Isotopic Fractionation of C⁺

M. Röllig & V. Ossenkopf

A&A 550, A56 (2013)

Isotopic fractionation reaction

- Fractionation reactions with different back and forth reaction rates channel isotopes into some preferred isotopologues.
- Whenever the chemistry of one of the involved species is dominated by the respective fractionation reaction, that species will show considerable fractionation, i.e., a deviation from the elemental abundance ratio (ER).

$$^{13}\text{C}^+ + \text{CO} \Longrightarrow \text{C}^+ + ^{13}\text{CO} + \Delta E = 35 \, K$$

$$HCO^{+} + {}^{13}CO \Longrightarrow H^{13}CO^{+} + CO + \Delta E = 9 K$$

Isotopic fractionation reaction

- Fractionation reactions with different back and forth reaction rates channel isotopes into some preferred isotopologues.
- Whenever the chemistry of one of the involved species is dominated by the respective fractionation reaction, that species will show considerable fractionation, i.e., a deviation from the elemental abundance ratio (ER).

$$^{13}\text{C}^+ + \text{CO} \Longrightarrow \text{C}^+ + ^{13}\text{CO} + \Delta E = 35 \, K$$

$$k_{\rightarrow}$$
 $fast$ $k_{\leftarrow} = k_{\rightarrow} \times e^{\left(-35K/_{T}\right)}$

CO vs. C+

$$^{13}C^{+} + CO \Longrightarrow C^{+} + ^{13}CO + \Delta E = 35 K$$

- The fractionation reaction will always try to enhance ¹²C+/¹³C+ and ¹³CO/¹²CO
- Isotope selective photodissociation of CO is a competing process trying to diminish ¹³CO/¹²CO.
- There is no isotope selective destruction process of C+ that could reduce ¹²C+/¹³C+

 \rightarrow ¹²C⁺/¹³C⁺ will always be enhanced relative to the elemental ratio (ER)

NOT only a low-T effect

C⁺ fractionation

C+ as an Astronomical Tool - 4-8 Feb 2013

 A_{V}

Standard behavior of carbon isotopologues in PDRs:

- C⁺ fractionation ratio (FR) is always ≥ ER
- C+ FR \approx ER at low A_V
- C⁺ FR increases significantly with A_V

$$^{13}\text{C}^+ + \text{CO} \rightleftharpoons \text{C}^+ + ^{13}\text{CO} + \Delta E = 35 K$$

$$R_{\rightarrow} = n(^{13}C^{+}) \times n(CO) \times k_{\rightarrow}$$

C⁺ fractionation needs cool, shielded C⁺ gas (weak column density effect)

C⁺ Fractionation ratio

$$n=10^4 \text{ cm}^{-3}, M=10^0 \text{ M}_{\odot}$$

Each segment corresponds to a seperate clump model

C+ as an Astronomical Tool - 4-8 Feb 2013

What clump volume is filled by C+?

Volume effect of fractionation

C+ as an Astronomical Tool - 4-8 Feb 2013

Column density effect

density ratio

column density ratio

C⁺/¹³C⁺ column density ratios

C⁺ fractionation needs cool, shielded C⁺ gas (weak column density effect)

C⁺/¹³C⁺ intensity ratios

Optical depth effects will lead to a FR < ER

C+ as an Astronomical Tool - 4-8 Feb 2013

[CII] optical depths

Parameter grid

n = $10^3 - 10^7$ cm⁻³

 $M = 10^{-3} - 10^3 M_{\odot}$

 $FUV = 1-10^6$

clump averaged optical depths will be (somewhat) higher than simple, plane-parallel figures

$$\langle \tau \rangle = \frac{4\pi}{\pi R^2} \int_0^R \tau(p) p dp$$

A_V versus spatial dimension

A_V versus spatial dimension

A_V versus spatial dimension

low FUV PDR still has a large C⁺ volume

C⁺ fractionation diagnostics

Diagnostic line ratios to detect column density fractionation of C⁺:

A line ratio of 13 CO (1-0)/ [CII] > 2 indicates a fractionated **C**⁺ column.

No fractionation expected for FUV > 100

Summary

- Any fractionation of C⁺ will always be in favor of ¹²C⁺
- Considerable C⁺ fractionation will only occur in cool, shielded C⁺ gas.
- Clumps with FUV illumination of χ >100 will show negligible C+ fractionation.
- Optical thickness effects will give $T_{mb}([CII])/T_{mb}([^{13}CII]) < ER$.