Assume P, Q, R, S, T are atoms (propositions).

1 Inference rule

Problem 1 (written: 15 pts): Using a truth table, show that the resolution inference rule is valid (if the premises are true, the conclusion is also true, or, $((P \lor R) \land (Q \lor \neg R)) \to (P \lor Q)$ is valid). Note: valid means "true under all interpretations".

 $P \vee R$, $Q \vee \neg R$

					$P \lor Q$		
					•		F-7_
P	Q	R	$(P \lor R)$	$(Q \vee \neg R)$	$(P \vee R) \wedge (Q \vee \neg R)$	$(P \lor Q)$	$((P \lor R) \land (Q \lor \neg R)) \to (P \lor Q)$
T	T	T	T	T	T	7	T
T	Т	F	T	7	T	7	Τ
T	F	T	T	F	F	†	T
T	F	F	T	T	Τ	1	7
F	Т	T	T	T	T	1	T
F	Т	F	F	T	F	T	T
F	F	T	T	F	F	F	I

valid

$$(PVR) \Lambda(QVR) \rightarrow PVQ$$

2 Normal forms

In all of the problems in this section, show each step of the derivation and indicate which axioms (or other rules) you used: For example, *distributive law, by definition, etc.*

Problem 2 (written: 5 pts): Convert $(\neg P \land R) \lor S \lor (Q \land R)$ into conjunctive normal form.

Problem 3 (written: 5 pts): Convert $\neg (P \lor \neg Q) \land (S \to R)$ into disjunctive normal form.

Proof by Resolution 3

Given:

1.
$$S \vee \neg P \vee Q$$

2.
$$\neg R \lor \neg Q$$

3.
$$P \lor T \lor \neg R$$

3. $P \lor T \lor \neg R$ to prove $R \to S \lor T$, prove $\neg (R \to S \lor T)$ show that $R \to (S \lor T)$ is a logical consequence of the above using **resolution**. Note: T is an atom (a

proposition), not True.

Precisely follow the steps below.

Transform the above problem into a set of clauses (premises and the Problem 4 (written: 15 pts): conclusion), suitable for resolution-based theorem proving.

- Turn each axiom in the list of premises above into conjunctive normal form.
 - One premise may result in multiple clauses.
 - For example, a premise $\neg((P \land \neg R) \lor S)$ will convert to CNF as $(\neg P \lor R) \land \neg S$, which results in two clauses:

Clause 1: $\neg P \lor R$

Clause 2: $\neg S$

• Don't forget to negate the conclusion $(R \to (S \lor T))$, before adding to the clause list. Multiple clauses may (or may not) result from the negated conclusion.

With the resulting resolution problem from the above, prove the theorem Problem 5 (written: 20 pts): using resolution. Show every step.

1.
$$S \vee \neg P \vee Q$$
 7. (3,4) PVT
2. $\neg R \vee \neg Q$ 8. (6,7)

2.
$$\neg R \lor \neg Q$$

3.
$$P \lor T \lor \neg R$$
 9. (2,4) $\neg Q$