Imperial College

Lamion

BSc, MSci and MSc EXAMINATIONS (MATHEMATICS)

May - June 2014

This paper is also taken for the relevant examination for the Associateship of the Royal College of Science.

Measure & Integration

Date: Wednesday, 07 May 2014. Time: 2.00pm - 4.00pm. Time allowed: 2 hours.

This paper has FOUR questions.

Candidates should use ONE main answer book.

Supplementary books may only be used after the main book is full.

Statistical tables will not be provided.

- DO NOT OPEN THIS PAPER UNTIL THE INVIGILATOR TELLS YOU TO.
- Affix one of the labels provided to each answer book that you use, but DO NOT USE THE LABEL WITH YOUR NAME ON IT.
- Credit will be given for all questions attempted, but extra credit will be given for complete or nearly complete answers to each question as per the table below.

Raw mark	up to 12	13	14	15	16	17	18	19	20
Extra credit	0	$\frac{1}{2}$	1	$1\frac{1}{2}$	2	$2\frac{1}{2}$	3	$3\frac{1}{2}$	4

- · Each question carries equal weight.
- Calculators may not be used.

- 1. i. Let μ be a complete measure, A be a set such that $\mu(A)=0$, f be a function on A, $f:A\to\mathbb{R}$. Prove or disprove that f is measurable.
 - ii. Formulate Egorov's theorem (without proof).
- 2. i. Given a measure on a ring and the outer measure, define what it means for a set to be measurable (in Lebesgue sense).
 - ii. Let μ be a complete σ -additive measure on A, and let a function f be integrable on A. Assuming other properties of the integral, show that given $\epsilon > 0$ there is a $\delta > 0$ such that for any measurable set $E \subset A$ with $\mu(E) < \delta$, we have

$$\left| \int_{E} f d\mu \right| < \epsilon.$$

- 3. i. State the property of σ -additivity of a measure.
 - ii. Compute the limit (if it exists):

$$\lim_{n\to\infty} \int_0^n \left(1 + \frac{x}{n}\right)^n e^{-2x} dx,$$

where the integral is with respect to the Lebesgue measure on $[0, \infty)$. Justify your reasoning (you can use elementary results about the exponential function without proof).

4. Let f(x) be an absolutely continuous function on $[0, 1 - \delta]$ for any $1 > \delta > 0$. Moreover, let this f(x) be continuous at x = 1 and of bounded variation on [0, 1]. Show that f is absolutely continuous on [0, 1].

	EXAMINATION SOLUTIONS 2013 - 1-1	Course
Question 1		Marks & seen/unseen
Parts	M -complete, $M(A) = 0$, $f: A \to \mathbb{R}$. Since M is complete, any Subset of A is measurable. In particular, the preimage $f'(B)$ of any Borel set is measurable (as $f'(B) \in A$) Hence, f is measurable by definition.	
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 2018 - 1/1	Course
Question 1		Marks & seen/unseen
Parts	Egorov's theorem: Let E be a set of finite measure, $f_n(x)$ - a sequence of measurable functions converging to a function f a.e. on E . Then for any $S>0$ there exists a measurable subset $E_S \subset E$ s.t. 1) $M(E_S) > M(E) - S$ 2) $f_n \to f$ uniformly on E_S .	10 480 W
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 2018 - 14	Course
Question 2		Marks &
		seeп/unseen
Parts	A set A is called measurable if $\forall \varepsilon > 0$ there exists a set in the ring set call it B, s.t. the outer measure $\mathcal{M}^*(A \triangle B) < \varepsilon$.	1 '
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 2013 - M.	Course
Question 2		Marks &
Parts	Let M - complete measure on A, f-integrable on A. We now show that $\forall E > 0 \exists S > 0 \text{ s.t.}$ for any measurable BCA with $\mu(B) < S$ we have $ S d\mu < E$ (absolute continuity of the integral). I) If is bounded, i.e. if $ S \leq M$ on A, then by a property of the integral $ S d\mu \leq M$ on A, then by a property of the integral $ S d\mu \leq M \mu(B) < M S$ and so the result follows by choosing $S < E_M$.	seen/unseen
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 2018 - 17.	Course
Question		Marks &
Parts	2) In general, let	
	$A_n = \left\{ x \in A : n \leq f(x) < n+1 \right\},$	
	BN=OAn, CN=A\BN	
	By b-additivity of the integral,	
	Sifidm = = Sifidm	
:	Using the fact that the series	
:	converge, for an EDO choose	
	N s.t.	1
	= N+1 An CN CN	
	Let 0<8= E (N+1)	
	If M(B) < S, we have by	
	the properties of the integral,	
··· ·· ·· ·· · · · · · · · · · · · · ·	Setter's initials Checker's initials	Page num

	EXAMINATION SOLUTIONS 2013 - 14	Соигзе
Question		Marks & seen/unseen
Parts	IS fdm = SIfIdm = BOBN BOCN By construction and properties of the integral, SIFIDM = (N+1) M(B) < BOBN < (N+1) & < \(\frac{\psi_2}{2}\); SIFIDM = SIFIDM < \(\frac{\psi_2}{2}\); Therefore, IS fdm < \(\frac{\psi}{2}\).	seen/unseen
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 2013 - Pt	Course
Question		Marks & seen/unseen
Parts	Let $\{A_{k}, k=1,2,\}$ be a countable collection of pairwise disjoint measurable sets. A measure μ is β -additive if $\mu(\bigcup_{k=1}^{\infty}A_{k}) = \sum_{k=1}^{\infty}\mu(A_{k})$.	
	1	1

A PARTY OF THE PAR	EXAMINATION SOLUTIONS 2018 - 14	Course
Question 3		Marks & seen/unseen
Parts	We use the elementary regult	unicar Voicar
	(1+ ½)" < e for % < 1,	
	$ \begin{array}{c} \text{if } X \ge 0. \\ \text{Let } f_n = \begin{cases} (H_n^X)^n e^{-2x}, & 0 < x < n \\ 0, & x \ge n \end{cases} $	
	For a fixed n, this function is bounded and measurable	
	I or a moduct of a continuous	
	function and the conductors.	
	- both measurable), and	
	therefore integrable over any	
	finite interval [0, Xo] and, clearly, over [0, \infty].	
	Moreover, If (x) \(e^{\times e^{2\times - \times}}	
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 2018-14.	Course
Question		
3		Marks & seen/unseen
Parts	The bound is an integrable	
	function, and	
	$\int_{0}^{\infty} e^{-x} dx = 1$	
	For any × ≥ 0,	
	$\lim_{n\to\infty} f_n(x) = e^{x} \cdot e^{-2x} = e^{-x}$	
	By Lebesgue's theorem,	
	$\lim_{n\to\infty} \left(\left(1+\frac{x}{n} \right)^n e^{-2x} dx = \frac{1}{n}$	
	$= \lim_{n\to\infty} \int_{0}^{\infty} f_{n}(x) dx =$	
	$= \int_{0}^{\infty} e^{-x} dx = 1$	
	0	:
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 2018 - 14	Course
Question		Marks & seen/unseen
Parts	Let $f(x)$ be a.c. on $[0,1-8]$, $8>0$; f -continuous at $x=1$; f of B.V. on $[0,1]$. Let $V_o(f)$ be the variation of f on $[0,x]$. Since f is continuous at f , we have is continuous at f , we have that f is continuous at f . Therefore, for any fixed f is there is f or f or f is f and f in f is f and f in f is f and f in f	Seen/unseen 20 240 Lees
	any finite division of [1-8,1]	
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 2018 - 19	Course
Question		
4		Marks & seen/unseen
Parts	Since of is a.c. on [0,1-8],	
	there is 8'>0 s.t.	
	$\sum f(b_n) - f(a_n) < \frac{\varepsilon}{2}$ (3)	
	for any family of disjoint	
	intervals (an, bn) c [0,1-6]	
	satisfying	-
	$\sum_{\kappa=0}^{\infty} (b_{\kappa}' - a_{\kappa}') < \delta $ (4)	
	Take any finite family F	
	of disjoint intervals (ak, ok)	
	c [0,1] satisfying	
	$\sum_{k} (\beta_{k} - \alpha_{k}) < \delta'$	
	Relable points an, br c [0,1-8]	
	By ax, bx . If 1-8 ∈ (axo, bxo)	
	for some Ko, let b'_= 1-8,	
	$a_0 = 1 - \delta$.	
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 2013 - 14	Course
Question		
Ч		Marks &
Parts	Considering the part of F in $[0,1-8]$ and the part of F in $[1-8,1]$ separately, we obtain by $(4),(3),(2)$, and (1) , that $\sum_{k} f(b_{k}^{"})-f(a_{k}^{"}) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$ which establishes the result.	
	Setter's initials Checker's initials	Page number