Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа <u>Р3111</u>	К работе допуще	1
Студент Ляо Ихун	Работа выполнен	а
Преподаватель <u>Сорокина Елена</u> Рабочи		Отчет принят т по лабораторной
работе №3		

1. Цель работы.

Проверка основного закона динамики вращения. Проверка зависимости момента инерции от положения масс относительно оси вращения.

2. Задачи, решаемые при выполнении работы.

- 1) Списать или сфотографировать данные об установке на рабочем месте.
- 2) Ознакомится с лабораторным стендом . Отвернуть рукоятку 2 сцепления крестовин, так чтобы передняя крестовина вращалась независимо от задней.
- 3) Положение каждого утяжелителя на крестовине задается номером риски (канавки на спице), по которой выравнивается грань утяжелителя, ближайшая к оси вращения. Установить все утяжелители на первую риску
- 4) Установить в качестве подвешенного груза каретку 10 с одной шайбой 9 . остальные три шайбы 9 закрепить наверху трубчатой направляющей 6. Измерить три раза время прохождения кареткой из неподвижного положения пути от отметки $h_1 = 700$ мм до отметки $h_2 = 0$. При этом $h = h_1 h_2 = 700$ мм. Массу m_1 каретки с одной шайбой и результаты измерения времени t_1 , t_2 , t_3 занести в соответствующие ячейки таблицы 1.

- 5) Не изменяя положение утяжелителей крестовины повторить п. 4 для каретки с двумя шайбами (масса m_2), тремя шайбами (масса m_3) и четырьмя шайбами (масса m_4).
- 6) Повторить измерения пп. 4,5 при положении утяжелителей на второй, третьей, ..., шестой рисках.

3. Объект исследования.

- 1) Завитмость между скоростью каретки и количеств шайб.
- 2) Зависимость между скоростью каретки и положением грузов.

4. Метод экспериментального исследования.

Изменять положение груза от 6-ого полжения на 1-ое положение, положа соответственно 1,2 и 3 шайб, и измерить скорость падании каретки.

5. Рабочие формулы и исходные данные.

- 1. Ускорость движении: $a = \frac{2h}{t^2}$
- 2. Угольное ускорение: $\varepsilon = \frac{2a}{d}$
- 3. Сила натяжения инти: T=m(g-a)
- 4. Момент этой силы: $M = \frac{md}{2}(g a)$
- 5. Момент силы трения: І ϵ = $M-M_{Tp}$
- 6. В соответствии с теоремой Штейнера момент инерции крестовины зависит от расстояния между центрами грузов и осью вращения по формуле :

 $=I_0+4m_{
m yr}R^2$, где I_0 сумма моментов инерции стержней крестовины, момента инерции ступицы и собственных центральных моментов инерции утяжелителей.

- 1) Детлаф А. А., Яворский Б. М. Курс физики.— 8-е изд., стер. М. : Издательский центр "Академия", 2009 .
- 2) Курепин В.В., Баранов И.В. Обработка экспериментальных данных: Методические указания к лабораторным работам. СПб, 2003.–57 с.
- 6. Измерительные приборы.

Nº	Наиманасанна	Тип	Используемый	Погрешность
п/п	Наименование	прибора	диапазон	прибора

2	Цифровой секундомер	-	-	0,01c
---	---------------------	---	---	-------

7. Схема установки (перечень схем, которые составляют Приложение 1).

Рис. 2. Стенд лаборатории механики (общий вид): I — основание; 2 — рукоятка сцепления крестовин; 3 — устройство принудительного трения; 4 — поперечина; 5 — груз крестовины; 6 — трубчатая направляющая; 7 — передняя крестовина; 8 — задняя крестовина; 9 — шайбы каретки; 10 — каретка; 11 — система передних стоек.

Масса каретки	(47,0±0,5)г
Масса шайбы	(220±0,5)r
Масса грузов на крестовине	(408,8±0,5)r
Расстояние первой риски от оси	$(57,0\pm0,5)$ мм
Расстояние между рисками	(25,0±0,2)мм
Диаметр ступицы	$(46,0\pm0,5)$ мм
Диаметр груза на крестовине	$(40,0\pm0,5)$ мм
Высота груза на крестовине	$(40,0\pm0,5)$ мм

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Измерение времени:

Масса	Положение утяжелителей							
груза, г	1.риска	2.риска	3.риска	4.риска	5.риска	6.риска		
	4,65 c	5,41 c	6,44 c	7,40 c	8,57 c	9,56 с		
-220s	4,57 c	5,40 c	6,34 c	7,50 c	8,44 c	9,69 с		
<i>т</i> ₁ =220г	4,68 c	5,37 c	6,40 c	5,59 c	8,56 c	9,56 c		
	4,63 c	5,39 c	6,39 c	7,46 c	8,52 c	9,60 c		
	3,37 с	4,00 c	4,72 c	5,28 c	5,87 c	6,85 c		
-1105	3,22 c	3,82 c	4,72 c	5,22 c	6,06 c	6,84 c		
<i>m</i> ₂ =440г	3,29 с	3,92 c	4,60 c	5,19 c	5,97 c	6,91 c		
	3,29 c	3 ,91 c	4,68 c	5,23 c	5,97 c	6,87 c		
	2,72 c	3,12 c	3,68 c	4,25 c	5,00 c	5,65 c		
m_3	2,66 c	3,15 c	3,59 c	4,22 c	4,93 c	5,53 c		
=660г	2,78 c	3,22 c	3,69 c	4,25 c	4,91 c	5,41 c		
	2,72 c	3,16 c	3,65 c	4,24 c	4,95 c	5,53 c		
	2,22 c	2,78 c	3,25 c	3,60 c	4,22 c	4,65 c		
m_4	2,31 c	2,75 c	3,19 c	3,69 c	4,13 c	4,75 c		
=880г	2,19 c	2,72 c	3,25 c	3,72 c	4,16 c	4,68 c		
	2,24 c	2,75 c	3,23 c	3,67 c	4,17 c	4,69 c		

Обработки:

1) Рассчитаем ускорение грузка:

При условии, в котором применяем 1 риск и 1 шайб:

Ускорение
$$a_1 = \frac{2\hbar}{t_1^2} = \frac{2*0.7}{4.63^2} = 0.065$$
 м/с^2

Другие также и чтобы удобно показать результат, положим все результат в таблице.

Ускорение	Положение утяжелителей							
M/c^2	1.риска	2.риска	3.риска	4.риска	5.риска	6.риска		
<i>т</i> ₁ =220г	0,065	0,048	0,034	0,005	0,019	0,015		
<i>т</i> 2=440г	0,129	0,092	0,064	0,051	0,039	0,030		
m ₃ =660e	0,189	0,140	0,105	0,078	0,057	0,046		
m ₄ =880e	0,279	0,185	0,134	0,103	0,081	0,064		

2) Рссчитаем угольное ускорение:

При условии, в котором применяем 1 прис и 1 шайб:

Угольное ускорение
$$\varepsilon_1 = \frac{2a}{d} = \frac{2*0.065}{4.6*10^{-2}} = 2,83 \text{ rad/c^2}$$

Другие также и чтобы удобно показать результат, положим все результаты в таблице

Угольное	Положение утяжелителей							
ускорение	1.риска	2.риска	3.риска	4.риска	5.риска	6.риска		
rad/c^2								
$m_1 = 220 \Gamma$	2,83	2,09	1,48	1,09	0,83	0,62		
$m_2 = 440$ г	5,61	4,00	2,78	2,22	1,70	1,30		
$m_3 = 660 r$	8,22	6,09	4,57	3,39	2,48	2,00		
$m_4 = 880$ r	12,13	8,04	5,83	4,48	3,52	2,78		

3) Рассчитаем момент силы натяжения инти:

При условии, в котором применяем 1 прис и 1 шайб:

Момент силы натяжения инти
$$M = \frac{m_1 d(g - a_1)}{2} = \frac{0.22*0.046(9.80 - 0.065)}{2}$$
 =0,0493 H*м

Другие также и чтобы удобно показать результат, положим все результаты в таблице

Момент Положение утяжелителей						
силы Н*м	1.риска	2.риска	3.риска	4.риска	5.риска	6.риска
$m_1 = 220 \Gamma$	0.0493	0.0493	0.0494	0.0495	0.0495	0.0495
$m_2 = 440 \Gamma$	0.0979	0.0982	0.0985	0.0987	0.0988	0.0989
m ₃ = 660г	0.1459	0.1466	0.1472	0.1476	0.1479	0.1481
m ₄ = 880г	0.1927	0.1946	0.1956	0.1963	0.1967	0.1971

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

1) Из формы ${\sf M=M}_{TP}+I\varepsilon$ рассчитаем I и M_{TP} по МНК для каждого положения:

1 Риски:

Среднее значение укольного ускорения: $\bar{\varepsilon} = 7,20 \, \text{rad}/c^2$

Среднее значение Момент силы: $\overline{\mathrm{M}} = 0.12~\mathrm{H}*\mathrm{M}$

Из формы
$$I=rac{\sum(arepsilon_i-ararepsilon)(M_i-ar M)}{\sum(arepsilon_i-ararepsilon)^2}$$
 получим: I=0,016 кг*м 2

И $\mathrm{M}_{TP}=ar{M}-Iar{arepsilon}$ получим : M_{TP} =0,010 H^* м

Для других положений также. Все результаты:

Для 1 риска: $M=0,016\varepsilon+0,010$

Для 2 риска: $M=0,024\varepsilon-0,0006$

Для 3 риска: $M=0,033\varepsilon+0,003$

Для 4 риска: $M=0,043\varepsilon+0,002$

Для 5 риска :M=0,055 ε +0,005

Для 6 риска: $M=0,068\varepsilon + 0,009$

2) Для каждого положения утяжелителей найти расстояние между осью О вращения и центром С утяжелителя по форуле: $R = l_1 + (n-1)l_0 + \frac{1}{2}b$:

Для 1 риска: $R_1 = 77mm$

Для 2 риска: $R_2 = 102mm$

Для 3 риска: $R_3 = 127mm$

Для 4 риска: $R_4 = 152mm$

Для 5 риска: $R_5 = 177mm$

Для 6 риска: $R_6 = 202mm$

3) Объединить значения R, R^2 и I в таблицу и на основе этой таблицы в координатах I(ордината) - R^2 (абсцисса) отметить эспериментальные точки зависимости I(R^2)^:

Расстояние	$R_1^2 =$	$R_2^2 =$	R_3^2 =	$R_4^2 =$	$R_5^2 =$	$R_6^2 =$
между осью и центром С утяжелителя в квадрад м²	5,9 * 10 ⁻³	10,4*10 ⁻³	16 , 1 *10 ⁻³	23 , 1 *10 ⁻³	31,3*10 ⁻³	40,8* 10 ⁻³
Момент инерции I кг*м²	0,016	0,024	0,033	0,043	0,055	0,068

4) На основе найденных значений I и R^2 с помощью МНК определить значения I_0 и тут , а также их погрешности ΔI_0 и $m_{\rm yr}$ (Погрешность в 10.). В соответствии с формулой $I=I_0+4m_{\rm yr}R^2$ величина I_0 — свободное слагаемое в линейной зависимости I(R^2), $m_{\rm yr}$ — четверть от углового коэффициента наклона этой зависимости.

Способ как в 2), поэтому здесь не повторять, результат:

$$I = 1.48R^2 + 0.008$$

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

1) Для первого средного значения:

$$S_{t_{cp}} = \sqrt{\frac{\Sigma_{t=1}^{n}(t_{cp}-\bar{t})^{2}}{n(n-1)}}$$
=0,033c $\Delta_{t_{cp}} = S_{t_{cp}} * t_{a*n} = 0,033^{*}4,3=1,42c$ Обсолютная погрешность: $\Delta_{t} = \sqrt{S_{t_{cp}}^{2} + (\frac{2}{3}\Delta_{\text{M}})^{2}} = 0,03c$ Относительная погрешность: $\varepsilon_{t} = \frac{\Delta_{t}}{t_{cp}} * 100\% = 0,6\%$ $t=(4,63\pm0,03)c$; $\varepsilon_{t} = 0,6\%$; $a=0,95$

2) Для 1 риски и 1 груза:

Погрешность для ускорения:

$$a = \frac{2h}{t^2} \Rightarrow lna = ln2 + lnh - 2lnt$$

Относительная погрешность а: $\varepsilon_{\rm a} =$

$$\sqrt{(\frac{1}{h}\Delta_h)^2 + (-\frac{2}{t}\Delta_t)^2}$$
*100%=2.9%

Абсолютная погрешность : $\Delta_a = \frac{\bar{a}\varepsilon_a}{100} = 1.86*10^{-3} \text{ м/c}^2$

Для погрешностей arepsilon и М также:

Для ε :

Относительная погрешность: $\varepsilon_{\varepsilon}=3.0\%$ Абсолютная понрешность: $\Delta_{\varepsilon}=0.085~{\rm rad/c^2}$ Для М:

Относительная погрешность: $\varepsilon_M = 0.7\%$ Абсолютная понрешность: $\Delta_M = 3.64*10^{-4}$ H*м для 1 риску 1 груза:

a=(0.065±0.00186) m/c² ;
$$\varepsilon_a$$
=2.9% ; a=0.95
 ε =(2.83±0.085) rad/c² ; ε_ε = 3.0%; a=0.95
 M=(0.0493±0.000364) H*m ; ε_M = 0.7%; a=0.95

3) Погрешность для формулы: $I=1.48R^2+0.008$ Параметр D= $\sum ({R_i}^2-\overline{R^2})^2=0.000866$ м⁴ Параметр $\sum {d_i}^2=0.0000035$ кг 2* м⁴ СКО:

$$S_{4m_{\rm yr}}^2 = \frac{1}{D} \frac{\sum d_i^2}{n-2} = 0,001 \text{ kg}^2$$

 $S_{I_0}^2 = \left(\frac{1}{n} + \frac{(\overline{R^2})^2}{D}\right) \frac{\sum d_i^2}{n-2} = 6,03*10^{-7} \text{ kg}^2 * \text{m}^4$

Погрешность:

$$\Delta_{4m_{
m yr}}$$
=0,063 кг 2
 Δ_{I_0} =0,0016 кг 2 * м 4

11. Графики

График для (9)

Для (11):

12. Вывод и анализ результат:

Для всех положений результаты:

Для 1 риска: $M=0,016\varepsilon+0,010$

Для 2 риска: $M=0,024\varepsilon-0,0006$

Для 3 риска: $M=0,033\varepsilon+0,003$

Для 4 риска: $M=0,043\varepsilon+0,002$

Для 5 риска : $M=0,055\varepsilon+0,005$

Для 6 риска: $M=0.068\varepsilon + 0.009$

Отношение между I и R^2 : $I = 1.48R^2 + 0.008$

 \Rightarrow $I_0=0.008~\mathrm{kr^2}*\mathrm{m^4}$ и $m_{\mathrm{yr}}=0.37~\mathrm{kr}$

Мы можем видеть что все погрешности мень чем 5%, и все выражения совпдают с графиками. Значит что отчет верен. Но есть такой проблема что выражение: $M=0.024\varepsilon-0.0006$ не возможно, потому что $M_{\rm Tp}$ должен быть положительным.