

Date: 2020	1 512	31
------------	-------	----

Experiment No.:1 Set:

PHY 1701 (Engineering Physics) Reg. No: - 208050405

MONOCHROMATORS IN SOPHISTICATED INSTRUMENT APPRICATUS AVAILABLE:- (1) Laser Source (11) Grading (111) Scale with measurements. SLO: To determine the wavelength of light produced by given laser source using transmission differention grating. Suppose D= the distance from the grating to the screen. d= the spacing between every two lines (same thing as every two sources). If there are 'N' lines per mm of the grating, then (d), the space between every two adjacent sources) is d= 1. N The diffraction grating formula for the principal maxima to the dising in N where, n is the order of diffraction(=1,2,3,) and 8 is the angle of diffraction. \[\hat{\text{3}} = \frac{\text{sing}}{\text{N}} \text{ the principal} \text{ maxima to the angle of diffraction.} \[\hat{\text{3}} = \frac{\text{sing}}{\text{N}} \text{ the principal} \text{ maxima to the angle of diffraction.} \[\hat{\text{3}} = \frac{\text{sing}}{\text{N}} \text{ the principal} \text{ maxima to the angle of diffraction.} \[\hat{\text{3}} = \frac{\text{sing}}{\text{N}} \text{ the principal} \text{ the principal} \text{ maxima to the angle of diffraction.} \[\hat{\text{3}} = \frac{\text{sing}}{\text{N}} \text{ the principal} the princi	OBJECTIVE OF THE EXPERIMENT:	Pa	Page: 1			
APPRATUS AVAILABLE:- (1) Laser Source (11) Graling (11) Scale with measurements. SLO: To determine the wavelength of light produced by given laser source using transmission diffraction grating. Suppose, D= the distance from the grating to the screen. d= the spacing between every two lines (same thing as every two sources). If there are 'N' lines per mm of the grating, then(d), the space between every two adjacent sources) is d= 1 N The diffraction grating formula for the principal maxima is:- dsine=nx where, n is the order of diffraction(=1.2.3) and 8 is the angle of diffraction. 2= sine (meter)	MONOCHROMATORS IN &	SOPHISTIC	ATED	INSTR	LUMENT	1
(1) Laser Source (1) Grating (11) State with measurements. SLO: To determine the wavelength of light produced by given laser source using transmission diffraction grating. Suppose D= the distance from the grating to the screen. d= the spacing between every two lines (some thing as every two sources). If there are 'N' lines per mm of the grating, then(d), the space between every two adjacent lines or (exexy two adjacent sources) is d= 1 N The diffraction grating formula for the principal maxima is: dsine= n? where, n is the order of diffraction(=1.2.3) and 8 is the angle of diffraction. 2= sine (meser)	\\		(m.)	[m ₂]	(m)	
(11) State with measurements. SLO: To determine the wavelength of light produced by given laser source using transmission differention grating. Suppose D= the distance from the grating to the screen. d= the spacing between every two lines (same thing as every two sources). If there are 'N' lines per mm of the grating, then (d), the space between every two adjacent sources) is d= 1 N The diffraction grating formula for the principal maxima is: dsine= n\text{N} where, n is the order of diffraction (= 1, 2, 3,) and 8 is the angle of diffraction. 2= sine (meser)	APPARATUS AVAILABLE:-	8377	. [5	1 2	7.1	b :
(III) Scale with measurements. SLO: To determine the wavelength of light produced by given laser source using transmission differention grating. Suppose D= the distance from the grating to the screen. d= the spacing between every two lines (same thing as every two sources). If there are 'N' lines per mm of the grating, then(d), the space between every two adjacent sources) is d= 1 The diffraction grating formula for the principal maxima to: dsin8= n\(\text{N} \) where, n is the order of diffraction (=1.2.3) and 8 is the arge of diffraction. 2= sin8 (meter)	(1) Laser Source	Tao 6	100	<u>(</u>		L
(III) Scale with measurements. SLO: To determine the wavelength of light produced by given laser source using transmission differention grating. Suppose D= the distance from the grating to the screen. d= the spacing between every two lines (same thing as every two sources). If there are 'N' lines per mm of the grating, then(d), the space between every two adjacent sources) is d= 1 The diffraction grating formula for the principal maxima to: dsin8= n\(\text{N} \) where, n is the order of diffraction (=1.2.3) and 8 is the arge of diffraction. 2= sin8 (meter)	(11) Grating	840-0	Q_	0.1	\	
SLO: To determine the wavelength of light produced by given laser source using transmission differention grating. Suppose D= the distance from the grating to the screen. d= the specing between every two lines (same thing as every two sources). If there are 'N' lines per mm of the grating, then ld), the space between every two adjacent sources) is d= 1 N The diffraction grating formula for the principal maxima is: dein0= n\lambda where, n is the order of diffraction(=1,2,3) and 0 is the angle of diffraction. \[\lambda = \frac{\sigma}{\lambda} \text{ diffraction}. \]		ents.	yı .	g 2.		
To determine the wavelength of light produced by given laser source using transmission differentian grating. Suppose D= the distance from the grating to the screen. d= the spacing between every two lines (same thing as every two sources). If there are 'N' lines per mm of the grating, then(d), the space between every two adjacent sources) is d= 1 N The diffraction grating formula for the principal maxima is: dsin= n\(\text{d} \) where, n is the order of diffraction (=1,2,3) and 0 is the angle of diffraction. \[\text{N} = \text{SinB} \) \[\text{(medies)} \] OBSERVATION:			į	5 34		T,
Suppose D= the distance from the grating to the screen. d= the spacing between every two lines (same thing as every two sources). If there are 'N' lines per mm of the grating, then (d), the space between every two adjacent sources) is d= 1 N The diffraction grating formula for the principal maxima is: dsine=n\(\) where, \(\eta \) is the order of diffraction (= 1.2.3) and \(\theta \) is the angle of diffraction. \(\)	SLO: 1 MALE TO THERE	Flire	· e)	1-7	Ve	
Suppose D= the distance from the grating to the screen. d= the spacing between every two lines (same thing as every two sources). If there are 'N' lines per mm of the grating, then (d), the space between every two adjacent sources) is d= 1 N The diffraction grating formula for the principal maxima is: dsine=n\(\) where, \(\eta \) is the order of diffraction (= 1.2.3) and \(\theta \) is the angle of diffraction. \(\)	To determine the wavel	length of	Light	produced	by giver	lager
Suppose D= the distance from the grating to the screen. d= the spacing between every two lines (same thing as every two sources). If there are 'N' lines per mm of the grating, then(d), the space between every two adjacent lines or lexicry two adjacent sources) is d= 1 N The diffraction grating formula for the principal maxima is:- dsin8= n\lambda where, n is the order of diffraction(=1.2.3) and 8 is the angle of diffraction. \[\lambda = \frac{\sin\theta}{\sin\theta} \text{ (meter)} \]	source wing transmission differ	action and	tina.	9 21	0 0	3
d= the spacing between every two lines (same thing as every two sources). If there are 'N' lines per mm of the greating, then (d), the space between every two adjacent lines or (every two adjacent sources) is d= 1 N The diffraction greating formula for the principal maxima is:- dsine = n\(\) where, \(\eta \) is the order of diffraction (= 1, 2, 3) and \(\theta \) is the angle of diffraction. \(\)	Cratal task 1	1272-0	7.10	F 1-171	Ē.	
d= the spacing between every two lines (same thing as every two sources). If there are 'N' lines per mm of the greating, then (d), the space between every two adjacent lines or (every two adjacent sources) is d= 1 N The diffraction greating formula for the principal maxima is:- dsin8 = n\(\) where, \(\eta \) is the order of diffraction (= 1, 2, 3) and \(\theta \) is the angle of diffraction. \(\)	Suppose, D= the distance from the	osatina t	to the s	crean .	uriol da	,
two sources). If there are 'N' lines per mm of the grating, then (d), the space between every two adjacent lines or (every two adjacent sources) is $d = \frac{1}{N}$ The diffraction grating formula for the principal maxima is: $dsin\theta = n\lambda$ where, n is the order of diffraction (=1.2.3) and θ is the angle of diffraction. $\lambda = sin\theta$ (meser) No	d= the spring Lating	n aunice la	an Arona	(6
To those are 'N' lines per mm of the grating, then (d), the space between every two adjacent lines or (every two adjacent sources) is d = 1 N The diffraction grating formula for the principal maxima is: dsing = n\(\lambda \) where, \(\eta \) is the order of diffraction (=1,2,3) and \(\theta \) is the angle of diffraction. \[\lambda = \frac{1}{2} \frac		n every to	wo unes	(same th	ing as ev	ery
The diffraction grating formula for the principal maxima is: desing = n? Where, n is the order of diffraction (=1,2,3) and 8 is the angle of diffraction. No. No. No.		Fals 11 Faco		0 - 0	\$ - \ . L	
between every two adjacent lines or (every two adjacent sources) is $d = \frac{1}{N}$ The diffraction grating formula for the principal maxima is: $dsin\theta = n\lambda$ where, n is the order of diffraction (=1,2,3) and θ is the angle of diffraction. $\lambda = sin\theta$ (meter) No			1 2 1			
The diffraction grating formula for the principal maxima \$:- dsing = n \(\) where, \(\eta \) is the order of diffraction (=1,2,3) and \(\theta \) is the argle of diffraction. \[\text{\gamma} = \frac{\text{sing}}{\text{Nn}} \) \[\text{\left} = \frac{\text{sing}}{\text{Nn}} \] \[\text{\left} = \frac{\text{line}}{\text{Nn}} \] \[\text{\left} = \frac{\text{line}}{\text{Nn}} \]						space
The diffraction grating formula for the principal maxima is: dsing= n \(\) where, \(\eta \) is the order of diffraction (=1,2,3) and \(\theta \) is the angle of diffraction. \[\lambda = \frac{\single \text{of diffraction}}{\lambda} \] \[\lambda = \frac{\single \text{of meters}}{\lambda} \]		or levery	two ad	jacent st	surces) is	
The diffraction grating formula for the principal maxima &:- dsing = n \(\text{N} \) where, \(\text{n} \) is the order of diffraction (=1,2,3) and \(\text{0} \) is the angle of diffraction. \[\text{N} = \frac{\text{sing}}{N} \) \[\text{N} = \frac{\text{sing}}{N} \) \[\text{N} = \frac{\text{sing}}{N} \)	d=1	(0) 1942	1	a the state of		1 00 0000000000000000000000000000000000
dsing = n \(\text{N} \) where, \(\eta \) is the order of diffraction (=1,2,3) and \(\text{0} \) is the angle of diffraction. \[\text{N} = \frac{\single \text{of diffraction}}{\text{N} \text{N}} \] \[\text{N} = \frac{\single \text{of diffraction}}{\text{N} \text{N}} \] \[\text{N} = \frac{\single \text{of diffraction}}{\text{N} \text{N}} \]	- : : : : : : : : : : : : : : : : : : :	1 156 140	An all	Age Joseph	41724	
where, η is the order of diffraction (=1,2,3) and θ is the angle of diffraction. $\lambda = \sin\theta \pmod{N}$ No	The diffraction grating forms	ula for	the pri	ncipal m	raxima ts	:-
angle of diffraction. \[\lambda = \fraction \text{\text{(meter)}} \] \[\lambda \text{Nn} \\ \text{Nn} \]	dsing= n)					
angle of diffraction. \[\lambda = \fraction \text{\text{(meter)}} \] \[\lambda \text{Nn} \\ \text{Nn} \]	where, n is the	ne order a	f diffra	tion (=1.	2,3) and 8	9 is the
28SERVATION:						
28SERVATION:	λ= sing (m	netera)				
	Observation:					

Date: -2020/01/31

Page: 2

Fig: Diffraction through a greating

Dale: - 2020 0-1431

ROB NO: 20B050405

ENDMINERAL SHE SO EVITOR Page: 3

1	h	78-77	21	Lan	tano=45	0=tani(45)	simo	Mean	λ
		(cm)	(cm)	:(cm)					(mm)
	•	25	3.3	1.65	0.066	3.7760°	0.0659	nag arr	
	1	30	4.0	5.00	0:067	3-8141	0.0665	0.066	660
-		કેઇ	4.6	2.30	0.066	3.7597	0.0656	(1)	
		25	5.5	2-75	0.17	6.27.73	0-1093		
	2	30	7.8	3-9	0-13	7.4069.	0.1289	0.1228	614
		35	9.2	4-6	0.1314	7-4874	0.1303	10.13	
-	:	25	9.9	4.95	0.136	11.1997	0.1942	12 -17	
	3	30	12	6 .	0,2	11.3099	0-1961	0.1959	653
		35	14.1	7.05	0.2014	11.38%	0.1975		

Sample Calculation: -

:.
$$\lambda = \frac{4 \sin \theta}{5 \cdot N} = \frac{0.1959}{10^5 \times 3} = 6.5311 \times 10^{-7} \text{ m}$$

$$\approx 6531 \text{ A}$$

$$= 653 \text{ nm}$$

Similarly, the calculations were carried out for 1st and 2nd order maxima and respective to results are noted in the table.

= 642 nm

	Date: 2020/12/31	PILY	(10701 (Engino	leving Phoseics)	Rog No: 2 Page: 4	al and Record 08050405
	RESULT:					
	The convelength	of the	laser source	is found to	be 642	ham.
-						