Análise Real III - Exercícios - 2019/20

1. Considere \mathbb{R}^2 munido com a métrica usual.

Sejam
$$A = ([0,1] \times]0,1[) \cup ([0,1] \times \{2\}) \in B = A \cap (\mathbb{Q} \times \mathbb{Q}).$$

- a) Mostre que $(\frac{1}{2}, \frac{1}{2})$ é um ponto interior de A, mas não de B.
- b) Mostre que $(\frac{1}{2}, 1)$ é um ponto de fronteira de A.
- c) Indique o interior, a aderência e a fronteira dos conjuntos A e B.
- d) Dê exemplo de uma sucessão em A que seja de Cauchy mas não convirja em A.
- e) Dê uma definição adequada de diâmetro de um conjunto limitado. Use essa definição para calcular o diâmetro do conjunto A.
- f) Seja $f: \mathbb{R}^2 \to \mathbb{R}$ dada por f(x,y) = x + y. Mostre que f(A) é um subconjunto limitado de \mathbb{R} .
- g) Averigue se f atinge um máximo ou um mínimo em A.
- h) Dê exemplo de uma função contínua $h: A \to \mathbb{R}$ tal que $0 \in h(A)$, $1 \in h(A)$ e $\frac{1}{2} \notin h(A)$. É possível dar um tal exemplo trocando o conjunto A pelo seu interior?
- 2. Considere \mathbb{R}^2 munido com métrica usual. Sejam $A=]0,1[\times]0,1[$, $B=[0,1]\times]0,1[$ e $C=[0,1]\times]0,1[$. Indique o interior, a aderência e a fronteira de cada um destes conjuntos. Verifique se são abertos ou fechados. Justifique todas as respostas.
- 3. Averigue se, para a distância usual em \mathbb{R}^n , os seguintes subconjuntos são abertos, fechados ou nem uma coisa nem outra:
 - a) $\bigcap_{n=1}^{+\infty} [0, (n+1)/n[$ em \mathbb{R} .
 - b) \mathbb{Q} em \mathbb{R} .
 - c) $\{(x,y) \in \mathbb{R}^2 : 0 < x \le 1\}$ em \mathbb{R}^2
 - d) $\{X \in \mathbb{R}^n : ||X|| = 1\}$ em \mathbb{R}^n
- 4. Sejam $X = \mathcal{C}^0([a, b], \mathbb{R})$ o espaço das funções contínuas de [a, b] em \mathbb{R} e $d_u, d_i : X \times X \to \mathbb{R}$, dadas por $d_u(f, g) = \sup\{|f(x) g(x)|; x \in [a, b]\}$ e $d_i(f, g) = \int_a^b |f(x) g(x)| dx$.
 - a) Mostre que d_u e d_i definem métricas em X.

- b) Sejam a = 0, $b = 2\pi$, f(x) = sin(x) e g(x) = cos(x). Calcule $d_u(f, g)$ e $d_i(f, g)$.
- c) Sejam a = 0, b = 1, $f_n(x) = x^n$, $n \in \mathbb{N}$, g(x) = 0, $\forall x \in [0, 1]$. Calcule, caso existam, $\lim_n d_i(f_n, g)$ e $\lim_n d_u(f_n, g)$.
- d) Nas hipóteses da alínea anterior, para cada $x \in [0, 1]$, calcule $\lim_{n \to \infty} f_n(x)$, e, para $n, m \in \mathbb{N}$, $d_i(f_n, f_m)$.
- e) Por analogia com as noções que conhece de \mathbb{R} proponha definições para "sucessão convergente" e "sucessão de Cauchy" num espaço métrico qualquer.
- f) Com base na alínea anterior proponha uma interpretação para os resultados obtidos em c) e d).
- 5. Considere \mathbb{R} munido com métrica usual. Mostre que qualquer aberto não vazio de \mathbb{R} é união finita ou numerável de intervalos abertos dois a dois disjuntos.
- 6. Seja (X, d) um espaço métrico. Prove que
 - a) A união qualquer de conjuntos abertos é um conjunto aberto.
 - b) A intersecção qualquer de conjuntos fechados é um conjunto fechado.
 - c) A intersecção finita de conjuntos abertos é um conjunto aberto.
 - d) A união finita de conjuntos fechados é um conjunto fechado.
 - e) Dê exemplos que permitam concluir que as duas alíneas anteriores não podem ser generalizadas para um número qualquer de conjuntos.
- 7. Averigue quais dos seguintes conjuntos são compactos:
 - a) $\{(x,y) \in \mathbb{R}^2 : |x| \le 1\};$
 - b) $\{x \in \mathbb{R}^n : 1 < ||x|| < 2\};$
 - c) um subconjunto finito de \mathbb{R} ;
 - $\mathrm{d}) \mathbb{Z};$
 - e) $\mathbb{Q} \cap [0, 1]$.
- 8. Seja A um subconjunto de um espaço métrico X. Um ponto x de X diz-se um ponto de acumulação de A se qualquer bola aberta centrada em x contiver algum ponto de A distinto de x. Mostre que:
 - a) x é um ponto de acumulação de A se e só existir uma sucessão injectiva de pontos de A convergindo para x (uma sucessão diz-se injectiva se os seus termos forem todos distintos);

- b) se X for compacto e $A \subseteq X$ infinito, então A tem algum ponto de acumulação em M;
- c) todo o subconjunto infinito e limitado de \mathbb{R}^n tem algum ponto de acumulação.
- 9. Seja F um subconjunto fechado e não vazio de \mathbb{R}^n $(n \geq 2)$, e seja y um ponto de \mathbb{R}^n não pertencente a F. Mostre que existe um ponto x_0 de F à distância mínima de y (i.e., tal que $||x-y|| \geq ||x_0-y|| \; \forall x \in F$)
- 10. Sejam X um espaço métrico e $A \subseteq X$. Um ponto x de A diz-se um ponto isolado de <math>A se existir uma bola aberta centrada em x cuja intersecção com A só contenha x. O conjunto A diz-se discreto se só contiver pontos isolados. Mostre que um conjunto discreto é compacto se e só se for finito.
- 11. Diga quais das seguintes afirmações são verdadeiras para um qualquer subconjunto A dum espaço métrico M:
 - a) $int(\overline{A}) = int(A);$
 - b) $\overline{A} \cap A = A$;
 - c) $\overline{int(A)} = A;$
 - d) $fr(\overline{A}) = fr(A);$
 - e) se A for aberto, então $fr(A) \subset M \setminus A$.
- 12. Demonstre as seguintes relações para quaisquer subconjuntos A e B de um espaço métrico:
 - a) int(int(A)) = int(A);
 - b) $int(A \cup B) \supset int(A) \cup int(B)$;
 - c) $int(A \cap B) = int(A) \cap int(B);$
 - d) $\overline{\overline{A}} = \overline{A}$;
 - e) $\overline{A \cup B} = \overline{A} \cup \overline{B}$;
 - f) $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$.
- 13. Seja $(x_n)_{n\in\mathbb{N}}$ uma sucessão num espaço métrico X. Suponha que a sucessão é injectiva e discreta (i.e., cada termo da sucessão é o centro de uma bola aberta que não contém outros termos da sucessão). Mostre que as seguintes condições acerca de um ponto $y \in X$ são equivalentes:

- (i) o conjunto $\{y\} \cup \{x_n : n \in \mathbb{N}\}$ é compacto;
- (ii) $\lim_{n\to\infty} x_n = y$.
- 14. Seja X um espaço métrico completo, e seja $(F_n)_{n\in\mathbb{N}}$ uma sucessão decrescente (i.e., $F_1 \supseteq F_2 \supseteq \ldots \supseteq F_n \supseteq F_{n+1} \supseteq \ldots$) de subconjuntos fechados e não vazios de X. Suponha que diam $(F_n) \to 0$ quando $n \to +\infty$. Mostre que $\bigcap_{n=1}^{+\infty} F_n$ contém exactamente um ponto.
- 15. Sejam A e B subconjuntos disjuntos e não vazios do espaço métrico X. Mostre que, se A for compacto e B for fechado, então existe $\epsilon > 0$ tal que $d(x,y) > \epsilon$ sempre que $x \in A$ e $y \in B$.
- 16. Sejam X um espaço métrico e $\emptyset \neq A \subseteq X$. Para $x \in X$, defina

$$d(x, A) = \inf\{d(x, y) : y \in A\}.$$

Mostre que a função $x \mapsto d(x, A)$ é contínua, e que d(x, A) = 0 se e só se $x \in \overline{A}$.

- 17. Dê exemplo de uma função contínua $f: \mathbb{R}^2 \to \mathbb{R}$ e de um subconjunto fechado A de \mathbb{R}^2 tais que f(A) não seja fechado em \mathbb{R}
- 18. Considere em $\mathcal{C}([0,1])$ (cf exercício 4) a sucessão $(f_n)_{n\in\mathbb{N}}$ definida por

$$f_n(x) = 2nx, \ 0 \le x \le 1/2n,$$

$$f_n(x) = 2 - 2nx, \ 1/2n \le x \le 1/n,$$

$$f_n(x) = 0, 1/n \le x \le 1.$$

Mostre que $(f_n)_{n\in\mathbb{N}}$ converge na métrica d_i para a função nula, mas que a mesma sucessão não é convergente na métrica d_u .

19. Para cada $n \in \mathbb{N}$, seja $g_n : [-1,1] \to \mathbb{R}$ dada por

$$g_n(x) = 0, -1 \le x \le -1/n,$$

$$g_n(x) = -2 - 2nx, -1/n \le x \le -1/2n,$$

$$g_n(x) = 2nx, -1/2n \le x \le 1/2n,$$

$$g_n(x) = 2 - 2nx, \ 1/2n \le x \le 1/n,$$

$$g_n(x) = 0, \ 1/n \le x \le 1.$$

- a) Esboce os gráficos das funções g_1 , g_2 e g_3 .
- b) Para cada $x \in [-1, 1]$, determine $g(x) = \lim_{n \to +\infty} g_n(x)$.
- c) Averigue se, para a métrica d_u , se tem $\lim_{n\to+\infty} g_n = g$.
- 20. Dê exemplo de uma sucessão $(f_n)_{n\in\mathbb{N}}$ em $\mathcal{C}([0,1])$ que seja pontualmente convergente para a função nula (ou seja, tal que $\lim_{n\to+\infty} f_n(x) = 0$ para cada $x\in[0,1]$) mas que não convirja na métrica d_i .

21. Considere a sucessão de funções $(f_n)_{n\in\mathbb{N}}, f_n: [0,\pi] \to \mathbb{R}$, definida por

$$f_n(x) = \frac{n x}{n+1} + (\sin(x))^n.$$

- a) Mostre que $(f_n)_{n\in\mathbb{N}}$ converge pontualmente para uma função $f:[0,\pi]\to\mathbb{R}$, e determine essa função.
- b) Verfique se a convergência de $(f_n)_{n\in\mathbb{N}}$ para f é ou não uniforme.
- 22. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função de classe c^1 .
 - a) Mostre que f é uma contracção se e somente se existe $K \in]0,1[$ tal que $|f'(x)| \leq K, \forall x \in \mathbb{R}.$
 - b) Dê exemplo de uma função f, tal que |f'(x)| < 1, e que não seja uma contracção.
- 23. Sejam $f: \mathbb{R}^n \to \mathbb{R}^n$ uma contracção, X_0 o ponto fixo de f, $\epsilon > 0$ e C um conjunto limitado. Mostre que existe $n_0 \in \mathbb{N}$ tal que, $\forall n \geq n_0, f^n(C) \subset D(X_0; \epsilon)$. Obtenha uma estimativa para n_0 .
- 24. Seja $h: \mathbb{R} \to \mathbb{R}$ uma contracção com constante de Lipschitz $\lambda \in]0, 1[$. Suponha que h(0) = 0, e defina $F: \mathbb{R}^2 \to \mathbb{R}^2$ por F(x,y) = ((h(x) y)/2, x/2). Seja $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$.
 - a) Mostre que $F(\mathcal{D}) \subset \mathcal{D}$.
 - b) Mostre que (0,0) é o único ponto fixo de F.
- 25. Seja $f: \mathbb{R}^2 \to \mathbb{R}^2$ dada por $f(x,y) = ((y \cos x)/2, (x+1)/2)$, e considere $Q = [-1,1] \times [-1,1]$.
 - a) Mostre que $f(Q) \subseteq Q$.
 - b) Verifique que existe $0 < \lambda < 1$ tal que, para todo o $(x, y) \in \mathbb{R}^2$, a aplicação linear Df(x, y) é uma contracção com constante de Lipschitz λ .
 - c) Conclua que f possui um e um só ponto fixo em \mathbb{R}^2 , e que esse ponto fixo pertence a \mathcal{Q} .
- 26. a) Seja $f: \mathbb{R}^2 \to \mathbb{R}^2$ uma função de classe c^1 . Suponha que existe $0 < a < \frac{\sqrt{2}}{2}$ tal que

$$||\nabla f_1(x,y)|| \le a, \quad ||\nabla f_2(x,y)|| \le a, \ \forall (x,y) \in \mathbb{R}^2,$$

onde f_1 e f_2 denotam as componentes de f. Mostre que f é uma contracção. (Sugestão: use o Teorema do Valor Médio para estimar $|f_i(X) - f_i(Y)|$, $i \in \{1,2\}$.)

- b) Seja $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x,y) = (\frac{1}{6}\log(1+x^2+y^2), \frac{1}{4}\sin(x+y))$. Conclua que f tem um ponto fixo.
- 27. Seja $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x,y) = (x^2 + y, x y^2)$.
 - a) Mostre que f é localmente invertível numa vizinhança de (1,1).
 - b) Averigue se f é globalmente invertível.
- 28. Seja $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x,y) = (e^x \cos y, e^x \sin y)$.
 - a) Mostre que f é localmente invertível em todos os pontos.
 - b) Mostre que f não é invertível.
 - c) Seja $U = \{(x, y) \in \mathbb{R}^2 : 0 < y < 2\pi\}$. Mostre que $f|_U : U \to f(U)$ admite inversa de classe c^{∞} .
 - d) Determine $D(f|_{U}^{-1})(0,1)$.
- 29. Considere o sistema $\begin{cases} x^2 \cos xy = a \\ e^y = b \end{cases}.$
 - a) Mostre que existe uma vizinhança V de (1,1) tal que para todo $(a,b) \in V$ o sistema dado tem pelo menos uma solução (nas variáveis x e y).
 - b) Mostre que, se a vizinhança V de (1,1) é suficientemente pequena, então para cada $(a,b) \in V$ o sistema tem mais do que uma solução.
- 30. Seja $f: \mathbb{R}^n \to \mathbb{R}^n$ de classe c¹ tal que f(0) = 0. Mostre que se 1 não é um valor próprio de Df(0) então existe uma vizinhança U de 0 tal que $f(X) \neq X$, $\forall X \in U \{0\}$.
- 31. Sejam U um aberto de \mathbb{R}^n e $f:U\to\mathbb{R}^n$ de classe c^1 tal que $Df(X_0)$ é um isomorfismo, $\forall X_0\in U$. Mostre que f(U) é aberto em \mathbb{R}^n . Conclua que se f é injectiva, então f admite inversa de classe c^1 .
- 32. Seja $f: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^2$ $(x,y) \mapsto (x \log y, y \log x)$.
 - a) Mostre que existe uma vizinhança V de (1,e) tal que $f_{|V|}$ admite inversa de classe c^{∞} , $h: f(V) \to V$. Calcule Dh(1,0).

Seja $g:f(V)\to {\rm I\!R}$ uma função de classe c² tal que

$$\nabla g(f(x,y)) = (a(x-1), b(y-e)), \ \forall x, y \in V,$$

onde a e b são números reais tais que ab > 0.

- b) Mostre que a função $\nabla g: f(V) \to \mathbb{R}^2$ é localmente invertível $(x,y) \mapsto \nabla g(x,y)$ numa vizinhança do ponto (1,0).
- b) Verifique que (1,0) é um ponto crítico da função de g .
- 33. Considere as funções $f(x,y)=(x^2y,y-x)$ e $g(x,y)=(x,y^3x), (x,y)\in\mathbb{R}^2$.
 - a) Calcule a derivada de $q \circ f$ no ponto (1,0).
 - b) Prove que f é localmente invertível em (1,0) e que $g \circ f$ não é localmente invertível em (1,0).
- 34. Seja $f: \mathbb{R}^n \to \mathbb{R}^n$. Mostre que:
 - a) Se f é de classe c^1 , localmente invertível e a inversa local é de classe c^1 , então Df(X) é um isomorfismo, $\forall X \in \mathbb{R}^n$.
 - b) Mostre que existem funções de classe c^1 invertíveis, mas cuja inversa não é de classe c^1 . Observe que para essas funções necessariamente existe $X_0 \in U$ tal que $Df(X_0)$ não é um isomorfismo.
- 35. Sejam $f: \mathbb{R} \to \mathbb{R}$ de classe c¹ e $x_0 \in \mathbb{R}$ tal que $f'(x_0) \neq 0$.
 - a) Mostre que existe um aberto V contendo x_0 , tal que $f'(x) \neq 0$, $\forall x \in V$.
 - b) Mostre que $f|_V:V\to\mathbb{R}$ é injectiva e conclua que admite inversa de classe c^1 .
- 36. Para cada $\lambda \in \mathbb{R},$ seja $f_{\lambda} \colon \mathbb{R}^2 \to \mathbb{R}^2$ a função dada por

$$f_{\lambda}(x,y) = (x^2 + \lambda x \cos y, \sin(x+y)).$$

- a) Determine todos os $\lambda \in \mathbb{R}$ tais que f_{λ} tem inversa de classe C^1 em alguma vizinhança aberta de $(0, \pi)$.
- b) Mostre que não existe nenhuma vizinhança aberta de $(0,\pi)$ na qual f_0 admita inversa.
- c) Seja U uma vizinhança aberta de $(0,\pi)$ tal que $f_1|_U$ é invertível, e designe por g a sua inversa. Determine a aplicação linear $Dg(0,0): \mathbb{R}^2 \to \mathbb{R}^2$.
- 37. Seja $f: \mathbb{R}^2 \to \mathbb{R}^2$ definida por $f(x,y) = (e^x \operatorname{sen} y, xy)$.
 - a) Calcule $Df(0,\pi)$.
 - b) Determine todas as soluções do sistema f(x,y) = (0,0).

- c) Mostre que, dado $n \in \mathbb{N}$, existe uma vizinhança V_n de (0,0) tal que para todo $(a,b) \in V_n$, o sistema f(x,y) = (a,b) tem pelo menos n soluções.
- d) Pela alínea c) pode concluir que existe uma vizinhança V de (0,0) tal que para qualquer $(a,b) \in V$ o sistema f(x,y) = (a,b) tem uma infinidade de soluções?
- e) Seja $g: \mathbb{R}^2 \to \mathbb{R}$ definida por $g(x,y) = x + y^2$. Mostre que a equação $g \circ f(x,y) = 0$ define implicitamente y como função de x numa vizinhança de $(0,\pi)$ e calcule y'(0).
- 38. a) Seja $g: \mathbb{R}^n \to \mathbb{R}^n$ uma função de classe c¹ e suponha que $\exists M>0$ tal que $||g(X)|| \leq M.||X||^2$, $\forall X \in \mathbb{R}^n$. Mostre que Dg(0) é a aplicação linear nula.
 - b) Seja $f: \mathbb{R}^n \to \mathbb{R}^n$ dada por f(X) = A(X) + g(X), $\forall X \in \mathbb{R}^n$, onde A é um isomorfismo linear e g é uma função nas condições da alínea anterior. Mostre que f é localmente invertível em $0 \in \mathbb{R}^n$.
- 39. Seja $f: \mathbb{R}^3 \to \mathbb{R}$ dada por $f(x,y,z) = x+y+z^2$. Mostre que numa vizinhança de (1,1,2) a equação f(x,y,z) = 6 define z como função de x e y. Calcule $\frac{\partial z}{\partial x}(1,1)$ e $\frac{\partial z}{\partial y}(1,1)$. Determine o maior $r \in \mathbb{R}^+$ tal que a equação f(x,y,z) = 6 define z como função de x e y em $\mathrm{B}((1,1);r)$.
- 40. Mostre que numa vizinhança de $(1,\sqrt{3})$ a equação $x(x^2+y^2)-3(x^2-y^2)=10$ define implicitamente y como função de x. Calcule $\frac{dy}{dx}(1)$ e $\frac{d^2y}{dx^2}(1)$.
- 41. Sejam $g: \mathbb{R}^3 \to \mathbb{R}$ de classe \mathbf{c}^{∞} e $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x,y,z) = y xz e^z$. Suponha que g(1,1,0) = 0 e que $\frac{\partial g}{\partial x}(1,1,0) \neq 0$. Mostre que o sistema $\begin{cases} f(x,y,z) = 0 \\ g(x,y,z) = 0 \end{cases}$ define implicitamente x e z como funções, de classe \mathbf{c}^{∞} , de y numa vizinhança de (1,1,0). Calcule $\frac{dz}{dy}(1)$.
- 42. Mostre que o sistema $\begin{cases} x^2 + xy z^2 = 0 \\ xy + z = 0 \end{cases}$ define implicitamente x e z como funções de y numa vizinhança da solução (0,1,0). Calcule $\frac{dz}{dy}(1)$ e $\frac{dx}{dy}(1)$.
- 43. Mostre que o sistema $\begin{cases} x^2 + y^3 \cos z = 1 \\ y + z = 0 \end{cases}$ define implicitamente x e z como funções de y numa vizinhança de $(1, -\pi/2, \pi/2)$. Calcule $\frac{dx}{dy}(\frac{-\pi}{2})$ e $\frac{dz}{dy}(\frac{-\pi}{2})$.
- 44. Seja $f: \mathbb{R}^3 \to \mathbb{R}$ dada por $f(x, y, z) = x^3 + yz xe^z$.

- a) Mostre que a equação f(x, y, z) = 0 define implicitamente z como função de x e y numa vizinhança de (0, 1, 0).
- b) Calcule $\frac{\partial z}{\partial x}(0,1)$, $\frac{\partial z}{\partial y}(0,1)$ e $\frac{\partial^2 z}{\partial x \partial y}(0,1)$.
- 45. Mostre que existem uma vizinhança U de $0 \in \mathbb{R}$ e uma única função $g: U \to \mathbb{R}$, de classe c^{∞} , de tal modo que g(0) = 1 e

$$x^{2}e^{g(x)} + (g(x))^{2}e^{x} = 1, \quad \forall x \in U.$$

Calcule g'(0) e g''(0).

46. Mostre que, numa vizinhança de $(x_0, y_0, z_0, w_0) = (0, 1, 0, 1)$, o sistema

$$\begin{cases} xz^3 + y^2w^3 = 1\\ 2xy^3 + w^2z = 0 \end{cases}$$

define implicitamente x e y como funções de z e w. Escrevendo x=h(z,w) e y=g(z,w), mostre que a função $F(z,w)=(h(z,w),\,g(z,w))$ admite inversa numa vizinhança de (0,1).

47. Mostre que o sistema

$$\begin{cases} x^2 + y^2 + z^2 = 6\\ 2xy + y^2 + zx = 5 \end{cases}$$

define implicitamente x e z como funções de y numa vizinhança de (1,1,2). Mostre que y=1 é um ponto de máximo local da função z=z(y) mas não é um extremo local de x=x(y).

- 48. Sejam A uma aplicação linear de \mathbb{R}^2 e $f: \mathbb{R}^2 \to \mathbb{R}$ uma função de classe c¹ tal que $\nabla f(x,y) \neq (0,0), \forall (x,y) \in \mathbb{R}^2$. Determine condições suficientes sobre a aplicação linear A de tal modo que se $f \circ A(x_0,y_0) = 0$ então a equação $f \circ A(x,y) = 0$ define implicitamente x como função de y ou y como função de x numa vizinhança de (x_0,y_0) .
- 49. Considere os conjuntos $A=\{(x,y,z)\in\mathbb{R}^3:\ x^3+y^2+z^2=2\}$ e $B=\{(x,y,z)\in\mathbb{R}^3:\ 2x^2+y^2+3z^4=4\}.$
 - a) Mostre que existe uma vizinhança V de (0,1,1) em \mathbb{R}^3 tal que $V \cap (A \cap B)$ é o traço de uma curva de classe c^{∞} .
 - b) Mostre que a recta tangente a $A\cap B$ em (0,1,1) é paralela ao eixo dos xx's.

50. Seja $f:\mathbbm{R}^{n+1}\to\mathbbm{R}^n$ uma função de classe $\mathbf{c}^k,\,k\geq 1.$

Determine condições suficientes sobre f tais que $N_c f$ é, localmente, o traço de uma curva de classe c^k , $\forall c \in \mathbb{R}^n$. Dê exemplo de uma função que satisfaça as condições obtidas.

- 51. Seja $f: \mathbb{R}^3 \to \mathbb{R}^2$ definida por $f(x, y, z) = (x^2 + y^2 + z^2, x + y^2 + z), \forall (x, y, z) \in \mathbb{R}^3$. Considere a curva de nível $\mathcal{N} = N_{(2,0)}(f)$ de f.
 - a) Mostre que todos os pontos de \mathcal{N} são pontos regulares.
 - b) Determine as equações cartesianas da recta tangente a \mathcal{N} em (0, 1, -1) e a equação cartesiana do plano normal a \mathcal{N} em (0, 1, -1).
 - c) Mostre que, numa vizinhança de (0,1,-1), \mathcal{N} pode ser descrita como uma curva parametrizada pela variável x. Use esse facto para deduzir (novamente) as equações cartesianas da recta tangente a \mathcal{N} em (0,1,-1).
 - d) Seja $h: \mathbb{R}^3 \to \mathbb{R}$ definida por $h(x, y, z) = 2x + y^2$. Mostre que h atinge valor máximo e valor mínimo em \mathcal{N} .
 - e) Use o método dos multiplicadores de Lagrange para calcular o valor máximo e o valor mínimo de h em \mathcal{N} .
- 52. Sejam $f: \mathbb{R}^3 \to \mathbb{R}^2$ definida por $f(x,y,z) = (x^2 + y^2 + z^2, x + z), \forall (x,y,z) \in \mathbb{R}^3$ e $h: \mathbb{R}^3 \to \mathbb{R}$ definida por h(x,y,z) = x + 2y + 3z. Calcule o valor máximo e o valor mínimo de h em $\mathcal{N} = N_{(1,0)}(f)$.
- 53. Para cada $\lambda \in \mathbb{R}$, seja $f_{\lambda} \colon \mathbb{R}^3 \to \mathbb{R}^2$ a função dada por

$$f_{\lambda}(x, y, z) = (x^2 + y^2 - z^2, x + y + \lambda z).$$

- a) Determine todos os $\lambda \in \mathbb{R}$ tais que (1,0) é um valor regular de f_{λ} .
- b) Fixe agora $\lambda=2$ e seja $\mathcal C$ a curva de nível dada por

$$\{(x, y, z) \in \mathbb{R}^3 : f_2(x, y, z) = (1, 0)\}.$$

Determine uma equação cartesiana do plano normal a \mathcal{C} no ponto (1, 1, -1).

- c) Encontre todos os pontos de \mathcal{C} onde a recta tangente seja horizontal (ortogonal ao eixo dos zz).
- 54. Considere as funções $f:\mathbb{R}^3 \to \mathbb{R}^3$ e $g:\mathbb{R}^3 \to \mathbb{R}^2$ definidas por

$$f(x, y, z) = (x\cos(yz), ye^x\sin(z), x^2 + z), g(x, y, z) = (x - y, y + z).$$

- a) Mostre que f é localmente invertível em $X_0 = (0, 2, \frac{\pi}{2})$, sendo a inversa local de classe c^1 . Calcule $D(f^{-1})(f(X_0))$, onde f^{-1} denota a inversa local de f em X_0 .
- b) Dê exemplo de um ponto $Y_0 \in \mathbb{R}^3$ tal que f não admite inversa local, de classe c^1 , em Y_0 .
- c) Calcule $D(g \circ f)(X_0)$.
- d) Mostre que, numa vizinhança de X_0 , a equação

$$g \circ f(x, y, z) = (-2, 2 + \frac{\pi}{2})$$

define implicitamente y e z como funções de x. Calcule $\frac{dy}{dx}|_0$ e $\frac{dz}{dx}|_0$.

- e) Determine a equação da recta tangente a $N_{(-2,2+\frac{\pi}{2})}(g \circ f)$ no ponto X_0 .
- 55. Obtenha um representante para cada um dos seguintes caminhos.
 - a) Segmento de extremos A=(1,2,2) e B=(2,-1,-3), orientado de A para B.
 - b) Triângulo de vértices (0,2), (1,1) e (0,-1) percorrido uma vez no sentido indirecto.
 - c) Circunferência de centro (-1,2) e raio 5 percorrida uma vez no sentido directo.
 - d) Circunferência de centro (-1,2) e raio 5 percorrida duas vezes no sentido directo
 - e) Elipse de equação $\frac{x^2}{3}+\frac{y^2}{4}=1$ percorrida uma vez no sentido directo.
 - f) Intersecção do cilindro de equação $x^2+y^2=4$ com o plano de equação x+y+z=3 (escolha uma orientação).
- 56. Dado um campo $F:U\to\mathbb{R}^n$, onde U é um aberto de \mathbb{R}^n , diz-se que é um campo de gradientes se existe uma função $f:U\to\mathbb{R}$ tal que

$$\nabla f(x, y, z) = F(x, y, z), \ \forall (x, y, z) \in U.$$

A função f designa-se por potencial do campo.

Averigue se os seguintes campos de vectores são campos de gradientes e, caso a resposta seja afirmativa, calcule uma função potencial.

- a) F(x, y, z) = (yz, xz, xy).
- b) H(x, y, z) = (yz + z, xz, xy).

- c) $G(x, y, z) = (ye^{xy+yz}, (x+z)e^{xy+yz} z\sin(yz), ye^{xy+yz} y\sin(yz)).$
- d) $K(x, y, z) = (2xy^3z^4, 3x^2y^2z^4 + yz, 4x^2y^3z^3 + xz).$
- 57. Considere o campo de vectores $H: \mathbb{R}^2 \to \mathbb{R}^2$ dado por H(x,y) = (x+y,2x-y). Calcule:
 - a) $\int_{C_1} H \, ds$, onde C_1 é é o caminho representado pela curva $\alpha : [-1, 1] \to \mathbb{R}^2$, $\alpha(t) = (t^2, 1 t^3)$.
 - b) $\int_{C_2} H \, ds$, onde C_2 é o segmento de recta com extremos (1,0) e (2,1) orientado de (1,0) para (2,1).
- 58. Seja $F: \mathbb{R}^2 \to \mathbb{R}^2$ definido por $F(x, y) = (-y^2, xy)$.
 - a) Calcule $\int_C F \, ds$ onde C é:
 - i) a elipse de equação $x^2/4 + y^2 = 1$ percorrida no sentido directo;
 - ii) $C_1 + C_2$, onde C_1 é o segmento de recta com extremos (0,0) e (0,1) e C_2 é o segmento de recta com extremos (0,1) e (1,1) (indique as orientações consideradas).
 - iii) é o segmento de recta com extremos (0,0) e (1,1).
 - b) Averigue se F é um campo conservativo.
- 59. Calcule $\int_C \left(\frac{x}{x^2+y^2}, \frac{y}{x^2+y^2}, z\right) ds$, onde C é a curva obtida por intersecção do cilindro de equação $x^2+y^2=4$ com o plano de equação x+y+z=0, orientada no sentido directo.
- 60. Seja $F: \mathbb{R}^3 \setminus \{(0,0,0)\} \to \mathbb{R}^3$ $(x,y,z) \mapsto \frac{1}{x^2 + u^2 + z^2} (x,y,z)$
 - a) Verifique se F é um campo conservativo.
 - b) Calcule $\int_C F \, \mathrm{d}s$, onde C é o segmento de recta com extremos (1,0,0) e (1,1,1), orientado de (1,0,0) para (1,1,1).
 - c) Calcule $\int_C F$ ds, onde C é o caminho representado pela curva $\alpha(t)=(1+t,2+t^2,e^t),\,t\in[0,3].$
- 61. Calcule $\int_C (2xy, x^2) ds$, onde C é o triângulo de vértices (-1, -1), (1, -1) e (0, 0), percorrido no sentido directo.
- 62. Considere em \mathbb{R}^2 a circunferência C de raio 1, centrada na origem e percorrida no sentido directo. Determine todas as aplicações lineares A de \mathbb{R}^2 tais que $\int_C A \, \mathrm{d}s = 0$.

63. Sejam

$$U_1 = \{(x,y) \in \mathbb{R}^2 : x \neq 0\}, \ U_2 = \{(x,y) \in \mathbb{R}^2 : y \neq 0\} \text{ e } U = \mathbb{R}^2 \setminus \{(0,0)\}.$$

Considere o campo de vectores $F : U \to \mathbb{R}^2, \ F(x,y) = (\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}).$

- a) Mostre que F é um campo fechado.
- b) Mostre que o trabalho realizado pelo campo F ao longo da circunferência centrada na origem, de raio 1 e percorrida uma vez no sentido directo, é igual a 2π . Conclua que F não é um campo de gradientes.
- c) Mostre que a função $f_1(x,y)=arctg(\frac{y}{x}),\ (x,y)\in U_1,\ é$ um potencial da restrição de F a U_1 .
- d) De $arctg(\frac{y}{x}) = arccotg(\frac{x}{y}), x \neq 0 \neq y$, conclua que a função $f_2(x,y) = arccotg(\frac{x}{y}), (x,y) \in U_2$, é um potencial da restrição de F a U_2 .
- e) Seja C um caminho simples e fechado, contido em U, tal que (0,0) não pertence à componente limitada de $\mathbb{R}^2 \setminus C$. Apresente um argumento *intuitivo* que permita concluir que $\int_C F \, \mathrm{d}s = 0$.
- f) Seja C um caminho simples e fechado, contido em U, tal que (0,0) pertence à componente limitada de $\mathbb{R}^2 \setminus C$. Apresente um argumento *intuitivo* que permita concluir que $\int_C F \, \mathrm{d}s = 2\pi$
- 64. Seja $F: \mathbb{R}^3 \to \mathbb{R}^3$ $(x, y, z) \mapsto (-yz \operatorname{sen} xy, -xz \operatorname{sen} xy, \cos xy)$
 - a) Mostre que F é um campo de gradientes.
 - b) Calcule $\int_C F \, \mathrm{d}s$, onde C é o segmento de recta de extremos A=(0,0,1) e $B=(\pi,0,2)$, orientado de A para B.
 - c) Determine todos os pontos $X \in \mathbb{R}^3$ tais que $\int_{C_X} F \, \mathrm{d}s = 0$, onde C_X é um caminho qualquer de extremos (0,0,0) e X.
 - d) Seja $\alpha:[0,1]\to\mathbb{R}^3$ uma curva de classe c¹, não constante, tal que $F(\alpha(t))=\alpha'(t), \forall t\in[0,1]$. Mostre que $\alpha(1)\neq\alpha(0)$ (i.e. a curva não representa um caminho fechado).
- 65. Dado um campo $F: U \to \mathbb{R}^n$ de classe C^1 , onde U é um aberto de \mathbb{R}^n , define-se a divergência de F por $div(F)(x,y,x) = \sum_{i=1}^n \frac{\partial F_i}{\partial x_i}(x,y,z)$, e, quando n=3, o rotacional de F por

$$rot(F)(x,y,z)=(\frac{\partial F_3}{\partial y}-\frac{\partial F_2}{\partial z},\,\frac{\partial F_1}{\partial z}-\frac{\partial F_3}{\partial x},\,\frac{\partial F_2}{\partial x}-\frac{\partial F_1}{\partial y})(x,y,z)$$

Calcule a divergência e o rotacional dos seguintes campos:

- a) $F(x, y, z) = (x^2, xyz, yz^2)$
- b) $G(x, y, z) = (y \log(x), x \log(y), xy \log(z))$
- c) $H(x, y, z) = (x^2, \sin(xy), e^x yz)$
- d) $K(x, y, z) = (e^{xy}\sin(z), e^{xz}\sin(y), e^{yz}\cos(x))$
- 66. Sejam $F,G:\mathbb{R}^3\to\mathbb{R}^3$ campos de classe $C^2,\ f:\mathbb{R}^3\to\mathbb{R}$ de classe $C^2,\ e$ $\varphi:\mathbb{R}^3\to\mathbb{R}$ uma função de classe C^1 . Mostre que
 - a) $rot(\nabla f) = 0$;
 - b) div(rot(F)) = 0;
 - c) $div(\varphi F) = \nabla \varphi \cdot F + \varphi div(F);$
 - d) $div(F \times G) = rot(F) \cdot G F \cdot rot(G)$.
- 67. Seja $f: \mathbb{R}^3 \to \mathbb{R}$ uma função de classe C^1 . Deduza a seguinte expressão, em coordenadas cilíndricas:

$$\nabla f = \frac{\partial f}{\partial r} \mathbf{e_r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \mathbf{e_{\theta}} + \frac{\partial f}{\partial z} \mathbf{e_z},$$

onde $\mathbf{e_r} = (\cos(\theta), \sin(\theta), 0), \mathbf{e_{\theta}} = (-\sin(\theta), \cos(\theta), 0) \in \mathbf{e_z} = (0, 0, 1).$

68. Considere os seguintes campos de vectores definidos em \mathbb{R}^3 :

$$F(x, y, z) = (yz, xz, xy) \in G(x, y, z) = (yz + z, xz + x, xy).$$

Seja ${\cal C}$ o caminho representado pela curva

$$\alpha(t) = (t + e^t \cos(\frac{\pi}{2}t), e^t \sin(\frac{\pi}{2}t), t^2), \ t \in [0, 1],$$

e seja \tilde{C} o segmento de extremo inicial (0,0,0) e extremo final (1,1,1).

- a) Calcule $\int_C F ds$ de duas maneiras distintas:
 - a
1) usando o facto de que o campo ${\cal F}$ é um campo de gradientes;
 - a
2) usando apenaso facto de que o campo ${\cal F}$ é conservativo.
- b) Calcule $\int_{\tilde{C}} G ds$.
- 69. Considere o campo de vectores

$$F(x,y) = (\cos(x) + e^x - y^3, \sin(y) + xy + x^3).$$

Calcule $\int_C F ds$, onde C é a circunferência de centro (0,0) e raio 1, percorrida duas vezes no sentido directo.

(Sugestão: use uma decomposição F=G+H, sendo G um campo de gradientes.)

70. Considere o campo de vectores $F: \mathbb{R}^3 \to \mathbb{R}^3$ definido por

$$F(x, y, z) = (ye^{xy+z}, z + xe^{xy+z}, e^{xy+z}).$$

- a) Mostre que F não é um campo de gradientes.
- b) Seja C o caminho representado por $\alpha(t)=(cos(t),\,sin(t),\,t),$ $t\in[0,2\pi];$ calcule $\int_C Fds.$
- c) Seja \tilde{C} um caminho fechado contido no plano de equação y=3. Mostre que $\int_{\tilde{C}} F ds = 0$.
- 71. Considere o campo de vectores $F:\mathbb{R}^2 \to \mathbb{R}^2$ definido por

$$F(x,y) = (xy^2 + y^3, 3xy^2 + y^2 + x^2y).$$

- a) Mostre que F é um campo de gradientes.
- b) Calcule

$$\int_{C_1} F\,ds \quad \text{e} \quad \int_{C_1} F\,ds + \int_{C_2} F\,ds,$$
onde C_1 é o segmento de extremos $A=(0,0)$ e $B=(1,1)$, orientado de B para A , e C_2 é o caminho representado por $\alpha(t)=(t,t^2),\,t\in[0,1].$

- c) Calcule $\int_C G \, ds$, onde $G(x,y)=(xy^2+y^3-y+x^6,\,3xy^2+y^2+x^2y+x+e^y)$ e C é a elipse de equação $x^2+\frac{y^2}{2}=1$ percorrida duas vezes no sentido indirecto.
- 72. Considere o campo de vectores $F: \mathbb{R}^3 \to \mathbb{R}^3$ definido por

$$F(x, y, z) = (\cos(yz), -xz\sin(yz), -xy\sin(yz) + 1).$$

- a) Determine uma função potencial do campo de vectores F.
- b) Seja C o caminho representado por $\alpha(t) = (t, (t-1)^2, t^3), t \in [0, 1]$. Calcule $\int_C F ds$.
- c) Determine todos os pontos $X=(x,0,z)\in\mathbb{R}^3$ para os quais $\int_{C_X} F ds = 0$, onde C_x é um caminho de extremos (0,0,0) e (x,0,z).
- 73. Considere o campo de vectores $F:\mathbb{R}^3 \to \mathbb{R}^3$ definido por

$$F(x, y, z) = (e^{\cos(yz)}, -xz\sin(yz)e^{\cos(yz)} + 2y, -xy\sin(yz)e^{\cos(yz)}).$$

a) Determine um potencial do campo F.

- b) Calcule $\int_{C_1} F ds$ e $\int_{C_2} F ds$, onde C_1 é o caminho representado por $\alpha_1(t) = (cos(t), sin(t), 0)$, e C_2 é o caminho representado por $\alpha_2(t) = (cos(t), sin(t), t)$, $t \in [0, 2\pi]$.
- c) Calcule $\int_{C_3} Gds$, onde C_3 é o segmento de extremo inicial (0,2,1) e de extremo final (0,1,2), e $G(x,y,z) = F(x,y,z) + (0,0,z), (x,y,z) \in \mathbb{R}^3$.
- 74. Considere os seguintes campos de vectores definidos em \mathbb{R}^3 : $F(x,y,z) = (2xyz, x^2z, x^2y), G(x,y,z) = (y,0,z)$ e H = F + G.
 - a) Determine um potencial do campo F.
 - b) Sendo C_1 o caminho representado pela curva $\alpha(t) = (t, e^t, t^2), t \in [0, 1],$ calcule $\int_{C_1} H ds$.
 - c) Sendo C_2 o segmento de extremo inicial (1, e, 1) e extremo final (0, 1, 0), calcule $\int_{C_1+C_2} H \, ds$
- 75. Considere os seguintes campos de vectores definidos em \mathbb{R}^2 : H = F + G, $F(x,y,) = (\cos(y) + y\cos(x), -x\sin(y) + 2y + \sin(x))$ e G(x,y) = (y,-x).
 - a) Determine um potencial do campo F.
 - b) Sendo C o caminho representado pela curva $\alpha(t) = (\pi \cos(t), \pi \sin(t)), t \in [0, \frac{\pi}{2}],$ calcule $\int_{-C} H ds$.
- 76. Considere os seguintes campos de vectores definidos em \mathbb{R}^3 :

$$F(x,y,z) = (y^2e^z, 2xye^z + z, xy^2e^z + y), e G(x,y,z) = (0, -z, 2y)$$

- a) Determine um potencial do campo F.
- b) Mostre que H = F + G não é um campo de gradientes.
- c) Usando a alínea anterior pode concluir que existe um caminho fechado \tilde{C} tal que $\int_{\tilde{C}} H \, ds \neq 0$?
- d) Calcule $\int_C H ds$, onde C é o caminho representado pela curva $\alpha(t) = (2e^t, t, t), t \in [0, 1].$
- 77. Considere o campo de vectores $F: U \to \mathbb{R}^3$,

$$F(x, y, z) = (z \log(y), \frac{xz}{y}, x \log(y) - x),$$

onde $U = \{(x, y, z) \in \mathbb{R}^3 : y > 0\}.$

- a) Mostre que F não é um campo de gradientes.
- b) Calcule $\int_C F ds$, onde C é o segmento de extremo inicial (1,1,1) e de extremo final (1,2,3).
- c) Dê um exemplo, devidamente justificado, de um caminho fechado \bar{C} tal que $\int_{\bar{C}} F ds \neq 0$.)
- 78. a) Determine uma função $h: \mathbb{R} \to \mathbb{R}$, não identicamente nula, de tal modo que o campo $H(x, y, z) = (h(y), x h(y) + z^2, 2zy)$ seja conservativo.
 - b) Para a função h obtida em (a), calcule $\int_{\mathcal{C}} H \, ds$, onde \mathcal{C} admite a parametrização $(t, t^2, t^3 t \cos(2\pi t)), \ 0 \le t \le 1.$
- 79. Seja $F: \mathbb{R}^3 \setminus \{(0,0,0)\} \to \mathbb{R}^3$ o campo de vectores dado por

$$F(x,y,z) = \left(\frac{x}{x^2 + y^2 + z^2}, \frac{y}{x^2 + y^2 + z^2}, \frac{z^2}{x^2 + y^2 + z^2}\right). \tag{1}$$

- a) Mostre que F não é um campo de gradientes
- b) Mostre que, se \mathcal{C} for um qualquer caminho fechado, C^1 por pedaços, que esteja contido no plano z=0 e não passe pela origem, então $\int_{\mathcal{C}} F \, ds = 0$.
- 80. Seja $F: \mathbb{R}^3 \to \mathbb{R}^3$ um campo de vectores dado por

$$F(x, y, z) = (\lambda xy - z, x^2, z + \gamma x),$$

onde λ e γ são certas constantes.

- a) Determine λ e γ de modo que F seja um campo de gradientes
- b) Para os valores de λ e γ determinados em (a), calcule $\int_{\mathcal{C}} F \, ds$, onde \mathcal{C} é o caminho representado pela curva $\alpha(t) = (\cos(t), \, \sin(t), \, \frac{t}{\pi}), \, t \in [0, \pi].$
- 81. O campo gravítico criado por uma massa centrada na origem (0,0,0) é, em cada ponto $X \in \mathbb{R}^3 \setminus \{(0,0,0)\}$, um vector que aponta para a origem e é inversamente proporcional ao quadrado da distância desse ponto à origem (o factor de proporcionalidade depende da massa sobre a qual se exerce a força). Assim, e a menos de um factor constante, esse campo é dado por $H(X) = \frac{1}{\|X\|^2} \cdot \left(-\frac{1}{\|X\|}X\right)$.
 - a) Mostre que H é conservativo e obtenha uma sua função potencial.
 - b) Fixado $A \in \mathbb{R}^3 \setminus \{(0,0,0)\}$, seja T(X) o trabalho realizado pelo campo H quando uma partícula se move de A para X. Calcule $\lim_{\|X\| \to +\infty} T(X)$.

- 82. Sejam $\alpha: [a,b] \to \mathbb{R}^2 \setminus \{(0,0)\}$ uma curva de classe C^1 e $\varphi: [a,b] \to \mathbb{R}$ uma função de classe C^1 tal que $\alpha(t) = \|\alpha(t)\| \cdot (\cos(\varphi(t)), \, \sin(\varphi(t)))$. Seja C o caminho representado pela curva α .
 - a) Mostre que $\int_{C} \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right) ds = \varphi(b) \varphi(a).$
 - b) Conclua que, se α for uma curva fechada, então

$$\frac{1}{2\pi} \int_C (\frac{-y}{x^2 + y^2}, + \frac{x}{x^2 + y^2}) \, ds \in \mathbb{Z}.$$

- 83. Calcule $\int_C F ds$ usando o teorema de Green:
 - a) $F(x,y) = (x^2 y^2, -2xy)$ e C é o quadrado de vértices (0,0), (2,0), (2,2) e (0,2) percorrido no sentido directo;
 - b) $F(x,y) = (x\cos x e^y, -y^2 xe^y)$ e C é uma curva simples e fechada, percorrida no sentido directo e que delimita uma região nas condições do teorema de Green;
 - c) $F(x,y) = (3x^3 y^3, x^3 + 2y^3)$ e C é a circunferência de raio 1 e centro (0,0) percorrida no sentido indirecto.
- 84. Calcule a área da região de \mathbb{R}^2 limitada pela curva de equação $\rho=3$ sen 2θ , $\theta\in[0,\pi/2]$.
- 85. Sejam C_1 e C_2 circunferências percorridas no sentido directo tais que C_2 está no interior da região limitada por C_1 . Seja $F(x,y) = (F_1(x,y), F_2(x,y))$ um campo de vectores de classe C^1 definido em \mathbb{R}^2 . Mostre que:
 - a) $\int_{C_1} F \, ds \int_{C_2} F \, ds = \int_D (\frac{\partial F_2}{\partial x} \frac{\partial F_1}{\partial y}) \, dx \, dy$, onde D é a região limitada por C_1 e C_2 ;
 - b) se DF(X) é uma aplicação linear simétrica (matriz simétrica), $\forall X \in \mathbb{R}^2$, então $\int_{C_1} F \, ds = \int_{C_2} F \, ds$.
- 86. Seja D uma região de \mathbb{R}^2 na qual se pode aplicar o teorema de Green, U um aberto de \mathbb{R}^2 tal que $D\subseteq U$ e $f:U\to\mathbb{R}$ uma função de classe C^2 tal que $\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}=0$. Mostre que $\int_{\partial D}(\frac{\partial f}{\partial y},-\frac{\partial f}{\partial x})ds=0$.
- 87. Recorra ao Teorema de Green para calcular a área de D, onde D é a região de \mathbb{R}^2 limitada pela elipse de equação $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, onde a > 0 e b > 0.

- 88. Calcule a área de D, onde D é a região de \mathbb{R}^2 limitada pelo traço da curva $\alpha:[0,2\pi]\to\mathbb{R}^2,\ \alpha(t)=(e^{-t}\cos t,e^{-t}\sin t),$ e o segmento de extremos $(e^{-2\pi},0)$ e (1,0).
- 89. a) Determine condições necessárias e suficientes sobres os campos $F : \mathbb{R}^3 \to \mathbb{R}^3$, de classe c^1 , da forma $F = (F_1, F_2, 0)$, para os quais que rot F(x, y, z) = (0, 0, 1), $\forall (x, y, z) \in \mathbb{R}^3$.
 - b) Para os campos obtidos na alínea anterior, recorra ao Teorema de Green para calcular $\int_{C_r^+} F ds$, onde C_r^+ é a circunferência de equações $z=0, x^2+y^2=r^2$, percorrida no sentido directo.
- 90. Sejam $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$, $\mathcal{S} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$, e $g: \mathcal{D} \to \mathcal{D}$ uma função de classe C^2 (ou seja, que admite um prolongamento de classe C^2 a um aberto que contém \mathcal{D}) tal que $g(\mathcal{D}) = \mathcal{S}$.
 - a) Mostre que $\det(\operatorname{Jac} g(x,y)) = 0$ para todo o (x,y) em \mathcal{D} .
 - b) Defina um campo de vectores em B por $H(x,y) = \left(g_1 \frac{\partial g_2}{\partial x}, g_1 \frac{\partial g_2}{\partial y}\right)$. Mostre que $\int_{\mathcal{S}} H ds = 0$.
 - c) Suponha que $f: \mathcal{D} \to \mathcal{D}$ é uma função de classe C^2 cuja restrição a \mathcal{S} é a identidade. Mostre, a partir da definição, que $\int_{\mathcal{S}} \left(f_1 \frac{\partial f_2}{\partial x}, f_1 \frac{\partial f_2}{\partial y} \right) ds \neq 0$.
 - d) Conclua que $g|_{\mathcal{S}}$ não é a identidade.
 - e) Conclua que qualquer função $h:\mathcal{D}\to\mathcal{D}$ de classe C^2 tem algum ponto fixo. (Caso não tenha, construa uma função g como acima e tal que $g|_{\mathcal{S}}$ seja a identidade.)
- 91. Determine a área do helicóide definido por

$$x = r\cos(\theta), \ y = r\sin(\theta), \ z = \theta,$$

onde $0 \le \theta \le 2\pi$ e $0 \le r \le 1$.

- 92. Calcule $\int_S f dS$, onde $f(x,y,z) = \sqrt{1+x^2+y^2}$ e S é o helicóide descrito no exercício anterior.
- 93. Calcule $\int_S f dS$, onde $f(x,y,z)=z^2$ e S é a esfera de centro (0,0,0) e raio 1.
- 94. Suponha que a temperatura de um ponto de \mathbb{R}^3 é dada por $T(x,y,z)=3x^2+3z^2$. Calcule o fluxo de calor através da superfície $x^2+z^2=2$, $0\leq y\leq 2$. (O campo associado à função temperatura é $F=-\nabla T$).

- 95. Seja S a superfície fechada constituída pela semi-esfera $x^2 + y^2 + z^2 = 1$, $z \le 0$, e pela sua base $x^2 + y^2 \le 1$, z = 0. Seja E o campo eléctrico definido por E(x, y, z) = (2x, 2y, 2z). Calcule o fluxo eléctrico através de S.
- 96. Calcule $\int_S rot(F) \cdot NdS$, onde S é a superfície $x^2+y^2+3z^2=1,\ z\leq 0,$ e $F(x,y,z)=(y,-x,zx^3y^2).$
- 97. Recorra ao Teorema de Stokes para calcular $\int_C (-y^3, x^3, -z^3) ds$, onde C é a curva obtida pela intersecção do cilindro de equação $x^2 + y^2 = 1$ com o plano de equação x + y + z = 1.
- 98. Sejam C_1 o caminho representado pela circunferência de equações $x^2 + y^2 = 4$ e z = 1, percorrida uma vez no sentido directo, e C_2 o caminho representado pela circunferência de equações $x^2 + y^2 = 4$ e z = 3, percorrida uma vez no sentido directo. Seja $F: \mathbb{R}^3 \to \mathbb{R}^3$ um campo de vectores de classe C^1 tal que $rot(F)(x,y,z) = (2x,-y,-z), (x,y,z) \in \mathbb{R}^3$.

Mostre que $\int_{C_1} F ds = \int_{C_2} F ds + 8\pi$.

- 99. Calcule $\int_S F \cdot N dS$, onde $F(x,y,z) = (xy^2,x^2y,y)$, e S é a superfície constituída pelo cilindro $x^2+y^2=1, \ -1 \le z \le 1$, e pelos discos $x^2+y^2 \le 1$ e z=1, e $x^2+y^2 \le 1$ e z=-1.
- 100. Seja S uma superfície fechada e sem bordo. Use o Teorema de Gauss para concluir se F é um campo de classe C^2 definido em R^3 , então

$$\int_{S} rot(F) \cdot NdS = 0.$$

- 101. Calcule $\int_S F \cdot N dS$, onde $F(x, y, z) = (x^3, y^3, z^3)$, e S é a esfera unitária centrada na origem.
- 102. Calcule $\int_{\partial B} F\cdot NdS$, onde $F(x,y,z)=(1,1,z(x^2+y^2)^2)$, e ∂B é a superfície bordo do cilindro sólido $x^2+y^2\leq 1,\ 0\leq z\leq 1$.
- 103. Considere a superfície gráfico associada à função $f:D\to\mathbb{R},\ f(x,y)=y,$ e $D=\{(x,y)\in\mathbb{R}^2:\ x^2+y^2\leq 1\}.$ Calcule

$$\int_{C^{+}} (-y^{3} + e^{x}, \cos(z) + y^{3}, e^{y} + x^{3}) ds,$$

onde C^+ representa a curva bordo de S percorrida no sentido directo.

104. Considere o campo de vectores $F: \mathbb{R}^3 \to \mathbb{R}^3$,

$$F(x, y, z) = (x + 3xy^{2}z, y - y^{3}z + x\cos(z), -2z + e^{(x^{2} + y^{2})}),$$

e as superfícies, orientadas com "normal exterior", N,

$$S_1 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 4\},$$

$$S_2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 4, -1 \le z \le 1\},$$

$$S_3 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 4, z > 0\}.$$

- a) Mostre que $\int_{S_1} F \cdot N dS = 0$.
- b) Calcule $\int_{S_2} F \cdot NdS$.
- c) Calcule $\int_{S_3} rot(F) \cdot N dS$.
- 105. Considere as superfícies

$$S_1 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^2, z \in [1, 2]\},$$

$$S_2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1, z = 1\},,$$

$$S_3 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + (z - 2)^2 = 4, z \ge 2\},$$

e sejam

$$\bar{S} = S_1 \cup S_2 \quad S = S_1 \cup S_2 \cup S_3.$$

Sejam $F, G: \mathbb{R}^3 \to \mathbb{R}^3, F(x, y, z) = (x^2 + z^2, x + y^2 + 2z, e^{xyz})$ e $G(x, y, z) = (x + yz^3, \cos(xz), zy + x^6)$

- a) Calcule $\int_{S_1} z dS$.
- b) Fixe uma orientação de \bar{S} , N, e para essa escolha calcule $\int_{\bar{S}} rot(F) \cdot N \, dS$.
- c) Calcule $\int_S G \cdot N dS$.
- 106. Considere a superfície

$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 4, z \le 1\}$$

e o sistema de coordenadas

$$\varphi(u,v) = (2\cos(u)\sin(v), 2\sin(u)\sin(v), 2\cos(v)), \ (u,v) \in D = [0, 2\pi] \times [\frac{\pi}{3}, \pi].$$

- a) Calcule as coordenadas locais de $P = (\sqrt{2}, \sqrt{2}, 0)$ e o vector normal, N_{φ} , em P. Faça um esboço da superfície e assinale a orientação induzida em S pelo sistemas de coordenadas (φ, D) , e a orientação induzida por esta no bordo de S.
- b) Calcule $\int_S z^2 dS$.
- c) Seja B o sólido limitado por S e pelo disco

$$S_0 = \{(x, y, 1) \in \mathbb{R}^3 : x^2 + y^2 < 3\}.$$

Descreva o sólido B em coordenadas esféricas.

Sugestão: separe os casos $\varphi \in [0, \frac{\pi}{3}]$ e $\varphi \in [\frac{\pi}{3}, \pi]$.

- d) Sejam $S_1 = S \cup S_0$ e $G(x, y, z) = (y^2 z^2, yz, x \cos(y))$. Observando que S_1 limita o sólido B, use o Teorema de Gauss e a alínea anterior para calcular $\int_{S_1} G \cdot N \, dS$.
- 107. Considere a superfície cilíndrica

$$S = \{(x, y, z) \in \mathbb{R}^3 : y^2 + z^2 = 1, 0 \le x \le 1\}$$

e as coordenadas $\varphi(u,v)=(v,\cos(u),\sin(u)),\,(u,v)\in D=[0,\,2\pi]\times[0,1]$. Em S considere a orientação N_φ definida por esta parametrização.

- a) Calcule as coordenadas locais de $P = (\frac{1}{2}, 0, 1)$ e o vector normal a S em P. Faça um esboço da superfície e indique a orientação de S, e a orientação induzida nas duas curvas que constituem o bordo de S.
- b) Calcule $\int_S z^2 e^x dS$.
- c) Considere o campo de vectores

$$F(x, y, z) = (\ln(1 + x^2 + y^2 + z^2), (x - 1)ze^{xyz}, z + x).$$

Verifique que pode aplicar o Teorema de Stokes a S e F. Calcule

$$\int_{S} rot(F) \cdot N_{\varphi} \ dS.$$

d) Sejam

$$D_1 = \{(0, y, z) : y^2 + z^2 \le 1\}$$
 e $D_2 = \{(1, y, z) : y^2 + z^2 \le 1\}.$

Considere $S_0 = S \cup D_1 \cup D_2$ com a orientação induzida por N_{φ} , e o campo $F(x,y,z) = (xz + 2yz, y^3 + \sin(x), z^3 + xy)$. Aplique o Teorema de Gauss para calcular $\int_{S_0} F \cdot N \, dS$.

108. Considere a superfície gráfico, S, dada pela parametrização

$$\varphi(u,v)=(u,\,v,\,\frac{2}{3}u^{\frac{3}{2}}),\ (u,v)\in D=[1,\,2]\times[0,\,1].$$

Considere S com a orientação induzida, N_{φ} .

- a) Calcule a área de S.
- b) Calcule $\int_S F \cdot N_{\varphi} dS$, onde $F(x, y, z) = (\sqrt{x}, z, xy)$.
- c) Considere o campo de vectores $G(x, y, z) = (y^5 x, yz, 0)$. Calculer $\int_S rot(G) \cdot N_{\varphi} dS$
- 109. a) Seja \mathcal{E} o elipsóide de equação $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, onde a, b, c > 0. Dado $(x, y, z) \in \mathcal{E}$, seja $\eta(x, y, z)$ a distância de (0, 0, 0) ao plano tangente a \mathcal{E} em (x, y, z). Obtenha uma fórmula explícita para $\eta(x, y, z)$.
 - b) Seja N o campo unitário normal que aponta para o exterior de \mathcal{E} . Indique um campo de vectores F(x,y,z) tal que, para cada $(x,y,z) \in \mathcal{E}$, se tenha $F(x,y,z) \cdot N(x,y,z) = \frac{1}{\eta(x,y,z)}$.
 - c) Use o teorema da divergência para concluir que $\int_{\mathcal{E}} \frac{1}{\eta} dS = \frac{4\pi}{3} (\frac{bc}{a} + \frac{ca}{b} + \frac{ab}{c}).$
- 110. Sejam U um aberto de \mathbb{R}^3 , $f:U\to\mathbb{R}$ uma função de classe C^2 , $B\subseteq U$ uma esfera sólida (fechada), S a superfície esférica que delimita B, e N o campo unitário normal a S que aponta para o exterior de B (normal exterior)
 - a) Mostre que, se f for harmónica (i.e., $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \equiv 0$), então

$$\int_{S} f \, \nabla f \, dS = \int_{B} \|\nabla f\|^{2} \, dx \, dy \, dz.$$

- b) Seja $G: U \to \mathbb{R}^3$ um campo de vectores de classe C^1 tal que rot $G|_B \equiv 0$, div $G|_B \equiv 0$ e $G \cdot N|_{\mathcal{S}} \equiv 0$. Mostre que a restrição de G a B é o campo nulo
- c) Na alínea anterior, pode retirar a condição de ser $G \cdot N|_{\mathcal{S}} \equiv 0$ e obter ainda a mesma conclusão?
- d) Para que outros sólidos B são válidas as conclusões de (a) e (b).
- 111. Seja $S \subset \mathbb{R}^3$ uma superfície parameterizada. Mostre que o espaço tangente num ponto P de S, T_PS , é igual ao conjunto dos vectores $v \in \mathbb{R}^3$ que se podem obter como vectores velocidade de curvas de classe C^1 cujo traço está contido em S, e que no instante t=0 passam por P com velocidade v.

112. Sejam U um aberto de \mathbb{R}^3 e $f:U\to\mathbb{R}$ uma função de classe C^1 . Mostre que se $c\in\mathbb{R}$ é um valor regular então $N_c(f)$ é localmente o gráfico de uma função de classe C^1 .