tinyurl.com/profrafaelcampos

Medidas Físicas

Rafael Heleno Campos

 $\mathsf{CFM}/\mathsf{UFSC}$

- Sumário
- Medidas Físicas
- Arredondamento
- 4 Ordens de Grandeza
- Notação Científica
- 6 Referências

Grandezas e Unidades

- Grandezas físicas são características da natureza que podem ser representadas quantitavamente. As 7 grandezas básicas da natureza são: distância, tempo, massa inercial, corrente elétrica, temperatura termodinâmica, quantidade de substância e intensidade luminosa. Todas as outras são derivadas destas.
- Unidades são formas de representar medidas destas grandezas e comparálas. Para cada grandeza tempos várias unidades distintas, para distâncias por exemplo: metro, milha, jarda, pé, polegada, ano-luz e outras.
- Usam-se unidades diferentes para mesmas grandezas por dois motivos básicos: convenção histórica ou simplificação da representação (não é pratico medir a massa de uma formiga em toneladas, ou a idade de uma pessoa em segundos).

Sistemas de Unidades

- Sistemas de Unidades são necessários para compartilhar resultados e propagar o conhecimento. Ao longo da história diversas unidades diferentes foram utilizadas para várias grandezas, muitas ao mesmo tempo, e com o crescimento da interação entre grupos de pesquisa espalhados por todo o planeta foi ficando mais urgente a necessidade de uma uniformização destas unidades.
- Hoje, podemos encontrar alguns Sistemas de Unidades distintos no nosso cotidiano, alguns completos e outros parciais:
 Sistema Britânico Imperial, usado apenas parcialmente; Sistema CGS (centímetro, grama, segundo); Sistema MKS (metro, kilograma, segundo); Sistema Internacional, adaptação do MKS; Sistema Natural, utilizado na física teórica.

Sistema Internacional

- Convenção do Metro: França, 1875.
 Publicação Oficial: 1960.
- Desde a publicação da Convenção do Metro, vários países foram pouco a pouco adotando o sistema MKS e suas reformulações, até que em 1960 este foi renomeado como Sistema Internacional. Hoje, apenas três países ainda não o adotam oficialmente (EUA, Burma, Liberia).

Arredondamento

Praticamos o arredondamento quando a medida tem um número de algarismos maior do que o número de A.S. adequado, utilizando a informação dos algarismos a serem descartados para melhorar a informação do último A.S. (algarismo duvidoso).

Arredondamento: Regras

Quando o primeiro algarismo a ser descartado for maior que 5 o último A.S. é aumentado em 1.

$$15,7\overline{4}61 \implies 15,75$$

Quando o primeiro algarismo a ser descartado for menor que 5 o último A.S. permanece inalterado.

$$3,8\overline{9}21 \implies 3,89$$

Quando o primeiro algarismo a ser descartado for igual a 5, e todos os sequentes forem iguais a 0, arredondamos o último A.S. para o valor par mais próximo (se ele já for par, permanece inalterado).

$$0,007\bar{5}5002 \implies 0,0076$$

$$0,007\bar{5}5000 \implies 0,0075$$

$$0,007\bar{6}5000 \implies 0,0076$$

Prefixos maiores que 1.

Nome	Símbolo	Fator	N.C.*
iota	I	1 000 000 000 000 000 000 000 000	10^{24}
zeta	Z	1 000 000 000 000 000 000 000	10^{21}
exa	Е	1 000 000 000 000 000 000	10^{18}
peta	Р	1 000 000 000 000 000	10^{15}
tera	Т	1 000 000 000 000	10^{12}
giga	G	1 000 000 000	10 ⁹
mega	M	1 000 000	10^{6}
kilo	k	1 000	10^{3}
hecto	h	100	10^{2}
deca	da	10	10^{1}

^{*} Notação Científica

Prefixos menores que 1.

Nome	Símbolo	Fator	N.C.*
deci	d	0.1	10^{-1}
centi	С	0.01	10^{-2}
milli	m	0.001	10^{-3}
micro	μ	0.000 001	10^{-6}
nano	n	0.000 000 001	10^{-9}
pico	р	0.000 000 000 001	10^{-12}
femto	f	0.000 000 000 000 001	10^{-15}
atto	а	0.000 000 000 000 000 001	10^{-18}
zepto	Z	0.000 000 000 000 000 000 001	10^{-21}
iocto	i	0.000 000 000 000 000 000 000 001	10^{-24}

^{*} Notação Científica

Notação Científica

A Física trabalha tanto em escalas astronômicas quanto microscópicas, o que pode tornar a representação de certas medidas complicada demais.

Massa do elétron: 0,00000000000000001602176565 C

Um modo mais prático de representá-las é a chamada *Notação Científica*, onde a medida é apresentada em termos apenas de seus A.S. e de uma potência de 10 apropriada, facilitando a leitura.

Massa do elétron: $1,6021766 \times 10^{-19} C$

Massa do Sol: $1,989 \times 10^{30} kg$

Notação Científica

Um número, quando escrito na forma de notação científica, contém 3 elementos:

• O número em si, que é representado com apenas A.S. antes da vírgula e todos os demais após, ou seja:

$$10 > Numero \ge 1$$

- Uma potência de 10 apropriada.
- A unidade (geralmente a unidade no S.I., mas não é uma regra)

Notação Científica: Exemplos

Exemplos (percebam também o respeito ao número de A.S.:

Dias no ano:

$$365d \implies 36,5 \times 10^1 d \implies 3,65 \times 10^2 d$$

mas

$$1d = 60 \times 60 \times 24s = 86400s \implies (3,65 \times 10^2) \times (86400s) \implies 3,1\overline{5}36000 \times 10^7 s$$

Massa de um caminhão

transformando

$$1T = 1000kg = 1,000 \times 10^3 kg$$

 $25T=25 \times 10^3 kg = 2,5 \times 10^4 kg$

• 1 quilate (diamante)

$$1,00ct = 200mg = 0,200g = 2,00 \times 10^{-1}g = 2,00 \times 10^{-4}kg$$

Referências

- Piacentini, J. J. et al, Introdução ao laboratório de Física, editora UFSC, 5a edição, 2015
- HALLIDAY, D.; RESNICK, R. e WALKER, J.– Fundamentos de Física. Volume 1, Livros Técnicos e Científicos Editora, 9a edição, 2014.
- Norma ABNT NBR 5891