Gruppe 4: Maxwell

Sebastian Zeilinger
Maximilian Redl
Jan Niklas Bernrader
David Fürlinger
Thomas Kroyer
Johanna-Sophia Köberl

Maxwellgleichungen

$$\nabla \times H(\mathbf{r},t) = J(\mathbf{r},t) + \frac{\partial D(\mathbf{r},t)}{\partial t}, \quad \text{Maxwell'scher Verschiebungstrom}$$

$$\nabla \times E(\mathbf{r},t) = \frac{-\partial B(\mathbf{r},t)}{\partial t},$$

$$\nabla \cdot B(\mathbf{r},t) = 0.$$

$$\nabla \cdot D(\mathbf{r}, t) = \rho(\mathbf{r}, t),$$

<u>Materialgesetze:</u>

$$B = \mu H$$
$$J = \sigma E$$

 $H = magnetische Feldstärke, B = magnetische Flussdichte, E = elektrische Feldstärke D = elektrische Flussdichte, J = elektrische Stromdichte, <math>\rho = Ladungsdichte$

Herleitung der Poisson-Gleichung mit fixer Magnetisierung

Der Zusammenhang zwischen magnetischer Flussdichte \vec{B} , magnetischer Feldstärke \vec{H} und Magnetisierung \vec{M} in Materie ist:

$$\vec{B} = \mu_0(\vec{M} + \vec{H})$$

Magnetische Feldkonstatnte = μ_0

Wenn die Rotation von \vec{H} verschwindet, besitzt \vec{H} ein Potential. Somit kann die obige Gleichung auf \vec{H} umgestellt werden und durch multiplikation mit dem Nabla Operator erhält man auf die **Poisson Gleichung** :

$$\nabla * \vec{H} = \underbrace{\frac{1}{\mu_0}}_{=0} \nabla * \vec{B} - \nabla \vec{M} = -\nabla^2 \phi$$

$$\rightarrow \nabla \vec{M} = \nabla^2 \phi$$

Daraus folgt:

$$\nabla^2 \phi_{in} = \nabla \vec{M}$$
, $\nabla^2 \phi_{out} = 0$

Mit den Randbedingungen:

$$U_{in} = U_{out}$$

$$\frac{\partial U_{in}}{\partial n} = \frac{\partial U_{out}}{\partial n} + \vec{M} * \vec{n}$$

Mithilfe des Gauß'schen und des Stokes'schen Integralsatzes kann gezeigt werden, dass die Normalkomponente \vec{n} von \vec{B} und die Tangentialkomponente \vec{t} von \vec{H} stetig sind:

$$\vec{n} * (\vec{B}_2 - \vec{B}_1) = 0, \qquad \vec{t} * (\vec{H}_2 - \vec{H}_1) = 0$$

Jetzt kann B ausgedrückt werden durch ϕ und \vec{M} wobei $\vec{n} = \frac{\partial}{\partial n}$:

$$\frac{\partial \phi_{out}}{\partial n} + \vec{M}\vec{n} = \frac{\partial \phi_{in}}{\partial n}$$

Da die Ableitung von ϕ nicht divergieren darf, da sonst auch \vec{H} divergiert, folgt dass:

$$\phi_{out} = \phi_{in}$$

Schwache Formulierung

$$\Delta u = \nabla M$$

$$\Delta u * \mathbf{v} = \nabla M$$

$$\int_{\Omega} \nabla u * \nabla v \, dx - \int_{\partial \Omega} \frac{\partial u}{\partial s} * v \, ds = \int_{\Omega} \nabla v * M \, dx$$

Der Randterm verschwindet da das Potential am Rand Null ist.

Code

```
def solver(mesh file, cell regions file, facet regions file, output file, output file potential):
    # Import mesh with volume and facet regions
    mesh = Mesh(mesh file)
    cell regions = MeshFunction("size t", mesh, cell regions file)
    facet regions = MeshFunction("size t", mesh, facet regions file)
    dx = Measure('dx', domain=mesh, subdomain data=cell regions)
    #Define function space
    V = FunctionSpace(mesh, 'P', 1)
   W = VectorFunctionSpace(mesh, 'P', 1)
    #Magnetization
   M0 = Expression(('1.0', '0.0', '0.0'), degree=0)
   M1 = Expression(('0.0', '0.0', '0.0'), degree=0)
    # Define variational problem
    u = TrialFunction(V) # scalar potential
    v = TestFunction(V)
    f0 = M0
    f1 = M1
    u = TrialFunction(V)
    v = TestFunction(V)
    a = (dot(grad(u), grad(v)))*dx
    L = (dot(f0, grad(v)))*dx(1) + (dot(f1, grad(v)))*dx(2)
    # Dirichlet boundary (0 at outer boundary)
    bc1 = DirichletBC(V, Constant(0.0), facet regions, 3)
```

```
# Compute solution
u = Function(V)
solve(a == L, u, bc1)
#stray field
#H = project(-grad(u), W)
H = project(-grad(u), W, solver type="mumps")
#Export
vtkfile = File(output file)
vtkfile << H
potentialfile = File(output file potential)
potentialfile << u
```

Meshes

→ Meshes erstellt mit Salome

Magnetfelder der drei Magneten

Hufeisenmagnet Kugelmagnet Würfelmagnet

Potentiale der drei Magneten

Magnetfelder der Magneten mit verschiedenen Airboxen

30mm Airbox 50mm Airbox 70mm Airbox

Potentiale der Magneten mit verschiedenen Airboxen

A,V-A Formalismus

Der verwendete Formalismus ist der AV-A Formalismus. Dieser ergibt sich aus den folgenden Maxwell-Gleichungen für den ladungsfreien Raum:

$$\nabla \vec{B} = 0$$
$$\nabla \times \vec{E} = -\partial t \vec{B}$$

Daraus kann man definieren:

$$\vec{B} = \nabla \times \vec{A}$$

Wobei A das magnetische Vektorpotential ist. Setzt man das in die Gleichung mit dem elektrischen Feld ein, kommt man auf folgende Formel:

$$\nabla \times (\vec{E} + \partial t \vec{A}) = 0$$

Daraus folgt:

$$\vec{E} + \partial t \vec{A} = -\nabla V$$

A,V-A Formalismus

Aus diesen Formeln kommt man dann auf folgende Zusammenhänge:

$$\vec{B} = \nabla \times \vec{A}$$

$$\vec{E} = -\partial t (\nabla v + \vec{A})$$

Wobei v das über die Zeit integrierte elektrische Skalarpotential ist.

Die für die Beschreibung des Problems verwendeten Differentialgleichungen lauten wie folgt:

$$\nabla \times (v \nabla \times \vec{A}) + \sigma * \partial t (\nabla v + A) = J \qquad \text{in } \Omega c$$

$$\nabla (\sigma * \partial t (\nabla v + \vec{A}) = 0 \qquad \text{in } \Omega c$$

Wobei Ω c in der leitenden Region bedeutet. Hier ist v der Kehrwert der magnetischen Permeabilität μ und σ der Leitwert. J ist ein Quellterm für die Stromdichte

A-A* Formalismus

Der AA*-Formalismus ist der Formalismus der in den folgenden Simulationen verwendet wird. Er ergibt sich, wenn man das elektrische Skalarpotential auf 0 setzt. Die Gleichungen die sich dabei ergeben sind die Folgenden:

$$\vec{B} = \nabla \times \vec{A}$$

$$\vec{E} = -\partial t(\vec{A})$$

Die für die Beschreibung des Problems verwendeten Differentialgleichungen lauten wie folgt:

$$\nabla \times (v \nabla \times \vec{A}) + \sigma * \partial t(A) = J \qquad \text{in } \Omega c$$

$$\nabla \left(\sigma * \partial t(\vec{A})\right) = 0 \qquad \text{in } \Omega c$$

Wobei Ω c in der leitenden Region bedeutet. Hier ist v der Kehrwert der magnetischen Permeabilität μ und σ der Leitwert. J ist ein Quellterm für die Stromdichte

Zeitharmonische Problem

Im folgenden betrachten wir zeitharmonische Probleme. Mit dieser Schreibweise kann man Felder folgendermaßen darstellen:

$$A(t) = Ae^{i\omega t}$$

Mit dieser Schreibweise werden zeitliche Ableitungen zu einer Multiplikation mit der Winkelgeschwindigkeit ω und der imaginären Einheit i.

$$\frac{\partial A(t)}{\partial t} = i\omega A(t)$$

Wegen der komlexen Zahlen müssen jetzt doppelt so viele Gleichungen gelöst werden.

Erzeugung der Stromdichte

Die Stromdichte in der Spule kann durch einen Quellterm berechnet werden. Dieser ergibt sich durch folgende Gleichung.

$$J_{ges} = J + \sigma E$$

Hierbei is J die Quellstromdichte und σE ist die Stromdichte, die durch das elektrische Feld entsteht. Wir können folgenden Zusammenhang benutzen um das Stromdichtevektorpotential zu berechnen.

$$J = rot(T_0)$$

Bildet man die Rotation von beiden Seiten und multipliziert man mit einer Testfunktion u, kommt man auf die schwache Formulierung.

$$rot(J) \cdot u = rot(T_0)rot(u)$$

Schwache Formulierung

Mit FenICs wird diese Gleichung gelöst und T0 bestimmt.

Dies kann in die Differentialgleichungen eingesetzt werden und in die schwache Formulierung umgeschrieben werden.

V = FunctionSpace(mesh, "N1curl", 1)

W = VectorFunctionSpace(mesh, "CG", 1)

u = TrialFunction(V)

v = TestFunction(V)

a = inner(curl(u),curl(v))*dx

L = Constant(scale)*inner(j_expr,curl(v))*dx(Omega['coil'])

T₀-Feld

Schwache Formulierung Wirbelstromproblem

Nun wird das tatsächliche Wirbelstromproblem gelöst und damit die partiellen Differentialgleichungen der AA*-Formulierung gelöst. Da wir die Gleichungen im komplexen Lösen, gibt es doppelt soviele.

```
Hcurl = FiniteElement("N1curl", tetrahedron, 1)
V = FunctionSpace(mesh, MixedElement((Hcurl, Hcurl)))
a = 1/mu*inner(curl(u_r), curl(v_r))*dx
a -= 1/mu*inner(curl(u_i), curl(v_i))*dx

a -= Constant(scale**2*omega)*sigma*inner(u_i, v_r)*dx
a -= Constant(scale**2*omega)*sigma*inner(u_r, v_i)*dx
L = inner(T0, curl(v_r))*dx
```

Realteil des J-Feldes

Realteil des J-Feldes

TEAM 10 Problem

Comparison of the solution

TEAM 10 Problem

Realteil des B-Feldes

Vergleich mit einer anderen Simulation

Die Stromdichte in der Spule wurde adaptiert um auf dieselbe Amplituder des B-Feldes zu kommen. Der Grund dafür ist, dass die Permeabilität nicht bekannt ist und daher geschätzt werden musste.

Quellen

- https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiK5Y 6t rXuAhUEaQKHbzNBpAQFjABegQIARAC&url=http%3A%2F%2Fmaxwell.sze.hu%2Fdocs%2FC4.pdf &usg=AOvVaw1tu_JzFMpu8Qw4a2g8rX_C
- https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjZn4j T 7XuAhWFDewKHc22BmUQFjADegQIDxAC&url=https%3A%2F%2Ffenicsproject.org%2 Fpub%2Ftutorial%2Fpdf%2Ffenics-tutorialvol1.pdf&usg=AOvVaw14JMa8vBYGMwmYyOhDkksP
- https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjn5Y TTg7buAhVQqaQKHVB0CL8QFjAAegQlAxAC&url=http%3A%2F%2Fwww.compumag.org %2Fwp%2Fwpcontent%2Fuploads%2F2018%2F06%2Fproblem13.pdf&usg=AOvVaw266b_ygSJqH0ahX_u8193I_
- https://en.wikipedia.org/wiki/Demagnetizing_field