

Введение в математический анализ

Вебинар 2. Теория множеств. Математическая логика.

План занятия:

- Введение в теорию множеств
 Описание множеств
 Операции над множествами
 Примеры множеств
- Введение в математическую логику

 Логические операции и таблицы истинности

 Основные законы логики высказываний

 Примеры высказываний и задачи

Любая научная дисциплина требует теории для её изучения. Для математического анализа и для любой другой математической дисциплины такой теорией является теория множеств.

Теория множеств

Набор объектов (элементов)

Множество

Одно объединяющее свойство

 $A = \{2; 1; 5; 7; 3\}$

Обозначения множества

Множество обозначается латинской заглавной буквой, кроме C, R, Z, N и Q - букв, которыми обозначены фундаментальные числовые множества. Например:

1.
$$A = \{5; 1; 2\}$$

2.
$$B = [4; 3; 5; 1]$$

3.
$$0 = \{\} = \emptyset$$

GeekBrains

Способы задания множеств

- **1.** A = {"карандаш"; "бумага"; "ластик"}
- **2.** $B = \{x \mid 3 < x < 9 \& x \in \mathbb{N}\}$
- 3. 1. $2 \in C$
 - $oxed{2.}$ Если $x\in C$, то $2^x\in C$
 - 3. Повторить

Фундаментальные числовые множества

Представление о числовых множествах и их иерархии

Натуральные числа

Множество натуральных чисел

включает числа, возникающие при счёте: 1, 2, 3 и т.д.

Расширенное множество натуральных чисел содержит ноль.

Целые числа

Множество целых чисел

расширяет множество натуральных чисел нулём и отрицательными числами: 5, 0, -7

Отрицательные числа возникли примерно в VII веке в древних Индии и Китае.

Рациональные числа

Множество рациональных чисел

содержит также все числа, которые можно представить в виде рациональной дроби: $\frac{1}{2}$, $\frac{3}{4}$, 0,12 и т.д.

Рациональные числа старше, чем отрицательные.

1. Множество натуральных чисел можно задать так:

$$\mathbb{N} = \{1, 2, 3, \dots, n, n+1, \dots\}$$

2. Множество целых чисел можно задать так:

$$\mathbb{Z} = \{0, 1, -1, 2, -2, \dots, n, -n, \dots\}$$

3. Множество рациональных чисел можно задать так:

$$\mathbb{Q=}\Big\{rac{p}{q}\;\left|\;p\in\mathbb{Z},q\in\mathbb{N}
ight\}$$

Вещественные числа

Множество вещественных чисел

также включает числа, которые нельзя представить в виде обыкновенной дроби, такие как π , γ , \mathscr{C} , корень квадратный из двух и другие.

Также оно называется числовой осью.

GeekBrain

Множество вещественных чисел:

R – числовая ось.

(помимо рациональных чисел включает числа, которые нельзя представить в виде обыкновенной дроби, такие как π , e, $\sqrt{2}$, ...)

Комплексные числа:

Re Im
$$\mathbb{C} = \{x + iy | x \in \mathbb{R} \text{ и } y \in \mathbb{R} \},$$

где
$$i$$
 — мнимая единица. $i = \sqrt{-1}$

Re - real Im - imaginary

Комплексные числа:

Комплексные числа:

Источник: <u>math24.ru/</u>

Два множества равны тогда и только тогда, когда состоят из одних и тех же элементов.

Если же все элементы множества A содержатся в множестве B, то говорят, что A является подмножеством множества B и обозначают A ⊂ B. Само же B называют надмножеством множества A.

В рамках рассматриваемой математической теории вводят два исключительных множества:

- Пустое множество (∅), не содержащее элементов
- 2. **Универсальное множество** или «универсум» (*U*), содержащее все элементы данной теории.

Свойства подмножеств

1.
$$\emptyset \subset B$$
; $B \subset B$

2.
$$(A \subset B \land B \subset A) \Leftrightarrow (A = B)$$

3.
$$(A \subset B \land B \subset C) \Rightarrow (A \subset C)$$

4.
$$(A \subset B) \Leftrightarrow A \cap B = A \land A \cup B = B$$

 $S = \int_{0}^{e} \int_{0}^{\infty} \sqrt{c^{2} + v^{2}} \, \alpha \, v \, \alpha \, v = \frac{1}{2} e \left[i \sqrt{c^{2} + i^{2}} + c^{2} \ln \left(i + \sqrt{c^{2} + i^{2}} \right) \right]$ $F = \begin{bmatrix} F_{1}(x) \\ F_{2}(x) \end{bmatrix} \qquad \begin{cases} \lim_{n \to \infty} -k \cdot v \, s \, \frac{\pi}{2} \cdot \int_{0}^{\infty} \sum (x_{s} + m^{2}) \\ \lim_{n \to \infty} -k \cdot v \, s \, \frac{\pi}{2} \cdot \int_{0}^{\infty} \sum (x_{s} + m^{2}) \\ \lim_{n \to \infty} -k \cdot v \, s \, \frac{\pi}{2} \cdot \int_{0}^{\infty} \sum (x_{s} + m^{2}) dx \, dt$

Операции над множествами

Понятие о бинарной и унарной операциях, определения

2

Бинарными называются операции, производимые над двумя множествами

Пересечение. Для любых двух множеств $A,B \subseteq U$ определим пересечение

$$A \cap B = \{c \in U \mid (c \in A) \land (c \in B)\}$$

Например, пересечением отрезков [1,3] и [2,7] является отрезок [2,3].

Объединение. Для любых двух множеств $A,B \subseteq U$ определим объединение

$$A \cup B = \{c \in U \mid (c \in A) \lor (c \in B)\}$$

Значок V внутри фигурной скобки называется "дизъюнкция", по смыслу максимально приближенная к союзу «или» (логическая сумма).

Например, объединением отрезков [1,3] и [2,7] является отрезок [1,7]

Разность. Для любых двух множеств $A,B \subseteq U$ определим разность

$$A \setminus B = \{c \in U \mid (c \in A) \land (c \notin B)\}\$$

Например, разность отрезков [1,3] и [2,7] является отрезок [1,2), причем не включая 2.

Симметрическая разность. Для любых двух множеств $A,B \subseteq U$ определим симметрическую разность

$$A\Delta B = \{c \in U \mid (c \in A) \oplus (c \in B)\}.$$

Значок • внутри фигурной скобки имеет много названий. Мы будем называть исключающее «или».

Например, симметрическая разность отрезков [1,3] и [2,7] является объединение двух отрезков [1,2) U (3,7], причем не включая 2 и 3.

Унарными называются операции, производимые над одним множеством

Дополнение. Для любого множества $A \subseteq U$ определим дополнение

$$ar{A} = U \setminus A = \{x | x \notin A\}$$

Например, в множестве вещественных чисел дополнением к множеству © является множество всех иррациональных чисел.

В первую очередь выполняются унарные операции, во вторую - пересечение, в третью - все прочие, имеющие равный приоритет.

Бесконечная десятичная периодическая дробь

$$\mathbb{Q}=\{rac{p}{q}|\;p\in\mathbb{Z},q\in\mathbb{N}\}$$

1. Начнем с простого примера и представим 0.(3) в виде обыкновенной дроби. Для этого возьмем переменную a=0.(3) и с помощью нее сместим разряд нашей дроби.

 Начнем с простого примера и представим 0.(3) в виде обыкновенной дроби. Для этого возьмем переменную а=0.(3) и с помощью нее сместим разряд нашей дроби.

$$a = 0.(3)$$

$$10a = 3.(3)$$

$$10a = 3 + 0.(3)$$

$$10a = 3 + a$$

$$9a = 3$$

$$a = \frac{3}{9} = \frac{1}{3}$$

$$0.(3) = \frac{1}{3}$$

2. Рассмотрим пример с 0.(18). Ход мысли будет тот же, только теперь нам нужно сместить два разряда.

$$b = 0.(18)$$

$$100b = 18.(18)$$

$$100b = 18 + 0.(18)$$

$$100b = 18 + b$$

$$99b = 18$$

$$b = \frac{18}{99} = \frac{2}{11}$$

$$0.(18) = \frac{2}{11}$$

3. В самом сложном случае бесконечная десятичная периодическая дробь может быть только частью числа 1.32(18).

$$c = 1.32(18)$$

$$100c = 132.(18)$$

$$100c = 132 + 0.(18)$$

$$100c = 132 + \frac{2}{11}$$

$$100c = \frac{1454}{11}$$

$$c = \frac{1454}{1100} = \frac{727}{550}$$

$$1.32(18) = \frac{727}{550}$$

4. Представим 0.(9) в виде обыкновенной дроби.

$$d = 0.(9)$$

4. Представим 0.(9) в виде обыкновенной дроби.

$$d = 0.(9)$$

$$10d = 9.(9)$$

$$10d = 9 + 0.(9)$$

$$10d = 9 + d$$

$$9d = 9$$

$$d=rac{9}{9}=1$$

Математическая логика

Математическая логика

Логика высказываний рассматривает и решает вопрос об истинности или ложности высказываний на основе изучения способа построения высказываний из так называемых элементарных высказываний с помощью логических операций или связок. Основным понятием этого раздела логики является высказывание.

Высказыванием называется повествовательное предложение, про которое всегда определенно можно сказать, является оно истинным (1) или ложным (0).

Примеры высказываний: «2+2=4», «1+1=1», «Земля вращается вокруг Солнца», «3>5», «10 – нечетное число», «На улице идет дождь».

Побудительные предложения («Кругом!», «Идите к доске!»), вопросительные («Сколько времени?») и восклицательные («Ак Барс – чемпион!») высказываниями не являются.

Способы работы с выражениями

- С помощью таблицы истинности.
- С помощью основных законов логики высказываний.

Диаграммы Венна: libraryno.ru/

Логические операции и таблицы истинности

1. Таблица истинности для конъюнкции (логическое умножение) AAB, A&B, AB

Α	В	F	
1	1	1	(N
1	0	0	
0	1	0	
0	0	0	

2. Таблица истинности для **дизъюнкции А∨В, А||В, А|В**

Α	В	F	
1	1	1	(или
1	0	1	
0	1	1	
0	0	0	

3. Погическое отрицание или **инверсия: Ā, ¬А**

не

К исходному логическому выражению добавляется частица «не» или слова «неверно, что».

4. Логическое следование или **импликация: А** - условие; **В** - следствие.

A→B

Α	В	F
1	1	1
1	0	0
0	1	1
0	0	1

Логическая равнозначность или эквивалентность: А⇔В

Α	В	F
1	1	1
1	0	0
0	1	0
0	0	1

тогда и только тогда

***** Исключающее или: A ⊕ B

Α	В	F
1	1	0
1	0	1
0	1	1
0	0	0

Основные законы логики высказываний

- 1. Коммутативность конъюнкции: $A \wedge B = B \wedge A$.
- 2. Коммутативность дизъюнкции: $A \lor B = B \lor A$.
- 3. Ассоциативность конъюнкции: $A \wedge (B \wedge C) = (A \wedge B) \wedge C$.
- 4. Ассоциативность дизъюнкции: $A \lor (B \lor C) = (A \lor B) \lor C$.
- 5. Дистрибутивность конъюнкции относительно дизъюнкции: $A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$.
- 6. Дистрибутивность дизъюнкции относительно конъюнкции: $A \lor (B \land C) = (A \lor B) \land (A \lor C)$.
- 7. Закон де Моргана относительно конъюнкции: $(A \wedge B) = \overline{A} \vee \overline{B}$.
- 8. Закон де Моргана относительно дизъюнкции: $(A \lor B) = \overline{A} \land \overline{B}.$
- 9. Закон поглощения для конъюнкции: $A \wedge (A \vee B) = A$.
- 10. Закон поглощения для дизъюнкции: $A \lor (A \land B) = A$.
- 11. Закон идемпотентности для конъюнкции: $A \wedge A = A$.
- 12. Закон идемпотентности для дизъюнкции: $A \lor A = A$.
- 13. Закон противоречия: $A \wedge \overline{A} = 0$.
- 14. Закон исключения третьего: $A \vee \overline{A} = 1$.
- 15. Закон двойного отрицания: $(\overline{A}) = A$.
- 16. $A \wedge 0 = 0$, $A \wedge 1 = A$.
- 17. $A \lor 0 = A, \ \ A \lor 1 = 1.$

$$\overline{(A \vee (A \wedge B))} \vee (A \vee (C \wedge \overline{A}))$$

$$\overline{(A \vee (A \wedge B))} \vee (A \vee (C \wedge \overline{A})) = \\ \downarrow 8 \qquad \qquad \downarrow 6$$

$$= (\overline{A} \wedge \overline{(A \wedge B)}) \vee ((A \vee C) \wedge (A \vee \overline{A})) = \\ \downarrow 7 \qquad \qquad \downarrow 14$$

$$= (\overline{A} \wedge (\overline{A} \vee \overline{B})) \vee ((A \vee C) \wedge 1) = \\ \downarrow 9 \qquad \qquad \downarrow 16$$

$$= \overline{A} \vee (A \vee C) = \\ \downarrow 4 \qquad 14 \qquad 17$$

$$= (\overline{A} \vee A) \vee C = 1 \vee C = 1$$

GeekBrains

2. Доказать, что при любых значениях А и В справедлива формула

$$(A o B) \leftrightarrow (\overline{A} \lor B)$$

\boldsymbol{A}	\boldsymbol{B}	$A \rightarrow B$	\overline{A}	$\overline{A} \vee B$	$(A o B) \leftrightarrow (\overline{A} \lor B)$
0	0	1	1	1	1
0	1	1	1	1	1
1	0	0	0	0	1
1	1	1	0	1	1

Рыцари всегда говорят правду, а лжецы всегда лгут. Представьте, что все лжецы острова живут в одном городе, а рыцари – в другом. Как выяснить у аборигена, куда ведет интересующая нас дорога – в город рыцарей или в город лжецов?

Кванторы

- Всеобщности (∀) (читается «для любого»)
- **Существования** (**3**) (читается «существует»)

Пример построения отрицания

$$\forall x \in (-\infty; 0] \operatorname{sgn}(x) = -1$$

$$sgn(x) = \begin{cases} 1 & if & x > 0, \\ 0 & if & x = 0, \\ -1 & if & x < 0 \end{cases}$$

Пример построения отрицания

$$\forall x \in (-\infty; 0] \operatorname{sgn}(x) = -1$$

$$\exists x \in (-\infty; 0] \operatorname{sgn}(x) \neq -1$$

- Квантор меняется на противоположный (∀ ↔ ∃).
- Принадлежность множеству сохраняется.
- Перед логическим сказуемым ставится «не».

Примеры математических высказываний

Высказывание	Запись в обозначениях
А включено в В тогда и только тогда, когда для любого а из А справедливо, что он входит в В.	$A\subseteq B\Leftrightarrow orall a\in A$: $a\in B$
А не пересекается с В тогда и только тогда, когда для любого а из А справедливо, что он не входит в В.	$A ot \cap B \Leftrightarrow orall a \in A ext{: } a ot \in B$
А пересекается с В тогда и только тогда, когда существует а из A, для которого справедливо, что он входит в B.	$A\cap B\Leftrightarrow \exists a\in A ext{:}\ a\in B$

Спасибо

$$A = \{20; 40; 60\}, B = \{30; 40; 50\}, U = \{10; ...; 90\}$$

- 1. $A \cap B = \{20, 40, 60\} \cap \{30, 40, 50\} = \{40\}$
- 2. $A \cup B = \{20; 40; 60\} \cup \{30; 40; 50\} = \{20; 30; 40; 50; 60\}$
- 3. $A \setminus B = \{20, 40, 60\} \setminus \{30, 40, 50\} = \{20, 60\}$
- 4. $B \setminus A = \{30; 40; 50\} \setminus \{20; 40; 60\} = \{30; 50\}$

$$A = \{20; 40; 60\}, B = \{30; 40; 50\}, U = \{10; ...; 90\}$$

5.
$$A\triangle B = \{20; 40; 60\}\triangle \{30; 40; 50\} = \{20; 30; 50; 60\}$$
6. $A \times B = \{20; 40; 60\} \times \{30; 40; 50\} = \{20; 30\}; \{20; 40\}; \{20; 50\}; \{40; 30\}; \{40; 40\}; \{40; 50\}; \{60; 30\}; \{60; 40\}; \{60; 50\}\}$

$$A = \{20; 40; 60\}, B = \{30; 40; 50\}, U = \{10; ...; 90\}$$

- 7. $\overline{A} = \{10; 20; 30; 40; 50; 60; 70; 80; 90\} \setminus \{20; 40; 60\} = \{10; 30; 50; 70; 80; 90\}$
- 8. $\mathscr{P}A = \mathscr{P}\{20; 40; 60\} = \{\{\}; \{20\}; \{40\}; \{60\}; \{20; 40\}; \{20; 60\}; \{40; 60\}; \{20; 40; 60\}\}$

$$A = \{20; 40; 60\}, B = \{30; 40; 50\}, C = \{10; 20; 30\}$$

9.
$$A \cup B \cap C = \{20; 40; 60\} \cup \{30; 40; 50\} \cap \{10; 20; 30\} =$$

$$= \{20; 40; 60\} \cup \{30\} = \{20; 40; 60; 30\}$$
10. $(A \cup B) \cap C = (\{20; 40; 60\} \cup \{30; 40; 50\}) \cap \{10; 20; 30\} =$

$$= \{20; 40; 60; 30; 50\} \cap \{10; 20; 30\} = \{20; 30\}$$

$$A = \{20, 40, 60\}, B = \{30, 40, 50\}, U = \{10, ..., 90\}$$

 $= \{10; 70; 80; 90\}$

Квантор в высказывании логики - реализует для высказывания всеобщность, существование или единственность.