Decision Tree

Decision tree model

Example: Cat Classification

- A cat adoption center uses features like ear shape, face shape, and whiskers to classify animals as cats or not.
- The dataset consists of 10 examples, with features taking on categorical values, making it a binary classification task.
 - \circ The feature X takes on categorical (discrete values)

	Ear shape	Face shape	Whiskers	Cat
3	Pointy	Round	Present	1
	Floppy	Not round	Present	1
3	Floppy	Round	Absent	0
8	Pointy	Not round	Present	0
	Pointy	Round	Present	1
(3)	Pointy	Round	Absent	1
(E)	Floppy	Not round	Absent	0
(3)	Pointy	Round	Absent	1
(1-e-1)	Floppy	Round	Absent	0
	Floppy	Round	Absent	0
	X			,

Structure of Decision Trees

- The top node is called the **root node**, and nodes that make decisions (internal node) are called **decision nodes** (including *root node*).
- **Leaf nodes** at the bottom make predictions, and the structure resembles a tree, with roots at the top and leaves at the bottom.

Leaf node: Cat/Not Cat

Decision Tree 1

Learning Process

Decision Tree Construction Steps

- Choosing the Root Feature: The first step is selecting a feature for the root node, such as ear shape, to split the training examples into subsets.
- Branching Decisions: After the initial split, further features are chosen for subsequent nodes, like face shape, to continue dividing the examples into more specific groups.

Key Decisions in Building a Decision Tree

Decision 1: How to choose what feature to split on at each node? Maximize purity (or minimize impurity)

• **Feature Selection for Splitting**: The algorithm must determine which feature to use at each node to maximize the purity of the resulting subsets (i.e., groups that are as homogeneous as possible).

Decision Tree 2

Decision 2: When do you stop splitting?

- When a node is 100% one class
- When splitting a node will result in the tree exceeding a maximum depth.
- When improvements in purity score are below a threshold.
- **Stopping Criteria for Splitting**: Decisions must be made on when to stop splitting nodes, which can be based on achieving pure subsets, reaching a maximum tree depth, or having too few examples to split further.

Decision Tree