Master in Artificial Intelligence

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MI F

Prediction Model Estimation: Log-Linear & MaxEnt

Advanced Human Language Technologies Statistical Models of Language

- 1 Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
- 2 Prediction Models
 - Overview
- 3 Prediction Model Estimation: MLE
 - Overview
 - Smoothing & Estimator Combination
- 4 Prediction Model Estimation: Log-Linear & MaxEnt
 - Introduction
 - Log-Linear Models
 - Maximum Entropy Models
 - Examples
 - Summary

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

- Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
- 2 Prediction Models
 - Overview
- 3 Prediction Model Estimation: MLE
 - Overview
 - Smoothing & Estimator Combination
- 4 Prediction Model Estimation: Log-Linear & MaxEnt
 - Introduction
 - Log-Linear Models
 - Maximum Entropy Models
 - Examples
 - Summary

Statistical Models for NLP Why modeling

Prediction Models

Prediction Model Estimation:

MIF

Statistical Models for NLP

Why modeling Prediction

Models

Prediction Model Estimation: MLE

Statistical Models for NLP

Why modeling

Prediction Models

Prediction Model Estimation: MLE

Statistical Models for NLP

Why modeling

Prediction Models

Prediction Model Estimation: MLE

Statistical Models for NLP

Why modeling

Prediction Models

Prediction Model Estimation: MLE

Statistical Models for NLP

Why modeling

Prediction Models

Prediction Model Estimation: MLE

Statistical Models for NLP

Why modeling

Prediction Models

Prediction Model Estimation: MLE

- Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
- 2 Prediction Models
 - Overview
- 3 Prediction Model Estimation: MLE
 - Overview
 - Smoothing & Estimator Combination
- 4 Prediction Model Estimation: Log-Linear & MaxEnt
 - Introduction
 - Log-Linear Models
 - Maximum Entropy Models
 - Examples
 - Summary

Statistical Models for NLP

Similarity Models
Prediction

Models
Prediction
Model

Model Estimation: MLE

Prediction Models & Similarity Models

Statistical Models for NLP Prediction &

Similarity Models

Prediction Models

Prediction Model Estimation: MLE

- Prediction Models: Oriented to predict probabilities of future events, knowing past and present.
- Similarity Models: Oriented to compute similarities between objects (may be used to predict, EBL). [

- 1 Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
- 2 Prediction Models
 - Overview
 - 3 Prediction Model Estimation: MLE
 - Overview
 - Smoothing & Estimator Combination
- 4 Prediction Model Estimation: Log-Linear & MaxEnt
 - Introduction
 - Log-Linear Models
 - Maximum Entropy Models
 - Examples
 - Summary

Statistical Models for NLP

Prediction Models

Model Estimation: MLE

- 1 Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
- 2 Prediction Models
 - Overview
- 3 Prediction Model Estimation: MLE
 - Overview
 - Smoothing & Estimator Combination
- 4 Prediction Model Estimation: Log-Linear & MaxEnt
 - Introduction
 - Log-Linear Models
 - Maximum Entropy Models
 - Examples
 - Summary

Statistical Models for NLP

Prediction Models Overview

Model Estimation: MLE

Prediction Models

Example: Noisy Channel Model (Shannon 48)

NLP Applications

Appl.	Input	Output	p(i)	p(o i)
MT	L word	M word	p(L)	Translation
	sequence	sequence		model
OCR	Actual text	Text with	prob. of	model of
		mistakes	language text	OCR errors
PoS	PoS tags	word	prob. of PoS	p(w t)
tagging	sequence	sequence	sequence	
Speech	word	speech	prob. of word	acoustic
recog.	sequence	signal	sequence	model

Given o, we want to find the most likely i

$$\mathop{\mathsf{argmax}}_{\mathbf{i}} P(\mathbf{i} \mid \mathbf{o}) = \mathop{\mathsf{argmax}}_{\mathbf{i}} P(\mathbf{o}, \mathbf{i}) = \mathop{\mathsf{argmax}}_{\mathbf{i}} P(\mathbf{i}) P(\mathbf{o} \mid \mathbf{i})$$

Statistical Models for NLP

Prediction Models Overview

Prediction Model Estimation: MLE

Using Prediction Models

- Statistical Models for NLP
- Prediction Models Overview

Prediction Model Estimation: MLE

- Estimation: Using data to infer information about distributions. A.k.a. *learning*.
- Classification: Make predictions based on past behaviour
- In general, ML models estimate (i.e. *learn*) conditional probability distributions P(target|features), e.g.:
 - language identification given word or subword features.
 - document category given words in it.
 - word PoS given context information.
 - **...**
- Many NLP tasks require a posterior search step to find the best combination of predictions.

- 1 Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
- 2 Prediction Models
 - Overview
- 3 Prediction Model Estimation: MLE
 - Overview
 - Smoothing & Estimator Combination
- 4 Prediction Model Estimation: Log-Linear & MaxEnt
 - Introduction
 - Log-Linear Models
 - Maximum Entropy Models
 - Examples
 - Summary

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

- 1 Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
- 2 Prediction Models
 - Overview
- 3 Prediction Model Estimation: MLE
 - Overview
 - Smoothing & Estimator Combination
- 4 Prediction Model Estimation: Log-Linear & MaxEnt
 - Introduction
 - Log-Linear Models
 - Maximum Entropy Models
 - Examples
 - Summary

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Finding good estimators: MLE

Maximum Likelihood Estimation (MLE)

- Choose the alternative that maximizes the probability of the observed outcome.
- lacksquare $\bar{\mu}_n$ is a MLE for E(X)
- s_n^2 is a MLE for σ^2
- Zipf's Laws. Data sparseness. Smoothing tecnhiques.

P(x, y)	dans	en	à	sur	au-cours-de	pendant	selon	
in	0.04	0.10	0.15	0	0.08	0.03	0	0.40
on	0.06	0.25	0.10	0.15	0	0	0.04	0.60
total	0.10	0.35	0.25	0.15	0.08	0.03	0.04	1.0

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Working Example: N-gram models

■ Predict the next element in a sequence (e.g. next character, next word, next PoS, next stock value, ...), given the *history* of previous elements: $P(w_n \mid w_1 \dots w_{n-1})$

- Markov assumption: Only *local* context (of size n-1) is taken into account. $P(w_i \mid w_{i-n+1} \dots w_{i-1})$
- bigrams, trigrams, four-grams (n = 2, 3, 4). Sue swallowed the large green <?>
- Parameter estimation (number of equivalence classes)
- Parameter reduction: stemming, semantic classes, PoS, ...

Model	Parameters		
bigram	$20,000^2 = 4 \times 10^8$		
trigram	$20,000^3 = 8 \times 10^{12}$		
four-gram	$20,000^4 = 1.6 \times 10^{17}$		

Language model sizes for a 20,000 words vocabulary

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

N-gram model estimation

Estimate the probability of the target feature based on observed data. The prediction task can be reduced to having good estimations of the n-gram distribution:

$$P(w_n \mid w_1 \dots w_{n-1}) = \frac{P(w_1 \dots w_n)}{P(w_1 \dots w_{n-1})}$$

MLE (Maximum Likelihood Estimation)

$$P_{MLE}(w_1...w_n) = \frac{C(w_1...w_n)}{N} P_{MLE}(w_n \mid w_1...w_{n-1}) = \frac{C(w_1...w_n)}{C(w_1...w_{n-1})}$$

- No probability mass for unseen events
- Data sparseness, Zipf's Law
- Unsuitable for NLP (widely used, though)

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Brief Parenthesis: Zipf's Laws

Zipf's Laws (1929)

- Word frequency is inversely proportional to its rank (speaker/hearer minimum effort) $f \sim 1/r$
- \blacksquare Number of senses is proportional to frequency root $m \sim \sqrt{f}$
- Frequency of intervals between repetitions is inversely proportional to the length of the interval $F \sim 1/I$
- Frequency based approaches are hard, since most words are rare
 - Most common 5% words account for about 50% of a text
 - 90% least common words account for less than 10% of the text
 - Almost half of the words in a text occurr only once

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

- 1 Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
- 2 Prediction Models
 - Overview
- 3 Prediction Model Estimation: MLE
 - Overview
 - Smoothing & Estimator Combination
 - Adding counts
 - Discounting counts
 - Combining Estimators
- 4 Prediction Model Estimation: Log-Linear & MaxEnt
 - Introduction
 - Log-Linear Models
 - Maximum Entropy Models
 - Examples
 - Summary

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Smoothing & Estimator Combination

Model
Estimation:
Log-Linear &
MaxEnt

- 1 Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
- 2 Prediction Models
 - Overview
- 3 Prediction Model Estimation: MLE
 - Overview
 - Smoothing & Estimator Combination
 - Adding counts
 - Discounting counts
 - Combining Estimators
- 4 Prediction Model Estimation: Log-Linear & MaxEnt
 - Introduction
 - Log-Linear Models
 - Maximum Entropy Models
 - Examples
 - Summary

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Adding counts

Laplace's Law

LAPLACE'S LAW (adding one count)

General rule:

$$P_{LAP}(X = x) = \frac{C(X = x) + 1}{N + B}$$

N: number of observations of X B: number of potentially observable values for X

N-gram probability:

$$P_{LAP}(w_1 \dots w_n) = \frac{C(w_1 \dots w_n) + 1}{N + B}$$
 Servations B: number of n-gram observations

N: total number of n-gram ob-

able different n-grams

N-gram conditional probability:

$$P_{LAP}(w_n \mid w_1 \dots w_{n-1}) = \frac{C(w_1 \dots w_n) + 1}{C(w_1 \dots w_{n-1}) + B}$$

B: number of potentially observable wn values

For large values of B too much probability mass is assigned to unseen events.

Statistical Models for NI P

Prediction Models

Prediction Model Estimation: MIF

Adding counts

Lidstone's Law

LIDSTONE'S LAW (adding λ counts, with $\lambda < 1$)

General rule:

$$P_{LAP}(X = x) = \frac{C(X = x) + \lambda}{N + B\lambda}$$

N: number of observations of X B: number of potentially observable values for X

N-gram probability:

$$P_{LAP}(w_1 \dots w_n) = \frac{C(w_1 \dots w_n) + \lambda}{N + B\lambda}$$
 servations B: number of potentially observ-

N: total number of n-gram ob-

able different n-grams

N-gram conditional probability:

$$P_{LAP}(w_n \mid w_1 \dots w_{n-1}) = \frac{C(w_1 \dots w_n) + \lambda}{C(w_1 \dots w_{n-1}) + B\lambda} \begin{tabular}{ll} B: \textit{number of potentially observable } w_n \\ \textit{values} \end{tabular}$$

Equivalent to linear interpolation between MLE and uniform prior: with $\mu=N/(N+B\lambda);$ $P_{\rm LID}(X=x)=\mu\frac{C(X=x)}{N}+(1-\mu)\frac{1}{D}$

Statistical Models for NI P

Prediction Models

Prediction Model Estimation: MIF

Adding counts

- 1 Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
- 2 Prediction Models
 - Overview
- 3 Prediction Model Estimation: MLE
 - Overview
 - Smoothing & Estimator Combination
 - Adding counts
 - Discounting counts
 - Combining Estimators
- 4 Prediction Model Estimation: Log-Linear & MaxEnt
 - Introduction
 - Log-Linear Models
 - Maximum Entropy Models
 - Examples
 - Summary

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Discounting counts

Absolute Discounting

Absolute Discounting (discount δ counts, with $0 < \delta < 1$)

General rule

$$P_{ABS}(X=x) = \left\{ \begin{array}{ll} \frac{C(X=x) - \delta}{N} & \text{if } C(w_1 \dots w_n) > 0 \\ \frac{(B - N_0)\delta/N_0}{N} & \text{otherwise} \end{array} \right.$$

 N_0 : number of possible values for X observed 0 times

N-gram probability:

$$P_{ABS}(w_1 \dots w_n) = \begin{cases} \frac{C(w_1 \dots w_n) - \delta}{N} & \text{if } C(w_1 \dots w_n) > 0 \\ \frac{(B - N_0)\delta/N_0}{N} & \text{otherwise} \end{cases}$$

Discounting counts

Prediction Model Estimation: Log-Linear & MaxEnt

Statistical Models for NI P

Prediction Models

Prediction

Model Estimation: MI F

N-gram conditional probability:

$$P_{ABS}(w_n \mid w_1 \dots w_{n-1}) = \left\{ \begin{array}{ll} \frac{C(w_1 \dots w_n) - \delta}{C(w_1 \dots w_{n-1})} & \text{if } C(w_1 \dots w_n) > 0 \\ \frac{(B - N_0) \delta / N_0}{C(w_1 \dots w_{n-1})} & \text{otherwise} \end{array} \right.$$

 N_0 : number of possible values for w_n observed 0 times

Linear Discounting

LINEAR DISCOUNTING (discount a proportion α of counts)

General rule

$$P_{LIN}(X=x) = \left\{ \begin{array}{ll} (1-\alpha)\frac{C(X=x)}{N} & \text{if } C(X=x) > 0 \\ \alpha/N_0 & \text{otherwise} \end{array} \right.$$

 N_0 : number of possible values for X observed 0 times

N-gram probability:

$$P_{LIN}(w_1 \dots w_n) = \begin{cases} (1-\alpha) \frac{C(w_1 \dots w_n)}{N} & \text{if } C(w_1 \dots w_n) > 0 \\ \alpha/N_0 & \text{otherwise} \end{cases}$$

 N_0 : number of possible n-grams observed 0 times

N-gram conditional probability:

$$\mathsf{P}_{\mathsf{LIN}}(w_{\mathsf{n}} \mid w_1 \dots w_{\mathsf{n}-1}) = \left\{ \begin{array}{ll} (1-\alpha) \frac{\mathsf{C}(w_1 \dots w_{\mathsf{n}})}{\mathsf{C}(w_1 \dots w_{\mathsf{n}-1})} & \text{if } \mathsf{C}(w_1 \dots w_{\mathsf{n}}) > 0 \\ \alpha/\mathsf{N}_0 & \text{otherwise} \end{array} \right.$$

 N_0 : number of possible values for w_n observed 0 times

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Discounting counts

- 1 Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
- 2 Prediction Models
 - Overview
- 3 Prediction Model Estimation: MLE
 - Overview
 - Smoothing & Estimator Combination
 - Adding counts
 - Discounting counts
 - Combining Estimators
- 4 Prediction Model Estimation: Log-Linear & MaxEnt
 - Introduction
 - Log-Linear Models
 - Maximum Entropy Models
 - Examples
 - Summary

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Combining Estimators

Combining Estimators

COMBINING ESTIMATORS FOR CONDITIONAL N-GRAM PROBABILITIES

Linear Interpolation:

$$\begin{array}{lll} P_{LI}(w_n \mid w_{n-2}, w_{n-1}) & = & \lambda_1 P_1(w_n) \\ & & + & \lambda_2 P_2(w_n \mid w_{n-1}) \\ & & + & \lambda_3 P_3(w_n \mid w_{n-2}, w_{n-1}) \end{array}$$

Backing-off:

$$P_{BO}(w_n \mid h_i) = \left\{ \begin{array}{ll} \alpha_{h_i} \frac{C(h_i, w_n)}{C(h_i)} & \text{if } C(h_i, w_n) > k \\ \delta_{h_{i-1}} P_{BO}(w_n \mid h_{i-1}) & \text{otherwise} \end{array} \right.$$

 $\begin{array}{l} h_i = w_{n-i} \ldots w_{n-1} \text{: recent history of length i.} \\ \alpha_{h_i} \text{: remaining proportion after discount.} \\ \delta_{h_{i-1}} \text{: mass assigned to back-off distribution.} \end{array}$

- Constant: $\alpha_{h_i} = 1 \delta_{h_{i-1}} = K$; $\forall h$
- Katz back-off (based on Good-Turing estimation)

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Combining Estimators

- 1 Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
- 2 Prediction Models
 - Overview
- 3 Prediction Model Estimation: MLE
 - Overview
 - Smoothing & Estimator Combination
- 4 Prediction Model Estimation: Log-Linear & MaxEnt
 - Introduction
 - Log-Linear Models
 - Maximum Entropy Models
 - Examples
 - Summary

Statistical Models for NLP

Models
Prediction
Model
Estimation:

MIF

- 1 Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
- 2 Prediction Models
 - Overview
- 3 Prediction Model Estimation: MLE
 - Overview
 - Smoothing & Estimator Combination
- 4 Prediction Model Estimation: Log-Linear & MaxEnt
 - Introduction
 - Log-Linear Models
 - Maximum Entropy Models
 - Examples
 - Summary

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Example: Identifying Sentence Boundaries

EXAMPLE

The president lives in Washington, D.C. The presidents met in Washington D.C. in 2010. Mr. Wayne is young. Mr. Wayne is a Ph.D. I got 98.5%! What?

Goal: given a text, identify tokens that end a sentence.

- Candidate characters: . ! ?
- Candidate tokens: tokens containing candidate characters
- Given a candidate token in a context decide whether it ends a sentence or not

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Example: Sentence Boundaries

- Object to classify: punctuation sign + context
 x = <sign, prefix, suffix, previous, next>
- Assume access to annotated data:

y	sign	prefix	suffix	prev	next
no		D	C.	Washington,	The
yes		D.C		Washington,	The
no		Mr		2010.	Wayne

- Let's take a probabilistic approach:
 - P(yes | x): conditional probability of x being end of sentence,
 - P(no | x): conditional probability of x *not* being e.o.s.
 - $P(yes \mid x) + P(no \mid x) = 1$
 - Predict yes if P(yes | x) > 0.5
- How to model P(yes | x) and P(no | x)?

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

Introduction

- 1 Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
- 2 Prediction Models
 - Overview
- 3 Prediction Model Estimation: MLE
 - Overview
 - Smoothing & Estimator Combination
- 4 Prediction Model Estimation: Log-Linear & MaxEnt
 - Introduction
 - Log-Linear Models
 - Maximum Entropy Models
 - Examples
 - Summary

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt Log-Linear Models

Log-Linear Models

Log-Linear models take the form:

$$P(y \mid x; \mathbf{w}) = \frac{\exp\left(\mathbf{w} \cdot \mathbf{f}(x, y)\right)}{Z(x)} = \frac{\exp\left(\mathbf{w} \cdot \mathbf{f}(x, y)\right)}{\sum_{y} \exp\left(\mathbf{w} \cdot \mathbf{f}(x, y)\right)}$$

where

- $f(x,y) \in \mathbb{R}^d$ is a feature vector representing a *context* x and a *label* y
- $\mathbf{w} \in \mathbb{R}^d$ is a vector containing the *parameters* of the model
- $\mathbf{w} \cdot \mathbf{f}(x,y) = \sum_{i=1}^d w_i f_i(x,y)$ is a *score* for x and y
- $Z(x) = \sum_{y} \exp(\mathbf{w} \cdot \mathbf{f}(x, y))$ is a normalizer (sum of scores for all possible values for y); a.k.a partition function

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

Log-Linear Models

Features, Indicator Features

 $\quad \ \ \mathbf{f}(x,y) \in \mathbb{R}^d \text{ is a vector of } d \text{ features encoding some information about } x \text{ and } y$

$$f(x, y) = (f_1(x, y), ..., f_k(x, y), ..., f_d(x, y))$$

- What's in a feature $f_k(x, y)$?
 - **Anything** we can compute using x and y (and *suitable* for the task at hand)
 - **Anything** informative for (or against) x belonging to class y.
 - Usually, they are indicator features: binary-valued features looking at a (simple) property.

$$\begin{split} f_1(x,y) &= \left\{ \begin{array}{ll} 1 & \text{if prefix}(x) = \textit{Mr} \text{ and } y = \text{no} \\ 0 & \text{otherwise} \end{array} \right. \\ f_2(x,y) &= \left\{ \begin{array}{ll} 1 & \text{if uppercase}(\text{next}(x)) \text{ and } y = \text{yes} \\ 0 & \text{otherwise} \end{array} \right. \end{split}$$

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

Log-linear Models: Name

Let's take the log of the conditional probability:

$$\log P(y \mid x; \mathbf{w}) = \log \frac{\exp(\mathbf{w} \cdot \mathbf{f}(x, y))}{\sum_{y} \exp(\mathbf{w} \cdot \mathbf{f}(x, y))}$$
$$= \mathbf{w} \cdot \mathbf{f}(x, y) - \log \sum_{y} \exp(\mathbf{w} \cdot \mathbf{f}(x, y))$$
$$= \mathbf{w} \cdot \mathbf{f}(x, y) - \log Z(x)$$

- $\log Z(x)$ is a constant for a fixed x
- In the log space, computations are linear

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

• Given x, what y in $\{1, ..., L\}$ is most appropriate?

$$\mathsf{best_label}(x) = \underset{y \in \{1, \dots, L\}}{\mathsf{argmax}} \ \mathsf{P}(y \mid x; \mathbf{w})$$

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

• Given x, what y in $\{1, ..., L\}$ is most appropriate?

$$\begin{aligned} \mathsf{best_label}(x) &= \underset{y \in \{1, \dots, L\}}{\mathsf{argmax}} & P(y \mid x; \mathbf{w}) \\ &= \underset{y \in \{1, \dots, L\}}{\mathsf{argmax}} & \frac{\mathsf{exp}\left(\mathbf{w} \cdot \mathbf{f}(x, y)\right)}{\mathsf{Z}(x)} \end{aligned}$$

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

• Given x, what y in $\{1, ..., L\}$ is most appropriate?

$$\begin{aligned} \mathsf{best_label}(x) &= \underset{y \in \{1, \dots, L\}}{\mathsf{argmax}} & P(y \mid x; \mathbf{w}) \\ &= \underset{y \in \{1, \dots, L\}}{\mathsf{argmax}} & \frac{\mathsf{exp}\left(\mathbf{w} \cdot \mathbf{f}(x, y)\right)}{\mathsf{Z}(x)} \\ &= \underset{y \in \{1, \dots, L\}}{\mathsf{argmax}} & \mathsf{exp}\left(\mathbf{w} \cdot \mathbf{f}(x, y)\right) \end{aligned}$$

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

• Given x, what y in $\{1, ..., L\}$ is most appropriate?

```
\begin{aligned} \mathsf{best\_label}(x) &= \underset{y \in \{1, \dots, L\}}{\mathsf{argmax}} \; P(y \mid x; \mathbf{w}) \\ &= \underset{y \in \{1, \dots, L\}}{\mathsf{argmax}} \; \frac{\mathsf{exp}\left(\mathbf{w} \cdot \mathbf{f}(x, y)\right)}{\mathsf{Z}(x)} \\ &= \underset{y \in \{1, \dots, L\}}{\mathsf{argmax}} \; \mathsf{exp}\left(\mathbf{w} \cdot \mathbf{f}(x, y)\right) \\ &= \underset{y \in \{1, \dots, L\}}{\mathsf{argmax}} \; \mathbf{w} \cdot \mathbf{f}(x, y) \end{aligned}
```

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

• Given x, what y in $\{1, ..., L\}$ is most appropriate?

$$\begin{aligned} \mathsf{best_label}(x) &= \underset{y \in \{1, \dots, L\}}{\mathsf{argmax}} \; P(y \mid x; \mathbf{w}) \\ &= \underset{y \in \{1, \dots, L\}}{\mathsf{argmax}} \; \frac{\mathsf{exp}\left(\mathbf{w} \cdot \mathbf{f}(x, y)\right)}{Z(x)} \\ &= \underset{y \in \{1, \dots, L\}}{\mathsf{argmax}} \; \mathsf{exp}\left(\mathbf{w} \cdot \mathbf{f}(x, y)\right) \\ &= \underset{y \in \{1, \dots, L\}}{\mathsf{argmax}} \; \mathbf{w} \cdot \mathbf{f}(x, y) \end{aligned}$$

- Predictions only require simple dot products (linear)
- No need to exponentiate!

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

Log-linear Models: Computing Probabilities

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

Log-Linear Models

■ Sometimes we will be interested in computing $P(y \mid x)$, not just the argmax.

 $P(y \mid x)$ can be used as a measure of confidence in the prediction, e.g.:

$$P(yes | x) = 0.51$$
 vs. $P(yes | x) = 0.99$

Since:
$$P(y \mid x; \mathbf{w}) = \frac{\exp(\mathbf{w} \cdot \mathbf{f}(x, y))}{Z(x)}$$

we need to compute: $Z(x) = \sum_{y=\{1,...,L\}} \exp(\mathbf{w} \cdot \mathbf{f}(x, y))$

■ Feasible as long as L is not too large

Parameter Estimation in Log-linear Models

■ How to estimate model parameters w given a training set:

$$\left\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\ldots,(x^{(m)},y^{(m)})\right\}$$

■ We define the conditional log-likelihood of the data:

$$L(\mathbf{w}) = \frac{1}{m} \sum_{k=1}^{m} \log P(y^{(k)}|x^{(k)}; \mathbf{w})$$

- $L(\mathbf{w})$ measures how well \mathbf{w} explains the data. A good value for \mathbf{w} will give a high value for $P(y^{(k)}|x^{(k)};\mathbf{w})$ for all $k=1\ldots m$.
- We want w that maximizes L(w)

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

Parameter Estimation in Log-Linear Models

Estimating model parameters is an optimization problem, aiming to find:

$$\mathbf{w}^* = \mathop{\mathsf{argmax}}_{\mathbf{w} \in \mathbb{R}^d} L(\mathbf{w})$$

But low-frequency features may end up having large weights (i.e. overfitting).

Thus, we need a regularization factor that penalizes solutions with a large norm (similar to norm-minimization in SVM), redefining $L(\mathbf{w})$ as:

$$L(\mathbf{w}) = \frac{1}{m} \sum_{k=1}^{m} \log P(y^{(k)}|x^{(k)}; \mathbf{w}) - \frac{\lambda}{2} ||\mathbf{w}||^{2}$$

where λ is a parameter to control the trade-off between fitting the data and model complexity. Tuned experimentally.

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt Log-Linear Models

Parameter Estimation in Log-Linear Models

So we want to find:

$$\begin{split} \mathbf{w}^* &= \underset{\mathbf{w} \in \mathbb{R}^d}{\mathsf{argmax}} \, L(\mathbf{w}) \\ &= \underset{\mathbf{w} \in \mathbb{R}^d}{\mathsf{argmax}} \left(\frac{1}{m} \sum_{k=1}^m \log P(y^{(k)}|x^{(k)}; \mathbf{w}) - \frac{\lambda}{2} ||\mathbf{w}||^2 \right) \end{split}$$

- In general there is no analytical solution to this optimization.
- ... but it is a convex function ⇒ nummerical optimization iterative techniques, i.e. gradient-based optimization, may be used.
- Very fast algorithms exist (e.g. LBFGS).

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

Parameter Estimation in Log-Linear Models : Gradient step

- Initialize $\mathbf{w} = \mathbf{0}$
- Repeat
 - Compute gradient $\delta = (\delta_1, ..., \delta_d)$, where:

$$\delta_{j} = \frac{\partial L(\mathbf{w})}{\partial w_{j}} \quad \forall j = 1 \dots d$$

Compute step size

$$\beta^* = \operatorname*{argmax}_{\beta \in \mathbb{R}} L(\mathbf{w} + \beta \delta)$$

■ Move w in the direction of the gradient

$$\mathbf{w} \leftarrow \mathbf{w} + \boldsymbol{\beta}^* \boldsymbol{\delta}$$

lacksquare until convergence $(\|oldsymbol{\delta}\|<\epsilon)$

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

Log-linear Models: Computing the Gradient

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

$$\begin{split} \frac{\partial L(\mathbf{w})}{\partial \mathbf{w}_{j}} &= \frac{1}{m} \sum_{k=1}^{m} f_{j}(\boldsymbol{x}^{(k)}, \boldsymbol{y}^{(k)}) \\ &- \sum_{k=1}^{m} \sum_{\boldsymbol{y} \in \{1, \dots, L\}} P(\boldsymbol{y} | \boldsymbol{x}^{(k)}; \mathbf{w}) \ f_{j}(\boldsymbol{x}^{(k)}, \boldsymbol{y}) \\ &- \lambda w_{j} \end{split}$$

- First term: observed mean feature value
- Second term: expected feature value under current w
- In the optimal, observed = expected

Outline

- 1 Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
- 2 Prediction Models
 - Overview
- 3 Prediction Model Estimation: MLE
 - Overview
 - Smoothing & Estimator Combination
- 4 Prediction Model Estimation: Log-Linear & MaxEnt
 - Introduction
 - Log-Linear Models
 - Maximum Entropy Models
 - Examples
 - Summary

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

Models

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

Maximum Entropy Models Example: Maximum entropy model for translating English prepositions *in* and *on* to French.

No observations (no constraints)

P(x, y)	dans	en	à	sur	au-cours-de	pendant	selon	
in	0.07	0.07	0.07	0.07	0.07	0.07	0.07	
on	0.07	0.07	0.07	0.07	0.07	0.07	0.07	
total								1.0

Example: Maximum entropy model for translating English prepositions *in* and *on* to French.

Observations (constraints):

$$p(\mathsf{en} \lor \grave{\mathsf{a}}) = 0.6$$

P(x, y)	dans	en	à	sur	au-cours-de	pendant	selon	
in		0.15			0.04	0.04	0.04	
on	0.04	0.15	0.15	0.04	0.04	0.04	0.04	
total		J						1.0
		0.	6					

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

Example: Maximum entropy model for translating English prepositions *in* and *on* to French.

Observations (constraints):

$$p(en \lor \grave{a}) = 0.6; \quad p((en \lor \grave{a}) \land in) = 0.4$$

P	$\mathbf{P}(\mathbf{x}, \mathbf{y})$	dans	en	à	sur	au-cours-de	pendant	selon	
	in		0.20			0.04	0.04	0.04	
	on	0.04	0.10	0.10	0.04	0.04	0.04	0.04	
	total								1.0
		0.6							

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

Example: Maximum entropy model for translating English prepositions *in* and *on* to French.

Observations (constraints):

$$p(\mathsf{en} \lor \grave{\mathsf{a}}) = \mathsf{0.6}; \quad p((\mathsf{en} \lor \grave{\mathsf{a}}) \land \mathsf{in}) = \mathsf{0.4}; \quad p(\mathsf{in}) = \mathsf{0.5}$$

P(x, y)	dans	en	à	sur	au-cours-de	pendant	selon	
in	0.02	0.20	0.20	0.02	0.02	0.02	0.02	0.5
on	0.06	0.10	0.10	0.06	0.06	0.06	0.06	
total			.6					1.0

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

Example: Maximum entropy model for translating English prepositions *in* and *on* to French.

Observations (constraints):

$$p(\mathsf{en} \vee \grave{\mathsf{a}}) = 0.6; \quad p((\mathsf{en} \vee \grave{\mathsf{a}}) \wedge \mathsf{in}) = 0.4; \quad p(\mathsf{in}) = 0.5; \quad p(\mathsf{sur}) = 0.1$$

P(x, y)	dans	en	à	sur	au-cours-de	pendant	selon	
in	0.02	0.20	0.20	0.02	0.02	0.02	0.02	0.5
on	0.06	0.10	0.10	0.06	0.06	0.06	0.06	
total				0.1				1.0
		0	.6					

Statistical Models for NLP

Prediction Models

Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

Example: Maximum entropy model for translating English prepositions *in* and *on* to French.

Observations (constraints):

$$p(\mathsf{en} \vee \grave{\mathsf{a}}) = 0.6; \quad p((\mathsf{en} \vee \grave{\mathsf{a}}) \wedge \mathsf{in}) = 0.4; \quad p(\mathsf{in}) = 0.5; \quad p(\mathsf{sur}) = 0.1$$

P(x, y)	dans	en	à	sur	au-cours-de	pendant	selon	
in					0.02	0.02	0.02	0.5
on	0.06	0.10	0.10	0.06	0.06	0.06	0.06	
total			,	0.1				1.0
		0	.6					

Not so easy...

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

Maximum entropy Models

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

Maximum Entropy Models MaxEnt models: dual formulation of Log-Linear models.

ME principles:

- Do not assume anything about non-observed events.
- Find the most uniform (maximum entropy, less informed) probability distribution that matches the observations.

ME Modeling

- Observed facts are constraints for the desired model p.
- Constraints take the form of feature functions:

$$f_i: \epsilon \to \{0, 1\}$$

The desired model p must satisfy the constraints:
The expectation predicted by model p for any feature fi must match the observed expectation for fi i.e.:

$$\begin{array}{rcl} E_{\mathfrak{p}}(f_{\mathfrak{i}}) & = & E_{\widetilde{\mathfrak{p}}}(f_{\mathfrak{i}}) & \forall \mathfrak{i} \\ \sum_{x \in \varepsilon} p(x) f_{\mathfrak{i}}(x) & = & \sum_{x \in \varepsilon} \widetilde{\mathfrak{p}}(x) f_{\mathfrak{i}}(x) & \forall \mathfrak{i} \end{array}$$

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

Probability Model

■ There is an infinite set P of probability models consistent with observations:

$$P = \{p \mid E_{p}(f_{i}) = E_{\widetilde{p}}(f_{i}), \quad \forall i\}$$

Maximum entropy model

$$\begin{split} p^* &= \underset{p \in P}{\mathsf{argmax}} \, H(p) \\ &= \underset{p \in P}{\mathsf{argmax}} \left(-\sum_{x \in \epsilon} p(x) \log p(x) \right) \end{split}$$

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

Parameter estimation

■ ME models are exponential models, same as log-linear models: Statistical Models for

$$P(y \mid x) = \frac{\exp\left(\mathbf{w} \cdot \mathbf{f}(x, y)\right)}{\sum_{y \in L} \exp\left(\mathbf{w} \cdot \mathbf{f}(x, y)\right)}$$

- Each model parameter weights the influence of a feature.
- Same convex optimization algorithms are used (e.g. LM-BFGS.)
- Optimized cost function is different, but optimum corresponds to the same w than a log-linear model.

NI P

Prediction Models

Prediction Model Estimation: MIF

Prediction Model Estimation: Log-Linear & MaxEnt

Outline

- 1 Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
- 2 Prediction Models
 - Overview
- 3 Prediction Model Estimation: MLE
 - Overview
 - Smoothing & Estimator Combination
- 4 Prediction Model Estimation: Log-Linear & MaxEnt
 - Introduction
 - Log-Linear Models
 - Maximum Entropy Models
 - Examples
 - Summary

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

Example: Identifying Sentence Boundaries

Goal: given a text, identify tokens that end a sentence.

The president lives in Washington, D.C. The presidents met in Washington D.C. in 2010. Mr. Wayne is young. Mr. Wayne is a Ph.D. I got 98.5%! What?

- Candidate characters: . ! ?
- Candidate tokens: tokens containing candidate characters (e.g. D.C., 2010., young., Mr., Ph.D., 98.5%!, What?)
- Given a candidate character in a *context* decide whether the token ends a sentence.

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt Examples

Identifying Sentence Boundaries: Formulation

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

- Object to classify: punctuation sign + context
 x = <sign, prefix, suffix, previous, next>
- Class: $y \in \{yes, no\}$
- Probabilistic approach:
 - **Goal**: estimate P(yes | x) and P(no | x)
 - $P(yes \mid x) + P(no \mid x) = 1$
 - Predict yes if P(yes | x) > 0.5

Identifying Sentence Boundaries: Data set

Assume access to annotated data:

The president lives in Washington, D.C. The presidents met in Washington D.C. in 2010. Mr. Wayne is young. Mr. Wayne is a Ph.D. I got 98.5%! What?

Data set

y	sign	prefix	suffix	prev	next
no		D	C.	Washington,	The
yes		D.C		Washington,	The
no		D	C.	Washington	in
no		D.C		Washington	in
yes		2010		in	Mr.
no		Mr		2010.	Wayne
yes		young		is	Mr.
no		Mr		young.	Wayne
no		Ph	D.	а	1
yes		Ph.D		а	I
no		98	5%!	got	What?
yes	!	98.5%!		got	What?
yes	?	What		98.5%!	$<\!$ eof $>$

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

Identifying Sentence Boundaries: Feature templates

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

Feature templates:

- 1 The prefix: part of the token before the sign.
- 2 The suffix: part of the token after the sign.
 - 3 The previous token.
 - The next token.
- 5 Whether prefix or suffix are in ABBREVIATIONS
- 6 Whether previous or next are in ABBREVIATIONS
- ABBREVIATIONS: list of all tokens in training data that contain sign and are *not* sentence boundaries.
- Actual features are generated by applying each template to each training example.

Identifying Sentence Boundaries: Feature generation

Feature Templates

- 1 The prefix 2 The suffix
- 3 The previous token 4 The next token
- 5 Whether prefix or suffix are in ABBREVIATIONS
- Whether previous or next are in ABBREVIATIONS

Training Data Example 1

 $y = no; x = \langle sign=. pref=Mr suff= prev=2010. next=Wayne \rangle$

Generated Features

$$\begin{split} f_{1,\mathsf{Mr},\mathsf{no}}(x,y) &= \left\{ \begin{array}{ll} 1 & \text{if } \mathsf{pref}(x) = \mathsf{Mr} \\ & \mathsf{and} \ y = \mathsf{no} \end{array} \right. & f_{4,\mathsf{Wayne},\mathsf{no}}(x,y) = \\ 0 & \mathsf{otherwise} \end{array} \\ f_{2,\mathsf{null},\mathsf{no}}(x,y) &= \left\{ \begin{array}{ll} 1 & \mathsf{if suff}(x) = \mathsf{NULL} \\ & \mathsf{and} \ y = \mathsf{no} \\ 0 & \mathsf{otherwise} \end{array} \right. & f_{5,\mathsf{no}}(x,y) = \\ f_{3,2010,\mathsf{no}}(x,y) &= \left\{ \begin{array}{ll} 1 & \mathsf{if prev}(x) = 2010. \\ & \mathsf{and} \ y = \mathsf{no} \\ 0 & \mathsf{otherwise} \end{array} \right. & f_{6,\mathsf{no}}(x,y) = \\ \end{array}$$

$$\begin{split} f_{1,\mathsf{Mr},\mathsf{no}}(x,y) &= \left\{ \begin{array}{ll} 1 & \text{if } \mathsf{pref}(x) = \mathsf{Mr} \\ & \mathsf{and} \ y = \mathsf{no} \\ 0 & \mathsf{otherwise} \end{array} \right. & f_{4,\mathsf{Wayne},\mathsf{no}}(x,y) = \left\{ \begin{array}{ll} 1 & \text{if } \mathsf{next}(x) = \mathsf{Wayne} \\ \mathsf{and} \ y = \mathsf{no} \\ 0 & \mathsf{otherwise} \end{array} \right. \\ f_{2,\mathsf{null},\mathsf{no}}(x,y) &= \left\{ \begin{array}{ll} 1 & \mathsf{if } \mathsf{suff}(x) = \mathsf{NULL} \\ \mathsf{and} \ y = \mathsf{no} \\ 0 & \mathsf{otherwise} \end{array} \right. & f_{5,\mathsf{no}}(x,y) = \left\{ \begin{array}{ll} 1 & \mathsf{if } \mathsf{otherwise} \\ 1 & \mathsf{if } \mathsf{otherwise} \\ \mathsf{and} \ y = \mathsf{no} \\ 0 & \mathsf{otherwise} \end{array} \right. \\ 3.2010...\mathsf{no}(x,y) &= \left\{ \begin{array}{ll} 1 & \mathsf{if } \mathsf{next}(x) = \mathsf{Wayne} \\ \mathsf{no} \ \mathsf{otherwise} \\ \mathsf{no} \ \mathsf{otherwise} \end{array} \right. \\ f_{6,\mathsf{no}}(x,y) &= \left\{ \begin{array}{ll} 1 & \mathsf{if } \mathsf{next}(x) = \mathsf{Wayne} \\ \mathsf{no} \ \mathsf{otherwise} \\ \mathsf{or} \ \mathsf{abbr}(\mathsf{pref}(x)) \\ \mathsf{otherwise} \\ \mathsf{on} \ \mathsf{otherwise} \end{array} \right. \\ f_{6,\mathsf{no}}(x,y) &= \left\{ \begin{array}{ll} 1 & \mathsf{if } \mathsf{otherwise} \\ \mathsf{otherwise} \\ \mathsf{on} \ \mathsf{on} \ \mathsf{otherwise} \\ \mathsf{on} \ \mathsf{on} \ \mathsf{otherwise} \\ \mathsf{on} \ \mathsf{otherwise} \\ \mathsf{on} \ \mathsf{otherwise} \\ \mathsf{on} \ \mathsf{otherwise} \\ \mathsf{on} \ \mathsf{on} \ \mathsf{otherwise} \\ \mathsf{on} \ \mathsf{on} \ \mathsf{otherwise} \\ \mathsf{on} \ \mathsf{otherwise} \\ \mathsf{on} \ \mathsf{on} \ \mathsf{otherwise} \\ \mathsf{on} \ \mathsf$$

Statistical Models for NI P

Prediction Models

Prediction Model Estimation: MIF

Prediction Model Estimation: Log-Linear & MaxEnt Examples

Identifying Sentence Boundaries: Feature generation

Feature Templates

2 The suffix

- 1 The prefix 3 The previous token
 - 4 The next token
- 5 Whether prefix or suffix are in ABBREVIATIONS
- Whether previous or next are in ABBREVIATIONS

Statistical Models for NI P

Prediction Models

Prediction Model Estimation: MIF

Prediction Model Estimation: Log-Linear & MaxEnt

Examples

Training Data Example 2

$$y = yes \quad x = \text{$$

Generated Features

$$\begin{split} \mathbf{f}_{1,\mathsf{D},\mathsf{C},\mathsf{yes}}(x,y) &= \left\{ \begin{array}{ll} 1 & \text{if } \mathsf{pref}(x) = \mathtt{D}.\mathtt{C} \\ & \text{and } y = \mathsf{yes} \\ 0 & \text{otherwise} \end{array} \right. \\ \mathbf{f}_{2,\mathsf{null},\mathsf{yes}}(x,y) &= \left\{ \begin{array}{ll} 1 & \text{if } \mathsf{suff}(x) = \mathtt{NULL} \\ & \text{and } y = \mathsf{yes} \\ 0 & \text{otherwise} \end{array} \right. \\ \mathbf{f}_{3,\mathsf{-,yes}}(x,y) &= \left\{ \begin{array}{ll} 1 & \text{if } \mathsf{prev}(x) = \texttt{,} \\ & \text{and } y = \mathsf{yes} \\ 0 & \text{otherwise} \end{array} \right. \end{split}$$

$$\begin{split} f_{4\text{.The,yes}}(x,y) &= \left\{ \begin{array}{ll} 1 & \text{if next}(x) = \text{The} \\ & \text{and } y = \text{yes} \end{array} \right. \\ 0 & \text{otherwise} \\ f_{5\text{.yes}}(x,y) &= \left\{ \begin{array}{ll} 1 & \text{if (abbr(pref}(x))} \\ & \text{or abbr(suff}(x)))} \\ & \text{and } y = \text{yes} \\ 0 & \text{otherwise} \end{array} \right. \\ f_{6\text{.yes}}(x,y) &= \left\{ \begin{array}{ll} 1 & \text{if (abbr(prev}(x))} \\ & \text{or abbr(next}(x)))} \\ & \text{and } y = \text{yes} \\ 0 & \text{otherwise} \end{array} \right. \end{split}$$

Example: Text Categorization

Goal: given a text, classify it according to a set of predefined classes

British hurdler Sarah Claxton is confident she can win her first major medal at next month's European Indoor Championships in Madrid.

- Candidate classes: business, entertainment, politics, sport, tech.
- Given a document decide which category (or categories) it belongs to.

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

Text Categorization: Formulation

Statistical Models for NLP

Prediction Models

Prediction Model Estimation:

Prediction Model Estimation: Log-Linear & MaxEnt

Examples

• Object to classify: document (as a set of words) $x = \langle word_1, word_2, \dots, word_n \rangle$

• Class: $y \in L = \{biz, ent, pol, spo, tech\}$

Probabilistic approach:

■ **Goal**: estimate $P(y \mid x) \quad \forall y \in L$

$$\sum_{\mathbf{y} \in \mathbf{L}} \mathsf{P}(\mathbf{y} \mid \mathbf{x}) = 1$$

- Predict as output class:
 - Class with highest probability: $argmax_y P(y \mid x)$
 - Any class with probablity over a threshold: $\{y \mid P(y \mid x) > k\}$

Text Categorization: Data set

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt Examples

Assume access to annotated data:

spo	British hurdler Sarah Claxton is confident she can win her			
	first major medal at next month's European Indoor Champi-			
	onships in Madrid.			
nol	The Labour Party will hold its 2006 autumn conference in			
pol	Manchester and not Blackpool, it has been confirmed.			
+ o o b	Microsoft has warned PC users to update their systems with			
tech	the latest security fixes for flaws in Windows programs.			

Text Categorization: Feature templates

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

- Feature templates:
 - 1 The ocurrence of a word in the document
- Actual features are generated by applying the template to each training example.

Text Categorization: Feature generation

FEATURE TEMPLATES

1 A word occurring in the document.

Training Data Example 1

y = spo

x = {British hurdler Sarah Claxton confident win first major medal next month European Indoor Championships Madrid}

Generated Features

$$\begin{split} f_{1.\text{British_spo}}(x,y) &= \begin{cases} &1 & \text{if British} \in x \\ &\text{and } y = \text{spo} \\ &0 & \text{otherwise} \end{cases} & f_{1.\text{medal_spo}}(x,y) = \begin{cases} &1 & \text{if medal} \in x \\ &\text{and } y = \text{spo} \\ &\text{otherwise} \end{cases} \\ f_{1.\text{hurdler_spo}}(x,y) &= \begin{cases} &1 & \text{if hurdler} \in x \\ &\text{and } y = \text{spo} \\ &0 & \text{otherwise} \end{cases} & f_{1.\text{mext_spo}}(x,y) = \begin{cases} &1 & \text{if next} \in x \\ &\text{and } y = \text{spo} \\ &0 & \text{otherwise} \end{cases} \\ & \dots & & \dots & & \\ f_{1.\text{win_spo}}(x,y) &= \begin{cases} &1 & \text{if Madrid} \in x \\ &\text{and } y = \text{spo} \\ &0 & \text{otherwise} \end{cases} \\ &0 & \text{otherwise} \end{cases} \end{split}$$

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

Text Categorization: Feature generation

FEATURE TEMPLATES

1 A word occurring in the document.

Training Data Example 2

y = tech

 $x = \{$ Microsoft warned PC users update systems latest security fixes flaws Windows programs $\}$

Generated Features

$$\mathbf{f}_{1.\mathsf{Microsoft.tech}}(x,y) = \left\{ \begin{array}{ll} 1 & \text{if Microsoft} \in x \\ & \text{and } y = \mathsf{tech} \\ 0 & \text{otherwise} \end{array} \right. \qquad \mathbf{f}_{1.\mathsf{Jatest.tech}}(x,y) = \left\{ \begin{array}{ll} 1 & \text{if latest} \in x \\ & \text{and } y = \mathsf{tech} \\ 0 & \text{otherwise} \end{array} \right. \\ \mathbf{f}_{1.\mathsf{warned.tech}}(x,y) = \left\{ \begin{array}{ll} 1 & \text{if warned} \in x \\ & \text{and } y = \mathsf{tech} \\ 0 & \text{otherwise} \end{array} \right. \\ \cdots \\ \mathbf{f}_{1.\mathsf{systems.tech}}(x,y) = \left\{ \begin{array}{ll} 1 & \text{if security} \in x \\ & \text{and } y = \mathsf{tech} \\ 0 & \text{otherwise} \end{array} \right. \\ \mathbf{f}_{1.\mathsf{programs.tech}}(x,y) = \left\{ \begin{array}{ll} 1 & \text{if programs} \in x \\ & \text{and } y = \mathsf{tech} \\ 0 & \text{otherwise} \end{array} \right. \\ \mathbf{f}_{1.\mathsf{programs.tech}}(x,y) = \left\{ \begin{array}{ll} 1 & \text{if programs} \in x \\ & \text{and } y = \mathsf{tech} \\ 0 & \text{otherwise} \end{array} \right. \\ \mathbf{f}_{1.\mathsf{programs.tech}}(x,y) = \left\{ \begin{array}{ll} 1 & \text{if programs} \in x \\ & \text{and } y = \mathsf{tech} \\ 0 & \text{otherwise} \end{array} \right. \\ \mathbf{f}_{1.\mathsf{programs.tech}}(x,y) = \left\{ \begin{array}{ll} 1 & \text{if programs} \in x \\ 0 & \text{otherwise} \end{array} \right. \\ \mathbf{f}_{1.\mathsf{programs.tech}}(x,y) = \left\{ \begin{array}{ll} 1 & \text{if programs} \in x \\ 0 & \text{otherwise} \end{array} \right. \\ \mathbf{f}_{1.\mathsf{programs.tech}}(x,y) = \left\{ \begin{array}{ll} 1 & \text{if programs} \in x \\ 0 & \text{otherwise} \end{array} \right. \\ \mathbf{f}_{1.\mathsf{programs.tech}}(x,y) = \left\{ \begin{array}{ll} 1 & \text{if programs} \in x \\ 0 & \text{otherwise} \end{array} \right. \\ \mathbf{f}_{1.\mathsf{programs.tech}}(x,y) = \left\{ \begin{array}{ll} 1 & \text{if programs} \in x \\ 0 & \text{otherwise} \end{array} \right. \\ \mathbf{f}_{1.\mathsf{programs.tech}}(x,y) = \left\{ \begin{array}{ll} 1 & \text{if programs} \in x \\ 0 & \text{otherwise} \end{array} \right. \\ \mathbf{f}_{1.\mathsf{programs.tech}}(x,y) = \left\{ \begin{array}{ll} 1 & \text{if programs} \in x \\ 0 & \text{otherwise} \end{array} \right. \\ \mathbf{f}_{1.\mathsf{programs.tech}}(x,y) = \left\{ \begin{array}{ll} 1 & \text{if programs} \in x \\ 0 & \text{otherwise} \end{array} \right. \\ \mathbf{f}_{1.\mathsf{programs.tech}}(x,y) = \left\{ \begin{array}{ll} 1 & \text{if programs} \in x \\ 0 & \text{otherwise} \end{array} \right. \\ \mathbf{f}_{1.\mathsf{programs.tech}}(x,y) = \left\{ \begin{array}{ll} 1 & \text{if programs} \in x \\ 0 & \text{otherwise} \end{array} \right. \\ \mathbf{f}_{1.\mathsf{programs.tech}}(x,y) = \left\{ \begin{array}{ll} 1 & \text{if programs} \in x \\ 0 & \text{otherwise} \end{array} \right. \\ \mathbf{f}_{1.\mathsf{programs.tech}}(x,y) = \left\{ \begin{array}{ll} 1 & \text{if programs} \in x \\ 0 & \text{otherwise} \end{array} \right. \\ \mathbf{f}_{1.\mathsf{programs.tech}}(x,y) = \left\{ \begin{array}{ll} 1 & \text{if programs} \in x \\ 0 & \text{otherwise} \end{array} \right. \\ \mathbf{f}_{1.\mathsf{programs.tech}}(x,y) = \left\{ \begin{array}{ll} 1 & \text{if programs$$

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

Outline

- 1 Statistical Models for NLP
 - Why modeling
 - Prediction & Similarity Models
- 2 Prediction Models
 - Overview
- 3 Prediction Model Estimation: MLE
 - Overview
 - Smoothing & Estimator Combination
- 4 Prediction Model Estimation: Log-Linear & MaxEnt
 - Introduction
 - Log-Linear Models
 - Maximum Entropy Models
 - Examples
 - Summary

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt Summary

Log-linear Models Summary

Statistical Models for NLP

Prediction Models

Prediction Model Estimation: MLE

Prediction Model Estimation: Log-Linear & MaxEnt

Summary

Advantages

- Teoretically well founded
- Enables combination of random context features
- Better probabilistic models than MLE (no smoothing needed)
- General approach (features, events and classes)
- Disadvantages
 - Implicit probabilistic model (joint or conditional probability distribution obtained from model parameters).