

The projective dimension of height two ideals generated by quadrics

Alexandra Seceleanu (joint with C. Huneke, P. Mantero, J. McCullough)

October 2013 AMS Meeting, Louisville KY

Stillman's Question

Question (Stillman)

Is there a bound, independent of N, on the projective dimension of ideals in $R = K[X_1, \ldots, X_N]$ which are generated by n homogeneous polynomials of given degrees d_1, \ldots, d_n ?

This question is still open in full generality but has motivated

- obtaining general bounds for classes of ideals
- obtaining optimal or close-to-optimal bounds in specific situations

The case of ideals generated by quadrics (and cubics)

- Ananyan-Hochster (2011, 2013+) Stillman's question has affirmative answer for ideals generated by quadratic polynomials (and cubic polynomials)
 - their bound is exponential in the number of quadrics: $O(2n^{2n})$
 - doubly exponential for ideals generated by quadrics and cubics
- small number of generators

```
Eisenbud-Huneke I generated by 3 quadrics has pd(R/I) \le 4 Engheta I generated by 3 cubics has pd(R/I) \le 36 HMMS I generated by 4 quadrics has pd(R/I) \le 9
```

▶ compare the first bound above with 296 coming from A-H

Main result

Theorem (Huneke-Mantero-McCullough-S.)

For any ideal I of height two generated by n homogeneous quadratic polynomials in a polynomial ring R, $pd(R/I) \le 2n - 2$. Moreover, this bound is tight.

Example: the family of ideals

$$I = (x^2, y^2, a_{13}x - a_{23}y, \dots, a_{1n}x - a_{2,n}y),$$

where $x, y, a_{1,1}, \dots, a_{2,n-1}$ are distinct variables, has pd(R/I) = 2n - 2.

Note: here I is generated by the minors of the matrix M below involving the first column

$$M = \begin{pmatrix} x & 0 & y & a_{13} & \dots & a_{1n} \\ y & x & 0 & a_{23} & \dots & a_{2n} \end{pmatrix}$$

Associated primes

A height two ideal generated by n > 2 quadrics I has e(R/I) < 4, hence it is contained in at least one prime $\mathfrak p$ of one of the following types:

- **①** a prime of multiplicity one and height two, i.e. $\mathfrak{p} = (x, y)$, with x, y independent linear forms,
- ② a prime of multiplicity two and height two, i.e. $\mathfrak{p}=(x,q)$, with x a linear form and q an irreducible quadric or
- a prime of multiplicity three and height two, i.e. the defining ideal of a variety of minimal multiplicity

Relation to matrices of linear forms

Consider the case of an ideal I generated by n quadrics and such that $I \subset (x, y)$, where x and y are linearly independent linear forms. Say that

$$I = \langle a_{21}x - a_{11}y, a_{22}x - a_{12}y, \dots, a_{2n}x - a_{11n}y \rangle.$$

Then we say *I* is represented by minors by the matrix

$$M = \begin{pmatrix} x & a_{11} & \dots & a_{1n} \\ y & a_{21} & \dots & a_{2n} \end{pmatrix}.$$

1-generic matrices

A matrix is called 1-generic if after applying any succession of K-linear row and column operations it exhibits no zero entries.

1-generic matrices

A matrix is called 1-generic if after applying any succession of K-linear row and column operations it exhibits no zero entries.

$$\begin{bmatrix} x & z \\ y & w \end{bmatrix} \text{ is 1-generic } \begin{bmatrix} x & x \\ y & w \end{bmatrix} \text{ is not 1-generic}$$

1-generic matrices

A matrix is called 1-generic if after applying any succession of K-linear row and column operations it exhibits no zero entries.

Theorem (Eisenbud)

If M is a 1-generic matrix of linear forms of size $p \times q$ (p > q), then the ideal generated by the maximal minors of M is prime of codimension q - p + 1.

Classification of matrices of linear forms of size $2 \times (n+1)$

Proposition

Any $2 \times (n+1)$ matrix of linear forms with $n \geq 2$ is equivalent via a sequence of ideal-preserving elementary operations to a matrix M' of one of the following types:

- M' is 1-generic;

- **6** $M' = \begin{pmatrix} x & 0 & a_{12} & a_{13} & a_{14} & \dots & a_{1n} \\ y & a_{21} & 0 & \lambda a_{13} & a_{24} & \dots & a_{2n} \end{pmatrix}$, where λ is a scalar.

Proof idea - for the 1-generic case

Suppose

$$I = \langle a_{21}x - a_{11}y, a_{22}x - a_{12}y, \dots, a_{2n}x - a_{11n}y \rangle$$

and the matrix below is 1-generic

$$M = \begin{pmatrix} x & a_{11} & \dots & a_{1n} \\ y & a_{21} & \dots & a_{2n} \end{pmatrix}.$$

Then we use the following result

Theorem (Huneke)

Let C be a complete intersection containing an ideal $A = (a_1, \dots a_s)$. Set J = A : C and assume $\operatorname{ht} J \geq s$ and $\operatorname{ht}(C + J) \geq s + 1$.

Then
$$ht(J) = s$$
 and $pd(R/A) \le s$.

we use A = I, C = (x, y), s = n and Eisenbud's theorem on $I_2(M)$ to show

- $I_2(M) = I : (x, y) = I : (x) = I : (y)$ and
- pd(R/I) < n.

Open questions

Question

Let I be an ideal generated by n quadrics and having $\operatorname{ht} I = h$. Is there a sharp upper bound for $\operatorname{pd}(R/I)$ expressed only in terms of n and h?

• answer is affirmative for $n \le 3$ or $h \le 2$

Question

Let I be an ideal generated by n quadrics and having ht I = h. Is it true that

$$pd(R/I) \leq h(n-h+1)$$
?

• our main result answers this affirmatively for h = 2 and arbitrary n