Organización de Computadoras 2012

Clase 5

Temas de Clase

- Introducción.
- Arquitectura Von Neumann.
- Evolución histórica.
- CPU.

Conceptos básicos

- Definiciones
 - "Información Automática"

3) Ciencia: problemas computadoras resolución

Conceptos básicos (2)

- Software
 - Programa Instrucciones
- Hardware

"Hardware y Software son lógicamente equivalentes"

¿Qué es una computadora?

Computadora

- Máquina
- Digital
- Sincrónica
- Cálculo numérico
- Cálculo lógico
- Controlada por programa
- Comunicación con el mundo exterior

Arquitectura y Organización

- Arquitectura son aquellos atributos visibles al programador
 - Conjunto de instrucciones, número de bits usados para representación de datos, mecanismos de E/S, técnicas de direccionamiento.
 - ej. ¿Existe la instrucción de multiplicación?
- Organización es cómo son implementados
 - Señales de control, interfaces, tecnología de memoria
 - ej. ¿Existe una unidad de mulitplicación por hardware o se realiza por sumas repetidas?

Arquitectura y Organización(2)

- Toda la familia Intel x86 comparte la misma arquitectura básica.
- La familia IBM System/370 comparte la misma arquitectura básica.
- Esto brinda compatibilidad de código.
 - También los problemas
- La organización difiere entre diferentes versiones.

Estructura y Función

 Estructura es el modo en el cual los componentes se relacionan entre sí.

 Función es la operación de los componentes individuales como parte de la estructura.

- Las funciones de todas las computadoras son:
 - Procesamiento de datos
 - Almacenamiento de datos
 - Movimiento de datos
 - Control

Visión Funcional

Visión funcional de una computadora

Operaciones (1)

Movimiento de datos

Operaciones (2)

Almacenamiento

Operaciones (3)

 Procesamiento de/hacia almacenamiento ej. Actualización de estados bancários Facilidad¹ Almacto. de datos **Aparato** Mecanismo de Movto. de Control de datos Facilidad Procesto. de datos

Operaciones (4)

Procesamiento desde almacenamiento a E/S

Estructura - Nivel superior

Estructura - La CPU

Estructura - Unidad de Control

Primera Generación. ENIAC

- Electronic Numerical Integrator And Computer
- Autores: Eckert and Mauchley
- Universidad de Pennsylvania
- Tablas de trayectoria para proyectiles
- 1943 finalizada en 1946
 - Tarde para el esfuerzo de guerra
- Usada hasta 1955

ENIAC - detalles

- Decimal
- 20 acumuladores de 10 dígitos
- Programada manualmente por llaves (unas 6000)
- 17468 tubos de vacio
- 32 toneladas de peso
- Ancho: 2,4 m Largo: 30 m
- 140 kW de potencia
- 5000 sumas/s 360 productos/s

The ENIAC Today

Modelo de Von Neumann

2012

Notas de clase 5

Modelo de Von Neumann (2)

- Consta de 5 componentes principales:
 - Unidad de entrada: provee las instrucciones y los datos
 - Unidad de memoria: donde se almacenan datos e instrucciones
 - Unidad aritmético-lógica: procesa los datos
 - Unidad de control: dirige la operación
 - Unidad de salida: se envían los resultados

VN: aspectos más importantes

- ✓ Utilización del sistema binario:
 - Simplifica la implementación de funciones.
 - Disminuye la probabilidad de fallos.
- ✓ Instrucciones y datos residen en memoria:
 - Ejecución del programa en forma secuencial.
 - Aumenta la velocidad.
- ✓ La memoria es direccionable por localidad sin importar el dato almacenado.

Concepto de programa

Antes

 Programación en hardware: cuando cambiamos las tareas, debemos cambiar el hardware

Concepto de programa (2)

 Programación en software: en c/paso se efectúa alguna operación sobre los datos

Concepto de programa (3)

- ✓ Para cada paso se necesita un nuevo conjunto de señales de control.
- ✓ Las instrucciones proporcionan esas señales de control.
- ✓ Aparece el nuevo concepto de programación.
- ✓ No hay que cambiar el hardware.

¿Qué es un programa?

- Es una secuencia de pasos.
- Se hace una operación aritmético/lógica por cada paso.
- Diferentes señales de control se necesitan para cada operación:
 - la UC saca información de cada instrucción.

EDSAC (Cambridge, 1949)

Electronic Delay Storage Automatic Calculator

EDVAC (1946)

- Electronic Discrete Variable Automatic Computer
- Programa almacenado
- Binaria
- U. de Pennsylvania
- Eckert y Mauchley abandonaron el proyecto.

IAS Institute of Advanced Study - Princeton (1946)

2012

Características de IAS

- Memoria con 4096 palabras de 40 bits
 - Números Binarios
 - 2 instrucciones de 20 bits
- Set de registros (almacenamiento en CPU)
 - Registro Buffer de Memoria (MBR)
 - Registro de Direcciones de Memoria (MAR)
 - Registros de Instrucción y Buffer de Instrucción
 - Registro Contador de Programa (Program Counter)
 - Registros Acumulador y Multiplicador/Cociente

Estructura de la IAS - detalles

UNIVAC I Universal Automatic Computer

- Primera computadora comercial (1949)
 - (Eckert-Mauchley Computer Corporation).
- Primera en utilizar un compilador para traducir idioma de programa en idioma de máquinas.
- Máquina decimal con 12 dígitos por palabra.
- Principal avance:
 - sistema de cintas magnéticas que podían leerse hacia adelante y hacia atrás.
 - procedimientos de comprobación de errores.
- Memoria de líneas de retardo de mercurio y tecnología a válvulas de vacío.

32

UNIVAC en foto

- Equipos de procesamiento con tarjetas perforadas
- 1953: el 701
 - Primer computador con programas almacenados de IBM
 - Aplicaciones científicas
- 1955: el 702
 - Aplicaciones de gestión
- Primeros de una serie de computadores 700/7000

2^{da} generación: Transistores

- Sustituyen a los tubos de vacío
- Más pequeños
- Más baratos
- Disipan menos el calor
- Dispositivos de estado sólido
- Hechos con silicio
- Inventados en 1947 en los Laboratorios Bell
 - William Shockley y colaboradores

- Integración a pequeña escala: desde 1965
 - Más de 100 componentes en un chip
- Integración a media escala: desde 1971
 - 100-3.000 componentes por chip
- Integración a gran escala: 1971-1977
 - 3.000 100.000 componentes por chip
- Integración a muy gran escala: desde 1978
 - 100.000 100 millones de componentes por chip

Series de IBM 360

- 1964 sustituyen la serie 7000 (no compatibles)
- Primera "familia" planeada de computadoras
 - Conjunto de instrucciones similar o idéntico
 - E/S similares o idénticas
 - Velocidad creciente
 - Número creciente de puertos de E/S
 - Tamaño de memoria creciente
 - Coste creciente
- Estructuras de computadoras multiplexadas

Notas de clase 5

DEC PDP-8

- 1964
- Primer minicomputador (en honor a la minifalda!!)
- No necesita una habitación con aire acondicionado
- Lo bastante pequeño para colocarlo en una mesa de laboratorio
- 16.000 dólares
 - 100k dólares+ para IBM 360
- Aplicaciones incrustadas y OEM
- ESTRUCTURA DE BUS

Memoria semiconductora

- **1970.**
- Fairchild fabrica la primera memoria con 256 bits.
- Tamaño de un núcleo de ferrita.
 - 1 bit de almacenamiento de núcleo magnético
- Lectura no destructiva.
- Mucho más rápida que el núcleo.
- La capacidad se duplica aproximadamente cada año.

Microprocesadores: Intel

- **1971: 4004**
 - Primer microprocesador de 4 bits
 - Todos los componentes de la CPU en un solo chip
 - En 1972 evoluciona al 8008 de 8 bits
 - Ambos diseñados para aplicaciones específicas
- **1974:** 8080
 - Primer microprocesador de Intel de uso genérico

Microprocesadores (2)

Chip	Date	MHz	Transistors	Memory	Notes
4004	4/1971	0.108	2,300	640	First microprocessor on a chip
8008	4/1972	0.108	3,500	16 KB	First 8-bit microprocessor
8080	4/1974	2	6,000	64 KB	First general-purpose CPU on a chip
8086	6/1978	5-10	29,000	1 MB	First 16-bit CPU on a chip
8088	6/1979	5-8	29,000	1 MB	Used in IBM PC
80286	2/1982	8-12	134,000	16 MB	Memory protection present
80386	10/1985	16-33	275,000	4 GB	First 32-bit CPU
80486	4/1989	25-100	1.2M	4 GB	Built-in 8K cache memory
Pentium	3/1993	60-233	3.1M	4 GB	Two pipelines; later models had MMX
Pentium Pro	3/1995	150-200	5.5M	4 GB	Two levels of cache built in
Pentium II	5/1997	233-400	7.5M	4 GB	Pentium Pro plus MMX

Interconexión de un sistema de cómputo

- Sistema de cómputo está constituido por 3 subsistemas:
 - > CPU
 - Memoria
 - > E/S
- Los componentes deben poder comunicarse entre si.

¿Por qué buses?

Conexiones independientes entre los distintos dispositivos

Conexiones a través de un medio compartido

▶Pensar: ¿cómo conectar un nuevo dispositivo en cada sistema?

¿Qué es un Bus?

- Un camino de comunicación que conecta dos o más dispositivos.
- Usualmente "broadcast".
- A menudo agrupadas
 - Un número de canales en un bus
 - Bus de 32 bits son 32 canales separados de un solo bit cada uno.
- Las líneas de energía pueden no mostrarse.

Interconexión a través de bus

Direcciones

- Si el bus es compartido por diferentes elementos, éstos deben tener identidades distintivas: *direcciones*.
- La dirección de memoria identifica una celda de memoria en la que almacena información.
- Lectura y escritura se plantean respecto de la CPU.

Bus de Datos

- Transporta datos
 - No hay diferencia entre "dato" e "instrucción" en éste nivel.
- El 'ancho' es un valor determinante de las prestaciones
 - * 8, 16, 32, 64 bits

Bus de Direcciones

- Identifica el origen o el destino de los datos
 - La CPU necesita leer una instrucción (dato) de una dada ubicación en memoria
- El ancho del Bus determina la máxima capacidad de memoria del sistema
 - ej. 8080 tiene un bus de direcciones de 16 bits dando un espacio de direcciones de 64k

Bus de Control

- Información de control y temporizado
 - Señales de lectura/escritura de Memoria o E/S
 - Señales de selección o habilitación
 - Señales de Reloj (Clock)
 - Señales de pedido de Interrupción

Componentes de hardware dedicados a cada función

- Dispositivos de E/
 - > Teclado
 - **≻**Mouse
 - **>** Joystick
- Dispositivos de S/
 - **≻** Monitor
 - > Impresora

Componentes de hardware ...

- Para procesamiento
 - **CPU**
 - Memoria
- Para almacenamiento
 - Memoria
 - Discos (rígidos, diskettes)
 - ➤ Cintas, CD, DVD

CPU - ALU

CPU - ALU

- ➤ La instrucción se almacena temporalmente en un registro de la CPU llamado IR.
- El bloque control puede "leer" IR y así saber qué hacer, dónde están los operandos y dónde poner el resultado.
- ¿Cómo sabe la CPU dónde encontrar la próxima instrucción?

CPU - ALU

- ➤ Hay un registro en la CPU llamado PC, Contador de Programa ó Program Counter.
- Cuando un programa va a ser ejecutado, el PC contiene la dirección de la primera instrucción.
- ➤ Alcanzada la primera instrucción, el PC es incrementado para apuntar a la siguiente instrucción.

CPU "mejorada"

2012

Notas de clase 5

- ❖Todas las CPU tienen registros internos de propósito general que pueden ser referenciados por el programador, como fuente ó destino (ó ambos) en una instrucción.
- "Como si" fuesen memoria, pero mucho más rápidos. Son lugares de almacenamiento temporario: D0, D1, D2, ...

- La CPU interactúa con la memoria a través de un par de registros que están "ocultos" al programador.
- > MAR = registro de dirección de memoria
- MBR= registro de dato de memoria.
- Estos registros están conectados a los buses.

Además la CPU tiene otros registros que permiten almacenar direcciones; para poder brindar flexibilidad.

•

mayor información ...

- Capítulo 1: Introducción (1.1. y 1.2)
- Capítulo 2: Evolución y prestaciones de los computadores
- Capítulo 3: Buses del sistema (3.1. y 3.3.)
 - Stallings, W.,5° ed.
- Link de interés
 - http://www.computerhistory.org
 - http://www.spec.org
 - http://top500.org
 - http://computer.howstuffworks.com/microprocessor.htm