

Universidade Eduardo Mondlane
Faculdade de Engenharia
Departamento de Engenharia Electrotécnica
Curso de Engenharia Informática

Sistemas Multimédia

Eng. Cristiliano Maculuve

- ☐ Aplicações Multimédia e Protocolos
- ☐ QoS na internet. Serviços integrados/RSVP e diferenciados. Voz sobre IP. Benefícios, QoS em

VOIP

Sistemas Multimédia INFOS2A2L2023

Multimédia e qualidade de serviços: o que é?

Objetivos

Princípios

- classificar aplicações de multimédia
- identificar serviços de rede que as aplicações precisam usar
- fazer o melhor com o serviço de melhor esforço

Protocolos e arquiteturas

- protocolos específicos para melhor esforço
- mecanismos para fornecer QoS
- arquiteturas para QoS

Aplicações de rede multimédia(MM)

Classes de aplicações MM:

- 1. fluxo contínuo (*streaming*) armazenado
- 2. fluxo contínuo ao vivo
- 3. interativas, tempo real

Jitter é a variabilidade dos atrasos de pacote dentro do mesmo fluxo de pacotes

Características fundamentais:

- normalmente, sensível ao atraso
 - atraso fim a fim
 - jitter do atraso
- tolerante a perdas: perdas infrequentes causam pequenas falhas
- antítese de dados, que são *intolerantes* a falhas, mas *tolerantes* a atraso.

Multimédia armazenada de fluxo contínuo

Fluxo contínuo armazenado:

- média armazenada na origem
- transmitida ao cliente
- □ <u>fluxo contínuo</u>: reprodução do cliente começa antes que todos os dados tenham chegado
- restrição de tempo para dados ainda a serem transmitidos: a tempo para o reprodução

Multimédia armazenado de fluxo contínuo: o que é?

Multimédia *Armazenado* de fluxo contínuo: interatividade

- 10 seg de atraso inicial OK
- 1-2 seg até efeito do comando OK
- restrição de tempo para dados ainda a serem transmitidos: em tempo para reprodução Multimédia

Multimédia *ao vivo* em fluxo contínuo

Exemplos:

- programa de entrevistas por rádio da Internet
- Julgamento do caso das dívidas ocultas
- evento desportivo ao vivo

Fluxo contínuo (como na multimédia armazenada em fluxo contínuo)

- buffer de reprodução
- reprodução pode atrasar dezenas de segundos após a transmissão
- ainda tem restrição de tempo

<u>Interatividade</u>

- avanço rápido impossível
- retornar, pausar possíveis!

Multimédia interativa em tempo real

aplicações: telefonia IP,
 videoconferência, mundos
 interativos distribuídos

- requisitos de atraso fim a fim:
 - áudio: < 150 ms bom, < 400 ms OK
 - inclui atrasos em nível de aplicação (empacotamento) e de rede
 - atrasos maiores observáveis prejudicam interatividade
- inicialização da sessão
 - Como o destino anuncia seu endereço IP, número de porta, algoritmos de codificação?

Multimédia sobre a Internet de hoje

TCP/UDP/IP: "serviço de melhor esforço"

sem garantia sobre atraso e perda

Aplicações de multimédia na Internet de hoje usam técnicas em nível de aplicação para aliviar (ao máximo) os efeitos de atraso e perda.

Multimédia armazenada de fluxo contínuo

técnicas de fluxo contínuo em nível de aplicação para obter o máximo do serviço de melhor esforço:

- buffering no cliente
- uso de UDP versus TCP
- múltiplas codificações de multimédia

Media Player

- eliminação da variação de atraso (jitter)
- descompressão
- supressão de erro
- interface gráfica de usuário sem controles para interatividade

Multimédia na Internet: técnica mais simples

áudio ou vídeo armazenados em arquivo arquivos transferidos como objetos HTTP

- recebidos por inteiro no cliente
- depois passados ao transdutor

cliente

áudio, vídeo sem fluxo contínuo:

□ sem "canalização", longos atrasos até reprodução!

Multimédia de fluxo contínuo: buffer no cliente

 buffer no cliente, atraso na reprodução compensa atraso adicional da rede, jitter

• buffer no cliente, atraso na reprodução compensa atraso adicional da rede, jitter

Multimédia de fluxo contínuo: UDP ou TCP?

UDP

- servidor envia na taxa apropriada ao cliente (desatento ao congestionamento na rede!)
 - normalmente, taxa envio = taxa codif. = taxa constante
 - depois, taxa de preenchimento = taxa constante perda de pacote
- pequeno atraso na reprodução (2-5 s) para remover jitter da rede
- recuperação de erro: se o tempo permitir

TCP

- envio na maior taxa possível sob TCP
- taxa de preenchimento flutua devido ao controle de congestionamento TCP
- maior atraso na reprodução: taxa de envio TCP suave
- HTTP/TCP passa mais facilmente pelos firewalls

Controle do usuário da média de fluxo contínuo: RTSP

HTTP

- não visa conteúdo de multimédia
- sem comandos para avanço rápido etc.

RTSP: RFC 2326

- protocolo da camada de aplicação cliente- -servidor
- controle do usuário: retrocesso, avanço rápido, pause, reinício, reposicionamento etc....

O que ele não faz:

- não define como áudio, e vídeo são encapsulados para fluxo contínuo pela rede
- não restringe como a média de fluxo contínuo é transportada (UDP ou TCP possível)
- não especifica como transdutor mantém áudio/vídeo em buffer

RTSP: controle fora da banda

FTP usa canal de controle "fora da banda":

- arquivo transferido por uma conexão TCP
- informação de controle (mudanças de diretório, exclusão de arquivo, renomeação) enviadas por conexão TCP separada
- canais "fora de banda", "na banda" usam números de porta diferentes

Mensagens RTSP também enviadas fora da banda:

- Mensagens de controle RTSP usam diferentes números de porta do fluxo contínuo de média: fora da banda
 - porta 554
- fluxo contínuo de média é considerado "na banda"

Exemplo do RTSP

Cenário:

- metarquivo comunicado ao navegador Web
- navegador inicia transdutor
- transdutor configura conexão de controle RTSP, conexão de dados ao servidor de fluxo contínuo

Variação de atraso

 considere atrasos de fim a fim de dois pacotes consecutivos: diferença pode ser mais ou menos

20 ms (diferença no tempo de transmissão)

Internet Phone: atraso de reprodução fixo

- receptor tenta reproduzir cada porção exatamente q ms após a porção ter sido gerada
 - porção tem marca de tempo t: reproduz porção em t + q.
 - porção chega após t + q: dados chegam muito tarde para reprodução e se "perdem"
- dilema na escolha de q:
 - *q grande:* menos perda de pacote
 - *q pequeno:* melhor experiência interativa

Atraso de reprodução fixo

- remetente gera pacotes a cada 20 ms durante rajada de voz
- primeiro pacote recebido no instante
- primeiro esquema de reprodução: começa em p
- segundo esquema de reprodução: começa em p'

Recuperação de perda de pacotes

Forward Error Correction (FEC): mecanismo simples

- para cada grupo de n porções, crie porção redundante com OR exclusivo de n porções originais
- envie n + 1 porções, aumentando largura de banda pelo fator 1/n.
- pode reconstruir n porções originais se no máximo uma porção perdida dentre n + 1 porções

- atraso de reprodução: tempo suficiente para receber todos n + 1 pacotes
- dilema:
 - aumente n, menos desperdício de largura de banda
 - aumente n, maior atraso de reprodução
 - aumente n, maior probabilidade de que 2 ou mais porções se percam

Content Distribution Networks (CDNs)

Replicação de conteúdo

- difícil enviar grandes arquivos (p. e., vídeo) de único servidor de origem em tempo real
- solução: replicar conteúdo em centenas de servidores pela Internet
 - conteúdo baixado para servidores CDN antes da hora
 - conteúdo "perto" do usuário evita dados (perda, atraso) do envio por longos caminhos
 - servidor CDN normalmente na rede da borda/acesso

Replicação de conteúdo

- cliente CDN (p. e., Akamai) é provedor de conteúdo (p. e., CNN)
- CDN replica conteúdo do cliente nos servidores CDN
- quando provedor atualiza conteúdo,
 CDN atualiza servidores

Exemplo de CDN

- distribui HTML
- substitui:

http://www.foo.com/sports.ruth.gif

- distribui arquivos GIF
- usa seu servidor DNS com autoridade para rotear

Sistemas http://www.cdn.com/www.foo.com/sports/ruth.gif requisições Multimédia

Mais sobre CDNs

requisições de roteamento

- CDN cria um "mapa", indicando distâncias de ISPs de folha e nós
 CDN
- quando consulta chega no servidor DNS com autoridade:
 - servidor determina ISP do qual a consulta origina
 - usa "mapa" para determinar melhor servidor CDN
- nós CDN criam rede de sobreposição da camada de aplicação

Protocolos para aplicações interativas em tempo real - RTP, RTCP, SIP

Real-Time Protocol (RTP)

- RTP especifica estrutura de pacote para transportar dados de áudio e vídeo
- RFC 3550
- pacote RTP oferece
 - identificação de tipo de carga útil
 - numeração de sequência de pacote
 - marca de tempo

- RTP roda em sistemas finais
- pacotes RTP encapsulados em segmentos UDP
- interoperabilidade: se duas aplicações de telefone da Internet rodam RTP, então elas podem ser capazes de trabalhar juntas

RTP roda sobre UDP

bibliotecas RTP oferecem interface da camada de transporte que estende UDP:

- · números de porta, endereços IP
- · identificação de tipo de carga útil
- · numeração de sequência de pacote
- · marca de tempo de

RTP e QoS

- RTP **não** oferece qualquer mecanismo para garantir entrega de dados a tempo ou outras garantias de QoS
- encapsulamento RTP só é visto nos sistemas finais (não) por roteadores intermediários
 - roteadores fornecendo serviço do melhor esforço, não fazendo esforço especial para garantir que os pacotes RTP chegam ao destino em tempo

Fornecendo classes de serviço múltiplas

Fornecendo múltiplas classes de serviço

- até aqui: fazer o melhor com serviço de melhor esforço
 - todo o modelo de serviço em um tamanho
- alternativa: múltiplas classes de serviço
 - particionar tráfego em classes
 - rede trata diferentes classes de tráfego de formas diferentes (analogia: serviço VIP X serviço normal)
 - □ granularidade: serviço diferencial entre múltiplas classes, não entre conexões individuais
 - □ história: bits de ToS

Cenário 1: FTP e áudio misturados

- Exemplo: telefone IP a 1Mbps, FTP compartilha enlace de 1,5 Mbps.
 - rajadas de FTP podem congestionar roteador e causar perda de áudio
 - deseja dar prioridade ao áudio no lugar do FTP

Princípio 1

Marcação de pacote necessária para roteador distinguir entre diferentes classes; e nova política de roteamento para tratar pacotes de acordo.

Princípios de garantias de QOS (mais)

- e se as aplicações se comportarem mal (áudio envia mais do que a taxa declarada)
 - regulação: força de aderência dá origem às alocações de larg. banda
- marcação e regulação na borda da rede:
 - semelhante a ATM UNI (User Network Interface)

Sistemas <mark>forneça proteção (isolamento) de uma classe para outras</mark> Multimédia Alocar largura de banda fixa (não compartilhável) ao fluxo: uso ineficaz da largura de banda se os fluxos não usarem sua alocação

Princípio 3

Ao fornecer isolamento, é desejável usar recursos da forma mais eficiente possível

Fornecendo garantias de qualidade de serviços

Princípios para garantias de QOS (mais)

• Fato básico da vida: não pode admitir demandas de tráfego além da capacidade do enlace

Princípio 4

Admissão de chamada: fluxo declara suas necessidades, rede pode bloquear chamada (p. e., sinal ocupado) se não puder atender as necessidades

Sistemas Multimédio INFOS2A2L

Resumo

Princípios

- classificar aplicações de multimédia
- identificar serviços de rede que as aplicações precisam
- fazer o melhor com o serviço de melhor esforço

Protocolos e arquiteturas

- especificar protocolos para melhor esforço
- mecanismos para oferecer QoS
- arquiteturas para QoS
 - múltiplas classes de serviço
 - garantias de QoS, controle de admissão

Referências

PAULA FILHO, Wilson de Paula. Multimídia. conceitos e aplicações. Rio de Janeiro: LTC, 2009.

J ETHAN WATRALL & EFF SIARTO, Use a Cabeça! web Design, 1 a Edição, Ed Alta Books, 2009

GONZALEZ R.C. WOODS R.E Processamento Digital de Imagens, 3ª Edição, Ed. Pearson, 2010.

Slide Adaptado do

J.F. Kurose & K. W. Ross, Redes de Computadores e Internet, 5ª Edição.

