```
import pandas as pd
df = pd.read_csv('/content/Fish.csv')
df
```

₽		Species	Weight	Length1	Length2	Length3	Height	Width	
	0	Bream	242.0	23.2	25.4	30.0	11.5200	4.0200	
	1	Bream	290.0	24.0	26.3	31.2	12.4800	4.3056	
	2	Bream	340.0	23.9	26.5	31.1	12.3778	4.6961	
	3	Bream	363.0	26.3	29.0	33.5	12.7300	4.4555	
	4	Bream	430.0	26.5	29.0	34.0	12.4440	5.1340	
	154	Smelt	12.2	11.5	12.2	13.4	2.0904	1.3936	
	155	Smelt	13.4	11.7	12.4	13.5	2.4300	1.2690	
	156	Smelt	12.2	12.1	13.0	13.8	2.2770	1.2558	
	157	Smelt	19.7	13.2	14.3	15.2	2.8728	2.0672	
	158	Smelt	19.9	13.8	15.0	16.2	2.9322	1.8792	
1	159 rows × 7 columns								

df.shape

(159, 7)

df.size #Total number of elements in dataframe

1113

df.info() #It gives the complete information about the dataframe

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 159 entries, 0 to 158
Data columns (total 7 columns):
# Column Non-Null Count Dtype
      Species 159 non-null
 0
                                       object
      Weight 159 non-null
                                       float64
      Length1 159 non-null
                                       float64
      Length2 159 non-null
                                       float64
      Length3 159 non-null
Height 159 non-null
                                       float64
    Height
                                       float64
                  159 non-null
      Width
                                       float64
dtypes: float64(6), object(1) memory usage: 8.8+ KB
```

#to check the null values officially
df.isnull().sum()

Species 0
Weight 0
Length1 0
Length2 0
Length3 0
Height 0
Width 0
dtype: int64

 $\mbox{\tt \#I}$ want to find out the exact count of unique elements in each and every column $\mbox{\tt df.nunique()}$

 Species
 7

 Weight
 101

 Length1
 116

 Length2
 93

 Length3
 124

 Height
 154

 width
 152

 dtype: int64

#VISUALISATION - SEABORN
import seaborn as sns #import the library
sns.countplot(x = 'Species',data = df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f3c93d8d820>


```
#I want the exact count of species
df['Species'].value_counts()
    Perch
                  56
```

Bream 35 20 Roach Smelt 14 Parkki 11 Whitefish 6

Name: Species, dtype: int64

df['Species'].describe()

159 count unique Perch top

Name: Species, dtype: object

df.plot(x='Length1', y='Length3', kind='scatter')

df.plot(x='Length1', y='Length2', kind='scatter')

<matplotlib.axes._subplots.AxesSubplot at 0x7f3c9364ae80>

df.plot(x='Length2', y='Length3', kind='scatter')

<matplotlib.axes._subplots.AxesSubplot at 0x7f3c935542e0>

#This function can be used to compute pairwise correlation of columns, excluding NA/null values. df.corr()

	Weight	Length1	Length2	Length3	Height	Width	1
Weight	1.000000	0.915712	0.918618	0.923044	0.724345	0.886507	
Length1	0.915712	1.000000	0.999517	0.992031	0.625378	0.867050	
Length2	0.918618	0.999517	1.000000	0.994103	0.640441	0.873547	
Length3	0.923044	0.992031	0.994103	1.000000	0.703409	0.878520	
Height	0.724345	0.625378	0.640441	0.703409	1.000000	0.792881	
Width	0.886507	0.867050	0.873547	0.878520	0.792881	1.000000	

#This function can be used to create pivot tables, which are useful for summarizing data and identifying patterns in the data. pivot = df.pivot_table(index = ['Species'], values=['Height'], aggfunc ='sum') pivot

#This function can be used to create pivot tables, which are useful for summarizing data and identifying patterns in the data.
pivot = df.pivot_table(index = ['Species'], values=['Height'], aggfunc =['sum', 'median', 'min'])
pivot

	sum	median	min	1
	Height	Height	Height	
Species				
Bream	531.4124	14.9544	11.5200	
Parkki	98.5867	8.8928	6.5772	
Perch	440.2647	6.9218	2.1120	
Pike	131.1341	7.2900	5.5680	
Roach	133.8959	6.5126	4.1472	
Smelt	30.9312	2.2002	1.7284	
Whitefish	60.1630	9.7610	8.1454	

#Return those species whose value is between the given range of height df.query('6 > Height > 5 and Weight > 200')

	Species	Weight	Length1	Length2	Length3	Height	Width	1
129	Pike	300.0	31.7	34.0	37.8	5.7078	4.1580	
130	Pike	300.0	32.7	35.0	38.8	5 9364	4 3844	