 2	5727	5728	5729		5731	5732	5733	5734	2235 5735			

5
10
15
20
25
30
35
40
45
50

_						 -							•									
	Function	transcriptional accessory protein	sporulation-specific degradation regulator protein	dicarboxylase translocator	2-oxoglutarate/malate translocator	3-carboxy-cis, cis-muconate cycloisomerase				tRNA (guanine-N1)- methyltransferase	hypothetical protein	16S rRNA processing protein	hypothetical protein	30S ribosomal protein S16	inversin	ABC transporter	ABC transporter	signal recognition particle protein				cell division protein
	Matched length (a.a.)	776	334	456	92	350				273	210	172	69	83	196	256	318	559				505
	Similarity (%)	78.7	65.3	78.3	80.0	66.3				64.8	57.6	72.1	66.7	79.5	61.7	69.1	63.8	78.2				66.1
ļ	Identity (%)	56.6	27.0	45.8	40.0	39.1				34.8	30.5	52.3	29.0	47.0	32.1	26.6	35.5	58.7				37.0
Table 1 (continued)	Homologous gene	Bordetella pertussis TOHAMA I tex	Bacillus subtilis 168 degA	Chlamydophila pneumoniae CWL029 ybhl	Spinacia oleracea chloroplast	Pseudomonas putida pcaB				Escherichia coli K12 trmD	Streptomyces coelicolor A3(2) SCF81.27	Mycobacterium leprae MLCB250.34. rimM	Helicobacter pylori J99 jhp0839	Bacillus subtilis 168 rpsP	Mus musculus inv	Streptococcus agalactiae cylB	Pyrococcus horikoshii OT3 mtrA	Bacillus subtilis 168 ffh				Escherichia coli K12 ftsY
	db Match	sp.TEX_BORPE	pir:A36940	pir:H72105	prf:2108268A	sp.PCAB_PSEPU				sp:TRMD_ECOLI	gp:SCF81_27	SP. RIMM_MYCLE	pir:B71881	pir:C47154	pir.T14151	prf:2512328G	prf:2220349C	sp:SR54_BACSU				0 sp:FTSY_ECOLI
	ORF (bp)	2274	975	1428	219	1251	66	393	069	819	648	513	348	495	929	867	876	1641	633	417	699	1530
	Terminal (nt)	2154460	2156747	2157754	2159019	2159287	2160768	2161111	2161507	2162196	2163745	2163748	2164737	2164815	2166098	2166124	2166990	2167944		2172131	2172877	2175288 2173759
	Initial (nt)	2156733	2157721	2159181	2159237	2160537	2160670	2161503	2162196	2163014	2163098	2164260	2164390	2165309	2165523	2166990	_	2169584	2170426	2171715	2172209	2175288
	SEQ NO.	5739	5740	5741	5742	5743	5744	5745	5746	5747	5748	5749	5750	5751	5752	5753	5754	5755	5756	5757	5758	5759
	SEQ NO.		2240	2241	2242	2243	2244	2245	2246		2248	2249	2250	_	2252	2253	-	2255	2256	2257	2258	2259

	ſ	$\overline{}$	Т	\top		T			T			T									T	
5		<u> </u>			precursor		ation protein			tor	ine protein			protein	-DNA					į		
10		Function			glucan 1,4-alpha-glucosidase o glucoamylase S1/S2 precursor		chromosome segregation protein	acylphosphatase		transcriptional regulator	hypothetical membrane protein			cation efflux system protein	formamidopyrimidine-DNA glycosylase	ribonuclease III	hypothetical protein	hypothetical protein	transport protein	ABC transporter	hypothetical protein	
15		Matched length (a.a.)			1144		1206	92		305	257			188	285	221	176	238	559	541	388	
20		Similarity (%)			46.2		72.6	73.9		0.09	73.5			9.9/	66.7	76.5	62.5	76.9	55.6	58.8	62.6	
	İ	Identity (%)			22.4		48.3	51.1		23.9	39.3			46.8	36.1	40.3	35.8	50.0	28.3	26.6	35.3	
25	(g)				0		si	is						d	A or		sis	sis			(3(5)	
30	Table 1 (confinued)	Homologous gene			Saccharomyces cerevisiae S288C YIR019C sta1		Mycobacterium tuberculosis H37Rv Rv2922c smc	Mycobacterium tuberculosis H37Rv RV2922.1C		Escherichia coli K12 yfeR	Mycobacterium leprae MLCL581.28c			Dichelobacter nodosus gep	Escherichia coli K12 mutM or fpg	Bacillus subtilis 168 rncS	Mycobacterium tuberculosis H37Rv Rv2926c	Mycobacterium tuberculosis H37Rv Rv2927c	Streptomyces verticillus	Escherichia coli K12 cydC	Streptomyces coelicolor A3(2) SC9C7.02	
35					<u> </u>				_		ΣΣ			6		B			S			
40		db Match			sp:AMYH_YEAST		sp:Y06B_MYCTU	sp:ACYP_MYCTU		SP.YFER_ECOLI	pir:S72748			gp. DNINTREG_	sp:FPG_ECOLI	pir:869693	sp:Y06F_MYCTU	sp:Y06G_MYCTU	prf:2104260G	SP.CYDC_ECOLI	gp:SC9C7_2	
		ORF (bp)	159	702	3393	963	3465	282	1854	 -	831	183	447	1	858	741	534	789	1644	1530	1122	441
45		Terminal (nt)	2175888	2177103	2176110	2181880	2179628	2183110	2183405	2185351	2187129	2187342	2187233	2187692	2188313	2189166	2189906	2190540	2193165	2194694	2198004	2198007
50		Initial (nt)	2176046	!		2180918	2183092	2183391	2185258			2187160				2189906		2191328	2191522			2198447
		SEQ NO.				5763	5764	5765	5766			5769				5773		5775	5776			5779
55		SEO	2260	2261	2262	2263	2264	2265	2266	2267	2268	2269	2270	2271	2272	2273	2274	2275	2276	2277	2278	2279

5		Function	ytein		ort protein		oephorvlase /	phorylase	otein	diacylglyceryl	indole-3-glycerol-phosphate synthase / anthranilate synthase		hypothetical membrane protein	phosphoribosyl-AMP cyclohydrolase		hosphate	phosphoribosylformimino-5- aminoimidazole carboxamide ribotide isomerase	glutamine amidotransferase	chloramphenicol resistance protein or transmembrane transport protein
10		Ē	hypothetical protein	peptidase	sucrose transport protein		/ eselvious on or proportion	glycogen phosphorylase	hypothetical protein	prolipoprotein diacylglyceryl transferase	indole-3-glycerol-phosphate synthase / anthranilate synth	component II	hypothetical m	phosphoribosy	cyclase	inositol monophosphate phosphatase	phosphoribosylformimino-5- aminoimidazole carboxamid ribotide isomerase	glutamine ami	chloramphenic or transmemb
	Matched	length (a a)	405	353	133			814	295	264	169		228	88	258	241	245	210	402
20		Similarity (%)	43.7	64.3	51.9			67.4	66.4	65.5	62.1		58.8	79.8	97.7	94.0	97.6	92.4	54.0
		Identity (%)	21.0	32.9	27.1			36.1	33.9	31.4	29.6		29.4	52.8	97.3	94.0	95.9	86.7	25.6
25			88	႘	5			alP		DA 485			osis	s ATCC	iicum	icum	nicum	icum	6 cmlR
So Salar Table 1 (continued)	1900	Homologous gene	Thermotoga maritima MSB8 TM0896	Campylobacter jejuni ATCC 43431 hipO	Arabidopsis thaliana SUC1			Thermococcus litoralis malP	Bacillus subtilis 168 yfiE	Staphylococcus aureus FDA 485	(C)	Emericella riluulalis upo	Mycobacterium tuberculosis H37Rv Rv1610	Rhodobacter sphaeroides ATCC 17023 hisl	Corynebacterium glutamicum AS019 hisF	Corynebacterium glutamicum AS019 impA	Corynebacterium glutamicum AS019 hisA	Corynebacterium glutamicum	Streptomyces lividans 66 cmIR
35			FF		¥			<u> </u>	T	1	T :		≥I			0 4			1_
40		db Match	pir A72322	sp:HIPO_CAMJE	pir:S38197			prf.2513410A	SP. YEIF BACSU	sp:LGT_STAAU		sp:TRPG_EMENI	pir.H70556	Sp:HIS3_RHOSH	sp:HIS6_CORG	prf:2419176B	gp.AF051846_1	gp.AF060558_1	36 sp:CMLR_STRLI
		ORF (bp)	1284	1263	336	135	276	2550	6	948		80	657	354	774	825	738	633	126
45		Terminal (nt)	2199758	2201070	2201073	2201450	2201594	2201992	1034000	2207302		2208367	2209232	2209920	2210273	2211051		2212641	
50		Initial (nt)	2198475	2199808	2201408	2201584	2201869	2204541	0000	2203493		2209167	2209888	2210273	2211046	2211875		2213273	
		S S S	5780	5781						5787		5788	5789	5790	5791	5792		5794	
55			2280	2281			_			2286		2288	2289	2290	2291	2292	2293	2294	2295

5
10
15
20
25
30
35
40
45
50

_																				$\overline{}$
	Function		imidazoleglycerol-phosphate dehydratase	histidinol-phosphate aminotransferase	histidinol dehydrogenase	serine-rich secreted protein			histidine secretory acid phosphatase	tet repressor protein	glycogen debranching enzyme	hypothetical protein	oxidoreductase	myo-inositol 2-dehydrogenase	galactitol utilization operon repressor	ferrichrome transport ATP-binding protein or ferrichrome ABC transporter	hemin permease	iron-binding protein	iron-binding protein	hypothetical protein
	Matched length (a.a.)		198	362	439	342			211	204	722	258	268	343	329	246	332	103	182	113
	Similarity (%)		81.8	79.3	85.7	54.4			59.7	8.09	75.5	76.0	55.2	6.09	64.4	68.3	71.1	68.0	9.79	73.5
	Identily (%)		52.5	57.2	63.8	27.2			29.4	28.9	47.4	50.0	29.9	35.0	30.4	32.9	36.8	30.1	34.6	38.1
Table 1 (continued)	Homologous gene		Streptomyces coelicolor A3(2) hisB	Streptomyces coelicolor A3(2) hisC	Mycobacterium smegmatis ATCC 607 hisD	Schizosaccharomyces pombe SPBC215.13			Leishmania donovani SAcP-1	Escherichia coli plasmid RP1 tetR	Sulfolobus acidocaldarius treX	Mycobacterium tuberculosis H37Rv Rv2622	Streptomyces coelicolor A3(2) SC2G5.27c gip	Sinorhizobium meliloti idhA	Escherichia coli K12 galR	Bacillus subtilis 168 fhuC	Vibrio cholerae hutC	Bacillus subtilis 168 yvrC	Bacillus subtilis 168 yvrC	Escherichia coli K12 ytfH
	db Match		sp:HIS7_STRCO	sp:HISB_STRCO	sp:HISX_MYCSM	gp:SPBC215_13			prf:2321269A	pir.RPECR1	prf.2307203B		gp:SC2G5_27	prf.2503399A	Sp.GALR_ECOLI	sp:FHUC_BACSU	prf.2423441E	pir.G70046	pir.G70046	sp:YTFH_ECOLI
	ORF (bp)	225	909	1098	1326	1200	651	309	642	561	2508	801	774	101	966	798	1038	348	594	441
	Terminal (nt)	2215639	2215869	2216494	2217600	2220358	2220459	2221919	2221187	2222518	2225035	2225949	2225990	2226769	2228901	2229099	2229900	2230947	-	1
	Initial (nt)	2215863	2216474	2217591	2218925	2219159	2221109	5802 2221611	5803 2221828	2221958	222228		2226763	2227779			2230937	2231294	2231932	
	SEQ NO. (a a.)	5796	5797	5798	5799	5800	5801	5802	5803	5804	5805	5806	5807	5808	5809		5811	5812	5813	5814
	SEQ NO.	2296		2298	2299	2300	2301	2302		2304	2305	2306	2307	2308	2309	2310	2311	2312	2313	2314

5	Function	ONA polymerase III epsilon chain		maltooligosyl trehalose synthase	hypothetical protein					alkanal monooxygenase alpha chain	hypothetical protein		maltooligosyltrehalose trehalohydrolase	hypothetical protein	threonine dehydratase			Corynebacterium glutamicum AS019	DNA polymerase III	chloramphenicol sensitive protein	histidine-binding protein precursor	hypothetical membrane protein
15	Matched length (a.a)	355		814	322					375	120		568	214	436			415	1183	279	149	198
20	Similarity (%)	50.1		68.6	52.8					54.4	79.2		72.4	72.4	99.3			49.6	80.5	73.8	55.7	64.7
	Identity (%)	23.4		42.0	27.6					20.5	58.3		46.3	36.5	99.3	!!		22.7	53.3	37.6	21.5	22.7
25 (panuituo	gene	color A3(2)		6 treY	urans					lescens	color A3(2)		6 treZ		utamicum			is metE	color A3(2)	2 rarD	ni DZ72 hisJ	idus AF2388
& Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SCI8.12		Arthrobacter sp. Q36 treY	Deinococcus radiodurans					Photorhabdus luminescens ATCC 29999 luxA	Streptomyces coelicolor A3(2) SC7H2.05		Arthrobacter sp. Q36 treZ	Bacillus subtilis 168	Corynebacterium glutamicum ATCC 13032 ilvA			Catharanthus roseus metE	Streptomyces coelicolor A3(2) dnaE	Escherichia coli K12 rarD	Campylobacter jejuni DZ72 hisJ	Archaeoglobus fulgidus AF2388
35		0.0		0	4								1					J				
40	db Match	gp:SCIB_12		pir.S65769	gp:AE002006_					sp:LXA1_PHOLU	gp:SC7H2_5		pir:S65770	sp:YVYE_BACSU	sp:THD1_CORGL			pir:S57636	prf 2508371A	Sp. RARD_ECOLI	sp:HISJ_CAMJE	pir.D69548
	ORF (bp)	1143	909	2433	1023	399	198	189	1056	1044	378	231	1785	651	1308	202	156	1203	3582	840	468	918
45	Terminal (nt)	2234070	2234763	2237284	2238353	2238694	2239845	2240058	2239508	2241724	2241738	2242129	2244819	2242393	2244864	2246892	2246295	2247006	2248358	2252856	2253659	2254642
50	Initial (nt)	2232928	2234158	2234852	2237331	2239092	2240042	2240246	2240563	2240681	2242115	2242359	2243035	2243043	2246171	2246386	2246450	2248208	2251939	2252017	2253192	2253725
	SEQ NO.	- -	5816	5817	5818	5819	5820	5821	5822	5823	5824	5825	5826	5827	5828	5829	5830	5831	5832	5833		5835
55	SEQ NO.	2315	2316	2317	2318	2319	2320	2321	2322	2323	2324	2325	2326	2327	2328	2329	2330	2331	2332	2333	2334	2335

EP 1 108 790 A2

5		Function	short chain dehydrogenase or general stress protein	slate (DAP) se	thase		ribosomal large subunit pseudouridine synthase D	lipoprotein signal peptidase		oleandomycin resistance protein		protein	ase	DNA-damage-inducible protein P	hypothetical membrane profein	al regulator		protein	isoleucyl-tRNA synthetase		
,,			short chain dehydroge general stress protein	diaminopimelate (DAP) decarboxylase	cysteine synthase		ribosomal large subunit pseudouridine synthase	lipoprotein s		oleandomyc		hypothetical protein	L-asparaginase	DNA-damag	hypothetical	transcriptional regulator		hypothetical protein	isoleucyl-tR		
15		Matched length (a.a.)	280	445	314		326	154		550		158	321	371	286	334		212	1066		
20		Similarity (%)	80.0	47.6	64.3		61.0	61.7		64.0		57.6	62.0	60.7	61.5	73.1		67.0	65.4		
		Identity (%)	48.2	22.9	32.8		36.5	33.8		36.4		36.7	31.2	31.8	31.5	44.3		42.0	38.5		
25	intinued)	gene	ydaD	ginosa lysA	us CH34		2 rluD	escens NCIB		ioticus oleB		ropolis orf17	is	2 dinP	2 ybiF	color A3(2)		color A3(2)	revisiae S1		
	Table 1 (continued)	Homologous gene	Bacillus subtilis 168 ydaD	Pseudomonas aeruginosa lysA	Alcaligenes eutrophus CH34 cysM		Escherichia coli K12 rluD	Pseudomonas fluorescens NCIB 10586 IspA		Streptomyces antibioticus oleB		Rhodococcus erythropolis orf17	Bacillus licheniformis	Escherichia coli K12 dinP	Escherichia coli K12 ybiF	Streptomyces coelicolor A3(2) SCF51.06		Streptomyces coelicolor A3(2) SCF51.05	Saccharomyces cerevisiae A364A YBL076C ILS1		
<i>35</i>		db Match	sp:GS39_BACSU	sp.DCDA_PSEAE	sp.CYSM_ALCEU		sp:RLUD_ECOLI	sp:LSPA_PSEFL		pir.S67863		prf:2422382P	Sp:ASPG_BACLI	Sp.DINP_ECOLI	sp:YBIF_ECOLI	gp:SCF51_6		gp:SCF51_5	sp:SYIC_YEAST		
		ORF (bp)	978	1287	951	579	930	534	1002	1650	303	009	975	1401	858	1002	132	627	3162	216	1095
45		Terminal (nt)	2254683	2255738	2258362	2259421	2260002	2260934	2262689	2264499	2265298	2264509	2266394	2266897	2268388	2269260	2270435	2270258	2270988	2274473	2274767
50		Initial (nt)	225558	2257024	2259312	2259999	2260931	2261467	2261688	2262850	2264996	2265108	2265420	5847 2268297	2269245	2270261	2270304	2270884	2274149	2274688	2275861
		SEQ NO.	5836	5837	5838	5839	5840	5841	5842	5843	5844	5845	5846	5847	5848	5849	5850	5851	5852	5853	5854
55		SEQ NO.	2336	2337	2338	2339	2340	2341	2342	2343	2344	2345	2346	2347	2348	2349	2350	2351	2352	2353	2354

5
10
15
20
25
30
35
40
45
50

	Function	hypothetical membrane protein	hypothetical protein (putative YAK 1 protein)	hypothetical protein	hypothetical protein	hypothetical protein	cell division protein	cell division initiation protein or cell division protein	UDP-N-acetylmuramatealanine ligase	UDP-N-acetylglucosamine-N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine pyrophosphoryl-undecaprenol N-acetylglucosamine	cell division protein	UDP-N-acetylmuramoylalanine-D- glutamate ligase			phospho-n-acetylmuramoyl- pentapeptide	UDP-N-acetylmuramoylalanyl-D- glutamyl-2,6-diaminopimelate-D- alanyl-D-alanyl ligase
	Matched length (a.a.)	82	152	221	246	117	442	222	486	372	490	110			365	494
	Similarity (%)	73.2	99.3	9.66	100.0	51.0	98.6	100.0	9.66	99.5	9.66	99.1			63.8	64.2
	Identity (%)	46.3	99.3	97.7	99.2	39.0	98.6	9.66	99.4	98.9	99.4	99.1		i	38.6	35.0
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2146c	Brevibacterium lactofermentum orf6	Corynebacterium glutamicum	Brevibacterium lactofermentum yfih	Mus musculus P4(21)n	Brevibacterium lactofermentum ftsZ	Corynebacterium glutamicum ftsQ	Corynebacterium glutamicum murC	Brevibacterium lactofermentum ATCC 13869 murG	Brevibacterium lactofermentum ATCC 13869 ftsW	Brevibacterium lactofermentum ATCC 13869 murD			Escherichia coli K12 mraY	Escherichia coli K12 murF
	db Match	pir:F70578	gp:BLFTSZ_6	sp:YFZ1_CORGL	pri:2420425C	GP: AB028868_1	sp.FTSZ_BRELA	gsp:W70502	gp:AB015023_1	gp:BLA242646_3	gp:BLA242646_2	gp:BL/\242646_1			Sp:MRAY_ECOLI	sp:MURF_ECOLI
	ORF (bp)	285	456	663	738	486	1326	999	1458	1116	1650	468	384	333	1098	1542
	Terminal (nt)	2276353	2276881	2277416	2278122	2279640	2278890	2280470	2281166	2282661	2283782	2285437	2286655	2286831	2286852	2287969
	Initial (nt)	2276637	2277336	2278078	2278859	2279155	2280215	2281135	2282623	2283776	2285431	2285904	2286272	<u>:</u>		2289510
	SEQ NO.		5856	5857	5858	5859		5861	5862	5863	5864	5865	5866	5867	5868	5869
	SEQ.	2355	2356	2357		2359		2361	2362	2363	2364	2365	2366	2367	2368	2369

EP 1 108 790 A2

						_				\neg						i	- 1	- 1	- 1
5	Function		UDP-N-acetylmuramoylalanyr-D- glutamyl-2,6-diaminopimelate-D- alanyl-D-alanyl ligase	penicillin binding protein	penicillin-binding pratein		hypothetical protein	hypothetical membrane protein	hypothetical protein		hypothetical protein	5,10-methylenetetrahydrofolate reductase	dimethylallyltranstransferase	hypothetical membrane protein		hypothetical protein	eukaryotic-type protain kinase		hypothetical membrane protein
15	Matched	(a.a.)	491		650		323	143	137		190	303	329	484		125	684		411
20	Similarity	(%)	67.6	100.0	58.8		79.3	88.8	69.3		65.3	70.6	62.0	9.69		68.8	62.4		58.4
	Identity	(%)	37.7	100.0	28.2		55.1	72.0	39.4		36.3	42.6	30.1	35.7		43.2	34.2		30.7
30 F	(popularion) i argel	Homologous gene	Bacillus subtilis 168 murE	Brevibacterium lactofermentum ORF2 pbp	Pseudomonas aeruginosa pbpB		Mycobacterium tuberculosis H37Rv Rv2165c	Mycobacterium leprae MLCB268.11c	Mycobacterium tuberculosis H37Rv Rv2169c		Mycobacterium leprae MLCB268.13	Streptomyces lividans 1326 metF	Myxococcus xanthus DK1050 ORF1	Mycobacterium leprae MLCB268.17		Mycobacterium tuberculosis H37Rv Rv2175c	Streptomyces coelicolor A3(2) pkaF		Mycobacterium leprae MLCB268.23
<i>35</i>		db Match	sp:MURE_BACSU B:	GSP:Y33117 O	pir:S54872 P		Pir:A70581	gp:MLCB268_11 N	pir.C70935		gp:MLCB268_13 N	SP. METF_STRLI	pir:S32168	gp:MLCB268_16		pir.A70936	gp:AB019394_1		gp:MLCB268_21
	1	ORF (bp)	1551	225	1953	795	1011	429	387	423	573	978	1113	1470	507	369	2148	651	1236
45		Terminal (nt)	2289523	2290973	2291212	2293323	2294117	2295376	2296512	2297231	2298438	2298451	2300636	2302175	2302685		2304980	2303040	<u> </u>
50	-	Initial (nt)	2291073	2291197	2293164	2294117	2295127	2295804	2296898	2207653		2299428	2299524	2300706	2302179		2302833	2303690	
	0	NO.		5871	5872	1-		5875	5876	5077	5878	5879	5880	5881	5882	5883	5884	5885	
55		NO.	 -	2371	2372	-		2375	2376	\rightarrow	2378	2379	2380	2381	2382	2383	2384	2385	2386

Table 1 (Continued) Table 2 (Continued) Table 3 (Continued) Table 3 (Continued) Table 3 (Continued) Table 3 (Continued) Table 3 (Continued) Table 3 (Continued) Table 3 (Continued) Table 3 (Continued) Table 3 (Continued) Table 3 (Continued) Table 3 (Continued) Table 3 (Continued) Table 3 (Continued) Table 3 (Tabl
SEC Initial Certification Certificatio
SEC Initial Terminal ORF db Match Homologous gene (%)
SEG Initial Terminal ORF db Match Homologous gene (%) (nt) (ht) (bp) prr.(3/0936 H37Rv Rv2181 (%) 5888 2300082 2307621 1308 prr.(3/0936 H37Rv Rv2181 (%) 5889 2300082 2307621 1308 prr.(3/0936 H37Rv Rv2181 (%) 5889 2300083 2312252 2418 prr.(3/0936 H37Rv Rv2181 (Br.90bacterium luberculosis 58.4 5890 2303083 2312252 2418 prr.(3/0936 H37Rv Rv2181 (Br.90bacterium luberculosis 35.1 5890 2313808 1449 sp. (CSP1_CORGL (Br.90bacterium glutamicum 100.0 5892 2313813 2314036 204 (Br.90bacterium glutamicum 100.0 5893 2314032 231878 735 gp. AF096280_2 Conynebacterium glutamicum 100.0 5894 2315423 2314036 627 sp. P60_LISIV Listeria ivanovi iap 26.4 5895 2318775 2318804 1047 sp. P60_LISIV Listeria ivanovi iap 26.4 5896 2323073 2321472 1602 pr.2503462K Heliobacilius mobilis petB 34.3 5899 2323073 2321472 1602 pr.2503462K Heliobacilius mobilis petB 37.9 5800 2323073 2321472 1602 pr.2503462K Heliobacilius mobilis petB 37.9 5800 2323073 2321472 1602 pr.2503462K Heliobacilius mobilis petB 37.9 5800 2323073 2321472 1602 pr.2503462K Heliobacilius mobilis petB 37.9 5800 2323073 2321472 1602 pr.2503462K Heliobacilius mobilis petB 37.9 5800 2323073 2321472 1602 pr.2503462K Heliobacilius mobilis petB 37.9 5800 2323073 2321472 1602 pr.2503462K 135001000000000000000000000000000000000
SEG Initial Terminal ORF db Match Homologous gene (%) (nt) (ht) (bp) prr.(3/0936 H37Rv Rv2181 (%) 5888 2300082 2307621 1308 prr.(3/0936 H37Rv Rv2181 (%) 5889 2300082 2307621 1308 prr.(3/0936 H37Rv Rv2181 (%) 5889 2300083 2312252 2418 prr.(3/0936 H37Rv Rv2181 (Br.90bacterium luberculosis 58.4 5890 2303083 2312252 2418 prr.(3/0936 H37Rv Rv2181 (Br.90bacterium luberculosis 35.1 5890 2313808 1449 sp. (CSP1_CORGL (Br.90bacterium glutamicum 100.0 5892 2313813 2314036 204 (Br.90bacterium glutamicum 100.0 5893 2314032 231878 735 gp. AF096280_2 Conynebacterium glutamicum 100.0 5894 2315423 2314036 627 sp. P60_LISIV Listeria ivanovi iap 26.4 5895 2318775 2318804 1047 sp. P60_LISIV Listeria ivanovi iap 26.4 5896 2323073 2321472 1602 pr.2503462K Heliobacilius mobilis petB 34.3 5899 2323073 2321472 1602 pr.2503462K Heliobacilius mobilis petB 37.9 5800 2323073 2321472 1602 pr.2503462K Heliobacilius mobilis petB 37.9 5800 2323073 2321472 1602 pr.2503462K Heliobacilius mobilis petB 37.9 5800 2323073 2321472 1602 pr.2503462K Heliobacilius mobilis petB 37.9 5800 2323073 2321472 1602 pr.2503462K Heliobacilius mobilis petB 37.9 5800 2323073 2321472 1602 pr.2503462K Heliobacilius mobilis petB 37.9 5800 2323073 2321472 1602 pr.2503462K 135001000000000000000000000000000000000
SEQ
SEQ
SEQ
SEQ Initial Terminal ORF NO. (nt) (nt) (bp) (a.a.) (nt) (nt) (bp) (a.a.) (nt) (nt) (bp) (a.a.) (nt) (nt) (bp) (a.a.) (nt) (nt) (bp) (a.a.) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt
SEQ Initial Terminal (nt) (nt
SEQ Initial T NO. (nt) (nt)
SEO NO. (a.a.) 5887 2 5889 2 5899 2 5899 2 5899 2 5899 2 5899 3 5899 2 5899 3 5899 3 5899 5899 5899 5899 5899
SEQ NO. (a.a.) 5887 5889 5890 5897 5895 5896 5896 5898 5898 5899 5899 5899
_

EP 1 108 790 A2

																				_
5		Function	cytochrome c oxidase subunit III		hypothetical membrane protein	cytochrome c oxidase subunit II	glutamine-dependent amidotransferase or asparagine synthetase (lysozyme insensitivity protein)	hypothetical protein	hypothelical membrane protein	cobinamide kinase	nicolinate-nucleotide— dimethylbenzimidazole phosphoribosyltransferase	cobalamin (5'-phosphate) synthase		clavulanate-9-aldehyde reductase	branched-chain amino acid aminotransferase	leucyl aminopeptidase	hypothetical protein	dihydrolipoamide acetyltransferase		lipoyitransferase
15		Matched length (a.a.)	188 cyt		145 hyp	317 cyt	glu 640 am pro	114 hyp	246 hyp	172 cot	341 din	305 col		241 cla	364 bra	493 feu	97 hy _l	691 dih		210 lip
20		Similarity (%)	70.7		71.0	53.9	8.66	100.0	60.2	64.0	6.9	49.8		68.5	70.3	62.9	0.79	68.5		65.7
		Identity (%)	36.7		38.6	28.7	99.7	100.0	35.0	43.0	37.8	25.3		38.6	40.1	36.3	40.2	48.9		36.7
25	ntinued)	gene	canus		erculosis	roides ctaC	utamicum	utamicum	ае	latus cobP	rificans	rificans cobV		ligerus car	1.1	la ATCC	erythraea	ensis pdhB		6
30	Table 1 (continued)	Homologous gene	Synechococcus vulcanus		Mycobacterium tuberculosis H37Rv Rv2199c	Rhodobacter sphaeroides ctaC	Corynebacterium glutamicum KY9611 ltsA	Corynebacterium glutamicum KY9611 orf1	Mycobacterium leprae MLCB22.07	Rhodobacter capsulatus cobP	Pseudomonas denitrificans cobU	Pseudomonas denitrificans cobV		Streptomyces clavuligerus car	Mus musculus BCAT1	Pseudomonas putida ATCC 12633 pepA	Saccharopolyspora erythraea ORF1	Streptomyces seculensis pdhB		Arabidopsis thaliana
<i>35</i>		db Match	Sp.COX3_SYNVU S		Sp:Y00A_MYCTU N	Sp.COX2 RHOSH R	550_1	gp:AB029550_2	gp:MLCB22_2 N	pir.S52220 F	sp:coBU_PSEDE	sp:COBV_PSEDE F		prf.2414335A s	SP:ILVE_MYCTU N	gp:PPU010261_1	prf:2110282A	gp:AF047034_2 s		gp:AB020975_1 /
		ORF (bp)	615	153		1077	0	342	768	522		921	237	714		1500	393	2025	1365	753
45		Terminal (nt)	2325273	+	2326472	2326921		2330586	2331967	2332495	2333600	2334535	2334481	2335028	2335915	2338734	2338748	2341293	2339440	2342164
50		Initial (nt)	2325887	2326273		2327997	2328516	2330927	2331200	2331974		2333615	2334717	2335741		2337235	2339140	2339269	2340804	2341412
		SEQ NO.		5903		5905	5906	5907	2908	5909		5911	5912	5913		5915	5916	5917	5918	5919
		SEQ NO.	2402	2403	2404	2405	2406	2407	2408	2409	2410	2411	2412	2413	2414	2415	2416	2417	2418	2419

EP 1 108 790 A2

(- 1	\neg		ĺ	- 1		- 1 4	- 1		- 1		- 1	1	i	l	
5	Function	lipoic acid synthetase	hypothetical membrane protein	hypothetical membrane protein	transposase (ISCg2)		hypothetical membrane protein		mutator mutT domain protein	hypothetical protein		alkanal monooxygenase alpna cnain (bacterial luciferase alpha chain)	protein synthesis inhibitor (translation initiation inhibitor)			4-hydroxyphenylacetate perillease	transmembrane transport protein	transmembrane transport protein		
15	Matched fength	285	257	559	401		157		145	128		220	111	-		433	158	118		
20	Similarity (%)	20.9	76.7	67.8	100.0		63.7		44.0	65.6		6.09	73.0			53.4	72.8	66.1		
	Identity (%)	44.6	45.5	32.9	100.0		41.4		31.0	36.7		25.0	40.5			21.9	42.4	31.4		
25 (pan	9	GRA BD	losis	E	nicum		r A3(2)			/SB8			4SB8				or A3(2)	or A3(2)		
S Table 1 (continued)	Homologous gene	Pelobacter carbinolicus GRA BD	Mycobacterium tuberculosis	Escherichia coli K12 yidE	Corynebacterium glutamicum ATCC 13032 tnp		Streptomyces coelicolor A3(2) SC5F7.04c			Thermotoga maritima MSB8 TM1010		Vibrio harveyi luxA	Thermotoga maritima MSB8 TM0215			Escherichia coli hpaX	Streptomyces coelicolor A3(2) SCGD3.10c	Streptomyces coelicolor A3(2) SCGD3.10c		
35		1		\top		-	ស ស	\vdash	1	FF	 		FF			Ш	SS	တ်လ		
40	db Match	SD.LIPA PELCA	Sp:Y00U_MYCTU				gp:SC5F7_34			pir:872308		sp:LUXA_VIBHA	pir.A72404			prf:2203345H	gp:SCGD3_10	gp:SCGD3_10		
	ORF	1044		1617		30	471	21.2	975	399	009	849	393	243	261	1323	561	444	195	405
45	Terminal	(JII)	2344258	2346047	2346289	2347804	2348078	2250409	2350400	2350912	2351310	2352828	2353225	2355398	2355180	2356843	2357354	2357707	2357290	2358130
50	Initial	(ml)	2343479	2344431	2347491	2347505			2350620		2351909		2352833	2355156	2355440		2356794	2357264	2357484	5938 2357726
	SEO	(a.a.)	5921	2003	5923	5924	5925	3	5926	5928	5070		5931	5932		_		5936	5937	5938
55	SEO		2420			2424		1	2426	2428	2420	2430	2431	2432	2433	2434	2435	2436	2437	2438

EP 1 108 790 A2

			-	$\overline{}$								- 1	1	- 1		ł			1	
5		Function		heme oxygenase	glutamate-ammonia-ligase adenylyltransferase	glutamine synthetase	hypothetical protein	hypothetical protein	hypothetical protein	galactokinase	virulence-associated protein		bifunctional protein (ribonuclease H and phosphoglycerate mutase)		hypothelical protein	hypothetical protein	phosphoglycolate phosphatase	low molecular weight protein- tyrosine-phosphatase	hypothetical protein	insertion element (1S402)
15	-	3 6	+						ų					+			7			
	Matched	length (a.a.)		214	808	441	392	601	54	374	358		382		249	378	204	156	281	129
20		Similarity (%)		78.0	67.0	73.0	54.1	58.2	55.6	53.7	54.5		75.1		58.6	76.2	54.4	63.5	65.5	56.6
		Identity (%)		57.9	43.4	43.5	26.8	33.4	38.9	24.9	27.1		54.7		26.5	49.2	26.0	46.2	40.9	32.6
25	$\frac{1}{2}$	-	1	C7	2)		2)		(2)							S		(2)	so.	
30 September 1	ואווום ו (בסנווווחבה	Homologous gene		Corynebacterium diphtheriae C7 hmuO	Streptomyces coelicolor A3(2) ginE	Thermotoga maritima MSB8	Streptomyces coelicolor A3(2) SCE9.39c	Mycobacterium tuberculosis H37Rv Rv2226	Streptomyces coelicolor A3(2) SCC75A.11c.	Homo sapiens galK1	Brucella abortus vacB		Mycobacterium tuberculosis H37Rv Rv2228c		Mycobacterium tuberculosis H37Rv Rv2229c	Mycobacterium tuberculosis H37Rv Rv2230c	Escherichia coli K12 gph	Streptomyces coelicolor A3(2) SCQ11.04c ptpA	Mycobacterium tuberculosis H37Rv Rv2235	Burkholderia cepacia
35	}				i		500		S	+	 	+		-			T	: 		
40		db Match		sp:HMUO_CORDI	gp:SCY17736_4	sp.GLNA_THEMA	gp:SCE9_39	sp:Y017_MYCTU	gp:SCC75A_11	Sp. GAI 1 HUMAN	nn AF 174645 1		sp:Y019_MYCTU		sp:Y01A_MYCTU	Sp:Y01B_MYCTU	SD:GPH ECOLI	sp.PTPA_STRCO	Sp:Y01G_MYCTU	sp:YI21_BURCE
		ORF (bp)	543	645	3135	1338	1104	1827	180	1203	1266	486	1146	729	717	1140	654	471	954	393
45		Terminal (nt)	2358153	2358772	2359614	2362818	2365455	2367413	2367473	2360083	2303003	2370908	2371412	2373289	2372573	2373323	2375197	2375684	2376720	2376998
50		Initial (nt)	2358695	╀	2362748	2364155	2364352	2365587	2367652	2007704	2320781	2370361		2372561		2374462	2374544		2375767	2456 5956 2377390
		SEO NO.	₩		5941	5942	5943	5944	5945	2,67	2940	5947		5950		5952	5053	5954	5955	5956
55		SEO NO (DNA)	-		2441		2443	2444	2445			2447	2449	2450	2451	2452	3453	2454	2455	2456

EP 1 108 790 A2

5		Function			transcriptional regulator		hypothetical protein	tuendmon escacación de esta	pyluvale denyalogonasa	edimetrile so september 2	ABC transporter of gradinite transport ATP-binding protein		ribose transport system permease	protein	hypothetical protein	calcium binding protein		lipase or hydrofase		acyl carier protein	N-acetylglucosamine-6-phosphale deacetylase	hypothetical protein		
15		Matched length	(a.a.)		135		134	1	ULR		261		283		286	125		352		75	253	289		
20		Similarity	(%)		57.8	j	77.6		78.9		62.8		7 8 7	3	62.9	55.2		55.7		0.08	75.5	65.7		
		Identity	(%)		30.4		55.2		55.9		33.7		7 70	1.57	26.2	41.6		29.6		42.7	43.9	33.6	3	
25	uved)	90	2	10,0	or A3(2)		ulosis		sis pdhA		glna			SC	Madrid E	eum AX2		lor A3(2)		ATCC	nagO	rans		
30	Table 1 (continued)	Homologous gene	S enogoio illou		Streptomyces coelicolor A3(2) SC8F4.22c		Mycobacterium tuberculosis H37Rv Rv2239c		Streptomyces seoulensis pdhA		Escherichia coli K12 g			Bacillus subtilis 168 rosc	Rickettsia prowazekii Madrid E RP367	Dictyostelium discoideum AX2 cbbA		Streptomyces coelicolor A3(2)	SC6G4.24	Myxococcus xanthus ATCC 25232 acpP	Escherichia coli K12 nagD	einococcus radiodu	DR1192	
35		-		\dashv	SC				Str			$\frac{1}{1}$	+	 ;	<u> </u>	<u>5</u>	-	S	8			1	1	\dashv
40		4.4.4.4	db Match		gp:SC8F4_22		Sp:Y01K_MYCTU		gp:AF047034_4		Sp.GLNQ_ECOLI			sp:RBSC_BACSU	pir:H71693	Sp.CBPA_DICDI		7000	gp:SC664_24	sp:ACP_MYXXA	Sp:NAGD ECOL		gp:AE001968_4	
		ORF	(pb)	243	378	198	429	345	2712	1476	789	18	8	888	939	810	372	5	1014	291	825		1032	471
45		Terminal		2377484	2378276	2378489	2378884	2379770	2382744	2380765	2382827		2385426	2383622	2384509	2386580	2395013	216062	2386614	2387957	2388821		2389869	2390434
50			f (t)	2377726	2377899	2378292		2379426	-		2383615		2384464	2384509	2385447	2385771			2387627	2387667			2388838	5974 2390904
		SEO	NO.	+		5959		5961	5962		5964		5965	2966	5967	5968	3	2909	5970	5971			5973	
55		SEO			+	2459		2461				_	2465	2466	2467	2468		2469	2470	2471	24.7	7147	2473	2474

EP 1 108 790 A2

5		Function	hypothetical protein						alkaline phosphatase D precursor		hypothetical protein	hypothetical protein		DNA primase	ribonuclease Sa			L-glutamine: D-fructose-6-phosphate amidotransferase			deoxyguanosinetriphosphate triphosphohydrolase	hypothetical protein
15		hed (1	_	-	-		- <u> </u> -	1	十						98 ribor		_	636 L-glı amic	1		414 deoy	171 hypo
		Matched length (a.a.)	271						230		594	89		633	6			.69			4	=
20		Similarity (%)	75.3						64.7		73.1	72.1		82.9	67.4			82.2			76.3	59.7
		Identity (%)	52.4						34.2		44.4	41.2		59.1	49.0			59.1			54.6	30.4
25	ned)	e.	r A3(2)						Q		r A3(2)	llosis		ıatis	iens BMK			natis			natis dgt	NMA0251
30	Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SC4A7.08						Bacillus subtilis 168 phoD		Streptomyces coelicolor A3(2) SCI51.17	Mycobacterium tuberculosis H37Rv Rv2342		Mycobacterium smegmatis dnaG	Streptomyces aureofaciens BMK			Mycobaclerium smegmatis mc2155 glmS			Mycobacterium smegmatis dgt	Neisseria meningitidis NMA0251
35		db Match	gp:SC4A7_8						sp:PPBD_BACSU		-17	pir:G70661		prf.2413330B	gp:XXU39467_1			gp:AF058788_1			prf.2413330A	gp:NMA1Z2491_23 5
40			gp:S(sp:P		gp:SCI51	pir.G	:		X:d6							
		ORF (bp)	825	492	771	546	465	342	1560	714	1836	240	675	1899	462	243	636	1869	324	1152	1272	675
45		Terminal (nt)	2391184	2392075	2392579	2393970	2393973	2394935	2396763	2395273	2399099	2399397	2399668	2399405	2401834	2402080	2402530	2402144	2404846	2406822	2404987	2406262
50		Initial (nt)	2392008	2392566	2393349	2393425	2394437	2394594	2395204	2395986	2397264	2399158	2400342	2401303	2401373	2401838	2403165		2404523	2405571		2406936
		SEQ NO.		5976	-	5978	5979	5980	5981	5982		5984	5985	5986	5987	5988	5989	5990	5991	5992	5993	5994
55		SEQ.		2476		2478	2479		2481	2482	2483	2484	2485	2486	2487	2488	2489	2490	2491	2492	2493	2494

EP 1 108 790 A2

5	Function	hypothetical protein	hypothetical protein	along tong everthetece	grycyt-relay symmetric	bacterial regulatory protein, also family	ferric uptake regulation protein	hypothetical protein (conserved in C. glutamicum?)	hypothetical membrane protein	undecaprenyl diphosphate synthase	hypothetical protein	Era-like GTP-binding protein	hypothetical membrane protein	hypothetical protein	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	phosphate starvation inducible protein	hypothetical protein	
15	Matched length (a.a.)	692	138	900	900	89	132	529	224	233	245	296	432	157	85	344	248	
20	Similarity (%)	63.6	54.4	0.00	68.8	73.0	70.5	46.7	67.0	71.2	74.3	70.3	82.4	86.0	50.0	84.6	75.4	
	Identity (%)	31.1	24.6		46.1	49.4	34.9	24.8	40.6	43.4	45.7	39.5	52.8	65.0	45.0	61.1	44.0	
30 September 1997	s gene	oerculosis .	gaster		s HB8	perculosis B	12 fur	berculosis	licolor A3(2)	s B-P 26 uppS	berculosis	eumoniae era	berculosis	berculosis	itidis	uberculosis phoH	elicolor A3(2)	
30 to	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2345	Drosophila melanogaster CG10592		Thermus aquaticus HB8	Mycobacterium tuberculosis H37Rv Rv2358 furB	Escherichia coli K12 fur	Mycobacterium tuberculosis H37Rv Rv1128c	Streptomyces coelicolor A3(2)	Micrococcus luteus B-P 26 uppS	Mycobacterium tuberculosis H37Rv Rv2362c	Streptococcus pneumoniae era	Mycobacterium tuberculosis H37Rv Rv2366	Mycobacterium tuberculosis H37Rv Rv2367c	Neisseria meningitidis	Mycobacterium tuberculosis H37Rv Rv2368c phoH	Streptomyces coelicolor A3(2) SCC77.19c.	
35	atch		-26				ECOLI			5	1		2			sp.PHOL_MYCTU		
40	db Match	pir.B70662	gp:AE003565		pir. S58522	pir.E70585	Sp.FUR	pir.A70539	gp:AF162938_1	Sp. Lipps MICLU	pir.A70586	ap. AF072811 1	sp:Y1DE	sp:YN67_MYCTU	GSP:Y75650		gp:SCC77_19	
	ORF (bp)	-	486	582	1383	369	432	+	792	720	726	915	1320	588	264	1050	723	942
45	Terminal	2409029	2409779	2410280	2410956	2412948	2413423	2415118	2415298	2416374	2417222	2417969	2418990	2420313	2421236	2420900	2421975	2423791
50	Initial	2406993	2410264	2410861	2412338	2412580	2412992		2416089		2417947			2420900		2421949	6010 2422697	6011 2422850
	SEO	(a.a.) 5995	5996	2669	_	· :	0009		6002		6004		9009	6007	8009	6009		6011
55	SEO	(DNA) 2495	2496	2497	-	2499	0090	2501	2502		2503		2506	2507	2508	2509	2510	2511

5
10
15
20
25
30
35
40
45
50

	Function	heat shock protein dnaJ	heat-inducible transcriptional	oxygen-independent	copi upoi principali in comment	precursor			long-chain-fatty-acidCoA ligase	4-alpha-glucanotransferase	ABC transporter, Hop-Resistance protein	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	polypeptides predicted to be useful	antigens for vaccines and diagnostics			peptidyl-dipeptidase	carboxylesterase	glycosyl hydrolase or trehalose synthase	hypothetical protein
	Matched length (a.a.)	380	334	320		134			611	738	604	89		107			069	453	594	449
	Simitarity (%)	77.4	79.6	64.1		64.9			75.1	55.4	64.4	51.0		53.0			68.3	45.7	84.9	58.8
	Identity (%)	47.1	48.2	33.1		36.6			48.0	28.3	29.5	44.0		47.0			40.3	24.1	65.2	32.1
Table 1 (continued)	Homologous gene	Streptomyces albus dnaJ2	Streptomyces albus hrcA	Bacillus stearothermophilus	hemN	Saccharomyces cerevisiae YNR044W AGA1			Streptomyces coelicolor A3(2) SC6G10.04	Escherichia coli K12 malQ	Lactobacillus brevis plasmid	Neisseria gonorrhoeae		Neisseria meningitidis			Salmonella typhimurium dcp	Anisopteromalus calandrae	Mycobacterium tuberculosis H37Rv Rv0126	Mycobacterium tuberculosis H37Rv Rv0127
	db Match	orf 2421342B	prf:2421342A		pri. 23 16230A	sp:AGA1_YEAST			gp:SC6G10_4	Sp. MALQ ECOLI	gp:AB005752_1	GSP:Y74827		GSP:Y74829			Sp.DCP_SALTY	gp: AF064523_1		pir.H70983
	ORF (bp)	1146	2 5		990	519	693	378	1845	2118	1863	255		333	180	204	2034	1179	1794	1089
	Terminal (nt)	OUZCCAC	2422046	2100717	2424965	2426699	2426776	2427807	2428184	2432413	2434370	2433614		2433875	2434440	2434573	<u>. </u>		2439906	2440994
	Initial (nt)	3700070	C1,06757		2425954	2426181	2427468	2428184		3020276				6022 2434207	2434619		6025 2436838	2436871		2439906
	SEQ.				6014	6015	6016	6017	6018	0100	6020			6022	6023	6024			6027	6028
	·				2514	2515	2516			_	2520	2521		2522	2523	2524	25.25	25.26	2527	2528

EP 1 108 790 A2

			\neg	\top	$\overline{}$	丁	\neg		-	-		Т		T	\top						
5	Function	isopentenyl-diphosphate Delta- isomerase						beta C-S iyase (degradation of aminoethylcysteine)	branched-chain amino acid transport system carrier protein (isoleucine uptake)	alkanal monooxygenase alpha chain		malonate transporter	glycolate oxidase subunit	transcriptional regulator		hypothetical protein		heme-binding protein A precursor (hemin-binding lipoprotein)	oligopeptide ABC transporter (permease)	dipeptide transport system permease protein	oligopeptide transport ATP-binding protein
		isopenteny						beta C-S aminoeth	branched system ca uptake)	alkanal m		malonate	glycolate	transcript		hypotheti		heme-bin (hemin-bi	oligopeptide (permease)	dipeptide transpor permease protein	oligopept protein
15	Matched length (a.a.)	189						325	426	343		324	483	203		467		546	315	27.1	372
20	Similarity (%)	57.7						100.0	100.0	49.0		60.5	55.1	65.0		57.6		55.5	73.3	74.5	66.4
	Identity (%)	31.8						99.4	99.8	21.6		25.9	27.7	25.6		22.5		27.5	40.0	43.2	37.4
25 continued)	us gene	reinhardtii ipi1						glutamicum D	glutanicum 2	A		eliloti mdcF	(12 glcD	c12 ydfH		nurium ygiK		Jenzae Rd	68 аррВ	(12 dppC	(12 oppD
30 Her	Homologous gene	Chlamydomonas reinhardtii ipl1						Corynebacterium glutamicum ATCC 13032 aecD	Corynebacterium glutanicum ATCC 13032 brnQ	Vibrio harveyi luxA		Sinorhizobium meliloti mdcF	Escherichia coli I	Escherichia coli K12 ydfH		Salmonella typhimurium ygiK		Haemophilus influenzae Rd H10853 hbpA	Bacillus subtilis 168 appB	Escherichia coli K12 dppC	Escherichia coli K12 oppD
<i>35</i> 40	db Match	pir.T07979						gp:CORCSLYS_1	sp:BRNQ_CORGL	Sp:LUXA_VIBHA		gp:AF155772_2	_	Sp:YDFH_ECOU		sp:YGIK_SALTY		sp:HBPA_HAEIN	sp:APPB_BACSU	sp.DPPC_ECOU	prf:2306258MR
	ORF (bp)		222	438	1755	099	519	975 91	1278 SI	978	522	927 9	2844 s	711 \$	282	1347 s	423	1509 s	996	828 s	1437 p
45	Terminal (nt)	35	2441890	2442792	2441602	2443356	2444033	-	2446993	2447998	2450323	2450859	2451794		2455452	2455720	2457337		2460336	2461167	2462599
50	Initial (nt)	2441589	2441669	2442355	2443356	2444015	2444551	2444735	2445716	2447021	2450844					2457066	2457759		2459371	2460340	2461163
	SEQ.	(a.a.)	6030	6031	6032	6033	6034	6035	6036	6037	<u> </u>	6039				6043	6044		6046	6047	6048
55		(DNA) 2529	2530	-	2532	2533	2534	2535	2536	2537	2538			2541	2542	2543	2544	2545	2546	2547	2548

EP 1 108 790 A2

5	Function	hypothetical protein	hypothetical protein	ribose kinase		hypothetical membrane protein		sodium-dependent transporter or odium Bile acid symporter family	apospory-associated protein C			thiamine biosynthesis protein x	hypothetical protein	glycine betaine transporter				large integral C4-dicarboxylate	membrane transport protein	small integral C4-dicarboxylate membrane transport protein	C4-dicarboxylate-binding		extensin l	GTP-binding protein
15	Matched length		Τ	1	\top	466	1	284	295	T			197	601					448	118	227		46	603
20	Similarity (%)	44.0	58.0	65.0	0.00	64.6		61.6	54.2	2.10		100.0	65.5	711.7	-				71.9	73.7	59.0		73.0	83.6
	Identity (%)	35.0	200		9.1.0	39.9		31.3	3 00	6.02		100.0	42.6	39.8					346	33.9	28.2		63.0	58.7
25 Q		21.4600	769	34-100		A3(2)			13	Jac		nicum	9 66	nicum					s dctM	geto	IS B 10		Ę	Ą
© O Table 1 (continued)	Homologous gene	14 45	Aeropyrum pernix N. Arc 1300	າ ໄ	Rhizobium etli rbsK	Streptomyces coelicolor A3(2) SCM2, 16c		Homo sapiens		Chlamydomonas reinhardtii		Corynebacterium glutamicum ATCC 13032 thiX	Mycobacteriophage D29 66	Corynebacterium glutamicum	ATCC 13032 betP				Rhodobacter capsulatus dctM	Klebsiella pneumoniae dctQ	Rhodobacter capsulatus B10	ctP	Lycopersicon esculentum (tomato)	Bacillus subtilis 168 lepA
35	-	+	¥ .	8	<u>۾</u>	35 25	-	Ť-	_	0			\top	١.	. 1		1	-	<u> </u>	1	1	- 1		T -
40	db Match		PIR:G72536	plr:D70367	prf:2514301A	gp:SCM2_16		Sp. NTCI HUMAN	1	gp: AF 195243_		Sp:THIX_CORGL	Sp. VG66 BPMD		Sp:BEIP_CORGI				prf:2320266C	qp:AF186091_1		Sp.UCIF_NIOCA	PRF: 1806416A	1845 Sp:LEPA_BACSU
	ORF	(da)	507	549	903	1425	303	67.0	3	846	366	570	588	+	1890	966	1608	384	1311	480		/4/	243	+
45	Terminal	(ut)	2461543	2462602	2464143	2465768	2465465	2466038	2400030	2467922	2470678	2472819	2472893	202117	2475542	2477492	2479251	2479762	2479898	2481213		2481734	2484087	2482548
50	Initial	(r)	2462049	2463150	2463241		72732707	1010047	2467003	2467077	2470313	2472250			2473653	2476497	2477644	2479379				2482480	2483845	2484392
	SEO	(a. E)	6049	6050					6054	6055	6056		300	202	6029	9090	6061	6062				909	9909	5067
55		(DNG)		2550				 -	2554	2555		2557		2558	2559	2560	2561	2562	2563	7 9 0	7007	2565	2566	25.67

5	Function	hypothetical protein	30S ribosomal protein S20	thrreonine efflux protein	ankyrin-like protein	hypothetical protein	late competence operon required for DNA binding and uptake	late competence operon required for ONA binding and uptake		hypothetical protein	phosphoglycerate mutase	hypothetical protein	hypothetical protein		gamma-glutamyl phosphale reductase or glutamate-5- semialdehyde dehydrogenase	D-isomer specific 2-hydroxyacid dehydrogenase		GTP-binding protein
15	Matched length (a.a.)	185	85	210	129	313	527	195		273	235	117	197		432	304		487
20	Similarity (%)	69.7	72.9	67.1	80.6	74.1	49.7	63.6		66.3	66.4	86.3	85.3		8.66	100.0		78.2
	Identity (%)	41.6	48.2	30.0	61.2	46.0	21.4	30.8		34.8	46.B	55.6	68.0		99.1	99.3		58.9
25 , apple 1 (continued)	Homologous gene	tuberculosis	i K12 rpsT	i K12 rhtC	Streptomyces coelicolor A3(2) SC6D7.25.	tuberculosis Ic	, 168 comEC	s 168 comEA		Streptomyces coelicolor A3(2) SCC 123.07c.	n tuberculosis 3c	n tuberculosis Jo	Streptomyces coelicolor A3(2) SCC123.17c.		Corynebacterium glutamicum ATCC 17965 proA	Corynebacterium glutamicum ATCC 17965 unkdh		Streptomyces coelicolor A3(2) obg
30	Homolo	Mycobacterium tuberculosis H37Rv Rv2405	Escherichia coli K12 rpsT	Escherichia coli K12 rhtC	Streptomyces or SC6D7.25.	Mycobacterium tuberculosis H37Rv Rv2413c	Bacillus subtilis 168 comEC	Bacillus subtilis 168 comEA		Streptomyces SCC123.07c.	Mycobacterium tuberculosis H37Rv Rv2419c	Mycobacterium tuberculosis H37Rv Rv2420c	Streptomyces SCC123.17c.		Corynebacterium g ATCC 17965 proA	Corynebacterium glu ATCC 17965 unkdh		Streptomyces obg
<i>35</i> 40	db Match	pir:H70683	SP.RS20 ECOLI	Sp.RHTC_ECOLI	gp:SC6D7_25	pir:H70684	sp.CME3_BACSU	sp:CME1_BACSU		gp:ScC123_7	pir:F70685	pir:G70685	gp:SCC123_17		sp:PROA_CORGL	sp:YPRA_CORGL		gp:D87915_1
	ORF (bp)	d 609	261	+		975 p	1539 s	582 s	822		708	471	878	1023	1296	912	711	1503
45	Terminal (nt)	2485269	2485733	2485801	2486477	2486910	2487912	2489573	2491732	2490290	2491151	2491873	2492501	2493215	2494339	2495696	2497513	2498009
50	Initial (nt)	2484661	2485473	2486469	2486881	2487884	2489450	2490154	2490911	2491111	2491858	2492343	2493178	2494237		2496607	2496803	2499511
	SEQ	8909	6069	0209	6071	6072	6073	6074	6075		6077	6078	6079	6080		6082	6083	
,55	SEQ.	2568	2560	2570	2571	2572	2573	2574	2575	2576	2577	2578	2579	2580	2581	2582	2583	2584

EP 1 108 790 A2

						~~			_								$\overline{}$	_	1			1
5	_			acid reductase			1.27	1.21					İ	n sequence			ate kinase					
10	Function		xanthine permease	2,5-diketo-D-gluconic acid reductase			50S ribosomal protein L27	50S ribosomal protein L21	ribonuclease E				hypothetical protein	transposase (insertion sequence IS31831)	hypothetical protein	hypothetical protein	nucleoside diphosphate kinase		hypothetical protein	hypothetical protein	hypothetical protein	
15	Matched length	(a.a.)	422	276			81	101	886				195	436	117	143	134		92	112	118	
20	Similarity	(p.)	77.3	81.9			92.6	82.2	9.95				82.6	100.0	76.9	67.8	89.6		67.4	64.3	68.6	
	Identity	(Q.)	39.1	61.2			80.3	56.4	30.1				61.0	99.1	51.3	37.8	70.9		34.8	36.6	33.9	-
25 (panujud	s dene		3 pbuX	p. ATCC			eus IFO13189	eus IFO13189	12 rne				licolor A3(2)	glutamicum	licolor A3(2)	licolor A3(2)	negmatis ndk		odurans R1	berculosis	berculosis	
S Table 1 (continued)	Homologous gene		Bacillus subtilis 168 pbuX	Corynebacterium sp. ATCC 31090			Streptomyces griseus IFO13189 rpmA	Streptomyces griseus IFO13189 obg	Escherichia coli K12 rne				Streptomyces coelicolor A3(2) SCF76.08c	Corynebacterium glutamicum ATCC 31831	Streptomyces coelicolor A3(2) SCF76.08c	Streptomyces coelicolor A3(2) SCF76.09	Mycobacterium smegmatis ndk		Deinococcus radiodurans R1 DR1844	Mycobacterium tuberculosis H37Rv Rv1883c	Mycobacterium tuberculosis	חשווים וויים
<i>35</i>	A March	no march	sp.PBUX_BACSU_E			į	sp:RL27_STRGR	prf:2304263A	SP. RNE ECOLI				gp:SCF76_8	pir:S43613	gp:SCF76_8	gp:SCF76_9	gp:AF069544_1		gp:AE002024_10	pir:H70515	pir.E70863	
	<u> </u>	<u> </u>	1887 sp.f	3	621	396	264 sp:	8	188	0	73	747	0	1308 pir.	8	450 gp	18	360	342 gp	465 pir	423 pir	_
45		(pb)	1	35 84	+-	_	-	30	131 220	1	+-	+-	530 60		423 37	}	949 4	-	 	_		-
	Terminal	(at)	2501669	2501735	2503355	2504265	2503984	2504300	2504831					2509523	2511423	2511876	2511949	2512409	2513144	2513154	2513692	_
50	Initial	(nt)	2499783	2502577	2502735	2503870	2504247	2504602	2507098	2507446				2510830	2511046	2511427	2512356	2512768	2512803	2513618	2514114	
	SEQ	OZ ®			6087	6088		0609	5004		5000			9609	6097	8609	6099			6102	6103	
55	SEQ	NO.	2585	2586	2587	2588	2589	2590	1501	5	7807	2504	2595	2596	2597	2598	2599	2600	2601	2602	2603	3

EP 1 108 790 A2

,						$\neg -$		\neg	\neg			$\neg \neg$	$\neg \tau$							
5	tion	synthelase			0.00	ransport system	rotein	dnaK	əs	lase	ılator	-	ase (oxygenase)	4- eductase		ler	k protein or ATP-	-	oadipate CoA ubunit	oadipate CoA subunit
10	Function	folyl-polyglutamate synthetase			o sefections of Alberta	Valyl-trive symmetase	ongopephae Abo nanspo substrate-binding protein	heat shock protein dnaK	lysine decarboxylase	malate dehydrogenase	transcriptional regulator	hypothetical protein	vanillate demethylase (oxygenase)	pentachlorophenol 4- monooxygenase reductase	transport protein	malonate transporter	class-III heat-shock protein or ATP-dependent protease	hypothetical protein	succinyl CoA.3-oxoadipate CoA transferase beta subunit	succinyl CoA:3-oxoadipate transferase alpha subunit
15	Matched Iength (a.a.)	451			246	0	521	508	170	319	207	208	357	338	444	286	430	366	210	251
20	Similarity (%)	79.6			, 61	1.7/	58.5	54.9	71.2	76.5	56.5	51.4	68.6	59.2	76.8	58.4	85.8	73.0	85.7	84.5
	Identity (%)	55.4			1	45.5	24.2	26.2	42.9	56.4	24.6	26.0	39.5	32.8	· 40.8	28.0	59.8	45.6	63.3	60.2
25 (panulu	gene	olor A3(2)				balS	оррА	dnaK	ATCC	ATCC 33923	olor A3(2)	4	Aue	a ATCC	anK	iae mdcF		color A3(2)	2065 pcaJ	065 pcal
S S Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) folC				Bacillus subtilis 168 balS	Bacillus subtilis 168 oppA	Bacillus subtilis 168 dnaK	Eikenella corrodens ATCC 23824	Thermus aquaticus ATCC 33923 mdh	Streptomyces coelicolor A3(2) SC4A10.33	Vibrio cholerae aphA	Acinetobacter sp. vanA	Sphingomonas flava ATCC 39723 pcpD	Acinetobacter sp. vanK	Kiebsiella pneumoniae mdcF	Bacillus subtilis clpX	Streptomyces coelicolor A3(2) SCF55.28c	Streptomyces sp. 2	Streptomyces sp. 2065 pcal
<i>35</i>	db Match	prf.2410252B				sp:SYV_BACSU	pir:A38447	Sp:DNAK_BACSU	gp:ECU89166_1	SP.MDH_THEFL	gp:SC4A10_33	gp:AF065442_1	prf.2513416F	gp:FSU12290_2	prf:2513416G	qp:KPU95087_7	prf.2303274A	gp:SCF55_28	gp:AF109386_2	gp:AF109386_1
	ORF (bp)	1374 pi	612	714	53	2700 S	1575 p	1452 s	585 9	984 s	g 777	576 9			1425 p	930		1086 g	633 g	750 g
45	Terminal (nt)	2514114	2516273	2516956	2517751	2515637	2518398	2521660	2521667	2522265	2524337	2524340	2526226	2527207	2528559		2529484	2531976	2531969	2532604
50	Initial (nt)	2515487	2515662	2516243	2517089	2518336	2519972	2520209		2523248	2523561	2524915			2527135			2530891	2532601	2533353
	SEQ	6104	6105	6106	6107	6108	6109	6110		6112	6113	6114			6117	 -		6120	6121	6122
55	SEO NO.	2604	2605	2606	2607	2608	2609	2610	2611	2612	2613	7614	2615	2616	2617	2618	2619	2620	2621	2622

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

	Function	protocatechuate catabolic protein	beta-ketothiolase		3-oxoadipate enol-lactone hydrolase and 4-carboxymuconolactone decarboxylase	transcriptional regulator	3-oxoadipate enol-lactone hydrolase and 4-carboxymuconolactone decarboxylase		3-carboxy-cis, cis-muconate cycloisomerase	protocatechuate dioxygenase alpha subunit	protocatechuate dioxygenase beta subunit	hypothelical protein	muconolactone isomerase		muconate cycloisomerase		catechol 1,2-dioxygenase		toluate 1,2 dioxygenase subunit
	Matched Tength (a.a.)	251 pro	406 bet		3-0 256 and	825 trar	3-0 115 and		437 3-c	214 pro	217 pro	273 hyp	92 mu		372 mu		285 cat		437 tol.
	Similarity (%)	82.5	71.9		76.6	43.0	9.68		63.4	9.07	91.2	48.7	81.5		84.7		88.4		85.6
	Identity (%)	58.2	44.8		50.8	23.6	78.3		39.8	49.5	74.7	26.4	54.4		8.09		72.3		62.2
Table 1 (continued)	Homologous gene	Rhodococcus opacus 1CP pcaR	Raistonia eutropha bktB		Rhodococcus opacus pcaL	Streptomyces coelicolor A3(2) SCM1.10	Rhodococcus opacus pcaL		Rhodococcus opacus pcaB	Rhodococcus opacus pcaG	Rhodococcus opacus pcaH	Mycobacterium tuberculosis H37Rv Rv0336	Mycobacterium tuberculosis catC		Rhodococcus opacus 1CP catB		Rhodococcus rhodochrous catA		Pseudomonas putida plasmid pDK1 xylX
	db Match	prf:2408324F	prf:2411305D		prf:2408324E	gp:SCM1_10	prf:2408324E		prf.2408324D	prf:2408324C	prf.2408324B	pir:G70506	prf.2515333B		Sp.CATB_RHOOP		prf.2503218A		gp:AF134348_1
	ORF (bp)	792	1224	912	753	2061	366	678	1116	612	069	1164	291	771	1119	909	855	141	1470
	Terminal (nt)	2534182	2535424	2534257	2536182	2538256	2538248	2540230	2538616	2539709	2540335	2541187	2542512	2543813	2542818	2544867	2544022	2544928	2546784
	Initial (nt)	2533391	2534201	2535168		2536196	2538613	2539553		2540320	2541024	2542350	2542802	2543043	2543936	2544262	2544876	2545068	2640 6140 2545315
	SEO NO.	6123	6124	6125	·	6127	6128	6129		6131	6132	6133	6134	6135	6136	6137	6138	6139	6140
	SEQ NO.	2623	2624	2625	2626	2627	2628	2629	2630	2631	2632	2633	2634	2635	2636	2637	2638	2639	2640

	F					1	_ 1	Т	1				1	Т	\neg	7	Т	Т	T	\neg
5		Function	toluate 1,2 dioxygenase subunit	toluate 1,2 dioxygenase subunit	1,2-dihydroxycyclohexa-3,5-diene carboxylate dehydrogenase	regulator of LuxR family with ATP. binding site	transmembrane transport protein or 4-hydroxybenzoate transporter	benzoate membrane transport protein	ATP-dependent Clp protease proteolytic subunit 2	ATP-dependent Clp protease proteolytic subunit 1	otein	trigger factor (prolyl isomerase) (chaperone protein)	otein	ng protein	otein				otein	
10		Œ	toluate 1,2 diox	toluate 1,2 diox	1,2-dihydroxycyclohexa-3,5- carboxylate dehydrogenase	regulator of Lux binding site	transmembran 4-hydroxybenz	benzoate mem protein	ATP-dependen proteolytic sub	ATP-dependent Clp proteolytic subunit 1	hypothetical protein	trigger factor (prolyl (chaperone protein)	hypothelical protein	penicillin-binding protein	hypothetical protein		transposase		hypothetical protein	transposase
15		Matched length (a.a.)	161	342	277	979	435	388	197	198	42	417	160	336	115		142		35	75
20		Similarity (%)	83.2	81.0	61.4	48.6	64.4	66.2	88.3	85.9	71.4	66.4	63.1	50.9	58.3		73.2		82.9	78.7
		Identity (%)	60.3	51.5	30.7	23.3	31.3	29.9	69.5	62.1	42.9	32.1	32.5	25.3	27.8		54.2		57.1	50.7
25	ontinued)	e dene	da plasmid	da plasmid	da plasmid	ropolis thcG	oaceticus	oaceticus	icolor M145	icolor M145	us ORF154	8 tig	icolor A3(2)	irans LC411	al		striatum ORF1		striatum ORF1	striatum ORF1
30	Table 1 (continued)	Homologous gene	Pseudomonas putida plasmid pDK1 xylY	Pseudomonas putida plasmid pDK1 xylZ	Pseudomonas putida plasmid pDK1 xylL	Rhodocaccus erythrapolis thcG	Acinetobacter calcoaceticus pcaK	Acinetobacter calcoaceticus benE	Streptomyces coelicolor M145 clpP2	Streptomyces coelicolor M145 clpP1	Sulfolobus islandicus ORF154	Bacillus subtilis 168 tig	Streptomyces coelicolor A3(2) SCD25.17	Nocardia lactamdurans LC411 pbp	Mus musculus Moa1		Corynebacterium striatum ORF1		Corynebacterium striatum ORF1	Corynebacterium striatum ORF1
35			:								i –		0,0,							
40		db Match	gp:AF134348_2	gp:AF134348_3	gp:AF134348_4	gp:REU95170_1	sp:PCAK_ACICA	sp:BENE_ACICA	gp:AF071885_2	gp:AF071885_1	gp:SIS243537_4	sp:TIG_BACSU	gp:SCD25_17	sp:PBP4_NOCLA	prf.2301342A		prf:2513302C		prf.2513302C	prf.2513302C
		ORF (bp)	492	1536	828	2685	1380	1242	624	603	150	1347	495	975	456	249	438	150	126	264
45		Terminal (nt)	2547318	2548868	2549695	2552455	2553942	2555267	2555317	2555978	2556748	2556760	2559103	2560131	2560586	2561363	2561483	2562242	2561990	2562078
50		Initial (nt)	2546827	2547333	2548868	2549771	2552563	2554026	2555940	2556580	2556599		2558609	2559157	2560131	2561115	2561920	2562093	2562115	2562341
•		SEQ NO.		6142	6143	6144	6145	6146	6147	6148	6149		6151	6152	6153	6154	6155	6156	6157	6158
55		SEQ NO.	2641	2642	2643	2644	2645	2646	2647	2648	2649	2650	2651	2652	2653	2654	2655	2656	2657	2658

EP 1 108 790 A2

			$\overline{}$	-1			$\overline{}$			Т				$\neg \neg$	\neg					7			
5		Function			galactose-6-phosphate isomerase	hypothetical protein	hypothetical protein	aminopeptidase N	hypothetical protein				phytoene desaturase			phytoene dehydrogenase	phytoene synthase	multidrug resistance transporter		ABC transporter ATP-binding protein	dipeptide transport system permease protein	nickel transport system permease protein	
15	Matched	length (a.a.)			140	248	199	890	358				104			381	290	392		538	286	316	
20		Similarity (%)			71.4	58.1	80.9	70.5	58.1				81.7			63.8	58.6	47.7		71.6	73.8	62.0	
		Identity (%)			40.0	26.2	56.8	47.5	25.1				61.5			31.2	31.4	25.8		41.3	38.8	33.2	
30 (Parinifico) L older	, and a	s gene			ireus NCTC	llyticus ORF2	oerculosis	ans pepN	ri BB0852				ens ATCC			nus DK1050	eus JA3933	genes IItB		longatus	-4 dppC	(12 nikB	
30 to	2) 1 2001	Homologous gene			Staphylococcus aureus NCTC 8325-4 lacB	Bacillus acidopullulyticus ORF2	Mycobacterium tuberculosis H37Rv Rv2466c	Streptomyces lividans pepN	Borrelia burgdorferi BB0852				Brevibacterium linens ATCC 9175 crtl			Myxococcus xanthus DK1050 carA2	Streptomyces griseus JA3933 crtB	Listeria monocytogenes lltB		Synechococcus elongatus	Bacillus firmus OF4 dppC	Escherichia coli K12 nikB	
35		db Match			Sp:LACB_STAAU 8	SD.YAMY BACAD E		SD. AMPN STRLI					gp:AF139916_3			sp:CRTJ_MYXXA	sp:CRTB_STRGR	gp:LMAJ9627_3		gp:SYOATPBP_2		pir.S47696	
40				5	1 sp:(A	6 Sp.YA	+			2	9	(0)		-	æ	06 sp:Cf	6 sp:Cf	19 gp:L	33	41 gp.S			20.
		ORF (bp)	390	88	471	69	809	2601	1083	1152	189	150	 	171	378	12	87	1=	12	٣	80	939	121
45		Terminal (nt)	2562387	2563847	2563932	2564550	2565623	2568945	2570293	2570309	2572175	2572348	2572351	2572807	2573393	2572659	2573843	2574780	2575981	2577232	2578879	2579769	2580711
50		Initial (nt)	2562776	2562963	2564402	2565245	2566231	256345	6165 2569211	2571460				2572977	2573770		2574718	2575898		2578872		2580707	6:79 2582417
		SEQ NO. (a.a.)	6159	_		6182	6163	6164	6165	6166	6167	616R	6169	6170	6171	6172	6173	6174	6175	6176	6177	6178	6179
55		SEQ NO UNA)		+-	$\overline{}$	2862		7900	\rightarrow			_		2670			2673	2674	_		2677	2678	2679

5	Function		acetylornithine aminotransferase	hypothetical protein	hypothetical membrane protein	acetoacetyl CoA reductase	transcriptional regulator, TetR family	polypeptides predicted to be useful antigens for vaccines and diagnostics	ABC transporter ATP-binding protein	globin	chromate transport protein	hypothetical protein	hypothetical protein		hypothetical protein	ABC transporter ATP-binding protein	hypothetical protein	hypothetical membrane protein	alkaline phosphatase
15	Matched length (a.a.)		411 a	482 h	218 h	235 a	240	94	238 /	126	396	196	127	İ	55	563	172	700	536
20	Similarity (%)		63.5	47.9	79.4	0.09	55.0	47.0	65.1	77.0	60.4	68.9	61.4		0.09	79.6	62.2	56.7	52.6
	Identity (%)		31.4	25.1	49.1	28.1	26.7	38.0	31.1	53.2	27.3	37.8	36.2		36.4	52.8	31.4	28.0	28.0
25 (panuju	gene		utamicum	erculosis	erculosis	m D phbB	color actil	dis	la GM73	ae	ginosa arA	erculosis	color A3(2)		(1 APE1182	2 yjjK	erculosis	rae o659	98
os Table 1 (continued)	Homologous gene		Corynebacterium glutamicum ATCC 13032 argD	Mycobacterium tuberculosis H37Rv Rv1128c	Mycobacterium tuberculosis H37Rv Rv0364	Chromatium vinosum D phbB	Streptomyces coelicolor actil	Neisseria meningitidis	Pseudomonas putida GM73 ttg2A	Mycobacterium leprae MLCB1610.14c	Pseudomonas aeruginosa Plasmid pUM505 chrA	Mycobacterium tuberculosis H37Rv Rv2474c	Streptomyces coelicolor A3(2) SC6D10, 19c		Aeropyrum pernix K1 APE1182	Escherichia coli K12 yjjK	Mycobacterium tuberculosis H37Rv Rv2478c	Mycobacterium leprae o659	Bacillus subtilis phoB
35 40	db Match		sp:ARGD_CORGL	pir.A70539	sp:YA26_MYCTU	Sp.PHBB CHRVI	Ť	75	gp:AF106002_1	gp:MLCB1610_9	sp:CHRA_PSEAE	pir.A70867	gp:SC6D10_19		pir.B72589	sp:YJJK_ECOLI	pir.E70867	sp:Y05L_MYCLE	pir.C69676
	ORF (bp)	1941	1314 s	1584 p	747 8	708	738	441	792	393	1128 8	627	465	621	162	1668	615	2103	1419
45	Terminal (nt)	2584504	2585926	2587763	2588722	2588725	2590302	2591137	2591574	2592794	2593965	2593968	2594597	2595188	2595822	2596048	2597869	2598662	2602879
50	Initial (nt)	2582564	2584613	2586180	2587976	2589432			2592365	2592402	2592838	2594594	2595061	2595808			2598483	2600764	
	SEQ NO.		6181	6182	6183	6184	_		6187	6188	6189	6190	6191	6192	-			6196	_
55	SEQ NO. (DNA)	2680	2681	2682	2683	2684	2685	2686	2687	2688	2689	2690	2691	2692	2693	2694	2695	2696	2697

5
10
15
20
25
30
35
40
45

55

Table 1 (continued)

	_													_				_
Function			multiple sugar-binding transport system permease protein	multiple sugar-binding transport system permease protein		mallose-binding protein		ABC transporter ATP-binding protein (ABC-type sugar transport protein) or cellobiose/maltose transport protein		dolichol phosphate mannose synthase		aldehyde dehydrogenase	circadian phase modifier		hypothetical membrane protein	glyoxylate-induced protein	ketoacyl reductase	oligoribonuclease
Matched length (a.a.)			279	292		462		386		154		207	183		412	255	258	179
Similarity (%)			76.3	67.5		63.2		79.8		72.7		89.4	73.8		64.6	69.4	57.0	78.8
Identity (%)			39.1	27.4		28.8		59.1		37.7		67.2	48.6		35.0	41.2	40.0	48.0
Homologous gene			Streptococcus mutans INGBRITT msmG	Streptococcus mutans INGBRITT msmF		Thermoanaerobacterium thermosul amyE		Streptomyces reticuli msiK		Schizosaccharomyces pombe dpm1		Rhodococcus rhodochrous plasmid pRTL1 orf5	Synechococcus sp. PCC7942 cpmA		Thermotoga maritima MSB8 TM0964	Escherichia coli K12 gip	Mycobacterium tuberculosis H37Rv Rv1544	Escherichia coli K12 orn
db Match			sp:MSMG_STRMU	sp.MSMF_STRMU		prf.2206392C		prf.2308356A		prf:2317468A		prf:2516398E	prf.2513418A		pir:A72312	sp:GIP_ECOLI	pir.E70781	sp:ORN_ECOL!
ORF (bp)	930	639	912	843	1674	1329	1242	1128	750	684	969	789	762	345	1182	750	798	657
Terminal (nt)	2605502	2603945	:	2605527	2608117	2606561	2608185	2609512	2812272	2610848	2613151	2614500	2615410	2615795	2615939	2617995	2618869	2619538
Initial (nt)	2604573	2604583		2606369	2606444	2607889	2609426	2610639	2611523	2611531	2612462	2613712	2614649	2615451	2617120	2617246	2618072	2618882
SEQ NO.	6198	6199	6200	6201	6202	6203	6204	6205	6206	6207	6208	6209	6210	6211	6212	6213	6214	6215
SEQ NO. (DNA)		_		2701	2702		2704		2706		2708	2709	2710	2711	2712	2713	2714	2715

EP 1 108 790 A2

5		Function	ferric enterochelin esterase	lipaprotein				transposase (IS1207)			transcriptional regulator	glutaminase	sporulation-specific degradation regulator protein		uronare Isomerase		hypothetical protein	pyrazinamidase/nicotinamidase	hypothetical protein	bacterioferritin comigratory protein	bacterial regulatory protein, tetR family
15	Matched	length (aa)	454	398				436			131	358	97		335		291	185	75	141	114
20		Similarity (%)	50.9	71.9				99.8			63.4	69.3	72.2		60.9		45.0	74.6	80.0	73.8	61.4
		Identity (%)	26.0	48.5				99.5			32.8	35.2	42.3		29.0		32.0	48.1	42.7	46.8	32.5
30 Felder (baunituo)	(2000)	Hamologous gene	rica iroD	uberculosis IppS				n glutamicum			Salmonella typhimurium KP1001 cytR	us SPRAGUE- EY	168 degA		K12 uxaC		is perennial	avium pncA	tuberculosis c	K12 bcp	oelicolor A3(2)
35	- 200	Hamologo	Salmonella enterica iroO	Mycobacterium tuberculosis H37Rv Rv2518c lppS				Corynebacterium glutamicum ATCC 21086			Salmonella typh cytR	Rattus norvegicus SPRAGUE- DAWLEY KIDNEY	Bacillus subtilis 168 degA		Escherichia coli K12 uxaC		Zea diploperennis perennial teosinte	Mycobacterium avium pncA	Mycobacterium tuberculosis H37Rv Rv2520c	Escherichia coli K12 bcp	Streptomyces coelicolor A3(2) SC111.01c
40		db Match	prf:2409378A	pir:C70870				gp:SCU53587_1			gp:AF085239_1	sp:GLSK_RAT	pir.A36940		sp:UXAC_ECOLI		prf.1814452C	prf:232444A	pir:E70870	SD:BCP ECOLI	
		ORF (bp)	1188	1209	645	150	246	1308	207	639	453	1629	477	555	1554		1197	558	27	465	+
45		Terminal (nt)	2619541	2620973	2623605	2623621	2624048	2624051	2625806	2625809	2628376	2626493	2628852	2628324	2630479	2631136		2633100		2634064	
50		Initial (nt)	2620728	2622181	2622961	2623770	2623803		2625600			2628121	2628376	2628878		2630636		2632543		2633600	
			62.16		6218		6220		6222	6223	6224	6225	6226	6227	+-	6229		6231		6233	
55		SEQ NO.	2716	2717	2718	2719	2720	2721	2722	2723	2724	2725	2726	2727	2728	2729	2730	2731	2732	2733	2734

EP 1 108 790 A2

										$\overline{}$			$\overline{}$						_
5	Function	phosphopantethlene protein transferase	lincomycin resistance protein	hypothetical membrane protein		fatty-acid synthase	hypothetical protein	peptidase	hypothetical membrane protein	hypothetical membrane protein	hypothetical protein	ribonuclease PH				hypothetical membrane protein	transposase (IS1628)		aryisulfatase
15	Matched length (a.a.)	145 pl	473 lin	113		3029 fa	404 h	230 p	112 н	113 h	202 h	236				428	175 (_	250
20	Similarity (%)	75.9	85.6	54.0		83.6	55.2	6.09	6.79	69.0	76.7	81.4				58.2	97.2		74.4
	identity (%)	56.6	52.4	30.1		62.3	25.3	40.4	40.2	37.2	55.0	60.2				29.0	92.1		46.0
<i>25</i> (panu	one	6871 ppt1	ımicum	PCC6803			or A3(2)	ulosis	ulosis		culosis	nosa				culosis	glutamicum pAG1 tnpB		e ats
s Table 1 (continued)	Homologous gene	Corynebacterium ammoniagenes ATCC 6871 ppt1	Corynebacterium glutamicum ImrB	Synechocystis sp. PC		Corynebacterium ammoniagenes fas	Streptomyces coelicolor A3(2) SC4A7.14	Mycobacterium tuberculosis H37Rv Rv0950c	Mycobacterium tuberculosis H37Rv Rv1343c	Mycobacterium leprae B1549_F2_59	Mycobacterium tuberculosis H37Rv Rv1341	Pseudomonas aeruginosa ATCC 15692 rph				Mycobacterium tuberculosis H37Rv SC8A6.09c	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB		Mycobacterium leprae ats
35				S		<u> </u>		21			i								
40	db Match	gp:BAY15081_1	gp:AF237667_1	pir.S76537		pir.S2047	gp:SC4A7_14	pir.D70716	sp:Y077_MYCT	sp:Y076_MYCLE	sp:Y03Q_MYCTU	Sp:RNPH_PSEAE				sp:Y029_MYCTU	gp:AF121000_8		sp:Y03O_MYCLE
	ORF (bp)	405	1425	324	414	8979	1182	615	462	354	618	735	246	693	582	1362	534	99	+
45	Terminal (nt)	2634747	2635165	2637168	2637240	2638649	2648235	2650164	2650902	2651339	2651420	2652067	2653009	2653326	2654079	2654875	2656985	2656974	2657736
50	tnitial (nt)	7	2636589	2636845	2637653		2649416	2649550	2650441	2650986	2652037	2652801	2653254	2654018	2654660		2656452	6251 2657633	2658500
		(a.a.) 6235	6236	6237	6238	6239	6240	6241	6242	6243	6244	6245	6246			6249	6250	·	+
55	SEQ.	(DNA)	2736	2737	2738	2739	2740	2741	2742	2743	2744	2745	2746	2747	2748	2749	2750	2751	2752

EP 1 108 790 A2

-									,	- 1		- 7		4			ı		
5	Function	cemase		bacterial regulatory protein, mark family	hypothetical membrane protein		endo-type 6-aminohexanoate oligomer hydrolase	rotein	rotein		rotein		nt helicase	hypothetical membrane protein	rotein	phosphoserine phosphatase		cytochrome c oxidase chain I	
10	u.	D-glutamate racemase		bacterial regula family	hypothetical m		endo-type 6-aminoh oligomer hydrolase	hypothetical protein	hypothetical protein		hypothetical protein		ATP-dependent helicase	hypothetical m	hypothetical protein	phosphoserine		cytochrome c	
15	Matched length (a.a.)	284		147	225		321	200	105		428		647	313	222	310	-	575	
20	Similarity (%)	99.3		70.8	69.3		58.3	58.5	77.1		80.8		53.3	60.1	52.0	61.0		74.4	
	Identity (%)	99.3		44.2	38.2		30.2	35.0	57.1		61.2		25.2	29.7	39.0	38.7		46.8	
25 (pənu	ene ene	ımicum		or A3(2)	ulosis		Ş	ulosis	culosis		culosis			culosis	lor A3(2)	serB		culosis	
& Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13869 murl		Streptomyces coelicolor A3(2) SCE22.22	Mycobacterium tuberculosis H37Rv Rv1337		Flavobacterium sp. nylC	Mycobacterium tuberculosis H37Rv Rv1332	Mycobacterium tuberculosis H37Rv Rv1331		Mycobacterium tuberculosis		Escherichia coli dinG	Mycobacterium tuberculosis H37Rv Rv2560	Streptomyces coelicolor A3(2) SC1B5.06c	Escherichia coli K12 serB		Mycobacterium tuberculosis H37Rv Rv3043c	
<i>35</i>	db Match	prf.2516259A A		gp:SCE22_22 8	SP.YO3M_MYCTU		pir.A47039 F	Sp:Y03H_MYCTU	sp:Y03G_MYCTU		sp. Y03F_MYCTU	\top	nrf 1816252A	OTO	pir.T34684	Sp. SERB_ECOLI		pir:D45335	
	ORF (bp)	852	636	492	747	891	096	537	300	624	1338	306	1740	891	723	1017	1596	1743	306
45	Terminal (nt)	2658606	2660131	2660147	2660671	2662455	2661417	2662331	2662883	2564080	2665397	0000000	2667854	2667870	2668839	2669557	2672721	2671063	2673255
50	Initial	2659457	2659496		2661417	2661565		2662867	2663182	7070300			2666115		2669561	2670573			6270 2672950
	SEO NO.	(a a.) 6253	6254	6255	6256	6267		6229	6260		6267	_		6265	6266	6267	1		
55	SEQ NO.	(DNA) 2753	2754	2755	2756	2757	2758	2759	2760	100	2767		2/03	2765	2766	2767	2768	2769	2770

EP 1 108 790 A2

5		Function	ribonucleotide reductase beta-chain	ferritin	sporulation transcription factor	iron dependent repressor or diptheria toxin repressor	cold shock protein TIR2 precursor	hypothetical membrane protein	ribonucleotide reductase alpha- chain		50S ribosomal protein L36	NH3-dependent NAD(+) synthetase			hypothetical protein	hypothetical protein	alcohol dehydrogenase	Bacillus subtilis mmg (for mother cell metabolic genes)	hypothetical protein		phosphoglucomutase
15	Matched	length (a.a.)		159	256	225	124	20	707		41	279			257	96	337	459	284		256
20		Similarity (%)	99.7	64.2	60.2	60.4	62.1	86.0	100.0		79.0	78.1			56.4	68.8	52.8	56.0	66.2		80.6
		tdentity (%)	99.7	31.5	32.8	27.6	24.2	50.0	6.99		58.0	55.6			30.7	41.7	26.1	27.0	33.8		61.7
25 G	Juniaca)	s gene	lutamicum	2 ftnA	color A3(2)	lutamicum	revisiae TIR2	idus AF0251	lutamicum		콯	8 nadE			PCC6803	berculosis	mophilus	8 mmgE	na T6K22.50		12 pgm
30 - 1	nane i	Homologous gene	Corynebacterium glutamicum ATCC 13032 nrdF	Escherichia coli K12 finA	Streptomyces coelicolor A3(2) whiH	Corynebacterium glutamicum ATCC 13869 dtxR	Saccharomyces cerevisiae YPH148 YOR010C TIR2	Archaeoglobus fulgidus AF0251	Corynebacterium glutamicum ATCC 13032 nrdE		Rickettsia prowazekii	Bacillus subtilis 168 nadE			Synechocystis sp. PCC6803 str1563	Mycobacterium tuberculosis H37Rv Rv3129	Bacillus stearothermophilus DSM 2334 adh	Bacillus subtilis 168 mmgE	Arabidopsis thaliana T6K22.50		Escherichia coli K12 pgm
<i>3</i> 5		db Match	gp:AF112536_1 C	SP:FTNA ECOLI E	4	pir:140339 A	Sp. FIR2_YEAST	oir C69281	35_3		SP-RI 36 RICPR F	BACSU	1		pir:S76790	pir.G70922	sp:ADH2_BACST	sp:MMGE_BACSU	pir.T05174		sp:PGMU_ECOL!
	.	ORF (bp)	1002 gp:	486 sp:	750 gp:	660 pir	438 sp	276 oir		315		\neg	+	498	747 pii	288 pii	1020 sp	1371 sp	834 pi	792	1662 sp
45		Terminal O (nt)	2673338	2675289		2676243	7757792	787801B	+`	780784	+-	+	+	╁╾	2682379	2683131	2683627	2686289	2687148	1	2688389
50	:	Initiat (nt)	2674339	2674804	+	2676902	2676940	2677402	2679598	024000	2000470	2661303				2683418	2684646	2684919	2686315		2690050
		SEQ		6222			6275		6277	_	5270	6770			-	6284	6285	6286	6287		
55		SEO	2771	27.70	2773	2774	2775	3	2777	1	2//8	2//9	2781	2787	2783	2784	2785	2786	2787	2788	2789

EP 1 108 790 A2

5	Function	hypothetical membrane protein	hypothetical membrane protein	hypothetical protein	transposase (IS1676)	major secreted protein PS1 protein precursor				transposase (IS1676)	troums atomostic and a second	proton/sogium-giutalitate symbon protein		ABC transporter		ABC transponer ATP-binding protein	hypothetical protein	hypothetical protein		oxidoreductase or dehydrogenase
	Matched length	84	122	254	496	355				200		438		873		218	84	42		196
20	Similarity (%)	64.3	61.5	79.1	48.6	49.6				46.6		66.2		0.69		79.8	67.0	75.0		54.1
	Identity (%)	41.7	25.4	51.2	24.2	24.8				24.6		30.8		33.0		45.4	60.0	71.0		28.1
75 Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis	Helicobacter pylori J99 jhp1146	Bacillus subtilis 168 ycsl	Rhodococcus erythropolis	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1				Rhodococcus erythropolis		Bacillus subtilis 168		Streptomyces coelicalor A3(2) SCE25.30		Staphylococcus aureus	Chlamydophila pneumoniae AR39 CP0987	Chlamydia muridarum Nigg TC0129		Streptomyces collinus Tu 1892 ansG
40	db Match	pir.F70650		ACSU	6281_1	RGL				gp:AF126281_1		sp:GLTT_BACCA		gp:SCE25_30		gp:SAU18641_2	PIR:F81516	PIR:F81737		prf:2509388L
	ORF			واء			354	165	447	+	768	1338	693	2541	891	708	273	141	678	672
45	Terminal	2690437	0920090	2691564	2693053	2694918	2695279	2695718	2695320	2697212	2697383	2698194	2701612	2699926	2703356	2702487	2704586	2704975	2710555	2711308
50	Initial	(mt)	20000	2690437	2691689		2694926	2695554	2695766	6298 2695812	2698150	2699531	2700920	2702466	2702466	2703194		2704835	2709878	2710637
	SEQ			1679	2620		6295	6296	6297	_			6301	6302	6303			6306	6307	6308
55	SEQ	(DNA)			26/7	2794	2795	2796	2797	2798	2799	2800	2801	2802	2803	2804	2805	2806	2807	2808

EP 1 108 790 A2

5	Guartion	Tancara.	rase	rotein	rotein		UDP-N-acetylqlucosamine 1-	ransferase	orotein	si regulator		hase	e synthase	(5)	protein	succinyl-CoA synthetase alpna chain	profein	succinyl-CoA synthetase beta chain		ne E product	1	succinvl-CoA coenzyme A		ial regulator	
10			methyltransferase	hypothetical protein	hypothetical protein		UDP-N-acety	carboxyvinyltransferase	hypothetical protein	transcriptional regulator		cysteine synthase	O-anatyleprine synthase	O-accy) isch	hypothetical protein	succinyl-CoA chain	hypothetical protein	succinyl-Co/		frenolicin gene	,	succinvl-Co/	transferase	transcriptional regulator	
15	Matched	length (a.a.)	205	84	42			417	190	281		305	123	7.	83	291	75	400		213			501	321	
20	Similarity	(%)	51.2	0.99	75.0			75.3	84.2	0.69		84.6	2 5	/3/	65.1	79.4	43.0	73.0		71.8			77.8	68.5	
	Identity	(%)	25.9	61.0	71.0			44.8	66.3	45.9		57.4	-	۲.۲۵	36.1	52.9	42.0	39.8		2 0 0	2		47.9	38.6	
25 Q		0)	sis		ig9			sno	osis	A3(2)		\	4	ysE2	ns R1	lile Ph I	PE1069	ပ္ပ		6.10	Aus line		11 cat1	ATCC	
30 Tahla 1 (Continued)		Homologous gene	Mycobacterium tuberculosis	Chlamydia pneumoniae	Chlamydia muridarum Nigg	67107		Acinetobacter calcoaceticus NCIB 8250 murA	Mycobacterium tuberculosis H37Rv Rv1314c	Streptomyces coelicolor A3(2) SC2G5.15c		004	Bacillus subtilis 166 cysh	Azotobacter vinelandii cysE2	Deinococcus radiodurans R1 DR1844	Coxiella burnetii Nine Mile Ph	Aeropyrum pernix K1 APE1069	Bacillus subtilis 168 sucC			Streptomyces roseoiuivus iine		Clostridium kluyveri cat1 cat1	Azospirillum brasilense ATCC 29145 ntrC	
35	-		1	1	5	=	+		 	\ \(\text{S} \) \(\text{S} \)	1	十	_	¥			+	;	\dashv	\top	2				٦
40		db Match	Sp. Y089 MYCTU	V25814	DID-E81737			sp:MURA_ACICA	sp:Y02Y_MYCTU	gp:SC2G5_15			sp.CYSK_BACSU	prf.2417357C	gp:AE002024_10	Pp:Sucp_coxBu	DIR-E72706		sp:socc_pacso		gp:AF058302		Sp.CAT1_CLOKL	sp:NIR3_AZOBR	
		ORF (bp)	525		243		195	1254	570	843	٩	408	924	546		882	225	+	+		735	819	1539	1143	_
45		Terminal (nt)	2712374		2713433	71 13042	2717993	2718436	2720319	2720385		2721295	2722857	2723609	2723770	2724478	2705042	C+007/7	2725384	2726786	2727399	2728207	2729378	2732518	
50		Initial (nt)				2/13/02	2718187	2719689	2719750	2721227		2721702	2721934	2723064					2726577	2727145	2728133	2729025	2730916	2731376	
		SEQ.				6311	6312	6313		6315		6316	6317						6322	6323	6324	6325	6326	6327	
55	-		_			2811	2812	2813	2814	2815		2816	2817	2818	2819	2820		2821	2822	2823	2824	2825	2826	2827	-

5		Function		phosphate transport system regulatory protein	phosphate-specific fransport component	phosphate ABC transport system permease protein	phosphate ABC transport system permease protein	phosphate-binding protein S-3 precursor	acetyltransferase		hypothetical protein	hypothetical protein	branched-chain amino acid aminotransferase	hypothetical protein	hypothetical protein	5-phosphoribosyl-5-aminoimidazole synthetase	amidophosphoribosyl transferase
15	Matchad	length (a.a.)		213	255	292	325	369	315		344	225	259	352	58	347	482
20		Similarity (%)		81.7	82.8	82.2	78.5	56.0	0.09		55.2	74.2	56.0	79.0	81.0	94.2	89.0
		Identity (%)		46.5	58.8	51.4	50.2	40.0	34.3		24.7	44.9	28.6	58.5	58.6	81.0	70.3
25 G					a pstB	sis	sis	sis	A3(2)		_	sis	AT2	872	osis	872	872
30 Solutions	numa) i aigei	Homologous gene		Mycobacterium tuberculosis H37Rv Rv0821c phoY-2	Pseudomonas aeruginosa pstB	Mycobacterium tuberculosis H37Rv Rv0830 pstA1	Mycobacterium tuberculosis H37Rv Rv0829 pstC2	Mycobacterium tuberculosis H37Rv phoS2	Streptomyces coelicolor A3(2) SCD84.18c		Bacillus subtilis 168 bmrU	Mycobacterium tuberculosis H37Rv Rv0813c	Solanum tuberosum BCAT2	Corynebacterium ammoniagenes ATCC 6872 ORF4	Mycobacterium tuberculosis H37Rv Rv0810c	Corynebacterium ammoniagenes ATCC 6872 purM	Corynebacterium ammoniagenes ATCC 6872 purf
35				< 1	1 2						Н						
40		db Match		pir.E70810	pir: S68595	gp:MTPSTA1_1	pir. A70584	pir.1170583	gp:SCD84_18		sp:BMRU_BACSU	pir.E70809	gp:AF193846_1	gp:AB003158_6	pir:B70809	gp:AB003158_5	gp:AB003158_4
		ORF (bp)	807	732	897	921	1014	1125	876	783	1095	687	942	1101	213	1074	1482
45		Terminal (nt)	2731424	2733367	2733455	2734264	2735202	2736414	2737836	2739553	2739556	2741356	2741636	2743785	2744222	2744881	2746083
50		Initial (nt)	2732230	-}	2734351		2736215	2737538	2738711	2738771	2740650		2742577	2742685	2744010	2745954	2842 6342 2747564
		SEO	 -				6332		6334	6335	6336	6337	6338	6339	6340	6341	6342
55		SEQ	_						2834	2835	2836	2837	2838	2839	2840	2841	2842

EP 1 108 790 A2

ſ		$\overline{}$					i			i i	ļ	- 1		1	- 1	1	- 1
5		L0		į	ane protein		synthetase		synthetase			ase	es			ansporter	ptidase
10		Function	hypothetical protein	hypothetical protein	hypothetical membrane protein	hypothetical protein	5-phosphoribosyl-N- formylglycinamidine synthetase		5'-phosphoribosyl-N- formylglycinamidine synthetase	hypothetical protein		gluthatione peroxidase	extracellular nuclease		hypothetical protein	C4-dicarboxylate transporter	dipeptidyl aminopeptidase
15	Matched	length (a.a.)	124	315	217	42	763		223	79		158	965		211	414	697
20	Cimilority	(%)	75.8	94.0	87.1	71.0	89 5		93.3	93.7		77.9	51.5		68.7	81.6	70.6
		(%)	57.3	75.9	67.7	64.0	77.6		80.3	81.0		46.2	28.0		37.4	49.0	41.8
25 Q			sis	72	271		372		872	872			MP636		osis	1,172	4 dapb1
30 Solding	lane I (comma	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0807	Corynebacterium ammonlagenes ATCC 6872 ORF2	Corynebacterium ammoniagenes ATCC 6872 ORF1	Sulfolobus solfataricus	Corynebacterium ammoniagenes ATCC 6872 purL		Corynebacterium ammoniagenes ATCC 6872	Corynebacterium ammoniagenes ATCC 6872 purorf		Lactococcus lactis gpo	Aeromonas hydrophila JMP636 nucH		Mycobacterium tuberculosis H37Rv Rv0784	Salmonella typhimurium LT2	Pseudomonas sp. WO24 dapb1
35	-		ŽΪ					-				-				1	
40		db Match	pir:H70536	gp:AB003158_2	gp:AB003158_1	GP:SSU18930_21	gp:AB003162_3		gp:AB003162_2	gp:AB003162_1		prf:2420329A			pir.C70709	Sp. DCTA_SALTY	2118 prf:2408266A
	Ī	ORF (bp)	375	1017	741	186	2286	120	699	243	522	477	2748	276	+-	1338	
45		Terminal (nt)	2747683	2749111	2749162	2752103	2750027	,0,0,10	2752327	2752995	2753819	2753328	2756739	2757126		2757863	
50		Initial (nt)	2748057	2748095	2749902	2751918	2752312		2752402 2752995	2753237	2752208	2753804	2753992	2756851		2759200	2761649
		SEQ.			6345	6346			6348	6350	1		6353	8354	_		6357
55			2843		2845	2846	2847		2848 2849	2850		1687	2853	7967	2855	2856	2857

5	Function		5. nhosphoribosyl-4-N-	succinocarboxamide-5-amino imidazole synthelase	adenylosuccino lyase	aspartate aminotransferase	5'-phosphoribosylglycinamide synthetase	histidine triad (HIT) family protein		hunothetical profein	interest process	di-/tripeptide transpoter	adenosylmethiohine-b-amino-7- oxononanoate aminotransferase or 7,8-diaminopelargonic acid aminotransferase	dethiobiotin synthetase	two-component system sensor histidine kinase	two-component system regulatory protein	transcriptional activator	metal-activated pyridoxal enzyme or	בייייייייייייייייייייייייייייייייייייי
15	Matched	(a.a)		294	477	395	425	136		2,75	243	469	423	224	335	231	249	382	
20	Similarity	8		89.1	95.0	62.3	86.4	80.2		1	20.4	67.6	98.8	93.6	70.5	72.7	69.5	53.9	
	Identity	(%)		70.1	85.3	28.1	71.1	53.7		3	26.8	30.1	95.7	98.7	31.3	42.0	37.4	30.9	
30 September 1997 Folder	9000	Diah S		rcc 6872	rcc 6872	ricus ATCC	TCC 6872	2069	piec ucada		sarkeri orf3	s subsp. lactis	glutamicum lavum) MJ233	glutamicum lavum) MJ233	is M71plasmid	ilima drrA	idans tipA	DK-38	
30 F		Homologous gene		Corynebacterium ammoniagenes ATCC 6872 purC	Corynebacterium ammoniagenes ATCC purB	Sulfolobus solfataricus ATCC 49255	Corynebacterium ammoniagenes ATCC 6872 purD	And the standard market and the standard standar	Aycobacterium		Methanosarcina barkeri orf3	Lactococcus lactis subsp. lactis dipT	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 bioA	Corynebacterium glutamicum (Brevibacterium flavum) MJ233	Lactococcus lactis M71plasmid	Thermotoga maritima drrA	Strentomyces lividans tipA	Arthrohacter so: DK-38	Olimpian 1
<i>35</i>		db Match		gp:AB003161_3 a	gp:AB003161_2 a	Sp.AAT_SULSO	gp:AB003161_1	T	Sp:YHIT_MYCLE		pir.S62195	sp:DTPT_LACLA	sp:BIOA_CORGL	sp:BIOD_CORGL	gp:AF049873_3		TOTA ADIT	Sp. 117 - 3102.	T.24153300
	OWF	(dp)	624	891 gp	1428 gp	1158 sp	1263 gp	1	414 SF	435	753 pi	1356 sp	1269 sı	672 \$	1455 g		$\overline{}$		1140 p
45	Terimat		2761829	2761785	2763504	2764978	2766158		2767993	2767703	2768343		2771982	2772660	2772644	2774110			2775/40
50	-	(nt)	2762452	2762675	2764931	2766135	2767420		2767580	2768137	2769095		2770714	2771989	2774098			2775689	2776879
	SEQ	(a.a.)	6358	6329	6360	6361	6362		6363	6364		9989	6367	6368	6369				6372
55	SEO		2858	+	2860	2861	2862		2863	2864	2865	2866	2867	2868	2860	2022	7070	2871	2872

	_				~			7		1		1		1	1	1			- 1				1
5		ou		ein	ator		ane protein		rogenase	lator, LysR family						rane protein	on factor sigma	nate synthase		tase	amylase	traffic evelor	prake system
10		Function	pyruvate oxidase	multidrug efflux protein	Totalines leadisting	transcriptional regu	hypothetical membrane protein		3-ketosteroid dehydrogenase	transcriptional regulator, LysR family	hypothetical protein	hypothetical protein	ilyponicach process		hypothetical protein	hypothetical membrane protein	transcription initiation factor sigma	trehalose-6-phosphate synthase		trehalose-phosphatase	qlucose-resistance amylase	regulator	high-affinity zinc uptake system protein
15		Matched length (a.a.)	574	504	5	36	421		303	232	278	980	007		140	464	155	487		245	;	344	353
20		Similarity (%)	75.8	689		68.5	78.4		62.1	0.69	52.9	9	0.00		50.7	64.0	50.3	66.7		57.6	;	60.2	46.7
		Identity (%)	463	33.3		30.4	45.6		34.3	37.1	28.4		.26.7		28.6	36.0	32.3	38.8		27.4		24.7	22.4
25 1	(nanu)	ene	OxB	is plasmid		cdC	culosis		polis SQ1	IsR	culosis		krA		s kidney	culosis	s hrdB	ss pombe		a se	250	ссрА	zae Rd
30	Table 1 (confinition)	Homologous gene	Escherichia coli K12 poxB	Staphylococcus aureus plasmid	SK23 qacB	Escherichia coli K12 ycdC	Mycobacterium tuberculosis H37Rv Rv2508c		Rhodococcus erythropolis SQ1 kstD1	Bacillus subtills 168 alsR	Mycobacterium tuberculosis	H37Rv Rv3298c lpqC	Bacillus subtilis 168 ykrA		Oryctolagus cuniculus kidney cortex rBAT	Mycobacterium tuberculosis H37Rv Rv3737	Streptomyces griseus hrdB	Schizosaccharomyces pombe tps1		Rate Cly ilos ocitores and K12 ofeR	Scilettella coll 11.5	Bacillus megaterium ccpA	Haemophilus influenzae Rd HI0119 znuA
35					δď.				<u>~ ×</u>	\top	1	<u> </u>	<u>B</u>		0 6	ΣI	8			T	\top		
40		db Match	gp:ECOPOXB8G_	-	prf:2212334B	sp:YCDC_ECOLI	pir.D70551		gp:AF096929_2	ALCE BACSI	sp.Acon page	pir.C70982	pir. C69862		pir.A45264	pir:B70798	pir:S41307				sp:01SB_ECOU	sp:ccPA_BACME	sp.ZNUA_HAEIN
		ORF (bp)		2	1482	531	1320	2142	8	105	3	813	813	459	399	1503	327	1455	1	513	768	1074	942
45		Terminal (nt)	5		2780446	2780969		2782340	2784656	4107050	7/85651	2788594	2788587	2789477	2790550	2792448	2792857	2794327		2794812	2795637	2795676	2797806
50		Initial		2778304	2778965	2780439		27844R1	2785615		2786355	2787782	2789399	2789935	2790152	2790946	2702531			1	2794870	2796749	6390 2796865
		SEO.		63/3	6374 2	6375		6377			6379	6380	6381	6382	6383	6384	2052	6386		6387	6388	6389	6390
55		SEO.		2873	2874	2875		7490			2879	2880	2881	-		2884	2000	2886		2887	2888	2889	2890

5	Function	ABC transporter	hypothetical membrane protein	transposase (ISA0963-5)		3-ketosteroid dehydrogenase		lipopolysaccharide blosynmests protein or oxidoreductase or dehydrogenase	dehydrogenase or myo-inositol 2- dehydrogenase	shikimate transport protein	shikimate transport protein	transcriptional regulator	ribosomal RNA ribose methytase or	IRNA/rRNA methyltransferase	cysteinyl-tRNA synthetase	PTS system, enzyme II sucrose protein (sucrose-specific IIABC component)	sucrose 6-phosphate hydrolase or sucrase	glucosamine-6-phosphate isomerase	N-acetylglucosamine-6-phosphate deacetylase	
15	Matched length	223	135	303		561		204	128	292	130	212		334	464	899	473	248	368	
20	Similarity (%)	63.2	87.4	52.5		62 0		56.4	69.5	67.5	80.8	55.7		47.3	68.8	77.0	56.9	69.4	60.3	
	Identity (%)	31.4	60.0	23.4		32.1		34.3	35.2	30.5	43.1	32.6		22.8	42.2	47.0	35.3	38.3	30.2	
25 Q		25-4	S			SQ1		38	iolG			(3(2)		9			E	_ m	anD	
30 September 1 (Continued)	Homologous gene	Staphylococcus aureus 8325-4 mreA	Mycobacterium tuberculosis H37Rv Rv2060	Archaeoglobus fulgidus		Rhodococcus erythropolis SQ1 kslD1		Thermotoga maritima MSB8 bplA	Bacillus subtilis 168 idh or iolG	Aido Chi Mania cidaise de an	Secherichia coli K12 shiA	Streptomyces coelicolor A3(2)	SC5A7.19c	Saccharomyces cerevisiae YOR201C PET56	Escherichia coll K12 cysS	Lactococcus ladis sacB	Clostridium acetobutylicum ATCC 824 scrB	Escherichia coli K12 nagB	Vibrio furnissii SR1514 manD	
<i>35</i> 40	db Match	gp:AF121672_2				gp:AF096929_2		pir.B72359	SD:MIZD BACSU		Sp. SHIA ECOLI	Sp.SHIA_ECOL	gp:SC5A/_19	sp:PT56_YEAST	Sp.SYC ECOLI		gp:AF205034_4	sp:NAGB_ECOLI		
	ORF	2 0	555	1500		1689	747	618	435		855	426	654	939	1380	1983	1299	759	1152	ᅥ
45	Terminal	2798509	2799391	2801034	2801313	2801558	2803250	2804074	2804676		2805113	2806016	2806599	2807426	2808399	2809824	2811960	2813279		_
50	Initial	2797820	2798837	2799535	_		2803996		2805110	2			2807252	2808364	377pngc		2813258			
	SEQ	<u></u>		6303			906		8308	2620	6399	6400	6401	6402	6403		6405			-
55	SEQ	31-					2006	2897	0000	0607	2899	2900	2901	2902	1000	2904	2905	2906	2907	1264

		$ \overline{} $		late						ding	ding							
5	Function	e synthase		mine-b-pnosp		20	mease operon	rter protein or stein	nt system	sport ATP-bine	sport ATP-bin		ioserin lactone ysE type	ve regulatory		iein	tein	tor
10	Fun	dihydrodipicolinate synthase	glucokinase	N-acetylmannosamine-b-phosphate epimerase		sialidase precursor	L-asparagine permease operon repressor	dipeptide transporter protein or heme-binding protein	dipeptide transport system permease protein	oligopeptide transport ATP-binding	oligopeptide transport ATP-binding	protein	homoserine/homoserin lactone efflux protein or lysE type translocator	leucine-responsive regulatory protein		hypothetical protein	hypothetical protein	transcription factor
15	Matched length (a.a.)	298 d	321 g	220		439	222	260	342	314	1	258	193	142		152	235	157
20	Similarity (%)	62.1	57.6	68.6		50.3	57.2	51.4	64.3	78.3		78.7	62.7	66.2		86.2	71.5	91.1
	Identity (%)	28.2	28.7	36.4		24.8	26.6	22.5	31.9	46.5		43.4	28.5	31.0		55.9	46.4	73.3
25			(3(2)	стс		ens			8					ım irp		osis	osis	osis
s Table 1 (continued)	Hamalogous gene	Escherichia coli K12 dapA	Streptomyces coelicolor A3(2) SC6E10.20c glk	Clostridium perfringens NCTC 8798 nanE		Micromonospora viridifaciens ATCC 31146 nadA	Rhizobium etli ansR	Bacillus firmus OF4 dppA	Bacillus firmus OF4 dappB	ili	pade por sumus somos pade	Lactococcus lactis oppF	Escherichia coli K12 rhtB	Bradyrhizobium japonicum Irp		Mycobacterium tuberculosis H37Rv Rv3581c	Mycobacterium tuberculosis H37Rv Rv3582c	Mycobacterium tuberculosis H37Rv Rv3583c
35		Esch	Streg	Clos 8798	_	Micr	Rhiz	Bac	Bac		-			Bra	<u> </u>	₹ E		
40	db Match	SO DAPA ECOLI	Sp.GLK_STRCO	prf.2516292A		Sp:NANH_MICVI	qp:AF181498_1	ap:BFU64514_1	BACE		sp:OPPD_BACSU	SP:OPPF_LACLA	sp:RHTB_ECOU	prf:2309303A		pir.C70607	Sp:Y18T_MYCTU	
	ORF		+	969	177	1215	729	1608	190	3	1068	816	621	483	360	48	768	594
45	Terminal	2816303	2817317	2818058	2818137	2818350	2819557	2822191	200000	785333	2825341	2826156	2826215	2827404	2827458			
50	Initial	8		2817363	2010713	2819564	2820285	7830282	F0000202	2822387	2824274	2825341		2826922		2828383		
	SEO	i-	6409		1,1				7	6415	6416	6417	6418	6419	_			
55	SEO		2908			2012				2915	2916	2917	2918	7919	0000	2927	2022	2923

EP 1 108 790 A2

5	Function	two-component system response regulator	two-component system sensor histidine kinase		tein RadA	otein	otein	4.6.6.1.4.2	aldehyde		arbonate eta		A/G-specific adenine glycosylase		a dehadrodensee	L-2.3-Durantedion derivation opening				rotein)r)r
10	Ĭ.	two-component regulator	two-component histidine kinase		DNA repair protein RadA	hypothetical protein	hypothetical protein		p-hydroxybenzaldehyde dehydrogenase		mitochondrial carbonate		NG-specific ac			L-2.3-Dulamen				hypothelical protein	virulence factor	virulence factor
15	Matched	223	341		463	345	231		471		210		283		3	BC7				97	66	72
20	Similarity (%)	70.0	67.7		74.3	73.3	53.3		85.1		66.2		70.7			93.6				69.1	63.0	55.0
	dentity (%)	43.5	29.3		41.5	40.3	29.4		59.5		36.7		48.4			99.2				48.5	57.0	54.0
25 Q		sis	ဟူ		4		osis		SIMB		rdtii ca 1		is IMRU			olyticum				losis	sa	sa
os Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis	Escherichia coli K12 baeS		Aparichia coli K12 radA	Bacillus subtilis 168 vacK	Mycobacterium tuberculosis	H37Rv Rv3587c	Pseudomonas putida NCIMB 9866 plasmid pRA4000		Chlamydomonas reinhardtii ca 1		Streptomyces antibioticus IMRU 3720 mutY			Brevibacterium saccharolyticum				Mycobacterium tuberculosis H37Rv Rv3592	Pseudomonas aeruginosa ORF24222	Pseudomonas aeruginosa ORF25110
35	-	\€		1	Ť	\top	+	Ĭ			0					- 8	-			ZI.	a C	12.0
40	db Match	nd 2214304A	Sp. BAES ECOLI			SP. KADA_ECULI	Sp. 1 de	pir.U/U804	gp PPU96338_1		nir TOB204	pii. 1 0020 1	gp:AF121797_1			gp:AB009078				pir:E70552	GSP:Y29188	GSP:Y29193
	ORF	(40)	1116		582	1392	980	/89	1452	15.		170	879	1155	306	774	324	741	312	291	420	213
45	Terminal	(mt)	2830113	1001007	2832666	2834181	2835285	2835283	2836048	2027504	1507007	906/687	2839521	2840716	2840758	2841848	2842453	2843233	2843716	2843432	2845558	2846101
50	Initial		6424 2630037	6110007	2832085	6427 2832790	2834188	2835969	2837499	1011000	2837737	28385/6	2838643	2839562	2841063		6437 2842130	2842493	2843405		2845139	6442 2845889
	SEO		6426	6750	6426	6427	6428	6459	6430			6432	6433	6434	6435						6441	6442
<i>5</i> 5	SEQ			2562	2926			2929			2931	2932	2933	2934	2935	2936	2937	2938	2939	2940	2941	2942

									$\neg \neg$	\neg	$\overline{}$					_				- 1		1
5				sphatase /	te		lase					protein			e ligase			ne protein	opteridine	olase	nase	
10		Function	virulence factor	CipC adenosine triphosphatase ATP-binding proteinase	inosine monophosphate dehydrogenase	transcription factor	phenol 2-monooxygenase					lincomycin resistance protein	hypothetical protein	iysyl-tRNA synthetase	pantoatebeta-alanine ligas			hypothetical membrane protein	2-amino-4-hydroxy-6- hydroxymethyldihydropteridine pyrophosphokinase	dihydroneopterin aldolase	dihydropteroate synthase	
15	Matched	length (a.a.)	55	832	469	316	680					481	240	511	268			138	158	118	268	
20		Similarity (%)	75.0	86.2	70.2	62.7	6.09					100.0	55.8	71.2	52.6			9.69	69.0	69.5	75.0	
		Identity (%)	74.0	58.5	37.1	24.7	33.5					100.0	26.7	41.7	29.9			29.0	42.4	38.1	515	
25 (panui	ì	ene	nosa	necB	hbdh	throus nitR	um ATCC					ıtamicum	rculosis	ophilus lysS	ıtamicum			96	xtorquens	folB	ap fold	100
So Table 1 (continued)	וממון ו	Homologous gene	Pseudomonas aeruginosa ORF25110	Bacillus subtills 168 mecB	Bacillus cereus ts-4 Impdh	Rhodococcus rhodochrous nitR	Trichosporon cutaneum ATCC 46490					Corynebacterium glutamicum ImrB	Mycobacterium tuberculosis H37Rv Rv3517	Bacillus stearothermophilus lysS	Corynebacterium glutamicum ATCC 13032 panC			Mycobacterium leprae MLCB2548.04c	Methylobacterium extorquens AM1 folk	Racillus subtilis 168 folB	Manage of the long	Mycopacterium teprae for
35			0.0			T							21	-					 	1	,	
40		db Match	GSP: Y29193	sp:MECB_BACSU	gp:AB035643_1	nir.1C6117	sp:PH2M_TRICU					gp:AF237667_1	pir.G70807	qp; AB012100	gp:CGPAN_2			gp:MLCB2548_4	sp:HPPK_METEX	INCOME INCOME	sp.roce_	gp:AB028656_1
		ORF (bp)	321	2775	1431	1011	95	1716	1941	1722	162	1443	951	1578	798	693	798	465	477	366	3	837
45		Terminal (nt)	2846506	2844166	2848659	28/0770	2851815	2853732	2855709	2857516	2859205	2857613	2859195	2860505	2862132	2862929	2863624	2864384	2864867	0407000	2865340	2865731
50		Initial (nt)	2846186			0970700	2850031	2852017	2853769	2855795	2859044	2859055	2860145	CROCARC		2863621	2864421				2865/35	2866567
		SEO NO.						6448		6450	6451		6453	6454	6455	6456	6457					6461
55		SEQ NO.					2947	2948		_	2951	2952	2953	2054	2955	2956	2057	2958	2959		2960	2961

5	Function	To ourlohydrolase	or cyclorydords	cell division protein FtsH	hypoxanthine	phosphoribosyltransferase	cell cycle protein MesJ or cytosine deaminase-related protein	D-alanyt-D-atanine carboxypeptidase	inorganic pyrophosphatase			spermidine synthase	hypothetical membrane protein	hypothetical protein	hypothetical protein		hypothelical protein	PTS system, beta-glucosides- permease II ABC component		ferredoxin reductase	hypothetical protein	hacterial regulatory protein, mark	family
15	Matched	(a.a.)	188	787		165	310	459	159			202	132	144	177	?	202	89		411	97		135
20	Similarity	(%)	86.2	C	2.5	83.0	66.8	51.4	73.6	2		80.7	86.4	63.2		-	72.3	59.6		9.69	73.2		59.3
	<u>~</u>	(%)	9.09	0	20.0	51.5	41.0	27.2	707	7.0		56.0	38.6	36.8		30.4	44.6	30.3		38.0	46.4		26.7
<i>25</i>	3				000	3P650	sis	2				osis	osis	osis	ocis		osis			PPD	r A3(2)		allei ORF
30	number alder	Hamologous yene	Bacillus subtilis 168 mtrA			Salmonella typhimurium (SP660 hort	Mycobacterium tuberculosis H37Rv Rv3625c	Actinomadura sp. R39 dac		Escherichia coli K12 ppa		Mycobacterium tuberculosis H37Rv speE	Mycobacterium tuberculosis	Mycobacterium tuberculosis	H37Rv Rv2599	H37Rv Rv2598	Mycobacterium tuberculosis	Bacillus subtilis 168 bgiP		Nocardioides sp. KP7 phdD	Strentomyces coelicolor A3(2)	SCH69.09c	Burkholderia pseudomallel ORF E
35))	1	1					1			CTU	csu		S			_
40		db Match	sp.GCH1_BACSU			gp: AF008931_1	Sp:YZC5_MYCTU			SP:IPYR_ECOLI		pir:H70886	sp:Y0B1_MYCTU	NA COOX	sp. rubz_mircio	sp:YOB3_MYCTU	Sp.Y084_MYCTU					gp:SCH69_9	prf.2516298U
	200) (g (g	588	915	2580	582	891	1222	1233	474	219	1539	399		4	498	609				1233	288	444
45		(nt)	2866586	2868385	2867169	2869863	2870499		28/1445	2873399	2873393	2873905	2875434		2875870	2876280	7876777				2878478	2880252	2880987
50	\vdash	(nt)	2867173	┼	1	2870444	2871789	200	2872677	2872926	2873611	2875443		2000107	2876280	2876777	7877385				2879710	2879965	2880544
	050	NO.	6462 2						6467	6468	6469				6472	6473	4777		_	$\overline{}$	6477	6478	6479
<i>55</i>			2962 B	-					2967	2968			_	1,67	2972	2973	100	2974	C/67	2976	2977	2978	2979

EP 1 108 790 A2

5		Function	peptide synthase		phenylacetaldehyde dehydrogenase		hypothetical protein	hypothetical protein	hypothetical protein	heat shock protein or chaperon or	groEL protein						hunothetical profein	וואלים בייבים לייבים			peptidase			Na+/H+ antiponer of multiple resistance and pH regulation related protein A or NADH dehydrogenase
15	Matched	length (a.a.)	1241		488		241	54	31	3	248						2007	1230		_	447			797
20		Similarity (%)	51.6		63.7	3	79.7	63.0	80.0		100.0						9	42.3			68.0			68.3
		Identity (%)	28.4		25.0	33.0	57.3	62.0	74.0		99.5							21.7			37.1			35.6
25 D			COSB	3			304	sis	ř.	,	1-233										sis			ппhА
30 (panujuos) t elder	lable (comme	Homologous gene	Bson supposed and society	Streptornyces roseospore		Escherichia coli K12 padA	Campylobacter jejuni Cj0604	Mycobacterium tuberculosis	Attended in the reliable	Mycopacter Ionn (upercolor	Brevibacterium flavum MJ-233							Homo sapiens MUC5B			Mycobacterium tuberculosis H37Rv Rv2522c			Staphylococcus aureus mnhA
40		db Match		prf.2413335A		prf:2310295A	gp:CJ11168X2_25		_	GP:MSGTCWPA_1	gsp:R94368							prf:2309326A			pir:G70870			3057 prf.2504285B
		ORF (bp)		-	1461	1563	918		102	12	1644	180	1209	963	1986	2454	2799	3591	2775	612	1371	579	900	
45		Terminal (nt)		2884882	2881844	2884935	2886916	0,000	2890346	2890553	2888897	2890751	2890930	2892138	2893100	2895072	2897528	2900330	2903964	2906639	2908885	2909788	2909231	1
50		Initial	-	2880998	2883304	2886497			_	2890377	2890540	2890930	2892138	2893100	6490 2895085	6491 2897525	2900326		2906738	2907250	2907515	2909210		
		SEO.	(a.a)	6480	6481	6482			6484	6485	6486	6487	6488	6489	6490		-		6494			6497		
55			-	2980	_			_	2984	2985	2986	2987	2988	2989	2990	2991	2992	2993	2994	2995	2996	2997	900	2999
						_																		

5
10
15
20
25
30
35
40
45
50

SEO Initial (nt) (a.a.) (nt) (5500 2913235 6501 2913749	<u> </u>	(nt) 2913723	ORF (bp) 489	db Match gp.AF097740_3 gp.AF097740_4	Table 1 (continued) Homologous gene Bacillus firmus OF4 mrpC	Identify (%) 44.2	(%) (%) 81.7	Matched length (aa) 104	Function Na+/H+ antiporter or multiple resistance and pH regulation related protein C or cation transport system protein Na+/H+ antiporter or multiple resistance and pH regulation related
2915482		2915922	441	gp:AF097740_5	Bacillus firmus OF4 mrpE	26.7	6.09	161	Na+/H+ antiporter or multiple resistance and pH regulation related protein E
2915929		2916201	273	prf.2416476G	Rhizobium meliloti phaF	32.5	66.2	77	K+ enux system of multiple resistance and pH regulation related protein F
2916205		2916582	378	prf:2504285H	Staphylococcus aureus mnhG	25.6	63.6	121	Na+/H+ antiporter or multiple resistance and pH regulation related protein G
2917617	 	2917024	594	pir:D70594	Mycobacterium tuberculosis H37Rv lipV	24.7	54.5	178	hypothetical protein :
2918757	-	2917630	1128	sp:YBDK_ECOL!	Escherichia coli K12 ybdK	27.0	61.7	334	hypothetical protein
2919481	-	2918819	663						
2919715		2920293	579	sp:DEF_BACSU	Bacillus subtilis 168 def	37.5	6.09	184	polypeptide deformylase
2919741	 	2919490	252	pir.D70631	Mycobacterium tuberculosis H37Rv Rv0430	47.9	70.4	7.1	hypothetical protein
2920286	+	2921290	1005	pir:B70631	Mycobacterium tuberculosis H37Rv Rv0428c	31.3	54.2	339	acetyltransferase (GNAT) family or N terminal acetylating enzyme
2920476	+-	2919808	699						
2920849	 _	2920250	630						
2921320		2922108	789	gp:AF108767_1	Salmonella typhimurium LT2 xthA	30.8	6.69	31	exodeoxyribonuclease III or exonuclease
6514 2922118	1	2923617	1500	0 gp:BFU88888_2	Bacillus firmus OF4 cls	27.9	62.0	513	cardiolipin synthase

5		Function		membrane transport protein of bicyclomycin resistance protein	sodium dependent phosphate pump	phenazine biosynthesis protein		ABC transporter	ABC transporter ATP-binding protein	mutator mutT protein	hypothetical membrane protein	glutamine-binding protein precursor	serine/threonine kinase	COVE	ferredoxin/lerredoxin-ivAUF reductase	acetyltransferase (GNAT) family				phosphoribosylgiyanamide formyltransferase	
15	Matched	length (a.a.)		393	382	289		255	309	168	423	270	805		457	156				379	
20		Similarity (%)		67.2	68.9	56.4		60.8	66.3	68.5	70.2	64.8	63.5		67.8	60.3				82.6	
		Identity (%)		31.6	28.5	38.8		24.3	36.9	47.6	35.0	31.5	41.2		37.2	34.0				59.1	_
30 to described to the second	(page 1)	ons gene		<12 bcr	S1569 nptA	ureofaciens 30-		elicolor A3(2)	ırmis ATCC	luberculosis	tuberculosis	nermophilus	tuberculosis s pknG			K12 elaA				168 purT	
	ann	Homologous gene		Escherichia coli K12 bor	Vibrio cholerae JS1569 nptA	Pseudomonas aureofaciens 30- 84 phzC		Streptomyces coelicolor A3(2) SCE8.16c	Bacillus licheniformis ATCC 9945A bcrA	Mycobacterium tuberculosis H37Rv Rv0413	Mycobacterium tuberculosis H37Rv Rv0412c	Bacillus stearothermophilus NUB36 glnH	Mycobacterium tuberculosis H37Rv Rv0410c pknG		Bos taurus	Escherichia coli K12 elaA				Bacillus subtilis 168 purT	
<i>35</i> 40		db Match		sp.BCR_ECOLI	op.VCAJ10968 1			gp:SCE8_16	sp:BCRA_BACI.1	pir:C70629	pir:B70629	sp:GLNH_BACST	pir:H70628		sp:ADRO_BOVIN	Sp:ELAA ECOLI				sp:PURT_BACSU	
	-	ORF (bp)	654		1164 00		633	1 &	936 sp	501 pi	1386 pi	1032 sı	2253 pi	747	1365 s	546 s	-	1029	399		888
45		Terminal (nt)	2924844		_	1	2927651	+	2928302	2929256	2931336	2932371	2934829	2932652	2939767	2940452	2940447	1	;	1	2945639
50		Initial (nt)	2924191	+-			2928283			2929756	2929951	2931340	2932577	2933398			2941508				2946526
		SEQ	6515							6522	6523	6524	6525	6528				_			6533
55			2015			3018		3020	3021	3022	3023	3024	3025	3006	3027	9000	3020	3030	2 2	3032	3033

09

S\$

0*†*

SE

οε

52

50

SI

10

s

							h	-	_	- 000
						399	2963198	_		3051
						279	2962730	2963008	6550	3050
		-				720	2960468	2961187	6549	3049
sulfurtransferase	294	56.1	29.6	Hamo sapiens mpsT	sp:THTM_HUMAN	852	2959520	2960371	6548	3048
hypothetical protein	250	60.0	27.6	Mycobacterium tuberculosis H37Rv Rv0383c	pir:870834	972	2958139			3047
orotate phosphoribosymansicraso	174	65.5	39.1	Pyrococcus abyssi pyrE	gp:AF058713_1	552	2957485	2958036	6546	3046
methyltransferase	182	91.2	76.9	Mycobacterium tuberculosis H37Rv Rv0380c	pir:G70833	618	2956830	2957447	6545	3045
hypothetical protein	304	100.0	100.0	Corynebacterium glutamicum AS019 ATCC 13059 ORF1	gp:CGFDA_1	951	2955523	2956473	6544	3044
fructose-bisphosphate aldolase	344	100.0	99.7	Corynebacterium glutamicum AS019 ATCC 13059 fda	pir: S09283	1032	2954241	2955272	6543	3043
hypothetical membrane protein	359	100.0	100.0	Corynebacterium glutamicum AS019 ATCC 13059 ORF3	sp:YFDA_CORGL	1167	2952975	2954141	6542	3042
						264	2952972	2952709	6541	3041
hypothetical protein	204	59.3	34.3	Mycobacterium tuberculosis H37Rv Rv0358	pir:G70575	759	2952691	2951933	6540	3040
adenylosuccinate synthetisc	42/	95.3	89.7	ammoniagenes purA	gp:A9003160_1	1290	2950434	2951723	6539	3039
the same supplies						225	2950431	2950207	6538	3038
	;	00.0	01.7	Bacillus brevis ALK36 degu	sp:DEGU_BACBR	618	2949265	2949882	6537	3037
histidine kinase transcriptional regulator	218	65.6	22.4	opc-520 chiS	gp:AB016841_1	1140	2948049	2949188	6536	3036
two-component system sensor	89	84.3	67.4	Corynebacterium glutamicum orf1	pir.S60889	267	2947620	2947886	6535	3035
Insertion element (183 related)	295	90.9	77.6	orf2	pir.S60890	894	2946698	2947591	6534	
Function	Matched length (a.a.)	Similarity (%)	Identity (%)	Homologous gene	db Match	ORF (bp)	Terminal (nt)	Initial (nt)	SEO O OS	SEQ NO.
				Table 1 (continued)						

09

St

0\$

sε

οε

SZ

50

91

10

g

oxidoreductase	386	60.6	31.9	Mycobacterium tuberculosis H37Rv Rv0385	pir:D70834	1179	2977774	2976596	6567	3067
hypothetical protein	204	64.7	33.6	Mycobacterium tuberculosis H37Rv Rv0836c	pir:D70812	732	2976360	2975629	6566	3066
hypothetical protein	361	56.2	30.5	Mycobacterium tuberculosis H37Rv Rv0837c	pir:E70812	1125	2975591	2974467	6565	3065
rifampin ADP-ribosyl transferase	56	87.5	73.2	Streptomyces coelicolor A3(2) SCE20.34c arr	gp:SCE20_34	183	2974382	2974200	6564	3064
rifampin ADP-ribosyl transferase	89	65.2	49.4	Streptomyces coelicolor A3(2) SCE20.34c arr	gp:SCE20_34	240	2974200	2973961	6563	3063
family	184	67.9	40.2	Streptomyces coelicolor A3(2) SC1A2.11	gp:SC1A2_11	567	2973230	2973796	6562	3062
hacterial regulatory protein, lact	3/3	62.4	36.5	Escherichia coli K12 metB	Sp:METB_ECOLI	1146	2972060	2973205	6561	3061
cystathionine namma-lyase	275	3				762	2971338	2972099	6560	3060
alkanal monooxygenase alpha chain	399	47.4	21.1	Kryptophanaron alfredi symbiont	sp:LUXA_KRYAS	1041	2972057	2971017	6559	3059
or steroid monooxygenase	476	45.4	22.5	Rhodococcus rhodochrous IFO3338	gp:AB010439_1	1170	2971003	2969834	6558	3058
(zinc/cadmium)	283	63.3	23.7	Pyrococcus abyssi Orsay PAB0462	pir.H75109	858	2969808	2968951	6557	3057
cation efflux system protein	108	71.3	37.0	Staphylococcus aureus cadC	sp:CADF_STAAU	387	2968789	2968403	6556	3056
protein protein protein	489	54.8	24.7	Synechocystis sp. PCC6803 sir0625	pir:S76683	1347	2966458	2967804	6555	3055
virulence factor	132	63.0	62.0	Pseudomonas aeruginosa ORF25110	GSP:Y29193	396	2965583	2965188	6554	3054
virulence factor	200	55.0	38.0	Pseudomonas aeruginosa ORF23228	GSP:Y29182	762	2965837	2965076	6553	3053
virulence lactor	59	82.0	76.0	ORF24222	GSP: Y29188	177	2964434	2964258	6552	
Function	length (a.a.)	Similarity (%)	Identity (%)		db Match	(b) (b)	Terminal (nt)	Initial (nt)	SEQ (a.a.)	SEQ NO.
				Table 1 (continued)						

3084	3083	3082	3081	3080	30/8	3070	3078	3077	3076	3075	3074	3073	3072	30/1		3070	3069		SEQ NO.			SS
4 6584	6503	6582	6581	6580	4	6570	6578	6577	6576	6575	6574	6573	6572	00/1	25	6570	6569	6568	SEQ NO.			
4 2996781	3 2995405	2993921	2993286	2991718	+-	2990045	2988846	2986833	2986397	2984522	2983679	2982460	2981698	7900007	2090997	2978982	2978737	2978644	Initial (nt)			09
2995747	2993921	2993286	2989954	2992602	+	2988846	2988214	2988164	2984544	2983887	2982495	2982023	2980181	2001210	2081216	2980115	2978979	2977847	Terminal (nt)			SÞ
1035	1485	636	3333	885	e l	1200	633	1332	1854	636	1185	438	1518		330	1134	243	798	ORF (bp)			
sp:ADH2_BACST			sp:CUT3_SCHPO				sp:PFS_HELPY	gp:SCF6_8	gsp:R94587	sp:GRPE_STRCO	sp:DNAJ_MYCTU	gp:SAU43299_2	pri. 21043330	10101000	GP:ABCARRA_2	gp:SC4A7_3		pir.869109	db Malch			04
DSM 2334 a			cut3	Schizosacch			Helicobacter	Streptomyces SCF6.09	Brevibacteriu dnaK	Streptomyce	Mycobacterium tuber H37Rv RV0352 dna	Streptomyces	ctrontomyces	Bhodococcus	Azospirillum t	Streptomyces of SC4A7.03		Methanobacterium thermoautotrophici MTH 1811	Homol	Table		SE
DSM 2334 adh	rothormonhilus		-	Schizosaccharomyces pombe			Helicobacter pylori HP0089 mtn	s coelicolor A3(2)	Brevibacterium flavum MJ-233 dnaK	Streptomyces coelicolor grpE	Mycobacterium tuberculosis H37Rv RV0352 dnaJ	Streptomyces arous Chief.	athus G hspR	Phodococcus erythropolis thcA	Azospirilum brasilense carR	coelicolal A3(4)	VOICE ASSESSMENT	Methanobacterium thermoautotrophicum Delta H MTH 1811	Homologous gene	Table 1 (continued)	:	30
50.0		+	10.0	100		<u> </u>	27.2	42.6	99.8	38.7	56.7		47.4	69.6	38.0	28.0		32.0	Identity (%)			
81.7	2			AR A			60.0	79.0	99.8	66.5	80.1		70.4	90.3	44.0	55.4		67.3	Similarity (%)			50
5	33		١ ٠	1311			195	338	618	212	397		135	507	108	289		275	length (a.a.)	Na isabad		SI
	alcohol dehydrogenase			chromosome segregation protein			nucleosidase and S- adenosylhomocysteine nucleosidase	hypothetical membrane protein	heat shock protein dnaK	protein bound to the ATPase domain of the molecular chaperone DnaK	heat shock protein dids		heat shock transcription regulator	aldehyde dehydrogenase	system system	nypomencar protein	The stipple protein	N-carpamoyi-D-airiilio acid	Function			01
	nase			gation protein			eine nucleosidase	rane protein	dnaK	ATPase domain aperone DnaK	e factor grpE	-	tion regulator	nase	or regulatory	t contained			on on			g

Ot

sε

οε

g

						400	3010441	3010926	6604	3104
						100	+	-		1000
						321	3010979	3010659	5033	3
ammonia monooxygeriase	161	76.4	39.1	88-260 amoA	gp:PPAMOA_1	522	3009710	3010231	6602	3102
nypotitetical protein	8	66.3	50.0	Streptomyces coelicolor A3(2) SCE68.10	gp:SCE68_10	366	3009607	3009242	6601	3101
and C-P lyase activity	; ;	09.9	20.0	Escherichia coli K12 phnB	sp:PHNB_ECOLI	414	3008749	3009162	6600	3100
alkylphosphonate uptake protein	142	50 0	2			534	3009303	3008770	6599	3099
						237	3008453	3008689	6598	3098
			1	Homo sapiens hype	prf:2420294J	1083	3008376	3007294	6597	3097
huntingtin interactor	144	59.7	306	FLZOU arm			3000313	3005545	5596	3096
reductase	487	61.4	30.8	Saccharomyces cerevisiae	1371 Sn. ADRO YEAST	1271	2000015			0
ferredoxin/ferredoxin-NADP	306	03.0	34.5	Synechococcus sp. PCC 7942	sp:NIR_SYNP7	1683	3003480	3005162	2525	3005
ferredoxinnitrate reductase	503	מח	2	Dacinus sucinis cys.	sp:CYH1_BACSU	693	3002453	3003145	6594	3094
phosphoadenosine phosphosullate reductase	212	64.2	39.2	Docillus subtilis OVSH						000
chain	308	70.1	46.1	Escherichia coli K12 cysD	sp:CYSD_ECOLI	912	3001542	3002453	6593	roor
sulfate adenvivitransferase small					sp:CYSN_ECOLI	1299	3000241	3001539	6592	3092
suifate adenyiyii ahsici ase, subsiii.	414	78.3	47.3	Secherichia coli K12 cvsN			0272000	3001312	6591	3091
in the sectorace submit						915	3000406	3016		
196		00.6	32.3	SC7A8.10c	gp:SC7A8_10	723	2999478	3000200	6590	3090
hypothetical protein	252	C3 3	3	Streetsmyces coelicolor A3(2)	bit. Feeday	92/	2998528	2999454	6589	3089
hypothetical membrane protein	301	70.1	43.5	Bacillus subtilis vanA		261	2997963	2998223	6588	3088
						189	2997876	2997688	6587	3087
						207	2997481	2997687		
						216	2997366	2997151	6585	
	(0.4)					(g	(nt)	(nt)	(a.a.)	(DNA)
Function	Matched length	Similarity (%)	Identity (%)	Homologous gene	db Match	ORF.	Terminal	Initial	SEQ	SEQ
				Table 1 (continued)						
									*	

05

S†

07

sε

οε

SZ

50

SI

10

						lable i (continued)				
	NO	Initial (nt)	Terminal (nt)	(항유	db Match	Homologous gene	Identity (%)	Similarity (%)	length (a.a.)	Function
3105 2015	(a.a.)	3010989	3011273	285	SP:YTZ3_AGRVI	Agrobacterium vitis ORFZ3	41.0	58.0	68	hypothetical protein
	-	3011805	3011242	564						
		3012809	3011808	1002	sp:YGB7_ALCEU	Alcaligenes eutrophus H16 ORF7	26.1	57.9	337	hypothetical protein
3108	8088	3013798	3013106	693	gp:HIU68399_3	Haemophilus influenzae hmcB	35.7	64.8	199	ABC transporter
<u> </u>	6609	3014550	3013837	714	gp:HIU68399_3	Haemophilus influenzae hmcB	39.3	73.0	211	ABC transporter
	6610	3014616	3015824	1209	pir:A69778	Bacillus subtilis ydeG	30.8	67.8	416	metabolite transport protein nomolog
_	6611	3015469	3014648	822						
3112	6612	3016238	3016924	687						
3113	6613	3017149	3015827	1323	sp:DAPE_ECOLI	Escherichia coli K12 msg8	21.5	48.5	466	desuccinylase
3114	6614	3017316	3019220	1905						
3115	6615	3017539	3018312	774						
:	6616	3018181	3017420	762						
3117	6617	3019076	3018123	954	GPU:DCA297422_	Daucus carola	33.0	46.0	114	dehydrin-like protein
3118	6618	3020609	3019542	1068	sp:MALK_ECOLI	Escherichia coli K12 malK	24.9	50.1	373	maltose/maltodextrin transport ATP- binding protein
3119	6619	3021202	3020561	642						
3120	6620	3021825	3021208	618	gp:AF036485_6	Lactococcus lactis Plasmid pNZ4000 Orf-200 cbiM	30.2	67.6	179	cobalt transport protein
3121	6621	3022928	3022113	816	sp:FRP_VIBHA	Vibrio harveyi MAV frp	37.2	71.4	231	NADPH-flavin oxidoreductase
3122	6622	3023900	3022998	903	sp:IUNH_CRIFA	Crithidla fasciculata iunH	28.4	59.3	317	hydrolase
3123	6623	3024379	3025353	975	gp:SCE20_8	Streptomyces coelicolor A3(2) SCE20.08c	31.2	59.4	276	hypothetical membrane protein
3124	6624	3025552	3026139	588	sp:3MG1_ECOLI	Escherichia coli K12 tag	50.3	78.8	179	DNA-3-methyladenine glycosylase
3125	6625	3027299	3026142	1158	sp:HMPA_ALCEU	Alcaligenes eutrophus H16 fhp	33.5	63.8	406	flavohemoprotein

2A 067 801 1 93

sε

0ε

SI

s

beta-N-Acetyigincosamiindase	410	58.1	28.5	nagA	gp:AB008771_1	1185	3040748	4 3041932	6644	3144
						1689	3038993	3 3040681	6643	3143
nypothetical protein	67.2	59.4	30.6	SCC75A, 16c	gp:SCC75A_16	771	3038942	2 3038172	6642	3142
				Ct. (Alarma applicator Astro)		237	3037911	3037675	6641	3141
deaminase	188	72.3	43.6	Escherichia coli K12 dcd	sp:DCD_ECOLI	567	3036845	3037411	6640	3140
deoxycytidine triphosphate		7.2.2	40.0	Sinorhizobium meilloti rkpk	prf:2422381B	1317	3035440	3036756	6639	3139
UDP-glucose dehydrogenase	AAO	73 3	n n			183	3034105	3034287	6638	3138
hypothetical membrane protein	399	70.2	33.6	Streptomyces coelicolor A3(2) SCQ11.10c	gp:SCQ11_10	1257	3035437	3034181	6637	3137
transposase (ISCg2)	401	100.0	100.0	ATCC 13032 tnp	gp:AF189147_1	1203	3033863	3032661	6636	3136
						300	3032348	3032647	6635	3135
aspanate aminut disterds	402	80.9	53.7	Methylobacillus flagellatus aat	gp:L78665_2	1257	3031979	3030723	6634	3134
6-phospho-beta-glucosidase	66	78.8	43.9	Clostridium longisporum 86405 abgA	sp:ABGA_CLOLO	240	3030101	3030340	6633	3133
						381	3030535	3030155	6632	3132
6-phospho-beta-glucosidase	167	59.9	43.7	Clostridium longisporum 86405 abgA	sp:ABGA_CLOLO	360	3029702	3030061	6631	3131
						279	3029782	3029504	6630	3130
glucoside positive regulatory protein	192	69.3	28.1	Escherichia coli K12 bglC	sp:BGLG_ECOLI	591	3028884	3029474	6629	3129
transcription antiterminator or beta-						156	3029033	3028878	6628	3128
oxidoreductase	210	63.8	34.8	Streptomyces coelicolor A3(2) mmyQ	gp:SCO276673_18	624	3028891	3028268	6627	3127
						603	3028163	3027561	6626	3126
Function	Matched length (a.a.)	Similarity (%)	Identity (%)	Homologous gene	db Malch	(항유	Terminal (nt)	Initial (nt)	NOSEO	SED NO.
				Table 1 (continued)						

						1422	SUSBUSE	71,56505	6662	3162
						3	200000	-		
mebrane transport protein	768	72.3	42.3	Mycobacterium tuberculosis H37Rv Rv0206c mmpL3	pir:C70839	2316	3059643	3057328	6661	3161
hypothetical protein	207	85.0	69.1	Mycobacterium tuberculosis H37Rv Rv0207c	pir:E70959	705	3057317	3056613	6660	3160
hypothetical protein	241	67.2	35.7	Escherichia coli K12 yggH	sp:YGGH_ECOLI	765	3056631	3055867	6659	3159
C4-dicarboxylate transporter	332	52.7	24.4	Pyrococcus abyssi Orsay PAB2393	pir:E75125	1011	3055769	3054759	6658	3158
phosphoenolpyruvate carboxykinase (GTP)	601	78.5	54.7	Neocallimastix frontalis pepck	sp:PPCK_NEOFR	1830	3052062	3053891	6657	3157
methyl transferase	251	73.3	58.6	Mycobacterium tuberculosis H37Rv Rv0224c	pir:F70961	771	3051964	3051194	6656	3156
hexosyltransferase	369	79.1	53.4	Mycobacterium tuberculosis H37Rv Rv0225	pir:G70961	1137	3049456	3050592	6655	3155
						669	3051190	3050522	6654	3154
hypothetical membrane protein	529	54.8	31.2	Mycobacterium leprae MLCB1883.04:	gp:MLCB1883_3	1422	3049479	3048058	6653	3153
						708	3047197	3047904	6652	3152
acyltransferase or macrolide 3-O- acyltransferase	408	51.0	27.7	Streptomyces sp. acyA	pir:JC4001	1068	3046122	3047189	6651	3151
hypothetical membrane protein	363	47.1	24.8	Mycobacterium leprae MLCB1883.05c	gp:MLCB1883_4	903	3048048	3047146	6650	3150
						195	3045990	3045796	6649	3149
						621	3043022	3043642	6648	3148
hypothetical protein	1416	49.4	29.6	Mycobacterium leprae MLCB1883.13c	gp:MLCB1883_7	3129	3045788	3042660	6647	3147
						201	3042703	3042503	6646	3146
						444	3042437	3041994	6645	3145
Function	Matched length (a.a.)	Similarity (%)	Identity (%)	Homologous gene	db Match	ORF (bp)	Terminal (nl)	Initial (nt)	SEQ (a a.)	SEO NO
				Table 1 (continued)						

EP 1 108 790 A2

55

09

SÞ

07

Sε

οε

SZ

50

SI

S

0ε

SI

S

								-	_		
							729		$\overline{}$		3107
	18	00.0	1.12	s pzaA	Mycobacterium smegmatis pzak	prf:2501285A	1143	3100698		_	3106
nicotinamidase or pyrazinamidase	460	50.9	27 A				630	3099454	3098825	6695	3195
phosphoglycerate mutase	210	62.8	37.2	a pgm	Amycolatopsis methanolica pgm	gp:AMU73808_1	669	3097904	3098572	6694	3194
2,3-PDG dependent		3					99	3097780	3097878	6693	3193
hypothetical protein	113	79.7	46.0	sis	Mycobacterium tuberculosis H37Rv Rv3836	pir:A70653	342	3097764	3097423	6692	3192
hypothetical protein	356	61.2	32.6	is	Mycobacterium tuberculosis H37Rv Rv3835	pir:H70652	1113	3097423	3096311	6691	3191
or fatty acyl-responsive regulator	235	61.7	27.7		Escherichia coli K12 farR	sp:FARR_ECOLI	714	3096287	3095574	6690	3190
seryl-tRNA synthetase	419	87.6	70.2	15	Mycobacterium tuberculosis H37Rv	gsp:W26465	1266	3094078	3095343	6689	3189
acyltransferase	261	72.0	46.7	is	Mycobacterium tuberculosis H37Rv Rv3816c	pir:D70521	876	3093175	3094050	6688	3188
hypothetical protein	279	70.3	41.6	15	Mycobacterium tuberculosis H37Rv Rv3813c	pir:A70521	834	3092342	3093175	6687	3187
glycerol kinase	499	78.8	51.7		Pseudomonas aeruginosa ATCC 15692 glpK	sp:GLPK_PSEAE	1527	3090760	3092286	6886	3186
hypothetical protein	659	47.8	29.6		Mycobacterium tuberculosis H37Rv Rv3811 csp	pir:G70520	2049			6685	3185
ODP-galactopytatiose illutase	377	72.9	43.2	-	Escherichia coli K12 glf	sp:GLF_ECOLI	,	-+	3088303	6684	3183
							513	3768976	+	25	
oxide-forming)	377	50.4	24.4	-	Sus scrofa fmo1	sp:FMO1_PIG	1302	i	— - i	6682	3182
dimethylaniline monooxygenase (N-				_			510	3085218	3085727	6681	3181
				-			777	3084424	3085200	6680	3180
	(0.0)]	_			(bp)	(nt)		(a. 0 (a. 0	ÔN NO
Function	Matched length	Similarity (%)	dentity		Homologous gene	dh Match	QR.F	Terminal	nitial	SEQ	SEO
				۳	Table 1 (continued)						
o	SI	50		52	oε	0¢ SE		9 †	05		SS
12	ı	3		;							

09

57

07

sε

οε

) S2

50

SI

10

G .

3236 6736 3136491 3135856 636 prf 2518330B	3235 6735 3135297 3135752 456 Sp.YXAU_BACSO	3133//8 1491	200720		3232 6732 3133028 3131508 1521	3231 6731 3132920 3133030 111	3230 6730 3129785 3131395 1611	3229 6729 3128606 3129739 1134 gp:AF121000_10	3228 6728 3128417 3127494 924 sp:GLTC_BACSU			3226 6726 3126145 3125495 651 sp:PMSR_ECOL	3225 6725 3125343 3125492 150	3224 6724 3125298 3124897 402 Sp. ILL I_ARA I		7227 6723 3124886 3124341 546	3222 6722 3124172 3122556 1617 gp:CELY51B11A_1	3221 6721 3123222 3123932 711	3220 6720 3122129 3121992 138	3219 6719 3121598 3121909 312 sp:RPC_BPPH1		3217 6717 3119665 3120879 1215 prf.2219306A	<u> </u>	Terminal
chrA 50.9	Datinos sucinas 100 years	Bacillus subtilis 168 wan		Mycobacterium tuberculosis 33.8 H37Rv Rv3850					Bacillus subriis girc	_	Corynebacterium 82.3	OLI Escherichia coli 8 msrA 47.6			Arabidoneis thaliana ill1 36.9		A_1 Caenorhabditis elegans 29.5			Bacillus phage phi-103 OKT	_	Neisseria meningitidis IIdA 40.4		Homologous gene (%)
/5.5 212	\dashv	65.0 13	59.3 447	64 8 216	+			49.0	-	65 8 292	92.7 164	69.1 210			63.1 122		51.3 569			-	80 0 55	68.9 3/6	+	Similarity length (%) (a.a.)
		37 transcriptional regulator	7 membrane transport protein	_				\bot		2 transcriptional regulator	superoxide dismutase (Fe/Mn)		pentide methionine sulfoxide	13) 41000	peptidase of IAA-diffile acts			phosphatase or reverse			immunity repressor protein		L-lactate dehydrogenase or FMN-	h Function

EP 1 108 790 A2

οε

s

				H37Rv Rv2744c	sp:35KD_MYCTO	873	3153894	3154766	6753	3253
hypothetical protein	267	78.7	48.3	SC4G6.31c Mycobacterium tuberculosis	gp.ac4co_o	1 10	3153828	3152413	6752	3252
hypothetical protein	488	48.2	26.0	Streptomyces coelicolor	an SCAGE 31	1116	2			
activator	109	56.0	30.3	Escherichia coli K12 MG1655 glcC	sp:GLCC_ECOLI	363	3151842	3152204	6751	3251
bacterial regulatory protein, gntR						207	3151369	3151575	6750	3250
nypotnetical protein	42	75.0	71.0	TC0129	PIR:F81737	141	3147230	3147090	6749	3249
	\perp	9	01.0	Chlamydia pneumoniae	GSP:Y35814	273	3146841	3146569	6748	3248
hypothetical protein	84	51.2	28.4	Chlorobium vibrioforme ybc5	sp:YBC5_CHLVI	966	3145626	3144661	6747	3247
hypothetical protein		73.9	38.5	Escherichia coli K12 MG1655 yhbW	sp:YHBW_ECOLI	987	3143496	3144482	6746	3246
hypothetical protein	296 h	69.6	41.2	Mycobacterium tuberculosis H37Rv Rv2005c	sp:YW12_MYCTU	903	3142454	3143356	6745	3245
transglycosylase-associated protein	87 ti	71.3	34.5	Escherichia coli K12 MG1655 tag1	sp:TAG1_ECOLI	261	3141709	3141969	6744	3244
transcriptional repressor	192	60.9	32.3	Mycobacterium tuberculosis H37Rv Rv3173c	pir:C70948	639	3140885	3141523		
		33.0	26.0	Bacillus subtilis spollid	sp:SP3J_BACSU	1302	3140952	3139651	6742	3242
hypothetical protein		59.2	30.0	Streptomyces coelicolor A3(2) SCH69.20c	gp:SCH69_20	822	3138634	3139455	6741	3241
hypothetical protein		79.2	45.8	Streptomyces coclicolor A3(2) SCH69.22c	gp:SCH69_22	150	3138481	6740 3138630	6740	3240
histidine kinase		04.0	30.2	chrS	prf:2518330A	1311 F	3136593	6739 3137903	6739	3239
two-component system sensor	_	2		Caracharium dinhiheriae		588	3138471	3137884	6738	
						639	3137558	3136920		
	(a.a.)	(%)		Homologous gene	db Match	(\$ P)	Terminal (nt)	fnitial (nt)	(a.a.)	(DNA)
Function	Matched	Similarity	Identity				-			_
				Table 1 (continued)						

SEG Initial Terminal ORF OB Marich Homologous gene Identity Similarity Initial (a.a.) 1156997 315248 1452 1452 15697 3157273 249 157777 315808 720 Sireplomyces coelicolor A3(2) 32,3 58,1 217 5761 315028 3150419 204 204 205 205 206 2			09	SÞ		0¢ SE	30		50	SI	oi
Indial Terminal ORF OR							Table 1 (continued)				
6754 3154817 3154969 153 153 155 155 155 1452 1452 1452 155 155 155246 1452		SEQ	Initial (nt)	erminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)		Matched length (a.a.)	Function
6755 3156697 3155246 1452 1452 1452 1452 1452 1453 1668 1668 1668 1668 1668 1668 1668 16757 3157471 3157232 249 16757 157471 3157273 3157479 309 171 186757 157479 309 171 1875787 3157479 309 171 1875787 3157479 309 171 1875787 3157479 309 171 185787 3157479 309 171 185787 1817479 309 181727 28.1 55.2 241 185789 3159801 720 \$P.NO21_SOYBN Soybean NO21 25.1 55.2 241 55.2 241 55.2 241 56.2 </td <td></td> <td>6754</td> <td>3154817</td> <td>3154969</td> <td>153</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		6754	3154817	3154969	153						
6756 3157373 3156306 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 106757 3157471 3157232 249 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 106419 204 1068 106419 204 1068 106938 3161061 186 106761 3160816 3161001 186 106763 3160816 3161001 186 106763 3161001 186 106764 3160938 3161001 186 106764 3160938 3161007 321 8p.FER_SACER Saccharopolyspora eruginosa TNP5 48.2 92.9 56 6765 3161407 3161087 321 8p.FER_SACER Saccharopolyspora eruginosa TNP5 48.2 92.9 56 6766 3161407 3161087 321 8p.FER_SACER Streptomyces coelicolor A3(2) 47.3 <		6755	3156697		1452						
6757 3157471 3157223 249 Streptomyces coelicolor A3(2) 32.3 58.1 217 6758 3157187 3158834 711 gp:SCD35_11 Streptomyces coelicolor A3(2) 32.3 58.1 217 6759 3158124 3158834 711 gp:SCD35_11c ScD35.11c 26.1 55.2 241 6750 3158900 3159081 720 sp:NO21_SOYBN soybean NO21 26.1 55.2 241 6761 3160216 3161001 186 PSEME Pseudomonas aeruginosa TNP5 48.2 92.9 56 6762 3161081 3161087 321 sp:TRPS_PSEAE Pseudomonas aeruginosa TNP5 48.2 92.9 56 6763 3161219 3161087 321 sp:TER_SACER Saccharopolyspora erythraea fer 90.3 98.4 62 6766 3162710 3161882 333 3p:SCD31_14 Streptomyces coelicolor A3(2) 47.3 85.5 55 6769 3162710 3162891 <td< td=""><td></td><td>6756</td><td>3157373</td><td></td><td>1068</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		6756	3157373		1068						
6758 3157787 3157479 309 Streptomyces coelicotor A3(2) 32.3 58.1 217 6759 3158124 3158834 711 gp:SCD35_11 ScD35_11c 32.3 58.1 217 6759 3158124 3158834 711 gp:SCD35_11c 26.1 55.2 241 6760 3159800 3159800 3159801 720 sp:NO21_SOYBN soybean NO21 26.1 55.2 241 6761 3160216 3160419 204 26.1 55.2 241 6762 3160688 3161065 378 204 25.1 55.2 241 6763 3160688 3161067 186 sp:TNP5_PSEAE Pseudomonas aeruginosa TNP5 48.2 92.9 56 6763 3161087 3161087 321 sp:TNP5_PSEAE Pseudomonas aeruginosa TNP5 48.2 92.9 56 6764 316271 3161682 333 3p:SCD31_14 Streptomyces coelicolor A3(2) 47.3 85.5 55 <td></td> <td>6757</td> <td>3157471</td> <td>3157223</td> <td>249</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		6757	3157471	3157223	249						
6759 3158124 3158834 711 gp:SCD35_11 Streptomyces coelicolor A3(2) 32.3 58.1 217 6760 3159800 3159801 720 sp:NO21_SOYBN soybean NO21 26.1 55.2 241 6761 3160881 3161065 378 26.1 55.2 241 6762 3160816 3161001 186 26.6 26.1 55.2 241 6763 3160816 3161001 186 26.6 26.7 26.1 55.2 241 6764 3100938 3160723 216 sp:TNP5_PSEAE Pseudomonas aeruginosa TNP5 48.2 92.9 56 6765 3161219 3161087 321 sp:FER_SACER Saccharopolyspora erythrase fer 90.3 98.4 62 6766 316271 31618282 333 gp:SCD31_14 Streptomyces coelicolor A3(2) 47.3 85.5 55 6769 316271 3162871 162 GPU-AF164956_8 Tnp1673 84.0 90.0<		6758	3157787	3157479	309						
6760 3159800 3159801 720 \$p.NO21_SOYBN soybean NO21 26.1 55.2 241 6761 3160216 3160419 204		6759	3158124	3158834	711	gp:SCD35_11	Streptomyces coelicolor A3(2) SCD35.11c	32.3	58.1	217	methyltransfera
6761 3160216 3160419 204	_	6760	3159800	3159081	720	sp:NO21_SOYBN	soybean NO21	26.1	55.2	241	nodulin 21-rela
6762 3160688 3161065 378		6761	3160216	3160419	204						
6763 3160816 3161001 186 PSEAE Pseudomonas aeruginosa TNP5 48.2 92.9 56 6764 3160938 3160723 216 sp:TNP5_PSEAE Pseudomonas aeruginosa TNP5 48.2 92.9 56 6765 3161201 3161701 483 3161701 483 3161701 483 3161701 483 3161701 483 3161701 3161701 483 3161701 483 3161701 483 3161701 483 3161701 483 3161701 483 3161701 483 3161701 483 3161701 483 3161701 483 3161701 47.3 85.5 50		6762	3160688	3161065	378						
6764 3160938 3160723 216 sp:TNP5_PSEAE Pseudomonas aeruginosa TNP5 48.2 92.9 56 6765 3161219 3161701 483 216 sp:FER_SACER Saccharopolyspora erythraea fer 90.3 98.4 62 6766 3161407 3161682 333 gp:SCD31_14 Streptomyces coelicolor A3(2) 47.3 85.5 55 6767 3162694 3162804 111 GPU:AF164956_B Corynebacterium glutamicum 81.0 84.0 27 6769 3162710 3162871 162 GPU:AF164956_B Corynebacterium glutamicum 84.0 90.0 46 6770 3162852 3163889 1038 27 84.2 90.0 46 6771 3162983 3162858 126 sp:G3P_PYRWO Pyrococcus woesel gap 63.2 84.2 38 6772 3163733 3163789 2217 pir.S77018 Synechocystis sp. PCC6803 32.2 59.4 180 6774 3166005 3	\rightarrow	6763	3160816	3161001	186						
6765 3161219 3161701 483 Sp:FER_SACER Saccharopolyspora erythraea fer 90.3 98.4 62 6766 3161407 3161087 321 sp:FER_SACER Saccharopolyspora erythraea fer 90.3 98.4 62 6767 3162014 3161682 333 gp:SCD31_14 Streptomyces coelicolor A3(2) 47.3 85.5 55 6768 3162694 3162804 111 GPU:AF164956_B Corynebacterium glutamicum 81.0 84.0 27 6769 3162710 3162871 162 GPU:AF164956_23 Corynebacterium glutamicum 84.0 90.0 46 6770 3162852 3163889 1038 126 sp:G3P_PYRWO Pyrococcus woesel gap 63.2 84.2 38 6772 3163733 3163074 660 pir.S77018 Synechocystis sp. PCC6803 32.2 59.4 180 6774 3166005 3163789 2217 pir.H69268 Archaeoglobus fulgidus AF0152 45.8 73.4 717		6764	3160938	3160723	216	sp:TNP5_PSEAE	Pseudomonas aeruginosa TNP	+	92.9	56	transposon Ins
6766 3161407 3161087 321 sp:FER_SACER Saccharopolyspora erythraea fer 90.3 98.4 62 6767 3162014 3161682 333 gp:SCD31_14 Streptomyces coelicolor A3(2) 47.3 85.5 55 6768 3162694 3162804 111 GPU:AF164956_B Corynebacterium glutamicum 81.0 84.0 27 6769 3162710 3162871 162 GPU:AF164956_23 Corynebacterium glutamicum 84.0 90.0 46 6770 3162852 3163889 1038 27 Pyrococcus woesel gap 63.2 84.2 38 6771 3163933 3163074 660 pir.S77018 Synechocystis sp. PCC6803 32.2 59.4 180 6773 3166005 3163789 2217 pir.H69268 Archaeoglobus fulgidus AF0152 45.8 73.4 717		6765	3161219	3161701	483						
6767 3162014 3161682 333 gp:SCD31_14 Streptomyces coelicolor A3(2) 47.3 85.5 55 6768 3162694 3162804 111 GPU:AF164956_8 Corynebacterium glutamicum 81.0 84.0 27 6769 3162710 3162871 162 GPU:AF164956_23 Corynebacterium glutamicum 84.0 90.0 46 6770 3162852 3163889 1038 Corynebacterium glutamicum 84.0 90.0 46 6771 3162983 3162858 126 sp:G3P_PYRWO Pyrococcus woesel gap 63.2 84.2 38 6772 3163733 3163074 660 pir.S77018 Synechocystis sp. PCC6803 32.2 59.4 180 6774 3166005 3163789 2217 pir.H69268 Archaeoglobus fulgidus AF0152 45.8 73.4 717	- 1	6766	3161407	3161087	321		Saccharopolyspora erythraea fe	+	98.4	62	ferredoxin pred
6768 3162694 3162804 111 GPU:AF164956_B Corynebacterium glutamicum 81.0 84.0 27 6769 3162710 3162871 162 GPU:AF164956_23 Corynebacterium glutamicum 84.0 90.0 46 6770 3162852 3163889 1038 Corynebacterium glutamicum 84.0 90.0 46 6771 3162852 3163889 1038 Pyrococcus woesel gap 63.2 84.2 38 6771 3162983 3163074 660 pir.S77018 Synechocystis sp. PCC6803 32.2 59.4 180 6772 3163733 3163078 2217 pir.H69268 Archaeoglobus fulgidus AF0152 45.8 73.4 717		6767	3162014	3161682	333	gp:SCD31_14	Streptomyces coelicolor A3(2)	47.3	85.5	55	hypothetical pr
6769 3162710 3162871 162 GPU:AF164956_23 Corynebacterium glutamicum 84.0 90.0 46 6770 3162852 3163889 1038		6768	3162694	3162804	111	GPU:AF164956_8	Corynebacterium glutamicum Tnp1673	81.0	84.0	27	transposase
6770 3162852 3163889 1038 Pyrococcus woesel gap 63.2 84.2 38 6771 3162983 3162858 126 sp:G3P_PYRWO Pyrococcus woesel gap 63.2 84.2 38 6772 3163733 3163074 660 pir.S77018 Synechocystis sp. PCC6803 32.2 59.4 180 6773 3166005 3163789 2217 pir.H69268 Archaeoglobus fulgidus AF0152 45.8 73.4 717	3269	6769	3162710	3162871	162	GPU:AF164956_23		84.0	90.0	46	TnpNC
6771 3162983 3162858 126 sp:G3P_PYRWO Pyrococcus woesel gap 63.2 84.2 38 6772 3163733 3163074 660 pir.S77018 Synechocystis sp. PCC6803 32.2 59.4 180 6773 3166005 3163789 2217 pir.H69268 Archaeoglobus fulgidus AF0152 45.8 73.4 717 6774 3166287 171 772 772 772 772 772	3270	6770	3162852	3163889	1038						
6772 3163733 3163074 660 pir.S77018 Synechocystis sp. PCC6803 32.2 59.4 180 6773 3166005 3163789 2217 pir.H69268 Archaeoglobus fulgidus AF0152 45.8 73.4 717	3271	6771	3162983	3162858	126	sp:G3P_PYRWO	Pyrococcus woesel gap	63.2	84.2	38	glyceraldehyddehyddehydrogenas
6773 3166005 3163789 2217 pir.H69268 Archaeoglobus fulgidus AF0152 45.8 73.4 717	3272	6772	3163733	3163074	660	pir. S77018	Synechocystis sp. PCC6803 sll0788	32.2	59.4	180	lipoprotein
6774 3166437 3166267	3273	6773	3166005	3163789	2217	pir:H69268	Archaeoglobus fulgidus AF015		73.4	717	copper/potass ATPase B or c ATPase (E1-E
	3274	6774	3166437	3166267	171						

											-
transposase	70	77.0	75.0	Corynebacterium glutamicum Tnp1673	-B Cory	GPU AF164956_	258	3177308	3177565	6791	3291
transposase	73	73.0	58.0	Corynebacterium glutamicum Tnp1673	B Cory	GPÚ:AF164956_	216	3177089	3177304	6790	3290
							309	3177482		6789	3289
hypothetical protein	72	54.0	45.0	Aeropyrum pernix K1 APE2572	Aero	PIR:E72491	390	3175254	3175643	6788	3288
translocating p-type ATPase	606	68.5	39.8	Escherichia coli K12 MG1655 atzN	Esch atzN	sp:ATZN_ECOLI	1875	3176901	3175027	6787	3287
zinc-transporting ATPase (Zn(II)-							207	3174784	3174990	6786	3286
					-		315	3174380	3174066	6785	3285
translocating p-type ATPase	78	66.7	37.2	Synechocystis sp. PCCb8U3 atzN	Syne	sp:ATZN_SYNY3	234	3173857	3173624	6784	3284
zinc-transporting ATPase (Zn(II)-							471	3173465	3172995	6783	3283
(NADPH:quinone reductase)(seta- crystallin)	322	60.9	31.4	Mus musculus qor	Mus	sp:QOR_MOUSE	918	3171619	3172536	6782	3282
(cytochrome c biogenesis protein)	101	63.4	31.7	Bradyrhizobium japonicum tlpA	Brad)	sp:TLPA_BRAJA	363	3171616	3171254	6781	3281
precursor A	630	47.9	26.7	Pseudomonas syringae pv. tomato copA		sp:COPA_PSESM	1479	3170892	3169414	6780	
notario propietano probei		<u>.</u>					672	3169340	3168669	6779	3279
or alkaline phosphatase synthesis transcriptional regulatory protein	233	72.1	43.4	Bacillus subtilis phoP		sp:PHOP_BACSU	756	3167646	3168401	6778	
hwn-component response regulator							828	3168566	3167739	6777	3277
histidine kinase	301	71.4	37.5	Escherichia coli K12 baeS	Esche	sp:BAES_ECOLI			3167646	6776	
					_		192	3167169	3166978	(a.a.)	(DNA)
Function	Matched length (a.a.)	Similarity (%)	Identity (%)	Homologous gene		db Match	ORF (bp)	Terminal (nt)	Initial (nt)	SEQ.	
				Table 1 (continued)							
S OI	SI	50		30	SE	04		SÞ	05		SS

EP 1 108 790 A2

	_				_		_	\neg		- 1	- 1		$\neg \neg$	_		$-\tau$	\neg		7					~
5		Function	S1628)			transmembrane transport protein or 4-hydroxybenzoale transporter		rotein	A helicase		I protein L9	single-strand DNA binding protein	I protein S6		ırotein		ing protein	votein	bacterial regulatory protein, marR family	notein		orotein	protein	ABC transporter ATP-binding protein
10			transposase (IS1628)	thiaredoxin		transmembran 4-hydroxybenz		hypothetical protein	replicative DNA helicase		50S ribosomal protein L9	single-strand	30S ribosomal protein S6		hypothetical protein		penicillin-binding protein	hypothetical protein	bacterial regu family	hypothetical protein		hypothetical protein	hypothetical protein	ABC transpor
15		Matched length (a.a.)	53	100		421		208	461	!	154	229	92		480		647	107	137	296		7.1	298	433
20		Similarity (%)	96.2	74.0		60.1		62.5	73.1		71.4	51.5	78.3		68.3		60.1	72.0	65.0	61.8		70.4	63.8	64.0
		Identity (%)	92.5	39.0		27.1		35.1	37.7		42.2	30.6	28.3		41.5		29.1	41.1	35.1	29.7		32.4	30.2	31.2
<i>25</i>	Table 1 (continued)	Homologous gene	n glutamicum 1 pAG1 tnpB	K12 thi2		utida pcaK		K12 yaji	K12 dnaB		K12 RL9	K12 ssb	K12 RS6		smegmatis		ponA	tuberculosis	tuberculosis c	tuberculosis c yofF		yhgC	i K12 yceA	i K12 ybjZ
30	Table 1	Homolog	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB	Escherichia coli K12 thi2		Pseudomonas putida pcaK		Escherichia coli K12 yqil	Escherichia coli K12 dnaB		Escherichia coli K12 RL9	Escherichia coli K12 ssb	Escherichia coli K12 RS6		Mycobacterium smegmatis mc(2)155		Bacillus subtilis ponA	Mycobacterium tuberculosis H37Rv Rv0049	Mycobacterium tuberculosis H37Rv Rv0042c	Mycobacterium tuberculosis H37Rv Rv2319c yofF		Bacillus subtilis yhgC	Escherichia coli K12 yceA	Escherichia coli K12 ybjZ
35		db Match	gp:AF121000_8	sp:THI2_ECOL!		sp:PCAK_PSEPU		Sp. YQJI ECOLI	SP. DNAB_ECOLI		SD:RL9 ECOLI	Sp:SSB_ECOLI	sp:RS6_ECOLI		gp:AF187306_1		SP:PBPA_BACSU	Sp:YOHC_MYCTU	pir:B70912	Sp:Y0FF_MYCTU		sp:YHGC_BACSU	Sp.YCEA ECOL	sp:YBJZ_ECOLI
		ORF (bp)	159 9	447 S	264	1344 s	159	576 s	1530 s	516	450 8	+	285 s	189		882	2160 s	357	471	942	495	321	936	1263
45		Terminal (nt)	3177525	3178112	3178872	1	3180946	3180551	3181337	3183984	3183478	3183987	3184701	3185348	3185536	3188793	3187042	3189296	3190347	3191319	3191848	+-	-	
50		Initial (nt)	3177683	3178558	3178609	3179049	3181104	3181126								3187912			3189877	3190378	3191354			
		SEQ NO.		6793	_		6796		_					-		6805			6808	6809	6810	6811	6812	6813
		SEQ.	3292	3293	3294	3295	3296	2207	3298	3299	3300	330	3302	3303	3304	3305	3306	3307	3308	3309	3310	111	3312	3313
55							_																	

EP 1 108 790 A2

				$\overline{}$	_		\neg				- 1	- 1	- 1			1		1 3			ပ္	. 1	- 1	ļ	
5		Function	ARC transporter ATP-binding protein	rotein		rotein			DNA protection during starvation		imidine-DNA	orotein			methylated-DNAprotein-cysteine	sferase	zinc-binding dehydrogenase of quinone oxidoreductase (NADPH:quinone reductase) or			membrane transport protein	malate oxidoreductase (NAD) (malic enzyme)	gluconokinase or gluconate kinase	teicoplanin resistance protein	teicoplanin resistance protein	
10			ARC transport	hypothetical protein	nypomenca p	hypothetical protein			DNA protectio	protein	formamidopyrimidine-DNA glycosylase	hypothetical protein			methylated-D	S-methyltransferase	zinc-binding dehydrogen quinone oxidoreductase (NADPH:quinone reduct	alginate iyas		membrane tr	malate oxido enzyme)	gluconokina	teicoplanin r	teicoplanin r	
15		Matched length (a.a.)	224	177	757	360			1	134	268	404				166	231			398	392	486	169	159	-
20		Similarity (%)	1 00	- 0	42.0	0.06				64.9	55.6	9.99				63.3	63.6			66.3	99.5	53.7	60.4	159.0	
		Identity (%)	39,	48.9	18.0	77.8				37.7	28.4	47.5				38.0	33.3			26.4	99.7	24.5	27.8	27.0	
25	itinued)	-	MG1855		i cj0606	rculosis				sdp	mutM or	ricB				F-	uinea pig) qor			erculosis 8A	nelassecola glutamicum)	¥	um van 2	m van7	TILLI VOILE
30	Table 1 (continued)	Homologous gene	7 A MG1855	escherichia con N.2 ybj2	Campylobacter jejuni Cj0606	Mycobacterium tuberculosis H37Rv Rv0046c				Escherichia coli K12 dps	Escherichia coli K12 mutM	Try K12 della Coli K12 deB				Homo sapiens mgmT	Cavia porcellus (Guinea pig) qor			Mycobacterium tuberculosis H37Rv Rv0191 ydeA	Corynebacterium melassecola (Corynebacterium glutamicum)	Bacillus subtilis antK	Zaronanie (aeriiim van 7	Enterocours fact	Enterococcus raeciuiii vaiia
35		db Match		sp:YBJZ_ECOLI (F						Sp. DPS_ECOLI		1.	Sp:RICB_ECOLI			SP:MGMT_HUMAN	sp:QOR_CAVPO			sp:YDEA_ECOLI	gp:AF234535_1	THE DATE !	מביים עוויי	SP.VANZ_ENIFC	sp:VANZ_ENTFC
40		5		sp:YB,	pir.E81408		-				→			6		 			_						525 sp:V
		ORF (bp)		069	1977	1	+	4	1485	495	+-	-	-	1089	3 573	1 474	2 1011		111	4 1176	4 1176	_	+	 -	
45		Terminal (nt)	()	3194514	3195210	3198500		3198582	3199202	3201260	270000	35026	3204100	3202979	3204728	3204731			3206756		3209454		1		3211904
50		Initial	Ť	3195203	3107186	3197412		3199187	3200686	3201754	00000	3201900	3202952	3204067					3206646		3208279		3211186	3211836	3331 6831 3212428
		SEQ NO.	(a.a.)	6814	1000			6817	6818	0100		6820	6821	6822	_	6824	6825	2	6826			\rightarrow	6829	6830	6831
55		SEO NO.	$\overline{}$	3314		3313	_	3317	3318	_		3320	3321	3322	_	_		355	325	3327	3328		3329	3330	3331

EP 1 108 790 A2

5	Function	mercury(II) reductase	D-amino acid detrydrogenase small subunit			NAD/PIH nitroreductase			Annual FRIA synthetase	order symmetry	hypothetical memorarie protein	virulence-associated protein		hypothetical protein	bifunctional protein (homoprotocatechuate catabolism bifunctional isomerase/decarboxylase) (2- hydroxyhepla-2, 4-diene-1, 7-dioate isomerase and 5-carboxymethyl-2- oxo-hex-3-ene-1, 7 dioate decarboxylase)	gentisate 1,2-dioxygenase or 1- hydroxy-2-naphthoate dioxygenase	bacterial regulatory proteln, lacl family or pectin degradation repressor protein	transmembrane transport protein or 4-hydroxybenzoate transporter
15	Matched length (a.a.)	448 II	444 S			107	1	+	200	T	1	86		247	298	339	229	454
20	Similarity (%)	65.6	54.5			6.33	33.4		, ,	08.1	40.4	81.4		53.8	50.3	64.3	60.7	60.8
	Identity (%)	29.9	27.3			0	23.8			41.1	40.4	55.8		31.6	28.5	34.2	25.3	27.5
25 (panujun	gene	eus merA	2 dadA				IUS DOX				2	sus vapt		icolor	12 hpcE	aligenes xinE	nysanthemi	ida pcaK
so Santa Paper (Continued)	Homologous gene	Staphylococcus aureus merA	Escherichia coli K12 dadA				Thermus thermophilus nox			Bacillus subtilis syl	Escherichia coli K12	Dichelobacter nodosus vapl		Streptomyces coelicolor SCC54.19	Escherichia coli K12 hpcE	Pseudomonas alcaligenes xInE	Pectobacterium chrysanthemi kdgR	Pseudomonas putida pcaK
35	db Match	S STAALL S	 				sp:NOX_THETH T		ヿ	sp:SYL_BACSU	_			gp:SCC54_19	sp:HPCE_ECOL!	gp.AF173167_1	sp.KDGR_ERWCH	sp:PCAK_PSEPU
40	ORF (bb)			1503	330	321	909 sp:N	924	1452	2856 sp:5		357 sp:\	7-		837 sp:!	125	780 sp.	1356 sp:
45	Terminal O	_	3213934 12	3215257 15	3216886 3	3217457 3	3218601 6	3219700 9	3222495 1	3219778 2	1	+	+-	+	3224718	3225563 1	3226910	3229079
50	Initial	_+	3212588	3216759	3217215	3217777	3217993	3218777	3221044	6840 3222633	3222722		2224601	3224714	3225554	3226687		3227724
	SEO	(a.a.)	6832	6834	6835		6837	6838	6839	6840		_	200	6844		6846		8 6848
55	SEO.	(DNA)	3332	3334	3335	3336	3337	3338	3339	3340	3341	3342	200	3344	3345	3346	3347	3348

							_					- : -				_	
5		tion	186	ymporter or sid transporter2	permease	se component l		ise component II	ısferase	hosphate nd N-(5'- nthranilate		se beta chain	se alpha chain	orane protein	omponent or se enzyme II, A	ABC transporter ATP-binding protein	
10		Function	salicylate hydroxylase	proton/glutamate symporter or excitatory amino acid transporter2	tryptophan-specific permease	anthranilate synthase component I		anthranilate synthase component II	anthranilate phosphoribosytransferase	indole-3-glycerol phosphate synthase (IGPS) and N-(5'- phosphoribosyl) anthranilate isomerase(PRAI)		tryptophan synthase beta chain	tryptophan synthase alpha chain	hypothetical membrane protein	PTS system, IIA component or unknown pentitol phosphotransferase enzyme II, A component	ABC transporter A	ABC transporter
15	Matched		476	507	170	515		208	348	474		417	283	521	152	305	547
20	\vdash	Similarity (%)	49.4	54.4	99.4	96.8		100.0	99.4	98.3		97.9	96.5	86.8	71.7	63.6	57.2
		Identity (%)	28.2	25.4	99.4	99.2		99.0	99.4	97.3		97.6	95.4	9.99	30.3	32.5	25.2
30 February 200	(Sommo)	is gene	ida	2	glutamicum	tofermentum		stofermentum	glutamicum	ctofermentum		ctofermentum	ctofermentum	elicolor A3(2)	(12 ptxA	utzeri	elicolor A3(2)
50 to 30	ame - (c	Homologous gene	Pseudomonas putida	Homo sapiens eat2	Corynebacterium glutamicum AS019 ORF1	Brevibacterium lactofermentum trpE		Brevibacterium lactofermentum trpG	Corynebacterium glutamicum ATCC 21850 trpD	Brevibacterium lactofermentum trpC		Brevibacterium lactofermentum trpB	Brevibacterium lactofermentum trpA	Streptomyces coelicolor A3(2) SCJ21, 17c	Escherichia coli K12 ptxA	Pseudomonas stutzeri	Streptomyces coelicolor A3(2) SCH10.12
35	-		ă	1	08		-	四二	1	i —	╁		1	00 00		1	
40		db Match	orf 1706191A	sp.EAT2_HUMAN	pir.JC2326	SP.TRPE_BRELA		TRPG_BRELA	sp.TRPD_CORGL	sp:TRPC_BRELA		SP.TRPB_BRELA	sp:TRPA_BRELA	gp:SCJ21_17	sp:PTXA_ECOLI	SP:NOSF PSEST	
		ORF (bp)	1326	1251	510	1554	171	624	1044	1422	969	1251	840	1539	810	906	1584
45		Terminal (nt)	7770000		3233105	3234956	3233250	3235579	3236645	3238062	3236518	3239332	3240171	3240313	3241879	3243759	
50		Initial (nt)		3232304	3232596	3233403	3233420		3235602	3236641	2237213		3239332	3241851	3242688	3242854	
•		SEO	(3.3.)	6850	6851	6852	6853	6854	6855	6856	6857	6858	6859	6860	6861	6A62	
55				3350		3352	2253		3355	3356	7355	3358	3359	3360	3361	3362	3363

EP 1 108 790 A2

									-,-			_				_		
5	Function	cytchrome b6-F complex iron-sulfur subunit (Rieske iron-sulfur protein)	NADH oxidase or NADH-dependent flavin oxidoreductase	hypothetical membrane protein	hypothetical protein	bacterial regulatory protein, arsR family or methylenomycin A resistance protein	NADH oxidase or NADH-dependent flavin oxidoreductase	hypothetical protein					acetoin(diacetyl) reductase (acetoin dehydrogenase)	hypothetical protein	di-/tripeptide transpoter		bacterial regulatory protein, tetR family	hydroxyquinol 1,2-dloxygenase
15	Matched length (a.a.)	305	336	328	262	102	347	226					238	58	469		188	246
20	Similarity (%)	63.6	64.3	74.7	54.6	79.4	64.3	69.5					52.9	84.5	71.6		50.5	62.2
	Identity (%)	32.5	33.3	43.6	34.0	45.1	33.4	31.4					26.9	53.5	34.5		26.1	31.7
25 (penultu	gene	petC	ır brockii	yfeH	olor A3(2)	olor Plasmid	er brockii	evisiae					pudC	erculosis	subsp. lactis		2 acrR	aceticus
So Table 1 (continued)	Homologous gene	Chlorobium limicola petC	Thermoanaerobacter brockii nadO	Escherichia coli K12 yfeH	Streptomyces coelicolor A3(2) SCI11.36c	Streptomyces coelicolor Plasmid SCP1 mmr	Thermoanaerobacter brockii nadO	Saccharomyces cerevisiae ymyO					Klebsiella terrigena budC	Mycobacterium tuberculosis H37Rv Rv2094c	Lactococcus lactis subsp. lactis dfpT		Escherichia coli K12 acrR	Acinetobacter calcoaceticus catA
<i>35</i>	db Match	Sp.UCRI_CHLLT C	Sp.NADO_THEBR	Sp. YFEH_ECOLI	gp:SC111_36	pir.A29606	Sp:NADO_THEBR	sp.YMY0_YEAST					Sp:BUDC_KLETE	sp:YY34_MYCTU	sp:DTPT_LACLA		Sp:ACRR_ECOLI	sp:CATA_ACICA
	ORF (bp)	450 sp	1110 sp	972 sp	 	348 pi	1092 sp	648 Sp	153	192	168	321	753 sp	180 SJ	1359 sp	171	555 81	803
45	Terminal (nt)	3245766	3245822	3248205	3249165	3249187	3250742	3251405	3251466	3251743	3252133	3252316	3253480	3253739	3253824	3255719	3255744	3256471
50	Initial (nt)	3245317	3246931	3247234	3248392	3249534	3249651	3250758	3251618	3251934	3252300	3252636	3252728	3253560	3255182	3255549	3256298	3257373
		(8.4.)	6865	9989	6867	6868		6870	6871	$\overline{}$	6873	6874		6876	6877	6878		6880
55	SEQ	(UNA)	3365	3366	3367	3368	3369	3370	3371	3372	3373	3374	3375	3376	3377	3378	3379	3380

5		•	xylose-proton insporter)	regulator or		otein	genase	ptomycin							ise family	e protein		line kinase	rotein or ed domain	protein
10	Function	maleylacetate reductase	sugar transporter or D-xylose-proton symporter (D-xylose transporter)	bacterial transcriptional regulator or acetate operon repressor	oxidoreductase	diagnostic fragment protein sequence	myo-inositol 2-dehydrogenase	dehydrogenase or myo-inositol 2- dehydrogenase or streptornycin blosynthesis protein	phosphoesterase				stomatin		DEAD box RNA helicase family	hypothetical membrane protein		phosphomethylpyrimidine kinase	mercuric ion-binding protein or heavy-metal-associated domain containing protein	ectoine/proline uptake protein
15	Matched length (a.a.)	351	513	280	357	270	332	343	1242				206		1660	141		125	67	297
20 .	Similarity (%)	75.5	58.3	60.7	55.7	58.2	59.6	62.4	62.7				57.3		80.2	61.0		76.8	70.1	62.3
	Identity (%)	43.0	31.4	25.7	27.2	25.9	26.5	34.1	33.3				28.6		58.4	34.8		50.4	46.3	29.9
25 (panujuo	s gene	P51	2 xylE	urium iclR	2 ydgJ	ain 4450	iloti idhA	eus strl	пВ				egans unc1		vis BCG	prae u2266k		Ö	ıg Y	glutamicum
8 Table 1 (conlinued)	Homologous gene	Pseudomonas sp. P51	Escherichia coli K12 xylE	Salmonella typhimurium iclR	Escherichia coli K12 ydgJ	Listeria innocua strain 4450	Sinorhizobium meliloti idhA	Streptomyces griseus strl	Bacillus subtilis yvnB				Caenorhabditis elegans unc1		Mycobacterium bovis BCG RvD1-Rv2024c	Mycobacterium leprae u2266k		Bacillus subtilis thiD	Bacillus subtilis yvgY	Corynebacterium glutamicum proP
35 40	db Match	SP:TCBF_PSESQ_F	ECOLI	sp:ICLR_SALTY	SD: YDGJ ECOLI		SD:MI2D BACSU		pir:C70044				sp.UNC1_CAEEL		gp:MBO18605_3	prt:2323363AAM		sp:THID_BACSU	pir.F70041	prf.2501295A
	ORF (bp)	1089 S		861	1077 S		1005 s	3 6	4032 p	1.0	618	1086	744 \$	696	4929 g	507	360	909	243	837
45	Terminal (nt)	3257403	 	3261989	3263221	3264115	3265146	3266266	3271093	3267913	3268618	3272477	3274488	3275602	3276671	3281666	3283101	3282347	3283383	3283473
50	Initial (nt)	3258491	3260084	3261129	3262145		3264142		3267062		3269235	3271392	3275231	3276570		3282172	3282742	3282946		6899 3284309
	SEO	(8.8.)	6882	6883	6004		8888		6888		6890	6891		6893		6895				6899
55	SEO.	3381	3382	3383	2204	3385	2388	3387	3388	3389	3390	3391	3392	3393	3394	3395	3396	3397	3398	3399

5	Function	iron(III) dicitrate-binding periplasmic protein precursor or Iron(III) dicitrate transport system permease protein	mitochondrial respiratory function protein or zinc-binding dehydrogenase or NADPH quinone oxidoreductase		a serial programming the serial seria	phosphorneurypyminame wings		mercuric lon-binging protein or heavy-metal-associated domain containing protein	branched-chain amino acid transport	branched-chain amino acid transport	hypothetical protein	IRNA nucleotidyltransferase		mutator mutT protein		hypothetical membrane protein	hypothetical membrane protein		RNA polymerase sigma-H factor or sigma-70 factor (ECF subfamily)	thioredoxin reductase	
15	Matched length (a.a.)	279	324			248		29	102	212	169	471		234		858	1201		189	308	
20	Similarity (%)	9.09	58.0			75.5	-	70.1	65.7	67.0	56.2	7. 0.	2	69.2		54.3	60.1		6.09	82.5	
	Identity (%)	29.4	27.2			46.2		41.8	36.3	32.1	23.7	9 90	70.0	43.6		25.8	35.7		30.2	60.4	
55 50 intinued)	gene	2 fecB	ses pombe					<u> </u>	0		D state	7 year	z cca	erculosis		percutosis	serculosis		Uginosa algU	uligerus txB	
S S Table 1 (continued)	Homologous gene	Escherichia coli K12 fecB	Schizosaccharomyces pombe mr1			Bacillus subtilis thiD		Bacillus subtilis yvgY	Oze subtilis azi	Decillue cubtilic 37	Bacillus subtilis azio	Escriencina con N. 2 yaga	Escherichia coli K12 cca	Mycobacterium tuberculosis H37Rv Rv3908		Mycobacterium tubercutosis H37Rv Rv3909	Mycobacterium tuberculosis H37Rv Rv3910		Pseudomonas aeruginosa algU	Streptomyces clavuligerus txB	
35	db Match	sp:FECB_ECOLI E	sp.MRF1_SCHPO			sp:THID_BACSU		pir.F70041	110000	Sp. AZLD BACSO	Sp. AZLC_BACSU	sp:Yage_Ecoul	sp.CCA_ECOLI	pir.E70600		pir. F70600	pir.G70600		SP.RPSH_PSEAE	Sp.TRXB STRCL	
40	ORF (bp)	25	122 sp:	84	219	.98 sp.	345	201 pir.			\rightarrow		1320 sp	966 pir	273	511	249	723	+	951 80	_
45	Terminal O	66	3286576 1	3287005 3	+-	3287393 7	3288609 3	 	+	+	-+	-	3290623 1	3293497	3292610	3296007 2	3299404	3208428	3300263	3301321	T 1351 000
50	Initial	- v	3285455	3286622	3287297	3288190	3288265	3288685		3289315	3290021	3290591	3291942	3292532	3292882		3296156	20077000		2200274	330031
	SEO	(a.a.) 6900	6901	6902	6903	6904	6905		\rightarrow	6907	8069	6069	6910	6911	6912		6914		6916		
55	SEO.	(DNA)	3401	3402	3403	3404	3405	3406		3407	3408	3409	3410	3411	3412	3413	3414	1	3415		241

5		Function		1-type	I-L-alanine			in	in	orulation protein	glucose inhibited division protein B	ibrane protein	ribonuclease P protein component	otein L34		-	1-decarboxylase	synthase		dehyde	9
10		Fun		thioredoxin ch2, M-type	N-acetylmuramoyl-L-alanine amidase			hypothetical protein	hypothetical protein	partitioning or sporulation protein	glucose inhibited	hypothetical membrane protein	ribonuclease P pi	50S ribosomal protein L34			L-aspartate-alpha-decarboxylase precursor	2-isopropylmalate synthase	hypothetical protein	aspartate-semialdehyde dehydrogenase	3-dehydroquinase
15		Matched length (a.a)		119	196			212	367	272	153	313	123	47			136	616	85	344	149
20		Similarity (%)		76.5	75.4			58.5	60.5	78.0	64.7	75.4	59.4	93.6			100.0	100.0	100.0	100.0	100.0
		Identity (%)		42.0	51.0			34.4	37.6	65.0	36.0	44.7	26.8	83.0			100.0	100.0	100.0	100.0	100.0
25	Table 1 (continued)	s gene		einhardtii thi2	ē			perculosis	ida ygi2	berculosis	12 gidB	berculosis	ρĄ	num rpmH			glutamicum	glutamicum	glutamicum avum) ATCC	glutamicum	glutamicum
30	Table 1 (c	Homologous gene		Chlamydomonas reinhardtii thi2	Bacillus subtilis cwlB			Mycobacterium tuberculosis H37Rv Rv3916c	Pseudomonas putida ygi2	Mycobacterium tuberculosis H37Rv parB	Escherichia coli K12 gidB	Mycobacterium tuberculosis H37Rv Rv3921c	Bacillus subtilis rnpA	Mycobacterium avium rpmH			Corynebacterium glutamicum panD	Corynebacterium glutamicum ATCC 13032 feuA	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13032 orfX	Corynebacterium glułamicum asd	Corynebacterium glutamicum ASO19 aroD
<i>35</i>		db Match		SO THIS CHURE	5			pir:D70851	sp:YGI2_PSEPU	sp:YGI1_PSEPU	Sp. GIDB ECOLI	pir.A70852	SP:RNPA BACSU	gp:MAU19185_1			gp:AF116184_1	sp.LEU1_CORGL	sp:YLEU_CORGL	sp:DHAS_CORGL	gp:AF124518_1
		ORF (bp)	1185	1_	1 2	777	1041	618 р	1152 s	837 s	s 699	1	399	$\overline{}$	294	222	408	1848	255 8	1032	447
45		Terminal (nt)	3300119	╁	-	3301989	3304475	3302999	3303636	3304835	3305864	3306682	3307971	3308412	3309321	3308822	147573	266154	268814	271691	446521
50		Initiat (nt)	3301303	2201258		3302765	3303435		3304787		3306532		3308369		3309028	3309043	-	268001	269068	270660	446075
		SEQ NO.	80.0	3 6	6920	6921	6922	6923	6924	6925	6926	6927	6928		6930	6931	6932	6933	6934	6935	6936
55		SEQ.			3420	3421	3422	3423	3424	3425	3426	3427	242R	3429	3430	3431	3432	3433	3434	3435	3436
<i></i>																					

5		Function	elongation factor Tu	preprotein translocase secY subuit	isocitrate dehydrogenase (oxalosuccinatedecarboxylase)	acyl-CoA carboxylase or biotin- binding protein	citrate synthase	putative binding protein or peptidyl- prolyl cis-trans isomerase	glycine betaine transporter	hypothetical membrane protein	L-lysine permease	aromatic amino acid permease	hypothetical protein	succinyl diaminopimelate desuccinylase	proline transport system	arginyl-tRNA synthetase
		D	elongat	preprot	isocitra (oxalos	acyl-Cc binding	citrate	putative prolyl c	glycine	hypoth	L-lysin	агота				
		Matched length · (a.a.)	396	440	738	591	437	118	595	426	501	463	316	369	524	920
20		Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
		Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
25	Table 1 (confinded)	ns gene	glutamicum	glutamicum avum) MJ233	glutamicum	glutamicum BC	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum P	glutamicum 3	glutamicum	glutamicum P	ı glutamicum 059 argS
30	lable 1 (Homologous gene	Corynebacterium ATCC 13059 tuf	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 secY	Corynebacterium glutamicum ATCC 13032 icd	Corynebacterium glutamicum ATCC 13032 accBC	Corynebacterium glutamicum ATCC 13032 gltA	Corynebacterium glutamicum A1CC 13032 fkbA	Corynebacterium glutamicum ATCC 13032 betP	Corynebacterium glutamicum ATCC 13032 ort2	Corynebacterium glutamicum ATCC 13032 lysl	Corynebacterium glutamicum ATCC 13032 aroP	Corynebacterium glutamicum ATCC 13032 orf3	Corynebacterium glutamicum ATCC 13032 dapE	Corynebacterium glutamicum ATCC 13032 putP	Corynebacterium glutamicum AS019 ATCC 13059 argS
35		db Match	sp:EFTU_CORGL	sp.SECY_CORGL (sp:IDH_CORGL		Sp.CISY_CORGL	Sp.FKBP_CORGL	Sp:BETP_CORGL	sp:YLI2_CORGL	sp.LYSI_CORGL	sp:AROP_CORGL	753	6301A	gp:CGPUTP_1	sp:SYR_CORGL
40		용				prf.2223173A			1	8 sp:YLI	3 sp:LYS		pir.S52753	prf:2106301A		sp:SYF
		ORF (bp)	1188	1320	2214	1773	1311	354	1785	127	150	1389	948	1107	1572	1650
45		Terminal (nt)	527563	570771	677831	718580	879148	879629	946780	1029006	1030369	1153295	1154729	1156837	1218031	1239923
50		Initial (nt)	526376	569452	680044	720352	877838	879276	944996	1030283	1031871	1154683	1155676	1155731	1219602	6950 1238274
		SEQ NO.	6937	6938	6633	6940	6941	6942	6943	6944	6945	6946	6947	6948	6949	
		SEQ	3437	3438	3439	3440	3441	3442	3443	3444	3445	3446	3447	3448	3449	3450
55																

		(a)						arge	mall	uctase	lase	uvate ort)			
5	Function	DAP) eso- ecarboxylase	Irogenase	a	=	otein	lator protein	synthase, la	synthase, s	sisomerored	dehydrogen	sphoenolpyru nsferase rcose transpo	inase	yltransferası	
10	Fun	diaminopimelate (DAP) decarboxylase (meso- diaminopimelate decarboxylase)	homoserine dehydrogenase	homoserine kinase	ion channel subunit	lysine exporter protein	lysine export regulator protein	acetohydroxy acid synthase, large subunit	acetohydroxy acid synthase, small subunit	acetohydroxy acid isomeroreductase	3-isopropyimalate dehydrogenase	PTS system, phosphoenolpyruvate sugar phosphotransferase (mannose and glucose transport)	acetylglutamate kinase	ornithine carbamoyltransferase	arginine repressor
15	Matched length (a.a.)	445	445	309	216	236	290	626	172	338	340	683	294	319	171
20	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
% 52 22 22 22 22 22 22 22 22 22 22 22 22	s gene	glutamicum 59 lysA	glutamicum 59 hom	glutamicum 59 thrB	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum }	glutamicum	glutamicum 3	glutamicum	glutamicum
7able 1 (c	Homologous gene	Corynebacterium glutamicum AS019 ATCC 13059 lysA	Corynebacterium glutamicum AS019 ATCC 13059 hom	Corynebacterium glutamicum AS019 ATCC 13059 thrB	Corynebacterium glutamicum R127 orf3	Corynebacterium glutamicum R127 lysE	Corynebacterium glutamicum R127 lysG	Corynebacterium glutamicum ATCC 13032 ilvB	Corynebacterium glutamicum ATCC 13032 ilvN	Corynebacterium glutamicum ATCC 13032 ilvC	Corynebacterium glutamicum ATCC 13032 leuB	Corynebacterium KCTC1445 ptsM	Corynebacterium glutamicum ATCC 13032 argB	Corynebacterium glutamicum ATCC 13032 argF	Corynebacterium glutamicum ASO19 argR
<i>35</i>	db Match	sp:DCDA_CORGL	sp:DHOM_CORGL	sp:KHSE_CORGL	gsp:W37716	sp:LYSE_CORGL	sp:LYSG_CORGL	sp:ILVB_CORGL	pir:B48648	pir.C48648	sp:LEU3_CORGL	prf.2014259A	sp:ARGB_CORGL	sp:OTCA_CORGL	gp:AF041436_1
	ORF (bp)	1335 sp	1335 sp	927 Sp	627 gs	708 51	870 8	1878 sı	516 p	1014 p	1020	2049 p	882 \$	s 756	513 g
45	Terminal (nt)	1241263	1243841	1244781	1328243	1328246	1329884	1340008	1340540	1341737	1354508	1425265	1467372	1469521	1470040
50	Initial (nt)	1239929	1242507	1243855	1327617	1328953	1329015	1338131	1340025	1340724	1353489	1423217	1466491	1468565	1469528
	SEO.	6951	6952	6953	6954	6955	9569	6957	6958	6929	0969	6961	6962	6963	6964
<i>55</i>	SEO	3451	3452	3453	3454	3455	3456	3457	3458	3459	3460	3461	3462	3463	3464

			1	$\neg \top$								\neg		T	2
5	Function	jenase	ATP- drolase	ecarboxylase	ammonium uptake protein, high affinity	protein-export membrane protein secG	phosphoenolpyruvate carboxylase	chorismate synthase (5- enolpyruvylshikimate-3-phosphate phospholyase)	nuclease	sigma factor or RNA polymerase transcription factor	ing protein		nate synthase	nate reductase	L-malate dehydrogenase (acceptor)
10	ī.	NADH dehydrogenase	phosphoribosyl-ATP- pyrophosphohydrolase	ornithine-cyclodecarboxylase	ammonium upte affinity	protein-export n secG	phosphoenolpy	chorismate synthase (5- enotpyruvylshikimate-3- phospholyase)	restriction endonuclease	sigma factor or RN transcription factor	glutamate-binding protein	recA protein	dihydrodipicolinate synthase	dihydrodipicolinate reductase	L-malate dehyo
15	Matched Jength (a.a.)	467	78	362	452	7.7	919	410	632	331	295	376	301	248	200
20	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
30 (pointifue), Ferritary	as gene	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum 3	glutamicum	glutamicum	glutamicum R	glutamicum 3	glutamicum 3	glutamicum	glutamicum actofermentum) A	glutamicum actofermentum) iB	glutamicum
30 +	Homologous gene	Corynebacterium ATCC 13032 ndh	Corynebacterium glutamicum ASO19 hisE	Corynebacterium glutamicum ATCC 13032 ocd	Corynebacterium glutamicum ATCC 13032 amt	Corynebacterium glutamicum ATCC 13032 secG	Corynebacterium glutamicum ATCC 13032 ppc	Corynebacterium glutamicum AS019 aroC	Corynebacterium glutamicum ATCC 13032 cglilR	Corynebacterlum glutamicum ATCC 13869 sigB	Corynebacterium glutamicum ATCC 13032 gluB	Corynebacterium glutamicum AS019 recA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 dapA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 dapB	Corynebacterium glutamicum R127 mgo
35	db Match	gp:CGL238250_1	gp:AF086704_1	gp:CGL007732_4	gp:CGL007732_3	gp:CGL007732_2	prf:1509267A	gp:AF124600_1	pir:855225	prf.2204286D	sp:GLUB_CORGL	sp:RECA_CORGL	sp:DAPA_BRELA	sp:DAPB_CORGL	gp:CGA224946_1
40		 -	gp:AF	9	1 0	gp:C	 	10	1 9			80	6	4	
	ORF (bp)	140	261	1 8	135	23	275	123	189	993	885	=	8	74	1500
45	Terminal (nt)	1543154	1586465	1674123	1675268	1677049	1677387	1719669	1882385	2021846	2061504	2063989	2079281	2081191	2113864
50	Initial (nt)	1544554	1586725	1675208	1676623	1677279	1680143	1720898	1880490	2020854	2060620	2065116	2080183	2081934	2115363
	SEQ.	6965	9969	7969	6968	6969	6970	6971	6972	6973	6974	6975	6976	6977	8269
55		(UNA)	3466	3467	3468	3469	3470	3471	3472	3473	3474	3475	3476	3477	3478

	_											·					
5		Function	uridilylyltransferase, uridilylyl- removing enzyme	nitrogen regulatory protein P-II	ammonium transporter	glutamate dehydrogenase (NADP+)	pyruvate kinase	glucokinase	glutamine synthetase	threonine synthase	ectoine/proline/glycine betaine carrier	malate synthase	isocitrate lyase	glutamate 5-kinase	cystathionine gamma-synthase	ribonucleotide reductase	glutaredoxin
15		Matched length (a.a.)	692 uri	112 nit	438 an	447 gl	475 py	323 gl	477 gl	481 th	615 G	739 п	432 is	369 9	386	148 ri	77
20		Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
		Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
25	(juned)	lene	amicum	amicum	amicum	amicum	tamicum	tamicum	tamicum	tamicum	tamicum	ıtamicum	ıtamicum	ıtamicum	ıtamicum	ıtamicum	utamicum
30	Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 glnD	Corynebacterium glutamicum ATCC 13032 glnB	Corynebacterium glutamicum ATCC 13032 amtP	Corynebacterium glutamicum ATCC 17965 gdhA	Corynebacterium glutamicum AS019 pyk	Corynebacterium glutamicum ATCC 13032 glk	Corynebacterium glutamicum ATCC 13032 glnA	Corynebacterium glutamicum thrC	Corynebacterium glutamicum ATCC 13032 ectP	Corynebacterium glutamicum ATCC 13032 aceB	Corynebacterium glutamicum ATCC 13032 aceA	Corynebacterium glutamicum ATCC 17965 proB	Corynebacterium glutamicum ASO19 metB	Corynebacterium glutamicum ATCC 13032 nrdl	Corynebacterium glutamicum ATCC 13032 nrdH
<i>35</i>		db Match	gp:CAJ10319_4 A	gp:CAJ10319_3 C	gp:CAJ10319_2 G	pir.S32227	SP.KPYK_CORGL O	gp:AF096280_1	prf:2322244A	Sp.THRC_CORGL	prt.2501295B	pir:140715	pir:140713	Sp:PROB_CORGL	gp:AF126953_1	gp:AF112535_2	gp:AF112535_1
		ORF (bp)	2076 91	336 91	1314 g	1341 p	1425 s	696 696	1431 p	1443 s	1845 p	2217	1296	1107 s	1158 g	444	231
45		Terminal (nt)	2169666	2171751	2172154	2194742	2205668	2316582	2350259	2353600	2448328	2467925	2472035	2496670	2590312	2679684	2680419
50		Initial (nt)	+=	2172086	2173467	2196082	2207092	2317550	2348829	2355042	2450172	2470141	2470740	2497776	2591469	2680127	2680649
		SEO	(a.a.)	6980	6981	6982	6983	6984	6985	9869	6987	8869	6869	0669	6991	6992	6993
55		SEQ.	(DNA)	3480	3481	3482	3483	3484	3485	3486	3487	3488	3489	3490	3491	3492	3493
55																	

Function	meso-diaminopimelale D- dehydrogenase	porin or cell wall channel forming protein	acetate kinase	phosphate acetyltransferase	multidrug resistance protein or macrolide-efflux pump or drug:proton antiporter	ATP-dependent protease regulatory subunit	prephenale dehydralase	ectoine/proline uptake protein
Identity Similarity Matched (%) (%)	320	45	397	329	459	852	315	504
Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Homologaus gene	Corynebacterium glutamicum KY10755 ddh	Corynebacterium glutamicum MH20-22B por A	Corynebacterium glutamicum ATCC 13032 ackA	Corynebacterium glutamicum ATCC 13032 pta	Corynebacterium glutamicum ATCC 13032 cmr	Corynebacterium glutamicum A FCC 13032 clpB	Corynebacterium glutamicum pheA	Corynebacterium glutamicum ATCC 13032 proP
db Match	sp:DDH_CORGL	gp:CGL238703_1	sp:ACKA_CORGL	prf:2516394A	prf:2309322A	sp:CLPB_CORGL	prf.1210266A	1512 prf:2501295A
ORF (bp)	096	135	1191	987	1377	2556	945	1512
Terminal (nt)	2786756	2887944	2935315	2936508	2962718	2963606	3098578	3272563
Initial (nt)	3494 6994 2787715	6995 2888078	6996 2936505	6997 2937494	6998 2961342	2966161	7000 3099522	3501 7001 3274074
SEO	6994	6995	9669	2669	8669	6669		7001
SEQ	3494	3495	3496	3497	3498	3499	3500	3501

Table 1 (confinued)

Example 2

10

25

35

40

Determination of effective mutation site

(1) Identification of mutation site based on the comparison of the gene nucleotide sequence of lysine-producing B-6 strain with that of wild type strain ATCC 13032

[0374] Corynebacterium glutamicum B-6, which is resistant to S-(2-aminoethyl)cysteine (AEC), rifampicin, streptomycin and 6-azauracil, is a lysine-producing mutant having been mutated and bred by subjecting the wild type ATCC 13032 strain to multiple rounds of random mutagenesis with a mutagen, N-methyl-N' -nitro-N-nitrosoguanidine (NTG) and screening (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)). First, the nucleotide sequences of genes derived from the B-6 strain and considered to relate to the lysine production were determined by a method similar to the above. The genes relating to the lysine production include lysE and lysG which are lysine-excreting genes; ddh, dapA, hom and IysC (encoding diaminopimelate dehydrogenase, dihydropicolinate synthase, homoserine dehydrogenase and aspartokinase, respectively) which are lysine-biosynthetic genes; and pyc and zwf (encoding pyruvate carboxylase and glucose-6-phosphate dehydrogenase, respectively) which are glucose-metabolizing genes. The nucleotide sequences of the genes derived from the production strain were compared with the corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed. As a result, mutation points were observed in many genes. For example, no mutation site was observed in IysE, IysG, ddh, dapA, and the like, whereas amino acid replacement mutations were found in hom, lysC, pyc, zwf, and the like. Among these mutation points, those which are considered to contribute to the production were extracted on the basis of known biochemical or genetic information. Among the mutation points thus extracted, a mutation, Val59Ala, in hom and a mutation, Pro458Ser, in pyc were evaluated whether or not the mutations were effective according to the following method.

(2) Evaluation of mutation, Val59Ala, in hom and mutation, Pro458Ser, in pyc

[0375] It is known that a mutation in hom inducing requirement or partial requirement for homoserine imparts lysine productivity to a wild type strain (*Amino Acid Fermentation*, ed. by Hiroshi Aida *et al.*, Japan Scientific Societies Press). However, the relationship between the mutation, Val59Ala, in *hom* and lysine production is not known. It can be examined whether or not the mutation, Val59Ala, in *hom* is an effective mutation by introducing the mutation to the wild type strain and examining the lysine productivity of the resulting strain. On the other hand, it can be examined whether or not the mutation, Pro458Ser, in *pyc* is effective by introducing this mutation into a lysine-producing strain which has a deregulated lysine-bioxynthetic pathway and is free from the *pyc* mutation, and comparing the lysine productivity of the resulting strain with the parent strain. As such a lysine-producing bacterium, No. 58 strain (FERM BP-7134) was selected (hereinafter referred to the "lysine-producing No. 58 strain" or the "No. 58 strain"). Based on the above, it was determined that the mutation, Val59Ala, in *hom* and the mutation, Pro458Ser, in *pyc* were introduced into the wild type strain of *Corynebacterium glutamicum* ATCC 13032 (hereinafter referred to as the "wild type ATCC 13032 strain") and the lysine-producing No. 58 strain, respectively, using the gene replacement method. A plasmid vector pCES30 for the gene replacement for the introduction was constructed by the following method.

[0376] A plasmid vector pCE53 having a kanamycin-resistant gene and being capable of autonomously replicating in Coryneform bacteria (*Mol. Gen. Genet., 196*: 175-178 (1984)) and a plasmid pMOB3 (ATCC 77282) containing a levansucrase gene (*sacB*) of *Bacillus subtilis* (*Molecular Microbiology, 6*: 1195-1204 (1992)) were each digested with *Pstl.* Then, after agarose gel electrophoresis, a pCE53 fragment and a 2.6 kb DNA fragment containing *sacB* were each extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The pCE53 fragment and the 2.6 kb DNA fragment were ligated using Ligation Kit ver. 2 (manufactured by Takara Shuzo), introduced into the ATCC 13032 strain by the electroporation method (*FEMS Microbiology Letters,* 65: 299 (1989)), and cultured on BYG agar medium (medium prepared by adding 10 g of glucose, 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH to 7.2) containing 25 μg/ml kanamycin at 30°C for 2 days to obtain a transformant acquiring kanamycin-resistance. As a result of digestion analysis with restriction enzymes, it was confirmed that a plasmid extracted from the resulting transformant by the alkali SDS method had a structure in which the 2.6 kb DNA fragment had been inserted into the *Pst*l site of pCE53. This plasmid was named pCES30.

[0377] Next, two genes having a mutation point, hom and pyc, were amplified by PCR, and inserted into pCES30 according to the TA cloning method (Bio Experiment Illustrated vol. 3, published by Shujunsha). Specifically, pCES30 was digested with BamHI (manufactured by Takara Shuzo), subjected to an agaros g I electrophoresis, and extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The both ends of the resulting pCES30 fragment wer blunted with DNA Blunting Kit (manufactured by Takara Shuzo) according to the attached protocol. The blunt-ended pCES30 fragment was concentrated by extraction with phenol/chloroform and precipitation with ethanol, and allowed

to react in the presence of Taq polymeras (manufactured by Roche Diagnostics) and dTTP at 70°C for 2 hours so that a nucleotide, thymine (T), was added to the 3'-end to prepare a T vector of pCES30.

[0378] Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according to the method of Saito et al. (*Biochem. Biophys. Acta, 72*: 619 (1963)). Using the chromosomal DNA as a templat , PCR was carried out with Pfu turbo DNA polymelase (manufactured by Stratagene). In the mutated *hom* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7002 and 7003 were used as the primer set. In the mutated *pyc* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and purified using GENE-GLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added to the 3'-end.

[0379] The above pCES30 T vector fragment and the mutated *hom* gene (1.7 kb) or mutated *pyc* gene (3.6 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 µg/ml kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 µg/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was confirmed that the plasmid had a structure in which the 1.7 kb or 3.6 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pChom59 and pCpyc458.

20

30

35

[0380] The introduction of the mutations to the wild type ATCC 13032 strain and the lysine-producing No. 58 strain according to the gene replacement method was carried out according to the following method. Specifically, pChom59 and pCpyc458 were introduced to the ATCC 13032 strain and the No. 58 strain, respectively, and strains in which the plasmid is integrated into the chromosomal DNA by homologous recombination were selected using the method of Ikeda et al. (Microbiology 144: 1863 (1998)). Then, the stains in which the second homologous recombination was carried out were selected by a selection method, making use of the fact that the Bacillus subtilis levansucrase encoded by pCES30 produced a suicidal substance (J. of Bacteriol., 174: 5462 (1992)). Among the selected strains, strains in which the wild type hom and pyc genes possessed by the ATCC 13032 strain and the No. 58 strain were replaced with the mutated hom and pyc genes, respectively, were isolated. The method is specifically explained below.

[0381] One strain was selected from the transformants containing the plasmid, pChom59 or pCpyc458, and the selected strain was cultured in BYG medium containing 20 μg/ml kanamycin, and pCG11 (Japanese Published Examined Patent Application No. 91827/94) was introduced thereinto by the electroporation method. pCG11 is a plasmid vector having a spectinomycin-resistant gene and a replication origin which is the same as pCE53. After introduction of the pCGII, the strain was cultured on BYG agar medium containing 20 μg/ml kanamycin and 100 μg/ml spectinomycin at 30°C for 2 days to obtain both the kanamycin- and spectinomycin-resistant transformant. The chromosome of one strain of these transformants was examined by the Southern blotting hybridization according to the method reported by Ikeda *et al.* (*Microbiology, 144*: 1863 (1998)). As a result, it was confirmed that pChom59 or pCpyc458 had been integrated into the chromosome by the homologous recombination of the Cambell type. In such a strain, the wild type and mutated *hom* or *pyc* genes are present closely on the chromosome, and the second homologous recombination is liable to arise therebetween.

[0382] Each of these transformants (having been recombined once) was spread on Suc agar medium (medium prepared by adding 100 g of sucrose, 7 g of meat extract, 10 g of peptone, 3 g of sodium chloride, 5 g of yeast extract (manufactured by Difco), and 18 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH 7.2) and cultured at 30°C for a day. Then the colonies thus growing were selected in each case. Since a strain in which the sacB gene is present converts sucrose into a suicide substrate, it cannot grow in this medium (J. Bacteriol., 174: 5462 (1992)). On the other hand, a strain in which the sacB gene was deleted due to the second homologous recombination between the wild type and the mutated hom or pyc genes positioned closely to each other forms no suicide substrate and, therefore, can grow in this medium. In the homologous recombination, either the wild type gene or the mutated gene is deleted together with the sacB gene. When the wild type is deleted together with the sacB gene, the gene replacement into the mutated type arises.

[0383] Chromosomal DNA of each the thus obtained second recombinants was prepared by the above method of Saito et al. PCR was carried out using Pfu turbo DNA polymerase (manufactured by Stratagene) and the attached buffer. In the hom gene, DNAs having the nucleotide sequences represented by SEQ ID NOS:7002 and 7003 were used as the primer set. Also, in the pyc gene was used, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer set. The nucleotide sequences of the PCR products were determined by the conventional method so that it was judged whether the hom or pyc gene of the second recombinant was a wild type or a mutant. As a result, the second recombinant which were called HD-1 and No. 58pyc wer target strains having the mutated hom gene and pyc gene, respectively.

(3) Lysine production test of HD-1 and No. 58pyc strains

[0384] The HD-1 strain (strain obtained by incorporating the mutation, Val59Ala, in the *hom* gene into the ATCC 13032 strain) and the No. 58pyc strain (strain obtained by incorporating the mutation, Pro458Ser, in the *pyc* gen into the lysine-producing No. 58 strain) were subjected to a culture test in a 5 I jar fermenter by using the ATCC 13032 strain and the lysine-producing No. 58 strain respectively as a control. Thus lysine production was examined.

[0385] After culturing on BYG agar medium at 30°C for 24 hours, each strain was inoculated into 250 ml of a seed medium (medium prepared by adding 50 g of sucrose, 40 g of corn steep liquor, 8.3 g of ammonium sulfate, 1 g of urea, 2 g of potassium dihydrogenphosphate, 0.83 g of magnesium sulfate heptahydrate, 10 mg of iron sulfate heptahydrate, 1 mg of copper sulfate pentahydrate, 10 mg of zinc sulfate heptahydrate, 10 mg of β -alanine, 5 mg of nicotinic acid, 1.5 mg of thiamin hydrochloride, and 0.5 mg of biotin to 1 liter of water, and adjusting its pH to 7.2, then to which 30 g of calcium carbonate had been added) contained in a 2 1 buffle-attached Erlenmeyer flask and cultured therein at 30°C for 12 to 16 hours. A total amount of the seed culturing medium was inoculated into 1,400 ml of a main culture medium (medium prepared by adding 60 g of glucose, 20 g of corn steep liquor, 25 g of ammonium chloride, 2.5 g of potassium dihydrogenphosphate, 0.75 g of magnesium sulfate heptahydrate, 50 mg of iron sulfate heptahydrate, 13 mg of manganese sulfate pentahydrate, 50 mg of calcium chloride, 6.3 mg of copper sulfate pentahydrate, 1.3 mg of zinc sulfate heptahydrate, 5 mg of nickel chloride hexahydrate, 1.3 mg of cobalt chloride hexahydrate, 1.3 mg of ammonium molybdenate tetrahydrate, 14 mg of nicotinic acid, 23 mg of β -alanine, 7 mg of thiamin hydrochloride, and 0.42 mg of biotin to 1 liter of water) contained in a 5 1 jar fermenter and cultured therein at 32°C, 1 vvm and 800 rpm while controlling the pH to 7.0 with aqueous ammonia. When glucose in the medium had been consumed, a glucose feeding solution (medium prepared by adding 400 g glucose and 45 g of ammonium chloride to 1 liter of water) was continuously added. The addition of feeding solution was carried out at a controlled speed so as to maintain the dissolved oxygen concentration within a range of 0.5 to 3 ppm. After culturing for 29 hours, the culture was terminated. The cells were separated from the culture medium by centrifugation and then L-lysine hydrochloride in the supernatant was quantified by high performance liquid chromatography (HPLC). The results are shown in Table 2 below.

Table 2

Strain	L-Lysine hydrochloride yield (g/l)
ATCC 13032	0
HD-1	8
No. 58	45
No. 58pyc	51

[0386] As is apparent from the results shown in Table 2, the lysine productivity was improved by introducing the mutation, Val59Ala, in the *hom* gene or the mutation, Pro458Ser, in the pyc gene. Accordingly, it was found that the mutations are both effective mutations relating to the production of lysine. Strain, AHP-3, in which the mutation, Val59Ala, in the *hom* gene and the mutation, Pro458Ser, in the *pyc* gene have been introduced into the wild type ATCC 13032 strain together with the mutation, Thr331lle in the *lysC* gene has been deposited on December 5, 2000, in National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology (Higashi 1-1-3, Tsukuba-shi, Ibaraki, Japan) as FERM BP-7382.

Example 3

10

15

25

30

35

40

55

45 Reconstruction of lysine-producing strain based on genome information

[0387] The lysine-producing mutant B-6 strain (*Appl. Microbiol. Biotechnol., 32*: 269-273 (1989)), which has been constructed by multiple round random mutagenesis with NTG and screening from the wild type ATCC 13032 strain, produces a remarkably large amount of lysine hydrochloride when cultured in a jar at 32°C using glucose as a carbon source. However, since the fermentation period is long, the production rate is less than 2.1 g/l/h. Breeding to reconstitute only effective mutations relating to the production of lysine among the estimated at least 300 mutations introduced into the B-6 strain in the wild type ATCC 13032 strain was performed.

(1) Identification of mutation point and effective mutation by comparing the gene nucleotide sequence of the B-6 strain with that of the ATCC 13032 strain

[0388] As described above, the nucleotide sequences of genes derived from the B-6 strain were compared with the

corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed to identify many mutation points accumulated in the chromosome of the B-6 strain. Among these, a mutation, Val591Ala, in *hom*, a mutation, Thr311lle, in *tysC*, a mutation, Pro458Ser, in *pyc* and a mutation, Ala213Thr, in *zwf* were specified as effective mutations relating to the production of lysine. Breeding to reconstitute the 4 mutations in the wild type strain and for constructing of an industrially important lysine-producing strain was carried out according to the method shown below.

(2) Construction of plasmid for gene replacement having mutated gene

10

30

45

[0389] The plasmid for gene replacement, pChom59, having the mutated hom gene and the plasmid for gene replacement, pCpyc458, having the mutated pyc gene were prepared in the above Example 2(2). Plasmids for gene replacement having the mutated lysC and zwf were produced as described below.

[0390] The *lysC* and *zwf* having mutation points were amplified by PCR, and inserted into a plasmid for gene replacement, pCES30, according to the TA cloning method described in Example 2(2) (Bio Experiment Illustrated, Vol. 3). [0391] Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according to the above method of Saito *et al.* Using the chromosomal DNA as a template, PCR was carried out with Pfu turbo DNA polymerase (manufactured by Stratagene). In the mutated *lysC* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 were used as the primer set. In the mutated *zwf* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7008 and 7009 as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and purified using GENEGLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq DNA polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added to the 3'-end.

[0392] The above pCES30 T vector fragment and the mutated lysC gene (1.5 kb) or mutated zwf gene (2.3 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 μ g/ml kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 μ g/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was confirmed that the plasmid had a structure in which the 1.5 kb or 2.3 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pClysC311 and pCzwf213.

(3) Introduction of mutation, Thr311lle, in IysC into one point mutant HD-1

[0393] Since the one mutation point mutant HD-1 in which the mutation, Val59Ala, in hom was introduced into the wild type ATCC 13032 strain had been obtained in Example 2(2), the mutation, Thr311lle, in lysC was introduced into the HD-1 strain using pClysC311 produced in the above (2) according to the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-2 was a two point mutant having the mutated lysC gene in addition to the mutated hom gene.

(4) Introduction of mutation, Pro458Ser, in pyc into two point mutant AHD-2

[0394] The mutation, Pro458Ser, in *pyc* was introduced into the AHD-2 strain using the pCpyc458 produced in Example 2(2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-3 was a three point mutant having the mutated *pyc* gene in addition to the mutated *hom* gene and *lysC* gene.

(5) Introduction of mutation, Ala213Thr, in zwf into three point mutant AHP-3

[0395] The mutation, Ala213Thr, in zwf was introduced into the AHP-3 strain using the pCzwf458 produced in the above (2) by th gen replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS: 7008 and 7009 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR

product was determined in the usual manner, it was confirmed that the strain which was named APZ-4 was a four point mutant having the mutated *zwf* gene in addition to the mutated *hom* gene, *lysC* gene and *pyc* gene.

(6) Lysine production test on HD-1, AHD-2, AHP-3 and APZ-4 strains

[0396] The HD-1, AHD-2, AHP-3 and APZ-4 strains obtained above were subjected to a culture test in a 5 I jar fermenter in accordance with the method of Example 2(3).

[0397] Table 3 shows the results.

10

15

20

25

30

35

40

45

50

55

Table 3

01 -1-	L-Lysine hydrochloride (g/l)	Productivity (g/l/h)
Strain	L-Lysine hydrochlonde (g/l)	1 1000011111 (9)
HD-1	8	0.3
AHD-2	73	2.5
AHP-3	80	2.8
APZ-4	86	3.0
APZ-4		

[0398] Since the lysine-producing mutant B-6 strain which has been bred based on the random mutation and selection shows a productivity of less than 2.1 g/l/h, the APZ-4 strain showing a high productivity of 3.0 g/l/h is useful in industry.

(7) Lysine fermentation by APZ-4 strain at high temperature

[0399] The APZ-4 strain, which had been reconstructed by introducing 4 effective mutations into the wild type strain, was subjected to the culturing test in a 5 l jar fermenter in the same manner as in Example 2(3), except that the culturing temperature was changed to 40°C.

[0400] The results are shown in Table 4.

Table 4

[Temperature (°C)	L-Lysine hydrochloride (g/l)	Productivity (g/l/h)
-	32	86	3.0
	40	95	3.3

[0401] As is apparent from the results shown in Table 4, the lysine hydrochloride titer and productivity in culturing at a high temperature of 40°C comparable to those at 32°C were obtained. In the mutated and bred lysine-producing B-6 strain constructed by repeating random mutation and selection, the growth and the lysine productivity are lowered at temperatures exceeding 34°C so that lysine fermentation cannot be carried out, whereas lysine fermentation can be carried out using the APZ-4 strain at a high temperature of 40°C so that the load of cooling is greatly reduced and it is industrially useful. The lysine fermentation at high temperatures can be achieved by reflecting the high temperature adaptability inherently possessed by the wild type strain on the APZ-4 strain.

[0402] As demonstrated in the reconstruction of the lysine-producing strain, the present invention provides a novel breeding method effective for eliminating the problems in the conventional mutants and acquiring industrially advantageous strains. This methodology which reconstitutes the production strain by reconstituting the effective mutation is an approach which is efficiently carried out using the nucleotide sequence information of the genome disclosed in the present invention, and its effectiveness was found for the first time in the present invention.

Example 4

Production of DNA microarray and use thereof

[0403] A DNA microarray was produced based on the nucleotide sequence information of the ORF deduced from the full nucleotide sequences of *Corynebacterium glutamicum* ATCC 13032 using software, and genes of which expression is fluctuated depending on the carbon source during culturing were searched.

(1) Production of DNA microarray

[0404] Chromosomal DNA was prepared from Corynebacterium glutamicum ATCC 13032 by the method of Saito et

al. (Biochem. Biophys. Acta, 72: 619 (1963)). Based on 24 genes having the nucleotide sequences represented by SEQ ID NOS:207, 3433, 281, 3435, 3439, 765, 3445, 1226, 1229, 3448, 3451, 3453, 3455, 1743, 3470, 2132, 3476, 3477, 3485, 3488, 3489, 3494, 3496, and 3497 from the ORFs shown in Table 1 deduced from the full genome nucleotide sequence of Corynebacterium glutamicum ATCC 13032 using software and the nucl otide sequence of rabbit globin gene (GenBank Accession No. V00882) used as an internal standard, oligo DNA primers for PCR amplification represented by SEQ ID NOS:7010 to 7059 targeting the nucleotide sequences of the genes were synthesized in a usual manner.

[0405] As the oligo DNA primers used for the PCR,

10

25

40

[0406] DNAs having the nucleotide sequence represented by SEQ ID NOS:7010 and 7011 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:207,

[0407] DNAs having the nucleotide sequence represented by SEQ ID NOS:7012 and 7013 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3433,

[0408] DNAs having the nucleotide sequence represented by SEQ ID NOS:7014 and 7015 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:281,

5 [0409] DNAs having the nucleotide sequence represented by SEQ ID NOS:7016 and 7017 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3435,

[0410] DNAs having the nucleotide sequence represented by SEQ ID NOS:7018 and 7019 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3439,

[0411] DNAs having the nucleotide sequence represented by SEQ ID NOS:7020 and 7021 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:765,

[0412] DNAs having the nucleotide sequence represented by SEQ ID NOS:7022 and 7023 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3445,

[0413] DNAs having the nucleotide sequence represented by SEQ ID NOS:7024 and 7025 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1226,

[0414] DNAs having the nucleotide sequence represented by SEQ ID NOS:7026 and 7027 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1229,

[0415] DNAs having the nucleotide sequence represented by SEQ ID NOS:7028 and 7029 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3448,

[0416] DNAs having the nucleotide sequence represented by SEQ ID NOS:7030 and 7031 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3451,

[0417] DNAs having the nucleotide sequence represented by SEQ ID NOS:7032 and 7033 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3453,

[0418] DNAs having the nucleotide sequence represented by SEQ ID NOS:7034 and 7035 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3455,

[0419] DNAs having the nucleotide sequence represented by SEQ ID NOS:7036 and 7037 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1743,

[0420] DNAs having the nucleotide sequence represented by SEQ ID NOS:7038 and 7039 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3470,

[0421] DNAs having the nucleotide sequence represented by SEQ ID NOS:7040 and 7041 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:2132,

[0422] DNAs having the nucleotide sequence represented by SEQ ID NOS:7042 and 7043 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3476,

[0423] DNAs having the nucleotide sequence represented by SEQ ID NOS:7044 and 7045 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3477,

[0424] DNAs having the nucleotide sequence represented by SEQ ID NOS:7046 and 7047 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3485,

[0425] DNAs having the nucleotide sequence represented by SEQ ID NOS:7048 and 7049 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3488,

[0426] DNAs having the nucleotide sequence represented by SEQ ID NOS:7050 and 7051 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3489,

[0427] DNAs having the nucleotide sequence represented by SEQ ID NOS:7052 and 7053 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3494,

[0428] DNAs having the nucleotide sequence represented by SEQ ID NOS:7054 and 7055 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3496,

[0429] DNAs having the nucleotide sequence represented by SEQ ID NOS:7056 and 7057 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3497, and

[0430] DNAs having the nucleotide sequence represented by SEQ ID NOS:7058 and 7059 were used for the amplification of the DNA having the nucleotide sequence of the rabbit globin gene,

as the respective primer set.

[0431] The PCR was carried for 30 cycles with each cycle consisting of 15 seconds at 95°C and 3 minutes at 68°C using a thermal cycler (GeneAmp PCR syst m 9600, manufactured by P rkin Elmer), TaKaRa EX-Taq (manufactur d by Takara Shuzo), 100 ng of the chromosomal DNA and the buffer attached to the TaKaRa Ex-Taq reagent. In the case of the rabbit globin gene, a single-stranded cDNA which had been synthesized from rabbit globin mRNA (manufactured by Life Technologies) according to the manufacture's instructions using a reverse transcriptase RAV-2 (manufactured by Takara Shuzo). The PCR product of each gene thus amplified was subjected to agarose gel electrophoresis and extracted and purified using QIAquick Gel Extraction Kit (manufactured by QIAGEN). The purified PCR product was concentrated by precipitating it with ethanol and adjusted to a concentration of 200 ng/µl. Each PCR product was spotted on a slide glass plate (manufactured by Matsunami Glass) having MAS coating in 2 runs using GTMASS SYSTEM (manufactured by Nippon Laser & Electronics Lab.) according to the manufacture's instructions.

(2) Synthesis of fluorescence labeled cDNA

10

35

40

50

55

[0432] The ATCC 13032 strain was spread on BY agar medium (medium prepared by adding 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to in 1 liter of water and adjusting its pH to 7.2) and cultured at 30°C for 2 days. Then, the cultured strain was further inoculated into 5 ml of BY liquid medium and cultured at 30°C overnight. Then, the cultured strain was further inoculated into 30 ml of a minimum medium (medium prepared by adding 5 g of ammonium sulfate, 5 g of urea, 0.5 g of monopotassium dihydrogenphosphate, 0.5 g of dipotassium monohydrogenphosphate, 20.9 g of morpholinopropanesulfonic acid, 0.25 g of magnesium sulfate heptahydrate, 10 mg of calcium chloride dihydrate, 10 mg of manganese sulfate monohydrate, 10 mg of ferrous sulfate heptahydrate, 1 mg of zinc sulfate heptahydrate, 0.2 mg copper sulfate, and 0.2 mg biotin to 1 liter of water, and adjusting its pH to 6.5) containing 110 mmol/l glucose or 200 mmol/l ammonium acetate, and cultured in an Erlenmyer flask at 30° to give 1.0 of absorbance at 660 nm. After the cells were prepared by centrifuging at 4°C and 5,000 rpm for 10 minutes, total RNA was prepared from the resulting cells according to the method of Bormann et al. (Molecular Microbiology, 6: 317-326 (1992)). To avoid contamination with DNA, the RNA was treated with Dnasel (manufactured by Takara Shuzo) at 37°C for 30 minutes and then further purified using Qiagen RNeasy MiniKit (manufactured by QIAGEN) according to the manufacture's instructions. To 30 μg of the resulting total RNA, 0.6 μl of rabbit globin mRNA (50 ng/μl, manufactured by Life Technologies) and 1 μl of a random 6 mer primer (500 ng/μl, manufactured by Takara Shuzo) were added for denaturing at 65°C for 10 minutes, followed by quenching on ice. To the resulting solution, 6 µl of a buffer attached to Superscript II (manufactured by Lifetechnologies), 3 μl of 0.1 mol/l DTT, 1.5 μl of dNTPs (25 mmol/l dATP, 25 mmol/l dCTP, 25 mmol/l dGTP, 10 mmol/l I dTTP), 1.5 μl of Cy5-dUTP or Cy3-dUTP (manufactured by NEN) and 2 μl of Superscript II were added, and allowed to stand at 25°C for 10 minutes and then at 42°C for 110 minutes. The RNA extracted from the cells using glucose as the carbon source and the RNA extracted from the cells using ammonium acetate were labeled with Cy5-dUTP and Cy3-dUTP, respectively. After the fluorescence labeling reaction, the RNA was digested by adding 1.5 μl of 1 mol/l sodium hydroxide-20 mmol/l EDTA solution and 3.0 μl of 10% SDS solution, and allowed to stand at 65°C for 10 minutes. The two cDNA solutions after the labeling were mixed and purified using Qiagen PCR purification Kit (manufactured by QIAGEN) according to the manufacture's instructions to give a volume of 10 μl.

(3) Hybridization

[0433] UltraHyb (110 μ l) (manufactured by Ambion) and the fluorescence-labeled cDNA solution (10 μ l) were mixed and subjected to hybridization and the subsequent washing of slide glass using GeneTAC Hybridization Station (manufactured by Genomic Solutions) according to the manufacture's instructions. The hybridization was carried out at 50°C, and the washing was carried out at 25°C.

(4) Fluorescence analysis

[0434] The fluorescence amount of each DNA array having the fluorescent cDNA hybridized therewith was measured using ScanArray 4000 (manufactured by GSI Lumonics).

[0435] Table 5 shows the Cy3 and Cy5 signal intensities of the genes having been corrected on the basis of the data of the rabbit globin used as the internal standard and the Cy3/Cy5 ratios.

Table 5

SEQ ID NO	Cy3 intensity	Cy5 intensity	Cy3/Cy5
207	5248	3240	1.62

Table 5 (continued)

SEQ ID NO	Cy3 intensity	Cy5 intensity	Cy3/Cy5
3433	2239	2694	0.83
281	2370	2595	0.91
3435	2566	2515	1.02
3439	5597	6944	0.81
765	6134	4943	1.24
3455	1169	1284	0.91
1226	1301	1493	0.87
1229	1168	1131	1.03
3448	1187	1594	0.74
3451	2845	3859	0.74
3453	3498	1705	2.05
3455	1491	1144	1.30
1743	1972	1841	1.07
3470	4752	3764	1.26
2132	1173	1085	1.08
3476	1847	1420	1.30
3477	1284	1164	1.10
3485	4539	8014	0.57
3488	34289	1398	24.52
3489	43645	1497	29.16
3494	3199	2503	1.28
3496	3428	2364	1.45
3497	3848	3358	1.15

[0436] The ORF function data estimated by using software were searched for SEQ ID NOS:3488 and 3489 showing remarkably strong Cy3 signals. As a result, it was found that SEQ ID NOS:3488 and 3489 are a maleate synthase gene and an isocitrate lyase gene, respectively. It is known that these genes are transcriptionally induced by acetic acid in *Corynebacterium glutamicum* (*Archives of Microbiology*, 168: 262-269 (1997)).

[0437] As described above, a gene of which expression is fluctuates could be discovered by synthesizing appropriate oligo DNA primers based on the ORF nucleotide sequence information deduced from the full genomic nucleotide sequence information of *Corynebacterium glutamicum* ATCC 13032 using software, amplifying the nucleotide sequences of the gene using the genome DNA of *Corynebacterium glutamicum* as a template in the PCR reaction, and thus producing and using a DNA microarray.

[0438] This Example shows that the expression amount can be analyzed using a DNA microarray in the 24 genes. On the other hand, the present DNA microarray techniques make it possible to prepare DNA microarrays having thereon several thousand gene probes at once. Accordingly, it is also possible to prepare DNA microarrays having thereon all of the ORF gene probes deduced from the full genomic nucleotide sequence of *Corynebacterium glutamicum* ATCC 13032 determined by the present invention, and analyze the expression profile at the total gene level of *Corynebacterium glutamicum* using these arrays.

Example 5

10

15

20

25

30

45

Homology search using Corynebacterium glutamicum genome sequence

(1) Search of adenosine deaminase

[0439] The amino acid sequence (ADD_ECOLI) of *Escherichia coli* adenosine deaminase was obtained from Swissprot Database as the amino acid sequence of the protein of which function had been confirmed as adenosine deaminase (EC3.5.4.4). By using the full length of this amino acid sequence as a query, a homology search was carried out on a nucleotide s quenc database of the genome sequence of *Corynebacterium glutamicum* or a database of the amino acids in the ORF region deduced from the genome sequence using FASTA program (*Proc. Natl. Acad. Sci. ISA, 85*: 2444-2448 (1988)). A case where E-value was I -10 or less was judged as being significantly homologous. As a result,

no sequence significantly homologous with the *Escherichia coli* adenosine deaminase was found in the nucleotid sequence database of the genome sequence of *Corynebacterium glutamicum* or the database of the amino acid sequences in the ORF region deduced from the genome sequence. Based on these results, it is assumed that *Corynebacterium glutamicum* contains no ORF having adenosine deaminase activity and thus has no activity of converting adenosine into inosine.

(2) Search of glycine cleavage enzyme

10

25

35

45

55

[0440] The sequences (GCSP_ECOLI, GCST_ECOLI and GCSH_ECOLI) of glycine decarboxylase, aminomethyl transferase and an aminomethyl group carrier each of which is a component of *Escherichia coli* glycine cleavage enzyme as the amino acid sequence of the protein, of which function had been confirmed as glycine cleavage enzyme (EC2.1.2.10), were obtained from Swiss-prot Database.

[0441] By using these full-length amino acid sequences as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or a database of the ORF amino acid sequences deduced from the genome sequence using FASTA program. A case where E-value was le-10 or less was judged as being significantly homologous. As a result, no sequence significantly homologous with the glycine decarboxylase, the aminomethyl transferase or the aminomethyl group carrier each of which is a component of *Escherichia coli* glycine cleavage enzyme, was found in the nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or the database of the ORF amino acid sequences estimated from the genome sequence. Based on these results, it is assumed that *Corynebacterium glutamicum* contains no ORF having the activity of glycine decarboxylase, aminomethyl transferase or the aminomethyl group carrier and thus has no activity of the glycine cleavage enzyme.

(3) Search of IMP dehydrogenase

[0442] The amino acid sequence (IMDH ECOLI) of Escherichia coli IMP dehydrogenase as the amino acid sequence of the protein, of which function had been confirmed as IMP dehydrogenase (EC1.1.1.205), was obtained from Swissprot Database. By using the full length of this amino acid sequence as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of Corynebacterium glutamicum or a database of the ORF amino acid sequences predicted from the genome sequence using FASTA program. A case where E-value was le-10 or less was judged as being significantly homologous. As a result, the amino acid sequences encoded by two ORFs, namely, an ORF positioned in the region of the nucleotide sequence No. 615336 to 616853 (or ORF having the nucleootide sequence represented by SEQ ID NO:672) and another ORF positioned in the region of the nucleotide sequence No. 616973 to 618094 (or ORF having the nucleotide sequence represented by SEQ ID NO:674) were significantly homologous with the ORFs of Escherichia coli IMP dehydrogenase. By using the above-described predicted amino acid sequence as a query in order to examine the similarity of the amino acid sequences encoded by the ORFs with IMP dehydrogenases of other organisms in greater detail, a search was carried out on GenBank (http://www.ncbi.nlm. nih.gov/) nr-aa database (amino acid sequence database constructed on the basis of GenBankCDS translation products, PDB database, Swiss-Prot database, PIR database, PRF database by eliminating duplicated registrations) using BLAST program. As a result, both of the two amino acid sequences showed significant homologies with IMP dehdyrogenases of other organisms and clearly higher homologies with IMP dehdyrogenases than with amino acid sequences of other proteins, and thus, it was assumed that the two ORFs would function as IMP dehydrogenase. Based on these results, it was therefore assumed that Corynebacterium glutamicum has two ORFs having the IMP dehydrogenase activity.

Example 6

Proteome analysis of proteins derived from Corynebacterium glutamicum

(1) Preparations of proteins derived from Corynebacterium glutamicum ATCC 13032, FERM BP-7134 and FERM BP-158

[0443] Culturing tests of Corynebacterium glutamicum ATCC 13032 (wild type strain), Corynebacterium glutamicum FERM BP-7134 (lysine-producing strain) and Corynebacterium glutamicum (FERM BP-158, lysine-highly producing strain) were carried out in a 5 I jar fermenter according to the method in Example 2(3). The results are shown in Table 6.

Table 6

Strain	L-Lysine yield (g/l)
ATCC 13032	0
FERM BP-7134	45
FERM BP-158	60

[0444] After culturing, cells of each strain were recovered by centrifugation. These cells were washed with Tris-HCI buffer (10 mmol/l Tris-HCI, pH 6.5, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim)) three times to give washed cells which could be stored under freezing at -80°C. The freeze-stored cells were thawed before use, and used as washed cells.

[0445] The washed cells described above were suspended in a disruption buffer (10 mmol/l Tris-HCl, pH 7.4, 5 mmol/l magnesium chloride, 50 mg/l RNase, 1.6 mg/ml protease inhibitor (COMPLETE: manufactured by Boehringer Mannheim)), and disrupted with a disruptor (manufactured by Brown) under cooling. To the resulting disruption solution, DNase was added to give a concentration of 50 mg/l, and allowed to stand on ice for 10 minutes. The solution was centrifuged (5,000 \times g, 15 minutes, 4°C) to remove the undisrupted cells as the precipitate, and the supermatant was recovered.

[0446] To the supernatant, urea was added to give a concentration of 9 mol/l, and an equivalent amount of a lysis buffer (9.5 mol/l urea, 2% NP-40, 2% Ampholine, 5% mercaptoethanol, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim) was added thereto, followed by thoroughly stirring at room temperature for dissolving.

[0447] After being dissolved, the solution was centrifuged at $12,000 \times g$ for 15 minutes, and the supernatant was recovered.

[0448] To the supernatant, ammonium sulfate was added to the extent of 80% saturation, followed by thoroughly stirring for dissolving.

[0449] After being dissolved, the solution was centrifuged (16,000 \times g, 20 minutes, 4°C), and the precipitate was recovered. This precipitate was dissolved in the lysis buffer again and used in the subsequent procedures as a protein sample. The protein concentration of this sample was determined by the method for quantifying protein of Bradford.

(2) Separation of protein by two dimensional electrophoresis

5

30

40

45

50

[0450] The first dimensional electrophoresis was carried out as described below by the isoelectric electrophoresis method.

[0451] A molded dry IPG strip gel (pH 4-7, 13 cm, Immobiline DryStrips; manufactured by Amersham Pharmacia Biotech) was set in an electrophoretic apparatus (Multiphor II or IPGphor; manufactured by Amersham Pharmacia Biotech) and a swelling solution (8 mol/l urea, 0.5% Triton X-100, 0.6% dithiothreitol, 0.5% Ampholine, pH 3-10) was packed therein, and the gel was allowed to stand for swelling 12 to 16 hours.

[0452] The protein sample prepared above was dissolved in a sample solution (9 mol/l urea, 2% CHAPS, 1% dithiothreitol, 2% Ampholine, pH 3-10), and then about 100 to 500 μg (in terms of protein) portions thereof were taken and added to the swollen IPG strip gel.

[0453] The electrophoresis was carried out in the 4 steps as defined below under controlling the temperature to 20°C:

- step 1: 1 hour under a gradient mode of 0 to 500V;
- step 2: 1 hour under a gradient mode of 500 to 1,000 V;
- step 3: 4 hours under a gradient mode of 1,000 to 8,000 V; and
- step 4: 1 hour at a constant voltage of 8,000 V.

[0454] After the isoelectric electrophoresis, the IPG strip gel was put off from the holder and soaked in an equilibration buffer A (50 mmol/l Tris-HCl, pH 6.8, 30% glycerol, 1% SDS, 0.25% dithiothreitol) for 15 minutes and another equilibration buffer B (50 mmol/l Tris-HCl, pH 6.8, 6 mol/l urea, 30% glycerol, 1% SDS, 0.45% iodo acetamide) for 15 minutes to sufficiently equilibrate the gel.

[0455] After the equilibrium, the IPG strip gel was lightly rinsed in an SDS electrophoresis buffer (1.4% glycine, 0.1% SDS, 0.3% Tris-HCl, pH 8.5), and the second dimensional electrophoresis depending on molecular weight was carried out as described below to separate the proteins.

[0456] Specifically, the above IPG strip gel was closely placed on 14% polyacrylamide slub gel (14% polyacrylamide, 0.37% bisacrylamide, 37.5 mmol/l Tris-HCl, pH 8.8, 0.1% SDS, 0.1% TEMED, 0.1% ammonium persulfate) and sub-

jected to electrophoresis under a constant voltage of 30 mA at 20°C for 3 hours to separate the proteins.

(3) Detection of protein spot

25

- [0457] Coomassie staining was performed by the method of Gorg et al. (*Electrophoresis, 9*: 531-546 (1988)) for the slub gel after the second dimensional electrophoresis. Specifically, the slub gel was stained under shaking at 25°C for about 3 hours, the excessive coloration was removed with a decoloring solution, and the gel was thoroughly washed with distilled water.
 - [0458] The results are shown in Fig. 2. The proteins derived from the ATCC 13032 strain (Fig. 2A), FERM BP-7134 strain (Fig. 2B) and FERM BP-158 strain (Fig. 2C) could be separated and detected as spots.
 - (4) In-gel digestion of detected protein spot
 - [0459] The detected spots were each cut out from the gel and transferred into siliconized tube, and 400 μ l of 100 mmol/1 ammonium bicarbonate: acetonitrile solution (1:1, v/v) was added thereto, followed by shaking overnight and freeze-dried as such. To the dried gel, 10 μ l of a lysylendopeptidase (LysC) solution (manufactured by WAKO, prepared with 0.1% SDS-containing 50 mmol/l ammonium bicarbonate to give a concentration of 100 ng/ μ l) was added and the gel was allowed to stand for swelling at 0°C for 45 minutes, and then allowed to stand at 37°C for 16 hours. After removing the LysC solution, 20 μ l of an extracting solution (a mixture of 60% acetonitrile and 5% formic acid) was added, followed by ultrasonication at room temperature for 5 minutes to disrupt the gel. After the disruption, the extract was recovered by centrifugation (12,000 rpm, 5 minutes, room temperature). This operation was repeated twice to recover the whole extract. The recovered extract was concentrated by centrifugation *in vacuo* to halve the liquid volume. To the concentrate, 20 μ l of 0.1% trifluoroacetic acid was added, followed by thoroughly stirring, and the mixture was subjected to desalting using ZipTip (manufactured by Millipore). The protein absorbed on the carriers of ZipTip was eluted with 5 μ l of α -cyano-4-hydroxycinnamic acid for use as a sample solution for analysis.
 - (5) Mass spectrometry and amino acid sequence analysis of protein spot with matrix assisted laser desorption ionization time of flight mass spectrometer (MALDI-TOFMS)
- [0460] The sample solution for analysis was mixed in the equivalent amount with a solution of a peptide mixture for mass calibration (300 nmol/l Angiotensin II, 300 nmol/l Neurotensin, 150 nmol/l ACTHclip 18-39, 2.3 μmol/l bovine insulin B chain), and 1 μl of the obtained solution was spotted on a stainless probe and crystallized by spontaneously drying.
- [0461] As measurement instruments, REFLEX MALDI-TOF mass spectrometer (manufactured by Bruker) and an N2 laser (337 nm) were used in combination.
 - [0462] The analysis by PMF (peptide-mass finger printing) was carried out using integration spectra data obtained by measuring 30 times at an accelerated voltage of 19.0 kV and a detector voltage of 1.50 kV under reflector mode conditions. Mass calibration was carried out by the internal standard method.
 - [0463] The PSD (post-source decay) analysis was carried out using integration spectra obtained by successively altering the reflection voltage and the detector voltage at an accelerated voltage of 27.5 kV.
 - [0464] The masses and amino acid sequences of the peptide fragments derived from the protein spot after digestion were thus determined.
 - (6) Identification of protein spot
 - [0465] From the amino acid sequence information of the digested peptide fragments derived from the protein spot obtained in the above (5), ORFs corresponding to the protein were searched on the genome sequence database of Corynebacterium glutamicum ATCC 13032 as constructed in Example 1 to identify the protein.
- [0466] The identification of the protein was carried out using MS-Fit program and MS-Tag program of intranet protein prospector.
 - (a) Search and identification of gene encoding high-expression protein
 - [0467] In the proteins derived from Corynebacterium glutamicum ATCC 13032 showing high expression amounts in CBB-staining shown in Fig. 2A, the proteins corresponding to Spots-1, 2, 3, 4 and 5 were identified by the above method. [0468] As a result, it was found that Spot-1 corresponded to nolase which was a protein having the amino acid sequence of SEQ ID NO:4585; Spot-2 corresponded to phosphoglycelate kinase which was a protein having the amino acid sequence of SEQ ID NO:5254; Spot-3 corresponded to glyceraldehyde-3-phosphate dehydrogenase which was

a protein having the amino acid sequence represented by SEQ ID NO:5255; Spot-4 corr sponded to fructose bisphosphate aldolase which was a protein having the amino acid sequence represented by SEQ ID NO:6543; and Spot-5 corresponded to triose phosphate isomerase which was a protein having the amino acid sequence represented by SEQ ID NO:5252.

- [0469] These genes, represented by SEQ ID NOS:1085, 1754, 1775, 3043 and 1752 encoding the proteins corresponding to Spots-1, 2, 3, 4 and 5, respectively, encoding the known proteins are important in the central metabolic pathway for maintaining the life of the microorganism. Particularly, it is suggested that the genes of Spots-2, 3 and 5 form an operon and a high-expression promoter is encoded in the upstream thereof (*J. of Eacteriol., 174*: 6067-6086 (1992)).
- [0470] Also, the protein corresponding to Spot-9 in Fig. 2 was identified in the same manner as described above, and it was found that Spot-9 was an elongation factor Tu which was a protein having the amino acid sequence represented by SEQ ID No:6937, and that the protein was encoded by DNA having the nucleotide sequence represented by SEQ ID No:3437.
 - [0471] Based on these results, the proteins having high expression level were identified by proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1. Thus, the nucleotide sequences of the genes encoding the proteins and the nucleotide sequences upstream thereof could be searched simultaneously. Accordingly, it is shown that nucleotide sequences having a function as a high-expression promoter can be efficiently selected.
- 20 (b) Search and identification of modified protein
 - [0472] Among the proteins derived from *Corynebacterium glutamicum* FERM BP-7134 shown in Fig. 2B, Spots-6, 7 and 8 were identified by the above method. As a result, these three spots all corresponded to catalase which was a protein having the amino acid sequence represented by SEQ ID NO:3785.
 - [0473] Accordingly, all of Spots-6, 7 and 8 detected as spots differing in isoelectric mobility were all products derived from a catalase gene having the nucleotide sequence represented by SEQ ID No:285. Accordingly, it is shown that the catalase derived from *Corynebacterium glutamicum* FERM BP-7134 was modified after the translation.
 - [0474] Based on these results, it is confirmed that various modified proteins can be efficiently searched by proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1.
 - (c) Search and identification of expressed protein effective in lysine production
 - [0475] It was found out that in Fig. 2A (ATCC 13032: wild type strain), Fig. 2B (FERM BP-7134: lysine-producing strain) and Fig. 2C (FERM BP-158: lysine-highly producing strain), the catalase corresponding to Spot-8 and the elongation factor Tu corresponding to Spot-9 as identified above showed the higher expression level with an increase in the lysine productivity.
 - **[0476]** Based on these results, it was found that hopeful mutated proteins can be efficiently searched and identified in breeding aiming at strengthening the productivity of a target product by the proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1.
- [0477] Moreover, useful mutation points of useful mutants can be easily specified by searching the nucleotide sequences (nucleotide sequences of promoter, ORF, or the like) relating to the identified proteins using the above database and using primers designed on the basis of the sequences. As a result of the fact that the mutation points are specified, industrially useful mutants which have the useful mutations or other useful mutations derived therefrom can be easily bred.
- [0478] While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one of skill in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof. All references cited herein are incorporated in their entirety.

50 Claims

55

25

- 1. A method for at least one of the following:
 - (A) identifying a mutation point of a gene derived from a mutant of a coryneform bacterium,
 - (B) measuring an expression amount of a gene derived from a coryneform bacterium,
 - (C) analyzing an expression profile of a gene derived from a coryn form bacterium,
 - (D) analyzing expression patterns of genes derived from a coryneform bacterium, or
 - (E) identifying a gene homologous to a gene derived from a coryneform bacterium,

said method comprising:

5

10

20

25

30

35

45

(a) producing a polynucleotide array by adhering to a solid support at 1 ast two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of the first or second polynucleotides,

- (b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a coryneform bacterium, a labeled polynucleotide derived from a mutant of the coryneform bacterium or a labeled polynucleotide to be examined, under hybridization conditions,
- (c) detecting any hybridization, and
- (d) analyzing the result of the hybridization.
- The method according to claim 1, wherein the coryneform bacterium is a microorganism belonging to the genus
 Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - The method according to claim 2, wherein the microorganism belonging to the genus Corynebacterium is selected
 from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium
 acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium
 melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 4. The method according to claim 1, wherein the polynucleotide derived from a coryneform bacterium, the polynucleotide derived from a mutant of the coryneform bacterium or the polynucleotide to be examined is a gene relating to the biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof.
 - 5. The method according to claim 1, wherein the polynucleotide to be examined is derived from Escherichia coli.
 - 6. A polynucleotide array, comprising:

at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 continuous bases of the first or second polynucleotides, and a solid support adhered thereto.

- A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a homology of at least 80% with the polynucleotide.
- 40 8. A polynucleotide comprising any one of the nucleotide sequences represented by SEQ ID NOS:2 to 3431, or a polynucleotide which hybridizes with the polynucleotide under stringent conditions.
 - A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.
 - 10. A polynucleotide which is present in the 5' upstream or 3' downstream of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a whole polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.
- 11. A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of claims 7 to 10, or a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising 10 to 200 continuous based.
 - 12. A recombinant DNA comprising the polynucleotide of any one of claims 8 to 11.
 - 13. A transformant comprising the polynucleotid of any on of claims 8 to 11 or th r combinant DNA of claim 12.
 - 14. A method for producing a polypeptide, comprising:

culturing the transformant of claim 13 in a medium to produce and accumulat a polyp ptide encoded by the polynucleotide of claim 8 or 9 in the medium, and recovering the polypeptide from the medium.

5 15. A method for producing at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, comprising:

culturing the transformant of claim 13 in a medium to produce and accumulate at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid, and analogues thereof from the medium.

- 16. A polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431.
- 17. A polypeptide comprising the amino acid sequence selected from SEQ ID NOS:3502 to 6931.
- 18. The polypeptide according to claim 16 or 17, wherein at least one amino acid is deleted, replaced, inserted or added, said polypeptides having an activity which is substantially the same as that of the polypeptide without said at least one amino acid deletion, replacement, insertion or addition.
- 19. A polypeptide comprising an amino acid sequence having a homology of at least 60% with the amino acid sequence of the polypeptide of claim 16 or 17, and having an activity which is substantially the same as that of the polypeptide.
- 25 20. An antibody which recognizes the polypeptide of any one of claims 16 to 19.
 - 21. A polypeptide array, comprising:

10

15

20

30

35

45

50

55

at least one polypeptide or partial fragment polypeptide selected from the polypeptides of claims 16 to 19 and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.

22. A polypeptide array, comprising:

at least one antibody which recognizes a polypeptide or partial fragment polypeptide selected from the polypeptides of claims 16 to 19 and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.

- 23. A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 1 to 3501 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
 - 24. A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with the target sequence or target structure motif information; and

- (iv) screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- 25. A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- 26. A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;

5

10

15

20

25

30

35

45

50

- (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information; and
- (iv) screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- 27. A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 2 to 3501 with the target nucleotide sequence information for determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501; and
 - (iv) an output devices that shows a function obtained by the comparator.
- 28. A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encoded by 40 a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information; (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information; and
 - (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501.
 - 29. A system based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input devic that inputs at least one amino acid sequence information s lected from SEQ ID NOS: 3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information:

- (ii) a data storing device for at least temporarily storing the input information;
- (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target amino acid sequence information for determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001; and
- (iv) an output device that shows a function obtained by the comparator.
- 30. A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
 - (ii) at least temporarily storing said information;

5

10

15

25

30

35

45

50

- (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target amino acid sequence information; and
- (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001.
- 20 31. The system according to any one of claims 23, 25, 27 and 29, wherein a coryneform bacterium is a microorganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - **32.** The method according to any one of claims 24, 26, 28 and 30, wherein a coryneform bacterium is a microorganism of the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
 - 33. The system according to claim 31, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 34. The method according to claim 32, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 35. A recording medium or storage device which is readable by a computer in which at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 or function information based on the nucleotide sequence is recorded, and is usable in the system of claim 23 or 27 or the method of claim 24 or 28.
- 36. A recording medium or storage device which is readable by a computer in which at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence is recorded, and is usable in the system of claim 25 or 29 or the method of claim 26 or 30.
 - 37. The recording medium or storage device according to claim 35 or 36, which is a computer readable recording medium selected from the group consisting of a floppy disc, a hard disc, a magnetic tape, a random access memory (RAM), a read only memory (ROM), a magneto-optic disc (MO), CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM and DVD-RW.
 - 38. A polypeptide having a homoserine dehydrogenase activity, comprising an amino acid sequence in which the Val residue at the 59th in the amino acid sequence of homoserine dehydrogenase derived from a coryneform bacterium is replaced with an amino acid residue other than a Val residue.
 - 39. A polypeptide comprising an amino acid sequence in which the Val residue at the 59th position in the amino acid sequence as represented by SEQ ID NO:6952 is replaced with an amino acid residue other than a Val residue.
 - 40. The polypeptide according to claim 38 or 39, wherein the Val residue at the 59th position is replaced with an Ala residue.

- 41. A polypeptide having pyruvate carboxylase activity, comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence of pyruvate carboxylase derived from a coryneform bacterium is replaced with an amino acid residue other than a Pro residue.
- 42. A polypeptide comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence represented by SEQ ID NO:4265 is replaced with an amino acid residue other than a Pro residue.
 - 43. The polypeptide according to claim 41 or 42, wherein the Pro residue at the 458th position is replaced with a Ser residue.
 - 44. The polypeptide according to any one of claims 38 to 43, which is derived from Corynebacterium glutamicum.
 - 45. A DNA encoding the polypeptide of any one of claims 38 to 44.
- 15 46. A recombinant DNA comprising the DNA of claim 45.

10

20

30

35

40

45

55

- 47. A transformant comprising the recombinant DNA of claim 46.
- 48. A transformant comprising in its chromosome the DNA of claim 45.
- 49. The transformant according to claim 47 or 48, which is derived from a coryneform bacterium.
- 50. The transformant according to claim 49, which is derived from Corynebacterium glutamicum.
- 25 51. A method for producing L-lysine, comprising:

culturing the transformant of any one of claims 47 to 50 in a medium to produce and accumulate L-lysine in the medium, and recovering the L-lysine from the culture.

- **52.** A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising the following:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtained by (i);
 - (iii) introducing the mutation point into a coryneform bacterium which is free of the mutation point, or deleting the mutation point from a coryneform bacterium having the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- 53. The method according to claim 52, wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
 - 54. The method according to claim 52, wherein the mutation point is a mutation point relating to a useful mutation which improves or stabilizes the productivity.
- 55. A method for breading a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequenc in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain bas d on a result obtain by (i);
 - (iii) deleting a mutation point from a coryneform bacterium having the mutation point; and

- (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtain d in (iii).
- **56.** The method according to claim 55, wher in the gene is a gene encoding an nzyme in a biosynthetic pathway or a signal transmission pathway.
 - **57.** The method according to claim 55, wherein the mutation point is a mutation point which decreases or destabilizes the productivity.
- 58. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) identifying an isozyme relating to biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof, based on the nucleotide sequence information represented by SEQ ID NOS:2 to 3431;
 - (ii) classifying the isozyme identified in (i) into an isozyme having the same activity;
 - (iii) mutating all genes encoding the isozyme having the same activity simultaneously; and
 - (iv) examining productivity by a fermentation method of the compound selected in (i) of the coryneform bacterium which have been transformed with the gene obtained in (iii).
 - 59. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) arranging a function information of an open reading frame (ORF) represented by SEQ ID NOS:2 to 3431;
 - (ii) allowing the arranged ORF to correspond to an enzyme on a known biosynthesis or signal transmission pathway:
 - (iii) explicating an unknown biosynthesis pathway or signal transmission pathway of a coryneform bacterium in combination with information relating known biosynthesis pathway or signal transmission pathway of a coryneform bacterium;
 - (iv) comparing the pathway explicated in (iii) with a biosynthesis pathway of a target useful product; and (v) transgenetically varying a coryneform bacterium based on the nucleotide sequence information to either strengthen a pathway which is judged to be important in the biosynthesis of the target useful product in (iv) or weaken a pathway which is judged not to be important in the biosynthesis of the target useful product in (iv).
- 60. A coryneform bacterium, bred by the method of any one of claims 52 to 59.
 - 61. The coryneform bacterium according to claim 60, which is a microorganism belonging to the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
- 40 62. The coryneform bacterium according to claim 61, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoamino genes, and Corynebacterium ammonia genes.
 - **63.** A method for producing at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid and an analogue thereof, comprising:
- culturing a coryneform bacterium of any one of claims 60 to 62 in a medium to produce and accumulate at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof; recovering the compound from the culture.
 - 64. The method according to claim 63, wherein the compound is L-lysine.
 - 65. A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:
 - (i) preparing

15

20

25

30

45

a protein derived from a bact rium of a production strain of a coryn form bacterium which has been subjected to mutation breeding by a firmentation process so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, and a protein derived from a bacterium of a parent strain of the production strain;

(ii) separating the proteins prepared in (i) by two dimensional electrophoresis;

5

10

20

25

30

35

40

45

50

55

- (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;
- (iv) treating the protein showing different expression amounts as a result of the comparison with a peptidase to extract peptide fragments;
- (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and
- (vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ
- ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.
- 66. The method according to claim 65, wherein the coryneform bacterium is a microorganism belonging to the genus corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - 67. The method according to claim 66, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 68. A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382) .

GENOME AND/OR SEQUENCE DATA POLYNUCLEOTIDE
AND/OR
POLYPEPTIDE
SEQUENCE
SEQUENCE
RECOGNIZER AND
QUERY BUFFER NETWORK REQUEST RESULT USER INPUT DEVICE

245

FIG. 4

