## Chapter 1: Overview

Observe two data sets:

```
Hang Seng Index 12877 12850 13023 \cdots Date 30.8.04 31.8.04 01.9.04 \cdots Student's Weights 130kg 200kg 45kg \cdots Students A B C \cdots
```

What is the difference between these two data sets?

#### **Definition:**

A time series (TS) is a sequence of random variables labeled by time t:

$$\{Z_1,Z_2,\cdots,Z_t,\cdots\}$$

or

$$\{\cdots, Z_{-1}, Z_0, Z_1, Z_2, \cdots, Z_t, \cdots\}.$$

Denote them by  $\{Z_t\}$ .

**Example**: Let Z = weather.

Let  $Z_t =$  weather on the tth day. Then  $\{Z_1, Z_2, \cdots, Z_t, \cdots\}$  is a TS.

 $Z_t$  =exchange rate of USAD/HKD at the tth hour.

 $Z_t$  =daily Hang Seng Index on the tth day.

 $Z_t$  =average personal consumption in HongKong in the tth month.

 $Z_t = USA$  beer production at the tth quarter.

 $Z_t = USA$  tobacco production at the tth year.

All these  $\{Z_t\}$  are TS.

# Time series data are observations of T-S $\{Z_t\}$ .

**Example**: Let  $Z_t$  =weather on the tth day.

Weather= 
$$29^{\circ}$$
  $30^{\circ}$   $9^{\circ}$   $\cdots$  Date t=  $1$   $2$   $3$   $\cdots$  Notation  $Z_1 = 29^{\circ}$   $Z_2 = 30^{\circ}$   $Z_3 = 9^{\circ}$   $\cdots$ 

#### The types of TS data:

Continuous time data

#### Main objective of TS analysis:

Past data  $\Longrightarrow$  TS r.v.  $Z_t \Longrightarrow$  future of TS.

(a) 
$$E\left(Z_{n+l}|y_1,\cdots,y_n\right),$$
  
(b)  $P(a \leq Z_{n+l} \leq b|y_1,\cdots,y_n)$  for some  $a < b$ .

## 2.1. Strict stationarity and weak stationarity

**Definition**: Let  $\{Z_t\}$  be a TS.

When  $t = t_1$ , we have:

$$Z_{t_1} \to P(Z_{t_1} \leq z).$$

When  $t = t_{t_1+k}$ , we have:

$$Z_{t_1+k} \to P(Z_{t_1+k} \le z).$$

If  $P(Z_{t_1} \leq z) = P(Z_{t_1+k} \leq z)$  for  $\forall t_1, k, z$ , then we say:  $Z_t$  is the first order stationary in distribution.

When  $t = t_1, t_2$ , we have:

$$(Z_{t_1}, Z_{t_2}) \to P(Z_{t_1} \le z_1, Z_{t_2} \le z_2)$$

When  $t = t_1 + k$ ,  $t_2 + k$ , we have:

$$(Z_{t_1+k}, Z_{t_2+k}) \to P(Z_{t_1+k} \le z_1, Z_{t_2+k} \le z_2)$$

If

$$P(Z_{t_1} \le z_1, Z_{t_2} \le z_2) = P(Z_{t_1+k} \le z_1, Z_{t_2+k} \le z_2),$$

for  $\forall t_1, t_2, k$  and  $(z_1, z_2)$ , then we say:  $Z_t$  is the second order stationary in distribution.

When  $t = t_1, \dots, t_n$ , we have:

$$(Z_{t_1},\cdots,Z_{t_n})\to P(Z_{t_1}\leq z_1,\cdots,Z_{t_n}\leq z_n)$$

When  $t = t_1 + k, \dots, t_n + k$ , we have:

$$(Z_{t_1+k}, \cdots, Z_{t_n+k}) \to P(Z_{t_1+k} \le z_1, \cdots, Z_{t_n+k} \le z_n)$$

If

$$P(Z_{t_1} \leq z_1, \cdots, Z_{t_n} \leq z_n)$$

$$= P(Z_{t_1+k} \le z_1, \cdots, Z_{t_n+k} \le z_n),$$

for  $\forall t_1, \cdots, t_n, k$  and  $(z_1, \cdots, z_n)$  and n, we

say:  $\{Z_t\}$  is a **strictly stationary TS**.

**Definition**: Let  $\{Z_t\}$  be a TS.

Mean function of  $Z_t$ :  $\mu_t = EZ_t$ .

Variance function of  $Z_t$ :  $\sigma_t^2 = E(Z_t - \mu_t)^2$ .

Covariance function between  $Z_{t_1}$  and  $Z_{t_2}$ :

$$\gamma(t_1, t_2) = E[(Z_{t_1} - \mu_{t_1})(Z_{t_2} - \mu_{t_2})],$$

and their correlation function

$$\rho(t_1, t_2) = \frac{\gamma(t_1, t_2)}{\sqrt{\sigma_{t_1}^2} \sqrt{\sigma_{t_2}^2}}$$

**Definition**: Let  $Z_t$  be a TS. If

$$\mu_t = \mu < \infty,$$
  

$$\sigma_t^2 = \sigma^2 < \infty,$$
  

$$\gamma(t, t + k) = \gamma_k,$$

for any t, then  $\{Z_t\}$  is said (second order) weakly stationary.

**Property**: Assume  $\{Z_t\}$  is strictly stationary.

If 
$$E|Z_t| < \infty$$
, then  $\mu_t = \mu < \infty$ .

If 
$$E|Z_t|^2 < \infty$$
, then  $\sigma_t^2 = \sigma^2 < \infty$ .

**Furthermore** 

$$\gamma(t, t+k) = \gamma_k, \quad \rho(t, t+k) = \rho_k.$$

Thus, if  $EZ_t^2 < \infty$ , then strictly stationary  $\implies$  second-order weakly stationary.

**Example 2.2**: Consider the following time sequence

$$Z_t = A \sin(\omega t + \theta)$$
,

where A is a random variable with a zero mean and a unit variance and  $\theta$  is a r.v. with a uniform distribution on the interval  $[-\pi,\pi]$  independent of A. Then

$$E(Z_t) = 0$$
,  $E(Z_t Z_{t+k}) = \frac{1}{2} \cos(\omega k)$ .

**Example 2.3**: Let  $X_t \sim N(0,1)$  be i.i.d. and  $Y_t = \{1,-1\}$  be i.i.d so that  $P(Y_t = 1) = P(Y_t = -1) = 1/2$  Let

$$Z_t = \left\{ \begin{array}{ll} X_t & \text{if } t \text{ is odd} \\ Y_t & \text{if } t \text{ is even} \end{array} \right.,$$

where  $\{X_t\}$  and  $\{Y_t\}$  are independent. Then

$$EZ_t = 0, EZ_t^2 = 1,$$

$$E(Z_t Z_s) = \begin{cases} 0 & \text{if } t \neq s \\ 1 & \text{if } t = s \end{cases},$$

$$\rho(t,s) = \begin{cases} 0 & \text{if } t \neq s \\ 1 & \text{if } t = s \end{cases}.$$

From now on, the term "stationary" means "second-order weakly stationary".

## 2.2 **A**utocovariance and autocorrelation functions

Let  $Z_t$  be a sequence of stationary TS r.v.s. Then  $EZ_t = \mu$ , a constant.

 $\gamma_k = \mathbf{cov}(Z_t, Z_{t+k}) = E[(Z_t - \mu)(Z_{t+k} - \mu)]$  only depends on k,  $\gamma_k$  is called **autocovariance** (ACV) of  $Z_t$ .

Let

$$\rho_k = \frac{\operatorname{cov}(Z_t, Z_{t+k})}{\sqrt{\operatorname{var}(Z_t)}\sqrt{\operatorname{var}(Z_{t+k})}} = \frac{\gamma_k}{\gamma_0}.$$

Then  $\rho_k$  only depends on k.  $\rho_k$  is called **autocorrelation function** (ACF) of  $Z_t$ .

Properties of  $\gamma_k$  and  $\rho_k$ :

(1). 
$$\gamma_0 = \sigma^2$$
,  $\rho_0 = 1$ .

(2). 
$$\gamma_k = \gamma_{-k}, \quad \rho_k = \rho_{-k}.$$

(3). 
$$\gamma_k \leq \gamma_0, \quad \rho_k \leq \rho_0.$$

**Important point**: The smaller  $\rho_k$ , the less dependency between  $Z_t$  and  $Z_{t+k}$ .

Intuitively, as  $k \to \infty, \rho_k \to 0$ , generally.

In general,  $\rho_k \neq 0$ , this is an important feature of TS r.v.s..

## 2.3 Partial Autocorrelation function (PACF).

#### **Definition:**

Let  $Z_t$  be a stationary TS process. The conditional correlation

$$Corr(Z_{t}, Z_{t+k}|Z_{t+1}, \cdots, Z_{t+k-1}) = \frac{Cov[(Z_{t} - \hat{Z}_{t})(Z_{t+k} - \hat{Z}_{t+k})]}{\sqrt{Var(Z_{t} - \hat{Z}_{t})Var(Z_{t+k} - \hat{Z}_{t+k})}}$$

is called the PACF of  $Z_t$  and  $Z_{t+k}$ , denoted by  $\phi_{kk}$ , where  $\widehat{Z}_t = E(Z_t|Z_{t+1},\cdots,Z_{t+k-1})$ .

Formula:  $\phi_{11} = \rho_1$ ,

$$\phi_{kk} = \frac{\begin{vmatrix} 1 & \rho_1 & \rho_2 & \cdots & \rho_{k-2} & \rho_1 \\ \rho_1 & 1 & \rho_1 & \cdots & \rho_{k-3} & \rho_2 \\ & & \cdots & & & \\ \rho_{k-1} & \rho_{k-2} & \rho_{k-3} & \cdots & \rho_1 & \rho_k \end{vmatrix}}{\begin{vmatrix} 1 & \rho_1 & \rho_2 & \cdots & \rho_{k-2} & \rho_{k-1} \\ \rho_1 & 1 & \rho_1 & \cdots & \rho_{k-3} & \rho_{k-2} \\ & & \cdots & & \\ \rho_{k-1} & \rho_{k-2} & \rho_{k-3} & \cdots & \rho_1 & 1 \end{vmatrix}}$$

#### 2.4 White noise processes

A process  $\{a_t\}$  is called a white noise process if

$$Ea_t = 0,$$
  
 $\mathbf{var}(a_t) = \sigma_a^2,$   
 $\gamma_k = \mathbf{cov}(a_t, a_{t+k}) = 0, \quad \text{if } k \neq 0.$ 

**Properties** of the white noise: if  $a_t$  is a white noise, then

(1).(ACV) 
$$\gamma_k = \begin{cases} \sigma_a^2 & k = 0 \\ 0 & k \neq 0 \end{cases}$$
,  
(2).(ACF)  $\rho_k = \begin{cases} 1 & k = 0 \\ 0 & k \neq 0 \end{cases}$ ,  
(3).(PACF)  $\phi_{kk} = \begin{cases} 1 & k = 0 \\ 0 & k \neq 0 \end{cases}$ .

#### 2.5 **Estimation of ACV and ACF**

Given  $Z_1, Z_2, \dots, Z_n$ , how to estimate  $\mu, \sigma^2, \gamma_k$  and  $\rho_k$ ?

#### 2.5.1 **Sample mean**

$$\overline{Z} = \frac{1}{n} \sum_{t=1}^{n} Z_t$$

is called the sample mean of  $Z_t$ .  $\overline{Z}$  is the estimator of the mean  $\mu$ . Is this estimator valid?

(1).  $\overline{Z}$  is an unbiased estimator of  $\mu$ , i.e.

$$E\overline{Z} = \mu.$$

(2).  $\overline{Z}$  is a consistent estimator of  $\mu$ , i.e.

$$\lim_{n\to\infty}\frac{1}{n}\sum_{t=1}^n Z_t = \mu\,,$$

almost surely, if  $\rho_k \to 0$  as  $k \to \infty$ . (ergodic property)

#### 2.5.2 **Sample ACV**

$$\widehat{\gamma}_k = \frac{1}{n-k} \sum_{t=1}^{n-k} (Z_t - \overline{Z})(Z_{t+k} - \overline{Z})$$

is called the sample ACV of  $Z_t$ .

 $\widehat{\gamma}_k$  is the estimators of  $\gamma_k$ .

Are these estimators valid?

(1).  $\hat{\gamma}_k$  is biased estimator of  $\gamma_k$ , i.e.

$$E\widehat{\gamma}_k \neq \gamma_k,$$

(2).  $\hat{\gamma}_k$  is consistent estimator of  $\gamma_k$ , i.e.

$$\lim_{n\to\infty}\widehat{\gamma}_k=\gamma_k,$$

if  $\rho_k \to 0$  as  $k \to \infty$ .

In particular,

$$\hat{\sigma}_n^2 = \frac{1}{n} \sum_{t=1}^n (Z_t - \overline{Z})^2 = \frac{1}{n} \sum_{t=1}^n Z_t^2 - \overline{Z}^2$$

is called the sample variance of  $Z_t$ .

 $\widehat{\sigma}_n^2$  is an estimator of  $\sigma^2$ , and

$$\lim_{n\to\infty} \widehat{\sigma}_n^2 = \sigma^2 \qquad \text{if} \quad \rho_k \to 0 \quad \text{as} \quad k\to\infty.$$

#### 2.5.3 Sample ACF.

$$\widehat{\rho}_k = \frac{\widehat{\gamma}_k}{\widehat{\gamma}_0}$$

is called the sample ACF of  $Z_t$ .

 $\widehat{\rho}_k$  is the estimator of  $\rho_k$ .

 $\widehat{
ho}_k$  is the consistent estimator of  $ho_k$ , i.e.

$$\lim_{n\to\infty}\widehat{\rho}_k=\rho_k \qquad \text{if} \quad \rho_k\to 0 \quad \text{as} \quad k\to\infty.$$

Bartlett(1946) showed that

$$\operatorname{Var}(\widehat{\rho}_{k}) \approx \frac{1}{n} \sum_{i=-\infty}^{\infty} (\rho_{i}^{2} + \rho_{i+k}\rho_{i-k} - 4\rho_{k}\rho_{i}\rho_{i-k} + 2\rho_{k}^{2}\rho_{i}^{2}).$$

In particular, when  $Z_t = a_t$  is a white noise, we have

$$\operatorname{Var}(\widehat{
ho}_k) pprox rac{1}{n}.$$

## How to check whether $Z_t$ is a white noise or not?

Let

$$S_{\widehat{\rho}_k} = \sqrt{\frac{1}{n}(1 + 2\widehat{\rho}_1^2 + \dots + 2\widehat{\rho}_m^2)}$$
,

where m is a fixed integer.

If  $Z_t$  is a white noise,  $S_{\widehat{\rho}_k} \approx \sqrt{\frac{1}{n}}$ .

### 2.5.4 **Sample PACF**.

$$\widehat{\phi}_{11} = \widehat{\rho}_1,$$

$$\hat{\phi}_{kk} = \frac{\begin{vmatrix} 1 & \hat{\rho}_1 & \hat{\rho}_2 & \cdots & \hat{\rho}_{k-2} & \hat{\rho}_1 \\ \hat{\rho}_1 & 1 & \hat{\rho}_1 & \cdots & \hat{\rho}_{k-3} & \hat{\rho}_2 \\ & & \cdots & & \\ & & \vdots & \ddots & \\ & & \hat{\rho}_{k-1} & \hat{\rho}_{k-2} & \hat{\rho}_{k-3} & \cdots & \hat{\rho}_1 & \hat{\rho}_k \end{vmatrix}}{\begin{vmatrix} 1 & \hat{\rho}_1 & \hat{\rho}_2 & \cdots & \hat{\rho}_{k-2} & \hat{\rho}_{k-1} \\ \hat{\rho}_1 & 1 & \hat{\rho}_1 & \cdots & \hat{\rho}_{k-3} & \hat{\rho}_{k-2} \\ & & \ddots & & \\ & & \vdots & \ddots & \\ & & \hat{\rho}_{k-1} & \hat{\rho}_{k-2} & \hat{\rho}_{k-3} & \cdots & \hat{\rho}_1 & 1 \end{vmatrix}}$$

is called the sample PACF of  $Z_t$ .

 $\widehat{\phi}_{kk}$  is the estimator of  $\phi_{kk}$  and is consistent.

2.6 Moving average and autoregressive representations of time series processes

**Definition**: Moving average representation of  $Z_t$ :

$$Z_{t} = \mu + a_{t} + \psi_{1} a_{t-1} + \psi_{2} a_{t-2} + \cdots$$
$$= \mu + \sum_{j=0}^{\infty} \psi_{j} a_{t-j},$$

where  $\psi_0=1$ ,  $a_t$  is a white noise,  $\sum\limits_{j=0}^{\infty}\psi_j^2<\infty$ . (called Wold's representation or linear process )

**Notation** Backshift operator :  $B^j x_t = x_{t-j}$ .

Thus,  $Z_t$  can be written as

$$Z_{t} = \mu + B^{0}a_{t} + \psi_{1}B^{1}a_{t} + \psi_{2}B^{2}a_{t} + \cdots$$

$$= \mu + \sum_{j=0}^{\infty} \psi_{j}B^{j}a_{t}$$

$$= \mu + \left(\sum_{j=0}^{\infty} \psi_{j}B^{j}\right)a_{t}.$$

Denote  $\dot{Z}_t = Z_t - \mu$  and  $\psi(B) = \sum_{j=0}^{\infty} \psi_j B^j$ . Then  $\dot{Z}_t = \psi(B) a_t$ .

#### Some properties:

$$EZ_{t} = \mu,$$

$$Var(Z_{t}) = \sigma_{a}^{2} \sum_{j=0}^{\infty} \psi_{j}^{2},$$

$$E(a_{t}Z_{t-j}) = \begin{cases} \sigma_{a}^{2} & \text{for } j=0\\ 0 & \text{for } j>0 \end{cases},$$

$$\gamma_{k} = E(\dot{Z}_{t}\dot{Z}_{t-k}) = \sigma_{a}^{2} \sum_{i=0}^{\infty} \psi_{i}\psi_{i+k},$$

$$\rho_{k} = \frac{\sum_{j=0}^{\infty} \psi_{i}\psi_{i+k}}{\sum_{j=0}^{\infty} \psi_{j}^{2}}.$$

**Definition** Autoregressive representations of  $Z_t$ :

$$\dot{Z}_{t} = \pi_{1} \dot{Z}_{t-1} + \pi_{2} \dot{Z}_{t-2} + \dots + a_{t} 
= \sum_{j=0}^{\infty} \pi_{j} \dot{Z}_{t-j} + a_{t},$$

where 
$$\dot{Z}_t = Z_t - \mu$$
,  $1 + \sum_{j=0}^{\infty} |\pi_j| < \infty$ .

Let 
$$\pi(B) = 1 - \sum_{j=0}^{\infty} \pi_j B^j$$
. Then  $\pi(B) \dot{Z}_t = a_t$ .

**Relationship** of MA and AR representations:

(1) if the root of  $\pi(z) = 0$  all lie outside the unit circle, then

$$\pi(B)\dot{Z}_t = a_t \Longrightarrow \dot{Z}_t = \frac{1}{\pi(B)}a_t = \psi(B)a_t.$$

(2) if the root of  $\psi(z)=0$  all lie outside the unit circle, then

$$\dot{Z}_t = \psi(B)a_t \Longrightarrow a_t = \frac{1}{\psi(B)}\dot{Z}_t = \pi(B)\dot{Z}_t.$$

#### 2.7 Time Series Models

Let  $\{\cdots, Z_{-t}, \cdots, Z_1, Z_0, Z_1, \cdots, Z_t, \cdots\}$  be a sequence of TS r.v.

How to describe the relationship between  $Z_t$  and the past data  $Z_{t-1}, Z_{t-2}, \cdots$ ?

$$Z_t = f(Z_{t-1}, Z_{t-2}, \cdots) + a_t$$

--- is called time series models.

1. Autoregressive (AR(1)) model:

$$Z_t = \phi Z_{t-1} + a_t,$$

where  $\phi$  is a constant and called the parameter.

2. AR(p) model:

$$Z_t = \phi_1 Z_{t-1} + \dots + \phi_p Z_{t-p} + a_t,$$

where  $\phi_i$  is a constant and called the parameter and p is called the order of the AR(p) model.

3.  $AR(\infty)$  model:

$$Z_t = \sum_{i=1}^{\infty} \phi_i Z_{t-i} + a_t.$$

4. Moving-average (MA) model:

$$Z_t = \mu + a_t + \psi a_{t-1} + \psi_2 a_{t2} + \cdots$$

- 5. ARMA model.
- 6. Threshold AR model (Tong 1977).
- 7. Long memory model (Granger (1980) and Hosking (1981)).
- 8. GARCH model (Engle, 1982/ Bolleslev 1986).
- 9 ARMA-GARCH model.
- 10. Vector ARMA-GARCH model.

. . .

. . .

many and many models.

Given a sequence of data, none knows its true model.

However, we can find a better model for the given data.

#### Chapter 3 Stationary Time Series Models

### 3.1 Autoregressive Processes

## 3.1.1 The first Order Autoregressive AR(1) process

Let  $\{a_t\}$  be a sequence of white noise with mean 0 and variance  $\sigma_a^2$ .  $\dot{Z}_t$  satisfies the following equation:

$$\dot{Z}_t = \phi \dot{Z}_{t-1} + a_t.$$

 $\dot{Z}_t$  is called the AR(1) model.

$$\dot{Z}_{t+1} = \phi \dot{Z}_t + a_{t+1}, 
\dot{Z}_t = \phi \dot{Z}_{t-1} + a_t, 
\dot{Z}_{t-1} = \phi \dot{Z}_{t-2} + a_{t-1}.$$

**A.** Expansion of AR(1) model.

$$\dot{Z}_t = a_t + \phi a_{t-1} + \phi^2 a_{t-2} + \dots + \phi^{t-1} a_1 + \phi^t \dot{Z}_0.$$
 When  $\phi = 1$ ,

$$\dot{Z}_t = a_t + a_{t-1} + \dots + a_1 + \dot{Z}_0.$$

 $\dot{Z}_t$  is called the random walk or unstable process.

When  $|\phi| > 1$ , e.g.  $\phi = 3$ ,

$$\dot{Z}_t = a_t + 3a_{t-1} + 3^2a_{t-2} + \dots + 3^{t-1}a_1 + 3^t \dot{Z}_0.$$

 $\dot{Z}_t$  is called the explosive process.

When  $|\phi| < 1$ , e.g.  $\phi = 0.5$ ,

$$\dot{Z}_t = a_t + 0.5a_{t-1} + \dots + 0.5^{t-1}a_1 + 0.5^t \dot{Z}_0.$$

 $\dot{Z}_t$  is called stable (?).

When the time t goes very far away today, the impact of the past noises and the initial value on the current value  $\dot{Z}_t$  almost disappear !!!

$$\dot{Z}_{0} = \phi \dot{Z}_{-1} + a_{0}, 
\dot{Z}_{-1} = \phi \dot{Z}_{-2} + a_{-1}, 
\dot{Z}_{-2} = \phi \dot{Z}_{-3} + a_{-2}.$$

In general, we have the following expansion:

$$\dot{Z}_t = \sum_{i=0}^m \phi^i a_{t-i} + \phi^{m+1} \dot{Z}_{t-m-1}.$$

How far can the m go?

Let 
$$S_m = \sum_{i=0}^m \phi^i a_{t-i}$$
.

Whether  $\lim_{n\to\infty} S_m$  exists or not?

**Definition**: If

$$E(\xi_m - \xi)^2 \to 0$$
 as  $m \to \infty$ .

we say that the sequence  $\xi_m$  of random variables converges to the random variable  $\xi$  in mean square.

We can prove that

$$S_m \to \sum_{i=0}^{\infty} \phi^i a_{t-i}$$
 in mean square.

if and only if  $|\phi| < 1$ .

The second term  $\phi^{m+1}\dot{Z}_{t-m} \to 0$  (??).

Thus, we have the following result:

If and only if  $|\phi| < 1$ ,  $\dot{Z}_t$  in the AR(1) model has the following expansion:

$$\dot{Z}_t = \sum_{i=0}^{\infty} \phi^i a_{t-i} \,,$$

where the infinite sum converges in mean square.

**B.** ACF of the AR(1) Process.

When  $|\phi| < 1$ ,

$$\mu = E\dot{Z}_t = E\left(\sum_{i=0}^{\infty} \phi^i a_{t-i}\right) = 0,$$

$$\sigma^2 = \mathbf{Var}(\dot{Z}_t) = \frac{\sigma_a^2}{1 - \phi^2},$$

$$\gamma_k = E[(\dot{Z}_t - \mu)(\dot{Z}_{t+k} - \mu)] = \frac{\sigma_a^2 \phi^k}{1 - \phi^2},$$

$$\rho_k = \frac{\gamma_k}{\gamma_0} = \phi^k.$$

Thus, in this case,  $\dot{Z}_t$  is stationary.

When  $|\phi| \geq 1$ ,  $\dot{Z}_t$  is not stationary.

**C.** Partial Autocorrelation function (PACF) of AR(1) Process

$$\phi_{kk} = \left\{ \begin{array}{ll} \rho_1 = \phi, & k = 1, \\ 0, & k \ge 2. \end{array} \right.$$

The AR(1) model can be written as:

$$(1 - \phi B)\dot{Z}_t = a_t,$$

**Example 3.1** Simulated 250 values from the model:

$$(1 - \phi B)(Z_t - 10) = a_t,$$

where  $\phi = 0.9$  and  $a_t \sim N(0,1)$ . Show the sample ACF and PACF.

**Example 3.2** Simulated 250 values from the model:

$$(1 - \phi B)(Z_t - 10) = a_t,$$

where  $\phi = -0.65$  and  $a_t \sim N(0, 1)$ . Show the sample ACF and PACF.

## 3.1.2 The Second Order Autoregressive AR(2) Model

#### A. Model

$$\dot{Z}_t = \phi_1 \dot{Z}_{t-1} + \phi_2 \dot{Z}_{t-2} + a_t$$
  
or  $\phi(B) \dot{Z}_t = a_t$ ,

where  $\phi(B) = 1 - \phi_1 B - \phi_2 B^2$ .

#### **B.** Condition for stationarity:

the roots of  $\phi(z) = 0$  lie outside the unit circle, or equivalently,

$$\begin{cases} \phi_2 + \phi_1 < 1, \\ \phi_2 - \phi_1 < 1, \\ -1 < \phi_2 < 1. \end{cases}$$

all the roots of  $(1 - \phi_1 z - \phi_2 z^2) = 0$  lie outside the unit circle.

Decompose  $1 - \phi_1 z - \phi_2 z^2 = (1 - \alpha_1 z)(1 - \alpha_2 z)$ .

Then  $|\alpha_1| < 1$  and  $|\alpha_2| < 1$ .

$$(1 - \alpha_1 B)(1 - \alpha_2 B)\dot{Z}_t = a_t.$$

Let  $u_t = (1 - \alpha_2 B) \dot{Z}_t$ . Then

$$u_t = \alpha_1 u_{t-1} + a_t = a_t + \sum_{i=1}^{\infty} \alpha_1^i a_{t-i}.$$

$$\dot{Z}_t = \alpha_2 \dot{Z}_{t-1} + u_t = u_t + \sum_{j=1}^{\infty} \alpha_2^j u_{t-j}.$$

Stationarity condition is equivalent to

$$\begin{cases} \phi_2 + \phi_1 < 1, \\ \phi_2 - \phi_1 < 1, \\ -1 < \phi_2 < 1. \end{cases}$$



Stationary region for AR(2) model.

C. ACF of the AR(2) model:

$$\gamma_k = \phi_1 \gamma_{k-1} + \phi_2 \gamma_{k-2}, \quad k \ge 1.$$

$$\rho_k = \phi_1 \rho_{k-1} + \phi_2 \rho_{k-2}, \quad k \ge 1.$$

When k = 1, 2,

$$\rho_1 = \frac{\phi_1}{1 - \phi_2}$$
 and  $\rho_2 = \frac{\phi_1^2 + \phi_2 - \phi_2^2}{1 - \phi_2}.$ 

**D.** PACF of the AR(2) model:

$$\phi_{11} = \rho_1 = \frac{\phi_1}{1 - \phi_2},$$
 $\phi_{22} = \phi_2,$ 
 $\phi_{kk} = 0, \text{ as } k \ge 3.$ 

**Example 3.3** Simulated 250 values from the AR(2) model:

$$(1 - B + 0.5B^2)Z_t = a_t,$$

where  $a_t \sim N(0,1)$ . Show the sample ACF and PACF.

# 3.1.3. The General pth Order Autoregressive AR(p) Model

#### A. Model:

Let  $\{a_t\}$  be a sequence of white noise with mean 0 and variance  $\sigma_a^2$ .

 $\dot{Z}_t$  is said to be an AR(p) model, if

$$\dot{Z}_t = \phi_1 \dot{Z}_{t-1} + \phi_2 \dot{Z}_{t-2} + \dots + \phi_p \dot{Z}_{t-p} + a_t$$
  
or  $\phi_p(B) \dot{Z}_t = a_t$ ,

where p is an positive integer, and  $\phi_p(B) = 1 - \phi_1 B - \cdots - \phi_p B^p$ .

## B. Condition for Stationarity:

the roots of  $\phi_p(z) = 0$  lie outside the unit circle, or equivalently,

all the eigenvalues of the following matrix lie outside the unit circle,

$$\begin{pmatrix}
\phi_1 & \phi_2 & \phi_3 & \cdots & \phi_p \\
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
& & \cdots & & \\
0 & 0 & \cdots & 1 & 0
\end{pmatrix}$$

### **C.** ACF of AR(p) model:

$$\gamma_k = \phi_1 \gamma_{k-1} + \dots + \phi_p \gamma_{k-p}, \quad k > 0.$$

$$\rho_k = \phi_1 \rho_{k-1} + \dots + \phi_p \rho_{k-p}, \quad k > 0.$$

--- the difference equation of  $\rho_k$ .

Solve the following sets of equations:

$$\begin{cases} \rho_1 - \phi_1 \rho_0 - \dots + \phi_p \rho_{p-1} = 0, \\ \dots \\ \rho_p - \phi_1 \rho_{p-1} - \dots + \phi_p \rho_0 = 0. \\ - - - \text{find } \rho_1, \dots, \rho_p. \end{cases}$$

When  $k \geq p+1$ , calculate  $\rho_{p+1}, \rho_{p+2}, \cdots$  by:

$$\rho_{p+1} - \phi_1 \rho_p - \dots - \phi_p \rho_1 = 0,$$

$$\dots$$

$$\rho_k - \phi_1 \rho_{k-1} - \dots - \phi_p \rho_{k-p} = 0.$$

### **D.** PACF of AR(p) Model:

 $\psi_{kk}$  can be obtained from  $\rho_1, \cdots, \rho_k$ .

In particular,  $\psi_{kk} = 0$  when k > p.