Part I

LeptoQuark Mediated Neutrino Mass:

$1 \quad 2 \times LQ$

2 options:

- 1. $e_R = +(S) \implies$ tree level
- 2. $e_R = -(S) \implies 1$ loop level

$$m_{\nu} \propto x \left(M_d \right) x'$$
 $m_e \propto x \left(M_u \right) x''$ $h \implies e^- e^+ \left(1 + ? \right)$ where $\mathcal{A} \sim m_e$

- Phenomenology of the LQ \rightarrow ? and h \rightarrow ? decays?!
- Rare processes!

(b) Diagram contributing to Dirac Charged Lepton (a) Diagram contributing to Dirac Neutrino Mass. Mass.

Figure 1: LeptoQuark mediated 1 loop Lepton Mass Diagrams.

2 Other tries

3 1 loop, 1 LQ, d_R mixing model

Figure 2: Neutrino Mass Diagram through d quark mixing.

Particle	$SU(3)_c$	$SU(2)_L$	$\mathrm{U}(1)_Y$	S	Flavour
Q	3	2	1/6		3
d_R^c	3*	1	+1/3		3
\mathbf{d}_{R}^{c} \mathbf{u}_{R}^{c}	3*	1	-2/3		3
L	1	2	-1/2		3
\mathbf{e}_{R}^{c}	1	1	+1		3
$\mathrm{A}_{R,L}$	3	2	-5/6		3
H	1	2	1/2		1
ϕ	3	1	-1/3		1

$$\mathcal{L}_{new,4D}^{Y} \subset y_{1} \overline{Q_{L}^{c}} L \phi^{*} + y_{2} \overline{u_{R}^{c}} e_{R} \phi^{*} + y_{3} \overline{A_{R}} L \phi + y_{\epsilon} \overline{d_{R}} A_{L} H + h.c.$$

$$(\overline{d_{L}^{c}} \nu_{L} - \overline{u_{L}^{c}} e_{L})$$

$$\mathcal{L}_{3D} \subset \mathcal{M}_{A} \overline{A} A$$

$$V(H, \phi) = -m_{1}^{2} |H|^{2} + \frac{\lambda_{1}}{4} |H|^{4} + m_{2}^{2} |\phi|^{2} + \frac{\lambda_{2}}{4} |\phi|^{4} + \lambda_{3} (H^{\dagger} H) |\phi|^{2}$$

$$\mathcal{L}_{\mathrm{eff\ mix}} = \overline{\left(d_L \quad a_L^{-1/3}\right)} \mathcal{M}_{\mathrm{da}} \begin{pmatrix} d_R \\ a_R \end{pmatrix} + h.c. \; , \quad \text{where} \; \underbrace{\mathcal{M}_{\mathrm{da}}}_{6 \times 6} = \begin{pmatrix} y_d \nu & 0 \\ y_\epsilon \nu & M_A \end{pmatrix}$$

Potential problems:

- $d^{-1/3} a^{-1/3}$ mixing and its experimental bounds.
- \bullet v bound state bounds!
- \mathcal{CP} from phases in the 6×6 mixing matrix!

• . . .