```
In [2]: import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
In [3]: import seaborn as sns
         from sklearn.linear_model import LinearRegression
         from sklearn.model_selection import train_test_split
         from sklearn.metrics import mean squared error
         from sklearn import metrics
         %matplotlib inline
In [4]: train = pd.read csv("train.csv")
         meal = pd.read_csv("meal_info.csv")
         center = pd.read csv("fulfilment center info.csv")
In [5]: | df = pd.merge(train, meal, on=['meal_id', 'meal_id'])
         df2 = pd.merge(df, center, on=['center id', 'center id'])
         df2.head()
Out[5]:
                id week center_id meal_id checkout_price base_price emailer_for_promotion homep
         o 1379560
                                               136.83
                      1
                              55
                                   1885
                                                        152.29
                                                                              0
         1 1018704
                      2
                              55
                                   1885
                                               135.83
                                                        152.29
                                                                              0
         2 1196273
                              55
                                   1885
                                               132.92
                                                        133.92
                                                                              0
                                   1885
                                               135.86
         3 1116527
                      4
                              55
                                                        134.86
                                                                              0
         4 1343872
                      5
                              55
                                   1885
                                               146.50
                                                        147.50
                                                                              0
In [6]: | df2.to_csv(r'/Users/apple/Desktop/df2.csv', index = False)
In [7]: from sklearn.preprocessing import LabelEncoder
         class le = LabelEncoder()
         df2['center type'] = class le.fit transform(df2['center type'].values)
In [ ]:
In [8]: #table = pd.pivot table(df2, values=['checkout price', 'num orders'], inde
         x=['cuisine'], aggfunc=np.mean)
         #table.plot.bar()
In [9]: #df.plot(x='checkout price', y='num orders', style='o')
         #plt.show()
```

```
In [10]: df3 = df2.drop(['checkout_price','base_price'], axis=1)
    sns.heatmap(df3.corr(),annot=True,fmt='.2f',cmap= 'coolwarm',annot_kws={
        'size':7, 'color':'black'})
```

Out[10]: <matplotlib.axes.\_subplots.AxesSubplot at 0x10b86e7d0>



```
In [11]: dummy_fields = ['center_type']

for each in dummy_fields:
    # get_dummies处理数据,参数prefix是指处理之后数据的前缀
    dummies = pd.get_dummies( center.loc[:, each], prefix=each )
    center = pd.concat( [center, dummies], axis = 1)
    center.head()
```

## Out[11]:

|   | center_id | city_code | region_code | center_type | op_area | center_type_TYPE_A | center_type_TYP |
|---|-----------|-----------|-------------|-------------|---------|--------------------|-----------------|
| 0 | 11        | 679       | 56          | TYPE_A      | 3.7     | 1                  |                 |
| 1 | 13        | 590       | 56          | TYPE_B      | 6.7     | 0                  |                 |
| 2 | 124       | 590       | 56          | TYPE_C      | 4.0     | 0                  |                 |
| 3 | 66        | 648       | 34          | TYPE_A      | 4.1     | 1                  |                 |
| 4 | 94        | 632       | 34          | TYPE_C      | 3.6     | 0                  |                 |

```
In [12]: df2 = pd.merge(df, center, on=['center_id', 'center_id'])
    df2.head()
```

### Out[12]:

|   | id      | week | center_id | meal_id | checkout_price | base_price | emailer_for_promotion | homep |
|---|---------|------|-----------|---------|----------------|------------|-----------------------|-------|
| 0 | 1379560 | 1    | 55        | 1885    | 136.83         | 152.29     | 0                     | _     |
| 1 | 1018704 | 2    | 55        | 1885    | 135.83         | 152.29     | 0                     |       |
| 2 | 1196273 | 3    | 55        | 1885    | 132.92         | 133.92     | 0                     |       |
| 3 | 1116527 | 4    | 55        | 1885    | 135.86         | 134.86     | 0                     |       |
| 4 | 1343872 | 5    | 55        | 1885    | 146.50         | 147.50     | 0                     |       |

## Out[13]:

|   | id      | week | center_id | meal_id | checkout_price | base_price | emailer_for_promotion | homep |
|---|---------|------|-----------|---------|----------------|------------|-----------------------|-------|
| 0 | 1379560 | 1    | 55        | 1885    | 136.83         | 152.29     | 0                     | _     |
| 1 | 1018704 | 2    | 55        | 1885    | 135.83         | 152.29     | 0                     |       |
| 2 | 1196273 | 3    | 55        | 1885    | 132.92         | 133.92     | 0                     |       |
| 3 | 1116527 | 4    | 55        | 1885    | 135.86         | 134.86     | 0                     |       |
| 4 | 1343872 | 5    | 55        | 1885    | 146.50         | 147.50     | 0                     |       |

5 rows × 23 columns



```
In [15]: #food = ['1885','2707','2631','1230','2826,'1109','2569','2956','1962']
#for i in food:
meal = df2[df2['meal_id'].isin(['1543'])]
```

```
In [16]: meal.plot(x='unit_checkoutprice', y='log(order)', style='o')
   plt.show()
```



```
In [18]: import statsmodels.api as sm
X1 = sm.add_constant(X1)
    est= sm.OLS(y1,X1).fit()
    est.summary()
```

## Out[18]:

**OLS Regression Results** 

**Covariance Type:** 

Dep. Variable: log(order) R-squared: 0.842 OLS 0.842 Model: Adj. R-squared: Method: Least Squares F-statistic: 9097. **Date:** Sun, 10 May 2020 Prob (F-statistic): 0.00 23:07:35 Log-Likelihood: -2747.5 Time: No. Observations: 10236 AIC: 5509. **Df Residuals:** 10229 BIC: 5560. 6 **Df Model:** 

nonrobust

|                       | coef    | std err | t        | P> t  | [0.025 | 0.975] |
|-----------------------|---------|---------|----------|-------|--------|--------|
| const                 | 3.4151  | 0.012   | 295.277  | 0.000 | 3.392  | 3.438  |
| unit_checkoutprice    | -0.0681 | 0.000   | -205.273 | 0.000 | -0.069 | -0.067 |
| emailer_for_promotion | 0.2524  | 0.013   | 19.491   | 0.000 | 0.227  | 0.278  |
| homepage_featured     | 0.0524  | 0.009   | 5.571    | 0.000 | 0.034  | 0.071  |
| op_area               | 0.0647  | 0.003   | 19.138   | 0.000 | 0.058  | 0.071  |
| center_type_TYPE_A    | 1.0713  | 0.006   | 192.223  | 0.000 | 1.060  | 1.082  |
| center_type_TYPE_B    | 1.2456  | 0.008   | 151.650  | 0.000 | 1.230  | 1.262  |
| center_type_TYPE_C    | 1.0981  | 0.006   | 194.089  | 0.000 | 1.087  | 1.109  |

 Omnibus:
 731.775
 Durbin-Watson:
 1.240

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 913.092

 Skew:
 0.675
 Prob(JB):
 5.30e-199

 Kurtosis:
 3.563
 Cond. No.
 1.18e+17

# Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 1.74e-28. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

### 0.10127333118949995

```
In [21]: plt.figure()
    plt.plot(range(len(y1_pred)),y1_pred,'y',label="predict")
    plt.plot(range(len(y1_pred)),y1_test,'grey',label="test")
    plt.legend(loc="upper right")
    #plt.xlabel("the number of orders")
    plt.show()
```



```
In [67]: #cuisine = ['Thai', 'Italian', 'Indian', 'Continental']
    cuisine = df2.loc[df2.cuisine.str.contains('Continental')]
    category = df2.loc[df2.category.str.contains('Starters')]
```

### Out[68]:

**OLS Regression Results** 

Covariance Type:

Dep. Variable: log(order) R-squared: 0.815 Model: OLS Adj. R-squared: 0.815 Method: Least Squares **F-statistic:** 2.195e+04 **Date:** Wed, 29 Apr 2020 0.00 Prob (F-statistic): 22:35:14 Log-Likelihood: -15111. Time: **AIC:** 3.024e+04 No. Observations: 29941 **Df Residuals:** 29934 BIC: 3.029e+04 Df Model: 6

nonrobust

|                       | coef    | std err | t        | P> t  | [0.025 | 0.975] |
|-----------------------|---------|---------|----------|-------|--------|--------|
| const                 | 3.6612  | 0.009   | 426.475  | 0.000 | 3.644  | 3.678  |
| unit_checkoutprice    | -0.1390 | 0.001   | -244.357 | 0.000 | -0.140 | -0.138 |
| emailer_for_promotion | 0.3699  | 0.012   | 30.914   | 0.000 | 0.346  | 0.393  |
| homepage_featured     | 0.2685  | 0.010   | 27.942   | 0.000 | 0.250  | 0.287  |
| op_area               | 0.0845  | 0.003   | 33.500   | 0.000 | 0.080  | 0.089  |
| center_type_TYPE_A    | 1.1633  | 0.004   | 296.386  | 0.000 | 1.156  | 1.171  |
| center_type_TYPE_B    | 1.5335  | 0.006   | 259.769  | 0.000 | 1.522  | 1.545  |
| center_type_TYPE_C    | 0.9644  | 0.005   | 178.960  | 0.000 | 0.954  | 0.975  |

 Omnibus:
 1578.713
 Durbin-Watson:
 0.821

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 1837.760

 Skew:
 0.600
 Prob(JB):
 0.00

 Kurtosis:
 3.181
 Cond. No.
 2.64e+16

### Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 2.17e-27. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.