### REPUBLIQUE TUNISIENNE

#### MINISTERE DE L'EDUCATION

## **EXAMEN DU BACCALAUREAT SESSION DE JUIN 2012**

Epreuve: MATHEMATIQUES

Durée: 4 h

Coefficient: 4

**SECTION:** Mathématiques

SESSION PRINCIPALE

Le sujet comporte 4 pages. La page 4/4 est à rendre avec la copie.

# Exercice 1 (3 points)

Le plan est muni d'un repère orthonormé.

Soit f une fonction définie et dérivable sur  $\left[\frac{1}{2}, 5\right]$ 

telle que sa courbe représentative (C) passe par les points A(1,0) et B(3, 1). Dans la figure ci-contre. on a représenté la courbe (C') de la dérivée f' de la fonction f.

Répondre par vrai ou faux en justifiant la réponse.

- 1) (C) admet une tangente de coefficient directeur -1.
- 3) (C) admet une tangente de coefficient directeur  $\frac{1}{2}$ .
- **4)** Pour tous a et b de [1,3],  $|f(b)-f(a)| \le |b-a|$ .



# Exercice 2 (5 points)

Dans le plan orienté, AlJ est un triangle quelconque, BAJ et ClJ sont deux triangles isocèles respectivement en B et C tels que

$$(\widehat{\overline{\mathsf{BA}}},\widehat{\overline{\mathsf{BJ}}}) \equiv \frac{\pi}{6} [2\pi] \text{ et } (\widehat{\overline{\mathsf{CI}}},\widehat{\overline{\mathsf{CJ}}}) \equiv \frac{\pi}{6} [2\pi].$$

On désigne par t la translation de vecteur IA et par re et rc les rotations de même angle  $\frac{\pi}{6}$  et de centres respectifs B et C.



- b) Montrer que  $r_B o t(I) = J$ .
- c) En déduire que  $r_{Bo} t = r_{C}$ .

Montrer que BC = BK et 
$$(\widehat{BC}, \widehat{BK}) \equiv -\frac{\pi}{6} [2\pi]$$
.



- a) Soit O le milieu de [AC]. Montrer que l'image du triangle DIA par la symétrie centrale de centre O est le triangle BKC.
- b) Montrer que ABCD est un parallélogramme.



(C')

#### Exercice 3 (3 points)

Le plan est muni d'un repère orthonormé direct  $(O, \vec{u}, \vec{v})$ .

On désigne par A le point de coordonnées (3, 2).

Soit N un point de l'axe  $(O, \vec{u})$  et P le point de l'axe  $(O, \vec{v})$  tel que ANP est un triangle rectangle en A.

**1)** a) Soit les points E(3 ,0) et F(0,2).

Montrer qu'il existe une unique similitude directe S de centre A qui transforme E en F. Donner son rapport et son angle.

- b) Déterminer l'image de l'axe  $(0, \vec{u})$  par S.
- c) En déduire que S(N) = P.
- d) Soit M un point d'affixe z et M' le point d'affixe z' tel que M' = S(M).

Montrer que 
$$z' = -\frac{3}{2}i z + \frac{13}{2}i$$
.

2) a) On note x l'abscisse du point N et y l'ordonnée du point P.

Montrer que 3 x + 2 y = 13.

b) Déterminer les points N et P dont les coordonnées sont des entiers.

#### Exercice 4 (3 points)

Un laboratoire de sciences physiques dispose d'un ensemble d'oscilloscopes de même modèle. La durée de vie, en nombre d'années, d'un oscilloscope est une variable aléatoire notée X qui suit la loi exponentielle de paramètre 0,125.

Dans tout l'exercice on donnera les résultats à 10<sup>-3</sup> près par défaut.

- **1)** a) Montrer que p(X > 10) = 0.286.
  - b) Calculer la probabilité qu'un oscilloscope ait une durée de vie inférieure à 6 mois.
- 2) Le responsable du laboratoire veut commander n oscilloscopes (n≥2).

On suppose que la durée de vie d'un oscilloscope est indépendante de celle des autres.

On note p<sub>1</sub> la probabilité qu'au moins un oscilloscope ait une durée de vie supérieure à 10 ans.

- a) Exprimer p₁ en fonction de n.
- b) Combien d'oscilloscopes, au minimum, devrait commander le responsable pour que p<sub>1</sub> soit supérieure à 0.999 ?

# Exercice 5 (6 points)

- I ] On considère la fonction  $f_2$  définie sur  $]0,+\infty[$  par  $f_2(x)=x^2-\ln x$  et on désigne par  $(\Gamma)$  sa courbe représentative dans un repère orthonormé  $(0,\vec{i},\vec{j})$ .
  - 1) a) Calculer  $\lim_{x\to 0^+} f_2(x)$  et  $\lim_{x\to +\infty} f_2(x)$ .
    - b) Calculer  $\lim_{x\to +\infty} \frac{f_2(x)}{x}$  et interpréter graphiquement le résultat.
    - c) Dresser le tableau de variation de f<sub>2</sub>.
  - 2) Dans l'annexe ci-jointe on a tracé, dans le repère  $(O, \vec{i}, \vec{j})$ , la courbe (L) de la fonction ln et la courbe (C) d'équation  $y = x^2$ .
    - a) Soit x > 0. On considère les points M et  $M_2$  de même abscisse x et appartenant respectivement à (L) et (C). Vérifier que  $MM_2 = f_2(x)$ .
    - b) Construire alors dans l'annexe les points de la courbe ( $\Gamma$ ) d'abscisses respectives 2,  $\frac{1}{e}$  et  $\sqrt{\frac{1}{2}}$ .
    - c) Tracer la courbe ( $\Gamma$ ) dans le repère (O,  $\vec{i}$ ,  $\vec{j}$ ) de l'annexe.
- II ]1) Soit k un entier supérieur ou égal à 2.

On considère la fonction  $f_k$  définie sur  $\left]0,+\infty\right[$  par  $f_k(x)=x^k-\ln x$  .

- a) Déterminer  $f_k^{'}$  la fonction dérivée de  $f_k$  .
- b) Montrer que  $f_k$  admet un minimum en  $\sqrt[k]{\frac{1}{k}}$  égal à  $\frac{1+\ln k}{k}$ .
- c) Pour tout réel x > 0, on considère les points  $M_k(x,x^k)$  et  $M(x,\ln x)$ .

Déterminer la valeur minimale de la distance MM<sub>k</sub>.

- 2) Pour tout entier  $k \ge 2$ , on pose  $u_k = \sqrt[k]{\frac{1}{k}}$ .
  - a) Vérifier que  $lnu_k = -\frac{lnk}{k}$  et en déduire la limite de  $(u_k)$ .
  - b) Soit A(1, 0) et  $A_k$  le point de coordonnées  $(u_k, f_k(u_k))$ . Calculer la limite de la distance  $AA_k$  lorsque k tend vers  $+\infty$ .

**Epreuve : MATHEMATIQUES - Section : Mathématiques** 

# Annexe ( à rendre avec la copie )

