## Name: Chivarni Patel GSI: Madeline Brant DISC #: 03

## Homework 2.

Math 55, Spring 2020.

Prob 1. Establish these logical equivalences where x does not occur as a free variable in A. Assume that the domain is nonempty.

(a)  $\forall x (A \to P(x)) \equiv A \to \forall x P(x)$ .

If A is talse, then

LHS 
$$\forall x \mid T \rightarrow P(x) = \forall x P(x)$$

PHS  $T \rightarrow \forall x P(x) = \forall x P(x)$ 

PHS  $F \rightarrow \forall x P(x) = \forall x P(x)$ 

PHS  $F \rightarrow \forall x P(x) = \forall x P(x)$ 

If A is talse, then  
LHS 
$$\forall x (F \rightarrow P(x)) = \forall x F$$
  
PHS  $F \rightarrow \forall x P(x) = \forall x F$ 

(b) 
$$\exists x (P(x) \to A) \equiv \forall x P(x) \to A$$
.

| P | Q | P-12 | 1P V Q |
|---|---|------|--------|
| + | Т | 7    | T      |
| T | F | F    | F      |
| F | † | T    | 1      |
| F | F | †    | T      |

+ = does not divide

examples

11,13

7.9

17,19

**Prob 2.** Use predicates, quantifiers, logical connectives, and mathematical

operators to express the Twin Prime Conjecture.

" there are an infinite number of prime seperated by distance 2"

(1) P(x)= ax 1s prime"

(1')  $Q(x) = "x and x+2 are prime" <math>\implies Q(x) = P(x) \wedge P(x+2)$ 

@ there are infinitely many x with property 0(x)

(2)NO matter how far out I look granfind an x with OLX)

ty fx (x >y 1 Q(x))

only divisors are I and x 

yy∃x (x>y Λ P(x)Λ P(x+2)) yy (ytx V y≤1 V y≥x)

**Prob 3.** This argument supposedly shows that if  $\forall x \ (P(x) \lor Q(x))$  is true, then  $\forall x \ P(x) \lor \forall x \ Q(x)$  is true. What is wrong with it?

1.  $\forall x \ (P(x) \lor Q(x))$  Premise

2  $P(c) \lor Q(c)$  Universal instantiation from (1)

3. P(c) Simplification from (2)

4.  $\forall x \ P(x)$  Universal generalization from (3)

5. Q(c) Simplification from (2)

6.  $\forall x \ Q(x)$  Universal generalization from (5)

7.  $\forall x \ P(x) \lor \forall x \ Q(x)$  Conjunction from (4) and (6)

#2 is wrong because P(c) v Q(c) cannot be true equate after  $\forall x P(x) \ v \ \forall x \ Q(x)$  has been distributed. After that, we can stop there since the 2nd step terminates the rest of the steps

**Prob 4.** Show that the argument form with premises

$$\underline{p \wedge t \rightarrow r \vee s}, \quad \underline{q}, \quad \underline{q \rightarrow u \wedge t}, \quad \underline{u \rightarrow p}, \quad \underline{\neg s}$$

and conclusion

r

is valid using rules of inference from Table 1 in Section 1.6.

|                            | →v∧t           | modus podus            |
|----------------------------|----------------|------------------------|
| νΛt<br>μ→ρ<br><u>:</u> ρΛt |                | hypothetical syllogism |
| βΛt<br>∴                   | →r Vs<br>r V S | modus podus            |
| ·.                         | 15<br>r        | Disjunctive syllogism  |

## 1-10 any order

**Prob 5.** Let the integers 1, 2, ..., 10 be placed around a circle, in any order. Show that there are 3 integers in consecutive locations whose sum is at least 17.



$$\sum_{1,1} + \cdots + \sum_{10} = 3(1 + \cdots + 10) = 3 \cdot 5 \cdot 11$$
  
= 165  
Average values of a  $\sum_{10} = \frac{165}{10} = 16.5$ 

There must be some  $\Sigma_i$  with  $\Sigma_i > 16.5$  since  $\Sigma_i$  is an int.  $\sum_{i,j} \geq |\mathcal{F}_i|$ 

$$\sum_{i} + \cdots + \sum_{n} \leq 160$$
  
for contradiction  
 $\sum_{i} \leq 16$