	Utech
Name:	
Roll No.:	A Dear of Exercising and Excitors
Invigilator's Signature :	

CS/B.TECH/CSE/SEM-8/CS-801C/2013 2013

DIGITAL SIGNAL PROCESSING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct answers for the following: $10 \times 1 = 10$
 - i) A voice signal is to pass a low-pass filter with a cut-off frequency 5000 Hz. The rate at which the signal should be sampled is
 - a) 10,000 samples / sec
 - b) 5,000 samples/sec
 - c) 2,500 samples/sec
 - d) none of these.
 - ii) Typical application of Digital Signal Processing is
 - a) Noise elimination
 - b) Musical signal processing
 - c) Image processing
 - d) All of these.
 - iii) For periodic time function, the frequency spectrum is
 - a) Periodic
- b) Continuous
- c) Discrete
- d) Cannot be said.

8204 [Turn over

B.TEC	H/CS	SE/SEM-8/CS-801C/201	3	<u>Utech</u>		
iv)		periodic pulse, if the cessively increased, the	_	th of its time period is		
	a)	Periodic signal	b)	Aperiodic signal		
	c)	Complex signal	d)	Constant signal.		
v)	For	a linear network, conv	olutio	on integral provides the		
	input-output relationship in					
	a)	Time domain	b)	Frequency domain		
	c)	Both of these	d)	Cannot be said.		
vi)	Maximally flat response is available in					
	a)	Butterworth filter				
	b)	Chebyshev filter				
	c)	Elliptic filter				
	d)	Bessel filter.				
vii)	IIR f	ilter is used for				
	a)	Linear phase character	ristic	S		
	b) High speed calculation					
	c) Higher order filter implementation					
	d)	Symmetrical property.				
viii)	Dire	ct computation of 8-poi	nt DI	FT requires		
	a)	16 multiplications and	l 32 a	additions		
	b)	32 multiplications and	64 a	additions		
	c)	64 multiplications and	l 32 a	additions		
	d)	64 multiplications and	l 56 a	additions.		
ix)	For	the computation of 16	-poin	t DIT-FFT , the number		
	of required twiddle factors in the final stage is					
	a)	4	b)	6		
	c)	8	d)	16.		

- x) FIR filter is used for
 - a) High speed calculation
 - b) Implementation using fewer coefficients
 - c) Linear phase characteristics
 - d) Low amplitude characteristics.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. a) What is Convolution theorem?
 - b) What is Convolution property of Impulse response? 2
- 3. State the equation of DFT and explain the equation for 4-point DFT.
- 4. Define Twiddle factors and define its relation with N-point DFT/FFT.
- 5. Explain the basic difference between DFT and FFT. What computation stages are required for a 64-point DIT-FFT?

3 + 2

6. Deduce the DFT of a constant signal.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Explain Linear time invariant system. 4
 - b) Explain recursive and non-recursive systems. 6
 - c) Explain periodicity and symmetry property of FFT. 5
- 8. a) Explain IIR system with the equation of transfer function.
 - b) Draw the structure of a 2nd order IIR filter. 8

8204 3 [Turn over

CS/B.TECH/CSE/SEM-8/CS-801C/2013

9.	a)	Explain Z-transform for the sequence x (n).	7			
	b)	What is region of convergence in Z-transform?	3			
	c)	Define relation between Z-transform and DFT.	5			
10.	a)	Draw the structure of a 2nd order FIR filter wirequation.	th 10			
	b)	Explain symmetrical FIR filter.	5			
11.	Exp	lain any <i>three</i> of the following : $3 \times 3 $: 5			
	a)	Bilinear transformation				
	b) Butterworth filter					
	c)	Causal filter				
	d)	Decimation in frequency algorithm				
	e)	Coefficient computation of FIR filter.				

8204 4