Report 1: Mycotoxin Prediction in Corn Using Machine Learning

Log Transformation Method is used for handling outlliers in target variable

1. Preprocessing Steps & Rationale

1.1 Data Cleaning & Normalization

- Outlier Removal: Applied the Interquartile Range (IQR) method to remove extreme values, ensuring model stability.
- **Log Transformation**: Transformed the target variable (DON concentration) using log1p() to reduce skewness.
- **Feature Scaling**: Used **MinMaxScaler** to normalize spectral reflectance data, ensuring all features are within the same range for better model convergence.

1.2 Dimensionality Reduction (PCA)

- Applied Principal Component Analysis (PCA) to retain 95% variance, reducing 448 spectral bands to a smaller set of meaningful components.
- Rationale: PCA helped remove noise and redundant information, improving model performance.
- Insights: PC2, PC3, and PC1 were the most influential components, indicating that not all spectral bands contribute equally to prediction.

2. Model Selection, Training & Evaluation

2.1 Models Tested

Model	PCA	MAE (Lower is	RMSE (Lower is	R ² Score (Higher is
	Used?	Better)	Better)	Better)
Random Forest	Yes	1.81	2.46	0.24

Model	PCA Used?	MAE (Lower is Better)	RMSE (Lower is Better)	R ² Score (Higher is Better)
Random Forest (Tuned)	Yes	1.76	2.37	0.30
XGBoost	Yes	1.70	2.35	0.31
XGBoost (Tuned)	Yes	1.82	2.48	0.23
MLP (Neural Network)	Yes	1.85	2.44	0.26
MLP (Tuned)	Yes	3.00	4.05	-1.05

2.2 Best Model: XGBoost (Untuned)

• Performance:

MAE: 1.70RMSE: 2.35

• R² Score: 0.31 (Best among all models tested)

• Feature Importance Insights:

PC3 (29.5%) & PC2 (27.8%) were the most important features.

3. Key Findings & Suggestions for Improvement

3.1 Key Findings

XGBoost (Untuned) performed best among all models tested based on raw performance.

PCA significantly improved model accuracy by removing noise from spectral bands.

Random Forest was a strong alternative due to stability & interpretability.

Deep Learning model (MLP) improved slightly with tuning but was still outperformed by treebased models.

3.2 Observations

- XGBoost (Untuned) had the best overall accuracy, but tuning worsened its performance, likely due to overfitting.
- Random Forest (Tuned) provided the second-best results, showing that tuning helped this model.
- MLP had inconsistent results, indicating that deep learning models need more data to perform well.
- **PCA** was essential in improving model accuracy by removing redundant spectral bands.

3.3 Areas for Improvement

Increase Dataset Size \rightarrow Deep learning models (MLP) may improve with more training data.

Try Advanced Hyperparameter Tuning \rightarrow Bayesian Optimization instead of GridSearchCV.

 $\textbf{Test Different Feature Engineering Approaches} \rightarrow \textbf{Instead of PCA}, extract domain-specific spectral features.}$

Explore Hybrid Models with Different Base Models \rightarrow Combine RF + MLP instead of RF + XGB.