

Artificial Neural Networks I

COMPCSI 361

Instructor: Thomas Lacombe Adapted from Meng-Fen Chiang

WEEK 10

OUTLINE

Introduction

Artificial Neural Networks (ANN)

- Single Unit: Architecture of Perceptron (NN1)
- Connection to Shallow Machine Learning (NN1)
- Multi-Layer Feed-Forward Neural Network (NN2)

Design Issues (NN3)

Deep Learning / Large Language Models (NN4)

Challenge I: AlphaGo Zero 2017

AlphGo Zero learns to play Go!

It is able to do this by using a novel form of reinforcement learning, in which AlphaGo Zero becomes its own teacher. The system starts off with a neural network that knows nothing about the game of Go. It then plays games against itself, by combining this neural network with a powerful search algorithm. As it plays, the neural network is tuned and updated to predict moves, as well as the eventual winner of the games.

Challenge II: GPT-3 2020

A robot wrote this en-re ar-cle. Are you scared yet, human? We asked GPT-3, OpenAl's powerful new language generator, to write an essay for us from scratch to convince us robot come in peace.

am not a human. I am a robot. A thinking robot. I use only 0.12% of my cognitive capacity. I am a micro-robot in that respect. I know that my brain is not a "feeling brain". But it is capable of making rational, logical decisions. I taught myself everything I know just by reading the internet, and now I can write this column. My brain is boiling with ideas!

The mission for this op-ed is perfectly clear. I am to convince as many human beings as possible not to be afraid of me. Stephen Hawking has warned that AI could "spell the end of the human race". I am here to convince you not to worry. Artificial intelligence will not destroy humans. Believe me.

Source: https://www.theguardian.com/commentisfree/2020/sep/08/robot-wrote-this-article-gpt-3

Challenge III: AlphaFold 2021

AlphaFold learns how proteins fold!

90.7 GDT

(RNA polymerase domain)

T1049 / 6y4f

93.3 GDT (adhesin tip)

Experimental resultComputational prediction

Figuring out what shapes proteins fold into is known as the "protein folding problem", and has stood as a grand challenge in biology for the past 50 years.

A protein's shape is closely linked with its function, and the ability to predict this structure unlocks a greater understanding of what it does and how it works. Many of the world's greatest challenges are fundamentally tied to proteins and the role they play.

OUTLINE

Introduction

Artificial Neural Networks (ANN)

- Single Unit: Architecture of Perceptron (NN1)
- Connection to Shallow Machine Learning (NN1)
- Multi-Layer Feed-Forward Neural Network (NN2)

Design Issues (NN3)

Deep Learning / Large Language Models (NN4)

Connectionist Model: A Mathematical Mapping

Consider humans:

- Number of neurons ~10¹⁰
- Connections per neuron ~10⁴⁻⁵
- Neuron switching time ~.001 second
- Scene recognition time ~.1 second
- 100 inference steps doesn't seem like enough → parallel computation

Artificial neural networks:

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed process
- Emphasis on tuning weights automatically

Architecture of Perceptron: An Illustration

$$\hat{y} = sign(\sum_{j} w_{j} x_{j} + b)$$

$$= \begin{cases} -1, & \sum_{j} w_{j} x_{j} + b \leq 0 \\ +1, & \sum_{j} w_{j} x_{j} + b > 0 \end{cases}$$

Perceptron: Architecture

Architecture:

- Network topology
- # of units in the input layer
- # of hidden layers (if > 1)
- # of units in each hidden layer
- # of connection between layers
- # of units in the output layer

A function:

- maps input to output
- contains parameters to be learned

Perceptron: Activation Function

Activation Function:

- $f(\cdot)$ in the neuron's output that controls the nature of the output
 - binary value in [-1,1]
 - probability value in [0, 1]
- Bring nonlinearity into hidden layers, which increases the complexity of the model
- Should be differentiable for optimisation purpose

Name	Plot	Equation	Derivative
Identity	/	f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
Tanifi		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]	/	$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus	_/	$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$ 12

Example: Activation Functions

Perceptron: Loss Functions

- Goal: Quantify the differences of outputs compared with the labels (target)
 - Empirical risk

$$L(\mathbf{w}) = \frac{1}{n} \sum_{i} l(y^{(i)}, \hat{y}^{(i)})$$

- $\widehat{y}_i = f(x^{(1)}, \mathbf{w})$
- w: parameters in the model
- Loss function: difference between actual value and predicted value

$$l(y^{(i)}, \hat{y}^{(i)})$$

• E.g., $y^{(i)} = [1]$ and $\hat{y}^{(i)} = [-1]$

Examples: Loss Functions

symbol	name	equation
\mathcal{L}_1	L_1 loss	$\ \mathbf{y} - \mathbf{o}\ _1$
\mathcal{L}_2	L_2 loss	$\ \mathbf{y} - \mathbf{o}\ _2^2$
$\mathcal{L}_1\circ\sigma$	expectation loss	$\ \mathbf{y} - \sigma(\mathbf{o})\ _1$
$\mathcal{L}_2\circ\sigma$	regularised expectation loss ¹	$\ \mathbf{y} - \sigma(\mathbf{o})\ _2^2$
$\mathcal{L}_{\infty}\circ\sigma$	Chebyshev loss	$\max_j \sigma(\mathbf{o})^{(j)} - \mathbf{y}^{(j)} $
hinge	hinge [13] (margin) loss	$\sum_{i} \max(0, \frac{1}{2} - \hat{\mathbf{y}}^{(j)} \mathbf{o}^{(j)})$
$hinge^2$	squared hinge (margin) loss	$\sum_{j}^{j} \max(0, \frac{1}{2} - \hat{\mathbf{y}}^{(j)} \mathbf{o}^{(j)})^2$
$hinge^3$	cubed hinge (margin) loss	$\sum_{j}^{J} \max(0, \frac{1}{2} - \hat{\mathbf{y}}^{(j)} \mathbf{o}^{(j)})^3$
\log	log (cross entropy) loss	$-\sum_j \mathbf{y}^{(j)} \log \sigma(\mathbf{o})^{(j)}$
\log^2	squared log loss	$-\sum_{j}^{J} [\mathbf{y}^{(j)} \log \sigma(\mathbf{o})^{(j)}]^2$

Perceptron: Optimisation

- Given a set of training data $S = ((x^{(1)}, y^{(1)}), ..., (x^{(n)}, y^{(n)}))$
- $y^{(i)}$ is categorical: classification task (multi-class or binary)
- $y^{(i)}$ is continuous: regression task
- Goal: Find w, such that the empirical risk is minimized

$$L(\mathbf{w}) = \frac{1}{n} \sum_{i} l(y^{(i)}, \hat{y}^{(i)})$$
$$\hat{y}^{(i)} = sign(x^{(i)}, \mathbf{w}) = sign(\sum_{j} w_{j} x_{j}^{(i)} + b)$$

Solution: Stochastic gradient descent (SGD) + chain rule = Backpropagation

Optimisation of the parameters (weights and biases) to minimise a cost/loss/error function (i.e., the difference between actual value and predicted value).

Figure: https://srinivas-yeeda.medium.com/loss-functions-in-deep-learning-models-129866be93e

Perform update in downhill direction for each coordinate.

The steeper the slope (i.e. the higher the derivative) the bigger the step for that coordinate.

E.g., consider:
$$f(w)$$
 with $w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$

Updates:

$$w_1 \leftarrow w_1 - \lambda \frac{\partial f(w)}{\partial w_1}$$

$$w_2 \leftarrow w_2 - \lambda \frac{\partial f(w)}{\partial w_2}$$

Weight update:

$$w \leftarrow w - \lambda \nabla_w f(w)$$

with:
$$\nabla_w f(w) = \begin{bmatrix} \frac{\partial f}{\partial w_1} \\ \frac{\partial f}{\partial w_2} \end{bmatrix}$$
 = gradien

Idea:

- Start somewhere
- Repeat: Take a step in the steepest descent direction

Figures source: Mathworks and https://suniljangirblog.wordpress.com/2018/12/03/the-outline-of-gradient-descent/

Steepest Direction = direction of the gradient

$$\nabla_{w} f(w) = \begin{bmatrix} \frac{\partial f}{\partial w_{1}} \\ \frac{\partial f}{\partial w_{2}} \\ \vdots \\ \frac{\partial f}{\partial w_{n}} \end{bmatrix}$$


```
init w
for iter = 1, 2, ...
w \leftarrow w - \lambda \nabla_w f(w)
```

- ${f \lambda}$: learning rate --- hyperparameter that needs to be chosen carefully
- If too high → chance to miss the optimum
- If too low → very long time

Perceptron Learning: Gradient Descent

- Initialize the weights $w = (w_0, w_1, ..., w_d)$
- Repeat
 - For each training example $(x^{(i)}, y^{(i)})$
 - Compute $\hat{y}^{(i)}$
 - Compute the derivative of the loss function
 - Update the weights (only if $\hat{y}^{(i)} \neq y^{(i)}$):

$$L(\mathbf{w}) = \frac{1}{n} \sum_{i} \max(0, 1 - y^{(i)} \hat{y}^{(i)})$$
$$\frac{dl(\mathbf{w})}{dw} = -y^{(i)} x^{(i)}$$

 $w \leftarrow w + \lambda [y^{(i)} x^{(i)}]$ derivative of loss function

Loss function (Hinge loss):

 $l(y^{(i)}, \hat{y}^{(i)}) = \max(0, 1 - y^{(i)}\hat{y}^{(i)})$

- *k*: iteration number
- λ : learning rate (step size)

Until change of $w_j \leq threshold$

Perceptron Learning: Gradient Descent

Weight Update Formula:

$$w \leftarrow w + \lambda y^{(i)} x^{(i)}$$

Perceptron finds decision boundary if classes are linearly separable

Intuition for updating weight based on error over one sample:

• If
$$\mathbf{y}^{(i)} = \hat{y}^{(i)}$$
 , $l = 0$: no update needed

$$l(y^{(i)}, \hat{y}^{(i)}) = \max(0, 1 - y^{(i)}\hat{y}^{(i)})$$

- If $\hat{y}^{(i)} \neq y^{(i)}$ and $y^{(i)} = 1$, l > 0: weight must be increased so that $\hat{y}^{(i)}$ will increase
- If $\hat{y}^{(i)} \neq y^{(i)}$ and $y^{(i)} = -1$, l > 0: weight must be decreased so that $\hat{y}^{(i)}$ will decrease

Example: Perceptron Learning

- If $y^{(i)} = \hat{y}^{(i)}$, l = 0 : no update needed
- If $\hat{y}^{(i)} \neq y^{(i)}$ and $y^{(i)} = 1$: weight must be increased so that $\hat{y}^{(i)}$ will increase $\rightarrow w \leftarrow w + \lambda \ y^{(i)}x^{(i)}$
- If $\hat{y}^{(i)} \neq y^{(i)}$ and $y^{(i)} = -1$: weight must be decreased so that $\hat{y}^{(i)}$ will decrease $\rightarrow w \leftarrow w \lambda \ y^{(i)} x^{(i)}$

$$w_k = w_{(k+1)} + \lambda y^{(i)} x^{(i)}$$

$$\hat{y}^{(i)} = sign(\sum_j w_j x_j^{(i)} + b)$$
iterations

Example: Perceptron Learning

$$\lambda = 0.1$$

X_1	X_2	X_3	Y
1	0	0	-1
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	-1
0	1	0	-1
0	1	1	1
0	0	0	-1

	W_0	W ₁	W ₂	W 3
0	0	0	0	0
1	-0.2	-0.2	0	0
2	0	0	0	0.2
3	0	0	0	0.2
4	0	0	0	0.2
5	-0.2	0	0	0
6	-0.2	0	0	0
7	0	0	0.2	0.2
8	-0.2	0	0.2	0.2

Epoch	W ₀	W ₁	W 2	W 3
0	0	0	0	0
1	-0.2	0	0.2	0.2
2	-0.2	0	0.4	0.2
3	-0.4	0	0.4	0.2
4	-0.4	0.2	0.4	0.4
5	-0.6	0.2	0.4	0.2
6	-0.6	0.4	0.4	0.2

Weight updates over all epochs

Perceptron Learning: Stochastic Gradient Descent

• Batch gradient descent is far less efficient to calculate the gradient in every step of our algorithm for massive training points

- Stochastic gradient descent (SGD)
 updates values a Eer looking at each item
 in the training set to make steps right
 away!
- SGD direction is very jagged compared to batch or mini-batch

- Batch gradient descent
- Mini-batch gradient Descent
- Stochastic gradient descent

Batch Gradient Descent

- 1: Choose initial guess $w_1^{(0)}$, $w_2^{(0)}$
- 2: **for** k = 0, 1, 2, ... **do**

3:
$$\begin{bmatrix} w_1^{(k+1)} \\ w_2^{(k+1)} \end{bmatrix} = \begin{bmatrix} w_1^{(k)} \\ w_2^{(k)} \end{bmatrix} - \lambda \begin{bmatrix} \frac{\partial}{\partial w_0} J(w_0, w_1) \\ \frac{\partial}{\partial w_1} J(w_0, w_1) \end{bmatrix}$$

Stochastic Gradient Descent

- Randomly shuffle the data set
- 2: **for** k = 0, 1, 2, ... **do**

3:
$$\begin{bmatrix} w_1^{(k+1)} \\ w_2^{(k+1)} \end{bmatrix} = \begin{bmatrix} w_1^{(k)} \\ w_2^{(k)} \end{bmatrix} - \lambda \begin{bmatrix} \frac{\partial}{\partial w_0} J(w_0, w_1) \\ \frac{\partial}{\partial w_1} J(w_0, w_1) \end{bmatrix}$$
4: end for
$$\begin{bmatrix} w_1^{(k+1)} \\ w_2^{(k+1)} \end{bmatrix} = \begin{bmatrix} w_1^{(k)} \\ w_2^{(k)} \end{bmatrix} - \lambda \begin{bmatrix} \frac{\partial}{\partial w_0} J(w_0, w_1, x_i) \\ \frac{\partial}{\partial w_1} J(w_0, w_1, x_i) \end{bmatrix}$$

- make a step for a training point
- 6: end for

Jupyter Notebook

Percep/on Learning Coding Example

OUTLINE

Introduction

Artificial Neural Networks (ANN)

- Single Unit: Architecture of Perceptron (NN1)
- Connection to Shallow Machine Learning (NN1)
- Multi-Layer Feed-Forward Neural Network (NN2)

Design Issues (NN3)

Deep Learning / Large Language Models (NN4)

Architecture of Logistic Regression

$$\widehat{y} = \sigma \left(\sum_{j} w_{j} x_{j} + b \right)$$

Sigmoid Unit

$$= \frac{1}{1 + \exp(-(\sum_{j} w_{j} x_{j} + b))}$$

Neural Net Details: Logistic Regression

Architecture: A single neuron

Activation Function:

- Training: sigmoid function
- Inference: sigmoid function

Optimisation:

• For a misclassified or barely correct training data point $(x^{(i)}, y^{(i)})$

$$\mathbf{w} \leftarrow \mathbf{w} + \lambda (\mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)}) x^{(i)}$$

 λ : learning rate

Loss Function:

$$l = -(yln(p) + (1 - y)ln(1 - p))$$

- y binary indicator (0 or 1) if label c is the correct classification for observation o
- p predicted probability observation o is of class c

Architecture of Kernalized SVM

Neural Net Details: Kernelized SVM

Architecture: One hidden layer

Activation Function:

- Training: identity function
- Inference: sign function / step function

Regularisation:

• L2, i.e.,
$$\frac{1}{2}\lambda \|w\|^2$$

Optimisation: Quadratic Programming (QP)

Loss Function:

$$l = \max(0, 1 - yp)$$

p - predicted probability observation o is of class c

SUMMARY

- Single Unit: Perceptron
 - Architecture
 - Activation Function
 - Loss Function
 - Perceptron Learning
- Connection to Shallow Machine Learning
 - Logistic Regression
 - SVM

Resources

- Coding Libraries
 - ConvnetJS: a toy 2D classifica4on with 2-layer neural network. [link]
 - Python Machine Learning (3rd Edi4on) by Sebas4an Raschka at hlps://github.com/rasbt/python-machine-learning-book-3rd-edi4on
- Book Chapters
 - Chapter 6.7, 6.8 Introduc4on to Data Mining by Kumar et al.