DATA ANALYSIS OF MULTIVARIATE DATASET USING LINEAR STATISTICAL METHODS

Arighna Roy

1. Introduction

Multivariate datasets are prevalent in today's world of predictive analysis. A Multivariate dataset can be defined as a collection of records where each record represents a collection values for a specific instance. The easiest way to represent such datasets is through matrices. Each row of a matrix is an instance or observation vector. Each column is a feature for which the data values are collected for all the instances.

The simplest methods to approach these datasets are the Generalized Linear Models (GLM). GLM uses specific assumptions such as independent distribution of variables, multivariate normal distribution and homogeneity of variances etc. However, these assumptions vary across models and scenarios.

We want to analyze the seeds data set from "Institute of Agrophysics of the Polish Academy of Sciences in Lublin". This data set contains the measurements of geometrical properties of kernels belonging to three different varieties of wheat. A soft X-ray technique and GRAINS package were used to construct all seven, real-valued attributes.

High quality visualization of the internal kernel structure was detected using a soft X-ray technique. It is non-destructive and considerably cheaper than other more sophisticated imaging techniques like scanning microscopy or laser technology. The images were recorded on 13x18 cm X-ray KODAK plates. Studies were conducted using combine harvested wheat grain originating from experimental fields, explored at the Institute of Agrophysics of the Polish Academy of Sciences in Lublin.

To construct the data, seven geometric parameters of wheat kernels were measured:

- 1. area A,
- 2. perimeter P,
- 3. compactness $C = 4*pi*A/P^2$,
- 4. length of kernel,
- 5. width of kernel,
- 6. asymmetry coefficient
- 7. length of kernel groove.

All these parameters are real-valued continuous variable. As a contrast to the general multivariate dataset, each row is considered as an instance of a wheat seed and each column is a feature of the seed.

Our main purpose in this report is to examine the relationship among different variables (attributes), whether there exist significant differences among three different varieties of wheats, how to build a learning model with these features to predict a new instance, and reduce the number of dimensions (attributed).

We use several multivariate analysis techniques:

- MANOVA
- Discriminant Function Analysis
- Principal Component Analysis
- Classification
- Clustering

2. Data description and exploratory analysis

The examined group comprised kernels belonging to three different varieties of wheat: Kama, Rosa and Canadian, 70 elements each, randomly selected for the experiment (210 total observations). Table 1 contains descriptive statistics for each variable.

	Simple Statistics									
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum				
area	210	14.84752	2.90970	3118	10.59000	21.18000				
perimeter	210	14.55929	1.30596	3057	12.41000	17.25000				
AP	210	0.87100	0.02363	182.90970	0.80810	0.91830				
length	210	5.62853	0.44306	1182	4.89900	6.67500				
width	210	3.25860	0.37771	684.30700	2.63000	4.03300				
coff	210	3.70020	1.50356	777.04220	0.76510	8.45600				
groove	210	5.40807	0.49148	1136	4.51900	6.55000				

Table 1 : Summary

From table1, we can clearly see that the variances of the variables are quite different from each other. Therefore, the variables are not commensurate.

We have to keep in mind that the third variable AP (compactness) is a nonlinear derived variable from the first and the second variable.

In order to see if our data follows multivariate normal distribution, we investigate the normality of each variable separately and the correlation between each pair of variables. The normality plots for each of variables have shown in figure1. Based on the plots, we cannot reject the normality assumption of the variables. Moreover, we investigate the bivariate scatter plots of each pair of variables (figure2). As there are no nonlinear relationships between each pair of variables, we can conclude that there is not enough evidence to say the data distribution is departure from the MVN distribution.

Figure 1 : Q-Q plot

Figure 2: Scatterplot matrix of seed data

There are strong correlations between each pair of variables. The scatter plot (figure 2) and also the Pearson correlation matric in table 2 show this strong correlations.

	Pearson Correlation Coefficients, N = 210 Prob > r under H0: Rho=0									
	агеа	perimeter	AP	length	width	coff	groove			
area	1.00000	0.99434 <.0001	0.60829 <.0001	0.94999 <.0001	0.97077 <.0001	-0.22957 0.0008	0.86369 <.0001			
perimeter	0.99434 <.0001	1.00000	0.52924 <.0001	0.97242 <.0001	0.94483 <.0001	-0.21734 0.0015	0.89078 <.0001			
AP	0.60829 <.0001	0.52924 <.0001	1.00000	0.36792 <.0001	0.76163 <.0001	-0.33147 <.0001	0.22682 0.0009			
length	0.94999 <.0001	0.97242 <.0001	0.36792 <.0001	1.00000	0.86041 <.0001	-0.17156 0.0128	0.93281 <.0001			
width	0.97077 <.0001	0.94483 <.0001	0.76163 <.0001	0.86041 <.0001	1.00000	-0.25804 0.0002	0.74913 <.0001			
coff	-0.22957 0.0008	-0.21734 0.0015	-0.33147 <.0001	-0.17156 0.0128	-0.25804 0.0002	1.00000	-0.01108 0.8732			
groove	0.86369 <.0001	0.89078 <.0001	0.22682 0.0009	0.93281 <.0001	0.74913 <.0001	-0.01108 0.8732	1.00000			

Table 2 : correlation of different variables

3. Methods and Analysis

MANOVA

A one-way Multivariate Analysis of Variance (MANOVA) was carried out in order to investigate differences among three different wheat types. We ran a MANOVA testing the null hypothesis, H0: μ 1= μ 2= μ 3.

MANOVA Assumptions Test

The assumptions of one way MANOVA: The 3 random samples of wheats are independent. The observation vectors come from multivariate normal populations. The three multivariate normal populations (from which the 3 samples of observation vectors are drawn) have a common population covariance matrix, Σ .

• To assess the multivariate normality of the data, first we look at the distribution of each variable separately for each group (class). As we see in the below figures, the Q-Q plots for each class show/follow nearly a straight line, so there is no indication of departure from normality for each variable.

Figure 3: QQ plot for class 1

Figure 4: QQ plot for class 2

Figure 5: QQ plot for class 3

Moreover, the bivariate scatter plots for each class can be used to assess the
multivariate normality. As there is no nonlinear relationship between each pair, we
conclude that there is no evidence of departure from MVN distribution.

Figure 6: Scatter plot for class 1

Figure 7: Scatter plot for class 2

Figure 8: Scatter plot for class 3

• In order to show that they have a common population covariance we do the test: H0: $\Sigma 1 = \Sigma 2 = \Sigma 3$.

Table 3: Test of Homogeneity

Since the Chi-Square value is significant at the 0.1 level, the within covariance matrices will be used in the discriminant function.

Reference: Morrison, D.F. (1976) Multivariate Statistical Methods p252.

As we see we cannot reject the null hypnosis assumption and we conclude that there is not enough evidence to say the data do not have a common population covariance.

MANOVA results

MANOVA Tests for the Hypothesis of No Overall class Effect H = Type III SSCP Matrix for class E = Error SSCP Matrix S=2 M=2 N=99.5						
Statistic Value P-Value						
Wilks' Lambda	0.03528718	<.0001				
Pillai's Trace	1.60645126	<.0001				
Hotelling-Lawley Trace 9.15273936 <.000						
Roy's Greatest Root	6.23679020	<.0001				

Table 4 : MANOVA test Statistics

Wilk's Lambda for this test has a p-value < 0.0001, we conclude that the population mean vectors differ for wheats in at least two wheat groups at α = 0.1 (1% confidence level).

Figure 9: Box plots for different variables

Discriminant Analysis

From the previous section, we got that there are differences between the mean vectors of three different wheats. In this section, we have performed the discriminant analysis in order to identify the relative contribution of the 7 variables to the separation of the three groups. Moreover, we wanted to find the optimal plane on which the points can be projected to best illustrate the configuration of the groups.

Form the MANOVA section we have the eigenvalues and eigenvectors of E⁻¹H (Table5) that can be used in our analysis.

	Characteristic Roots and Vectors of: E Inverse * H, where H = Type III SSCP Matrix for class E = Error SSCP Matrix										
	Characteristic Vector V'EV=1										
Characteristic Root	Percent	area	perimeter	AP	length	width	coff	groove			
6.23679020	68.14	-0.02945465	0.26406265	0.41200558	-0.41620839	0.00257503	-0.00313100	0.21672126			
2.91594915	31.86	0.29159467	-0.59119368	-6.04568794	-0.54426951	0.04963368	0.02232868	0.48054575			
0.00000000	0.00	-0.17177526	-0.14947658	-7.00012290	0.29804450	1.82021345	0.00023786	0.00827368			
0.00000000	0.00	0.02876573	-0.42371337	3.30398724	0.96819811	0.01156869	0.00095377	0.03024652			
0.00000000	0.00	-0.25676675	0.57673551	0.58055854	0.04029149	-0.01837608	-0.00226030	-0.05636626			
0.00000000	0.00	-0.21528663	0.56553675	6.18840462	0.04061867	-0.40322416	0.05127271	-0.11057701			
0.00000000	0.00	-0.48169677	0.85324307	7.18029807	-0.26416764	0.32713254	-0.01394708	0.39843535			

Table 5: The eigenvalues and eigenvectors of E invers*H

There are only two non-zero eigenvalues and their corresponding eigenvectors are as follows:

Variables	a1	a2	Standardized a1	Standardized a1
Area	-0.0294547	0.2915947	-0.493772269	4.888231
Perimeter	0.2640627	-0.5911937	1.996977676	-4.47091
AP	0.4120056	-6.0456879	0.10691181	-1.5688
Length	-0.4162084	-0.5442695	-1.31454501	-1.71901
width	0.002575	0.0496337	0.006335536	0.122119
coff	-0.003131	0.0223287	-0.055544035	0.396112
groove	0.2167213	0.4805458	0.720731093	1.598109

Table 6

As the variables are not commensurate, so it is better to find the standard vectors to determine the contribution of each variable on the discriminant function. As we see, the variables perimeter, length, and groove have the most contribution in the separation of the group means based on the first discriminant function. In addition, the variables perimeter, area, and length have the most contribution in the separation of the group means based on the second discriminant function.

We reduced the dimension through the discriminant analysis; so we can plot our data in a two-dimension vector space. We got that two discriminate functions account for the total sum of eigenvalues. We showed the patterns in the mean vectors in two-dimensional scatterplot in figure 3. We see that the first discriminant function effectively separates group 2 from group 1 and 3, whereas the second discriminant function is less successful in separating group 2 from group 3.

Stepwise

In the analysis procedure, we tried STEPWISE options in stepdisc procedure in SAS to select the "good" subsets of all variables. We found that the variables area, groove, length, coff, AP, and perimeter have significant discrimination power. As we see just one of the variables (width) is redundant. We will use this insight in classification section.

	Stepwise Selection Summary											
Step	Number In	Entered	Removed	Partial R-Square	F Value	Pr > F	Wilks' Lambda	Pr < Lambda	Average Squared Canonical Correlation	Pr >		
1	1	area		0.8412	548.19	<.0001	0.15881870	<.0001	0.42059065	<.0001		
2	2	groove		0.5053	105.22	<.0001	0.07856283	<.0001	0.67032717	<.0001		
3	3	length		0.3133	46.76	<.0001	0.05395084	<.0001	0.74202770	<.0001		
4	4	coff		0.1492	17.89	<.0001	0.04589889	<.0001	0.76951978	<.0001		
5	5	AP		0.0842	9.33	0.0001	0.04203574	<.0001	0.78092768	<.0001		
6	6	perimeter		0.1601	19.25	<.0001	0.03530530	<.0001	0.80316017	<.0001		

Table 7: Stepwise Selection Summary

Principal component analysis (PCA)

Principal Component Analysis is the most commonly used method for dimensionality reduction. Though we are not dealing with a huge dataset, but it's a nice idea to check whether we can reduce the number of dimensions while explaining the most part of the variance.

After we apply PCA, we get the below 7 Principal components.

	Eigenvectors										
	Prin1	Prin2	Prin3	Prin4	Prin5	Prin6	Prin7				
area	0.884229	0.100806	264534	0.199449	0.137173	280640	025398				
perimeter	0.395405	0.056490	0.282520	578817	574756	0.301559	0.065840				
AP	0.004311	002895	059036	0.057760	0.053105	0.045229	0.994126				
length	0.128544	0.030622	0.400149	436100	0.786998	0.113438	0.001431				
width	0.111059	0.002372	319239	0.234164	0.144803	0.896268	081550				
coff	127616	0.989410	064298	025147	0.001576	003288	0.001143				
groove	0.128966	0.082233	0.761940	0.613357	087654	0.109924	0.008972				

Table 8

Now, these components can be used as features instead of the combination of area, perimeter, AP, length, width, coff, groove. We are not done with dimensionality reduction phase yet, as we still have 7 variables.

We have to find the percentage of variance explained by each principal component.

Table 9 Figure 11

Table9 shows that the first 2 principal components can explain 99% of the variance. Below is the chart which shows the percentage of explained variance.

However, we have to keep that in mind that variance of each variable is different. As the variables are not commensurate, we should use correlation instead of covariance. Table10 shows the principal components calculated from the correlation matrix. Now we need 4 principal components to explain 99% of the variance. But the first 2 principal components can explain 88% of the total variance which is quite good.

	Eigenvalues of the Correlation Matrix								
	Eigenvalue	Difference	Proportion	Cumulative					
1	5.03120119	3.83362834	0.7187	0.7187					
2	1.19757285	0.51956941	0.1711	0.8898					
3	0.67800344	0.60963896	0.0969	0.9867					
4	0.06836448	0.04965087	0.0098	0.9964					
5	0.01871361	0.01338156	0.0027	0.9991					
6	0.00533205	0.00451965	0.0008	0.9999					
7	0.00081240		0.0001	1.0000					

Table 10

Figure 12

Classification

In this section, we classify the seeds into specific group of wheat it belongs to. We use SAS to identify the linear classification functions. So we collect new observation **Y**, we can use the determined discriminant functions in order to predict the class of new observation.

Linear I	Linear Discriminant Function for class								
Variable	1	2	3						
Constant	-41542	-41303	-40922						
area	-2463	-2453	-2445						
perimeter	5175	5167	5135						
AP	50804	50579	50444						
length	658.39031	609.63796	635.60886						
width	-1158	-1156	-1155						
coff	7.26527	7.99451	8.62597						
groove	-34.78367	-1.22101	-11.49046						

Table 11: Linear Discriminant Function for class

To measure the performance of the classification method, we use error rate. The methods for estimating the error rate are resubstituting and cross validation. Using these methods, the classification rule is applied to each observation vector and this observation is assigned to a group of wheat. Then, the number of misclassifications are counted. We prefer the cross validation, so we just mentioned the result of this method in table 8.

Table 12: Cross-validation Summary & Error rate

The error rate is the same when we skip the redundant variable (width) for the classification. So the stepwise discriminant function was helpful in reducing the dimension without losing the performance of the method.

Now, we reduce the dimesons of our data using the first and second principle components. If we use these two components in our classification instead of 7 variables we get different linear discriminant functions for each class (table 13).

Linear Discriminant Function for class								
Variable 1 2 3								
Constant	-0.85495	-4.60698	-3.53422					
Prin1	-0.49001	3.33610	-2.84609					
Prin2	-1.50852	0.70251	0.80600					

Error Count Estimates for class								
1 2 3 Total								
Rate	0.1143	0.0429	0.0857	0.0810				
Priors	0.3333	0.3333	0.3333					

Table 13: Linear Discriminant function

Table 14: Error rate

The error goes higher a little bit from the previous classification process. However, we get a reduced dataset from the original one at the cost of some error.

Clustering

We have further used an unsupervised method to cluster (group) the data based on the available features. To cluster the data into groups, we have used k-means algorithm. Then we have matched the result with the initial group(class) labels. Below is the result of clustering.

Cluster Means								
Cluster	area	perimeter	AP	length	width	coff	groove	
1	14.64847222	14.46041667	0.87916667	5.56377778	3.27790278	2.64893333	5.19231944	
2	18.72180328	16.29737705	0.88508689	6.20893443	3.72267213	3.60359016	6.06609836	
3	11.96441558	13.27480519	0.85220000	5.22928571	2.87292208	4.75974026	5.08851948	

Cluster Standard Deviations												
Cluster	area	perimeter	АР	length	width	coff	groove					
1	1.116340424	0.535617158	0.016030262	0.220413390	0.159431575	1.100895878	0.320481189					
2	1.096077108	0.474232368	0.015000527	0.220152362	0.151324896	1.233077213	0.223884547					
3	0.814260229	0.372910355	0.023177661	0.142627677	0.163089882	1.300915987	0.183447656					

Table 15

Cluster Summary										
Cluster	Frequency	RMS Std Deviation		imum Distance from Seed Radius to Observation Exceeded		Distance Between Cluster Centroids				
1	72	0.6461	3.1922		3	3.6541				
2	61	0.6621	3.4451		1	4.7176				
3	77	0.6066	3.8008		1	3.6541				

Table 16

From the above tables, we get the mean vectors of three clusters and the summary of each cluster.

To get a contrast with the assigned cluster label and provided class label, we have clustered the data into 3 groups. Below is the comparative result. The cells, which are highlighted into red, are the mis-clustered ones. We can see that the clustered data are quite similar to the provided class labels. Out of 210 instances, 22 are clustered into wrong group. But we still get almost 90% accuracy in clustering the seeds.

1 1 1 1 1 3 1 3 1 4 1 5 1 6 1 7	1 1 1 1 1	2 2 2 2	71 72 73	2 2	3	141	3	1							4	
1 3 1 4 1 5 1 6	1 1 1	2	73		3			_	36	1	2	106	2	3	176	3
1 4 1 5 1 6	1	2		2		142	3	1	37	1	2	107	2	3	177	3
1 5 1 6	1		74		3	143	3	1	38	2	2	108	2	3	178	3
1 6		2		2	3	144	3	1	39	1	2	109	2	3	179	3
\vdash	1		75	2	3	145	3	1	40	3	2	110	2	3	180	1
1 7		2	76	2	3	146	3	1	41	1	2	111	2	3	181	3
	1	2	77	2	3	147	3	1	42	1	2	112	2	3	182	3
1 8	1	2	78	2	3	148	3	1	43	1	2	113	2	3	183	3
1 9	1	2	79	2	3	149	3	1	44	1	2	114	2	3	184	3
1 10	1	2	80	2	3	150	3	1	45	1	2	115	2	3	185	3
1 11	1	2	81	2	3	151	3	1	46	1	2	116	2	3	186	3
1 12	1	2	82	2	3	152	3	1	47	1	2	117	2	3	187	3
1 13	1	2	83	2	3	153	3	1	48	1	2	118	2	3	188	3
1 14	1	2	84	2	3	154	3	1	49	1	2	119	2	3	189	3
1 15	1	2	85	2	3	155	3	1	50	1	2	120	2	3	190	3
1 16	1	2	86	2	3	156	3	1	51	1	2	121	2	3	191	3
1 17	3	2	87	2	3	157	3	1	52	1	2	122	2	3	192	3
1 18	1	2	88	2	3	158	3	1	53	1	2	123	1	3	193	3
1 19	1	2	89	2	3	159	3	1	54	1	2	124	2	3	194	3
1 20	3	2	90	2	3	160	3	1	55	1	2	125	1	3	195	3
1 21	1	2	91	2	3	161	3	1	56	1	2	126	2	3	196	3
1 22	1	2	92	2	3	162	3	1	57	1	2	127	2	3	197	3
1 23	1	2	93	2	3	163	3	1	58	1	2	128	2	3	198	3
1 24	1	2	94	2	3	164	3	1	59	1	2	129	2	3	199	3
1 25	1	2	95	2	3	165	3	1	60	1	2	130	2	3	200	3
1 26	1	2	96	2	3	166	3	1	61	3	2	131	2	3	201	3
1 27	3	2	97	2	3	167	3	1	62	3	2	132	2	3	202	1
1 28	1	2	98	2	3	168	3	1	63	3	2	133	1	3	203	3
1 29	1	2	99	2	3	169	3	1	64	3	2	134	1	3	204	3
1 30	1	2	100	2	3	170	3	1	65	1	2	135	1	3	205	3
1 31	1	2	101	1	3	171	3	1	66	1	2	136	1	3	206	3
1 32	1	2	102	2	3	172	3	1	67	1	2	137	2	3	207	3
1 33	1	2	103	2	3	173	3	1	68	1	2	138	1	3	208	3
1 34 1 35	1	2	104 105	2	3	174 175	3	1	69 70	1	2	139 140	1	3	209	3

Table 17

4. Conclusion

The aim of this project is find some insight about the seeds data and find a way to distinguish the seeds for different classes. Throughout the analysis, we have only used the linear statistical models; which means any nonlinear components of the relationship would not be captured by these methods. However, our analysis was quite successful in finding some interesting insights about the relationship between the variables (also among the groups). In addition, we reduced the dimension of dataset. Thereafter, we performed a classification analysis with the whole dataset, filtered features and reduced features; we have done a comparative analysis of the performance of the classification for these methods. A clustering method has also been applied into the dataset and result was pretty good.