

Strategic Games and Truly Playable Effectivity **Functions**

Wojtek Jamroga, University of Luxembourg (joint work with Valentin Goranko and Paolo Turrini)

Highlights of Logic, Games and Automata @ Paris 20th September 2013

Outline

- 1 Concrete vs. Abstract Models of Interaction
- 2 Correspondence

Outline

- 1 Concrete vs. Abstract Models of Interaction

Concrete and Abstract Models of Interaction

- "Concrete" game models: actions and transitions are represented explicitly → normal form games
- Abstract models: "distill" an abstract representation of individual and coalitional powers \rightarrow effectivity functions

Concrete Models: Strategic Games

Definition (Strategic game)

A strategic game G is a tuple $(N, \{\Sigma_i | i \in N\}, o, W)$ that consists of a nonempty finite set of players N, a nonempty set of strategies Σ_i for each player $i \in N$, a nonempty set of outcomes W, and an outcome function $o: \prod_{i \in N} \Sigma_i \to W$ which associates an outcome with every strategy profile.

$$\begin{array}{c|cc}
\hline
1 \backslash 2 & B & S \\
\hline
B & & & \\
S & & & & \\
\end{array}$$

$$\begin{array}{c|cccc}
1 & B & S \\
\hline
B & 2, 1 & 0, 0 \\
S & 0, 0 & 1, 2
\end{array}$$

$$\begin{array}{c|ccc} 1 \backslash 2 & B & S \\ \hline B & 2, 1 & 0, 0 \\ S & 0, 0 & 1, 2 \\ \end{array}$$

We are mainly interested in the outcomes of strategies in terms of behavior of the whole system

$$\begin{array}{c|ccc}
1 \backslash 2 & B & S \\
\hline
B & w_1 & w_2 \\
S & w_2 & w_3
\end{array}$$

We are mainly interested in the outcomes of strategies in terms of behavior of the whole system

Abstract Models: Coalitional Effectivity Models

How can we "distill" powers of agents and coalitions in a game?

Definition (Effectivity function)

An effectivity function is a function

$$E: 2^{\mathbb{A}\mathrm{gt}} \to 2^{2^W}$$

that associates a family of sets of states with each set of players.

Intuitively, elements of E(C) are choices available to coalition C: if $X \in E(C)$ then by choosing X the coalition C can force the outcome of the game to be in X.

$$\begin{array}{c|cccc}
1 \backslash 2 & B & S \\
\hline
B & w_1 & w_2 \\
S & w_2 & w_3
\end{array}$$

$$\begin{array}{c|cccc}
1 \backslash 2 & B & S \\
\hline
B & w_1 & w_2 \\
S & w_2 & w_3
\end{array}$$

$$E(\{1,2\}) = \{\{w_1\}, \{w_2\}, \{w_3\}\}$$

$$\begin{array}{c|cccc}
1 \backslash 2 & B & S \\
\hline
B & w_1 & w_2 \\
S & w_2 & w_3
\end{array}$$

$$E(\{1,2\}) = \{\{w_1\}, \{w_2\}, \{w_3\}, \{w_1, w_2\}, \{w_1, w_3\}, \{w_2, w_3\}, \{w_1, w_2, w_3\}\}$$

$$\begin{array}{c|cccc}
1 \backslash 2 & B & S \\
\hline
B & w_1 & w_2 \\
S & w_2 & w_3
\end{array}$$

$$E(\{1,2\}) = \{\{w_1\}, \{w_2\}, \{w_3\}, \{w_1, w_2\}, \{w_1, w_3\}, \{w_2, w_3\}, \{w_1, w_2, w_3\}\}$$

$$E(\{1\}) = \{\{w_1, w_2\}, \{w_2, w_3\}$$

$$\begin{array}{c|cccc}
1 \backslash 2 & B & S \\
\hline
B & w_1 & w_2 \\
S & w_2 & w_3
\end{array}$$

$$E(\{1,2\}) = \{\{w_1\}, \{w_2\}, \{w_3\}, \{w_1, w_2\}, \{w_1, w_3\}, \{w_2, w_3\}, \{w_1, w_2, w_3\}\}\}$$

$$E(\{1\}) = \{\{w_1, w_2\}, \{w_2, w_3\}, \{w_1, w_2, w_3\}\}$$

$$\begin{array}{c|cccc}
1 \backslash 2 & B & S \\
\hline
B & w_1 & w_2 \\
S & w_2 & w_3
\end{array}$$

$$E(\{1,2\}) = \{\{w_1\}, \{w_2\}, \{w_3\}, \{w_1, w_2\}, \{w_1, w_3\}, \{w_2, w_3\}, \{w_1, w_2, w_3\}\}$$

$$E(\{1\}) = \{\{w_1, w_2\}, \{w_2, w_3\}, \{w_1, w_2, w_3\}\}$$

$$E(\{2\}) = \{\{w_1, w_2\}, \{w_2, w_3\}, \{w_1, w_2, w_3\}\}$$

$$\begin{array}{c|cccc}
1 \backslash 2 & B & S \\
\hline
B & w_1 & w_2 \\
S & w_2 & w_3
\end{array}$$

$$E(\{1,2\}) = \{\{w_1\}, \{w_2\}, \{w_3\}, \{w_1, w_2\}, \{w_1, w_3\}, \{w_2, w_3\}, \{w_1, w_2, w_3\}\}\}$$

$$E(\{1\}) = \{\{w_1, w_2\}, \{w_2, w_3\}, \{w_1, w_2, w_3\}\}\}$$

$$E(\{2\}) = \{\{w_1, w_2\}, \{w_2, w_3\}, \{w_1, w_2, w_3\}\}\}$$

$$E(\emptyset) = \{\{w_1, w_2, w_3\}\}$$

Outline

- 2 Correspondence

Correspondence Between Concrete and Abstract Models

Which effectivity patterns correspond to models of "ordinary" games (i.e., our concrete models)?

Playable Effectivity Functions

Definition (Playability (Pauly 2001))

An effectivity function E is playable iff the following conditions hold:

Outcome monotonicity: $X \in E(C)$ and $X \subseteq Y$ implies $Y \in E(C)$;

Liveness: $\emptyset \notin E(C)$; Safety: $E(C) \neq \emptyset$;

Agt-maximality: $\overline{X} \notin E(\emptyset)$ implies $X \in E(Agt)$;

Superadditivity: if $C \cap D = \emptyset$, $X \in E(C)$ and $Y \in E(D)$, then

 $X \cap Y \in E(C \cup D);$

Theorem (Pauly 2001)

A coalitional effectivity function E corresponds to a strategic game if and only if E is playable.

Correspondence Between Concrete and Abstract Models

How to read the result?

- We characterize the limitations of concrete models
- Implementability: we characterize which abstract patterns of effectivity can be implemented by concrete models
- We characterize classes of models for which the semantics of strategic logics if fully equivalent

Correspondence Between Concrete and Abstract Models

How to read the result?

- We characterize the limitations of concrete models
- Implementability: we characterize which abstract patterns of effectivity can be implemented by concrete models
- We characterize classes of models for which the semantics of strategic logics if fully equivalent

Unfortunately, the result is wrong!

Counterexample to Representation Theorem

We start with the following observation:

Theorem

For every effectivity function E of a strategic game, $E(\emptyset)$ is the principal filter generated by

$$Z = \{w \in W \mid w = o(s_{Agt}) \text{ for some strategy profile } s_{Agt} \}.$$

The following function is playable but $E(\emptyset)$ is not a principal filter:

$$\begin{array}{rcl} \mathbb{A}\mathrm{gt} &=& \{a\} \\ W &=& \mathbb{N} \\ E(\mathbb{A}\mathrm{gt}) &=& \{X \mid X \text{ is infinite}\} \\ E(\emptyset) &=& \{X \mid \overline{X} \text{ is finite}\} \end{array}$$

Correct Correspondence

Definition (True playability)

An effectivity function E is truly playable iff the following conditions hold:

Outcome monotonicity: $X \in E(C)$ and $X \subseteq Y$ implies $Y \in E(C)$;

Liveness: $\emptyset \notin E(C)$;

Safety: $E(C) \neq \emptyset$;

Agt-maximality: $\overline{X} \notin E(\emptyset)$ implies $X \in E(Agt)$;

Superadditivity: if $C \cap D = \emptyset$, $X \in E(C)$ and $Y \in E(D)$, then

 $X \cap Y \in E(C \cup D);$

Determinacy: if $X \in E(N)$ then $\{w\} \in E(N)$ for some $w \in X$.

Correct Correspondence

Theorem (Goranko, Jamroga and Turrini 2011)

A coalitional effectivity function E corresponds to a strategic game if and only if E is **truly** playable.

Theorem

In finite domains playability implies true playability.

Theorem

In finite domains playability implies true playability.

In consequence, Pauly's characterization is correct for effectivity functions over finite sets of outcomes.

Theorem

In finite domains playability implies true playability.

In consequence, Pauly's characterization is correct for effectivity functions over finite sets of outcomes.

- → No disastrous consequences for axiomatizations as long as the logic has finite model property (basic ATL does)
- → On the other hand: SL doesn't; open problem for ATL with imperfect information

Theorem

In finite domains playability implies true playability.

In consequence, Pauly's characterization is correct for effectivity functions over finite sets of outcomes.

- No disastrous consequences for axiomatizations as long as the logic has finite model property (basic ATL does)
- → On the other hand: SL doesn't; open problem for ATL with imperfect information

Anyway, who cares about infinite domains?

What else is in the paper?

- Alternative characterizations of truly playable functions
- Characterization and examples of non-truly playable effectivity functions
- Translation of playable to truly playable effectivity functions, preserving the power of most (but not all) coalitions
- Logical (and axiomatic) characterization of true playability

Valentin Goranko, Wojciech Jamroga and Paolo Turrini (2013), Strategic Games and Truly Playable Effectivity Functions. *Journal of Autonomous Agents and Multi-Agent Systems*, 26(2), pp. 288-314, Springer.

Thank you for your attention!