COMP 472: Artificial Intelligence Machine Learning Naive Bayes Classification

Russell & Norvig: Sections 12.2 to 12.6

Today

- Introduction to ML
- 2. Naïve Bayes Classification YOU ARE HERE!

- a. Application to Spam Filtering
- 3. Decision Trees
- 4. (Evaluation
- 5. Unsupervised Learning)
- 6. Neural Networks
 - a. Perceptrons
 - b. Multi Layered Neural Networks

Motivation

推论

- How do we represent and reason when there is uncertainly in the necessary knowledge?
 - It might rain tonight
 - If you have red spots on your face, you might have the measles
 - This e-mail is most likely spam
 - I can't read this character, but it looks like a "B"
 - These 2 pictures are very likely of the same person
 - ...
 - One way, is to use probability theory

Remember...

- P is a probability function:
 - \bigcirc 0 \leq P(A) \leq 1
 - $P(A) = 0 \Rightarrow$ the event A will never take place
 - \neg P(A) = 1 \Rightarrow the event A must take place
 - $\sum_i P(A_i) = 1 \Rightarrow$ one of the outcomes A_i will take place
 - $P(A) + P(\sim A) = 1$
- Joint probability
 - intersection $A_1 \cap ... \cap A_n$ is an event that takes place if all the events $A_1,...,A_n$ take place
 - □ denoted $P(A \cap B)$ or P(A,B)
- Sum Rule
 - union $A_1 \cup ... \cup A_n$ is an event that takes place if at least one of the events $A_1,...,A_n$ takes place
 - □ denoted $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Conditional Probability

- Prior (or unconditional) probability 先验概率,不知道任何前置条件的概率
 - Probability of an event before any evidence is obtained
 - P(A) = 0.1 $P(rain\ today) = 0.1$
 - i.e. Your belief about A given that you have no evidence

后验概率

- Posterior (or conditional) probability center (or conditional) probability center (or conditional)
 - Probability of an event given that you know that B is true (B = some evidence)
 - \neg P(A|B) = 0.8 P(rain today | cloudy) = 0.8
 - □ i.e. Your belief about A given that you know B

Conditional Probability (con't)

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A,B)}{P(B)}$$

Chain Rule

With 2 events, the probability that A and B occur is:

$$P(A,B) = P(A|B) \times P(B)$$
 链式法则,记忆点就是竖的乘后面那个前置条件的几率就是同时发生的几率

- With 3 events, the probability that A, B and C occur is:
 - The probability that A occurs
 - Times, the probability that B occurs, assuming that A occurred
 - Times, the probability that Coccurs, assuming that A and B have occurred
- With n events, we can generalize to the Chain rule:

$$P(A_1, A_2, A_3, A_4, ..., A_n)$$

- $= P (\cap A_i)$
- = $P(A_1) \times P(A_2|A_1) \times P(A_3|A_1,A_2) \times ... \times P(A_n|A_1,A_2,A_3,...,A_{n-1})$

So what?

这样我们就可以做出几率上的推测了

- we can do probabilistic inference
 - □ i.e. infer new knowledge from observed evidence

Joint probability distribution:

P(Toothache \(Cavity \)		evidence			
sis		Toothache	~Toothache		
thes	Cavity 有蛀牙	0.04	0.06		
hypothesis	~Cavity	0.01	0.89		

$$P(H \mid E) = \frac{P(H \cap E)}{P(E)}$$

$$P(cavity \mid toothache) = \frac{P(cavity \cap toothache)}{P(toothache)} = \frac{0.04}{0.04 + 0.01} = 0.8$$

Getting the Probabilities

in most applications, you just count from a set of observations
 绝大多数时候数据来自history data

$$P(A) = \frac{count_of_A}{count_of_all_events}$$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{count_of_A_and_B_together}{count_of_all_B}$$

Combining Evidence

- Assume now 2 pieces of evidence:
- Suppose, we know that
 - □ P(Cavity | Toothache) = 0.12
 - □ P(Cavity | Young) = 0.18
- A patient complains about Toothache and is Young...

Combining Evidence

这里实际上是三个variable,Tootheache,Young,Cavity,只不过这是2D图形,所以把Young放到了tootheache下面

	Toothache		~Toothache		
	Young ~ Young		Young	~ Young	
Cavity	0.108	0.012	0.072	0.008	
~Cavity	0.016 0.064		0.144	0.576	

 $P(Toothache \cap Cavity \cap Young)$

但是variable过多的时候比并不能这样画表

- But how do we get the data?
- In reality, we may have dozens, hundreds of variables
- We cannot have a table with the probability of all possible combinations of variables TRENTIAL TRANSPORT OF ALL
 - \Box Ex. with 16 binary variables, we would need 2^{16} entries

Independent Events

In real life:

有的变量是独立的,同时发生的几率就等于分别发生相乘

- some variables are independent...
 - eg: living in Montreal & tossing a coin
 - □ P(Montreal, head) = P(Montreal) * P(head)
 - eg: probability of tossing 2 heads in a row
 - \Box P(head, head) = 1/2 * 1/2 = 1/4
- some variables are not independent...
 - eg: living in Montreal & wearing boots
 - □ P(Montreal, boots) ≠ P(Montreal) * P(boots)

不行

Independent Events

- Two events A and B are independent:
 - if the occurrence of one of them does not influence the occurrence of the other
 - \Box i.e. A is independent of B if P(A) = P(A|B)

互不影响、发生B以后发生A的概率等于发生A的概率

- If A and B are independent, then:
 - $P(A,B) = P(A|B) \times P(B) \text{ (by chain rule)}$ $= P(A) \times P(B) \text{ (by independence)}$
- To make things work in real applications, we often assume that events are independent 为了更好的让代码运行,我们通常假设event是相互独立的
 - $\neg P(A,B) = P(A) \times P(B)$

Conditional Independent Events

- Two events A and B are <u>conditionally</u> independent given C: 有条件的independent
 - Given that C is true, then any evidence about B cannot change our belief about A
 - $P(A, B \mid C) = P(A \mid C) \times P(B \mid C).$

当C成立的时候, B便不再会影响A

Bayes' Theorem

given:
$$P(A|B) = \frac{P(A,B)}{P(B)}$$
 so $P(A,B) = P(A|B) \times P(B)$
 $P(B|A) = \frac{P(A,B)}{P(A)}$ so $P(A,B) = P(B|A) \times P(A)$

• then:
$$P(A|B) \times P(B) = P(B|A) \times P(A)$$

• and:
$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

So?

- We typically want to know: P(Hypothesis | Evidence)
 - P(Disease | Symptoms)... P(meningitis | red spots)
 - P(Cause | Side Effect)... P(misaligned brakes | squeaky wheels)
- But P(Hypothesis | Evidence) is hard to gather
 - ex: out of all people who have red spots... how many have meningitis?
- However P(Evidence | Hypothesis) is easier to gather
 - ex: out of all people who have the meningitis ... how many have red spots?

Bayes theorem看起来很像废话

但是有的数据是更难得到的

So

容易得到,例如有脑膜炎的人里面,多高的几率红斑

Assume we only have 1 hypothesis Assume:

- P(spots=yes | meningitis=yes) = 0.4
- P(meningitis=yes) = 0.00003
- P(spots=yes) = 0.05 P(meningitis = yes | spots = yes) $= \frac{P(spots = yes | meningitis = yes) \times P(meningitis = yes)}{P(spots = yes)}$ $= \frac{0.4 \times 0.00003}{0.05} = 0.00024$ $= \frac{0.00003}{0.05} = 0.00024$ $= \frac{0.00003}{0.05} = 0.00024$

→ If you have spots... you are more likely to have meningitis than if we don't know about you having spots

- Predict the weather tomorow based on tonight's sunset...
- Assume we have 3 hypothesis...

 \Box H_1 : weather will be nice $P(H_1) = 0.2$

 \Box H_2 : weather will be bad $P(H_2) = 0.5$

 \Box H_3 : weather will be mixed $P(H_3) = 0.3$

And 1 piece of evidence with 3 possible values

 \Box E_1 : today, there's a beautiful sunset

□ E₂: today, t

E₃: today, t

there's a there's no	average sun sunset	set	P(E ₂ H ₁	<u>)</u>
\C_1_()				

P(E _x H _i)	E ₁	E ₂	E ₃
H ₁	0.7	0.2	0.1
H ₂	0.3	0.3	0.4
H ₃	0.4	0.4	0.2

他问你平均明天为average sunset的几率 =H1∩E2+H2∩E2+H3∩E2

- Observation: average sunset (E₂)
- Question: how will be the weather tomorrow?
 - $P(H_1 \mid E_2)$?
 - predict the weather that maximizes the probability
 - \Box select H_i such that $P(H_i \mid E_2)$ is the greatest

$$P(H_i | E_2) = \frac{P(H_i) \times P(E_2 | H_i)}{P(E_2)}$$

$$P(E_2) = P(H_1) \times P(E_2 \mid H_1) + P(H_2) \times P(E_2 \mid H_2) + P(H_3) \times P(E_2 \mid H_3)$$

= $.2 \times .2 + .5 \times .3 + .3 \times .4 = .04 + .15 + .12 = 0.31$

$$P(H_1 | E_2) = \frac{P(H_1) \times P(E_2 | H_1)}{P(E_2)} = \frac{.2x.2}{.31} = .129$$

$$P(H_2 | E_2) = \frac{P(H_2) \times P(E_2 | H_2)}{P(E_2)} = \frac{.5x.3}{.31} = .484$$

$$P(H_3 | E_2) = \frac{P(H_3) \times P(E_2 | H_3)}{P(E_2)} = \frac{.3x.4}{.31} = .387$$

 \Rightarrow H₂ is the most likely hypothesis, given the evidence P(H₂ | E₂) is the highest

Tomorrow the weather will be bad

$$H_{NB} = \underset{H_i}{\operatorname{argmax}} \frac{P(H_i) \times P(E|H_i)}{P(E)}$$

Bayes' Reasoning

当你给了证据E时,想要知道最有可能的Hi

- Out of n hypothesis...
 - □ we want to find the most probable H_i given the evidence E
- So we choose the H_i with the largest $P(H_i|E)$

$$H_{NB} = \underset{H_i}{\operatorname{argmax}} P(H_i \mid E) = \underset{H_i}{\operatorname{argmax}} \frac{P(H_i) \times P(E \mid H_i)}{P(E)}$$

- But... P(E)
 - \Box is the same for all possible H_i (and is hard to gather anyways)
 - so we can drop it
- So Bayesian reasoning:

$$H_{NB} = \underset{H_i}{\operatorname{argmax}} \frac{P(H_i) \times P(E|H_i)}{P(E)} = \underset{H_i}{\operatorname{argmax}} P(H_i) \times P(E|H_i)$$

Representing the Evidence

- The evidence is typically represented by many attributes/features
 - beautiful sunset? clouds? temperature? summer?, ...
- so often represented as a feature/attribute vector

	evidence				hypothesis
sunset c		clouds	temp	summer	weather
	Q_1	a_	— a ₃ .		tomorrow
e1	beautiful	no	high	yes	Nice

e1 = <sunset:beautiful, clouds:no, temp:high, summer:yes>

23

Combining Evidence

问你多个evi dence下cavi ty的几率

toothache	young	cavity		
yes	yes	?		

换顺序

```
P(Cavity = yes | Toothache = yes \cap Young = yes) = ?
```

```
with Bayes Rule: f 先使用bayes rule = \frac{P(Toothache = yes \cap Young = yes | Cavity = yes) \times P(Cavity = yes)}{P(Toothache = yes \cap Young = yes)}evidence part
```

with independence assumption:

```
= \frac{P(\mathsf{Toothache} = \mathsf{yes} \cap \mathsf{Young} = \mathsf{yes} | \mathsf{Cavity} = \mathsf{yes}) \times P(\mathsf{Cavity} = \mathsf{yes})}{P(\mathsf{Toothache} = \mathsf{yes}) \times P(\mathsf{Young} = \mathsf{yes})} \times P(\mathsf{Toothache} = \mathsf{yes}) \times P(\mathsf{Young} = \mathsf{yes})
```

with conditional independence assumption:

$$= \frac{P(\mathsf{Toothache} = \mathsf{yes} | \mathsf{Cavity} = \mathsf{yes}) \times P(\mathsf{Young} = \mathsf{yes} | \mathsf{Cavity} = \mathsf{yes}) \times P(\mathsf{Cavity} = \mathsf{yes})}{\mathsf{Lmoh}_{\text{fight}}} \qquad \qquad P(\mathsf{Toothache} = \mathsf{yes}) \times P(\mathsf{Young} = \mathsf{yes})$$

Now we have decomposed the joint probability distribution into much smaller pieces...

Combining Evidence

toothache	young	cavity		
yes	yes	yes? or no?		

But since we only care about <u>ranking</u> the hypothesis...

P(Cavity = yes | Toothache = yes ∩ Young = yes)
>

 $P(Cavity = no| Toothache = yes \cap Young = yes)$

我们现在只关心Cavi ty几率的比较,revi dence都成立的时候,是否有更大可能cavi ty

?

$$\frac{P(Cavity = yes) \times P(Toothache = yes | Cavity = yes) \times P(Young = yes | Cavity = yes)}{P(Toothache = yes) \times P(Young = yes)}$$

$$+ \frac{P(Cavity = yes) \times P(Young = yes)}{E - \text{\mathbb{Z} avi ty=yes} \text{\mathbb{Z} avi ty=yes}}$$

 $\frac{P(Cavity = no) \times P(Toothache = yes | Cavity = no) \times P(Young = yes | Cavity = no)}{P(Toothache = yes) \times P(Young = yes)}$

?

$$P(Cavity = yes) \times P(Toothache = yes | Cavity = yes) \times P(Young = yes | Cavity = yes)$$

 $P(Cavity = no) \times P(Toothache = yes | Cavity = no) \times P(Young = yes | Cavity = no)$

下面的一样

$$H_{NB} = \underset{H_{i}}{\text{argmax}} \ \frac{P(H_{i}) \times P(E \mid H_{i})}{P(E)} = \underset{H_{i}}{\text{argmax}} \ P(H_{i}) \times P(E \mid H_{i}) = \underset{H_{i}}{\text{argmax}} \ P(H_{i}) \times P(< a_{1}, a_{2}, a_{3}, ..., a_{n} > \mid H_{i}) = \underset{H_{i}}{\text{argmax}} \ P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i})$$

evidence

hypothesi s

Day	Outlook	Temperature	Humidity	Wind	Play Tennis
Day1	Sunny	Hot	High	Weak	No
Day2	Sunny	Hot	High	Strong	No
Day3	Overcast	Hot	High	Weak	Yes
Day4	Rain	Mild	High	Weak	Yes
Day5	Rain	Cool	Normal	Weak	Yes
Day6	Rain	Cool	Normal	Strong	No
Day7	Overcast	Cool	Normal	Strong	Yes
Day8	Sunny	Mild	High	Weak	No
Day9	Sunny	Cool	Normal	Weak	Yes
Day10	Rain	Mild	Normal	Weak	Yes
Day11	Sunny	Mild	Normal	Strong	Yes
Day12	Overcast	Mild	High	Strong	Yes
Day13	Overcast	Hot	Normal	Weak	Yes
Day14	Rain	Mild	High	Strong	No

然后到了第十五天, 我给你a1....an, 希望你预测YES OR NO

• Goal: Given a new instance $X=\langle a_1,...,a_n\rangle$, classify as Yes/No

$$H_{NB} = \underset{H_{i}}{\text{argmax}} \quad \frac{P(H_{i}) \times P(E \mid H_{i})}{P(E)} = \underset{H_{i}}{\text{argmax}} \quad P(H_{i}) \times P(E \mid H_{i}) = \underset{H_{i}}{\text{argmax}} \quad P(H_{i}) \times P(< a_{1}, a_{2}, a_{3}, ..., a_{n} > \mid H_{i}) = \underset{H_{i}}{\text{argmax}} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{\text{argmax}} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{\text{argmax}} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{\text{argmax}} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{\text{argmax}} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{\text{argmax}} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{\text{argmax}} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{\text{argmax}} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{\text{argmax}} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{\text{argmax}} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{\text{argmax}} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{\text{argmax}} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{\text{argmax}} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{\text{argmax}} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{\text{argmax}} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{\text{argmax}} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{\text{argmax}} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{\text{argmax}} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{\text{argmax}} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{\text{argmax}} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{\text{argmax}} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{\text{argmax}} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{\text{argmax}} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{\text{argmax}} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{\text{argmax}} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{\text{argmax}} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{\text{argmax}} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{\text{argmax}} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H_{i}) = \underset{H_{i}}{\text{argmax}} \quad P(H_{i}) \times \prod_{j=1}^{n} P(a_{j} \mid H$$

 Naïve Bayes: Assumes that the attributes/features are conditionally independent given the hypothesis

这里的HNB hypothesis为YES OR NO, 也就是说当已知A1, A2... AN的时候,Hi是YES还是NO的几率更大

• Goal: Given a new instance $X=\langle a_1,...,a_n\rangle$, classify as Yes/No

$$H_{NB} = \underset{H_i}{\text{argmax}} P(H_i) \times \prod_{j=1}^{n} P(a_j | H_i)$$

注意了这个是连乘符号 A1到AN我们认为是独立的,所以是a1|hi*a2|hi....

- 1. 1st estimate the probabilities from the training examples:
 - For each hypothesis H_i estimate $P(H_i)$
 - For each attribute value a_j of each instance (evidence) estimate P(a_i | H_i)

1. TRAIN:

compute the probabilities from the training set

P(PlayTennis = yes) =
$$9/14 = 0.64$$

P(PlayTennis = no) = $5/14 = 0.36$

prior probabilities P(H_i)

```
P(Out = sunny | PlayTennis = yes) = 2/9 = 0.22

P(Out = sunny | PlayTennis = no) = 3/5 = 0.60

P(Out = rain | PlayTennis = yes) = 3/9 = 0.33

P(Out = rain | PlayTennis = no) = 2/5 = 0.4

...

P(Wind = strong | PlayTennis = yes) = 3/9 = 0.33
```

P(Wind = strong | PlayTennis = no) = 3/5 = 0.60

$$\rightarrow$$
 $P(a_j | H_i)$

conditional probabilities

2. TEST:

```
classify the new case: X=(Outlook: Sunny, Temp: Cool, Hum: High, Wind: Strong)  H_{NB} = \underset{H_i \in [yes,no]}{argmax} \ P(H_i) \times P(X \mid H_i)  = \underset{H_i \in [yes,no]}{argmax} \ P(H_i) \times \prod_j P(a_j \mid H_i)  = \underset{H_i \in [yes,no]}{argmax} \ P(H_i) \times P(Outlook = sunny \mid H_i) \times P(Temp = cool \mid H_i)  \times P(Humidity = high \mid H_i) \times P(Wind = strong \mid H_i)
```

```
1) P(PlayTennis = yes)

x P(Outlook = sunny | PlayTennis = yes)xP(Temp = cool | PlayTennis = yes)xP(Hum = high | PlayTennis = yes)xP(Wind = strong | PlayTennis = yes)
= 0.0053
```

```
2) P(PlayTennis = no)

x P(Outlook = sunny | PlayTennis = no)xP(Temp = cool | PlayTennis = no)xP(Hum = high | PlayTennis = no)xP(Wind = strong | PlayTennis = no)
= 0.0206
```

 \Rightarrow answer : PlayTennis(X) = no NO ODD HIGHNB & T

Application of Bayesian Reasoning

也叫classification 分类 各式各样的特征

- Categorization: P(Category | Features of Object)
 - □ Diagnostic systems: P(Disease | Symptoms) 年龄, 症状啥的
 - Text classification: P(sports_news | text)
 - Character recognition: P(character | bitmap)
 - Speech recognition: P(words | acoustic signal)
 - Image processing: P(face_person | image features)
 - Spam filter: P(spam_message | words in e-mail)
 - **...**

Digit Recognition

- MNIST dataset
- data set contains handwritten digits from the American Census Bureau employees and American high school students

■ 28 x 28 grayscale images 0是black, 255是白色

- training set: 60,000 examples
- test set: 10,000 examples.
- Features: each pixel is used as a feature so:
 - there are 28x28 = 784 features
 - each feature = 256 greyscale value
- Task: classify new digits into one of the 10 classes

9实际上是一个28*28的图片 784个pi xi I,每一个pi xi I 都是一个0到255 的grayscal e

https://en.wikipedia.org/wiki/MNIST_database

Postal Code Recognition

BAM BAM 42 T-REX RD. PANGAEA, RB 48016

FRED FLINSTONE
69 OLD SCHOOL AVE
BEDROCK, OLDEN-TOWN
77005

处理postal code时很有用

Text Classification

10000features, features for each word in the dictionary

TEXT<DOG: 2, AI RPLANE: 0, FOOD: 1....>

2是frequency of the word dog features:actual words in English

Comments on Naïve Bayes Classification

上面的这类叫做naive bayes classification,是具有强独立性的假设

- A simple probabilistic classifier based on Bayes' theorem
 - with strong (naive) independence assumption
 - □ i.e. the features/attributes are conditionally independent given the classes feature/attributes, 在conditionally independent的
 - eg: assumes that the word ambulance is conditionally independent of the word accident given the class SPORTS

BUT:

- □ fast, simple 快速简单
- □ gives confidence in its class predictions (i.e., the scores) 分类的时候很有效
- □ surprisingly very effective on real-world tasks 现实世界中午逼
- basis of many spam filters

垃圾邮件过滤器

Today

- 1. Introduction to ML
- 2. Naïve Bayes Classification
 - a. Application to Spam Filtering
- 3. Decision Trees
- 4. (Evaluation
- 5. Unsupervised Learning)
- 6. Neural Networks
 - a. Perceptrons
 - b. Multi Layered Neural Networks

Up Next

- 1. Introduction to ML
- 2. Naive Bayes Classification
 - a. Application to Spam Filtering
- 3. Decision Trees
- 4. (Evaluation
- 5. Unsupervised Learning)
- 6. Neural Networks
 - a. Perceptrons
 - b. Multi Layered Neural Networks