grade 100%

Sequence models & Attention mechanism

LATEST	SUBMISSION	GRADE

✓ Correct

1(00%	
1.	Consider using this encoder-decoder model for machine translation. $a^{<0>} \longrightarrow \bigvee_{x < 1>} \bigvee_{x < 7x} \bigvee_{x < 7x$	1/1 point
	True● False✓ Correct	
	In beam search, if you increase the beam width B , which of the following would you expect to be true? Check all that apply. Beam search will run more slowly.	1/1 point
	 ✓ Correct ☑ Beam search will use up more memory. ✓ Correct 	
	$lacksquare$ Beam search will generally find better solutions (i.e. do a better job maximizing $P(y\mid x)$) \lacksquare Correct	
	Beam search will converge after fewer steps. In machine translation, if we carry out beam search without using sentence normalization, the algorithm will tend to output overly short translations. True	1/1 point
	False Correct Suppose you are building a speech recognition system, which uses an BNN model to man from audin clin or to a text.	1 Sania
4.	Suppose you are building a speech recognition system, which uses an RNN model to map from audio $(\operatorname{in} x \operatorname{to} a \operatorname{text} \operatorname{transcript} y. \operatorname{Your algorithm} \operatorname{uses} \operatorname{beam} \operatorname{search} \operatorname{to} \operatorname{try} \operatorname{to} \operatorname{find} \operatorname{the} \operatorname{value} \operatorname{of} y \operatorname{that} \operatorname{maximizes} P(y \mid x).$ On a dev set example, given an input audio $(\operatorname{lip}, \operatorname{your} \operatorname{algorithm} \operatorname{outputs} \operatorname{the} \operatorname{transcript} \hat{y} = \operatorname{Tim} \operatorname{building} \operatorname{an} \operatorname{A} \operatorname{Eye} \operatorname{system}$ in Silly con Valley." whereas a human gives a much superior transcript $y^* = \operatorname{Tim} \operatorname{building} \operatorname{an} \operatorname{A} \operatorname{I} \operatorname{system}$ in Sill: Con Valley." According to your model. $P(\hat{y} \mid x) = 1.09 * 10^{-7}$ $P(y^* \mid x) = 7.21 * 10^{-8}$	1/1 point
	Would you expect increasing the beam width B to help correct this example?	
5	✓ Correct Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the	1/1 point
э.	Continuing the example on which your algorithm makes a mistake, $P(y^* \mid x) > P(\hat{y} \mid x)$. This suggest you should focus your attention on improving the search algorithm. True. False.	171 point

Further, here is the formula for $\alpha^{< t, t'>}$.

$\alpha^{\langle t,t'\rangle} =$	$\exp(e^{\langle t,t'\rangle})$
u –	$\sum_{t'=1}^{T_{\chi}} \exp(e^{\langle t,t'\rangle})$

Which of the following statements about $\alpha^{< t,t'>}$ are true? Check all that apply.

 \blacksquare We expect $\alpha^{< t t'>}$ to be generally larger for values of $a^{< t'>}$ that are highly relevant to the value the network should output for $y^{< t>}$. (Note the indices in the superscripts.)

- $\begin{tabular}{ll} \square We expect $\alpha^{<d,t'>}$ to be generally larger for values of $a^{<t>}$ that are highly relevant to the value the network should output for $y^{<t'>}$. (Note the indices in the superscripts.) \end{tabular}$
- $\hfill \sum_t \alpha^{< t,t'>} = 1 \,$ (Note the summation is over t.)
- $\sum_{t'} lpha^{< t, t'>} = 1$ (Note the summation is over t'.)

✓ Correct

7. The network learns where to "pay attention" by learning the values $e^{< t,t'>}$, which are computed using a small neural

1/1 point

We can't replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network. This is because $s^{< t>}$ depends on $\alpha^{< t,t>}$ which in turn depends on $e^{< t,t'>}$; so at the time we need to evalute this network, we haven't computed $s^{< t>}$ yet.

- True
- False

✓ Correct

- Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism).
 1/1 point we expect the attention model to have the greatest advantage when:
 - igodeligap The input sequence length T_x is large.
 - \bigcirc The input sequence length T_x is small.

✓ Correct

9. Under the CTC model, identical repeated characters not separated by the "blank" character () are collapsed. Under the CTC model, what does the following string collapse to?

_c_oo_o_kk___b_ooooo__oo__kkk

- O cokbok
- cookbook
- ook book
- ocookkbooooookkk

✓ Correct

10. In trigger word detection, $x^{< t>}$ is:

1/1 point

- $\ensuremath{\bigodot}$ Features of the audio (such as spectrogram features) at time t.
- $\hfill \bigcirc$ The t-th input word, represented as either a one-hot vector or a word embedding.
- $\begin{picture}(60,0)\put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}$
- $\hfill \bigcirc$. Whether someone has just finished saying the trigger word at time t.

✓ Correct