ASSIGNMENT 2

Question: Two lines passing through the point (2,3) intersect each other at an angle of 60°. If slope of one line is 2, find equation of the other line.

Solution:

Symbol	Description	Value
m_1	Slope of one line	2
m_2	Slope of other line	m_2
θ	Angle between two lines	60°
P	Intersecting point	$\binom{2}{3}$

Table 1: Table of input parameters

Symbol	Description	Value
$\tan \theta$	Slope between two lines	$ \frac{m_1 - m_2}{1 + m_1 m_2} $

Table 2: Table of output parameters

So,

$$\tan 60^{\circ} = \sqrt{3} = \left| \frac{2 - m_2}{1 + 2m_2} \right|$$

$$\implies m_2 = \frac{2 - \sqrt{3}}{2\sqrt{3} + 1}$$
(2)

$$\implies m_2 = \frac{2 - \sqrt{3}}{2\sqrt{3} + 1} \tag{2}$$

$$or_{,} = -\frac{\left(2 + \sqrt{3}\right)}{2\sqrt{3} - 1} \tag{3}$$

So, the equation of the line is

$$(y-3) = \frac{2-\sqrt{3}}{2\sqrt{3}+1}(x-2) \tag{4}$$

$$or, (y-3) = -\frac{(2+\sqrt{3})}{2\sqrt{3}-1}(x-2)$$
(5)

Figure:

Figure 1: Required Figure