BE LAB TASK # 08

NAME: Shahmeer khan.

Class ID:106293.

Student ID: 12113.

Topic: SEMICONDUCTOR
DIODE.

Task:

Basic Concepts:

- 1) <u>Diode has an unique ability to pass current in one direction only.</u>
- 2) <u>Diode cane behaves as an open circuit and short</u> <u>circuit.</u>

OBSERVATIONS/CALCULATIONS:

OBJECTIVES:

• <u>To Study the V-I characteristics of a Semi-Conductor</u> Diode.

THE IDEAL DIODE:

We begin out study of circuits by considering models of linear elements, the simple of these being the resistor. The volt-ampere (v-I) characteristics of the ideal resistor is described by such a simple relation, (Ohm Law) that we sometimes lose sight of its graphical interpretation. The linear character of Physical Diode has inherent characteristics and limitation that cause them to differ from the ideal. These are to be studies in the following experiment.

FORWARD BIASED:

When Diode is forward biased its P Terminal is connected to higher potential and n type is connected to lower potential. Diode behaves a short circuit and infinite Resistance can pass through it without any voltage drop Cross it.

That is it has zero forward resistance and no forward drop. The characteristics curve is a straight line that start from the origin and ride vertically along the +ve y axis.

Diode	Diode	Dc	Diode	Power	Power	Power
Voltage	Current	Supply	Forward	Dissipation	Dissipated	Supply
(Vd)	(Id)	Voltage	Resistance	in Diode	in	
		(Vs)			Resistor	
341.153	0.125	0.4	2.73 ohms	0.05 mW	7.34 mW	7.39 mW
mV	mA					
435.437	0.776	0.8	0.57 ohms	0.62 mW	284 mW	284.62
mV	mA					mW
471.26	1.551	1.2	0.31 ohms	1.86 mW	1131 mW	1132.86
mV	mA					mW
492.891	2.356	1.6	0.21 ohms	3.76 mW	2609 mW	2612.76
mV	mA					mW
508.314	3.174	2	0.17 ohms	6.34 mW	4735 mW	4741.34
mV	mA					mW
520.274	3.999	2.4	0.14 ohms	9.59 mW	7517 mW	7526.59
mV	mA					mW

530.032	4.83	2.8	0.11 ohms	13.52 mW	10965	10978.52
mV	mA				mW	mW
538.238	5.663	3.2	0.09 ohms	18.12 mW	15073	15091.12
mV	mA				mW	mW
545.39	6.499	3.6	0.08 ohms	23.39 mW	19852	19875.39
mV	mA				mW	mW
551.661	7.337	4	0.07 ohms	29.34 mW	25301	25330.34
mV	mA				mW	mW

For Calculations Formulas Used:

P= Pd (5th column values row wise) + Pr (6th column values row wise)

Screenshot:

Link:

https://tinyurl.com/ye3wnpwj

REVERSE BIASED:

When Diode is Reverse biased its cathode is at higher potential than anode. Then the diode behaves as an open circuit and no current pass through it and all the applied voltage appear across it. That is diode Reverse Resistance is infinite and reverse current is zero. The characteristics curve is a straight line on y-axis extending to left.

Diode	Diode	Dc	Diode	Power	Power	Power
Reverse	Reverse	Supply	resistance	Dissipatio	Dissipate	Supply
Voltage	Current	Voltag	Resistanc	n in Diode	d in	
(Vd)	(Id)	е	е		Resistor	
		(Vs)				
399.919	0.00017	0.4	2312	0.0000692	0.000014	0.00008
mV	3 mA		ohms	mW	mW	mW
799.919	0.00017	0.8	4598	0.0001392	0.000015	0.00015
mV	4 mA		ohms	mW	mW	mW
1199.91	0.00017	1.2	6897	0.0002088	0.000015	0.00022
9 mV	4 mA		ohms	mW	mW	mW
1599.91	0.00017	1.6	9195	0.0002784	0.000015	0.00029
9 mV	4 mA		ohms	mW	mW	mW
1999.91	0.00017	2	11494	0.000348	0.000015	0.00036
9 mV	4 mA		ohms	mW	mW	mW
2399.91	0.00017	2.4	13793	0.0004176	0.000015	0.00043
9 mV	4 mA		ohms	mW	mW	mW
2799.91	0.00017	2.8	16092	0.0004872	0.000015	0.00051
9 mV	4 mA		ohms	mW	mW	mW
3199.91	0.00017	3.2	18391	0.0005568	0.000015	0.00057

9 mV	4 mA		ohms	mW	mW	mW
3599.91	0.00017	3.6	20690	0.0006264	0.000015	0.00064
9 mV	4 mA		ohms	mW	mW	mW
3999.91	0.00017	4	22989	0.000696	0.000015	0.00071
9 mV	4 mA		ohms	mW	mW	1 mW

For Calculations Formulas Used:

*For Resistance (4th Column):

Rd=Vd/Id

*For Power Dissipation in Diode (5th Column):

P=Vs*Id

*For Power Dissipated in Resistors (6th Column):

P=Rx(Id^2). Here R=740.

*For power Supply (7th Column):

P= Pd (5th column values row wise) + Pr (6th column values row wise)

Screenshot:

<u>Link:</u>

https://tinyurl.com/yenweglz