Scissors Congruence 1

MIT Media Labs has an interesting web applet that shows how two polygons are scissors congruent¹.

$\mathbf{2}$ An equivalence relation on the real numbers

Define the equivalence relation \sim on the set \mathbb{R} as $a \sim b \Leftrightarrow (a - b) \in \mathbb{Z}$. Let $\phi: \mathbb{R} \to (\mathbb{R}/\sim)$, $\phi(r) = [r]$ be the associated canonical map².

You can run equivalence.txt on SAGE's online platform to visualize the action of \sim on \mathbb{R} .

The Coil mode converts the real line into a helix.

The Classes mode shows how elements are sent to their equivalence classes under ϕ .

3 Assignment

This is not evaluative.

Let X be the set of all finite words generated by the letters $\{x,y\}$ and their symbolic inverses $\{x^{-1}, y^{-1}\}.$

Elements of X have the form $x^{n_1}y^{n_2}x^{n_3}\dots y^{n_k}$ where n_1, n_2, \dots, n_k are integers.³ When all exponents are zero, you get the empty word ε .

Define the binary operation $\cdot: \mathbb{X} \times \mathbb{X} \to \mathbb{X}$ and let $w_1 \cdot w_2$ be the word w obtained after w_2 is concatenated to w_1 . Some operations are listed below:

- $x \cdot xy = x^2y$
- $xyx \cdot \varepsilon = xyx$
- $x \cdot x^{-1} = \varepsilon$

Verify: (X, \cdot, ε) is a group.

¹A paper published by the applet's developers.

A paper published by the apper's developers.

²A canonical map is a surjective function that sends an element to its equivalence class.

³set $x^n := \underbrace{x \cdot x \cdot \ldots \cdot x}_{n \text{ times}}$ and $x^{-n} := \underbrace{x^{-1} \cdot x^{-1} \cdot \ldots \cdot x^{-1}}_{n \text{ times}}$

Construct a function $f: \mathbb{X} \to \mathbb{Z}$ inductively:

Base Case: Set it's initial values.

- $f(\varepsilon) = 0$
- f(x) = 2 and $f(x^{-1}) = -2$
- f(y) = -3 and $f(y^{-1}) = 3$

Inductive Hypothesis: f has been defined for all words of length < n.

Inductive Step: Consider a word w of length n.

Rewrite w as it's first letter l and a word v of length n-1. Thus $w=l\cdot v$. Define f(w)=f(l)+f(v)

Verify: f is a surjective function. What is f(xyxyx)?

Define a relation \sim on the set \mathbb{X} as $w \sim v \Leftrightarrow f(w) = f(v)$. Verify: \sim is an equivalence relation.

Using the sort of procedure that was done to \star to generate a group⁴, can the set (\mathbb{X}/\sim) be made into a group?

If so, can you find a group that behaves exactly like it?

 $^{^4\}mathrm{Look}$ at the material provided on 3/9 for more details.