CS532100 Numerical Optimization Homework 2

106033233 Sheng-Yen Chou

Due Dec 10

1. Consider the linear least square problem:

$$min_{\vec{x} \in \mathbb{R}^2} ||A\vec{x} - \vec{b}||^2,$$

where

$$A = \begin{bmatrix} 4 & 8 \\ 2 & 4 \\ 1 & 2 \end{bmatrix}, \vec{b} = \begin{pmatrix} 21/4 \\ 0 \\ 0 \end{pmatrix}$$

(a) (10%) Write its normal equation.

Answers are put here.

$$\nabla_{\vec{x}} ||A\vec{x} - \vec{b}||^2$$

$$= \nabla_{\vec{x}} (A\vec{x} - \vec{b})^T (A\vec{x} - \vec{b})$$

$$= 2A^T (A\vec{x} - \vec{b})$$

Since the minimum is at $\nabla_{\vec{x}}||A\vec{x} - \vec{b}||^2 = 0$, thus, we can rewrite the formula as

$$2A^T(A\vec{x} - \vec{b}) = 0$$

$$2A^T A \vec{x} - 2A^T \vec{b} = 0$$

Then, we can get the normal equation

$$A^T A \vec{x} = A^T \vec{b}$$

(b) (10%) Express $\vec{b} = \vec{b}_1 + \vec{b}_2$ such that \vec{b}_1 is in the subspace spanned by A's column vectors, and \vec{b}_2 is orthogonal to A's column vectors. Answers are put here.

Let \vec{c} be the projection of \vec{a} on the \vec{b}

Since $rank(\mathbf{A}) = 1$, let \vec{b} project on the subspace of \mathbf{A} and the projection is \vec{c} . Because the set $\mathcal{S} = \left\{ \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix} \right\}$ is one of the basis of

A. Then we can project \vec{b} onto the basis of **A** and we can get the projection \vec{c} of \vec{b} onto the basis \mathcal{S} . The dimension of the basis \mathcal{S} is 1. As a result, we only need to compute the projection onto the vector

$$\vec{s}_1 = \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}$$

$$\vec{c} = \frac{\langle \vec{b}, \vec{s}_1 \rangle}{||\vec{s}_1||^2} \vec{s}_1$$

$$=\frac{\langle \begin{pmatrix} \frac{21}{4} \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix} \rangle}{21} \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}$$

Let $\vec{b}_1 = \vec{c}$. Then, to get the vertical vector between \vec{c} and \vec{b} . Compute

$$\vec{b}_2 = \vec{b} - \vec{c} = \begin{pmatrix} \frac{5}{4} \\ -2 \\ -1 \end{pmatrix}.$$

We can simply verify whether
$$\vec{b}_1$$
 and \vec{b}_2 are orthogonal by computing the inner product. The result is $\langle \vec{b}_1, \vec{b}_2 \rangle = 5 - 4 - 1 = 0$ and we know \vec{b}_1 and \vec{b}_2 are orthogonal while $\vec{b}_1 = \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}$ $\vec{b}_2 = \begin{pmatrix} \frac{5}{4} \\ -2 \\ -1 \end{pmatrix}$.

(c) (10%) Show that $\vec{z} \in \mathbb{R}^2$ is a least square solution for $A\vec{x} = \vec{b}$ if and only if \vec{z} is part of a solution to the larger linear system:

$$\left[\begin{array}{cc} 0 & A^T \\ A & I \end{array}\right] \left[\begin{array}{c} \vec{z} \\ \vec{y} \end{array}\right] = \left[\begin{array}{c} 0 \\ \vec{b} \end{array}\right]$$

Answers are put here.

 $\mathrm{RHS} \to \mathrm{LHS}$

If \vec{z} is part of a solution to the larger linear system, then $\vec{z} \in \mathbb{R}^2$ is a least square solution for $A\vec{x} = \vec{b}$.

According to the linear system, we can convert it to simultaneous equations.

$$\begin{cases} A^T \vec{y} &= 0 \\ A \vec{z} + I \vec{y} &= \vec{b} \end{cases}$$

We can rewrite the second formula as

$$I\vec{y} = \vec{b} - A\vec{z}$$

$$\vec{y} = \vec{b} - A\vec{z}$$

Plugin into $A^T \vec{y} = 0$

$$A^T(\vec{b} - A\vec{z}) = 0$$

$$-A^T A \vec{z} + A^T \vec{b} = 0$$

Then we can get the normal form of the least square problem.

$$A^T A \vec{z} = A^T \vec{b}$$

Remove A^T from both sides and we can get

$$A\vec{z} = \vec{b}$$

Done.

 $\mathrm{LHS} \to \mathrm{RHS}$

If $\vec{z} \in \mathbb{R}^2$ is a least square solution for $A\vec{x} = \vec{b}$, then \vec{z} is part of a solution to the larger linear system.

Due to the least square problem $\min_{\vec{x} \in \mathbb{R}^2} ||A\vec{x} - \vec{b}||^2$, We can get the normal form of the least square problem as the following formula.

$$A^T A \vec{z} = A^T \vec{b}$$

$$A^T \vec{b} - A^T A \vec{z} = 0$$

$$A^T(\vec{b} - A\vec{z}) = 0$$

According to the linear system, we can convert it to simultaneous equations.

$$\begin{cases} A^T \vec{y} &= 0 \\ A \vec{z} + I \vec{y} &= \vec{b} \end{cases}$$

According to the first formula, the solution of \vec{y} can be $\vec{b} - A\vec{z}$. Then, plugin the solution of \vec{y} , the second formula $A\vec{z} + I\vec{y} = \vec{b}$ can be rewritten as

$$A\vec{z} + I(\vec{b} - A\vec{z}) = \vec{b}$$

$$A\vec{z} + \vec{b} = A\vec{z} + \vec{b}$$

The solution of $\vec{y} = \vec{b} - A\vec{z}$ perfectly satisfies the second equation. Then, we finish the proof. 2. In Note05 (Page 16), memoryless BFGS iteration matrix H_{k+1} can be derived from considering the Hestenes–Stiefel form of the nonlinear conjugate gradient method. Recalling that $\vec{s}_k = \alpha_k \vec{p}_k$, we have that the search direction for this method is given by

$$\begin{split} \vec{p}_{k+1} &= -\nabla f_{k+1} + \frac{\nabla f_{k+1}^T \vec{y}_k}{\vec{y}^T \vec{p}_k} \vec{p}_k \\ &= -\nabla f_{k+1} + \frac{\nabla f_{k+1}^T \vec{y}_k}{\vec{y}^T \vec{s}_k} \vec{s}_k \\ &= - (I - \frac{\vec{s}_k \vec{y}_k^T}{\vec{y}^T \vec{s}_k}) \nabla f_{k+1} \\ &= -\hat{H}_{k+1} \nabla f_{k+1} \end{split}$$

However, the matrix \hat{H}_{k+1} is neither symmetric nor positive definite.

(a) (10%) Please show that the matrix \hat{H}_{k+1} is singular. (You can only prove it for the case $\nabla f_k, \vec{p}_k, \vec{y}_k, \vec{s}_k \in \mathbb{R}^2$ for all $k \in \mathbb{N}$.)

Answers are put here.

Lemma 1

For an identity matrix $I \in \mathbb{R}^n$, $\forall v \in \mathbb{R}^n$ are eigenvectors of the identity matrix I.

Proof:

Since I is an identity matrix, thus

$$Iv = v$$

Lemma 2

For a rank 1 matrix $A = uv^T$, $A \in \mathbb{R}^{n \times n}$, rank(A) = 1 and $u, v \in \mathbb{R}^n$, it has only one eigenvalue $\lambda_1 = u^Tv > 0, \lambda_i \in \mathbb{R}, 1 \le i \le n$ and other eigenvalues are $\lambda_2 = \lambda_3 = \dots = \lambda_n = 0$. The corresponding eigenvectors is $x_1 = u$.

Proof:

We denote λ_0 as the set of eigenvectors corresponding to 0 eigenvalues $\lambda_0(A) = \{x | Ax = \lambda_{zero}x, \lambda_{zero} = 0\}.$

Step 1. Show that $\forall A \in \mathbb{R}^{n \times n}$, $\dim(\text{null}(A)) = k$, if and only if k is the number of the zero eigenvalues of matrix A.

LHS \rightarrow RHS:

By definition $\operatorname{null}(A) = \{x | Ax = 0\}$. Thus, $\forall x, Ax = 0 = 0 \cdot x$. The corresponding eigenvalue of A is 0.

As a result, $\operatorname{null}(A) = \lambda_0(A)$ and $\operatorname{dim}(\operatorname{null}(A)) = \operatorname{dim}(\lambda_0(A))$.

 $RHS \rightarrow LHS$:

By definition $\lambda_0(A) = \{x | Ax = \lambda_{zero}x, \lambda_{zero} = 0\} = \{x | Ax = 0\}.$ Thus, $\lambda_0(A) = \text{null}(A)$ and $\dim(\lambda_0(A)) = \dim(\text{null}(A)).$

Step 2. Show that the non-zero eigenvalue of A is u^Tv and the corresponding eigenvector is u.

$$Au = uv^T u = u(v^T u)$$

Since $(v^T u) \in \mathbb{R}$

$$= (v^T u)u = \lambda u$$

Step 3. Combine them

We've know that since $\operatorname{rank}(A) = 1$ and $\dim(\operatorname{null}(A)) = n - 1$ (by Gaussian elimination). Thus, A has n - 1 eigenvalues are 0 and the only one non-zero eigenvector is u and the corresponding eigenvalue is $u^T v$.

From the description of the formula, we know

$$\hat{H}_{k+1} = I - \frac{\vec{s}_k \vec{y}_k^T}{\vec{y}^T \vec{s}_k}$$

Assume $\hat{H}_{k+1} \in \mathbb{R}^{2\times 2}$, $\vec{s}_k = \begin{pmatrix} s_{k1} & s_{k2} \end{pmatrix} \in \mathbb{R}^2$, and $\vec{y}_k = \begin{pmatrix} y_{k1} & y_{k2} \end{pmatrix} \in \mathbb{R}^2$. We can find out the eigenvalue and eigenvector of matrix A as the following formula

$$Av = \lambda v$$

Where λ is the eigenvalue and v is the eigenvector. As for matrix \hat{H}_{k+1}

$$\hat{H}_{k+1}v = \lambda v$$

$$(\hat{H}_{k+1} - \lambda I)v = 0$$

Let matrix $K = \vec{s}_k \vec{y}_k^T$ and scalar $k = \vec{y}^T \vec{s}_k$

$$(I - \frac{K}{k} - \lambda I)v = 0$$

$$((1-\lambda)I - \frac{K}{k})v = 0$$

$$(K - (k - k\lambda)I)v = 0$$

Let $c = k(1 - \lambda)$ and $\lambda = 1 - \frac{c}{k}$

$$(K - cI)v = 0$$

If K has eigenvector, then (K-cI) must be nonsingular matrix. The determinant of K-cI must be 0.

$$det(K - cI) = 0$$

Since we've known $\operatorname{rank}(K) = 1$ and c can be seem as the eigenvalue of the matrix K. We denote the eigenvalue as λ_K and the eigenvector as v_K

$$\lambda_K = c = \vec{s}_k^T \vec{y}_k, \quad v_K = \vec{s}_k$$

$$\lambda = 1 - \frac{c}{k} = 1 - \frac{\vec{s}_k^T \vec{y}_k}{\vec{s}_k^T \vec{y}_k} = 0$$

Thus, we known the eigenvalue of \hat{H}_{k+1} must contains 0. As a result, the matrix \hat{H}_{k+1} is singular.

(b) (0%) Please read the reference book (Page 180) to understand the derivation of the inverse hessian formula in Note05 (Page 16). (you don't need to write anything in this subproblem.)

$$H_{k+1} = (I - \frac{\vec{s}_k \vec{y}_k^T}{\vec{y}_k^T \vec{s}_k}) (I - \frac{\vec{y}_k \vec{s}_k^T}{\vec{y}_k^T \vec{s}_k}) + \frac{\vec{s}_k \vec{s}_k^T}{\vec{y}_k^T \vec{s}_k}$$

3. (10%) The total least square problem is to solve the following problem

$$\min_{\vec{x}, ||\vec{x}|| = 1} \vec{x}^T A^T A \vec{x}$$

where A is an $m \times n$ matrix. Here we assume m > n. Let $A = U \Sigma V^T$ be the SVD of A, where U is the matrix of left singular vectors, V is the matrix of right singular vectors, and Σ is a diagonal matrix with diagonal elements $\sigma_1, \sigma_2, \ldots, \sigma_n$. Moreover, U and V are orthogonal matrices, and $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$. Show the solution of the above problem is the σ_n^2 .

Answers are put here.

$$\vec{x}^T A^T A \vec{x}$$

$$= \vec{x}^T (U \Sigma V^T)^T (U \Sigma V^T) \vec{x}$$

$$= \vec{x}^T V \Sigma U^T U \Sigma V^T \vec{x}$$

$$= \vec{x}^T V \Sigma U^T U \Sigma V^T \vec{x}$$

Since U and V are orthogonal matrices, we get

$$= \vec{x}^T V \Sigma^T \Sigma V^T \vec{x}$$

Since Σ is diagonal matrix, we can move $\Sigma^T \Sigma$ to the tail

$$= \vec{x}^T V V^T \vec{x} (\Sigma^T \Sigma)$$

$$= \vec{x}^T \vec{x} (\Sigma^T \Sigma)$$

We expand the vector and the matrix. Thus, vector

$$\vec{x} = \begin{pmatrix} x_1 & x_2 & x_3 & \dots & x_n \end{pmatrix}$$

and the matrix

$$\Sigma = \begin{pmatrix} \sigma_1^2 & 0 & 0 & \dots & 0 \\ 0 & \sigma_2^2 & 0 & \dots & 0 \\ 0 & 0 & \sigma_3^2 & \dots & 0 \\ \dots & \dots & \dots & \dots & 0 \\ 0 & 0 & 0 & \dots & \sigma_n^2 \end{pmatrix}$$

$$= \begin{pmatrix} x_1^2 & x_2^2 & x_3^2 & \dots & x_n^2 \end{pmatrix} \begin{pmatrix} \sigma_1^2 & 0 & 0 & \dots & 0 \\ 0 & \sigma_2^2 & 0 & \dots & 0 \\ 0 & 0 & \sigma_3^2 & \dots & 0 \\ \dots & \dots & \dots & \dots & 0 \\ 0 & 0 & 0 & \dots & \sigma_n^2 \end{pmatrix}$$

$$=\sum_{i=1}^{n}(x_{i}\sigma_{i})^{2}$$

Trivially, since $||\vec{x}|| = 1$ and $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n$, the minimum should be $(0 \cdot \sigma_1)^2 + (0 \cdot \sigma_2)^2 + \ldots + (1 \cdot \sigma_n)^2$. Thus,

$$\sigma_n^2 = \min_{\vec{x}, ||\vec{x}|| = 1} \sum_{i=1}^n (x_i \sigma_i)^2$$

The minimum is σ_n^2 .

4. Consider the following linear programming problem:

$$\begin{array}{ll} \max_{x_1,x_2} & z = x_1 + x_2 \\ \text{s.t.} & x_1 + 2x_2 \leq 4 \\ & 4x_1 + 2x_2 \leq 12 \\ & -x_1 + x_2 \leq 1 \\ & x_1,x_2 \geq 0 \end{array}$$

(a) (10%) Please refer Note08 (Page 2) to draw the figure of the constraints by any means, and use that to solve the problem.

Answers are put here.

The red line is $x_1 + 2x_2 = 4$, the blue one is $4x_1 + 2x_2 = 12$, the green one is $-x_1 + x_2 = 1$, the purple one is $x_1 = 0$, and the black one is $x_2 = 0$.

The deep purple one is $x_1 + x_2 = \frac{10}{3}$. Trivially, the solution of $\max_{x_1,x_2} z = x_1 + x_2$ must on the line $x_1 + x_2 = z$ and the graph shows that the maximum should be $z = \frac{10}{3}$ at the point $(x_1, x_2) = (\frac{8}{3}, \frac{2}{3})$ because we cannot move the deep purple line to the further right side to get larger maximum z.

- (b) (10%) Derive its dual problem and solve the dual problem by any means. Compare the solutions of the primal and the dual problems. Answers are put here.
 - (1) Method 1

Convert to standard form

$$\begin{array}{ll} \min_{x_1,x_2} & z = -x_1 - x_2 \\ \text{s.t.} & -x_1 - 2x_2 \geq -4 \\ & -4x_1 - 2x_2 \geq -12 \\ & x_1 - x_2 \geq -1 \\ & x_1,x_2 \geq 0 \end{array}$$

Using Maximum Lower Bound Method

$$(-x_1 - 2x_2)y_1 \ge -4y_1$$

$$(-4x_1 - 2x_2)y_2 \ge -12y_2$$

$$+ (x_1 - x_2)y_3 \ge -1y_3$$

$$(-y_1 - 4y_2 + y_3)x_1 + (-2y_1 - 2y_2 - y_3)x_2 \ge -4y_1 - 12y_2 - y_3$$

$$\max_{y_1, y_2, y_3} -4y_1 - 12y_2 - y_3$$
subject to
$$-y_1 - 4y_2 + y_3 \le -1$$

$$-2y_1 - 2y_2 - y_3 \le -1$$

$$y_1, y_2, y_3 \ge 0$$

Convert it to the minimization problem

$$\min_{y_1, y_2, y_3} 4y_1 + 12y_2 + y_3$$
 subject to
$$y_1 + 4y_2 - y_3 \ge 1$$
$$2y_1 + 2y_2 + y_3 \ge 1$$
$$y_1, y_2, y_3 \ge 0$$

(2) Method 2

Directly convert, use Minimum Upper Bound Method

$$(x_1 + 2x_2)y_1 \le 4y_1$$

$$(4x_1 + 2x_2)y_2 \le 12y_2$$

$$+ (-x_1 + x_2)y_3 \le 1y_3$$

$$(y_1 + 4y_2 - y_3)x_1 + (2y_1 + 2y_2 + y_3)x_2 \le 4y_1 + 12y_2 + y_3$$

$$\min_{y_1, y_2, y_3} p = 4y_1 + 12y_2 + y_3$$
subject to $y_1 + 4y_2 - y_3 \ge 1$

$$2y_1 + 2y_2 + y_3 \ge 1$$

$$y_1, y_2, y_3 \ge 0$$

(3) Method 3

Consider complementary slackness, add slack variables

$$\begin{array}{ll} \max_{x_1,x_2} & z = x_1 + x_2 \\ \text{s.t.} & x_1 + 2x_2 + x_3 = 4 \\ & 4x_1 + 2x_2 + x_4 = 12 \\ & -x_1 + x_2 + x_5 = 1 \\ & x_1,x_2,x_3,x_4,x_5 \geq 0 \end{array}$$

Transpose

$$\begin{array}{ll} \max_{x_1,x_2} & z = x_1 + x_2 \\ \text{s.t.} & x_1 + 2x_2 + x_3 = 4 \\ & 4x_1 + 2x_2 + x_4 = 12 \\ & -x_1 + x_2 + x_5 = 1 \\ & x_1, x_2, x_3, x_4, x_5 \geq 0 \end{array}$$

x_1	x_2	x_3	x_4	x_5	constant
1	2	1	0	0	4
4	2	0	1	0	12
-1	1	0	0	1	1
1	1	0	0	0	1

The dual problem is

$$\min_{y_1, y_2, y_3} p = 4y_1 + 12y_2 + y_3$$
 subject to
$$y_1 + 4y_2 - y_3 \ge 1$$
$$2y_1 + 2y_2 + y_3 \ge 1$$
$$y_1, y_2, y_3 \ge 0$$

Solution: Convert to dual problem to solve it

$$\begin{array}{ll} \max_{x_1,x_2} & z = x_1 + x_2 \\ \text{s.t.} & x_1 + 2x_2 \leq 4 \\ & 4x_1 + 2x_2 \leq 12 \\ & -x_1 + x_2 \leq 1 \\ & x_1,x_2 \geq 0 \end{array}$$

Consider complementary slackness, add slack variables

$$\begin{array}{ll} \max_{x_1,x_2} & z = x_1 + x_2 \\ \mathrm{s.t.} & x_1 + 2x_2 + x_3 = 4 \\ & 4x_1 + 2x_2 + x_4 = 12 \\ & -x_1 + x_2 + x_5 = 1 \\ & x_1,x_2,x_3,x_4,x_5 \geq 0 \end{array}$$

Rewrite objective function as $-x_1 - x_2 + z = 0$ Compute the result

ĺ	x_1	x_2	x_3	x_4	x_5	Z	
ĺ	1	2	1	0	0	0	4
	4	2	0	1	0	0	12
	-1	1	0	0	1	0	1
ı	-1	-1	0	0	0	1	0

Iteration 1

x_1	x_2	x_3	x_4	x_5	\mathbf{z}		ratio
1	2	1	0	0	0	4	4
4	2	0	1	0	0	12	3
-1	1	0	0	1	0	1	-1
-1	-1	0	0	0	1	0	

Choose column1, row2 as the pivot

	x_1	x_2	x_3	x_4	x_5	\mathbf{z}		multiplier
ſ	1	2	1	0	0	0	4	-1
	1	$\frac{1}{2}$	0	$\frac{1}{4}$	0	0	3	
	-1	$\bar{1}$	0	0	1	0	1	1
Ì	-1	-1	0	0	0	1	0	1

After elimination

x_1	x_2	x_3	x_4	x_5	Z	
0	$\frac{3}{2}$	1	$-\frac{1}{4}$	0	0	1
1	$\frac{1}{2}$	0	$\frac{1}{4}$	0	0	3
0	$\frac{3}{2}$	0	$\frac{1}{4}$	1	0	4
0	$-\frac{1}{2}$	0	$\frac{1}{4}$	0	1	3

Iteration 2

x_1	x_2	x_3	x_4	x_5	\mathbf{z}		ratio
0	$\frac{3}{2}$	1	$-\frac{1}{4}$	0	0	1	$\frac{2}{3}$
1	$\frac{1}{2}$	0	$\frac{1}{4}$	0	0	3	$\check{6}$
0	$\frac{3}{2}$	0	$\frac{1}{4}$	1	0	4	$\frac{8}{3}$
0	$-\frac{1}{2}$	0	$\frac{1}{4}$	0	1	3	

Choose column2, row1 as the pivot

x_1	x_2	x_3	x_4	x_5	\mathbf{z}		multiplier
0	1	$\frac{2}{3}$	$-\frac{1}{6}$	0	0	$\frac{2}{3}$	
1	$\frac{1}{2}$	Ŏ	$\frac{1}{4}$	0	0	$\ddot{3}$	$-\frac{1}{2}$
0	$\frac{3}{2}$	0	$\frac{1}{4}$	1	0	4	$-\frac{5}{2}$
0	$-\frac{1}{2}$	0	$\frac{1}{4}$	0	1	3	$\frac{1}{2}$

After elimination

x_1	x_2	x_3	x_4	x_5	\mathbf{z}	
0	1	$\frac{2}{3}$	$-\frac{1}{6}$	0	0	$\frac{2}{3}$
1	0	$-\frac{1}{3}$	$\frac{1}{3}$	0	0	$\frac{8}{3}$
0	0	-1	$\frac{1}{2}$	1	0	$\check{3}$
0	0	$\frac{1}{3}$	$\frac{1}{6}$	0	1	$\frac{10}{3}$

The result is $(y_1, y_2, y_3) = (\frac{1}{3}, \frac{1}{6}, 0)$ and the minimum value of $p = \frac{10}{3}$. Other slack variables are $(y_4, y_5) = (0, 0)$

(c) (10%) Verify the complementarity slackness condition.

Answers are put here.

The dual problem is

$$\min_{y_1,y_2,y_3} p = 4y_1 + 12y_2 + y_3$$
 subject to
$$y_1 + 4y_2 - y_3 \ge 1$$

$$2y_1 + 2y_2 + y_3 \ge 1$$

$$y_1, y_2, y_3 \ge 0$$

Consider the complementary slackness

$$\min_{y_1, y_2, y_3} p = 4y_1 + 12y_2 + y_3$$
subject to
$$y_1 + 4y_2 - y_3 - y_4 = 1$$

$$2y_1 + 2y_2 + y_3 - y_5 = 1$$

$$y_1, y_2, y_3, y_4, y_5 \ge 0$$

According to the final table of (b), the result of the dual problem(minimum) is $(y_1, y_2, y_3) = (\frac{1}{3}, \frac{1}{6}, 0)$ and the minimum value of $p = \frac{10}{3}$. Other slack variables are $(y_4, y_5) = (0, 0)$.

As for the primal problem, The result is $(x_1, x_2) = (\frac{8}{3}, \frac{2}{3})$ and the maximum value of $z = \frac{10}{3}$. Other slack variables are $(x_3, x_4, x_5) = (0, 0, 2)$

Verify the complementary slackness condition $y_i s_i = 0$

$$y_1s_1 = y_1x_3 = \frac{1}{3} \cdot 0 = 0$$

$$y_2s_2 = y_2x_4 = \frac{1}{6} \cdot 0 = 0$$

$$y_3s_3 = y_3x_5 = 0 \cdot 3 = 0$$

The result satisfies the complementary slackness condition.

(d) (10%) Transform the problem to the standard form.

Answers are put here.

Convert to standard form

$$\begin{aligned} \min_{x_1,x_2} & z = -x_1 - x_2 \\ \text{s.t.} & -x_1 - 2x_2 \ge -4 \\ & -4x_1 - 2x_2 \ge -12 \\ & x_1 - x_2 \ge -1 \\ & x_1,x_2 > 0 \end{aligned}$$

Then, introduce complementary slackness

$$\begin{aligned} \min_{x_1,x_2} & z = -x_1 - x_2 \\ \text{s.t.} & -x_1 - 2x_2 - x_3 = -4 \\ & -4x_1 - 2x_2 - x_4 = -12 \\ & x_1 - x_2 - x_5 = -1 \\ & x_1,x_2,x_3,x_4,x_5 > 0 \end{aligned}$$

(e) (10%) Solve it by the simplex method, as provided in Figure 1, using $\vec{x}_0 = (0,0)$. Indicate $B_k, N_k, \vec{s}_k, \vec{d}_k, p_k, q_k, \gamma_k$ in each step. Answers are put here.

$$\begin{array}{ll} \max_{x_1,x_2} & z = x_1 + x_2 \\ \text{s.t.} & x_1 + 2x_2 \leq 4 \\ & 4x_1 + 2x_2 \leq 12 \\ & -x_1 + x_2 \leq 1 \\ & x_1,x_2 \geq 0 \end{array}$$

Consider complementary slackness, add slack variables

$$\begin{array}{ll} \max_{x_1,x_2} & z = x_1 + x_2 \\ \text{s.t.} & x_1 + 2x_2 + x_3 = 4 \\ & 4x_1 + 2x_2 + x_4 = 12 \\ & -x_1 + x_2 + x_5 = 1 \\ & x_1, x_2, x_3, x_4, x_5 \geq 0 \end{array}$$

Rewrite objective function as $-x_1 - x_2 + z = 0$ Compute the result

(1) Method 1: Simplex Algorithm:

Iteration 1

$$B_{1} = \begin{pmatrix} A_{:,3} & A_{:,4} & A_{:,5} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, N_{1} = \begin{pmatrix} A_{:,1} & A_{:,2} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 4 & 2 \\ -1 & 1 \end{pmatrix}$$

$$\vec{c}_{N} = \begin{pmatrix} c_{1} \\ c_{2} \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}, \vec{c}_{B} = \begin{pmatrix} c_{3} \\ c_{4} \\ c_{5} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\vec{x}_{N} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \vec{x}_{B} = \begin{pmatrix} x_{3} \\ x_{4} \\ x_{5} \end{pmatrix} = \begin{pmatrix} 4 \\ 12 \\ 1 \end{pmatrix}$$

$$\text{pricing: } \vec{s_1} = \vec{c}_N - N_1^T (B_1^{-1})^T \vec{c}_B = \begin{pmatrix} -1 \\ -1 \end{pmatrix} - \begin{pmatrix} 1 & 4 & -1 \\ 2 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \end{pmatrix},$$

Since \vec{s}_1 not greater or equal to 0, continue.

$$q_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \vec{d}_{1} = B_{1}^{-1} A_{1}(:, q_{1}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix}$$

search direction: $\begin{pmatrix} d_3 \\ d_4 \\ d_5 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix}$ the whole direction: $\begin{pmatrix} d_3 \\ d_4 \\ d_5 \\ d_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$

$$\begin{pmatrix} 1\\4\\-1\\1\\0 \end{pmatrix}$$

ratio test : $\gamma_1, p_1 = 3, 2 = \min_{\gamma_1, p_1 > 0} \frac{\vec{x}_B}{\vec{d_1}} = (\frac{4}{1}, \frac{12}{4}, \frac{1}{-1})$ Swap column 1 and 4. Thus, $\mathcal{B}_1 = \{3, 1, 5\}$ and $\mathcal{N}_1 = \{4, 2\}$

$$\vec{x}_1 = \begin{pmatrix} x_3 \\ x_4 \\ x_5 \\ x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 4 \\ 12 \\ 1 \\ 0 \\ 0 \end{pmatrix} + 3 \begin{pmatrix} -1 \\ -4 \\ 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 4 \\ 3 \\ 0 \end{pmatrix}$$

$$B_{2} = \begin{pmatrix} A_{:,3} & A_{:,1} & A_{:,5} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 4 & 0 \\ 0 & -1 & 1 \end{pmatrix}, N_{2} = \begin{pmatrix} A_{:,4} & A_{:,2} \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 1 & 2 \\ 0 & 1 \end{pmatrix}$$

$$\vec{c}_N = \begin{pmatrix} c_4 \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \vec{c}_B = \begin{pmatrix} c_3 \\ c_1 \\ c_5 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}$$

$$\vec{x}_N = \begin{pmatrix} x_4 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \vec{x}_B = \begin{pmatrix} x_3 \\ x_1 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

pricing:
$$\vec{s}_2 = \vec{c}_N - N_2^T (B_2^{-1})^T \vec{c}_B = \begin{pmatrix} 0 \\ -1 \end{pmatrix} - \begin{pmatrix} 0 & 1 & 0 \\ 2 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -\frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}$$

Since \vec{s}_2 not greater or equal to 0, continue.

$$= \begin{pmatrix} 0 \\ -1 \end{pmatrix} - \begin{pmatrix} -\frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{3}{2} & \frac{1}{2} & \frac{3}{2} \end{pmatrix} \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix} - \begin{pmatrix} -\frac{1}{4} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} \\ -\frac{1}{2} \end{pmatrix}$$

$$q_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \vec{d_2} = B_2^{-1} A_2(:, q_2) = \begin{pmatrix} 1 & -\frac{1}{4} & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & \frac{1}{4} & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{3}{2} \\ \frac{1}{2} \\ \frac{3}{2} \end{pmatrix}$$

search direction:
$$\begin{pmatrix} d_3 \\ d_1 \\ d_5 \end{pmatrix} = \begin{pmatrix} \frac{3}{2} \\ \frac{1}{2} \\ \frac{3}{2} \end{pmatrix}$$
 the whole direction: $\begin{pmatrix} d_3 \\ d_1 \\ d_5 \\ d_4 \\ d_2 \end{pmatrix} = \begin{pmatrix} \frac{3}{2} \\ \frac{1}{2} \\ \frac{3}{2} \\ 0 \\ 1 \end{pmatrix}$

ratio test : $\gamma_2, p_2 = \frac{2}{3}, 1 = \min_{\gamma_2, p_2 > 0} \frac{\vec{x}_B}{\vec{d_2}} = (\frac{2}{3}, 6, \frac{8}{3})$

Swap column 2 and 3. Thus, $\mathcal{B}_0 = \{2, 1, 5\}$ and $\mathcal{N}_0 = \{4, 3\}$

$$\vec{x}_2 = \begin{pmatrix} x_3 \\ x_1 \\ x_5 \\ x_4 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 4 \\ 0 \\ 0 \end{pmatrix} + \frac{2}{3} \begin{pmatrix} -\frac{3}{2} \\ -\frac{1}{2} \\ -\frac{3}{2} \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{8}{3} \\ 3 \\ 0 \\ \frac{2}{3} \end{pmatrix}$$

Iteration 3

$$B_{3} = \begin{pmatrix} A_{:,2} & A_{:,1} & A_{:,5} \end{pmatrix} = \begin{pmatrix} 2 & 1 & 0 \\ 2 & 4 & 0 \\ 1 & -1 & 1 \end{pmatrix}, N_{3} = \begin{pmatrix} A_{:,4} & A_{:,3} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\vec{c}_{N} = \begin{pmatrix} c_{4} \\ c_{3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \vec{c}_{B} = \begin{pmatrix} c_{2} \\ c_{1} \\ c_{5} \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}$$

$$\vec{x}_{N} = \begin{pmatrix} x_{4} \\ x_{2} \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{2}{3} \end{pmatrix}, \vec{x}_{B} = \begin{pmatrix} x_{3} \\ x_{1} \\ x_{5} \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{8}{3} \\ 3 \end{pmatrix}$$

pricing:
$$\vec{s}_3 = \vec{c}_N - N_3^T (B_3^{-1})^T \vec{c}_B = \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} & -1 \\ -\frac{1}{6} & \frac{1}{3} & \frac{1}{2} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \begin{pmatrix} -\frac{1}{6} & \frac{1}{3} & \frac{1}{2} \\ \frac{2}{3} & -\frac{1}{3} & -1 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \begin{pmatrix} -\frac{1}{6} \\ -\frac{1}{3} \end{pmatrix} = \begin{pmatrix} \frac{1}{6} \\ \frac{1}{3} \end{pmatrix} \ge 0$$

Since $\vec{s}_3 \geq 0$, return the solution \vec{x}_3 . Then, we done.

The result is $(x_1, x_2) = (\frac{8}{3}, \frac{2}{3})$ and the maximum value of $z = \frac{10}{3}$. Other slack variables are $(x_3, x_4, x_5) = (0, 0, 3)$.

(2) Method 2: Tabular Method

Initial tabular

x_1	x_2	x_3	x_4	x_5	\mathbf{z}	
1	2	1	0	0	0	4
4	2	0	1	0	0	12
-1	1	0	0	1	0	1
-1	-1	0	0	0	1	0

Iteration 1:

x_1	x_2	x_3	x_4	x_5	\mathbf{z}		ratio
1	2	1	0	0	0	4	4
4	2	0	1	0	0	12	3
-1	1	0	0	1	0	1	-1
-1	-1	0	0	0	1	0	

Choose column
1, row
2 as the pivot $\,$

x_1	x_2	x_3	x_4	x_5	Z		multiplier
1	2	1	0	0	0	4	-1
1	$\frac{1}{2}$	0	$\frac{1}{4}$	0	0	3	
-1	Ī	0	Ō	1	0	1	1
-1	-1	0	0	0	1	0	1

After elimination

x_1	x_2	x_3	x_4	x_5	\mathbf{z}	
0	$\frac{3}{2}$	1	$-\frac{1}{4}$	0	0	1
1	$\frac{1}{2}$	0	$\frac{1}{4}$	0	0	3
0	$\frac{3}{2}$	0	$\frac{1}{4}$	1	0	4
0	$-\frac{1}{2}$	0	$\frac{1}{4}$	0	1	3

Iteration 2:

x_1	x_2	x_3	x_4	x_5	\mathbf{z}		ratio
0	$\frac{3}{2}$	1	$-\frac{1}{4}$	0	0	1	$\frac{2}{3}$
1	$\frac{1}{2}$	0	$\frac{1}{4}$	0	0	3	$\check{6}$
0	$\frac{3}{2}$	0	$\frac{1}{4}$	1	0	4	$\frac{8}{3}$
0	$-\frac{1}{2}$	0	$\frac{1}{4}$	0	1	3	

Choose column2, row1 as the pivot

x_1	x_2	x_3	x_4	x_5	Z		multiplier
0	1	$\frac{2}{3}$	$-\frac{1}{6}$	0	0	$\frac{2}{3}$	
1	$\frac{1}{2}$	Ŏ	$\frac{1}{4}$	0	0	3	$-\frac{1}{2}$
0	$\frac{3}{2}$	0	$\frac{1}{4}$	1	0	4	$-\frac{3}{2}$
0	$-\frac{1}{2}$	0	$\frac{1}{4}$	0	1	3	$\frac{1}{2}$

After elimination

ſ	x_1	x_2	x_3	x_4	x_5	\mathbf{z}	
ſ	0	1	$\frac{2}{3}$	$-\frac{1}{6}$	0	0	$\frac{2}{3}$
	1	0	$-\frac{1}{3}$	$\frac{1}{3}$	0	0	$\frac{8}{3}$
	0	0	-1	$\frac{1}{2}$	1	0	$\ddot{3}$
Ì	0	0	$\frac{1}{3}$	$\frac{1}{6}$	0	1	$\frac{10}{3}$

Done

The result is $(x_1,x_2)=(\frac{8}{3},\frac{2}{3})$ and the maximum value of $z=\frac{10}{3}$. Other slack variables are $(x_3,x_4,x_5)=(0,0,3)$.

Reference

Simplex Method-Minimization Problem-Part 2

Introduction to the Simplex Method: Standard Maximization (2 variables)

```
(1)
                 Given a basic feasible point \vec{x}_0 and the corresponding index set
                 \mathcal{B}_0 and \mathcal{N}_0.
                 For k = 0, 1, ...
 (2)
                               Let B_k = A(:, \mathcal{B}_k), N_k = A(:, \mathcal{N}_k), \vec{x}_B = \vec{x}_k(\mathcal{B}_k), \vec{x}_N = \vec{x}_k(\mathcal{N}_k),
 (3)
                               and \vec{c}_B = \vec{c}_k(\mathcal{B}_k), \vec{c}_N = \vec{c}_k(\mathcal{N}_k).

Compute \vec{s}_k = \vec{c}_N - N_k^T(B_k^{-1})^T \vec{c}_B (pricing)

If \vec{s}_k \geq 0, return the solution \vec{x}_k. (found optimal solution)
 (4)
 (5)
                               Select q_k \in \mathcal{N}_k such that \vec{s}_k(i_q) < 0,
 (6)
                               where i_q is the index of q_k in \mathcal{N}_k
                               Compute \vec{d_k} = B_k^{-1} A_k(:, q_k). (search direction) If \vec{d_k} \leq 0, return unbounded. (unbounded case)
 (7)
 (8)
                               Compute [\gamma_k, i_p] = \min_{\substack{i, \vec{d_k}(i) > 0 \\ i \neq i}} \frac{\vec{x_B}(i)}{\vec{d_k}(i)} (ratio test)
 (9)
                                (The first return value is the minimum ratio;
                               the second return value is the index of the minimum ratio.)
                              x_{k+1} \begin{pmatrix} \mathcal{B} \\ \mathcal{N} \end{pmatrix} = \begin{pmatrix} \vec{x}_B \\ \vec{x}_N \end{pmatrix} + \gamma_k \begin{pmatrix} -\vec{d}_k \\ \vec{e}_{i_q} \end{pmatrix}
(\vec{e}_{i_q} = (0, \dots, 1, \dots, 0)^T \text{ is a unit vector with } i_q \text{th element 1.})
Let the i_pth element in \mathcal{B} be p_k. (pivoting)
\mathcal{B}_{k+1} = (\mathcal{B}_k - \{p_k\}) \cup \{q_k\}, \, \mathcal{N}_{k+1} = (\mathcal{N}_k - \{q_k\}) \cup \{p_k\}
(10)
(11)
```

Figure 1: The simplex method for solving (minimization) linear programming