CORRIGÉ DM N°5 : RACINES CARRÉES D'UN ENDOMORPHISME (CCP PC 2010)

Partie I

A) 1) Calculons le polynôme caractéristique de A (donc aussi de f):

$$\chi_f(X) = \chi_A(X) = \begin{vmatrix} 8 - X & 4 & -7 \\ -8 & -4 - X & 8 \\ 0 & 0 & 1 - X \end{vmatrix} = -X(X - 1)(X - 4).$$

Ainsi, $Sp(f) = \{0,1,4\}$; f, endomorphisme d'un espace vectoriel de dimension 3, possède 3 valeurs propres distinctes, donc f est diagonalisable .

2) L'étude des sous-espaces propres donne :

$$E_0(f) = Vect(v_1)$$
 avec $v_1 = (1, -2, 0)$,

$$E_1(f) = Vect(v_2)$$
 avec $v_2 = (1, 0, 1)$,

$$E_4(f) = Vect(v_3)$$
 avec $v_3 = (1, -1, 0)$.

Puisque $f(v_1) = 0$, $f(v_2) = v_2$ et $f(v_3) = 4v_3$, la matrice D de f dans la base (v_1, v_2, v_3) est :

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$

- 3) La formule de changement de base donne : $A = P \cdot D \cdot P^{-1}$, et donc $A^m = P \cdot D^m \cdot P^{-1}$
- 4) En utilisant par exemple la méthode du pivot de Gauss, on trouve : $P^{-1} = \begin{pmatrix} -1 & -1 & 1 \\ 0 & 0 & 1 \\ 2 & 1 & -2 \end{pmatrix}$.

Après calculs, on trouve que la matrice de f^m dans la base canonique est :

$$\mathbf{A}^m = \mathbf{P} \cdot \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4^m \end{pmatrix} \cdot \mathbf{P}^{-1} = \begin{pmatrix} 2 \cdot 4^m & 4^m & 1 - 2 \cdot 4^m \\ -2 \cdot 4^m & -4^m & 2 \cdot 4^m \\ 0 & 0 & 1 \end{pmatrix}.$$

(A titre de vérification des calculs, on peut remarquer que, pour m=1, on retrouve bien la matrice A).

5) Soit $M = (m_{ij})_{1 \le i,j \le 3}$ une matrice qui commute avec D. Un calcul simple montre que le système obtenu en écrivant MD = DM équivaut à $m_{ij} = 0$ pour $i \ne j$.

Ainsi, les matrices qui commutent avec D sont les matrices diagonales .

- 6) On a $HD = DH = H^3$, donc H et D commutent .
- 7) D'après les questions 5) et 6), si $H^2 = D$, alors H est une matrice diagonale. La condition $H^2 = D$ donne alors :

$$H = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \pm 1 & 0 \\ 0 & 0 & \pm 2 \end{pmatrix}$$
 (ce qui fournit 4 solutions).

Ainsi, si h est un endomorphisme tel que $h^2=f$, sa matrice dans la base (v_1,v_2,v_3) est de la forme précédente; pour obtenir sa matrice dans la base canonique, on effectue un changement de base : les matrices dans la base canonique des solutions h sont données par

 $P\cdot H\cdot P^{-1}$, où H est l'une des 4 solutions précédentes. Après calculs, on obtient à nouveau 4 solutions, qui sont :

- **B) 1)** On trouve pour tout entier $m \ge 1$: $J^m = 3^{m-1}J$ (récurrence immédiate).
 - 2) On a $A = J + I_3$. Comme J et I_3 commutent, la formule du binôme donne :

$$\forall m \in \mathbb{N}^*, \ \mathbf{A}^m = (\mathbf{I}_3 + \mathbf{J})^m = \sum_{k=0}^m \binom{m}{k} \mathbf{J}^k = \mathbf{I}_3 + \left(\sum_{k=1}^m \binom{m}{k} \cdot 3^{k-1}\right) \mathbf{J} = \mathbf{I}_3 + \frac{1}{3} (4^m - 1) \mathbf{J}.$$

Si on revient aux endomorphismes, cela donne : $\boxed{\text{pour tout } m \in \mathbb{N}^*, \ f^m = \text{Id} + \frac{1}{3}(4^m - 1)j}$. Cette relation est encore valable pour m = 0 (car dans ce cas, elle s'écrit Id = Id).

- 3) Un calcul du polynôme caractéristique de A donne : $\chi_f(X) = \chi_A(X) = -(X-1)^2(X-4)$. Donc f admet les deux valeurs propres $\lambda = 1$ et $\mu = 4$.
- 4) D'après la question 2), on peut écrire $f^m = 1^m (\operatorname{Id} \frac{1}{3}j) + 4^m (\frac{1}{3}j)$ pour tout entier $m \ge 0$. En posant $p = \operatorname{Id} \frac{1}{3}j$ et $q = \frac{1}{3}j$, on obtient l'existence de la décomposition voulue .

De plus, on a nécessairement $\mathrm{Id}=p+q$ (pour m=0) et f=p+4q (pour m=1). Donc $p=\frac{1}{3}(4\mathrm{Id}-f)$ et $q=\frac{1}{3}(f-\mathrm{Id})$, d'où l'unicité de cette décomposition.

Enfin, comme Id et j sont deux endomorphismes linéairement indépendants (d'après leur écriture matricielle), il en est de même pour p et q.

5) On obtient, en utilisant les expressions de p et q trouvées à la question précédente :

$$p^2 = p$$
, $q^2 = q$, $p \circ q = q \circ p = 0$.

Soit maintenant $h = \alpha \cdot p + \beta \cdot q$ tel que $h^2 = f$. D'après les relations précédentes, on a

$$h^2 = \alpha^2 \cdot p + \beta^2 \cdot q = f = p + 4q.$$

Comme (p,q) est une famille libre, cette égalité équivaut à $\alpha^2 = 1$ et $\beta^2 = 4$. Donc il y a 4 endomorphismes h solutions, donnés par : $h = \pm p \pm 2q$.

6) On détermine les sous-espaces propres de f:

 $E_1(f)$ est le plan d'équation x + y + z = 0, soit $E_1(f) = \text{Vect}(w_1, w_2)$ avec $w_1 = (1, -1, 0)$ et $w_2 = (0, 1, -1)$, et $E_4(f) = \text{Vect}(w_3)$ avec $w_3 = (1, 1, 1)$.

Comme $\dim(E_1(f)) + \dim(E_4(f)) = 3 = \dim(\mathbb{R}^3)$, f est diagonalisable

Et (w_1, w_2, w_3) est une base de vecteurs propres pour f

Notons $\mathcal{B}' = (w_1, w_2, w_3)$. Alors :D = $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$, et, puisque $p = \frac{1}{3}(4\mathrm{Id} - f)$ et $q = \frac{1}{3}(f - \mathrm{Id})$, on en déduit

 $\operatorname{mat}_{\mathcal{B}'}(p) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ et } \operatorname{mat}_{\mathcal{B}'}(q) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$

(Rem : A l'aide de ces expressions matricielles, on remarque que p est la projection sur $E_1(f)$ parallèlement à $E_4(f)$, et que q est la projection sur $E_4(f)$ parallèlement à $E_1(f)$. L'écriture $f = \lambda p + \mu q$ n'est rien d'autre que la décomposition spectrale de f vue en classe...)

- 7) On peut prendre par exemple : $K = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ et $Y = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.
- 8) Soit h l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base \mathcal{B}' est Y. Alors $h^2 = f$ car Y = D. Et h n'est pas combinaison linéaire de p et q car Y n'est pas combinaison linéaire de leurs matrices (vues précédemment) dans la base \mathcal{B}' .
- 9) Soit h tel que $h^2 = f$. Comme f est diagonalisable et que ses valeurs propres sont 1 et 4, le polynôme $Q_1(X) = (X-1)(X-4)$ est un polynôme annulateur de f, donc de h^2 . Donc le polynôme $Q_2(X) = (X^2-1)(X^2-4) = (X-1)(X+1)(X-2)(X+2)$ est un polynôme annulateur de h. Or ce polynôme est scindé à racines simples, donc d'après le cours, h est diagonalisable.

Partie II

- 1) On a, en utilisant les trois relations, $(f \lambda \mathrm{Id}) \circ (f \mu \mathrm{Id}) = f^2 (\lambda + \mu) f + (\lambda \mu) \mathrm{Id} = 0$. Donc $(X \lambda)(X \mu)$ est un polynôme annulateur de f, scindé à racines simples. Et f est diagonalisable.
- 2) A la question précédente, on a trouvé un polynôme annulateur de f qui n'a que λ et μ comme racines. Il en résulte que $Sp(f) \subset {\lambda, \mu}$.

Si μ n'est pas valeur propre de f, la seule valeur propre est donc λ . Comme f est diagonalisable, on a donc $f = \lambda \operatorname{Id}$. En utilisant les deux premières relations de l'énoncé, on a donc :

$$\lambda Id = \lambda p + \mu q = \lambda p + \lambda q.$$

D'où $(\lambda - \mu)q = 0$, et comme $\lambda \neq \mu$, q = 0. Ceci est contraire aux hypothèses; ainsi μ est valeur propre de f.

On montrerait de même que λ est aussi une valeur propre de f. Donc $Sp(f) = {\lambda, \mu}$

3) D'après la question 1), on a : $0 = (f - \lambda Id) \circ (f - \mu Id) = (\mu - \lambda)q \circ (\lambda - \mu)p$. Comme $\lambda \neq \mu$, on en déduit que $q \circ p = 0$.

De même, comme $(f - \mu Id) \circ (f - \lambda Id) = 0$, on trouve $p \circ q = 0$.

Enfin, comme $\mathrm{Id}=p+q$, on obtient, en composant par p (resp. $\mathrm{par}\ q$): $p=p^2$ (resp. $q=q^2$).

4) Comme $\lambda \mu \neq 0$, f n'admet pas la valeur propre 0. Donc Ker $f = \{0\}$, et comme E est de dimension finie, f est bijective.

De plus, on a vu en 1) que $f^2 - (\lambda + \mu)f + (\lambda \mu)\operatorname{Id} = 0$. D'où $f^{-1} = \frac{-1}{\lambda \mu}(f - (\lambda + \mu)\operatorname{Id})$. On remplace f et Id à l'aide de p et q, ce qui donne finalement : $f^{-1} = \frac{1}{\lambda}p + \frac{1}{\mu}q$.

5) La relation $f^m = \lambda^m p + \mu^m q$ est vérifiée pour m = 0, 1, 2 d'après l'énoncé, et pour m = -1 d'après la question précédente.

Une démonstration par récurrence sans difficulté, d'une part pour $m \in \mathbb{N}$, d'autre part pour $-m \in \mathbb{N}$, donne (en utilisant le fait que $p \circ q = q \circ p = 0$): $\forall m \in \mathbb{Z}, \ f^m = \lambda^m p + \mu^m q$.

6) Soient deux réels α et β tels que $\alpha p + \beta q = 0$. En composant par p, on a $\alpha p = 0$ donc $\alpha = 0$ puisque $p \neq 0$. De même, en composant par q, on obtient $\beta = 0$.

Donc (p,q) est une famille libre et $\dim(F) = 2$

- 7) Soit $h \in \mathcal{R}(f) \cap F$. Alors $h = \alpha p + \beta q$ et comme $p \circ q = q \circ p = 0$, $h^2 = \alpha^2 p + \beta^2 q = f = \lambda p + \mu q$. Comme (p,q) est une famille libre, on a $\alpha^2 = \lambda$ et $\beta^2 = \mu$, i.e. (puisque λ et μ sont supposés positifs) $\alpha = \pm \sqrt{\lambda}$ et $\beta = \pm \sqrt{\mu}$. On obtient 4 possibilités, qui réciproquement conviennent toutes. Par conséquent, les 4 solutions sont $h = \pm \sqrt{\lambda} p \pm \sqrt{\mu} q$.
- 8) Définissons la matrice K diagonale par blocs de la façon suivante :

$$\mathbf{K} = \left(\begin{array}{c|c} 0 & 1 \\ 1 & 0 \\ \hline & I_{k-2} \end{array} \right),$$

où I_{k-2} est la matrice identité de $\mathbb{M}_{k-2}(\mathbb{R})$ (bien définie car $k \ge 2$). Alors un produit par blocs donne immédiatement $K^2 = I_k$.

9) On va raisonner matriciellement. Appelons k l'ordre de multiplicité de la valeur propre λ $(k \ge 2)$ et considérons une base de diagonalisation \mathcal{B}_d pour f; c'est également une base de diagonalisation pour p et q car $p = \frac{1}{\lambda - \mu}(f - \mu \mathrm{Id})$ et $q = \frac{1}{\mu - \lambda}(f - \lambda \mathrm{Id})$. De plus, dans la base \mathcal{B}_d , ces matrices sont définies par blocs comme suit :

$$\mathrm{mat}_{\mathcal{B}_d}(f) = \left(\begin{array}{c|c} \lambda \mathrm{I}_k & 0 \\ \hline 0 & \mu \mathrm{I}_{n-k} \end{array}\right), \quad \mathrm{mat}_{\mathcal{B}_d}(p) = \left(\begin{array}{c|c} \mathrm{I}_k & 0 \\ \hline 0 & 0_{n-k} \end{array}\right) \quad \mathrm{et} \quad \mathrm{mat}_{\mathcal{B}_d}(q) = \left(\begin{array}{c|c} 0_k & 0 \\ \hline 0 & \mathrm{I}_{n-k} \end{array}\right).$$

Soit alors p' l'endomorphisme dont la matrice dans la base \mathcal{B}_d est :

$$\mathbf{M} = \begin{pmatrix} \mathbf{K} & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{0}_{n-k} \end{pmatrix}$$

où la matrice $K \in \mathcal{M}_k(\mathbb{R})$ a été définie à la question précédente. De plus,

- un produit par blocs donne $M^2 = mat_{\mathcal{B}_d}(p)$, donc ${p'}^2 = p$;
- des produits par blocs donnent $M \cdot \operatorname{mat}_{\mathcal{B}_d}(q)$, des $p' \circ M = 0_n$, donc $p' \circ q = q \circ p' = 0_n$;
- comme M n'est pas diagonale, $p' \notin F = Vect(p,q)$.

En résumé, l'endomorphisme p' ainsi construit répond à la question

10) Si $\dim(E) \geqslant 3$, alors λ ou μ est d'ordre au moins 2. Supposons par exemple que c'est λ . Posons $h = \sqrt{\lambda} p' + \sqrt{\mu} q$, où p' est l'endomorphisme défini à la question précédente. On a $h^2 = \lambda p + \mu q = f$ par propriétés de p' et q, et pourtant $h \notin F$ car $p' \notin F$ et $\lambda \neq 0$. En conclusion, $\boxed{\mathcal{R}(f) \not\subset F}$.

Partie III

1) Pour tout $P(X) = \sum_{k=0}^{\ell} a_k X^k \in \mathbb{R}[X]$, on a:

$$P(f) = \sum_{k=0}^{\ell} a_k f^k = \sum_{k=0}^{\ell} a_k \left(\sum_{i=1}^{m} \lambda_i^k p_i \right) = \sum_{i=1}^{m} \left(\sum_{k=0}^{\ell} a_k \lambda_i^k \right) p_i = \sum_{i=1}^{m} P(\lambda_i) p_i.$$

2) Prenons $P(X) = \prod_{i=1}^{m} (X - \lambda_i)$. Alors $P(\lambda_i) = 0$ pour i = 1,...,m, et d'après la question précédente P(f) = 0. Le polynôme P est annulateur de f et il est scindé à racines simples. Donc f est diagonalisable .

3) D'après la question 1), $L_{\ell}(f) = \sum_{i=1}^{m} L_{\ell}(\lambda_{i})p_{i}$. Mais $L_{\ell}(\lambda_{i}) = \delta_{\ell,i}$ (où $\delta_{\ell,i} = 1$ si $\ell = i$ et 0 si $\ell \neq i$). Donc $L_{\ell}(f) = p_{\ell}$. De plus,

$$(f - \lambda_{\ell} \mathrm{Id}) \circ p_{\ell} = (f - \lambda_{\ell} \mathrm{Id}) \circ \mathrm{L}_{\ell}(f) = \frac{\displaystyle \prod_{\substack{i=1 \\ 1 \leqslant i \leqslant m \\ i \neq \ell}} (f - \lambda_{i} \mathrm{Id})}{\displaystyle \prod_{\substack{1 \leqslant i \leqslant m \\ i \neq \ell}} (\lambda_{\ell} - \lambda_{i})} = \frac{0}{\displaystyle \prod_{\substack{1 \leqslant i \leqslant m \\ i \neq \ell}} (\lambda_{\ell} - \lambda_{i})} = 0.$$

Il en résulte que $\lceil \operatorname{Im}(p_\ell) \subset \ker(f - \lambda_\ell \operatorname{Id}) \rceil$.

En outre, le polynôme P(X) de la question 2) est annulateur de f et a pour racines $\lambda_1, \ldots, \lambda_m$. Donc $Sp(f) \subset \{\lambda_1, \ldots, \lambda_m\}$.

Et par hypothèse, pour tout $1 \le \ell \le m$, $p_\ell \ne 0$ donc $\mathrm{Im}(p_\ell) \ne \{0_{\mathrm{E}}\}$ et $\ker(f - \lambda_\ell \mathrm{Id}) \ne \{0_{\mathrm{E}}\}$. Ceci signifie que λ_ℓ est effectivement une valeur propre de f.

Finalement, on a bien $Sp(f) = \{\lambda_1, ..., \lambda_m\}$.

- **4)** Comme $p_{\ell}(f) = L_{\ell}(f)$, $p_i \circ p_j = (L_i \cdot L_j)(f)$.
 - Si $i \neq j$, le polynôme $P(X) = \prod_{i=1}^{m} (X \lambda_i)$ divise $(L_i \cdot L_j)(X)$. Comme P(f) = 0, on a donc $(L_i \cdot L_j)(f) = 0$ et $p_i \circ p_j = 0$.
 - Si i=j, comme $\mathrm{Id}=\sum_{k=1}^m p_i$ (relation de l'énoncé pour k=0), en composant par p_i on obtient $p_i^2=p_i$.
- 5) L'endomorphisme f étant diagonalisable, d'après le cours on a $E = \bigoplus_{i=1}^m \ker(f \lambda_i \operatorname{Id})$. Le fait que chaque p_i est un projecteur a été démontré à la question précédente. De plus, comme $\operatorname{Id} = \sum_{k=1}^m p_i$, on a $E = \sum_{i=1}^m \operatorname{Im}(p_i)$. Or on a vu que $\operatorname{Im}(p_i) \subset E_{\lambda_i}(f)$. D'après la somme

directe précédente, on a donc $E = \bigoplus_{i=1}^{m} Im(p_i)$ et $Im(p_i) = E_{\lambda_i}(f)$ pour tout i.

Enfin le fait que $p_i \circ p_j = 0$ pour $i \neq j$ montre que les p_i sont les projecteurs associés à cette somme directe

- 6) Écrivons une combinaison linéaire nulle des $(p_i)_{1 \leqslant i \leqslant m}$: $\sum_{i=1}^m a_i p_i = 0$. Soit $\ell \in [\![1;m]\!]$. En composant par p_ℓ , on obtient $a_\ell p_\ell = 0$, d'où $a_\ell = 0$ car p_ℓ n'est pas nul d'après l'énoncé. Ainsi tous les coefficients a_i sont nuls et la famille $(p_1,...,p_m)$ est libre. Donc $\dim(F) = m$.
- 7) Soit $h = \sum_{i=1}^{m} \alpha_i p_i \in F$ telle que $h^2 = f$. Alors $h^2 = \sum_{i=1}^{m} \alpha_i^2 p_i = \sum_{i=1}^{m} \lambda_i p_i$ et comme la famille $(p_1, ..., p_m)$ est libre, $\alpha_i^2 = \lambda_i$ pour tout i. Réciproquement, tous les h vérifiant cette relation sont solutions. En résumé, $\boxed{\mathcal{R}(f) \cap F = \left\{\sum_{i=1}^{m} \pm \sqrt{\lambda_i} p_i\right\}}$.
- 8) a) Si m = n, il y a n sous-espaces propres dans l'espace E de dimension n. Donc la dimension de chaque sous-espace propre de f est égale à 1.

- **b)** Si $h \in \mathcal{R}(f)$, $h \circ f = h^3 = f \circ h$. Donc h et f commutent et d'après le cours, tout espace propre $E_{\lambda_i}(f)$ est stable par h. Soit x un vecteur propre de f, par exemple $x \in E_{\lambda_i}(f) \setminus \{0_E\}$. Comme $\dim(E_{\lambda_i}(f)) = 1$, $h(x) = \mu_i x$ et x est vecteur propre pour h.
- c) Soit $h \in \mathcal{R}(f)$. D'après la question précédente, pour tout $1 \le i \le m$, il existe $\mu_i \in \mathbb{R}$ tel que pour tout $x_i \in \mathcal{E}_{\lambda_i}(f)$, $h(x_i) = \mu_i x_i$.

Soit $x \in E$. Comme $E = \bigoplus_{i=1}^n E_{\lambda_i}(f)$, $x = x_1 + \dots + x_n$ avec $x_i \in E_{\lambda_i}(f)$ et

$$h(x) = h(x_1 + \dots + x_n) = \sum_{i=1}^{n} \mu_i x_i = \sum_{i=1}^{n} \mu_i p_i(x)$$

soit
$$h = \sum_{i=1}^{m} \mu_i p_i$$
. Donc $\mathbb{R}(f) \subset \mathbb{F}$.

En reprenant la question III.7), on voit qu'une condition nécessaire et suffisante sur les λ_i pour que $\mathcal{R}(f)$ soit non vide est : $\forall i \in [\![1;n]\!], \lambda_i \geqslant 0$.

9) Si m < n, alors il existe i tel que $\dim(\mathsf{E}_{\lambda_i}(f)) \geqslant 2$. Si les λ_i sont positifs ou nuls, on peut alors reprendre le même raisonnement qu'à la question II.10), qui montre que $\boxed{\mathcal{R}(f) \not\subset \mathsf{F}}$.

Partie IV

- A) 1) Soit $x \in E$ tel que $f^{p-1}(x) \neq 0_E$ et $(a_1,...,a_p)$ une famille de réels tels que $\sum_{k=0}^{p-1} a_k f^k(x) = 0$. En composant par f^{p-1} , comme $f^q = 0$ pour tout $q \geqslant p$, on obtient $a_0 f^{p-1}(x) = 0$ donc $a_0 = 0$. On recommence en composant par $f^{p-2},...,f$, ce qui donne au final $a_0 = \cdots = a_{p-1} = 0$. Donc la famille $(x,f(x),f^2(x),...,f^{p-1}(x))$ est libre . Cette famille a p éléments dans un espace de dimension n, donc $p \leqslant n$ et $f^n = f^{n-p} \circ f^p = 0$.
 - 2) Si $\mathcal{R}(f) \neq \emptyset$, soit $h \in \mathbb{N}$ tel que $h^2 = f$. Alors $h^{2n} = f^n = 0$ donc h est nilpotent et d'après 1), $h^n = 0$. De plus, $h^{2p-2} = f^{p-1} \neq 0$ donc $2p-2 \leq n-1$, i.e. $2p-1 \leq n$.
 - 3) On sait d'après le cours que pour $\alpha \notin \mathbb{N}$,

$$\forall x \in]-1;1[, (1+x)^{\alpha} = \sum_{k=0}^{+\infty} \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!} x^k = \sum_{k=0}^{n-1} \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!} x^k + O(x^n)$$

au voisinage de 0. Ici, $\alpha = \frac{1}{2}$ et pour tout $k \in [0; n-1]$, $a_k = \frac{\frac{1}{2}(\frac{1}{2}-1)\cdots(\frac{1}{2}-k+1)}{k!}$.

4) D'après la question précédente, pour -1 < x < 1, $\sqrt{1+x} = P_n(x) + x^n \gamma(x)$ où γ est une fonction bornée au voisinage de 0. En élevant au carré, cela donne

$$1 + x = (P_n(x) + x^n \gamma(x))^2 = P_n^2(x) + x^n (2P_n(x)\gamma(x) + x^n \gamma(x)^2) = \boxed{P_n^2(x) + x^n \eta(x)}$$

avec η une fonction bornée au voisinage de 0.

Posons alors $Q_n(x) = P_n^2(x) - x - 1$; c'est une fonction polynôme. D'après la relation précédente, $x \mapsto Q_n(x)/x^n$ est une fonction bornée au voisinage de 0. Ceci n'est possible que si $Q_n(X)$ n'admet pas de terme en X^k pour $k \in [0; n-1]$, ce qui entraîne X^n divise X^n . On écrira dans la suite X^n où X^n est une fonction polynôme.

- 5) D'après les résultats des questions précédentes, $(P_n(f))^2 f Id = (P_n^2)(f) f Id = f^n \circ S_n(f)$. Or $f^n = 0$ d'après 1), donc $(P_n(f))^2 = f + Id$, i.e. $P_n(f) \in \mathcal{R}(f + Id)$. Donc $\boxed{\mathcal{R}(f + Id) \neq \emptyset}$.
 - Plus généralement, $(P_n(\alpha f))^2 \alpha f \mathrm{Id} = (P_n^2)(\alpha f) \alpha f \mathrm{Id} = (\alpha f)^n \circ S_n(\alpha f)$. Comme $f^n = 0$, $(P_n(\alpha f))^2 = \alpha f + \mathrm{Id}$, i.e. $P_n(\alpha f) \in \mathcal{R}(\alpha f + \mathrm{Id})$. Donc $\boxed{\mathcal{R}(\alpha f + \mathrm{Id}) \neq \emptyset}$.
 - Comme $\beta \neq 0$, soit $h \in \mathcal{R}(\frac{1}{\beta}f + \mathrm{Id})$ (c'est possible d'après ce qui précède). Alors $h^2 = \frac{1}{\beta}f + \mathrm{Id}$ et comme $\beta > 0$, $(\sqrt{\beta}h)^2 = f + \beta\mathrm{Id}$. Donc $\sqrt{\beta}h \in \mathcal{R}(f + \beta\mathrm{Id})$ et $\boxed{\mathcal{R}(f + \beta\mathrm{Id}) \neq \emptyset}$.
- B) 1) La matrice $T \lambda I_n$ est triangulaire supérieure avec des zéros sur la diagonale; son polynôme caractéristique est donc égal à $(-X)^n$, et, d'après le théorème de Cayley-Hamilton, on en déduit $(T \lambda I_n)^n = 0$.
 - 2) Comme f est un endomorphisme de E dont le polynôme caractéristique est scindé, il est trigonalisable. De plus, comme f n'admet qu'une seule valeur propre λ , il existe une base dans laquelle la matrice T de f est triangulaire supérieure, dont tous les coefficients diagonaux sont égaux à un réel λ . D'après la question précédente, $(T \lambda I_n)^n = 0_n$ et $(f \lambda Id)^n = 0$. Donc $E = \text{Ker}(f \lambda Id)^n$
 - 3) D'après la partie A), comme $(f \lambda \operatorname{Id})^n = 0$, $\mathcal{R}((f \lambda \operatorname{Id}) + \lambda \operatorname{Id}) \neq \emptyset$ (question A)5) en prenant $\beta = \lambda$ et en remplaçant f par $f \lambda \operatorname{Id}$). Donc $si \lambda > 0$ alors $\mathcal{R}(f) \neq \emptyset$.

