Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

Madiba Hudson-Quansah

Contents

Chapter 1		Sets	_ Page 2_
		Set Definitions — 2	O
		1.0.1.1 Natural numbers	2
		1.0.1.2 Integers	2
		1.0.1.3 Positive Integers	3
		1.0.1.4 Rational numbers	3
		1.0.1.5 Irrational Numbers	3
		1.0.1.6 Real numbers	3
		1.0.1.7 Positive Real numbers	3
		1.0.1.8 Complex numbers	3
		Venn Diagrams — $3 \bullet$ Subsets — $3 \bullet$ Cardinality — $5 \bullet$ Power Set — $5 \bullet$ N-Tuples — $5 \bullet$ Cartes	ian Products
		$-6 \bullet$ Set Notation with Quantifiers $-7 \bullet$ Truth Sets and Quantifiers $-7 \bullet$	
	1.1	Exercises	8
hapter 2	2	Set Operations	Page 10_
	2.1	Set Operations	10
		Union — $10 \bullet$ Intersection — $10 \bullet$ Complement — $10 \bullet$ Difference — $10 \bullet$ Symmetric Difference Cardinality of the Union of Two Sets — 11	— 11 • The
	2.2	Set Identities	11
		Identity Laws — 11 • Domination Laws — 11 • Idempotent Laws — 11 • Complementation Commutative Laws — 12 • Associative Laws — 12 • Distributive Laws — 12 • De Morgan's I Absorption Laws — 12 • Complement Laws — 12 • Proving Set Identities — 12	
	2.3	Generalized Unions and Intersections	14
	2.4	Exercises	15

Chapter 1

Sets

Definition 1.0.1: Set

An unordered collection of objects, called *elements* or *members* of the set. A set contains elements and, we can denote this as $a \in A$ where a is an element of the set A, or $a \notin A$, where a is not an element of the set A.

There are several ways to describe a set:

Roster notation $\{1, 2, 3, 4, 5\}$

Set-Builder notation Where all the elements of a set are described by a property they satisfy.i.e. The set O of all odd positive numbers less than 10 can be expressed as $O = \{x \mid x \text{ is an odd positive integer less than 10}\}$ or specifying the domain of discourse, $O = \{x \in \mathbb{Z}^+ \mid x \text{ is odd and } x < 10\}$, or the set of all positive rational numbers \mathbb{Q}^+ can be expressed as $\mathbb{Q}^+ = \{x \in \mathbb{R} \mid x = \frac{p}{q}, \text{ for some positive integers } q \text{ and } p\}$

Definition 1.0.2: Equality of Sets

Two sets A and B are equal if and only if they have the same elements. Therefore, $\forall x (x \in A \leftrightarrow x \in B)$, We write A = B if this is the case.

Definition 1.0.3: Empty / Null Set

A set with no elements, denoted by \emptyset or $\{\}$. Can be expressed as $\{x \mid F\}$

Definition 1.0.4: Singleton Set

A set with exactly one element, denoted by $\{a\}$. The set $\{\emptyset\}$ is a singleton set as it is a set with one element, the empty set.

1.0.1 Set Definitions

1.0.1.1 Natural numbers

$$\mathbb{N} = \{1, 2, 3, 4, 5, \ldots\}$$

1.0.1.2 Integers

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

1.0.1.3 Positive Integers

$$\mathbb{Z}^+ = \{1, 2, 3, 4, 5, \ldots\}$$

1.0.1.4 Rational numbers

$$\mathbb{Q} = \left\{ \frac{p}{q} \mid p, q \in \mathbb{Z} \text{ and } q \neq 0 \right\}$$

1.0.1.5 Irrational Numbers

 $\mathbb{I} = \{x \mid x \text{ is a number that cannot be expressed as a fraction}\}\$

1.0.1.6 Real numbers

 $\mathbb{R} = \{x \mid x \text{ is a point on the number line}\}\$

Or

$$\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$$

1.0.1.7 Positive Real numbers

$$\mathbb{R}^+ = \{ x \in \mathbb{R} \mid x > 0 \}$$

1.0.1.8 Complex numbers

$$\mathbb{C} = \left\{ a + bi \mid a, b \in \mathbb{R} \text{ and } i^2 = -1 \right\}$$

1.0.2 Venn Diagrams

Definition 1.0.5: Universal Set

The set of all objects under consideration, denoted by U. Can be expressed as $\{x \mid T\}$

Sets can be graphically represented using Venn diagrams. A Venn diagram is a collection of simple closed curves, especially circles, that represent sets. In Venn diagrams the universal set U which contains all the objects under consideration is represented by a rectangle, and the sets are represented by circles within the rectangle, with points inside the circles representing elements of the sets.

1.0.3 Subsets

Definition 1.0.6: Subset

A set A is a subset of a set B if and only if every element of A is also an element of B. Denoted by $A \subseteq B$.

We see that $A \subseteq B$ if and only if

$$\forall x (x \in A \rightarrow x \in B)$$

Is true. I.e. If $x \in A$, then $x \in B$. To disprove this we need to show that $\exists x \, (x \in A \land x \notin B)$ Shown graphically:

Example 1.0.1

The set of integers with squares less than 100 is not a subset of the set of nonnegative integers because -1 is in the former set [as $(-1)^2 < 10$], but not the later set. The set of people who have taken discrete mathematics at your school is not a subset of the set of all computer science majors at your school if there is at least one student who has taken discrete mathematics who is not a computer science major.

Theorem 1.0.1

For every set S

- 1. $\emptyset \subseteq S$
- 2. $S \subseteq S$
- 1. **Proof:** We will prove that $\emptyset \subseteq S$, using a vacuous proof Let S be a set.

To show $\emptyset \subseteq S$ we must show that $\forall x (x \in \emptyset \rightarrow x \in S)$ is T.

Because \emptyset contains no elements $x \in \emptyset$ is always F

This follows that the implication $x \in \emptyset \to x \in S$ is always T

Hence $\emptyset \subseteq S$

⊜

2. **Proof:** We will prove that $S \subseteq S$, using a direct proof

Let S be a set

To show $S \subseteq S$ we must show that $\forall x (x \in S \rightarrow x \in S)$ is T

Assume $x \in S$

Because $x \in S$ is always T, the implication $x \in S \to x \in S$ is always T

 $\therefore \forall x (x \in S \rightarrow x \in S) \text{ is } T$

Hence $S \subseteq S$

Definition 1.0.7: Proper subset

A set A is proper subset of a set B if and only if every element of A is also an element of B and $A \neq B$. Denoted by $A \subset B$. I.e.

$$\exists x\,(x\notin A\land x\in B)\land \forall x\,(x\in A\longrightarrow x\in B)$$

Is T.

Definition 1.0.8: Further Equality

Two sets A and B are equal if $A \subseteq B \land B \subseteq A$ is T. I.e. $A = \{\emptyset, \{a\}, \{a\}, \{b\}, \{a,b\}\}$ and $B = \{x \mid x \text{ is a subset of the set } \{a,b\}\}$ are equal.

1.0.4 Cardinality

Definition 1.0.9: Cardinality

The number of distinct elements n in a set A. Denoted by |A| = n. Where n is a non-negative integer, we say that A is a finite set.

Definition 1.0.10: Infinite set

A set A is infinite if it is not finite. I.e. $|A| = \infty$

1.0.5 Power Set

Definition 1.0.11: Power Set

A set containing all the subsets of a given set A. Denoted by $\mathcal{P}(A)$. If a set has n distinct elements, then the cardinality of the power set is 2^n .

Example 1.0.2

Question 1

What is the power set of the set $\{0, 1, 2\}$

Solution:

$$\mathcal{P}(\{0,1,2\}) = \{\emptyset, \{0\}, \{1\}, \{2\},, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\}\}$$

Example 1.0.3

Question 2

What is the power set of \emptyset

Solution:

$$\mathcal{P}(\emptyset) = \{\emptyset\}$$

Question 3

What is the power set of $\{\emptyset\}$

Solution:

$$\mathcal{P}\left(\{\emptyset\}\right) = \{\emptyset, \{\emptyset\}\}$$

1.0.6 N-Tuples

Definition 1.0.12: Ordered N-Tuple

N-tuple $(a_1, a_2, ..., a_n)$ is the ordered collection that has a_1 as its first element, a_2 as its second element, ..., and a_n as its nth element.

Two n-tuples are equal if an only if each corresponding pair of their elements is equal, i.e. $(a_1, a_2, \ldots, a_n) = (b_1, b_2, \ldots, b_n)$ are equal if and only if $a_i = b_i$, for $i = 1, 2, \ldots, n$.

Ordered 2-tuples are called *ordered pairs*. The ordered pairs, (a,b) and (c,d) are equal if and only if a=c and b=d.

1.0.7 Cartesian Products

Definition 1.0.13: Cartesian Product

Let A and B be sets. The Cartesian Product of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$. I.e.

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

The number of items in the Cartesian product of two sets is the product of the cardinality of each set.

Example 1.0.4

Question 4

What is the Cartesian product of $A = \{1, 2\}$ and $B = \{a, b, c\}$

Solution:

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$$

Question 5

Show that the Cartesian product $B \times A$ is not equal to the Cartesian product $A \times B$.

Solution:

$$B \times A = \{(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)\}\$$

 $\therefore A \times B \neq B \times A$

Definition 1.0.14: Cartesian Product of more than two sets

The Cartesian product of the sets A_1, A_2, \ldots, A_n , denoted by $A_1 \times A_2 \times \ldots \times A_n$, is the set of ordered n-tuples (a_1, a_2, \ldots, a_n) , where a_i belongs to A_i for $i = 1, 2, \ldots, n$. I.e.

$$A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ... a_n) \mid a_i \in A_i \text{ for } i = 1, 2, ..., n\}$$

Example 1.0.5

Question 6

What is the Cartesian product $A \times B \times C$, where $A = \{0, 1\}$, $B = \{1, 2\}$, $C = \{0, 1, 2\}$.

Solution:

$$A \times B \times C = \{(0,1,0), (0,1,1), (0,1,2), (0,2,0), (0,2,1), (0,2,2), (1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,2,2)\}$$

We use the notation A^2 to denote $A \times A$, the Cartesian product of A and itself. Therefore

$$A^n = \{(a_1, a_2, \dots, a_n) \mid a_i \in A \text{ for } i = 1, 2, \dots, n\}$$

Example 1.0.6

Suppose $A = \{1, 2\}.$

It follows $A^2 = \{(1,1), (1,2), (2,1), (2,2)\},$ and $A^3 = \{(1,1,1), (1,1,2), (1,2,1), (1,2,2), (2,1,1), (2,1,2), (2,2,1), (2,2,2)\}$

Example 1.0.7

Question 7

What are the ordered pairs in the less than or equal to relation, which contains, (a,b) if $a \le b$, on the set $\{0,1,2,3\}$

Solution: Let R be the relation on the set $\{0,1,2,3\}$, if $a \le b$.

$$R = \{(0,0), (1,1), (2,2), (3,3), (0,1), (0,2), (0,3), (1,2), (1,3), (2,3)\}$$

1.0.8 Set Notation with Quantifiers

We can restrict the domain of a quantifier to a set, I.e. Where S is a set $\forall x \in S(P(x))$, denotes the universal quantification of P(x) for all elements in the set S. Which is shorthand for $\forall x (x \in S \to P(x))$

Example 1.0.8

 $\forall x \in \mathbb{R} \ (x^2 \ge 0)$ means "the square of any real number is greater than or equal to 0". $\exists x \in \mathbb{Z} \ (x^2 = 1)$ means "there exists an integer whose square is 1"

1.0.9 Truth Sets and Quantifiers

Definition 1.0.15: Truth Set

For a predicate P the truth set of P is the set of all elements in the domain of discourse that make P true. I.e. let S be a set. The truth set of P(x) is

$$\{x \in S \mid P(x)\}$$

Example 1.0.9

Question 8

What are the truth set of the predicates P(x), Q(x), and R(x), where the domain is the set of integers, and P(x): |x| = 1, Q(x): $x^2 = 2$, and R(x): |x| = x

Solution:

The truth set of P is $\{x \in \mathbb{Z} \mid |x| = 1\}$ The truth set of Q is $\{x \in \mathbb{Z} \mid x^2 = 2\}$ The truth set of R is $\{x \in \mathbb{Z} \mid |x| = x\}$

Note:-

 $\forall xP\left(x\right)$ is T over the domain U if and only if the truth set of P is U.

 $\exists x P(x)$ is T over the domain U if and only if the truth set of P is not empty.

1.1 Exercises

Question 9

List the members of these sets

- 1. $\{x \mid x \text{ is the square of an integer and } x < 100\}$
- 2. $\{x \mid x \text{ is an integer such that } x^2 = 2\}$

Solution:

- 1. $\{1, 4, 9, 16, 25, 36, 49, 64, 81\}$
- 2. Ø

Question 10

Use set builder notation to describe the following sets

- 1. $\{-3, -2, -1, 0, 1, 2, 3\}$
- 2. $\{m, n, o, p\}$

Solution:

- 1. $\{x \mid -3 \le x \le 3\}$
- 2. $\{x \mid x \text{ is a letter in the word monopoly excluding "l" and "y" }\}$

Question 11

Suppose that $A = \{2,4,6\}$, $B = \{2,6\}$, $C = \{4,6\}$ and $D = \{4,6,8\}$. Determine which of these sets are subsets of which other sets.

Solution:

$$B \subseteq A$$

$$C \subseteq A$$

$$C \subseteq D$$

Question 12

Suppose that A, B, C, are sets such that $A \subseteq B$ and $B \subseteq C$. Show that $A \subseteq C$

Solution:

$$A \subseteq B \text{ means } \forall x (x \in A \rightarrow x \in B)$$

$$B \subseteq C$$
 means $\forall x (x \in B \rightarrow x \in C)$

$$A \subseteq C$$
 means $\forall x (x \in A \rightarrow x \in C)$

$$\forall x (x \in A \rightarrow x \in B)$$

$$\forall x (x \in B \rightarrow x \in C)$$

$$\therefore \forall x (x \in A \rightarrow x \in C)$$

	Steps	Reasons
1	$\forall x (x \in A \to x \in B)$	Premise 1
2	$\forall x (x \in B \to x \in C)$	Premise 2
3	$x \in A \to x \in B$	Universal Instantiation of 1
4	$x \in B \to x \in C$	Universal Instantiation of 2
5	$x \in A \to x \in C$	By Hypothetical Syllogism of 3 and 4
6	$\forall x (x \in A \rightarrow x \in C)$	Universal generalization of 5

Question 13

Find the power set of each of these sets, where a and b are distinct elements.

- 1. {*a*}
- 2. $\{a, b\}$
- 3. $\{\emptyset, \{\emptyset\}\}$

Solution:

- 1. $\mathcal{P}(\{a\}) = \{\emptyset, \{a\}\}$
- 2. $\mathcal{P}(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$
- 3. $\mathcal{P}(\{\emptyset, \{\emptyset\}\}) = \{\emptyset, \{\emptyset\} \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$

Chapter 2

Set Operations

2.1 Set Operations

2.1.1 Union

Definition 2.1.1: Union

Let A and B be sets. The *union* of A and B, denoted by $A \cup B$, is the set of all elements that are either in A or in B or in both. I.e.

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

2.1.2 Intersection

Definition 2.1.2: Intersection

Let A and B be sets. The *intersection* of A and B, denoted by $A \cap B$, is the set of all elements that are in both A and B. I.e.

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

2.1.3 Complement

Definition 2.1.3: Complement

Let A be a set. The *complement* of the set A (with respect to U), denoted by \overline{A} is the set U - A. I.e.

$$\overline{A} = \{ x \in U \mid x \notin A \}$$

2.1.4 Difference

Definition 2.1.4: Difference

Let A and B be sets. The difference of A and B, denoted by A - B, is the set of all elements that are in A but not in B. I.e.

$$A - B = \{x \mid x \in A \land x \notin B\}$$

Or

$$A - B = A \cap \overline{B}$$

2.1.5 Symmetric Difference

Definition 2.1.5: Symmetric Difference

Let A and B be sets. The *symmetric difference* of A and B, denoted by $A \oplus B$, is the set of all elements that are in exactly one of A and B. I.e.

$$A \oplus B = (A - B) \cup (B - A)$$

Example 2.1.1

Question 14

$$U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
$$A = \{1, 2, 3, 4, 5\}$$
$$B = (4, 5, 6, 7, 8)$$

What is $A \oplus B$

Solution:

$$A \oplus B = \{1, 2, 3, 6, 7, 8\}$$

2.1.6 The Cardinality of the Union of Two Sets

The cardinality of the union of two sets A and B is given by

$$|A \cup B| = |A| + |B| - |A \cap B|$$

2.2 Set Identities

2.2.1 Identity Laws

$$A \cap U = A$$

$$A \cup \emptyset = A$$

2.2.2 Domination Laws

$$A \cup U = U$$

$$A\cap \emptyset=\emptyset$$

2.2.3 Idempotent Laws

$$A \cup A = A$$

$$A \cap A = A$$

2.2.4 Complementation Law

$$(\overline{A}) = A$$

2.2.5 Commutative Laws

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

2.2.6 Associative Laws

$$A \cup (B \cup C) = (A \cup B) \cup C$$
$$A \cap (B \cap C) = (A \cap B) \cap C$$

2.2.7 Distributive Laws

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

2.2.8 De Morgan's Laws

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

2.2.9 Absorption Laws

$$A \cup (A \cap B) = A$$
$$A \cap (A \cup B) = A$$

2.2.10 Complement Laws

$$A \cup \overline{A} = U$$
$$A \cap \overline{A} = \emptyset$$

2.2.11 Proving Set Identities

There are different ways to prove set identities, these include:

- Proving each set is a subset of the other
- Using set builder notation and propositional logic
- Using Membership tables

Definition 2.2.1: Membership Table

A table that shows the truth value of a predicate for all possible combinations of truth values of its variables.

Example 2.2.1

Question 15

Prove that

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Using propositional logic:

Proof: We prove this identity by showing that each set is a subset of the other. I.e.

$$\overline{A \cap B} \subseteq \overline{A} \cup \overline{B} \wedge \overline{A} \cap \overline{B} \subseteq \overline{A \cap B}$$

$$\overline{A \cap B} \subseteq \overline{A} \cup \overline{B} \text{ means } \forall x \left(x \in \overline{A \cap B} \to x \in \overline{A} \cup \overline{B} \right)$$
$$\overline{A} \cup \overline{B} \subseteq \overline{A \cap B} \text{ means } \forall x \left(x \in \overline{A} \cup \overline{B} \to x \in \overline{A \cap B} \right)$$

Assume that $x \in \overline{A \cap B}$

$$x \in \overline{A \cap B} \qquad \qquad \text{Assumption} \\ x \notin A \cap B \qquad \qquad \text{Definition of Complement} \\ \neg (x \in A \cap B) \qquad \qquad \text{Definition of } \notin \\ \neg (x \in A \land x \in B) \qquad \qquad \text{Definition of intersection} \\ \neg (x \in A) \lor \neg (x \in B) \qquad \qquad \text{By First De Moragn's Law for propositional logic} \\ x \notin A \lor x \notin B \qquad \qquad \text{Definition of Complement} \\ x \in \overline{A} \cup \overline{B} \qquad \qquad \text{Definition of union} \\ \end{cases}$$

Then we assume $x \in \overline{A} \cup \overline{B}$

$$x \in \overline{A} \cup \overline{B}$$
 Assumption
$$x \notin A \lor x \notin B$$
 Definition of union
$$\neg (x \in A) \lor \neg (x \in B)$$
 Definition of Complement
$$\neg (x \in A \land x \in B)$$
 By Second De Morgan's Law for propositional logic
$$x \notin A \land x \notin B$$
 Definition of Complement
$$x \notin A \cap B$$
 Definition of intersection
$$x \in \overline{A \cap B}$$
 Definition of Complement

(3)

Using set builder notation

$$\overline{A \cap B} = \{x \mid x \notin A \cap B\}$$
 Definition of Complement
$$= \{x \mid \neg (x \in (A \cap B))\}$$
 Definition of \notin Definition of Intersection
$$= \{x \mid \neg (x \in A \land x \in B)\}$$
 Definition of Intersection
$$= \{x \mid \neg (x \in A) \lor \neg (x \in B)\}$$
 By First De Morgan's Law for propositional logic
$$= \{x \mid x \notin A \lor x \notin B\}$$
 Definition of Complement
$$= \{x \mid x \in \overline{A} \cup \overline{B}\}$$
 Definition of union
$$= \overline{A} \cup \overline{B}$$

2.3 Generalized Unions and Intersections

Definition 2.3.1: Generalized Union

The union of a collection of sets that contains those elements that are members of at least one set in the collection. Denoted by

$$A_1 \cup A_2 \cup \ldots \cup A_n = \bigcup_{i=1}^n A_i$$

Where $A_1 \cup A_2 \cup ... A_n$ is the union of sets $A_1, A_2, ..., A_n$

Definition 2.3.2: Generalized Intersection

The intersection of a collection of sets that contains those elements that are members of all the sets in the collection. Denoted by

$$A_1 \cap A_2 \cap \dots A_n = \bigcap_{i=1}^n A_i$$

Where $A_1 \cap A_2 \cap ... \cap A_n$ is the intersection of sets $A_1, A_2, ..., A_n$

Example 2.3.1

For $i = 1, 2, ..., let A_i = \{i, i + 1, i + 2, ...\}$. Then.

$$\bigcup_{i=1}^{n} A_i = \bigcup_{i=1}^{n} \{i, i+1, i+2, \ldots\} = \{1, 2, 3, \ldots\}$$

and

$$\bigcap_{i=1}^{n} A_i = \bigcap_{i=1}^{n} \{i, i+1, i+2, \ldots\} = \{n, n+1, n+2\} = A_n$$

We can extend this notation to other families of sets I.e.

$$A_1 \cup A_2 \cup \ldots \cup A_n \cup \ldots = \bigcup_{i=1}^{\infty} A_i$$

Denotes the union of the sets $A_1, A_2, \ldots, A_n, \ldots$, and the intersection of these sets is denoted by

$$A_1 \cap A_2 \cap \ldots \cap A_n \cap \ldots = \bigcap_{i=1}^{\infty} A_i$$

Generally when I is set, the notations $\bigcap_{i \in I} A_i$ and $\bigcup_{i \in I} A_i$ are used to denote the intersection and union of the sets A_i for $i \in I$, respectively, where

$$\bigcap_{i \in I} A_i = \{ x \mid \forall i \in I (x \in A_i) \}$$

and

$$\bigcup_{i \in I} A_i = \{ x \mid \exists i \in I (x \in A_i) \}$$

Example 2.3.2

Suppose $A_i = \{1, 2, 3, ..., i\}$ for $i = \{1, 2, 3, ...\}$ Then

$$\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} \{1, 2, 3, \dots, i\} = \mathbb{Z}^+$$

and

$$\bigcap_{i=1}^{\infty} A_i = \bigcap_{i=1}^{\infty} \{1, 2, 3, \dots, i\} = \{1\}$$

2.4 Exercises

Question 16

List the members of these sets

- 1. $\{x \mid x \text{ is a real number such that } x^2 = 1\}$
- 2. $\{x | x \text{ is a positive integer less than } 12\}$
- 3. $\{x | x \text{ is the square of an integer and } x < 100\}$
- 4. $\{x \mid x \text{ is an integer such that } x^2 = 2\}$

Solution:

- 1. $\{-1,1\}$
- 2.
- 3.
- 4. Ø

Question 17

Use set builder notation to show that:

- 1. $A \cup U = U$
- 2. $A \cap \emptyset = \emptyset$
- 3. $A \cup \overline{A} = U$
- 4. $A \cap \overline{A} = \emptyset$

Solution:

1.

$$A \cup U = \{x \mid x \in A \cup U\}$$

$$= \{x \mid x \in A \lor x \in U\}$$

$$= \{x \mid x \in A \lor T\}$$

$$= \{x \mid T\}$$

$$= U$$

Set builder notation
Definition of Union
Definition of Universal Set
By Domination law for propositional logic
Definition of Universal Set

- 2.
- 3.

4.

$$A \cap \overline{A} = \{x \mid x \in A \cap \overline{A}\}$$
 Set builder notation
$$= \{x \mid x \in A \land x \in \overline{A}\}$$
 Definition of intersection
$$= \{x \mid x \in A \land (x \notin A)\}$$
 Definition of Complement
$$= \{x \mid x \in A \land \neg (x \in A)\}$$
 Definition of \emptyset By Identity law of propositional logic
$$= \emptyset$$
 Definition of \emptyset

Question 18

Let A and B be sets. Show that

- 1. $(A \cap B) \subseteq A$
- 2. $A \subseteq (A \cup B)$
- 3. $A \subseteq (A \cup B)$
- 4. $A B \subseteq A$
- 5. $A \cap (B A) = \emptyset$
- 6. $A \cup (B A) = A \cup B$

Solution:

1.

$$(A \cap B) \subseteq A \text{ means } \forall x (x \in (A \cap B) \rightarrow x \in A)$$

Assume $x \in (A \cap B)$

	Steps	Reasons
1	$x \in A \cap B$	Assumption
2	$x \in A \land x \in B$	Definition of intersection
3	$x \in A$	Simplification of 2

 $\therefore x \in (A \cap B) \to x \in A$ Conclusion: $(A \cap B) \subseteq A$

2. **Proof:**

$$A \subseteq (A \cup B)$$
 means $\forall x (x \in A \rightarrow x \in A \cup B)$

	Steps	Reasons
1	$x \in A$	Premise
2	$x \in A \land x \in B$	Addition
3	$x \in A \cup B$	Definition of Union

 $\therefore x \in A \to x \in A \cup B$ Conclusion: $A \subseteq A \cup B$ $3. \ \textit{Proof:}$ $4. \ \textit{Proof:}$ $5. \ \textit{Proof:}$ $6. \ \textit{Proof:}$

Question 19

Show that if A is a subset of a universal set U, then

- 1. $A \oplus A = \emptyset$
- 2. $A \oplus \emptyset = \underline{A}$
- 3. $A \oplus \underline{U} = \overline{A}$
- 4. $A \oplus \overline{A} = U$

Solution:

1.

$$A \oplus A = (A - A) \cup (A - A)$$

$$= \{x \mid (x \in A \land x \notin A) \cup (x \in A \land x \notin A)\}$$

$$= \{x \mid (x \in A \land x \in \overline{A}) \cup (x \in A \land x \in \overline{A})\}$$

$$= \{x \mid (x \in A \cap \overline{A}) \cup (x \in A \cap \overline{A})\}$$

$$= \{x \mid \emptyset \cup \emptyset\}$$

$$= \{x \mid \emptyset\}$$

$$= \emptyset$$

Definition of Symmetric Difference
Definition of Difference
Definition of Complement
Definition of Intersection
By Second Complement Law
By First Idempotent Law
By Definition of \emptyset