Optimización Numérica: Tarea 1

rodrigo.mendoza@itam.mx

19 Septiembre 2019

Ejercicios marcados con \bigstar son para entregar. Demuestre lo siguiente:

- 1. El cono dual de cualquier conjunto S es un cono cerrado y convexo.
- 2. Sea $S^{**} := (S^*)^*$, entonces $S \subset S^{**}$.
- 3. (\bigstar) Sea C un conjunto convexo. Si $S \subset C$, entonces $S^{**} \subset C$.
- 4. Si $S \neq \emptyset$, S^{**} es el cono convexo cerrado más pequeño que contiene a S.
- 5. Si C es un cono convexo cerrado no vacío, entonces $C^{**} = C$.
- 6. Si un conjunto S es sólido (su interior es no vacío), entonces S^* es puntiagudo.
- 7. (★) Un conjunto es convexo ssi su intersección con cualquier línea es convexa.
- 8. Un conjunto es afín ssi su intersección con cualquier línea es afín.
- 9. (\bigstar) La cubierta convexa de un conjunto S es la intersección de todos los conjuntos convexos que contienen a S.
- 10. La cubierta cónica de $\{XX^T : \mathbb{R}^{n \times k}, \operatorname{rango}(X) = k\}$ es el conjunto de matrices simétricas positivas definidas de rango mayor o igual a k (y la matriz cero).
- 11. Sea X una variable aleatoria en \mathbb{R} con $\Pr[X = a_i] = p_i, i \in [n]$ y $a_1 < a_2 < \dots < n$. Si $p \in \mathbb{R}^n$, ¿Cuál de las siguientes condiciones es convexa en p?
 - a) (\bigstar) $\alpha \leq \mathbb{E}f(X) \leq \beta$
 - b) $\Pr[X > \alpha] < \beta$
 - c) $Var[X] \le \alpha$
 - d) $Var[X] \ge \alpha$
 - e) cuartil $(X) \ge \alpha$
 - f) (\bigstar) cuartil $(X) \leq \alpha$
- 12. (\bigstar) Sea $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $b \in \text{Im}(A)$. Se cumple que $c^T x = d$ para todo x tal que Ax = b ssi existe un vector λ tal que $c = A^T \lambda$ y $d = b^T \lambda$.
- 13. Use el inciso anterior para demostrar que existe x tal que x>0 y Ax=b ssi no existe λ tal que $A^T\lambda\geq 0$, $A^T\lambda\neq 0$, $b^T\lambda\leq 0$.
- 14. (\bigstar) Una función continua $f: \mathbb{R}^n \to \mathbb{R}$ es convexa ssi $2\int_0^1 f(x+\lambda(y-x))d\lambda \leq f(x)+f(y)$ para todo $x,y \in \mathbb{R}^n$ (Pista: Use la desigualdad de Jensen).
- 15. Si $f: \mathbb{R} \to \mathbb{R}$ es convexa y diferenciable y $\{x: x \geq 0\} \subset \text{dom} f$, entonces $F(x) = \frac{1}{x} \int_0^x f(x) dt$ es convexa. $(\text{dom}(F) = \{x: x > 0\}.$
- 16. Demuestre que una función dos veces diferenciable es convexa ssi el dominio de f es convexo y $\nabla^2 f(x) \succeq 0$ para todo $x \in \text{dom}(f)$. (Pistas: primero considere el caso $f : \mathbb{R} \to \mathbb{R}$ y use las condiciones de primer orden para convexidad).
- 17. Demuestre que la divergencia de Kullback-Leibler D_{KL} satisface $D_{KL}(u,v) \ge 0$ para todo $u,v \in \{x: x>0\}$.

- 18. Demuestre también que $D_{KL}(u, v) = 0$ ssi u = v.
- 19. (\bigstar) Demuestre que una función f es convexa ssi para todo $x \in \text{dom} f$ y todo v, g(t) = f(x + tv) es convexa en su dominio $\text{dom} g = \{t : x + tv \in \text{dom} f\}$.
- 20. (\bigstar) Verifique que $f(X) = \log \det X$ es cóncava en $\operatorname{dom}(f) = \mathbf{S}_{++}^n$. (Pista: Considere X = Z + tV para $Z, V \in \mathbf{S}^n$).
- 21. (\bigstar) Adapte su demostración para demostrar que $f(X) = \text{traza}(X^{-1})$ es convexa en $\text{dom}(f) = \mathbf{S}_{++}^n$.
- 22. Adapte su demostración de nuevo para demostrar que $f(X) = \det(X)^{1/n}$ es cóncava en $\operatorname{dom}(f) = \mathbf{S}_{++}^n$.
- 23. Demuestre que para p > 1, $f(x,t) = ||x||_p^p/t^{p-1}$ es convexa en $\{(x,t) : t > 0\}$.
- 24. Demuestre que $f(x) = ||Ax + b||_2^2/(c^Tx + d)$ es convexa en $\{x : c^Tx + d > 0\}$ donde $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, c \in \mathbb{R}^n, d \in \mathbb{R}$.
- 25. Sean $\lambda_1(X) \geq \lambda_2(X) \geq \cdots \geq \lambda_n(X)$ los eigenvalores de la matriz $X \in \mathbf{S}^n$. Demuestre que $\sum_{i=1}^k \lambda_i(X)$ es convexa en \mathbf{S}^n . (Pista: Use la caracterización variacional $\sum_{i=1}^k \lambda_i(X) = \sup\{ \operatorname{traza}(V^TXV) : V \in \mathbb{R}^{n \times k}, V^TV = I \}$).
- 26. Derive los conjugados de las siguientes funciones:
 - a) $(\bigstar) f(x) = \max_i x_i$ en \mathbb{R}^n
 - b) $f(x) = x^p \text{ en } \{x \in \mathbb{R}^n : x_i > 0\}$
- 27. (\bigstar) Demuestre que el conjugado de $f(X) = \operatorname{traza}(X^{-1})$ en $\operatorname{dom}(f) = \mathbf{S}_{++}^n$ está dado por $f^*(Y) = -2\operatorname{traza}(-Y)^{-1/2}$ con $\operatorname{dom} f^* = -\mathbf{S}_+^n$ (Pistas: (i) $\nabla f(X) = -X^{-2}$, (ii) Demuestre que $Y \notin \operatorname{dom} f^*$ si $Y \succ 0$).
- 28. Sea f(x,z) convexa en (x,z) y $g(x)=\inf_z f(x,z)$. Demuestre que $g^*(y)=f^*(y,0)$.
- 29. Demuestre que las siguientes funciones son log-cóncavas:
 - a) $f(x) = e^x/(1+e^x)$ en \mathbb{R}^n
 - b) $f(x) = (\prod_{i=1}^{n} x_i) / \sum_{i=1}^{n} x_i$ en $\{x \in \mathbb{R}^n : x_i > 0\}$
 - c) $f(X) = (\det X)/(\operatorname{traz} X)$ en $\{X \in \mathbf{S}^n : X \succ 0\}$.(Pista: Considere X = A + tB)
- 30. De Boyd & Vandenbergh:
 - a) Ejercicio 5.5
 - b) Ejercicio 5.6
 - c) (★) Ejercicio 5.7
 - d) (\bigstar) Ejercicio 5.10
 - e) Ejercicio 5.20
 - f) Ejercicio 5.25
 - g) Ejercicio 5.26
 - h) Ejercicio 5.30
 - i) Ejercicio 5.36
 - j) (★) Ejercicio 5.37
 - k) Ejercicio 5.40
 - l) Ejercicio 5.41