Planar Graphs

Section 10.7

Application Background

- ◆ The problem of planar graph: Whether a graph can be drawn in the plane without edges crossing.
- Planarity of graphs plays an important role in the following domains:
 - ✓ The design of electronic circuits
 - ✓ The design of road networks

Definition of Planar Graph

[Definition] A graph is called planar if it can be drawn in the plane without any edges crossing.

Such a drawing is called a planar representation of the graph.

All of the above graphs are planar

Note:

We can prove that a graph is planar by displaying a planar representation.

[Example 1] Is $K_{2,3}$ planar?

 $K_{2,3}$ is planar

Note:

- Complete bipartite graphs $K_{2,n}(n \ge 1)$ are planar.
- \bullet Complete bipartite graphs $K_{1,n}$ are planar.

[Example 2] Is $K_{3,3}$ planar?

 $K_{3,3}$ is not planar

Euler's Formula

Some terminologies:

- Region: a part of the plane completely disconnected off from other parts of the plane by the edges of the graph.
 - Bounded region
 - Unbounded region

Note: There is one unbounded region in a planar graph.

- the boundary of region
- ◆ the Degree of Region R (Deg(R)): the number of the edges which surround R, suppose R is a region of a connected planar simple graph
- adjacent regions: two regions with a common border
- ◆ If e is not a cut edge, then it must be the common border of two regions

Example 3 There are 4 regions in the right graph.

the boundary of region

 R_1 : a

 R_2 : bce

 R_3 : fg

 R_0 : abcdde, fg

$$\deg(R_1) = 1$$

$$\deg(R_2) = 3$$

$$\deg(R_3) = 2$$

$$\deg(R_0) = 8$$

Example 4 The following graph is a planar representation of a graph.

- **♦**There are 5 regions.
- ♦ The boundaries of regions R_1 , R_2 , R_3 and R_4 are abdc, efg, h, kjl.

$$deg(R_1)=4, deg(R_2)=3,$$

 $deg(R_3)=1, deg(R_4)=3$

♦ The boundary of unbounded region R_0 is constructed by *abefgdc* and *kjihil*, $deg(R_0)=13$.

Note: The sum of the degrees of the regions is exactly twice the number of edges in the planar graph.

$$2e = \sum_{all\ region\ R} \deg(R)$$

[Theorem 1] Euler's formula Let G be a connected planar simple graph with e edges and v vertices. Let r be the number of regions in a planar representation of G. Then r=e-v+2.

Proof:

First, we specify a planar representation of G. We will prove the theorem by constructing a sequence of subgraphs G_1, G_2, \cdots , $G_e = G$, successively adding an edge at each stage.

The constructing method: Arbitrarily pick one edge of G to obtain G_1 . Obtain G_n from G_{n-1} by arbitrarily adding an edge that is, incident with a vertex already in G_{n-1} .

Let r_n , e_n , and v_n represent the number of regions, edges, and vertices of the planar representation of G_n induced by the planar representation of G, respectively.

- (1) The relationship $r_1 = e_1 v_1 + 2$ is true for G_1 , since $e_1 = 1$, $v_1 = 2$, and $r_1 = 1$.
- (2) Now assume that $r_n = e_n v_n + 2$. Let $\{a_{n+1}, b_{n+1}\}$ be the edge that is added to G_n to obtain G_{n+1} .
- lacktriangle Both a_{n+1} and b_{n+1} are already in G_n .

These two vertices must be on the boundary of a common region R, or else it would be impossible to add the edge $\{a_{n+1},b_{n+1}\}$ to G_n without two edges crossing (and G_{n+1} is planar).

The addition of this new edge splits R into two regions.

Consequently, $r_{n+1}=r_n+1$, $e_{n+1}=e_n+1$,and $v_{n+1}=v_n$.Thus, $r_{n+1}=e_{n+1}-v_{n+1}+2$.

• One of the two vertices of the new edge is not already in G_n . Suppose that a_{n+1} is in G_n but that b_{n+1} is not.

Adding this new edge does not produce any new regions, since b_{n+1} must be in a region that has a_{n+1} on its boundary.

Consequently, $r_{n+1} = r_n$. Moreover, $e_{n+1} = e_n + 1$ and $v_{n+1} = v_n + 1$.

Hence,
$$r_{n+1} = e_{n+1} + 1 - v_{n+1} - 1 + 2$$
.

Note:

- 1) The Euler's formula is necessary condition.
- 2) How about unconnected simple planar graph?

Suppose that a planar graph G has k connected components, e edges, and v vertices. Let r be the number of regions in a planar representation of G.

Then r=e-v+k+1.

[Corollary 1] If G is a connected planar simple graph with e edges and ν vertices where $\nu \ge 3$, then $e \le 3\nu - 6$

Proof:

Suppose that a connected planar simple graph divides the plane into r regions, the degree of each region is at least 3.

Since $2e = \sum \deg(R_i) \ge 3r$, it imply $r \le (2/3)e$

Using Euler's formula e-v+2=r, we obtain

 $e-v+2 \le (2/3)e$, this shows that $e \le 3v-6$.

Note:

igoplus For unconnected planar simple graph, $e \le 3v - 6$ is also holds.

Since for a component, $e_i \le 3v_i - 6$

$$e = \sum e_i \le \sum (3v_i - 6) < 3\sum v_i - 6 = 3v - 6$$

[Corollary 2] If a connected planar simple graph has e edges and v vertices with $v \ge 3$ and no circuits of length 3, then $e \le 2v - 4$.

Note:

- Generally, if every region of a planar connected graph has at least k edges, then $e \le \frac{(v-2)k}{k-2}$
- lacktriangle A connected planar simple graph with e=3v-6?

[Corollary 3] If G is a connected planar simple graph, then G has a vertex of degree not exceeding five.

Proof:

- (1) G has one or two vertices
- (2) G has at least three vertices

 By Corollary 1, we know that $e \le 3v 6$, so $2e \le 6v 12$ If the degree of every vertex were at least six, then 2e > 6v

Example 5 Show that k_5 , $k_{3,3}$ are nonplanar.

Proof:

(1)

The graph k_5 has 5 vertices and 10 edges.

However, the inequality $e \le 3v-6$ is not satisfied for this graph since e=10 and 3v-6=9.

Therefore, k_5 is not planar.

(2)

 $K_{3,3}$ has 6 vertices and 9 edges.

Since $K_{3,3}$ has no circuits of length 3 (this is easy to see since it is bipartite), Corollary 3 can be used .

Since e=9 and 2v-4=8, corollary 3 shows that $k_{3,3}$ is nonplanar.

[Example 6] If G is a planar simple graph with vertices not exceeding 11, then G must exist vertices of degrees less than five.

[Example 7] $K_n(n \ge 7)$ is not planar.

Example 8 The construction of Dodecahedron.

Solution:

Since the degree of every vertex is 3 and the degree of every region is 5. Then

$$\begin{cases} 2e = 3v \\ 2e = 5r \\ r = e - v + 2 \end{cases}$$

It follows that v=20, e=30 and r=12.

KURATOWSKI'S THEOREM

Terminologies:

◆ Elementary subdivision: If a graph is planar, so will be any graph obtained by removing an edge {u, v} and adding a new vertex w together with edges {u,w} and {w,v}.

♦ Homeomorphic: the graph $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ are called homeomorphic if they can be obtained from the same graph by a sequence of elementary subdivision.

Examples of homeomorphic graphs

These three graphs are homeomorphic

(a) is homeomorphic to K₃

(b) is homeomorphic to K₄

[Theorem 2] A graph is nonplanar if and only if it contains a subgraph homeomorphic to $K_{3,3}$ or K_5 .

Proof:

- ✓ It is clear that a graph containing a subgraph homeomorphic to $K_{3,3}$ or K_5 is nonplanar.
- ✓ Every nonplanar graph contains a subgraph homeomorphic to $K_{3,3}$ or K_5

(1)

This graph is not planar.

(2)

(1)

This graph is not planar.

(2)

(1)

This graph is not planar.

(2)

 K_6 is not planar.

The Petersen graph is not planar.

Homework:

Seventh Edition:

P. 725 1, 7, 20, 22, 23, 25

