Assignment -2 Data Visualization and Pre-processing

Assignment Date	27 September 2022
Team ID	PNT2022TMID45005
Student Name	Sivaranjani P
Student RollNumber	811219205015
Project Name	AI Based Discourse For Banking Industry
Maximum Marks	2 Marks

A - Load the dataset

import pandas as pd
df=pd.read_csv("Churn_Modelling.csv") # import dataset
print(df)

	Ro	wNumb	er	Custome	rId	Surname	CreditScore	Geography	Gen	der
Age	\									
0			1	15634	602	Hargrave	619	France	Fem	ale
42										
1			2	15647	311	Hill	608	Spain	Fem	ale
41										
2			3	15619	304	Onio	502	France	Fem	ale
42										
3			4	15701	354	Boni	699	France	Fem	ale
39										
4			5	15737	888	Mitchell	850	Spain	Fem	ale
43										
		99	96	15606	229		771			
9995						Obijiaku		France	M	ale
39										
9996		99	97	15569	892	Johnstone	516	France	M	ale
35										
9997		99	98	15584	532	Liu	709	France	Fem	ale
36										
9998		99	99	15682	355	Sabbatini	772	Germany	M	ale
42										
9999		100	00	15628	319	Walker	792	France	Fem	ale
28										
	Te	nure	Е	Balance	Num	OfProducts	HasCrCard	IsActiveMem	ber	\
0		2		0.00		1	1		1	
1		1	83	3807.86		1	0	1		

2	8	159660.80	3	1	0	
3	1	0.00	2	0	0	
4	2	125510.82	1	1	1	
					• • •	
9995	5	0.00	2	1	0	
9996	10	57369.61	1	1	1	
9997	7	0.00	1	0	1	
9998	3	75075.31	2	1	0	

9999 4 130142.79 1 1 0

	EstimatedSalary	Exited
0	101348.88	1
1	112542.58	0
2	113931.57	1
3	93826.63	0
4	79084.10	0
	• • •	
9995	96270.64	0
9996	101699.77	0
9997	42085.58	1
9998	92888.52	1
9999	38190.78	0

[10000 rows x 14 columns]

B - Perform Below Visualizations.

• Univarient Analysis

There are three ways to perform univarient analysis

• Summary statistics

```
# Summary statistics
import pandas as pd
df=pd.read_csv("Churn_Modelling.csv")
#mean of CreditScore
M=df['CreditScore'].mean()
#median of CreditScore
Me=df['CreditScore'].median()
# standard deviation of CreditScore
```

```
std = df['CreditScore'].std()
print("mean value of CreditScore is {}".format(M))
print("median value of CreditScore is {}".format(Me))
print("Standard deviation of CreditScore is {}".format(std))
mean value of CreditScore is
650.5288median value of CreditScore
is 652.0
Standard deviation of CreditScore is 96.65329873613061

    Frequency table

#Frequency table
import pandas as pd
df=pd.read csv("Churn Modelling.csv")
#frequency table for age
ft=df['Age'].value counts()
print("Frequency table for Age is given below")
print("{}".format(ft))
Frequency table for Age is given below
37
      478
38
      477
      474
35
      456
36
34
      447
92
82
        1
88
        1
85
        1
83
        1
Name: Age, Length: 70, dtype: int64

    Charts

#Chart
import matplotlib.pyplot as plt
dfs = df.head() # print first five table from top
print(dfs)
#box plot for Balance column
dfs.boxplot(column="Balance",grid=False,color="red")
plt.title('Box plot')
  RowNumber
              CustomerId
                           Surname
                                     CreditScore Geography
                                                             Gender
```

Age

0	1	15634602	Hargrave	619	France	Female	42
1	2	15647311	Hill	608	Spain	Female	41
2	3	15619304	Onio	502	France	Female	42
3	4	15701354	Boni	699	France	Female	39
4	5	15737888	Mitchell	850	Spain	Female	43

	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember
\ 0	2	0.00	1	1	1
1	1	83807.86	1	0	1
2	8	159660.80	3	1	0
3	1	0.00	2	0	0
4	2	125510.82	1	1	1

```
EstimatedSalary
```

```
Exited0 101348.88 1
1 112542.58 0
2 113931.57 1
3 93826.63 0
4 79084.10 0
```

Text(0.5, 1.0, 'Box plot')

Histogram for Credit Score

```
df.hist(column="CreditScore" ,grid=True, edgecolor ='black', color
='red')
plt.title('Histogram
')
```

Text(0.5, 1.0, 'Histogram')

Density curve

import seaborn as sns #statistical data visualization

sns.kdeplot(df['CreditScore'
])plt.title('Density Curve')

Text(0.5, 1.0, 'Density Curve')

• Bi - Variate Analysis

There are three common ways to perform bivariate analysis:

Scatterplots

```
import matplotlib.pyplot as plt # library for charts

dfs1 = df.head(20)
plt.scatter(dfs1.CreditScore,dfs1.Balanc
e)plt.title('Scatterplots-- Banking')
plt.xlabel("CreditScore")
plt.ylabel("Balance")
Text(0, 0.5, 'Balance')
```


• Correlation Coefficient

df.corr()

	RowNumber	CustomerId	CreditScore	Age	
Tenure \					
RowNumber	1.000000	0.004202	0.005840	0.000783	-
0.006495					
CustomerId	0.004202	1.000000	0.005308	0.009497	-
0.014883					
CreditScore	0.005840	0.005308	1.000000	-0.003965	
0.000842					
Age	0.000783	0.009497	-0.003965	1.000000	-
0.009997					
Tenure	-0.006495	-0.014883	0.000842	-0.009997	
1.000000					
Balance	-0.009067	-0.012419	0.006268	0.028308	-
0.012254					
NumOfProducts	0.007246	0.016972	0.012238	-0.030680	
0.013444					
HasCrCard	0.000599	-0.014025	-0.005458	-0.011721	
0.022583					
IsActiveMember	0.012044	0.001665	0.025651	0.085472	-
0.028362					
EstimatedSalary	-0.005988	0.015271	-0.001384	-0.007201	
0.007784					
Exited	-0.016571	-0.006248	-0.027094	0.285323	-
0.014001					

	Balance	nce NumOfPro		HasCrCard	IsActiveMember	\
RowNumber	-0.009067	(0.007246	0.000599	0.012044	
CustomerId	-0.012419	(0.016972	-0.014025	0.001665	
CreditScore	0.006268	(0.012238	-0.005458	0.025651	
Age	0.028308	-(0.030680	-0.011721	0.085472	
Tenure	-0.012254	(0.013444	0.022583	-0.028362	
Balance	1.000000	-(0.304180	-0.014858	-0.010084	
NumOfProducts	-0.304180	1	1.000000	0.003183	0.009612	
HasCrCard	-0.014858	(0.003183	1.000000	-0.011866	
IsActiveMember	-0.010084	(0.009612	-0.011866	1.000000	
EstimatedSalary	0.012797	(0.014204	-0.009933	-0.011421	
Exited	0.118533	-(0.047820	-0.007138	-0.156128	
	Estimated	lSalary	Exite	:d		
RowNumber	-0.	005988	-0.01657	1		
CustomerId	0.	015271	-0.00624	8		
CreditScore	-0.	001384	-0.02709	4		
Age	-0.	007201	0.28532	3		
Tenure	0.	007784	-0.01400	1		
Balance	0.	012797	0.11853	3		
NumOfProducts	0.	014204	-0.04782	0		
HasCrCard	-0.	009933	-0.00713	8		
IsActiveMember	-0.	011421	-0.15612	8		
EstimatedSalary	1.	000000	0.01209	7		
Exited	0.	012097	1.00000	0		

• Simple Linear Regression

```
import statsmodels.api as sm
# response variable
y = df['CreditScore']

# explanatory variable
x = df[['Balance']]

#add constant to predictor variables
x = sm.add_constant(x)

#fit linear regression model
model = sm.OLS(y, x).fit()

#view model summary
print(model.summary())
OLS Regression Results
```

=

=======

Dep. Variable: CreditScore R-

squared:0.000

Model:	OLS	Adj. R-squared:
-0.000		
Method:	Least Squares	F-statistic:
0.3929		
Date:	Sun, 25 Sep 2022	Prob (F-statistic):
0.531		
Time:	13:06:05	Log-Likelihood:
-59900.		
No. Observations:	10000	AIC:
1.198e+05		
Df Residuals:	9998	BIC:
1.198e+05		
Df Model:	1	

Covariance Type: nonrobust

=

=======

	coef	std err	t	P> t	[0.025
0.975]					
const	649.7861	1.529	424.948	0.000	646.789
652.783					
Balance	9.71e-06	1.55e-05	0.627	0.531	-2.07e-05
4.01e-05					

=

=======

Omnibus: 132.594 Durbin-Watson:

2.014

Prob(Omnibus): 0.000 Jarque-Bera

(JB):84.114

Skew: -0.072 Prob(JB):

5.43e-19

Kurtosis: 2.574 Cond.

No.1.56e+05

=

=======

Notes:

 \bullet Standard Errors assume that the covariance matrix of the errors is correctly specified. • The condition number is large, 1.56e+05. This might indicate that there are strong multicollinearity or other numerical problems.

• Multi - Variate Analysis

```
import pandas as
pdimport numpy as
np
import matplotlib.pyplot as
pltimport seaborn as sns
```

- A Matrix Scatterplot
- A Scatterplot with the Data Points Labelled by their Group
- A Profile Plot
- Calculating Summary Statistics for Multivariate Data
- Means and Variances Per Group
- Between-groups Variance and Within-groups Variance for a Variable

<seaborn.axisgrid.FacetGrid object at 0x7ffb0fd0b1c0>

- Between-groups Covariance and Within-groups Covariance for Two Variables
- Calculating Correlations for Multivariate Data
- Standardising Variables

```
swarm", data=df)
print(df)
/home/lokesh/anaconda3/lib/python3.9/site-packages/seaborn/
categorical.py:1296: UserWarning: 80.8% of the points cannot be
placed; you may want to decrease the size of the markers or use
stripplot.
 warnings.warn(msg, UserWarning)
/home/lokesh/anaconda3/lib/python3.9/site-
packages/seaborn/categorical
.py:1296: UserWarning: 62.1% of the points cannot be placed; you may
want to decrease the size of the markers or use stripplot.
  warnings.warn(msq, UserWarning)
/home/lokesh/anaconda3/lib/python3.9/site-
packages/seaborn/categorical
.py:1296: UserWarning: 62.6% of the points cannot be placed; you may
want to decrease the size of the markers or use stripplot.
  warnings.warn(msg, UserWarning)
```

df=sns.catplot(x="Geography",y="EstimatedSalary",hue="Gender",kind="

• Perform descriptive statistics on the dataset.

```
#load data set into ld
ld= pd.read_csv("Churn_Modelling.csv")
five = ld.head() #for print first five
rows
```

information about used data set
ld.info()

<class

'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to
9999 Data columns (total 14
columns):

Column Non-Null Count Dtype

0	RowNumber	10000	non-null	int64
1	CustomerId	10000	non-null	int64
2	Surname	10000	non-null	object
3	CreditScore	10000	non-null	int64
4	Geography	10000	non-null	object
5	Gender	10000	non-null	object
6	Age	10000	non-null	int64

7	Tei	nure	10000	non-null	int64
8	Ва	lance	10000	non-null	float64

9	NumOfProducts	10000 non-null	int64
10	HasCrCard	10000 non-null	int64
11	IsActiveMember	10000 non-null	int64
12	EstimatedSalary	10000 non-null	float64
13	Exited	10000 non-null	int64

dtypes: float64(2), int64(9),
object(3)memory usage: 1.1+ MB

ld.describe() #description of the data in the Dataset

	RowNumber	Cu	stomerId	Cre	editScore	Age	
Tenure	\						
		1.0	00000e+04	100	000.00000	10000.000000	
10000.	000000						
mean	5000.50000	1.5	69094e+07	(650.528800	38.921800	
5.0128	00						
std	2886.89568	7.1	93619e+04		96.653299	10.487806	
2.8921							
min		1.5	56570e+07	(350.000000	18.000000	
0.0000							
25%		1.5	62853e+07	1	584.000000	32.000000	
3.0000							
50%		1.5	69074e+07	(652.000000	37.000000	
5.0000	00						
75%	7500.25000	1.5	75323e+07	-	718.000000	44.000000	
7.0000	00						
max		1.5	81569e+07	8	850.000000	92.000000	
10.000	000						
	Balance	N	umOfProduc	ts	HasCrCard	IsActiveMember	\
count	10000.000000		10000.0000	00	10000.00000	10000.000000	
mean	76485.889288		1.5302	00	0.70550	0.515100	
std	62397.405202		0.5816	54	0.45584	0.499797	
min	0.000000		1.0000	00	0.00000	0.00000	
25%	0.000000		1.0000	00	0.00000	0.00000	
50%	97198.540000		1.0000	00	1.00000	1.000000	
75%	127644.240000		2.0000	00	1.00000	1.000000	
max	250898.090000		4.0000	00	1.00000	1.000000	
		I					1
	EstimatedSala	rv	Exi	ted			
count	10000.0000		10000.000				
mean	100090.2398		0.203				
std	57510.4928		0.402	769			
min	11.5800		0.000				
25%	51002.1100	00	0.000	000			
50%	100193.9150	00	0.000	000			

75%	149388.247500	0.00000
max	199992.480000	1.000000

• Handle the Missing values.

ld.isnull().any()

RowNumber False CustomerId False Surname False CreditScore False Geography False Gender False Age False False Tenure Balance False NumOfProducts False HasCrCard False IsActiveMember False EstimatedSalary False

Exited

Fal

se

dtype: bool

ld.isnull().sum()

RowNumber 0 CustomerId 0 0 Surname CreditScore 0 0 Geography Gender 0 0 Age Tenure Balance 0 NumOfProducts 0 HasCrCard 0 IsActiveMember 0 EstimatedSalary 0 Exited 0 dtype: int64

sns.heatmap(ld.corr(),annot=True) # heatmap -a plot of rectangular data as a color-encoded matrix

<AxesSubplot:>

Find the outliers and replace the outliers

#occurence of outliers
ld1= pd.read_csv("Churn_Modelling.csv")
sns.boxplot(ld1.CreditScore)

/home/lokesh/anaconda3/lib/python3.9/site-packages/seaborn/ _decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argumentwill be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn(

<AxesSubplot:xlabel='CreditScore'>

#Use Mean Detection and Nearest Fill Methods - Outliers

/home/lokesh/anaconda3/lib/python3.9/site-packages/seaborn/ _decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argumentwill be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn(

<AxesSubplot:xlabel='CreditScore'>

• Check for Categorical columns and perform encoding.

ld1.head(5)

\	RowNumb	er	Custom	erId	Surname	CreditScore	Geography	Gend	er	Age
0		1	1563	4602	Hargrave	619	France		0	42
1		2	1564	7311	Hill	608	Spain		0	41
2		3	1561	9304	Onio	502	France		0	42
3		4	1570		Boni	699	France		0	39
4		5			Mitchell	850	Spain		0	43
-			20.0	7000			o P ot 211			
	Tenure		Balance	NiimC)fProducts	HasCrCard	IsActiveMe	mber	\	
0	2		0.00		1	1		1	,	
1	1	8	3807.86		1	0		1		
2	8	15	9660.80		3	1		0		
\mathcal{S}	1		0.00		2	0		0		
4	2	12	5510.82		1	1		1		
	Estimat	edS	alary	Exited	d					
0	101348.88		48.88	1						
1	112542.58		42.58	C)					
2	1	139	31.57	1						

#label encoder

from sklearn.preprocessing import LabelEncoder le=LabelEncoder() ld1.Gender= le.fit_transform(ld1.Gender) 1d1.head(5)

	RowNumb	er	Custom	erId	Surname	CreditScore	Geography	Gend	er	Age
\										
0		1	1563	4602	Hargrave	619	France		0	42
1		2	1564	7311	Hill	608	Spain		0	41
2		3	1561	9304	Onio	502	France		0	42
3		4	1570	1354	Boni	699	France		0	39
4		5	1573	7888	Mitchell	850	Spain		0	43
	Tenure		Balance	NumC	fProducts	HasCrCard	IsActiveMe	mber	\	
0	2		0.00		1	1		1		
1	1	8	3807.86		1	0		1		
2	8	15	9660.80		3	1		0		
3	1		0.00		2	0		0		
4	2	12	5510.82		1	1		1		
	Estimat	edS	alary	Exited	l					
0	1	013	48.88	1	-					
1	112542.58		C)						
2	113931.57		1	-						
3		938	26.63	C)					
4		790	84.10	C)					

#one hot encoding

ld1_main=pd.get_dummies(ld1,columns=['Geography'])
ld1 main.head()

тат_	_maın.	. nea	aa ()
0			

0	15634	Harg	6		4	
	602	rave	19	4	2	
1	15647	Hill	6		4	
	311		08	-	L	
2	15619	Onio	5		4	
	304		02	2	2	
3	15701	Boni	6		3	
	354		99	9	9	

RowNumber CustomerId Surname CreditScore Gender Age Tenure \

Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary \

0 0.00	1	1	1
101348.88			
1 83807.86	1	0	1
112542.58			
2 159660.80	3	1	0
113931.57			
3 0.00	2	0	0
93826.63			
4 125510.82	1	1	1
79084.10			

Exited	Geography_France	Geography_Germany		
Geography	Spain0 1	1	0	0
1 0	0	0	1	
2 1	1	0	0	
3 0	1	0	0	
4 0	0	0	1	

• Split the data into dependent and independent variables.

#Splitting the Dataset into the Independent Feature Matrix df=pd.read csv("Churn Modelling.csv") X = df.iloc[:, :-1].valuesprint(X)

[[1 15634602 'Hargrave'	1 1 101348.88]
[2 15647311 'Hill' 0 1	112542.58]
[3 15619304 'Onio' 1 0	113931.57]
[9998 15584532 'Liu' 0	1 42085.58]
[9999 15682355 'Sabbatini'	1 0 92888.52]

[10000 15628319 'Walker' ... 1 0 38190.78]]

```
#Extracting the Dataset to Get the Dependent Vector
Y = df.iloc[:, -
1].valuesprint(Y)
[1 0 1 ... 1 1 0]
```

• Scale the independent variables

```
w = df.head()
```

a

	Age	Balance	EstimatedSalary
0	42	0.00	101348.88
1	41	83807.86	112542.58
2	42	159660.80	113931.57
3	39	0.00	93826.63
4	43	125510.82	79084.10

from sklearn.preprocessing import	StandardScaler
<pre>sc = StandardScaler()</pre>	
$x_ss = sc.fit_transform(q)$	
x_ss	
array([[0.44232587, -1.13763618,	0.09337626],
[-0.29488391, 0.15434425,	0.962855951,
	- /
[0.44232587, 1.32369179,	1.07074687],
[-1.76930347, -1.13763618,	-0.49092058],
[1.17953565, 0.79723632,	-1.6360585]])
from sklearn.preprocessing import	scale

```
X_scaled=pd.DataFrame(scale(q),columns=q.columns)
X_scale=X_scaled.head()
X_scale
```

	Age	Balance	EstimatedSalary
0	0.442326	-1.137636	0.093376
1	-0.294884	0.154344	0.962856
2	0.442326	1.323692	1.070747
3	-1.769303	-1.137636	-0.490921
4	1.179536	0.797236	-1.636059

Split the data into training and testing

x=
df[['Age','Balance','EstimatedSalary']]x

	Age	Balance	EstimatedSalary
0	42	0.00	101348.88
1	41	83807.86	112542.58

2	42	159660.80	113931.57
3	39	0.00	93826.63
4	43	125510.82	79084.10
9995	39	0.00	96270.64
9996	35	57369.61	101699.77
9997	36	0.00	42085.58
9998	42	75075.31	92888.52
9999	28	130142.79	38190.78

[10000 rows x 3 columns]

```
y =
df['Balance']y
0      0.00
```

1 83807.86 2 159660.80 3 0.00 4 125510.82

. . .

9995	0.00
9996	57369.61
9997	0.00
9998	75075.31
9999	130142.79
Name:	Balance, Length: 10000, dtype: float64

#scaling

from sklearn.preprocessing import StandardScaler,
MinMaxScalersc = StandardScaler()
x_scaled1 =
co.fit transform(v) v_scaled1

 $sc.fit_transform(x)x_scaled1$

array([[0.29351742,	-1.22584767,	0.02188649],
[0.19816383,	0.11735002,	0.21653375],
[0.29351742,	1.33305335,	0.2406869],
• • • • •		
[-0.27860412,	-1.22584767,	-1.00864308],
[0.29351742,	-0.02260751,	-0.12523071],
[-1.04143285,	0.85996499,	-1.07636976]])

#train and test data

,		
[-0.37395771,	1.35890908,	1.41441489],
[-0.08789694,	-1.22584767,	0.84614739],
[0.86563897,	0.50630343,	0.32630495]])
x_train.shape		
(7000, 3)		
x_test		
array([[-0.37395771,	0.87532296,	1.61304597],
[0.10281024,	0.42442221,	0.49753166],
[0.29351742,	0.30292727,	-0.4235611],
,		
[0.10281024,	1.46672809,	1.17045451],
[2.86806437,	1.25761599,	-0.50846777],
[0.96099256,	0.19777742,	-1.15342685]])

x_test.sha
pe(3000,
3)

 y_train

7681	146193	.60				
9031	0.00					
3691	160979	.68				
202	0	.00				
5625	143262	.04				
9225	120074	.97				
4859	114440	.24				
3264	161274	161274.05				
9845	0.00					
2732	108076	.33				
Name:	Balance,	Length:	7000,	dtype:	float64	
y_test						
9394	131101	.04				

898	102967	.41			
2398	95386	. 82			
5906	112079	.58			
2343	163034	.82			
4004	0	.00			
7375	80926	.02			
9307	168001	.34			
8394	154953	.94			
5233	88826	.07			
Name:	Balance,	Length:	3000,	dtype:	float64