光伝送工学 第3回レポート

濱崎 直紀 (学籍番号: 28G19096)

令和元年 12 月 11 日

3.1

郡速度 v_g および分散パラメータ D_c はそれぞれ次式で定義される.

$$\frac{1}{v_g} \equiv \frac{dk}{d\omega} \qquad \qquad D_c \equiv -\frac{2\pi c}{\lambda^2} \left(\frac{d^2k}{d\omega^2}\right)$$

- (a) 波長 λ における郡速度の角周波数依存性 $dv_g/d\omega$ を, D_c,c,λ ,及び λ における郡速度 $v_g(\lambda)$ で表せ.
- (b) 波長 $1.5\mu m$ 近傍で波長間隔が 0.8nm の 2 つの波長光が 10Gbps で強度変調されている.この 2 つの光パルス列が $D_c = 17ps/km nm$ の光ファイバを伝播するとき,2 つのパルス列の相対時間位置が 1 ビット分ずれる伝播長を求めよ.

解答

$$D_c = -\frac{2\pi c}{\lambda^2} \frac{d}{d\omega} \left(\frac{dk}{d\omega} \right)$$

 $rac{1}{v_q}\equivrac{dk}{d\omega}$ を代入して

$$\begin{split} D_c &= -\frac{2\pi c}{\lambda^2} \frac{d}{d\omega} \left(\frac{1}{v_g} \right) \\ &= -\frac{2\pi c}{\lambda^2} \left(-\frac{1}{v_g^2} \right) \left(\frac{dv_g}{d\omega} \right) \end{split}$$

よって

$$\frac{dv_g}{d\omega} = \frac{\lambda^2 v_g^2 D_c}{2\pi c}$$

(b) 1 ビットあたりの時間 *T* は

$$T = \frac{1}{10 \times 10^9}$$
$$= 10^{-10} [s] = 10^2 [ps]$$

1ビット分ずれるときの伝搬長Lは

$$17 \times L \times 0.8 = 100$$

$$L = 7.35 [\mathrm{km}]$$

3.2

主軸方向の屈折率が $\{n_f, n_s\}$ で,長さが L_1 と L_2 の 2 本の複屈折ファイバが,主軸方向が角度 ϕ 傾いて接続されている.これに対し,1 本目のファイバに,右廻り円偏波光を入力した.

- (a) L_1 伝搬後(1 本目出力端)の偏波状態を 1 本目ファイバの主軸座標系で表せ.
- (b) 上記偏波状態を2本目ファイバの主軸座標系で表せ.
- (c) 2 本目ファイバ出力端における偏波状態を 2 本目ファイバの主軸座標系で表せ.
- (d) 2本目ファイバ出力端における偏波状態を1本目ファイバの主軸座標系で表せ.

解答

(a) 1 本目ファイバにおける偏波状態を E_1 とすると

$$E_1(z=0) = (E_{1x}(0), E_{1y}(0))$$

= $(A, Ae^{-\frac{\pi}{2}i})e^{-i\omega t}$

ただし、ファイバの伝搬方向を z とする屈折率は $\{n_f,n_s\}$ なので、1 本目のファイバ伝送中の偏波状態は

$$E_1(z) = (Ae^{in_f k_0 z}, Ae^{-\frac{\pi}{2}i}e^{in_s k_0 z})e^{i\omega t}$$

よって、 L_1 伝搬後の偏波状態は

$$E_1(L_1) = (Ae^{in_f k_0 L_1}, Ae^{-\frac{\pi}{2}i}e^{in_s k_0 L_1})e^{i\omega t}$$

(b) 2本目のファイバは、主軸方向が ϕ 傾いているので接続境界においては

$$\begin{pmatrix} E_{2x}(L_1) \\ E_{2y}(L_1) \end{pmatrix} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} E_{1x}(L_1) \\ E_{1y}(L_1) \end{pmatrix}$$

$$\begin{aligned} \mathbf{E_2}(L_1) &= (E_{1x}(L_1)\cos\phi - E_{1y}(L_1)\sin\phi, E_{1x}(L_1)\sin\phi + E_{1y}(L_1)\cos\phi) \\ &= (Ae^{in_fk_0L_1}\cos\phi - Ae^{-\frac{\pi}{2}i}e^{in_sk_0L_1}\sin\phi, Ae^{in_fk_0L_1}\sin\phi + Ae^{-\frac{\pi}{2}i}e^{in_sk_0L_1}\cos\phi)e^{-i\omega t} \end{aligned}$$

(c)

$$\mathbf{E_2}(L_1 + L_2) = (E_{2x}(L_1)e^{in_fk_0L_2}, E_{2y}(L_1)e^{in_sk_0L_2})$$

(d) $-\phi$ だけ回転させると

$$\begin{pmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} E_{2x}(L_1 + L_2) \\ E_{2y}(L_1 + L_2) \end{pmatrix} = \begin{pmatrix} E_{2x}(L_1 + L_2) \cos \phi + E_{2y}(L_1 + L_2) \sin \phi \\ -E_{2x}(L_1 + L_2) \sin \phi + E_{2y}(L_1 + L_2) \cos \phi \end{pmatrix}$$

$$= \begin{pmatrix} E_{2x}(L_1)e^{in_fk_0L_2} \cos \phi + E_{2y}(L_1)e^{in_sk_0L_2} \sin \phi \\ -E_{2x}(L_1)e^{in_fk_0L_2} \sin \phi + E_{2y}(L_1)e^{in_sk_0L_2} \cos \phi \end{pmatrix}$$

$$= \begin{pmatrix} (Ae^{in_fk_0L_1} \cos \phi - Ae^{-\frac{\pi}{2}i}e^{in_sk_0L_1} \sin \phi)e^{in_fk_0L_2} \cos \phi \\ -(Ae^{in_fk_0L_1} \cos \phi - Ae^{-\frac{\pi}{2}i}e^{in_sk_0L_1} \sin \phi)e^{in_fk_0L_2} \sin \phi \end{pmatrix} e^{-i\omega t}$$

$$+ \begin{pmatrix} (Ae^{in_fk_0L_1} \sin \phi - Ae^{-\frac{\pi}{2}i}e^{in_sk_0L_1} \cos \phi)e^{in_sk_0L_2} \sin \phi \\ (Ae^{in_fk_0L_1} \sin \phi - Ae^{-\frac{\pi}{2}i}e^{in_sk_0L_1} \cos \phi)e^{in_sk_0L_2} \cos \phi \end{pmatrix} e^{-i\omega t}$$